

A service of the National Library of Medicine and the National Institutes of Health

My NCBI [Sign In] [Regis

Protein Genome Structure **OMIM PMC** Journals Bool PubMed Nucleotide All Databases Go Clea Search PubMed ▼ for aminopeptidase A binding peptide Preview Preview/Index History Clipboard Details

Limits: Entrez Date to 2002/8/30

About Entrez

Text Version

Entrez PubMed
Overview
Help | FAQ
Tutorials
New/Noteworthy

E-Utilities

PubMed Services
Journals Database
MeSH Database

Journals Database
MeSH Database
Single Citation
Matcher
Batch Citation
Matcher
Clinical Queries
Special Queries
LinkOut
My NCBI

Related Resources
Order Documents
NLM Mobile
NLM Catalog
NLM Gateway
TOXNET
Consumer Health
Clinical Alerts
ClinicalTrials.gov
PubMed Central

- Search History will be lost after eight hours of inactivity.
- Search numbers may not be continuous; all searches are represented.
- To save search indefinitely, click query # and select Save in My NCBI.
- To combine searches use #search, e.g., #2 AND #3 or click query # for more options.

Search	Most Recent Queries	Time	Result
<u>#21</u>	Search aminopeptidase A binding peptide Limits: Entrez Date to 2002/8/30	12:44:04	32
<u>#20</u>	Search aminopeptidase A binding peptide	12:40:23	<u>43</u>
<u>#19</u>	Search aminopeptidase A-binding regulate endothelia	12:40:06	<u>0</u>
<u>#16</u>	Search Trepel M 2000	12:38:44	<u>2</u>
<u>#15</u>	Search marchion d 2000	12:38:10	1
<u>#14</u>	Search Marchio D 2000	12:38:08	<u>0</u>
<u>#11</u>	Search structure of a promoter and dna binding domain and activation domain Limits: Review	09:58:15	<u>31</u>
<u>#10</u>	Search strucutre of a promoter and DNA binding domain and activation domain Limits: Review	09:57:44	<u>0</u>
<u>#9</u>	Search promoter and DNA binding domain and activation domain Limits: Review	09:57:15	<u>96</u>
<u>#8</u>	Search promoter and DNA binding domain Limits:	09:57:04	<u>197</u>
	Review		
<u>#5</u>	Search midkine promoter and transcriptional factor	09:49:43	_
<u>#2</u>	Search midkine promoter and transcriptional region	09:48:28	
<u>#1</u>	Search midkin promter and transciprional region	09:48:26	<u>0</u>

Clear History

Write to the Help Desk

NCBI | NLM | NIH

Department of Health & Human Services

Privacy Statement | Freedom of Information Act | Disclaimer

Connecting via Winsock to STN

Connecting via Winsock to STN

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1648BQL

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America

NEWS 2 MAY 01 New CAS web site launched

NEWS 3 MAY 08 CA/CAplus Indian patent publication number format defined

NEWS 4 MAY 14 RDISCLOSURE on STN Easy enhanced with new search and display

fields

NEWS 5 MAY 21 BIOSIS reloaded and enhanced with archival data

NEWS 6 MAY 21 TOXCENTER enhanced with BIOSIS reload

NEWS 7 MAY 21 CA/CAplus enhanced with additional kind codes for German patents

NEWS 8 MAY 22 CA/CAplus enhanced with IPC reclassification in Japanese patents

NEWS 9 JUN 27 CA/CAplus enhanced with pre-1967 CAS Registry Numbers

NEWS 10 JUN 29 STN Viewer-now available

NEWS 11 JUN 29 STN Express, Version 8.2, now available

NEWS 12 JUL 02 LEMBASE coverage updated

NEWS 13 JUL 02 LMEDLINE coverage updated

NEWS 14 JUL 02 SCISEARCH enhanced with complete author names

NEWS 15 JUL 02 CHEMCATS accession numbers revised

NEWS 16 JUL 02 CA/CAplus enhanced with utility model patents from China

NEWS 17 JUL 16 CAplus enhanced with French and German abstracts

NEWS 18 JUL 18 CA/CAplus patent coverage enhanced

NEWS 19 JUL 26 USPATFULL/USPAT2 enhanced with IPC reclassification

NEWS 20 JUL 30 USGENE now available on STN

NEWS 21 AUG 06 CAS REGISTRY enhanced with new experimental property tags

NEWS 22 AUG 06 BEILSTEIN updated with new compounds

NEWS 23 AUG 06 FSTA enhanced with new thesaurus edition

NEWS 24 AUG 13 CA/CAplus enhanced with additional kind codes for granted patents

NEWS 25 AUG 20 CA/CAplus enhanced with CAS indexing in pre-1907 records

NEWS 26 AUG 27 Full-text patent databases enhanced with predefined patent family display formats from INPADOCDB

NEWS 27 AUG 27 USPATOLD now available on STN

NEWS 28 AUG 28 CAS REGISTRY enhanced with additional experimental spectral property data

NEWS EXPRESS 29 JUNE 2007: CURRENT WINDOWS VERSION IS V8.2, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 05 JULY 2007.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 06:43:38 ON 06 SEP 2007

=> file caplus biosis

COST IN U.S. DOLLARS

SINCE FILE TOTAL

ENTRY SESSION

FULL ESTIMATED COST

0.21 0.21

FILE 'CAPLUS' ENTERED AT 06:43:55 ON 06 SEP 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN-CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'BIOSIS' ENTERED AT 06:43:55 ON 06 SEP 2007 Copyright (c) 2007 The Thomson Corporation

=> phage (1) display

L1 11223 PHAGE (L) DISPLAY

=> aminopeptidae (w) A

L2 0 AMINOPEPTIDAE (W) A

=> aminopeptidase

L3 27126 AMINOPEPTIDASE

=> L1 and L3

L4 23 L1 AND L3

=> duplicate Remove L4
DUPLICATE PREFERENCE IS 'CAPLUS, BIOSIS'
KEEP DUPLICATES FROM MORE THAN ONE FILE? Y/(N):y
ENTER FILE NAMES OF DUPLICATES TO KEEP:caplus
PROCESSING COMPLETED FOR L4
L5 17 DUPLICATE REMOVE L4 CAPLUS (6 DUPLICATES REMOVED)

=> D L5 IBIB ABS 1-17

L5 ANSWER 1 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2006:1248277 CAPLUS

DOCUMENT NUMBER:

146:22551

TITLE:

Random mutagenesis, screening and selection of protease variants with altered sensitivity to activity

modulators

INVENTOR(S):

Koltermann, Andre; Kettling, Ulrich; Haupts, Ulrich;

Coco, Wayne; Tebbe, Jan; Votsmeier, Christian;

Scheidig, Andreas

PATENT ASSIGNEE(S): D

(S): Direvo Biotech AG, Germany

SOURCE:

Eur. Pat. Appl., 93pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1.

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

EP 1726643 A1 20061129 EP 2005-104543 20

R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, AL, BA, HR, LV, MK, YU

US 2006269538 A1 20061130 US 2006-441635 20060526 WO 2006125827 A1 20061130 WO 2006-EP62644 20060526

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM

PRIORITY APPLN. INFO.:

EP 2005-104543 A 20050527

US 2005-685566P P 20050527 US 2005-686021P P 20050531

AB The present invention provides a method for the selection of proteases with altered sensitivity to one or more activity-modulating substances. The method combines the provision of a protease library (i.e., phage display library) encoding polynucleotide sequences generated by using PCR mutagenesis, expression of the enzymes, screening of the library in the presence of one or several activity-modulating substances, selection of variants with altered sensitivity to one or several activity-modulating substances and isolation of those polynucleotide sequences that encode for the selected variants. In particular, mutant variants of human trypsin are disclosed.

REFERENCE COUNT:

THERE ARE 7 CITED REFERENCES AVAILABLE

FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 2 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2005:99599 CAPLUS

DOCUMENT NUMBER:

142:196523

TITLE:

Antibodies bind to sulfated epitopes involving cell rolling, metastasis, inflammation, viral entry and autoimmune disease for diagnosis, prognosis and therapy

INVENTOR(S): Plaksin, Daniel; Levanon, Avigdor; Szanton, Esther; Hagay, Yocheved, Ben-Levy, Rachel; Nisgav, Yael;

Szrajber, Tali; Kanfi, Yariv

PATENT ASSIGNEE(S): Savient Pharmaceuticals, Inc., USA

SOURCE:

PCT Int. Appl., 134 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 2005010153 A2 20050203 WO 2004-US21002 20040630 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG AU 2004259406 A1 20050203 AU 2004-259406 20040630 CA 2536644 A1 20050203 CA 2004-2536644 20040630 EP 1649001 **A2** 20060426 EP 2004-777308 20040630 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR BR 2004011945 20061024 BR 2004-11945 20040630 MX 2006PA00252 A 20061215 MX 2006-PA252 20060105 IN 2006DN00485 Α 20070817 IN 2006-DN485 20060130 PRIORITY APPLN. INFO.: US 2003-611238 A 20030630

WO 2004-US21002 W 20040630

AB The present invention provides antibodies or fragments (e.g. scFv antibodies) thereof that bind to cancer cells and is important in physiol. phenomena, such as cell rolling and metastasis. The antibodies bind to sulfated epitope of PSGL-1; GPIb; .alpha.-2 antiplasmin; aminopeptidase B; CC chemokine receptor; seven-transmembrane segment receptor; coagulation factor V, VIII, and IX; fibringen .gamma. chain; heparin cofactor II; secretogranin I and II; vitronectin; amyloid precursor;, cholecystokinin;, .alpha.-choriogonadotropin; complement C4; dermatan sulfate proteoglycan; fibronectin and castrin. Therapeutic and diagnostic methods and compns. using such antibody fragments thereof are also provided. The methods and compns, according to the present invention can be used in targeting therapeutic agents and in diagnosis, prognosis, and staging of and therapy for such diseases as cancer, including tumor growth and metastasis, leukemia, auto-immune disease, and inflammatory disease. Also provided is a library of Ig binding domains having a diverse antigen-binding domain for complementary binding, wherein the library has diversity only in heavy chain CDR3.

L5 ANSWER 3 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2005:283178 CAPLUS

DOCUMENT NUMBER:

142:353888

TITLE:

Antibodies and fragments specific to sulfated epitope of PSGL-1, GPIb and/or CCR5 for diagnosis and therapy

of cancer, autoimmune disease and inflammation

INVENTOR(S):

Plaksin, Daniel; Levanon, Avigdor; Szanton, Esther;

Hagay, Yocheved; Ben-levy, Rachel; Nisgav, Yael;

Kanfi, Yariv

PATENT ASSIGNEE(S):

'U.S. Pat. Appl. Publ., 74 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

Israel

LANGUAGE:

SOURCE:

English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

| PATENT NO. | KINI | D DATE | AP | PLICATION N | O. DATE |
|--------------------|-------|------------|------|----------------------|------------|
| | | | | | • |
| US 2005069955 | A1 | 20050331 | US 2 | 2004-880922 | 20040630 |
| US 2005266009 | A1 | 20051201 | US 2 | 2005-166740 | 20050627 |
| PRIORITY APPLN. IN | √FO.: | | US 2 | 2003-484061 P | P 20030630 |
| | U | S 2004-880 | 922 | A2 20040630 | |

AB The present invention provides antibodies or fragments thereof that bind to cancer cells and is important in physiol. phenomena, such as cell rolling and metastasis. Therapeutic and diagnostic methods and compns. using such antibody fragments thereof are also provided. The methods and compns. according to the present invention can be used in targeting therapeutic agents and in diagnosis, prognosis, and staging of and therapy for such diseases as cancer, including tumor growth and metastasis, leukemia, autoimmune disease, and inflammatory disease. Also provided is a library of Ig binding domains having a diverse antigen-binding domain for complementary binding, wherein the library has diversity only in heavy chain CDR3.

