PROVE D'ESAME 2025-2024- 2023 RELATIVA ALLA PARTE DELLA SOLA ALGEBRA RELAZIONALE. [NO SQL]. PRESENTI ANCHE ESERCIZI DI RIVISTE ONLINE.

Documento a cura di Simone Remoli.

Parte2.

Prova d'esame del 5 luglio 2024.

Si consideri il seguente schema di base di dati:

Persone(<u>CF</u>, Nome, cognome, ComuneNascita, AnnoNascita, Sesso) Assessori(<u>CF</u>, Comune, DataInizio, DataFine)

Con i vincoli:

Assessori(CF) < Persone(CF)

Query1: Trovare nome, cognome e codice fiscale delle persone che sono attualmente assessori **per la prima volta**".

Nota: L'attributo "DataFine" della relazione "Assessori" ha valore nullo nel caso in cui l'assessore sia ancora in carica.

Svolgimento.

Creiamo lo scenario di questa interrogazione:

CF	Nome	Cognome	ComuneNascit a	AnnoNascita	Sesso
1	Mino	Marini	Roma	1977	Maschio
2	Alex	Sanchez	Madrid	1999	Non dichiarato
3	Marcello	Viscido	Torino	1989	Maschio
4	Federica	Pastellini	Pavia	1990	Femmina
5	John	Jackson	New York	1957	Maschio
6	Irina	Mariámovic	Zagabria	1968	Femmina
7	Alessandro	Solitario	Guidonia	1967	Maschio

E la tabella Assessori è la seguente:

CF	Comune	Datalnizio	DataFine
1	Roma	1995	NULL

CF	Comune	DataInizio	DataFine
1	Anzio	1987	1994
2	Madrid	2019	NULL
3	Torino	2009	2010
3	Ivrea	2011	2012
3	Como	2013	2023
4	Pavia	2011	2021
5	New York	1978	NULL

Di questo schema possiamo dire svariate cose: esistono sicuramente assessori in carica per la prima volta, ma esistono sicuramente assessori che sono in carica non per la prima volta, poichè potrebbero già aver esercitato la professione in qualche altro comune attiguo.

Il risultato dovrebbe essere: {2,5}

Quindi ci sono sicuramente assessori che si ripetono in comuni differenti, e troviamoli: faccio preventivamente una copia della tabella assessori.

 $ho_{CF1,\ Comune1,\ DataInizio1,\ DataFine1} \leftarrow CF,\ Comune,\ DataInizio,\ DataFine\ (Assessori)$

A questo punto effettuo un join tra la tabella Assessori e quest'ultima copia:

 $\textbf{Assessori} \bowtie_{\textbf{CF} = \textbf{CF1} \land \textbf{Comune} \neq \textbf{Comune}} (\rho_{CF1, \, Comune1, \, DataInizio1, \, DataFine1} \leftarrow CF, \, Comune, \, DataInizio, \, DataFine \, (\textbf{Assessori}))$

Il risultato di questo Join è il seguente:

CF	Comune	Datalnizio	DataFine	CF1	Comune1	Datalnizio 1	DataFine1
1	Roma	1995	NULL	1	Anzio	1987	1994
1	Anzio	1987	1994	1	Roma	1995	NULL
3	Torino	2009	2010	3	Ivrea	2011	2012
3	Torino	2009	2010	3	Como	2013	2023
3	Ivrea	2011	2012	3	Torino	2009	2010
3	Ivrea	2011	2012	3	Como	2013	2023
3	Como	2013	2023	3	Torino	2009	2020
3	Como	2013	2023	3	Ivrea	2011	2012

Di questi ci interessa il codice fiscale.

Quindi abbiamo trovato gli assessori ripetuti.

Ora bisogna trovare gli assessori che non sono in carica.

