## БДЗ по анализу данных и машинному обучению

## Фирсов Георгий, М21-507

## 18 января 2023 г.

## **Вариант**: 10

## Содержание

| адание 6                                                                                 | 2  |
|------------------------------------------------------------------------------------------|----|
| адание 7                                                                                 | 4  |
| адание 8                                                                                 | 5  |
| адание 9                                                                                 | 5  |
| адание 10                                                                                | 6  |
| адание 11                                                                                | 7  |
| адание 12                                                                                | 7  |
| адание 13                                                                                | 9  |
| адание 14                                                                                | 11 |
| адание 15                                                                                | 13 |
| риложение А. Таблицы с перечислением кратчайших путей между вершинами графа из задачи 10 |    |
| Гриложение Б. Графлеты, содержащие исследуемую вершину, для задачи 11                    |    |

## Задание 6

1. Свертка «расширенной» матрицы признаков по каналам. Первый канал:

| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |             |                  |                |     |     |     |    |
|---|----|----|----|----|----|----|----|----|----|----|---|-------------|------------------|----------------|-----|-----|-----|----|
| 0 | 42 | 89 | 56 | 78 | 64 | 97 | 74 | 68 | 33 | 85 | 0 |             |                  |                |     |     |     |    |
| 0 | 77 | 57 | 31 | 72 | 64 | 93 | 48 | 46 | 68 | 68 | 0 |             |                  |                |     |     |     |    |
| 0 | 52 | 23 | 18 | 2  | 87 | 56 | 84 | 90 | 47 | 12 | 0 |             |                  | 126            | 346 | 416 | 321 |    |
| 0 | 58 | 17 | 46 | 26 | 45 | 78 | 97 | 95 | 80 | 10 | 0 |             |                  | 233            | 114 | 412 | 198 |    |
| 0 | 0  | 67 | 30 | 3  | 91 | 20 | 93 | 53 | 24 | 43 | 0 | 0           | $1 \parallel \_$ | 58             | 95  | 416 | 187 |    |
| 0 | 92 | 16 | 36 | 81 | 63 | 46 | 18 | 77 | 90 | 38 | 0 | $\  * \ _2$ | $3 \parallel =$  | 323            | 262 | 384 | 109 |    |
| 0 | 77 | 15 | 17 | 49 | 5  | 42 | 94 | 61 | 10 | 17 | 0 | ''          |                  | 333            | 94  | 341 | 321 |    |
| 0 | 84 | 39 | 81 | 48 | 74 | 55 | 93 | 34 | 76 | 9  | 0 |             |                  | $\parallel 47$ | 95  | 27  | 60  |    |
| 0 | 83 | 82 | 2  | 14 | 58 | 22 | 68 | 68 | 87 | 46 | 0 |             |                  |                |     |     |     |    |
| 0 | 47 | 53 | 80 | 95 | 47 | 46 | 27 | 5  | 19 | 60 | 0 |             |                  |                |     |     |     |    |
| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0 |             |                  |                |     |     |     |    |
|   |    | '  |    |    | ,  |    |    | ,  |    |    | 1 |             |                  |                |     |     | (1  | .) |

Второй канал:

|   | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0 |              |                |                |      |      |                 |
|---|---|----|----|----|----|----|----|-----|----|----|----|---|--------------|----------------|----------------|------|------|-----------------|
|   | 0 | 7  | 51 | 13 | 3  | 71 | 76 | 64  | 38 | 70 | 24 | 0 |              |                |                |      |      |                 |
|   | 0 | 3  | 0  | 9  | 44 | 77 | 17 | 67  | 19 | 77 | 7  | 0 |              |                |                |      |      |                 |
|   | 0 | 4  | 78 | 10 | 64 | 43 | 33 | 87  | 37 | 48 | 2  | 0 |              |                | $\parallel 42$ | 83   | 764  | $494 \parallel$ |
| Ш | 0 | 93 | 56 | 17 | 86 | 91 | 41 | 3   | 79 | 95 | 79 | 0 |              |                | 36             | 637  | 1006 | 511             |
|   | 0 | 94 | 75 | 16 | 21 | 46 | 21 | 89  | 62 | 37 | 45 | 0 | $\  \  3 \ $ | $4\parallel$ _ | 936            | 601  | 774  | 1056            |
| Ш | 0 | 42 | 51 | 51 | 46 | 69 | 90 | 100 | 65 | 44 | 51 | 0 | $  *  _{5}$  | $6 \  =$       | 564            | 1241 | 1206 | 419             |
|   | 0 | 66 | 33 | 86 | 79 | 74 | 70 | 31  | 34 | 13 | 3  | 0 | ''           |                | 468            | 944  | 510  | 1110            |
|   | 0 | 84 | 23 | 41 | 73 | 17 | 60 | 43  | 26 | 50 | 69 | 0 |              |                | $\parallel 64$ | 424  | 147  | 636             |
|   | 0 | 22 | 64 | 29 | 64 | 6  | 22 | 8   | 58 | 96 | 34 | 0 |              |                |                |      |      |                 |
| Ш | 0 | 16 | 72 | 20 | 91 | 79 | 41 | 6   | 78 | 80 | 99 | 0 |              |                |                |      |      |                 |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0 |              |                |                |      |      |                 |
|   |   |    | ,  |    |    | ,  |    |     | ,  |    |    |   |              |                |                |      |      | (2)             |

Третий канал:

| [ | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0 |                                                             |   |   |      |      |      |      |
|---|---|----|----|----|----|----|----|-----|----|----|----|---|-------------------------------------------------------------|---|---|------|------|------|------|
|   | 0 | 73 | 90 | 8  | 0  | 19 | 24 | 100 | 6  | 51 | 69 | 0 |                                                             |   |   |      |      |      |      |
| Ш | 0 | 65 | 38 | 47 | 9  | 72 | 22 | 37  | 76 | 62 | 18 | 0 |                                                             |   |   |      |      |      |      |
| Ш | 0 | 95 | 35 | 54 | 21 | 65 | 78 | 47  | 79 | 34 | 15 | 0 |                                                             |   |   | 657  | 64   | 1092 | 1029 |
| Ш | 0 | 79 | 2  | 83 | 68 | 32 | 56 | 10  | 35 | 89 | 66 | 0 |                                                             |   |   | 1310 | 966  | 1438 | 905  |
|   | 0 | 37 | 93 | 86 | 22 | 20 | 36 | 21  | 84 | 34 | 41 | 0 | $\  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  $ | 7 | _ | 886  | 1860 | 883  | 1637 |
|   | 0 | 11 | 32 | 85 | 20 | 1  | 55 | 15  | 29 | 2  | 8  | 0 | *  8                                                        | 9 |   | 473  | 1328 | 1673 | 1226 |
|   | 0 | 44 | 37 | 60 | 22 | 24 | 58 | 86  | 53 | 48 | 86 | 0 |                                                             |   |   | 989  | 925  | 2047 | 1207 |
|   | 0 | 32 | 87 | 67 | 29 | 27 | 33 | 81  | 31 | 40 | 16 | 0 |                                                             |   |   | 441  | 789  | 483  | 444  |
|   | 0 | 85 | 4  | 40 | 0  | 98 | 50 | 98  | 22 | 9  | 87 | 0 |                                                             |   |   |      |      |      |      |
|   | 0 | 63 | 21 | 23 | 93 | 67 | 77 | 3   | 38 | 60 | 12 | 0 |                                                             |   |   |      |      |      |      |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0 |                                                             |   |   |      |      |      |      |

