Math 415 - Lecture 16

Linear Transformations

Friday October 2nd 2015

Textbook reading: Chapter 2.6

Suggested practice exercises: Chapter 2.6: 5, 6, 7, 36, 37

Khan Academy videos: Linear Transformations / Linear Transformations as Matrix Vector Products / Linear Transformation Examples: Rotations in \mathbb{R}^2

Strang lecture: Lecture 30: Linear Transformations

1 Review

If $\mathcal{B} = (\mathbf{b_1}, \dots, b_p)$ is a basis for a vector space V then the coordinate vector of a vector $\mathbf{w} \in V$ is the column vector

$$\mathbf{w}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}, \quad \text{if } \mathbf{w} = c_1 \mathbf{b_1} + c_2 \mathbf{b_2} + \dots + c_p \mathbf{b_p}$$

Example 1. Let
$$V = \mathbb{R}^2$$
, $\mathcal{B} = (\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix})$ and $\mathbf{w} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

Solution. Then

$$\mathbf{w} = \mathbf{1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \implies \mathbf{w}_{\mathcal{B}} = \begin{bmatrix} \mathbf{1} \\ 2 \end{bmatrix}.$$

Geometrically: this means that to reach \mathbf{w} walk 1 unit along the $\mathbf{b_1}$ basis vector and 2 units along the $\mathbf{b_2}$ basis vector.

Example 2. Still $V = \mathbb{R}^2$, $\mathcal{B} = (\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix})$ a basis for V. Suppose $\mathbf{w} = \begin{bmatrix} 4 \end{bmatrix}$ is a coordinate vector with respect to the basis \mathcal{B} . What is the vector

 $\mathbf{w}_{\mathcal{B}} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ is a coordinate vector with respect to the basis \mathcal{B} . What is the vector \mathbf{w} , with respect to the standard basis?

Solution. $\mathbf{w}_{\mathcal{B}} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ means that you reach \mathbf{w} by walking 4 units along $\mathbf{b_1}$ and 5 units along $\mathbf{b_2}$. So

$$\mathbf{w} = 4\mathbf{b_1} + 5\mathbf{b_2} = 4\begin{bmatrix} 1\\1 \end{bmatrix} + 5\begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 9\\-1 \end{bmatrix}$$

Remark. Translating to the standard basis is always easy. To go from the standard basis to a new basis requires solving a system of equations, so is generally harder.

2 Linear Transformations

Let V and W be vector spaces.

Definition. A map $T: V \to W$ is a linear transformation if

$$T(c\mathbf{x} + d\mathbf{y}) = cT(\mathbf{x}) + dT(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in V$ and all $c, d \in \mathbb{R}$. In other words, a linear transformation respects addition and scaling.

- $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$
- $T(c\mathbf{x}) = cT(\mathbf{x})$

It also sends the zero vector in V to the zero vector in W:

•
$$T(\mathbf{0}) = \mathbf{0}$$
 (because $T(\mathbf{0}) = T(0 \cdot \mathbf{0}) = 0 \cdot T(\mathbf{0}) = \mathbf{0}$)

2.1 Some examples

Example 3. Let $V = \mathbb{R}, W = \mathbb{R}$. Then the map f(x) = 3x is linear. Why?

Solution. If $x, y \in \mathbb{R}$, then $f(ax + by) = 3(ax + by) = a \cdot 3x + b \cdot 3y = af(x) + bf(y)$. What about the function g(x) = 2x - 2? Is this a linear transformation?

Example 4. Let A be an $m \times n$ matrix. Then the map $T(\mathbf{x}) = A\mathbf{x}$ is a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$. Why?

Solution. Because matrix multiplication is linear.

$$A(c\mathbf{x} + d\mathbf{y}) = cA\mathbf{x} + dA\mathbf{y}$$

The left-hand side is $T(c\mathbf{x} + d\mathbf{y})$ and the right-hand side is $cT(\mathbf{x}) + dT(\mathbf{y})$.

We will argue that all linear transformations are essentially matrix multiplication!

Example 5. Let P_n be the vector space of all polynomials of degree at most n. Consider the map $T: P_n \to P_{n-1}$ given by

$$T(p(t)) = \frac{d}{dt}p(t).$$

This map is linear! Why?

