Lecture 8 – Equivalence of PDA and CFG, Deterministic PDA

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2025

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 7

- Testing membership in a context-free language: the Cocke-Younger-Kasami algorithm
- Testing emptiness and finiteness of a context-free language
- Pushdown automaton: extend an ϵ -NFA with a stack memory (potentially infinite), pop the top symbol, decide based on (q, a, X), can push a finite string of stack symbols
- Acceptance by final state L(P) and by empty stack N(P), conversion between the two options

2.10 Equivalence of PDA and context-free grammars

Equivalence of PDA and CFG

Theorem

The following statements about $L \subset \Sigma^*$ are equivalent:

- (i) There exists a context-free grammar such that L(G) = L.
- (ii) There exists a PDA such that L(P) = L.
- (iii) There exists a PDA such that N(P) = L.

We have already shown $(ii) \Leftrightarrow (iii)$. To prove equivalence with a context-free grammar, we use acceptance by empty stack.

Context-free grammar to pushdown

automaton

CFG to PDA

The construction

Given
$$G = (V, T, P, S)$$
, construct $P = (\{q\}, T, V \cup T, \delta, q, S)$:

- (1) for each $A \in V$, $\delta(q, \epsilon, A) = \{(q, \beta) \mid A \to \beta \in \mathcal{P}\}$
 - [apply rule]

(2) for each $a \in T$, $\delta(q, a, a) = \{(q, \epsilon)\}$

[match terminal]

How it works:

- a leftmost derivation is simulated by the PDA
- current sentential form = part of input read + stack contents
- see a variable: apply rule, a terminal: read & pop from stack

An example

Example

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1,$$

 $E \rightarrow I \mid E * E \mid E + E \mid (E)$

 $\Sigma = \{a, b, 0, 1, (,), +, *\}, \Gamma = \Sigma \cup \{I, E\}, \delta$ is defined as follows:

- $\delta(q, \epsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$
- $\delta(q, \epsilon, E) = \{(q, I), (q, E * E), (q, E + E), (q, (E))\}$
- $\delta(q, s, s) = \{(q, \epsilon)\}$ for all $s \in \Sigma$ (e.g. $\delta(q, +, +) = \{(q, \epsilon)\}$)
- $\delta(q, x)$ is empty otherwise

Leftmost derivation: $E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * I \Rightarrow a * b$

The sequence of configurations:

$$(q, a*b, E) \vdash (q, a*b, E*E) \vdash (q, a*b, I*E) \vdash (q, a*b, a*E)$$

 $\vdash (q, *b, *E) \vdash (q, b, E) \vdash (q, b, I) \vdash (q, b, b) \vdash (q, \epsilon)$

Start with a leftmost derivation $S = \gamma_1 \Rightarrow_{lm} \ldots \Rightarrow_{lm} \gamma_n = w$.

Prove by induction on i that $(q, w, S) \vdash_P^* (q, v_i, \alpha_i)$, where $\gamma_i = u_i \alpha_i$ is the i-th sentential form and $u_i v_i = w$.

If γ_i contains only terminals, set $\gamma_i = w = u_i, v_i = \epsilon = \alpha_i$. Otherwise, write $\gamma_i = u_i A \alpha_i$, where $u_i \in T^*$ and $A \in V$ is the leftmost variable.

By induction we have $(q, w, S) \vdash_P^* (q, v_i, A\alpha_i)$, $w = u_i v_i$.

For the step $\gamma_i \Rightarrow_{lm} \gamma_{i+1}$ we used some rule $A \to \beta \in P$. The PDA replaces A on the stack with β , moves to configuration $(q, v_i, \beta \alpha_i)$.

We pop all terminals $v \in \Sigma^*$ from the beginning of $\beta \alpha$ (matching them with the input): $v_i = vv_{i+1}$ and $\beta \alpha = v\alpha_{i+1}$

We got to $(q, v_{i+1}, \alpha_{i+1})$, corresponds to the sentential form γ_{i+1} .

Proof that N(P) = L(G)

(ii)
$$w \in N(P) \Rightarrow w \in L(G)$$

Prove that if $(q, u, X) \vdash_P^* (q, \epsilon, \epsilon)$, then $X \Rightarrow_G^* u$. By induction on the number of moves. **Basis** n = 1 move:

- $X = a \in \Sigma$: $\delta(q, a, a) \ni (q, \epsilon)$, u = a, 0-step derivation
- $X = A \in \Gamma$: $\delta(q, \epsilon, A) \ni (q, \epsilon)$ coming from $A \to \epsilon \in \mathcal{P}$, $u = \epsilon$

Induction step n>1 moves: if the first move is [match terminal], don't extend the derivation, if it is [apply rule]: A on top of stack was replaced by $\beta=Y_1Y_2\ldots Y_k$, for a rule $A\to\beta\in\mathcal{P}$.