(3)

2. Пулинг по максимальному значению по каналам. Первый канал:

$$\begin{vmatrix}
126 & 346 & 416 & 321 \\
233 & 114 & 412 & 198 \\
58 & 95 & 416 & 187 \\
323 & 262 & 384 & 109 \\
333 & 94 & 341 & 321 \\
47 & 95 & 27 & 60
\end{vmatrix}
\xrightarrow{\text{max pooling}}
\begin{vmatrix}
346 & 416 & 416 \\
233 & 416 & 416 \\
323 & 416 & 416 \\
333 & 384 & 384 \\
333 & 341 & 341
\end{vmatrix}$$
(4)

Второй канал:

Третий канал:

3. Теперь финальный шаг — кросс-канальная свертка. Первый выходной канал:

(7)

Второй выходной канал:

Ответ: Первый выходной канал:

Второй выходной канал:

#### Задание 7

Ядро  $K(x,y) = (\langle x,y\rangle + 1)^d$  является частным случаем *полиномиального* ядра  $K(x,y) = (\langle x,y\rangle + \theta)^d$ . Произведем некоторые преобразования, а также воспользуемся мультиномиальной теоремой:

$$K(\mathbf{x}, \mathbf{y}) = (\langle x, y \rangle + \theta)^{d} =$$

$$= \left(x_{1}y_{1} + \dots + x_{n}y_{n} + \sqrt{\theta}\sqrt{\theta}\right)^{d} =$$

$$= \sum_{\substack{j_{1} + \dots + j_{n+1} = d \\ j_{1}, \dots, j_{n+1} \geq 0}} {\binom{d}{j_{1}, \dots, j_{n+1}}} \theta^{j_{n+1}/2} \prod_{k=1}^{n} x_{k}^{j_{k}} y_{k}^{j_{k}},$$
(9)

где 
$$\mathbf{x} = (x_1, ..., x_n)$$
 и  $\mathbf{y} = (y_1, ..., y_n)$ .

Несложно заметить, что последнее выражение является суммой «элементарных» произведений, один множитель которых зависит только от  $\mathbf{x}$ , а второй — только от  $\mathbf{y}$ , действительно:

$$K(\mathbf{x}, \mathbf{y}) = \sum_{\substack{j_1 + \dots + j_{n+1} = d \\ j_1, \dots, j_{n+1} \ge 0}} \sqrt{\binom{d}{j_1, \dots, j_{n+1}}} \theta^{j_{n+1}/2} \prod_{k=1}^n x_k^{j_k} \cdot \sqrt{\binom{d}{j_1, \dots, j_{n+1}}} \theta^{j_{n+1}/2} \prod_{k=1}^n y_k^{j_k} = (\phi(\mathbf{x}), \phi(\mathbf{y})),$$

$$(10)$$

где  $\phi: F \to H$ ,  $\mathbf{x}, \mathbf{y} \in F$  (т.е. H — спрямляющее пространство).

Заметим, что сумма в (10) имеет ровно  $\binom{n+d}{n}$  слагаемых, а значит это число является и размерностью спрямляющего пространства H.

**Ответ:** dim  $H = \binom{n+d}{n}$ .

#### Задание 8

Положим  $\alpha = \langle \cdot, \cdot \rangle$ , тогда уравнения несколько упрощаются (точнее их получится записать в матричном виде). Расчет ведется попросту по шагам:

#### 1. Вычисление оценки:

$$a = q \cdot \mathbf{K}^{\top} = \begin{vmatrix} 0,592 & 1,683 & 3,100 \end{vmatrix} \cdot \begin{vmatrix} 0,316 & 0,587 & 1,310 & 0,011 \\ 1,218 & 2,156 & 4,011 & 0,592 \\ 3,654 & 1,857 & 2,982 & 1,816 \end{vmatrix} =$$

$$= \begin{vmatrix} 13,564366 & 9,732752 & 16,770233 & 6,632448 \end{vmatrix}$$

$$(11)$$

#### 2. Получение весов:

$$b = softmax(a) = \left[m = e^{13,564366} + e^{9,732752} + e^{16,770233} + e^{6,632448} \approx 19991924, 01\right] =$$

$$= \left\|\frac{e^{13,564366}}{m} \right\| \frac{e^{9,732752}}{m} \right\| \frac{e^{16,770233}}{m} \left\| \frac{e^{6,632448}}{m} \right\| \approx \left\|0,03891 \right\| 0,00084 \quad 0,96021 \quad 0,00004 \right\|$$

$$(12)$$

#### 3. Вычисление результата:

$$o = b \cdot \mathbf{V} = \|0,03891 \quad 0,00084 \quad 0,96021 \quad 0,00004\| \cdot \begin{pmatrix} 0,210 & 1,312 & 2,654 \\ 0,612 & 2,389 & 1,762 \\ 0,998 & 3,654 & 3,002 \\ 0,312 & 0,861 & 1,368 \end{pmatrix} \approx \|0,96699 \quad 3.56169 \quad 2.98735\|$$

$$\approx \|0,96699 \quad 3.56169 \quad 2.98735\|$$

**Ответ:**  $o = \|0,96699 \quad 3.56169 \quad 2.98735\|.$ 

#### Задание 9

Модель BLOOM (BigScience Large Open-science Open-access Multilingual Language Model) была разработана в рамках проекта BigScience в период с 2021 по 2022 годы. Релиз первой версии состоялся в 2022 году, данная версия является на текущий момент самой актуальной [1].

Исходный код модели является закрытым, однако разработчики сообщают об использовании 13 языков программирования для реализации данной модели [2]. В то же время модель предоставляет открытый интерфейс для взаимодействия с использованием специального веб-приложения [1].

Модель может продолжать текст некоторого поданного ей на вход запроса. По утверждениям разработчиков генерируемый текст трудно отличим от написанного человеком [1]. Поддерживается 46 различных языков.

Следует отметить, что модель также может быть нацелена на решение задач, для которых она непосредственно не обучалась путем сведения их к задаче генерирования текста.

Обучение производилось на основе корпусов текстов суммарным объемом 1.6 терабайт [2] при помощи 384 основных графических процессоров (с объемом видеопамяти 80 гигабайт) и 32 дополнительных аналогичных по характеристикам графических процессоров [1]. Обучение стартовало 11 марта 2022 года. Интересный факт: используемый для обучения суперкомпьютер потребляет энергию, в основном выработанную на атомных электростанциях [1].

