Generalization Error in Neural Networks

Henry D. Pfister Duke University

Machine Learning Summer School Duke University June 21st, 2019

Deep Neural Networks (DNNs)

- Important theoretical questions
 - With more parameters than data, why do DNNs generalize?
 - With zero training error, why don't they overfit?

Deep Neural Networks (DNNs)

- Important theoretical questions
 - With more parameters than data, why do DNNs generalize?
 - With zero training error, why don't they overfit?
- Notable advances in understanding over past 2 to 3 years
 - ullet Over parametrization o easy optimization without overfitting!
 - Large NNs have loss landscapes with connected minima
 - Unifying themes: SGD, flat minima, connections to kernel methods
 - More work needed: multiple partial explanations must be reconciled

Deep Neural Networks (DNNs)

- Important theoretical questions
 - With more parameters than data, why do DNNs generalize?
 - With zero training error, why don't they overfit?
- Notable advances in understanding over past 2 to 3 years
 - ullet Over parametrization o easy optimization without overfitting!
 - Large NNs have loss landscapes with connected minima
 - Unifying themes: SGD, flat minima, connections to kernel methods
 - More work needed: multiple partial explanations must be reconciled
- Experiments vs. Proofs
 - Researchers in machine learning like mathematical proofs
 - Without experiments, it's not even clear what to prove!
 - Progress driven by simple experiments exposing key properties

Outline

- Background
 - Neural networks and training
- Predicting Neural Network Performance
 - Model complexity and overparametrization
 - Classical bias-variance trade-off
- The Loss Landscape
 - Visualization via 1D and 2D projections
 - Connections to generalization error
 - Modern bias-variance trade-off

Outline

- Background
 - Neural networks and training
- Predicting Neural Network Performance
 - Model complexity and overparametrization
 - Classical bias-variance trade-off
- The Loss Landscape
 - Visualization via 1D and 2D projections
 - Connections to generalization error
 - Modern bias-variance trade-off
- Acknowledgment
 - This is a survey of recent results and essentially all the ideas and figures are taken (with citations) from other people's papers

Problem Setup

- Neural network
 - ullet function $f_ heta$ from $\mathcal{X} = \mathbb{R}^n$ to $\mathcal{Y} = \mathbb{R}^d$
 - \bullet weights represented by $\theta \in \mathbb{R}^{\textit{p}}$

Problem Setup

- Neural network
 - function f_{θ} from $\mathcal{X} = \mathbb{R}^n$ to $\mathcal{Y} = \mathbb{R}^d$
 - ullet weights represented by $heta \in \mathbb{R}^p$

- Training set
 - Set of tuples $(x, y) \in \mathcal{X} \times \mathcal{Y}$
 - ullet For classification into d classes, let $y \in \mathcal{Y}$ be a one-hot vector
 - \bullet Entire training set denoted $\mathcal{D} \subset \mathcal{X} \times \mathcal{Y}$

Problem Setup

- Neural network
 - function f_{θ} from $\mathcal{X} = \mathbb{R}^n$ to $\mathcal{Y} = \mathbb{R}^d$
 - ullet weights represented by $heta \in \mathbb{R}^p$

- Training set
 - Set of tuples $(x, y) \in \mathcal{X} \times \mathcal{Y}$
 - ullet For classification into d classes, let $y \in \mathcal{Y}$ be a one-hot vector
 - \bullet Entire training set denoted $\mathcal{D} \subset \mathcal{X} \times \mathcal{Y}$
- Loss function
 - Cross entropy: $L(y, \hat{y}) \triangleq -\sum_{i=1}^{d} y_i \ln \hat{y}_i$
 - Loss for entire training set is

$$\mathcal{L}_{\mathcal{D}}(\theta) \triangleq \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} L(y, f_{\theta}(x))$$

ullet note: assume $f_{ heta}(x) \in \mathbb{R}^d$ non-negative and sums to 1

Neural Network Training

- Loss $\mathcal{L}_{\mathcal{D}}(\theta)$ landscape
 - Adjust $\theta \in \mathbb{R}^p$ to minimize loss
 - Gradient vector $\nabla \mathcal{L}_{\mathcal{D}}(\theta)$ gives θ direction of maximum increase

