微生物组—宏基因组分析专题研讨会第22期

22质控和去宿主

易生信 2024年11月9日

易生信, 毕生缘; 培训版权所有。

数据分析的基本思想

大数据

大表

小表

CGTCGCTCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGTTGGGC @HISEQ:549:HLYNYBCXY:1:1101:1887:2204 1:N:0:CACTCAAT @HISEQ:549:HLYNYBCXY:1:1101:2196:2168 1:N:0:CACTCAAT HISEQ:549:HLYNYBCXY:1:1101:2025:2183 1:N:0:CACTCAAT HISEQ:549:HLYNYBCXY:1:1101:2052:2198 1:N:0:CACTCAAT

序列: 106~109

ID WT6 0TU_265 18 0TU_36 63 0TU_102 20 0TU 49 106	6 WT3 18	0E4	WT2	0E3	
OTU_36 63 OTU_102 20	10			UES	WT1
OTU_102 20	10	6	11	20	15
	77	57	194	155	163
OTIL 49 106	44	18	77	18	43
0.0_10	92	25	137	76	65
OTU_270 9	5	22	5	22	5
OTU_1865	0	3	0	0	2
0TU_58 77	75	28	84	53	64
OTU_1110	6	3	3	2	2
OTU_30 100	9 142	78	111	124	145
0TU_51 87	79	21	38	42	102
0TU_1353	0	1	2	0	1
0TU_1137	0	1	0	3	0
OTU_18 166	5 150	126	318	130	265
0TU_4 498	343	189	804	224	626
0TU_3 459	690	340	1039	568	580
0TU_704 3	14	12	8	9	4
OTU_14 176	283	110	314	169	232

特征表: 101~3 X 103~5

统计表: 1~N X 101~3 图: 101~3个点和统计信息

宏基因组有参分析基本思路

16S rRNA基因扩增子

宏基因组

易 生**過** 信

U/VSEARCH

QIIME 2

MetaPhiAna Vraken 2

HUMAnN3

物种组成

	Sample 1	Sample 2	Sample 3
OTU _1	4	0	2
OTU _2	1	0	0
OTU _3	2	4	2

PICRUSt2

功能组成

Protein Cell: 扩增子和宏基因组数据分析实用指南

熟记此图,胸中有丘壑

宏基因组实验分析流程

DNA提取

测序

质控, 比对/ 组装注释 物种功能组成分析

宏基因组分析流程

CMJ: 人类微生物组研究设计、样本采集和生物信息分析指南

常用物种和功能基因注释数据库(图标右)和对应的软件(图标下)

宏基因组测序技术可以回答的科学问题

回答3个科学问题:

1. 样品中有什么?

物种组成(包括宿主、细菌、真菌、病毒、 原生动物等)

2. 样品中有哪些功能基因? 功能基因组成——潜在的功能

3. 组间物种和功能差异?

分组有关的物种分类(界/门/纲/目/科/属/种/株)和功能(通路/模块/同源簇/基因)

易汉博基因科技(北京)有限公司 EHBIO Gene Technology (Beijing) co., LTD

宏基因组基于读长(Reads-based)的分析流程

-. 软件安装和数据库部署

- 二. KneadData去宿主
- =. MetaPhIAn4物种组成
- 四. HUMAnN3功能组成
- 五. GraPhlAn可视化物种
- 六. LEfSe分析物种差异
 - t. STAMP功能组成分析

本节内容大纲

- 软件安装和数据库部署

- · Conda简介与安装
- 软件安装
- 数据库部署

=. KneadData去宿主

- FastQC评估和MultiQC汇总结果
- Fastp数据质控
- KneadData去宿主

CONDA

- 。 Conda是(Python, R, Java, C等)软件包和环境管理系统, 用于安装多个版本的软件包及其依赖关系, 并在它们之间轻松切换。
- o 开源软件,支持Windows、MacOS和Linux(软件最多)三大主流系统
- 。 容易安装、升级软件及依赖包;
- o 方便创建、保存、加载和切换不同的环境变量(如Python2/3)
- o Conda由本地软件(Anaconda/Miniconda)和远程软件仓库组成
- o 推荐安装Miniconda
 - 生物软件安装必添加Bioconda频道

推荐Miniconda3

- o 最流行的Python数据科学管理平台
- o https://conda.io/miniconda.html 推荐下载Linux python3 64位版本

