ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc Lập - Tự Do - Hạnh Phúc

THÔNG TIN ĐĂNG KÝ ĐỀ TÀI LUẬN VĂN THẠC SĨ

 1. Tên đề tài (ghi IN HOA): Tên tiếng Việt: PHÂN ĐOẠN KHỐI U NÃO QUA ẢNH MRI SỬ DỤNG H GIÁM SÁT YẾU. Tên tiếng Anh: BRAIN TUMOR SEGMENTATION FROM MRI IMAGES US WEAKLY SUPERVISED LEARNING. Hướng đề tài luận văn: 					
	 Hướng nghiên cứu 				
	⊙ Định hướng nghiên cứu ⊠				
	 Định hướng ứng dụng 				
2.	 Số tín chỉ: Ngành học và Mã ngành: 				
	• Khoa học máy tính: 8480101				
4.	 Công nghệ Thông tin: 8480201				
	TP. HCM, ngày 30 tháng 06 năm 2024 Xác nhận của CBHD Học viên				

TS. Dương Việt Hằng

Trương Thanh Luân

ĐỀ CƯƠNG ĐỀ TÀI LUẬN VĂN THẠC SĨ

1. Nội dung

1.1. Tổng quan tình hình nghiên cứu

- Phân đoạn khối u não từ ảnh MRI là một bước quan trọng trong quá trình chẩn đoán và điều trị bệnh u não. Bài toán này đòi hỏi sự chính xác cao vì các khối u có thể có hình dạng, kích thước và vị trí rất đa dạng trong não. Việc xác định đúng vị trí và kích thước của khối u giúp các bác sĩ đưa ra phương pháp điều trị hiệu quả hơn. Vì vậy, đã có nhiều nghiên cứu ứng dụng trí tuệ nhân tạo và học máy vào việc phát hiện và điều trị u não dù đạt được những tiến bộ, nhưng cũng đang tồn tại nhiều hạn chế như thiếu dữ liệu được gán nhãn làm suy giảm hiệu suất huấn luyện của các mô hình, kiến trúc mô hình phức tạp đồi hỏi nhiều tài nguyên, lo ngại về quyền riêng tư của bệnh nhân, ứng dụng mô hình vào thực tế chưa nhiều, ...
- Các công trình nghiên cứu ứng dụng trong quá trình chẩn đoán và điều trị bệnh u
 não:

Phương pháp	Ưu điểm	Nhược điểm
1. Mô hình mạng học đồng	Giải quyết vấn đề thiếu	Mô hình có cấu trúc
huấn luyện đối kháng	các modal (các loại ảnh	phức tạp với nhiều
(Adversarial Co-training	chụp não, mỗi loại cho	thành phần cần được
Network - ACN): phương	thấy các đặc điểm khác	thiết lập và tối ưu hóa
pháp này nhằm mục đích	nhau của mô và cấu	đồng thời. Phương
kết hợp học tập từ cả các	trúc não) trong phân	pháp yêu cầu huấn
modal đầy đủ và các modal	đoạn khối u não từ ảnh	luyện các mô hình
thiếu để bổ sung cho nhau	MRI. Sử dụng huấn	"dành riêng" cho từng
về mặt biểu diễn miền và	luyện học đa modal và	tình huống thiếu
đặc trưng, cũng như khôi	đơn modal bổ sung cho	modal, điều này có thể
phục thông tin bị thiếu. Sử	nhau nhằm khắc phục	tăng chi phí huấn
dụng bộ dữ liệu BraTS	tình trạng thiếu thông	luyện.

