실습 문제2 & 랜덤 포레스트

2022.11.14

Chung-Ang University
AI/ML Innovation Research Center
Hyun-soon Lee

<실습 문제2>

01 실습문제2

- 타이타닉(Titanic) 데이터셋을 캐글(Kaggle)에서 필요한 파일들을 다운로드 (https://www.kaggle.com/c/titanic) 한 후에 승객의 나이, 성별, 승객 등급, 승선 위치 같은 속성을 기반으로 하여 승객의 생존 여부를 예측하시오.
- 1. Passengerld 열을 인덱스 열로 지정한다.
- 2. 누락된 데이터를 확인해본다.
- 3. Random Forest를 적용하여 n_estimators=100, random_state=42로 예측하고 10-fold cross validation을 사용하여 forest 점수의 평균값을 구하시오.
- 4. Support vector machine(SVM)을 적용하여 gamma="auto"로 예측하고 10-fold cross validation을 사용하여 SVM 점수의 평균값을 구하시오.
- 5. 3, 4번의 결과에 대하여 accuracy, precision, F1을 각각 구하시오.

앙상블 <랜덤 포레스트>

목차

- 01 앙상블의 이해
- 02 투표 분류기
- 03 배깅과 랜덤 포레스트(Random forest)
- 04 부스팅

[강의 PPT 이용 안내]

- 1. 본 강의 PPT에 사용된 [데이터 과학을 위한 파이썬 머신러닝]의 내용에 관한 저작권은 한빛아카데미 ㈜ 있습니다.
- [데이터 과학을 위한 파이썬 머신러닝]과 관련된 자료를 무단으로 전제하거나 배포할 경우 저작권법 136조에 의거하여 처벌을 받을 수 있습니다.
- 3. 강의에 사용된 교재 이외에 사용된 이미지 데이터 등도 강사명의의 논문 또는 특허 등록 또는 특허 출 원 중인 자료들로 무단 사용을 금합니다.

1. 대중적인 데이터 분석 알고리즘

- 최근 머신러닝/딥러닝 분야에서 딥러닝 다음으로 부스팅(boosting) 알고 리즘이 핵심적으로 사용됨
- 선형회귀나 로지스틱 회귀는 가장 대중적인 알고리즘이고, 그 다음이 의사결정트리와 앙상블 계열 알고리즘, 딥러닝

1. 대중적인 데이터 분석 알고리즘

그림 13-1 데이터 분석 시 사용하는 알고리즘 설문조사

2. 앙상블의 개념

- 앙상블(ensemble): 여러 개의 알고리즘들이 하나의 값을 예측하는 기법을 통칭하여 말함
 - 회귀 문제에서는 가중 평균이나 단순 평균을 구하는 방식으로 Y 값을 예측
- 메타 분류기(meta-classifier)라고도 부름
 - 메타(meta)는 일종의 상위 또는 추상화라는 개념. 여러 분류기들을 모 아 하나의 분류기를 만들어 이를 메타 분류기라고 부른다
- 시간이 굉장히 오래 걸리지만 비교적 좋은 성능을 냄

2. 앙상블의 개념

하나의 데이터를 넣음 → 이를 여러 모델에 학습시키고 → 테스트 데이터
 를 각 모델에 입력 → 투표 또는 여러 가중치 기법을 적용하여 최종 선택

2. 앙상블의 개념

- 앙상블 기법들
 - 바닐라 앙상블: 가장 기본적인 앙상블 기법. 바닐라라고 하면 아이스 크림에서 아무것도 첨가되지 않은 맛인데, 바닐라 앙상블도 아무것도 처리하지 않은 앙상블 모델을 의미. 일반적으로 가중치 평균이나 투표 방식으로 만들어지는 앙상블 모델
 - 부스팅: 하나의 모델에서 여러 데이터를 샘플링한 다음 그 샘플링된 데이터로 각각의 모델을 만드는 기법
 - 배깅 : 'boosting aggregation(부스팅 집합)'의 줄임말로 부스팅을 좀 더 발전시킨 기법

