PCT

ORLD INTELLECTUAL PROPERTY ORGANIZATION INTERNATIONAL BURGAU

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 98/16648		
C12N 15/52, 9/00, C12P 35/00, C12N 1/21	A2	(43) International Publication Date: 23 April 1998 (23.04.98)		
(21) International Application Number: PCT/GB (22) International Filing Date: 15 October 1997 ((81) Designated States: JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(30) Priority Data: 9621486.1 15 October 1996 (15.10.96)	G	Published Without international search report and to be republished upon receipt of that report.		
(71) Applicant (for all designated States except US): ISI- VATION LIMITED [GB/GB]; 2 South Parks Road OX1 3UB (GB).	S INNO	ਹ- ਹ		
(72) Inventors; and (75) Inventors/Applicants (for US only): SCHOFIELD, pher, Joseph [GB/GB]; 19 Delamare Way, Hill, Oxford OX2 9HZ (GB). BALDWIN, Jack, [GB/GB]; Broom, Hinksey Hill, Oxford OX1 5E CLIFTON, Ian [GB/GB]; I Staincross House, Albi Oxford OX1 1SG (GB). HAJDU, Janos [HU/SE] Malmsvagen 8, S-755 91 Uppsala (SE). HEN Charles [NL/NL]; Oscar Wildestraat 7, NL-9 Groningen (NL). ROACH, Peter, Lawrence [Exeter College, Oxford OX1 3DP (GB).	Cumn, Edwa 3H (GE on Plac]; Stabl NSGEN 9746 A	or d		
(74) Agent: PENNANT, Pyers; Stevens Hewlett & Po Serjeants Inn, Fleet Street, London EC4Y 1LL (G		1		

(54) Title: ISOPENICILLIN N SYNTHETASE AND DEACETOXYCEPHALOSPORIN C SYNTHETASE ENZYMES AND METHOD

(57) Abstract ✓

A three-dimensional structure is described of a complex of isopenicillin N synthase (IPNS) with Fe and its substrate ACV. This structure is used to design modified enzymes IPNS, DAOCS, DACS, DAOC/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway, which modified enzymes may accept unnatural substrates or improve production efficiency or produce improved products. Specific modifications of specific amino acid residues are proposed and exemplified.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	I esotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	I ithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	I uxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	I atvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugai		
CU	Cuba	KZ	Kazakstan	RO	Romania		
C7.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

30

ISOPENICILLIN N SYNTHETASE AND DEACETOXYCEPHALOSPORIN C SYNTHETASE ENZYMES AND METHOD

5 Introduction

All commercially used penicillin and cephalosporin antibiotics and their derivatives are produced from fermentation derived materials containing a β -lactam ring. A range of organisms, including both prokaryotes and eukaryotes, and conditions may be used for their fermentation. Some are produced directly by fermentation followed by isolation. Others are produced by modification of materials produced by fermentation. Commercially used cephalosporins (also known as cephems) may be produced by modification of either fermentation derived penicillins or cephalosporins.

The biosynthetic pathway to the penicillins and cephalosporins has been extensively studied and involves the following steps (Scheme 1):

- 1. Three amino acids (\underline{L} - α -aminoadipic acid, \underline{L} -cysteine, \underline{L} -valine) are condensed to form a tripeptide: \underline{L} - δ - α -aminoadipoyl- \underline{L} -cysteinyl- \underline{D} -valine (ACV). During this process the \underline{L} -valinyl residue is converted to a \underline{D} -valinyl residue. This process is catalysed *in vivo* by the enzyme ACV synthetase and is common to both penicillin and cephalosporin biosynthesis.
- 2. ACV is converted to isopenicillin N in a step catalysed by the enzyme isopenicillin N synthase (IPNS). This step is common to both penicillin and cephalosporin biosynthesis.
- 3. In some organisms (e.g. Penicillium chrysogenum and Aspergillus nidulans) isopenicillin N is converted by exchange of its $\underline{\mathbf{L}}$ - δ - α -aminoadipoyl side chain to penicillins with other side chains, which are normally more hydrophobic than the side chain of isopenicillin N. This

20

25

30

conversion may be catalysed by an amidohydrolase/ acyltransferase enzyme. Examples of penicillins produced by this biosynthetic process include penicillin G (which has a phenylacetyl side chain) and penicillin V (which has a phenoxyacetyl side chain). These hydrophobic penicillins may be commercially produced by fermentation under the appropriate conditions.

- 4. In some organisms (e.g. Streptomyces clavuligerus and Cephalosporium acremonium) isopenicillin N is epimerised to penicillin N. This reaction is catalysed by an epimerase enzyme.
- In some organisms (e.g. S. clavuligerus and C. acremonium) penicillin N is converted to deacetoxycephalosporin C (DAOC). This reaction is catalysed by deacetoxycephalosporin C synthase (DAOCS) in some organisms (e.g. Streptomyces clavuligerus) and by deacetoxy/deacetylcephalosporin C synthase (DAOC/DACS) in others (e.g. C.acremonium).
 - 6. In some organisms (e.g. *S. clavuligerus* and *C. acremonium*) DAOC is converted to deacetylcephalosporin C (DAC). This reaction is catalysed by deacetylcephalosporin C synthase (DACS) in some organisms (e.g. *S. clavuligerus*) and by deacetoxy/deacetylcephalosporin C synthase (DAOC/DACS) in others (e.g. *C. acremonium*).

Further biosynthetic steps to give other cephalosporin derivatives may also occur, e.g. in *C. acremonium* DAC may be converted to cephalosporin C and in *Streptomyces spp*. DAC may be converted to cephamycin C. The genes encoding for each of the enzymes catalysing steps 1-6 above have been identified and sequenced.

Fermented penicillins, cephalosporins, their biosynthetic intermediates, and their derivatives may be of use as antibiotics or as intermediates in the production of antibiotics. Penicillins with hydrophobic side chains may be used for the preparation of cephalosporins or intermediates used in the preparation of cephalosporins, *e.g.* penicillins

10

15

20

25

30

É

(including, but not exclusively, penicillin G and penicillin V) may be used to prepare C-3 exomethylene cephams which may be used as intermediates in the preparation of the commercial antibiotics, e.g. Cefachlor (Scheme 2).

For reviews see J. E. Baldwin and C. J. Schofield, in 'The Chemistry of β-lactams (Ed. M. I. Page), Chapter 1, Blackie, London 1992; Aharonowitz *et al*, Ann. Rev. Microbiol., 1992, <u>46</u>, 461; Cooper, Bioorg. Med. Chem., 1993, <u>1</u>, 1; Baldwin and Abraham, Nat. Prod. Report., 1989, <u>5</u>, 129; Baldwin, J. Heterocyclic. Chem., 1990, <u>27</u>, 91.

Summary of Invention

This invention is based on our determination of the three-dimensional structure of IPNS. That the structure of IPNS complexed to manganese has been determined, was reported by some of us in Nature, Volume 375, 22 June 1995, pages 700-704. That publication did not include the co-ordinates of the individual amino acid residues, and these are now provided. Scheme 2 of that paper contains the amino acid sequence of IPNS, and also DACS, DAOCS and DAOC/DACS and other structurally related enzymes, each of which is published in Swissprot or Genbank or other database.

We have now determined the structure of a complex of IPNS with Fe and ACV which is a substrate for the enzyme (see Scheme 1). In solution it is this complex, and not the IPNS-Mn complex, that is actually formed during step 2 of the biosynthesis of bicyclic β -lactams. Because the amino acid sequences of DAOCS, DAOC/DACS, DACS and other oxidases and oxygenases are so similar to that of IPNS, it is reasonable to expect that the structures of those enzymes are at least similar to that of IPNS.

We have also determined the structures of complexes of IPNS with Fe and with various analogues of ACV (in which another amino acid replaced <u>L</u>-valine), specifically AC glycine, AC aminobutyrate, AC

10

15

20

25

30

alanine and AC proparglyglycine. These structures have been determined in the absence and in the presence of nitrous oxide NO. Exposure of these complexes to dioxygen alters the structures, and these altered structures have also been determined by us. From information given herein about the IPNS-Fe-ACV complex, a skilled reader is able to make and characterise the other complexes referred to in this paragraph, so structural details of those other complexes are not given herein.

Thus in one aspect the invention provides Isopenicillin N synthase (IPNS) in the form of: a complex with Mn having a structure designated by the X-ray co-ordinates in Table 2; or a complex with Fe and its substrate, said complex having a structure designated by the X-ray co-ordinates in Table 3.

In another aspect the invention provides Isopenicillin N synthase (IPNS) in the form of: a complex with Fe and an analogue of its substrate, either in the absence or in the presence of nitrous oxide or dioxygen, said complex having a structure designated by X-ray coordinates analogous to that set out in Table 3.

An analogue of an IPNS substrate is a substrate oxidised by IPNS to give preferably (but not exclusively) a bicyclic compound containing a β -lactam ring.

Table 2 sets out co-ordinates of individual amino acid residues in a crystalline complex of IPNS with manganese.

Table 3 sets out co-ordinates of individual amino acid residues in a crystalline complex of IPNS with Fe and ACV.

Knowledge, derived from the X-ray co-ordinates, of the threedimensional structures of this family of related enzymes permits a skilled worker to identify specific amino acids that might be changed in order to alter or improve the properties of the enzyme in some way. While it is not possible from 3D structural information alone to predict that a specific amino acid mutation will produce a specific change in the properties of the

15

20

25

30

enzyme, it is possible to identify a rather small number of amino acid residues where modification may be expected to change/improve the properties of the enzyme. The problem of identifying useful amino acid mutations is thus reduced to a level where it can readily be tackled by routine screening procedures.

- 5 -

Thus in one aspect the invention provides use of the three dimensional structure of a first enzyme selected from IPNS, DAOCS, DACS, DAOCS/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway, for the modification of a second selected from IPNS, DAOCS, DACS, DAOCS/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway.

The three dimensional structure of a first enzyme may be the three dimensional structure of the IPNS-Fe-substrate complex referred to above. It may, however, also be that of DAOCS, DACS, DAOC/DACS or another oxygenase/oxidase related by sequence or structure (e.g. 1-aminocylopropane-1-carboxylic acid oxidase) to any of IPNS, DAOCS, DACS or DAOC/DACS. The structure of the IPNS-Fe-ACV complex may be derived from two or more crystalline polymorphs, all of which are envisaged. The structure may alternatively be of the enzyme in free form or in the form of some other complex such as with Mn, or with other Fe or ACV analogues, or enzyme inhibitors, or other enzyme modifiers. Preferably the second enzyme is the same as the first enzyme e.g. the 3D structure of IPNS is used as a basis for modifying IPNS. Alternatively the 3D structure of one first enzyme may be used as a basis for modifying a second structurally related enzyme.

Central to the elucidation of the structure of crystalline proteins is the discovery of conditions for the production of crystals with diffract X-rays to a sufficiently high resolution. Since the cofactors (e.g. Fe(II)) and substrates (e.g. ACV) of the family of enzymes to which IPNS, DAOCS, DACS, etc. belong are sensitive to modification by reaction with

15

20

25

30

dioxygen, the crystallisation of these enzymes is preferably carried out under an anaerobic atmosphere or one containing only a very low concentration of dioxygen.

The modified enzyme(s) may be used in vitro or introduced via recombinant molecular biology techniques into an organism so that new materials can be fermented. It is recognised that multiple modifications may have to be made to an enzyme in order to change its substrate/product selectivity, and/or improve it efficiency. It is recognised that more than one modified enzyme may be used to effect the desired transformation. It is recognised that in order to change the nature of the enzyme-substrate/intermediate/product interactions at a particular enzymesubstrate/intermediate interface modifications may be made to the enzyme either immediately at the interface or away from it. It is recognised that the modifications may result in hybrid enzymes containing sequences from, e.g. IPNS and DAOCS or IPNS and DACS or any combination of IPNS, DAOCS, DACS or DAOCS/DACS or other related enzymes. It is also recognised that it may be desirable to further modify the organism in which the modified enzyme is to be introduced, e.g. by blocking a particular pathway in that organism (using the techniques of molecular biology) in order to modify flux through the desired/modified pathway, by introducing other enzyme activities, or by other modifications. The organism into which the modified enzyme will be used may or may not contain parts of the penicillin and cephalosporin biosynthetic machinery. The organism may already have been modified to optimise or minimise production of particular products or consumption of particular nutrients. More than one modified enzyme may be used in conjunction either in vitro or in vivo in an organism for the production of desirable products.

While modifications for numerous specific purposes are discussed below, it is possible to say in general that useful modifications will be of three kinds:

15

20

25

30

- Those which permit the enzyme to accept unnatural substrates [i.e. substrates not normally present in the organism (which may or may not be an organism in which the enzyme is naturally occurring) in which the enzyme is operating] for the preparation of new or commercially valuable anti-bacterial materials or intermediates for the production of pharmaceutical products;
- Those which enable the enzyme to produce unnatural products [i.e. products not naturally produced in the organism in which the enzyme is operating, including 3-exomethylene cephams and cephalosporins with hydrophobic side chains at the C-7 position such as phenylacetamido or phenoxyacetamido, or other unnatural side chains such as adipoyl] or improve the production of natural products of commercial value.
- Those which enhance the ability of the enzyme to produce useful products. For example DAOCS is known to catalyse the production of phenylacetylcephalosporin C from penicillin G (Baldwin *et al.*, Proceedings of the 7th International Symposium on the genetics of Industrial Micro-organisms, Abstract, p262, 1994). However, this conversion is much less efficient than the DAOCS catalysed conversion of penicillin N to DAOC. Modifications made to DAOCS may increase the efficiency of its catalytic conversion to penicillin G.

In another aspect this invention provides modified enzymes that result from application of the aforementioned techniques. These are enzymes having significant (as defined below) sequence and thus structural similarity with IPNS. Thus, structures of these enzymes may be predicted on the basis of the IPNS structures. Preferably there will be sequence similarity/identity between most of the modified enzyme and a major part of IPNS. Previous sequence comparisons (Roach *et al.*, Nature, 1995, 375, 700), using pairwise comparisons of the sequences followed by single linkage cluster analysis show that IPNS, DAOCS, DACS and

DAOC/DACS cluster with standard deviations scores of >5.0 (Barton and Sternberg, J. Mol. Biol., 1987, 198, 327). Scores over 5.0 and preferably over 6.0 indicate that the sequence alignments will be correct within all or most of the protein secondary structural elements (Barton, Methods in Enzymol., 1990, 183, 403); thus they have significantly similar sequences 5 and hence structures. Note there are other criteria which may be used to ascertain significant sequence similarity for example % identity or % similarity of amino acids possessing side chains with similar physicochemical properties (Barton and Sternberg, J. Mol. Biol., 1987, 198, 327). Thus, on the basis of sequence comparisons it is possible to predict the 10 structure of one enzyme (e.g. DAOCS, DACS or DAOC/DACS) from another (e.g. IPNS). Further, it is recognised that although two enzymes may have structures in which secondary structural elements are largely or wholly conserved, differences in the structures of the two enzymes may result from the side chains of the amino acids forming the secondary 15 structural elements. These differences, which may alter the substrate/product selectivities of the compared enzymes, may be predictable if the three dimensional structure of one of the enzymes is known. An example: the natural substrate for IPNS, ACV, has an Lconfigured aminoadipoyl side chain, whereas the substrates for DAOCS, 20 DACS and DAOC/DACS, i.e. penicillin N and DAOC, have D-configured aminoadipoyl side chains. This difference in selectivity may result from the different arrangement of amino acid side chain binding sites between IPNS and DAOCS, DACS, and DAOC/DACS, Further, it is recognised that there may be significant variations between enzymes which show significant 25 sequence/structural similarity (i.e. with standard deviation scores >5.0) in exterior regions of the enzymes, e.g. in loops and at the N- and C- termini. The relative importance of these regions in substrate binding may be predicted by comparison with a known crystal structure of an enzyme with significant sequence similarity. 30

10

15

20

25

30

In one aspect, at least one of the following amino acid residues is modified:

R287; R87; R88; Y189; S183; Y91; F285; Q330; T331; V185; L106; C104; V217; L324; L317; I325; L321; S210.

The residue numbering herein is taken from the paper Nature, 1995, 375, 700-704 referred to above. These modifications are expected to have an effect on side chain substituents at the 6-position of the penicillin molecule, or the 7-position of the cephalosporin molecule. In each case, the stated amino acid residue may be replaced by the residue of any other amino acid. But in order to change the selectivity of the enzyme to accept substrates with hydrophilic or neutral side chains, the replacement is preferably to make the side chain binding pocket more hydrophobic.

In another aspect at least one of the following amino acid residues is modified:

V272; L231; L223; P283; T221; F211; F285; Q330; I187; V185; Y189; R279; S281; N230; Q225; N252; S210.

These modifications are expected to be associated with changes in the ring structure of the penicillin/cephalosporin molecule.

There follow examples of specific changes envisaged as a result of these modifications.

a) The structure of IPNS is modified in its active site region to accept unnatural substrates to produce penicillins or other bicyclic β -lactams of commercial use with hydrophobic side chains (Scheme 5). The process may include the following modifications (other modifications

based on the use of the crystal structure of IPNS are not excluded):

Note, R87F/A/G/V/L/I/T/W/M/C/N/Q/P/S/T/E/D/R/K/H indicates that residue arginine-87, using the *Aspergillus nidulans* IPNS numbering scheme is modified to phenylalanine or alanine etc. See Roach *et al* Nature, 1995, 375, 700-704.).

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/Y Y189F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R S183F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y Y91F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y Q330F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y T331F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y V185F/A/G/L/IW/T/M/C/N/P/S/E/D/R/K/H/Q/Y L106F/A/G/V/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y C104F/A/G/V/L/I/T/W/M/N/P/S/E/D/R/K/H/Q/Y V217F/A/G/L/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y L324F/A/G/V/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y L317F/A/G/V/I/TW/M/C/N/P/S/E/D/R/K/H/Q/Y I325F/A/G/V/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y L321F/A/G/V/I/TW/M/C/N/P/S/E/D/R/K/H/Q/Y S210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y

Note in these and in subsequently proposed modifications the
amino acid residue numbering scheme is based upon that used for
A. nidulans IPNS and the sequence alignments in Roach et al Nature,
1995, 375, 700-704, e.g. arginine-87 in IPNS remains named as arginine87 for other aligned enzymes.

It is recognised that modifications to the side chain binding interactions and the valinyl binding interactions of IPNS may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structures of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or

5

10

15

25

inhibitors are not excluded.

b) The structure of IPNS is modified in its active site region to accept natural or unnatural substrates to produce bicyclic β -lactams other than penicillins of commercial use (Scheme 6). For example the region of IPNS interacting with the valinyl residue of ACV may be modified such that IPNS produces 3-exomethylenecephams from ACV or other substrates for IPNS. The process may include the following modifications.

V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 10 L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y P283F/A/G/V/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y F211A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 15 F285A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y Q330F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Y I187F/A/G/LW/T/M/C/N/P/S/T/E/D/R/K/H/Q/Y V185F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y Y189F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q 20 R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y S281F/A/G/V/I/L/W/M/C/N/P/T/E/D/R/K/H/Q/Y N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y Q225F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Y N252F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y 25 S210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y

It is recognised that modifications may have to be made in conjunction with each other or with other modifications to IPNS in order to produce a useful catalyst with the desired properties. Other modifications

based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

5

The side chain binding interactions of IPNS are modified such that 6-aminopenicillins or other bicylic β -lactams may be produced *in vitro* or *in vivo* from dipeptides, such as cysteinyl-valine or other dipeptides (Scheme 7). Dipeptides may be produced (either *in vitro* or *in vivo*) by the use of a peptide synthetase enzyme, such as ACV synthetase (which may be modified by mutagenesis or other techniques to optimise dipeptide production) or by chemical synthesis. The process may include the following modifications:

15

20

25

30

10

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y Y189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R S183F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y Y91F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y Q330F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y T331F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y V185F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L106F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y C104F/A/G/V/L/I/W/M/N/P/S/T/E/D/R/K/H/Q/Y V217F/A/G/L/I//W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L324F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 1325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y

- 13 -

S210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

10

15

20

5

d) The side chain binding interactions of IPNS are modified such that penams without any substituent at the 6-position or other bicylic β-lactams, without any substituent at the 6-position, may be produced *in vitro* or *in vivo* from dipeptides or amide substrates, such as 3-mercaptopropionyl-valine or other dipeptides or amides (Scheme 8). The dipeptides or amides may be produced (either in vitro or in vivo) by the use of a peptide synthetase enzyme, such as ACV synthetase (which may be modified by mutagenesis or other techniques to optimise dipeptide production) or by chemical synthesis. The process may include the following modifications:

25

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y Y189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R S183F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y Y91F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y Q330F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y T331F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y V185F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y

L106F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y C104F/A/G/V/L/I/W/M/N/P/S/T/E/D/R/K/H/Q/Y V217F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L324F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 1325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y S210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y

10

15

20

25

5

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, products, modifiers, or inhibitors are not excluded.

e) IPNS is modified to produce 3-exomethylenecephams with hydrophobic or other unnatural side chains (Scheme 9) (or other intermediates for use in the preparation of cephalosporin antibiotics, e.g. Cephachlor. The process will involve modification of both the side chain. binding interactions of IPNS substrates and of the valine binding interactions and may involve the use of ACV as a substrate or the use of other unnatural substrates. The process may include the following modifications, which may be made in conjunction with each other:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y

R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y Y189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R

S183F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y

Y91F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/R F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y Q330F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y T331F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y V185F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 5 L106F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y C104F/A/G/V/L/I/W/M/N/P/S/T/E/D/R/K/H/Q/Y V217F/A/G/L/IW/M/C/N/P/S/T/E/D/R/K/H/Q/Y 1324F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 10 I325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L231F/A/G/V/IW/M/C/N/P/S/T/E/D/R/K/H/Q/Y L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 15 P283F/A/G/V/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y F211A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 1187F/A/G/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V V185F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y 20 Y189F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y S281F/A/G/V/I/L/W/M/C/N/P/T/E/D/R/K/H/Q/Y N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y Q225F/A/G/V//L/W/M/C/N/P/S/T/E/D/R/K/H/Y 25 N252F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y S210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y

It is recognised that these modifications may have to be
made in conjunction with each other or with other modifications in order to

produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded. The use of a modified IPNS in conjunction with another modified or unmodified oxygenase enzyme (e.g. DAOCS, DAOC/DACS) is not excluded.

f) The structure of DAOCS is modified in its active interactions region to accept substrates (*i.e.* penicillins with hydrophobic side chains, (including, but not exclusively, penicillin G and penicillin V) to produce cephalosporins or other bicyclic β-lactams of commercial use with hydrophobic or other unnatural side chains (Scheme 10). The process may include the following modifications:

15

20

25

30

10

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
T91F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R/Y/S
T91F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y
M217F/A/G/L/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/V
I324F/A/G/V/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/L
I317F/A/G/V/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/I
R325F/A/G/V/L/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/L/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/Y/I/Y321F/A/G/V/I/T/W/M/C/N/P/S/E/D/K/H/Q/R/L

20

25

30

R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be
made in conjunction with each other or with other modifications in order to
produce a useful catalyst with the desired properties. Other modifications
based on the use of the three dimensional structure of IPNS, DACS,
DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of
these enzymes to their substrates, intermediates, modifiers, products or
inhibitors are not excluded.

g) The structure of DAOCS is modified in its active interactions region to accept natural or unnatural substrates (including, but not exclusively, penicillin N, isopenicillin N, adipoyl penicillin) to produce bicyclic β-lactams other than cephalosporins of commercial use. For example the region of DAOCS interacting with the thiazolidine ring of its natural substrate penicillin N may be modified such that the modified DAOCS produces 3-exomethylenecephams from penicillin N, penicillin G, or penicillin V, or other substrates for DAOCS (Scheme 11). The process may include the following modifications:

V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
V283F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/P
T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y
M211F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L187F/A/G/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V
P185F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V
F189A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V

WO 98/16648 PCT/GB97/02838

- 18 -

R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y
S281F/A/G/V/I/L/W/M/C/N/P/T/E/D/R/K/H/Q/Y
N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y
Q225F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
F252F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y
R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S
R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be
made in conjunction with each other or with other modifications to DAOCS
in order to produce a useful catalyst with the desired properties. Other
modifications based on the use of the three dimensional structure of IPNS,
DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or
complexes of these enzymes to their substrates, intermediates, modifiers,
products or inhibitors are not excluded.

h) The side chain binding interactions of DAOCS are modified such that 6-aminopenicillins or other bicylic β-lactams may be produced *in vitro* or *in vivo* from 6-amino penicillins, such as 6-aminopenicillanic acid (Scheme 12). The process may include the following modifications (other modifications based on the use of the three dimensional structures of IPNS or DAOCS or DAOCS/DACS are not excluded):

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
T91F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y

30

20

25

10

15

A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/L/V/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y
M217F/A/G/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
I324F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
I317F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I
Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

i) The side chain binding interactions of DAOCS is modified such that cephams or cephalosporins without any substituent at the 7-position or other bicylic β-lactams, without any substituent at the 7-position, may be produced *in vitro* or *in vivo* from penicillins or cepham substrates (Scheme 13). The penicillanic acid may be produced whether in vitro or in vivo. The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y

9816648A2 T

C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
T91F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/N/C/P/S/E/D/R/K/H/Q/Y
M217F/A/G/V/L/I/W/M/N/C/N/P/S/T/E/D/R/K/H/Q/Y
I324F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
R210F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I

It is recognised that the modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

DAOCS is modified to produce 3-exomethylenecephams with hydrophobic side chains (Scheme 14) (or other intermediates for use in the preparation of cephalosporin antibiotics, e.g. Cefachlor.) The process will involve modification of both the side chain binding interactions of DAOCS substrates and of the thiaxolidine binding interactions and may involve the use of penicillins with hydrophobic side chains (e.g. penicillin G or V) as substrates or the use of other unnatural substrates. The process may include the following modifications (other modifications based on the use of

BNSD0GiD, <W0 9816648A2 1 >

5

10

25

the three dimensional structures of IPNS or DAOCS or DAOCS/DACS are not excluded):

	V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
5	L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
	L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
	V283F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/P
	T221F/A/G/V/I/LW/M/C/N/P/S/E/D/R/K/H/Q/Y
	M211A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y/F
10	L187F/A/G/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V
	P185F/A/G/I/LW/M/C/N/S/T/E/D/R/K/H/Q/Y/V
	F189A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
	R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y
	S281F/A/G/V/I/L/W/M/C/N/P/T/E/D/R/K/H/Q/Y
15	N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y
	Q225F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Y
	F252A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
	R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
	R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
20	R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
	C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
	T91F/A/G/V/L/I/W/M/C/N/Q/P/S/E/D/K/H/R/Y
	F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y
	A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
25	P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
	T104F/A/G/V/L/I/W/M/N/P/S/T/E/D/R/K/H/Q/Y
	M217F/A/G/L/I/V/W/C/N/P/S/T/E/D/R/K/H/Q/Y
	1324F/A/G/L/V/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
	1317F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
30	R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I

10

15

Y321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/L R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

k) The structure of DACS is modified in its active site region to accept substrates with hydrophobic side chains, including, but not exclusively, penicillin N, penicillin G and penicillin V) to produce cephalosporins or other bicyclic β -lactams of commercial use with hydrophobic or other unnatural side chains (Scheme 15) . The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y/Q
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/V/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/N/P/S/E/D/R/K/H/Q/Y/C

R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I
Y321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/L
R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S
R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

5

15

20

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

I) The structure of DACS is modified in its active site region to accept natural or unnatural substrates (including, but not exclusively, penicillin N, adipoyl penicillin) to produce bicyclic β-lactams other than cephalosporins of commercial use (Scheme 16). For example the region of DAOCS interacting with the thiazolidine ring of its natural substrate penicillin N may be modified such that the modified DAOCS produces 3-exomethylenecephams from penicillin N, penicillin G, or penicillin V, or other substrates for DAOCS. The process may include the following modifications

25

V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
V283F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/P
T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y/
M211A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y/F
L187F/A/G/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V

P185F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/V R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y S281F/A/G/V/I/L/W/M/N/C/N/P/T/E/D/R/K/H/Q/Y N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y Q225F/A/G/V/I/L/W/M/N/C/N/P/S/T/E/D/R/K/H/Y F252F/A/G/V/I/L/W/M/N/C/P/S/T/E/D/R/K/H/Q/Y R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be
made in conjunction with each other or with other modifications in order to
produce a useful catalyst with the desired properties. Other modifications
based on the use of the three dimensional structure of IPNS, DACS,
DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of
these enzymes to their substrates, intermediates, modifiers, products or
inhibitors are not excluded.

m) The side chain binding interactions of DACS are modified such that 7-aminocephems or 7-aminocephams (including 3-exomethylencephams) or other bicylic β -lactams may be produced *in vitro* or *in vivo* from 6-amino penicillins (such as 6-aminopenicillanic acid) or cephams or cephems (Scheme 17). The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y/F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y

20

A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/N/P/S/E/D/R/K/H/Q/Y/C
L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y,
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I
Y321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/S
R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

10

15

5

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

20

n) The side chain binding interactions of DACS are modified such that cephams or cephalosporins without any substituent at the 7-position or other bicylic β-lactams, without any substituent at the 7-position, may be produced *in vitro* or *in vivo* from penicillins or cepham substrates, such as penicillanic acid (Scheme 18). The penicillanic acid may be produced whether in vitro or in vivo. The process may include the following modifications:

25

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S

S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/N/P/S/E/D/R/K/H/Q/Y/C
L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
Y321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I
R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S
R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

o) DACS is modified to produce 3-exomethylenecephams with hydrophobic side chains (or other intermediates for use in the preparation of cephalosporin antibiotics, e.g. Cephachlor.) (Scheme 19). The process will involve modification of both the side chain binding interactions of DACS substrates and of the thiaxolidine or cepham binding interactions and may involve the use of penicillins with hydrophobic side chains (e.g. penicillin G or V) as substrates or the use of other unnatural substrates. The process may include the following modifications:

V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y

30

5

10

L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y V283F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/P T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y M211A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y/F I 187F/A/G/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/V 5 P185F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/V R279F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y S281F/A/G/V/I/L/W/M/N/C/N/P/T/E/D/R/K/H/Q/Y N230F/A/G/V/I/L/W/M/C/P/S/T/E/D/R/K/H/Q/Y Q225F/A/G/V/I/LW/M/N/C/N/P/S/T/E/D/R/K/H/Y 10 F252F/A/G/V/I/L/W/M/N/C/P/S/T/E/D/R/K/H/Q/Y R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y F189R/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y 15 C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y 20 T104F/A/G/V/L/I/W/M/N/P/S/E/D/R/K/H/Q/Y/C L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I Y321F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/L R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S 25

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS,

DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

p) The structure of DAOCS/DACS is modified in its active site region to accept natural or unnatural substrates (including, but not exclusively, penicillin N, adipoyl penicillin) to produce bicyclic β-lactams other than cephalosporins of commercial use (Scheme 20). For example the region of DAOCS/DACS interacting with the thiazolidine ring of its natural substrate penicillin N (or the cepham ring of DAOC) may be modified such that the modified DAOCS/DACS produces 3-exomethylenecephams from penicillin N, penicillin G, or penicillin V, or other substrates for DAOCS/DACS. The process may include the following modifications:

15

20

25

30

10

5

V272F/A/G/I/LW/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
V283F/A/G/I/LW/M/C/N/S/T/E/D/R/K/H/Q/Y/P
T221F/A/G/V/I/LW/M/C/N/P/S/E/D/R/K/H/Q/Y/P
M211A/G/V/I/L/T/W/C/N/P/S/E/D/R/K/H/Q/Y/F
L187F/A/G/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/V
P185F/A/G/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/V
L189A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/V
S281F/A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y
N230F/A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y
Q225F/A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y
F252F/A/G/V/I/L/T/W/M/C/P/S/E/D/R/K/H/Q/Y
R210F/A/G/V/I/L/T/W/M/C/P/S/E/D/R/K/H/Q/Y

20

25

30

R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

q) The side chain binding interactions of DAOCS/DACS are modified such that 7-aminocephems or 7-aminocephams (including 3-exomethylencephams) or other bicylic β-lactams may be produced *in vitro* or *in vivo* from 6-amino penicillins (e.g. 6-aminopenicillanic acid) or cephams or cephems (Scheme 21). The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
L189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y/R
C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/V/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y
T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y
T217F/A/G/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y
M324F/A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y
L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y/I/

10

15

Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

r) The side chain binding interactions of DAOCS/DACS are modified such that cephams or cephalosporins without any substituent at the 7-position or other bicylic β-lactams, without any substituent at the 7-position, may be produced *in vitro* or *in vivo* from penicillins or cepham substrates, such as penicillanic acid. The penicillanic acid may be produced whether *in vitro* or *in vivo* (Scheme 22). The process may include the following modifications:

20

25

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
L189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y/R
C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S
S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y
F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y/
A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q
P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y

30

T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y

T217F/A/G/L/I/V/W/M/C/N/P/S/E/D/R/K/H/Q/Y
M324F/A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y
L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y
R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I
Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q
R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S
R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be
made in conjunction with each other or with other modifications in order to
produce a useful catalyst with the desired properties. Other modifications
based on the use of the three dimensional structure of IPNS, DACS,
DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of
these enzymes to their substrates, intermediates, modifiers, products or
inhibitors are not excluded.

exomethylenecephams with hydrophobic side chains (or other intermediates for use in the preparation of cephalosporin antibiotics, e.g. Cephachlor) (Scheme 23). The process will involve modification of both the side chain binding interactions of DAOCS/DACS substrates and of the thiaxolidine or cepham binding interactions and may involve the use of penicillins with hydrophobic side chains (e.g. penicillin G or V) as substrates or the use of other unnatural substrates. The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R87F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y
L189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y/R

BNSDOCID - WO

25

S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y A330F/G/V/L/I/W/M/C/N/P/S/T/E/D/R/K/H/Y/Q P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y 5 T217F/A/G/L/I/V/W/M/C/N/P/S/E/D/R/K/H/Q/Y M324F/A/G/V/I/L/W/C/N/P/S/T/E/D/R/K/H/Q/Y L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y R325F/A/G/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q 10 V272F/A/G/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L231F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y L223F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y V283F/A/G/I/L/W/M/C/N/S/T/E/D/R/K/H/Q/Y/P T221F/A/G/V/I/L/W/M/C/N/P/S/E/D/R/K/H/Q/Y 15 M211A/G/V/I/L/T/W/C/N/P/S/E/D/R/K/H/Q/Y/F L187F/A/G/I/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y/V P185F/A/G/I/L/T/W/M/C/N/S/E/D/R/K/H/Q/Y/V F189A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Q/Y R279F/A/G/V/I/L/T/W/M/C/N/P/S/E/D/K/H/Q/Y 20 S281F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y N230F/A/G/V/I/L/T/W/M/C/P/S/E/D/R/K/H/Q/Y Q225F/A/G/V/I/L/T/W/M/C/N/P/S/E/D/R/K/H/Y F252F/A/G/V/I/L/T/W/M/C/P/S/E/D/R/K/H/Q/Y R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S 25 R190F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications

produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

t) The structure of DAOC/DACS is modified in its active site region to accept substrates (i.e. penicillins with hydrophobic side chains, (including, but not exclusively, penicillin N, penicillin G and penicillin V) to produce cephalosporins or other bicyclic β-lactams of commercial use with hydrophobic or other unnatural side chains (Scheme 24). The process may include the following modifications:

R287F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y 15 R87F/AJG/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y R88F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y L189F/A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/K/H/Y/R C183F/A/G/V/L/I/W/M/N/Q/P/T/E/D/K/H/R/Y/S S91F/A/G/V/L/I/W/M/C/N/Q/P/T/E/D/K/H/R/Y 20 F285A/G/V/L/I/W/M/C/N/Q/P/S/T/E/D/R/K/H/Y A330F/GN/L/IW/M/C/N/P/S/T/E/D/R/K/H/Y/Q P185F/A/G/L/I/W/M/C/N/V/S/T/E/D/R/K/H/Q/Y T104F/A/G/V/L/I/W/M/C/N/P/S/E/D/R/K/H/Q/Y T217F/A/G/L/I/V/W/M/C/N/P/S/E/D/R/K/H/Q/Y M324F/A/G/V/I/LW/C/N/P/S/T/E/D/R/K/H/Q/Y 25 L317F/A/G/V/I/W/M/C/N/P/S/T/E/D/R/K/H/Q/Y R325F/AJG/V/L/W/M/C/N/P/S/T/E/D/K/H/Q/Y/I Y321F/A/G/V/I/L/W/M/C/N/P/S/T/E/D/R/K/H/Q R210F/A/G/V/I/L/T/W/M/C/N/P/E/D/R/K/H/Q/Y/S R190F/A/GN/I/L/TW/M/C/N/P/E/D/R/K/H/Q/Y/S 30

10

15

20

25

30

It is recognised that these modifications may have to be made in conjunction with each other or with other modifications in order to produce a useful catalyst with the desired properties. Other modifications based on the use of the three dimensional structure of IPNS, DACS, DAOCS, DAOCS/DACS, other sequence related enzymes or complexes of these enzymes to their substrates, intermediates, modifiers, products or inhibitors are not excluded.

Use can also be made of the 3D structure of IPNS to determine or predict the structure of other related enzymes which are not active in the penicillin or cephalosporin biosynthesis pathway. The structural information so obtained can then be used to modify the other enzyme or for designing an inhibitor for the other enzymes. Such other enzymes include flavone synthase, prolyl hydroxylase, proline hydroxylase, lysyl hydroxylase, aspartyl hydroxylase, flvanone 3β-hydroxylase, gibberellin C-20 oxidase, gibberellin 3β-hydroxylase, *para*-hyroxyphenylpyruvate dioxygenase (HPPD), 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. Specific embodiments envisaged include:

- The modification of the oxidases involved in gibberellin biosynthesis in order that modified enzymes may be introduced into plants in order to improve crop production.
- The design of inhibitors of ACC oxidase to be used for the control of fruit ripening.
- The design and use of inhibitors of prolyl hydroxylase for use in the treatment of arthritis and related diseases.

Modification of enzymes may conveniently be effected at the nucleic acid stage. Thus, the present invention envisages genes which code for the modified enzymes herein described. The nucleic acid sequence of such genes may be readily predicted. Mutations of existing wild-type genes may readily be effected e.g. by the use of commercially available mutagenesis kits.

10

15

20

25

30

The gene may be introduced into an expression vector by techniques which are well known. The expression vector may be used to transform a host micro-organism, such as for example Penicillium chrysogenum or Acremonium chrysogenum, again by techniques which are well known. The micro-organism should be capable of expressing the gene under fermentation conditions, e.g. by having the gene under the transcriptional and translational regulation of fungal expression signals. Such micro-organisms containing the modified gene may be used to make bicyclic β -lactams of the penicillin or cephalosporin family, again by techniques which are well known.

The following experiments were performed to demonstrate the invention.

EXAMPLE 1

A U.S.E mutagenesis kit (Phamacia) was used for all the mutagenesis reactions and a Pst I restriction site on the pET vector was selected. Selection of single and double mutants were successfully performed from colonies by restriction enzyme digestion. (Sambrook *et al*, Molecular Cloning, A Laboratory Manual, Cold Spring Harbour, USA, 1989). It was found that about 50% of colonies selected were mutants. Mutations of DAOCS (Table 1) were confirmed by sequencing according to the dideoxy method of Sanger. Mutants were designed after study of the IPNS-Mn²+ and the IPNS-Fe(II)-ACV structures. Polar residues with which the side chain D-α-aminoadipoyl (carboxylate and amino groups) might bind to were identified.

Almost all the mutants expressed well, except R88I, R88Q and R87Q/R287Q whereby the expression level was only about half of others. Generally the expression level of colonies was about 10~20 % of soluble protein at 27°C. Moreover, recombinant enzyme of P168V mutant was insoluble. These mutant enzymes were purified to ~60-70 % purity

PCT/GB97/02838

with Resouce-Q column (Phamacia). The activity of each mutant with respect to penicillin N and its side-chain analogues was analysed by bioassay. It was found that R87I, R87Q, R88I and R88Q could inhibit the growth of E coli X580 cells using a hole-plate assay which contained penicillinase. The products of the reaction with penicillin G and wild type DAOCS also showed the same inhibition. Screening of the substrate conversion of penicillins mutants was also performed using a assay with radiolabelled α -ketoglutarate. The reaction conditions were the same as for bioassay except that [14 C]- α -ketoglutarate was used. The specific activities of the various mutants are summarised in Table I.

The loss of activity when using penicillin N as a substrate after mutation of arginine 287 to isoleucine or glutamine in the active site of expandase implies an important interaction of this amino acid with the carboxyl group which located in the side chain of penicillin N. This is compatible with the structural predictions for DAOCS which were suggested based on IPNS structure. On the other hand, mutation at arginine 87 to isoleucine or glutamine enhanced the activity (when using penicillin N as a substrate), whereas mutants of arginine 88 caused partial loss of activity (when using penicillin N as a substrate). Double mutations at the sites totally eliminated activity.

The specific activities of the (mutant) modified DAOCS, when using penicillin N as a substrate, support the prediction that the 3-dimensional structure of DAOCS is closely related to that of IPNS. However, not all the kinetic results can be predicted by analysis of the predicted DAOC structure, e.g. the apparent increase in activity of the R87Q modification, when using penicillin N as a substrate. Other results in Table 1 further demonstrate the invention. For example the R87Q mutant converts penicillin G to phenylacetylcephalosporin G more efficiently than the unmodified enzyme. Other results demonstrate the introduction of new activities into the modified DAOCS enzymes. For example neither oxacillin

5

10

15

20

25

30

10

15

nor piperacillin are substrates for the unmodified enzymes, but are substrates for the R87I/R287Q modified enzymes.

EXAMPLE 2

5 IPNS-Fe-ACV Complex

Enzyme and Substrate Preparation

Recombinant *A. nidulans* IPNS was purified as the apoenzyme as described previously (Roach *et al*, Protein Science, 1995, **4**, 1007-1009) and stored at -80°C in 75 μ l aliquots (50 mg/ml in 20 mM Tris-HCl, pH 8.0). ACV (thiol form) was prepared as described previously and was further purified by HPLC [Hypersil octadecylsilane (C₁₈) column (250 x 10 mm), eluting with 10 mM NH₄CO₃, containing 4% (vol./vol.) MeOH; R_t=6.5 min at 4 ml/min], freeze dried and stored as 2 mg aliquots.

Crystallisation

Crystallisation trials were performed at 17°C under anaerobic conditions (<0.2 ppm O₂) in a glove box (Belle Technology, Portesham, Dorset, UK) using the hanging drop vapour diffusion technique. All solutions except the protein were deoxygenated by repeated evacuation followed by argon flushing (repeated three times) prior to transfer to the 20 anaerobic glove box. Solid reagents (ACV, ferrous sulphate and sodium dithionite), all solutions except protein solutions, washed cover-slips and greased Linbro plates were left for 16 h in the glove box to further deoxygenate. IPNS solutions were transferred to the glove box immediately prior to each crystallisation experiment and mixed by repeated 25 gentle pipetting to assist deoxygenation. To further ensure that the crystallisation experiments were done anaerobically, a coloured redox indicator was added to each well. Thus, oxidised resazurin which shows a mauve to colourless change upon dithionate reduction, was added (0.001% mass/vol.) to the stock well solutions (separate solutions, without 30

resazurin, were reserved for hanging drops) and sodium dithionite solution (100 mM) added dropwise until the solution in the well changed colour from mauve to colourless (Jacob, Methods in Microbiol., 1969, **2**, 91-124). Upon exposure to oxygen (either by contamination or upon withdrawing the crystallisation tray from the glove box), the solution in the well changed from colourless (reduced) to pink (partially oxidised).

A stock solution containing ferrous sulphate (5 mM), ACV (80 mM) and IPNS (50 mg/ml. 1.35 mM) was then prepared and used in random screening experiments using 6 μl drops (1:1 precipitant:protein) (Jancerik and Kim, J. Appl. Crystallog., 1991, **24**, 409). Three crystal forms were obtained using a precipitant solution containing 1.8M lithium sulphate and 100 mM Tris-HCl (pH 8.5). Crystals were not observed in analogous crystallisation experiments carried out in the absence of ACV. Crystallisation conditions were optimised by varying the protein and precipitant concentrations.

Plate crystals (Form I) typically appeared between 6 and 12 hours and reached a maximum size (typically 500 x 150 x 25 μ m³) in 48 hours. Hexagonal columnar crystals (Form II) typically appeared after 12 - 16 hours and grew to a maximum size (typically 1000 x 500 x 500 μ m³) in 1 week. The needles (Form III), with a hexagonal cross-section, appeared after *ca.* 2 weeks and were more commonly observed when using less homogenous batches of protein. In analogous experiments carried out under aerobic conditions, no crystals were observed.

Form I crystals grew spontaneously in less than half of the drops after 12 hours. After this time, Form II crystals began to grow and predominated in those drops in which plates had not grown. By using serial dilutions of microseeds prepared from either Form I or Form II crystals, it was possible to bias the growth of crystals completely to either of these morphologies. There is a delicate balance between production of the different forms since some drops contained two or all three of the

5

10

15

20

25

30

5

10

15

different crystal forms.

X-ray Analysis

For initial characterisation, crystals were mounted in quartz capillaries under an anaerobic atmosphere and the capillaries sealed with wax. Data were then collected (Table 4) at room temperature.

Subsequently, the crystals were shown to be apparently stable to relatively short (< 1 hour) exposure to oxygen and were withdrawn from the glove box. The crystals were then rapidly transferred to a cryoprotective mother liquor (100 mM Tris-HCl pH 8.5, 20% (vol./vol.) glycerol, saturated at room temperature with lithium sulphate) and frozen using a Cryostream (Oxford Cryosystems). Data were then collected at 100 K. Data were analysed using the programs DENZO and SCALEPACK (Otinowski, Data Collection and Processing, Daresbury Laboratory, Warrington, UK (Sawyer *et al*, Eds) PL/SCI/R34, pp 55-62).

Table 4 - Crystal Statistics

Crysta I Form	Diffractio n Limit (nm)†	Space Group	Unit Cell Dimensions (nm)	Solvent Content (%)	Completeness (%)	Rsym (%)
1	0.11, 0.18	P2 ₁ 2 ₁ 2 ₁	4.68, 7.15, 10.10	38.5	95.4	5.9
11	0.21, 0.23	P3 ₁ 2 ₁	10.10, 10.10, 11.567	69.5	94.0	7.2

† The first figure refers to the diffraction limit of the form I and form II crystals after respectively 30 and 10s exposures at BL19 of the European Synchrotron Radiation Facility (ESRF). The second figure refers to the diffraction limits after 30 min. exposures using a Rikagu rotating anode source operating at 60 kV and 70 mA equipped with a MAR Research

imaging plate detector. All other figures in the table refer to data collected at the ESRF. The data for form I crystals was collected using a MAR Research imaging plate detector and the data for the form II crystals on a charged coupled device detector.

5

Hereafter:

Table 1 appears on page 41.

Table 2 appears on pages 42-78.

Table 3 appears on pages 79-119.

Reaction Schemes on pages 120-129.

10

Table 1: The Specific activity of various DAOCS mutants analysed by the turnover of α -[14 C]-ketoglutarate.

		6-Amino-				:						
Specific		penicillanic	AdiovI-6-									
(nmol/min/mg)	Penicillin N		APA	Penicillin G	Penicilin V	Ampicillin	Carbenicilin	Ammoxicillin	Methicillin	Cloxacillin	Oxacillin	Piperacillin
Wild type	6.4±0.5*	1.0±0.2	2.7±0.4	5.1±0.4	5.3±0.3	0	0	1.4±0.6	0	1.6±0.6	0	0
R287I	0	1.7±0.6	0	0	2.3±0.2	0	0	1.1±0.04	0.2±0.1	2.7±0.6	2.0±0.09	1.8±0.2
R287Q	0	0	0	0	0	0	0	0	0	0	0	0
R871	6.4±0.05	1.1±0.5	0	4.3±0.1	1.5±0.3	0	0	0	0	0.9±0.04	0.8±0.3	0
R87Q	13.4±0.4	0	0	7.5±0.4	3.4±0.6	0	0	0	0	0	0	0
R881	5.3±0.8	0	0	2.5±0.5	0	0	0	0	0	0	0	o
R88Q	2.9±0.5	0	0	0.2±0.02	0	0	0	0	0	0	0	0
R871/R2871	0	0	0	00.3±0.04	0	0	0	0	0	0	0	0
R87Q/R2871	0	0	0	0	0	0	0	0	0	0	0	0
R871/R287Q	0	3.3±0.2	0	3.2±0.1	0.7±0.2	0	0	1.1±0.3	0	4.5±0.08	4.1±0.4	2.5±0.3
R87Q/R287Q	0	0	0	0	0	0	0	0	0	0	0	0

 \star Experiments were done in duplicate and values for "the penicillin uncoupled decarboxylation of α -ketoglutarate" have been subtracted.

The specific radioactivity of the α -ketoglutarate used was ca. 0.057 $\mu \text{Ci}/\mu \text{mol}$.

N.B. "The penicillin uncoupled decarboxylation reaction" is the enzymatic turnover of α -ketoglutarate in the absence of penicillin substrate.

- 42 -	
Table	2

					Tabl				
CRYST1	59.2			39.600		90.00 90.0			
SCALE1 SCALE2		0.016		00000 07974	0.000000		0.00000		
SCALE3		0.000		00000	0.000000		0.00000 0.00000		
ATCM	1	CB	VAL A	4	16.524	53.636	-2 826	1.00	79.63
ATCM	2	CG1	VAL A	4	15.692	54.759	-2.223	1.00	75.59
ATCM	3	CG2	VAL A	4	18.011	53.869	-2.523	1.00	77.54
ATCM	4	C	VAL A	4	14.636	52.001	-2.797	1.00	78.66
ATOM	5	0	VAL A	4	14.443	52.769	-3.987	1.00	79.44
ATOM ATOM	6 7	N CA	VAL A VAL A	4 4	16.880 16.049	51.117	-2.818	1.00	82.21
ATCM	8	N	SER A	5	13.655	52.254 52.015	-1.290 -1.916	1.00	80.32
ATOM	9	CA	SER A	5	12.286	51 764	-2.350	1 00 1 00	76.44 73.85
ATOM	10	CB	SER A	5	11.583	50 804	-1.380	1.00	74.99
ATOM	11	OG	SER A	5	12 012	51 018	-0.044	1 00	76.77
ATOM	12	C	SER A	5	11 474	53 054	-2.482	1.00	70.80
ATOM ATOM	13 14	O N	SER A LYS A	5 6	11.970 10.250	54 146	-2.187	1 00	70.77
ATOM	15	CA	LYS A	6	9 320	52 914 54.025	-2.970 - 3.124	1 00 1 00	67.33
ATOM	16	CB	LYS A	6	9 403	53 799	-4.319	1.00	64.23 65.78
ATOM	17	CG	LYS A	6	8 751	54 568	-5.557	1 00	69.46
ATOM	18	CD	LYS A	6	7 579	54 445	-6.510	1 00	76.71
ATOM	19	CE	LYS A	6	7 768	55.261	-7.784	1 00	81.89
MOTA MOTA	20 21	NZ C	LYS A LYS A	6 6	6 509 8 457	55 312 54 095	-8.612	1 00	83.94
ATOM	22	0	LYS A	6	8 061	53.061	-1.868 -1.325	1.00	61 05 62 18
MOTA	23	N	ALA A	7	3 166	55 304	-1.410	1.00	55.41
ATOM	24	CA	ALA A	7	7 346	55 487	-0.231	1.00	49 08
ATOM	25	CB	ALA A	7	7 632	56 853	0.393	1.00	44 79
ATOM ATOM	26 27	С О	ALA A ALA A	7	5.875	55 363	-0.609	1.00	46.39
ATOM	28	N	ALA A ASN A	7 8	5 469 5 080	55 706 54 840	~1.721 0.313	1.00	44 63
ATOM	29	CA	ASN A	8	3 652	54 694	0.086	1.00	45.74 46 86
ATOM	30	CB	ASN A	8	3.041	53 759	1.142	1.00	53.92
ATOM	31	CG	ASN A	8	1.515	53 798	1.154	1.00	59.91
ATOM	32	OD1	ASN A	8	ð 865	53.318	0.225	1.00	63.71
ATCM ATCM	33 34	ND2 C	ASN A ASN A	8 8	0 941 3 009	54 403	2.193	1.00	61.02
ATOM	35	ō	ASN A	8	2 782	56.078 56.594	0.175 1.276	1.00	45.51 49.13
MOTA	36	N	VAL A	9	2 802	56.712	-0.977	1 00	42.13
ATOM	37	CA	VAL A	9	2 167	58 028	-1.026	1 00	36.18
ATOM	38	CB	VAL A	9	3.066	59 093	-1.733	1.00	31.81
ATOM ATOM	39 40	CG1 CG2	VAL A VAL A	9 9	2 425 4 438	60 459 59 149	-1.650	1.00	28.09
ATOM	41	c	VAL A	9	U 835	57 869	-1.100 -1.768	1 00 1 00	26.59 36 23
ATOM	42	0	VAL A	9	0.785	57 827	-3 000	1 00	39.84
ATOM	43	И	PRO A	10	-0.261	57 715	-1 018	1 00	35 13
ATOM	44	CD	PRO A	10	-0 322	57 622	0 451	1.00	33 70
ATCM ATCM	45 46	CA CB	PRO A PRO A	10	-1 588 -2.473	57 549	-1 620	1 00	34 32
ATOM	47	CG	PRO A	10 10	-1 775	57 229 57 9 12	-0.412 0.734	1 00 1 00	35.22
ATOM	48	C	PRO A	10	-2.094	58 759	-2.390	1.00	34 45 33 02
ATOM	49	0	PRO A	10	-1.778	59 897	-2 060	1.00	36 04
MOTA	50	N	LYS A	11	-2 870	58 503	-3 434	1.00	35 45
ATOM ATOM	51	CA	LYS A	11	-3 435	59.576	-4.236	1.00	36 88
ATOM	52 53	CB CG	LYS A LYS A	11 11	-3 361 -1 958	59.233 58.944	-5 724	1.00	31.81
ATOM	54	CD	LYS A	11	-1 958	58 929	-6.203 -7.722	1 00 1 00	38.51 44.67
ATOM	55	CE	LYS A	11	-0 482	58 455	-8 166	1 00	47 02
ATOM	56	NZ	LYS A	11	0 620	59 309	-7 628	1 00	53 83
ATOM	57	С	LYS A	11	-4 882	59.740	-3.798	1.00	39 16
ATOM	58	0	LYS A	11	-5.748	58 984	-4.232	1.00	46 42
ATOM ATOM	59 60	N CA	ILE A ILE A	12 12	-5.133 -6.474	60 704 60 359	-2 917 -3 364	1.00	36 94
ATOM	61	CB	ILE A	12	-6.407	61 510	-2 394 -0 965	1.00	32 90 25.23
ATOM	62	CG2	ILE A	12	-7.B03	61 826	-0 436	1.90	19 49
ATOM	63	CG1	ILE A	12	-5.682	60.505	-0 077	1.00	26 81
ATOM	64	CD1	ILE A	12	-5.414	60.395	1.314	1.00	29 3C
ATOM	65	C	ILE A	12	-7.268	61 932	-3 250	1.00	38.45
ATOM ATOM	66 67	N	ILE A ASP A	12 13	-6.729 -2.544	62 919 61 622	-3.749	1.00	41.39
ATOM	68	CA	ASP A	13	-6.544 -9.431	62.484	-3.451 -4.225	1.00	44.53
ATOM	69	СВ	ASP A		-10.555	61 684	-4.881	1.00	46.03 51.16

ATOM	70	CG	ASP A	13 -11 361	62.512	-5.869	1 00	56.62
ATOM	71	OD1	ASP A	13 -11 737	63.659	-5.544	1 00	54.34
ATOM	72	OD2	ASP A	13 -11 619	62.011	-6.984	1 00	66.60
ATOM	73	С	ASP A	13 -10 000	63.472	-3.227	1 00	44.39
ATOM	74	0	ASP A	13 -10 791	63.121	-2.354	1 00	44 73
ATOM	75	N	VAL A	14 -9 605	64.719	-3.391	1 00	44 33
ATOM	76	CA	VAL A	14 -10 003	65.785	-2.498	1 00	38 69
ATOM	77	CB	VAL A	14 -8 796	66.720	-2.338 -1.875	1.00 1.00	34 66 37 77
ATOM	78	CG1	VAL A	14 -9.190	68 101 66.077	-1.365	1 00	33.42
ATOM	79	CG2 C	VAL A VAL A	14 -7 833 14 -11.296	66 521	-2.846	1.00	39.30
MOTA	80 81	0	VAL A	14 -11 808	67.298	-2.036	1 00	39 59
ATOM	82	И	SER A	15 -11 891	66 202	-3.990	1.00	38.33
ATOM ATOM	83	CA	SER A	15 -13.116	66 881	-4.393	1 00	37.64
ATOM	84	CB	SER A	15 -13 686	66 298	-5.689	1.00	39.61
ATOM	85	OG	SER A	15 -14.027	64.933	-5.546	1.00	47 59
ATOM	86	С	SER A	15 -14 197	66.977	-3 324	1.00	37 35
ATOM	87	0	SER A	15 -14 691	68.066	-3 056	1.00	40.20
ATOM	88	N	PRO A	16 -14.532	65.866	-2 647	1.00	38.58
MOTA	89	CD	PRO A	16 -13 957	64 511	-2 714	1.00	40.22
ATOM	90	CA	PRO A	16 -15.574	65 918	-1.613	1.00	37.63
ATOM	91	CB	PRO A	16 -15.410	64 583	-0.901	1.00	33.25
MOTA	92	CG	PRO A	16 -14.999	63 689	-1.991	1 00	36.58
MOTA	93	С	PRO A	16 -15.439	67 066	-0.624	1.00	38.86
MOTA	94	0	PRO A	16 -16.442	67 614	-0.184	1 00	40 71
MOTA	95	N	LEU A	17 -14.200	67.444	-0.310	1.00	39.30
ATOM	96	CA	LEU A	17 -13 917	68.513	0 649	1.00	38.18 34.24
ATOM	97	CB	LEU A	17 -12 412	68.594 67.299	0.911 1.490	1.00 1.00	34.24
ATOM	98	CG	LEU A LEU A	17 -11 838 17 -10.330	67.382	1.663	1.00	27.81
MOTA	99 100	CD1 CD2	LEU A	17 -10.330	67.008	2 820	1.00	34.84
MOTA MOTA	101	C	LEU A	17 -14.472	69 881	0.260	1.00	41.67
ATOM	102	ō	LEU A	17 -14.598	70 776	1.105	1 00	38.36
ATOM	103	N	PHE A	18 -14.774	70.043	-1.025	1.00	48.11
ATOM	104	CA	PHE A	18 -15.339	71.287	-1 551	1 00	52.21
ATOM	105	CB	PHE A	18 -14.857	71.551	-2 993	1.00	51.38
ATOM	106	CG	PHE A	18 -13.365	71.738	-3 132	1.00	49.52
ATOM	107	CD1	PHE A	18 -12.552	70.679	-3.513	. 1.00	50.16
ATOM	108	CD2	PHE A	18 -12.781	72.983	-2.932	1.00	47.59
ATOM	109	CE1	PHE A	18 -11.183	70.857	-3.695	1.00	50.47
ATOM	110	CE2	PHE A	18 -11.413	73 166	-3.114	1 00	44.37
MOTA	111	CZ	PHE A	18 -10.616	72 102	-3.496	1 00	45.21
ATOM	112	C	PHE A	18 -16.871	71.202	-1.550 -1.848	1.00 1.00	53 42 53.80
ATOM	113	0	PHE A	18 -17.550 19 -17.407	72.180 70.020	-1.848	1 00	56.82
ATOM	114	N	GLY A GLY A	19 -17.407 19 -18.847	69.842	-1.247	1.00	60 49
ATOM	115	CA C	GLY A	19 -19.502	69 931	0 120	1.00	64.67
ATOM ATOM	116 117	0	GLY A	19 -18.927	70 470	1.071	1.00	64.98
ATOM	118	И	ASP A	20 -20.738	69 441	0 200	1 00	69 36
ATOM	119	CA	ASP A	20 -21.507	69.443	1 449	1 00	72.36
ATOM	120	CB	ASP A	20 -22.799	70.263	1.310	1 00	76.50
ATOM	121	CG	ASP A	20 -22.543	71 760	1.234	1.00	83 77
ATOM	122	OD1	ASP A	20 -21.889	72 300	2.152	1.00	89 42
MOTA	123	OD2	ASP A	20 -23.002	72.400	0.262	1 00	85.64
ATOM	124	С	ASP A	20 -21.861	68 035	1.918	1.00	70.68
MOTA	125	0	ASP A	20 -22.433	67 865	2.992	1 00	71.00
MOTA	126	N	ASP A	21 -21.533	67 030	1,111	1 00	68.45
MOTA	127	CA	ASP A	21 -21.830	65 653	1.473	1 00	66.91
MOTA	128	CB	ASP A	21 -21.643	64.720	0.267	1 00	69.88 73.83
ATOM	129	CG	ASP A	21 -22.015	63.268	0.574	1 00 1 00	76.66
ATOM	130	OD1	ASP A	21 -22.477	62 978	1.702 -0.322	1 00	76.86
ATOM	131	OD2	ASP A	21 -21.845 21 -20.917	62 409 65.240	2.625	1 00	65.51
ATOM	132	c o	ASP A ASP A	21 -19.785	64.800	2.419	1 00	67.20
ATOM	133 134	N	GLN A	22 -21.433	65.365	3.838	1 00	63.04
MOTA MOTA	134	CA	GLN A	22 -20.687	65.018	5.033	1.00	59.99
ATOM	136	CB	GLN A	22 -21.578	65.138	6.264	1.00	60.92
ATOM	137	CG	GLN A	22 -20.821	65.550	7.505	1.00	68.34
ATOM	138	CD	GLN A	22 -20.120	66.894	7.326	1.00	74.81
ATOM	139	OE1	GLN A	22 -20.632	67.793	6.649	1.00	78.00
ATOM	140	NE2	GLN A	22 -18.931	67.028	7.909	1.00	77.30
ATOM	141	С	GLN A	22 -20.104	63.623	4.971	1.00	58.00
ATOM	142	0	GLN A	22 -18.965	63.402	5.384	1.00	59.37

- 44 -

ATOM	143	N	ALA A	23	-20.877	62.688	4.429	1.00	55.74
ATCM	144	CA	ALA A	13	-20.448	61.294	4.323	1.00	57.85
MCTA	145	CB .	ALA A	23	-21 550	60.444	3.688	1.00	57.01
ATCM	146	2	ALA A	23	-19 142	61.133	3.547	1.00	58.62
ATCM	147	·)	ALA A	23	-18 180	60 534	4.040	1.00	59.15
ATOM	148	N	ALA A	24	-19 112	61 662	2.329	1.00	57.88
ATEM	149	ΞA	ALA A	24	-17 920	61 567	1.505	1.00	54 77
ATCM	150	TB	ALA A	24	-18 195	62 086	0.097	1.00	52 07
ATCM	151	3	ALA A	24	-16 772	62 334	2.176	1 00	52 15
ATCM	152	0	ALA A	7.4	-15 617	61 905	2 114	1 00	55 14
ATCM	153	N	LYS A	25	-17 097	63 443	2 835	1 00	46.23
ATOM	154	CA	LYS A	25	-16 087	64 230	3 516	1 00	42 19
ATOM	155	CB	LYS A	2.5	-16 690	65.505	4 112	1 00	38 59
ATOM	15€	∙0G	LYS A	25	-16 655	66.663	3 149	1 00	33.56
MOTA	157	CD	LYS A	25	-17.022	67.980	3 B06	1 00	35.11
				25			3 890	1 00	
ATOM	158	CE	LYS A		-18 525	66.172			37.82
ATOM	159	NZ	LYS A	25	-18.878	69.562	4 275	1 00	39.00
ATOM	160	C	LYS A	25	-15 406	63.406	4.593	1 00	43.50
	161	0	LYS A	25	~14.186	63 378	4.688	1 00	45.05
ATOM									
ATOM	162	N	MET A	26	-16 189	62.680	5 368	1 00	46.05
ATOM	163	CA	MET A	26	-15 599	61.872	6.424	1 00	51.52
ATOM	164	CB	MET A	26	-16 674	61 263	7.306	1 00	58 77
							8.503		
MOTA	165	CG	MET A	26	-17 065	62 138		1.00	68.62
ATOM	166	SD	MET A	26	-15 776	62 302	9 788	1 00	75 98
ATOM	167	CE	MET A	26	-15 385	60 571	10.146	1 00	72.86
		Ċ.	MET A	2:6	-14 740	60 785	5 816	1.00	49.91
ATOM	168								
ATOM	169	ن.	MET A	26	-13.709	60.391	6 395	1.00	49 46
ATOM	170	N	ARG A	27	-15.148	60.307	4.645	1.00	50 27
ATOM	171	CA	ARG A	27	-14 407	59 273	3.942	1.00	51 72
ATOM	172	CB	ARG A	27	-15.141	58.858	2 662	1 00	59 72
ATOM	173	CG	ARG A	27	-15 819	57.511	2.736	1 00	70 60
ATOM	174	CD	ARG A	27	-16.315	57.084	1.365	1.00	80.78
ATOM	175	NE	ARG A	27	-17 703	57.450	1.123	1.00	88.62
ATOM	176	CZ	ARG A	27	-18.115	58.133	0.056	1.00	93.71
ATOM	177	NHl	ARG A	27	-17.243	58.547	-0.867	1.00	9€.83
				27	-19.414	58 338	-0.135	1.00	97.09
MOTA	178	NH2	ARG A						
ATOM	179	C	ARG A	27	-13.026	59 802	3.585	1.00	48.21
ATOM	180	0	ARG A	27	-12.030	59 115	3.794	1.00	49 76
			VAL A	28	-12.977	61 018	3 040	1.00	44 42
ATOM	181	И							
ATOM	181	CA	VAL A	28	-11.705	61 637	2 669	1 00	40 68
ATOM	183	CB	· VAL A	28	-11.896	63 013	1 989	1.00	40 13
ATOM	184	CG1	VAL A	28	-10.540	63 639	1.672	1 00	40 08
ATOM	185	CG2	VAL A	28	-12.684	62 844	0 709	1 00	39.09
ATOM	186	С	VAL A	28	-10.868	61 798	3 922	1 00	41 23
ATOM	187	0	VAL A	28	-9.706	61 381	3 963	1 00	41 90
			ALA A			62 271	4 981		
ATOM	188	N		29	-11.510			1.00	40 14
ATOM	189	CA	ALA A	29	-10.854	62 492	6 255	1 00	39 42
ATOM	190	CB	ALA A	29	-11.873	62.936	7.274	1 00	40.42
ATOM	191	C	ALA A	29	-10.131	61 242	6.731	1.00	41.63
ATOM	192	0	ALA A	29	-8.963	61.307	7.119	1 00	42.66
ATOM	193	N	GLN A	30	-10.803	60 099	6.666	1.00	44 91
ATOM	194	CA	GLN A	30	-10.201	58.848	7 106	1.00	48 27
MOTA	195	CB	GLN A	30	-11.203	57.702	6.971	1 00	54 77
MOTA	196	CG	GLN A	30	-12.400	57.837	7.901	1 00	67.39
MOTA	197	CD	GLN A	30	-13.579	56.964	7.495	1.00	75.12
		OE1	GLN A	30	-13.471	56 115	6.605	1.00	77.42
ATOM	198								
MOTA	199	NE2	GLN A	30	-14.724	57 189	8.136	1.00	79.26
ATOM	200	С	GLN A	30	-8.930	58.544	6.328	1.00	47 85
ATOM	201	ō	GLN A	30	-7.933	58.099	6.898	1.00	49.06
MOTA	202	N	GLN A	31	-8.972	58.807	5 025	1.00	45.74
ATOM	203	CA	GLN A	31	-7.820	58.573	4 164	1.00	42.76
ATOM	204	CB	GLN A	31	-8.188	58.781	2.701	1.00	40.15
ATOM	205	CG	GLN A	31	-9.129	57.723	2 175	1.00	43.01
MOTA	206	CD	GLN A	31	-9.468	57.922	0 715	1.00	48.15
ATOM	207	OEl	GLN A	31	-8.717	57.518	-0 166	1.00	52.25
ATOM	208	NE2	GLN A	31	-10.609	58.541	0 449	1.00	55.93
ATOM	209	C	GLN A	31	-6.675	59.494	4 568	1.00	41.22
ATOM	210	0	GLN A	31	-5.547	59.042	4 765	1.00	43.52
				32	-6,977		4 732	1.00	
MOTA	211	N	ILE A			60.778			37.48
ATOM	212	CA	ILE A	32	-5.972	61.746	5 138	1.00	31.13
ATOM	213	CB	ILE A	32	-6.581	63.140	5 280	1.00	26.04
				32	-5.615	64.067	5 954		
MOTA	214	CG2	ILE A					1.00	22.19
ATOM	215	CG1	ILE A	32	-6.987	63.663	3.904	1.00	25.80

- 45 -

ATOM	216	CD1	ILE A	32	-7.608	65 039	3 924	1.00	27.42
MOTA	217	С	ILE A	32	-5.343	61.308	6 458	1.00	34.56
		0	ILE A	32	-4.123	61.345	6 606	1 00	38.92
MOTA	218								
ATOM	219	N	ASP A	33	-6.169	60 833	7.387	1 00	36.94
ATOM	220	CA	ASP A	33	-5.684	60 375	8.689	1.00	38.24
ATOM	221	CB	ASP A	33	-6 850	59 928	9 588	1.00	44.05
ATOM	222	CG	ASP A	33	-6 380	59 328	10.930	1.00	47.52
					-5 824	60.066	11 773	1.00	44.85
MOTA	223	OD1	ASP A	33					
MOTA	224	OD2	ASP A	33	-6 583	58 111	11.149	1.00	46.89
ATOM	225	C	ASP A	33	-4 695	59.233	8.529	1.00	36.71
ATOM	226	0	ASP A	33	-3 654	59.209	9 182	1.00	39.40
			ALA A	34	-5 012	58.285	7 658	1.00	33.88
MOTA	227	N							
MOTA	228	CA	ALA A	34	-4.129	57.148	7.445	1 00	34 39
ATOM	229	CB	ALA A	34	-4.808	56 126	6 579	1 00	35 43
MOTA	230	C	ALA A	34	-2 783	57.560	6 841	1 00	38 07
	231	Ó	ALA A	34	-1.728	57.088	7 280	1.00	42 04
ATOM					-2.817	58.454	5.851	1.00	37.24
MOTA	232	N	ALA A	35					
ATOM	233	CA	ALA A	35	-1 596	58.933	5 197	1.00	34 56
ATOM	234	CB	ALA A	35	-1 941	59.864	4.054	1.00	31.14
ATOM	235	С	ALA A	35	-0 697	59 648	6 189	1.00	33.05
			ALA A	35	0.485	59.347	6.295	1.00	36.62
MOTA	236	0							
MOTA	237	N	SER A	36	-1.276	60.589	6.923	1.00	32.76
ATOM	238	CA	SER A	36	-0 556	61 369	7.919	1 00	35 08
ATOM	239	CB	SER A	36	-1 503	62.396	8 544	1 00	30 17
ATOM	240	OG	SER A	36	-2 181	63.133	7 539	1 00	33 36
					0.054	60.506	9.021	1.00	39.08
ATOM	141	C	SER A	36					
MOTA	142	0	SER A	36	0 950	60 955	9 750	1.00	41.57
ATOM	243	N	ARG A	37	-0 456	59.288	9 172	1.00	38 47
ATOM	244	CA	ARG A	37	0 053	58 394	10.191	1.00	38 11
	245	CB	ARG A	37	-1.095	57.702	10.908	1.00	40 18
MOTA						58.642		1 00	47 64
ATOM	246	CG	ARG A	37	-1.866		11.805		
ATOM	247	CD	ARG A	37	-3.157	58.021	12 262	1 00	55 80
ATOM	248	NE	ARG A	37	-2.923	56.776	12.976	1 00	66 31
ATOM	249	CZ	ARG A	37	-3 859	55.865	13 219	1.00	72.83
	250	NHl	ARG A	37	-5.109	56.056	12.805	1.00	73.10
MOTA							13.872	1.00	79.16
MOTA	251	NH2	ARG A	37	-3 538	54.753			
ATOM	252	C	ARG A	37	1.035	57.393	9.627	1.00	38 74
ATOM	153	0	ARG A	37	1.677	56.672	10 380	1.00	40.61
ATOM	254	N	ASP A	38	1 151	57.349	8 305	1.00	40.43
		CA	ASP A	38	2 086	56.440	7 658	1 00	41.47
ATOM	255						6 437	1.00	49.45
ATOM	256	CB	ASP A	38	1.435				
MOTA	257	CG	ASP A	38	2.199	54 556	5.951	1.00	58.59
ATOM	258	OD1	ASP A	38	2.821	53 855	6.784	1.00	62.36
ATOM	259	OD2	ASP A	38	2,162	54.281	4.732	1.00	62.50
			ASP A	38	3.351	57.218	7 262	1.00	40.48
MOTA	260	C							36.69
ATOM	261	0	ASP A	38	4.213	57.461	8.105	1.00	
MOTA	262	N	THR A	39	3.449	57 618	5 991	1.00	41.01
MOTA	263	CA	THR A	39	4.597	58.376	5 480	1.00	39.22
ATOM	264	CB	THR A	39	4.675	58.298	3.948	1.00	39.18
		OG1	THR A	39	3.363	58 473	3.393	1.00	44.29
ATOM	265								
ATOM	266	CG2	THR A	39	5.221	56.968	3.519	1.00	43.28
MOTA	267	C	THR A	39	4.497	59 847	5 850	1.00	37.79
MOTA	268	0	THR A	39	5.505	60.538	5 973	1.00	41.79
ATOM	269	N	GLY A	40	3.268	60.323	5 993	1.00	35.69
	270	CA	GLY A	40	3.038	61.711	6 336	1.00	34.49
MOTA								1.00	32.99
MOTA	271	С	GLY A	40	2.842	62.524	5.078		
MOTA	272	0	GLY A	40	2.649	63.735	5.153	1.00	35.66
ATOM	273	N	PHE A	41	2.867	61.842	3.932	1.00	32.44
ATOM	274	CA	PHE A	41	2.713	62.465	2 617	1.00	30.35
	275	CB	PHE A	41	3.986	62.260	1.780	1.00	23.42
MOTA								1.00	19.36
MOTA	276	CG	PHE A	41	5.094	63.225	2.094		
ATOM	27 7	CD1	PHE A	41	6.079	62.899	3 013	1.00	19.44
ATOM	278	CD2	PHE A	41	5.161	64.455	1 454	1.00	20.61
MOTA	279	CE1	PHE A	41	7.120	63.790	3 292	1.00	21.76
				41	6.192	65.350	1 723	1.00	19.48
MOTA	280	CE2	PHE A						
ATOM	281	CZ	PHE A	41	7.173	65.018	2 642	1.00	20.92
MOTA	282	С	PHE A	41	1.558	61.855	1 840	1.00	30.54
ATOM	283	0	PHE A	41	1.269	60.671	1 988	1.00	33.65
ATOM	284	N	PHE A	42	0.900	62.662	1.016	1.00	29.43
				42	-0.179	62.172	0.171	1.00	28.45
MOTA	285	CA	PHE A						
ATOM	286	CB	PHE A	42	-1.473	61.872	0.953	1.00	28.60
ATOM	287	CG	PHE A	42	-2.292	63.083	1.332	1.00	26.83
MOTA	288	CD1	PHE A	42	-3.186	63.655	0.431	1.00	26.89

