浙江大学 2013-2014 学年秋冬学期

《数字系统设计II》课程期末考试试卷

课程号: 111C0130, 开课学院: _信息与电子工程学系_

考试试卷: √A 卷、B 卷 (请在选定项上打√)

考试形式:√闭、开卷(请在选定项上打√)

考生姓名:

允许带 1 张 A4 大小的手写资料和计算器入场

考试日期: 2014 年 1 月 18 日, 考试时间: 120 分钟

诚信考试,沉着应考,杜绝违纪。

题序		1	11	111	四	五	六	总分	
得分									
ì	平卷人								
1.	TRUE	(T) OR F	TLASE (F) (15 poi	ints):				
[] (1) Bot	h multithrea	nding and	multicore	rely on para	llelism to ge	et more effic	ciency from a chip.	
[] (2) As	for depend	ability, if	a system	is up, then	all its comp	onents are	accomplishing their	
	exp	ected service	ce.						
[] (3) Har	dware error	exception	should be	e recognized	first in eve	ry processoi	ſ.	
[] (4) Cac	ches take adv	vantage of	temporal	locality.				
[] (5) The	shorter the	memory 1	atency, the	e smaller the	e cache bloc	k.		
[] (6) First	st-level cacl	hes are mo	ore concer	med about h	nit time, and	l second-lev	vel caches are more	
	con	ncerned abou	ut miss rat	e.					
[[] (7) Fully associative caches have no conflict misses.								
[] (8) Reliability is a quantitative measure of continuous service accomplishment by a system.								
[] (9) Un	ilike proces	sor bench	marks, I/0	O benchmai	ks concent	rate on thro	oughput rather than	
	late	ency.							
[] (10) To	benefit fro	m a multip	processor,	an applicati	on must be	concurrent.		

2. PROCESSOR (12 points):

Refer to figure 1, assume the latencies for logic blocks in the datapath are as follows:

I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-extend	Shift-left-2
500ps	150ps	100ps	180ps	220ps	1000ps	90ps	20ps

- (1) What is the clock cycle time if the only type of instructions we need to support are ALU instructions (add, and, etc.)?
- (2) What is the clock cycle time if we only had to support lw instructions?
- (3) What is the clock cycle time if we must support add, beq, lw, and sw instructions?

Figure 1 The datapath of a processor

3. PIPELINE (18 points):

Consider an improvement to the fully bypassed 5-stage MIPS processor pipelines with the goal of eliminating all hazards (See Figure 2). The Dual ALU Pipeline has two ALUs: ALU1 is in the 3rd pipeline stage (EX1) and ALU2 is in the 4th pipeline stage (EX2/MEM). A memory instruction always uses ALU1 to compute its address. An ALU instruction uses either ALU1 or ALU2, but never both. If an ALU instruction's operands are available (either from the register file or the bypass network) by the end of the ID stage, the instruction uses ALU1; otherwise, the instruction uses ALU2.

In this problem, assume that the control logic is optimized to stall only when necessary, and that the pipeline is fully bypassed. You may ignore branch and jump instructions in this problem.

IF	ID	EX1	EX2/MEM	WB
Instruction fetch	Instruction	ALU1 execution	ALU2 execution	Write back to
	decode and	and address	and memory	register file
	register read	calculation	access	

Figure 2 A fully bypassed 5-stage MIPS processor

(1) For the following instruction sequence, indicate which ALU each add instruction uses. Assume that the pipeline is initially idle (for example, it has been executing nothing but nop instructions). Registers involved in inter-instruction dependencies are highlighted in bold.

ALU1 or ALU2?

