

許志仲(Chih-Chung Hsu)

Assistant Professor Department of Management Information Systems, National Pingtung University of Science and Technology

資料結構示意圖

同時也是最有(恐)用(怖)的一個章節!!

圖論

■Why?

- 七橋問題。Eular (數學家) 為了求解肯尼茲堡橋問題
 - 是什麼? 隨意一地出發,一次經過所有的橋再回到原點,每座橋只走一次

怎麼解決這個問題?

- ■給定一張地圖:
 - 窮舉?
- ■給定一千張地圖:
 - ■逐一窮舉?
 - 找出規則?每張地圖都不一樣,怎麼去找規則?
- ■要找規則(rule),必先將實際問題抽象化(abstraction)
 - ■抽象化:將實際問題用模型 (model)表示;通常是數學模型
 - 略去跟問題本質無關的細節,只留下關鍵元素
 - 抽象化是為了一般化 (generalization)

抽象化

■什麼是與問題本質無關的細節?

"Königsberg 1651" by Merian-Erbe is under Public Domain

抽象化

■七橋問題的抽象化:

- ■尤拉把實際的抽象問題簡化為平面上的點與線組合,每一座橋視為一條線,橋所連接的地區視為點
- ■最終的模型是一個圖 (graph)或網路 (network)
 - 由點 (vertex \ node) 和線 (edge \ link \ arc) 組成

抽象化與一般規則

- ■要解七橋問題,只要對著抽象化後的模型做探討 即可
- ■尤拉(Euler)在1735年論述,這個圖不存一筆 劃且不重複地走完所有的邊的解
 - ■若從某點出發後最後再回到這點,則這一點上的<mark>連結數</mark>(稱為「degree」)必須是<mark>偶數</mark>,這樣的點稱為偶頂點。
 - 相對的,連有奇數條線的點稱為奇頂點。
 - 由於這個圖中存在四個奇頂點,所以必然無解

"Königsberg graph" by Chris-martin are licensed under CC BY-SA 3.0; Leonhard Euler is under public domain

圖形結構能解的問題

- ■圖論很廣,通常是屬於離散數 學的一種
- ■以程式來講,能解決的問題通 常是下列這些
 - ■最短路徑
 - 路徑規劃
 - Spanning tree
 - 找到最小可以連通的路徑的技巧
 - 子圖搜尋
 - 找到最小的相似結構組合,例如在社群媒體 中找到特定的小群

圖形結構定義

- ■圖形(Graph)
 - G = (V · E)
- ■頂點(Vertices,或稱Nodes)
- ■邊(Edges)
- ■無向圖(Undirected Graph)
 - (V1,V2)
- ■有向圖(Directed Graph)
 - < < \1 , \V2 >

基本範例

$$V(G_1) = \{0, 1, 2, 3\}$$

$$E(G_1) = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}$$

$$V(G_2) = \{0, 1, 2, 3, 4, 5, 6\}$$

$$E(G_2) = \{(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)\}$$

(c)
$$G_3$$

$$V(G_3) = \{0, 1, 2\}$$

$$E(G_3) = \{<0,\,1>,<1,\,0>,<1,\,2>\}$$

Undirected Graph

Directed Graph

基本範例

圖形的基本術語

- ■完全圖(Complete Graph)
- ■路徑(Path)
- ■路徑之長度(Path Length)
- ■簡單路徑(Simple Path)
- ■迴路(Cycle)
- ■相連的(Connected)
- ■相連單元(Connected Component)
- ■子圖(Subgraph)
- ■緊密相連(Strongly Connected)
- ■緊密相連單元(Strongly Connected Component)
- ■出分支度(Out Degree)
- ■入分支度(In Degree)

Complete Graph

- ■整個圖每一個點,都有跟任意另一個點連線稱之
 - Vertex的數量可計算
- ■依據圖形分類
 - Undirected graph
 - an n-vertex graph with exactly n(n-1)/2 edges.
 - Directed graph
 - an n-vertex graph with exactly n(n-1) edges

Undirected

路徑與其長度(Path and Length)

■路徑(Path)

■ 定義:在圖形G中,從Vertex v到u所經過的edge,就叫做路徑。例如:u, i1, i2, ..., ik, v → (u, i1), (i1, i2), ..., (ik, v).

