Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politécnica de Valéncia, Junio de 2019

Apellidos:	Nombre:
Profesor: Jorge Civera Carlos Martín	nez
Cuestiones (2 puntos, 30 minutos, sin apur	ntes)
C En el algoritmo Kernel Perceptron, cada componente del vec	tor de salida α_i se interpreta como:
 A) El peso que se le da sólo a la componente i-ésima B) El número de veces que la muestra i-ésima se ha clasific C) El número de veces que la muestra i-ésima se ha clasific D) El peso que se le da sólo al término independiente i-ésim 	ado incorrectamente en el proceso
B ¿Qué valor de ϵ en truncamiento simple se ha aplicado al parámetro suavizado $\tilde{\mathbf{p}}=\begin{pmatrix}0.01&0.01&0.99&0.99\end{pmatrix}^t$?	parámetro Bernoulli $\hat{\mathbf{p}} = \begin{pmatrix} 0 & 0 & 1 & 1 \end{pmatrix}^t$ para obtener el
A) $\epsilon = 10^{-1}$ B) $\epsilon = 10^{-2}$ C) $\epsilon = 10^{-3}$ D) $\epsilon = 10^{-4}$	
\square El clasificador multinomial que sigue $Mult_D(x_+, \mathbf{p}_c)$ se aplica	a sobre objetos que representan:
 A) Valores naturales entre 1 y D B) Proporciones de valores en una población de elementos en C) Secuencias de valores en el rango 1-D D) Vectores de número de ocurrencias de valores en el rango 	
B En la estimación por máxima verosimilitud de un clasificador	gaussiano con matriz de covarianza común se estiman:
 A) Probabilidades a priori y matrices de covarianza de cada B) Probabilidades a priori y medias de cada clase, y la mat 	

- C) Probabilidades a priori de cada clase, y la media y matriz de covarianzas del total de datos de entrenamiento
- D) Medias de cada clase y la matriz de covarianzas del total de datos de entrenamiento

- Al aplicar suavizado por umbralizado de covarianza con $\epsilon > 0$, la matriz de covarianzas que se espera se caracterizará por:
 - A) Tener los mismos o más ceros fuera de la diagonal que la original
 - B) Tener los mismos o más ceros en la diagonal que la original
 - C) Ser diagonal
 - D) Tener menos ceros que la original
- X En general, la frontera de decisión entre dos clases de un clasificador basado en el vecino más cercano es una frontera lineal definida a trozos, pero que no es lineal globalmente. ¿En cuál de los siguientes casos esto es así? Pregunta cancelada por ser tanto B como C correctas
 - A) Cuando únicamente se dispone de una muestra de cada clase
 - B) Cuando las muestras de cada clase se disponen en rectas diferentes y éstas rectas son paralelas
 - C) Cuando las muestras de cada clase se disponen en rectas diferentes y éstas rectas intersectan
 - D) En todos los casos anteriores.
- D Cuando se hace aprendizaje de distancias, generalmente se hace:
 - A) Una selección de los prototipos que mejor contribuyen a la distancia
 - B) Una proyección sobre un espacio linealmente separable
 - C) Un cambio del exponente al que se eleva la diferencia entre componentes
 - D) Un escalado de las distintas componentes de los datos
- A En general, ¿cuál de las siguientes características es propia de un clasificador fuerte?
 - A) Tienen una precisión alta
 - B) Necesitan pocos datos de entrenamiento
 - C) Su sesgo (bias) es alto
 - D) Permiten cancelar el ruido (noise)

Examen de Teoría de Percepción - Segundo Parcial

ETSINF, Universitat Politécnica de Valéncia, Junio de 2019

Apellidos: Non	nbre:
----------------	-------

Profesor:

| Jorge Civera | Carlos Martínez

Problemas (4 puntos, 90 minutos, con apuntes)

1. (0.75 puntos) Sea la función $K(\mathbf{x}, \mathbf{y}) = \exp(-(\mathbf{x} - \mathbf{y})^t(\mathbf{x} - \mathbf{y}))$ y el conjunto de muestras

$$X = \left\{ \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \left(\begin{array}{c} -1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \right\}$$

- a) Calcula la matriz Gramm **K** asociada a las muestras de X con la función $K(\mathbf{x},\mathbf{y})$ (0.5 puntos)
- b) Indica si la función $K(\mathbf{x}, \mathbf{y})$ es un Kernel, justificando la respuesta (0.25 puntos)

