

Features

- Low power consumption
- Low voltage drop
- Low temperature coefficient
- Voltage drop:50mV@10mA
- High input voltage (up to 35V)
- Output voltage accuracy: tolerance $\pm 1\%$
- TO92、SOT23 and SOT89 package
- PSRR:60dB@KHz

Applications

- Battery-powered equipment
- Communication equipment

Audio/Video equipment

General Description

The HE2021 series is a set of three-terminal low power high voltage regulators implemented in CMOS technology. They allow input voltages as high as 35V. They are available with several fixed output voltages ranging from 3.0V to 5.0V. CMOS

technology ensures low voltage drop and low quiescent current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.

Selection Table

Part No.	Output Voltage	Package	Marking
HE2021Axx	2.5V	TO 02	XXH (for TO92)
HE2021Axx	3.0V	TO92	HEXXH (for SOT89)
HE2021Axx	3.3V	SOT89 SOT23-3L	XXH(for SOT23-3)
HE2021Axx	3.6V	SOT23-5L SOT23-5L	XXH(for SOT23-5)
HE2021Axx	4.4V	50125-3L	7241(101 50 125-5)
HE2021Axx	5.0V		

Order Information

HE2021A12345

Designator	Symbol	Description
1 2	Integer	Output Voltage(3.0~5.0V)
3	H Standard	
	Т	Package:TO-92
	Р	Package:SOT89
4	М	Package:SOT23-3
	M5	Package:SOT23-5
5	R	RoHS / Pb Free
	G	Halogen Free

Block Diagram

Pin Assignment

Absolute Maximum Ratings

Supply Voltage	0.3V to 35V	Storage Temperature	50°C to 125°C	2
Operating Temperature	40℃ to 85℃			

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Thermal Information

Symbol	Parameter	Package	Max.	Unit
	Thermal Resistance (Junction to	SOT23	500	%C\W
θJA	Ambient) (Assume no ambient	TO92	200	°C/W
	airflow, no heat sink)	SOT89	200	°C/W
		SOT23	0.20	W
P_D	Power Dissipation	TO92	0.50	W
		SOT89	0.50	W

Note: P_D is measured at Ta= 25°C

Ver1.2 2 Aug 3,2014

Electrical Characteristics

HE2021A30, +3.0V Output Type

Symbol	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V_{IN}	Conditions	IVIII I .	Тур.	IVIAX.	Offic
V _{OUT}	Output Voltage	8V	I _{OUT} =10mA	2.97	3.00	3.03	V
Іоит	Output Current	6V	-	-	200	-	mA
Δ V _{OUT}	Load Regulation	8V	1mA≤I _{OUT} ≤20mA	-	40	60	mV
V _{DIF}	Voltage Drop(Note)	ı	I _{OUT} =1mA, ∆ V _{OUT} =2%	-	10	-	mV
ISS	Current Consumption	8V	No load	ı	2.0	3.0	μ А
$\boxed{\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}}$	Line Regulation	ı	4V≤V _{IN} ≤37V I _{OUT} =1mA	ı	0.3	ı	%/V
Vin	Input Voltage	ı	-	ı	-	35	V
$\frac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	8V	IOUT=10mA 0℃ <ta<100℃< td=""><td>-</td><td>±0.12</td><td>-</td><td>mV/℃</td></ta<100℃<>	-	±0.12	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 1% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HE2021A33, +3.3V Output Type

		Test Conditions					
Symbol	Parameter	V _{IN}	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	8V	I _{OUT} =10mA	3.267	3.300	3.333	V
I _{OUT}	Output Current	6.3V	-	-	200	-	mA
Δ V out	Load Regulation	8V	1mA≤I _{OUT} ≤20mA	-	40	60	mV
V _{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA, ∆V _{OUT} =2%	-	10	-	mV
ISS	Current Consumption	8V	No load	-	2.0	3.0	μА
$\boxed{\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}}$	Line Regulation	-	4.5V≪V _{IN} ≪37V I _{OUT} =1mA	-	0.3	-	%/V
V _{IN}	Input Voltage	-	-	-	-	35	V
$\frac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	8V	IOUT=10mA 0℃ <ta<100℃< td=""><td>-</td><td>±0.12</td><td>-</td><td>mV/℃</td></ta<100℃<>	-	±0.12	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 1% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HE2021A36, +3.6V Output Type

