Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 19.04.2013

Arbeitszeit: 120 min

Name:							
Vorname(n):							
Matrikelnumme	r:						Note:
	Aufgabe	1	2	3	4	\sum]
	erreichbare Punkte	10	11	9	10	40	1
	erreichte Punkte						j
					I		1
$\mathbf{Bitte}\;$							
, G:	NT	N.f. / 1	1	(· 1 F	. 111	
tragen Sie	Name, Vorname und	Matrik	æinumr	ner aui	dem L	eckbla	tt ein,
rechnen S	ie die Aufgaben auf se	paratei	n Blätt	ern, ni e	cht auf	dem A	Angabeblatt,
beginnen	Sie für eine neue Aufg	abe im	mer au	ch eine	neue S	Seite,	
geben Sie	auf jedem Blatt den I	Vamen	sowie d	lie Mat	rikelnu	mmer a	an,
	C. T. A.	Cu l		•			
begrunder	n Sie Ihre Antworten a	ustuhr.	lich und	d			
	ie hier an, an welchen ntreten können:	n der fo	olgende	n Term	nine Sie	nicht	zur mündlichen
	□ Fr., 26.4.2013	3		\square N	Io., 29.	4.2013	

1. Im folgenden Beispiel soll das elektrohydraulische System aus Abbildung 1 mit dem hydropneumatischen Kolbenspeicher der Länge L_k untersucht werden. Der Kolben, mit vernachlässigbarer Dicke, der Masse m_k und der Kolbenfläche A_k , trennt die beiden Kammern dicht und reibungsfrei voneinander ab. Für die abgeschlossene Gasseite, mit dem Gasdruck p_g gelte das ideale Gasgesetz $m_g R_s T_g = p_g V_g$, mit der spezifischen Gaskonstanten R_s , der Gastemperatur T_g , dem Gasvolumen V_g und der konstanten Gasmasse m_g . Für den Wärmeaustausch zwischen Gas und der Umgebung, mit der Umgebungstemperatur T_U , gelte vereinfachend ein Wärmestrom der Form $\frac{\mathrm{d}}{\mathrm{d}t}Q = c_g(T_U - T_g)$. Die innere Energie des Gases lässt sich mit $U = m_g \frac{R_s}{\kappa - 1} T_g$, mit dem konstanten Isentropenexponenten $\kappa > 1$ beschreiben. Für das Öl sei angenommen, dass die Beschreibung eines konstanten Kompressionsmoduls β mit $\frac{\partial \rho_o}{\partial p_o} = \frac{\rho_o}{\beta}$ ausreichend ist und die Öltemperatur T_o ebenfalls konstant ist. Mithilfe einer Axialkolbenpumpe kann der Volumenstrom in das Ölvolumen reguliert werden. Dieser ergibt sich zu $q = k_P \alpha$, mit der Pumpenkonstanten k_p und dem Schwenkwinkel α .

Abbildung 1: Hydropneumatisches System.

Lösen Sie die nachfolgenden Teilaufgaben:

a) Berechnen Sie die Temperaturdifferentialgleichung des Gases aus der Energiebilanz

$$\frac{\mathrm{d}}{\mathrm{d}t}U = \frac{\mathrm{d}}{\mathrm{d}t}Q - p\frac{\mathrm{d}}{\mathrm{d}t}V.$$

1 P.

1 P.

b) Berechnen Sie mithilfe der Massenbilanz

$$\frac{\mathrm{d}}{\mathrm{d}t}(\rho_o V) = \sum (q\rho_o).$$

die Druckdifferentialgleichung des Öls.

Hinweis: Verwenden Sie für die Ölseite $\frac{d}{dt}\rho_o = \frac{\partial \rho_o}{\partial p_o} \frac{d}{dt} p_o$.

c) Stellen Sie die Modellgleichungen mit den Zustandsgrößen $\mathbf{x} = \begin{bmatrix} s_k, v_k, p_o, T_g \end{bmatrix}$ 4 P.| in der Form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, u)$$
$$\mathbf{y} = \mathbf{h}(\mathbf{x}, u)$$

mit dem Eingang $u = \alpha$ und dem Ausgang $\mathbf{y} = [s_k, p_g]^T$ dar.

d) Wie viele Ruhelagen hat das System?

