Trabajo Práctico 2: Detección de comunidades con métodos espectrales

Álgebra Lineal Computacional Computación + Ciencias de Datos Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

1er Cuatrimestre 2025

 Las comunidades son segmentos de un dataset cómo cualquier otro.

- Las comunidades son segmentos de un dataset cómo cualquier otro.
- Los segmentos son una subdivisión "natural" de los datos, y nos pueden ayudar a encontrar jerarquías o identificar comportamientos típicos.

- Las comunidades son segmentos de un dataset cómo cualquier otro.
- Los segmentos son una subdivisión "natural" de los datos, y nos pueden ayudar a encontrar jerarquías o identificar comportamientos típicos.
- Dependiendo del problema de interés, hay muchas heurísticas y métodos formales para encontrar estos grupos.

 Si pensamos en el algoritmo de k-means, la clasificación se basa en la distancia.

- Si pensamos en el algoritmo de k-means, la clasificación se basa en la distancia.
- En un grafo la distancia no necesariamente es una buena medida de similaridad.

- Si pensamos en el algoritmo de k-means, la clasificación se basa en la distancia.
- En un grafo la distancia no necesariamente es una buena medida de similaridad.
- La existencia de multiples caminos puede indicar una correlación fuerte, aunque la distancia sea la misma.

Dos posibles respuestas

En lugar de buscar minimizar distancias a un centro, muchas propuestas se han enfocado en buscar encontrar grupos que estén más conectados entre sí que con otros grupos.

Dos posibles respuestas

En lugar de buscar minimizar distancias a un centro, muchas propuestas se han enfocado en buscar encontrar grupos que estén más conectados entre sí que con otros grupos.

En este TP vamos a usar dos de ellas:

- El laplaciano L, que vamos a usar para buscar cortes mínimos de una red.
- La modularidad Q que vamos a usar para encontrar grupos que estén más conectados que lo que esperaríamos por azar.

Dos posibles respuestas

En lugar de buscar minimizar distancias a un centro, muchas propuestas se han enfocado en buscar encontrar grupos que estén más conectados entre sí que con otros grupos.

En este TP vamos a usar dos de ellas:

- El laplaciano L, que vamos a usar para buscar cortes mínimos de una red.
- La modularidad Q que vamos a usar para encontrar grupos que estén más conectados que lo que esperaríamos por azar.
- Hay otras opciones, como buscar regiones donde los caminantes al azar queden atrapados por tiempos largos una vez que entran.

Bisección de redes

Los métodos que aplicaremos en este TP se basan en *biseccionar* recursivamente la red. Es decir que **siempre vamos a estar pensando en partir una red en dos grupos**.

Bisección de redes

Los métodos que aplicaremos en este TP se basan en *biseccionar* recursivamente la red. Es decir que **siempre vamos a estar pensando en partir una red en dos grupos**.

Si tenemos N vertices en la red, el vector $\mathbf{s} \in \mathbb{R}^N$ indica pertenencia a un grupo, con $\mathbf{s}_i = 1$ si pertenecen al grupo 1 y $\mathbf{s}_i = -1$ si pertenece al grupo 2.

Bisección de redes

Los métodos que aplicaremos en este TP se basan en *biseccionar* recursivamente la red. Es decir que **siempre vamos a estar pensando en partir una red en dos grupos**.

Si tenemos N vertices en la red, el vector $\mathbf{s} \in \mathbb{R}^N$ indica pertenencia a un grupo, con $\mathbf{s}_i = 1$ si pertenecen al grupo 1 y $\mathbf{s}_i = -1$ si pertenece al grupo 2.

Por ejemplo $\mathbf{s}=(1,1,1,1)^t$ indica que hay cuatro vertices y todos están en la misma comunidad. $\mathbf{s}=(1,1,-1,-1)^t$ indica que los primeros dos están en la comunidad 1 y los últimos dos en la comunidad 2.

Corte mínimo y laplaciano

Una estrategia es buscar el *corte mínimo* de la red: la mínima cantidad de conexiones que separan dos grupos. Se puede mostrar que esto es igual a encontrar el mínimo de:

$$\Lambda = \frac{1}{4} \mathbf{s}^t L \mathbf{s}$$
$$L = K - A$$

con A la matriz de adyacencia y K la matriz de grado que definimos en el $\mathsf{TP1}.$

Modularidad y modelos nulos

Otra estrategia es buscar grupos que estén más conectados entre sí que con otros. Noten que esto invierte el foco del problema. La modularidad Q se calcula como

$$Q = \frac{1}{2E} \mathbf{s}^t R \mathbf{s}$$

$$R = A - P$$

$$P = \frac{1}{2E} diag(K) diag(K)^t$$

Resolución por métodos espectrales

• En ambos casos queremos encontrar un ${\bf s}$ tal que ${\bf s}^t M {\bf s}$ sea extremo (máximo o mínimo), con ${\bf s}$ compuesto de 1s y -1s. Además en ambos ejemplos la matriz M es simétrica si A es simétrica (no dirigida).

