A simple method for Bayesian model evaluation with ANOVA designs

Thomas J. Faulkenberry

Tarleton State University

Consider the test scores from students in three different treatment conditions:

- Treatment 1 read and reread
- Treatment 2 read, then answer prepared questions
- Treatment 3 read, then create and answer questions

Treatment 1	Treatment 2	Treatment 3
2	5	8
3	9	6
8	10	12
6	13	11
5	8	11
6	9	12
$\overline{M=5}$	M=9	$\overline{M = 10}$

Typical question – are there differences among these condition means?

Standard approach - analysis of variance (ANOVA)

- model $Y_{ij} = \mu + \alpha_j + \varepsilon_{ij}$, where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$
- assume "null hypothesis" $\mathcal{H}_0: \alpha_j = 0$
- ullet compute probability of observing data Y_{ij} under \mathcal{H}_0
- if data is rare under \mathcal{H}_0 , reject \mathcal{H}_0

$$SS_{\text{total}} = \sum Y^2 - \frac{(\sum Y)^2}{N}$$

$$= 1324 - \frac{144^2}{18}$$

$$= 172$$

variance source	SS	df	MS	F
between treatments	84			
residual				
total	172			

$$SS_{\text{bet tmts}} = n \sum_{j=1}^{3} (\overline{Y}_{j} - \overline{Y})^{2}$$

$$= 6 \left[(5-8)^{2} + (9-8)^{2} + (10-8)^{2} \right]$$

$$= 84$$

variance source	SS	df	MS	F
between treatments	84	2	42	7.16
residual	88	15	5.87	
total	172	17		

source	SS	$d\!f$	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

source	SS	$d\!f$	MS	F
between treatments	84	2	42	7.16
within treatments	88	15	5.87	
total	172	17		

Since our data Y_{ij} is rare under \mathcal{H}_0 (p=0.007), we reject \mathcal{H}_0 as an implausible model restriction.

What does this small *p*-value tell us?

Unfortunately, not much!

Unfortunately, not much!

It is a common misconception that the p-value indexes the probability of the null hypothesis \mathcal{H}_0 being true (i.e., $p(\mathcal{H}_0 \mid \mathsf{data})$).

Unfortunately, not much!

It is a common misconception that the p-value indexes the probability of the null hypothesis \mathcal{H}_0 being true (i.e., $p(\mathcal{H}_0 \mid \text{data})$).

- but $p = p(\mathsf{data} \mid \mathcal{H}_0)$
- in general, this is not equal to $p(\mathcal{H}_0 \mid \mathsf{data})$
- to get $p(\mathcal{H}_0 \mid data)$, we need Bayes' Theorem

Bayes' Theorem

$$\underbrace{p(\mathcal{H} \mid \mathsf{data})}_{\text{Posterior beliefs about hypothesis}} = \underbrace{p(\mathcal{H})}_{\text{Prior beliefs about hypothesis}} \times \underbrace{\frac{p(\mathsf{data} \mid \mathcal{H})}{p(\mathsf{data})}}_{\text{predictive updating factor}}$$

Bayes' Theorem

$$\underbrace{p(\mathcal{H} \mid \text{data})}_{\text{Posterior beliefs about hypothesis}} = \underbrace{p(\mathcal{H})}_{\text{Prior beliefs about hypothesis}} \times \underbrace{\frac{p(\text{data} \mid \mathcal{H})}{p(\text{data})}}_{\text{predictive updating factor}}$$

If we want to compare \mathcal{H}_1 to \mathcal{H}_0 , we can take ratios:

The predictive updating factor

$$B_{10} = \frac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data} \mid \mathcal{H}_0)}$$

tells us how much better \mathcal{H}_1 predicts our observed data than \mathcal{H}_0 .

This ratio is called the **Bayes factor**

The predictive updating factor

$$B_{10} = \frac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data} \mid \mathcal{H}_0)}$$

tells us how much better \mathcal{H}_1 predicts our observed data than \mathcal{H}_0 .