#下载软件,可根据官网下载最新版本

wget -c https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

#安装,如管理员推荐安装目录设为conda,普通用户根据个人喜好设定或使用默认值~/miniconda3,其它选项全yes

bash Miniconda3-latest-Linux-x86_64.sh -b -f

<u>详细教程见: Nature Method: Bioconda解决生物软件安装的烦恼</u>

BIOCONDA

- o BioConda是conda系统的生物信息软件专用频道,包括4部分:
- o 可用软件清单 http://bioconda.github.io/conda-package_index.html
- 。 软件布署系统,方便用户定制软件及依赖关系
- 。 <u>8627个生物信息软件/包及多版本</u>,如收录<u>fastqc就有29个版本</u>
- 。 超干人添加、修改、升级和维护软件清单
- 。 <u>2017年发布于bioRxiv</u>; <u>2018年以通讯发表于*Nature Methods*</u>,以后可以优雅的引用它(吃水不忘挖井人),被引1000+次
- o 添加频道: conda config --add channels bioconda

Nature Method: Bioconda解决生物软件安装的烦恼 https://bioconda.github.io/

(可选)清华/北外维护的Anaconda镜像站加速下载

#添加北外镜像加速下载

site= https://mirrors.bfsu.edu.cn/anaconda/

conda config --add channels \${site}/pkgs/free/

conda config --add channels \${site}/pkgs/main/

conda config --add channels \${site}/pkgs/r/

conda config --add channels \${site}/cloud/conda-forge/

conda config --add channels \${site}/cloud/bioconda/

#如果不可用,请手动在conda配置文件 ~/.condarc 中手动删除

常用生物信息、宏基因组小工具推荐

陈实富GitHub主页 https://github.com/OpenGene

fastp 0.23.2: Fastq序列质控

MutScan v1.14.1: 突变位置检测和可视化

repaq v0.3.0: Fastq序列高压缩比快速解压

Shifu Chen. 2023. Ultrafast one-pass FASTQ data preprocessing, quality control, and

deduplication using fastp. iMeta 2: e107. https://doi.org/10.1002/imt2.107

通用工具支持Windows / Linux / MacOS的32/64位系统,支持下载或conda安

seqkit 2.4: 序列处理

csvtk v0.25.0: 表格处理

taxonkit v0.14.1: NCBI物种信息查询和整理

rush v0.5.0: 任务并行管理软件 Wei Shen, Botond Sipos, Liuyang Zhao. 2024. SeqKit2: A Swiss army knife for

sequence and alignment processing. iMeta 3: e191. https://doi.org/10.1002/imt2.191

fastp: fastq数据质量评估和质控

- o 主页: <u>https://github.com/OpenGene/fastp</u>
- o 安装 conda install fastp -c bioconda
- 下载 wget <u>http://opengene.org/fastp/fastp</u> 添加权限 chmod a+x ./fastp
- o 示例: 适合单独质控或无需去宿主的环境样本,分析速度极快mkdir-p temp/qci=C1
 - fastp -i seq/\${i}_1.fq.gz -o temp/qc/\${i}_1.fastq -I seq/\${i}_2.fq.gz -o temp/qc/\${i}_2.fastq
- p 质控前后报告见 fastp.html
 - •iMeta | 引用7000+,新版fastp,更快更好地处理FASTQ数据
 - •极速的FASTQ文件质控+过滤+校正fastp

seqkit: fastq数据基本统计和操作

- seqkit: 序列梳理神器-统计、格式转换、长度筛选、质量值转换、翻译、反向互补、抽样、去重、滑窗、拆分等30项全能
- o 安装 conda install seqkit -c bioconda
- 可选在 https://github.com/shenwei356/seqkit/releases 发布页下载
- 样本批量统计 seqkit stat seq/*.fq.gz

```
(base) yongxin@yongxin:/mnt/c/meta$ seqkit stat seq/*.fq.gz
file
                format
                                           sum len
                                                   min len
                                                              avg len
                                                                       max len
                         type
                              num seqs
                                         7,575,000
seq/C1 1.fq.gz
                                 75,000
                                                         101
                FASTQ
                        DNA
                                                                  101
                                                                            101
seq/C1 2.fq.gz
                FASTQ
                                 75,000
                                         7,575,000
                                                         101
                                                                  101
                                                                            101
                        DNA
seq/C2 1.fq.gz
                                75,000
                                         7,575,000
                FASTQ
                                                         101
                                                                  101
                                                                            101
                        DNA
seq/C2 2.fq.gz
                FASTQ
                                 75,000
                                         7,575,000
                                                         101
                                                                  101
                                                                            101
                        DNA
```


质控软件安装

- # 质量评估软件fastqc conda install fastqc fastqc -v # FastQC v0.12.1
- conda install multiqc multiqc --version # multiqc, version 1.14
- #多样品评估报告汇总multiqc

fastp质控和kneaddata去宿主,安装最新/指定版解决ID问题 conda install fastp conda install kneaddata kneaddata --version # 0.12.0 conda install kneaddata=0.12.0

注意记录安装软件版本!