■路徑長度(Length)

■ 簡單把上面的路徑數量統計一下就是了...

Simple Path

■ 在一路徑中,除了起點與終點可以相同之外(不同亦可),其餘頂點不可以重複。

循環(Cycle)

- ■圖形中的迴路是一條路徑,且必須符合下列兩要求
 - 是一條簡單路徑(Simple path)
 - 起點與終點是同個頂點。

表示一個路徑的基本範例

Simple Graph

- ■沒有自我迴圈
 - 不能有一個Edge 是自己連到自己!!
- ■沒有多重邊或平行邊
 - 不能兩個Vertices 之間有多個路徑!!
- ■簡單路徑構成的圖,就是Simple graph

(a) Graph with a self edge

(b) Multigraph

連接與相鄰定義(Adjacent and Incident)

■不同圖形類別有不同的定義

- Undirected graph
 - If (u, v) is an edge in E(G), vertices u and v are adjacent and the edge (u, v) is the incident on vertices u and v.
- Directed graph
 - <u, v> indicates u is adjacent to v and v is adjacent from u.
 - <u, v> is incident to u and v.

子圖(Subgraph)

■一圖形為G,其子圖為 G',則 V(G') V(G)、E(G') E(G).

連通圖Connected

- ■若圖G,任2點間有一路徑存在,該圖稱為連通圖。
- ■若圖G不連通,則圖G的最大連通子圖,稱為圖G的連通成分 (connected components)
- ■若圖G為有向圖,若且惟若圖G中任兩點u到v有一路徑存在,則v 到u亦存在有一路徑,則圖G稱為強連通(strongly connected)
- ■有向圖G中,最大強連通子圖,稱為圖G的強連通成分(strongly connected components)

連通圖的基本範例

森林和樹(Forest & Tree)

- ■森林是沒有迴路(Cycle) 的圖。
- ■樹是連通的森林。
- ■生成樹(Spanning tree) 是圖G 的形成樹的生成子圖。

生成樹的特質

- ■一個包含N 個頂點的無向相連圖,我們可以找出用圖中的N-1 個邊來連接所有頂點的樹
- ■若再加入圖形中其餘的邊到生成樹中必會形成迴路
- ■生成樹中的任兩個頂點間都是相連的,也就是存在一條路徑可通, 但此一路徑不一定是原圖形中該兩頂點之最短路徑。

Graph 的一些性質

- ■計算Degree 的方法
 - 令G為一具有m邊的圖,則

$$\sum_{v \in G} \deg(v) = 2m$$

- ■內連/外連Degree 的關係!!
 - 令G為一具有m邊的有向圖,則

$$\sum_{v \in G} in \deg(v) = \sum_{v \in G} out \deg(v) = m$$

Graph 的一些性質

- ■量化Edge 數量與Vertex 數量之間的關係
 - 令G為一具有n 個頂點和m 個邊的簡單圖。
 - 若G為無向圖,則

$$m \le n(n-1)/2$$

■ 若G 為有向圖,則

$$m \le n(n-1)$$

Graph 的一些性質

- ■確認Graph, tree, forest 之間的關係
- ■圖G 為一有n 個頂點與m 個邊的無向圖,則
 - 若G 為連通圖,則m >= n-1
 - 若G 為樹,則m = n-1
 - 若G 為森林,則m <= n-1

圖形表示法

■邊的清單(Edge list)

- ■兩兩一對的當成儲存空間
- 最省空間!!
 - 不利於計算

圖形的表示法

- ■對於圖形結構,要怎麼儲存?
 - 鄰接矩陣(Adjacency matrix) 表示法是一種

圖形的表示法

■鄰接串列(Adjacency list) 表示法

圖形的表示法

■鄰接串列與反鄰接串列

頂點串列

圖形表示法

■複習一下兩種表示法-- 各有優缺點

相鄰矩陣 表示法

	A	0	0	0	0	1	0	0	1
	В	1	0	1	1	0	0	0	0
	C	0	0	0	0	0	0	0	0
Į	D	0	1	1	0	0	0	0	1
	E	0	0	0	0	0	0	1	1
	F	0	0	0	0	1	0	0	0
	G	0	0	0	0	0	1	0	0
	Н	0	0	0	0	0	1	0	0
2016/	2/15								

邊的清單 表示法

A	Е	Н	-
В	A	С	D
С	-	-	-
D	В	С	Н
Е	G	Н	-
F	Е	-	-
G	F	-	-
Н	F	-	-

相鄰圖形表示法加強板

■萬一Edge表示Vertices之間的關係呢?

