Jason Weiser SID: 862113384 Session: 022 ENGR ID: iweiser UCR NetID: jweis012

Simulation result of example counter

```
bender /home/eemaj/jweiser/eecs168/lab4-rtl/counter $ ./simv
Chronologic VCS simulator copyright 1991-2015
Contains Synopsys proprietary information.
Compiler version K-2015.09-SP1-1; Runtime version K-2015.09-SP1-1; Mar 13 23:03
2021
time=
        0 ns, clk=0, reset=0, out=xxxx
       10 ns, clk=1, reset=0, out=xxxx
time=
time=
      11 ns, clk=1, reset=1, out=xxxx
time=
       20 ns, clk=0, reset=1, out=xxxx
       30 ns, clk=1, reset=1, out=xxxx
time=
time= 31 ns, clk=1, reset=0, out=0000
time= 40 ns, clk=0, reset=0, out=0000
time=
       50 ns, clk=1, reset=0, out=0000
time= 51 ns, clk=1, reset=0, out=0001
time= 60 ns, clk=0, reset=0, out=0001
       70 ns, clk=1, reset=0, out=0001
time=
time= 71 ns, clk=1, reset=0, out=0010
time= 80 ns, clk=0, reset=0, out=0010
time= 90 ns, clk=1, reset=0, out=0010
      91 ns, clk=1, reset=0, out=0011
time=
time= 100 ns, clk=0, reset=0, out=0011
time= 110 ns, clk=1, reset=0, out=0011
time= 111 ns, clk=1, reset=0, out=0100
time= 120 ns, clk=0, reset=0, out=0100
time= 130 ns, clk=1, reset=0, out=0100
time= 131 ns, clk=1, reset=0, out=0101
time= 140 ns, clk=0, reset=0, out=0101
time= 150 ns, clk=1, reset=0, out=0101
time= 151 ns, clk=1, reset=0, out=0110
time= 160 ns, clk=0, reset=0, out=0110
time= 170 ns, clk=1, reset=0, out=0110
All tests completed sucessfully
$finish called from file "counter tb.v", line 55.
$finish at simulation time 171.0 ns
          VCS Simulation Report
Time: 171000 ps
CPU Time:
              0.350 seconds; Data structure size:
                                                         0.0Mb
Sat Mar 13 23:03:59 2021
```

The result of gate-level for 4-bit full adder, fa_4bit_synthesized.v

I wrote a testbench for the 4-bit adder code and ran a test of it here:

```
`timescale 1ns/10ps
module timeunit;
  initial $timeformat(-9,1," ns",9);
endmodule
// Here is the testbench proper:
module counter_testbench ( );
  // Test bench gets wires for all device under test (DUT) outputs:
  wire [3:0] out;
  wire [3:0] sum;
  wire cout;
  // Regs for all DUT inputs:
  reg
          clk;
  reg
          reset;
  reg [3:0] ain;
  reg [3:0] bin;
  reg
          cin;
  fa_4bit dut (// (dut means device under test)
          // Outputs
          .out (out[3:0]),
          .sum (sum[3:0]),
          .cout (cout),
     // Inputs
          .reset (reset),
          .clk (clk),
          .cin (cin),
          .bin (bin[3:0]),
          .ain (ain[3:0]);
  // Setup clk to automatically strobe with a period of 20.
  always #10 clk = \simclk;
  initial
   begin
     // First setup up to monitor all inputs and outputs
     $monitor ("time=%5d ns, clk=%b, sum=%b, cout=%b, cin=%b, bin=%b, ain=%b", $time, clk,
sum[3:0], cout, cin, bin[3:0], ain[3:0]);
     // First initialize all registers
     clk = 1'b0;
// what happens to clk if we don't
     reset = 1'b0;
     // set this?;
     ain = 1'b0;
     bin = 1'b0;
     cin = 1'b0;
```

```
@(posedge clk);#1;
   reset = 1'b1;
   @(posedge clk);#1; // this says wait for rising edge
   reset = 1'b0;
   // of clk and one more tic (to prevent
   // shoot through)
  ain = 1'b1;
   @(posedge clk);#1;
   ain = 1'b0;
   bin = 1'b1;
   // Lets watch what happens after 7 cycles
   @(posedge clk);#1;
   ain = 1'b1;
   bin = 1'b1;
   @(posedge clk);#1;
   ain = 1'b0;
   bin = 1'b0;
   cin = 1'b1;
   @(posedge clk);#1;
   ain = 1'b1;
   bin = 1'b0;
   cin = 1'b1;
   @(posedge clk);#1;
   ain = 1'b0;
   bin = 1'b1;
   cin = 1'b1;
   @(posedge clk);#1;
   ain = 1'b1;
   bin = 1'b1;
   cin = 1'b1;
   @(posedge clk);#1;
   ain = 1'b0;
   bin = 1'b0;
   cin = 1'b0;
   // At this point we should have a 4'b0110 coming out out because
    // the counter should have counted for 7 cycles from 0
    if (out != 4'b0110) begin
      $display("ERROR 1: Out is not equal to 4'b0110");
      $finish;
    end
   // We got this far so all tests passed.
   $display("All tests completed sucessfully\n\n");
   $finish;
// This is to create a dump file for offline viewing.
initial
 begin
   $dumpfile ("counter.dump");
```

