

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ

<Длинная арифметика>

Студент < Ермаков И.Г >		
Группа < ИУ7-32Б >		
Название предприятия НУК ИУ МГТ	ГУ им. Н. Э. Баумана	
Студент		_<Ермаков И.Г>
Преподаватель		_<Фамилия ИО>

Оглавление

Условие задачи	3
Техническое задание	
Аварийные ситуации	
Структуры данных	
Описание основных сигнатур	
Алгоритм	
Набор тестов	
== ===================================	

Условие задачи

Смоделировать операцию умножения целого числа длиной до 40 десятичных цифр на действительное число в форме ±m.n E ±K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме ±0.m1 E ±K1, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

Техническое Задание

Входные данные

Целое число до 40 цифр, знак опционален, если знак не был введен, по умолчанию считается что введено неотрицательное число

Вещественное число не обязательно вводится в нормализированном виде количество значащих цифр в мантиссе не превышает 30. Ведущие нули (не значащие – до точки и/или до первой цифры) в расчете длины числа не учитываются. Значащие нули после точки учитываются при подсчете длины числа. Десятичное число может представляться без точки: 123 (как целое). При наличии точки в числе возможны следующие варианты его представления: .00025, +123001., – 123.456. Также допускается представление числа в экспоненциальной форме: 1234567 E –20, 1234567E20 или 123.4567E23. Длина порядка <= 5

Выходные данные

Нормализированное вещественное число выводится в форме ± 0 .m1 E $\pm K1$, где m1 - до 40 значащих цифр, а K1 - до 5 цифр.

Обращение к программе

Программа запускается по команде ./app.exe, далее вводится целое число, затем вещественное, после ввода данных программа выведет результат умножения в форме $\pm 0.m1~E~\pm K1$, в противном случае сообщение об ошибке.

Аварийные ситуации

- 1)Длина целого числа больше 40
- 2)Ошибка считывания целого числа через терминал (результат fgets = NULL)
- 3)В целом числе(без учета знака) встретилось не число
- 4)Ошибка считывания вещественного числа через терминал (результат fgets = NULL)
- 5)Длина мантиссы вещественного числа больше 30
- 6)Введенное вещественное число не соответствует указанному формату
- 7)Длина порядка перед нормализацией введенного вещественного числа больше 99999 по модулю
 - 8)Длина порядка после нормализации введенного вещественного числа больше 99999 по модулю
 - 9)При перемножении двух чисел порядок превысил 99999 по модулю

Описание структур данных

Целое число вводится с клавиатуры и записывается в массив символов, изначально больше по размеру чем нужно (максимальный размер целого числа вместе со знаком 41 символ), а в программе задается значение 50.

Целое число вводится с клавиатуры и записывается в массив символов, изначально больше по размеру чем нужно (максимальный размер целого числа вместе со знаком 48 символов), ввод в формате \pm m.n E \pm K где m + n <= 30, + 1 символ знака, плюс буква, обозначающая что число записано в нормализированной форме, символ знака порядка и сам порядок: K <= 5, а в программе задается значение 50.

Затем числа распределяются в структуры.

```
typedef struct
{
  int num_sign;
  int int_value[MAX_LEN_INT_I + 1];
  size_t len;
} int_data;
```

В поле 'num_sign' записывается знак числа (если не был введен, по умолчанию '+') В поле 'int_value' записывается целое число

Как описывалось paнee, полю 'int_value' указано заведомо число большее длины, описанной в условии задачи

```
MAX_LEN_INT_I = 50
```

Аналогично ниже представлена структура данных, которая хранит приведенные к стандарту компоненты вещественного числа

```
typedef struct
{
  int num_sign;
  int mantissa[MAX_LEN_MANTISSA + 1];
  int exp_sign;
  int exp;
  size_t len;
} double_data;
```

```
В поле 'num_sign' записывается знак числа (если не был введен, по умолчанию '+')
```

В поле 'mantissa' записывается мантисса числа без незначащих нулей

В поле 'num sign' записывается знак порядка числа (если не был введен, по умолчанию '+')

В поле 'order' записывается порядок числа (если не был указан, по умолчанию 0)

Как описывалось paнee, полям 'mantissa' и 'order' указаны заведомо числа бОльшие числа длины, описанной в условии задачи

```
MAX_LEN_MANTISSA_I = 40
MAX_LEN_ORDER_I = 10
```

Так же ниже представлена структура данных, которая хранит в себе результат умножения двух чисел, она аналогична структуре хранения вещественного числа, все поля обрабатываются алгоритмом после умножения и если надо приводятся к стандартному виду

```
typedef struct
{
  int num_sign;
  int mantissa[MAX_LEN_MANTISS_RESULT_I + 1];
  int exp_sign;
  int exp;
  size_t len;
} result_data;
```

