Notation

Logic

$A \wedge B$	conjunction, A and B
$A \vee B$	disjunction, A or B
$\neg A$	negation, not A
$A \to B$	implication, A implies B
$A \leftrightarrow B$	equivalence, A if and only if B
$v[\![A]\!]$	a valuation v of the Boolean formula A
$A \equiv B$	logical equivalence, so $v[A] = v[B]$ for all valuations v
$\{P_1,\ldots,P_n\} \models A$	A is a logical consequence of the premises P_1, \ldots, P_n
$\{P_1,\ldots,P_n\}\vdash A$	A can be deduced from the premises P_1, \ldots, P_n
$\forall n P(n)$	the predicate $P(n)$ holds for all n in the universe
$\exists n P(n)$	the predicate $P(n)$ holds for some n in the universe

\mathbf{Sets}

\mathbf{N}_0	the set of nonnegative integers $\{0, 1, 2, 3, \ldots\}$
\mathbf{N}_1	the set of positive integers $\{1, 2, 3, \ldots\}$
\mathbf{Q}	the set of rational numbers
\mathbf{R}	the set of real numbers
${f Z}$	the set of integers
Ø	the empty set
$A \subseteq B$	A is a subset of the set B
$A \subsetneq B$	A is a proper subset of the set B
$A \cap B$	intersection of the sets A and B
$A \cup B$	union of the sets A and B
A - B	set of elements in A that are not in the set B, same as $A \setminus B$
$A \setminus B$	set of elements in A that are not in the set B, same as $A - B$
A^\complement	complement of A with respect to a universe U, so $A^{\complement} = U \setminus A$
$P(A)$ 2^A	power set of A , the set of all subsets of A ,
2^A	alternate notation for power sets, $2^A = P(A)$
A	cardinality of the set A

Functions

$f \colon A \to B$	function with domain A and codomain B
dom(f)	domain of the function f
$\operatorname{ran}(f)$	range of the function, $ran(f) = \{f(x) \mid x \in dom(f)\}\$
$f \upharpoonright X$	restriction of the function to X
f^{-1}	inverse of the function f or preimage of f
$f_{-1}(X)$	preimage of the set X, same as $f^{-1}(X)$ but unambiguous
$g\circ f$	composition of functions, $g \circ f(x) = g(f(x))$
i_A	identity map on a set A

Sums and Products

$$\sum_{k=1}^{n} f(n) \quad \text{summation, } \sum_{k=1}^{n} f(n) = f(1) + f(2) + \dots + f(n)$$

$$\Delta \quad \text{difference operator}$$

$$\Delta^{-1} \quad \text{summation operator}$$

$$\prod_{k=1}^{n} f(n) \quad \text{product, } \prod_{k=1}^{n} f(n) = f(1)f(2) \cdots f(n)$$

Number Theory

```
\begin{array}{ll} a \mid b & \text{integer } a \text{ divides the integer } b \\ a \nmid b & \text{integer } a \text{ does not divide the integer } b \\ a \equiv b \pmod{n} & \text{the integer } a-b \text{ is a multiple of } n \end{array}
```

Combinatorics

```
\begin{array}{lll} k! & \text{factorial, } k! = 1 \cdot 2 \cdots (k-1) \cdot k \\ n^{\underline{k}} & \text{falling factorial power, } n^{\underline{k}} = n(n-1) \cdots (n-k+1) \\ n^{\overline{k}} & \text{rising factorial power, } n^{\overline{k}} = n(n+1) \cdots (n-k+1) \\ \binom{n}{k} & \text{binomial coefficient} \\ \binom{n}{k_1, k_2, \dots, k_m} & \text{multinomial coefficient} \\ \binom{n}{k} & \text{Stirling number of the second kind, also denoted as } S(n, k) \end{array}
```

Graph Theory

V(G)	vertex set of a graph G
E(G)	edge set of a graph G
N(v)	neighborhood of the vertex v
N[v]	closed neighborhood of the vertex v
$\operatorname{deg} v$	degree of the vertex v
$\delta(G)$	minimal degree of a graph G
$\Delta(G)$	maximal degree of a graph G
d(u, v)	distance between vertices u and v
d(G)	diameter of the graph G
$\alpha(G)$	independence number of G
$\chi(G)$	chromatic number of G
$\omega(G)$	clique number of G
k(G)	number of components of G
E_n	empty graph with n nodes
P_n	path graph with n nodes
C_n	cycle graph with n nodes
K_n	complete graph with n nodes
$K_{m,n}$	complete bipartite graph with $m + n$ nodes
Q_n	hypercube graph with 2^n nodes
\overline{G}	complementary graph of G
$G \square H$	Cartesian product of the graphs G and H

Probability Theory

\Pr	probability measure, sometimes denoted by μ
$\Pr[A]$	probability of event A
$\Pr[A \mid B]$	conditional probability of A given B
$\mathrm{E}[X]$	expected value of X
$\mathcal{B}(\mathbf{R})$	Borel σ -algebra
$\sigma(\mathcal{C})$	smallest σ -algebra generated by collection $\mathcal C$
$\sigma(X)$	σ -algebra generated by random variable X
$\liminf_{n\to\infty} E_n$	limit inferior event
$\limsup_{n\to\infty} E_n$	limit superior event
$\lim_{n\to\infty} E_n$	limit event