Модель содержит 176 миллиардов параметров (если точнее, то 176,247,271,424 параметра) [3, 1]. Представляет из себя сеть-кодировщик, применяет эмбеддинги и механизмы внимания. Впрочем, прочие параметры модели авторами не раскрываются подробно ни на сайте модели, ни в публикациях. Количество параметров сети выделяется в качестве основной особенности авторами разработки.

К возможным недостаткам и рискам следует отнести [1]:

- возможность присутствия персональных данных в выходных результатах модели;
- потенциальное наличие стереотипных суждений, которые могут кого-либо оскорбить;
- генерирование текста, содержащего оскорбительный, дискриминационный и иной неприемлемый контент;
- допущение фактических ошибок в генерируемом тексте;
- генерирование нерелевантного вывода, что может быть использовано для введения кого-либо в заблуждение.

#### Список использованных источников

- 1. BigScience Large Open-science Open-access Multilingual Language Model [Электронный ресурс]. 2020. Режим доступа: https://huggingface.co/bigscience/bloom (дата обращения: 18.01.2023).
- 2. What Language Model to Train if You Have One Million GPU Hours? 2022. Режим доступа: https://arxiv.org/abs/2210.15424.
- 3. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. 2022. Режим доступа: https://arxiv.org/abs/2211.05100.

#### Задание 10

1. В таблице 1 представлены длины кратчайших путей из вершины u=18 во все остальные.

Рассчитаем величину closeness centrality:

$$cc_{18} = \frac{1}{\sum_{v,v \neq 18} d(18,v)} \approx 0.016.$$
 (14)

**Ответ:**  $cc_{18} \approx 0.016$ 

Таблица 1: Длины кратчайших путей в графе из вершины u=18 во все остальные

| Вершина $v$ | Длина пути $d(u,v)$ | Вершина $v$ | Длина пути $d(u,v)$ |
|-------------|---------------------|-------------|---------------------|
| 1           | 5                   | 11          | 4                   |
| 2           | 5                   | 12          | 3                   |
| 3           | 4                   | 13          | 2                   |
| 4           | 5                   | 14          | 2                   |
| 5           | 5                   | 15          | 1                   |
| 6           | 4                   | 16          | 2                   |
| 7           | 4                   | 17          | 1                   |
| 8           | 5                   | 19          | 1                   |
| 9           | 3                   | 20          | 2                   |
| 10          | 3                   | _           | _                   |

2. Для расчета величины betweenness centrality построим все кратчайшие пути из всех вершин, кроме u=18, во все остальные, кроме u=18, и рассчитаем долю содержащих u (см. таблицы в приложении A). Для получения искомой величины следует просуммировать значения последнего столбца всех таблиц 4–21.

**Ответ:**  $bc_{18} = 19\frac{2}{3}$ .

3. Смежными с вершиной u=18 являются: 15, 17 и 19, которые при этом не являются смежными попарно. Таким образом,  $\mathfrak{N}_{18}=0$ , где через  $\mathfrak{N}_u$  обозначим количество ребер между смежными с u вершинами.

Так как 
$$e(u) = \mathfrak{N}_u / {\deg u \choose 2}$$
, то  $e(18) = 0$ .

**Ответ:** e(18) = 0.

## Задание 11

Выделим все графлеты (в количестве 195 штук), содержащие от 2 до 5 вершин, в числе которых также присутствует u=23 (см. приложение Б). Далее механически соотнесем каждый графлет с его «типом» по его топологии и расположению вершины u. После подсчета количеств графлетов для каждого «типа» получается следующий вектор:

$$GDV(23) = ||4, 9, 4, 2, 12, 11, 6, 1, 4, 1, 8, 2, 0, 1, 0, 19, 12, 5, 6, 18, 4, 4, 1, 0, 0, 6, 5, 3, 1, 10, 2, 1, 5, 0, 1, 0, 4, 9, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0||.$$

$$(15)$$

**Ответ:** Значение вектора GDV(23) см. в (15).

#### Задание 12

Запишем множества смежных вершин для указанных в задании:  $N(u) = N(5) = \{1,4,6\}, N(v) = N(8) = \{7,9\}.$  Отметим, что  $N(5) \cap N(8) = \emptyset, N(5) \cup N(8) = \{1,4,6,7,9\}.$ 

1. Индекс Жаккарда:

$$J(5,8) = \frac{|N(5) \cap N(8)|}{|N(5) \cup N(8)|} = \frac{0}{5} = 0.$$
 (16)

**Ответ:** J(5,8) = 0.

2. Адамика-Адара:

$$A(5,8) = \sum_{v \in N(5) \cap N(8)} \frac{1}{\log \deg v} = 0.$$
 (17)

**Ответ:** A(5,8) = 0.

3. Индекс Каца. Построим матрицу смежности графа:

Элемент на пересечении 5 строки и 8 столбца равен 0, то есть между вершинами 5 и 8 нет путей длины 1. Возведем матрицу во вторую степень:

Вновь элемент равен 0. Возведем в 3 степень:

Теперь элемент равен 2, то есть существуют два пути из 5 в 8 длины 3 (действительно: 5-4-7-8 и 5-6-7-8). Продолжая возводить матрицу в последовательные

степени будем получать количество путей соответствующей длины. На основе данных значений можно составить индекс Каца:

$$S(5,8) = 2\beta^3 + 6\beta^4 + 33\beta^5 + 106\beta^6 + 457\beta^7 + 1559\beta^8 + 6160\beta^9 + \cdots$$

**Ответ:**  $S(5,8) = 2\beta^3 + 6\beta^4 + 33\beta^5 + 106\beta^6 + 457\beta^7 + 1559\beta^8 + 6160\beta^9 + \cdots$ 

#### Задание 13

В данном задании цвет будем обозначать числом: разные числа — разные цвета. При этом на изображениях цвета в обычном их представлении будут отсутствовать.

На рисунке 1 изображена начальная раскраска графов (правда, не совсем в том смысле, в котором она обыкновенно понимается в теории графов), а также сразу агрегированы цвета смежных вершин.



Рис. 1: Начальная раскраска графов и агрегирование цветов смежных вершин

Определим хэш-функцию H на полученных агрегированных цветах (2).

Таблица 2: Значения хэш-функции Н на цветах с рисунка 1

| Цвет <i>с</i> | H(c) |
|---------------|------|
| 1,1           | 2    |
| 1,11          | 3    |
| 1,111         | 4    |
| 1,11111       | 5    |
| 1,1111111     | 6    |

Заменим старые цвета на полученные (рис. 2) и так же сразу агрегируем цвета смежных вершин.

Доопределим хэш-функцию на полученных цветах (3).

