

Class XII Physics

Sample Question Paper

(Applicable for March 2016 Examination)

(Marking Scheme)

Time Allowed: 3 Hours Maximum Marks: 70

Section A

1.

Inside (1/2)
Outside (1/2)

2. (i) Cu (metals, alloys) (1/2)

(ii) Si (semiconductor) (1/2)

3. (i) A (1/2)

(ii) Capacitor (1/2)

4. $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}, \frac{1}{f} = (\frac{\mu l}{\mu m} - 1)(\frac{1}{R1} - \frac{1}{R2})$ (1/2)

If μ_m increases, 1/f decreases , \because v increases. (1/2)

5. LAN (1)

SECTION B

6.
$$\boldsymbol{\varepsilon}_{eq} = \left(\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}\right) / \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$
 (1/2)

$$\mathbf{\varepsilon}_{\text{eq}} = (10/10 - 2/5)/(1/10 + 1/5) \tag{1}$$

$$\mathbf{\varepsilon}_{\mathrm{eq}} = 2\mathbf{V} \tag{1/2}$$

7.
$$I_1 = I_0/2$$
 (1/2)

$$I_2 = I_1 \cos^2 60^0 \tag{1/2}$$

$$I_2 = I_0/8 \tag{1}$$

OR

7. Huygens' Principle (1)

Ray diagram using Huygen's construction (1)

8.
$$P = 5 \times 10^{-3} \text{ W}$$

$$n=\frac{P}{E},$$

$$E = \frac{P}{n} = 6.25 \text{ X } 10^{-19} \text{ J}$$
 (1/2)

$$E = 3.9 \text{ eV}$$
 (1/2)

$$W_0 = E - eV_0$$
 (1/2)
= (3.9 - 2) eV_0

$$W_0 = 1.9 \text{ eV}$$
 (1/2)

9.
$$R = Ro e^{-\lambda t}$$
 (1/2)

 $ln R = ln Ro - \lambda t$

$$ln R = -\lambda t + ln Ro$$
(1/2)

slope of $\ln R \text{ v/s t is '-}\lambda'$

$$-\lambda = \frac{0 - 1.52}{218 - 164} \tag{1/2}$$

$$\lambda = 0.028 \text{ minute}^{-1}$$
 (1/2)

	Frequency range	Use
Ground wave	500-1500KHz (1/2)	Standard AM broadcast (1/2)
Space wave	Above 40 MHz (1/2)	Television (1/2)

SECTION C

11. (i) at A,
$$E = \frac{\sigma}{2\varepsilon\rho}$$
 (1/2)

$$E = 1.1 \times 10^{28} \text{ N/C}$$
 (1/2)

Directed away from the sheet
$$(1/2)$$

(ii) Point Y
$$(1/2)$$

Because at 50cm, the charge sheet acts as a finite sheet and thus the magnitude remains same towards the middle region of the planar sheet.

(1)

12. (i) V = Ir (without voltmeter) R_v

$$V' = \frac{I r Rv}{r + Rv} = \frac{I r}{1 + \frac{r}{Rv}}$$
 (1/2)

$$V' < V \tag{1/2}$$

(ii) Percentage error

$$\left(\frac{V-V_{I}}{V}\right) \times 100 \tag{1/2}$$

$$= \left(\frac{\mathbf{r}}{\mathbf{r} + \mathbf{R}\mathbf{v}}\right) \mathbf{X} \, 100 \tag{1}$$

(iii)
$$Rv \rightarrow \infty$$
, $V' = I r = V$ (1/2)

OR

12 (a)
$$I = \frac{\varepsilon}{R + \frac{\rho_1 l}{A_1}}$$
 for Set A (1/2)

$$I = \frac{\varepsilon}{R + \frac{\rho_1 l}{2A_1} + \frac{\rho_2 l}{2A_2}} \text{ for set B}$$
 (1/2)

Equating the above two expressions and simplifying

$$\frac{\rho 1}{A1} = \frac{\rho 2}{A2} \tag{1/2}$$

(b) Potential gradient of the potentiometer wire for set A, $K = I_{A1}^{\rho 1}$

Potential drop across the potentiometer wire in set B

$$V = I \left(\frac{\rho 1 l}{2A1} + \frac{\rho 2 l}{2A2} \right)$$

$$V = \frac{l}{2} \left(\frac{\rho 1}{A_1} + \frac{\rho 2}{A_2} \right) l \tag{1/2}$$

$$K' = \frac{I}{2} \left(\frac{\rho 1}{A_1} + \frac{\rho 2}{A_2} \right), \text{ using the condition obtained in part (i)}$$
 (1/2)

$$K' = I \frac{\rho 1}{A1}$$
, which is equal to K.

Therefore, balancing length obtained in the two sets is same. (1/2)

Resonance condition (1)

(ii) Particle will accelerate and decelerate alternately. However, the radius of the path will remain unchanged (1)

14.
$$\varepsilon = -\frac{d\emptyset}{dt}$$
,

$$\epsilon = -0.023 \text{ V}$$
 ,

 $I = \varepsilon / R = -2.7 \text{ mA for } 0 < t < 2s.$

	0 <t<2s< th=""><th>2<t<4s< th=""><th>4<t<6s< th=""></t<6s<></th></t<4s<></th></t<2s<>	2 <t<4s< th=""><th>4<t<6s< th=""></t<6s<></th></t<4s<>	4 <t<6s< th=""></t<6s<>
ε (V)	-0.023	0	+0.023
I (A)	-2.7	0	+2.7

15.

