Class 14: Mini Project

Youn Soo Na (PID: A17014731)

Data Import

```
library(DESeq2)

cols <- read.csv("GSE37704_metadata.csv", row.names=1)
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
head(cols)

condition
SRR493366 control sirna</pre>
```

SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna SRR493369 hoxa1_kd SRR493370 hoxa1_kd SRR493371 hoxa1_kd

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46

```
ENSG00000278566 0
ENSG00000273547 0
ENSG00000187634 258
```

```
countData <- as.matrix(counts[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
# Filter count data where you have 0 read count across all samples.
countData <- countData[rowSums(countData)!= 0, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
# zero.vals <- which(countData[,1:2]==0, arr.ind=TRUE)
#
# to.rm <- unique(zero.vals[,1])
# mycounts <- countData[-to.rm,]
# head(mycounts)</pre>
```

DESeq setup

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
dds</pre>
```

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

 $\label{eq:condition} \verb|cowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371 \\$

colData names(2): condition sizeFactor

DESeq analysis

Next, get results for the HoxA1 knockdown versus control siRNA

```
res <- results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)</pre>
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27%

LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%

low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results
```

27% upregulated 28% downregulated

Result Visualisation

Improved Plot

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- (res$pvalue < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[inds] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-vector)"</pre>
```


Add Annotation

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                   "ALIAS"
                                  "ENSEMBL"
                                                 "ENSEMBLPROT"
                                                                "ENSEMBLTRANS"
 [6] "ENTREZID"
                   "ENZYME"
                                  "EVIDENCE"
                                                 "EVIDENCEALL"
                                                                "GENENAME"
                   "GO"
                                  "GOALL"
                                                                "MAP"
[11] "GENETYPE"
                                                 "IPI"
[16] "OMIM"
                                  "ONTOLOGYALL" "PATH"
                                                                "PFAM"
                   "ONTOLOGY"
[21] "PMID"
                                  "REFSEQ"
                   "PROSITE"
                                                 "SYMBOL"
                                                                "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

```
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
```

```
baseMean log2FoldChange
                                                lfcSE
                                                            stat
                                                                      pvalue
                  <numeric>
                                  <numeric> <numeric>
                                                       <numeric>
                                                                   <numeric>
ENSG00000279457
                  29.913579
                                 0.1792571 0.3248216
                                                        0.551863 5.81042e-01
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
                                                        3.040350 2.36304e-03
ENSG00000188976 1651.188076
                                -0.6927205 0.0548465 -12.630158 1.43989e-36
                                 0.7297556 0.1318599
                                                        5.534326 3.12428e-08
ENSG00000187961
                 209.637938
ENSG00000187583
                  47.255123
                                 0.0405765 0.2718928
                                                        0.149237 8.81366e-01
                                 0.5428105 0.5215599
ENSG00000187642
                  11.979750
                                                        1.040744 2.97994e-01
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000188290 108.922128
ENSG00000187608 350.716868
                                 0.2573837 0.1027266
                                                        2.505522 1.22271e-02
                                                        8.346304 7.04321e-17
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
ENSG00000237330
                                 0.7859552 4.0804729
                                                        0.192614 8.47261e-01
                   0.158192
                                 symbol
                       padj
                                              entrez
                                                                       name
                  <numeric> <character> <character>
                                                                <character>
ENSG00000279457 6.86555e-01
                                     NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                               26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                 KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                               84069 pleckstrin homology ...
                                PLEKHN1
ENSG00000187642 4.03379e-01
                                  PERM1
                                               84808 PPARGC1 and ESRR ind..
ENSG00000188290 1.30538e-24
                                   HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                  ISG15
                                                9636 ISG15 ubiquitin like...
ENSG00000188157 4.21963e-16
                                   AGRN
                                              375790
                                                                      agrin
ENSG00000237330
                         NA
                                 RNF223
                                              401934 ring finger protein ...
```

Reorder by p-value

```
res <-res[order(res$pvalue),]
write.csv(res, file ="deseq_results.csv")</pre>
```

Pathway Analysis

```
library(pathview)
library(gage)
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
```

```
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 Γ1] "10"
                                                               "1549"
               "1066"
                        "10720"
                                  "10941"
                                            "151531" "1548"
                                                                         "1551"
 [9] "1553"
               "1576"
                        "1577"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                               "221223" "2990"
                                            "51733"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                                     "54490"
                                                               "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                               "54659"
                                                                         "54963"
                        "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                               "7364"
                                                                         "7365"
[33] "574537" "64816"
               "7367"
[41] "7366"
                        "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
               "8833"
                        "9"
                                  "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                                   "10621"
                                             "10622"
                                                      "10623"
                                                                "107"
                                                                          "10714"
                         "10606"
  [9] "108"
                         "109"
                                                                          "113"
                "10846"
                                   "111"
                                             "11128"
                                                      "11164"
                                                                "112"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                "158"
                                                                          "159"
 [25] "1633"
                "171568" "1716"
                                   "196883"
                                             "203"
                                                      "204"
                                                                "205"
                                                                          "221823"
 [33] "2272"
                         "23649"
                                                                          "270"
                "22978"
                                   "246721"
                                             "25885"
                                                      "2618"
                                                                "26289"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                      "2982"
                                                                "2983"
                                                                          "2984"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                             "30833"
                                                      "30834"
                                                                "318"
                                                                          "3251"
                         "3615"
 [57] "353"
                "3614"
                                   "3704"
                                             "377841" "471"
                                                                "4830"
                                                                          "4831"
 [65] "4832"
                "4833"
                         "4860"
                                             "4882"
                                                      "4907"
                                                                "50484"
                                                                          "50940"
                                   "4881"
                                                                "5139"
 [73] "51082"
                "51251"
                         "51292"
                                   "5136"
                                             "5137"
                                                      "5138"
                                                                          "5140"
 [81] "5141"
                "5142"
                         "5143"
                                             "5145"
                                                      "5146"
                                                                "5147"
                                   "5144"
                                                                          "5148"
 [89] "5149"
                                   "5152"
                                                                "5167"
                                                                          "5169"
                "5150"
                         "5151"
                                             "5153"
                                                      "5158"
 [97] "51728"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                      "53343"
                                                                "54107"
                                                                          "5422"
                "5425"
                                   "5427"
                                                      "5431"
                                                                "5432"
                                                                          "5433"
[105] "5424"
                         "5426"
                                             "5430"
[113] "5434"
                "5435"
                         "5436"
                                   "5437"
                                             "5438"
                                                      "5439"
                                                                "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                      "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                         "56655"
                                   "56953"
                                             "56985"
                                                      "57804"
                                                                "58497"
                                                                          "6240"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                      "7498"
                                                                "8382"
                                                                          "84172"
[145] "84265"
                "84284"
                         "84618"
                                   "8622"
                                             "8654"
                                                      "87178"
                                                                "8833"
                                                                          "9060"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                      "955"
                                                                "956"
                                                                          "957"
[161] "9583"
                "9615"
```