2018 để huấn luyện mô tin và cải thiện kết quả hình. dự đoán so với các phương pháp hiện tại trước đó. Mặc dù có thể xử lý các 2. Phân đoan u não từ ảnh Cải thiên đô chính xác trường hợp thiếu dữ MRI sử dung mô hình trong phân đoan u não liệu trong quá trình suy Transformer (mmFormer): ngay cả khi bộ dữ liệu sử dụng bộ mã hóa kết hợp không có đầy đủ các luận, nhưng vẫn cần các bộ dữ liệu đầy đủ giữa tích châp loại hình ảnh (T1, T1c, và để huấn luyện mô hình Transformer để xử lý từng T2, FLAIR), tổng quát loại ảnh MRI, sau đó liên hóa mô hình và sử hiệu quả. kết các đặc trưng từ các dung Transformer để loại khác nhau bằng Intercải thiện chất lượng modal Transformer. Cuối phân đoan. cùng, sử dụng bộ giải mã up-sampling để tạo ra kết quả phân đoan u não chính xác ngay cả khi dữ liệu thiếu hụt. Sử dụng bộ dữ liêu BraTS 2018 để huấn luyện mô hình. Việc kết hợp 3D CNN 3. Phân đoan u não trên Cải thiên đô chính xác và Transformer làm hình ảnh MRI sử dụng của phân đoạn u não tăng tính phức tạp của mạng nơ-ron tích chập 3D bằng cách khai thác cả (3D CNN) kết hợp với mô hình và yêu cầu tài thông tin cục bộ và nguyên tính toán lớn, toàn cục từ dữ liệu hình Transformer (TransBTS): sử dụng cấu trúc mã hóayêu cầu dữ liệu MRI ånh MRI 3D 3D chất lượng cao, đạt giải mã (encoder-decoder) trong đó phần mã hóa sử hiệu suất thấp trong dung 3D CNN để trích trường hợp phức tạp xuất các đặc trưng không hoặc dữ liêu bi nhiễu.

gian 3D và Transformer để mô hình hóa các mối quan hệ. Sử dụng bộ dữ liêu BraTS 2019 và BraTS 2020 để huấn luyên mô hình. 4. Phương pháp Diff-Unet: Yêu cầu tài nguyên tính Cải thiên đô chính xác thực hiện phân đoạn ảnh y phân đoạn so với các toán lớn, đạt hiệu suất tế 3D đa đối tượng, áp phương pháp hiện có, thấp trong trường hợp dụng cho các bài toán như có thể phân đoạn đồng phức tạp hoặc dữ liệu bị thời nhiều đối tượng. nhiệu. phân đoạn khối u não từ Linh hoạt, có thể áp MRI, phân đoạn gan và dụng cho nhiều loại khối u gan từ CT, và phân ảnh y tế 3D khác nhau. đoạn đa cơ quan từ CT bụng. Sử dụng bộ dữ liệu BraTS 2020 để huấn luyện mô hình. 5. Ánh xa Lóp Kích hoạt Cfd-CAM sử dụng độ Cfd-CAM vuot trôi Dựa trên Độ Tin Cậy Mới hơn so với các phương tin cậy của lớp mục tiêu cho Phân Đoan Khối U để tính toán trong số pháp CAM hiên có Não MRI (Cfd-CAM): cho bản đồ đặc trưng. trong việc phân đoạn khối u não trên tập dữ Tuy nhiên, nếu đô tin Cfd-CAM sử dụng độ tin cậy của hình ảnh đầu vào cậy không được ước liệu BraTS 2021 và tập để ước tính tầm quan trọng tính chính xác, kết quả dữ liệu TCGA-LGG. của từng bản đồ đặc trưng. có thể bị ảnh hưởng. Và Sử dụng bộ dữ liệu BraTS đạt hiệu suất thấp trong trường hợp dữ liệu bị 2021 và tập dữ liêu để huấn nhiễu. TCGA-LGG luyện mô hình.

