1. According to Amdahl's Law

SpeedUp =
$$1/((1-f) + f/s)$$

Design 1: 1/(0.95 + 0.05/2) = 1.0256Design 2: 1/(0.8 + 0.2/1.8) = 1.0977Design 3: 1/(0.55 + 0.45/1.5) = 1.1765Design 4: 1/(0.7 + 0.3/1.1) = 1.0277

Design 3 is the best design.

2. 64 registers can be addressed by 6 bits

I type instruction: 6 bit opcode, 6 bit register, 4 bit immediate value R type instruction: 4 bit opcode, 6 bit src register, 6 bit dst register There can be maximum 16 distinct opcodes possible since there are 4 bit opcodes in R type instruction.

- 3. i) RISC processor has large number of general purpose registers.
 - ii) RISC supports fewer addressing modes than CISC.
 - iii) Instructions in RISC processor are of same size.
 - iv) RISC has fewer number of instructions than CISC.
 - v) RISC does not have flag registers and general purpose registers.
 - vi) RISC instructions are easier to decode than CISC.

4a) Three bus architecture

4b) BEQZ Label

T1: PC_out, MAR_in, Read, Select_4, Add, Z_in

T2: Z_out, PC_in, Y_in, WMFC

T3: MDR_out, IR_in

T4: Offset-field-of-IR_out, Select_Y, Add, Z_in, If Z != 0 then End

T5: Zout, PCin, End

LOAD R2, 2000

T1: PC_out, MAR_in, Read, Select_4, Add, Z_in

T2: Z_out, PC_in, Y_in, WMFC

T3: MDR_out, IR_in

T4: Address_field_of_IR_out, MAR_in, Read, WMFC

T5: MDR_out, R1_in, END