Neural Networks

Lecture 7: Advanced Recurrent Neural Architectures

http://www.informatik.uni-hamburg.de/WTM/

Revisited: **Recurrent** Artificial Neural Networks ...are everywhere.

Motion Tracking and Learning

Revision: Recurrent Neural Networks

- Simple Recurrent Neural Network
 - Previous activation adds context to the current activation

Examples:

- Elman Network
- Jordan Network

- Fully Connected Neural Network
 - Often called auto-associator

Examples:

- Hopfield Network (binary)
- Boltzmann machine (stochastic)

RNN Theory: Universal Dynamics Approximator

- RNN can have continuous activation function (sigmoidal) and continuous weight spaces
- RNN can approximate any finite sequence within Euclidean space \mathbb{R}^n (arbitrary but finite n)
- Proof sketch:
 - Model dynamical system as a superset of differential equations
 - Match superset by set of differential equations possible with RNN using sigmoidal function
 - Find RNN over n output units, m hidden units and certain initial state of network
- ⇒ RNN are Super-Turing (can solve NP-complete problems)
- Open issue: We can verify but not derive an RNN that solves an NP-complete problem [Siegelmann 1995]

Revision: Learning with Backpropagation Through Time (BPTT)

Important: employ a differentiable threshold function

Revision: The vanishing or exploding gradient problem

- Multiplication and nonlinearities at each step amplify the signal:
 - If the weights are small, the gradients shrink exponentially
 - If the weights are big, the gradients grow exponentially
- RNN trained on long sequences: influence of past inputs diminishes
 - usually for length >10

time

Back-propagation for Recurrent Neural Networks (cont.)

- Idea: unfold network in time and use a backprop variant:
 - Back-propagation through time
 - Real-time recurrent learning
 - Broyden–Fletcher–Goldfarb–Shanno method
 - Natural Gradient Descent
 - Conjugate Gradient Descent
 - •
- Also important: Online vs. Batch learning
 - Online: More exploration; more dynamic
 - Batch: Faster convergence to a minimum;
 steepest descent ≠ global minimum
 - Good Idea: Mini batches

First-order vs second-order gradient descent

Advanced RNN: Constrained SRN!

- Recurrent Neural Networks are efficiently applicable to
 - Sequence prediction, classification, generation
 - Applications: Handwriting and speech recognition, text summarisation and keywords spotting, attentive vision ...
- Advantages so far:
 - Bio-inspired method to problem solving using some context
 ... that is still deterministic and can be analysed
 ... that is still deterministic
- Issues:
 - Time leaks or disturbations in the sequences are destructive
 - Training methods are uninformed or slow
- Today's solution: constrain the SRN towards easier training or easier capturing the task's characteristics

1. RNN constraint: No training in hidden layers

- Revision: Echo State Network
 - Do not unfold (e.g. just the output layer)
 - Randomize untrained connections (input & hidden layers)
 - Use *linear* methods for training (e.g. Linear regression)

- Echo States Networks
 (H. Jaeger 2001)
 - Average firing-rate neurons (leaky or not)
- W. Maass 2002)
 - Spiking neurons

2. RNN constraint: Multiple context layers

Characteristics

- Arbitrary number of hidden & context layers
- Every context layer memorises a different degree of dynamics

Example:

Recurrent Plausibility Networks

Promises

- Architecture reflects short-context and larger-context memory
- Very robust against noise
- Can be trained with backprop

Recurrent Plausibility Networks (RPN)

RPN: Activation and learning

Units of context layers perform time-averaging

$$C_{n,i}(t) = (1 - \varphi_n)H_{n,i}(t-1) + \varphi_nC_{n,i}(t-1)$$
hysteresis value