1.2. Giới thiệu về đề tài

- Tên đề tài: PHÂN ĐOẠN KHỐI U NÃO QUA ẢNH MRI SỬ DỤNG HỌC GIÁM SÁT YẾU
- Phân đoạn khối u não từ ảnh MRI là một bước quan trọng trong chẩn đoán và điều trị bệnh u não, yêu cầu sự chính xác cao do khối u có hình dạng, kích thước, vị trí đa dạng. Quá trình này đòi hỏi nhiều thời gian và công sức của chuyên gia y tế, đồng thời yêu cầu kỹ năng cao, vì vậy cần phương pháp tự động hỗ trợ. Xuất phát từ nhu cầu thực tiễn và tiềm năng ứng dụng trong y tế, đặc biệt là chẩn đoán hình ảnh. Luận văn nghiên cứu, đề xuất mô hình "Phân Đoạn Khối U Não Qua Ảnh MRI Sử Dụng Học Giám Sát Yếu", sử dụng dữ liệu gắn nhãn một phần hoặc không hoàn toàn chính xác. Input và Output của bài toán: Input là các ảnh MRI của não bộ, và output là các vùng chứa khối u được phân đoạn rõ ràng trên ảnh MRI.
- Kết quả nghiên cứu của luận văn hỗ trợ chẩn đoán y tế phát hiện nhanh và đưa ra quyết định điều trị kịp thời, nâng cao chất lượng chăm sóc sức khỏe, giúp tiết kiệm thời gian, công sức của chuyên gia, cải thiện độ chính xác trong chẩn đoán và điều trị. Nghiên cứu và ứng dụng học giám sát yếu trong phân đoạn ảnh y tế mở ra nhiều hướng nghiên cứu mới trong định hướng nghiên cứu liên ngành.

1.3. Mục tiêu của đề tài

- Nghiên cứu lý thuyết các mô hình học sâu cho bài toán phân đoạn ảnh y khoa.
- Phát triển mô hình học giám sát yếu để phân đoạn khối u não từ ảnh MRI, nhằm tiết kiệm thời gian và công sức gán nhãn dữ liệu.
- Đánh giá hiệu quả mô hình trên các bộ dữ liệu BraTS 2023 nhằm kiểm chứng tính khả thi, tăng độ chính xác và khái quát hóa phát hiện bệnh u não.
- Đề xuất cải tiến để nâng cao độ chính xác và tính khả dụng của mô hình trong thực tiễn, hỗ trợ chẩn đoán y tế hiệu quả hơn, tăng niềm tin cậy vào hệ thống và từ đó ứng dụng hệ thống vào nhiều lĩnh vực trong y tế.

1.4. Nội dung nghiên cứu của đề tài

- Nghiên cứu các kỹ thuật học giám sát yếu để tìm ra phương pháp phù hợp cho dữ liệu gắn nhãn yếu.
- Phát triển mô hình học giám sát yếu sử dụng các kỹ thuật học sâu, huấn luyện với bộ dữ liệu ảnh MRI (BraTS 2023) và áp dụng các phương pháp tối ưu hóa.

- Thực hiện các thực nghiệm đánh giá hiệu suất của mô hình trên các bộ dữ liệu kiểm thử BraTS 2023.
- Dựa trên kết quả đánh giá, đề xuất và thử nghiệm các cải tiến để nâng cao độ chính xác và tính khả dụng của mô hình.

1.5. Phương pháp thực hiện

- Thu thập dữ liệu: Thu thập bộ dữ liệu ảnh MRI của não từ các nguồn công khai
 BraTS 2023. Đảm bảo mô hình có thể học được từ các trường hợp đa dạng của khối u não.
- Tiền xử lý dữ liệu: Chuẩn hóa, loại bỏ nhiễu và áp dụng các kỹ thuật tăng cường dữ liệu như xoay, lật và cắt ảnh để đa dạng hóa dữ liệu huấn luyện. Nhằm làm tăng tốc độ huấn luyện, cải thiện khả năng tổng quát hóa mô hình.
- Thiết kế và xây dựng mô hình: Thiết kế và phát triển mô hình học giám sát yếu (weakly-supervised learning) dựa trên kiến trúc học sâu phù hợp như ViT (Vision Transformer), mô hình gồm có 2 bước: Tạo CAM chất lượng cao (End to End CAM Genaration) và Huấn luyện lại trực tuyến với bộ giải mã cắt gradient (Online Retraining with Gradient Clipping Decoder).