\$dumpvars (0, counter_testbench); end // initial begin

endmodule // counter_testbench

```
bender /home/eemaj/jweiser/eecs168/lab4-rtl/fa_4bit $ ./simv
Chronologic VCS simulator copyright 1991-2015
Contains Synopsys proprietary information.
Compiler version K-2015.09-SP1-1; Runtime version K-2015.09-SP1-1; Mar 22 02:42 2021
       0 ns, clk=0, sum=0000, cout=0, cin=0, bin=0000, ain=0000
time=
time= 10 ns, clk=1, sum=0000, cout=0, cin=0, bin=0000, ain=0000
time= 20 ns, clk=0, sum=0000, cout=0, cin=0, bin=0000, ain=0000
time= 30 ns, clk=1, sum=0000, cout=0, cin=0, bin=0000, ain=0000
time= 31 ns, clk=1, sum=0001, cout=0, cin=0, bin=0000, ain=0001
time= 40 ns, clk=0, sum=0001, cout=0, cin=0, bin=0000, ain=0001
time= 50 ns, clk=1, sum=0001, cout=0, cin=0, bin=0000, ain=0001
time= 51 ns, clk=1, sum=0001, cout=0, cin=0, bin=0001, ain=0000
time= 60 ns, clk=0, sum=0001, cout=0, cin=0, bin=0001, ain=0000
time= 70 ns, clk=1, sum=0001, cout=0, cin=0, bin=0001, ain=0000
time= 71 ns, clk=1, sum=0010, cout=0, cin=0, bin=0001, ain=0001
time= 80 ns, clk=0, sum=0010, cout=0, cin=0, bin=0001, ain=0001
time= 90 ns, clk=1, sum=0010, cout=0, cin=0, bin=0001, ain=0001
time= 91 ns, clk=1, sum=0001, cout=0, cin=1, bin=0000, ain=0000
time= 100 ns, clk=0, sum=0001, cout=0, cin=1, bin=0000, ain=0000
time= 110 ns, clk=1, sum=0001, cout=0, cin=1, bin=0000, ain=0000
time= 111 ns, clk=1, sum=0010, cout=0, cin=1, bin=0000, ain=0001
time= 120 ns, clk=0, sum=0010, cout=0, cin=1, bin=0000, ain=0001
time= 130 ns, clk=1, sum=0010, cout=0, cin=1, bin=0000, ain=0001
time= 131 ns, clk=1, sum=0010, cout=0, cin=1, bin=0001, ain=0000
time= 140 ns, clk=0, sum=0010, cout=0, cin=1, bin=0001, ain=0000
time= 150 ns, clk=1, sum=0010, cout=0, cin=1, bin=0001, ain=0000
time= 151 ns, clk=1, sum=0011, cout=0, cin=1, bin=0001, ain=0001
time= 160 ns, clk=0, sum=0011, cout=0, cin=1, bin=0001, ain=0001
time= 170 ns, clk=1, sum=0011, cout=0, cin=1, bin=0001, ain=0001
All tests completed sucessfully
```

\$finish called from file "counter_tb.v", line 90. \$finish at simulation time 171.0 ns

VCS Simulation Report

Time: 171000 ps

CPU Time: 0.290 seconds; Data structure size: 0.0Mb

Mon Mar 22 02:42:43 2021

Final layout in Fig 49 for 4-bit full adder.

