Package 'vrnmf'

October 12, 2022

Title Volume-Regularized Structured Matrix Factorization

Version 1.0.2

NeedsCompilation no

Description

Implements a set of routines to perform structured matrix factorization with minimum volume constraints. The NMF procedure decomposes a matrix X into a product C * D. Given conditions such that the matrix C is non-negative and has sufficiently spread columns, then volume minimization of a matrix D delivers a correct and unique, up to a scale and permutation, solution (C, D). This package provides both an implementation of volume-regularized NMF and ``anchor-free" NMF, whereby the standard NMF problem is reformulated in the covariance domain. This algorithm was applied in Vladimir B. Seplyarskiy Ruslan A. Soldatov, et al. ``Population sequencing data reveal a compendium of mutational processes in the human germ line". Science, 12 Aug 2021. <doi:10.1126/science.aba7408>. This package interacts with data available through the 'simulatedNMF' package, which is available in a 'drat' repository. To access this data package, see the instruc-

tions at https://github.com/kharchenkolab/vrnmf. The size of the 'simulatedNMF' package is approximately 8 MB.

```
License GPL-3
Encoding UTF-8
Depends R (>= 3.5.1)
Imports graphics, ica (>= 1.0), lpSolveAPI (>= 5.5.2.0), Matrix, nnls, parallel (>= 3.5.1), quadprog (>= 1.5), stats
Suggests knitr (>= 1.28), rmarkdown (>= 2.1), testthat
RoxygenNote 7.1.2
URL https://github.com/kharchenkolab/vrnmf
BugReports https://github.com/kharchenkolab/vrnmf/issues
Author Ruslan Soldatov [aut], Peter Kharchenko [aut], Viktor Petukhov [aut], Evan Biederstedt [cre, aut]
Maintainer Evan Biederstedt <evan.biederstedt@gmail.com>
```

1

2 AnchorFree

Repository CRAN

Date/Publication 2022-02-25 04:20:02 UTC

R topics documented:

Ancho	orFree	Non-neg		·	oriz	atio	n o	f co	0-00	сси	ren	ice	ma	tri.	хи	sir	ıg i	mir	iin	ıun	n
Index																					17
	vol_preprocess		• •		 • •		•			•			•		٠	•		•		•	10
	volnmf_simplex_row																				
	volnmf_simplex_col																				
	volnmf_procrustes																				
	volnmf_main																				
	volnmf_logdet																				
	volnmf_estimate .				 																8
	volnmf_det				 																7
	sim_factors				 																6
	projection_onto_sim	plex			 																6
	infer_intensities				 																5
	factor_intensities .				 																4
	AnchorFree				 																2

Description

AnchorFree method tri-factorizes (co-occurence) matrix in a product $P \ C*E*t(C)$ of non-negative matrices C and E such that matrix E has minimum volume and columns of matrix C equal to 1.

```
AnchorFree(
  vol,
  n.comp = 3,
  init = NULL,
  init.type = "diag",
  n.iter = 30,
  err.cut = 1e-30,
  verbose = FALSE
)
```

AnchorFree 3

Arguments

vol	An output object of vol_preprocess(). The method factorizes co-occurence matrix vol P .
n.comp	An integer. Number of components to extract (by default 3). Defines number of columns in matrix C . (default=3)
init	A numeric matrix. Initial matrix M. (default=3)
init.type	A character. A strategy to randomly initialize matrix M. (default="diag") Options are to
	1) generate diagonal unit matrix ("diag"),
	2) use ICA solution as initialization ("ica", "ica.pos").
	or sample entries from:
	3) uniform distribution [0,1] ("unif.pos"),
	4) unform distribution [-1,1],
	5) uniform distribution [0.9,1.1] ("similar"),
	6) normal distribution N(0,1).
n.iter	An integer. Number of iterations. (default=30)
err.cut	A numeric. Relative error in determinant between iterations to stop algorithm (now is not used). (default=1e-30)
verbose	A boolean. Print per-iteration information (default=FALSE)

Details

Implementation closely follows (Fu X et al., IEEE Trans Pattern Anal Mach Intell., 2019).

