a)

O Domínio de $f \in \mathbb{R}^+$, e f é contínua em todo o seu domínio. Em particular f está definida e é contínua no intervalo [0;1].

f é também diferenciável em [0; 1]. Em particular f é duas vezes diferenciável em [0; 1].

Temos que
$$f''(x) = e^{e^x + x}(e^x + 1)$$

Representando graficamente, através do MATLAB:

Verificamos que $|f''(x)| \le f''(1)$, $\forall x \in [0;1]$ logo o erro máximo cometido da aproximação realizada através da integração numérica pelo método dos trapézios é dado por:

$$\varepsilon_{mt} = f''(1) \cdot \frac{(1-0)^3}{12n^2}$$
 , onde $n \in \mathbb{N}$ e corresponde ao nº de subintervalos.

Podemos então usar esta fórmula para calcular o n^{o} mínimo de subintervalos necessários para obtermos uma estimativa do integral com erro inferior a 0.001, resolvendo a seguinte inequação em ordem a n:

$$0.001 \ge f''(1) \cdot \frac{(1-0)^3}{12n^2} \Rightarrow n \ge \sqrt{\frac{f''(1) \cdot 1000}{12}}$$

E uma vez que $f''(1) = e^{e+1}(e+1)$, chegamos ao resultado:

$$n \ge \sqrt{\frac{e^{e+1}(e+1) \cdot 1000}{12}}$$

$$\Leftrightarrow n \ge 112.9783 \ (\approx)$$

$$\Leftrightarrow \lceil n \rceil \ge \lceil 112.9783 \rceil$$

$$\Leftrightarrow n \ge 113$$

Ou seja, precisamos de dividir o intervalo [0;1] em, no mínimo, 113 subintervalos para obtermos uma aproximação com um erro máximo de 0.001.

¹ $com \mathbb{N} = \{1, 2, 3, 4, 5, ...\}$

Podemos agora usar no MATLAB, a rotina de integração numérica pelo *método dos trapézios* e calcular aproximadamente o integral pedido.

Obtendo o resultado: ≈ 6.3168

link para o script em MATLAB

b)

O polinómio de MacLaurin de ordem 3, para a função de f(x), é dado por:

$$P_3(x) = f(0) + \frac{f'(0) \cdot x}{1!} + \frac{f''(0) \cdot x^2}{2!} + \frac{f'''(0) \cdot x^3}{3!} + R_3(x)$$
 onde $R_3(x)$ é o resto de Lagrange

Efetuando os cálculos, vem: $P_3(x) = e + ex + ex^2 + \frac{5ex^3}{6}$

Integrando este polinómio, temos:

$$\int_{0}^{1} e + ex + ex^{2} + \frac{5ex^{3}}{6} dx = \left[\frac{5ex^{4}}{24} + \frac{ex^{3}}{3} + \frac{ex^{2}}{2} + ex \right]_{0}^{1}$$

$$= \left(\frac{5e(1)^{4}}{24} + \frac{e(1)^{3}}{3} + \frac{e(1)^{2}}{2} + e(1) \right) - \left(\frac{5e(0)^{4}}{24} + \frac{e(0)^{3}}{3} + \frac{e(0)^{2}}{2} + e(0) \right)$$

$$= \left(\frac{5e}{24} + \frac{e}{3} + \frac{e}{2} + e \right) - (0)$$

$$= \frac{49e}{24} \approx 5.5498$$

Comentando, e pondo em perspetiva com os resultados anteriores, podemos então analisar que, tendo em conta que a área do integral pedido é $\int_0^1 e^{e^x} dx \approx 6.3165$. (resultado obtido no MATLAB com o comando² $eval(int(f(x), \theta, 1))$) e que o resultado obtido pela rotina do m'etodo dos trap'ezios (satisfazendo o erro máximo pedido) foi de ≈ 6.3168 . O resultado agora obtido³, calculando o integral do polinómio de MacLaurin de 3^a ordem, foi como esperado, uma aproximação menos precisa, pois o polinómio de ordem 3 é uma aproximação local (centrada em zero) e não captura adequadamente o comportamento global da função, em particular, em todo o intervalo de integração.

Calculando o erro relativo para os dois métodos verificamos que:

Erro relativo para o método dos trapézios	Erro relativo para o polinómio de MacLaurin de 3ª ordem		
$\frac{\mid 6.3168 - 6.3165 \mid}{\mid 6.3165 \mid} \cdot 100\% \approx 0.0047\%$	$\frac{\mid 5.5498 - 6.3165 \mid}{\mid 6.3165 \mid} \cdot 100\% \approx 12.14\%$		
O erro relativo para o método dos trapézios é	O erro relativo para o polinómio de MacLaurin de		
muito baixo, indicando uma aproximação	ordem 3 é mais significativo, indicando que a		
bastante precisa.	aproximação é menos precisa.		

