

LIGHTS

LIGHTS

Directional

Point

Spot

SHADING

Lights

Interaction with the objects

FLAT SHADING

Calculate the light for each polygon

Use Lambertian surfaces

LAMBERTIAN SURFACE

 $\cos \theta = N.L$

N = Object normal

L = Light direction

C 67.75

LAMBERTIAN SURFACE

Considering a directional light

(0.0, 0.0, 1.0)

(0.0, -0.1, 1.0)

(0.0, -0.2, 1.0)

(0.0, -0.3, 1.0)

C 651.25

FLATSHADING

Diffuse = $L_C \times O_C \times L_I \times N$. L

 L_{c} = Light color

 $O_C = Object color$

 L_{l} = Light intensity

CALCULATE NORMAL TRIANGLE

$$V = V1 - V0$$

$$W = v0 - v2$$

Normalize[V x W]

