Name:-Deeraj Kumar vecham Subbaraju

UCID:-dl585

SP25-CS634854 Data Mining

MIDTERM PROJECT

<u>Title:</u> Comparative Analysis of Apriori and Brute Force Algorithms with different Datasets

Abstract:

This project focuses on implementing data mining techniques to identify frequent itemsets and association rules using three different approaches: the brute force method and the Apriori algorithm. By applying these methods to multiple datasets, I compare their efficiency and accuracy to determine the most effective algorithm for analyzing retail shop data.

Introduction:

Data mining is the process of analyzing large amounts of data to uncover useful patterns or insights that can help solve problems or improve business decisions.

The brute force method is a straightforward approach that examines all possible solutions to determine the best one. It systematically tests every option, making it through but often slow.

The Apriori algorithm is a machine learning technique used to find frequently occurring itemsets and association rules in databases. It is commonly applied in areas like market basket analysis, disease detection, and customer behavior analysis. This algorithm helps predict the likelihood of different outcomes based on past data.

Implementation and workflow:

- 1. Take user input for minimum support, minimum confidence, and the dataset. The dataset consists of a mix of clothing and other retail items. Before processing, the data is cleaned by filtering unique items and arranging them in a predefined order to maintain accuracy.
- 2. Construct dictionaries to store item occurrences and identify frequently appearing items along with their counts.
- 3. Begin with single-item sets (K=1) and progressively expand to larger itemsets (K=2, K=3, etc.), identifying frequent patterns at each stage. This process continues until no more frequent itemsets

can be found.

- 4. Apply the brute force approach to generate all possible association rules. Only the rules that meet or exceed the given minimum support and confidence thresholds are selected, revealing important relationships between purchased items.
- 5. Implement the Apriori algorithm to extract frequent itemsets and association rules, providing alternative methods for pattern discovery.
- 6. Compare the results of the three approaches based on performance, efficiency, and accuracy to determine the most effective technique for analyzing the dataset.

Core Concepts and Principle:

Association Rules: Association rule learning is a machine learning technique that identifies meaningful relationships between variables within large datasets using a rule-based approach.

Support and Confidence: Support refers to the proportion of transactions that contain a specific itemset, calculated by dividing the number of occurrences by the total transactions. Confidence measures the probability of one itemset appearing when another itemset is present.

Frequent Itemset Discovery: This process involves identifying groups of items that commonly appear together in a dataset, helping to uncover patterns and relationships within the data.

Results:

The Apriori algorithm demonstrated moderate performance, completing the process in approximately 0.04 seconds. While it performed better than the brute force method, it struggled with the overhead of generating candidate itemsets, particularly when dealing with large datasets.

The brute force approach was the slowest, with an execution time of about 0.06 seconds. Its exhaustive search process made it the least efficient, especially for handling large datasets.

Conclusion:

This project successfully applies data mining concepts, principles, and techniques to analyze datasets. A comparative analysis is conducted between the three methods to determine the most effective approach for identifying frequent itemsets and association rules.

Dataset Screenshot:

1.Burlington dataset:

4	Α	В	С	D			
1	T01	Handwarmers, Hat					
2	T02	Muffler, Coat, Trouser					
3	T03	Handbag, Th	Handbag, Thermals, Trouser, Shoes				
4	T04	Coat					
5	T05	Shoes, Glass	ses				
6	T06	Gloves, Coa	t, Shoes, Gla	sses, Handbag			
7	T07	Thermals					
8	T08	Hat, Handw	armers				
9	T09	Shoes, Muffler, Glasses, Coat					
10	T10	Trouser, Ha	ndwarmers, '	Thermals			
11	T11	Gloves					
12	T12	Shoes, Glass	ses, Trouser				
13	T13	Handwarme	ers, Coat, Hat	t .			
14	T14	Hat, Coat, Muffler, Handwarmers					
15	T15	Handbag, Sh	noes				
16	T16	Muffler					
17	T17	Trouser, The	ermals, Glove	es			
18	T18	Shoes					
19	T19	Hat, Handw	armers				
20	T20	Muffler, Ha	ndbag				

2.Costco Dataset:

4	Α	В	С	D	E
1	T01	Napkin, Ket	chup, Nuttell	a	
2	T02	Tortia, Bear	ns, Soda, Juic	e	
3	T03	Ketchup, Fro	uits		
4	T04	Tortia, Juice	;		
5	T05	Ketchup, M	ustard, Tortia	3	
6	T06	Tortia, Nutt	ella, Juice		
7	T07	Chocolate,	Soda, Ketchu	ıp	
8	T08	Ketchup			
9	T09	Tortia, Mus	tard, Ketchur	o, Juice, Nutt	ella
10	T10	Napkin, Sod	a, Mustard		
11	T11	Chocolate,	Napkin		
12	T12	Chocolate			
13	T13	Ketchup, Fru	uits, Beans		
14	T14	Beans, Soda	, Chocolate		
15	T15	Tortia, Juice	, Mustard, N	uttella	
16	T16	Ketchup, So	da		
17	T17	Napkin, Sod	a		
18	T18	Mustard, Fr	uits, Soda, Cl	nocolate, Ket	chup
19	T19	Tortia, Ketc	hup, Nuttella	1	
20	T20	Beans, Soda	1		

