Machine learning 2 Decision trees

Pierre Chainais

- Decision trees
 - Motivations
 - Principes de construction
 - Binary features / others
 - Descending inference of a decision tree
 - Pruning
 - Properties: advantages, limitations, generalizations
 - Bagging
 - Random forests
 - Complements

Classification and regression trees. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Chapman & Hall, 1984.

- Pattern classification. R. Duda, P. Hart and D. Stork. Wiley, New York, 2000.
- Bagging Predictors. L. Breiman. Machine Learning 26:123-140, 1996.
- ► Random Forests. L. Breiman. Machine Learning 45:5-32, 2001.

A usual approach

A usual approach

Motivations

A usual approach

Elementary tree for binary decision

- ▶ Binary feature $X_i \in \{0,1\}$, $Y_i \in \{0,1\}$
- ► Training set (X_i, Y_i) , i = 1, ..., n
- ▶ Table of contingence

Y /X	0	1	Total
0	n _{0 0}	n _{0 1}	n ₀
1	n _{1 0}	n _{1 1}	n ₁
Total	n _{: 0}	n _{: 1}	n

- ▶ $Pr(Y = k | X = \ell) = \pi_{k|\ell} \text{ avec } \pi_{0|\ell} + \pi_{1|\ell} = 1$
- ► Maximum likelihood

$$\widehat{\pi}_{k|\ell} = \frac{n_{k|\ell}}{n_{0|\ell} + n_{1|\ell}}$$

▶ Decision for the 0/1 loss function

$$f(x) = \begin{cases} 1 & \text{if } n_{1|x} > n_{0|x} \\ 0 & \text{else} \end{cases}$$

Elementary tree for binary decision

- ightharpoonup Numerous predictors (D = high dimension)
- Quantitative or qualitative features
- ▶ Impossible to consider all possible values of $\mathbf{x} = (x_1, \dots, x_D)$

⇒ Classification, decision trees

How to learn...

- ▶ the good questions? (selectors)
- ▶ the good answers? (decision)
- ▶ to keep only useful questions? (pruning)

- $ightharpoonup (X_i)$ $i=1,\ldots,n$: training set
- ▶ classification tree= successive binary partitions of (X_i) , starting from the full training set
- ▶ union of regions occupied by 2 daughter nodes
 = region occupied by the father node
- ▶ each terminal node ⇒ classification rule
- ightharpoonup prediction = terminal node for X

Remark: no hierarchical partition.

- $\blacktriangleright \text{ Vector } X = (X_1, \dots, X_p)$
- ► Categorical or quantitative features
- ► Each partition of the data at some node uses one variable only
- ▶ If $X_j \in \{1, ..., M\}$, question of the form " $X_j \in A$?", $A \subset \{1, ..., M\}$ (e.g. M binary questions)
- ▶ If $X_j \in \mathbb{R}$, since the training set is finite, there exists a finite number of questions " $X_i \leq c$?"

```
Recursive construction of a decision tree
Procedure Construct-tree (node m)
begin
  if All the points of node m nelong to the same class
    then Create a new leaf with this class
    else
      Choose the best feature to create a node
      Test this feature to separate m in two daughter nodes m_l
and m_R
      Construct-tree (m_l)
      Construct-tree (m_R)
  end if
end
```

3 essential elements:

- ► Choice of the criterion to partition this node
- ► Choice of the decision to take at terminal node (leaf)
- ► Choice of a partition rule at a node

 $ightharpoonup R_m = \text{set of } N_m \text{ training samples at node } m,$

$$p_{m,k} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)$$

the frequency of each classe k at node m

 $ightharpoonup d(m) = \arg\max_k p_{m,k}$ le "majority vote" at node m

How to measure the quality of a partition rule at node m?