Повторим замену цветов (рис. 3) и заметим, что при последующих заменах получится так, что цвета, одинаково поменявшиеся на шаге 3, меняются одинаково и на последующих шагах, а поменявшиеся по-разному — меняются по-разному. Таким образом, алгоритм сошелся.



Рис. 2: Раскраска графов и агрегирование цветов смежных вершин на втором шаге

Таблица 3: Значения хэш-функции H на цветах с рисунка 2

| ILBET $c$ $H(c)$ 2,3       7         2,4       8         2,6       9         3,25       10         3,35       11         3,36       12         3,45       13         4,235       14         5,33334       15         6,23333333       16 | 1.0       | 1 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| 2,4     8       2,6     9       3,25     10       3,35     11       3,36     12       3,45     13       4,235     14       5,33334     15                                                                                                | Цвет с    | H(c) |
| 2,6       9         3,25       10         3,35       11         3,36       12         3,45       13         4,235       14         5,33334       15                                                                                      | 2,3       | 7    |
| 3,25     10       3,35     11       3,36     12       3,45     13       4,235     14       5,33334     15                                                                                                                                | 2,4       | 8    |
| 3,35       11         3,36       12         3,45       13         4,235       14         5,33334       15                                                                                                                                | 2,6       | 9    |
| 3,36       12         3,45       13         4,235       14         5,33334       15                                                                                                                                                      | 3,25      | 10   |
| 3,45     13       4,235     14       5,33334     15                                                                                                                                                                                      | 3,35      | 11   |
| 4,235     14       5,33334     15                                                                                                                                                                                                        | 3,36      | 12   |
| 5,33334 15                                                                                                                                                                                                                               | 3,45      | 13   |
|                                                                                                                                                                                                                                          | 4,235     | 14   |
| 6,2333333 16                                                                                                                                                                                                                             |           | 15   |
|                                                                                                                                                                                                                                          | 6,2333333 | 16   |



Рис. 3: Раскраска графов на третьем шаге

Теперь вычислим значение ядра. Для начала посчитаем количество вершин с конкрет-

ными цветами и составим из этого векторы:

$$\phi_1 = \begin{vmatrix} 8 & 1 & 6 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 6 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$\phi_2 = \begin{vmatrix} 8 & 2 & 4 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 2 & 0 & 1 & 1 & 1 & 0 \end{vmatrix}$$
(21)

Непосредственно значение ядра:

$$K(G_1, G_2) = \langle \phi_1, \phi_2 \rangle = 90.$$
 (22)

**Ответ:**  $K(G_1, G_2) = 90.$ 

#### Задание 14

В данном задании опишу часть моей ВКР в бакалавриате, так как она как раз посвящена обучению с подкреплением (если точнее, то глубокому обучению с подкреплением). Решалась задача прогнозирования трех параметров производных финансовых инструментов (на примере фьючерсов): цены, объема и открытого интереса.

Модель содержит некоторое количество агентов — математических моделей игроков срочного рынка, которых характеризует неизменная в течение процесса моделирования стратегия (пара функций  $(\phi_k, f_k)$ , где k — номер агента), в соответствии с ней агент выставляет заявки, и изменяющееся внутреннее состояние (на t-м шаге модельного времени вектор внутреннего состояния выглядит так:  $s_k(t) = (m_k(t), z_k(t))$ , где k — номер агента,  $m_k(t)$  — остаток денег у k-го агента к моменту начала t-го шага времени,  $z_k(t)$  — зависящие от конкретной стратегии агента значения).

Средой является абстракция ранка (стакан, модель клирингового центра и пр.).

На каждом t-м шаге модельного времени k-й агент (для всех k) может разместить некоторое количество  $n_k^+(t)$  заявок на покупку или некоторое количество  $n_k^-(t)$  заявок на продажу. Данные количества не могут превысить максимально возможное количество заявок, которые может разместить k-й агент на t-м шаге:

$$n_k^{max}(t) = \left\lfloor \frac{m_k(t)}{c} \right\rfloor, \tag{23}$$

где c — величина, называемая гарантийным обеспечением (для упрощения модели она принята постоянной на протяжении всего времени моделирования).

При помощи функции  $f_k$  агент вырабатывает значение готовности  $r_k(t) \in [0;1]$ , а далее желаемое количество заявок рассчитывается следующим образом:

- если  $r_k(t) \in [-1;0)$ , то:  $n_k^-(t) = \lfloor n_k^{max}(t) \cdot |r_k(t)| \rfloor$ ,  $n_k^+(t) = 0$ ;
- если  $r_k(t) \in (0;1]$ , то:  $n_k^+(t) = \lfloor n_k^{max}(t) \cdot r_k(t) \rfloor, \, n_k^-(t) = 0;$
- если  $r_k(t) = 0$ , то агент выходит из рынка.

Цена в заявке формируется следующим образом:  $p_k(t) = \lfloor \hat{p}(t-1)(1+\omega r_k(t)) \rfloor$ , где  $\hat{p}(t-1)$  — смоделированная (выход модели) на шаге t-1 цена,  $\omega \in (0,1]$  — неизменный в течение моделирования параметр модели.

При этом в действительности на t-м шаге k-агент размещает следующее количество заявок (заметим, что оно не всегда равно желаемому, чтобы учесть уже размещенные, но еще не закрытые):

$$n_k(t) = \operatorname{sgn}\left(\xi_k(t)\right) \min\left(n_k^{max}(t), \xi_k(t)\right), \tag{24}$$

где  $\xi_k(t) = |n_k^{max}(t)|r_k(t)| - o_k(t) - n_k^+(t) + n_k^-(t)|$ ,  $o_k(t)$  — количество действующих на момент начала шага t контрактов для агента k.

На этом описание действий агента не завершается. Перед вычислением значения  $r_k(t)$  агент обновляет свою внутреннее состояние при помощи функции  $\phi_k$  на основе предыдущего внутреннего состояния  $s_k(t-1)$ , смоделированных цены  $\hat{p}(t-1)$ , объема  $\hat{v}(t-1)$  и открытого интереса  $\hat{a}(t-1)$ , а также вектора параметров модели  $\mathbf{x}_k$  (данные параметры как раз и подбираются в ходе обучения модели).

После размещения заявок наступает клиринговая фаза, и вычисляются значения смоделированных цены  $\hat{p}(t)$ , объема  $\hat{v}(t)$  и открытого интереса  $\hat{a}(t)$  (функции их вычисления приводить не буду в силу их нетривиальности).

Оптимизируется функция  $L(P, V, A, \mathbf{x}) = \sum_t \mathcal{F}(\rho(p_t, \hat{p}(t)), \rho(v_t, \hat{v}(t)), \rho(a_t, \hat{a}(t)))$ , где  $\rho$  — метрика в  $\mathbb{R}^2$ ,  $\mathcal{F}$  — функция, которая прямо пропорциональна каждому своему аргументу (например, среднее трех входных значений), P, V, A — исходные временные ряды цен, объемов и открытого интереса (обучающая выборка).