fFnal layout in figure 51

5 design compiler report (timing, power, area, reference, and resource)

Timing report

Information: Updating design information... (UID-85)

Report : timing -path full

-delay max

-nets

-max_paths 1-transition_time

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Fri Mar 12 23:28:51 2021

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

Startpoint: GCDdpath0/A_reg_reg[4]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Endpoint: GCDdpath0/A_reg_reg[9]

(rising edge-triggered flip-flop clocked by ideal_clock1)

Path Group: ideal_clock1

Path Type: max

Attributes:

d - dont_touch

u - dont_use

mo - map_only

so - size only

i - ideal_net or ideal_network

inf - infeasible path

Point	Fanout	Trans I	ncr Pat	h Attrib	utes
clock ideal_clock1 (rise edg clock network delay (ideal) GCDdpath0/A_reg_reg[4]/C		ARX1)	0.00 0.00 0.00	0.00 0.00 0.00 00 0.00	0.00 r
GCDdpath0/A_reg_reg[4]/C) (DFFAR		0.04		0.24 f
result_bits_data[4] (net)	5			.24 f	
U153/QN (NAND2X1)		0.0			
n294 (net)	2	0.00		•	
U251/QN (INVX0)		0.03	0.03	0.31 f	
n183 (net)	2	0.00	0.31 f		
U133/QN (NAND2X0)		0.0	0.04	0.35 r	
n149 (net)	1	0.00	0.35 r	•	

U252/QN (NAND2X1)		0.05	0.04	0.39 f		
n314 (net)	3	0.00	0.39 f			
U253/QN (NAND2X2)		0.03	0.02	0.41 r		
n153 (net)	1	0.00	0.41 r			
U258/QN (NAND2X1)		0.03	0.03	0.44 f		
n154 (net)	1	0.00	0.44 f			
U259/Q (AO21X1)		0.04	80.0	0.52 f		
n227 (net)	4	0.00	0.52 f			
U177/Q (LSDNX1)		0.04	80.0	0.60 f		
n308 (net)	2	0.00	0.60 f			
U320/Q (AO21X1)		0.03	0.09	0.69 f		
n233 (net)	1	0.00	0.69 f			
U322/Q (XOR2X1)		0.04	0.12	0.81 r		
n234 (net)	1	0.00	0.81 r			
U140/QN (NAND2X0)			0.04	0.84 f		
n238 (net)	1	0.00	0.84 f			
U324/QN (NAND4X0)			0.04	0.88 r		
n91 (net)	1	0.00	0.88 r			
GCDdpath0/A_reg_reg[9]	/D (DFFARX1)		0.07	0.00	0.88 r	
data arrival time			0.88			
clock ideal_clock1 (rise ed	dge)		1.00	1.00		
clock network delay (idea	0 /	(0.00	1.00		
GCDdpath0/A_reg_reg[9]	,	1)		0.00	1.00 r	
library setup time	•	-0.12	0.88			
data required time			0.88			
data required time			0.88			
data arrival time			-0.88			
slack (MET)			0.00			
omen (mili)			3.00			

Power report

Report : power -hier

-analysis_effort low Design : gcdGCDUnit_rtl Version: K-2015.06-SP4

Date: Fri Mar 12 23:31:15 2021

Library(s) Used:

saed90nm_typ (File:

 $/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90nm_fr/LM/saed90nm_typ.db)$

Operating Conditions: TYPICAL Library: saed90nm_typ

Wire Load Model Mode: top

Global Operating Voltage = 1.2 Power-specific unit information :

Voltage Units = 1V

Capacitance Units = 1.000000pf

Time Units = 1ns

Dynamic Power Units = 1mW (derived from V,C,T units)

Leakage Power Units = 1pW

Switch Int Leak Total

Hierarchy Power Power Power %

gcdGCDUnit_rtl 0.128 1.124 9.51e+06 1.262 100.0

Area report

Report : area

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date: Fri Mar 12 23:30:28 2021

Library(s) Used:

saed90nm_typ (File:

/usr/local/synopsys/pdk/SAED90_EDK/SAED_EDK90nm_REF/references/ChipTop/ref/saed90nm_fr/LM/saed90nm_typ.db)