Value

List of objects:

C, E Factorization matrices.

Pest Estimate of vol\$P co-occurence matrix Pest = C * E * t(C).

M, detM auxiliary matrix M and its determinant.

 $\verb"init."$ type type of initialization of matrix M that was used.

Examples

```
small_example <- sim_factors(5, 5, 5)
vol <- vol_preprocess(t(small_example$X))
vol.anchor <- AnchorFree(vol)</pre>
```

4 factor_intensities

Description

factor_intensities estimates a non-negative matrix D that optimizes the objective function $F=||X-C*D-offset||^2$, where offset is either column-specific offset or a "1-rank nmf term": product of row vector and column vector

Usage

```
factor_intensities(
 С,
 Χ,
 fit.nmf = TRUE,
 fit.factor = FALSE,
 qp.exact = FALSE,
 n.iter = 200,
 qp.iter = 10,
  rel.error.cutoff = 1e-05,
  extrapolate = TRUE,
  extrapolate.const = TRUE,
  extrapolate.convex = FALSE,
 q.factor = 1,
 verbose = TRUE,
  n.cores = 1
)
```

Arguments

С	Numeric matrices.				
Χ	Numeric matrices.				
fit.nmf	A boolean. Fit both intensities and spectrum of the offset residuals.				
fit.factor	A boolean. Fit only spectrum of the offset residuals (keep intensities constant across samples).				
qp.exact	A boolean. Estimate intensities using exact quadratic programming (qp.exact = TRUE) or inexact QP via gradient decent with extrapolation (qp.exact = FALSE).				
n.iter	An integer. Number of iterations.				
qp.iter	= 1e+1 An integer. Number of iterations of inexact QP.				
rel.error.cutoff					
	A numeric. Relative error cutoff between iterations to stop iterations.				
extrapolate	A boolean. Use Nesterov-like extrapolation at each iteration.				

infer_intensities 5

extrapolate.const

A boolean. Use extrapolation scheme that adds a constant extrapolation q.factor (described below) at each iteration.

extrapolate.convex

A boolean. Use Nesterov extrapolation scheme.

q. factor A numeric. Specification of a a constant extrapolation factor used in case of

extrapolate.const = T.

verbose A boolean. Print per-iteration information (by default TRUE).

n. cores An integer. Number of cores to use.

Value

Fitted matrix D.

infer_intensities

Infer a matrix of non-negative intensities in NMF

Description

infer_intensities estimates a non-negative matrix D that optimizes the objective function $F = ||X - C * D||^2$ using per-row quadratic programming.

Usage

```
infer_intensities(C, X, esign = "pos", n.cores = 1)
```

Arguments

C Numeric matrices.

X Numeric matrices.

esign A character. Keep elements of matrix D non-negative ("pos") or not ("all). (de-

fault="pos")

n.cores An integer. Number of cores to use. (default=1)

Value

Fitted matrix D.

6 sim_factors

```
projection_onto_simplex
```

Project vector onto a probabilistic simplex.

Description

projection_onto_simplex projects a vector unproj onto a probabilistic simplex of sum bound.

Usage

```
projection_onto_simplex(unproj, bound)
```

Arguments

unproj A numeric vector. An unprojected vector

bound A numeric. Sum of projected vector elements.

Value

A projected vector.

sim_factors

Simulate matrices to explores vrnmf

Description

sim_factors simulates non-negative factorization matrices C and D under a variaty of conditions to explore factorization X = C*D + noise.

```
sim_factors(
   m,
   n,
   r,
   simplex = "col",
   distr = "unif",
   frac.zeros = 0.4,
   condition = FALSE,
   noise = 0
)
```

