EDAN20

Language Technology

http://cs.lth.se/edan20/

Chapter 6: Words, Parts of Speech, and Morphology

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 13, 2018

The Parts of Speech

The parts of speech (POS) are classes that correspond to the lexical – or word – categories

Plato made a distinction between the verb and the noun.

After him, the word categories further evolved and grew in number until Dionysus Thrax formulated and fixed them.

Aelius Donatus popularized the list of the eight parts of speech: noun, pronoun, verb, participle, conjunction, adverb, preposition, and interjection.

Grammarians have adopted these POS for most European languages although they are somewhat arbitrary

POS divide between two main classes: the open class and the closed class

Parts of Speech: Open Class Words

POS	English	French	German
Nouns	name, Frank	nom, François	Name, Franz
Adjectives	big, good	grand, bon	groß, gut
Verbs	to swim	nager	schwimmen
Adverbs	rather, very, only	plutôt, très, uniquement	fast, nur, sehr, endlich

Parts of Speech: Closed Class Words

POS	English	French	German
Determiners	the, several, my	le, plusieurs, mon	der, mehrere, mein
Pronouns	he, she, it	il, elle, lui	er, sie, ihm
Prepositions	to, of	vers, de	nach, von
Conjunctions	and, or	et, ou	und, oder
Auxiliaries	be, have, will, would	être, avoir, pouvoir	sein, haben, können
and modals			

Part-of-Speech Annotation (CoNLL 2000)

Annotation of: He reckons the current account deficit will narrow to only # 1.8 billion in September. We set aside the last column for now.

He	PRP	B-NP
reckons	VBZ	B-VP
the	DT	B-NP
current	JJ	I-NP
account	NN	I-NP
deficit	NN	I-NP
will	MD	B-VP
narrow	VB	I-VP
to	TO	B-PP
only	RB	B-NP
#	#	I-NP
1.8	CD	I-NP
billion	CD	I-NP
in	IN	B-PP
September	NNP	B-NP
		0

Features

Main parts of	Features (subcategories)
speech	
Adjective, noun, pro-	Regular base comparative superlative interroga-
noun	tive person number case
Adverb	Regular base comparative superlative interroga-
	tive
Article, determiner,	Person case number
preposition	
Verb	Tense voice mood person number case

The CoNLL Format (2006)

Annotation of: La reestructuración de los otros bancos checos se está acompañando por la reducción del personal 'The restructuring of Czech banks is accompanied by the reduction of personnel'.

ID	FORM	LEMMA	CPOS	POS	FEATS
1	La	el	d	da	num=s gen=f
2	reestructuración	reestructuración	n	nc	num=s gen=f
3	de	de	S	sp	for=s
4	los	el	d	da	gen=m num=p
5	otros	otro	d	di	gen=m num=p
6	bancos	banco	n	nc	gen=m num=p
7	checos	checo	a	aq	gen=m num=p
8	se	se	p	p0	
9	está	estar	V	vm	num=s per=3 mod=i tmp=p
10	acompañando	acompañar	V	vm	mod=g
11	por	por	S	sp	for=s
12	la	el	d	da	num=s gen=f
13	reducción	reducción	n	nc	num=s gen=f
14	del	del	S	sp	gen=m num=s for
15	personal	personal	n	nc	gen=m num=s
16			F	Fp	

EDAN20 Language Technology http://cs.lth.se/edan20/

Parts of Speech for Swedish

<token id="9">vägen</token>
<token id="10">så</token>
<token id="11">att</token>

Bilen framför justitieministern svängde fram och tillbaka över vägen så att hon blev rädd.

'The car in front of the Justice Minister swung back and forth and she was frightened.'

Parts of Speech for Swedish

```
<taglemmas>
  <taglemma id="1" tag="nn.utr.sin.def.nom" lemma="bil"/>
  <taglemma id="2" tag="pp" lemma="framför"/>
  <taglemma id="3" tag="nn.utr.sin.def.nom" lemma="justitieminister"</pre>
  <taglemma id="4" tag="vb.prt.akt" lemma="svänga"/>
  <taglemma id="5" tag="ab" lemma="fram"/>
  <taglemma id="6" tag="kn" lemma="och"/>
  <taglemma id="7" tag="ab" lemma="tillbaka"/>
  <taglemma id="8" tag="pp" lemma="över"/>
  <taglemma id="9" tag="nn.utr.sin.def.nom" lemma="väg"/>
  <taglemma id="10" tag="ab" lemma="så"/>
  <taglemma id="11" tag="sn" lemma="att"/>
  <taglemma id="12" tag="pn.utr.sin.def.sub" lemma="hon"/>
  <taglemma id="13" tag="vb.prt.akt.kop" lemma="bli"/>
  <taglemma id="14" tag="jj.pos.utr.sin.ind.nom" lemma="p</pre>
  <taglemma id="15" tag="mad" lemma="."/>
</taglemmas>
```

