					n								_ /											3					
				K				1				/		1-	1		-	a	/	n	0	1	1						
				1			1	10	m		N	0	-	"	, ,	e,		507	1						FY				
	1																				-		1			16 31			
	-	0			1	- 1	3		Osn.	-						115	N		BI	25	1	-	50		M				
	P	,				1					200	7		4							-					1		tion	M
	1	4	1		1	15		LA	Me	1	-	-K	+	p	110	010	e t	ibh		-	1	t's		qui	rer	NII	in	tion	-
-				60	-1	12		100	33			1		'		- 1	300	-	44										
	2 -	1		R			11				1								1		1	+			,	1.	1.6		
0	"			Di	rr	s tu	111		P	re	ola	to	on		Wh	w		1	T	1	1	-	0	~	-	~7	es	•	
																				7								Total .	
	F	1		6	=	1	V	. 7	(Z)		+	in	it	0	1	INI	oh			A		0	1 4	1					
)	18 8			1				1			1							
				MAG			184	39	14	7 1	8	18-5	T	-	H	· N				-4								10000	
	60	p.	f_i	In	10	ti	in		h	16	I	0	13			D	cu	1)	6	cu	V)	. /	KLI	W)		nr	4	100	
		,						N		1 6				Y											1				
				1				919		-	TATE	1				1													
	po	v m	bur		7	1		OP	en		11	10		0	10.	sur	C		el	10	3,	-	110	25	te	15			
								-							N In S					/		-		-	1				
																						77			-	1 1 1			
	re	-5	PE	rt	ive	19	١,	W	hu	æ	N	0	lu	ste	4	i	3	~		Se	t		con	vt.	wit	rin	2		
			1 2 2 2 2			1	112	7 3	100				100	- 110		2000						1					-		
100	4	-				-1				601				,	6.			an	_			1.	.1		100	16			
	/n	20			12	72	ex	3		WI	ne	v	1		וע	1	7	P	ca	2	21	7							
								1	-		1		0			19	1		1 3	1									
		A			W	6)	0	1			~		m	LNI	ns		OP	bn		1	ug	1	-	-				
	4	1	,	N.	al	J	-	11	1/		No		. 8			8 4	9				160		-		1	300			
		_				*			X			14	/		7	10/)	=	3	,	. 10		9		6	r lal	1) =	1		
						6	125	7	U		1	"			00		-		-	2 "		1	1	~		7			1
							1		1	1		0								1				1					
					- 8	-			-		100	1	100											-					
																					13.0		-						
	1	OY	A	u	1	10	-	DAV	NH	vt	ev		9	+	EI	, 1	J.	1 3	cl	us	to	4	P	n	raj	ne	ter	-	
						1	1				11.00.000		,					F				10	1			E			
					M	4	,	100	-	17				4	VK-					2		1		- A	1				
	2	ر	0			F	K	-	1	er	Col	nt	. 0	n	1	15	11/10	N		1	m		0 m		h	1			
		_				-																							
180		1					13		_		0	CW.	,			6	LW)		600	v)_	10							
	(P	0 4		10	LU	W)				P		6	1	P)	100	10	2		MA			110	9				
			. 1																					-	-				
																					1								
					1				-		D	LWI		0)	CUW	1	Kei	WJ	/	11				-					
		. 1		1	P.	1.4	61	W)	No.		1	-	1-	1,		2		1	2	5 1	. 2	4.		V	1h.	es	e		
	J					1	1	100															13/6			-41		100	
	,																												
	,	. 4						~	06-	1)			ke	W)															
	2	7,	. 5 .	G	1	2		P	06-	')_		1	, kı	W)			h,	rn	NI	12	30	tio	N						
	2	3 1	. 2.	G	-	2	-	P	06-	')_		2	, KL	W)			ho,	rn	NI	118	300	tis	n						
	2	30	٠٤.	G	-	2		P	06-	') -	-	2	, KL	w)	•		no.	rn	NI	1	300	tis	n						
	2	30	٠٤.	G	-	2		P	06-	,	-	2	, KL	w)	•		ho.	rn	N		* N	tii	12						