Neural Network Training

- Loss $\mathcal{L}_{\mathcal{D}}(\theta)$ landscape
 - Adjust $\theta \in \mathbb{R}^p$ to minimize loss
 - Gradient vector $\nabla \mathcal{L}_{\mathcal{D}}(\theta)$ gives θ direction of maximum increase
- (stochastic) Gradient descent
 - full-batch: $\theta_{t+1} = \theta_t \eta \, \nabla \mathcal{L}_{\mathcal{D}}(\theta_t)$
 - ullet mini-batch: subset $\mathcal{S}_t\!\subset\!\mathcal{D}$ with $|\mathcal{S}_t|=m$

$$\theta_{t+1} = \theta_t - \eta \, \nabla \mathcal{L}_{\mathcal{S}_t}(\theta_t)$$

Neural Network Training

- Loss $\mathcal{L}_{\mathcal{D}}(\theta)$ landscape
 - Adjust $\theta \in \mathbb{R}^p$ to minimize loss
 - Gradient vector $\nabla \mathcal{L}_{\mathcal{D}}(\theta)$ gives θ direction of maximum increase

• full-batch:
$$\theta_{t+1} = \theta_t - \eta \, \nabla \mathcal{L}_{\mathcal{D}}(\theta_t)$$

ullet mini-batch: subset ${\mathcal S}_t\!\subset\!{\mathcal D}$ with $|{\mathcal S}_t|=m$

$$\theta_{t+1} = \theta_t - \eta \, \nabla \mathcal{L}_{\mathcal{S}_t}(\theta_t)$$

- Generalization
 - ullet The test set $\mathcal{T}\subset\mathcal{X} imes\mathcal{Y}$ contains held-out training data
 - Actual goal is to minimize $\mathcal{L}_{\mathcal{T}}(\theta)$ without knowing $\mathcal{T}!$

Predicting Neural Network Performance

- Key questions
 - Will gradient descent reach a local minima? a global minima?
 - Error rate on the training data? on the test data?
 - Effect of network complexity? of mini-batch size?

Predicting Neural Network Performance

- Key questions
 - Will gradient descent reach a local minima? a global minima?
 - Error rate on the training data? on the test data?
 - Effect of network complexity? of mini-batch size?
- Overparametrized (OP) regime
 - Many more parameters than training samples (i.e., $p \gg |\mathcal{D}|$)
 - Theory predicts gradient descent achieves zero training error (many papers including [SC16, LL18, AZLL18, DLL+18])
 - Kernel connection allows bounds on generalization error [ADH⁺19]

Predicting Neural Network Performance

- Key questions
 - Will gradient descent reach a local minima? a global minima?
 - Error rate on the training data? on the test data?
 - Effect of network complexity? of mini-batch size?
- Overparametrized (OP) regime
 - Many more parameters than training samples (i.e., $p \gg |\mathcal{D}|$)
 - Theory predicts gradient descent achieves zero training error (many papers including [SC16, LL18, AZLL18, DLL+18])
 - Kernel connection allows bounds on generalization error [ADH⁺19]
- Rough answers (i.e., folklore that is proven in special cases)
 - Gradient descent typically reaches a global min with zero error
 - Stochastic gradient descent biased towards flat minima
 - Performance depends weakly on m and optimization method

Model Complexity: Classical Perspective

- Classical bias-variance trade-off
 - Bias error due to overly simple model decreases with complexity
 - Variance error from parameter noise increases with complexity

Model Complexity: Classical Perspective

- Classical bias-variance trade-off
 - Bias error due to overly simple model decreases with complexity
 - Variance error from parameter noise increases with complexity
- Overparametrized neural networks
 - Can fit random labels! [ZBH+16]
 - Thus, no classical reason to expect good generalization!
 - But, learning random labels takes more training time...

Model Complexity: Classical Perspective

- Classical bias-variance trade-off
 - Bias error due to overly simple model decreases with complexity
 - Variance error from parameter noise increases with complexity
- Overparametrized neural networks
 - Can fit random labels! [ZBH⁺16]
 - Thus, no classical reason to expect good generalization!
 - But, learning random labels takes more training time...
- Similar curve for NN training
 - ullet Model complexity o training time
 - Training time is related to model complexity
 - In practice, use cross validation to pick stopping time

Example Dataset: CIFAR-10

10 classes of 32x32 RGB images with 6000 images per class

The Loss Landscape: 1D Projections

- Visualization
 - Difficult to gain insight from low-D plot of high-D functions
 - Idea: linear interpolation between weight vectors $\theta^{(0)}, \theta^{(1)}$:

$$\ell(\alpha) = \mathcal{L}_{\mathcal{D}}(\theta^{(0)} + \alpha(\theta^{(0)} - \theta^{(1)}))$$