						.0 -			
ATOM	289	CD2	PHE A	42	-2.218	63.612	2.613	1.00	28.60
ATOM	290	CE1	PHE A	4.2	-3.998	64.734	0.803	1.00	22.24
ATOM	291	CE2	PHE A	4.0	-3.030	64.692	2.993	1.00	28.04
ATOM	292	CZ C	PHE A	42	-3.919	65,249	2.081	1.00	22.14
ATOM ATOM	293 294	0	PHE A PHE A	42 42	-0.416 -0.046	63.122 64.297	-0.979 -0.908	1.00	30.71
ATOM	295	и	TYR A	43	-0.911	62.580	-2.084	1.00	32.62 31.35
ATOM	296	CA	TYR A	43	-1.200	63.386	-3.257	1.00	27.25
ATCM	237	CB	TYR A	43	-0.851	62.641	-4.556	1.00	25.54
ATCM	298	CG	TYR A	43	0.573	62 844	-5.054	1.00	21.56
ATCM	299	CD1	TYR A	43	1.524	61 841	-4.942	1.00	19.07
ATOM	300	CE1	TYR A	43	2.835	62 034	-5.386	1.00	17.94
ATOM ATOM	301 302	CD2 CE2	TYR A	43	0.966	64 047	-5.628	1.00	23.58
ATOM	302	CZ	TYR A TYR A	43 43	2.272 3.198	64 246 63 241	-6-068 -5-946	1.00	15.91
ATOM	304	OH	TYR A	43	4.498	63 456	-5.946 -6:375	1.00	16.09 15.37
ATOM	305	C	TYR A	43	-2.673	63.735	-3 249	1.00	29 51
ATOM	306	O	TYR A	43	-3.528	62.861	-3.163	1.00	26.39
ATOM	307	N	ALA A	44	-2.960	65 026	-3.252	1.00	32.50
ATOM	308	CA	ALA A	44	-4.327	65 497	-3.290	1.00	32.14
ATOM	309	CB	ALA A	44	-4.448	66 834	-2.586	1.00	31 97
ATOM ATOM	310 311	C 0	ALA A ALA A	44 44	-4.580	65 658	-4.769	1.00	31 97
ATOM	312	N	VAL A	45	-3.968 -5.416	66 506 64.790	-5.414 -5.317	1.00	33 03 33 76
ATOM	313	CA	VAL A	45	-5.741	64 824	~6.729	1 00	35 03
ATOM	314	CB	VAL A	45	-5.548	63 440	-7.353	1 00	36 59
ATOM	315	CG1	VAL A	45	-6.543	62 454	-6.770	1 00	40.19
ATOM	316	CG2	VAL A	45	-5.656	63 525	-8.861	1 00	47 08
ATOM	317	C	VAL A	45	-7.184	65 291	-6 866	1 00	36.63
ATOM ATOM	318 319	O N	VAL A ASN A	45 46	-7.960 -7.538	65 177 65 823	-5 917	1 00	42 25
ATOM	320	CA	ASN A	46	-8.883	66 349	-8.034 ~8 294	1 00 1 00	36 71 35.51
ATOM	321	CB	ASN A	46	-9.956	65.320	-7 942	1 00	42 00
ATOM	322	CG	ASN A	46	-10.436	64.547	-9.144	1.00	51.81
ATOM	323	OD1	ASN A	46	-11.513	64.813	-9 671	1.00	58.83
ATOM	324	ND2	ASN A	46	-9.641	63 582	-9.588	1 00	54 06
ATOM ATOM	325 326	C	ASN A ASN A	46	-9.121	67 618	-7 494	1 00	32 25
ATOM	327	N O	HIS A	46 47	-10.206 -8.093	67 848 68 452	-6 996 -7 409	1.00 1.00	35.38
ATOM	328	CA	HIS A	47	-8.106	69 718	-6 659	1 00	34 05 34 39
ATOM	329	CB	HIS A	47	-6.674	70 088	-6 306	1 00	29 40
ATOM	330	CG	HIS A	47	-5.716	69.842	-7 425	1 00	26 18
ATOM	331	CD2	HIS A	47	-4.906	68 789	-7.686	1 00	27 13
ATOM	332	ND1	HIS A	47	-5.573	70 709	-8 486	1 00	29 56
ATOM ATOM	333 334	CE1 NE2	HIS A HIS A	47 47	-4.717 -4.299	70 199 69 034	-9 355 -8 894	1 00	29.92
ATOM	335	C	HIS A	47	-8.740	70.890	-7 397	1 00 1 00	29 91 35 30
ATOM	336	0	HIS A	47	-8.889	71 972	-6.825	1 00	36.82
MOTA	337	N	GLY A	48	-8.955	70.710	-8 700	1 00	36 56
ATOM	338	CA	GLY A	48	-9.578	71 732	-9.528	1 00	37 05
ATOM	339	С	GLY A	48	-8.759	72.959	-9.879	1 00	40 00
ATOM ATOM	340 341	N O	GLY A ILE A	48	-9.321	74.004	-10.196	1 00	46.68
ATOM	342	CA	ILE A	49 49	-7.440 -6.568	72.819 73.948	-9 913 -10.220	1 00 1 00	37.89
ATOM	343	CB	ILE A	49	-5.546	74.191	-9 082	1 00	36 05 31 81
ATOM	344	CG2	ILE A	49	-4.522	75.255	-9 488	1 00	28 58
ATOM	345	CG1	ILE A	49	-6.287	74 59€	-7 807	1 00	29 79
ATOM	346	CD1	ILE A	49	-5.425	74 629	-6 574	1 00	32.52
ATOM	347	C	ILE A	49	-5.815	73.686	-11.514	1 00	38 13
ATOM ATOM	348 349	0 N	ILE A ASN A	49	-5.297	72 581	-11 707	1 00	38 18
ATOM	350	CA	ASN A	50 50	-5.749 -5.050	74 701 74 603	-12 383 -13 663	1 00	38 60
ATOM	351	CB	ASN A	50	-5.453	75 726	-14.619	1 00 1 00	39 30 42 37
ATOM	352	CG	ASN A	50	-4.920	75.502	-16 033	1 00	46 03
ATOM	353	OD1	ASN A	50	-4.258	74 496	-16.314	1 00	46 67
ATOM	354	ND2	ASN A	50	-5.195	76 445	-16 922	1.00	49.68
ATOM	355	C	ASN A	50	-3.544	74.614	-13 439	1.00	38.19
ATOM	356	0	ASN A	50	-2.853	75 631	-13 581	1.00	36.43
ATOM ATOM	357 358	N CA	VAL A VAL A	51 51	-3.064 -1.676	73.436	-13 086 -12 786	1.00	39.42
ATOM	359	CB	VAL A	51	-1.582	73.165 71.734	-12.786 -12.182	1.00	38.94
ATOM	360	CG1	VAL A	51	-0.757	70.802	-13.040	1.00	36.89 39.25
ATOM	361	CG2	VAL A	51	-1.103	71.797	-10.756	1.00	37.13
								-	==

ATOM	362	С	VAL A	51	-0.804	73.346	-14.025	1.00	40.42
ATOM	363	0	VAL A	51	0 370	73.688	~13.923	1.00	40.47
ATOM	364	N	GLN A	52	-1 404	73 193	-15.198	1.00	43.48
MOTA	365	CA	GLN A	52	-0.658	73 335	-16.439	1.00	46.46
ATOM	365	CB	GLN A	52	-1.461	72 753	-17.607	1 00	54.80
ATOM	367	CG	GLN A	52	-1.828	71 265	-17.427	1.00	64.12
ATOM	368	CD	GLN A	52	-0.603	70 340	-17 338	1 00	70.98
ATOM	369	OE1	GLN A	52	0.494	70.696	-17 774	1 00	73.27
ATOM	370	NE2	GLN A	52	-0.799	69.140	-16.788	1 00	71.68
ATOM	371	C	GLN A	52	-0.250	74.787	-16.694	1.00	42.90
ATOM	372	0	GLN A	52	0.932	75.081	-16 876	1.00	42.08
MOTA	373	N	ARG A	53	-1.212	75.704	-16 649	1.00	40.10
MOTA	374	CA	ARG A	53	-0 902	77.119	-16.860	1.00	40.21
ATOM	375	CB	ARG A	53	-2.161	77.981	-16.766	1 00	39.62
ATOM	376	CG	ARG A	53	-1 896	79.468	-16 979	1 00	46.56
MOTA	377	CD	ARG A	53	-3 084	80 302	-16.558	1 00	55.52
ATOM	378	NE	ARG A	53	-3.456	80 002	-15.180	1.00	69.72
ATOM	379	CZ	ARG A	53	-4.707	79.854	-14.750	1.00	75.43
ATOM	380	NH1	ARG A	53	-5.728	79.988	-15.589	1.00	79.20
ATOM	381	NH2	ARG A	53	-4.936	79.529	-13.485	1.00	80.30
ATOM	382	С	ARG A	53	0.112	77 592	-15.818	1.00	40.89
ATOM	383	0	ARG A	53	0.967	78.436	-16.103	1.00	42.68
MOTA	384	N	LEU A	54	0 015	77.025	-14 617	1.00	40.83
MOTA	385	CA	LEU A	54	0.906	77.354	-13.513	1 00	36.14
ATOM	386	CB	LEU A	54	0.481	76 583	-12.263	1.00	36.52
MOTA	387	CG	LEU A	54	1 431	76 620	-11.068	1 00	35.31
ATOM	388	CD1	LEU A	54	1.581	78 057	-10.586	1 00	33.45
MOTA	389	CD2	LEU A	54	0.904	75.710	-9.969	1 00	36.19
ATOM	390	С	LEU A	54	2.380	77.073	-13.829	1 00	36.31
MOTA	391	0	LEU A	54	3.231	77.935	-13.618	1.00	37.16
ATOM	392	N	SER A	55	2 695	75 883	-14.335	1.00	34.98
ATOM	393	CA	SER A	55	4.090	75.558	-14.645	1.00	36.10
ATOM	394	CB	SER A	55	4 261	74 066	-14.929	1 00	32.09
MOTA	395	og	SER A	55	3.071	73 521	-15.455	1.00	41.05
MOTA	396	C	SER A	55	4.618	76.377	-15.804	1.00	37.67
MOTA	397	0	SER A	55	5.789	76 752	-15.825	1.00	41.07
ATOM	398	N	GLN A	56	3 740	76 688	-16.744	1.00	37.35
MOTA	399	CA	GLN A	56	4.105	77 460	-17.919	1 00	38.51
MOTA	400	CB	GLN A	56	2.940	77 439	-18 902	1.00	46.09
MOTA	401	CG	GLN A	56	3.138	78 188	-20.191	1.00	58.62
ATOM	402	CD	GLN A	56	1 811	78.422	-20 902	1 00	71.60
ATOM	403	OE1	GLN A	56	1 007	77.494	-21.071	1.00	75.28
MOTA	404	NE2	GLN A	56	1 560	79 672	-21.296	1 00	74.89
ATOM	405	C	GLN A	56	4 496	78.893	-17.560	1.00	36.41
MOTA	406	0	GLN A	56	5.611	79 312	-17 848	1.00	35.97
ATOM	407	N	LYS A	57	3 599	79.629	-16.905	1.00	35.19
ATOM	408	CA	LYS A	57	3 869	81 015	-16.514	1 00	34.22
ATOM	409	CB	LYS A	57	2 710	81.567	-15 693	1.00	35.10 41.47
MOTA	410	CG	LYS A	57	1.443	81 768	-16.469	1.00	49.86
MOTA	411	CD	LYS A	57	1 644	82.849	-17.492		58.96
MOTA	412	CE	LYS A	57	0.507	82 868	-18 477	1.00 1.00	67.82
ATOM	413	NZ	LYS A	57	0 740	83.914 81 106	-19.507 -15.69 1	1.00	36.94
ATOM	414	C	LYS A	57	5.147			1 00	38.60
ATOM	415	0	LYS A	57	5 963	82 014 80 172	-15.875 -14.753	1 00	37.65
ATOM	416	N	THR A	58	5 277	80.066	-13.865	1 00	35.48
ATOM	417	CA	THR A	58	6.426 6.215	78 911	-12.846	1 00	36.09
ATOM	418	CB	THR A	58	5 257	79 317	-11.862	1 00	30.91
ATOM	419	OG1	THR A	58	7 503	78 549	-12.142	1.00	43.44
ATOM	420	CG2	THR A	58	7 696	79.833	-14.665	1.00	35.79
MOTA	421	С	THR A	58 58	8 686	80.531	-14.463	1.00	37.07
ATOM	422	0	THR A	59	7 667	78 865	-15.577	1.00	38.20
ATOM	423	И	LYS A			78 573	-16.397	1.00	40.23
ATOM	424	CA	LYS A	59 59	8 832 8 540	78 573	-17.391	1.00	46.70
ATOM	425	CB	LYS A	59	9 744	77 071	-18.254	1.00	58.45
ATOM	426	CG	LYS A	59 59	9 534	75 783	-19.053	1.00	69.21
ATOM	427	CD	LYS A	59 59	10 831	75 . 350	-19.769	1.00	76.48
ATOM	428	CE	LYS A	59	10 728	74 041	-20.510	1.00	75.66
ATOM	429	NZ	LYS A LYS A	59	9 199	79.846	-17.134	1.00	40.20
ATOM	430	C	LYS A	59	10 364	80.239	-17.167	1.00	41.89
ATOM	431	O N	GLU A	60	5.186	80.531	-17.653	1.00	41.30
ATOM	432 433	N CA	GLU A	60	8.395	81.777	-18.379	1.00	42.90
ATOM	433	CB	GLU A	60	7.059	82.362	-18.851	1.00	50.15
ATOM	7.37	CD		•		. = . 5 0 2			

						•			
ATCM	435	CG	GLU A	62	6.405	81.626	-20.026	1.00	57.31
ATOM	436	CD	GLU A	60	5.215	82.383	-20.605	1.00	63.82
MOTA	437	DE1	GLU A	60	4.233	81.733	-21.027	1.00	68.21
MOTA	438	OE2	GLU A	60	5.259	83.633	-2C.644	1.03	67.21
ATOM	439	C	GLU A	60	2.115	82 773	-17.484	1.00	39.96
ATOM	440	0	GLU A	60	11.147	83 324	-17.859	1.00	42.99
MOTA	441	N	PHE A	61	9.604	82 949	-16.274	1.00	35.32
MOTA	442	CA	PHE A	61	9.208	83.874	-15 325	1.00	34.12
MOTA	443	CB	PHE A	61	3.466	83,810	-13 978	1.00	30.54
MOTA	444	CG	PHE A	61	9.039	84.718	-12.918	1.00	25.45
ATOM	445	CD1	PHE A	61	8.905	86.093	-13.013	1.00	20.40
ATOM	446	CD2	PHE A	61	9.730	84.193	-11 835	1.00	23,25
ATOM	447	CE1 CE2	PHE A	61 61	9.449 10.277	86.928 85.026	-12.053	1.00	19,57
ATOM ATOM	448 449	CZ	PHE A	61	10.277	86.399	-10.875 -10.989	1.00	22 69 17 25
ATOM	450	c	PHE A	61	10 710	83.620	-15.115	1.00	32,38
ATOM	451	2	PHE A	61	11 536	84.499	-15.353	1.00	30.20
ATOM	452	N	HIS A	62	11.064	82.407	-14.714	1.00	34.34
ATOM	453	CA	HIS A	62	12 458	82.076	-14.436	1.00	37,14
ATOM	454	CB	HIS A	62	12 556	80.693	-13.779	1.00	32.21
ATOM	455	CG	HIS A	62	12.181	80.696	-12.331	1.00	31.98
ATOM	456	CD2	HIS A	62	11.234	80.007	-11.652	1.00	29.94
ATOM	457	ND1	HIS A	62	12.792	81.519	-11 410	1.00	28.87
MOTA	458	CE1	HIS A	62	12 234	81.344	-10 228	1.00	28.92
ATOM	459	NE2	HIS A	62	11 286	80.432	-1C 347	1.00	29.72
ATOM	460	C	HIS A	62	13 437	82.193	-15 599	1 00	41.35
ATOM	461	0	HIS A	62	14 604	82.546	-15.405	1 00	40.97
ATOM	462	11	MET A	63	12 968	81.941	-16 809	1 00	43.02
ATOM	463	CA	MET A	63	13.867	82.018	-17.941	1 00	45.13
MOTA	464	CB	MET A	63 63	13 396 13 180	81. 102 79.653	-19.070 -18 631	1.00	51.35
ATOM ATOM	465 466	CG SD	MET A	63	14 560	78.941	-18 631	1.00 1.00	63.00 73.59
ATOM	467	CE	MET A	63	15 229	77.786	-18 858	1.00	73.56
ATOM	463	C	MET A	63	14 052	83.438	-18 445	1.00	44.26
ATOM	469	0	MET A	63	15 126	83 781	-18 927	1.00	50 29
ATOM	470	11	SER A	64	13.041	84 283	-18 287	1.00	39.05
MOTA	471	CA	SER A	64	13.133	85.648	-18.782	1.00	36 67
ATOM	472	CB	SER A	64	11 798	86 362	-19 386	1.00	37 55
ATOM	473	CG	SER A	64	10 763	86 008	-18 428	1.00	43.44
MOTA	474	C	SER A	64	13 611	86 739	-17 837	1.00	39.95
ATOM	475	0	SER A	64	14.019	87 806	-18.296	1.00	45 98
ATOM	476	N	ILE A	65	13 486	86 531	-16 530	1.00	41.66
ATOM	477	CA	ILE A	65	13.914	87.547	-15 568	1.00	37.23
ATOM	478	CB	ILE A	65	13 477	87.209	-14 108	1.00	35.14
ATOM	479	CG2 CG1	ILE A ILE A	65	14 228 13 725	86 007 88 412	-13 559	1.00	26.54
ATOM ATOM	480 481	CD1	ILE A	65 65	12 960	88.365	-13 207 -11 914	1 00 1 00	31.65 37.39
ATOM	482	C	ILE A	65	15.420	87 732	-15 672	1.00	38.75
ATOM	483	0	ILE A	65	16.165	86.757	-15.710	1 00	43.09
ATOM	484	N	THR A	66	15.857	88.980	-15.785	1 00	38.80
ATOM	485	CA	THR A	66	17 278	89.281	-15 924	1.00	39.81
ATOM	486	CB	THR A	66	17.486	90 544	-16 776	1.00	40.56
ATOM	487	OG1	THR A	66	16 886	91 663	-16.113	1.00	47.40
ATOM	488	CG2	THR A	66	16 954	90 371	-18 139	1 00	41.17
ATOM	489	C	THR A	66	17 948	89.502	-14.580	1 00	39.84
ATOM	490	0	THR A	66	17 291	89 829	-13.597	1.00	46.85
ATOM	491	N	PRO A	67	19.279	89 365	-14.524	1.00	40.14
MOTA	492	CD	PRO A	67	20.152	88 850	-15 590	1.00	39.50
ATOM	493	CA	PRO A	67	20.037	89 557	-13 281	1 00	39.40
ATOM	494	CB	PRO A	67	21.482	89 273	-13 709	1 00	39.30
ATOM	495	CG	PRO A PRO A	67	21.459	89 446	-15.212	1 00	40.61
ATOM	496	C	PRO A	67 67	19 984	90 924 91 012	-12 604 -11 378	1.00	39.27
ATOM ATOM	497 498	o N	GLU A	68	19 934 19 704	91 986	-13 387	1.00 1.00	42.45 37.98
ATOM	499	CA	GLU A	68	19 528	93 316	-12 811	1.00	36.08
ATOM	500	CB	GLU A	68	19.598	94 425	-13 865	1.00	44.41
ATOM	501	CG	GLU A	68	7.0 830	94.408	-14 745	1.00	56.01
ATOM	502	CD	GLU A	68	20 701	93.426	-15.897	1.00	62.86
ATOM	503	OE1	GLU A	68	19 776	93.599	-16.727	1.00	65.53
MOTA	504	OE2	GLU A	68	21.519	92 480	-15.972	1.00	66.08
ATOM	505	С	GLU A	68	18 166	93 349	-12.157	1.00	32.92
ATOM	506	0	GLU A	63	17 968	94 037	-11.158	1.00	37.34
ATOM	507	N	GLU A	69	17 217	92.633	-12.747	1.00	28.56

ATOM	508	CA	GLU A	69	15 877	92 560	-12 193	1 00	26.48
ATOM	509	CB	GLU A	69	14 927	92 889	-13 170	1.00	26.48
ATOM	510	CG	GLU A	69	14 696	92.647	-14 438	1.00	31.14
ATOM	511	CD	GLU A	69	13.480	92.145	-15 147	1.00	36 47
ATOM	512	OE1	GLU A	69	12.386	92.682	-14.875	1.00	41 34
ATOM	513	OE2	GLU A	69	13 612	91.195	-15 946	1.00	41 53
ATOM	514	C	GLU A	69	15 925	91.749	-10 900	1.00	26.61
	515	0	GLU A	69	15.268	92 086	-9 916	1.00	33.09
ATOM		N	LYS A	70	16.703	90 672	-10 902	1.00	13.31
ATOM	516				16 830	89.844	-9 719	1.00	18 07
ATOM	517	CA	LYS A	70		88.655	-10 000	1.00	16.10
MOTA	518	CB	LYS A	70	17.730				
ATOM	519	CG	LYS A	70	17.125	87.693	~10 978 ~11 323	1.00 1.00	16.50
ATOM	520	CD	LYS A	70	18.081	86.602	-12.243		19.40
ATOM	521	CE	LYS A	70	17.421	85 611		1.00	23.23
ATOM	522	NZ	LYS A	70	18.372	84.538	-12.604	1.00	28.38
ATOM	523	C	LYS A	70	17.397	90 685	-8 59 <i>6</i>	1.00	22 66
ATOM	524	0	LYS A	70	16 836	90.725	-7 505	1.00	27.15
ATOM	525	N	TRP A	71	18.461	91 424	-8 891	1.00	21.96
MOTA	526	CA	TRP A	71	19.101	92.274	-7.897	1.00	22.52
MOTA	527	CB	TRP A	71	20.321	92.982	-8 494	1.00	19.42
MOTA	528	CG	TRP A	71	21.037	93.865	-7.506	1.00	20.03
MOTA	529	CD2	TRP A	71	21.800	93.441	-6.366	1.00	17.51
MOTA	530	CE2	TRP A	71	22.293	94.604	-5.736	1 00	15.91
ATOM	531	CE3	TRP A	71	22 103	92.194	-5.809	1 00	19.70
ATOM	532	CD1	TRP A	71	21 104	95.230	-7.524	1 00	18.18
ATOM	533	NE1	TRP A	71	21 859	95.680	-6.466	1.00	21.55
ATOM	534	CZ2	TRP A	71	23.089	94 559	-4.585	1.00	20.06
ATOM	535	CZ3	TRP A	71	22.897	92.147	-4.662	1 00	20.49
MOTA	536	CH2	TRP A	71	23.373	93.324	-4.061	1.00	20.53
ATOM	537	С	TRP A	71	18.123	93.299	-7 359	1.00	23.60
ATOM	538	0	TRP A	71	18.089	93.584	-6.155	1.00	24.12
ATOM	539	N	ASP A	72	17 327	93.860	-8.254	1.00	23.56
ATOM	540	CA	ASP A	72	16.358	94.859	7.860	1.00	27.03
ATOM	541	CB	ASP A	72	15 853	95.630	-9.083	1.00	34.54
ATOM	542	CG	ASP A	72	16 921	96.534	-9.692	1.00	40.55
ATOM	543	OD1	ASP A	72	18 116	96.375	-9.363	1.00	47.37
ATOM	544	OD2	ASP A	72	16 563	97.416	-10.502	1.00	50.79
ATOM	545	C	ASP A	72	15.208	94.309	-7.032	1.00	26.53
ATOM	546	ō	ASP A	72	14.506	95 082	-6.384	1.00	33.99
ATOM	547	N	LEU A	73	15 055	92 989	-6.999	1.00	23.44
ATOM	548	CA	LEU A	73	13 998	92.353	-6 224	1.00	19 61
ATOM	549	CB	LEU A	73	13.219	91 372	-7 091	1.00	20 50
ATOM	550	CG	LEU A	73	12.333	91.920	-8 201	1.00	20 73
ATOM	551	CD1	LEU A	73	11.692	90.760	-8.945	1.00	10.89
ATOM	552	CD2	LEU A	73	11.280	92.830	-7.601	1.00	14.36
ATOM	553	C C	LEU A	73	14 558	91.581	-5 049	1 00	19 51
	554	0	LEU A	73	13 811	91 098	-4.212	1 00	12.35
ATOM	555	N	ALA A	74	15 871	91 415	-5 019	1.00	20.26
ATOM						90.656	-3.965	1.00	18.26
ATOM	556	CA	ALA A	74 74	16 535 18.046	90.726	-4.146	1.00	17 07
MOTA	557	CB	ALA A			91.106	-2.569	1.00	19.57
ATOM	558	С	ALA A	74	16.163 15 917	92.285	-2:365	1.00	17.06
MOTA	559	0	ALA A	74			-1 637	1.00	21.97
ATOM	560	N	ILE A	75	16 115	90 157			
ATOM	561	CA	ILE A	75	15 811	90.457	-0.239	1.00	18 37
MOTA	562	CB	ILE A	75	15.337	89.202	0 514	1 00	15 88
ATOM	563	CG2	ILE A	75	14 056	88.700	-0.073	1 00	15 90
ATOM	564	CG1	ILE A	75	16 380	88.096	0 422	1.00	17.42
MOTA	565	CD1	ILE A	75	16 178	86.992	1 424	1 00	20 14
ATOM	566	С	ILE A	75	17 051	91.063	0.453	1 00	22 26
ATOM	567	0	ILE A	75	18.155	91.028	-0.093	1 00	24 15
ATOM	568	N	ARG A	76	16 866	91.598	1.656	1.00	23 62
MOTA	569	CA	ARG A	76	17 934	92.244	2.423	1 00	22 51
MOTA	570	CB	ARG A	76	17 382	92.683	3.776	1 00	25.41
MOTA	571	CG	ARG A	76	18 277	93.622	4.540	1.00	30.98
ATOM	572	CD	ARG A	76	17 650	93.958	5.878	1 00	39.61
ATOM	573	NE	ARG A	76	17 503	92.780	6.731	1 00	43.97
ATOM	574	CZ	ARG A	76	16.615	92.675	7.719	1 00	46.12
ATOM	575	NH1	ARG A	76	15 786	93.678	7.995	1 00	44.59
ATOM	576	NH2	ARG A	76	16.533	91.550	8.417	1.00	44.99
ATOM	577	C	ARG A	76	19.199	91.410	2.622	1.00	20.90
ATOM	578	0	ARG A	76	20.303	91.939	2.667	1.00	21.19
MOTA	579	N	ALA A	77	19.037	90.105	2.773	1.00	22.00
ATOM	580	CA	ALA A	77	20.175	89.219	2.962	1.00	20.40
• •									

					-:	50 -			
ATOM	581	CB	ALA A	77	19.706	87.798	3.239	1.00	16.39
MCTA	582	C	ALA A	77	21.127	89.245	1.770	1.00	24.32
MCTA	583	0	ALA A	77	22.275	88.824	1.889	1.00	29.02
MOTA	584	11	TYR A	73	20.643	89.704	0.618	1.00	25.15
AT OM	585	CA	TYR A	78	21.471	89.795	-0.587	1.00	19.05
AT/OM AT/OM	586 587	CB CG	TYR A	78	20.810	39.103	-1.764	1.00	16.11
ATOM	588	CD1	TYR A TYR A	78 78	20.748 19.611	87.618	-1.613	1.00	16.70
MOTA	589	CE1	TYR A	78	19.542	87.000 85.626	-1.114 -1.005	1.00	15.71
ATOM	590	CD2	TYR A	78	21.821	86.823	-1.987	1.00 1.00	14.79 17.98
ATOM	591	CE2	TYR A	78	21.762	85.458	-1.886	1.00	15.81
ATOM	592	CZ	TYR A	78	20.624	84.864	-1.394	1.00	19.26
ATOM	593	OH	TYR A	73	20.563	83.495	-1.336	1.00	27 92
ATOM	594	C	TYR A	78	21.735	91.233	-0.952	1.00	18 90
ATOM	595 506	0	TYR A	78	22.874	91.609	-1 178	1.00	24.83
ATOM ATOM	596 597	N	ASN A	79	20.672	92.025	-1 046	1.00	20 12
ATOM	598	CA CB	ASN A ASN A	79 79	20.778 19.767	93.442 93.794	-1 396	1.00	23 74
ATOM	599	CG	ASN A	79	19.985	95 173	-2.491 -3.071	1.00	21 09 20 38
MOTA	600	OD1	ASN A	73	20.558	96 049	-2 437	1.00	20 38 24 59
ATOM	601	ND2	ASN A	73	19 511	95 378	-4 283	1.00	17.81
ATOM	602	C	ASN A	79	20 563	94 310	-0 161	1.00	26 18
MOTA	603	0	ASN A	79	19.442	94.645	0 206	1.00	28 37
ATOM	61)4	N	LYS A	80	11 668	94 695	0 452	1.00	28.39
MOTA	605	CA	LYS A	8.0	21 693	95 496	1 663	1.00	28 15
ATOM ATOM	606 607	CB CG	LYS A LYS A	81) 80	23 145 23 434	95 869 96.446	1 926	1.00	30 31
ATOM	608	CD	LYS A	80	24 934	96 530	3 270 3 472	1.00 1.00	41 68
ATOM	609	CE	LYS A	80	25.290	97 287	4 739	1.00	49.85 56.09
ATOM	610	NZ	LYS A	8:0	26.764	97 261	4 971	1.00	59 86
ATOM	611	С	LYS A	80	20 805	96.741	1 640	1.00	18.30
ATOM	612	0	LYS A	80	20.388	97.234	2 679	1.00	31 85
ATOM	613	N	GLU A	81	20.444	97.183	0.448	1 00	27.68
ATOM	614	CA	GLU A	81	19.631	98.377	0.245	1 00	27.82
ATOM ATOM	615 616	CB CG	GLU A GLU A	81 81	19.700 18 936	98 738	-1 245	1 00	26 85
ATOM	617	CD	GLU A	81	18.843	99 974 100 115	-1 667 -3 173	1 00 1.00	25 54
ATCM	618	OE1	GLU A	81	18 424	101.187	-3 645	1.00	27 23 30 11
ATOM	619	OE2	GLU A	81	19 177	99 153	-3 892	1.00	35 72
ATCM	620	C	GLU A	8:	18 163	98 261	0 685	1.00	2.8 54
ATCM	621	0	GLU A	81	17 592	99.190	1 260	1.00	32 85
ATCM	622	N	HIS A	82	17 544	97 125	0 400	1.00	28 51
ATOM ATOM	623 624	CA CB	HIS A HIS A	82 82	16 145	96.919	0 736	1.00	26 34
ATOM	625	CG	HIS A	82	15 547 15 992	95 839 95 898	-0.148 -1 569	1.00	23.16
ATOM	626	CD2	HIS A	82	16 006	96 906	-2.467	1.00 1.00	20 08 14 88
ATOM	627	NDI	HIS A	82	16 428	94 781	-2.241	1.00	11.04
ATC:M	628	CEl	HIS A	82	16.684	95 094	-3 493	1.00	20.58
ATCM	629	NE2	HIS A	82	16 433	96.382	-3 661	1.00	16 40
ATOM	630	C	HIS A	85	15 992	96 461	2.168	1.00	29.32
ATOM	631	0	HIS A	82	15 653	95.302	2.415	1.00	29.56
ATOM ATOM	632 633	N CA	GLN A GLN A	83 83	16 193	97.366	3 113	1.00	32 90
ATOM	634	CB	GLN A	83	16 084 16 438	97 006 98.194	4 517 5 406	1.00 1.00	36 06
ATOM	635	CG	GLN A	83	17 942	98 406	5.566	1.00	42 46 54.39
ATOM	636	CD	GLN A	83	18 637	97.224	6.227	1.00	60 00
ATOM	637	OEl	GLN A	83	18 366	96.899	7.386	1.00	66.86
ATOM	638	NE2	GLN A	83	19 534	96 572	5.492	1.00	60 20
ATOM	639	C	GLN A	83	14 746	96 418	4 932	1.00	34 12
ATOM	640	0	GLN A	83	14 689	95 623	5.856	1.00	36 75
ATOM	641	N	ASP A	84	13 684	96 755	4.215	1.00	35.26
ATCM ATCM	642 643	CA CB	ASP A ASP A	84 84	12 353 11 293	96 260 97.298	4.546	1.00	35 02
ATCM	644	CG	ASP A	84	11.437	98 611	4.158 4.925	1.00 1.00	47 91 63 73
ATCM	645	OD1	ASP A	84	11.115	99 673	4 344	1.00	61.72 68.07
ATC:M	646	OD2	ASP A	84	11.863	98 587	6 104	1.00	69.22
ATOM	647	C	ASP A	84	11.987	94 912	3 931	1.00	30.42
ATOM	648	0	ASP A	84	10.890	94 402	4 158	1.00	31.96
ATC:M	649	N	GLN A	85	12.881	94 331	3 146	1.00	23.30
ATCM	650	CA	GLN A	85	12.571	93 058	2 537	1.00	10.72
ATCM	651 653	CB	GLN A	85	12.946	93 059	1 065	1.00	20.88
ATCM ATCM	652 653	CG CD	GLN A GLN A	85 85	12.181	94.019	0.236	1.00	23.30
WI C.C.	000	CD	א איידים	೨	12.434	93.811	-1.235	1.00	32.07

ATOM	654	QE1	GLN A	85	12 670	94.762	-1.982	1.00	41.87
ATOM	655	NE2	GLN A	85	12 378	92.565	-1.666	1.00	31.81
ATOM	656	С	GLN A	85	13 286	91.930	3.242	1.00	22.01
	657	0	GLN A	85	14 485	91.736	3 061	1.00	25 61
ATOM	658	N	VAL A	86	12 551	91.171	4 038	1.00	11 04
ATOM			VAL A	86	13 151	90.063	4 758	1.00	20 72
MOTA	659	CA					6 271	1.00	23.91
MOTA	660	CB	VAL A	86	12 835	90 127	6 993		
MOTA	661	CG1	VAL A	86	13 522	88.996		1.00	24 41
MOTA	662	CG2	VAL A	86	13.272	91 445	6.85€	1.00	24.17
ATOM	663	С	VAL A	86	12.717	88 713	4 204	1.00	20.58
ATOM	664	0	VAL A	86	13.554	87.851	3 990	1 00	29.31
ATOM	665	N	ARG A	87	11.417	88 530	3 990	1 00	18 86
ATOM	666	CA	ARG A	87	10 875	87 270	3 467	1.00	18.95
ATOM	667	СВ	ARG A	87	9.560	86.885	4 153	1 00	21 46
ATOM	668	ÇG	ARG A	87	9.591	86 566	5.630	1 00	24.00
ATOM	669	CD	ARG A	87	8.153	86 365	6.142	1 00	23.85
ATOM	670	NE	ARG A	87	7.549	85.127	5.647	1 00	26.86
MOTA	671	CZ	ARG A	87	6.252	84 833	5.742	1.00	24.59
MOTA	672	NHl	ARG A	87	5.412	85 691	6.300	1.00	22.47
ATOM	673	NH2	ARG A	87	5 803	83 654	5.333	1.00	22.94
ATOM	674	C	ARG A	87	10.548	87 409	1 989	1.00	17 44
ATOM	675	o	ARG A	87	10 947	86 591	1 181	1.00	20.34
	676	N	ALA A	88	9.803	88 456	1.657	1.00	14.27
ATOM		CA	ALA A	88	9 353	88 708	0 296	1 00	15.50
ATOM	677		ALA A	88	8 154	89.637	0 307	1.00	11.55
ATOM	678	CB			10 413	B9 247	-0 630	1 00	18.22
ATOM	679	C	ALA A	88		90 190	-0 284	1 00	24.16
ATOM	680	0	ALA A	88	11.122	88 688		1 00	
ATOM	681	N	GLY A	89	10 461		-1 837		18.31
ATOM	682	CA	GLY A	89	11 437	89.103	-2.825	1.00	18.37
ATOM	683	С	GLY A	89	12.221	87.946	-3.422	1.00	21.93
MOTA	684	0	GLY A	89	11 853	86.773	-3.262	1.00	23.18
ATOM	685	N	TYR A	90	13 315	88.286	-4 103	1.00	21.46
ATOM	686	CA	TYR A	90	14.178	87.314	-4 767	1.00	17.61
ATOM	687	ÇВ	TYR A	90	14 701	87 909	-6 098	1.00	14.11
ATOM	688	CG	TYR A	90	14.847	86 895	-7 215	1 00	15.32
ATOM	689	CD1	TYR A	90	13 827	86 705	-8.142	1.00	15.35
ATOM	690	CE.1	TYR A	90	13 900	85.686	-9.100	1.00	17.27
ATOM	691	CD2	TYR A	90	15 963	86.050	-7.283	1.00	17.90
ATOM	692	CEC	TYR A	90	16.047	85.031	-8 236	1.00	18.10
ATOM	693	CZ	TYR A	90	15.010	84.855	-9.136	1.00	18.33
ATOM	694	он	TYR A	90	15.056	83 829	-10 056	1.00	29.46
ATOM	695	С	TYR A	90	15 344	86 861	-3.881	1 00	18.14
MOTA	696	0	TYR A	90	15.877	87 636	~3 089	1.00	19.67
MOTA	697	N	TYR A	91	15.713	85.592	-4 013	1 00	20.08
ATOM	698	CA	TYR A	91	16 819	84 976	-3 277	1 00	20.39
ATOM	699	CB	TYR A	91	16 354	83.713	-2.542	1.00	20.44
	700	CG	TYR A	91	15.353	83.965	-1.432	1.00	20.34
MOTA	701	CD1	TYR A	91	14 116	84.566	-1.693	1 00	21.65
ATOM					13 211	84.819	-0 677	1.00	16.23
ATOM	702	CEI	TYR A	91		83.622	-0 120	1.00	18.42
ATOM	703	CD2	TYR A	91	15.651		0 898		20.40
MOTA	704	CE2	TYR A	91	14.753	83.867		1.00	
ATOM	705	CZ	TYR A	91	13.536	84.468	0.615	1.00	22.22
MOTA	706	ОН	TYR A	91	12.651	84.705	1 639	1.00	21.37
MOTA	7 07	С	TYR A	91	17.819	84.603	-4.362	1.00	23.73
MOTA	708	0	TYR A	91	17.583	83.687	-5 154	1.00	24.20
ATOM	709	N	LEU A	92	18.894	85.374	-4.451	1.00	28.01
ATOM	710	CA	LEU A	92	19.909	85.160	-5.476	1.00	24.96
ATOM	711	CB	LEU A	92	20.857	86.362	-5.534	1.00	24.17
ATOM	712	CG	LEU A	92	20.258	87.756	-5.635	1.00	19.59
ATOM	713	CD1	LEU A	92	21.353	88.782	-5.696	1.00	23.44
ATOM	714	CD2	LEU A	92	19.406	87.837	-6.850	1.00	22.64
ATOM	715	C	LEU A	92	20.749	83.910	-5.283	1.00	25.80
ATOM	716	0	LEU A	92	20.879	83.382	-4.174	1.00	25.07
ATOM	717	и	SER A	93	21.310	83.440	-6.387	1.00	26.00
ATOM	717	CA	SER A	93	22.210	82.307	-6.358	1.00	27.05
		CB	SER A	93	22.218	81.584	-7.703	1.00	24.34
ATOM	719			93	22.434	82.479	-8.776	1.00	26.84
MOTA	720	OG	SER A			82.942	-6.087	1.00	27.46
MOTA	721	С	SER A	93	23.569		-6.348		
MOTA	722	0	SER A	93	23.776	84.125		1.00	26.92
ATOM	723	И	ILE A	94	24.487	82.178	-5.530	1.00	29.65
MOTA	724	CA	ILE A	94	25.797	82.716	-5.234	1.00	31.96
ATOM	725	CB	ILE A	94	26.106	82.624	-3.740	1.00	33.15
ATOM	726	CG2	ILE A	94	27.467	83.228	-3.456	1.00	29.48

ATOM	727	CG1	ILE A	94	25.025	83.358	-2.946	1.00	33.35
ATOM	728	CD1	ILE A	94	25.091	83.120	-1.463	1.00	36.58
ATCM	729	C	ILE A	94	16.753	81.863	-6.027	1.00	34.38
ATOM	730	С	ILE A	94	26.94€	80.691	-5.717	1.00	36.74
ATOM	731	:1	PRO A	95	27 339	82.423	-7 080	1.00	38.50
ATOM	732	CD	PRO A	95	17 368	83.871	-7 350	1.00	40.61
ATOM	733	CA	PRO A	95	28 283	81.724	-7 947	1.00	40.90
ATOM	734	CB	PRO A	95	18 917	82.854	-8 745	1.00	45.71
ATOM	735	CG	PRO A	95	18 765	84.049	-7 829	1.00	45.59
ATOM	73€	C	PRO A	95	19 309	80.929	-7 159	1 00	39.51
ATOM	737	O	PRO A	95	30 004	81.477	-6 310	1 00	42.47
ATCM	738	N	GLY A	96	29 327	79.625	-7 391	1 00	38.51
ATOM	739	CA	GLY A	96	30 259	78.752	-€ 713	1 00	35.63
ATCM	740	C	GLY A	96	29 740	78.161	-5.424	1 00	37.97
ATCM	741	Q.	GLY A	96	30 12€	77 062	-5 047	1 00	39.52
ATOM	742	N	LYS A	97	28 812	78 849	-4 777	1 00	35.33
ATOM	743	CA	LYS A	97	28 318	78 365	-3 504	1 00	34.40
ATOM	744	CB	LYS A	97	28 555	79 415	-2 435	1 00	42.78
ATOM	745	CG	LYS A	97	29 982	79.900	-2 352	1 00	54.46
ATOM	746	CD	LYS A	97	30 041	81.101	-1 428	1 00	65.72
ATOM	747	CE	LYS A	97	31 450	81 651	-1 284	1 00	73.04
ATOM	748	NZ	LYS A	97	21.498	82.894	-0 447	1 00	78.91
ATOM	749	C	LYS A	97	26 857	77 959	-3 450	1 00	32.83
ATOM	750	O.	LYS A	97	26 501	77 068	-2 683	1 00	34.44
ATOM	751	N 	LYS A	98	26 008	78 603	-4 243	1 00	26.60
ATOM	752	CA	LYS A	98	24 574	78 319	-4 215	1 00	22.39
ATOM	753	CB	LYS A	98	23 876	79 351	-3 319	1 00	13.74
ATCM	754	CG	LYS A	98	22.362	79 269	-3 276 -2 335	1 00	22.19
ATOM	755	CD	LYS A	98	21 766 20 251	80.300 80.160	-2 241	1 00 1 00	22.81 12.30
ATOM	756	CE	LYS A LYS A	98 98	19.547	80 977	-3 253	1 00	21.47
ATOM	757	NZ	LYS A	98	23 990	78.346	-5 614	1 00	11.39
ATOM	758 759	C 0	LYS A	98	24.07£	79.355	-6 301	1.00	23.12
ATOM ATOM	760	N.	ALA A	99	23.427	77 225	-6 044	1 00	21.69
ATOM	761	CA	ALA A	99	22.819	77 132	-7 369	1.00	23.49
ATOM	762	CB	ALA A	99	23.126	75 756	-7.983	1 00	21.77
ATOM	763	C	ALA A	99	21.301	77 449	-7.439	1 00	22.78
ATOM	764	Ö	ALA A	99	20 834	78 065	-8 399	1 00	25.07
ATOM	765	N	VAL A	100	20 547	77 040	-6 420	1 00	20.36
ATOM	766	CA	VAL A	100	19 106	77.274	-6 388	1 00	17.58
ATOM	767	CB	VAL A	100	18 461	76.528	-5.196	1 00	16.99
ATC:M	768	CG1	VAL A	100	16 971	76.786	-5.130	1 00	14.05
ATOM	769	CG2	VAL A	100	18.722	75.044	-5.313	1 00	15.21
ATOM	770	С	VAL A	100	18.797	78.764	-6.277	1.00	20.86
ATOM	771	Ö	A LAV	100	19 574	79.506	-5.697	1.00	25.82
ATC:M	772	И	GLU A	101	17 696	79.201	-6.885	1.00	20.04
ATC:M	773	CA	GLU A	101	17 236	80.595	-6.829	1.00	17.64
ATOM	774	CB	GLU A	101	17 352	81.316	-8.185	1.00	22.33
ATC:M	775	CG	GLU A	101	18 682	81.355	-8.862	1 00	27 61
MOTA	776	CD	GLU A	101	18.654	82.264	-10.048	1.00	28 27
ATOM	777	OE1	GLU A	101	19 711	82.803	-10.393	1.00	35 84
ATOM	778	OE2	GLU A	101	17 591	82.440	-10.656	1.00	33.44
ATOM	779	C	GLU A	101	15.734	80.502	-6.561	1 00	18.04
ATOM	780	0	GLU A	101	15.085	79.542	-6.977	1.00	20 27
ATOM	781	11	SER A	102	15.151	81.543	-5.989	1.00	15 18
MOTA	782	CA	SER A	102	13 727	81.512	-5.749	1.00	14 63
ATOM	783	CB	SER A	102	13 372	80.575	-4.599	1.00	16 17
MOTA	784	ЭG	SER A	102	14.095	80.881	-3.441	1.00	19 01
MOTA	785	С	SER A	102	13 172	82.883	-5.512	1.00	14.90
MOTA	785	O	SER A	102	13 919	83.805	-5.226	1.00	16.69
MOTA	787	11	PHE A	103	11 871	83.018	-5.753	1.00	16 08
MOTA	789	CA	PHE A	103	11 135	84.261	-5.579	1.00	14.05
MOTA	789	CB	PHE A	103	10 561	84.710	-6.928	1.00	11 82
ATOM	790	CG	PHE A	103	9 644	85.913	-6.849	1.00	14.83
ATOM	791	CD1	PHE A	103	10 149	87.189	-6.601	1.00	16.95
MOTA	792	CD2	PHE A	103	8.279	85.773	-7.081	1.00	11.21
MOTA	793	CEl	PHE A	103	9.295	88.309	-6.583	1.00	12.90
MOTA	794	CE2	PHE A	103	7.425	86.879	-7.065	1.00	10.94
ATOM	795	cz	PHE A	103	7.936	88.146	-6.820	1.00	12.78
ATOM	796	2	PHE A	103	10.004	83.930	-4.607	1.00	14.85
ATOM	797	.5	PHE A	103	9.249	82.981	-4.822	1.00	14.06
MOTA	798	И	CYS A	104	9.887	84.710	-3.543	1.00	14.45
ATOM	793	CA	CYS A	104	8.853	84.484	-2.548	1.00	14.61

ATOM	800	CB	CYS A	104	9.509	84.235	-1.194	1.00	14 79
	801	ŞG	CYS A	104	8.386	84 134	0 215	1.00	18 12
MOTA			CYS A	104	7 896	85 562	-2 429	1.00	18.09
MOTA	802	С				86 821	-2 482	1.00	18 91
ATOM	803	О	CYS A	104	8 322				17 06
MOTA	804	N	TYR A	105	6 600	85 367	-2.339	1 00	
ATOM	805	CA	TYR A	105	5.594	86 403	-2.161	1.00	13 87
ATOM	806	CB	TYR A	105	4.941	86 845	-3.486	1.00	12.35
ATOM	807	CG	TYR A	105	4 103	85 830	-4 234	1.00	14 43
ATOM	808	CD1	TYR A	105	2.713	85.826	-4 110	1 00	9.55
			TYR A	105	1 927	84.933	-4 832	1.00	7.61
MOTA	809	CE1				84 909	-5.112	1.00	11 05
MOTA	810	CD2	TYR A	105	4.690			1.00	13 52
MOTA	811	CE2	TYR A	105	3.906	84.010	-5.846		
ATOM	812	CZ	TYR A	105	2.525	84.028	-5.699	1.00	15 44
ATOM	813	OH	TYR A	105	1 733	83.129	-6 395	1 00	18 33
ATOM	814	С	TYR A	105	4 576	85.367	-1.100	1 00	17.62
ATOM	815	0	TYR A	105	4 412	84 773	-0 820	1 00	14.49
	816	N	LEU A	106	3.991	86 954	-0 432	1 00	18 67
MOTA				106	3.031	86 742	0.640	1.00	17.72
ATOM	817	CA	LEU A				1.844	1.00	15 11
ATOM	818	CB	LEU A	106	3.437	87.602			
MOTA	819	CG	LEU A	106	4 930	87 554	2.171	1.00	18.61
ATOM	820	CD1	LEU A	106	5 237	88.376	3.384	1 00	18 40
ATOM	821	CD2	LEU A	106	5.358	86.124	2.391	1 00	20.22
ATOM	822	C	LEU A	106	1.594	87.078	0.237	1.00	19.75
MOTA	823	0	LEU A	106	1.266	87.191	-0 947	1.00	19.55
		N	ASN A	107	0 753	87.241	1.253	1 00	19 69
MOTA	824				-0.659	87.563	1.122	1.00	16.25
ATOM	825	CA	ASN A	107			2 518	1 00	18 19
MOTA	826	CB	ASN A	107	-1.231	87.792			
MOTA	827	CG	ASN A	107	-2.738	87.979	2 530	1.00	24 35
ATOM	828	OD1	ASN A	107	-3.332	88.525	1 591	1.00	22.21
MOTA	829	ND2	ASN A	107	-3.362	87 551	3.618	1.00	16 86
ATOM	830	С	ASN A	107	-0 817	88.812	0.279	1 00	15.33
ATOM	831	0	ASN A	107	-0 332	89.888	0.634	1.00	16.38
		N	PRO A	108	-1.497	88.686	-v 860	1.00	14 14
ATOM	832				-1.973	87 430	-1 466	1.00	13.05
ATOM	833	CD	PRO A	108				1.00	14.52
ATOM	834	CA	PRO A	108	-1.712	89 818	-1.757		
ATOM	835	CB	PRO A	108	-2 552	89.206	-2.867	1 00	11 78
ATOM	836	CG	PRO A	108	-2.018	87.779	-2.916	1.00	13.10
ATOM	837	С	PRO A	108	-2 409	91.006	-1.113	1.00	15.10
ATOM	838	0	PRO A	108	-2 295	92.126	-1.595	1.00	15 99
ATOM	839	N	ASN A	109	-3.114	90.776	-0.014	1.00	16.27
	840	CA	ASN A	109	-3 839	91.855	0.649	1.00	18.12
ATOM			ASN A	109	-5 005	91.304	1.461	1 00	17 89
MOTA	841	CB			-6.058	90.695	0.590	1 00	15 82
ATOM	842	CG	ASN A	109				1.00	18.28
ATOM	843	QD1	asn a	109	-6 374	91.228	-0.475		
MOTA	844	ND2	ASN A	109	-6 578	89.549	1.001	1.00	14.24
ATOM	845	C	ASN A	109	-2.990	92.759	1.511	1.00	19.06
ATOM	846	0	ASN A	109	-3.467	93.786	1.978	1.00	22.19
ATOM	847	N	PHE A	110	-1.762	92.349	1.791	1.00	17.26
ATOM	848	CA	PHE A	110	-0.879	93.168	2,588	1.00	13.51
		СВ	PHE A	110	0.304	92.345	3.068	1.00	11.28
MOTA	849				-0.054	91.343	4.110	1.00	14.89
ATOM	850	CG	PHE A	110			4.727	1.00	14.80
MOTA	851	CD1	PHE A	110	-1.296	91.384			
ATOM	852	CD2	PHE A	110	0.854	90.365	4.494	1.00	16.71
ATOM	853	CEl	PHE A	110	-1.627	90.470	5.702	1.00	15.38
MOTA	854	CE2	PHE A	110	0.532	89.440	5.474	1.00	14.69
ATOM	855	CZ	PHE A	110	-0.710	89.495	6.082	1.00	18.74
ATOM	856	C	PHE A	110	-0.404	94.363	1.787	1.00	16.88
		ō	PHE A	110	0.469	94.243	0.930	1.00	21.88
ATOM	857					95 509	2.004	1.00	18.68
ATOM	858	N	THR A	111	-1.032				16.37
ATOM	859	CA	THR A	111	-0.625	96.718	1.304	1.00	
ATOM	860	CB	THR A	111	-1.764	97 305	0 482	1.00	15.54
ATOM	861	OG1	THR A	111	-2.723	97 911	1.355	1.00	18.30
ATOM	862	CG2	THR A	111	-2.423	96 221	-C 337	1.00	11.84
ATOM	863	C	THR A	111	-0.219	97 692	2 389	1.00	18.43
	864	0	THR A	111	-0.284	97 360	3 564	1.00	23.70
ATOM				112	0.229	98 895	2 023	1.00	21.65
MOTA	865	N	PRO A				0.703	1.00	15.84
ATOM	866	CD	PRO A	112	0.707	99.351			
ATOM	867	CA	PRO A	112	0.626	99 845	3 069	1.00	23.93
ATOM	868	CB	PRO A	112	1.273	100 969	2 272	1.00	21.58
ATOM	869	CG	PRO A	112	1.847	100.236	1.079	1.00	19.10
ATOM	870	С	PRO A	112	- 0.507	100.371	3.954	1.00	28.77
ATOM	871	0	PRO A	112	-0.245	100.991	4.981	1.00	34.33
		Ŋ	ASP A	113	-1.756	100.137	3.557	1.00	30.89
ATOM	872	14	ASE A		2	,	- · - - ·		

ATCM	873	CA	ASP A	113	-2.908	100.608	4.325	1.00	29.23
ATOM	874	CB	ASP A	113	-4.095	100.876	3.403	1.00	33.62
ATCM	875	CG	ASP A	113	-3.740	101.759	2.229	1.00	39.32
ATOM	876	001	ASP A	113	-3.551	102.980	2.420	1.00	38.82
ATOM	877	OD2	ASP A	113	-3.659	101.220	1.107	1.00	41.64
ATOM	878	С	ASP A	113	-3.313	99.552	5.330	1.00	26.58
ATOM	879	0	ASP A	113	-4.020	99.831	6.288	1.00	
ATOM	880	N	HIS A	114	-2.875	98.327	5.090		30.47
ATOM	881	CA	HIS A	114	-3.203	97.223	5.964	1.00	22.11
ATOM	882	CB	HIS A	114	-2.562	95.954		1.00	18.51
ATOM	883	CG	HIS A	114			5.434	1.00	18.88
ATOM	884	CD2	HIS A	114	-3.154	94.695	5.980	1.00	20.47
ATOM	885	ND1	HIS A	114	-3.955	93.771	5.401	1.00	20.61
ATOM	886	CE1	HIS A	114	-2.905	94.243	7.255	1.00	21.89
ATOM	887	NE2	HIS A	114	-3.527	93.092	7.440	1.00	20.69
ATOM	888	C	HIS A		-4.170	92.784	6.331	1.00	16.26
ATOM	889	0	HIS A	114	-2.682	97.529	7.347	1 00	20.91
ATOM				114	-1.511	97.821	7.518	1 00	23.53
	890	И	PRO A	115	-3.535	97.414	8.365	1 00	23.07
ATOM	891	CD	PRO A	115	-4 933	96 973	8.311	1 00	24.88
ATOM	892	CA	PRO A	115	-3 148	97 688	9.745	1 00	24.93
ATOM	893	CB	PRO A	115	-4.411	97.334	10.525	1 00	27.48
ATOM	894	CG	PRO A	115	-5 094	96 342	9.652	1 00	24.00
ATOM	895	С	PRO A	115	-1 927	96 923	10.233	1 00	26.06
ATOM	896	0	PRO A	115	-1 127	97 456	10.991	1.00	32.32
ATOM	897	N	ARG A	116	-1 782	95 678	9.802	1 00	26.43
ATOM	898	CA	ARG A	116	-0.634	94.868	10.199	1 00	26.26
ATOM	899	CB	ARG A	116	-0 810	93.430	9.727	1.00	30 69
ATOM	900	CG	ARG A	116	-1 813	92 629	10.516	1 00	35.60
ATOM	901	CD	ARG A	116	-1 372	92 533	11.950	1.00	39 57
ATCM	902	NE	ARG A	116	-2 151	91 547	12 685	1 00	44 77
ATCM	903	CZ	ARG A	116	-2 021	91.314	13 988	1 00	47 07
ATOM	904	NH1	ARG A	116	-1 145	91 997	14 721	1.00	44 22
ATOM	905	NH2	ARG A	116	-2 758	90.379	14 556	1 00	46.39
ATOM	906	С	ARG A	116	0.681	95 416	9.653	1 00	27 56
MOTA	907	0	ARG A	116	1.727	95 273	10.276	1.00	28.41
MOTA	908	N	ILE A	117	0 624	96.021	8.473	1 00	28.17
ATOM	909	CA	ILE A	117	1 806	96 580	7.835	1.00	28.31
ATOM	910	CB	ILE A	117	1.584	96.734	6 307	1.00	24.00
ATOM	911	CG2	ILE A	117	2 790	97.357	5 644	1 00	23.25
MOTA	912	CG1	ILE A	117	1 315	95 372	5.668	1.00	∵o 98
ATOM	913	CD1	ILE A	117	2 506	94.482	5.596	1 00	16 97
ATOM	914	С	ILE A	117	2 140	97 930	8.490	1.00	34 06
ATOM	915	0	ILE A	117	3 308	98 237	8.742	1.00	40.01
ATOM	916	N	GLN A	118	1 111	98 716	8 797	1 00	34.32
MOTA	917	CA	GLN A	118	1 289	100 008	9 446	1.00	31 25
MOTA	918	CB	GLN A	118	-0 036	100 751	9 510	1 00	32 56
ATOM	919	CG	GLN A	118	-0 532	101 215	8.175	1 00	41 97
MOTA	920	CD	GLN A	118	-1.790	102.040	8.289	1.00	49 04
ATOM	921	OE1	GLN A	118	-2.349	102.203	9 374	1.00	54 55
ATOM	922	NE2	GLN A	118	-2.241	102.577	7 167	1 00	54 7 7
MOTA	923	C	GLN A	118	1.813	99.816	10.857	1.00	30.00
ATOM	924	0	GLN A	118	2.606	100.602	11 348	1.00	36.36
ATOM	925	N	ALA A	119	1 362	98.759	11.506	1.00	27.04
ATOM	926	CA	ALA A	119	1 801	98.470	12 851	1.00	23 94
ATOM	927	CB	ALA A	119	0 898	97.447	13 457	1 00	23 97
MOTA	928	С	ALA A	119	3 223	97 944	12.836	1.00	29.31
ATOM	929	0	ALA A	119	3 839	97.802	13.885	1 00	35.94
MOTA	930	N	LYS A	120	3 728	97.625	11 649	1 00	30.68
ATOM	931	CA	LYS A	120	5 068	97 075	11.497	1 00	31 26
ATOM	932	CB	LYS A	120	6.131	98 127	11 815	1 00	32 35
ATOM	933	CG	LYS A	120	6 210	99.208	10 756	1 00	41.07
ATOM	934	CD	LYS A	120	7 461	100 047	10 893	1 00	53 39
ATOM	935	CE	LYS A	120	7 720	100 864	9 621	1.00	60 71
ATOM	93€	NZ	LYS A	120	9 046	101.563	9 644	1.00	€5 99
ATOM	937	C	LYS A	120	5 271	95 796	12.321	1.00	30 21
ATOM	938	0	LYS A	120	6 266	95.633	13 014	1.00	34 12
ATOM	939	N	THP A	121	4 287	94 901	12 240	1.00	30 59
ATOM	940	CA	THP A	121	4 304	93 627	12 945	1.00	29 59
ATOM	941	CB	THF A	121	2 897	93 001	12 953	1.00	26 01
ATCM	942	OG1	THP A	121	1 948	93.993	13 347	1.00	29.93
ATOM	943	CG2	THP A	121	2 830	91 841	13 924	1.00	27.80
ATCM	944	С	THR A	21	5 238	92.685	12 203	1.00	31.22
ATOM	945	0	THR A	121	5.258	92.684	10.977	1.00	36.88
•						= = =		4.00	30.00

ATOM	946	N	PRO A	122	6.016	91 867	12.918	1.00	31.48
ATOM	947	CD	PRO A	122	6.173	91 788	14 375	1.00	30.51
ATOM	948	CA	PRO A	122	6.936	90.939	12 260	1.00	29.39
ATOM	949	CB	PRO A	122	7.519	90.162	13.428	1.00	28.00
MOTA	950	CG	PRO A	122	7.524	91.147	14 508	1.00	28.89
ATOM	951	C	PRO A	122	6,213	89.993	11.324	1.00	29.95
MOTA	952	0	PRO A	122	5.017	89 759	11.499	1.00	33.22
MOTA	953	N	THR A	123	6.957	89.422	10 373	1.00	30.79
ATOM	954	CA	THR A	123	6.470	88.472	9 355	1.00	28.32
ATOM	955	CB	THR A	123	5.859	87.189	9.961	1.00	30. 03
MOTA	956	OG1	THR A	123	4.648	87.498	10 661	1.00	35.13
MOTA	957	CG2	THR A	123	6 835	86.507	10 897	1.00	31.48
ATOM	958	С	THR A	123	5.505	89 028	8.309	1.00	27.79
MOTA	959	0	THR A	123	5.164	88.310	7 377	1 00	29.06
MOTA	960	N	HIS A	124	5.076	90.285	8 458	1 00	24.80
MOTA	961	CA	HIS A	124	4.150	90 920	7.504	1.00	22.12
ATOM	962	CB	HIS A	124	3 072	91 740	8.226	1.00	17.07
ATOM	963	CG	HIS A	124	2 285	90 948	9.215	1 00	13.05
ATOM	964	CD2	HIS A	124	1.035	90.435	9.145	1.00	18.78
ATOM	965	ND1	HIS A	124	2 798	90.529	10.420	1.00	15.62
ATOM	966	CEl	HIS A	124	1 907	89.785	11.044	1.00	17.88
ATOM	967	NE2	HIS A	124	0.825	89.712	10.292	1 00	17.44
MOTA	968	С	HIS A	124	4 941	91.837	6.592	1.00	21.71
ATOM	969	0	HIS A	124	5 645	92.715	7.050	1.00	22.54
ATOM	970	N	GLU A	125	4.819	91 632	5.295	1.00	21.78
ATOM	971	CA	GLU A	125	5.538	92.456	4 339	1.00	20.92
ATOM	972	CB	GLU A	125	6 787	91.730	3 852	1.00	23.07
MOTA	973	CG	GLU A	125	8.023	91.998	4 651	1.00	24.04
ATOM	974	CD	GLU A	125	9.169	91.132	4.222	1.00	24.79
ATOM	975	OE1	GLU A	125	9.457	91.049	3.012	1.00	24.03
ATOM	976	OE2	GLU A	125	9.793	90.539	5 107	1.00	31.23
ATOM	977	С	GLU A	125	4 668	92.738	3.143	1.00	21.05
MOTA	978	0	GLU A	125	3.660	92.080	2.930	1.00	24.62
ATOM	979	N	VAL A	126	5.091	93.694	2 339	1.00	21.65
ATOM	980	CA	VAL A	126	4.361	94,031	1.146	1.00	22.78
ATOM	981	CB	VAL A	126	4.203	95.538	1 042	1.00	20.08
MOTA	982	CG1	VAL A	126	3.508	95.900	-0.229	1.00	17.38
MOTA	983	CG2	VAL A	126	3.405	96.028	2.228	1.00	20.49
MOTA	984	С	VAL A	126	5,166	93.459	-0.019	1.00	25.89
MOTA	985	0	VAL A	126	6.380	93.667	~0.099	1.00	30.48
MOTA	986	И	ASN A	127	4.511	92.683	~0.880	1.00	21.77
MOTA	987	CA	ASN A	127	5.174	92.053	-2 020	1.00	19.25
MOTA	988	CB	ASN A	127	4.182	91.207	~2.830	1.00	18.25
MOTA	989	CG	ASN A	127	3.724	89.985	~2.095	1.00	16.94
MOTA	990	OD1	ASN A	127	4.459	89.445	~1.285	1.00	16.08
MOTA	991	ND2	ASN A	127	2.512	89.528	-2.380	1.00	12.62
ATOM	992	С	ASN A	127	5.857	93.007	-2.975	1.00	19.23
ATOM	993	0	ASN A	127	5.436	94.150	-3.148	1.00	18.59
ATOM	994	N	VAL A	128	6.948	92.525	-3.556	1 00	18.95
ATOM	995	CA	VAL A	128	7.698	93.260	-4.561	1.00	23.17
ATOM	996	CB	VAL A	128	9.228	93.403	-4.235	1 00	21.82
ATOM	997	CG1	VAL A	128	9.427	94.284	-3.027	1 00	20.58
MOTA	998	CG2	VAL A	128	9.880	92.055	-3.999	1 00	23.71
ATOM	999	C	VAL A	128	7.494	92.408	-5.808	1.00	23.82
ATOM	1000	0	VAL A	128	7.486	91.183	-5.730	1.00	23.35
ATOM	1001	N	TRP A	129 129	7.312 7.066	93.050	-6.951	1.00	25.96
ATOM	1002	CA	TRP A	129		92.319 92.476	-8.179	1.00	28.04
ATOM	1003	CB	TRP A		5.604		-8.562	1.00	22.71
ATOM	1004	CG	TRP A	129	4.646	91.925	-7.588	1.00	20.42
ATOM	1005	CD2	TRP A	129	4.254	90.557	-7.467	1.00	17.81
ATOM	1006	CE2	TRP A	129	3.222	90.505	-6.508	1.00	16.80
ATOM	1007	CE3	TRP A	129 129	4.667	89.371	-3.084 -4.730	1.00	17.14
ATOM	1008	CD1	TRP A		3.873	92.629	-6.710	1.00	15.97
ATOM	1009	NEI	TRP A	129	3.008	91.784	-6.063	1.00	17.97
ATOM	1010	CZ2	TRP A	129	2.597	89.313	-5.155	1.00	19.47
ATOM	1011	CZ3	TRP A	129	4.048	88.188	-7 734	1.00	16.93
MOTA	1012	CH2	TRP A	129	3.024	88.167	-6.780	1.00	18.76
MOTA	1013	C	TRP A	129	7.887	92.838	-9 336 -3 305	1.00	30 23
MOTA	1014	0	TRP A	129	8,323	93.985	-3 325 -10 361	1.00	30 92
ATOM	1015	N CD	PRO A PRO A	130 130	8.103 7.807	92.000	-10 361 -10 499	1.00	32 08
MOTA	1016	CD	PRO A	130	8.880	90.562	-10 498 -11.503	1.00	31 53
MOTA MOTA	1017 1018	CB	PRO A	130	9,109	92.474 91.192	~12.308	1.00	33.41
ALON	7010	CB	ENO A	230	J. 10J	J.L.174	-12.300	1.00	31.40

ATCM	1019	CG	PRO A	130	7.926	90.364	-11 .986	1.00	28.64
ATCM	1020	С	PRO A	130	8.090	93.521	-12.298	1.00	35.25
ATCM	1021	0	PRO A	130	6.869	93.651	-12,146	1.00	36.95
ATCM	1022	N	ASP A	131	8.805	94.301	-13 100	1.30	38.98
ATCM	1023	CA	ASP A	131	€.185	95.329	-13.927	1.00	41.94
ATCM	1024	CB	ASP A	131	9.270	96.081	-14.699	1.00	49.89
ATCM	1025	CG	ASP A	131	8.713	97.168	-15 612	1.00	59.35
ATCM	1026	001	ASP A	131	7.519	97.540	-15.503	1.00	60.33
ATCM	1027	OD2	ASP A	131	9.499	97 667	-16 448	1.00	69.02
ATCM	1028	C	ASP A	131	7 160	94 732	-14.895	1.00	40 13
ATOM	1029	ō	ASP A	131	7.444	93 761	-15 604	1 00	39 39
ATOM	1030	N	GLU A	132	5 983	95 343	-14 933	1.00	38 57
ATCM	1031	CA	GLU A	132	4.895	94 906	-15 796	1.00	41 66
ATOM	1032	CB	GLU A	132	3.675	95.805	-15 594	1 00	49 43
ATOM	1033	CG	GLU A	132	2 565	95.210	-14 742	1 00	63.43
ATOM	1034	CD	GLU A	132	1.767	94 123	-15 455	1.00	68.77
ATCM	1035	OE1	GLU A	132	2 390	93 130	-14 786	1.00	73.49
ATOM	1036	OE2	GLU A	132	1.501	94.268	-16.671	1.00	70.44
ATOM	1037	C	GLU A	132	5.249	94.919	-17.269	1 00	40.84
ATCM	1038	o	GLU A	132	4.925	93 984	-17 998	1.00	42.27
ATOM	1039	N	THR A	133	5 909	95.984	-17 709	1 00	40.91
ATOM	1040	CA	THR A	133	6 261	96.124	-19 114	1 00	42.12
ATOM	1041	CB	THR A	133	7 100	97.407	-19.373	1 00	43 93
MOTA	1042	OG1	THR A	133	8 431	97 217	-18 884	1 00	56 48
ATOM	1043	CG2	THR A	133	6 496	98 602	-18 650	1 00	42 47
ATOM	1044	C	THR A	133	7 045	94 908	-19.576	1 00	40.83
ATOM	1045	ō	THR A	133	6.800	94.369	-20 650	1.00	45 82
ATOM	1046	N	LYS A	134	7 945	94 450	-18 717	1 00	40.62
ATOM	1047	CA	LYS A	134	8 799	93 312	-19 014	1.00	40 68
ATOM	1048	CB	LYS A	134	10 109	93 429	-18.233	1.00	44 31
ATOM	1049	CG	LYS A	134	10.852	94.742	-18.437	1.00	50 92
ATOM	1050	CD	LYS A	134	12.171	94.754	-17 681	1 00	56 36
ATOM	1051	CE	LYS A	134	12 883	96.096	-17 809	1.00	64 21
ATOM	1052	NZ	LYS A	134	14 159	96.104	-17 026	1 00	72.09
ATOM	1053	C	LYS A	134	8 176	91 950	-18.737	1.00	40.31
MOTA	1054	o o	LYS A	134	8.563	90 955	-19 348	1 00	45 00
ATOM	1055	21	HIS A	135	7.278	91.875	-17.763	1.00	38 10
ATOM	1056	CA	HIS A	135	€ 649	90.601	-17.425	1.00	34 82
ATOM	105"	CB	HIS A	135	7 200	90.071	-16.009	1.00	28 65
ATOM	1058	CG	HIS A	135	8 654	89.705	-16 124	1 00	21 40
ATOM	1059	CD2	HIS A	135	9 267	88 523	-16 373	1 00	22 41
ATCM	1060	NDI	HIS A	135	9 659	90.614	-15 880	1.00	21.96
ATOM	1061	CE1	HIS A	135	10.832	90 012	-15 978	1.00	21.23
ATOM	1062	NE2	HIS A	135	10.624	88 743	-16 276	1 00	26 04
ATOM	1063	C	HIS A	135	5 135	90 787	-17.335	1 00	37 00
ATCM	1064	0	HIS A	135	4.536	90 584	-16 271	1 00	36 99
ATOM	1065	11	PRO A	136	4.489	91 128	-18 465	1 00	38 00
ATOM	1066	CD	PRO A	136	5 065	91 093	-19 820	1 00	39 72
ATOM	1067	CA	PRO A	136	3.043	91.352	-18 545	1.00	35 57
ATOM	1068	CB	PRO A	136	2.801	91 478	-20.048	1.00	33.63
ATOM	1069	CG	PRO A	136	3.882	90 651	-20.639	1.00	35.65
ATOM	1070	С	PRO A	136	2.183	90 264	-17 935	1 00	33.54
ATCM	1071	0	PRO A	136	2 348	89 083	-18 231	1 00	35 53
ATOM	1072	11	GLY A	137	1 284	90.680	-17 053	1 00	33 66
MOTA	1073	CA	GLY A	137	0.379	89 753	-16 408	1 00 .	35 45
ATCM	1074	C	GLY A	137	0.946	88 810	-15 361	1 00	36 34
ATCM	1075	0	GLY A	137	0.212	87 981	-14.829	1.00	41.58
ATCM	1076	N	PHE A	138	2.224	88 926	-15.029	1 00	34 29
ATOM	1077	CA	PHE A	138	2.792	88.034	-14.022	1.00	32.30
ATOM	1073	CB	PHE A	138	4.315	88.175	-13 960	1 00	33.36
ATOM	1073	CG	PHE A	138	4.960	87 272	-12 959	1 00	29 73
ATOM	1080	CD1	PHE A	138	4.770	85 902	-13.026	1.00	31.50
ATCM	1081	CD2	PHE A	139	5.718	87 796	-11 924	1.00	30 02
ATOM	1082	CEl	PHE A	138	5.322	85.061	-12 070	1.00	32 69
ATCM	1083	CE2	PHE A	138	6.272	B6.974	-10 965	1.00	30 29
ATCM	1084	CZ	PHE A	133	6.075	85,600	-11 035	1.00	33.63
ATCM	1085	С	PHE A	138	2.178	88.259	-12.639	1.00	31.05
ATC:M	1085	0	PHE A	138	1.653	87,323	-12.029	1.00	29.39
ATCM	1087	N	GLN A	139	2.205	89.502	-12.169	1.00	26.99
ATOM	1088	CA	GLN A	139	1.662	89.816	-10.861	1.00	28.51
ATCM	1089	CB	GLN A	139	1.751	91,314	-10.581	1.00	23.97
ATCM	1090	CG	GLN A	139	1.090	91.725	-9.275	1.00	27.92
ATCM	1091	CD	GLN A	139	1.192	93.216	-8.982	1.00	32.88

