Д.В. Карпов

Алгебра. Глава 12. Основы теории кодирования

Д.В.Карпов

2024

- Для конечного алфавита Σ через Σ^* обозначается множество всех слов в этом алфавите конечных последовательтей элементов Σ .
- ullet Пусть Σ_1 и Σ_2 два конечных алфавита. Сообщение произвольное слово $u\in \Sigma_1^*$.
- Мы хотим закодировать сообщение u в алфавите Σ_2 , то есть поставить ему в соответствие слово $F(u) \in \Sigma_2^*$, которое будет передаваться по каналам связи.
- Для этого нам нужно задать отображение $F: \Sigma_1^* \to \Sigma_2^*$, которое называется кодирующим отображением или просто кодированием.

- ullet Требования к отображению F зависят от того, какую задачу мы решаем. Основные задачи теории кодирования таковы:
- шифрование данных: требуется, чтобы вычисление обратного отображения F^{-1} было значительно более трудоемким, чем вычисление F;
- помехоустойчивое кодирование: требуется, чтобы исходное сообщение u можно было восстановить даже в том случае, если при передаче F(u) произошли ошибки (при условии, что ошибок было не слишком много);
- сжимающие отображения: требуется, чтобы длина кодированного сообщения была как можно меньше.
- В большинстве случаев, важным требованием является возможность однозначного декодирования (то есть F должно быть инъекцией). Но это требуется не всегда. Например, сжатие с потерей качества не предполагает однозначного декодирования.

- Мы будем рассматривать блочное или равномерное кодирование, при котором сообщение $u \in \Sigma_1^*$ разбивается на блоки длины k, каждый из которых будет закодирован словом длины n в алфавите Σ_2 .
- ullet Для этого нам нужно задать инъекцию $c: \Sigma_1^k o \Sigma_2^n$, которая будет называться схемой кодирования.
- В первую очередь нас будет интересовать множество кодовых слов $\mathcal{C} := \operatorname{Im}(c) = \{x \in \Sigma_2^n \mid \exists u \in \Sigma_2^n (c(u) = x)\},$ которое мы будем называть просто кодом.
- ullet Как правило, мы будем считать, что $\Sigma_1 = \Sigma_2 = \Sigma$ и k < n.
- ullet Пусть $x=x_1\dots x_n\in \Sigma^n$. Ошибки при передаче слова x могут быть трех типов:
- замещение разряда: вместо символа x_i приняли другой символ x_i' ;
 - выпадение разряда: символ x_i не был распознан;
- вставка разряда: между x_i и x_{i+1} прочитали "лишний" символ y.
- Мы будем рассматривать только ощибки типа замещения.

Пусть Σ — конечный алфавит, $n \in \mathbb{N}$ и $x = x_1 \dots x_n, y = y_1 \dots y_n \in \Sigma^n$.

- Расстоянием Хэмминга между словами x и y это $d(x,y) := |\{i \in [1..n] : x_i \neq y_i\}|.$
- ullet Очевидно, выполнено неравенство треугольника: $d(x,y) \leq d(x,z) + d(z,y).$
- Пусть $x \in \Sigma^n$ и $r \in \mathbb{N}_0$. Шар с центром x и радиусом r это множество $B_r(x) := \{y \in \Sigma^n : d(x,y) \le r\}.$
- Очевидно, $|B_r(x)| = \sum_{i=0}^r C_n^i (q-1)^i$, где $q = |\Sigma|$.

Определение

- ullet Пусть $\mathcal{C}\subset \Sigma^n$ произвольный код. Кодовое расстояние кода \mathcal{C} это $d(\mathcal{C}):=\min\{d(x,y)\ |\ x,y\in\mathcal{C},x\neq y\}.$
- ullet Кодовое расстояние схемы кодирования $c: \Sigma^k o \Sigma^n$ это $d(c):=d(\mathrm{Im}(c)).$

Пусть при передаче сообщения длины п возникает не более г ошибок типа замещения, а для кодирования сообщений используется схема с. Тогда:

- 1) схема кодирования с обеспечивает гарантированное обнаружение ошибки, если и только если d(c) > r;
- 2) схема кодирования с обеспечивает гарантированное исправление всех ошибок, если и только если d(c) > 2r.

Доказательство. • Заметим, что при передаче слова x, результат может оказаться любым словом из $B_r(x)$.

- 1) Для гарантированного обнаружения ошибки необходимо и достаточно, чтобы никакое кодовое слово не лежало в шаре радиуса r с центром в другом кодовом слове. Но это и означает, что d(c) > r.
- 2) Для гарантированного исправления всех ошибок необходимо и достаточно, чтобы шары радиуса r с центрами в кодовых словах не пересекались.
- ullet Докажем, что это эквивалентно тому, что d(c)>2r.
- \Leftarrow . Пусть $z\in B_r(x)\cap B_r(y)$. Тогда $d(x,y)\leq d(x,z)+d(z,y)\leq r+r=2r$. Противоречие.

