CO-205: Discrete Structures Tutorial #2

<u>Summary</u>					
set	a well defined (unordered) collection				
	of distinct objects				
element or	an object in a set				
member of a set					
roster method	a method that describes a set by listing its elements				
set builder notation	the notation that describes a set by				
Set builder instation	stating a property an element must				
	have to be a member				
Ø (empty set, null	the set with no members				
set)	.1				
universal set	the set containing all objects under consideration				
Venn diagram	a graphical representation of a set or				
, chin diagram	sets				
S = T (set equality)	S and T have the same elements				
$S \subseteq T$ (S is a subset	every element of S is also an element				
of <i>T</i>)	of T				
$S \subset T$ (S is a proper	S is a subset of T and $S \neq T$				
subset of T)					
finite set	a set with n elements, where n is a				
infinite set	nonnegative integer a set that is not finite				
S (the cardinality	the number of elements in S				
of S)	the number of elements in 5				
S*	the set of all subsets of S				
(the power set of S)	the set of an subsets of s				
$A \cup B$ (the union of	the set containing those elements that				
A and B)	are in at least one of A and B				
$A \cap B$	the set containing those elements that				
(the intersection of	are in both A and B .				
A and B)					
A - B (complement	the set containing those elements that				
of B with respect to	are in A but not in B				
A (or the difference					
of A and B))	4				
\overline{A} (the complement	the set of elements in the universal set that are not in <i>A</i>				
$\frac{\operatorname{of} A)}{A \bigoplus B}$	the set containing those elements in				
(the symmetric	exactly one of A and $B(not in both)$				
difference of A and	exactly one of 11 and 2 (not in bone)				
B)					
Inclusion Exclusion	If A and B are finite sets then				
Principle	$ A \cup B = A + B - A \cap B $				
	Similarly $ A \cup B \cup C = A + B +$				
	$ C - A \cap B - A \cap C - B \cap C +$				
	$ A \cap B \cap C $				
membership table	a table displaying the membership of elements in sets				
[x] (floor function)	the largest integer not exceeding x				
[x] (ceiling	the smallest integer greater than or				
function)	equal to x				
string	a finite sequence				
empty string	a string of length zero				
recurrence relation	a equation that expresses the n^{th} term				
	a_n of a sequence in terms of one or				
	more of the previous terms of the				
	sequence for all integers <i>n</i> greater				
	than a particular integer				

	A function on a set may be thought of			
	as a set of rules that assign some			
	'values' to each element of the set. If			
	A is a subset of the Universal set, U,			
	the characteristic function f_A of A is			
	defined as $f_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$			
	Characteristic function is used for			
	computer representation of sets.			
Characteristic	Characteristic functions of subsets			
Function	satisfy the following properties: -			
1 4411041041	$f_{A\cap B} = f_A \cdot f_B$			
	i.e. $f_{A\cap B}(x) = f_A(x) \cdot f_B(x) \forall x$			
	$f_{A \cup B} = f_A + f_B - f_A \cdot f_B$			
	i.e. $f_{A \cup B}(x) = f_A(x) + f_B(x)$			
	$-f_A(x)\cdot f_B(x) \forall x$			
	$f_{A \oplus B} = f_A + f_B - 2f_A \cdot f_B$			
	i.e. $f_{A \oplus B}(x) = f_A(x) + f_B(x)$			
	$-2 f_A(x)$			
	$f_B(x) \ \forall x$			
Properties of	If a, b, c are integers: -			
divisibility of	$((a b) \land (a c)) \rightarrow a (b+c)$			
Integers	$((a b) \land (a c) \land (b>c)) \rightarrow$			
	$ a (b-c) ((a b) \lor (a c)) \rightarrow a b \cdot c $			
	$ ((a b) \lor (a c)) \rightarrow a b \lor c $ $ ((a b) \land (b c)) \rightarrow a c $			
GCD(a,b) or	$\bullet ((a \in Z^+) \land (b \in Z^+)) \rightarrow$			
HCF(a,b)	$(GCD(a,b) = GCD(a,b \pm a))$			
1101 (4, 5)	,			
	• Euclidean Algorithm to find $GCD(a,b)$			
LCM(a,b)	` '			
	• If $p_1, p_2,, p_k$ are the prime factors of either a or b then			
	a and b can be represented as			
	$a = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k} \text{ and }$			
	$b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_k^{b_k}$ $b = p_1^{b_1} \cdot p_2^{b_2} \cdots p_k^{b_k}$			
	where some a_i and b_i may zero. Then it follows that			
	$HCE(a, b) = \min(a_1, b_1)$			
	$HCF(a,b) = p_1^{\min(a_1,b_1)} \cdot \cdots$			
	$p_2^{\min(a_2,b_2)}\cdots p_k^{\min(a_k,b_k)}$			
	$LCM(a,b) = p_1^{\max(a_1,b_1)} \cdot p_2^{\max(a_2,b_2)} \cdots p_k^{\max(a_k,b_k)}$			
	$n_2^{\max(a_2,b_2)} \cdots n_k^{\max(a_k,b_k)}$			
	$ \stackrel{F2}{\cdot \cdot} HCF(a,b) \cdot LCM(a,b) = a \cdot b $			
Discrete Structure	A collection of objects with			
	operations defined on them and the			
	accompanying properties form a			
	mathematical structure or system.			
	A structure is closed with respect to			
	an operation if that operation always			
	produces another member of the			
	collection of objects.			

