Algebra funkcije prenosa

Nedeljko Stojaković Marko Pejić Nikola Gavranović

Decembar, 2021.

Cilj ovog dokumenta je kreiranje funkcije prenosa složenih sistema analitički upotrebom algebre funkcije prenosa, kao i numerički upotrebom paketa *ControlSystems*.

1. Uvod

Slika 1: Model sistema.

Kombinacija blok dijagrama i funkcija prenosa daje nam veoma praktičan način za reprezentaciju kompleksnih sistema, odnosno sistema koji imaju više različitih komponenti koje su međusobno u složenim odnosima. Ukoliko je blok dijagram složen, potrebno ga je uprostiti elementarnim transformacijama kako bi se dobio ekvivalentan model sa slike 1.

1.1 Elementarne transformacije modela

U ovoj sekciji biće opisane osnovne veze između elemenata:

- redna (serijska) veza
- paralelna veza
- povratna sprega

$$U(s) \longrightarrow G_1(s) \longrightarrow G_2(s) \longrightarrow Y(s)$$

Slika 2: Redna (serijska) veza.

Ekvivalentna funkcija prenosa za rednu vezu je:

$$G(s) = G_1(s)G_2(s) \tag{1}$$

Za kreiranje ekvivalenta serijske veze koristi se naredba series iz paketa Control-Systems.

```
using ControlSystems
G1 = tf(1, [1, 1]);
G2 = tf(1, [1, 2]);
Gek = series(G1, G2)
```


Slika 3: Paralelna veza.

Ekvivalentna funkcija prenosa za paralelnu vezu je:

$$G(s) = \pm G_1(s) \pm G_2(s)$$
 (2)

Za kreiranje ekvivalenta paralelne veze koristi se naredba parallel iz paketa ControlSystems.

```
using ControlSystems

G1 = tf(1, [1, 1]);
G2 = tf(1, [1, 2]);

Gek = parallel(G1, G2)
```


Slika 4: Povratna sprega

Ekvivalentna funkcija prenosa za povratnu spregu je:

$$G(s) = \frac{G_1(s)}{1 \pm G_1(s)H(s)}$$
 (3)

Obratiti pažnju da, ukoliko je negativna povratna sprega, u funkciji prenosa figuriše "+", a ukoliko je pozitivna povratna sprega, figuriše "-". Za kreiranje ekvivalenta paralelne veze koristi se naredba feedback.

```
using ControlSystems

G = tf(1, [1, 1]);
H = tf(1, [1, 2]);

Gek = feedback(G, H)
```

Podrazumevana povratna sprega je negativna. Ukoliko želimo pozitivnu povratnu spregu, potrebno je uvrstiti predznak "-" ispred argumenta koji predstavlja funkciju prenosa povratne grane, kao što je prikazano u narednom primeru.

```
using ControlSystems

G = tf(1, [1, 1]);
H = tf(1, [1, 2]);

Gek = feedback(G, -H)
```

1.2 Neke složenije transformacije modela

U ovoj sekciji će biti prikazane još neke transformacije koje će biti neophodne za potpuno uprošćavanje složenih blok dijagrama. Pravilo kojeg se treba pridržavati prilikom transformacija jeste da vrednosti izlaznih grana treba da ostanu iste posle transformacija, kao što su bile pre. U nastavku su prikazane neke od osnovnih transformacija.

Slika 5: Prebacivanje bloka ispred čvora

Slika 6: Prebacivanje bloka iza čvora

Slika 7: Prebacivanje bloka ispred sabirača

Slika 8: Prebacivanje bloka iza sabirača

2. Sistemi sa jednim ulazom i jednim izlazom

U ovom poglavlju posmatraćemo sisteme koji imaju samo jedan ulaz i jedan izlaz (eng. Single Input Signle Output). Koristeći prethodno opisane veze između blokova, kao i određene transformacije opisivaćemo funkciju prenosa datog sistema. Ovaj postupak će biti odrađen analitički, ali i numerički upotrebom paketa ControlSystems.

