Chapter 1

Nonlinear Optimization

In this chapter, we mainly focus on:

- Main notations and concepts used in Continuous Optimization.
- Complexity Analysis of the problems of Global Optimization.
- Local Minimization and 2 main methods: the Gradient Method and the Newton Method.
- Some standard methods in General Nonlinear Optimization.

1.1 The World of Nonlinear Optimization

1.1.1 General Formulation of the Problem

Let \boldsymbol{x} be an n-dimensional $real\ vector$

$$\boldsymbol{x} = \left(x^{(1)}, \dots, x^{(n)}\right)^{\top} \in \mathbb{R}^n$$

and $f_0(\cdot), \ldots, f_m(\cdot)$ be some *real-valued* functions defined on a set $Q \subset \mathbb{R}^n$. In this way, let's consider the general minimization problem:

$$\min f_0(\boldsymbol{x}),$$
s.t. $f_j(\boldsymbol{x}) \& 0, \quad j = 1, \dots, m,$

$$\boldsymbol{x} \in Q,$$

$$(1.1)$$

where the sign & can be \leq , \geq or =.

Notations:

- f_0 is called *objective* function.
- The vector function $f(x) = (f_1(x), \dots, f_m(x)^\top)$ is called the vector of functional constraints.
- The set Q is called the basic feasible set.
- The set $\mathscr{F} = \{x \in Q \mid f_j(x), j = 1, \dots, m\}$ is called the entire feasible set of problem 1.1.

Classification

Natural Classification:

- Constrained problems: $\mathscr{F} \subset \mathbb{R}^n$.
- Unconstrained problems: $\mathscr{F} \equiv \mathbb{R}^n$.
- Smooth problems: all $f_i(\cdot)$ are differentiable.
- Nonsmooth problems: there are several nondifferentiable components $f_k(\cdot)$.
- Linearly constrained problems: the functional constraints are affine:

$$f_i(x) = \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i$$

- Linear optimization Problem: $f_0(\cdot)$ is also affine.
- Quadratic optimization problem: $f_0(\cdot)$ is Quadratic.
- Quadratic constrained quadratic problem: $f_0(\cdot), \ldots, f_m(\cdot)$ are all quadratic.

Classification Based on the Feasible Set:

- Problem 1.1 is called *feasible* if $\mathscr{F} \neq \emptyset$.
- Problem 1.1 is called *strictly* feasible if there exists an $x \in Q$ such that $f_j(x) < 0$ for all inequality constraints and $f_j(x) = 0$ for all equality constraints. (Slater condition.)

Classification Based on Solution:

- A point $x^* \in \mathscr{F}$ is called the optimal global solution to problem 1.1 if $f_0(x^*) \leq f_0(x)$ for all $x \in \mathscr{F}$ (global minimum). $f_0(x^*)$ is called the global optimal value of the problem.
- A point $\mathbf{x}^* \in \mathscr{F}$ is called a *local solution* to problem 1.1 if there exists a set $\hat{\mathscr{F}} \subset \mathscr{F}$ such that $\forall \mathbf{x} \in \inf \hat{\mathscr{F}}, \ f_0(\mathbf{x}^*) \leq f_0(\mathbf{x})$. If $\forall \mathbf{x} \in \hat{\mathscr{F}} \setminus \{\mathbf{x}^*\}, \ f_0(\mathbf{x}^*) \leq f_0(\mathbf{x})$, then \mathbf{x}^* is called *strict* (or *isolated*) local minimum.