Def: Bomburg condition 5 is a particion of 26 ma irentify vertices in some Compresent as a claster (Before Cofg.) RMK: Under b.c. 5. k will repeat 5: \$ p.2. (w) of p (1-p) 2 kow. 5, e.1. i) Witz. b.c. 4 p.2.4 : 1863. ii) Free. b.c. \$ 9-2-4 : U te3 iii) Induct by a confg. outside to. (i.e. dh pri portition from hold. if he ho) iv) Dobrashin. b.c.: It is kind of sym. confq. Prop. C Dinnin Markon Property Fir 6 4 6. 4 4 50,13 Echi/ Echi). Then: ф3 с X 1 wees = yees. Усе Еск / Еск) = ф 48 (X). where 45 is p.c. induct by 6/5. and \$ P.2.4 (X) =: If p (X) Pf: VAErcy). IAKØ = KØ45. (2) FKG Irequility: Def: y For b.c. 3. n. 5 = n if : Vestex x.7 belongs to same composent under 3 => 50 they do water of

ii) p.m. m. m. m. s.m. if MICA) = MICA) for & A increasing event. Molley Inequility) Lamma. tw. m, cw). m.cw) >0 on G. finite. If M. (W) M, (Le) ? M, (We) M, (M). He & G. and In sw. Then M. St Mr. 7hm. CFKG. Irequility) Fix pe to,17. 2 > 1. Finite graph 6 now b.c. 3. Then: \$\\\ \text{1.1.4} \(\text{A} \text{B} \) \(\text{B} \) \(\text{For} \) Vinerusing events A.B. Pf: => 9 1.4 (B/A) 3 9 (B). fix A Ict M2 = 4(-1A). M, = 4(.) Chark book of Lamma: $\frac{p(n^2)}{m(n^2)} = \frac{p}{1-p} \frac{q}{2} k(n^2, s) - k(ne, s)$ M. (We)

P

R. (We)

P

R. (We, S) - K. (We, S)

Chestrict We = A

M. (We)

To p

R. (We)

R. WEEA AS WELL (=) prive: k cne, s, - k cne, s, = k cwe, s, - k cwe, s, It follows from : W=n. (Both Tikes take values in to, 13) So we proved it on A. If peas = 0. The trivial.

cor. Fix pt ti.17. Z:1. finite graph a 4 h.c. 5 = n. We have: Pp. 1.4 = 5 + 4 p. 1.4. Pf: Ext Yew) =: 2 kew. y) - kew. si fon w.

6 follows from argue above. $\Rightarrow \Lambda \phi^n / \lambda \phi^s = Y / \phi^s Y, R-N.$ Acrivate $\begin{array}{cccc}
\mathcal{L} B \gamma & \text{writeress.} & \text{cherk } \mathcal{L} : restly). \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & = & & & & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & & \\
\mathcal{L} A \mathcal{T} & \mathcal{L} A \mathcal{T} & \mathcal{P}^{n}(A) & & \\
\mathcal{L} A \mathcal{T} & \mathcal{L} A \mathcal{T} & \mathcal{L} A \mathcal{T} & \mathcal{L} A \mathcal{T} & \mathcal{L} &$ enr. (Monitonicity) Fix psp. b.c. 5 on finite graph a. 2=1. We have : 4 p. 2.4 St. 4 p. 2.4. Pf: Fox You) = (P' 1-P) O(W) f on V. => LQ+/LAp = Y/Qpey). $\frac{\partial P'(A)}{\partial P'(Y)} = \frac{\partial P(Y)}{\partial P(Y)} \cdot \frac{\partial P(Y)}{\partial P} \cdot \frac{\partial P(Y)}{\partial$ err. (Finite Energy Property) Fix Pt Co. 1]. 2=1. finite graph 6. b.c. 3. We pare: - P+ c1-p12 = 45 (VCf)=1 | WCe) = Yce) + c ∈ E(4)/(f3) ≥ P. for y ∈ (0.13 E(1)/4f) Pf: By Domain Mark: Q'cwcf,=1) < ~ < p'cwcf,=1) (3) Phase Transition: @ Infinite Volum Mensure: Note that of Lepends on the graph 6 is finite. We want to extend it to infinite graph. Def: (Sn) is Eq of b.c. on (An). We sny: \$1.2. nn converges or infinite Volum mensure & P.Z if lin & Pr. An (A) = \$ P.2 (A). for \$A. only deputs in finite edges. Fix 10 Eo. 17. 231 There exist two infinite volum mensure Pp.2. \$1.2.5t. { lim 41, n. 4A) = 41,2 (A) 1 1im \$ Pr. An (A) = 4 Pr. (A). for & A Repends on finite edges. Pf: Only prove it for q' c po similar s 1) Phon (A) = 4 hor (4 hor A 1 hors/10.) DAP & C A T CA)