■ 2.1 Primeri sa rešenjima

Primer 1. Za sistem sa slike odrediti funkciju prenosa $G(s) = \frac{Y(s)}{U(s)}$:

- a) analitički upotrebom algebre funkcije prenosa
- b) numerički upotrebom paketa ControlSystems

ako je:

$$G_1(s) = \frac{1}{s+1}$$
 $G_2(s) = \frac{1}{s+2}$ $G_3(s) = \frac{1}{s+3}$ $H(s) = \frac{1}{s}$

Rešenje:

a) Potrebno je da model svedemo na oblik prikazan na slici 1. Prvo što uočavamo jeste paralelna veza blokova $G_1(s)$ i $G_2(s)$. Opisom njihove veze dobijamo model:

Dalje, uočavamo serijsku vezu blokova u glavnoj grani, što nam daje sledeći model:

Konačno, kao poslednja veza ostaje negativna povratna sprega blokova u glavnoj i povratnoj grani:

$$U(s) \longrightarrow \underbrace{\frac{(G_1 + G_2)G_3}{1 + (G_1 + G_2)G_3H}} \longrightarrow Y(s)$$

Ovim smo odredili funkciju prenosa sistema:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{(G_1 + G_2)G_3}{1 + (G_1 + G_2)G_3H}$$

Uvrštavanjem vrednosti dobija se:

$$G(s) = \frac{2s^2 + 3s}{s^4 + 6s^3 + 11s^2 + 8s + 3}$$

b)

Za numeričko rešenje nam je takođe potreban postupak opisivanja veza koje smo imali u delu zadatka pod a), tako da iz toga proizilazi sledeći kod:

```
using ControlSystems

G1 = tf(1, [1, 1]);
 G2 = tf(1, [1, 2]);
 G3 = tf(1, [1, 3]);
 H = tf(1, [1, 0]);

G12 = parallel(G1, G2);
 G123 = series(G12, G3);
 G = feedback(G123, H);
```

Primer 2. Za sistem sa slike odrediti funkciju prenosa $G(s) = \frac{Y(s)}{U(s)}$:

- a) analitički upotrebom algebre funkcije prenosa
- b) numerički upotrebom paketa ControlSystems

ako je:

$$G_1(s) = \frac{1}{s+1}$$
 $G_2(s) = \frac{1}{s+2}$ $G_3(s) = \frac{1}{s+3}$ $G_4(s) = \frac{1}{s+4}$

Rešenje:

a) U ovom sistemu uočavamo serijsku vezu blokova $G_2(s)$ i $G_3(s)$. Serijska veza ovih blokova je u glavnoj grani, dok je u negativnoj povratnoj grani blok $G_4(s)$. Opisano jednačinama:

$$G_{23} = G_2G_3 \implies G_{23} = \frac{1}{s^2 + 5s + 5}$$

$$G_{234} = \frac{G_{23}}{1 + G_{23}G_4} \implies G_{234} = \frac{s + 4}{s^3 + 9s^2 + 26s + 25}$$

Blok $G_{234}(s)$ je u serijskoj vezi sa blokom $G_1(s)$, pri čemu je ta serijska veza u glavnoj grani, a u povratnoj grani je jedinica. Preciznije govoreći, imamo jediničnu negativnu povratnu spregu, što je ujedno i tražena funkcija prenosa sistema.

¹ Blok koji ima vrednost 1.

$$G_{1234} = G_1 G_{234} \implies G_{1234} = \frac{s+4}{s^4 + 10s^3 + 35s^2 + 51s + 25}$$

$$G(s) = \frac{G_{1234}}{1 + G_{1234}}$$

$$G(s) = \frac{s+4}{s^4 + 10s^3 + 35s^2 + 52s + 29}$$

b)

```
using ControlSystems

G1 = tf(1, [1, 1]);
G2 = tf(1, [1, 2]);
G3 = tf(1, [1, 3]);
G4 = tf(1, [1, 4]);

G23 = minreal(series(G2, G3));

G234 = minreal(feedback(G23, G4));

G1234 = minreal(series(G1, G234));

G = minreal(feedback(G1234, 1));
```

Primer 3. Za sistem sa slike odrediti funkciju prenosa $G(s) = \frac{Y(s)}{U(s)}$:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički)

ako je:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, G_3(s) = \frac{1}{s+3},$$

 $G_4(s) = \frac{1}{s+4}, G_5(s) = G_1(s), G_6(s) = G_4(s)$

Rešenje:

a) Na dijagramu uočavamo dve elementarne transformacije: $G_1(s)$ je u pozitivnoj povratnoj sprezi sa $G_2(s)$, a $G_5(s)$ i $G_6(s)$ su u paralelnoj vezi.

