

FORT DEVENS FEASIBILITY STUDY FOR GROUP 1A SITES

FINAL REMEDIAL INVESTIGATION ADDENDUM REPORT DATA ITEM A009

VOLUME II OF IV APPENDICES A - G

CONTRACT DAAA15-91-D-0008

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND

DECEMBER 1993

PRINTED ON RECYCLED PAPER

DISTRIBUTION UNLIMITED For Public Release

20070430041

REMEDIAL INVESTIGATION ADDENDUM REPORT FORT DEVENS FEASIBILITY STUDY FOR GROUP 1A SITES

APPENDICES

APPENDIX A	-	SOIL AND SEDIMENT BORING LOGS	VOL. II
APPENDIX B	-	MONITORING WELL CONSTRUCTION FORMS	VOL. II
APPENDIX C	-	MONITORING WELL CONSTRUCTION FORMS AQUIFER TESTING DATA AND CALCULATIONS GRAIN SIZE DISTRIBUTION ANALYSES	VOL. II
APPENDIX D	-	GRAIN SIZE DISTRIBUTION ANALYSES	VOL. II
APPENDIX E	-	SYNOPTIC WATER-LEVEL MEASUREMENTS	VOL. II
APPENDIX F		SURVEY COORDINATES	VOL. II
APPENDIX G	-	PROJECT ANALYTE LIST	VOL. II
APPENDIX H		LABORATORY QC RESULTS	VOL. III
APPENDIX I	-	BACKGROUND CONCENTRATIONS AND CALCULATIONS	VOL. IV
APPENDIX J		RI SEDIMENT DATA SUMMARIES	VOL. IV
APPENDIX K	-	HUMAN HEALTH RISK SPREADSHEETS -	
		SHEPLEY'S HILL LANDFILL	VOL. IV
APPENDIX L	-	MODELING OF VOC CONCENTRATIONS IN SHOWER	
		AIR FROM GROUNDWATER - SHEPLEY'S HILL LANDFILL	VOL. IV
APPENDIX M	-	HUMAN HEALTH RISK SPREADSHEETS -	
		COLD SPRING BROOK LANDFILL	VOL. IV
APPENDIX N	-	FISH TISSUE COMPARISON OF STATE	
		AND NATIONAL DATA	VOL. IV
APPENDIX O		WETLAND FUNCTIONAL EVALUATION	VOL. IV
APPENDIX P		MACROINVERTEBRATE DATA ANALYSES	VOL. IV
APPENDIX Q		ECOLOGICAL RISK ASSESSMENT PARAMETERS	VOL. IV
APPENDIX R	-	ECOLOGICAL RISK ASSESSMENT SPREADSHEETS -	
		SHEPLEY'S HILL LANDFILL/COLD SPRING	
		BROOK POND	VOL. IV
APPENDIX S	-	UNCERTAINTIES ASSOCIATED WITH USEPA SEDIMENT	
		QUALITY CRITERIA FOR DDE	VOL. IV
APPENDIX T		FISH TISSUE DATA	VOL. IV
APPENDIX U		SUPPLEMENTAL RI LEVEL 3 DATA	VOL. IV
APPENDIX V		USEPA 1992 DERMAL GUIDANCE SUMMARY	VOL. IV
APPENDIX W	-	CALCULATION OF PERMEABILITY	
		CONSTANTS PER EVENT	VOL. IV
APPENDIX X	-	PRELIMINARY RISK EVALUATION FOR	
		NONACOICUS BROOK AREA	VOL. IV
APPENDIX Y	-	EVALUATION OF GROUNDWATER IRRIGATION	
		EXPOSURE PATHWAY	VOL. IV
APPENDIX Z	-	TOXICITY PROFILES	VOL. IV

APPENDIX A SOIL AND SEDIMENT BORING LOGS

SHM-93-01A

SHM-93-10C

SHM-93-18B

SHM-93-22C

SHM-93-24A

SHB-93-01X

CSM-93-01A

CSM-93-02A

CSM-93-02B

SHD-92-01X

SHD-92-02X

SHD-92-03X

SHD-92-04X

SHD-92-05X

SHD-92-06X

SHD-92-07X

SHD-92-08X

SHD-92-09X

SHD-92-10X

SHD-92-11X SHD-92-12X

SHD-92-12X SHD-92-13X

SHD-92-14X

SHD-92-15X

SHD-92-16X

SHD-92-17X

SHD-92-18X

SHD-92-19X

SHD-92-20X

SHD-92-21X

SHD-92-22X

SHD-92-23X

SHD-92-24X

SHD-92-25X

CSD-92-01X

CSD-92-02X

CSD-92-03X

CSD-93-04X

CSD-92-05X

CSD-92-06X

CSD-92-07X

CSD-92-08X

CSD-92-09X

CSD-92-10X

								Study Area: Shepley's Hill Landfill			
\$ 0		ORII	Y G L	O G		7005.01		···			
Clie		AEC				7005-04		Boring No			
<u></u>	actor:			Boring		01/21/93		Complete		Method:	
` 	nd Elev.		ft.		Soil Drilled: 2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oth: 26 ft.		Size: 6.25 ID
	· · · · · · · · · · · · · · · · · · ·	RRR			Checked by: DSP				ter Below Ground:		
	en: 10	(ft)	Riser	: 18	(ft) Diam.: 4.	(ID)	Material: S	sch 40PVC	Protection: Mod	.D Page 1	of 1
(FT)	SAMPLE NUMBER		PEN. — REC.	(ppm)		SOIL-	ROCK DESCRIP	TION		BLOWS\6-IN.	COMMENTS
2	S-1	01-21	2.0	BKG	0'-1.4' SAND, poo gravel subrounded 1.4'-1.5' SAND, p medium dense, tan	d, tannish b coorly grade	rown, medium	dense	(SP)	6-13-13-14	Start 0940
6	S-2	5'-7'	1.7 2.0	BKG	SAND, poorly grad loose, light brow		, dry, very (SP)	3-4-5-5			
10	S-3	10-12	1.8 2.0	BKG	SAND, similar to	above			(SP)	3-4-4-6	
16	S-4	15-17	2.0	BKG	0'-1.5 SAND, simi 1.5'-1.6' and in and gravel, suban	shoe, SAND,	well graded	l, medium loose, l	(SP) to coarse sand ight brown (SW)	3-5-9-12	Change
20	S-5	20-22	1.6 2.0	BKG	0'-0.6' SAND, poo wet, dark brown 0.6'-1.6' gravely loose, subrounded	SAND, poor	ly graded, c		(SP)	2-4-4-6 2-4-4-6	Water at 20' bgs TOC Analyti- cal collected
26	S-6	25 - 25.5	2.0	BKG	Sandy SILT, rock in silt	in shoe, col	obles of low	ı grade me	tamorphosed rock (SP-SM)	5-50 for 4"	24' change Rock in shoe
28					BOE = 26' bgs, 12	245 hours, 1,	/21/93				Refusal on rock
30						· · · · · · · · · · · · · · · · · · ·					

SOIL BORING LOG									Study Area: Shepley's Hill Landfill						
Clien	it:	AEC		**	Proje	ct No.	7005	-04		Boring N	lo.: SHM-93-1	0C			
Contr	actor:	New Ham	pshire (Boring	Date	Started:	02/0	9/93		Complete	ed: 2/12/93		Method:	HSA/Ca	se/Core
Groun	d Elev.	: 247.	5 ft.		Soil I	Drilled:	36.5	ft.		Total De	epth: 59.5 ft.		Casing	Size:	6"
Logge	d by:	RRR			Check	ed by:	DSP			Groundwa	iter Below Gro	und:	29.5 ft.		
Scree	n: 10	(ft)	Riser	: 45	(ft)	Diam.:	4.0""	(ID)	Material	Sch 40PVC	Protection:	Mod.D	Page 1	of	2
DEPTH (FT)	SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	PID (ppm)				SOIL-	ROCK DESCR	RIPTION		В	.ows\6-in.	COMM	IENTS
- 2	S-1	0-2	2.0	BKG							rounded, dry, acial outwash (SP)		5-10-12-12		
- 4 - 6 - 8	s-2	5-7	1.6 2.0	BKG	SAND, p	ooorly g	raded,	similar	to above	but loose,	dry (SP)		5-5-5		
- 10 - 12	S-3	10-12	1.4 2.0	BKG	SAND, s	similar	to abov	e			(SP)	4	-6-6-4		
141618	S-4	15-17	1.6 2.0	BKG	SAND, s	similar	to abov	e but v	ery loose,	dry	(SP)		4-4-4-5		,
_ 20 _ 22	S-5	20-22	1.7	BKG	SAND, s	imilar	to above	e			(SP)		4-4-6-6		
_ 24	s-6	25-27	1.9	BKG	SAND, S	imilar	to above	e, medî	um dense,	10 yr 6/3 p	ale brown (SP)	7	′-10-14-19		
- 28 - 29														Water bgs	at 29'

	s o	I L B	ORI	IG L	O G	Study Area: Shepley's Hill	Landfill
	Clien	t: /	AEC		· · · · · · · · · · · · · · · · · · ·	Project No. 7005-04 Boring No.: SHM-93-10C	
7	Contr	actor: I	New Hamp	shire	Boring	Date Started: 02/09/93 Completed: 02/12/93	Method: HSA/Case/Core
	Ground	d Elev.	247.5	ft.		Soil Drilled: 36.5 ft. Total Depth: 59.5 ft.	Casing Size: 6"
	Logge	d by:	RRR			Checked by: DSP Groundwater Below Ground: 2	29.5 ft
	Scree	n: 10	(ft)	Riser	: 45	(ft) Diam.: 4.0" (ID) Material: Sch 40PVC Protection: Mod.D	Page 2 of 2
	DEPTH (FT)	SAMPLE NUMBER	SAMPLE DEPTH	PEN. —— REC.	PID (ppm)	SOIL-ROCK DESCRIPTION BLO	DWS\6-IN. COMMENTS
	- 3 0	s-7	30-32	1.8 2.0	BKG	Sand to silty sand, poorly graded, fine, subrounded, medium dense, wet, 10% silt, 7.5 yr 5/6 strong brown, coarse piece of subangular gravel at 1.4'	13-13-12
	- 34						
		S-8	35 - 36.5	2.0		Similar to above, weathered rock frags near bottom of spoon (SP-SM) Bedrock	:/1/50-4"
Ţ	- 38	i				36.5' will core rest of hole; see attached core logs.	
	- 40			!			
	- 42						
	- 44						
	46						
	48						
	50						
	54						
	56						
	58						

-ABB Environmental Services, Inc.-

-ABB Environmental Services, Inc.-

-ABB Environmental Services, Inc.

-ABB Environmental Services, Inc.-

-ABB Environmental Services, Inc.

	S 0	I L B	ORI	IG L	O G				Study Area: Shepley's Hill Landfill				
I	Clien	t: ,	AEC			Project	No. 7005	i-04		Boring No.:	SHM-93-18B		
	Contra	actor:	New Hamp	shire E	Boring	Date Sta	rted: 02/04	/93		Completed:	02/08/93	Method:	HSA
	Ground	d Elev.	: 235.7	ft.		Soil Dri	lled: 93.5	ft.		Total Depth	: 93.5 ft.	Casing	Size: 6.25" ID
	Logge	d by:	RRR			Checked	by: DSP			Groundwater	Below Ground	: 14 ft.	
	Screen	n: 10	(ft)	Riser	: 80	(ft) D	iam.: 4.0"	(ID)	Material:	Sch 40PVC Pr	otection: Mod.	.D Page 1	of 4
		SAMPLE NUMBER		PEN. REC.	PID (ppm)			SOIL-	ROCK DESCRI	PTION		BLOWS\6-IN.	COMMENTS
	- 2	S-1	01-21	2.0	BKG	loose, sar		but ent	irely froze	5-10% ifne, s n, 7.5 yr 7/2		31-21-4-3	
	- 6	s-2	51-71	2.0	BKG					2% silt, subr ray, glacial		11-16-27-23	
	- 10	S-3	10-12	2.0	BKG	At 1.0' S	ilar to abov AND is bande red, moist,	d with		fine, loose, g banding	(SP) 2.5 yr 4/6 (SP-SM)	6-6-6-13	
	16	S-4	15-17	2.0		silt, med	ium dense, w	et, 10 y grade	yr 4/4 dark d, medium,	arse, 15-20% yellowish br 5% coarse, 5%	own (SW-SM)	6-8-6-13	Change at 15.5 ft.
	20	s-5	20-22	1.8			rly graded, r 6/3 pale b		5% coarse,	5% fine, med	lium dense, (SP)	6-10-12-13	
	24												·
	26 28	s-6	25-27	2.0	BKG	SAND, poor	rly graded,	similar	to above		(SP)	WOR to 18"/9	
7	30												

ABB Environmental Services, Inc.

	s o	I L B	ORI	N G L	0 G		Study Area: Shepley's H	ill Landfill	
	Clien	t:	AEC			Project No. 7005-04	Boring No.: SHM-93-18B		
	Contr	actor:	New Ham	pshire	Boring	Date Started: 02/04/93	Completed: 02/08/93	Method:	HSA
	Groun	d Elev.	: 235.	7		Soil Drilled: 93.5 ft.	Total Depth: 93.5	Casing	Size: 6.25" ID
	Logge	d by:	RRR/LEF			Checked by: DSP	Groundwater Below Ground:	: 14'	1007 17
	Scree	n: 10	(ft)	Riser	: 80	(ft) Diam.: 4.0" (ID) Material: Sch	1 40PVC Protection: Mod.	.D Page 2	of 4
		SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	PID (ppm)	SOIL-ROCK DESCRIPTI	ON	BLOWS\6-IN.	COMMENTS
	32	s-7	30-32	2.0	BKG	SAND, poorly graded, similar to above	(SP)	WOH 1/2/5	SP
	34 36	S-8	35-37	2.0	BKG	SAND, poorly graded, similar to above exce	ept 5 yr 6/4 reddish	3-8-12-22	SP
	38			2.0		brown	(SP)		
-	40	s-9	40-42	2.0	BKG	Residual sand in spoon was similar to abov	re (SP)	6-6-11-16	Sampled and drilled with 4 1/4" augers to 40'. Hole blew in to
	46	s-10	45-47	2.0	BKG	SAND, poorly graded, similar to above	(SP)	7/12/50-4	35' bgs. Try to add head of water. Adding water was ineffec- tive. Will telescope 3" casing inside of augers and
	50	s-11	50-52	0.0	BKG	Soils are running out of spoon when we are	retrieving it	8/12/24/30	procede from 40'. Decide to make ano- ther attempt with augers using twine to keep con- nections watertight.
	54	s-12	55-57	0.7	BKG	SAND, similar to above	(SP)	9/15/22/24	1' of sand heaved up inside ofd augers. Sand is flowing out of spoon when it is retrieved.
	58	s-13	58-60	0.0	BKG	No recovery, sands are running out of spoor			Sample mostly represents soils which have heaved into augers.

	S 0	I L B	ORI	NG L	O G	Stu	udy Area: Shepley's Hi	Shepley's Hill Landfill		
Î	Clien	t: /	AEC			Project No. 7005-04 Bor	ring No.: SHM-93-18B			
	Contra	actor: I	New Hamp	oshire I	Boring	Date Started: 02/04/93 Com	npleted: 02/08/93	Method:	HSA	
	Ground	d Elev.	235.	7 ft.		Soil Drilled: 93.5 ft. Tot	tal Depth: 93.5	Casing Si	ze: 6.25" ID	
	Logge	d by: I	RRR/LEF			Checked by: DSP Gro	oundwater Below Ground:	14 ft.		
	Scree	n: 10	(ft)	Riser	: 80	(ft) Diam.: 4.0" (ID) Material: Sch 4	OPVC Protection: Mod.	D Page 3	of 4	
		SAMPLE NUMBER		PEN. REC.	PID (ppm)	SOIL-ROCK DESCRIPTION	ı	BLOWS\6-IN.	COMMENTS	
	- 62								<u>2/4/93</u> 2/5/93	
	- 64					No spoon attempted				
	- 66			<u>.</u>						
	- 68 - 70	S-14	69-71	0.9	BKG	SAND, poorly graded, fine, 15% medium, suban	ngular, medium dense,	4/10/19/24		
	72			2.0		wet, 10 yr 5/3 brown, glacial outwash	(SP)			
	- 74	s-15	74-76		BKG	SAND, similar to above but medium dense to d	dense (SP)	6/18/31/49	<u>2/5/93</u> 2/8/93	
	76				:					
	- 7 8 - 8 0	S-16	78-80	2.0	BKG	SAND, similar to above. At 0.1' and 0.3' th bands of SAND, medium to coarse, well graded silt, subrounded to rounded, medium dense, w	d, 20% fines, 5%	10/15/29/29		
	- 82									
	84	s-17	83-85	2.0	BKG	SAND, poorly graded, fine to medium, subroun yr 5/4, brown, glacial outwash	nded, loose, wet, 7.5	3/2/7/15		
	86 88							7.00.00		
	80	S-18	88-90	2.0	BKG	SAND, similar to above, medium dense	(SP)	23/18/24/29		

SOIL BORING LOG											Study Area: Shepley's Hill Landfill					
Cl	ient:	A	EC			Projec	t No.	7005	-04			lo.: SHM-93-18E				
 			ew Hamp	oshire	Boring	 		02/04/			Complete			Method:	HSA	
			235.7			ļ	rilled:		· · · · · · · · · · · · · · · · · · ·		 	epth: 93.5 ft.		Casing	Size: 6.2	סו יי5
Log	ged by	':	RRR/L	.EF		Checke	ed by:	DSP		11.000	Groundwa	ater Below Groun	nd: 1	14 ft.		
Sc	een: 1	0	(ft)	Riser	: 80	(ft)	Diam.:	4.0""	(ID)	Material:	Sch 40PVC	Protection: Mc	d.D	Page 4	of	4
DEI (F	TH SAM	IPLE :	SAMPLE DEPTH	PEN. REC.	PID (mpqq)				SOIL-	ROCK DESCRI	PTION		BLC	DWS\6-IN.	COMMEN.	τs
- 9	2						•				****					
- 5	04					Refusal tose ro	at 93. ck	5'-Cutti	ings in	dicate bedr	ock-metamo	rphosed schis-				ļ
- 5	6															;
- 9	8															
_ 10	0															
<u> </u>							•									
<u> </u>																
10			,		ļ											
10																
_ 11																
_ 114	•															
_ 116	5															
118	3															
_ 120)					- 2 - 1 - 2 - 1 - 2 - 1 - 1 - 1 - 1 - 1						·				

SOIL	В	ORIN	IG L	O G						Study Ar	ea: Shepley's I	Hill La	ndfill		
Client:	A	EC			Projec	t No.	7005	-04		Boring N	lo.: SHM-93-22C				
Contract	or: N	ew Hamp	oshire	Boring	Date S	tarted:	02/11	/93		Complete	ed: 02/25/93	М	ethod:	Drive/	Wash
Ground E	lev.:	217.9)		Soil D	rilled:	115 f	t.		Total De	epth: 135 ft.	С	asing 9	Size: 6	,11
Logged b	y:	LET			Checke	d by:	RRR			Groundwa	ater Below Ground	d: 5.	9 ft.		
Screen:	10	(ft)	Riser	: 127	(ft)	Diam.:	4.0""	(ID)	Material:	Sch 40PVC	Protection: Mod	d.D P	age 1	of	1
DEPTH SAI (FT) NUI	MPLE MBER	SAMPLE DEPTH	PEN. REC.	(ppm)				SOIL-	ROCK DESCRI	PTION		BLOWS	\6-IN.	COMME	NTS
1 115	1					ed by E	cology	and Env	ee soil bor vironment)						,

Proje							ROC	K CC	RIN	3 LO	G.		
Proje	ct: Fort D	Devens					<u> </u>	<u></u>	<u>*:</u>	*	Study Area:		Project No. 7005-04
Client	: USA	THAM	Α				er's Nai		,		Logged by: 1. Snowden	Checked by:	Ground Elev.:
Drillin	g Contract	or:	Bar				ection L Leve	.evel: 7			Rig Type:	Start Date: 7/19/93	Finish Date:
	w Hamp g Method:			$\overline{}$		_ <u></u>	· ·			· · · · · · · · · · · · · · · · · · ·	P.I.D. (eV):	Casing Size:	Auger Size:
Bit typ	e/size:	0" ca	LSIVA		HX Use:	rock	. core		Core Int	erval (to	o/from)(ft):	130-130	-/
-	<u> </u>	<u> </u>	Natura	al Cove	<u> </u>						R-4	130-15	5
ort.	- -			aks		Ro	ck Qua	ılity				•	
feet) 3RD S	No. 8 tion/ ry (fee	. Log	a	5	red			uality	Rate		Roo Co	ck Description an mments on Drillir	nd ng
Depth (feet) Below GRD Sort.	Sample No. & Penetration/ Recovery (feet)	Graphic Log	Type/Dip	Surface Condition	Weathered Condition	Total 4" Core	RQD (%)	Rock Quality Description	Drilling min/ft	Color			
130	N T T	0	×	S O	≤ ∪	10	<u>ac</u>	Œ O	A A	S	X- Mechanica	-1 loveak	
131 -			¥								5		
132 -	4.9							11/	5	Greens		·	
	5.0	~	×			49	WIR	Excell	1	W			!
133 -		~_	<u>۲</u> ۲						4	HON DON	P7		
134 -			¥						4				
135 -			×								+ 11 .0	, ,	
-		End of	·								Bottom of	boring a	at 135'
_													
								,					į
-				İ									
-		İ											
-													
-													
		•											
			ł										
													-
-													
								•					_
											ABB Enviro	nmental Serv	vices, Inc.—ا

SOIL	BORI	N G L	O G			Study Ar	ea: Shepley's H	ill Landfill	
Client:	AEC			Project No. 7005-04		Boring N	o.: SHM-93-24A	W. 27	
Contractor	New Ham	pshire	Boring	Date Started: 01/20/93		Complete	d: 01/20/93	Method:	HSA
Ground Elev	.: 235.	5		Soil Drilled: 24 ft.		Total De	pth: 24 ft.	Casing	Size: 6.25 ID
Logged by:	RRR			Checked by: DSP		Groundwa	ter Below Ground:	: 15.5 ft.	
Screen: 10	(ft)	Riser	: 16	(ft) Diam.: 4.0"' (ID)	Material: S	Sch 40PVC	Protection: Mod.	.D Page 1	of 2
DEPTH SAMPL	E SAMPLE R DEPTH (FT)	REC. PEN.	(ppm)	SOIL-	ROCK DESCRIF	PTION		BLOWS\6-IN.	COMMENTS
- 1 s-1	0'-2'	2.0	BKG	0'-0.5' SAND, well graded, f angular, very loose, dry, da 0.5'-1.2' SAND, well graded, subangular, dry, very loose,	rk brown, gl medium to co	lacial out parse, 20%	wash topsoil (SW)	2-3-3-2	Start 11:30
- 3 - 4 - 5 s-2 - 6	51-71	2.0	BKG .	SAND, well graded, medium to above, coarse fraction increa	coarse, 20% asing with d	ifine sandepth to 3	d, similar to 5-40% (SW)	6-8-9-10	
- 7 - 8 - 9 - 10 - 11 s-3 - 12 - 13	10-12	1.5		SAND, poorly graded, medium, dry, loose, (PR), tan, brown	15% sand, 1!	5% coarse,	subrounded, (SP)	7-4-6-6	

	S 0	I L B	ORIN	IG L	0 G	Study Area: Shepley's Hill Landfill	
	Clien	t: /	AEC			Project No. 7005-04 Boring No.: SHM-93-24A	
	Contra	actor: I	Vew Hamp	oshire E	Boring	Date Started: 01/20/93 Completed: 01/20/93 Method:	HSA
	Ground	Elev.	235.5	;		Soil Drilled: 24 ft. Total Depth: 24 ft. Casing	Size: 6.25 ID
	Logge	by: I	RRR			Checked by: DSP Groundwater Below Ground: 15.5 ft.	
	Scree	n: 10	(ft)	Riser	: 16	(ft) Diam.: 4.0" (ID) Material: Sch 40PVC Protection: Mod.D Page 2	of 2
	DEPTH (FT)	SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	PID (ppm)	SOIL-ROCK DESCRIPTION BLOWS\6-IN.	COMMENTS
	- 15						
	16	S-4	15-17	1.5 2.0	BKG	SAND, similar to above except very loose and wet (SP)	Water at 15' TOC analyti- cal collect- ed
	- 18						
7	i - 19						
	20	:		1.8			
	21	S-5	20-22	2.0	BKG	SAND, poorly graded, similar to above (SP)	
	- 22 - 23					•	
	- 24					BOE = 1440 hours 1/20/93	
I	- 25					DOL - 1770 HOULS 1/20/73	
	26						
	- 27						
	- 28	,					
Ļ							

\$ 0	I L B	ORI	N G L	O G						Study A	rea: Shepley's	Hill	Landfil	
Clien	t:	AEC			Projec	t No.	7005-04			Boring	No.: SHB-93-01)	(
Contr	actor:	New Ham	pshire	Boring	Date 9	Started:	01/25/9	3		Complet	ed: 01/25/93		Method:	HSA
Groun	d Elev.	: 235.	5 ft.		Soil [rilled:	25 ft.			Total D	epth: 25 ft.		Casing	Size: 4.25" ID
Logge	d by:	LET			Checke	ed by: R	RRR			Groundw	ater Below Groun	nd:	19 ft.	
Scree	n: N/A	(ft)	Riser	: N/A	(ft)	Diam.:	N/A (ID)	Material:	N/A	Protection: Mo	d.D	Page 1	of 1
DEPTH (FT)	SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	(ppm)			So	0IL-	ROCK DESCRI	PTION		BL	ows\6-in.	COMMENTS
-	0-5	(1)			SAND, n	nedium ,	dry, fill	, 10) yr 5/4 yel	lowish br	own, 15% sand			
- 10	5-10	(2)			SAND, f	ine-medi	um, dry, y	yell	owish brown					
	10-15	(3)		BKG	SAND, f	ine-medi	um, dry, y	yell	owish brown					
- 20	15-20	(4)			Same									Loosened up at 19' (Water??)
F	20-25	(5)			Same									Started to
	25-26	(6)			Same Ma	terial								scratch at 24' bgs
— 30		!			BOB 25'	bgs	11-00/00,		<u> </u>					
-		ļ										-		
40														
— 50														
- 60														
_														
70														
— 70 —													ļ	
			1											

s o	I L B	ORII	N G L	0 G						Study A	Area:	Cold	Spring	Pond	
Clien	t:	AEC			Projec	ct No.	7005	-04		Boring	No.:	CSM-9	3-01A		
Contr	actor:	New Hamp	oshire	Boring	Date S	Started:	01/2	5/93		Complet	ted:	02/03	/93	Method:	HSA Drive/Wash
Groun	d Elev.	: 254.8	3		Soil [Drilled:	65.5	ft.		Total D	Depth	: 65.	5 ft.	Casing	Size: Comments
Logge	d by:	LEF			Checke	ed by:	RRR			Ground	water	Below	Ground:	15.5	
Scree	n: 10	(ft)	Riser	:	(ft)	Diam.:	4.0"	(ID)	Material:	Sch 40PV	Pr	otectio	n: Mod.	D Page	1 of 3
	SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	PID (ppm)				SOIL-	-ROCK DESCR	IPTION				BLOWS\6-IN.	COMMENTS
- 2				BKG		, GM, we			40% silty brown	fine to co	oarse	e sand,	sub- (GM)		HSA to 19'
- 6															
- 8															
- 10	į														
- 12															HSA
- 14															
- 16		15 - 16.25		BKG	leached		o reddis		30% clay to un and dark					22/35/50 for 0.25	
- 18															19' bgs bot-
- 20		22-24	! 	BKG	SAND L	vell ara	ded 10-	-15% fi	ne, 10-15%	gravel -	neat	matriy	dark	2/2/3/4	tom of fill 6" casing to
- 24	ı			İ	gray, h	nigh ang	ularity	, moist	lacustrin	2			(SW)	-, -, -, -, -	39' bgs
- 26		24-26		BKG	brown g	ray fil	ι		ravel, 30%	fine, some	e cem		rk (SW)		End of day 1/25/93
- 28		28-30	0.45	BKG	SAND, w		ded, fir	ne to c	oarse sand, 4/2 dark (t and	9/7/7/10	Rod 27.5' bgs
- 30		-	2.0		angular		,	- , ·		, . = // 3/			(SW)		Casing 29'bgs End of day 01/26/93
32					(Some w	ood in	wash)								

s o	I L B	ORIN	IG L	O G		Study Area: Cold Spring	Pond	
Clien	t: /	AEC			Project No. 7005-04	Boring No.: CSM-93-01A		
Contr	actor: I	New Hamp	shire	Boring	Date Started: 01/25/93	Completed: 02/03/93	Method:	HSA Drive/Wash
Groun	d Elev.	254.8	3		Soil Drilled: 65.5 ft.	Total Depth: TE4	Casing 9	Size: Comments
Logge	d by: I	LEF			Checked by: RRR	Groundwater Below Ground	: 15.5 ft.	
Scree	n: 10	(ft)	Riser	: 56	(ft) Diam.: 4.0" (ID) Material:	Sch 40PVC Protection: Mod	.D Page 2	of 3
	SAMPLE NUMBER		PEN. REC.	PID (ppm)	SOIL-ROCK DESCRI	PTION	BLOWS\6-IN.	COMMENTS
- 34		34.5 -	0.6	BKG	PEAT, 100% organics, very small roots, dry, blacker above reddish dry part, da	reddish brown, 7.5 yr 3/3, rk-dark brown organic	6/5/5/11	7.5 yr 3/3
36		36.5	2.0		muckier in spoon basket	(PT)		
38		36.5 - 38.5	0.6	BKG	PEAT, same as above	(PT)	15/17/21/24	Advance with
40								5" casing
- 42 - 44 - 46		42.5 - 44.5	0.7 2.0	BKG	SILTY SAND, poor to moderately graded, sized particles, no hon-decomposed mate moist	15-25% organics in clay- rial, dark gray, stiff, (SM)	*/3/2/4	*Weight of hammer drove first 6"
– 4 8								Driller sees
- 50		49-51	0.3	BKG	Attempted spoon, silty fine sand, gray,	moderately graded (SM)	6/5/5/13	color, end of organics
– 52		51-53	1.0	BKG	SAND, well graded, medium, 15% gravel, coarse, loose, saturated, gray		6/7/11/12	Overdrove spoon
- 54 						(SM)		
- 56								
- 58 - 60		59-61	0.7	BKG	SAND, fine sand, 10-15% fine, firm, moi graded, uniform		15/14/17/29	
- 62						(SP-SM)		

