5 (1. Halbtag) | Operationsverstärker

Angelo Brade, Jonas Wortmann August 25, 2024 1 CONTENTS

Contents

1	Einleitung	2
2	Theorie	3
3	Voraufgaben	4
	3.1 A	4
	3.2 B	4
4	Auswertung	5

1 Einleitung

2 Theorie

3 Voraufgaben

3.1 A

Es gilt die Formel

$$\frac{1}{v} = \frac{1}{v_0} + k \qquad v = \frac{1}{\frac{1}{v_0} + k}.$$
 (3.1)

Für die Werte $k=0.1,\,v_0=10^4$ und $v_0=10^5$ ergibt sich

$$v_1 \approx 9.990$$
 $v_2 \approx 9.999.$ (3.2)

Mit der Näherung von $v=\frac{1}{k}$ ergibt sich

$$v_{\text{N\"{a}h}} = 10. \tag{3.3}$$

Die Abweichung von v_1 und v_2 von $v_{\text{N\"{a}h}}$ liegen jeweils bei 0.001% und 0.0001%.

3.2 B

Es gilt

$$U_x = U_{\text{in}} - kU_{\text{out}}$$

$$= U_{\text{in}} - kv_0U_x$$

$$= \frac{U_{\text{in}}}{1 + v_0k}.$$
(3.4)

Für $k=0.1,\,v_0=10^5$ und $U_{\rm in}=1\,{\rm V}$ ist

 \Leftrightarrow

$$U_x \approx 0.0001 \,\text{V}.\tag{3.6}$$

4 Auswertung

List of Figures

List of Tables