$\pi_{\mathrm{CF}}\left(\sigma_{\mathrm{DataFine\ IS\ NOT\ NULL}}(\mathrm{Assessori})\right)$

CF	Comune	DataInizio	DataFine
1	Anzio	1987	1994
3	Torino	2009	2010
3	Ivrea	2011	2012
3	Como	2013	2023
4	Pavia	2011	2021

Ora facciamo molta attenzione 1

Se io facessi ASSESSORI_NON_IN_CARICA - ASSESSORI RIPETUTI troverei l'insieme {4} che, in un certo senso, potrebbe avvicinarsi al risultato finale, ma che difatti non lo è per niente; Questo perché il risultato 4 corrisponde ad un assessore che ha esercitato per la prima volta, ma che non è attualmente in carica.

Questa non può essere la risposta definitiva.

Quindi ora svolgo comunque questa operazione ma nota che non è il risultato finale dell'esercizio.

Ora mi faccio restituire i codici fiscali degli assessori non più in carica che sono stati attivi in un solo comune (NOTA: sono stati attivi, non che sono attualmente attivi).

 $\pi_{\mathrm{CF}}\left(\sigma_{\mathrm{DataFine\ IS\ NOT\ NULL}}(\mathrm{Assessori})\right) \ - \ \pi_{\mathrm{CF}}\left(\mathrm{Assessori}\ \bowtie_{\mathrm{CF}=\mathrm{CF1}\land\mathrm{Comune}\neq\mathrm{Comune}}\left(\rho_{\mathit{CF1},\mathit{Comune1},\mathit{DataFine1}} \leftarrow \mathit{CF},\mathit{Comune},\mathit{DataInizio1},\mathit{DataFine}\right)\right)\right)$

E mi restituisce {4}.

Adesso è molto facile, ci facciamo restituire i codici fiscali di tutti gli assessori che sono in carica per la prima volta.

Carica prima volta = Assessori ripetuti - Assessori non più in carica che sono stati attivi in un solo comune.

$$\{1,2,3,4,5\} - \{1,3\} - \{4\} = \{2,5\}.$$

Pertanto, la guery finale è la seguente:

$$\pi_{ ext{CF, Nome, Cognome}}\left(\left(\pi_{ ext{CF}}(ext{Assessori}) - \pi_{ ext{CF}}\left(ext{Assessori} \bowtie_{ ext{CF}= ext{CF}1 \land ext{Comune}
eq ext{Comune}}\right) - \pi_{ ext{CF}}\left(ext{Assessori} \bowtie_{ ext{CF}= ext{CF}1 \land ext{Comune}
eq ext{Comune}}\right) - \left(\pi_{ ext{CF}}\left(\sigma_{ ext{DataFine IS NOT NULL}}(ext{Assessori})\right) - \pi_{ ext{CF}}\left(ext{Assessori} \bowtie_{ ext{CF}= ext{CF}1 \land ext{Comune}
eq ext{Comune}}\right) - \pi_{ ext{CF}}\left(ext{Assessori} \bowtie_{ ext{CF}= ext{CF}1 \land ext{Comune}
eq ext{Comune}}\right)$$

 $(\rho_{CF1,\ Comune1,\ DataInizio1,\ DataFine1} \leftarrow CF,\ Comune,\ DataInizio,\ DataFine\ (Assessori))))\bowtie Persons$

Prova d'esame del 19 giugno 2024.

Sia dato il seguente schema relazionale:

Moto(<u>Targa</u>, Cilindrata, Marca, Nazione, Tasse) Proprietario(<u>Nome, Targa</u>)

Query1: Determinare i nomi delle persone che possiedono <u>solo moto giapponesi</u> di <u>almeno due</u> <u>marche diverse</u>.

Svolgimento.

Creiamo lo scenario. Questo è un ottimo consiglio, lo definisco "approccio ignorante".

La tabella moto sarà la seguente:

Targa	Cilindrata	Marca	Nazione	Tasse
1	689	Ducati	Italia	Numero a caso
2	444	KTM	Australia	Numero a caso
3	555	Harley-Davidson	Stati Uniti	Numero a caso
4	321	Suzuki	Giappone	Numero a caso
5	123	Kawasaki	Giappone	Numero a caso

La tabella proprietario sarà la seguente:

Nome	Targa
Amedeo	1
Giovannino	2
Giovannino	4
Giovannino	5
Govannino	3
Elide	4
Egle	5
Egle	1
Egle	2
Zayd	4
Zayd	5

Zayd è il nome che la query deve "sputare" fuori. È l'unico che possiede <u>solo</u> moto giapponesi di **almeno** due marche diverse.

