Introdução ao Cálculo Numérico

- Seja numa calculadora científica ou numa linguagem de programação, sempre há disponível um conjunto de funções básicas, tais como as trigonométricas, raiz quadrada, exponencial e logaritmo.
- Essas funções podem ser calculadas usando diferentes técnicas, como:
 - Aproximação sucessiva;
 - Séries de potências;
 - Interpolação.
- · Veremos, a seguir, exemplos dessas técnicas:

- Cálculo da raiz quadrada
 - Uma forma de calcular $x = \sqrt{a}$ é através de um método de aproximação sucessiva, denominado de *método babilônico*, o qual pode ser descrito pelos seguintes passos:
 - 1. Escolha $x_0 \cong \sqrt{a}$ 2. Calcule $x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$, para $k \geq 0$, até que $|x_{k+1} - x_k| < \epsilon$
 - O último valor calculado de x_{k+1} aproxima \sqrt{a} , sujeito ao valor de tolerância ϵ , o qual é escolhido de forma que o valor de x_{k+1} seja "exato" (i,e,, na precisão do computador).

- Cálculo da raiz quadrada
 - Vejamos um exemplo: suponha que se deseja calcular $x=\sqrt{12,34}=3,5128336145$, usando como estimativa inicial o valor $x_0=\frac{a}{2}=6,17$.
 - As primeiras cinco iterações do método babilônico nos fornecem:

Observe como o número de dígitos corretos aumenta rapidamente à medida que os valores x_k se aproximam do valor esperado!

- Observe que o método babilônico nada mais é do que o método de Newton-Raphson:
 - O problema que queremos resolver é calcular $x=\sqrt{a}$.
 - Um simples manipulação algébrica nos permite escrever esse problema na forma f(x) = 0:

$$x^2 - a = 0,$$

de onde vemos que estamos buscando a raiz da função $f(x) = x^2 - a$.

• Escrevendo a equação governante do método de Newton-Raphson para essa função, temos:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^2 - a}{2x_k} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right) \blacksquare$$

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS

- •Outro método para calcular $x = \sqrt{a}$ é utilizar a série de Taylor para $\sqrt{s^2 + r}$:
 - 1. Escolha $s \cong \sqrt{a}$ e calcule $r = a s^2$.
 - 2. Escolha um certo número de termos, *N*, da série

$$\sqrt{s^2 + r} = S_{\infty} = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)! \, r^n}{(1 - 2n)(n!)^2 4^n s^{2n-1}}$$

e calcule a *série truncada* S_N ; tal número depende da *precisão* do computador e da *exatidão* desejada!

• Usando esse procedimento para calcular o valor de

$$x = \sqrt{12,34}$$
, temos $s = 3$ e $r = a - s^2 = 3,34$.

• Com N=8 termos na série, obtemos:

$$S_2 = 3,55666666667$$

 $S_3 = 3,50502037037$
 $S_4 = 3,51460362757$
 $S_5 = 3,51460362757$
 $S_6 = 3,51295827400$
 $S_7 = 3,51300513731$
 $S_8 = 3,51299100672$

 Observe que, mesmo com oito termos, a aproximação não é tão boa quanto com o método babilônico, oferecendo apenas 3 dígitos decimais em concordância, e a um custo computacional bem maior!

- •Vejamos agora o cálculo de e^x , baseado na série de Taylor, porém valendo-se de algumas propriedades matemáticas para acelerar a convergência da série.
- A série de Taylor para e^x é

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + O(x^6)$$

• Verifica-se que essa série converge rapidamente para e^x quando x < 1.

•Já que a série de Taylor é um polinômio, ela pode ser reescrita usando *multiplicações aninhadas*, com as quais eliminamos a necessidade de se calcular potências:

$$e^{x} = 1 + x \left(1 + \frac{x}{2} \left(1 + \frac{x}{3} \left(1 + \frac{x}{4} \left(1 + \frac{x}{5} \right) \right) \right) \right) + O(x^{6})$$

a qual oferece, além disso, maior estabilidade numérica (dependendo do valor de x).

Instituto de MATEMÁTICA E ESTATÍSTICA UFRGS Agora, para obtermos uma rápida convergência da série, devemos usá-la com um argumento que seja menor do que 1; para tal, escrevemos

$$z = \lfloor x \rfloor$$

$$f = x - z : f < 1 :$$

de onde obtemos

$$e^x = e^{z+f} = e^z e^f$$

$$e^{f} = 1 + f \left(1 + \frac{f}{2} \left(1 + \frac{f}{3} \left(1 + \frac{f}{4} \left(1 + \frac{f}{5} \right) \right) \right) \right).$$

•Como z é inteiro, podemos calcular e^z através de z multiplicações de

$$e^1 = 2,71828182846$$

(esse valor deve ser o mais preciso o possível).