volnmf_det 7

Arguments

m	Integers. Size of matrices. Matrix C has a size of m*r and matrix D has a size of r*n.
n	Integers. Size of matrices. Matrix C has a size of $m*r$ and matrix D has a size of $r*n$.
r	Integers. Size of matrices. Matrix C has a size of $m*r$ and matrix D has a size of $r*n$.
simplex	A character. Either columns ("col") or rows ("row") of matrix C are projected onto unit simplex. (default="col")
distr	A character. Distribution to simulate matrix entries: "unif" for uniform and "exp" for exponential distributions. (default="unif")
frac.zeros	A numeric. Fraction of zeros in matrix C. It promotes sufficient scattering of matrix column/row vectors. (default= 0.4)
condition	A boolean. Generate more well-conditioned matrix R. (default=FALSE)
noise	A numeric. Standard deviation of gaussian noise to add. (default=0e-4)

Value

List of simulated matrices:

X.noise, X - noisy and original matrix X to decompose.

C, D - factorization matrices.

 ${\tt volnmf_det}$

Update volume-regularized matrix R using det volume approximation

Description

 $volnmf_det finds matrix R that minimizes objective ||X-C*R||^2 + w.vol*det(R)$

```
volnmf_det(
   C,
   X,
   R,
   posit = FALSE,
   w.vol = 0.1,
   eigen.cut = 1e-16,
   err.cut = 0.001,
   n.iter = 1000
)
```

8 volnmf_estimate

Arguments

С	Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization.
Χ	Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization.
R	Numeric Matrices. Matrices involved in objective function. Matrix R serves as initialization.
posit	A boolean. Set up (TRUE) or not (FALSE) non-negative constraints on matrix R. (default=TRUE)
w.vol	A numeric. Volume (det) weight in objective function. (default=0.1)
eigen.cut	A numeric. Threshold on eigenvalue of SVD eigenvectors. (default=1e-16)
err.cut	A numeric. Stop algorithm if relative erro in R between iteration is less than err.cut. (default=1e-3)
n.iter	An integer. Number of iterations. (default=1e+3)

Value

An updated matrix R.

volnmf_estimate

Alternating optimization of volume-regularized NMF

Description

volnmf_estimate provides alternating optimization of volume-regularized factorization of a matrix B using the following objective function: $F = ||B*Q-C*R||^2 + w.vol*volume(R)$. Matrix C is required to be non-negative and having either column or row vectors on the simplex. Matrix R can optionally have non-negativity constraint. Matrix Q can optionally be identity matrix or any unitary.

```
volnmf_estimate(
   B,
   C,
   R,
   Q,
   domain = "covariance",
   volf = "logdet",
   R.majorate = FALSE,
   wvol = NULL,
   delta = 1e-08,
   n.iter = 10000,
   err.cut = 1e-08,
```

volnmf_estimate 9

```
vol.iter = 100,
  c.iter = 100,
  extrapolate = TRUE,
  accelerate = TRUE,
  acc.C = 4/5,
  acc.R = 3/4,
  C.constraint = "col",
  C.bound = 1,
  R.constraint = "pos",
  verbose = TRUE,
  record = 100,
  Canchor = NULL,
  Ctrue = NULL,
  mutation.run = FALSE
)
```

Arguments

В	A numeric matrix. A matrix to factorize (by default NULL). If not given than matrix B is taken to be a square root decomposition of $P=B*t(B)$.
С	Numeric matrices. Initial matrices for optimiztion.
R	Numeric matrices. Initial matrices for optimiztion.
Q	Numeric matrices. Initial matrices for optimiztion.
domain	A character. Optimize unitary rotation matrix Q ("covariance") or keep it as identity matrix (as in standard NMF). By default "covariance".
volf	A character. Function that approximate volume. Can have values of "logdet" or "det" (by default "logdet").
R.majorate	A boolean. Majorate logdet each iteration of volnmf_logdet() (by default FALSE).
wvol	A numeric. A weight of volume-regularized term volume(R).
delta	A numeric. Logdet regularization term log(det(R) + delta) (by default 1e-8).
n.iter	An integer. Number of iterations (by default 1,000).
err.cut	A numeric. Relative error in determinant between iterations to stop algorithm (by default 1e-8).
vol.iter	An integer. Number of iterations to update volume-regularized matrix R at each alternating step.
c.iter	An integer. Number of iterations to update simplex matrix C at each alternating step.
extrapolate	A numeric. Do Nesterov extrapolation inside blocks of R and C optimization (by default TRUE).
accelerate	A numeric. Do acceleration each update after R and C blocks estimated via Nesterov-like extrapolation.
acc.C	A numeric. Acceleration parameter of matrix C.
acc.R	A numeric. Acceleration parameter of matrix R.

