## Estatística

Professora: Patrícia Ferreira Paranaíba

### Regressão e Correlação

- Para estudar a relação entre duas (ou mais) variáveis quantitativas utilizamos a análise de regressão e correlação destas variáveis.
  - Altura e peso espera-se que quanto mais alto mais pesado é o individuo;
  - Quantidade de memória RAM e tempo de processamento espera-se que com mais memória RAM tenha-se um tempo menor de processamento.
- Regressão linear simples é o estudo que busca ajustar uma equação a um conjunto de dados de forma que a relação entre duas variáveis quantitativas possa ser expressa matematicamente.
- Correlação é um número entre -1 e 1 que mede o grau relacionamento entre duas variáveis quantitativas.
- Definimos um conjunto de variáveis (x, y), sendo x a variável independente e y a variável dependente. A primeira forma de verificar a relação de duas variáveis é traçar o gráfico de dispersão do dados.

### Gráfico de dispersão

 O gráfico de dispersão contém uma variável independente representada no eixo horizontal e a variável dependente representada no eixo vertical.



Figura: Indícios de correlação positiva, aumentando x, y também aumenta.



Figura: Indícios de correlação negativa, aumentando x, y diminui.



Figura: Indícios de ausência de correlação.

• O gráfico de dispersão da um ideia da existência de correlação, entretanto não apresenta qual a magnitude da correlação. Para determinar a magnitude da correlação utilizamos o coeficiente de correlação populacional  $(\rho)$ . Em geral trabalhamos com amostras, e para estimar o coeficiente de correlação populacional pode-se utilizar o coeficiente de correlação amostral.

$$r = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i} (x_i - \bar{x})^2 \sum_{i} (y_i - \bar{y})^2}}$$

### sendo que:

- r > 0 correlação positiva;
- r < 0 correlação negativa;
- r = 0 ausência de correlação.

 Desta forma, deve ser realizado um teste de hipóteses para o coeficiente populacional, com base no resultado obtido na amostra, que pode ser definido da seguinte maneira:

$$\begin{cases} H_0: & \rho = 0 \\ H_1: & \rho \neq 0 \end{cases}$$

• Rejeita-se  $H_0$  se  $|t_c| > t_{\frac{\alpha}{2}}$ , em que:

$$t_c = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

nesse caso v = n - 2 graus de liberdade.

# Exemplo: Em uma pesquisa feita com 7 famílias com renda bruta mensal entre 10 e 25 salários mínimos observou-se:

- X: renda bruta mensal (em salários mínimos).
- Y: porcentagem da renda bruta gasta com assistência médica.

| X | 10   | 12   | 14   | 16   | 18   | 20   | 22   |
|---|------|------|------|------|------|------|------|
| y | 11,8 | 10,2 | 12,1 | 13,2 | 15,1 | 15,4 | 15,6 |



Tabela: Tabela auxiliar para o calculo da correlação

| Observação | X   | у    | $(x-\overline{x})$ | $(y-\overline{y})$ | $(x-\overline{x})(y-\overline{y})$ | $(x-\overline{x})^2$ | $(y-\overline{y})^2$ |
|------------|-----|------|--------------------|--------------------|------------------------------------|----------------------|----------------------|
| 1          | 10  | 11,8 | -6                 | -1,5               | 9                                  | 36                   | 2,25                 |
| 2          | 12  | 10,2 | -4                 | -3,1               | 12,4                               | 16                   | 9,61                 |
| 3          | 14  | 12,1 | -2                 | -1,2               | 2,4                                | 4                    | 1,44                 |
| 4          | 16  | 13,2 | 0                  | -0,1               | 0                                  | 0                    | 0,01                 |
| 5          | 18  | 15,1 | 2                  | 1,8                | 3,6                                | 4                    | 3,24                 |
| 6          | 20  | 15,4 | 4                  | 2,1                | 8,4                                | 16                   | 4,41                 |
| 7          | 22  | 15,6 | 6                  | 2,3                | 13,8                               | 36                   | 5,29                 |
| Total      | 112 | 93,4 |                    |                    | 49,6                               | 112                  | 26,25                |

$$\overline{x} = \frac{\sum_{i}^{n} x_{i}}{n} = \frac{112}{7} = 16$$

$$\overline{y} = \frac{\sum_{i}^{n} y_{i}}{n} = \frac{93, 4}{7} = 13, 3$$

$$r = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}}}$$

$$= \frac{49, 6}{\sqrt{112 \times 26, 25}} = 0,9148$$

Verificou que o valor da correlação é r=0,9148.

• Vamos testar a hipótese se este valor é diferente de zero:

$$\begin{cases} H_0: & \rho = 0 \\ H_1: & \rho \neq 0 \end{cases}$$

• Temos v = n - 2 = 7 - 2 = 5 graus de liberdade

$$t_c = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}} = \frac{0,9148}{\sqrt{\frac{1-0,9148^2}{5}}} = 5,06$$

- Tomando-se  $\alpha = 0,05$ , temos  $t_{0,025;5} = 2,571$ .
- Como  $|t_c| > t_{\frac{\alpha}{2}}$ , rejeita-se  $H_0$  ao nível de 5% de significância. Logo a correlação é diferente de zero e é igual a 0,9148.