默认安装工作环境兼容的最新 版,保证可运行且功能最全

有问题时安装指定版本,确保 分析结果正确;

质控相关数据库安装——人类基因组

- # 查看可用数据库 kneaddata database
- #包括人类基因组human_genome bowtie2、转录组、小鼠基因组、 核糖体SILVA128数据库
- # 如下载人类基因组bowtie2索引至指定数据目录 mkdir -p ~/db/kneaddata/human_genome kneaddata_database --download human_genome bowtie2 ~/db/kneaddata/human_genome
- 其它物种可自行下载并使用bowtie2建索引,可参考代码或下方链接 教程

自定义基因组构建bowtie2索引-Kneaddata去宿主

大多数基因组可在ensembl genome下载。此处以拟南芥为例,访问http://plants.ensembl.org/index.html,选择Arabidopsis thaliana——Download DNA sequence (FASTA),选择toplevel右键复制链接

#新建目录、进入并下载链接

mkdir -p \${db}/kneaddata/ath && cd \${db}/kneaddata/ath

wget -c http://ftp.ensemblgenomes.org/pub/plants/release-

51/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

gunzip Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

#简化文件名

mv Arabidopsis_thaliana.TAIR10.dna.toplevel.fa tair10.fa

bowtiew建索引,输入文件,输出文件前缀,9线程2分

time bowtie2-build -f tair10.fa tair10 --threads 9 --seed 1

宏基因组基于读长(Reads-based)的分析流程

- -. 软件安装和数据库部署
- =. KneadData去宿主
- =. MetaPhIAn2物种组成
- 四. HUMAnN2功能组成
- 五. GraPhlAn可视化物种
- 六. LEfSe分析物种差异
 - t. STAMP功能组成分析

分析开始前必须设置环境变量

公共数据库database位置,如db公用可能为/db,而自己下载可能 为~/db

- o db=~/db
- 。 # Conda软件software安装目录,如db公用可能为/conda,而自己下载可能为~/miniconda3
- o soft=~/miniconda3
- # wd为项目工作目录work directory, 如meta
- o wd=~/meta

了解宏基因组分析起始文件(上传到服务器)

o 测序数据:成对测序文件seq/*.fq.gz,通常为压缩的gz格式

C1_1.fq.gz C2_1.fq.gz C1_2.fq.gz C2_2.fq.gz

@SRR3586062.883556

CTTGGGGCTGCTGAGCTTCATGCTCCCCTCCTGCCTCAAGGACAATAAGGAGATCTTCGACAAGCCTGCAGCAGCTCGCATCG

+

GACGGTGTCCTCAGGACCCTTCAGTGCCTTCATGATCTGCTCAGAGGTGATGGAGTCACGGACGAGATTCGTCGTGTCAGCAC

+

@@@DDDDAFF?DF;EH+ACHIIICHDEHGIGBFE@GCGDGG?D?G@BGHG@FHCGC;CC:;8ABH>BECCBCB>;8ABCCC@A

o 实验设计: 样本名和分组 result/metadata.txt

SampleID	Group	Replicate	Sex	Individual	GSA	CRR
C1	Cancer	1	Male	p136	CRA002355	CRR117732
C2	Cancer	2	Male	p143	CRA002355	CRR117733

FastQC质量评估

o fastqc seq/*.gz -t 1 # fastqc批量, 12个双端样本24个文件, 设置1线程即仅允许1个文件同时处理, 可根据服务器性能合理选择

MultiQC多样本汇总比较

- o #生成多样品报告比较
- multiqc -d seq/ -o result/qc
- o # 查看右侧result/qc目录中multiqc_report.html,可交互式报告

Sample Name -	% Dups	% GC	M Seqs
seq C1_1	0.1%	37%	0.1
seq N1_1	1.6%	40%	0.1
seq C1_2	0.2%	37%	0.1
seq N1_2	3.4%	40%	0.1

Philip Ewels, Måns Magnusson, Sverker Lundin & Max Käller. MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics* 32, 3047-3048, doi:10.1093/bioinformatics/btw354 (**2016**). Cited by 689

并行管理软件 rush

- 。 现实中是有一大堆样品,for可以单个或全部提交任务效率都很低,如何让服务器性能允许下并行加速分析,并有序管理队伍呢?
- o 国人开发了跨平台的并行管理工具rush, <u>官网下载</u>或 conda安装 conda install rush

