Osnove strojnega učenja in podatkovnega rudarjenja

Statistika: osnovni pojmi in prijemi

izr. prof. Branko Kavšek

Vsebina

osnove porazdelitve verjetnost vzorci

O statistiki ...

Definicija (SSKJ):

- številčni podatki o množičnih pojavih, prikazani navadno v tabelah, grafikonih, ...
- veda o metodah zbiranja in analize podatkov o množičnih pojavih
- 3. kazalec, ki se izračuna iz vzorčnih podatkov

Primeri "statističnih" izjav

- Najmočnejši izmerjeni potresni sunek je meril 9,2 po Richterjevi lestvici.
- Verjetnost, da je morilec moški, je vsaj 10-krat večja kot za žensko.
- Vsak osmi Južnoafričan je okužen z virusom HIV.
- Leta 2020 bo na vsakega novorojenčka 15 ljudi, starejših od 64 let.

Statistika torej ...

- ... vključuje matematične izračune
- ... se opira na številke

Vendar je pomembno tudi ...

- ... kako številke izbiramo
- ... kako interpretiramo zaključke

Poglejmo na (sledečih treh) primerih ->

1. primer

"Statistična" ugotovitev:

Zaradi nove reklamne akcije sladoleda XYZ konec maja meseca se je prodaja le-tega v sledečih treh mesecih povečala za 30%.

Prodaja sladoleda v poletnih mesecih (junij, julij, avgust) tipično naraste ne glede na reklamo.

"Zgodovinski efekt" – interpretacija rezultata glede na eno spremenljivko, ko je zanj odgovorna neka druga spremenljivka (v zgornjem primeru čas).

2. primer

"Statistična" ugotovitev:

Več kot je cerkva v mestu, več je kriminala. Torej: cerkve vodijo v kriminal.

Tako povečanje števila cerkva kot kriminala lahko pojasnimo z večanjem populacije v mestu – v večjih mestih je več cerkva in tudi kriminala.

"Efekt tretje spremenljivke" – napačno predpostavljamo, da obstaja povezava med dvema spremenljivkama, ko v bistvu na obe vpliva tretja spremenljivka.

3. primer

"Statistična" ugotovitev:

V letošnjem letu je 75% več medrasnih porok kot pred 25 leti.

Kaj, če je bilo pred 25 leti 1% medrasnih porok, letos pa jih je 1,75% (75% več) Ali to res kaže na dramatičen porast? Kaj pa fluktuacije v vmesnem obdobju?

Pomanjkanje podatkov – preprosto nimamo dovolj podatkov, da bi lahko nekaj z gotovostjo zatrdili.

Zakaj je poznavanje statistike pomembno?

- Vsak dan se srečujemo s "statističnimi" izjavami, podobnimi tistim iz prejšnjih prosojnic
 - Nekaterim je verjeti
 - Nekatere so lahko zavajajoče
- Poznavanje statistike nam omogoča ločevati med gornjima tipoma izjav
- Uvod v metode podatkovnega rudarjenja

Osnovni pojmi in definicije

- Opisne statistike
- Sklepne statistike (inferential statistics)
 - Izbira vzorcev
- Spremenljivke
- (Per)centili
- Merjenje
 - Kakšno mero izbrati?
 - Osnove zbiranja podatkov
- (verjetnostne) Porazdelitve
- Linearne transformacije

Opisne statistike

- Opisujejo podatke, ki jih imamo na voljo
- Ne "sklepajo" na osnovi teh podatkov
- Opisna statistika:

Zanimivo, da Američani več plačujejo ljudi, ki skrbijo za njihove zobe in noge, kot pa tiste, ki jih varujejo in vzgajajo njihove otroke. (je Slovenija kaj boljša?)

 Primer – tabela povprečnega letnega zaslužka ljudi v ZDA po poklicih za leto 1999:

\$ 112.760	pediatri
\$ 106.130	zobozdravniki
\$ 100.090	podiatri
\$ 76.140	fiziki
\$ 53.410	arhitekti
\$49.720	psihologi
\$ 47.910	hostese
\$ 39.560	učitelji v osnovnih šolah
\$ 38.710	policaji
\$ 18.980	aranžerji cvetja

Sklepne statistike

- Iz lastnosti vzorca sklepamo na lastnosti celotne populacije
 - Kako izbrati "pameten" / naključen vzorec?
 - Kaj je to pristranskost (bias) vzorca?

Kako izbiramo vzorce? – vzorčenje

Pravilo:

pristranskost vzorca (sample bias)

Vzorec naj bo reprezentativen = naj čimbolje odraža lastnosti populacije + pozor na velikost vzorca!

