GAJ/EBC/CF/CMR/ARP

Cálculo III (521227) Práctica 11

Teorema de Green.

- 1. Calcular las siguientes integrales de linea $\int_C \vec{F} \cdot d\vec{r}$, donde la curva C esta orientada en sentido anti horario.
 - (a) $\vec{F}(x,y) = (x^2 y^2, 2xy)$, y C la frontera del cuadrado $[0,1] \times [0,1]$.
 - (b) $\vec{F}(x,y) = (-y^3, x^3)$, y C la frontera del cuadrado $[0,1] \times [0,1]$.
 - (c) $\vec{F}(x,y) = (-x^2y, xy^2)$, y C es el circulo $x^2 + y^2 = a^2$.
 - (d) $\vec{F}(x,y) = (-y\sqrt{x^2 + y^2}, x\sqrt{x^2 + y^2})$, y C es el circulo $x^2 + y^2 = 2x$.
 - (e) $\vec{F}(x,y) = (-y^2, x^2)$ y C es la frontera del sector circular $r \le a, 0 \le \theta \le \pi/4$.
- 2. Utilizar el Teorema de Green para calcular el área de las siguientes regiones.
 - (a) La elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$.
 - (b) La región encerrada por el hipocicloide $x^{2/3} + y^{2/3} = 1$.
 - (c) La región arriba del eje x y debajo de la curva $\vec{r}(t) = (at b\sin t, a b\cos t), 0 \le t \le 2\pi$, donde 0 < b < a son constantes.

Integrales de Superficie sobre campos escalares.

- 3. Encontrar el área del pedazo de la superficie z = xy dentro del cilindro $x^2 + y^2 = a^2$.
- 4. Encontrar el área del pedazo de la superficie $z=x^2+y^2$ dentro del cilindro $x^2+y^2=a^2$.
- 5. Calcular $\iint_S (x^2 + y^2) dS$ donde S es la parte de la esfera $x^2 + y^2 + z^2 = 4$ con $z \ge 1$.

Integrales de Superficie sobre campos vectoriales.

- 6. Calcular $\iint_S \vec{F} \cdot \vec{n} d\vec{S}$ para los siguientes \vec{F} y S.
 - (a) $\vec{F}(x,y,z) = (xz,0,-xy)$, y S es la porción de la superficie z=xy con $0 \le x \le 1, 0 \le y \le 2$, orientada de tal forma que la normal apunta hacia arriba.
 - (b) $\vec{F}(x,y,z) = (x^2,z,-y)$, y S es la esfera unitaria $x^2 + y^2 + z^2 = 1$, orientada de tal forma que la normal apunta hacia afuera.
 - (c) $\vec{F}(x,y,z) = (xy,z,0)$, y S es el triángulo con vértices (2,0,0), (0,2,0) y (0,0,2), orientado de tal forma que la normal apunta hacia arriba.
 - (d) $\vec{F}(x,y,z) = (0,0,z^2)$, y S es el cilindro $x^2 + y^2 = 1$ con $a \le z \le b$, orientado de forma que la normal apunta hacia afuera.
 - (e) $\vec{F}(x,y,z) = (x,y,z)$ y S es la frontera de la región $x^2 + y^2 \le z \le \sqrt{2 x^2 y^2}$.