Resolución por métodos espectrales

- En ambos casos queremos encontrar un ${\bf s}$ tal que ${\bf s}^t M {\bf s}$ sea extremo (máximo o mínimo), con ${\bf s}$ compuesto de 1s y -1s. Además en ambos ejemplos la matriz M es simétrica si A es simétrica (no dirigida).
- Como M es simétrica, habrá una base de autovectores ortogonales asociada, y entonces $\mathbf{s} = \sum_{i=1}^N a_i \mathbf{v}_i$. Más aún,

$$\mathbf{s}^t M \mathbf{s} = \sum_{i=1}^N a_i^2 \lambda_i$$

Resolución por métodos espectrales

- En ambos casos queremos encontrar un ${\bf s}$ tal que ${\bf s}^t M {\bf s}$ sea extremo (máximo o mínimo), con ${\bf s}$ compuesto de 1s y -1s. Además en ambos ejemplos la matriz M es simétrica si A es simétrica (no dirigida).
- Como M es simétrica, habrá una base de autovectores ortogonales asociada, y entonces $\mathbf{s} = \sum_{i=1}^N a_i \mathbf{v}_i$. Más aún,

$$\mathbf{s}^t M \mathbf{s} = \sum_{i=1}^N a_i^2 \lambda_i$$

• La propuesta es entonces elegir los a_i de forma que **s** sea lo más parecido a \mathbf{v}_1 (o \mathbf{v}_N) posible.

$$(\mathbf{s})_i = signo((\mathbf{v}_1)_i)$$

.

Como estrategia iterativa

 Una vez que definimos la heuristica para partir la red en dos grupos, podemos repetir el algoritmo recursivamente sobre cada partición hasta encontrar una solución deseada (ej: número de comunidades, o aumento de la modularidad).

Como estrategia iterativa

- Una vez que definimos la heuristica para partir la red en dos grupos, podemos repetir el algoritmo recursivamente sobre cada partición hasta encontrar una solución deseada (ej: número de comunidades, o aumento de la modularidad).
- Siempre vamos a usar como herramienta principal al método de la potencia para calcular los autovectores que nos interesan.

Como estrategia iterativa

- Una vez que definimos la heuristica para partir la red en dos grupos, podemos repetir el algoritmo recursivamente sobre cada partición hasta encontrar una solución deseada (ej: número de comunidades, o aumento de la modularidad).
- Siempre vamos a usar como herramienta principal al método de la potencia para calcular los autovectores que nos interesan.

 Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.

- Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.
- Con el corte mínimo, siempre es posible encontrar un corte. El criterio de parada es realizar un número de cortes prefijado.

- Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.
- Con el corte mínimo, siempre es posible encontrar un corte. El criterio de parada es realizar un número de cortes prefijado.
- Esto lleva a realizar una optimización distinta para cada método:
 - En el caso de la modularidad, siempre buscamos maximizar, y por lo tanto usaremos el método de la potencia *básico*.

- Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.
- Con el corte mínimo, siempre es posible encontrar un corte. El criterio de parada es realizar un número de cortes prefijado.
- Esto lleva a realizar una optimización distinta para cada método:
 - En el caso de la modularidad, siempre buscamos maximizar, y por lo tanto usaremos el método de la potencia básico.
 - En el caso del corte mínimo, el laplaciano tiene λ_i ≥ 0 ∀i, y
 1 siempre es un autovector con autovalor 0. Es decir que buscaremos el segundo autovector más chico.

- Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.
- Con el corte mínimo, siempre es posible encontrar un corte. El criterio de parada es realizar un número de cortes prefijado.
- Esto lleva a realizar una optimización distinta para cada método:
 - En el caso de la modularidad, siempre buscamos maximizar, y por lo tanto usaremos el método de la potencia *básico*.
 - En el caso del corte mínimo, el laplaciano tiene λ_i ≥ 0 ∀i, y
 1 siempre es un autovector con autovalor 0. Es decir que buscaremos el segundo autovector más chico.
- Ambas matrices son simétricas y por lo tanto admiten bases de autovectores ortonormales, así como el uso de la deflación de Hotelling.

- Con la modularidad, el objetivo es alcanzar maximizar Q posible. El criterio de parada es que la partición no la aumente.
- Con el corte mínimo, siempre es posible encontrar un corte. El criterio de parada es realizar un número de cortes prefijado.
- Esto lleva a realizar una optimización distinta para cada método:
 - En el caso de la modularidad, siempre buscamos maximizar, y por lo tanto usaremos el método de la potencia *básico*.
 - En el caso del corte mínimo, el laplaciano tiene λ_i ≥ 0 ∀i, y
 1 siempre es un autovector con autovalor 0. Es decir que buscaremos el segundo autovector más chico.
- Ambas matrices son simétricas y por lo tanto admiten bases de autovectores ortonormales, así como el uso de la deflación de Hotelling.
- Sobre todo cuando hay muchas particiones, los resultados pueden ser inestables: ¡revisen la reproducibilidad de los resultados y usen semillas!

Un ejemplo de partición con modularidad

- El gráfico muestra comunas para m=3,8,50 conexiones, con la matriz simetrizada $A'=\lceil\frac{1}{2}(A+A^t)\rceil$.
- Conforme aumenta la cantidad de conexiones, la cantidad de grupos disminuye: 15, 9 y 2.