

Collaboration of ELIXIR and Japan BioHackathons

Toshiaki Katayama

Database Center for Life Science

Project links

- http://biohackathon.org/
- http://github.com/dbcls/bh18/

Background information

How we get started the BioHackathon?

BioHackathon was originally introduced by the O|B|F in 2002

- BioPerl
- BioRuby
- Biopython
- BioJava

:

Interoperability of Open Bio* libraries for accessing DBs

History of the NBDC/DBCLS BioHackathon

- BioHackathon 2008-2010
 - Integration of distributed bioinformatics resources with Web Services
- BioHackathon 2011-2017
 - Integration of distributed bioinformatics database contents with Semantic Web

- As we were not secured to organize the next BioHackathon after 10th, I explored possibility to organize it with ELIXIR (especially with Rafael Jimenez, thanks!)
 - → This ELIXIR BioHackathon 2018
 - + NBDC/DBCLS BioHackathon 2018

The 11th NBDC/DBCLS BioHackathon

- NBDC/DBCLS BioHackathon 2018
 - Application of integrated semantic resources including (but not limited to)
 - 1. Biomedical
 - 2. Useful substance production
 - 3. Breeding
- Register today (already over due)!
 - December 9-15 in Matsue, Japan
 - http://2018.biohackathon.org/registration
 - We'll welcome Matz (the Ruby's father)

Each year, we had 68 (2008) ~ 108 (2017) participants, in total, 803 participants (371 uniq) from 21 countries.

http://biohackathon.org/10years/

Hack organisation

Organisation of the NBDC/DBCLS BioHackathon

Attendees

- Call for proposals to be nominated as an invitee
- 20~30 foreign experts and invitees + 50~80 Japanese domestic researchers (incl. organizers)
- Can form working groups and switch to other group freely

Schedule

- Sunday: Public symposium
- Monday-Friday: Hackathon
 - Monday morning: Open space discussion to define objectives and working groups
 - Wednesday: Mid-term wrap up (Excursion sometimes)
 - Friday afternoon: Wrap up
- Saturday: Writethon

Venue

- 1Gb (x2 for backup) fibre optical Internet connection
- o (24hrs open) hacking room + accommodation
- Isolated place hopefully equipped with Onsen (hot spring) and Karaoke
- Fine food and Sake (Liquorthon at night)

Previous publications

- 1. Katayama, T., Arakawa, K., Nakao, M., et al. (2010) **The DBCLS BioHackathon**: standardization and interoperability for bioinformatics web services and workflows., J. Biomed. Semantics, 1, 8.
- 2. Katayama, T., Wilkinson, M. D., Vos, R., et al. (2011) **The 2nd DBCLS BioHackathon**: interoperable bioinformatics Web services for integrated applications., J. Biomed. Semantics, 2, 4.
- 3. Katayama, T., Wilkinson, M. D., Micklem, G., et al. (2013) **The 3rd DBCLS BioHackathon**: improving life science data integration with semantic Web technologies., J. Biomed. Semantics, 4, 6.
- 4. Bolleman, J. T., Mungall, C. J., Strozzi, F., et al. (2016) **FALDO**: a semantic standard for describing the location of nucleotide and protein feature annotation., J. Biomed. Semantics, 7, 39.
- 5. Katayama, T., Wilkinson, M. D., Aoki-Kinoshita, K. F., et al. (2014) **BioHackathon series in 2011 and 2012**: penetration of ontology and linked data in life science domains., J. Biomed. Semantics, 5, 5.
- 6. Wimalaratne, S. M., Bolleman, J., Juty, N., et al. (2015) SPARQL-enabled identifier conversion with **Identifiers.org**., Bioinformatics, 31, 1875–7.
- 7. Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., et al. (2016) **The FAIR Guiding Principles** for scientific data management and stewardship, Sci. Data, 3, 160018.
- 8. ..
- 9. BioHackathon 2013-2014 (submitted)
- 10. BioHackathon 2015 (revise submitted)
- 11. BioHackathon 2016 (in preparation)
- 12. BioHackathon 2017 (in preparation)

Future works

- Continuous community efforts on standardization and interoperability of databases in life sciences
 - Genomics and Multi-omics
 - Biomedical applications
 - Bioinformatics algorithms and analysis
 - Reproducible science and workflows
- Collaboration with biomedical domains
 - GA4GH (Global Alliance for Genomics and Health
 - Bring algorithms to data: WES, CWL, ...
 - Sharing and standard models for genotypes and variations
 - Graph genome: vg
 - AMED (Japan agency for medical research and development)
 - Japanese gnomAD and ClinVar: TogoVar, MGeND
 - o and ELIXIR, of course!

Some photos from BioHackathon 2017

Standardization matters

- NIH strategic plan for data science
 - https://datascience.nih.gov/strategicplanrelease
 - According to a 2016 survey, data scientists across a wide array of fields said they spend most
 of their work time (about 80 percent) doing what they least like to do: collecting existing
 datasets and organizing data. That leaves less than 20 percent of their time for creative tasks
 like mining data for patterns that lead to new research discoveries.

Imagine if

- Data you need is already stored in an uniformed format
- All these heterogeneous data are interconnected with globally unique identifiers
- And semantically annotated!
 - Linked Open Data (see UniProt as one of successful examples)
- You can just start data science and develop applications

RDF resources currently available

- Nucleotide seq & annot
 - INSDC (DDBJ/DBCLS)
- Genome
 - Ensembl (EBI)
 - RefSeq (TogoGenome)
- Protein seq & annot
 - UniProt (SIB)
- Protein structure
 - PDB (PDBj)
 - BMRB (PDBj)
 - FAMSBASE (Chuo U)
- Compounds
 - PubChem (NCBI)
 - ChEMBL (EBI)
 - Nikkaji (JST)
- Gene expression
 - RefEx (DBCLS)
 - ExpressionAtlas (EBI)
- Samples
 - BioSamples (EBI/DDBJ)
 - JCM (RIKEN)

- Biomedical (Med2RDF)
 - ICGC, COSMIC, CIViC
 - DGIdb, OpenTG-Gates
 - ClinVar, dbSNP, dbVar
 - ExAC, gnomAD
 - HiNT, INstruct
- Glycome
 - GlyTouCan, GlycoEpitope, WURCS, GGDonto, PAConto
- Proteome
 - o jPOST
 - The Human Protein Atlas
- Pathway
 - Reactome (EBI)
- 0thers
 - MeSH (NCBI)
 - BioModels (EBI)
 - MBGD (NIBB/DBCLS)
 - Quanto (DBCLS)

Standardization requires community effort

- Data models
 - o Organism Genome Gene Variation Phenotype Disease Drug Multi-omics ...
- Ontology
 - o BioPortal and others (incl. FALDO, HCO, IDO, ...)
- Identifiers
 - Identifiers.org and compact identifiers
- Metrics
 - FAIR, YummyData, RDF guideline, .
- Workflows
 - o WES, CWL, Galaxy, ...
- Reusable Web Components
 - o BioJS, TogoStanza, ...

Thank you and join us!

- Organizing a hackathon is a demanding task but should be fruitful for the future
 - Many thanks and congratulations to the ELIXIR BioHackathon organizers especially to Rafa, Dana, Leyla, Victoria and local organizers
 - Let's get started and have fun!

- And hopefully see you next month at the NBDC/DBCLS BioHackathon 2018.
 - Register NOW! http://2018.biohackathon.org/

Will try to be a better thinker:)

I really appreciate organizers for the surprise gift!

