

FCC 15.247 2.4 GHz Report

for

LIVAN TECHNOLOGY CO., LTD.

3F., No.3, Ln.113, Baozhong Rd., Xindian Dist., New Taipei City 23144, Taiwan

Brand: Livan

Product Name: Bluetooth thermometer

Model Name : BT1219

FCC ID : 2AHQNBT1219

Prepared by: : AUDIX Technology Corporation,

EMC Department

File Number: C1M1610025

Tel: +886 2 26099301 Fax: +886 2 26099303

Report Number: EM-F160688

TABLE OF CONTENTS

Description	<u>Page</u>
TEST REPORT CERTIFICATION	4
1. REPORT HISTORY	5
2. SUMMARY OF TEST RESULTS	
3. GENERAL INFORMATION	
3.1. Description of EUT	
3.3. Antenna Information	
3.4. Test Configuration	
3.5. Tested Supporting System List	
3.6. Setup Configuration	
3.7. Operating Condition of EUT	
3.8. Description of Test Facility	
3.9. Measurement Uncertainty	
4. MEASUREMENT EQUIPMENT LIST	12
4.1. Radiated Emission Measurement	
4.2. RF Conducted Measurement	
5. CONDUCTED EMISSION MEASUREMET	13
6. RADIATED EMISSION MEASUREMENT	14
6.1. Block Diagram of Test Setup	14
6.2. Radiated Emission Limits	16
6.3. Test Procedure	
6.4. Measurement Result Explanation	
6.5. Test Results	
7. 6dB BANDWIDTH MEASUREMENT	
7.1. Block Diagram of Test Setup	
7.2. Specification Limits	
7.3. Test Procedure	
8. MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
8.1. Block Diagram of Test Setup	
8.2. Specification Limits 8.3. Test Procedure	
8.4. Test Results	
9. EMISSION LIMITATIONS MEASUREMENT	
9.1. Block Diagram of Test Setup	
9.3. Test Procedure	
9.4. Test Results	
10. POWER SPECTRAL DENSITY	
10.1. Block Diagram of Test Setup	
10.2. Specification Limits	
10.3. Test Procedure	

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

pei City244, Taiwan	
10.4. Test Results	41

APPENDIX A TEST PHOTOGRAPHS

11. DEVIATION TO TEST SPECIFICATIONS......42

TEST REPORT CERTIFICATION

Applicant : LIVAN TECHNOLOGY CO., LTD.
Manufacture : LIVAN TECHNOLOGY CO., LTD.

Product Name : Bluetooth thermometer

Model No. : BT1219
Serial No. : N/A
Brand : Livan
Power Supply : DC 3V

Rules of Compliance and Measurement Standards:

47 CFR FCC Part 15 Subpart C: 2015

ANSI C63.10:2013

KDB 558074 D01 DTS Meas Guidance v03r05

AUDIX Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. **AUDIX Technology Corp.** does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Test: 2016. 10. 14 ~ 18 Date of Report: 2016. 10. 21

Producer:

(Eva Chen/Assistant Administrator)

Signatory:

(Ben Cheng/Manager)

1. REPORT HISTORY

Revision	Date	Revision Summary	Report Number
0	2016. 10. 21	Original Report.	EM-F160688

2. SUMMARY OF TEST RESULTS

Rule	Description	Results
15.207	Conducted Emission	N/A, Note
15.247(d)/15.205	Radiated Band Edge and Radiated Spurious Emission	PASS
15.247(a)(2)	6dB Bandwidth	PASS
15.247(b)(3)	Maximum Peak Output	PASS
15.247(d)	Conducted Band Edges and Conducted Spurious Emission	PASS
15.247 (e)	Power Spectral Density	PASS
15.203	Antenna Requirement	PASS
Note: The EUT only 6	employs battery power for operation, so it is	unnecessary to test.

3. GENERAL INFORMATION

3.1. Description of EUT

Product	Bluetooth thermometer
Model Number	BT1219
Serial Number	N/A
Brand Name	Livan
	LIVAN TECHNOLOGY CO., LTD.
Applicant	3F., No.3, Ln.113, Baozhong Rd., Xindian Dist., New Taipei City 23144, Taiwan
	LIVAN TECHNOLOGY CO., LTD.
Manufacture	3F., No.3, Ln.113, Baozhong Rd., Xindian Dist., New Taipei City 23144, Taiwan
RF Features	Bluetooth Low Energy (BLE)
Transmit Type	1T1R
Date of Receipt of Sample	2016. 10. 03

3.2. EUT Specifications Assessed in Current Report

Mode	Fundamental Range (MHz)	Channel Number	Modulation	Data Rate (Mbps)
BLE	2402-2480	40	GFSK	1

