Digital IC Design Report

Exercise 4: Energy-Efficient Deign

Professor: Po-Tsang Huang

Student/ID: 尤彥捷/310591036

♣ 2x2 Convolution (without pipeline)

Figure 1. Schematic of 2x2 Convolution circuit

> HSPICE waveform

Input Pattern:

Figure 2. Pattern Vector File

Figure 3. Waveform of 2x2 Convolution circuit

Critical Path: $inIFM1_0(r)$ \Longrightarrow $output_2(r)$

> Voltage Scaling

✓ 0.7V:

```
1 $DATA1 SOURCE='HSPICE' VERSION='0-2018.09 linux64' PARAM_COUNT=0
2 .TITLE '.title conv 2x2'
3 tpd pwr temper alter#
4 2.540e-09 4.518e-04 25.0000 1
```

Energy-Delay Product = $1.147572*10^{-12}$

✓ 0.65V:

```
1 $DATA1 SOURCE='HSPICE' VERSION='0-2018.09 linux64' PARAM_COUNT=0
2 .TITLE '.title conv 2x2'
3 tpd pwr temper alter#
4 2.547e-09 3.659e-04 25.0000 1
```

Energy-Delay Product = $9.319473*10^{-13}$

✓ 0.6V:

```
$DATA1 SOURCE='HSPICE' VERSION='0-2018.09 linux64' PARAM_COUNT=0

TITLE '.title conv 2x2'

tpd pwr temper alter#

2.558e-09 2.877e-04 25.0000 1
```

Energy-Delay Product = $7.359366*10^{-13}$

✓ 0.55V:

```
1 $DATA1 SOURCE='HSPICE' VERSION='0-2018.09 linux64' PARAM_COUNT=0
2 .TITLE '.title conv 2x2'
3 tpd pwr temper alter#
4 2.574e-09 2.182e-04 25.0000 1
```

Energy-Delay Product = $5.616468*10^{-13}$

✓ 0.5V:

Energy-Delay Product = $4.135009*10^{-13}$

✓ 0.45V:

```
$DATA1 SOURCE='HSPICE' VERSION='0-2018.09 linux64' PARAM_COUNT=0

TITLE '.title conv 2x2'

tpd pwr temper alter#

failed 1.085e-04 25.0000 1
```

CIRCUIT FAIL

Ans: Minimal Energy-Delay Product appears at 0.5V, 4.135009*10^-13

4 2x2 Convolution (pipeline)

Figure 4. Schematic of 2x2 Convolution pipelined design

> HSPICE waveform

Input Pattern:

Figure 5. Input pattern vector file

Figure 6. Waveform of 2x2 Convolution pipelined circuit

Critical Path:

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) PPR2_2_reg[0]/CLK (ASYNC_DFFHx1_ASAP7_75t_R) PPR2_2_reg[0]/QN (ASYNC_DFFHx1_ASAP7_75t_R) U400/Y (NOR2xp33_ASAP7_75t_R) U868/Y (MAJIxp5_ASAP7_75t_R) U909/Y (MAJIxp5_ASAP7_75t_R) U909/Y (MAJIxp5_ASAP7_75t_R) U1005/Y (MAJIxp5_ASAP7_75t_R) U1005/Y (MAJIxp5_ASAP7_75t_R) U1020/Y (MAJIxp5_ASAP7_75t_R) U1041/Y (MAJIxp5_ASAP7_75t_R) U1042/Y (MAJIxp5_ASAP7_75t_R) U1042/Y (MAJIxp5_ASAP7_75t_R) U1083/Y (AND2x2_ASAP7_75t_R) U1084/SN (HAxp5_ASAP7_75t_R) U1084/SN (HAxp5_ASAP7_75t_R) U1085/Y (NAND2xp33_ASAP7_75t_R) U1085/Y (NAND2xp33_ASAP7_75t_R) U1085/Y (NAND2xp33_ASAP7_75t_R) U1065/Y (NAND2xp33_ASAP7_75t_R) Out_OFM_reg[8]/D (ASYNC_DFFHx1_ASAP7_75t_R) data arrival time	0.00 0.00 0.00 56.07 43.23 43.31 32.54 35.42 31.25 35.13 31.23 32.97 25.48 14.86 25.55 11.80 11.59 0.00	99.30 f 142.61 r 175.14 f 210.56 r 241.81 f 276.94 r 308.16 f 341.13 r 366.61 r 381.47 f 407.03 f 418.83 r
clock clk (rise edge) clock network delay (ideal) Out_OFM_reg[8]/CLK (ASYNC_DFFHx1_ASAP7_75t_R) library setup time data required time data required time data arrival time	1000.00 0.00 0.00 -16.27	1000.00
slack (MET)		553.32

Figure 7. Timing Report 2x2 Pipelined Convolution Circuit

Critical Path: n190 (r) n371(f)

Figure 8. Rising edge of node 190 and falling edge of node 371

➤ Voltage Scaling

✓ 0.7V:

```
***** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 112.7391p targ= 12.6630n trig= 12.5502n

pwr= 227.6791u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.5668*10^{-14}$

✓ 0.65V:

```
****** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 127.6415p targ= 12.6850n trig= 12.5574n

pwr= 194.7061u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.4852*10^{-14}$

✓ 0.6V:

```
****** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 149.0594p targ= 12.7167n trig= 12.5676n

pwr= 164.4839u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.4518*10^{-14}$

✓ 0.55V:

```
***** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 181.3551p targ= 12.7641n trig= 12.5828n

pwr= 137.1577u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.4874*10^{-14}$

✓ 0.5V:

```
***** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 181.4802p targ= 12.7643n trig= 12.5828n

pwr= 137.0283u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.48679*10^{-14}$

✓ 0.45V:

```
****** transient analysis tnom= 25.000 temp= 25.000 ******

tpd= 181.5638p targ= 12.7643n trig= 12.5828n

pwr= 138.0611u from= 0. to= 16.0000n
```

Energy-Delay Product = $2.5066*10^{-14}$

✓ 0.4V

CIRCUIT FAIL

Ans: The minimal energy-delay product appears at 0.6V, 2.4518*10^-14.