How to measure the quality of a partition rule at node m?

$$p_{m,k} = \frac{1}{N_m} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

Impurity function:

- ϕ defined on (p_1,\ldots,p_K) with $p_k\geq 0$ et $\sum_{k=1}^K p_k=1$ such that
 - $ightharpoonup \phi$ has a unique maximum at $(\frac{1}{K}, \dots, \frac{1}{K})$
 - \blacktriangleright ϕ is minimal at points $(1,0,\ldots,0)$, $(0,1,\ldots,0)$, \ldots
 - $\phi(p_1,\ldots,p_K)=\phi(p_{\sigma(1)},\ldots,p_{\sigma(K)})$ for any permutation σ

$$p_{m,k} = \frac{1}{N_m} \sum_{x_i \in R_m} \mathbb{I}(y_i = k)$$

- Standard impurity measures
 - Classification error

$$\frac{1}{N_m}\sum_{i\in R_m}\mathbb{I}(y_i\neq d(m))=1-p_{m,d(m)}$$

• Gini's index

$$\sum_{k \neq k'} p_{m,k} p_{m,k'} = \sum_{k=1}^K p_{m,k} (1 - p_{m,k})$$

• Cross-entropy or deviance

$$-\sum_{k=1}^{K}p_{m,k}\log p_{m,k}$$

Impurity measure

Simple case: K=2

▶ If K = 2 and p is the proportion of the 2nd class

ullet Classification error : $1-\max(p,1-p)$

• Gini's index : 2p(1-p)

• Cross-entropy or deviance : $-p \log p - (1-p) \log (1-p)$

- **partition** s = choice of a variable $x_i +$ best cut w.r.t. x_i
- ▶ the quality of a partition s at node m is measured by

$$\Delta\phi(s,m) = \phi(p_m) - (\pi_L\phi(p_{m_L}) + \pi_R\phi(p_{m_R}))$$

where π_L and π_R are the proportions of data in resp. the left and right nodes.

- $ightharpoonup m_L$ and m_R are daughter nodes of node m
- $lacktriangledown \phi(p_{m_L})$ and $\phi(p_{m_R})$ are the impurity measures at m_L et m_R
- $ightharpoonup \phi(p_m) = \text{impurity of the father node,}$
- feasible in an exhaustive manner for reasonable data sets.

▶ Intuitive criterion: stop at node *m* when

$$\arg\max_s \Delta\phi(s,m)$$

where ε is some threshold

- \Rightarrow often not very efficient: several successive partitions which are not efficient by themselves can lead to an important gain.
- **▶** Best strategy
 - Construct a deep tree T_0 and stop when only a minimum number of data remains at each node (e.g. 5 elements)
 - 2 Cut branches according to some complexity criterion

► One can define the cost-complexity criterion

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m \phi(p_m) + \alpha |T|$$

where |T| is the number of terminal node of T and $m=1,\ldots,|T|$ correspond to terminal nodes

- lacktriangle The parameter lpha tunes the complexity of the tree
 - $\alpha = 0$ corresponds to T_0
 - \bullet $\alpha \gg 1$ will favour shallow trees
- $ightharpoonup \alpha$ can be estimated using CV.
- ▶ For fixed α , find the sub-tree $T_{\alpha} \subseteq T_0$ minimizing $C_{\alpha}(T)$
- ▶ There exists a unique sub-tree minimizing $C_{\alpha}(T)$ (provable)

- ▶ Advantages : scaling to high dimensions (D tests), $K \ge 2$ classes, any variables...
- **▶** Binary partitions?
 - Partitioning in more than 2 daughter nodes...
 - ... less efficient due to a faster fragmentation of the data
- ► Linear combinations
 - Partitions according to a linear model $\sum a_j X_j \leq s$
 - Weights a_i can be estimated unsing optimization
- ► Instability of trees
 - A small change in the training set may completely change the tree...
 - ... due to the recursive construction
 - Solution: bagging and random forests (Breiman 1996, 2001)

- ▶ Idea : artificially create several data sets \mathcal{X}_{b_1} b = 1, ..., B
- **Bootstrap**: sample \mathcal{X}_b with replacement from the training set
- ► Aggregating :
 - a classification tree for each \mathcal{X}_h ,
 - prediction : let $\hat{y}_b(x)$ the prediction from each tree b then

$$m_k(x) = \sum_{b=1}^D I(\widehat{y}_b(x) = k)$$

$$\widehat{y}(x) = \arg\max m_k(x)$$

- No more hierarchical structure
- + Improves performances (classification error) and less unstable
- ► Random forests (Breiman, 2001): modification of bagging to decorrelate trees

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

- ► Classical algorithms: CART, ID3, C4.5 and C5.0...
- Usual in data mining (fouille de données)
- ► Boosting + elementary "stump" tree
- Even better: boosting trees (gradient boosting...)
- Regression trees: minimizing the mean square error criterion (in place of impurity)
- ➤ Softwares & toolboxes : scikit-learn, Matlab, R, Weka 3, See5/C5.0, Java...