Categories from the Stockholm–Umeå Corpus (SUC)

Code	Swedish category	Example	English translation
AB	Adverb	inte	Adverb
DT	Determinerare	denna	Determiner
HA	Frågande/relativt adverb	när	Interrogative/relative adverb
HD	Frågande/relativ determinerare	vilken	Interrogative/relative determiner
HP	Frågande/relativt	som	Interrogative/relative
	pronomen		pronoun
HS	Frågande/relativt posses-	vars	Interrogative/relative
	sivt pronomen		possessive
ΙE	Infinitivmärke	att	Infinitive marker
IN	Interjektion	ja	Interjection
JJ	Adjektiv	glad	Adjective Adjective
KN	Konjunktion	och	Conjunction

Categories from the Stockholm–Umeå Corpus (SUC)

Code	Swedish category	Example	English translation
NN	Substantiv	pudding	Noun
PC	Particip	utsänd	Participle
PL	Partikel	ut	Particle
PM	Egennamn	Mats	Proper noun
PN	Pronomen	hon	Pronoun
PP	Preposition	av	Preposition
PS	Possessivt pronomen	hennes	Possessive
RG	Grundtal	tre	Cardinal number
RO	Ordningstal	tredje	Ordinal number
SN	Subjunktion	att	Subjunction
UO	Utländskt ord	the	Foreign word
VB	Verb	kasta	Verb

Features from the Stockholm–Umeå Corpus (SUC)

Feature	Value	Legend	POS where feature applies
Gender	UTR	Uter (common)	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
	NEU	Neuter	
	MAS	Masculine	
Number	SIN	Singular	DT, HD, HP, JJ, NN, PC, PN, PS, (RG, RO)
	PLU	Plural	
Definiteness	IND	Indefinite	DT, (HD, HP, HS), JJ, NN, PC, PN, (PS, RG, RO)
	DEF	Definite	,
Case	NOM	Nominative	JJ, NN, PC, PM, (RG, RO)
	GEN	Genitive	. ,
Tense	PRS	Present	VB
	PRT	Preterite	a tr
	SUP	Supinum	
	INF	Infinite	

Features from the Stockholm–Umeå Corpus (SUC)

Feature	Value	Legend	POS where feature applies
Voice	AKT	Active	
	SFO	S-form (passive or depo-	1
		nential)	1
Mood	KON	Subjunctive (Sw. konjunk-	1
		tiv)	1
Participle form	PRS	Present	PC
	PRF	Perfect	
Degree	POS	Positive	(AB), JJ
	KOM	Comparative	
	SUV	Superlative	
Pronoun form	SUB	Subject form	PN
	OBJ	Object form	97.5
	SMS	Compound (Sw. samman-	All parts-of-specific
		sättningsform)	

Lexicons: An Excerpt from the Oxford Advanced Learner's Dictionary

Word	Pronunciation	Syntactic tag	Syllable count or verb pattern (for verbs)
а	0	S-*	1
а	El	Ki\$	1
a fortiori	el ,fOtl'Oral	Pu\$	5
a posteriori	el ,p0sterl'Oral	OA\$,Pu\$	6
a priori	el ,pral'Oral	OA\$, Pu\$	4
a's	Eiz	Kj\$	1
ab initio	&b I'nISI@U	Pu\$	5
abaci	'&b@sal	Kj\$	3
aback	@'b&k	Pu%	2
abacus	'&b@k@s	K7%	3
abacuses	'&b@k@sIz	Kj%	4
abaft	@'bAft	Pu\$,T-\$	2
abandon	@'b&nd@n	H0%,L@%	36A,14
abandoned	@'b&nd@nd	Hc%,Hd%,OA%	□ >36A,14 = > < ■ > = = > <

Letter Trees

Letter Trees in Prolog

Finding a Word in a Trie

```
% Checks if a word is in a trie
% is_word_in_trie(+WordChars, +Trie, -Lex)
is_word_in_trie([H | T], Trie, Lex) :-
   member([H | Branches], Trie),
   is_word_in_trie(T, Branches, Lex).
is_word_in_trie([], Trie, LexList) :-
   findall(Lex, (member(Lex, Trie), atom(Lex)), LexList),
   LexList \= [].
% We assume that the word lexical entry is an atom
```