- Vrste vzorčenj:
 - (preprosto) naključno vzorčenje
 - napredna vzorčenja:
 - naključna dodelitev (random assignment)
 - stratificirano vzorčenje (stratified sampling)

Vzorčenje – primeri (1)

Naključno vzorčenje:

- vsak osebek (primer) iz populacije mora imeti enako verjetnost, da ga bomo izbrali (v vzorec)
- izbor enega osebka ne sme vplivati na izbor ostalih =
 neodvisnost

Primer:

Izmed vseh Slovencev, starih med 19 in 35 let anketiramo samo tiste, katerih priimek se začne na črko "Z" in še to vsakega stotega od teh.

V čem je problem?

Vzorčenje – primeri (2)

Velikost vzorca:

majhni vzorci so lahko nereprezentativni = ne predstavljajo pravilno lastnosti populacije

Primer:

Na podlagi 10-ih metov "poštenega" kovanca sklepamo o verjetnostih, da pade cifra oz. grb.

V čem je problem?

Vzorčenje – primeri (3)

Naključna dodelitev:

- dejanske populacije ni;
 opravka imamo s hipotetično populacijo
- vzorec iz hipotetične populacije naključno razdelimo v 2 ali več
 skupin = osebke iz vzorca naključno dodeljujemo skupinam

Primer:

Pri testiranju učinka zdravil izbrani vzorec ljudi razdelimo v dve skupini. Eni (kontrolni) skupini dajemo t.i. *placebo*, drugi pa pravo zdravilo. Opazujemo ali prihaja do razlik med skupinama.

V čem je lahko problem?

Vzorčenje – primeri (4)

- Stratificirano vzorčenje:
 - vzorčimo v skupinah (slojih stratus-ih) glede na določeno lastnost populacije

Primer:

V košari je 1000 žog (populacija), od katerih (vemo, da) je 70% rdečih, 20% zelenih in 10% modrih. Lastnost, ki jo bomo uporabili za stratificiranje vzorca je torej *barva*.

Kako naj izberemo vzorec 10-ih žog iz zgornje populacije, da bo le-ta reprezentativen?

Spremenljivke

- Tudi: značilke, lastnosti, atributi, razredi, ...
- Lahko jih delimo na:
 - neodvisne, odvisne
 - kvalitativne, kvantitativne
 - diskterne, zvezne

Več kasneje – v poglavju o merjenju

(Per)centili

Kaj je (per)centil? – poglejmo na primeru:

Recimo, da ste na testu motoričnih sposobnosti dosegli rezultat 35, največji možni rezultat pa je 50. Kaj vam to pove o vaši motorični sposobnosti? Kako motorično sposobni ste glede na ostale ljudi?

Bolj informativen podatek bi bil npr.: "kakšen odstotek ljudi je motorično manj sposobnih od mene?" → temu odstotku pravimo (per)centil.

Če je vaš rezultat npr. **65-i (per)centil**, to pomeni, da se je **65%** ljudi na testu motoričnih sposobnosti odrezalo **slabše** od vas. V vašem primeru je **65-i (per)centil = 35**.

3 možne definicije (per)centila

1. definicija:

N-ti (per)centil je najmanjša vrednost, ki je že večja od N% vseh ostalih vrednosti.

2. definicija:

N-ti (per)centil je najmanjša vrednost, ki je večja ali enaka N% vseh ostalih vrednosti.

3. definicija:

"Interpolacija" med vrednostma iz 1. in 2. definicija (najbolj nedvoumna)

Definicije (per)centila – primer

Rezultat	Razvrstitev	
3	1	25-i percentil = 5 ,5
5	Ž	
7	3	3. definicija
8	4	
9	5	
11	6	
13	7	
15	8	

Kako stvari izmerimo?

- V znanosti podatki tipično izhajajo iz meritev
- Na kakšne vse načine lahko merimo?
 - Nominalne (opisne) vrednosti
 - Ordinalne (urejene) vrednosti
 - Intervalne vrednosti
 - Vrednosti, ki ohranjajo razmerja (ratio)
- Pretvorbe med različnimi tipi vrednosti
 - = osnova zbiranja podatkov / napak

Porazdelitve diskretnih spremenljivk

Frekvenčna porazdelitev:

Verjetnostna porazdelitev:

Porazdelitve zveznih spremenljivk

- Grupirana frekvenčna porazdelitev
 - grafično → histogram

Interval	Frekvenca
500-600	3
600-700	6
700-800	5
800-900	5
900-1000	0
1000-1100	1

Cas v ms	
568	
577	
581	
640	
641	
645	
657	
673	
696	
703	
720	
728	
729	
777	
808	
824	
825	
865	
875	
1007	

Gostota verjetnosti

Linearne transformacije

- Transformacija = pretvorba
- Linearna = samo množenje s konstanto in/ali prištevanje konstante
 - če "originalne" in pretvorjene vrednosti predstavimo v koordinatnem sistemu, dobimo linearno funkcijo

• Primeri:

- Pretvorba iz npr. inčev v centimetre (x 2,54)
- Pretvorba iz °F v °C (x 9/5 + 32)