CONTRIDENTIAL

Copy 1 RM E53E13

RECTUUNI 1953

Restriction/ Classification Cancelled PERMANENT FILE COPY

Source of Acquisition CASI Acquired

RESEARCH MEMORANDUM

ALTITUDE PERFORMANCE AND OPERATIONAL CHARACTERISTICS

(&&& | \bar{\alpha})
OF YJ71-A-7 TURBOJET ENGINE

By Ivan D Smith, Charles W. Leonard, Jr., and Harry E. Bloomer

Lewis Flight Propulsion Laboratory

Cleveland, Ohio

Restriction/Classification Cancelled

NACA RM E53E13

Restriction/
Classification
This insterial contains information
of the espionage laws, Title 18, U.S.(Cancelled
manner to unauthorized person is profit

e of the United States within the meaning ansmission or revelation of which in any

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS To be returned to

CLASSIFICATION 195

To be returned to the files of the National Advisory Committee for Agramatics

Washington, U.S.

ALTITUDE PERFORMANCE AND OPERATIONAL CHARACTERISTICS

OF YJ71-A-7 TURBOJET ENGINE

By Ivan D. Smith, Charles V. Leonard, Jr., and Harry E. Bloomer

SUMMARY

Altitude performance of a YJ71-A-7 turbojet engine, with afterburner inoperative, was determined in the NACA Lewis altitude wind tunnel over a wide range of flight conditions. Engine speed and exhaust-nozzle area were controlled independently during this investigation.

The variation of corrected values of air flow, net thrust, and fuel flow with corrected engine speed was not defined by a single curve with changes in altitude at given flight Mach number. Changes in altitude had very little effect on minimum specific fuel consumption at altitudes up to 45,000 feet. There is one exhaust-nozzle schedule that is nearly optimum for all flight conditions. Performance calculated from pumping characteristics agreed with experimental values and can therefore be used to extend engine performance data.

INTRODUCTION

An investigation was conducted in the NACA Lewis altitude wind tunnel to evaluate the over-all performance characteristics of a YJ71-A-7 turbojet engine over a range of engine speeds and exhaust-nozzle areas at altitudes from 6000 to 55,000 feet and flight Mach numbers from 0.16 to 1.00. Performance data were obtained with afterburner inoperative and are restricted to the engine speed range obtainable with the acceleration air bleed ports closed.

The data are presented in several forms to facilitate interpretation of the results. The variations of corrected values of air flow, net thrust, and fuel flow with corrected engine speed are shown for several flight conditions. Engine performance maps showing the relation between exhaust-gas temperature, engine speed, net thrust, exhaust-nozzle area, and specific fuel consumption are also presented for several flight conditions. The effects of two methods of thrust modulation on specific fuel consumption are compared over a range of altitudes and flight Mach numbers. Engine pumping characteristics are also presented so that the

engine pressure ratio, air flow, and fuel flow can be predicted, and over-all engine performance therefore calculated for flight conditions other than those investigated. Variation of net thrust and fuel flow with true airspeed is presented for a range of altitudes including a comparison and extension of the actual data with performance calculated from pumping characteristics. A method for determining jet thrust in flight from exhaust-nozzle pressure drop is discussed. All engine performance data obtained during the investigation are tabulated herein.

Although a specific investigation of engine operational characteristics was not made, some operational problems were encountered in the course of engine operation and are discussed briefly.

APPARATUS AND PROCEDURE

Engine

The manufacturer's static sea-level rating of the YJ71-A-7 engine, with afterburner inoperative, is 9515 pounds of thrust with a specific fuel consumption of 0.989 pound per hour per pound of thrust, an air flow of 158 pounds per second, and a compressor pressure ratio of about 8.9 to 1 at an engine speed of 6100 rpm and a turbine-outlet temperature of 1685° R. The length of the engine with afterburner is 238 inches, the maximum height is $46\frac{1}{4}$ inches, and the maximum width is $39\frac{3}{4}$ inches. The dry weight of engine and accessories is about 4600 pounds. The engine components included a 16-stage axial-flow compressor, a cannular-type combustor with 10 circular inner liners, a three-stage turbine, an afterburner, and a variable-area iris-type exhaust nozzle.

In order to permit acceleration in the engine speed range from 65 to 85 percent of rated speed, at which the compressor operating line approaches the surge line (ref. 1), air is bled from eight bleed ports in the combustor inlet section. These bleed ports operate automatically and are scheduled to be open between 55 and 92 percent of rated engine speed.

Installation

The engine and afterburner were mounted on a wing section that spanned the 20-foot-diameter test section of the altitude wind tunnel (fig. 1). Dry air was supplied to the engine from the tunnel make-up air system through a duct connected to the engine inlet. Throttle valves installed in the duct permitted regulation of the pressure at the inlet of the engine. Engine thrust and drag measurements by the tunnel balance scales were made possible by a frictionless slip joint located in the duct upstream of the engine.

Instrumentation for measuring pressure and temperature was installed at various stations in the engine (fig. 2). Thermocouples for measuring engine-inlet temperature were located upstream of the engine in the inlet duct. The temperatures measured at the exhaust-nozzle inlet (station 6) were used as the turbine-outlet temperatures (station 4) to avoid possible effects of radiation on the temperatures measured at station 4.

Procedure

Engine performance data presented in this report were obtained at the flight conditions shown in the following table:

Altitude,	Fli	.ght Ma	ich nur	nber
ft	0.16	0.64	0.82	1.00
6,000	Х			
15,000	х			
25,000	х	х		
35,000	х	Х		х
45,000	Х	х		
55,000	X		Х	

Engine performance data were obtained at engine speeds from 86 to 102 percent of rated speed at most flight conditions. The schedule of the bleed ports in the combustor inlet section was interrupted so that the ports would remain closed for all steady-state data presented in this report regardless of engine speed. The surge characteristic of the compressor did not allow steady-state operation at engine speeds below 86 percent of rated with the bleed ports closed. Data were obtained at five fixed settings of the variable-area exhaust nozzle having projected areas of 2.54, 2.685, 2.86, 3.18, and 4.13 square feet.

In order to simulate the various flight conditions, the air flow through the make-up air duct was throttled from approximately sea-level pressure to a total pressure at the engine inlet corresponding to the desired flight condition with complete ram pressure recovery assumed. The static pressure in the tunnel test section, into which the engine exhausted, was set at the desired altitude ambient pressure. The temperature of the inlet air approximated NACA standard values wherever possible with the exception that the minimum temperature obtainable was about 440° R.

Tunnel balance scale thrust values were used for all engine performance data in this report.

The engine fuel used was MIL-F-5624A grade JP-4 having a low heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.171.

The symbols and the methods of calculation used herein are given in appendixes A and B, respectively.

RESULTS AND DISCUSSION

All engine performance data obtained during the investigation are compiled in table I. Inasmuch as engine-inlet air temperatures below $440^{\rm O}$ R were not obtained and because small errors occurred in tunnel static-pressure settings, the data presented graphically in nongeneralized form have been adjusted to NACA standard altitude conditions by use of the factors $\delta_{\rm a}$ and $\theta_{\rm a}$ (see appendix A).

Generalized Performance

The variation of corrected air flow with corrected engine speed at an exhaust-nozzle area of 2.685 square feet is shown in figure 3 for a range of altitudes and flight Mach numbers. This exhaust-nozzle area is slightly larger than the area required for rated static sea-level performance and slightly smaller than the area for minimum specific fuel consumption. Air flow increased with engine speed up to a speed of about 6400 rpm, after which it was not increased appreciably by a further increase in speed. The corrected air flow at rated corrected engine speed was 167 pounds per second at altitudes below 15,000 feet and decreased to about 163 pounds per second at an altitude of 45,000 feet. This decrease in corrected air flow was primarily due to Reynolds number effects.

The variation of corrected net thrust and fuel flow with corrected engine speed at an exhaust-nozzle area of 2.685 square feet is shown in figures 4 and 5, respectively, for a range of altitudes at a flight Mach number of 0.16. Corrected net thrust and fuel flow increase with engine speed throughout the entire range although corrected fuel flow increased at a greater rate than corrected net thrust at high corrected engine speeds. The increase in corrected net thrust with altitude is associated with reductions in compressor and turbine efficiencies in that a higher corrected turbine-inlet temperature (and therefore pressure) was required to maintain a given corrected engine speed. The elevation of corrected temperature and pressure levels within the engine overcompensated for the reduction in air flow which accompanied the increase in altitude (fig. 3) so that there was a resultant increase in net thrust.

The increase in corrected fuel flow with altitude is associated with reductions in compressor, combustor, and turbine efficiencies.

Performance Maps

Performance maps showing the relation between exhaust-gas temperature, engine speed, net thrust, exhaust-nozzle area, and specific fuel consumption are presented in figure 6 for all flight conditions at which a sufficient range of engine variables was covered. These maps were obtained by cross plotting from curves showing the variation of turbine-outlet temperature, net thrust, and specific fuel consumption with engine speed at the five exhaust-nozzle areas for the various flight conditions. Lines were faired through the average of data points and are within an accuracy of ± 3 percent.

For the range of flight conditions investigated, minimum specific fuel consumption occurred at engine speeds between approximately 5100 and 5800 rpm and at exhaust-nozzle areas of 2.86 square feet or less. These engine speeds at which minimum specific fuel consumption occurred correspond to a corrected engine speed of approximately 5600 rpm (92 percent of rated engine speed). As corrected engine speed increased beyond 5600 rpm, the specific fuel consumption increased principally because of a reduction in compressor efficiency. As the exhaust-nozzle area was increased beyond 2.86 square feet, the specific fuel consumption increased principally because of a large increase in tail-pipe pressure loss and a decrease in ideal air-cycle efficiency.

Altitude had very little effect on minimum specific fuel consumption. For example, at a flight Mach number of 0.16 and altitude from 15,000 to 45,000 feet, the minimum specific fuel consumption varied between 0.925 and 0.950 pound per hour per pound net thrust (less than 3 percent). The variation in minimum specific fuel consumption was small because the compressor pressure ratio, and consequently the ideal air-cycle efficiency, increased with altitude and therefore compensated for the attendant reduction in component efficiencies.

An increase in flight Mach number at any altitude caused an appreciable increase in minimum specific fuel consumption. At 35,000 feet, the minimum specific fuel consumption increased from 0.925 to 1.20 pounds per hour per pound net thrust as flight Mach number was increased from 0.16 to 1.00.

On each map is shown an optimum exhaust-nozzle schedule, which is the schedule that provides the best specific fuel consumption for each thrust level. In areas in which the specific fuel consumption was approximately constant over a range of thrust levels, the exhaust-nozzle area is scheduled to be as large as possible to give a greater acceleration margin below the compressor surge limit. This optimum exhaust-

nozzle schedule varies with flight conditions and will be discussed later in connection with methods of thrust modulation.

Also on each map are shown the limiting exhaust-gas temperature and the control temperature corresponding to this limiting exhaust-gas temperature. The correlation between control temperature and exhaust-gas temperature is shown in figure 7 for a complete range of flight conditions. If the control temperature is set on the limiting indicated temperature, the true exhaust-gas temperature will be about 30° R above the limiting value at low altitude. will approach the limiting value at low altitude. limiting value at low altitude, will approach the limiting value at an altitude of 45,000 feet, and will be somewhat below the limiting value at an altitude of 55,000 feet and low flight Mach numbers.

Thrust Modulation

Varying the engine speed and varying the exhaust-nozzle area are two simple methods of thrust modulation. The performance obtained by varying the exhaust-nozzle area at rated engine speed and by varying the engine speed at an exhaust-nozzle area of 2.685 square feet is shown in figures 8 to 10. The effect of altitude at flight Mach numbers of 0.16 and 0.64 and the effect of flight Mach number at an altitude of 35,000 feet are presented for thrust levels of 100, 90, 80, and 70 percent of maximum thrust. Maximum thrust is the thrust obtained at rated engine speed (6100 rpm) and rated turbine-outlet temperature (1685° R) for each flight condition.

Varying exhaust-nozzle area at rated engine speed. - For the method of thrust modulation in which the exhaust-nozzle area varies at rated engine speed, the specific fuel consumption would increase as altitude increased at any constant thrust level (figs. 8(b) and 9(b)). This increase is principally the result of a loss in compressor efficiency with an increase in corrected engine speed. Specific fuel consumption also increased as flight Mach number increased (fig. 10(b)). Modulation of thrust by this method, at rated engine speed, had very little effect on specific fuel consumption except at a thrust level of 70 percent of maximum. The higher specific fuel consumption at this condition was due to the exhaust-nozzle area approaching a value that gave very high tailpipe pressure losses and also a low ideal air-cycle efficiency.

Varying engine speed at a constant exhaust-nozzle area. - Maximum thrust is defined as the thrust at rated engine speed and rated exhaustgas temperature: therefore, at any given flight condition, there can be only single values of maximum thrust and specific fuel consumption at maximum thrust. The exhaust-nozzle area required to obtain rated exhaustgas temperature at rated engine speed varied with flight conditions. For thrust levels of 90, 80, and 70 percent of maximum at an exhaustnozzle area of 2.685 square feet, altitude had little effect on specific

fuel consumption (figs. 8(d) and 9(d)) because engine speed decreased as altitude was increased (figs. 8(c) and 9(c)), which caused the corrected engine speed to remain near the one for minimum specific fuel consumption. Minimum specific fuel consumption remained essentially constant with increase in altitude as previously discussed in the section Performance Maps. Specific fuel consumption increased with increase in flight Mach number (fig. 10(d)). Variations in thrust level from 90 to 70 percent of maximum had little effect on specific fuel consumption.

Optimum Thrust Modulation

Comparison of the two methods of thrust modulation presented in the preceding section shows a higher specific fuel consumption by varying the exhaust-nozzle area at rated engine speed than by varying the engine speed at a constant exhaust-nozzle area. At an altitude of 35,000 feet and a flight Mach number of 0.64, the specific fuel consumption at 80 and 90 percent of maximum thrust was 1.14 pounds per hour per pound net thrust by the method of varying the engine speed compared with 1.24 pounds per hour per pound net thrust by the method of varying the exhaust-nozzle area. However, varying the exhaust-nozzle area is advantageous for rapid changes in thrust. At rated engine speed and any flight condition, the net thrust can be modulated about 50 percent of maximum by varying the exhaust-nozzle area.

The optimum thrust modulation schedule would be a combination of these two methods as shown by the optimum exhaust-nozzle schedule on the performance maps (fig. 6). This optimum exhaust-nozzle-area schedule varies considerably with changes in flight condition. However, a schedule that would be simple and nearly optimum for all flight conditions would be to hold the exhaust-nozzle area at approximately 3.0 square feet until rated engine speed is reached, and then close the exhaust nozzle until limiting exhaust-gas temperature is obtained. A smaller exhaust-nozzle area (about 2.8 sq ft) would be slightly better, but an overtemperature control would have to be provided to keep the exhaust-gas temperature within limits at certain flight conditions.

Performance from Pumping Characteristics

Engine performance at flight conditions other than those presented in this report may be calculated from the pumping characteristics presented in figures 11 to 13. These figures show the variation of engine pressure ratio, corrected air flow, and corrected fuel flow with Reynolds number index for a range of engine temperature ratios and a range of corrected engine speeds from 5800 to 6300 rpm. The points shown are not actual data points but represent only the flight conditions at which data were obtained.

Engine pressure ratio decreased at an increasing rate as Reynolds number index was decreased (altitude increased or flight Mach number decreased). As previously discussed in the section Performance Maps, compressor pressure ratio increased with increase in altitude, but the component efficiencies decreased, thus requiring a large increase in turbine pressure ratio to supply component work. The over-all effect was a decrease in engine pressure ratio.

Corrected air flow was not particularly affected by variations in Reynolds number index above a value of about 0.45. However, as Reynolds number index was reduced below this critical value, the air flow decreased appreciably.

Although corrected fuel flow (fig. 13) is not a rigorous function of Reynolds number index, this relation provides a simple method of obtaining fuel flow at any flight condition. Corrected fuel flow increased as Reynolds number index was decreased because of reductions in component efficiencies.

From these figures the engine pressure ratio, corrected air flow, and corrected fuel flow can be obtained by selecting a flight condition (Reynolds number index), engine speed, and turbine-outlet temperature. Tail-pipe and exhaust-nozzle losses are presented in figures 14 and 15, respectively, to assist in calculating thrust. From the pumping characteristics and known losses in the tail pipe and exhaust nozzle, the net thrust, fuel flow, and specific fuel consumption of the engine and exhaust system can be determined. If the characteristics of the inlet system are known, the performance of the entire system can be determined.

The exhaust-nozzle discharge coefficient based on a cold projected area is presented in figure 16. From this curve exhaust-nozzle-outlet area may be calculated for a wide range of flight conditions.

Summarized Performance

The altitude performance of the engine at rated conditions (engine speed, 6100 rpm; turbine-outlet temperature, 1685° R) is summarized in figures 17 and 18, in which the variation of net thrust and fuel flow with true airspeed is shown. The solid curves represent the experimental data and the dashed curves are extensions of the experimental data made by calculating performance from the pumping characteristics. The points shown are not actual data points, but represent only the flight conditions at which data were obtained.

Net thrust increased with airspeed except at very low airspeeds where it decreased slightly. Fuel flow increased as airspeed was increased over the entire range.