Таким образом, задачей является нахождение:

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}} L(P, V, A, \mathbf{x}), \tag{25}$$

где  $\mathbf{x} = \|\mathbf{x_1} \cdot \cdots \cdot \mathbf{x}_K\|$ .

Агенты в модели имеют различные стратегии, основанные на реальном поведении игроков на срочном рынке. Примером, может служить использование индикаторов, например, MACD или полос Боллинджера<sup>1</sup>. Данные стратегии определяют вектор параметров  $z_k(t)$ , хранимых во внутреннем состоянии, а также конкретный вид функций  $\phi_k$  и  $f_k$ .

Вознаграждение агента обратно пропорционально значению функции  $\mathcal{F}$  на рассматриваемом шаге. При этом если по сравнению с предыдущим шагом была улучшена точность прогнозирования, то величина является положительной, а если точность ухудшилась, то — отрицательной. При этом отдельно рассматривается случай равенства нулю расстояний до обучающих данных: в этом случае вознаграждение фиксированное положительное (использовалось значение 100).

Задача обучения решалась методом градиента стратегии, так как значения состояния фактически ограничений не имеют. Элементы вектора действий (количества размещаемых заявок) хоть и ограничены целочисленными значениям, но было введено допущение в виде трактовки пространства действий как  $\mathbb{R}^K$ , где K — количество задействованных агентов. В силу того, что процесс моделирования может продолжаться сколь угодно долго, задача считается непрерывной. Суть метода состоит в нахождении некоторых приближений функций ценности  $v_{\pi}(s)$  (это математическое ожидание дохода при начале работы в состоянии s и следовании стратегии  $\pi$ ) и самой стратегии  $\pi(a|s)$  (выражающей вероятность принять действие a при нахождении в состоянии s), где через a традиционно для публикаций по обучению с подкреплением обозначается действие. Приближения находятся при помощи параметризации (а параметрами и выступают векторы  $\mathbf{x}_k$ ).

В качестве «истинной» стратегии была выбрана многомерная гауссова:  $\pi(a|s) = \prod_{j=1}^K \mathcal{N}(\mu_j(s), \sigma_j^2(s))$  (это предположение). Для решения был выбран метод «исполнителькритик».

При этом следует отметить, что используемые стратегии на основе индикаторов не являются дифференцируемыми по вектору параметров (а это необходимо для метода «исполнитель-критик»), в связи с чем было принято решение аппроксимировать их при помощи нейронной сети (сеть вырабатывает на выходе весь вектор действий). Функция ценности состояния также аппроксимируется нейронной сетью. Следует отметить, что обучение проходит в два этапа: на первом запускается симуляция, в ходе которой нейронные сети обучаются аппроксимировать параметризованные функцию стратегии

 $<sup>^1</sup>$  Подробнее: Кауфман П. Системы и методы биржевой торговли ; Пер. с англ. — М. : Альпина Паблишер, 2017 — 1279 с.

и функцию ценности состояния (параметры являются входами нейронных сетей), то есть устанавливается приближенная зависимость результатов функций от входных данных и параметров модели рынка. На втором же этапе обучения (второй симуляции) происходит подбор параметров самой модели с использованием полученных приближений (которые, несомненно, являются дифференцируемыми по параметрам модели) по методу «исполнитель-критик». Найденные на втором этапе параметры модели считаются оптимальными и определяют оптимальную стратегию (строго говоря, — ее приближение).

Задание 15 :(

# Приложение А. Таблицы с перечислением кратчайших путей между вершинами графа из задачи 10

Таблица 4: Пути из вершины 1 в другие вершины.

| Целевая вершина | Кратчайшие пути           | Доля путей через 18 |
|-----------------|---------------------------|---------------------|
| 2               | [1, 3, 2]                 | 0/1                 |
| 3               | [1, 3]                    | 0/1                 |
| 4               | [1, 3, 6, 4]              | 0/1                 |
| 5               | [1, 3, 6, 5]              | 0/1                 |
| 6               | [1, 3, 6]                 | 0/1                 |
| 7               | [1, 3, 7]                 | 0/1                 |
| 8               | [1, 3, 7, 8]              | 0/1                 |
| 9               | [1, 3, 9]                 | 0/1                 |
| 10              | [1, 3, 6, 10]             | 0/1                 |
| 11              | [1, 3, 6, 10, 11]         | 0/1                 |
| 12              | [1, 3, 9, 13, 12]         | 0/1                 |
| 13              | [1, 3, 9, 13]             | 0/1                 |
| 14              | [1, 3, 9, 14]             | 0/1                 |
| 15              | [1, 3, 9, 13, 15]         | 0/2                 |
| 10              | [1, 3, 9, 14, 15]         | 0/2                 |
| 16              | [1, 3, 6, 10, 16]         | 0/1                 |
|                 | [1, 3, 9, 13, 15, 18, 17] |                     |
| 17              | [1, 3, 9, 14, 15, 18, 17] | 3/3                 |
|                 | [1, 3, 9, 14, 19, 18, 17] |                     |
| 19              | [1, 3, 9, 14, 19]         | 0/1                 |
| 20              | [1, 3, 9, 14, 19, 20]     | 0/1                 |

Таблица 5: Пути из вершины 2 в другие вершины.

| Целевая вершина | Кратчайшие пути           | Доля путей через 18 |
|-----------------|---------------------------|---------------------|
| 3               | [2,3]                     | 0/1                 |
| 4               | [2, 3, 6, 4]              | 0/1                 |
| 5               | [2, 3, 6, 5]              | 0/1                 |
| 6               | [2, 3, 6]                 | 0/1                 |
| 7               | [2, 3, 7]                 | 0/1                 |
| 8               | [2, 3, 7, 8]              | 0/1                 |
| 9               | [2, 3, 9]                 | 0/1                 |
| 10              | [2, 3, 6, 10]             | 0/1                 |
| 11              | [2, 3, 6, 10, 11]         | 0/1                 |
| 12              | [2, 3, 9, 13, 12]         | 0/1                 |
| 13              | [2, 3, 9, 13]             | 0/1                 |
| 14              | [2, 3, 9, 14]             | 0/1                 |
| 15              | [2, 3, 9, 13, 15]         | 0/2                 |
|                 | [2, 3, 9, 14, 15]         | ·                   |
| 16              | [2, 3, 6, 10, 16]         | 0/1                 |
|                 | [2, 3, 9, 13, 15, 18, 17] |                     |
| 17              | [2, 3, 9, 14, 15, 18, 17] | 3/3                 |
|                 | [2, 3, 9, 14, 19, 18, 17] |                     |
| 19              | [2, 3, 9, 14, 19]         | 0/1                 |
| 20              | [2, 3, 9, 14, 19, 20]     | 0/1                 |

Таблица 6: Пути из вершины 3 в другие вершины.

