STUDIO COMPARATIVO DI RETI RIGUARDANTI ORGANIZZAZIONI MALAVITOSE

PRESENTAZIONE DEL PROGETTO DI ESAME - ANALISI DELLE RETI SOCIALI APPLICATA AD INTERNET – A.A. 2019-2020 ALESSANDRO SERRA - 0000891061

INTRODUZIONE

L'analisi svolta ha preso in esame un piccolo insieme di dataset contenenti informazioni riguardanti attività malavitose con lo scopo di:

Analizzarne le eventuali analogie

Evidenziare elementi di spicco

Ipotizzare una pista investigativa vincente

COVERT NETWORK

"A covert network is a social network which has one or many elements of secrecy about it."

- Mitchell Centre for Social Network Analysis, University of Manchester

I network presi in esame prendono il nome di <u>Covert Networks</u> che da anni sono oggetto di studio e ricercar del Mitchell Centre for Social Network Analysis dell'università di Manchester.

TECNOLOGIE UTILIZZATE

UCINET DATASETS

Dalla piattaforma di distribuzione dei dataset, fornita da <u>UCINET</u>, sono stati reperiti ed analizzati i seguenti dataset:

- Italian Gangs
- London Gang
- Montreal Street Gangs

Tutti i dataset sono stati creati e resi disponibili dal Mitchell Centre for Social Network Analysis dell'università di Manchester nel 2016.

TECNOLOGIE UTILIZZATE

Gephi

Software open source per la visualizzazione grafica e l'analisi delle reti sociali.

Attraverso questo software sono stati generati i grafi delle reti prese in esame.

NetworkX

Libreria disponibile per il linguaggio di programmazione Python.

Attraverso questa sono state calcolate varie misure ai fini dell'analisi.

ATTORI E RELAZIONI

I dataset presi in esame, sotto forma di sociomatrice, rappresentano i seguenti dati:

Italian Gangs

- Nodi: rappresentano i membri di varie organizzazioni criminali italiane
- Archi: relazioni di contatto o alleanza fra i vari attori della rete

London Gang

- Nodi: rappresentano i membri delle organizzazioni criminali attive nella città di Londra, negli anni compresi fra il 2005 e il 2009
- Archi: relazioni di contatto, alleanza o amicizia fra gli attori della rete

Montreal Street Gangs

- Nodi: rappresentano le organizzazioni criminali attive nella città di Montreal, dati basati sugli arresti avvenuti nel 2005
- Archi: relazioni di alleanza o contatto fra le organizzazioni criminali rappresentate nella rete

DATI CALCOLATI

Dato	Descrizione	Gephi	NetworkX
Nodes	Numero di nodi presenti nella rete	✓	✓
Edges	Numero di archi presenti nella rete	~	✓
Maximum Degree	Grado nodale massimo presente all'interno della rete	~	✓
Minimum Degree	Grado nodale minimo presente all'interno della rete	~	✓
Average Degree	Grado nodale medio del grafo	~	✓
Average Degree Centrality o Density	Densità del grafo, rapporto tra archi presenti ed archi possibili	~	✓
Network Diameter	Diametro del grafo, la lunghezza della più grande distanza geodetica tra ogni coppia di nodi.	~	X

DATI CALCOLATI

Dato	Descrizione	Gephi	NetworkX
Modularity	La qualità della divisione della rete in moduli o comunità, secondo l'algoritmo louvian di Blondel et al.	~	×
Number of communities	Numero di sottoreti o comunità in cui può essere divisa la reti, secondo l'algoritmo greedy di Clauset-Newman-Moore.	X	✓
Transitivity	$T = 3 \frac{\#triangles}{\#triads}$	X	✓
Maximum Clique Number	Numero di cricca massimo, calcolato utilizzando l'algoritmo di Bopanna e Halldrósson.	X	✓
Max k-core	Numero k massimo per la formazione di un k- core, calcolato attraverso l'algoritmo proposto da Vladimir Batagelj e Matjaz Zaversnik.	X	✓
Number of Triangles	Numero totale di triangoli presenti all'interno della rete.	X	✓
Degree of Assortativity	Misura della similarità delle connessioni nel grafo rispetto al grado nodale.	X	✓

ITALIAN GANGS

Italian Gangs - Gephi	
Nodes	67
Edges	114
Density	0,052
Maximum Degree	21
Minimum Degree	L
Average Degree	3,403
Network Diameter	6
Modularity	0,556
Avg. Path Length	3,011
Italian Gangs -	NetworkX
Number of nodes	67
Number of edges	114
Maximum degree	21
Minimum degree	T.
Average degree	3,4029850746268657
Average degree centrality	0,05156037991858885
Number of communities	5
Transitivity	0,20802919708029197
Maximum clique number	3
Max k-core	3
Max k-core Number of triangles	3 171

ITALIAN GANGS

Alcune informazioni di spicco che si possono notare:

- Bassa densità della rete
- Presenza di 3 comunità con nodi ben distinguibili fra gli altri
- Presenza di nodi isolati