	\$ 0	I L B	ORII	NG L	0 G						St	udy Ar	ea: C	Cold Spring	Brook			
	Clien	t: /	AEC			Projec	t No.	700	5-04		Во	ring N	o.: C	SM-93-01A				
	Contr	actor: I	New Hamp	oshire I	Boring	Date S	Started:	01/2	5/93		Co	mplete	d: 0	2/03/93	Me	thod:	HSA Driv	e/Wash
	Ground	d Elev.	254	.8		Soil [rilled:	65.5	ft.		То	tal De	pth:	65.5 ft.	Ca	sing	Size: Co	mments
	Logge	d by:	LEF			Checke	ed by:	RRR			Gr	oundwa	ter Be	low Ground	:			
	Scree	n: 10	(ft)	Riser	: 56	(ft)	Diam.:	4.0""	(ID)	Material	: Sch	40PVC	Prote	ection: Mod	.D Pa	ge :	3 of	3
	DEPTH (FT)	SAMPLE NUMBER	SAMPLE DEPTH	PEN.	PID (ppm)				SOIL-	ROCK DESC	RIPTIO	N			BLOWS\	6-IN.	COMME	NTS
				REC.							····							
	- 62																	
	- 64																	
			65.5 -	0.5														
	- 66		67.5	2.0	BKG	SAND, p	poorly g	raded,	10% fin	e, loose,	moist	, 10 y	r 3/2,	(SP-SM)	10/9/1	6/24	Black p like pa cles in	rti-
																	ctes in	Sanu
T	- 68					вов 67.	5' bgs											
			:															
7	- 70																	
	- 72			!														
7																		
	- 74																	
7	!					1												
4	- 76																	
7																		
-	- 78																	
5																		
	- 80																	İ
					:													
	- 82															,		
	- 84																	
	- '																	
Ì	- 86																	
ļ	88																	
	90																	

	s o	I L B	ORI	N G L	. O G						Study Are	a: Cold Sprin	ng Broo	k	
	Clier	t:	AEC			Projec	t No.	7005 -	04		Boring No	.: CSM-93-02/	\		
	Contr	actor:	New Ham	pshire	Boring	Date S	tarted:	02/15/	'93		Completed	: 02/23/93		Method:	:HSA/Drive/Wash
	Groun	d Elev.	: 262.	6		Soil	rilled:	129.6	ft.		Total Dep	th: 129.6 ft.		Casing	Size: 3.0"
	Logge	d by:	John Sn	owden		Checke	d by: [DSP			Groundwat	er Below Grour	d: 23	ft.	
	Scree	n: 10	(ft)	Riser	: 20	(ft)	Diam.:	4.0""	(ID)	Material:	Sch 40PVC	Protection: Mo	d.D I	Page 1	l of 2
	DEPTH (FT)	li .	SAMPLE DEPTH	PEN.	PID (ppm)				SOIL-	ROCK DESCRI	PTION		BLOWS	s\6-IN.	COMMENTS
	- 5						-no soil pad for	•		ected. Mate g.	erial is fi	ll used to			2/15/93 begin drilling at 11:30 using 4.25 ID HSA
	- 10	S-1	10-12	1.2	BKG					silt, 1-2% (10 yr 6/2)	coarse sand	d, loose, mois (SP)		2/12/13	
-	15	s-2	15-17	1.8	BKG	Similar	to S-1					(SP))/5/9	
	20	s-3	20-22	1.6	BKG	Similar	to S-1	with so	me coa	rse sand sea	ams	(SP)	8/10)/15/12	
-	25	s-4	25-27	0.8	BKG					ed, 10-15% o ray (10 yr 6		, loose, wet, (SW)	9/13	3/15/16	Water encoun- tered at 23'
	30	S-5	30-32	1.6 2.0	BKG	Similar	to S-4					(SW)	8/11	/15/16	
-	3 5	s-6	35-37	2.0	BKG	Similar	to S-4					(SW)	10/12	/12/14	
-	40	s-7	40-42	2.0	BKG	411-421	Similar SANDY S graded,	ILT, fir	ne sand et, pa	d silty with le brown (10	5-15% medi yr 6/3)	(SW) um gravel, (SP-SM)		/11/13	Approx. 2' of sand has flowed into the augers.
	45	s-8	45-47			Sample		-47' not				unds. Casing			3.0" ID flush joint casing will be used to advance
-	50	S-9	50-52			SAND, co wet	parse to	medium	sand i	with 5% silt	, poorly gr	aded, loose, (SP)			the boring to bedrock.4.25" HSAs removed NHB personnel
	55	s-10	55-57	0.5	BKG		edium to wet, nonp		sand w	vith 30% fin	e gravel, w	ell graded, (SW)	120 f	or .5'	off-site at 1550. 2/16/93 begin
-	60	S-11	60-62	2.0	BKG	SAND, me wet, nor			. •	10% coarse	sand, well	graded, loose,	9/13	/11/15	drilling at 0900 with 3.0" casing. The gravel
_	65	s-12	65-67			No sampl	e collec	cted due	to fl	owing sands					was weathered casing pene- tration is slow.
_	70	s-13	70-72			No sampl	e collec	ted due	to fl	owing sands					Change at 60' to fine sand, casing was
	75	s-14	75-77			No sampl	e collec	ted due	to fl	owing sands					advanced to 65' but 7' of

	s o	I L B	ORI	N G L	0 G	Study Area: Cold Spr	ng Brook	, ,
	Clien	t: .	AEC	7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		Project No. 7005-04 Boring No.: CSM-93-0	A	
	Contra	actor:	New Ham	pshire (Boring	Date Started: 02/15/93 Completed: 02/23/93	Method:	HSA/Drive/Wash
	Ground	d Elev.	: 262.	6		Soil Drilled: 129.6 ft. Total Depth: 129.6 f	. Casing	Size: 3.0"
-	Logge	d by:	John Sn	owden		Checked by: DSP Groundwater Below Gro	nd: 23 ft.	
	Scree	n: 10	(ft)	Riser	20	(ft) Diam.: 4.0" (ID) Material: Sch 40PVC Protection:	od.D Page	2 of 2
		SAMPLE NUMBER		PEN. REC.	PID (ppm)	SOIL-ROCK DESCRIPTION	BLOWS\6-IN.	COMMENTS
	- 80	S-15	80-82	1.1	BKG	Similar to S-11 with fine gravel in top of sample. Gravel doe not appear to be related to this sample (SW		fine sand ran up into the casing. Cas- ing was ad-
-	- 85	S-16	85-87	2.0	BKG	No recovery-material in spoon appears to be wash	30/20/22/28	vanced to 70' without samp- ling 65'-67'. Cuttings from
	90	s-17	90-92	2.0	BKG	Similar to S-11 with coarse gray chips (20%) (S	30/22/32/40	65' to 70'
	- 95	s-18	95-97	2.0	BKG	Similar to S-11 (S	4/7/6/17	operations ended at 1500 due to heavy snow (stopped
	100	S-19	100 - 102	2.0	BKG	SAND, fine sand with 20% medium sand, well graded, loose, wet, light brownish gray (10 yr 6/2) (S	18/16/29/40	at 75'). 2/17/93 began drilling at
	105	s-20	105 - 107	2.0	BKG	SAND, fine to medium with 5% coarse sand, loose, poorly graded wet, light brownish gray (10 yr 6/2) (S		0950 at 75'.
	110	s-21	110 - 112	0.7 2.0	BKG	GRAVELY SAND, fine rounded gravely coarse sand with 5% medium sand, well graded, medium dense, wet (SW-G	20/16/19/21	
	115	s-22	115 - 117	2.0	BKG	SAND, medium to coarse sand with 5% fine sand, well graded, loose, wet, nonplastic, light brownish gray (10 hr 6/2) (Si		Drill opera- tions begin at 0930 on
	120	s-23	120 - 122	2.0	BKG	No recovery	25/19/22/20	2/18/93. Change at 114' to a medium-coarse
 	125	s-24	125 - 127	2.0	BKG	Similar to S-22 with rounded medium gravel	25/32/28/38	sand. 3.0" casing was advanced to 130' and not
	130	S-25	129	2.0	BKG	GRAVELY SAND, well graded, 10-20% fines, angular chunks of roc gray, wet (SW-	3 inches	washed out. Drilling op- erations end- ed at 1625 for 2/18/93.
	135					Bedrock appears to have been encountered at 129.6' (120 blows 0.1')	or	Drill opera- tions begin
	140							at 10:00 on 2/19/93. 3" casing was pulled out of the hole.Will begin advan-
	150							cing 6.25" auger 2/22/93

S 0	I L B	ORI	N G L	0 G					Study Ar	ea: Cold Spring	Brook	
Clier	t:	AEC			Project	No. 7005	-04	10-3	Boring N	lo.: CSM-93-02B		
Contr	actor:	New Hamp	oshire	Boring	Date Sta	arted: 02/24	/93		Complete	ed: 02/25/93	Method:	HSA
Groun	d Elev.	: 262.4	,		Soil Dri	illed: 68' b	gs		Total De	pth: 68 ft.	Casing S	ize: 6.25"
Logge	d by:	M. Danie	els		Checked	by: RRR			Groundwa	ter Below Ground	: 23 ft.	
Scree	n: 10	(ft)	Riser	: 60	(ft) D	oiam.: 4.0"	(ID)	Material:	Sch 40PVC	Protection: Mod	.D Page 1	of 1
	SAMPLE NUMBER	SAMPLE DEPTH	PEN. REC.	(ppm)			SOIL-	ROCK DESCRI	PTION		BLOWS\6-IN.	COMMENTS
_ 10					No soil s this is a	amples colle a monitoring	cted. well ir	See CSM 93- stallation.	02A for so	il descriptions,		
_ 20		;										
_ 30												
— 40												
- 50												
_ 60												
– 7 0						7-57 0 Irry 48-28						
8 0			i		Grout 28- Note: sa of slurry	nd (from for	mation)	appears to	have sque	ezed in at base		
– 9 0												
— 100												
— 110												
— 120												
130												
<u> </u>												
– 150												

·			UT 0	ODELOC	Study Area: Plow Shop Po	nd
31	ווטוו	W E I	VI C	ORE LOG	Site ID: SHD-92-01X	
Client	: AEC	•		Project No.: 07005-04	Protection: Modified D	. *
Contra	ctor: Ros	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: Photovac TIP	
Method	: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 8.5 ft.	
Logged	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
	0.0-0.7		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 90% decompo saturated, 3" diameter chunk of root, lacustrine	sed, black, loose,	PT
1						
2	1.8-2.2		BKG	HIGHLY ORGANIC SEDIMENT, same as above		PT
- 3	2.7-3.2	4.6 8.5	BKG	4" 50% sediment (organic), 50% fine sand, sharp con	tact	РТ
				SAND, fine to coarse, grained, well graded, loose,	saturated, 7.5 yr 4/2	sw
- 4	4.0-4.6		BKG	SAND, similar to above		
5 - - -						
-				BOE = 8.5 (Refusal)*		
+				*Tube 9.5'		

S	FDU	MFI	NT 4	ORE LOG	Study Area: Plow Shop Po	ond
3		.71 - 1	4 1 (Site ID: SHD-92-02X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/1/92 Completed: 12/1/92	PI Meter: Photovac TIP	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4.5 ft.	
Logge	by: LEF		,t	Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION	ı	SOIL CLASS
1	0.0-0.5		BKG	HIGHLY ORGANIC SOILS, 100% organics, including wh very saturated (muck), dark brown, lacustrine	nole leaves and roots, soft,	PT
- 3	2.2-2.7	4.5 5.0	BKG	HIGHLY ORGANIC SOILS, 90% organics, mostly decomp grained material with some wood and roots, soft, reddish, lacustrine	osed to extremely fine- moist, dark brown, somewhat	PT
- 4	4.0-4.5		ВKG	HIGHLY ORGANIC SOILS, similar to above, however, or sand and stiffer	contains 0-2% fine-grained	PT
- 5				OE = 5'		

e r	= D	// E >	JT C	ORE LOG	Study Area: Plow Shop Por	nd
3 E	- <i>U</i> 1 1	vi C [VI C	ONE LOG	Site ID: SHD-92-03X	
Client:	AEC		3,772	Project No.: 07005-04	Protection: Modified D	
Contrac	tor: Ros	sfelde	r, Corp.	Date Started: 12/4/92 Completed: 12/4/92	PI Meter: TE 3 PID	
Method:	Vibraco	re		Core Tube Diameter: 4.0"	Total Depth: 2.5 ft.	
Logged	by: LEF			Checked by: RRR	Page 1 of 1	
(FT) 1	SAMPLE DEPTH (FT)	REC.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
- 1	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENTS, 100% organics, 40% non-degrass, loose, saturated, black, lacustrine	composed roots, twigs, and	РΤ
- 2	.9-2.5		BKG	2.3'-2.5' SAND, fine to coarse, gray, well graded		SW
- 3				Recovery = 2.5'		
- 5				BOE = 5'		

S	F D I	MFI	NT (ORE LOG	Study Area: Plow Shop Po	ond
					Site ID: SHD-92-04X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: Photovac TIP	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 2.5-3 to Ref	usal/1.5 in cor
Logge	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
_	0.0-0.5					
- 1	0.5-1.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organic matter, black, odorous, loose, lacustrine	completely saturated,	PT
		1.5 2.5		Recovery = 1.5'		
2						
3				Refusal = 2.5'		
			100			
5	·	ļ				
			-	IOTE: Not enough sample left after analysis jars fil	led for jar head-space.	

_					Study Area: Plow Shop Pon	d
S	EDI	MEI	N I C	ORE LOG	Site ID: SHD-92-05X	
Clien	t: AEC		***************************************	Project No.: 07005-04	Protection: Modified D	
	actor: Ro	ssfelde	r, Corp.	Date Started: 12/1/92 Completed: 12/1/92	PI Meter: Photovac TIP	
	d: Vibrac			Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
	d by: LEF			Checked by: RRR	Page 1 of 1	· · · · · · · · · · · · · · · · · · ·
DEPTH (FT)	,	REC.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
	0.0-0.5		BKG	HIGHLY ORGANIC SOILS, 100% organics including grass a saturated (muck), dark brown, soft, lacustrine	and roots, no leaves, very	РТ
- 1						
- - - 2	2.0-2.5		BKG	HIGHLY ORGANIC SOILS, 100% organics, 50% roots and gr dark brown, lacustrine	rass, firm, saturated,	PΤ
		4.0 5.0				·
 - - - - 4	3.5-4.0			HIGHLY ORGANIC SOILS, 100% organics, 5-10% roots and black, lacustrine Recovery = 4	grass, loose, saturated,	PT
- - - -						
- 5 -			1.00	BOE = 51	·	

S	EDII	DIMENT CORE LOG			nd'		
	Site ID: SHD-92-06X						
Client	: AEC			Project No.: 07005-04	Protection: Modified D		
Contractor: Rossfelder, Corp.				Date Started: 12/1/92 Completed: 12/1/92 PI Meter: Photov		ac TIP	
Method: Vibracore				Core Tube Diameter: 4.0"	Total Depth: 5 ft.		
Logged	by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
- 1	0.0-0.5		BKG	HIGHLY ORGANIC SOILS, 100% organics, roots and gras dark brown, soft, lacustrine	s, very saturated, (muck),	PT	
3	2.5-3.0	5.0	BKG	HIGHLY ORGANIC SOILS, same as above except stiffer, intact	100% organic roots, still	PΤ	
4	.5-5.0		_	HIGHLY ORGANIC SOILS, same as above		PT	

SEDIMENT CORE LOG Study Area: Plow Shop Po					
Site ID: SHD-92-07X					
Client: AEC	Project No.: 07005-04	Protection: Modified D			
Contractor: Rossfelder	Corp. Date Started: 12/1/92 Completed: 12/1/92	PI Meter: Photovac TIP			
Method: Vibracore Core Tube Diameter: 4.0" Total Depth: 3 ft.					
Logged by: LEF	Checked by: RRR	Page 1 of 1			
DEPTH SAMPLE REC. DEPTH (FT) PEN.	PID (PPM) SEDIMENT DESCRIPTION	SOIL C	LASS		
0.0-0.5	BKG HIGHLY ORGANIC MATTER, 100% organics, 80% roots a tight, saturated, almost black, soft, lacustrine	nd twigs and grass, very P	Т		
2.5-3.0	BKG HIGHLY ORGANIC MATTER, 100% organics, 15% roots a posed, loose, saturated (muck), soft, lacustrine Recovery = 31	nd grass, all other is decom-			
- 4 - 5	BOE = 5'				

S	EDI	MF	NT	ORE LOG	Study Area: Plow Shop P	ond
_			_		Site ID: SHD-92-08X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contra	actor: Ro	ssfelde	r, Corp.	Date Started: 12/4/92 Completed: 12/4/92	PI Meter: TE 3 PID	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 7 ft.	
Logge	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
- 1 - 2	0.0-1.0		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 80% not dec grass, black, greenish parts, soft, lacustrine	omposed, mostly rotting	PT
- 3 - 4 - 5	3.5-4.0	7.0 9.5	BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 50-70% deco well preserved, soft, black, lacustrine	mposed, grass and roots,	PT
- 7	6.5-7.0			HIGHLY ORGANIC SEDIMENT, same as above Recovery = 7'		PT
- 9 - 10 - 11				30E = 9.5'		

				Study Area: Plow Shop P	ond
S	EDII	MEI	NT C	SITE LOG	
Clien	t: AEC			Project No.: 07005-04 Protection: Modified D	
	actor: Ro	oofol do	r Corn	Date Started: 12/3/92 Completed: 12/3/92 PI Meter: Photovac T/P	
	d: Vibrac		ι, τοιμ.	Core Tube Diameter: 4.0" Total Depth: 5' recover	ed.
					eu
	by: LEF			Checked by: RRR Page 1 of 1	T
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION	SOIL CLASS
- - - - 1	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 30% non-decomposed, dark-dark brown, soft (at 00), little firmer below well-preserved roots and some grass, saturated, lacustrine	PT
					•
3	2.5-3.0		BKG	HIGHLY ORGANIC SEDIMENT, same as above	PT
- - - - 4					
<u> </u>	4.5-5.0		BKG	HIGHLY ORGANIC SEDIMENT, same as above	PT
- - - -				Recovery = 5'	
— 6 - -		5.0 8.5			
- - 7 -					
- - - 8	Ī				
- - - - 9				BOE = 8.5' Refusal = 9'	
10 					
11					
	į				

S	EDI	ME	NT (ORE LOG	Study Area: Plow Shop Po	ind	
					Site ID: SHD-92-10X		
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D		
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/4/92 Completed: 12/4/92	PI Meter: TE 3 PID Total Depth: 4.5 ft.		
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"			
Logge	by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
- 1	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, mostly non- stringy, dark brown, loose, lacustrine	decomposed grass, very	PT	
- 3	2.5-3.0	5.0	BKG	HIGHLY ORGANIC SEDIMENTS, 100% organics, 50% decompo dark brown to black, lacustrine	osed, roots, grass, loose,	РΤ	
- 4	4.0-4.5		BKG	HIGHLY ORGANIC SEDIMENTS, same as above			
5				Recovery = 4.5'		PT	
				30E = 5'			

				The state of the s		
S	EDI	MEI	NT (ORE LOG	Study Area: Plow Shop Por	nd
					Site ID: SHD-92-11X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
Logge	d by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
1 2 5		1.0 5.0	BKG	MOSTLY ORGANIC SEDIMENT, 100% organics, tight layer grass, muck above and muck below with methane (could stiff to extremely loose (liquid), munsell 7.5 yr vilacustrine Recovery = 1' NOTE: When the sample was opened and homogenized for bit of sheen was observed in the liquid muck COMMENT: This location was attempted several times taken because recovery was poor. Tight biomass can stuff below is not stiff enough to push the tight stobelow. BOE = 5'	dn't sample below biomass), alue 3/ chroma/2, or a composite sample, a The composite sample was	PT
				BOE = 5'		
.						

S	EDI	MEI	NT (ORE LOG	Study Area: Plow Shop Po	nd .
					Site ID: SHD-92-12X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4.8 ft.	
Logge	d by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 70% roots, posed organics, loose, saturated, lacustrine, color	grass, twigs, 30% decom- 5 yr - 2.5/value-1/chroma	PT
1						
. 2		4.8				
3	2.5-3.0	5.0	BKG	HIGHLY ORGANIC SEDIMENT, same as above		
						PT
- 4	3.7-4.8		BKG	SAND, fine to medium sand, well graded, firm, gray a mottled, 25-30% medium sand, 15-20% silt	and dark brown, splotched,	sw
- 5				Recovery = 4.8'		
,	ļ		To the Control of the	BOE = 5'		

SEDIMENT CORE LOG Client: AEC Project No.: 07005-04 Contractor: Rossfelder, Corp. Date Started: 12/2/92 Completed	Site ID: SHD-92-13X Protection: Modified D	
	Protection: Modified D	
Contractor: Possfelder Corp. Date Started: 12/2/92 Completed	•	
dontractor. Rossietaer, corp. Date Started. 12/2/72 Compteted	: 12/2/92 PI Meter: TE 3 PID	1979
Method: Vibracore Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
Logged by: LEF Checked by: RRR	Page 1 of 1	
(FT) PEN.	DESCRIPTION	SOIL CLASS
BKG HIGHLY ORGANIC SEDIMENTS, 100% organic saturated, lacustrine, some twigs and 5.0 5.0 BKG HIGHLY ORGANIC SEDIMENTS, same as above	es, 30-50% roots and grass, loose (muck), wood chunks, 2.5 yr 2.5/1	PT
5.0 5.0 2.5-3.0 BKG HIGHLY ORGANIC SEDIMENTS, same as abov	re	PT
BKG HIGHLY ORGANIC SEDIMENTS, same as above that is identifyable BOE = 5'	e except slightly less organic matter	PT

Ç	FDI	MF	NT 4	CORE LOG	Study Area: Plow Shop P	ond
J					Site ID: SHD-92-14X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: TIP	
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.	- Adalla
Logge	d by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, mostly dece twigs, very soft and wet (muck), 0-1.5' black, lack	omposed, some roots and ustrine	PT
- 1						
2		5.0 5.0				
	2.5-3.0		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 50% well-pr (marsh-peat bog environment), firm, 5 yr 3/2, lacus	reserved roots and grass,	PT
- 3						į
4						
5	4.5-5.0	į	BKG	HIGHLY ORGANIC SEDIMENT, same as above		PT
				BOE = 5'		
- - - -						

			N.T. (CORELOC	Study Area: Plow Shop Por	nd
3	ועם	IVI E I	N I C	ORE LOG	Site ID: SHD-92-15X	
lient	: AEC			Project No.: 07005-04	Protection: Modified D	
	ctor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: TIP	
	: Vibrac			Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
ogged	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
_	0.0-0.7		BKG	HIGHLY ORGANIC SEDIMENT, 100% organic, mostly decom saturated, loose (muck), black, lacustrine	posed, some twigs and roots	PT
- 1						
- 2						
- 3	2.5-3.0	4.7 5.0	BKG	HIGHLY ORGANIC SEDIMENT, 100% organic, 50% roots an firm, saturated, lacustrine, marsh environment, 2.5	d grass, not decomposed, yr 2.5/2	РТ
-						
- 4	4.3-4.7		BKG	HIGHLY ORGANIC SEDIMENT, same as above		PT
				Recovery = 4.7'	}	• •
- 5				BOE = 5'		
-					į	

S	F D I I	MFI	T V	CORE LOG	Study Area: Plow Shop Po			
J	- D I I	₩ - 1			Site ID: SHD-92-16X			
Clien	: AEC			Project No.: 07005-04	Protection: Modified D	D		
Contra	actor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: TIP Total Depth: 5'			
Metho	d: Vibrac	ore	and the desired	Core Tube Diameter: 4.0"				
Logge	by: LEF			Checked by: RRR	Page 1 of 1			
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS		
·	0.0-0.7		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, mostly decodark brown, lacustrine	mposed, loose, saturated,	PT		
- 1								
- 2 -		5.0						
- 3	2.5-3.0	į	BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 50% decompo saturated, lacustrine, biomass well-preserved (or s	sed, 2.5 yr 2.5/2, loose, wamp)	PT		
- 4		,						
- 5	4.5-5.0	į		HIGHLY ORGANIC SEDIMENT, same as above BOE = 5'		РТ		
-								

	EDI	N/ E	NT (ORE LOG	Study Area: Plow Shop Po	nd
		141 E 1	14 1	ر		Site ID: SHD-92-17X	
Clien	t: AEC				Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	er, Corp.		Date Started: 12/3/92 Completed: 12/3/92	PI Meter: TIP	
Metho	d: Vibrac	ore			Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
Logge	d by: LEF				Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC.	PID (PPM)		SEDIMENT DESCRIPTION		SOIL CLASS
- - - - -	0.0-0.6		BKG	HI	GHLY ORGANIC SEDIMENT, 100% organic material, 70% opposition material,	decomposed, loose,	PT
_ - - 1 - 1		2					
		5.0					
3	2.5-3.0	5.0	BKG	HIC dec	GHLY ORGANIC SEDIMENT, 100% organic material, 50% composed, dark reddish brown, loose, saturated, la	roots and grass, 50% acustrine	PΤ
4							
- - - 5	4.5-5.0				HLY ORGANIC SEDIMENT, same as above		РТ
- - - - - -				BOE	= 51		