相鄰矩陣 表示法

	A	В	C	D	Е	F	G	Н
A	0	0	0	0	1.4	0	0	0.8
В	1.2	0	1	1	0	0	0	0
C	0	0	0	0	0	0	0	0
D	0	1	1	0	0	0	0	1
E	0	0	0	0	0	0	1	1
F	0	0	0	0	1	0	0	0
G	0	0	0	0	0	1	0	0
Н	0	0	0	0	0	1	0	0

圖形結構的精髓

- ■一般圖形結構僅僅只要利用相鄰矩陣就可以儲存
 - 跟一般陣列沒什麼兩樣?!!
 - 沒錯!!
 - 重點在於這樣的結構,有很多漂亮的演算法可以用
 - 搜尋路徑(Graph traversal)
 - 最短路徑搜尋(Shortest path)
 - 找關係最相像的資料(Relationship inferring)
 - 把資料分成幾群(Clustering)
 - 把要找的某個結構從圖中找出來(Sub-graph problem)
 - 太多了...

Graph Traversal 問題

- ■要有效率地把所有的Vertices都找過一遍不容易
 - 樹狀結構,很有規則,可有前中後序的找法
 - Graph?
- ■普遍來說,共有兩種解法
 - Breadth-first search (BFS)
 - Depth-first search (DFS)

深度優先(Depth-First Search) 0,1,3,7,4,5,2,6

深度優先搜尋

- ■由樹的根(或圖的某一點當成根) 開始
- ■先到相鄰的(有一edge的意思) Vertex上,並且未搜尋過的節點上
- ■所謂深度;即讓此節點所有附近的點都跑過了,再回去上一層...
- ■有沒有很熟悉的感覺?!
 - 遞迴+ Stack / Queue...!!!

0,1,3,7,4,5,2,6

■隨機找一個當root,先找0

0,1,3,7,4,5,2,6

■找相鄰的沒找過的node當下一個node! 就是1

0,1,3,7,4,5,2,6

■(目前在1): 找相鄰的沒找過的node當下一個node! 就是3

0,1,3,7,4,5,2,6

■(目前在3): 找相鄰的沒找過的node當下一個node! 就是7

0,1,3,7,4,5,2,6

■(目前在7): 找相鄰的沒找過的node當下一個node! 就是4

0,1,3,7,4,5,2,6

■(目前在4): 找相鄰的沒找過的node當下一個node!

0,1,3,7,4,5,2,6

■(目前在7): 找相鄰的沒找過的node當下一個node! 就是5

0,1,3,7,4,5,2,6

■(目前在5): 找相鄰的沒找過的node當下一個node! 就是2

0,1,3,7,4,5,2,6

■(目前在2): 找相鄰的沒找過的node當下一個node! 就是6

廣度優先(Breadth-First Search)

BFS 的方法

- ■建立一個具有Vertices個數的Queue
- ■照順序讀取資料進來,並根據下列規則處理
- ■不斷找出尚未遍歷的點當作起點:
 - ■把起點放入Queue。
 - While (queue != empty)
 - 從Queue 當中取出一點。
 - 找出跟此點相鄰且還沒看過的點,照順序存入Queue。

BFS 的方法(Pseudo code)

- ■1. 首先準備一個佇列為Qu
- ■2. 再將起始頂點v 加入到Qu 之中(亦即進行Enqueue動作)
- ■3. 如果Qu 不為空'則執行下列步驟·否則跳到步驟4:
 - 3.1 從Qu 中取出一頂點w (亦即進行Dequeue動作)
 - 3.2 並將w 標示為『已拜訪過』
 - 3.3 將所有與w 相鄰且尚未標示『已拜訪過』的頂點加入到Qu 之中(亦即進行Enqueue動作)
 - 3.4 回到步驟3
- ■4. 結束

Let's Practice

- ■1. 現在Graph結構都沒有weight,請改成可以存weight的形式,並表示成陣列形式
- ■2. 給定下圖,分別利用DFS與BFS計算A走到D的成本。
 - ■從請改程式讓程式可以顯示出"成本"

SHORTEST PATH

透過幾個人介紹可以認識?

