This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images,
Please do not report the images to the
Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-011306

(43)Date of publication of application: 13.01.1995

(51)Int.CL

B22F 9/04 C22C 33/02 C22C 38/00 H01F 1/053 // HO1F 1/06

(21)Application number: 05-146086

(71)Applicant:

KAWASAKI STEEL CORP

(22)Date of filing:

17.06.1993

(72)Inventor:

GOTO KUNIHIRO

FUKUDA YASUTAKA

(54) PRODUCTION OF ALLOY POWDER FOR RARE EARTH-TRANSITION METAL MAGNET

(57)Abstract:

PURPOSE: To improve the efficiency of pulverizing a raw material alloy without degrading magnet characteristics by crushing an alloy ingot for a rare earth- transition metal magnet having a specific compsn., then subjecting the powder thereof to a grain boundary embrittling treatment using hydrogen repetitively plural times.

CONSTITUTION: The alloy ingot for the rare earth-transition metal magnet contg., by at.%, \geq 10 to \geq 25% RE (at least one kind selected from Y and lanthanoids) and ≥2 to ≥20% B and consisting of the balance substantially ≥ 10% to <73% Fe, \ge 7 to ≤50% Co and ≥5 to ≤30% Ni is crushed. Hydrogen in a gaseous mixture composed of hydrogen and inert hag contg. 10 to 20vol.% is absorbed in this alloy powder before pulverization and thereafter the alloy powder is subjected to the grain boundary embrittling treatment to cause dehydrogenation in a vacuum repetitively ≥2 times. As a result, the characteristic to be crushed of the alloy powder is improved and the powder is effectively pulverized without degrading the magnet characteristics of the alloy powder.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-11306

(43)公開日 平成7年(1995)1月13日

(51) Int.Cl.6	•	8	数別記4		庁内勢	医理番号	FΙ						技	桥表示箇所
B 2 2 F	9/04			E										
C 2 2 C	33/02			Н										
	38/00	;	303	D										
H01F	1/053							_						
								01F					= =	किस्मीक्सेक्ट्रे
						審査請求	未謂求	請求項	(の数2	OL	(全	8 1	乳) 成 抗	終頁に続く
(21)出願番		特願平5	5-1460	86			(71)	出願人	000001	-	会社			
(22)出顧日		平成5年	年 (1993) 6 F	月17日				兵庫県 号	神戸市	中央区	조치는격	k町通1 ⁻	丁目1番28
							(72)	発明者	-	千葉市				地 川崎製
							(72)	発明者		千葉市				地 川崎製
							(74)	代理人	弁理士	: 杉村	晓多	テ	(外5名))

(54) 【発明の名称】 希土類-遷移金属系磁石用合金粉末の製造方法

(57)【要約】

【目的】 磁石特性を劣化させることなしに、被粉砕性 の向上を図る。

【構成】 希土類-遷移金属系磁石用の合金粉末の製造に際し、該合金インゴットの粗粉砕後、微粉砕前に、該合金粉末に、水素含有量:1.0~20 vol%の水素-不活性ガス混合気体中で水素を吸収させ、その後真空中で脱水素する、という粒界脆化処理を2回以上繰り返して施す。

【特許請求の範囲】

【請求項1】RE:10at%以上、25at%以下、

ここでREは、Yおよびランタノイドのうちから選んだ少 なくとも一種、

B: 2 at%以上、20at%以下を含み、残部は実質的にF e, Co及びNiの遷移金属元素からなり、これらFe, Co, Ni の配合量がそれぞれ次の範囲、

Fe: 10at%以上、73at%未满、

Co: 7 at%以上、50at%以下、

Ni:5at%以上、30at%以下を満足する希土類-遷移金 10 属系磁石用の合金粉末を製造するに際し、

該合金インゴットの粗粉砕後、微粉砕前に、該合金粉末 に、水素含有量:1.0~20 vol%の水素-不活性ガス混 合気体中で水素を吸収させ、その後真空中で脱水素す る、という粒界脆化処理を2回以上繰り返して行うこと を特徴とする、希土類-遷移金属系磁石用合金粉末の製

