TITLE OF PROJECT

<BOLD><Centralized>

A Project Work Synopsis

<BOLD><Centralized>

Submitted in the partial fulfillment for the award of the degree of

<1.5 line spacing><Italic><Centralized>

BACHELOR OF ENGINEERING

><BOLD><Centralized>

IN

NAME_OF_SPECIALIZED_BRANCH

<BOLD><Centralized>

Submitted by:

<BOLD><Centralized>

NAME OF THE STUDENT

><BOLD><Centralized>

University Roll Number

<BOLD><Centralized>

Under the Supervision of:

><BOLD><Centralized>

SUPERVISORS NAME

><BOLD><Centralized>

CHANDIGARH UNIVERSITY, GHARUAN, MOHALI - 140413, PUNJAB

<BOLD><Centralized>

MONTH & YEAR

<BOLD><Centralized>

Annexure-4 (A typical specimen of table of contents)

Table of Contents

	Title Page	i
	Abstract	ii
	List of Figures	iii
	List of Tables (optional)	iv
	Timeline / Gantt Chart	V
		V
1.	INTRODUCTION*	1
	1.1 Problem Definition	1
	1.2 Project Overview/Specifications* (page-1 and 3)	
	1.3 Hardware Specification	2 3
	1.4 Software Specification	4
	1.3.1	4
	1.3.2	•
2.	LITERATURE SURVEY	5
	2.1 Existing System	5
	2.2 Proposed System	6
		7
2 D	DODLEM FORMULATION	
3. PI	ROBLEM FORMULATION	
1	RESEARCH OBJECTIVES	40
4. 5	METHODOLOGY	40 47
5.	TENTATIVE CHAPTER PLAN FOR THE PROPOSED WORK	47
6.		
7.	REFERENCES	
8.	APPENDICES	

List of Tables

	List of Tubics	
Table T	itle	page
3.1	Quantities of Materials Required in the Designs with Different Grades of Concrete	10
•		

Figure	Title	page
3.1	Joint in a steel moment resisting frame (a) geometry, and (b) in-plane lateral distortional shear force on it. Results of analytical study (a)	11
3.2	Idealised trilinear model used in this study of or RC Frame buildings with masonry infilled walls; (b) Mean DRF spectra of Uttarkashi earthquake strong motions records derived for bare and masonry infilled RC frame buildings characteristics with $k=2$, $=2$,and 0.2. The spectra correspond to ductility values of 1,2,3,5,8,10,12 and 15. Dark and dashed lines correspond to bare and infilled frame buildings respectively.	11

List of Symbols

Symbol	Description
A_{st}	Area of steel reinforcement bars on tension face
A_{sc}	Area Of steel reinforcement bars on compression face Area of two
A_{sv}	legs of the closed stirrups
\boldsymbol{b}	Breadth of rectangular beam section
d	Effective depth of rectangular beam section
$d^{'}$	Effective cover on compression face
$f_{c,ave}$	Average compressive stress in concrete
f_{sc}	Stress in steel on the compression side
f_{y}	Characteristic strength of steel reinforcement bars Spacing of the
S_v	stirrups
\underline{x}_u	Depth of neutral axis from compression face
\overline{x}	Depth of centroid of the compression block in concrete
$ au_c$	Shear strength offered by concrete

1 INTRODUCTION

1.1

1.1.1

2 LITERATURE REVIEW

Kim et al. [25] proposed VUDDY, which is a scalable approach for detection of vulnerable code clones. This approach can detect vulnerabilities efficiently and accurately in large software. They able to achieve extreme level of scalability by using function-level granularity and a length-filtering techniques that decreases number of signature comparisons. Most interesting feature of this technique is that it can even detect variants of known vulnerabilities. To achieve extreme level of scalability, they used function-level granularity and length-filtering techniques to reduce number of signature comparisons.

2.1 Literature Review Summary

Table 2.1: Literature review summary

Year and citation	Article Title	Purpose of the study	Tools/ Software used	Comparison of technique done	Source (Journal/ Conference)	Findings	Data set (if used)	Evaluation parameters	
2010									

3 PROBLEM FORMULATION

During softv	ware o	leve	lopme	nt, clones c	an c	occur in so	oftware i	ntentionally or	r un	intenti	onally.
Developers	tend	to	clone	fragments	of	software	during	development	to	save	efforts
and expedite	e the d	leve	lopmen	t process							

4 OBJECTIVES

The proposed work	x is aimed to carry	out work l	leading to th	he develop	ment of a	an app	roach
for	The proposed ain	n will be a	chieved by	dividing t	the work	into f	Collowing
objectives:							

- 1.
- 2.
- 3.
- 4.

5 METHODOLOGY

The following methodology will be followed to achieve the objectives defined for proposed research work:

- 1. Detailed study of will be done.
- 2. Installation and hand on experience on existing approaches ofwill be done. Relative pros and cons will be identified.
- 3. Various parameters will be identified to evaluate the proposed system.
- 4. Comparison of new implemented approach with exiting approaches will be done.

6 TENTATIVE CHAPTER PLAN FOR THE PROPOSED WORK

CHAPTER 1: INTRODUCTION

This chapter will cover the overview of

CHAPTER 2: LITERATURE REVIEW

CHAPTER 2: BACKGROUND OF PROPOSED METHOD

This chapter will provide introduction to the concepts which are necessary to understand the proposed system.

CHAPTER 4: METHODOLOGY

This chapter will cover the technical details of the proposed approach.

CHAPTER 5: EXPERIMENTAL SETUP

This chapter will provide information about the subject system and tools used for evaluation of proposed method.

CHAPTER 6: RESULTS AND DISCUSSION

The result of proposed technique will be discussed in this chapter.

CHAPTER 7: CONCLUSION AND FUTURE SCOPE

The major finding of the work will be presented in this chapter. Also directions for extending the current study will be discussed.

PUBLICATIONS (Optional)

REFERENCES

7 REFERENCES

- [1] J. F. Islam, M. Mondal, and C. K. Roy, "Bug Replication in Code Clones: An Empirical Study," in 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2016, pp. 68–78.
- [2] C. K. Roy, M. F. Zibran, and R. Koschke, "The vision of software clone management: Past, present, and future (Keynote paper)," in 2014 Software Evolution Week IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), 2014, pp. 18–33.