CLASS

the Cosmological Linear Anisotropy Solving System¹

Julien Lesgourgues TTK, RWTH Aachen University

CCA, New York, 15-16.07.2019

 1 code developed by Julien Lesgourgues & Thomas Tram plus many others...

◆ロト ◆部 ト ◆ き ト ◆ き ・ か へ ご

class Theory

- 1 Essential steps in an Einstein-Boltzmann solver
- 2 Details on few useful aspects for each of them

A. Background

Get all background quantities as function of a time variable (class \rightarrow conformal time τ) after integrating differential equation like Friedmann:

$$\frac{da}{d\tau} = \left(\frac{8\pi G}{3}a^2 \sum_{X} \rho_X(a) - \frac{K}{a^2}\right)^{1/2}$$

Gives mapping between $\tau \leftrightarrow a \leftrightarrow z (\leftrightarrow t)$

B. Thermodynamics

Get all thermodynamics quantities as a function of a time variable (class \rightarrow redhsift z) after integrating differential equations like recombination equations:

$$\frac{dx_e}{dz}$$
 = excitation, ionization, heating, ...

Then
$$x_e(z) \to \kappa'(z)$$
 (Thomson scattering rate)

- $\rightarrow \kappa(z)$ (Optical depth)
- $ightarrow \exp(-\kappa(z))$ (factor for Integrated Sachs-Wolfe effect)
- ightarrow g(z) (visibility function for Sachs-Wolfe effect)
- $\rightarrow g'(z)$ (factor for Doppler effect)

4/22

C. Perturbations

- Find all perturbations ($\delta_X(\tau,k)$, $\phi(\tau,k)$, ...) by integrating ODEs for each independent wavenumber k, each mode (scalar/vector¹/tensor), each initial condition (adiabatic/isocurvature):
 - Boltzmann (non-perfect fluids: photon temperature/polarization, massless/massive neutrino temperature)
 - Continuity + Euler (perfect fluid: baryons, hypothetical (DE/DM/DR) fluid) or approximatively pressureless species: (CDM)
 - linearized Einstein equations (one = differential equation, others = constraint equations)

Linear perturbations \Rightarrow perturbations normalized to trivial initial condition (class \rightarrow curvature $\mathcal{R}=1$ for scalar with adiabatic I.C.)

 $^{^{1}}$ in class \rightarrow vector perturbation equations present just in case, but never used: no implemented scenario where vectors are relevant, no vector I.C. and observables.

C. Perturbations

- Keep memory not of everything, but anything useful for final calculation of observables:
 - raw transfer function $(\delta_m(\tau,k) \to P_m(k,z))$
 - non-trivial combinations (photon, baryon, metric, thermodynamical functions \to CMB source functions $S_{T_i}(k,\tau)$)

All these are called source functions in class

D. Primordial spectra

Initial conditions for scalars (adiabatic, isocurvature) and tensors. Linear theory \Leftrightarrow Gaussian independent Fourier modes \Leftrightarrow only need primordial power spectra

- analytic mode: primordial power spectra as parametric functions (e.g. power-law)
- inflation mode: solve background+perturbation equation for single-field inflation and compute primordial scalar/tensor spectrum numerically

Fig. 22. Two dimensional distributions for power in isocurvature modes, using Planck+WP data.

Fig. 14. Observable range of the best-fitting inflaton potentials, when $V(\phi)$ is Taylor expanded at the nth order around the pivot value ϕ_* , in natural units (where $\sqrt{8\pi}M_{pl} = 1$), assuming a flat prior on ϵ_V , η_V , ξ_V^2 , and σ_V^3 , and using Planck+WP data.