Solution. Because differentiation is linear:

$$\frac{d}{dt}[ap(t) + bq(t)] = a\frac{d}{dt}p(t) + b\frac{d}{dt}q(t).$$

The left-hand side is T(ap(t) + bq(t)) and the right-hand side is aT(p(t)) + bT(q(t)).

3 Important Geometric Examples

Let's consider some linear maps $\mathbb{R}^2 \to \mathbb{R}^2$ which are defined by matrix multiplication $(\mathbf{x} \mapsto A\mathbf{x})$. In fact, it turns out that all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ are given by $\mathbf{x} \mapsto A\mathbf{x}$ for some $m \times n$ matrix A.

Example 6 (Stretching). The matrix $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$ gives the map $x \mapsto c\mathbf{x}$, It stretches every vector in \mathbb{R}^2 by a factor c.

Example 7 (Reflection). The matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$. It reflects every vector in \mathbb{R}^2 across the line y = x.

Example 8 (Projection.). The matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 0 \end{bmatrix}$. It projects every vector in \mathbb{R}^2 onto the x-axis.

Example 9 (Rotation by 90°.). The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto$

 $\begin{bmatrix} -y \\ x \end{bmatrix}$. It rotates every vector in \mathbb{R}^2 counter-clockwise by 90 degrees.

4 Representing linear maps by matrices

Motto

If you know T on a basis, you know T everywhere.

- Let $\mathbf{x_1}, \dots, \mathbf{x_n}$ be an input basis, a basis for V. A linear map $T: V \to W$ is determined by the values $T(\mathbf{x_1}), \dots, T(\mathbf{x_n})$.
- Why?

Take any $\mathbf{v} \in V$. It can be written as $\mathbf{v} = c_1 \mathbf{x_1} + \cdots + c_n \mathbf{x_n}$ because $\{\mathbf{x_1}, \dots, \mathbf{x_n}\}$ is a basis and hence spans V. Hence by the linearity of T:

$$T(\mathbf{v}) = T(c_1\mathbf{x_1} + \dots + c_n\mathbf{x_n}) = c_1T(\mathbf{x_1}) + \dots + c_nT(\mathbf{x_n}).$$

So we know how to write $T(\mathbf{v})$ as long as we know $T(\mathbf{x_1}), \dots, T(\mathbf{x_n})$!

4.1 Standard Basis Coordinates

Example 10. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear map so that

$$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\2\\3\end{bmatrix}$$
 and $T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}0\\0\\-3\end{bmatrix}$

What is

$$T\begin{bmatrix}1\\2\end{bmatrix}$$
?

Solution.

$$T\begin{bmatrix}1\\2\end{bmatrix} = T\begin{bmatrix}1\\0\end{bmatrix} + 2T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}1\\2\\3\end{bmatrix} + 2\begin{bmatrix}0\\0\\-3\end{bmatrix} = \begin{bmatrix}1\\2\\-3\end{bmatrix}$$

Let us look at the example again. The linear transformation was given on the standard basis by

$$T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}1\\2\\3\end{bmatrix} \text{ and } T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}0\\0\\-3\end{bmatrix}$$

Let's take a general input vector for T:

$$T\begin{bmatrix} x \\ y \end{bmatrix} = xT\begin{bmatrix} 1 \\ 0 \end{bmatrix} + yT\begin{bmatrix} 0 \\ 1 \end{bmatrix} = x\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y\begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$

A linear combination! Linear combination is matrix multiplication!

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Hence calculating T is multiplying by the matrix $A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & -3 \end{bmatrix}$.

Summary: The linear transformation

$$T \colon \mathbb{R}^2 \to \mathbb{R}^3, \quad T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$$

is the same as multiplying by the matrix

$$A = \begin{bmatrix} T \begin{bmatrix} 1 \\ 0 \end{bmatrix} & T \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix} \end{bmatrix}$$

We say that the linear transformation T is represented by the matrix A, or that A is the *coordinate matrix* of the linear transformation T, (with respect to the standard bases).

Example 11. Let $T_{\alpha} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the "rotation over α radians (counterclockwise)" map. So $T_{\alpha}(\mathbf{x})$ is the vector obtained by rotating \mathbf{x} over angle α . Can you find a matrix so that $T_{\alpha}(\mathbf{x}) = A_{\alpha}\mathbf{x}$?

