## ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

### Section 1

**Vector Spaces** 

## Vector Spaces

A <u>field</u> is a set of scalars with well defined addition and multiplication operations.

#### **Example of fields:**

- $ightharpoonup \mathbb{R}$  with normal addition and multiplication operations
- lacktriangle  $\Bbb C$  with complex addition and complex multiplication
- ► The set of quaternions, with addition and quaternion multiplication
- ▶ Binary numbers {0,1} where addition is the "or" operator and multiplication is the "and" operator.

## Vector Spaces

### Definition (Linear Vector Space)

A <u>linear vector space</u> is a pair  $(X, \mathbb{F})$ , where X is a set of objects, and  $\overline{\mathbb{F}}$  is a field, this is closed under addition and scalar multiplication. i.e.,

- $\triangleright x \in \mathbb{X}, \alpha \in \mathbb{F} \Rightarrow \alpha x \in \mathbb{X}$
- $\triangleright$   $x, y \in \mathbb{X} \Rightarrow x + y \in \mathbb{X}.$

#### By implication

- $\triangleright x \in \mathbb{X}, \alpha, \beta \in \mathbb{F} \Rightarrow (\alpha + \beta)x = \alpha x + \beta x \in \mathbb{X}$
- $\triangleright$   $x, y \in \mathbb{X}, \alpha \in \mathbb{F} \Rightarrow \alpha(x + y) = \alpha x + \alpha y \in \mathbb{X}$
- $\triangleright$   $x, y \in \mathbb{X}, \alpha, \beta \in \mathbb{F} \Rightarrow \alpha x + \beta y \in \mathbb{X}.$

## Vector Spaces: Subspace

### Definition (Subspace)

A <u>subspace</u>  $V \subset \mathbb{X}$  is a subset of  $\mathbb{X}$  that is also a linear vector space, in particular it contains zero.

**Important property:** A vector space contains a <u>zero</u> element.

## Vector Spaces: Examples

The following are vector spaces:

 $\blacktriangleright$  ( $\mathbb{R}^n$ ,  $\mathbb{R}$ ), ( $\mathbb{C}^n$ ,  $\mathbb{C}$ ), ( $\mathbb{R}^{m \times n}$ ,  $\mathbb{R}$ ), (C[a, b],  $\mathbb{R}$ ), ( $\ell^{\infty}$ ,  $\mathbb{R}$ ), ( $\ell^{\infty}$ ,  $\mathbb{R}$ ).

The following are NOT vector spaces:

- ▶ The set  $\mathbb{X} = \mathbb{R} \times [0, 2\pi]$ , (a cylinder) is not a vector space for any field  $\mathbb{F}$ . This is the state space for an inverted pendulum.
- ► The set of rotation matrices is not a vector space for any field
  F. This is in the configuration space for robots and satellites.
- ► The set of unit quaternions is not a vector space for any field. Quaternions are used extensively in robotics, quantum mechanics, and computer graphics.
- There are many useful spaces that are NOT linear vector spaces.

## Vector Spaces: Linear Independence

Let S be a vector space and let  $T \subset S$ . (T may have uncountable infinite members). T is linearly independent if for each  $\underline{\text{finite}}$  nonempty subset of T. i.e.,  $\{p_1, \cdots, p_n\}$  where  $p_i \in T$ , we have that

$$c_1p_1+\cdots+c_np_n=0$$
  $\iff$   $c_1=c_2=\cdots=c_n=0.$ 

Otherwise T is linearly dependent.

## Vector Spaces: Linear Independence

### Example

Let  $S = \mathbb{R}^3$  then the set  $T = \{(1,0,0)^\top, (0,1,0)^\top\} \subset \mathbb{R}^3$  is linearly independent since

$$c_1 egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + c_2 egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} = egin{pmatrix} c_1 \ c_2 \ 0 \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}$$

if and only if  $c_1 = c_2 = 0$ .

However, the set  $T=\{(1,1,0)^{\top},(2,2,0)^{\top}\}\subset\mathbb{R}^3$  is linearly dependent since

$$c_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} c_1 + 2c_2 \\ c_1 + 2c_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

when  $c_1 = -2$  and  $c_2 = 1$  (as only on example).



# Vector Spaces: Span

## Definition (Span)

Let S be a vector space, then span(T) is the set of all linear combinations of  $T \subseteq S$ .

Example

$$\operatorname{span}\left\{\left(\begin{array}{c}1\\1\end{array}\right)\right\}=\left\{\left(\begin{matrix}\alpha\\\alpha\end{matrix}\right)|\alpha\in\mathbb{R}\right\}$$

Example

$$\operatorname{span}\left\{\left(\begin{array}{c}1\\0\end{array}\right),\left(\begin{array}{c}0\\1\end{array}\right)\right\}=\left\{\left(\begin{matrix}\alpha\\\beta\end{matrix}\right):\alpha,\beta\in\mathbb{R}\right\}=\mathbb{R}^2.$$

## Vector Spaces: Basis

### Definition (Basis)

T is a <u>basis</u> for the vector space S if T is linearly independent and  $\mathrm{span}(T) = S$ .

## Definition (Dimension)

The dimension of the vector space S is the smallest number of linearly independent vectors needed to span S.

### Example

One possible basis for  $\mathbb{R}^n$  is given by

$$\left\{ \left(\begin{array}{c} 1\\0\\\vdots\\0 \end{array}\right), \left(\begin{array}{c} 0\\1\\\vdots\\0 \end{array}\right) \dots, \left(\begin{array}{c} 0\\0\\\vdots\\1 \end{array}\right) \right\}.$$

Therefore  $\dim(\mathbb{R}^n) = n$ .



# Vector Spaces: Basis

### Example

One possible basis for  $\ell^\infty$  is given by

$$\left\{ \begin{pmatrix} 1\\0\\0\\\vdots\\\vdots\\\vdots\\\vdots \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\\vdots\\\vdots\\\vdots\\\vdots \end{pmatrix}, \cdots, \begin{pmatrix} 0\\0\\\vdots\\0\\1\\0\\\vdots \end{pmatrix}, \cdots \right\}$$

Therefore  $\dim(\ell^{\infty}) = \infty$ .

# Vector Spaces: Basis

### Example

The set of all polynomials P is a vector space with basis

$$\{1,t,t^2,\cdots\}$$

Therefore  $\dim(P) = \infty$ .

### Example

The set of all polynomials of degree  $\leq q P^q$  is a vector space with basis

$$\{1,t,t^2,\cdots,t^q\}$$

Therefore  $\dim(P^q) = q$ .