1 P.

e) Berechnen Sie die allgemeine Ruhelage des Systems \mathbf{x}_R für $s_{k,R}=L_k/2$ und 3 P.| den sich dabei einstellenden Gasdruck $p_{g,R}$.

2. Gegeben ist der Standardregelkreis nach Abbildung 2 mit der Übertragungsfunktion der zeitkontinuierlichen Strecke

$$G(s) = \frac{20}{s(2 + 2\xi s + 0.5s^2)}, \qquad \xi > 0.$$
 (1)

Abbildung 2: Standardregelkreis.

- a) Zeichnen Sie das Bodediagramm der Übertragungsfuntion G(s) für $\xi=1$ 2 P.| (Asymptoten sind ausreichend). Benutzen Sie dazu bitte die beiliegende Vorlage!
- b) Für die Streckenübertragungsfunktion G(s) gelte $\xi=0.7$. Entwerfen Sie für 4P. den Regelkreis von Abbildung 2 mit Hilfe des Frequenzkennlinienverfahrens einen realisierbaren Kompensationsregler R(s) der Ordnung 2. Setzen Sie dazu d(t)=0. Der geschlossene Regelkreis hat dabei die folgenden Anforderungen
 - Anstiegszeit $t_r = 0.3 \,\mathrm{s}$
 - Prozentuelles Überschwingen $\ddot{u} = 10\%$
 - Bleibende Regelabweichung $e_{\infty} = \lim_{t \to \infty} e(t)|_{r(t) = \sigma(t)} = 0$

zu erfüllen.

- c) Es gelte $R(s) = K \in \mathbb{R}, K > 0$ und d(t) = 0. Bestimmen Sie allgemein den 3 P.| Wertebereich von ξ , für den der geschlossene Regelkreis nach Abbildung 2 BIBO-stabil ist.
- d) Nehmen Sie an, dass der geschlossene Regelkreis nach Abbildung 2 mit R(s) = 2 P. $K \in \mathbb{R}$ und G(s) aus (1) BIBO-stabil ist. Berechnen Sie für r(t) = 0 und $d(t) = \sigma(t)$ den stationären Wert der Ausgangsgröße.

Abbildung 3: Bode-Diagramm der Strecke ${\cal G}(s)$ zu Aufgabe 2 a).

- 3. Bearbeiten Sie die folgenden Teilaufgaben. Alle Teilaufgaben a), b) und c) können unabhängig voneinander gelöst werden.
 - a) Abbildung 4 zeigt den Amplitudengang sowie die Nyquist-Ortskurve einer zeitkontinuierlichen Übertragungsfunktion G(s). Welche der folgenden Übertragungsfunktionen wird dadurch dargestellt. Begründen Sie Ihre Antworten.

1)
$$G_1(s) = \frac{2+s}{2+s+2s^2}$$

2)
$$G_2(s) = \frac{2-s}{2+s+2s^2}$$

1)
$$G_1(s) = \frac{2+s}{2+s+2s^2}$$
 2) $G_2(s) = \frac{2-s}{2+s+2s^2}$
3) $G_3(s) = \frac{4}{(2+s+2s^2)(2+s)}$ 4) $G_4(s) = \frac{4}{(2+s+2s^2)(2-s)}$

4)
$$G_4(s) = \frac{4}{(2+s+2s^2)(2-s)}$$

Abbildung 4: Amplitudengang und Nyquist-Ortskurve zu Aufgabe 3 a).

b) Betrachten Sie den Regelkreis im linken Teil der Abbildung 5 mit der Strecke

$$G(s) = \frac{1}{(s-1)(s+4)} \tag{2}$$

und einem Regler der Form

$$R(s) = \frac{V(s+2)^2}{s(1+sT_R)}, \quad T_R > 0.$$
 (3)

Die zugehörige Nyquist-Ortskurve des offenen Kreises L(s) = R(s)G(s) ist im rechten Teil der Abbildung 5 dargestellt.

i. Untersuchen Sie mit Hilfe des Nyquist-Kriteriums, ob der geschlossene 2P. Regelkreis nach Abbildung 5 BIBO-stabil ist.

