Исследование диэлектриков с помощью квазиоптических резонаторов Фабри-Перро

Работу выполнили:

Платонова М.В., Сарафанов Ф.Г., Новиков А.Г.

Научный руководитель:

Паршин В.В.

Нижний Новгород – 2018

Цели работы

- Исследовать распространение гауссовых пучков в открытом резонаторе Фабри-Перро
- Рассмотреть применение открытых резонаторов для исследования свойств диэлектриков
- Измерить показатель преломления диэлектрической пластины (в качестве пластины – алмазное окно гиратрона) и тангенс угла диэлектрических потерь

Распределение поля в гауссовом пучке

$$2 \frac{1}{\psi_0}$$

$$2 \frac{\partial}{\partial w_0}$$

$$2 \frac{\partial}{\partial w_0}$$

$$2 \frac{\partial}{\partial w_0}$$

Продольное распределение

$$E(r) = E_0 \exp\left[-\frac{r^2}{w^2}\right]$$

$$w^{2}(z) = w_{0}^{2} \left[1 + \left(\frac{\lambda z}{\pi w_{0}^{2}} \right)^{2} \right]$$

$$R(z) = z \left[1 + \left(\frac{\pi w_0^2}{\lambda z} \right)^2 \right]$$

$$\Phi(z) = \arctan\left(\frac{\lambda z}{\pi w_0^2}\right)$$

Открытый резонатор Фабри-Перро

Резонансные частоты

Узлы стоячей волны

$$L_{\text{pe3}} = \underbrace{\frac{\lambda q}{2}}_{\text{q - кол-во полуволн}} + \underbrace{\frac{\lambda}{2\pi} \arccos\left(1 - \frac{L}{R}\right)}_{\text{увеличение расстояния в гауссовом пучке}} \underbrace{\frac{\lambda^2}{8\pi^2 R}}_{\text{несферичности волнового фронта}}$$

$$f_{\text{pe3}} = \frac{c}{2L} \cdot \left[q + \frac{1}{\pi} \arccos\left(1 - \frac{L}{R}\right)\right]$$

Диаграмма устойчивости резонатора

Потери в резонаторе

Дифракционные потери

$$P_{\mathsf{диф}} = P_0 \exp\left(-\frac{2R^2}{w^2}\right)$$

$P_{диф}/P_0$	10^{-1}	10^{-3}	10^{-5}
R/w	1.07	1.86	2.4

$$P_{\Sigma} = (P_{\mathrm{связи}} + P_{\mathrm{3ерк}}) + P_{\mathrm{3ап}} + P_{\mathrm{диф}}$$

- Дифракционные потери можно сделать пренебрежимо малыми
- Собственные потери резонатара можно найти в ненагруженном режиме

Схема экспериментальной установки

Поиск резонансной частоты

- Приблизительно отцентровали диэлектрик на оси резонатора
- Одновременно перестраивая пределы свипа по частоте источника и изменяя длину резонатора, нашли резонансную частоту, при которой смещение диэлектрика не вызывает смещения резонансного пика

Расчет показателя преломления

$$\begin{cases} t \cdot n = \frac{q_d \lambda_1}{2} \\ t \cdot n = \frac{(q_d + 1)\lambda_2}{2} \end{cases} \Rightarrow q_d = \frac{\lambda_2}{\lambda_2 - \lambda_1}$$

$$\begin{cases} L_{\text{pes1}} = \frac{\lambda(q + q_d/n)}{2} + \frac{\lambda}{2\pi} \arccos\left(1 - \frac{L_{\text{pes1}}}{R}\right) \\ L_{\text{pes2}} = \frac{\lambda(q + q_d)}{2} + \frac{\lambda}{2\pi} \arccos\left(1 - \frac{L_{\text{pes2}}}{R}\right) \end{cases}$$

$$\begin{cases} L_{\text{pes}1} = \frac{1}{2} + \frac{1}{2\pi} \arccos\left(1 - \frac{1}{R}\right) \\ L_{\text{pes}2} = \frac{\lambda(q + q_d)}{2} + \frac{\lambda}{2\pi} \arccos\left(1 - \frac{L_{\text{pes}2}}{R}\right) \end{cases}$$

$$n = q_d \left[q_d - \frac{2\Delta L}{\lambda} + \frac{1}{\pi} \cos^{-1}\left(1 - \frac{L_{\text{pes}1}}{R}\right) - \frac{1}{\pi} \cos^{-1}\left(1 - \frac{L_{\text{pes}2}}{R}\right) \right]^{-1}$$

Измерение угла диэлектрических потерь

Измерение Δf_-

Измерение Δf_0

Измерение Δf_+

Упрощённый расчет $\tan \delta$:

$$\tan \delta = \frac{L \cdot (\Delta f_{-} - \Delta f_{0})}{tf}$$

$$\tan \delta = \frac{L \cdot (\Delta f_{+} - \Delta f_{0})}{tfn^{2}}$$

$$\tan \delta = \frac{L \cdot (\Delta f_{+} - \Delta f_{-})}{tf(n^{2} - 1)}$$

Тройное измерение дает относительную точность $\sim 10\%$

Выводы

- Рассмотрен гауссов пучок и его распространение в открытом резонаторе Фабри-Перро
- Резонансным методом определен показатель преломления алмазного окна n=2.38 и тангенс угла диэлектрических потерь $\tan\delta=9.7\cdot 10^{-6}$
- ullet Определена резонансная частота окна $f_{\rm pes}=139853~{
 m MFu}$
- Рассчитано, насколько нужно изменить толщину окна t, чтобы оно стало резонансным на частоте f=140 ГГц: $\Delta t=-1.7$ мкм

Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer

$$I = I_0 \cdot \exp\left[\frac{-2r^2}{w^2}\right]$$

$$P_{\mathrm{диф}} = \int_{-\pi}^{\pi} I(r) \cdot \mathrm{d}S = [dS = 2\pi r \mathrm{d}r] = \int_{-\pi}^{\infty} I_0 \cdot \exp\left[\frac{-2r^2}{w^2}\right] 2\pi r \mathrm{d}r = 0$$

диф =
$$\int_{r>R} I(r) \cdot dS = [dS = 2\pi r dr] = \int_{R} I_0 \cdot \exp\left[\frac{w^2}{w^2}\right] 2\pi r dr =$$

$$= \pi I_0 \int_{R^2}^{\infty} \exp\left[\frac{-2r^2}{w^2}\right] d\left[r^2\right] = \left[x = \left[\frac{-2r^2}{w^2}\right]\right] =$$

 $= \frac{-\pi I_0 w^2}{2} \quad \int^{\infty} e^x \, \mathrm{d}x =$

 $=\frac{\pi I_0 w^2}{2} \exp\left(-\frac{2R^2}{w^2}\right) = P_0 \exp\left(-\frac{2R^2}{w^2}\right)$

Допуск по частоте для разных материалов при допустимом отражении 0.01