- 如果 Marshall 想要認識 May,最少要透過幾個 人介紹才可以認識?
- 將 Marshall 視為起始點,執行廣度優先搜尋BFS,就可以知道這兩點的最短路徑!

最短路徑: Marshall -> Uriah -> Andy -> May

如果將人際關係圖改成交通路線圖呢?

- ■Marshall Home -> Uriah Home-> Andy Home -> May Home 仍然會最快嗎?
- ■當圖代表的是交通路線時,我們會想知道的是任兩個點之間如何最快到達,至於中間是否能經過最少點就不是那麼重要了!

加權圖形Weighted Graph

- ■使用權重 weight 代表相鄰 兩點之間的距離感。
- ■有權重的圖稱為加權圖形 Weighted Graph
- ■依照圖的種類,權重可以 代表:
 - 兩點之間相距幾公里。
 - 兩點之間相距幾分鐘。
 - 兩點之間相差多少錢。
 - •

權重weight

- ■當邊上沒有任何權重值時, 預設每邊的權重值就是1。
- ■當每邊權重值是1時,經過 最少點的路徑就會是最短路 徑。
- ■如果邊上有權重值,那最短 路徑又該如何取得呢?

以上周範例來看

■先計算出Adjacency matrix

	Α	В	C	D	Ε	F
Α		6	0	0	10	12
В	6		3	5	0	8
C	0	3		7	0	0
D	0	5	7		9	11
Ε	10	0	0	9		16
F	12	8	0	11	16	

■令A-F為 Gnode 的1-6,改為 N*3 陣列

Dijkstra 演算法

■Dijkstra 演算法是用來處理<mark>單源最短路徑</mark>問題:計算圖上某一點到 其他所有點的最短路徑。

Dijkstra 演算法- 概念

- 任兩點之間的最短路徑有兩種情況:
 - 此兩點之間有邊相連,是相鄰的兩點
 - 此兩點會經過其它點,產生最短路徑
- 若是相鄰兩點產生的最短路徑,只要列出所有的邊就可得到答案
- 若是兩點會經過其它點,產生最短路徑,就需要先找出指定點 與另一點的最短路徑,畢竟只有最短路徑才能讓另一個路徑也 是最短的!

Dijkstra 演算法- 流程

- 步驟 1:列出初始距離
- 步驟 2:設定兩個節點集合:
 - 不確定節點集合: 除了指定節點外的所有節點
 - 確定節點集合: 空集合
- 步驟 3: 從不確定節點集合裡面找出有最短路徑的節點移到確定 節點集合
- 步驟 4: 反覆執行步驟 3, 直到所有節點都放到確定節點集合。

Dijkstra 演算法-範例

■請找出節點1到其它各節點的最短路徑

Dijkstra 演算法-步驟1

■步驟1:先列出指定點(節點1)到其它點的初始距離

Dijkstra 演算法-步驟2 <第1個確定點>

- 步驟 2: 在初始距離中找出距離是最短的點做為**第1個確定點**,之後 此點的最短路徑就不會再被更動。
 - 如果經過的距離不是最短距離,那後續一定無法產生最短距離,因此必須先從初使距離中決定一個點的最短路徑。

- ●節點 1 到節點 2 的距離是 10 · 節點 1 到節點 3 的距離是 20 · 10 < 20 · 此時就可以得到節點 1 到節點 2 的最短路徑必定是 10。
 - •若是先通過節點 3,那距離至少會大於20,所以是不可能的!

Dijkstra 演算法-步驟3<第2個確定點>

- 步驟 3:在剩下尚未決定最短距離的節點中,判斷若是經過已經確定最短路徑的節點 2,是否可降低各點的最短路徑,若有降低,就更改該點的最短距離值,若沒有,就維持原距離值。並在這些點中找出距離最短的頂點最為第2個確定點。
 - 同樣的,第2個確定點產生的原因也是因為如果經過的距離不是最短距離,那後續一定無法產生最短距離,因此必須先從已知的距離中找出一個最短距離。