S	EDI	MF	NT	CORE LOG	Study Area: Plow Shop Po	nd 	
O		141 y 1		JOHE EOG	Site ID: SHD-92-18X		
lien	: AEC			Project No.: 07005-04	Protection: Modified D		
ontr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	/92 PI Meter: TIP		
etho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.		
ogged	by: LEF		***************************************	Checked by: RRR	Page 1 of 1		
EPTH FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
	0.0-0.8		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, mostly (80% roots, twigs, loose, saturated, muck, 2.5 yr 25/0,	Y ORGANIC SEDIMENT, 100% organics, mostly (80%) decomposed, 20% grass, twigs, loose, saturated, muck, 2.5 yr 25/0, lacustrine		
1							
2				HIGHLY ORGANIC SEDIMENT, 100% organics, 40% biomass long pieces of grass and roots, firm-loose, saturate	ed, 2.5 yr 25/0 lacustrine,	PT	
3	2.5-3.1		BKG	texture is constant, however, the coloring shows landark gray brown (2.5'-3.5')	yers of dark-dark brown and		
	.3-5.0		BKG	HIGHLY ORGANIC SEDIMENTS, same as above SAND 60%, fine to medium, gray ORGANICS 40%, same as above		PT PT/SW	
				BOE = 5'		r (/ SW	
						Ť	

171 L I	• • • • • • • • • • • • • • • • • • • •	ORE LOG		
			Site ID: SHD-92-19X	
		Project No.: 07005-04	Protection: Modified D	
ssfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID	
ore		Core Tube Diameter: 4.0"	Total Depth: 2 ft. (core	5')
		Checked by: RRR	Page 1 of 1	
REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
2.0	BKG	HIGHLY ORGANIC SEDIMENT, 80% organics, loose, comple graded, dark brown, lacustrine	etely saturated, well	PT
			ors	GW
		BOE = 5'		
	PEN.	REC. PID (PPM) PEN. BKG 2.0 5.0	REC. PEN. BKG HIGHLY ORGANIC SEDIMENT, 80% organics, loose, completed of the completed of	REC. PID (PPM) SEDIMENT DESCRIPTION BKG

SEDIMENT C			NT	ORE LOG	Study Area: Plow Shop Pond		
_	1				Site ID: SHD-92-20X		
lien	t: AEC	•		Project No.: 07005-04	Protection: Modified D		
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID		
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.		
Logge	d by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
-	0.0-0.8		BKG	HIGHLY ORGANIC SEDIMENTS, 100% organics, 15% roots posed, organic muck, color 5 yr 2.5/1, saturated,	and twigs, mostly decom- lacustrine	PT	
- 1							
2		5.0					
. 3	2.3-3.1	5.0	BKG	HIGHLY ORGANIC SEDIMENTS, same as above except more	decomposed	·	
				Interbedded layers of well graded sand			
4							
- 5	4.2-5.0			HIGHLY ORGANIC SEDIMENTS, 20% sand in layers, fine organics including roots, twigs, peat-like deposits	to medium, well graded, 80% , black, swampy origin	SW-PT	
		-	į	BOE = 51			

J	SEDIMENT CORE LOG						
				ONL LOG	Site ID: SHD-92-21X		
Clien	t: AEC			Project No.: 07005-04 Protection: Modified D			
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/4/92 Completed: 12/4/92	PI Meter: TE 3 PID		
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 7 ft.		
Logge	d by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
- - - - 1	0.0-1.0		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 20% fresh (50% decomposed, loose, black, saturated, lacustrine	recently alive) biomass,	PT	
- - - - 2							
- - 3 							
- - - 4	3.5-4.0	<u>{</u> } <u>}</u>	BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, roots, gras: wood chunks, dark brown, loose, saturated, lacustri	s, leaves, well preserved ne	PT	
- - - 5	,	7.0 9.5					
- 6 	6.0-7.0		BKG	HIGHLY ORGANIC SEDIMENT, same as above		PT	
- 7 - 7				Recovery = 7'		;	
- 8			·				
- 9							
- 10 - 1				BOE = 9.5			
٠							

o e	EDIN	ИΕΝ	IT (CORE LOG	Study Area: Plow Shop Po	ona
					Site ID: SHD-92-22X	
Client:	AEC			Project No.: 07005-04	Protection: Modified D	
Contract	tor: Ros	sfelder	Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID	
Method:	Vibraco	re		Core Tube Diameter: 4.0"	Total Depth: 2.8 ft.	
ogged by: LEF				Checked by: RRR	Page 1 of 1	
FT) D	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
0.	0-0.8		BKG	HIGHLY ORGANIC SEDIMENT, 100% organic material incl loose, saturated, dark brown, lacustrine	uding sticks and roots,	PT
2		2.8				
2.1	1-2.8		BKG	HIGHLY ORGANIC SEDIMENT, same as above except with a component	a 10% fine to medium sand	PT
3				Recovery = 2.8'		
5			E	OE = 51		

S	FDII	MFN	UT (ORE LOG	Study Area: Plow Shop Por	nd	
3	- D ! !	I	• • •		Site ID: SHD-92-23X		
Client	: AEC			Project No.: 07005-04	Protection: Modified D		
Contra	ctor: Ros	ssfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID		
Method	l: Vibraco	ore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.		
Logged	by: LEF			Checked by: RRR	Page 1 of 1	·	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
- 1	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% organics including rowood, loose, saturated, dark brown, lacustrine	oots, grass, twigs, and	PT	
- 2	2.5-3.0	5.0	BKG	HIGHLY ORGANIC SEDIMENT, 100% organics, mostly non- dark brown, lacustrine	decayed, firm, saturated,	PT	
		5.0					
- 5	4.5-5.0			HIGHLY ORGANIC SEDIMENT, same as above, shows littl depth	e increase in decay with	PT	
-				BOE = 5'			

SEI	SEDIMENT CORE LOG				
				Site ID: SHD-92-24X	
Client: AE	С		Project No.: 07005-04	Protection: Modified D	
Contractor	: Rossfelde	r, Corp.	Date Started: 12/2/92 Completed: 12/2/92	PI Meter: TE 3 PID	
Method: Vi	bracore		Core Tube Diameter: 4.0"	Total Depth: 5 ft.	
ogged by:	LEF		Checked by: RRR	Page 1 of 1	
DEPTH SAM (FT) DEP (FT	тн	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
0.0-	0.5	BKG	HIGHLY ORGANIC SEDIMENT, 100% organic material inclu loose, completely saturated, dark brown, lacustrine	ding twigs and roots,	PT
3 2.7-3	5.0	[1	NIGHLY ORGANIC SEDIMENT, 90% organic matter, biomass 0% or less fine sand and silt, loose, grading to fi prown, lacustrine	still non-decayed 30%, rm, saturated, dark	PΤ
4.5-5	.0	W	IGHLY ORGANIC SEDIMENT, 85% organics, 15% fine sand ise same as above OE = 5'	, some medium sand, other-	PΤ

	EDI	M E P	UT C	ORE LOG	Study Area: Plow Shop Por	nd
l ³	E V I I	IVI E I	41 (ORE LOG	Site ID: SHD-92-25X	
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D	
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/3/92 Completed: 12/3/92	PI Meter: Photovac TIP	
Metho	d: Vibrac	ore	******	Core Tube Diameter: 4.0"	Total Depth: 5 ft.	1230
Logge	d by: LEF			Checked by: RRR	Page 1 of 1	, 700
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
1	0.0-0.8		BKG	HIGHLY ORGANIC SEDIMENTS, 100% organics, roots, twig 2/1, lacustrine	gs, stiff, saturated, 10 yr	PT
- - - - - - -						
2		5.0		2.5' SAND, medium to fine, 1" thick		
3	2.5-3.5		BKG	HIGHLY ORGANIC SEDIMENTS, 90% organics, 10% sand, someomposed entirely, saturated, 10 yr 2/1, lacustriu	tiff, roots and twigs not ne	PT
- 4					•	
	4.5-5.0		BKG	HIGHLY ORGANIC SEDIMENTS, 100% organics, well-prese above, moist, 10 yr 2/1, peat-bog origin	rved, stiff, dryer than	PT
5				BOE = 5'		
				COMMENTS: Two times they cored and thought tube was sediments with vibrating head and re-core the third try.		

S	EDI	MEI	NT C	ORE LOG	Study Area: Cold Spring Brook Pond		
					Site ID: CSD-92-01X		
Client	t: AEC			Project No.: 07005-04	Protection: Modified D		
Contra	actor: Ro	ssfelde	r, Corp.	Date Started: 12/5/92 Completed: 12/5/92	PI Meter: TE(3)PID		
Method	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4 ft.		
Logged by: LEF				Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
	0.0-0.5						
-			BKG	O'-1' highly organic sediments, black, silty, roots	and leaves	PT	
1				1'-3' silty sand, fine to medium, 10% silt, moderat 5% gravel, 0.1' thick, silt layer at 1.5'	ely rounded, wet, 7.5 yr,	SW	
	,	_					
2	1.7-2-2		BKG				
		3.0 4.0					
	2.5-3.0		BKG				
3				Recovery = 3'			
4				BOE 4 ft.			
5							

c	EDII	ME	UT C	ORE LOG	Study Area: Cold Spring	Brook Pond
3	EVII	IVI C I	4 I C	ORE LOG	Site ID: CSD-92-02X	— <u>— — — — — — — — — — — — — — — — — — </u>
Client	: AEC			Project No.: 07005-04 Protection: Modifie		
Contra	actor: Ros	ssfelde	r, Corp.	Date Started: 12/5/92 Completed: 12/5/92 PI Meter: TE 3 PII		, , , , , , , , , , , , , , , , , , , ,
Method	: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4' recovery,	5' boring length
Logged	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
- - - -	0.0-0.5		BKG	D'-0.8' HIGHLY ORGANIC SEDIMENT, 100% organics inclu black, saturated, muck, lacustrine	ding leaves and twigs,	PT
- - 1				1.2' SANDY SILT right below organics, light brown, f	irm, saturated	SM
- - -				1.2'-4.0' SAND, fine to medium sand, 10% silt, subar saturated, firm	gular, glacial outwash,	SP
_ _ _						
-	1.7-2.2		BKG			
- - - -						
3		4.0 5.0				
- - -						
- - -	3.5-4.0		BKG			
- 4 - -				Recovery = 4'		
<u> </u>						
_ 5				30E = 5'		
- - -				·		
-	,					

SF	DIM	IFN	JT C	ORE LOG	Study Area: Cold Spring (Study Area: Cold Spring Brook Pond	
	1 17	1			Site ID: CSD-92-03X		
lient: A	EC	**************************************		Project No.: 07005-04	Protection: Modified D		
ontracto	r: Ross	felder	Corp.	Date Started: 12/5/92	PI Meter: TE 3 PID		
thod: V	'ibracor	е	-	Core Tube Diameter: 4.0"	Total Depth: 5		
gged by	: LEF			Checked by: RRR	Page 1 of 1		
T) DE	PTH -	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
1	-0.5			0.0'-0.5' HIGHLY ORGANIC SEDIMENT, 100% organics, b	olack, loose, saturated,	PT	
2.5-	5	5.0	BKG	0.5-3.0 SAND, fine to medium sand, 10% silt, graded at 2.8-3.0 feet, some gravel at 3.0, glacial outwas 6/2, poorly sorted	h, saturated, firm, 2.5 yr	SP-SM	
4.5-	5.0		BKG	OE = 5'			

S	FDL	MFI	NT (ORE LOG	Study Area: Cold Spring B	rook Pond
		171 has 1			Site ID: CSD-93-04X	
Clien	nt: AEC			Project No.: 07005-04	Protection: Modified D	
Conti	actor: Ro	ssfelde	r, Corp.	Date Started: 12/5/92 Completed: 12/5/92	PI Meter: TE 3 PID	
Metho	od: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4.5	
Logge	ed by: LEF			Checked by: RRR	Page 1 of 1	
DEPTI	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
1	0.0-0.5		BKG	ORGANICS and SAND, 30% black soft organics, 70% poomedium, glacial outwash, 2.5 yr 6/2, getting firmer	rly sorted sand, fine to with depth	SP-SM (some PT)
3	2.5-3.0	5.0	BKG	SAND, same as above, liesgang banding at 2.5', 0.2' gravel at top of silt SILT, sandy silt, 25% fine sand, plastic, 2.5 yr 6/3 saturated		SP-SM SM
4	4.0-4.5		BKG	Recovery = 4.5'		

SEDIMENT CO			NT (CORFIOG	Study Area: Cold Spring Brook Pond	
J			4 1		Site ID: CSD-92-05X	
Clien	: AEC			Project No.: 07005-04	Protection: Modified D	
Contra	actor: Ro	ssfelde	r, Corp.	Date Started: 12/5/92 Completed: 12/5/92	PI Meter: TE 3 PID	
letho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4 ft.	
Logge	by: LEF			Checked by: RRR	Page 1 of 1	
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS
- 1	0.0-0.5		BKG	ORGANIC SAND, 50% organics, muck, black, 50% sand, organics not decomposed, soft, lacustrine	10 yr 5/2, poorly sorted,	PT/SM
				SANDY PEAT, 50% organics, 5 yr 4/4, well-preserved poorly sorted, fine to medium sand, firm, lacustrin	wood chunks and roots, 50% le	PT/SM
2	2.0-2.5	4.0	BKG	FINE SILTY SAND, 10 yr 5/2, 15% silt, fine to mediu glacial outwash, saturated, firm	m, moistly fine sand,	SP
3		5.0		Some liesgang banding at 3'		·
4	3.5-4.0		BKG			
7				Recovery = 4'		
5				BOE = 5'		
				•		

_	EDII	ME	UT C	ORE LOG	Study Area: Cold Spring Brook Pond		
3		IVI E I	41 (OHE LOG	Site ID: CSD-92-06X		
Client	: AEC			Project No.: 07005-04	Project No.: 07005-04 Protection: Modified D		
Contra	ctor: Ro	ssfelde	r, Corp.	Date Started: 12/5/92 Completed: 12/5/92	PI Meter: TE 3 PID	J- 104 EV	
Method	l: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 4 ft.		
Logged	by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
1	0.0-0.5		BKG	ORGANIC SAND, 40% organic roots, leaves, grass, loo medium sand, saturated, lacustrine	se, 10 yr 3/2, fine to	PT/SM/SP	
- 2	1.8-2.2		BKG	SAND, layered, silty fine to coarse sand, well grad glaical outwash, saturated, stiff, 10 yr 5/1	ed, 20% silt, no organics,	SM	
- - - - 3 - -				SANDY SILT, saturated but acts dry, very stiff, 2.5 thick, varves (sandy silt) glaciolacustrine, 10 yr	yr 5/4, band at 2.8', 1/4" 4/6	SM	
-	3.5-4.0	·	BKG				
- 4				Recovery = 4 ¹ BOE = 5 ¹			

S	EDI	МЕ	NT (CORE LOG	Study Area: Cold Spring Brook Pond		
		Rest I			Site ID: CSD-92-07X		
Clien	t: AEC			Project No.: 07005-04	Protection: Modified D		
Contr	actor: Ro	ssfelde	r, Corp.	Date Started: 12/7/92 Completed: 12/7/92	PI Meter: TE 3 PID		
Metho	d: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 1.5 ft.		
Logge	by: LEF			Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC. PEN.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
-	0.0-0.5		BKG	HIGHLY ORGANIC SEDIMENT, 100% ogranics, roots, twig saturated, lacustrine	s, grass, black, loose,	PT	
- 1	1.0-1.5	1.5	BKG	HIGHLY ORGANIC SEDIMENT, 50% decomposed, wood chunks lacustrine-marsh, roots and grass environment	s, dark brown, moist, firm,	PT	
- 2							
- 3				BOE = 3'			
5							
	and the second s			NOTE: Driven and retrieved by hand. Insufficient access.	water depth for boat		

SEDIMENT CORE LOG Study Area: Cold Spring Brown Site ID: CSD-92-08X							
Contra	ctor: Ro	ssfelde	PI Meter: TE 3 PID				
Method	: Vibrac	ore		Core Tube Diameter: 4.0"	Total Depth: 1.5 ft.		
Logged	by: LEF			Checked by: RRR F	Page 1 of 1		
DEPTH (FT)				SEDIMENT DESCRIPTION	SOIL CLASS		
- - - - - -	0.0-0.5		ВKG	HIGHLY ORGANIC SEDIMENT, 100% organics, 30% not decomp grass, loose, saturated, black lacustrine	posed, roots, twigs,	PT	
	1.0-1.5	2.0	BKG	HIGHLY ORGANIC SEDIMENTS, same as above but stiffer ar (2 or 3)	nd includes small rocks	PT	
2				BOE = 2'			
3						•	
- 4							
- 5		1					
				NOTE: Driven via sledgehammer and retrieved by hand. boat access.	. Not enough water for		

REC.	PID	Project No.: 07005-04 Date Started: 12/5/92 Completed: 12/5/92 Core Tube Diameter: 4.0" Checked by: RRR	Site ID: CSD-92-09X Protection: Modified D PI Meter: TE/OVA Total Depth: 5'		
REC.	PID	Date Started: 12/5/92 Completed: 12/5/92 Core Tube Diameter: 4.0"	PI Meter: TE/OVA		
REC.	PID	Core Tube Diameter: 4.0"			
REC.			Total Depth: 5'		
		Checked by: PPR			
		GREEKER Dy. KKK	Page 1 of 1		
	(PPM)	ID PM) SEDIMENT DESCRIPTION			
	BKG	0-4.7 highly organic sediments, black extensive room	t matrîx, peat type	PT	
5.0					
	BKG S	tratified sand, poorly graded, fine, 0.05° thick, l	ayered in sediments		
			silt	SP-SM	
	5.0	BKG S	BKG Stratified sand, poorly graded, fine, 0.05' thick, l	BKG Stratified sand, poorly graded, fine, 0.05' thick, layered in sediments BKG 4.7-5.0, sand poorly graded, fine to coarse, 5%-10% silt	

SEDIMENT CORE LOG							
Site ID: CSD-92-10X							
Client: AEC Project No.: 07005-04 Protection: Modified							
Contractor: Rossfelder, Corp. Date Started: 12/05/92 Completed: 12/05/92 PI Meter: TE/OVA							
Method: Vibracore Core Tube Diameter: 4.0" Total Depth: 2.5							
Logged by: LEF				Checked by: RRR	Page 1 of 1		
DEPTH (FT)	SAMPLE DEPTH (FT)	REC.	PID (PPM)	SEDIMENT DESCRIPTION		SOIL CLASS	
-	0.0-0.5		BKG	0.0-0.5 highly organic sediments, extremely viscous, k	black, leaves twigs	SP-SM	
1				0.5-2.5 SAND, poorly graded, medium, 30% fine, 5% silt 1.6 (single cobble) 10 yr 5/1	t, coarse gravel at 1.5-	SP	
· · · · · · · · · · · · · · · · · · ·		2.5		Silty sand layer at 1.8-2.0, fine sand, 10 yr 5/1	•		
- 2	2.0-2.5		BKG	ų ·	;		
- 3 - 3 - 4 5				Refusal at 2.5'			
				• ,			

APPENDIX B MONITORING WELL CONSTRUCTION FORMS

SHM-93-01A

SHM-93-10C

SHM-93-18B

SHM-93-22C

SHM-93-24A

CSM-93-01A

CSM-93-02A

CSM-93-02B

This page intentionally left blank.

WELL INSTALL	ATION DI	AGRAM		WELL NO.: SHM-93-01A	
PROJECT NAME:	FORT DEVE	NS 1A SITES	DATE INSTALLED: 1/21/93		
PROJECT NO.:	7005-04		DRILLING METHOD: HSA	WATER ELEV.: 220.6	
GROUND ELEVATION	: 241.7		CASING ID: 6.25"	DATE: June 21, 1993	
WELL CASING ELEV	ATION: 243	.40'	RIG GEOLOGIST: Rod Rustad		
			PROTECTIVE CASING STCKUP: 2.3' BUCKING POST		
	_				
GROUND SURFACE			GRAVEL PAD		
,			OUTSIDE DIAMETER OF PROTECTIVE CA	ASING: 6"	
,			BOREHOLE DIAMETER: 10"		
			WELL RISER ID: 4.0"		
			TYPE OF WELL RISER: SCH 40 PV	/C	
ì			TYPE OF BACKFILL: 20/1 CEMENT/E	BENTONITE GROUT	
·	11111	11111			
i	11111	11111	DEPTH TO TOP OF BENTONITE SEAL:	6' bgs	
<i>)</i>	11111				
j			DEPTH TO TOP OF SAND PACK: 11' b	ogs	
V					
	····	 	DEPTH TO TOP OF WELL SCREEN: 15	5.5' bgs	
	····-				
	<u> </u>		TYPE OF WELL SCREEN: SCH 40	PVC	
	<u>-</u>		WELL SCREEN ID: 4.0"		
	····-		WELL SLOT SIZE: 0.010"		
			LENGTH OF WELL SCREEN: 10'		
			TYPE OF SAND PACK: SILICA SAND		
			TIPE OF SAND PACK: SILICA SAND	· · · · · · · · · · · · · · · · · · ·	
	····-	 		OF 51 1	
}		• • • • •	DEPTH TO BOTTOM OF WELL SCREEN:	25.5' bgs	
P		•••••	DEPTH OF BOREHOLE: 26' bgs		
c					
<u></u>					

VELL INSTALL	ATION DI	AGRAM	WELL NO.: SHM-93-18B
ROJECT NAME:	FORT DEVE	NS 1AS	TES DATE INSTALLED: 2/10/93
ROJECT NO.:	7005-04		DRILLING METHOD: Drive/Wash HSA WATER ELEV.: 218.79
ROUND ELEVATION:	236.21		CASING ID: 3"/6.25" DATE: June 21, 1993
ELL CASING ELEVA	TION: 23	8.38'	RIG GEOLOGIST: Nelson Bretton
]	PROTECTIVE CASING STCKUP: 2.4'
			BUCKING POST
OUND SURFACE			GRAVEL PAD
			OUTSIDE DIAMETER OF PROTECTIVE CASING: 6"
		-	BOREHOLE DIAMETER: 10"
			TYPE OF WELL RISER: SCH 40 PVC
	·		
ŀ	////	11111	TYPE OF BACKFILL: 20/1 CEMENT/BENTONITE GROUT
	/////	/////	
	///// /////	///// /////	DEPTH TO TOP OF BENTONITE SEAL: 68.5' bgs
	///// /////	/////	
Ļ	/////	/////	DEPTH TO TOP OF SAND PACK: 73.5' bgs
İ	• • • • [
			DEPTH TO TOP OF WELL SCREEN: 78.5' bgs
	•••••	••••	
	⊢	• • • • •	TYPE OF WELL SCREEN: SCH 40 PVC
	· · · · ·		WELL SCREEN ID: 4.0"
	····-		110
	····-		WELL SLOT SIZE: 0.010"
1.			LENGTH OF WELL SCREEN: 10'
	····-	••••	
			TYPE OF SAND PACK: SILICA SAND
].	<u> </u>		
].	····-	•••••	
			DEPTH TO BOTTOM OF WELL SCREEN: 88.5' bgs
	· · · · · · · · · · · · ·		
L			DEPTH OF BOREHOLE: 93.5' bgs
			····

WELL INSTALLATION DIAGRAM WELL NO.: SHM-93-22C PROJECT NAME: Fort Devens FS/1A DATE INSTALLED: 02/24/93 DRILLING METHOD: Wash/Drive Casing WATER LEVEL: 211.41 PROJECT NO.: 7005-04 CASING ID: DATE: June 21, 1993 GROUND ELEVATION: 217.9' RIG GEOLOGIST: Lori Truesdale WELL CASING ELEVATION: 219.76' PROTECTIVE CASING STCKUP: 2.451 BUCKING POST GROUND SURFACE - GRAVEL PAD - OUTSIDE DIAMETER OF PROTECTIVE CASING: BOREHOLE DIAMETER: - WELL RISER ID: 4.0-INCH TYPE OF WELL RISER: SCH 40 PVC - TYPE OF BACKFILL: 20/1 Cement/Bentonite Grout 11111 11111 \\\\\ 102.9' A.S.L. 110' bgs - TOP OF BENTONITE SEAL: Top of Bedrock 11111 11111 /// - DEPTH TO TOP OF SAND PACK: 117' bgs - DEPTH TO TOP OF WELL SCREEN: 124.3' bgs TYPE OF WELL SCREEN: SCH 40 PVC WELL SCREEN ID: 4.0" WELL SLOT SIZE: 0.010-INCH LENGTH OF WELL SCREEN: י 10 Silica Sand TYPE OF SAND PACK: -DEPTH TO BOTTOM OF WELL SCREEN: 134.3' bgs 134.9' bgs -DEPTH OF BOREHOLE: ABB ENVIRONMENTAL SERVICES, INC.

WELL INSTALL	ATION DI	AGRAM		WELL NO.: SHM-93-24A	
PROJECT NAME: FORT DEVENS 1A SITES			DATE INSTALLED: 1/20/93	***************************************	
PROJECT NO.:	7005-04		DRILLING METHOD: HSA	WATER ELEV.: 220.49	
GROUND ELEVATION	: 235.5'		CASING ID: 6.25"	DATE: June 21, 1993	
WELL CASING ELEV	ATION: 237	7.53	RIG GEOLOGIST: Rod Rustad		
<u> </u>					
			PROTECTIVE CASING STCKUP: 2.8' BUCKING POST	·	
GROUND SURFACE			GRAVEL PAD		
			OUTSIDE DIAMETER OF PROTECTIVE CA	SING: 6"	
) 			BOREHOLE DIAMETER: 10"		
			WELL RISER ID: 4.0"		
			TYPE OF WELL RISER: SCH 40 PV	С	
				·	
	11111	/////	TYPE OF BACKFILL: 20/1 CEMENT/B	ENTONITE GROUT	
	11111	////	DEPTH TO TOP OF BENTONITE SEAL:	4' bgs	
	11111	11111			
	11111	11111	DEPTH TO TOP OF SAND PACK: 8.4'	bgs	
		ļ	DEPTH TO TOP OF WELL SCREEN: 1	3.21 has	
.					
	····E	::::	TYPE OF WELL SCREEN: SCH 40	PVC	
	F		WELL SCREEN ID: 4.0"		
	-		WELL SLOT SIZE: 0.010"		
			LENGTH OF WELL SCREEN: 10		
			TYPE OF SAND PACK: SILICA SAND		
	_				
	<u> </u>	J	DEPTH TO BOTTOM OF WELL SCREEN:	23.2' bgs	
		•••••	. —		
- h		<u> </u>	DEPTH OF BOREHOLE: 24' bgs		

WELL INSTAL	LLATION D	IAGRAM	WELL NO.: CSM-93-01A
PROJECT NAME:	FORT DEVI	ENS 1A SITES	DATE INSTALLED: 02/03/93
PROJECT NO.:	7005-04		DRILLING METHOD: HSA/Drive/Wash WATER ELEV.: 240.62
GROUND ELEVATION	ON: 254.9'		CASING ID: 6"-39' bgs 5"-65.5' bgs DATE: June 21, 1993
WELL CASING ELE		 6.18'	RIG GEOLOGIST: Rod Rustad
			PROTECTIVE CASING STCKUP: 1.8' BUCKING POST
GROUND SURFACE			GRAVEL PAD
ı			OUTSIDE DIAMETER OF PROTECTIVE CASING: 6"
			BOREHOLE DIAMETER: 5"
			WELL RISER ID: 4.0"
			TYPE OF WELL RISER: SCH 40 PVC
			TYPE OF BACKFILL: 20/1 CEMENT/BENTONITE GROUT
	///// ///// /////		DEPTH TO TOP OF BENTONITE SEAL: 37' bgs
	11111	11111	DEPTH TO TOP OF SAND PACK: 43' bgs
		1	DEPTH TO TOP OF WELL SCREEN: 53.6' bgs
			TYPE OF WELL SCREEN: SCH 40 PVC
			
			WELL SLOT SIZE: 0.010"
			LENGTH OF WELL SCREEN: 10'
			TYPE OF SAND PACK: SILICA SAND
	···-	····	
]	DEPTH TO BOTTOM OF WELL SCREEN: 63.6' bgs
		• • • • • • • • • • • • • • • • • • • •	
			DEPTH OF BOREHOLE: 65.5' bgs

PROJECT NAME: FORT DEVENS 1A SITES	DATE INSTALLED: 03/08/93
PROJECT NO.: 7005-04	DRILLING METHOD: HSA WATER ELEV.: 240.09
GROUND ELEVATION: 262.7'	CASING ID: 6.25" DATE: June 21, 1993
WELL CASING ELEVATION: 264.82'	RIG GEOLOGIST: Geoff Knight
	PROTECTIVE CASING STCKUP: 2.5'
	BUCKING POST
OUND SURFACE	GRAVEL PAD
	OUTSIDE DIAMETER OF PROTECTIVE CASING: 6"
	BOREHOLE DIAMETER: 10"
	WELL RISER ID: 4.0"
	TYPE OF WELL RISER: SCH 40 PVC
	TYPE OF BACKFILL: 20/1 CEMENT/BENTONITE GROUT
	
	DEPTH TO TOP OF BENTONITE SEAL: 12.5' bgs
//// ////	
/////	DEPTH TO TOP OF SAND PACK: 16.2' bgs
	DEPTH TO TOP OF WELL SCREEN: 21.5' bgs
::::: <u> </u> :::::	
	TVDE OF HELL CORESI.
	TYPE OF WELL SCREEN: SCH 40 PVC
	WELL SCREEN ID: 4.0"
····· <u> </u> ·····	WELL SLOT SIZE: 0.010"
	LENGTH OF WELL SCREEN: 10'
·····	- The state of the
	TYPE OF SAND PACK: SILICA SAND
::::: <u> </u> ::::	
	DEPTH TO BOTTOM OF WELL SCREEN: 31.5' bgs
	DEPTH OF BOREHOLE: 33' bgs

ABB ENVIRONMENTAL SERVICES, INC.