Dalle moto selezioniamo solo quelle giapponesi e di queste proiettiamo solo il numero di targa:

Targa	Cilindrata	Marca	Nazione	Tasse
4	321	Suzuki	Giappone	Numero a caso
5	123	Kawasaki	Giappone	Numero a caso

La query che fa questo è:

$$\pi_{\mathrm{Targa}}\left(\sigma_{\mathrm{nazione}='Giappone'}(\mathrm{Moto})
ight)$$

Ora si effettua un join con la tabella proprietario.

$$\pi_{\mathrm{nome, Targa, Marca}}\left(\mathrm{Proprietario} \bowtie_{\mathrm{Targa=Targa}} \left(\sigma_{\mathrm{nazione='}Giappone'}(\mathrm{Moto})\right)\right)$$

La tabella restituita è la seguente:

Nome	Targa	Marca
Giovannino	4	Suzuki
Giovannino	5	Kawasaki
Elide	4	Suzuki
Egle	5	Kawasaki
Zayd	4	Suzuki
Zayd	5	Kawasaki

Ora rinomino questa.

$$\rho_{nomeP,\,TargaP,\,MarcaMoto} \leftarrow \pi_{\text{nome},\,\text{Targa},\,\text{Marca}}\left(\text{Proprietario}\ \bowtie_{\text{Targa}=\text{Targa}}\left(\sigma_{\text{nazione}='Giappone'}(\text{Moto})\right)\right)$$

E ora Self-Join con nomi uguali ma targhe diverse, troviamo quelli che hanno le moto giapponesi con almeno due marche differenti.

$$\pi_{\mathrm{nome}}\left(\left(\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}(\mathrm{Moto})\right)\right)\right)$$
 $\bowtie_{\mathrm{nome=nomeP}\land\mathrm{Marca}\neq\mathrm{MarcaMoto}}\left(
ho_{\mathrm{nomeP, TargaP, MarcaMoto}}\leftarrow\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}(\mathrm{Moto})\right)\right)\right)$

A questo punto la tabella è la seguente:

Nome	Targa	Marca	nomeP	TargaP	MarcaMoto
Giovannino	4	Suzuki	Giovannino	5	Kawasaki
Zayd	4	Suzuki	Zayd	5	Kawasaki

Se l'esercizio si fosse fermato alla ricerca delle persone che hanno almeno due moto giapponesi di marca diversa allora sarebbe finita qui.

Ma c'è una parola diretta e concisa: *SOLO*.

Giovannino non ha ***SOLO*** moto giapponesi di due marche diverse, <u>ne ha anche una austriaca e una italiana</u>.

Quindi il suo nome va tolto dal risultato finale.

Ora troviamo tutti i nomi di persone che hanno altre moto oltre alle giapponesi.

$$\pi_{\mathrm{nome}}\left(\mathrm{Proprietario}\ owtie_{\mathrm{Targa}=\mathrm{Targa}}\left(\sigma_{\mathrm{nazione}
eq' Giappone'}(\mathrm{Moto})
ight)
ight)$$

Il risultato è un result set composto da una singola proiezione su nome:

Nome	
Amedeo	
Giovannino	
Egle	

Quindi, diventa un gioco di insiemi.

Ricorda: Ragiona sempre da un punto di vista *insiemistico*, vedi corso di *algebra e logica* (ma manco tanto, è talmente banale che non serve un corso).

$$\{Giovannino, Zayd\} - [\{Giovannino, Zayd\} \cap \{Amedeo, Giovannino, Egle\}] = \{Zayd\}.$$

Dove:

 $\{ Giovannino, \ Zayd \} \ \cap \ \{ Amedeo, \ Giovannino, \ Egle \} = \{ Giovannino \}$