【請求項2】RE: 10at%以上、25at%以下、 ここでREは、Yおよびランタノイドのうちから選んだ少 なくとも一種、

B: 2 at%以上、20at%以下を含み、かつ、

Ga. Mg. Al. Si, Ca. Ti. V, Cr. Mn. Cu. Zn. Ge. Z r, Nb, Mo, In, Sn, Ta及びWのうちから選んだ少なくと も一種:8at%以下を含有し、残部は実質的にFe, Co及 UNIの遷移金属元素からなり、これらFe, Co, Niの配合 量がそれぞれ次の範囲、

Fe: 10at%以上、73at%未満、

Co: 7 at%以上、50at%以下、

Ni:5at%以上、30at%以下を満足する希土類-遷移金 属系磁石用の合金粉末を製造するに際し、

該合金インゴットの粗粉砕後、微粉砕前に、該合金粉末 に、水素含有量:1.0~20 vol%の水素-不活性ガス混 合気体中で水素を吸収させ、その後真空中で脱水素す る、という粒界脆化処理を2回以上繰り返して行うこと を特徴とする、希土類-遷移金属系磁石用合金粉末の製 造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、永久磁石材料として 用いられる希土類-遷移金属系磁石用の合金粉末の製造 40 方法に関し、とくにその粉砕工程において、水素中処理 を加えることにより、該合金粉末の被粉砕性の向上を図 ったものである。

[0002]

【従来の技術】現在、希土類永久磁石材料としては、Nd -Fe-B系、Sm-Co系などが用いられいる。中でもNd-Fe-B系希土類磁石は、Sm-Co系磁石より高い磁石特性 を有すること、また原料となるNdが比較的安価で、しか も安定供給が可能であることから、その生産量は飛躍的 に増大している。しかしながら、Nd-Fe-B系磁石に

は、Sm-Co系磁石と比べると耐蝕性及び熱安定性に劣る という欠点があった。

【0003】この問題の解決策として、発明者らは先 に、特開平2-4939号公報において、Nd-Fe-B磁石の Feの一部をCo及びNiで複合置換することからなる、耐蝕 性及び熱安定性に優れた希土類-遷移金属系磁石を提案 した。この磁石は、高保磁力化を図るために、Nd-(Fe, Co. Ni)-B系合金にGa等の添加元素を加えている。ま た、このRE-TM-B系合金は、磁石機構発現の基となる RE2TM14B1相の他に、粒界相として RE1TMx 組成(xは 1/3以上)の化合物が析出しており、焼結磁石を製作し た際に、この REiTMx 相が RE2TMi4Bi相を取り囲むよう にして存在することにより、焼結磁石の保磁力を発現さ せている。

【0004】ところで、かかるRE-TM-B系合金の製造 に際しては、より高い磁石特性を付与するために、該合 金を数μm ~数十μm の大きさに微粉砕し、これを磁場 中で加圧成形することによって粉末の配向を揃えた後、 焼結する、いわゆる粉末冶金のプロセスを経て最終製品 20 とされるのが一般的である。このとき、焼結磁石中のRE 2 TM14B1 相の粒径を微細化し、また高い配向度を付与し て、髙保磁力を得るためには、原料としてできるだけ微 細な粒度の粉末を用いることが望ましい。また成形時に おける金型への充填性や最終焼結磁石製品における磁気 特性のばらつきの抑制といった観点からは、粉末粒径が なるべく均一であることが望まれる。

[0005]

【発明が解決しようとする課題】現在、希土類磁石合金 を微粉化するには、不活性ガスを粉砕ガスとして用いる 30 ジェットミル粉砕、あるいはエタノール、シクロヘキサ ンなどの有機溶媒を用いるボールミル粉砕などが採用さ れている。しかしながら、希土類磁石合金は粉砕性が良 くないため、均一に微粉化するのは難しく、また粉末の 歩留りも悪い。

【0006】この発明は、上記の問題を有利に解決する もので、希土類磁石合金の被粉砕性を効果的に向上させ ることによって、均一で微細な合金粉末を得ることがで きる新規な粉末製造技術を提案することを目的とする。 [0007]

【課題を解決するための手段】さて発明者は、上記の目 的を達成すべく鋭意研究を行ったところ、粒界相として RE:TMx 組成の金属間化合物を有する希土類磁石合金を 水素中で処理すると、粒界相である RE:TMx 金属間化合 物中に最も多く水素が吸収され、しかもこの水素の吸収 によって希土類の水素化物と遷移金属単体に分解される 結果、合金全体が細かく粉砕されることの知見を得た。 さらに、この水素中処理を施した場合には、その後の微 粉砕工程での粉砕性も向上し、より一層の微細化が達成 されること、また粉末歩留りも向上することが判明し 50 た。この発明は、上記の知見に立脚するものである。

