È data la seguente espressione regolare di alfabeto $\Sigma = \{a,b,c\}$ R = $(bc^*|b^+c|ab^*)^+$

- 1) Ricavare mostrando i passaggi principali l'automa deterministico minimo.
- 2) Esprimere le stesse regole in forma di grammatica strettamente lineare a sinistra
- 3) Esprimere le stesse regole in forma di grammatica non contestuale ma non in forma estesa (usando solo gli operatori di concatenamento e unione)
- 4) Dimostrare l'eventuale correttezza della frase "aabbbc" utilizzando le quattro notazioni ed offrendo uno spettro completo di tecniche di riconoscimento
- 5) Verificare se sia possibile ottenere frasi ambigue e in caso affermativo, fornirne una.

SOLUZIONE

1) Disegno l'automa a stati finiti con ϵ -mosse:

quello che ho tracciato è un automa con ϵ -mosse, palesemente non deterministico: devo ora eliminarle.

Faccio ora la tabella che indica quali sono gli stati raggiungibili da un certo stato con un certo simbolo terminale.

	a	Ь	С
1	1,4,5	1,2,3,5	X
2	1,4,5	1,2,3,5	1,2,5

3	X	3	1,5
4	1,4,5	1,2,3,4,5	X
5	1,4,5	1,2,3,5	X

Dallo stato 1 con b ϵ si va in 1, con b ϵ si va in 5 e con b si va in 2 o in 3, quindi gli stati raggiungibili da 1 col simbolo "b" sono 1,2,3,5.

Qual è la sequenza per raggiungere 1 da 27 $\epsilon\epsilon$ a $\epsilon\epsilon$.

Adesso devo costruire l'automa a stati finiti deterministico corrispondente al precedente.

Ad esempio lo stato 145 è la somma degli stati 1, 4 e $5 \Rightarrow$ prendo l'unione delle possibilità offerte dai singoli stati.

Per semplicità ridenominiamo gli stati:

$$1 \to \textbf{\textit{A}}$$

$$145 \rightarrow B$$

$$12345 \rightarrow \textit{C}$$

$$1235 \rightarrow D$$

Guardo ora se l'automa a stati finiti ottenuto è minimo.

В	X		_	
С	X	X		
D	X	X	ļ	
Е	Х	X	(C,D) ⇒!	į
	Α	В	С	D

Guardiamo gli stati C e D:

$\delta(\mathcal{C}, a) \to B$	$\delta(D, \! a) o B$
$\delta(C,b) \rightarrow C$	$\delta(D,b) o D$
$\delta(\mathcal{C},c) \to E$	$\delta(D,c) \rightarrow E$

Guardiamo gli stati C e E:

$$\begin{array}{lll} \delta(\mathcal{C}, a) \to \mathsf{B} & & \delta(\mathsf{E}, a) \to \mathsf{B} \\ \delta(\mathcal{C}, \mathsf{b}) \to \mathcal{C} & & \delta(\mathsf{E}, \mathsf{b}) \to \mathsf{D} \\ \delta(\mathcal{C}, \mathsf{c}) \to \mathsf{E} & & \delta(\mathsf{E}, \mathsf{c}) \to \mathsf{E} \end{array}$$

Guardiamo gli stati D e E:

$$\begin{array}{lll} \delta(D,a) \to B & \qquad & \delta(E,a) \to B \\ \delta(D,b) \to D & \qquad & \delta(E,b) \to D \\ \delta(D,c) \to E & \qquad & \delta(E,c) \to E \end{array}$$

$C \equiv D \equiv E$

In conclusione l'automa a stati finiti deterministico minimo è il seguente:

2)
$$\Sigma = \{a,b,c\}$$

 $V = \{B,X,F\}$
 $S = \{F\}$
 $P = \{F \rightarrow B | X$
 $X \rightarrow Bb|b|Xb|Xc$
 $B \rightarrow a|Ba|Xa$
 $\}$
3) $R \rightarrow P|RP$ $P = (bc^*|b^*c|ab^*)$
 $P \rightarrow X|Y|Z$ $X = bc^*, Y = b^*c, Z = ab^*$
 $X \rightarrow b|bC$ $C = c^*$
 $C \rightarrow c|Cc$
 $Y \rightarrow Bc$ $B = b^*$

$$Z \rightarrow a \mid aB$$

4)

• R = $(bc^*|b^+c|ab^*)^+ \rightarrow (bc^*|b^+c|ab^*)(bc^*|b^+c|ab^*)(bc^*|b^+c|ab^*) \rightarrow (ab^*)(bc^*|b^+c|ab^*)(bc^*|b^+c|ab^*) \rightarrow a(bc^*|b^+c|ab^*)(bc^*|b^+c|ab^*) \rightarrow aab^+(bc^*|b^+c|ab^*) \rightarrow aab^+(bc^*|b^+c|ab^*)$

	α	a	Ь	b	Ь	С
Α	В	В	X	X	X	X

Lo stato X è finale \Rightarrow la stringa è corretta

• Usiamo la grammatica non contestuale e facciamo derivazioni sinistre

 $R \to RP \to RPP \to PPP \to ZPP \to aPP \to aZP \to aaBP \to aabP \to aabY \to aabBc \to aabbBc \to aabbbc$

5) Una frase ambigua è quella data: aabbbc, infatti la dimostrazione di correttezza si può ottenere in almeno due modi diversi

 $\begin{array}{l} R \to RP \to RPP \to PPP \to ZPP \to aPP \to aZP \to aaP \to aaY \to aaBc \to aaBbc \\ \to aaBbbc \to aabbbc. \end{array}$

Questa dimostrazione è corretta ma diversa dalla precedente \Rightarrow la grammatica è ambigua.

Vediamo ora due possibili alberi sintattici:

