

# Data Science Workshop Session 4

Ikenna Ivenso

04 July 2020





### Objectives

- Recap When to Use Machine Learning
- 2. Supervised vs Unsupervised Learning
- 3. Two Common Supervised Learning Problems Regression & Classification
- 4. Demos (Classification and Regression)



### When to Use Machine Learning





| Quant. | Verbal | Writing | Admitted |
|--------|--------|---------|----------|
| 750    | 570    | 3.0     | No       |
| 780    | 600    | 5.0     | Yes      |
| 800    | 590    | 3.5     | No       |
| 720    | 630    | 4.5     | No       |
| 780    | 620    | 5.0     | Yes      |
| 780    | 580    | 6.5     | No       |

#### Machine Learning is useful when

• "Rules" are not obvious OR too difficult to code

A problem is a good candidate for Machine Learning if

- A reasonable amount of data exists
- A pattern exists in the data
- The pattern is difficult to figure out

www.tqstem.org





### Supervised vs Unsupervised Learning

#### **Supervised Learning:**

If an ML task involves a dataset that contains both the input variables and output variables, then that task is a *Supervised Learning* task.

One can train a model to correctly map the inputs to the outputs.

#### **Unsupervised Learning:**

If, on the other hand, an ML task involves a dataset that contains only the input variables, then that task is an *Unsupervised Learning* task.

One can try to discover the underlying patterns in which the data is organized.





## Regression vs Classification

#### **Regression:**

If a task involves predicting a continuous quantity, then it is a regression problem

**Example**: How much can I sell my car for ? - (e.g.  $\cancel{\$}$ 302,000)

#### **Classification:**

If the task involves predicting a category or type, then it is a *classification* problem

**Example**: Will my students be adimitted into the Masters degree program? - (e.g. Yes/No)





