

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра интеллектуальных информационных технологий

Васильченко Андрей Дмитриевич

Применение сверточных нейронных сетей в задаче распознавания объектов на астрономических изображениях в рентгеновском диапазоне

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научные руководители: к.ф.-м.н. Мещеряков А.В. инженер Герасимов С.В

Оглавление

1	Введ	ение	3		
	1.1	Рентгеновский телескоп eROSITA	3		
	1.2	Обоснование применения сверточных нейронных сетей:	4		
2	Пост	гановка задачи	6		
3 мод	Обзс ифика	р существующих решений рассматриваемой задачи или ее ций	7		
	3.1	Описание данных с телескопа:	7		
	3.2	Описание результата работы конвейера:	8		
	3.3	Основные этапы работы конвейера eSASS:	9		
4	Пред	длагаемая модификация eSASS с помощью нейронных сетей	12		
	4.1	Архитектура нейронной сети U-net:	12		
	4.2	Алгоритм получения каталога из карты сегментации:	14		
	4.3	Адаптация U-net к поставленной задаче:	14		
5	Трен	ировка и сравнение моделей:	17		
	5.1	Симуляции данных:	17		
	5.2	Предобработка данных:	17		
	5.3	Подготовка обучающей выборки:	18		
	5.4	Обучение моделей:	19		
	5.5	Метрика сравнения качества моделей:	20		
6	Прог	Программная часть			
7	Результаты экспериментов				
	7.1	Эксперименты для настройки параметров U-net	23		
	7.2	Сравнение лучшей модели U-net с алгоритмами eSASS	24		
8	Закл	ючение	27		
9	Спис	сок литературы	28		

Аннотация

Летом 2019 году планируется запуск национальной космической обсерватории Спектр-Рентген-Гамма (SRG), главной задачей которой станет 4-х летний рентгеновский обзор всего неба в диапазоне 0.5—10 кэВ с беспрецедентной чувствительностью [1]. Уникальные данные позволят ученым нанести на карту неба миллионы сверхмассивных черных дыр (квазаров) и все крупные скопления галактик в видимой Вселенной. Ключевым образом на результаты предстоящей космической миссии влияют алгоритмы обработки данных, в частности, методы детектирования рентгеновских объектов с основного телескопа eROSITA. В данной работе впервые исследуется применение нейросетевых алгоритмов для детектирования астрономических объектов на рентгеновских изображениях и делается сравнение со стандартными методами и поиска объектов в составе программного комплекса eSASS рентгеновского телескопа eROSITA.

1 Введение

1.1 Рентгеновский телескоп eROSITA

В июне 2019 года планируется запуск рентгеновского телескопа eROSITA (extended ROentgen Survey with an Imaging Telescope Array), построенного Институтом внеземной физики Общества Макса Планка (MPE) в Германии. Телескоп позволит впервые провести обзор всего неба в диапазоне энергий 0.5—10 кэВ с беспрецедентной чувствительностью [1], что, в свою очередь, позволит ученым провести новые исследования темной материи и объектов Вселенной. eROSITA можно рассматривать как развитие рентгеновского телескопа ROSAT на современном научном и технологическом уровне. Рентгеновский зеркальный телескоп будет интегрирован в космическую обсерваторию «Спектр-РГ» («Спектр-Рентген-Гамма»), которая включает также российский телескоп «ART-XC».

Обработка астрономических данных с телескопа является крайне важной задачей в астрономии, поскольку сырые данные с телескопа не представляют большого интереса для исследователей. Для обработки данных цифровых обзоров применяются конвейеры обработки (пример - [2]). Они представляют из себя настраиваемую последовательность действий (программных утилит), которая трансформирует сырые данные с телескопа в готовые каталоги с информацией об астрономических объектах. Обычно авторы обзора создают конвейеры обработки, которые позволяют авторам сделать исследования в той области, для которой предназначался обзор.

