

Memory Management - Segmentation

Dr Rahul Nagpal

Computer Science

Memory Management - Segmentation

Dr. Rahul NagpalComputer Science

Segmentation

- Memory-management scheme that supports user view of memory
- A program is a collection of segments
 - A segment is a logical unit such as:

```
main program
```

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

User View of Program

Logical View of Segmentation

physical memory space

Segmentation Architecture

- Logical address consists of a two tuple: <segment-number, offset>,
- Segment table maps two-dimensional physical addresses; each table entry has:
 - base contains the starting physical address where the segments reside in memory
 - limit specifies the length of the segment
- Segment-table base register (STBR) points to the segment table's location in memory
- Segment-table length register (STLR) indicates number of segments used by a program;
 - segment number s is legal if s < STLR

Segmentation Architecture (Contd.)

- With each entry in segment table associate:
 - validation bit = $0 \Rightarrow$ illegal segment
 - read/write/execute privileges
- Protection bits associated with segments; code sharing occurs at segment level
- Since segments vary in length, memory allocation is a dynamic storage-allocation problem
- A segmentation example is shown in the following diagram

Segmentation H/W

THANK YOU

Dr Rahul Nagpal

Computer Science

rahulnagpal@pes.edu