The net thrust and the fuel flow calculated from pumping characteristics compare within about ± 4 percent with the experimental data. The specific fuel consumption obtained from calculated net thrust and fuel flow would be within about ± 6 percent of the experimental data.

Determination of Thrust in Flight

An accurate and simple indication of thrust is desired in order to simplify operation at critical flight conditions such as at take-off or during formation flying. Exhaust-nozzle pressure drop can be easily measured and provides a reasonably good correlation with jet thrust for a fixed-area exhaust nozzle as shown in reference 2.

The variation of scale jet thrust with exhaust-nozzle pressure drop for the YJ71-A-7 turbojet engine at three exhaust-nozzle areas is shown in figure 19 for a range of flight conditions. The faired lines from these three plots have been combined in figure 20 to show the effect of exhaust-nozzle area on the correlation. Since the exhaust-nozzle area affects only the slope of the curve, the correlation can be used for determining thrust in flight if the exhaust-nozzle area is known.

Accuracy in measuring average turbine-outlet total pressure at all flight conditions is essential for this correlation. A 1-percent error in measuring total pressure will cause about a 2-percent error in the jet-thrust value. The turbine-outlet total pressure used in this report was obtained by taking the arithmetic average of 21 probes (seven probes on each of three equally spaced rakes). Integrating total-pressure rakes could probably be used to measure this pressure.

OPERATIONAL CHARACTERISTICS

The principal operational problem encountered during the investigation was associated with the surge characteristics of the compressor. The surge line of the compressor had a severe dip at engine speeds between 65 and 85 percent of rated engine speed (ref. 1). Although the engine was equipped with combustor-inlet bleed ports, accelerations at all altitudes were very slow. At altitudes above 35,000 feet, the engine could be started but could not be accelerated to rated engine speed even with the air bleed ports open. Modifications in compressor design to alleviate the acceleration problem are being considered by the manufacturer.

Another problem encountered was the very rapid deterioration and failure of the first turbine rotor stage. The blades of the first stage were hollow, and the material used had low thermal shock resistance. These factors combined with the high operating turbine-inlet temperatures resulted in severe reduction in turbine life. The life of the first-stage turbine rotor used in this investigation varied between 20 and 70 hours; however, the turbine stators and rotors were of an interim design.

CONFIDENTIAL.

SUMMARY OF RESULTS

The following results were obtained from an altitude-wind-tunnel investigation of a YJ71-A-7 turbojet engine operating over a range of engine speeds and exhaust-nozzle areas at altitudes from 6000 to 55,000 feet and flight Mach numbers from 0.16 to 1.00.

- 1. The variation of corrected values of air flow, net thrust, and fuel flow with corrected engine speed was not defined by a single curve with changes in altitude at a given flight Mach number. The corrected air flow at rated corrected engine speed was 167 pounds per second at altitudes below 15,000 feet and decreased to about 163 pounds per second at an altitude of 45,000 feet.
- 2. A minimum specific fuel consumption of 0.925 to 0.950 pound per hour per pound net thrust was obtained at altitudes between 15,000 and 45,000 feet at a flight Mach number of 0.16. The minimum value occurred at the same exhaust-nozzle area (2.86 sq ft) but at lower engine speeds (approximately the same corrected engine speed) with increase in altitude.
- 3. An increase in flight Mach number at any altitude caused an appreciable increase in minimum specific fuel consumption. The minimum value occurred at smaller exhaust-nozzle areas and slightly higher engine speeds (approximately the same corrected engine speed) as flight Mach number increased. At an altitude of 35,000 feet, the minimum specific fuel consumption increased from 0.925 to 1.20 pounds per hour per pound net thrust as flight Mach number increased from 0.16 to 1.00.
- 4. The optimum exhaust-nozzle area engine speed schedule varied with flight conditions. However, a schedule that would be nearly optimum for all flight conditions and yet simple to incorporate would be to maintain an exhaust-nozzle area of about 3.0 square feet until rated engine speed is reached and then reduce the exhaust-nozzle area until limiting exhaust-gas temperature is obtained.
- 5. Engine performance calculated from pumping characteristics was found to be in close agreement with experimental data and can therefore be considered an acceptable means for predicting performance characteristics at flight conditions other than those investigated.
- 6. A correlation between exhaust-nozzle pressure drop and jet thrust provided a reasonably accurate method of obtaining jet thrust in flight provided the exhaust-nozzle area is known.
- 7. Engine acceleration was severely limited by the surge characteristics of the compressor. At altitudes above 35,000 feet, the engine could be started but could not be accelerated to rated engine speed.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 13, 1953

APPENDIX A

SYMBOLS

The following symbols are used in this report:

- A cross-sectional area, sq ft
- B thrust scale reading, 1b
- C_D discharge coefficient, ratio of flow area to cold projected exhaustnozzle area
- C_v effective velocity coefficient, ratio of scale jet thrust to rake
 jet thrust calculated at exhaust-nozzle inlet
- D external drag of installation, lb
- F_j jet thrust, lb
- F_n net thrust, lb
- g acceleration due to gravity, 32.2 ft/sec²
- H altitude, ft
- M Mach number
- N engine speed, rpm
- P total pressure, lb/sq ft abs
- p static pressure, lb/sq ft abs
- R gas constant, 53.3 ft-lb/(lb)(OR)
- T total temperature, OR
- t static temperature, OR
- V velocity, ft/sec or knots
- Wa air flow, lb/sec
- W_f fuel flow, lb/hr
- Wg gas flow, lb/sec

- γ ratio of specific heats for gases
- δ_a ratio of ambient absolute static pressure to absolute static pressure of NACA standard atmosphere at respective altitude
- δ_T ratio of engine-inlet absolute total pressure to absolute static pressure of NACA standard atmosphere at sea-level
- $\theta_{\rm a}$ ratio of absolute ambient static temperature to absolute static temperature of NACA standard atmosphere at the respective altitude
- $\theta_{
 m T}$ ratio of engine-inlet absolute total temperature to absolute static temperature of NACA standard atmosphere at sea level
- φ ratio of absolute viscosity of air at engine inlet to viscosity of NACA standard atmosphere at sea level

Subscripts:

- a air
- f fuel
- i indicated
- j jet
- n exhaust nozzle
- r rake
- s scale
- O free-stream conditions
- l compressor inlet
- 2 compressor outlet
- 3 turbine inlet
- 4 turbine outlet
- 5 diffuser outlet
- 6 exhaust-nozzle inlet

7001

APPENDIX B

METHODS OF CALCULATION

Flight Mach number. - The flight Mach number, with complete ram pressure recovery assumed, was calculated from the expression

$$M_{O} = \sqrt{\frac{2}{\gamma - 1} \left(\frac{P_{1}}{p_{O}}\right)^{-1}} - 1$$

Airspeed. - The following equation was used to calculate airspeed:

$$V_O = M_O \sqrt{\gamma gRt_O}$$

Temperature. - Total temperatures were determined from indicated temperatures with the following relation:

$$T = \frac{T_1 \left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85 \left[\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}} - 1\right]}$$

where 0.85 is the impact recovery factor for the type of thermocouple used.

Air flow. - Air flow was determined from pressure and temperature measurements in the engine-inlet air duct by use of the equation

$$W_{a,1} = A_1 \sqrt{\frac{2g}{R}} \left(\frac{p_1}{\sqrt{T_1}} \right) \sqrt{\left(\frac{\gamma_1}{\gamma_1 - 1} \right) \left(\frac{p_1}{p_1} \right)^{\frac{\gamma_1 - 1}{\gamma_1}} \left(\frac{p_1}{p_1} \right)^{\frac{\gamma_1 - 1}{\gamma_1}} - 1}$$

Gas flow. - The total weight flow through the engine was calculated as follows:

$$W_{g,6} = W_{a,1} + \frac{W_{f}}{3600}$$

Scale thrust. - The jet thrust of the engine was determined from the balance-scale measurements by using the following equation:

$$F_{j,s} = B + D + \frac{W_a V_1}{g} + A_1 (p_1 - p_0)$$

The last two terms of this expression represent the momentum and pressure forces on the installation at the slip joint in the inlet air duct. The external drag of the installation was determined with the engine inoperative.

Scale net thrust was obtained by subtracting the free-stream momentum of the inlet air from the scale jet thrust.

$$F_{n,s} = F_{j,s} - W_{a,1} \frac{V_0}{g}$$

Calculated thrust. - At any flight condition the following are known: δ_T , θ_T , T_1 , P_1 , t_0 , p_0 , and Reynolds number index δ_T / ϕ_V / θ_T (for ϕ see fig. 21).

When an engine speed and exhaust-gas temperature are selected, the following are obtainable: engine temperature ratio T_6/T_1 ; corrected engine speed, $\frac{N}{\sqrt{\theta_T}}$.

With the use of figures 11, 12, and 13, values are found for P_4/P_1 , $\frac{W_e\sqrt{\theta_T}}{\delta_T}$, and $\frac{W_f}{\delta_T\sqrt{\theta_T}}$.

From these quantities, the turbine-outlet gas-flow parameter can be calculated

$$\frac{\mathbf{W_g}\sqrt{\mathbf{T_6}}}{\mathbf{P_4}}$$

With the use of figures 14 and 15, the tail-pipe pressure loss $\frac{P_4$ - $P_6}{P_4}$ and the effective velocity coefficient C_v may be found.

Rake jet thrust is given by the following equations based on exhaust-nozzle-outlet total pressure and temperature from the charts presented in reference 3:

$$F_{j,r} = \frac{W_g}{g} V_j$$
 (subcritical)

$$F_{j,r} = \frac{W_g}{g} V_n + A_n(p_n - p_0)$$
 (supercritical)

By definition

$$C_v = \frac{F_{j,s}}{F_{j,r}}$$

Therefore,

$$F_{j,s} = C_v F_{j,r}$$

Scale net thrust is then obtained by subtracting the free-stream momentum of the inlet air from the scale jet thrust

$$F_{n,s} = F_{j,s} - \frac{W_a V_0}{g}$$

REFERENCES

- 1. Medeiros, Arthur A., Benser, William A., and Hatch, James E.: Analysis of Off-Design Performance of a 16-Stage Axial-Flow Compressor with Various Blade Modifications. NACA RM E52IO3, 1953.
- 2. Hesse, W. J.: A Simple Gross Thrust Meter Installation Suitable for Indicating Turbojet Engine Gross Thrust in Flight. Tech. Rep. No. 2-52, Test Pilot Training Div., Naval Air Test Center, Apr. 3, 1952.
- 3. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948.