•Agora, e^f irá convergir rapidamente, já que, por definição, f < 1; portanto, podemos calcular e^f com poucos termos, usando a expressão com multiplicações aninhadas.

•Por exemplo, para x=3,1723, podemos calcular e^x usando o procedimento aqui ilustrado, com k termos na série para e^f , obtendo o resultado tabulado a seguir:

k	e ^x =e ^z taylor(k,f)	DIGSE
2	23,84441751477508800	3
3	23,86154083693713100	4
4	23,86227842403926000	5
5	23,86230384129080000	7
6	23,86230457118954000	9
7	23,86230458915547800	10
8	23,86230458954241800	12
9	23,86230458954982600	14
10	23,86230458954995400	15

•Podemos nos perguntar; mas por que não usar simplesmente a série de Taylor para e^x ? Vejamos o que ocorre, para o mesmo valor x = 3,1723, nesse caso:

k	e ^x =taylor(k,x)	DIGSE
2	9,20404364499999870	0
3	14,52477710001116400	0
4	18,74451778484414500	0
5	21,42177445974327900	0
6	22,83728468470703300	1
7	23,47877369708596300	1
8	23,73314814633217300	2
9	23,82280948692591900	2
10	23,85125275400247700	3

Observe que:

- Até k=5, nenhum resultado é aceitável (DIGSE=0).
- Para k=10, DIGSE=3 nesse caso, ao passo que alcançamos anteriormente essa exatidão com k=2!
- Isso demonstra que o procedimento é eficiente (e também eficaz)!

- •Considere agora que $y = e^x$ é um número em ponto-flutuante com mantissa m e expoente n tal que $y = m \times 2^n$, com n inteiro e m pequeno.
- Escrevendo a igualdade

$$m \times 2^n = e^x$$

e aplicando logaritmos dos dois lados da igualdade, obtemos

$$ln y = ln m + n ln 2 = x.$$

 Como n deve ser um número inteiro, podemos calculá-lo como

$$n = \left\lfloor \frac{x}{\ln 2} \right\rfloor$$

Podemos escrever, ainda,

 $\ln m = x - n \ln 2 = u$, de onde $m = e^u$ e, pela escolha de n, temos $0 \le u \le \ln 2 < 1$.

•Dessa forma, podemos usar a série truncada de Taylor para calcular *m*, usando multiplicações aninhadas, sabendo que a convergência será rapidamente obtida, com poucos termos na série.

•Por exemplo, para x=3,1723, podemos calcular $e^x=m\times 2^n$, com k termos na série para e^u , obtendo o resultado tabulado a seguir:

k	e ^x =taylor(k,u)*2 ⁿ	DIGSE
2	23,03445686643832600	1
3	23,80125631538010500	2
4	23,86084810233190400	4
5	23,86254861847616100	4
6	23,86234445834348600	5
7	23,86230820030954200	6
8	23,86230483615575100	7
9	23,86230460342808600	9
10	23,86230459022122100	10

Observe que os resultados apresentam menor exatidão do que para $e^x = e^z taylor(k,f)$, mas a vantagem aqui é o uso de aritmética binária!

Vejamos agora como calcular a função

$$f(z) = \frac{e^z - 1}{z}, |z| > 0$$

quando:

- $|z| \ll 1$;
- ocorre *underflow* em e^z ;
- demais casos.
- Observe que

$$\lim_{z\to 0^+} f(z) = 1.$$

•Uma função f(x): $\mathbb{R} \to \mathbb{R}$ pode ser analisada quanto à qualidade numérica de sua avaliação em x usando a definição de **número de condição da função**:

$$k_f(x) = \begin{cases} \frac{|x||f'(x)|}{|f(x)|}, & |f(x)| > 0\\ \infty, & c.c. \end{cases}$$

•Quanto maior for o valor de $k_f(x)$, mais **mal condicionada** é a função.

- •Quando $|z| \ll 1$, então e^z pode ou não sofrer *underflow*.
- •Por exemplo, num computador com aritmética de ponto-flutuante IEEE-754 em precisão dupla, $e^z = 1$ para $|z| \le 10^{-16}$:
 - Mas observe que, se $|z| \neq 0$, então $e^z \neq 1$!
- •Por isso, ocorrerá cancelamento catastrófico no numerador da função quando $e^z \cong 1$ (ou seja, $z \cong 0$).