BNSDC0-D -WO 3816648A2 I

ATOM	1092	OE1	GLN A	139	1 943	93.950	-9.632	1.00	32.97
MOTA	1093	NE2	GLN A	139	0 440	93.668	-7.987	1 00	31.33
	1094	C	GLN A	139	0 222	89 332	-10.734	1 00	33.84
MOTA		0	GLN A	139	-0 126	88 663	-9.754	1.00	36 68
ATOM	1095		ASP A	140	-0 592	89.609	~11.752	1.00	37 09
ATOM	1096	N					-11.747	1 00	35 96
MOTA	1097	CA	ASP A	140	-2 003	89.206		1.00	
MOTA	1098	CB	ASP A	140	-2 736	89.776	-12.972		40.62
MOTA	1099	CG	ASP A	140	-2 672	91.300	-13 044	1.00	49.63
MOTA	1100	OD1	ASP A	140	-3 391	91 955	-12 266	1.00	51.54
ATOM	1101	OD2	ASP A	140	-1.906	91.840	-13.875	1.00	56.38
ATOM	1102	C	ASP A	140	-2.140	87 684	-11 694	1.00	34.15
ATOM	1103	0	ASP A	140	-3.024	87.149	-11 023	1 00	35.48
ATOM	1104	N	PHE A	141	-1.258	86.981	-12 389	1 00	29.30
MOTA	1105	CA	PHE A	141	-1 305	85 530	-12 373	1.00	29 22
ATOM	1106	CB	PHE A	141	-0.296	84.942	-13 368	1 00	26.63
ATOM	1107	CG	PHE A	141	0 113	83.526	-13.051	1 00	32.93
ATOM	1108	CD1	PHE A	141	-0 721	82.456	-13 364	1 00	37 47
ATOM	1109	CD2	PHE A	141	1 312	83.263	-12.388	1 00	36 97
	1110	CE1	PHE A	141	-0 373	81.143	-13.016	1.00	37 55
ATOM		CE2	PHE A	141	1.667	81.956	-12.035	1.00	37.91
ATOM	1111				0.821	80.895	-12.349	1.00	36 70
ATOM	1112	CZ	PHE A	141		85.033	-10 969	1.00	31.10
MOTA	1113	C	PHE A	141	-0 971				
ATOM	1114	0	PHE A	141	-1.720	84.264	-10.369	1.00	34.39
ATOM	1115	N	ALA A	142	0 162	85 493	-10 454	1.00	27 56
MOTA	1116	CA	ALA A	142	0 657	85 091	-9 149	1.00	23.24
MOTA	1117	CB	ALA A	142	1 969	85 792	-8.880	1.00	26.02
ATOM	1118	С	ALA A	142	-0 317	85.313	-7.995	1 00	23 50
MOTA	1119	0	ALA A	142	~0.438	84.480	-7.094	1.00	23 30
ATOM	1120	N	GLU A	143	-1 013	86.437	-8 022	1 00	24.11
ATOM	1121	CA	GLU A	143	-1.969	86.750	-6.970	1.00	26.83
ATOM	1122	CB	GLU A	143	-2 403	88.211	-7.077	1.00	27.46
ATOM	1123	CG	GLU A	143	-1.262	89.196	-6.890	1.00	30.94
ATOM	1124	CD	GLU A	143	-1.733	90.618	-6.681	1.00	36.67
ATOM	1125	OE1	GLU A	143	-0.906	91.448	-6.250	1.00	40.24
ATOM	1126	OE2	GLU A	143	-2 921	90.916	-6 943	1.00	40.10
ATOM	1127	C	GLU A	143	-3.183	85.824	-7.018	1 00	29.25
ATOM	1128	0	GLU A	143	-3.640	85.318	-5.989	1.00	31 43
ATOM	1129	N	GLN A	144	-3.699	85.596	-8.219	1.00	30.46
	1130	CA	GLN A	144	-4.843	84.725	-8 392	1 00	28.86
ATOM ATOM	1131	CB	GLN A	144	-5.275	84.696	-9 858	1.00	38.80
	1131	CG	GLN A	144	-6.529	83.852	-10 139	1.00	58.07
ATOM	1132	CD	GLN A	144	-7.754	84.269	-9.309	1.00	67.99
ATOM		OE1	GLN A	144	-8.542	83.420	-8.876	1.00	72.49
ATOM	1134		GLN A	144	-7.922	85.573	-9.099	1.00	74.56
ATOM	1135	NE2				83.339	-7 938	1.00	25.81 .
MOTA	1136	C	GLN A	144	-4 449				
ATOM	1137	0	GLN A	144	-5 201	82.669	-7.239	1 00	30.61
ATOM	1138	N	TYR A	145	-3.259	82.905	-8.335	1 00	26.62
ATOM	1139	CA	TYR A	145	-2.788	81.590	-7.944	1.00	22.39
ATOM	1140	CB	TYR A	145	-1.393	81.286	-8.505	1.00	21.02
ATOM	1141	CG	TYR A	145	-0 895	79.930	-8 047	1.00	23.34
MOTA	1142	CD1	TYR A	145	-1 603	78.770	-8.356	1.00	21.49
ATOM	1143	CEl	TYR A	145	-1.224	77.533	-7.846	1.00	19.67
ATOM	1144	CD2	TYR A	145	0 221	79.814	-7 219	1.00	23.57
ATOM	1145	CE2	TYR A	145	0 607	78.579	-6 705	1.00	20.74
ATOM	1146	CZ	TYR A	145	-0.122	77.449	-7.024	1.00	20.82
ATOM	1147	OH	TYR A	145	0 250	76.231	-6 518	1.00	24.24
ATOM	1148	C	TYR A	145	-2.791	81.487	-6 422	1.00	22.08
ATOM	1149	0	TYR A	145	-3.231	80.482	-5.875	1.00	24.79
ATOM	1150	N	TYR A	146	-2 360	82.546	-5.740	1.00	20.10
ATOM	1151	CA	TYR A	146	-2 329	82 552	-4.283	1.00	16.74
	1152	CB	TYR A	146	-1.933	83 931	-3.773	1.00	15.16
ATOM		CG	TYR A	146	-1 652	83 991	-2.289	1.00	19 44
ATOM	1153		TYR A	146	-0 345	84 050	-1.807	1.00	19 08
ATOM	1154	CD1		146	-0.088	84 132	-0.458	1.00	17 67
ATOM	1155	CE1	TYR A			84 023	-1.364	1.00	18 53
MOTA	1156	CD2	TYR A	146	-2 691		-0.002	1.00	17 70
MOTA	1157	CE2	TYR A	146	-2 438	84 103			
MOTA	1158	CZ	TYR A	146	-1 137	84 161	0.437	1.00	19.52
ATOM	1159	OH	TYR A	146	-0 875	84 226	1.774	1.00	25 01
ATOM	1160	C	TYR A	146	-3.704	82 193	-3.770	1.00	17.31
MOTA	1161	0	TYR A	146	-3.859	81 274	-2.967	1.00	21.09
ATOM	1162	N	TRP A	147	-4.713	82.882	-4.284	1.00	17.15
ATOM	1163	CA	TRP A	147	-6.087	82.620	-3.881	1.00	17.97
MOTA	1164	CB	TRP A	147	-6.988	83.752	-4.363	1.00	14.43

					- 58	-			
ATOM	1165	CG	TRP A	147	-6.580	85.045	-3.742	1.00	16.44
ATOM	1166	CD2	TRP A	147	-6.371	85.292	-2.353	1.00	15.61
ATOM	1167	CE2	TRP A	147	-5.855	86.588	-2.222	1.00	13.55
ATOM	1168	CE3	TRP A	147	-6.556	84.520	-1.195	1.00	13.91
MCTA	1169	CD1	TFP A	147	-6.209	86.192	-4.389	1.00	17.35
MCTA	1170	NEl	TRP A	147	-5.760	87.122	-3.482	1.00	16.82
MCTA	1171	CZ2	TRP A	147	-5.526	87.138	-0.999	1.00	15.71
MCTA	117:	C23	TRP A	147	-6.225	85.066	0.023	1.00	13.54
MCTA	11/3	CH2	TEP A	147	-5.714	86.365	0.114	1.00	14.81
ATOM	1174	C	TRP A	147	-6.589	81 238	-4.308	1.00	19.27
MOTA	11/75	0	TRP A	147	-7.401	80 620	-3.611 -5.416	1.00	19.35
MOTA	1176	N	ASP A	148	-6.059	80 731	-5.416	1.00	18.47 19.12
ATCM	1177	CA	ASP A	148	-6.416	79 405 79 141	-7 275	1.00	24 71
ATCM	1178	CB	ASP A	148	-5.801	79 536	-8 404	1.00	26 35
MOTA	1179	CG	ASP A	148	-6.709 -7.852	79.946	-8 1 36	1.00	32 40
ATOM	118)	CD1	ASP A ASP A	148 148	-6.284	79 423	-9 569	1.00	32.06
ATOM	1181	OD2	ASP A	148	-5.973	78.328	-4.927	1 00	18.33
ATOM	1182	C 0	ASP A	148	-6.797	77.536	-4 486	1.00	23 56
ATOM	1183	N	VAL A	149	-4.679	78 276	-4 603	1 00	18 47
ATOM	1184 1185	CA	VAL A	149	-4.193	77.281	-3.647	1.00	15 91
ATOM	1185	CB	VAL A	149	-2.678	77 225	-3.513	1.03	14.54
ATOM ATOM	1187	C31	VAL A	149	-2.136	76 214	-4 447	1 00	17 43
ATOM	1188	C32	VAL A	149	-2.055	73 590	-3 729	1 00	16 13
ATOM	1193	C	VAL A	149	-4 757	77 549	-2.271	1 00	18 11
ATOM	1190	Ö	VAL A	149	-4 897	76.633	-1.467	1 00	21 98
ATOM	1191	N	PHE A	150	-5 032	78 814	-1.979	1.00	20.18
ATOM	1192	CA	PHE A	150	-5 629	79 173	-0.703	1 00	21.84
ATOM	1193	СВ	PHE A	150	-5.931	80 566	-0.669	1.00	19 11
ATOM	1194	CG	PHE A	150	-6 441	81 152	0.651	1.00	22 85
ATOM	1195	CD1	PHE A	150	-5 572	81 689	1.586	1 00	22 65
ATOM	1196	CD2	PHE A	150	-7 794	81 091	0.955	1 00	26.06
ATOM	1197	CEl	PHE A	150	-6 045	82 158	2.800	1 00	26.82
ATOM	1198	CE2	PHE A	150	-8.274	81 561	2.171	1 00	22.46
ATOM	1199	CZ	PHE A	150	-7 400	82 093	3.091	1 00	25.45
MOTA	1200	С	P8E A	150	-6 933	78 382	-0.581	1 00	24.16
ATOM	1201	0	PHE A	150	-7 214	77.769	0.453	1.00	28.22
MOTA	1202	N	GLY A	151	-7.715	78.379	-1.656	1 00	22.56
ATOM	1203	CA	GLY A	151	-8 970	77 659	-1.656	1 00	20.54
ATOM	1204	С	GLY A	151	-8.761	76.182	-1.417	1.00	21.70 25.57
ATOM	1205	O	GLY A	151	-9.504	75 565	-0.654	1 00 1.00	18 26
ATOM	1206	N	LEU A	152	-7.745	75 610	-2.049 -1.876	1.00	19 08
ATOM	1207	CA	LEU A	152	-7.463	74.193 7 3.770	-2.782	1.00	19.81
ATOM	1208	CB	LEU A	152 152	-6.304 -5.833	72.318	-2.680	1.00	19.38
ATOM	1209	CG	LEU A	152	-6.969	71.381	-3.103	1.00	15.96
ATOM	1210	CD1	LEU A LEU A	152	-4.615	72.127	-3.538	1.00	11.13
ATOM	1211	CD2 C	LEU A	152	-7.093	73.916	-0.425	1.00	24.24
ATOM	1212 1213	o	LEU A	152	-7.667	73.032	0.219	1.00	26.47
ATOM	1214	N	SER A	153	-6.141	74.682	0.095	1.00	24.56
ATOM ATOM	1215	CA	SER A	153	-5.687	74.517	1.468	1.00	22.73
ATOM	1216	CB	SER A	153	-4.591	75.528	1.770	1.00	21.22
ATOM	1217	OG	SER A	153	-3.572	75.448	0.787	1.00	21.77
ATOM	1218	C	SER A	153	-6.842	74.665	2.444	1.00	22.43
ATOM	1219	ō	SER A	153	-7.041	73.823	3.316	1.00	24.75
ATOM	1220	11	SER A	154	-7.642	75.698	2.245	1.00	22.50
ATOM	1221	CA	SER A	154	-8.792	75.950	3.088	1.00	25.72
ATOM	1222	CB	SER A	154	-9.588	77.108	2.497	1.00	25.08
ATOM	1223	OG	SER A	154	-10.672	77.472	3.328	1.00	38.08
ATOM	1224	C	SER A	154	-9.662	74.688	3.218	1.00	29.51
ATOM	1225	0	SER A	154	-10.140	74.356	4.310	1.00	33.28
ATOM	1216	N	ALA A	155	-9.786	73.941	2.121	1.00	31.53
ATOM	1227	CA	ALA A		-10.582	71.713	2.099	1.00	29.45
ATOM	1228	CB	ALA A		-11.038	72.396	0.696	1.00	30.93
MOTA	1229	C	ALA A	155	-9.846	71 523	2.683	1.00	28.62
ATOM	1230	Ö	ALA A		-10.473	70 657	3.281	1.00	32.89
ATOM	1231	N	LEU A	156	-8.530	71 455	2.485	1.00	28.48
MOTA	1232	CA	LEU A	156	-7.739	70 355	3.032	1.00	23.61
MOTA	1233	CB	LEU A	156	-6.323	70 368	2 476	1.00	23.88
MOTA	1234	CG	LEU A	156	-6.043	69 867	1.061	1.00	20.69
ATOM	1235	CD1	LEU A	156	-4.587	70 132	0.729	1.00	20.27
MOTA	1236	CD2	LEU A	156	-6.325	68 394	0.958	1.00	20.84
ATOM	1237	С	LEU A	156	-7.688	70.488	4.547	1.00	25.37

ATOM	1238	0	LEU A	156	-7.558	69 490	5.262	1 00	26.18
	1239	N	LEU A	157	-7.773	71 726	5.036	1 00	25.81
MOTA			LEU A	157	-7.770	71 981	6 474	1 00	25.36
ATOM	1240	CA					6 775	1 00	19.73
MOTA	1241	CB	LEU A	157	-7 557	73 . 466			
ATOM	1242	CG	LEU A	157	-6.135	74 027	6 673	1.00	16.53
ATOM	1243	CD1	LEU A	157	-6 111	75 418	7 270	1 00	17.68
ATOM	1244	CD2	LEU A	157	-5 165	73 150	7 431	1 00	15.33
	1245	C	LEU A	157	-9 076	71.470	7 107	1 00	29.31
ATOM						71 079	8 279	1 00	32.51
MOTA	1246	0	LEU A	157	-9 111				
MOTA	1247	N	LYS A	158	-10 161	71.500	6 341	1 00	33.23
ATOM	1248	CA	LYS A	158	-11 442	70 982	6 814	1.00	31.84
ATOM	1249	CB	LYS A	158	-12 553	71 355	5.837	1 00	33.31
ATOM	1250	CG	LYS A	158	-12.780	72.845	5.745	1.00	34.09
			LYS A	158	-13 850	73 167	4 738	1 00	41.31
MOTA	1251	CD						1 00	47.04
MOTA	1252	CE	LYS A	158	-14.186	74 649	4.754		
MOTA	1253	NZ	LYS A	158	-15 362	74.923	3.886	1 00	56.43
ATOM	1254	С	LYS A	158	-11 289	69.460	6.905	1.00	30.71
ATOM	1255	0	LYS A	158	-11 770	68.836	7 848	1.00	34.49
		N	GLY A	159	-10.570	68 884	5.942	1.00	30.71
ATOM	1256					67.453	5.930	1 00	28.93
ATOM	1257	CA	GLY A	159	-10.313				
ATOM	1258	C	GLY A	159	-9.447	67 040	7.111	1 00	30.81
ATOM	1259	0	GLY A	159	-9 690	66 003	7.732	1 00	34.67
ATOM	1260	N	TYR A	160	-8 440	67 851	7.431	1 00	28.73
ATOM	1261	CA	TYR A	160	-7 556	67.575	8 556	1 00	29.15
			TYR A	160	-6.378	68.554	8.556	1 00	29.86
MOTA	1262	CB					7 780	1 00	28.35
MOTA	1263	ÇG	TYR A	160	-5.181	68.055			
MOTA	1264	CD1	TYR A	160	-4 828	68.607	6.543	1.00	26.01
ATOM	1265	CE1	TYR A	160	-3 727	68 124	5.830	1 00	25.65
MOTA	1266	CD2	TYR A	160	-4.412	67 017	8.279	1.00	26.25
	1267	CE2	TYR A	160	-3.321	66 530	7.584	1.00	26.20
ATOM				160	-2.977	67.076	6 365	1.00	28.06
ATOM	1268	CZ	TYR A						25.91
MOTA	1269	OH	TYR A	160	-1.884	66.546	5.711	1.00	
ATOM	1270	C	TYR A	160	-8 313	67 646	9 884	1 00	32.18
ATOM	1371	0	TYR A	160	-8 034	66 884	10.812	1.00	33.45
MOTA	1272	N	ALA A	161	-9.262	68 571	9.976	1 00	33.22
	1273	CA	ALA A	161	-10.074	68.734	11 180	1 00	30.35
ATOM				161	-10.995	69 919	11 021	1.00	30.11
ATOM	1274	CB	ALA A				11.433	1.00	31.40
MOTA	1275	С	ALA A	161	-10 890	67 470			
MOTA	1276	0	ALA A	161	-10 863	66.911	12.525	1.00	32.99
MOTA	1277	N	LEU A	162	-11 593	67 012	10.405	1.00	30.20
ATOM	1278	CA	LEU A	162	-12.405	65.813	10 501	1 00	31.99
ATOM	1279	CB	LEU A	162	-13.156	65.587	9 186	1 00	32.01
			LEU A	162	-14.116	66.719	8 801	1 00	33.82
ATOM	1280	CG				66.349	7.545	1.00	34.17
MOTA	1281	CD1	LEU A	162	-14.867				
ATOM	1282	CD2	LEU A	162	-15.096	66 997	9.933	1 00	34.51
ATOM	1283	C	LEU A	162	-11.580	64.580	10.877	1 00	32.42
ATOM	1284	0	LEU A	162	-12.002	63 767	11 .696	1 00	35.19
ATOM	1285	N	ALA A	163	-10.396	64 453	10.291	1.00	34.99
	1286	CA	ALA A	163	-9.504	63.325	10 573	1 00	32.51
MOTA					-8.289	63.395	9 670	1.00	28.78
MOTA	1287	CB	ALA A	163					30.64
ATOM	1288	C	ALA A	163	-9.061	63 273	12.038	1.00	
ATOM	1289	0	ALA A	163	-8.745	62.217	12 571	1 00	30.60
ATOM	1290	N	LEU A	164	-8.995	64.428	12.674	1 00	29.60
ATOM	1291	CA	LEU A	164	-8.578	64.478	14 054	1 00	30.80
		СВ	LEU A	164	-7.639	65.666	14 274	1 00	30.81
ATOM	1292					65.550	13.570	1.00	29.00
ATOM	1293	CG	LEU A	164	-6.284			1.00	30.09
ATOM	1294	CD1	LEU A	164	-5.583	66.875	13 576		
ATOM	1295	CD2	LEU A	164	-5.434	64.509	14.245	1.00	28.45
ATOM	1296	С	LEU A	164	-9.778	64.529	14.993	1.00	34.67
ATOM	1297	0	LEU A	164	-9.633	64.811	16.179	1.00	37.15
	1298	N	GLY A		-10.964	64.258	14 455	1.00	35.40
ATOM					-12.172	64.258	15.265	1.00	34.11
ATOM	1299	CA	GLY A				15.781	1.00	35.01
ATOM	1300	С	GLY A		-12.637	65.606			
MOTA	1301	0	GLY A	165	-13.465	65.680	16.694	1.00	38.99
ATOM	1302	N	LYS A	166	-12.111	66.678	15.208	1.00	34.42
ATOM	1303	CA	LYS A		-12.490	68.021	15.619	1.00	34.45
ATOM	1304	CB	LYS A		-11.267	68.924	15.571	1.00	31.93
			LYS A		-10.232	68.560	16.594	1.00	32.57
MOTA	1305	CG						1.00	34.75
ATOM	1306	CD	LYS A		~10.711	68.973	17.956		
ATOM	1307	CE	LYS A	166		68.522	19.022	1.00	38.74
ATOM	1308	NZ	LYS A	166	-10.078	69.161	20.313	1.00	40.84
ATOM	1309	C	LYS A	166	-13.557	68.535	14.666	1.00	37.47
ATOM	1310	Ö	LYS A		-13.825	67.901	13.642	1.00	41.52
AION	1310	_							

					- 6	ο υ -			
ATOM	1311	N	GLU A	167	-14.189	69.660	14.994		3.0.00
ATOM	1312	CA	GLU A	167		70.205	14.094	1.00 1.00	38.98 41.09
MOTA	1313	CB	GLU A	167		71.398	14.713	1.00	45.19
ATOM	1314	CG	GLU A	167	-15.110	72.638	15.025	1.00	55.15
ATOM	1315	CD	GLU A	167	-14.565	72.661	16.448	1.00	61.94
ATOM	1316	OE1	GLU A	167	-14.118	73.742	16.887	1.00	62.92
ATOM	1317	OE2	GLU A	167	-14.584	71.611	17.131	1.00	64.60
ATOM	1318	С	GLU A	167	-14.525	70.605	12.780	1.00	41.39
ATOM	1319	0	GLU A	167		70.935	12.761	1.00	41.98
ATOM	1320	N	GLU A	168		73.581	11.692	1.00	39.45
ATOM ATOM	1321	CA	GLU A	168		70.918	10.365	1.00	39.77
ATOM	1322 1323	CB CG	GLU A GLU A	168		70.959	9.387	1.00	40.01
ATOM	1323	CD	GLU A	168 168	-15.535 -16.721	70.844	7.951	1.00	42.60
ATOM	1325	OE1	GLU A	168	-17.408	70.635 71.626	7 056 6 740	1.00	45 09
ATOM	1326	OE2	GLU A	168	-16.979	69.477	6 677	1.00	51.44
ATOM	1327	C	GLU A	168	-13.965	72.212	10 255	1.00	50.69
ATOM	1328	0	GLU A	168	-12.966	72.270	9.533	1.00	37.65 37. 3 9
ATOM	1329	N	ASN A	169	-14.389	73.247	10.965	1.00	34.88
MOTA	1330	CA	ASN A	169	-13.696	74.527	10 925	1.00	31.36
MOTA	1331	CB	ASN A	169	-14.710	75.654	10 976	1.00	38.29
ATOM	1332	CG	ASN A	169	-15.529	75.726	9 732	1.00	46,39
ATOM	1333	OD1	ASN A	169	-14.993	75.919	8 646	1.00	52.41
ATOM	1334	ND2	ASN A	169	-16.833	75.544	9 865	1.00	52.70
ATOM	1335	C	ASN A	169	-12.677	74.717	12.029	1.00	29.02
ATOM ATOM	1336	0	ASN A	169	-12.264	75.839	12.318	1.00	25.13
MOTA	1337 1338	n Ca	PHE A PHE A	170	-12.236	73.618	12.617	1.00	29.52
ATOM	1339	CB	PHE A	170 170	-11.276 -10.939	73.687	13 702	1.00	30.89
ATOM	1340	CG	PHE A	170	-10.933	72.275 72.248	14 191 15 3 7 7	1.00	34.08
ATOM	1341	CD1	PHE A	170	-10.418	72.827	16 575	1.00	38.01
ATOM	1342	CD2	PHE A	170	-8.778	71.658	15 293	1.00	41.53 39.11
ATOM	1343	CEl	PHE A	170	-9.571	72.824	17.675	1.00	40 36
MOTA	1344	CE2	PHE A	170	-7.925	71.649	16.385	1.00	41 21
MOTA	1345	CZ	PHE A	170	-8.326	72.235	17 580	1.00	42.47
ATOM	1346	C	PHE A	170	-10.012	74.464	13.305	1.00	32.24
ATOM	1347	0	PHE A	170	-9.496	75.255	14.102	1.00	32 82
ATOM	1348	N	PHE A	171	-9.537	74.269	12 072	1.00	30 18
ATOM	1349	CA	PHE A	171	-8.338	74.959	11.595	1.00	25.80
ATOM ATOM	1350 1351	CB CG	PHE A PHE A	171	-7.436	74 018	10 780	1 00	21.23
ATCM	1352	CD1	PHE A	171	-6.801 -6.984	72 922 71 592	11.584	1 00	17 74
ATOM	1353	CD2	PHE A	171	-6.028	73 212	11.232 12 699	1 00	19 14
ATOM	1354	CEI	PHE A	171	-6 409	70 559	11.986	1 00	20 58 19 44
ATOM	1355	CE2	PHE A	171	-5 449	72 188	13.457	1 00	19.74
ATOM	1356	cz	PHE A	171	-5 644	70 861	13 095	1 00	18 77
ATOM	1357	C	PHE A	171	-8 720	76.142	10.722	1.00	27 98
ATOM	1358	0	PHE A	171	-8 301	77 282	10 968	1.00	26 96
ATCM	1359	N	ALA A	172	-9 573	75 B 74	9 737	1 00	27 10
ATOM	1360	Q	ALA A	172	-10.009	76.880	8 770	1.00	23.60
ATOM	1361	CB	ALA A	172	-10 996	76 276	7.798	1.00	20.83
ATOM ATOM	1362 1363	С 0	ALA A ALA A	172 172	-10.542	78 191	9 310	1 00	25.20
ATOM	1364	И	ARG A	173	-10.477 -11.044	79 204 78 195	8 623 10 540	1 00	27.68
ATOM	1365	CA	MG A	173	-11 573	79 429	11.098	1.00	27.56
ATOM	1366	СВ	ARG A	173	-12 374	79.170	12.377	1 00 1.00	28 04
ATOM	1367	CG	ARG A	173	-11 559	79 001	13 633	1 00	29 47 35 23
ATOM	1368	CD	MG A	173	-12 452	78 858	14 868	1 00	40 18
MOTA	1369	NE	MG A	173	-12 898	77.482	15.106	1.00	44 83
ATOM	1376	CZ	ARG A	173	-14 162	77.074	15 017	1.00	48 14
MOTA	137:	NHI	MG A	173	-15.122	77.934	14 695	1.00	48 64
ATOM	1372	NH2	MG A	173	-14 468	75.800	15 240	1.00	44 20
ATOM	1373	C	MG A	173	-10 433	80.401	11.355	1.00	30 23
ATOM	1374	0	ARG A	173	-10.657	81.591	11 584	1.00	32 24
ATOM	1375	N	HIS A	174	-9 206	79.889	11 314	1.00	28 30
ATOM ATOM	1376	CA	HIS A	174	-8 023 -7 051	80.713	11 537	1.00	28 03
ATOM	1377 1378	CB CG	HIS A HIS A	174 174	-7.051 -7.633	79.999	12 473	1.00	25 87
ATOM	1378	CD2	HIS A	174	-7 622 -8 121	79.6 8 8	13 816	1.00	26 33
ATOM	1379	ND1	HIS A	174	-7.705	78.536 80.623	14.326 14.826	1.00	28 81
ATOM	1381	CE1	HIS A	174	-8.228	80.059	15 900	1.00	27 96
ATOM	1382	NE2	HIS A	174	-8.488	78.793	15 624	1.00	29 C8 27 O9
ATOM.	1383	C	HIS A	174	-7.305	81.064	10 235	1.00	27 63
						-	= = -		د د ، ــ

N TOM	1384	0	HIS A	174	-6.371	81 865	10 240	1.00	31.26
ATOM	1385	N	PHE A	175	-7.734	80 442	9 138	1.00	26.90
MOTA		CA	PHE A	175	-7.165	80.631	7.801	1.00	22.15
ATOM	1386		PHE A	175	-7 222	79 289	7 074	1.00	21.26
MOTA	1387	CB			-6 293	79 176	5.911	1.00	23.40
ATOM	1388	CG	PHE A	175			4.803	1.00	20.93
ATOM	1389	CD1	PHE A	175	-6 652	78.420			19.53
MOTA	1390	CD2	PHE A	175	-5 046	79 781	5 931	1.00	
MOTA	1391	CE1	PHE A	175	-5 789	78 266	3 741	1.00	19.79
MOTA	1392	CE2	PHE A	175	-4 170	79.630	4 866	1.00	19 63
ATOM	1393	CZ	PHE A	175	-4 545	78 870	3 770	1.00	19 09
ATOM	1394	C	PHE A	175	-8.030	81.655	7 071	1.00	23.58
ATOM	1395	0	P8E A	175	-9 032	81.299	6 443	1.00	25 37
ATOM	1396	N	LYS A	176	-7 636	82.923	7.136	1.00	22.96
ATOM	1397	CA	LYS A	176	-8 412	84.004	6 529	1.00	26.79
ATOM	1398	CB	LYS A	176	-8.991	84 922	7.619	1.00	32.23
	1399	CG	LYS A	176	-9 711	84 185	8.752	1.00	37 22
ATOM			LYS A		-10.312	85.139	9.782	1.00	45.14
ATOM	1400	CD				86.065	10 408	1.00	51 76
MOTA	1401	CE	LYS A	176	-9 271		11.277	1.00	54 44
MOTA	1402	NZ	LYS A	176	-8 282	85.352			26.95
ATOM	1403	С	LYS A	176	-7.624	84.842	5.529	1.00	
ATOM	1404	0	LYS A	176	-6.447	85.150	5.736	1.00	29 87
ATOM	1405	N	PRO A	177	-8 308	85 327	4.485	1 00	24.40
ATOM	1406	CD	PRO A	177	-9.714	85.067	4 146	1.00	20.13
ATOM	1407	CA	PRO A	177	-7.685	86 133	3 445	1 00	19.31
ATOM	1408	ÇB	PRO A	177	-8 838	86.376	2.481	1 00	16.22
ATOM	1409	CG	PRO A	177	-9 687	85.187	2.664	1 00	13.22
ATOM	1410	C	PRO A	177	-7.084	87.434	3.903	1.00	21.14
ATOM	1411	0	PRO A	177	-6.096	87 883	3 349	1.00	25.46
ATOM	1412	N	ASP A	178	-7.660	88 049	4.917	1.00	26.69
	1413	CA	ASP A	178	-7.145	89 341	5 355	1.00	30.90
ATOM			ASP A	178	-8 220	90.162	6.073	1.00	40.73
MOTA	1414	CB		178	-8 927	89.377	7.153	1.00	58.65
MOTA	1415	CG	ASP A			88.411	6.813	1.00	67.55
ATOM	1416	ODl	ASP A	178	-9.660				69.29
MOTA	1417	OD2	ASP A	178	-8.754	89 731	8.344	1.00	
ATOM	1418	С	ASP A	178	-5.891	89 303	6.183	1.00	25.93
ATOM	1419	0	ASP A	178	-5 1 54	90.282	6.225	1,00	27.92
ATOM	1420	N	ASP A	179	-5.620	88.180	6.828	1.00	20.77
ATOM	1421	CA	ASP A	179	-4.432	88.129	7 645	1.00	20.37
ATOM	1422	CB	ASP A	179	- 4 7 90	88.332	9.120	1.00	24.28
ATOM	1423	CG	ASP A	179	-5 553	87.157	9 717	1.00	28.49
ATOM	1424	ODl	ASP A	179	-5.957	86.249	8.967	1.00	32.76
ATOM	1425	OD2	ASP A	179	-5.750	87.134	10 953	1.00	34.31
ATOM	1426	C	ASP A	179	-3 550	86.912	7 499	1.00	20.24
ATOM	1427	0	ASP A	179	-2 568	86.807	8 224	1.00	22.73
ATOM	1428	N	THR A	180	-3 870	85.996	6.587	1.00	18.73
ATOM	1429	CA	THR A	180	-3 035	84.809	6 453	1.00	19.30
ATOM	1430	CB	THR A	180	-3.533	83.818	5 372	1.00	20.49
	1431	OG1	THR A	180	-2.592	82.741	5 254	1.00	20,62
ATOM			THR A	180	-3.657	84.488	4.024	1.00	18.20
ATOM	1432	CG2	THR A	180	-1.577	85.144	6.173	1.00	22.74
ATOM	1433	C	THR A	180	-1.269	86.060	5.407	1.00	23 45
MOTA	1434	0					6.826	1.00	22.30
MOTA	1435	N	LEU A	181	-0.689	84.402 84.558	6.661	1 00	19 63
MOTA	1436	CA	LEU A	181	0.752			1 00	11.22
MOTA	1437	CB	LEU A	181	1.450	84.460	8.023		8 88
MOTA	1438	CG	LEU A	181	1.280	85.655	8.947	1 00	
ATOM	1439	CD1	LEU A	181	1.760	85.318	10.332	1 00	7 59
ATOM	1440	CD2	LEU A	181	2.041	86.823	8.395	1 00	9 34
MOTA	1441	C	LEU A	181	1.315	83.488	5.702	1.00	19.45
ATOM	1442	0	LEU A	181	2.524	83.287	5.629	1 00	22.17
ATOM	1443	N	ALA A	182	0.441	82.775	5.003	1 00	15.84
ATOM	1444	CA	ALA A	182	0.886	81.749	4.072	1 00	13.71
ATOM	1445	СВ	ALA A	182	-0.306	81.111	3.410	1 00	15.01
ATOM	1446	C	ALA A	182	1.797	82.379	3.017	1.00	16.85
ATOM	1447	0	ALA A	182	1.690	83.571	2.723	1.00	15.28
		N	SER A	183	2.679	81,583	2.429	1.00	15.86
ATOM	1448		SER A	183	3.584	82.108	1.416	1.00	14.12
ATOM	1449	CA			4.947	82.430	2.039	1,00	12.59
ATOM	1450	CB	SER A	183			2.497	1.00	13.59
ATOM	1451	OG .	SER A	183	5.585	81 250		1.00	13.98
MOTA	1452	С	SER A	183	3.759	81 130	0.257		
MOTA	1453	0	SER A	183	3.602	79.923	0.422	1.00	17.17
MOTA	1454	N	VAL A	184	4.008	81.674	-0.931	1.00	15.35
MOTA	1455	CA	VAL A	184	4.241	80.885	-2,133	1.00	13.86
ATOM	1456	CB	VAL A	184	3.366	81.361	-3.335	1.00	13.35

					- 0	2 -			
ATIM	1457	CG1	VAL A	184	3.625	80.500	-4.554	1.00	11.12
AT1M	1458	CG2	VAL A	184	1.907	81.283	-2.994	1.00	14.34
ATOM	1459	7	VAL A	184	5.698	81.161	-2.479	1.00	13.94
ATOM	1460	-5	VAL A	184	6.123	82.314	-1.459	1.00	15.07
ATOM	1461	::	VAL A	185	6.469	80.107	-2.722	1.00	16.12
ATICM	1462	C.A.	VAL A	185	7.871	80.237	-3 095	1.00	18 01
ATOM	1463	C8	VAL A	185	8 818	79.516	-2 096	1.00	19 45
ATCM	1464	231	VAL A	185	10 262	79.683	-1 528	1.00	14 07
ATOM	1465	.132	VAL A	185	8 629	80.054	-C 708	1.00	1" 49
MOTA	1466	2	VAL A	195	8 039	79.551	-4 438	1.00	18 98
ATOM	1467)	VAL A	185	7 660	78.391	-4 585	1.00	20 19
ATCM	1468	11	LEU A	186	8 541	80.282 79.717	-5 428 -6 760	1.00 1.00	22 23 22 67
ATOM ATOM	1469 1470	CA CB	LEU A LEU A	186 186	8 781 8 468	80.748	-7 861	1.00	17 46
ATOM	1471	CG	LEU A	186	7 117	81.480	-7 844	1.00	17 76
ATOM	1472	CD1	LEU A	186	6 993	82.315	-9 092	1.00	19.25
ATOM	1473	·::D2	LEU A	186	5 970	80.514	-7 761	1.00	12.57
ATOM	1474	C	LEU A	186	10.261	79.325	-6.800	1.00	21.43
ATOM	1475	0	LEU A	186	11 124	80 169	-7 C58	1 00	21.60
ATEM	1476	34	ILE A	187	10 555	78 065	-6 500	1 00	18 26
ATCM	1477	CA	ILE A	187	11 929	77 586	-6 477	1 00	18 51
ATOM	1478	C8	ILE A	187	12 068	76 373	-5 547	1 00	17 33
ATOM	1479	CG2	ILE A	187	13 524	75 915	-5 484	1 00	17 55
ATOM	1480	C31	ILE A	187	11 560	76 727	-4 152	1 00	14 78
ATCM	1481	.301 3	ILE A ILE A	187 187	11 608 12 421	75 582 77 183	-3 201 -7 858	1 00 1.00	12 56 24 55
ATCM ATOM	1482 1483	ō	ILE A	187	11.688	76.567	-8 632	1.00	28.10
ATOM	1484	и	ARG A	188	13.671	77 509	-8 158	1.00	27.00
ATOM	1485	CA	ARG A	188	14.258	77 160	-9 447	1.00	27.28
ATIM	1486	CB	ARG A	188	14 659	78 405	-10 241	1 00	25.39
ATOM	1487	C3	ARG A	188	15 481	78 037	-11 466	1.00	26.11
ATOM	1488	CD	ARG A	188	16.122	79.207	-12 169	1.00	26 92
ATOM	1489	NE	ARG A	188	16.656	78 756	-13 448	1 00	33.43
ATOM	1490	CZ	ARG A	188	17.555	79 406	-14.176	1 00	37 61
ATOM	1491	11H1	MGA	188	18.054	80 567	-13.779 -15.327	1 00	40 25
ATOM	1492	NH2	ARG A ARG A	188 188	17 945 15 494	78.890 76.291	-9.302	1 00 1.00	45 39 27.56
ATOM ATOM	1493 1494	С О	ARG A	188	16 462	76.678	-8.644	1 00	18.16
ATOM	1495	n	TYR A		15.463	75 120	-9 921	1 00	28 98
ATOM	1496	Q	TYR A	189	16 605	74 221	-9 901	1 00	30 05
ATC:M	1497	C8	TYR A	189	16 166	72 799	-9 600	1 00	28.57
ATOM	1498	CG	TYR A	189	15.715	72 610	-8 179	1 00	27.58
ATOM	1499	CD1	TYR A	189	14.363	72 586	-7 862	1 00	30 42
ATOM	1500	CE1	TYR A	189	13 933	72 371	-6 555	1 00	32 46
ATOM	1501	CD2	TYR A	189	16.639	72 419	-7 154	1 00	25 30
ATOM	1502	CE2	TYR A TYR A	189 189	16 224 14 866	72.206 72 182	-5.846 -5.553	1 00 1.00	27 43 21 28
ATOM ATOM	1503 1504	CH	TYR A	189	14.434	71 980	-4.262	1.00	37 45
ATOM	1505	C.	TYR A	189	17.225	74 335	-11 293	1 00	30.75
ATOM	1506	Ö	TYR A	189	16.643	73 905	-12,278	1 00	31.49
ATOM	1507	N	PRO A	190	18.396	74.974	-11.388	1 00	29.84
ATOM	1508	CD	PRO A	190	19.157	75.502	-10.238	1.00	29.04
ATOM	1509	CA	PRO A	190	19.131	75.192	-12.631	1.00	29 41
ATOM	1510	CB	PRO A	190	20.122	76.271	-12 222	1 00	30 04
MOTA	1511	ĴĠ	PRO A	190	20.508	75.816	-10 845	1 00	27.63
ATOM	1512	C	PRO A	190	19.899	74.005	-13.163 -12.428	1.00	29.09
ATOM	1513	V.	PRO A TYR A	190 191	20.168 20.220	73.057 74.051	-14.454	1 00 1 00	31.04 27.02
ATOM ATOM	1514 1515	CA	TYR A	191	21.065	73.025	-15 054	1 00	15.82
ATOM	1516	CB	TYR A	191	20.612	72.611	-16 449	1.00	24.40
ATOM	1517	CG	TYR A	191	21.677	71.806	-17.164	1.00	23.94
ATOM	1518	CD1	TYR A	191	21.959	0.497	-16 779	1.00	14.85
MOTA	1519	CEl	TYR A	191	12.997	69.779	-17 370	1.00	16.57
ATOM	1520	CD2	TYR A	191		72.381	-18.169	1 00	24.25
ATOM	1521	CE2	TYR A	191		71.674	-18 764	1.00	22.72
MOTA	1522	CZ	TYR A	191		70.372	-18 359	1.00	27.36
MOTA	1523	OH	TYR A	191		69.655 73.737	-18 938 -15.167	1.00 1.00	32.34
ATOM	1524 1525	0	TYR A TYR A	191 191		74.848	-15.697	1.00	26.75 26.19
MOTA MOTA	1525	N	LEU A	192		73.131	-14.620	1.00	27.75
ATOM:	1527	CA	LEU A	192		73.714 -:		1.00	30.44
ATOM	1528	C8	LEU A	192		74.378 -		1.00	27.32
ATOM	1529	CG	LEU A	192		75.486 -		1.00	24.54

BNSDOCID - WO 9816648A2 1 -

ATOM	1530	CD1	LEU A	192	24 644	75.909	-11,386	1.00	20.65
	1531	CD2	LEU A	192	24 252	76 664	-13 738	1.00	21.14
ATOM			LEU A		25 856	72 673	-15.013	1.00	34.74
MOTA	1532	C		192			-14 586	1.00	33 09
ATOM	1533	0	LEU A	192	25.803	71 511			
ATOM	1534	N	ASP A	193	26.778	73 085	-15.867	1.00	36.86
ATOM	1535	CA	ASP A	193	27.877	72 250	-16.289	1.00	42.70
ATOM	1536	CB	ASP A	193	27.564	71 544	-17.600	1.00	48 25
ATOM	1537	CG	ASP A	193	28 732	70 728	-18.106	1 00	52.17
	1538	OD1	ASP A	193	29 125	70 928	-19.271	1 00	58 38
ATOM						69 897	-17 338	1.00	53.48
MOTA	1539	OD2	ASP A	193	29.266				42.38
ATOM	1540	С	ASP A	193	29 032	73 196	-16 494	1.00	
ATOM	1541	0	ASP A	193	29 061	73 951	-17.461	1 00	46.89
ATOM	1542	N	PRO A	194	29 994	73 178	-15 574	1 00	40.26
ATOM	1543	CD	PRO A	194	31 206	74.016	-15.565	1 00	40.20
ATOM	1544	CA	PRO A	194	29 956	72 294	-14.414	1 00	38.87
	1545	CB	PRO A	194	31.419	72.224	-14.018	1 00	39.32
ATOM						73 644	-14.250	1 00	39.54
ATOM	1546	CG	PRO A	194	31.863				
ATOM	1547	C	PRO A	194	29.082	72 863	-13.293	1.00	40.57
ATOM	1548	0	PRO A	194	28 773	74.065	-13.261	1 00	39 81
ATOM	1549	N	TYR A	195	28.667	71 976	-12.395	1 00	38.88
ATOM	1550	CA	TYR A	195	27.826	72 341	-11.269	1 00	35.95
ATOM	1551	CB	TYR A	195	26 869	71 187	-10.933	1.00	33.96
		CG	TYR A	195	25.572	71.600	-10 255	1.00	33.27
ATOM	1552				24.390	71.688	-10 984	1 00	32.32
ATOM	1553	CD1	TYR A	195				1 00	31.47
MOTA	1554	CE1	TYR A	195	23 200	72 048	-10.381		
ATOM	1555	CD2	TYR A	195	25 522	71.887	-8.889	1 00	29.66
ATOM	1556	CE2	TYR A	195	24 330	72.249	-8.276	1.00	27.38
ATOM	1557	CZ	TYR A	195	23.178	72 325	-9 030	1.00	27.54
ATOM	1558	OH	TYR A	195	21.996	72 665	-8.436	1.00	25.96
ATOM	1559	C	TYR A	195	28.726	72.624	-10.072	1.00	35.66
			TYR A	195	29 616	71.832	-9 748	1.00	34 39
ATOM	1560	0					-9.402	1.00	34.12
ATOM	1561	N	PRO A	196	28 505	73.762			
ATOM	1562	CD	PRO A	196	27 458	74.742	-9.730	1.00	32.84
ATOM	1563	CA	PRO A	196	29 270	74.183	-8.231	1.00	34.92
ATOM	1564	CB	PRO A	196	28.472	75.377	~7.735	1.00	35.33
ATOM	1565	CG	PRO A	196	27 915	75.951	-8.995	1.00	36 48
ATOM	1566	C	PRO A	196	29.276	73.076	-7.188	1.00	40.87
			PRO A	196	28.257	72.808	-6.558	1.00	44.01
MOTA	1567	0				72.425	-7.013	1.00	46.54
MOTA	1568	N	GLU A	197	30 418				
MOTA	1569	CA	GLU A	197	30.535	71.337	-6.348	1.00	49.40
ATOM	1570	CB	GLU A	197	31 992	70.896	-5 916	1.00	59.62
ATOM	1571	CG	GLU A	197	32 595	70.350	-7.211	1.00	74.74
ATOM	1572	CD	GLU A	197	34 093	70.061	-7.108	1.00	82 34
ATOM	1573	OE1	GLU A	197	34 807	70.797	-6 38 3	1.00	86 57
		OE2	GLU A	197	34.558	69.100	-7 765	1.00	87 43
ATOM	1574					71.757	-4.692	1.00	45 50
MOTA	1575	С	GLU A	197	30.007				46.60
MOTA	1576	0	GLU A	197	29 395	70.972	-3 985	1.00	
ATOM	1577	N	ALA A	198	30.216	73 018	-4 352	1.00	43.56
ATOM	1578	CA	ALA A	198	29.765	73.538	-3 072	1.00	42.05
ATOM	1579	CB	ALA A	198	30.214	74.968	-2 908	1.00	42.58
ATOM	1580	C	ALA A	198	28.264	73 443	-2.861	1.00	41.83
		o	ALA A	198	27.805	73 315	-1.728	1.00	46.61
ATOM	1581					73 501	-3.946	1.00	36 04
ATOM	1582	N	ALA A	199	27.501				
ATOM	1583	CA	ALA A	199	26.052	73 450	-3.852	1.00	32.51
ATOM	1584	CB	ALA A	199	25.430	74 173	-5.019	1.00	33.11
ATOM	1585	C	ALA A	199	25.512	72.044	-3,772	1.00	33 23
ATOM	1586	0	ALA A	199	24.307	71.837	-3,900	1.00	38 62
ATOM	1587	N	ILE A	200	26.397	71.075	-3.590	1.00	32 94
	1588	CA	ILE A	200	25 973	69.687	-3.508	1.00	34 13
ATOM						68.846	-4.644	1.00	30.62
ATOM	1589	CB	ILE A		26.565			1.00	19 56
MOTA	1590	CG2	ILE A	200	26.086	67.409	-4.527		
MOTA	1591	CG1	ILE A	500	26.154	69.451	-5.988	1.00	31 15
MOTA	1592	CD1	ILE A	200	27.065	69.109	-7.124	1.00	34.14
ATOM	1593	C	ILE A	200	26.353	69.C73	-2.182	1.00	37.98
ATOM	1594	0	ILE A	200		68.817	-1.909	1.00	42.30
		N	LYS A	201		68.844	-1.356	1.00	41.21
ATOM	1595					68.258	-0.045	1.00	42.08
MOTA	1596	CA	LYS A	201					44.17
MOTA	1597	CB	LYS A	201		68.776	0.935	1.00	
ATOM	1598	CG	LYS A	201		70.275	1.203	1.00	47.76
ATOM	1599	CD	LYS A	201	23 219	70.918	1.218	1.00	52.10
ATOM	1600	CE	LYS A	201	23.302	72.423	1.021	1.00	52.22
MOTA	1601	NZ	LYS A	201		73.026	0.955	1.00	52.59
	1601	C	LYS A	201		66.761	-0.179	1.00	39.59
MOTA	1002	_	מים מים			5, 0.1	- · -		

					- ()	-			
ATOM	1603	0	LYS A	201	24.587	66.255	-0.886	1.00	42,27
ATOM	1604	N	THR A	202	26.338	66.052	0.495	1.00	40.47
ATOM	1605	CA	THR A	202	26.329	64.605	0.424	1.00	42.35
ATOM	1606	CB	THP A	202	27.682	64.062	-0.114	1.00	38.36
MCTA	1607	OGl	THE A	202	27.900	62.727	0.356	1.00	42.95
ATOM	1608	2G2	THF. A	102	28.838	64.970	0.276	1.00	40.34
ATOM	1609	2	THF. A	202	25.908	64.022	1.781	1.00	42.98
ATCM	1610	ر.	THE. A	202	26.553	64.247	2 809	1.00	47.33
ATCM	1611	N	ALA A	203	24.750	63.369	1 785	1.00	41 07
ATOM	1612	CA	ALA A	203	24,195	62.776	2.995	1.00	42 49
ATOM	1613 1614	3	ALA A ALA A	103 103	22 824	62.179	2 713	1.00	36 69
ATOM ATOM	1615	2	ALA A	103	15.110 15.924	61.705 61.159	3 525 2 787	1.00	44 40
ATOM	1616	14	ALA A	203	24,920	61.348	4 788	1.00	45 26 47 23
MCTA	1617	CA.	ALA A	204	25.733	60.316	5 408	1.00	47 23
ATOM	1618	,5	ALA A	204	1.5.266	60 089	6 817	1.00	48.23
ATCM	1619	ā	ALA A	204	25 701	59 000	4.615	1.00	48 73
ATOM	1620	Ö	ALA A	204	26.680	58.252	4.581	1.00	51 77
ATOM	1621	N	ASP A	205	24 574	58.725	3.970	1.00	45 72
ATOM	1621	CA	ASP A	205	24.437	57 501	3 189	1.00	42 78
ATOM	1623	CB	ASP A	205	22 984	56.989	3 221	1.00	47.36
ATOM	1624	CG	ASP A	205	22.018	57.827	2 370	1.00	50 09
ATOM	1625	ODI	ASF A	205	12.374	58 937	1 922	1 00	54.80
ATOM	162€	OD2	ASF A	205	20.880	57 362	2.147	1.00	48 85
ATOM	1627	G.	ASF A	205	24 915	57 644	1 751	1 00	39 10
ATOM ATOM	1628 1629	11 O	ASF A GLY A	205 206	24 628 25 597	56 787 58 744	0 924 1.447	1 00	39.36
ATOM	1630	CA	GLY A	206	26 100	58 968	0.097	1 00 1 00	37.€6 36.43
ATCM	1631	c.	GLY A	206	25.238	59.669	-0.950	1.00	34 15
MOTA	1632	Ö	GLY A	206	25 739	60.024	-2 017	1.00	31 94
ATCM	1633	31	THR A	207	23 956	59 877	-6 679	1 00	29.49
ATOM	1634	ÇA	THR A	207	23 109	60 538	-1.657	1 00	25.87
ATOM	1635	CB	THR A	207	21.637	60 442	-1 260	1 00	27 03
ATOM	1636	OG1	THR A	207	21.345	59.109	-0 824	1 00	29.78
ATCM	1637	CG2	THR A	207	20 766	60 752	-2.447	1 00	18.36
ATOM	1638	C	THR A	207	23 509	61.998	-1.837	1 00	25 47
ATOM	1639	0	THR A	207	23 891	62 663	-0 881	1 00	27 07
ATOM ATOM	1640	n ca	LYS A LYS A	208	13.481 13.828	62.478	-3.073	1 00	16 75
ATOM	1641 1642	Q	LYS A	208	24 323	63 866 64 035	-3.347 -4.785	1 00 1 00	28 57 34 36
ATCM	1643	ČG	LYS A	208	15 565	63.216	-5 112	1.00	40 54
ATOM	1644	CD	LYS A	208	26 734	63 592	-4 210	1.00	53.48
ATOM	1645	CE	LYS A	208	27.937	62 669	-4 416	1 00	58 70
ATCM	164€	NZ	LYS A	208	29 114	63.071	-3 586	1.00	62 46
ATCM	1647	C	LYS A	208	22 540	64 626	-3 124	1.00	27 85
ATCM	164B	0	LYS A	208	21 497	64 231	-3 638	1.00	29 27
ATOM	1649	11	LEU A	209	22 620	65 743	-2.413	1 00	25 63
ATCM	1650	CA	LEU A	209	21 442	66 518	-2.066	1 00	18 54
ATCM	1651	CB	LEU A	209	21.149	66 348	-0 583	1 00	15 76
ATOM ATOM	1652 1653	CG CD1	LEU A LEU A	209 209	21 027 21 176	64 949 65 029	-0 009 1.478	1.00	16 54
ATOM	1654	CD2	LEU A	209	19 704	64.330	-0.393	1.00 1.00	19.47 14 83
ATOM	1655	C	LEU A	209	21 570	67 997	-2.303	1.00	19 56
ATC:M	165€	o	LEU A	209	22 647	68 561	-2 184	1 00	20.20
ATOM	1657	11	SER A	210	20 438	68 624	-2.591	1 00	20.72
ATOM	1658	CA	SER A	210	20 359	70 064	-1.782	1 00	26 32
ATOM	1659	CA	SER A	210	19 243	70 433	-3.770	1.00	26 58
ATOM	1660	OG	SER A	210	19 611	70 186	-5.115	1.00	34 59
ATOM	1661	G.	SER A	210	20 000	70.625	-1 407	1 00	26 44
MOTA	1662	0	SEP A	210	20 466	71.694	-1.023	1.00	29 35
ATOM	1663	N	PHE A	211	19 143	69.900	-0 683	1 00	27 04
ATCM	1664	CA	PHE A	211	18 691	70.296	0 652	1 00	24.33
ATOM ATOM	1665 1666	CB CG	PHE A	211	17.306 17.275	70.938 72.243	0 603 -0 123	1 00 1.00	25 32
ATOM	1667	CD1	PHE A	211	16.682	72.341	-1 378	1.00	27.69 35.01
ATOM	1668	CD2	PHE A	211	17.867	73.370	0 426	1 00	31.73
ATCM	1669	CE1	PHE A	211	16.681	73.547	-2 082	1 00	35.58
ATCM	1670	CE2	PHE A	211	17.875	74.586	-0 269	1 00	34.04
ATOM	1671	CZ	PHE A	211	17.281	74.672	-1.525	1.00	36.38
ATCM	1672	2	PHE A	211	18.670	69.116	1.611	1.00	24.35
ATC:M	1673	Э	PHE A	211	18.062	68.076	1.339	1.00	21.15
ATCM	1674	N	GLU A	212	19.354	69.304	2.732	1.00	25.04
ATCM	1675	CA	GLU A	212	19.485	68.311	3.777	1.00	26.00

ATOM	1676	CB	GLU A	212	20 580	68.763	4.742	1.00	31.89
	1677	CG	GLU A	212	21 004	67.726	5.770	1.00	52.30
ATOM	1678	CD	GLU A	212	21.606	66.472	5.145	1 00	60 61
ATOM		OE1	GLU A	212	20.903	65.434	5.092	1 00	59 97
ATOM	1679	OE2	GLU A	212	22 786	66.527	4.718	1.00	67 14
ATOM	1680				18 158	68.100	4.500	1.00	24.80
MOTA	1681	C	GLU A	212			4.392	1.00	22 54
MOTA	1682	0	GLU A	212	17 243	68.918		1 00	26 64
MOTA	1683	N	TRP A	213	18 059	66.997	5.234		
MOTA	1684	CA	TRP A	213	16.846	66.653	5.963	1 00	28 18
ATOM	1685	CB	TRP A	213	17.062	65.393	6.811	1 00	27 08
MOTA	1686	CG	TRP A	213	17.942	65.589	7 993	1.00	31.90
MOTA	1687	CD2	TRP A	213	17.541	66.016	9 295	1.00	34.81
ATOM	1688	CE2	TRP A	213	18.702	66.070	10 093	1.00	39.48
ATOM	1689	CE3	TRP A	213	16 310	66.353	9 867	1 00	35.14
MOTA	1690	CD1	TRP A	213	19.291	65.406	8.051	1.00	34 70
ATOM	1691	NE1	TRP A	213	19.759	65 698	9 306	1.00	38 91
MOTA	1692	CZ2	TRP A	213	18.671	66 456	11 436	1.00	39.22
ATOM	1693	CZ3	TRP A	213	16 278	66 736	11 198	1.00	36.20
ATOM	1694	CH2	TRP A	213	17.452	66 780	11 969	1.00	39 04
ATOM	1695	С	TRP A	213	16.312	67.780	6 840	1.00	27 32
ATOM	1696	0	TRP A	113	17.074	68 601	7 341	1.00	26 78
ATOM	1697	N	HIS A	214	14.994	67 785	7 033	1.00	25 99
ATOM	1698	CA	HIS A	214	14.312	68.785	9 843	1:00	21.26
	1699	CB	HIS A	214	14.498	70 170	7.229	1.00	24 00
ATOM		CG	HIS A	214	14.011	70.268	5 815	1.00	26 31
MOTA	1700	CD2	HIS A	214	12.986	70.964	5.265	1.00	20 40
ATOM	1701		HIS A	214	14.604	69.575	4.782	1.00	24.70
MOTA	1702	ND1		214	13.966	69 840	3.657	1.00	19.84
MOTA	1703	CE1	HIS A			70.682	3.921	1.00	19.56
MOTA	1704	NE2	HIS A	214	12.983		7 915	1.00	20 75
MOTA	1705	С	HIS A	214	12.824	68.508	7.230	1.00	22.27
MOTA	1706	0	HIS A	214	12.295	67.628			21.29
MOTA	1707	N	GLU A	215	12.153	69 316	8.718	1.00	25.72
MOTA	1708	Q	GLU A	215	10.710	69.258	8.888	1.00	
MOTA	1709	CB	GLU A	215	10.347	68.937	10.341	1.00	27.88
MOTA	1710	CG	GLU A	215	11.325	69.505	11.344	1.00	44.01
MOTA	1711	CD	GLU A	215	10.962	69.188	12.773	1.00	49.99
ATOM	1712	OEl	GLU A	215	10.532	69 043	13.040	1.00	48.65
ATOM	1713	OE2	GLU A	215	11.118	70 089	13.628	1.00	56.84
ATOM	1714	C	GLU A	215	10.320	70.676	8.504	1.00	23.84
ATOM	1715	0	GLU A	215	11.116	71 595	8.672	1.00	24.88
ATOM	1716	N	ASP A	216	9.136	70 858	7.935	1.00	22.73
ATOM	1717	CA	ASP A	216	8.732	72.187	7.492	1.00	22.94
ATOM	1718	CB	ASP A	216	7.636	72.112	6.407	1.00	27.97
ATOM	1719	CG	ASP A	216	8.082	71.398	5.135	1.00	27.71
ATOM	1720	OD1	ASP A	216	9.304	71.232	4.918	1.00	31.88
ATOM	1721	OD2	ASP A	216	7.185	71.015	4.344	1.00	26.49
	1722	C	ASP A	216	8 230	73.096	8.596	1.00	19.73
MOTA		0	ASP A	216	7 680	72.652	9.594	1.00	23.16
MOTA	1723			217	8.433	74 384	8.398	1.00	16.59
ATOM	1724	N C2	VAL A	217	7 945	75 376	9.312	1.00	18,55
ATOM	1725	CA	VAL A		8.907	76.564	9.424	1.00	16.49
MOTA	1726	CB	VAL A	217		77 687	10.235	1.00	10.45
ATOM	1727	CG1	VAL A	217	8.265		10.088	1.00	11.70
MOTA	1728	CG2	VAL A	217	10.179	76.123	8.633	1.00	23.10
MOTA	1729	С	VAL A	217	6.652	75 819			21,60
MOTA	1730	0	VAL A	217	6.667	76 674	7.729	1.00	
MOTA	1731	N	SER A	218	5. 5 62	75 142	8.990	1.00	25.06
MOTA	1732	CA	SER A	218	4.233	75 433	8.452	1.00	24.44
ATOM	1733	CB	SER A	218	4.183	75 110	6.954	1.00	23.25
ATOM	1734	OG	SER A	218	4.109	73.706	6.717	1.00	16 35
MOTA	1735	С	SER A	218	3.190	74.585	9.178	1.00	23.44
MOTA	1736	0	SER A	218	3.541	73.734	9.996	1.00	23 65
ATOM	1737	N	LEU A	219	1.913	74.865	8.932	1.00	21.85
ATOM	1738	CA	LEU A	219	0.847	74.064	9.518	1.00	22 52
ATOM	1739	CB	LEU A	219	-0.493	74.797	9.483	1.00	22 11
ATOM	1740	CG	LEU A	219	-1.687	73.960	9.955	1,00	18.98
ATOM	1741	CD1	LEU A	219	-1 427	73.419	11.330	1.00	17 47
	1741	CD2	LEU A	219	-2 933	74.804	9 956	1.00	19 86
ATOM		C	LEU A	219	0 822	72.817	8 633	1.00	24 74
ATOM	1743		LEU A	219	0 870	71.697	9 128	1.00	26 48
MOTA	1744	0		220	0 760	73.030	7 318	1.00	24 79
ATOM	1745	N	ILE A			71.960	6 309	1.00	22 56
MOTA	1746	CA	ILE A	220	0 821	71.393	5.860	1.00	21 63
ATOM	1747	CB	· ILE A	220	-0 563		7.040	1.00	20.63
ATOM	1748	CG2	ILE A	220	-1 335	70.840	7.040	1.00	40.63

					- 6	0 -			
ATOM	1749	CG1	ILE A	220	-1.380	72,443	5.109	1.00	22.42
ATOM	1750	CD1	ILE A	220	-2.505	71.841	4.297	1.00	18.13
ATCM	1751	C	ILE A	220	1.501	72.600	5.099	1.00	18.56
ATCM	1752	0	ILE A	220	1.496	73.825	4.970	1.00	17.45
ATOM	1753 1754	N	THR A	221	2.141	71.793	4.263	1.00	17.74
ATCM ATOM	1755	CA CB	THR A	221	2.802 4.287	72.295 71.939	3.069 3.032	1.00	14.91
ATOM	1755	-DG1	THR A	221	4.937	72.557	4.146	1.00	15.95 18.73
ATCM	1757	CG2	THR A	221	4.928	72.469	1.773	1.00	10.41
ATCM	1758	·C	THR A	221	2.056	71 651	1.916	1.00	16.30
ATCM	1759	Ö	THR A	221	1.711	70 477	1.983	1.00	18.87
MOTA	1760	Ŋ	VAL A	222	1.729	72 477	0.933	1.00	16.62
ATOM ATOM	1761 1762	CA CB	VAL A VAL A	222	0.992 -0.332	72 088 72.880	-0.261 -0. 3 10	1.00	17.81
ATOM	1763	CG1	VAL A	222	-1.046	72.671	-1.630	1.00	22.05 25.61
ATOM	1764	CG2	VAL A	222	-1.221	72 446	0.854	1.00	24.18
MOTA	1765	C	VAL A	222	1.890	72 404	-1.464	1.00	17.84
ATOM	1766	0	VAL A	222	1.990	73.557	-1.895	1.00	18.42
ATOM ATOM	1767 1768	N.	LEU A	223	2.525	71.359	-1.995	1.00	14.96
ATOM	1769	CA CB	LEU A LEU A	223	3.495 4.779	71.469 70 761	-3.080 -2.647	1.00 1.00	15.97 8 17
ATCM	1770	CG	LEU A	223	5.836	70 407	-3.680	1.00	9 19
ATOM	1771	CD1	LEU A	223	6.771	71 557	-3.882	1.00	9 69
ATC:M	1772	CD2	LEU A	223	6.605	69 205	-3 19:	1.00	12 71
ATOM	1773	Ğ	LEU A	223	3.146	70.951	-4 461	1.00	20 09
ATOM ATOM	1774 1775	Ŋ	LEU A TYR A	223 224	2.623 3.453	69 846 71 757	-4 608 -5 476	1.00	24 25
ATOM	1776	CA	TYR A	224	3.283	71 340	-6 862	1.00	23 92 22.47
ATCM	1777	CB	TYR A	224	2.415	72 269	-7 711	1.00	25.33
ATC:M	1778	CG	TYR A	224	2,258	71.701	-9 110	1.00	14.10
ATCM	1779	CD1	TYR A	224	1.592	70 488	-9.311	1.00	22 12
ATOM ATOM	178C 1781	CE1 CD2	TYR A TYR A	224 224	1.534 2.860	69 893 72 311	-10 560 -10 212	1.00	25 03
ATOM	1782	CE2	TYR A	224	2 811	71.720	-11.475	1.00	23 73 27 76
ATOM	1783	CZ	TYR A	224	2 146	70 505	-11.643	1.00	29 83
ATOM	1784	ОН	TYR A	224	2 112	69 895	-12.884	1.00	31 58
ATOM	1785	C	TYR A	224	4 680	71.314	-7 451	1.00	25 24
ATCM ATCM	1786 1787	11 O	TYR A GLN A	224 225	5 424 5.014	72 301 70.193	-7 392	1 00	27 50
ATOM	1788	CA	GLN A	225	6 327	70 006	-8.060 -8.639	1 00 1 00	23.63 25.73
ATOM	1789	Q	GLN A	225	7 184	69.294	-7 609	1 00	23.37
ATOM	1790	CG	GLN A	225	8.614	69 292	-7 891	1 00	25.23
ATOM	1791	CD	GLN A	225	9 378	68 781	-6 720	1 00	30 69
ATOM ATOM	1792 1793	OE1 NE2	GLN A GLN A	225 225	10 264 9 042	69 461 67 578	-6 203 -6 278	1.00	37 77
ATOM	1794	C	GLN A	225	6 105	69.126	-9 858	1 00 1 00	19 82 27 45
ATCM	1795	0	GLN A	225	5 503	68 056	-9 759	1 00	27 59
ATOM	179€	11	SER A	226	6.601	69 552	-11.007	1 00	27.34
ATOM	1797	CA	SER A	226	6 358	68.779	-12.210	1 00	28 99
ATOM ATOM	1798 1799	CB OG	SER A SER A	226 226	5.501 5.052	69.605	-13 152	1 00	28.18
ATOM	1800	C	SER A	226	7 599	68 829 68.311	-14.229 -12.943	1 00 1.00	40.16 31 56
ATOM	1801	0	SER A	226	8 570	69.055	-13 087	1 00	32.05
ATCM	1802	11	ASN A	227	7 571	67 055	-13 370	1 00	30.89
ATOM	1803	CA	ASN A	227	8 667	66 471	-14.133	1 00	29 18
ATOM ATOM	1804 1805	CB CG	ASN A ASN A	227 227	8 878 9 Sil	67.285	-15 417	1 00	28.72
ATOM	1806	OD1	ASN A	227	9.130	66 482 65 341	-16.528 -16.779	1 00 1 00	27 74 28 75
ATOM	1807	ND2	ASN A	227	10 454	67 089	-17.229	1 00	27 94
ATOM	1808	C	ASN A	227	9 990	66 328	-13.380	1 00	28.97
ATOM	1809	0	ASN A	227	11.052	66 517	-13.960	1 00	30 10
ATOM	1810	N	A LIAV	228	9 929	66 006	-12.091	1 00	29 20
ATOM ATOM	1811 1812	CA CB	VAL A	228 228	11.135 11.599	65 809 67 058	-11.291 -10 4 97	1 00 1.00	27.27
ATCM	1813	CG1	VAL A	228	13 083	67 241	-10 497	1.00	26 29 23 43
ATCM	1814	CG2	VAL A	228	10 827	68 292	-10 859	1.00	25 97
ATOM	1815	C	VAL A	228	10 799	64.826	-10 20€	1.00	31 99
ATCM	1816	0	VAL A	228	9 651	64.760	-9 758	1.00	35 97
ATCM ATCM	1817 1818	n CA	GLN A GLN A	229	11 812 11 715	64.110	-9 753	1.00	34 06
ATOM	1819	CB	GLN A	229	11.795	63.153 61.734	-8 658 -9.176	1.00	33 36 37 53
ATOM	1820	CG	GLN A	229	11.559	60.666	-8 148	1.00	42 23
ATCM	1821	CD	GLN A	229	11,207	59.368	-9.833	1.00	55.26