Solution. We just need to find what happens under rotation to the standard basic vectors. If you draw a picture you see that

$$T_{\alpha} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix}, \quad T_{\alpha} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{bmatrix},$$

So our matrix is $A_{\alpha} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$. This is called the rotation matrix for angle α . It allows you to calculate the rotation of any vector!

Theorem 1 (Linear Transformation is Matrix Multiplication, Standard basis). Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there is a matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Explicitly,

$$A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix},$$

where e_1, e_2, \ldots, e_n is the standard basis of \mathbb{R}^n .

Proof. We can write $\mathbf{x} = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$. Then

$$T(\mathbf{x}) = T(x_1e_1 + x_2e_2 + \dots + x_ne_n) =$$

= $x_1T(e_1) + x_2T(e_2) + \dots + x_nT(e_n) =$
= $A\mathbf{x}$.

Example 12. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by $T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2a+3b-c \\ -a+b+2c \end{bmatrix}$. What is the matrix representing T (with respect to the standard bases)?

Solution. First think about the size of A. It must be 2×3 . Then calculate the columns of A:

$$T\begin{bmatrix}1\\0\\0\end{bmatrix}=\begin{bmatrix}2\\-1\end{bmatrix}, \text{ Why? } a=1, b=c=0,$$

в

$$T\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}3\\1\end{bmatrix}, \quad \text{Why? } a = 0, b = 1, c = 0,$$

Example continued.

$$T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2a+3b-c \\ -a+b+2c \end{bmatrix}, \quad T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix},$$

$$T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \quad \text{Why? } a=0=b, c=1,$$

$$\begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & 2 \end{bmatrix}. \text{ Check:}$$

So $A = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & 2 \end{bmatrix}$. Check:

$$A = \begin{bmatrix} 2 & 3 & -1 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 2a + 3b - c \\ -a + b + 2c \end{bmatrix} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Nonstandard Bases 5

Untill now we have used the standard bases to describe $T: \mathbb{R}^n \to \mathbb{R}^m$. Often it is useful to use other bases.

Example 13. Let $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$. Then the matrix of T is $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. But let us use, instead of the standard basis, another basis adapted to T. Put

$$\mathbf{b_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{b_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

What is the coordinate matrix for T with respect to $\mathcal{B} = (\mathbf{b_1}, \mathbf{b_2})$?

Solution. What do we want? We want to find a matrix B that relates the coordinate vectors (w.r.t. basis \mathcal{B}) of input vector \mathbf{x} and and output vector T(x):

$$T(x)_{\mathcal{B}} = Bx_{\mathcal{B}}.$$

This matrix B has columns $T(\mathbf{b_1})_{\mathcal{B}}$ and $T(\mathbf{b_2})_{\mathcal{B}}$. So let us calculate

$$T(\mathbf{b_1}) = T \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 2\mathbf{b_1},$$
$$T(\mathbf{b_2}) = T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 4\mathbf{b_2}$$

This means that the coordinate matrix with respect to \mathcal{B} is simply

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

Summary: The linear transformation $T\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a+1b \\ 1a+3b \end{bmatrix}$ has with respect to the standard basis the coordinate matrix A, but with respect to the other basis $\mathcal B$ the coordinate B:

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

The linear transformation T is geometrically clear in the \mathcal{B} basis: T is just stretching vectors by a factor 2 along $\mathbf{b_1}$ and by a factor 4 along $\mathbf{b_2}$. So using the standard basis T is an obscure operation on vectors, but using the basis \mathcal{B} it becomes clear. You can say that \mathcal{B} is a basis adapted to T.

6 Additional Problems

- Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 4 & 7 & 8 & 1 \end{bmatrix}$. Find the dimensions and a basis for all four fundamental subspaces of A.
- Suppose A is 5×5 and \mathbf{v} is a vector in \mathbb{R}^5 which is not a linear combination of the columns of A. What can you say about the number of solutions to $A\mathbf{x} = \mathbf{0}$?
- \bullet Let T be the linear map such that

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\0\\4\end{bmatrix}, \quad T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\0\end{bmatrix}.$$

What is
$$T \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$
?