

Caffe

A Quaternion Monogenic Layer Resilient to Large Brightness Changes

Abraham Sánchez*, E. U. Moya-Sánchez*, Sebatià Xambó**, Sebastián Salazar-Colores*** and Ulises Cortés**.

*Gobierno de Jalisco, **Barcelona Tech (UPC) & Barcelona Supercomputing Center, ***Centro de Investigaciones en Óptica

Motivation

- The mammalian visual system is resilient to many geometric transformations and contrast variations to which current deep learning (DL) classifiers are not [hendrycks-dietterich-2019]
- The learning of an invariance response may fail even with very deep CNNs or large data augmentations in the training. Image from [dodge-karam-2016] [simard-steinkraus-platt-2003]

Strategy

Extent to **other representation** to obtain higher discrimination capacity.

Figure 1: More data Versus representation. Image from DL book.

CNN layer M6

■ We use four main bio-inspired tools: the local phase, Log-Gabor, the HSV color space and the artificial neural networks.

Data and Experimental Setup

■ We have used two datasets and CIFAR-10, Dogs vs Cats (DvsC). Table shows how we split the datasets and their main characteristics.

	CIFAR-10	DvsC
Training set	40,000	16,284
Validation set	10,000	3,489
Test set	10,000	3,489
Total	60,000	23,262
Input shape	[32x32x3]	[128x128x3]
1 1 0	. •	

An original image (B_0) and three transformations using Equation 1, B_1, B_2, B_3 , where $\alpha =$ 0, 0.3(255), 0.4(255), 0.5(255) respectively. Second row: the histogram of the pixel values of each image.

$$I_B(x, y) = \min(I(x, y) + \alpha, 255),$$
 (1)

■ Three architectures used in the experimental setup.

■ The experimental setup.

Results

Accuracy in the test sets using different brightness levels and CNN architectures with C and the M6 layer. Where D=Datasets and, Tr=Train over different brightness levels.

		A	Λ_1 -C	A_{1}	$_{1}$ -M6	A	l_2 -C	A_{i}	$_2$ -M6	A	13-C	A_{i}	3-M6
D	Tr	μ	σ^2	μ	σ^2	μ	σ^2	μ	σ^2	μ	σ^2	μ	σ^2
	B_0	0.39	9.94E-3	0.44	1.50E-3	0.44	9.54E-3	0.50	3.85E-4	0.39	1.96E-2	0.59	1.19E-3
R-	B_1	0.44	1.35E-3	0.47	1.44E-4	0.46	2.45E-3	0.49	1.42E-4	0.53	2.31E-3	0.59	4.37E-4
FA	B_2	0.47	1.15E-3	0.48	1.47E-4	0.50	1.81E-3	0.49	9.35E-5	0.52	4.61E-3	0.56	1.19E-3 4.37E-4 1.05E-4
CI	B_3	0.45	2.24E-3	0.46	2.37E-4	0.50	1.68E-3	0.51	1.08E-4	0.43	2.21E-2	0.58	3.88E-5
	B_0	0.55	3.75E-3	0.63	9.97E-5	0.61	1.92E-3	0.69	3.29E-5	0.69	1.00E-2	0.77	1.39E-4
D_{VSC}	B_1	0.62	2.46E-4	0.68	3.52E-5	0.69	1.30E-4	0.62	3.09E-5	0.79	2.17E-3	0.80	4.55E-5
	B_2	0.62	2.97E-5	0.58	6.33E-5	0.69	7.38E-5	0.68	7.63E-5	0.75	1.10E-2	0.78	4.55E-5 5.92E-5
	B_3	0.59	2.49E-5	0.66	1.72E-5	0.63	1.36E-4	0.62	4.16E-5	0.73	1.00E-2	0.76	3.69E-5

• We compute a (local) phases I_{ϕ} I_{θ} and these values are invariant to the change of the pixel value.

Activation feature maps with different contrast values. Geometric representation of contrast change.

Conclusions

- We demonstrate that, M6 classifies images in spite of large changes in their brightness.
- The experimental results are consistent with the geometrical observation that the local phase and the local orientation are invariant to variable contrast conditions.
- Among the possible scenarios to use M6, we count self-driving cars under haze conditions, surface glazes in medical images (biopsies), or day-round autonomous video surveillance.