The Loss Landscape: 1D Projections

- Visualization
 - Difficult to gain insight from low-D plot of high-D functions
 - Idea: linear interpolation between weight vectors $\theta^{(0)}, \theta^{(1)}$:

$$\ell(\alpha) = \mathcal{L}_{\mathcal{D}}(\theta^{(0)} + \alpha(\theta^{(0)} - \theta^{(1)}))$$

- Experiments to test if "flat minima generalize" [KMN+17]
 - Train a convolutional neural network (CNN) on CIFAR-10 using small/large mini-batches (m=256/5K) to get $\theta^{(0)}, \theta^{(1)}$

The Loss Landscape: 1D Projections

- Visualization
 - Difficult to gain insight from low-D plot of high-D functions
 - Idea: linear interpolation between weight vectors $\theta^{(0)}, \theta^{(1)}$:

$$\ell(\alpha) = \mathcal{L}_{\mathcal{D}} \left(\theta^{(0)} + \alpha (\theta^{(0)} - \theta^{(1)}) \right)$$

- Experiments to test if "flat minima generalize" [KMN⁺17]
 - Train a convolutional neural network (CNN) on CIFAR-10 using small/large mini-batches (m = 256/5K) to get $\theta^{(0)}, \theta^{(1)}$

Sharp vs. Flat vs. Scaling

In reality, the width of the minima is quite affected by: optimizer, scaling issues, batch normalization, and norms of $\theta^{(0)}, \theta^{(1)}$

Can use batch normalization to rescale weights (except last layer) to same norm

Comparing optimizers (SGD at $\alpha=$ 0, ADAM at $\alpha=$ 1): left/right figures are before/after rescaling

Properties of the Loss Landscape

- Question: Does the loss landscape have isolated minima?
 - Visualization in high-D is tricky but some properties can be tested

Properties of the Loss Landscape

- Question: Does the loss landscape have isolated minima?
 - Visualization in high-D is tricky but some properties can be tested
- Experiment from [DVSH18]
 - DenseNets with weights $\theta^{(0)}, \theta^{(1)}$ having zero loss on CIFAR-10
 - SGD used to find curved path from $\theta^{(0)}$ to $\theta^{(1)}$ with minimal loss
 - Study found low-loss paths connecting a set of trained networks

Figure taken from [DVSH18]

Properties of the Loss Landscape

- Question: Does the loss landscape have isolated minima?
 - Visualization in high-D is tricky but some properties can be tested
- Experiment from [DVSH18]
 - ullet DenseNets with weights $heta^{(0)}, heta^{(1)}$ having zero loss on CIFAR-10
 - ullet SGD used to find curved path from $heta^{(0)}$ to $heta^{(1)}$ with minimal loss
 - Study found low-loss paths connecting a set of trained networks

Visualizing the Loss Landscape

- People love pretty pictures but meaningful visualization is hard
 - Consider the 2D projection $g(\alpha, \beta) = \mathcal{L}_{\mathcal{D}}(\theta + \alpha \Delta_1 + \beta \Delta_2)$ where vectors $\Delta^{(0)}, \Delta^{(1)} \in \mathbb{R}^p$ are chosen randomly
 - Scaling is problematic, so novel filter normalization is used [LXT⁺18]

Visualizing the Loss Landscape

- People love pretty pictures but meaningful visualization is hard
 - Consider the 2D projection $g(\alpha, \beta) = \mathcal{L}_{\mathcal{D}}(\theta + \alpha \Delta_1 + \beta \Delta_2)$ where vectors $\Delta^{(0)}, \Delta^{(1)} \in \mathbb{R}^p$ are chosen randomly
 - Scaling is problematic, so novel filter normalization is used [LXT⁺18]

ResNet-56 Loss Landscape

Exploring Generalization Error with Poisoned Training

- Binary classification experiment from [HDF18]
 - Poisoned loss mixes training loss and test loss with incorrect labels:

$$\mathcal{P}_{\beta}(\theta) = \frac{1-\beta}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} L(y,f_{\theta}(x)) + \frac{\beta}{|\mathcal{T}|} \sum_{(x,y)\in\mathcal{T}} L(1-y,f_{\theta}(x))$$

- SGD on $\mathcal{P}_{\beta}(\theta)$ increases training accuracy but decreases test
- note: for binary, we use $\mathcal{Y} = \mathbb{R}$ and $L(y,\hat{y}) = y \ln \frac{1}{\hat{y}} + (1-y) \ln \frac{1}{1-\hat{y}}$

Exploring Generalization Error with Poisoned Training

- Binary classification experiment from [HDF18]
 - Poisoned loss mixes training loss and test loss with incorrect labels:

$$\mathcal{P}_{\beta}(\theta) = \frac{1-\beta}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} L(y,f_{\theta}(x)) + \frac{\beta}{|\mathcal{T}|} \sum_{(x,y)\in\mathcal{T}} L(1-y,f_{\theta}(x))$$