1.6. Kết quả, sản phẩm dự kiến

- Phát triển mô hình học giám sát yếu có khả năng phân đoạn khối u não từ ảnh
 MRI với độ chính xác cao.
- Phát triển công cụ phần mềm tích hợp mô hình phân đoạn, hỗ trợ các bác sĩ trong việc chẩn đoán và điều trị bệnh u não. Giúp tiết kiệm được thời gian, công sức và chi phí.
- Úng dụng rộng rãi mô hình vào thực tế trong lĩnh vực y học.

1.7. Đánh giá

- Đánh giá mô hình: thực hiện các thí nghiệm đánh giá hiệu suất của mô hình trên các bộ dữ liệu kiểm thử BraTS 2023.
- Sử dụng các tiêu chí đánh giá như IoU (Intersection over Union) để đo lường hiệu quả của mô hình.
- So sánh với các phương pháp hiện có: so sánh kết quả đạt được với các phương pháp phân đoạn khối u não hiện có như "Phân đoạn khối u não Diff-Unet" và

"Ánh xạ Lớp Kích hoạt Dựa trên Độ Tin Cậy Mới cho Phân Đoạn Khối U Não MRI (Cfd-CAM)" để xác định ưu điểm và hạn chế của mô hình.

Công trình	Phương pháp	Ưu điểm	Nhược điểm
Phân đoạn	Kết hợp mô hình	Cải thiện độ	Yêu cầu tài
khối u não	khuếch tán (diffusion	chính xác phân	nguyên tính toán
Diff-Unet	model) với kiến trúc	đoạn so với các	lớn, đạt hiệu suất
	U-Net.	phương pháp	thấp trong
		hiện có, có thể	trường hợp phức
		phân đoạn đồng	tạp hoặc dữ liệu
		thời nhiều đối	bị nhiễu.
		tượng. Linh hoạt,	
		có thể áp dụng	
		cho nhiều loại	
		ảnh y tế 3D khác	
		nhau.	
Ánh xạ Lớp	Sử dụng độ tin cậy	Vượt trội hơn so	Sử dụng độ tin
Kích hoạt	của hình ảnh đầu vào	với các phương	cậy của lớp mục
Dựa trên Độ	để ước tính tầm quan	pháp CAM hiện	tiêu để tính toán
Tin Cậy Mới	trọng của từng bản đồ	có trong việc	trọng số cho bản
cho Phân	đặc trưng	phân đoạn khối u	đồ đặc trưng.
Đoạn Khối U		não trên tập dữ	Tuy nhiên, nếu
Não MRI		liệu BraTS 2021	độ tin cậy không
(Cfd-CAM)		và tập dữ liệu	được ước tính
		TCGA-LGG.	chính xác, kết
			quả có thể bị ảnh
			hưởng. Và đạt
			hiệu suất thấp
			trong trường hợp
			dữ liệu bị nhiễu.
Phân Đoạn	Sử dụng mô hình ViT	Cải thiện hiệu	
Khối U Não	(Vision Transformer)	suất của CAM	

Qua	Ånh	cho WSSS (Weakly-	trong WSSS và	
MRI	Sử	supervised Semantic	cải thiện khả	
Dụng	Học	Segmentation).	năng nhận diện	
Giám	Sát	Khám phá đặc tính	các đối tượng	
Yếu		của mô hình ViT đơn	trong hình ảnh.	
		giản và ứng dụng nó	Đồng thời, cải	
		vào WSSS, mô hình	thiện tính linh	
		dựa trên self-	hoạt và hiệu quả	
		attention để xử lý các	của quá trình học	
		hình ảnh. Ngoài ra,	giám sát yếu.	
		nghiên cứu còn đề		
		xuất một bộ giải mã		
		dựa trên ViT, dùng		
		Gradient Clipping để		
		huấn luyện lại CAM		
		để hoàn thành nhiệm		
		vụ WSSS.		

