Objectives:

After completing this topic, you will be able to:

- Introduce the notion of the area.
- · Understand methods of finding area.

Notion of the Area:

Applications of Definite Integrals:

The definite integral is useful for solving a large variety of applied problems. In this chapter we shall discuss area, volume, and lengths of curves.

Here you find a brief introduction to applications of definite integrals and area between curves. We introduce first the notion of area bounded by the curve of the function, the χ axis, the lines $\chi = a$ and $\chi = b$.

This is mathematical and graphical illustration of area between curves.

Theorem:

If f and g are continuous and $f(\chi) \ge g(\chi)$ for all χ in [a, b], then the area $\mathcal A$ of the region bounded by the graphs of f, χ , g = a and $\chi = b$

is
$$A = \int_a^b [f(x) - g(x)]dx$$

This formula for A can be extended to the case in which f or g is negative for some x in [a,b].

Example 1:

Find the area of the region bounded by the graphs of the equations $y=x^2$ and $y=\sqrt{x}$.

Solution:

We shall employ the Riemann sum approach.

The region and a typical rectangle are sketched in the following figure.

As indicated in the figure, the length of typical rectangle is $\sqrt{w_i} - w_i^2$ and its area is $(\sqrt{w_i} - w_i^2) \Delta x_i$. Using the theorem with a = 0 and b = 1 we obtain

$$A = \lim_{\|p\| \to 0} \sum_{i} (\sqrt{w_{i}} - w_{i}^{2}) \Delta x_{i} = \int_{0}^{1} (\sqrt{x} - x^{2}) dx$$
$$= \left[\frac{2}{3}x^{3/2} - \frac{1}{3}x^{3}\right]_{0}^{1} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

The area can be found by direct substitution in the theorem with $f(x) = \sqrt{x}$ and $g(x) = x^2$

Applications of Definite Integrals

Example 2:

Find the area of the region bounded by the graphs of $y + \chi^2 = 6$ and $y + 2\chi - 3 = 0$

Solution:

The region and a typical rectangle are sketched in the figure.

The points of intersection (-1,5) and (3,-3) of the two graphs may be found by solving the two given equations simultaneously.

Length= $(6-w_i^2)-(3-2w_i)$

It is necessary to solve each equation for γ terms of χ , obtaining $y = 6 - x^2$ and y = 3 - 2xThe function $f(x) = 6 - x^2$ and g(x) = 3 - 2xAs shown in the figure the length of a typical rectangle is $(6-w^2) - (3-2w)$

Where is some number in the subinterval of a partition \mathcal{P} of [-1,3] the area of this rectangle is

$$A = \lim_{\|p\| \to 0} \sum_{i} [(6 - w_{i}^{2}) - (3 - 2w_{i})] \Delta x_{i}$$

$$= \int_{-1}^{3} [(6 - x^{2}) - (3 - 2x)] dx$$
Then
$$= \int_{-1}^{3} (3 - x^{2} + 2x) dx$$

$$= [3x - \frac{x^{3}}{3} + x^{2}]_{-1}^{3}$$

$$= [9 - \frac{27}{3} + 9] - [-3 - (-\frac{1}{3}) + 1] = \frac{32}{3}$$

Example 3:

Find the area of the region bounded by the graphs of the equations $2y^2 = \chi + 4$ and $\chi = y^2$

Solution:

One of two sketches of the region can be used to find the area, we use the integration with respect to y to find the area with only one integration. Letting $f(y) = y^2$, $g(y) = 2y^2 - 4$, the length $f(w_i) - g(w_i)$ of a horizontal rectangle is $w_i^2 - (2w_i^2 - 4)$ since the width is Δy the area of the rectangle is Hence, the area of \mathcal{R} is $[w_i^2 - (2w_i^2 - 4)]\Delta y_i$

$$A = \lim_{Vy \to 0} \sum_{i} [w_{i}^{2} - (2w_{i}^{2} - 4)\Delta y_{i}]$$

$$= \int_{-2}^{2} [y^{2} - (2y^{2} - 4)]dy$$

$$= \int_{-2}^{2} (4 - y^{2})dy$$

$$= [4y - \frac{y^{3}}{3}]_{-2}^{2} = [8 - \frac{8}{3}] - [-8 - (-\frac{8}{3})] = \frac{32}{3}$$

Length =
$$w_i^2 - (2w_i^2 - 4)$$

Width = Δy_i

Objectives:

After completing this topic, you will be able to:

- Explain the concepts of volume of a solid.
- Show how the volume of the solid can be generated.
- Evaluate volumes of solid of revolution.

