Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Atividades Pedagógicas não Presenciais - APNP

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 3 – Padrões de Redes RM-OSI (ISO) TCP/ IP (Internacional)

Aula 5

Camada 1 - Interface de Rede **TCP/IP** Camada 2 - Enlace **RM-OSI**

Modelos - Equivalência

- Modelos RM-OSI (Camada 2 Enlace)
- Modelo TCP/IP (Camada 1 Interface Rede)

Modelo O.S.I.

Modelos - Equivalência

Modelo Híbrido

Camada 2 - Interface de Rede

Característica da Camada de Enlace

Camada 2 - Enlace

Camada Enlace:

- Objetivo da camada:
 - Fornecer uma comunicação eficiente e confiável entre dois pontos adjacentes (ponto a ponto link lógico).
- É função da camada de enlace de dados (datalink layer):
 - Ativar e Desativar o link de comunicação,
 - Detectar erros que ocorram na camada física e recuperar em caso de anomalias,
 - Segmentação e delimitação dos quadros a serem transmitidos,
 - Controlar o fluxo de transmissão,
 - Sequenciamento das unidades (Frames).

Camada 2 - Enlace

Camada – Enlace

- Enlace é link entre dois equipamentos
- Tarefa dessa camada controle entre os enlace

Padrão ETHERNET (IEEE 802)

Padrão IEEE 802

- Padronização da Camada de Enlace em redes locais foi promovida através da recomendação IEEE 802:
 - Objetivo tornar viável o uso da estrutura do Modelo de Referência OSI em redes locais.
 - A camada enlace foi dividida em duas subcamadas.
 - A subcamada de Controle Lógico de Enlace (LLC Logical Link Control)
 - A subcamada de Controle de Acesso ao Meio (MAC Medium Access Control)

Padrão ETHERNET (IEEE 802)

- Camada Enlace (2):
 - Dividida em duas SubCamadas
 - LLC Logical Link Control
 - MAC Media Access Control

SubCamada MAC:

- Subcamada MAC é responsável pela disciplina do meio físico.
- Definindo:
 - Quem pode acessar um canal comunicação (autorização)?
 - Quando (momento)?
 - Por quanto tempo (validade)?

Controle da Subcamada MAC depende do Meio físico:

Controle da Subcamada MAC depende do Meio físico:

Dependente do meio físico?

Controle da Subcamada MAC depende do Meio físico:

OSI IEEE 802

Diferentes topologias de redes, diferentes padrões de controle.

- CSMA Protocolo Ethernet (IEEE 802.3)
 - O protocolo de acesso ao meio físico na rede ETHERNET
 - CSMA (Carrier Sense Multiple Access).
 - CS (Carrier Sense): Capacidade de identificar se está ocorrendo transmissão;
 - MA (Multiple Access): Capacidade de múltiplos nós concorrerem pelo utilização da mídia;
 - O protocolo permite que todas as estações possuam o mesmo direito de transmitir,
 - Possui um aproveitamento de aproximadamente 98%, da banda passante.

O CSMA é o método responsável por disciplinar o meio físico compartilhado em uma rede do tipo IEEE 802.3 ou Ethernet.

Topologia de Barramento

A característica principal em um meio físico compartilhado (acesso múltiplo) é a difusão (broadcast).

- CSMA Detecção de portadora em redes de acesso múltiplo.
 - É o mecanismo usado para coordenar a transmissão numa rede Ethernet.
 - O padrão Ethernet não tem uma central capaz de coordenar os acessos de cada computador ao meio físico.
 - Ao invés disso, cada computador participa de um esquema chamado CSMA para ter o acesso no meio.
 - A ideia é simples:
 - Antes de transmitir, cada computador verifica se já existe algum sinal no cabo (meio), se houver, significa que o meio está em uso e portanto este deve aguardar.

- CSMA Detecção de portadora em redes de acesso múltiplo.
 - A técnica CSMA apenas detecta se o meio já está em uso, e evita que se interrompa uma comunicação em andamento por

 CSMA - Detecção de portadora em redes de acesso múltiplo.

O que ocorre se dois computadores decidem transmitir ao

mesmo instante?

Colisão

Sobreposição do sinal.

 Uma colisão é detectada quando o nível de voltagem excede o valor máximo permitido no canal.

Dois sinais sendo transmitidos ao mesmo tempo se somam, causando o aumento de nível de voltagem no meio transmissão.