10

【0008】すなわちこの発明は、RE:10at%以上、25 at%以下、ここでREは、Yおよびランタノイドのうちか ら選んだ少なくとも一種、B:2at%以上、20at%以下 を含み、残部は実質的にFe, Co及びNiの遷移金属元素か らなり、これらFe, Co, Niの配合量がそれぞれ次の範 囲、Fe:10at%以上、73at%未満、Co:7at%以上、50 at%以下、Ni:5at%以上、30at%以下を満足する希土 類-遷移金属系磁石用の合金粉末を製造するに際し、該 合金インゴットの粗粉砕後、微粉砕前に、該合金粉末 に、水素含有量:1.0~20 vol%の水素-不活性ガス混 合気体中で水素を吸収させ、その後真空中で脱水素す る、という粒界脆化処理を2回以上繰り返して行うこと を特徴とする、希土類-遷移金属系磁石用合金粉末の製 造方法(第1発明)である。

【0009】またこの発明は、上記の第1発明におい て、合金成分が、さらにGa, Mg, Al, Si, Ca, Ti, V, C r, Mn, Cu, Zn, Ge, Zr, Nb, Mo, In, Sn, Ta及びWの うちから選んだ少なくとも一種:8at%以下を含有する 組成になる希土類-遷移金属系磁石用合金粉末の製造方 法(第2発明)である。

[0010]

【作用】この発明では、磁石合金を水素中で処理するこ とによって、粒界相である REiTMx 金属間化合物を選択 的に水素で分解し、これによって合金の被粉砕性を向上 させ、もってジェットミル等による粉砕能力及び微粉砕 後の粉砕歩留りの向上を図るものである。かかる水素脆 化処理では、水素含有量が高い程その脆化効果も向上す るけれども、水素含有量があまりに高いと、磁石相の水 素との反応、分解によって特性の劣化をきたす。そこ で、この発明では、水素含有量:1.0 ~20 vol%という 比較的緩慢な水素脆化条件の下で、かような脆化処理を 2回以上繰り返すことによって、特性劣化のおそれなし に、効果的な微粉砕化を実現したものである。

【0011】以下、この発明において、素材合金の成分 組成を上記の範囲に限定した理由について説明する。 RE:10at%以上、25at%以下、REすなわち希土類元素 は、主相(Nd2 Fei 4 B型の正方晶)の形成と大きな結晶磁 気異方性の発現に必須の元素であるが、含有量が10at% に満たないと、余分な遷移金属が軟磁性相として析出す るため、保磁力を低下させる原因となり、一方25at%を 超えると、焼結磁石の残留磁束密度が低下するので、RE は10~25at%の範囲で含有させるものとした。なお、希 土類元素の種類は、Y及びランタノイドのうちから選ん だ少なくとも一種であればよく、元素の種類には特に限 定されない。勿論、比較的安価なミッシュメタルを用い ても差し支えない。

【0012】B: 2at%以上、20at%以下 Bは、主相である RE2 TM: 4B: 化合物の形成に必要な元素 であるが、2at%に満たないと主相の形成効果に乏し く、一方20at%を超えると、非磁性のB富化相の割合が 50 脆化効果は向上するが、高コストとなるため、粉砕サイ

増加し、焼結磁石の残留磁束密度が低下するので、2~ 20at%の範囲に限定した。

【0013】残部は実質的にFe、Co及UNi等の遷移金属 元素であるが、これらの配合量はそれぞれ以下の範囲と する。

Fe:10~73at%未満、Co:7~50at%、Ni:5~30at% Co及UNiは、磁石の温度特性の改善に有効なだけでな く、耐食性と磁気特性の改善にも寄与するが、Co<7at %、Ni < 5 at%では上記の効果が得られず、一方Co > 50 at%、Ni >30at%では逆に保磁力や残留磁束密度の低下 を招くので、それぞれCo:7~50at%、Ni:5~30at% の範囲に限定した。また、Feが10at%未満では、残留磁 東密度の低下を招き、一方73at%以上では、磁気特性は 向上するものの、温度特性及び耐食性が低下するので、 Fe含有量は10at%以上、73at%未満の範囲にに限定し