Learning: Employ **back propagation in RPN**:

$$\Delta w_{ij}(t) = \begin{cases} \left(d_{j}(t) - y_{j}(t)\right) \cdot f'(z_{j}(t)) \cdot y_{i}(t) & \text{if } i \in H(t), j \in O(t) \\ \left(\sum_{k} \delta_{k}(t) \cdot w_{jk}\right) \cdot f'(z_{j}(t)) \cdot y_{i}^{*}(t) & \text{otherwise} \end{cases}$$

for an arbitrary

FFN SRN

RPN

$$z_j(t) = \sum_{l} \sum_{i} w_{ij} y_i(t-l)$$
, for $l \in (0,..., t_l)$, t_l is maximal time step

RPN experiment (Arevian 2007)

- Classification on the Reuters-21578 Corpus
 - Task: determine a category of a news title
 - Dataset of 21578 news with 118 categories
 - Example:

```
<REUTERS TOPICS=''YES'' LEWISSPLIT=''TRAIN''
CGISPLIT=''TRAINING-SET'' OLDID=''12981'' NEWID=''798''>
<DATE> 2-MAR-1987 16:51:43 42</DATE>
<TOPICS><D>livestock</D><D>hog</D></TOPICS>
<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>
<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The American Pork
Congress kicks off tomorrow, March 3, in Indianapolis with 160
```

trade show, in conjunction with the congress, will feature the latest in technology in all areas of the industry, the NPPC added. Reuter

\&\#3;</BODY></TEXT></REUTERS>

- Experiment:
 - Train on a sub-set (1,040 titles)
 - Test on 9,663 titles

RPN experiment: Classification results & noise

Method	Mean performance - 50 networks (%)		
	Recall	Precision	F_1 Measure
Randomised	92.72	92.12	92.42
Original Corpus	92.59	91.73	92.16
Reversed	92.26	91.39	91.83
Noise Factor 2	92.39	91.63	92.01
Noise Factor 4	91.28	90.37	90.82
Noise Factor 6	86.40	85.63	86.01

$$precision = \frac{tp}{tp + fp}$$

$$recall = \frac{tp}{tp + fn}$$

$$F_{score} = \frac{(1 + N^{2}) \cdot pre \cdot rec}{pre + (N^{2} \cdot rec)}$$

$$F_{1} \text{ Measure} :$$

$$F_{score} \text{ with } N = 1$$

Noise: Introduce **stop-words** at **random** ⇒ Increase length of titles from e.g. 8 words to 16 (x2), 32 (x4) or 48 (x6) words

Adding *noise* leads to *graceful degradation*!

How to determine Hysteresis parameters?

- Depending on the problem!
 - Good choice:
 smaller values for
 first context layers,
 higher values for
 second context layers
- On Reuters corpus on average:
 - $\varphi(C_1) = 0.2$
 - $\varphi(C_2) = 0.7$

Hysteresis plots for sequential dataset with average title length of 8 words.

RPN experiment summary

- Advantages
 - RPN can better capture the important context
 no matter whether relevant words occur
 in the beginning or the end of a sequence
 ⇒ Local context / local word order is less important
- Disadvantages
 - Still a complex network: many Parameters
- Hysteresis values can tune the reach-out of the context units

3. RNN constraint: Avoid error multiplication

- Characteristics
 - Architectural solution to vanishing gradient problem
 - Place recurrent connection before nonlinearity

Example:

Long Short-Term Memory

- Promises
 - Gradients do not vanish or explode

Long Short-Term Memory block

Linear cell + constant "Error Carousel"

Block Output

 Gates surround the cell, blocking information flow

⇒ called memory block.

unweighted connection

— weighted connection

connection with time-lag

- branching point
- multiplication
- sum over all inputs
- gate activation function (sigmoid)
- g_i input activation function (usually tanh)
- output activation function (usually tanh)

[Hochreiter 1997 / Greff 2015]

18

LSTM: Activation

LSTM experiment (Graves 2008)

 Trained handwriting strokes and tested for recognition

Outcome:

- LSTM learns long range contextual information
 - Successful on unsegmented data
 - Out-performed all HMM/GMM approaches at that time