L5 ANSWER 4 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:1000913 CAPLUS

DOCUMENT NUMBER:

142:50746

TITLE:

Display of biologically functional

insecticidal toxin on the surface of .lambda.

phage

AUTHOR(S):

Vilchez, Susana; Jacoby, Juliette; Ellar, David J.

CORPORATE SOURCE:

Department of Biochemistry, Cambridge University,

Cambridge, UK

SOURCE:

Applied and Environmental Microbiology (2004), 70(11),

6587-6594

CODEN: AEMIDF; ISSN: 0099-2240

PUBLISHER: American Society for Microbiology

DOCUMENT TYPE: Journal LANGUAGE: English

AB The successful use of Bacillus thuringiensis insecticidal toxins to control agricultural pests could be undermined by the evolution of insect resistance. Under selection pressure in the lab., a no. of insects have gained resistance to the toxins, and several cases of resistance in the diamondback moth have been reported from the field. The use of protein engineering to develop novel toxins active against resistant insects could offer a soln. to this problem. The display of proteins on the surface of phages has been shown to be a powerful technol. to search for proteins with new characteristics from combinatorial libraries. However, this potential of phage display to develop Cry toxins with new binding properties and new target specificities has hitherto not been realized because of the failure of displayed Cry toxins to bind their natural receptors. In this work we describe the construction of a display system in which the Cryl Ac toxin is fused to the amino terminus of the capsid protein D of bacteriophage lambda. The resultant phage was viable and infectious, and the displayed toxin interacted successfully with its natural receptor.

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES **AVAILABLE FOR THIS**

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 5 OF 17 BIOSIS COPYRIGHT (c) 2007 The Thomson Corporation on STN

ACCESSION NUMBER: 2005:477650 BIOSIS

DOCUMENT NUMBER: PREV200510269554

TITLE: A Plasmodium falciparum aminopeptidase interacts

with human erythrocyte spectrin.

AUTHOR(S): Coetzer, Theresa L. [Reprint Author]; Lauterbach, Sonja B.

CORPORATE SOURCE: Univ Witwatersrand, Johannesburg, Gauteng, South Africa

SOURCE: Blood, (NOV 16 2004) Vol. 104, No. 11, Part 1, pp. 441A.

Meeting Info.: 46th Annual Meeting of the

American-Society-of-Hematology. San Diego, CA, USA.

December 04 -07, 2004. Amer Soc Hematol. CODEN: BLOOAW. ISSN: 0006-4971.

Conference; (Meeting) DOCUMENT TYPE:

Conference; (Meeting Poster)

LANGUAGE: English

ENTRY DATE: Entered STN: 16 Nov 2005

Last Updated on STN: 16 Nov 2005

AB Malaria is one of the world's major health problems, causing millions of deaths every year, primarily in Africa. The disease is caused by

Plasmodium parasites, which invade and destroy human erythrocytes. Of the four species infectinghumans, Plasmodium falciparum is responsible for the greatest morbidity and mortality burden. The erythrocyte membrane plays a vital role in all aspects of the pathogenic phase of the parasite's life cycle and the protein-protein interactions between host and parasite are a key focus of research. Spectrin is the main structural protein in the erythrocyte membrane skeleton and phage-display technology was used to probe the interaction between P falciparum peptide fragments and human erythrocyte spectrin. A phagedisplay library was constructed by isolating mRNA from P falciparum strain FCR-3, which was reverse transcribed using two-base anchored oligodT primers. Linkers facilitating directional cloning were added to the cDNA, followed by insertion into a gene encoding the I OB capsid protein of the T7 bacteriophage vector. The vector was packagedinto viral particles and the library amplified using Escherichia coli as a host. The presence and size of inserts were determined by PCR amplification with T7 bacteriophage vector arm specific primers. Human erythrocyte membranes were prepared from whole blood by hypotonic lysis and spectrin was extracted with a low ionic strength buffer and purified by size exclusion chromatography. The protein was biotinylated, immobilized on streptavidin-coated magnetic beads and biopanned against the phage library. Bound phage were elated and amplifiedin E coli for three additional rounds of biopanning to eliminate non-specific protein-protein interactions. The P falciparum cDNA inserts of interacting phage were sequenced and compared to the PlasmoDB database. One of the sequenceswas identified as a putative aminopeptidase (PFI1570c), which has a 30.7% homology to a human aspartyl aminopeptidase, an enzyme catalysing the release of N-terminal amino acids from a peptide. The parasite protein contains a putative transmembrane domain at the C terminal end and is larger than the human form, with an estimated molecular weight of 65 kD. Several features that are critical for enzyme activity are conserved in the P falciparum aminopeptidase. These include twelve amino acids (four histidine, three glutamic acid and five aspartic acid residues), which are involved in the binding of catalytic zinc ionsin the active site, as well as a putative N-myristoylation site and phosphorylation sites for casein kinase 11 and protein kinase C. Interestingly, the peptide fragment that bound to spectrin in the initial phage display screening. corresponds to a 33 amino acid fragment that is not found in the human aspartylaminopeptidase. This suggests an evolutionary development of the parasite that allows the protease to bind to human spectrin. Mass spectrometry and microarray data from the PlasmoDB database indicate that the protein is present at the erythrocyte membrane and is expressed in all the developmental stages of theparasite's erythrocytic life cycle. During the trophozoite stage the parasitemodifies the erythrocyte membrane to allow transport of nutrients and waste products. The

aminopeptidase could cleave spectrin and destabilise the membraneskeleton to facilitate the insertion of parasite protein channels during development. It may also play a role in proteolysis of the skeleton to enable the release of schizonts from infected erythrocytes.

L5 ANSWER 6 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:991150 CAPLUS

DOCUMENT NUMBER:

140:35913

TITLE:

Breast homing peptides binding to aminopeptidase P in beast vasculature

identified by phage display and

use thereof as targeting drugs for breast cancer

treatment

INVENTOR(S):

Ruoslahti, Erkki; Essler, Markus

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 30 pp.

DOCUMENT TYPE:

CODEN: USXXCO Patent

LANGUAGE:

English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| | PATENT NO. | KINI | DATE | APPLICATION N | Ю. | DATE | , |
|---|------------------|------------|----------|-----------------|-----|--------|---|
| | | | | | | | |
| | US 2003232762 | A 1 | 20031218 | US 2002-158566 | 20 | 020529 | |
| P | RIORITY APPLN II | VFO · | | LIS 2002-158566 | 200 | 020520 | |

AB The present invention provides a method of directing a mojety to breast vasculature in a subject by administering to the subject a conjugate which contains a moiety linked to a homing mol. that selectively homes to breast vasculature, whereby the moiety is directed to breast vasculature. In one embodiment, the homing mol. is a peptide contg. the amino acid sequence PGPEGAG, or a peptidomimetic thereof. The above peptide is derived from a cyclic nonapeptide, CPGPEGAGC, isolated from a T7 phage CX7C library. where C is cysteine and X is any amino acid. This cyclic peptide CPGPEGAGC homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. Specifically, it binds to the vascular endothelium in the breast but not in other tissues, and binds to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Furthermore, the aminopeptidase P is identified as the receptor for cyclic CPGPEGAGC breast homing and the binding of aminopeptidase P to insolubilized CPGPEGAGC can be blocked by its free cognate synthetic peptide, or apstatin (a synthetic inhibitor of aminopeptidase P), or an anti-aminopeptidase P antibody. In contrast, the anti-aminopeptidase P antibody does not block the breast homing of another peptide CRSS, which might bind distinct target receptors in breast tissue. This breast homing peptides may be

useful in designing drugs for the prevention and treatment of breast cancer.

L5 ANSWER 7 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:241889 CAPLUS

DOCUMENT NUMBER:

138:268070

TITLE:

Engineered protein binding domains and methods and

systems for their design and use

INVENTOR(S):

Gonzalez, Cayetano; Lacroix, Emmanuel; Reina, Jose;

Serrano, Luis

PATENT ASSIGNEE(S):

Germany

SOURCE:

U.S. Pat. Appl. Publ., 67 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

US 2003059827 PRIORITY APPLN. INFO.:

A1 20030327 US 2001-805353 US 2001-805353

20010313 20010313

AB The present invention rapidly and efficiently provides proteins engineered to bind to arbitrary target proteins requiring only knowledge of the amino acid sequences of short portions of the target proteins (for example, either the amino or the carboxy termini). This invention provides such proteins as well as methods and systems for their design, synthesis and use, and esp. provides for use of a plurality of binding proteins in array format. The engineering methods of the present invention take a precursor protein known to already bind to a short peptide and engineer alterations in precursor proteins so that it binds to a new target peptide by using computer-assisted mol. design techniques and optional assay for actual binding. The invention also provides arrays and libraries of binding proteins and methods of using binding proteins. Redesign of the PDZ

L5 ANSWER 8 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:185320 CAPLUS

DOCUMENT NUMBER:

136:242932

TITLE:

Identification of peptide ligands for specific cell

types by phage display for use in

drug targeting and control of biological processes

INVENTOR(S):

Arap, Wadih; Pasqualini, Renata

PATENT ASSIGNEE(S):

domain of PSD-95 is described.

Board of Regents, the University of Texas System, USA

SOURCE:

PCT Int. Appl., 311 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 2002020769 **A**1 20020314 WO 2001-US27692 20010907 WO 2002020769 **A9** 20030904 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG CA 2421271 **A**1 20020314 CA 2001-2421271 20010907 AU 200188843 Α 20020322 AU 2001-88843 20010907 EP 1322755 20030702 EP 2001-968603 A1 20010907 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR JP 2004508045 T 20040318 JP 2002-525776 20010907 CA 2458047 $\mathbf{A}\mathbf{1}$ 20030320 CA 2002-2458047 20020830 WO 2003022991 A2 20030320 WO 2002-US27836 20020830 WO 2003022991 **A3** 20041028 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH. GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW RW. GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG AU 2002323543 **A**1 20030324 AU 2002-323543 20020830 EP 1497314 A2 20050119 EP 2002-757531 20020830 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK CA 2496938 A1 20040311 CA 2002-2496938 20021030 WO 2004020999 A1 20040311 WO 2002-US34987 20021030 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

AU 2002364501 20040319 AU 2002-364501 **A**1 20021030 EP 1546714 **A**1 20050629 EP 2002-799873 20021030

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK

US 2004170955 **A1** 20040902 US 2003-363204 20031006 US 2005003466 A1 20050106 US 2004-784537 20040223 20060504 US 2004-489071 US 2006094672 **A**1 20041013 US 2006239968 **A**1 20061026 US 2006-530168 20060223

PRIORITY APPLN. INFO.:

US 2000-231266P P 20000908

US 2001-765101 A 20010117 WO 2001-US27692 W 20010907

WO 2002-US27836 W 20020830

WO 2002-US34987 W 20021030

AB The present invention concerns methods and compns. for in vivo and in vitro targeting. A large no. of targeting peptides directed towards human organs, tissues or cell types are disclosed. The peptides are of use for targeted delivery of therapeutic agents, including but not limited to gene therapy vectors. A novel class of gene therapy vectors is disclosed. Certain of the disclosed peptides have the rapeutic use for inhibiting angiogenesis, inhibiting tumor growth, inducing apoptosis, inhibiting pregnancy or inducing wt. loss. Methods of identifying novel targeting peptides in humans, as well as identifying endogenous receptor-ligand pairs are disclosed. Methods of identifying novel infectious agents that are causal for human disease states are also disclosed. A novel mechanism for inducing apoptosis is further disclosed.