Для данной исследовательской миссии ученых интересует различного рода информация об астрономических источниках. То есть необходимо решить задачу детектирования источников. Здесь и далее под астрономическим источником (объектом) будет пониматься физическое тело, которое излучает фотоны. У каждого источника есть обширный спектр свойств. Для данной исследовательской миссии для каждого источника важно знать:

- Положение
- Яркость

• Протяжённость. Источники бывают точечные (звёзды) и протяженные (галактики, скопления). Важно уметь отличать точечные от протяженных.

На данный момент базовым конвейером для обработки данных с телескопа eROSITA является eSASS (the *e*ROSITA Science Analysis Software System [3] [4]). Он состоит из набора утилит, которые вызываются последовательно с определенным набором параметров. Данный конвейер выполняет поставленную задачу, однако у него есть ряд недостатков:

eSASS не использует всю доступную информацию об источниках:

Учитывает только суммарную энергию фотонов в пикселе. Не учитывает расстояние до оптической оси телескопа, которое имеет значение для детектирования объектов.

eSASS не использует современные методы анализа изображений:

Для поиска источников применяется метод максимального правдоподобия. Это оптимальный алгоритм статистического моделирования при условии правильного выбора моделей астрономических источников. Проблема в том, что нельзя выбрать одну правильную модель, так как астрономические источники очень разные.

В связи с перечисленными недостатками в данной работе предлагается альтернативный алгоритм детектирования астрономических источников, основанный на применении сверточных нейронных сетей.

1.2 Обоснование применения сверточных нейронных сетей:

Сверточные нейронные сети (CNN) уже применялись во многих областях, связанных с анализом изображений. В широком круге задач они превзошли прошлые алгоритмы [5] [6], а в некоторых задачах достигают лучшей точности, чем человек. Нейронные сети также уже успешно применялись и в

астрономии [7] [8], однако еще ни разу не применялись для анализа изображений в рентгеновском диапазоне.

Использование CNN позволяет обойти проблемы eSASS и может значительно улучшить качество данных, получаемых с нового телескопа.

2 Постановка задачи

- Исследовать возможности применения современных архитектур сверточных нейронных сетей в задаче детектирования источников на астрономических изображениях
- Улучшить существующий алгоритм eSASS детектирования объектов на рентгеновских изображениях с помощью сверточных нейронных сетей
- Встроить алгоритм в систему поиска источников телескопа eROSITA

3 Обзор существующих решений рассматриваемой задачи или ее модификаций

3.1 Описание данных с телескопа:

На вход всему конвейеру подаются сырые данные с телескопа в виде набора FITS-файлов (Flexible Image Transport System - формат, совмещающий растровое астрономическое изображение и мета-информацию о нем). В каждом файле содержится информация о детектируемых фотонах, а также информация о конфигурации телескопа в момент детектирования.

Для каждого файла известны:

- Номер матрицы (телескоп состоит из 7ми матриц)
- Период времени, в который проводилось детектирование (GTI)
- Положение и ориентация телескопа в каждый момент времени (DEADCOR)

Для каждого фотона известны:

- RA, DEC координаты фотона а в экваториальной системе координат выраженные в градусах. RA аббревиатура от англ. Right Ascension (прямое восхождение), DEC аббревиатура от англ. Declination (склонение). Для этих координат также используются обозначения α, δ.
- Energy энергия фотона в эргах Эрг - единица работы и энергии в системе единиц СГС. 1 эрг = 10^{-7} Дж
- Тіте время детектирования фотона на матрице телескопа

Рис. 1: Визуализация фотонов с телескопа

3.2 Описание результата работы конвейера:

В общем случае результаты работы конвейера определяется исходя из потребностей ученых. Как правило, необходимо решать задачу детектирования астрономических объектов. То есть для заданных входных данных получить список источников со следующими свойствами:

- RA, DEС координаты центра источника
- Flux яркость источника

В целом астрономические данные логично представлять в виде сигнала, который состоит из двух основных компонент:

- 1. Полезный сигнал. В данной задаче это фотоны от астрономических источников: звёзд, скоплений и т. д. Это то, что хотят изучать исследователи
- 2. Шум. Это общий космический фон. Он может иметь разное происхождение с точки зрения науки, но для задачи имеет значение то, что он препятствует точному детектированию источников.