Dijkstra 演算法-步驟3 <第2個確定點>

- 從節點 1 經過節點 2 可以讓節點 4 與節點 5 的距離降低,所以就 先這兩個節點的距離值更新。
- 節點 3、節點 4、節點 5、節點 6中距離最短的是節點 3 與節點 5, 選擇節點 3 最為 **第 2 個確定點**。
 - 當有兩個節點的距離同時都是最低的值時,可任意選一點。

	1	2	3	4	5	6
距離	0	10	20	60	20	∞

Dijkstra 演算法-步驟4<第3個確定點>

- 步縣 4:在剩下尚未決定最短距離的節點中,判斷若是經過前一個步驟產生的確定點(節點3),是否可降低各點的最短路徑,若有降低,就更改該點的最短距離值,若沒有,就維持原距離值。並在這些點中找出距離最短的頂點最為第3個確定點。
 - 同樣的,第3個確定點產生的原因也是因為如果經過的距離不是最短距離,那後續一定無法產生最短距離,因此必須先從已知的距離中找出一個最短距離。

	1	2	3	4	5	6
距離	0	10	20	60	20	∞

	1	2	3	4	5	6
經過節點 3 的新 距離	0	10	20	40	20	8

Dijkstra 演算法-步驟4 <第3個確定點>

- 從節點 1 經過節點 3 可以讓節點 4 的距離降低,所以要將節點 4 的距離值更新。
- 節點 4、節點 5、節點 6中距離最短的是節點5,選擇**節點** 5 最為 **第 3 個確定點**。

	1	2	3	4	5	6
距離	0	10	20	40	20	∞

Dijkstra 演算法-步驟5 <第4個確定點>

- 步驟 5:在剩下尚未決定最短距離的節點中,判斷若是經過前一個步驟產生的確定點(**節點5**),是否可降低各點的最短路徑,若有降低,就更改該點的最短距離值,若沒有,就維持原距離值。並在這些點中找出距離最短的頂點最為**第4個確定點**。
 - 同樣的,第4個確定點產生的原因也是因為如果經過的距離不是最短距離,那後續一定無法產生最短距離,因此必須先從已知的距離中找出一個最短距離。

	1	2	3	4	5	6
距離	0	10	20	40	20	8

	1	2	3	4	5	6
經過節點 5 的新 距離	0	10	20	40	20	21

Dijkstra 演算法-步驟5<第4個確定點>

- 從節點 1 經過節點 5 可以讓節點 6 的距離降低,所以要將節點 6 的距離值更新。
- 節點 4、節點 6中距離最短的是節點6,選擇節點 6 最為**第 4 個** 確定點。

Dijkstra 演算法-步驟6 <第5個確定點>

● 步驟 6:最後只剩下節點 4 尚未確定最短路徑,因此只要計算節點 4 如果經過**節點 6**是否可以降低距離,有降低就更新記錄值。不論是否有降低,節點 4 一定會是**第 5 個確定點**。

	1	2	3	4	5	6
距離	0	10	20	40	20	21

	1	2	3	4	5	6
經過節點 6 的新 距離	0	10	20	40	20	21

Dijkstra 演算法-步驟6 <第5個確定點>

• 節點 4 成為**第 5 個確定點**。

	1	2	3	4	5	6
距離	0	10	20	40	20	21

Dijkstra 演算法-步驟7 <完成>

• 步驟 7:已經完成節點 1 到各節點的最短路徑,最後只要根據需求回傳所需要的路徑長度或是路徑資料就完成了!

