Low-Rank Factorizations for Fast Inference in Structured Models

Justin Chiu* ¹ Yuntian Deng* ² Alexander Rush ¹

¹Cornell Tech

²Harvard University

October 19, 2021

Structured Models

- ► Explicitly model output associations
 - Directly or through latent variables
- Focus on combinatorially large latent <u>discrete structures</u>
 - Complementary to continuous, deterministic representations
- ▶ More difficult to scale than alternative representations
 - Bottlenecked by time and space complexity of inference

Scaling Structured Models

- ► Target hypergraph models
- Impose a low-rank model constraint
 - Trades off model expressivity for cheaper inference
- Only constrain parameters used in key steps of inference

Inference in Structured Models

- ▶ Model an observation $x = (x_1, ..., x_T)$ via latent structure z
 - Latent nodes z;
 - ▶ Nodes have discrete label set [*L*]
- ▶ Perform training and evaluation via marginalization

$$p(x) = \sum_{z} p(x, z)$$

Hidden Markov models

Probabilistic context-free grammars

Hypergraphs for Inference

- Represent dynamic programs for inference as hypergraphs
- Hypergraphs consist of nodes and hyperedges
 - Hyperedge consists of a head node and set of tail nodes
- Perform inference by traversing hypergraph
 - Aggregate marginals from tails to head via a matrix-vector product

Hyperedge representations for HMMs and PCFGs

Hypergraph Marginalization

For each hyperedge e in topological order,

- lacktriangle Combine tail marginals α_1, α_2 into joint tail marginal β_{ν}
- lacktriangle Apply score matrix Ψ_e and aggregate in head marginal $lpha_u$
 - Multiple hyperedges may have the same head node

Algorithm 1 Hypergraph marginalization	
for $u \leftarrow v$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v_1}} \alpha_{\mathbf{v_2}}^{\top}$	$\triangleright O(L^{ e })$
$\alpha_{\it u} \stackrel{+}{\leftarrow} \Psi_{\it e} \beta_{\it v}$	$\rhd O(L^{ e +1})$
return $lpha_{\mathcal{S}}^{ op}1$	

Scaling with Low-rank Factorizations

▶ Factor matrices $\Psi = UV^{\top}$, $U \in \mathbb{R}^{L \times R}$, $V \in \mathbb{R}^{L^{|e|} \times R}$

$$\boxed{ \qquad \qquad } \times \boxed{\beta} = \boxed{U} \times \left(\boxed{V^{\top}} \times \boxed{\beta} \right)$$

- ▶ Two matrix-vector products of cost O(LR) and $O(L^{|e|}R)$
 - ▶ Reduced from $O(L^{|e|+1})$
- ▶ Potentially large speedups for inference
 - ▶ HMM from $O(L^2)$ to O(LR)
 - ▶ PCFG from $O(L^3)$ to $O(L^2R)$

Low-rank Hypergraph Marginalization

Algorithm 2 Low-rank marginalization	
for $u \leftarrow v_1, v_2$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v_1}} \alpha_{\mathbf{v_2}}^{\top}$	$\triangleright O(L^{ e })$
$\gamma \leftarrow V_{e}^{ op} eta_{v}^{ op}$	$\triangleright O(L^{ e }R)$
$\alpha_{\it u} \stackrel{+}{\leftarrow} U_{\it e} \gamma$	$\triangleright O(LR)$
return $lpha_{\mathcal{S}}^{ op}1$	

Expressivity of Rank-constrained Models

- Rank constraints limit expressivity
- Only apply to a subset of parameters
 - ► Transition matrix for HMMs
 - Subset of the transition matrix for PCFGs
- Is it more expressive than a smaller model?
 - An L-state HMM with rank R (< L) is more expressive than an unconstrained R-state HMM

Experiments

- ► Language modeling on PENN TREEBANK¹
- Compare size vs speed and accuracy
 - ► Size = 1k to 16k state HMM, 90 to 300 state PCFG
 - ▶ Speed = Sec/Batch
 - Accuracy = Perplexity (function of likelihood)
- Unconstrained softmax HMM, PCFG vs low-rank versions

¹Marcus, Santorini, and Marcinkiewicz, 'Building a Large Annotated Corpus of English: The Penn Treebank'.

