Линейные модели и градиентные методы оптимизации

Линейная регрессия в векторном виде

Модель линейной регрессии

$$a(x) = \langle w, x \rangle$$

• Среднеквадратичная ошибка и задача обучения:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \to \min_{w}$$

Матрицы

- Матрица таблица с числами (для простоты)
- Матрица «объекты-признаки»:

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix} \in \mathbb{R}^{\ell \times d}$$

Матрицы

- Матрица таблица с числами (для простоты)
- Матрица «объекты-признаки»:

объект и его признаки
$$egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \ x_{21} & x_{22} & \cdots & x_{2d} \ dots & dots & \ddots & dots \ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \ \end{pmatrix}$$

Матрицы

- Матрица таблица с числами (для простоты)
- Матрица «объекты-признаки»:

$$egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \ x_{21} & x_{22} & \cdots & x_{2d} \ dots & dots & \ddots & dots \ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix}$$

значения признака на всех объектах

Вычисление ошибки

• Отклонения прогнозов от ответов:

$$Xw - y = \begin{pmatrix} \langle w, x_1 \rangle - y_1 \\ \vdots \\ \langle w, x_{\ell} \rangle - y_{\ell} \end{pmatrix}$$

• Среднеквадратичная ошибка:

$$\frac{1}{\ell} \|Xw - y\|^2 = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2$$

Обучение линейной регрессии

$$\frac{1}{\ell} \|Xw - y\|^2 \to \min_{w}$$

• Вычисление MSE в NumPy:

np.square(X.dot(w) - y).mean()

Обучение линейной регрессии

• Можно посчитать градиент MSE:

$$\nabla \frac{1}{\ell} \|Xw - y\|^2 = \frac{2}{\ell} X^T (Xw - y)$$

• Приравниваем нулю и решаем систему линейных уравнений:

$$w = (X^T X)^{-1} X^T y$$

Аналитическое решение

$$w = (X^T X)^{-1} X^T y$$

- Если матрица $X^T X$ вырожденная, то будут проблемы
- Даже если она почти вырожденная, всё равно будут проблемы
- Если признаков много, то придётся долго ждать

Переобучение и регуляризация линейных моделей

Нелинейная задача

$$a(x) = w_0 + w_1 x$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

Симптом переобучения

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \cdots$$

- Большие коэффициенты симптом переобучения
- Эмпирическое наблюдение

Симптом переобучения

- Большие коэффициенты в линейной модели это плохо
- Пример: предсказание роста по весу

$$a(x) = 698x - 41714$$

- Изменение веса на 0.01 кг приведет к изменению роста на 7 см
- Не похоже не правильную зависимость

- Будем штрафовать за большие веса!
- Пример функционала:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2$$

• Регуляризатор:

$$||w||^2 = \sum_{j=1}^d w_j^2$$

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• λ — коэффициент регуляризации

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• Аналитическое решение:

$$w = (X^T X + \lambda I)^{-1} X^T y$$

• Гребневая регрессия (Ridge regression)

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 0.01 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 1 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 100 \|w\|^2 \to \min_{w}$$

Регуляризаторы

•
$$||z||_2 = \sqrt{\sum_{j=1}^d z_j^2} - L_2$$
-норма

•
$$||z||_1 = \sum_{j=1}^d |z_j| - L_1$$
-норма

Интерпретация линейных моделей

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

```
a(x) = 10 * (площадь в кв. см.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

- Чем больше вес, тем важнее признак?
- Только если признаки масштабированы!

Масштабирование признаков

- Отмасштабируем *j*-й признак
- Вычисляем среднее и стандартное отклонение признака на обучающей выборке:

$$\mu_j = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^j$$

$$\sigma_j = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (x_i^j - \mu_j)^2}$$

Масштабирование признаков

 Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_i^j \coloneqq \frac{x_i^J - \mu_j}{\sigma_j}$$

- Если модель переобучается, то веса используются для запоминания обучающей выборки
- Правильнее масштабировать признаки и регуляризовать модель перед изучением весов

Градиентный спуск

Градиентный спуск

- Стартуем из случайной точки
- Сдвигаемся по антиградиенту
- Повторяем, пока не окажемся в точке минимума

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

$$||w^t - w^{t-1}|| < \varepsilon$$

Локальные минимумы

• Градиентный спуск находит только локальные минимумы

Локальные минимумы

- Градиентный спуск находит локальный минимум
- Мультистарт запуск градиентного спуска из разных начальных точек
- Может улучшить результат

Локальные минимумы

Длина шага

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

Длина шага

$$w^t = w^{t-1} - \eta \nabla Q(w^{t-1})$$

• Позволяет контролировать скорость обучения

• Если сделать длину шага недостаточно маленькой, градиентный спуск может разойтись

• Длина шага — параметр, который нужно подбирать

Переменная длина шага

$$w^t = w^{t-1} - \frac{\eta_t}{\eta_t} \nabla Q(w^{t-1})$$

• Длину шага можно менять в зависимости от шага

• Например: $\eta_t = \frac{1}{t}$

• Ещё вариант: $\eta_t = \lambda \left(\frac{s}{s+t}\right)^p$

Градиентный спуск

1. Начальное приближение: w^0

2. Повторять:

$$w^t = w^{t-1} - \eta \, \nabla Q(w^{t-1})$$

$$||w^t - w^{t-1}|| < \varepsilon$$

Линейная регрессия

$$Q(w) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x \rangle - y_i)^2$$

•
$$\frac{\partial Q}{\partial w_1} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{i1} (\langle w, x \rangle - y_i)$$

• ..

•
$$\frac{\partial Q}{\partial w_d} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_{id} (\langle w, x \rangle - y_i)$$

•
$$\nabla Q(w) = \frac{2}{\ell} X^T (Xw - y)$$

Сложности градиентного спуска

- Для вычисления градиента, как правило, надо просуммировать что-то по всем объектам
- И это для одного маленького шага!

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \eta \nabla L \left(y_{i_t}, a(x_{i_t}) \right)$$

$$||w^t - w^{t-1}|| < \varepsilon$$

Градиентный спуск

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая случайный объект i_t :

$$w^{t} = w^{t-1} - \frac{\eta_{t}}{\eta_{t}} \nabla L \left(y_{i_{t}}, a(x_{i_{t}}) \right)$$

$$||w^t - w^{t-1}|| < \varepsilon$$

$$\eta_t = \frac{0.1}{t^{0.3}}$$

Mini-batch

- 1. Начальное приближение: w^0
- 2. Повторять, каждый раз выбирая m случайных объектов i_1, \dots, i_m :

$$w^{t} = w^{t-1} - \eta_{t} \frac{1}{m} \sum_{j=1}^{m} \nabla L\left(y_{i_{j}}, a\left(x_{i_{j}}\right)\right)$$

$$||w^t - w^{t-1}|| < \varepsilon$$