3.5 ПОВНІ СИСТЕМИ

ФУНКЦІЙ

3.5.1. Функції, що зберігають нуль та одиницю

Булева функція $f(x_1, x_2, ..., x_n)$ називається функцією, що зберігає $\mathbf{0}$, якщо на нульовому наборі вона дорівнює 0: f(0, 0, ..., 0) = 0.

Булева функція $f(x_1, x_2, ..., x_n)$ називається функцією, що зберігає 1, якщо на одиничному наборі вона дорівнює 1: f(1,1, ..., 1) = 1.

Приклад. Функції $x \wedge y$, $x \vee y$ зберігають 0:

$$0 \wedge 0 = 0$$
, $0 \vee 0 = 0$.

Дані функції також зберігають 1:

$$1 \wedge 1 = 1$$
, $1 \vee 1 = 1$.

Функція x не зберігає 0 і не зберігає 1:

$$\overline{0} = 1, \quad \overline{1} = 0.$$

Приклад. Чи зберігає 0 та 1 функція

$$f(x, y, z) = x \vee \overline{y} \overline{z}?$$

Розв'язок.

$$f(0, 0, 0) = 0 \lor \overline{0} \land \overline{0} = 0 \lor 1 \land 1 = 0 \lor 1 = 1,$$

 $f(1, 1, 1) = 1 \lor \overline{1} \land \overline{1} = 1 \lor 0 \land 0 = 1 \lor 0 = 1.$

 \Rightarrow функція зберігає 1 і не зберігає 0.

3.5.2 Монотонні функції

Нехай $\alpha=(\alpha_1,\alpha_2,...,\alpha_n)$ та $\beta=(\beta_1,\beta_2,...,\beta_n)$ – будь-які набори.

Для двох наборів
$$\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$$
 та $\beta = (\beta_1, \beta_2, ..., \beta_n)$ виконується відношення передування $\alpha \leq \beta$, якщо $\alpha_1 \leq \beta_1, \alpha_2 \leq \beta_2, ..., \alpha_n \leq \beta_n$.

Приклад. Набори $\alpha = (0, 1, 0, 1)$ та $\beta = (1, 1, 0, 1)$ знаходяться у відношенні передування.

Булева функція f називається **монотонною**, якщо для будь-яких пар наборів значень змінних $(\alpha_1, \alpha_2, ..., \alpha_n)$ та $(\beta_1, \beta_2, ..., \beta_n)$, для яких виконується відношення

$$(\alpha_1, \alpha_2, ..., \alpha_n) \leq (\beta_1, \beta_2, ..., \beta_n),$$

правильна і нерівність

$$f(\alpha_1, \alpha_2, ..., \alpha_n) \le f(\beta_1, \beta_2, ..., \beta_n).$$

Приклад. Дослідити на монотонність функцію $f(x, y) = x \wedge y$.

Розв'язок.

$$(0,0) \le (0,1),$$
 $f(0,0) = 0,$ $f(0,1) = 0,$ $f(0,0) \le f(0,1).$
 $(0,0) \le (1,0),$ $f(0,0) = 0,$ $f(1,0) = 0,$ $f(0,0) \le f(1,0).$
 $(0,0) \le (1,1),$ $f(0,0) = 0,$ $f(1,1) = 1,$ $f(0,0) \le f(1,1).$
 $(0,1) \le (1,1),$ $f(0,1) = 0,$ $f(1,1) = 1,$ $f(0,1) \le f(1,1).$
 $(1,0) \le (1,1),$ $f(1,0) = 0,$ $f(1,1) = 1,$ $f(1,0) \le f(1,1).$

 \Rightarrow функція $f(x, y) = x \land y \in$ монотонною.

Приклад. Дослідити на монотонність функцію $g(x, y) = x \oplus y$.

Розв'язок.

$$(0,0) \le (0,1), \quad g(0,0) = 0, \quad g(0,1) = 1, \ g(0,0) \le g(0,1).$$

$$(0,0) \le (1,0), \quad g(0,0) = 0, \quad g(1,0) = 1, \quad g(0,0) \le g(1,0).$$

$$(0,0) \le (1,1), \quad g(0,0) = 0, \quad g(1,1) = 0, \quad g(0,0) \le g(1,1).$$

$$(0, 1) \le (1, 1), \quad g(0, 1) = 1, \quad g(1, 1) = 0, \quad g(0, 1) \ge g(1, 1).$$

 \Rightarrow функція $g(x, y) = x \oplus y$ не є монотонною.

Приклад. Дослідити на монотонність функцію

$$h(x, y, z) = x \vee y \overline{z}.$$

Діаграма Хассе:

Теорема. Булева функція, відмінна від констант 0 і 1, є монотонною, якщо і тільки якщо вона припускає зображення формулою булевої алгебри без заперечень.

Приклад. Дослідити на монотонність функцію

$$f(x, y, z, t) = (\overline{x} \vee \overline{y}) \rightarrow (z \vee t).$$

Розв'язок.

$$(\overline{x} \vee \overline{y}) \rightarrow (z \vee t) = xy \vee z \vee t.$$

 \Rightarrow функція f(x,y,z,t) є монотонною.