Morphemes

	Word	Morpheme decomposition
English	disentangling	<u>dis</u> + <u>en</u> + tangle + <u>ing</u>
	rewritten	<u>re</u> + write + <u>en</u>
French	désembrouillé	<u>dé</u> + <u>em</u> + brouiller + <u>é</u>
	récrite	<u>re</u> + écrire + <u>te</u>
German	entwirrend	<u>ent</u> + wirren + <u>end</u>
	wiedergeschrieben	<u>wieder</u> +ge+schreiben+en

Inflection

	Plural of nouns	Morpheme decomposition
English	hedgehogs	hedgehog+s
	churches	church+es
	sheep	sheep+0
French	hérissons	hérisson+s
	chevaux	cheval+ux
German	Gründe	Grund+(")e
	Hände	Hand+(")e
	Igel	lgel+Ø

Derivation

Creation of a new word

	English	French	German
Prefixes	foresee,	pré voir,	vorhersehen,
	un pleasant	dé plaisant	un angenehm
Suffixes	manage able ,	gér able ,	vorsicht ich ,
	rigor ous	rigour eux	streit bar

Morphological Processing

Generation \rightarrow

English		French		German	
dog+s work+ing un+do	working	travailler+ant	chiens travaillant défaire	Hund+e arbeiten+end	Hunde arbeitend

← Parsing

Language Differences (Source: Xerox)

Language	# stems	# inflected	forms	Lex. size (kb)
English	55,000	240,000		200-300
French	50,000	5,700,000		200-300
German	50,000	350,000	or	450
		infinite	(compounding)	
Japanese	130,000	200	suffixes	500
		20,000,000	word forms	500
Spanish	40,000	3,000,000		200-300

Ambiguities

	Words	Words in context	Lemmatization
Е	Run		
		A run in the forest	1 run: noun sing.
		Sportsmen run everyda	ay 2 run : verb present third pers. pl.
F	Marche		
		① Une marche dans la fo	orêt 1 marche : noun sing. fem.
		② Il marche dans la coul	marcher: verb present third pers. sing.
G	Lauf		27年
		① Der Lauf der Zeit	1 Der Lauf: nous
		2 Lauf schnell!	2 laufen: verb, impoint
Dierre N	lugues ED	AN20 Language Technology http://cs.lth	September 13 2018 23/52

Two-Level Morphology

Current morphological parsers are based on the two-level model of Kimmo Koskenniemi (1983).

It links the surface form of a word – the word as it is in a text – to its lexical or underlying form – its sequence of morphemes

Surface:	disentangled	
Lexical (or underlying):	dis+en+tangle+ed	

Examples

	Generation: Lexical to surfa	ce form $ ightarrow$			
English	dis+en+tangle+ed	disentangled			
	happy+er	happier			
	move+ed	moved			
French	dés+em+brouiller+é	désembrouillé			
	dé+chanter+erons	déchanterons			
German	ent+wirren+end	entwirrend			
	wieder+ge+schreiben+en	wiedergeschrieben			
	Parsing: ← Surface to lexical form				

Aligning the Two Forms

English	dis+en+tangle+ed	happy+er	move+ed
	\$	\$\$	\$
	dis0en0tangl00ed	happi0er	mov00ed
French	dé+chanter+erons	cheval+ux	cheviller+é
	\$	*** · · ·	\$\$
	dé0chant000erons	cheva00ux	chevill000é
German	singen+st	Grund+"e	Igel+Ø
	☆ · · ·	\$\$	\$
	singe00st	Gründ00e	Igel00

Interpreting the Morphemes

Suffixes have a grammatical interpretation: *erons* in a French verb corresponds to verb + future + 1st person + plural Morphological parsers can represent the lexical form as a concatenation of the stem and its features instead of the stem and the suffix. The Xerox parser output for *disentangled* and *happier* is:

disentangle+Verb+PastBoth+123SP
happy+Adj+Comp

where +Verb denotes a verb, +PastBoth, either past tense or past participle, and +123SP any person, singular or plural; +Adj denotes an adjective and +Comp, a comparative.

Aligning Morphemes and Features

Lexical:	d	i	s	е	n	t	a	n	g	1	е	+Verb	+PastBoth	+123sp
	\bigcirc	\uparrow												
Surface:	d	i	s	е	n	t	a	n	g	1	0	0	е	d

Transducers

The string abbbc is transduced into zyyyx

Mathematical Definition of a FST

- Q is a finite set of states.
- Σ is a finite set of symbol or character pairs i:o, where i is a symbol of the input alphabet and o of the output alphabet. As we saw, both alphabets may include epsilon transitions.
- **3** q_0 is the start state, $q_0 \in Q$.
- **4** F is the set of final states, $F \subseteq Q$.
- **3** δ is the transition function $Q \times \Sigma \to Q$, where $\delta(q, i, o)$ returns the state where the automaton moves when it is in state q and consumes the input symbol pair i : o.

