AE HW 5

5.1. In this problem you are to establish the algebraic equivale and OLS estimation of an equation containing an additional regre result is completely general, for simplicity consider a model with a endogenous variable:	essor. Although the
$y_1 \stackrel{\forall \underline{\boldsymbol{\rho}}}{=} \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1$	
$y_2 = \mathbf{z}\mathbf{\pi}_2 + v_2$	
For notational clarity, we use y_2 as the suspected endogenous variable vector of all exogenous variables. The second equation is the reduce Assume that z has at least one more element than z_1 . We know that one estimator of (δ_1, α_1) is the 2SLS estimator using Consider an alternative estimator of (δ_1, α_1) : (a) estimate the reduced and save the residuals \hat{v}_2 ; (b) estimate the following equation by OLS.	and form for y_2 . instruments \mathbf{x} . form by OLS,
$y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 \hat{v}_2 + error$	(5.52)
Show that the OLS estimates of δ_1 and α_1 from this regression are in 2SLS estimators. [Hint: Use the partitioned regression algebra of OLS if $\hat{y} = \mathbf{x}_1 \hat{\beta}_1 + \mathbf{x}_2 \hat{\beta}_2$ is an OLS regression, $\hat{\beta}_1$ can be obtained by first on \mathbf{x}_2 , getting the residuals, say $\hat{\mathbf{x}}_1$, and then regressing y on $\hat{\mathbf{x}}_1$; see Davidson and MacKinnon (1993, Section 1.4). You must also use the \hat{v}_2 are orthogonal in the sample.]	S. In particular, t regressing \mathbf{x}_1 e, for example,
Following given steps	2SLS Steps
41=2,8,+d,4,+p,v,+emr	when we treat y, as
[3,] [8,]	the enlogeneous
×1 6	•
Step 1 [(3,4) V)	variable in the system
Since Vz UZI	then we take the
[z, v) = 0 v, +z,	following two steps:
Since y = y, + V,	,
$\begin{bmatrix} z_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \hat{V}_2 & \hat{V}_3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} z_1 \\ \hat{y}_2 \end{bmatrix}$	Step 1. L(y, Z)
	⇒ Ý.
Stepz L(Y, (xi)	
= L(y, Z, y)	Step? L (YI Z,,))
1	=

5.9. Suppose that the following wage equation is for working high school graduates:	
$\log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 twoyr + \beta_4 fouryr + u$	
where <i>twoyr</i> is years of junior college attended and <i>fouryr</i> is years completed at a four-year college. You have distances from each person's home at the time of high school graduation to the nearest two-year and four-year colleges as instruments for <i>twoyr</i> and <i>fouryr</i> . Show how to rewrite this equation to test H_0 : $\beta_3 = \beta_4$ against H_0 : $\beta_4 > \beta_3$, and explain how to estimate the equation. See Kane and Rouse (1995) and Rouse (1995), who implement a very similar procedure.	
$0 = \beta_{p} - \beta_{3} \Rightarrow \beta_{y} = \beta_{5} + 0_{x}$. Plug in the specification $\log \log \beta = \beta_{5} + \beta_{5} \exp(\beta_{5} + \beta_{5}) + \beta_{5} (\log \beta_{7} + \beta_{7}) + \delta_{4} = \beta_{7} \exp(\beta_{7} + \beta_{7})$	
= fot B, expert B expert & totoU+ Ox four yr+ u	
totcoll=twoyr+fouryr	
Now. just estimate the latter equation by 25LS	
1000. That estimate the lawler equation of 2325	
ul exper, exper, distlyr, distlyr as IVs	