DSPL

Создано системой Doxygen 1.8.10

Вс 8 Ноя 2015 16:04:38

Соле	ржание
ООДС	рмапис

1	Алф	лфавитный указатель групп				
	1.1	Группы	1			
2	Груг	уппы				
	2.1	Библиотека DSPL	1			
		2.1.1 Подробное описание	2			
	2.2	Спектральный анализ	3			
		2.2.1 Подробное описание	3			
	2.3	Алгоритмы дискретного и быстрого преобразования Φ урье	4			
		2.3.1 Подробное описание	4			
		2.3.2 Функции	4			
	2.4	Функции оконного взвешивания	5			
	2.5	Свертка и цифровая фильтрация	6			
	2.6	Расчет БИХ-фильтров	7			
	2.7	Расчет КИХ-фильтров	8			
3	При	меры	9			
	3.1	ex_dspl_dft.c	9			
A _J		тный указатель пфавитный указатель групп	11			
1.	1 Γ	руппы				
По	лныі	й список групп.				
	Биб.	пиотека DSPL	1			
	C	пектральный анализ	3			
		Алгоритмы дискретного и быстрого преобразования Фурье	4			
		Функции оконного взвешивания	5			
	C	вертка и цифровая фильтрация	6			
	Pac	ет БИХ-фильтров	7			
	Pac	ет КИХ-фильтров	8			
2	Гр	уппы				
2.	1 Б	иблиотека DSPL				

Группы

• Спектральный анализ

Функции цифрового спектрального анализа. В данной группе собраны функции реализующие алгоритмы дискретного преобразования Фурье (ДП Φ), быстрого преобразования Фурье (БП Φ), функции оконного взвешивания, расчета спектральной плотности мощности.

• Свертка и цифровая фильтрация

Функции для расчета циклической и линейной сверток, а также цифровой КИХ и БИХ фильтрации.

2.1.1 Подробное описание

2.2 Спектральный анализ

Функции цифрового спектрального анализа. В данной группе собраны функции реализующие алгоритмы дискретного преобразования Фурье (ДПФ), быстрого преобразования Фурье (БПФ), функции оконного взвешивания, расчета спектральной плотности мощности.

Группы

- Алгоритмы дискретного и быстрого преобразования Фурье
 Алгоритмы дискретного и быстрого преобразования Фурье
- Функции оконного взвешивания

2.2.1 Подробное описание

Функции цифрового спектрального анализа. В данной группе собраны функции реализующие алгоритмы дискретного преобразования Фурье (ДПФ), быстрого преобразования Фурье (БПФ), функции оконного взвешивания, расчета спектральной плотности мощности.

2.3 Алгоритмы дискретного и быстрого преобразования Фурье

Алгоритмы дискретного и быстрого преобразования Фурье

Функции

• int dspl_dft (double *xR, double *xI, int n, double *yR, double *yI) Дискретное преобразования Фурье.

2.3.1 Подробное описание

Алгоритмы дискретного и быстрого преобразования Фурье

2.3.2 Функции

Дискретное преобразования Фурье.

Функция расчета дискретного преобразования Фурье реального или комплексного сигнала .

Аргументы

in	xR	Указатель на вектор реальной части входного сигнала $x(n), n =$			
		0N-1. Размер вектора [n x 1].			
in	xI	Указатель на вектор мнимой части входного сигнала $x(n), n =$			
		$0 \dots N-1$. Размер вектора [n x 1]. Этот указатель может быть NULL			
		если входной сигнал является чисто вещественным.			
in	n	Размер ДП Φ (Размер векторов входного и выходного сигналов N).			
out	yR	Указатель на вектор реальной части Результата ДПФ $Y(k),\ k=$			
		$0 \dots N-1$. Размер вектора $[n \ x \ 1]$. Память должна быть выделена.			
out	yI	Указатель на вектор мнимой части Результата ДП Φ $Y(k), k =$			
		$0 \dots N-1$. Размер вектора [n x 1]. Память должна быть выделе-			
		на.			

Возвращает

```
DSPL_OK если ДПФ рассчитано успешно DSPL_ERROR_PTR если xR == NULL или yR == NULL или yI == NULL DSPL_ERROR_SIZE если n < 1
```

Автор

Бахурин Сергей. www.dsplib.org

Примеры:

2.4 Функции оконного взвешивания

Функции для расчета циклической и линейной сверток, а также цифровой КИХ и БИХ фильтрации. Функции для расчета циклической и линейной сверток, а также цифровой КИХ и БИХ фильтрации.

2.6 Расчет БИХ-фильтров

Функции расчета цифровых БИХ-фильтров.

Функции расчета цифровых БИХ-фильтров.

2.7 Расчет КИХ-фильтров

Функции расчета цифровых КИХ-фильтров.

Функции расчета цифровых КИХ-фильтров.

3 Примеры

3 Примеры

```
3.1 \text{ ex\_dspl\_dft.c}
     dspl\_dft function example.
      Task:
     Calculate 256-points DFT for complex exponent
     s(n) = \exp(2*pi*j*0.2*n), n = 0...255
\#include < stdio.h >
#include <stdlib.h>
#include <windows.h>
#include "dspl.h"
 #include "dspl_load.h"
#define N 256
int main()
     \begin{array}{l} \mbox{double } xR[N]; \ /^* \ \mbox{input signal real part vector} \ ^*/ \ \mbox{double } xI[N]; \ /^* \ \mbox{input signal image part vector} \ ^*/ \ \mbox{double } yR[N]; \ /^* \ \mbox{DFT real part vector} \ ^*/ \ \mbox{double } yI[N]; \ /^* \ \mbox{DFT image part vector} \ ^*/ \ \mbox{int } n_* \ \mbox{order} \end{array}
     int n;
     int res;
     HINSTANCE hInstDLL;
      \begin{tabular}{ll} /* Load dspl.dll */ \\ hInstDLL = dspl_load(); \\ \hline if(!hInstDLL) \end{tabular} 
           printf("dspl.dll\ Loading\ Error! \ ");
           return 0;
       /*print current dspl.dll version */
     dspl_get_version(1);
     /* input signal s(n) = \exp(2*pi*j*0.2*n) */for(n = 0; n < N; n++)
          \begin{array}{l} xR[n] = cos(M\_2PI~*~(double)n~*0.2); \\ xI[n] = sin(M\_2PI~*~(double)n~*0.2); \end{array}
     dspl_print_err(res, 1);
     /* save result to ex_dspl_dft.txt */ dspl_print_msg("Save results to ex_dspl_dft.txt", 1, 64); res = dspl_savetxt(yR, yI, N, "dat/ex_dspl_dft.txt"); dspl_print_err(res, 1);
     FreeLibrary(hInstDLL);
     return 0;
```

Предметный указатель

Библиотека DSPL, 1 Функции оконного взвешивания, 5 Расчет БИХ-фильтров, 7 Расчет КИХ-фильтров, 8 Спектральный анализ, 3 Свертка и цифровая фильтрация, 6