Kernel density estimation and confidence interval

Npas4+/+

F	CT0 22.5~ 1.5	CT3 1.5 ~ 4.5	CT6 4.5 ~ 7.5	CT9 7.5 ~ 10.5	CT12 10.5 ~ 13.5	CT15 13.5 ~ 16.5	CT18 16.5 ~ 19.5	CT21 19.5 ~ 22.5
	0.0157	-0.5488	-1.9453	-3.4444	-4.8903	-5.8834	-6.0348	0.1768
	0.2477	-0.4542	-1.8150	-3.4427	-4.1934	-5.7148	-5.9146	1.0640
	0.5805	-0.3998	-1.8096	-3.0887	-3.9147	-5.6273	-4.6889	1.1951
	0.5949	0.0114	-1.2478	-3.0059	-3.8677	-4.9265	-4.2258	1.3453
	0.9734	0.0143	-1.1698	-2.9624	-3.6179	-4.9010	-3.4333	1.4608
	1.0911	0.0223	-1.1672	-2.6003	-3.5812	-4.8102	-1.8218	1.6094
	1.2353	0.2560	-1.1241	-2.5792	nan	-4.7977	-1.6884	1.6815
	1.2546	0.3912	-0.8813	-2.4971	nan	-4.6979	-1.4219	1.8439
	1.5713	0.4016	-0.7747	-2.1693	nan	-4.6672	-1.3859	1.9217
	1.6637	2.7525	-0.6827	-2.0107	nan	-4.4777	-0.5022	2.0719
	1.7920	nan	-0.5199	-1.3421	nan	-4.4689	-0.2640	2.1966
	2.0000	nan	0.0093	nan	nan	-4.4095	-0.2150	2.4836
	2.0914	nan	1.7873	nan	nan	-4.3923	0.1015	2.8680
	2.1676	nan	nan	nan	nan	-4.3273	0.3832	2.8931
	2.3471	nan	nan	nan	nan	-4.1135	0.5698	3.3045
	2.4336	nan	nan	nan	nan	-3.9195	0.6877	3.3597
	2.5090	nan	nan	nan	nan	-3.8478	0.8700	3.4053
	2.5539	nan	nan	nan	nan	-3.7462	1.5156	nan
	2.8583	nan	nan	nan	nan	-3.6463	2.0167	nan
	2.9817	nan	nan	nan	nan	-3.5747	3.3726	nan
	3.6753	nan	nan	nan	nan	-3.5546	5.0496	nan
	4.2155	nan	nan	nan	nan	-3.4145	nan	nan
	nan	nan	nan	nan	nan	-3.2343	nan	nan
	nan	nan	nan	nan	nan	-2.2528	nan	nan
	nan	nan	nan	nan	nan	-2.1024	nan	nan

CT0 22.5~1.5	CT3 1.5 ~ 4.5	CT6 4.5 ~ 7.5	CT9 7.5 ~ 10.5	CT12 10.5 ~ 13.5	CT15 13.5 ~ 16.5	CT18 16.5 ~ 19.5	CT21 19.5 ~ 22.5
-1.3000	-1.7253	-1.1252	-1.2654	-5.1767	-4.3307	-2.8586	-1.4300
-0.8149	0.0567	-0.9103	-1.2417	-3.3872	-2.4882	-2.1690	-1.3687
-0.5668	0.2003	-0.9001	-1.2228	-3.1610	-2.0558	-1.4808	1.4963
0.1787	0.3120	-0.1802	-0.9521	-2.8747	-1.8494	-1.1579	nan
0.2777	2.6385	0.9227	-0.8978	-2.8237	-1.8439	0.3268	nan
0.7293	nan	1.0726	-0.8256	-2.7807	-1.0221	0.7339	nan
nan	nan	nan	-0.8112	-2.5911	-0.9454	0.7842	nan
nan	nan	nan	-0.3539	-2.4212	-0.6806	1.0302	nan
nan	nan	nan	0.0086	-2.3460	-0.2373	nan	nan
nan	nan	nan	0.7649	-2.1907	-0.0897	nan	nan
nan	nan	nan	1.7315	-2.1402	0.6984	nan	nan
nan	nan	nan	nan	-2.1122	nan	nan	nan
nan	nan	nan	nan	-2.0690	nan	nan	nan
nan	nan	nan	nan	-2.0035	nan	nan	nan
nan	nan	nan	nan	-1.8779	nan	nan	nan
nan	nan	nan	nan	-1.5901	nan	nan	nan
nan	nan	nan	nan	-1.2413	nan	nan	nan
nan	nan	nan	nan	-0.8743	nan	nan	nan
nan	nan	nan	nan	-0.7911	nan	nan	nan
nan	nan	nan	nan	-0.4389	nan	nan	nan
nan	nan	nan	nan	-0.3947	nan	nan	nan
nan	nan	nan	nan	-0.1335	nan	nan	nan
nan	nan	nan	nan	0.1200	nan	nan	nan
nan	nan	nan	nan	nan	nan	nan	nan
nan	nan	non	nan	non	non	non	non

