

APRENDIZADO DE MÁQUINA

Aprendizado de Máquina

COM SCIKIT-LEARN

- 1.0 que é Machine Learning
- 2. Problemas e Ferramentas
- 3. Modelos lineares
- 4. Modelos baseados em probabilidade e similaridade
- 5. Árvores e Florestas aleatórias
- 6. Recapitulação

Diferenças e melhoria dos modelos

Fundamentos e hiperparâmetros

Aprendizado Complexibilidade Interpretabilidade Seleção de modelos

Imagem: Foundations of Machine Learning

Modelos de classificação

Imagem: Scikit-Learn

Aprendizado

- Diferentes suposições para se aprender um padrão pelos dados
- Minimizar o erro
- Calibrar o modelo

Aprendizado

- Diferentes suposições para se aprender um padrão pelos dados
- Minimizar o erro
- Calibrar o modelo

Aprendizado

- Diferentes suposições para se aprender um padrão pelos dados
- Minimizar o erro
- Calibrar o modelo

Fig. 1.18. k-Nearest neighbor classifiers using Euclidean distances. Left: decision boundaries obtained from a 1-nearest neighbor classifier. Middle: color-coded sets of where the number of red / blue points ranges between 7 and 0. Right: decision boundary determining where the blue or red dots are in the majority.

Baseline

Classe majoritária

Aleatório

K-Nearest Neighbors KNN

KNN

Legenda			
Classe negativa			
Classe positiva			
Novo exemplo			

Outliers

Imagem: <u>analyticsvidhya</u>

Valor de K

Overfitting

Underfitting

K baixo: sobreajuste

• K alto: subajuste

Imagem: winder.ai

Variáveis numéricas

Necessidade de escala

$$D(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

"Semelhança" e distância

Documentação

Código

Naive Bayes Multinomial e Gaussiano

Distribuições de Probabilidade

Normal: scribbr

Multinomial: mathworks

Teorema de Bayes

Naive Bayes

Dinheiro	Convite	Amigo	Parabéns	Classe
2	0	0	1	Spam
1	1	2	Ο	Spam
0	0	2	1	Spam
0	2	0	1	Não Spam
0	1	2	0	Não Spam
1	1	0	0	Não Spam

P(Spam | [Convite, Dinheiro])

- = P(Spam)*P(Convite | Spam)*P(Dinheiro | Spam)
- = 0.5*(1/10)*(3/10)
- = 0,015

P(Não Spam | [Convite, Dinheiro])

- = P(N Spam)*P(Convite N Spam)*P(Dinheiro N Spam)
- = 0.5*(4/8)*(1/8)
- = 0,03125

```
P(Não Spam | [Convite, Dinheiro])
```

P(Spam | [Convite, Dinheiro])

Gaussian Naive Bayes

Imagens: <u>opengenus</u>

Naive Bayes

Utiliza uma distribuição esperada dos dados Problemas com probabilidade 0 (alfa / laplace) - Multionomial

Todas as variáveis tem o mesmo peso

Rápido e enviesado para as distribuições

Documentação

1.9. Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the val...

scikit-learn

Código

Regressão linear

Regressão Linear

Regressão Linear

Ruído

Não linearidade

Como os dados se comportam na realidade. Tendências lineares não são incoumns Apesar de minimizar um erro, segue-se uma suposição do comportamento dos dados

Imagem: Kaggle

Modelo Linear

$$y = mx + b$$

Imagem: <u>emathzone</u>

Minimização do erro

- Encontrar a combinação de pesos que minimize a RSS
- RSS: soma dos quadrados dos resíduos
- Fórmula fechada para uma variável independente
- Estimação por gradiente descendente

Imagem: <u>kaggle</u>

Documentação

sklearn.linear_model.LinearRegression

Examples using sklearn.linear_model.LinearRegression:
Principal Component Regression vs Partial Least Squares...

Código

Regularizações L1 e L2

Regressão Logística

Regressão Logistica

$$f(x)=rac{1}{1+e^{-x}}$$

Regularização em Regressões

L2 Ridge

$$LossFunction = \frac{1}{N} \sum_{i=1}^{N} (\hat{Y} - Y)^2 + \lambda \sum_{i=1}^{N} \theta_i^2$$

Alguns coeficientes se aproximam de zero

Regularização em Regressões

L1 Lasso

$$LossFunction = rac{1}{N} \sum_{i=1}^{N} (\hat{Y} - Y)^2 + \lambda \sum_{i=1}^{N} \mid heta_i \mid$$

Alguns coeficientes se chegam a zero

Documentação

sklearn.linear_model.LogisticRegression

Examples using sklearn.linear_model.LogisticRegression: Release Highlights for scikit-learn 1.1 Release Highlights...

Código

APRENDIZADO DE MÁQUINA