² da pág. 5 da sebenta "Notas sobre representação de superfícies em MATLAB" de Alberto López Martín

³ também conseguido por via do MATLAB: <u>link para o script em MATLAB</u>

a)

Para calcular numericamente os valores de g(x), para $x \in P$, pelo método dos pontos médios, e cometendo um erro máximo de 0.01, precisamos de calcular para cada $x \in P$, o nº mínimo n de subintervalos na partição de [0; x].

Ou seja, precisamos de encontrar:

$$n \geq \sqrt{\frac{\alpha \cdot (x-0)^3 \cdot 100}{24}}$$
 , onde $|f''(x)| \leq \alpha$, $\forall x \in P$

Portanto, para encontrarmos este n, precisamos de encontrar o valor máximo em módulo no intervalo [0; x] para $x \in P$. Isso foi conseguido graças à:

- utilização da função <u>fminbnd</u> (que procura um mínimo local num dado intervalo);
- transformação da função 2^a derivada de $f(x) = sin(x^2)$ na função: $-\left|\frac{d^2f}{dx^2}\right|$
- e ao algoritmo de pesquisa que pode ser encontrado no ficheiro:

```
Rotina_encontrar_valores_max_em_modulo_de_P_em_f2.m
```

Pelo que se chegou aos seguintes resultados:

```
Resultados de |f''(x)| \le \alpha
entre [0, x] com x \in P:
                               n° mínimo de subintervalos entre [0; 0pi/5]: 1
   2.0000
                               n° mínimo de subintervalos entre [0; 1pi/5]: 2
   2.0000
                               nº mínimo de subintervalos entre [0; 2pi/5]: 8
   6.3330
                               n° mínimo de subintervalos entre [0; 3pi/5]: 16
   8.2959
                               n° mínimo de subintervalos entre [0; 4pi/5]: 37
  19.7460
                               n° mínimo de subintervalos entre [0; 5pi/5]: 65
  31.9751
                               nº mínimo de subintervalos entre [0; 6pi/5]: 113
  56.8388
                               n° mínimo de subintervalos entre [0; 7pi/5]: 157
   69.3741
                               nº mínimo de subintervalos entre [0; 8pi/5]: 224
  94.4382
                               n° mínimo de subintervalos entre [0; 9pi/5]: 301
  119.5310
                                n° mínimo de subintervalos entre [0; 10pi/5]: 404
  157.1941
```

Assim, os resultados obtidos ao calcular numericamente os valores de g(x), para $x \in P$, pelo método dos pontos médios (através da rotina \underline{IntMPM}) e cometendo um erro máximo de 0.01, foram:

```
Resultados de g(x) para cada x \in P usando o método dos pontos médios:

0
0.0769
0.5526
0.8743
0.4295
0.7732
0.6320
0.5252
0.5277
0.5510
0.6422
```

link para o script em MATLAB

Uma vez que na alínea anterior se obteve os valores de g(x), para $x \in P$, agora para calcular numericamente a 1ª e a 2ª derivadas de g(x) nesses pontos através do *método das diferenças divididas de segunda ordem centradas*, apenas precisamos de invocar a rotina <u>Deriv2</u> com os respetivos argumentos:

```
% calcular numericamente a 1ª e 2ª derivada de g(x) nos pontos x \in P,
        % utilizando o método das diferenças divididas de segunda ordem centradas:
61
        disp("Método das diferenças divididas de segunda ordem centradas:");
63
            imagens_de_P_pelo_MPM, ... % matriz com as imagens de g(x) de cada x \in P
64
65
                                      % que será 0 (ponto inicial de x \in P)
66
                                      % h: intervalo entre dois "x's" consecutivos em P
67
69
70
Método das diferenças divididas de segunda ordem centradas:
                          0.1225
                                    0.5050
    0.6283
               0.0769
                          0.4398
                                    1.0100
     1.2566
               0.5526
                          0.6345
                                   -0.3901
                         -0.0979
     1.8850
               0.8743
                                   -1.9412
     2.5133
               0.4295
                        -0.0804
                                    1.9969
     3.1416
               0.7732
                         0.1611
                                   -1.2281
     3.7699
               0.6320
                        -0.1974
                                    0.0870
     4.3982
               0.5252
                        -0.0830
                                    0.2771
     5.0265
               0.5277
                          0.0206
     5.6549
               0.5510
                          0.0911
                                    0.1719
     6.2832
               0.6422
                          0.1451
                                    0.0860
```

link para o script em MATLAB

c)