REFERENCE COUNT: THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 9 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 2002:185278 CAPLUS

DOCUMENT NUMBER: 136:241645

TITLE:

Adenoviral targeting and manipulation of immune system

response using targeting peptides

INVENTOR(S): Arap, Wadih; Pasqualini, Renata

PATENT ASSIGNEE(S): Board of Regents, the University of Texas System, USA

SOURCE: PCT Int. Appl., 86 pp.

CODEN: PIXXD2

DOCUMENT TYPE: LANGUAGE:

Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 2002020724 A2 20020314 WO 2001-US28045 20010907 WO 2002020724 **A3** 20020711 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH. GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG CA 2421200 **A**1 20020314 CA 2001-2421200 20010907 AU 200190663 20020322 AU 2001-90663 '20010907 EP 1315512 A2 20030604 EP 2001-970682 20010907 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR JP 2004536020 T 20041202 JP 2002-525731 20010907 CA 2496938 20040311 CA 2002-2496938 **A**1 20021030 WO 2004020999 **A**1 20040311 WO 2002-US34987 20021030 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES. FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG A1 20040319 AU 2002-364501 AU 2002364501 20021030 EP 1546714 **A**1 20050629 EP 2002-799873 20021030 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK US 2006094672 **A**1 20060504 US 2004-489071 20041013 US 2006239968 A1 20061026 US 2006-530168 20060223 PRIORITY APPLN. INFO.: US 2000-231266P P 20000908 US 2001-765101 A 20010117 US 2001-97651 A 20010117 WO 2001-US28045 W 20010907

WO 2002-US27836 A 20020830 WO 2002-US34987 W 20021030

AB The present invention concerns compns. and methods relating to the identification and use of targeting peptides. Such targeting peptides selectively home to specific organs or tissues in vivo. The novel targeting sequences disclosed herein are of use for the targeted delivery of various therapeutic agents to the targeted organ or tissue. In particular embodiments, the present invention concerns bispecific targeting reagents comprising an organ targeting peptide attached to a mol., such as a Fab fragment, that binds to a gene therapy vector or other therapeutic agent. In alternative embodiments, bispecific targeting peptides contg. an organ targeting moiety and a gene therapy or therapeutic agent targeting moiety may be obtained and used for targeted delivery. Other embodiments concern modulation of host immune system function through the targeted delivery of antigens or other mols. to lymph nodes. Numerous examples of targeting peptide sequences against adenovirus or lymph node tissue are disclosed herein.

L5 ANSWER 10 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 1

ACCESSION NUMBER:

2002:200870 CAPLUS

DOCUMENT NUMBER:

137:98834

TITLE:

Molecular specialization of breast vasculature: a

breast-homing phage-displayed peptide binds to

aminopeptidase P in breast vasculature

AUTHOR(S):

Essler, Markus; Ruoslahti, Erkki

CORPORATE SOURCE:

Cancer Research Center, The Burnham Institute, La

Jolla, CA, 92037, USA

SOURCE:

Proceedings of the National Academy of Sciences of the

United States of America (2002), 99(4), 2252-2257

CODEN: PNASA6; ISSN: 0027-8424

PUBLISHER:

National Academy of Sciences

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB In vivo phage display identifies peptides that selectively home to the vasculature of individual organs, tissues, and tumors. Here the authors report the identification of a cyclic nonapeptide, CPGPEGAGC, which homes to normal breast tissue with a 100-fold selectivity over nontargeted phage. The homing of the phage is inhibited by its cognate synthetic peptide. Phage localization in tissue sections showed that the breast-homing phage binds to the blood vessels in the breast, but not in other tissues. The phage also bound to the vasculature of hyperplastic and malignant lesions in transgenic breast cancer mice. Expression cloning with a phage-displayed cDNA library yielded a phage that specifically bound to the

breast-homing peptide. The cDNA insert was homologous to a fragment of

aminopeptidase P. The homing peptide bound aminopeptidase P from malignant breast tissue in affinity chromatog. Antibodies against aminopeptidase P inhibited the in vitro binding of the phage-displayed cDNA to the peptide and the in vivo homing of phage carrying the peptide. These results indicate that aminopeptidase P is the receptor for the breast-homing peptide. This peptide may be useful in designing drugs for the prevention and treatment of breast cancer.

REFERENCE COUNT:

30 THERE ARE 30 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 11 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 2

ACCESSION NUMBER:

2002:915593 CAPLUS

DOCUMENT NUMBER:

138:252269

TITLE:

Probing the structural and molecular diversity of

tumor vasculature

AUTHOR(S):

Pasqualini, Renata; Arap, Wadih; McDonald, Donald M.

CORPORATE SOURCE:

Dept of Genitourinary Medical Oncology, M.D. Anderson

Cancer Center, The University of Texas, Houston, TX,

77030, USA

SOURCE:

Trends in Molecular Medicine (2002), 8(12), 563-571

CODEN: TMMRCY; ISSN: 1471-4914

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

Journal; General Review

LANGUAGE:

English

AB A review. The mol. diversity of the vasculature provides a rational basis for developing targeted diagnostics and therapeutics for cancer. Targeted imaging agents would offer better localization of primary tumors and metastases, and targeted therapies would improve efficacy and reduce side effects. The development of targeted pharmaceuticals requires the identification of specific ligand-receptor pairs, and knowledge of their cellular distribution and accessibility. Using in vivo phage display, a technique by which we can identify organ-specific and disease-specific proteins expressed on the endothelial surface, it is now possible to decipher the mol. signature of blood vessels in normal and diseased tissues. These studies have already led to the identification of peptides that target the normal vasculature of the brain, kidney, pancreas, lung and skin, as well as the abnormal vasculature of tumors. arthritis and atherosclerosis. Membrane dipeptidase in the lungs. interleukin-11 receptor in the prostate, and aminopeptidase N in tumors are examples of mol. targets on blood vessels. Corresponding confocal-microscopic imaging and ultrastructural studies are providing a more complete understanding of the cellular abnormalities of tumor blood vessels, and the distribution and accessibility of potential targets. The combined approach offers a strategy for creating a ligand-receptor map of

the human vasculature, and forms a foundation for the development and application of targeted therapies in cancer and other diseases. In vivo phage display is being used to characterize the mol.

heterogeneity of blood vessels and to develop targeted therapies and imaging agents for use in cancer and other diseases.

REFERENCE COUNT:

82 THERE ARE 82 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 12 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 3

ACCESSION NUMBER:

2001:590903 CAPLUS

DOCUMENT NUMBER:

136:212397

TITLE:

Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin

interaction using phage display

AUTHOR(S):

Gomez, Isabel; Oltean, Daniela I.; Gill, Sarjeet S.;

Bravo, Alejandra: Soberon, Mario

CORPORATE SOURCE:

Instituto de Biotecnologia, Departamento de

Microbiologia Molecular, Universidad Nacional Autonoma

de Mexico, Mexico, 62250, Mex.

SOURCE:

Journal of Biological Chemistry (2001), 276(31),

28906-28912

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER:

American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB In susceptible lepidopteran insects, aminopeptidase N and cadherin-like proteins are the putative receptors for Bacillus thuringiensis (Bt) toxins. Using phage display, we identified a key epitope that is involved in toxin-receptor interaction. Three different scFv mols. that bind Cry1Ab toxin were obtained, and these scFv proteins have different amino acid sequences in the complementary determinant region 3 (CDR3). Binding anal. of these scFv mols. to different members of the Cryl A toxin family and to Escherichia coli clones expressing different Cry1A toxin domains showed that the three selected scFv mols. recognized only domain II. Heterologous binding competition of Cry1Ab toxin to midgut membrane vesicles from susceptible Manduca sexta larvae using the selected scFv mols. showed that scFv73 competed with Cryl Ab binding to the receptor. The calcd, binding affinities (Kd) of scFv73 to Cry1Aa, Cry1Ab, and Cry1Ac toxins are in the range of 20-51 nM. Sequence anal. showed this scFv73 mol. has a CDR3 significantly homologous to a region present in the cadherin-like protein from M. sexta (Bt-R1). Bombyx mori (Bt-R175), and Lymantria dispar. We demonstrated that peptides of 8 amino acids corresponding to the CDR3 from scFv73 or to the corresponding regions of Bt-R1 or Bt-R175 are also able to compete with

the binding of Cry1 Ab and Cry1 Aa toxins to the Bt-R1 or Bt-R175 receptors. Finally, we showed that synthetic peptides homologous to Bt-R1 and scFv73 CDR3 and the scFv73 antibody decreased the in vivo toxicity of Cry1Ab to M. sexta larvae. These results show that we have identified the amino acid region of Bt-R1 and Bt-R175 involved in Crv1A toxin interaction.

REFERENCE COUNT:

47 THERE ARE 47 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 13 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 4

ACCESSION NUMBER:

2001:242661 CAPLUS

DOCUMENT NUMBER:

135:120855

TITLE:

An improved procedure for the generation of recombinant single-chain Fv antibody fragments reacting with human CD13 on intact cells

AUTHOR(S):

Peipp, M.; Simon, N.; Loichinger, A.; Baum, W.; Mahr,

K.; Zunino, S. J.; Fey, G. H.

CORPORATE SOURCE:

Chair of Genetics, University of Erlangen-Nurnberg,

Erlangen, D 91058, Germany

SOURCE:

Journal of Immunological Methods (2001), 251(1-2),

161-176

CODEN: JIMMBG; ISSN: 0022-1759

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB A procedure was developed to generate recombinant single chain Fv (scFv) antibody fragments reacting with the extracellular domain of human cell surface antigen CD13 (hCD13; aminopeptidase N) on intact cells. Membrane fractions prepd. from a stably transfected hCD13-pos. murine NIH/3T3 cell line were used to immunize BALB/c mice, with the intention that hCD13 would be the major immunogenic mol. recognized by the immune system. Spleen RNA from the immunized mice served to generate a combinatorial scFv phage display library. The library was adsorbed against non-transfected NIH/3T3 or Sf21 insect cells to eliminate non-relevant binders. The supernatant was then used for panning with either hCD13-transfected Sf21 insect cells or a hCD13-expressing human leukemia-derived cell line. Therefore, the key concepts of the procedure were the presentation of hCD13 as the sole human antigen on murine NIH/3T3 cells and a screening strategy where hCD13 was the major common antigen of the material-used for immunization and panning. Two different hCD13-reactive phages were isolated and the sol. scFvs were expressed in E. coli and purified. The two scFvs, anti-hCD13-1 and anti-hCD13-3, differed at four amino acid positions in their VH regions and both had high affinities for hCD13 as detd. by surface plasmon resonance (KD=7 and 33.times.10-10 M, resp.). Both efficiently recognized hCD13 on intact cells. Therefore, the procedure allowed the production of

high affinity scFvs reacting with a desired antigen in its native conformation without requiring extensive purifn. of the antigen and should be useful for the prepn. of scFvs against other conformation-sensitive cell-surface antigens.