3.3 Основные этапы работы конвейера eSASS:

3.3.1 Evtool

Основная цель — объединить все .fits файлы с разных матриц телескопа и за разные периоды времени в один общий файл. Это необходимо для удобной работы на последующих этапах.

Итогом этого этапа является объединённый .fits файл, обработанный согласно заданным настройкам.

Также данная утилита создаёт изображение — проекцию исходных данных, представленных в небесных координатах (Ra,Dec) на плоскость (X,Y).

3.3.2 Expmap

Цель данного этапа — получение карты экспозиции для .fits файла из этапа 1.

Этот этап важен для детектирования источников так, как телескоп в силу своего устройства исследует небо неравномерно. Разные участки на небе телескоп наблюдает разное время.

Каждой точке на небе ставится в соответствие число — сколько секунд телескоп смотрел в эту точку. Полученная карта экспозиции используется на следующих этапах для более точной оценки параметров астрономических источников.

3.3.3 Ermask

Данная утилита, используя карту экспозиции (этап 2) создаёт маску детектирования. Она представляет собой карту сегментации исходного изображения, где значение в пикселе равно 1, если экспозиция в этой точке превышает заданный порог. Таким образом, отмечаются области, в которых имеет смысл проводить поиск источников.

3.3.4 Boxlist

Создает файл boxlist с приблизительными координатами всех источников. На данном этапе значение имеет именно их количество и положение. Остальные параметры уточняются на следующих этапах.

В качестве алгоритма поиска источников используется модифицированный метод скользящего окна. Для каждого окна рассчитывается вероятность Р того, что фотоны в этом окне не являются шумом (то есть присутствуют фотоны от источников). Уровень шума в данной области изображения оценивается либо из окрестности окна, либо из карты шума (этап 5).

3.3.5 Erbackmap

Создание карты сегментации изображения. Данная утилита выделяет области, в которых возможно наличие источников, чтобы в дальнейшем исследовать их другими утилитами более тщательно. Каждому пикселю изображения присваивается значение 0 или 1 в зависимости от вероятности присутствия в данной области астрономического источника.

Рис. 2: Карта сегментации изображения

Рис. 3: Карта экспозиции

3.3.6 Ermldet

Финальный этап. Данная утилита получает на вход все данные с предыдущих этапов. Далее для каждого источника из boxlist (этап 4) с помощью метода максимального правдоподобия уточняется положение, находятся яркость и протяжённость. В качестве модели для источников используется нормальное или бета распределение.

Рис. 4: Схема работы конвейера eSASS

Важно отметить, что в данном конвейере Erbox запускается 2 раза. Первый запуск необходим, чтобы задать приблизительные координаты источников. Далее после выполнения erbackmap и получения карты фона, erbox запускается во второй раз. Благодаря этому можно получить более точную информацию о координатах, необходимую на следующих этапах.

4 Предлагаемая модификация eSASS с помощью нейронных сетей

В качестве модификации конвейера eSASS предлагается заменить все шаги после построения карты экспозиции на нейронную сеть.

Puc. 5: Схема модификации eSASS

Нейронная сеть, по аналогии с утилитами eSASS должна решать 2 задачи:

- 1. Сегментирование изображения т. е. выделение областей, в которых есть источники
- 2. Извлечение информации об источниках

За последние несколько лет активное развитие и применение в различных прикладных задачах ([9] [10]) получила архитектура U-net [11]. С некоторыми модификациями она может быть применена и в данной задаче

4.1 Архитектура нейронной сети U-net:

U-Net — это сверточная нейронная сеть, которая была создана в 2015 году для сегментации биомедицинских изображений в отделении компьютерных наук Фрайбургского университета. Архитектура сети представляет собой полносвязную сверточную сеть, модифицированную так, чтобы она могла работать с меньшим количеством примеров (обучающих образов) и делала более точную сегментацию.

Рис. 6: Архитектура нейронной сети U-net

Сеть содержит сжимающий путь (слева) и расширяющий путь (справа), поэтому архитектура похожа на букву U, что и отражено в названии. На каждом шаге мы удваиваем количество каналов признаков.