TABLE I. - PERFORMANCE DATA

(a) Exhaust-nozzle

$ \begin{array}{c} \text{num-tude,} \\ \text{ref.} \\ r$	Run	Alti-	Ram	Flight	Tunnel	Equiva-		Reynolds		ngine s		Engine			Net thr	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				number.										F _n ,	fusted	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ratio,	Mo	sure,	air	cated			N		sure	ature	110	Fn	Fn
Po			P ₁							$\sqrt{\theta_a}$	√θ <u>π</u> ΄	ratio,	ratio,		1 ,	$\overline{\delta_{\mathrm{T}}}$,
1							T ₁ ,	ΨŢ- V ~Ţ					-6			
2 1.019					sq ft abs		o _R					Р1	-1			
2 1.019		6.000	1.014	0.141	1688	523	525	0.789	5971	5827	5937	2 447	3 240	7604	7634	9 406
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	2	,,,,,,	1.019	.164	1687	522	525	.790	5849	5713	5816	2.330	3.147	6964	6999	8,573
1.024			1.017	.155	1687	523	526	.790	5727	5588	5689	2.202	3.038	6357	6389	7,838
1.024			1.019	.164		522		.795	5484		5453	1.998	2.842	5256	5267	6,449
8 15,000 1.021 0.173 1188 488 491 0.611 6093 5948 6264 2.680 3.576 6195 6220 10,804 9 1.021 1.75 1187 490 493 608 5849 5898 601 2.646 3.575 5852 5943 10,324 10 1.025 1.180 1186 490 493 608 5849 5898 601 2.646 3.575 5585 5189 9,740 11 1.025 1.180 1186 491 495 605 5506 5455 5741 5309 3.156 5828 5741 4518 6.66 6.6												1.892				5,797
9	_			 										 		
1.025	8 9	15,000						-608			6264 6126	2.680	3.576 3.467			10,804
1.026			1.023	.180	1186	490	493	.608	5849	5698	6001	2.546	3.373	5585	5619	9,740
13		l	1.025		1185			.600 605	5727		5853 5741	2.410	3.254	15144		8,961
14		05.000				ļ				<u> </u>						
15		25,000	1.022	.176	766	460	463	.424	5848	5655	6194	2.687	3.613	3992	4092	10,786
19	15	1	1 022	.176	767		463	.424	5727		6065	2.612	3.512	3781		10.205
19			1.025					.511				2.735	3.700	4392		9,527
19	18		1.269	.594	765	444	475	.515	5971	5876	6240	2.669	3.571	4250	4361	9,261
21 1.270 5.95 767 448 480 .508 5608 5630 2.378 3.256 3604 3587 7,928 23 1.318 .641 765 432 467 .547 5240 5228 5523 2.065 2.931 2792 2665 5,860 24 35,000 1.025 0.188 476 456 459 0.270 5727 5324 6008 2.707 3.680 2436 258 3.162 3483 3.550 7,928 25 1.029 2.03 479 454 459 2.273 5606 5221 5685 3.563 2872 2378 9,816 26 1.031 .210 480 457 461 .271 5240 4655 5560 5.362 2827 2378 9,816 27 1.508 6.628 477 431 465 .342 5849 5592 2.183 3.456 2161			1.274	.599			476	.515	5848	5756	6106 5973	2.586	3.471			8,863
23			1.270	.595	767	448		.508	5606	5492	5830	2.378	3.256	3604	3687	7,828
24 35,000 1.025 0.188 476 456 459 0.270 5727 5324 6088 2.707 3.680 2436 2548 10,562 256 1.029 .203 479 454 459 .273 5606 5221 5965 2.566 3.563 2287 2378 9,816 1.029 .203 479 457 461 .272 5484 5092 5819 2.438 3.436 2161 2243 9,258 278 1.029 .203 479 457 461 .271 5240 4865 5560 2.181 3.226 1750 1820 7,511 28 1.304 .628 477 451 465 3.42 5849 5592 6177 2.736 3.660 2798 2921 9,519 29 1.308 .632 477 451 465 3.42 5849 5592 6177 2.736 3.660 2798 2921 9,519 29 1.308 .632 477 451 466 3.47 5606 5500 514 2.506 3.442 4292 2526 8,198 31 1.322 .645 481 418 453 .340 572 5476 6048 2.612 3.555 2604 2719 8,850 30 1.309 .633 479 451 466 .347 5606 5360 5914 2.506 3.442 4249 2526 8,198 31 1.322 .645 481 418 453 .360 5362 5194 5727 2.330 3.273 2194 2277 7,299 33 1.319 .642 480 420 455 .360 5362 5194 5727 2.330 3.273 2194 2277 7,299 33 1.319 .642 480 420 455 .358 5240 5075 5596 2.172 3.147 1978 2053 6,612 34 1.885 .996 477 391 469 .485 588 5872 6155 2.641 3.527 3617 3776 8,522 57 1.880 .995 474 391 468 .480 5606 5628 503 2.461 3.527 3617 3776 8,522 57 1.880 .995 474 391 468 .480 5606 5628 503 2.461 3.557 3617 3776 8,522 57 1.880 .995 474 391 468 .480 5606 5628 503 2.461 3.557 3617 3776 8,522 57 1.890 1.907 1.007 475 593 473 483 5484 5489 5742 2.330 3.186 2990 3134 6,985 39 1.894 1.001 479 395 474 4483 5240 5233 5481 2.014 2.897 2.340 2434 5,459 40 1.902 1.005 480 508 611 .351 5849 5151 5390 1.880 2.863 2022 2161 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.727 1753 1841 4,099 1.902 1.005 480 508 611 .351 5849 5151 5390 1.880 2.863 2022 2161 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.737 1753 1841 4,099 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.737 1753 1841 4,099 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.737 1753 1841 4,099 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.737 1753 1841 4,099 4,626 41 1.906 1.006 478 512 616 347 5727 5029 5261 1.732 2.739 3.781 1.601 1.701 170 362 454 5.220 5606 585 600 4 2.575 3.393 866 973 6,771 1.006 480 1.006 478 512 1.0				.628								2.338	3.182			7,335
28		75 000		 						L				 		
28		35,000	1.025	.203	476	454		.273	5606	5221	5965	2.566	3.563	2287	2378	9.816
28	26		1.031	.210	480	457	461	.272	5484	5092	5819	2.438	3.436	2161	2243	9,238
29			1.029	.628	479		461 465	.342	5849		5560 6177	2.181	3.226	2798	2921	7,511
30 1.309 .633 479 431 466 .347 5606 5360 5364 5224 5873 2.465 3.395 2460 2546 8,198 32 1.325 .647 480 420 455 .3580 5362 5194 5727 2.330 3.273 2194 2277 7,299 34 1.874 .992 478 393 470 .481 5971 5977 6276 2.701 3.617 3795 3954 8,964 35 1.883 .996 476 391 469 .483 5849 5872 6153 2.641 3.527 3617 3776 8,522 37 1.880 .996 476 391 468 .482 5277 5750 6031 2.540 3.423 3578 8,980 37 1.880 .995 474 391 468 .480 5606 5628 5903 2.461 3.353 <t< td=""><td>29</td><td></td><td>1.308</td><td>.632</td><td>477</td><td>431</td><td>465</td><td>.342</td><td>5727</td><td>5476</td><td>6048</td><td>2.612</td><td>3.555</td><td>2604</td><td>2719 .</td><td>8,830</td></t<>	29		1.308	.632	477	431	465	.342	5727	5476	6048	2.612	3.555	2604	2719 .	8,830
32 1.325 .647 480 420 455 .3580 5356 5575 5596 2.172 3.273 2194 2277 7,299 34 1.874 .992 478 393 470 .481 5971 5596 2.172 3.147 1978 2053 6,612 35 1.883 .996 476 391 468 .482 5872 6153 2.540 3.527 3617 3776 8,522 36 1.882 .996 476 391 468 .482 5727 5750 6031 2.540 3.429 3421 3578 8,080 37 1.880 .995 474 391 468 .480 5606 5628 5903 2.461 3.553 3194 3357 7,586 39 1.894 1.001 479 395 474 .483 5240 5235 5481 2.014 2.897 2340 2454 5,459 <td></td> <td>]</td> <td>1.309</td> <td>.633</td> <td>479</td> <td></td> <td>466</td> <td>.347</td> <td></td> <td></td> <td>5914 5873</td> <td>2.506</td> <td>3.442</td> <td>2429</td> <td>2526</td> <td>8,198</td>]	1.309	.633	479		466	.347			5914 5873	2.506	3.442	2429	2526	8,198
33 1,319 .642 480 420 455 .358 5240 5075 5596 2.172 3.147 1978 2053 6,612 35 1,8874 .992 478 393 470 .481 5971 5977 6276 2.701 3.617 3796 8,662 35 1,882 .996 476 391 468 .482 5849 5872 6153 2.641 3.527 3617 3776 8,522 37 1,880 .995 474 391 468 .480 5606 5628 5903 2.461 3.353 3194 3357 7,586 38 1,907 1,001 479 395 474 .483 5240 5233 5481 2.014 2.897 2340 2454 6,985 40 1,902 1.001 479 395 474 .483 5240 5233 5481 2.014 2.897 22454 45454	32		1.325	.647	480	420		.360	5362	5194	5727	2.330	3.273	2194	2277	7,299
35 1.882 .996 477 391 469 .483 5849 5872 55750 6031 2.540 3.527 3578 8,080 37 1.880 .995 474 391 468 .480 5606 5628 5903 2.540 3.429 3421 3578 8,080 38 1.907 1.007 475 393 473 .483 5849 5742 2.530 3.186 290 3134 6,985 39 1.894 1.001 479 395 474 .483 5240 5233 5481 2.014 2.897 2340 2454 5,459 40 1.902 1.005 480 508 6611 .351 5849 5151 5390 1.880 2.863 2082 2161 4,826 41 1.906 1.006 478 512 616 .347 5727 5024 5257 1.746 2.748 1778 1815			1.319	.642								2.172	3.147	1978		6,612
36 1.882 .995 476 391 468 .480 5606 5628 5903 2.461 3.353 3194 357 388 1.907 1.007 475 393 473 .483 5848 5449 5742 2.330 3.186 2990 3134 6,985 39 1.894 1.001 479 395 474 .483 5240 5233 5481 2.014 2.897 2340 2454 5,459 40 1.902 1.005 480 508 611 .351 5849 5151 5390 1.886 2.863 2082 2161 4,826 41 1.906 1.006 477 511 615 .347 5727 5029 5261 1.732 2.727 1765 1841 4,999 43 1.912 1.009 477 513 617 .346 5606 4913 5142 1.628 2.632 1521 1588 3,529			1.883	.996	477			.483		5872	6153	2.641	3.527	3617	3776	8,522
38 1,997 1.007 475 393 473 4.83 5848 5449 5742 2.330 3.186 2990 3134 6,985 40 1,902 1.005 480 508 611 .351 5849 5151 5390 1.880 2.863 2082 2161 4,826 41 1,906 1.006 478 512 616 .347 5727 5024 5257 1.748 2.748 178 1853 4,130 42 1,908 1.007 477 511 615 .347 5727 5029 5261 1.732 2.727 1763 1841 4,099 43 1.912 1.009 477 513 617 .346 5606 4913 5142 1.628 2.632 1821 1588 3,529 44 45,000 1.014 0.141 287 452 454 0.167 5240 4886 5602 2.302 3.399	36		1.882	.996		391		.482	5727	5750	6031	2.540	3.429	3421		1 8.080 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.880	1.007				.483				2.461	3.186		3134	6.985
43 1.912 1.009 477 513 617 .346 5606 4913 5142 1.628 2.652 1521 1588 3,529 44 45,000 1.014 0.141 287 452 454 0.167 5240 4886 5602 2.302 3.399 1120 1202 8,144 45 1.353 .672 289 415 453 .220 5606 5455 6004 2.675 3.711 1671 1781 9,626 47 55,000 1.565 Q.827 170 397 451 0.151 5484 5456 5884 2.579 3.721 1110 1248 8,830 48 452 5240 5612 <	39		1.894	1.001	479	395	474	.483	5240	5233	5481	2.014	2.897	2340	2434	5.459
43 1.912 1.009 477 513 617 .346 5606 4913 5142 1.628 2.652 1521 1588 3,529 44 45,000 1.014 0.141 287 452 454 0.167 5240 4886 5602 2.302 3.399 1120 1202 8,144 45 1.353 .672 289 415 453 .220 5606 5455 6004 2.675 3.711 1671 1781 9,626 47 55,000 1.565 Q.827 170 397 451 0.151 5484 5456 5884 2.579 3.721 1110 1248 8,830 48 452 5240 5612 <			1.902							5024		1.880	2.863		2161 1853	4,826
43 1.912 1.009 477 513 617 .346 5606 4913 5142 1.628 2.652 1521 1588 3,529 44 45,000 1.014 0.141 287 452 454 0.167 5240 4886 5602 2.302 3.399 1120 1202 8,144 45 1.353 .672 289 415 453 .220 5606 5455 6004 2.675 3.711 1671 1781 9,626 47 55,000 1.565 Q.827 170 397 451 0.151 5484 5456 5884 2.579 3.721 1110 1248 8,830 48 452 5240 5612 <	42		1.908	1.007	477	511	615	.347	5727	5029	5261	1.732	2.727	1763	1841	4,099
46	43		1.912	1.009	477	513	617	.346	5606	4913	5142	1.628	2.632	1521	1588	3,529
46		45,000		0.141				0.167				2.302	3.399	1120		8,144
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.353					.220				2.675				9,043
49 163 452 5240 5612		55,000	1.565	Q.827												8,830
50 1,588 .841 170 397 453 .153 5240 521.3 5612 2.233 3.393 866 973 6,787 51 2.179 1.117 168 361 451 .208 5606 5853 6015 2.694 3.707 1483 1686 8,573 52 2.153 1.107 170 362 451 .208 5844 5714 5884 2.538 3.614 1416 1592 8,186 53 2.151 1.107 172 363 452 .209 5362 5582 5743 2.405 3.467 1268 1407 7,252 54 2.222 1.133 171 359 451 .210 5240 5481 5623 2.205 3.318 1216 1358 6,771									5362							
51 2.179 1.117 168 361 451 .208 5606 5853 6015 2.694 3.707 1483 1686 8,573 52 2.153 1.107 170 362 451 .208 5484 5714 5884 2.538 3.614 1416 1592 8,186 53 2.151 1.107 172 363 452 .209 5362 5582 5743 2.405 3.467 1268 1407 7,252 54 2.222 1.133 171 359 451 .210 5240 5481 5623 2.205 3.318 1216 1358 6,771	50]	1.588	.841	170	397	453	.153	5240	5213	5612	2.233	3.393	866	973	6,787
53 2.151 1.107 172 363 452 .209 5362 5582 5743 2.405 3.467 1268 1407 7,252 54 2.222 1.133 171 359 451 .210 5240 5481 5623 2.205 3.318 1216 1358 6,771	51		2.179					.208			6015	2.694				8,573
54 2.222 1.133 171 359 451 .210 5240 5481 5623 2.205 3.318 1216 1358 6,771	53		2.151	1.107	172	363	452	.209	5362	5582	5743	2.405	3.467	1268	1407	7,252
	54		2.222	1.133		359	451	.210	5240	5481	5623	2.205	3.318	1216		6,771

FOR YJ71-A-7 TURBOJET ENGINE

rea, 2.54 square feet

	Jet thr	ust		Air fl	DW WC		Fuel fl	OW	Specific	fuel cons	sumption	Expa	aust-gas	total	Run
F,,	Ad-	Cor-	Wa,	Ad-	Cor-	W _f ,	Ad-	Cor-	$\frac{W_{\mathbf{f}}}{F_{\mathbf{n}}}$	ΔΔ	Con-	1 1	temperat	ure	num-
1b	justed,	rected,		justed,	rected,	1b	justed,	rected,	, ,	$\frac{\text{Justed,}}{\frac{\text{W}_{f}}{\text{F}_{n}\sqrt{\theta_{a}}}},$	$\frac{\frac{W_f}{F_n\sqrt{\theta_T}},$	T ₆ , OR	Ad-	Cor-	ber
	Fj.	^F j, δ _T	lb sec	Wa√θa	$w_a \sqrt{\theta_T}$	hr	Wf	Wf	lb/hr	w _f	w _f	°R	justed,	rected,	
	δ _a	ნ "	1	δ _a ,	δ_{T}		$\delta_a \sqrt{\theta_a}$	$\delta_{\mathrm{T}} \sqrt{\theta_{\mathrm{T}}}$	1b thrust	F -/0.	F 7/0m	1	$\frac{T_6}{\theta_a}$,	$\frac{\mathbf{T}_{6}}{\theta_{\mathbf{T}}}$,	
	1b	1b		<u>1b</u>	<u>lb_</u>				ID thrust	-n v -a			θ_a	θ_{T}	
				sec	sec		1b hr	1b hr		lb/hr	lb/hr		₽R	°Ř	
							111	111		lb thrust	lb thrust	 			
8248	8281	10,203	130.8	134.6	162.7	7811	7652	9,607 8,922 8,114 7,410 6,588	1.03	1.00	1.02	1701	1620	1682	1
7691	7729	9,468	127.0	130.7	157.3	7290	7156	8,922	1 1 05	1.02	1.04	1652	1576	1633	2
7013	7048	8,647	121.5	125.1	150.6	6625	6497	8,114	1.04	1.02	1.04	1598	1522	1577	3
6577	6610	8,090 7,2 4 2	117.1	120.4	144.7	6070	5947	7,410	1.04 1.03 1.03	1.00	1.02	1558	1484	1537	4
5902 5392	5914 5414	6,605	112.9 107.8	115.8 110.7	139.3 132.7	5400 4920	5285 4824	5,993	1.03	1.00	1.02 1.03	1492 1452	1423 1385	1475 1435	5 6
4849	4873	5,940	102.7	105.5	126.5	4450	4373	5,421	1.06	1.04	1.06	1413	1351	1397	7
6777	6804	11,819	99.8	102.6	169.3	6450	6321	11,564	1.04	1.02	1.07	1756	1673	1856	8
6488	6520	11,328	98.4	101.4	167.5	6090	5963	10.909	1.03	1.00	1.06	1709	1622	1800	9
6172	6209	10.764	96.5	99.6	164.1	5690	5576	10,181 9,276	1.02 1.01 1.01	.99	1.05	1663	1578	1751	10
5737	5777	9,994 9,318	93.1	96.5	158.7	5210	5095 4699	9,276	1.01	.98	1.04	1617	1525 1480	1688 1640	11
5358	5390	9,318	90.4	93.4	153.5	4800	4699	8,547		.98	1.03	1563	1480	1640	12
4507 4369	4611 4478	12,241 11,805	66.3 65.5	70.2 69.4	170.0 167.2	4280 4055	4233 4019	12,322 11,602	1.02	0.99	1.09	1717 1673	1605 1564	1930 1875	13 14
4152	4247	11,805	64.4	68.1	164.1	3805	3764	10,874	1.02 1.01 1.01	.97	1.07	1626	1520	1823	15
3926	4016	11,206 10,569	63.1	66.7	160.2	3560	3525	10 160	1.01	.97	1.07	1577	1477	1773	16
5910	6064	172 961	80.8	84.2	169.3	5400	5452	12,386	1.23	1.21	1.29	1754	1699	1919	17
5789	5940	12,614	80.7	84.1	168.3	5220	5271	11,886	1.23	1.21	1.28	1696	1643	1852	18
5600	5762 5332	12,614 12,191 11,381 10,977	79.5 77.5	83.1 80.9	165.8 162.7	4750 4380	4810	10,796	1.23 1.23 1.17 1.17 1.09	1.21 1.15 1.15	1.22	1652	1600 1541 1500	1801	19 20
5197 5054	5170	10 977	75.7	79.0	158.0	3930	4413 3939	8 877	1.17	1.15	1.13	1598 1563	1541	1739 1691	21
5009	5134	10,609	77.7	79.8	156.0	3950	4040	8.826	1.14	1.14	1.20	1483	1476	1651	22
4252	4363	8,925	71.9	73.9	143.1	3215	3291	12,386 11,886 10,796 10,004 8,877 8,826 7,114	1.15	1.15	1.21	1369	1363	1521	23
2683	2806	11,633	40.3	45.3	164.3	2600	2528	11,985 11,005 10,102 8,335 12,036 11,190	1.07	0.99	1.13 1.12 1.10 1.11	1689	1460	1909	24
2547	2649	10,932	39.5	44.2	159.4	2410	2335	11,005	1.05	.98	1.12	1632	1415	1847	25
2422	2514	10,932 10,354 8,502 13,033	38.2	42.7	154.0 141.6	2240	2335 2159 1767	10,102	1.04	.96	1.10	1584	1366 1282	1784	26
1981 3831	2060 4000	8,502	35.0 52.0	39.2 56.8	167.5	1830 3350	3344	8,335	1.05	.97	1.26	1487 1702	1556	1674 1898	27 28
3626	3786	12,296	51.2	55.9	164.2	3125	3119	111,190	1.20	1.14	1.27	1653	1511	1843	29
3432	3569	11,583	50.1	54.6	160.4	2900	2884	10,328	1.07 1.05 1.04 1.05 1.20 1.20	1.14	1.26	11604	1466	1785	30
3420	3540	11,583 11,378	51.0	54.3	158.4	2900 2770	2783	10,328 9,871	1.13	1.09	1.26 1.21	1538	1450	1764	31
3183	3304	110 590	48.9	52.4	152.4	2520	2534	8,953	1.15	1.11	1 7 22	1489	1397	1699	32
2909	3020 6315	9,725	46.5 75.6	49.8 78.7	145.5 169.9	2250 4755	2262 4960	8,033	1.14	1.10	1.22	1432	1343	1634 1879	33 34
6060 5870	6128	9,725 14,314 13,830 13,308	75.1	78.1	168.2	4505	4722	11,165	1.25 1.25 1.23 1.24	1.25 1.25 1.23 1.24	1.22 1.32 1.31 1.29 1.30	1654	1705 1667 1618	1831	35
5634	5893	13,308	73.8	76.9	165 5	4190	4401	10,421	1.23	1.23	1.29	1605	1618	1780	36
5345	5618	112,694	71.8	75.2	161.9	3950	4168	11,805 11,165 10,421 9,878	1.24	1.24	1.30	1569	1582	1740	37
5106	5351	11,928	69.6	72.9	155.2	3605	3782		1.21 1.21 1.51	1.21	1 1.26	1507	1512	1652	38
4263 3922	4434 4071	9,946 9,091	63.4 53.3	66.0 62.8	141.5 134.1	2820 3150	2929 2879	6,882 6,729 5,907 5,852	1.21	1.20 1.33	1.26 1.39	1373 1749	1370 1357	1502 1485	39 40
3525	3673	8,189	50.4	59.8	127.4	2770	2532	5.907	1.56	1.37	1.43	1693	1303	1426	41
3508	3662	8,156	50.3	59.8	127.4	2740	2512	5,852	1.55	1.37	1.43	1677	1293	1415	42
3189	3329	8,156 7,398	47.9	52.1	121.2	2450	2241	5,213	1.61	1.41	1.48	1624	1247	1366	43
1215	1304	8,834	20.8	07.0	.41.5	1195	1195	9,285 12,843	1.07 1.25	0.99	1.14	1543	1342	1764	44
2463	2643	13,364	32 €		166.2	2210	2308	12,843	1.25	1.21	1.33	1715	1624	1967	45
2335	2489	12,637	37 19	4.9	161.1	2055	2132	11,912	1.23	1,20	1.32	1681	1592	1928	46
1631	1833	12,975	20.7	23.5	154.0	1362	1523	11,622	1.23	1.22	1.32	1678	1661	1931	47
						1228 1104									48
1355	1523	10,619	19.2	21.7	140.3	1107	1238	9,295	1.28			1537	1521	1763	50
2454	2790	10,619 14,187	30.0	32.7	161.9	1945	2309	9,295 12,065 11,013	1.28	1.27 1.37	1.37	1672	1821	1924	51
2353	2645	13,603	29.2	31.5	157.4	1775	2079	11,013	1.25	1.31	1.35	1630	1770	1876	52
2195	2436	12,553	28.2	30.1	150.6	1630	1884	9,985	1.28	1.34	1.38	1567	1697 1634	1797 1717	53 54
2126	2375	11,838	27.8	29.7	144.4	1450	1694	8,664	1.19	1.25	1 1.20	1492	1 1034	1 1/1/	1 34

