Instrumentação 1

Conceitos Iniciais de Instrumentação, Sensores, Sinais e Condicionamento de Sinais.

Medição de Grandezas Elétricas e Atuadores.

Professor Cicero Martelli DAELN/CPGEI

profmartelli.instrumentacao@gmail.com

Visão Geral

Visão Geral

Tópicos

- Parte 1: Sensores e Instrumentação
- Parte 2: Amplificadores Operacionais
- Parte 3: Sinais Analógicos, Digitais e Conversores
 - Conversão Analógica/Digital;
 - Conversão Digital/Analógica.

Parte 4: Condicionamento de Sinais

- Mudança de nível;
- Amplificação;
- Casamento de impedâncias;

Parte 5: Medição de Grandezas Elétricas e Atuadores

Etapas do Projeto

- Conhecimento sobre o processo a ser monitorado e suas variáveis
- Determinação das variáveis espúrias
- Escolha dos Instrumentos Apropriados:
 - Escolha dos transdutores:
 - Princípio de funcionamento
 - Conhecimento sobre tipos, características, erros, limitações, etc
 - Análise dos instrumentos:
 - Relação entre mensurando e leitura
 - Como é afetado por variáveis espúrias
 - Análise da propagação de erros em todo o sistema de medição
- Mas primeiro, vamos aos conceitos...

Definições Iniciais

- Sensor: É definido com um dispositivo que é sensível a um fenômeno físico (luz, temperatura, impedância elétrica, etc) e (normalmente) converte essa grandeza para uma grandeza elétrica (tensão e corrente).
 - Condicionador: Circuito eletrônico para amplificação, casamento de impedância, mudança de nível, etc.
 - Transmissor: Cabo coaxial, par trançado, rádio, GPRS, etc. Pode ser analógica ou digital.
 - Transdutor: Pode ser o sensor ou sensor + condicionador ou sensor + cond. + transmissor.

Função de Transferência

- Determina as relações que existem entre as entradas e saídas de um sistema de medição
- Caracteriza cada dispositivo de um sistema de medição
- Depende dos princípios físicos que regem o comportamento do dispositivo
- Em geral, os dispositivos de um sistema de medição são construídos visando uma função de transferência linear

Função de Transferência

- Função de Transferência (Curva) de Aferição ou Calibração:
 - Levantamento experimental da função de transferência.
 - Procedimento de Calibração

- Função de Transferência
 Experimental
 - Equação matemática que melhor descreve a curva de aferição na faixa de valores de utilização do instrumento - tipicamente pelo Método dos Mínimos Quadrados

Faixa (Range)

 Limites nos quais a grandeza é medida, recebida ou transmitida. Indicado em limite inferior e superior. Exemplo: faixa de temperatura de -10°C a 100°C.

Sensibilidade (Fator de Escala)

 Razão da variação na saída pela variação da entrada depois do regime permanente ser alcançado. Exemplo: a sensibilidade de um termômetro pode ser: 1mV/ºC.

Matematicamente:

Resolução

 Menor variação no sinal de entrada (mensurando) que resultará numa variação mensurável na saída;

- Se a resolução de um determinado voltímetro digital é de 1mV, isso significa que o dígito menos significativo na escala é a unidade de mV;
- Ou seja, para o dígito menos significativo ser alterado, a variação mínima da entrada deve ser 1mV.

Linearidade

- Indica o máximo desvio da função de transferência do instrumento de uma reta de referência média
- Aplica-se a sistemas de medição projetados para serem lineares.

Conformidade

- Quantifica o quanto a função de transferência se conforma à função de transferência prevista teoricamente.
- Máximo desvio da função de transferência do instrumento em relação a uma curva de referência.

Zona Morta

- Região da curva que apresenta sensibilidade nula
- A faixa na qual a entrada é variada sem iniciar mudança observável na saída.
- Geralmente expressa em percentagem da faixa total.

Exatidão e Precisão

- Exatidão: Qualidade da medição que assegura que a medida coincida com o valor real da grandeza considerada.
- Precisão: Qualidade da medição que representa a dispersão dos vários resultados, correspondentes a repetições de medições quase iguais, em torno do valor central.

Histerese

Offset e Drift

 Offset: Define-se como o desvio de zero do sinal de saída quando a entrada é zero;

 Drift: Descreve a mudança da leitura em zero do instrumento como tempo.

Amplificadores Operacionais

Amplificador Operacional (Amp Op)

- Circuito projetado inicialmente para realizar operações matemáticas em computadores analógicos elétricos (usando válvulas). De onde recebeu o nome de "operacional": soma, inversão, log, exponenciação, integração, diferenciação, multiplicação.
- Basicamente são de dois tipos: amplificador de tensão (VFA) e de corrente (CFA). No modelo ideal tem duas entradas simétricas e uma saída.

