Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 9 Abgabe auf Moodle bis zum 29. Januar

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$. Darauf operiert die Modulgruppe $\Gamma = \text{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Seien j und $\lambda(\tau) = (e_3(\tau) - e_2(\tau))/(e_1(\tau) - e_2(\tau))$ die Modulfunktionen aus der Vorlesung. Sie können bei jeder Aufgabe die Ergebnisse der vorherigen nutzen, auch wenn Sie diese nicht bearbeitet haben. Die besten vier Aufgaben werden gewertet.

- **40.** Aufgabe: (2+2=4 Punkte) Sei (X,\mathfrak{U}_X) ein topologischer Raum und $(x_n)_n$ eine Folge in X. Man sagt "Die Folge $(x_n)_n$ konvergiert gegen ein $x \in X$ ", falls für jede offene Teilmenge $U \in \mathfrak{U}_X$ mit der Eigenschaft $x \in U$ gilt, dass alle bis auf endlich viele Folgenglieder x_n in U liegen. Ein solches x heißt Grenzwert der Folge $(x_n)_n$. Zeigen Sie:
 - (a) Wenn (X,\mathfrak{U}_X) separiert ist, dann hat eine Folge höchstens einen Grenzwert.
 - (b) Konstruieren Sie einen topologischen Raum und eine Folge darin, die mehrere verschiedene Grenzwerte hat.
- **41. Aufgabe:** (4 Punkte) Sei X eine Mannigfaltigkeit und G eine Gruppe, die stetig auf X operiert. Zeigen sie, dass folgende Aussagen äquivalent sind:
 - (a) Die Operation ist frei im Sinne der Vorlesung.
 - (b) Es gelten folgende zwei Eigenschaften:
 - (1) $gx \neq x$ für alle $x \in X$ und alle $g \in G$ ungleich dem neutralen Element von G.
 - (2) Für je zwei kompakte Teilmengen K_1 und K_2 von X gibt es nur endlich viele $g \in G$ sodass $g(K_1) \cap K_2$ nichtleer ist.
- **42.** Aufgabe: (1+1+2=4 Punkte) Die Funktion $e(x)=\exp(2\pi i x)$ definiert eine Abbildung $e:\mathbb{R}\to S^1$ wobei $S^1\subseteq\mathbb{C}$ der Einheitskreis ist. Zeigen Sie:
 - (a) e ist eine Überlagerung.
 - (b) Die ganzen Zahlen \mathbb{Z} operieren durch Translation frei auf \mathbb{R} .
 - (c) Folgern Sie, dass $\mathbb{Z} \setminus \mathbb{R}$ als Mannigfaltigkeit isomorph ist zu S^1 .

- **43.** Aufgabe: (1+1+1+1=4 Punkte) Sei $p:X\to Y$ eine Überlagerung topologischer Räume. Zeigen Sie vier der folgenden Aussagen:
 - (a) Ist $q: Y \to Z$ eine Überlagerung, dann ist auch $q \circ p: X \to Z$ eine Überlagerung.
 - (b) Ist U offen in X, dann ist auch p(U) offen in Y.
 - (c) Wenn Y eine Mannigfaltigkeit ist und $Z \subseteq X$ eine Zusammenhangskomponente von X, dann ist $p|_Z: Z \to Y$ eine Überlagerung.
 - (d) Ist Y zusammenhängend, dann ist die Kardinalität $\#p^{-1}(y)$ für alle $y \in Y$ gleich.
 - (e) Sei $Z \subseteq Y$ eine offene Teilmenge, dann ist $p: p^{-1}(Z) \to Z$ wieder eine Überlagerung.
 - (f) Wenn Y separiert ist, dann ist auch X separiert.
- 44. Aufgabe: (2+2=4 Punkte) Die Diskriminantenfunktion Δ ist eine Modulform zur vollen Modulgruppe Γ und besitzt daher eine Fourierentwicklung¹

$$\Delta(\tau) = (60G_4(\tau))^3 - 27(140G_6(\tau))^2 = (2\pi)^{12} \sum_{n=1}^{\infty} a_n q^n \qquad , \qquad q = \exp(2\pi i \tau) .$$

Zeigen Sie explizit $a_0 = 0$ und $a_1 = 1$. Hinweis: Verwenden Sie zum Beispiel Aufgabe 36.

$$|a_p| \le C \cdot p^{11/2}$$

für Primzahlen p erfüllen mit einer Konstanten C>0. Diese Vermutung motivierte die Entwicklung zahlreicher mathematischer Konzepte. Sie wurde schließlich 1974 von Pierre Deligne in mehreren Arbeiten bewiesen.

 $^{^1}$ Srinivasan Ramanujan hat 1916 vermutet, dass die Fourierkoeffizienten a_i von $(2\pi)^{-12}\Delta$ die Abschätzung