REFERENCE COUNT:

49 THERE ARE 49 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 14 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 5

ACCESSION NUMBER:

.2000:125579 CAPLUS

DOCUMENT NUMBER:

132:273986

TITLE:

Aminopeptidase N is a receptor for

tumor-homing peptides and a target for inhibiting

angiogenesis

AUTHOR(S):

Pasqualini, Renata; Koivunen, Erkki; Kain, Renate;

Lahdenranta, Johanna; Sakamoto, Michiie; Stryhn, Anette; Ashmun, Richard A.; Shapiro, Linda H.; Arap,

Wadih; Ruoslahti, Erkki

CORPORATE SOURCE: SOURCE: Cand

CE: The Burnham Institute, La Jolla, CA, 92037, USA

Cancer Research (2000), 60(3), 722-727

CODEN: CNREA8; ISSN: 0008-5472

PUBLISHER:

AACR Subscription Office

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Phage that display a surface peptide with the NGR sequence motif home selectively to tumor vasculature in vivo. A drug coupled to an NGR peptide has more potent antitumor effects than the free drug. The authors show here that the receptor for the NGR peptides in tumor vasculature is aminopeptidase N (APN; also called CD13). NGR phage specifically bound to immunocaptured APN and to cells engineered to express APN on their surface. Antibodies against APN inhibited in vivo tumor homing by the NGR phage.

Immunohistochem. staining showed that APN expression is up-regulated in endothelial cells within mouse and human tumors. In another tissue that undergoes angiogenesis, corpus luteum, blood vessels also expressed APN, but APN was not detected in blood vessels of various other normal tissues stained under the same conditions. APN antagonists specifically inhibited angiogenesis in chorioallantoic membranes and in the retina and suppressed tumor growth. Thus, APN is involved in angiogenesis and can serve as a target for delivering drugs into tumors and for inhibiting angiogenesis.

REFERENCE COUNT: AVAILABLE FOR THIS

41 THERE ARE 41 CITED REFERENCES

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 15 OF 17 BIOSIS COPYRIGHT (c) 2007 The Thomson Corporation on

STN

ACCESSION NUMBER: 2001:46953 BIOSIS DOCUMENT NUMBER: PREV200100046953

TITLE:

Aminopeptidase A-binding peptides regulate endothelial cell function and inhibit angiogenesis.

AUTHOR(S):

Marchio, S. [Reprint author]; Trepel, M.; Giordano, R.;

Valdembri, D. [Reprint author]; Nanus, D.; Pasqualini, R.;

Bussolino, F. [Reprint author]

CORPORATE SOURCE: Institute for Cancer Research and Treatment, University of Torino, Torino, Italy

SOURCE:

Tumori, (July-August, 2000) Vol. 86, No. 4 Suppl. 1, pp.

13. print.

Meeting Info.: XV Congress of the Italian Cancer Society. Turin, Italy. October 05-07, 2000. Italian Cancer Society.

CODEN: TUMOAB. ISSN: 0300-8916.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE:

English

ENTRY DATE:

Entered STN: 17 Jan 2001

Last Updated on STN: 15 Feb 2002

L5 ANSWER 16 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1999:194336 CAPLUS

DOCUMENT NUMBER:

130:232477

TITLE:

Methods using NGR receptor binding for identifying

molecules that home to angiogenic vasculature in

tumors

INVENTOR(S):

Ruoslahti, Erkki; Pasqualini, Renata

PATENT ASSIGNEE(S):

The Burnham Institute, USA

SOURCE:

PCT Int. Appl., 180 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

| PATENT NO. | KI | ND DATE | APPLICATION 1 | NO. DATE | |
|--------------|------------|--------------|-----------------------|------------------|-----|
| | | | | | |
| WO 9913329 | A 1 | 19990318 | WO 1998-US18895 | 19980908 | |
| W: AU, CA, J | P | | | | |
| RW: AT, BE, | CH, C | Y, DE, DK, 1 | ES, FI, FR, GB, GR, I | E, IT, LU, MC, N | IL, |
| PT, SE | | | | , , , , | ĺ |
| US 6576239 | B 1 | 20030610 | US 1997-926914 | 19970910 | |
| US 6180084 | B 1 | 20010130 | US 1998-139802 | 19980825 | |
| AU 9894773 | Α | 19990329 | AU 1998-94773 | 19980908 | |
| EP 1015884 | A 1 | 20000705 | FP 1998-948140 | 10020002 | |

R: CH, DE, FR, GB, IT, LI

 JP 2001516055
 T
 20010925
 JP 2000-511062
 19980908

 US 6491894
 B1
 20021210
 US 2000-659786
 20000911

 US 2003113320
 A1
 20030619
 US 2002-264374
 20021003

US 2004096441 A9 20040520

US 2003152578 A1 20030814 US 2003-375992 20030227

US 2004131623 A9 20040708

PRIORITY APPLN. INFO.: US 1997-926914 A 19970910

US 1998-139802 A 19980825 US 1996-60947P P 19960910 US 1996-710067 A 19960910 WO 1998-US18895 W 19980908 US 2000-659786 A3 20000911

AB A method is disclosed for identifying a tumor homing mol. that homes to angiogenic vasculature by contacting a substantially purified NGR receptor with one or more mols. and detg. specific binding of a mol. to the NGR receptor, where the presence of specific binding identifies the mol. as a tumor homing mol. that homes to angiogenic vasculature. The invention also provides a method of directing a moiety to angiogenic vasculature in a subject by administering to the subject a conjugate including a moiety linked to a tumor homing mol. that exhibits specific binding to an NGR receptor, whereby the moiety is directed to angiogenic vasculature. In addn., the invention provides a method of imaging the angiogenic vasculature of a tumor in a subject by administering to the subject a conjugate having a detectable moiety linked to a tumor homing mol. that exhibits specific binding to an NGR receptor and detecting the conjugate.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 17 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN DUPLICATE 6

ACCESSION NUMBER:

1993:533841 CAPLUS

DOCUMENT NUMBER:

119:133841

TITLE:

Membrane topologies of the TolQ and TolR proteins of

Escherichia coli: inactivation of TolQ by a missense mutation in the proposed first transmembrane segment

AUTHOR(S):

Kampfenkel, Karlheinz; Braun, Volkmar

CORPORATE SOURCE:

Univ. Tuebingen, Tuebingen, D-7400, Germany

SOURCE:

Journal of Bacteriology (1993), 175(14), 4485-91

CODEN: JOBAAY: ISSN: 0021-9193

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB The TolQ and TolR proteins of E. coli are required for the uptake of group A colicins and for infection by filamentous phages. Their topol. in the cytoplasmic membrane was detd. by cleavage with aminopeptidase K, proteinase K, and trypsin in spheroplasts and

cell lysates. From the results obtained, it is proposed that the N terminus of TolQ is located in the periplasm and that it contains three transmembrane segments (residues 9 to 36, 127 to 159, and 162 to 191), a small periplasmic loop, and two large portions in the cytoplasm. The N terminus of TolR is located in the cytoplasm and is followed by a transmembrane segment (residues 21 to 40), and the remainder of the protein is located in the periplasm. A tolQ mutant, which rendered cells resistant to group A colicins and sensitive to cholate, had alanine 13 replaced by glycine and was lacking serine 14 in the first transmembrane segment. The membrane topologies of TolQ and TolR are similar to those proposed for ExbB and ExbD, resp., which is consistent with the partial functional substitution between ExbB and TolQ and between ExbD and TolR. The amino acid sequences of these proteins display the highest homol. in the transmembrane segments, which indicates that the membrane-spanning regions play an important role in the activities of the proteins.

=> FIL STNGUIDE

COST IN U.S. DOLLARS SINCE FILE TOTAL

> **SESSION** ENTRY

FULL ESTIMATED COST 66.64 66.85

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL

> ENTRY **SESSION**

CA SUBSCRIBER PRICE

-11.70 -11.70

FILE 'STNGUIDE' ENTERED AT 06:53:05 ON 06 SEP 2007 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION. LAST RELOADED: Aug 31, 2007 (20070831/UP).

=> file caplus

COST IN U.S. DOLLARS SINCE FILE TOTAL

> **ENTRY SESSION**

FULL ESTIMATED COST 0.78 67.63

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE **TOTAL**

ENTRY **SESSION**

CA SUBSCRIBER PRICE 0.00 -11.70

FILE 'CAPLUS' ENTERED AT 07:00:46 ON 06 SEP 2007

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 6 Sep 2007 VOL 147 ISS 11 FILE LAST UPDATED: 5 Sep 2007 (20070905/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

http://www.cas.org/infopolicy.html

=> D history

(FILE 'HOME' ENTERED AT 06:43:38 ON 06 SEP 2007)

FILE 'CAPLUS, BIOSIS' ENTERED AT 06:43:55 ON 06 SEP 2007

- L1 11223 PHAGE (L) DISPLAY
- L2 0 AMINOPEPTIDAE (W) A
- L3 27126 AMINOPEPTIDASE
- L4 23 L1 AND L3
- L5 17 DUPLICATE REMOVE L4 CAPLUS (6 DUPLICATES REMOVED)

FILE 'STNGUIDE' ENTERED AT 06:53:05 ON 06 SEP 2007

FILE 'CAPLUS' ENTERED AT 07:00:46 ON 06 SEP 2007

=> peptide (w) inhibitor
377122 PEPTIDE
276344 PEPTIDES
483086 PEPTIDE
(PEPTIDE OR PEPTIDES)
549956 INHIBITOR
553709 INHIBITORS
863748 INHIBITOR

(INHIBITOR OR INHIBITORS) L6 2696 PEPTIDE (W) INHIBITOR

=> L3 and L6

L7 40 L3 AND L6

=> "aminopeptidase A"

15214 "AMINOPEPTIDASE"

2634 "AMINOPEPTIDASES"

15685 "AMINOPEPTIDASE"

("AMINOPEPTIDASE" OR "AMINOPEPTIDASES")

21267875 "A"

L8 615 "AMINOPEPTIDASE A"

("AMINOPEPTIDASE"(W)"A")

=> L6 and L8

L9 2 L6 AND L8

=> D L9 IBIB ABS 1-2

L9 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:187472 CAPLUS

DOCUMENT NUMBER:

140:233520

TITLE:

Aminopeptidase A is a functional

target in angiogenic blood vessels

AUTHOR(S):

Marchio, Serena; Lahdenranta, Johanna; Schlingemann,

Reinier O.; Valdembri, Donatella; Wesseling, Pieter; Arap, Marco A.; Hajitou, Amin; Ozawa, Michael G.; Trepel, Martin; Giordano, Ricardo J.; Nanus, David M.; Dijkman, Henri B. P. M.; Oosterwijk, Egbert; Sidman, Richard L.; Cooper, Max D.; Bussolino, Federico;

Pasqualini, Renata; Arap, Wadih

CORPORATE SOURCE:

The University of Texas M.D. Anderson Cancer Center,

Houston, TX, 77030, USA

SOURCE:

Cancer Cell (2004), 5(2), 151-162

CODEN: CCAECI; ISSN: 1535-6108

PUBLISHER:

Cell Press

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB We show that a membrane-assocd. protease, aminopeptidase

A (APA), is upregulated and enzymically active in blood vessels of

human tumors. To gain mechanistic insight, we evaluated angiogenesis in

APA null mice. We found that, although these mice develop normally, they fail to mount the expected angiogenic response to hypoxia or growth

factors. We then isolated peptide inhibitors of APA

from a peptide library and show that they specifically bind to and inhibit

APA, suppress migration and proliferation of endothelial cells, inhibit angiogenesis, and home to tumor blood vessels. Finally, we successfully treated tumor-bearing mice with APA binding peptides or anti-APA blocking monoclonal antibodies. These data show that APA is a regulator of blood vessel formation, and can serve as a functional vascular target.

