Problemitas de Grafos

Elías Garza

15 de noviembre de 2019

Una de las habilidades más importantes en la olimpiada es saber estimar la dificulatad de los problemas para asi saber cuanto tiempo dedicarle a cierto problema y si debes pasarte a hacer otro o seguir en donde estas. Este entrenamiento es para esto. Hay varios problemas de los cuales 5 son fáciles, 4 son problemas de dificultad media, 3 son un poco más dificiles, 3 son problemas muy dificiles y 4 son problemas abiertos. Tu objetivo es resolver los que puedas y en particular clasificar todos los problemas dependiendo de su dificultad.

 $Pue des\ investigar\ lo\ que\ quieras\ y\ usar\ tantas\ supercomputadoras\ como\ puedas.$

1. Definiciones

- Grafo completo: grafo que tiene todas las aristas posibles.
- Subgrafo: grafo obtenido de tomar un grafo y eliiminar vertices o aristas.
- Adjacente: un vertice es adjacente a otro si existe una arista que los une.
- Grado: el grado de un vertice es la cantidad de aristan que inciden en el.
- Camino: una sucesion de vertices $v_1, v_2, ..., v_n$ tal que v_i es adjacente a v_{i+1} para todo i entre 0 y n-1.
- Camino simple: un camino que no pasa por el mismo vertice dos veces.
- Ciclo: un camino que empieza y termina en el mismo vertice, ademas un ciclo simple es un ciclo que no repite vertices.
- Grafo conexo: un grafo en el que existe un camino entre cualesquiera dos vertices.
- Grafo planar: un grafo que se puede dibujar en el plano sin que dos aristas se intersecten.
- Árbol: un grafo conexo sin ciclos
- Bosque: un grafo no necesariamente conexo sin ciclos.

- Camino o cíclo hamiltoniano: es un camino o cíclo que pasa por todos los vertices del grafo.
- N-coloreable: un grafo es n-coloreable cuando se pueden pintar los vertices de n colores de forma que ningún vertice del mismo color esta conectado. En particular si un grafo es 2-coloreable se le llama bipartito.
- Número cromatico: el menor n tal que el grafo es n-coloreable.
- Grafo planar: grafo que puede ser dibujado en el plano sin que dos se intersecten.
- Clique: subgrafo completo.
- Hamiltoniano: grafo que tiene un cíclo de longitud n.
- Camino Euleriano: camino que pasa por todas las aristas del grafo.
- Cíclo Euleriano: cíclo que pasa por todas las aristas del grafo.
- Función ω : la funcion ω te da el tamaño del mayor clique dentro del grafo.
- Conexidad: la cantidad de elementos (vertices o aristas) que se necesitan retirar para que el grafo deje de ser conexo. En particular si un grafo es k-conexo entnces tiene al menos k+1 vertices per no existe un subconjunto de k-1 aristas tales que si las quitas del grafo este deja de ser conexo.
- Pancíclico: grafo con ciclos de todas las longitudes posibles. (De 3 a n)
- Grafo dual: grafo formado a partir de otro grafo en donde cada arista se convierte en un vertice y cada vertice en una arista de forma en que se preservan las conecciones. Por ejemplo si puedes llegar desde la arista e_1 a la e_2 pasando por el vertice v entonces en el dual los vertices que son de las dos aristas son adyacentes.
- \blacksquare Perfecto: un grafo es perfecto si el numero cromatico del grafo es igual a la funciñ ω del grafo
- \bullet Garra: un arbol de 3 hojas. Eso es quivalente a ${\rm ser}K_{1,3}$

2. Problemas

Problema 1: Demuestra que si un grafo conexo tiene dos caminos de igual longitud y son los maximos del grafo entonces comparten al menos un vertice.

Problema 2: Demuestra que un grafo es bipartito si y solo si no contiene ciclos de longitud impar.

Problema 3: Hay un torneo de 2n equipos. Cada día juegan todos los equipos una vez. Demuestra que despues de dos dias puedes elegir n equipos de forma que ninguno de ellos ha jugado entre si.

Problema 4: En un grafo se tiene que cada par de vertices tiene exactamente un vertice adyacente en común, demustra que en el grafo no hay ciclos de longitud 4.

Problema 5: En un salon hay 32 alumnos y se van a organizar en 33 equipos de 3 personas. No hay dos equipos iguales. Demustra que hay dos equipos que tienen exactamente un alumno en común.

Problema 6: Sea δ el menor grado de un grafo G. Supón que $\delta \geq 2$. Demustra que G tiene un cíclo de al menos $\delta + 1$ Ademas de que contiene un camino de al menos δ aristas.

Problema 7: Demustra que ningún grafo dual tiene como subgrafo a una garra.

Problema 8: Ana y Beto juegan con los vértices de un polígono convexo (los vértices no están unidos por ninguna línea); el juego consiste en lo siguiente: de forma alternada se traza una, arista entre dos vértices siempre y cuando se mantenga el grafo planar .Pierde el que ya no puede hacer ningún movimiento. Si empieza Ana, ¿cuándo Ana tiene estrategia ganadora?¿Cuándo la tiene Beto?

Problema 9: Cuales de las siguientes afirmaciones son ciertas:

- Un grafo tiene un camino Euleriano si y solo si el numero de vertices de grado impar es 0 o 2.
- Un grafo tiene un cíclo Euleriano si y solo si todos los vertices tienen grado par.

Problema 10:Demustra que en un grafo de 2n vertices en donde todos los vertices tienen grado par existen 2 vertices que tienen una cantidad par de vertices adyacentes en común.

Problema 11: En un torneo, todos los equipos juegan entre sí, los equipos los representamos como vértices y trazamos una arista dirigda que va de A a B si A le gana a B, demuestra que existe un vértice A tal que para cualquier otro vértice B existe un camino de A a B siguiendo las aristas dirigidas. Osea si X le gana a Y no puedes ir del vertice Y al vertice X por la arista que los une.

Problema 12: En un salón hay una cantidad n impar de computadoras tales que cada par de computadoras esta conectada por exactamente un cable. Se quiere colorear las computadoras y los cables de forma que no haya dos

computadoras con el mismo color, no haya dos cables conectados a la misma computadora de un mismo color y que ninguna computadora tenga conectado un cable de su mismo color. Demuestra que se puede hacer con tan solo n colores.

Muy dificiles

Problema 13: Demuestra que todos los duales de grafos bipartitos son perfectos.

Problema 14: Demustra que si la suma de los grados de cualquesquiera dos vertives en un grafo es mayor a la cantidad de vertices entonces el grafo es pancíclico o un grafo bipartito completo.

Problema 15: Demustra que si el número cromatico de un grafo es igual o mayor a 4, entonces el grafo tiene un cíclo de longitud multipla de 3.

Abiertos

Problema 16:Demuestra que cualquier grafo planar 4-conexo es pancíclico.

Problema 17: Demustra que si en un grafo conexo hay 3 caminos de igual longitud y son los maximos entonces tienen un vertice en común. (Problema 1 para 3 caminos)

Problema 18: Demustra que todos los grafos 4-conexos duales son hamiltonianos.

Problema 19: Demuestra que el numero cromatico de un grafo es siempre el mayor grado de los vertices más 1 o 2.