Definition of a volume of solid of revolutions:

Definition:

Let f be continuous on [a, b]. The volume $\mathcal V$ of the solid of revolution generated by revolving the region bounded by the graphs of f, $\chi = a$, $\chi = b$ and the χ -axis is $V = \lim_{\|p\| \to 0} \sum_i \pi [f(w_i)]^2 \Delta x_i = \int_a^b \pi [f(x)]^2 dx$ In fact that the limit of the sum in the definition equals $\int_a^b \pi [f(x)]^2 dx$ follows from the definition of the definite integral.

The requirement that $f(\chi) \ge 0$ for all χ in [a, b], was omitted in the definition.

If f is negative for some χ , and if the region bounded

by the graphs of f, $\chi = a$, $\chi = b$, and the χ -axis figure (i), a solid of the type shown in the figure (ii) is obtained.

Example 4:

If $f(\chi)=\chi^2+1$, find the volume of the solid generated by revolving the region under the graph of f from -1 to 1 about the χ -axis.

Solution:

The solid is illustrated in the following figure included in the sketch is a typical rectangle and the disk that it generates.

Since the radius of the disc that is $w_i^2 + 1$, its volume is

 $\pi \left(W_i^2 + 1 \right) \Delta \chi_i$

and
$$V = \lim_{\|p\| \to 0} \sum_{i} \pi (w_i^2 + 1)^2 \Delta x_i$$

$$= \int_{-1}^{1} \pi (x^2 + 1)^2 dx = \pi \int_{-1}^{1} (x^4 + 2x^2 + 1) dx$$

$$= \pi \left[\frac{1}{5} x^5 + \frac{2}{3} x^3 + x \right]_{-1}^{1}$$

$$= \pi \left[\left(\frac{1}{5} + \frac{2}{3} + 1 \right) - \left(-\frac{1}{5} - \frac{2}{3} - 1 \right) \right] = \frac{56}{15} \pi$$

Definition:

Let g be continuous [a, b]. The volume \mathcal{V} of t revolution generated by revolving the region bounded by the graphs of $\chi = g(y)$, y = c, y = d and the y-axis is $V = \lim_{\|p\| \to 0} \sum_i \pi [g(w_i)]^2 \Delta y_i = \int_c^d \pi [g(y)]^2 dy$

x=1

Integrals

Example 5:

The region bounded by the *y*-axis, the graph of $y=\chi^3$, y=1 and y=8 is revolved about the *y*-axis. Find the volume of the resulting solid.

Solution:

The solid is sketched together with a disc generated by a typical rectangle. Since we plan to integrate with respect to y, we solve the equation $y = \chi^3$ for χ in terms of y, obtaining $\chi = y \ 1/3$, and we let $\chi = g(y) = y \ 1/3$, then as shown in the figure, the radius of a typical disc is $g(w_i) = w_i^{1/3}$ and its volume is $(w_i^{1/3})^2 \Delta y_i$ applying the definition with $g(y) = y \ 1/3$ gives us

$$V = \lim_{\|\mathbf{y}\| \to 0} \sum_{i} \pi (w_{i}^{1/3})^{2} \Delta y_{i}$$

$$= \int_{1}^{8} \pi (y^{1/3})^{2} dy = \pi \int_{1}^{8} y^{2/3} dy$$

$$= \pi (\frac{3}{5})[y 5/3]_{1}^{8} = \frac{3}{5} \pi [8^{5/3} - 1] = \frac{93}{5} \pi$$

Example 6:

The region bounded by the graphs of the equations $x^2 = y - 2$, 2y - x - 2 = 0, x = 0, and x = 1 is revolved about the χ -axis. Find the volume of the resulting solid.