follows from DMP and Finite energy prol 2) For no = 00: Use trifurcation and replace innept with "Finite energy property". regne as in Berpoulli bond percolation. B Critical Print: Thr. Fix 231. There 7 Pc= Pc (2) & [1.17. 52. i) For p > Pc . I infinite volum measure has 00 - cluster A.S. ii) For P<Pc. V infinite volum mansure has p. 00 - cluster. n.s. RMK: 1) Po is indept of chice of infinite Volum measures ii) 00 - cluster may not be unique under 52 per infinite volum mensace if pope Limma. q° (W(e) = 1) = q'(W(e) = 1) => 4' = q°. Pf: Proce: 4°(A) = b'(A). WAT reports on Av. 4 Thom extend to g). Note: + n. Ann = st 4nn.

Jo. 7 monotone coupling (w. w.) & [0.13 × [1.13] With p.m. IPn ((Wo. W.) . St. It's marginal Nist. is fin and fin. IP c wo = wi) =1 D = Par (A) - Par (A) = IPa (W. EA) - IPa (W. EA) = ProwitA. Wo & A) E Pr c 7 L t An. W. (4) = 1. W. (6) = 0) = I 11 n c Wices = 1. W. (c) = 0) = \(\(\frac{1}{n_r} \) \(\(\mathred{V(c)} = 1 \) - \(\frac{1}{n_r} \) \(\mathred{W(c)} = 1 \) \(\frac{1}{n+100} \) \(\frac{1}{n+100} \) Fix 221. 4"1 = 4:2 for all but countably. many pt [0.1]. RMK: It's intritive. Since when 1. 6. infinite graph. b.c. can be ignored If: By Lemma. whive we need to prove: Фр (W(e) = 1) = фр (W e e) = 1) . for p ~... Define free energy: fip. 21 = lim by 2 1.2.1. / #E(An) . where Z 1.2.1. = = p p 0 cm) c 1- p) ccm, 2 k(1, N) Rmk: f is inhapt of choice of 5 in

the limit Since 12111 ~ O(n). But IECANII ~ Uch. Note: ZP.7.1 = Z (P) 0 cm) 2 kcm.5, 1 Echn) 1 Set fre 1.2) = ln c 1+ e") + ln Z1.9. [| E char] = ln = t Trocw, 2 xcw. 2, / 1 Ec/~1 DTI for CTI. 21 = 4 0.2. no (OCM) / IECANI I D which is increasing on T. > for cTill is ansex. 50 = fr3 c T.1) -> ln (1+ et) + f. T.2). = (n (1+ 6") + f = P. 21 CONVEX. fcT,2) is lifterentiable on Ti except for countrable points claim = d'en (wee)=0) = de (wee)=1) on différenciable prints of fem. 2. Note: 2 = F = (T12) = | E(N-) | E(N-) | E(N-) | -> 4p.2 (Wees = 1) diff. pilats So as do for (TI. 2, Kors. (-> 27) f and q'er)