$$G_{12}(s) = \frac{G_1(s)}{1 - G_1(s)G_2(s)}$$

$$G_{56}(s) = G_5(s) + G_6(s)$$

Dalje uočavamo rednu vezu blokova $G_{12}(s)$ i $G_3(s)$ koja je u glavnoj grani, a u povratnoj grani je $G_{56}(s)$.

$$G_{123}(s) = G_{12}(s)G_3(s)$$

$$G_{12356}(s) = \frac{G_{123}(s)}{1 + G_{123}(s)G_{56}(s)}$$

Ovde imamo jednostavnu pozitivnu povratnu spregu, gde je u glavnoj grani redna veza $G_4(s)$ i $G_{12356}(s)$, a u povratnoj grani jedinično pojačanje.

$$G_{123456}(s) = G_4(s)G_{12356}(s)$$

$$G(s) = \frac{G_{123456}(s)}{1 - G_{123456}(s)}$$

Nakon što se uvrste vrednosti funkcija prenosa, dobija se funkcija prenosa:

$$G(s) = \frac{s^2 + 3s + 2}{s^5 + 11s^4 + 44s^3 + 78s^2 + 61s + 20}$$

b)

```
using ControlSystems

G1 = tf(1, [1, 1]);
G2 = tf(1, [1, 2]);
G3 = tf(1, [1, 3]);
G4 = tf(1, [1, 4]);

G12 = minreal(feedback(G1, -G2));
G56 = minreal(parallel(G5, G6));

G123 = minreal(series(G12, G3));
G12356 = minreal(feedback(G123, G56));
G123456 = minreal(series(G12356), G4);
G = minreal(feedback(G123456, -1));
```

Primer 4. Za sistem sa slike analitički odrediti funkciju prenosa $G(s) = \frac{Y(s)}{G(s)}$, ako je:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, G_3(s) = \frac{1}{s+4}, G_4(s) = \frac{1}{s+5}$$

Na ovom dijagramu ne uočavamo elementarne veze, pa je potrebno primeniti određene transformacije. Moguće je izmestiti čvor koji se nalazi između blokova $G_1(s)$ i $G_2(s)$ iza bloka $G_2(s)$. U tom slučaju će biti potrebno pomnožiti granu u kojoj se nalazi $G_3(s)$ sa $\frac{1}{G_2(s)}$ kako bi se dobio ekvivalentan dijagram.

Sada možemo da opišemo negativnu povratnu spregu u koja u glavnoj grani ima $G_1(s)$ i $G_2(s)$, a u povratnoj jedinično pojačanje. Takođe, uočavamo rednu vezu blokova $\frac{1}{G_2(s)}$ i $G_3(s)$.

$$G_{12}(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)}$$
$$G_{23}(s) = \frac{G_3(s)}{G_2(s)}$$

Dalje je potrebno izmestiti čvor koji se nalazi iza $G_{12}(s)$ ispred bloka kako bi se formirala paralelna veza. Da bi dijagram ostao ekvivalentan, potrebno je pomnožiti granu u kojoj se nalazi $G_{23}(s)$ sa $G_{12}(s)$.

Sada se u glavnoj grani povratne sprege nalazi $G_{123}(s)$, a u povratnoj grani $G_4(s)$, pa ćemo ekvivalentnu funkciju prenosa dobiti kao:

$$G_{123}(s) = G_{12}(s) + G_{12}(s)G_{23}(s)$$

$$G_{ek}(s) = \frac{G_{123}(s)}{1 + G_{123}(s)G_4(s)}$$

$$G_{ek}(s) = \frac{2s^2 + 16s + 30}{s^4 + 12s^3 + 49s^2 + 80s + 46}$$

■ 2.2 Zadaci za vežbu

Zadatak 1. Za sistem sa slike odrediti funkciju prenosa $G(s) = \frac{Y(s)}{U(s)}$:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički) ako je:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, G_3(s) = \frac{1}{s+3},$$

 $G_4(s) = \frac{1}{s+4}, G_5(s) = \frac{1}{s+5}, G_6(s) = \frac{1}{s+6}$

Zadatak 2. Za sistem sa slike odrediti funkciju prenosa $G(s) = \frac{Y(s)}{U(s)}$:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ${\it Control Systems}$ (numerički) ako je:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, G_3(s) = \frac{1}{s+3}, G_4(s) = \frac{1}{s+4}, G_5(s) = \frac{1}{s+5}$$

3. Funkcija prenosa multivarijabilnih sistema

Multivarijabilni ili MIMO (eng. Multiple-Input Multiple-Output) sistemi predstavljaju sisteme koji sadrže više ulaza i/ili više izlaza. Budući da funkcija prenosa sistema predstavlja količnik kompleksnih likova izlaza i ulaza sistema, za multivarijabilne sisteme potrebno je odrediti matricu funkcija prenosa dimenzija $r \cdot m$, gde je r broj izlaza, a m broj ulaza sistema.