•Por exemplo, calculando $k_f(x)$ para valores de x próximos de $\varepsilon_M = 2,220446 \times 10^{-16}$ num computador com aritmética de pontoflutuante IEEE-754 em precisão dupla, teremos:

\boldsymbol{x}	$k_f(x)$	
$4\varepsilon_{M}$	$8,8817841970012523 \times 10^{-16} = 4\varepsilon_M$	
$2\varepsilon_M$	$4,4408920985006262 \times 10^{-16} = 2\varepsilon_M$	
\mathcal{E}_{M}	$2,2204460492503131 \times 10^{-16} = \varepsilon_M$	
$\frac{\varepsilon_M}{2}$	∞	

•A tabela a seguir mostra alguns valores de f(z), calculados num computador com aritmética de ponto-flutuante IEEE-754 em precisão dupla:

z	f(z)
$8,881784197001252352 \times 10^{-16}$	1,00000000000000000
$7,771561172376095744 \times 10^{-16}$	1,142857142857142800
$6,661338147750939264 \times 10^{-16}$	1,00000000000000000
$5,551115123125782720 \times 10^{-16}$	0,80000000000000000
$4,440892098500626176 \times 10^{-16}$	1,00000000000000000
$3,330669073875469632 \times 10^{-16}$	1,3333333333333248
$2,220446049250313088 \times 10^{-16}$	1,00000000000000000

- Analisemos os resultados na tabela:
 - Observe que os valores calculados para f(z) oscilam, e para essa função, isso indica que há algum problema com o cálculo (já que f(z) decresce monotonicamente com z).
 - Uma maneira de eliminar esse problema é utilizar novamente uma expansão em séries de Taylor da função e^z em torno de z=0 e usá-la ao invés de e^z na função f(z), obtendo uma função alternativa F(z).

- Analisemos os resultados na tabela:
 - Por exemplo, utilizando uma expansão em séries de Taylor de ordem 10, truncada e substituindo-a na expressão para f(z), obtemos

$$F(z) = 1 + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \dots + \frac{z^8}{9!}$$

e, calculando o seu número de condição, verificase que ela é bem-condicionada:

\boldsymbol{x}	$k_{F}(x)$
$4\varepsilon_M$	$4,4408920985006327072 \times 10^{-16}$
$2\varepsilon_M$	$2,220446049250313088 \times 10^{-16} = \varepsilon_M$
\mathcal{E}_{M}	$1,110223024625156768 \times 10^{-16}$
$\frac{\varepsilon_M}{2}$	$5,551115123125782720 \times 10^{-17}$

Porém, quando devemos usar uma ou outra?

• A tabela a seguir mostra os valores de f(z) e F(z), calculados num computador com aritmética de ponto-flutuante IEEE-754:

z	f(z)	F(z)	Erro relativo
10 ⁻¹	1,051709180756477128	1,051709180756476016	$1,055636905086815288 \times 10^{-15}$
10-2	1,005016708416794913	1,005016708416805571	$1,060493914891343704 \times 10^{-14}$
10 ⁻³	1,000500166708384597	1,000500166708341743	$4,283318501737310784 \times 10^{-14}$
10^{-4}	1,000050001667140975	1,000050001666708432	$4,325212636098936704 \times 10^{-13}$
10^{-5}	1,000005000006964906	1,000005000016666701	$9,701746414095625344 \times 10^{-12}$
10^{-6}	1,000000499962183653	1,000000500000166825	$3,798315317149785600 \times 10^{-11}$
10^{-7}	1,000000049433680260	1,000000050000001695	$5,663214058761472128 \times 10^{-10}$
10^{-8}	0,999999993922529024	1,000000004999999970	$1,107747088514744016 \times 10^{-08}$
10 ⁻⁹	1,000000082740370999	1,000000000500000041	$8,224037091659999648 \times 10^{-08}$
10 ⁻¹⁰	1,000000082740370999	1,000000000050000004	$8,269037099081883104 \times 10^{-08}$

- •Observe que, agora, o comportamento da função F(z) é o esperado, decrescendo monotonicamente com z.
- •Note que, pela tabela, podemos determinar quando F(z) deve ser utilizada; por exemplo, para $|z| \le 10^{-5}$.

