

Compte rendu : TP d'algorithmes numériques 1

HIAULT Lilian, VALLET Baptiste

08 novembre 2019

Table des matières

T	кар	pel des methodes de resolution d'equations lineaires
	1.1	Méthode de Gauss
		1.1.1 Algorithme de Gauss
		1.1.2 Exemple
	1.2	Méthode de Cholesky
		Méthode de Cholesky
		1.2.2 Exemple
2	Pré 2.1 2.2	entation des programmes commentés Programme de résolution par la méthode de Gauss
3	Jeu	d'essais
4	Cor	amentaire des jeux d'essais
5	Cor	clusion générale sur les méthodes

Introduction

À l'occasion des travaux pratiques d'algorithmes numériques HIAULT Lilian et VALLET Baptiste avons réalisé un programme en langage C qui permet de résoudre des systèmes linéaires grâce aux méthodes de Gauss et de Cholesky.

1 Rappel des méthodes de résolution d'équations linéaires

Les méthode de Gauss et de Cholesky permettent de résoudre des systèmes d'équation linéaires formé de plusieurs équations linéaires.

Par exemple:

$$\begin{cases} 2x + y = 5 \\ -x + 3y = 1 \end{cases}$$

On peut visualiser ce système d'inconnues x et y par des matrices de type Ax = b:

$$\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

Sous forme de matrice augmentée A:

$$A = \begin{pmatrix} 2 & 1 & 5 \\ -1 & 3 & 1 \end{pmatrix}$$

On utilise ces matrices pour résoudre les sytèmes d'équations linéaires.

1.1 Méthode de Gauss

1.1.1 Algorithme de Gauss

Afin de résoudre les systèmes, on triangularise la matrice. Pour cela on clacule le pivot de Gauss à chaque itération en transformant la premier coefficient non-nul de la ligne par un 1. Puis on soustrait autant de fois cette ligne aux suivantes pour abtenir un 0 sur toute la colonne. On réitère cela jusqu'à obtenir une matrice triangulaire supérieure.

1.1.2 Exemple

La méthode de Gauss permet de calculer des solutions exactes d'un système d'équation en un nombre d'itération fini. À chaque étape on doit créer des 0 en dessous de la diagonale d'un matrice A jusqu'à obtenir une matrice A' diagonale supérieure grâce à laquelle on pourra résoudre directement l'équation.

$$A' = \begin{pmatrix} 1 & \frac{1}{2} & \frac{5}{2} \\ 0 & 1 & 1 \end{pmatrix}$$

On a donc :

$$\begin{cases} x + \frac{1}{2}y = \frac{5}{2} \\ y = 1 \end{cases} \iff \begin{cases} x = 2 \\ y = 1 \end{cases}$$

1.2 Méthode de Cholesky

1.2.1 Algorithme de Cholesky

On ne peut appliquer la méthode de Cholesky uniquement sur des matrices symétriques et définies positives. La méthode de Cholesky permet de décomposer une matrice A en deux matrices R et R^T tel que : $A=R^TR$

1.2.2 Exemple

Exemple

2 Présentation des programmes commentés

2.1 Programme de résolution par la méthode de Gauss

Programme Gauss

2.2 Programme de résolution grâce à la méthode de Cholesky

Programme de Cholesky

3 Jeux d'essais

Présentation de jeux d'essais pertinents et justifiés Jeux d'essais : matrices tests

Godff d obsens . Hiddiffees tests

4 Commentaire des jeux d'essais

Commentaire des jeux d'essais à partir de données relatives. Pourcentage d'écart, calcul de fonction d'erreurs, vitesse de convergence, complexité pratique, ...

5 Conclusion générale sur les méthodes

Comparaison, cadre d'utilisation, stabilité, ...

Peut-on retrouver une solution connue à priori?

Stabilité : le résultat est-il modifié par des calculs dégradés (erreurs accumulées...)

Conditionnement : quel est l'effet de perturbations des données?

Evaluation des coûts en place et en temps.