

Statistical-Computational Tradeoffs in High-Dimensional Single Index Models

Lingxiao Wang, Zhuoran Yang, Zhaoran Wang

Abstract

- We study the statistical-computational tradeoffs in the single index model (SIM).
- We characterize the computational cost via statistical query model.
- When $Cov(Y, X^{\top}\beta^*)$ is small, no algorithm can achieve the information-theoretic limit within polynomial oracle complexity.

Statistical Model

We study the following high-dimensional single index model,

$$Y = \begin{cases} f_1(X^{\top}\beta^*) + \epsilon, & \text{with probability } \alpha, \\ f_2(X^{\top}\beta^*) + \epsilon, & \text{with probability } 1 - \alpha. \end{cases}$$

Stein's associations:

$$S_1(Y) = \mathsf{Cov}(Y, X^{\top} \beta^*), \quad S_2(Y) = \mathsf{Cov}(Y, (X^{\top} \beta^*)^2).$$

- Link functions: f_1 with nonzero Stein's associations and f_2 with zero first-order and nonzero second-order Stein's associations.
- ullet Mixing probability lpha controls the magnitude of first-order Stein's association.

Associated Testing Problem

$$H_0: \beta^* = 0 \text{ versus } H_1: \beta^* \neq 0.$$

- The difficulty of testing is characterized by the signal-to-noise ratio $\kappa(\beta^*, \sigma) = \|\beta^*\|^2/\sigma^2$.
- Associated parameter spaces:

$$\mathcal{G}_{0} = \{ (\beta^{*}, \sigma) \in \mathbb{R}^{d+1} : \beta^{*} = 0 \},$$

$$\mathcal{G}_{1}(s, \gamma_{n}) = \{ (\beta^{*}, \sigma) \in \mathbb{R}^{d+1} : \|\beta^{*}\|_{0} = s, \kappa(\beta^{*}, \sigma) \geq \gamma_{n} \}.$$

- Worst-case risk: sum of type-I and type-II errors. Minimax risk: minimal worst-case risk possible given the hardest model.
- Minimax seperation rate (γ_n^*) : for $\gamma_n = o(\gamma_n^*)$, minimax risk converges to 1. For $\gamma_n = \Omega(\gamma_n^*)$, minimax risk converges to 0.

Oracle Computational Model

High-Level Computational Primitive [Nemirovski, Yudin'83; Kearns'93]

- Algorithm queries a statistical oracle with query function $q:\mathcal{X}\mapsto\mathbb{R}^d.$
- ullet Statistical oracle responds with noise: $\mathbb{E}[q(X)] + \epsilon$.
- Oracle complexity: number of rounds that the algorithm queries the statistical oracle.
- Computational risks and separation rate $(\bar{\gamma}_n^*)$: risks and separation rates restricted to algorithms with polynomial query complexity (computationally tractable algorithms).

Lower Bounds

Proposition 1. Let β^* be sparse such that $s = o(d^{1/2 - \delta})$ for some absolute constant $\delta > 0$. For

$$\gamma_n = o\left(\sqrt{\frac{s\log d}{n}} \wedge \frac{1}{\alpha^2} \cdot \frac{s\log d}{n}\right),$$

any test is asymptotically powerless.

Theorem 1. Let β^* be sparse such that $s=o(d^{1/2-\delta})$ for some absolute constant $\delta>0$. For

$$\gamma_n = o\left(\left\{\sqrt{\frac{s^2}{n}} \wedge \frac{1}{\alpha^2} \cdot \frac{s}{n}\right\} \vee \gamma_n^*\right),$$

any computational tractable test is asymptotically powerless.

Matching Upper Bounds There exist algorithms and computationally tractable algorithms that attains the lower bounds above.

$$\gamma_n^* = \sqrt{\frac{s \log d}{n}} \bigwedge \frac{1}{\alpha^2} \cdot \frac{s \log d}{n}, \quad \bar{\gamma}_n^* = \sqrt{\frac{s^2}{n}} \bigwedge \frac{1}{\alpha^2} \cdot \frac{s \log d}{n}.$$

Phase Transition

ullet Gap: the difference between $\bar{\gamma}_n^*$ and γ_n^* .

- For $0 < \alpha \le ((\log d)^2/n)^{1/4}$, the gap is invariant to α .
- For $(\log^2 d/n)^{1/4} \le \alpha \le (s \log d/n)^{1/4}$, a larger α implies a smaller gap.
- For $(s \log d/n)^{1/4} < \alpha \le 1$, the gap vanishes.

Implication to Parameter Estimation

Theorem 2. For $n=o(s^2/\gamma_n^2 \wedge s \log d/(\gamma_n \cdot \alpha^2))$, any computationally tractable algorithm that estimates β^* is inconsistent. Specifically, it holds that

$$\overline{\mathbb{P}}(\|\widehat{\beta} - \beta^*\|_2 \ge \sigma \cdot \|\beta^*\|_2^{-1} \cdot \gamma_n/4) \ge C,$$

where ${\cal C}>0$ is an absolute constant.