Abbildung 5: Regelkreis und Nyquist-Ortskurve des offenen Kreises zu Aufgabe 3 b).

- ii. Kann die Untersuchung der Stabilität des geschlossenen Regelkreises nach 1 P. Abbildung 5 in diesem Fall mittels des Nyquist-Kriteriums in Frequenzkennliniendarstellung erfolgen? Begründen Sie Ihre Antwort.
- c) Gegeben ist das autonome System

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \qquad \mathbf{x}(0) = \mathbf{x}_0. \tag{4}$$

Mittels einer geeigneten Matrix V kann das System über die reguläre Zustandstransformation $\mathbf{x} = V\tilde{\mathbf{x}}$ in die reelle Jordansche Normalform

$$\dot{\tilde{\mathbf{x}}} = \tilde{\mathbf{A}}\tilde{\mathbf{x}}, \qquad \tilde{\mathbf{x}}(0) = \tilde{\mathbf{x}}_0$$
 (5)

überführt werden, wobei $\tilde{\mathbf{A}}$ nur aus Jordanblöcken besteht.

- i. Leiten Sie einen Ausdruck für die Lösung $\mathbf{x}(t)$ des Systems (4) in Abhän- 1 P.| gigkeit der Transitionsmatrix $\tilde{\mathbf{\Phi}}(t)$ des transformierten Systems (5) her.
- ii. Berechnen Sie für 2 P.|

$$\mathbf{A} = \begin{bmatrix} -3 & 3 & -2 \\ 0 & -2 & 0 \\ 1 & -2 & 0 \end{bmatrix}$$

die Systemmatrix $\tilde{\mathbf{A}}$ des transformierten Systems (5) und bestimmen Sie die zugehörige Transitionsmatrix $\tilde{\mathbf{\Phi}}$ (t).

- 4. Lösen Sie die folgenden Teilaufgaben
 - a) Gegeben ist das zeitdiskrete System

$$\mathbf{x}_{k+1} = \begin{bmatrix} 3 & 7 \\ 2 & 1 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 3 & 4 \end{bmatrix} \mathbf{x}_k.$$

- i. Entwerfen Sie für dieses System einen vollständigen Luenberger-Beobachter. 3 P.| Berechnen Sie die Beobachterverstärkung $\hat{\mathbf{k}}$ so, dass die Eigenwerte der Fehlerdynamikmatrix an den Stellen $-\frac{1}{2}$ und $-\frac{1}{3}$ zu liegen kommen.
- ii. Ist die Fehlerdynamikmatrix eines trivialen Beobachters für dieses System 1 P. stabil? Begründen Sie Ihre Antwort.
- b) Transformieren Sie das System

 $2 \, \mathrm{P.}$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{r},$$

mit der Ruhelage $\mathbf{u}_R=\mathbf{0}$ und $\mathbf{x}_R\neq\mathbf{0}$ und dem konstanten nichttrivialen Vektor \mathbf{r} in ein System der Form

$$\dot{\mathbf{z}} = \mathbf{\bar{A}}\mathbf{z} + \mathbf{\bar{B}}\mathbf{u}.$$

mit der Ruhelage $\mathbf{u}_R = \mathbf{0}$ und $\mathbf{z}_R = \mathbf{0}$. Wie lautet die Transformationsvorschrift für \mathbf{z} und wie hängen $\bar{\mathbf{A}}$ und $\bar{\mathbf{B}}$ von \mathbf{A} und \mathbf{B} ab.

c) Gegeben ist das zeitdiskrete System

$$\mathbf{x}_{k+1} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \mathbf{x}_k + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}_k$$

und der Zeitverlauf der Impulsfolge g_k in Abbildung 6.

Abbildung 6: Zeitdiskrete Impulsantwort.

i. Geben Sie die Hankelmatrix ${\bf H}$ des Systems an.

3 P.|

ii. Welche Aussage kann aus der Regularität von H geschlossen werden?

1 P.|