Introdução às Redes de Comunicação

Ano Letivo de 2016/2017

Trabalho 1 **Protocolos da Camada de Transporte**

Realizado por: Renato Santos n.º 2015237457 João Clara n.º 2015245403

Departamento de Engenharia Informática Faculdade de Ciências e Tecnologias da Universidade de Coimbra

Descrição do trabalho

Este trabalho pretende analisar e comparar a transmissão de dados usando os protocolos UDP e TCP. Para esta análise foi construída a rede da Fig. 1, a qual vai ser simulada recorrendo ao NS2.

Figura 1 - Rede

Usando a rede especificada, constituída por PCs e *routers*, em que os PCs também fazem o *routing* de pacotes de dados, o "PC A" vai enviar ao "PC E" um bloco de dados de 2MB, que começa a ser transmitido no instante 0.5 segundos. Ao mesmo tempo, desde o "PC B" para o "PC D", e do "PC D" para o "PC C", existem *streams* de dados que estão a ser enviadas por UDP (que começa em ambos os casos no instante 0.5 segundos). Dependendo do cenário considerado as *streams* de dados estão activas ou desligadas.

Características da rede

- Detalhes das ligações:
 - A ligação entre o "R4" e o "PC B" só permite transmissão no sentido "R4"->"PC B", tem uma velocidade de 10 Mb/s e um tempo de propagação de 5ms
 - Todas as outras ligações são full-duplex a 10 Mb/s com tempos de propagação de 10 ms
 - o Todas as filas são do tipo *DropTail* com o tamanho por *default*. (Ver Nota 1).
 - o Será usado um protocolo de routing dinâmico (rtproto LS).

Cenários

- Cenário 1:
 - o Apenas tráfego entre o "PC A" e o "PC E".
- Cenário 2:
 - Ao cenário 1 são acrescentadas 2 streams de dados UDP:
 - "PC B" -> "PC D": 6 Mb/s.
 - "PC D" -> "PC C": 5 Mb/s

Exercício 1:

1.1.

Para minimizarmos o número de ficheiros diferentes (para um só), introduzimos por argumentos de linha os valores necessários para a projeção do cenário desejado. Assim, na linha de comando temos:

No caso de ser UDP:

\$ns projeto1.tcl <cenário> <protocolo> <quebra>

No caso de ser TCP:

\$ns projeto1.tcl <cenário> <protocolo> <quebra> <janela>

Com as seguintes possibilidades:

Cenário: 1 ou 2. Protocolo: udp ou tcp

Quebra: 1 ou 0, neste caso, sim ou não, respetivamente.

Janela: qualquer valor positivo.

1.5.

O valor mínimo possível para a fila no "PC A" é 2098. Ao enviarmos um pacote de 2MB, ou seja, 2097152 bytes, este iria dividir-se durante a simulação deste projeto, pois por default um pacote tem apenas 1000 bytes.

Assim, o número de pacotes enviados será cerca de 2097157/ 1000 = 2097.152. Por isso, o valor mínimo possível será 2098 (valor arredondado para cima).

Definindo assim no código:

\$ns queue-limit \$pca \$pcb 2098

Exercício 2:

Valores retirados no ficheiro que se encontra na seguinte diretoria: ""./ns-2.35/tcl/lib/ns-default.tcl".

Tamanho por omissão das filas nos nós	50
Tamanho por omissão dos pacotes TCP	1000
Tamanho por omissão dos pacotes UDP	1000
Tamanho por omissão da janela do TCP	20

Exercício 3:

Os valores encontrados nos vários pontos foram recolhidos recorrendo ao ficheiro 'trace_analyzer.awk' que é fornecido com o enunciado.

NOTA (*):

*Obtivemos diferentes valores para os tempos, com exatamente o mesmo código.

Supondo o Cenário 1:

3.1. Determinámos o menor tempo total de transmissão do bloco de dados entre o "PC A" e o "PC E" usando TCP e UDP. No caso do TCP, usámos o menor valor possível da janela de transmissão para obter esse tempo.

·	TCP			UDP
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos
002.264192	101	0	001.720122	0
002.254160*			001.709322*	

3.2. Quebra de ligação entre o "PC C" e o "PC D" no instante 0.75 segundos até ao instante 0.90 segundos. Determinámos o menor tempo total de transmissão do bloco de dados entre o "PC A" e o "PC E" usando TCP e UDP. No caso do TCP, usamos o menor valor possível da janela de transmissão para obter esse tempo.

