

DATA CLEANING

CHEAT SHEET

for Machine Learning

Save for later reference

HANDLING MISSING VALUES

1. Remove Rows with Missing Values

df = df.dropna()

2. Drop Columns with a Certain Percentage of Missing Values

df = df.dropna(thresh=len(df) * 0.7, axis=1)

3. Impute Missing Values in Numeric Columns with Mean

from sklearn.impute import SimpleImputer numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns imputer = SimpleImputer(strategy='mean') df[numeric cols] = imputer.fit transform(df[numeric cols])

4. Impute Missing Values in Categorical Columns with Most Frequent

categorical_cols = df.select_dtypes(include='object').columns imputer = SimpleImputer(strategy='most_frequent') df[categorical_cols] = imputer.fit_transform(df[categorical_cols])

5. Interpolation for Time Series Data

df = df.interpolate()

6. K-Nearest Neighbors (KNN) Imputation

from sklearn.impute import KNNImputer knn_imputer = KNNImputer(n_neighbors=2) df = knn imputer.fit transform(df)

HANDLING OUTLIERS

Z-Score Method: Identify outliers based on the Z-scores of numeric columns.

z_scores = (df[numeric_cols] - df[numeric_cols].mean()) /
df[numeric_cols].std()

 $df = df[(z_scores < 3).all(axis=1)]$

This example filters out rows where the Z-score in any numeric column is greater than 3.

IQR (Interquartile Range) Method: Identify and remove outliers using the IQR.

Q1 = df[numeric_cols].quantile(0.25)

Q3 = df[numeric_cols].quantile(0.75)

IQR = Q3 - Q1

df = df[~((df[numeric_cols] < (Q1 - 1.5 * IQR)) | (df[numeric_cols] > (Q3 + 1.5 * IQR))).any(axis=1)]

This example uses the IQR to filter out rows with values outside the 1.5 times IQR range.

Visual Inspection and Manual Removal: Examine visualizations like box plots or scatter plots to identify and manually remove outliers based on domain knowledge.

import seaborn as sns
sns.boxplot(x=df['numeric_column'])

03 HANDLING DUPLICATES

Remove Exact Duplicates: Identify and remove rows that have the exact same values across all columns. df = df.drop_duplicates()

Remove Duplicates Based on Specific Columns:
Remove rows where specific columns have duplicate values.

columns_to_check = ['col1', 'col2', 'col3']

df = df.drop_duplicates(subset=columns_to_check)

Counting and Identifying Duplicates: Check for the existence of duplicates and display their count.

duplicate_count = df.duplicated().sum()
duplicate_rows = df[df.duplicated()]

<u>Handling Duplicates While Keeping the Last</u>

<u>Occurrence: Keep the last occurrence of a duplicate</u>

<u>row based on a specific column.</u>

df = df.drop_duplicates(subset='column_to_check',
keep='last')

ENCODING CATEGORICAL VARIABLES

One-Hot Encoding: Convert categorical variables into binary vectors.

df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
This creates binary columns for each category, dropping the first to
avoid multicollinearity.

<u>Label Encoding: Convert categorical labels into numerical</u> values.

from sklearn.preprocessing import LabelEncoder label_encoder = LabelEncoder()

df['categorical_column'] = label_encoder.fit_transform(df['categorical_column'])

Binary Encoding: Encode categorical features as binary numbers.

import category_encoders as ce
binary_encoder = ce.BinaryEncoder(cols=categorical_cols)
df = binary encoder.fit transform(df)

Ordinal Encoding: Encode categorical variables as ordinal integers.

ordinal_mapping = {'low': 1, 'medium': 2, 'high': 3} df['ordinal_column'] = df['ordinal_column'].map(ordinal_mapping)

HANDLING INCONSISTENT DATA TYPES

Ensure Proper Data Types: Ensure that each column has the correct data type.

df = df.astype({'numeric_column': 'float64',

'categorical_column': 'category'})

Use the astype method to explicitly set the data type of each column.

<u>Convert Data Types: Convert data types, for example, from string to numeric.</u>

df['numeric_column'] =
pd.to_numeric(df['numeric_column'], errors='coerce')
Use pd.to_numeric to convert a column to numeric,
handling errors as specified.

Convert Text to Lowercase or Uppercase: Standardize text data by converting to lowercase or uppercase.

df['text_column'] = df['text_column'].str.lower()
Use str.lower() or str.upper() to standardize text data.

FEATURE SCALING

Standard Scaling (Z-score normalization): Scale numerical features to have a mean of 0 and a standard deviation of 1.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

df['numeric_column'] =

scaler.fit_transform(df[['numeric_column']])

Fit a StandardScaler to your numeric columns and transform them.

Min-Max Scaling: Scale numerical features to a specific range, often between 0 and 1.

from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler()

df['numeric_column'] = scaler.fit transform(df[['numeric_column']])

Robust Scaling: Scale features using the median and interquartile range, suitable for data with outliers.

from sklearn.preprocessing import RobustScaler scaler = RobustScaler()

df['numeric_column'] = scaler.fit_transform(df[['numeric_column']])

HANDLING IMBALANCED DATASETS

Oversampling: Increase the number of instances of the minority class.

from imblearn.over_sampling import RandomOverSampler oversampler = RandomOverSampler(sampling_strategy='minority')
X_resampled, y_resampled = oversampler.fit_resample(X, y)

<u>Undersampling: Decrease the number of instances of the majority class.</u>

from imblearn.under_sampling import RandomUnderSampler undersampler =

RandomUnderSampler(sampling_strategy='majority')

X_resampled, y_resampled = undersampler.fit_resample(X, y)

SMOTE (Synthetic Minority Over-sampling Technique): Generate synthetic samples for the minority class.

from imblearn.over_sampling import SMOTE smote = SMOTE(sampling_strategy='minority') X_resampled, y_resampled = smote.fit_resample(X, y)

<u>Class Weights: Adjust class weights during model training to</u> <u>give more importance to the minority class.</u>

from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(class_weight='balanced')

ADDITIONAL STEPS

1. Handling Time Series Data:

Handling missing values with forward fill for time series data df = df.ffill()

2. Feature Engineering:

Creating a new feature by combining existing ones df['new_feature'] = df['feature1'] * df['feature2']

3. Handling Skewed Data:

Applying log transformation to the target variableimport numpy as np df['target_variable'] = np.log1p(df['target_variable'])

4. Memory Optimization:

Convert columns to more memory-efficient types df['numeric_column'] = df['numeric_column'].astype('float32')

5. Cross-Validation:

from sklearn.model_selection import cross_val_score scores = cross_val_score(model, X, y, cv=5)

6. Pipeline Construction:

from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer

Fit the pipeline