3.5.3 Повнота та замкненість

Замиканням множини Σ булевих функцій називається множина [Σ], що складається з функцій, які можна одержати суперпозицією функцій з Σ .

Якщо $\Sigma = [\Sigma]$, то множина булевих функцій Σ називається замкненим класом.

Система булевих функцій $\Sigma = \{f_1, f_2, ..., f_n\}$ називається **функціонально повною**, якщо її замикання є множиною всіх можливих булевих функцій, що залежать від будь-якого числа змінних.

Теорема Поста (критерій повноти Поста).

Для того, щоб система булевих функцій $\Sigma = \{f_1, f_2, ..., f_n\}$ була повною, необхідно і достатньо, щоб вона містила:

- 1) хоча б одну функцію, що не зберігає нуль;
- 2) хоча б одну функцію, що не зберігає одиницю;
- 3) хоча б одну несамодвоїсту функцію;
- 4) хоча б одну немонотонну функцію;
- 5) хоча б одну нелінійну функцію.

Класи функцій. Існують п'ять класів булевих функцій: T_0 , T_1 , S, M, L, які називають класами Поста:

 T_0 — клас функцій, що зберігають нуль;

 T_1 — клас функцій, що зберігають одиницю;

S — клас самодвоїстих функцій;

M — клас монотонних функцій;

L — клас лінійних функцій.

Для повноти системи функцій необхідно і достатнью, щоб для кожного з п'яти замкнених класів T_0 , T_1 , S, M, L вона містила функцію, яка цьому класу не належить.

<u>Наслідок 1</u>. Доповнення будь-якого з класів Поста функцією, що не входить в цей клас, перетворить таку систему булевих функцій на функціонально повну. Інших класів з такою властивістю не існує.

Повна система булевих функцій називається *нескоромною*, якщо з неї не можна виключити жодної функції без втрати властивості повноти.

Повна система булевих функцій називається *нескоротною*, якщо з неї не можна виключити жодної функції без втрати властивості повноти.

<u>Наслідок 2</u>. Максимальна кількість булевих функцій у нескоротній функціонально повній системі дорівнює чотирьом, мінімальна — одній.

Приклад. Перевірити, чи є задані функції лінійними, монотонними, самодвоїстими, чи зберігають 0 та/або 1.

Зробити висновок щодо функціональної повноти заданого набору функцій

 $xy \lor xz \lor yz$, $x \oplus y \oplus z$, 1.

<u>Розв'язання.</u> **1**) $\varphi_1 = xy \lor xz \lor yz$

X	У	Z	xy	XZ	yz	φ_1
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

1.1)
$$\varphi_1(0,0,0) = 0$$
 — зберігає нуль

1.2)
$$\varphi_1(1,1,1) = 1$$
 — зберігає одиницю

1.3) *Самодвоїсть*. Функцію $f^*(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ називають двоїстою до функції $f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, якщо $f^*(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) = \overline{f(\overline{\mathbf{x}_1}, \overline{\mathbf{x}_2}, ..., \overline{\mathbf{x}_n})}$.

Функцію, що двоїста сама собі, тобто $f = f^*$, називають **самодвоїстою**.

X	У	Z	φ_1	$arphi_1^*$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

 $\Rightarrow \varphi_{\scriptscriptstyle 1}$ — самодвоїста функція

1.4) Діаграма Хассе (гіперкуб):

 $\varphi_{\scriptscriptstyle 1}$ — монотонна функція

1.5) **Лінійність**. Булеву функцію називають *лінійною*, якщо її поліном Жегалкіна не містить кон'юнкцій змінних.

X	У	Z	000	001	010	011	100	101	110	111
0	0	0	0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	1	0	1	
0	1	0	0	1	0	0	1	1		
0	1	1	1	1	0	1	0			
1	0	0	0	1	1	1				
1	0	1	1	0	0					
1	1	0	1	0						
1	1	1	1							

$$\varphi_1(x, y, z) = yz \oplus xz \oplus xy$$

 $\Rightarrow \varphi_1$ — не лінійна функція

2)
$$\varphi_2(x, y, z) = x \oplus y \oplus z$$

X	У	Z	x⊕y	$ \varphi_2 $	$ arphi_2^* $
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

2.1) $\varphi_2(0,0,0) = 0$ — функція зберігає нуль

2.2) $\varphi_2(1,1,1) = 1$ — функція зберігає одиницю

2.3) $\varphi_2 = \varphi_2^* \implies \varphi_2$ — самодвоїста функція

2.4) Діаграма Хассе (гіперкуб):

 $\Rightarrow g_2$ — не монотонна функція

2.5) $\varphi_2(x, y, z) = x \oplus y \oplus z$ — лінійна функція

3) $\varphi_3 = 1$ — не зберігає константу 0, несамодвоїста, монотонна, лінійна функція

Таблиця Поста:

	T_0	T_1	S	M	L
$\varphi_1 = xy \lor xz \lor yz$	+	+	+	+	_
$\varphi_2 = x \oplus y \oplus z$	+	+	+	_	+
$\varphi_3 = 1$		+		+	+

 \Rightarrow набір функцій $\varphi_1, \varphi_2, \varphi_3$ не ε функціонально повним