Modeling the Ly-α forest

Paradigm successes and challenges

QSO 1422+23

The basic observations

- Observations of the Ly-α forest go back to the 70s and early 80s when the basic properties were established.
- Low resolution spectra provide mean flux or distributions of equivalent widths.
- High resolution spectra provide column densities (N_{HI}) and doppler parameters (b).

$N_{\rm HI}$ < 10^{12} cm ⁻²	Not currently observable
10^{12} < N_{HI} < 10^{17} cm ⁻²	Ly-α forest
10^{17} < $N_{\rm HI}$ < 10^{20} cm ⁻²	Lyman limit systems
$10^{20} < N_{HI}$	Damped Ly-α systems

Power laws everywhere

- Equivalent width distribution
 - $d^2N/dWdz \sim e^{-W/W^*} (1+z)^{\gamma}$
 - W_{*} \sim 0.27A and 1.5< γ <3
- Column density distribution
 - $dN/dN \sim N^{-1.5}$ 12<logN<22 !!!
 - Slight steepening above logN=14
- b distribution
 - Gaussian of mean ~ 30km/s, width 10km/s
 - b decreases to higher z
- Absorbers are weakly clustered

Interpretation

- But the entire framework for *interpreting* these observations has changed dramatically in "recent" years.
- No longer discuss (spherical) halos, shock, pressure or gravity confined clouds, minihalos etc.
- Now we discuss continuous density fields the flux is a 1D, non-linear map of the density field (in redshift space).
- Much of the structure of the IGM can be understood as a consequence of the spatial coherence and properties of the "cosmic web".
- Beware misleading language and toy model concepts!

Cosmic web

- IGM is the main baryonic reservoir for z>2
 - Galaxies are "flotsam"
- Hierarchy of structure

```
- Sheets for N_{HI} < 10^{14} \text{ cm}^{-2}
```

- Filaments for $N_{HI} \sim 10^{15}$ cm⁻²

- Clouds for $N_{HI} > 10^{16} \text{ cm}^{-2}$

- Smaller lines come from cold but low density material -- Hubble expansion dominates the broadening!
- Basic properties of the forest depend very weakly on cosmology or indeed hydrodynamics!

FGPA

- Physics of the forest is straightforward.
 - Gas making up the IGM is in photo-ionization (but not thermal) equilibrium with a (uniform?) ionization field which results in a tight ρ-T relation for the absorbing material: $T = T_0 (\rho/\rho_0)^{\gamma-1}$
 - Expect $\gamma \sim 1$ at reionization to ~ 1.5 at late time and $T_0 \sim 2.10^4 K$
 - The HI density is proportional to a power of the baryon density.
 - For z<5, $x_e \sim 1$ so $n_e \sim n_p \sim n_b$ thus $n_{HI} \sim \alpha(T) n_b^2 / \Gamma \sim n_b^p$
 - Since pressure forces are sub-dominant, the gas traces the dark matter on scales of 0.1-10 Mpc/h.
 - The structure in the QSO spectrum thus traces, in a calculable way, the fluctuations in the matter density along the line-of-sight to the QSO. The Ly- α forest arises from overdensities ~ 1 .

$$\tau(u) \propto \int dx \left[\frac{\rho(x)}{\bar{\rho}} \right]^2 T(x)^{-0.7} \frac{e^{-(u-u_0)^2/b^2}}{b} \quad \text{with} \quad b = \sqrt{2k_B T/m_H}$$

ρ-T relation

Stochasticity

- It is actually possible to constrain the amount of scatter in ρ -T, or "extra" physics, using properties of the forest.
- Gravitational clustering predicts a certain pattern of non-Gaussianity which is not mimicked by non-gravitational effects.
- Currently limited by the amount of publicly available Ly-α data, but scatter seems to be consistent with hydrodynamic effects.
 - Fang & White (2004; ApJ, 606, L9)

Spectrum '=' density

Galaxy-IGM connection

Theory and observation

- Agree surprisingly well!
- Column density distribution shows good agreement.
- Flux histograms agree quite well with data.
- Non-Voigt line shapes predicted by simulations seen in observational data.
- Redshift evolution of absorbers agrees well with data at both high and low column density!
- Large coherence length explained by filaments.
- Low level of clustering agrees with data.
- "Predicted" high baryon density we have now.

Flux distribution

N_{HI} and b-parameter distribution

Outstanding problems

- Doppler parameter mismatch
 - b gets smaller as resolution increases.
 - Higher z_{re} means lower T_0 at $z\sim3$.
 - Higher $\Omega_b h^2$ makes lines broader but maybe not enough.
 - HeII reionization heats gas in underdense regions by x2

Lines broadened by 12km/s (dot-dashed)

High baryon density

Where is the problem?

- Hit diminishing returns in increasing ω_b from 2% to 2.4%
- The higher baryon density Λ CDM models do "okay" for the lines optically thick at line center.
- The thin lines are the problem!
- In simulations these come from low density gas which retain memory of initial temp.
 - Radiative transfer or QSO heating will help

IGM temperature?

- Based on a high reionization redshift, we would expect the IGM temperature to be fairly low (at mean density).
- Measurements by McDonald, done by comparing observed spectra to a hydro simulation, give:
 - T0=17,400; 18,400 and 17, 400 K (+/- 2000K) at z=3.9, 3.0 and 2.4
 - Would be interesting to revisit this ... a large amount of work has been done, but things are getting better all of the time.

IGM temperature

Ionization rate

- Values of Γ_{-12} required to fit data with hydro simulations of Λ CDM cosmologies are \sim 4x larger than those in EdS models.
- Recent compilation by Bolton et al. (2005)
- Require extra radiation above that due to QSOs at z<4 at about factor of 2 level.

Evolution of Γ_{-12}

Outstanding problems

- Effects of radiative transfer
 - Heating of the IGM
 - Abel & Haehnelt (1999; ApJ 520, L13)
 - Effect on DLAS and LLS??
- Reionization when and how?
- HeII
 - Why is there so much scatter in HeII Ly- α optical depth at z~3?
 - Why are HeII linewidths the *same* as the HI widths?
- Metal lines (almost no theory)
- DLAs and LLS
 - Little detailed theory, a lot of observation.
 - Beware interpretation based on simplified models!
 - Possible abundance mismatch between sim and obs.
 - Gardner et al. (astro-ph/9911343)
- Galaxy-IGM connection, effects on environment?
 - Adelberger et al. (2003; ApJ, 584, 45)

Extra physics?

- Hydrodynamics
- Fluctuating ionization field
- Stellar feedback (SN ejecta, winds, ...)
- Radiative transfer

Hydrodynamics?

Comparing FGPA schemes to full hydrodynamic simulations

Hydrodynamics II

Viel, Haehnelt & Springel (2005)

Smoothing?

Effect of winds on Ly- α P(k)

Effect of fluctuating J on P(k)

Conclusions

- Basic picture appears to be correct. IGM traces "cosmic web".
- Dark matter only methods agree with hydro at 10% level. Roughly level of agreement with observations.
- Major problem seems to be temperature of IGM (role of RT, HeII, ...).

Analyzing spectra

- The mean flux
 - Use $\langle F \rangle$ to fix normalization of τ
- Continuum fitting [Observe $e^{-\tau(z)}$ x QSO(z)]
 - By-hand continuum fitting
 - Trend removal (polynomial fitting)
 - Length of segment, order of polynomial?
 - Dividing by a smooth spectrum.
 - What is "best" smoothing length?
- Data chunking
- Excising high column density systems
- Treating metal line systems

Mean flux

Used to fix τ normalization in the FGPA, removes a major