WELL INSTALLATION DIAGRAM WELL NO.: CSM-93-02B PROJECT NAME: FORT DEVENS 1A SITES DATE INSTALLED: 02/25/93 DRILLING METHOD: HSA w/ steel plug PROJECT NO.: 7005-04 WATER ELEV.: 240.1 GROUND ELEVATION: 262.5 CASING ID: 6.25" DATE: June 21, 1993 WELL CASING ELEVATION: 264.09' RIG GEOLOGIST: Matt Daniels --- PROTECTIVE CASING STCKUP: 2.3' — BUCKING POST GROUND SURFACE - GRAVEL PAD - OUTSIDE DIAMETER OF PROTECTIVE CASING: 6" - BOREHOLE DIAMETER: 10" - WELL RISER ID: 4.0" TYPE OF WELL RISER: SCH 40 PVC TYPE OF BACKFILL: 20/1 CEMENT/BENTONITE GROUT 11111 ///// ///// 11111 - DEPTH TO TOP OF BENTONITE SEAL: 28' bgs ///// 11111 11111 ///// ///// 11111 ///// ///// - DEPTH TO TOP OF SAND PACK: 50' bgs . - DEPTH TO TOP OF WELL SCREEN: 57' bgs . TYPE OF WELL SCREEN: SCH 40 PVC . WELL SCREEN ID: 4.0" WELL SLOT SIZE: 0.010" LENGTH OF WELL SCREEN: 10' . TYPE OF SAND PACK: SILICA SAND -DEPTH TO BOTTOM OF WELL SCREEN: 67' bgs DEPTH OF BOREHOLE: 68' bgs

ABB ENVIRONMENTAL SERVICES, INC.

APPENDIX C AQUIFER TESTING DATA AND CALCULATIONS

SHM-93-01A

SHM-93-10C

SHM-93-18B

SHM-93-22C

SHM-93-24A

CSM-93-01A

CSM-93-02A

CSM-93-02B

This Page Intentionally Left Blank.

APPENDIX C: HYDRAULIC CONDUCTIVITY TEST RESULTS

ABB-ES has performed a series of rising head slug tests on 8 monitoring wells installed during the Group 1A Supplemental Remedial Investigation. Two tests were performed at each well with water depressions ranging from 1.2 to 2.7 feet. Only one test was performed at SHM-93-22C because of exceptionally slow recovery. This appendix discusses the analytical procedure and presents estimated values of hydraulic conductivity. The test methodology is presented in Subsections 2.1.7 and 2.2.5, Aquifer Characterization and Testing. Field data from all tests were analyzed to estimate hydraulic conductivity using a derivation of the method of Hyorsley (1951)¹ and the method of Bouwer and Rice (1976)².

The form of the Hvorslev equation that was used relates the hydraulic conductivity, K, of an unconfined aquifer to the well geometry and the rate of head recovery by:

$$-K = \left[\frac{Log(H_1) - Log(H_2)}{t_1 - t_2}\right] \frac{r^2 \ Log(L/R)}{2L}$$

Parameters in this equation included: r (radius of the well casing), R (radius of the borehole), L (length of the aquifer tested), as well as time (t) and water level (H) data. Test data were also analyzed using AQTESOLV^{M3}, an aquifer test

¹Hvorslev, M.J., 1951. "Time Lag and Soil Permeability in Groundwater Observations;" U.S. Army Corps of Engineers, Waterways Experiment Station, Bulletin 36; Vicksburg, Mississippi.

²Bouwer, H. and R.C. Rice, 1976. A Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, Vol. 12, No. 3, pp 423-428.

³AQTESOLV, 1991 "AQTESOLV, Aquifer Test Solver Version 1.00;" Geraghty and Miller Modeling Group; Reston, VA.

analysis program by Geraghty Miller, Inc. AQTESOLV™ utilizes the Bouwer and Rice method for estimating hydraulic conductivities in unconfined aquifers.

Estimates of hydraulic conductivity for the 8 wells tested range between 4.0x10-2 cm/sec and 5.8x10-6 cm/sec for the Bouwer and Rice method while the Hvorslev method yields values of 1.6x10-2 cm/sec to 8.8x10-8 cm/sec. Typically the Bouwer and Rice method provided hydraulic conductivity values which were approximately twice the values obtained with the Hvorslev equation.

The results of hydraulic conductivity testing are provided in Table C-1. The data for each test are also provided. The first sheet is a semi-log plot of water level versus time with the range of values selected for analysis bracketed by circles. The second sheet presents the well geometry and raw data with the range of values selected for analysis underlined. The third sheet is the Field Data Sheet. Following the recovery plots, well geometry, raw data, and Field Data Sheets are the Hvorslev equations and the AQTESOLV™ plots.

Hydraulic conductivity values are expressed in centimeters per second (cm/sec) while the raw data and recovery plots are referenced to feet and minutes. Static water levels in each well were referenced to zero with head stress being expressed as a positive change.

TABLE C-1 FIELD HYDRAULIC CONDUCTIVITY TEST RESULTS

REMEDIAL INVESTIGATION ADDENDUM REPORT FEASIBILITY STUDY FOR GROUP 1A SITES FORT DEVENS, MA

		TYPE OF	HYDRAULIC	CONDUCTIVITY
WELL	TEST NO.	WELL	HVORSLEV	BOUWER AND RICE
			(cm/sec)	(cm/sec)
SHM-93-01A	1	OVERBURDEN	1.3E-03	4E-03
	2		1.4E-03	9E-03
SHM-93-10C	1	ROCK	2.6E-05	2E-04
·	2		3.1E+05	2E-04
SHM-93-18B	1	OVERBURDEN	5.4E-04	4E-03
	2		5.4E-04	4E-03
SHM-93-22C	1	ROCK	4.9E-07	6E-06
SHM-93-24A	1	OVERBURDEN	1.6E-02	2E-02
	2		1.6E-02	4E-02
CSM-93-01A	1	OVERBURDEN	4.6E-04	5E-04
	2		4.6E-04	7E-03
CSM-93-02A	1	OVERBURDEN	8.0E-04	2E-03
	2		8.4E-04	2E-03
CSM-93-02B	1	OVERBURDEN	2.8E-03	1E-02
	2	·	2.6E-03	1E-02

1.

TEST 1		TEST 2	
MINUTES 0	FEET 1.369	MINUTES	FEET 0.167
0.0033	1.167	0.0033	1.947
0.0066	0.899	0.0066	1.518
0.01	1.594	0.01	1.404
0.0133	1.799	0.0133	1.423
0.0166	1.628	0.0166	1.369
0.02	1.581	0.02	0.751
0.0233	1.534	0.0233	1.739
0.0266	1.489	0.0266	1.755
0.03	1.442	0.03	1.609
0.0333	1.395	0.0333	1.597
0.0366	1.354	0.0366	1.534
0.04	1.313	0.04	1.483
0.0433	1.272	0.0433	1.442
0.0466	1.237	0.0466	1.398
0.05	1.199	0.05	1.36
0.0533	1.164	0.0533	1.322
0.0566	1.13	0.0566	1.281
0.06	1.098	0.06	1.249
0.0633	1.063	0.0633	1.212
0.0666	1.032	0.0666	1.177
0.07	1.003	0.07	1.142
0.0733	0.972	0.0733	1.111
0.0766	0.946	0.0766	1.076
0.08	0.918	0.08	1.047
0.0833	0.893	0.0833	1.016
0.0866	0.871	0.0866	0.987
0.09	0.849	0.09	0.959
0.0933	0.827	0.0933	0.931
0.0966	0.808	0.0966	0.905
0.1	0.789	0.1	0.883
0.1033	0.77	0.1033	0.861
0.1066	0.754	0.1066	0.839
0.11	0.738	0.11	0.817
0.1133	0.722	0.1133	0.798
0.1166	0.71	0.1166	0.779
0.12	0.697	0.12	0.763
0.1233	0.684	0.1233	0.748
0.1266	0.675	0.1266	0.732
0.13	0.662	0.13	0.719
0.1333	0.653	0.1333	0.707
0.1366	0.643	0.1366	0.694
0.14	0.637	0.14	0.681
0.1433	0.628	0.1433	0.672
0.1466	0.618	0.1466	0.662
0.15	0.612	0.15	0.65
0.1533	0.606	0.1533	0.64
0.1566	0.596	0.1566	0.634
0.16	0.59	0.16	0.624
0.1633	0.583	0.1633	0.618
0.1666	0.577	0.1666	0.609
0.17	0.571	0.17	0.602
0.1733	0.568	0.1733	0.596
0.1766	0.561 0.558	0.1766	0.59
0.18	0.552	0.18	0.583
0.1833		0.1833	0.577
0.1866	0.546	0.1866	0.571
0.19	0.542	0.19	0.568
0.1933	0.539	0.1933	0.561
0.1966	0.533	0.1966	0.558
0.2	0.53	0.2	0.552
0.2033	0.527	0.2033	0.549
0.2066	0.523	0.2066	0.542
. 0.21	0.52	0.2000	0.539
0.2133	0.514	0.2133	0.536
0.2166	0.511	0.2166	0.53
0.22	0.508	0.22	0.527
0.2233	0.505	0.2233	0.523
0.2266	0.501	0.2266	0.52
0.23	0.498	0.23	0.517
0.2333	0.495	0.2333	0.514
0.2366	0.492	0.2366	0.511
0.24	0.489	0.24	0.505
0.2433	0.486	0.2433	0.501
0.2466	0.482	0.2466	0.498
0.25	0.479	0.25	0.495
0.2533	0.476	0.2533	0.492
0.2566	0.473	0.2566	0.489
0.26	0.47	0.26	0.486
0.20	0.47	0.26	U.400

0.2633 0.2666	0.467		
		0.000	0.400
0.2000	0.467	0.2633	0.482
	0.464	0.2666	0.479
0.27	0.46	0.27	0.476
0.2733	0.457	0.2733	0.473
0.2766	0.454	0.2766	0.47
0.28	0.451	0.28	0.467
0.2833	0.451	0.2833	0.464
0.2866	0.448	0.2866	0.464
0.29	0.445	0.29	0.46
0.2933	0.441	0.2933	0.454
0.2966	0.438	0.2966	0.454
0.3	0.435	0.3	0.451
0.3033	0.432	0.3033	0.448
0.3066	0.429	0.3066	0.445
0.31	0.426	0.31	0.441
0.3133	0.422	0.3133	0.438
0.3166	0.422	. 0.3166	0.435
0.32	0.419	0.32	0.432
0.3233	0.416	0.3233	0.429
0.3266	0.413	0.3266	0.426
0.33	0.41	0.33	0.426
0.3333	0.41	0.3333	0.422
0.35	0.394	0.35	0.407
0.3666	0.385	0.3666	0.394
0.3833	0.372	0.3833	0.381
0.4	0.359	0.4	0.369
0.4166	0.35	0.4166	0.356
0.4333	0.34	0.4333	0.347
0.45	0.328	0.45	0.334
0.4666	0.318	0.4666	0.325
0.4833	0.309	0.4833	0.315
0.5	0.299	0.4833	0.306
0.5166	0.29	0.5166	
0.5333	0.28		0.296
0.55	0.274	0.5333	0.287
0.5666		0.55	0.277
0.5833	0.265	0.5666	0.271
	0.258	0.5833	0.265
0.6	0.252	0.6	0.255
0.6166 0.6333	0.243	0.6166	0.249
	0.236	0.6333	0.239
0.65	0.23	0.65	0.233
0.6666	0.224	0.6666	0.227
0.6833	0.22	0.6833	0.22
0.7	0.214	0.7	0.214
A 7156	A 000		
0.7166	0.208	0.7166	0.208
0.7333	0.202	0.7333	0.202
0.7333 0.75	0.202 0.195	0.7333 0.75	0.202 0.198
0.7333 0.75 0.7666	0.202 0.195 0.192	0.7333 0.75 0.7666	0.202 0.198 0.192
0.7333 0.75 0.7666 0.7833	0.202 0.195 0.192 0.186	0.7333 0.75 0.7666 0.7833	0.202 0.198 0.192 0.186
0.7333 0.75 0.7666 0.7833 0.8	0.202 0.195 0.192 0.186 0.183	0.7333 0.75 0.7666 0.7833 0.8	0.202 0.198 0.192 0.186 0.183
0.7333 0.75 0.7666 0.7833 0.8 0.8166	0.202 0.195 0.192 0.186 0.183 0.176	0.7333 0.75 0.7666 0.7833 0.8 0.8166	0.202 0.198 0.192 0.186 0.183 0.179
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333	0.202 0.195 0.192 0.186 0.183 0.176 0.173	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333	0.202 0.198 0.192 0.186 0.183 0.179 0.173
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85	0.202 0.198 0.192 0.186 0.183 0.179 0.173
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.16	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.16	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.16
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.166 0.157	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9	0.202 0.198 0.192 0.186 0.183 0.179 0.17 0.164 0.16 0.157 0.154
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.16 0.157 0.151	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9 0.9166 0.9333	0.202 0.198 0.192 0.186 0.183 0.179 0.17 0.164 0.16 0.157 0.154 0.148
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.166 0.157 0.151 0.148 0.145	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.16 0.164 0.157 0.154 0.148
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.95	0.202 0.198 0.192 0.186 0.183 0.179 0.177 0.164 0.16 0.157 0.154 0.148 0.145
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.16 0.157 0.151 0.148 0.148 0.145 0.142	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.148 0.148 0.142
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.95 0.9666 0.9833	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.17 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9 0.9166 0.9333 0.95 0.9666 0.9833	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.164 0.157 0.154 0.145 0.145 0.145
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833	0.202 0.192 0.186 0.183 0.176 0.177 0.164 0.166 0.157 0.151 0.148 0.145 0.142 0.135 0.135	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.165 0.157 0.154 0.148 0.145 0.142 0.135 0.135
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.145 0.142 0.138 0.135 0.097	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.16 0.165 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.138 0.138 0.138 0.097 0.078 0.063	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.145 0.142 0.138 0.1097 0.078 0.063 0.053 0.044	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.165 0.142 0.148 0.145 0.145 0.145 0.145 0.145 0.145 0.145
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.16 0.165 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.053 0.044 0.037 0.031	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.031
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.145 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.031 0.025 0.022
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8	0.202 0.195 0.192 0.186 0.183 0.176 0.173 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.037 0.037
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.135 0.197 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.165 0.145 0.145 0.145 0.145 0.135 0.135 0.097 0.075 0.056 0.047 0.037
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.16 0.165 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.031 0.025 0.022 0.018 0.015
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4	0.202 0.198 0.192 0.186 0.183 0.179 0.177 0.164 0.165 0.145 0.145 0.142 0.138 0.138 0.135 0.097 0.075 0.056 0.047 0.031 0.025 0.022 0.018 0.015 0.015
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2 2.2 2.4 2.6 2.8 3 3 3.2 3.4 3.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.145 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.053 0.044 0.037 0.028 0.022 0.018 0.018 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.157 0.154 0.145 0.145 0.145 0.047 0.037 0.037 0.037 0.037 0.022 0.018 0.015 0.015 0.015
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 3.	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.165 0.145 0.145 0.145 0.145 0.145 0.145 0.145 0.135 0.097 0.075 0.055 0.025 0.025 0.021 0.015 0.015 0.015
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.053 0.044 0.037 0.031 0.028 0.022 0.018 0.018 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.16 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.037 0.031 0.025 0.022 0.018 0.015 0.012 0.012 0.009 0.009
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.022 0.018 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.16 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.037 0.025 0.022 0.018 0.015 0.012 0.012 0.009 0.009
0.7333 0.75 0.7666 0.7833 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.3 3.0 3.0 4.2 4.4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.17 0.164 0.165 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.037 0.031 0.025 0.022 0.018 0.015 0.012 0.009 0.009 0.009
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.95 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.16 0.157 0.154 0.148 0.145 0.145 0.145 0.075 0.056 0.047 0.037 0.031 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.019 0.009 0.009 0.009
0.7333 0.75 0.7666 0.7833 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.3 3.0 3.0 4.2 4.4	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.86666 0.8833 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.16 0.157 0.154 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.031 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.009 0.009 0.009 0.009 0.009
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.95 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5	0.202 0.198 0.199 0.186 0.183 0.179 0.173 0.164 0.166 0.157 0.154 0.148 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.037 0.022 0.018 0.015 0.012 0.012 0.012 0.009 0.009 0.009 0.009 0.009 0.006 0.006
0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6	0.202 0.195 0.192 0.186 0.183 0.176 0.177 0.164 0.16 0.157 0.151 0.148 0.145 0.145 0.142 0.138 0.135 0.097 0.078 0.063 0.053 0.044 0.037 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015	0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.86666 0.8833 0.9166 0.9333 0.95 0.9666 0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8	0.202 0.198 0.192 0.186 0.183 0.179 0.173 0.164 0.166 0.157 0.1548 0.145 0.142 0.138 0.135 0.097 0.075 0.056 0.047 0.031 0.025 0.022 0.018 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016

5.6 0.006 5.8 0.003 6 0.003

PERMEABILITY TEST RESULTS FOR SHM-93-01A TEST 1 HVORSLEV: 0.001 CM/SEC BOUWER AND RICE: 0.004 CM/SEC

TEST 2 HVORSLEV: 0.001 CM/SEC BOUWER AND RICE: 0.009 CM/SEC

AQUIFER TEST NO. ___

SETUP	DATE	ву wном
MONITORING WELL ID	54M-93.01A	R RUSTAD /N ROKA
DATE OF TEST	4.1.93	,
TYPE OF TEST	RISING 4CL	
HERMIT TYPE/SERIAL#	SE 1000c/ 18001732	
TEST #	SEL 3 /0 = 2	
DATA COLLECTION RATE	Lou sou	
TRANSDUCER		
SERIAL #	2045 DE	
PSIG	10	
SCALE FACTOR	7. 783	
OFFSET	- 0.035	
INPUT CHANNEL	ן כימן	
TEST DATA		
INPUT MODE (TOC/SUR)	toc	
STATIC WATER LEVEL (FT./TOC)	21.24 (AVC)	
WELL DEPTH (FT./TOC)	25.5	
XD DEPTH (FT.TOC)	25.0	
INITIAL XD REFERENCE	6.07	
SLUG DEPTH (FT./TOC)	24.0	
TIME OF SLUG PLACEMENT	0845	
TIME OF WL EQUILIBRATION	6847	
NEW XD REFERENCE	6.08	
START TIME OF TEST	0855	
END TIME OF TEST	0859	
NOTES: + 0.004 LINCARITY		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3×3" BAR STOCKPUE

AQUIFER TEST NO. -

A STANDARD BOOK STANDARD STANDARD AND STANDA		
SETUP	DATE	ву wном
MONITORING WELL ID	SUM.93.01A	RISTAD/ STOKES
DATE OF TEST	4.01.93	
TYPE OF TEST	RISING MEATS	
HERMIT TYPE/SERIAL#	St 1000 = /1201732	
TEST #	52L4 20FZ	
DATA COLLECTION RATE	. (ou 000	
TRANSDUCER		
SERIAL #	sons PE	
PSIG	l0 ·	·
SCALE FACTOR	9.983	
OFFSET	-0.035	
INPUT CHANNEL	ا جدرا	
TEST DATA		
INPUT MODE (TOC/SUR)	TOC	
STATIC WATER LEVEL (FT./TOC)	21.24	
WELL DEPTH (FT./TOC)	25.8	
XD DEPTH (FT.TOC)	25.0	
INITIAL XD REFERENCE	6.02	
SLUG DEPTH (FT./TOC)	24.0	
TIME OF SLUG PLACEMENT	0962	
TIME OF WL EQUILIBRATION	0905	
NEW XD REFERENCE	6.05	
START TIME OF TEST	0907	
END TIME OF TEST	•	
NOTES: Linearity = +0.004		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3'x 3" BAR STOCK PUC

SHM-93-10C WELL RADIUS= 0.167 FT, SATURATED SCREEN LENGTH= 10 FT, BORING RADIUS= 0.234 FT TEST 1 TEST 2 **MINUTES MINUTES** FEET **FEET** 0.959 1.155 0 0.0033 0.0033 0.745 1.215 0.77 0.0066 1.294 0.0066 1.325 0.01 0.01 0.454 0.0133 0.464 0.0133 1.663 1.786 0.0166 0.899 0.0166 0.02 0.501 0.02 1.96 0.0233 0.479 0.0233 1.96 0.0266 1.079 0.0266 1.893 0.03 1.578 0.03 1.767 0.0333 1.947 0.0333 1.887 0.0366 1.903 0.0366 1.912 0.04 1.862 0.04 2.01 0.0433 1.878 0.0433 2.064 0.0466 1.871 0.0466 2.026 1.859 0.05 0.05 1.96 0.0533 0.0533 1.631 1.862 0.0566 1.603 0.0566 1.859 0.06 1.852 0.06 1.792 0.0633 1.672 0.0633 1.852 0.0666 0.0666 1.852 1.811 0.07 1.846 0.07 1.837 0.0733 0.0733 1.846 1.862 0.0766 1.843 0.0766 1.887 0.08 1.843 0.08 1.941 0.0833 0.0833 1.837 1.89 0.0866 1.837 0.0866 1.827 0.09 1.837 0.09 1.792 0.0933 1.833 0.0933 1.846 0.0966 1.833 0.0966 1.909 1.83 1.764 0.1 0.1 0.1033 0.1033 1.874 1.827 0.1066 0.1066 1.909 1.827 1.808 0.11 1.824 0.11 0.1133 1.824 0.1133 1.676 1.278 0.1166 1.827 0.1166 1.527 0.12 1.818 0.12 0.1233 1.975 1.824 0.1233 0.1266 0.1266 1.821 1.969 0.13 1.818 0.13 1.682 0.1333 1.821 0.1333 1.578 0.1366 1.815 0.1366 1.717 0.14 1.815 0.14 1.975 1.938 0.1433 1.818 0.1433 0.1466 1.745 0.1466 1.815 1.552 0.15 1.811 0.15 0.1533 1.811 0.1533 1.691 0.1566 1.811 0.1566 1.871 0.16 1.811 0.16 1.77 0.1633 1.808 0.1633 1.663 1.742 0.1666 1.808 0.1666 0.17 1.808 0.17 1.805 0.1733 1.805 0.1733 1.764 0.1766 1.805 0.1766 1.72 1.742 1.764 0.18 1.805 0.18 0.1833 1.802 0.1833 1.748 0.1866 1.802 0.1866 0.19 1.802 0.19 1.745 1.745 1.745 0.1933 0.1933 1.799 0.1966 1.799 0.1966 1.745 0.2 1.799 0.2 0.2033 1.796 0.2033 1.745 0.2066 1.742 1.796 0.2066 0.21 1.796 0.21 1.742 0.2133 1.796 0.2133 1.742 0.2166 1.792 0.2166 1.742 0.22 1.792 0.22 1.742 0.2233 1.792 0.2233 1.739 0.2266 0.2266 1.739 1.789 0.23 1.739 0.23 1.792 0.2333 1.789 0.2333 1.739 0.2366 1.736 0.2366 1.789 1.736 0.24 1.789 0.24 0.2433 0.2433 1.736 1.786 0.2466 1.786 0.2466 1.736 1.783 1.783 0.25 0.25 1.732 0.2533 1.732 0.2533 0.2566 0.2566 1.783 1.732

1.732

1.732

0.26

0.2633

0.26

0.2633

1.783

1.783

0.2666	1.783	0.2666	1.729
0.27	1.783	0.27	1.729
0.2733	1.78	0.2733	1.726
0.2766	1.78	0.2766	1.729
0.28	1.78	0.28	1.726
0.2833	1.777	0.2833	1.726
0.2866	1.777	0.2866	1.726
0.29	1.777	0.29	1.726
0.2933	1.777	0.2933	1.723
0.2966 0.3 0.3033 0.3066 0.31	1.777 1.774 1.774 1.774 1.774	0.2966 0.3 0.3033 0.3066	1.723 1.723 1.723 1.723
0.3133 0.3166 0.32 0.3233	1.77 1.77 1.77 1.77	0.31 0.3133 0.3166 0.32 0.3233	1.72 1.72 1.72 1.717 1.717
0.3266	1.767	0.3266	1.717
0.33	1.767	0.33	1.717
0.3333	1.767	0.3333	1.713
0.35	1.761	0.35	1.713
0.3666	1.755	0.3666	1.71
0.3833	1.751	0.3833	1.707
0.4	1.745	0.4	1.704
0.4166	1.742	0.4166	1.701
0.4333	1.739	0.4333	1.698
0.45	1.736	0.45	1.695
0.4666 0.4833 0.5 0.5166 0.5333	1.732 1.729 1.726 1.723 1.72	0.4666 0.4833 0.5 0.5166	1,691 1,688 1,685 1,682
0.55 0.5666 0.5833 0.6	1.717 1.71 1.71 1.707	0.5333 0.55 0.5666 0.5833 0.6	1.679 1.676 1.672 1.669 1.666
0.6166	1.704	0.6166	1.663
0.6333	1.701	0.6333	1.66
0.65	1.698	0.65	1.657
0.6666	1.695	0.6666	1.653
0.6833	1.691	0.6833	1.65
0.7	1.688	0.7	1.65
0.7166	1.685	0.7166	1.647
0.7333	1.682	0.7333	1.644
0.75	1.682	0.75	1.641
0.7666	1.679	0.7666	1.638
0.7833	1.676	0.7833	1.635
0.8	1.673	0.8	1.631
0.8166	1.669	0.8166	1.628
0.8333	1.666	0.8333	1.625
0.85	1.663	0.85	1.625
0.8666	1.66	0.8666	1.622
0.8833	1.66	0.8833	1.619
0.9	1.657	0.9	1.616
0.9166	1.654	0.9166	1.612
0.9333	1.65	0.9333	1.609
0.95 0.9666 0.9833 1 1.2	1.647 1.647 1.644 1.641 1.603	0.95 0.9666 0.9833 1	1,606 1,606 1,603 1,6 1,562
1.4	1.575	1.4	1.53
1.6	1.549	1.6	1.502
1.8	1.521	1.8	1.474
2	1.496	2	1.445
2.2	1.47	2.2	1.42
2.4	1.445	2.4	1.395
2.6	1.423	2.6	1.369
2.8	1.401	2.8	1.344
3	1.379	3	1.322
3.2	1.357	3.2	1.297
3.4 3.6 3.8 4 4.2	1.335 1.316 1.294 1.275 1.256	3.4 3.6 3.8 4 4.2	1.275 1.253 1.253 1.231 1.212 1.19
4.4	1.237	4.4	1.167
4.6	1.218	4.6	1.148
4.8	1.202	4.8	1.13
5	1.18	5	1.107
5.2	1.164	5.2	1.092
5.4	1.149	5.4	1.073
5.6	1.13	5.6	1.054