Quindi, scrivendo il tutto in algebra relazionale diventa una simpatica query di questo tipo:

$$\pi_{\mathrm{nome}}\left((\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}(\operatorname{Moto})\right))\right)$$
 $\bowtie_{\mathrm{nome=nomeP}\wedge\mathrm{Marca}\neq\mathrm{MarcaMoto}}\left(\rho_{\mathrm{nomeP, TargaP, MarcaMoto}}\leftarrow\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\right)\right)$
 $\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}(\operatorname{Moto})\right)\right))-\left(\pi_{\mathrm{nome}}\left((\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\right)\right)\right)$
 $\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}\left(\operatorname{Moto}\right)\right)\right))$
 $\bowtie_{\mathrm{nome=nomeP}\wedge\mathrm{Marca}\neq\mathrm{MarcaMoto}}\left(\rho_{\mathrm{nomeP, TargaP, MarcaMoto}}\leftarrow\pi_{\mathrm{nome, Targa, Marca}}\left(\operatorname{Proprietario}\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione='}Giappone'}\left(\operatorname{Moto}\right)\right)\right)\right)$
 \cap
 $\pi_{\mathrm{nome}}\left(\operatorname{Proprietario}\bowtie_{\mathrm{Targa=Targa}}\left(\sigma_{\mathrm{nazione}\neq'Giappone'}\left(\operatorname{Moto}\right)\right)\right)$

Questo è il risultato finale.

Esercizio preso da pubblicazioni online.

Sia dato lo schema relazionale:

Festa(Codice, Costo, Nome_Ristorante)
Regalo(NomeInvitato, CodiceFesta, Regalo)
Invitato(Nome, Indirizzo, Telefono)

Query1: Determinare il nome dei ristoranti in cui non c'è mai stato un invitato di nome "Marco".

Svolgimento.

Procediamo con l'approccio ignorante:

Tabella festa:

Codice	Costo (Si presume in euro)	Nome_Ristorante
1	102	Al Dente e Contenti
2	105	Burger King
3	1300	Villa Crespi
4	10000	Osteria dello Sbudellato
5	8755	Alta moda ristorante
6	1777	Sora Lella

Tabella Invitato:

Nome	Indirizzo	Telefono
Alessio	Via degli Abruzzesi	+39 12345678
Marco	Via dei Docili	+39 87654321
Marta	Via delle Streghe	+39 19283746

Nome	Indirizzo	Telefono
Elisa	Via dei Martiri	+39 27162524
Simone	Via del nosense	+39 87989818
Adriana	Via degli imperatori	+39 66773737

Tabella regalo:

Nomelnvitato	CodiceFesta	Regalo
Alessio	1	Pupazzo
Marco	1	Ruspa
Adriana	1	Caricabatterie
Marta	2	Anello placcato d'oro
Elisa	2	Quadro
Alessio	3	Smoking
Marta	3	IPHONE
Elisa	3	Flask Bottle
Simone	3	Collana platino
Marco	4	Computer
Adriana	4	Tablet
Marco	5	Videoregistratore

I ristoranti che la query dovrà tirare fuori sono quelli che hanno il codice 2,3 e 6: {Burger King, Villa Crespi}.

Prendiamo i nomi dei ristoranti dove c'è stata almeno una volta la presenza di Marco.

$$\pi_{\text{NomeRistorante}}\left(\text{Festa} \bowtie_{\text{Codice}=\text{CodiceFesta}} (\sigma_{\text{NomeInvitato}='Marco'}(\text{Regalo}))\right)$$

NomeRistorante
Al Dente e Contenti
Osteria dello Sbudellato
Alta moda ristorante

Nota che il ristorante numero 6 ("Sora Lella") non ha avuto invitati, non si è presentato nessuno :(Il che equivale a dire che Marco non c'è, quindi sarà da prendere in considerazione.

Quindi ora è veramente banale, sottrazione tra insiemi.

$$\pi_{\text{NomeRistorante}}(\text{Festa}) - \pi_{\text{NomeRistorante}}(\text{Festa} \bowtie_{\text{Codice}=\text{CodiceFesta}} (\sigma_{\text{NomeInvitato}='Marco'}(\text{Regalo})))$$

Questa è la query finale.