Once having handwriting preprocessing LSTM outputs Forward Layer **Backward Laver** classification (CTC) dictionary and having language model Once hay

[Graves et al. 2008]

[check interactive activation-visualisation:

https://distill.pub/2016/handwriting/]

LSTM analysis and summary

- Advantages:
 - Capture long-term dependencies
 - Currently most popular unit model, started industrial applications of RNNs
- Disadvantages:
 - Like SRN: sensitive to initialization
 - Not biologically plausible
 - Complexity, number of parameters, "ad hoc" design choices
- Gated Recurrent Units (GRU) are less complex and have been shown to behave very similar to LSTM
- Recently suggested simpler models have been shown to surpass LSTMs on specific domains

4. RNN constraint: Multiplicity of time

Characteristics

- Multiple context layers with different timescales
 ⇒Approximates different delays of spikes
- Context controlling nodes that bias the sequence
 Example:
- Multiple Timescale Recurrent Neural Network
- Also related to
 - RPN with hysteresis concept
 - Various recent networks with leakage concept

Promises

- Self organising of different aspects of the sequences
- Hierarchy of dynamics can emerge

Link to BAI: From Spiking to Rate-Coding

- Firing-rate models: approximation of continuous models
 - Approximation of activation update
 - Derivation of output firing rate over time t:

time constant how rapidly the firing rate approaches its steady state value

- Models exponential dynamics of activation at neuron's membrane
- Leaky integrator model: RC-circuit equivalent
- Firing-Rate approach allows to model large networks

Multiple Timescale Recurrent Neural Network

MTRNN: Activation and learning

time constant τ

output activity $y_{t,i} = f(z_{t,i}, b_i)$

$$y_{t,i} = f(z_{t,i}, b_i)$$

Backprop Learning:

$$\Delta w_{ij} = \frac{1}{\tau_i} \cdot \sum_{t} x_{t,j} \frac{\partial E}{\partial z_{t,i}}$$

MTRNN experiment A (Yamashita 2008)

- Trained motor sequences
 - Learn *primitives*:

 Learn combinations of primitives

...and test for the occurrence of a hierarchy

Reproduced with the ICub: [http://www.italkproject.com]

MTRNN experiment A: Analysis

- Question: How does the network self-organize?
- Approach: Run a
 Principle Component
 Analysis on the
 neural activity

Result: Emergence of a functional hierarchy

MTRNN experiment B (Hinoshita 2011)

 Trained sentences and tested for emulation and recognition

Interesting observation:

- Linguistic *hierarchy* emerges in the network:
 - Word representations in the Cf
 - Sentence representations in the Cs
- Linguistic structure can produce sentences from the *inferred* grammar.
 - Even if they where not learned explicitly!

MTRNN experiment B: Analysis

 MTRNN is decomposing the data

- Same words have nearly identical trajectories
- Words in the same categories have similar trajectories

► : initial activation
► - • : transition segment (head margin, space or period)

Activity of network over time is reduced to 2 or 3 principle components ⇒ shown as trajectory in 2D or 3D

 Sentences are represented as trajectory with segments for roles that can have different role fillers.

MTRNN experiments summary

- Deterministic recurrent neural network
- Can recognize, generate and correct sequences
- Self-organizing internal hierarchical structure
- Uses fast and slow adapting context nodes
- Issue: BPTT difficult to calculate in real time
- Advantages:
 - Reproduces
 compositionality
 in the data

5. RNN constraint: Learn on different timescales

- Characteristics
 - Constrain activation time steps
 - Partition hidden layer H into separate modules

Example:

Clockwork Recurrent Neural Network

Promises

- Reduce vanishing gradient problem
- Pick up different timings, inherent in data
- Use any arbitrary form of backprop
- Low number of parameters

Clockwork Recurrent Neural Network

- Assign a clock period T_k to each module k
- For each time step t:
 - Apply activation function if module is active
 - Otherwise, keep module activations from previous time step