E. Power spectra in Fourier space

- ullet Linear matter power spectrum $P_m(k,z)
 ightarrow$ integrated quantities $\sigma(R,z),\,\sigma_8(z)$
- ullet Linear baryon+CDM power spectrum $P_{cb}(k,z)
 ightarrow$ integrated quantities $\sigma_{cb,8}(z)$
- \bullet Approximation for non-linear spectrum $P_m^{NL}(k,z)$ based on prescriptions like HALOFIT, HMCODE...
- Keep in memory non-linear correction factors like $R^{NL}(k,z) = \left(P_m^{NL}(k,z)/P_m(k,z)\right)^{1/2}$ for e.g. CMB lensing, cosmic shear, number count C_ℓ 's

F. Transfer functions in harmonic space

CMB spectrum depends on $\Delta_\ell^X(k) = \ell$ -th multipole of anisotropy of photon temperature and polarisation ($X \in \{T, E, B\}$) for each mode (scalar/tensor) and initial condition (adiabatic/isocurvature) today ($\tau = \tau_0$).

- In COSMICS: integrate equations for each k, ℓ , X, mode, I.C. until today.
- Since CMBFAST (Seljak & Zaldarriaga 1996): use "line-of-sight integral", more precisely and exact implicit solution of Boltzmann equation (here in flat space):

$$\Delta_{\ell}^{X}(k) = \int_{\epsilon}^{\tau_0} d\tau \ S^{X}(\tau, k) \ j_{l}(k(\tau_0 - \tau))$$

 $S(\tau,k)$ only depends on thermodynamical functions, first few multipoles, baryons flux divergence and metric perturbations. Role of Bessel: projection from Fourier to harmonic space $(\theta\,d_a(z_{\rm rec})=\frac{\lambda}{2}$ gives precisely $l=k(\tau_0-\tau_{\rm rec})$):

Curved space: spherical bessel functions \rightarrow modified Bessel functions (hypergeometric)

F. Transfer functions in harmonic space

$$\Delta_{\ell}^{X}(k) = \int_{\epsilon}^{\tau_0} d\tau \ S^{X}(\tau, k) \ j_{\ell}(k(\tau_0 - \tau))$$

Applies not just to CMB $X \in \{T, E, B\}$ but also all LSS C_{ℓ} 's (one X per type of observable and redshift bin).

- ullet CMB lensing + cosmic shear: similar formulation, S(au,k) depends on metric fluctuation and window function (intrinsic to lensing + source selection function)
- ullet number count (galaxy clustering): S(au,k) depends on baryon+CDM density fluctuation and selection function in each bin plus corrections from matter flux divergence and metric perturbations (RSD, Doppler, lensing, other GR effects)
- ullet may include non-linear correction factors $R^{NL}(k,z)$

G. Harmonic power spectra (C_{ℓ} 's)

Trivial:

$$C_{\ell}^{XY} = \int \frac{dk}{k} \sum_{ij} \Delta_{\ell i}^{X}(k) \Delta_{\ell j}^{Y}(k) \mathcal{P}_{ij}(k)$$

with sum running over modes (scalar/tensor) and I.C. (adiabatic/isocurvature).

H. Lensed CMB C_{ℓ} 's

- \bullet metric fluctuations $(\phi,\psi)\to$ lensing potential source function \to CMB lensing potential spectrum C_ℓ^{PP}
- \bullet several fluctuations \to CMB source functions \to unlensed CMB spectra $C_\ell^{TT,TE,EE,BB}$
- several quadratic sums over $C_{\ell_1}^{XY}C_{\ell_2}^{PP} o$ lensed CMB spectra $C_{\ell}^{TT,TE,EE,BB}$. Full-sky approach of Challinor & Lewis 2005.

A. Background: formalizing problem and classifying quantities

In general, three types of parameters:

- ullet $\{A\}$ which can be expressed directly as a function of some variables $\{B\}$.
- $\bullet \ \{B\},$ which need to be integrated over τ through first-order differential equation
- $\bullet \ \{C\}, \ \text{which also need to be integrated but are not used to compute } \{A\}.$

 Λ CDM and many simple extensions:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \}$$
 with e.g. $H(a) = \left(\sum_X \rho_x(a) - \frac{K}{a^2}\right)^{1/2}$

$$\bullet \ \{B\} = \{a\} \ \mathrm{since} \ \frac{da}{d\tau} = a^2 H(a)$$

•
$$\{C\} = \{t, r_s, \text{linear growth factor}\}\$$
with e.g. $\frac{dt}{d\tau} = a, \ \frac{dr_s}{d\tau} = c_s^2(a)$

A. Background: formalizing problem and classifying quantities

In general, three types of parameters:

- ullet $\{A\}$ which can be expressed directly as a function of some variables $\{B\}$.
- $\bullet \ \{B\},$ which need to be integrated over τ through first-order differential equation
- ullet $\{C\}$, which also need to be integrated but are not used to compute $\{A\}$.