- O protocolo CSMA especifica também uma técnica para detectar colisões - (collision detection - CD).
 - Colisões são na verdade interferências que ocorrem quando dois computadores estão transmitindo ao mesmo tempo.
 - A técnica CSMA/CD também permite recuperar a transmissão de dados, após colisão.

- O protocolo CSMA especifica também uma técnica para detectar colisões - (collision detection - CD)
 - A técnica CSMA/CD também permite recuperar a transmissão de dados, após colisão.
 - A estação transmissora envia um sinal de reforço de colisão (JAM),
 - Aguarda um tempo aleatório para retransmitir,
 - Se curto, alta probabilidade de novas colisões
 - Se muito logo, desperdício do canal

Sorteio de tempos, nova tentativa de envio

Subcamada MAC (Endereço MAC)

Endereço MAC

- É um endereço físico associado à interface de comunicação, que conecta um dispositivo à rede.
- O MAC é um endereço "único", não havendo duas portas com a mesma numeração, é usado para controle de acesso em redes de computadores.
- Sua identificação é gravada em hardware, isto é, na memória ROM da placa de rede de equipamentos como desktops, notebooks, roteadores, smartphones, tablets, impressoras de rede, etc.

Características do endereço MAC

Endereçamento MAC

Características

- Endereço de 6 octetos (bytes) 48 bits
- 24 bits indicam o fabricante
 (OUI Organizationally Unique Indentifier)
- 24 bits indicam o número da interface de rede definidos pelo fabricante
- Representação Hexadecimal
- Ex.: 00-60-2F-03-A7-5C

Endereço MAC

Gravado no Hardware – Etiqueta externa

Endereço MAC (HW)

```
enp1s0
         Link encap:Ethernet Endereco de HW 1c:1b:0d:43:28:dd
         UP BROADCAST MULTICAST MTU:1500 Métrica:1
         pacotes RX:0 erros:0 descartados:0 excesso:0 quadro:0
         Pacotes TX:0 erros:0 descartados:0 excesso:0 portadora:0
         colisões:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
         Link encap:Loopback Local
lo
         inet end.: 127.0.0.1 Masc:255.0.0.0
         endereço inet6: ::1/128 Escopo:Máquina
         UP LOOPBACK RUNNING MTU:65536 Métrica:1
         pacotes RX:1304 erros:0 descartados:0 excesso:0 quadro:0
         Pacotes TX:1304 erros:0 descartados:0 excesso:0 portadora:0
         colisões:0 txqueuelen:1
         RX bytes:160739 (160.7 KB) TX bytes:160739 (160.7 KB)
wlp2s0
         Link encap:Ethernet Endereço de HW 60:e3:27:5e:87:19
         inet end.: 192.168.0.19 Bcast:192.168.0.255 Masc:255.255.25
         endereco inet6: 2804:14d:4083:13d5:8a8b:d6a6:9ebc:f117/64 Escopo:Global
         endereço inet6: 2804:14d:4083:13d5:f91f:d293:bb3f:b1ee/64 Escopo:Global
         endereco inet6: fe80::79e0:d62:9098:bf63/64 Escopo:Link
         endereco inet6: 2804:14d:4083:1209::2/128 Escopo:Global
         UP BROADCAST RUNNING MULTICAST MTU:1500 Métrica:1
         pacotes RX:16796 erros:0 descartados:0 excesso:0 quadro:0
         Pacotes TX:12638 erros:0 descartados:0 excesso:0 portadora:0
         colisões:0 txqueuelen:1000
         RX bytes:18133028 (18.1 MB) TX bytes:6387847 (6.3 MB)
```

Subcamada MAC (Endereço MAC)

- No quadro enviado a rede, a camada MAC irá incluir o endereço MAC de origem e de destino
- A placa de rede cujo MAC é o receptor receberá o pacote e as outras permanecerão inativas

Frame Ethernet

- Possui endereço de Origem (Source Address)
- Possui endereço de Destino (Destination Address)

- Payload Espaço útil para dados Frame Ethernet
 - Mínimo de 46bytes
 - Máximo de 1500bytes

- Cyclic Redundancy Check (CRC).
 - Este campo de 4 bytes contém o valor de verificação de redundância cíclica (CRC).
 - O CRC é criado pelo dispositivo transmissor e recalculado pelo dispositivo receptor para verificar por danos aos dados que podem ter ocorrido ao frame na transmissão.

