

planetmath.org

Math for the people, by the people.

${\bf supremum}$

Canonical name Supremum

Date of creation 2013-03-22 11:48:12 Last modified on 2013-03-22 11:48:12

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Definition
Classification msc 06A06
Related topic Infimum

Related topic MinimalAndMaximalNumber

 $Related\ topic \qquad Infimum And Supremum For Real Numbers$

Related topic ExistenceOfSquareRootsOfNonNegativeRealNumbers

Related topic LinearContinuum

Related topic NondecreasingSequenceWithUpperBound

Related topic EssentialSupremum

The *supremum* of a set X having a partial order is the least upper bound of X (if it exists) and is denoted sup X.

Let A be a set with a partial order \leq , and let $X \subseteq A$. Then $s = \sup X$ if and only if:

- **1.** For all $x \in X$, we have $x \leq s$ (i.e. s is an upper bound).
- **2.** If s' meets condition **1**, then $s \leq s'$ (s is the *least* upper bound).

There is another useful definition which works if $A = \mathbb{R}$ with \leq the usual order on \mathbb{R} , supposing that s is an upper bound:

$$s = \sup X$$
 if and only if $\forall \varepsilon > 0, \exists x \in X : s - \varepsilon < x$.

Note that it is not necessarily the case that $\sup X \in X$. Suppose X = [0, 1[, then $\sup X = 1$, but $1 \notin X$.

Note also that a set may not have an upper bound at all.