Λ CDM and many simple extensions:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \}$$
 with e.g. $H(a) = \left(\sum_X \rho_x(a) - \frac{K}{a^2}\right)^{1/2}$

•
$$\{B\} = \{a\} \text{ since } \frac{da}{d\tau} = a^2 H(a)$$

•
$$\{C\}=\{t,r_s, {\rm linear\ growth\ factor}\}$$
 with e.g. $\frac{dt}{d\tau}=a, \ \frac{dr_s}{d\tau}=c_s^2(a)$

Exemple of DE/DM/DR fluid:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \frac{\mathbf{w}_{fld}(a)}{a}\}$$

$$\bullet \ \{B\} = \{a, \textcolor{red}{\rho_{\mathrm{fld}}}\} \ \text{with} \ \frac{d\rho_{\mathrm{fld}}}{d\tau} = -3a\mathit{H}(a) \ (1+w_{\mathrm{fld}}(a))\rho_{\mathrm{fld}}$$

A. Background: formalizing problem and classifying quantities

In general, three types of parameters:

- ullet $\{A\}$ which can be expressed directly as a function of some variables $\{B\}$.
- ullet $\{B\}$, which need to be integrated over au through first-order differential equation
- ullet $\{C\}$, which also need to be integrated but are not used to compute $\{A\}$.

ΛCDM and many simple extensions:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \}$$
 with e.g. $H(a) = \left(\sum_X \rho_x(a) - \frac{K}{a^2}\right)^{1/2}$

•
$$\{B\} = \{a\} \text{ since } \frac{da}{d\tau} = a^2 H(a)$$

•
$$\{C\} = \{t, r_s, \text{linear growth factor}\}\$$
with e.g. $\frac{dt}{d\tau} = a, \ \frac{dr_s}{d\tau} = c_s^2(a)$

Exemple of DE/DM/DR fluid:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \frac{\mathbf{w}_{fld}(a)}{a}\}$$

•
$$\{B\} = \{a, \rho_{\text{fld}}\}$$
 with $\frac{d\rho_{\text{fld}}}{d\tau} = -3aH(a)(1 + w_{\text{fld}}(a))\rho_{\text{fld}}$

Exemple of extended cosmology with quintessence ϕ :

•
$$\{A\} = \{\rho_i, p_i, H, ..., V(\phi), \rho_{\phi}(\phi, \phi')\}$$
 with e.g. $\rho_{\phi}(\phi, \phi') = \frac{1}{2}(\phi')^2 + V(\phi)$

•
$$\{B\} = \{a, \phi, \phi'\}$$
 with $\frac{d\phi}{d\tau} = \phi'$, $\frac{d\phi'}{d\tau} = -2aH(a)\phi' - a^2V(\phi)$

A. Background: formalizing problem and classifying quantities

In general, three types of parameters:

- ullet $\{A\}$ which can be expressed directly as a function of some variables $\{B\}$.
- ullet $\{B\}$, which need to be integrated over au through first-order differential equation
- ullet $\{C\}$, which also need to be integrated but are not used to compute $\{A\}$.