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Get the results

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mean	n p.val
hsa04110 C	Cell cycle	8.995727e-06	-4.37864	4 8.995727e-06
hsa03030 D	ONA replication	9.424076e-05	-3.951803	3 9.424076e-05
hsa03013 R	RNA transport	1.375901e-03	-3.028500	0 1.375901e-03
hsa03440 H	Homologous recombination	3.066756e-03	-2.852899	9 3.066756e-03
hsa04114 0	Docyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010 G	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8.961413e-03
		q.val :	set.size	exp1
hsa04110 C	Cell cycle	0.001448312	121 8	3.995727e-06
hsa03030 D	ONA replication	0.007586381	36 9	9.424076e-05
hsa03013 R	RNA transport	0.073840037	144	1.375901e-03
hsa03440 H	Homologous recombination	0.121861535	28 3	3.066756e-03
hsa04114 0	locyte meiosis	0.121861535	102 3	3.784520e-03
hsa00010 G	Glycolysis / Gluconeogenesis	0.212222694	53 8	3.961413e-03

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04110.pathview.png

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Figure 1: Figure

PDF based output with kegg.native = FALSE.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04330.pathview.png

For downregulated

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathwaysless <- rownames(keggres$less)[1:5]</pre>
# Extract the 8 character long IDs part of each string
keggresidsless = substr(keggrespathwaysless, start=1, stop=8)
keggresidsless
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresidsless, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory /Users/nayounsoo/Desktop/BIMM 143/Lab 14/Lab 14

Info: Writing image file hsa04114.pathview.png

Save Results

```
write.csv(res, file = "myresults14.csv")
```

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
```

lapply(gobpres, head)

\$greater

\$greater		
	p.geomean stat.mean	p.val
GO:0007156 homophilic cell adhesion	8.519724e-05 3.824205	8.519724e-05
GO:0002009 morphogenesis of an epithelium	1.396681e-04 3.653886	1.396681e-04
GO:0048729 tissue morphogenesis	1.432451e-04 3.643242	1.432451e-04
GO:0007610 behavior	1.925222e-04 3.565432	1.925222e-04
GO:0060562 epithelial tube morphogenesis	5.932837e-04 3.261376	5.932837e-04
GO:0035295 tube development	5.953254e-04 3.253665	5.953254e-04
	q.val set.size	exp1
GO:0007156 homophilic cell adhesion		19724e-05
GO:0002009 morphogenesis of an epithelium	0.1951953 339 1.39	96681e-04
GO:0048729 tissue morphogenesis	0.1951953 424 1.43	32451e-04
GD:0007610 behavior	0.1967577 426 1.99	25222e-04
GO:0060562 epithelial tube morphogenesis		32837e-04
GO:0035295 tube development	0.3565320 391 5.99	53254e-04
\$less		
	p.geomean stat.mean	_
O	1.536227e-15 -8.063910	
	4.286961e-15 -7.939217 -	
	4.286961e-15 -7.939217	
GO:0000087 M phase of mitotic cell cycle		
8 8	2.028624e-11 -6.878340 :	
GO:0000236 mitotic prometaphase	1.729553e-10 -6.695966	
70 0040005	q.val set.size	exp1
8		.536227e-15
		.286961e-15
		.286961e-15
GO:0000087 M phase of mitotic cell cycle		.169934e-14
8 8		.028624e-11
GO:0000236 mitotic prometaphase	1.178402e-07 84 1	.729553e-10
ф		
\$stats		
CO.00071E6 homombilia coll odba-i	stat.mean exp1 3.824205	
GO:0007156 homophilic cell adhesion		
GO:0002009 morphogenesis of an epithelium		
GO:0048729 tissue morphogenesis	3.643242 3.643242 3.565432 3.565432	
GO:0007610 behavior	3.261376 3.261376	
GO:0060562 epithelial tube morphogenesis	3.2013/0 3.2013/0	

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Figure 2: Entities P-Value: 1.63E-4

The pathway called Cell Cycle. It does match the most significant pathway listed from the previous KEGG result. Differences could be cause by errors or different database.