1. 투표 분류기의 개념

투표 분류기(voting classifier): 여러 개의 모델을 만들어 모두 같은 데이터를 넣고 결과를 취합하여 가장 많이 선택된 결과를 취함

그림 13-3 투표 분류기의 기본 형태

1. 투표 분류기의 개념

- 앙상블 모델의 가장 기본적인 형태
- 다수결 분류기(majority voting classifier)라고도 부름
- 또는 각 분류기마다 가중치를 주고 해당 가중치를 각 모델에 곱하여 가중
 치의 합을 구하는 방식
- 장점 : 다양한 모델을 만든 후, 다음 단계로 매우 쉽게 만들 수 있음

2. 투표 분류기의 클래스

■ 사이킷런에서 제공하는 VotingClassifier 클래스 사용

In [1]: import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import VotingClassifier

■ 전처리되어 .npy 파일 형태인 데이터를 호출

In [2]: X = np.load("c:/source/titanic_X_train.npy")
y = np.load("c:/source/titanic_y_train.npy")

2. 투표 분류기의 클래스

In [3]:	X[0]						
Out [3]:	array([0.27345609, 0.01415106, 0. , 1. ,						
	0.	, 0.125	, 0.	, 0 .	,		
	0.	, 1.	, 0.	, 0.	,		
	0.	, 0 .	, 0.	, 1.	,		
	0.	, 0 .	, 1.	, 0.	,		
	0.	, 0 .	, 0.	, 0.	,		
	0.	, O.	, 0.])			
In [4]:	y[:10]						
Out [4]:	array([0., 1.,	1., 1., 0., 0.,	0., 0., 1.	., 1.])			

2. 투표 분류기의 클래스

■ 기초 모델들을 생성

```
In [5]: clf1 = LogisticRegression(random_state=1)
    clf2 = DecisionTreeClassifier(random_state=1,
    max_depth=4)
    clf3 = GaussianNB()

eclf = VotingClassifier(
    estimators=[('lr', clf1), ('rf', clf2), ('gnb',clf3)],
    voting='hard')
```

2. 투표 분류기의 클래스

■ 투표 분류기의 성능과 모델별 성능을 측정

```
In [6]: from sklearn.model_selection import cross_val_score
        cross_val_score(eclf, X, y, cv=5).mean()
Out [6]: 0.8222941661905668
 In [7]: cross_val_score(clf1, X, y, cv=5).mean()
Out [7]: 0.8290420872214816
 In [8]: cross_val_score(clf2, X, y, cv=5).mean()
Out [8]: 0.8223068621849807
 In [9]: cross_val_score(clf3, X, y, cv=5).mean()
Out [9]: 0.4600139655938551
```

• clf3 제외하면 전체 모델 성능보다 개별 모델 성능이 높다

2. 투표 분류기의 클래스

 GaussianNB은 연속적인 데이터를 다루기 위한 모델로 데이터셋과 맞지 않아 해당 모델을 빼고 성능을 측정

 앙상블 모델에서는 반드시 많은 수의 모델 조합이 가장 최선의 결과를 내는 것이 아니다

3. 하이퍼 매개변수를 튜닝한 투표 분류기

■ 성능이 좋았던 모델 두 개를 각각 VotingClassifer에 할당

```
In [11]: clf1 = LogisticRegression(random_state=1)
clf2 = DecisionTreeClassifier(random_state=1)
eclf = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2)],
voting='hard')
```

```
In [12]: c_params = [0.1, 5.0, 7.0, 10.0, 15.0, 20.0, 100.0]

params ={
    "lr_solver" : ['liblinear'], "lr_penalty" : ["l2"], "lr_C" : c_params,
    "dt_criterion" : ["gini", "entropy"],
    "dt_max_depth" : [10,8,7,6,5,4,3,2],
    "dt_min_samples_leaf": [1,2,3,4,5,6,7,8,9]
    }
```

3. 하이퍼 매개변수를 튜닝한 투표 분류기

■ 가장 좋은 모델의 성능을 확인

```
In [13]: from sklearn.model_selection import GridSearchCV grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid = grid.fit(X, y) grid.best_score_

Out [13]: 0.8425569732749316
```

3. 하이퍼 매개변수를 튜닝한 투표 분류기

■ 가장 좋은 성능을 내는 매개변수 확인

```
In [14]: grid.best_params_

Out [14]: {'dt__criterion': 'gini',
    'dt__max_depth': 10,
    'dt__min_samples_leaf': 5,
    'lr__C': 5.0,
    'lr__penalty': 'l2',
    'lr__solver': 'liblinear'}
```