Λ CDM and many simple extensions:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \}$$
 with e.g. $H(a) = \left(\sum_X \rho_x(a) - \frac{K}{a^2}\right)^{1/2}$

•
$$\{B\} = \{a\} \text{ since } \frac{da}{d\tau} = a^2 H(a)$$

•
$$\{C\}=\{t,r_s, \text{linear growth factor}\}$$
 with e.g. $\frac{dt}{d\tau}=a, \ \frac{dr_s}{d\tau}=c_s^2(a)$

Exemple of DE/DM/DR fluid:

•
$$\{A\} = \{\rho_i(a), p_i(a), H(a), ..., w_{\text{fld}}(a)\}$$

•
$$\{B\} = \{a, \rho_{\text{fld}}\}$$
 with $\frac{d\rho_{\text{fld}}}{d\tau} = -3aH(a)(1 + w_{\text{fld}}(a))\rho_{\text{fld}}$

Exemple of extended cosmology with quintessence ϕ :

•
$$\{A\} = \{\rho_i, p_i, H, ..., V(\phi), \rho_{\phi}(\phi, \phi')\}$$
 with e.g. $\rho_{\phi}(\phi, \phi') = \frac{1}{2}(\phi')^2 + V(\phi)$

•
$$\{B\} = \{a, \phi, \phi'\}$$
 with $\frac{d\phi}{d\tau} = \phi'$, $\frac{d\phi'}{d\tau} = -2aH(a)\phi' - a^2V(\phi)$

Also Cold Dark Matter decaying into Dark Radiation...

•
$$\{A\} = \{\rho_i, p_i, H, ...\}$$

$$\bullet \ \{B\} = \{a, \underset{\text{dcdm}}{\rho_{\text{dcdm}}}, \underset{\text{d}\tau}{\rho_{\text{d}}} \} \text{ with } \frac{d\rho_{\text{dcdm}}}{d\tau} = -3aH(a) \ \rho_{\text{dcdm}} - \underset{\text{d}}{a_{\text{dcdm}}} - \underset{\text{d}}{a_{\text{dcdm}}} (a) \ \rho_{\text{dcdm}} = 0 \ \text{ and } 0 \$$

13/22

B. Thermodynamics: three approaches to recombination

User can choose to model approximate recombination and get $x_e(z)$, $T_b(z)$ from:

- RECFAST (Wong, Moss & Scott 2008): in-built
- HyRec (Y. Ali-Haïmoud): download with CLASS, more accurate
- CosmoRec (J. Chluba): download separately, interfaced

B. Thermodynamics: three approaches to recombination

User can choose to model approximate recombination and get $x_e(z)$, $T_b(z)$ from:

- RECFAST (Wong, Moss & Scott 2008): in-built
- HyRec (Y. Ali-Haïmoud): download with CLASS, more accurate
- CosmoRec (J. Chluba): download separately, interfaced

Recombination needs one more cosmological parameter: the primordial Helium fraction $Y_{\rm He}$.

- User can fix it to given value (e.g. Y_He = 0.25) or to Y_He = BBN. Then the value is infered from an interpolation table pre-pcomputed with a BBN code (Parthenope), for each given value of $N_{\rm eff}$, ω_b (assumes $\mu_{\nu_e}=0$, easy to generalise).
- BBN interpolation table located in separate directory, in bbn/bbn.dat

C. Perturbations: the polarization hierarchy

Two approaches to polarization in Boltzmann hierarchy:

- Ma & Bertschinger 1994: $(F_\ell, G_\ell) \to (S_T, S_P) \to (\Delta_\ell^T, \Delta_\ell^E, \Delta_\ell^B)$: $2\ell_{\max}$ equations!
- Hu & White 1997: $(\Theta_\ell, E_\ell, B_\ell) \to (S_T, S_E, S_B) \to (\Delta_\ell^T, \Delta_\ell^E, \Delta_\ell^B) \colon 3\ell_{\max} \text{ equations!}$

C. Perturbations: the polarization hierarchy

Two approaches to polarization in Boltzmann hierarchy:

- Ma & Bertschinger 1994: $(F_\ell,G_\ell) \to (S_T,S_P) \to (\Delta_\ell^T,\Delta_\ell^E,\Delta_\ell^B) \colon 2\ell_{\max} \text{ equations!}$
- Hu & White 1997: $(\Theta_\ell, E_\ell, B_\ell) \to (S_T, S_E, S_B) \to (\Delta_\ell^T, \Delta_\ell^E, \Delta_\ell^B) \colon 3\ell_{\max} \text{ equations!}$