Сжимающий путь похож на типичную сверточную сеть, он содержит два подряд сверточных слоя 3x3, после которых идет слой ReLU и пулинг с функцией максимума 2×2 с шагом 2.

Каждый шаг расширяющего пути содержит слой, обратный пулингу, который расширяет карту признаков, после которого следует свертка 2х2, которая уменьшает количество каналов признаков. После идет конкатенация с соответствующем образом обрезанной картой признаков из сжимающего пути и две свертки 3х3, после каждой из которой идет ReLU. Обрезка нужна из-за того, что мы теряем пограничные пиксели в каждой свертке. На последнем слое свертка 1х1 используется для приведения каждого 64-компонентного вектора признаков до требуемого количества классов.

Всего сеть имеет 23 сверточных слоя.

Результатом работы модели U-net является карта сегментации. В каждом её пикселе число от 0 до 1, которое соответствует вероятности того, что этот пиксель принадлежит астрономическому источнику.

4.2 Алгоритм получения каталога из карты сегментации:

Результатом работы U-net является карта сегментации. Однако в качестве итогового результата работы конвейера необходимо получить каталог детектированных объектов. В связи с этим разработан простой алгоритм, который на основе карты сегментации получает каталог с информацией об источниках. Он состоит из следующих основных этапов:

- 1. Поиск центров источников пикселей карты сегментации, которые имеют максимальное значение в окрестности.
- 2. Выбор областей источников. Для каждого центра рекурсивно выбираются все пиксели соседи пока их значение продолжает уменьшаться.
- 3. Для каждого найденного источника подсчитывается его яркость. Для этого проводится подсчет количества фотонов в области и вычитается среднее количество шумовых фотонов на пиксель. Далее производится пересчет из количества фотонов в яркость источника по формуле

$$flux = mean_{ECF} * N_{photons} / exp_k$$

Где flux - яркость источника, mean_ECF - коэффициент конвертирования энергий, вычисленный учеными, N_photons - количество фотонов от источника в области, exp_k - калибровочный коэффициент

4.3 Адаптация U-net к поставленной задаче:

Архитектура U-net была адаптирована под астрономические данные телескопа для лучшего соответствия особенностям задачи

4.3.1 Изменение размерности входных данных.

По умолчанию U-net работает с трехканальными изображениями. Для получения более качественной модели необходимо использовать всю известную информацию о каждом фотоне: энергию и расстояние до оптической оси телескопа. Энергия фотона разбивалась на N1 бинов, а расстояние до оптической оси на N2 бинов, полученные признаки перемножались. В итоге для каждого фотона имеется 1 признак (N = N1 * N2 значений), который содержит в себе всю важную информацию.

На вход нейронной сети подается картинка размера 512x512xN. В каждом пикселе вектор из N значений, значения элементов которого соответствуют количеству фотонов с данным значением признака.

Далее с помощью двух полносвязных слоев с N и N/2 нейронами исходное изображение приводится к размеру 512x512x3.

4.3.2 Использование взвешенной функции ошибок

Оригинальный U-net использует обычную бинарную кросс-энтропию. В данной работе используется взвешенная бинарная кросс-энтропия для того, чтобы увеличить вес ошибки на источниках и на границах между источниками

$$CCE = -\frac{1}{N} \sum_{i=0}^{N} \sum_{j=0}^{J} y_j \cdot log(\hat{y}_j) + (1 - y_j) \cdot log(1 - \hat{y}_j)$$

4.3.3 Увеличение глубины и использование современных техник глубокого обучения

Глубина сверточной нейронной сети соответствует максимальному размеру исследуемой области. При исходном размере изображения 512х512 после 4 пулингов 2х2 получается изображения размера 32х32. Каждый пиксел такого изображения содержит информацию об области 16х16

исходного изображения. Однако некоторые астрономические объекты могут занимать большую площадь. В связи с этим для улучшения качества работы глубина U-net была увеличена до 6.

Также применялись современные техники глубоко обучения такие, как Dropout [12] и Batch Normalization [13]

5 Тренировка и сравнение моделей:

5.1 Симуляции данных:

Поскольку на момент написания данного текста телескоп ещё не запущен, то обучение и тестирование модели проводится на астрономических симуляциях с калибровочными параметрами, близкими к параметрам телескопа. Симуляции были подготовлены сотрудниками ИКИ РАН.

В качестве тренировочного датасета используется 100 картинок 3х3 градуса в небесных координатах.

На каждой картинке разбросаны фотоны от астрономических источников. Модели симулированных источников соответствуют моделям реальных наблюдаемых источников.

Кроме того, каждая картинка содержит шум. Уровень шума соответствует прогнозируемому уровню шума с реальных данных.

Для каждой картинки есть информация об источниках, которые на ней находятся. Эта информация используется для обучения модели.

5.2 Предобработка данных:

Для обучения сверточной нейронной сети необходимо подготовить данные. Выполняются следующие этапы:

- 1. Проектирование исходных данных о фотонах на изображение. Из площадки 3х3 градуса с фотонами получаются изображения 3000х3000 пикселов
- 2. Дискретизация энергии.

Энергия фотонов — непрерывная величина. Для удобства обработки случая нескольких фотонов в одном пикселе энергия бинируется на N каналов(8 - 64). Таким образом, каждый пиксел изображения теперь

представляется массивом из N элементов, где значения элементов соответствуют количеству фотонов в заданном диапазоне энергии.

- 3. Разбиение изображений на области 512x512 для уменьшения времени обучения нейронной сети в 30 раз. Разбиение внахлест для качественного детектирования объектов на краях.
- 4. Вычисление расстояния до оптической оси телескопа для каждого фотона.
- 5. Очистка симуляций от слишком тусклых объектов. В астрономии источники с яркостью менее 2.3 * 1e-15 (confusion limit) детектируются крайне редко.

5.3 Подготовка обучающей выборки:

1. Разметка изображений

Нейронная сеть решает задачу сегментации. На данном этапе для каждого изображения создается правильная карта сегментации. Для каждого источника известны лишь все его фотоны, положение и яркость. По этим данным с помощью ядерной оценки плотности (kernel density estimation) получается правильная маска для каждого объекта. На рис. 7 представлено размеченное изображение. Цветом выделены разные источники. Закрашенные области - их разметка

2. Карта весов

В астрономических данных часто встречается ситуация, когда несколько источников находятся близко рядом друг с другом или даже слипаются. Важно научить алгоритм видеть границы между источниками. Для этого дополнительно к разметке исходных изображений также создается карта весов. Идея в том, чтобы увеличить весь ошибки на границах слипающихся источников.

Рис. 7: размеченное изображение

5.4 Обучение моделей:

Все архитектуры обучались при помощи метода стохастического градиентного спуска с оптимизатором Adam со следующими параметрами: lr=0.0001, beta_1=0.9, beta_2=0.999. Данные параметры были выбраны итеративно, в ходе тестирования различных конфигураций оптимизатора.

В качестве функции потерь использовалась взвешенная бинарная кросс энтропия

Результатом работы модели для изображения является карта сегментации. В каждом пикселе число от 0 до 1, которое соответствует вероятности того, что этот пиксель принадлежит астрономическому источнику.

На рисунке 8 визуализированы входные данные. Цветом обозначены фотоны от разных источников.

На рисунке 9 размеченное изображение. Белым областям соответствуют области с источниками

На рисунке 10 результат работы U-net на этом изображении. Красными квадратами отмечены правильные центры источников из каталога.

Рис. 8: Визуализация входных данных

Рис. 9: размеченное изображение

Рис. 10: Предсказание U-net

5.5 Метрика сравнения качества моделей:

5.5.1 Внутренняя метрика:

В качестве метрики для настройки параметров предобработки данных и гиперпараметров модели использовались:

- точность (precision)
- полнота (recall)

• доля фотонов от источников (object count fraction)

Данные метрики считались для различных значений вероятности детектирования.

Источник считался детектированным (true positive), если правильный центр источника (известен из данных симуляций) попадал в детектированную область.

Источник считался недектированным (false positive), если правильный центр источника не попадал ни в одну из детектированных областей.

5.5.2 Астрономическая метрика:

В качестве метрики сравнения работы U-net и eSASS в терминах, привычных для исследователей использовались:

- Эффективность детектирования в зависимости от яркости источников. То есть доля детектированных источников для данного значения яркости
- Доля ложных детектирований в зависимости от яркости источников. То есть доля ложно детектированных источников с данной яркостью

Источник считался детектированным при выполнении следующих условий:

- Расстояние между центром источника из каталога и центром детектируемого источника меньше чем 0.02 градуса
- Яркость источника из каталога и яркость детектированного источника различаются не более чем в 2 раза

Важно отметить, что в астрономии нет единственной общепринятой метрики для оценки качества детектирования. Данная метрика была согласована с учеными из ИКИ РАН.

6 Программная часть

Для проведения экспериментов в рамках исследования был создан комплекс программ:

- Data_processing.ipynb содержит в себе чтение и всю необходимую предобработку астрономических данных.
- DL.ipynb обучение и оценка качества U-net, созданной в фреймворке Keras.

Все реализации содержатся в GitHub репозитории https://github.com/meshch/srg-dl-detection. Программы созданы в Jupyter Notebook, на языке Python 3, при помощи фреймворка глубокого обучения Keras.

Все исследования проводились на базе облачного сервиса Microsoft Azure. Для экспериментов была выбрана виртуальная машина Ubuntu с видеокартой Tesla K40. Суммарное время, затраченное на разработку и обучение всех архитектур составило 500 часов. Что соответствует 400\$ виртуальных денег выделенной Microsoft Azure подписки.

7 Результаты экспериментов

В рамках данной работы было проведено 2 серии экспериментов:

- Эксперименты для настройки параметров U-net
- Сравнение лучшей модели U-net с алгоритмами eSASS

7.1 Эксперименты для настройки параметров U-net

Целью данной серии экспериментов являлся поиск и сравнение различных способов предобработки астрономических данных, а также поиск оптимальных гиперпараметров U-net.

В следующей таблице представлены результаты удачных экспериментов, которые привели к уменьшению значения функции ошибки после обучения на 1000 астрономических изображениях 512х512.

chan	noize/obj err	photons in mask	full_E_chan	dist to axis	input compression	loss
16	1:1	70%	-	-		1.05
32	1:1	70%	2.4	÷	+	0.81
32	2:5	70%	· ·	9	9	0.75
32	2:5	85%	88		-	0.57
32	2:5	85%	+	-	· ·	0.48
32	2:5	85%	+	+	-	0.42
32	2:5	85%	+	+	+	0.25

Таблица 1: результаты экспериментов по предобработке данных

Здесь:

Chan - размерность входных данных. Количество каналов, на которые дискретизировалась энергия фотонов

Noize/obj err - отношение штрафов за ошибку классификатора на объекте и на фоне

Photons in mask - средняя доля фотонов от источника, которая входит в маску. Цель этого параметра - поиск оптимального баланса между размером маски источника и плотностью фотонов в ней

Full en chan - наличие во входных данных канала с суммарной энергией всех фотонов

Dist to axis - наличие во входных данных информации о расстоянии до оптической оси телескопа

Input compression - наличие в архитектуре нейронной сети двух полносвязных слоев, сжимающих входные данные до 3ех каналов

Кроме того, проводились эксперименты гиперпараметров U-net. В итоге лучшее качество показало использование оптимизатора Adagrad с параметрами lr=0.01 и decay=0.2

7.2 Сравнение лучшей модели U-net с алгоритмами eSASS

Сравнение проводилось на 15 картинках 3000х3000. На следующих графиках представлены результаты в двух астрономических метриках, описанных выше.

На рис. 11 представлен график эффективности детектирования источников. Как видно из графика, для источников с яркостью менее $2*10^{-14}$ нейронная сеть превосходит алгоритмы eSASS по эффективности детектирования. В частности, с помощью U-net удается детектировать в 6 раз больше объектов с яркостью 10^{-14} . Для источников с яркостью более $2*10^{-14}$ улучшение есть, но довольно незначительное: в среднем на 2% больше детектированных источников.