03

배깅과 랜덤 포레스트(Random forest)

1. 배깅의 개념

- 배깅(bagging): 하나의 데이터셋에서 샘플링을 통해 여러 개의 데이터셋을 을 만든 다음 각 데이터셋마다 모델을 개발하여 투표 분류기로 만드는 기법
 - 단순하면서 성능이 높아 특히 트리 계열 알고리즘과 함께 많이 사용되며 통계적인 샘플링 기법이나 딥러닝 기법과도 함께 사용
- 샘플링(sampling): 다루고자 하는 데이터가 전체 모수라면 그 모수에서 일 부분을 뽑아서 데이터를 분석

1. 배깅의 개념

■ 배깅의 장점 : 다양한 데이터셋에서 강건한 모델(robust model)을 개발할 수 있다

그림 13-4 배깅의 모델링

1. 배깅의 개념

[하나 더 알기] 약분류기와 강분류기로 알아보는 배깅 기법

- 배깅 기법은 여러 개의 약분류기(weak learner)로 강분류기(strong learner)를 만드는 것이다.
- 약분류기는 기본적으로 과소적합이 다소 있지만 과적합되어 있지 않은 모델. 다소 느슨하게 경계를 생성하는 여러 개의 약한 분류기를 앙상블한다면 좀 더 정확한 경계를 생성한다.
- 각각의 작은 데이터로는 모든 구체적인 분류 영역을 정할 수 없지만 많은 데 이터로 투표한다면 더 높은 성능을 기대할 수 있다.

2. 부트스트래핑

- 부트스트래핑(bootstrapping) : 모수 데이터로부터 학습 데이터를 추출할 때 임의의 데이터를 추출한 후 복원추출하는 여러 번의 과정
- 복원추출: 전체 데이터에서 먼저 일부를 추출하여 이를 '학습 데이터셋 1'
 이라고 부른 다음 다시 그 데이터를 모수에 집어넣고 '학습 데이터 셋 2'
 를 뽑는 방식

2. 부트스트래핑

그림 13-5 복원추출

2. 부트스트래핑

[하나 더 알기] 부트스트래핑의 유래

- 부트스트래핑은 원래 카우보이 워크화의 뒤에 달려 있는 조그마한 끈을 말한다. [그림 13-6]과 같이 해당 끈에 손을 넣어서 워크화를 착용했다.
- 남에게 도움 받지 않고 스스로 무엇인가를 시작할 때 이를 지칭하는 대표적인 용어로 사용한다. 데이터 과학에서는 처음 모수 데 이터에서만 일부 데이터를 추출하여 사용 하는 행위를 의미하며, 컴퓨터 과학에서는 외부데이터의 주입 없이 컴퓨터가 메모리 에 저장된 정보만으로 부팅되는 것을 의미 한다.

3. 부트스트랩 집합인 배깅

- 배깅(bagging)은 부트스트랩 집합이라는 의미의 'bootstrap aggregation'의 약자로, 말 그대로 부트스트랩 연산의 집합이라는 개념
- 데이터셋으로부터 부분집합 n개를 추출 → 앙상블 방법과 달리 하나의
 모델에 다양한 데이터셋을 넣어서 n개의 모델을 생성
- 높은 분산으로, 일반적인 모델로 만들 경우 과적합이 심한 데이터셋에 좀 더 강건
 - 각 모델들은 해당 데이터셋에 맞춰진 과적합 모델

3. 부트스트랩 집합인 배깅

그림 13-7 배깅업무 순서도 31

3. 부트스트랩 집합인 배깅

[하나 더 알기] Out-of-bag Error

- 배깅 모델의 성능을 측정하기 위해서 정확도나 정밀도 외에 'Out-of-bag Error' 라는 지표를 사용한다. 일반적으로 'OOB error estimation'이라고 부른다.
- 배깅에서 부분집합을 생성할 때 일부 데이터만 학습에 사용되는데, 각 부분 집합에서 학습에 사용되지 않은 데이터셋에 대해서만 성능을 측정하여 배깅 모델의 효과를 측정하는 것이다.
- 기본적으로 검증셋(validation set)과 유사한 방식으로 학습에 사용하지 않은 데이터를 가지고 학습의 성능을 측정한다고 이해할 수 있다.