【0014】以上、基本成分について説明したが、この 発明ではさらに以下の元素を添加することもできる。 Ga, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Cu, Zn, Ge, Z r. Nb, Mo, In, Sn. Ta及びWのうちから選んだ少なく とも一種:8at%以下

これらの元素はいずれも、保磁力や角型性の向上に有効 に寄与するが、含有量が8at%を超えると焼結磁石の残 留磁束密度が低下するので、単独添加及び複合添加いず れの場合においても8at%以下で添加する必要がある。 【0015】上記の組成範囲内で合金を作製することに

より、鋳造組織として、主相であるRE2 TM14B1 正方晶化 合物の他に、 REi TMx 組成の金属間化合物、その他REi T MaBi組成の金属間化合物が析出する。この発明では、か かる組織になる合金を粗粉砕または中粉砕した後、微粉 砕する前に、水素中処理を施すわけであるが、この水素 中処理においては雰囲気ガス中における水素の濃度を所 定の範囲に制限することが重要である。すなわち、希土 類-遷移金属合金の水素吸収能は、雰囲気ガス中の水素 量に強く依存する。水素含有量が 1.0∼20 vol%では、 水素吸収能の高い RE:TMx 相のみが水素を吸収、分解 し、磁石主相である RE2TM14B1相はほとんど水素を吸収 しない。このため水素含有量が 1.0~20 vol%では磁石 主相にダメージを与えることなく、水素脆化を行うこと が可能である。それ故、この発明では、水素処理時にお ける水素含有量を 1.0~20 vol%の範囲に限定したので ある。この点、水素含有量が20 vol%を超えると、磁石 相にも水素が吸収され、分解が生じるため、磁石特性特 に残留磁束密度の低下がみられ、一方 1.0 vol%未満で は所望の脆化効果が得られず、微粉末回収効率の向上が みられない。

【0016】また、粉砕サイクルを2回以上と限定した 理由は、サイクル1回では十分な脆化効果が得られない からである。なお、繰り返し回数は多ければ多いほど、

5

クルは2~4回程度が望ましい。なお、この際用いる不 活性ガスの種類は特に限定されない。

[0017]

【実施例】

実施例1

使用した合金組成を表1に示す。原料としては、純度9 9.9%の鉄、コバルト及びニッケル金属、ほう素の含有 量が 19.17%のFe-B合金、ディスプロシウムの含有量 が87.9%のDy-Fe合金、純度99%のネオジム、プラセオ ジム、イットリウム、セリウム、サマリウム金属、なら びに純度99%以上のGa, Mg, Al, Si, Ca, Ti, V, Cr, M n, Cu, Zn, Ge, Zr, Nb, Mo, In, Sn, Ta及びWの各金 属を用い、表1に示す組成になるよう秤量した後、250 TorrのAr雰囲気中で高周波溶解し、水冷銅鋳型に鋳込ん でインゴットを作製した。このインゴットを5mm径程度 に粗粉砕したのち、Moボートに載せ、加熱炉内で、表2 に示す水素含有量のH2 - Ar混合ガス気流中にて 300℃、 2時間処理した後、1×10⁻⁵ Torrの真空中で 300℃で2 時間脱水素処理を施す、というサイクルを2回繰り返し た。実施例1の合金の水素処理後におけるSEM-COMP像を 観察したところ、主に粒界においてクラックが発生して おり、粒界相である REiTMx 組成の金属間化合物の水素 による分解により、合金の破壊が生じていることが確認 された。

【0018】ついで、水素中処理した粗粒粉を、篩い下 粒径が 500μm 以下になるまで中粉砕した後、得られた 中粒粉を、Nzガスを不活性ガスとして用いたジェットミ ルにより、ガス圧力:7kg/cm²で数μm まで微粉砕し た。各合金粉末の粉砕歩留り及び平均粒径を表2に示し

たが、この発明に従い粉砕した場合には、従来に比べ、 微粉砕歩留りが90~96%と極めて高く、また平均結晶粒 径も微細であった。

【0019】また図1に、実施例1の合金の微粉砕効率 10 を、ジェットミル粉砕時の原料投入速度と作製された微 粉末の平均粒径との関係で示したが、同図に示したとお り、水素中処理を行えば、たとえば平均粒径 2.6 μm の 微粉を作製する場合、粉砕量を4倍に増大できる。