5.8 6	1.114	5.8	1.035
6	1.098	6	1.019
6.2	1.079	6.2	1
6.4 6.6 6.8 7	1.066	6.4	0.984
6.6	1.051	6.6	0.965
0.0	1.035	6.8 7	0.95
7.2	1.019	_ 7	0.934
7.2 7.4	1.007 0.991	7.2	0.918
7. 4 7.6	0.991	7.4	0.902
7.8	0.962	7.6	0.89
7.0	0.962	7.8 8 8.2	0.874
8 8.2 8.4	0.934	8	0.858
8.4	0.921	8.2	0.845
8.6	0.909	8.4	0.83
8.8	0.896	8.6 8.8	0.817
9.5	0.88	8.8	0.804
9 9.2	0.871	9	0.789
9.4	0.858	9.2	0.776
9.4 9.6	0.846	9.4	0.763
9.8	0.833	9.6	0.751
10	0.82	9.8 10	0.738
12	0.71	12	0.726
· 14	0.618	14	0.615 0.524
16	0.539	16	0.524
18	0.47	18	0.448
20	0.413	20	0.325
22	0.363	22	0.277
24	0.322	24	0.239
26	0.287	26	0.205
28	0.252	28	0.176
<u>30</u>	0.227	30	0.151
32	0.205	32	0.135
34	0.186	34	0.116
36	0.17	36	0.101
38	0.157	38	0.091
40	0.145		
42	0.135		
44	0.123		
46	0.116		
48	0.11		

PERMEABILITY TEST RESULTS FOR SHM-93-10C: TEST 1 HVORSLEV: 0.00002 CM/SEC BOUWER AND RICE: 0.0002 CM/SEC

TEST 2 HVORSLEV: 0.00002 CM/SEC BOUWER AND RICE: 0.0002 CM/SEC

AQUIFER TEST NO. _

SETUP	DATE	ву wном
MONITORING WELL ID	SUM.93.10 c	N RUXA /R RUSTAN
DATE OF TEST	3.31.93	J- 2004 / 12 1203/21.5
TYPE OF TEST		
HERMIT TYPE/SERIAL#	RISING HEAD IKCO732 /SE 10000	
TEST #	SEL 1	
DATA COLLECTION RATE	Lou 000	
TRANSDUCER		
SERIAL #	2042 DE	i
PSIG	10	
SCALE FACTOR	9,983	
OFFSET	-0.035	
INPUT CHANNEL	142 1	
TEST DATA		
INPUT MODE (TOC/SUR)	roe	
STATIC WATER LEVEL (FT./TOC)	29.79	
WELL DEPTH (FT./TOC)	56'	
XD DEPTH (FT.TOC)	45'	
INITIAL XD REFERENCE	٥'	
SLUG DEPTH (FT./TOC)	40'	
TIME OF SLUG PLACEMENT	1500	
TIME OF WL EQUILIBRATION	1520	·
NEW XD REFERENCE	0' \$6.50 FROM	~ X / KE' PRION
START TIME OF TEST	1530	
END TIME OF TEST	1625	
NOTES: LINEARITY 0.004		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3' x3" BAR STOCK PVC

AQUIFER TEST NO. _

SETUP	DATE	ву wном
MONITORING WELL ID	5HM.93.10c	R RUSTAD LA ROKA
DATE OF TEST	3.31.93	
TYPE OF TEST	FALLING HEAD	
HERMIT TYPE/SERIAL#	SE 1000 c/1800752	
TEST #	SEL Z (ZOFE)	
DATA COLLECTION RATE	Lou 000	
TRANSDUCER		
SERIAL #	2045 PE	
PSIG	10	
SCALE FACTOR	9,983	
OFFSET	-0.035	
INPUT CHANNEL	INP 1	
TEST DATA		
INPUT MODE (TOC/SUR)	Sure	
STATIC WATER LEVEL (FT./TOC)	29.79	
WELL DEPTH (FT./TOC)	56'	
XD DEPTH (FT.TOC)	45'	
INITIAL XD REFERENCE	16.40	
SLUG DEPTH (FT./TOC)	40.0'	
TIME OF SLUG PLACEMENT	16:30	
TIME OF WL EQUILIBRATION	_	
NEW XD REFERENCE	_	
START TIME OF TEST	1630	
END TIME OF TEST	1725	
NOTES:		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3' x 3" BAR STOCK PVC

TEST 1		TEST 2	
MINUTES	FEET	MINUTES	FEET
0	1.234	0	1.161
0.0033	0.963	0.0033	0.65
0.0066	0.653	0.0066	1.363
0.01 0.0133	0.704 1.187	0.01	1.736
0.0166	1.616	0.0133 0.0166	1.796 1.786
0.02	1.742	0.02	1.799
0.0233	1.783	0.0233	1.786
0.0266 0.03	1.799 1.79	0.0266	1.761
0.0333	1.768	0.03 0.0333	1.729 1.701
0.0366	1.733	0.0366	1.692
0.04	1.698	0.04	1.682
0.0433	1.682	0.0433	1.673
0.0466	1.67	0.0466	1.666
0.05	1.663	0.05	1.657
0.0533	1.66	0.0533	1.641
0.0566	1.651	0.0566	1.641
0.06	1.645	0.06	1.628
0.0633	1.635	0.0633	1.622
0.0666	1.616	0.0666	1.609
0.07	1.613	0.07	1.594
0.0733	1.597	0.0733	1.587
0.0766	1.588	0.0766	1.572
0.08	1.585	0.08	1.572
0.0833 0.0866	1.575 1.559	0.0833	1.562
0.09	1.553	0.0866 0.09	1.524 1.537
0.0933	1.547	0.0933	1.54
0.0966	1.547	0.0966	1.527
0.1	1.525	0.1	1.521
0.1033	1.525	0.1033	1.508
0.1066	1.49	0.1066	1.499
0.11	1.496	0.11	1.49
0.1133	1.496	0.1133	1.486
0.1166	1.48	0.1166	1.474
0.12	1.477	0.12	1.467
0.1233 0.1266	1.461 1.465	0.1233	1.458
0.13	1.43	0.1266 0.13	1.452 1.442
0.1333	1.452	0.1333	1.436
0.1366	1.408	0.1366	1.43
0.14	1.42	0.14	1.42
0.1433	1.414	0.1433	
0.1466	1.398	0.1466	1.411 1.411
0.15	1.408	0.15	1.398
0.1533	1.411	0.1533	1.401
0.1566	1.379	0.1566	1.382
0.16	1.376	0.16	1.376
0.1633	1.376	0.1633	1.37
0.1666	1,354	0.1666	1.36
0.17	1,36	0.17	1.354
0.1733	1.367	0.1733	1.351
0.1766	1.345	0.1766	1.341
0.18 0.1833	1.329 1.326	0.18	1.332
0.1866	1.319	0.1833 0.1866	1.325 1.316
0.19	1.31	· 0.19	1.31
0.1933	1.313	0.1933	1.303
0.1966	1.297	0.1966	1.297
0.2	1.291	0.2	1.288
0.2033	1.288	0.2033	1.278
0.2066	1.278	0.2066	1.275
0.21	1.269	0.21	1.269
0.2133	1.269	0.2133	1.262
0.2166	1.259	0.2166	1.256
0.22 0.2233	1.24 1.244	0.22	1.246
0.2266	1.24	0.2233 0.2266	1.24 1.234
0.23	1.247	0.23	1.228
0.2333	1.228	0.2333	1.221
0.2366	1.218	0.2366	1.215
0.24	1.212	0.24	1.209
0.2433	1.212	0.2433	1.202
0.2466	1.196	·	1.196
0.25	1.193		1.186
0.2533	1.193	0.2533	1.183
0.2566	1.18	0.2566	1.177

0.26	1,174		0.26	1.171
0.2633	1.168		0.2633	1.164
0.2666	1.162		0,2666	1.158
0.27	1.152		0.27	1.152
0.2733	1.149		0.2733	1.145
0.2766	1.146		0.2766	1.139
0.28	1.136		0.28	1.133
0.2833	1.13		0.2833	1.127
0.2866	1.127		0.2866	1.123
0.29	1.117			1.117
			0.29	
0.2933	1.121		0.2933	1.111
0.2966	1.105		0.2966	1.104
0.3	1.102		0.3	1.098
0.3033	1.095		0.3033	1.092
0.3066	1.089		0.3066	1.085
0.31	1.086		0.31	1.082
0.3133	1.079		0.3133	1.076
0.3166	1.073		0.3166	1.07
0.32	1.054		0.32	1.063
0.3233	1.067	•	0.3233	1.06
0.3266	1.054		0.3266	1.054
0.33	1.051		0.33	1.048
0.3333	1.045		0.3333	1.041
0.35	1.016		0.35	1.013
0.3666	0.982		0.3666	0.984
0.3833	0.956		0.3833	0.953
0.4	0.931		0.4	0.928
0.4166	0.906		0.4166	0.899
0.4333	0.877		0.4333	0.874
0.45	0.852			
			0.45	0.849
0.4666	0.827		0.4666	0.827
0.4833	0.808		0.4833	0.805
0.5	0.783		0.5	0.782
0.5166	0.761		0.5166	0.76
0.5333	0.732		0.5333	0.738
0.55	0.72		0.55	0.716
0.5666	0.698		0.5666	0.697
0.5833	0.679		0.5833	0.678
0.6	0.66		0.6	0.659
0.6166	0.641			
			0.6166	0.64
0.6333	0.625		0.6333	0.625
0.65	0.606		0.65	0.606
0.6666	0.587		0.6666	0.59
0.6833	0.574		0.6833	0.574
0.000	0.559			
			0.7	0.558
0.7166	0.543		0.7166	0.543
0.7333	0.527		0.7333	0.527
0.75	0.514		0.75	0.514
0.7666	0.499		0.7666	0.498
0.7833	0.486			
			0.7833	0.486
0.8	0.473		8.0	0.473
0.8166	0.458		0.8166	0.461
0.8333	0.448		0.8333	0.448
0.85	0.436		0.85	0.435
0.8666	0.423		0.8666	0.423
				0.41
0.8833	0.41		0.8833	
0.9	0.401		0.9	0.401
0.9166	0.388		0.9166	0.388
0.9333	0.379		0.9333	0.378
0.95	0.369		0.95	0.369
0.9666	0.36		0.9666	0.36
0.9833	0.347		0.9833	0.347
. 1	0.338		. 1	0.341
1.2	0.221		1.2	0.221
1.4	0.158		1.4	0.158
1.6	0.114		1.6	0.113
1.8	0.082			0.079
			1.8	
2	0.057		2	0.06
2.2	0.041		2.2	0.041
2.4	0.028		2.4	0.028
2.6	0.022		2.6	0.019
2.8	0.016		2.8	0.012
3	0.009		3	0.009
3.2	0.006		3.2	0.006
3.4	0.003		3.4	0.003
3.6	0.003		3.6	0.003
3.8	0.003		3.8	0.000
4	0		4	0
			4.2	Ō
			4.4	0
			4.6	0
			4.8	-0.003
			5	-0.003
			5.2	-0.003
			5.2	U

5.4	0
5.6	0
5.8	0
6	0
6.2	0
6.4	-0.003
6.6	0

PERMEABILITY TEST RESULTS FOR SHM-93-18B: TEST 1 HVORSLEV: 0.0002 CM/SEC BOUWER AND RICE: 0.004 CM/SEC

TEST 2 HVORSLEV: 0.0002 CM/SEC BOUWER AND RICE: 0.004 CM/SEC

AQUIFER TEST NO. -

SETUP	DATE	ву wном
MONITORING WELL ID	SUM-93.18 B	RUSTAD/ RAKA
DATE OF TEST	4-01-93	
TYPE OF TEST	PLISING UKNO	
HERMIT TYPE/SERIAL#	SE/0004/18001732	
TEST #	SEL 5 10F2	
DATA COLLECTION RATE	· Lou ooo	
TRANSDUCER		
SERIAL #	2045DE	
PSIG	10 .	
SCALE FACTOR	(P) 40 9.983	
OFFSET	-0.035	
INPUT CHANNEL	1441	
TEST DATA		. •
INPUT MODE (TOC/SUR)	TOC	
STATIC WATER LEVEL (FT./TOC)	18.47	
WELL DEPTH (FT./TOC)	90'	
XD DEPTH (FT.TOC)	11.62 32'	
INITIAL XD REFERENCE	11.68	
SLUG DEPTH (FT./TOC)	23'	
TIME OF SLUG PLACEMENT	0940	
TIME OF WL EQUILIBRATION	6942	
NEW XD REFERENCE	11.71	
START TIME OF TEST	0943	
END TIME OF TEST		
NOTES: Linearity = +0.004		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.

3'x 3" Bar Stock PVC

AQUIFER TEST NO. _

SETUP :	DATE	ву wном
MONITORING WELL ID	SHM-93-18B	R. Rustad/N. Roko
DATE OF TEST	4.1.93	
TYPE OF TEST	Rising head	
HERMIT TYPE/SERIAL#	SE 1000C/1801732	
TEST #	SEL 6 2 of 2	
DATA COLLECTION RATE	Log 000	
TRANSDUCER		
SERIAL #	2045 DE	
PSIG	Į0	
SCALE FACTOR	®+ 0 4.983	
OFFSET	- 0.035	
INPUT CHANNEL	inp. 1	
TEST DATA		
INPUT MODE (TOC/SUR)	Entoc	
STATIC WATER LEVEL (FT./TOC)	18.47'	
WELL DEPTH (FT./TOC)	96'	
XD DEPTH (FT.TOC)	32'	
INITIAL XD REFERENCE	11.71	
SLUG DEPTH (FT./TOC)	23'	
TIME OF SLUG PLACEMENT	₩ 1005 1000	
TIME OF WL EQUILIBRATION	1005	
NEW XD REFERENCE	11.71	
START TIME OF TEST	1006	
END TIME OF TEST		
NOTES: Linearity = +0.004		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3'x3" Bar Stock PVC

0.26 0.2633 0.26666 0.27 0.2733 0.2766 0.2833 0.2866 0.293 0.2966 0.2933 0.3033 0.3066 0.3133 0.3166 0.3133 0.3166 0.3233 0.3266 0.3833 0.3266 0.3833 0.3466 0.44333 0.45 0.4666 0.4333 0.45 0.4666 0.4333 0.45 0.4666 0.4333 0.45 0.4666 0.4333 0.45 0.4666 0.4833 0.45 0.4666 0.4833 0.45 0.5166 0.5333 0.7666 0.7333 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.7666 0.7833 0.8166 0.7833 0.8166 0.8833 0.99 0.91666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833 0.95 0.9666 0.9833	2.735 2.729 2.729 2.729 2.729 2.729 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.732 2.729 2.732 2.729 2.732 2.729 2.732 2.729 2.732 2.729 2.732 2.707 2.704
3.8 4	2.685 2.682

4.6.8.6.2.4.6.8.7.2.4.6.8.8.9.2.4.6.8.0.2.4.0.2.4.6.8.0.2.4.6.8.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.4.0.2.2.2.2		2.6669 2.6669 2.6669 2.6669 2.66659 2.66659 2.6656 2.6653 2.6656 2.6653 2.6553
90 92 94 96 98		2.293 2.286 2.28 2.27 2.264
100 120 140	<u></u>	2.258 2.191 2.134
160 180		2.081

PERMEABILITY TEST RESULTS FOR SHM-93-22C: TEST 1 HVORSLEV: 9 E-08 CM/SEC BOUWER AND RICE: 6 E-06 CM/SEC

AQUIFER TEST NO. 00

SETUP	DATE	ву wном
MONITORING WELL ID	SHM.93.22c	R. RUSTAD / N. Roma
DATE OF TEST	3.31.93	
TYPE OF TEST	RISING HEAD	
HERMIT TYPE/SERIAL#	SE 1000C/1KC01732	
TEST #	SEL O	
DATA COLLECTION RATE	Lau coo	
TRANSDUCER		
SERIAL #	2046DE	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	-0.034	
INPUT CHANNEL	INP # 1	
TEST DATA		
INPUT MODE (TOC/SUR)	TOC	
STATIC WATER LEVEL (FT./TOC)	6.64'	
WELL DEPTH (FT./TOC)		
XD DEPTH (FT.TOC)	_15'	
INITIAL XD REFERENCE	0	
SLUG DEPTH (FT./TOC)	11	
TIME OF SLUG PLACEMENT	9:30	
TIME OF WL EQUILIBRATION	5.8 /1:45	NOT QUITE EQUICIBELITES
NEW XD REFERENCE	0.89 (5.8')	
START TIME OF TEST	/2:00	
END TIME OF TEST	15:10	
NOTES: LINEARITY +.002		

3' x 3" BAR STOCK PUC

SHM-93-24A WELL RADIUS= 0.167 FT, SATURATED SCREEN LENGTH= 10 FT, BORING RADIUS= 0.417 FT

TEST 1		TEST 2	
MINUTES 0	FEET 0	MINUTES 0	FEET 0
0.0033	1.09	0.0033	0.041
0.0066 0.01	1.118 0.596	0.0066	0.844
0.0133	0.432	0.01 0.0133	1.347 0.774
0.0166	0.353	0.0166	0.363
0.02 0.0233	0.331 1.046	0.02 0.0233	0.746 0.42
0.0266	1.216	0.0266	0.774
0.03 0.0333	1.163 1.02	0.03 0.0333	0.426 0.638
0.0366	0.913	0.0366	0.142
0.04 0.0433	0.818 0.732	0.04 0.0433	0.256 0.746
0.0466	0.657	0.0466	1.062
0.05 0.0533	0.593 0.53	0.05 0.0533	1.1 0.945
0.0566	0.479	0.0356	0.841
0.06 0.0633	0.432 0.391	0.06 0.0633	0.752 0.673
0.0666	0.356	0.0666	0.607
0.07 0.0733	0.324	0.07	0.544
0.0766	0.296 0.274	0.0733 0.0766	0.49 0.439
0.08	0.252	0.08	0.398
0.0833 0.0866	0.233 0.217	0.0833 0.0866	0.363 0.328
0.09	0.201	0.09	0.303
0.0933 0.0966	0.188 0.176	0.0933 0.0966	0.278 0.256
0.1	0.169	0.1	0.237
0.1033 0.1066	0.157 0.15	0.1033 0.1066	0.221 0.205
0.11	0.141	. 0.11	0.186
0.1133 0.1166	0.135 0.128	0.1133 0.1166	0.177 0.167
0.12	0.122	0.12	0.154
0.1233 0.1266	0.116 0.109	0.1233 0.1266	0.148
0.13	0.106	0.13	0.139 0.132
0.1333 0.1366	0.1 0.097	0.1333 0.1366	0.126
0.14	0.094	0.1368	0.12 0.113
0.1433 0.1466	0.09 0.087	0.1433 0.1466	0.11
0.15	0.081	0.15	0.104 0.101
0.1533 0.1566	0.078 0.075	0.1533 0.1566	0.094
0.16	0.075	0.1368	0.091 0.088
0.1633 0.1666	0.071 0.068	0.1633	0.085
0.17	0.065	0.1666 0.17	0.082 0.079
0.1733 0.1766	0.065	0.1733	0.075
0.1768	0.062 0.059	0.1766 0.18	0.072 0.069
0.1833 0.1866	0.059 0.056	0.1833	0.069
0.19	0.056	0.1866 0.19	0.066 0.063
0.1933 0.1966	0.052	0.1933	0.063
0.1966	0.052 0.049	0.19 6 6 0.2	0.06 0.06
0.2033	0.049	0.2033	0.056
0.2066 0.21	0.046 0.046	0.2066 0.21	0.053 0.053
0.2133	0.043	0.2133	0.053
0.2166 0.22	0.043 0.043	0.2166 0.22	0.05 0.05
0.2233	0.04	0.2233	0.047
0.2266 0.23	0.04 0.04	0.2266 0.23	0.047 0.047
0.2333	0.037	0.2333	0.044
0.2366 0.24	0.037 0.037	0.2366 0.24	0.044 0.044
0.2433	0.037	0.2433	0.041
0.2466 0.25	0.033 0.033	0.2466 0.25	0.041 0.041
0.2533	0.033	0.2533	0.037
0.2566	0.03	0.2566	0.037

5.4 0 5.6 0 5.8 0

PERMEABILITY TEST RESULTS FOR SHM-93-24A: TEST 1 HVORSLEV: 0.02 CM/SEC BOUWER AND RICE: 0.04 CM/SEC

TEST 2 HVORSLEV: 0.02 CM/SEC BOUWER AND RICE: 0.04 CM/SEC

AQUIFER TEST NO. _

SETUP	DATE	ву wном
MONITORING WELL ID	5471.93.24A	RUSTAD / ROKA
DATE OF TEST	4.01.93	
TYPE OF TEST	RISING HEAD	
HERMIT TYPE/SERIAL#	SE 1000 c/1K001732	
TEST #	SEL 7 /052	
DATA COLLECTION RATE	los 000	
TRANSDUCER		
SERIAL#	2046 DE	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	-0.034	
INPUT CHANNEL	120 1	
TEST DATA		
INPUT MODE (TOC/SUR)	TOC	
STATIC WATER LEVEL (FT./TOC)	15.42	
WELL DEPTH (FT./TOC)	<i>5</i> 3	
XD DEPTH (FT.TOC)	22	
INITIAL XD REFERENCE	9.57	
SLUG DEPTH (FT./TOC)	19.0	
TIME OF SLUG PLACEMENT	11:00	
TIME OF WL EQUILIBRATION	//01	
NEW XD REFERENCE	9.52	
START TIME OF TEST	1105	
END TIME OF TEST	·	
NOTES: LINGAITY +0.004		

Stock Are

BAR

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

AQUIFER TEST NO. _____

SETUP	DATE	ву wном
MONITORING WELL ID	SUM.93. 24A	RUSTAD / ROKA
DATE OF TEST	4.0.92	
TYPE OF TEST	RISING WEAD	
HERMIT TYPE/SERIAL#	SE 1000 C / (KCO17)Z	
TEST #	SEU 8 (20FZ)	
DATA COLLECTION RATE	Lou 000	
TRANSDUCER		
SERIAL #	2046 45	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	- o .034	
INPUT CHANNEL	۱ ۹۵/	
TEST DATA		
INPUT MODE (TOC/SUR)	Proces TOC	
STATIC WATER LEVEL (FT./TOC)	(a) 23 ,5.42	
WELL DEPTH (FT./TOC)	zz' Pre	
XD DEPTH (FT.TOC)	22. AL	
INITIAL XD REFERENCE	9.52	
SLUG DEPTH (FT./TOC)	19' Prc	
TIME OF SLUG PLACEMENT	Uit	
TIME OF WL EQUILIBRATION	1112	
NEW XD REFERENCE	9,52	,
START TIME OF TEST	1113	
END TIME OF TEST	1116	
NOTES:		

Bar Stove

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

 $\begin{array}{l} {\sf CSM-93-01A} \\ {\sf WELL\ RADIUS=0.167\ FT,\ SATURATED\ SCREEN\ LENGTH=10\ FT,\ BORING\ RADIUS=0.208\ FT} \end{array}$

TEST 1		TEST 2	
MINUTES 0	FEET 0	MINUTES 0	FEET
0.0033 0.0066	0.003	0.0033	0.006 0.012
0.000	0.041 0.923	0.0066 0.01	0.496 1.356
0.0133 0.0166	1.638 0.616	0.0133	1.227
0.02	0.563	0.0166 0.02	0.537 0.923
0.0233 0.0266	0.863 1.543	0.0233	0.923 1.303
0.03	1.85	0.0266 0.03	1.796 1.796
0.0333 0.0366	1.805 1.777	0.0333	1.755
0.04	1.733	0.0366 0.04	1.745 1.701
0.0433 0.0466	1.707 1.682	0.0433 0.0466	1.698
0.05	1.654	0.05	1.698 1.628
0.0533 0.0566	1.628 1.616	0.0533 0.0566	1.622 1.594
0.06 0.0633	1.597 1.578	0.06	1.556
0.0666	1.559	0.0633 0.0666	1.559 1.521
0.07 0.0733	1.533 1.514	0.07 0.0733	1.518
0.0766	1.495	0.0733	1.505 1.486
0.08 0.0833	1.477 1.464	0.08 0.0833	1.464 1.448
0.0866	1.445	0.0866	1.432
0.09 0.0933	1.426 1.41	0.09 0.0933	1.416 1.397
0.0966	1.394	0.0966	1.382
0.1 0.1033	1.375 1.359	0.1 0.1033	1.366 1.35
0.1066	1.344	0.1066	1.334
0.11 0.1133	1.331 1.318	0.11 0.1133	1.318 1.306
0.1166 0.12	1.303 1.284	0.1166	1.287
0.1233	1.271	0.12 0.1233	1.274 1.258
0.1266 0.13	1.271 1.239	0.1266 0.13	1.246 1.23
0.1333 0.1366	1.227	0.1333	1.217
0.14	1.217 1.208	0.1366 0.14	1.204 1.192
0.1433 0.1466	1.186 1.17	0.1433 0.1466	1.176
0.15 0.1533	1.16	0.15	1.157 1.151
0.1566	1.151 1.132	0.1533 0.1566	1.138 1.129
0.16 0.1633	1.125 1.113	0.16 0.1633	1.116
0.1666	1.103	0.1666	1.103 1.094
0.17 0.1733	1.091 1.078	0.17 0.1733	1.078 1.072
0.1766 0.18	1.065 1.056	0.1766	1.056
0.1833	1.043	0.18 0.1833	1.046 1.034
0.1866 0.19	1.034 1.021	0.1866 0.19	1.024 1.015
0.1933 0.1966	1.012 1.002	0.1933	1.002
0.2	0.989	0.1966 0.2	0.993 0.98
0.2033 0.2066	0.983 0.97	0.2033 0.2066	0.97 0.961
0.21 0.2133	0.961	0.21 0.21 0.2133	0.951 0.939
0.2166	0.948 0.942	0.2133 0.21 <u>6</u> 6	0.939 0.929
0.22 0.2233	0.929 0.92	0.22 0.2233	0.917
0.2266	0.91	0.2266	0.914 0.901
0.23 0.2333	0. 9 01 0.891	0.23 0.2333	0.888 0.885
0.2366 0.24	0.882 0.876	0.2366	0.885 0.876
0.2433	0.866	0.24 0.2433	0.882 0.853
0.2466 0.25	0.857 0.847	0.2466 0.25	0.847 0.838
0.2533 0.2566	0.838	0.2533	0.825 0.822
0.26	0.831 0.819	0.2566 0.26	0.822 0.812
0.2633 0.2666	0.812 0.806	0.2633 0.2666	0.806
0.27	0.796	0.27	0.796 0.787
0.2733 0.2766	0.79 0.781	0.2733 0.2766	0.781 0.774
0.28 0.2833	0.774 0.765	0.28	0.765
0,2866	0.759	0.2833 0.2866	0.755 0.749
0.29 0.2933	0.749 0.743	0.29 0.2933	0.743
0.2966	0.73	0.2966	0.74 0.727
0.3	0.73	0.3	0.721

0.3033 0.3066 0.31 0.3133 0.3166 0.32 0.3233 0.3266 0.333 0.355 0.3666 0.3833 0.44 0.4166 0.4333 0.45 0.4566 0.5166 0.5333 0.55 0.5666 0.5833 0.65 0.6166 0.6333 0.65 0.6566 0.6833 0.7 0.7166 0.7333 0.75 0.7666 0.7833 0.85 0.8666 0.8833 0.90 0.9166 0.8333 0.95 0.9666 0.8833 0.99 0.9166 0.9833 0.95 0.9666 0.9833	0.721 0.714 0.708 0.702 0.692 0.689 0.679 0.673 0.666 0.626 0.594 0.503 0.534 0.509 0.483 0.458 0.436 0.414 0.395 0.376 0.376 0.357 0.338 0.325 0.309 0.294 0.281 0.281 0.288 0.259 0.246 0.237 0.218 0.208 0.192 0.183 0.177 0.161 0.158 0.199 0.192 0.183 0.177 0.161 0.158 0.148 0.142 0.139 0.192 0.1132 0.123 0.127 0.113 0.069 0.055 0.037 0.012 0.113 0.069 0.055 0.037 0.022 0.012 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.0112 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.0109 0.009		0.3033 0.3066 0.3133 0.3166 0.3233 0.3266 0.3333 0.355 0.3666 0.3833 0.4166 0.4333 0.45 0.4560 0.4833 0.5566 0.5833 0.55666 0.5833 0.6666 0.6833 0.707 0.7166 0.7333 0.8666 0.8833 0.85 0.8666 0.8833 0.85 0.8666 0.8833 0.99 0.9166 0.9333 0.95 0.9666 0.9833 0.99 0.9166 0.9833	0.714 0.705 0.702 0.692 0.692 0.686 0.673 0.667 0.668 0.673 0.654 0.528 0.688
6.4 6.6	0.009 0.009			

PERMEABILITY TEST RESULTS FO CSM-93-01A: TEST 1 HVORSLEV: 0.0005 CM/SEC BOUWER AND RICE: 0.005 CM/SEC

TEST 2 HVORSLEV: 0.0005 CM/SEC BOUWER AND RICE: 0.007 CM/SEC

AQUIFER TEST NO. _

SETUP	DATE	ву wном
MONITORING WELL ID	C5M.93.01A SHM 93	RUSTAD/ PORA
DATE OF TEST	4.01.93	,
TYPE OF TEST	BisiNo VEGO	
HERMIT TYPE/SERIAL#	58 1000C / 18C01732	
TEST #	5219/10/2	
DATA COLLECTION RATE	600 000	
TRANSDUCER		
SERIAL #	2046728	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	+0.034	
INPUT CHANNEL	147 # 1	
TEST DATA		
INPUT MODE (TOC/SUR)	тос	
STATIC WATER LEVEL (FT./TOC)	15.99	
WELL DEPTH (FT./TOC)	65.00	
XD DEPTH (FT.TOC)	26.00	
INITIAL XD REFERENCE	10.63	
SLUG DEPTH (FT./TOC)	26.00	
TIME OF SLUG PLACEMENT	1155	
TIME OF WL EQUILIBRATION	1200	
NEW XD REFERENCE	60.65	
START TIME OF TEST	1205	
END TIME OF TEST	1212	
NOTES:		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

3'x3" Box Stockpre

ALL

MEAS.