- \Rightarrow . Пусть $d(x, y) \leq 2r$.
- Рассмотрим те разряды, в которых слово x отличается от слова y. Пусть таких разрядов $d \leq 2r$.
- Заменим в слове x какие-нибудь $\lfloor d/2 \rfloor$ из рассматриваемых разрядов на соответствующие разряды слова y.
- ullet Получим слово z, такое, что $d(x,z) \leq r$ и $d(z,y) \leq r$. То есть $z \in B_r(x) \cap B_r(y)$.
- Простейшим примером схемы кодирования с кодовым расстоянием d является схема, при которой каждый символ повторяется d раз.
- То есть слово $u = u_1 u_2 \dots u_k$ кодируется как $c(u) = \underbrace{u_1 \dots u_1}_d \underbrace{u_2 \dots u_2}_d \dots \underbrace{u_k \dots u_k}_d.$
- Разумеется, такая схема очень неэкономна.

- ullet Пусть q степень простого числа p и $\Sigma = \mathbb{F}_q$.
- Множество \mathbb{F}_q^n всех слов длины n в этом алфавите является векторным пространством размерности n над \mathbb{F}_q .

- ullet Линейное подпространство ${\mathcal C}$ пространства ${\mathbb F}_q^n$ называется линейным q-значным кодом длины n.
- ullet В случае q=2 линейный такой код называется двоичным.
- ullet Линейный код ${\mathcal C}$ имеет следующие параметры:
- длина кода n (количество символов в каждом кодовом слове);
- ullet размерность кода $k=\dim(\mathcal{C})$ (как линейного пространства над \mathbb{F}_q);
 - \bullet кодовое расстояние d.
- Код $\mathcal C$ в этом случае мы будем также называть [n,k,d]-кодом. Иногда мы будем опускать параметр d и говорить об [n,k]-кодах.

- ullet Пусть дан линейный q-значный [n,k,d]-код ${\mathcal C}.$
- ullet Тогда кодовые слова представляются как векторы вида $x=(x_1,x_2,\ldots,x_n)$, где $x_i\in\mathbb{F}_q$.
- ullet Поскольку $\dim_{\mathbb{F}_q} \mathcal{C} = k$, очевидно, что $|\mathcal{C}| = q^k$. Исходные сообщения также можно представлять как векторы вида $u = (u_1, u_2, \dots, u_k)$, где $u_i \in \mathbb{F}_q$.
- Схемой кодирования тогда будет линейное отображение $c: \mathbb{F}_q^k o \mathbb{F}_q^n.$
- Нам нужно, чтобы отображение c было инъекцией, что равносильно $\ker(c)=\{0\}.$

Линейные коды C_1 и C_2 эквивалентны, если они отличаются перестановкой координат.

• У эквивалентных кодов все кодовые параметры одинаковы.

Пусть $x=(x_1,x_2,\ldots,x_n)\in \mathbb{F}_q^n$. Весом Хэмминга w(x) вектора x называется число его ненулевых координат. (То есть, $w(x)=|\{i\in [1..n]\ :\ x_i\neq 0\}|.)$

ullet Пусть $x,y\in \mathbb{F}_q^n$. Тогда d(x,y)=w(x-y).

Лемма 1

Пусть \mathcal{C} — линейный q-значный код с кодовым расстоянием d. Тогда $d=\min\{w(x)\mid x\in\mathcal{C}\setminus\{0\}\}.$

Доказательство. ullet Пусть $\min\{w(x) \mid x \in \mathcal{C} \setminus \{0\}\} = d'.$ Нужно доказать, что d = d'.

 $d \geq d'$. Рассмотрим такие векторы $x,y \in \mathbb{F}_q^n$, что d(x,y) = d. Тогда $d = d(x,y) = w(x-y) \geq d'$. $d \leq d'$. Рассмотрим вектор $s \in \mathbb{F}_q^n$, такой, что w(s) = d'. Тогда d < d(s,0) = w(s-0) = d'.

- Пусть $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{F}_q^n$. Тогда скалярным произведением векторов x и y будем называть величину $\langle x, y \rangle := \sum_{i=1}^n x_i y_i$.
- ullet Векторы $x,y\in \mathbb{F}_q^n$ ортогональны, если $\langle x,y
 angle=0.$
- Пусть \mathcal{C} линейное подпространство \mathbb{F}_q^n . Тогда ортогональным дополнением к \mathcal{C} называется множество $\mathcal{C}^\perp := \{y \in \mathbb{F}_q^n \mid \forall x \in \mathcal{C} \, (\langle x,y \rangle = 0)\}.$

Теорема 2

- 1) $\mathcal{C}^{\perp} < \mathbb{F}_q^n$. Если $\dim(\mathcal{C}) = k$, то $\dim(\mathcal{C}^{\perp}) = n k$.
- $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}.$

Доказательство. 1) \bullet Пусть g_1, g_2, \ldots, g_k — базис \mathcal{C} .