Cymbol	Parameter		Test Conditions	Min.	Turo	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
V _{OUT}	Output Voltage	8V	I _{OUT} =10mA	3.564	3.600	3.636	V
I _{OUT}	Output Current	6.6V	-	-	200	-	mA
Δ V _{OUT}	Load Regulation	8V	1mA≤I _{OUT} ≤20mA	-	40	60	mV
V _{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA, ∆V _{OUT} =2%	-	10	-	mV
ISS	Current Consumption	8V	No load	-	2.0	5.0	μА
$\boxed{\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}}$	Line Regulation	-	4.6V≪V _{IN} ≪37V I _{OUT} =1mA	-	0.3	-	%/V
V _{IN}	Input Voltage	-	-	-	-	35	V
$\frac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	8V	IOUT=10mA 0℃ <ta<100℃< td=""><td>-</td><td>±0.12</td><td>ı</td><td>mV/℃</td></ta<100℃<>	-	±0.12	ı	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 1% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HE2021A44, +4.4V Output Type

	,						
Symbol	Parameter		Test Conditions	Min.	Typ	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIII I.	Тур.	IVIAX.	Offic
V _{OUT}	Output Voltage	8V	I _{OUT} =10mA	4.356	4.400	4.444	V
I _{OUT}	Output Current	7.4V	-	-	200	-	mA
Δ Vout	Load Regulation	8V	1mA≤I _{OUT} ≤20mA	-	40	60	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA, ∆V _{OUT} =2%	-	10	-	mV
ISS	Current Consumption	8V	No load	-	2.0	5.0	μ А
$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	Line Regulation	-	5.4V≪V _{IN} ≪38V I _{OUT} =1mA	-	0.3	-	%/V
V _{IN}	Input Voltage	-	-	-	-	35	V
$\frac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	8V	IOUT=10mA 0℃ <ta<100℃< td=""><td>-</td><td>±0.12</td><td>-</td><td>mV/℃</td></ta<100℃<>	-	±0.12	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 1% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

HE2021A50, +5.0V Output Type

Symbol	Parameter		Test Conditions	Min.	Tun	Max.	Unit
Symbol	Parameter	V _{IN}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
V _{OUT}	Output Voltage	8V	I _{OUT} =10mA	4.95	5.00	5.05	V
I _{OUT}	Output Current	8V	-	-	200	-	mA
Δ V _{OUT}	Load Regulation	8V	1mA≤I _{OUT} ≤20mA	-	40	60	mV
V_{DIF}	Voltage Drop(Note)	-	I _{OUT} =1mA, ∆ V _{OUT} =2%	-	10	-	mV
ISS	Current Consumption	8V	No load	-	2.0	5.0	μА
$\boxed{\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}}$	Line Regulation	1	6V≤V _{IN} ≤39V I _{OUT} =1mA	-	0.3	1	%/V
V _{IN}	Input Voltage	-	-	-	-	35	V
$\frac{\Delta V_{OUT}}{\Delta Ta}$	Temperature Coefficient	8V	IOUT=10mA 0℃ <ta<100℃< td=""><td>-</td><td>±0.12</td><td>-</td><td>mV/℃</td></ta<100℃<>	-	±0.12	-	mV/℃

Note: Dropout voltage is defined as the input voltage minus the output voltage that produces a 1% change in the output voltage from the value at $V_{IN} = V_{OUT} + 2V$ with a fixed load.

Application Circuits

Basic Circuits

Package Information 3-pin SOT23-3 Outline Dimensions

Ch a l	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(E	BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

3-pin TO92 Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
	Min.	Max.	Min.	Max.
Α	3.300	3.700	0.130	0.146
A1	1.100	1.400	0.043	0.055
b	0.380	0.550	0.015	0.022
С	0.360	0.510	0.014	0.020
D	4.300	4.700	0.169	0.185
D1	3.430		0.135	
E	4.300	4.700	0.169	0.185
е	1.270	TYP.	0.050	TYP.
e1	2.440	2.640	0.096	0.104
L	14.100	14.500	0.555	0.571
Ф	1111	1.600		0.063
h	0.000	0.380	0.000	0.015

Ver1.2 7 Aug 3,2014

3-pin SOT89 Outline Dimensions

Combal	Dimensions	In Millimeters	Dimension	ons In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061	REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500	TYP.	0.060	TYP.	
e1	3.000	TYP.	0.118	TYP.	
L	0.900	1.200	0.035	0.047	

SOT23-5 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°