Npas4^{-/-}

Npas4+/+

Missing-data (nan) imputation for ART ANOVA analysis

Npas4+/+ (imputed)

CT0 22.5~ 1.5	CT3 1.5 ~ 4.5	CT6 4.5 ~ 7.5	CT9 7.5 ~ 10.5	CT12 10.5 ~ 13.5	CT15 13.5 ~ 16.5	CT18 16.5 ~ 19.5	CT21 19.5 ~ 22.5	CT0 22.5~1.5	CT3 1.5 ~ 4.5	CT6 4.5 ~ 7.5	CT9 7.5 ~ 10.5	CT12 10.5 ~ 13.5	CT15 13.5 ~ 16.5	CT18 16.5 ~ 19.5	CT21 19.5 ~ 22.5
0.0157	-0.5488	-1.9453	-3.4444	-4.8903	-5.8834	-6.0348	0.1768	0.0157	-0.5488	-1.9453	-3.4444	-4.8903	-5.8834	-6.0348	0.1768
0.2477	-0.4542	-1.8150	-3.4427	-4.1934	-5.7148	-5.9146	1.0640	0.2477	-0.4542	-1.8150	-3.4427	-4.1934	-5.7148	-5.9146	1.0640
0.5805	-0.3998	-1.8096	-3.0887	-3.9147	-5.6273	-4.6889	1.1951	0.5805	-0.3998	-1.8096	-3.0887	-3.9147	-5.6273	-4.6889	1.1951
0.5949	0.0114	-1.2478	-3.0059	-3.8677	-4.9265	-4.2258	1.3453	0.5949	0.0114	-1.2478	-3.0059	-3.8677	-4.9265	-4.2258	1.3453
0.9734	0.0143	-1.1698	-2.9624	-3.6179	-4.9010	-3.4333	1.4608	0.9734	0.0143	-1.1698	-2.9624	-3.6179	-4.9010	-3.4333	1.4608
1.0911	0.0223	-1.1672	-2.6003	-3.5812	-4.8102	-1.8218	1.6094	1.0911	0.0223	-1.1672	-2.6003	-3.5812	-4.8102	-1.8218	1.6094
1.2353	0.2560	-1.1241	-2.5792	nan	-4.7977	-1.6884	1.6815	1.2353	0.2560	-1.1241	-2.5792	-2.6905	-4.7977	-1.6884	1.6815
1.2546	0.3912	-0.8813	-2.4971	nan	-4.6979	-1.4219	1.8439	1.2546	0.3912	-0.8813	-2.4971	-3.8435	-4.6979	-1.4219	1.8439
1.5713	0.4016	-0.7747	-2.1693	nan	-4.6672	-1.3859	1.9217	1.5713	0.4016	-0.7747	-2.1693	-4.4109	-4.6672	-1.3859	1.9217
1.6637	2.7525	-0.6827	-2.0107	nan	-4.4777	-0.5022	2.0719	1.6637	2.7525	-0.6827	-2.0107	-3.6505	-4.4777	-0.5022	2.0719
1.7920	nan	-0.5199	-1.3421	nan	-4.4689	-0.2640	2.1966	1.7920	0.6332	-0.5199	-1.3421	-3.4826	-4.4689	-0.2640	2.1966
2.0000	nan	0.0093	nan	nan	-4.4095	-0.2150	2.4836	2.0000	1.3108	0.0093	-2.2498	-3.2989	-4.4095	-0.2150	2.4836
2.0914	nan	1.7873	nan	nan	-4.3923	0.1015	2.8680	2.0914	1.8801	1.7873	-1.2942	-2.6259	-4.3923	0.1015	2.8680
2.1676	nan	nan	nan	nan	-4.3273	0.3832	2.8931	2.1676	1.2117	-1.2914	-2.6172	-2.8909	-4.3273	0.3832	2.8931
2.3471	nan	nan	nan	nan	-4.1135	0.5698	3.3045	2.3471	0.5136	-1.3543	-3.3790	-4.5050	-4.1135	0.5698	3.3045