3.Juice bar Dataset:

4	Α	В	С	D	E			
1	1	Water, Coc	oa, Cider					
2	2	Cocoa, Water, Juice						
3	3	Cocktail	Cocktail					
4	4	Tea, Cockta	Fea, Cocktail, Wine, Coffee, Water					
5	5	Cocktail, Jui	Cocktail, Juice, ProteinShake, Soda					
6	6	Tea, Proteir	Tea, ProteinShake, Coffee, Soda					
7	7	Water						
8	8	Water, Coco	Water, Cocoa, Wine					
9	9	Juice, Cocoa, Water, Coffee, Tea, Cider						
10	10	Cocoa, Tea, Water, Coffee, Wine						
11	11	Soda, Tea, C	Soda, Tea, Coffee, ProteinShake, Juice					
12	12	Cocoa, Coc	Cocoa, Cocktail, Juice, ProteinShake, Water					
13	13	Coffee, Tea, ProteinShake, Cocktail, Water, Cider						
14	14	Cocktail, Co	Cocktail, Coffee, ProteinShake, Wine, Juice					
15	15	Soda, Coffee, Cider						
16	16	ProteinShake, Water, Coffee						
17	17	ProteinShake, Cocktail, Ciderss						
18	18	Coffee, Cocktail, Cocoa, Wine, ProteinShake, Water						
19	19	Juice, Coffee, Soda						
20	20	Soda						

4.Shoprite Dataset:

4	А	В	С	D	Е	F	
1	1	Crackers, N					
2	2	Pretzels, Pu	Pretzels, Pudding, MeatSticks, Spreads				
3	3	Pudding, Pre	etzels, Nuts, (Crackers, Dip	s		
4	4	MeatSticks,	Pretzels				
5	5	Chips Cooki	es, Pudding,	Popcorn, Cra	ckers, Dips, I	Pretzels, Spre	eads
6	6	Chips Cooki	es, Pretzels,	Pudding			
7	7	Pudding, Ch	ips Cookies,	Nuts, Popcor	n, Pretzels, [Dips	
8	8	MeatSticks,	Pretzels, Dip	s			
9	9	Popcorn					
10	10	MeatSticks,	MeatSticks, Pudding, Crackers, Popcorn				
11	11	MeatSticks,	MeatSticks, Popcorn, Pretzels, Dips, Chips Cookies				
12	12	Chips Cooki	es, Crackers,	Dips, Nuts, F	Pretzels, Pop	corn	
13	13	MeatSticks					
14	14	Pretzels, Pu	Pretzels, Pudding, Nuts, Crackers				
15	15	Chips Cookies, Pretzels, Dips, Pudding					
16	16	Chips Cookies, Dips, Nuts, MeatSticks, Pudding, Pretzels					
17	17	Chips Cooki	es, Dips, Nut	s, Crackers			
18	18	Crackers					
19	19	Pretzels, Chips Cookies, Crackers, Pudding, Popcorn, Dips					
20	20	Popcorn, Ch	ips Cookies,	Nuts			

5.Walmart:

4	А	В	С	D			
1	T01	Mustard, Gla					
2	T02	Trouser, Mu	Trouser, Mustard, Fruits, Shoes				
3	T03	Trouser, Mu	stard, Fruits,	Shoes			
4	T04	Mustard, Glo	oves, Shoes				
5	T05	Trouser, Mu	stard, Fruits,	Shoes			
6	T06	Trouser, Mu	stard, Fruits,	Shoes			
7	T07	Beans, Must	ard, Shoes				
8	T08	Trouser, Mu	stard, Fruits,	Shoes			
9	T09	Trouser, Fruits, Shoes					
10	T10	Gloves, Fruits					
11	T11	Trouser, Mustard, Fruits, Shoes					
12	T12	Trouser, Soda					
13	T13	Beans, Mustard, Glasses, Shoes					
14	T14	Trouser, Mu	stard, Fruits,	Shoes			
15	T15	Trouser, Gloves, Fruits					
16	T16	Beans, Fruits					
17	T17	Trouser, Mustard, Shoes					
18	T18	Trouser, Beans					
19	T19	Trouser, Mustard, Fruits					
20	T20	Trouser, Soc	da				

Code snippets:

