Circuits and Systems II Mid term exam Fall 2020 (All questions carry equal marks)

Q1.

Determine the value of V_t and Z_t such that the circuit shown in Figure 1b is the Thevenin equivalent circuit of the circuit shown in Figure 1a.

 X_L = Sum of your four digit Reg. No. in Ω . X_C = Average of your four digits Reg. No. in Ω .

Figure. 1a

Figure.1b

Q2.

Consider the series RLC circuit of Figure 2 when R = 10 Ω , L = 1mH, C = (Average of your four digit Reg. No.) x 10 mF, and ω =1000 rad/s. Find I and plot the phasor diagram.

Figure 2

Q3.

Determine the steady-state voltage $V_o(t)$ in the circuit shown in Figure 3 using superposition, when the current source ω = (Sum of your four digits Reg. No.) x 10 rad/s.

For the circuit shown in Figure 4, determine I and the complex power S delivered by the source when $V = 50 \angle 120^{\circ} \text{ V rms}$, X_{C} =(Average of your four digit Reg. No.)

Figure 4

