目次

1	前回の宿題	2
2	定理 3 の (3,4)-CE 版をまとめる	2
3	平面曲線の同値条件まとめる	4
4	(3,4)-CE における右同値類の数	5

7/17(木) セミナー資料

飯野 郁

2025/07/17

前回の宿題 1

やること

- を理3の(3,4)-CE版をまとめる
- 平面曲線の同値条件まとめる
- (3,4)-CE における右同値類の数

定理 3 の (3,4)-CE 版をまとめる

(3,4)-CE 版 右同値類の数に関する必要十分条件

 $f, \check{f}, f_*, \check{f}_*$ の右同値類 (つまり, 像の数) が 4 である \Leftrightarrow 第一基本形式 ds_f^2 が symmetry を"持たない"ときである(つまり、一般化カスプ辺のときと同じ).

 $(\Rightarrow$ を示す) 『 $f, \check{f}, f_*, \check{f}_*$ の右同値類 (つまり, 像の数) が 4 である \Rightarrow 第一基本形式 ds_f^2 を"持たない"』 の対偶を示す、つまり、 ds_f^2 が、symmetry φ を持つと仮定する。 effective (a) φ が orientation-reversing symmetry の場合

 $f \circ \varphi, \check{f} \circ \varphi$ は f_*, \check{f}_* のいずれかと一致する (図より分かる).

- $-f\circ\varphi=f_*$ なら, f と f_* は右同値である. (同様に, \check{f} は \check{f}_* と右同値である)
- $-f\circ\varphi=\check{f}_*$ なら, f と \check{f}_* は右同値である. (同様に, \check{f} は f_* と右同値である)
- $\therefore \{f, \check{f}, f_*, \check{f}_*\}$ の右同値類の個数は 2 である.
- (b) φ が orientation preserving symmetry の場合 non - effective

 $f \circ \varphi$ は \check{f} と右同値である (f と向きが一致するのは \check{f} のみ). $f_*\circ \varphi$ は \check{f}_* と右同値である $(f_*$ と向きが一致するのは \check{f}_* のみ). $\therefore \{f, \check{f}, f_*, \check{f}_*\}$ の右同値類の個数は 2 である.

(a)(b) より, φ は orientation-perserving/reversing に関わらず 『 $f, \check{f}, f_*, \check{f}_*$ の右同値類

り, いずれか2つが右同値であると仮定する)

f が $g \in \{\mathring{f}, f_*, \mathring{f}_*\}$ と右同値であるとして、一般性を失わない.

(1) $g = f_*$ または \check{f}_* の場合

f と右同値であるので、 $\exists \varphi$: diffeo s.t. $g=f\circ \varphi$. それぞれの第一基本形式 ds^2 を $ds_g^2, ds_{f\circ \varphi}^2$ とすると, $ds_g^2=\varphi^*ds_f^2$. 定理 2(1) より f_* は f と同じ第一基本形式を 持ち, 63 ページより \check{f} は f と同じ第一基本形式を持つため, $ds_q^2=ds_f^2$ である. し たがって, $ds_f^2 = \varphi^* ds_f^2$ である.

もし $\varphi = \operatorname{Id}$ なら, g = f が成り立ち, $f = f_*$ または f_* が成り立つ. しかし, これ では曲線の像 C = c(J) の向きが f と f_* で同じとなり、矛盾.

 $\therefore \varphi \neq \text{Id } \ \text{\it cons} \ \text{\it b}, \ \text{\it Def } \ 0.4 \ \text{\it l} \ \text{\it b} \ \varphi \ \text{\it lt} \ ds_f^2 \ \text{\it o} \ \text{\it symmetry } \ \text{\it const.}$

(2) $g = \check{f}$ の場合

fと右同値であるので、 $\exists \varphi$: diffeo s.t. $\check{f}=f\circ \varphi$. (1) と同様に, $ds_f^2=\varphi^*ds_f^2$ で ある. もし $\varphi = \operatorname{Id} \alpha \dot{S}$, $f = f \tilde{C}$ である.

(Hatteri 論文 定理 67) ここで図より, カスプ角は f から決まる $(\nu$ も f から決まる) ので, $f=\check{f}\Rightarrow\theta=\check{\theta}$ となるが, $\theta = -\check{\theta}$ より, $\theta = 0$ となる. しかしカスプ角の定義域 $0 < |\theta| < \pi$ で あったため、この事実と矛盾する.

 $\therefore \varphi \neq \text{Id } \ \text{\it cosh}, \ \text{Def } 0.4 \ \text{\it ln} \ \varphi \ \text{\it lt} \ ds_f^2 \ \text{\it o} \ \text{symmetry } \ \text{\it cosh}.$

(1)(2) より、『第一基本形式 ds_f^2 が symmetry を"持たない" $\Rightarrow f, \check{f}, f_*, \check{f}_*$ の右同値 類 (つまり, 像の数) が 4 である』を示した.