Apriori algorithm:

```
ef apriori_from_csv(file_name: str, minimumSup: float, minimumConfi: float):

global aTime
    start_time=time.time()
    df = pd.read_csv(file_name, header=None)
   transactions = []
for row in df.itertuples(index=False):
      transactions.append(row[1].split(", "))
    encoder = TransactionEncoder()
    encoded_data = encoder.fit(transactions).transform(transactions)
   df = pd.DataFrame(encoded_data, columns=encoder.columns_)
   print(df)
   fi = apriori(df, min_support=minimumSup / 100, use_colnames=True)
rules = association_rules(fi, metric="confidence", min_threshold=minimumConfi / 100)
    print("Frequent Itemsets:")
   print(fi)
print("\nAssociation Rules:")
   print(rules)
    end_time= time.time()
   aTime= end_time-start_time
    print(f"Time taken to complete the process using FP-Growth method:{fpTime:.6f}")
apriori_from_csv(file_name, minimumSup, minimumConfi)
```

Brute force algorithm:

```
bruteforce(file_name: str, min_supp: int, min_conf: int):
global bfTime
global mini_conf
mini_conf=min_conf
start_time=time.time()
with open(file_name, "r") as file_object:
    reader = csv.reader(file_object)
    all_tx = []
    counttot = 0
    support_of_all_item_set = {}
      item_set_list = []
      for row1 in reader:
           transaction_id = row1[0]
           items = row1[1].split(", ")
all_tx.append(transaction_id)
           seen = set()
           for item in items:
               c1[(item,)] = c1.get((item,), 0) + 1
seen.add(item)
           item_set_list.append(seen)
           counttot += 1
      frequent set = {}
      rejected_set = []
      print()
      for i in c1:
| if (c1[i] / counttot) * 100 >= min_supp:
               frequent_set[i] = c1[i]
```

User input snippet:

```
lef get_user_input():
    global choice, minimumsup, minimumconfi, file_name

print("Please select a dataset:")
print("1. Juice Bar")
print("2. Burlington")
print("3. Costco")
print("4. Walmart")
print("5. ShopRite")

choice = input("Enter the number corresponding to your choice: ")
minimumsup = int(input("Enter minimum support as %: "))
minimumConfi = int(input("Enter minimum confidence as %: "))

file_names = {
    '1': 'juicebar.csv',
    '2': 'burlington.csv',
    '3': 'costco.csv',
    '4': 'walmart.csv',
    '5': 'shoprite.csv'
}

if choice in file_names:
    file_name = file_names[choice]
    print("You selected: {file_name}")
else:
    print("Invalid choice. Please try again.")
    get_user_input()
```

Output:

```
(USers\deera\Onefrive\Desktop\Datamining project\ of "C.\USers\deera\Onefrive\Desktop\Datamining proj

USers\deera\Onefrive\Desktop\Datamining project\dls85_dmsnidtermproject\ python dmsnidtermproject.py

select a datamin
   C:Users we case select a dataset:
Juice Bar
Burlington
Costco
Kallmurt
Skopkite
riter the number corresponding to your choice: 3 reter minimum support as % 30 reter minimum confidence as %: 40 rou selected: costco.csv
     requent itemsets 1 iteration
'Ketchup',) 50.0
'Tortia',) 35.0
'Soda',) 40.0
     ssociation Rule for itemset - ('Tortia',)
     ime taken to complete the process using brute force method:0.014302

Beans Chocolate Fruits Juice Ketchup Mustard Napkin Nuttella Soda Tortia
False False False Tuse False False Ture True False False
True False False True False F
                                                                                False False
True False
False False
11 False
12 True
                                                      True
False
                                                                                                                                                                                False False
False False
                                                                                                                                                                                                                                                     False False
False False
                                                                                                                                                    True
                                                                                                                                                                                                                                                                                                            False
                                                      True
False
14 False
                                                                                False True
False False
                                                                                                                                                                                True False
False False
                                                                                                                                                                                                                                                                                False True
True False
                                                                                                                                                False
                                                                                                                                                                                                                                                        True False
16 False
17 False
                                                      False False False
True True False
                                                                                                                                                                                   False True
True False
                                                                                                                                                                                                                                                      False True False
False True False
                                                    False False False
False False False
 18 False
19 True
                                                                                                                                               True
False
                                                                                                                                                                                False False
False False
                                                                                                                                                                                                                                                      True False True
False True False
        requent Itemsets:
support itemsets
0.50 (Ketchup)
                   0.40
                                           (Soda)
(Tortia)
    Association Rules:
    ampty DataFrame
Folumns: [antecedents, consequents, antecedent support, consequent support, support, confidence, lift, representativity, leverage, conviction, zhangs_metric, jaccard,
     certainty, kulczynski]
 Index: [] Brute Force Time: 0.014302 seconds
 Apriori Time: 2.486263 seconds
Brute Force is the fastest method.
PS C:\Users\deera\OneDrive\Desktop\Datamining_project\dl585_dmsmidtermproject>
```

<u>**GitHub link:**</u> https://github.com/Deerajkumar-vs/Datamining_midproject.git