Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ITMO University

Лабораторная работа №3 по теме «Исследование равноускоренного вращательного движения»

По дисциплине

Физика

Выполнили:

Стафеев И.А. (К3121)

Голованов Д. И. (К3123)

Данилов Н. О. (К3121)

Поток: ОФ-1 ИКТ 1.2.1

Проверила

Рудель А. Е.

Санкт-Петербург, 2024

СОДЕРЖАНИЕ

			Стр.
1	Введени	те	3
	1.1	Цели работы	3
	1.2	Задачи	
	1.3	Объект исследования	3
	1.4	Метод исследования	3
	1.5	Рабочие формулы и исходные данные	
	1.6	Измерительные приборы	
	1.7	Схема установки	6
2	Выполн	ение лабораторной работы	8
	2.1	Результаты прямых и косвенных измерений	8
	2.2	Окончательные результаты	10
	2.3	Графики	11
3	Выводы	и и анализ результатов работы	13
4	Ответы	на контрольные вопросы	14

1 Введение

1.1 Цели работы

- 1. Проверка основного закона динамики вращения;
- 2. Проверка зависимости момента инерции от положения масс относительно оси вращения.

1.2 Задачи

- 1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине;
- 2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити;
- 3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения;
- 4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения;
- 5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

1.3 Объект исследования

Равноускоренное вращательное движения

1.4 Метод исследования

Косвенные измерения момента инерции крестовины с грузами при помощи маятника Обербека

1.5 Рабочие формулы и исходные данные

1. Второй закон Ньютона для груза, подвешенного на нити

$$ma = mg - T \tag{1}$$

2. Ускорение груза, подвешенного на нити

$$a = \frac{2h}{t^2} \tag{2}$$

3. Угловое ускорение

$$\varepsilon = \frac{2a}{d} \tag{3}$$

4. Момент силы натяжения нити

$$M = \frac{md}{2}(g - a) \tag{4}$$

5. Основной закон динамики вращения для крестовины

$$I\varepsilon = M - M_{\rm Tp}$$
 (5)

6. Теорема Штейнера для крестовины

$$I = I_0 + 4m_{\rm yr}R^2 \tag{6}$$

7. Расстояние между осью вращения и центром утяжелителя

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b\tag{7}$$

где l_1 - расстояние от оси вращения до первой риски, n - номер риски, l_0 - расстояние между соседними рисками, b - размер утяжелителя вдоль спицы

8. Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$
 (8)

9. Случайная погрешность

$$\Delta_{\langle t \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} \tag{9}$$

10. Абсолютная погрешность

$$\Delta_t = \sqrt{\Delta_{\langle t \rangle}^2 + (\frac{2}{3}\Delta_{\text{N}t})^2} \tag{10}$$

11. Погрешность для косвенных измерений

$$\Delta_z = \sqrt{\left(\frac{\partial f}{\partial a}\Delta_a\right)^2 + \left(\frac{\partial f}{\partial b}\Delta_b\right)^2 + \dots}$$
 (11)

Исходные данные: $h_1 = 700$ мм, $h_0 = 0$ мм, $h = h_1 - h_0 = 700$ мм.

1.6 Измерительные приборы

Таблица 1 — Измерительные приборы

$N_{\overline{0}}$	Наименование	Тип прибора	Используемый	Погрешность	
Π/Π			диапазон	прибора $\Delta_{\mathrm ut}$	
1	Цифровой	цифровой	0-3600 с	0.005 с	
	секундомер				
2	Линейка	аналоговый	0-700 мм	0.5 мм	

1.7 Схема установки

Рисунок 1 — Схема установки для проведения измерений

Числами на схеме обозначены:

- 1. Основание;
- 2. Рукоятка сцепления крестовин;
- 3. Устройства принудительного трения;
- 4. Поперечина;
- 5. Груз крестовины;
- 6. Трубчатая направляющая;
- 7. Передняя крестовина;
- 8. Задняя крестовина;
- 9. Шайбы каретки;
- 10. Каретка;
- 11. Система передних стоек.

