Matrix calculus. Line search.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

എ റ ഉ

Theory recap. Differential

• Differential $df(x)[\cdot]:U\to V$ in point $x\in U$ for $f(\cdot):U\to V$:

$$f(x+h) - f(x) = \underbrace{d\!f(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

$U \to V$	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n \times m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n	$\nabla f(x)^T dx$ $tr(\nabla f(X)^T dX)$	J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$	_	_

Theory recap. Differential

• Differential $df(x)[\cdot]:U\to V$ in point $x\in U$ for $f(\cdot):U\to V$:

$$f(x+h) - f(x) = \underbrace{df(x)[h]}_{\text{differential}} + \overline{o}(||h||)$$

Canonical form of the differential:

U o V	\mathbb{R}	\mathbb{R}^n	$\mathbb{R}^{n imes m}$
\mathbb{R}	f'(x)dx	$\nabla f(x)dx$	$\nabla f(x)dx$
\mathbb{R}^n	$\nabla f(x)^T dx$	J(x)dx	_
$\mathbb{R}^{n imes m}$	$tr(\nabla f(X)^T dX)$	_	_

Theory recap. Differentiation Rules

• Useful differentiation rules and standard derivatives:

Differentiation Rules	Standard Derivatives
dA = 0	$d(\langle A, X \rangle) = \langle A, dX \rangle$
$d(\alpha X) = \alpha(dX)$	$d(\langle Ax, x \rangle) = \langle (A + A^T)x, dx \rangle$
d(AXB) = A(dX)B	$d(Det(X)) = Det(X)\langle X^{-T}, dX \rangle$
d(X+Y) = dX + dY	$d(X^{-1}) = -X^{-1}(dX)X^{-1}$
$d(X^T) = (dX)^T$	
d(XY) = (dX)Y + X(dY)	
$d(\langle X, Y \rangle) = \langle dX, Y \rangle + \langle X, dY \rangle$	
$d\left(\frac{X}{\phi}\right) = \frac{\phi dX - (d\phi)X}{\phi^2}$	

Lecture reminder

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

$$df(x) = \langle \nabla f(x), dx \rangle$$

೧ ∅

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" dx as the constant dx_1 , then calculate $d(df) = d^2 f(x)$

Lecture reminder

Theory recap. Differential and Gradient / Hessian

We can retrieve the gradient using the following formula:

$$df(x) = \langle \nabla f(x), dx \rangle$$

Then, if we have a differential of the above form and we need to calculate the second derivative of the matrix/vector function, we treat "old" dx as the constant dx_1 , then calculate $d(df) = d^2 f(x)$

$$d^2 f(x) = \langle \nabla^2 f(x) dx_1, dx \rangle = \langle H_f(x) dx_1, dx \rangle$$

 $f \to \min_{x,y,z}$

Lecture reminder

• Solution localization methods:

- Solution localization methods:
 - Dichotomy search method

େ ଚେଡ

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method

େ ଚେଡ

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease

େ ଚେ 🗢

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions

େ ପ୍ର

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions

എ റ ഉ

- Solution localization methods:
 - Dichotomy search method
 - Golden selection search method
- Inexact line search:
 - Sufficient decrease
 - Goldstein conditions
 - Curvature conditions
 - The idea behind backtracking line search

େ ଚେ ଚ

Matrix Calculus. Problem 1

Find $\nabla f(x)$, if $f(x) = \frac{1}{2}x^TAx + b^Tx + c$.

Matrix Calculus. Problem 2

Find $\nabla f(X)$, if $f(X) = tr(AX^{-1}B)$

Matrix Calculus. Problem 3

Find the gradient $\nabla f(x)$ and hessian $\nabla^2 f(x)$, if $f(x) = \frac{1}{3} ||x||_2^3$

Line Search. Example 1: Comparison of Methods (Colab 4)

$$f_1(x) = x(x-2)(x+2)^2 + 10$$

[a, b] = [-3, 2]

Random search: 72 function calls. 36 iterations. $f_1^* = 0.09$ Binary search: 23 function calls. 13 iterations. $f_1^* = 10.00$ Golden search: 19 function calls. 18 iterations. $f_1^* = 10.00$ Parabolic search: 20 function calls. 17 iterations. $f_1^* = 10.00$

Figure 1: Comparison of different line search algorithms with f_1

⊕ ೧ 0

Line Search. Example 1: Comparison of Methods (Colab ♣)

$$f_2(x) = -\sqrt{\frac{2}{\pi}} \frac{x^2 e^{-\frac{x^2}{8}}}{8}$$
$$[a, b] = [0, 6]$$

Random search: 68 function calls. 34 iterations. $f_2^*=0.71$ Binary search: 23 function calls. 13 iterations. $f_2^*=0.71$ Golden search: 20 function calls. 19 iterations. $f_2^*=0.71$ Parabolic search: 17 function calls. 14 iterations. $f_2^*=0.71$

Figure 2: Comparison of different line search algorithms with f_2

♥೧0

Line Search. Example 1: Comparison of Methods (Colab ♣)

$$f_3(x) = \sin\left(\sin\left(\sin\left(\sqrt{\frac{x}{2}}\right)\right)\right)$$

 $[a, b] = [5, 70]$

Random search: 66 function calls. 33 iterations. $f_3^*=0.25$ Binary search: 32 function calls. 17 iterations. $f_3^*=0.25$ Golden search: 25 function calls. 24 iterations. $f_3^*=0.25$ Parabolic search: 103 function calls. 100 iterations. $f_3^*=0.25$

Figure 3: Comparison of different line search algorithms with f_3

⊕ n ø

• Parabolic Interpolation + Golden Search = Brent Method

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points a, b, x, w, v, u

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points a, b, x, w, v, u
- [a, b] localization interval in the current iteration

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The key idea of the method is to track the value of the optimized scalar function at six points a, b, x, w, v, u
- [a,b] localization interval in the current iteration
- The pounts x, w and v such that the inequality $f(x) \leq f(w) \leq f(v)$ is valid

Figure 4: Idea of Brent Method

- Parabolic Interpolation + Golden Search = Brent Method
- The kev idea of the method is to track the value of the optimized scalar function at six points a, b, x, w, v, u
- [a,b] localization interval in the current iteration
- The pounts x, w and v such that the inequality $f(x) \leq f(w) \leq f(v)$ is valid
- u minimum of a parabola built on points x, w and v or the point of the golden section of the largest of the intervals [a, x] [x, b].

Figure 4: Idea of Brent Method

A parabola is constructed only if the points x, w and v are different, and its vertex u^* is taken as the point u only if $u^* \in [a,b]$

Figure 5: An example of how the Brent Method works

A parabola is constructed only if the points x, w and v are different, and its vertex u^{\ast} is taken as the point u only if

- $u^* \in [a, b]$
- u^* is no more than half the length of the step that was before the previous one, from the point x

Figure 5: An example of how the Brent Method works

₹ n ø

A parabola is constructed only if the points x, w and v are different, and its vertex u^* is taken as the point u only if

- $u^* \in [a, b]$
- u^* is no more than half the length of the step that was before the previous one, from the point x
- If the conditions above are not met, then point \boldsymbol{u} is located from the golden search

Figure 5: An example of how the Brent Method works

A parabola is constructed only if the points x, w and v are different, and its vertex u^* is taken as the point u only if

- $u^* \in [a, b]$
- u^* is no more than half the length of the step that was before the previous one, from the point x
- If the conditions above are not met, then point \boldsymbol{u} is located from the golden search
- Example In Colab ♣

Figure 5: An example of how the Brent Method works