Counting Principles	Multiplication principle of counting						
	permutation: an ordered arrangement						
	of the elements of a set						
	r-permutation: an ordered						
	arrangement of r elements of a set						
	$^{n}P_{r}$: the number of r-permutations of						
	a set with n elements						
	r-combination: an unordered						
	selection of r elements of a set						
	${}^{n}C_{r}$: the number of r-combinations of						
	a set with n elements						
Pigeonhole	When more than <i>k</i> pigeons are						
principle:	assigned to k pigeon holes, then at						
	least one pigeon hole must have more						
	than one pigeon.						
Generalized /	If <i>n</i> pigeons are assigned to <i>m</i> pigeon						
Extended	holes (given: $n>m$), then one of the						
pigeonhole	pigeon holes must contain at least						
principle	$\left \frac{n-1}{m} \right + 1$ pigeons.						
	Alternately						
	If n pigeons are assigned to m pigeon						
	holes (given: $n > m$), then one of the						
	pigeon holes must contain at least						
	$\lceil N/k \rceil$ pigeons.						
	$\frac{n}{\sum}$						
	$(a+b)^n = \sum_{r=0}^n {^n}\mathcal{C}_r \ a^{n-r} \ b^r$						
Binomial Theorem	r=0						
Dinomai Theorem	binomial coefficient ${}^{n}C_{r}$, is also the						
	number of <i>combinations</i> of <i>r</i>						
	elements of a set with <i>n</i> elements.						

Pascal's Identity	$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}, \forall n > 0$
	and $0 \le n \le k$

Set Identities

<u>Set identities</u>					
Identity	Name				
$A \cap U = A$	Idantity laws				
$A \cup \emptyset = A$	Identity laws				
$A \cup U = U$	Domination laws				
$A \cap \emptyset = \emptyset$	Domination laws				
$A \cup A = A$	Idampotant laws				
$A \cap A = A$	Idempotent laws				
$\overline{ar{A}}=A$	Complementation law				
$A \cup B = B \cup A$	Commutative laws				
$A \cap B = B \cap A$	Commutative laws				
$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws				
$A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws				
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws				
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws				
$A \cap B = A \cup B$	De Morgan's laws				
$A \cup B = A \cap B$	De Morgan 3 laws				
$A \cup (A \cap B) = A$	Absorption laws				
$A\cap (A\cup B)=A$	Absorption laws				
$A \cup A = U$	Complement laws				
$A \cap A = \emptyset$	Complement laws				
The set of national numbers is countable					

- The set of rational numbers is countable.
- The set of real numbers is uncountable.

