R.O.M.

Room Occupancy Map

The evolution of our project

THE FIRST PRESENTATION

Looking at the first presentation, we can see that there were:

- ► A lack of focus
- ► A goal that wasn't set
- ►An overall lack of metrics to better measure our progress

OCCUPANCY

"We want to count the number of people in a room"

As you can see, our project has moved toward this direction to better suit the need for this kind of product in the market, the reasoning being mainly due to COVID-19 restrictions that buildings such as this university must respect.

Goals

Economical cost

- Provide an alternative to current systems (implementing cameras), using cheaper components but reaching the same accuracy.
- We aim to reduce the cost by 75%, going from around 200\$ to 50\$

Time Spending

- Reduce the time spent to find available workspace or free rooms in the building.
- Thanks to our map a person can save up to 50% of his time

Requirements

In order to completely achieve our goal, it's important to reach at least 90% accuracy in counting people (with this percentage varying depending on the maximum capacity of the room we are analyzing)

To provide this functionality we need to have a real time map, updating in no less than 30 seconds

 The physical configuration of our system should be easy to set up and not invasive

Our system

- Sensors used
- Configuration

The sensors used

SRF05
Ultrasonic sensor(x2)

Range: 1 cm - 4 mt

Max Angle: 30°

HC-SR501 Motion sensor

Radius: 3 - 7 mt

Field of view: 110°

THE CONFIGURATION

This is the first configuration that we plan to test

Technical constraints

- Energy consumption
- Network utilization

Energy consumption

mA	
50	SRF05
65	HC-SR501
0.137/MHz	STM32 run
0.024	STM32 sleep
50/15	ESP-01S wifi-module

Total power needed:

No assumption made, everything on the board is running

0.8 W

Actual use:

Under the assumption that the PIR sensor goes off for 30 minutes every hour, and that the board sleeps through the non working hours we get that a standard 10000 mAh battery would last for:

Approx. 10 days

Due to us working with the datasheet, we didn't include the mA needed to power the board. Once a USB multimeter will be available, the calculation will be updated.

Energy consumption

BATTERY

- The main advantage of running on battery is the simple installation.
- However, as we can see from our calculation, the battery consumption is still pretty high

ELECTRICAL GRID

- A dedicated installation can be costly, especially when it is done to every room in the building.
- However, changing the batteries often is also a cost.

Batteries should be changed too often for every room in the building, the maintenance cost outweighs the installation cost of attaching it directly to the electrical grid.

Network utilization

- Due to being in a building, we assume that we have a working wifi in every room. As such, we can connect directly to the internet with a wifi-module.
- We plan to send to the mqtt broker every data obtained in intervals of 500ms
 - (The reasoning being that 0.5s is low enough so that in the event of multiple people passing in a line, the data is mainly about a single person, while it's also high enough to not congest the network)
- ► The bit-rate of the wifi protocol ranges from 0.1 mb/s to 1 mb/s, so the bandwidth should be plenty enough
- Further testing to calculate the delay of the information appearing on the map is needed

Sampling rate

- ► The walking speed of a person is on average 1.4m/s
- The range of our PIR movement sensor is 7 m, while the range of our ultrasonic sensor is 4m
 - This means that we have approximately 2.8 seconds to sample a person's movement
- We oversample and take a measurement every 100ms

Future Plans

- Configuration experiments and measurements
- Solve technical problems

Problems in counting people

A distinction needs to be made for people entering and exiting at the same time

How to count people that enter together?

Multiple entrances require multiple nodes

Possibles configurations

Our main objective will be to experiment with several configurations, measure their accuracy and present our research highlighting the differences between them.

THANKS!

Any questions?