TABLE I. - Continued. PERFORMANCE

(b) Exhaust-nozzle

Run	Alti-	Ram	Flight	Tunnel	Equiva-	Engine-	Reynolds			peed	Engine	Engine		Net thr	
num-	tude, H,	pres- sure	Mach number,	static pres-	lent ambient	inlet indi-	number index,	N, rpm	Ad- justed,	Cor- rected,	total- pres-	total- temper-	F _n ,	Ad- justed,	Cor- rected,
1	ft	ratio.	M _O	sure,	air	cated	δ _T	1 1	N N	N N	sure	ature	16	$\frac{F_n}{f_n}$,	$\frac{F_n}{F_n}$,
		P ₁		p _o ,	temper-	temper-]	$\sqrt{\theta_a}$	$\sqrt{\theta_{\mathrm{T}}}$	ratio,	ratio,	1	11 ,	<u>"</u> ,
		$\overline{p_0}$		<u>1</u> b	ature,	ature,	$\Phi_{\mathrm{T}} \sqrt{\theta_{\mathrm{T}}}$		rpm	rpm	P ₄	T ₆		δ _a 1b	δ _T
		•		sq ft abs	t _O , o _R	T ₁ , ⁰R			-	_	P ₁	T ₁		10	1b
ļ					- 11	Α		 		 					
1 1	6,000	1.011	0.125	1684	523	525	0.789	6215	6065	6180	2.396	3.189	7694	7748	9,564
2	0,000	1.011	.125	1687	523	525	.789	6093	5946	6058	2.346	3.133	7438	7475	9.223
3		1.016	.152	1684	523	525	.789	5971	5827	5937	2.260	3.055	6910	6958	8,548
5		1.017	.155 .152	1687 1690	523 524	526 526	.791 .792	5849 5727	5707 5583	5810 5689	2.171 2.078	2.968 2.886	6451 5941	6483 5959	7,961 7,319
6		1.021	.173	1687	522	525	.795	5606	5475	5574	1.974	2.798	5324	5351	6,543
7		1.021	.173	1687	523	525	.795	5484	5356	5453	1.871	2.714	4796	4820	5.894
8		1.021	.173 .169	1690 1688	523 523	525 525	.796 .795	5362 5240	5237 5118	5331 5210	1.784	2.642 2.571	4319 3878	4332 3894	5,299 4,766
															
10 11	15,000	1.020	0.169 .188	1186 1184	496 493	499 496	0.595 .600	6093 5971	5899 5799	6215 6108	2.460 2.395	3.301 3.228	5557 5340	5590 5383	9,719 9,308
12		1.022	.176	1188	493	496	600	5849	5681	5984	2.325	3.143	5123	5143	8,929
13		1.021	.173	1184	493	496	.599	5727	5562	5859	2.255	3.058	4793	4812	8.359
14		1.023	.180	1185	493	496	.598	5606	5445	5735	2.144	2.968	4366	4397	7,623
15	25,000	1.021	0.173	765	460	463	0.424	6093	5891	6452	2.601	3.603	3933	4035	10,654
16		1.021	.173 .160	767 765	460 462	463 464	.424 .423	5971 5849	5773 5643	6323 6188	2.549 2.494,	3.484 3.373	3789 3681	3876 3773	10,238 9,987
18		1.022	.176	767	461	464	.424	5727	5531	6059	2.411	3.280	3462	3542	9,344
19		1.022	.176	765	461	464	.424	5606	5414	5931	2.324	~ ~ ~ ~ ~	3244	3328	8,778
20		1.291	.616 .623	766 762	457 457	492 492	.496 .496	6093 5971	5910 5792	6258 6132	2.486 2.408	3.352 3.244	3923 3775	4021 3888	8,395 8,067
22		1.295	.619	765	458	493	.495	5849	5668	6001	2.316	3.142	3541	3633	7,560
23		1.298	.622	762	458	493	.495	5727	5549	5876	2.233	3.057	3340	3440	7,148
24 25		1.314	.622 .637	766 768	458 430	493 465	.495 .550	5606 5484	5432 5484	5752 5791	2.125 2.154	2.957 2.978	3021 3185	3097 3255	6,432 6,679
26		1.313	.636	768	430	465	.549	5240	5240	5533	1.911	2.757	2510	2568	5,274
27	35,000	1.029	0.203	479	454	458	0.273	6093	5674	6483	2,667	3.771	2569	2672	11,026
28		1.017	.155	479	456	458	.270	5971	5551	6353	2.655	3.662	2478	2577	10,767
29 30		1.015	.147	478 478	456 456	458 458	.270 .270	5849 5727	5437 5323	6223 6094	2.604	3.566 3.452	2425 2283	2527 2 3 79	10,580 9,961
31		1.017	.155	479	456	458	.270	5606	5212	5965	2.409	3.354	2110	2194	9,168
32		1.025	.188	478	458	461	.271	5484	5086	5819	2.271	3.230	1967	2050	8,494
33 34		1.021	.173 .629	478 478	459 431	462 465	.268 .342	5240 6093	. 4 855 5826	5554 6434	2.057	3.041 3.645	1599 2756	1666 2872	6,933 9,346
35		1.302	.626	480	430	464	.341	5971	5715	6317	2.584	3.547	2698	2801	9,135
36		1.305	.629	479	429	463	.341	5849	5605	6194	2.518	3.436	2561	2663	8,672
37 38		1.301	.625 .633	479 479	430 429	464 463	.341	5727 5606	5482 5372	6059 5937	2.440 2.338	3.332 3.227	2410	2506 2 3 10	8,184 7,496
39		1.310	.634	478	420	454	.357	5484	5312	5862	2.294	3.163	2153	2243	7,277
40 41		1.302	.626 .634	480 481	422 421	454 454	.357	5362 5240	5181 5069	5727 5596	2.157	3.033 2.923	1929 1747	2002 1808	6,532 5,868
42		1.881	.995	479	392	470	.487	6093	6105	6404	2.541	3.489	3650	3796	8,574
43		1.883	.996	478	392	470	.486	5971	5983	6276	2.476	3.391	3506	3653	8,243
44 45		1.879	.994	481 477	392 391	470 469	.488 .483	5849 5727	5861 5750	6147 6025	2.420	3.277 3.183	3353 3142	3470 3280	7,849 7,396
46		1.885	.997	480	391	469	.489	5606	5628	5898	2.240	3.083	2947	3059	6,890
47		1.914	1.010	476 474	392 392	472 472	.487	5484 5240	5495 5250	5753	2.135	2.962	2660	2782	6,179
48				1		1			-	5497	1.877	2.733	2110	2218	4,929
49	45,000	1.017	0.155	288	456	458	0.167	5727	5316	6094	2.560	3.638	1421	1519	10,262
50 51		1.028	.199 .118	289 287	455 453	459 454	.167 .167	5606 5606	5210 5221	5959 5993	2.451 2.507	3.521 3.520	1314 1406	1401 1509	9,362 10,260
52		1.018	.160	284	452	454	.166	5484	5114	5862	2.391	3.392	1270	1378	9,299
53 54		1.021	.173	287 288	450	453	.167	5362	5011 4875	5743	2.253	3.267	1140	1223	8,233
55		1.351	.670	288	454 417	456 454	.167	5240 5971.	5797	5591 6383	2.127 2.728	3.121 3.758	1016 1766	1086 1888	7,36 3 9,607
56		1.353	.672	289	417	455	.220	5849	5678	6247	2.588	3.640	1710	1823	9,255
57 58		1.353	.672 .678	289 289	416 416	454 454	.220 .221	5727 5606	5567 5449	6122 5993	2.542	3.537 3.465	1621 1533	1728 1634	8,773 8,254
<u></u>						-									
59 60	55,000	1.571 1.592	0.830 .843	168 169	397 396	452 452	0.151	5727 5606	5698 5585	6139 6010	2.591	3.708 3.573	1120 1106	1273 1250	8,977 8,700
61		1.580	.836	169	397	452	.152	5484	5456	5879	2.345	3.431	949	1072	7,521
62		1.573	.832	171	397	452	.153	5362	5335	5748	2.164	3.290	888	992	6,985
63 64		1.576 2.163	.833 1.111	172 172	397 362	452 451	.154	5240 5971	5213 6222	5617 6407	2.704	3.164 3.807	768 1643	852 1824	5,997 9,345
65		2.173	1.115	168	361	451	.207	5484	5725	5884	2.353		1241	1411	7,194
66 67		2.218	1.131	170 170	360 359	452 452	.210 .210	5362 5240	5603 5481	5743 5612	2.154	3.206	1223 1115	1375 1253	6,865
10,		ccs	12.200	1 110	1 333	1 402	.210	3240	2#01	2015	2.005	3.088	1113	1200	6,225

DATA FOR YJ71-A-7 TURBOJET ENGINE

area, 2.685 square feet

	Jet thru			Air fl		Ĺ	Fuel fl		Specific	fuel cons			ust-gas		Run
F _J ,	Ad- justed,	Cor- rected,	W _a , lb	Ad- justed,	Cor- rected,	W _f , lb	Ad- justed,	Cor- rected,	₩ _f ,	Ad- justed,	Cor- rected,	T ₆ ,	emperati	Cor-	num- ber
10	Fj,	Fj,	sec	$\frac{W_{a}\sqrt{\theta_{a}}}{\theta_{a}}$	$\frac{W_{a}\sqrt{\theta_{\mathrm{T}}}}{}$	hr	W _f	Wf ,	F _n '	W _f	W _f	R	justed,	rected,	1
	δ _a ,	δ _T ,		δ _a lb	δ _T ΄		δ _a √θ _a lb	δ _T √θ _T	1b thrust	$F_n \sqrt{\theta_a}$	$F_n \sqrt{\theta_T}$		$\frac{\theta_a}{\theta_a}$	$\frac{-6}{\theta_{\rm T}}$	
	10	10		sec	sec		hr	hr		lb/hr lb thrust	lb/hr lb thrust		ôR	o _R]
	0777		175.0	370 4	3.00	7007	2223	0.707	1.00			1074	1504	1055	
8279 8021	8337 8061	10,291 9,946	135.0 134.5	139.4 . 138.6	168.8 167.8	7867 7528	7731 7383	9,723 9,281	1.02 1.01	1.00	1.02	1674 1645	1594 1566	1655 1626	2
7600 7136	7653 7172	9,401 8,806	130.5 126.8	134.7 130.6	162.3 157.4	7070 6535	6947 6409	8,696 8,010	1.02	1.00 .99	1.02 1.01	1604 1561	1527 1486	1586 1540	3 4
6587	6607 6068	8,115	122.9 118.4	126.5 121.8	152.3	6050 5540	5916 5438	7,403 6,769	1.02 1.04	.99 1.02	1.01	1518 1469	1443 1401	1498 1452	5 6
6038 5477	5504	7,421 6,731	112.9	116.2	146.4 139.6	4950	4859	6,049	1.03	1.01	1.03	1425	1359	1409	7
4971 4484	4986 4502	6,099 5,511	108.2 103.1	111.1 106.0	1 33. 5	4520 4120	4428 4040	5,514 5,035	1.05 1.06	1.02	1.04 1.06	1387 1353	1323 1291	1371 1338	8
6121	6158	10,706	98.5	102.3	168.9	5705	5557	10,177	1.03	0.99	1.05	1647	1544	1713	10
5963 5695	6011 5718	10,394 9,926	97.7 96.0	101.4 99.3	166.5 163.7	5390 5070	5277 4944	9,611 9,041	1.01	.98 .96	1.03	1601 1559	1510 1470	1676 16 3 2	11 12
5342	5363	9,316	93.7	96.9	159.8	4720	4602	8,422	.98	.96	1.01	1517	1431	1588	13
4917	4951	8,585	90.4	93.7	154.3	4340	4245	7,752	.99	.96	1.02	1472	1388		14
4309 4163	4421 4259	11,673 11,248	66.4 66.2	70.5 70.0	169.9 168.9	4080 3850	4048 3809	11,706	1.04 1.02	1.00 .98	1.10 1.08	1668 1613	1559 1508	1870 1808	15 16
4025 3834	4126 3922	10,920 10,348	65.7 64.5	69.8 68.4	168.5 164.7	3640 3430	3600 3389	10,448 9,795	.99	.95 .96	1.05 1.05	1565 1522	1457 1420	1751 1703	17 18
3605	3699	9,755	62.7	66.6	160.5 169.5	3235 4785	3205 4757	9,263	1.00	.96 1.18	1.06 1.25	1649	1552	1740	19 20
5553 5411	5692 5573	11,883 11,563	81.3 80.5	85.9 85.5	167.6	4450	4447	10,516 9,766	1.22 1.18	1.14	1.21	1596	1502	1684	21
5133 4898	5266 5045	10,959 10,482	78.9 76.8	83.5 81.6	164.1 160.2	4140 3850	4116 3843	9,069 8,453	1.17 1.15	1.13	1.20 1.18	1549 1507	1454 1415	1631 1587	22 23
4537 4769	4650 4874	9,659 10,001	74.7 78.7	79.1 80.4	155.1 156.2	3620 3605	3596 3684	7,907 7,983	1.20 1.13	1.16 1.13	1.23 1.20	1458 1385	1369 1385	1535 1544	24 25
3966	4057	8,333	72.4	74.1	144.0	2890	2956	6,412	1.15	1.15	1.22	1282	1282	1429	26
2846 2687	2960 2794	12,215 11,675	42.1 41.5	47.1 46.4	169.9 169.3	2810 2645	2722 2557	12,833 12,227	1.09 1.07	1.02	1.16 1.14	1727 1677	1498 1450	1955 1898	27 28
2621	2731	11,435	41.1	46.1	168.4	2500	2422	11.636	1.03	.96	1.10	1633	1411	1849	29
2476 2309	2580 2401	10,803	40.4 39.5	45.3 44.2	165.7 161.1	2350 2230	2276 2156	10,908	1.03 1.06	.96 .98	1.10 1.13	1581 1536	1366 1328	1790 1739	30 31
2200 1795	2292 1870	9,500 7,783	38.0 34.7	42.7 39.1	154.6 142.1	2015 1660	1947 1603	9,232 7,631	1.02 1.04	.95 .96	1.09	1489 1405	1281 1206	1677 1579	32 33
3812	3972	12,926	53.0	57.8	170.3	3400	3388	12,174	1.23	1.18	1.30	1695 1646	1550 1508	1890 1842	34
3743 3601	3885 3745	12,674 12,193	52.8 52.4	57.3 56.9	169.0 167.7	3215 3025	3194 3015	11,516 10,845	1.19 1.18	1.14	1.26 1.25	1591	1461	1784	35 36
3429 3234	3566 3363	11,645 10,915	51.6 50.7	56.1 55.1	165.6 161.7	2800 2620	2787 2611	10,059 9,366	1.16 1.18	1.11	1.23 1.25	1546 1494	1417 1372	1730 1675	37 38
3146 2871	3278 2980	10,633 9,721	50.2 48.1	53.9 51.7	158.6 152.5	2490 2240	2513 2246	8,998 8,099	1.16 1.16	1.12	1.24	1436 1380	1347 1288	1641 1575	39 40
2664	2757	8,948	46.3	49.5	145.5	2010	2012	7,212	1.15	1.11	1.23	1330	1245	1518	41
5948 5792	6186 6035	13,972 13,617	76.5 76.1	79.5 79.1	171.1 170.2	4520 4265	4710 4454	11,160 10,540	1.24	1.23	1.30 1.28	1640 1594	1648 1602	1812 1761	42 43
5624 5358	5821 5594	13,166 12,613	75.7 73.8	78.2 76.7	168.7 165.1	4005 3735	4153 3915	9,853 9,249	1.19 1.19	1.20 1.19	1.26 1.25	1540 1493	1548 1505	1702 1653	44 45
5122	5317	11,975	72.4	74.9	160.9	3500 3260	3648	B,609	1.19	1.19	1.25	1446 1398	1458 1405	1601 1538	46 47
4794 4051	5015 4258	11,136 9,463	70.0 63.8	73.1 66.9	155.1 142.1	2570	3417 2706	7,945 6,298	1.23 1.22	1.23	1.28	1290	1296	1419	48
1541	1647	11,129	23.9	27.5	161.9	1535	1523	11,794	1.08	1.00	1.15	1666	1436	1886	49
1465 1496	1562 1605	10,438	23.4 23.5	26.8 27.0	156.5	1465 1450	1452 1450	11,094	1.12	1.04 .96	1.19 1.10	1616 1598	1396 1386	1826 1827	50 51
1387 1262	1505 1354	10,156 9,114	22.6 21.8	26.3 25.1	154.9 147.2	1320 1195	1336 1199	10,331 9,244	1.04	.97 .98	1.11 1.12	1540 1480	1339 1292	1760 1698	52 53
1111	1188	8,051	20.8	23.9	141.0	1070	1065	8,276	1.05	.98	1.12	1423	1232	1619 1950	54 55
2465 2405	2635 2564	13,410 13,016	33.5 33.2	36.9 36.5	170.5 168.5	2240 2080	2325 2152	13,029 12,020	1.27	1.23	1.36	1706 1656	1608 1561	1889	56
2302 2207	2454 2353	12,458 11,882	32.6 32.0	35.8 35.1	165.2	1955 1830	2025 1896	11,311 10,531	1.21	1.17	1.29 1.28	1606 1573	1517 1486	1836 1798	57 58
1670	1899	13,385	21.8	24.9	163.3	1447	1637	12,431	1.29	1.29	1.39	1676	1659	1926	59
1655 1475	1870 1667	13,018 11,689	21.5	24.4 23.6	157.8 153.4	1323 1205	1489 1355	11,154	1.20	1.19	1.28	1615 1551	1603 1535	1856 1782	60 61
1392	1555	10,949	19.9 19.6	22.4	146.5	1072 969	1192 1070	9,038 8,113	1.21	1.20	1.29 1.35	1487 1430	1472 1416	1709 1643	62 63
1263 2680	1402 2975	9,862 15,244	32.2	34.3	170.7	2190	2533	13,367	1.33	1.39	1.43	1717	1865	1976	64
2184 2169	2483 2438	12,661 12,175	29.2 28.9	31.8 31.1	157.9 151.6	1585 1428	1882 1677	9,861 8,582	1,28	1.33	1.37	1449	1582	1662	65 66
2019	2269	11,272	27.6	29.7	143.7	1270	1493	7,593	1.14	1.19	1.22	1396	1529	1601	67