Subcamada MAC (Endereço MAC)

Recebimento do FRAME (Destinatário):

- Para receber uma transmissão, a estação fica verificando o meio físico para detectar o sinal de um quadro. Após, ela verifica se o quadro está com o CRC(Cyclic Redundancy Check -Checksum) certo.
- Verifica o endereço de destino (MAC). Se o endereço de destino for o seu, ou o endereço de broadcast ou multicast, a estação RECEBE e repassa o quadro para a próxima camada.
- Em caso do CRC não estar correto ou o endereço de destino não coincidir com o da estação, o quadro é descartado.

- Repetidores (Hubs) Características:
 - Um sinal válido recebido em qualquer porta do hub é repetido em todas as outras portas;
 - Se dois ou mais envios ocorrem, um sinal de colisão é transmitido a todas as portas;
 - Não avalia endereços MAC
 - Não implementa a Camada de Enlace

Comutadores (Switches)

- Para diminuir o número de colisões a solução é a Ethernet comutada (Switched Ethernet).
- O uso de comutadores (switches) possibilita a criação de domínios de colisão, evitando que o sinal seja propagado indiscriminadamente para todas as portas.
- O switch faz uso de uma tabela contento os números físicos de todas as estações conectadas (MAC), e através da análise dos quadros, endereço de destino e de origem, estabelece uma ligação.

Representação lógica

- A bridge (Ponte)
 - Uma bridge "aprende" que endereços MAC se encontram de um lado e do outro;
 - Um quadro recebido de um segmento é retransmitido no outro se:
 - (1) se destinar a um endereço MAC que a bridge sabe estar do outro lado,
 - (2) se destinar a um endereço MAC de difusão (*broadcast* ou *multicast*)
 - (3) se destinar a um endereço MAC ainda desconhecido.

Representação lógica

Comutadores (Switches)

- Em modo full-duplex, o CSMA/CD torna-se desnecessário!
- Para cada estação, o meio para envio é dedicado (sem risco de colisão, portanto).
- Assim, não é mais necessário ouvir a portadora, ou detectar colisões ...

- Camada Enlace (2):
 - SUBCAMADA LLC (Logical Link Control) Controle do enlace lógico.

Controle da Subcamada LLC INdepende do Meio físico:

A SubCamada LLC

- A subcamada LLC (Logical Link Control Controle Lógico de Enlace), tem a funções:
 - De estabelecer a comunicação com a camada de Rede,
 - Responsável pelo controle de Fluxo,
 - Responsável pelo controle de erros.

A SubCamada LLC

- Controle de Erros (Error Control)
 - Principal missão garantir a integridade dos quadros, sem erros,
 - Garantir a ordenação destes quadros.
 - Esta função é necessária porque o meio físico está sujeito a distúrbios, tais como:
 - ruídos, que afetam uma transmissão digital.
 - falhas em equipamentos, placas de rede, hubs, conectores, que causam erros.

Checksum(Soma de verificação) CRC:

- Objetivo: detectar "erros" (ex.: bits trocados) num segmento transmitido.
- Transmissor:
 - Trata o conteúdo do segmentos como seqüências de números inteiros de 16 bits
 - Checksum: adição (soma em complemento de um) do conteúdo do segmento
 - Transmissor coloca o valor do checksum no campo checksum do Frame
- Receptor:
 - Computa o checksum do segmento recebido
 - Verifica se o checksum calculado é igual ao valor do campo checksum recebido.
 - NÃO erro detectado
 - SIM não, detectou erro. Mas talvez haja erros apesar disso.

- Problemas no Checksum(CRC)
 - Estratégias de recuperação:
 - Detectar, Descartar e Solicitar novo Frame
 - Estratégia utilizada
 - Detectar e Corrigir os Erros do Frame original
 - Utilizam bits de redundância
 - Bits adicionais para o controle da informação
 - Alto custo computacional

Controle de fluxo (Flow Control)

- O controle de fluxo é responsável em limitar o número máximo de quadros a serem enviados entre as estações, sem haver esgotamento do receptor (flooding), e maximizar a capacidade de transferência (throughput) da transmissão.
 - Transmissor rápido e receptor lento;
- Estratégia de solução
 - O emissor deve esperar para transmitir, até que o receptor mande um quadro de controle dando permissão, para mais envio de frames;

Atividade

- Avalie o protocolo CSMA nos seguinte senários:
 - Rede Ethernet com HUB
 - Rede Ethernet com Switch
 - Rede WIFI CSMA/CA
- Avalie o controle de acesso ao meio físico, o controle de colisão e recuperação dos pacotes.

Dúvidas??

