

MODELO UNIFACTORIAL DE EFECTOS FIJOS

Modelos Lineales

Docente: Marcos Sanchez Eduardo

Last Update: 2nd December 2023

Lin Chiu.Chen Yang¹,

CONCEPTOS PREVIOS

Factor: Tipo de Abono

Tratamientos o niveles: A, B, C

Tipo A	Tipo B	Tipo C
y 11	y 21	У31
y ₁₂	y 22	y 32
y 13	y 23	y 33
:	:	:
y_{1r}	y_{2r}	y_{3r}

PLANTEAMIENTO DEL MODELO

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$$

$$X_1 \begin{cases} 1 & \text{si se aplicó } A \\ 0 & \text{; } caso \ contrario \end{cases}$$

$$X_2 \begin{cases} 1 \; ; \; si \; se \; aplic\'o \; B \\ 0 \; ; \; caso \; contrario \end{cases}$$

$$X_3$$
 $\begin{cases} 1 \; ; \; si \; se \; aplic\'o \; C \\ 0 \; ; \; caso \; contrario \end{cases}$

$$Y_{11} = \beta_0 + \beta_1 + 0 + 0 + \varepsilon_{11}$$

$$Y_{12} = \beta_0 + \beta_1 + 0 + 0 + \varepsilon_{12}$$

$$\vdots$$

$$Y_{21} = \beta_0 + 0 + \beta_2 + 0 + \varepsilon_{21}$$

$$Y_{22} = \beta_0 + 0 + \beta_2 + 0 + \varepsilon_{22}$$

$$\vdots$$

$$Y_{31} = \beta_0 + 0 + 0 + \beta_3 + \varepsilon_{31}$$

$$Y_{32} = \beta_0 + 0 + 0 + \beta_3 + \varepsilon_{32}$$

$$\vdots$$

REPRESENTACIÓN MATRICIAL

$$Y = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & & & & \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ \vdots & & & & \\ 1 & 0 & 1 & 0 \\ \vdots & & & & \\ 1 & 0 & 0 & 1 \\ \vdots & & & & \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \varepsilon$$

$$Y_{3r*1} = X_{3r*4} \beta_{4*1} + \varepsilon_{3r*1}$$

$$Y_{ij} = \beta_0 + \beta_i + \varepsilon_{ij}$$

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

 Y_{ij} : crecimiento de planta j — esima al que se aplica el tratamiento i — esimo

 β_0 : efecto de la media global

 β_i : efecto del tratamiento i — esimo

 ε_{ij} : error aleatorio al medir Y_{ij}

ESTIMACIÓN DE PARÁMETROS

I. POR REPARAMETRIZACIÓN

¿ Podemos estimar β ? por metodo MCO sabemos

$$\hat{\beta}_{MCO} = (X'X)^{-1}X'Y$$

X de rango incompleto $(x'x)^{-1}$ es imposible, entonces **reparametrizamos**

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
$$\mu + \tau_i = \mu_i$$

Entonces el modelo se escribiría de la siguiente forma:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

REPRESENTACIÓN MATRICIAL

Vamos a representar $Y_{ij} = \mu_i + \varepsilon_{ij}$ *en forma matricial*:

$$\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ \vdots \\ y_{1n} \\ y_{21} \\ \vdots \\ y_{tr} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix} * \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \vdots \\ \mu_{t} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \vdots \\ \varepsilon_{1n} \\ \varepsilon_{21} \\ \vdots \\ \varepsilon_{tr} \end{bmatrix}$$

$$\widehat{\beta^*}_{MCO} = (W'W)^{-1} W'Y$$

Entonces tendria la forma : $Y = W\beta^* + \varepsilon$

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

Supuestos:
$$\epsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2) \text{ y } \sum_{i=1}^t \tau_i = 0$$

Estructura matricial:

$$\mathbf{Y} = \mathbf{X}\beta + \varepsilon; \text{ donde:}$$

$$\mathbf{X} = \begin{bmatrix} 1_t \otimes 1_r : \mathbb{I}_t \otimes 1_r \end{bmatrix}; \quad \beta = \begin{bmatrix} \mu, \ \tau_1, \ \tau_2, \ \cdots, \ \tau_t \end{bmatrix}'$$

$$\varepsilon \sim \mathcal{N}_{tr}(0, \sigma_{\varepsilon}^2 [\mathbb{I}_t \otimes \mathbb{I}_r]); \quad \mathbf{Y} \sim \mathcal{N}_{tr}(\mathbf{X}\beta, \sigma_{\varepsilon}^2 [\mathbb{I}_t \otimes \mathbb{I}_r])$$

