Hotel Booking

Group 2: Anan Song, Jiaci Jiang, Jiayi Hao, Shuyue Yang

Overview

Summary

--

01

Research question, Dataset, Variables, Measures **EDA**

02

Descriptive analysis, Data cleaning **Models**

03

Classification model, Parameter selection, Model performance **Conclusion**

04

Conclusion, Business recommendation

01

Summary

Research question, Dataset, Variables, Measures

Research question

- Which hotel reservations, given data on the booking and customer information, are most likely to be canceled?
- Predict whether a new reservation will be canceled
- Modify hotel policies to reduce the cancellation rate and prevent losses.
 (implement an overbooking strategy)

Dataset

- **119390 observations** for a City Hotel and a Resort Hotel
- Each observation represents a hotel booking between July 1st, 2015 and August 31st, 2017
- Source: https://www.kaggle.com/datasets/mojtaba142/hotel-booking

Variables

- A mix of 36 quantitative and categorical variables
- **Booking information**: city/resort hotel, is_canceled, deposit type, arrival date, stays in weekend/weekday nights, etc.
- **Customer information**: adults, children, babies, country, customer type (Contract/Group/Transient/Transient-party), is_repeated_guest, etc.

Measures

- Target variable: **Is_Canceled** (if the booking was canceled (1) or not (0))
- Accuracy: How many bookings did we correctly predict among all test set?
- Recall: How many bookings were predicted to be canceled out of all the bookings that were canceled in real situation?
- **Precision**: How many bookings were actually canceled out of all the bookings predicted to be canceled?

02

EDA

Descriptive analysis, Data cleaning

Target Variable

--

Booking Changes

_--

--

Week Number

--

--

Cleaning - Attribute

There are 3 groups of attributes we want to remove from the dataset:

- 1. Attributes with private information of hotel customers
 - Name; Email; Phone-number; Credit card number
- 2. Attributes that overlap with other attributes
 - Repeated: reservation_status; assigned_room_type
 - Overlap: reservation_status_date; arrival_date_month; arrival_date_day_of_month;

(Keep) arrival_date_week_number

- ☐ Highly Correlated: distribution_channel
- 3. Other attributes that are not very helpful to answer our question
 - ☐ Missing values: agent, company
 - Biased Distribution: country

Cleaning - Data

- Found 4 missing data in column 'children'
 - filled with 0
- 2. No invalid/unreasonable values found
- 3. Turn all the categorical variables into dummy variables.

03

Models

Classification models, Parameter selection, Model performance

Classification Models

Multinomial Naive Bayes

1. Discrete Attributes (e.g. dummy variables)

1. criterion = "entropy"

 $2. ccp_alpha = .001$

K-Nearest Neighbor

1. Standard Normalization

2. # of neighbor: 345

Random Forest

1. criterion = "entropy"

2. # of trees = 200

Model Performance on cleaned dataset

Model Type	<u>Accuracy</u>	Recall (1)	Precision (1)
Multinomial Naive Bayes	65%	52%	52%
K-Nearest Neighbor	79%	58%	81%
Decision Tree	81%	62%	83%
Random Forest	86%	76%	86%

Model Performance on more relevant attributes

<u>Model Type</u>	<u>Accuracy</u>	Recall (1)	Precision (1)
Multinomial Naive Bayes	65%	52%	53%
K-Nearest Neighbor	80%	59%	83%
Decision Tree	81%	62%	83%
Random Forest	86%	75%	85%

04

Conclusion

Conclusion, Business recommendation

Conclusion -

Best model: Random Forest

- Highest accuracy(86%) → being correct overall
- Highest precision(85%) → high so customers won't have no rooms
- → Highest recall(75%) → high so we can make overbook decisions to minimize risks and losses

Model improvements

- Peak seasons
- Pandemic
- Other relevant attributes: weather, hotel location, star category, etc.

Business Recommendation

Goal: maximize profit

- Advantages of overbooking: mitigating loss, full occupancy, compensation is cheaper than having empty rooms
- Disadvantages: harms guest experience, reputation, and long-term profit

Implementations

- Use random forest model to estimate the right number of overbookings
- Predictive model can manipulate and benefit large scale of data
- Don't book out the loyal customers and highest-priced reservations
- Determine the ideal compensation
- Have overbooking partnerships with neighboring hotels

Reference: mews.com, "What is an overbooking strategy in hotels and what are its advantages?" https://www.mews.com/en/blog/hotel-overbooking-strategy

Thanks!