REFERENCE COUNT:

48 THERE ARE 48 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L9 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1991:1192 CAPLUS

DOCUMENT NUMBER:

114:1192

TITLE:

Effects of low molecular weight peptides and divalent

cations on degradation and binding of angiotensin II

AUTHOR(S):

Nomura, S.; Mizutani, Shigehiko; Kurauchi, O.:

Kasugai, M.; Narita, O.; Tomoda, Y.

CORPORATE SOURCE:

Sch. Med., Nagoya Univ., Nagoya, 466, Japan

SOURCE:

Hormone and Metabolic Research (1990), 22(8), 444-8 CODEN: HMMRA2; ISSN: 0018-5043

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB To det. the roles of aminopeptidase A and M on the metab. and receptor binding of angiotensin II (A-II), the effects of peptide inhibitors (bestatin and amastatin) and divalent cations (Ca2+ and Co2+) were tested on the velocity of Asp1 liberation from angiotensin II (A-II) by human placental membrane fractions at 22.degree. and 4.degree.. The binding of 125I-labeled A-II (125IA-II) to human placental membranes as thse temps, was also tested. Asp1 liberation was measured by HPLC. As expected, the degrdn. and binding of A-II were temp. sensitive, with both being less at 4.degree. than at 22.degree... Amastatin (10-4M) and bestatin 10-6M) decreased the velocity of Asp1 liberation from A-II to about 45%, whereas amastatin (10-4M) and bestatin (10-4M) increased 125I A-II binding to 125 and 130%, resp. Ca2+ (10 mM) and Co2+ (10 mM) activated the velocity of Asp1 liberation from A-II to 140 and 120%, resp. at 22.degree.. Ca2+ (10-1M) and Co2+ (10 mM) also enhanced 125I A-II binding apprx. 130%. Aminopertidase A and M may thus regulate the levels of A-II and, therefore, may play an important role in the binding of A-II to human placental membrane fractions.

=> receptor and L8 715204 RECEPTOR 657098 RECEPTORS 852632 RECEPTOR (RECEPTOR OR RECEPTORS) => binding (w) ligand

994145 BINDING

2160 BINDINGS

994763 BINDING

(BINDING OR BINDINGS)

327755 LIGAND

222996 LIGANDS

445946 LIGAND

(LIGAND OR LIGANDS)

L11 2725 BINDING (W) LIGAND

=> L11 and L8

L12 0 L11 AND L8

=> L11 and L6

L13 5 L11 AND L6

=> ligand and 18

327755 LIGAND

222996 LIGANDS

445946 LIGAND

(LIGAND OR LIGANDS)

L14 16 LIGAND AND L8

=> D L13 IBIB ABS 1-5

L13 ANSWER 1 OF 5 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1998:530199 CAPLUS

TITLE:

Combinatorial computational ligand design.

AUTHOR(S):

Joseph-McCarthy, Diane; Hogle, James M.; Karplus,

Martin

CORPORATE SOURCE:

Department Biological Chemistry & Molecular

Pharmacology, Harvard Medical School, Boston, MA,

02115, USA

SOURCE:

Book of Abstracts, 216th ACS National Meeting, Boston,

August 23-27 (1998), COMP-033. American Chemical

Society: Washington, D. C.

CODEN: 66KYA2

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE:

English

AB A combinatorial computational approach to ligand design for large biol systems is presented. Binding sites in the target structure are first detd. with the multiple copy simultaneous search (MCSS) method for a set of functional groups. Various strategies for connecting functional group

min. to construct possible ligands or combinatorial libraries of ligands are used. The approach is applied to the design of structure-based capsid-binding ligands for poliovirus and rhinovirus, D-peptide inhibitors of Hepatitis Delta Antigen, and to a ligand library for class II MHC mols. For poliovirus, one strategy, which introduces linker carbon atoms between selected min., has been used in the synthesis of small combinatorial libraries of ligands. Another strategy involves attaching different functional groups to mol. skeletons with the HOOK program, where the database of skeletons is selected to facilitate synthesis of the candidate ligands. The energetics of ligand and candidate ligand-receptor interactions are examd, to improve our understanding of the results.

L13 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1998:341592 CAPLUS

DOCUMENT NUMBER:

129:49637

TITLE:

Malarial binding site on Duffy blood group protein

INVENTOR(S):

Pogo, Oscar A.; Chaudhuri, Asok

PATENT ASSIGNEE(S): New York Blood Center, Inc., USA

CODEN: PIXXD2

SOURCE:

PCT Int. Appl., 39 pp.

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 9821235 A1 19980522 WO 1997-US21063 19971114 W: AU, CA, CN, IL, JP, KR

RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

US 5911991

A

19990615 US 1996-749526

19961115

CA 2308833

19980522 **A**1

CA 1997-2308833

19971114

AU 9852622

Α 19980603

AU 1998-52622

19971114 A 19961115

PRIORITY APPLN. INFO.:

US 1996-749526

US 1993-140797 A2 19931021 WO 1997-US21063 W 19971114

AB A compn. and method for inhibiting binding of malarial Duffybinding ligand to Duffy blood group antigens on mammalian erythrocytes is disclosed. The compn. includes a Duffy-related peptide which interferes with binding between Duffy antigen expressed on erythrocyte cell surfaces and the Duffy-binding ligands of merozoites. Particularly preferred peptides are the peptides having the sequences AELSPSTENSSQLDFEDVWNSSYGVNDSFPDGDYD (SEO ID NO:1) or

AELSPSTQNSSQLNSDLWNFSYDGNDSFPDVDYD (SEQ ID NO:4), as well as peptides

which comprise either of those sequences in their primary structure, or other peptides having equiv. function. A method is disclosed which comprises administering a Duffy-based peptide which interferes with malarial binding to Duffy antigen in an amt. sufficient to inhibit binding of merozoites to erythrocytes.

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE

FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L13 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1996:639671 CAPLUS

DOCUMENT NUMBER:

125:295928

TITLE:

Synthesis and in vitro examination of type-IV

collagenase

AUTHOR(S):

Suli-Vargha, H.; Liko, Zs.; Botyanszki, J.

CORPORATE SOURCE:

Research Group Peptide Chemistry, Hungarian Academy

Sciences, Budapest, H-1518, Hung.

SOURCE:

Peptides 1994, Proceedings of the European Peptide

Symposium, 23rd, Braga, Port., Sept. 4-10, 1994 (1995)

, Meeting Date 1994, 877-878. Editor(s): Maia,

Hernani L. S. ESCOM: Leiden, Neth.

CODEN: 63MBAO

DOCUMENT TYPE:

Conference

LANGUAGE:

English

AB Type IV collagenases (gelatinases) are matrix metalloproteinases. Compds. with zinc-binding ligands attached to peptide sequences recognized by this enzyme were synthesized and tested for inhibitory activity. The zinc-binding ligands used here were bis(imidazol-2-yl)methylamine (BIMA) and 3-[bis(imidazol-2-

yl)]propionic acid (BIP). These ligands were coupled to cleavage products (and their analogs) of the sequence Pro-Leu-Gly-Ile-Ala-Gly. The synthesized inhibitors as well as the ligands BIP and BIM, [bis(imidazol-2-yl)methane] were tested for inhibitory activity towards a 72-kDa gelatinase. BIM was used as the control instead of BIMA because the free amino group of BIMA would have disturbed the kinetic measurements. BIP and BIM, in millimolar concns., caused a 50% inhibition

in gelatinase activity; however, unexpectedly, the peptide inhibitors did not show a significant further decrease in IC50

values beyond these control values.

L13 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:380112 CAPLUS

DOCUMENT NUMBER:

122:161381

TITLE:

Preparation of peptide inhibitors

of selectin binding.

INVENTOR(S):

Heavner, George A.; Kruszynski, Marian

PATENT ASSIGNEE(S):

Centocor, Inc., USA

SOURCE:

PCT Int. Appl., 52 pp.

CODEN: PIXXD2 DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO.

DATE

WO 9414836

A1 19940707 WO 1993-US12110

19931213

W: CA, JP, US

Α

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE 19980120 US 1995-454207

US 5710123

19950609 US 1992-997771 A 19921218

PRIORITY APPLN. INFO.:

WO 1993-US12110 W 19931213

OTHER SOURCE(S):

MARPAT 122:161381

AB R1X1A1B1C1D1E1F1G1H1H1J1X2R2, R1X1-cyclo-(A2B1C1D1E1F1G1H1I2)-J1X2R2(X1 =

N-terminal sequence of 0-10 amino acids; R1 = H, alkyl, aryl, CHO, alkanoyl, aroyl, alkoxycarbonyl, aryloxycarbonyl; X2 = C-terminal sequence of 0-10 amino acids; R2 = OH, OR3, NR5R6; R3 = alkyl, aryl; R5, R6 = H, alkyl, aryl, cycloalkyl; A1 = null, D- or L-Cys; A2 = D- or L-Cys; B1 = Dor L-His, -Ser, -Leu, -Phe, -Asn, -Pro, -Glu; C1 = D- or L-Lys, -His, -Arg, -Ser; D1 = D- or L-Lys, -Leu, -Ala, -Phe, -His, -Arg, -Ser; E1 = Dor L-Lys, -Phe, -Gln, -Arg; F1 = D- or L-His, -Leu, -Ala, -Ile, -Thr, -Arg; G1 = D- or L-Ala, -Phe, -His, -Gln; H1 = D- or L-Leu, -Phe, -Ile. -Pro, -Ala; I1 = D- or L-Cys, -Phe, -Ile, -His, -Leu, -Val, -Thr, -Ser; I2 = D- or L-Cys; J1 = D- or L-Tyr, -Phe, -Ile, -Val), were prepd. The peptides have as their core region portions of the 109-118 amino acid sequence of P-selectin, E-selectin or L-selectin. Diagnostic and therapeutic methods are given utilizing the peptides and pharmaceutical compns. thereof. Thus, Cys-Leu-Lys-Lys-His-Ala-Leu-Cys-Tyr-NH2 was prepd. using BOC-protected amino acids on methylbenzhydrylamine resin. Title compds. inhibited binding of human neutrophils to P-selectin with IC50 = 0.003-1.013 mM.