| Целевая вершина | Кратчайшие пути                  | Доля путей через 18 |
|-----------------|----------------------------------|---------------------|
| 4               | [3, 6, 4]                        | 0/1                 |
| 5               | [3, 6, 5]                        | 0/1                 |
| 6               | [3, 6]                           | 0/1                 |
| 7               | [3,7]                            | 0/1                 |
| 8               | [3, 7, 8]                        | 0/1                 |
| 9               | [3, 9]                           | 0/1                 |
| 10              | [3, 6, 10]                       | 0/1                 |
| 11              | [3, 6, 10, 11]                   | 0/1                 |
| 12              | [3, 9, 13, 12]                   | 0/1                 |
| 13              | [3, 9, 13]                       | 0/1                 |
| 14              | [3, 9, 14]                       | 0/1                 |
| 15              | [3, 9, 13, 15]<br>[3, 9, 14, 15] | 0/2                 |
| 16              | [3, 6, 10, 16]                   | 0/1                 |
|                 | [3, 9, 13, 15, 18, 17]           |                     |
| 17              | [3, 9, 14, 15, 18, 17]           | 3/3                 |
|                 | [3, 9, 14, 19, 18, 17]           |                     |
| 19              | [3, 9, 14, 19]                   | 0/1                 |
| 20              | [3, 9, 14, 19, 20]               | 0/1                 |

Таблица 7: Пути из вершины 4 в другие вершины.

| Целевая вершина | Кратчайшие пути                                 | Доля путей через 18 |
|-----------------|-------------------------------------------------|---------------------|
| 5               | [4, 6, 5]                                       | 0/1                 |
| 6               | [4,6]                                           | 0/1                 |
| 7               | [4, 6, 3, 7]                                    | 0/9                 |
| 1               | [4, 6, 9, 7]                                    | 0/2                 |
| 8               | [4, 6, 3, 7, 8]                                 | 0/2                 |
|                 | [4, 6, 9, 7, 8]                                 |                     |
| 9               | [4, 6, 9]                                       | 0/1                 |
| 10              | [4, 6, 10]                                      | 0/1                 |
| 11              | [4, 6, 10, 11]                                  | 0/1                 |
| 12              | [4, 6, 9, 13, 12]                               | 0/1                 |
| 13              | [4, 6, 9, 13]                                   | 0/1                 |
| 14              | [4,6,9,14]                                      | 0/2                 |
| 14              | [4, 6, 10, 14]                                  | 0/2                 |
|                 | [4, 6, 9, 13, 15]                               |                     |
| 15              | [4, 6, 9, 14, 15]                               | 0/4                 |
|                 | [4, 6, 10, 14, 15]                              | 0/1                 |
|                 | [4, 6, 10, 16, 15]                              |                     |
| 16              | [4, 6, 10, 16]                                  | 0/1                 |
|                 | [4, 6, 9, 13, 15, 18, 17]                       |                     |
|                 | [4, 6, 9, 14, 15, 18, 17]                       |                     |
| 1=              | [4, 6, 10, 14, 15, 18, 17]                      | - /-                |
| 17              | [4, 6, 10, 16, 15, 18, 17]                      | 7/7                 |
|                 | [4, 6, 9, 14, 19, 18, 17]                       |                     |
|                 | [4, 6, 10, 14, 19, 18, 17]                      |                     |
|                 | [4, 6, 10, 16, 19, 18, 17]                      |                     |
| 19              | [4, 6, 9, 14, 19]<br>[4, 6, 10, 14, 19]         | 0/3                 |
| 19              |                                                 | 0/3                 |
|                 | [4, 6, 10, 16, 19]<br>[4, 6, 9, 14, 19, 20]     |                     |
| 20              | [4, 6, 9, 14, 19, 20]<br>[4, 6, 10, 14, 19, 20] | 0/3                 |
| 20              | [4, 6, 10, 14, 19, 20] $[4, 6, 10, 16, 19, 20]$ | 0/3                 |
|                 | [4, 0, 10, 10, 19, 20]                          |                     |

Таблица 8: Пути из вершины 5 в другие вершины.

| Целевая вершина | ща о. Пути из вершины з в др<br>Кратчайшие пути                                                                                                                                                                                                             | Доля путей через 18 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 6               | [5, 6]                                                                                                                                                                                                                                                      | 0/1                 |
| 7               | $   \begin{array}{c}     [5, 6, 3, 7] \\     [5, 6, 9, 7]   \end{array} $                                                                                                                                                                                   | 0/2                 |
| 8               | $[5, 6, 3, 7, 8] \\ [5, 6, 9, 7, 8]$                                                                                                                                                                                                                        | 0/2                 |
| 9               | [5, 6, 9]                                                                                                                                                                                                                                                   | 0/1                 |
| 10              | [5, 6, 10]                                                                                                                                                                                                                                                  | 0/1                 |
| 11              | [5, 6, 10, 11]                                                                                                                                                                                                                                              | 0/1                 |
| 12              | [5, 6, 9, 13, 12]                                                                                                                                                                                                                                           | 0/1                 |
| 13              | [5, 6, 9, 13]                                                                                                                                                                                                                                               | 0/1                 |
| 14              | [5, 6, 9, 14]<br>[5, 6, 10, 14]                                                                                                                                                                                                                             | 0/2                 |
| 15              | [5, 6, 9, 13, 15]<br>[5, 6, 9, 14, 15]<br>[5, 6, 10, 14, 15]<br>[5, 6, 10, 16, 15]                                                                                                                                                                          | 0/4                 |
| 16              | [5, 6, 10, 16]                                                                                                                                                                                                                                              | 0/1                 |
| 17              | $ \begin{bmatrix} 5, 6, 9, 13, 15, 18, 17 \\ [5, 6, 9, 14, 15, 18, 17] \\ [5, 6, 10, 14, 15, 18, 17] \\ [5, 6, 10, 16, 15, 18, 17] \\ [5, 6, 9, 14, 19, 18, 17] \\ [5, 6, 10, 14, 19, 18, 17] \\ [5, 6, 10, 16, 19, 18, 17] \\ [5, 6, 10, 16, 19, 18, 17] $ | 7/7                 |
| 19              | [5, 6, 9, 14, 19]<br>[5, 6, 10, 14, 19]<br>[5, 6, 10, 16, 19]                                                                                                                                                                                               | 0/3                 |
| 20              | [5, 6, 9, 14, 19, 20]<br>[5, 6, 10, 14, 19, 20]<br>[5, 6, 10, 16, 19, 20]                                                                                                                                                                                   | 0/3                 |

Таблица 9: Пути из вершины 6 в другие вершины.

