Approximation Algorithms: Supplementary notes for Set Cover and Knapsack

Kristoffer Arnsfelt Hansen

May 14, 2012

1 The set covering problem

Recall that the set covering problem is the following optimization problem.

Set Cover

Instance: Universe X, n = |X|. Family \mathcal{F} of subsets of X, such that $\bigcup_{S \in \mathcal{F}} S = X$. **Objective:** Find $\mathcal{C} \subseteq \mathcal{F}$ that minimizes $|\mathcal{C}|$ and satisfies $\bigcup_{S \in \mathcal{C}} S = X$.

This problem is a generalization of the node covering problem.

Node Cover

Instance: Graph G = (V, E), n = |V|.

Objective: Find $C \subseteq V$ that minimizes |C| and satisfies that for all $(u, v) \in E$ either $u \in C$ or $v \in C$.

To see this, given an instance G = (V, E) of the NODE COVER problem, we can define a corresponding Set Cover instance as follows.

- $\bullet X := E.$
- $\mathcal{F} := \{S_w \mid w \in V\}$, where $S_w = \{(u, v) \in E \mid u = w\}$.

1.1 Greedy approximation algorithm

We will study the following approximation algorithm for the set covering problem, that build a set cover by greedily choosing the next set to add that will cover the most new elements.

```
Input: Universe X, Family \mathcal{F} of subsets of X.

Output: Set cover \mathcal{C}.

1: U \leftarrow X

2: \mathcal{C} \leftarrow \emptyset

3: while U \neq \emptyset do

4: pick S \in \mathcal{F} that maximizes |S \cap U|

5: U \leftarrow U \setminus S

6: \mathcal{C} \leftarrow \mathcal{C} \cup \{S\}

7: end while

8: return \mathcal{C}
```

Algorithm 1: Approximation algorithm for Set Cover.

1.1.1 Quick analysis

Theorem 1 Algorithm 1 is a polynomial time approximation algorithm for SET COVER with approximation ratio ln(n).

Proof Clearly the algorithm is a polynomial time algorithm, returning a valid set cover; We next give a proof of the approximation ratio.

Let \mathcal{C} be the set cover returned by the algorithm, and let \mathcal{C}^* be an optimal set cover, $m = |\mathcal{C}^*|$. We will prove that after at most $m \ln(n)$ iterations, the algorithm terminates. Since each iteration adds exactly one set to the cover we will have $|\mathcal{C}| \leq m \ln(n)$, which establishes the claimed ratio.

Note that after each iteration i, since C^* is a set cover of the elements in U, one of the sets in C^* covers at least a fraction 1/m of the elements in U. Since the algorithm picks the set S_i that cover the most new elements, picking S_i must also cover at least a fraction 1/m of the elements in U.

We can conclude that after (at most) $m \ln(n)$ iterations, the number of remaining elements is less than

$$n\left(1-\frac{1}{m}\right)^{m\ln(n)} < n\left(e^{-\frac{1}{m}}\right)^{m\ln(n)} = ne^{-\ln(n)} = 1$$
,

using Lemma 7. Thus in fact all elements are covered.

1.1.2 Refined analysis

Definition 2 The kth Harmonic number H_k is defined as

$$H_k = 1 + \frac{1}{2} + \dots + \frac{1}{k}$$
.

We remark that for all k we have $ln(k) \le H_k \le ln(k) + 1$, see Lemma 6.

Theorem 3 Algorithm 1 is a polynomial time approximation algorithm for SET COVER with approximation ratio H_k , where $k = \max_{S \in \mathcal{F}} |S|$.

Proof As noted in the previous proof, it is clear that the algorithm is a polynomial time algorithm, returning a valid set cover; We next give a proof of the approximation ratio.

Let \mathcal{C} be the set cover returned by the algorithm. Let S_1, S_2, \ldots, S_m be the sequence of sets added to \mathcal{C} by the algorithm. We will distribute the cost of adding a new set S_i to the cover \mathcal{C} evenly over all new-covered elements.

Assume that element $x \in U$ is covered for the first time in iteration i of the algorithm. We then define the cost of adding x,

$$c_x = \frac{1}{|S_i \setminus (S_1 \cup \dots \cup S_{i-1})|} .$$

Since at every iteration of the algorithm 1 unit of cost is distributed we have

$$|\mathcal{C}| = \sum_{x \in X} c_x .$$

Now, let \mathcal{C}^* be an optimal set cover. Since \mathcal{C}^* is a set cover, i.e $\cup_{S \in \mathcal{C}^*} S = X$, we have

$$\sum_{x \in X} c_x \le \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x ,$$

and by combining these we have

$$|C| \le \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x .$$

Let $T \in \mathcal{F}$ be any set of the family \mathcal{F} . Write the elements

$$T = \{y_1, y_2, \dots, y_k\}$$

such that (y_1, y_2, \ldots, y_k) is the *reverse* order of when the elements y_1, \ldots, y_k are covered by the algorithm.