Slika 9: Multivarijabilni sistem.

Funkcija prenosa multivarijabilnog sistema zapisana u matričnom obliku:

$$Y(s) = W(s)U(s)$$

$$\begin{bmatrix} Y_1(s) \\ Y_2(s) \\ \vdots \\ Y_r(s) \end{bmatrix} = \begin{bmatrix} W_{11}(s) & W_{12}(s) & \dots & W_{1m}(s) \\ W_{21}(s) & W_{22}(s) & \dots & W_{2m}(s) \\ \vdots & \vdots & \ddots & \vdots \\ W_{r1}(s) & W_{r2}(s) & \dots & W_{rm}(s) \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \\ \vdots \\ U_m(s) \end{bmatrix}$$

gde je:

$$W_{kj}(s) = \frac{Y_k(s)}{U_j(s)}$$
 $k = 1, 2, ..., r$ $j = 1, 2, ..., m$

■ 3.1 Primeri sa rešenjima

Primer 1. Za multivarijabilni sistem sa slike odrediti matricu funkcija prenosa:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički), ako su ulazi u sistem $u_1(t) = sin(t)$ i $u_2(t) = cos(t)$, a funkcije prenosa pojedinačnih blokova su sledeće:

$$G_1(s) = \frac{10}{s+10}, G_2(s) = \frac{5s+2}{s^3+2s^2+s}, G_3(s) = 5, G_4(s) = \frac{s+0.1}{s+0.05},$$

Na jednom grafiku prikazati ulazne i izlazne signale.

Rešenje:

Matrica funkcija prenosa multivarijabilnog sistema određuje se tako što se posmatra jedan izlaz sistema u slučaju kada je aktivan samo jedan ulaz, što je neophodno ponoviti za sve kombinacije ulaz-izlaz. Ovakav način određivanja matrice funkcija prenosa direktna je posledica principa superpozicije i same definicije funkcije prenosa. Budući da sistem u ovom zadatku sadrži dva ulaza i jedan izlaz, potrebno je odrediti dve funkcije prenosa.

Prvu funkciju prenosa W_{11} određujemo tako što posmatramo ulaz $U_1(s)$ i izlaz Y(s), dok je ulaz $U_2(s) = 0$. Prema tome, posmatra se uprošćena verzija početnog sistema prikazana na sledećoj slici, u kojoj nema ulaza $U_2(s)$.

Ovako uprošćen sistem jednostavno se rešava na sledeći način:

- \blacksquare redna veza između $G_3(s)$ i $G_4(s) \Rightarrow G_{34} = G_3G_4$
- \blacksquare negativna povratna sprega sa $G_2(s)$ u glavnoj grani, a $G_{34}(s)$ u povratnoj grani \Rightarrow $G_{234}=\frac{G_2}{1+G_2G_{34}}$
- \blacksquare paralelna veza između $G_1(s)$ (predznak –) i $G_{234}(s) \Rightarrow W_{11} = -G_1 + G_{234}$.

Druga funkcija prenosa W_{12} određujemo tako što posmatramo ulaz $U_2(s)$ i izlaz Y(s), dok je ulaz $U_1(s) = 0$. Uprošćena verzija sistema prikazana na sledećoj slici ne sadrži funkciju prenosa $G_1(s)$, s obzirom da je ulaz $U_1(s) = 0$.

Ovako uprošćen sistem jednostavno se rešava na sledeći način:

- redna veza između $G_4(s)$, $G_2(s)$ i −1 (ovaj blok je docrtan umesto sabirača u koji je ulazio $U_1(s)$, kako ne bi bio zaboravljen predznak −) $\Rightarrow G_{24} = -G_2G_4$
- \blacksquare pozitivna povratna sprega sa $G_{24}(s)$ u glavnoj grani i $G_3(s)$ u povratnoj grani \Rightarrow $W_{12}=\frac{G_{24}}{1-G_{24}G_3}.$

Kada su definisane obe funkcije prenosa, potrebno je još u matričnoj formi predstaviti izraz za izračunavanje izlaza sistema: Y(s) = W(s)U(s):

$$Y(s) = \begin{bmatrix} W_{11}(s) & W_{12}(s) \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix}$$