Solución:

a)

$$\mathbf{K} = \begin{pmatrix} 1 & \exp(-1) & \exp(-4) & \exp(-1) \\ \exp(-1) & 1 & \exp(-5) & \exp(-2) \\ \exp(-4) & \exp(-5) & 1 & \exp(-1) \\ \exp(-1) & \exp(-2) & \exp(-1) & 1 \end{pmatrix}$$

- b) Sí es un Kernel, pues es un Kernel gaussiano con $\sigma^2 = \frac{1}{2}$
- 2. (1.5 puntos) Se dispone de secuencias de ADN provenientes de tres clases, cuyas muestras de entrenamiento por clase se representan por el vector de frecuencias de su bases:

${ m N^o~muestra}$	1	2	3	4	5	6	7	8	9
A	4	5	3	1	2	3	2	1	2
\mathbf{C}	3	2	3	3	2	1	1	2	2
G	1	2	1	1	1	1	3	3	4
${ m T}$	2	1	1	2	2	2	5	5	5
Clase	Α	Α	Α	В	В	В	С	С	\overline{C}

Así pues:

- a) Calcular los parámetros (probabilidades a priori y prototipos multinomiales \mathbf{p}_c) del clasificador multinomial por estimación de máxima verosimilitud sobre los datos dados. (0.4 puntos)
- b) Clasificar la secuencia "T A T G G C T C A T" (0.4 puntos)
- c) Suaviza las probabilidades del prototipo multinomial de la clase A utilizando descuento absoluto ($\epsilon = \frac{1}{7}$) mediante interpolación, usando como distribución generalizada la distribución multinomial incondicional (independiente de la clase) estimada a partir de las muestras de entrenamiento (**0.5 puntos**)
- d) ¿Sería necesario aplicar algún tipo de suavizado? Razona la respuesta. (0.2 puntos)

Solución:

a) Las probabilidades a priori son $P(A) = P(B) = P(C) = \frac{1}{3}$, y los prototipos multinomiales de cada clase:

$$\hat{\mathbf{p}}_A = \left(\frac{12}{28}, \frac{8}{28}, \frac{4}{28}, \frac{4}{28}\right) = \left(\frac{3}{7}, \frac{2}{7}, \frac{1}{7}, \frac{1}{7}\right)$$

$$\hat{\mathbf{p}}_B = \left(\frac{6}{21}, \frac{6}{21}, \frac{3}{21}, \frac{6}{21}\right) = \left(\frac{2}{7}, \frac{2}{7}, \frac{1}{7}, \frac{2}{7}\right)$$

$$\hat{\mathbf{p}}_C = \left(\frac{5}{35}, \frac{5}{35}, \frac{10}{35}, \frac{15}{35}\right) = \left(\frac{1}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}\right)$$

b) La representación bag-of-words de la secuencia a clasificar es $x = (2\ 2\ 2\ 4)$ y clasificación:

$$g_A(x) = \frac{1}{3} \cdot \left(\frac{3}{7}\right)^2 \cdot \left(\frac{2}{7}\right)^2 \cdot \left(\frac{1}{7}\right)^2 \cdot \left(\frac{1}{7}\right)^4 = \frac{36}{3 \cdot 7^{10}}$$

$$g_B(x) = \frac{1}{3} \cdot \left(\frac{2}{7}\right)^2 \cdot \left(\frac{2}{7}\right)^2 \cdot \left(\frac{1}{7}\right)^2 \cdot \left(\frac{2}{7}\right)^4 = \frac{256}{3 \cdot 7^{10}}$$

$$g_C(x) = \frac{1}{3} \cdot \left(\frac{1}{7}\right)^2 \cdot \left(\frac{1}{7}\right)^2 \cdot \left(\frac{2}{7}\right)^2 \cdot \left(\frac{3}{7}\right)^4 = \frac{324}{3 \cdot 7^{10}}$$

$$\hat{c}(x) = \underset{ABC}{\operatorname{arg max}} \left\{ g_A(x), g_B(x), g_C(x) \right\} = C$$

c) La distribución multinomial incondicional (independiente de la clase) estimada a partir de las muestras de entrenamiento se calcula como:

$$\mathbf{p}_g = \left(\frac{23}{84}, \frac{19}{84}, \frac{17}{84}, \frac{25}{84}\right)$$

Como podemos descontar ϵ en todos los casos, la masa de probabilidad descontada para la clase A y que repartimos según \mathbf{p}_q será $\frac{4}{7}$. La estimación del prototipo multinomial de la clase A será:

$$\tilde{\mathbf{p}}_{A} = \hat{\mathbf{p}}_{A} - \begin{pmatrix} \frac{1}{7} \\ \frac{1}{7} \\ \frac{1}{7} \\ \frac{1}{7} \end{pmatrix} + \frac{4}{7} \cdot \mathbf{p}_{g} = \begin{pmatrix} \frac{65}{147}, \frac{40}{147}, \frac{17}{147}, \frac{25}{147} \end{pmatrix}^{t}$$

d) Respuesta negativa: No es necesario porque no hay probabilidades cero.