- ullet Тогда $y\in \mathcal{C}^\perp\iff \langle g_1,y
 angle=\langle g_2,y
 angle=\ldots=\langle g_k,y
 angle=0.$
- Рассмотрим матрицу G, строками которой являются векторы g_1, g_2, \dots, g_k . Её элементы будем обозначать g_{ij} .
- ullet Это означает, что вектор y является решением ОСЛУ yG=0.
- ullet Пространство решений этой ОСЛУ (а это \mathcal{C}^\perp) линейное подпространство \mathbb{F}_q^n размерности $n-\mathrm{rk}(G)=n-k$.
- 2) Из определения очевидно, что $\mathcal{C} \subset (\mathcal{C}^{\perp})^{\perp}$.
- ullet С другой стороны, $\dim(\mathcal{C}^\perp)^\perp=n-(n-k)=k=\dim(\mathcal{C})$, следовательно, $\mathcal{C}=(\mathcal{C}^\perp)^\perp.$

Пусть \mathcal{C} — линейный q-значный [n,k]-код. Порождающей матрицей кода \mathcal{C} называется матрица $G \in M_{k,n}(\mathbb{F}_q)$ (k строк и n столбцов), строки которой образуют базис \mathcal{C} .

- Из определения очевидно, что у любого линейного кода есть порождающая матрица и её строки ЛНЗ (т. е. ${\rm rk}\,G=k$). Понятно, что порождающая матрица неединственна.
- ullet Порождающая матрица G задает схему кодирования. Действительно, пусть g_1,g_2,\ldots,g_k строки G и $u\in\mathbb{F}_q^k$
- ullet Тогда отображение c можно определить следующим образом: $c(u) := \sum\limits_{i=1}^k g_i u_i.$
- ullet Это же отображение задается формулами c(u)=uG или $c(u)^T=G^Tu^T.$
- Любая схема кодирования должна переводит стандартный базис пространства \mathbb{F}_q^k в некоторый базис подпространства $\mathcal{C}.$
- Следовательно, любая схема кодирования представляется в описанном выше виде для некоторой порождающей матрицы кода \mathcal{C} .

Проверочной матрицей кода $\mathcal C$ называется матрица H размером $(n-k)\times n$, удовлетворяющая следующему условию: $\forall x\in \mathbb F_a^n\ (x\in \mathcal C\iff Hx^T=0).$

ullet В отличии от порождающей матрицы, существование проверочной матрицы не является очевидным. Это следует из Теоремы 2.

Следствие 1

У любого линейного q-значного кода $\mathcal C$ есть проверочная матрица.

Доказательство. ullet Пусть H — матрица, строки которой образуют базис подпространства \mathcal{C}^\perp .

- ullet Поскольку $\dim(\mathcal{C}^\perp) = n-k$, матрица H имеет размеры (n-k) imes n.
- Векторы, удовлетворяющие условию $Hx^T=0$ это в точности векторы, принадлежащие подпространству $(\mathcal{C}^\perp)^\perp=\mathcal{C}.$

Теорема 3

Пусть H — проверочная матрица линейного кода $\mathcal C$. Тогда код $\mathcal C$ имеет кодовое расстояние d, если и только если любые d-1 столбцов матрицы H линейно независимы и найдутся d линейно зависимых столбцов.

Доказательство. • Пусть h_1, h_2, \ldots, h_n — столбцы матрицы H.

- ullet Существует вектор $a=(a_1,a_2,\ldots,a_n)\in\mathcal{C}\setminus\{0\}$ с w(a)=d.
- ullet Пусть $a_{i_1}, a_{i_2}, \dots, a_{i_d}$ все ненулевые координаты a. Тогда $\sum_{j=1}^d a_{i_j} h_{i_j} = H a^T = 0.$
- ullet Следовательно, столбцы $h_{i_1}, h_{i_2}, \dots, h_{i_d}$ линейно зависимы.
- Наоборот, если столбцы $h_{i_1},h_{i_2},\ldots,h_{i_s}$ линейно зависимы, то найдется такой вектор $a\in\mathbb{F}_q^n\setminus\{0\}$, что $Ha^T=0$ и $w(a)\leq s$ (ненулевые коэффициенты у a могут быть только среди $a_{i_1},a_{i_2},\ldots,a_{i_s}$).
- ullet Следовательно, $s \geq d$.

Следствие 2

(R. C. Singleton, 1964.) Для любого линейного кода $\mathcal C$ с параметрами [n,k,d] выполнено соотношение $n-k\geq d-1$.

Доказательство. ullet Пусть H — проверочная матрица \mathcal{C} .

- ullet В этой матрице n-k строк, следовательно, $\mathrm{rk}(H) \leq n-k.$
- ullet Тогда любые n-k+1 столбцов матрицы H линейно зависимы.
- По Теореме 3 (о столбцах проверочной матрицы) получаем, что $d \le n-k+1$.
- Существуют коды, для которых граница Синглтона достигается. Они называются MDS-кодами (maximum distance separable).