HMM Results

HMM Speed vs Accuracy Frontier

PCFG Speed vs Accuracy Frontier

Conclusion

Introduce a low-rank factorization to speed up inference in hypergraph models

- Constrain only parameters used in inference bottlenecks
- Most effective with large models

Please see the paper for more experiments and analysis!

Citations I

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 'Building a Large Annotated Corpus of English: The Penn Treebank'. In: *Computational Linguistics* 19.2 (1993), pp. 313–330. URL:

https://www.aclweb.org/anthology/J93-2004.

Zhukov, Dimitri et al. 'Cross-task weakly supervised learning from instructional videos'. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2019, pp. 3537–3545.

Inference as Matrix-Vector Products

- ► Inference: sequence of matrix-vector products
- ► Speed up via fast matvec methods
- Applies to a large family of structured models

Model 1: Hidden Markov Models (HMMs)

For times t, model states $z_t \in [L] = \mathcal{L}$, and tokens $x_t \in [X] = \mathcal{X}$,

We wish to maximize

$$p(x) = \sum_{z_1} \cdots \sum_{z_T} p(x, z) = \mathbf{1}^\top \Psi_1 \Psi_2 \cdots \Psi_T \mathbf{1},$$

where

$$\begin{aligned} [\Psi_t]_{z_t, z_{t+1}} &= p(z_{t+1}, x_t \mid z_t) \\ [\Psi_1]_{z_1, z_2} &= p(z_2, x_1 \mid z_1) p(z_1) \end{aligned}$$

Model 2: Probabilistic Context-Free Grammars (PCFG)

Assign mass to each rule in a rewrite system

We wish to maximize

$$p(x) = \sum_{\text{tree:yield(tree)}=x} p(\text{tree})$$

Matvec Inference in PCFGs

For each rule define

$$[\Psi]_{z_u,(z_1,z_2)} = \rho(B=z_1,C=z_2 \mid A=z_u),$$

Algorithm 3 PCFG Inference

$$\begin{aligned} & \textbf{for } (i,k) \leftarrow (i,j), (j,k) \text{ in span-size order } \textbf{do} \\ & \textbf{for } z_1, z_2 \in \mathcal{L}_{i,j} \times \mathcal{L}_{j,k} \textbf{ do} \\ & [\beta_{i,j,k}]_{(z_1,z_2)} = [\alpha_{i,j}]_{z_1} [\alpha_{j,k}]_{z_2} \\ & \alpha_{i,k} \xleftarrow{+} \Psi_{i,j,k} \beta_{i,j,k} \\ & \textbf{return } \alpha_{1,T}^\top \textbf{1} \end{aligned}$$

Low-Rank Factorization

▶ Factor matrices $\Psi = UV^{\top}$, $U \in \mathbb{R}^{L \times R}$, $V \in \mathbb{R}^{L' \times R}$

$$\boxed{ \qquad \qquad } \times \boxed{\beta} = \boxed{U} \times \left(\boxed{V^{\top}} \times \boxed{\beta} \right)$$

▶ Two matrix-vector products of cost O(LR) and O(L'R)

Hypergraph Marginalization

- Models where exact inference is a directed acyclic hypergraph
- Hypergraph contains a node set and hyperedge set
 - ► Nodes have label set £
 - ightharpoonup Hyperedges join a single head node u and a list of tail nodes v

Hyperedge representations for HMMs and PCFGs

Hypergraph Marginalization Algorithms

Algorithm 4 Hypergraph marginalization	
for $u \leftarrow v$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v_1}} \alpha_{\mathbf{v_2}}^{\top}$	$\rhd O(L^{ e })$
$\alpha_{\it u} \stackrel{+}{\leftarrow} \Psi_{\it e} \beta_{\it v}$	$\rhd O(L^{ e +1})$
return $lpha_{S}^{T}1$	