TABLE I. - Continued. PERFORMANCE

(c) Exhaust-nozzle

-		15	T					,							t-nozzle
Run num-	Alti- tude,	Ram pres-	Flight Mach	Tunnel static	Equiva- lent	Engine- inlet	Reynolds number	N,	Engine s	peed Cor-	Engine total-	Engine total-	F _n ,	Net thr	Cor-
ber	H, ft	sure ratio,	number,	pres- sure,	ambient air	indi- cated	index.	rpm	justed,	rected,		temper-	lb'	justed.	l nonted
		<u>P</u> 1		p _O ,	temper-	temper- ature,	$\frac{\delta_{\mathrm{T}}}{\Phi_{\mathrm{T}}\sqrt{\theta_{\mathrm{T}}}}$		$\frac{1}{\sqrt{\theta_a}}$	γ _{pm} ,	ratio	ratio,		F _n , δ _a	F _n ,
		P _O		lb sq ft abs	to,	\mathbf{T}_1 ,	TTV T		rpm	rpm	$\frac{P_4}{P_1}$	$\frac{T_6}{T_1}$		16	16
				•	°R	°R					1 1	1 1	١		
1	6,000		0.141	1683	521	523	0.789	6215	6076	6191	2,214	3.038	6979	7028	8.654
2		1.014	.141	1686 1687	524 524	526 526	.790 .790	6093 5971	5940 5821	6052 5931	2.158	2.949	6691 6328	6724 6360	8,654 8,277 7,828
4 5		1.016	.152	1687 1687	525	527	.788	5849	5697	5805	2.011	2.786	5805	5834	7,169
6		1.017	.155	1688	522	527 525	.790	5727 5606	5475	5683 5574	1.847	2.708	4842	4861	5,970
8		1.021	.173 .180	1691 1684	522 522	525 525	.797 .795	5483 5362	5356 5237	5453 5331	1.745	2.564 2.510	4270 3885	4279 3912	5,231 4,775
9		1.026	.192	1686	521	525	.798	5240	5123	5210	1.596	2.438	3373	3390	4,129
10 11	15,000	1.017	0.155 .152	1181 1184	493 492	495 495	0.598	6215 6093	6036 5924	6364 6239	2.306	3.200 3.123	5286 5144	5 33 9 5185	9,314 9,017
12 13		1.016	.164 .155	1184 1185 1185	493 493	495 495	.600	6093	5918	6239	2.270	3.103	5136	5172	9.024
14		1.020	.169	1185	492	495	.600 .601	5971 5849	5799 5686	6114 5989	2.213 2.145	3.014 2.943	4909 4645	4943 4678	8,620 8,129 7,510
15 16		1.021	.173 .164	1185 1187	492 492	495 495	.601 .601	5727 5606	5568 5450	5864 5741	2.067 1.988	2.865 2.786	4294 3941	4324 3961	7,510 6,893
17	25,000	1.014	0.141	765	468	470	0.418	6093	5840	6404		3.306	3611	3705	
18 19		1.018	.160 .152	764 764	468 468	470 470	.419	5971 5849	5723 5606	6276 6147	2.380 2.326 2.264 2.202 2.131	3.211 3.115 3.026	3432 3295	3525 3381	9,847 9,335 8,972 8,474 7,871 7,916 7,564 7,203 6,743
20 21		1.016	.152	764	468	470	.418	5727	5489	6019	2.202	3.026	3112	3193	8,474
22		1.018	.160 .622	765 762	468 458	470 493	.419 .495	5606 6215	5373 6022	5892 6377	2.504	2.951 3.221	2898 3699	2973 3810	7,871 7,916
23 24		1.294	.619 .621	766 763	457 458	492 493	.496 .495	6093 5971	5910 5786	6258 6126	2.272	3.124 3.053	3543 3366	3632 3464	7,564
25 26		1.298	.622 .625	762 763	458 458	493 494	.495 .494	5849 5727	5668 5549	6001 5870	2.126	2.945	3151	3245	6,743
27 28		1.301	.625 .624	762 769	458 430	494 463	.494	5606	5432	5746	1.955	2.761	2649	2728	5,656
29		1.316	.639	767	429	464	.550 .551	5484 5240	5484 5245	5808 5544	1.993 1.776	2.795 2.610	2829 2246	2888 2298	5,986 4,710
30	35,000		0.118	477	457	458	0,268	6215	5772	6613	2.539	3.633	2480	2589	10,887
31 32		1.008	.107 .118	478 479	457 458	458 459	.268 .269	6093 5971	5658 5540	6483 6347	2.494 2.459	3.557 3.438	2400 2331	2501 2424	10,887 10,536 10,191 9,651 9,261 8,049
33 34		1.013	.136 .107	479 479	456 458	458 459	.270 .269	5849 5727	5435 5312	6223 6088	2.390	3.330 3.231	2212 2114	2300 2199	9,651
35		1.027	.195	477	454	457	.272	5606	5225	5976	2.243	3.133	1864	2209	8,049
36 37		1.017	.155 .180	479 479	458 459	460 462	.269 .270	5484 5240	5086 4855	5824 5554	2.117	3.028 2.851	1762 1464	1832 1523	7,656 6,322
38 39		1.301	.625 .629	481 479	429 429	463 463	.342	6215 6093	5956 5839	6582 6452	2.441 2.406	3.503 3.408	2657 2527	2750 2628	8,981 8,556
40		1.305	.629	478 478	429	463 463	.341	5971 5849	5839 5722	6323 6194	2.349	3.296	2407	2508	8,162
42 43		1.310	.634	478	429	463	.342	5727	5488	6065	2.225	3.089	2173	2264	7,345
44		1.322	.632 .645	478 481	429 420	463 455	.342 .357	5606 5484	5372 5312	5937 5857	2.149	3.009 2.941	1998 1943	2082	7,345 6,765 6,464 5,829 5,174 7,952
45 46		1.322 1.317 1.326	.640 .648	480 478	421 420	455 455	.357	5362 5240	5187 5075	5727 5596	1.975	2.831 2.734	1741 1550	1807 1615	5,829
47		1.872 1.866	.991 .988	478 479	392 392	469 469	.482 .482	6215 6093	6227 6105	6538 6410	2.362	3.369 3.275	3364	3505 3485	7,952 7,932
49 50		1.887	.998	479	390	468	.490	5971	6001	6287	2.277	3.173	3351 3110	3234	7,281
51		1.862	.986 .987	477 477	392 392	468 468	.480 .480	5849 5727	5861 5738	6159 6031	2.218	3.077 2.981	2942 2791	3071 2914	7,011 6,643
52 5 3	İ	1.891	1.000	478 477	390 392	468 471	.490 .481	5606 5484	5634 5495	5903 5758	2.061	2.889	2642 2396	2753 2501	6 185 5,609
54 55		1.897 1.889	1.002	476 477	392 518	471 621	.481 .339	5240 6215	5250 5420	5502 5682	1.959 1.729 1.896	2.569	1876 2287	1962	4,395
56 57		1.881	.995 1.004	480 477	507	607	.350	6093	5371	5634	1.784	2.786 2.569 2.787 2.720	2035	2388	5,372 4,768
58		1.883	.996	478	512 510	615 611	.346	5971 5849	5238 5141	5485 5390	1.705 1.622	2.582	1796 1546	1875 1611	4,190 3,6 3 5
59 60		1.893	1.000	480 477	508 516	609 619	.350	5849 5727	5151 5004	5399 5244	1.603	2.504	1661	1724 1368	3,875 3,069
61		1.908	1.007	479	517	622	.343	5606	4894	5121	1.381	2.291	1080	1123	2,500
62 63	45,000	1.031	0.210	287 289	450 449	454 453	0.169	6093 5971	5694 5586	6513 6395	2.618	3.733	1515 1495	1626 1594	10,831
64 65		1.024	.184	290 287	451	454	.169	5849	5460	6253	2.540	3.544	1430	1519	10,189
66 67		1.024	.184	289	451 450	455 453	.169	5727 5606	5346 5239	6116 6004	2.397	3.667 3.544 3.440 3.327 3.200 3.090	1358	1457 1388	9,741 9,308
68		1.021	.173	289 287	451 453	454 454	.167	5484 5362	5119 4994	5862 5732	2.224	3.200	1148 1076	1224 1155	8,235 7,852
69 70		1.010 1.355	.118	289 287	453 417	454 455	.167	5240 6215	4881 6034	5602 6638	1.997	2.976 3.736	945 1743	1007	6,848
71	i i	1.349 [.669	289	419	456	.220	6093	5901	6501	2.528	3.636	1690	1870 1802	9,482 9,170
72 73		1.348	.669 .668	289 290	417 417	454 454	.220	6093 5971	5915 5797	6513 6383	2.521	3.623 3.529	1679 1616	1790 1716	9,110 8,746
74 75		1.349 1.348 1.349 1.347	.669 .667	289 288	417 417	454 454	.220	5849 5727	5678 5560	6253 6122	2.390	3.414 3.297	1554 1442	1657 1541	8,432 7,865
76		1.348	.668	290	417	454	.220	5606	5442	5993	2.225	3.194	1350	1434	7,306
77 78	55,000	1.018	0.160	167	452	454	0.095	5849	5454	6253	2.582	3.714	899	1028	11,193
79		1.024	.160	166 164	453 452	455 455	.095 .095	5727 5727	5334 5340	6116 6116	2.473	3.664 3.624	797	917 948	9,978
80 81		1.018	.160 .824	164 164	453 398	455 452	.095	5606 6093	5221 6055	5987 6526	2.359	3.547 3.757	742 1165	864 1357	9,401 9,630
82 83	-	1.576 1.541	.833 .812	170 170	397 399	452 452	.154	5971 5849	5941 5805	6395 6264	2.522	3.699 3.593	1158	1302	9,144
84	l	1.556	.821	171	399	453	.153	5727	5684	6134	2.447	3.457	1024	1144	8,146
85 86		1.546	.815 .828	174 171	401 398	454 452	.154	5606 5484	5549 5449	5993 5879	2.108	3.350 3.179	1002 905	1100 1011	7,882 7,146
87		1.561 1.552	.824 .819	173 174	397 399	451 453	.152 .153	5362 5240	5335 5201	5753 5612	2.037	3.111 2.974	817 702	902 771	6,403 5,502
-													اعتنا	- 1/1	