The quintuple defining automaton is $Q = \{q_0, q_1, q_2\}$,

$$\Sigma = \{a: z, b: y, c: x\},\$$

$$\delta = \{\delta(q_0, a:z) = q_1, \delta(q_1, b:y) = q_1, \delta(q_1, c:x) = q_2\}, \text{ and } F$$

4 0 > 4 0 > 4 3 >

French Verb Transducers for *chanter*

Number\Person	First	Second	Third
singular	chanterai	chanteras	chantera
plural	chanterons	chanterez	chanteront

Number\Pers.	First	Second	Third
singular	chanter+erai	chanter+eras	chanter+era
	chant000erai	chant000eras	chant000era
plural	chanter+erons	chanter+erez	chanter+eront
	chant000erons	chant000erez	chant000eront

Transducer for *chanter*

French Verb Transducers: Future, 1st Group

Transducers in Prolog

```
arc(1,1,C,C) := letter(C).
arc(1,2,e,0). arc(6,7,a,a).
                                  arc(6,12,0,0).
arc(2,3,r,0). arc(7,8,i,i).
                                  arc(12,13,n,n).
arc(3.4.+.0).
             arc(7.9.s.s).
                                  arc(13.14.s.s).
arc(4.5.e.e).
              arc(6.10.e.e).
                                  arc(13.15, t, t).
arc(5.6.r.r).
                arc(10.11.z.z).
final state(7).
                   final_state(9).
                                        final state(14).
final state(8).
                   final_state(11).
                                        final_state(15).
% letter(+L) describes the French lower-case letters
letter(L) :- atom_codes(L, [Code]), 97 =< Code, Code =< 122, !</pre>
letter(L) :-
 member(L, [à, â, ä, ç, é, è, ê, ë, î, ï, ô, ö, ù,
```

Running the Transducer

```
transduce(+Start, ?Final, ?Underlying, ?Surface).
% arc(Start, End, UnderlyingChar, SurfaceChar) describes the automa-
% transduce(+Start, ?Final, ?UnderlyingString, ?SurfaceString)
transduce(Start, Final, [U | UnderlyingString], SurfaceString) :-
  arc(Start, Next, U, 0),
  transduce(Next, Final, UnderlyingString, SurfaceString).
transduce(Start, Final, UnderlyingString, [S | SurfaceString]) :-
  arc(Start, Next, 0, S),
  transduce(Next, Final, UnderlyingString, SurfaceString).
transduce(Start, Final, [U | UnderlyingString],
    [S | SurfaceString]) :-
  arc(Start, Next, U, S),
 U = 0, S = 0.
  transduce(Next, Final, UnderlyingString, SurfaceString)
transduce(Final, Final, [], []) :- final_state(Final).
```

Transducers with OpenFst

OpenFst is a library to create and process transducers. We encode the lexical and surface forms of the conjugation as:

```
1 1 a a
                               10 11 z z
1 1 b b
                               6 12 o o
1 1 c c
                               12 13 n n
                               13 14 s s
1 2 e <epsilon>
                               13 15 t t
2 3 r <epsilon>
3 4 + < epsilon >
45 e e
5 6 r r
                               11
67 a a
                               14
7 8 i i
                               15
7 9 s s
6 10 e e
```


Transducers with OpenFst (II)

We encode rêver+era as a single chain automaton:

```
0 1 r
1 2 ê
2 3 v
3 4 e
4 5 r
5 6 +
6 7 e
7 8 r
8 9 a
9
```

```
$ fstcompile --isymbols=symbols.txt --osymbols=symbols.txt \
  first_group_future.fst first_group_future.bin
$ fstcompile --isymbols=symbols.txt --acceptor \
    rêver+era.fst rêver+era.bin
```

Transducers with OpenFst (III)

We generate the surface form by composing the input with the transducer:

```
fstcompose rêver+era.bin first_group_future.bin | \
fstprint --isymbols=symbols.txt --osymbols=symbols.txt
0.1 rr
1 2 ê ê
2 3 v v
3 4 e <epsilon>
4 5 r <epsilon>
5 6 + < epsilon >
67 e e
7 8 r r
89 a a
```

Transducers with OpenFst (IV)