10 volnmf_logdet

C.constraint A character. Constraint either sum of columns ("col") or sum of rows ("row) to be equal to C.bound (By default "col").

C.bound A numeric. A simplex constraint on matrix C vectors.

A character. Set up non-negativity ("pos") constraint on elements of R (by default "pos", alternative "no").

verbose A boolean. Print per-iteration information (by default FALSE)

record A numeric. Record parameters every 'record' iterations (by default NULL).

Canchor A matrix. A matrix of anchor components (unused currently). (default=NULL)

Ctrue A matrix. Correct matrix C if known. Useful for benchmark.

mutation.run A boolean. Assess goodness of solution using reflection test if mutation.run=TRUE

(applicable only to analysis of mutation patterns). (default=FALSE)

Value

List of objects:

C, R, Q, E Factorization matrices.

iter, err Number of iterations and relative per-iteration error err in matrix C.

info. record a list of objects that record and store state of matrices each record iterations.

Description

volnmf_logdet finds matrix R that minimizes objective | |X-C*R||^2 + w.vol*log(det(R)+delta).

```
volnmf_logdet(
   C,
   X,
   R,
   R.constraint = "pos",
   majorate = FALSE,
   extrapolate = TRUE,
   qmax = 100,
   w.vol = 0.1,
   delta = 1,
   err.cut = 0.001,
   n.iter = 1000
)
```

volnmf_main 11

Arguments

С	Numeric Matrices. Matrices involved in objective function.Matrix R serves as initialization.
X	Numeric Matrices. Matrices involved in objective function.Matrix R serves as initialization.
R	Numeric Matrices. Matrices involved in objective function.Matrix R serves as initialization.
R.constraint	A character. Set up ('pos') or not ('no') non-negative constraints on matrix R (by default 'pos').
majorate	A boolean. Majorate logdet each iteration (by default FALSE).
extrapolate	A boolean. Use Nesterov acceleration (by default FALSE, currently is not supported).
qmax	A numeric. Maximum asymptotic (1 - 1/qmax) of extrapolation step.
w.vol	A numeric. Volume (logdet) weight in objective function.
delta	A numeric. Determinant pseudocount in objective function.
err.cut	A numeric. Stop algorithm if relative erro in R between iteration is less than ${\sf err.cut.}$
n.iter	An integer. Number of iterations.

Value

An updated matrix R.

volnmf_main	Volume-regularized NMF	

Description

volnmf_main enables volume-regularized factorization of a matrix B using the following objective function: $F = ||B*Q-C*R||^2 + w.vol*volume(R)$. Matrix C is required to be non-negative and having either column or row vectors on the simplex. Matrix R can optionally have non-negativity constraint. Matrix Q can optionally be identity matrix or any unitary. The latter option is used to decompose co-occurence matrix vol_P.

```
volnmf_main(
  vol,
  B = NULL,
  volnmf = NULL,
  n.comp = 3,
  n.reduce = n.comp,
  do.nmf = TRUE,
```

volnmf_main

```
iter.nmf = 100,
  seed = NULL,
 domain = "covariance",
 volf = "logdet",
 wvol = NULL,
 delta = 1e-08,
 n.iter = 500,
 err.cut = 1e-16,
 vol.iter = 20,
 c.iter = 20,
 extrapolate = TRUE,
 accelerate = FALSE,
  acc.C = 4/5,
  acc.R = 3/4,
 C.constraint = "col",
 C.bound = 1,
 R.constraint = "pos",
 R.majorate = FALSE,
 C.init = NULL,
 R.init = NULL,
 Q.init = NULL,
 anchor = NULL,
 Ctrue = NULL,
 verbose = TRUE,
 record = 100,
 verbose.nmf = FALSE,
 record.nmf = NULL,
 mutation.run = FALSE
)
```