= 900 €

Теорема 4

Пусть $A_q(n,d)$ — наибольшая мощность q-значного кода длины n с кодовым расстоянием d и $r=\left[\frac{d-1}{2}\right]$. Тогда

$$A_q(n,d) \leq \frac{q^n}{\sum_{i=0}^r C_n^i (q-1)^i}.$$

Доказательство. • Для каждого кодового слова $x \in \mathcal{C}$ рассмотрим шар радиуса r с центром в x:

$$B_r(x) = \{ y \in \mathbb{F}_q^n : d(x,y) \le r \}.$$

• Такие шары не могут пересекаться.

Утверждение

$$|B_r(x)| = \sum_{i=0}^r C_n^i (q-1)^i.$$

Доказательство. • Для каждого i от 0 до r-1 можно C_n^i способами выбрать i координат вектора x, которые будут изменены.

- ullet Каждую координату можно изменить на q-1 другую.
- Утверждение теоремы очевидно следует из доказанного.
- Коды, для которых достигается граница Хэмминга называются совершенным или плотно упакованными»

Двузначный код Хэмминга

- ullet Пусть q=2 и $n=2^m-1$, где $m\in\mathbb{N}.$
- Рассмотрим линейный код, задаваемый проверочной матрицей $H_m \in M_{m,n}(\mathbb{F}_2)$, столбцы которой все 2^m-1 ненулевые векторы длины m.
- (i-й столбец представляет из себя двоичную запись числа i из m разрядов, в случае необходимости, в её начало дописывается нужное число нулей. Разряды записываются "сверху вниз" самый младших разряд должен оказаться в нижней строчке.)

$$ullet$$
 Пример: $H_3=\left(egin{array}{cccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}
ight).$

- Поскольку все столбцы различны, d=3. Получился линейный двузначный код с параметрами $[2^m-1,2^m-m-1,3]$.
- \bullet Линейный код, заданный определенной выше проверочной матрицей H_m , называется кодом Хэмминга.
- Код Хэмминга является совершенным кодом.
- ullet Действительно, $|B_1(u)| = n + 1 = 2^m$ и $2^n/|B_1(u)| = 2^k$.

Линейный код ${\mathcal C}$ длины n называется циклическим, если $\forall x_1, x_2, \dots, x_n \, ((x_1, x_2, \dots, x_n) \in {\mathcal C} \Rightarrow (x_2, \dots, x_n, x_1) \in {\mathcal C}).$

- Циклические коды удобно представлять при помощи многочленов
- ullet Будем использовать в качестве алфавита конечное поле $\mathbb{F}_p.$
- ullet Пусть $a=(a_0,a_1,\ldots,a_{n-1})\in \mathbb{F}_p^n$ некоторое сообщение.
- Поставим ему в соответствие многочлен $a(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \in \mathbb{F}_p[x].$
- ullet Такие многочлены удобно рассматривать по модулю многочлена x^n-1 .
- ullet То есть мы будем смотреть на сообщение a как на класс вычетов $\overline{a(x)} \in \mathbb{F}_p[x]/(x^n-1).$
- ullet Для обозначения этого класса вычетов мы, как правило, будем использовать многочлен a(x), степень которого меньше n (в каждом классе вычетов по модулю x^n-1 есть ровно один такой многочлен).
- ullet Далее мы будем считать, что $\mathcal{C}\subset \mathbb{F}_p[x]/(x^n-1)$.

Теорема 5

Подмножество $\mathcal{C}\subset \mathbb{F}_p[x]/(x^n-1)$ является циклическим кодом, если и только если \mathcal{C} — идеал.

Доказательство. • В кольце $\mathbb{F}_p[x]/(x^n-1)$ циклический сдвиг коэффициентов многочлена происходит при домножении на x.

- А именно, если $c(x)=c_0+c_1x+\ldots+c_{n-1}x^{n-1}\in\mathbb{F}_p[x]$, то $xc(x)=c_0x+c_1x^2+\ldots+c_{n-1}x^n\equiv c_{n-1}+c_0x+\ldots+c_{n-2}x^{n-1}\pmod{x^n-1}.$
- \leftarrow . •Пусть \mathcal{C} идеал в $\mathbb{F}_p[x]/(x^n-1)$.
- ullet Тогда ${\mathcal C}$ линейное подпространство в ${\mathbb F}_p[x]/(x^n-1)$.
- ullet Так как $c(x) \in \mathcal{C} \Longrightarrow xc(x) \in \mathcal{C}$, \mathcal{C} циклический код.
- \Rightarrow . Пусть \mathcal{C} циклический код.
- ullet Тогда $0\in\mathcal{C}$. Если $f(x),g(x)\in\mathcal{C}$, то $f(x)\pm g(x)\in\mathcal{C}$ и $xf(x)\in\mathcal{C}$.
- ullet Из этого следует, что ${\mathcal C}$ идеал.