Respuesta afirmativa: Sí, es recomendable porque la estimación de los prototipos multinomiales se realiza únicamente a partir de 3 muestras.

3. (1 punto)

La figura de la derecha muestra prototipos bidimensionales de 2 clases, $X = \{x_1 = (2, 4, \times), x_2 = (2, 3, \bullet), x_3 = (2, 0, \bullet), x_4 = (2, 1, \times), x_5 = (3, 1, \bullet), x_6 = (1, 1, \bullet), x_7 = (1, 3, \times), x_8 = (3, 3, \times)\}$. Considera la utilización de un clasificador de vecino más cercano en distancia L_1 . Se pide:

- a) Representa gráficamente la frontera y regiones de decisión. (0.2 puntos)
- b) Aplica el algoritmo de edición de Wilson visitando los prototipos por valor de índice creciente. Representa gráficamente la frontera y regiones de decisión. En caso de empate, clasifica en la clase correcta.
 (0.4 puntos)
- c) A partir de la aplicación del algoritmo de Wilson, aplica el algoritmo de condensado de Hart visitando los prototipos por valor de índice creciente. Representa gráficamente la frontera y regiones de decisión. En caso de empate, clasifica en la clase correcta. (0.4 puntos)

Solución:

a)

b) $X' = X - \{x_1, x_2, x_3, x_4\}$

c) $S = \{x_5, x_7\}.$

4. (0.75 puntos) Se tiene el siguiente conjunto de datos y clasificadores:

$$X = \{((1,1), +1), ((-1,1), -1), ((-1,-1), +1), ((1,-1), -1)\}$$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 > -\frac{1}{2} \\ -1 & z_1 + z_2 \le -\frac{1}{2} \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 > \frac{1}{2} \\ -1 & z_1 + z_2 \le \frac{1}{2} \end{cases}$$

- a) Aplica dos iteraciones de AdaBoost a los datos de X con los clasificadores dados, incluyendo el clasificador escogido, los valores de error relativo (ϵ) y peso del clasificador (α) en cada iteración, así como el conjunto de pesos de las muestras usado en esa iteración (0.6 puntos)
- b) ¿Tendría sentido aplicar una tercera iteración? Razona la respuesta (0.15 puntos)

Solución:

a) Tabla de acierto/fallo:

			- /	
	x_1	x_2	x_3	x_4
g_1	√	X	X	X
$\overline{g_2}$	√	√	Χ	√

Iteración 1:

Pesos: $w^{(1)} = \left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}$ Error de clasificación ponderado: $g_1 \to \frac{3}{4}, g_2 \to \frac{1}{4}$

Clasificador escogido: $C_1=g_2$ Error relativo y peso del clasificador: $\epsilon_1=\frac{1}{4},\ \alpha_1=\frac{1}{2}\ln 3$

Iteración 2:

Recálculo de pesos:

	$ w^{(1)}\exp(-c_i\alpha_1C_1(x_i)) $	$w^{(2)}$
x_1	$\frac{1}{4} \frac{1}{\sqrt{3}}$	$\frac{1}{6}$
x_2	$\frac{1}{4}\frac{1}{\sqrt{3}}$	$\frac{1}{6}$
$\overline{x_3}$	$\frac{1}{4}\sqrt{3}$	$\frac{3}{6}$
x_4	$\frac{1}{4}\frac{1}{\sqrt{3}}$	$\frac{1}{6}$
Suma	$\frac{2\sqrt{3}}{4}$	

Suma | $\frac{2\sqrt{3}}{4}$ | Pesos: $w^{(2)} = \left\{\frac{1}{6}, \frac{1}{6}, \frac{3}{6}, \frac{1}{6}\right\}$ Error de clasificación ponderado: $g_1 \to \frac{5}{6}$, $g_2 \to \frac{3}{6}$ Clasificador escogido: $C_2 = g_2$ Error relativo y peso del clasificador: $\epsilon_2 = \frac{3}{6}$, $\alpha_2 = 0$

b) No, pues al ser $\alpha_2 = 0$ el conjunto de pesos no cambia, con lo que no va a haber cambios en posteriores iteraciones