ATOM	1822	OEl	GLN A	229	10.110	59.222	-9.392	1.00	58.46
	1823	NE2	GLN A	229	12 155	58.436	-8 857	1.00	59.25
ATOM		C	GLN A	229	12 935	63.474	-7.814	1.00	34.22
ATOM	1824								
MOTA	1825	0	GLN A	229	14.044	63.042	-8 124	1.00	34.78
MOTA	1826	N	ASN A	230	12 733	64.293	-6 784	1.00	34.28
ATOM	1827	CA	ASN A	230	13.827	64.732	-5 917	1.00	32 42
ATOM	1828	C8	ASN A	230	14 171	66.199	-6 226	1 00	27.53
ATOM	1829	CG	ASN A	230	12 974	67.136	-6 068	1.00	21.96
			ASN A	230	11 933	66.751	-5.545	1 00	24.46
ATOM	1830	OD1							
MOTA	1831	ND2	ASN A	230	13 118	68.361	-6 541	1.00	19.87
ATOM	1832	C	ASN A	230	13.575	64.587	-4 419	1 00	31.95
MOTA	1833	0	ASN A	230	14 476	64.808	-3 622	1.00	30.47
ATOM	1834	N	LEU A	231	12.356	64.231	-4.034	1.00	31.28
		CA	LEU A	231	12.018	64.092	-2 626	1.00	27.98
ATOM	1835						-2 408	1.00	24.65
ATOM	1836	CB	LEU A	231	10.551	64.431			
MOTA	1837	CG	LEU A	231	10.254	65.884	-2.135	1 00	21.29
ATOM	1838	CD1	LEU A	231	8.807	65.985	-1.745	1.00	24 61
ATOM	1839	CD2	LEU A	231	11.116	66.349	-0.993	1 00	23.04
ATOM	1840	С	LEU A	231	12 276	62.719	-2.040	1.00	30 04
		Ö	LEU A	231	12.145	61.706	-2.725	1 00	34 74
ATOM	1841				12 615		-0.754	1 00	30.14
MOTA	1842	N	GLN A	232		62.693			
ATOM	1843	CA	GLN A	232	12.834	61.4 i S	-0.034	1 00	26 30
ATOM	1844	CB	GLN A	232	14 314	61.087	0 000	1 00	25 18
MOTA	1845	CG	GLN A	232	14.877	60.607	-1.315	1 00	24 42
ATOM	1846	CD	GLN A	232	16.251	59 976	-1 163	1 00	28.50
ATOM	1847	OEl	GLN A	232	17 149	60 543	-0 538	1.00	29.12
						58.794	-1 736	1 00	27 79
MOTA	1848	NE2	GLN A	232	16.420				
MOTA	1849	С	GLN A	232	12.313	61.614	1 392	1.00	27 21
ATOM	1850	0	GLN A	232	12.538	62.656	2.015	1.00	29 07
MOTA	1851	N	VAL A	233	11 581	60.618	1 888	1.00	25.56
ATOM	1852	CA	A JAV	233	11.047	60.659	3.250	1.00	23.90
MOTA	1853	СВ	VAL A	233	9.588	60.195	3.354	1.00	26.06
			VAL A	233	8 862	61.027	4.382	1.00	28.07
ATOM	1854	CG1					2 027	1 00	25.39
ATOM	1855	CG2	VAL A	233	8.911	60.178			
MOTA	1856	C	VAL A	233	11.779	59.644	4.101	1 00	27.04
ATOM	1857	0	VAL A	233	12 024	58.519	3.662	1.00	27.08
ATOM	1858	N	GLU A	234	12.090	60.015	5.331	1.00	27.08
ATOM	1859	CA	GLU A	234	12 744	59 089	6.226	1.00	28.63
ATOM	1860	CB	GLU A	234	13.512	59 848	7.289	1.00	28 65
			GLU A	234	14 044	58 977	8.400	1.00	33 81
MOTA	1861	CG				59 788	9.509	1.00	37.83
MOTA	1862	CD	GLU A	234	14.652				
MOTA	1863	OE1	GLU A	234	15 893	59.870	9.558	1.00	46.49
MOTA	1864	OE2	GLU A	234	13.894	60.356	10.323	1 00	41.82
MOTA	1865	С	GLU A	234	11.637	58.292	6.881	1 00	32.99
MOTA	1866	0	GLU A	234	10 761	58 861	7.526	1.00	36.86
ATOM	1867	N	THR A	235	11 619	56 990	6.654	1 00	39 05
			THR A	235	10 603	56.144	7.264	1 00	43.64
MOTA	1868	CA					6.196	1 00	47 64
MOTA	1869	CB	THR A	235	9 789	55.370			
ATOM	1870	QG1	THR A	235	10.663	54.518	5.443	1.00	48 96
MOTA	1871	CG2	THR A	235	9.077	56.340	5.245	1 00	49.04
ATOM	1872	С	THR A	235	11.310	55.161	8.186	1.00	45.27
ATOM	1873	0	THR A	235	12.533	55.204	8.330	1 00	46.15
ATOM	1874	N	ALA A	236	10.549	54.266	8.802	1 00	48.85
ATOM		CA	ALA A	236	11.131	53.271	9.697	1.00	51 37
	1875							1.00	
MOTA	1876	CB	ALA A	236	10.035	52.506	10.416		52.57
ATOM	1877	С	ALA A	236	12.049	52.307	8.944	1 00	51.92
ATOM	1878	0	ALA A	236	12.709	51.464	9.547	1.00	56.47
MOTA	1879	N	ALA A	237	12.044	52.402	7.620	1.00	50 60
ATOM	1880	CA	ALA A	237	12.886	51.558	6.786	1.00	50.28
	1881	CB	ALA A	237	12.044	50.870	5.720	1 00	45.48
ATOM				237	13.952	52.421	6.126	1.00	51.53
ATOM	1882	C	ALA A						
ATOM	1883	О	ALA A	237	14.591	51.992	5.156	1.00	53.02
MOTA	1884	И	GLY A	238	14.159	53.620	6.672	1.00	49.22
MOTA	1885	CA	GLY A	238	15.129	54.542	6.108	1.00	47.88
ATOM	1886	С	GLY A	238	14.493	55.410	5.029	1.00	46.36
ATOM	1887	0	GLY A	238	13.275	55.377	4.837	1.00	45.44
	1888	N	TYR A	239	15.305	56.193	4.325	1.00	43.94
ATOM			TYR A	239	14.795	57.077	3 282	1.00	42.31
ATOM	1889	CA							
MOTA	1890	CB	TYR A	239	15.860	58.079	2 862	1.00	34.38
MOTA	1891	CG	TYR A	239	16.054	59.203	3 846	1.00	31.86
ATOM	1892	CD1	TYR A	239	16.902	59.064	4 943	1.00	29.03
ATOM	1893	CEl	TYR A	239	17.115	60.129	5 825	1.00	30.21
MOTA	1894	CD2	TYR A	239	15.416	60.427	3 659	1.00	31.58
*** 01.1	207.					_		•	_

ATCM	1895	CE2	TYR A	239	15.618	61.491	4.536	1.00	27.7~
ATOM	1896	CZ	TYR A	239	16.467	61.337	5.609	1.00	28.27
MOTA	1897	HC	TYR A	239	16.670	62.396	6.459	1.00	30.28
ATOM	1898	5	TYR A	239	14.282	56.345	2.053		
ATOM	1899	Ö	TYR A	233	14.958	55.464		1.00	44.25
ATOM	1900	Ŋ	GLN A	240	13.083		1.519	1.00	50.07
		CA	GLN A			56.730	1.605	1.00	42.95
ATOM	1901			240	12 457	56.135	0.434	1.00	37.56
ATOM	1902	CB	GLN A	240	11.227	55.338	0.829	1.00	37.90
ATOM	1903	CG	GLN A	240	11 492	54.283	1.867	1.00	39.00
MOTA	1904	CD	GLN A	240	10 259	53.503	2.178	1.00	41 54
ATOM	1905	OE1	GLN A	240	9 361	53.975	2.876	1.00	42 44
ATOM	1906	NE2	GLN A	240	10.192	52.303	1.655	1.00	43 71
ATOM	1907	C	GLN A	240	12 036	57.238	-0.493	1.00	35.12
ATOM	1903	O	GLN A	240	11 637	58 310	-0.049	1 00	37 16
ATOM	1909	N	ASP A	241	12 106	56 963	-1.786	1 00	37 65
ATOM	191)	CA	ASP A	241	11 757	57 937	-2.807	1.00	33.97
ATOM	1911	CB	ASP A	241	12 294	57 477	-4.157	1.00	36 71
ATOM	1912	CG	ASP A	241	13 768	57 725	-4.305	1.00	40 53
ATOM	1913	OD1	ASP A	241	14 501	56 767	-4.626	1.00	48 07
ATOM	1914	OD2	ASP A	241	14.193	58 883	-4.102	1 00	43.60
ATOM	1918	C	ASP A	241	10 273	58.187	-2.937	1 00	
ATOM	1916	ō	ASP A	241	9 473	57 290	-2.715		31.87
ATOM	1917	11	ILE A	242	9 910	59 420		1 00	33 89
ATOM	1918	CA	ILE A	242			-3.270	1 00	29.50
ATOM	1919				8 51€ 0 337	59 776	-3,491	1.00	29 59
		CB	ILE A	242	8 122	61.110	-2.793	1 00	25.82
ATOM	1920	CG2	ILE A	242	6.718	61 540	-3.205	1 00	21 57
ATOM	1921	CG1	ILE A	242	8 142	60 940	-1.275	1.00	22 34
ATOM	1922	CD1	ILE A	242	7 931	62.219	-0.529	1 00	19.47
ATOM	1923	C	ILE A	242	R 314	59 899	-5.002	1.00	32 14
ATOM	1924	0	ILE-A	242	9 039	60 631	-5.680	1 00	34.26
ATOM	1925	N	GLU A	243	7.364	59 139	-5.528	1.00	32.42
MOTA	1926	CA	GLU A	243	7 051	59 161	-6 950	1.00	35.87
ATOM	1927	CB	GLU A	243	5 998	58 103	-7.257	1 00	45.32
ATOM	1928	CG	GLU A	243	4 620	58.422	-6 675	1 00	58.52
ATOM	1929	CD	GLU A	243	3 584	57 359	-6 970	1 00	67.74
ATOM	1930	OEl	GLU A	243	2.679	57 157	-6 126	1 00	72 36
ATOM	1931	OE2	GLU A	243	3 669	56 730	-8 048	1 00	73 67
ATOM	1932	С	GLU A	243	6 494	60.520	-7 361	1.00	34 26
ATOM	1933	0	GLU A	243	5 794	61 170	-6 587	1.00	34.70
ATOM	1934	N	ALA A	244	6 796	60.940	-8.582	1 00	37.24
ATOM	1935	CA	ALA A	244	6.299	62.211	-9 106	1 00	3€ 70
ATOM	1936	CB	ALA A	244	7.187	62 704	-10 237	1 00	30 95
ATCM	1937	C	ALA A	244	4 870	62.045	-9 607	1 00	38 29
ATOM	1938	0	ALA A	244	4 401	60 919	-9 809	1.00	39 49
ATOM	1939	N	ASP A	245	4.184	63.168	-9 810	1 00	38.94
ATCM	1940	CA	ASP A	245	2 809	63 171	-10 302	1 00	36.20
ATOM	1941	CB	ASP A	245	1 849	62 683	-9.217	1 00	35 69
ATOM	1942	CG	ASP A	245	(1436	62.479	-9.730	1 00	39.12
ATCM	1943	OD1	ASP A	245	-0 090	63 350	-10 446	1 00	38.32
ATOM	1944	OD2	ASP A	245	-0.162	61.440	-9 406	1 00	44.34
ATOM	1945	С	ASP A	2.45	2 423	64.579	-10.720	1 00	36.64
ATCM	1946	0	ASP A	245	1 881	65 338	-9.920	1.00	40 34
ATOM	1947	N	ASP A	246	2 624	64.906	-11 989	1 00	
ATOM	1948	CA	ASP A	246	1 288	66.242	-12.464	1 00	36 70
ATOM	1949	C8	ASP A	246	2 956	66 546	-13 815	1 00	42.59 52.74
ATOM	1950	CG	ASP A	246	2 651	65.508	-14 899		
ATOM	1951	OD1	ASP A	246	3 484	65 398	-15.834	1 00	62 16
ATOM	1952	OD2	ASP A	246	1 600	64 822		1 00	67 79
ATOM			ASP A				-14 836	1 00	61 80
	1953	C		246	0 818	66.649	-12.495	1 00	39 27
MOTA	1954	0	ASP A	246	C 485	67 699	-13 (42	1 00	39.09
ATOM	1955	N	THE A	247	-0 058	65 849	-11 897	1 00	37 20
ATOM	1956	CA	THR A	247	-1.475	66.182	-11 876	1 00	37.88
ATCM	1957	CB	THR A	247	-2 345	65 074	-12 545	1.00	41.31
ATC:M	1958	OG1	THR A	247	-2.370	63 901	-11 719	1.00	44 54
ATC:M	1959	CG2	THR A	247	-1 770	64 688	-13 903	1.00	42 77
ATCM	1960	C	THR A	247	-1 990	66 436	-10 452	1.00	37 11
ATCM	1961	0	THR A	247	-3 109	66 933	-10.263	1.00	35 84
ATCM	1962	N	GLY A	248	-1 162	66.136	-9 453	1.00	33 34
ATC:M	1963	CA	GLY A	248	-1 580	66 320	-8.076	1.00	29.08
ATOM	1964	С	GLY A	248	-0.704	67 236	-7.251	1.00	26.8€
ATOM	1965	0	GLY A	248	0.338	67 693	-7.709	1.00	29.61
M'OTA	1966	1.1	TYR A	249	-1.168	67.553	-6.052	1.00	24.24
ATCM	1967	CA	TYR A	249	-0.432	68.401	-5.128	1.00	22.26

ATOM	1968	СВ	TYR A	249	-1.319	69.512	-4.571	1.00	17.04
	1969	CG	TYR A	249	-1.337	70.775	-5.395	1.00	19.97
ATOM					-2.159	70.896	-6 505	1.00	21.32
MOTA	1970	CD1	TYR A	249					
ATOM	1971	CE1	TYR A	249	-2.194	72.078	-7 247	1.00	22 14
ATOM	1972	CD2	TYR A	249	-0.545	71.866	-5 045	1.00	17 14
MOTA	1973	CE2	TYR A	249	-0 575	73.041	-5.777	1.00	18 05
ATOM	1974	CZ	TYR A	249	-1 398	73 140	-6 876	1 00	18 13
	1975	ОН	TYR A	249	-1 412	74 302	-7 612	1.00	23.74
ATOM			TYR A	249	0.037	67 520	-3 982	1.00	74 44
MOTA	1976	C							25.35
ATOM	1977	0	TYR A	249	-0.766	66 820	-3.363	1.00	
ATOM	1978	N	LEU A	250	1.344	67 505	-3.745	1 00	21.09
MOTA	1979	CA	LEU A	250	1.908	66 720	-2.664	1 00	19.72
MOTA	1980	CB	LEU A	250	3.397	66 484	-2 914	1.00	11 66
ATOM	1981	CG	LEU A	250	4 092	65 533	-1 946	1.00	13.51
	1982	CD1	LEU A	250	3 460	64 158	-1 998	1.00	9 39
ATOM				250	5.536	65.450	-2 310	1.00	16 26
ATOM	1983	CD2	LEU A						24.50
ATOM	1984	С	LEU A	250	1.683	67 475	-1.349	1 00	
ATOM	1985	0	LEU A	250	2.160	68.606	-1.176	1.00	23.74
ATOM	1986	N	ILE A	251	U.953	66 847	-0.432	1.00	25.00
ATOM	1987	CA	ILE A	251	0.651	67 447	0 866	1 00	23 54
ATOM	1988	CB	ILE A	251	-0.876	67 411	1 138	1 00	21.64
		CG2	ILE A	251	-1.257	68.522	2.121	1.00	20.73
MOTA	1989					67.562	-0.169	1.00	18.11
MOTA	1990	CG1	ILE A	251	-1.670			1.00	15 82
ATOM	1991	CD1	ILE A	251	-1.594	68 929	-0.792		
MOTA	1992	C	ILE A	251	1 376	66.775	2.071	1.00	25.96
MOTA	1993	0	ILE A	251	1.473	65 545	2 148	1.00	22.81
ATOM	1994	N	ASN A	252	1.919	67 590	2.979	1.00	27.93
ATOM	1995	ÇA	ASN A	252	2.583	67.037	4 190	1 00	23 28
	1996	CB	ASN A	252	4 067	66.731	3.969	1 00	19 24
ATOM					4.949	67 922	3.669	1.00	15 95
MOTA	1997	CG	ASN A	252				1.00	27 71
MOTA	1998	OD1	ASN A	252	5 210	68 225	2.521		
ATOM	1999	ND2	ASN A	252	5 482	68 544	4.698	1.00	12.20
ATOM	2000	С	ASN A	252	2 417	68.107	5.321	1.00	26.77
MOTA	2001	0	ASN A	252	2.046	69.258	5 079	1.00	26.57
ATOM	2002	N	CYS A	253	2 621	67.649	6 555	1.00	26 39
	2003	CA	CYS A	253	2.484	68 488	7 744	1.00	23 80
ATOM			CYS A	253	2 069	67.638	8 950	1.00	26 15
ATOM	2004	CB					9.038	1.00	32.10
ATOM	2005	SG	CYS A	253	0 326	67.176			
ATOM	2006	C	CYS A	253	3 758	69.222	8.107	1.00	20.68
ATOM	2007	0	CYS A	253	4 853	68.766	7.810	1.00	23.52
MOTA	2008	N	GLY A	254	3 601	70.371	8 740	1.00	21.10
ATOM	2009	CA	GLY A	254	4.740	71.143	9.183	1.00	21 44
MOTA	2010	C	GLY A	254	4.870	70.886	10.669	1.00	19.86
		o	GLY A	254	4.062	70.173	11.245	1.00	17.78
MOTA	2011					71.492	11.325	1.00	21.03
MOTA	2012	14	SER A	255	5.839		12.737		20.86
MOTA	2013	CA	SER A	255	5,996	71.237		1.00	
MOTA	2014	CB	SER A	255	7.348	71.742	13.225	1.00	16 65
MOTA	2015	OG	SER A	255	7.529	73.096	12.870	1.00	24.84
ATOM	2016	C	SER A	255	4.862	71.800	13.592	1.00	25.80
ATOM	2017	0	SER A	255	4.635	71.316	14.702	1.00	32.81
		N	TYR A	256	4.132	72.800	13.103	1.00	23.31
ATOM	2018			256	3.048	73.337	13.916	1.00	22.05
MOTA	2019	CA	TYR A				13.320	1.00	18.59
ATOM	2020	CB	TYR A	256	2.453	74.597			
ATOM	2021	ÇG	TYR A	256	1.600	75.359	14.313	1.00	18.81
ATOM	2022	CD1	TYR A	256	2.181	76.147	15.301	1.00	14.81
MOTA	2023	CE1	TYR A	256	1.399	76.878	16.198	1.00	18.34
ATOM	2024	CD2	TYR A	256	0.213	75.302	14.253	1.00	22.82
	2025	CE2	TYR A	256	-0.586	76.029	15.151	1.00	22.41
ATOM			TYR A	256	0.015	76.812	16.122	1.00	22.48
MOTA	2026	CZ					16.994	1.00	27.35
ATOM	2027	ОН	TYR A	256	-0.777	77.531			
ATOM	2028	C	TYR A	256	1.946	72.303	14.160	1.00	25.24
ATOM	2029	0	TYR A	256	1.377	72.250	15.249	1.00	20.73
MOTA	2030	N	MET A	257	1.645	71.490	13.152	1.00	25.21
ATOM	2031	CA	MET A	257	0.633	70.443	13.281	1.00	25.59
		CB	MET A	257	0.422	69.749	11.930	1.00	23,11
ATOM	2032			257	-0.631	68.646	11.889	1.00	23.77
MOTA	2033	CG	MET A					1.00	29.13
ATOM	2034	SD	MET A	257	-2.303	69.226	12.196		
ATOM	2035	CE	MET A	257	-2.926	69 464	10.571	1.00	21.14
MOTA	2036	C	MET A	257	1.118	69 444	14.338	1.00	29.65
ATOM	2037	0	MET A	257	0.348	68 996	15. 1 82	1.00	33.68
ATOM	2038	N	ALA A	258	2.410	69.139	14.324	1.00	30.20
		CA	ALA A	258	2.975	68.207	15.294	1.00	29.21
ATOM	2039					67.918	14.962	1.00	26.53
ATOM	2040	CB	ALA A	258	4.437	01.910	17,702	1.00	20.33

ATCM	2041	С	ALA A	258	2.843	68.740	16 721	1.00	29.82
ATOM	2042	Q	ALA A	258	2.486	67.999	17 635	1.00	30.07
ATOM	2043	N	HIS A	259	3.130	70.023	16 912	1.00	29 81
MOTA	2044	CA	HIS A	259	3 023	70.635	18 231	1.00	30 03
ATOM	2045	CB	HIS A	259	3 560	72.061	18 197	1.00	29 44
ATOM	2046	CG	HIS A	259	3 279	71.846	19.441	1.00	36 67
ATOM	2047	CD2	HIS A	259	3 973	72 971	20.600	1 00	35 37
MOTA	2048	ND1	HIS A	259	2.174	73 662	19 572	1 00	39 99
ATOM	2049	CEl	HIS A	259	2 201	74 255	20.750	1 00	40 19
ATOM	2050	NE2	HIS A	259	3.284	73 854	21.397	1 00	33 91
MOTA	2051	С	HIS A	259	1.571	70 645	18 703	1.00	32 65
ATOM	2052	0	HIS A	259	1.295	70 499	19 884	1 00	37.28
MOTA	2053	11	LEU A	260	C.650	70 862	17.778	1.00	33.08
ATOM	2054	CA	LEU A	260	-C 770	70.900	18.092	1.00	31.90
MOTA	2055	CB	LEU A	260	-1 543	71.402	16.880	1.00	30 79
MOTA	205€	CG	LEU A	260	-2 124	72 751	16 957	1 00	33.95
MOTA	2057	CD1	LEU A	260	-1 342	73 763	17 664	1.00	35 15
MOTA	2058	CD2	LEU A	260	-2.549	73.184	15.536	1.00	39.19
ATOM	2059	C	LEU A	260	-1.326	69.536	18.470	1 00	33 38
ATOM	2060	0	LEU A	260	-2 082	69 411	19.420	1 00	35.86
ATOM	2061	N	THR A	261	-0 988 -1.480	68 526	17.684	1 00	32 53
ATOM	2062 2063	CA CB	THR A	261 261	-1.571	67 184 66.443	17.905 16 580	1.00 1.00	33 81
ATCM ATCM	2064	OG1	THR A	261	-C 270	66 392	15.977	1 00	35.82 33.48
ATOM	2065	CG2	THR A	261	-2 527	67 155	15.647	1.00	37 64
ATOM	2066	C	THR A	261	-0 590	66 389	18 840	1.00	39.46
ATOM	2067	0	THR A	261	-0.651	65.153	18 870	1.00	38.94
ATOM	2068	N	ASN A	262	0.267	67 094	19.572	1.00	44 19
ATOM	2069	CA	ASN A	262	1 191	66 456	20.506	1.00	49 58
ATOM	2070	CB	ASN A	262	0 445	65 952	21.756	1 00	59 13
ATOM	1071	CG	ASN A	262	1 353	65.841	22.981	1.00	66 8€
ATOM	2072	OD1	ASN A	262	1 367	66.737	23.833	1.00	72 04
ATOM	2073	ND2	ASN A	262	2.105	64 743	23.081	1.00	67.84
MOTA	2074	С	ASN A	262	1 941	65 307	19 811	1 00	46 90
ATOM	1075	0	ASN A	262	2 228	64 274	20.415	1.00	49 43
ATOM	207€	11	ASN A	263	2.208	65 492	18.522	1 00	41 44
MOTA	2077	CA	ASN A	263	2 929	64.534	17.698	1 00	37.52
T TO MA									
MOTA	2078	C13	ASN A	263	4 237	64 119	18 347	1 00	41 11
MOTA	2079	CG	ASN A	263	9 415	64 740	17.670	1 00	41 11 47 69
MOTA MOTA	2079 2080	CG OD1	ASN A ASN A	263 263	928 5 928	64 740 65 764	17.670 18 109	1 00 1 00	47 69 48 68
MOTA MOTA MOTA	2079 2080 2081	CG OD1 ND2	ASN A ASN A ASN A	263 263 263	5 415 5 928 5 824	64 740 65 764 64 155	17.670 18 109 16 550	1 00 1 00 1 00	47 69 48 68 54 33
MOTA MOTA MOTA MOTA	2079 2080 2081 2082	CG OD1 ND2 C	ASN A ASN A ASN A	263 263 263 263	5 415 5 928 5 824 2 201	64 740 65 764 64 155 63 322	17.670 18 109 16 550 17 172	1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18
ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083	CG OD1 ND2 C O	ASN A ASN A ASN A ASN A	263 263 263 263 263	5 415 5 928 5 824 2 201 2 832	64 740 65 764 64 155 63 322 62 388	17.670 18 109 16 550 17 172 16.679	1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27
MOTA ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084	CG OD1 ND2 C O N	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 263 263	5 415 5 928 5 824 2 201 2 832 0 877	64 740 65.764 64.155 63 322 62 388 63 344	17.670 18 109 16 550 17 172 16.679 17.250	1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085	CG OD1 ND2 C O N	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 263 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063	64 740 65 764 64 155 63 322 62 388 63 344 62 252	17.670 18 109 16 550 17 172 16.679 17.250 16 723	1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37,39
ATOM ATOM ATOM ATOM ATOM ATOM TOM	2079 2080 2081 2082 2083 2084 2085 2086	CG OD1 ND2 C O N CA CB	ASN A ASN A ASN A ASN A ASN A TYR A TYR A	263 263 263 263 263 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1.392	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189	1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087	CG OD1 ND2 C O N CA CB	ASN A ASN A ASN A ASN A ASN A TYR A TYR A TYR A	263 263 263 263 263 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087	CG OD1 ND2 C O N CA CB CG CD1	ASN A ASN A ASN A ASN A ASN A TYR A TYR A TYR A TYR A TYR A	263 263 263 263 264 264 264 264	9 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446	64 740 65.764 64.155 63 322 62 388 63 344 62 252 62.413 61.342 60 113	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089	CG OD1 ND2 C O N CA CB CG CD1 CE1	ASN A ASN A ASN A ASN A ASN A TYR A TYR A TYR A TYR A TYR A TYR A	263 263 263 263 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375	64 740 65.764 64.155 63 322 62 388 63 344 62.252 62.413 61.342 60 113 59.ts1	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 393 -2 344 -2 446 -3 375 -3 180	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15 627	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090	CG OD1 ND2 C O N CA CB CG CD1 CCE1 CD2 CE2	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 392 -2 344 -2 446 -3 375 -3 180 -4 105	64 740 65.764 64.155 63 322 62 388 63 344 62.252 62.413 61.342 60 113 59.ts1	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15.627 15.195	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37.39 33.82 33 63 32 49 33 06 37.61 37.45
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 263 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 393 -2 344 -2 446 -3 375 -3 180	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61.579 60 636	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15 627	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CE2 CZ	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61.579 60 636 59 429	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15 627 15 195 15 845	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 37 61 37 45 35 62 38 87
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CE2 CZ OH	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61.579 60 636 59 429 58 546	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15.627 15.195 15.845 15.403	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093	CG OD1 ND2 C O N CA CB CG CD1 CE2 CC2 OH C	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 218	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15.627 15.186	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094	CG OD1 ND2 C O N CA CB CG CD1 CEL CD2 CC2 OH C	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1.392 -2 344 -2 446 -3.375 -3.180 -4 105 -4 204 -5 169 0 218 0 .169	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61.579 60.636 59 429 58 546 62 311	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15.627 15.195 15.845 15.403 15.186 14.499	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37.39 33.82 33 63 32 49 33 06 37.61 37.45 35.62 38.87 37.01 37.37
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CE2 CC OH C O N	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 218 0 169 0 390	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097	CG OD1 ND2 C O N CA CB CCD1 CCE2 CC2 OH C O N CA	ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 169 0 390 0 642	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 37 37 37 36 23 33 20
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2090 2091 2092 2093 2094 2095 2096 2097	CG OD1 ND2 C O N CA CB CCD1 CCE2 CZ OH C O N CA CB	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 265 265	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2090 2091 2092 2093 2094 2095 2096 2097 2098	CG OD1 ND2 C O N CA CB CCD1 CCD2 CC2 OH C O N CA CB	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 264	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351 -1 642	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 262 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2099	CG OD1 ND2 C O N CA CB CG CD1 CE2 CZ OH C O N CA CB CC O CC C	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 264 264 265 265 265	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 169 0 169 0 390 0 642 -0 351 -1 642 -2 630	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 64 750 64 115 64 861	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2099 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CC2 OH CA CB CG CD1 CC1 CD2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 264 265 265 265 265 265 265	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 201	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2099 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103	CG OD1 ND2 C O N CA CB CG CD1 CE2 CC O N CA C CE2 CC	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 263 264 264 264 264 264 264 265 265 265 265 265 265 265 265 265 265	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 115 64 861 64 298 62 775 62 201 62 976	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 32 98 31 76 30 37
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105	CG OD1 ND2 C O N CA CB CCD1 CCE2 CZ OH C C CC C	ASN A ASN A ASN A ASN A ASN A TYR A	263 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 201 62 976 62 452	17.670 18 109 16 550 17 172 16.679 17.250 16 723 17.189 16.713 17.362 16.935 15.627 15.195 15.845 15.403 15.186 14.499 14.666 13.244 12.640 12.239 11.610 11.286 12.527 12.207 11.591 11.312	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 32 98 31 76 30 37 38 15
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106	CG OD1 ND2 C O N CA CB CCD1 CCE2 CZ OH C O N CA CB CC O O CC O CC CC CC CC CC CC CC CC CC	ASN A ASN A ASN A ASN A ASN A TYR A	263 263 263 264 2644 2644 2644 2655 2655 2655 2655	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -3 180 -4 105 -4 204 -5 169 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 64 750 64 115 64 861 64 298 62 775 62 201 62 976 62 452 64 390	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 207 11 591 11 312 13 227	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 30 94 31 76 30 37 38 15 34 58
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107	CG OD1 ND2 C O N CA CB CCD1 CCE2 CZ OH C O N CA CB CC CD2 CC CC O O CA CB CC CC CC CC O O CA CC	ASN A ASN A ASN A ASN A ASN A TYR A	263 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 201 62 976 62 452 64 390 65 586	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 32 98 31 76 30 37 38 15 34 58 35 29
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108	CG OD1 ND2 C O N CA CB CCD1 CCE2 CZ OH C O N CA CB CCD1 CCE2 CZ OH C O N CA CB CCD1 CCD2 CCZ OH C O N CA CB CD1 CCD2 CCZ OH C O N CA CB CD1 CCD2 CCZ CD2 CCZ OH C O N CA CB CD1 CCD2 CCZ CD2 CCZ OH C O N	ASN A ASN A ASN A ASN A ASN A TYR A	26 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187 3 036	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 201 62 452 64 390 65 586 63 553	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466 13 022	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 32 98 31 76 30 37 38 15 34 58 35 29 34 31
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109	CG OD1 ND2 C O N CA CB CGC CD1 CC2 CC2 OH C O CA CB CCB CC0 CC2 CC2 OH C O N CA CB CCD CC2 CC2 OH C O N CA CB CCD CC2 CC2 OH CCA CCB CCD CCA CCB CCA CCB CCA CCA CCA CCA CCA CCA	ASN A ASN A ASN A ASN A ASN A TYR A	26 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -1 392 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 169 0 169 0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187 3 036 4 422	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 201 62 976 62 452 64 390 65 586 63 353 63 990	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466 13 022 13 002	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 30 94 32 98 31 76 30 37 38 15 34 58 35 29 34 31 33 62
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2099 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CZ OH C O N CA CB CG CD1 CCA CB CCB CCA CCB CCB CCB CCB CCB CCB	ASN A ASN A ASN A ASN A ASN A TYR A	263 333 3444 44 44 44 44 44 44 44 44 44 44	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187 3 036 4 422 5 323	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 452 64 390 65 586 63 553 63 990 62 772	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466 13 022 13 002 13 039	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 37 36 23 33 20 26 57 31 72 33 04 32 98 31 76 30 37 38 15 34 58 35 29 34 31 33 62 39 20
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2099 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110	CG OD1 ND2 C O N CA CB CG CD1 CC2 CC2 OH C O N CA CB CG CD1 CC2 CC2 OH C O N CA CB CCC CC2 CC2 CC2 CC2 CC2 CC2 CC2 CC2	ASN A ASN A ASN A ASN A ASN A TYR A	263 333 3444 444 444 445 5 5 5 5 5 5 5 5 6 6 6 6	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187 3 036 4 422 5 323 6 739	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 298 62 775 62 201 62 452 64 390 65 586 63 553 63 990 62 772 63 066	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466 13 022 13 002 13 039 13 491	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 45 35 62 38 87 37 01 37 37 36 23 33 20 26 57 31 72 33 04 32 98 31 76 30 37 38 15 34 58 35 29 34 58 35 29 34 31 33 62 39 20 56 22
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2099 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110	CG OD1 ND2 C O N CA CB CG CD1 CE1 CD2 CZ OH C O N CA CB CG CD1 CCA CB CCB CCA CCB CCB CCB CCB CCB CCB	ASN A ASN A ASN A ASN A ASN A TYR A	263 333 3444 44 44 44 44 44 44 44 44 44 44	5 415 5 928 5 824 2 201 2 832 0 877 0 063 -2 344 -2 446 -3 375 -4 105 -4 105 -4 204 -5 169 0 218 0 169 0 390 0 642 -0 351 -1 642 -2 630 -3 854 -1 909 -3 141 -4 102 -5 333 2 028 2 187 3 036 4 422 5 323	64 740 65 764 64 155 63 322 62 388 63 344 62 252 62 413 61 342 60 113 59 tS1 61 579 60 636 59 429 58 546 62 311 61 287 63 528 63 768 64 750 64 115 64 861 64 298 62 775 62 452 64 390 65 586 63 553 63 990 62 772	17.670 18 109 16 550 17 172 16 679 17 250 16 723 17 189 16 713 17 362 16 935 15 627 15 195 15 845 15 403 15 186 14 499 14 666 13 244 12 640 12 239 11 610 11 286 12 527 12 207 11 591 11 312 13 227 13 466 13 022 13 002 13 039	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	47 69 48 68 54 33 35 18 34 27 36 95 37 39 33 82 33 63 32 49 33 06 37 61 37 37 36 23 33 20 26 57 31 72 33 04 32 98 31 76 30 37 38 15 34 58 35 29 34 31 33 62 39 20

MOTA	2114	NZ	LYS A	266	6.402	61.147	15 748	1.00	80.37
MOTA	2115	C	LYS A	266	4.748	64.784	11 759	1.00	29 29
	2116	o	LYS A	266	4.184	64.540	10.702	1.00	30 14
ATOM		и	ALA A	267	5.641	65.752	11 890	1.00	26 90
ATOM	2117		ALA A	267	6 063	66.526	10 735	1 00	27.00
MOTA	2118	CA		267	6.724	67 809	11 173	1 00	22 67
ATOM	2119	CB	ALA A					1 00	28 13
MOTA	2120	C	ALA A	267	7.079	65.599	10.072		
MOTA	2121	0	ALA A	267	8 074	65.243	10.695	1.00	31.38
ATOM	2122	N	PRO A	268	6 822	65. 1 55	8 823	1 00	30.02
MOTA	2123	CD	PRO A	268	5 648	65 466	7 989	1 00	29.53
ATOM	2124	Q	PRO A	268	7 732	64 251	8 103	1.00	28.12
MOTA	2125	CB	PRO A	268	7 043	64 081	6 742	1 00	25.57
ATOM	2126	CG	PRO A	26B	5 615	64 286	7 035	1.00	25.50
ATOM	2127	С	PRO A	268	9.133	64 805	7 904	1.00	27.55
ATOM	2128	0	PRO A	268	9.281	65.974	7.555	1.00	31.71
ATOM	2129	N	ILE A	269	10 153	63 984	8.156	1 00	26.79
	2130	Q	ILE A	269	11 549	64.374	7.939	1.00	21.70
ATOM			ILE A	269	12.527	63 535	8 799	1.00	23.68
ATOM	2131	CB				63.768	8 358	1.00	16.90
ATOM	2132	CG2	ILE A	269	13.971				25.36
MOTA	2133	CG1	ILE A	269	12 371	63 881	10.286	1.00	
ATOM	2134	CD1	ILE A	269	12.761	65 311	10.645	1.00	21.95
MOTA	2135	С	ILE A	269	11.788	64.052	6.470	1.00	21.77
ATOM	2136	0	ILE A	269	11.544	62 932	6.025	1.00	23.31
ATOM	2137	N	HIS A	270	12 196	65 043	5.696	1.00	22.73
ATOM	2138	CA	HIS A	270	12 420	64 808	4.280	1,00	21 55
MOTA	2139	CB	HIS A	270	11.161	65.146	3.480	1.00	20 47
MOTA	2140	CG	HIS A	270	10 613	66.507	3.758	1.00	16.63
ATOM	2141	CD2	HIS A	270	10.417	67.570	2.946	1.00	20.91
ATOM	2142	ND1	HIS A	270	10 148	66.885	4.997	1.00	18.74
	2143	CEI	HIS A	270	9 680	68 .117	4.936	1.00	20 88
ATOM	2144	NE2	HIS A	270	9 828	68.559	3.700	1.00	17.58
ATOM				270	13 608	65 600	3.783	1.00	22.67
ATOM	2145	C	HIS A			66.588	4.410	1.00	23 83
MOTA	2146	0	HIS A	270	14.008		2.689	1.00	20 85
MOTA	2147	N	ARG A	271	14 201	65.136			23.79
ATOM	2148	CA	ARG A	271	15.359	65.797	2.093	1.00	
MOTA	2149	CB	ARG A	271	16 631	65.043	2.461	1.00	22.83
MOTA	2150	ÇG	ARG A	271	16 615	63.592	2.057	1.00	23.45
ATOM	2151	CD	ARG A	271	17.872	62.894	2.523	1.00	25.22
MOTA	2152	NE	ARG A	271	18 020	61.603	1.862	1.00	26.89
MOTA	2153	CZ.	ARG A	271	19.008	60.753	2.103	1.00	25.53
ATOM	2154	NH1	ARG A	271	19 931	61.058	2.996	1.00	.9 48
MOTA	2155	NH2	ARG A	271	19 081	59.607	1.441	1.00	25 73
MOTA	2156	С	ARG A	271	15.190	65.873	0.580	1.00	23.68
ATOM	2157	0	ARG A	271	14 319	65.211	0.010	1.00	26.81
ATOM	2158	N	VAL A	272	15 994	66.702	-0.071	1.00	22.19
ATOM	2159	Q	VAL A	272	15.878	66.857	-1.510	1.00	18.76
ATOM	2160	СВ	VAL A	272	15.561	68.310	-1.870	1.00	17.63
		CG1	VAL A	272	15 326	68.446	-3.355	1.00	18 50
ATOM	2161		VAL A	272	14 340	68.778	-1.107	1.00	15.11
ATOM	2162	ÇG2			17.132	66.418	-2.248	1.00	25.28
ATOM	2163	C	VAL A	272			-2.050	1.00	29.40
MOTA	2164	0	VAL A	272	18.202	66.993			27 72
MOTA	2165	N	LYS A	273	16 985	65.396	-3.092	1.00	
ATOM	2166	CA	LYS A	273	18.059	64.845	-3.919	1.00	25 89
ATOM	2167	CB	LYS A	273	17.572	63.587	-4.645	1.00	27.95
MOTA	2168	CG	LYS A	273	17 355	62 392	-3.753	1.00	31 66
MOTA	2169	CD	LYS A	273	16.404	61 385	-4.376	1.00	35.66
ATOM	2170	CE	LYS A	273	16 963	60.740	-5.621	1.00	41 21
ATOM	2171	NZ	LYS A	273	16 185	59 514	-5.974	1.00	42.41
ATOM	2172	С	LYS A	273	18.551	65 837	-4.968	1.00	25.96
ATOM	2173	0	LYS A	273	17 784	66 653	-5.486	1.00	26 05
ATOM	2174	N	TRP A	274	19 843	65 759	-5.268	1.00	25 99
ATOM	2175	Q	TRP A	274	20.489	66 616	-6.267	1.00	24 01
ATOM	2176	СВ	TRP A	274	21 975	66 623	-6.096	1.00	24.20
		CG	TRP A	274	22.700	67 347	-7.187	1.00	23.66
ATOM	2177		TRP A	274	23.526	66 762	-8.194	1.00	21.71
MOTA	2178	CD2				67 812	-9.008	1.00	21.71
ATOM	2179	CE2	TRP A	274	23.997				25.08
ATOM	2180	CE3	TRP A	274	23.900	65.453	-8.498	1.00	
ATOM	2181	CD1	TRP A	274	22.709	68.689	-7. 417	1.00	26.21
MOTA	2182	NE1	TRP A	274	23.490	68.979	-8.509	1.00	28.27
MOTA	2183	CZ2	TRP A	274	24.839	67.594	-10.089	1.00	23.56
ATOM	2184	CZ3	TRP A	274	24.739	65.237	-9.582	1.00	29.23
ATOM	2185	CH2	TRP A	274	25.193	66.305	-10.367	1.00	24.09
ATOM	2186	С	TRP A	274	20.105	66.099	-7.653	1.00	27.26

- 72 -

ATCM	2187	C	TRP A	274	20.357	64.938	-7.970	1.30	32.63
	2188	N	VAL A	275	19.503	66.964	-8.461	1.00	28.27
ATCM									
ATCM	2189	CA	VAL A	275	19.110	66.636	-9.825	1.00	25.56
ATCM	2190	CB	VAL A	275	17.582	66 606	-9.971	1 00	23.27
ATOM	2191	CG1	VAL A	275	17.200	66.358	-11.410	1 00	23.05
	2192	CG2	VAL A	1 '5	16.993	65 545	-9.073	1 00	15.58
ATOM									
ATCM	2193	C	VAL A	275	19.645	67 760	-10.689	1 00	23.04
ATOM	2194	C:	VAL A	275	19.194	68.884	-10 573	1 00	27.65
ATCM	2195	N	ASN A	176	20.627	67.480	-11 532	1 00	24.79
			ASN A	276	21.172	68 539	-12 372	1 00	23.43
ATCM	2196	CA							
ATCM	2197	CB	ASN A	276	22.626	68 262	-12 737	1 00	23.64
ATOM	2198	CG	ASN A	276	23.237	69.374	-13 563	1 00	27.31
ATCM	2199	CD1	ASN A	276	22.697	70.479	-13 650	1 00	25.48
ATC:M	2200	ND2	ASN A	276	24.382	69 096	-14 156	1 30	32.14
							-13.632		
ATOM	2201	С	ASN A	276	20.347	68.732		1 00	24.63
MOTA	2202	C٠	ASN A	276	20.683	68.215	-14 694	1 00	31 02
ATOM	2203	N	ALA A	277	19 244	69 453	-13.499	1.00	25 78
ATOM	2204	CA	ALA A	277	18.364	69.719	-14.620	1.00	23.03
ATCM	2205	CB	ALA A	277	17 502	68.507	-14.911	1 00	26.09
ATC:M	2206	C	ALA A	277	17 490	70 903	-14.288	1.00	25 78
MOTA	2207	Ç	ALA A	177	17 232	71.177	-13.119	1.00	27 01
MOTA	2208	N	GLU A	278	17 034	71 602	-15.321	1.00	25 92
					16 176	72.760	-15.139	1 30	27 97
ATOM	2209	CA	GLU A	278					
ATOM	2210	CB	GLU A	278	16 111	73 616	-16 399	1 00	29 38
ATOM	2211	CG	GLU A	278	17.326	74 473	-16 634	1 30	34.40
ATC:M	2212	CD	GLU A	278	17 373	75.697	-15 764	1 00	31.39
					16 312	76.182	-15 327	1.00	35.93
ATCM	2213	OE1	GLU A	278					
ATOM	2214	OE2	GLU A	278	18 489	76 186	-15.537	1 00	37 93
ATC:M	2215	C	GLU A	278	14 777	72: 323	-14 767	1 00	30 01
ATCM	2216	0	GLU A	278	13 999	71 867	-15 601	1 00	33 28
				279	14 485	72 419	-13 487	1 00	30 78
ATC:M	2217	11	ARG A						
ATC:M	2218	CA	ARG A	279	13 185	72 069	-12.986	1 00	29.39
ATCM	2219	CB	ARG A	279	13.232	70 718	-12.294	1.00	≘9 88
ATOM	2220	CG	ARG A	279	13 756	69.606	-13.168	1.00	29.15
			ARG A	279	12 891	69.382	-14 381	1.00	26.70
ATCM	2221	CD							
ATOM	2222	HE	ARG A	279	13 340	68.183	-15 073	1 00	28.42
ATC:M	2223	CZ	ARG A	279	13 978	68 185	-16.234	1 00	25.05
MOTA	2224	NHl	ARG A	279	14 224	69 324	-16.855	1.00	21.11
	2235	NH2	ARG A	279	14 477	67 059	-16.716	1 00	26.84
ATCM						73 163	-12.007	1 00	30.45
ATOM	2226	С	ARG A	279	12 813				
ATOM	2227	O	ARG A	279	13 645	74 001	-11 643	1 00	28.64
ATCM	2228	11	GLN A	280	11 560	73.147	-11 583	1.00	31.12
ATCM	2229	CA	GLN A	280	11 045	74 134	-10 661	1.00	33.15
					10.260	75.182	-11.427	1.00	38.18
ATCM	2230	CB	GLN A	280					
ATOM	2231	CG	GLN A	280	9 171	74.580	-12.286	1.00	53.46
MOTA	2232	CD	GLN A	280	8 596	75.565	-13 278	1.00	57.41
ATOM	2233	OE1	GLN A	280	9 209	76.593	-13.568	1.00	60.52
				280	7.418	75.250	-13.820	1.00	60.10
ATC:M	2234	NE2	GLN A						
ATOM	2235	С	GLN A	280	10.139	73 430	-9 679	1.00	30.33
ATOM	2236	0	GLN A	280	9.602	72.363	-9. 975	1.00	32.02
ATOM	2237	11	SER A	281	9.958	74.049	-8 521	1.00	26.28
			SER A	281	9.131	73.510	-7 462	1.00	18.83
ATOM	2238	CA							16.21
MOTA	2239	CB	SER A	281	10.034	72.908	-6.390	1.00	
ATOM	1240	OG	SER A	281	9.281	72.175	-5 458	1 00	31.28
ATOM	2241	C	SER A	281	8.344	74.691	-6.918	1 00	17.91
ATOM	2242	Õ	SER A	281	8.870	75.796	-6 852	1 00	15.21
						74.487	-6 596	1 00	24.14
ATOM	2243	И	LEU A	282	7.070				
MOTA	2244	CA	LEU A	282	6.239	75.578	-6.068	1.00	24.06
MOTA	2245	CB	LEU A	282	5.224	76.049	-7.098	1 00	26.03
	2246	CG	LEU A	282	5.733	76.662	-8.388	1 00	34.69
MOTA						75.564	-9.339	1.00	37 28
MCTA	2247	CD1	LEU A	282	6.212				
MOTA	2248	CD2	LEU A	282	4.582	77.421	-9.009	1.00	38 00
MOTA	2249	С	LEU A	282	5.480	75.182	-4.814	1.00	23 88
	2250	0	LEU A	282	4.368	74.652	-4.894	1.00	21 16
MOTA						75.372	-3.637	1 00	22 81
MOTA	2251	N	PRO A	283	6.109				
MOTA	2252	CD	PRO A	283	7.531	75.682	-3.434	1 00	22 38
MOTA	2253	CA	PRO A	283	5.463	75.035	-2.372	1 00	20 82
MOTA	2254	CB	PRO A	283	6.661	74.739	-1.472	1 00	18.71
					7.663	75.746	-1.928	1 00	19 17
MOTA	2255	CG	PRO A	283					
ATOM	2256	С	PRO A	183	4.651	76.192	-1.847	1 00	17 56
MCTA	2257	0	PRO A	283	5.023	77.349	-2.001	1 00	19 99
MCTA	2258	N	PHE A	284	3.496	75.874	-1.282	1.00	18 04
				284		76.869	-0.686	1.00	14.83
ATOM	2259	CA	PHE A	204	2.628	70.003	3.300	2.00	14,03

					- 73	_			
ATOM	2260	СВ	PHE A	284	1.202	76.739	-1.221	1.00	13.11
MOTA	2261	CG	PHE A	284	0.222	77.695	-0.590	1.00	9.51
ATOM	2262	CD1	PHE A	284	0.361	79.072	-0.757	1 00	7.91
ATOM	2263	CD2	PHE A	284	-0.840	77.218	0.176	1.00	8.25
MOTA	2264	CE1	PHE A	284	-0.546	79.963	-0.172	1 00	9.04
ATOM	2265	CE2	PHE A	284	-1.755	78.103	0.769	1.00 1.00	7.90 7.48
MOTA	2266	CZ	PHE A	284	-1.607	79 480 76 481	0.596 0.777	1.00	15.38
MOTA	2267	C	PHE A	284 284	2.657 2.315	75.351	1.126	1 00	13 28
ATOM	2268 2269	0 N	PHE A PHE A	285	3.130	77.381	1.625	1.00	11 26
ATOM ATOM	2270	CA	PHE A	285	3.204	77.096	3.045	1 00	11.08
ATOM	2271	CB	PHE A	285	4 488	77.682	3.622	1 00	11 89
ATOM	2272	CG	PHE A	285	5 734	77.103	3.021	1 00	13.37
ATOM	2273	CD1	PHE A	285	6 418	77 779	2.024	1.00	12 80
MOTA	2274	CD2	PHE A	285	6 229	75 882	3.458	1.00	14.08
MOTA	2275	CE1	PHE A	285	7.584	77 245	1.477 2.911	1.00 1.00	16 30 13 47
ATOM	2276	CE2	PHE A	285 285	7.396 8 066	75 347 76 030	1.925	1 00	7 59
ATOM	2277 2278	CZ C	PHE A PHE A	285	1 985	77.644	3.756	1.00	12 95
ATOM ATOM	2279	0	PHE A	285	1.781	78.863	3.801	1.00	14.08
ATOM	2280	N	VAL A	286	1.150	76 746	4.271	1.00	11.34
ATOM	2281	CA	VAL A	286	-0 062	77.158	4.969	1 00	15.20
MOTA	2282	CB	VAL A	286	-1.128	76.021	4.997	1 00	13 61
ATOM	2283	CGI	VAL A	286	-2.365	76.467	5.739	1 00	11.57
MOTA	2284	CG2	VAL A	286	-1 511	75.629	3.587	1 00 1.00	10.57 18.76
MOTA	2285	С	VAL A	286	0 271 0 667	77.647 76.876	6.384 7.257	1 00	24.10
ATOM	2286	0	VAL A ASN A	286 287	0.190	78.955	6.571	1.00	17 97
ATOM	2287 2288	N CA	ASN A	287	0.461	79.568	7.850	1 00	18 13
ATOM ATOM	2289	CB	ASN A	287	1 570	80.621	7.722	1.00	19.63
MOTA	2290	CG	ASN A	287	2.940	80.017	7.427	1.00	17.67
ATOM	2291	OD1	ASN A	287	3.287	78.940	7.907	1.00	15.97
ATOM	2292	ND2	ASN A	287	3 729	80.727	6.644	1 00	19 12
MOTA	2293	C	ASN A	287	-0 844	80.242	8.229	1 00	21 86
MOTA	2294	0	ASN A	287	-1.584	80.680	7 347 9.523	1.00	26.85 19.51
ATOM	2295	N	LEU A	288 288	-1 148 -2 374	80.302 80.928	9.979	1 00	14 83
ATOM	2296 2297	CA CB	LEU A LEU A	288	-2.853	80.254	11.253	1 00	12.62
ATOM ATOM	2298	CG	LEU A	288	-2.982	78.741	11.075	1.00	17.68
ATOM	2299	CD1	LEU A	288	-3.540	78.114	12 332	1.00	16.20
ATOM	2300	CD2	LEU A	288	-3.883	78.428	9 909	1 00	14 63
MOTA	2301	С	LEU A	288	-2 139	82.414	10 188	1 00	16.91
MOTA	2302	0	LEU A	288	-1.218	82.981	9.611	1.00 1.00	20.51 16.67
MOTA	2303	N	GLY A	289	-2.974	83.051 84.473	10.996 11.240	1.00	15.37
ATOM	2304	CA	GLY A GLY A	289 289	-2.823 -1.831	84 700	12.350	1.00	19.82
ATOM ATOM	2305 2306	С 0	GLY A	289	-1.571	83 795	13.130	1.00	22.79
ATOM	2307	N	TYR A	290	-1.342	85.924	12 477	1.00	19.69
ATOM	2308	CA	TYR A	290	-0.354	86.246	13.491	1.00	23.55
ATOM	2309	CB	TYR A	290	0.058	87 705	13.359	1.00	22.89
ATOM	2310	CG	TYR A	290	1.265	88 073	14 184	1.00	30.95
ATOM	2311	CD1	TYR A	290	2.558	87.793 88.142	13 730 14 481	1.00	31.65 32.74
ATOM	2312	CE1	TYR A	290 290	3.671 1.122	88.710	15 414	1.00	29.60
ATOM	2313	CD2 CE2	TYR A	290	2.228	89.063	16.172	1.00	31.69
ATOM ATOM	2314 2315	CZ	TYR A	290	3.494	88.778	15 699	1.00	32.60
ATOM	2316	ОН	TYR A	290	4.587	89.149	16 435	1.00	38.35
ATOM	2317	С	TYR A	290	-0.825	85.973	14 912	1.00	26.88
ATOM	2318	0	TYR A	290	-0.064	85.469	15 747	1.00	32.22
ATOM	2319	N	ASP A	291	-2.080	86.302	15 180	1.00	32.16
ATOM	2320	CA	ASP A	291	-2.650	86.121	16 505 16.809	1.00 1.00	34.89 44.67
ATOM	2321	CB	ASP A	291	-3 621 -2 907	87.271 88.607	17.064	1 00	54 47
ATOM	2322	CG	ASP A ASP A	291 291	-1 678	88.612	17.294	1 00	62.50
ATOM	2323 2324	OD1 OD2	ASP A	291	-3 583	89.662	17.057	1 00	59.68
MOTA MOTA	2325	C	ASP A	291	-3 341	84.786	16.743	1 00	33.13
ATOM	2326	0	ASP A	291	-3 867	84.552	17.828	1 00	3€.71
ATOM	2327	N	SER A	292	-3.325	83.902	15.755	1.00	32.93
MOTA	2328	CA	SER A	292	-3.989	82.611	15.896	1.00	33.04
ATOM	2329	CB	SER A	292	-4.074	81.892	14.551	1.00	32.62
ATOM	2330	OG	SER A	292	-4.870	82.629	13.641	1.00	37.64 33.50
MOTA	2331	C	SER A	292	-3.394	81.675 91.310	16.933 16.870	1.00 1.00	35.88
ATOM	2332	0	SER A	292	-2.223	U	20.070	2.50	22.00

					- /	+ -			
ATOM	2333	N	VAL A	293	-4.223	81,293	17.889	1.00	35.69
ATCM	2334	CA	VAL A	293	-3.807	80.371	18.936	1.00	33.43
ATCM	2335	CB	VAL A	293	-3.867	81.015	20.333	1.00	28.87
ATCM	2336	CG1	VAL A	293	-3.244	80.086	21.346	1.00	29.10
ATC M	2337	CG2	VAL A	293	-3.157	82.350	20.340	1.00	28.79
ATCM	2338	С	VAL A	293	-4.754	79.193	18.925	1.00	33.09
ATCM	2339	0	VAL A	293	-5.971	79.366	18.990	1.00	33.77
ATCM	2340	N	ILE A	294	-4.187	78.002	18.790	1.00	34.36
ATCM ATCM	2341 2342	CA CB	ILE A ILE A	294 194	-4.952 -4.754	76.770	18.784	1.00	33.14
ATOM	2343	CG2	ILE A	294	-5.426	76.000 74.629	17.458 17.518	1.00	33.14
ATOM	2344	CG1	ILE A	294	-5.318	76.832	16.303	1.00	28.09 29.00
ATCM	2345	CD1	ILE A	294	-5.328	76.129	14.973	1.00	30.92
ATOM	2346	Ξ	ILE A	194	-4.476	75.952	19.983	1.00	36.82
MOTA	2347	.)	ILE A	294	-3 277	75.882	20.273	1.00	40 13
ATCM	2348	N	ASP A	295	-5 427	75.385	20.710	1.00	37 77
ATOM	2349	CA	ASP A	295	-5 124	74.604	21.889	1.00	36.56
ATOM	2350	CB	ASP A	295	-6.346	74.499	22.783	1.00	42.24
ATOM	2351	∵G	ASP A	295	-6.163	75.234	24.071	1.00	50.87
ATOM	2352	OD1	ASP A	195	-6.049	74.565	25.117	1.00	60.02
ATOM ATOM	2353 2354	⊙D2 ∵	ASP A ASP A	295 295	-6 092 -4.655	76.481 73.223	24.038 21.544	1.00	55.86
ATOM	2355	.5	ASP A	295	-5 384	72.453	20.928	1.00 1.00	35.69
ATOM	2356	N	PRO A	296	-3 421	72.879	21 955	1.00	35.08 35.13
ATOM	2357	CD	PF.O A	296	-2 488	73.736	22 692	1 00	34 11
ATCM	1358	CA	PRO A	296	-2.847	71.563	21 690	1 00	35 32
ATOM	2359	-CB	PRO A	296	-1.478	71.653	22.368	1.00	33.77
ATOM	2360	:2G	PRO A	296	-1.169	73.116	22 339	1 00	35.72
ATOM	2361	12	PRO A	296	-3 689	70.463	12.327	1 00	38 35
ATCM	2362	Ċ	PF.O A	2:96	-4 269	70 653	23 394	1 00	41 07
ATOM	2363	11	PHE A	297	-3.706	69 300	21.697	1 00	38 55
ATOM ATOM	2364 2365	CA CB	PHE A PHE A	297 297	-4.455 -5.877	68 180	22.208	1.00	37.27
ATOM	2366	CG	PHE A	297	-5.957	68 209 68.187	21.654 20.151	1 00	34 45
ATOM	2367	CD1	PHE A	297	-6.324	67.025	19.475	1.00 1.00	31 82 30.97
ATOM	2368	CD2	PHE A	297	-5.712	69 339	19 414	1.00	31.48
ATOM	2369	CE1	PHE A	197	-6.445	67 018	18 083	1.00	30 11
ATOM	2370	CE2	PHE A	297	-5.832	69.338	18 023	1 00	29 97
ATCM	2371	CZ	PHE A	297	-6.200	68.177	17.358	1 00	30 13
ATCM	2372	C	PHE A	297	-3.770	66 887	21.809	1 00	40 88
ATOM	2373	0	PHE A	297	-2.954	66.865	20.891	1 00	43 86
ATOM ATOM	2374 2375	H CA	ASP A ASP A	298 298	-4.064 -3.466	65 806 64 534	22 511	1.00	44 53
MOTA	2376	CB	ASP A	298	-2.590	64.015	22.167 23 295	1.00	48.48
ATOM	2377	CG	ASP A	298	-1.808	62.778	22.898	1.00	52 93 57 44
ATOM	2378	OD1	ASP A	298	-2.020	62.254	21 778	1.00	54.35
ATCM	2379	OD2	ASP A	298	-0.964	62 333	23 705	1.00	66 50
MOTA	2380	C:	ASP A	298	-4.584	63.552	21 907	1.00	50.22
MOTA	2381	0	ASP A	298	-5.215	63.067	22 827	1.00	49 77
ATCM	2382	11	PRO A	299	-4.789	63.199	20.630	1.00	52 46
ATOM	2383	CD	PRO A	299	-4.105	63.730	19 439	1-00	52.72
ATOM ATOM	2384 2385	CA	PRO A	299 299	-5.835	62.266	20.230	1.00	56.64
MOTA	2386	CB CG	PRO A PRO A	299	-5.663 -5.165	62.206 63.564	18 717 18 388	1.00	54 35
ATOM	2387	C.	PRO A	299	-5.648	60 898	20 868	1 00 1 00	50.07 63 86
ATOM	2388	O	PRO A	299	-6.492	60.011	20 687	1.00	69 53
ATOM	2389	ы	MG A	300	-4.535	60 712	21 580	1 00	68 69
ATOM	2390	CA	ARG A	300	-4.231	59.449	22 250	1 00	73 13
ATOM	2391	CB	ARG A	300	-2.731	59.153	22 191	1 00	73 05
MOTA	2392	CG	ARG A	300	-2.202	58 825	20.810	1 00	75 18
ATOM	2393	CD	ARG A	300	-0.682	58 842	20 790	1 00	72 55
ATOM	2394	NE	ARG A	300	-0.165	60 144	21.181	1 00	71 35
ATOM	2395	CZ	ARG A	300	0.867	60 748	20 595	1 00	71 94
MOTA	2396	NH1	ARG A ARG A	300 300	1.50€	60 171	19 579	1 00	73 46
ATCM ATCM	2397 2398	NH2 C	ARG A	300	1.274 -4.685	61.934 59.414	21 032	1 00	71 10
ATOM	2398	()	ARG A	300	-4.552	58.390	23 708 24 374	1 00 1 00	76 43 80 12
ATOM	2400	n	GLU A	301	-5.202	60.536	14.196	1.00	80 12 77 10
ATCM	2401	CA	GLU A	301	-5.687	60.596	25.5€2	1.00	81 37
ATOM	2402	CB	GLU A	301	-4.984	61.711	26.331	1.00	82 38
ATOM	2403	CG	GLU A	301	-3.474	61.523	26.412	1.00	89.06
ATOM	2404	CD	GLU A	301	-2.918	62.004	27.750	1.00	94.30
ATCM	2405	OE1	GLU A	301	-3.152	63.179	28.115	1.00	97.83

ATOM	2406	OE2	GLU A	301	-2 241	61 201	28.425	1.00	97.36
		C	GLU A	301	-7.193	60 781	25 642	1.00	84.64
ATOM	2407					61 498	24 836	1.00	83.56
ATOM	2408	0	GLU A	301	-7 779				88.29
ATOM	2409	N	PRO A	302	-7.849	60.122	26.611	1.00	
ATOM	2410	CD	PRO A	302	-7.263	59 114	27 527	1.00	89.03
ATOM	2411	CA	PRO A	302	-9 303	60 201	26.800	1.00	87.98
ATOM	2412	CB	PRO A	302	-9 521	59.416	28.095	1.00	88.81
		CG	PRO A	302	-8 478	58 337	27 978	1 00	88.81
MOTA	2413			302	-9.804	61 652	26 925	1 00	86.15
ATOM	2414	C	PRO A					1 00	85 57
ATOM	2415	0	PRO A		-10 737	62.060	26.236		
ATOM	2416	N	ASN A	303	-9 184	62.425	27 817	1.00	84.86
MOTA	2417	CA	ASN A	303	-9.563	63 822	27.985	1.00	85.24
ATOM	2418	CB	ASN A	303	-8.929	64 404	29.254	1.00	89.02
	2419	CG	ASN A	303	-9.217	65.900	29.433	1 00	93.08
ATOM		OD1	ASN A	303	-8 501	66.589	30.150	1.00	95 61
ATOM	2420					66.401	28.755	1.00	95 94
MOTA	2421	ND2	ASN A		-10 242				
ATOM	2422	C	ASN A	303	-9 073	64.602	26.773	1.00	83.46
MOTA	2423	0	ASN A	303	-9.678	65 601	26.377	1.00	82.51
MOTA	2424	N	GLY A	304	-8 001	64.099	26.169	1.00	82.29
ATOM	2425	CA	GLY A	304	-7 413	64 745	25.016	1.00	79 23
			GLY A	304	-6 639	65.945	25.513	1.00	77 89
ATOM	2426	C				66 945	24.802	1.00	78 97
ATOM	2427	0	GLY A	304	-6 503				76.87
MOTA	2428	И	LYS A	305	-6.156	65.855	26.748	1.00	
ATOM	2429	CA	LYS A	305	-5.403	66.938	27.348	1.00	76 76
MOTA	2430	СВ	LYS A	305	-5 585	66.962	28.880	1.00	78 46
ATOM	2431	CG	LYS A	305	-4.408	66.440	29.691	1.00	82.23
		CD	LYS A	305	-3.751	67.539	30.519	1.00	85 07
ATOM	2432				-2.573	66.997	31.311	1.00	88.93
MOTA	2433	CE	LYS A	305				1 00	93 14
MOTA	2434	NZ	LYS A	305	-2 157	67.917	32.403		
ATOM	2435	С	LYS A	305	-3.949	66.755	26.972	1.00	73.92
ATOM	2436	0	LYS A	305	-3.474	65.623	26.867	1.00	73.27
ATOM	2437	N	SER A	306	-3.237	67.855	26.797	1.00	72.39
ATOM	2438	CA	SER A	306	-1 844	67.787	26.417	1 00	73.15
		CB	SER A	306	-1 656	68.461	25.061	1 00	72.57
ATOM	2439				-2.237	69.762	25.069	1.00	70 16
ATOM	2440	OG	SER A	306			27.445	1.00	73.60
MOTA	2441	С	SER A	306	-0.982	68.474			
ATOM	2442	0	SER A	306	-1 481	69.180	28.328	1.00	71.26
ATOM	2443	N	ASP A	307	0 314	68.208	27.363	1.00	76.59
ATOM	2444	CA	ASP A	307	1.281	68.827	28.260	1.00	78 33
ATOM	2445	CB	ASP A	307	2.480	67.891	28.515	1 00	84.92
	2446	CG	ASP A	307	3 022	67,239	27.236	1.00	89.57
ATOM				307	3 809	67.902	26.515	1 00	90 72
ATOM	2447	OD1	ASP A				26.956	1 00	90.72
ATOM	2448	OD2	ASP A	307	2,672	66.065			
MOTA	2449	С	ASP A	307	1 734	70.130	27.593	1.00	74.93
ATOM	2450	0	ASP A	307	1 883	71.163	28.254	1.00	73.18
ATOM	2451	N	ARG A	308	1 893	70.072	26.268	1.00	70.05
ATOM	2452	CA	ARG A	308	2 327	71.212	25.471	1.00	64.62
	2453	СВ	ARG A	308	2.295	70.877	23.986	1,00	64.91
MOTA				308	3.177	69.738	23.570	1.00	65.23
ATOM	2454	CG	ARG A				22,067	1.00	65.31
ATOM	2455	CD	ARG A	308	3 284	69.720			
MOTA	2456	NE	ARG A	308	3 889	68.494	21.573	1.00	68.52
ATOM	2457	CZ	ARG A	308	5 145	68.139	21.800	1.00	69.44
ATOM	2458	NH1	ARG A	308	5 939	68.925	22.515	1.00	70.73
ATOM	2459	NH2	ARG A	308	5.596	66.983	21.334	1.00	71.60
		c	ARG A	308	1 422	72,394	25.695	1.00	60.56
ATOM	2460			308	0.211	72.243	25.786	1.00	62.91
ATOM	2461	0	ARG A			73.576	25.721	1.00	58.75
ATOM	2462	N	GLU A	309	2.016				
ATOM	2463	CA	GLU A	309	1.278	74.807	25.937	1.00	59.53
ATOM	2464	CB	GLU A	309	2 155	75.795	26.707	1 00	64.51
MOTA	2465	CG	GLU A	309	2 863	75.195	27.909	1 00	72.73
ATOM	2466	CD	GLU A	309	4.037	76.041	28.375	1 00	78.39
			GLU A	309	5 196	75.650	28.107	1.00	80.45
MOTA	2467	OE1				77.091	29.013	1 00	81.42
ATOM	2468	OE2	GLU A	309	3 802				58 18
ATOM	2469	C	GLU A	309	0 895	75.423	24.595	1.00	
ATOM	2470	0	GLU A	309	1.550	75.172	23.576	1.00	56 69
ATOM	2471	N	PRO A	310	-9 202	76.204	24.566	1.00	57 07
ATOM	2472	CD	PRO A	310	-1.130	76.528	25.662	1.00	58 98
ATOM	2473	CA	PRO A	310	-0.639	76.848	23.325	1.00	54 68
		CB	PRO A	310	-1.898	77.610	23.755	1.00	56.45
ATOM	2474				-1.671	77.867	25.214	1.00	57.32
MOTA	2475	CG	PRO A	310			22.831	1.00	49.05
ATOM	2476	C	PRO A	310	9.456	77.787			
ATOM	2477	0	PRO A	310	1.136	78.437	23.631	1.00	48.09
MOTA	2478	N	LEU A	311	ა.617	77.835	21.512	1.00	43.40

					- /	6 -			
ATOM	2479	CA	LEU A	311	1.626	78.650	20.859	1.00	36.12
ATCM	2480	CB	LEU A	311	2.661	77.726	20.204	1.00	32.22
ATC:M	2481	CG	LEU A	311	3.919	78.324	19.578	1.00	31.79
ATOM	2482	CD1	LEU A	311	4.582	79.300	20.539	1.00	28.33
ATC-M	2483	CD2	LEU A	311	4.862	77.194	19.229	1.00	26.30
ATCM	2484	C	LEU A	311	0.936	79.478	19.793	1.00	32.51
ATOM	2485	0	LEU A	311	0.300	78.915	18.903	1.00	35.00
ATOM	2486	N	SER A	312	1.012	90.804	19.899	1.00	27.12
ATCM ATCM	2487 2488	CA CB	SER A SER A	312 312	0.386 0.324	81.654	18.894	1.00	26.22
ATCM	2489	OG	SER A	312	1.479	83.123 83.859	19.339 19.000	1 00 1 00	22 14
ATCM	2490	C	SEF. A	312	1.205	81 464	17.621	1 00	31 44 30 09
ATOM	2431	5	SER A	312	2.438	81 349	17.671	1.00	34 62
ATOM	2432	N	TYR A	313	0.526	81 399	16.483	1 00	30.05
ATCM	2493	-CA	TYR A	313	1 208	81 164	15 222	1 00	26.78
ATOM	2494	CB	TYR. A	313	0.221	81 101	14 070	1 00	21 90
ATOM	2495	€G	TYR A	313	0 740	80 223	12 968	1.00	23 94
ATOM	2496	CD1	TYR A	313	0.464	78 868	12.972	1.00	20.72
ATOM	2497	CE1	TYP A	313	0 991	78 032	12.022	1 00	22.06
ATOM ATOM	2498 2499	CD2 CE2	TYR A TYR A	313 313	1 555 2 091	80 729	11.951	1 00	16 61
ATOM	2500	CZ	TYP A	313	1 792	73 891 78 541	10 996 11 041	1 00 1 00	16.69
ATCM	2501	ОН	TYR A	313	2 294	77 666	10.123	1 00	17.14 24.17
ATOM	2502	C	TYR A	313	2 299	82 153	14.895	1.00	25 77
ATCM	1503	O	TYR A	313	3.326	8; 7 78	14 334	1 00	23.63
ATOM	2504	11	GLY A	314	2 071	83.415	15.238	1.00	18 58
MOTA	2505	CA	GLY A	314	3 053	84 444	14.965	1.00	34 94
ATCM	2506	C	GLY A	314	4 370	84 186	15.674	1.00	37.23
ATOM	2507	1)	GLY A	314	5.434	84.453	15 117	1.00	41.94
ATOM ATOM	2508 2509	n CA	ASP A ASP A	315 315	4 301 5 498	83 683	16 906	1 00	37.16
ATOM	2510	CB	ASP A	315	5.162	83 388 83 140	17.682 19.157	1.00 1 00	33 44
ATOM	2511	CG	ASP A	315	4 707	84.406	19 881	1.00	37.41 40 95
ATOM	2512	001	ASP A	315	3.906	84 295	20 835	1 00	48.93
ATCM	2513	OD2	ASP A	315	5.147	85.515	19 504	1.00	45.51
MOTA	2514	C	ASP A	315	6.147	82.172	17.074	1.00	28.81
MOTA	2515	O	ASP A	315	7.357	82.139	16 893	1 00	32 18
ATOM	2516	11	TYR A	316	5 333	81 179	16.746	1.00	26.31
MOTA	2517	CA	TYR A	316	5.823	79 963	16.116	1.00	25 28
ATOM ATOM	2518 2519	CB CG	TYR A TYR A	316 316	4 64€ 4 98€	79 064 77 997	15 709 14 682	1.00	23 80
ATOM	2520	CD1	TYR A	316	5 604	76.802	15 061	1.00	28.01 26.83
MOTA	2521	CE1	TYR A	316	5.903	75.810	14.106	1.00	25.18
ATOM	2522	CD2	TYR A	316	4.682	78 1 7 7	13.323	1 00	22 23
MOTA	2523	CE2	TYR A	316	4 981	77.194	12 372	1 00	16.07
ATOM	2524	CZ	TYR A	316	5 58 €	76 020	12.769	1 00	19.33
MOTA	2525	0.8	TYR A	316	5 850	75.040	11 843	1.00	22.12
ATOM	2526	Ċ	TYR A	316	6 625	80 333	14 872	1 00	26.20
MOTA MOTA	2527 2528	0	TYR A LEU A	316 317	7 812 5 977	80 010	14 766	1 00	23 86
ATOM	2529	CA	LEU A	317	6 579	81 062 81 454	13 966 12 705	1.00 1.00	26 87 26 33
MOTA	2530	CB	LEU A	317	5 548	82.112	11 783	1 00	22.99
ATOM	2531	CG	LEU A	317	6 032	82 167	10 334	1 00	17.66
MOTA	2532	CD1	LEU A	317	5 962	80 780	9.722	1 00	16 43
MOTA	2533	CD2	LEU A	317	5 205	83.147	9 549	1 00	13 47
MOTA	2534	С	LEU A	317	7 801	82 340	12 830	1 00	25 42
MOTA	2535	0	LEU A	317	8 781	82 125	12.134	1.00	29.40
ATOM	2536	11	GLN A	318	7.753	83 341	13 696	1 00	26.38
ATOM	2537	CA	GLN A	318	8 891	84 226	13.846	1.00	29 10
ATOM ATOM	2538 2539	CB CG	GLN A GLN A	318 318	8 643 7.722	85 254 86 361	14 933 14 557	1 00	34.57
ATOM	2540	CD	GLN A	318	7 422	87 230	15 744	1 00 1 00	45 89 54 11
ATOM	2541	OE1	GLN A	318	8 27€	87 996	16 198	1 00	60 92
MOTA	2542	NE2	GLN A	318	6.224	87 084	16.292	1 00	56 69
ATOM	2543	C	GLN A	318	10 114	83 429	14.215	1 00	32 19
MOTA	2544	0	GLN A	318	11 147	83 529	13.560	1 00	34 97
ATOM	2545	31	ASN A	319	9 967	82 589	15.231	1 00	33.42
MOTA	2546	CA	ASN A	319	11 076	81.780	15.711	1 00	38 92
MOTA	2547	CB	ASN A	319	10 751	81,192	17.088	1 00	45.44
ATOM	1548	CG	ASN A	319	10 635	82.276	19.174	1 00	54 83
MOTA	2549	ODI	ASN A	319	11 612	82.952	18.502	1 00	56 44
ATOM	2550	ND2 C	ASN A	319	9 429	82.470	13.702	1.00	59 48
MOTA	2551	·-	ASN A	319	11 506	80.705	14.725	1.00	40.03