E ROM

VC

AQUIFER TESTING COMPLETION CHECKLIST

AQUIFER TEST NO. _ SETUP BY WHOM DATE MONITORING WELL ID CSM.93.01A RUSTAN / ROKA DATE OF TEST 4.01.93 TYPE OF TEST RISING MELL HERMIT TYPE/SERIAL# 1 KC0/737 SE 1000 C TEST # SEL iò **DATA COLLECTION RATE** Los 000 TRANSDUCER SERIAL # 2046 BE **PSIG** 10 **SCALE FACTOR** 10.001 **OFFSET** - 0.034 INPUT CHANNEL INP TEST DATA INPUT MODE (TOC/SUR) TOC STATIC WATER LEVEL (FT./TOC) 15.97 · 5 <u>ي</u> WELL DEPTH (FT./TOC) XD DEPTH (FT.TOC) 26.00 INITIAL XD REFERENCE 10.63 SLUG DEPTH (FT./TOC) 20.00 TIME OF SLUG PLACEMENT 1213 TIME OF WL EQUILIBRATION 1215 **NEW XD REFERENCE** 10.65 START TIME OF TEST 1216 END TIME OF TEST 1220 NOTES:

> **FIGURE 4-14** AQUIFER TEST COMPLETION CHECKLIST PROJECT OPERATIONS PLAN FORT DEVENS, MASSACHUSETTS
>
> ABB Environmental Services, Inc.

TEST 1		TEST 2	
MINUTES	FEET	MINUTES	FEET
0	0.003	0	0.452
0.0033 0.0066	0.8 1.037	0.0033 0.0066	0.971 1.031
0.01	1.04	0.01	0.272
0.0133 0.0166	0.679 0.461	0.0133 0.0166	0.433 0.872
0.02	0.872	0.0180	0.43
0.0233	0.158	0.0233	0.303
0.0266 0.03	1.04 1.233	0.0266 0.03	1.075 1.084
0.0333	1.613	0.0333	1.388
0.0366 0.04	1.549 1.483	0.0366 0.04	1.533 1.537
0.0433	1.435	0.0433	1.442
0.0466 0.05	1.391 1.347	0.0466	1.401 1.356
0.0533	1.309	0.05 0.0533	1.331
0.0566	1.271	0.0566	1.287
0.06 0.0633	1.23 1,205	0.06 0.0633	1.261 1.227
0.0666	1.17	0.0666	1.198
0.07 0.0733	1,138 1,11	0.07 0.0733	1.16 1.135
0.0766	1.084	0.0766	1.106
0.08	1.056	0.08	1.075
0.0833 0.0866	1.027 1.002	0.0833 0.0866	1.046 1.021
0.09	0.977	0.09	1.002
0.0933 0.0966	0.955 0.929	0.0933 0.0966	0.971 0.948
0.0900	0.929	0.0900	0.923
0.1033	0.885	0.1033	0.904
0.1066 0.11	0.866 0.847	0.1066 0.11	0.885 0.866
0.1133	0.828	0.1133	0.844
0.1166 0.12	0.809 0.793	0.1166´ 0.12	0.825 0.809
0.1233	0.778	0.1233	0.793
0.1266 0.13	0.762 0.746	0.1266 0.13	0.774 0.762
0.1333	0.733	0.1333	0.746
0.1366 0.14	0.721 0.708	0.1366 0.14	0.733 0.721
0.1433	0.695	0.14	0.708
0.1466	0.683	0.1466	0.695
0.15 0.1533	0.673 0.664	0.15 0.1533	0.683 0.673
0.1566	0.651	0.1566	0.664
0.16 0.1633	0.645 0.635	0.16 0.1633	0.654 0.645
0.1666	0.626	0.1666	0.635
0.17 0.1733	0.619 0.61	0.17 0.1733	0.629
0.1766	0.61 0.604	0.1733 0.1766	0.619 0.613
0.18 0.1833	0.597 0.588	0.18 0.1833	0.607 0.597
0.1866	0.581	0.1866	0.591
0.19 0.1933	0.575	0.19 0.1933	0.585
0.1966	0.569 0.562	0.1933	0.578 0.572
0.2	0.556	0.2	0.566
0.2033 0.2066	0.55 0.547	0.2033 0.2066	0.559 0.556
0.21	0.54	0.21	0.55
0.2133 0.2166	0.537 0.531	0.2133 0.2166	0.544 0.54
0.22	0.525	0.22	0.534
0.2233 0.2266	0.521 0.518	0.2233 0.2266	0.531 0.525
0.23	0.512	0.23	0.521
0.2333 0.2366	0.509 0.506	0.2333 0.2366	0.518 0.512
0.24	0.499	0.24	0.512
0.2433	0,496	0.2433	0.506
0.2466 0.25	0.493 0.49	0.2466 0.25	0.502 0.499
0.2533	0.487	0.2533	0.493
0.2566	0,483	0.2566	0.49

0.2		0.48	0.26	
0.263		0.474	0.2633	
0.266 0.2	-	0.474 0.471	0.2666 0.27	
0.273		0.464	0.2733	
0.276		0.464	0.2766	
0.2		0.461	0.28	
0.283 0.286		0.458 0.455	0.2833 0.2866	
0.286		0.452	0.280	
0.293		0.449	0.2933	
0.296		0.445	0.2966	
0.303 0.303	.3	0.442 0.442	0.3 0.3033	
0.306		0.439	0.3056	
0.3		0.436	0.31	
0.313		0.433	0.3133	
0.316		0.43	0.3166	
0.3 0.323		0.426 0.426	0.32 0.3233	
0.326		0.423	0.3266	
0.3	33	0.42	0.33	0.426
0.333		0.417	0.3333	
0.3 0.366		0.404 0.395	0.35 0.3666	
0.383		0.382	0.3833	
0.		0.373	0.4	
0.416		0.363	0.4166	
0.433		0.354	0.4333	
0.4 0.466		0.344 0.335	0.45 0.4666	
0.483		0.328	0.4833	
0.		0.319	0.5	
0.516		0.313	0.5166	
0.533 0.5		0.303 0.297	0.5333 0.55	
0.566		0.29	0.5666	
0.583	33	0.284	0.5833	0.284
0.		0.278	0.6	
0.616 0.633		0.272 0.268	0.6166 0.6333	
0.60		0.262	0.65	
0.666	66	0.256	0.6666	0.256
0.683		0.249	0.6833	
0. 0.716		0.246 0.24	0.7 0.7166	
0.733		0.234	0.7333	
0.7	' 5	0.23	0.75	0.227
0.766		0.224	0.7666	
0.783 0.		0.221 0.218	0.7833 0.8	
0.816		0.211	0.8166	
0.833	13	0.208	0.8333	0.208
0.8		0.205	0.85	
0.866 0.883		0.202 0.199	0.8666 0.8833	
0.	.9	0.196	0.9	0.192
0.916		0.192	0.9166	
0.933		0.186 0.183	0.9333	
0.9 0.966		0.183 0.18	0.95 0.9666	
0.983		0.177	0.9833	
	1	0.173	1	0.17
1.		0.139	1.2	
1. 1.		0.117 0.101	1.4 1.6	
1.	.8	0.085	1.8	0.079
	2	0.075		
2.		0.069	2.2	
2. 2.		0.06 0.056	2.4 2.6	
2. 2.		0.05	2.8	
	3	0.047	3	0.037
3.		0.044	3.2	
3. 3.		0.044 0.041	3.4 3.6	
3. 3.		0.037	5.0	0.020
	4	0.037		
4.	2	0.034		•
				•

PERMEABILITY TEST RESULTS FOR CSM-93-02A:
TEST 1 TEST 2
HVORSLEV: HVORSLEV:
0.0008 CM/SEC 0.0008 CM/SEC

BOUWER AND RICE: 0.002 CM/SEC

BOUWER AND RICE: 0.002 CM/SEC

AQUIFER TEST NO. _

SETUP	DATE	ву wном
MONITORING WELL ID	CSM-93.02A	RUSTAD/ROKA
DATE OF TEST	4-01-97	
TYPE OF TEST	Risinu uras	
HERMIT TYPE/SERIAL#	522 (3 (10FZ)	
TEST #	5E1000 c/1KC01732	
DATA COLLECTION RATE	VOG 000	
TRANSDUCER		
SERIAL #	2046 PE	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	-0.034	
INPUT CHANNEL	# !	
TEST DATA		·
INPUT MODE (TOC/SUR)		
STATIC WATER LEVEL (FT./TOC)	24. 64	
WELL DEPTH (FT./TOC)	32.00	
XD DEPTH (FT.TOC)	31.00	
INITIAL XD REFERENCE	8.51	
SLUG DEPTH (FT./TOC)	29.00	
TIME OF SLUG PLACEMENT	/335	
TIME OF WL EQUILIBRATION	1338	
NEW XD REFERENCE	8.54	
START TIME OF TEST	/339	
END TIME OF TEST	•	
NOTES:		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

AQUIFER TEST NO. _

SETUP	DATE	BY WHOM
MONITORING WELL ID	csm-93-02A	RUSTAD / ROKA
DATE OF TEST	4.01.93	
TYPE OF TEST	Rising head	
HERMIT TYPE/SERIAL#	SEL 14 (2 of 2)	
TEST #	351000 C/1KC 01732	
DATA COLLECTION RATE	Log 000	
TRANSDUCER		
SERIAL #	2046DE	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	-0.054	
INPUT CHANNEL	# 1	
TEST DATA		
INPUT MODE (TOC/SUR)	EnToc	
STATIC WATER LEVEL (FT./TOC)	24.64	
WELL DEPTH (FT./TOC)	32,00	
XD DEPTH (FT.TOC)	34.00	
INITIAL XD REFERENCE	8.54	
SLUG DEPTH (FT./TOC)	29.00	
TIME OF SLUG PLACEMENT	1345	
TIME OF WL EQUILIBRATION	1347	
NEW XD REFERENCE	8 .54	
START TIME OF TEST	1352	
END TIME OF TEST		
NOTES:		

FIGURE 4-14 AQUIFER TEST COMPLETION CHECKLIST **PROJECT OPERATIONS PLAN** FORT DEVENS, MASSACHUSETTS

ABB Environmental Services, Inc.

TEST 1 MINUTES	FEET	TEST 2	
0.0033	0.389	MINUTES	0.281
0.0066	1.144	0.0033 0.0066	0.774 0.424
0.01 0.0133	0.68 0.472	0.01 0.0133	0.06 0.348
0.0166	1.087	0.0166	0.398
0.02 0.0233	0.69 0.787	0.02 0.0233	0.348 0.338
0.0266 0.03	0.803 1.381	0.0266	0.345
0.0333	1.66	0.03 0.0333	0.411 0.601
0.0366 0.04	1.657 1.634	0.0366 0.04	1.021 1.334
0.0433 0.0466	1.578	0.0433	1.438
0.0466	1.517 1.473	0.0466 0.05	1.59 1.618
0.0533 0.0566	1.429 1.381	0.0533	1.58
0.06	1.344	0.0566 0.06	1.536 1.489
0.0633 0.0666	1.302 1.268	0.0633 0.0666	1. 444 1.397
0.07 0.0733	1.223	0.07	1.362
0.0766	1.189 1.16	0.0733 0.0766	1.321 1.283
0.08 0.0833	1.125 1.097	0.08 0.0833	1.248
0.0866	1.072	0.0866	1.214 1.179
0.09 0.0933	1.034 1.011	0.09 0.0933	1.15 1.122
0.0966 0,1	0.983 0.961	0.0966	1.097
0.1033	0.942	0.1 0.1033	1.065 1.036
0.1066 0.11	0.913 0.888	0.1066 0.11	1.005 0.97
0.1133 0.1166	0.866 0.872	0.1133	0.967
0.12	0.822	0.1166 0.12	0.935 0.919
0.1233 0.1266	0.796 0.758	0.1233 0.1266	0.894 0.859
0.13 0.1333	0.755	0.13	0.837
0.1366	0.736 0.717	0.1333 0.1366	0.821 0.796
0.14 0.1433	0.693 0.68	0.14	0.777
0.1466	0.683	0.1433 0.1466	0.758 0.745
0.15 0.1533	0.649 0.63	0.15 0.1533	0.711 0.699
0.1566 0.16	0.585 0.589	0.1566	0.661
0.1633	0.579	0.16 0.1633	0.661 0.651
· 0.1666 0.17	0.595 0.56	0.1666 0.17	0.639 0.617
0.1733	0.535	0.1733	0.61
0.1766 0.18	0.522 0.503	0.1766 0.18	0.585 0.566
0.1833 0.1866	0.494 0.484	0.1833 0.1866	0.557 0.541
0.19 0.1933	0.472	0.19	0.531
0.1966	0.465 0.44	0.1933 0.1966	0.522 0.506
0.2 0.2033	0.434 0.456	0.2 0.2033	0.487 0.481
0.2066	0.421	0.2066	0.468
0.21 0.2133	0.402 0.396	0.21 0.2133	0.462 0.446
0.2166 0.22	0.38 0.37	0.2166	0.436
0.2233	0.367	0.22 0.2233	0.424 0.411
0.2266 0.23	0.342 0.345	0.2266 0.23	0.398 0.395
0.2333 0.2366	0.339 0.332	0.2333	0.383
0.24	0.32	0.2366 0.24	0.379 0.364
0.2433 0.2466	0.313 0.307	0.2433 0.2466	0.354 0.345
0.25 0.2533	0.294	0.25	0.338
0.2566	0.288 0.285	0.2533 0.2566	0.329 0.319
			=

0.26	0.275	0.26	0.313
0.2633	0.279	0.2633	0.307
0.2666	0.263	0.2666	0.307
0.27 0.2733	0.256 0.25	0.27 0.2733	0.291
0.2766	0.25 0.25	0.2733 0.2766	0.281 0.285
0.2768	0.241	0.2768	0.266
0.2833	0.231	0.2833	0.262
0.2866	0.228	0.2866	0.256
0.29	0.219	0.29	0.24
0.2933	0.212	0.2933	0.24
0.2966 0.3	0.209 0.206	0.2 9 66 0.3	0.24 0.234
0.3033	0.2	0.3033	0.234
0.3066	0.206	0.3066	0.228
0.31	0.19	0.31	0.212
0.3133	0.187	0.3133	0.212
0.3166	0.181	0.3166	0.218
0.32 0.3233	0.152 0.171	0.32 0.3233	0.202 0.196
0.3266	0.171	0.3266	0.193
0.33	0.165	0.33	0.19
0.3333	0.162	0.3333	0.193
0.35	0.136	0.35	0.158
0.3666	0.117	0.3666	0.136 0.114
0.3833 0.4	0.098 0.079	0.3833 0.4	0.114
0.4166	0.07	0.4166	0.082
0.4333	0.06	0,4333	0.073
0.45	0.051	0.45	0.057
0.4666	0.045	0.4666	0.054
0.4833 0.5	0.038 0.035	0.4833 0.5	0.057 0.038
0.5166	0.032	0.5 0.5166	0.035
0.5333	0.026	0.5333	0.032
0.55	0.022	0.55	0.009
0.5666	0.019	0.5666	0.025
0.5833	0.016	0.5833	0.019
0.6 0.6166	0.013 0.013	0.6 0.6166	0.019 0.016
0.6333	0.013	0.6333	0.013
0.65	0.022	0.65	0.013
0.6666	0.007	0.6666	0.009
0.6833	0.016	0.6833	0.009
0.7 0.7166	0.007 0.007	0.7 0.7166	0.006 0.006
0.7333	0.007	0.7188	0.006
0.75	0.003	0.75	0.006
0.7666	0.003	0.7666	0.006
0.7833	0.003	0.7833	0.003
0.8 0.8166	0.003 0.003	0.8 0.8166	0.003 0.003
0.8333	0.005	0.8333	0.003
0.85	Ö	0.85	0.003
0.8666	0	0.8666	0.003
0.8833	0	0.8833	0.003
0.9 0.9166	0 0	0.9 0.9166	0.003 0.003
0.9333	ŏ	0.9333	0.003
0.95	Ŏ	0.95	0
0.9666	0	0.9666	0.003
0.9833	-0.003	0.9833	0.003
1 1.2	0	1 1.2	0
1.4	0	1.2 1.4	-0.003
1.6	0	1.6	0
1.8	-0.003	1.8	0
2	0	2	. 0
		2.2	0
		2.4 2.6	0
		2.8	0
		3	0
		3.2	0

PERMEABILITY TEST RESULTS FOR CSM-93-02B: TEST 1 HVORSLEV: 0.001 CM/SEC BOUWER AND RICE: 0.01 CM/SEC

TEST 2 HVORSLEV: 0.001 CM/SEC BOUWER AND RICE: 0.01 CM/SEC

AQUIFER TEST NO. __

SETUP	DATE	ву wном
MONITORING WELL ID	C5M.93.02]	RUSTAS / ROKA
DATE OF TEST	4.01.93	/
TYPE OF TEST	RISING HEAD	
HERMIT TYPE/SERIAL#	SE 1000 C /18101732	
TEST #	SÉL 11/10F2	
DATA COLLECTION RATE	Low 600	
TRANSDUCER		
SERIAL#	2046/2	
PSIG	10	
SCALE FACTOR	10.001	
OFFSET	-0.034	
INPUT CHANNEL	1 441	
TEST DATA		
INPUT MODE (TOC/SUR)	TOC	
STATIC WATER LEVEL (FT./TOC)	24.42	
WELL DEPTH (FT./TOC)	oo. 89)	
XD DEPTH (FT.TOC)	35.00	
INITIAL XD REFERENCE	11.35	
SLUG DEPTH (FT./TOC)	<i>3</i> 0.0€	
TIME OF SLUG PLACEMENT	13:11	
TIME OF WL EQUILIBRATION	/3.12	
NEW XD REFERENCE	11.35	
START TIME OF TEST	315	
END TIME OF TEST	1317	
NOTES: ALL DEPTUS TO FEE		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

AQUIFER TEST NO.

SETUP	DATE	вү wном
MONITORING WELL ID	CSM.93.02B	Rustad Roka
DATE OF TEST	4.01.93	,
TYPE OF TEST	PASING HEAD	
HERMIT TYPE/SERIAL#	SZ 1000c IKC0732	
TEST #	SEL 12 (201=2)	
DATA COLLECTION RATE	Low 000	
TRANSDUCER		
SERIAL #	2046 BE	
PSIG	10	
SCALE FACTOR	10.001	·
OFFSET	-0.034	
INPUT CHANNEL	ן פעו	
TEST DATA		
INPUT MODE (TOC/SUR)	~ o∟	
STATIC WATER LEVEL (FT./TOC)	24.42	
WELL DEPTH (FT./TOC)	68.00	
XD DEPTH (FT.TOC)	35.00	
INITIAL XD REFERENCE	11.35	
SLUG DEPTH (FT./TOC)	Jo.00	
TIME OF SLUG PLACEMENT	13:18	
TIME OF WL EQUILIBRATION	13/9	
NEW XD REFERENCE	11.36	
START TIME OF TEST	1320	
END TIME OF TEST		
NOTES:		

FIGURE 4-14
AQUIFER TEST COMPLETION CHECKLIST
PROJECT OPERATIONS PLAN
FORT DEVENS, MASSACHUSETTS
ABB Environmental Services, Inc.-

CALCULATION OF HYDRAULIC CONDUCTIVITIES USING THE HVORSLEV EQUATION

K= -[(LOG Ht1 - LOG Ht2)/(t1 - t2)]{[(r) ^2 LOG (L/R)]/2L} **GROUP 3 WELLS**

WHERE

TIME 1 (MINUTES) ==

TIME 2 (MINUTES) 12 =

HEAD STRESS AT TIME 1 (FEET) HEAD STRESS AT TIME 2 (FEET)

RADIUS OF WELL CASING (FEET) II _

H II

RADUS OF BOREHOLE (FEET) EFFECTIVE SATURATED LENGTH OF SCREEN (FEET)

0.7 0 18 0 18 1 19 0 19 1 19 0 19 0 19 0 19 0 10 0 10		LIZ L	 	TEST #	K (FT/MIN)	K (CM/SEC)
0.3 0.7 0.451 8 18 0.947 6 14 1.019 0.35 0.85 1.016 0.35 0.85 1.013 100 180 2.258 0.05 0.066 0.593 0.0 0.08 0.752 0.2 0.383 0.989 0.2 0.383 0.98 0.3 0.6 0.442 0.0 0.06 0.452	0.7 0.435	14 0.167	0.417 4	4.3		1 3E-03
6 14 1.019 0.35 0.85 1.016 0.35 0.85 1.016 100 180 2.258 0.05 0.066 0.593 0.06 0.08 0.752 0.02 0.383 0.989 0.3 0.6 0.442 0.0 0.06 0.06 0.442	0.7 0.451	14 0.167	0.417 4	4.3	2 7E-03	1.0E 03
6 14 1.019 0.35 0.85 1.016 0.05 0.06 0.593 0.06 0.08 0.752 0.2 0.383 0.98 0.3 0.6 0.442 0.0 0.06 0.442 0.0 0.06 0.452 0.06 0.066 0.452	18 0.947		<u> </u>		5.1E-05	2.4E-05
0.35 0.85 1.016 0.35 0.85 1.013 100 180 2.258 0.05 0.066 0.593 0.2 0.383 0.989 0.2 0.383 0.98 0.2 0.383 0.98 0.3 0.6 0.442 0.0 0.06 0.056 1.344	14 1.019	24 0.167		5	6.1F-05	3.1F_05
0.35 0.85 1.013 0 100 180 2.258 0.05 0.06 0.593 0 0.06 0.08 0.752 0 0.2 0.383 0.98 0 0.3 0.6 0.442 0 0.0 0.06 0.096 1.344 0	0.85 1.016	36 0.167	Ľ		1 1F-03	5.4F-04
100 180 2.258 0.05 0.066 0.593 0 0.06 0.08 0.752 0 0.2 0.383 0.98 0 0.3 0.6 0.442 0 0.0 0.06 0.096 1.344 0	0.85 1.013	35 0.167	0.417	15	1 1E_03	5.4E-04
0.05 0.066 0.593 0.06 0.08 0.752 0.2 0.383 0.989 0.2 0.383 0.98 0.3 0.6 0.442 0.3 0.6 0.452 0.06 0.096 1.344	180 2.258				9.7E-07	4 9F-07
0.06 0.08 0.752 0.2 0.383 0.989 0.2 0.383 0.98 0.3 0.6 0.442 0.3 0.6 0.452 0.06 0.096 1.344	0.066 0.593			7.6	3.7E 07	1.9L-07
0.2 0.383 0.989 0.2 0.383 0.98 0.3 0.6 0.442 0.3 0.6 0.452 0.06 0.096 1.344	0.08 0.752	98 0.167	0.417 7	7.6	3 2F-02	1.0E 02
0.2 0.383 0.98 0.3 0.6 0.442 0.3 0.6 0.452 0.06 0.096 1.344	0.383 0.989		1		9.0E-04	1.0L 10Z
0.3 0.6 0.442 0.3 0.6 0.452 0.06 0.096 1.344	0.383 0.98	_	1	49	9.3E 0.1E 0.4	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.3 0.6 0.452 0.06 0.096 1.344	0.6 0.442				1 6E_03	10-10-4
0.06 0.096 1.344	0.6 0.452		1	74 2	1.3E - 03	0.0E-04
));	0.096 1.344	83 0.167			5.5F-03	0.4E-04
CSM-93-02B 0.07 0.103 1.362 1.036	0.103 1.362			15 2	5.2E-03	

APPENDIX D GRAIN SIZE DISTRIBUTION ANALYSES

SHD-92-01X SHD-92-12X SHD-92-18X SHD-92-19X SHD-92-26X SHD-92-27X SHD-92-28X SHD-92-29X SHD-92-30X SHD-92-31X SHD-92-32X SHB-93-01A (SHM-93-01A) SHB-93-24A (SHM-93-24A) SHB-93-18B (SHM-93-18B) CSD-92-01X CSD-92-02X CSD-92-03X CSD-92-04X CSD-92-05X CSD-92-06X CSD-92-10X CSD-92-12X CSD-92-13X CSB-93-01A (CSM-93-01A) CSB-93-02B (CSM-93-02B) MAD-92-02X GRW-92-01X (GRD-92-01X)

GRW-92-04X (GRD-92-04X)

SYNOPTIC WATER-LEVEL MEASUREMENTS

ABB Environmental Services, Inc.