## Regressão linear simples

 $\bullet\,$  A função que expressa a relação linear entre X e Y é dada por

$$y = a + bx + \epsilon$$

#### em que:

- a é coeficiente linear, interpretado como o valor da variável de dependente quando a variável inpendente é igual a 0;
- b é coeficiente de regressão, interpretado como acréscimo na variável dependente para a variação de uma unidade na variável;
- $oldsymbol{\epsilon}$  são os erros aleatórios de uma população normal, com média 0 e variância constante.
- Em geral, uma medição tem imperfeições que dão origem a um erro no resultado da medição.
- O erro aleatório se origina de variações temporais ou espaciais e ocorre de forma imprevisível. Os efeitos de tais variações (daqui para a frente denominaremos efeitos aleatórios) são a causa de variações em observações repetidas da grandeza.

### Estimadores: Método dos Mínimos Quadrados

• Os estimadores para os coeficientes são:

$$a = \overline{y} - b\overline{x}$$
  $b = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$ 

 Após ajustar o modelo de regressão deve-se realizar um teste de hipótese para verificar se os coeficientes são diferentes de zero:

$$\begin{cases} H_0: & a = 0 \\ H_1: & a \neq 0 \end{cases} \quad H_0: \quad b = 0 \\ H_1: & b \neq 0 \end{cases}$$

 A análise de variância é uma técnica utilizada para testar o ajuste da equação como um todo, ou seja, um teste para verificar se a equação de regressão obtida é significativa ou não.

Tabela: Análise de Variância para Regressão Linear Simples

| Fontes de Variação GL |     | Soma de Quadrados (SQ) | Quadrado Médio (QM) | Fc           |  |
|-----------------------|-----|------------------------|---------------------|--------------|--|
| Regressão             | 1   | SQRegressão            | QMRegressão         | QMRegressão/ |  |
| Erro                  | n-2 | SQErro                 | QMErro              | QMErro       |  |
| Total                 | n-1 | SQTotal                |                     |              |  |
|                       |     |                        |                     |              |  |

$$\begin{array}{rcl} \mathrm{SQTotal} &=& \displaystyle \sum_i (y_i - \bar{y})^2 \\ \mathrm{SQRegress\~ao} &=& \displaystyle b^2 \displaystyle \sum_i (x_i - \bar{x})^2 \\ \mathrm{SQErro} &=& \mathrm{SQTotal} - \mathrm{SQRegress\~ao} \\ \mathrm{QMRegress\~ao} &=& \mathrm{SQRegress\~ao} \\ \mathrm{QMErro} &=& \displaystyle \frac{SQErro}{n-2} \end{array}$$

- O teste de hipótese para avaliar se o modelo de regressão é significativo é feito da seguinte forma:
  - Estabelecer o nível de significância  $\alpha$ ;
  - Obter o valor tabelado  $F_{\alpha}$ ;
  - Rejeita-se a hipótese  $H_0$ , se  $F_c > F_\alpha$ .
- O coeficiente de determinação  $r^2$ , é definido por:

$$r^2 = \frac{\text{SQRegressão}}{\text{SQTotal}} \quad 0 < r^2 < 1$$

representa a porcentagem da variação total que é explicada pela equação de regressão, quanto maior o seu valor melhor.

Exemplo: Utilizando o exemplo da renda bruta mensal (em salários mínimos) e a porcentagem da renda bruta gasta com assistência médica.

$$b = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i} (x_i - \bar{x})^2}$$
$$= \frac{49, 6}{112} = 0, 44$$
$$a = \bar{y} - b\bar{x}$$
$$= 6, 26$$

• Assim a equação de regressão é igual a

$$y = 6,26+0,44x$$



• Vamos verificar se a regressão é significativa

$$\begin{aligned} \text{SQTotal} &=& \sum_{i} (y_{i} - \bar{y})^{2} = 26, 25 \\ \\ \text{SQRegressão} &=& \frac{\left(\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})\right)^{2}}{\sum_{i} (x_{i} - \bar{x})^{2}} \\ &=& \frac{(49, 6)^{2}}{112} = 21, 97 \\ \\ \text{SQErro} &=& \text{SQTotal} - \text{SQRegressão} \\ &=& 26, 25 - 21, 97 = 4, 28 \end{aligned}$$

Tabela: Análise de Variância para Regressão Linear Simples

| Fontes de Variação | GL | Soma de Quadrados (SQ) | Quadrado Médio (QM) | Fc    | $F_{\alpha}$ |
|--------------------|----|------------------------|---------------------|-------|--------------|
| Regressão          | 1  | 21,97                  | 21,97               | 25,55 | 6,60         |
| Erro               | 5  | 4,28                   | 0,86                |       |              |
| Total              | 6  | 26,25                  |                     |       |              |

- Como o  $F_c > F_\alpha$ , rejeita-se  $H_0$ , logo o modelo de regressão linear é significativo.
- Obtendo o  $r^2$

$$r^2 = \frac{\text{SQRegress\~ao}}{\text{SQTotal}} = \frac{21,97}{26,25} = 0,8370 = 83,70\%$$

 Assim verifica-se que é a renda bruta explica 83, 70% da variação do gasto com assistência médica.