- 1. List the members of these sets.
 - a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
 - b) $\{x \mid x \text{ is a positive integer less than } 12\}$
 - c) $\{x \mid x \text{ is the square of an integer and } x < 100\}$
 - d) $\{x \mid x \text{ is an integer such that } \bar{x}^2 = 2\}$
- 2. Use set builder notation to give a description of each of these sets.
 - a) {0, 3, 6, 9, 12}
 - b) {-3,-2,-1, 0, 1, 2, 3}
 - c) $\{m, n, o, p\}$
- 3. Determine whether each of these pairs of sets are equal.
 - a) {1, 3, 3, 3, 5, 5, 5, 5, 5}, {5, 3, 1}
 - b) {{1}}, {1, {1}}
- c) Ø, {Ø}
- 4. Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$, and $D = \{4, 6, 8\}$. Determine which of these sets are subsets of the other set(s).
- 5. For each of the following sets, determine whether 2 is an element of that set.
 - a) $\{x \in \mathbb{R} \mid x \text{ is an integer greater than } 1\}$
 - b) $\{x \in \mathbb{R} \mid x \text{ is the square of an integer}\}$
 - c) $\{2,\{2\}\}$
- d) {{2},{{2}}}}
- e) {{2},{2,{2}}}
- f) {{{2}}}

- 6. Determine whether each of these statements is true or false.
 - a) $x \in \{x\}$
- b) $\{x\} \subseteq \{x\}$
- c) $\{x\} \in \{x\}$

- d) $\{x\} \in \{\{x\}\}$
- e) $\emptyset \subseteq \{x\}$
- f) $\emptyset \in \{x\}$
- 7.1. What is the cardinality of each of these sets?
 - a) {*a*}
- b) {{*a*}}
- c) $\{a, \{a\}\}$
- d) $\{a, \{a\}, \{a, \{a\}\}\}$
- 7.2. What is the cardinality of each of these sets?
 - a) Ø
- b) {Ø}
- c) $\{\emptyset, \{\emptyset\}\}$
- d) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$
- 8. Let $A = \{a, b, c, d\}$ and $B = \{y, z\}$. Find
 - a) $A \times B$
- b) $B \times A$.
- 9. How many different elements does $A \times B$ have if A has m elements and B has n elements?
- 10. How many different elements does $A \times B \times C$ have if A has m elements, B has n elements, and C has p elements?
- 11. Translate each of these quantifications into English and determine its truth value.
 - a) $\forall x \in \mathbb{R} \ (x^2 \neq -1) \ b) \ \exists x \in \mathbb{Z} \ (x^2 = 2)$
 - c) $\forall x \in \mathbb{Z} (x^2 > 0)$ d) $\exists x \in \mathbb{R} (x^2 = x)$

- 12. Translate each of these quantifications into English and determine its truth value.
 - a) $\exists x \in \mathbb{R} \ (x^3 = -1)$ b) $\exists x \in \mathbb{Z} \ (x + 1 > x)$
 - c) $\forall x \in \mathbb{Z} (x 1 \in \mathbb{Z}) d) \forall x \in \mathbb{Z} (x^2 \in \mathbb{Z})$
- 13. Find the truth set of each of these predicates where the domain is the set of integers.
 - a) P(x): $x^2 < 3$ b) Q(x): $x^2 > x$
 - c) R(x): 2x + 1 = 0
- 14. Find the truth set of each of these predicates where the domain is the set of integers.
 - a) P(x): $x^3 \ge 1$ b) Q(x): $x^2 = 2$
 - c) R(x): $x < x^2$
- 15. Let *A* be the set of students who live within 1 km of University and let *B* be the set of students who walk to

classes. Describe the students in each of these sets.