Порождающий многочлен циклического кода

Теорема 6

Пусть $\mathcal{C} \subset \mathbb{F}_p[x]/(x^n-1)$ — циклический код, а r — минимальная степень ненулевого многочлена из \mathcal{C} . Тогда:

- 1) в C есть ровно один унитарный многочлен g(x) степени r;
- 2) $x^{n} 1 = g(x)$;
- Доказательство. 1) ullet Пусть $g_1,g_2 \in \mathcal{C}, \ \deg(g_1) = \deg(g_2) = r$ и
- g_1, g_2 унитарны. • Тогда $g_1 - g_2 \in \mathcal{C}$ и $\deg(g_1 - g_2) < r$. Следовательно, $g_1 = g_2$.
- 2) Пусть $x^n 1 = g(x)h(x) + s(x)$, где $\deg(s) < \deg(g) = r$.
- ullet Тогда $s(x) \in \mathcal{C}$, следовательно, s(x) = 0, то есть $x^n 1 \ \vdots \ g(x)$.
- 3) Пусть $c \in \mathcal{C}$. Напомним, что $\deg(c) < n$. • Если c(x) = g(x)a(x) + s(x), где $\deg(s) < \deg(g)$, то

3) $C = (g) = \{ga : a \in \mathbb{F}_p[x], \deg(a) < n - r\}.$

 $s(x) \in \mathcal{C}$, откуда s(x) = 0. • Значит, c(x) = g(x)a(x). Очевидно, $\deg(a) < n - r$.

Определение

Определенный выше многочлен g(x) называется порождающим многочленом циклического кода \mathcal{C} :

12. Основы теории кодирования

Алгебра, Глава

Д.В.Карпов

Следствие 3

Любой унитарный делитель g(x) многочлена x^n-1 является порождающим многочленом некоторого циклического кода длины n.

Доказательство. ullet Рассмотрим идеал $\mathcal{C}:=(g)$ в кольце $\mathbb{F}_p[x]/(x^n-1).$

- ullet Нужно доказать, что g имеет наименьшую степень среди всех ненулевых элементов этого идеала.
- Пусть $\deg(g) = r$.
- ullet Рассмотрим многочлен $f\in\mathcal{C}.$ Тогда f=g(x)a(x), где $a\in\mathbb{F}_p[x].$
- ullet Поделим с остатком f=ga на x^n-1 : $g(x)a(x)=(x^n-1)q(x)+s(x).$
- ullet Тогда $s(x) \in \mathcal{C}$. Следовательно, $s(x) \ | \ g(x)$, а значит, либо s = 0, либо $\deg(s) \ge \deg(g) = r$.

Пусть $\mathcal{C} \subset \mathbb{F}_n[x]/(x^n-1)$ — циклический код с порождающим многочленом g и $\deg(g) = r$. Тогда $\dim(\mathcal{C}) = n - r$.

Доказательство. \bullet Пусть k = n - r и $a(x) = a_0 + a_1 x + \ldots + a_{k-1} x^{k-1}$.

- Тогда $g(x)a(x) = a_0 \cdot g(x) + a_1 \cdot xg(x) + \ldots + a_{k-1} \cdot x^{k-1}g(x) - a_k$ линейная комбинация многочленов $g(x), xg(x), \dots, x^{k-1}g(x)$.
- ullet По пункту 3 Теоремы 6 все многочлены из ${\mathcal C}$ представляются в виде таких линейных комбинаций. Таким образом, $g(x), xg(x), \ldots, x^{k-1}g(x)$ — порождающая система в \mathcal{C} .
- Докажем, что $g(x), xg(x), \dots, x^{k-1}g(x)$ ЛНЗ.
- Если это не так, существует такой многочлен $a \neq 0$, $\deg(a) \leq k$, что
- $g(x)a(x) = a_0 \cdot g(x) + a_1 \cdot xg(x) + \ldots + a_{k-1} \cdot x^{k-1}g(x) = 0$ в $\mathbb{F}_p[x]/(x^n-1)$. Это означает, что $ga : x^n-1$.
- Но $\deg(ga) < \deg(x^n 1)$, поэтому $ga / x^n 1$. Противоречие.
- Таким образом, $g(x), xg(x), \ldots, x^{k-1}g(x)$ базис в \mathcal{C} , откуда $\dim(\mathcal{C}) = k$.

Д.В.Карпов

Теорема 8

Пусть $g(x) = g_0 + g_1 x + \ldots + g_r x^r$ — порождающий многочлен циклического кода C. Тогда матрица

является порождающей матрицей кода \mathcal{C} . (Матрица имеет размеры $(n-r) \times n$: в каждой её строке стоят r+1 коэффициент многочлена g и n-r-1 нулей.)

Доказательство. • Все строки матрицы принадлежат \mathcal{C} : строка номер i соответствует многочлену $x^{i-1}g(x)$.