The central observation is the following: at the moment y_j is in fact covered by the algorithm by set S_i , the set T has at least j elements of X that are not yet covered! Since the algorithm picks the set S_i that cover the most new elements, picking S_i must cover at least j elements (as otherwise the algorithm would have picked T over S_i). In other words we have

$$|S_i \setminus (S_1 \cup \cdots \cup S_{i-1})| \ge j$$
,

and it follows

$$c_{y_j} = \frac{1}{|S_i \setminus (S_1 \cup \dots \cup S_{i-1})|} \le \frac{1}{j} .$$

Hence

$$\sum_{x \in T} c_x \le \sum_{i=1}^k \frac{1}{j} = H_k .$$

We can now conclude

$$|C| \le \sum_{S \in \mathcal{C}^*} \left(\sum_{x \in S} c_x \right) \le \sum_{S \in \mathcal{C}^*} H_{|S|} \le |\mathcal{C}^*| \cdot \max_{S \in \mathcal{C}^*} H_{|S|} \le |\mathcal{C}^*| \cdot \max_{S \in \mathcal{F}} H_{|S|} ,$$

and therefore

$$\frac{|C|}{|C^*|} \le \max_{S \in \mathcal{F}} H_{|S|}$$

As we noted, for all k we have $\ln(k) \leq H_k \leq \ln(k) + 1$. In particular, since $\max_{S \in \mathcal{F}} |S| \leq n$ the algorithm guarantees approximation ratio $\ln(n) + 1$, by Lemma 6. (Actually, if $\max_{S \in \mathcal{F}} |S| = n$, the algorithm finds the optimal solution. Hence we can assume $\max_{S \in \mathcal{F}} |S| < n$, and the refined analysis thus shows an approximation ratio $\ln(n)$ like the quick analysis).

Observation 4 Specializing to Vertex Cover gives

$$\frac{|C|}{|C^*|} \le \max_{v \in V} H_{\deg(v)} .$$

When the degree of G is at most 3 we have an approximation algorithm with approximation ratio $H_3 = \frac{11}{6} < 2$.

2 The knapsack problem

Recall that the knapsack problem is the following optimization problem.

KNAPSACK

Instance: Weights w_1, \ldots, w_n , values v_1, \ldots, v_n and weight limit W.

Objective: Find $S \subseteq \{1, ..., n\}$ that maximizes $\sum_{i \in S} v_i$ and satisfies $\sum_{i \in S} w_i \leq W$.

Let $V = \max v_i$. In the tutorials we have seen a pseudo-polynomial time algorithm for KNAPSACK using dynamic programming, running in time $O(n^2V)$.

2.1 A fully polynomial time approximation scheme

We will study the following approximation algorithm for the knapsack problem, that given an additional input $\epsilon > 0$ "rounds" the values and computes an approximate solution by solving the rounded instance to optimality.

Input: Weight w_1, \ldots, w_n , values v_1, \ldots, v_n , weight limit W and parameter $\epsilon > 0$.

Output: Selection of items, $S' \subseteq \{1, ..., n\}$.

- 1: $V \leftarrow \max\{v_i \mid w_i \leq W\}$
- 2: $B \leftarrow \epsilon V/n$
- $3: v_i' \leftarrow |v_i/B|$
- 4: Compute optimal solution S' using weights w_1, \ldots, w_n , new values v'_1, \ldots, v'_n and weight limit W, by the dynamic programming algorithm.
- 5: return S'

Algorithm 2: Approximation algorithm for KNAPSACK.

Theorem 5 Algorithm 2 computes in time $O(n^3/\epsilon)$ a solution that obtains a solution with value at least a $(1 - \epsilon)$ fraction of the optimum value.

Proof Since S' is computed for the same weights and weight limit as the input instance, it is a valid solution. The running time is $O(n^2V(n/\epsilon V)) = O(n^3/\epsilon)$ as stated.

Let S' be the solution returned by the algorithm and let S be an optimal solution. Thus the value of the optimal solution S is $\sum_{i \in S} v_i$ while the value of the approximate solution is $\sum_{i \in S'} v_i$. We next establish a number of inequalities.

Since we are rounding down after dividing, we have

$$\sum_{i \in S'} v_i \ge B \sum_{i \in S'} v_i' .$$

Since S' is an optimal solution for values v'_1, \ldots, v'_n , we have

$$B\sum_{i\in S'}v_i'\geq B\sum_{i\in S}v_i' \ .$$

Since rounding a rational down to an integer descreases the number by at most 1, we have

$$B \sum_{i \in S} v_i' \ge B \sum_{i \in S} (v_i/B - 1) = \sum_{i \in S} (v_i - B) \ge (\sum_{i \in S} v_i) - nB$$
.

Furthermore, since $V \leq \sum_{i \in S} v_i$ and $nB = \epsilon V$ we have

$$nB \le \epsilon \sum_{i \in S} v_i .$$

Combining these four inequalities we obtain

$$\sum_{i \in S'} v_i \ge (1 - \epsilon) \sum_{i \in S} v_i ,$$

as claimed. \Box

Note: As we have defined it, the approximation ratio the above analysis guarantees is $\frac{1}{1-\epsilon}$. Thus to obtain an approximation ratio of $1 + \epsilon'$ for a given $\epsilon' > 0$, we can give $\epsilon := \epsilon'/(1 + \epsilon')$ as input to algorithm 2. This also gives $\frac{1}{\epsilon} = (1 + \epsilon')/\epsilon' = O(\frac{1}{\epsilon'})$. Thus algorithm 2 is also an approximation algorithm with approximation ratio $1 + \epsilon'$ running in time $O(n^3/\epsilon')$.

A Mathematical Preliminaries

Remark: The proofs of the statements that follow are not part of the curriculum.

A.1 Harmonic numbers

We have the following simple bound on the Harmonic numbers.

Lemma 6

$$\ln(k) \le H_k \le \ln(k) + 1 .$$

Proof Compare with the integral $\int_1^x \frac{1}{y} dy = \ln(x)$, see Figure 1.

Figure 1: Graph of the function $f(y) = \frac{1}{y}$.

A.2 An inequality for the exponential function

Lemma 7 For all $x \neq 0$ it holds that $1 + x < e^x$.

Proof Define $f(x) = e^x - (1+x)$. Then $f'(x) = e^x - 1$ and $f''(x) = e^x$. Since f''(x) > 0 for all x, the function f is strictly convex, and hence assumes its minimum at its only critical point, x = 0. Since f(0) = 0, f(x) > 0 for all $x \neq 0$.