官网: https://github.com/shenwei356/rush

。 使用格式

- echo sample1 sample2 | rush -j 2 "command"
- tail -n+2 result/metadata.txt | cut -f1 | rush -j 2 "command"

fastp批量数据质量评估和质控


```
#-j2:表示同时处理2个样本
time tail -n+2 result/metadata.txt|cut -f1|rush -j 2 \
 "fastp -i seq/{1}_1.fq.gz -I seq/{1}_2.fq.gz \
  -j temp/qc/{1}_fastp.json -h temp/qc/{1}_fastp.html \
  -o temp/qc/{1}_1.fastq -O temp/qc/{1}_2.fastq \
  > temp/qc/{1}.log 2>&1 "
#质控后结果汇总
echo -e "SampleID\tRaw\tClean" > temp/fastp
for i in `tail -n+2 result/metadata.txt|cut -f1`;do
  echo -e -n "$i\t" >> temp/fastp
  grep 'total reads' temp/qc/${i}.log|uniq|cut -f2 -d ':'|tr '\n' '\t' >> temp/fastp
  echo "" >> temp/fastp
done
sed -i 's/ //g;s/\t$//' temp/fastp
```

去宿主需要双端ID合而不同:调整方案


```
@A01909:80:HFT7YDSX5:2:1101:1090:1000 1:N:0:CATTGCAC+GCTGCATG
temp/qc/*_1.fastq
            NGATTACGAGACCGAGCAGCTCCGCAAGGCATTGCTGAAGGAAACGAGGCATTGCGCTGTCACGCTG
            @A01909:80:HFT7YDSX5:2:1101:1090:1000 2:N:0:CATTGCAC+GCTGCATG
temp/qc/*_2.fastq
            AAATCCCCCGTTTAGGAACAAGGCCATATTTTTCCAGAAGCAGACGAATATGCGTTTCGTCATCGTG
            去宿主将序列比对至基因组,需要有唯一ID,<mark>前端一致且尾部能区分双端</mark>,以上格式不符合
            @A01909:80:HFT7YDSX5:2:1101:1090:1000.1:N:0:CATTGCAC+GCTGCATG/
temp/hr/A17_1.fastq
            NGATTACGAGACCGAGCAGCTCCGCAAGGCATTGCTGAAGGAAACGAGGCATTGCGCTGTCACGCTGGG
            @A01909:80:HFT7YDSX5:2:1101:1090:1000.1:N:0:CATTGCAC+GCTGCATG/2
            AAATCCCCCGTTTAGGAACAAGGCCATATTTTTCCAGAAGCAGACGAATÄTGCGTTTCGTCATCGTGGT
temp/hr/A17_2.fastq
```

rush并行Kneaddata去宿主

○ -i输入文件,-o输出目录,-t线程数, -db 宿主基因组索引位置

```
time tail -n+2 result/metadata.txt|cut -f1|rush -j 2 \
 "sed '1~4 s/ 1:/.1:/;1~4 s/$/\/1/' temp/qc/{}_1.fastq > /tmp/{}_1.fastq; \
 sed '1~4 s/ 2:/.1:/;1~4 s/$/\/2/' temp/qc/{}_2.fastq > /tmp/{}_2.fastq; \
 kneaddata -i1 /tmp/{1}_1.fastq -i2 /tmp/{1}_2.fastq \
 -o temp/hr --output-prefix {1} --bypass-trim --bypass-trf --reorder \
 --bowtie2-options '--very-sensitive --dovetail' \
 -db ${db}/kneaddata/human/hg37dec_v0.1 --remove-intermediate-output -v -t 3; \
 rm /tmp/{}_1.fastq /tmp/{}_2.fastq"
```


检查结果格式是否正确配对

paste <(head -n40 temp/hr/`tail -n+2 result/metadata.txt|cut -f1|head -n1`_1.fastq|grep @) <(head -n40 temp/hr/`tail -n+2 result/metadata.txt|cut -f1|head -n1`_2.fastq|grep @)

```
@A00877:913:HYHKKDSX2:1:1101:9480:1031.1:N:0:CCATGTACTC+NCGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:11966:1047.1:N:0:CCATGTACTC+NCGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:25111:1047.1:N:0:CCATGTACTC+NCGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:8929:1078.1:N:0:CCATGTACTC+ACGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:14118:1078.1:N:0:CCATGTACTC+ACGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:1452:1125.1:N:0:CCATGTACTC+ACGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:7129:1125.1:N:0:CCATGTACTC+ACGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:10004:1125.1:N:0:CCATGTACTC+ACGGCTAACA/1
@A00877:913:HYHKKDSX2:1:1101:2781:1141.1:N:0:CCATGTACTC+ACGGCTAACA/1
```