- Строки G ЛНЗ. Действительно, $g_r = 1$, поэтому последние n-r столбцов G образуют нижнетреугольную матрицу с единицами на главной диагонали.
- ullet Поскольку $\dim(\mathcal{C}) = n-r$, строки G образуют базис в \mathcal{C}

Проверочный многочлен циклического кода \mathcal{C} — это такой многочлен $h(x) \in \mathbb{F}_p[x]$, что $g(x)h(x) = x^n - 1$ (где g — порождающий многочлен кода \mathcal{C}).

ullet Легко видеть, что $\deg(h)=n-r=k$, где $r=\deg(g)$ и $k=\dim(\mathcal{C}).$

Лемма 2

Пусть $c \in \mathbb{F}_p[x]$, $\deg(c) < n$. Тогда $c \in \mathcal{C}$, если и только если $h(x)c(x) \in x^n - 1$.

Доказательство. ⇒.

- ullet Пусть $c\in\mathcal{C}$. Тогда c(x)=g(x)a(x), где $a\in\mathbb{F}_p[x]$.
- Следовательно,

$$h(x)c(x) = h(x)g(x)a(x) = (x^{n} - 1)a(x) : x^{n} - 1.$$

- \leftarrow . \bullet Пусть $h(x)c(x)=(x^n-1)f(x)$, где $f\in \mathbb{F}_p[x]$.
- ullet Тогда $h(x)c(x)=(x^n-1)f(x)=h(x)g(x)f(x),$ откуда $c(x)=g(x)f(x)\in\mathcal{C}.$

Теорема 9

Пусть $h(x) = h_0 + h_1 x + \ldots + h_k x^k$ — проверочный многочлен циклического кода \mathcal{C} . Тогда матрица

$$H = \begin{pmatrix} 0 & 0 & \dots & 0 & h_k & \dots & h_2 & h_1 & h_0 \\ 0 & \dots & 0 & h_k & \dots & h_2 & h_1 & h_0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & h_k & \dots & h_2 & h_1 & h_0 & 0 & \dots & 0 \\ h_k & \dots & h_2 & h_1 & h_0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

является проверочной матрицей кода \mathcal{C} . (Матрица имеет размеры $(n-r) \times n$ (напомним, что n-r=k), в каждой её строке стоят k+1 коэффициент многочлена h и r-1 нулей.)

Доказательство. • Все строки матрицы ЛНЗ, поскольку $h_k=1.$

- Пусть $c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1} \in \mathcal{C}$.
- По Лемме 2, $c(x)h(x) : x^n 1$. При этом, $\deg(ch) < n + k$.

Алгебра. Глава 12. Основы теории кодирования

Д.В.Карпов

Доказательство. • По Лемме 2, $c(x)h(x) \\ \vdots \\ x^n - 1$. При этом, $\deg(ch) < n + k$.

- ullet Тогда $\mathit{ch} = f \cdot (x^n 1)$, где $f \in \mathbb{F}_p[x]$, $\deg(f) \leq k 1$.
- Значит, $ch = f \cdot c x^n f$. Непосредственным вычитанием легко убедиться, что все коэффициенты этого многочлена степеней от $\deg(f) + 1 \le k$ до n-1 равны 0.
- ullet Заметим, что коэффициент при x^{k+t} многочлена ch равен $\sum\limits_{i=0}^{k+t}c_ih_{k+t-i}$. Таким образом, $\sum\limits_{i=0}^{k+t}c_ih_{k+t-i}=0$ при $t\in[0..r-1].$
- Но написанная выше сумма это скалярное произведение вектора c на (r-t)-ю строку матрицы H.
- ullet Таким образом, для любого $c\in\mathcal{C}$ вектор из коэффициентов c ортогонален всем строкам матрицы H.
- ullet Следовательно, строки H это n-r ЛНЗ векторов из $\mathcal{C}^\perp.$
- ullet Это означает, что строки H это базис \mathcal{C}^\perp .
- ullet По Следствию 1 тогда H проверочная матрица кода \mathcal{C} . \square

Циклические коды: кодирование

- \bullet Пусть $a(x) = a_0 + a_1 x + \ldots + a_{k-1} x^{k-1}$ исходное сообщение.
- ullet Есть два способа закодировать его в сообщение $c(x) \in \mathcal{C}.$
- ullet Пусть g(x) порождающий многочлен кода ${\mathcal C}.$
- 1. Несистематический кодер. $c(x) := a(x)g(x) \in \mathcal{C}$.
- Этот кодер несистематический в том смысле, что коэффициенты многочлена a(x) не обязаны присутствовать среди коэффициентов многочлена c(x). Тем не менее, способ часто оказывается удобным из-за простоты кодирования.
- 2. Систематический кодер. $c(x) = x^r a(x) s(x)$, где s(x) остаток от деления $x^r a(x)$ на g(x).
- При таком кодировании мы заменяем вектор (a_0,a_1,\ldots,a_k) на вектор $(\lambda_0,\ldots,\lambda_{r-1},a_0,a_1,\ldots,a_k)$, где $-s(x)=\lambda_0+\lambda_1x+\ldots+\lambda_{r-1}x^{r-1}.$
- Поскольку $\deg(s) < r$, все коэффициенты многочлена a(x) являются коэффициентами многочлена c(x). А именно, $a_i = c_{i+r}$.