CONTET DESERVE AT

NACA

DATA FOR YJ71-A-7 TURBOJET ENGINE

area, 2.86 square feet

Fj,	Jet thr	Cor-	Wa,	Air fl	Cor-	W _f ,	Fuel fl Ad-	Cor-	Specific W _f	fuel con	Sumption Cor-] 1	ust-gas emperati		Run num-
1b	Justed, $\frac{F_{j}}{\delta_{a}}$, 1b		1b sec	Justed, $\frac{\mathbb{W}_a \sqrt{\theta_a}}{\delta_a}$, $\frac{1b}{\sec}$	rected, $\frac{W_a\sqrt{\theta_T}}{\delta_T}$, $\frac{1b}{\sec}$	1b hr	Justed, $\frac{W_{f}}{\delta_{a}\sqrt{\theta_{a}}},$ $\frac{1b}{hr}$	rected, $\frac{\frac{W_f}{\delta_T \sqrt{\theta_T}}}{\frac{1b}{hr}}$	Fn lb/hr lb thrust	$\begin{array}{c} \text{Justed,} \\ \frac{\text{Wf}}{\text{F}_{\text{n}}\sqrt{\theta_{\text{a}}}}, \\ \text{lb/hr} \\ \text{lb thrust} \end{array}$	rected, Wf Fn-VOT 1b/hr 1b thrust	T ₆ , °R	Ad-	Cor- rected, $\frac{T_6}{\theta_T}$	ber
7647 7350 6972 6477 5482 4972 4564 4068	7701 7387 7007 6509 5504 4982 4596 4088	9,482 9,092 8,624 7,999 6,759 6,091 5,609 4,979	135.7 133.6 130.7 126.8 118.6 116.4 108.2 103.9	139.8 137.8 134.7 130.9 122.0 119.4 111.6 106.8	169.0 166.2 162.6 157.8 147.1 143.4 133.8 127.9	7220 6770 6375 5890 5400 5030 4490 4105 3750	7108 6633 6246 5766 4933 4394 4037 3684	8,919 8,319 7,833 7,219 6,166 5,468 5,017 4,564	1.04 1.01 1.01 1.02 1.04 1.05 1.06 1.11	1.01 .98 .98 .99 1.02 1.03 1.03	1.03 1.01 1.00 1.01 1.03 1.05 1.05	1589 1551 1515 1468 1427 1395 1346 1318 1280	1519 1474 1440 1393 1331 1284 1257 1224	1577 1530 1495 1446 1405 1379 1331 1303 1265	1 2 3 4 5 6 7 8 9
5804 5693 5642 5420 5192 4842 4444	5862 5739 5681 5458 5228 4876 4466	10,227 9,980 9,913 9,518 9,086 8,469 7,773	98.8 98.9 98.7 97.5 95.9 93.7 90.6	102.8 102.5 102.3 101.2 99.4 97.0 93.6	170.1 169.3 169.4 167.3 164.0 160.0 154.7	5390 5150 5125 4825 4530 4215 3900	5287 5047 5012 4719 4435 4127 3811	9,724 9,245 9,221 8,676 8,118 7,549 6,986	1.02 1.00 1.00 .98 .97 .98	0.99 .97 .97 .95 .95	1.04 1.03 1.02 1.01 1.00 1.01	1584 1546 1536 1492 1457 1418 1379	1494 1461 1449 1407 1377 1340 1303	1662 1622 1611 1565 1528 1487 1447	10 11 12 13 14 15 16
3918 3776 3617 3429 3225 5359 5192 4997 4751 4166 4383 3721	4020 3878 3711 3518 3309 5520 5322 5142 4894 4291 4475 3807	10,684 10,271 9,849 9,337 8,759 11,468 11,085 10,694 10,167 8,894 9,274 7,803	65.8 65.4 64.4 63.4 62.1 81.8 80.6 78.9 77.0 74.4 78.8 73.2	70.4 70.1 68.9 67.8 66.5 86.5 85.6 83.8 81.7 79.1 80.5 74.8	170.8 169.3 167.0 164.3 160.6 170.7 170.2 168.2 164.5 160.0 155.0 157.5 145.1	3630 3430 3285 3045 2865 4480 4280 3985 3720 3465 3170 3280 2625	3569 3377 3231 2995 2817 4471 4256 3973 3713 3955 3164 3349 2688	10,404 9,806 9,403 8,714 8,178 9,835 9,385 8,750 8,168 7,569 6,937 7,351 5,823	1.01 1.00 1.00 .98 .99 1.21 1.21 1.18 1.18 	0.96 .96 .96 .94 .95 1.17 1.15 1.14 1.16 1.16	1.06 1.05 1.05 1.03 1.04 1.24 1.24 1.22 1.21	1554 1509 1464 1427 1387 1588 1537 1505 1452 1412 1364 1294 1211	1428 1386 1345 1311 1274 1491 1446 1413 1363 1326 1281 1294 1213	1717 1667 1618 1577 1533 1672 1622 1585 1529 1484 1434 1451 1355	17 18 19 20 21 22 23 24 25 26 27 28 29
2640 2545 2490 2394 2255 2116 1956 1670 3710 3582 3453	2756 2652 2590 2490 2345 2209 2034 1737 3840 3725 3598	11,590 11,173 10,886 10,445 9,879 9,137 8,499 7,211 12,540 12,129 11,709	41.5 41.4 41.3 40.3 39.8 38.4 35.0 53.3 52.7	46.7 46.5 46.3 46.1 45.1 44.6 43.1 39.3 57.7 57.7	171.2 170.9 169.7 169.0 165.9 161.3 157.1 142.6 170.3 170.0 168.9	2655 2545 2390 2275 2110 1960 1803 1486 3170 3045 2875 2700	2575 2462 2306 2199 2035 1907 1739 1432 3144 3035 2871	12,402 11,888 11,109 10,563 9,827 9,020 8,321 6,801 11,347 10,920 10,326	1.07 1.06 1.02 1.03 1.00 1.05 1.02 1.01 1.19 1.20 1.19	0.99 .98 .95 .96 .93 .98 .95 .94 1.14 1.15	1.14 1.13 1.09 1.09 1.06 1.12 1.09 1.08 1.26	1664 1629 1578 1525 1483 1432 1393 1317 1622 1578	1436 1405 1358 1317 1276 1244 1198 1131 1490 1449 1401	1884 1844 1783 1726 1676 1627 1571 1480 1818 1769	30 31 32 33 34 35 36 37 38 39
3208 3008 2968 2715 25652 5617 5406 5161 4973 3820 4323 3820 4323 3732 3381 3504 3045 2754	3343 3154 3072 2818 2602 5889 5842 5622 5388 5198 5035 4701 3996 4513 4141 3896 3523 3637 3179 2864	10,843 10,185 9,875 9,090 8,335 13,361 13,295 12,655 12,299 11,650 11,512 10,542 8,107 7,949 8,175 7,134 6,376	51.7 50.7 50.9 46.8 76.5 76.5 74.6 73.5 64.3 58.8 69.7 64.3 55.9 53.5 55.9 53.5 50.1 48.0	56.3 55.1 54.4 52.3 50.3 79.6 78.9 79.1 77.7 76.5 72.7 67.1 67.4 66.5 63.5 63.5 63.5	165.1 162.1 158.6 152.7 146.3 172.0 177.1 170.0 168.7 166.1 161.9 155.5 143.5 151.1 145.2 142.1 136.5 128.3 121.6	2525 2350 2260 2010 4255 4030 3365 3360 33140 2865 2285 3375 3035 2755 2480 2190 1895	2522 2347 2266 2018 1827 44443 4200 4039 3145 3515 35289 2997 2395 3072 2777 2523 2289 2267 1998 1720	9,038 8,428 8,031 7,188 6,452 10,581 10,036 9,528 8,984 8,420 7,739 7,042 5,621 7,247 6,574 5,905 4,590 4,590 4,590 4,590	1.16 1.18 1.16 1.17 1.20 1.20 1.22 1.20 1.20 1.22 1.49 1.53 1.62 1.49 1.53	1.11 1.13 1.13 1.12 1.13 1.27 1.20 1.25 1.22 1.21 1.19 1.20 1.22 1.21 1.31 1.32 1.42 1.31 1.42 1.46 1.53	1.23 1.24 1.23 1.25 1.33 1.27 1.31 1.28 1.27 1.26 1.28 1.38 1.41 1.49 1.38 1.53	1430 1393 1338 1284 1580 1536 1485 1352 1312 1210 1731 1651 1588 1540 1740 1740 1740 1740 1740 1740 1740 17	1313 1279 1255 1167 1588 1544 1500 1447 1402 1366 1317 1216 1317 1222 1190 1183 1142 1146	1603 1562 1527 1470 1419 1749 1700 1647 1597 1547 1447 1335 1447 1412 1340 1308 1299 1253 1189	41 42 43 445 445 447 48 49 55 55 55 55 55 56 56 56 56 56 56 56 56
1687 1666 1578 1514 1443 14277 1159 1025 2450 2390 2379 2315 2245 2115 2015	1810 1776 1676 1625 1538 1361 1244 1093 2629 2548 2536 2459 2393 2261 2140	12,060 11,830 11,243 10,850 10,316 9,160 8,457 7,428 13,328 12,968 12,968 12,529 12,181 11,535 10,905	25.3 24.9 24.2 23.7 23.0 21.7 23.6 33.6 33.6 33.6 33.6 33.2 32.5 32.0	29.1 28.8 28.3 27.8 27.0 26.3 25.0 23.9 37.0 36.9 36.8 36.5 35.7 35.0	167.9 165.1 162.6 158.3 154.6 148.1 141.8 170.8 170.8 170.2 168.6 165.6	1725 1630 1535 1400 1310 1195 1060 970 2285 2120 2110 2000 1860 1725 1610	1730 1626 1522 1402 1305 1190 1059 963 2380 2188 2183 2062 1925 1791 1660	13,183 12,398 11,692 10,724 10,030 9,160 8,268 7,515 13,274 12,274 12,241 11,571 10,787 10,057 9,314	1.14 1.09 1.07 1.03 1.01 1.04 .98 1.03 1.31 1.25 1.26 1.24 1.20 1.20	1.06 1.02 1.00 .96 .97 .92 .96 1.27 1.21 1.22 1.20 1.16	1.40 1.34 1.32 1.28 1.28	1695 1661 1609 1565 1507 1453 1403 1351 1700 1658 1645 1602 1550 1497 1450	1480 1454 1402 1364 1316 1217 1172 1602 1555 1550 1510 1411 1366	1937 1905 1839 1786 1729 1661 1604 1544 1940 1887 1880 1831 1772 1711 1657	62 63 64 65 66 67 68 69 70 71 72 73 74 75
972 868 895 811 1727 1737 1653 1584 1538 1430 1330 1189	945 2012 1952 1858 1769 1689	12,101 10,867 11,277 10,275 14,275 13,715 13,715 13,350 12,601 12,098 11,291 10,423 9,318	14.2 13.6 13.6 13.3 22.4 22.9 22.3 22.4 21.6 20.9 20.5	17.4 16.8 17.0 16.6 26.3 25.8 25.3 25.2 23.9 23.5 22.8 21.6	168.5 168.3 166.5 158.6	993 910 901 833 1512 1468 1397 1295 1178 1075 988 873	1059 976 979 904 1750 1642 1559 1435 1280 1193 1085 951	13,222 12,169 12,121 11,276 13,383 12,413 12,082 11,034 9,903 9,096 8,307 7,328	1.10 1.14 1.11 1.12 1.30 1.27 1.26 1.18 1.19 1.21	1.03 1.06 1.03 1.05 1.29 1.26 1.26 1.16 1.18 1.20	1.22 1.18 1.20 1.39 1.36 1.35 1.26 1.27 1.30	1686 1667 1649 1614 1698 1672 1624 1566 1521 1437 1403 1347	1466 1446 1434 1400 1677 1655 1600 1543 1491 1419 1389 1327	1927 1902 1882 1842 1948 1918 1863 1796 1739 1651 1615 1545	77 78 79 80 81 82 83 84 85 86 87 88

TABLE I. - Continued. PERFORMANCE
(d) Exhaust-nozzle

Run num- ber	Alti- tude, H, ft	Ram pres-sure ratio, $\frac{P_1}{p_0}$	Flight Mach number, M _O	Tunnel static pres- sure, po, lb sq ft abs	Equiva- lent ambient air temper- ature, to, oR	Engine- inlet indi- cated temper- ature, T1, OR	Reynolds number index, $\frac{\delta_{\mathrm{T}}}{\varphi_{\mathrm{T}}\sqrt{\theta_{\mathrm{T}}}}$	N, rpm	Engine spans $\frac{\text{Ad-}}{\text{justed}}$, $\frac{\text{N}}{\sqrt{\theta_{\text{a}}}}$, rpm	cor- rected, N/θT rpm	Engine total-pres-sure ratio, $\frac{P_4}{P_1}$	Engine total-temper-ature ratio, T6 T1	F _n ,	Net throad Ad- Justed, Fn, 5a,	Cor- rected, Fn δ_{T} 1b
1 2 3 4 5 6 7 8	6,000	1.010 1.015 1.015 1.015 1.017 1.018 1.022	0.118 .147 .147 .147 .155 .160 .176 .184	1690 1687 1686 1685 1690 1687 1685	523 525 524 524 524 521 521 520	524 527 526 526 527 524 524 524	0.803 .789 .790 .790 .791 .803 .812	6215 6093 5971 5849 5727 5606 5484 5240	6065 5935 5821 5702 5583 5481 5362 5128	6185 6047 5931 5810 5683 5579 5458 5215	1.986 1.935 1.879 1.815 1.746 1.673 1.596	2.773 2.713 2.587 2.559 2.559 2.520 2.437 2.382 2.263	6048 5714 5377 4914 4520 4109 3597 2837	6066 5743 5404 4943 4534 4130 3619 2857	7,500 7,063 6,646 6,079 5,569 5,062 4,421 3,484
9 10 11 12 13 14	15,000	1.017 1.017 1.019 1.022 1.023	0.155 .155 .164 .176 .180	1183 1186 1185 1186 1186 1188	492 492 491 492 492	494 494 493 494 495 495	0.600 .600 .600 .601 .603	6215 6093 5971 5849 5727 5606	6042 5924 5692 5568 5450	6370 6245 6126 5995 5864 5741	2.068 2.032 1.929 1.866 1.784	2.960 2.866 2.807 2.717 2.642 2.578	4536 4385 3943 3635 3335	4572 4411 3967 3657 3348	7,979 7,696 6,908 6,347 5,810
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	25,000	1.010 1.018 1.012 1.018 1.021 1.022 1.298 1.306 1.312 1.297 1.301 1.299 1.313 1.302	0.118 .160 .130 .160 .173 .176 .622 .636 .621 .625 .623 .636 .626 .636	765 765 765 766 766 767 763 759 760 762 762 762 761 769	468 467 467 466 466 458 458 458 457 458 427	469 469 469 469 469 493 493 493 493 493 494 462	0.417 .420 .417 .420 .421 .422 .495 .494 .495 .495 .495 .495 .551 .553	6215 6093 5971 5848 5727 5606 6215 6093 5971 5848 5727 5606 5484 5240	5957 5847 5730 5613 5501 5385 6022 5904 5917 5786 5674 5549 5438 5495 5256	6538 6410 6281 6153 6025 5898 6377 6245 6251 6126 6001 5870 5746 5813 5554	2.175 2.119 2.099 2.027 1.967 1.906 2.054 2.021 2.008 1.961 1.897 1.826 1.745 1.801 1.607	3.158 3.047 2.953 2.870 2.793 2.716 2.968 2.866 2.870 2.710 2.619 2.547 2.584 2.400	3226 3099 2986 2878 2658 2479 3114 2967 2943 2845 2655 2418 2158 2330 1804	3310 3180 3064 2950 2727 2536 3204 3068 3040 2930 2735 2491 2227 2379 1842	8,830 8,417 8,164 7,808 7,201 6,691 5,655 6,335 6,245 6,068 5,167 4,571 4,571 4,571 4,573
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53	35,000	1.019 1.015 1.015 1.017 1.015 1.017 1.015 1.019 1.303 1.310 1.310 1.311 1.315 1.322 1.883 1.885 1.885 1.889 1.903 1.903	0.164 .147 .147 .155 .147 .157 .203 .627 .634 .645 .988 .987 .997 .999 1.005 1.005	479 479 479 479 479 479 479 478 478 478 482 480 481 477 477 477 477 478 478 475 475 477	455 456 456 456 456 457 459 428 428 428 422 420 392 392 392 392 392 393 393 390 393	458 458 458 458 458 460 462 462 462 462 462 469 469 468 469 468 469 468 469	0.271 .271 .271 .271 .271 .268 .272 .342 .341 .344 .344 .357 .357 .483 .482 .484 .482 .484 .482 .484 .482 .483 .483 .480 .484 .482 .484 .482 .484 .482 .483 .483 .483 .484 .483 .484 .483 .484 .483 .484 .483 .484 .483 .484 .483 .484 .483 .484 .483 .484 .484	6215 6093 5971 5849 5727 5606 6215 6093 5971 5849 5727 5606 5484 6215 5971 5849 5727 5606 5484 6215	5781 5663 5550 5438 5323 5323 5325 5081 5986 5729 5495 5495 5299 5075 6240 6105 5982 5075 6105 55878	6613 6483 62353 6223 6023 58159 5815 6582 6329 6200 6071 5942 5851 5596 6410 6287 6025 6025 6025 6025 6025 6025 6025 6025	2.234 2.192 2.142 2.142 2.152 2.062 1.998 1.897 1.700 2.202 2.152 2.102 2.061 1.916 1.946 1.952	3.367 3.253 3.032 2.959 2.959 2.609 3.249 3.039 3.249 3.039 2.966 2.514 3.006 2.514 3.006 2.514 2.525 2.535 2.535 2.558	2103 2018 1959 1847 1768 1529 1213 2241 2241 2137 2047 1961 1815 1648 1309 2952 2783 2641 2549 2155 2004 1849	2187 2103 2037 1921 1839 1722 1590 1268 2331 2029 1875 1714 1638 1355 2905 2747 2661 2448 2246 2100 1575 1930	9,119 8,805 8,529 8,025 7,698 7,210 6,644 5,232 7,599 6,919 6,515 5,551 4,355 6,618 6,259 6,000 5,554 6,000 5,554 4,377
55 56 57 58 59 60 61 62 63 64 65 66 67 68	45,000	1.014 1.021 1.017 1.024 1.021 1.021 1.021 1.359 1.360 1.362 1.362 1.348 1.347	0.141 .173 .155 .184 .174 .184 .173 .677 .678 .680 .680 .668	288 288 289 288 290 291 289 288 290 290 290 290 291	454 453 454 454 453 454 455 416 415 415 416 416	456 456 456 457 457 457 457 458 453 453 453 453 453	0.160 .160 .160 .160 .160 .161 .159 .222 .222 .222 .222 .222	6215 6093 5971 5849 5727 5606 5484 5362 6215 6093 5971 5849 5727 5606	5782 5675 5555 5442 5334 5216 5102 4983 6041 5929 5810 5692 5567 5449	6631 6501 6371 6235 6111 5976 5846 5705 6644 6526 6395 6264 6134 6004	2.370 2.327 2.272 2.197 2.132 2.034 1.967 2.272 2.206 2.152 2.099 2.033 1.987		1387 1332 1291 1224 1146 1026 953 879 1502 1436 1389 1322 1199 1127	1483 1424 1376 1308 1217 1086 1016 940 1595 1531 1475 1475 1404 1273 1192	10,052 9,586 9,291 8,780 8,193 7,286 6,836 6,326 8,067 7,731 7,441 7,082 6,489 6,084
69 70 71 72 73 74 75 76 77	55,000	1.006 1.024 1.024 1.552 1.559 1.540 1.561 1.541 1.555	0.092 .184 .184 .819 .823 .811 .824 .812	168 167 168 172 170 174 173 172	453 450 451 400 399 400 399 400 399	454 453 454 454 453 453 453 453 453	0.095 .095 .095 .152 .151 .153 .153 .153	6093 5971 5849 6215 6093 5971 5849 5727 5606	5675 5580 5460 6160 6047 5918 5805 5677 5564	6513 6395 6253 6644 6526 6395 6264 6134 6004	2.473 2.351 2.291 2.322 2.291 2.231 2.170 2.102 1.996	3.711 3.636 3.513 3.581 3.470 3.355 3.245 3.148 3.093	873 804 760 1111 1056 1027 945 916 866	993 920 864 1233 1187 1128 1043 1017 956	10,930 9,945 9,348 8,805 8,432 8,109 7,406 7,314 6,812