Algorithm 5 Low-rank marginalization	
for $u \leftarrow v_1, v_2$ hyperedge e topologically do	
$\beta_{\mathbf{v}} \leftarrow \alpha_{\mathbf{v}_1} \alpha_{\mathbf{v}_2}^{\top}$	$\triangleright O(L^{ e })$
$\gamma \leftarrow V_e^ op eta_v^ op$	$\triangleright O(L^{ e }R)$
$\alpha_{\it u} \stackrel{+}{\leftarrow} U_{\it e} \gamma$	$\triangleright O(LR)$
return $lpha_{\mathcal{S}}^{ op}1$	

Expressiveness and Generality

- Rank constraints limit expressivity
- Only apply to a subset of parameters
 - Transition matrix for HMMs
 - Subset of the transition matrix for PCFGs
- Is it more expressive than a smaller model?
 - An L-state HMM with rank R (< L) is more expressive than an R-state HMM

Experiments

Experiments

- ► Language modeling on PENN TREEBANK²
 - Compare speed vs accuracy frontier
 - Softmax HMM and PCFG vs low-rank versions (LHMM, LPCFG)
 - Evaluate accuracy with perplexity, a function of likelihood
- ► Video modeling on CrossTask³
 - Scale state size with fixed computation budget
 - Softmax HSMM vs low-rank HSMM
 - Evaluate accuracy with negative log-likelihood

 $^{^2}$ Marcus, Santorini, and Marcinkiewicz, 'Building a Large Annotated Corpus of English: The Penn Treebank'.

³Zhukov et al., 'Cross-task weakly supervised learning from instructional videos'.

HMM Speed vs Accuracy

PCFG Speed vs Accuracy

HSMM Results

Model	L	Ν	NLL	Sec/Batch
HSMM	2 ⁶	-	1.428 <i>e</i> 5	0.78
HSMM	2^{7}	-	1.427 <i>e</i> 5	2.22
HSMM	2 ⁸	-	1.426 <i>e</i> 5	7.69
LHSMM	2 ⁷	27	1.427 <i>e</i> 5	4.17
LHSMM	2^{8}	2^{6}	1.426 <i>e</i> 5	5.00
LHSMM	2^{9}	2^{5}	1.424 <i>e</i> 5	5.56
LHSMM	2^{10}	2^4	1.423 <i>e</i> 5	10.00

Conclusion

- ▶ Introduce a low-rank factorization to speed up inference
- ► Applies to models with hypergraph inference
- Most effective with large models

Citations I

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 'Building a Large Annotated Corpus of English: The Penn Treebank'. In: *Computational Linguistics* 19.2 (1993), pp. 313–330. URL:

https://www.aclweb.org/anthology/J93-2004.

Zhukov, Dimitri et al. 'Cross-task weakly supervised learning from instructional videos'. In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2019, pp. 3537–3545.

HMM Music Results

Model	Nott	Piano	Muse	JSB
RNN-NADE	2.31	7.05	5.6	5.19
R-Transformer	2.24	7.44	7.00	8.26
LSTM	3.43	7.77	7.23	8.17
LV-RNN	2.72	7.61	6.89	3.99
SRNN	2.94	8.20	6.28	4.74
TSBN	3.67	7.89	6.81	7.48
HMM	2.43	8.51	7.34	5.74
LHMM	2.60	8.89	7.60	5.80

PCFG Results

$ \mathcal{N} $	$ \mathcal{P} $	Model	Ν	PPL	Sec/Batch
30	60	PCFG	-	252.60	0.29
		LPCFG	8	247.02	0.27
		LPCFG	16	250.59	0.27
60	120	PCFG	-	234.01	0.33
		LPCFG	16	217.24	0.28
		LPCFG	32	213.81	0.30
100	200	PCFG	-	191.08	1.02
		LPCFG	32	203.47	0.64
		LPCFG	64	194.25	0.81

HSMM Speed vs Accuracy

