Mixing it up with random effects

Joshua Loftus

What is a mixed model?

For simplicity we'll only talk about linear models.

Mixed GLS

$$\mathbf{y} = \mathbf{X}\beta + \mathbf{Z}\mathbf{b} + \epsilon$$
, $Cov(\mathbf{y}) = \Sigma$

- \blacksquare β , **b**, and ϵ are all unobserved
- lacksquare is a vector of *parameters*
- **b** is a vector of random variables
- \bullet error with $E(\epsilon) = 0$, $Cov(\mathbf{b}, \epsilon) = 0$
- Inference about (β, Σ) from conditional distribution $\mathbf{y} | \mathbf{b}$

Examples

Mixed GLS

$$\mathbf{y} = \mathbf{X}\beta + \mathbf{Z}\mathbf{b} + \epsilon$$
, $Cov(\mathbf{y}) = \Sigma$

- "Random slopes and intercepts"
- Error is not i.i.d. / Clustered errors
- Test scores of students, school effect, teacher effect Assume $\mathbf{b} \sim N(0, \sigma_T^2 I)$. What if σ_T^2 is large? Small? What if there are only a handful of teachers in the study?
- lacktriangle Repeated measures / Longitudinal, e.g. gene \sim drug * time

Fitting the model

- If $Var(\mathbf{b}) = \mathbf{D}$ and $Var(\epsilon) = \mathbf{R}$ then $Var(\mathbf{y}) = \mathbf{R} + \mathbf{Z}\mathbf{D}\mathbf{Z}^T$
- **R**, **D**, and maybe even **Z** are functions of another parameter θ ("variance components")
- lacktriangle Often reasonable to assume multivariate normality of lacktriangle lacktriangle
- Maximum likelihood estimation of θ based on $L(\theta, \beta; \mathbf{y})$ does not account for loss in degrees of freedom caused by estimating β . Analogous to $\hat{\sigma}/n$ vs. $\hat{\sigma}/(n-p)$
- REML based on "residual" of y (residual contrasts)
- REML coincides with ANOVA for balanced designs

Fitting mixed models in R with Ime4

Examples using the lme4 package in R

- pitch \sim gender + (1|subject) + (1|scenario)
- price \sim time + (time|product)
- $lue{}$ participation \sim extroversion + (1|school/class)

Read more (these links were also in the email I sent earlier)
http://cran.r-project.org/web/packages/lme4/
vignettes/lmer.pdf
http://cran.r-project.org/web/packages/lme4/lme4.pdf

4D + 4P + 4E + 4E + 990

Formulas in Ime4

Formula	Alternative	Meaning
(1 g)	1 + (1 g)	Random intercept
		with fixed mean
0 + offset(o) + (1 g)	-1 + offset(o) + (1 g)	Random intercept
(4 -4 (-0)	(4 -4) (4 -4 - 0)	with a priori means
(1 g1/g2)	(1 g1)+(1 g1:g2)	Intercept varying
		among g1 and g2 within g1
(1 g1)+(1 g2)	1 + (1 g1) + (1 g2)	Intercept varying
(1 82) (1 82)	1 (1 81) (1 82)	among g1 and g2
$x + (x \mid g)$	1 + x + (1 + x g)	Correlated random
· ·	· ·	intercept and slope
$x + (x \mid\mid g)$	1 + x + (1 g) + (0 + x g)	Uncorrelated random
		intercept and slope

Table 2: Examples of the right-hand sides of mixed-effects model formulas. The names of grouping factors are denoted g, g1, and g2, and covariates and a priori known offsets as x and o.

Discussion

- Questions?
- More examples: fixed effects vs. random effects
- Next topic? Time series Bootstrap Multiple comparisons + selective inference

Causal inference

Missingness / data cleaning / etc

Bonus session on basic stats?