Theorem 0.1. Let $M \in \mathbb{C}^{n-p}$ and $N \in (\mathbb{C}^*)^p$ be open such that N contains the real torus $(\mathbb{S}^1)^p$. Let $\pi: M \times N \to M$ be the canonical projection. Let T_n be positive closed (p,p)-currents on $M \times N$ such that $\overline{\operatorname{supp}(T_n)} \cap M \times bN = \varnothing$. Assume that T_n converge to a current T. Assume also that $\operatorname{supp}(T) \subset M \times (\mathbb{S}^1)^p$. Then we have the following convergence of slices

$$\langle T_n | \pi | x \rangle \to \langle T | \pi | x \rangle$$

for every $x \in M$.

Note that all the above slices are well-defined for all $x \in M$.