DATA FOR YJ71-A-7 TURBOJET ENGINE

area, 3.18 square feet

Fj,	Jet thr	ust Cor-	W _a ,	Air fl	ow Cor-	W _f ,	Fuel fl		Specific	fuel cons	sumption	Exh	aust-gas temperat	total	Run num-
1b	justed, Fj	rected.	1b sec	Justed, $W_a \sqrt{\theta_a}$	rected, $W_a \sqrt{\theta_T}$	lb hr	Justed,	Cor- rected,	W _f , F _n ,	$\frac{\text{Ad-}}{\text{justed}},$ $\frac{\text{Wf}}{\text{F}_{\text{n}}\sqrt{\theta_{\text{a}}}},$	Cor- rected, W _f F _n √θ _T	T ₆ ,	l Adi⊷	Cor- rected,	ber
	δa	$\frac{\mathbf{F_{j}}}{\delta_{\mathbf{T}}}$,		δ _a 1b	δ _T	nr.	$\delta_a \sqrt{\theta_a}$	$\frac{1}{\delta_{\mathrm{T}}\sqrt{\theta_{\mathrm{T}}}}$	lb/hr lb thrust	$\frac{1}{F_{n}\sqrt{\theta_{a}}}$	$\overline{F_n \sqrt{\theta_T}}$	1	justed, $\frac{T_6}{\theta_a}$, \circ_R	T ₆	
	1b	1b		sec	sec		1b hr	lb hr		lb/hr lb thrust	lb/hr lb thrust		or n i	°Ř	
6607 6399 6045 5563 5185 4772 4297 3503	6627 6431 6075 5596 5201 4796 4323 3528	8,193 7,909 7,472 6,881 6,388 5,879 5,281 4,302	135.5 133.8 130.8 127.0 123.1 119.4 114.4 104.0	139.3 138.0 134.8 131.1 126.7 122.7 117.8 107.0	168.9 166.5 162.6 158.0 152.8 147.8 141.3 128.3	6250 5975 5585 5195 4815 4340 3960 3280	6117 5849 5472 5095 4708 4264 3895 3232	7,713 7,329 6,857 6,383 5,886 5,321 4,843 4,008	1.03 1.05 1.04 1.06 1.06 1.06 1.10	1.01 1.02 1.01 1.03 1.04 1.03 1.08 1.13	1.03 1.04 1.03 1.05 1.06 1.05 1.10	1453 1430 1361 1346 1328 1277 1248 1186	1384 1356 1293 1279 1262 1221 1193 1136	1439 1408 1343 1328 1308 1265 1236 1175	1 2 3 4 5 6 7 8
5055 4903	5095 4932	8,892 8,605	99.1 98.8	102.8 102.3	170.1 169.2	4770 4530	4674 4430	8,600 8,148	1.05	1.02	1.08	1462 1416	1382	1537	9 10
4476 4193 3888	4503 4218 3904	7,842 7,321 6,773	96.1 93.8 90.9	99.4 97.1 93.9	164.2 159.9 154.6	4220 4520 3715 3445	4424 3634 3362	8,117 6,642 6,146	1.15 1.02 1.03	1.11	1.17 1.05 1.06	1384 1342 1308 1276	1338 1271 1236 1206	1488 1457 1410 1372 1339	11 12 13 14
3482 3446 3267 3220 2022 2841 4776 4637 4633 4471 4264 3980 3713 3899 3281	3573 3536 3352 3301 3101 2906 4915 4795 4786 4605 4392 4099 3832 3981 3350	9,530 9,359 8,932 8,736 8,187 7,668 10,206 9,900 9,831 9,577 9,104 8,505 7,864 8,242 6,880	65.7 65.9 65.5 65.0 64.0 62.5 81.9 81.3 81.7 80.3 79.0 79.0 79.5 73.8	70.3 70.5 70.0 69.4 68.3 66.6 87.0 86.7 86.9 85.3 83.9 81.7 79.8 81.0 75.1	171.1 170.2 167.6 164.7 160.4 170.7 169.3 169.0 167.7 164.4 160.2 155.0 158.6 146.0	3375 3180 3000 2845 2655 2490 3960 3745 3735 3490 3260 3025 2810 2830 2300	3319 3131 2954 2798 2616 2447 3948 3752 3747 3483 3257 3019 2813 2896 2355	9,719 9,085 8,629 8,120 7,566 7,069 8,683 8,196 8,132 7,671 7,142 6,627 6,100 6,342 5,112	1.05 1.03 1.00 .99 1.00 1.27 1.26 1.27 1.23 1.25 1.25 1.20	1.00 .98 .96 .95 .96 1.23 1.22 1.23 1.19 1.21 1.26 1.22	1.10 1.08 1.06 1.04 1.05 1.06 1.30 1.29 1.30 1.26 1.28 1.33	1481 1429 1385 1346 1310 1274 1463 1416 1415 1375 1336 1294 1258 1194 1109	1361 1316 1275 1239 1209 1176 1374 1329 1334 1291 1257 1215 1184 1200 1117	1639 1582 1533 1490 1450 1410 1541 1488 1490 1448 1407 1360 1322 1342 1247	15 16 17 18 19 20 21 22 23 24 25 26 27 28
2327 2216 2055 1961 1723 14527 3197 3113 3297 3113 2844 2674 22587 2262 5255 4895 4812 4454 4413 3470 3862	2420 2309 2242 2137 2033 1920 11792 3331 3244 33149 2938 2781 5485 5264 4749 4749 4726 4331 3637 4032	10,090 9,688 9,587 8,239 8,538 8,037 7,486 6,232 11,180 10,625 10,522 10,522 10,523 11,900 11,900 11,901 11,901 11,901 11,907 10,175 10,175 8,123 9,141	41.54 41.258 42.440.38 38.43 35.35 52.8 55.35 56.87 75.76 75.77 70.50 58.4	46.3 46.3 46.3 44.6 45.6 55.6 57.9 56.6 55.6 57.9 56.6 79.0 6.8 79.0 78.4 75.4 67.8 67.1	170.8 170.2 168.2 168.5 163.0 157.2 142.8 171.0 170.2 166.9 165.5 163.2 171.9 171.3 170.4 168.6 166.0 166.0 166.0	2350 2210 2090 1970 1840 1735 2845 2515 2330 2195 2055 1575 3780 3120 2710 2500 2945	2273 2140 2021 1905 1778 1675 1516 2664 2514 2328 2175 2051 1951 1579 3962 3687 3460 3274 3049 2835 2637 2117	10,840 10,257 9,863 9,107 8,029 7,258 8,029 7,258 9,011 8,270 9,265 9,011 8,270 8,818 8,286 7,733 7,262 6,860 6,164 4,951	1.12 1.09 1.07 1.07 1.04 1.05 1.25 1.25 1.25 1.25 1.25 1.25 1.26 1.22 1.20 1.22 1.20 1.26 1.26 1.22	1.04 1.02 .99 .99 .97 .97 .95 .97 1.20 1.18 1.16 1.20 1.18 1.16 1.20 1.18 1.16 1.20 1.18	1.19 1.16 1.13 1.13 1.11 1.11 1.09 1.11 1.32 1.30 1.28 1.32 1.30 1.28 1.35 1.35 1.35 1.35 1.35 1.31 1.41	1542 1490 1439 1395 1325 1200 1500 1455 1454 1315 1225 1144 1410 1361 1410 1323 1282 1245 1197	1334 1287 1243 1202 1171 1142 11037 1378 1378 1292 1250 1211 1175 1144 1073 1473 1473 1473 1473 1473 1473 1473 14	1746 1687 1629 1575 1534 1497 14497 1354 1682 1635 1578 1478 14394 1394 1394 1305 1561 1561 1569 1467 1417 1417 1417 1417 1417 1417 1417	30 31 32 33 34 35 36 37 38 39 41 42 44 45 46 47 48 49 55 55 55
1503 1474 1417 1373 1284 1169 1081 1002 2221 2147 2103 2030 1879 1792	1607 1576 1511 1468 1364 1237 1152 1071 2359 2289 2233 2156 1995 1896	10,892 10,608 10,198 9,849 9,179 8,301 7,754 7,211 11,929 11,559 11,266 10,875 10,169 9,673	25.3 25.3 25.1 25.0 24.5 24.8 21.9 33.8 33.8 33.8 32.1	29.0 29.1 28.8 28.7 28.0 27.2 26.1 25.2 37.3 37.0 36.6 35.8 34.9	171.7 170.7 169.5 168.0 164.3 159.7 153.4 148.0 171.5 169.9 169.4 167.7 161.8	1582 1502 1404 1316 1225 1134 1028 941 1960 1725 1630 1510 1378	1574 1496 1392 1308 1212 1116 1019 935 2023 1899 1783 1684 1559 1417	12,233 11,537 10,781 10,064 9,344 8,585 7,862 7,204 11,252 10,553 9,694 9,353 8,751 7,967	1.14 1.13 1.09 1.07 1.07 1.10 1.08 1.07 1.30 1.27 1.24 1.23 1.26	1.06 1.05 1.01 1.00 1.00 1.03 1.00 1.27 1.24 1.21 1.20 1.22 1.19	1.22 1.20 1.16 1.15 1.14 1.18 1.15 1.14 1.39 1.36 1.33 1.32 1.35	1623 1577 1531 1484 1429 1389 1306 1568 1513 1463 1421 1368 1329	1405 1368 1325 1285 1240 1198 1159 1128 1481 1433 1385 1346 1292 1256	1847 1795 1742 1686 1626 1572 1521 1478 1792 1735 1678 1630 1569	55 56 57 58 59 60 61 62 63 64 65 66 67 68
918 890 845 1684 1624 1597 1518 1461 1408	1044 1018 961 1869 1825 1754 1676 1622 1554	11,493 11,009 10,394 13,346 12,968 12,610 11,897 11,666 11,075	14.9 14.4 14.3 23.0 22.7 23.1 22.9 22.0 21.7	18.2 17.7 17.4 25.7 25.7 25.5 25.4 24.7 24.2	174.4 166.9 164.7 170.4 169.1 170.1 167.4 164.5 159.5	1018 941 879 1433 1354 1281 1205 1104 1022	1078 1006 933 1576 1511 1394 1320 1214 1119	13,622 12,469 11,562 12,141 11,578 10,833 10,118 9,438 8,613	1.17 1.16 1.29 1.28 1.25 1.25 1.20	1.09 1.09 1.08 1.28 1.27 1.24 1.19	1.25 1.25 1.24 1.38 1.37 1.34 1.34 1.29	1685 1647 1595 1626 1572 1520 1470 1426 1404	1462 1438 1390 1598 1548 1493 1448 1401 1380	1926 1889 1823 1859 1803 1743 1686 1636	69 70 71 72 73 74 75 76 77

TABLE I. - Concluded. PERFORMANCE

(e) Exhaust-nozzle

Run	Alti-	Ram	Flight	Tunnel	Equiva-	Engine-	Reynolds		ngine s		Engine	Engine		Net thru	ıst
num- ber	tude, H, ft	pres- sure ratio, $\frac{P_1}{p_0}$	Mach number, M _O	static pres- sure, p _O , lb sq ft abs	lent ambient air temper- ature, to, oR	inlet indi- cated temper- ature, T OR	$\frac{\text{number}}{\text{index,}}$ $\frac{\delta_{\mathrm{T}}}{\phi_{\mathrm{T}}\sqrt{\theta_{\mathrm{T}}}}$	N, rpm	Justed, $\frac{N}{\sqrt{\theta_a}}$, rpm	Corrected, N $\sqrt{\theta_{\mathrm{T}}}$ rpm	total- pres- sure ratio, P ₄ P ₁	total- temper- ature ratio, $\frac{T_6}{T_1}$	F _n , lb	Justei, Fn 5a 1b	Cor- rected, Fn
123456789	6,000	1.015 1.017 1.016 1.016 1.018 1.018 1.024 1.019 1.026	0.147 .155 .152 .152 .160 .160 .184 .164	1680 1685 1690 1690 1687 1686 1686 1690	520 524 525 526 524 524 519 520 519	522 527 527 528 527 527 523 523 523	0.801 .789 .790 .789 .790 .790 .818 .816	6215 6093 5971 5849 5727 5727 5606 5484 5240	6082 5940 5816 5691 5583 5583 5491 5367 5133	6197 6047 5926 5799 5683 5683 5585 5463 5220	1.759 1.714 1.665 1.610 1.553 1.538 1.488 1.426 1.308	2.582 2.480 2.429 2.379 2.321 2.313 2.254 2.197 2.078	4343 4046 3752 3486 3119 3067 2656 2478 1845	4382 4070 3763 3496 3135 3082 2669 2485 1851	5390 4997 4622 4295 3843 3779 3254 3045 2251
10 11 12 13 14 15 16	15,000	1.023 1.024 1.022 1.024 1.023 1.022 1.024	0.180 .184 .176 .184 .180 .176 .184	1190 1188 1186 1185 1188 1189	493 485 485 490 492 486 485	496 488 488 493 495 489 488	0.604 .618 .617 .608 .603 .612	6215 6093 5971 5971 5848 5727 5606	6036 5966 5847 5817 5686 5602 5489	6358 6288 6162 6126 5989 5899 5785	1.833 1.803 1.762 1.745 1.702 1.669 1.611	2.760 2.695 2.611 2.588 2.521 2.483 2.400	3046 2993 2810 2673 2387	3064 3014 2821 2681 2401	5318 5220 4895 4656 4158
17 18 19 20 21 22 23 24 25 26 27 28	25,000	1.018 1.021 1.023 1.259 1.264 1.264 1.264 1.313 1.306	0.160 .173 .173 .180 .584 .589 .592 .589 .589 .636 .630	768 766 767 767 765 765 764 766 764 769	455 457 456 456 444 441 441 441 442 441 426 427	457 460 459 459 474 474 472 472 472 472 460 461	0.437 .431 .432 .436 .510 .512 .514 .515 .514 .513 .557	6215 6093 5971 5727 6215 6093 5971 5849 5727 5606 5484 5240	6042 5910 5798 5561 6116 5996 5896 5776 5649 5536 5506 5256	6625 6471 6347 6088 6501 6373 6264 6136 5996 5881 5824 5560	1.917 1.862 1.833 1.740 1.844 1.810 1.766 1.717 1.675 1.622 1.573 1.435	3.004 2.863 2.786 2.617 2.863 2.753 2.667 2.593 2.510 2.445 2.391 2.223	2378 2231 2146 1916 2312 2196 2035 1932 1718 1557 1523 1032	2430 2287 2195 1960 2372 2247 2088 1984 1761 1599 1555 1054	6435 6037 5798 5166 5079 4805 4453 4223 3410 3191 2175
29 30 31 32 33 34 36 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58	35,000	1.017 1.017 1.015 1.010 1.015 1.010 1.023 1.307 1.306 1.306 1.306 1.306 1.307 1.324 1.821 1.823 1.881 1.873 1.881 1.893 1.993	0.155 .155 .164 .147 .118 .155 .180 .203 .631 .631 .631 .630 .630 .631 .647 .650 .995 .995 .995 .995 .991 .995 1.000 1.000 1.000 1.000 1.000 1.000	481 477 479 477 479 477 479 477 479 477 479 477 479 477 479 477 479 477 479 477 479 477 479 477 479	457 457 456 456 456 456 425 425 425 425 425 425 425 425 425 5394 391 392 391 392 391 392 391 392 391 392 391 392 391 392 391 524 525 527 527 527 527 527 527 527 527 527	459 459 459 459 459 459 459 459 459 459	0.271 .269 .270 .269 .270 .270 .340 .340 .345 .357 .351 .478 .483 .492 .495 .479 .341 .335 .351 .351 .351 .351 .351 .351 .35	6215 6093 5093 5727 5606 5484 5240 6215 6093 5871 5849 5727 5606 5484 6093 5727 5727 5606 6215 6093 5727 5727 5606	5772 5659 5547 5431 5314 5212 5097 4871 5984 5867 5515 5398 5987 6085 597 6085 597 6085 5522 5261 5426 5221 5426 5223 5106 4980	6607 6477 217 6088 5965 5565 6607 6477 6217 6217 6347 6217 6347 6217 6379 6264 6507 6379 6264 6141 6031 5909 5775 5518 6682 55455 55455 55455 55456	1.959 1.940 1.885 1.860 1.812 1.748 1.559 1.335 1.849 1.736 1.667 1.567 1.624 1.556 1.685 1.858 1.820 1.776 1.624 1.536 1.542 1.542 1.536 1.542 1.544	3.094 3.009 2.889 2.806 2.717 3.020 2.915 2.409 3.020 2.915 2.813 2.728 2.636 2.5478 2.538 2.778 2.603 2.534 2.603 2.534 2.603 2.534 2.603 2.534 2.603 2.534 2.603 2.534 2.603 2.703	1601 1492 1357 1319 1061 1649 1551 1139 1021 1139 1021 1139 1021 1139 1021 1159 1031 1049 1759 1631 1649 1759 1631 1649 1759 1631 1649 1759 1631 1649 1759 1631 1649 1651 1649 1759 1759 1759 1759 1759 1759 1759 175	1657 1558 1489 1417 1372 1209 1103 865 1715 1613 1502 1443 1278 1185 1066 931 2416 2249 2125 2044 1829 1829 195 1357 1063 1378 1378 1378 1378 1378 1378 1378 137	6928 6510 6209 5933 5767 5052 4581 3573 5574 4693 4154 3602 3423 2978 5459 5080 4819 4588 4155 3366 2258 3046 2365 2074 1418 837 277
59 60 61 62 63 64 65 66 67 68 69 70 71 72	45,000	-	0.155 .173 .173 .155 .184 .173 .173 .252 .677 .673 .675 .671	289 289 289 289 288 288 291 286 291 290 291 291 293 296	455 454 455 456 456 455 454 414 414 414 415 415	457 458 458 459 459 450 452 452 452 452 452 452	0.160 .161 .160 .159 .160 .168 .170 .222 .222 .222 .222 .223 .224	6215 6093 5971 5849 5727 5606 5484 6215 6093 5971 5849 5727 5606	5430 5316 5210 5102 6048 5936 5818 5699 5573	6625 6495 6353 6223 	2.037 1.990 1.942 1.901 1.895 1.837 1.771 1.661 1.992 1.949 1.843 1.795 1.706	3.230 3.138 3.028 2.945 	1009 973 914 888 795 740 668 1143 1093 1033 966 905 822	1076 1037 974 947 850 783 714 1209 1161 1093 1022 951	7262 6979 6556 6391 5722 5273 4696 6154 5871 5548 5175 4835 4371
73 74 75 76 77 78 79 80 81	55,000	1.012 1.012 1.556 1.547 1.549 1.555 1.546 1.560 1.559	0.130 .130 .821 .815 .816 .820 .815 .823	170 173 171 172 175 173 174 175 170	453 453 398 400 401 398 399 399 399	455 455 452 453 454 452 452 452 453 452	0.095 .095 .152 .152 .154 .153 .153 .156	6215 6093 6215 6093 5971 5849 5727 5606 5484	5675 6176 6039 5911 5812 5684 5564	6638 6507 6662 6526 6383 6270 6139 6004 5879	2.145 2.086 2.034 1.985 1.926 1.914 1.833 1.777 1.679	3.451 3.365 3.347 3.221 3.104 3.000 2.905 2.806 2.748	619 664 882 838 800 711 668 633 559	733 985 930 873 785 733 691 628	7614 8028 7016 6666 6246 5593 5254 4906 4464