ATOM	2552	0	ASN A	319	12.703	80.502	14.494	1.00	44 50
ATOM	2553	N	GLY A	320	10.531	80 058	14.100	1.00	39 74
ATOM	2554	CA	GLY A	320	10.827	79 022	13.130	1 00	35 73
	2555	C.	GLY A	320	11. 611	79 582	11 .962	1 00	35 37
MOTA	2556	0	GLY A	320	12.536	78 951	11.471	1 00	37.50
ATOM		N	LEU A	321	11 270	80 786	11. 530	1 00	34 76
MOTA	2557		LEU A	321	11.967	81 393	10 415	1.00	39 63
ATOM	2558	CA				82 583	9 877	1.00	36.97
ATOM	2559	CB	LEU A	321	11.191		9 187	1.00	38 18
ATOM	2560	CG	LEU A	321	9 901	82.168		1 00	38.33
MOTA	2561	CD1	LEU A	321	9.271	83.392	8.570		
ATOM	2562	CD2	LEU A	321	10.181	81.108	8 134	1 00	35.19
ATOM	2563	C	LEU A	321	13.382	81 805	10 757	1 00	44.08
ATOM	2564	0	LEU A	321	14.287	81 606	9 953	1.00	46 65
ATOM	2565	N	VAL A	302	13.581	82 378	11.941	1.00	49 49
ATOM	2566	CA	VAL A	322	14.923	82 806	12.345	1.00	53 83
MOTA	2567	CB	VAL A	322	14.939	83 617	13.671	1 00	53.89
ATOM	2568	CG1	VAL A	322	13.945	84 767	13 615	1 00	53 1 8
ATOM	2569	CG2	VAL A	322	14.698	82.698	14 869	1.00	55. 17
ATOM	2570	С	VAL A	322	15.894	81 645	12.511	1.00	54.31
ATOM	2571	0	VAL A	322	17.104	81.848	12 478	1.00	59.46
ATOM	2572	N	SER A	323	15.378	80.452	12.773	1.00	52 61
		CA	SER A	323	16.254	79.309	12.940	1.00	53 68
ATOM	2573	CB	SER A	323	15.480	78 096	13.468	1.00	55.08
MOTA	2574		SER A	323	14.499	77 644	12 551	1.00	52.98
ATOM	2575	OG C	SER A	323	16,913	78 965	11.616	1.00	54 49
MOTA	2576	С			18.061	78.523	11.584	1.00	58.60
ATOM	2577	0	SER A	323	16.194	79.186	10.522	1.00	55.84
MOTA	2578	N	LEU A	324		78.861	9.207	1.00	56.10
MOTA	2579	CA	LEU A	324	16.725		8 229	1.00	52 73
ATOM	2580	CB	LEU A	324	15.596	78.485	8.017	1.00	51.08
ATOM	2581	CG	LEU A	324	14.383	79.396			54.72
MOTA	2582	CD1	LEU A	324	14.679	80.431	6.945	1.00	
ATOM	2583	CD2	LEU A	324	13.183	78.561	7.606	1.00	50.43
ATOM	2584	С	LEU A	324	17.637	79.928	8 625	1.00	57.85
MOTA	2585	0	LEU A	324	17.696	81.050	9.116	1.00	55.56
ATOM	2586	N	ILE A	325	18.379	79.536	7.595	1.00	62 83
ATOM	2587	CA	ILE A	325	19.307	80.428	6.910	1.00	64.52
ATOM	2588	СВ	ILE A	325	20.264	79.668	5.969	1.00	64.56
ATOM	2589	CG2	ILE A	325	21.516	80.496	5.747	1.00	65.36
ATOM	2590	CG1	ILE A	325	20.591	78.271	6.516	1.00	65.53
ATOM	2591	CD1	ILE A	325	19.563	77.197	6.136	1.00	67.86
ATOM	2592	С	ILE A	325	18.501	81.383	6.034	1.00	65.56
ATOM	2593	0	ILE A	325	17.808	80.957	5.110	1.00	66 01
ATOM	2594	N	ASN A	326	18.621	82.673	6.312	1.00	67.38
ATOM	2595	CA	ASN A	326	17.899	83.696	5.559	1.00	68.33
	2596	CB	ASN A	326	18.205	85.097	6.105	1.00	73.56
ATOM		CG	ASN A	326	17.632	85.325	7.495	1.00	78 94
ATOM	2597	OD1	ASN A	326	17.224	84.386	8.171	1.00	83.34
ATOM	2598		ASN A	326	17.590	86.582	7.920	1.00	79 40
MOTA	2599	ND2			18.169	83.663	4.068	1.00	65.53
ATOM	2600	C	ASN A	326		83.861	3.274	1.00	67.11
ATOM	2601	0	ASN A	326	17.254		3.681	1.00	59 01
ATOM	2602	N	LYS A	327	19.413	83.404		1.00	54 20
MOTA	2603	CA	LYS A	327	19.761	83.355	2.263		53 73
MOTA	2604	CB	LYS A	327	21.277	83.218	2.095	1.00	
MOTA	2605	CG	LYS A	327	22.021	84.515	2.327	1.00	53 84
ATOM	2606	CD	LYS A	327	23.511	84.317	2.266	1.00	60.90
ATOM	2607	CE	LYS A	327	24.262	85.605	2.584	1.00	61.87
MOTA	2608	NZ	LYS A	327	24 203	86.582	1.467	1.00	58.17
ATOM	2609	С	LYS A	327	19.033	82.256	1.500	1.00	51.14
ATOM	2610	0	LYS A	327	18.610	82.472	0.370	1.00	50.58
MOTA	2611	N	ASN A	328	18.868	81.088	2.109	1.00	51.00
MOTA	2612	CA	ASN A	328	18 186	79.980	1.439	1.00	56.30
ATOM	2613	CB	ASN A	328	18 717	78.637	1.947	1.00	59.34
ATOM	2614	CG	ASN A	328	20 104	78.345	1.410	1.00	62.04
ATOM	2615	OD1	ASN A	328	21.052	79.056	1.725	1.00	64.52
		ND2	ASN A	328	20 226	77.327	1.562	1.00	65.59
MOTA	2616	C ND2	ASN A	328	16.657	80.013	1.498	1.00	56.83
ATOM	2617		ASN A	328	15.976	79.760	0.505	1.00	57.74
MOTA	2618	0	GLY A	329	16.117	80.291	2.684	1.00	59.02
ATOM	2619	И			14.678	80.340	2.864	1.00	57.93
ATOM	2620	CA	GLY A	329			2.645	1.00	61.61
MOTA	2621	C	GLY A	329	13.973	79.011		1.00	63.66
ATOM	2622	0	GLY A	329	14.604	77.939	2.645		
MOTA	2623	N	GLN A	330	12.665	79.134	2.426	1.00	63.44
ATOM	2624	CA	GLN A	330	11 .647	78.088	2.186	1.00	62.51

WO 98/16648	PCT/GB97/02838

- 78 -											
ATOM	2625	СВ	GLN A	330	12.152	76.612	2.170	1.00	61.84		
ATCM	2626	CG	GLN A	330	11.146	75.609	1.460	1.00	62.53		
ATCM	1627	CD	GLN A	330	11.591	74.116	1.364	1.00	61.91		
ATOM	2628	OE1	GLN A	330	10.948	73.200	1.946	1.00	56.42		
ATCM	2629	NE2	GLN A	330	12.658	73.864	0.605	1.00	56.02		
ATCM	2630	C	GLN A	330	10.703	78.366	3.357	1.00	61.76		
ATOM	2631	0	GLN A	330	11.044	78.121	4.511	1.00	61.59		
ATOM	2632	N	THR A	331	9.623	79.069	3.018	1.00	61 83		
ATOM	2633	CA	THR A	331	8.542	79.549	3.891	1.00	57 39		
MOTA	2634	CB	THR A	331	8.685	79.154	5.400	1.00	46 65		
ATOM	2635	OG1	THR A	331	8.904	77.740	5.517	1.00	38 61		
ATOM	2636	ÇG2	THR A	331	7.378	79.483	6.144	1.00	48 69		
ATOM	2637	C	THR A	331	8.427	81.085	3.668	1.00	59 73		
ATOM	2638	0	THR A	331	8.586	81.496	2.495	1.00	55 52		
ATOM	2639	OT	THR A	331	8.131	81.869	4.601	1.00	62.34		
ATOM	2640	MN	MN A	350	10.357	71.058	3.078	1.00	32 10		
ATOM	2641	MN	MN A	351	16.765	98.946	-5.069	1.00	40.69		
END											

END

-79-Table 3

					Tabl	<u>e 3</u>			
CRYST1	46.8	00 71	.500	101.000		90.00 90.0			
SCALE1		0.021		0.00000	0.00000		0.00000		
SCALE2		0.000		0.013986	0.00000		0.000000		
SCALE3		0.000		0.000000	0.00990		0.000000 5.699	1.00	7.93
ATOM	1	C1	ACV ACV	1 1	17.235 15.798	36.323 36.590	6 165	1.00	7.47
ATOM	2	C2 C3	ACV	1	15.738	37.802	5 425	1.00	6.42
ATOM	3 4	C4	ACV	1	13.766	38.091	5 918	1.00	7.71
ATOM	5	C7	ACV	1	13 330	39 380	5.168	1.00	8.43
ATOM ATOM	6	C10	ACV	1	11 912	39.669	5 584	1.00	8.88
ATOM	7	N2.1	ACV	1	10.931	39.447	4 714	1.00	6.98
ATOM	8	C12	ACV	1	9 503	39.719	4 858	1.00	7.75
ATOM	9	C13	ACV	1	8 767	38.397	4.657	1.00	7 09
ATOM	10	N14	ACV	1	15 791	36 747	7 696	1.00	8.98
ATOM	11	015	ACV	1	11 566	40.061	6 715	1.00	11.68
ATOM	12	C16	ACV	1	9.131	40 743	3.765	1.00	7.15
ATOM	13	S17	ACV	1	9 513	40.068	2.102	1.00	8 44
MOTA	14	018	ACV	1	9.269	37.306	4 670	1.00	9.78
MOTA	15	019	ACV	1	18 173	36.442	6.549 4.492	1.00 1.00	8.96 7.91
MOTA	16	020	ACV	1	17.393 7.424	36.068 38.510	4.492	1.00	9.16
ATOM	17	N29 C30	ACV ACV	1	6.543	37 341	4.409	1.00	9 68
ATOM	18 19	C31	ACV	1	5.317	37.433	5 318	1.00	10 48
ATOM ATOM	20	C32	ACV	1	6 104	37 147	2.912	1 00	12 78
ATOM	21	C33	ACV	1	7 348	36 829	2 039	1.00	11.31
ATOM	22	C37	ACV	1	5 562	38 560	2 564	1.00	18.82
ATOM	23	042	ACV	1	5 240	38.298	6.210	1.00	10.58
ATOM	24	043	ACV	1	4.417	36.560	5 151	1.00	9.69
MOTA	25	S	SUL	2	13.002	14 100	2 417	1.00	25 69
ATOM	26	01	SUL	2:	13.804	14.598	3 492	1.00	32.83
MOTA	27	02	SUL	2	13 918	13.558	1.424	1.00	41.91
MOTA	28	03	SUL	2	12.155	13 073	2:.934	1.00	30.42
MOTA	29	04	SUL	1000	12,299	15 076	1.614 0 544	1 00 1.00	21.23 7.64
ATOM	30	FE	IUM SER	1000 3	7.903 -15.013	40 943 47 966	-1.402	1.00	42.72
ATOM	31 32	N CA	SER		-14.317	46 679	-1 445	1.00	39.06
MOTA MOTA	32	C	SER		-12 942	46.953	-2 052	1.00	36.17
ATOM	34	0	SER		-12 712	48.077	-2.493	1.00	41.73
ATOM	35	СВ	SER		-14.951	45.513	-2.197	1.00	42.74
ATOM	36	OG	SER	3	-14 920	45.578	-3.613	1 00	52.50
ATOM	37	N	VAL	4	-12 127	45 917	-2.096	1.00	33.45
ATOM	38	CA	VAI	. 4	-10 801	46.077	-2.708	1 00	30.02
ATOM	39	C	VAL		-10.826	45.243	-3.983	1 00	26.11
ATOM	40	0	VAL		-11 331	44.137	-3.995	1.00	26 45
ATOM	41	CB	VAL	4	-9 693	45.600	-1 751 -2 407	1 00 1.00	32.20 31.47
ATOM	42	CG1	VAL	4	-8 324 -9 619	45 544 46.380	-0 434	1.00	39.65
ATOM	43 44	CG2 CB	VAL SER	- 1 5	-9.685	46.084	-7.342	1.00	28 73
ATOM		OG	SER		-10.494	46.429	-8 413	1.00	43.87
ATOM ATOM	45 46	c	SER	5	-9 128	43.958	-6 292	1.00	21.38
ATOM	47	ō	SER	.5	-8 126	44.094	-5.558	1.00	17.45
ATOM	4.8	N	SER		-10 297	45.742	-5.071	1.00	22.91
ATOM	49	CA	SER	5	-10 216	45.050	-6 347	1.00	24.13
ATOM	50	N	LYS	6	-9 338	42.900	-7 057	1.00	20 27
ATOM	51	CA	LYS	6	-8 400	41.770	-7.199	1.00	18 92
ATOM	52	CB	LYS	6	-9.148	40.516	-7 644	1.00	25.88
MOTA	53	CG	LYS	6	-8.452	39.606	-8 620 0 377	1.00	33 15
ATOM	54	CD	LYS	6	-8 676	38.116 37.434	-8 377 -9.627	1.00	36 92 40 48
ATOM	55	CE	LYS	6 6	-9 217 -10.331	38.278	-10 180	1.00	49.46
ATOM	56	NZ C	LYS LYS	6	-7 302	42.178	-8 167	1.00	16 57
ATOM ATOM	57 58	0	LYS	6	-7 476	42.719	-9 294	1.00	19.33
ATOM	59	N	ALA	7	-6 060	41.933	-7.756	1.00	13 66
ATOM	60	CA	ALA	7	-4 879	42.175	-8 572	1.00	12.78
ATOM	61	CB	AL		-3.616	42.083	-7 716	1.00	14.08
ATOM	62	C	ALA	7	-4.803	41.135	~9 678	1.00	12.30
ATOM	63	0	ALA	7	~5.069	39.957	-9.497	1.00	13.11
ATOM	64	N	ASN	8	-4.325	41.585	-10 844	1.00	15.13
ATOM	65	CA	ASN	8	-4.026	40.653	-11.913	1.00	16.54
ATOM	66	CB	ASN	8	-3.650	41.448	-13.197	1.00	24.27
MOTA	67	CG	ASN	8	-4.274	40.597	-14.298	1.00	29.61
ATOM	68	OD1	ASN	8	-3.669	39.640	-14.787	1.00	35.60
MOTA	69	ND2	ASN	8	-5.528	40.986	-14.477	1.00	43.75

					- 0	0 -			
MOTA	70	2	ASN	8	-2.738	39.882	-11.623	1.00	13.63
ATOM	71	כ	ASN	8	-1.648	40.451	-11.691	1.00	16.79
ATOM	72	N	VAL	9	-2.918	38.611	-11.353	1.00	11.43
ATOM	73	CA	VAL	9	-1.809	37.707	-11.016	1.00	10.00
ATOM	74	CB	VAL	9	-1.770	37.383	-9.522	1.00	10.55
ATCM	75	IG1	VAL VAL	9	-0.548 -1.726	36.537	-9.229	1.00	10.77
ATCM ATCM	76 77	CG2 -C	VAL	9	-1.726	38.675 36.422	-8.725 -11.845	1 00 1 00	11.32
ATCM	78	2	VAL	9	-2 621	35.466	-11 464	1 00	10 66 14 19
ATOM	79	N	PRO	10	-1 385	36.425	-13 059	1.00	9 44
ATCM	80	CD	PRO	10	-0 544	37.474	-13.650	1 00	10 90
ATOM	81	CA	PRO	10	-1 565	35.299	-13 942	1 00	10 48
ATOM	82	∑B	PRO	10	-C.901	35.749	-15 235	1 00	12.92
ATOM	83	CG	PRO	10	-C 067	36.924	-14 937	1 00	15 89
ATOM	84	C o	PRO	10	-0 883	34 026	-13 444	1 00	9 89
ATOM ATOM	85 86	C: N	PRO LYS	10 11	0 125 -1 414	34 091 32 896	-12 734 -13 847	1 00 1 00	10.22
ATOM	87	CA	LYS	11	-0 B15	31.597	-13.586	1.00	9 52 9 53
ATOM	88	CB	LYS	11	-1.885	30.560	-13.230	1.00	12.58
ATOM	8.9	CG	LYS	11	-2 651	30 971	-11 965	1.00	18 45
ATOM	90	CD	LYS	11	-3 746	30.048	-11.504	1.00	23.78
ATOM	91	CE	LYS	11	-4 685	30.872	-10.629	1.00	25.4€
ATOM	92	NZ	LYS	11	-4 154	31 101	-9.250	1.00	27 77
ATOM	93	2	LYS	11	0 020	31 211	-14 803	1 00	10 29
ATOM ATOM	94 95	и С	LYS ILE	11 12	-0 482 1 301	31.172 31.019	-15 926 -14 640	1 00	16 95
ATOM	96	CA.	ILE	12	2.214	30 697	-15 742	1.00 1.00	8.18 8.29
ATOM	97	CB	ILE	12	3.358	31 733	-15 815	1 00	8 64
ATOM	9.8	CG2	ILE	12	4.366	31.311	-16 864	1.00	9 33
ATOM	99	CG1	ILE	12	2 860	33 160	-16 018	1.00	9 90
ATOM	100	CD1	ILE	12	3 945	34 238	-15.984	1.00	10.28
ATOM	101	С	ILE	12	2.749	29 284	-15 518	1.00	7.89
MOTA	102	0	ILE	12	3 346 2 542	28 974	-14 504	1.00	7 80
ATOM ATOM	103 104	N CA	ASP ASP	13 13	2 542 3 109	28 428 27 068	-16.522 -16.533	1.00 1.00	8.72
ATOM	105	CB	ASP	13	2 391	16 193	-17 536	1.00	8 16 9 68
ATOM	106	CG	ASP	13	2 947	24 828	-17 728	1.00	11 65
ATOM	107	OD1	ASP	13	4 047	14 478	-17 257	1 00	10.88
MOTA	108	OD2	ASP	13	2 283	24.013	-18 401	1.00	19 22
MOTA	109	C	ASP	13	4 601	27.248	-16 838	1 00	7 72
ATOM	110	0	ASP	13	5 005	17 527	-17.990	1.00	9 02
ATOM ATOM	111 112	N CA	VAL VAL	14 14	5 413 6 862	16 983 27 170	-15 825 -15.947	1.00 1.00	8.27
ATOM	113	CB	VAL	14	7.453	27 766	-14 680	1 00	8 27 8 09
ATOM	114	CG1	VAL	14	6 890	29 164	-14 465	1.00	9 81
ATOM	115	CG2	VAL	14	7 298	26 882	-13 458	1 00	8.58
ATOM	116	C	VAL	14	7 592	25 910	-16.328	1.00	8.98
ATOM	117	Ó	VAL	14	8 815	25 950	-16.464	1 00	10 04
ATOM	118	11	SER	15	6.851	24 822	-16 531	1 00	9 65
ATOM	119	CA	SER	15	7.532	23 572	-16.883 -16.994	1.00	9.94
ATOM ATOM	120 121	CB OG	SER SER	15 15	6.548 5.618	22.411 22.532	-18.063	1.00 1.00	10.80 12.34
ATOM	122	ď	SER	15	B.469	23 599	-18.070	1.00	9.33
ATOM	123	0	SER	15	9 519	22 915	-18.009	1 00	9 96
MOTA	124	N	PRO	16	8 218	14 364	-19.141	1 00	10 18
ATOM	125	CD	PRO	16	2 026	25 108	-19 546	1.00	9 79
ATOM	126	CA	PRO	16	9.220	24 381	-20 209	1 00	10 12
ATOM	127	CB	PRO	16	8.629	25 357	-21.226	1 00	10 60
ATOM ATOM	128 129	cG C	PRO PRO	16 16	7.127 10 583	25 247 24 909	-21.015 -19.807	1.00 1.00	11 12
ATOM	130	Ö	PRO	16	11.579	24.613	-20 444	1 00	9.66 11.72
ATOM	131	N	LEU	17	10 666	25 693	-18 711	1 00	10 05
ATOM	132	CA	LEU	17	11 949	26 232	-18 288	1 00	10 06
ATOM	133	CB	LEU	17	11 738	27 358	-17.276	1.00	8.52
ATOM	134	ΩG	LEU	17	10.992	28 598	-17.808	1 00	9.04
ATOM	135	CD1	LEU	17	10 784	29.540	-16.622	1 00	9 12
ATOM	136	CD2	LEU	17	11 738	29.314	-18.922	1 00	10 89
ATOM	137	С О	LEU	17 17	12 890	25.183	-17 692	1 00	11 62
ATOM ATOM	138 139	Ŋ	PHE	13	14:087 12:403	25.442 23.970	-17 466 -17.499	1 00 1.00	12 52
ATOM	140	CA	PHE	13	13.234	22.862	-17.065	1.00	11.77 12.92
ATOM	141	СВ	PHE	19	12.363	21,947	-16.180	1 00	12.94
ATOM	142	CG	PHE	13	12.070	22.571	-14.820	1.00	13.53

					0.				
ATOM	143	CD1	PHE	18	10 872	23.207	-14.598	1.00	17 84
ATOM	144	CD2	PHE	18	12 965	22.503	-13.766	1 00	14 00
ATOM	145	CE1	PHE	18	10 537	23 720	-13.359	1 00	17.86
ATOM	146	CE2	PHE	18	12 638	22 974 23 614	-12 519 -12.326	1 00 1 00	14 38 15 20
MOTA	147 148	CZ C	PHE	18 18	11 444 13.768	22.054	-18.231	1 00	14.72
ATOM ATOM	149	0	PHE	18	14.567	21 129	-18 012	1.00	17 55
ATOM	150	N	GLY	19	13.321	22.349	-19.445	1.00	15.60
ATOM	151	CA	GLY	19	13.718	21 513	-20 583	1 00	17.05
ATOM	152	С	GLY	19	14.489	22.248	-21.663	1 00	16.88
MOTA	153	0	GLY	19	15 092	23.280	-21.384	1.00	16.84
ATOM	154	N	ASP	20	14.471	21 679	-22.868 -23.997	1.00	18.23 19.57
ATOM	155	CA C	ASP ASP	20 20	15.241 14 418	22 147 22 595	-25.186	1.00	16 96
ATOM ATOM	156 157	0	ASP	20	14.976	22 646	-26.285	1.00	18 78
ATOM	158	СВ	ASP	20	16.172	21.025	-24.491	1.00	25.9€
ATOM	159	CG	ASP	20	16.954	20.446	-23.320	1.00	30 78
ATOM	160	OD1	ASP	20	17 102	19.208	-23.399	1.00	38.92
ATOM	161	OD2	ASP	20	17 315	21 213	-22.393	1.00	40.12
ATOM	162	N	ASP	21	13 161	22.913	-25.013	1.00 1.00	16.58
ATOM	163	CA	ASP	21 21	12 383 10.920	23.435 23.028	-26 145 -25.985	1.00	16.91 18.23
ATOM	164 165	CB CG	ASP ASP	21	10.920	23.362	-27.142	1.00	20.86
ATOM ATOM	166	OD1	ASP	21	10 313	24 380	-27.796	1.00	21 70
ATOM	167	OD2	ASP	21	8 968	22.756	-27.430	1.00	27 79
ATOM	168	C	ASP	21	12 561	24.961	-26.116	1.00	14.20
ATOM	169	0	ASP	21	11.892	25.648	-25.343	1.00	12.84
ATOM	170	N	GLN	22	13.504	25.500	-26.887	1.00	15 68
ATOM	171	CA	GLN	22	13 813	26.915	-26.764 -27.545	1.00 1.00	13.82 13.58
MOTA	172 173	CB CG	GLN GLN	22 22	15.048 16.257	27.347 26.474	-27.348	1.00	15 37
MOTA MOTA	174	CD	GLN	22	16.663	26 189	-25,918	1.00	16.56
ATOM	175	OE1	GLN	22	16.485	27 042	-25.067	1.00	19.01
ATOM	176	NE2	GLN	22	17 205	24.984	-25.728	1.00	19 39
ATOM	177	C	GLN	22	12.654	27.819	-27.116	1.00	13 52
ATOM	178	0	GLN	22	12.484	28.853	-26.449	1.00	11.96
MOTA	179	N	ALA	23 23	11.890 10.739	27.480 28.320	-28.125 -28.488	1.00 1.00	16.53 16.41
MOTA MOTA	180 181	CA CB	ALA ALA	23	10.739	27.855	-29.796	1.00	22.56
ATOM	182	C	ALA	23	9.715	28.331	-27.352	1.00	13.99
ATOM	183	O	ALA	23	9 120	29.380	-27.065	1.00	13.68
MOTA	184	N	ALA	24	9 451	27.160	-26.761	1.00	13 08
MOTA	185	CA	ALA	24	8 481	27.122	-25.650	1 00	11 55
MOTA	186	CB	ALA	24	8 214	25.694	-25.217 -24.524	1.00 1.00	13.62 9.62
ATOM	187 188	C 0	ALA ALA	24 24	8.988 8 213	27.977 28 627	-23.815	1.00	9.80
ATOM ATOM	189	N	LYS	25	10 278	27 958	-24.263	1 00	10.01
ATOM	190	CA	LYS	25	10 844	28 781	-23.178	1 00	9.16
ATOM	191	CB	LYS	25	12 332	28.472	-23.004	1 00	9.87
MOTA	192	CG	LYS	25	12.600	27.128	-22.327	1.00	13.94
MOTA	193	CD	LYS	25	14 077	27.106	-21.852	1.00	21.25
ATOM	194	CE	LYS LYS	25 25	14.817 16 254	25 974 26 073	-22 406 -22 150	1.00 1.00	24.07 19.05
ATOM ATOM	195 196	NZ C	LYS	25	10 657	30.249	-23.474	1 00	7.92
ATOM	197	0	LYS	25	10.375	31.042	-22 566	1.00	8.19
ATOM	198	N	MET	26	10 811	30.662	-24 728	1 00	8.75
ATOM	199	CA	MET	26	10 564	32.085	-25.068	1.00	9.12
ATOM	200	CB	MET	26	10.903	32 408	-26 546	1 00	9.73
ATOM	201	CG	MET	26	12.399	32.424	-26.816	1 00	10.03
ATOM	202	SD	MET	26	13.322	33.724 35.132	-25 970 -27.066	1 00 1.00	10.21 10.95
ATOM	203	CE C	MET MET	26 26	13.056 9 115	32 487	-24 804	1 00	8 72
ATOM ATOM	204 205	0	MET	26	8.828	33.594	-24 356	1 00	8.27
ATOM	206	И	ARG	27	8.163	31 585	-25 091	1.00	8 42
ATOM	207	CA	ARG	27	6.767	31 903	-24.809	1 00	9.14
ATOM	208	CB	ARG	27	5.842	30 894	-25.505	1 00	10 27
ATOM	209	CG	ARG	27	5.895	31 042	-27.031	1 00	11.63
ATOM	210	CD	ARG	27	4.969	30 149	-27.808	1 00	15.41
ATOM	211	NE C7	ARG ARG	27 27	5.322 5.998	28.732 28.016	-27.657 -28.551	1 00 1 00	17.68 17.12
ATOM ATOM	212	CZ NH1	ARG	27	6.271	26 720	-28.331	1 00	18.08
ATOM	214	NH2	ARG	27	6.357	28 591	-29.680	1 00	19.32
ATOM	215	C	ARG	27	6.496	32 020	-23.319	1.00	9.48

ATOM	216	0	ARG	27	5.649	32,854	-22.925	1.00	9.79
MOTA	217	N	VAL	28	7.214	31.249	-22.488	1.00	7.80
ATOM	218	CA	VAL	2 9	7.129	31.447	-21.039	1.00	7.80
ATOM	219	CB	VAL	23	7.799	30.307	-20.275	1.00	8.02
ATOM	220	CG1	VAL	2 3	7.893	30.582	-18.782	1.00	9.37
ATOM	221	CG2	VAL	23	7.194	28.970	-20.553	1.00	10.98
ATOM	222	С	VAL	2 3	7.743	32.786	-20.643	1.00	7.31
ATOM	223	0	VAL	23	7.164	33.556	-19.853	1.00	7.76
MOTA	224	N	ALA	2:3	8.909	33.096	-21.235	1.00	7 04
MOTA	225	CA	ALA	2.3	9.578	34.368	-20.949	1.00	7.37
ATCM	226	CB	ALA	2 9	10 870	34.447	-21.743	1.00	7 98
ATCM	227	C	ALA	2.3	8 691	35.579	-21.233	1.00	7 31
ATOM	228	0	ALA	29	8.662	36.547	-20 478	1.00	8 13
ATCM	229	N	GLN	30	7 902	35.483	-22.319	1.00	7 11
ATOM	230	CA	GLN	30	7 001	36 576	-22 637	1.00	7 56
ATOM	231	СВ	GLN	30	6 261	36.323	-23.976	1.00	
ATCM	232	CG	GLN	30	5 378	37 456	-24 427	1.00	B.19
ATCM	233	CD	GLN	3.0	3.966	37 535	-23 845		8 58
ATOM	234	OE1	GLN	30	3.396	36.491		1.00	8 95
		NE2			3 570		-23.534	1.00	10.78
ATOM	235		GLN	30		38 741	-23.481	1.00	9.99
ATOM	236	C	GLN	3.0	6 005	36.784	-21.497	1.00	6.94
ATOM	237	0	GLN	30	5 631	37 936	-21.231	1.00	8 27
ATOM	238	N	GLN	31	5.464	35 677	-20 996	1.00	7 41
ATCM	239	CA	GLN	31	4.470	35 750	-19.933	1.00	7 30
ATOM	240	CB	GLN	31	3.924	34 357	-19 675	1 00	8.13
ATOM	241	CG	GLN	31	3.117	33 748	-20.829	1.00	9.37
ATOM	242	CD	GLN	32	2.722	32 316	-10.493	1.00	11 83
ATCM	243	OE1	GLN	3.1	1.843	32 090	-19.656	1.00	15 21
ATOM	244	NE2	GLN	31	3.391	31 367	-21.108	1.00	18 42
ATOM	245	C	GLN	31	5.093	36 370	-18 681	1.00	7 43
ATOM	246	0	GLN	31	4 459	37 197	-18.024	1 00	7.98
ATOM	247	14	ILE	32	6 326	36.030	-18.367	1 00	6 96
ATOM	248	CA	ILE	32	7 047	36.640	-17 258	1 00	7.29
ATOM	249	CB	ILE	32	8.389	35 925	-17 010	1 00	7 37
MOTA	250	CG2	ILE	32	9.254	36.685	-16.004	1 00	9 11
ATOM	251	CG1	ILE	32	8 126	34 504	-16.497	1.00	7.84
MOTA	252	CD1	ILE	32	9.335	33 611	-16.390	1 00	9.10
ATOM	253	С	ILE	35	7 235	38 139	-17 496	1.00	7.13
ATOM	254	0	ILE	3.2	7.023	38.945	-16 602	1.00	8 31
ATOM	255	И	ASP	33	7.632	38 515	-18 717	1 00	7 76
ATOM	256	CA	ASP	33	7.801	39 927	-19 072	1 00	8 04
ATOM	257	CB	ASP	33	8.257	40 026	-20 550	1.00	8.19
ATOM	258	CG	ASP	33	8.447	41 482	-20 994	1 00	8.88
MOTA	259	OD1	ASP	33	9 429	42 118	-20.550	1 00	9 63
ATOM	260	OD2	ASP	33	7 56C	41 941	-21 792	1 00	9 07
MOTA	261	С	ASP	33	6 48C	40 675	-18 835	1 00	7.95
ATOM	262	0	ASP	33	6.480	41 751	-18.200	1 00	8 54
MOTA	263	N	ALA	34	5.357	40 154	-19.355	1 00	8 10
MOTA	264	CA	ALA	34	4.079	40.834	-19.202	1 00	8.69
ATOM	265	CB	ALA	34	2.993	40 062	-19 938	1 00	9 24
ATOM	266	С	ALA	34	3.709	41 028	-17.735	1.00	8.36
MOTA	267	0	ALA	34	3.284	42.105	-17.299	1.00	9 82
ATOM	268	N	ALA	3.5	3.903	39.967	-16 933	1 00	8.64
MOTA	269	CA	ALA	35	3 505	40.093	-15 538	1 00	9.10
ATOM	270	CB	ALA	35	3.527	38 723	-14 870	1 00	11.05
ATOM	271	С	ALA	35	4 423	41 047	-14 779	1 00	9.17
ATOM	272	0	ALA	35	3 968	41 822	-13.942	1.00	10 62
ATOM	273	N	SER	36	5.709	41.042	-15 146	1.00	8.20
ATOM	274	CA	SER	36	6 683	41 896	-14.467	1.00	7.99
ATOM	275	CB	SER	3 <i>6</i>	8.108	41 485	-14.830	1.00	8 90
ATOM	276	OG	SER	3 €	8 354	40 129	-14.485	1 00	8.75
ATCM	277	С	SER	3 €	6 436	43 364	-14.801	1.00	9 43
ATCM	278	0	SER	36	6 761	44 224	-13.994	1.00	12 45
ATOM	279	N	AR 3	3 ~	5 871	43 633	-15.993	1.00	9.00
ATCM	280	CA	ARG	3.7	5 572	44 996	-16.415	1.00	10 53
ATOM	281	CB	AR-3	37	5 685	45 095	-17.931	1.00	11 22
ATOM	282	CG	AR-3	3 7	7 04€	44 858	-18.544	1.00	12 00
ATOM	283	CD	AR-3	3 ?	7 074	44 615	-20,051	1.00	14 37
ATOM	284	NE	ARG	3 7	6 514	45.706	-20.881	1.00	15 54
ATOM	285	ÇŽ	ARG	3.7	6.327	45.575	-12.190	1.00	15 00
ATOM	286	NH1	AR 3	3 7	6.682	44.430	-12.781	1.00	16 31
ATOM	287	NH2	ARG	37	5 812	46.595	-22.875	1.00	14 97
ATOM	289	C	ARG	37	4.204	45.459	-15.925	1.00	11.82
.110.1	200	_	,	٥.	204	-3 3.	10.723	1.00	11.02

BNSDOCID - WO - 3816648A2 |

ATOM	289	0	ARG	37	3.914	46.654	-15 947	1 00	17 60
ATOM	290	N	ASP	38	3.367	44.520	-15 475	1.00	12.19
ATOM	291	CA	ASP	38	2 045	44.889	-14 976	1 00	14 66
ATOM	292	CB	ASP	38	1 017	43.860	-15.463	1 00	16.65
ATOM	293	CG	ASP	38	-0 441	44.105	-15 173	1 00	17.06
ATOM	294	OD1	ASP	38	-0 763	45.278	-14 922	1.00	22 39
MOTA	295	OD2	ASP	38	-1 316	43.219	-15.263	1 00 1 00	20 09 13 71
ATOM	296	С	ASP ASP	38 38	2 102 2 736	45.018 45.927	-13 455 -12.904	1.00	14 27
ATOM	297 298	N O	THR	39	1 460	44.073	-12 737	1 00	11 56
ATOM ATOM	299	CA	THR	39	1 415	44.205	-11.298	1 00	11.81
ATOM	300	СВ	THR	39	0.320	43.390	-10 584	1 00	14.06
ATOM	301	OG1	THR	39	0.687	41.990	-10 698	1.00	17.03
ATOM	302	CG2	THR	39	-1 008	43.691	-11 223	1 00	17 60
MOTA	303	С	THR	39	2.721	43 776	-10 634	1 00	10.17
MOTA	304	0	THR	39	2.920	44.118	-9.459	1.00	11.25
MOTA	305	N	GLY	40	3.510	42.982	-11.367	1 00	9.14
ATOM	306	CA	GLY	40	4.740	42.526	-10 777	1 00 1.00	8.52
ATOM	307	C	GLY	40	4.618 5.587	41.178 40.753	-10 115 -9 505	1.00	9.63 14.89
ATOM	308 309	o N	GLY PHE	40 41	3.477	40.522	-10 124	1.00	8.18
ATOM ATOM	310	CA	PHE	41	3.307	39.207	-9 532	1.00	7 48
ATOM	311	CB	PHE	41	2.353	39.290	-8 343	1.00	7 50
ATOM	312	CG	PHE	41	2.952	39.927	-7 078	1.00	7 93
ATOM	313	CD1	PHE	41	2.936	41.286	-6.859	1.00	8 43
ATOM	314	CD2	PHE	41	3 499	39.110	-6.100	1.00	7 47
ATOM	315	CE1	PHE	41	3.446	41.812	-5.683	1.00	8.79
MOTA	316	CE2	PHE	41	4.040	39 635	-4 933	1.00	8.21
ATOM	317	CZ	PHE	41	4.032	40 998	-4 757 -10 550	1.00 1.00	8 46 6 88
ATOM	318	С 0	PHE PHE	41 41	2.782 1.952	38.226 38.554	-10 330	1.00	9.03
ATOM ATOM	319 320	N	PHE	42	3.164	36.978	-10.374	1.00	6.68
ATOM	321	CA	PHE	42	2.539	35.845	-11.075	1.00	6 92
ATOM	322	CB	PHE	42	3 148	35.586	-12.456	1.00	7.96
ATOM	323	CG	PHE	42	4.564	35.072	-12.516	1.00	7.35
ATOM	324	CD1	PHE	42	4.802	33 699	-12.586	1.00	7.79
MOTA	325	CD2	PHE	42	5.637	35.931	-12 518	1 00	8.85
ATOM	326	CEL	PHE	42	6.124	33 266	-12.696	1.00	8 64 9.37
ATOM	327	CE2	PHE	4.2	6 951 7 193	35.498 34 141	-12 656 -12.740	1.00 1.00	9.37
ATOM	328	CZ C	PHE PHE	42 42	2.620	34.594	-10.216	1 00	6.60
ATOM ATOM	329 330	0	PHE	42	3 489	34.518	-9.338	1.00	6 98
ATOM	331	N	TYR	43	1 783	33 606	-10 477	1 00	6.57
ATOM	332	CA	TYR	43	1 913	32.290	-9.860	1 00	6.96
ATOM	333	CB	TYR	43	0 575	31 694	-9 466	1 00	7.72
ATOM	334	CG	TYR	43	0.098	32 111	-8 088	1 00	7 41
ATOM	335	CD1	TYR	43	-0 901	33 078	-7 938	1 00	8 92
ATOM	336	CE1	TYR	43	-1 335	33.480	-6.697	1.00	9.19
MOTA	337	CD2	TYR	43	0 664	31.618 32.035	-6 939 -5 690	1 00 1 00	7 76 8 82
ATOM	338	CZ CE2	TYR TYR	43 43	0.248 -0 715	32.033	-5 574	1.00	9 99
ATOM ATOM	339 340	ОН	TYR	43	-1.130	33 349	-4 303	1.00	11 00
ATOM	341	C	TYR	43	2.625	31.390	-10.867	1.00	6 77
ATOM	342	0	TYR.	43	2.160	31.203	-11.985	1 00	9.17
ATOM	343	N	ALA	44	3 663	30.736	-10 386	1 00	6.74
ATOM	344	CA	ALA	44	4.321	29.654	-11.138	1.00	6.80
MOTA	345	CB	ALA	44	5.766	29.522	-10 683	1 00	6 89
ATOM	346	C	ALA	44	3 590	28.345	-10.834	1 00	6.81
ATOM	347	0	ALA	44	3.423	27.965	-9.679	1.00 1.00	7.69 7.45
ATOM	348	N	VAL	45	3 075 2 373	27.695	-11 849 -11 766	1.00	7.41
ATOM	349 350	CA CB	VAL VAL	45 45	0 902	26.431 26.570	-12.161	1 00	9.68
ATOM ATOM	350 351	CG1	VAL	45	0.228	27.601	-11 255	1.00	10.94
ATOM	352	CG2	VAL	45	0.670	26.895	-13 632	1.00	10.29
ATOM	353	C	VAL	45	3.120	25.384	-12.583	1 00	7.22
MOTA	354	Ō	VAL	45	3.984	25.718	-13.393	1.00	7.51
ATOM	355	N	ASN	46	2.862	24.095	-12.325	1.00	8.30
MOTA	356	CA	ASN	46	3.565	22.985	-12.948	1.00	8.32
MOTA	357	CB	ASN	46	3.323	22.885	-14.449	1.00	11.81
MOTA	358	CG	ASN	46	1.875	22.704	-14.786	1.00	18.20
MOTA	359	OD1	ASN	46	1.395	21.610	-14.470 -15.306	1.00 1.00	31.96 24.56
ATOM	360	ND2	ASN	46 46	1.269	23.750 23.111	-15.306	1.00	24.56 8.17
MOTA	361	С	ASN	46	5.043	.3.111	12.034	1.00	G.1/

ATOM	362	0	ASN	46	5.936	22.860	-13.449	1.00	10.28
ATOM	363	N	HIS	47	5.323	23.425	-11.366	1.00	8.42
ATOM	364	CA	HIS	47	6.663	23.646	-10.843	1.00	8.14
ATOM	365	CB	HIS	47	6.618	24.724	-9.775	1.00	
ATOM	366	CG	HIS	47	5.590	24 430	-8.727		8.35
ATOM	367	CD2	HIS	47	4.399	25 000		1.00	7 34
ATOM	368	ND1	HIS	47			-8.504	1.00	7 88
					5.719	23 383	-7.812	1.00	7 39
ATOM	363	CEl	HIS	47	4.626	23 360	-7.052	1.00	8 04
ATOM	37.)	NE2	HIS	47	3.827	24 344	-7.440	1.00	8 14
MOTA	371	C	HIS	47	7.375	22 430	-10.325	1.00	7 89
ATOM	372	Ð	HIS	47	8.580	22 464	-10.091	1.00	9 85
ATOM	373	14	GLY	48	6.691	21 328	-10.139	1.00	8 33
ATOM	374	CA	GLY	48	7.238	20.053	-9.749	1.00	8 83
ATOM	375	C	GLY	48	7.522	19 849	-8.282	1.00	8 46
ATOM	376	O	GLY	48	8.060	18 780	-7.953	1 00	11.24
ATCM	377	11	ILE	49	7.267	20 817	-7.412	1 00	7.06
MOTA	378	CA	ILE	49	7.568	20 636	-6.015	1.00	6 70
ATOM	379	CB	ILE	49	8.093	21.962	-5.389	1.00	7.04
ATOM	380	CG2	ILE	49	8.286	21.829	-3.886	1.00	7.67
ATOM	381	CG1	ILE	49	9.383	22.383	-6 077	1 00	8.13
ATOM	382	CD1	ILE	49	9 964	23 699	-5.584	1.00	9.61
ATOM	383	С	ILE	49	6 327	20.166	-5 245	1.00	6.55
ATOM	384	0	ILE	49	5.210	20 605	-5.497	1 00	
ATOM	385	и	ASN	50	6 531	19 246	-4.311		7 34
ATOM	386	CA	ASN	50	5 449	18 729		1 00	6.14
ATOM	387	CB	ASN		5 834		-3.464	1 00	5 89
ATOM		CG		50 50		17.332	-2 967	1.00	6 25
	388		ASN		4 688	16 658	-2.270	1 00	5.80
ATOM	389	OD1	ASN	50	3.717	17.297	-1.870	1.00	7.60
ATOM	390	ID2	ASN	50	4 840	15.366	-2 058	1.00	7 26
ATOM	391	C	ASN	50	5 184	19 714	-2 331	1 00	5 68
ATOM	392	Q	ASN	50	5.744	19.597	-1.23C	1.00	6.62
MOTA	393	11	VAL	51	4 328	20.676	-2.619	1.00	5.97
ATOM	394	CA	VAL	51	4 037	21.706	-1.632	1.00	6.10
ATOM	395	CB	VAL	51	3.508	23 010	-2 290	1.00	6 74
MOTA	396	CG1	VAL	51	4 557	23 676	-3 184	1.00	9 06
ATOM	397	CG2	VAL	51	2 250	22.743	-3.048	1.00	9 15
MOTA	398	C	VAL	51	3.137	21.232	-0 504	1 00	7.22
ATOM	399	O	VAL	51	3.199	21.758	0 610	1.00	7 84
ATOM	4 O O	N	GLN	52	2 286	20.231	-0.761	1 00	7 44
ATOM	401	CA	GLN	52	1 474	19 721	0 339	1 00	6 88
ATOM	402	CB	GLN	52	0 442	18 728	-0 163	1 00	8 70
MOTA	403	CG	GLN	52	-0 534	18 205	0 917	1.00	10 71
ATOM	404	CD	GLN	52	-0 066	17 059	1 807	1.00	12 39
ATOM	405	OE1	GLN	52	0.970	16 387	1 579	1.00	12.25
ATOM	40€	NE2	GLN	52	-0 672	16 925	2.956	1 00	13.45
MOTA	407	C	GLN	52	2.410	19 094	1 378	1.00	6 81
ATOM	408	()	GLN	52	2 162	19.264	2.599	1 00	6 97
ATOM	409	N	ARG	53	3.434	18.364	0 950	1 00	6.70
ATOM	410	CA	ARG	53	4.339	17 734	1 912	1.00	6.00
ATOM	411	CB	ARG	53	5.152	16 655	1 210	1.00	6.55
ATOM	412	CG	ARG	53	6.068	15 894	2.129	1.00	6 59
ATOM	413	CD	ARG	53	6.645	14.676	1 432	1.00	8.72
ATOM	414	NE	ARG	53	7.445	13 846	2 348	1.00	8.70
ATOM	415	CZ	ARG	53	8 771	13 910	2 425	1.00	10.05
ATOM	416	NH1	ARG	53	9 464	14 723	1 605	1.00	
ATOM	417	NH2	ARG	53	9 424	13 106	3.279	1 00	12 80
ATOM	418	C	ARG	53	5 156	18.809	2 598	1.00	10.00 5.84
ATOM	419	0	ARG	53	5 396				
						18 698	3 820	1.00	6 89
ATOM	420	N	LEU	54	5 598	19 850	1.903	1.00	5.98
ATOM	421	CA	LEU	54	6 274	20 982	2 544	1 00	5 87
ATOM	422	CB	LEU	54	6 558	22 056	1 489	1.00	6 27
MOTA	423	CG	LEU	54	6 940	23 435	2 017	1 00	7.00
ATOM	424	CD1	LEU	54	8 286	23 396	2 689	1 00	7.98
ATOM	425	CD2	LEU	54	6 864	14.441	0 866	1 00	8.66
ATOM	426	C	LEU	54	5 406	21 576	3 660	1 00	5.97
ATOM	427	0	LEU	54	5 870	21 822	4 788	1 00	6.89
MOTA	428	11	SER	55	4 136	21.786	3 344	1.00	6.27
ATOM	429	CA	SER	55	3 240	22.335	4 357	1 00	6.86
MOTA	430	CB	SER	55	1 916	22.675	3 694	1 00	7.85
MOTA	431	OG	SER	55	0.981	23.194	4 615	1 00	11.52
ATOM	432	C	SER	55	3.098	21.410	5 563	1 00	6.98
ATOM	433	ο .	SER	55	3.081	21.834	6.713	1.00	7.09
ATOM	434	25	GLN	56	2.961	20.107	5.309	1.00	7.22

WO 98/16648

NTOM	435	CA	GLN	56	2.784	19.139	6.379	1.00	7.20
MOTA		CB	GLN	56	2.400	17.785	5 799	1.00	9.23
MOTA	436						6.795		
MOTA	437	CG	GLN	56	2.329	16.657		1.00	11.52
MOTA	438	CD	GLN	56	1.214	16.804	7 803	1.00	14.79
ATOM	439	OE1	GLN	56	1 405	16.302	8.912	1.00	22.67
MOTA	440	NE2	GLN	56	0 122	17.443	7 423	1.00	13.58
ATOM	441	С	GLN	56	4.007	19.101	7 279	1.00	7.77
	442	Ö	GLN	56	3.869	19.099	8.517	1.00	7.98
ATOM							6 684		6.97
ATOM	443	N	LYS	57	5.188	18.978		1.00	
MOTA	444	CA	LYS	57	6.404	18.904	7 465	1.00	7.11
ATOM	445	CB	LYS	57	7 622	18.583	6 598	1.00	7.89
ATOM	446	CG	LYS	57	7 574	17.249	5.861	1.00	7.92
ATOM	447	CD	LYS	57	7 561	16.023	6 784	1.00	9 42
ATOM	448	CE	LYS	57	7 650	14.765	5.962	1.00	10 57
		NZ	LYS	57	7 444	13.524	6.770	1.00	13.31
MOTA	449						8.273		
ATOM	450	С	LYS	57	6 623	20.175		1.00	6 73
MOTA	451	0	LYS	57	7.102	20.149	9.413	1.00	8.29
ATOM	452	N	THR	58	6.325	21.322	7.676	1.00	7.11
MOTA	453	CA	THR	58	6 448	22.618	8.342	1.00	7 21
ATOM	454	CB	THR	58	6 257	23.767	7.355	1.00	7.45
			THR	58	7 318	23.725	6.392	1.00	8.22
MOTA	455	OG1							
ATOM	456	CG2	THR	58	6.316	25.134	8.054	1.00	8.05
MOTA	457	C	THR	58	5.495	22.727	9.527	1.00	6.99
ATOM	458	0	THR	58	5 879	23.194	10.618	1.00	7.76
ATOM	459	N	LYS	59	4.257	22,255	9.336	1.00	7.98
ATOM	460	CA	LYS	59	3 270	22.244	10.430	1.00	8.41
	461	CB	LYS	59	1 933	21.732	9.870	1.00	11.31
ATOM							10.962	1.00	17.36
ATOM	462	CG	LYS	59	0.857	21.678			
ATOM	463	CD	LYS	59	-0.412	21.032	10.378	1.00	21.57
ATOM	464	CE	LYS	59	-0.145	19.572	10.080	1.00	26.63
ATOM	465	NZ	LYS	59	0.949	19.018	10.953	1.00	41.28
ATOM	466	С	LYS	59	3.756	21.375	11.583	1.00	8.97
ATOM	467	0	LYS	59	3.662	21.789	12.743	1.00	9.25
	468	N	GLU	60	4.260	20.182	11.254	1.00	8.73
ATOM						19.297	12.288	1.00	9.20
ATOM	469	CA	GLÜ	60	4.763				
MOTA	470	CB	GLU	60	5.286	17.988	11.679	1.00	10.60
MOTA	471	CG	GLU	60	4.189	17.114	11.083	1.00	13.69
ATOM	472	CD	GLU	60	4.634	15.954	10.241	1.00	15. 34
MOTA	473	QE1	GLU	60	5.846	15.700	10.211	1.00	20.83
ATOM	474	OE2	GLU	60	3.819	15.290	9.550	1.00	19.41
ATOM	475	C	GLU	60	5.849	19.961	13.119	1.00	10 04
				60	5.822	19.898	14.353	1.00	11.42
MOTA	476	0	GLU						
ATOM	477	N	PHE	61	6.751	20.687	12.465	1.00	8.91
MOTA	478	CA	PHE	61	7.785	21.443	13.184	1.00	7.35
ATOM	479	CB	PHE	61	8.775	21.958	12.129	1.00	7.73
ATOM	480	CG	PHE	61	9.763	22.977	12.665	1.00	8 40
MOTA	481	CD1	PHE	61	10.749	22.594	13.521	1.00	9.42
ATOM	482	CD2	PHE	61	9.667	24.316	12.302	1.00	10.73
					11.653	23.520	13.994	1.00	10.45
MOTA	483	CE1	PHE	61					
ATOM	484	CE2	PHE	61	10.591	25.256	12.727	1.00	11 37
ATOM	485	CŻ	PHE	61	11.562	24.834	13.606	1.00	10.57
ATOM	486	C	PHE	61	7.211	22.579	14.015	1.00	7.60
ATOM	487	0	PHE	61	7.474	22.658	15.228	1.00	8.53
ATOM	488	N	HIS	62	6.446	23.487	13.426	1.00	8 25
ATOM	489	CA	HIS	62	5.921	24.635	14.156	1.00	8.66
					5.076	25.531	13.261	1.00	9.03
MOTA	490	CB	HIS	62					8 36
MOTA	491	CG	HIS	62	5.800	26.423	12.311	1.00	
MOTA	492	CD2	HIS	62	5.271	26 774	11 094	1.00	7 90
ATOM	493	ND1	HIS	62	6.963	27 124	12.415	1.00	10.22
ATOM	494	CE1	HIS	62	7.123	27.845	11.303	1 00	7 76
ATOM	495	NE2	HIS	62	6.122	27.622	10 488	1 00	10 59
			HIS	62	5.091	24 264	15 385	1.00	9.71
ATOM	496	C			5.070	24.974	16.376	1 00	11 19
MOTA	497	0	HIS	62					
ATOM	498	N	MET	63	4.335	23 167	15 283	1 00	10 41
ATOM	499	CA	MET	63	3.393	22 836	16 321	1 00	12.27
ATOM	500	CB	MET	63	2.151	22 162	15.705	1 00	13 32
ATOM	501	CG	MET	63	1.453	23.061	14.692	1 00	14.13
ATOM	502	SD	MET	63	1.062	24.757	15.253	1.00	21.44
		CE	MET	63	0.528	25.519	13.715	1.00	41.15
ATOM	503								13.21
ATOM	504	C	MET	63	4.020	22.008	17.416	1.00	
ATOM	505	0	MET	63	3.383	21.818	18.470	1.00	19.62
ATOM	506	N	SER	64	5.203	21.457	17.178	1.00	10.61
ATOM	507	CA	SER	64	5.896	20.662	18.191	1.00	13.44

ATCM	508	CB	SER	64	6.289	19.283	17.662	1.00	15.70
ATOM	509	OG	SER	64	7.299	19.356	16.689	1 00	17.37
			SER	64	7.105	21.342	18.809	1 00	12.71
ATOM	510	C						1 00	16.31
ATOM	511	0	SER	64	7.528	25.933	19.888		
MOTA	512	N	ILE	65	7 664	22.392	18 236	1 00	10.13
ATOM	513	CA	ILE	65	8 799	23.010	18 900	1 00	9.79
ATOM	514	CB	ILE	65	9 469	23.968	17.906	1 00	10.92
ATOM	515	CG2	ILE	65	8 583	25.072	17 406	1 00	13,10
			ILE	65	10 787	24.455	18 502	1.00	11.85
ATOM	516	CG1							
ATOM	517	CD1	ILE	65	11 740	25 156	17 598	1.00	13.44
ATOM	518	С	ILE	65	8 366	23 703	20 162	1.00	10.18
ATOM	519	0	ILE	65	7 286	24.267	20 263	1 00	12.62
ATOM	520	N	THR	66	9 170	2.3 608	21 194	1.00	10.22
ATOM	521	CA	THR	66	8 866	24.106	22 535	1 00	10.08
		CB	THR	66	9 278	23.065	23.583	1 00	9.97
ATOM	522							1 00	12.07
ATOM	523	OG1	THR	66	10 681	22.892	23.511		
ATOM	524	CG2	THR	66	8 571	11 749	23 373	1 00	14.54
ATOM	525	C	THR	66	9 559	25 420	22 846	1.00	8.74
ATOM	526	0	THR	66	10.531	25.775	22.160	1.00	8.66
MOTA	527	N	PRO	67	9 078	26 142	23.864	1.00	9.12
			PRO	67	7.813	25.938	24 594	1.00	11.31
ATOM	528	CD							9.65
MOTA	529	CA	PRO	67	9.724	27.392	24.251	1.00	
ATOM	530	CB	PRO	67	8 925	27.860	25.450	1.00	12.19
MOTA	531	CG	PRO	67	7.598	27.233	25 312	1 00	12 99
MOTA	532	C	PRO	67	11 209	27 228	24 567	1 00	9 34
ATOM	533	0	PRO	67	12 046	28.064	24.200	1 00	10 59
	534	N	GLU	68	11 597	26.115	25.186	1 00	10.47
ATOM					13.000	25 861	25 470	1.00	11.64
ATOM	535	CA	GLU	68					
ATOM	536	CB	GLU	68	13 061	24.533	26.244	1.00	13 13
ATOM	537	CG	GLU	68	14 452	24.123	26 600	1.00	14 21
MOTA	538	CD	GLU	68	14.498	22.689	27 107	1 00	15 39
ATOM	539	OE1	GLU	68	13 945	21.743	16.508	1.00	21 01
ATOM	540	OE2	GLU	68	15.043	22.449	28 180	1.00	19.65
		C	GLU	68	13.836	25.799	24 217	1.00	9 32
MOTA	541					26.376	24 096	1.00	11.18
MOTA	542	0	GLU	68	14.920				
ATOM	543	N	GLU	69	13 319	15.06 5	23.221	1 00	8.89
MOTA	544	CA	GLU	69	14.015	24.920	21.929	1.00	9 17
MOTA	545	CB	GLU	69	13 310	23.921	21 010	1 00	9 44
ATOM	546	CG	GLU	69	13 338	22.513	21 576	1 00	10.83
ATOM	547	CD	GLU	69	12 432	21.627	20 745	1.00	12.92
ATOM	548	OE1	GLU	69	12 996	29.941	19.876	1.00	19.22
			GLU	69	11.213	21.599	21.003	1.00	19 62
MOTA	549	OE2						1 00	8 87
MOTA	550	C	GLU	69	14 157	26.247	21.213		
MOTA	551	0	GLU	69	15 153	26.521	20.573	1 00	9.17
ATOM	552	N	LYS	70	13 126	27.086	21.311	1.00	8.65
ATOM	553	CA	LYS	70	13 148	28.387	20.621	1.00	8 41
ATOM	554	CB	LYS	70	11.786	23.100	20.695	1.00	8.73
ATOM	555	CG	LYS	70	10.663	29.358	19.977	1.00	8.40
			LYS	70	9.319	29 001	20.239	1.00	9 16
MOTA	556	CD					19 726	1.00	10.85
ATOM	557	CE	LYS	70	8.198	28.102			
ATOM	558	NZ	LYS	70	6.875	28 741	19 900	1.00	12.00
ATOM	559	C	LYS	70	14.268	29 257	21.182	1.00	7. 77
ATOM	560	0	LYS	70	14.992	29 885	20.400	1.00	8.10
MOTA	561	N	TRP	71	14.418	29 325	22 514	1.00	7.55
ATOM	562	CA	TRP	71	15.556	30.080	23.057	1.00	7.86
					15.545	30.104	24.582	1.00	8.53
ATOM	563	CB	TRP	71			25.195	1.00	7.80
ATOM	564	CG	TRP	71	14.467	30.932			
ATOM	565	CD2	TRP	71	14.216	32.335	25.045	1.00	7.55
ATOM	5 66	CE2	TRP	71	13.097	32.672	25.824	1.00	8.55
ATOM	567	CE3	TRP	71	14.813	33.362	24.326	1.00	8.25
ATOM	568	CD1	TRP	71	13.512	30.477	26.068	1.00	8.54
	569	NE1	TRP	71	12.682	31.521	26.446	1 00	9.24
ATOM				71	12.589	33.965	25.900	1 00	9.23
ATOM	570	CZ2	TRP						
MOTA	571	CZ3	TRP	71	14.311	34.644	24.384	1 00	8.95
ATOM	572	CH2	TRP	71	13.198	34.947	25.181	1 00	9.37
ATOM	573	C	TRP	71	16 892	29.513	22.565	1 00	7.41
ATOM	574	0	TRP	71	17 808	30.271	22.223	1.00	7.75
ATOM	575	N	ASP	72	16 954	28.180	21,552	1.00	7.95
			ASP	72	18.195	27.508	22.215	1.00	9.24
ATOM	576	CA					22.638	1.00	
MOTA	577	CB	ASP	72	18 123	26.031			11.24
ATOM	578	CG	ASP	72	18.208	25.822	24.146	1.00	14.08
ATOM	579	001	ASP	72	18.351	2€. 7 78	24.967	1.00	15.23
ATOM	580	OD2	ASP	72	17 942	24.678	24.599	1.00	17.93

ATOM	581	С	ASP	72	18.589	27 715	20.764	1.00	9 14
ATOM	582	Ö	ASP	72	19.766	27 648	20.413	1.00	10 16
ATOM	583	N	LEU	73	17 615	27 980	19.872	1.00	7 62
	584	CA	LEU	73	17 828	28 233	18.474	1.00	8.24
MOTA	585	CB	LEU	73	16 767	27 452	17.648	1.00	9 44
ATOM			LEU	73	16.895	25.941	17.683	1.00	10.93
ATOM	586	CG		73	15 676	25 238	17.093	1.00	16.41
ATOM	587	CD1	LEU			25.437	17.077	1.00	14.97
ATOM	588	CD2	LEU	73	18.199			1.00	7.12
MOTA	589	С	LEU	73	17.804	29.708	18 102 16 935		7.12
MOTA	590	0	LEU	73	17.930	30 074		1.00	
MOTA	591	N	ALA	74	17.541	30 607	19 036	1.00	6 72
ATOM	592	CA	ALA	74	17 201	31.967	18 766	1.00	6.46
ATOM	593	CB	ALA	74	16 742	32.662	20 042	1.00	7.96
ATOM	594	С	ALA	74	18 258	32.818	18.098	1.00	7.50
ATOM	595	0	ALA	74	19 423	32.697	18.490	1.00	8.38
ATOM	596	N	ILE	75	17.864	33.689	17.172	1.00	6.76
ATOM	597	CA	ILE	75	18 795	34.680	16.652	1.00	6.71
ATOM	598	CB	ILE	75	18 224	35.376	15.420	1.00	6.88
MOTA	599	CG2	ILE	75	18.044	34.424	14.239	1.00	8.21
MOTA	600	CG1	ILE	75	16.936	36.140	15 755	1.00	7.17
ATOM	601	CD1	ILE	75	16.522	37.151	14.715	1.00	9.71
ATOM	602	C	ILE	75	19.201	35.704	17.734	1.00	7.09
ATOM	603	o	ILE	7 5	18.546	35.810	18 781	1.00	6.89
ATOM	604	N	ALA	76	20.280	36 421	17.461	1.00	8 25
ATOM	605	CA	ALA	76	20 876	37 407	18.360	1.00	9 65
	606	CB	ALA	76	22 084	38.067	17.666	1.00	16.12
ATOM	607	CB	ALA	76	19.886	38.445	18.838	1.00	8.48
ATOM		0	ALA	76	19.962	38.940	19.953	1.00	9.39
ATOM	608		ALA	77	18.905	38.810	18.002	1.00	8.30
ATOM	609	N	ALA	77	17.911	39 800	18.374	1.00	9.45
ATOM	610	CA		77	16.992	40.064	17.179	1.00	10.84
ATOM	611	СВ	ALA		17 100	39.352	19.582	1.00	8.44
ATOM	612	C	ALA	77 77		40.191	20.299	1.00	10.71
MOTA	613	0	ALA		16 541		19.816	1.00	7.56
MOTA	614	N	TYR	78	16.967	38 049	20 938	1.00	8.24
MOTA	615	CA	TYR	78	16.222	37.513			
MOTA	616	CB	TYR	78	15 223	36.420	20.451	1.00	7.69
MOTA	617	CG	TYR	78	14.158	37.043	19.575	1.00	7.53
MOTA	618	CD1	TYR	78	14.272	36.972	18.193	1.00	7.61
ATOM	619	CE1	TYR	78	13 370	37.508	17 335	1.00	7 49
ATOM	620	CD2	TYR	78	13 050	37 728	20.079	1.00	8 66
MOTA	621	CE2	TYR	78	12 150	38.290	19.216	1.00	9 02
MOTA	622	CZ	TYR	78	12.291	38.1 7 3	17.845	1.00	8.23
MOTA	623	OH	TYR	78	11.357	38.805	17 028	1.00	10.37
ATOM	624	С	TYR	78	17.115	36.920	22 016	1.00	7 16
ATOM	625	0	TYR	78	16.681	36.716	23.134	1.00	10.37
ATOM	626	N	ASN	79	18 346	36.542	21.694	1.00	8.52
ATOM	627	CA	ASN	79	19.232	35.854	22 624	1.00	7.53
ATOM	628	CB	ASN	79	19 164	34.338	22 379	1.00	7.59
ATOM	629	CG	ASN	79	20.000	33.518	23 343	1.00	7.82
ATOM	630	OD1	ASN	79	20.942	34.010	23.962	1.00	8.62
ATOM	631	ND2	ASN	79	19.686	32,222	23 477	1.00	9.18
ATOM	632	С	ASN	79	20.653	36.401	22.394	1.00	8.94
ATOM	633	0	ASN	79	21.341	36.042	21.442	1.00	10.00
ATOM	634	N	LYS	80	21.086	37.226	23.348	1.00	9.67
ATOM	635	CA	LYS	80	22.403	37.853	23.279	1.00	11.21
ATOM	636	CB	LYS	80	22.575	38.808	24.473	1.00	14.70
MOTA	637	CG	LYS	80	21.697	40.035	24.385	1.00	20.93
MOTA	638	CD	LYS	80	21,970	41.007	25.532	1.00	25.64
		CE	LYS	80	21.540	42.420	25.219	1.00	29.22
ATOM	639		LYS	80	20.209	42.711	25.795	1.00	39.86
ATOM	640	NZ		80	23.565	36.877	23.274	1.00	10.80
ATOM	641	C	LYS			37.192	22.944	1.00	13.45
MOTA	642	0	LYS	80	24.702	35.630	23.706	1.00	10.06
ATOM	643	N	GLU	81	23.349			1.00	11.25
MOTA	644	CA	GLU	81	24.436	34.666	23.722		
ATOM	645	CB	GLU	81	24.060	33.385	24.505	1 00	11.80
MOTA	646	CG	GLU	81	23.668	33.565	25.948	1.00	15.18
MOTA	647	CD	GLU	81	23.394	32.322	26 768	1.00	16.40
ATOM	648	OEl	GLU	81	22.810	32.379	27.889	1.00	16.96
MOTA	649	OE2	GLU	81	23.688	31.185	26 315	1.00	21.03
ATOM	650	C	GLU	81	24.791	34.265	22 281	1.00	12.20
ATOM	651	0	GLU	81	25.838	33.655	22 069	1.00	14.12
ATOM	652	N	HIS	82	23.900	34.439	21 316	1.00	10.21
ATOM	653	CA	HIS	82	24 112	33.865	19.980	1.00	9.63

ATOM	654	СВ	HIS	82	22.803	33.231	19.530	1.00	9.27
MCTA	655	CG	HIS	8.2	22.371	32.370	20.360	1.00	3.26
MCTA	656	CD2	HIJ	82	23.068	31.323	21,257	1.00	10.67
ATOM	657	ND1	HIS	82	21.113	31.516	20.288	1.00	
ATOM	658	CE1	HIS	82	21.063	30.500	21,141		8.55
	659	NE2	HIS	82	22.223			1.00	8.43
MOTA						30.366	21 742	1.00	10.55
MCTA	660	Ü	HIS	82	24.567	34.933	19.029	1.00	10.23
MCTA	661	D.	HIS	82	23.901	35.266	18 055	1.00	11.35
MCTA	662	11	GL1;	83	25.726	35.507	19 295	1.00	12.56
ATOM	663	©A	GL1:	83	26.203	36.634	18 507	1.00	13.52
ATOM	6 6 4	CB	GLN	83	27.470	37 164	19 181	1 00	16.22
MCTA	665	CG	GLN	83	27.163	37 925	20 478	1 00	19.23
MOTA	666	CD	GL1:	83	16.294	39 148	20 300	1 00	20.38
ATOM	667	OEl	GL1:	83	26.558	40 074	19 536	1 00	29.81
MCTA	668	NE2	GLN	83	25.191	39.208	21 046	1 00	22.46
MCTA	669	C	GLN	83	26 450	36 332	17 050	1 00	13 44
MCTA	670	i)	GLN	83	26 392	37 262	16 246	1 00	15 10
ATOM	671	11	ASP	84	26 636	35 089	16 694	1.00	13.17
ATOM	672	CA	ASP	84	26.862	34 722	15 292	1.00	14 01
ATOM	673	CB	ASP	84	27.692	33 451	15 162	1.00	
ATOM	674	CG	ASP	84	29 128	33 607	15 603		17.37
ATOM	675	OD1	ASP	84	29 618	34 762	15.567	1 00	20 70
								1.00	24 40
ATOM	676	OD2	ASP	84	29 754	32.593	15.997	1.00	26 32
MOTA	677	C	ASP	84	25 612	34.56€	14 450	1 00	13 94
MCTA	678	0	ASP	84	15.668	34.50€	13 229	1 00	13 72
MOTA	679	11	GLN	85	14 472	34 468	15 125	1 00	12 76
MOTA	680	CA	GLN	85	23.186	34.270	14 473	1 00	11 48
MOTA	681	CB	GLN	85	22.324	33.390	15 381	1 00	11.21
MOTA	682	CG	GLN	85	22 791	31 971	15 552	1 00	11 91
MOTA	683	CD	GLN	85	21 795	31 109	16 278	1 00	10 83
MOTA	684	OE1	GLN	85	20.636	30.970	15 841	1 00	12 23
MOTA	685	NE2	GLN	85	22 225	30 557	17.380	1.00	9.17
MOTA	686	C	GLN	85	22 468	35.584	14.216	1.00	12.01
MOTA	687	0	GLN	85	21 590	36 041	14 977	1 00	14 96
MOTA	688	11	VAL	86	22 773	36.203	13 091	1 00	10 72
ATOM	689	CA	VAL	86	22 062	37 392	12.684	1.00	11 56
MOTA	690	CB	VAL	86	23.031	38.325	11 951	1 00	12 29
ATOM	691	CG1	VAL	86	12 341	39 541	11 368	1.00	16 28
ATOM	692	CG2	VAL	86	24 227	38 725	12 807	1 00	17 21
ATOM	693	C	VAL	86	20.862	36 994	11 853	1 00	11 74
ATOM	694	0	VAL	86	19 737	37 435	12 126	1 00	17 43
ATOM	695	11	ARG	87	21 060	36.084	10 898	1 00	8.55
ATOM	69€	CA	ARG	87	20 044	35.624	9 972	1 00	7.72
ATOM	697	CB	ARG	87	20.635	35 441	8.553	1.00	8 11
ATOM	698	CG	ARG	87	21 203	36 706	7.959	1 00	8 47
MOTA	699	CD	ARG	87	21.842	36 462	€ 599	1 00	7 75
MOTA	700	NE	ARG	87	20.829	36.173	5 609	1 00	7 39
ATOM	701	CZ	ARG	87	21.042	35.691	4.396	1 00	6.65
ATOM	702	NH1	ARG	87	22.260	35.389	3 959	1.00	8 68
ATOM	703	NH2	ARG	87	20 036	35.471	3 547	1.00	7 51
ATOM	704	C	ARG	87	19.410	34.289	10 332	1.00	7.27
ATOM	705	0	ARG	87	18 170	34 129	10.237	1 00	
ATOM	706	n	ALA	88	20.206	33 270	10 609		8.33
ATOM	707			88				1.00	7 40
ATOM	707	CA CB	ALA ALA	88	19 749 20 760	31.87€ 30.869	10 750 10 254	1 00	6 92
								1 00	8 59
ATOM	709	C	ALA	88	19.373	31 526	12 165	1.00	7.06
ATOM	710	0	ALA	88	20.138	31 793	13 084	1 00	9 57
ATOM	711	11	GLY	89	18 191	30 953	12 332	1.00	6 44
MOTA	712	CA	GLY	89	17.673	30.494	13 592	1 00	6 74
ATOM	713	C	GLY	89	16 222	30 872	13 801	1.00	6 23
ATOM	714	O	GLY	89	15 451	31.150	12.853	1 00	6.3€
MCTA	715	11	TYR	90	15 811	30 854	15.062	1 00	6 31
MOTA	716	CA	TYP.	90	14 439	31 063	15.460	1 00	6 71
MC·TA	717	СВ	TYR	90	14 009	30.142	16 623	1 00	7 29
MOTA	718	CG	TYP	90	12.552	29.793	16 487	1 00	6 81
MCTA	719	CD1	TYR	90	12 151	28 687	15 755	1 00	7 89
MOTA	720	CEl	TYF.	90	10.830	28 357	15 592	1 00	8 96
ATOM	721	CD2	TYF.	90	11 536	30 556	17 042	1 00	7 06
ATCM	722	CE2	TYP.	90	10 193	30.257	16 837	1 00	8.48
ATOM	723	CZ	TYP.	90	9.854	29.145	16 124	1 00	9.10
ATOM	724	OH	TYF.	90	8.555	28.790	15 864	1 00	13.43
ATOM	725	C	TYF.	90	14.191	32.541	15.802	1.00	6.30
ATOM	726	0	TYR	90	14.986	33.184	16.491	1.00	6.78
	. 20	-					10.171	1.00	5.76

