Modulformen 1 – Übungsgruppe 10. November 2021

Wintersemester 2021/22

A: Besprechung 2.Übungszettel

Aufgabe 1

(a) mod ist offensichtlich ein Homomorphismus. Zu $\binom{a}{c} \binom{b}{d} \in \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ finden wir das gewünschte Element $\binom{a+kN}{c'} \binom{b+lN}{d'}$ in $\operatorname{SL}_2(\mathbb{Z})$ für $k,l \in \mathbb{Z}$ und $c' \equiv c \mod N$ bzw. $d' \equiv d \mod N$. Damit ist φ surjektiv und der Homomorphiesatz für Gruppen liefert:

$$[\operatorname{SL}_2(\mathbb{Z}) : \Gamma(N)] = |\operatorname{SL}_2(\mathbb{Z})/\ker(\varphi)| = |\operatorname{Bild}(\varphi)| = |\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})|$$
.

(b) In der ersten Spalte einer Matrix $M=\binom{a\ b}{c\ d}\in \mathrm{GL}_2(\mathbb{Z}/p^{\nu_p}\mathbb{Z})$ wird jede Kombination bis auf den Fall $p\not\mid \mathrm{ggT}(a,b)$ zugelassen. Aus insgesamt $p^{2\nu_p}$ Möglichkeiten müssen wir also $p^{2\nu_p-2}$ Wahlen entfernen, da für jedes p^2 -te Paar $p\mid a$ oder $p\mid b$ gilt. In der zweiten Spalte dürfen wir auch keine Linearkombination η zulassen, sodass $p\not\mid \mathrm{ggT}(\eta)$ gilt. Hierzu müssen $p^{2\nu_p-1}$ Möglichkeiten ausgeschlossen werden. Insgesamt ergibt sich also:

$$|\operatorname{GL}_2(\mathbb{Z}/p^{\nu_p}\mathbb{Z})| = \underbrace{\left(p^{2\nu_p} - p^{2\nu_p - 2}\right)}_{\text{\#erste Spalte}} \cdot \underbrace{\left(p^{2\nu_p} - p^{2\nu_p - 1}\right)}_{\text{\#zweite Spalte}} = p^{4\nu_p} \cdot \left(1 - p^{-2}\right) \left(1 - p^{-1}\right) \ .$$

- (c) Durch $\det: \operatorname{GL}_2(\mathbb{Z}/p^{\nu_p}\mathbb{Z}) \to (\mathbb{Z}/p^{\nu_p}\mathbb{Z})^{\times}$ ist ein surjektiver Gruppenhomomorphismus mit $\ker(\det) = \operatorname{SL}_2(\mathbb{Z}/p^{\nu_p}\mathbb{Z})$ gegeben. Wegen $\left| (\mathbb{Z}/p^{\nu_p}\mathbb{Z})^{\times} \right| = p^{\nu_p} p^{\nu_p-1}$ (Satz 5.3 †) und dem Resultat aus (b) folgt die Gleichheit der Mächtigkeit aus dem Homomorphiesatz.
- (d) Zu einer Kongruenzuntergruppe $\Gamma\subseteq \mathrm{SL}_2(\mathbb{Z})$ findet man ein N mit $\Gamma(N)\subseteq \Gamma$. Mit dem Resultat aus (c) wissen wir, dass $\Gamma(N)$ endlichen Index in $\mathrm{SL}_2(\mathbb{Z})$ hat. Die Behauptung folgt mit dem Satz von Lagrange $[\mathrm{SL}_2(\mathbb{Z}):\Gamma(N)]=[\mathrm{SL}_2(\mathbb{Z}):\Gamma]\cdot [\Gamma:\Gamma(N)]$.

Aufgabe 2

(a) Die Aktion $M\circ \mathcal F$ auf $\mathbb H$ ist wegen $\mathrm{Im}(M\langle z\rangle)=\frac{\mathrm{Im}(z)}{|cz+d|^2}>0$ wohldefiniert (Gleichung (1.2)). Da $z\mapsto M\langle z\rangle$ ein Automorphismus auf $\mathbb H$ ist, vererbt sich die Topologie auf $\mathcal F$ ($\Rightarrow M\circ \mathcal F$ abgeschlossen und zusammenhängend). Jeder zu $w\in \mathcal F$ $\mathrm{SL}_2(\mathbb Z)$ -äquivalente Punkt $z\in \mathbb H$ ist auch zu $M\langle w\rangle\in M\circ \mathcal F$ $\mathrm{SL}_2(\mathbb Z)$ -äquivalent. Und wenn zwei innere Punkte $z,w\in M\circ \mathcal F$ $\mathrm{SL}_2(\mathbb Z)$ -äquivalent wären, so gälte dies auch für $M^{-1}\langle z\rangle$ und $M^{-1}\langle w\rangle$ in $\mathcal F$ ($\mathcal F$).