Solution:

The region and a typical rectangle are sketched in (i) then we wish to integrate with respect to χ we solve the first two equations for y in terms of χ , obtaining $y = x^2 + 2$ and $y = \frac{1}{2}x + 1$.

The generated by the rectangle in (i) is illustrated in (ii). Since outer radius of the washer is $w_i^2 + 2$ and the inner radius is 1/2 $w_i + 1$, its volume is $\pi[(w_i^2 + 2)^2 - (\frac{1}{2}w_i + 1)^2]\Delta x_i$

Taking the limits of the sum of such volumes gives us $V = \int_0^1 \pi [(x^2 + 2)^2 - (\frac{1}{2}x + 1)^2] dx$ $= \pi \int_0^1 (x^4 + \frac{15}{4}x^2 - x + 3) dx$ $= \pi [\frac{1}{5}x^5 + \frac{5}{4}x^3 - \frac{1}{2}x^2 + 3x]_0^1 = \frac{79\pi}{20}$

oplications of Definite Integrals

Example 7:

The region in the first quadrant bounded by the graphs of $y = \frac{1}{8}x^3$ and $y = 2\chi$ is revolved about the *y*-axis.

Find the volume of the resulting solid.

Solution:

As shown in the following figure

The inner and outer radii of the washer generated by the rectangle are $\frac{1}{2}w_i$ and $2w_i^{1/3}$ respectively.

Since the thickness is Δy_i it follows that the volume of the washer is

$$\pi [(2w_i^{1/3})^2 - (\frac{1}{2}w_i)^2] \Delta y_i = \pi [4w_i^{2/3} - \frac{1}{4}w_i^2] \Delta y_i$$

Taking a limit of a sum of such terms gives us

$$V = \int_0^8 \pi \left[4y_i^{2/3} - \frac{1}{4}y_i^2 \right] dy_i = \pi \left[\frac{12}{5} y^{5/3} - \frac{1}{12} y^3 \right]_0^8$$
$$= \pi \left[\frac{12}{5} (8^{5/3}) - \frac{1}{12} (8^3) \right]_0^8 = \frac{512}{15} \pi$$

Objectives:

After completing this topic, you will be able to:

- Introduce the concepts of length of curves.
- Calculate length of curves.

Arc Length:

To solve certain problem in the sciences it is essential to consider the length of the graph of a function.

For example, if a projectile moves along a parabolic course, we may wish to determine the distance it travels during a specified interval of time.

Similarly, it may be necessary to find the length of a twisted piece of wire. We could simply straighten it and find the linear length with a ruler (or by mean of the distance formula).

As we shall see, the key to defining the length of a graph is to divide the graph into many small pieces and then approximate each piece by means of a line segments.

This lead to a definite integral. To guarantee that the

integral exists, its necessary to place restrictions on the function, as indicated in the following discussion.

A function *f* is

said to be smooth on an interval if it has a derivative f' that is continuous throughout the interval.

We intend to define what is meant by the length of arc between two point \mathcal{A} and \mathcal{B} on the graph of a smooth function.

 $a=\chi_0,\,\chi_1,\,\chi_2,\,\ldots,\,\chi_n=b$ and let Q_i denote the point with coordinates $(\chi_i,\,f(\chi_i))$ this gives us n+1 points $Q_0,\,Q_1,\,Q_2,\,\ldots,\,Q_n$ on the graph of f, we connect each Q_{i-1} to Q_1 by line segment of length $d(Q_{i-1},Q_1)$ then the length \mathcal{L}_p of the resulting broken line is $L_p=\sum_{i=1}^n d(Q_{i-1},Q_i)$

If the norm $\|\mathcal{P}\|$ of the partition is small, then Q_{i-1} is close to Q_i for each i and we expect \mathcal{L}_p to be an approximation to the length of arc between \mathcal{A} and \mathcal{B} . This gives us a clue to suitable definition of arc length. Specifically, we shall consider the limit of the sum \mathcal{L}_p as $\|\mathcal{P}\| \to 0$ to formulate this concept precisely, and at the same time arrive at a formula for calculating arc length. By the Distance Formula

$$d(Q_{i-1},Q_i) = \sqrt{(x_i - x_{i-1})^2 + [f(x_i) - f(x_{i-1})]^2}$$

plications of Definite Integrals

Applying the mean value theorem

$$f(x_i) - f(x_{i-1}) = f'(w_i)(x_i - x_{i-1})$$

where \mathbf{W}_{i} is an open interval (χ_{i-1}, χ_{i}) .