	Channel List			
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	
37	2402	18	2442	
00	2404	19	2444	
01	2406	20	2446	
02	2408	21	2448	
03	2410	22	2450	
04	2412	23	2452	
05	2414	24	2454	
06	2416	25	2456	
07	2418	26	2458	
08	2420	27	2460	
09	2422	28	2462	
10	2424	29	2464	
38	2426	30	2466	
11	2428	31	2468	
12	2430	32	2470	
13	2432	33	2472	
14	2434	34	2474	
15	2436	35	2476	
16	2438	36	2478	
17	2440	39	2480	

3.3. Antenna Information

Antenna Part Number	Manufacture	Antenna Type	Frequency	Max Gain (dBi)
AT3216	ACX	Multilayer Chip Antenna	2400~2500MHz	0.5

3.4. Test Configuration

Mode	Duty Cycle (x)	T (ms)	Duty Cycle Factor (dB)
BLE	0.263	0.165	5.3
	TX_{on}/TX_{on+off}	=0.165/0.628=0.263	

Note: When duty cycle is less than 98% (0.98) that duty cycle factor $10\log(1/x)$ is needed to add in conducted test items measured in average detector.

	Item	Test Channel
	Radiated Band Edge Note1	37/39
Radiated Test Case	Radiated Spurious Emission (30MHz-1GHz) Note1	37/19/39
1 est case	Radiated Spurious Emission (Above 1GHz) Note1	37/19/39
	6dB Bandwidth	37/19/39
Conducted Test Case	Peak Power Spectral Density	37/19/39
	Peak Output Power	37/19/39
	Band Edge	37/39
	Spurious Emission	37/19/39

Note 1:

Mobile Device

Portable Device, and 3 axis were assessed. The worst scenario for Radiated Spurious Emission as follow:

Lie

Side

Stand

Note 2: We performed testing of the highest and lowest data rate.

3.5. Tested Supporting System List

3.5.1. Support Peripheral Unit

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Notebook PC	ASUS	ASUS N20A	N/A	TLZ-BT253
2.	Test Jig	N/A	N/A	N/A	N/A

3.5.2. Cable Lists

No.	Cable Description Of The Above Support Units
	LAN Cable: Shielded, Detachable, 0.9m
	USB Cable: Shielded, Detachable, 1.8m
1.	Adapter: ACBEL, M/N AA90PM111,
	DC Cord: Shielded, Undetachable, 1.8m, Bonded a ferrite core
	AC Power Cord: Unshielded, Detachable, 1.8m
2.	USB Cable: Unshielded, Detachable, 0.15m

3.6. Setup Configuration

3.6.1. EUT Configuration for Radiated Emission

3.6.2. EUT Configuration for Conducted Test Items

3.7. Operating Condition of EUT

Test program "nRFgo Studio" is used for enabling EUT RF function under continues transmitting and choosing data rate/ channel.

3.8. Description of Test Facility

Test Firm Name : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Location & Facility : Semi-Anechoic Chamber &

Fully Semi-Anechoic Chamber No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

TAF Accreditation No : 1724

FCC OET Designation : TW1004 & TW1090

3.9. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	
	30MHz~1000MHz	± 3.68dB	
Radiation Test	Above 1GHz	± 5.82dB	

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
6dB Bandwidth	± 0.05kHz
Maximum peak output power	± 0.33dB
Power spectral density	± 0.13dB
Conducted Emission Limitations	± 0.13dB

4. MEASUREMENT EQUIPMENT LIST

4.1. Radiated Emission Measurement

4.1.1. Frequency Range 30MHz~1000MHz (Semi-Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2016. 09. 19	1 Year
2.	Test Receiver	R & S	ESCS30	100338	2016. 06. 22	1 Year
3.	Amplifier	HP	8447D	2944A06305	2016. 02. 23	1 Year
4.	Bilog Antenna	TESEQ	CBL6112D	33821	2016. 01. 30	1 Year
5.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.1.2. Frequency Range Above 1GHz (Fully Anechoic Chamber)

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300366	2016. 08. 19	1 Year
2.	Pre-Amplifier	HP	8449B	3008A02678	2016. 03. 04	1 Year
3.	Horn Antenna	ETS-Lindgre n	3117	00135902	2016. 03. 09	1 Year
11 /1	2.4GHz Notch Filter	K&L	7NSL10-244 1.5E130.5-00	1	2016. 07. 27	1 Year
5.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.
6.	Spectrum Analyzer	Agilent	E4446A	US44300366	2016. 08. 19	1 Year