Параметры установки:

- Масса каретки: $(47,0\pm0,5)$ г
- Масса шайбы: $(220,0\pm0,5)$ г
- Масса грузов на крестовине: $(408,0\pm0,5)$ г
- Расстояние первой риски от оси: $(57,0\pm0,5)$ мм
- Расстояние между рисками: $(25,0\pm0,2)$ мм
- Диаметр ступицы: $(46,0\pm0,5)$ мм
- Диаметр груза на крестовине: $(40,0\pm0,5)$ мм
- Высота груза на крестовине: $(40,0\pm0,5)$ мм

2 Выполнение лабораторной работы

2.1 Результаты прямых и косвенных измерений

Таблица 2 — Прямые измерения времени падения каретки с грузами, с

Magga prypa r	Положение утяжелителей						
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	$t_1 = 5.84$	4.97	5.83	6.66	7.98	8.31	
$m_1 = 267$	$t_2 = 4.63$	5.20	6.23	6.82	7.68	8.76	
	$t_3 = 4.38$	4.57	6.31	6.79	7.45	8.78	
	3.58	3.70	4.58	4.68	5.56	6.65	
$m_2 = 487$	3.35	3.70	4.48	4.85	6.20	6.48	
	3.38	3.90	4.36	5.20	5.69	6.28	
	3.01	3.52	3.56	4.20	5.33	5.51	
$m_3 = 707$	2.75	3.28	3.74	4.18	5.21	5.32	
	2.85	3.20	4.19	4.45	5.23	5.55	
	2.41	2.76	3.14	3.64	4.28	4.53	
$m_4 = 927$	2.48	2.75	3.01	3.63	4.71	5.08	
	2.28	2.83	3.26	3.58	4.33	4.94	

Таблица 3 — Значения среднего времени, линейного и углового ускорения, момента силы натяжения

Масса груза	№ риски	$t_{\rm cp},{ m c}$	a , m/c^2	$arepsilon$, рад / c^2	$M, H \cdot M$
	1	4.95	0.057	2.48	0.060
	2	4.91	0.058	2.52	0.060
	3	6.12	0.037	1.61	0.060
m_1	4	6.76	0.031	1.35	0.060
	5	7.70	0.024	1.04	0.060
	6	8.62	0.019	0.83	0.060
	1	3.44	0.118	5.13	0.108
	2	3.77	0.099	4.30	0.109
m	3	4.47	0.070	3.04	0.109
m_2	4	4.91	0.058	2.52	0.109
	5	5.82	0.041	1.78	0.109
	6	6.47	0.033	1.43	0.109
	1	2.87	0.170	7.39	0.157
	2	3.33	0.126	5.48	0.157
m	3	3.83	0.095	4.13	0.158
m_3	4	4.28	0.076	3.30	0.158
	5	5.26	0.051	2.22	0.159
	6	5.46	0.047	2.04	0.159
	1	2.39	0.245	10.65	0.204
	2	2.78	0.181	7.87	0.205
m	3	3.14	0.142	6.17	0.206
m_4	4	3.62	0.107	4.65	0.207
	5	4.44	0.071	3.09	0.207
	6	4.85	0.060	2.61	0.208

Таблица 4 — Значения R, R^2, I для каждого положения грузов на крестовине

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
R, M	0.077	0.102	0.127	0.152	0.177	0.202
R^2 , M^2	0.005929	0.010404	0.016129	0.023104	0.031329	0.040804
$I, \text{ H} \cdot \text{M}$	0.018	0.028	0.032	0.045	0.073	0.083