U nastavku je data funkcija koja izvršava numeričko određivanje funkcija prenosa.

```
function sistem()
  G1 = tf(10, [1, 10])
  G2 = tf([5, 2], [1, 2, 1, 0])
  G3 = tf(5)
  G4 = tf([1, 0.1], [1, 0.05])

# W11 -> U1, Y
  G34 = minreal(series(G3, G4))
  G234 = minreal(feedback(G2, G34))
  W11 = minreal(parallel(-G1, G234))

# W12 -> U2, Y
  G24 = minreal(series(-G2, G4))
  W12 = minreal(feedback(G24, -G3))

return W11, W12
end
```

Simulacija sistema opisanog prethodnom funkcijom data je u nastavku.

```
t = 0:0.01:5
u1 = sin.(t)
u2 = cos.(t)
W11, W12 = sistem()
y1, ~, ~ = lsim(W11, u1', t)
y2, ~, ~ = lsim(W12, u2', t)
y = y1 .+ y2
plot(t, [y', u1, u2], label=["y(t)" "u1(t)" "u2(t)"], xlabel="t", lw=2)
```

Ulazni signali i izlaz sistema dobijen simulacijom prikazani su na sledećoj slici.

Primer 2. Za multivarijabilni sistem sa slike odrediti matricu funkcija prenosa:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički), ako su ulazi u sistem $u_1(t) = sin(t)$ i $u_2(t) = cos(t)$, a funkcije prenosa pojedinačnih blokova su sledeće:

$$G_1(s) = \frac{2}{0.2s+1}, G_2(s) = \frac{1.2s+1}{s^2+2s+0.1}, G_3(s) = \frac{4}{s^2+3s+2}, G_4(s) = \frac{1}{0.1s+1}$$

Na jednom grafiku prikazati promene izlaza tokom prvih 10 s za sve kombinacije vrednosti $K_1 \in \{0.1,0.3,0.7\}$ i $K_2 \in \{0.2,0.5\}$.

Rešenje:

Sistem dat u ovom zadatku sadrži dva ulaza i jedan izlaz, pa je potrebno odrediti dve funkcije prenosa. Prva funkcija prenosa W_{11} određuje se tako što posmatramo sistem za $U_2(s) = 0$, čime je početni sistem uprošćen u sistem prikazan na sledećoj slici.

Ovako uprošćen sistem rešava se na sledeći način:

- \blacksquare redna veza između $G_1(s)$ i $G_2(s) \Rightarrow G_{12} = G_1G_2$
- negativna povratna sprega sa $G_3(s)$ u glavnoj grani i K_2 u povratnoj grani \Rightarrow $G_{32}=\frac{G_3}{1+G_3K_2}$ (ovim korakom se gubi sabirač, umesto njega možemo docrtati blok -1, kako ne bismo zaboravili predznak)
- \blacksquare redna veza između G_{32} i $G_4 \Rightarrow G_{324} = G_{32}G_4$
- \blacksquare redna veza između $K_1,\,G_{324}$ i $-1\Rightarrow G_{3241}=-K_1G_{324}$
- \blacksquare paralelna veza između G_{3241} (predznak-)i jediničnog bloka $\Rightarrow G_p = 1 G_{3241}$
- \blacksquare redna veza između G_{12} i $G_p \Rightarrow W_{11} = G_{12}G_p$.

Druga funkcija prenosa W_{12} određuje se tako što posmatramo sistem za $U_1(s) = 0$, čije se dobija sistem prikazan na sledećoj slici.

Ovako uprošćen sistem rešava se na sledeći način:

- \blacksquare negativna povratna sprega sa $G_3(s)$ u glavnoj grani i K_2 u povratnoj grani $G_{32}=\frac{G_3}{1+G_3K_2}$
- redna veza između $G_{32}(s)$, $G_4(s)$ i bloka -1, koji je docrtan umesto sabirača koji je formirao izlazni signal $\Rightarrow W_{12} = -G_{32}G_4$.