4.2. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9030A-526	MY53310269	2015. 11. 28	1 Year

File Number: C1M1610025 Report Number: EM-F160688

5. CONDUCTED EMISSION MEASUREMET

The EUT only employs battery power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207

6. RADIATED EMISSION MEASUREMENT

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.6
- 6.1.2. Semi Anechoic Chamber (3m) Setup Diagram for 9kHz-30MHz

6.1.3. Semi-Anechoic Chamber (3m) Setup Diagram for 30-1000 MHz

File Number: C1M1610025 Report Number: EM-F160688

6.1.4. Fully Anechoic Chamber (3m) Setup Diagram for above 1GHz

6.2. Radiated Emission Limits

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified as below

Frequency (MHz)	Distance (m)	Limits		
rrequency (MITZ)	Distance (III)	$dB\mu V/m$	$\mu V/m$	
0.009 - 0.490	300	67.6	2400/kHz	
0.490 - 1.705	30	87.6	24000/kHz	
1.705 - 30	30	29.5	30	
30 - 88	3	40.0	100	
88- 216	3	43.5	150	
216- 960	3	46.0	200	
Above 960	3	54.0	500	
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)		

Remark: (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ 40GHz:

The EUT setup on the turn find table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1) RBW = 120KHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1) RBW = 1MHz
- (2) $VBW \ge 3 \times RBW$.
- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average for finally measurement.

Average Detector:

Option 1:

- (1) RBW = 1MHz
- (2) $VBW \ge 1/T$.

Modulation Type	T (ms)	1/ T (kHz)	VBW Setting (kHz)
BLE	0.165	6.06	6.06

N/A: 1/T is not implemented when duty cycle presented in section 3.5 is ≥ 98 %.

- (3) Detector = Peak.
- (4) Sweep time = auto.
- (5) Trace mode = \max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

Peak Emission Level=Antenna Factor + Cable Loss + Meter Reading

Average Emission Level = Antenna Factor + Cable Loss + Meter Reading

Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= 20log (TX on/TX on+off) presented in section 3.4

EPR= Peak Emission Level-95.2dB-2.14dBi

6.5. Test Results

PASSED.

Test Date	2016/10/18	Temp./Hum.	23	/53%		
Test Voltage	DC 3V (Via Test Jig)					

6.5.1. Emissions within Restricted Frequency Bands

6.5.1.1. Frequency 9kHz~30MHz The emissions (9kHz~30MHz) not reported for there is no emission be found.

6.5.1.2. Frequency Below 1 GHz

Mode		BLE		Frequency	requency TX 2402MF		ſНz
Antenna a	ıt Horizon	tal Polar	ization				
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V) (dB μ V/m)	$\left(dB\mu V/m\right)$	(dB)	
144.46	12.06	2.77	19.65	34.48	43.50	9.02	Peak
275.41	13.28	4.07	22.17	39.52	46.00	6.48	Peak
692.51	18.50	7.06	4.36	29.92	46.00	16.08	Peak
829.28	19.87	7.78	7.37	35.02	46.00	10.98	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
134.76	12.60	2.66	16.10	31.36	43.50	12.14	Peak
325.85	14.39	4.66	16.31	35.36	46.00	10.64	Peak
555.74	17.87	6.61	14.22	38.70	46.00	7.30	Peak
827.34	19.85	7.77	7.46	35.08	46.00	10.92	Peak

Mode		BLE		Frequency	T	TX 2440MH	
Antenna a	t Horizon	tal Polar	rization				
Emission Frequency	Antenna Factor	Cable Loss	Meter Readin	21111001011	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
101.78	12.04	2.29	8.49	22.82	43.50	20.68	Peak
252.13	12.79	3.83	27.12	43.74	46.00	2.26	Peak
690.57	18.50	7.05	6.12	31.67	46.00	14.33	Peak
829.28	19.87	7.78	6.32	33.97	46.00	12.03	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
136.70	12.54	2.69	17.39	32.62	43.50	10.88	Peak
263.77	13.05	3.95	22.24	39.24	46.00	6.76	Peak
515.97	17.35	6.48	11.77	35.60	46.00	10.40	Peak
828.31	19.85	7.77	7.76	35.38	46.00	10.62	Peak

332.64

828.31

Tel: +886 2 26099301 Fax: +886 2 26099303

Mode		BLE		Frequency	T	X 2480N	IНz	
Antenna at Horizontal Polarization								
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir		Limits	Margin	Detector	
(MHz)	(dB/m)	(dB)	(dBµV	V) $(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)		
101.78	12.04	2.29	8.64	22.97	43.50	20.53	Peak	
156.10	11.07	2.89	21.32	35.28	43.50	8.22	Peak	