AmpOp – Termos Usados

Termos usados:

Amp Op Ideal

- Ganho de malha aberta (A_{vo}) infinito: A função do AmpOp é amplificar (geralmente um sinal de tensão). Quando não há realimentação de sinal, o ganho deve ser idealmente infinito. Prático ganho entre 20000 e 200000.
- Impedância de entrada (Z_{in}) infinita: razão entre tensão e corrente de entrada. No caso de impedância infinita, não haverá carga para a fonte de sinal. Prático corrente de entrada de alguns pA a alguns mA.
- Impedância de saída (Z_{out}) zero: o AmpOp age como um fonte de tensão ideal, com impedância em série 0W.
 Prático - saída entre 20W a 200W.

Amp Op Ideal

- Ganho de modo comum (A_{cm}) zero: valor da saída v_o quando as entradas v₊ e v₋ possuem o mesmo valor. A equação é dada por A_{cm} = (v₊ + v₋)/2. Prático: saída chega a alguns mV.
- Ganho de modo diferencial (A_d) infinito: valor da saída quando as entradas v₊ e v₋ possuem valores diferentes. A equação é dada por A_d = (v₊ v₋). Na prática é o ganho de malha aberta, ou A_{vo}.
- Razão de Rejeição de Modo Comum (CMMR common mode rejection ratio) infinita: relação entre os ganhos do modo diferencial e modo comum = A_d/A_{cm}. Prático dado em dB, geralmente várias dezenas a centenas de dB.

Amp Op Ideal

- Largura de Banda (BW) infinita: idealmente o AmpOp deve amplificar desde CC até qualquer frequência com o mesmo ganho. Prático: existe limitação.
- Deslocamento de tensão de saída (offset, V_{io}) zero: quando as duas entradas forem iguais (modo comum) a tensão de saída será zero. Prático – alguns mV. Este dado, combinado com o A_{vo}, dá origem ao CMRR.
- Adição de Ruído zero: não há adição de ruído ao sinal sendo operado. Prático – alguns dB podem ser acrescidos, dependendo inclusive da frequência. (térmico, contato, etc)

AmpOp Ideal - Análises

Amplificador Inversor e conceito de curto circuito virtual entre as entradas v_+ e v_- :

$$i_1 + i_2 = 0$$

Então:

$$\frac{v_s}{R_1} + \frac{v_o}{R_2} = 0$$

$$v_o = -\frac{R_2 v_s}{R_1}$$

Exemplos....

AmpOp Ideal

Amplificador Inversor; Não Inversor e Seguidor:

$$Eo = \left(1 + \frac{Ro}{R_1}\right)(E_1)$$

$$Eo = (E_1)$$

- Alguns valores importantes: potência fornecida; corrente de saída, tensão de saída pico a pico
- Tensão de saída: geralmente até 1V abaixo da alimentação. Alternativa – usar modelos "<u>rail to rail</u>"

AmpOp Ideal

Amplificadores Somador e Subtrator:

$$Eo = -\frac{Ro}{Ri}(E1 + E2 + E3 + \dots)$$

$$Eo = \frac{Ro}{Ri}(E2 - E1)$$

Amplificador de Instrumentação

- O amplificador de instrumentação mais simples é o amplificador de diferença.
- Objetivo medir pequenas tensões diferenciais que contêm altos sinais de modo comum.

Amplificador de Instrumentação

$$v_O = -\frac{R_4}{R_3} \left(1 + \frac{2R_2}{R_1} \right) (v_1 - v_2)$$

Amplificador Logarítmico

Amplificador de Raiz Quadrada

A característica corrente-tensão do MOSFET segue uma relação da raiz quadrada.

Amplificador Anti-logarítmico

Sinais Analógicos, Digitais e Conversores

Sinais Analógicos e Digitais

- Sinal analógico é contínuo no tempo. Carrega a informação todo o intervalo de tempo de observação;
- Sinal digital é formado por uma série de números discretos, cada um deles correspondendo a um valor do sinal analógico em um certo instante de tempo.

Por que digital?

- Facilidade para projetar circuitos não importam os valores exatos de tensão, apenas a faixa (alta ou baixa).
- Facilidade de armazenamento de informação.
- Os circuitos digitais são menos afetados por ruídos.
- As operações podem ser definidas através de um conjunto de instruções previamente armazenadas (programa).
- Grande disponibilidade processadores digitais de sinais (DSP).