	1	2	3	4	5	6
距離	0	10	20	40	20	21

Dijkstra Dijkstra 實作

若是使用相鄰矩陣記錄圖型結構, 那矩陣內指定節點對應的那行就會是初始距離

若仍有不確定節點,就會持續執行

找出不確認集合裡面最短的距離

找出下一個要從不確定節點集合移到 確定節點集合的結點。也就是找出可以 經過剛剛確定的最短 距離點而縮點距離的點

```
void Dijkstra(int vertex, int verticesCount, int graph[][MAX VERTICES])
int distance[MAX_VERTICES], done[MAX_VERTICES];
int i, lastVertex, doneVerticesCount, shortestLength;
for (i = 0; i < verticesCount; i++) {</pre>
 distance[i] = graph[vertex][i];
 done[i] = 0;
                                     done 陣列代表的是確定節點集合
done[vertex] = 1;
                                doneVerticesCount則是記錄確定節點數量
doneVerticesCount = 1:
while(doneVerticesCount < verticesCount) {</pre>
 shortestLength = 99999;
 for (i = 0; i < verticesCount; i++) {</pre>
  if (done[i] == 1) continue;
  if (distance[i] < shortestLength) {</pre>
   shortestLength = distance[i];
   lastVertex = i;
 done[lastVertex] = 1;
 doneVerticesCount++;
 for (i = 0; i < verticesCount; i++) {</pre>
  if (done[i] == 1) continue;
  if (distance[i] > distance[lastVertex] + graph[lastVertex][i])
   distance[i] = distance[lastVertex] + graph[lastVertex][i];
displayDistance(verticesCount, distance);
```

Dijkstra 演算法

■Dijkstra 演算法的主軸思想就是只有前面是最短路徑,後面才會 是最短路徑,因此處理的圖絕對**不能有負權重邊**!

邊的權重通常是代表距離、時間等資訊,因此權重值大多為正值,但圖型結構中是沒有強制要求權重值不能為負值,因此處理圖型結構時,一定要注意權重值的正負值情況。

問題來了...

Bellman-Ford 演算法

■Bellman-Ford 演算法是用來處理<mark>單源最短路徑</mark>問題:計算圖上某一點到其他所有點的最短路徑。

Bellman-Ford 演算法- 概念

- ■若在任兩節點之間的可能路徑中加入一個邊,可以讓此兩點的路徑距離降低,那就將這個邊加到此兩點的距離中,反之,就忽略這個邊。
- ■只要每個頂點都各別考慮過加入各個邊後是否會造成影響,就可以產生最短路徑。
 - 若有N 個頂點, M 條邊, 最多執行 N * M 的路徑距離大小判斷就可以 得到結果。
 - 但是,若M 條邊的任一條邊加入後都沒有路徑會更改距離,那就可以提 早結束判斷。

Bellman-Ford 演算法-流程

- ■步驟 1:將指定節點到其他任一個節點的距離長度設為無限大。
- ■步驟 2:依序取出每一條邊,找出因為這一條邊而可以降低最短距離的兩節點。
- ■步驟 3:為了避免步驟 2 中有任兩節點因為加入新邊而降低距離, 會間接對
- ■其它點的最短路徑造成影響,因此需要重複執行步驟 2,直到所有 邊都有對 每一個節點檢查。
- ■步驟 4:除了完成所有邊對每一個節點檢查以外,如果加入任何一條邊都不會更改任一點的最短路徑時,就可以結束。

Bellman-Ford 演算法— 範例

■請找出節點1到其它各節點的最短路徑

Bellman-Ford 演算法-步驟1

• 步驟 1: 先將指定點(節點1)到其它點的初始距離都設為無限大

Bellman-Ford 演算法-步驟2(1)

	1	2	3	4	5	6
距離	00	∞	20	∞	∞	∞
			<u>-</u> Дм			

• 加入第 2 條邊:降低節點 1 到節點 2 的路徑距離

	1	2	3	4	5	6
距離	00	10	20	∞	∞	∞
		/m				

Bellman-Ford 演算法-步驟 2

•加入第3條邊:降低節點3到節點5的路徑距離

• 節點 1 可到節點 3 ,因此更新節點 3 到節點 5 的最短路徑就代表可能包 更新節點 1 到節點 5 的最短路徑

	1	2	3	4	5	6
距離	00	10	20	∞	53	∞
					l Ju	_

- 加入第4條邊:降低節點2到節點5的路徑距離
 - 節點1可到節點2,因此更新節點2到節點5的最短路徑就代表可能也會更新節點1到節點 5的最短路徑

	1	2	3	4	5	6
距離	00	10	20	∞	20	∞
					. lm	

Bellman-Ford 演算法-步驟2(3)

• 加入第 5 條邊:降低節點 3 到節點 4 的路徑距離

	1	2	3	4	5	6
距離	00	10	20	40	20	∞

• 加入第 6 條邊:降低節點 2 到節點 2 的路徑距離

	1	2	3	4	5	6
距離	00	10	20	40	20	60

Bellman-Ford 演算法-步驟2(4)