| Целевая вершина | Кратчайшие пути                                                                                                                                                                        | Доля путей через 18 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 7               | $   \begin{array}{c}     [6,3,7] \\     [6,9,7]   \end{array} $                                                                                                                        | 0/2                 |
| 8               | [6, 3, 7, 8]<br>[6, 9, 7, 8]                                                                                                                                                           | 0/2                 |
| 9               | [6, 9]                                                                                                                                                                                 | 0/1                 |
| 10              | [6, 10]                                                                                                                                                                                | 0/1                 |
| 11              | [6, 10, 11]                                                                                                                                                                            | 0/1                 |
| 12              | [6, 9, 13, 12]                                                                                                                                                                         | 0/1                 |
| 13              | [6, 9, 13]                                                                                                                                                                             | 0/1                 |
| 14              | [6, 9, 14]<br>[6, 10, 14]                                                                                                                                                              | 0/2                 |
| 15              | [6, 9, 13, 15]<br>[6, 9, 14, 15]<br>[6, 10, 14, 15]<br>[6, 10, 16, 15]                                                                                                                 | 0/4                 |
| 16              | [6, 10, 16]                                                                                                                                                                            | 0/1                 |
| 17              | [6, 9, 13, 15, 18, 17]<br>[6, 9, 14, 15, 18, 17]<br>[6, 10, 14, 15, 18, 17]<br>[6, 10, 16, 15, 18, 17]<br>[6, 9, 14, 19, 18, 17]<br>[6, 10, 14, 19, 18, 17]<br>[6, 10, 16, 19, 18, 17] | 7/7                 |
| 19              | [6, 9, 14, 19]<br>[6, 10, 14, 19]<br>[6, 10, 16, 19]                                                                                                                                   | 0/3                 |
| 20              | [6, 9, 14, 19, 20]<br>[6, 10, 14, 19, 20]<br>[6, 10, 16, 19, 20]                                                                                                                       | 0/3                 |

Таблица 10: Пути из вершины 7 в другие вершины.

| Целевая вершина | Кратчайшие пути        | Доля путей через 18 |
|-----------------|------------------------|---------------------|
| 8               | [7, 8]                 | 0/1                 |
| 9               | [7, 9]                 | 0/1                 |
|                 | [7, 3, 6, 10]          |                     |
| 10              | [7, 9, 6, 10]          | 0/3                 |
|                 | [7, 9, 14, 10]         |                     |
|                 | [7, 3, 6, 10, 11]      |                     |
| 11              | [7, 9, 6, 10, 11]      | 0/3                 |
|                 | [7, 9, 14, 10, 11]     |                     |
| 12              | [7, 9, 13, 12]         | 0/1                 |
| 13              | [7, 9, 13]             | 0/1                 |
| 14              | [7, 9, 14]             | 0/1                 |
| 15              | [7, 9, 13, 15]         | 0/2                 |
| 10              | [7, 9, 14, 15]         | 0/2                 |
|                 | [7, 3, 6, 10, 16]      |                     |
|                 | [7, 9, 6, 10, 16]      |                     |
| 16              | [7, 9, 14, 10, 16]     | 0/6                 |
|                 | [7, 9, 13, 15, 16]     | 0,0                 |
|                 | [7, 9, 14, 15, 16]     |                     |
|                 | [7, 9, 14, 19, 16]     |                     |
|                 | [7, 9, 13, 15, 18, 17] |                     |
| 17              | [7, 9, 14, 15, 18, 17] | 3/3                 |
|                 | [7, 9, 14, 19, 18, 17] |                     |
| 19              | [7, 9, 14, 19]         | 0/1                 |
| 20              | [7, 9, 14, 19, 20]     | 0/1                 |

Таблица 11: Пути из вершины 8 в другие вершины.

| Целевая вершина | Кратчайшие пути                                                                                                                                  | Доля путей через 18 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 9               | [8, 7, 9]                                                                                                                                        | 0/1                 |
| 10              | [8, 7, 3, 6, 10]<br>[8, 7, 9, 6, 10]<br>[8, 7, 9, 14, 10]                                                                                        | 0/3                 |
| 11              | $ \begin{bmatrix} [8,7,3,6,10,11] \\ [8,7,9,6,10,11] \\ [8,7,9,14,10,11] \end{bmatrix} $                                                         | 0/3                 |
| 12              | [8, 7, 9, 13, 12]                                                                                                                                | 0/1                 |
| 13              | [8, 7, 9, 13]                                                                                                                                    | 0/1                 |
| 14              | [8, 7, 9, 14]                                                                                                                                    | 0/1                 |
| 15              | [8, 7, 9, 13, 15]<br>[8, 7, 9, 14, 15]                                                                                                           | 0/2                 |
| 16              | [8, 7, 3, 6, 10, 16]<br>[8, 7, 9, 6, 10, 16]<br>[8, 7, 9, 14, 10, 16]<br>[8, 7, 9, 13, 15, 16]<br>[8, 7, 9, 14, 15, 16]<br>[8, 7, 9, 14, 19, 16] | 0/6                 |
| 17              | [8, 7, 9, 13, 15, 18, 17]<br>[8, 7, 9, 14, 15, 18, 17]<br>[8, 7, 9, 14, 19, 18, 17]                                                              | 3/3                 |
| 19              | [8, 7, 9, 14, 19]                                                                                                                                | 0/1                 |
| 20              | [8, 7, 9, 14, 19, 20]                                                                                                                            | 0/1                 |

Таблица 12: Пути из вершины 9 в другие вершины.

| Целевая вершина | Кратчайшие пути     | Доля путей через 18 |
|-----------------|---------------------|---------------------|
| 10              | [9, 6, 10]          | 0/2                 |
|                 | [9, 14, 10]         | 37 -                |
| 11              | [9, 6, 10, 11]      | 0/2                 |
|                 | [9, 14, 10, 11]     |                     |
| 12              | [9, 13, 12]         | 0/1                 |
| 13              | [9, 13]             | 0/1                 |
| 14              | [9, 14]             | 0/1                 |
| 15              | [9, 13, 15]         | 0/2                 |
| 19              | [9, 14, 15]         | 0/2                 |
|                 | [9, 6, 10, 16]      |                     |
|                 | [9, 14, 10, 16]     |                     |
| 16              | [9, 13, 15, 16]     | 0/5                 |
|                 | [9, 14, 15, 16]     |                     |
|                 | [9, 14, 19, 16]     |                     |
|                 | [9, 13, 15, 18, 17] |                     |
| 17              | [9, 14, 15, 18, 17] | 3/3                 |
|                 | [9, 14, 19, 18, 17] |                     |
| 19              | [9, 14, 19]         | 0/1                 |
| 20              | [9, 14, 19, 20]     | 0/1                 |

Таблица 13: Пути из вершины 10 в другие вершины.