Sinais Analógicos e Digitais

Conversor Analógico/Digital

Amostragem:

- O sinal amostrado NÃO é o sinal original: SEMPRE há perda de informação;
- Tudo o que ocorre entre uma amostragem e outra é perdido;
- A amostragem tem que ser pelo menos duas vezes mais "rápida" do que o mais "rápido" evento (Critério de Nyquist);
- Corolário: para garantir Nyquist, procura-se usar um filtro "antialiasing", ou seja, um filtro Passa-Baixas em aproximadamente 2 vezes a máxima frequência desejada;
- Utiliza-se também a retenção nesta etapa do processo:

Conversor Analógico/Digital

Quantização:

- Exemplo: ADC de 8 bits = 28 = 256 níveis
- Sinal de ±180V = 360V total → resolução = 360/256 = 1,406V
- Desta forma uma leitura digital, p.ex. 189, resulta em +85,7V (1,406*189-180), com um erro de $\pm0,7V$ = 1,406/2. Ou seja, 85,7V pode ser qualquer valor entre 85,0V e 86,4V!

Aproximações Sucessivas

- É necessário um conversor D/A para gerar um nível para comparação.
- Para um ADC de N bits, até N comparações são necessárias.

The successive approximation ADC requires N sequential comparisons.

Conversor Digital/Analógico

- Também apresenta problemas de quantização;
- Recebe um número binário, transforma em um nível analógico discreto (amostrado);

Passa por um filtro (integrador) e recupera o sinal analógico contínuo.

Condicionamento de Sinais

Condicionamento de Sinais

- Para o processamento de sinais é necessário o condicionamento
- Condicionar um sinal é conformá-lo para que possa ser lido por outros circuitos.
- Quando a grandeza a ser medida não é elétrica, utiliza- se de transdutores que geram um sinal elétrico desta grandeza.
- Necessidade de uma saída padronizada, por exemplo em tensão de 0 a 5V ou em corrente de 4 a 20 mA.

Etapas do Condicionamento de Sinais

- Mudança de nível
- Amplificação;
- Casamento de impedâncias;
- Linearização;
- Filtragem;
- Equalização (para que este ganhe níveis de tensão adequados, com boa relação sinal/ruído e distorção harmônica mínima)

Mudança de Nível

- Muito usado em condicionamento de sinais.
- Pode incorporar mudança na impedância de entrada.
- Precisa manter a resposta em frequência.

Amplificação

 Sinais de baixa intensidade devem ser amplificados para aumentar a resolução e reduzir o ruído. Para uma maior precisão, o sinal deve ser amplificado de forma que a máxima tensão do sinal a ser condicionado coincida com a máxima tensão de entrada do conversor A/D.

Casamento de Impedâncias

 Característica importante na interface entre sistemas, quando uma diferença entre impedância interna do sensor e do estágio seguinte pode causar erros na medida.

Isolação

- Provê isolação dos sinais dos sensores/transdutores em relação à entrada do conversor A/D, visando à segurança.
- O sistema a ser monitorado pode conter sinais de alta tensão que podem danificar o conversor.
- Tornar imunes os dispositivos às diferenças de potencial de terra ou tensões de modo comum.
 - Quando as entradas do sinal a ser adquirido se referem a um potencial terra, podem ocorrer as chamadas "correntes de loop", que podem causar curtos de terra.

Exemplo

Monte um circuito de condicionamento para leitura de um sinal de tensão de uma tomada de rede elétrica (127V_{RMS}), considerando as seguintes condições:

- Será utilizado um conversor A/D de 12 bits com entrada entre 0V e 3V;
- Os AmpOps a serem utilizados têm alimentação simétrica de +12V e -12V;
- O sinal de entrada poderá ter um valor até 30% superior ao valor nominal em regime (e deve ser medido).

Dicas:

- Poderá ser utilizado um divisor resistivo na entrada;
- Será necessário um circuito para mudança de nível e amplificação;
- Pode utilizar simulação (Pspice 9.1) para auxílio e verificação.

Medição de Grandezas Elétricas e Atuadores

Sensor

sensory (adj.)

"of or pertaining to sense or sensation, conveying sensation," 1749, from Latin sensorius, from sensus, past participle of sentire "to perceive, feel" (see sense (n.)).

- Um sistema sensor consiste em um instrumento que converte uma variável física ou química (o mensurando) em um formato que seja possível de ser memorizado (a medição).
- -Com a finalidade de que as medições sejam comparáveis, costuma-se usar sistema padrão de unidades de forma que a medição realizada por um instrumento pode ser comparada com aquela realizada por outro.

Na régua o mesurando é o comprimento e a medida é o número

de unidades (m, " etc)

Modelo de um instrumento de medição:

*sensor: converte uma variáv de entrada física/química em uma variável de sinal de saída

Typical signal variables

Common physical

variables

Grandezas elétricas

As grandezas elétricas mais comuns e que requerem medições com certa frequência:

- Tensão (V)
- Corrente (A)
- Potência (W)
- Impedância (□)
- ...
- Fator de potência
- Fase (°)
- Capacitânica (F)
- Indutância (H)
- Amplitude dos campos elétricos (V/m) e magnéticos
- Permissividade elétrica
- Permeabilidade magnética
- ...
- Ruído
- Distorção
- ...
- m_e, carga elétrica, portadores, junções etc...