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

4. 랜덤 포레스트

- 랜덤 포레스트(random forest): 하나의 모델을 나무라고 한다면 이러한 나무들을 이용해 랜덤하게 데이터를 뽑아서 숲을 생성하는 알고리즘
- 배깅 알고리즘을 의사결정트리에 적용한 모델
- **의사결정트리(decision tree**) : 어떤 규칙을 하나의 트리(tree) 형태로 표현한 후 이를 바탕으로 분류나 회귀 문제를 해결
 - 규칙은 'if-else' 문으로 표현이 가능
 - 트리는 일종의 경로를 표현하는 것
 - 트리 구조의 마지막 노드에는 분류 문제에서 클래스, 회귀 문제에서는 예측치가 들 어감

4. 랜덤 포레스트

■ 의사결정트리

```
if age > 30:
      return True
  else:
      return False
(a) if-else문의 예
```


그림 12-1 의사결정트리의 이해

4. 랜덤 포레스트

의사결정트리

그림 12-2 아키네이터(akinator) 게임 © https://kr.akinator.com/

4. 랜덤 포레스트

- 의사결정트리는 딥러닝 기반을 제외한 전통적인 통계 기반의 머신러닝
 모델 중 효과와 실용성이 가장 좋음
 - 테이블형 데이터에 있어 설명력과 성능의 측면에서 딥러닝 모델들과 대등하게 경쟁
 - 앙상블(ensemble) 모델이나 부스팅(boosting) 같은 새로운 기법들이 모델들의 성능을 대폭 향상시키고 있음

4. 랜덤 포레스트

- 사이킷런 배깅 분류기 BaggingClassifier
 - base_estimator : 사용될 수 있는 모델(default=None)
 - n_estimators : int, optional(default=10), subset으로 생성되는 모델의 개수
 - max_samples : int or float, optional(default=1.0), 최대 데이터 개수 또는 비율
 - max_features : int or float, optional(default=1.0), 최대 사용 피쳐 또는 비율
 - bootstrap: boolean, optional(default=True), bootstrap 사용 여부
 - oob_score : boolean, oob score 산출 여부
 - warm_start : booeanl, optional(default=False), 이전에 학습된 모델을 사용할 것인가에 대한 정보

4. 랜덤 포레스트

```
In [1]: import numpy as np
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import BaggingClassifier
        X = np.load("c:/source/titanic_X_train.npy")
        y = np.load("c:/source/titanic_y_train.npy")
        clf1 = LogisticRegression(random_state=1)
        eclf = BaggingClassifier(clf1, oob_score=True)
        from sklearn.model_selection import cross_val_score
        cross_val_score(eclf, X, y, cv=5).mean()
Out [1]: 0.8267822002158318
```

4. 랜덤 포레스트

```
In [2]: params ={
           "n_estimators" : [10,20,30,40,50,55],
            "max_samples" : [0.5,0.6,0.7,0.8,0.9,1]
        from sklearn.model_selection import GridSearchCV
        grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
        grid = grid.fit(X, y)
        grid.best_score_
Out [2]: 0.8324255697327493
```

0.8301783787215135

4. 랜덤 포레스트

```
In [3]: grid.best_params_

Out [3]: {'max_samples': 0.9, 'n_estimators': 20} {'max_samples': 0.9, 'n_estimators': 10}

In [4]: grid.best_estimator_.oob_score_

Out [4]: 0.8245219347581553
```

4. 랜덤 포레스트

```
In [5]: import numpy as np
        from sklearn.ensemble import RandomForestClassifier
        X = np.load("c:/source/titanic_X_train.npy")
        y = np.load("c:/source/titanic_y_train.npy")
        eclf = RandomForestClassifier(n_estimators=100, max_features=2,
        n_jobs=7, oob_score=True)
        from sklearn.model_selection import cross_val_score
        cross_val_score(eclf, X, y, cv=5).mean()
Out [5]: 0.798685964578156
```

0.8065574811147084

4. 랜덤 포레스트

```
In [6]: from sklearn.model_selection import GridSearchCV
        params ={
           "n_estimators": [10, 20, 30, 50, 100],
           "max_features" : [1,2,3,4,5,6,7, 10, 15, 20, 25, len(X[0])]
        grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
        grid = grid.fit(X, y)
        grid.best_score_
Out [6]: 0.8234558496794261
```

0.8245667491906303

4. 랜덤 포레스트

```
In [7]: grid.best_params_
Out [7]: {'max_features': 25, 'n_estimators': 30} {'max_features': 15, 'n_estimators': 20}
In [8]: grid.best_estimator_.oob_score_
Out [8]: 0.8053993250843644
```

0.8076490438695163

[TIP] 기존 로지스틱 분류기 기반의 배깅 모델보다 훨씬 더 시간이 오래 걸린다. 성능 향상은 다른 알고리즘보다 실험에 의해 많이 좌우된다.

