Extraction of the Inclusive ν_{μ} CC Cross-Section

Wenqiang Gu Brookhaven National Laboratory | wgu@bnl.gov

1. MicroBooNE

- Accelerator ν experiment at Fermilab
 - o LArTPC with 85-ton active mass Near-surface operation
- Main physics goals
 - Investigate MiniBooNE low-energy excess
 - \circ Measure ν -Ar interaction cross sections

2. ν_u CC inclusive selection

	Efficiency	Purity	Cosmic- μ rejection
Trigger	1	5e-5	1
Generic- ν detection	80%	65%	7e-6
ν _μ CC (Fully & Partially Contained)	64%	93%	7e-7

MicroBooNE Preliminary

- Achieved excellent cosmic- μ rejection
 - O Wire-Cell reconstruction: JINST 16 (2021) 06, P06043
 - o **Generic-ν detection**: arXiv:2012.07928; Phys. Rev. Applied 15, 064071 (2021)
- High-statistics event selection allows for high-precision cross-section measurements o MICROBOONE-NOTE-1095-PUB

Reco hadron energy

5. Towards a cross-section extraction

- Extract the cross section $\sigma_{CC}(E_{\nu})$ with data unfolding technique
- More dimensions are allowed: $d\sigma_{CC}/dE_{\mu}$, $d\sigma_{CC}/d\nu$, $d\sigma_{CC}/dE_{\mu}d\theta_{\mu}$

3. Model validation: E_{ν} to E_{ν}^{rec}

- Neutrino energy modeling is crucial for neutrino oscillation measurements \circ Key challenge: understanding ν -Ar cross section as a function of energy
- A new procedure for validating E_{ν}^{rec} from model prediction/simulation:

$$E_{\nu}^{rec} = E_{\mu}^{rec} + E_{had}^{rec}$$

- \circ Simulated muon kinematics $(E_{\mu}^{rec}, cos\theta_{\mu}^{rec})$ are compared with data first
- \circ Hadronic energy (E_{had}^{rec}) is further validated given the constrained model prediction: constrain muon kinematics to that of data

Formalism of conditional constraint

$$\mu_{X,Y} = egin{pmatrix} \mu_X \ \mu_Y \end{pmatrix}$$
 , $\Sigma_{X,Y} = egin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$ Joint mean Joint covariance

$$\mu_{Y|X}^{\text{constrained}} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (X - \mu_X)$$

$$\Sigma_{Y|X}^{\text{constrained}} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

- A data-driven correction for the model prediction of Y given a measurement of X
- Common systematic uncertainties (e.g., flux) are reduced
- ⇒ more stringent model validation

4. Validation of hadron energy reconstruction

- After constraint with E^{rec} and $\cos \theta_{\mu}^{rec}$: no more excess at low hadronic energy
- Significant reduction in overall uncertainties $(20\% \rightarrow 5\%)$
- No sign of mis-modeling of the hadron missing energy

MC folding vs. data unfolding (a re-smearing process to extract truth model)

$$M_i = \sum_j R_{ij} S_j \iff \hat{S} = A_C \cdot R^{-1} \cdot M$$

- M: measured event distribution
- S: binned true distribution
- R_{ij} : response matrix (reco bin i and true bin j)
- A_C : regularization, also applied to models when comparing result to theoretic predictions