Query2: Determinare il nome degli invitati che hanno partecipato a *TUTTE* le feste avvenute nel ristorante "Il Tulipano".

Svolgimento.

Tabella Festa:

Codice	Costo (Si presume in euro)	Nome_Ristorante
1	102	Al Dente e Contenti
2	105	Burger King
3	1300	II Tulipano
4	1300	Il Tulipano
5	1300	Il Tulipano
6	1777	Sora Lella

Tabella Invitato:

Nome	Indirizzo	Telefono
Alessio	Via degli Abruzzesi	+39 12345678
Marco	Via dei Docili	+39 87654321
Marta	Via delle Streghe	+39 19283746
Elisa	Via dei Martiri	+39 27162524
Simone	Via del nosense	+39 87989818
Adriana	Via degli imperatori	+39 66773737

Tabella Regalo:

Nomelnvitato	CodiceFesta	Regalo
Alessio	1	Pupazzo
Marco	1	Ruspa
Adriana	1	Caricabatterie
Marta	4	Anello placcato d'oro
Elisa	2	Quadro
Alessio	3	Smoking

Nomelnvitato	CodiceFesta	Regalo
Marta	3	IPHONE
Elisa	3	Flask Bottle
Simone	3	Collana platino
Marco	4	Computer
Adriana	4	Tablet
Marco	5	Videoregistratore
Alessio	4	Borsa LV
Alessio	5	Borsa Chanel
Marco	3	Drone

Marco e Alessio sono gli invitati che hanno partecipato a ***TUTTE*** le feste tenutasi nel ristorante "Il Tulipano".

In questo esercizio è fondamentale avere la visione del concetto insiemistico.

Anzitutto, la tabella sopra ci mostra gli inviti realmente esistenti.

Generiamo tutte le combinazioni possibili tra gli invitati e i codici delle feste che si sono svolte a "Il Tulipano", anche se non erano effettivamente presenti a quelle feste.

$$\pi_{ ext{NomeInvitato}}(ext{Regalo}) \; imes \; \pi_{ ext{Codice}}\left(\sigma_{ ext{NomeRistorante}='IlTulipano'}(ext{Festa})
ight)$$

Queste le sottraggo alle coppie realmente esistenti nella tabella regalo:

Nomelnvitato	CodiceFesta	Regalo
Alessio	1	Pupazzo
Marco	1	Ruspa
Adriana	1	Caricabatterie
Marta	4	Anello placcato d'oro
Elisa	2	Quadro
Alessio	3	Smoking
Marta	3	IPHONE
Elisa	3	Flask Bottle
Simone	3	Collana platino

Nomelnvitato	CodiceFesta	Regalo
Marco	4	Computer
Adriana	4	Tablet
Marco	5	Videoregistratore
Alessio	4	Borsa LV
Alessio	5	Borsa Chanel
Marco	3	Drone

Il Risultato è:

In verde quelli rimasti.

In rosso quelli eliminati.

Cioè ho eliminato le coppie che erano realmente esistenti e mi sono rimaste quelle non esistenti, nell'ambito del ristorante il tulipano.

Quindi scriviamo la query:

```
(\pi_{	ext{NomeInvitato}}(	ext{Regalo}) 	imes \pi_{	ext{Codice}}(\sigma_{	ext{NomeRistorante}='IlTulipano'}(	ext{Festa}))) \ - \pi_{	ext{NomeInvitato}, \ 	ext{CodiceFesta}}(	ext{Regalo})
```

Quindi, da tutti i nomi sulla tabella regalo devo togliere questi ultimi nomi verdi.

$$\pi_{\text{NomeInvitato}}(\text{Regalo}) \ - \ \pi_{\text{NomeInvitato}}\left((\pi_{\text{NomeInvitato}}(\text{Regalo}) \times \pi_{\text{Codice}}\left(\sigma_{\text{NomeRistorante}='ITulipano'}(\text{Festa})\right)\right) - \pi_{\text{NomeInvitato}}\left(\text{Regalo}\right)$$

Questa è la query finale. Fine esercizio.