- Пусть
 - -a(x) исходное сообщение;
 - -c(x) кодированное сообщение;
- -c'(x) принятое сообщение (возможно, содержит ошибки);
- $-\varepsilon(x):=c'(x)-c(x)$ вектор ошибки.
- ullet Тогда $arepsilon(x) \equiv c'(x) \pmod{g(x)}$.
- Мы знаем, что количество ошибок невелико (ограничение на количество ошибок соответствует параметрам кода).
- ullet Тогда w(arepsilon(x)) мал (не превосходит количества ошибок).
- ullet Следовательно, многочлен arepsilon(x) можно найти перебирая все векторы малого веса.

- ullet Пусть $p\in\mathbb{P}$. Мы будем рассматривать циклические коды над полем \mathbb{F}_p длины $n=p^m-1$, где $m\in\mathbb{N}$.
- Тогда $(x^n-1)x=x^q-x$, где $q=p^m$. Следовательно, многочлен x^n-1 не имеет кратных корней и его корнями являются все ненулевые элементы поля \mathbb{F}_q .

Нулями циклического кода ${\mathcal C}$ называются корни его порождающего многочлена.

Теорема 10

Пусть \mathcal{C} — циклический код над \mathbb{F}_p длины $n=p^m-1$, $q=p^m$ g(x) — порождающий многочлен кода \mathcal{C} , $\deg(g)=r$, а $\beta_1,\beta_2,\ldots,\beta_r\in\mathbb{F}_q$ — все нули \mathcal{C} . Пусть $f(x)\in\mathbb{F}_p[x]$, $\deg(f)< n$. Тогда

$$f \in \mathcal{C} \iff f(\beta_1) = f(\beta_2) = \ldots = f(\beta_r) = 0.$$

Доказательство. \Rightarrow . \bullet По Теореме 6, f=ga, где $a\in \mathbb{F}_p[x]$.

- ullet Следовательно, $f(eta_i) = g(eta_i) a(eta_i) = 0$ при всех $i \in [1..r]$.
- \leftarrow . Разделим f на g с остатком: f = ga + s, где $\deg(s) < r$.
- ullet Тогда $s(eta_i) = f(eta_i) g(eta_i) a(eta_i) = 0$ при всех $i \in [1..r]$.
- ullet Таким образом, многочлен s(x) имеет r различных корней и при этом $\deg(s) < r$.
- ullet Следовательно, s=0. Тогда $f(x)=g(x)a(x)\in \mathcal{C}$.

Теорема 11

Пусть $\mathcal{C}-$ p-значный циклический код длины $n, \alpha \in \mathbb{F}_{p^n}-$ примитивный элемент, а g(x) — порождающий многочлен кода \mathcal{C} . Пусть $b, \delta \in \mathbb{Z}$ таковы, что $b \geq 0, \, \delta > 1$ и $g(\alpha^b) = g(\alpha^{b+1}) = \ldots = g(\alpha^{b+\delta-2}) = 0$. Тогда кодовое расстояние $d(\mathcal{C}) \geq \delta$.

Доказательство. • Предположим противное: пусть в $\mathcal C$ есть ненулевой элемент, вес Хэмминга которого меньше δ .

- Этому элементу соответствует многочлен $f(x) = c_1 x^{k_1} + c_2 x^{k_2} + \ldots + c_{\delta-1} x^{k_{\delta-1}} \in \mathcal{C}$ где $c_1, c_2, \ldots, c_{\delta-1} \in \mathbb{F}_p$ не все нули.
- По Теореме 10, $f(\alpha^b) = f(\alpha^{b+1}) = \ldots = f(\alpha^{b+\delta-2}) = 0.$
- Получаем следующие равенства:

$$\begin{cases} c_{1}\alpha^{k_{1}b} & + c_{2}\alpha^{k_{2}b} & + \dots + c_{\delta-1}\alpha^{k_{\delta-1}b} & = 0 \\ c_{1}\alpha^{k_{1}b+k_{1}} & + c_{2}\alpha^{k_{2}b+k_{2}} & + \dots + c_{\delta-1}\alpha^{k_{\delta-1}b+k_{\delta-1}} & = 0 \\ \dots & & & & & \\ c_{1}\alpha^{k_{1}b+k_{1}(\delta-2)} & + c_{2}\alpha^{k_{2}b+k_{2}(\delta-2)} & + \dots + c_{\delta-1}\alpha^{k_{\delta-1}b+k_{\delta-1}(\delta-2)} & = 0 \end{cases}$$

• На эти равенства можно смотреть как на ОСЛУ, в которой $c_1, c_2, \ldots, c_{\delta-1}$ — неизвестные, а степени α — коэффициенты.