^{†©} Vorlesung "Primzahlen - Eine Einführung in die Zahlentheorie" von Prof. Dr. Otto Forster zum SS 2008

Aufgabe 3

- (a) Wir zeigen zunächst, dass [0] und $[\infty]$ Spitzenklassen von $\Gamma_0(p)$ sind und überprüfen, ob diese verschieden sind. Da alle Spitzen in $\mathbb{Q} \cup \{\infty\}$ liegen (Proposition 1.31) genügt es zu zeigen, dass jede Restklasse [s] mit $s = \frac{x}{y} \in \mathbb{Q}^*$ mit $\operatorname{ggT}(x,y) = 1$ in genau diesen Bahnen liegt. 1.Fall: p teilt y, dann existiert ein $c \in \mathbb{Z}$ mit cp = y und nach dem Euklidischen Algorithmus existieren $b,d \in \mathbb{Z}$ mit dx + by = 1. Wir setzen $M := \begin{pmatrix} x & -b \\ cp & d \end{pmatrix} \in \Gamma_0(p)$ mit $M\langle \infty \rangle = s$ 2.Fall: p teilt p nicht, dann gilt $\operatorname{ggT}(p,y) = 1$ und auch $\operatorname{ggT}(xp,y) = 1$. Gleichermaßen existieren $b,d \in \mathbb{Z}$ mit dy + bxp = 1. Dann folgt $M := \begin{pmatrix} d & x \\ -bp & y \end{pmatrix} \in \Gamma_0(p)$ mit $M\langle 0 \rangle = s$.
- (b) Analog zu (a) finden wir, dass jede Restklasse [s] mit $s=\frac{x}{y}\in\mathbb{Q}^*$ mit $\operatorname{ggT}(x,y)=1$ in den Bahnen von $[0],[\infty]$ und $[-\frac{1}{kp}]$ mit $k\in\{1,\cdots,p-1\}$ liegen muss. 1.Fall: p^2 teilt y, dann liegt s in der Bahn von ∞ . 2.Fall: p teilt y und p^2 teilt y nicht, dann betrachte man eine Matrix $M\in\Gamma_0(p^2)$ in der Form $M=\binom{x\ b}{y\ d}\binom{2kp+1\ 2}{kp\ 1}=\binom{kp(2x+b)+x\ 2x+b}{kp(2y+d)c\ 2y+d},$ sodass $M\langle -\frac{1}{kp}\rangle =s$ gilt. 3.Fall: p teilt y nicht, dann ist \bar{y} eine Einheit von $\mathbb{Z}/p^2\mathbb{Z}$ und liegt in der Bahn von 0. Es bleibt nachzuweisen, dass die Bahnen echt verschieden sind. Hier kann man zeigen:
 - $\bullet \ \, \nexists N \in \Gamma_0(p^2) \ \, \mathrm{mit} \, \, N\langle \infty \rangle = \mathfrak{s} \, \, \mathrm{mit} \, \, \mathfrak{s} \in \{0, -\tfrac{1}{kp}\}.$
 - $\bullet \ \, \nexists N \in \Gamma_0(p^2) \, \, \mathrm{mit} \, \, N\langle 0 \rangle = -\tfrac{1}{kp}.$
 - $\nexists N \in \Gamma_0(p^2)$ mit $N\langle -\frac{1}{k_1p}\rangle = -\frac{1}{k_2p}$ für $k_1 \neq k_2$.

B: Übungsaufgaben

Sei p prim.

- (a) Zeigen Sie, dass die Matrizen $ST^k=\binom{0\ -1}{1\ k}$ für $0\le k\le p-1$, zusammen mit I_2 , ein Vertretersystem von Rechtsnebenklassen für $\Gamma_0(p)$ in $\mathrm{SL}_2(\mathbb{Z})$ darstellen.
- (b) Folgern Sie aus (a), dass $\binom{k-1}{-1}$ für $0 \le k \le p-1$, zusammen mit I_2 , ein Vertretersystem von Linksnebenklassen für $\Gamma_0(p)$ in $\mathrm{SL}_2(\mathbb{Z})$ darstellt.