Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Machine Learning Primer

Lesson Objectives 2019-03-12 Lesson Objectives 2019-03-12

- See the potential of machine learning
- Get the basic vocabulary
- Overview of major machine learning algorithms

Machine Learning at Dell Brazil (QE) @ Learning Machine Learning at Dell Brazil (QE) @ 2019-03-12

Image by Elephant Scale

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Informal Definition of Machine Learning at Dell Brazil (QE) @ Learning at Dell Brazil (QE) @ Learning

- Arthur Samuel
 - "The field of study that gives computers the ability to learn without being explicitly programmed."

- Example: Self-driving cars
 - Let it record the scenery and your reactions
 - Let it predict the next reaction

Scientific Definition 20 19 17 Machine Learning at Dell Brazil (QE) @ Machine Learning

- Tom Mitchell
 - "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
- Example: conducting dialogs
 - E = experience of many dialogs
 - T = task of talking like a human
 - P = probability that the program will convince you that it is a human

Formula of Machine Learning at Dell Brazil (QE) © Machine

- Usually expressed as an optimization problem
- ◆ P performance (number)
- ◆ E experience (data)
- M model (formula)
- ◆ P(M/E) → max
- That means, choose a model (M) that will give the optimal performance (P) over the data (E)

- What does linear algebra have to do with it?
- Consider house pricing prediction
- House features
 - Each house has square footage, number of bedrooms, etc.
 - So, each house is a "point", H
 - Its features can be represented as H₁, H₂, H₃, ..., H_n
 - That is a vector, H_i
- Houses
 - There are many houses
 - They can be represented as H¹, H², H³, ..., H^m
- Thus, our data is a matrix H, n*m

A Glimpse of Al History 12 A Glimpse of Al Histo

- Sixties
 - Commercial computers & mainframes
 - Computers play chess
- Eighties
 - Artificial intelligence (AI) gets 'oversold', doesn't live up to the promise and gets a bad rap
- 21st century
 - Big Data changes it all

1980s and 1990s

Machine Learning Applications Machine Learning Applications

- Detect credit card fraud
 - Thousands of features
 - Billions of transactions

- Recommendations
 - Millions of products
 - To millions of users
- Genome data manipulation
 - Thousands of human genomes
 - Detect genetic associations with disease

AI, Machine Learning at Dell Brazil (QE) @ Learning AI, Machine Learning at Dell Brazil (QE) @ Learning

- Artificial Intelligence (AI)
 - Combined learning technologies
- Machine Learning
 - Math and stats
- Deep Learning
 - Neural networks
 - Representation learning

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Neural Networks 2019-03-12

- Modeled after human brain
- Recognized patterns
 - Numerical
 - Contained in vectors
 - Translated from real-world data
 Images, Sound, Text, Time series
- Invented in the 1960's
- "Re-invented" in 2012

Image by Elephant Scale

Deep Neural Network & fernando K fernando K

Machine Learning at Dell Brazil (QE) @ Machine Learning a

Expert systems

Classic machine learning

Representation learning

Types of Machine Learning at Dell Brazil (QE) @

Supervised Machine Learning:

- A model is trained with labeled training data
- Model is tested on test data to see performance
- Model can be applied to unknown data
- Regression and classification are supervised

Unsupervised Machine Learning

- Model tries to find natural patterns in the data
- No human input except parameters of the model
- Example: Clustering news stories

Semi-Supervised Learning

 Model is trained with a training set that contains unlabeled (usually a lot) and labeled (usually little) data

Machine Learning Types: Supervised Machine Learning Types: Supervised

- Model learns from training data
- Then predicts on new data

Algorithms	Description	Applications
Regression	Continuous output	House pricesStock market
Classification	Categorical output	Spam classificationFraud detection

Supervised Learning at Dell Brazil (QE) @ Learning of Learning at Dell Brazil (QE) @ Learning of Learn

- Supervised learning
 - Answer is given
 - Examples:
 - House data → Price
 - Face → Age
- Types of supervised learning
 - Regression
 - Continuous output
 - Classification
 - Animal pic → Cat or Dog

Classification Applications | Classification Application | Classification | Classification

- Web
 - Email is spam or not
 - Website is authentic or fraudulent

- Medicine
 - Is this cell cancerous or not?
- Finance
 - Credit card transaction fraudulent or not
- OCR
 - Recognizing characters and symbols

- Split the data set into
 - Training set: Train model
 (Training set should represent data well enough)
 - Test set: Validate the model
- Initially 70% training, 30% test
- Sometimes, 60% training, 20% cross-validation, 20% test
- Tweak the dials to increase or decrease the proportion

Machine Learning Types: Unsupervised Machine Learning at Dell Brazil (QE) @ Machine

- Example: Party Problem
- Algorithm tries to find patterns in data

Algorithms	Description	Applications
Clustering	Find groups	Market segmentationDocument grouping
Anomaly detection	Find anomalies	- Engine assembly defects