W0069310.M80 7005-11

STATION/ WELL NO.	DEE	200								H		
WELL NO.		ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	DEPTH TO	ELEV. OF	DEPTH TO	ELEV. OF
	POINT	REF. PT.	TO WATER	WATER	TO WATER	WATER	TO WATER	WATER	WATER	WATER	WATER	WATER
G5M-92-01X	PVC	240.45	\rightarrow	Not measured	34.31	206.14	33.62	206.83	32.66	207.79	34.03	206.42
G5M-92-02X	PVC	224.73	Not measured	Not measured	18.09	206.64	17.37	207.36	15.39	209.34	17.51	207.22
G5M-92-03A	PVC	238.48	Not measured	Not measured	25.81	21267	Ду	Dry	25.88	2126	Dry	Dry
G5M-92-03B	PVC	239.62	Not measured	Not measured	34.09	205.53	33.17	206.45	30.78	208.84	33.7	205.92
G6M-92-01X	PVC	265.41	Not measured	Not measured	60.44	204.97	60.34	205.07	60.1	205.31	60.22	205.19
G6M-92-02X	PVC	271.00	Not measured	Not measured	67.84	203.16	67.1	203.9	65.99	204.41	67.63	203.37
G6M-92-03X	PVC	269.53	\rightarrow	Not measured	63.1	206.43	63.37	206.16	63.09		62.2	207.33
G6M-92-04X	PVC	270.36	Not measured	Not measured	87.78	202.58	66.44	203.92	65.59	204.77	68.2	202.16
G6M-92-05X	PVC	268.88	Not measured	Not measured	10.99	202.87	64.79	204.09			66.43	202.45
G6M-92-06X	PVC	263.79	Not measured	Not measured	58.35	205.44	58.29	205.5	58	205.79	58.24	205.55
G6M-92-07X	PVC	266.86	Not measured	Not measured	59.92	206.94	60.28	206.58	59.92	206.94	59.46	207.4
G6M-92-08X	PVC	262.94	Not measured	Not measured	54.21	208.73	Not measured	Not measured	54.31	208.63	53.47	209.47
G6M-92-09X	PVC	261.25	Not measured	Not measured	51.44	209.81	52.04	209.21	51.67	209.58	50.92	210.33
G6M-92-10X	PVC	225.81	Not measured	Not measured	14.12	211.69	14.08	211.73	12.38	213.43	13.26	212.55
G6M-92-11X	PVC	225.62	Not measured	Not measured	13.75	211.87	13.84	211.78	13.23	212.39	13.07	212.55
WWTMW-01	PVC	217.71	7.40	210.31	90'6	208.65	8.4	209.31	6.78	210.93	8.04	209.67
WWTMW-01A	PVC	220.88	16.58	204.3	17.12	203.76	15.41	205.47	12.76	208.12	17.38	203.5
WWTMW-02	PVC	225.73	21.86	203.87	22.28	203.45	20.58	205.15	17.69	208.04	22.71	203.02
WWTMW-02A	PVC	225.47	21.68	203.79	22.1	203.37	20.43	205.04	16.96	208.51	22.57	2029
WWTMW-03	PVC	216.79	13.48	203.31	13.87	20292	12.06	204.73	8.16	208.63	14.53	202.26
WWTMW-04	PVC	217.79	13.04	204.75	13.74	204.05	12.19	205.6	10.57	207.22	13.98	203.81
WWTMW-05	PVC	213.39	10.56		10.9	202.49	9.12	204.27	59.5	207.74	11.67	201.72
WWTMW-06	PVC	234.54	13.78	220.76	18.72	215.82	17.84	216.7	Not measured	Not measured	15.43	219.11
WWTMW-07	PVC	243.08	24.89	218.19	29.11	213.97	26.54	216.54	Not measured	Not measured	27.47	215.61
WWTMW-08	PVC	219.43	10.08	209.35	11.54	207.89	10.83	208.6	8.83	210.6	10.6	208.83
WWTMW-09	PVC	212.49	9.04		9.36	203.13	7.43	205.06	Not measured	Not measured	9.83	202.66
WWTMW-10	PVC	214.74	11.52		11.84	202.9	9.91	204.83	5.75	208.99	12.3	202.44
WWTMW-11	PVC	214.57	11.65		11.98	202.59	10.19	204.38	5.64	208.93	12.54	202.03
WWTMW-12	PVC	221.49	17.50		17.91	203.58	16.51	204.98	14.5	206.99	18.04	203.45
WWTMW-13	PVC	220.10	16.20		16.66	203.44	14.95	205.15	13.18	206.92	16.87	203.23
WWTMW-14	PVC	219.14	10.34		11.19	207.95	11.57	207.57	10.11	209.03	9.84	209.3
MNG-1	PVC	248.89	24.55	224.34	24.6	224.29	Not measured	Not measured	Not measured	Not measured	24.22	224.67
MNG-2	PVC	238.66	20.36			217.99	20.23	218.43	19.64	219.02	20.52	218.14
MNG-3	PVC	254.47	37.52			217.12	36.84	217.63	35.94	218.53	37.26	217.21
MNG-4	PVC	254.37	32.80			221.39	Not measur	Not meast	Not measured	Not measured	Not measured	Not measured
MNG-5	PVC	237.21	17.28			219.73	17.58	219.63	17.14	220.07	17.27	219.94
MNG-6	PVC	254.70	36.46			218.18		2			36.37	218.33
MNG-7	PVC	250.08	31.43	218.65	31.39	218.69	31.38	218.7	31.06	219.02	Not measured	Not measured

NON REF. PL. OF DEPTH	F DEPTH ELEV. 72 21.08 WAT 92 16.1 Dry 84 Dry Dry Not measured Not measured Not measured 83 30.82 11.23 61 11.23 51.5	OF DEPTH ELEV. OI ER TO WATER WATER 200.08 18.85 200	17.	DEPTH TO	ELEV. OF	DEPTHE TO T	FI BV OF
L NO. POINT REF. PT. TO WATER 01 BRIDGE RAIL 221.16 20.44 02 BRIDGE RAIL 217.84 15.90 05 CAPPED PIN 217.84 Dry 1 PVC 248.17 Not measured No. 1 PVC 248.17 Dry 4.10 PVC 228.13 Dry 4.10 11.10 PVC 228.13 17.56 17.00 PVC 218.53 4.10 17.56 PVC 221.85 7.70 18.87 PVC 221.85 7.70 17.01 PVC 221.85 7.70 17.02 PVC 221.85 7.70 17.02 PVC 221.85 7.70 18.87 PVC 221.85 7.03 18.46 PVC 226.34 18.24 18.24 PVC 226.34 18.47 18.47 PVC 226.34 18.24 18.46	TO WATER WAT 21.08 92 16.1 84 1.05 Dry Dry Dry Not measured Not meass 83 30.82 61 11.23	8		- 711117			
01 BKIDGE RAIL 221.16 20.41 02 BRIDGE RAIL 217.82 15.90 05 CAPPED PIN 217.84 Dry 1 PVC 248.17 Not measured 1 PVC 248.17 Not measured 1 PVC 228.71 11.10 PVC 228.71 4.10 PVC 228.71 4.10 PVC 221.85 4.10 PVC 221.85 7.73 PVC 221.85 7.75 PVC 221.85 7.75 PVC 224.81 17.56 PVC 224.87 8.46 PVC 224.87 8.46 PVC 228.39 19.63 PVC 228.39 19.63 PVC 228.39 19.63 PVC 228.47 45.34 PVC 228.87 45.34 PVC 228.87 45.34 PVC 228.87 A6.34	72 21.08 92 16.1 84 1.05 Not measured Not measured 83 30.82 61 11.23 43 515		WATER	WATER	WATER	WATER	WATER
05 DRIDGE INALL 217.84 15.90 065 CAPPED PIN 217.84 15.90 1 PVC 248.17 Not measured 1 PVC 248.50 DDy 1 PVC 228.71 11.10 PVC 228.71 11.10 PVC 228.71 17.56 PVC 221.85 4.10 PVC 221.85 4.10 PVC 221.85 7.73 PVC 221.85 7.73 PVC 248.80 31.19 PVC 248.80 31.19 PVC 249.51 23.25 PVC 249.51 1.75 PVC 249.51 1.63 PVC 226.75 45.34 PVC 226.75 45.34 PVC 220.49 6.73 PVC 236.75 45.34 PVC 236.75 45.34 PVC 226.87 45.34 <	92 16.1 84 1.05 Dry Dry Dry Not measured Not meass 83 30.82 61 11.23 43 5.15		20231	13.1	208.06	21.61	199.55
CASING	1.05 Dry Dry		203.84	7.3	210.52	16.58	201.24
PVC 248.17 Not measured	Dry Dry Dry	216.79 0.22	217.62	-0.8	218.64	0.86	215.14
1	Not measured Not measured 13.82 11.23 43 5.15	Not measured	Not measured	2.45	-2.45	5	25
CASING 248.50 30.67 PVC 228.71 11.10 PVC 228.71 11.10 PVC 254.17 24.80 PVC 237.13 17.56 PVC 221.85 7.53 PVC 222.86 9.15 PVC 248.80 31.19 PVC 236.34 18.87 PVC 236.75 17.52 PVC 238.39 19.63 PVC 238.39 19.63 PVC 226.84 19.24 PVC 226.84 19.24 PVC 226.84 19.24 PVC 226.84 19.24 PVC 226.97 45.34 PVC 242.14 27.27 PVC 242.14 27.27 PVC	30.82	Not measured		Not measured	Not measured	red	Not measured
PVC 228.71 11.10 PVC 218.53 4.10 PVC 254.17 28.80 PVC 273.13 17.56 PVC 221.85 7.53 PVC 221.86 9.15 PVC 222.86 9.15 PVC 248.80 31.19 PVC 248.80 31.19 PVC 236.34 18.87 PVC 236.34 18.87 PVC 234.57 8.46 PVC 234.57 8.46 PVC 238.39 19.63 PVC 220.05 17.52 PVC 238.45 45.34 PVC 220.49 6.73 PVC 242.14 23.29 PVC 242.14 27.27 PVC 242.14 27.27 PVC 242.14 27.27 PVC 243.89 Not measured 3-10 PVC 243.79 Not measured	11.23	217.68 30.24	26	30.49	218.01	23	21763
PVC 218.53 4.10 CASING 254.17 28.80 PVC 221.85 7.73 PVC 221.85 7.70 PVC 221.86 9.15 PVC 221.86 9.15 PVC 222.86 9.15 PVC 248.80 31.19 PVC 249.51 23.25 PVC 249.51 23.25 PVC 249.51 23.25 PVC 221.58 7.05 PVC 221.53 17.92 PVC 241.44 23.29 PVC 220.49 6.73 PVC 220.49 6.73 PVC 228.75 45.34 PVC 242.14 27.27 PVC 242.14 27.27 PVC 243.87 Not measured 3-10C PVC 248.79 Not measured 3-22 PVC 238.67 Not measured 3-24 PVC 259.75	\$1\$	217.48 10.58	218.13	10.36	21835	11.18	217.63
CASING 254.17 28.80 PVC 277.13 17.56 PVC 221.85 7.73 PVC 222.86 9.15 PVC 248.80 31.19 PVC 248.81 31.19 PVC 249.51 18.87 PVC 249.51 23.25 PVC 249.51 23.25 PVC 249.51 23.25 PVC 249.51 17.92 PVC 221.58 16.32 PVC 238.39 19.63 PVC 236.75 45.34 PVC 236.75 45.34 PVC 236.75 45.34 PVC 236.75 45.34 PVC 242.14 27.27 PVC 242.14 27.27 PVC 242.14 27.27 PVC 248.79 Not measured 3-18B PVC 228.73 Not measured 3-22C PVC 228.73 Not	21.2	213.38 2.39	216.14	181	21672	4 86	21266
PVC 237.13 17.56 PVC 221.85 7.53 PVC 221.86 9.15 PVC 2248.80 31.19 PVC 248.80 31.19 PVC 249.51 18.87 PVC 249.51 18.87 PVC 221.58 7.05 PVC 224.57 8.46 PVC 238.39 19.63 PVC 238.39 19.63 PVC 238.84 19.24 PVC 236.84 19.24 PVC 238.87 45.34 PVC 220.49 6.73 PVC 239.60 16.52 PVC 243.44 Not measured 3-10C PVC 248.79 Not measured 3-2C PVC 219.76 Not measured 3-2A PVC 259.77 Not measured 3-2A PVC 259.77 19.14 PVC 259.42 25.72	225.37 29.11 22	2	224.79	28.76	225.72	1.00	215.05
PVC 2 - INCH 221.85 7.50 PVC 2 - INCH 221.66 7.70 PVC 248.80 31.19 PVC 249.81 31.19 PVC 249.51 18.87 PVC 249.51 18.87 PVC 260.75 17.05 PVC 260.75 17.05 PVC 283.39 19.63 PVC 283.39 19.24 PVC 280.75 45.34 PVC 280.75 Not measured 3-10.7 PVC 248.79 Not measured 3-2C PVC 248.79 Not measured 3-2A PVC 259.77 19.14 PVC 259.77 19.14 PVC 259.77 19.14 PVC 259.77 19.14 PVC 259.72 25.42 PVC 259.73 25.42 PVC 259.72	219.57 17.93 2	219.2	219.68	16.35		17.05	14.077
PVC-2-INCH 22166 7.70 PVC 22286 9.15 PVC 248.80 31.19 PVC 248.81 31.19 PVC 249.51 23.25 PVC 220.53 17.92 PVC 260.75 17.92 PVC 283.39 19.63 PVC 236.84 19.24 PVC 259.75 45.34 PVC 259.75 45.34 PVC 220.49 6.73 PVC 243.14 27.27 PVC 242.14 27.27 PVC 243.49 Not measured 3-10C PVC 248.79 Not measured 3-2C PVC 248.79 Not measured 3-2A PVC 238.39 Not measured 3-2A PVC 259.75 Not measured 3-2A PVC 259.77 19.14 PVC 259.42 25.42 PVC 254.43 25.	214.32 8.22 21	213.63 7.1	214.75	87.9		20.8	213.6
PVC 22286 9.15 PVC 248.80 9.15 PVC 246.31 11.19 PVC 224.51 13.25 PVC 260.75 17.92 PVC 238.39 19.63 PVC 238.39 19.63 PVC 236.84 19.24 PVC 226.84 19.24 PVC 226.83 45.34 PVC 226.84 19.24 PVC 226.49 6.73 PVC 226.41 27.27 PVC 242.14 27.27 PVC 243.87 Not measured 3-10C PVC 248.77 Not measured 3-2C PVC 238.37 Not measured 3-2A PVC 229.77 19.14 PVC 259.42 25.42 PVC 259.42 25.42 PVC 25.43 Not measured PVC 259.42 19.14 PVC <t< td=""><td>213.96 8.4 21</td><td>213.26 6.92</td><td></td><td>Not measured</td><td>Not measured</td><td>10.0</td><td>013.0</td></t<>	213.96 8.4 21	213.26 6.92		Not measured	Not measured	10.0	013.0
PVC 248.80 31.19 PVC 236.34 18.87 PVC 2249.51 13.25 PVC 224.53 17.05 PVC 234.57 8.46 PVC 234.57 8.46 PVC 236.83 19.63 PVC 236.84 19.24 PVC 226.84 45.34 PVC 226.87 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 242.14 27.27 PVC 243.87 Not measured 3-10C PVC 243.79 Not measured 3-2C PVC 243.79 Not measured 3-2A PVC 243.79 Not measured 3-2A PVC 259.77 Not measured 3-2A PVC 259.42 25.42 PVC 259.42 25.42 PVC 254.43 Not measured PVC 254.43	213.71 10.01 21	21285 8.21	+	8.03	21483	10.1	213.79
PVC 236.34 18.87 PVC 249.51 23.25 PVC 260.75 17.92 PVC 234.57 8.46 PVC 238.39 19.63 PVC 241.34 23.29 PVC 236.84 19.24 PVC 236.84 19.24 PVC 220.75 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 242.14 27.27 PVC 243.87 Not measured 3-10C PVC 248.87 Not measured 3-20C PVC 248.79 Not measured 3-24C PVC 238.37 Not measured 3-24A PVC 239.77 Not measured 3-24A PVC 259.77 Not measured 3-24A PVC 259.77 Not measured 3-24B PVC 259.77 Not measured 3-24A PVC 254.23	217.61 31.41 21		218	30.00	117.01	20.7	+2.512
PVC 249.51 23.25 PVC 221.58 7.05 PVC 224.67 8.46 PVC 224.83 19.53 PVC 241.34 19.24 PVC 241.34 19.24 PVC 259.75 45.34 PVC 220.49 6.73 PVC 220.49 6.73 PVC 242.14 27.27 PVC 242.14 27.27 PVC 248.87 Mot measured 3-10C PVC 248.79 Not measured 3-20A PVC 218.79 Not measured 3-24C PVC 228.47 Not measured 3-24A PVC 229.77 Not measured 3-24A PVC 259.42 27.70 PVC 259.42 27.70 PVC 259.42 25.42 PVC 254.43 25.42			21769	18.4	21704	10 01	47.17
PVC 221.58 7.05 PVC 260.75 17.92 PVC 28.457 8.46 PVC 241.34 19.24 PVC 241.34 19.24 PVC 236.84 19.24 PVC 259.75 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 242.14 27.27 PVC 239.60 16.92 PVC 248.79 Not measured 3-10C PVC 248.79 Not measured 3-22C PVC 238.39 Not measured 3-24A PVC 228.39 Not measured 3-24A PVC 239.39 Not measured 3-24A PVC 229.42 Not measured 3-24A PVC 259.42 25.42 PVC 259.42 25.42 PVC 259.42 25.42 PVC 254.43 25.42	226.26 23.59 22		22563	22.38		10.90	217.38
PVC 260.75 17.92 PVC 234.57 8.46 PVC 238.39 19.63 PVC 241.34 23.29 PVC 226.84 19.24 PVC 220.49 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 239.60 16.92 PVC 238.60 16.92 PVC 248.79 Not measured 3-10C PVC 248.79 Not measured 3-22C PVC 238.39 Not measured 3-24A PVC 238.39 Not measured 3-24A PVC 236.77 19.14 PVC 259.42 27.70 PVC 259.42 25.42 PVC 256.43 25.42	7.66		21497	197		06:77	220.33
PVC 234.57 8.46 PVC 238.39 19.63 PVC 241.34 23.29 PVC 258.75 45.34 PVC 229.75 45.34 PVC 220.49 6.73 PVC 229.60 16.92 PVC 239.60 16.92 PVC 243.44 Not measured 3-10C PVC 248.79 Not measured 3-2C PVC 248.79 Not measured 3-2A PVC 238.39 Not measured 3-2A PVC 236.77 19.14 PVC 259.42 27.70 PVC 259.42 25.42 PVC 254.43 25.42	242.83 19.42 24		24167	17.17		56.95	214.23
PVC 238.39 19.63 PVC 241.34 19.24 PVC 236.84 19.24 PVC 259.75 45.34 PVC 220.49 6.73 PVC 229.60 6.73 PVC 239.60 16.92 PVC 243.4 Not measured 3-10C PVC 248.79 Not measured 3-2C PVC 248.79 Not measured 3-2A PVC 238.39 Not measured 3-2A PVC 239.75 Not measured PVC 229.77 19.14 PVC 259.42 27.70 PVC 259.42 27.70 PVC 254.43 25.42			2256	21.11		10.22	24233
PVC 241.34 23.29 PVC 236.84 19.24 PVC 259.75 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 243.87 24.68 PVC 248.87 Not measured 3-10C PVC 248.79 Not measured 3-2C PVC 219.76 Not measured 3-2C PVC 219.76 Not measured 3-2A PVC 236.37 Not measured 3-2A PVC 239.76 Not measured 3-2C PVC 229.77 19.14 PVC 259.42 27.70 PVC 259.42 27.70 PVC 261.94 25.42 PVC 261.94 25.42	218.76 19.9 21		21911	10.48	10016	17.0	270.30
PVC 236.84 19.24 PVC 259.75 45.34 PVC 220.49 6.73 PVC 242.14 271.27 PVC 243.87 16.92 PVC 248.87 16.92 PVC 248.77 Not measured PVC 219.76 Not measured PVC 219.76 Not measured PVC 219.76 Not measured PVC 238.39 Not measured PVC 238.39 Not measured PVC 238.39 Not measured PVC 239.77 19.14 PVC 259.77 19.14 PVC 259.42 25.42 PVC 259.42 25.42 PVC 258.43 25.42	218.05 23.5 21		21880	23.13		19.9	215.49
PVC 259.75 45.34 PVC 220.49 6.73 PVC 242.14 27.27 PVC 239.60 16.92 PVC 258.87 24.68 3-10C PVC 248.79 Not measured S-10C PVC 248.79 Not measured S-22C PVC 219.76 Not measured S-24A PVC 219.76 Not measured PVC 238.39 Not measured PVC 238.37 Not measured PVC 239.77 19.14 PVC 259.77 19.14 PVC 259.42 27.70 PVC 259.42 25.42 PVC 258.43 25.42	217.6 19.47 21		77.712	18.89		16.62	217.63
PVC 220.49 6.73 PVC 242.14 27.27 PVC 239.60 16.92 PVC 248.87 24.68 PVC 248.87 24.68 PVC 248.79 Not measured PVC 238.39 Not measured PVC 219.76 Not measured PVC 219.76 Not measured PVC 237.53 Not measured PVC 237.53 Not measured PVC 229.77 19.14 PVC 259.77 19.14 PVC 259.42 27.70 PVC 259.42 25.42 PVC 254.43 25.42	214.41 46.01 21	213.74 44.8	214.95	45.15		45 58	21417
PVC 24214 2727 PVC 23960 16.92 PVC 258.87 24.68 PVC 243.4 Not measured PVC 248.7 Not measured PVC 248.7 Not measured PVC 219.76 Not measured PVC 219.76 Not measured PVC 219.76 Not measured PVC 239.77 Not measured PVC 259.77 Not measured PVC 259.77 Not measured PVC 259.77 PVC PVC 25	7.54	212.95 5.91	214.58	5.9	2	7.31	213.18
PVC 239460 16.92	28.52	213.62 26.45	215.69	27.53	214.61	27.96	214.18
24.08	16.78	222.82 16.74	22286	15.89		16.5	223.1
2-01A PVC 248.4 Not measured	19 26.78	8	232.01	24.24	234.63	24.95	233.92
25-10C PVC 248.79 Not measured	Not measured	Not measured	Not measured	22.17	221.23	22.8	220.6
2.2C	Not measured	Not measured	Not measured	29.96	218.83	30.47	21832
3–24A PVC 237.53 Not measured PVC 229.77 19.14 PVC 259.42 27.70 PVC 259.42 27.70 PVC 261.94 25.42 PVC 261.94 25.42	Not measured	Not measured	Not measured	18.93	219.46	19.6	218.79
PVC 25/23 Not measured PVC 259.77 19.14 PVC 259.42 27.70 PVC 261.94 25.42 PVC 261.94 25.42 PVC 254.43 28.30	Not measured	Not measured	Not measured	7.04	212.72	8.35	211.41
FVC 259.77 PVC 259.42 PVC 261.94 PVC 254.43	Not measured Not measu	Not measured	Not measured	15.95	221.58	17.04	220.49
FVC 25342 PVC 26194 PVC 25443	19.99		240.73	15.3	244.47	19.4	240.37
FVC 261.94 PVC 254.43	28.29		230.04	28.02	231.4	26.81	23261
FVC 234.43	26.8		235.2	23.9	238.04	25.67	236.27
C13C	28.62		225.5	27.47	226.96	28.07	226.36
	32.3		225.61	32.2	226.17	31.80	226.57
	227.04 31.51 22	226.81 32.13	226.19	31.48	226.84	30,99	227.33

			MAY 26, 1992	6, 1992	SEPT. 1	15, 1992	DECEMBE	DECEMBER 22, 1992	MARCH	MARCH 30, 1993 *	JUNE 22, 1993	2, 1993
STATION/	REF.	ELEV. OF	рерти	ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	от нтааа	ELEV. OF	DEPTH TO	ELEV. OF
WELL NO.	POINT	REF. PT.	TO WATER	WATER	TO WATER	WATER	TO WATER	WATER	WATER	WATER	WATER	WATER
SWEL-04	TOP OF STAKE		Not measured	Not measured	1.1	216.9	Not measured	Not measured	-0.3	218.3	4.55	215.05
G3M-92-01X	PVC	252.49		Not measured	25.49	227	25.85	226.64	25.47	227.02	25.11	227.38
G3M-92-02X	PVC	251.01	Not measured	Not measured	26.28	224.73	26.5	224.51	26.17	224.84	25.93	225.08
G3M-92-03X	PVC	250.90		Not measured	25.92	224.98	26.47	224.43	26.15	224.75	25.52	225.38
G3M-92-04X	PVC	252.86	Not measured	Not measured	28.53	224.33	29.09	77.23	Not measured	Not measured	28.11	224.75
G3M-92-05X	PVC	254.30	254.30 Not measured	Not measured	29.79	224.51	30.4	223.9	29.85		29.36	224.94
G3M-92-06X	PVC	253.71	Not measured	Not measured	27.18	226.53	27.84	225.87	27.29		26.72	226.99
G3M-92-07X	PVC	251.90	Not measured	Not measured	26.88	225.02	27.25	224.65	26.8	225.1	26.48	225.42
13M-92-01X	PVC	333.66	Not measured	Not measured	15.77	317.89	13.69	319.97	13.1	320.56	15.95	317.71
49M-92-01X	PVC	357.64	Not measured	Not measured	14.43	343.21	12.91	344.73	8.08	349.56	11.85	345.79
58M-92-01X	PVC	348.97	Not measured	Not measured	Not measured	Not measured	99.6	339.31	8.56	340.41	12.07	336.9
58M-92-02X	PVC	345.16	Not measured	Not measured	Not measured	Not measured	8.01	337.15	7.67	337.49	10.16	335
58M-92-03X	PVC	346.16	Not measured	Not measured	Not measured	Not measured	10.58	85'588	62.6	336.57	12.02	334.14
58M-92-04X	PVC	345.28	Not measured	Not measured	Not measured	Not measured	9'6	335.68	96.36	338.92	10.99	334.29
CSB-1	PVC	250.11	7.63	242.48	8.41	241.7	7.94	11757	2.67	244.44	7.31	242.8
CSB-2	PVC	77.77	17.62		18.92	238.85	18.55	239.22	18.22	239.55	17.48	240.29
CSB-3	PVC	267.48	24.69	242.79	25.98	241.5	25.96	241.52	25.42	242.06	24.6	242.88
CSB-4	PVC	247.54	3.81	243.73	3.65	243.89	3.32	244.22	3.57	243.97	3.72	243.82
CSB-5	PVC	245.19	Not measure	Not meast	Not measured	Not measured	Not measured	Not measured	Not measured	245.19	4.81	240.38
CSB-6	PVC	246.39	3.80	242.59	5.37	241.02	3.98	242.41	3.45	242.94	3.96	242.43
CSB-7	PVC	257.83			17.07	240.76	14.76	243.07	13.32	244.51	25.03	232.8
CSB-8	PVC	260.77	17.54	243.23	18.93	241.84	18.76	242.01	17.1	243.67	17.64	243.13
CSM-93-01A	PVC	256.18	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	16.21	239.97	15.56	240.62
CSM-93-02A	PVC	264.82		Not measured	Not measured	Not measured	Not measured	Not measured	24.56	240.26	24.73	240.09
CSM-93-02B	PVC	264.09	Not measur	Not meast	Not measured	Not measured	Not measured	Not measured	24.78	239.31	23.99	240.1
AAFES-01D	PVC	298.73	21.50		21.73	772	21.22	277.51	Not measured	Not measured	21.69	277.04
AAFES-02	PVC	302.71			26.03			276.99	24.89		26.2	. 276.51
AAFES-03	PVC	308.53		285.42	23.56		22.94	285.59	22.35		23.13	285.4
AAFES-04	PVC	310.00	Dry	P.	Dry	Δ	Dry	Dry	21.64		Not measured	Not measured
AAFES-05	PVC	300.82			24.43	276.39	23.9	276.92	16	284.82	24.36	276.46
AAFES-06	PVC	300.00			22.37	277.63	21.79	278.21	Not measured	Notmeasured	22.3	7.77.2
AAFES-07	PVC	259.42		250.46	9.64	249.78	8.53		Not measured	Not measured	9.14	250.28
3622W-01	PVC	364.11	10.81	353.3	15.33	348.78		350.73	5.89	358.22	15.03	349.08
3622W-02	PVC	362.22		6)	13.27	348.95		350.68	4.1	358.12	13.43	348.79
3622W-03	PVC	362.50	11.30		13.34	349.16	11.25	351.25	3.58	358.92	12.38	350.12
3622W-04	PVC	363.57	_	356.77	10.25	353.32	9	357.57	Not measured	Not measured	7.81	355.76
3602W-01	PVC	356.19	Not measure	Not measu	Not measured	Not measur		Not measured	6.48		8.22	347.97
3602W-02	PVC	356.58	9.09	347.49	10.98	345.6	Not measured	Not measured	7.45	349.13	10.31	346.27