Split $u = u_1 \dots u_k$ s.t. while popping Y_i we read u_i , i.e. $(q, u_i u_{i+1} \dots u_k, Y_i) \vdash^* (q, u_{i+1} \dots u_k, \epsilon)$

Thus also $(q, u_i, Y_i) \vdash^* (q, \epsilon, \epsilon)$, by induction assumption we get $Y_i \Rightarrow^* u_i$. Together:

$$A \Rightarrow Y_1 Y_2 \dots Y_k \Rightarrow^* u_1 Y_2 \dots Y_k \Rightarrow^* \dots \Rightarrow^* u_1 u_2 \dots u_k$$

Pushdown automaton to context-free grammar

An example

Given
$$P = (\{q\}, \{\texttt{if}, \texttt{else}\}, \{Z\}, \delta, q, Z)$$

$$\delta(q, \texttt{if}, Z) = \{(q, ZZ)\}$$

$$\delta(q, \texttt{else}, Z) = \{(q, \epsilon)\}$$

$$if, Z \to ZZ$$

$$else, Z \to \epsilon$$

$$\to q$$

Construct $G = (V, \{if, else\}, P, S)$

- variables: $V = \{S, [qZq]\}$
- production rules:
 - $S \rightarrow [qZq]$
 - [qZq] o else
 - $[qZq] \rightarrow if[qZq][qZq]$

In this example, S and [qZq] generate the same words, so we can simplify: $G = (\{S\}, \{\text{if}, \text{else}\}, \{S \to \text{if} SS \mid \text{else}\}, S)$

PDA to CFG: the construction

- key event: pop a symbol X, while changing from state q to r
- variables: [qXr] for $q, r \in Q$ and $X \in \Gamma$, plus a new variable S

$$L([qXr]) = \{ w \in \Sigma^* \mid (q, w, X) \vdash_P^* (r, \epsilon, \epsilon) \}$$

• S to choose (guess) in which state the stack is emptied

The construction

Given $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, construct G = (V, T, P, S) where $V = \{S\} \cup \{[pXq] \mid p, q \in Q, X \in \Gamma\}$ and the productions are:

- (i) for every state $p \in Q$ add $S \to [q_0 Z_0 p]$
- (ii) for every transition $(p, Y_1 Y_2 ... Y_k) \in \delta(q, a, X)$ (incl. $a = \epsilon$) and all k-tuples of states $p_1, ..., p_{k-1}, p_k \in Q$ add

$$[qXp_k] \to a[pY_1p_1][p_1Y_2p_2]\dots[p_{k-1}Y_kp_k]$$

In particular, for $(p, \epsilon) \in \delta(q, a, X)$ (i.e., k = 0) add $[qXp] \rightarrow a$.

Another example: $\{0^{n}1^{n} | n > 0\}$

δ	Productions	
	$S \rightarrow [pZp] \mid [pZq]$	(1)
$\delta(p,0,Z)\ni(p,A)$	[pZp] o 0[pAp]	(2)
	[pZq] o 0[pAq]	(3)
$\delta(p,0,A)\ni(p,AA)$	[pAp] o 0[pAp][pAp]	(4)
	[pAp] o 0[pAq][qAp]	(5)
	[pAq] o 0[pAp][pAq]	(6)
	[pAq] o 0[pAq][qAq]	(7)
$\delta(p,1,A)\ni(q,\epsilon)$	[pAq] o 1	(8)
$\delta(q,1,A)\ni(q,\epsilon)$	[qAq] o 1	(9)

Derivation of 0011:

$$S \Rightarrow^{(1)} [pZq] \Rightarrow^{(3)} 0[pAq]$$

 $\Rightarrow^{(7)} 00[pAq][qAq]$
 $\Rightarrow^{(8)} 001[qAq] \Rightarrow^{(9)} 0011$

Sketch of proof that L(G) = N(P)

It suffices to show that:

$$[qXp] \Rightarrow^* w \text{ iff } (q, w, X) \vdash^* (p, \epsilon, \epsilon)$$

In both directions, the proof is done by induction (number of moves/steps).

2.11 Deterministic pushdown automata

The definition

Definition (Deterministic PDA)

A pushdown automaton $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic (a DPDA) iff both of the following hold:

- (i) The set of possible transitions $\delta(q, a, X)$ is at most one-element for all $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $X \in \Gamma$.
- (ii) If $\delta(q, a, X) \neq \emptyset$ for some $a \in \Sigma$, then $\delta(q, \epsilon, X) = \emptyset$.

A language L is a deterministic context-free language, if L = L(P) for some DPDA P.

(Reasonable programming languages are deterministic.)

Example: even palindromes with a center mark

 $L_{wwr} = \{ww^R \mid w \in \{0,1\}^*\}$ is context free, but not recognizable by a DPDA [proof coming soon]; (ii) forbids a choice between an ϵ -transition and reading the next input symbol.

But if we put in a 'center mark' c, $L_{wcwr} = \{wcw^R \mid w \in \{0,1\}^*\}$ is recognized by the following DPDA:

Languages recognized by deterministic PDA

$$RL \subsetneq L_{DPDA} \subsetneq L_{PDA} = CFL = N_{PDA} \supsetneq N_{DPDA}$$

Proposition

For every regular language L, there is a DPDA P with L = L(P).