- Instrumentos que medem tensão elétrica são chamados de VOLTÍMETROS

* O circuito equivalente de um voltímetro pode ser aproximado por uma impedância resistiva Zv (ou uma resistência pura para voltímetro DC).
Assim:

Iv = U/Zv

Onde U é a tensão medida. Quanto maior a impedância interna, melhor é o voltímetro uma vez que ele não interage de forma significativa com o circuito sendo medido.

- Princípios de operação:

- interações eletromecânicas para produção de torque (analógico)
- efeitos térmicos resultantes da circulação de corrente elétrica (analógico)
- voltímetros eletrônicos semicondutores (digital)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Class	Operating principle	Subclass	Application field	
Electromagnetic	Interaction between currents and magnetic fields	Moving magnet	Dc voltage	
		Moving coil	Dc voltage	
		Moving iron	Dc and ac voltage	
Electrodynamic	Interactions between currents	_	Dc and ac voltage	
Electrostatic	Electrostatic interactions	-	Dc and ac voltage	
Thermal	Current's thermal effects	Direct action	Dc and ac voltage	
		Indirect action	Dc and ac voltage	
Induction	Magnetic induction	-	Ac voltage	
Electronic	Signal processing	Analog	Dc and ac voltage	
		Digital	Dc and ac voltage	

Voltímetros eletromecânicos:

FIGURE 37.2 Dc moving-coil meter.

Voltímetro DC com bobina móvel

- A corrente I interage com o campo magnético B (radial) gerando um força F que induz um torque no ponteiro

FIGURE 37.4 Ac moving-coil meter.

Voltímetro AC com bobina móvel

 O fluxo de corrente nas duas bobinas, móvel e estacionária, gera campos magnéticos cuja interação gera um força F

Voltímetros eletrônicos

Analógico

- Um multímetro eletrônico analógico consiste em um amplificador eletrônico e um visualizador eletromecânico
- O controle de escala é feito pelo ganho dos amplificadores
- Características importantes:
 - Alta impedância de entrada
 - Possibilidade de ter alto ganho
 - Possibilidade de ter grande largura de banda para medições AC

Voltímetros eletrônicos: Digital

- Converte a entrada analógica em sinal digital
- As medições podem ser mostradas em um display digital ou transmitidas e armazenadas em um computador etc
- Características importantes:
 - Rápidos
 - Automáticos
 - Programáveis
 - Hoje em dia oferecem uma melhor combinação entre velocidade e incerteza

Distinções:

- Faixas de medição
- Número de dígitos
- Exatidão
- Velocidade de leitura
- Princípio operacional

FIGURE 37.15 Dual slope DVM schematics.

Osciloscópios

TABLE 37.2 A Comparison of Analog and Digital Oscilloscopes

	Analog Oscilloscope	Digital Oscilloscope	
Operation	Simple	Complex	
Front panel controls	Direct access knobs	Knobs and menus	
Display	Real-time vector	Digital raster scan	
Gray scales	>16	>4	
Horizontal resolution	>1000 lines	500 lines	
Dead-time	Short	Can be long	
Aliasing	No	Yes	
Voltage accuracy	±3% of full scale	±3% of full scale	
Timing accuracy	±3% of full scale	±0.01% of full scale	
Single shot capture	None	Yes	
Glitch capture	Limited	Yes	
Waveform storage	None	Yes	
Pretrigger viewing	None	Yes	
Data out to a computer	No	Yes	

Medição de corrente elétrica

*** Ampere é uma unidade fundamental do SI e por isso os amperímetros podem ser rastreados diretamente ao padrão realizados nos laboratórios acreditados internacionais, como o NIST.

** Em virtude da dificuldade de se reproduzir o padrão de corrente elétrica, é muito mais simples se fabricar e distribuir padrões de tensão (junções semicondutoras). Assim, a medição de corrente envolve normalmente a conversão de corrente para tensão com o auxilio de um <u>resistor (shunt)</u>.

$$U = Z_{sh}.I$$

- Resistores empregados na medição de correntes elétricas são chamados de *shunt*.
 - São instalados na maioria dos casos em série com a carga
 - Têm ampla largura de banda
 - Não proveem isolação galvânica e podem, em alguns casos, interferir com o circuito sendo monitorado

Medição de corrente elétrica

Transformador de corrente

- A maioria dos CTs são usados para medições de potência e energia em baixas frequências.
- -São usados em instalações de transmissão e distribuição de energia como componentes dos medidores de potência.
- Para RF o núcleo precisa ser composto por material especial (Ferrite)

Medição de corrente elétrica

Sensor de efeito Hall

