Analysis 1

Mike Desgrottes

August 2020

1

Theorem 1. Show that Set has a subobject classifier and determine if Grp has a subobject classifier.

Proof. Let $\omega=\{0,1\}$, we shall show that the diagram $\begin{array}{c} X \stackrel{\phi}{\longrightarrow} 1 \\ \downarrow^j & \downarrow^\psi \\ A \stackrel{\eta}{\longrightarrow} \omega \end{array}$ commutes for all monomorphism $j:X\to A$ where 1 is a terminal object of S. . . .

 $\eta(x) = 1$ if $x \in X$, and 0 otherwise, and $\psi(1) = 1$. Then necessarily, we see that $\eta(j(x)) = \psi(\phi)$. So, the diagram commutes. Suppose that $\tilde{\eta}$ is another morphism that make the diagram commutes. Then $\eta(j(x)) = \tilde{\eta}(j(x)) \implies \eta(x) = \tilde{\eta}(x)$ whenever $x \in X$. This also implies that $\eta(x) = \tilde{\eta}(x)$ for all x. The two morphisms coincide and are one and the same.

Theorem 2. Show that in every category with products/coproducts that

$$A\pi B \cong B\pi A$$

and

$A \coprod B \cong B \coprod A$

Proof. $A\pi B$, and $B\pi A$ are both final objects in the category $C_{A,B}$. $A \coprod B$, and $B \coprod A$ are both initial objects in the category $C^{A,B}$. Initial and final objects are isomorphic when they exists in the same category.

Theorem 3. Let X be a set, A an abelian group and $\phi: X \to A$. Prove that there exists a unique abelian

group homomorphism $\tilde{\phi}: G/H \to A$ such that $X \xrightarrow{\phi} G/H$ commutes where G = F(x) and H = [G, G]

Proof. We shall show that the following diagram commutes.

$$X \xrightarrow{j} G \xrightarrow{\psi} G/H$$

$$\downarrow \tilde{\psi} \qquad \tilde{\phi}$$

$$A$$

G being a free group forces $\tilde{\psi}$ to be unique and the first triangle commutes. The first isomorphism theorem makes the second triangle commutes. Therefore, the outer triangle also commute because $\psi(\psi(j(x))) = \phi(x)$. The uniqueness of $\tilde{\phi}$ implies that G/H is an initial object in the category F^A . $F^{Ab}(X)$ is also an initial object. Therefore $G/H \cong F^{Ab}(X)$.

Theorem 4. Let $\phi: G \to H$, and $\psi: H \to K$ are morphisms in a category with products. Prove that

$$(\psi \circ \phi)\pi(\psi \circ \phi) = (\psi\pi\psi) \circ (\phi\pi\phi)$$

Proof.

Theorem 5. Let $H \leq G$ be a subgroup. Prove that

$$G \times G/H \longrightarrow G/H$$
 and

$$G \times G/(gHg^{-1}) \longrightarrow G/(gHg^{-1})$$
 are 3isomorphic

Proof. H is normal. $H = gHg^{-1}$ for all $g \in G$.

Theorem 6. Let G_1, G_2 be two groups and $\phi: F(G_1) \to G_1$, and $\psi: F(G_2) \to G_2$ be natural epimorphism. Prove that $G = F(G_1 \bigcup G_2) / < Ker\phi_1, Ker\phi_2 > is a coproduct in Grp.$

Proof. First, we see that G come with pair of morphism. $j_{G_1}:g_1\to[g_1]$ and $j_{G_2}:g_2\to[g_2]$ by sending each element of the group to their equivalence classes in the quotient group. If we let Z be a group endowed with pair of morphism f_1, f_2 , then we have to show that there exists a unique morphism σ such that the diagram

 $G \xrightarrow{\sigma} Z Z \text{ The map given by } \sigma([g_1]) = f_1(g_1) \text{ and } \sigma([g_2]) = f_2(g_2) \text{ where } g_1 \in G_1 \text{ and } g_2 \in G_2$ G_2

Theorem 7. Prove that Grp has cokernels. Determine if Grp has coequalizer.

Proof. Let $\phi: G \to G^{'}$, we proceed by proving that $\operatorname{coker} \phi = \operatorname{G}^{'} / N$ where N is the smallest normal subgroup

 $G \xrightarrow{\phi} G' \xrightarrow{\alpha} L$ $\downarrow^{\phi} \downarrow^{\psi} \downarrow^{\phi}$ G'/N

that contains $im\phi$. Intersection of normal subgroups is again normal.

The diagram commute with $\psi(gN) = \alpha(g)$ and $\phi(g) = gN$. The function is well-defined because N is normal. $gN = hN \implies gh^{-1} \in N \implies \psi(gN) = \psi(hN)$ because $\psi(gh^{-1}N) = \psi(N)$. The uniqueness of ψ is because it is completely determined by α .