2.4336	nan	nan	nan	nan	-3.9195	0.6877	3.3597	2.4336	0.3867	-0.3956	-2.3148	-4.5281	-3.9195	0.6877	3.3597
2.5090	nan	nan	nan	nan	-3.8478	0.8700	3.4053	2.5090	1.2207	-2.0592	-1.2254	-3.4149	-3.8478	0.8700	3.4053
2.5539	nan	nan	nan	nan	-3.7462	1.5156	nan	2.5539	1.6744	-0.9330	-1.9232	-4.1033	-3.7462	1.5156	2.4346
2.8583	nan	nan	nan	nan	-3.6463	2.0167	nan	2.8583	1.7196	0.1774	-2.9368	-4.3926	-3.6463	2.0167	1.4971
2.9817	nan	nan	nan	nan	-3.5747	3.3726	nan	2.9817	0.6535	-0.0798	-3.0466	-3.7037	-3.5747	3.3726	1.4699
3.6753	nan	nan	nan	nan	-3.5546	5.0496	nan	3.6753	-0.4756	0.5073	-2.4870	-3.8116	-3.5546	5.0496	2.6157
4.2155	nan	nan	nan	nan	-3.4145	nan	nan	4.2155	0.9497	-1.3763	-2.6401	-4.0112	-3.4145	-3.2100	2.4204
nan	nan	nan	nan	nan	-3.2343	nan	nan	1.2302	0.5475	-1.9886	-2.0073	-2.9943	-3.2343	-3.2458	2.3729
nan	nan	nan	nan	nan	-2.2528	nan	nan	1.3738	-0.2519	-2.0449	-1.4692	-3.1100	-2.2528	1.1311	2.5638
nan	nan	nan	nan	nan	-2.1024	nan	nan	2.5158	1.7735	-0.9242	-3.2351	-3.7971	-2.1024	-1.5737	1.1155

MaxEdp

Data (imputed) = random.uniform(MinEdp + MaxHalfCI, MaxEdp + MaxHalfCI) : random numbers (uniform distribution) between minimum (MinEdp) and maximum (MaxEdp) estimated phase shift plus maximum half confidence interval (MaxHalfCI) within a group

Range of random imputed data with uniform distribution

kernel density estimation: gaussian kernel function & bandwidth 1

Reference for kernel density estimation and confidence interval: Härdle, W. (2013). Applied Nonparametric Regression (Cambridge, Cambridge University Press), pp. 32-42, 123)

Aligned Rank Transform (ART) for nonparametric two-way ANOVA with interaction

- Parametric analysis of variance of raw data (check ANOVA assumptions)

- Shapiro-Wilk residual normality test

data: res1 W = 0.90708, p-value = 6.107e-15

- Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)
group 15 8.2683 2.249e-16 ***
384

> Violate ANOVA assumptions

- Nonparametric analysis of variance of Aligned Rank Transformed data using ARTtool

