Характеристики элементов составного пояса лонжерона.

Характеристики металлов

Таблица 1

№	Марка	ρ,	γ,	$\sigma_{\scriptscriptstyle B},$	E,	L,	ε пр мет,
эл. (1)		кг/м ³	H/M^3	МПа	МПа	КМ	%
1-1	30ХГСА (профиль)	7850	76930	1100	210000	14,0	0,52
1-2	D16AT (профиль)	2800	27440	420	72000	15,2	0,58
1-3	ОТ-4 (профиль)	4500	44100	700	110000	15,5	0,64
1-4	B95 (профиль)	2800	27440	640	72000	22,8	0,88
1-5	ВТ20 (профиль)	4500	44100	1000	110000	22	0,90

Примечание: элементы распределены по мере возрастания ϵ пр мет.

В таблице: ρ – плотность; $\gamma = \rho * g$ – удельный вес; g=9,8 м/с²; $\sigma_{\rm B}$, E – предел прочности и модуль упругости металла на растяжение; $L = {\sigma_{\rm B} \over \gamma} / \gamma$ – удельная прочность материала;

$$\epsilon_{\rm пр \, MeT} = {\sigma_{\rm B} \over E} / {\rm E} * 100$$
 —относительное удлинение металла при растяжении.

Пример:

Удельная прочность материала 30ХГСА:

$$L_{30{\rm X\Gamma CA}}={\sigma_{\rm B}}/\gamma={1100*10^6\over 76930}=14000$$
 м = 14 км, где $\gamma=\!\!\rho*\!\!g$, $\gamma=7850$ х $9.8=76930 H/\!m^3$.

Относительная деформация элемента из материала 30ХГСА:

$$\epsilon_{\text{ пр MeT}} = \frac{\sigma_{\text{B}}}{E} * 100 = \frac{1100}{210000} * 100\% = 0.90.$$

Таблица 2. Характеристики композиционного материала

No	Марка	ρ ,	γ,	δм,	σ_{1_B} ,	E,	L,	
эл. (2)		кг/м ³	H/M^3	MM	МПа	МПа	КМ	ε _{пркм} , %
2-1	КМУ- 7Т2А	1520	14896	0,20	1570	133000	105	1,18
2-2	КМУ-7тр	1520	14896	0,23	600	64400	40	0,93
2-3	КМКУ- 2м.120.Э01	1500	14700	0,12	900	115000	61	0,78
2-4	КМУ-4э	1450	14210	0,09	900	120000	63	0,75
2-5	КМУ-7л (лента)	1550	15190	0,13	970	215000	64	0,45
2-6	КМУ- 7Т1А	1520	14896	0,25	1400	133000	94	1,05
2-7	КМУ-7э	1520	14896	0,12	900	135000	105	0,66
2-8	КМУ-11э	1520	14700	0,12	900	120000	61	0,75
2-9	КМУ-11тр	1530	14210	0,22	630	70000	63	0,90
2-10	КМУ-7э- 0,1	1520	14896	0,1	1130	142000	63	0,8

Примечание: в таблице элементы КМ распределены по мере увеличения величины $\varepsilon_{\text{пркм}}$.

В таблицах: ρ – плотность; $\gamma = \rho * g$ – удельный вес; $g = 9.8 \ \text{м/c}^2$; δ м – толщина монослоя; $\sigma_{1\text{в}}$, E_1 – предел прочности и модуль упругости КМ на растяжение вдоль волокна;

 $L = \sigma^{1} B / \gamma$ — удельная прочность композита; $\epsilon_{\text{пркм}} = \frac{\sigma^{1} B}{E1} * 100\%$ предельная деформация элемента из КМ.

Пример:

Удельная прочность материала КМУ-4э:

$$L_{\mathrm{KMY-49}} = \sigma_{\mathrm{1B}}/\gamma = \frac{900*10^6}{14210} = 0,063*10^6 = 63000 \ \mathrm{m} = 63 \ \mathrm{KM}$$

Относительная деформация материала КМУ-4э:

$$\epsilon_{\text{пркм}} = \frac{\sigma_{1B}}{E_1} * 100\% = \frac{900}{120000} * 100\% = 0.75.$$

Примечание: для примера в следующей таблице 5элементов КМ (как по заданию) распределены по мере увеличения величины $\varepsilon_{пркм}$.

Таблица 2. Характеристики КМ.

№	Марка	ρ ,	γ,	δмонослоя,	$\sigma_{1_{\mathrm{B}}}$,	E,	L,	ε,
эл. (2)		кг/м ³	<i>Н/м³</i>	ММ	МПа	МПа	КМ	%
2-5	КМУ- 7л(лента)	1550	15190	0,13	970	215000	64	0,45
2-4	КМУ-4э	1450	14210	0,09	900	120000	63	0,75
2-3	КМУКУ- 2м.120.э01	1500	14700	0,12	900	115000	61	0,78
2-2	КМУ-7тр	1520	14896	0,23	600	64400	40	0,93
2-6	КМУ-7Т2А	1520	14896	0,2	1570	133000	105	1,18