

Extended Data Figure 3 | Generation of a conditional Fanca allele.

a, Mice carrying the previously reported Fanca⁻ allele (Fanca^{tm1a(EUCOMM)Wisi}) were crossed with mice carrying the FLP recombinase, yielding the Fanca^{fl} allele (Fanca^{tm1c(EUCOMM)Wisi}). This allele restores FANCA expression as shown by western blot (Fig. 3). Cre-mediated recombination of Fanca^{fl} yields the Fanca⁻ allele (Fanca^{tm1d(EUCOMM)Wisi}), which lacks exon 3 and leads to loss of FANCA protein (Fig. 3). b, Genotyping PCRs for the wild-type, Fanca⁻ and Fanca^{fl} alleles with primers FL033, FL040 and En2A; showing bands of the expected sizes. c, Western blot (single experiment) showing complete absence of FANCA protein in the spleens of Fanca^{-/-} and Fanca^{fl/-} Vav1-iCre mice. For gel source data, see Supplementary Fig. 1. d, Determination of the number of exon 3 copies by quantitative

PCR. Wild-type, $Fanca^{+/\Delta}$ and $Fanca^{\Delta/\Delta}$ mice carry 2, 1 and 0 copies, respectively. $Fanca^{fl}$ Vav1-iCre mice show tissue-specific deletion of exon 3 in white blood cells (WBCs) and bone marrow (n=4 technical replicates; bars: mean, s.d.). **e**, Microscopic analysis of haematoxylin and eosin-stained sections of testes (original magnification, \times 50) from wild-type, $Fanca^{-/-}$, $Fanca^{fl/fl}$ and $Fanca^{\Delta/\Delta}$ males at 12 weeks, showing impaired spermatogenesis in testes of $Fanca^{-/-}$ and $Fanca^{\Delta/\Delta}$ mice (one experiment). **f**, Sensitivity assay of transformed mouse-embryonic fibroblasts (MEFs) derived from $Fanca^{-/-}$, $Fanca^{fl/fl}$ and $Fanca^{\Delta/\Delta}$ embryos, showing hypersensitivity of both $Fanca^{-/-}$ and $Fanca^{\Delta/\Delta}$ cells to the cross-linking agent mitomycin C (n= number of experiments, each carried out in quadruplicate; bars: mean, s.e.m.).