Clockwork RNN activation function

Activation value of the neuron in kth module:

$$z_{t,k} = \begin{cases} f_h \left(x_t \cdot \mathbf{W}_{x,k} + \sum_{l=k}^n h_{t-1,l} \mathbf{W}_{l,k} \right) & \text{if } t \text{ mod } T_k = 0 \\ h_{t-1,k} & \text{otherwise} \end{cases}$$
adjacent modules

Module k is only updated if t is multiple of clock period

Clockwork RNN unfolded in time

- Training:
 - Error propagated according to "activeness"

[Koutnik et al. 2014]

Analysis: Sequence generation

Task: Learn to reproduce combination of sine waves

[Alpay et al. 2016]

Clockwork analysis and summary

- Advantages:
 - Emergence of different timescales in processing
 - Captures temporal dependencies more efficient than other networks
 - Store entire sequences in memory of clocked modules
- Output
 Hidden
 Input

- Disadvantages:
 - Good clock periods are dependent on data
 - So far no mechanism known to learn the clock periods
- Timescale effect is similar to MTRNNs but based on selective update instead of long term accumulation

6. RNN constraint: Memory augmentation

Characteristics

- Adds external memory bank for arrays of vectors
- Reads and writes all memory via the attention mechanism
 Example:
- Neural Turing Machine, Differentiable Neural Computer

Promises

- Joins Turing Machine with Super-Turing complexity
- Circumvent vanishing gradient problem
- Transfer: Can learn algorithms

Neural Turing Machine / Differentiable Neural Computer

- DNC can make use of trained memory content
 - Focus attention content-based and location-based
 - Effectively loop over activation patterns

NTM/DNC: Memory usage

$$M_i \leftarrow \frac{a_i w + (1 - a)_i M_i}{a_i}$$

DNC experiments (Graves et al. 2016)

- Trained on
 - graph tasks for generalisation
 - game tasks for action generation

Outcome:

- Can learn algorithms
 - Transfer representations to other situations
 - Out-performed LSTMs on difficult sequence tasks

Family tree task

Train a DNC by reinforcement learning: Let the DNC produce actions but never show it the answer.

[Graves et al. 2016 / https://deepmind.com]

Block puzzle task

DNC analysis and summary

- Advantages:
 - Accessing all memory at once keeps the network differentiable
 - For toy problems (so far): transfer learning!
- Disadvantages:
 - Sequence learning tasks still "easy"
 - Brand new research!
 Not sure if promises are kept
- Alternative mechanisms to access memory are just getting researched
 - stay tuned!
 - Neural Random Access Machines (Kurach et al.)
 - Stack-Augmented Recurrent Nets (Joulin et al.)

. . .

Summary

- Recurrent Neural Networks with different constraints are efficient neural methods for various tasks and
 - Can reduce side effects of gradient descent methods
 ⇒ reduce vanishing/exploding gradient problem
 - Can make use of specific context information
 - Can approximate key patterns of time-series/sequences
 ⇒ find and use timescales in the data
- Offer high degree of noise robustness even to significant disturbations in the sequences
- Allow general neural architectures to be developed

Further reading

- Wermter, S., Panchev, C. and Arevian, G., Hybrid Neural Plausibility Networks for News Agents. In AAAI/IAAI, pp. 93-98, 1999.
- Arevian, G. Recurrent Neural Networks for Robust Real-World Text Classification. IEEE/WIC/ACM International Conference on Web Intelligence WI07, pp. 326-329, 2007
- Greff, K., et al., LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069, 2015.
- Yamashita, Y., & Tani, J. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. *PLoS Comput Biol*, 4(11), 2008.
- Koutník, J., et al., A Clockwork RNN, Proceedings of the 31st International Conference on Machine Learning, ICML. Beijing, China, 2014.
- Graves, Alex, et al. Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 2016.