Degree Distribution

LONDON GANG

London Gang - Gephi	
Nodes	54
Edges	315
Density	0,22
Maximum Degree	25
Minimum Degree	2
Average Degree	11,667
Network Diameter	4
Modularity	0,316
Avg. Path Length	2,054
London Gang - NetworkX	
Number of nodes	54
Number of nodes Number of edges	
	315
Number of edges	315 25
Number of edges Maximum degree	315 25
Number of edges Maximum degree Minimum degree	315 25 2 11,66666666666666666
Number of edges Maximum degree Minimum degree Average degree	315 25 2 11,66666666666666666
Number of edges Maximum degree Minimum degree Average degree Average degree centrality	315 25 2 11,6666666666666666666666666666666666
Number of edges Maximum degree Minimum degree Average degree Average degree centrality Number of communities	315 25 2 11,6666666666666666666666666666666666
Number of edges Maximum degree Minimum degree Average degree Average degree centrality Number of communities Transitivity	315 25 2 11,6666666666666666666 0,22012578616352216 1 0.5197421434327155
Number of edges Maximum degree Minimum degree Average degree Average degree centrality Number of communities Transitivity Maximum clique number	315 25 2 11,6666666666666666666 0,22012578616352216 1 0.5197421434327155 9

LONDON GANG

Alcune informazioni di spicco che si possono notare:

- Densità più alta di tutti i dataset presi in esame
- Numero massimo di k-core molto elevato
- Difficoltà degli algoritmi nel suddividere la rete in comunità ben distinguibili
 Size Distribution

Value

MONTREAL STREET GANGS

Montreal Street Gangs - Gephi		
Nodes	33	
Edges	78	
Density	0,148	
Maximum Degree	18	
Minimum Degree	1	
Average Degree	4,727	
Network Diameter	4	
Modularity	0,274	

Montreal Street Gangs - NetworkX

Avg. Path Length 2,143

Number of nodes	35
Number of edges	78
Maximum degree	18
Minimum degree	0
Average degree	4,457142857142857
Average degree centrality	0,13109243697478987
Number of communities	6
Transitivity	0,33559322033898303
Maximum clique number	4
Max k-core	4
Number of triangles	198
Degree of assortativity	-0.2826501429933269

MONTREAL STREET GANGS

Alcune informazioni di spicco che si possono notare:

- Discrepanza nel numero di nodi individuati dalle tecnologie utilizzate
- Numero di nodi inferiore rispetto all'altre reti, dovuto al diverso soggetto rappresentato da ciascun nodo
- Grado di assortativity negativo, come per la rete Italian Gangs

CONCLUSIONI

L'analisi svolta ha fatto emergere, all'interno delle reti analizzate i seguenti aspetti:

- Analogie fra le reti «Italian Gangs» e «Montreal Street Gangs», dovuta alla tendenza di emulare il sistema criminale italiano nelle zone del Nord America.
- Differenze con la rete criminale londinese, dovuta a uno stampo organizzativo del sistema criminale diverso rispetto a quello italiano.
- Buone ipotesi di partenza, per una attività investigativa, dalle comunità individuate sulle reti italiane e di Montreal, più plausibile e probabilmente affidabile far partire una attività investigativa, sulla rete londinese, partendo dal kcore con k massimo individuato.

Vista la scarsità di letteratura e strumenti specifici per l'analisi di *Covert Networks*, tutto il codice e il progetto sviluppato è disponibile gratuitamente qui: https://github.com/AleSerra/SNAGangs

GRAZIE PER L'ATTENZIONE

ALESSANDRO SERRA – 29/05/2020 – ANALISI DELLE RETI SOCIALI APPLICATA AD INTERNET – - A.A. 2019-2020

RIFERIMENTI

BIGLIOGRAFIA

- Batagelj, V., e M. Zaversnik. «An O(m) Algorithm for Cores Decomposition of Networks». arXiv:cs/0310049, Ottobre 2003. arXiv.org, http://arxiv.org/abs/cs/0310049.
- Boppana, Ravi, e Magnús M. Halldórsson. «Approximating Maximum Independent Sets by Excluding Subgraphs». BIT, vol. 32, n. 2, giugno 1992, pagg. 180–96. DOI.org (Crossref), doi:10.1007/BF01994876.
- Clauset, Aaron, et al. «Finding community structure in very large networks». Physical Review E, vol. 70, n. 6, dicembre 2004, pag. 066111. arXiv.org, doi:10.1103/PhysRevE.70.066111.
- Foster, Jacob G., et al. «Edge Direction and the Structure of Networks». Proceedings of the National Academy of Sciences, vol. 107, n. 24, giugno 2010, pagg. 10815–20. www.pnas.org, doi:10.1073/pnas.0912671107.
- Jacomy, Mathieu, et al. «ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software». PLOS ONE, vol. 9, n. 6, giu 2014, pag. e98679. PLoS Journals, doi:10.1371/journal.pone.0098679.
- Newman, M. E. J. «Mixing Patterns in Networks». Physical Review E, vol. 67, n. 2, febbraio 2003, pag. 026126. DOI.org (Crossref), doi:10.1103/PhysRevE.67.026126.
- Newman, M. E. J. Networks: an introduction. Pag. 224, Oxford University Press, 2010.

SITOGRAFIA

- Gephi.org. 2020. Gephi The Open Graph Viz Platform. [https://gephi.org/]
- Networkx.github.io. 2020. Networkx Networkx Documentation. [https://networkx.github.io/]
- Sites.google.com. 2020. Datasets UCINET Software. [https://sites.google.com/site/ucinetsoftware/datasets]
- Socialsciences.manchester.ac.uk. 2020. Covert Networks School Of Social Sciences The University Of Manchester [https://www.socialsciences.manchester.ac.uk/mitchell-centre/research/covert-networks/]

LICENZA

Attribuzione - Condividi allo stesso modo 4.0 Internazionale (CC BY-SA 4.0)