Arguments

vol	An output object of vol_preprocess().
В	A numeric matrix. A matrix to factorize (by default NULL). If not given than matrix B is taken to be a square root decomposition of $P=B*t(B)$.
volnmf	An output object of volnmf.main. An option is useful to re-estimate solution using different parameters (by default NULL).
n.comp	An integer. Number of components to extract (by default 3). Defines number of columns in matrix ${\cal C}$.
n.reduce	An integer. Dimensional reduction of matrix B (number of columns) if taken as a square root decomposition of volP (by default equal to n. comp).
do.nmf	A boolean. Estimate standard solution with w.vol=0 as initialization before applying volume regularization (by default TRUE).
iter.nmf	An integer. Number of iterations to get solution with w.vol=0 if the former requested (by default 1,000).
seed	An integer. Fix seed.

volnmf_main 13

domain	A character. Optimize unitary rotation matrix Q ("covariance") or keep it as identity matrix (as in standard NMF). By default "covariance".
volf	A character. Function that approximate volume. Can have values of "logdet" or "det" (by default "logdet").
wvol	A numeric. A weight of volume-regularized term volume(R).
delta	A numeric. Logdet regularization term log(det(R) + delta) (by default 1e-8).
n.iter	An integer. Number of iterations (by default 1,000).
err.cut	A numeric. Relative error in determinant between iterations to stop algorithm (by default 1e-8).
vol.iter	An integer. Number of iterations to update volume-regularized matrix R at each alternating step.
c.iter	An integer. Number of iterations to update simplex matrix C at each alternating step.
extrapolate	A numeric. Do Nesterov extrapolation inside blocks of R and C optimization (by default TRUE).
accelerate	A numeric. Do acceleration each update after R and C blocks estimated via Nesterov-like extrapolation.
acc.C	A numeric. Acceleration parameter of matrix C.
acc.R	A numeric. Acceleration parameter of matrix R.
C.constraint	A character. Constraint either sum of columns ("col") or sum of rows ("row) to be equal to C. bound (By default "col").
C.bound	A numeric. A simplex constraint on matrix C vectors.
R.constraint	A character. Set up non-negativity ("pos") constraint on elements of R (by default "pos", alternative "no").
R.majorate	A boolean. Majorate logdet each iteration of volnmf_logdet() (by default FALSE).
C.init	Numeric matrices. Initialization of matrices C, R, Q (by default NULL).
R.init	Numeric matrices. Initialization of matrices C, R, Q (by default NULL).
Q.init	Numeric matrices. Initialization of matrices C, R, Q (by default NULL).
anchor	An output object of AnchorFree(). Object is used optionally to initialize matrices (by default NULL).
Ctrue	A matrix. Correct matrix C if known. Useful for benchmark.
verbose	A boolean. Print per-iteration information (by default FALSE).
record	A numeric. Record parameters every 'record' iterations (by default NULL).
verbose.nmf	A boolean. Print per-iteration information for standard NMF (by default FALSE).
record.nmf	A numeric. Record parameters every 'record' iterations for standard NMF (by default NULL).
mutation.run	A boolean. Assess goodness of solution using reflection test if mutation.run=TRUE (applicable only to analysis of mutation patterns).

14 volnmf_simplex_col

Value

List of objects:

C, R, Q Factorization matrices.

C.init, R.init, Q.init Initialization matrices for volume-regularized optimization.

C.rand, R.rand, Q.rand Random initialization matrices for NMF optimization (w.vol=0).

rec a list of objects that record and store state of matrices each record iterations.

volnmf_procrustes

Procrustes algorithm estimates orthonormal transformation between two matrices.