2.2 Окончательные результаты

Все рассчеты выполнены для груза m_2 с 1-й риской

Бес расс кты выполнены дем груза
$$m_2$$
 с т и риской $\sigma_{\langle t \rangle} = 0.07$ с $\Delta_{\langle t \rangle} = 0.31$ с $\Delta_t = 0.30$ с $\Delta_a = \sqrt{(\frac{-4h}{t^3}\Delta_t)^2 + (\frac{2}{t^2}\Delta_h)^2} = 0.022$ м/с² $\Delta_\varepsilon = \sqrt{(\frac{2}{d}\Delta_a)^2 + (\frac{-2a}{d^2}\frac{2}{3}\Delta_d)^2} = 0.9$ рад/с² $\Delta_M = \sqrt{(\frac{m_2d(g-a)}{2}\frac{2}{3}\Delta_{m_2})^2 + (\frac{m_2(g-a)}{2}\frac{2}{3}\Delta_d)^2 + (\frac{-m_2d}{2}\Delta_a)^2} = 0.001$ Н·м По МНК $I_0 = 0.00485$ кг·м², $\Delta_{I_0} = 2S_{I_0} = 0.00009$ кг·м² По МНК $m_{\rm YT} = \frac{1}{4} \cdot 4m_{\rm YT} = 0.49$ кг, $\Delta_{m_{\rm YT}} = \frac{S_m}{2} = 0.17$ кг $t = (3.44 \pm 0.30)$ с; $\varepsilon_t = 8\%$; $\alpha = 0.95$ $a = (0.119 \pm 0.022)$ м/с²; $\varepsilon_a = 18\%$; $\alpha = 0.95$ $\varepsilon = (5.2 \pm 0.9)$ рад/с²; $\varepsilon_\varepsilon = 17\%$; $\alpha = 0.95$ $M = (0.108 \pm 0.001)$ Н·м; $\varepsilon_M = 0.9\%$; $\alpha = 0.95$ $I_0 = (0.00485 \pm 0.00009)$ кг·м²; $\varepsilon_{I_0} = 1.9\%$; $\alpha = 0.95$ $m_{\rm YT} = (0.49 \pm 0.17)$ кг; $\varepsilon_{m_{\rm YT}} = 35\%$; $\alpha = 0.95$

2.3 Графики

Рисунок 2 — График зависимости M от ε

Рисунок 3 — График зависимости I от \mathbb{R}^2

3 Выводы и анализ результатов работы

В результате исследования был получен график 2 зависимости $M=I\varepsilon+M_{\rm Tp}$, который лежит в пределе погрешностей экспериментально полученных точек, а с увеличением расстояние между грузиками и осью вращения и, соответственно, увеличением момента инерции I крестовины увеличивается угол наклона графика. Следовательно, проверка основного закона динамики вращения была успешной.

Также мы убедились, что момент инерции крестовины зависит от положения масс относительно оси вращения. На графике 3 можно увидеть, что зависимость похожа на $I=I_0+4m_{\rm vt}R^2$

Заявленная масса грузов на крестовине 408 г входит в доверительный интервал для $m_{\rm yr}$, что говорит о достоверности проведенных измерений.

4 Ответы на контрольные вопросы

1. Что такое инерция?

Инерция - это свойство тела сохранять свое состояние покоя или равномерного прямолинейного движения до тех пор, пока на него не будет действовать внешняя сила

2. Как в данной лабораторной работе угловое ускорение зависит от линейного ускорения груза?

В данной лабораторной работе угловое ускорение крестовины зависит от линейного ускорения груза по формуле $\varepsilon=\frac{a}{R}$, где ε - угловое ускорение, a - линейное ускорение груза, R - расстояние от оси вращения до груза

3. Как звучит основной закон динамики вращательного движения? Основной закон динамики вращательного движения звучит как $M=I\varepsilon$, где M - момент силы, I - момент инерции, ε - угловое ускорение

4. О чём говорит теорема Штейнера?

Теорема Штейнера говорит о том, что момент инерции относительно оси, параллельной и проходящей через центр масс, равен сумме момента инерции относительно оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями

5. Моменты каких сил участвуют в основном законе динамики вращательного движения для данной работы?

В основном законе динамики вращательного движения для данной работы участвуют моменты силы натяжения нити, момент силы трения и момент инерции крестовины с утяжелителям

6. Как изменятся параметры установки, если увеличить расстояние утяжелителей от оси?

Если увеличить расстояние утяжелителей от оси, то момент инерции крестовины с утяжелителями также увеличится

7. Что такое момент инерции? Как его можно найти?

Момент инерции - это физическая величина, характеризующая инертность тела относительно его вращения вокруг определенной оси. Момент инерции можно найти, используя формулу $I=mR^2$, где m - масса тела, R - расстояние от оси вращения до массы

8. Что такое момент силы? Как его можно найти?

Момент силы - это векторная величина, равная произведению силы на плечо силы. Момент силы можно найти по формуле M=Fd, где F - сила, d - плечо силы

9. В каких единицах измеряется момент инерции? В каких единицах измеряется момент силы?

Момент инерции измеряется в $[\kappa \Gamma \cdot M^2]$, момент силы - $[H \cdot M]$

10. Как изменятся параметры установки, если увеличить массу утяжелителей?

Если увеличить массу утяжелителей, то момент инерции крестовины с утяжелителями также увеличится, что повлияет на динамику вращательного движения