CMBFAST: first in flat space, second in curved space

C. Perturbations: the polarization hierarchy

Two approaches to polarization in Boltzmann hierarchy:

- Ma & Bertschinger 1994: $(F_\ell, G_\ell) \to (S_T, S_P) \to (\Delta_\ell^T, \Delta_\ell^E, \Delta_\ell^B) \colon 2\ell_{\max} \text{ equations!}$
- Hu & White 1997: $(\Theta_\ell, E_\ell, B_\ell) \to (S_T, S_E, S_B) \to (\Delta_\ell^T, \Delta_\ell^E, \Delta_\ell^B) \colon 3\ell_{\max} \text{ equations!}$

CMBFAST: first in flat space, second in curved space

CAMB: always second case

C. Perturbations: the polarization hierarchy

Two approaches to polarization in Boltzmann hierarchy:

- Ma & Bertschinger 1994: $(F_{\ell}, G_{\ell}) \to (S_T, S_P) \to (\Delta_{\ell}^T, \Delta_{\ell}^E, \Delta_{\ell}^B)$: $2\ell_{\text{max}}$ equations!
- Hu & White 1997: $(\Theta_{\ell}, E_{\ell}, B_{\ell}) \to (S_T, S_E, S_B) \to (\Delta_{\ell}^T, \Delta_{\ell}^E, \Delta_{\ell}^B)$: $3\ell_{\text{max}}$ equations!

CMBFAST: first in flat space, second in curved space

CAMB: always second case

CLASS: always first case, thanks to new analytic results in curved space (T. Tram & JL, JCAP 2013 [arXiv:1305.3261])

C. Perturbations: the approximation scheme (CLASS II & CLASS IV 2011)

- Tight Coupling Approximation for baryons and γ at 2nd order
- ullet Ultrarelativistic Fluid Approximation (for massless u, also one for massive ones): truncated Boltzmann, 3 equations
- ullet Radiation Streaming Approximation (for photons and massless u): test particles, 0 equations

C. Perturbations: an ODE solver customized for Einstein-Boltzmann solver:

- Stiff system require implicit method like backward Euler or more advanced: \rightarrow find y_{n+1} as a solution of $y_{n+1} = y_n + y'(y_{n+1})\delta t$
- Should still be fast: Newton method with Jacobian recycling
- Robustness requires δt to be determined automatically (adaptive time step)
- ullet Source function required at predefined t_i : integrator must interpolate on-the-fly at these valkues
- System is sparse: some algebra gives big speed up (sparse LU decomposition)

Everything gathered in ndf15 by T. Tram (CLASS II 2011).

TCA could even be removed!

D. Primordial spectra: the different modes

P_k_ini type =	modes =	ic =
analytic_Pk	one or several of s,t	one or several of ad,bi,cdi,nid,niv
two_scales	one or several of s,t	at most two of ad,bi,cdi,nid,niv
inflation_V	s,t	ad
inflation_H	s,t	ad
inflation_V_end	s,t	ad
external_Pk	one or several of s,t	ad

E. Power spectra in Fourier space: the linear-to-non-linear transition

Halofit or HMcode require non-linearity scale R(z) such that $\sigma(R(z),z)=1.$

To get $P^{\mathrm{NL}}(k,z)$ ar higher z one should increase k_{max} .

F. Transfer functions in harmonic space: compact source functions

Well known

$$\Delta_{\ell}(k) = \int_{\epsilon}^{\tau_0} d\tau \ S_T(\tau, k) \ j_{\ell}(k(\tau_0 - \tau))$$

with
$$S_T(\tau, k) \equiv \underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{(gk^{-2}\theta_b)'}_{\text{Doppler}} + \underbrace{e^{-\kappa}(\phi' + \psi')}_{\text{ISW}} + \text{polarisation}$$

comes from integration by part of:

$$\Delta_l(k) = \int_{\tau_{\text{ini}}}^{\tau_0} d\tau \left\{ S_T^0(\tau, k) \ j_l(k(\tau_0 - \tau)) + S_T^1(\tau, k) \ \frac{dj_l}{dx}(k(\tau_0 - \tau)) + S_T^2(\tau, k) \ \frac{1}{2} \left[3 \frac{d^2 j_l}{dx^2}(k(\tau_0 - \tau)) + j_l(k(\tau_0 - \tau)) \right] \right\}$$

But $(S_T^1)'$, $(S_T^2)'$, $(S_T^2)''$ problematic! (Derivative of Einstein equation, massive neutrinos \to finite differences...)

