Schematic

Full Adder | Block Diagram & Constraints

Port	I/O Type	Label	Pin	
а	switch	SW0	V17	
b	switch	SW1	V16	
cin	switch	SW2	W16	
sum	LED	LD0	U16	
cout	LED	LD1	E19	

Checkpoint 2

2. Perform hardware test on FPGA using the following constraints.

Port	I/O Type	Label	Pin
a(1)	switch	SW3	W17
a(0)	switch	SW2	W16
b(1)	switch	SW1	V16
b(0)	switch	SW0	V17
sum(1)	LED	LD1	E19
sum(0)	LED	LD0	U16
carry	LED	LD2	U19

two bit adder

Checkpoint 1

- Construct 8-to-3 priority encoder according to previous slides.
- Do the testbench with at least 11 input cases.
 - 8 input cases for each input switch.
 - 3 input cases with at least 2 activated input switches.
 - increase the duration of wait for statement to 50 ns.
- Test on Basys 3 using the following constraints.

Name	Direction	Board Part Pin	Board Part Interface	Interface	Neg Diff Pair	Package Pin		Fixed	Bank	I/O Std	
▶ D[7]	IN					W13	~	~	14	LVCMOS33*	-
▶ D[6]	IN					W14	~	~	14	LVCMOS33*	-
▶ D[5]	IN					V15	~	~	14	LVCMOS33*	-
▶ D[4]	IN					W15	~	~	14	LVCMOS33*	-
▶ D[3]	IN					W17	~	~	14	LVCMOS33*	
▶ D[2]	IN					W16	~	~	14	LVCMOS33*	
▶ D[1]	IN					V16	~	~	14	LVCMOS33*	
▶ D[0]	IN					V17	~	~	14	LVCMOS33*	
√ O[2]	OUT					U19	~	~	14	LVCMOS33*	•
⊘ O[1]	OUT					E19	~	~	14	LVCMOS33*	-
⊘ [0] ⊘	OUT					U16	~	~	14	LVCMOS33*	

Constraints

LAB 9: counter 3 Bit (ounter

 π

Checkpoint 1

- Construct 3-bit synchronous counter using JK-FF.
 - Dataflow & structural coding style only.
- Use pin T17 as reset button.
- Use pin W5 as 100 MHz input clock.
- Adjust clock frequency to 1 Hz using clock divider.
- Display counter output by 3 LEDs (**LD12** as MSB, **LD11** and **LD10**).
- Simulate & test individual entity first.
 - Create 3 projects: JK-FF, clock divider, and 3-bit counter.
 - When submitting, show TA the simulation results from 3 projects and test the 3-bit counter project on Basys 3 board.

LAB 9: counter 3 Bit (ounter (+ 7 segment)

 π

Checkpoint 2

- Display the counter output from Checkpoint 1 using 7SEG.
 - Dataflow & structural coding style only.
- Reuse **sseg_decoder** from Lab 8.
 - The interface (input & output ports) may need to be adjusted.
- Test on Basys 3 board.

LAB 9: counter 3 Bit (ounter (+ 7 segment) (port)

```
set property IOSTANDARD LVCMOS33 [get ports clk]
set property IOSTANDARD LVCMOS33 [get_ports reset]
set property IOSTANDARD LVCMOS33 [get_ports {Q[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {Q[1]}]
set property IOSTANDARD LVCMOS33 [get_ports {Q[0]}]
set property PACKAGE PIN T17 [get ports reset]
set property PACKAGE PIN W5 [get ports clk]
set property PACKAGE PIN P3 [get ports {Q[2]}]
set property PACKAGE PIN U3 [get ports {Q[1]}]
set property PACKAGE PIN W3 [get ports {Q[0]}]
set property IOSTANDARD LVCMOS33 [get_ports {led[3]}]
set property IOSTANDARD LVCMOS33 [get_ports {led[2]}]
set property IOSTANDARD LVCMOS33 [get_ports {led[1]}]
set property IOSTANDARD LVCMOS33 [get_ports {led[0]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[6]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[5]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[4]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {sseg[2]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[1]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg[0]}]
set property IOSTANDARD LVCMOS33 [get ports {sseg en[3]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseq_en[2]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg_en[1]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg_en[0]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg_sel[3]}]
set property IOSTANDARD LVCMOS33 [get ports {sseg sel[2]}]
set property IOSTANDARD LVCMOS33 [get_ports {sseg_sel[1]}]
set property IOSTANDARD LVCMOS33 [get ports {sseg sel[0]}]
set property PACKAGE PIN V19 [get ports {led[3]}]
set property PACKAGE PIN U19 [get ports {led[2]}]
set property PACKAGE PIN E19 [get ports {led[1]}]
set_property PACKAGE_PIN U16 [get_ports {led[0]}]
set_property PACKAGE_PIN W7 [get_ports {sseg[6]}]
set property PACKAGE PIN W6 [get ports {sseg[5]}]
set property PACKAGE PIN U8 [get ports {sseg[4]}]
set property PACKAGE PIN V8 [get ports {sseg[3]}]
set property PACKAGE PIN U5 [get ports {sseg[2]}]
set property PACKAGE PIN V5 [get ports {sseg[1]}]
set property PACKAGE PIN U7 [get ports {sseg[0]}]
set_property PACKAGE_PIN W4 [get_ports {sseg_en[3]}]
set property PACKAGE PIN V4 [get ports {sseg en[2]}]
set property PACKAGE PIN U4 [get ports {sseg en[1]}]
set_property PACKAGE_PIN U2 [get_ports {sseg_en[0]}]
set property PACKAGE PIN R2 [get ports {sseg sel[3]}]
set property PACKAGE PIN T1 [get ports {sseg sel[2]}]
set_property PACKAGE_PIN U1 [get_ports {sseg_sel[1]}]
set property PACKAGE PIN W2 [get ports {sseg sel[0]}]
```

Basys 3 Reference Manual

• Basys 3 Reference Manual - Digilent Reference