DATA FOR YJ71-A-7 TURBOJET ENGINE

area, 4.13 square feet

	Jet thr			Air fl			Fuel fl	DWWO		fuel con	sumption	Exha	ust-gas	total	Run
F _j , lb	Ad- justed,	Cor- rected,	W _a , lb	Ad- justed,	Cor- rected,	W _f ,	Ad- justed,	cor- rected,	₩ <u>r</u> ,	Ad- justed,	Cor- rected,	Tc.	emperat	ure Cor-	num- ber
10	Fj	Fj 6⊤	sec	Wa√θa	$W_a \sqrt{\theta_T}$	1b hr	Wf	Wf	F _n '	Wf	Wf	T ₆ , ○R	justed,	rected,	
	ba	δ _T '		δa	$\delta_{ m T}$		$\delta_a \sqrt{\theta_a}$	$\delta_{\mathrm{T}} \sqrt{\theta_{\mathrm{T}}}$	1b thrust	$F_n\sqrt{\theta_a}$	$F_n\sqrt{\theta_T}$		$\frac{T_6}{\theta_a}$,	$\frac{\mathbf{T}_{6}}{\theta_{\mathbf{T}}}$	
	1b	1b		1b sec	1b sec		1b	<u>1b</u>		1b/hr	1b/hr		°a °R	o _R	
<u> </u>							hr	hr		1b thrust	1b thrust		**		
5034	5079	6,247	135.8	140.0	169.0	5570	5500	6,893	1.28	1.26	1.28	1348	1291	1340	1
4769	4798	5.890	133.9	138.2	166.6	5235	5134	6,416	1.29	1.26	1.28	1307	1242	1287	2
4446	4459 4173	5,477 5,126	131.0 127.4	134.9 131.3	162.6 158.2	4850 4480	4738 4372	5,930 5,473	1.29	1.26 1.25	1.28	1280 1256	1214 1189	1261 12 3 5	3 4
3805	3824 3769	4,688	123.1	126.9	152.8	4130	4046	5,050	1.32	1.29	1.31	1223 1219	1162	1205	5 6
3750 3424	3441	4,620 4,194	122.7	126.5 123.1 117.8	152.8 152.2 147.6	4115 3795	4032 3736	5,031 4,632	1.34	1.31	1.33	1179	1159 1131	1201 1170	7
3134 2546	3143 2554	3,852 3,106	114.9 104.9	117.8	141.8	3510 2820	3445 2770	4,298 3,427	1.42	1.39 1.50	1.41	1149 1087	1100 1043	1140 1079	8 9
						 									
			100.2	103.5 103.0	170.3 169.5	4275 4030	4164 3962	7,605 7,237				1369 1315	1291 1261	1433 1400	10
3631 3605	3653 3630	6,340 6,287	99.1 98.4	101.7 101.6	169.5 167.7 167.3	3785 3735	3728 3664	6,820 6,683	1.24 1.25	1.22	1.28 1.28	1274 1276	1222 1211	1357 1344	12
3400	3414	5,923	96.8	100.0	164.7	3525	3441	6,289	1.25	1.22	1.28	1248	1179	1309	14
3238 2962	3248 2980	5,641 5,160	95.6 93.0	98.0 95.5	161.6 157.1	3330 3055	3267 3009	5,975 5,493	1.25 1.28	1.22	1.28	1214	1162	1288 1247	15 16
				i											17
2727 2607	2787 2672	7,379 7,055	67.2 66.7	70.7 70.5	170.7 169.9	3080 2855	3060 2838	8,884 8,205 7,755	1.29 1.28	1.26	1.38 1.36	1373 1317	1298 1239	1560 1486	18
2521 2299	2579 2352	6,812 6,198	66.5 66.2	70.1 68.7	169.0 165.3	2700 2360	2682 2345	7,755 6,764	1.26 1.23	1.22	1.34 1.31	1279 1201 1357 1305	1206 1133	1445 1357	19
3829	3929	8,412	81.0	84.4	170.0	3580	3615	8,228	1.55	1.52	1.62	1357	1314	1485	21
3717 3555	3802 3647	8,133 7,778	80.9	84.0 83.9	169.1 168.4	3360 3150	3383 3192	7,691 7,229	1.53 1.55	1.51	1.60 1.62	1259	1264 1228	1428 1385	22
3448 3204	3541 3284	7,537	80.1	83.3 81.9	167.0	2965 2790	3007 2821	7,229 6,798	1.53 1.62	1.52	1.61	1224 1187	1194 1155	1346 1301	24 25
3014	3095	7,004 6,601	78.8 77.3	80.4	164.5 161.5	2595	2632	6,385 5,961	1.67	1.65	1.75	1154	1125	1269	26
3136 2505	3202 2558	6,570 5,281	80.6 74.3	81.9 75.6	158.9 147.6	2480	2542 2058	5,518 4,496	1.63 1.95	1.63	1.73	1100 1025	1110	1241 1154	27
1812	 		41.8	 	170.1	2055	1975			1.19	1.36	1420		1605	29
1702	1875 1777	7,841 7,426	41.5	46.6 46.7	170.5	1935	1876	9,450 8,975	1.28 1.30	1.20	1.38	1378	1225 1189	1557	30
1654 1553	1720 1621	7,172 6,790	41.5	46.4	169.1 168.4	1805 1700	1744 1647	8,321 7,900	1.26 1.25	1.17	1.34	1326 1288	1114	1498 1455	31 32
1475	1534	6,448	40.4	45.3	166.0	1590	1534	7,389	1.20	1.12	1.28	1247	1073	1409	33
1357 1288	1417 1340	5,921 5,562	39.5 38.6	44.4 43.2	161.9 156.9	1475 1344	1431 1299	6,846 6,170	1.27	1.18	1.36 1.35	1211 1172	1047 1013	1371 1324	34 35
1064 2709	1111 2817	4,586	35.6 53.5	40.0 57.9	144.5	1103 2520	1070 2524	5,047	1.33	1.24	1.41	1108 1386	957 1285	1250 1566	36 37
2608	2712	9,156	53.3	57.7	169.6	2360	2363	9,055 8,480	1.52	1.47	1.62 1.62	1338	1240	1512	38
2487 2425	2596 2532	8,446	53.0 52.7	57.5 57.2	169.3 168.5	2220	2232 2081	8,015 7,471	1.54 1.50	1.49	1.64	1291 1252	1197 1161	1459 1415	39 40
2264	2355	7,652	52:2	56.5	166.1	1950	1953	7,007	1.59	1.53	1.69	1210	1122	1367	41
2187	2274 2134	7,300 6,854	51.6	55.8 54.7	162.3 159.4	1800 1755	1802 1773	6,376	1.58 1.72	1.52	1.68	1173	1087 1058	1321 1286	42 43
1892	1968	6,295	49.1	52.8	153.2	1505	1514	5,337	1.68	1.63	1.79	1088	1018	1236	44
4611 4450	4814 4637	10,877	76.2	79.6 79.3	171.6	3365 3170	3509 3299	8,311 7,813	1.45 1.47	1.45	1.52	1359 1314	1356 1311	1489 1440	45 46
4309 4243	4481 4430	10,165	75.6 75.7	78.6 78.9	170.0 169.0	2965 2810	3084 2940	7,336 6,914	1.45 1.43	1.45	1.52 1.51	1269 1226	1269 1232	1396 1352	47 48
3968	4127	9,372	74.0	76.7	166.0	2600	2714	6,467	1.48	1.48	1.56	1186	1195	1315	49
3826 3620	3979 3794	8,987	73.3	75.8 74.4	163.3	2435 2230	2545 2354	6,028 5,454	1.49 1.54	1.50 1.55	1.57	1152 1123	1164 1140	1280 1245	50 51
2889	3010	6,830	64.8	67.2	145.4	1745	1826	4,343	1.83	1.83	1.92	1045	1053	1159	52 53
3357 2981	3505 3112	7,865	59.3 56.3	70.9	152.1 145.2	2610 2260	2379 2046	5,590 4,810	2.01 2.22	1.75 1.92	1.84	1482 1424	1129 1071	1239 1175	54
2806 2450	2929 2548	8,860 5,723	55.0	65.7 63.4	140.1	2045 1820	1864 1653	4,349 3,889	2.29 3.00	2.00	2.10	1369 1308	1043 997	1142 1095	55 56
2125	2219	4,915	50.2	60.2	127.6	1535	1394	3,227	4.24	3.69	3.85	1254	948	1036	57
1774	1849	4,133	47.2	56.9	121.4	1320	1190	2,787	11.09	9.60	10.05	1207	904	991	58
1137 1116	1212 1190	8,183	25.5 25.3	29.2	171.9 170.6	1365 1292	1353 1281	10,472	1.35 1.33	1.26 1.24	1.44	1476 1434	1275 1241	1677 1629	59 60
1055 1014	1125 1081	7,568 7,298	25.1 24.9	28.8 28.6	169.4 186.2	1222 1144	1211 11 3 2	9,325 8,759	1.34 1.29	1.24	1.42	1387 1349	1198 1163	1570 1527	61 62
	#					1147									63
931 874	995 925	6,700	24.1		163.2 159.2	1057 984	1049 968	8,089 7,460	1.33 1.33	1.23	1.41	1304 1267	1124 1097	1474 1434	64 65
857	916	6,025	23.1	26.5	152.6	894	889	6,671	1.34	1.24	1,42	1232	1066	1390	66
1853 1808	1960 1920	9,977	34.1		171.5	1725 1690	1776 1676	9,955 9,329	1.51 1.48	1.47	1.62	1452 1403	1375 1332	1668 1612	67
1738 1671	1839 1768	9,335 8,952	33.8	36.7	169.5 168.3	1510 1410	1556 1454	8,696 8,100	1.46 1.46	1.42	1.57 1.56	1353 1308	1284 1242	1555 1503	69 70
1601	1683	8,554	33.4	36.1	166.5	1320	1349	7,560	1.46	1.42	1.56	1268	1201	1457	71
1500	1562	7,976	32.8		162.8	1225	1241	6,981	1.49	1.45	1.60	1223	1158	1405	72
681 727	765 803	8,376 8,789	14.6	17.6 17.7	168.1 169.2	907 864	950 889	11,919 11,159	1.46 1.30	1.36	1.56	1570 1531	1362 1328	1791 1747	73 74
1459	1630	111,606	23.1	26.0	171.6	1253	1391	10,684	1.42	1.41	1.52	1513	1395	1738	75
1412 1380	1567 1506	11,232	23.1		171.8	1178 1104	1296 1192	10,039	1.41	1.39	1.51	1459 1409	1433 1381	1673 1610	76
1284 1226	1418 1346	10,100 9,644	23.0	25.5	168.7 165.2	1050 963	1151	8,857 8,118	1.48 1.44	1.47	1.58 1.55	1356 1313		1558 1509	78 79
1191	1299	9,231	22.3	24.5	161.3.	910	985	7,557	1.44	1.43	1.54	1271	1252	1458	80
1083	1217	8,648	21.0	23.7	156.3	812	907	6,947	1.45	1.44	1.56	1242	1226	1427	81

27

Figure 1. - Installation of YJ71-A-7 in altitude wind tunnel.

Station		Pressure t	ubes	Thermo-
	Total	Stream static	Wall static	couples
1	28	8 .	4	(a)
2	8	1		8
3	8			4
4	21		6	18
5	1.2		1	
6	20	4	2	12

CD-3030

Figure 2. - Cross section of engine showing location of instrumentation.

⁽a) $_{\mathrm{Six}}$ thermocouples located upstream of engine in inlet duct.

CONFIDENTIAL

Figure 3. - Variation of corrected air flow with corrected engine speed. Exhaust-nozzle area, 2.685 square feet.

(b) Effect of flight Mach number. Altitude, 35,000 feet.

Figure 3. - Concluded. Variation of corrected air flow with corrected engine speed. Exhaust-nozzle area, 2.685 square feet.

Figure 4. - Effect of altitude on variation of corrected net thrust with corrected engine speed. Flight Mach number, 0.16; exhaust-nozzle area, 2.685 square feet.

Figure 5. - Effect of altitude on variation of corrected fuel flow with corrected engine speed. Flight Mach number, 0.16; exhaust-nozzle area, 2.685 square feet.

(a) Altitude, 6000 feet; flight Mach number, 0.159.

Figure 6. - Engine performance maps.

(b) Altitude, 15,000 feet; flight Mach number, 0.173.

Figure 6. - Continued. Engine performance maps.

CONFIDENTIAL

(c) Altitude, 25,000 feet; flight Mach number, 0.163.

Figure 6. - Continued. Engine performance maps.

(d) Altitude, 35,000 feet; flight Mach number, 0.160.

Figure 6. - Continued. Engine performance maps.

CONFTDENTITAT.

(e) Altitude, 35,000 feet; flight Mach number, 0.635.

Figure 6. - Continued. Engine performance maps.

(f) Altitude, 35,000 feet; flight Mach number, 0.997.

Figure 6. - Continued. Engine performance maps.

(g) Altitude, 45,000 feet; flight Mach number, 0.168.

Figure 6. - Continued. Engine performance maps.

(h) Altitude, 55,000 feet; flight Mach number, 0.824.Figure 6. - Concluded. Engine performance maps.

Figure 7. - Error in control temperature with flight condition.

(d) Specific fuel consumption obtained at constant exhaustnozzle area (2.685 sq ft) by varying speed.

Figure 8. - Effect of altitude on specific fuel consumption for two methods of thrust modulation at flight Mach number of 0.16.

Figure 9. - Effect of altitude on specific fuel consumption for two methods of thrust modulation at flight Mach number of 0.64.

(d) Specific fuel consumption obtained at constant exhaustnozzle area (2.685 sq ft) by varying speed.

Figure 10. - Effect of flight Mach number on specific fuel consumption for two methods of thrust modulation at an altitude of 35,000 feet.

(a) Corrected engine speed, 5800 rpm.

Figure 11. - Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

(b) Corrected engine speed, 5900 rpm.

Figure 11. - Continued. Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

(c) Corrected engine speed, 6000 rpm.

Figure 11. - Continued. Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

to 11 - Continued Variation of angine area

Figure 11. - Continued. Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

Figure 11. - Continued. Variation of engine pressu

Figure 11. - Continued. Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

gure 11. - Concluded. Variation of engine pres

Figure 11. - Concluded. Variation of engine pressure ratio with Reynolds number index for various corrected engine speeds and engine temperature ratios.

Figure 12. - Variation of corrected air flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

(a) Corrected engine speed, 5800 rpm.

Figure 13. - Variation of corrected fuel flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

(b) Corrected engine speed, 5900 rpm.

Figure 13. - Continued. Variation of corrected fuel flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

(c) Corrected engine speed, 6000 rpm.

Figure 13. - Continued. Variation of corrected fuel flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

COMETDEMUTAT.

(d) Corrected engine speed, 6100 rpm.

Figure 13. - Continued. Variation of corrected fuel flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

Figure 13. - Continued. Variation of corrected fuel flow with

Reynolds number index for various corrected engine speeds and engine temperature ratios.

Figure 13. - Concluded. Variation of corrected fuel flow with Reynolds number index for various corrected engine speeds and engine temperature ratios.

Figure 14. - Tail-pipe pressure loss.

Figure 16. - Exhaust-nozzle discharge coefficient.

Figure 17. - Effect of true airspeed on net thrust at rated engine speed (6100 rpm) and rated turbine-outlet temperature (1685 $^{\circ}$ R).

Figure 18. - Effect of true airspeed on fuel flow at rated engine speed (6100 rpm) and rated turbine-outlet temperature (1685° R). CONFIDENTIAL CONFIDENTIAL

mo 10 Composition of ich through with when the

Figure 19. - Correlation of jet thrust with exhaust-nozzle pressure drop for a range of flight conditions.

(b) Exhaust-nozzle area, 2.86 square feet.

Figure 19. - Continued. Correlation of jet thrust with exhaust-nozzle pressure drop for a range of flight conditions.

Figure 19. - Concluded. Correlation of jet thrust with exhaust-nozzle pressure drop for a range of

flight conditions.

Figure 20. - Correlation of jet thrust with exhaust-nozzle pressure drop for three exhaust-nozzle areas over range of altitudes from 6000 to 55,000 feet and flight Mach numbers from 0.154 to 1.120.

Figure 21. - Variation of viscosity ratio with temperature.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ALTITUDE PERFORMANCE AND OPERATIONAL CHARACTERISTICS

OF YJ71-A-7 TURBOJET ENGINE

Ivan D. Smith

Aeronautical Research Scientist
Propulsion Systems

Charles V. Leonard J.

Charles V. Leonard, Jr.
Aeronautical Research Scientist
Propulsion Systems

Harry E. Bloomer

Aeronautieal Research Scientist Propulsion Systems

Approved:

David S. Gabriel

Aeronautical Research Scientist

Propulsion Systems

Bruce T. Lundin

Chief,

Engine Research Division

jcb 5/19/53 NACA RM E53E13

^^111. TTATE T TEAT

Engines, Turbojet

3.1.3

Smith, Ivan D., Leonard, Charles V., Jr., and Bloomer, Harry E.

Abstract

Altitude performance of a YJ71-A-7 turbojet engine, with afterburner inoperative, was determined in the NACA Lewis altitude wind tunnel over a wide range of flight conditions. Engine speed and exhaust-nozzle area were controlled independently during this investigation.

The variation of corrected values of air flow, net thrust, and fuel flow with corrected engine speed was not defined by a single curve with changes in altitude at given flight Mach number. Changes in altitude had very little effect on minimum specific fuel consumption at altitudes up to 45,000 feet. There is one exhaust-nozzle schedule that is nearly optimum for all flight conditions. Performance calculated from pumping characteristics agreed with experimental values and can therefore be used to extend engine performance data.

7