В поле 'num_sign' записывается знак числа

В поле 'mantissa' записывается мантисса числа без незначащих нулей

В поле 'num_sign' записывается знак порядка числа

В поле 'order' записывается порядок числа

Как описывалось ранее, полю 'mantissa' указано заведомо число бОльшее числа длины, описанной в условии задачи

MAX_LEN_MANTISS_RESULT_I = 50 MAX_LEN_ORDER_I = 10

Описание основных сигнатур функций

Функция ввода, осуществляет ввод целого и вещественного числа

int input(char *int_num, char *double_num)

Функция для проверки валидности и для распределения по структуре введенного вещественного числа

short mantissa_check(char *input, double_data *data)

Функция для проверки валидности и для распределения по структуре введенного целого числа

short check_int(char *input, int_data *new_int)

Основная функция для умножения

short multiply(double_data *num1, int_data *num2, result_data *result)

Функция для вывода результата

void print_result(result_data *result)

Алгоритм программы

- 1) Считать числа, введенные с клавиатуры в массив символов
- 2) Проверить числа на валидность
- 3) Разбить числа на компоненты по структурам
- 4) Развернуть числа, перемножить
- 5) Убрать все незначащие нули промежуточного результата, пересчитать порядок
- 6) Проверить на длину мантиссы и значения порядка в соответствии с условием
- 7) Вывести результат в форме ±0.m1 E ±K1

Тесты

Суть теста	Целое число	Действительно число	Результат
Умножение двух обычных чисел	2	2	+0.4 E 1
Умножение двух обычных чисел	4	4	+0.16 E 2
Второе число отрицательное	2	-2	-0.4 E 1
Первое число отрицательное	-2	2	-0.4 E 1
Оба числа отрицательные	-2	-2	+0.4 E 1
Умножение двух обычных чисел	4	48	+0.192 E 3
Первое число 0	0	4	+0.0 E 1
Второе число 0	4	0	+0.0 E 1
Оба числа 0	0	0	+0.0 E 1
У первого числа ведущие нули	002	2	+0.4 E 1
У второго числа ведущие нули	2	002	+0.4 E 1
У обоих чисел ведущие нули	002	002	+0.4 E 1

Второе число не целое	3	0.15	+0.45 E 0
Первое число имеет макси-	9999	1	+0.999999999999999999999999999999999
мальную длину	(40		E40
	девяток)		
Проверка на округление	9999	2	0.2 E 41
	(40		
	девяток)		
Проверка на округление	9999	9999 (30	+0.999999999999999999999999999999999999
	(40	девяток)	E 70
	` девяток)	,	
У обоих чисел ведущий	+2	+2	0.4 E 1
плюс			
У обоих чисел неверный	+-2	+-2	ERROR_MATCHING_REG_EXPR
формат			
У обоих чисел неверный	++2	++2	ERROR_MATCHING_REG_EXPR
формат			
У обоих чисел неверный	2	2	ERROR_MATCHING_REG_EXPR
формат			
У второго числа неверный	2	22	ERROR_MATCHING_REG_EXPR
формат			
У первого числа неверный	2.2	2	ERROR_MATCHING_REG_EXPR
формат			
У первого числа неверный	2e2	2	ERROR_MATCHING_REG_EXPR
формат			
У второго числа неверный	2	2ee2	ERROR_MATCHING_REG_EXPR
формат			
Первое число слишком	9999	2	ERROR_TOO_LONG_MANTISSA
длинное	(31		
Aoc	девятка)		
У второго числа слишком	2	9999	ERROR_TOO_LONG_MANTISSA
длинная мантисса		(31девятка)	
В результате получается	1	9е99999	IMPOSSIBLE_TO_MULTIPLY_NUMBERS
порядок больше 99999			
В результате порядок	1	9e99998	+0.9 E 99999
равный 99999			
При перемножении порядок	1	9e99999	ERROR_TOO_LARGE_EXP
превышает 99999			
Проверка на ведущий плюс у	2	9e+9	+0.18 E 11
мантиссы			
Проверка на отрицательный по-	2	9e-9	+0.18 E -7
рядок			

Проверка на ведущие плюсы у мантиссы и экспоненты	2	+9e+9	+0.18 E 11
Проверка на альтернативный ввод вещественного числа	1	123.	+0.123 E 3
Проверка на альтернативный ввод вещественного числа	1	.123	+0.123 E 0