41.93

34.16

46.00

46.00

4.07

11.84

Peak

Peak

22.63

6.54

Antenna at Vertical Polarization

14.55

19.85

4.75

7.77

Antenna a	it vertical	I Ulai iza	uon				
Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
126.03	12.85	2.57	10.63	26.05	43.50	17.45	Peak
252.13	12.79	3.83	18.18	34.80	46.00	11.20	Peak
468.44	16.79	6.17	11.88	34.84	46.00	11.16	Peak
828.31	19.85	7.77	7.02	34.64	46.00	11.36	Peak

6.5.1.3. Frequency Above 1 GHz to 10th harmonics

Band Edge:

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Bettetter
2385.36	32.13	5.71	13.11	50.95	74.00	23.05	Peak
2390.04	32.16	5.72	6.93	44.81	74.00	29.19	Peak
2402.16	32.16	5.72	51.95	89.83			Peak

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2384.76	32.13	5.71	-2.34	35.50	54.00	18.50	Average
2390.04	32.16	5.72	-4.33	33.55	54.00	20.45	Average
2402.04	32.16	5.72	51.40	89.28			Average

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2349.24	32.08	5.68	7.84	45.60	74.00	28.40	Peak
2390.04	32.16	5.72	5.52	43.40	74.00	30.60	Peak
2402.16	32.16	5.72	43.27	81.15			Peak

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2371.80	32.13	5.71	-3.31	34.53	54.00	19.47	Average
2390.04	32.16	5.72	-4.31	33.57	54.00	20.43	Average
2402.04	32.16	5.72	42.72	80.60			Average

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
2480.32	32.28	5.82	55.94	94.04			Peak
2483.52	32.28	5.82	14.34	52.44	74.00	21.56	Peak
2505.04	32.32	5.87	18.64	56.83	74.00	17.17	Peak

Antenna at Horizontal Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.08	32.28	5.82	55.58	93.68			Average
2483.52	32.28	5.82	-1.37	36.73	54.00	17.27	Average
2504.88	32.32	5.87	0.48	38.67	54.00	15.33	Average

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Detector
2480.24	32.28	5.82	47.27	85.37			Peak
2483.52	32.28	5.82	8.38	46.48	74.00	27.52	Peak
2505.04	32.32	5.87	12.02	50.21	74.00	23.79	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
2480.08	32.28	5.82	46.50	84.60			Average
2483.52	32.28	5.82	-3.59	34.51	54.00	19.49	Average
2504.72	32.32	5.87	-2.07	36.12	54.00	17.88	Average

6.5.2. Emissions outside the frequency band:

The emissions (up to 25GHz) not reported for there is no emission be found.

Mode		BLE		Frequency	Frequency TX		IНz	
Antenna at Horizontal Polarization								
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir		Limits	Margin	Detector	
(MHz)	(dB/m)	(dB)	(dBµV	V) (dB μ V/m)	$\left(dB\mu V/m\right)$	(dB)		
4805.00	34.22	7.86	7.06	49.14	54.00	4.86	Peak	
7205.00	35.80	9.22	-1.65	43.37	54.00	10.63	Peak	

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$\left(dB\mu V/m\right)$	$\left(dB\mu V/m\right)$	(dB)	
4805.00	34.22	7.86	3.95	46.03	54.00	7.97	Peak
7205.00	35.80	9.22	-0.51	44.51	54.00	9.49	Peak

Mode		BLE		Frequency	T	X 2440M	IНz
Antenna a	t Horizon	tal Polar	ization				
Emission Frequency	Antenna Factor	Cable Loss	Meter Readir		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4880.00	34.25	8.35	5.42	48.02	54.00	5.98	Peak
7320.00	35.80	9.89	-2.76	42.93	54.00	11.07	Peak

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(\text{dB}\mu\text{V})$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4880.00	34.25	8.35	0.11	42.71	54.00	11.29	Peak
7320.00	35.80	9.89	-1.95	43.74	54.00	10.26	Peak

Mode		BLE		Frequency	T	X 2480N	ſНz
Antenna a	t Horizon	tal Polar	rization				
Emission Frequency	Antenna Factor	Cable Loss	Mete Readir		Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	(dBµV	V) $(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.29	9.40	3.66	47.35	54.00	6.65	Peak
7440.00	35.80	12.56	-2.47	45.89	54.00	8.11	Peak

Antenna at Vertical Polarization

Emission Frequency	Antenna Factor	Cable Loss	Meter Reading	Emission Level	Limits	Margin	Detector
(MHz)	(dB/m)	(dB)	$(\text{dB}\mu\text{V})$	$(dB\mu V/m)$	$\left(dB\mu V/m\right)$	(dB)	
4960.00	34.29	9.40	1.00	44.69	54.00	9.31	Peak
7440.00	35.80	12.56	-1.89	46.47	54.00	7.53	Peak

6.5.3. Emissions in Non-restricted Frequency Bands

Pursuant to KDB 558074 D01 DTS Meas Guidance v03r05 that emission levels below the 15.209 general radiated emissions limits is not required.

