

From BERT to TinyBERT:

Energy Considerations for Deep Learning in NLP and Solutions

C.Feng@AMC Oct, 04

Energy and Policy Considerations for Deep Learning in NLP

	Model	Hardware	Power (W)	Hours	kWh·PUE	CO_2e	Cloud compute cost
	$\overline{\text{Transformer}_{base}}$	P100x8	1415.78	12	27	26	\$41–\$140
	Transformer $_{big}$	P100x8	1515.43	84	201	192	\$289-\$981
The level of the recorded	ELMo	P100x3	517.66	336	275	262	\$433-\$1472
The larger the model	BERT_{base}	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
tr <u>aini</u> ng proce <u>ss,</u> the	BERT_{base}	TPUv2x16		96			\$2074-\$6912
m <u>ore</u> carbon d <u>iox</u> ide	NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
is produced.	NAS	TPUv2x1	_	32,623		_	\$44,055–\$146,848
	GPT-2	TPUv3x32	_	168		_	\$12,902-\$43,008

Table 3: Estimated cost of training a model in terms of CO₂ emissions (lbs) and cloud compute cost (USD).⁷ Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

TinyBERT:
Distilling BERT for
Natural Language
Understanding

Figure 1: An overview of Transformer distillation: (a) the framework of Transformer distillation, (b) the details of Transformer-layer distillation consisting of $Attn_{loss}$ (attention based distillation) and $Hidn_{loss}$ (hidden states based distillation).

The first paper, from researchers at Huawei, produces a model called TinyBERT that is less than a seventh the size of the original and nearly 10 times faster. It also performs nearly as well in language understanding as the original.

Extreme Language Model Compression with Optimal Subwords and **Shared Projections**

like

Transformer Layer

Transformer Laver

machine

ma #ch #ine lea #rn #ing

learning

Figure 1: Knowledge Distillation on BERT with smaller student vocabulary. (Left) A pre-trained teacher BERT model with default BERT parameters (e.g., 30K vocab, 768 hidden state dimension). (Right) A student BERT model trained from scratch with smaller vocab (5K) and hidden state dimension (e.g., 48). During distillation, the teacher model randomly selects a vocabulary to segment each input word. The red and green square nexts to the transformer layers indicate trainable parameters for both the student and teacher models - note that our student models have smaller model dimensions. The projection matrices U and V, shown as having representative shapes, are shared across all layers for model parameters that have the same dimensions.

⊗ **Ⅲ** ∨

Transformer Layer

Transformer Layer

like

mach #ine lea #rn #ing

learning

→ Vocab Selection

machine

The second, from researchers at Google, produces another that is smaller by a factor of more than 60, but its language understanding is slightly worse compared with the original.