(2) Indicate whether each of the following instruction sequences causes a stall in the pipeline and **a short summary of the reason why**. Consider each sequence separately and assume that the pipeline is initially idle (for example, it has been executing nothing but nop instructions). Registers involved in inter-instruction dependencies are highlighted in bold.

stall? (yes/no)

add r1 , r2, r3	
lw r4, 0(r1)	
lw r1 , 0(r2)	
add r3, r1 , r4	
lw r5, 0(r1)	
lw r1 , 0(r2)	
lw r3, 0(r1)	
lw r1 , 0(r2)	
sw r1 , 0(r3)	
lw r1, 0(r2)	
add r3, r1, r4	
sw r5, 0(r3)	
lw r1 , 0(r2)	
add r3, r1 , r4	

4. CACHE (12 points):

You are building a system around a processor with in-order execution that runs at 1.1 GHz and has a CPI of 0.7 excluding memory accesses. The only instructions the read or write data from memory are loads (20% of all instructions) and stores (5% of all instructions).

The memory system for this computer is composed of a split L1 cache that imposes no penalty on hits. Both the I-cache and D-cache are direct mapped and hold 32 KB each. The I-cache has a2% miss rate and 32-byte blocks, and the D-cache is write through with a 5% miss rate and16-byte blocks. There is a write buffer on the D-cache that eliminates stalls for 95% of all writes.

The 512 KB write-back and write-allocate, unified L2 cache has 64-byte blocks and an access time of 15ns. It is connected to the L1 cache by a 128-bit data bus that runs at 266 MHz and can transfer on 128-bit per bus cycle. Of all memory references sent to the L2 cache in this system, 80% are satisfied without going to main memory. Also 50% of all blocks replaced are dirty.

The 128-bit-wide main memory has an access latency of 60 ns, after which any number of bus words may be transferred at the rate of one per cycle on the 128-bit-wide 133 MHz main memory bus

bus.	
(1)	What is the average memory access time for instruction accesses?
(2)	What is the average memory access time for data reads?
(3)	What is the average memory access time for data writes?
(4)	What is the overall CPI, including memory accesses?

5. Virtual Memory (13 points):

Consider a system with 40-bit virtual addresses, 36-bit physical addresses, and 64 KB (2¹⁶bytes) pages. The system uses a page map to translate virtual addresses to physical addresses; each page map entry includes dirty (D) and resident (R) bits.

(1) Assuming a flat page map, what is the size of each page map entry, and how many entries does the page map have?

Size of page map entry in bits:

Number of entries in the page map:

(2) If changed the system to use 16 KB (2¹⁴ bytes) pages instead of 64 KB pages, how would the number of entries in the page map change? Please give the ratio of the new size to the old size.

(# entries with 16 KB pages) / (# entries with 64 KB pages):

(3) Assume we still use 64 KB pages. The contents of the page map and TLB are shown to the right. The page map uses an LRU replacement policy and the LRU page (shown below) will be chosen for replacement. For each of these four accesses, compute its corresponding physical address and indicate whether the access causes a TLB miss and/or a page fault. Assume each access starts with the TLB and Page Map state shown to the right.

TLB					
VPN (tag)	V	D	PPN		
0x0	1	0	0xBE7A		
0x3	0	0	0x7		
0x5	1	1	0xFF		
0x2	1	0	0x900		

	_		
Rill	in	table	below
1 111	111	uanic	DCIUW

	Virtual Addr	PPN (in hex)	PhysAddr (in Hex)	TLB Miss? (Y/N)	Page Fault? (Y/N)
1.	0x06004				
2.	0x30286				
3.	0x68030				
4.	0x4BEEF				

Page Map

VPN

0 1

R	D	PPN		
1	0	0xBE7A		
0	0			
1	0	0x900		
1	0	0x8	\leftarrow	LRU PAGE
0	0			
1	1	0xFF		
1	0	0x70		