- Hiệu suất và tính khả dụng của mô hình vào thực tiễn.
- Tài liệu tham khảo (tối đa 5).
 - [1] Zhu, L., Li, Y., Fang, J., Liu, Y., Xin, H., Liu, W., & Wang, X. (2023). Weaktr: Exploring plain vision transformer for weakly-supervised semantic segmentation. arXiv preprint arXiv:2304.01184.
 - [2] Xing, Z., Wan, L., Fu, H., Yang, G., & Zhu, L. (2023). Diff-unet: A diffusion embedded network for volumetric segmentation. arXiv preprint arXiv:2303.10326.
 - [3] Dorjsembe, Z., Pao, H. K., Odonchimed, S., & Xiao, F. (2024). Conditional diffusion models for semantic 3D brain MRI synthesis. IEEE Journal of Biomedical and Health Informatics.

- [4] Hyeokjun, K., Yoon, S., H., & Yoon, K., J. (2023). Weakly Supervised Semantic Segmentation via Adversarial Learning of Classifier and Reconstructor. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 11329-11339.
- [5] Lixiang Ru, Heliang Zheng, Yibing Zhan, & Bo, D. (2023). Token Contrast for Weakly-Supervised Semantic Segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 3093-3102.

2. Kế hoạch

Z. Ke noặch		
Nội dung công việc TG dự kiến (ngày)		Ghi chú
1. Thu thập dữ liệu ảnh MRI	8	 Thu thập bộ dữ liệu công khai BraTS 2023 (5 ngày). Phân loại và tổ chức dữ liệu thu thập được (3 ngày).
2. Tiền xử lý dữ liệu	10	 Chuẩn hóa định dạng và kích thước ảnh (3 ngày). Áp dụng các kỹ thuật lọc nhiễu và cải thiện chất lượng ảnh (2 ngày). Thực hiện tăng cường dữ liệu: xoay, lật, cắt ảnh (3 ngày). Chuẩn bị bộ dữ liệu cho quá trình huấn luyện và kiểm thử (2 ngày).
3. Khảo sát và lựa chọn phương pháp học giám sát	6	 Nghiên cứu tổng quan về các phương pháp học giám sát yếu (3 ngày). So sánh mô hình weakly-supervised learning với mô hình CNN, U Net (3 ngày).
4. Phát triển mô hình học máy	33	 - Tạo CAM chất lượng cao (15 ngày). - Đào tạo lại trực tuyến với bộ giải mã cắt gradient (18 ngày).
5. Đánh giá và tối ưu hóa mô hình	2	- Đánh giá hiệu suất của mô hình trên bộ dữ liệu kiểm thử, điều chỉnh và tối ưu hóa mô hình để cải thiện độ chính xác và hiệu quả (2 ngày).
6. Phân tích kết quả và viết bài báo	19	 Phân tích và so sánh kết quả đạt được (3 ngày). Viết bản thảo bài báo khoa học (14 ngày). Sửa đổi và hoàn thiện bài báo dựa trên phản hồi từ giảng viên hướng dẫn (3 ngày). Chuẩn bị và nộp tại hội nghị SOICT 2024 (1 ngày). Sửa đổi và hoàn thiện bài báo dựa trên phản hồi ban giám khảo hội nghị. (2 ngày)
7. Phân tích kết quả và viết luận văn.	27	 Thu thập dữ liệu và tài liệu cần thiết cho việc viết luận văn (4 ngày). Viết bản thảo luận văn (16 ngày). Hoàn thiện và sửa đổi bản thảo luận văn dựa trên phản hồi từ giảng viên hướng dẫn (5 ngày). Hoàn thiện và nộp bản thảo luận văn (2 ngày).
8. Làm Slides báo cáo	7	 - Làm slides báo cáo và nhận phản hồi giảng viên hướng dẫn (4 ngày). - Hoàn thiện và sửa đổi slides báo cáo dựa trên phản hồi từ giảng viên hướng dẫn (3 ngày).
Tổng cộng 112		

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc

BẢN THUYẾT MINH ĐỀ CƯƠNG

Tên đề tài luận văn: PHÂN ĐOẠN KHỐI U NÃO QUA ẢNH MRI SỬ DỤNG HỌC GIÁM SÁT

YÉU.