L13 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1994:558203 CAPLUS

DOCUMENT NUMBER:

121:158203

TITLE:

Preparation of peptide inhibitors

of selectin binding

INVENTOR(S):

Heavner, George A.; Epps, Leon; Kruszynski, Marian

PATENT ASSIGNEE(S):

Centocor, Inc., USA

SOURCE:

PCT Int. Appl., 49 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

KIND DATE PATENT NO. APPLICATION NO. **DATE**

WO 9324526

W: CA, JP

19931209 WO 1993-US3970 19930428

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

EP 656904 19950614 EP 1993-910856 **A**1

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE

JP 07507302

19950810 JP 1993-500534 T

19930428

19930428

US 5602230

19970211 US 1995-438475 A

19950510

PRIORITY APPLN. INFO.:

US 1992-889650

A 19920528

OTHER SOURCE(S): MARPAT 121:158203

WO 1993-US3970 W 19930428

AB R1-W-A-B-C-D-X-R2, R1-Y-E-F-G-H-Z-R2 (W, Y = N-terminal amino acid linear sequence of 0-10 amino acids; R1 is attached to the terminal .alpha.-amino group of W, Y, or the terminal .alpha.-amino group of A or E if W or Y is null; X, Z = C-terminal amino acid linear sequence of 0-10 amino acids, R2 is attached to the carboxy carbon of X or Z or the carboxy carbon of D or H if X or Z is null; A = D- or L-Tyr, D- or L-Phe, D- or L-Lys, D- or L-Glu, D- or L-Arg, D- or L-Cys, D- or L-4-aminophenylalanyl, D- or L-naphthylalanyl, D- or L-pyridylalanyl, D- or Ltetrahydroisoguinolinecarboxylate, etc.; B = D- or L-Thr, D- or L-Lvs, Dor L-Glu, D- or L-Cys, Gly; C = D- or L-Asp, D- or L-His, D- or L-Glu, Dor L-Asp, D- or L-Gln, D- or L-Ala, D- or L-Phe, D- or L-Lys, Gly; D = Dor L-Val, D- or L-Ile, D- or L-Ala, D- or L-Val, Gly, D- or L-Glu, D- or L-Asp, D- or L-Asn, D- or L-Gln, D- or L-Thr, etc., E, F, G = D- or L-Leu. D- or L-Ile, D- or L-Ala, D- or L-Val, D- or L-Glu, D- or L-Asp, D- or L-Asn, D- or L-Gln, D- or L-Thr, etc.; H = D- or L-Gln, D- or L-Glu, D- or L-Asp; R1 = H, alkyl, aryl, formyl, alkanoyl, aroyl, alkoxycarbonyl, aroyloxycarbonyl; R2 = OH, OR3, amino; R3 = alkyl, aryl; with provisos). were prepd. as selectin binding inhibitors (no data). Title compds. are claimed as inhibitors of P-, E-, and L-selectin for use in treating inflammation, coagulation, ischemia, reperfusion, sepsis, adult respiratory distress syndrome, tumor metastasis, rheumatoid arthritis, and atherosclerosis, and for detecting defective selectin-binding ligands.

L14 ANSWER 1 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2007:464251 CAPLUS

DOCUMENT NUMBER:

146:440176

TITLE:

Prognosis of cancer progression in patients

INVENTOR(S):

Galon, Jerome; Pages, Franck; Fridman, Wolf-Herman

PATENT ASSIGNEE(S):

Institut National de la Sante et de la Recherche

Medicale (INSERM), Fr.

SOURCE:

PCT Int. Appl., 205pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

A1 20070426 WO 2006-IB3168 WO 2007045996 20060928 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM

EP 1777523 A1 20070425 EP 2005-292200 20051019 R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LI, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, AL, BA, HR, MK, YU

PRIORITY APPLN. INFO.:

EP 2005-292200 A 20051019

US 2006-764356P P 20060202

AB The authors disclose the prognostic outcome for patients wherein the assessment is based on the quantification of one or several biol, markers that are indicative of the presence of, or alternatively the level of, the adaptive immune response in the patient. In one example, the expression of lymphocyte markers by T-cells infiltrating colon cancer biopsies was assocd. with increased survival.

REFERENCE COUNT:

23 THERE ARE 23 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 2 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2005:1137919 CAPLUS

DOCUMENT NUMBER:

143:400347

TITLE:

Roles of brain angiotensins II and III in thirst and

sodium appetite

AUTHOR(S):

Wilson, Wendy L.; Roques, Bernard P.; Llorens-Cortes,

Catherine; Speth, Robert C.; Harding, Joseph W.;

Wright, John W.

CORPORATE SOURCE:

Department of Psychology, Washington State University,

Pullman, WA, 99164-4820, USA

SOURCE:

Brain Research (2005), 1060(1-2), 108-117

CODEN: BRREAP; ISSN: 0006-8993

PUBLISHER:

Elsevier B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB The current study examd. the effects of intracerebroventricular (icv) infused aminopeptidase-resistant analogs of angiotensin II (AngII) and angiotensin III (AngIII) on thirst and sodium appetite. The analogs, [D-Asp1,D-Arg2]AngII and [D-Arg1]AngIII, were further protected from degrdn. by pretreatment with the aminopeptidase A inhibitor, EC 33, or the aminopeptidase N inhibitor, PC 18. Prior to icv infusions, rats were sodium depleted with furosemide, followed by the angiotensin-converting enzyme inhibitor captopril, to block endogenous angiotensin formation. Both angiotensin analogs, at either of the two doses, were capable of eliciting fluid intakes of water and 0.3 M NaCl. Water and saline intakes were increased to a similar extent by 125 and 1250 pmol of [D-Asp1,D-Arg2]AngII. [D-Arg1]AngIII produced a dose-dependent increase in water intake, whereas saline intake was equivalently increased by the 125 and 1250 pmol infusions. Pretreatment with EC 33 or PC 18 decreased water and saline intakes in response to [D-Asp1,D-Arg2]AngII, while pretreatment with PC 18 altered the time course of the [D-Arg1] AngIII-induced water and saline intakes. The ability of both inhibitors to decrease, but not completely block, AngII analog-induced intakes, coupled with the altered time course of the responses induced by the AngIII analog in the presence of PC 18, supports the hypothesis that both AngII and AngIII are active ligands in brain angiotensin-mediated thirst and sodium appetite. However, these results do not resolve the primary question of whether conversion of AngII to AngIII is a prerequisite to dipsogenic and salt appetite responses in the brain.

REFERENCE COUNT: 54 THERE ARE 54 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 3 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2004:294954 CAPLUS

DOCUMENT NUMBER:

140:418229

TITLE:

Sexual dimorphism of rat liver gene expression:

regulatory role of growth hormone revealed by deoxyribonucleic acid microarray analysis

AUTHOR(S):

Ahluwalia, Amrita, Clodfelter, Karl H.; Waxman, David

J.

CORPORATE SOURCE:

Division of Cell and Molecular Biology, Department of

Biology, Boston University, Boston, MA, 02215, USA

SOURCE:

Molecular Endocrinology (2004), 18(3), 747-760

CODEN: MOENEN; ISSN: 0888-8809

PUBLISHER:

Endocrine Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB GH has diverse physiol actions and regulates the tissue-specific expression of numerous genes involved in growth, metab., and differentiation. Several of the effects of GH on somatic growth and gene expression are sex dependent and are regulated by pituitary GH secretory patterns, which are sexually differentiated. The resultant sex differences in plasma GH profiles are particularly striking in rodents and are the major determinant of sex differences in pubertal body growth rates and the expression in liver of several cytochrome P 450 (CYP) enzymes that metabolize steroids, drugs, and environmental chems. of importance to endocrinol., pharmacol., and toxicol. DNA microarray anal. was used to identify rat liver-expressed genes that show sexual dimorphism, and to ascertain the role of GH as a regulator of their sexually dimorphic expression. Adult male and female rats were untreated or were treated with GH by 7-d continuous infusion using an Alzet osmotic minipump. Poly(A) RNA was purified from individual livers and Cy3- and Cy5-labeled cDNA probes co-hybridized to Pan Rat Liver and 5K Rat Oligonucleotide microarrays representing 5889 unique rat genes. Anal. of differential gene expression profiles identified 37 liver-expressed, female-predominant genes; of these, 27 (73%) were induced by continuous GH treatment of male rats. Moreover, only three of 30 genes up-regulated in male rat liver by continuous GH treatment did not display female-dominant expression. Further anal. revealed that 44 of 49 male-predominant genes (90%) were down-regulated in the livers of continuous GH-treated male rats compared with untreated male rats, whereas only five of 49 genes that were down-regulated in male rats by continuous GH treatment were not male dominant in their expression. Real-time PCR anal. applied to a sampling of 10 of the sexually dimorphic genes identified in the microarray anal. verified their sex- and GH-dependent patterns of regulation. Taken together, these studies establish that GH-regulated gene expression is the major mechanistic determinant of sexually dimorphic gene expression in the rat liver model.

REFERENCE COUNT: 48 THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 4 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:892932 CAPLUS

DOCUMENT NUMBER:

139:374995

TITLE:

Vascular targeting of cytokine-tumor targeting moiety

immunoconjugates enhances chemotherapy drug

penetration into tumors without increased toxicity and

is used in cancer diagnosis and treatment

INVENTOR(S):

Corti, Angelo; Curnis, Flavio

PATENT ASSIGNEE(S):

Molmed S.p.A., Italy

SOURCE:

PCT Int. Appl., 101 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND I | DATE | APPLICATION 1 | NO. DATE |
|------------------|------------|-----------------|--------------------|------------------------|
| WO 2003093478 | A1 20 | 0031113 | WO 2003-IB2187 | 20030430 |
| WO 2003093478 | A9 20 | 0041209 | | |
| W: AE, AG, AI | L, AM, AT, | AU, AZ, | BA, BB, BG, BR, | BY, BZ, CA, CH, CN, |
| | | | | , GB, GD, GE, GH, |
| | | | E, KG, KP, KR, K | |
| | | | | K, MZ, NI, NO, NZ, OM, |
| | | | SG, SK, SL, TJ, T | |
| | | | U, ZA, ZM, ZW | , , , , |
| RW: GH, GM, F | KE, LS, MV | V, MZ, SI | D, SL, SZ, TZ, UG | , ZM, ZW, AM, AZ, BY, |
| | | | | Z, DE, DK, EE, ES, |
| | | | MC, NL, PT, RO, S | |
| | | | | R, NE, SN, TD, TG |
| CA 2462879 | | | A 2003-2462879 | |
| AU 2003228057 | A1 20 | 031117 | AU 2003-228057 | 20030430 |
| EP 1499730 | A1 2005 | 01 26 EF | 2003-725526 | 20030430 |
| R: AT, BE, CH, | DE, DK, I | ES, FR, G | B, GR, IT, LI, LU. | NL, SE, MC, PT, |
| | | | AL, TR, BG, CZ, I | |
| JP 2005526117 | T 2005 | | 2004-501614 | |
| CN 1665933 | A 20050 | 0907 CN | J 2003-815079 | 20030430 |
| US 2005033026 | A1 200 | 050210 | US 2004-492117 | 20040917 |
| IN 2004CN02464 | A. 20 | 070302. | IN 2004-CN2464 | 20041029 |
| NO 2004005237 | A 200 | 50128 | NO 2004-5237 | 20041129 |
| RIORITY APPLN. I | | | GB 2002-9896 | |
| | WO 2 | | 87 W 2003043 | |

WO 2003-IB2187 W 20030430

AB This invention relates to vascular targeting of cytokine-tumor targeting moiety immunoconjugates for enhanced chemotherapy drug penetration into tumors without increased toxicity and is used in cancer diagnosis and

treatment. A fusion protein linking a cytokine fragment and a tumor targeting moiety (ex. tumor necrosis factor) is developed and administered to mice bearing tumors. The fusion protein, targeted to the tumor, influences the tumor blood barrier such that subsequent administration of chemotherapeutic drug (ex. cisplatin) has enhanced penetration of the tumor. Efficacy studies in tumor-bearing mice show a complex drug response curve, with highest efficacy using either very low doses or very high doses of fusion protein. Very low doses appear to be preferential as they do not activate a neg. feedback mechanism to block further drug uptake and show no significant toxicity. Neg. feedback is believed to be due to sol. receptor shedding in tumor blood vessels. This fusion protein used in conjunction with chemotherapeutic agents is designed for the purpose of enhanced cancer diagnosis and therapy in humans.