199			MAY 26, 1992	6, 1992	SEPT. 1	. 15, 1992	DECEMBE	DECEMBER 22, 1992	MARCH 30 1093 *	30 1003 +	TITNE 22 1883	7 1003
STATION/	REF.	ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	DEPTH TO	FLEV OF	DEPTH TO	FI BV OF
WELL NO.	POINT	REF. PT.	TO WATER	WATER	TO WATER	WATER	TO WATER	WATER	WATER	WATER	WATER	WATER
3602W-03	PVC	356.82	8.96	347.86	10.98	345.84	10.6	346.22	8.65	1	0.15	247.67
3602W-04	PVC	355.40		347.94	8.85	346.55	5.8	349.6	4.38		7.01	347.40
GE-01	PVC	336.89		321.08	18.46	318.43	13.4	323.49	12.66		1817	218.77
GE-02	PVC	335.31	11.23	324.08	12.64	322.67	8.84	326.47	Not measured	Not mean	17.61	27366
GE-03	PVC	339.64	12.81	326.83	13.57	326.07	11.16	328.48	17 37	4-	13.80	37700
UST-01	CASING	348.89	16.62	33227	17.45	331.44	15.47	333.42	15 04		17.69	323.73
UST-02	PVC	349.51	18.05		19,44	330.07	17 30	33212	10.71		10.00	351.30
NBC-1	PVC	334.44	9.50	324.94	10.06	324.38	6.97	327.47	Not measured	Not mean	0.73	329.85
NBC-2	PVC	332.44	Dry	Dry	11.22	321.22	Ρ̈́Δ	Day	Not measured	Not measured	Not moon told	1/.47c
NBC-3	PVC	332.04		321.62	Dry	Dry	8.32	323.72	10.5		11 04	14Ot Illeasured
EA-04	PVC	252.89		229.05	24.09	228.8	24.86	228.03	24.28		73.27	176
EA-05	PVC	249.89		228.6	21.53	228.36	22.26	227.63	Not measured	Not meas	71.05	20.677
SWEL-03	BRIDGE RAIL		2	214.92	21.55	214.58	20.73	215.4	Not measured	Not measured	21.38	21.22
SWEL-06	TOP OF STAKE		1.41	243.75	1.57	243.59	1.32	243.84	18.4	+-	1 33	242.02
SWEL-07	TOP OF STAKE		1.39	241.61	2.15	240.85	Not measured	Not measured	0.41		1.50	245.05
SWEL-08	"0" MARKON	241.96	-0.33	242.29	0.3	241.66	-0.15	24211	-0.68		99.0-	242.62
	STAFF											
G3D-92-01X	TOP OF 1"	221.00	221.00 Not measured	Not measured	Not measured	Not measured	1.58	219.42	Not measured	Not measured	Not measured	Not measured
	GALV PIPE										TO INCOME TO A	na inceant iou
1-1	PVC	258.15	24.52	233.63	25.51	232.64	26.55	231.6	757	232.45	24.21	10100
1-2	PVC	256.76		233.05	24.69	232.07	25.46	231.3	24.68		17:47	722.24
1-3	PVC	258.68	25.43	233.25	26.42	232.26	27.18	231.5			25.67	40.000 40.000
1-4	PVC	259.94	26.13	233.81	27.04	232.9	28.02	231.92			75.82	233.3
2-1	PVC	263.31	19.91	243.4	20.23	243.08	21.16	24215	2017		30.01	71.4.67
2-2	PVC	264.19			21.12	243.07	22.03	242.16	21		20.02	244.00
2-3	PVC	264.08			21.58	242.5	22.55	241.53	21.57		20.51	242.57
2-4	PVC	263.56		243.13		242.75	21.7	241.86	20.73		10.8	743.76
3-1	PVC	336.55		316.43	21.1	315.45	21.75	314.8	Not measured	Not measi	10.64	316.01
3-2	PVC	335.75		316.43	20.32	315.43	21.04	314.71	Not measured	Not measured	18.81	316.94
3-3	PVC	334.89		316.68		315.67	19.92	314.97	Not measured	Not measured	17.68	317.21
3-4	PVC	335.06	18.30	316.76	19.3	315.76	19.92	315.14	Not measured	Not'measured	17.8	317.26
EOD-1	PVC	349.89	18.90	330.99	20.81	329.08	20.45	329.44	18.76	1-	19.52	330 37
EOD-2	PVC	349.93	25.30	324.63	25.41	324.52	25.6	324.33	25.88		25.16	27.8.77
EOD-3	PVC	343.67	26.43	317.24	ρχ	Dry	Dry	Dry	Not measured	Not meast	23.53	32014
EOD-4	PVC	35212	31.23	320.89	32.91	319.21	34.75	317.37	32.21		30.24	32188
12M-92-01X	PVC	266.32	Not measured	Not measured	46.78	219.54	46.32	220	45.12		46.46	210.86
27M-92-01X	PVC	244.86	Not measured	Not measured	12.49	232.37	13.25	231.61	23161 Not measured	Not meses	11.01	003.00
									no incommittee	TAOL IIICASUI CU	17.11	233.39

			MAY 26, 1992	6, 1992	SEPT: 15, 1992	15, 1992	DECEMBE	DECEMBER 22, 1992	MARCH	MARCH 30, 1993 *	JUNE 22, 1993	2, 1993
STATION/	REF.	ELEV. OF	рертн	ELEV. OF	DEPTH	ELEV. OF	DEPTH	ELEV. OF	от нтаас	ELEV. OF	рерти то	ELEV. OF
WELL NO.	POINT	REF. PT.	TO WATER	WATER	TO WATER	WATER	TO WATER	WATER	WATER	WATER	WATER	WATER
27M-92-02X	PVC	251.97	Not measured	Not measured	17.51	234.46	18.75	233.22	17.7	234.27	16.02	235.95
27M-92-03X	PVC	255.34		Not measured	19.6	235.74	20.95	234.39	Not measured	Not measured	18.00	237.34
27M-92-04X	PVC	254.81	-	Not measured	20.13		21.42	233.39	20.35	234.46	18.63	236.18
28M-92-01X	PVC	247.64		Not measured	9.59	238.05	9.35	238.29	5.62		8.03	239.61
28M-92-02X	PVC	245.54	-+	Not measured	8.62	236.92	8.03	237.51	6.18	239.36	7.22	238.32
28M-92-03X	PVC	241.72		Not measured	14.1	227.62	13.38	228.34	8.25	233.47	13.67	228.05
28M-92-04X	PVC	244.31	$\overline{}$	Not measured	8.62	235.69	8.02	236.29	5.2		7.48	236.83
41M-92-01X	PVC	249.58	Not measured	Not measured	26.92	222.66	25.0	224.58	24.68	224.9	25.92	223.66
SWEL-09	BRIDGE RAIL		2		21.94	213.57	Not measured	Not measured	15.6		20.85	214.66
SWEL-10	TOP OF STAKE				1.35	222.65	2.7	221.3	2.9	221.1	Not measured	Not measured
SWEL-11	BRIDGE RAIL			$\overline{}$	Not measured	Not measured	16.81	216.66	10.45	223.02	Not measured	Not measured
SWEL-12	TOP OF STAKE				Not measured	Not measured	1.4	224.6	26'0	225.05	Not measured	Not measured
SWEL-13	TOP OF STAKE				Not measured	Not measured	0.8	237.2	Not measured	Not measured	Not measured	Not measured
SWEL-14	TOP OF STAKE		1.37	316.93	Not measured	Not measured	1.6	316.7	1.45	316.85	Not measured	Not measured
	TOP OF STAKE		Not measured	Not measured	2.13	238.87	2.9	238.1	2.4	238.6	Not measured	Not measured
PATTON PROD	FLOOR/PUMP		39.00		Not measured	Not measured	Not measured	Not measured	14.5	7	Not measured	Not measured
	FLOOR/STATIC			238.47	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
McPHERSON	FLOOR/PUMP			186.49		Not measured	39	18249	•	213.49	Not measured	Not measured
PRODUCTION	FLOOR/STATIC					Not measured	6	212.49	Not measured	Not measured	Not measured	Not measured
SHEBOKEN	FLOOR/PUMP		26.20			Not measured	26.2	218.12	13.4	230.92	Not measured	Not measured
PRODUCTION	FLOOR/STATIC	244.32	12.00	232.32	Not measured	Not measured	14.8	229.52	Not measured	Not measured	Not measured	Not measured
SOUTH POST	FLOOR/PUMP		Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
WATER POINT	FLOOR/STATIC			Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
25M-92-05X	PVC	347.1	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
25M-92-06X	PVC	357.7		Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	5.79	290.2
25M-92-07X	PVC	371.2		Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	77.77	293.43
25M-92-08X	PVC	379.4	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	79.05	300.35
26M-92-01X	PVC	331.3	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
26M-92-02X	PVC	314.0		Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured
26M-92-03X	PVC	317.15		Not measured	Not measured	Not measured	Not measured	Not measured	31.8	285.35	Not measured	Not measured
26M-92-04X	PVC	330.62		Not measured	Not measured	Not measured	Not measured	Not measured	44.7	285.92	Not measured	Not measured
26M-92-05X	PVC	296.59		Not measured	Not measured	Not measured	Not measured	Not measured	9.3	287.29	Not measured	Not measured
26M-92-06X	PVC	302.59		Not measured	Not measured	Not measured	Not measured	Not measured	6.2	296.39	Not measured	Not measured
26M-92-07X	PVC	326.75		Not measured	Not measured	Not measured	Not measured	Not measured	38.35	288.4	Not measured	Not measured
32M-92-01X	PVC	260.93	_	Not measured	Not measured	Not measured	Not measured	Not measured	16.67	244.26	17.81	243.12
32M-92-02X	PVC	261.98		Not measured	Not measured	Not measured	Not measured	Not measured	20.3	241.68	21.7	240.28
32M-92-03X	PVC	260.99		Not measured	Not measured	Not measured	Not measured	Not measured	25		Not measured	Not measured
32M-92-04X	PVC	262.28	Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	9	256.28	17.78	244.5

REMEDIAL INVESTIGATION ADDENDUM REPORT FEASIBILITY STUDY FOR GROUP 1A SITES FORT DEVENS, MA

			MAY 26, 1992	6, 1992	SEPT.	SEPT. 15, 1992	DECEMBE	R 22 1992	DECEMBER 22 1992 MARCH 30 1003 *	1002 *	ONTH	1002
STATION/	REF.	ELEV. OF DEPTH		ELEV. OF	DEPTH	OF	DEPTH	FI FV OF	RIEV OF DEPTH TO BIEV OF DEPTH TO THEY OF	ELEV OF	DEPTH TO LI DY	1993
WELL NO.	POINT	REF. PT. TO WATER WATER	TO WATER	WATER	TO WATER	WATER WATER TO WATER WATER	TO WATER	WATER	WATER	WATED	WATER	u. 4 min
32M-92-05X	PVC	26204	262.04 Not measured	Not measured	No.			TO THE PARTY OF TH	WALLIN	MAILA	WAIER	WAIEK
230 00 3402	0.10		- 1	i soi illeasul cu	TAGE III EASURED	measured Not measured	Not measured Not measured	Not measured	10.25	251.79	17.44	2446
400-	rvC	261.69	201.69 Not measured	Not measured	Not measured	Not measured	Not measured	Not measured	09 6	******		0.11
32M-92-07X	PVC	8096	260 86 Not moseured	No.			יייי ווויייייייייייייייייייייייייייייי	ויסו ווופשפווו ויסו	00"/	11.467	14.35	247.34
)	00000	i vot illeasuleu	NOT measured	Not measured	measured Not measured	Not measured Not measured	Not measured	12.87	247 00	14.73	2177

• AT THE TIME OF THE MARCH 30, 1993 SYNOPTIC WATER – LEVEL MEASUREMENT ROUND, FORT DEVENS WAS EXPERIENCING A FLOOD EVENT.

SURVEY COORDINATES

W0069310.M80

APPENDIX F SURVEY COORDINATES

SITE ID	NORTHING	EASTING	GROUND ELEVATION	TOP OF RISER ELEV.
SHM-93-01A	566045	474380	241.7	243.40
SHM-93-10C	566178	574580	247.1	248.79
SHM-93-18B	585785	574881	236.2	238.38
SHM-93-22C	573189	567328	217.9	219.76
SHM-93-24A	564978	575005	235.5	237.53
SHL-3 (1)	566038	574614	NOT MEASURED	NOT MEASURED
SHL-5 (1)	567458	573895	NOT MEASURED	NOT MEASURED
SHL-11 (1)	566650	574197	NOT MEASURED	NOT MEASURED
SHL-19(1)	566280	574369	NOT MEASURED	NOT MEASURED
SHL-20(1)	566662	574164	NOT MEASURED	NOT MEASURED
SHL-22(1)	567496	573760	NOT MEASURED	NOT MEASURED
SHL-23 (1)	567250	573415	NOT MEASURED	NOT MEASURED
SWEL-04(1)	566091	574995	219.6	N/A
CSM-93-01A	557742	572214	254.9	256.18
CSM-93-02A	557498	571777	262.7	264.82
CSM-93-02B	557502	571763	262.5	264.09
CSB-2(1)	557639	571861	256.0	257.77
CSB-3(1)	557542	572211	NOT MEASURED	NOT MEASURED
CSB-4(1)	557769	572182	NOTMEASURED	NOT MEASURED
CSB-5	557805	572245	242.4	145,19
CSB-7(1)	557994	573016	NOT MEASURED	NOT MEASURED
CSB-8(1)	557683	572468	NOT MEASURED	NOT MEASURED
PATTON WELL (2)	557347	571411	250.6	241.09
SWEL-05 (1)	NOT MEASURED	NOT MEASURED	216.0	N/A
SHD-92-01X	566521	574371	NOT MEASURED	NOT MEASURED
SHD-92-02X	566100	574744	NOT MEASURED	NOT MEASURED
	566478	574693	NOTMEASURED	NOT MEASURED
SHD-92-03X	566478 566720	574693 574457	NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED
	566720	574457	NOT MEASURED	NOT MEASURED
SHD-92-03X SHD-92-04X		574457 575037	NOT MEASURED NOT MEASURED	
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X	566720 566179 566329	574457 575037 574960	NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X	566720 566179 566329 566476	574457 575037 574960 574820	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X	566720 566179 566329 566476 566594	574457 575037 574960	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X	566720 566179 566329 566476 566594 566789	574457 575037 574960 574820 574869 574608	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X	566720 566179 566329 566476 566594 566789 567035	574457 575037 574960 574820 574869 574608 574493	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X	566720 566179 566329 566476 566594 566789 567035 566254	574457 575037 574960 574820 574869 574608 574493 575285	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X	566720 566179 566329 566476 566594 566789 567035 566254 566411	574457 575037 574960 574820 574869 574608 574493 575285 575213	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-13X	566720 566179 566329 566329 566476 566594 566789 567035 566254 566411 566554	574457 575037 574960 574820 574869 574608 574493 575285 575213	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-13X SHD-92-14X	566720 566179 566329 566476 566594 566789 567035 566254 566411 566554 566685	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-13X SHD-92-14X SHD-92-15X	566720 566179 566329 566476 566594 566789 567035 566254 566411 566554 566685 566901	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-10X SHD-92-10X SHD-92-11X SHD-92-12X SHD-92-12X SHD-92-13X SHD-92-14X SHD-92-15X SHD-92-16X	566720 566179 566329 566476 566594 566789 567035 566254 566554 566554 566685 566901 567086	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-12X SHD-92-15X SHD-92-15X SHD-92-16X SHD-92-17X	566720 566179 566329 566329 566476 566594 566789 567035 566254 5666254 566685 566685 566901 567086 567255	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689 574573	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-13X SHD-92-14X SHD-92-15X SHD-92-15X SHD-92-16X SHD-92-17X SHD-92-17X SHD-92-17X SHD-92-18X	566720 566179 566329 566329 566476 566594 566789 5667035 566254 566411 566554 566685 566901 567086 567255 567236	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689 574573 574509	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-12X SHD-92-15X SHD-92-15X SHD-92-15X SHD-92-16X SHD-92-17X SHD-92-17X SHD-92-18X SHD-92-19X	566720 566179 566329 566329 566476 566594 566789 5667035 566254 566411 566554 566685 566901 567086 567236 56608	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689 574573 574509 575359	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-12X SHD-92-12X SHD-92-15X SHD-92-15X SHD-92-15X SHD-92-17X SHD-92-17X SHD-92-17X SHD-92-18X SHD-92-19X SHD-92-19X SHD-92-20X	566720 566179 566329 566329 566476 566594 566789 5667035 566254 566411 566554 566685 566901 567086 567256 56608 566747	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689 574573 574509 575359 575223	NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED
SHD-92-03X SHD-92-04X SHD-92-05X SHD-92-06X SHD-92-07X SHD-92-08X SHD-92-09X SHD-92-10X SHD-92-11X SHD-92-11X SHD-92-12X SHD-92-12X SHD-92-15X SHD-92-15X SHD-92-15X SHD-92-16X SHD-92-17X SHD-92-17X SHD-92-18X SHD-92-19X	566720 566179 566329 566329 566476 566594 566789 5667035 566254 566411 566554 566685 566901 567086 567236 56608	574457 575037 574960 574820 574869 574608 574493 575285 575213 575096 574997 574835 574689 574573 574509 575359	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED	NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED NOT MEASURED

APPENDIX F SURVEY COORDINATES

REMEDIAL INVESTIGATION ADDENDUM REPORT FEASIBILITY STUDY FOR GROUP 1A SITES FORT DEVENS, MA

SITE ID	NORTHING	EASTING	GROUND	TOP OF
			ELEVATION	RISER ELEV.
SHD-92-24X	567150	575283	NOT MEASURED	NOT MEASURED
SHD-92-25X	567488	575351	NOT MEASURED	NOT MEASURED
SHD-92-26X	566530	575407	NOT MEASURED	NOT MEASURED
SHD-92-27X	566442	574647	NOT MEASURED	NOT MEASURED
SHD-92-28X	566629	574371	NOT MEASURED	NOT MEASURED
SHD-92-29X	567658	574092	NOT MEASURED	NOT MEASURED
SHD-92-30X	567730	574065	NOT MEASURED	NOT MEASURED
SHD-92-31X	567687	573803	NOT MEASURED	NOT MEASURED
SHD-92-32X	567729	573713	NOT MEASURED	NOT MEASURED
GRW-92-01X	566182	575637	NOT MEASURED	NOT MEASURED
GRW-92-02X	566366	575594	NOT MEASURED	NOT MEASURED
GRW-92-03X	566701	575680	NOT MEASURED	NOT MEASURED
GRW-92-04X	564783	575621	NOT MEASURED	NOT MEASURED
GRW-92-05X	565332	575589	NOT MEASURED	NOT MEASURED
CSD-92-01X	558257	573064	NOT MEASURED	NOT MEASURED
CSD-92-02X	558212	573066	NOT MEASURED	NOT MEASURED
CSD-92-03X	558159	572947	NOT MEASURED	NOT MEASURED
CSD-92-04X	558254	572946	NOT MEASURED	NOT MEASURED
CSD-92-05X	558251	572814	NOT MEASURED	NOT MEASURED
CSD-92-06X	558019	572667	NOT MEASURED	NOT MEASURED
CSD-92-07X	557840	572291	NOT MEASURED	NOT MEASURED
CSD-92-08X	572259	557833	NOT MEASURED	NOT MEASURED
CSD-92-09X	557871	572240	NOT MEASURED	NOT MEASURED
CSD-92-10X	557905	572162	NOT MEASURED	NOT MEASURED
CSD-92-11X	557823	571902	NOT MEASURED	NOT MEASURED
CSD-92-12X	557906	571889	NOT MEASURED	NOT MEASURED
CSD-92-13X	557932	572794	NOT MEASURED	NOT MEASURED
CSD-92-14X	557865	572295	NOT MEASURED	NOT MEASURED
CSD-92-15X	557990	572584	NOT MEASURED	NOT MEASURED
CSD-92-16X	558158	572953	NOT MEASURED	NOT MEASURED
MAD-92-01X	557933	571851	NOT MEASURED	NOT MEASURED
MAD-92-02X	557939	571676	NOT MEASURED	NOT MEASURED
MAD-92-03X	557985	571348	NOT MEASURED	NOT MEASURED

NOTES:

^{(1) =} SITES WERE PREVIOUSLY SURVEYED, HISTORICAL SURVEY DATA MAY NOT AGREE

^{(2) =} COORDINATES ARE NORTHEAST CORNER OF BUILDING; ELEVATIONS ARE FIRST FLOOR OF WELL HOUSE AND BASEMENT CASING

FORT DEVENS PROJECT ANALYTE LIST

W0069310.M80

FORT DEVENS PROJECT ANALYTE LIST

List Inorganics
ALUMINUM
ANTIMONY
ARSENIC
BARIUM
BERYLLIUM
CADMIUM
CALCIUM
CHROMIUM
COBALT
COPPER
IRON
LEAD
MAGNESIUM
MANGANESE
MERCURY
NICKEL
POTASSIUM
SELENIUM
SILVER
SODIUM
THALLIUM
VANADIUM
ZINC

Project Analyte List Explosives

135TNB	1,3,5-TRINITROBENZENE
13DNB	1,3-DINITROBENZENE
246TNT	2,4,6-TRINITROTOLUENE
24DNT	2,4-DINITROTOLUENE
26DNT	2,6-DINITROTOLUENE
HMX	CYCLOTETRAMETHYLENETETRANITRAMINE
NB	NITROBENZENE
RDX	CYCLONITE
TETRYL	NITRAMINE
NG	NITROGLYCERINE
PETN	PENTAERYTHRITOI TETRANITRATE

APPENDIX G

Project Analyte List Anions/Cations

HCO3 BICARBONATE
CL CHLORIDE
SO4 SULFATE
NO3 NITRATE
CA CALCIUM
K POTASSIUM
MG MAGNESIUM

Project Analyte List Water Quality Parameters

CL CHLORIDES

N2KJEL TOTAL NITROGEN

NIT NO₃-N SO4 SULFATES

TPO4 TOTAL PHOSPHORUS

-- HARDNESS ALK ALKALINITY

TSS TOTAL SUSPENDED SOLIDS

DO DISSOLVED OXYGEN

COLIFORM

Project Analyte List Organics

Volatile Organic Compounds:

111TCE 1,1,1-TRICHLOROETHANE 112TCE 1,1,2-TRICHLOROETHANE

11DCE 1,1-DICHLOROETHYLENE / 1,1-DICHLOROETHENE

11DCLE 1,1-DICHLOROETHANE

12DCE 1,2-DICHLOROETHYLENES, TOTAL (CIS AND TRANS ISOMERS)

12DCLE 1,2-DICHLOROETHANE 12DCLP 1,2-DICHLOROPROPANE

ACET ACETONE

BRDCLM BROMODICHLOROMETHANE

C2AVE ACETIC ACID, VINYL ETHER/VINYL ACETATE

C2H3CL CHLOROETHENE / VINYL CHLORIDE

C2H5CL CHLOROETHANE

C6H6 BENZENE

CCL4 CARBON TETRACHLORIDE

CH3BR BROMOMETHANE
CH3CL CHLOROMETHANE
CH3CL CHLOROMETHANE

CHBR3 BROMOFORM

ABB Environmental Services, Inc.

C13DCP CIS-1,3-DICHLOROPROPYLENE C+S-1,3-DICHLOROPROPENE

CHCL3 CHLOROFORM

CL2CH2 DICHLOROMETHANE/METHYLENE CHLORIDE

CLC6H5 CHLOROBENZENE CS2 CARBON DISULFIDE

DBRCLM DIBROMOCHLOROMETHANE

ETC6H5 ETHYLBENZENE

MEC6H5 TOLUENE

MEK METHYLETHYL KETONE / 2-BUTANONE

MIBK METHYLISOBUTYL KETONE

MNBK METHYL-N-BUTYL KETONE / 2-HEXANONE

STYR STYRENE

T13DCP TRANS-1,3-DICHLOROPROPENE TCLEA 1,1,2,2-TETRACHLOROETHANE

TCLEE TETRACHLOROETHYLENE / TETRACHLOROETHENE

TRCLE TRICHLOROETHYLENE / TRICHLOROETHENE

TXYLEN XYLENES, TOTAL COMBINED

Project Analyte List Organics

Semivolatile Compounds:

124TCB	1,2,4-TRICHLOROBENZENE
12DCLB	1,2-DICHLOROBENZENE
13DCLB	1,3-DICHLOROBENZENE
14DCLB	1,4-DICHLOROBENZENE
245TCP	2,4,5-TRICHLOROPHENOL
246TCP	2,4,6-TRICHLOROPHENOL
24DCLP	2,4-DICHLOROPHENOL
24DMPN	2,4-DIMETHYLPHENOL
24DNP	2,4-DINITROPHENOL
24DNT	2,4-DINITROTOLUENE
26DNT	2,6-DINITROTOLUENE
2CLP	2-CHLOROPHENOL

2CNAP 2-CHLORONAPHTHALENE
2MNAP 2-METHYLNAPHTHALENE
2MP 2-METHYLPHENOL / 2-CRESOL

2NANIL 2-NITROANILINE 2NP 2-NITROPHENOL

33DCBD 3,3'-DICHLOROBENZIDINE

3NANIL 3-NITROANILINE

46DN2C 4,6-DINITRO-2-CRESOL / METHYL-4,6-DINITROPHENOL

4BRPPE 4-BROMOPHENYLPHENYL ETHER

ABB Environmental Services, Inc.

4CANIL 4-CHLOROANILINE 4CL3C 4-CHLORO-3-CRESOL / 3-METHYL-4-CHLOROPHENOL 4-CHLOROPHENYLPHENYL ETHER 4CLPPE 4MP 4-METHYLPHENOL / 4-CRESOL 4NANIL 4-NITROANILINE 4NP 4-NITROPHENOL **ANAPNE ACENAPHTHENE ANAPYL ACENAPHTHYLENE** ANTRC **ANTHRACENE B2CEXM BIS (2-CHLOROETHOXY) METHANE B2CIPE** BIS (2-CHLOROISOPROPYL) ETHER BIS (2-CHLOROETHYL) ETHER/2,2'-OXYBIS(1-OHLOROPROPANE) **B2CLEE B2EHP BIS (2-ETHYLHEXYL) PHTHALATE BAANTR** BENZO [A] ANTHRACENE **BAPYR** BENZO [A] PYRENE **BBFANT** BENZO [B] FLUORANTHENE **BBZP BUTYLBENZYL PHTHALATE BGHIPY** BENZO [G,H,I] PERYLENE **BKFANT** BENZO [K] FLUORANTHENE **BZALC** BENZYL ALCOHOL **CARBAZ CARBAZOLE CHRY CHRYSENE** CL6BZ **HEXACHLOROBENZENE** CL6CP **HEXACHLOROCYCLOPENTADIENE CL6ET HEXACHLOROETHANE DBAHA** DIBENZ [A,H] ANTHRACENE **DBZFUR DIBENZOFURAN DEP** DIETHYL PHTHALATE **DMP** DIMETHYL PHTHALATE **DNBP** DI-N-BUTYL PHTHALATE **DNOP DI-N-OCTYL PHTHALATE FANT FLUORANTHENE FLRENE FLUORENE HCBD HEXACHLOROBUTADIENE ICDPYR** INDENO [1,2,3-C,D] PYRENE **ISOPHR ISOPHORONE** NAP **NAPHTHALENE** NB **NITROBENZENE NNDNPA** N-NITROSO DI-N-PROPYLAMINE **NNDPA** N-NITROSO DIPHENYLAMINE

ABB Environmental Services, Inc.

PENTACHLOROPHENOL

PHENANTHRENE

PHENOL

PYRENE

PCP

PYR

PHANTR

PHENOL

Project Analyte List Organics

Pesticides and PCBs:

```
ABHC
       ALPHA-BENZENEHEXACHLORIDE / ALPHA-HEXACHLOROCYCLOHEXANE
ACLDAN ALPHA CHLORDANE
AENSLF ALPHA-ENDOSULFAN / ENDOSULFAN I
ALDRN ALDRIN
       BETA-BENZENEHEXACHLORIDE / BETA-HEXACHLOROCYCLOHEXANE
BBHC
BENSLF BETA-ENDOSULFAN / ENDOSULFAN II
       DELTA-BENZENEHEXACHLORIDE / DELTA-HEXACHLOROCYCLOHEXANE
DBHC
DLDRN DIELDRIN
ENDRN ENDRIN
ENDRNA ENDRIN ALDEHYDE
ENDRNK ENDRIN KETONE
ESFSO4 ENDOSULFAN SULFATE
GCLDAN GAMMA-CHLORDANE
HPCL
       HEPTACHLOR
HPCLE
       HEPTACHLOR EPOXIDE
LIN
       LINDANE / GAMA-BENZENEHEXACHLORIDE /
       GAMMA-HEXACHLOROCYCLOHEXANE
MEXCLR METHOXYCHLOR
PCB016
      PCB 1016
PCB221
       PCB 1221
PCB232
       PCB 1232
PCB242
       PCB 1242
PCB248
       PCB 1248
PCB254
       PCB 1254
PCB260
       PCB 1260
PPDDD
       2,2-BIS (PARA-CHLOROPHENYL)-1,1-DICHLOROETHANE
PPDDE
       2,2-BIS (PARA-CHLOROPHENYL)-1,1-DICHLOROETHENE
```

2,2-BIS (PARA-CHLOROPHENYL)-1,1,1-TRICHLOROETHANE

PPDDT

TXPHEN TOXAPHENE