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q ()

F. Transfer functions in harmonic space: compact source functions

Example of temperature source function in CAMB:

15-16.07.2019

```
!Maple fortran output - see scal_eqs.map
        ISW = (4.D0/3.D0*k*EV\%Kf(1)*sigma+(-2.D0/3.D0*sigma
            -2.D0/3.D0*etak/adotoa)*k &
              -diff_rhopi/k**2-1.D0/adotoa*dgrho/3.D0+(3.D0*
                  gpres+5.D0*grho)*sigma/k/3.D0 &
              -2.D0/k*adotoa/EV%Kf(1)*etak)*expmmu(j)
!The rest, note y(9)->octg, yprime(9)->octgprime (octopoles)
    sources(1) = ISW + ((-9.D0/160.D0*pig-27.D0/80.D0*ypol
        (2))/k**2*opac(j)+(11.D0/10.D0*sigma- &
    3.D0/8.D0*EV%Kf(2)*ypol(3)+vb-9.D0/80.D0*EV%Kf(2)*octg
        +3.D0/40.D0*qg)/k-(- &
    180.D0*ypolprime(2)-30.D0*pigdot)/k**2/160.D0)*dvis(j)
        +(-(9.D0*pigdot+ &
    54.D0*ypolprime(2))/k**2*opac(j)/160.D0+pig/16.D0+clxg
        /4.D0+3.D0/8.D0*ypol(2)+(- &
    21.D0/5.D0*adotoa*sigma-3.D0/8.D0*EV%Kf(2)*ypolprime(3)+
        vbdot+3.D0/40.D0*qgdot- &
    9.D0/80.D0*EV%Kf(2)*octgprime)/k+(-9.D0/160.D0*dopac(j)*
        pig-21.D0/10.D0*dgpi-27.D0/ &
    80.D0*dopac(j)*ypol(2))/k**2)*vis(j)+(3.D0/16.D0*ddvis(j)
        )*pig+9.D0/ &
```

J. Lesgourgues

CLASS Theory

90 Q

21/22

F. Transfer functions in harmonic space: compact source functions

So we should rather stick to

$$\begin{split} \Delta_l(k) &= \int_{\tau_{\rm ini}}^{\tau_0} d\tau \ \left\{ S_T^0(\tau,k) \ j_l(k(\tau_0 - \tau)) \right. \\ &+ S_T^1(\tau,k) \ \frac{dj_l}{dx} (k(\tau_0 - \tau)) \\ &+ S_T^2(\tau,k) \ \frac{1}{2} \left[3 \frac{d^2 j_l}{dx^2} (k(\tau_0 - \tau)) + j_l(k(\tau_0 - \tau)) \right] \right\} \end{split}$$

CLASS v2.0 stores separately $S_T^0(\tau,k)$, $S_T^1(\tau,k)$, $S_T^2(\tau,k)$, and the transfer module will convolve them individually with respective bessel functions.

$$S_T^0 = g\left(\frac{\delta_g}{4} + \psi\right) + e^{-\kappa}(\phi' + \psi')$$
 $S_T^1 = g\frac{\theta_b}{k}$ $S_T^2 = \frac{g}{8}(G_0 + G_2 + F_2)$

or

$$S_T^0 = g\left(\frac{\delta_g}{4} + \phi\right) + e^{-\kappa} 2\phi' + g'\theta_b + g\theta_b' \qquad S_T^1 = e^{-\kappa} k(\psi - \phi) \qquad S_T^2 = \frac{g}{8} \left(G_0 + G_2 + F_2\right)$$