1. 부스팅의 개념

- 부스팅(boosting): 학습 라운드를 차례로 진행하면서 각 예측이 틀린 데이 터에 점점 가중치를 주는 방식
- 라운드별로 잘못 분류된 데이터를 좀 더 잘 분류하는 모델로 만들어 최종
 적으로 모델들의 앙상블을 만드는 방식
 - 배깅 알고리즘이 처음 성능을 측정하기 위한 기준(baseline) 알고리즘으로 많이 사용된다면, 부스팅 알고리즘은 높은 성능을 내야 하는 상황에서 가장 좋은 선택지

1. 부스팅의 개념

- 첫 번째 라운드 결과 모 델 (1)에서 A점은 오차가 큰 부분
- 두 번째 라운드에서 오답 으로 분류된 A에 가중치 를 줘 학습
- 다시 오류가 큰 B 영역에 가중치를 둬 모델 (3) 개 발

1. 부스팅의 개념

 틀린 부분만 집중해서 모델들을 순차적으로 만들고, 해당 모델들은 최종 적으로 앙상블

그림 13-9 분류 관점에서 부스팅 정리

2. 배깅과 부스팅의 차이점

2.1 병렬화 가능 여부

- 배깅은 데이터가 n개라면 n개의 CPU로 한번에 처리하도록 구조를 설계할수 있음
 - 배깅은 데이터를 나눠 데이터마다 조금씩 다른 모델을 생성
- 부스팅은 단계적으로 모델들을 생성하고 해당 모델들의 성능을 측정한 후 다음 단계로 넘어가 병렬화를 지원하지 않음
- 부스팅은 배깅에 비해 속도가 매우 떨어짐

2. 배깅과 부스팅의 차이점

2.2 기준 추정치

- 배깅 개별 모델들은 높은 과대적합으로 모델의 분산이 높음
- 부스팅은 각각의 모델에 편향이 높은 기준 추정치를 사용하여 개별 모델 들은 과소적합이 발생하지만 전체적으로 높은 성능을 낼 수 있는 방향으로 학습
 - 부스팅 모델의 이러한 특징을 약한 학습자(weak learner)라고 부름

2. 배깅과 부스팅의 차이점

2.3 성능 차이

- 부스팅은 기본적으로 비용이 높은 알고리즘
 - 비용은 속도나 시간을 말함
- 배깅은 데이터의 부분집합에 대해 학습을 수행하기 때문에 부스팅보다
 좋은 성능을 내기는 어려움
- 초기 성능을 측정할 때는 배깅, 이후의 성능 측정은 부스팅으로 하는 것이 가장 일반적인 접근

3. 에이다부스트

- 부스팅 알고리즘 중 대표적인 알고리즘
- 에이다부스트(AdaBoost): 매 라운드마다 인스턴스, 즉 개별 데이터의 가 중치를 계산하는 방식
- 매 라운드마다 틀린 값이 존재하고 해당 인스턴스에 가중치를 추가로 주 어 가중치를 기준으로 재샘플링(resampling)

3. 에이다부스트

3.1 알고리즘

- 모든 샘플의 가중치 값을 데이터 개수를 기준으로 $\frac{1}{N}$ 로 초기화한 다음 $w_i = \frac{1}{N}, \quad i = 1, 2, 3, 4, \cdots, N$
 - ① 데이터의 가중치를 사용해 모델 $G_m(x_i)$ 을 학습시킨다
 - ② 해당 분류기의 오류를 계산한다

$$err_m = rac{\sum\limits_{i=1}^{N} w_i I(y_i
eq G_m(x_i))}{\sum\limits_{i=1}^{N} w_i} \qquad I(y_i, G_m(x_i)) = egin{cases} 0 & ext{if } y_i = G_m(x_i) \ 1 & ext{if } y_i
eq G_m(x_i) \end{cases}$$