Substituting this into the preceding formula and

letting $\Delta \chi_i = \chi_i - \chi_{i-1}$, we obtain

$$d(Q_{i-1}, Q_i) = \sqrt{(\Delta x_i)^2 + [f'(w_i)\Delta x_i)]^2}$$
$$= \sqrt{1 + [f'(w_i)]^2} \Delta x_i$$

Consequently,
$$L_P = \sum_{i=1}^n \sqrt{1 + [f'(w_i)]^2} \Delta x_i$$

Observe that \mathcal{L}_{n}

 $\mathcal{Q}_{i}\ (x_{i}\,,f\,(x_{i}\,))$

is a Riemann

sum for the

function 9

defined by $g(x) = \sum_{i=1}^{n} \sqrt{1 + [f'(x)]^2}$ the limit of the sum is defined the arc length of the graph f from ${\mathcal A}$

to **B**. Since $g = \sqrt{1 + (f')^2}$ is a continuous function,

the limit exists and equals the definite integral

 $\int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$ this arc length will be denoted by the symbol \mathcal{L}^{b}_{a} .

Definition:

Let the function A

f be smooth on

a closed interval

[a, b].

The arc length of

the graph of f

from $\mathcal{A}(a, f(a))$ and $\mathcal{B}(b, f(b))$ is given by

$$L_a^b = \int_a^b \sqrt{1 + [f'(x)]^2} dx$$

Example 8:

If $f(x) = 3x^{2/3} - 10$, find the arc length of the

graph of f from the point $\mathcal{A}(8, 2)$ to $\mathcal{B}(27, 17)$.

Solution:

The graph f is sketched in the opposite figure

Integrals

To evaluate this integral,

let
$$u = x^{2/3} + 4$$
 and $du = \frac{2}{3}x^{-1/3}dx$

Then
$$L_8^{27} = \frac{3}{2} \int_8^{27} \sqrt{x^{2/3} + 4} \left(\frac{2}{3x^{1/3}}\right) dx$$

If
$$\chi = 8$$
 then $u = (8)^{2/3} + 4 = 8$,

whereas if
$$\chi = 27$$
 then $u = (27)^{2/3} + 4 = 13$

Making substitution and changing the limits of

integration

$$L_8^{27} = \frac{3}{2} \int_8^{13} \sqrt{u} du = u^{3/2} I_8^{13} = 13^{3/2} - 8^{3/2} \approx 24.2$$

Definition:

Let the function f be smooth on a closed interval [a, b]. The arc length function s for the graph of f on [a, b]is given by

$$S(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^{2}} dt \qquad where \quad a \le x \le b$$

Theorem:

Let *f* be smooth

[a, b], and let s

be the arc length

$$(ds)^2 = (dx)^2 + (dy)^2$$

for the graph of

$$y = f(\chi)$$
 on $[a, b]$.

If dx and dy are differentials of χ and y,

then
$$(i) ds = \int_{a}^{x} \sqrt{1 + [f'(x)]^{2}} dx$$

$$(ii) (ds)^{2} = (dx)^{2} + (dy)^{2}$$

Example 9:

Use differentials to approximate the arc length of $v = x^3 + 2x$ from A(1,3) to B(1.2,4.128).

Solution:

If we let $f(x) = x^3 + 2x$, then by (i) of

the theorem $ds = \sqrt{1 + (3x^2 + 2)^2} dx$

An approximation may be obtained by

letting x = 1 and dx = 0.2.

В

Thus $ds = \sqrt{1+5^2}(0.2) \approx 1.02$