To remove the ε , we need to project the results using the fstproject command that restricts a transducer to an acceptor with only the output and we and apply the fstrmepsilon command:

```
$ fstcompose rêver+era.bin first_group_future.bin | \
  fstproject --project_output | fstrmepsilon | \
  fstprint --isymbols=symbols.txt --osymbols=symbols.txt
0 1 r r
1 2 ê ê
2 3 v v
3 4 e e
4 5 r r
5 6 a a
6
```

EDAN20 Language Technology http://cs.lth.se/edan20/

Romance Languages

Language	Number\Person	First	Second	Third
Italian				
	singular	canterò	canterai	canterà
	plural	canteremo	canterete	canteranno
Spanish				
	singular	cantaré	cantarás	cantará
	plural	cantaremos	cantaréis	cantarán
Portuguese				
	singular	cantarei	cantarás	cantará
	plural	cantaremos	cantareis	cantarão

Ambiguity

In the transducer for future tense, there is no ambiguity: A surface form has only one lexical form with a unique final state.

- (je) chante 'I sing'
 - (il) chante 'he sings'

This is not the case with the present tense

Number\Person	First	Second	Third
singular	chante	chantes	chante
plural	chantons	chantez	chantent

Transducer Ambiguity

Final states 5 and 7 are the same.

The implementation in Prolog is similar to that of the future tense. Using backtracking, the transducer can produce all the final states reflecting the morphological ambiguity.

Koskenniemi's Rules

Koskenniemi described morphology with declarative rules.

They use the left and right context and the \Rightarrow , \Leftarrow , \Leftrightarrow , or $/\Leftarrow$ operators In English, a lexical y can correspond to a surface i as in happier.

It occurs when y is preceded by a consonant and followed by -er, -ed, or -s.

- **1** y:i ← C:C __ +:0 e:e r:r
- ② y:i ← C:C __ +:e s:s
- 3 $y:i \Leftarrow C:C _ +:0 e:e d:d$

Two-level Rules

Lexical:surface transduction is described by rules.

Rule	S		Description
a:b	\Rightarrow	lc rc	a is transduced as b only when it has 1c to the
			left and rc to the right
a:b	\Leftarrow	lc rc	a is always transduced as b when it has 1c to
			the left and rc to the right
a:b	\Leftrightarrow	lc rc	a is transduced as b always and only when it
			has 1c to the left and rc to the right
a:b	/=	lc rc	a is never transduced as b when it has 1c to
			the left and rc to the right

Parallel Rules

All the rules are applied in parallel (provided that their context match)

Rules and Transducers

Rules can be compiled as an equivalent transducer

Rule Intersection

The parallel transducers are then combined into a single one using the transducer intersection.

Problems with Intersection

The intersection of two finite automata defines a finite-state automaton It is not always the case for finite-state transducers.

Kaplan and Kay (1994) demonstrated that when surface and lexical pairs have the same length – without ε –, the intersection is a transducer.

This property is sufficient to intersect the rules in practical applications.

In fact, transducers obtained from two-level rules are intersected by treating the ε symbol as an ordinary symbol (Beesley and Karttunen 2003, p. 55).

Xerox

Originally, rules were compiled by hand.

However, it can quickly become intractable especially when it comes to managing conflicting rules or when rule contexts interfere with transduced symbols.

To solve it, we can use a compiler that creates transducers automatically from two-level rules.

The Xerox's XFST is an example of it. It is a publicly available tool and to date the only serious implementation of a morphological rule compiler.

Morphology of French Verbs

We used the stem and a set of suffixes for French regular verbs. French irregular verbs are notoriously more complex. Chanod (1994) gives an example of decomposition into simple rules.

Infinitive	courir	dormir	battre	peindre	écrire
First person sing.	cour <u>s</u>	dors	bats	peins	écris
Second person sing.	cour <u>s</u>	dors	bats	peins	écris
Third person sing.	cour <u>t</u>	dort	bat	peint	écrit
First person pl.	cour <u>ons</u>	dormons	battons	peignons	écrivons
Second person pl.	cour <u>ez</u>	dormez	battez	peignez	écrivez
Third person pl.	cour <u>ent</u>	dorment	battent	peignent	écrivent

French Morphology

Lexical form: stem	dormir	+IndP +SG +P1
	\downarrow	\uparrow
Intermediate form: inflection	dorm	+IndP +SG +P1
	\uparrow	\uparrow
Intermediate form: deletion of <i>m</i> fo	l- dorm	S
lowed by s		
	\uparrow	\uparrow
Surface form:	dor	S

From *peindre* to *peins* $n:0 \Leftrightarrow g _{s|t}$

Composition and Intersection