3. 에이다부스트

3.1 알고리즘

③ 해당 분류기의 가중치를 생성한다

$$a_m = \log((1 - err_m)/err_m)$$

④ 모델의 가중치를 사용하여 각 데이터의 가중치를 업데이트

$$w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N$$

최종 결과물은 각 모델 가중치와 모델 결과값의 가중합을 연산하여 계산

$$G(x) = sign\left[\sum_{m=1}^{M} a_m G_m(x)\right]$$

3. 에이다부스트

3.2 에이다부스트와 스텀프

 스텀프(stump)는 '그루터기'라는 뜻으로 나무의 윗부분을 자르고 아랫부 분만 남은 상태

그림 13-10 스텀프(stump)의 개념

3. 에이다부스트

3.2 에이다부스트와 스텀프

- 에이다부스트에서 스텀프는 학습할 때 큰 나무를 사용하여 학습하는 것
 이 아니라 나무의 그루터기만을 사용하여 학습한다는 개념
- 1뎁스(depth) 또는 2뎁스 정도의 매우 간단한 모델을 여러 개 만들어 학습한 후, 해당 모델들의 성능을 에이다부스트 알고리즘을 적용하여 학습하는 형태

3. 에이다부스트

3.3 사이킷런으로 에이다부스트 실습하기

■ 사이킷런에서 제공하는 AdaBoostClassifier를 사용

```
In [1]: import numpy as np
        X = np.load("c:/source/titanic_X_train.npy")
         y = np.load("c:/source/titanic_y_train.npy")
 In [2]: from sklearn.ensemble import AdaBoostClassifier
         from sklearn.tree import DecisionTreeClassifier
         eclf =
         AdaBoostClassifier(base estimator=DecisionTreeClassifier(max de
         pth=2), n_estimators=500)
 In [3]: from sklearn.model_selection import cross_val_score
         cross_val_score(eclf, X, y, cv=5).mean()
Out [3]: 0.7896908525360249
                                -0.7908207960388498
```

3.3 사이킷런으로 에이다부스트 실습하기

■ 비교군으로 RandomForestClassifier를 생성

```
In [4]: from sklearn.ensemble import RandomForestClassifier eclf = RandomForestClassifier(n_estimators=500) cross_val_score(eclf, X, y, cv=5).mean()

Out [4]: 0.8031866945978544
```

0.8054402336062972

3.3 사이킷런으로 에이다부스트 실습하기

GridSearchCV를 사용하여 가장 좋은 모델을 찾아 모델의 성능을 향상

```
eclf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=2),
  In [5]:
          n_estimators=500)
          params = {"base_estimator__criterion" : ["gini", "entropy"],
          "base_estimator__max_features": [7,8,],
                 "base_estimator__max_depth": [1,2],
                 "n estimators": [23,24, 25, 26, 27],
                 "learning rate": [0.4, 0.45, 0.5, 0.55, 0.6]
          from sklearn.model_selection import GridSearchCV
          grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5, n_jobs=7)
          grid = grid.fit(X, y)
          grid.best_score_
Out [5]: 0.8324382657271631
                                       .0.8346791087411922
```

58

3.3 사이킷런으로 에이다부스트 실습하기

■ GridSearchCV를 사용하여 가장 좋은 모델을 찾아 모델의 성능을 향상

```
{'base_estimator__criterion': 'entropy',
  'base_estimator__max_depth': 2,
  'base_estimator__max_features': 7,
  'learning_rate': 0.45,
  'n_estimators': 26}
```

3.3 사이킷런으로 에이다부스트 실습하기

■ feature_importances_로 각 피쳐(feature)들이 모델에 영향을 미치는 정도를 나타낼 수 있다

```
array([0.19234007, 0.18832578, 0.01666046, 0.05983134, 0.07185324, 0.10614953, 0.05328338, 0.0229881, 0. , 0.00574226, 0. , 0. , 0.00914371, 0.03884135, 0.0293809, 0.03832089, 0.03319968, 0.01830455, 0.02064887, 0. , 0.00697715, 0.02563929, 0.01558522, 0.03471563, 0. , 0.01206861, 0. ])
```

Thank You!