/							
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{-}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$ au_{1}^{\#1} + ^{lpha} $	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density	$-\frac{1}{3}t_1\;\omega_{\alpha}^{\alpha\prime}\;\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_1\;\omega_{\kappa\lambda}^{\;\;\kappa\lambda}\;\;\omega_{\kappa\lambda}^{\;\;\prime}+f^{\alpha\beta}\;\;\tau_{\alpha\beta}+\omega^{\alpha\beta\chi}\;\;\sigma_{\alpha\beta\chi}+$	$\frac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - \frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} -$	$\frac{1}{2}t_1\partial^{\alpha}f_{\theta k}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_1\ \omega_{\kappa\alpha}^{\ \alpha}$	$rac{1}{3}t_1\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+rac{2}{3}t_1\;\partial^{lpha}f_{\;\kappalpha}\;\partial^{\kappa}f'_{\;\;\prime}-rac{1}{3}t_1\;\partial_{\kappa}f^{\lambda}_{\;\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+2t_1\;\omega_{_{I}\kappa heta}\;\partial^{\kappa}f'_{\;\;\prime}$	$\frac{1}{3}t_1\;\omega_{_{I}\alpha}^{\alpha}\partial^{\kappa}f'_{}}-\frac{1}{3}t_1\;\omega_{_{I}\lambda}^{}}\partial^{\kappa}f'_{}}+\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{}}\partial^{\kappa}f_{\lambda\alpha}+\frac{1}{2}t_1\partial_{\kappa}f_{}}^{}}$	$rac{1}{2}t_1\partial_\kappa f^\lambda_{ heta}\partial^\kappa f_\lambda^{ heta} - rac{1}{3}t_1\partial^lpha f^\lambda_{}\partial^\kappa f_{\lambda\kappa} + rac{1}{3}r_2\partial_\kappa \omega^{lphaeta heta}\partial^\kappa \omega_{lphaeta heta} +$	$rac{2}{3} r_2 \partial_\kappa \omega^{ heta lpha eta} \partial^\kappa \omega_{lpha eta heta} - rac{2}{3} r_2 \partial^eta \omega_{}^{lpha \lambda} \partial_\lambda \omega_{lpha eta}^{\prime} + rac{2}{3} r_2 \partial^eta \omega_{}^{\lambda lpha} \partial_\lambda \omega_{lpha eta}^{\prime}$
: <u>C</u>	: ((No n	nassl	ess _l	oarti	cles)	

$f_{1^-}^{\#2} \alpha$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{9}{\mathbb{T}_{2}}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	- <u>t1</u> 2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} \dagger^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} \dagger^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$r_1^{\#1} + \alpha$	$\frac{1}{1}$ $+^{\alpha}$

_	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1} \dagger$	0	0	0	0
$f_{0}^{#1} \dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

	SO(3) irreps	#
	$\tau_{0^{+}}^{\#2} == 0$	1
	$\tau_{0^{+}}^{\#1} == 0$	1
($\sigma_{0+}^{\#1} == 0$	1
	$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#1\alpha} == 0$	3
	$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
	$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3
	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
	$\tau_{2^{+}}^{\#1\alpha\beta} - 2ik\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5
-	Total #:	20

Source constraints

$\omega_{2}^{\#1}_{+}$ $a_{\beta}^{\#1}$ $a_{2}^{\#1}$ $a_{\beta}^{\#1}$	0	0	$\frac{t_1}{2}$	
$f_{2}^{\#1}_{2}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0	
	$\omega_2^{\#1} +^{\alpha\beta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_2^{\#1} +^{lphaeta\chi}$	

_	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#1} \dagger$	0	0	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\!$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$