Học viên: Trương Thanh Luân

MSHV: 220201016

Ngành: Công nghệ Thông tin

Giảng viên hướng dẫn: TS. Dương Việt Hằng

Giang vien naong dan. 15. Duong viet Hang				
Các góp ý của Hội đồng chuyên môn	NỘI DUNG CŨ, trang số mấy?	NỘI DUNG SAI	U CHỈNH SỬA, trang	g số mấy?
Bổ sung phần nghiên cứu tổng quan về bài toán của các tác giả trước đây. Tìm hiểu các ưu điểm nhược điểm của các công trình này.	•	1.1. Tổng quan tình hìn Phân đoạn khối u não từ trình chẩn đoán và điều t xác cao vì các khối u có dạng trong não. Việc xá giúp các bác sĩ đưa ra ph có nhiều nghiên cứu ứng phát hiện và điều trị u n đang tồn tại nhiều hạn ch giảm hiệu suất huấn luyết tạp đồi hỏi nhiều tài ng nhân, ứng dụng mô hình Các công trình nghiên c điều trị bệnh u não: Phương pháp	ảnh MRI là một bước crị bệnh u não. Bài toán thể có hình dạng, kích c định đúng vị trí và k ương pháp điều trị hiệu g dụng trí tuệ nhân tạo ão dù đạt được những nế như thiếu dữ liệu đư ện của các mô hình, kiếu guyên, lo ngại về quyền vào thực tế chưa nhiề	này đòi hỏi sự chính thước và vị trí rất đa ích thước của khối u u quả hơn. Vì vậy, đã và học máy vào việc tiến bộ, nhưng cũng ợc gán nhãn làm suy ến trúc mô hình phức ch riêng tư của bệnh u,
	I	I naong phap	o u dicin	1 thuy c dicin

1. Mô hình mạng học

đồng huấn luyện đối

kháng (Adversarial Co-

Giải quyết vấn đề

thiếu các modal (các

loại ảnh chụp não,

Mô hình có cấu

trúc phức tạp với

nhiều thành phần

training Network - ACN): phương pháp này nhằm mục đích kết hợp học tập từ cả các modal đầy đủ và các modal thiếu để bổ sung cho nhau về mặt biểu diễn miền và đặc trưng, cũng như khôi phục thông tin bị thiếu. Sử dụng bộ dữ liệu BraTS 2018 để huấn luyện mô hình.

mỗi loại cho thấy các đặc điểm khác nhau của mô và cấu trúc não) trong phân đoạn khối u não từ ảnh MRI. Sử dung huấn luyện học đa modal và đơn modal bổ sung cho nhau nhằm khắc phục thiếu tình trang thông tin và cải thiên kết quả dư đoán so với các phương pháp hiện tai trước đó.

cần được thiết lập và tối ưu hóa đồng thời. Phương pháp yêu cầu huấn luyện các mô hình "dành riêng" cho từng tình huống thiếu modal, điều này có thể tăng chi phí huấn luyện.

