Теоретико-множественные операции на графах

Все операции описаны для неографов. Даны графы $G_1(S_1,U_1)$ и $G_2(S_2,U_2)$

- 1. **Объединением** графов G_1 и G_2 называется граф $G(S,U)=G_1\cup G_2$ такой, что $S=S_1\cup S_2, U=U_1\cup U_2$
- 2. Пересечением графов G_1 и G_2 называется граф $G(S,U)=G_1\cap G_2$ такой, что $S=S_1\cap S_2, U=U_1\cap U_2$
- 3. **Дополнительным графом** к графу G(S,U) называется граф $\overline{G}(S,U)$, состоящий из того же множества вершин, что и граф G, и множества рёбер $\overline{U}=U_n\setminus U$, где U_n множество рёбер соответствующего полного графа.
- 4. **Композицией** графов G_1 и G_2 называется граф $G(S,U)=G_1\circ G_2$, в котором каждое ребро (x_i,x_j) присутствует тогда и только тогда, когда в графе G_1 имеется ребро $(x_i,x_p)\in U_1$, а в графе G_2 ребро $(x_p,x_j)\in U_2$. При этом имеется в виду, что либо $S=S_1=S_2$, либо $S=S_1\cup S_2$.
- 5. **Удалением вершины** v из графа G(S,U) называется операция, дающая граф G-v, в котором множество вершин есть $S\setminus \{v\}$, а множество рёбер $U'=\{u|u\in U\setminus E\}$, где $E\subset U$ и каждое ребро $u_i\in E$ инцидентно вершине v.
- 6. **Удалением ребра** u из графа G(S,U) называется операция, дающая граф G-u, в котором множество вершин совпадает с множеством вершин исходного графа, множество рёбер есть $U\setminus\{u\}$
- 7. **Добавлением ребра** u в граф G(S,U) называется операция, дающая граф G+u, в котором множество вершин совпадает с множеством вершин исходного графа, а множество рёбер есть множество $U \cup \{u\}$
- 8. Стягиванием ребра $u=(x_i,x_j)$ графа G(S,U), где $u\in U,\{x_i,x_j\}\subset S$, называется называется операция, дающая граф с множеством рёбер $U\setminus\{u\}$ при отождествлении вершин x_i и x_j одной вершине v, когда рёбра, инцидентные вершинам x_i и x_j в исходном графе, становятся инцидентными вершине v полученного графа. Обозначение: G/u