Kada su definisane obe funkcije prenosa, potrebno je još u matričnoj formi predstaviti izraz za izračunavanje izlaza sistema: Y(s) = W(s)U(s):

$$Y(s) = \begin{bmatrix} W_{11}(s) & W_{12}(s) \end{bmatrix} \begin{bmatrix} U_1(s) \\ U_2(s) \end{bmatrix}$$

U nastavku je dat kod u kojem je definisana funkcija koja izvršava numeričko određivanje funkcija prenosa.

```
function sistem(k1, k2)
    G1 = tf(2, [0.2, 1])
    G2 = tf([1.2, 1], [1, 2, 0.1])
    G3 = tf(4, [1, 3, 2])

G4 = tf(1, [0.1, 1])
    K1 = tf(k1)
    K2 = tf(k2)
    # W11 -> U1, Y
    G12 = minreal(series(G1, G2))
    G32 = minreal(feedback(G3, K2))
    G324 = minreal(series(G32, G4))
    G3241 = minreal(series(K1, -G324))
    Gp = minreal(parallel(tf(1), -G3241))
    W11 = minreal(series(G12, Gp))
    # W12 -> U2, Y
    G32 = minreal(feedback(G3, K2))
    W12 = minreal(series(G32, -G4))
    return W11, W12
```

Implementirana je i funkcija koja vrši simulaciju sistema opisanog prethodnom funkcijom. Funkcija simulacija kao parametre prima vektore vrednosti konstanti k_1 i k_2 , vektore koji predstavljaju ulazne signale $u_1(t)$ i $u_2(t)$, kao i vremenske trenutke u kojima se vrši simulacija. Povratna vrednost funkcije su numerički određene funkcije prenosa W_{11} i W_{12} .

```
function simulacija(k1_vals, k2_vals, u1, u2, t)
    y_vals = []

for k1 in k1_vals
    for k2 in k2_vals
        W11, W12 = sistem(k1, k2)

        y1, ~, ~ = lsim(W11, u1', t)
        y2, ~, ~ = lsim(W12, u2', t)
        y = y1 .+ y2

        push!(y_vals, y')
    end
end

return y_vals
end

t = 0:0.01:10
u1 = sin.(t)
u2 = cos.(t)
k1 = [0.1, 0.3, 0.7]
k2 = [0.2, 0.5]

y = simulacija(k1, k2, u1, u2, t)
plot(t, y, lw=2, xticks=0:2:10, xlabel="t")
```

Dobijeni izlazi sistema za različite verzije koeficijenata K_1 i K_2 prikazani su na sledećem grafiku.

■ 3.2 Zadaci za vežbu

Zadatak 1. Za multivarijabilni sistem sa slike odrediti matricu funkcija prenosa:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički), ako su ulazi u sistem $u_1(t)$ i $u_2(t)$ prikazani na grafiku, a funkcije prenosa pojedinačnih blokova su sledeće:

$$G_1(s) = \frac{1}{s+3.4}, G_2(s) = \frac{2s+1.1}{s^2+2s+2}, G_3(s) = \frac{1}{s^2+2s},$$

$$G_4(s) = \frac{1}{s+1.5}, G_5(s) = 7, G_6(s) = 2.2$$

Na jednom grafiku prikazati ulazne i izlazne signale.

Zadatak 2. Za multivarijabilni sistem sa slike odrediti matricu funkcija prenosa:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički), ako su ulazi u sistem $u_1(t) = sin(t)$, $u_2(t) = cos(t)$ i $u_3(t) = h(t)$, a funkcije prenosa pojedinačnih blokova su sledeće:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, H_1(s) = \frac{1}{s+3}, H_2(s) = \frac{1}{s+4}$$

Grafički prikazati izlaz iz sistema.

Zadatak 3. Za multivarijabilni sistem sa slike odrediti matricu funkcija prenosa:

- a) primenom algebre funkcije prenosa (analitički)
- b) upotrebom paketa ControlSystems (numerički), ako su ulazi u sistem $u_1(t) = cos(t)$, $u_2(t) = sin(t)$, a funkcije prenosa pojedinačnih blokova su sledeće:

$$G_1(s) = \frac{1}{s+1}, G_2(s) = \frac{1}{s+2}, G_3(s) = \frac{1}{s+3}, G_4(s) = \frac{1}{s+4}$$

Grafički prikazati izlaz iz sistema.

Literatura

- Aleksandar Erdeljan, Darko Čapko: Modelovanje i simulacija sistema sa primerima; FTN, Novi Sad, 2015.
- Julia programski jezik (sajt) https://julialang.org/
- $\blacksquare \ \ Think\ Julia\ (online\ knjiga)\ https://benlauwens.github.io/ThinkJulia.jl/latest/book.html.$