ТСР			UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos	
002.302520 002.292488*	101	0	001.741914 001.731114*	14	

Exercício 4:

Supondo o Cenário 2:

4.1. Determinamos o tempo total de transmissão do bloco de dados entre os "PC A" e o "PC E" usando TCP e UDP. Usamos o TCP com uma janela de transmissão igual a 20.

ТСР		UDP		
Tempo	Nº pacotes perdidos	Tempo	Nº pacotes perdidos	
009.081232	0	001.736888	780	
009.071200*		001.726088*		

4.2. Determinamos o tempo total de transmissão do bloco de dados entre os "PC A" e o "PC E" usando TCP e UDP. Usamos o TCP com uma janela de transmissão igual a 20. Quebre a ligação entre o "PC C" e o "PC D" no instante 0.75 segundos até ao instante 0.90 segundos.

<u> </u>				
TCP		UDP		
Tempo	Nº pacotes perdidos	Tempo	Nº pacotes perdidos	
009.043775	9	001.733642	837	
009.488336*		001.722842*		

4.3. Determinação do menor tempo total de transmissão do bloco de dados entre os "PC A" e o "PC E" usando TCP e UDP. No caso do TCP, usamos o menor valor possível da janela de transmissão para obter esse tempo. No caso do UDP alteramos a velocidade da ligação (em múltiplos de 1 Mb) entre o "PC A" e o "PC B" para o valor que permita perder o menor número de pacotes. A velocidade só foi alterada no caso do UDP, quando usar o TCP usamos os valores por omissão.

ТСР		UDP			
Tempo min	Janela min	Nº pacotes	Tempo min	Velocidade	
		enviados/recebidos		perdidos	"PC A"-"PC B"
006.677	99	2201 / 2157	004.236642	0	4Mb
006.666968			004.224642		
*			*		

Exercício 5:

Analise os resultados das perguntas anteriores de modo a comparar a performance entre uma ligação TCP e UDP.

A comparação entre os dois protocolos, UDP e TCP, deve ser feita tendo em consideração vários aspetos tais como: o tamanho do bloco a ser transmitido, a estabilidade da rede e número de nós.

Em todos os cenários deste projeto, podemos observar que o protocolo UDP demora menos tempo no envio da informação, isto deve-se à reduzida quantidade de funcionalidades que o UDP possui. Este protocolo simplesmente envia a informação, sendo assim preferível nos casos em que sabemos que não vão haver interferências pelo meio (ex.3.1).

No entanto, quando encontramos um canal em que mais pacotes estão a ser transportados, se a capacidade do canal não for suficiente, vamos perder bastantes pacotes com o UDP. Para isso serve o TCP que implementa um mecanismo de retransmissão em caso de packet-loss, assim quando um pacote é enviado para ter a certeza que não se perde, o TCP espera por um acknowledge de volta, o que vai demorar tempo extra relativamente ao UDP, mas como podemos verificar nos ex3.2, ex4.1 e ex 4.2 a quantidade de pacotes perdidos é bastante inferior.

Concluindo, o protocolo UDP garantirá uma transmissão mais rápida, porém menos viável quanto às perdas de informação, devido a falta de certos mecanismos de proteção. Pelo contrário, o protocolo TCP cobrirá melhor a proteção, garantindo assim uma maior eficácia de transmissão, porém torna-se mais lento em certos casos.

Exercício 6:

Analise os problemas causados na ligação entre o "PC A" e o "PC E" pela interferência das 2 streams UDP adicionadas no Cenário 2. Analise a interferência individual de cada uma das streams durante a simulação tendo também em conta a altura em que existe quebra de ligação. Como poderiam esses problemas ser resolvidos?

Quando não existe quebra de ligação a stream pcb->pcd (vermelha) vai fazer, no caso do UDP, com que os pacotes sejam perdidos no nó pcb pois a fila de espera vai exceder a capacidade do canal (com o TCP se a window for demasiado grande vai fazer perder pacotes também), já a ligação pcd->pcc não vai ter influência devido ao facto de ser na direção contrária.

Quando existe uma quebra nos 0.75s a ligação pcd->pcc(verde) vai ter que tomar outro caminho, que inclui a ligação pcb->pcc, deste modo essa ligação para além dos pacotes enviados pelo pca e pela stream vermelha, vai ter também os pacotes da stream verde na mesma direção, o que vai causar a uma perda ainda maior dos pacotes iniciais (a stream vermelha influencia da mesma maneira com ou sem quebra).

Estes problemas poderiam ser resolvidos de 2 maneiras, ou aumentar a capacidade das ligações congestionadas, ou aumentar as filas de espera nos nós dessas ligações.