以上より、同値条件が成立する. ■

(Theorem 3 は (3,4)-CE でも成立する. しかも orientation-preserving, orientation-reserving に関係ない)

3 平面曲線の同値条件まとめる

『 $T \in O(3)$ が orientation-preserving symmetry(trivial) である (つまり, $\forall P \in C$ に対して, T(P) = P) $\Leftrightarrow C$ は平面曲線であり, T は平面に関する折り返し』

まず、← は自明である (論文 66 ページの Def 1.2 に記載).

そのため, ⇒ を示す.

 $\mathbf{c}(u)$ を弧長パラメータ表示, $\kappa(u) > 0$ とする (つまり, $\mathbf{c}(u)$ は直線ではない). 回転と平行移動により, $\mathbf{c}(0)$ と $\mathbf{n}(0)$ は

として良い.

まず仮定より, $T\mathbf{c}(u) = \mathbf{c}(u)$ であった. 両辺を u で微分すると

$$T\mathbf{c}'(u) = \mathbf{c}'(u)$$

である. u=0 を代入すると, $T\mathbf{c}'(0)=\mathbf{c}'(0)$, つまり $T\mathbf{e}_1=\mathbf{e}_1$ が成り立つ. さらに $T\mathbf{c}'(u)=\mathbf{c}'(u)$ をもう一度 u で微分すると,

$$T\mathbf{c}''(u) = \mathbf{c}''(u)$$

であるので, u=0 を代入すると, $T\mathbf{c}''(0)=\mathbf{c}''(0)$. つまり $T\mathbf{e}_2=\mathbf{e}_2$ が成り立つ.

仮定より T は orientation-preserving symmetry(trivial) である, つまり恒等写像ではないので, $T \in O(3)$ (つまり, $\det T = \pm 1$) かつ

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \star \end{pmatrix}, \quad T \neq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

を満たすTは、

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

のみである. $\mathbf{c}(u) = [x(u), y(u), z(u)]^T$ とすると, T より

$$T\mathbf{c}(u) = [x(u), y(u), -z(u)]^T$$

である. さらに仮定より $T\mathbf{c}(u) = \mathbf{c}(u)$ であったので,

$$[x(u), y(u), -z(u)]^T = [x(u), y(u), z(u)]^T$$

が $\forall u$ で成立する. つまり z(u) = 0 が成立する.

 $\mathbf{c}(u) = [x(u), y(u), 0]^T$ となり、これは平面曲線である.

4 (3,4)-CE における右同値類の数 ← Theorem <u>I</u> と まてめて

(3,4)-CE における右同値類の数 (つまり, 像の数)について

17 12 \$3

 $\{f, \check{f}, f_*, \check{f}_*\}$ の右同値類の数を n とする. このとき,

(a) $n=4 \Leftrightarrow ds_f^2$ が symmetry を持つ またたい

- (b) $n \neq 4 \Rightarrow n = 1$ または 2
- (c) $n=1\Leftrightarrow ds_f^2$ が effective symmetry と non-effective symmetry の両方を持つ

Proof.

- (a) は, (3,4)-CE における定理 3 ですでに示したため, 成り立つ.
- (c) が正しいことを示す。 $n=1\Leftrightarrow f$ は $\check{f},f_*,\check{f}_*$ の 3 つ全てと右同値 であるので、(3,4)-CE における定理 3 の、『f の右同値類の個数 <4』を仮定した場合の
- $(1)g = f_*$ または $g = \check{f}_*$ の場合と
- $(2)g = \check{f}$
- の両方を満たしている状況である.
 - (1) が成り立つ \Leftrightarrow f と f_* , \check{f}_* が右同値である \Leftrightarrow $\exists \varphi$: diffeo s.t. f_* (または \check{f}_*) = $f \circ \varphi \ (\varphi \neq \mathrm{Id})$.

f と f_* (または f_*) は向きが逆であるため, diffeo φ は曲線の向きを反転させる.

- \therefore Def 0.4 \downarrow b, φ it effective σ of σ .
- (2) が成り立つ \Leftrightarrow f と \check{f} は右同値である \Leftrightarrow $\exists \psi$: diffeo s.t. $\check{f} = f \circ \psi$ ($\psi \neq \mathrm{Id}$). f と \check{f} は向きが同じであるため, diffeo ψ は曲線の向きを保つ.
 - \therefore Def 0.4 \downarrow b, ψ it non-effective symmetry $\neg \delta$.

以上をまとめると,

- n=1 \Leftrightarrow f は $\check{f}, f_*, \check{f}_*$ の 3 つ全てと右同値
 - ⇔ (3,4)-CE における定理 3(仮定:右同値の数が 4 未満)の (1)(2) がどちらも成り立つ
 - \Leftrightarrow ds_f^2 は effective symmetry φ と non-effective symmetry ψ の両方を持つ

∴(c) が成り立つ.

(n = 2) が成り立つのは, (1) か (2) のいずれか一方のみを満たす場合である)