Return to pf: Ext Pe = sup [P | \$ 1.2 0 0 00) = 03 P1.2 (D (00) 7 P.2 (0 (00) = 1 1) P>P. [Nite []! so-cluster } isn't a increasing event. So we can't conclude its ? 4,2 (0 (00) 20 (4) Critical Value: Self-knal Point: 7hm. Consider Random Chaster model on Z. with cluster weight 2:1. Then exitical print : 10 c2 = J2/(1+JE) Rmk: We call Perzo by Self- lual print Pri e.g. 2=1. Paci) = = . i-e in BBP (Z) Lemma. The Land configuration of saxtom claster motel on a with cp 23 and b.c. g. is random eluster milel with (pt. 2) on 6t with b.c. 5t. st.

```
PP* ( c 1- p ) c 1- p* ) = 2. where 6*: weeks
          = 1- wees.
          Pf: Note that: 0(N) = c(N*) = # E* - 0 (N*).
             with Euler's Firmula:
             # V - 0 cv) + f cw) = 1+ k cw). few = kew+,
             i. t. K(w) = K(w*) + 0 (w*) + const.
             Nove &* (u*) = p(w) & (1-p) o(w) 1 kins
                       = \left(\frac{p^{*}}{1-p^{*}}\right) o(w^{*}) \frac{1}{2} k(w^{*})
      Rmk: Sut P=P* = P* = I2/61+ I2.
          5. that's why we call it self-had point.
Linna Fix 2:1. we have = $ Pact 2 2 (0 00) = 0.
     Pf: It's identical as we have proved in BBP:
         1 AT If $ (0000) > 0. Then $ (0000) = 1
      AL THE AR PCALNARNATION TO SUBJEEP)

(An AB CI-4E) (P/CP+CI-P)21) #An >0.
       ( Note 9. 4 are itenzient. if P= Psucq).
       which is antipolicien with co-cluster is prigne
```

Lemma. (Expinential Decay) i) P<PL => 3 ccp>>0.5t. Vn=1. 4 12.1n (0 €) d An) € e - ccpin ii) P > Pa. => 7 C. 1t. Pp. 10 (0 0) > Ccp-Pa) Peturn to pf of Thm: We have prove pools 3 psaces. by Lemma. If pecq, > Process. Then continued with exponential local and RSW estimate Next. We consider continuity of pat page: Thm. i) For 1=2=4. We have: \$\frac{1}{p_0.2} (0 \in 00) = 0 = \$\frac{1}{p_0.2} (0)\$ Pr. 2 (0 () 00) = 0. i) For 1=2=4 4 form = \$ 1000 2 ii) For 2 > 4 . 4 poet = 4 poet 2. Pf: It's immediately follows from the next bepma: benome. PE CO. 17. 2:1. If \$ (0000) = 0. Then \$ " W(E) = 1) - \$ (W(E) = 1) Rmk: By bemma we have groved before → ¢° = ¢′.

Pf: Note that & (wees=1) = lim Am (wees=1) It + r < m. Consider C = 1 x & An 1 x co dAn 3 => 50 ets o /m) = 50 & C3. (Consider finite first) ナンス - 4 Am (N(2)=1. 0 (3) /2) = ZOAN PAM (VCC)=1. C=A) = IONA PAM (WCL)=1/C=A) PAM (C=A) = ZOGA Qu (W(1)=1) PAM (C = A) (p° c w (c) = 1) q m (0 cm d n -) where N= Na/A. (Note du must be closed) containing 0. The fast inequi follows from Pn (A) 1 on n. if A 1. Eut m +00. n +00. with d'(0 +0-)=1. 50: \$ (W(x)=1) ? \$ (W(x)=0). Fix 7:1. The unique edge-weight & E [1.1] for which there can exist distinct on Vilan mensure is Peczi = 1sh czi. 1 f: For P < Psacz). 3 P = CP. Psaczi). 12 6 = 0 = For p. PSA(2). => p* < PIL +21. 500 4 = 4 p* = 4 p* = 4 p.

KOKLYD