- a) $A \cap B$ b) $A \cup B$
- c) A B d) B A
- 16. Suppose that *A* is the set of Under-graduates at your University and *B* is the set of students in discrete mathematics at your University. Express each of these sets in terms of *A* and *B*.
 - a) the set of Under-graduates taking discrete mathematics in your University
 - b) the set of Under-graduates at your University who are not taking discrete mathematics
 - c) the set of students at your University who either are Under-graduates or are taking discrete mathematics
 - d) the set of students at your University who either are not Under-graduates or are not taking discrete mathematics
- 17. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$. Find
 - a) $A \cup B$. b) $A \cap B$.
 - c) A B. d) B A.
- 18. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$. Find
 - a) $A \cup B$. b) $A \cap B$.
 - c) A B. d) B A.
- 19. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B \cup C)$
- b) $\overline{A} \cap \overline{B} \cap \overline{C}$
- c) $(A B) \cup (A C) \cup (B C)$
- 20. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
 - a) $A \cap (B C)$ b) $(A \cap B) \cup (A \cap C)$
 - c) $(A \cap \bar{B}) \cup (A \cap \bar{C})$

- 21. What can you say about the sets A and B if we know that
 - a) $A \cup B = A$?
- b) $A \cap B = A$?
- c) A B = A?
- d) $A \cap B = B \cap A$?
- e) A B = B A?
- 22. The symmetric difference of A and B, denoted by $A \oplus B$, is the set containing those elements in either A or B, but not in both A and B.
 - a). Find the symmetric difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$.
 - b). Find the symmetric difference of the set of students studying computer science in the University and the set of students studying mathematics in the university.
 - c). Draw a Venn diagram for the symmetric difference of the sets A and B.
 - d). Show that $A \oplus B = (A \cup B) (A \cap B)$.
 - e). Show that $A \oplus B = (A B) \cup (B A)$.
- 23. Let A_i be the set of all nonempty bit strings (that is, bit strings of length at least one) of length not exceeding i. Find
 - a) $\bigcup_{i=1}^n A_i$
- b) $\bigcap_{i=1}^n A_i$
- 24. Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express each of these sets with bit strings where the i^{th} bit in the string is 1 if i is in the set and 0 otherwise.
 - a) {3, 4, 5}
 - b) {1, 3, 6, 10}
 - c) {2, 3, 4, 7, 8, 9}
- 25. Using the same universal set as in the last problem, find the set specified by each of these bit strings.
 - a) 11 1100 1111
 - b) 01 0111 1000
 - c) 10 0000 0001
- 26. What subsets of a finite universal set do these bit strings represent?
 - a) the string with all zeros
 - b) the string with all ones
- 27. Find the set corresponding to the sequences given below:
 - a) 2, 1, 2, 1, 2, 1, 2, 1
 - b) 0, 2, 4, 6, 8, 10, ...
 - c) aabbccddeeff...zz
 - d) abbcccdddeeeee
- 28. Write the 1st 4 terms beginning n=1 for the sequences whose general term is given below:
 - a) $a_n = 5^n$
 - b) $b_n = 3n^2 + 2n 6$