@A00877:913:HYHKKDSX2:1:1101:9480:1031.1:N:0:CCATGTACTC+NCGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:11966:1047.1:N:0:CCATGTACTC+NCGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:25111:1047.1:N:0:CCATGTACTC+NCGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:8929:1078.1:N:0:CCATGTACTC+ACGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:14118:1078.1:N:0:CCATGTACTC+ACGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:1452:1125.1:N:0:CCATGTACTC+ACGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:7129:1125.1:N:0:CCATGTACTC+ACGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:10004:1125.1:N:0:CCATGTACTC+ACGGCTAACA/2
@A00877:913:HYHKKDSX2:1:1101:2781:1141.1:N:0:CCATGTACTC+ACGGCTAACA/2

质控去宿主 结果文件简化统一(与质控一致)

。 实现简化名

rename 's/paired_//' temp/hr/*.fastq # Ubuntu系统改名 rename 'paired_' " temp/hr/*.fastq # CentOS系统改名

。 大文件清理, 高宿主含量样本可节约>90%空间

/bin/rm -rf temp/hr/*contam* temp/hr/*unmatched* temp/hr/reformatted* temp/hr/_temp*
Is -I temp/hr/

#确认去宿主结果后,可以删除质控后中间文件rm temp/qc/*.fastq

质控结果汇总表

合并所有样本统计结果为表kneaddata_read_count_table --input temp/hr -output temp/kneaddata.txt # 筛选重要的列,并查看结果cut -f 1,2,5,6 temp/kneaddata.txt | sed 's/_1_kneaddata//' > result/qc/sum.txt

csvtk -t pretty temp/kneaddata.txt

	, ,,,,										
Sample	raw pair1	raw pair2	trimmed single	decontaminated hg37dec_v0.1 pair1	decontaminated hg37dec_v0.1 pair2	decontaminated hg37dec_v0.1 orphan1	decontaminated hg37dec_v0.1 orphan2	final pair1	final pair2	final orphan1	final orphan2
C1	71279.0	71279.0	71279.0	70805.0	70805.0	0.0	0.0	70805.0	70805.0	0.0	0.0
C2	54008.0	54008.0	54008.0	35192.0	35192.0	0.0	0.0	35192.0	35192.0	0.0	0.0

csvtk -t pretty result/qc/sum.txt

Sample	raw pair1	decontaminated hg37dec_v0.1 pair1	decontaminated hg37dec_v0.1 pair2
C1	71279.0	70805.0	70805.0
C2	54008.0	35192.0	35192.0

质控结果统计和可视化

。 # 用R代码统计下质控结果

Rscript -e
"data=read.table('result/qc/sum.txt',
header=T, row.names=1, sep='\t');
summary(data)"

o # R转换宽表格为长表格

Rscript -e "library(reshape2); data=read.table('result/qc/sum.txt', header=T,row.names=1, sep='\t'); write.table(melt(data), file='result/qc/sum_long.txt',sep='\t', quote=F, col.names=T, row.names=F)"

https://www.bic.ac.cn/l/mageGP/index.php/Home/Index/Boxplot.html

总结

- Conda是软件安装和管理神器, Bioconda频道是生物学家的福音, 8 千多个生信软件及数十万个版本满足你各种需求, 记得引用它;
- 很多软件还依赖数据库需要手动下载,如人类基因组用于去宿主;
- o 多任务管理专家 rush
- o FastQC用于质量评估,MultiQC用于Fastqc质控前后的评估和汇总可视化,比较和图表导出;Fastp用于快速质控
- 。哈佛大学Huttenhover组编写的去宿主流程KneadData 整合Bowtie 2 等软件和宿主基因组数据库;

参考资源

- o <u>宏基因组公众号文章目录</u> <u>生信宝典公众号文章目录</u>
- o 科学出版社《微生物组数据分析》——50+篇
- o Bio-protocol《微生物组实验手册》——153篇
- o Protein Cell: 扩增子和宏基因组数据分析实用指南
- o CMJ: 人类微生物组研究设计、样本采集和生物信息分析指南
- o 加拿大生信网 https://bioinformatics.ca/ 宏基因组课程中文版
- 美国高通量开源课程 https://github.com/ngs-docs
- Curtis Huttenhower http://huttenhower.sph.harvard.edu/
 - Nicola Segata http://segatalab.cibio.unitn.it/

扫码关注生信宝典, 学习更多生信知识

扫码关注宏基因组, 获取专业学习资料

易生信, 没有难学的生信知识