- SGD on $\mathcal{P}_{\beta}(\theta)$ increases training accuracy but decreases test
- note: for binary, we use $\mathcal{Y} = \mathbb{R}$ and $L(y,\hat{y}) = y \ln \frac{1}{\hat{y}} + (1-y) \ln \frac{1}{1-\hat{y}}$

(a) 100% train, 100% test

(b) 100% train, 7% test

Figures taken from [HDF18]. First figure: red / blue dots show training points. Second figure: pink shows t-sne for $\beta = 0$ SGD.

Exploring Generalization Error with Poisoned Training

- Binary classification experiment from [HDF18]
 - Poisoned loss mixes training loss and test loss with incorrect labels:

$$\mathcal{P}_{\beta}(\theta) = \frac{1-\beta}{|\mathcal{D}|} \sum_{(x,y)\in\mathcal{D}} L(y,f_{\theta}(x)) + \frac{\beta}{|\mathcal{T}|} \sum_{(x,y)\in\mathcal{T}} L(1-y,f_{\theta}(x))$$

- SGD on $\mathcal{P}_{\beta}(\theta)$ increases training accuracy but decreases test
- note: for binary, we use $\mathcal{Y} = \mathbb{R}$ and $L(y,\hat{y}) = y \ln \frac{1}{\hat{y}} + (1-y) \ln \frac{1}{1-\hat{y}}$

Figures taken from [HDF18]. First figure: red / blue dots show training points. Second figure: pink shows t-sne for $\beta=0$ SGD.

The Modern Bias-Variance Trade-Off

- The classical bias-variance trade-off is almost right ;-)
 - Classically, the overparametrized regime was considered silly
 - But, gradient descent from a random start implicitly regularizes
 - Except when the #parameters ≈ #samples because then the zero-loss solution is almost unique

(a) U-shaped "bias-variance" risk curve

The Modern Bias-Variance Trade-Off

- The classical bias-variance trade-off is almost right ;-)
 - Classically, the overparametrized regime was considered silly
 - But, gradient descent from a random start implicitly regularizes
 - Except when the #parameters ≈ #samples because then the zero-loss solution is almost unique

(b) "double descent" risk curve

The Modern Bias-Variance Trade-Off

- The classical bias-variance trade-off is almost right ;-)
 - Classically, the overparametrized regime was considered silly
 - But, gradient descent from a random start implicitly regularizes
 - ullet Except when the #parameters pprox #samples because then the zero-loss solution is almost unique

Conclusions

- Overparametrized Neural Networks
 - Can be trained quickly to zero error for any labels
 - (Stochastic) gradient descent provides implicit regularization
 - Not explainable with classical bias-variance trade-off
- The Loss Landscape
 - Visualization via 1D and 2D Projections
 - · Low-loss paths exist between most minima
 - Poisoned training to visualize bad minima
- Additional Topics
 - Modern bias-variance trade-Off
 - · Connections to generalization error

References I

- [ADH+19] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. arXiv preprint arXiv:1901.08584, 2019.
- [AZLL18] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.
- [BHMM18] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.

 Reconciling modern machine learning and the bias-variance trade-off.

 arXiv preprint arXiv:1812.11118, 2018.
- [DLL+18] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018.

References II

[DVSH18] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht.
Essentially no barriers in neural network energy landscape.
Intl. Conf. on Mach. Learn.. 2018.

arXiv preprint arXiv:1803.00885.

arxiv preprint arxiv:1000.00005

[GIP+18] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of DNNs.
In Adv. in Neural Inform. Processing Syst., pages 8789–8798, 2018.

[HDF18] Eric Huang, Andrew C. Doherty, and Steven Flammia.

Performance of quantum error correction with coherent errors.

arXiv preprint arXiv:1805.08227, 2018.

[Online]. Available: https://arxiv.org/abs/1805.08227.

[KMN+17] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
 On large-batch training for deep learning: Generalization gap and sharp minima.
 In Intl. Conf. on Learn. Rep., 2017.

References III

Yuanzhi Li and Yingyu Liang.
 Learning overparameterized neural networks via stochastic gradient descent on structured data.
 In Adv. in Neural Inform. Processing Syst., pages 8157–8166, 2018.

[LXT+18] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. In Adv. in Neural Inform. Processing Syst., pages 6389–6399, 2018.

[SC16] Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[ZBH+16] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization.

arXiv preprint arXiv:1611.03530, 2016.