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE

FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 5 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:892647 CAPLUS

DOCUMENT NUMBER:

139:380023

TITLE:

Fusion proteins contg. cytokines and tumor targeting

moieties and uses thereof in diagnosis and antitumor

therapy

INVENTOR(S):

Corti, Angelo; Curnis, Flavio

PATENT ASSIGNEE(S): Molmed S.p.A., Italy

SOURCE:

PCT Int. Appl., 104 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

A1 20031113 WO 2003-IB2515 WO 2003092737 20030430 W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR. BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG CA 2484425 A1 20031113 CA 2003-2484425 20030430

AU 2003236969 20031117 AU 2003-236969 A1 20030430 EP 1499362 A1 20050126 EP 2003-735883 20030430 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK JP 2005525115 20050825 JP 2004-500920 20030430 CN 1665543 20050907 CN 2003-815203 20030430 US 2005074426 **A**1 20050407 US 2004-492144 20040809 20070803 IN 2004-CN2465 IN 2004CN02465 Α 20041029 NO 2004005236 20050131 NO 2004-5236 Α 20041129 PRIORITY APPLN. INFO.: GB 2002-9893 A 20020430

WO 2003-IB2515 W 20030430

AB The disclosed invention relates to a conjugate which is a mol. comprising at least one tumor targeting moiety (TTM)/polypeptide linked to at least one cytokine formed via genetic fusion or chem. coupling. In the preferred embodiment a conjugate is provided between tumor necrosis factor alpha and TNF.beta and an NGR-contg. or an RGD-contg. peptide sequence (TTM) in which the conjugate is in the form of a fusion protein. The present invention encompasses targeting TTM to tumor cells directly or to its vasculature. In a preferred embodiment the TTM is a ligand for alpha.v.beta.3 or alpha.v.beta.5 integrin. The examples disclose the prepn. of murine recombinant TNF and RGD-TNF, in vitro cytotoxic activity of TNF and RGD-TNF, and the antitumor activity and toxicity of RGD-TNF compared to TNF using the RMA T lymphoma and the T/SA models in C57BL6 mice.

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 6 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2003:253505 CAPLUS

DOCUMENT NUMBER:

139:47549

TITLE:

Conversion of brain angiotensin II to angiotensin III

is critical for pressor response in rats

AUTHOR(S):

Wright, John W.; Tamura-Myers, Elizabeth; Wilson,

Wendy L.; Roques, Bernard P.; Llorens-Cortes, Catherine; Speth, Robert C.; Harding, Joseph W.

CORPORATE SOURCE:

Department of Psychology, Program in Neuroscience,

Washington State University, Pullman, WA, 99164-4820,

USA

SOURCE: ...

American Journal of Physiology (2003), 284(3, Pt. 2),

R725-R733

CODEN: AJPHAP; ISSN: 0002-9513

PUBLISHER:

American Physiological Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB The present investigation measured the relative pressor potencies of

intracerebroventricularly infused ANG II, ANG III, and the metabolically resistant analogs D-Asp1ANG II and D-Arg1ANG III in alert freely moving rats. The stability of these analogs was further facilitated by pretreatment with the specific aminopeptidase A inhibitor EC33 or the aminopeptidase N inhibitor PC18. The results indicate that the max. elevations in mean arterial pressure (MAP) were very similar for each of these compds, across the dose range 1, 10, and 100 pmol/min during a 5-min infusion period. However, D-Asp1ANG II revealed significantly extended durations of pressor effects before return to base level MAP. Pretreatment intracerebroventricular infusion with EC33 blocked the pressor activity induced by the subsequent infusion of D-Asp1ANG II, whereas EC33 had no effect on the pressor response to subsequent infusion of D-Arg1ANG III. In contrast, pretreatment infusion with PC18 extended the duration of the D-Asp1ANG II pressor effect by about 2-3 times and the duration of D-Arg1 ANG III's effect by .apprx.10-15 times. Pretreatment with the specific AT1 receptor antagonist losartan blocked the pressor responses induced by the subsequent infusion of both analogs indicating that they act via the AT1 receptor subtype. These results suggest that the brain AT1 receptor may be designed to preferentially respond to ANG III, and ANG III's importance as a centrally active ligand has been underestimated.

REFERENCE COUNT: 55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 7 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:220823 CAPLUS

DOCUMENT NUMBER:

136:261809

TITLE:

Identifying T cell and antigen recognition epitopes by

positional scanning synthetic combinatorial libraries

and artificial neural network

INVENTOR(S):

Martin, Roland; Simon, Richard; Zhao, Yingdong; Gran,

Bruno; Pinilla, Clemencia

PATENT ASSIGNEE(S): United States, Department of Health and Human

Services, USA

SOURCE:

PCT Int. Appl., 97 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: --1-

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--------------------------------|------|------|-----------------|----------|
| WO 2002022860
WO 2002022860 | | | WO 2001-US42166 | 20010911 |

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG. US, UZ, VN, YU, ZA, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

CA 2422122 **A**1 20020321 CA 2001-2422122 20010911 AU 2001093281 20020326 AU 2001-93281 A5 20010911 US 2004072246 **A**1 20040415 US 2003-380147 20031022 PRIORITY APPLN. INFO.: US 2000-232101P P 20000912

> US 2000-251216P P 20001129 WO 2001-US42166 W 20010911

AB Described is a system and method comprises positional scanning synthetic combinatorial libraries or PS-SCL, artificial neural network, cDNA microarray anal., and RT-PCR-single strand conformation polymorphism for identifying T cell and other epitopes and the like. Thus, proliferative response of T cell clones GP5F11 (specific for influenza virus hemagglutinin peptide HA308-317) and TL3A6 (specific for myeline basic protein peptide MBP89-98) to 200 mixts. of a decapeptide PS-SCL was analyzed. The proliferative response of T cell clones to PS-SCL is analyzed by quantitating TCR recognition of antigens or autoantigens by clonotypic T cell.

L14 ANSWER 8 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2002:185320 CAPLUS

DOCUMENT NUMBER:

136:242932.

TITLE:

Identification of peptide ligands for

specific cell types by phage display for use in drug

targeting and control of biological processes

INVENTOR(S):

Arap, Wadih; Pasqualini, Renata

PATENT ASSIGNEE(S): Board of Regents, the University of Texas System, USA

SOURCE:

PCT Int. Appl., 311 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. **DATE** WO 2002020769 **A**1 20020314 WO 2001-US27692 20010907 WO 2002020769 A9 20030904

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,

```
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
    GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
    LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL,
    PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
    US, UZ, VN, YU, ZA, ZW
  RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AM, AZ, BY, KG,
    KZ, MD, RU, TJ, TM, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
    IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN,
    GQ, GW, ML, MR, NE, SN, TD, TG
CA 2421271
                 A1
                      20020314 CA 2001-2421271
                                                     20010907
AU 200188843
                      20020322 AU 2001-88843
                                                    20010907
                     20030702 EP 2001-968603
EP 1322755
                A1
                                                   20010907
  R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
    IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
JP 2004508045
                     20040318 JP 2002-525776
                 T
                                                   20010907
CA 2458047
                 A1
                     20030320
                                CA 2002-2458047
                                                     20020830
WO 2003022991
                   A2
                        20030320
                                  WO 2002-US27836
                                                        20020830
WO 2003022991
                   A3
                        20041028
  W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
    CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
    GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
    LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
    PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,
    UA, UG, US, UZ, VN, YU, ZA, ZM, ZW
  RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, BG,
    CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
    PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR,
    NE, SN, TD, TG
AU 2002323543
                       20030324 AU 2002-323543
                  Αl
                                                      20020830
EP 1497314
                     20050119 EP 2002-757531
                A2
                                                   20020830
  R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
    IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK
CA 2496938
                     20040311 CA 2002-2496938
                 A1
                                                     20021030
WO 2004020999
                   A1 20040311 WO 2002-US34987
                                                        20021030
  W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
    CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
    GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
    LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
    PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,
    UA, UG, US, UZ, VN, YU, ZA, ZM, ZW
  RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
    KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
    FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF,
    CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
AU 2002364501
                       20040319 AU 2002-364501
                                                      20021030
EP 1546714
                     20050629 EP 2002-799873
                Al
                                                   20021030
```

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK

20040902 US 2003-363204 US 2004170955 **A**1 20031006 US 2005003466 20050106 US 2004-784537 **A**1 20040223

US 2006094672 A1 20060504 US 2004-489071 20041013 US 2006239968 A1 20061026 US 2006-530168 20060223

PRIORITY APPLN. INFO.: US 2000-231266P P 20000908

> US 2001-765101 A 20010117 WO 2001-US27692 W 20010907

> WO 2002-US27836 W 20020830

> WO 2002-US34987 W 20021030

AB The present invention concerns methods and compns. for in vivo and in vitro targeting. A large no. of targeting peptides directed towards human organs, tissues or cell types are disclosed. The peptides are of use for targeted delivery of therapeutic agents, including but not limited to gene therapy vectors. A novel class of gene therapy vectors is disclosed. Certain of the disclosed peptides have therapeutic use for inhibiting angiogenesis, inhibiting tumor growth, inducing apoptosis, inhibiting pregnancy or inducing wt. loss. Methods of identifying novel targeting peptides in humans, as well as identifying endogenous receptorligand pairs are disclosed. Methods of identifying novel infectious agents that are causal for human disease states are also

disclosed. A novel mechanism for inducing apoptosis is further disclosed.

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE

FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 9 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

2001:635393 CAPLUS

DOCUMENT NUMBER:

135:327446

TITLE:

Physiological significance of conversion of

angiotensin II to III by aminopeptidase

Α

AUTHOR(S):

Wright, John W.; Harding, Joseph W.; Mizutani,

Shigehiko

CORPORATE SOURCE:

Department of Psychology, Washington State University, Pullman, WA, 99164-4820, USA

SOURCE:

International Congress Series (2001),

1218(Cell-Surface Aminopeptidases: Basic and Clinical

Aspects), 39-54

CODEN: EXMDA4; ISSN: 0531-5131

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal; General Review

LANGUAGE:

English

AB A review with refs. Substantial evidence suggests the presence of precursors and enzymes necessary for the formation and degrdn. of biol. active forms of angiotensins in brain tissues. Two specific binding sites have been identified that are activated by these angiotensin ligands. The authors present the hypothesis that angiotensin II (AngII) must be converted to Angiotensin III (AngIII) to bind at the AT1 and AT2 receptor subtypes. The AT1 site mediates the classic functions concerned with the control of blood pressure, vasopressin release, body water balance, and cyclicity of reproductive hormones and sexual behaviors. The AT2 receptor subtype appears to mediate blood flow, antiangiogenesis, antifibrosis and stimulates apoptosis. Aminopeptidase A (APA) is primarily responsible for cleavage of N-terminal glutamyl and aspartyl residues from peptide substrates, and is therefore a very important enzyme in the formation of AngIII. Interference with APA activity reduces conversion of AngII to AngIII and attenuates activation of the brain AT1 receptor subtype. Thus, APA may serve as a clin. relevant target in the control of hypertension.

REFERENCE COUNT: 141 THERE ARE 141 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN THE REFORMAT

L14 ANSWER 10 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER: 19

1999:507485 CAPLUS

DOCUMENT NUMBER:

131:307428

TITLE:

Participation of angiotensin receptors in acute hypoxia in mice. I. Effects of angiotensin peptide

receptor ligands saralasin and sarmesin

AUTHOR(S):

Georgiev, V.; Opitz, M.

CORPORATE SOURCE:

Laboratory of Experimental Psychopharmacology,

Institute of Physiology, Bulgarian Academy of

Sciences, Sofia, Bulg.