Рис. 11: Эффективность детектирования в зависимости от яркости источника

Однако, для полной оценки качества алгоритма необходимо учитывать не только долю детектированных источников, но и долю ложных детектирований. Иначе не исключена ситуация, в которой алгоритм детектирует все изображение, получая таким образом 100% найденных источников. Разумеется, такой алгоритм был бы абсолютно бесполезен для исследователей.

На рис. 12 представлен график доли ложных детектирований источников в зависимости от яркости. Основной вывод по этому графику следующий: для всех источников с яркостью более 10^{-14} нейронная сеть имеет меньше ложных детектирований, чем eSASS.

Рис. 12: Доля ложных детектирований в зависимости от яркости источника

Таким образом, для источников с яркостью более 10^{-14} нейронная сеть превосходит eSASS по обеим астрономическим метрикам: детектирует больше источников и детектирует меньше ложных источников.

8 Заключение

В рамках работы было проведено исследование возможности применения различных архитектур сверточных нейронных сетей в задаче детектирования астрономических источников в рентгеновском диапазоне. После рассмотрения нескольких архитектур ([6] [9] [12]) была выбрана и успешно применена с некоторыми модификациями архитектура U-net.

Была проведена серия экспериментов с целью найти оптимальные параметры предобработки астрономических данных и постобработки результата работы нейронной сети. Результаты подтвердили важность использования комбинации всех доступных астрономических данных.

В результате проделанной работы удалось достигнуть результатов, незначительно превосходящих полученных на данный момент, говорящих о конкурентоспособности предложенных методов - сверточных нейронных сетей в задаче детектирования астрономических источников в рентгеновском диапазоне. Кроме того, был представлен доклад на конференции "Ломоносовские чтения" [15].

9 Список литературы

- [1] Merloni A. eROSITA Science Book: Mapping the Structure of the Energetic Universe // arXiv:1209.3114
- [2] Montage: an astronomical image mosaic engine http://montage.ipac.caltech.edu/
- [3] Clerc N. Synthetic simulations of the extragalactic sky seen by eROSITA. I. Pre-launch selection functions from Monte-Carlo simulations // Astronomy & Astrophysics, V. 617, id. A92, pp. 1–12
- [4] https://erosita.mpe.mpg.de/eROdoc/
- [5] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In TPAMI, 2017
- [6] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016.
- [7] Chen W., Oiwei I.W. Radio Galaxy Zoo: Claran a deep learning classifier for radio morphologies // Monthly Notices of the Royal Astronomical Society, Volume 482, Issue 1, 2019, P. 1211–1230.
- [8] Sadr A.V., Etienne E.V. DeepSource: point source detection using deep learning // Monthly Notices of the Royal Astronomical Society, Volume 484, Issue 2, 2019, P. 2793–2806.
- [9] Zhang Z., Liu Q. Road Extraction by Deep Residual U-Net // IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, 2018, P. 749-753.
- [10] Çiçek Ö., Abdulkadir A. 3D U-Net: learning dense volumetric segmentation from sparse annotation // International conference on medical image computing and computer-assisted intervention. Springer, Cham: 2016. P. 424-432.

- [11] Ronneberger O. U-Net: Convolutional Networks for Biomedical Image Segmentation // Medical Image Computing and Computer-Assisted Intervention MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, pp. 234–241.
- [12] Srivastava N., Hinton G. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 2014, pp.1929-1958.
- [13] Ioffe S., Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 2015. arXiv preprint arXiv:1502.03167
- [14] He K., Gkioxari G. // Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, 2017, P. 2961-2969.
- [15] Васильченко А.Д., Мещеряков А.В., Герасимов.С.В. Применение сверточных нейронных сетей в задаче детектирования астрономических объектов на рентгеновских изображениях // Сб. Научная конференция ЛОМОНОСОВСКИЕ ЧТЕНИЯ. Тезисы докладов. 15-25 апреля 2019 г, серия СЕКЦИЯ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ, Факультет вычислительной математики и кибернетики, здательство ООО "МАКС Пресс" (Москва), тезисы, с. 32-33