SCALING FOR THE NONLINEAR SCHRÖDINGER EQUATION

JORDAN BELL

The nonlinear Schrödinger equation is

(1)
$$i\partial_t u + \Delta u = \mu |u|^{p-1} u.$$

Let $u_{\lambda}(t,x) = \lambda^{\alpha} u(\frac{t}{\lambda^2}, \frac{x}{\lambda})$, for $\lambda > 0$.

Then

$$\partial_t u_{\lambda}(t,x) = \lambda^{\alpha-2} (\partial_t u) \left(\frac{t}{\lambda^2}, \frac{x}{\lambda} \right)$$

and

$$\Delta u_{\lambda}(t,x) = \lambda^{\alpha-2}(\Delta u) \left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right).$$

For u_{λ} to satisfy (1) means that

$$i\lambda^{\alpha-2}(\partial_t u)\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right) + \lambda^{\alpha-2}(\Delta u)\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right) = \lambda^{p\alpha} \mu \left| u\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right) \right|^{p-1} u\left(\frac{t}{\lambda^2}, \frac{x}{\lambda}\right),$$

i.e.,

$$i\lambda^{\alpha-2}\partial_t u + \lambda^{\alpha-2}\Delta u = \lambda^{p\alpha}\mu|u|^{p-1}u.$$

This will hold if $\lambda^{\alpha-2} = \lambda^{p\alpha}$, so if $\alpha - 2 = p\alpha$, which happens when $\alpha = \frac{-2}{p-1}$. Therefore if u is a solution of (1) then $u_{\lambda}(t,x) = \lambda^{\alpha} u(\frac{t}{\lambda^{2}},\frac{x}{\lambda})$ is also a solution of (1), and we say that we obtained u_{λ} by scaling the solution u, and we also say that (1) is scaling invariant.

Now let's consider the $\dot{H}^s(\mathbb{R}^d)$ norm of u_{λ} .

$$\begin{aligned} \|u_{\lambda}\|_{\dot{H}^{s}(\mathbb{R}^{d})} &= \left(\int (\nabla^{s} u_{\lambda}(x))^{2} dx\right)^{1/2} \\ &= \left(\int \left(\lambda^{\alpha} \frac{1}{\lambda^{s}} (\nabla^{s} u) \left(\frac{x}{\lambda}\right)\right)^{2} dx\right)^{1/2} \\ &= \lambda^{\alpha - s} \left(\int \left((\nabla^{s} u) \left(\frac{x}{\lambda}\right)\right)^{2} dx\right)^{1/2} \\ &= \lambda^{\alpha - s} \left(\int (\nabla^{s} u)^{2} \lambda^{d} dy\right)^{1/2} \\ &= \lambda^{\alpha - s + \frac{d}{2}} \|u\|_{\dot{H}^{s}(\mathbb{R}^{d})} \end{aligned}$$

If $\alpha - s + \frac{d}{2} = 0$ then the scaled solution u_{λ} has the same $\dot{H}^s(\mathbb{R}^d)$ norm as u has. We say that (1) is L^2 scaling invariant (s=0) if $\frac{-2}{p-1} + \frac{d}{2} = 0$, i.e., $p = 1 + \frac{4}{d}$. We say that (1) is \dot{H}^1 scaling invariant (s=1) if $\frac{-2}{p-1} - 1 + \frac{d}{2} = 0$, i.e., $p = 1 + \frac{4}{d-2}$. For (1) to be \dot{H}^s critical is another way of saying that it is \dot{H}^s scaling invariant.

Date: June 4, 2012.

Let's consider the relation between the norm of u_{λ} and the norm of u that we obtained. It is

(2)
$$||u_{\lambda}||_{\dot{H}^{s}(\mathbb{R}^{d})} = \lambda^{\alpha - s + \frac{d}{2}} ||u||_{\dot{H}^{s}(\mathbb{R}^{d})}.$$

If u blows up at time t^* then u_{λ} blows up at time t such that $\frac{t}{\lambda^2} = t^*$, so $t = \lambda^2 t^*$, which will be larger than t^* if $\lambda > 1$. Also, if $\alpha - s + \frac{d}{2} < 0$ then the norm of u_{λ} is smaller than the norm of u.

In the case $\alpha-s+\frac{d}{2}<0$ we say that (1) is \dot{H}^s subcritical.

In the case $\alpha - s + \frac{d}{2} = 0$ we say that (1) is \dot{H}^s critical. In the case $\alpha - s + \frac{d}{2} > 0$ we say that (1) is \dot{H}^s supercritical.

In the \dot{H}^s subcritical case, we can make the solution strictly nicer by scaling it with large λ , whereas in the \dot{H}^s supercritical case if we scale it with large λ the time of existence will grow but the norm will also grow, and if we scale it with small λ the norm will decrease but the time of existence will also decrease. This is our reason for considering the \dot{H}^s subcritical case to be nicer than the \dot{H}^s supercritical case.

E-mail address: jordan.bell@gmail.com

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA