

Amendments to the Claims

Please cancel claim 34 without prejudice or disclaimer. Please amend the remaining claims as shown below in the Listing of Claims.

Listing of Claims

1-27. (Cancelled)

28. (Currently amended) A process for the hydrogenation of a compound, comprising hydrogenating a C₆-C₁₈ aromatic substituted amino acid or C₆-C₁₈ aromatic substituted amino alcohol in the presence of a platinum-rhodium mixed catalyst, wherein said C₆-C₁₈ aromatic substituted amino acid or C₆-C₁₈ aromatic substituted amino alcohol is of formula (I):

wherein

n is 0, 1 or 2;

R¹ is a (C₆-C₁₈) aryl, or a(C₇-C₁₉) aralkyl, wherein aryl groups are optionally substituted with halogen, (C₁-C₈) alkoxy, (C₁-C₈) acyl, or (C₁-C₈) acyloxy;

R² is H, OH, (C₁-C₈) alkyl, (C₂-C₈) alkoxyalkyl;

R³ and R⁴ are each independently H, a (C₁-C₈) alkyl, a (C₆-C₁₈) aryl, or together denote an =O function;

P¹ and P² are each independently hydrogen, an amino protective group or together stand for a bifunctional amino protective group;

P³ is hydrogen, a hydroxyl protective group, or a carboxyl protective group; and
the carbon atom marked with * is an asymmetrical carbon atom;

and wherein:

said process produces a yield of greater than 94% after a reaction time of about 6 to 8 hours; and

the hydrogenation reaction is performed in the presence of a solvent consisting of a mixture of water and an alcohol.

29. (Previously presented) The process of claim 28, wherein n is 1 or 2.
30. (Previously presented) The process of claim 29, wherein R³ and R⁴ are each independently a (C₁-C₈) alkyl, a (C₆-C₁₈) aryl, or together denote an =O function.
31. (Previously presented) The process of claim 29, wherein R² is H, OH, (C₁-C₈) alkyl, (C₂-C₈) alkoxyalkyl.
32. (Previously presented) The process of claim 28, wherein said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation and the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w).
33. (Previously presented) The process of claim 28, wherein said platinum-rhodium mixed catalyst is adsorbed on a support.
34. (Cancelled)
35. (Previously presented) The process of claim 28, wherein said hydrogenation is performed at a temperature of 10°C to 150°C.
36. (Previously presented) The process of claim 28, wherein said process comprises reacting said C₆-C₁₈ aromatic substituted amino acid or C₆-C₁₈ aromatic substituted amino alcohol with hydrogen gas in the presence of said platinum-rhodium mixed catalyst and under a hydrogen pressure of between 1 and 100 bar.
37. (Previously presented) The process of claim 28, wherein:
 - a) R² is H;
 - b) R³ and R⁴ are H, or together denote an =O function; and

- c) the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w).

38. (Previously presented) The process of claim 37, wherein said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation.

39. (Currently amended) The process of claim 38, wherein:

- a) ~~said hydrogenation is performed in the presence of a solvent selected from the group consisting of: water; and an alcohol;~~
- b a) said hydrogenation is performed under a hydrogen pressure of between 1 and 100 bar; and
- e b) said hydrogenation is performed at a temperature of 10°C to 150°C.

40. (Previously presented) The process of claim 39, wherein said platinum-rhodium mixed catalyst is adsorbed on a support.

41. (Previously presented) A process for the hydrogenation of a compound selected from the group consisting of: L-phenylalanine, D-phenylalanine, L-phenylglycine, D-phenylglycine, L-tyrosine or D-tyrosine, comprising hydrogenating said compound in the presence of a platinum-rhodium mixed catalyst wherein said process produces a yield of greater than 94% after a reaction time of about 6 to 8 hours.

42. (Previously presented) The process of claim 41, wherein the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w).

43. (Previously presented) The process of claim 42, wherein said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation.

44. (Currently amended) The process of claim 43, wherein ~~said the~~ hydrogenation reaction is performed in the presence of a solvent ~~selected from the group~~ consisting

of[[:]] water; an alcohol; an ether; and mixtures thereof a mixture of water and an alcohol.

45. (Previously presented) The process of claim 44, wherein said hydrogenation is performed at a temperature of 10°C to 150°C.
46. (Previously presented) The process of claim 45, wherein said process comprises reacting said compound with hydrogen gas in the presence of said platinum-rhodium mixed catalyst and under a hydrogen pressure of between 1 and 100 bar.
47. (Previously presented) The process of claim 46, wherein said platinum-rhodium mixed catalyst is adsorbed on a support.