【0020】ついで、得られた微粉砕粉末を12 k0eの垂直磁場中で 1.0 ton/cm²の加圧圧力下で成形し、真空中で1020℃、2時間焼結したのち、アルゴンガスで急冷し、焼結磁石を得た。かくして得られた焼結磁石の磁気特性を、BーHループトレーサーによって測定した結果を表2に併記する。同表から明らかなように、この発明20 に従い水素処理を施して得た微粉砕粉末を用いた場合には、従来と同等もしくはそれ以上の磁石特性が得られている。

[0021]

【表1】

	7		(0)		8	
No.	合	金	粗	成	(at%)	
1	(Ndo. saDyo.	07)15 (Fe	e Coo.	sNio. Tio	. 0 2 G a o . 0 2) 7 7	Вв
2	(Ndo. Pro.	1) ₁₅ (Pe ₀ .	5 2 C O o . 3 5	Nio. ¡Zro.	01Ga0.02)77 E	3 ,
3	(Ndo Y o.	,) ₁₅ (Fe ₀ .	5 2 C O o . 3 N	lie. 15 Tae.	0 1 Sno. n2) 77 E	3 8
. 4	(Ndo. o a Cea.	07)15 (Fe	en. 85 Con.	zNio. 1Nbo	. 03 A I 0. 02) 77	Вв
5	(Ndo. 93 Smo.	07)15 (Fe	0. 55 COo.	3Nio. z Vo	. 04Mgo. 01)77	Вв
6	Nd15 (Feo. s	sCoo. 3Nio	Sio. o 2	Gen. , Ga	. oz) 77 B 8	
7	Nd 18 (Feo. 4	в Coo. з 5 N і	o. 15 Cao.	o (Gao. o ()	7 6 B 8	
8	Nd14 (Feo. 5	₅Coa.₃Nia	. 1 M O o . o z	Gao. 02) 78	Вв	
9	Nd14 (Feo. 5	5 CO 0. 3 N i 0	Z n o . o z	100.02)78	Вв	
10	Nd (s (Feo. s	. Coo. з Ni	. ¡Cro. n i	Mno. o : Gao	. o 2) 7 7 B 8	
11	Nd 1.5 (Peo. 5	6 5 CO 0 . 3 N	io.ιCuo.α	1 5 Ga o . o 2)	77 B 8	
12	Nd15 (Feo. 5	в Соо. з N i с	, ¡Gao. o a	2) 7 7 B B		
13	Nd 15 (Peo. 5	5 CO 0 . 3 5 N	i o. 1) 77 B	8		
14	Nd18 (Feo. 4	Coo. 4Nio.	2) 7 5 B 7			
15	Nd 15 (Feo. 5	8 Coo. 3 Ni	3.1Tio.01	Gan. n 1) 7 6	В.	
16	Nd 16 (Peo. 5	6 Coo. 3 Ni	. 1 Moo. os	Gao. 02)71	В 1	
17	Nd 14 (Peo. 5	8 Coo. 3 Ni	Nbo. o 2	Gao. 0 2) 7 6	B 10	
18	Nd ₁₅ (Fe _{0.6}	1000.25N	io. , V o. c	2 Gan. 02)	7 B 8	
19	Pr ₁₅ (Fe _{0.5}	s Cou. s Ni	Zr	Alo. ozGad	. D 2) 7 7 B 8	

[0022]

【表2】

10

No.	水素含有量(%)	粉砕歩留り (%)	平均粒径 (μα)	Br (kG)	illc (kOe)	(OH) max (MGOe)	備考
l a l b	10	91 76	2. 8 3. 0	10. 6 10. 6	· 21.6 21.5	25. 8 25. 8	理食例!
2 a	10	93	2. 9	11. 2	13.8	29. 1	連合例2比較例2
2 b	0	70	3. 3	11. 1	13.8	29. 0	
3 a 3 b	10	95	3. 0	10. 5	15. 1	24. 7	適合例3
	0	69	3. 1	10. 6	15. 2	24. 9	比較例3
4 a	10	94	2. 8	10. 6	16.3	24. 8	速合例 4
4 b	0	72	3. 2	10. 5	15.8	24. I	比較例 4
5 a	10	94	3. 0	10. 6	16.4	24. 9	避合例 5
5 b	0	70	3. 1	10. 5	16.5	25. 0	比較例 5
6 a	10	91	2. 8	10. 8	15.3	27. 0	連合例 6
6 b	0	75	3. 1	10. 7	15.2	26. 8	比較例 6
7 a	10	96	2. 7	10. 9	15. [28. t	遊食例 7
7 b	0	67	3. 0	10. 9	14. 9	28. 0	比較例 7
8 a	20	90	2. 9	11. 4	12.5	32. 6	連合例 8
8 b	0	68	3. 3	11. 2	12.1	30. 8	比較例 8
9 a	20	93	2. 8	11.5	1.8	32. 8	適合例 9
9 b	0	7 l	2. 9	11.6	1.9	33. 0	比較例 9
10 a	20	92	2. 8	10. 8	15.5	26. 9	適合例10
10 b	0	68	3. 0	10. 7	15.5	26. 8	比較例10
lla	20	96	3. 0	10.8	13. 9	26. 0	適合例!!
llb	0	75	3. 3	10.9	13. 5	26. 2	比較例!!
12 a	10	90	2. 7	11.1	12.8	29. 0	適合例12
12 b	0	66	2. 9	11.0	12.7	28. 8	比較例12
13 a	10	94	2. 7	10.9	7.0	26. 4	適合例13
13 b	0	74	3. 1	10.9	6.7	26. 0	比較例13
14 a	10	92	2. 7	11.6	7. 0	32. 1	連合例14
14 b	0	69	3. 0	11.5	7. 0	31. 9	
15 a	10	92	3. 0	10.8	14. l	25. 9	適食例15
15 b	0	69	3. 2	10.9	13. 7	26. 0	比較例15
16 a	10	93	2. 8	10.7	14.6	24. 8	適合例16
16 b	0	73	3. 1	10.7	14.3	24. 7	比較例16
17 a	20	95	2. 9	10.5	13. 1	23. 0	商合例17
17 b	0	74	3. 0	10.3	12. 8	22. 5	比較例17
18 a	20	92	2. 8	10.7	12. 8	26. 2	適合例[8
18 b	0	71	3. 1	10.8	12. 7	26. 2	比較例[8
19 a 19 b 19 c 19 d	20 0 25 0. 5	90 64 91 66	2. 8 3. 2 2. 8 3. 1	11.5 11.5 10.9 11.5	6. 1 5. 8 5. 9 5. 9	27. 3 26. 8 25. 6 26. 8	適合例19 比較例20 比較例21

【0023】実施例2

実施例1と同じ合金組成を、実施例1と同様にして5mm 径程度まで粗粉砕したのち、Moボートに載せ、加熱炉内で水素含有量10vol%のH2−Ar混合ガス気流中にて300℃、2時間処理した後、1×10⁻⁵Torrの真空中で300℃、2時間脱水素処理する、といったサイクルを、表3 40に示した回数だけ繰り返した。ついで、水素中処理した粗粒粉を、実施例1と同様の手法で、中粉砕、微粉砕、成形、焼結することによって磁石を作製し、その磁気特性を調査した。得られた結果を表3に示したが、同表に示したとおり、水素脆化処理の回数が2回以上で良好な粉砕歩留りを達成することができた。

[0024]

【表3】

	11		
商	比較例	通合例	*
(BH)max (MCOe)	25.7	25.8	25.7
і Н с (к0е)	21.4	21.6	22.0
Br (kG)	10.6	10.6	10.5
平均拉径 (μm)	2.9	2.8	2.6
松野歩留 (%)	61	16	93
粉砕サイク ル (回)	1	2	4
水器含有 量(%)	10	91	10
(31%)	01)15 (Peo. 56Coo. 3Nio. 1Tio. 016ao. 02)11 B 8		
母	\$Nio. 1Ti		
92	.o. 5 s COu.	*	*
€H	07) 1 5 (Pe		•
4 □	(Ndo. o.aDyo.		
No.	-	2 .	က

[0025]

[発明の効果] かくしてこの発明によれば、原料合金の 被粉砕性を改善して、磁石特性を低下させることなし に、微粉砕効率を向上させることがきる。

12

【図面の簡単な説明】

【図1】ジェットミル粉砕時における原料投入速度と得 られた微粉末の平均粒径との関係を示したグラフであ

10

20

30

特開平7-11306

(8)

フロントページの続き

// HO1F 1/06

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所