SOURCE:

Methods and Findings in Experimental and Clinical

Pharmacology (1999), 21(6), 415-419 CODEN: MFEPDX; ISSN: 0379-0355

PUBLISHER:

Prous Science

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB The effects of angiotensin II (Ang II) and angiotensin receptor ligands sarmesin ([Sar1, Tyr(Me)4] Ang II) and saralasin ([Sar1, Ala8] Ang II) administered intracerebroventricularly (i.c.v.) on acute anoxic hypoxia-were studied in mice. The interactions of these ligands and of amastatin (an aminopeptidase A inhibitor) after pretreatment with Ang II and sarmesin, resp., were also studied. Ang II decreased the latency to hypoxia-induced convulsive seizures and altered survival time (increase or decrease depending on the dose). Sarmesin and saralasin significantly increased the latency to seizures as well as survival time. Pretreatment with saralasin and

sarmesin antagonized the Ang II effect on the latency to seizures. Both drugs increased the Ang II effect on the survival time. Amastatin tended to increase the effect of sarmesin on the survival time. Taken together, the results suggest that the antihypoxic effect of sarmesin and saralasin is most likely due to an action on Ang II receptors, with the agents behaving as partial agonists.

REFERENCE COUNT:

28 THERE ARE 28 CITED REFERENCES

AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1999:395170 CAPLUS

DOCUMENT NUMBER:

131:181558

TITLE:

1-Butaneboronic acid binding to Aeromonas proteolytica

aminopeptidase: A case of arrested

development

AUTHOR(S):

De Paola, Carin C.; Bennett, Brian; Holz, Richard C.;

Ringe, Dagmar; Petsko, Gregory A.

CORPORATE SOURCE:

Rosenstiel Basic Medical Sciences Research Center.

Brandeis University, Waltham, MA, 02454, USA

SOURCE:

Biochemistry (1999), 38(28), 9048-9053

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Hydrolases contg. 2 metal cations connected by a bridging ligand catalyze reactions important in carcinogenesis, tissue repair, post-translational modification, control and regulation of biochem. pathways, and protein degrdn. The aminopeptidase (AAP) from A. proteolytica serves as a paradigm for the study of such bridged bimetallic proteases since its 3-dimensional structure is known to very high resoln. and its catalytic reaction is amenable to spectroscopic examn. Here, the authors report the x-ray crystal structure at 1.9 .ANG. resoln. of AAP complexed with 1-butaneboronic acid (BuBA). This structure suggests that this complex represents a snapshot of the proteolytic reaction in an arrested form between the Michaelis complex and the transition state. Comparison of the structure with spectroscopic and other data allowed the authors to conclude that the apparently structurally sym. di-Zn site was actually asym. electrostatically.

REFERENCE COUNT: AVAILABLE FOR THIS 42 THERE ARE 42 CITED REFERENCES

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 12 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1996:233474 CAPLUS

DOCUMENT NUMBER:

124:311054

TITLE:

Identification of glutamate residues essential for

catalytic activity and zinc coordination in

aminopeptidase A

AUTHOR(S):

Vazeux, Gilles; Wang, Jiyang; Corvol, Pierre;

Llorens-Cortes, Catherine

CORPORATE SOURCE:

Coll. France, INSERM, Paris, 75005, Fr.

SOURCE:

Journal of Biological Chemistry (1996), 271(15),

9069-74

CODEN: JBCHA3; ISSN: 0021-9258

PUBLISHER:

American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Aminopeptidase A (EC 3.4.11.7, APA) is a homodimeric membrane-bound glycoprotein that contains the consensus sequence HEXXH (385-389) found in zinc metallopeptidases such as thermolysin. The x-ray structure of the latter enzyme revealed that the two histidines of this motif are two of the three zinc-coordinating ligands and that the glutamate is a crucial amino acid involved in catalysis. Alignment of the sequence of mouse APA with those of the already characterized metallopeptidases showed the presence of several conserved amino acids such as a glutamate residue in position 408 which may constitute the putative third zinc ligand. The functional implication of this residue and the role of glutamate 386 in the HELVH (385-389) motif of APA have been investigated by replacing these residues with an aspartate (Asp-386, Asp-408) or an alanine (Ala-386, Ala-408) by site-directed mutagenesis. Expressed mutated proteins in position 386 showed no APA activity. Ala-408 was also inactive, and Asp-408 had 5% of the wild type enzyme activity and a similar Km. 65Zn incorporation measurements indicated that Ala-386 binds the zinc ion as well as the wild type enzyme, whereas the Ala-408 mutant did not. These results provide evidence that Glu-408 is the third zinc-coordinating residue of APA, confirm the presumed involvement of Glu-386 in the catalytic process of the enzyme, and identify APA as a zinc metallopeptidase functionally similar to thermolysin.

L14 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1995:17873 CAPLUS

DOCUMENT NUMBER:

122:49931

TITLE:

Crystal structure of Aeromonas proteolytica

aminopeptidase: a prototypical

member of the co-catalytic zinc enzyme family

AUTHOR(S):

Chevrier, Bernard; Schalk, Celine; D'Orchymont,

Hugues, Rondeau, Jean Michel; Moras, Dino; Tarnus,

Celine

CORPORATE SOURCE:

Lab. Biol. Struct., Inst. Biol. Mol. Cell.,

Strasbourg, 67084, Fr.

SOURCE:

Structure (Cambridge, MA, United States) (1994), 2(4),

283-91

CODEN: STRUE6; ISSN: 0969-2126

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Aminopeptidases specifically cleave the amino-terminal residue from polypeptide chains and are involved in the metab, of biol, active peptides. The family includes zinc-dependent enzymes possessing either one or two zinc ions per active site. Structural studies providing a detailed view of the metal environment may reveal whether the one-zinc and two-zinc enzymes constitute structurally and mechanistically distinct subclasses, and what role the metal ions play in the catalytic process. We have solved the crystal structure of the monomeric aminopeptidase from Aeromonas proteolytica at 1.8 .ANG. resoln. The protein is folded into a single .alpha./.beta. globular domain. The active site contains two zinc ions (3.5 .ANG. apart) with shared ligands and sym. coordination spheres. We have compared it with the related bovine lens leucine aminopeptidase and the cobalt-contg. Escherichia coli methionine aminopeptidase. The environment and coordination of the two zinc ions in A. proteolytica aminopeptidase strongly support the view that the two metal ions constitute a co-catalytic unit and play equiv. roles during catalysis. This conflicts with the conclusions drawn from the related bovine leucine aminopeptidase and early biochem. studies. In addn., the known specificity of the aminopeptidase for hydrophobic amino-terminal residues is reflected in the hydrophobicity of the active site cleft.

L14 ANSWER 14 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1994:46582 CAPLUS

DOCUMENT NUMBER:

120:46582

TITLE:

Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase

inhibitors

AUTHOR(S):

Giuliani, Sandro; Patacchini, Riccardo; Barbanti, Gabriele; Turini, Damiano; Rovero, Paolo; Quartara, Laura; Giachetti, Antonio; Maggi, Carlo Alberto

CORPORATE SOURCE:

Pharmacol. Dep., Univ. Ferrara, Florence, Italy Journal of Pharmacology and Experimental Therapeutics

SOURCE:

(1993), 267(2), 590-5

DOCUMENT TYPE:

CODEN: JPETAB; ISSN: 0022-3565

Journal

LANGUAGE:

English

AB The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to neurokinin A (NKA) was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear

peptides, cyclic peptides and pseudopeptides, non-peptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin, captopril and thiorphan, 1 .mu.M each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing prepns. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of the linear antagonists bearing an N-terminal Asp residue, MEN 10,207 and MEN 10,376, were significantly enhanced and these pA2 values were used for anal.: a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564, (which also bears a N-terminal Asp residue) behaved as an agonist and its action was enhanced by amastatin. The NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biol. activity of linear peptide derivs. of NKA bearing a N-terminal Asp residue.

L14 ANSWER 15 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1990:435346 CAPLUS

DOCUMENT NUMBER:

113:35346

TITLE:

Intracerebroventricularly infused [D-Arg1]angiotensin

III, is superior to [D-Asp1] angiotensin II, as a

pressor agent in rats

AUTHOR(S):

Wright, John W.; Roberts, Kim A.; Cook, Vickie I.;

Murray, Cathy E.; Sardinia, Michael F.; Harding,

Joseph W.

CORPORATE SOURCE:

Dep. Psychol., Washington State Univ., Pullman, WA,

99164, USA

SOURCE:

Brain Research (1990), 514(1), 5-10

CODEN: BRREAP; ISSN: 0006-8993

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Two D-amino acid substitution angiotensin analogs were compared against native angiotensin II (AII) and angiotensin III (AIII) for their resistance to brain tissue-induced degrdn. and for pressor potency when intracerebroventricularly (i.c.v.) infused in Sprague-Dawley rats. The in vitro results indicate that [D-Asp1]AII was very resistant to degrdn., AII and [D-Arg1]AIII were degraded at similar rates, whereas AIII was the most rapidly degraded. In vivo results revealed that AII, AIII and [D-Arg1]AIII produced greater pressor responses than [D-Asp1]AII. Intracerebroventricular pretreatment with the aminopeptidase

A inhibitor, amastatin, reduced the subsequent pressor response to i.c.v. infused [D-Asp1]AII presumably by inhibiting its conversion to AIII. In contrast, pretreatment with the aminopeptidase B inhibitor, bestatin, potentiated the subsequent pressor responses to i.c.v. infused [D-Arg1]AIII, presumably by inhibiting the conversion of [D-Arg1]AIII to the less active hexapeptide AII(3-8). Next, i.c.v. pretreatment with the specific angiotensin receptor antagonist, [Sar1,Thr8]AII (Sarthran) greatly diminished the subsequent pressor responses to i.c.v. infused [D-Asp1]AII and [D-Arg1]AIII, suggesting that these analogs are having their effect at the same brain angiotensin receptor site. Thus, AIII, or AIII-like ligands, may serve as the active form of brain angiotensin.

L14 ANSWER 16 OF 16 CAPLUS COPYRIGHT 2007 ACS on STN

ACCESSION NUMBER:

1986:17202 CAPLUS

DOCUMENT NUMBER:

104:17202

TITLE:

Characterization of some proteins in nerve tissue

using group-specific sorbents

AUTHOR(S):

Zhernosekov, D. D.; Berezin, V. A.; Reva, A. D.

CORPORATE SOURCE:

USSR

SOURCE:

Ukrainskii Biokhimicheskii Zhurnal (1978-1999) (1985).

57(6), 9-13

CODEN: UBZHD4; ISSN: 0201-8470

DOCUMENT TYPE:

Journal

LANGUAGE:

Russian

AB Group-specific immobilized ligands were used for characterization of physicochem. properties of isolated sol. and membrane-bound forms of brain aminopeptidases and specific glial fibrillary acid proteins. For aminopeptidases, a microscale column chromatog. with phenyl-Sepharose and Con A-Sepharose was used. It was shown that the membrane-bound aminopeptidase is a glycoprotein which is capable to hydrophobic interactions. The sol. forms of aminopeptidase did not interact with Con A or Ph residues, the presence of hydrophobic domains was also obsd. on the surface of the glial acidic proteins. The applied methods may be useful in purifn. of enzymes and other proteins.

=> FIL STNGUIDE
COST IN U.S. DOLLARS

SINCE FILE TOTAL

ENTRY SESSION

FULL ESTIMATED COST

90.10 157.73

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL

ENTRY SESSION

FILE 'STNGUIDE' ENTERED AT 07:12:10 ON 06 SEP 2007 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION. LAST RELOADED: Aug 31, 2007 (20070831/UP)