6. CHOIC	${ m CE}$ (30 points) (note	e: only one is c	correct):	
(1)Which one	is not one of the fiv	e classic compo	onents of a co	mputer? ()
A: Input	B: Bus	C: Memo	ory	D: Output
	range of exponent		-	
A: 1~254	B: -128~126	C: -	126 ~127	D:-127~128
(3)x = 0100 ()110 1101 1000 000	00 0000 0000	0000_2 and y =	= 1011 0110 1110 0000 0000 0000
0000 0000 ₂ . A	Assume x and y are	single precisi	on IEEE754 f	floating-point numbers. What is the
	n binary? ()			
A: 1111 1101	1011 1101 0000 000	00 0000 00002		
B: 1010 1101	1001 1101 0000 000	00 0000 00002		
C: 1011 1110	0011 1101 0000 000	00 0000 00002		
D: 1111 1101	1010 1101 0000 000	00 0000 00002		
•				clock rate of 750MHz. Computer E
				z. A program has exactly 100,000
	-	_		ructions would the program need to
			for the two c	computers to have exactly the same
	e for this program? (
A: 20000	B: 50000	C: 80000	D:	100000
(5)Given the f	following MIPS asse	embly code (an	d assumino ali	l registers start at 0):
(S)GIVEH the I	•	1, \$0, 20	a assuming an	registers start at 0).
		, \$1, \$1		
	repeat:	, , , , , ,		
	_	2, \$2, -4		
		3, \$2, \$2		
		1, \$1, -2		
		, \$1, repe	at.	
What is the fir	nal value of \$3? ()		
A: 0	B: -6	C: 6	D: -1	
		hould not use t	he XP register	r. What problems may they cause is
they write to Y				
_	andlers might loop f	_		m (OS) kernel
	n data stored in XP r	-		
	data stored in XP ma	ay be corrupted		
D: All of the a	lbove			
(7)Assume the	e current PC is 0x10	000010, what's	s next value of	f PC after execution of "j 255"? (

C: 0x100003FC

D: 0x100000FF

B: 0x10000021

A: 0x000000FF

A: Increasing instructions per cycle							
B: Reduc	ing instruction	latency					
C: Reduc	ing clock cycle	time					
D: Reduc	ing context-sw	itch latency					
(9)For a :	32-bit cache-m	nemory syster	n, a 32KB, 4	-way set-as	ssociative cache has 2 words cache		
	how many bits			•			
A: 19	B: 2		C: 23	D:	25		
(10)For the	he following i	memory acces	ss pattern: 1.	5, 1, 6, 3,	what's the content of a 4-entries,		
	pped cache, as	-	_				
A:	FF,	~			6 ()		
		1	6	3	7		
B:		1	10				
Б.	1	6	3	5	٦		
C	1	6	3	3			
C:		T .	Τ.	1			
	5	6	3				
D:		T	1	1			
		6	3				
(11) How	the cache con	flict misses w	ill be affected	d by the fol	llowing modifications? Assume the		
baseline c	eache is set ass	ociative. ()				
(a). Doub	le the associati	vity while kee	ep the capacity	y and line si	ize constant		
(b). Doub	le the number	of sets while l	keep the capac	city and line	e size constant		
A: Decrea	ase; Increase		B: Increase	; Decrease			
C: Increas	se; Increase		D: Decrease	e; Decrease			
(12)A go	overnment ag	ency simulta	neously mor	nitors 100c	cellular phone conversations and		
multiplex	es the data ont	o a network w	ith a bandwid	lth of 1 MB	/sec and an overhead latency of 350		
					er message. Assume that the phone		
	ion data consis	•		•			
A: 0.8s	B: 1	-	C: 1s		1.08s		
	D. 1.000						
(13)Here	is a series of a	ddress referen	ices given as y	word addres	sses: 2, 3, 11, 16, 21, 13, 64, 48, 19,		
11, 3, 22, 4, 27, 6, 11. Determine how many misses will happen in each condition.							
(a) A direct monard cooks with 16 one are all the death in this in the in-							
	(a)A direct-mapped cache with 16 one-word blocks that is initially empty. () A: 7 B: 8 C: 13 D: 15						
A: 7	B: 8	C: 13					
					ze of 16 words. ()		
A: 7	B: 8	C: 13): 15			
	-	ative cache w	ith four-word	blocks and	d a total size of 16 words. Use LRU		
replaceme							
A: 7	B: 8	C: 13	D): 15			
			8/8				

(8)Pipeline processors increase performance by ()