• Так как эта ОСЛУ имеет нетривиальное решение, матрица системы — вырожденная. Следовательно,

$$0 = \begin{vmatrix} \alpha^{k_1 b} & \alpha^{k_2 b} & \dots & \alpha^{k_{\delta-1} b} \\ \alpha^{k_1 b + k_1} & \alpha^{k_2 b + k_2} & \dots & \alpha^{k_{\delta-1} b + k_{\delta-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha^{k_1 b + k_1 (\delta - 2)} & \alpha^{k_2 b + k_2 (\delta - 2)} & \dots & \alpha^{k_{\delta-1} b + k_{\delta-1} (\delta - 2)} \end{vmatrix} =$$

$$= \alpha^{(k_1 + k_2 + \dots + k_{\delta-1}) b} \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha^{k_1} & \alpha^{k_2} & \dots & \alpha^{k_{\delta-1}} \\ \vdots & \vdots & & \vdots \\ \alpha^{k_1 (\delta - 2)} & \alpha^{k_2 (\delta - 2)} & \dots & \alpha^{k_{\delta-1} (\delta - 2)} \end{vmatrix} =$$

$$= \alpha^{(k_1 + k_2 + \dots + k_{\delta-1}) b} \prod_{i < j} (\alpha^{k_i} - \alpha^{k_j}) \neq 0.$$

- Последнее из написанных выше равенств это определитель Вандермонда.
- Выражение в правой части не может быть равно нулю, так как $\alpha^{k_i} \neq \alpha^{k_j}$ ведь α примитивный элемент поля.
- Полученное противоречие завершает доказательство:

Алгебра. Глава 12. Основы теории кодирования

Д.В.Карпов

Кодом БЧХ над полем \mathbb{F}_p длины $n=p^m-1$ с конструктивным расстоянием $\delta>1$ называется циклический код с порождающим многочленом наименьшей степени, корнями которого являются элементы $\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}$, где α — примитивный элемент поля \mathbb{F}_{p^m} и $b\in\mathbb{Z}$ — некоторое неотрицательное число.

- Это определение можно эквивалентно переформулировать следующим образом.
- ullet Обозначим через $M^{(s)}(x)$ минимальный многочлен $lpha^s$.
- ullet Пусть Пусть $d\in\mathbb{N}$ минимальное такое, что $lpha^{p^ds}=lpha^s.$
- По Теореме 10.13 имеем $M^{(s)}(x) = \prod_{i=0}^{d-1} (x \alpha^{p^i})$ и $\deg(M^{(s)}) = d < m$.
- ullet Тогда код БЧХ над полем \mathbb{F}_p длины $n=p^m-1$ с конструктивным расстоянием $\delta>1$ это циклический код с порождающим многочленом

$$g(x) := [M^{(b)}(x), M^{(b+1)}(x), \ldots, M^{(b+\delta-2)}(x)]$$
, где $b \in \mathbb{Z}$, $b \geq 0$, о

Следствие 4

Код БЧХ $\mathcal C$ над полем $\mathbb F_p$ длины $n=p^m-1$ c конструктивным расстоянием $\delta>1$ имеет параметры $d\geq \delta$ и $k\geq n-(\delta-1)m$.

Доказательство. • По Теореме 11, $d \ge \delta$.

- Рассмотрим порождающий многочлен $g(x) = [M^{(b)}(x), M^{(b+1)}(x), \dots, M^{(b+\delta-2)}(x)]$ кода \mathcal{C} .
- ullet Заметим, что по доказанному выше $\deg(g) \leq \deg(M^{(b)}) + \deg(M^{(b+1)}) + \cdots + \deg(M^{(b+\delta-2)}) \leq (\delta-1)m$.
- ullet Но тогда $k=n-\deg(g)\geq n-(\delta-1)m.$

ullet Пусть $p\in\mathbb{P},\ m\in\mathbb{N},\ q=p^m>2,\ lpha$ — примитивный элемент поля \mathbb{F}_q .

Определение

Код Рида-Соломона — это код БЧХ длины q-1 над полем \mathbb{F}_p с порождающим многочленом

$$g(x)=(x-lpha^b)(x-lpha^{b+1})\dots(x-lpha^{b+\delta-2}),$$
где $b,\delta\in\mathbb{Z}$, $b\geq 0$ и $\delta>1.$

Следствие 5

Код Рида-Соломона имеет параметры n=q-1, $k=n-\delta+1$ и $d=\delta=n-k+1$.

Доказательство. • $k = n - \deg(g) = n - \delta + 1$.

- $d \geq \delta$ по Теореме 11 (о границе БЧХ).
- ullet Вспомним, что $n-k\geq d-1$ по Следствию 2 (о границе Синглтона). Следовательно, $d\leq \delta$.
- ullet Таким образом, $d=\delta$.
- Код Рида-Соломона является MDS-кодом: он достигает