- c) $c_1 = 2.5$, $c_n = c_{n-1} + 1.5$
- d) $d_1 = -3$, $d_n = -2d_{n-1} + 1$
- 29. Write the formula for the n^{th} term of the following sequences and identify whether the formula is explicit or recursive:
 - a) 1, 3, 5, 7, 9, ...
 - b) 0, 3, 8, 15, 24, 35, ...
 - c) 1, -1, 1, -1, 1, -1, ...
 - d) 0, 2, 0, 2, 0, 2, ...
 - e) 1, 4, 7, 10, 13, 16, ...
 - f) 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$,...
 - g) 2, 5, 8, 11, 14, 17,
 - h) 2, 5, 7, 12, 19, 31, ...
- 30. Identify each of the following set as finite, countable or uncountable
 - a) $A = \{x | x \text{ is a real number and } 0 < x < 1\}$
 - b) $B = \{x | x \text{ is a real number and } x^2 + 1 = 0\}$
 - c) $C = \{x | x = 4m, m \in Z\}$
 - d) $D = \{(x,3)|x \text{ is an english word of length 3}\}$
 - d) $E = \{x | x \in Z \text{ and } x^2 \le 100\}$
- 31. Let = $\{ab, bc, ba\}$. Which of the strings given below belong to A^* ?
 - a) ababab
 - b) abc
 - c) abba
 - d) abbcbaba
 - e) bcabbab
 - f) abbbcba
- 32. Let = $\{b, d, e, g, h, k, m, n\}$, $B = \{b\}$, $C = \{d, g, m, n\}$ and $D = \{d, k, n\}$.
 - a) What is $f_B(b)$ and $f_C(e)$?
 - b) Find a sequence of length 8 that corresponds to $f_{\rm B}$, $f_{\rm C}$ and $f_{\rm D}$.
 - c) Represent $B \cup C$, $C \cup D$ and $C \cap D$ by arrays of zeroes and ones.
- 33. Find the first five elements of a function, *A* defined by the recursive function given below; assuming that the function is defined for all positive integers: -

$$A(0) = 1$$
 , $A(1) = 2$, $A(N+2) = A(N)^2 + A(N+1)$, $N \ge 0$.

- 34. In each part, determine whether the structure has a closure property with respect to the operation mentioned against each.
 - (a) [sets, ∪,∩, _] ∪
 - (b) [sets, ∪,∩, _]
 - (c) $[4 \times 4 \text{ matrix}, +, *, ^T]$ multiplication
 - (d) $[3 \times 5 \ matrix, +, *, ^T]$ transpose

- 35. What is the identity element, if it exists, for each binary operation in the structures given below: -
 - (a) [real numbers, + , * , $\sqrt{}$]

 - (c) [$\{0,1\}$, ∇ , \square ,*] given that ∇ , \square and * are defined for the set $\{0,1\}$ by the following table:-

0	0	1		∇	0 0 0	1	x^*	x
0	0	1	<u>-</u>	0	0	0	0	1
1	1	0		1	0	1	1	0

Permutations

- 36. A bank password consists of 3 letter of the English alphabet followed by 3 digits. How many different passwords are there?
- 37. In how many ways can a square, a cube, a triangle and a pentagon be arranged in a row.
- 38. How many different sequences are possible, when a coin is tossed five times?
- 39. How many different sequences are possible, when a fair 6-sided dice is tossed four times?
- 40. In how many ways can 6 men and 6 women be seated in a row, if
 - (a) any person can sit next to any other person?
 - (b) men and women occupy alternate seats?
- 41. How many different arrangements of the letter BOUGHT can be formed if the vowels must be kept next to each other?
- 42. How many different arrangements of the letter AEROPLANE can be formed if the vowels must be kept next to each other?
- 43. In how many ways can 7 people be seated in a circle?

Combinations

- 44. In how many ways can the students welfare committee be formed if 3 faculty members and 2 students are to be selected from 7 faculty members and 8 students?
- 45. In how many ways can a 4-card hand be dealt from a deck of 52 cards?
- 46. A bag contains 8 red pens and 7 black pens. In how many ways can 5 pens be chosen so that
 - (a) all 5 are red?
 - (b) al 5 are black?
 - (c) 2 are red and 3 are black?

- 47. In how many ways can the students' council of 6 students be selected from a group of 10 students, if one student is to be designated as the President of the students' council?
- 48. In how many ways can you choose 3 of the available 6 snacks and 2 of the 6 beverages while placing the order for a evening get-together?

Pigeonhole Principle

- 49. Show that if any two numbers are chosen from A= $\{x | 1 \le x \le 8\}$, then at least two of them will add up to 9.
- 50. Show that it is possible to select 5 students out of 30 such that all 5 were born on the same day of the week.

Binomial Theorem
51. What is the coefficient of x^8y^9 in the expansion of $(3x + 2y)^{17}$?