Phân đoạn u não từ ảnh
 MRI sử dụng mô hình
 Transformer

(mmFormer): sử dụng bộ mã hóa kết hợp giữa tích chập và Transformer để xử lý từng loại ảnh MRI, sau đó liên kết các đặc trưng từ các loại khác nhau bằng Inter-modal Transformer. Cuối cùng, sử dụng bộ giải mã upsampling để tạo ra kết quả phân đoạn u não chính xác ngay cả khi dữ

Cải thiện độ chính xác trong phân đoạn u não ngay cả khi bộ dữ liệu không có đầy đủ các loại hình ảnh (T1, T1c, T2, FLAIR), tổng quát hóa mô hình và sử dụng Transformer để cải thiện chất lượng phân đoạn.

Mặc dù có thể xử lý các trường hợp thiếu dữ liệu trong quá trình suy luận, nhưng vẫn cần các bộ dữ liệu đầy đủ để huấn luyện mô hình hiệu quả.

_		
liệu thiếu hụt. Sử dụng bộ		
dữ liệu BraTS 2018 để		
huấn luyện mô hình.		
3. Phân đoạn u não trên	Cải thiện độ chính	Việc kết hợp 3D
hình ảnh MRI sử dụng	xác của phân đoạn u	CNN và
mạng nơ-ron tích chập	não bằng cách khai	Transformer làm
3D (3D CNN) kết hợp	thác cả thông tin cục	tăng tính phức tạp
với Transformer	bộ và toàn cục từ dữ	của mô hình và
(TransBTS): sử dụng cấu	liệu hình ảnh MRI	yêu cầu tài nguyên
trúc mã hóa-giải mã	3D	tính toán lớn, yêu
(encoder-decoder) trong		cầu dữ liệu MRI
đó phần mã hóa sử dụng		3D chất lượng
3D CNN để trích xuất các		cao, đạt hiệu suất
đặc trưng không gian 3D		thấp trong trường
và Transformer để mô		hợp phức tạp hoặc
hình hóa các mối quan		dữ liệu bị nhiễu.
hệ. Sử dụng bộ dữ liệu		
BraTS 2019 và BraTS		
2020 để huấn luyện mô		
hình.		
4. Phương pháp Diff-	Cải thiện độ chính	Yêu cầu tài
Unet: thực hiện phân	xác phân đoạn so	nguyên tính toán
đoạn ảnh y tế 3D đa đối	với các phương	lớn, đạt hiệu suất
tượng, áp dụng cho các	pháp hiện có, có thể	thấp trong trường
bài toán như phân đoạn	phân đoạn đồng thời	hợp phức tạp hoặc
khối u não từ MRI, phân	nhiều đối tượng.	dữ liệu bị nhiễu.
đoạn gan và khối u gan từ	Linh hoạt, có thể áp	
CT, và phân đoạn đa cơ	dụng cho nhiều loại	
quan từ CT bụng. Sử	ảnh y tế 3D khác	
dụng bộ dữ liệu BraTS	nhau.	
		I

		S01. Mẫu 2. Đề cương LVThS			
		2020 để huấn luyện mô hình.			
		5. Ánh xạ Lớp Kích hoạt	Cfd-CAM vượt trội	Cfd-CAM sử	
		Dựa trên Độ Tin Cậy	hơn so với các	dụng độ tin cậy	
		Mới cho Phân Đoạn Khối	phương pháp CAM	của lớp mục tiêu	
		U Não MRI (Cfd-CAM):	hiện có trong việc	để tính toán trọng	
		Cfd-CAM sử dụng độ tin	phân đoạn khối u	số cho bản đồ đặc	
		cậy của hình ảnh đầu vào	não trên tập dữ liệu	trưng. Tuy nhiên,	
		để ước tính tầm quan	BraTS 2021 và tập	nếu độ tin cậy	
		trọng của từng bản đồ đặc	dữ liệu TCGA-	không được ước	
		trưng. Sử dụng bộ dữ liệu	LGG.	tính chính xác, kết	
		BraTS 2021 và tập dữ		quả có thể bị ảnh	
		liệu TCGA-LGG để huấn		hưởng. Và đạt	
		luyện mô hình.		hiệu suất thấp	
				trong trường hợp	
				dữ liệu bị nhiễu.	
Kết quả Bổ sung,		1.7. Đánh giá			
nghiên cứu sẽ được so	trang 5	Đánh giá mô hình: thực hiện các thí nghiệm đánh giá hiệu suất của			
sánh với		mô hình trên các bộ dữ liệu kiểm thử BraTS 2023.			
những các công trình		Sử dụng các tiêu chí đánh giá như IoU (Intersection over Union) để			
nào?		đo lường hiệu quả của mô hình.			
ļ		 So sánh với các phương pháp hiện có: so sánh kết quả đạt được với 			