 $sin(t^2)$ é integrável e contínua em $I=[0;\ 2\pi]$, então:

$$g(x) = \int_0^x \sin(t^2) dt$$
 , $com x \in P$

É diferenciável em *I* e tem-se:

$$g'(x) = \sin(x^2) \ \forall x \in I$$
 e $g''(x) = 2x \cdot \cos(x^2) \ \forall x \in I$

```
loop para mostrar os valores "exatos" da 2ª derivada de g
        % loop para mostrar os valores "exatos" da 1ª derivada de g ---
                                                                                  disp("Mostrar os valores ""exatos"" de g''(x) para x ∈ P:");
                                                                         70
        disp("Mostrar os valores ""exatos"" de g'(x) para x ∈ P:");
                                                                                  for i = 1:length(P)
                                                                         71
59
   F
        for i = 1:length(P)
                                                                         72
                                                                                      fprintf("g''(%d*pi/5) = %.4f\n", i - 1, f1(P(i)));
60
            fprintf("g'(%d*pi/5) = %.4f\n", i - 1, f(P(i)));
                                                                         73
        end
61
                                                                         74
62
                                                                          Mostrar os valores "exatos" de g''(x) para x ∈ P:
Mostrar os valores "exatos" de q'(x) para x \in P:
                                                                          g''(0*pi/5) = 0.0000
q'(0*pi/5) = 0.0000
                                                                          g''(1*pi/5) = 1.1600
g'(1*pi/5) = 0.3846
                                                                          g''(2*pi/5) = -0.0210
g'(2*pi/5) = 1.0000
                                                                          g''(3*pi/5) = -3.4553
g'(3*pi/5) = -0.4000
                                                                          g''(4*pi/5) = 5.0238
g'(4*pi/5) = 0.0334
                                                                          g''(5*pi/5) = -5.6717
g'(5*pi/5) = -0.4303
                                                                          g''(6*pi/5) = -0.5654
 g'(6*pi/5) = 0.9972
                                                                          g''(7*pi/5) = 7.7412
g'(7*pi/5) = 0.4749
g'(8*pi/5) = 0.1331
                                                                          g''(8*pi/5) = 9.9637
q'(9*pi/5) = 0.5325
                                                                          g''(9*pi/5) = 9.5727
g'(10*pi/5) = 0.9783
                                                                          g''(10*pi/5) = -2.6013
```

link para o script em MATLAB (4)

⁴ lembrando que estes resultados "exatos" obtidos no MATLAB são também eles aproximações, porém mais próximas do valor real

Comentando, e tomando como referência estes últimos valores obtidos pelo *Teorema Fundamental do Cálculo* (pois constituem a aproximação mais precisa possível em relação aos valores exatos da 1^a e 2^a derivada de g(x) nos pontos $x \in P$), verificamos que os valores obtidos pelo *método das diferenças divididas de 2^a ordem centradas* forneceram, em alguns casos, aproximações razoáveis para as derivadas, nomeadamente nos subintervalos onde a função não sofre grandes diferenças de variação.

Porém, nota-se que, na maior parte dos casos, a aproximação não faz justiça ao valor exato, especialmente porque a função possui grandes mudanças rápidas.

E é natural que assim seja, pois, o *método das diferenças divididas de 2ª ordem centradas* faz uso da taxa média de variação e, portanto, assume esse erro e não tem em consideração as variações existentes nos pontos.

Já a taxa de variação instantânea conta com a noção e definição de limite e compreende precisamente a definição de derivada. Esta sim já indica como a função está "mudando" (em termos de monotonia) num ponto específico.

Resultados das três alíneas numa única tabela:

	pelo método dos pontos médios	pelo método das diferenças divididas de 2ª ordem centradas		pelo Teorema fundamental do Cálculo	
х	g(x)	g'(x)	<i>g</i> "(<i>x</i>)	g'(x)	<i>g</i> "(<i>x</i>)
0	0	0.1225	0.5050	0	0
$\frac{\pi}{5}$	0.0769	0.4398	1.0100	0.3846	1.1600
$\frac{2\pi}{5}$	0.5526	0.6345	-0.3901	1.0000	-0.0210
$\frac{3\pi}{5}$	0.8743	-0.0979	-1.9412	-0.4000	-3.4553
$\frac{4\pi}{5}$	0.4295	-0.0804	1.9969	0.0334	5.0238
π	0.7732	0.1611	-1.2281	-0.4303	-5.6717
<u>6π</u> 5	0.6320	-0.1974	0.0870	0.9972	-0.5654
$\frac{7\pi}{5}$	0.5252	-0.0830	0.2771	0.4749	7.7412
$\frac{8\pi}{5}$	0.5277	0.0206	0.0525	0.1331	9.9637
$\frac{9\pi}{5}$	0.5510	0.0911	0.1719	0.5325	9.5727
2π	0.6422	0.1451	0.0860	0.9783	-2.6013