Problem

Say that a language is *prefix-closed* if all prefixes of every string in the language are also in the language. Let C be an infinite, prefix-closed, context-free language. Show that C contains an infinite regular subset.

Step-by-step solution

Step 1 of 2

Given: A language which is prefix closed. Here, it is required to prove that an infinite regular subset is contained in every context free language which is prefix-closed.

Comment

Step 2 of 2

Proof: Consider a language L which is context free and prefix closed. As the language L is context free and therefore, the principle of pumping lemma can be applied on it.

Let the length of the pumping lemma be P and the string that needs to be considered in the language is s.

The length of the pumping lemma P is lesser or smaller than length of the string. Now, it is possible to break the string into 'abcde' such that $ab^kcd^ke\in L_{for\ all}\ k\geq 0$ and $|bd|\geq 1$.

Now, it is already given that the language L is prefix closed and all the prefixes of the string s are also present in language L, therefore, $ab^k \in L$ for all $k \ge 0$.

Thus, it can be inferred that the language formed from the ab^* is regular and it is a subset of L.

Also, if $b \neq \in$ then it implies ab^* is an infinite regular subset of Land thus it proves the required statement.

Comments (2)