• 加入第7條邊:沒有影響任兩點的距離,不用更改記錄值

	1	2	3	4	5	6
距離	00	10	20	40	20	60

● 加入第8條邊:降低節點4到節點6的路徑距離

	1	2	3	4	5	6
距離	00	10	20	40	20	38

Bellman-Ford 演算法- 步驟2(5)

• 加入第 9 條邊:降低節點 5 到節點 6 的路徑距離

	1	2	3	4	5	6
距離	00	10	20	40	20	21

Bellman-Ford 演算法-步驟3

- 重複步驟2,再度更新距離表
- 反覆執行,值到:
 - 全部 9 條邊不論加入哪一條都不會更改到距離表。
 - 最多執行 6 (頂點數目)次

	1	2	3	4	5	6
距離	00	10	20	40	20	21

Bellman-Ford 演算法-實作

將指定點到任一 點的距離初始值 設為無限大

```
oid BellmanFord(int vertex, int verticesCount, int edgesCount, int edgesList[][3])
int i, j, isChange;
int distance[MAX_VERTICES], predecessor[MAX_VERTICES];
for (i = 0; i<verticesCount; i++) {</pre>
                                                        每次檢查一個邊,
distance[i] = 99999;
                                                        看加入此邊後會
 predecessor[i] = i;
                                                        不會降低現有的
                                                            最短距離
distance[vertex] = 0;
for (i = 0; i<verticesCount; i++) {</pre>
isChange = 0;
for (j = 0; j<edgesCount; j++) {</pre>
 if (distance[edgesList[j][0]] + edgesList[j][2] < distance[edgesList[j][1]]) {</pre>
  distance[edgesList[j][1]] = distance[edgesList[j][0]] + edgesList[j][2];
  predecessor[edgesList[j][1]] = edgesList[j][0];
  isChange = 1;
 if(isChange == 0) break;
```

最多執行N (頂 點數) 次,但如果 加入任一邊都不 會有變化的話, 就不需要再反覆 檢查了。

Bellman-Ford 演算法- 檢查是否有負迴圈

```
isChange = 0;
for (j = 0; j<edgesCount; j++) {
    if (distance[edgesList[j][0]] + edgesList[j][2] < distance[edgesList[j][1]]) {
        distance[edgesList[j][1]] = distance[edgesList[j][0]] + edgesList[j][2];
        predecessor[edgesList[j][1]] = edgesList[j][0];
    isChange = 1;
    }
}

m里已經執行N(頂壓地) 次的各邊判斷
```

如果已經執行N (頂點數) 次的各邊判斷後,再多加一次執行各邊判斷時,仍然有最短距離被更改,就代表圖內有負迴圈,才會一直造成距離變動

還是有問題...

多源最短路徑

- 指定點到其他任一點的最短路徑問題稱為單源最短路徑問題
 - Dijkstra, Bellman-Ford
- 任兩點的最短路徑問題稱為多源最短路徑問題
 - Floyd-Warshall

- Floyd-Warshall 是用來處理<mark>多源最短路徑</mark>問題:計算圖上任兩點的最短路徑。
- Floyd-Warshall 與 Dijkstra 一樣,不處理負權重的圖型問題

Floyd-Warshall 演算法- 概念

- Floyd-Warshall 與 Dijkstra 類似,都認為任兩點之間的最短路徑有兩種情況:
 - 此兩點之間有邊相連,是相鄰的兩點
 - 此兩點會經過其它點,產生最短路徑

	1	2	3	4	5	6
1	0	9	3	4	∞	∞
2	∞	0	4	∞	∞	∞
3	∞	5	0	∞	6	∞
4	∞	2	∞	0	∞	∞
5	∞	∞	∞	∞	0	7
6	∞	∞	∞	8	∞	0

Floyd-Warshall 演算法- 流程

- 步驟 1: 複製一份圖型的相鄰矩陣資料,將這份矩陣資料做為最短路徑的初始值。
- 步驟 2: 在任兩點之間加入其它節點,確認距離是否有縮短,若有,就更新 矩陣內對應的元素值,重複此步驟,直到所有節點都有嘗試放入任兩點節點 之間。
- 步驟 3: 全部確認完成後,經由步驟 2 調整後的矩陣資料就是圖中任兩點的 最短路徑。