Table Type: Anova Table (Type III tests)

Model: No Repeated Measures (Im)

Response: art(Phaseshift)

	Df	Df.res	F value	Pr(>F)
1 CT	7	384	110.497	< 2.22e-16 ***
2 Genotype	1	384	38.389	1.4944e-09 ***
3 CT:Genotype	7	384	81.484	< 2.22e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Aligned Rank Transform (ART) for nonparametric two-way ANOVA with interaction: Pairwise comparison by interaction between two factors

CT_pairwise	Genotype_pairwise	estimate	SE	df	t.ratio	p.value
CT0 - CT12	(Npas4) - (Npas4++)	-440	29.9	384	-14.719	<.0001
CT0 - CT15	(Npas4) - (Npas4++)	-476.7	29.9	384	-15.947	<.0001
CT0 - CT18	(Npas4) - (Npas4++)	-222.3	29.9	384	-7.438	<.0001
CT0 - CT21	(Npas4) - (Npas4++)	15.1	29.9	384	0.504	0.6142
CT0 - CT3	(Npas4) - (Npas4++)	-98.4	29.9	384	-3.291	0.0011
CT0 - CT6	(Npas4) - (Npas4++)	-233.2	29.9	384	-7.803	<.0001
CT0 - CT9	(Npas4) - (Npas4++)	-369.8	29.9	384	-12.372	<.0001
CT12 - CT15	(Npas4) - (Npas4++)	-36.7	29.9	384	-1.228	0.22
CT12 - CT18	(Npas4) - (Npas4++)	217.6	29.9	384	7.281	<.0001
CT12 - CT21	(Npas4) - (Npas4++)	455	29.9	384	15.223	<.0001
CT12 - CT3	(Npas4) - (Npas4++)	341.6	29.9	384	11.428	<.0001
CT12 - CT6	(Npas4) - (Npas4++)	206.7	29.9	384	6.916	<.0001
CT12 - CT9	(Npas4) - (Npas4++)	70.2	29.9	384	2.347	0.0194
CT15 - CT18	(Npas4) - (Npas4++)	254.4	29.9	384	8.51	<.0001
CT15 - CT21	(Npas4) - (Npas4++)	491.8	29.9	384	16.452	<.0001
CT15 - CT3	(Npas4) - (Npas4++)	378.3	29.9	384	12.657	<.0001
CT15 - CT6	(Npas4) - (Npas4++)	243.4	29.9	384	8.144	<.0001
CT15 - CT9	(Npas4) - (Npas4++)	106.9	29.9	384	3.576	0.0004
CT18 - CT21	(Npas4) - (Npas4++)	237.4	29.9	384	7.942	<.0001
CT18 - CT3	(Npas4) - (Npas4++)	124	29.9	384	4.147	<.0001
CT18 - CT6	(Npas4) - (Npas4++)	-10.9	29.9	384	-0.365	0.7151
CT18 - CT9	(Npas4) - (Npas4++)	-147.5	29.9	384	-4.934	<.0001
CT21 - CT3	(Npas4) - (Npas4++)	-113.4	29.9	384	-3.795	0.0002
CT21 - CT6	(Npas4) - (Npas4++)	-248.3	29.9	384	-8.307	<.0001
CT21 - CT9	(Npas4) - (Npas4++)	-384.9	29.9	384	-12.876	<.0001
CT3 - CT6	(Npas4) - (Npas4++)	-134.9	29.9	384	-4.512	<.0001
CT3 - CT9	(Npas4) - (Npas4++)	-271.4	29.9	384	-9.081	<.0001
CT6 - CT9	(Npas4) - (Npas4++)	-136.6	29.9	384	-4.569	<.0001

Wobbrock, J.O., Findlater, L., Gergle, D., & Higgins, J.J., (2011) The aligned rank transform for nonparametric factorial analyses using only anova procedures, CHI '11, 143-146

- Parametric analysis of variance of raw data (check ANOVA assumptions): Residual plots