	Type of wave	Application
(a)	Gamma rays (1/2)	Treatment of tumors (1/2)
(b)	Radio waves (1/2)	Radio and television Communication systems (1/2)
(c)	X- rays (1/2)	Study of crystals (1/2)

16.
$$T_2P = D + x$$
, $T_1P = D - x$ (1/2)

$$S_{1} P = [(S_{1}T_{1})^{2} + (PT_{1})^{2}]^{1/2}$$

$$= [D_{2} + (D - x)^{2}]^{1/2}$$

$$S_{2}P = [D^{2} + (D + x)^{2}]^{1/2}$$
(1/2)
(1/2)

$$= [D_2 + (D - x)^2]^{1/2}$$
 (1/2)

$$S_2P = [D^2 + (D+x)^2]^{1/2}$$
 (1/2)

Minima will occur when
$$S_2P - S_1P = \lambda/2$$
 (1/2)

$$D = \frac{\lambda}{2(\sqrt{5} - 1)} \tag{1/2}$$

17.
$$\frac{1}{f_e} = \frac{1}{v_e} - \frac{1}{u_e}$$
 solving $u_e = -4.2$ cm (1)

$$\frac{1}{f_0} = \frac{1}{v_0} - \frac{1}{u_0}$$
, solving $u_0 = -1.1$ cm (1)

$$m = \frac{v}{u} \left(1 + \frac{D}{fe} \right) = -44 \tag{1}$$

18.Explanation of Photo electric effect	(1)
Explanation of the effect using particle concept	(1)
Explanation of the failure of wave theory in the explanation	(1)
19. $\text{mv}^2/\text{r} = e^2/4\pi\epsilon_0 r^2$	
$v^2 = e^2 / m 4\pi \varepsilon_0 r$	(1/2)
Bohr's quantisation condition	
$Mvr = nh/2\pi$	(1/2)
Solving, $v = e^2 / 2\varepsilon_0 h$, $r = \varepsilon_0 h^2 / \pi me^2$	(1/2)
Magnetic field at the centre	
$B=\mu_o I/2r$	(1/2)
$I=ev/2\pi r$	(1/2)
$B = \mu_0 e^7 \pi m^2 / 8 \varepsilon_0^3 h^5$	(1/2)
20. B : reverse biased	(1/2)
C: forward biased	(1/2)
Justification	(2)
21.(i) Emitter base junction is forward biased whereas base coll	lector junction is
reverse biased.	(1)
(ii) Small change in the current I _B in the base circuit controls	s the larger current
I_C in the collector circuit. $I_C = \beta I_B$	(1)
(iii) Elemental semiconductor's band gap is such that the em	nitted wavelength
lies in IR region. Hence cannot be used for making LED	(1)
22. (i) size of the antenna	(1/2)

Effective power radiated by the antenna

Block diagram of amplitude modulation

(ii) modulation

Mixing up of signals from different transmitters

(1/2)

(1/2)

(1/2)

(1)

SECTION D

- 23. (i) Any meaningful activity and values which could be inculcated (2)
 - (ii) Diagram with labelling three magnetic elements of earth (1+1)

SECTION E

24. (a) (i)
$$C_A = 4\pi \varepsilon_0 R$$
, $C_B = 4\pi \varepsilon_0 (2R)$ (1/2)

$$C_{B} > C_{A} \tag{1/2}$$

(ii)
$$u = \frac{1}{2} \varepsilon_0 E^2$$
 (1/2)

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$$
, $u \alpha 1/A^2$

(b) (i)
$$E = -\frac{dV}{dr}$$
 (1/2)

For same change in dV,
$$E \alpha 1/dr$$
 (1/2)

where 'dr' represents the distance between equipotential surfaces.

Diagram of equipotential surface due to a dipole (1)

OR

24 (a)

	Non-Polar (O ₂) –(1/2)	Polar (H ₂ O)- (1/2)
Absence of electric field (1)		
Individual	No dipole moment exists	Dipole moment exists
Specimen	No dipole moment exists	Dipoles are randomly oriented. Net P =0

Presence of electric field(1)		
Individual	Dipole moment exists (molecules become polarised)	Torque acts on the molecules to align them parallel to E
Specimen	Dipole moment exists	Net dipole moment exists parallel to Dipole moment exists E .

(b) (i)
$$V = E_o d + \frac{E_o}{k} d + E_o d + 0 + E_o d$$
 (1/2)

$$V = 3 E_o d + \frac{Eo}{k} d \tag{1/2}$$

(ii) Graph (1)

25. (a) AC generator

Diagram (1)

Principle (1)

Working (1)

(b) (i) Capacitor – electric field (1/2)

Inductor – magnetic field (1/2)

(ii) resistance of the circuit (1/2)

Radiation in the form of EM waves

(1/2)

OR

25 (a) B: inductive reactance (1/2)

C: resistance (1/2)

(b) At resonance $X_L = X_C$ (1/2)

$$Z = [(X_L - X_C)^2 + R^2]^{1/2}, Z = R$$
 (1/2)

Phasor diagrams (1+1)

phase difference is ϕ

same phase

(c) Acceptor circuit: Series LCR circuit (1/2)

(3)

Radio tuning (1/2)

26. (a) To derive $\frac{\mu^2}{v} - \frac{\mu^1}{u} = \frac{\mu^2 - \mu^1}{R}$,

(b) Diagram (2)

OR

26 (a) Diagram -

(1)

 $\mu_{\rm g}/\mu_{\rm w} = 1/\sin i_{\rm c} \tag{1/2}$

$$Sin i_c = 8/9 \tag{1/2}$$

(b) Graph (1)

Interpretation: Path of the ray can be traced back resulting in same angle of deviation if i & e are interchanged (1/2)

$$\delta + A = i + e \tag{1/2}$$

To derive
$$\mu = \frac{\sin(A + \delta m)/2}{\sin A/2}$$
 (1)