7. 6dB BANDWIDTH MEASUREMENT

7.1. Block Diagram of Test Setup

7.2. Specification Limits

The minimum 6dB bandwidth shall be at least 500kHz.

7.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v03r05:

Option 2

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \geq 3 × RBW.
- (3) Detector = Peak.
- (4) Trace mode = \max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -6 dB to record the final bandwidth.

7.4. Test Results

Test Date	2016/10/14	Temp./Hum.	25 /51%
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

7.4.1. 6dB Bandwidth Result

Mode	Centre Frequency (MHz)	6 dB Bandwidth (MHz)
	2402	0.6535
BLE	2440	0.6656
	2480	0.6645

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Tel: +886 2 26099301 Fax: +886 2 26099303

7.4.2. Measurement Plots

8. MAXIMUM PEAK OUTPUT POWER MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Specification Limits

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5MHz is: 1Watt. (30dBm)

8.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v03r05:

■PKPM1 Peak power meter method:

EUT is connected to power sensor and record the maximum output power.

Method AVGPM (Measurement using an RF average power meter):

EUT is connected to power sensor and record the maximum average output power and duty cycle factor is added when duty cycle presented in section 3.5.1 is < 98%.

RBW>DTS bandwidth

- (1) Set span to at least 3 times the OBW
- (2) Set $RBW \ge OBW$
- (3) Set the video bandwidth (VBW) \geq 3 × RBW.
- (4) Detector = Peak
- (5) Trace mode = \max hold
- (6) Sweep = auto couple.
- (7) To find the peak amplitude level.

8.4. Test Results

Test Date	2016/10/14	Temp./Hum.	25 /51%
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

8.4.1. Peak Output Power

Mada	Centre Frequency	Peak Out	out Power	Limit
Mode	(MHz)	(dBm)	(W)	Limit
	2402	-1.488	0.000710	
BLE	2440	-2.008	0.000630	< 30 dBm (1 W)
	2480	-0.970	0.000800	

Note: The results have been included cable loss.

8.4.2. Peak Measurement Plots

9. EMISSION LIMITATIONS MEASUREMENT

9.1. Block Diagram of Test Setup

9.2. Specification Limits

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (See Section 15.205(c)).

9.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v03r05:

Reference Level

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max PSD as reference level.

Emission Level Measurement

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: 100 kHz.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize to find the max level.

9.4. Test Results

Test Date	2016/10/14	Temp./Hum.	25 /51%
Mode	BLE	Frequency	TX 2402MHz
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

Test Date	2016/10/14	Temp./Hum.	25 /51%
Mode	BLE	Frequency	TX 2440MHz
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

New Taipei City244, Taiwan

Test Date	2016/10/14	Temp./Hum.	25 /51%
Mode	BLE	Frequency	TX 2480MHz
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

AUDIX Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan

10. POWER SPECTRAL DENSITY

10.1. Block Diagram of Test Setup

10.2. Specification Limits

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band.

10.3. Test Procedure

Following measurement procedure is reference to KDB 558074 D01 DTS Meas Guidance v03r05:

Method PKPSD (peak PSD)

- (1) Set analyzer center frequency to DTS channel center frequency.
- (2) Set the span to 1.5 times the DTS bandwidth.
- (3) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- (4) Set the VBW \geq 3 × RBW.
- (5) Detector = peak.
- (6) Sweep time = auto couple.
- (7) Trace mode = \max hold.
- (8) Allow trace to fully stabilize.
- (9) Use the peak marker function to determine the maximum amplitude level.
- (10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Method AVGPSD-2

- (1) Using peak PSD procedure step 1 to step 4.
- (2) Detector= RMS detector
- (3) Sweep time = auto couple
- (4) Trace mode = trace averaging over a minimum of 100 traces
- (5) Use the peak marker function to determine the maximum amplitude level.
- (6) Duty cycle factor is added when duty cycle presented in section 3.5.1. < 98%.
- (7) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

10.4. Test Results

Test Date	2016/10/14	Temp./Hum.	25 /51%
Cable Loss	2dB	Test Voltage	DC 3V (Via Test Jig)

11.DEVIATION TO TEST SPECIFICATIONS

[NONE]