Improper Integrals §7.8

Definition 1

Suppose that $a \in \mathbb{R}$ and f is continuous on $[a, \infty)$. Then

$$\int_{a}^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx$$

provided that this limit exists.

Suppose that $b \in \mathbb{R}$ and f is continuous on $(-\infty,b]$. Then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

provided that this limit exists.

improper integrals of type I

convergent if limit exists divergent if limit does not exist

If both $\int_a^\infty f(x) \, dx$ and $\int_{-\infty}^a f(x) \, dx$ are convergent, then

$$\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$$

Lemma 4

- 1. Suppose that a < b. If f is continuous on $[a, \infty)$, then $\int_a^\infty f(x) \, dx$ is convergent if and only if $\int_b^\infty f(x) \, dx$ is convergent.
- 2. If both $\int_a^\infty f(x) dx$ and $\int_a^\infty g(x) dx$ converge and α and β are numbers, then $\int_a^\infty [\alpha f(x) + \beta g(x)] dx$ also converges.

Lemma 5

Suppose that a < b. Then $\int_b^\infty \frac{1}{(x-a)^p} dx$ is convergent for p > 1 and divergent for $p \le 1$.

Lemma 6

Suppose that $a \in \mathbb{R}$. Then $\int_a^\infty e^{-px} dx$ is convergent for p > 0 and divergent for $p \leq 0$.

Homework

Ex. 7.8 nr. 9, 13, 15

Definition 2

Suppose that f is continuous but unbounded on [a,b). Then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b-} \int_{a}^{t} f(x) dx$$

provided that this limit exists.

Suppose that f is continuous but unbounded on (a,b]. Then

$$\int_a^b f(x) dx = \lim_{t \to a+} \int_t^b f(x) dx$$

provided that this limit exists.

improper integrals of type II

Lemma 7

Suppose that a < b. Then $\int_a^b \frac{1}{(x-a)^p} dx$ and $\int_a^b \frac{1}{(x-b)^p} dx$ are convergent if p < 1 and divergent if $p \ge 1$.

Definition 2 (last part)

Suppose that a < c < b, f is discontinuous at c and f is continuous but unbounded on [a,c) and on (c,b]. If both $\int_a^c f(x) \, dx$ and $\int_c^b f(x) \, dx$ are convergent, then

$$\int_{a}^{b} f(x) \, dx := \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Definition 3

Suppose that $a \in \mathbb{R}$, f is continuous on (a, ∞) and for any c > a we have that f is unbounded on (a, c]. If both the improper integrals $\int_a^c f(x) dx$ and $\int_c^\infty f(x) dx$ converge, then

$$\int_{a}^{\infty} f(x) dx := \int_{a}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx.$$

improper integral of type III

Homework

Ex. 7.8 nr. 29, 33 Exercises 1 (Sunlearn)