Prueba de significancia del factor:

Reparametrizamos el modelo: $y_{ij} = \mu_i + \epsilon_{ij}$ con $\epsilon_{ij} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^2)$ $H_o: \mu_j = \mu, \forall j \ vs \ H_1: \mu_j \neq \mu$, para al menos un j.

Prueba de Hipótesis para los tratamientos de efectos fijos:

$$\Rightarrow H_o: \tau_1 = \tau_2 = \dots = \tau_t = 0 \quad \textit{vs.} \quad H_1: \tau_1 \neq \tau_2 \neq \dots \neq \tau_t \neq 0$$
 Para: $\mathbf{Y} \sim \mathcal{N}_{tr}(\mathbf{X}\beta, \, \sigma_\varepsilon^2 \left[\mathbb{I}_t \otimes \mathbb{I}_r \right])$

$$F_c = \frac{\frac{Y'\left[\mathbb{H}_t \otimes \frac{1}{r}\mathbb{J}_r\right]Y}{t-1}}{\frac{Y'\left[\mathbb{I}_t \otimes \mathbb{H}_r\right]Y}{t(r-1)}} \sim F_{(t-1,t(r-1))}$$

Réplicas	Trt. 1	Trt. 2	Trt. 3		Trt. t
1	y 11	y ₂₁	y 31		y_{t1}
2	y ₁₂	y_{22}	y_{32}		y_{t2}
3	y 13	y 23	У 33	•••	y_{t3}
:	:	:	:	٠.	:
r	y_{1r}	y_{2r}	y_{3r}		y_{tr}
	$\overline{Y}_{1.}$	$\overline{Y}_{2.}$	$\overline{Y}_{3.}$		$\overline{Y}_{t.}$

$$\sum_{i=1}^{t} \sum_{j=1}^{r} (y_{ij} - \overline{Y}_{..})^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r} (y_{ij} - \overline{Y}_{i.})^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} (\overline{Y}_{i.} - \overline{Y}_{..})^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{SCT} \qquad = \qquad \mathsf{SCR} \qquad + \qquad \mathsf{SCE}(\mathsf{T})$$

Sin embargo:

$$\sum_{i=1}^{t} \sum_{j=1}^{r} y_{ij}^{2} = tr \overline{Y}_{..}^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} (y_{ij} - \overline{Y}_{i.})^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r} (\overline{Y}_{i.} - \overline{Y}_{..})^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathsf{SCT*} = \mathsf{SCE}(\mu) + \qquad SCR \qquad + \qquad SCE(T)$$

Tabla ANVA

EJEMPLO

Se llevó a cabo un experimento a fin de determinar si cuatro temperaturas de cocción específicas afectan la densidad de cierto tipo de ladrillo. El experimento produjo los siguientes datos:

Temperatura	Densidad				
100	21.8	21.9	21.7	21.6	
125	21.7	21.4	21.5	21.4	
150	21.9	21.8	21.8	21.6	
175	21.9	21.7	21.8	21.4	

SOLUCIÓN

Modelo

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

para i = 1, 2, 3, 4 y j = 1, 2, 3, 4, en donde:

- y_{ij} : Es la j-ésima medición de densidad (Kg/m^3) del ladrillo en la i-ésima temperatura.
- μ : Es la densidad media global del ladrillo.
- τ_i : Efecto de la *i*-ésima temperatura.
- e_{ij} : Error de de la observación y_{ij} .

SOLUCIÓN

Hipótesis

$$\begin{cases} H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4 \\ H_1: \mu_i \neq \mu_j \text{ para algún i, j} \end{cases}$$

Para un $\alpha = 0.05$

Decisión

$$2,5126 < 3,4903 \Longrightarrow No se rechaza H_0$$

Conclusión

Se puede concluir con un $\alpha=0.05$ que las cuatro temperaturas fijadas no influyen significativamente en la densidad del ladrillo.