This ratio is called the **Bayes factor**

Computing Bayes factors is HARD¹

¹to see why (and how), see Faulkenberry, T. J. (2019). A tutorial on generalizing the default Bayesian t-test via posterior sampling and encompassing priors. *Communications for Statistical Applications and Methods*, 26(2), 1-22.

With some assumptions, we can compute Bayes factors for ANOVA designs using a method due originally to Kass and Raftery (1995) (but also see Masson, 2011, and Faulkenberry, 2018)

Basic idea:

- 1. set up two models: \mathcal{H}_0 and \mathcal{H}_1
- 2. compute BIC (Bayesian information criterion) for each model:

$$BIC = N \ln(SS_{\text{residual}}) + k \ln(N)$$

where

- N=total number of independent observations
- *k*=number of parameters in the model
- $SS_{residual}$ = variance NOT explained by the model
- 3. compute Bayes factor as $e^{\frac{\Delta BIC}{2}}$

source	SS	df	MS	F
bet tmts	84	2	42	7.16
residual	88	15	5.87	
total	172	17		

We'll set up our two models:

Null model: $\mathcal{H}_0 : \mu_1 = \mu_2 = \mu_3$

- ullet this model has k=1 parameter (the data is explained by a SINGLE mean)
- $SS_{residual} = 172$ (the model has only one mean, so **all** variance is left unexplained)

source	SS	$d\!f$	MS	F
bet tmts	84	2	42	7.16
residual	88	15	5.87	
total	172	17		

Null model: $\mathcal{H}_0 : \mu_1 = \mu_2 = \mu_3$

$$BIC_0 = N \ln(SS_{\text{residual}}) + k \ln(N)$$
$$= 18 \ln(172) + 1 \cdot \ln(18)$$
$$= 95.55$$

source	SS	df	MS	F
bet tmts	84	2	42	7.16
residual	88	15	5.87	
total	172	17		

Alternative model: $\mathcal{H}_1: \mu_1 \neq \mu_2 \neq \mu_3$

- ullet this model has k=3 parameters (the data is explained by THREE means)
- $SS_{residual} = 88$ (the model accounts for variance between treatments with the three means, so $SS_{residual}$ is left unexplained)

source	SS	df	MS	F
bet tmts	84	2	42	7.16
residual	88	15	5.87	
total	172	17		

Alternative model: $\mathcal{H}_1: \mu_1 \neq \mu_2 \neq \mu_3$

$$BIC_1 = N \ln(SS_{\text{residual}}) + k \ln(N)$$

= $18 \ln(88) + 3 \cdot \ln(88)$
= 89.26

Thus,

$$B_{10} = e^{\frac{\Delta BIC}{2}}$$

$$= e^{\frac{95.55 - 89.26}{2}}$$

$$= 22.87$$

Thus,

$$B_{10} = e^{\frac{\Delta BIC}{2}}$$

$$= e^{\frac{95.55 - 89.26}{2}}$$

$$= 22.87$$

This means that the data are approximately 23 times more likely under \mathcal{H}_1 than \mathcal{H}_0

What about $p(\mathcal{H}_1 \mid \mathsf{data})$?

What about $p(\mathcal{H}_1 \mid \mathsf{data})$?

It is easy to show

$$p(\mathcal{H}_1 \mid \mathsf{data}) = \frac{B_{10}}{1 + B_{10}}$$

What about $p(\mathcal{H}_1 \mid \mathsf{data})$?

It is easy to show

$$p(\mathcal{H}_1 \mid \mathsf{data}) = \frac{B_{10}}{1 + B_{10}}$$

Thus, we have

$$p(\mathcal{H}_1 \mid \mathsf{data}) = \frac{22.87}{1 + 22.87}$$

= 0.958

Visualizing "flow of model belief":

Thank you!

- Thanks to Tarleton Office of Research and Innovation for funding!
- slides available at github.com/tomfaulkenberry/talks
- more details in Faulkenberry, T. J. (2019). Computing Bayes factors to measure evidence from experiments: An extension of the BIC approximation. $Biometrical\ Letters,\ 55(1),\ 31-43.$
- Twitter: @tomfaulkenberry
- Email: faulkenberry@tarleton.edu