Number of ports: 54 Number of nets: 384 Number of cells: 317

Number of combinational cells: 283
Number of sequential cells: 34
Number of macros/black boxes: 0
Number of buf/inv: 34
Number of references: 30

Combinational area: 1995.864012 Buf/Inv area: 199.999007

Noncombinational area: 1081.958015 Macro/Black Box area: 0.000000 Net Interconnect area: undefined (No wire load specified)

Total cell area: 3077.822028

Total area: undefined

Hierarchical area distribution

	Global cell area Local cell area
Hierarchical cell	Absolute Percent Combi- Noncombi- Black- Total Total national national boxes Design
gcdGCDUnit_rtl	3077.8220 100.0 1995.8640 1081.9580 0.0000 gcdGCDUnit_rtl
Total	1995.8640 1081.9580 0.0000

Cell area report

Report: reference

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Fri Mar 12 23:32:35 2021

Attributes:

b - black box (unknown)

bo - allows boundary optimization

d - dont_touch

mo - map_only

h - hierarchical

n - noncombinational

r - removable

s - synthetic operator

u - contains unmapped logic

Reference	Library Unit	Area Count	Total Area Attributes
AND2X1	saed90nm_typ	7.445000	1 7.445000
AO21X1	saed90nm_typ	10.138000	2 20.275999
AO222X1	saed90nm_typ	14.746000	16 235.936005
AOINVX1	saed90nm_typ	6.451000	1 6.451000
AOINVX2	saed90nm_typ	6.451000	1 6.451000

DFFARX1	saed90nm_typ	32.256001	32 1032.192017 n
DFFX1	saed90nm_typ 2	24.882999	2 49.765999 n
INVX0	saed90nm_typ	5.530000	28 154.840006
INVX2	saed90nm_typ	6.451000	1 6.451000
INVX8	saed90nm_typ 1	14.746000	1 14.746000
ISOLANDX1	saed90nm_tyj	p 7.373000	1 7.373000
ISOLORX1	saed90nm_typ	7.387000	4 29.548000
LSDNX1	saed90nm_typ	5.530000	1 5.530000
NAND2X0	saed90nm_typ	5.443000	88 478.983986
NAND2X1	saed90nm_typ	5.501000	9 49.508999
NAND2X2	saed90nm_typ	8.798000	4 35.192001
NAND2X4	saed90nm_typ	14.501000	1 14.501000
NAND3X0	saed90nm_typ	7.373000	2 14.746000
NAND4X0	saed90nm_typ	8.294000	16 132.703995
NBUFFX2	saed90nm_typ	5.530000	1 5.530000
NOR2X0	saed90nm_typ	5.530000	71 392.630015
NOR2X1	saed90nm_typ	6.005000	6 36.030001
NOR2X2	saed90nm_typ	9.216000	2 18.431999
NOR2X4	saed90nm_typ	14.731000	2 29.462000
NOR3X0	saed90nm_typ	8.294000	1 8.294000
OA21X1	saed90nm_typ	9.216000	5 46.079998
OA22X1	saed90nm_typ	11.059000	1 11.059000
OR4X1	saed90nm_typ	10.152000	2 20.304001
XNOR2X1	saed90nm_typ	13.824000	8 110.592003
XOR2X1	saed90nm_typ	13.824000	7 96.768003

Total 30 references

3077.822028

Detail rtl design resource report

Report : resources

Design: gcdGCDUnit_rtl Version: K-2015.06-SP4

Date : Fri Mar 12 23:33:35 2021

Resource Report for this hierarchy in file ./gcd_dpath.v

====

| Cell | Parameters | Contained Operations | Module

| DW01_sub | width=16 | GCDdpath0/sub_45 (gcd_dpath.v:45) | | sub_x_2 | width=16 | GCDdpath0/lt_51 (gcd_dpath.v:51) | DW_cmp

impiementa	ntion Report 			
 ====== Cell	Curre Module	' '	ementation	
===== sub_x_2 lt_x_3	DW01_sub DW_cmp	pparch (area,speed) pparch (area,speed)	 	-===

=====

Writing the test bench to demonstrate the 4bit counter code was challenging but a good experience in modifying the counter and the 4bit_adder code writing code to work together. I ran into an error synthesizing the final GCD layout but using recommended instructions from piazza I was able to solve it. Otherwise this lab was fairly easy.