BNSDDCD - WO - 3816648A2 I >

ATOM	7 27	N	TYR	91	13.035	33.030	15.320	1.00	6.07
ATOM	728	CA	TYR	91	12.554	34.384	15.484	1.00	6.47
	729	СВ	TYR	91	12.252	35.025	14.135	1.00	6.78
MOTA	730	CG	TYR	91	13.392	35.277	13.209	1.00	6 23
ATOM		CD1	TYR	91	14.353	34.332	12.859	1.00	7 06
MOTA	731				15.364	34.597	11.962	1.00	7 29
ATOM	732	CE1	TYR	91			12.556	1.00	7.46
ATOM	733	CD2	TYR	91	13.490	36 521		1 00	7.96
ATOM	734	CE2	TYR	91	14.486	36.776	11.634		
ATOM	735	CZ	TYR	91	15.428	35 826	11 343	1.00	6.61
MOTA	736	OH	TYR	91	16.438	36.143	10 440	1.00	8 55
MOTA	737	С	TYR	91	11.289	34.262	16.334	1.00	5.71
ATOM	738	0	TYR	91	10.273	33.788	15 843	1 00	6 82
ATOM	739	N	LEU	92	11.385	34.619	17.619	1.00	6 69
ATOM	740	CA	LEU	92	10.306	34.337	18.569	1.00	6 33
ATOM	741	CB	LEU	92	10.873	34 371	19.987	1 00	7.20
ATOM	742	CG	LEU	92	11.700	33.188	20 466	1.00	7 89
ATOM	743	CD1	LEU	92	13.022	33 065	19.735	1.00	8.67
ATOM	744	CD2	LEU	92	11 888	33 261	21 985	1 00	10 35
ATOM	745	C	LEU	92	9.151	35.317	18.471	1.00	6.37
ATOM	746	ō	LEU	92	9.284	36.491	18 161	1.00	7 36
ATOM	747	N	SER	93	7 976	34.786	18.810	1.00	7.12
	748	CA	SER	93	6 805	35 605	19.060	1.00	7 59
ATOM			SER	93	5.523	34 794	19 013	1.00	8.96
ATOM	749	CB	SER	93	5.410	33 894	20 074	1 00	11.17
ATOM	750	OG C			6.928	36 224	20.443	1.00	7.83
MOTA	751	C	SER	93		35.807	21.266	1.00	8 58
MOTA	752	0	SER	93	7 728	37.213	20.688	1.00	9 38
MOTA	753	N	ILE	94	6 100		22 016	1 00	9.91
MOTA	754	CA	ILE	94	6.029	37.865		1.00	
MOTA	75 5	CB	ILE	94	6.640	39.280	21.992		10.58
MOTA	756	CG2	ILE	94	6.575	39.842	23 385	1.00	11.13
ATOM	757	CG1	ILE	94	8 051	39.304	21 385	1.00	11 02
ATOM	758	CD1	ILE	94	8 740	40 630	21,225	1.00	12.81
MOTA	759	C	ILE	94	4.550	37.947	22.376	1.00	9.85
ATOM	760	0	ILE	94	3.881	38.887	21 906	1.00	11.19
ATOM	761	N	PRO	95	4.006	36.948	23 046	1.00	10.93
ATOM	762	CD	PRO	95	4 693	35.749	23.520	1.00	12.42
ATOM	763	CA	PRO	95	2 560	36.878	23.342	1.00	12.23
ATOM	764	CB	PRO	95	2.394	35.670	24.234	1.00	13.83
ATOM	765	CG	PRO	95	3 555	34.807	23.867	1.00	13.55
ATOM	766	C	PRO	95	2 064	38.173	23 973	1.00	11.65
ATOM	767	0	PRO	95	2 791	38.800	24 780	1.00	12.20
ATOM	768	N	GLY	96	0.973	38.667	23.409	1.00	12.67
ATOM	769	CA	GLY	96	0.479	39.965	23.799	1.00	13.37
	770	C	GLY	96	0 933	41.142	22.976	1.00	12.23
ATOM		0	GLY	96	0 366	42.233	23 105	1.00	15.48
ATOM	771		LYS	97	1.992	40.975	22 189	1.00	12.23
ATOM	772	N		97	2.637	42.048	21.444	1.00	11.30
ATOM	773	CA	LYS	97	3.947	42.410	22.187	1.00	12.24
MOTA	774	CB	LYS			42.828	23.625	1.00	13.52
ATOM	775	CG	LYS	97	3.784		23 758	1.00	15.77
MOTA	776	CD	LYS	97	3.087	44.147			18.45
ATOM	777	CE	LYS	97	3.019	44.549	25.226	1.00	
MOTA	778	NZ	LYS	97	2,107	45.715	25.339	1.00	21.87
MOTA	779	C	LYS	97	2.977	41.783	19.977	1.00	10.88
MOTA	780	0	LYS	97	2.857	42.638	19.081	1.00	11.92
ATOM	781	N	LYS	98	3.453	40.583	19.691	1 00	10.38
MOTA	782	CA	LYS	98	3.913	40.149	18.374	1.00	9.59
ATOM	783	СВ	LYS	98	5.442	40.215	18.332	1 00	12.06
ATOM	784	CG	LYS	98	6.093	39.618	17.105	1 00	11.30
ATOM	785	CD	LYS	98	7 604	39.879	17.116	1.00	10.99
ATOM	786	CE	LYS	98	8 338	39.370	15.908	1 00	10.76
ATOM	787	NZ	LYS	98	8 448	37.856	15.937	1.00	10.00
ATOM	788	C	LYS	98	3 462	38.723	18.145	1.00	9.52
ATOM	789	0	LYS	98	3 835	37.797	18.884	1.00	10.44
	789 790	и	ALA	99	2.674	38.529	17.108	1.00	8.69
ATOM			ALA	99	2 095	37.221	16.865	1.00	8_30
ATOM	791	CA		99	0.771	37.440	16.107	1.00	11.01
ATOM	792	CB	ALA			36.289	16.048	1.00	7 09
ATOM	793	C	ALA	99	2 993		16.291	1.00	8.34
MOTA	794	0	ALA	99	3.091	35.086			
MOTA	795	N	VAL	100	3.614	36.851	14.990	1.00	7.33
ATOM	796	CA	VAL	100	4 390	36.044	14.085	1.00	7.31
ATOM	797	CB	VAL	100	4.804	36.909	12.882	1.00	8.26
ATOM	798	CG1	VAL	100	5.854	37.965	13.230	1.00	9.84
ATOM	7 99	CG2	VAL	100	5.294	36.092	11.703	1.00	9.CB

					. 9	0 -			
ATOM	800	С	VAL	100	5.636	35 463	14.759	1.00	6.77
ATCM	801	0	VAL	100	6.274	36 069	15.614	1.00	6.24
ATCM	802	N	GLU	101	6.039	34 294	14.261	1.00	5.93
ATCM	803	CA	GLU	101	7.275	33 647	14.643	1.00	5.89
ATOM	804	CB	GLU	101	7.164	32 758	15.864	1.00	6.83
ATOM	805	CG 	GLU	101	6.194	31.599	15.714	1.00	9.01
ATCM	806	CD	GLU	101	5.993	30 900	17.058	1.00	11.15
ATCM	807 808	OE1 CE2	GLU GLU	101 101	4 957 6 839	31 171	17.727	1.00	11.35
ATCM ATCM	809	CEZ	GLU	101	7 748	30 033 32 835	17 396 13 441	1.00	16.56
ATOM	810	0	GLU	101	6 989	32 513	12.532	1.00	6.12 6.44
ATCM	811	N	SER	102	9 047	32 564	12 384	1 00	6.02
ATCM	812	CA	SER	102	9 605	31.897	12.196	1 00	6.00
ATCM	813	ÇB	SER	102	9 725	32 906	11.058	1 00	6.77
ATOM	814	OG	SER	102	10.632	33.935	11 388	1 00	7.64
ATCM	815	C	SER	102	10 934	31.253	12.468	1.00	6.15
ATCM	816	0	SER	102	11 592	31 497	13.474	1 00	6.61
ATOM ATOM	817 818	N CA	PHE PHE	103 103	11.367 12 670	30 433 29.792	11.517 11.506	1.00 1.00	5.73
ATCM	819	CB	PHE	103	12 521	28 294	11 756	1 00	5.88 6.37
ATOM	820	CG	PHE	103	13.795	27.476	11 663	1.00	6.21
ATOM	821	CD1	PHE	102	14.723	27.499	12 686	1 00	7.53
MOTA	822	CD2	PHE	103	14 024	26 650	10.562	1.00	7.03
ATCM	823	CE1	PHE	103	15.866	26 713	12 620	1 00	7.78
ATCM	824	CE2	PHE	103	15 167	25.887	10 483	1 00	6.93
ATOM	825	CZ	PHE	103	16.077	25 924	11.508	1 00	7.07
ATOM	82€	С	PHE	103	13 319	36 018	10 149	1.00	5.84
ATOM ATOM	827 828	O N	PHE CYS	103 104	12 720 14.505	29 679 30 59 6	9 124 10 128	1.00	5.89
ATOM	829	CA	CYS	104	15 244	3C 888	8 907	1 00	5.38 5.34
ATOM	830	CB	CYS	104	15 669	32.368	8.935	1 00	6.38
ATOM	831	SG	CYS	104	16.693	32 902	7.544	1 00	7.14
ATOM	832	C	CYS	104	16.475	29.988	8 802	1.00	5.05
ATOM	833	0	CYS	104	17.202	29.801	9.794	1 00	5.55
MOTA	834	N	TYR	105	16 758	29.512	7.615	1.00	5.01
ATOM	835	CA	TYR	105	17.979	28.794	7 344	1.00	4.98
ATOM ATOM	83 6 837	CB CG	TYR TYR	105 105	17.839 16.822	27.285 26.594	7.499 6.589	1 00 1 00	5.67 5.07
ATOM	838	CD1	TYR	105	17.258	25 856	5 491	1.00	5.34
ATOM	839	CE1	TYR	105	1€.371	25 171	4.659	1 00	5.87
ATOM	840	CD2	TYR	105	15 469	16 551	6 883	1.00	5.19
ATOM	841	CE2	TYR	105	14.595	25 862	6 059	1 00	5.89
ATOM	842	CZ	TYR	105	15.045	25.169	4 966	1 00	5 38
MOTA	843	ОН	TYR	105	14.141	24 495	4.169	1.00	6.39
ATOM	844	c	TYR	105	18 515	29 202	5 972	1 00	4 38
ATOM ATOM	845 846	O N	TYR LEU	105 106	17 778 19. 81 6	29.622 29.039	5.072 5.852	1 00	5 26 5.00
ATOM	847	CA	LEU	106	20.634	29.415	4.731	1.00	4.93
ATOM	848	CB	LEU	106	21.803	30.266	5.227	1.00	6.26
ATOM	849	ÇG	LEU	106	21.444	31.467	6.125	1 00	6 45
MOTA	850	CD1	LEU	106	22.709	32.219	6.477	1.00	8.37
ATOM	851	CD2	LEU	106	20.392	32.329	5 466	1.00	6.90
ATOM	852	С	LEU	106	21,121	28.188	3 948	1 00	4 77
MOTA	853	0	LEU	106	20 754	27.046	4 237	1 00	5.93
ATOM ATOM	854 855	N CA	asn asn	107 107	21 991 22 654	28 473 27.437	2.983 2.187	1 00 1.00	4.9€ 5.23
ATOM	856	CB	ASN	107	23 803	28.147	1.434	1 00	5 83
ATOM	857	CG	ASN	107	24 424	27 280	0.353	1 00	5 32
ATOM	858	OD1	ASN	107	24 420	16 044	0.396	1 00	5.91
ATOM	859	ND2	ASN	107	14 989	27.988	-0 626	1 00	6 49
ATOM	860	C	ASN	107	23 225	26 347	3 079	1 00	4 82
ATOM	861	0	ASN	107	24 097	26 593	3.937	1 00	5 62
ATOM	862	N	PRO	108	22.771	25.095	2 881	1 00	4 96
ATCM	863	CD	PRO	108	21.595	24.677	2.118	1 00	5.43
ATOM	864 865	CA	PRO PRO	108 108	23.345 22.516	23 973 22 773	3.639 3.134	1.00	5.82
ATCM ATOM	865	CB CG	PRO	108	21.194	23.377	2 749	1.00	6 84 6.32
ATOM	867	C	PRO	108	24.846	23 763	3 444	1.00	5.93
ATOM	868	ō	PRO	108	25.533	23.129	4 274	1.00	6.51
ATCM	869	N	ASN	109	25.397	24 277	2 353	1.00	5.53
ATCM	870	CA	ASN	109	26.823	24 180	2.080	1.00	5.84
ATCM	871	CB	ASN	109	27.130	24.369	0 598	1.00	6.10
MOTA	872	CG	ASN	109	26.633	23.186	-0.200	1.00	5.51

					,				
ATOM	873	OD1	ASN	109	26 690	22.020	0.209	1.00	7.43
MOTA	874	ND2	ASN	109	26.165	23 491	-1 405	1 00	7.14
ATOM	875	C	ASN	109	27 652 28 863	25 150 25 063	2 920 2 911	1.00 1.00	5.95 6.60
ATOM	876 877	O N	asn Phe	109 110	27 032	26.060	3 672	1 00	6.52
MOTA MOTA	878	CA	PHE	110	27 727	26 943	4 602	1 00	6.64
ATOM	879	СВ	PHE	110	26 984	28.235	4.934	1.00	6.86
ATOM	880	CG	PHE	110	26.793	29 203	3 781	1.00	6.62
ATOM	881	CD1	PHE	110	27.454	29.100	2.593	1.00	6.42
ATOM	882	CD2	PHE	110	25.889 27.269	30.238 30.020	3 919 1 570	1.00 1.00	7.13 7.97
ATOM ATOM	883 884	CE1 CE2	PHE PHE	110 110	25.698	31 178	2.917	1.00	7.73
ATOM	885	CZ	PHE	110	26 380	31 064	1 723	1 00	7.68
ATOM	886	C	PHE	110	28.010	26 131	5 870	1 00	6.41
ATOM	887	0	PHE	110	27.334	26 222	6.890	1.00	9.08
ATOM	888	N	THR	111	29.047	25 319	5 795 6 858	1.00 1.00	7.20 7.97
MOTA	889	CA CB	THR THR	111 111	29.543 29.986	24.473 23.114	6.240	1.00	9.61
ATOM ATOM	890 891	OG1	THR	111	30.863	23.407	5.150	1.00	12.08
ATOM	892	CG2	THR	111	28.831	22.332	5.660	1 00	11.21
ATOM	893	C	THR	111	30.719	25 173	7 535	1 00	8.55
MOTA	894	0	THR	111	31.262	26 161	7 039	1.00	8.43
ATOM	895	N	PRO	112	31.158	24.669	8.690 9.514	1.00 1.00	10.82 12.34
ATOM	896 897	CD CA	PRO PRO	112 112	30.500 32.284	23.646 25.317	9.365	1.00	10.76
ATOM ATOM	898	CB	PRO	112	32.454	24.403	10.591	1.00	12.53
ATOM	899	CG	PRO	112	31.035	23.971	10.884	1 00	13.67
ATOM	900	С	PRO	112	33.560	25.453	8 553	1.00	10.13
MOTA	901	0	PRO	112	34.293	26.449	8 719	1 00	12.02
MOTA	902	И	ASP	113	33.764 34.960	24 577 24 594	7 586 6.754	1.00	10.28 11.85
ATOM ATOM	903 904	CA CB	ASP ASP	113 113	35.418	23.179	6.354	1.00	14.15
ATOM	905	CG	ASP	113	34.450	22.335	5.556	1.00	16.88
ATOM	906	OD1	ASP	113	34.697	21.122	5 265	1 00	17.94
MOTA	907	QD2	ASP	113	33.431	22.903	5 120	1 00	18.33
MOTA	908	C	ASP	113	34.779	25 485 25 568	5 516 4 674	1.00	10.04 11.29
ATOM	909 910	N	ASP HIS	113 114	35.695 33.614	26.058	5.256	1.00	8.19
ATOM ATOM	910	CA	HIS	114	33.388	26.853	4.066	1.00	7.72
ATOM	912	CB	HIS	114	31.924	27.234	3 945	1 00	8.19
MOTA	913	CG	HIS	114	31.514	27.896	2.661	1.00	7.35
MOTA	914	CD2	HIS	114	30.786	27.365	1.634	1.00 1.00	7.63 7.74
ATOM	915	ND1 CE1	HIS HIS	114 114	31.853 31.374	29 194 29 423	2.350 1.125	1.00	8.63
ATOM ATOM	916 917	NE2	HIS	114	30.698	28 385	0.701	1 00	8.22
ATOM	918	C	HIS	114	34.263	28.078	4.069	1 00	7.89
ATOM	919	0	HIS	114	34.363	28 705	5.126	1.00	8.23
MOTA	920	N	PRO	115	34.877	28.447	2.947	1.00	8.07
ATOM	921	CD	PRO PRO	115 115	34.805 35.791	27.853 29.586	1.595 2.989	1.00	9 44 7 97
MOTA MOTA	922 923	CA CB	PRO	115	36.432	29.638	1.603	1.00	10.29
ATOM	924	CG	PRO	115	36.058	28.363	0.935	1.00	16 51
MOTA	925	С	PRO	115	35.213	30.906	3.451	1 00	8.16
MOTA	926	0	PRO	115	35.957	31.749	4.033	1 00	8.89
ATOM	927	N	ARG	116	33.935	31.156	3.245	1.00 1.00	7.57 8.05
ATOM	928	CA	ARG ARG	116 116	33.282 32.055	32.366 32.649	3.687 2.831	1 00	9.75
ATOM ATOM	929 930	CB CG	ARG	116	32.363	33.041	1.398	1.00	11.43
ATOM	931	CD	ARG	116	33.024	34.444	1.316	1 00	17.12
ATOM	932	NE	ARG	116	32.909	34.976	-0.046	1.00	18.64
ATOM	933	CZ	ARG	116	33.267	36.202	-0.332	1 00	16.55
ATOM	934	NHI	ARG	116	33.732	37.005	0.626	1 00 1.00	18.90 19.38
ATOM	935	NH2	ARG ARG	116 116	33.158 32.955	36.628 32.353	-1.550 5.168	1.00	8.18
ATOM ATOM	936 937	C 0	ARG	116	32.905	33.426	5.807	1 00	10.55
ATOM	938	И	ILE	117	32.701	31.161	5.702	1 00	7.91
ATOM	939	CA	ILE	117	32.507	30.993	7.134	1.00	8.74
MOTA	940	CB	ILE	117	31.884	29.617	7.425	1 00	8.27
ATOM	941	CG2	ILE	117	31.909	29.337	8.920	1.00	10.79 7.78
ATOM	942	CG1 CD1	ILE	117 117	30.482 29.478	29.510 30.458	6.798 7.376	1 00	9.72
MOTA MOTA	943 944	CDI	ILE	117	33.863	31,170	7.818	1.00	9.52
ATOM	945	ō	ILE	117	33.956	31.893	8.820	1.00	10.02

					- 9	12 -			
ATCM	946	N	GLN	118	34.936	30.601	7.248	1.00	9.60
ATCM	947	CA	GLN	118	36 264	30.823	7.814	1.00	9.55
ATCM	948	CB	GLN	118	37 287	29.975	7.066	1.00	11.20
ATC:M	949	CG	GLN	118	37 163	28.475	7.285	1.00	11.87
ATOM:	950	CD	GLN	118	37 706	28.064	8.628	1.00	15.84
ATOM	951	OE1	GLN	113	38 799	28.509	9.021	1.00	16.95
ATCM	952	NE2	GLN	119	36 968	27 189	9.314	1.00	18.58
ATC:M	953	C	GLN	113	36 624	32 301	7 782	1.00	10.34
ATCM	954	0	GL1:	:18	37 209	32 780	8 779	1.00	12.18
ATOM	955	11	ALA	119	36 307	33.008	6 719	1.00	10 58
ATCM	95€	CA	ALA.	119	36 652	34 437	6 57?	1.00	11 17
ATCM	957	CB	ALA	119	36 €75	34 884	5 141	1.00	11 90
ATCM	958	C	ALA	119	35 766	35 340	7 417	1 00	11.81
ATOM	959	0	ALA	119	35 975	36 547	7 593	1.00	13.51
ATOM	960	n	LYS	120	34 677	34 792	7.926	1 00	11.51
ATCM	961	CA	LYS	120	33 697	35 524	8 728	1 00	11 83
ATOM	962	CB	LYS	120	34 314	36.156	9.981	1 00	16.43
ATOM	963 9 64	CG CD	LYS LYS	120 120	35.156 34.452	35.192 34 007	10.773	1.00	20.21
ATOM ATOM	965	CE	LYS	120	35.422	33 080	11.336 12 083	1 00 1.00	25.82 26 48
ATOM	96€	NZ	LYS	120	36 364	32 304	11 194	1.00	26 48
MOTA	967	C	LYS	120	33.033	36 623	7 910	1.00	12 07
ATCM	968	0	LYS	120	32.701	37 698	8.413	1.00	13 32
ATOM	969	H	THF.	121	32.773	36.290	6.647	1 00	11.59
ATCM	970	CA	THE.	121	32 162	37 294	5 783	1 00	11 41
ATOM	971	CB	THP.	121	32 158	36 758	4 336	1.00	11 74
MOTA	972	OG1	THP.	121	33 515	36.460	3.947	1.00	14.18
MOTA	973	CG2	THE	121	31.617	37 825	3.394	1.00	13 26
MOTA	974	С	THE	121	30.742	37 599	6.199	1.00	10 30
ATCM	975	0	THP	123	30 016	36 627	6.442	1 00	9 38
ATOM	976	11	PRO	122	30 343	38.869	6 255	1 00	11 24
ATCM	977	CD	PRO	112	31.175	40.087	6 162	1.00	13 40
ATOM	978	CA	PRO	122	28 938	39 176	6 605	1.00	10 67
ATOM	979	CB	PRO	122	28 883	40 676	6 374	1.00	13.30
ATCM ATCM	980 981	CG C	PRC [.] PRO	122 122	30.251 27 933	41 155 38 454	6 684 5.721	1.00	14.04
ATOM	982	0	PRO	122	28 224	38.174	4.567	1.00	8.90 9.02
ATOM	983	N	THE	123	26.810	38 105	6 329	1.00	9 47
ATOM	984	CA	THP.	123	25.660	37 447	5 729	1.00	8.42
ATOM	985	CB	THP	123	25 112	38 105	4 455	1.00	9 93
ATCM	986	OG1	THF.	123	25.929	37.810	3 314	1.00	10 18
ATOM	987	CG2	THF.	123	25.024	39 629	4 512	1.00	13.04
ATOM	988	С	THE	123	25 807	35.938	5 560	1.00	8.70
ATOM	989	0	THE	123	24 815	35 273	5.198	1.00	9.15
ATOM	990	11	HIS	124	26 994	35 395	5 833	1.00	8 34
ATOM	991	CA	HIS	124	27 189	33 957	5.798	1.00	7 €4
ATCM	992	CB	HIS	124	28 524	33 584	5 149	1.00	7 45
ATOM	993	CG	HIS	124	28 726	34 113	3 780	1.00	7.00
ATOM	994	CD2	HIS	124	28.755	33.507	2.577	1.00	7 26
ATOM	995	ND1	HIS	124 124	28.998	35.449	3 557	1.00	7.88
ATOM ATOM	996 997	CE1 NE2	HIS HIS	124	29 202 29.032	35 607 34 4 78	2.261 1.631	1.00 1.00	8 29
ATOM	998	C	HIS	124	27.170	33.387	7.206	1.00	7.93 8.19
ATC:M	999	0	HIS	124	27.888	33 913	8 056	1.00	9.17
ATOM	1000	11	GLU	125	26 413	32.313	7 455	1.00	7 36
ATCM	1001	CA	GLU	125	26.337	31.694	8.776	1.00	7 74
ATOM	1002	СВ	GLU	125	25 166	32.230	9.604	1.00	8 77
ATOM	1003	CG	GLU	125	25 164	33.714	9.832	1.00	9 78
ATOM	1004	CD	GLU	125	23.885	34.235	10.445	1.00	9.41
MOTA	1005	OE1	GLU	125	23 057	33.439	10.972	1.00	12.02
ATOM	1006	OE2	GLU	125	23.791	35 476	10.373	1.00	12.25
MOTA	1007	C	GLU	125	26 118	30 196	8.567	1.00	7.57
ATOM	1008	0	GLU	125	15.581	19 787	7.521	1.00	8.65
ATOM	1009	N	VAL	126	26 505	29 398	9.557	1.00	7.88
ATOM	1010	CA	VAL	126	26 219	27 969	9.636	1.00	7.38
ATOM	1011	CB	VAL	126	27 281	27 246	13.488	1.00	8.22
ATOM	1012	CG1	VAL	126	26 979	25 754	10.561	1.00	9.54
ATOM	1013	CG2	LAV	126 126	28 686 24 843	27 497	3.941	1.00	9.36
ATOM ATOM	1014	i) i)	VAL	126	24 564	27 785 28 311	10.272 11.344	1.00	7.39
ATOM	1015 1016	14	AS!	127	23.951	28 311	9.554	1.00 1.00	8.29 6.96
ATOM	1016	CA	ASH	127	22.618	26.839	10.081	1.00	6.96 6.87
ATOM	1018	СВ	ASII	127	21.832	25.948	9.120	1.00	6.56
	1010							1.00	0.50

ATOM	1019	CG	ASN	127	21 515	26 650	7.803	1.00	6.11
ATOM	1020	OD1	ASN	127	21.362	27 877	7.793	1 00	7.19
ATOM	1021	ND2	ASN	127	21 360	25.859	6.758	1 00	7.23
ATOM	1022	C	ASN	127	22 624	26.173	11.447	1 00	7.20
	1023	ō	ASN	127	23.503	25.353	11.763	1.00	8.68
ATOM		N	VAL	128	21 596	26 511	12 239	1.00	7.13
MOTA	1024					25.849	13.501	1 00	7 06
MOTA	1025	CA	VAL	128	21.284		14.657	1.00	8 77
ATOM	1026	CB	VAL	128	21.172	26 848			
ATOM	1027	CG1	VAL	128	22.508	27 567	14 825	1 00	
MOTA	1028	CG2	VAL	128	19.986	27.774	14.501	1 00	9 46
ATOM	1029	С	VAL	128	20.032	25.032	13 329	1.00	6 59
ATOM	1030	0	VAL	128	19.101	25.426	12.617	1.00	8.06
ATOM	1031	N	TRP	129	19.977	23.861	13.963	1.00	7 79
ATOM	1032	CA	TRP	129	18 884	22.914	13 812	1.00	7 98
ATOM	1033	CB	TRP	129	19.316	21.709	12 955	1.00	7 99
ATOM	1034	CG	TRP	129	19.671	22 145	11.553	1.00	7.47
ATOM	1035	CD2	TRP	129	18 743	22 448	10.496	1 00	6.77
ATOM	1036	CE2	TRP	129	19.486	22.838	9.368	1 00	6.74
ATOM	1037	CE3	TRP	129	17.353	22.428	10.400	1.00	6.42
	1038	CD1	TRP	129	20.887	22.349	11.033	1 00	8 81
ATOM		NE1	TRP	129	20 809	22.765	9 721	1.00	8 43
ATOM	1039		TRP	129	18 902	23 196	8.160	1.00	6 63
ATOM	1040	CZ2		129	16.754	22.796	9.207	1.00	7 42
MOTA	1041	CZ3	TRP				8.120	1.00	6 84
MOTA	1042	CH2	TRP	129	17.553	23.187 22.394		1 00	8.10
MOTA	1043	С	TRP	129	18.434		15.187		
ATOM	1044	0	TRP	129	19.266	22.268	16.108	1.00	9.20
ATOM	1045	N	PRO	130	17.158	22.038	15.321	1.00	9.10
MOTA	1046	CD	PRO	130	16.078	22.208	14.338	1.00	11.04
MOTA	1047	CA	PRO	130	16.684	21.410	16 563	1.00	10 04
ATOM	1048	CB	PRO	130	15 190	21 366	16.377	1.00	12 74
ATOM	1049	CG	PRO	130	14.987	21.348	14.930	1.00	12 90
ATOM	1050	С	PRO	130	17 295	20.019	16.674	1.00	10.76
ATOM	1051	0	PRO	130	17 902	19.473	15.742	1.00	10.41
MOTA	1052	N	ASP	131	17.139	19.412	17.840	1.00	12.19
MOTA	1053	CA	ASP	131	17.611	18.063	18.062	1.00	13 83
ATOM	1054	CB	ASP	131	17.311	17.695	19.499	1.00	20.75
ATOM	1055	CG	ASP	131	18 290	18.307	20.474	1.00	30.05
ATOM	1056	OD1	ASP	131	19.218	19 075	20.122	1.00	41 54
ATOM	1057	OD2	ASP	131	18.111	17.974	21.678	1.00	44.79
ATOM	1058	C	ASP	131	16.864	17.077	17.175	1.00	12.28
ATOM	1059	0	ASP	131	15.643	17.091	17.104	1.00	11 37
ATOM	1060	N	GLU	132	17.632	15 204	16.561	1.00	11.37
ATOM	1061	CA	GLU	132	17.032	15 236	15.660	1.00	12.37
ATOM	1062	CB	GLU	132	18 140	14.416	14.986	1.00	14 40
ATOM	1063	CG	GLU	132	17.667	13.221	14.169	1.00	14.02
ATOM	1064	CD	GLU	132	17 004	13.617	12.890	1.00	14 20
ATOM	1065	OE1	GLU	132	17 327	14 733	12.391	1 00	13.96
ATOM	1066	OE2	GLU	132	16.222	12.787	12.395	1.00	14 71
ATOM	1067	С	GLU	132	16 028	14.309	16.327	1.00	13.05
ATOM	1068	0	GLU	132	15.022	13 953	15.730	1 00	13 21
ATOM	1069	N	THR	133	16.283	13.922	17.576	1 00	15 02
ATOM	1070	CA	THR	133	15.337	13 065	18 267	1.00	17 13
ATOM	1071	CB	THR	133	15.911	12.663	19.645	1.00	19.10
	1071	QG1	THR	133	16.214	13 817	20 436	1 00	30.56
ATOM	1072	CG2	THR	133	17.200	11 914	19 407	1 00	21.80
MOTA	1073	C	THR	133	14.003	13.738	18 504	1.00	14.81
ATOM			THR	133	12.976	13 052	18.539	1.00	18.31
MOTA	1075	0	LYS	134	13.992	15.065	18.681	1.00	14.08
ATOM	1076	N		134	12.738	15 763	18.943	1.00	14.05
ATOM	1077	CA	LYS			17 072	19.683	1.00	16.10
MOTA	1078	CB	LYS	134	13.028	16.783	21.105	1.00	21.50
MOTA	1079	CG	LYS	134	13.566		21.912	1.00	24.72
MOTA	1080	CD	LYS	134	13.739	18 052			29.07
ATOM	1081	CE	LYS	134	13.962	17.851	23.411	1.00	
ATOM	1082	NZ	LYS	134	15.380	17.498	23.673	1.00	35.66
MOTA	1083	С	LYS	134	11.982	16.084	17.673	1.00	11.72
MOTA	1084	0	LYS	134	10.764	16.268	17.697	1.00	12.75
ATOM	1085	N	HIS	135	12.768	16.210	16.602	1.00	10.34
ATOM	1086	CA	HIS	135	12.229	16.559	15.278	1.00	9.70
MOTA	1087	CB	HIS	135	12.568	18.014	14.927	1.00	10.46
MOTA	1088	CG	HIS	135	11.859	18.971	15.855	1.00	11.60
ATOM	1089	CD2	HIS	135	10.625	19.519	15.664	1.00	11.74
ATOM	1090	ND1	HIS	135	12.334	19.405	17.077	1.00	13.42
MOTA	1091	CEl	HIS	135	11.390	20.219	17.592	1.00	10.37

- 94 -

ATOM	1092	NE2	HIS	135	10.358	20,261	16.753	1.00	14.68
ATOM	1093	C	HIS	135	12.753	15.614	14.207	1.00	9.49
ATOM	1094	0	HIS	135	13.431	16.005	13.302	1.00	8.95
ATOM ATOM	1095 1096	N CD	PRO PRO	136 136	12.410 11.539	14.336 13.714	14.298	1.00	10.29
ATOM	1097	CA	PRO	136	12,996	13.714	15.288 13.367	1.00	12.71 10.53
ATOM	1098	CB	PRO	136	12.331	12.025	13.738	1.03	13.20
ATOM	1099	CG	PRO	136	11.373	12,308	14.821	1.00	15.42
ATOM	1100	C	PRO	136	12 727	13.556	11.902	1.00	9.37
ATOM	1101	0	PRO	136	11 583	13.947	11.540	1.00	10.11
ATOM	1102	N	GLY	137	13 801	13.643	11.131	1.00	9.15
ATOM ATOM	1103 1104	CA C	GLY GLY	137 137	13 642 13.568	13.906 15.351	9.700	1 00	8.92
ATOM	1104	0	GLY	137	13.568	15.550	9.281 8.076	1 00 1.00	8.41 8.62
ATOM	1106	N	PHE	138	13 438	16.290	10.230	1 00	7.77
MOTA	1107	CA	PHE	138	13 189	17.683	9.858	1 00	7.53
MOTA	1108	CB	PHE	138	12 791	18,533	11.069	1 00	9.20
ATOM	1109	CG	PHE	138	12 676	20.014	10.773	1 00	8.61
ATOM	1110	CD1	PHE	138	11.623	20.502	9.999	1.00	8.98
ATOM ATOM	1111 1112	CD2 CE1	PHE PHE	138 138	13 628 11 598	20.897 21 878	11.264 9.728	1.00 1.00	8.98
ATOM	1113	CE2	PHE	138	13 584	22.238	11.007	1.00	9.14 9.39
ATOM	1114	CZ	PHE	138	12.555	22.730	10.231	1.00	8 50
ATOM	1115	С	PHE	138	14 355	18.318	9.123	1.00	6.57
ATOM	1116	0	PHE	138	14.155	18.953	8.090	1.00	6 31
ATOM	1117	N	GLN	139	15 553	18.234	9.700	1.00	7 35
ATOM	1118	CA CB	GLN	139 139	16.718 17.990	18.827	9.045	1.00	7.49
ATOM ATOM	1119 1120	CG	GLN GLN	139	19,211	18.600 19 123	9.867 9.164	1.00	7.76 8.03
ATOM	1121	CD	GLN	139	20.475	19.034	10.008	1.00	9.61
ATOM	1122	OE1	GLN	139	20.452	18 629	11.194	1.00	11.81
MOTA	1123	NE2	GLN	139	21.556	19 403	9.361	1.00	10.42
ATOM	1124	C	GLN	139	16.898	18.263	7.634	1.00	6 36
MOTA	1125	0	GLN	139	17.148	19 042	6 703	1.00	6.70
ATOM ATOM	1126 1127	N CA	ASP ASP	140 140	16.792 16.966	16.962 16.359	7.476 6.153	1.00	7 41 8.02
ATOM	1128	CB	ASP	140	17.014	14.845	6 267	1.00	10 C6
ATOM	1129	CG	ASP	140	18.185	14.414	7.143	1.00	12.56
MOTA	1130	OD1	ASP	140	19.263	15.008	7.017	1.00	15.40
ATOM	1131	OD2	ASP	140	18.010	13.419	7.863	1.00	17.99
ATOM	1132	C	ASP	140	15.903	16.836	5.173	1.00	7.03
ATOM ATOM	1133 1134	N O	ASP PHE	140 141	16.195 14.649	17.125 16.886	4,012 5,632	1.00	7.37 6.76
ATOM	1135	CA	PHE	141	13.592	17.404	4.806	1.00	6.92
ATOM	1136	CB	PHE	141	12.241	17.315	5 525	1.00	8.28
MOTA	1137	CG	PHE	141	11.180	18.059	4 700	1.00	10.59
MOTA	1138	CD1	PHE	141	15.649	17.398	3 585	1.00	12.85
ATOM	1139	CD2	PHE PHE	141	10.766	19.326	4.979	1.00	12 09
ATOM ATOM	1140 1141	CE1 CE2	PHE	141 141	9.773 9.946	18.045 20.027	2.730 4.097	1.00	14.79 12.80
ATOM	1142	cz	PHE	141	9.514	19.385	2.960	1.00	15 56
MOTA	1143	C	PHE	141	13.898	18.843	4.381	1.00	6.10
ATOM	1144	0	PHE	141	13 715	19 227	3.224	1.00	5.52
ATOM	1145	N	ALA	142	14 235	19.692	5.355	1.00	5.91
ATOM	1146	CA	ALA	142	14 436	21.113	5.109	1 00	6.07
ATOM ATOM	1147 1148	CB C	ALA ALA	142 142	14.597 15.593	21.835 21.396	6.444 4.153	1.00	6.15 5.38
ATOM	1149	0	ALA	142	15.534	22.273	3.289	1.00	5.69
MOTA	1150	N	GLU	143	16.660	20.630	4.306	1.00	5.79
MOTA	1151	CA	GLU	143	17.811	20.759	3.404	1.00	5.89
ATOM	1152	CB	GLU	143	19.021	19.977	3.912	1.00	6.66
ATOM	1153	CG	GLU	143	19.647	20.589	5.171	1.00	6.49
ATOM ATOM	1154 1155	CD OE1	GLU GLU	143 143	20.818	19 857 18.661	5.742 5.468	1.00	8.57
MOTA	1156	OE2	GLU	143	21.529	20.401	6.607	1.00 1.00	15.50 8.03
ATOM	1157	C	GLU	143	17.426	20.335	1.982	1.00	6 15
ATOM	1158	0	GLU	143	17.798	21.030	1.046	1.00	6 03
ATOM	1159	N	GLN	144	16.717	19.195	1.852	1.00	6.24
ATOM	1160	CA	GLN	144	16.249	18.793	0.519	1.00	5.81
ATOM	1161	CB	GLN	144	15.582	17.418	0.622	1.00	7.33
ATOM ATOM	1162 1163	CD CD	GLN GLN	144 144	15.034 16.102	16.900 16.723	-0.718 -1.755	1.00	9.38
ATOM	1164	CE1	GLN	144	16.165	17.336	-2.852	1.00	11.31 15.13
							2.002	1.00	~~. ~ ~

ATOM	1165	NE2	GLN	144	17 017	15.794	-1.443	1.00	13.37
	1166	C	GLN	144	15.322	19.843	-0.068	1.00	6.08
ATOM	1167	o	GLN	144	15 367	20.113	-1.286	1.00	6.65
ATOM		N	TYR	145	14.450	20.464	0.723	1.00	5.44
MOTA	1168	CA	TYR	145	13.552	21.492	0.249	1.00	5.36
ATOM	1169			145	12.562	21 956	1 318	1.00	5.45
ATOM	1170	CB	TYR			23.094	0 785	1.00	5.34
ATOM	1171	CG	TYR	145	11 718			1.00	5.77
MOTA	1172	CD1	TYR	145	10.850	22.844	-0.266		
ATOM	1173	CEl	TYR	145	10.113	23.856	-0.832	1.00	5.40
ATOM	1174	CD2	TYR	145	11.863	24.392	1 209	1.00	6.05
ATOM	1175	CE2	TYR	145	11.128	25.428	0.632	1.00	5.52
ATOM	1176	CZ	TYR	145	10.260	25 146	-0.376	1 00	4 90
ATOM	1177	OH	TYR	145	9.505	26 126	-1.002	1 00	6.57
ATOM	1178	С	TYR	145	14.350	22.668	-0.324	1.00	4.85
ATOM	1179	0	TYR	145	14.009	23.173	-1 384	1.00	5.67
ATOM	1180	N	TYR	146	15.400	23.055	0.370	1.00	5 22
	1181	CA	TYR	146	16.294	24 134	-0.108	1 00	5.07
ATOM		CB	TYR	146	17.492	24.302	0.818	1 00	6.31
ATOM	1182		TYR	146	18.356	25.533	0.554	1.00	5.63
MOTA	1183	CG		146	18.217	26.654	1.367	1 00	4.93
MOTA	1184	CD1	TYR				1.191	1 00	4.66
MOTA	1185	CE1	TYR	146	18.975	27.804		1.00	5.91
MOTA	1186	CD2	TYR	146	19.292	25.595	-0.471		
MOTA	1187	CE2	TYR	146	20.050	26.728	-0.673	1.00	5.60
ATOM	1188	CZ	TYR	146	19.892	27.816	0.151	1.00	5.33
MOTA	1189	OH	TYR	146	20.681	28.929	-0 076	1 00	6,01
MOTA	1190	C	TYR	146	16.740	23.831	-1.547	1 00	4.88
ATOM	1191	0	TYR	146	1.6.630	24.691	-2 413	1.00	5.89
ATOM	1192	N	TRP	147	17.186	22.580	-1 792	1.00	5.20
ATOM	1193	CA	TRP	147	17.650	22.244	-3.129	1 00	5.95
ATOM	1194	СВ	TRP	147	18.544	20.995	-3.105	1 00	6.61
ATOM	1195	CG	TRP	147	19.730	21.259	-2 221	1.00	6.71
	1196	CD2	TRP	147	20.675	22.345	-2 390	1.00	6.87
ATOM		CE2	TRP	147	21.598	22.227	-1.334	1.00	7. 7 1
ATOM	1197			147	20.828	23.398	-3.303	1.00	7.63
MOTA	1198	CE3	TRP			20.576	-1,120	1.00	7.42
MOTA	1199	CD1	TRP	147	20.127		-0.574	1.00	7.49
MOTA	1200	NEl	TRP	147	21.230	21.118	-1.198	1.00	8.32
ATOM	1201	CZ2	TRP	147	22.641	23.133			8.76
ATOM	1202	CZ3	TRP	147	21.873	24.299	-3.147	1.00	
MOTA	1203	CH2	TRP	147	22.774	24.162	2.079	1.00	8.40
ATOM	1204	C	TRP	147	16.514	22.124	-4.123	1.00	5.56
MOTA	1205	0	TRP	147	16.697	22.484	-5.295	1.00	6.90
ATOM	1206	N	ASP	148	15.333	21.663	-3.736	1.00	5.62
ATOM	1207	CA	ASP	148	14.192	21.610	-4.644	1.00	6.73
ATOM	1208	CB	ASP	148	13.006	20.892	-3.990	1.00	7.41
ATOM	1209	CG	ASP	148	13.180	19.397	-3.794	1.00	9.94
ATOM	1210	OD1	ASP	148	14.107	18.824	-4.385	1.00	11.03
MOTA	1211	OD2	ASP	148	12.308	18.805	-3.115	1.00	12.94
ATOM	1212	C	ASP	148	13.807	23.013	-5.076	1.00	6.41
	1213	ō	ASP	148	13.602	23.288	-6.281	1.00	6.39
ATOM ATOM	1214	N	VAL	149	13.678	23.959	-4.112	1.00	5.67
			VAL	149	13.287	25.330	-4.472	1.00	5.45
MOTA	1215	CA CB	VAL	149	12.664	26.047	-3.279	1.00	5.40
ATOM	1216			149	13.656	26.460	-2.202	1.00	5.95
ATOM	1217	CG1	VAL		11.883	27.265	-3.771	1.00	6.77
ATOM	1218	CG2	VAL	149		26.084	-5.158	1.00	5.36
MOTA	1219	C	VAL	149	14.421		-6.016	1.00	5.85
ATOM	1220	0	VAL	149	14.173	26.951			5.71
MOTA	1221	N	PHE	150	15.669	25.750	-4.879	1.00	
MOTA	1222	CA	PHE	150	16.795	26.267	-5.635	1.00	5.05
MOTA	1223	CB	PHE	150	18.111	25.675	-5.056	1.00	6.21
MOTA	1224	ÇG	PHE	150	19 374	26.154	-5.764	1.00	6.04
ATOM	1225	CD1	PHE	150	20.158	17.164	-5.267	1.00	7.32
ATOM	1226	CD2	PHE	150	19 840	25.565	-6 911	1.00	7.41
ATOM	1227	CE1	PHE	150	21 279	27.602	-5 932	1.00	7.7 7
ATOM	1228	CE2	PHE	150	20.926	26.005	-7 649	1.00	8.49
ATOM	1229	CZ	PHE	150	21 686	27.017	-7.119	1.00	7 48
	1230	C	PHE	150	16.616	25.887	-7 102	1.00	5 89
ATOM			PHE	150	16.841	26.726	-8.004	1.00	6 52
ATOM	1231	0	GLY	151	16.276	24.637	-7.351	1.00	6.70
MOTA	1232	N			16.124	24.168	-8.744	1.00	6.74
ATOM	1233	CA	GLY	151			-3.476	1.00	6.45
ATOM	1234	С	GLY	151	15.012	24.887	-10.619	1.00	7.27
MOTA	1235	0	GLY	151	15.150	25 293			6.82
ATOM	1236	N	LEU	152		25 094	-3.825	1.00	
ATOM	1237	CA	LEU	152	12.787	25.878	-3.404	1.00	6.24

MOTA	1238	CB	LEU	152	11.582	25.881	-8.452	1.00	6.29
ATOM	1239	CG	LEU	152	10.452	26.859	-8.828	1.00	7.25
ATOM	1240	CD1	LEU	152	9.864	26.532	-10.214	1.00	9.19
ATOM	1241	CD2	LEU	152	9.358	26.832 27.298 -	-7.763 -9.669	1.00	7.05 6.42
ATOM	1242	C	LEU LEU	152 152	13.269 13.015	27.864	-10.743	1.00	7.31
ATOM	1243 1244	0 N	SER	153	13.998	27.874	-8.702	1.00	5.98
ATOM ATOM	1245	CA	SER	153	14 442	29.262	-8.845	1.00	6.16
ATOM	1246	CB	SER	153	15 068	19.742	-7 541	1.00	6 44
ATOM	1247	QG	SER	153	14 090	29 755	-6 522	1.00	6 18
ATOM	1248	С	SER	153	15 424	29 413	-10 000	1.00	6 14
ATOM	1249	0	SER	153	15 368	30 420	-10 740	1.00	6 53
MOTA	1250	И	SER	154	16.284	28 436	-10.217 -11.340	1.00	6 45 7 39
ATOM	1251	CA	SER	154	17 220 18 126	28.495 27.271	-11.340	1.00	8.84
ATOM	1252 1253	CB OG	SER SER	154 154	18 981	27.292	10.189	1.00	13.14
ATOM ATOM	1254	C	SER	154	16 418	28 472	-12.643	1.00	7 57
ATOM	1255	o	SER	154	16.742	29.253	-13 563	1.00	8 31
ATOM	1256	N	ALA	155	15.408	27.630	-12.737	1.00	6.91
MOTA	1257	CA	ALA	155	14.550	27 622	-13.938	1.00	7.39
MOTA	1258	CB	ALA	155	13 530	26 520	-13.807	1 00	7.77
ATOM	1259	C	ALA	155	13 878	28 964	-14.140 -15.242	1 00 1.00	6.87 7.86
ATOM	1260	0	ALA LEU	155 156	13.895 13.323	29 538 29 547	-15 242 -13 083	1.00	6 99
ATOM	1261 1262	N CA	LEU	156	12 656	30 860	-13.176	1 00	5 86
ATOM ATOM	1263	CB	LEU	156	12 035	31 279	-12.838	1 00	5 92
ATOM	1264	CG	LEU	156	10 864	30 434	-11.365	1 00	5 99
ATOM	1265	CD1	LEU	156	10.480	30 809	-9.936	1 00	8.87
MOTA	1266	CD2	LEU	156	9 686	30.596	-12 284	1.00	11.48
MOTA	1267	С	LEU	156	13 640	31.933	-13.642	1 00	6 11
ATOM	1268	0	LEU	156 157	13 287 14 884	32.805 31.880	-14.447 -13 141	1.00 1.00	7.28 6.74
ATOM	1269 1270	N CA	LEU LEU	157	15.898	32.863	-13.543	1 00	7.25
ATOM ATOM	1271	CB	LEU	157	17.152	32.739	-12.694	1.00	6.79
ATOM	1272	CG	LEU	157	17 073	33.236	-11.250	1.00	7.78
ATOM	1273	CD1	LEU	157	18.408	33.026	-10.580	1.00	8.46
MOTA	1274	CD2	LEU	157	16.631	34.672	-11.145	1 00	9 12
ATOM	1275	C	LEU	157	16 227	32.748	-15.028	1.00	6 91
ATOM	1276	0	LEU	157	16 580	33.763	-15.638 -15.606	1.00	7.24 7.38
ATOM	1277	N	LYS LYS	158 158	16.142 16.335	31.561 31.410	-17.057	1 00	7 07
ATOM ATOM	1278 1279	CA CB	LYS	158	16.331	29.927	-17 407	1 00	9 01
ATOM	1280	CG	LYS	158	17 574	29.170	-16.887	1.00	10 48
MOTA	1281	CD	LYS	158	17.541	27.683	-17.122	1 00	13 42
ATOM	1282	CE	LYS	158	18 743	27.039	-16.407	1 00	18 16
MOTA	1283	NZ	LYS	158	18.743	25.572	-16.586	1 00	18.72
ATOM	1284	C	LYS	158	15 185	32.121 32.806	-17 782 -19 770	1 00 1 00	7 00 9 09
ATOM	1285	0	LYS	158	15 447 13.951	32.808	-17.281	1 00	7.17
ATOM ATOM	1286 1287	N CA	GLY	159 159	12.834	32.752	-17 873	1 00	7.22
ATOM	1288	C	GLY	159	13.038	34.252	-17.763	1.00	6.90
ATOM	1289	0	GLY	159	12.756	34.973	-18.731	1 00	7.59
ATOM	1290	N	TYR	160	13 443	34 771	-16.620	1.00	7.51
MOTA	1291	CA	TYR	160	13.674	36 230	-16.489	1.00	6.84
ATOM	1292	CB	TYR	160	14 004	36.595	-15 059 -14 120	1.00 1.00	7.03 6.77
ATOM	1293	CG	TYR	160 160	12 831 12 421	36.759 35.752	-13 251	1.00	6.69
ATOM	1294 1295	CD1 CE1	TYR TYR	160	11 353	35.732	-12 430	1.00	7.61
ATOM ATOM	1296	CD2	TYR	160	12 097	37.948	-14 093	1.00	7.26
ATOM	1297	CE2	TYR	160	11 013	38.108	-13 247	1.00	7.77
ATOM	1298	CZ	TYR	160	10 643	37.083	-12 380	1.00	7.26
MOTA	1299	OH	TYR.	160	9 594	37.202	-11 495	1.00	8.86
ATOM	1300	С	TYP.	160	14 756	36.704	-17 446	1.00	6.38
ATOM	1301	0	TYR	160	14 653	37.777	-18 003 -17 537	1.00 1.00	7.25 7.30
ATOM	1302	N	ALA ALA	161 161	15 849 16 929	35.968 36 375	-18 438	1.00	7.63
ATOM	1303 1304	CA CB	ALA	161	18 083	35 387	-18 293	1.00	9.13
ATOM ATOM	1304	C	ALA	161	16 414	36 456	-19 886	1.00	7.60
MOTA	1306	0	ALA	161	16 688	37 458	-20 577	1.00	8.23
ATOM	1307	N	LEU	162	15 755	35 401	-20 331	1.00	7.75
ATOM	1308	CA	LEU	162		35 423	-21 721	1.00	7.67
ATOM	1309	CB	LEU	162		34.094	-22 022	1.00	7.94
ATOM	1310	CG	LEU	162	15.447	32.872	-22.168	1.00	8.36

ATOM	1311	CD1	LEU	162	14 644	31.593	-22 325	1.00	10.23
ATOM	1312	CD2	LEU	162	16.390	33 093	-23.326	1 00	10.26
	1313	C	LEU	162	14 256	36.582	-21 871	1.00	7.87
ATOM		0	LEU	162	14 228	37 234	-22.926	1 00	8 10
ATOM	1314		ALA	163	13 396	36.840	-20 874	1 00	7 67
ATOM	1315	N				37 934	-20.922	1 00	8 06
ATOM	1316	CA	ALA	163	12 422				8 57
MOTA	1317	CB	ALA	163	11.568	37.986	-19.658	1 00	
ATOM	1318	С	ALA	163	13 122	39 278	-21.162	1 00	8.14
ATOM	1319	0	ALA	163	12.527	40 158	-21.830	1 00	9 20
ATOM	1320	N	LEU	164	14 320	39.445	-20.607	1.00	8 56
ATOM	1321	CA	LEU	164	15 075	40 688	-20.710	1.00	8 69
ATOM	1322	CB	LEU	164	15 881	40.317	-19.409	1.00	9 34
MOTA	1323	CG	LEU	164	15.007	41 231	-18.199	1.00	9.92
ATOM	1324	CD1	LEU	164	15.707	40.869	-16.893	1.00	11.23
ATOM	1325	CD2	LEU	164	14.532	42 665	-18.193	1 00	11.47
ATOM	1326	C	LEU	164	15.968	40.800	-21.920	1.00	8.43
ATOM	1327	0	LEU	164	16.728	41 751	-22.068	1.00	10.53
ATOM	1328	N	GLY	165	15.876	39.849	-22 823	1.00	9.22
MOTA	1329	CA	GLY	165	16 653	39.841	-24 034	1 00	9 48
	1330	C	GLY	165	18.044	39.299	-23.843	1.00	9.17
ATOM	1331	0	GLY	165	18.900	39 539	-24.692	1.00	10.21
ATOM			LYS	166	18.298	38 579	-22.754	1.00	9 48
ATOM	1332	N		166	19 627	38.033	-22.452	1 00	9 96
MOTA	1333	CA	LYS		19 982	38.274	-20.984	1.00	9 69
ATOM	1334	CB	LYS	166		39.708	-20.549	1 00	11 03
MOTA	1335	CG	LYS	166	19 946			1 00	14.43
ATOM	1336	CD	LYS	166	20.825	40 606	-21.352		18 44
MOTA	1337	CE	LYS	166	20.799	42 029	-20.820	1 00	27.60
MOTA	1338	NZ	LYS	166	21.480	42.980	-21.738	1.00	
ATOM	1339	С	LYS	166	19.669	36.535	-22.725	1.00	9.64
ATOM	1340	0	LYS	166	18.611	35.926	-22.985	1.00	11.70
MOTA	1341	N	GLU	167	20.837	35.917	-22.660	1.00	9.56
MOTA	1342	CA	GLU	167	20.979	34.447	-22.758	1.00	10.09
MOTA	1343	ÇВ	GLU	167	22.436	34.051	-22.993	1.00	12 65
ATOM	1344	CG	GLU	167	23.380	34.300	-21.838	1 00	22 48
ATOM	1345	CD	GLU	167	23.665	33.149	-20.891	1.00	25.40
MOTA	1346	OEl	GLU	167	23.311	31.984	-21.190	1.00	32.34
ATOM	1347	OE2	GLU	167	24.326	33.330	-19.840	1.00	31.11
ATOM	1348	C	GLU	167	20.484	33.838	-21.438	1.00	9.49
ATOM	1349	0	\mathtt{GLU}	167	20.519	34.524	-20.407	1 00	10.35
ATOM	1350	N	GLU	168	19.999	32.587	-21.453	1.00	9.82
ATOM	1351	CA	GLU	168	19.298	32.971	-20.295	1 00	9.33
ATOM	1352	CB	GLU	168	18.638	30.725	-20.586	1.00	10.98
ATOM	1353	CG	GLU	168	19.586	29.555	-20.607	1.00	11 58
ATOM	1354	CD	GLU	168	18.897	28.248	~20.881	1.00	12.24
ATOM	1355	OE1	GLU	168	19.518	27.191	-20.621	1.00	16.73
ATOM	1356	OE2	GLU	168	17 710	28.209	-21.238	1.00	15 75
ATOM	1357	С	GLU	168	20.121	31.991	-19.021	1.00	9 76
ATOM	1358	0	GLU	168	19.500	31.919	-17.957	1.00	10 27
ATOM	1359	N	ASN	169	21 440	31.959	-19.098	1.00	11 16
ATOM	1360	CA	ASN	169	22.256	31.849	-17.894	1.00	11 83
ATOM	1361	СВ	ASN	169	23 467	30.962	-18.200	1.00	17.37
ATOM	1362	CG	ASN	169	23 037	29.534	-18.442	1.00	25.58
ATOM	1363	OD1	ASN	169	23.422	28.858	-19.416	1.00	36 44
ATOM	1364	ND2	ASN	169	22 234	29.059	-17.485	1.00	33.88
ATOM	1365	C	ASN	169	22 665	33.191	-17.342	1.00	10.67
	1366	ō	ASN	169	23.471	33 254	-16.423	1.00	10.87
MOTA		Ŋ	PHE	170	22.101	34 292	-17.818	1.00	9.81
ATOM	1367	CA	PHE	170	22.503	35.641	-17.397	1.00	9.43
ATOM	1368	CB	PHE	170	21.676	36 690	-18.110	1.00	10.54
MOTA	1369	CG	PHE	170	21.970	38 143	-17 807	1.00	10.68
MOTA	1370			170	22.971	38.748	-18 561	1.00	11.73
ATOM	1371	CD1	PHE			38 844	-16.841	1.00	11.45
ATOM	1372	CD2	PHE	170	21.249	40 069	-18 325	1.00	13.22
ATOM	1373	CE1	PHE	170	23.277	40 069	-16 603	1.00	13.22
ATOM	1374	CE2	PHE	170	21.601		-17.369	1.00	13.73
MOTA	1375	CZ	PHE	170	22.581	40 787		1.00	9.39
ATOM	1376	С	PHE	170	22.466	35 905	-15 896		
ATOM	1377	0	PHE	170	23.388	36 499	-15 313	1.00	10.53
MOTA	1378	N	PHE	171	21.414	35 405	-15.249	1.00	9.21
MOTA	1379	CA	PHE	171	21.328	35 485	-13.799	1.00	9.20
ATOM	1380	CB	PHE	171	19.882	35 735	-13.353	1.00	9.39
ATOM	1381	ÇG	PHE	171	19.270	37.023	-13.840	1.00	9.53
MOTA	1382	CD1	PHE	171	18,199	36 958	-14.716	1.00	8.43
ATOM	1383	CD2	PHE	171	19.751	38.247	-13.409	1.00	9.70

					- 7	0 *			
ATOM	1384	CE1	PHE	171	17.637	38.140	-15.183	1.00	9.69
ATOM	1385	CE2	PHE	171	19.208	39,427	-13.881	1.00	11.03
ATOM	1386	CZ	PHE	171	18.138	39.369	-14 774	1 00	9.32
ATOM	1387	C	PHE	171	21.798	34.187	-13 158	1 00	9.45
ATOM	1388	0	PHE	171	22.557	34 196	-12 160	1 00	10.11
MOTA	1389	N	ALA	172	21.386	33 058	-13 727	1 00	8 64
MOTA	1390	CA	ALA	172	21.662	31 758	-13 141	1 00	9 25
ATOM	1391	CB	ALA	172	20.995	30 619	-13 907	1 00	11 46
ATOM	1392	C	ALA	172	23.144	31 456	-12.935	1 00	9 80
MOTA	1393	0	ALA	172	23.515	30.728	-12.017	1 00	9 88
ATOM	1394	N	ARG	173	14.014	32 048	-13 757	1 00	10 46
ATOM ATOM	1395 1396	CA CB	ARG ARG	173 173	25.45 <i>€</i> 26.229	31.811 32.377	-13 607 -14.804	1 00 1 00	10.74 12.02
ATOM	1397	CG	ARG	173	26.253	33.888	-14.845	1 00	14 37
ATOM	1398	CD	ARG	173	26.528	34 507	-16.235	1.00	22 60
ATOM	1399	NE	ARG	173	26 118	35 904	-16 110	1.00	29 23
MOTA	1400	CZ	ARG	173	26 204	37 054	-16.666	1.00	27 7 1
MOTA	1401	NH1	ARG	173	26.785	37 249	-17.871	1.00	38 25
MOTA	1402	NH2	ARG	173	25.671	38.128	-16.092	1.00	20.56
MOTA	1403	C	ARG	173	25 967	32 398	-12 321	1.00	10.00
ATOM	1404	0	ARG	173	27 059	31.984	-11 891	1.00	12 18
ATOM	1405	N	HIS	174 174	25.265 25.621	33 305 33 884	-11.671 -10.385	1 00	8 86
ATOM ATOM	1406 1407	CA CB	HIS HIS	174	25 281	35 380	-10.393	1.00 1.00	8 97 9 34
ATOM	1408	CG	HIS	174	25 986	36 119	-11 478	1.00	11 02
ATOM	1409	CD2	HIS	174	27 271	36 548	-11 356	1.00	13.05
ATOM	1410	ND1	HIS	174	25.560	36 543	-12.686	1 00	15 . 1.8
ATOM	1411	CE1	HIS	174	26.537	37 180	-13.306	1 00	16.14
ATOM	1412	NE2	HIS	174	27.575	37 238	-12.505	1 00	17 60
MOTA	1413	С	HIS	174	24 864	33 267	-9 203	1 00	8 17
MOTA	1414	0	HIS	174	25 053	33.704	-8.067	1 00	10 44
ATOM ATOM	1415 1416	N CA	PHE PHE	175 175	24.093 23.236	32.251 31.536	-9.482 -8.516	1.00 1.00	8.57 7.07
ATOM	1417	CB	PHE	175	21.772	31.678	-8.967	1.00	7.09
ATOM	1418	CG	PHE	175	20.743	31.096	-8.020	1 00	6 00
ATOM	1419	CD1	PHE	175	19.888	30 101	-8.409	1.00	6 11
MOTA	1420	CD2	PHE	175	20.644	31.566	-6.725	1 00	€ 48
ATOM	1421	CE1	PHE	175	18.940	29 615	-7.548	1 00	7.35
ATOM	1422	CZ	PHE	175 175	19.709 18.834	31.073 30.096	-5.837 -6.266	1 00	7.65 7.87
ATOM ATOM	1423 1424	C	PHE	175	23.686	30 089	-8 421	1.00 1.00	7 96
ATOM	1425	0	PHE	175	23.298	29.250	-9.248	1.00	8.40
ATOM	1426	N	LYS	176	24 602	29 813	-7 494	1.00	7.81
ATOM	1427	CA	LYS	176	25 320	28 576	-7 473	1.00	7 94
MOTA	1428	CB	LYS	176	26.813	28.901	-7 674	1.00	10 84
MOTA	1429	CG	LYS	176	27 215	29 556	-8.956	1.00	15 51
ATOM	1430	CD	LYS	176	28 584	30 190	-8.877	1.00	23.52
MOTA MOTA	1431 1432	CE NZ	LYS LYS	176 176	28.905 28.155	31 261 32.528	-7.886 -7.591	1.00	31.75 30 18
ATOM	1433	C	LYS	176	25.206	27.890	-6.114	1.00	7.44
ATOM	1434	0	LYS	176	25.237	28.596	-5.079	1.00	7.02
ATOM	1435	N	PRO	177	25.115	26.568	-6 114	1.00	7 06
MOTA	1436	CD	PRO	177	25 016	25.639	-7 241	1 - 00	8 87
MOTA	1437	CA	PRO	177	24 978	25 874	-4.841	1 00	7 22
ATOM	1438	CB	PRO	177	24 960	24 392	-5.244	1 00	9 12
ATOM	1439	CG	PRO PRO	177 177	24.494 26 107	24 351 26 128	-6 632 -3 866	1 00 1 00	12 20
ATOM ATOM	1440 1441	C 0	PRO	177	25 842	26 133	-2.655	1.00	6.45 6.96
MOTA	1442	N	ASP	178	27.355	26 340	-4.296	1 00	7.00
ATOM	1443	CA	ASP	178	28 432	26 494	-3 322	1 00	7.82
MOTA	1444	CB	ASP	178	29 784	26.223	-3.996	1 00	7.64
MOTA	1445	CG	ASP	178	30 055	24 770	-4 225	1 00	8.62
ATOM	1446	OD1	ASP	178	29 305	23.888	-3.752	1 00	10.49
MOTA	1447	002	ASP	178	31 072	24.504	-4.927	1 00	9 66
ATOM	1448	C	ASP ASP	178 178	28 418 29 053	27.826	-2,624 -1,562	1 00	8-41
ATOM ATOM	1449 1450	O N	ASP	178	29 053	27.922 28.844	-1.567 -3.172	1 00 1.00	11.48 7.61
ATOM	1451	CA	ASP	179	27 868	30.160	-2.558	1.00	8.48
ATOM	1452	СВ	ASP	173	29 017	31.003	-3.110	1.00	14.39
ATOM	1453	CG	ASP	179	28.896	31.215	-4.582	1.00	17.08
ATOM	1454	OD1	ASP	179	27.769	31.231	-5.087	1.00	18.23
MOTA	1455	OD2	ASP	173	29.974	31.247	-5.214	1.00	29.01
ATOM	1456	С	ASP	179	26.622	30.999	-2.437	1.00	6.67

BNSDOCID -WO 9816648A2 I >

					- 7.	,			
ATOM	1457	0	ASP	179	26.723	32 118	-1.937	1.00	7.91
ATOM	1458	N	THR	180	25.459	30.574	-2.903	1.00	6.15
ATOM	1459	CA	THR	180	24.291	31.397	-2.818	1.00	5.45
MOTA	1460	CB	THR	180	23.061	30 717 31 564	-3.495 -3.275	1.00	6.14 6.60
ATOM	1461	OG1	THR THR	180 180	21.933	29 384	-2.872	1.00	7.19
ATOM	1462 1463	CG2 C	THR	180	23.929	31 823	-1.404	1.00	5.42
ATOM ATOM	1464	0	THR	180	23.995	31 022	-0 488	1.00	6.17
ATOM	1465	N	LEU	181	23 568	33 098	-1 291	1.00	5 82
ATOM	1466	CA	LEU	181	23 100	33.709	-0.086	1.00	5.33
ATOM	1467	CB	LEU	181	23.535	35.173	0.000	1.00	5.68
MOTA	1468	CG	LEU	181	25 031	35.342	0 214	1.00	7.12 9.05
MOTA	1469	CD1	LEU	181 181	25.527 25.431	36 714 34 952	-0.116 1 631	1.00	9.05
ATOM	1470 1471	CD2 C	LEU	181	21 596	33 554	0.126	1 00	5.36
ATOM ATOM	1472	0	LEU	181	21 002	34.159	1.018	1.00	5 78
ATOM	1473	N	ALA	182	20 943	32 746	-0 705	1 00	5.62
ATOM	1474	CA	ALA	182	19.499	32 518	-0.607	1.00	5.07
MOTA	1475	CB	ALA	182	19 041	31.560	-1 713	1.00	5 84
MOTA	1476	C	ALA	182	19.111	31 916	0 741 1.390	1.00 1.00	5.26 5.11
ATOM	1477	0	ALA SER	182 183	19 829 17 929	31.152 32.266	1.215	1.00	5.45
ATOM ATOM	1478 1479	N CA	SER	183	17.387	31 766	2.475	1.00	5.43
ATOM	1480	CB	SER	183	17.361	32.908	3 478	1 00	6 48
ATOM	1481	OG	SER	183	16.484	33 920	3 050	1 00	7 39
ATOM	1482	C	SER	183	15 975	31.229	2.287	1.00	5.28
MOTA	1483	0	SER	183	15 220	31.691	1.430	1.00	5.14
ATOM	1484	N	VAL	184	15.624	30.298 29 833	3.167 3. 3 79	1.00 1.00	4.72 4.18
ATOM	1485	CA CB	VAL VAL	184 184	14 272 14 156	28 311	3.410	1 00	4.82
ATOM ATOM	1485 1487	CG1	VAL	184	12.784	27 827	3.825	1.00	5.78
ATOM	1488	CG2	VAL	184	14.574	27 702	2.084	1.00	5.85
ATOM	1489	С	VAL	184	13 803	30.392	4.728	1.00	4.63
ATOM	1490	0	VAL	184	14.563	30.341	5.712	1.00	5.58
ATOM	1491	N	VAL	185	12.571	30.872	4.785 6.049	1.00 1 00	5.40 5.11
ATOM	1492	CA	VAL VAL	185 185	11.960 11.732	31 260 32 758	6.222	1.00	5.44
ATOM ATOM	1493 1494	CB CG1	VAL	185	11.355	33.084	7.659	1.00	7.04
ATOM	1495	CG2	VAL	185	12.974	33.556	5.824	1.00	7.05
ATOM	1496	С	VAL	185	10.664	30.482	6.215	1.00	5.37
ATOM	1497	0	VAL	185	9.793	30.537	5.354	1.00	6.79
MOTA	1498	N	LEU	186	10 525	29.766	7.340	1.00	5.04 5.37
ATOM	1499	CA	LEU	186 186	9 312 9 608	29.030 27.651	7.659 8.191	1 00 1 00	6.74
ATOM ATOM	1500 1501	CB CG	LEU LEU	186	10.519	26 783	7.329	1 00	7.22
ATOM	1502	CD1	LEU	186	10 783	25 457	8.026	1 00	8.08
ATOM	1503	CD2	LEU	186	9 933	26.589	5.923	1.00	7.11
ATOM	1504	C	LEU	186	8.512	29.883	8.645	1.00	5.24
ATOM	1505	0	LEU	186	8.777	29.826	9.854	1.00	6.31 5.56
ATOM	1506	N	ILE ILE	187 187	7.577 6.864	30 701 31 641	8.165 9.010	1.00	5.65
ATOM ATOM	1507 1508	CA CB	ILE	187	6.589	32 984	8.305	1.00	6.04
MOTA	1509	CG2	ILE	187	5.916	33 986	9.250	1 00	7.75
ATOM	1510	CG1	ILE	187	7.804	33.601	7.633	1.00	6.80
ATOM	1511	CD1	ILE	187	7.550	34.739	6.667	1.00	7.49
MOTA	1512	С	ILE	187	5.511	31.068	9 440	1.00	6.09
MOTA	1513	0	ILE	187	4.740 5.253	30.565 31.145	8.617 10.736	1.00 1.00	6.78 6.56
ATOM	1514	N CA	ARG ARG	186 188	3.233	30,800	11.332	1.00	6.28
ATOM ATOM	1515 1516	CB	ARG	188	4.130	29.967	12.611	1.00	7.38
ATOM	1517	CG	ARG	188	2.799	29.623	13 245	1.00	7.70
ATOM	1518	CD	ARG	188	2.926	29.038	14.641	1.00	9.29
ATOM	1519	NE	ARG	188	1.588	28.821	15.185	1.00	11.11
ATOM	1520	CZ	ARG	188	1.357	28.454	16 431	1.00	12.61
ATOM	1521	NH1	ARG	188	2.357 0.090	28.232 28.327	17 264 16 815	1.00 1.00	16.10 16.40
MOTA	1522 1523	NH2 C	arg arg	188 188	3.224	32.081	11 714	1.00	6.29
ATOM ATOM	1523	0	ARG	188	3.714	32.892	12 499	1.00	7.23
ATOM	1525	N	TYR	189	2.053	32.239	11 099	1.00	6.43
ATOM	1526	CA	TYR	189	1.129	33.301	11 534	1.00	6.36
MOTA	1527	CB	TYR	189	0.565	33.997	10 302	1.00	7.87
MOTA	1528	CG	TYR	189	1.432	35.109	9 770 8 649	1.00	7.69 8.11
MOTA	1529	CD1	TYR	189	2.245	34.959	0 047	1.00	0.11