Description

volnmf_procrustes finds orthonormal matrix Q that minimizes objective ||A-B*Q||^2

Usage

```
volnmf_procrustes(A, B)
```

Arguments

A Numeric Matrices. Orthonormal transformation convert matrix B in matrix A.

B Numeric Matrices. Orthonormal transformation convert matrix B in matrix A.

Value

An optimal orthonormal tranformation matrix Q.

volnmf_simplex_col

Update of a matrix in NMF with equality contstraints on columns.

Description

volnmf_simplex_col finds non-negative matrix C that minimizes the objective ||X-C*R||^2 under constraints that columns of C equal to 1 using local approximation with extrapolation.

volnmf_simplex_row 15

Usage

```
volnmf_simplex_col(
   X,
   R,
   C.prev = NULL,
   bound = 1,
   extrapolate = TRUE,
   err.cut = 1e-10,
   n.iter = 10000,
   qmax = 100
)
```

Arguments

Χ	Numeric Matrices. Matrices involved in the objective function.
R	Numeric Matrices. Matrices involved in the objective function.
C.prev	Numeric Matrices. Matrices involved in the objective function. Matrix C.prev serves as initialization. (default=NULL)
bound	A numeric. Equality constraint on columns of matrix C. (default=1)
extrapolate	A boolean. Use extrapolation after local approximation. (default=TRUE)
err.cut	A numeric. Stop iterations if relative error between iterations is less than err.cut (parameter is not active now). (default= $1e-10$)
n.iter	An integer. Number of iterations. (default=1000)
qmax	A numeric. Maximum asymptotic (1 - 1/qmax) of extrapolation step.

Value

An updated matrix C.

volnmf_simplex_row

Update of a matrix in NMF with equality contstraints on rows.

Description

 $volnmf_simplex_row\ finds\ non-negative\ matrix\ C\ that\ minimizes\ the\ objective\ |\ |X-C*R|\ |^2\ under constraints\ that\ rows\ of\ C\ equal\ to\ 1\ using\ per-row\ quadratic\ programming.$

```
volnmf_simplex_row(X, R, C.prev = NULL, meq = 1)
```

vol_preprocess

Arguments

Χ	Numeric Matrices. Matrices involved in the objective function.
R	Numeric Matrices. Matrices involved in the objective function.

C.prev Numeric Matrices. Matrices involved in the objective function. Matrix C.prev

serves as initialization. (default=NULL)

meq An integer 0 or 1. Require equality (meq=1) or inequality (meq=0) constraint on

rows (by default 1).

Value

An updated matrix C.

vol_preprocess	Preprocess the data for downstream volume analysis.	
vol_preprocess	Preprocess the data for downstream volume analysis.	

Description

vol_preprocess Routine normalizes the data (as requested), estimates covariance and SVD decomposition.

Usage

```
vol_preprocess(X, col.norm = "sd", row.norm = NULL, pfactor = NULL)
```

Arguments

Χ	A numeric matrix. Covariance is estimated for column vectors of X.
col.norm	A character. Specifies column normalization strategy (by default "sd"). NULL to avoid normalization.
row.norm	A character. Specifies row normalization strategy (by default NULL).
pfactor	A numeric A factor to normalize co-occurence matrix (by default NULL). Row normalization follows column normalization. NULL to avoid normalization.

Value

A list of objects that include normalized matrix X.process, row and column normalization factors row.factors and col.factors, covariance matrix P0, covariance matrix P normalized to maximum value pfactor, orthonormal basis U and vector of eigenvalues eigens.

Examples

```
small_example <- sim_factors(5, 5, 5)
vol <- vol_preprocess(t(small_example$X))</pre>
```

Index

```
AnchorFree, 2

factor_intensities, 4

infer_intensities, 5

projection_onto_simplex, 6

sim_factors, 6

vol_preprocess, 16

volnmf_det, 7

volnmf_estimate, 8

volnmf_logdet, 10

volnmf_main, 11

volnmf_procrustes, 14

volnmf_simplex_col, 14

volnmf_simplex_row, 15
```