| Целевая вершина | Кратчайшие пути                                                                              | Доля путей через 18 |
|-----------------|----------------------------------------------------------------------------------------------|---------------------|
| 11              | [10, 11]                                                                                     | 0/1                 |
| 12              | [10, 6, 9, 13, 12]<br>[10, 14, 9, 13, 12]<br>[10, 14, 15, 13, 12]<br>[10, 16, 15, 13, 12]    | 0/4                 |
| 13              | [10, 6, 9, 13]<br>[10, 14, 9, 13]<br>[10, 14, 15, 13]<br>[10, 16, 15, 13]                    | 0/4                 |
| 14              | [10, 14]                                                                                     | 0/1                 |
| 15              | [10, 14, 15]<br>[10, 16, 15]                                                                 | 0/2                 |
| 16              | [10, 16]                                                                                     | 0/1                 |
| 17              | [10, 14, 15, 18, 17]<br>[10, 16, 15, 18, 17]<br>[10, 14, 19, 18, 17]<br>[10, 16, 19, 18, 17] | 4/4                 |
| 19              | [10, 14, 19]<br>[10, 16, 19]                                                                 | 0/2                 |
| 20              | [10, 14, 19, 20]<br>[10, 16, 19, 20]                                                         | 0/2                 |

Таблица 14: Пути из вершины 11 в другие вершины.

| Целевая вершина | Кратчайшие пути                                                                                              | Доля путей через 18 |
|-----------------|--------------------------------------------------------------------------------------------------------------|---------------------|
| 12              | [11, 10, 6, 9, 13, 12]<br>[11, 10, 14, 9, 13, 12]<br>[11, 10, 14, 15, 13, 12]<br>[11, 10, 16, 15, 13, 12]    | 0/4                 |
| 13              | [11, 10, 6, 9, 13]<br>[11, 10, 14, 9, 13]<br>[11, 10, 14, 15, 13]<br>[11, 10, 16, 15, 13]                    | 0/4                 |
| 14              | [11, 10, 14]                                                                                                 | 0/1                 |
| 15              | [11, 10, 14, 15]<br>[11, 10, 16, 15]                                                                         | 0/2                 |
| 16              | [11, 10, 16]                                                                                                 | 0/1                 |
| 17              | [11, 10, 14, 15, 18, 17]<br>[11, 10, 16, 15, 18, 17]<br>[11, 10, 14, 19, 18, 17]<br>[11, 10, 16, 19, 18, 17] | 4/4                 |
| 19              | [11, 10, 14, 19]<br>[11, 10, 16, 19]                                                                         | 0/2                 |
| 20              | [11, 10, 14, 19, 20]<br>[11, 10, 16, 19, 20]                                                                 | 0/2                 |

Таблица 15: Пути из вершины 12 в другие вершины.

| Целевая вершина | Кратчайшие пути                                                                                             | Доля путей через 18 |
|-----------------|-------------------------------------------------------------------------------------------------------------|---------------------|
| 13              | [12, 13]                                                                                                    | 0/1                 |
| 14              | [12, 13, 9, 14]<br>[12, 13, 15, 14]                                                                         | 0/2                 |
| 15              | [12, 13, 15]                                                                                                | 0/1                 |
| 16              | [12, 13, 15, 16]                                                                                            | 0/1                 |
| 17              | [12, 13, 15, 18, 17]                                                                                        | 1/1                 |
| 19              | [12, 13, 9, 14, 19]<br>[12, 13, 15, 14, 19]<br>[12, 13, 15, 16, 19]<br>[12, 13, 15, 18, 19]                 | 1/4                 |
| 20              | [12, 13, 9, 14, 19, 20]<br>[12, 13, 15, 14, 19, 20]<br>[12, 13, 15, 16, 19, 20]<br>[12, 13, 15, 18, 19, 20] | 1/4                 |

Таблица 16: Пути из вершины 13 в другие вершины.

| Целевая вершина | Кратчайшие пути      | Доля путей через 18 |
|-----------------|----------------------|---------------------|
| 14              | [13, 9, 14]          | 0/2                 |
| 15              | [13, 15, 14]         | ,                   |
| 15              | [13, 15]             | 0/1                 |
| 16              | [13, 15, 16]         | 0/1                 |
| 17              | [13, 15, 18, 17]     | 1/1                 |
|                 | [13, 9, 14, 19]      |                     |
| 19              | [13, 15, 14, 19]     | 1/4                 |
| 10              | [13, 15, 16, 19]     | 1/ 4                |
|                 | [13, 15, 18, 19]     |                     |
|                 | [13, 9, 14, 19, 20]  |                     |
| 20              | [13, 15, 14, 19, 20] | 1/4                 |
| 20              | [13, 15, 16, 19, 20] | 1/ 4                |
|                 | [13, 15, 18, 19, 20] |                     |

Таблица 17: Пути из вершины 14 в другие вершины.

| Целевая вершина | Кратчайшие пути                      | Доля путей через 18 |
|-----------------|--------------------------------------|---------------------|
| 15              | [14, 15]                             | 0/1                 |
| 16              | [14, 10, 16]<br>[14, 15, 16]         | 0/3                 |
|                 | [14, 19, 16]                         |                     |
| 17              | [14, 15, 18, 17]<br>[14, 19, 18, 17] | 2/2                 |
| 19              | [14, 19]                             | 0/1                 |
| 20              | [14, 19, 20]                         | 0/1                 |

Таблица 18: Пути из вершины 15 в другие вершины.

| Целевая вершина | Кратчайшие пути  | Доля путей через 18 |
|-----------------|------------------|---------------------|
| 16              | [15, 16]         | 0/1                 |
| 17              | [15, 18, 17]     | 1/1                 |
|                 | [15, 14, 19]     |                     |
| 19              | [15, 16, 19]     | 1/3                 |
|                 | [15, 18, 19]     |                     |
|                 | [15, 14, 19, 20] |                     |
| 20              | [15, 16, 19, 20] | 1/3                 |
|                 | [15, 18, 19, 20] |                     |

Таблица 19: Пути из вершины 16 в другие вершины.

| Целевая вершина | Кратчайшие пути                      | Доля путей через 18 |
|-----------------|--------------------------------------|---------------------|
| 17              | [16, 15, 18, 17]<br>[16, 19, 18, 17] | 2/2                 |
| 19              | [16, 19]                             | 0/1                 |
| 20              | [16, 19, 20]                         | 0/1                 |

Таблица 20: Пути из вершины 17 в другие вершины.

| Целевая вершина | Кратчайшие пути  | Доля путей через 18 |
|-----------------|------------------|---------------------|
| 19              | [17, 18, 19]     | 1/1                 |
| 20              | [17, 18, 19, 20] | 1/1                 |

Таблица 21: Пути из вершины 19 в другие вершины.

| Целевая вершина | Кратчайшие пути | Доля путей через 18 |
|-----------------|-----------------|---------------------|
| 20              | [19, 20]        | 0/1                 |

# Приложение Б. Графлеты, содержащие исследуемую вершину, для задачи 11

В данном приложении представлены все 195 графлетов, содержащих исследуемую вершину u=23, которая отмечена на изображениях салатовым цветом.





































































































































































































































































































































































