						,,,			
ATOM	1530	CEl	TYF	189	3.023	36.028	8.202	1.00	8.55
ATOM	1531	CD2	TYF	189	1.433	36.344	10.407	1.00	8.98
ATOM	1532	CE2	TYP	189	2.188	37.415	9.969	1.00	9.17
ATOM ATOM	1533 1534	CZ OH	TYF	189 189	2.981 3 728	37.241 38.328	8.841 8.379	1.00	8.58 11.03
ATOM	1535	C	TYF	185	0 033	32,562	12.300	1.00	7.25
ATOM	1536	ō	TYP	189	-0 678	31.766	11.696	1.00	8 05
ATOM	1537	N	PRC	190	-0.137	32.811	13.576	1.00	6 97
ATOM	1538	CD	PRC	190	(1 666	33.760	14.412	1.00	7 48
ATOM	1539	CA	PRC	190	-1 091	32.037	14.367	1.00	7.93
ATOM	1540	CB	PRC.	190	-0 484	32 215	15.773	1.00	9 03
ATOM	1541	CG C	PRC PRC	190 190	-0 032 -2 516	33 667 32.564	15 732 14 390	1.00	8 65
ATOM ATOM	1542 1543	0	PRC	190	-2 768	33.746	14 183	1.00	7 31 7 83
ATOM	1544	N	TYR	191	-3 428	31.672	14 740	1 00	8 07
ATOM	1545	CA	TYR	191	-4 758	32.035	15 189	1 00	8 05
MOTA	154€	CB	TYR	191	-5 741	30.882	15 033	1.00	9.47
MOTA	1547	CG	TYP	191	-7 089	31 164	15.645	1.00	8.74
ATOM	1548	CD1	TYR	191	-7 981	32.032	15 052	1.00	10 94
MOTA	1549	CEI	TYR	191	-9 203	32 283	15 640	1.00	12 35
ATOM ATOM	1550 1551	CD2 CE2	TYR TYR	191 191	-7 434 -8 662	30 628 30.860	16.867 17.464	1.00 1 00	11 98 13.36
ATOM	1552	CZ	TYR	191	-9.520	31.710	16.847	1.00	13.36
ATOM	1553	ОН	TYR		10 758	31 949	17 411	1 00	20 40
ATOM	1554	С	TYR	191	-4 634	32 352	16 687	1 00	8 41
MOTA	1555	0	TYR	191	-4 028	31 574	17 419	1 00	10 11
ATOM	155€	N	LEU	192	-5 188	33 493	17.089	1.00	9 02
ATOM	1557	CA	LEU	192	-5.170	33.901	18 490	1.00	9.80
MOTA ATOM	1558 1559	CB CG	LEU	192 192	-4 106 -2 670	35.000 34 624	18 751 18 449	1 00 1 00	10.70
ATOM	1560	CD1	LEU	192	-1 779	35.835	18.366	1.00	11 38 15 17
ATOM	1561	CD2	LEU	192	-2 195	33 545	19 37€	1.00	14.95
ATOM	1562	С	LEU	192	-6 524	34 466	18.870	1 00	11 59
ATOM	1563	0	LEU	192	-7.087	35 298	18.167	1.00	13 64
ATOM	1564	N	ASP	193	-7 038	34 106	20.036	1 00	14 51
ATOM	1565	CA	ASP	193	-8 305	34.590	20 567	1 00	17.44
ATOM ATOM	1566 1567	С 0	ASP ASP	193 193	-8.162 -8 094	34 839 33 884	22 054 22 833	1 00 1 00	18.14 20 69
ATOM	1568	СВ	ASP	193	-9 424	33.558	20.361	1.00	19 90
ATOM	1569	CG	ASP		10 778	34 035	20.844	1 00	22.56
ATOM	1570	OD1	ASP	193 ~	10 950	35 239	21 071	1 00	31.28
ATOM	1571	OD2	ASP		11 705	33 195	20 904	1 00	31 66
ATOM	1572	N	PRC	194	-8 007	36 055	22.502	1 00	19 75
ATOM ATOM	1573 1574	CD CA	PRC· PRO	194 194	-7 751 -8 074	36.353 37.262	23 938 21 705	1 00 1 00	21.02
ATOM	1575	CB	PRC	194	-8.358	38.337	22 780	1 00	20.34 22.22
ATOM	1576	CG	PRC	194	-7 623	37.846	23 976	1 00	23 24
ATOM	1577	С	PRC	194	-6 794	37.553	20 961	1.00	18 30
ATOM	1578	0	PRC	194	-5.732	37.174	21 441	1 00	20.47
ATOM	1579	N	TYR	195	-6.908	38.261	19 844	1 00	16 09
ATOM	1580	CA	TYR	195	-5 729	38.654	19.057	1.00	13 39
ATOM ATOM	1581 1582	CB CG	TYP TYP	195 195	-6.063 -4.857	38.748 38.589	17.591 16.678	1.00 1.00	11 89 10.40
ATOM	1583	CD1	TYR	195	-4 733	37,428	15 902	1 00	9 05
ATOM	1584	CE1	TYR	195	-3 668	37.229	15 052	1 00	9.43
ATOM	1585	CD2	TYF	195	-3 867	39.556	16 532	1 00	11 25
ATOM	1586	CE2	TYP	195	-2.801	39.370	15 678	1.00	10.47
ATOM	1587	CZ	TYP	195	-2.706	38 217	14 940	1.00	9 27
ATOM	1588	ОН	TYF.	195	-1 631	38.037	14 084	1 00	10 15
ATOM	1589	C 0	TYF. TYF	195 195	-5 251 -6 045	40.015 40.984	19 570 19 547	1.00	16 02
MOTA MOTA	1590 1591	N	PRC	196	-4 015	40.101	20 038	1.00	19 50 19 81
ATOM	1592	CD	PRO	196	-2 943	39 107	19 944	1 00	20 75
ATOM	1593	CA	PRO	196	-3 555	41.366	20 632	1.00	22.65
ATOM	1594	CB	PRO	196	-2.113	41 061	21 050	1.00	24 78
ATOM	1595	CG	PRO	196	-1 702	39.919	20:178	1.00	25 22
ATOM	1596	С	PRO	196	-3.528	42.534	19.659	1.00	21.80
ATOM	1597	0	PRO	196	-2 893	42.411	18.610	1.00	18.33
ATOM	1598	N Ca	ALA ALA	197 197	-4 121 -4 137	43.655	20.069 19.209	1.00	20.80
ATOM ATOM	1599 1600	CA CB	ALA	197	-4.137	44.850 45.932	19.849	1.00	17.10 22.74
ATOM	1601	C	ALA	197	-2.736	45.332	18.943	1.00	16.42
ATOM	1602	0	ALA	197	-2.416	45.845	17.884	1.00	14.48

						•			
ATOM	1603	N	ALA	198	-1 806	45.093	19.872	1.00	18.94
ATOM	1604	CA	ALA	198	-0 457	45.551	19.663	1.00	18 82
ATOM	1605	CB	ALA	198	0.389	45.537	20.917	1.00	21 76
ATOM	1606	C	ALA	198	0 247	44.830	18.532	1.00	20 09
MOTA	1607	0	ALA	198	1.209	45.380	17.989	1.00 1.00	20 87 18.02
ATOM	1608	N	ALA	199	-0 282	43.655 42.883	18.148 17.055	1.00	20.04
MOTA	1609	CA	ALA ALA	199 199	0.284 0.131	41.377	17.305	1.00	22.29
ATOM	1610	CB C	ALA	199	-0 405	43.201	15.745	1.00	17 65
ATOM ATOM	1611 1612	0	ALA	199	-0 143	42.526	14.746	1.00	19 33
ATOM	1613	N	ILE	200	-1.272	44.187	15.758	1.00	14.55
ATOM	1614	CA	ILE	200	-2 007	44.619	14.572	1.00	12 89
ATOM	1615	CB	ILE	200	-3 524	44.490	14.735	1.00	12.11
ATOM	1616	CG2	ILE	200	-4 273	44 933	13.481	1.00	15.92
MOTA	1617	CG1	ILE	200	-3.933	43 079	15.169	1.00	12 87
ATOM	1618	CD1	ILE	200	-5.369	42.887	15.559	1.00	15 12
ATOM	1619	C	ILE	200	-1.604	46.049	14.242	1.00 1.00	12.80 15.14
ATOM	1620	0	ILE	200	-1 722 -1 079	46.945 46 217	15.061 13.030	1.00	12.46
MOTA	1621	N	LYS LYS	201 201	-0 723	47 561	12.585	1 00	13.42
MOTA	1622 1623	CA C	LYS	201	-1 842	48.108	11 711	1.00	12 82
ATOM ATOM	1624	0	LYS	201	-2.682	47 341	11 198	1.00	12 98
ATOM	1625	CB	LYS	201	0.575	47 555	11.793	1 00	15 55
ATOM	1626	CG	LYS	201	1 786	47.469	12 720	1 00	22 73
MOTA	1627	CD	LYS	201	2 968	47 442	11 792	1.00	30.21
MOTA	1628	CE	LYS	201	3 330	45.969	11 633	1.00	33 55
MOTA	1629	NZ	LYS	201	4 352	45.602	12.674	1.00	44 14
MOTA	1630	N	THR	202	-1.844	49 414	11.525 10.731	1.00	12 30 12 03
ATOM	1631	CA	THR	202	-2.896	50 018 50.900	11.654	1 00 1 00	14 94
ATOM	1632	CB	THR THR	202 202	-3.769 -4.283	50.136	12.749	1.00	20 93
ATOM	1633 1634	OG1 CG2	THR	202	-4 968	51 401	10.876	1.00	16.31
MOTA MOTA	1635	C	THR	202	-2.353	50.883	9.608	1.00	10.86
ATOM	1636	ō	THR	202	-1.574	51.831	9.881	1.00	12.79
ATOM	1637	N	ALA	203	-2.710	50.593	8.362	1.00	10.61
ATOM	1638	CA	ALA	203	-2 246	51.412	7.251	1 00	10.61
MOTA	1639	CB	ALA	203	-2.554	50.704	5.923	1.00	10.92
ATOM	1640	С	ALA	203	-2.907	52.771	7.177 7.798	1.00 1.00	11.45 12.75
ATOM	1641	0	ALA	203 204	-3 927 -2 316	53.003 53.701	6.418	1 00	13.11
ATOM	1642	N CA	ALA ALA	204	-2.922	55.016	6.262	1.00	14.24
ATOM ATOM	1643 1644	CB	ALA	204	-2.081	55.921	5.383	1 00	17.62
ATOM	1645	C	ALA	204	-4.312	54.951	5.666	1.00	15.18
ATOM	1646	0	ALA	204	-5.116	55.828	5.979	1 00	18.40
ATOM	1647	N	ASP	205	-4.656	53.935	4.910	1.00	14.70
ATOM	1648	CA	ASP	205	-6.010	53.765	4.378	1.00	15.08
ATOM	1649	CB	ASP	205	-5.939	53.130	2 979	1.00	14.53 13.86
MOTA	1650	CG	ASP	205	-5.558	51.681	2.919 3.978	1.00 1.00	13.58
ATOM	1651	OD1	ASP ASP	205 205	-5.431 -5.414	51.036 51.137	1 785	1.00	14.56
ATOM	1652 1653	OD2 C	ASP	205	-6.958	53.042	5.330	1.00	13.99
ATOM ATOM	1654	0	ASP	205	-8.100	52.729	4 944	1.00	16.91
ATOM	1655	N	GLY	206	-6.470	52.672	6.523	1.00	13 46
ATOM	1656	CA	GLY	206	-7.305	51.999	7.498	1.00	13.34
ATOM	1657	С	GLY	206	-7.215	50.496	7.536	1.00	12 65
ATOM	1658	0	GLY	206	-7.688	49.850	8.492	1.00	15 08
ATOM	1659	N	THR	207	<i>-6</i> .523	49.909	6.562	1.00	11 08
ATOM	1660	CA	THR	207	-6.383	48.461	6.501	1.00 1.00	10 33 10 43
ATOM	1661	CB	THR	207	-5.728	48.047	5.186 4.068	1.00	11.13
ATOM	1662	OG1	THR	207 207	-6.475 -5.730	48.593 46.528	5.000	1.00	11.62
ATOM	1663	CG2	THR THR	207	-5.542	47.948	7.669	1 00	10.83
ATOM	1664 1665	C O	THR	207	-4 460	48.451	7.944	1 00	11.23
ATOM ATOM	1666	и	LYS	208	-6 047	46.906	8.322	1 00	10.43
ATOM	1667	CA	LYS	208	-5 328	46.251	9.393	1.00	10.06
ATOM	1668	СВ	LYS	208	-6 299	45.472	10.281	$\boldsymbol{1}=\boldsymbol{0}\boldsymbol{0}$	10.90
ATOM	1669	CG	LYS	208	-7.310	46.400	10.977	1,00	15.45
ATOM	1670	CD	LYS	208	-8.216	45.550	11.860	1.00	21.10
ATOM	1671	CE	LYS	208	-9.070	46.277	12.858	1.00	25.92
ATOM	1672	NZ	LYS	208	-10.228	45.455	13 309	1.00	35.34
MOTA	1673	C	LYS	208	-4.281	45.341	8.753 7.893	1.00 1.00	8.69 8.73
ATOM	1674	0	LYS	208	-4.631 -3.058	44.523 45.470	9,211	1.00	8.66
MOTA	1675	N	LEU	209	-3.038	33.470	J. # # #	2.00	Ç. 00

- 102 -

ATOM	1676	CA	LEU	209	-1.912	44.745	8.686	1.00	8.20
ATOM	1677	CB	LEU	209	-0.919	45.780	8.126	1.00	8.17
ATOM	1678	C3	LEU	209	-1.407	46.777	7.084	1.00	8.96
ATOM	1679	CD1	LEU	209	-0.263	47.711	6.737	1.00	10.26
ATOM	1680	CD2	LEU	209	-1.959	46.077	5.837	1.00	9.92
ATOM	1681	302	LEU	209	-1.149	43.969	9.733		
ATOM	1682	Ö	LEU	209	-1.077			1.00	8.39
						44.308	10.910	1.00	9.60
ATOM	1683	N	SER.	210	-0.445	42.944	9 250	1.00	7.50
ATOM	1684	CA	SER	210	0.555	42.241	10 017	1.00	8.27
ATOM	1685	CB	SER	210	0.481	40.717	9.879	1.00	9 13
MOTA	1686	OG	SER	210	-0.677	40 154	10 458	1.00	10 38
ATOM	1687	C	SER	210	1 958	42 709	9 625	1.00	8 82
MOTA	1688	0	SER	210	2 867	42.559	10.430	1.00	11.07
MOTA	1689	N	PHE	211	2 153	43 228	3.404	1 00	8 41
ATOM	1690	CA	PHE	211	3.465	43 640	7.944	1 00	8 42
ATOM	1691	CB	PHE	211	4.294	42.502	7 351	1.00	9 04
MOTA	1692	CG	PHE	211	5.784	42 797	7.169	1.00	8 29
ATOM	1693	CD1	PHE	211	6.656	42.844	8.237	1.00	9 90
ATOM	1694	CD2	PHE	211	6.316	43.023	5.916	1.00	8 43
ATOM	1695	CE1	PHE	211	8 014	43.064	8.074	1.00	9.71
ATOM	1696	CE2	PHE	211	7.649	43.256	5.735	1.00	9.43
ATOM	1697	CZ	PHE	211	8.515	43 240	5.804	1.00	
ATOM	1698	C	PHE	211	3.249	44.762	5 938		8.86
								1.00	7 66
ATOM	1699	0	PHE	211	2.415	44.662	6.051	1.00	8.72
ATOM	1700	N	GLU	212	3.963	45.856	7.143	1.00	7 99
ATOM	1701	CA	GLU	212	3 752	47 072	6 365	1.00	7 78
MOTA	1702	CB	GLU	212	4 267	48 319	7.076	1.00	10 35
ATOM	1703	CG	GLU	212	3 201	49.142	7 809	1 00	15 96
ATOM	1704	CD	GLU	212	2 280	49 935	6.895	1 00	17.40
MOTA	1705	OE1	GLU	212	1 606	50 866	7.415	1 00	19.49
ATOM	1706	OE2	GLU	212	2.214	49.708	5.623	1 00	15.01
ATOM	1707	С	GLU	212	4.328	46.972	4 954	1 00	7 86
MOTA	1708	0	GLU	212	5.006	46.040	4 555	1 00	8.28
ATOM	1709	11	TRP	213	3 992	47.997	4.162	1 00	8 57
ATOM	1710	CA	TRP	213	4.464	48 141	2.806	1 00	8 31
MOTA	1711	CB	TRP	213	3.999	49.421	2.155	1 00	8.34
ATOM	1712	CG	TRP	213	4.620	50 707	2.603	1.00	9.80
ATOM	1713	CD2	TRP	213	5 776	51 317	2.074	1 00	11.28
MOTA	1714	CE2	TRP	213	5.977	52.520	2 784	1 00	12 37
MOTA	1715	CE3	TRP	213	6 644	50 973	1.031	1 00	12.51
ATOM	1716	CD1	TRP	213	4 181	51 522	3.610	1 00	10.15
ATOM	1717	NEI	TRP	213	4 980	52.619	3.734	1 00	12 18
ATOM	1718	CZZ	TRP	213	7.053	53 363	2 474	1.00	14 69
ATOM	1719	CZ3	TRP	213	7 687	51.805	0.735	1 00	13 88
ATOM	1720	CH2	TRP	213	7 887	52.990	1.460	1 00	15.53
ATOM	1721	C	TRP	213	5 991	48.089	2 741	1 00	7.51
ATOM	1722	0	TRP	213	6.720	48.548	3.592	1.00	8.44
ATOM	1723	Ħ	HIS	214	6 470	47.422	1.657	1 00	7 74
ATOM	1724	CA	HIS	214	7.890	47.280	1 443	1 00	7.66
ATOM	1725	CB	HIS	214	8 495	46 246	2.447	1.00	7.45
ATOM	1726	CG	HIS	214	7.976	44.860	2.273	1 00	7.43
ATOM	1727	CD2	HIS	214	8.527	43 765	1.682	1 00	7 28
ATOM	1728	ND1	HIS	214	6.682	44 495	2.637	1 00	6 92
ATOM	1729	CEl	HIS	214	6.501	43 234	2 298	1 00	
ATOM	1730	NE2	HIS	214	7.581	42 759	1.734		7 44
								1 00	7 83
ATOM	1731	C	HIS	214	8 125	46.789	0 014	1.00	6 97
MOTA	1732	0	HIS	214	7 212	46.319	-0 642	1 00	7 95
MOTA	1733	11	GLU	215	9 384	46 910	-0 408	1 00	7 78
MOTA	1734	CA	GLU	215	9 921	46 216	-1 569	1 00	8 05
ATOM	1735	CB	GLU	215	10 780	47 140	-2.413	1 00	9 46
MOTA	1736	CG	GLU	215	10 056	48 276	-3.051	1 00	11 54
ATOM	1737	CD	GLU	215	10 919	49 189	-3.900	1 00	16 19
ATOM	1738	OE1	GLU	215	12 160	49 042	-3.934	1 00	15 97
ATOM	1739	OE2	GLU	215	10 349	50 051	-4 616	1 00	23 46
ATOM	1740	С	GLU	215	10 805	45.070	-1 025	1.00	8 11
ATOM	1741	0	GLU	215	11 385	45 184	0.071	1 00	8 95
ATOM	1742	N	ASP	216	10 913	43 985	-1 761	1 00	7 98
ATOM	1743	CA	ASP	216	11 723	42 873	-1.305	1 00	6 84
ATOM	1744	CB	ASF	216	11 363	41 564	-1 990	1.00	7 14
ATOM	1745	CG	ASF	216	10.037	40 991	-1 580	1.00	6 78
ATCM	1746	OD1	ASP	216	9.415	41 594	-0 693	1.00	7.44
ATOM	1747	OD2	ASP	216	9.648	39 909	-2.098	1.00	7.77
ATOM	1748	C	ASP	216	13.214	43 128	-1.469	1.00	6.24
	_ · · · •	-							0.23

ATOM	1749	0	ASP	216	13.696	43 704	-2 450	1.00	7.93
ATOM	1750	N	VAL	217	13.931	42.555	-0 509	1.00	6.61
	1751	CA	VAL	217	15 369	42 439	-0 559	1 00	6.71
ATOM	1752	CB	VAL	217	16.050	42.687	0.780	1 00	7.87
ATOM		CG1	VAL	217	17 568	42.640	0.641	1 00	9.01
ATOM	1753		VAL	217	15 613	44.001	1.353	1 00	9.65
MOTA	1754	CG2					-1.150	1 00	6.75
ATOM	1755	C	VAL	217	15 714	41.072	-0 482	1.00	7.26
MOTA	1756	0	VAL	217	15.769	40.051			
MOTA	1757	N	SER	218	15.852	41.047	-2 476	1.00	6.83
MOTA	1758	CA	SER	218	16.056	39.850	-3.257	1.00	6.43
ATOM	1759	CB	SER	218	14 837	38 910	-3 175	1.00	6.60
ATOM	1760	OG	SER	218	13.749	39.472	-3 890	1.00	6.81
ATOM	1761	С	SER	218	16.304	40.211	-4.722	1.00	5.92
ATOM	1762	0	SER	218	16.044	41.351	-5 112	1 00	6.97
ATOM	1763	N	LEU	219	16.723	39.209	-5.488	1.00	6.04
MOTA	1764	CA	LEU	219	16.663	39.294	-6.937	1.00	6.10
ATOM	1765	CB	LEU	219	17.722	38.393	-7.569	1.00	6.78
ATOM	1766	CG	LEU	219	17.728	38.321	-9.097	1.00	7.82
ATOM	1767	CD1	LEU	219	18.034	39 650	-9.731	1.00	9.76
ATOM	1768	CD2	LEU	219	18 660	37.225	-9.589	1.00	8.26
	1769	C	LEU	219	15.218	36.982	-7.341	1.00	5.92
MOTA	1770	0	LEU	219	14 541	39.784	-7.957	1.00	6.32
ATOM		N	ILE	220	14 743	37.780	-6.965	1.00	5.60
MOTA	1771		ILE	220	13 342	37.411	-7.010	1.00	5.79
ATOM	1772	CA		220	12.950	36 552	-8.228	1.00	6.51
ATOM	1773	CB	ILE			37.295	-9.523	1.00	7.78
ATOM	1774	CG2	ILE	220	13.285	35.144	-8.189	1.00	6 95
ATOM	1775	CG1	ILE	220	13.563				7.96
ATOM	1776	CD1	ILE	220	13.002	34.222	-9.250	1.00	
ATOM	1777	С	ILE	220	12.977	36.695	-5.712	1.00	5.16
ATOM	1778	0	ILE	220	13 869	35.252	-4.968	1.00	5.70
ATOM	1779	N	THR	221	11.694	36.656	-5.419	1.00	5.46
ATOM	1780	CA	THR	221	11.121	35.981	-4.263	1.00	6.07
ATOM	1781	CB	THR	221	10.391	36.988	-3.362	1.00	6.78
ATOM	1782	OGl	THR	221	11.360	37.970	-2.958	1.00	6 64
ATOM	1783	CG2	THR	221	9.809	35.316	-2.133	1.00	7.54
MOTA	1784	С	THR	221	10.182	34.891	-4.753	1.00	5 05
MOTA	1785	0	THR	221	9.365	35.121	-5.667	1.00	6 03
MOTA	1786	N	VAL	222	10.317	33.704	-4.181	1.00	5.43
MOTA	1787	CA	VAL	222	9.635	32.477	-4.589	1.00	5.29
ATOM	1788	CB	VAL	222	10.610	31.467	-5.188	1.00	5.74
ATOM	1789	CG1	VAL	222	9.950	30.168	-5.590	1.00	6 07
ATOM	1790	CG2	VAL	222	11.389	32.046	-6.358	1.00	6 22
ATOM	1791	C	VAL	222	8.867	31.924	-3.379	1.00	5.62
ATOM	1792	0	VAL	222	9.466	31.333	-2.465	1.00	5.72
ATOM	1793	N	LEU	223	7.572	32.200	-3.305	1.00	5.40
ATOM	1794	CA	LEU	223	6.799	32.054	-2.080	1.00	5 71
	1795	CB	LEU	223	6.211	33.454	-1.749	1.00	5.73
ATOM		CG	LEU	223	5.245	33.563	-0.576	1.00	5.62
ATOM	1796			223	5.992	33.305	0.748	1 00	5 34
ATOM	1797	CD1	LEU	223	4.631	34.983	-0.564	1.00	7 58
ATOM	1798	CD2	LEU	223	5.672	31.053	-2.119	1.00	5 89
ATOM	1799	C	LEU		4.853	31.106	-3.012	1.00	6.54
MOTA	1800	0	LEU	223			-1.112	1.00	5.35
ATOM	1801	N	TYR	224	5.637	30.185	-0.858	1.00	5 93
ATOM	1802	CA	TYR	224	4.493	29.307		1.00	7.37
MOTA	1803	CB	TYR	224	4.891	27.865	-0.543		
MOTA	1804	CG	TYR	224	3.696	27.082	-0 030	1.00	8 60
MOTA	1805	CD1	TYR	224	2.805	26.474	-0.888	1.00	10 86
ATOM	1806	CE1	TYR	224	1.698	25.762	-0.350	1.00	11 92
MOTA	1807	CD2	TYR	224	3.459	26.927	1 341	1.00	10.88
ATOM	1808	CE2	TYR	224	2.363	26.334	1 897	1.00	12 37
ATOM	1809	CZ	TYR	224	1 500	25.717	1 012	1.00	12 52
ATOM	1810	OH	TYR	224	0 388	25.081	1 575	1.00	16.93
ATOM	1811	С	TYR	224	3 702	29.956	0 284	1.00	5 19
ATOM	1812	ō	TYR	224	4 318	30.259	1 319	1.00	6 49
ATOM	1813	N	GLN	225	2 391	29.993	0 209	1.00	5 70
ATOM	1814	CA	GLN	225	1 552	30.327	1 336	1.00	6 51
ATOM	1815	CB	GLN	225	1.053	31.753	1 362	1.00	8 15
	1816	CG	GLN	225	2.113	32.840	1.196	1.00	8 18
ATOM		CD	GLN	225	1.591	34.205	1 582	1.00	8.60
ATOM	1817	OE1	GLN	225	2.147	34.911	2 439	1.00	11 27
ATOM	1818			225	0.536	34.580	0 927	1.00	9.01
ATOM	1819	NE2	GLN	225	0.336	29.411	1 366	1.00	7.75
MOTA	1820	С	GLN	225	-0.163	28.937	0 352	1.00	8.52
ATOM	1821	0	GLN	⊂نہ∡	-0.102	.0.737	0 752	2.50	0.34

- 104 -

					• • • • • • • • • • • • • • • • • • • •				
ATOM	1822	N	SER	225	-0.198	29.227	2.575	1.00	9.34
ATOM	1823	CA	SEP	116	-1.464	28.544	2.758	1.00	10.96
ATOM	1824	CB	SEF.	226	-2.003	28.665	4,164	1.00	16.30
ATOM	1825	OG	SEF.	276	-1.115	18.419	5.120	1.00	15.06
MOTA	1826	C	SEF.	226	-2.559	29.310	2.014	1.00	10.35
ATOM	1827	0	SEF.	226	-2.481	30.484	1.699	1.00	11.80
ATOM	1828	N	ASN	227	-3.684	28 605	1.934	1.00	10.66
ATOM	1829	CA CB	ASN ASN	217 217	-4.840 -5.725	29 105	1.234	1.00	11.50
ATOM ATOM	1830 1831	CG	ASN	227	-6.303	27 953 28.312	0.769 -0.576	1.00	15.38
ATOM	1832	OD1	ASN	227	-6.033	27.643	-1.583	1.00	22.10 35.45
ATOM	1833	ND2	ASN	227	-6.869	29.471	-0.713	1.00	20.67
MOTA	1834	C	ASIJ	217	-5 668	30.072	2.070	1.00	12.61
MOTA	1835	0	ASN	227	-6 857	29.812	2.296	1.00	15.01
ATOM	1836	N	VAL	228	-5 078	31.162	2.514	1.00	10.77
ATOM	1837	CA	LAV	228	-5 746	32.223	3.268	1.00	9.90
ATOM	1838	CB	VAL	228	-5 417	32.224	4.768	1.00	11.72
ATOM	1839	CG1	VAL	228	-6 173	33.357	5.454	1.00	14.80
ATOM	1840 1841	CG2 C	VAL VAL	228 228	-5.721 -5.284	30.872	5.403 2.644	1.00	14.80
ATOM ATOM	1842	a	VAL	228	-4 093	33.531 33.821	2.657	1.00 1.00	9.82 10.96
MOTA	1843	N	GLN	129	-6 185	34.288	2.031	1.00	9.94
ATOM	1844	CA	GLN	229	-5 815	35.512	1.345	1.00	9.11
ATOM	1845	CB	GLN	229	-7 038	36.050	0.595	1.00	10.74
ATOM	1846	CG	GLN	229	-6 750	37.084	-0.481	1.00	10.34
ATOM	1847	CD	GLN	229	-6 454	38.479	0.038	1.00	11.49
MOTA	1848	OE1	GLN	229	-7 057	38.953	1.011	1.00	12.74
MOTA	1849	NE2	GLN	229	-5.440	39.124	-0.556	1.00	10.77
ATOM	1850	C 0	GLN GLN	229 229	-5.228 -5.784	36.489 36.712	2.340	1 00	9.22
ATCM ATOM	1851 1852	ห	ASN	230	-4.133	37.140	3.421 1.924	1 00	10.98 8.54
ATOM	1853	CA	ASN	230	-3.504	38.106	2.839	1 00	9.75
ATOM	1854	CB	ASN	230	-2.642	37.356	3.865	1 00	10.52
ATOM	1855	CG	ASN	230	-1.468	36.649	3.229	1 00	11.42
ATOM	1856	OD1	ASN	230	-1.601	35.602	2.559	1.00	12.95
ATOM	1857	ND2	ASN	130	-0.321	37.258	3.367	1 00	10.36
ATOM	1858	C	ASN	230	-2 684 -2 579	39.177	2.186	1.00	9.22
ATOM ATOM	1859 1860	n O	ASN LEU	230 231	-2 080	40.278 38.928	2.699 1.008	1 00 1 00	10.88 8.35
ATOM	1861	CA	LEU	231	-1 187	39.891	0.391	1 00	7.65
MOTA	1862	CB	LEU	231	-0 166	39.130	-0.486	1.00	9.10
ATOM	1863	CG	LEU	231	0 859	38.294	0.253	1.00	10.43
ATOM	1864	CD1	LEU	231	1.718	37.494	-0 719	1.00	12.85
ATOM	1865	CD2	LEU	231	1 707	39.142	1.167	1.00	18.74
ATOM	1866	C	LEU	231	-1 921 -2 902	40.933	-0.444	1.00	7.60
ATOM ATOM	1867 1868	O N	LEU GLN	231 232	-2 902 -1 378	40.618 42.167	-1.110 -0.446	1.00	8.69 7.25
ATOM	1869	CA	GLN	232	-1 884	43,212	-1.298	1.00	7.23
ATOM	1870	CB	GLN	232	-1.611	44.274	-0.523	1.00	8.77
ATOM	1871	CG	GLN	232	-3.852	43.777	0.218	1.00	8.38
ATOM	1872	CD	GLN	232	-4.616	44.915	0.825	1.00	10.24
ATOM	1873	OE1	GLN	232	-4 059	45.793	1.487	1.00	11.66
ATOM	1874	NE2	GLN	232	-5.935	44.904	0 648	1.00	14.46
ATOM ATOM	1875 1876	0	GLN GLN	232 232	-0.682 0.375	43.819 43.965	-2 003 -1.390	1.00	6.81 7.95
ATOM	1877	N	VAL	233	-0.905	44.246	-3 244	1.00	7.92
ATOM	1878	CA	VAL	233	0.087	44.893	-4 061	1.00	8.46
ATOM	1879	CB	JAV	233	0.462	44.130	-5 339	1.00	9.34
ATOM	1880	CG1	VAL	233	-0.719	43.775	-6.224	1.00	10.46
MOTA	1881	CG2	VAL	233	1.534	44.837	-6.141	1.00	9.44
MOTA	1882	C	VAL	233	-0.381	46.307	-4.399	1.00	8.77
ATOM	1883	0	VAL	233	-1.556	46.486	-4.737	1.00	10.72
ATOM	1884	N Ch	GLU GLU	234 234	0.489 0.169	47.302 48.654	-4.314 -4.763	1.00	8.62
ATOM ATOM	1885 1886	CA CB	GLU	234	1.095	49.693	-4.115	1.00	10.41 11.08
ATOM	1887	CG	GLU	234	C 638	51.126	-4.319	1.00	12.76
ATOM	1888	CD	GLU	234	1.488	52 093	-3.531	1.00	13.73
ATOM	1889	OEl	GLU	234	2.730	51.975	-3.567	1.00	16.36
ATOM	1890	CE2	GLU	234	0.903	53 025	-2.925	1.00	16.64
ATOM	1891	C	GLU	234	0.277	48.736	-6.285	1.00	12.14
ATOM	1892	0	GLU	234	1.295	48.366	-6.885	1.00	13.51
ATOM	1893	N CD	THR	235 235	-0.753 -0.699	49.285	-6.917	1.00	15.59
ATOM	1894	CA	THR	233	-0.699	49.507	-8.364	1.00	17.29

- 105 -

					- 1.	Q .5 -			
ATOM	1895	CB	THR	235	-1.595	48 591	-9.200	1 00	19 13
MOTA	1896	OG1	THR	235	-2.984	48 842	-8.938	1 00	21 58
ATOM	1897	CG2	THR	235	-1 375	47 100	-8.952	1.00	22 36
ATOM	1898	C	THR	235	-1 137	50 959	-8.576	1 00	18 85
MOTA MOTA	1899 1900	0 N	THR ALA	235 236	-1 394 -1.293	51.656 51.330	-7.579 -9.856	1 00 1 00	19.19 22.89
ATOM	1901	CA	ALA	236	-1.784	52 664	-10.222	1 00	23 88
ATOM	1902	CB	ALA	236	-1 749	52 884	-11.725	1.00	31 13
ATOM	1903	C	ALA	236	-3.206	52.889	-9.731	1.00	24 49
MOTA	1904	0	ALA	236	-3.723	53.962	-9.427	1.00	31.36
MOTA	1905	N	ALA	237	-3.929	51.774	-9.619	1.00	24.56
ATOM ATOM	1906 1907	CA CB	ALA ALA	237 237	-5.299 -6.155	51 889 50 804	-9. 1 50 -9.815	1 00 1.00	25.87 33.93
ATOM	1908	C	ALA	237	-5 332	51.715	-7 648	1.00	24.45
ATOM	1909	0	ALA	237	-6 424	51.484	-7 120	1 00	30.47
ATOM	1910	N	GLY	238	-4.223	51.758	-6 932	1.00	21.71
ATOM	1911	CA	GLY	238	-4.269	51.563	-5 481	1.00	19.83
ATOM	1912	C	GLY GLY	238 238	-3.842 -3.387	50.185 49.372	-5 013 -5.837	1.00	17.46
MOTA MOTA	1913 1914	и	TYR	239	-4 061	49 844	-3.728	1.00 1.00	17.96 15.86
ATOM	1915	CA	TYR	239	-3 721	48.501	-3.275	1.00	12.97
MOTA	1916	CB	TYR	239	-3.579	48.458	-1.743	1.00	12,30
MOTA	1917	CG	TYR	239	-2.235	48 936	-1.252	1.00	11.99
MOTA	1918	CD1	TYR	239	-2 034	50 267	-0.939	1.00	12.25
ATOM ATOM	1919 1920	CE1	TYR TYR	239 239	-0 787 -1.161	50 701 48 056	-0.501 -1.168	1.00	12.55 11.54
ATOM	1921	CE2	TYR	239	0.072	48 470	-0.746	1.00	11.34
ATOM	1922	CZ	TYR	239	0.238	49.811	-0.426	1.00	11.23
ATOM	1923	OH	TYR	239	1.484	50.235	-0.015	1.00	14.40
MOTA	1924	С	TYR	239	-4.815	47.516	-3.705	1.00	12.53
ATOM ATOM	1925 1926	O N	TYR GLN	239 240	-6.007 -4.409	47.800 46.398	-3.513 -4.296	1.00	17.24 11.52
ATOM	1927	CA	GLN	240	-5.297	45.349	-4.769	1.00	11.52
MOTA	1928	CB	GLN	240	-5.117	45.199	-6.306	1.00	11.64
ATOM	1929	CG	GLN	240	-5.539	46.485	-7.051	1.00	14.46
MOTA	1930	CD	GLN	240	-5.418	46.379	-8.546	1.00	16.63
ATOM ATOM	1931 1932	OE1 NE2	GLN GLN	240 240	-4.585 -6.217	45.635 47.136	-9.069 -9.296	1.00 1.00	18.79 21.51
ATOM	1933	C	GLN	240	-4.935	44.026	-4.113	1.00	10.88
MOTA	1934	0	GLN	240	-3.763	43.770	-3.789	1,00	9.92
MOTA	1935	N	ASP	241	-5.922	43.182	-3.859	1,00	10.67
ATOM	1936	CA	ASP	241	-5.711	41.915	-3.230	1.00	9.82
ATOM ATOM	1937 1938	CB CG	ASP ASP	241 241	-7.072 -7.532	41.409 41.987	-2.727 -1.420	1.00 1.00	11.01 12.59
ATOM	1939	OD1	ASP	241	-8.763	41.911	-1.141	1.00	15.81
ATOM	1940	OD2	ASP	241	-6.719	42.478	-0.648	1.00	12.84
MOTA	1941	С	ASP	241	-5.124	40.876	-4.183	1.00	10.03
ATOM	1942	0	ASP	241	-5.613	40.615	-5.276	1.00	13.99
ATOM ATOM	1943 1944	N CA	ILE ILE	242 242	-4.082 -3.524	40.170 39.035	-3.742 -4.454	1.00	8.45 8.44
ATOM	1945	CB	ILE	242	-2.024	38.896	-4.197	1.00	8.68
ATOM	1946	CG2	ILE	242	-1.499	37.564	-4.760	1.00	10.88
ATOM	1947	CG1	ILE	242	-1.271	40.096	-4.766	1.00	9.70
ATOM	1948	CD1	ILE	242	0.191	40.223	-4.344	1.00	11.78
ATOM ATOM	1949 1950	С О	ILE ILE	242 242	-4.242 -4.216	37.784 37.474	-3.942 -2.740	1.00 1.00	8.96 9.65
ATOM	1951	N	ALA	243	-1.926	37.054	-4.821	1.00	9.75
ATOM	1952	CA	ALA	243	-5 595	35.814	-4.414	1.00	9.73
ATOM	1953	C	ALA	243	-4.574	34.776	-3.950	1.00	B.94
ATOM	1954	0	ALA	243	-3 463	34.685	-4.478	1.00	11.10
ATOM	1955	CB	ALA ALA	243 244	-6.379	35.243	-5.605 -2 985	1.00 1.00	14.74
MOTA MOTA	1956 1957	N CA	ALA	244	-4 991 -4 136	33.948 32.844	-2 985 -2 547	1.00	9.36 9.36
ATOM	1958	CB	ALA	244	-4.588	32.409	-1 156	1.00	13.93
ATOM	1959	С	ALA	244	-4.243	31.707	-3.540	1.00	10.49
ATOM	1960	0	ALA	244	-5.263	31 547	-4 224	1.00	13.13
ATOM	1961	N	ASP ASP	245 245	-3.215 -3.159	30 899	-3 615 -4 409	1.00	10.92
ATOM ATOM	1962 1963	CA CB	ASP	245	-3.158 -2.804	29 661 29 876	-4 408 -5.858	1.00 1.00	11.37 11.89
ATOM	1964	CG	ASP	245	-2,892	28.664	-6.747	1.00	13 54
MOTA	1965	OD1	ASP	245	-3.031	28.761	-7.996	1.00	18 77
ATOM	1966	OD2	ASP	245	-2.886	27.549	-6.197	1.00	13 74
ATOM	1967	С	ASP	245	-2.109	28.779	-3.720	1.00	10.46

- 106 -

ATOM	1968	0	ASP	245	-0.917	28.912	-3.998	1.00	11.30
AT DM	1969	N	ASP	246	-2.562	27.850	-2.905	1.00	9.06
MOTA	1970	CA	ASP	246	-1.677	26.921	-2.197	1.00	9.74
MOTA	1971	CB	ASP	246	-2.253	26.499	-0.859	1.00	11.33
MOTA	1972	CG	ASP	246	-3 378	25.495	-1.011	1.00	13.92
MCTA	1973	001	ASP	246	-3 834	24.958	0.018	1.00	15.40
ATOM	1974	OD2	ASP	246	-3 870	25.292	-2.155	1 00	14.85
ATOM	1975	C	ASP	246	-1.201	25.755	-3.060	1.00	9.71
ATOM	1976	0	ASP	246	-0.571	24.838	-2.544	1 00	10 59
			THR	247	-1 417	25 840	-4.379	1.00	9 46
MOTA	1977	N							
MOTA	1978	CA	THR	247	-0 834	24 865	-5.261	1 00	9 37
MOTA	1979	CB	THR	247	-1 845	24 275	-6.269	1 00	11 29
		OG1	THR	247	-2 235	25 290	-7.212	1.00	11 39
MOTA	1980								
MCTA	1981	CG2	THR	247	-3 094	23 800	-5.524	1 00	12 30
MCTA	1982	C	THR	247	0 328	25 442	-6.058	1 00	8 75
				247	1 026	24 639	-6.698	1.00	11.70
ATOM	1983	0	THR						
ATOM	1984	N	GLY	248	0.477	26.744	-6.088	1 00	8.16
ATOM	1985	CA	GLY	248	1.475	27.454	-6.872	1.00	8.63
						28.172	-5.992	1.00	7.49
ATOM	1986	C	GLY	248	2.494				
MOTA	1987	0	GLY	248	2.373	28.246	-4.757	1.00	10.66
MOTA	1988	N	TYR	249	3.496	28.733	-6 663	1.00	6.67
						29.616	-6.005	1.00	6 51
MOTA	1989	CA	TYR	249	4.437				
ATOM	1990	CB	TYR	249	5 900	29.244	-6.303	1 00	6 70
ATOM	1991	CG	TYR	249	6.411	28 129	-5.426	1.00	6 10
MOTA	1992	CD1	TYR	249	6 314	26 788	-5 752	1.00	6 62
MCTA	1993	CE1	TYR.	249	6.786	25.803	-4 929	1 00	7 14
		CD2	TYR.	249	6 992	28 437	-4.199	1 00	5 64
MOTA	1994								
ATOM	1995	CE2	TYR.	249	7.470	27.450	-3.364	1.00	5.23
ATOM	1996	CZ	TYR	249	7.367	26.135	-3.715	1 00	6.30
			TYR	249	7 823	25.130	-2.903	1 00	8 55
ATOM	1997	OH							
MCTA	1998	C	TYR	249	4 202	31.046	-6.523	1 00	5.67
ATOM	1999	0	TYF.	249	4.146	31.252	-7.740	1.00	6 93
						31.976	-5 592	1.00	5 56
MOTA	2000	N	LEU	250	4.045				
ATOM	2001	CA	LEU	250	3.894	33.381	~5.926	1.00	5 35
ATOM	2002	CB	LEU	250	3.151	34.119	-4 803	1.00	6.61
							-5 134	1.00	6 78
ATOM	2003	CG	LEU	250	2.830	35.587			
ATOM	2004	CD1	LEU	250	1.810	35.727	-6 251	1.00	7 40
MOTA	2005	CD2	LEU	250	2 316	36.240	-3.857	1.00	8.54
MOTA	2006	C	LEU	250	5.283	33.945	-6.147	1.00	5 86
ATOM	2007	0	LEU	250	6 157	33.797	-5.272	1 00	5 91
			ILE	251	5.498	34,540	~7.312	1.00	5 45
ATOM	2008	N							
ATOM	2009	CA	ILE	251	6 777	35.088	-7.727	1 00	6 03
MOTA	2010	CB	ILE	251	7.240	34.434	-9.059	1 00	6 08
					8 728	34.801	-9.306	1.00	7.80
ATOM	2011	CG2	ILE	251					
MOTA	2012	CG1	ILE	251	6.975	32.941	-9.095	1 00	5.58
ATOM	2013	CD1	ILE	251	7.657	32.110	-8.038	1.00	6.65
							-7.909	1 00	6.13
ATOM	2014	С	ILE	251	6 712	36.599			
ATOM	2015	0	ILE	251	5 735	37.111	-8.484	1 00	6.96
ATOM	2016	N	ASN	252	7.760	37.291	-7.443	1 00	6.11
									6.61
ATOM	2017	CA	ASN	252	7.892	38.703	-7.696	1 00	
ATOM	2018	CB	ASN	252	7.145	39.615	-6.739	1 00	7.62
ATOM	2019	CG	ASN	252	7.617	39 521	-5.306	1 00	8.27
MOTA	2020	OD1	ASN	252	7.166	38 626	-4.587	1 00	9 37
ATOM	2021	ND2	ASN	252	B.520	40.387	-4.902	1 00	8 45
			ASN	252	9.377	39 065	-7.731	1 00	6 35
ATOM	2022	C							
MOTA	2023	0	ASN	252	10.197	38 345	-7.137	1.00	7 21
ATOM	2024	N	CYS	253	9.683	40.236	-8.295	1.00	6 40
				253	11.048	40.768	-8.285	1.00	7 03
ATOM	2025	CA	CYS						
ATOM	2026	CB	CYS	253	11.302	41.723	-9.464	1.00	8 85
ATOM	2027	SG	CYS	253	11.232	40.881	-11.077	1.00	10 36
			CYS	253	11.309	41.552	-6.988	1.00	7 30
ATOM	2028	C							
ATOM	2029	0	CYS	253	10.402	42.203	-6.420	1.00	7 55
ATOM	2030	N	GLY	254	12.562	41.539	-6.585	1.00	6 67
						42.360	-5.503	1.00	7 05
ATOM	2031	CA	GLY	254	13.063				
ATOM	2032	C	GLY	254	13.850	43.536	-6.046	1.00	7.09
	2033	0	GLY	254	14.011	43.696	-7.269	1.00	7.78
ATOM									
ATOM	2034	N	SER	255	14.338	44.380	-5.130	1.00	7.39
ATOM	2035	CA	SER	255	14.942	45.634	-5.560	1.00	8.33
		CB	SER	255	14.980	46.646	-4.420	1.00	8.09
ATOM	2036								
ATOM	2037	og	SER	255	15.785	46.124	-3.385	1.00	9.54
ATOM	2038	С	SER	255	16 275	45.443	-6.277	1.00	7.85
			SER	255	16 710	46.348	-6.979	1.00	10.10
ATOM	2039	0							
ATOM	2040	N	TYR	256	16.928	44.287	-6.184	1.00	7.83

- 107 -

ATOM	2041	CA	TYR	256	18.151	44.106	-6.964	1.00	8.12
ATOM	2042	CB	TYR	256	18 966	42.909	-6.486	1.00	7.96
	2043	CG	TYR	256	20 395	42.919	-7 017	1.00	7 92
ATOM		CD1	TYR	256	21.351	43.735	-6 425	1.00	9.18
MOTA	2044		TYR	256	22 665	43.731	-6.866	1.00	9 56
MOTA	2045	CE1			20.800	42.110	-8 068	1.00	8 38
ATOM	2046	CD2	TYR	256			-8 530	1.00	8 77
ATOM	2047	CE2	TYR	256	22.119	42.114			7 91
ATOM	2048	CZ	TYR	256	23 030	42 931	-7.942	1.00	
MOTA	2049	OH	TYR	256	24 334	42.919	-8 446	1.00	10 55
ATOM	2050	C	TYR	256	17.790	44.007	-8.444	1.00	7 77
MOTA	2051	0	TYR	256	18 510	44.559	-9 307	1.00	9.14
MOTA	2052	N	MET	257	16 689	43.310	-8 76 7	1.00	8.12
ATOM	2053	CA	MET	257	16 220	43 230	-10.151	1.00	7.70
ATOM	2054	CB	MET	257	15.002	42.301	-10.305	1.00	8 40
ATOM	2055	CG	MET	257	14.582	42 102	-11.738	1.00	9 02
ATOM	2056	SD	MET	257	15.730	41 115	-12.738	1.00	9 56
ATOM	2057	CE	MET	257	15.233	39 485	-12.131	1.00	11.37
ATOM	2058	C	MET	257	15.843	44.629	-10 670	1.00	6 94
ATOM	2059	ō	MET	257	16.150	44.976	-11.819	1.00	8.48
	2060	N	ALA	258	15.189	45.427	-9.842	1.00	7.83
MOTA	2061	CA	ALA	258	14.807	46.786	-10.242	1.00	8.49
MOTA			ALA	258	13.940	47.433	-9.204	1.00	8.60
ATOM	2062	CB		258	16.074	47 582	-10.550	1.00	8.95
MOTA	2063	C	ALA			48.339	-11 526	1.00	10 68
ATOM	2064	0	ALA	258	16.128		-9 717	1.00	9 55
MOTA	2065	N	HIS	259	17.075	47.456			9 84
ATOM	2066	CA	HIS	259	18.325	48.184	-9 987	1.00	
ATOM	2067	CB	HIS	259	19.298	47.968	-8.806	1.00	10.82
MOTA	2068	CG	HIS	259	20.581	48.672	-8.960	1.00	12.01
ATOM	2069	CD2	HIS	259	20.785	50.004	-8.919	1.00	11.84
ATOM	2070	ND1	HIS	259	21.801	48.079	-9.209	1.00	14.52
MOTA	2071	CE1	HIS	259	22.701	49.050	-9.270	1.00	12.90
ATOM	2072	NE2	HIS	259	22.106	50.209	-9.115	1.00	14.66
ATOM	2073	C	HIS	259	18.949	47.746	-11.296	1.00	9.17
ATOM	2074	0	HIS	259	19.275	48.580	-12.144	1.00	11.20
ATOM	2075	N	LEU	260	19.091	46.450	-11.529	1.00	9.71
ATOM	2076	CA	LEU	260	19.763	45.917	-12.699	1.00	11.16
MOTA	2077	CB	LEU	260	19.771	44.362	-12.647	1.00	13.64
ATOM	2078	CG	LEU	260	20.621	43.697	-11.579	1.00	14.53
ATOM	2079	CD1	LEU	260	20.446	42.195	-11.659	1.00	15.33
ATOM	2080	CD2	LEU	260	22.081	44.131	-11.700	1.00	18.49
	2081	C	LEU	260	19.044	46.315	-13.989	1.00	10.90
ATOM	2082	0	LEU	260	19.715	46.435	-15.017	1.00	11.94
ATOM			THR	261	17.723	46.442	-13.932	1.00	9.82
ATOM	2083	N		261	16.920	46.680	-15,141	1.00	10.23
ATOM	2084	CA	THR		15.671	45.798	-15.202	1.00	9.32
ATOM	2085	CB	THR	261			-14.174	1,00	9.59
ATOM	2086	OG1	THR	261	14.737	46.138	-15.098	1.00	10.96
MOTA	2087	CG2	THR	261	16.000	44.325			10.83
MOTA	2088	С	THR	261	16.492	48.151	-15.298	1.00	12.22
ATOM	2089	0	THR	261	15.664	48.493	-16.138	1.00	
ATOM	2090	N	ASN	262	17.009	48.999	-14.417	1.00	12.86
ATOM	2091	CA	ASN	262	16.643	50.411	-14.405	1.00	13.99
ATOM	2092	CB	ASN	262	17.162	51.124	-15.670	1.00	16.72
ATOM	2093	CG	ASN	262	17.122	52 624	-15.414	1.00	18.91
ATOM	2094	OD1	ASN	262	17.484	53 032	-14.306	1.00	23.20
ATOM	2095	ND2	ASN	262	16.604	53 423	-16.351	1.00	23.32
ATOM	2096	С	ASN	262	15.143	50 639	-14.281	1.00	14.56
ATOM	2097	0	ASN	262	14.524	51.455	-14.945	1.00	17.11
ATOM	2098	N	ASN	263	14.570	49.836	-13.381	1.00	13.82
MOTA	2099	CA	ASN	263	13.148	49 902	-13.081	1.00	15.46
ATOM	2100	CB	ASN	263	12 863	51.289	-12.502	1.00	17.97
	2101	CG	ASN	263	12.214	51.276	-11.157	1.00	17.06
MOTA	2101	0D1	ASN	263	12 128	50.271	-10.466	1.00	15.00
MOTA			ASN	263	11.533	52 359	-10.866	1.00	25.64
ATOM	2103	ND2			12.252	49 450	-14.215	1.00	13.77
ATOM	2104	C	ASN	263		49 450	-14.160	1.00	18.41
ATOM	2105	0	ASN	263	11 012			1.00	13.79
ATOM	2106	N	TYR	264	12 774	48 764	-15.236		
ATOM	2107	CA	TYR	264	11 900	48 149	-16.255	1.00	14.19
ATOM	2108	CB	TYR	264	12.715	47 613	-17.416	1.00	15.13
ATOM	2109	ÇG	TYR	264	11 996	46 818	-18 494	1.00	16.36
ATOM	2110	CDI	TYR	264	11 035	47 371	-19.362	1.00	17.78
ATOM	2111	CE1	TYR	264	10 400	46.634	-20.350	1.00	18.06
ATOM	2112	CD2	TYR	264	12.259	45.484	-18.745	1.00	16.68
ATOM	2113	CE2	TYR	264	11.650	44.748	-19.760	1.00	16.65

				- 1	.00 -			
ATOM	2114	CZ TYR	254	10.716	45.314	-20.586	1.00	18.96
ATOM	2115	OH TYR	254	10.037	44.587	-21.573	1.00	18.75
ATOM	2116	C TY		11.078	47.051	-15.593	1.00	12.40
MOTA	2117	O TY		9.880	46.958	-15.851	1.00	13.61
ATOM	2118	N TY		11.724 11.038	46.245 45.308	-14.738 -13.845	1.00	10.62 9.32
ATOM ATOM	2120	CA TY		11.580	43.896	-13.877	1 00	9.65
ATOM	2121	CG TY		11.384	43.145	-15.197	1 00	9.18
ATOM	2122	CD1 TY		11.979	41 897	-15.374	1 00	9.12
ATOM	2123	CE1 TY	R 255	11 788	41 151	-16.513	1 00	9.35
ATOM	2124	CD2 TY	R 265	10 575	43.607	-16.232	1 00	9.97
ATCM	2125	CE2 TY		10 412	42.861	-17.391	1 00	9.60
ATCM	2126	CZ TY		11 019	41.653	-17.546	1 00	8.98
ATOM	2127 2128	OH TY		10 956 11 143	40.929 45.898	-18 694 -12 455	1 00 1 00	9.24 8.87
ATOM ATOM	1129	O TY		12 165	45 736	-11.793	1 00	10 25
ATOM	2130	N LY		10 091	46 591	-12 039	1 00	9 35
ATOM	2131	CA LY		10 042	47 206	-10 722	1.00	10 27
ATOM	2132	CB LY		8.764	48.067	-10 642	1.00	11.78
MOTA	2133	CG LY		8.798	49.269	-11.544	1 00	15 74
ATOM	2134	CD LY		7.679 8 060	50.219 51.436	-11.609 -12.461	1 00 1.00	20 41 27 15
ATOM ATOM	2135 2136	CE LY NZ LY		8 880	51 073	-13.684	1 00	38 27
ATOM	2137	C LY		9 917	46 141	-9.642	1 00	9 64
MOTA	2138	O LY		9 483	45 006	-9 859	1 00	11 23
ATOM	2139	N AL	A 267	10 398	46 485	-8 457	1 00	8 21
ATOM	2140	CA AL		10 177	45.669	-7 302	1 00	8.00
ATOM	2141	CB AI		11.263	45 935	-6 279 6 747	1 00	9.27
ATOM	2142	C AI		8 81 0 8 703	46 112 47 252	-6 747 -6.265	1 00 1.00	8.06 9.31
ATOM ATOM	2143 2144	N PR		7.786	45.314	-6.903	1 00	7 87
ATOM	2145	CD PR		7.704	43 960	-7 464	1 00	8 45
ATOM	2146	CA PR	0 268	6 464	45.815	-6.507	1.00	8.53
ATOM	2147	CB PR		5.497	44.732	-6.971	1 00	8 95
ATOM	2148	CG PF		6 340	43 491	-6.981	1.00	9 67
ATOM	2149	C PF		6.342 6.832	46 060 45 247	-5.020 -4.237	1 00 1.00	7.51 8.65
ATOM ATOM	2150 2151	O PF		5 648	47 157	-4.658	1 00	7.63
ATOM	2152	CA II		5 356	47 441	-3.254	1.00	7.94
ATOM	2153	CB II		5 120	48 928	-2.981	1.00	9 79
ATOM	2154	CG2 II		4 494	49 172	-1.634	1 - 00	10 56
ATOM	2155	CG1 II		6 437	49.720	-3.185	1.00	13 68
ATOM	2156	CD1 II		6.187	51 182 46.593	-3.479	1.00	23.32 7.83
ATOM ATOM	2157 2158	C II		4.170 3.149	46 540	-2.837 -3.511	1.00 1.00	9 16
ATOM	2159	и н		4 317	45.894	-1.703	1.00	7 29
ATOM	2160	CA H		3 276	45 019	-1.206	1.00	7 01
ATOM	2161	CB HI	S 270	3.400	43.626	-1.835	1.00	7 25
ATOM	2162	CG H		4.744	43.024	-1.598	1.00	7 13
MOTA	2163	CD2 H		5 128 5 880	42.038	-0.746	1.00 1.00	7 31 7 07
ATOM ATOM	2164 2165	ND1 HI		6 904	43.389 42.683	-2.273 -1.826	1.00	7 87
ATOM	2166	NE2 H		6.489	41.831	-0.890	1.00	7 31
ATOM	2167		IS 270	3.274	44.991	0.302	1.00	6 54
MOTA	2168	О Н	S 270	4.212	45.458	0.936	1.00	7 63
MOTA	2169		RG 271	2.201	44.490	0.896	1.00	6.78
ATOM	2170		RG 271	1.988	44.467	2.318	1.00	6.60
MOTA	2171		RG 271	1.366 -0.088	45.769 45.972	2.853 2.398	1.00 1.00	7.26 8.12
MOTA MOTA	2172 2173		RG 271		47.381	2.652	1.00	8.48
ATOM	2174		RG 171		47.504	2.297	1.00	9.27
MOTA	2175		RG 271		48.651	2.312	1.00	9.64
ATOM	2176		RG 271		49.802	2.648	1.00	10.45
ATOM	2177		RG 271		48.660	1.968	1.00	11.63
ATOM	2178		RG 271		43.252	2.682	1.00	6.79
ATOM	2179		RG 271 AL 272		42.637 42.887	1.805 3.953	1.00 1.00	7.95 7.39
ATOM ATOM	2180 2181		AL 272		41.736	4.493	1.00	6.97
ATOM	2182		AL 272		40.830	5.328	1.00	7.37
ATOM	2183		AL 272		39.661	5.865	1.00	9.31
ATOM	2184	•	AL 272			4.562	1.00	9.68
ATOM	2185		AL 272			5.378	1.00	6.78
MOTA	2186	0 V	AL 272	-0.470	42.805	6.415	1.00	7.67

ATOM	2187	N	LYS	273	-1 917	41.839	4 950	1.00	7 33
ATOM	2188	CA	LYS	273	-3.061	42.135	5 792	1 00	8 38
ATOM	2189	CB	LYS	273	-4 364	41.763	5 047	1 00	9 72
	2190	CG	LYS	273	-4 658	42.765	3 950	1.00	13 66
MOTA		CD	LYS	273	-6 090	42 725	3 437	1.00	20.08
ATOM	2191			273	-6 381	41 379	2 873	1.00	21.66
ATOM	2192	CE	LYS				2.413	1 00	19.22
ATOM	2193	NZ	LYS	273	-7 801	41 227			
MOTA	2194	С	LYS	273	-3 047	41 256	7 047	1.00	7.72
MOTA	2195	0	LYS	273	-2.628	40 112	7 023	1 00	8.06
MOTA	2196	N	TRP	274	-3.644	41.812	8 114	1 00	7.85
MOTA	2197	CA	TRP	274	-3.914	41 041	9.322	1 00	8 01
MOTA	2198	CB	TRP	274	-4.314	41.953	10.481	1.00	8 38
MOTA	2199	CG	TRP	274	-4 864	41.210	11.655	1.00	8 22
MOTA	2200	CD2	TRP	274	-6 226	41.225	12.078	1.00	8.59
ATOM	2201	CE2	TRP	274	-6.311	40 370	13.188	1.00	9.28
ATOM	2202	CE3	TRP	274	-7.393	41 859	11 630	1 00	10.81
ATOM	2203	CD1	TRP	274	-4.216	40.377	12,490	1 00	8 98
ATOM	2204	NEI	TRP	274	-5 074	39.850	13.430	1 00	9 16
	2205	CZ2	TRP	274	-7 485	40.145	13.881	1.00	9 84
ATOM	2206	CZ3	TRP	274	-8 570	41.630	12.309	1 00	12.76
ATOM			TRP	274	-8 591	40 765	13 403	1.00	12.58
ATOM	2207	CH2		274	-5 114	40 123	9.043	1.00	7.32
ATOM	2208	С	TRP			40.621	8.598	1.00	8.37
ATOM	2209	0	TRP	274	-6.156		9.345	1 00	7 40
ATOM	2210	N	VAL	275	-4.963	38 854		1 00	
ATOM	2211	CA	VAL	275	-6 042	37.883	9.221		7 99
ATOM	2212	CB	VAL	275	-5 913	37.057	7.931	1.00	11.04
MOTA	2213	CG1	VAL	275	-7. 1 52	36.169	7.828	1.00	13 41
ATOM	2214	CG2	VAL	275	-5.765	37.904	6 702	1.00	15.17
ATOM	2215	C	VAL	275	-5.933	37 000	10 457	1 00	7.32
ATOM	2216	0	VAL	275	-4.818	36.547	10 759	1 00	8 66
ATOM	2217	N	ASN	276	-7.013	36.774	11.175	1 00	7 50
ATOM	2218	CA	ASN	276	-6 930	35.898	12.365	1.00	8 58
ATOM	2219	CB	ASN	276	-7 921	36.377	13.414	1.00	9 69
MOTA	2220	CG	ASN	276	-7.600	35 733	14 757	1.00	10.43
ATOM	2221	OD1	ASN	276	-6.631	34.956	14.885	1.00	9.69
ATOM	2222	ND2	ASN	276	-8 414	35.995	15.765	1.00	12.06
ATOM	2223	С	ASN	276	-7.172	34.443	11.976	1.00	8.56
MOTA	2224	0	ASN	276	-8.281	33.914	12.021	1.00	9.02
ATOM	2225	N	ΑĽΑ	277	-6.107	33.815	11 504	1 00	8.26
ATOM	2326	CA	ALA	277	-6.107	32.466	10.982	1 00	8.04
ATOM	2227	CB	ALA	277	-6.438	32.469	9.514	1.00	9.72
ATOM	2228	C	ALA	277	-4 711	31.860	11.136	1.00	7.91
ATOM	2229	ō	ALA	277	-3 7 05	32 537	10.998	1.00	8.82
ATOM	2230	N	GLU	278	-4.674	30 592	11.445	1.00	7.51
ATOM	2231	CA	GLU	278	-3.460	29 801	11.557	1 00	7.98
ATOM	2232	CB	GLU	278	-3.727	28 504	12.302	1.00	10.38
		CG	GLU	278	-2 539	27 650	12.655	1 00	11.75
ATOM	2233	CD	GLU	278	-1.613	28 347	13.638	1 00	10.88
ATOM	2234			278	-0.419	28 424	13.314	1.00	12.63
ATOM	2235	OE1	GLU	278	-2.074	28 833	14.680	1 00	10.57
ATOM	2236	OE2	GLU	278	-3.034	29.524	10.111	1 00	8.98
MOTA	2237	C	GLU		-3.034	28.836	9.346	1 00	12.15
ATOM	2238	0	GLU	278		30.037	9.738	1.00	8.14
ATOM	2239	N	ARG	279	-1.864		8.373	1.00	8.39
ATOM	2240	CA	ARG	279	-1.410	29.901	7.472	1.00	10.37
MOTA	2241	CB	ARG	279	-2.095	30 906			10.37
MOTA	2242	CG	ARG	279	-1.659	32.310	7 818	1.00	9.63
ATOM	2243	CD	ARG	279	-2.541	33.367	7.101	1.00	
MOTA	2244	NE	ARG	279	-2.026	34 712	7.405	1.00	9.29
MOTA	2245	CZ	ARG	279	-0.965	35 208	6.775	1.00	9.20
ATOM	2246	NH1	ARG	279	-0.368	34 596	5.774	1.00	9.24
MOTA	2247	NH2	ARG	279	-0.490	36 396	7.129	1.00	9.29
ATOM	2248	С	ARG	279	0.095	29 920	8.275	1.00	7.13
ATOM	2249	0	ARG	279	0.821	30 149	9.252	1.00	8.10
MOTA	2250	N	GLN	280	0.593	29 601	7.095	1.00	7.21
ATOM	2251	CA	GLN	280	2.006	29 505	6.778	1.00	7.07
ATOM	2252	CB	GLN	280	2.318	28 088	6.255	1.00	8.87
ATOM	2253	CG	GLN	280	2.043	27 047	7.312	1.00	8.89
ATOM	2254	CD	GLN	280	2.188	25 645	6.771	1.00	8.58
ATOM	2255	OE1	GLN	280	2.067	25 442	5.571	1.00	11.01
ATOM	2256	NE2	GLN	280	2.533	24 689	7.591	1.00	8.97
ATOM	2257	C	GLN	280	2.389	30 454	5.653	1.00	6.21
ATOM	2258	0	GLN	280	1.634	30.606	4.671	1.00	7.53
ATOM	2259	11	SER	281	3.554	31.037	5.779	1.00	6.11

					•	• •	-		
ATOM	2260	CA	SEP	281	4.156	31.865	4.744	1.00	6.44
ATOM	2261	IB	SEF.	281	4.016	33.345	5.109	1.00	7.40
ATCM	2262	ЭG	SEF.	281	4.520	34.121	4.016	1.30	8.04
ATCM	2263	2	SEF	181	5.617	31.443	4.606	1.00	6.56
ATCM	2264))	SEF	281	6.374	31.574	5.574	1.00	6.58
ATCM	2265 2266	N DA	LEU	282 282	5.952 7.243	30.778 30.105	3.493 3.352	1.00	5.40 6.03
ATCM ATCM	2267	CB	LEU	282	6.986	28.583	3.195	1.00	6.16
ATCM	2268	GG G	LEU	182	5.982	27.942	4.203	1.00	7.21
ATCM	2269	CD1	LEU.	282	5.851	26.441	3.942	1.00	8.79
ATOM	2270	CD2	LEU	182	6.340	28.188	5.661	1.00	8.29
ATCM	2271	C	LEU	282	8.025	30.641	2.173	1 00	5 52
ATOM	2272	Ċ	LEU	282	5.055	30.039	1.071	1 00	5.6€
ATOM	2273	N	PRC	283	9.632	31.801	2.318	1.00	5 55
ATOM	2274	CD	PRC.	183	8 549	32.739	3.463	1.00	5 92
ATOM	2275	CA	PRC	283	9 437	32.349	1.222	1.00	5.72
MOTA	2276	CB	PRC	183 283	9 634 9 624	33.815	1.631 3.131	1 00 1 00	6.44 6.28
ATOM	2277 2278	CG C	PRC: PRO	283	10.795	33.748 31.729	1.057	1 00	4.97
ATOM ATOM	2279	Ö	PRC	283	11.445	31.312	2 006	1 00	5.92
ATOM	2280	N	PHE	284	11.262	31.720	-0 187	1.00	5 22
ATOM	2281	CA	PHE	284	12 642	31.498	-0 602	1.00	4 80
ATOM	2282	₹B	PHE	284	12.785	30.323	-1.566	1.00	5 14
ATOM	2283	CG	PHE	284	14.184	29.960	-1 983	1 00	4.79
ATOM	2284	CD1	PHF	284	15 089	29.473	-1 057	1 00	5.39
ATOM	2285	CD2	PHE	284	14 591	30.026	-3.286	1 00	5.88
ATOM	2286	CE1	PHE	284	16.341	29.032	-1 451	1 00	5.76
ATOM	2287	CE2	PHE	284	15.828	29 633	-3 714 -2.787	1.00	5.70
ATOM ATOM	2288 2289	CZ C	PHE PHE	284 284	16.714 13 119	29 109 32 795	-1 263	1.00	5.57 4.78
ATOM	2290	5	PHE	284	11 566	33 190	-2.308	1.00	5.98
ATOM	2291	N	PHE	285	14.114	33 448	-0 659	1.00	5.01
ATOM	2292	CA	PHE	285	14 656	34.687	-1 215	1.00	5.10
ATOM	2293	CB	PHE	285	15 058	35.637	-0 062	1 00	6.13
ATOM	2294	CG	PHE	285	13.858	36.096	0 747	1 00	6 38
ATOM	2295	CD1	PHE	285	13.665	35.656	2 044	1 00	6.54
ATOM	2296	CD2	PHE	285	11.909	36 933	0 195	1.00	6 45
ATOM	2297	CE1	PHE	285	12 534	36 014	2.765	1.00	7 21
ATOM	2298	CE2 CZ	PHE PHE	285 285	11.781 11 610	37 303 36 853	0 891 2.177	1.00 1.00	7 45 7 71
ATOM ATOM	2299 2300	C	PHE	285	15 812	34.333	-2 108	1 00	5 08
ATOM	2301	O	PHE	285	16 815	33 800	-1 608	1 00	6 02
ATOM	2302	N	VAL	286	15 658	34 588	-3 399	1 00	5 58
ATOM	2303	CA	VAL	286	16.696	34.255	-4 364	1.00	5 5€
ATOM	2304	CB	VAL	286	16 104	34 05€	-5 766	1 00	5.78
ATOM	2305	CG1	VAL	286	17.189	33.783	-6 814	1 00	7.42
ATOM	2306	CG2	VAL	286	15.065	32 922	-5.710	1.00	7.19
ATOM	2307	C	VAL	286	17 756	35 372	-4.347	1.00	5 98
ATOM	2308	0	VAL	286	17.569	36 453	-4.895	1 00	6 92
ATOM ATOM	2309 2310	N CA	ASN ASN	287 287	18.839 20.008	35 082 35 922	-3 642 -3 466	1 00 1 00	5 82 6 12
ATOM	2311	CB	ASN	287	20.324	36.042	-1.971	1.00	6.40
ATOM	2312	CG	ASN	287	19.235	36.737	-1.183	1 00	6.67
ATOM	2313	ODl	ASN	287	18.623	37 682	-1 683	1.00	7.35
ATOM	2314	ND2	ASN	287	19.036	36.262	0 073	1 00	6.70
ATOM	2315	C	ASN	287	21.187	35.296	-4.216	1 00	5.72
MOTA	2316	0	ASN	287	21.271	34.072	-4.300	1.00	6.46
ATOM	2317	11	LEU	288	22.049	36 145	-4.781	1.00	6.71
ATOM	2318	CA	LEU	288	23.223	35 679	-5.499	1.00	6.46
ATOM	2319	CB	LEU	288	23.538	36 703	-6.595	1.00	7.57
ATOM	2320	CG	LEU LEU	288 288	12.371 22.819	36 977 37 998	-7.570 -8.621	1.00 1.00	8.20 10.08
ATOM	2321	CD1 CD2	LEU	288	21.880	35 687	-9.189	1.00	8.32
ATOM ATOM	2322 2323	C C	LEU	288	24.381	35 444	-4.525	1.00	7.33
ATOM	2324	o	LEU	288	24.140	35.277	-3.317	1.00	8.59
ATOM	2325	N	GLY	289	25.607	35.358	-5.037	1.00	7.93
ATOM	2326	CA	GLY	289	26.765	35 216	-4.155	1.00	7.85
ATOM	2327	C	GLY	289	27.242	36.571	-3.667	1.00	7.24
ATCM	2328	0	GLY	289	26.890	37.634	-4.186	1.00	8.44
ATOM	2329	N	TYR	290	28.075	36.559	-2.633	1.00	7.71
ATOM	2330	CA	TYR	290	23.503	37.789	-1.986	1.00	8.91
ATOM	2331	CB	TYR	290	29.407	37.453	-0.813	1.00	9.56
ATOM	2332	CG	TYR	290	29.638	38.614	0.135	1.00	9.12