DPDA can simulate a DFA, ignore the stack (leave Z_0 on top). \Box

Example

 L_{wcwr} is recognized by a DPDA by final state, but not regular.

DPDA on the previous slide, nonregularity by PL for $z = 0^n c 0^n$. \square

Example

 $L = \{a^ib^i \mid i \in \mathbb{N}\} \cup \{a^ib^{2i} \mid i \in \mathbb{N}\}$ is context-free, but not recognizable by any DPDA by final state.

Context-freeness is easy. Not in L_{DPDA} : next slide.

$L_{abb} = \{a^i \overline{b^i} | i \in \mathbb{N}\} \cup \{a^i b^{2i} | i \in \mathbb{N}\} \notin L_{DPDA}$

Assume for contradiction: recognized by a DPDA M by final state. Create two copies, M_1 and M_2 , call corresponding nodes 'siblings'. Construct a (nondeterministic) PDA M':

- ullet initial state: the initial state of M_1
- final states: the final states of M_2
- reroute transitions going out of final states of M_1 to the siblings in M_2 , relabel b to c (e.g. $\delta(f, b, X) = \{(q, X)\}$ becomes $\delta(f, c, X) = \{(q', X)\}$ where q' is the sibling of q)
- in the automaton M_2 , relabel *b*-transitions to *c*-transitions

The resulting PDA M' recognizes $\{a^ib^ic^i\mid i\in\mathbb{N}\}$ by final state: determinism of M means a unique path when reading a^ib^{2i} , thus after the initial a^ib^i , M is in an accepting state. Then M' continues reading c^i , ends in a final state in M_2 , and accepts.

But we know $\{a^ib^ic^i|i\in\mathbb{N}\}$ is not context-free, a contradiction. \square

Prefix-free languages & acceptance by empty stack

Definition

A language $L \subseteq \Sigma^*$ is prefix-free if there are no words $u, v \in L$ such that u is a proper prefix of v (i.e., u = vz for some $z \in \Sigma^+$).

For example, L_{wcwr} is prefix-free while L_{wwr} is not.

Theorem

For any language L, L = N(P) for some DPDA P if and only if L is prefix-free and L = L(P') for some DPDA P'.

Proof: \Rightarrow The prefix u is accepted by empty stack. There is no transition for empty stack, so no proper extension v of u can be in N(P) = L. Thus L is prefix-free. The conversion from empty stack to final state acceptance does not add nondeterminism.

← Since *L* is prefix-free, we can delete transitions out of final states. Then the conversion to empty stack acceptance does not add nondeterminism.

16

Deterministic PDA have unambiguous grammars

Theorem

If L is recognized by a DPDA (either by final state or empty stack), then L has an unambiguous grammar.

NB: The converse is not true, L_{wwr} has an unambiguous grammar $S \to 0S0 \mid 1S1 \mid \epsilon$ but is not a DPDA language.

Proof: L = N(P): PDA (by empty stack) to CFG construction, when applied to a DPDA, yields an unambiguous grammar.

L = L(P): First, convert L to a prefix-free language L' by adding a new symbol \$ at the end of each word. Now, construct a DPDA P' such that L' = N(P'). Convert it to an unambiguous grammar G' generating the language N(P') = L'.

Finally, modify G' to get a grammar G for L: Change the terminal \$ to a nonterminal, add the rule $\$ \to \epsilon$. Note that G is unambiguous since G' was, and we did not add ambiguity.

The landscape of languages

 $L_d = \{ w \mid \text{the TM with code } w \text{ rejects input } w \}$

Converting between representations of context-free languages

Conversions linear in input size:

- CFG to a PDA
- PDA by final state to a PDA by empty stack
- PDA by empty stack to PDA by final state

PDA to CFG: $O(n^3)$ algorithm that takes a PDA P whose representation has length n and produces a CFG of length (sum of sizes of bodies) at most $O(n^3)$

Conversion to ChNF: given a ϵ -production-free grammar G of length n, we can find an equivalent ChNF grammar for G in time $O(n^2)$; the resulting grammar has length $O(n^2)$

Undecidable problems about context-free languages (preview)

The following problems are not algorithmically decidable:

- Is a given context-free grammar ambiguous?
- Is a given context-free language inherently ambiguous?
- Is the intersection of two context-free languages empty?
- Is a given context-free language equal to Σ^* ?

Summary of Lecture 8

- Pushdown automata accept exactly context-free languages (constructions: CFG to PDA and PDA to CFG)
- A deterministic pushdown automaton (DPDA)
- DPDA recognize a proper subclass of context-free languages, accepts by empty stack iff prefix-free and accepts by final state (Deterministic PDA + acceptance by empty stack does not even cover regular languages!)
- Deterministic PDA have unambiguous grammars
- The landscape of languages
- Converting between representations of context-free languages
- Undecidable problems about context-free languages (preview)