Capstone Project Report: Real-Time Dynamic Pricing for Urban Parking 1. Introduction This project presents a solution for dynamic pricing of parking spaces based on real-time data. With rising urban congestion, optimal pricing helps manage traffic, reduce search times, and maximize space utilization. 2. Data Description The dataset consists of fields like: - LastUpdatedDate & LastUpdatedTime - Capacity & Occupancy - QueueLength - VehicleType - TrafficConditionNearby These features are used to derive intermediate metrics such as occupancy ratio, vehicle weight factor, and traffic score.

3. Data Preprocessing

- Combined and cleaned date/time fields to generate unified timestamps.
- Handled missing values using domain-relevant defaults.
- Mapped categorical variables (`VehicleType`, `TrafficConditionNearby`) to numeric scores.
- Calculated Occupancy Ratio = Occupancy / Capacity.

4. Feature Engineering
- Derived `VehicleWeight` and `TrafficScore`.
- Sorted data chronologically to simulate live stream behavior.
5. Modeling Approaches
Three models were built and evaluated:
- Model 1: Baseline Linear Regression
- Model 2: Decision Tree Regression
- Model 3: Advanced Model with Time-Window Aggregates
6. Real-Time Simulation
Post-model predictions are written in JSONL format to mimic real-time stream output.
This stream can be visualized or ingested by a dynamic dashboard.
7. Conclusion
This project demonstrates a robust pipeline for urban parking price optimization using real-time data
streams. Future improvements may include geo-embedding, anomaly detection, and reinforcement
learning for adaptive pricing.