- 111 -

MOTA	2333	CD1	TYR.	290	28.720	38.961	1.118	1.00	10.55
ATOM	2334	CE1	TYR	290	28.949	40.041	1 966	1.00	12 13
ATOM	2335	CD2	TYR	290	30.792	39.367	0 036	1.00	12 09
	2336	CE2	TYR	290	31.035	40.426	0.887	1 00	13.43
MOTA	2337	CZ	TYR.	290	30.129	40.766	1 861	1 00	13 85
ATOM			TYR	290	30.407	41.847	2.679	1 00	16 61
MOTA	2338	ОН				38 783	-2 903	1 00	8 98
MOTA	2339	C	TYR	290	29.196	39 980	-2 814	1 00	9 66
MOTA	2340	0	TYR	290	28.979				9 63
MOTA	2341	N	ASP	291	30.009	38.246	-3 816	1.00	
MOTA	2342	CA	ASP	291	30.738	39.081	-4.766	1.00	11.13
ATOM	2343	CB	ASP	291	32.143	38.545	-4.920	1 00	14 78
ATOM	2344	CG	ASP	291	33.015	38 830	-3.715	1 00	19 43
MOTA	2345	OD1	ASP	291	34.005	38.109	-3.515	1 00	30.38
ATOM	2346	OD2	ASP	291	32.776	39 787	-2 963	1 00	21.52
ATOM	2347	С	ASP	291	30.075	39 198	-6.123	1.00	10.76
ATOM	2348	0	ASP	291	30.676	39 770	-7 035	1.00	14.21
ATOM	2349	N	SER	292	28.867	38 636	-6.294	1.00	10 05
ATOM	2350	CA	SER	292	28.226	38.714	-7.606	1 00	9 39
		CB	SER	292	26.908	37.921	-7.562	1.00	9.60
ATOM	2351	OG	SER	292	27.117	36.538	-7.241	1.00	10.02
ATOM	2352			292	27.915	40.181	-7 922	1.00	9 65
ATOM	2353	C	SER			40.131	-7.170	1.00	10 11
MOTA	2354	0	SER	292	27.303		-9.123	1 00	11 44
ATOM	2355	N	VAL	293	28.284	40.587			12.30
ATOM	2356	CA	VAL	293	27.948	41.879	-9.675	1.00	
ATOM	2357	CB	VAL	293	29.177	42 809	-9 749	1 00	14 95
ATOM	2358	CG1	VAL	293	28.691	44.199	-10.166	1.00	20.38
ATOM	2359	CG2	VAL	293	29.947	42 902	-8 464	1 00	18.62
ATOM	2360	С	VAL	293	27.402	41.683	-11.091	1.00	13 15
ATOM	2361	0	VAL	293	27.976	41.020	-11.971	1 00	17.31
ATOM	2362	N	ILE	294	26,232	42.246	~11.309	1.00	13.36
ATOM	2363	CA	ILE	294	25.669	42.289	-12.650	1.00	16.26
ATOM	2364	CB	ILE	294	24.283	41 645	-12.648	1 00	18.21
ATOM	2365	CG2	ILE	294	23.540	41.879	-13.941	1 00	22.79
MOTA	2366	CG1	ILE	294	24.529	40.135	-12.350	1 00	19.50
ATOM	2367	CD1	ILE	294	23.255	39.371	-12.397	1 00	21.00
ATOM	2368	C	ILE	294	25.616	43.756	-13.059	1.00	14.95
ATOM	2369	0	ILE	294	25.193	44.619	-12.311	1.00	14.96
	2370	И	ASP	295	26.164	44.020	-14.235	1.00	15.39
ATOM	2370	CA	ASP	295	26.203	45.398	-14.709	1.00	16.58
ATOM		CB	ASP	295	27.214	45.501	-15.857	1.00	23.82
ATOM	2372	CG	ASP	295	28.612	45.188	-15.298	1.00	30.17
ATOM	2373		ASP	295	29.304	44.457	-16.044	1.00	42.83
MOTA	2374	OD1	ASP	295	29.000	45.638	-14.184	1.00	32.91
ATOM	2375	OD2		295	24.803	45.841	-15.109	1 00	13.64
MOTA	2376	C	ASP			45.199	-15.856	1 00	14,07
MOTA	2377	0	ASP	295	24.072	46.969	-14.533	1 00	12.78
MOTA	2378	N	PRO	296	24.390	47.684	-13 426	1 00	14.44
MOTA	2379	CD	PRO	296	25.049		-14 847	1 00	12.67
MOTA	2380	CA	PRO	296	23.029	47.467			
MOTA	2381	CB	PRO	296	22.877	48.659	-13.923	1.00	14.23
MOTA	2382	CG	PRO	296	23.840	48.351	-12 818	1.00	16.25
ATOM	2383	C	PRO	296	22.825	47.803	-16 319	1 00	12.63
ATOM	2384	0	PRO	296	23.750	48.221	-17.032	1.00	14.48
ATOM	2385	N	PHE	297	21.602	47.615	-16.800	1.00	11.48
MOTA	2386	CA	PHE	297	21.260	47.872	-18.195	1.00	11.96
ATOM	2387	CB	PHE	297	21.388	46 632	-19.046	1.00	12.04
ATOM	2388	CG	PHE	297	20.543	45.425	-18 690	1.00	12.30
ATOM	2389	CD1	PHE	297	19.390	45 126	-19 386	1.00	15.33
ATOM	2390	CD2	PHE	297	20.900	44.597	-17 664	1.00	12.58
ATOM	2391	CE1	PHE	297	18.648	44 005	-19.091	1.00	17.14
ATOM	2392	CE2	PHE	297	20.121	43.510	-17 311	1.00	14.52
	2392	CZ	PHE	297	18.969	43 235	-18.003	1.00	16.56
ATOM			PHE	297	19.837	48.421	-18.246	1.00	13.07
ATOM	2394	С	PHE	297	19.837	48 472	-17.219	1.00	14.15
MOTA	2395	0			19.162	48 809	-19.429	1.00	16.06
ATOM	2396	N	ASP	298		49 272	-19.601	1.00	15.45
MOTA	2397	CA	ASP	298	18.024		-19.547	1.00	17.44
MOTA	2398	CB	ASP	298	18.023	50 788		1.00	17.86
ATOM	2399	CG	ASP	298	16.619	51 374	-19.488		
ATOM	2400	OD1	ASP	298	15.634	50 717	-19.809	1.00	17.50
ATOM	2401	002	ASP	298	16.580	52.580	-19.143	1.00	20.86
MOTA	2402	C	ASP	298	17.436	48.753	-20.900	1.00	16.52
MOTA	2403	0	ASP	298	17.736	49.281	-21.973	1.00	17.05
MOTA	2404	N	PRO	299	16.541	47.776	-20.829	1.00	16.19
ATOM	2405	CD	PRO	299	16.199	47.050	-19.589	1.00	17.38

					•				
ATOM	2406	CA	PRO	299	15.887	47.212	-22.014	1.00	16.63
ATOM	2407	CB	PRO	299	15.397	45.853	-21 561	1.00	19.69
ATCM	2408	ÇG	PRO	299	15.67€	45.745	-20 112	1.00	21.06
ATCM	2409	С	PR D	299	14.854	48.081	-12 726	1.00	17.45
ATCM	2410	С	PR _' O	299	14.213	47.662	-13 730	1.00	18.54
ATOM	2411	Ŋ	AR 3	300	14.703	49.327	-22 232	1.00	16.34
ATOM	2412	ÇA	AR-3	300	13 857	50.321	-12.881	1.00	18.12
ATOM	2413	CB	ARG	300	13 086	51.146	-21 833	1.00	19.33
ATCM	2414	CG	ARG	300	11 959	50.301	-11 242	1.00	21 93
ATCM	2415	CD	ARG	300	11.237	50.861	-20.020 -19.046	1.00	25 26
ATOM	2416 2417	NE CZ	AR 3 AR 3	300 300	12 231 12 419	51.198 51.701	-17 857	1 00 1 00	30 85 19.50
ATOM ATOM	2418	NHl	AR:3	300	11.422	52.069	-17.096	1 00	32.95
ATOM	2419	NH2	ARG	300	13 671	51.781	-17.407	1 00	30 69
ATCM	2420	C	ARE	300	14 691	51 279	-23.726	1 00	17 96
ATOM	2421	Ō	ARG	300	14 138	52 081	-24.462	1 00	17 01
ATOM	2422	ĸ	GLU	301	15 997	51.254	-23 552	1 00	17 71
ATOM	2423	CA	GLU	301	16.913	52.185	-24.206	1 00	19.38
ATOM	2424	C	GLU	301	17.619	51.524	-25.392	1 00	18 52
ATOM	2425	C)	GLU	301	18.127	50 400	-25.261	1 00	17 52
ATOM	2426	CB	GLU	301	17.949	52 595	-23.157	1 00	23 66
ATOM	2427	CG	GLU	301	17.521	53.757	-22.322	1.00	27 35
ATOM	2428	CD	GLU	301	16 969	54.959	-23 059	1.00	32 53
MOTA	2429	CE1	GLU	301	17 705	55.499	-23 901	1.00	38 75
ATOM	2430	CE2	GLU	301	15.841	55.411 52 160	-22.764	1 00	38 29
ATOM	2431 2432	N CD	PRO PRO	302 302	17.667 17.042	53.464	-26.553 -26.839	1 00 1.00	18 63 21 36
ATOM ATOM	2432	CA	PRO	302	18.277	51 571	-27.738	1.00	20 96
ATOM	2434	CB	PRO	302	18.222	52 693	-28 776	1.00	22.61
ATOM	2435	CG	PRO	302	17 001	53 446	-28.341	1 00	22.90
ATOM	2436	C	PRO	302	19.683	51.057	-27.579	1.00	21 62
ATOM	2437	O	PRO	302	19.874	49.926	-28 009	1 00	24.93
ATOM	2438	N	ASN	303	20 520	51.712	-26.771	1 00	11 61
MOTA	2439	CA	ASN	303	11 840	51 125	-26.582	1 00	22 90
MOTA	2440	CB	ASN	303	22 905	52 194	-26 448	1.00	26.88
MOTA	2441	CG	ASN	303	22 642	53 204	-25 353	1 00	27.57
ATOM	2442	OD1	ASN	303	21 822	52.996	-24.467	1 00	23.80
ATOM	2443	ND2	ASN ASN	303 303	13 353 21 931	54 329 50.221	-25.453 -25.360	1 00	29.21 20.67
ATOM ATOM	2444 2445	C O	ASN	303	23 039	49 773	-25 049	1 00	23 78
ATOM	2445	И	GLY	304	20 847	49 989	-24 661	1 00	17 93
ATOM	2447	CA	GLY	304	20.793	49 190	-23 443	1.00	18.03
ATOM	2448	C	GLY	304	21 488	49 856	-22.276	1 00	17 52
ATOM	2449	0	GLY	304	21 576	49.239	-21.215	1 00	20 50
MOTA	2450	N	LYS	305	22 009	51 071	-22.342	1 00	18 09
ATOM	2451	CA	LYS	305	22 768	51 590	-21 208	1 00	20 79
ATOM	2452	С	LYS	305	21 921	52.252	-20 147	1.00	20 39
MOTA	2453	C)	LYS	305	20 850	52.777	-20 392	1.00	21.26
ATOM	2454	CB	LYS	305	23 884	52 524	-21 675	1.00	24.72
ATOM	2455	CG	LYS LYS	305 305	25.002 26.032	51 789 52 816	-22.421 -22.869	1 00 1 00	30.61 36 33
MOTA MOTA	2456 2457	CD CD	LYS	305	26.246	52.908	-24 360	1 00	39.54
ATOM	2458	NZ	LYS	305	27.649	52.574	-24.760	1.00	51 21
ATOM	2459	N	SER	306	22.461	52 202	-18.921	1.00	18 96
ATOM	2460	CA	SER	306	21.758	52 837	-17.816	1.00	19-30
ATOM	2461	CB	SER	306	21.210	51.732	-16.911	1.00	23.77
ATOM	2462	OG	SER	306	21.758	51.769	-15.640	1.00	25.38
MOTA	2463	C	SER	306	22.711	53.732	-17.050	1.00	16.95
ATOM	2464	0	SER	306	23.919	53.528	-16.996	1.00	20.29
ATOM	2465	11	ASP	307	22.159	54.728	-16.365	1.00	18.07
MOTA	2466	CA	ASP	307	22.902	55.647	-15.527	1.00	17.75
ATCM	2467	CB	ASP	307	22.343	57.066	-15.646	1.00	19.69
ATOM	2468	CG	ASP ASP	307 307	22.554 23.544	57.644 57.289	-17.030 -17.717	1.00	21.31 25.76
MOTA	2469	OD1 OD2	ASP	307	23.544	58.413	-17.492	1.00	25.76
ATOM ATOM	2470 2471	C C	ASP	307	23.003	55.194	-14.083	1.00	17.12
ATOM	2472	0	ASP	307	23.267	55.998	-13.150	1.00	15.97
ATOM	2473	и	ARG	308	22.897	53.886	-13.877	1.00	18.84
ATOM	2474	CA	ARG	308	23.109	53.313	-12.542	1.00	17.51
ATOM	2475	CB	ARG	308	22.067	52.271	-12.242	1.00	16.86
ATOM	2476	CG	AR.G	308	20.688	52.745	-11.848	1.00	15.69
ATOM	2477	CD	ARG	308	19.627	51.694	-11.982	1.00	13.04
MOTA	2478	NE	ARG	308	18.312	52.224	-11.687	1.00	17.41

ATOM	2479	CZ	ARG	308	17.733	52.219	-10.497	1.00	15.39
ATOM	2480	NH1	ARG	308	18.288	51.740	-9.404	1.00	14.58
ATOM	2481	NH2	ARG	308	16.517	52.713	-10.426	1 00	19 03
		C	ARG	308	24.511	52 680	-12.443	1 00	18 59
ATOM	2482				25.055	52 218	-13,440	1.00	25 55
ATOM	2483	0	ARG	308				1.00	18.16
MOTA	2484	N	GLU	309	25.070	52 659	-11.241		
ATOM	2485	CA	GLU	309	26.350	52.054	-10.946	1 00	19.38
ATOM	2485	CB	GLU	309	27 058	52.935	-9.907	1.00	21.98
ATOM	2487	CG	GLU	309	27.442	54.299	-10 501	1 00	25 52
			GLU	309	28.319	54 244	-11.731	1 00	30.05
MOTA	2488	CD				53 401	-11 842	1 00	36.16
ATOM	2489	OE1	GLU	309	29 244				
ATOM	2490	OE2	GLU	309	28 114	55 058	-12.663	1 00	37.66
ATOM	2491	С	GLU	309	26 233	50.607	-10.484	1.00	15 87
ATOM	2492	0	GLU	309	25.287	50 180	-9.826	1.00	14 89
	2493	N	PRO	310	27.164	49 735	-10.842	1.00	14 73
ATOM			PRO	310	28.275	50 012	-11 799	1.00	16.91
MOTA	2494	CD				48.348	-10.386	1.00	15.04
MOTA	2495	CA	PRO	310	27.152				
MOTA	2496	CB	PRO	310	28.419	47 733	-11.059	1.00	17.03
ATOM	2497	CG	PRO	310	28.700	48 625	-12.220	1.00	19.09
ATOM	2498	С	PRO	310	27.219	48 266	-8.874	1.00	13.88
ATOM	2499	0	PRO	310	27.841	49.068	-8.164	1.00	15.60
			LEU	311	26.474	47.318	-8.360	1.00	12.14
MOTA	2500	N				47 085	-6 922	1.00	11.25
ATOM	2501	CA	LEU	311	26.338			1.00	13.56
ATOM	2502	CB	LEU	311	24.878	47.460	-6.615		
ATOM	2503	CG	LEU	311	24.457	47.333	-5.180	1.00	13.90
ATOM	2504	CD1	LEU	311	25.339	48.120	-4.233	1.00	20.42
ATOM	2505	CD2	LEU	311	22.986	47.700	-5 047	1.00	17.32
		C	LEU	311	26.572	45.604	-6.622	1.00	10.64
MOTA	2506					44.759	-7.247	1,00	11.74
MOTA	2507	0	LEU	311	25.915			1.00	10.37
MOTA	2508	N	SER	312	27.494	45.257	-5 728		
ATOM	2509	CA	SER	312	27.725	43.854	-5.407	1.00	11.32
ATOM	2510	CB	SER	312	29.040	43.653	-4.645	1.00	13.83
ATOM	2511	OG	SER	312	28.821	43,933	-3.284	1.00	20.95
		C	SER	312	26.576	43.311	-4.593	1.00	9.82
MOTA	2512					44.059	-3.793	1.00	11.18
ATOM	2513	0	SER	312	26.000		-4.815	1.00	9.06
ATOM	2514	N	TYR	313	26.260	42.025			
ATOM	2515	CA	TYR	313	25.095	41.471	-4.152	1.00	8.56
ATOM	2516	CB	TYR	313	24.722	40.082	-4.734	1.00	9.03
ATOM	2517	CG	TYR	313	23.265	39.812	-4.375	1.00	7.11
ATOM	2518	CD1	TYR	313	22 290	40.192	-5.276	1.00	8.14
			TYR	313	20.951	40.004	-5.038	1.00	8.04
MOTA	2519	CE1				39.273	-3.179	1.00	6.33
ATOM	2520	CD2	TYR	313	22.871		-2.889	1.00	6 78
ATOM	2521	CE2	TYR	313	21.525	39.151			
ATOM	2522	CZ	TYR	313	20.558	39.481	-3.810	1.00	6 87
ATOM	2523	OH	TYR	313	19.227	39.413	-3.570	1.00	7.92
MOTA	2524	С	TYR	313	25.247	41.465	-2.642	1.00	8 8 8
	2525	ō	TYR	313	24.295	41.721	-1.876	1.00	8 66
ATOM			GLY	314	26.436	41.154	-2.137	1.00	9.27
ATOM	2526	N				41.130	-0.699	1.00	10.93
ATOM	2527	CA	GLY	314	26.636			1.00	11.24
ATOM	2528	C	GLY	314	26.438	42.475	-C.028		
MOTA	2529	0	GLY	314	25.837	42.532	1.044	1.00	11.92
ATOM	2530	N	ASP	315	26.927	43.543	-0.658	1.00	12.52
ATOM	2531	CA	ASP	315	26.682	44.876	-0.145	1.00	13.51
ATOM	2532	c.	ASP	315	25.178	45.169	-0.126	1.00	11.36
				315	24.643	45.674	0.871	1.00	12.03
ATOM	2533	0	ASP		27 367	45.918	-1.023	1.00	18.60
MOTA	2534	CB	ASP	315			-0.671	1.00	23.51
ATOM	2535	CG	ASP	315	28.845	46.015			
ATOM	2536	ODl	ASP	315	29 308	45.275	0.214	1 00	34.09
ATOM	2537	OD2	ASP	315	29 448	46.876	-1.358	1 00	38.29
ATOM	2538	N	TYR	316	24 538	44 902	-1.265	1 00	10.83
		CA	TYR	316	23 095	45 065	-1.383	1.00	9.46
ATOM	2539			316	22 621	44 578	-2 740	1 00	9.26
MOTA	2540	CB	TYR			44 397	-2.840	1.00	8.60
MOTA	2541	CG	TYR	316	21.130			1.00	8.34
MOTA	2542	CD1	TYR	316	20.273	45 477	-3 037		
ATOM	2543	CE1	TYR	316	18.913	45 293	-3 143	1.00	7 74
ATOM	2544	CD2	TYR	316	20.585	43 119	-2.768	1.00	7 91
ATOM	2545	CE2	TYR	316	19.210	42 953	-2 847	1.00	7 88
		CZ	TYR	316	18.381	44.028	-3 021	1.00	7 84
ATOM	2546				17.021	43.799	-3 101	1.00	8.21
ATOM	2547	ОН	TYR	316			-0 260	1.00	8 23
ATOM	2548	С	TYR	316	22.328	44,386			
ATOM	2549	0	TYR	316	21.435	44.940	9.393	1.00	8.68
ATOM	2550	N	LEU	317	22.637	43.104	-0 045	1.00	8.47
ATOM	2551	CA	LEU	317	21.902	42.282	0.915	1.00	8.58
ATOM									

ATOM	2552	CB	LEU	317	22.285	40.787	0.743	1.00	8.79
ATOM	2553	CG	LEU	317	21.561	39.779	1.629	1 00	8.20
ATOM	2554	CD1	LEU	317	20.073	39.788	1.272	1 00	9.81
	2555	CD2	LEU	317	22.141	38.375	2 492	1 00	10.08
ATOM						42.735	2 352	1 00	
ATOM	1556	С	LEU	317	22.107				8.90
ATOM	2557	0	LEU	317	21.144	41.841	3 087	1 00	9.53
ATOM	2558	N	GLN	318	13.362	41.918	2 770	1 00	10.61
ATOM	2559	CA	GLN	318	13.615	43.262	4 185	1 00	12.66
ATOM	2560	CB	GLN	318	25 124	43.337	4 464	1.00	14.04
ATOM	2561	CG	GLN	318	25 445	43.620	5.905	1 00	19.74
ATOM	2562	CD	GLN	318	26 927	43.890	6.154	1 00	23.96
ATOM	2563	OE1	GLN	318	27 714	44.211	5 249	1 00	35.18
ATOM	2564	NE2	GLN	318	27.322	43.856	7 426	1.00	29 80
ATOM	2565	C	GLN	318	22 915	44.561	4 553	1 00	12 86
ATOM	2566	ō	GLN	318	22.198	44.673	5.560	1.00	15 11
ATOM	2567	N	ASN	319	23 013	45.524	3.641	1 00	12 55
ATOM	2568	CA	ASN	319	22 346	46.806	3.917	1 00	14 03
		CB	ASN	319	23.012	47.860	3.043	1.00	20.38
ATOM	2569				24.469	48.100	3.472	1 00	27 04
ATOM	2570	CG	ASH	319					
MOTA	2571	OD1	ASN	319	24.837	48 041	4.669	1 00	36.52
ATOM	2572	ND2	ASH	319	25.310	48 297	2 465	1.00	38 86
ATOM	2573	С	ASN	319	20.844	46.703	3 764	1 00	11.80
ATOM	2574	0	ASN	319	20 143	47.296	4 593	1.00	11.96
MOTA	2575	N	GLY	320	20 312	45.946	2 806	1 00	9 58
ATOM	2576	CA	GL?	320	18 902	45 829	2.624	1 00	9 83
MOTA	2577	С	GLY	320	18 179	45.194	3 797	1.00	9 3.9
MOTA	2578	0	GLY	320	17.091	45 598	4 167	1.00	10.40
ATOM	2579	N	LEU	321	18.797	44 151	4 363	1 00	9 14
ATOM	2580	CA	LEU	321	18.153	43 464	5 485	1 00	9.96
ATOM	2581	СВ	LEU	321	18 857	42 133	5 7 68	1.00	10 64
ATOM	2582	CG	LE:J	321	18 723	41.078	4 638	1.00	10.47
ATOM	2583	CD1	LEU	321	19 399	39 826	5 109	1.00	15.39
ATOM	2584	CD2	LEU	321	17 262	40.824	4.233	1.00	12.12
ATOM	2585	C	LEU	321	18.108	44.339	6.710	1.00	10.07
	2586	0	LEU	321	17 089	44.340	7.437	1 00	10.21
ATOM	2587	N	VAL	322	19,176	45 095	6.956	1 00	10.17
MOTA		CA	VAL	322	19.146	46 035	8 069	1 00	11.92
ATOM	2588		VAL	322	20.532	46 687	8 252	1.00	14.76
MOTA	2589	CB				47.770	9 346	1 00	20.10
ATOM	2590	CG1	VAL	322	20 397	45 651	8 753	1 00	
MOTA	2591	CG2	VAL	322	21 537				21.00
ATOM	2592	C	VAL	322	18 095	47 100	7 854	1 00	10.68
ATOM	2593	0	VAL	322	17 346	47 521	8 741	1 00	12.21
MOTA	2594	N	SER	323	18 014	47.617	6 634	1.00	11.81
ATOM	2595	CA	SER	323	17.069	48.683	6 345	1 00	11.28
ATOM	2596	CB	SER	323	17 295	49.233	4 922	1 00	14 31
ATOM	2597	OG	SER	323	18 592	49.829	4 835	1.00	19 95
ATOM	2598	С	SER	323	15 625	48 220	6.522	1.00	11.18
ATOM	2599	0	SER	323	14.776	48 982	6 976	1.00	12.09
ATOM	2600	N	LEU	324	15 345	46 979	6 128	1 00	11 02
ATOM	2601	CA	LEU	324	13.98€	46.458	6.212	1.00	9 92
MOTA	2602	CB	LEU	324	13 893	45.156	5 430	1.00	9 96
ATOM	2603	CG	LEU	324	12.522	44.506	5 348	1 00	9.98
ATOM	2604	CD1	LEU	324	11 448	45.393	4 776	1 00	11 33
ATOM	2605	CD2	LEU	324	12 658	43.214	4 571	1 00	11 39
ATOM	2606	С	LEU	324	13 57€	46 326	7.679	1.00	10.28
ATOM	2607	0	LEU	324	12.422	46.540	8.070	1.00	10 32
ATOM	2608	N	ILE	325	14 532	45.886	8 497	1 00	10 22
ATOM	2609	CA	ILE	325	14 292	45 805	9 939	1.00	11.04
ATOM	2610	CB	ILE	325	15.451	45 120	10 669	1.00	10.87
				325	15 398	45 298	12 164	1.00	13.93
ATOM	2611	CG2 CG1	ILE	325	15 .454	43 605	10 363	1.00	12.46
ATOM	2612						10 725	1.00	15.56
ATOM	2613	CD1	ILE	325	16 785	42 944	10 522	1.00	10.74
ATOM	2614	C	ILE	325	14 040	47.192			
MOTA	2615	0	ILE	325	13.122	47.404	11 341	1.00	11.60
ATOM	2616	14	ASN	326	14.819	48.181	10 151	1.00	10.99
ATOM	2617	CA	ASN	326	14.602	49.531	10 659	1.00	12.82
ATOM	2618	CB	ASN	326	15.732	50.459	10 168	1.00	14.29
MOTA	2619	CG	ASN	326	17.014	50.101	10.904	1.00	17.21
ATOM	2620	OD1	ASN	326	1€.959	49.382	11.917	1.00	23.79
MOTA	2621	ND2	ASN	326	18.130	50.520	10.318	1.00	22.06
ATOM	2622	C	ASN	326	13.265	50.066	10.203	1.00	12.41
ATOM	2623	0	ASN	326	12.620	50.749	10.996	1.00	14.07
ATOM	2624	N	LYS	327	12.840	49.790	8.973	1.00	11.71

- 115 -

					• • •				
3 mov	2625	CA	LYS	327	11.586	50.307	8.468	1.00	12.41
ATOM ATOM	2626	CB	LYS	327	11.543	50.205	6 918	1,00	13.45
ATOM	2627	CG	LYS	327	10.362	50.865	6.259	1.00	18.26
ATOM	2628	CD	LYS	327	9 847	50.144	5.014	1.00	21 08
ATOM	2629	CE	LYS	327	8 605	50.768	4.423	1.00	21.51
ATOM	2630	NZ	LYS	327	7.335	50.650	5.211	1.00	17.68
ATOM	2631	C	LYS	327	10.349	49.653	9 067	1.00	11.15
ATOM	2632	0	LYS	327	9 389	50.327	9.506	1.00	12.52
ATOM	2633	N	ASN	328	10.358	48.303	8.990	1.00	10 58
ATOM	2634	CA	ASN	328	9.160	47.510	9.286	1.00	11.33
ATOM	2635	CB	ASN	328	8.762	46.614	8.084	1.00	14 02
ATOM	2636	CG	ASN	328	8.096	47.438	7.002	1.00	14.11
ATOM	2637	OD1	ASN	328	7 997	48.681	7.112	1.00	16.02
ATOM	2638	ND2	ASN	328	7.525	46.796	5.995	1.00	11 03
ATOM	2639	C	ASN	328	9.224	46 671	10.551	1.00	11.26
ATOM	2640	0	ASN	328	8.226	45.994	10.873	1.00	13.57
ATOM	2641	N	GLY	329	10.341	46.732	11.270	1 00	12.34
MOTA	2642	CA	GLY	329	10.445	46.076	12.554	1.00	12.29
MOTA	2643	С	GLY	329	11.146	44.739	12.523	1.00	11.30
ATOM	2644	0	GLY	329	11.221	44.056	11.517 13.668	1.00	11.94
MOTA	2645	N	GLN	330	11 716	44.359		1 00	11.96 10.55
ATOM	2646	CA	GLN	330	12 364	43.036	13.787 15.072	1 00 1.00	11.32
MOTA	2647	CB	GLN	330	13.193	42.950	15.352	1.00	11.79
ATOM	2648	CG	GLN	330	13.686	41.560 41.131	14.371	1 00	10.04
ATOM	2649	CD	GLN	330	14.755 15 804	41.744	14.168	1.00	13.20
ATOM	2650	OE1	GLN	330 330	14.469	40.024	13.733	1.00	11.43
MOTA	2651	NE2	GLN GLN	330	11.291	41.961	13.747	1.00	10 94
ATOM	2652	C O	GLN	330	10.401	41.952	14.592	1 00	12.29
ATOM	2653	N	THR	331	11.377	41.063	12.784	1.00	9.93
ATOM	2654 2655	CA	THR	331	10.438	39.956	12.692	1 00	10.56
ATOM ATOM	2655	CB	THR	331	10.367	39.375	11.277	1.00	13.12
ATOM	2657	OG1	THR	331	11.627	38.829	10.872	1.00	14 79
ATOM	2658	CG2	THR	331	9.945	40.455	10.274	1 00	18.32
ATOM	2659	C	THR	331	10.801	38.843	13.669	1.00	9.68
ATOM	2660	ō	THR	331	9.996	37.874	13.694	1 00	10 45
ATOM	2661	OT	THR	331	11.803	38.971	14.419	1.00	9 25
ATOM	2662	OW	WAT	333	9.679	28.766	-0.715	1 00	6.49
MOTA	2663	OW	WAT	334	19.171	27.783	10.936	1.00	7.24
ATOM	2664	OW	TAW	335	9.260	43.735	-4.195	1 00	8.08
ATOM	2665	OW	WAT	336	22.532	31.208	2.029	1.00	6 26
MOTA	2666	OW	WAT	337	28.595	34.041 -	1.151	1 00	7 97
MOTA	2667	OW	TAW	338	24.607	26.075	6 861	1.00	8 47
MOTA	2668	OW	WAT	339	-2.784	36,461	-0.561	1.00	8.55
ATOM	2669	OM	TAW	340	22.156	23.031	7 059	1.00	7 69
MOTA	2670	OW	WAT	341	14.777	39.110	1 828	1 00	8 58
MOTA	2671	OM	WAT	342	12.607	41.059	1 589	1 00	9 25 9 09
MOTA	2672	OM	WAT	343	-1.547	35.753	12.742	1.00	8 72
ATOM	2673	OW	WAT	344	15.859	16.926	12 366 2 078	1.00	8 11
ATOM	2674	OW	TAW	345	17.270	37.486	-24 602	1.00	10.08
ATOM	2675	OM	WAT	346	3.657	33.965 21.232	-3 227	1.00	9.87
MOTA	2676	OM	WAT	347	25 532 -2.697	35.006	10.127	1.00	9.24
ATOM	2677	OM	WAT	348 349	-1 983	38.149	8 911	1.00	9.83
ATOM	2678	OM	WAT	349	2.708	25.709	10 377	1.00	10.06
ATOM	2679	OW	WAT	351	1.466	29.802	-2 581	1.00	10.39
ATOM	2680	OW	TAW TAW	352	1.694	36.486	5 140	1.00	10.21
ATOM	2681	OW	WAT	353	14.787	40.054	-27 891	1.00	11.32
ATOM	2682	OW	WAT	354	7.944	41.566	-10.080	1.00	11.49
ATOM	2683	OW	WAT	355	10.898	19.364	-0 933	1.00	11.45
ATOM ATOM	2684	OW	TAW	356	11.246	44.075	8.852	1.00	16.27
	2685 2686	OW	WAT	357	19.835	30.921	-23 876	1.00	12.14
ATOM	2687	OW.	TAW	358	27.717	21.786	-4.790	1.00	10.92
ATOM ATOM	2688	OW	TAW	359	25.375	32.089	-5.869	1.00	11.81
ATOM	2689	OW	TAW	360	7.719	32.045	19 976	1.00	10.99
MOTA	2690	OW	WAT	361	12.903	41.900	8.252	1.00	10.19
ATOM	2691	OW	TAW	362	15.465	41.811	7.221	1.00	10.84
ATOM	2692	OW	WAT	363	12.347	17.857	1.029	1.00	12.37
ATOM	2693	CM	WAT	364	16.302	36.649	-24.739	1.00	10.86
ATOM	2694	OW	WAT	365	10.865	30.651	24.027	1.00	12.28
ATOM	2695	OW	WAT	36 6	19.416	33.418	-15.771	1.00	10.14
ATOM	2696	OW	WAT	367	0.655	27.761	10.957	1.00	11.04
ATOM	2697	OW	WAT	368	6.259	36.234	-3.794	1.00	11.14

					- 11	6 -			
MCTA	2698	ow	WAT	369	16.675	14.973	9.695	1 00	11.98
ATOM	2699	CM.	WAT	370	7.905	39.248	-11.909	1 00	10.25
ATOM	2700	CW	WAT	371	18.361	15.936	2.863	1 00	11.46
ATOM	2701	CW	WAT	372	21.892	19.503	1.831	1 00	13.37
ATOM	2702	C·W	WAT	373	7.417	33.809	23.230	1.00	11.13
MOTA	2703	OW	WAT	374	9.301	18.255	-4.039	1.00	13.47
ATOM	2704	C.M	WAT	375	5.788	38.293	-2.097	1 00	12.75
ATOM	2705	CM	WAT	376	21 318	28.084	18.230	1.00	13.18
ATOM	2706	CM	WAT	377	5 087	41.215	-22.821	1.00	13 37
ATOM	2707	CW CW	WAT WAT	378 379	24.969 11.227	23.273 49 320	6.991 -8.022	1.00	13 42
ATOM ATOM	2708 2709	CM CM	WAT	380	-7 291	29.246	11.626	1 00	13 42 13 60
ATOM	2710	OM	WAT	381	5 640	46.235	9.550	1.00	13 85
ATOM	2711	OW	WAT	382	8 978	35.948	12.107	1 00	11 77
ATOM	2712	OW	WAT	383	6.906	29 370	22.628	1.00	15 24
ATOM	2713	OW	WAT	384	9.627	19.425	20.724	1 00	14 51
ATOM	2714	OW	WAT	385	16.459	39.497	8.314	1 00	14.01
MOTA	2715	OW	TAW	386	24.545	45.847	-10.066	1.00	13.62
ATOM	271€	OM	WAT	387	-0.150	40 151	13.142	1 00	15 04
MOTA	2717	OW	WAT	388	17.528	29 411	-23 847	1 00	12.67
ATOM	2718	OW	TAW	389	11.478	50 549	-25.585	1 00	14 89
ATOM	2719	OW	TAW	390	13 559	40. 71 7 18 854	10.705 -0.320	1.00	15 14
ATOM	2720	OW	WAT WAT	391 392	8 290 18 743	43 137	-23 378	1.00 1.00	13.16 13.3€
ATOM ATOM	2721 2722	OW	WAT	393	-0 660	10.811	-4.126	1 00	14.45
ATOM	2723	OW	WAT	394	11 073	48.625	1.433	1 00	13.51
ATOM	2724	OW.	WAT	395	21.541	28.028	-11.200	1 00	16 03
ATOM	2725	OW	WAT	396	-9 012	33 285	2 180	1.00	13 36
ATOM	2726	OW	WAT	397	-5 015	37 842	-7 595	1 00	14.72
ATOM	2727	OW	WAT	398	7 685	39 106	-0 476	1 00	13 04
ATOM	2728	OW	WAT	399	-2 609	52.730	2 926	1 00	15.18
MOTA	2729	OW	WAT	400	31 148	33 765	-2 024	1.00	15.90
ATOM	2730	OM	WAT	401	28 412	25.681	-6 948	1.00	14.37
ATOM	2731	OM	WAT	402	-7 837	33 960	-2 251	1.00	16 42
ATOM	2732	OW	WAT WAT	403 404	27.733 20.345	30.817 47 455	11 858 -0.111	1.00	16.15 15.84
ATOM ATOM	2733 2734	OW	WAT	405	7 740	46.885	-13.836	1.00	15.47
ATOM	2735	OW	WAT	406	-6.948	43.028	7 219	1.00	13.61
ATOM	2736	OM	WAT	407	-1.255	31.160	-1 492	1 00	15.03
ATOM	2737	OW	TAW	408	-7.351	47.298	1 758	1 00	16 16
ATOM	2738	OW	TAW	409	0 600	50.511	3.412	1 00	16 57
ATOM	2739	OW	WAT	410	19 491	38 870	14.832	1 00	13 70
MOTA	2740	OM	WAT	411	19 032	29 394	25 238	1 00	13 82
ATOM	2741	OW	WAT	412	1 566	19.249	-3 495	1.00	12.61
MOTA	2742	OW	TAW	413	1.396	29.458	-19 005	1 00	17 83
ATOM	2743	OW	WAT	414	12 993	13.760 25.740	6 156 2 588	1.00	16 00
ATOM	2744 2745	OW	WAT WAT	415 416	-3.489 20 400	16 258	4 749	1 00 1.00	14 57 15 12
ATOM ATOM	2745	OM	WAT	417	8.420	43 590	-11 863	1 00	15 17
ATOM	2747	OW	WAT	418	23 155	21 243	-4 704	1.00	15 01
ATOM	2748	OW	WAT	419	13.407	49.512	-6.246	1 00	18.08
ATOM	2749	WO	WAT	420	2 293	43.872	-19 188	1 00	15.75
ATOM	2750	OW	WAT	421	16 464	23.984	-12.729	1 00	16 55
MOTA	2751	OM	TAW	422	18 051	18 401	13 304	1 00	16 18
MOTA	2752	OM	WAT	423	2.749	32 610	17 294	1 00	16 03
ATOM	2753	OW	WAT	424	3.167	43.048	-21 870	1 00	16 60
MOTA	2754	OW	TAW	425	1.729	36 092	20.156	1 00	16 00
ATOM	2755	OW	WAT	426	24.912	30 437 37.179	18 039 -17.778	1 00 1 00	18 10 16 68
ATOM	2756	OW WO	WAT WAT	427 428	1.661 8.377	48 751	-17.456	1 00	17 96
ATOM ATOM	2757 2758	OW	WAT	429	4.193	48 686	-6.577	1 00	16 18
MOTA	2759	OW	WAT	430	32.183	20 100	4.650	1.00	17 47
ATOM	2760	OW	WAT	431	10.701	20.889	-9.309	1 00	17 06
ATOM	2761	OW	WAT	432	1.230	36 624	-21.785	1 00	16 21
MOTA	2762	OW	WAT	433	23.224	53.219	-9.124	1 00	16 77
ATOM	2763	OW	WAT	434	7.454	14 204	-2.641	1 00	19 16
ATOM	2764	OM	WAT	435	-3.493	18.204	-1.008	1 00	16 26
MOTA	2765	OW	WAT	436	28.871	35.527	-9.186	1 00	16 44
ATOM	2766	OM	WAT	437	28.827	47.359	-4.440	1.00	20 15
ATOM	2767	OW	WAT	438	16.179	24.748	-15.541	1 00	18.41
ATOM	2768	OW	WAT	439	24.130	23.189	10.125	1.00	15.71
ATOM	2769	OW	WAT	440	9.413	18.353	13.315	1.00	22.18
MOTA	2770	OM	WAT	441	8.848	18.233	10.527	1.00	19.65

ATOM	2771	OW	WAT	442	26.464	32.534	18.217	1.00	16.18
ATOM	2772	OW	WAT	443	-7.877	38.342	4.061	1.00	17.91
ATOM	2773	OW	TAW	444	12.963	34.080	10.130	1.00	14.21
ATOM	2774	OW	TAW	445	5.117	27.600	16.871	1.00	17.53
ATOM	2775	OW	WAT	446	-9.839	37 847	2.096	1.00	20.30
ATOM	2776	OM	WAT	447	-1.745	32 409	3.793	1.00	20.56
ATOM	2777	OM	TAW	448	8.416	36.915	9.538	1.00	19.37
ATOM	2778	OW	WAT	449	13.442	46.906 30 452	0.805 20.352	1.00 1.00	15.63 16.16
ATOM	2779	OW	WAT WAT	450 451	4.457 8.792	16 265	-0.627	1.00	17.14
ATOM	2780	OW	WAT	452	-0.356	37.156	21.516	1.00	17.26
ATOM ATOM	2781 2782	OW	WAT	453	11.477	23.152	-22.757	1.00	21.00
ATOM	2783	OW	WAT	454	21.490	29.901	24.676	1.00	18.12
ATOM	2784	OW	WAT	455	-9.438	38.109	10.367	1.00	20.23
ATOM	2785	OW	WAT	456	0.801	21 803	-6.497	1.00	16.76
ATOM	2786	OW	TAW	457	19.962	49 749	-14.695	1.00	19.53
ATOM	2787	OW	WAT	458	15.665	20 950	19.711	1.00	20.63
MOTA	2788	OM	WAT	459	22.253	42.588	7.507	1.00	18.83
MOTA	2789	OM	WAT	460	1.091	15.140	-0.991	1.00	17.62
MOTA	2790	OM	WAT	461	15.096	47.428	-1.171 19.798	1.00 1.00	18.28 19.30
MOTA	2791	OW	WAT	462	9,229	16.847 31 087	12.465	1.00	20.21
ATOM	2792	OW	WAT WAT	463 464	23.458 19.997	42.399	9.231	1.00	20.50
ATOM	2793	OW	WAT	465	-1.338	22.340	-1.994	1.00	18.86
ATOM	2794 2795	OW	WAT	466	3.252	20.298	-7.395	1.00	20.44
ATOM ATOM	2796	OW	WAT	467	13.042	53.167	-27.095	1.00	19.91
ATOM	2797	OW	WAT	468	-10.643	37.955	15.133	1.00	20.65
ATOM	2798	OW	WAT	469	13.185	21.680	-8.488	1.00	20.52
ATOM	2799	WO	WAT	470	10.293	15.611	9.484	1.00	17.30
ATOM	2800	OW	WAT	471	18.301	39.511	-27.728	1.00	15.98
ATOM	2801	OM	WAT	472	30.497	24.989	-0.891	1.00	18.92
ATOM	2802	OM	WAT	473	34.106	27.545	11.353	1.00	20.62
ATOM	2803	OW	WAT	474	-1.263	34.235	-1.003 8.033	1.00	21.04 22.42
ATOM	2804	OW	WAT	475	30.740	34.281 47.600	-24.851	1.00	19.76
ATOM	2805	WO	TAW TAW	476 477	17.888 19.023	45.815	-22.920	1.00	19.37
ATOM	2806	WO WO	WAT	478	5.376	27.996	-23.488	1.00	23.73
ATOM ATOM	2807 2808	OW	WAT	479	18.268	40.811	13.239	1.00	19.22
ATOM	2809	OW	WAT	480	-4.271	44.290	-11.498	1.00	18.91
ATOM	2810	OW	WAT	481	-10.443	35.240	1.254	1.00	19.73
ATOM	2811	OW	WAT	482	2.681	33.500	20.144	1.00	19.18
MOTA	2812	OW	WAT	483	19.770	15.947	12.144	1.00	20.32
ATOM	2813	OM	TAW	484	4.713	13.467	7.499	1.00	21.46
MOTA	2814	OM	TAW	485	-8.355	31.805	-0.398	1.00	23.32
ATOM	2815	OW	WAT	486	15.331	47.230	2.640 8.919	1.00 1.00	18.04 23.97
ATOM	2816	OW	WAT	487 488	25.206 2.787	36.975 39 754	14.409	1.00	18.16
ATOM	2817	ow wo	WAT WAT	489	2.364	46.924	-9.024	1.00	21.20
ATOM	2818 2819	OW	WAT	490	18.912	42.320	-26.268	1.00	19.59
ATOM ATOM	2820	OW	WAT	491	9.332	14 150	-7 989	1.00	22.28
ATOM	2821	OW	WAT	492	3.716	51.522	-5.917	1.00	20.14
ATOM	2822	OW	WAT	493	30.485	19.369	6.691	1.00	22.71
ATOM	2823	OW	WAT	494	-8.748	45.801	7.529	1.00	21.63
ATOM	2824	OW	TAW	495	11.868	16.205	-2.683	1.00	21.66
ATOM	2825	OM	WAT	496	13.346	35.997	8.497	1.00	19.24
ATOM	2826	OW	WAT	497	0.972	40.899	-13.028	1.00 1.00	21:95 28:32
MOTA	2827	OW	WAT	498	4.183	53. 53 5 39.016	-1.459 -10.546	1.00	20.11
MOTA	2828	OW	WAT WAT	499 500	30.346 16.129	24.513	-19.240	1.00	25.21
ATOM	2829	OW	WAT	501	10.923	41.632	17.779	1.00	28 12
MOTA MOTA	2830 2831	OW	WAT	502	18.809	24.865	-19.164	1.00	22 89
ATOM	2832	OM	WAT	503	16.648	14.113	0.751	1.00	19 20
ATOM	2833	OW	WAT	504	19.213	39.701	8.979	1.00	20 79
ATOM	2834	OW	WAT	505	24.711	56.540	-10.148	1.00	20.81
ATOM	2835	OW	WAT	506	22.101	29.548	-23 677	1.00	22 77
ATOM	2836	OW	WAT	507	21 631	41.072	20 961	1.00	24.26
ATOM	2837	OM	TAW	508	-3 925	32.996	-15 355	1.00	25 98
MOTA	2838	OM	WAT	509	-3 683	27.982	6 567	1.00	23 91
MOTA	2839	OW	TAW	510	22 548	22 934	15 189	1.00	24.78
ATOM	2840	OM	WAT	511	3 233	21 643	-9.764 2.328	1.00 1.00	21 05 24 54
ATOM	2841	OW.	WAT	512	33 443 24 602	23 225 43 728	-18.078	1.00	25 43
ATOM	2842	OM MO	TAW TAW	513 514	16.686	43 816	15.797	1.00	22 61
ATOM	2843	OM	MAI	314	10,000	12 010	,,,,,	2.55	

ATOM	2844	OW	WAT	515	10.964	18.976	-6.714	1.00	26.05
ATOM	2845	OW	TAW	516	0.840	16.582	-3.289	1.00	22.32
ATOM	2846	OW	TAW	517	-3.923	22.464	-1.744	1.00	29.01
ATOM.	2847	OW	WAT	518	-0.997	25.906	9 408	1.00	27 67
ATOM	2848	OW	WAT	519 520	3.066 20 631	45.067 16.301	-23 581 16 915	1.00	21.23 29.84
ATOM	2949 2850	OW	TAW TAW	521	3.683	28.042	-20.317	1.00	29 99
ATOM ATOM	2851	OW	WAT	522	-7 926	27.757	3.844	1.00	23.89
ATOM	2852	OW	WAT	523	1 150	23.857	-9.846	1.00	21 74
ATOM	2853	OW	WAT	524	13 889	16.199	-5.074	1.00	22.55
ATOM	2854	OM	WAT	525	-1 704	53.692	-2.952	1.00	32.09
ATOM	2855	OW	WAT	526	30 576	35 496	-4 718	1.00	25.56
ATOM	2856	OM	WAT	527	7 959	27 774 29 649	-32 333 -17.650	1.00 1.00	22.85 26.17
ATOM	2857 2858	OW	WAT WAT	528 529	0 310 -0.573	40 681	-15.285	1.00	24 02
ATOM ATOM	2859	OW	WAT	530	-5 413	37.314	-11.579	1.00	26.13
ATOM	2860	OW	WAT	531	20.453	25 296	-22.221	1.00	26.01
ATOM	2861	OW	TAW	532	2.287	15.472	-5.046	1.00	27.90
ATOM	2862	OM	WAT	533	30.000	42.526	-1.756	1 00	25 99
ATOM	2863	OW	WAT	534	13.014	48.338	13.867 -16.490	1.00 1.00	29 93 25 60
ATOM	2864	OW	WAT WAT	535 536	19.089 23.246	59.470 37.608	-22.518	1.00	30.37
ATOM ATOM	2865 2866	OW	WAT	537	18 012	23 775	-22 832	1.00	35 14
ATOM	2867	OW	WAT	538	32 942	31.103	-1 587	1.00	27 55
ATOM	2868	OW	TAW	539	24.244	39 395	8.376	1.00	26 84
ATOM	2869	OW	TAW	540	16 151	39 516	11.126	1.00	27.39
ATOM	2870	OW	TAW	541	-9 496	38.640	6.232	1.00	23.00 25.04
MOTA	2871	OW	TAW TAW	542 543	11.570 5.652	53 681 39 623	-24.197 9 901	1.00 1.00	24.86
ATOM ATOM	2872 2873	OW	WAT	544	15,243	51.336	-7.590	1.00	31.58
ATOM	2874	OW	WAT	545	21.732	45.731	-22 796	1.00	25.40
ATOM	2875	OW	WAT	546	26.109	29.562	15.747	1.00	26.48
ATOM	2976	OW	WAT	547	5 300	48 774	10.712	1.00	22.97
MOTA	2877	OM	TAW	548	16 333	19.082	-6 041	1.00	31.87
ATOM	2878	OW	WAT WAT	549 550	34.477 32.307	39.693 28.802	-0 433 -2 454	1.00	24.27 28.07
ATOM ATOM	2879 2880	OW	WAT	551	16.750	23.348	20.119	1.00	30.93
ATOM	2881	OW	WAT	552	19.254	45.692	25.110	1.00	30.02
ATOM	2882	OW	WAT	553	7.615	43 287	12.031	1.00	31.35
MOTA	2883	OW	TAW	554	21.139	41.273	15 275	1.00	24.54
ATOM	2884	OW	WAT	555	-9.531	43 159	1.000 22.961	1.00	28.18
ATOM	2885	ow ow	WAT WAT	556 557	-4.562 19.748	35 560 24 192	-10.428	1.00	25.96 29.93
ATOM ATOM	2886 2887	OW	WAT	558	10.358	13 845	7.421	1.00	24.97
ATOM	2888	OW	WAT	559	33.144	26 300	-1.473	1.00	23.51
ATOM	2889	OW	WAT	560	0.711	42 085	-22.328	1.00	27.47
ATOM	2890	OW	TAW	561	19.258	55.289	-14.564	1.00	25.35
ATOM	2891	WO	TAW	562	13.683	49.398	-2.033	1.00	27.95
ATOM	2892 2893	OW	WAT WAT	563 564	21.974 14.094	39.944 24.261	7.537 -29.685	1.00	24.21 30.81
ATOM ATOM	2894	OW	WAT	565	8.391	16.742	16.583	1.00	33.63
ATOM	2895	OW	WAT	566	34.902	40.206	3.922	1.00	34.09
ATOM	2896	OW	TAW	567	7.246	39.309	7.727	1.00	25.05
ATOM	2897	OW	WAT	568	1.772	52.043	-7.936	1.00	33.11
ATOM	2898	OW	WAT	569 570	-10 176 19 034	35.406 21.727	-1.420 -6.972	1.00	28.71 31.14
ATOM	2899 2900	OW	WAT WAT	570	25.186	25.032	13.807	1.00	29.45
ATOM ATOM	2901	OW	WAT	572	-0.477	22.506	0.681	1.00	29.75
ATOM	2902	OW	WAT	573	7.554	13.615	9.613	1 00	25.51
ATOM	2903	OW	TAW	574	0.741	15.993	-6.797	1.00	28.22
MOTA	2904	OM.	TAW	575	4.524	26.932	19.683	1 00	30.25
ATOM	2905	OW	WAT	576	24.217	31.560	29.964	1 00 1 00	30.98 30.58
ATOM	2906 2907	OM MO	WAT WAT	577 578	-9.886 18.264	38.987 48.710	-0.391 -5.256	1 00	26.25
ATOM ATOM	2907	OW	WAT	579	7.094	48.558	-19.857	1 00	30.55
ATOM	2909	OW	WAT	580	-11.403	38.772	12.578	1.00	23.49
ATOM	2910	OW	TAW	581	0.236	53.067	3.666	1.00	32.85
ATOM	2911	OM	WAT	582	34.494	30.211	11.953	1.00	30.38
ATOM	2912	OW	TAW	583	-8.883	40.085	8.563	1.00	20.61
ATOM	2913	OM	WAT	584 585	19.648 0.789	16.274 53.240	-1 256 6.163	1.00 1.00	32.05 28.48
ATOM	2914 2915	OM	. WAT WAT	586	6.772	16.061	19.133	1.00	28.67
ATOM ATOM	2915	OW.	WAT	587	17.572	48.350	-0.455	1.00	31.70

ATOM	2917	OW	WAT	588	19.914	42.743	12.082	1.00	29.47
ATOM	2918	OW	WAT	589	28.293	43 369	3.095	1.00	41.10
ATOM	2919	OW	TAW	590	4.140	16.905	-6.015	1.00	33.04
ATOM	2920	OW	TAW	591	-7.536	49.473	0.700	1.00	26.21
ATOM	2921	OM	TAW	592	16.545	11.527	7.703	1.00	35.77
ATOM	2922	OM	TAW	593	21.751	26.587	-18.455	1.00	36.98
ATOM	2923	OM	TAW	594	28.027	36.486	9.408	1.00	30.24
ATOM	2924	OW	TAW	595	-3.668	27 781	16.465	1.00 1.00	32.59 30.57
MOTA	2925	OW	WAT	596	6.641	50.716	9.132 -12.497	1.00	35.34
ATOM	2926	OW	WAT	597	14.904 13.687	54.419 41.518	18.737	1.00	28.20
ATOM	2927	OM	TAW TAW	598 599	15 809	10.449	13.628	1.00	27.51
MOTA	2928 2929	OM OM	WAT	600	0.266	35.585	-19.094	1.00	32.22
ATOM	2929	OW	WAT	601	1.157	32.250	-2.186	1.00	31.93
ATOM ATOM	2931	OW	TAW	602	20.830	54.594	-22.978	1.00	38.78
ATOM	2932	OW	WAT	603	-6.482	24.335	0.209	1.00	27.40
ATOM	2933	OW	WAT	604	-0 221	24.757	-19.652	1.00	34.87
ATOM	2934	OW	WAT	605	4.475	41.359	13.507	1.00	38.95
ATOM	2935	OW	WAT	606	18.365	17 118	-5.002	1.00	35.63
MOTA	2936	OW	WAT	607	10.129	37.103	7.607	1.00	37.59
MOTA	2937	OW	WAT	608	32.483	26.313	-6.257	1.00	34.83
MOTA	2938	OM	WAT	609	1.173	18.896	13.815	1.00	38.79
MOTA	2939	OM	WAT	610	21.714	21.650	-7.187	1.00	30.79
MOTA	2940	OW	TAW	611	16.630	13.196	3.673 15.551	1.00	38.22 30.36
MOTA	2941	OM	WAT	612	3.332	18.798	15.908	1.00	30.36
ATOM	2942	OM	TAW	613	11.410 1.890	46.061 53.075	0.396	1.00	35.43
ATOM	2943	OW	WAT WAT	614 615	14.858	54.460	-19.563	1.00	36.48
MOTA	2944	OW	WAT	616	27.164	22.302	9.178	1.00	28.96
ATOM ATOM	2945 2946	OW	TAW	617	25.844	30.643	13.373	1.00	37.70
ATOM	2947	OW	WAT	618	-11.773	30.992	19.536	1.00	35.27
ATOM	2948	OW	WAT	619	20.068	54.715	-26.556	1.00	30.61
ATOM	2949	OW	TAW	620	22.511	25.529	18.055	1.00	39.02
ATOM	2950	OW	TAW	621	4.762	24.578	19.147	1.00	29.70
MOTA	2951	OM	WAT	622	-5.809	31.212	-7.251	1.00	38.52
MOTA	2952	OM	WAT	623	2.302	46.734	-19.134	1.00	31.35
MOTA	2953	OM	TAW	624	-3.267	26.845	-9.657	1.00	26.55 30.93
MOTA	2954	WO	TAW	625	20.942	19.909 19.417	15.987 27.897	1.00 1.00	41.36
MOTA	2955	OW	WAT	626 627	14.335 -8.960	44.991	2.623	1.00	32.33
ATOM	2956	OW WO	WAT WAT	628	-2.896	18.495	3.945	1.00	33.15
ATOM	2957 2958	OW	WAT	629	19.081	15.066	19.313	1.00	41.85
MOTA MOTA	2959	OW	WAT	630	26.583	40.965	-16.598	1.00	53.36
ATOM	2960	OW	TAW	631	9.201	30.845	-29.283	1.00	26.67
ATOM	2961	OW	WAT	632	29.771	29 232	13.030	1.00	37.22
MOTA	2962	OW	WAT	633	-9.063	44.258	5.485	1.00	30.64
ATOM	2963	OW	WAT	634	36.469	24.114	2.218	1.00	34.07
ATOM	2964	WO	TAW	635	1.658	28 923	20.644	1.00	39.44
MOTA	2965	OM	TAW	636	-8.637	37 196	-3.769	1.00	39.41 34.67
MOTA	2966	OM	TAW	637	9.491	43.672	18.552	1.00 1.00	37.88
MOTA	2967	OW	WAT	638	38.446	24.948 21.306	5.405 -12.437	1.00	35.82
ATOM	2968	OM	WAT	639 640	16.362 11.407	51.004	-0.072	1.00	31.55
ATOM	2969	WO	TAW TAW	641	38.229	24.335	8.085	1.00	39.89
ATOM	2970 2971	WO WO	WAT	642	21.655	26.806	22.131	1.00	32.81
ATOM ATOM	2972	OW	WAT	643	16.387	22.635	23.545	1.00	35.28
ATOM	2973	OW	WAT	644	-12.122	42.861	-8.757	1.00	43.21
ATOM	2974	OW	WAT	645	-1.768	30.006	19.108	1.00	39.03
ATOM	2975	OW	WAT	646	31 231	36.441	-7.964	1.00	40.74
ATOM	2976	OW	WAT	647	-9.784	38.920	18.620	1.00	37.25
ATOM	2977	OW	WAT	648	-5.666	31.659	21 328	1.00	32.24
ATOM	2978	OW	TAW	649	-2 584	54.436	0.499	1 00	42.36
MOTA	2979	OM	TAW	650	9 314	15.276	13.185	1.00	41.13
MOTA	2980	OM	TAW	651	20.108	12.329	9.346	1 00	30.57 30.27
ATOM	2981	OW	TAW	652	28.719	20.042	8.674 11.915	1 00	34.47
ATOM	2982	OM	WAT	653	27.567	35.432 18.155	14.214	1.00	29.75
ATOM	2983	OW	WAT	654 655	20.822 -1.395	25.107	7.194	1.00	42.08
ATOM	2984	OW	WAT	000	- 1.333	23.107		_,,,,,	-2.00
END									

7-aminocephalosporins

Scheme 5

where, R = alkyl or aryl or a combination of both, e.g. $PHCH_2$, $PhOCH_2$. The alkyl chain or aryl portion of R may also be substituted with acidic or basic groups, e.g. $R = HO_2C(CH_2)_4$, $R = H2N(CH_2)_4$. R may also be heterocyclic.

Scheme 6

example 3

example 1

C-3 exomethylene cephams with hydrophobic side chains, e.g. R = PhCH₂, R = PhOCH₂, R = HO₂C(CH₂)₄

exomethylene cepham

DAAHN

ECO2

exomethylene cephalosporin C

Scheme 6 (cont.)

example 3 (cont.) The modified IPNS may be used in conjunction with another modified (or unmodified) enzyme activity, such as:

where R = LAA, DAA or other.

Scheme 7

example 1

example 2

H₃⁺N SH modified IPNS
$$\stackrel{\stackrel{\circ}{=}}{CO_2}$$
.

Scheme 8

example 1

example 2

Scheme 9

example 1

modified or unmodified DAOCS, DACS or DAOC/DACS

where, R = aryl, alkyl or a combination of both e.g. $PhCH_2$, $PhOCH_2$. If R is alkyl it may be substituted, e.g. $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$.

example 2

where, R = aryl, alkyl or a combination of both e.g. $PhCH_2$, $PhOCH_2$. If R is alkyl it may be substituted, e.g. $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$. $R = D-\delta-(\alpha-aminoadipoyl)$.

Scheme 10

examples

Scheme 11

example 1

where, $R = D-\delta-(\alpha-aminoadipoyl)$, $L-\delta-(\alpha-aminoadipoyl)$ $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$.

example 2

where, $R = D-\delta-(\alpha-aminoadipoyl)$, $D-\delta-(\alpha-aminoadipoyl)$ $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$, X = CI, Br, I, OMe, SMe, or other substituent.

- 125 -

Scheme 13

example 1

example 2

where R = Cl, Br, I, OMe or other substituent.

Scheme 14

examples

where, R = aryl, alkyl or a combination of aryl and alkyl e.g. $PhCH_2$, $PhOCH_2$.

Scheme 12

example

other cephalosporins

- 126 -

Scheme 15

examples

Scheme 16

example 1

where, $R=D\text{-}\delta\text{-}(\alpha\text{-}aminoadipoyl),$ $L\text{-}\delta\text{-}(\alpha\text{-}aminoadipoyl)$ $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4.$

example 2

where, $R = D-\delta$ -(α -aminoadipoyl), $D-\delta$ -(α -aminoadipoyl) $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$, X = Cl, Br, I, OMe, SMe, or other substituent.

ĊO₂H

Scheme 18

example 1

modified DACS,
modified DAOCS
modified DAOCS
modified DAOCS

Modified DAOCS
modified DAOCS

modified DAOCS

modified DAOCS

Modified DAOCS

modified DAOCS

Modified DAOCS

modified DAOCS

N

R

modified DACS

where R = Cl, Br, I, OMe or other substituent.

Scheme 19.

examples

. CO₂H

where, R = aryl, alkyl or a combination of aryl and alkyl e.g. $PhCH_2$, $PhOCH_2$.

Scheme 17

example

Scheme 22

example 2

where R = CI, Br, I, OMe or other substituent.

Scheme 23

examples

where, R = aryl, alkyl or a combination of aryl and alkyl e.g. $PhCH_2$, $PhOCH_2$.

Scheme 21

- 129 -

Scheme 24

examples

Scheme 20

example 1

where, $R=D\text{-}\delta\text{-}(\alpha\text{-aminoadipoyl}),$ $L\text{-}\delta\text{-}(\alpha\text{-aminoadipoyl})$ $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4.$

example 2

where, $R = D-\delta-(\alpha-aminoadipoyl)$, $D-\delta-(\alpha-aminoadipoyl)$ $HO_2C(CH_2)_4$ or $H_2N(CH_2)_4$, X = Cl, Br, I, OMe, SMe, or other substituent.

15

20

CLAIMS

- 1. Isopenicillin N synthase (IPNS) in the form of: a complex with Mn having a structure designated by the X-ray co-ordinates in Table 2; or a complex with Fe and its substrate, said complex having a structure designated by the X-ray co-ordinates in Table 3.
- 2. Isopenicillin N synthase (IPNS) in the form of: a complex with

 Fe and an analogue of its substrate, either in the absence or in the

 presence of nitrous oxide or dioxygen, said complex having a structure

 designated by X-ray co-ordinates analogous to that set out in Table 3.
 - 3. Use of the three dimensional structure of a first enzyme selected from IPNS, DAOCS, DACS, DAOC/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway, for the modification of a second enzyme selected from IPNS, DAOCS, DACS, DAOC/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway.
 - 4. Use as claimed in claim 3, wherein the second enzyme is modified to accept unnatural substrates for the preparation of antibacterial materials or intermediate for the production of pharmaceutical products.
 - 5. Use as claimed in claim 3, wherein the second enzyme is modified to produce unnatural products or improve the production of natural products.
- 25 6. An enzyme having significant (as herein defined) sequence similarity to IPNS, wherein at least one of the following amino acid residues is modified:

R287; R87; R88; Y189; S183; Y91; F285; Q330; T331; V185; L106; C104; V217; L324; L317; I325; L321; S210.

10

15

- 7. An enzyme having significant (as herein defined) sequence similarity to IPNS, wherein at least one of the following amino acid residues is modified:
 - V272; L231; L223; P283; T221; F211; F285; Q330;
- 5 | 1187; V185; Y189; R279; S281; N230; Q225; N252; S210.
 - 8. A gene which codes for the enzyme of claim 6 or claim 7.
 - 9. A micro-organism containing the gene of claim 8 and which is capable of expressing the gene under fermentation conditions.
 - 10. Use of the micro-organism of claim 9 for making a bicyclic β-lactam of the penicillin or cephalosporin (including cephams) families.
 - 11. Use of the enzyme of claim 6 or claim 7 for the preparation *in* vitro of a bicyclic β -lactam of the penicillin and cephalosporin families.
 - 12. In a method for the preparation of an enzyme, selected from IPNS, DAOCS, DACS, DAOC/DACS and sequence-related enzymes, in crystalline form for X-ray diffraction studies, the improvement which consists in maintaining the enzyme under anaerobic conditions with dioxygen substantially absent.
- 13. A method which comprises using the three dimensional structure of a first enzyme selected from IPNS, DAOCS, DACS,
 20 DAOC/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway, for determining or predicting the structure of a second enzyme which is structurally related to the first enzyme but is not active in the penicillin or cephalosporin biosynthesis pathway, and using the structural information so obtained for modifying the
 25 second enzyme or for designing an inhibitor for the second enzyme.
 - 14. Use of the enzyme of claim 6 or claim 7 to convert a dipeptide to a 6- aminopenicillin or other bicyclic β -lactam.
 - 15. Use as claimed in claim 14, wherein the dipeptide has been produced by use of a peptide synthetase enzyme such as ACV synthetase optionally modified to optimise dipeptide production.

30

-

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 15/52, 9/00, C12P 35/00, C12N 1/21

A3

(11) International Publication Number:

WO 98/16648

(43) International Publication Date:

23 April 1998 (23.04.98)

(21) International Application Number:

PCT/GB97/02838

(22) International Filing Date:

15 October 1997 (15.10.97)

(30) Priority Data:

9621486.1

15 October 1996 (15.10.96) GB

Published With

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(81) Designated States: JP, US, European patent (AT, BE, CH, DE,

(71) Applicant (for all designated States except US): ISIS INNO-VATION LIMITED [GB/GB]; 2 South Parks Road, Oxford

OX1 3UB (GB).

(72) Inventors; and

(75) Inventors'Applicants (for US only): SCHOFIELD, Christopher, Joseph [GB/GB]; 19 Delamare Way, Cumnor Hill, Oxford OX2 9HZ (GB). BALDWIN, Jack, Edward [GB/GB]; Broom, Hinksey Hill, Oxford OX1 5BH (GB). CLIFTON, Ian [GB/GB]; 1 Staincross House, Albion Place, Oxford OX1 1SG (GB). HAJDU, Janos [HU/SE]; Stabby Malmsvagen 8, S-755 91 Uppsala (SE). HENSGENS, Charles [NL/NL]; Oscar Wildestraat 7, NL-9746 AR Groningen (NL). ROACH, Peter, Lawrence [GB/GB]; Exeter College, Oxford OX1 3DP (GB).

(74) Agent: PENNANT, Pyers; Stevens Hewlett & Perkins, 1 Serjeants Inn, Fleet Street, London EC4Y 1LL (GB). (88) Date of publication of the international search report:
13 August 1998 (13.08.98)

(54) Title: ISOPENICILLIN N SYNTHETASE AND DEACETOXYCEPHALOSPORIN C SYNTHETASE ENZYMES AND METHODS

(57) Abstract

A three-dimensional structure is described of a complex of isopenicillin N synthase (IPNS) with Fe and its substrate ACV. This structure is used to design modified enzymes IPNS, DAOCS, DACS, DAOC/DACS and other related enzymes of the penicillin and cephalosporin biosynthesis pathway, which modified enzymes may accept unnatural substrates or improve production efficiency or produce improved products. Specific modifications of specific amino acid residues are proposed and exemplified.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	1.atvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tohago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/52 C12N9/00

C12P35/00

C12N1/21

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCOM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	ROACH PL ET AL: "Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes." NATURE 375 (6533) P700-4 JUN 22 1995, XP002059796 cited in the application see abstract; figures 1-3; table 1	1
X	SCOTT RA ET AL: "X-ray absorption spectroscopic studies of the high-spin iron(II) active site of isopenicillin N synthase: evidence for Fe-S interaction in the enzyme-substrate complex." BIOCHEMISTRY 31 (19) P4596-601 MAY 19 1992, XP002067783 see the whole document	1,2

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-
other means "P" document published prior to the international filing date but later than the priority date claimed	ments, such combination being obvious to a person skilled in the art. *&* document member of the same patent family
Date of the actual completion of the international search 11 June 1998	Date of mailing of the international search report 3 0, 06, 98
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijawijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Gurdjian, D

to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cystein -alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cystein -allylglycine catalyzed by isopenicill synthase isozymes." BIOCHEMISTRY, JUN 6 1995, 34 (22) P7548-62, UNITED STATES, XP002067785 see the whole document X HUFFMAN GW ET AL: "Substrate specific of isopenicillin N synthase." J MED CHEM, MAY 15 1992, 35 (10) P1897-914, UNITED STATES, XP002067786 see the whole document	1,2 2ine: 27784 Poach 1,2 1,1 1,2 1,2 1,2 1,2 1,1 1,2
ligation of the active site iron(II) o isopenicillin N synthase derives from substrate rather than endogenous cyste spectroscopic studies of site-specific Cys.fwdarw. Ser mutated enzymes" BIOCHEMISTRY (1992), 31(19), 4602-12 CODEN: BICHAW;ISSN: 0006-2960, XP00206 see the whole document BLACKBURN JM ET AL: "A heuristic appr to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cystein-alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cystein-allylglycine catalyzed by isopenicill synthase isozymes." BIOCHEMISTRY, JUN 6 1995, 34 (22) P7548-62, UNITED STATES, XP002067785 see the whole document HUFFMAN GW ET AL: "Substrate specific of isopenicillin N synthase." J MED CHEM, MAY 15 1992, 35 (10) P1897-914, UNITED STATES, XP002067786 see the whole document	of eine: 57784 roach nyl-D nyl-D in N
to the analysis of enzymic catalysis: reaction of delta-(L-alpha-aminoadipoyl)-L-cystein -alpha-aminobutyrate and delta-(L-alpha-aminoadipoyl)-L-cystein -allylglycine catalyzed by isopenicill synthase isozymes." BIOCHEMISTRY, JUN 6 1995, 34 (22) P7548-62, UNITED STATES, XP002067785 see the whole document X HUFFMAN GW ET AL: "Substrate specific of isopenicillin N synthase." J MED CHEM, MAY 15 1992, 35 (10) P1897-914, UNITED STATES, XP002067786 see the whole document	nyl-D nyl-D in N
of isopenicillin N synthase." J MED CHEM, MAY 15 1992, 35 (10) P1897-914, UNITED STATES, XP002067786 see the whole document	1,2
A DATABASE BIOTECHNOLOGY ABSTRACTS DERWENT ,LONDON aN 88-01715, PRATT A J: "Manipulation of beta-lacta biosynthetic enzymes" XP002067788 see abstract & ABSTR.PAP.AM.CHEM.SOC., 1987,	6-11,14, 15
A EP 0 307 171 A (LILLY CO ELI) 15 March 1989 see claims 1-8	1,2, 6-11,14, 15
A EP 0 317 096 A (LILLY CO ELI) 24 May 1	989 1,2, 6-11,14, 15
see claims 1-18	

	PCT/GB 97/02838				
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.					
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
TAN, DOREEN S. H. ET AL: "Functional analysis of conserved histidine residues in Cephalosporium acremonium isopenicillin N synthase by site-directed mutagenesis" J. BIOL. CHEM. (1996), 271(2), 889-94 CODEN: JBCHA3;ISSN: 0021-9258, XP002060004 see abstract see page 889, right-hand column, paragraph 2; figures 1,4; tables 2,3 see page 893, left-hand column, paragraph 2	1,2, 6-11,14, 15				
KRIAUCIUNAS A ET AL: "The functional role of cysteines in isopenicillin N synthase. Correlation of cysteine reactivities toward sulfhydryl reagents with kinetic properties of cysteine mutants." J BIOL CHEM, JUN 25 1991, 266 (18) P11779-88, UNITED STATES, XP002060005 see abstract see page 11780, left-hand column, paragraph 3 see page 11782, right-hand column, line 12 - line 17	1,2, 6-11,14, 15				
SAMI, MALKIT ET AL: "Glutamine-330 is not essential for activity in isopenicillin N synthase from Aspergillus nidulans" FEBS LETT. (1997), 405(2), 191-194 CODEN: FEBLAL; ISSN: 0014-5793, XP002059797 see the whole document	1,6-11, 14,15				
ROACH, PETER L. ET AL: "Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation" NATURE (LONDON) (1997), 387(6635), 827-830 CODEN: NATUAS; ISSN: 0028-0836, XP002067787 see the whole document	1,2				
WO 97 20053 A (GIST BROCADES BV ;UNIV OXFORD (GB); SUTHERLAND JOHN DAVID (GB); BO) 5 June 1997 see claims 1-9; figure 1	6-11,14,				
	TAN, DOREEN S. H. ET AL: "Functional analysis of conserved histidine residues in Cephalosporium acremonium isopenicillin N synthase by site-directed mutagenesis" J. BIOL. CHEM. (1996), 271(2), 889-94 CODEN: JBCHA3;ISSN: 0021-9258, XP002060004 see abstract see page 889, right-hand column, paragraph 2; figures 1,4; tables 2,3 see page 893, left-hand column, paragraph 2 KRIAUCIUNAS A ET AL: "The functional role of cysteines in isopenicillin N synthase. Correlation of cysteine reactivities toward sulfhydryl reagents with kinetic properties of cysteine mutants." J BIOL CHEM, JUN 25 1991, 266 (18) P11779-88, UNITED STATES, XP002060005 see abstract see page 11780, left-hand column, paragraph 3 see page 11782, right-hand column, line 12 - line 17 SAMI, MALKIT ET AL: "Glutamine-330 is not essential for activity in isopenicillin N synthase from Aspergillus nidulans" FEBS LETT. (1997), 405(2), 191-194 CODEN: FEBLAL; ISSN: 0014-5793, XP002059797 see the whole document ROACH, PETER L. ET AL: "Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation" NATURE (LONDON) (1997), 387(6635), 827-830 CODEN: NATUAS; ISSN: 0028-0836, XP002067787 see the whole document WO 97 20053 A (GIST BROCADES BV ;UNIV OXFORD (GB); SUTHERLAND JOHN DAVID (GB); BO) 5 June 1997				

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: 1 2 6-11 14 15
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.;
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

International Application No. PCT/GB 97 /02838

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claim: 1 partly

IPNS complexed with Mn

2. Claim: 2 and 1 partly

IPNS complexed with Fe and ist substrate or an analogue of its substrate

3. Claims: 3-5, 13

the use of the three dimensional structure of a member of the IPNS family of enzymes to modify another enzyme .

4. Claims: 6-11,14-15

Enzyme having significant sequence similarity to IPNS wherein at least one of the following amino acid residues is modified ,r87,y189,s183,y91,f285,q330,t331 v185,l106,c104,v217,l324,l317,i325,l321,s210,v272,l231,l223,p283,t221,f211,i187,v185,y189,r279,s281,n230,q225,n252,r287,r88, mutants of an enzyme having similarity to IPNS, gene encoding it, micro-organism containing the gene and their use in beta-lactam production.

5. Claim: 12

methods of preparation of an enzyme of the IPNS family in crystalline form consisting of maintaining the crystalline enzymes of the IPNS family under anaeorobic conditions.

INTERNATION L SEARCH REPORT

nation on patent family members

Patent document cited in search report EP 0307171 A		Publication date		atent family nember(s)	Publication date
		15-03-1989	US 4885252 A AU 614988 B AU 2191788 A DK 493788 A FI 884112 A JP 1098493 A CN 1034578 A		05-12-1989 19-09-1991 09-03-1989 24-04-1989 09-03-1989 17-04-1989
EP 0317096	Α	24-05-1989	US AU DK	4950603 A 2455188 A 606088 A	21-08-1990 25-05-1989 15-06-1989
W0 9720053	Α	05-06-1997	AU	1097297 A	19-06-1997