• 步驟 1: 複製一份圖型的相鄰矩陣資料,將這份矩陣資料做為最短路徑的初始值。

	1	2	3	4	5	6
1	0	9	3	4	∞	8
2	∞	0	4	∞	∞	∞
3	∞	5	0	∞	6	∞
4	∞	2	∞	0	∞	8
5	∞	∞	∞	∞	0	7
6	∞	∞	∞	8	∞	0

• 步驟 2: 在任兩點之間加入節點 1,確認距離是否有縮短

	1	2	3	4	5	6
1	0	9	3	4	∞	8
2	∞	0	4	∞	∞	8
3	∞	5	0	∞	6	8
4	∞	2	∞	0	∞	8
5	∞	∞	∞	∞	0	7
6	∞	∞	∞	8	∞	0

• 步驟 3: 在任兩點之間加入節點 2,確認距離是否有縮短

	1	2	3	4	5	6
1	0	9	3	4	∞	8
2	∞	0	4	∞	∞	8
3	∞	5	0	∞	6	8
4	∞	2	6	0	∞	8
5	∞	∞	∞	∞	0	7
6	∞	∞	∞	8	∞	0

• 步驟 4: 在任兩點之間加入節點 3,確認距離是否有縮短

	1	2	3	4	5	6
1	0	8	3	4	9	8
2	∞	0	4	∞	10	8
3	∞	5	0	∞	6	8
4	∞	2	6	0	12	8
5	∞	∞	∞	∞	0	7
6	∞	∞	∞	8	∞	0

• 步驟 5: 在任兩點之間加入節點 4,確認距離是否有縮短

	1	2	3	4	5	6
1	0	6	3	4	9	8
2	∞	0	4	∞	10	8
3	∞	5	0	∞	6	8
4	∞	2	6	0	12	8
5	∞	∞	∞	∞	0	7
6	∞	10	14	8	20	0

• 步驟 6: 在任兩點之間加入節點 5,確認距離是否有縮短

	1	2	3	4	5	6
1	0	6	3	4	9	16
2	∞	0	4	∞	10	17
3	∞	5	0	∞	6	13
4	∞	2	6	0	12	19
5	∞	∞	∞	∞	0	7
6	∞	10	14	8	20	0

• 步驟 7: 在任兩點之間加入節點 6,確認距離是否有縮短

	1	2	3	4	5	6
1	0	6	3	4	9	16
2	∞	0	4	25	10	17
3	∞	5	0	21	6	13
4	∞	2	6	0	12	19
5	∞	17	21	15	0	7
6	∞	10	14	8	20	0

• 步驟 8: 全部確認完成後,最後的矩陣資料就是圖中任兩點的最短路徑。

	1	2	3	4	5	6
1	0	6	3	4	9	16
2	∞	0	4	25	10	17
3	∞	5	0	21	6	13
4	∞	2	6	0	12	19
5	∞	17	21	15	0	7
6	∞	10	14	8	20	0

Floyd-Warshall實作

使用相鄰矩陣的表示 方式記錄圖讓任兩點 的最短距離

比較任兩點之間的最短 路徑,是否會因為多經 過某節點就減少距離。

```
void FloyeWarshall(int verticesCount, int graph[][MAXVERTICES]
int distance[MAXVERTICES][MAXVERTICES];
int predecessor[MAXVERTICES][MAXVERTICES];
inti, j, k;
for (i = 0; i < verticesCount; i++) {</pre>
 for (j = 0; j < verticesCount; j++) {</pre>
  distance[i][j] = graph[i][j];
  predecessor[i][j] = -1;
for (k = 0; k < verticesCount; k++) {</pre>
 for (i = 0; i < verticesCount; i++) {</pre>
 for (j = 0; j < verticesCount; j++) {</pre>
   if(i == j) {continue;} // 不處理自己到自己的情況
   if (i == k | | i == k) {continue:} // 中繼點與兩端點一定要不一樣
   f (distance[i][k] + distance[k][j] < distance[i][j]) {
     distance[i][j] = distance[i][k] + distance[k][j];
     predecessor[i][j] = k;
displayDistance(verticesCount, distance);
                              18dice
```


概念1: 最短路徑

• 單源最短路徑

• 無權重:廣度優先搜尋 DFS

• 正權重: Dijkstra 演算法

• 負權重: Bellman-Ford 演算法

• 多源最短路徑

• 正(或無)權重: Floyd-Warshall