So sánh với các phương pháp hiện có: so sánh kết quả đạt được với các phương pháp phân đoạn khối u não hiện có như "Phân đoạn khối u não Diff-Unet" và "Ánh xạ Lớp Kích hoạt Dựa trên Độ Tin Cậy Mới cho Phân Đoạn Khối U Não MRI (Cfd-CAM)" để xác định ưu điểm và hạn chế của mô hình.

Công trình	Phương pháp	Ưu điểm	Nhược điểm	
Phân đoạn	Kết hợp mô hình	Cải thiện độ	Yêu cầu tài	
khối u não	khuếch tán	chính xác phân	nguyên tính	
Diff-Unet	(diffusion model)	đoạn so với các	toán lớn, đạt	

	với kiến trúc U-	phương pháp	hiệu suất thấp
	Net.	hiện có, có thể	trong trường
		phân đoạn đồng	hợp phức tạp
		thời nhiều đối	hoặc dữ liệu
		tượng. Linh	bị nhiễu.
		hoạt, có thể áp	
		dụng cho nhiều	
		loại ảnh y tế 3D	
		khác nhau.	
Ánh xạ Lớp	Sử dụng độ tin cậy	Vượt trội hơn	Sử dụng độ tin
Kích hoạt	của hình ảnh đầu	so với các	cậy của lớp
Dựa trên Độ	vào để ước tính tầm	phương pháp	mục tiêu để
Tin Cậy	quan trọng của	CAM hiện có	tính toán
Mới cho	từng bản đồ đặc	trong việc phân	trọng số cho
Phân Đoạn	trưng	đoạn khối u não	bản đồ đặc
Khối U Não		trên tập dữ liệu	trung. Tuy
MRI (Cfd-		BraTS 2021 và	nhiên, nếu độ
CAM)		tập dữ liệu	tin cậy không
		TCGA-LGG.	được ước tính
			chính xác, kết
			quả có thể bị
			ảnh hưởng.
			Và đạt hiệu
			suất thấp
			trong trường
			hợp dữ liệu bị
			nhiễu.
Phân Đoạn	Sử dụng mô hình	Cải thiện hiệu	
Khối U Não	ViT (Vision	suất của CAM	
Qua Ånh	Transformer) cho	trong WSSS và	
MRI Sử	WSSS (Weakly-	cải thiện khả	

Ī	Dụng	Нос	supervised	năng nhận diện	
	Giám	Sát	Semantic	các đối tượng	
	Yếu		Segmentation).	trong hình ảnh.	
			Khám phá đặc tính	Đồng thời, cải	
			của mô hình ViT	thiện tính linh	
			đơn giản và ứng	hoạt và hiệu quả	
			dụng nó vào	của quá trình	
			WSSS, mô hình	học giám sát	
			dựa trên self-	yếu.	
			attention để xử lý		
			các hình ảnh. Ngoài		
			ra, nghiên cứu còn		
			đề xuất một bộ giải		
			mã dựa trên ViT,		
			dùng Gradient		
			Clipping để huấn		
			luyện lại CAM để		
			hoàn thành nhiệm		
			vụ WSSS.		

• Hiệu suất và tính khả dụng của mô hình vào thực tiễn.

TPHCM, ngày 05 tháng 08 năm 2024 Học viên ký, ghi rõ họ tên

Ý kiến của GVHD (họ tên, chữ ký)