Unsupervised Machine Learning at Dell Brazil (QE) @ Learning a

- Draw inference from input data without "labeled responses"
- Common clustering algorithms
 - K-means: Group data points into cluster
 - Hidden Markov Model: State transitions
- Example applications:
 - Find patterns in data
 - Gene expression analysis
 - Recover states from results of random transitions

Unsupervised Example : Google News

 Google News algorithm automatically groups related news stories into sections

- Clustering finds natural groupings in data
- Humans naturally cluster data we encounter
 - Categorizing, organizing, etc.
 - Our brains seek patterns
- Why do we cluster?
 - To understand our data
 - To find "more like this"

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Clustering Applications of the Control of the Contr

- Biology
 - Genomics grouping
- Medicine
 - Xray/CAT image analysis
- Marketing
 - Consumer grouping ("soccer mom," etc.) and behavior analysis
- Web
 - Search result grouping
 - News article grouping (Google news)
- Computer Science
 - Image analysis
- Climatology
 - Weather pattern analysis (high pressure/warm regions)

Technology Stack Companies Plans and Stack Companies (QE) @

Technology	Pros	Cons
R	Rich environmentThousands of libraries	Rough on data cleanupNot a general purpose languageData must fit on one machine
Python	 General purpose programming language Excellent libraries (Pandas / scikit-learn) Gaining popularity in recent years 	- Data must fit on one machine

AI Software Eco System Licensed for personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

	Machine Learning	Deep Learning
Java	WekaMahout	- DeepLearning4J
Python	SciKit(Numpy, Pandas)	TensorflowTheanoCaffe
R	- Many libraries	DeepnetDarch
Distributed	- H20 - Spark	
Cloud	Google: GCPMicrosoft: ML on AzureAmazon: SageMaker	

Tools for Scalable Machine Learning at Dell Brazil (QE) @ Lear

Spark ML

- Runs on top of popular Spark framework
- Massively scalable
- Can use memory (caching) effectively for iterative algorithms
- Language support: Scala, Java, Python, R

- Amazon Machine Learning (SageMaker)
 - Ready to go algorithms
 - Wizards to guide
 - Scalable on Amazon Cloud
 - Integrated with AWS

Tools for Scalable Machine Learning at Dell Brazil (QE) of Tools for Scalable Machine Learning at D

Azure ML Studio

- Built on Azure cloud (Microsoft)
- Language support: Python, R

◆ H2O

- Easy to use API
- WebUI
- Supports reading from multiple datasources (Excel/SQL/HDFS)
- In memory compute
- Works on top of Spark ("Sparkling Water")
- Vendor: 0xData
- http://www.h2o.ai/

Tools for Scalable Desperance Licensed for personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the property of the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the personal use only for Fernando K < fernando kruse@dell.com> from Machine Learning at Pell Brazil (QE) to the pell Brazil (QE) to the

TensorFlow

- Based on "data flow graphs"
- "Tensor" = batches of data
- Language support: Python, C++
- Run time: CPU, GPU

◆ Intel BigDL

- Deep learning library
- Built on Apache Spark
- Language support: Python, Scala

- CPU
 - Moore's law
 - Number of transistors x2 in 2 years
 - Till 2012
- GPU
 - Performance x1000
 - Scala, Go
- ASIC
 - Application-specific integrated circuit
- Computation-specific hardware

Hardware - TPU (Telepisor Processing Unit)

- A <u>Tensor processing unit (TPU)</u> is an AI accelerator application-specific integrated circuit (ASIC) developed by Google specifically for neural network machine learning
- More capable than CPUs or GPUs in certain tasks
- Designed for <u>Tensorflow</u>
- Designed for high volume computes
 - A TPU can process 100 million photos a day
- Available in Google Cloud platform

Google TPU Computer 12

AI Chips Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Intel+Facebook "Nervana"
 - NNP Neural Network Processor
 - Pre-trained learning
- Nvidia is the current market leader
- Amazon ("Inferentia")
- Alibaba
- Startups

Lab: Design ML Algorital thm

Overview:

- A very practical design lab
- -Illustrates that even small entities can use ML and Big Data
- -It is a design and discussion lab, all on the slides

Problem:

Domestic tension

Solution:

Buy flowers

Questions:

- -How much \$\$\$ to spend
- -Which flowers to choose
- (Our proposed solution is on the next slide)

Lab: Design ML Algorisation Machine Learning at Dell Braz

Data sources:

- Store registry for all buyers
 - Watch for patterns indicative of discord and harmony restoration
- Studies (especially old, archived studies, family counseling, etc.)
- Search history, blogs, tweets

Feature extraction:

- Collect features (what we know about people)
- History, results, flower involvement, price, type

Model:

- Which model might be a fit: linear regression, logistic regression
- Train and test

Apply results to yourself:

- Celebrate!
- Or go back to the drawing board

- What is Machine Learning and how is it different from regular programming?
- Name a few Machine Learning use cases.
- How does Big Data help Machine Learning?
- What is supervised learning? Unsupervised learning?