Calcolo Parallelo e Distribuito

Prodotto Matrice-Matrice

prof. Giuliano Laccetti a.a. 2023-2024 - prodotto mat-mat 01/12/2023

Materiale tratto da slide, appunti, lezioni di Calcolo Parallelo e Distribuito del prof. A. Murli e dal testo

A. Murli - Lezioni di Calcolo Parallelo, ed. Liguori

1

prof. Giuliano Laccetti a.a. 2023-2024 - prodotto mat-mat 01/12/2023

Calcolo Parallelo e Distribuito

Prodotto Matrice-Matrice

prof. Giuliano Laccetti a.a. 2023-2024 - prodotto mat-mat 01/12/2023

Materiale tratto da slide, appunti, lezioni di Calcolo Parallelo e Distribuito del prof. A. Murli e dal testo

A. Murli - Lezioni di Calcolo Parallelo, ed. Liguori

3

Problema

Progettazione
di un algoritmo parallelo
per architettura MIMD
a memoria distribuita
per il calcolo del prodotto righe per colonne
di 2 matrici A e B:

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Qual è l'algoritmo sequenziale ?

```
for i=0,n-1 do

for j=0,n-1 do

c<sub>ij</sub>=0

for k=0,n-1 do

c<sub>ij</sub>=c<sub>ij</sub>+a<sub>ik</sub> b<sub>kj</sub>

endfor

endfor

endfor
```

Prodotto Matrice-Matrice

 $A \bullet B = C$, $A, B \in \mathbb{R}^{n \times n}$

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

5

Qual è l'algoritmo sequenziale ?

for i=0,n-1 do

for j=0,n-1 do c_{ij} =0

for k=0,n-1 do c_{ij} = c_{ij} + a_{ik} b_{kj} endfor

endfor

endfor

Su un calcolatore tradizionale la matrice C viene "generalmente" calcolata componente per componente secondo un ordine prestabilito

Il generico elemento di C è il prodotto scalare della i-esima riga di A per la j-esima colonna di B

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

DECOMPOSIZIONE: IDEA GENERALE

Decomporre un problema di dimensione N
in P sottoproblemi di dimensione N/P
e risolverli contemporaneamente
su più calcolatori

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

01/11/2023

_

Quali sono i sotto-problemi indipendenti?

Gli elementi di C sono
calcolati effettuando i
prodotti scalari di ciascuna riga di A per
ciascuna colonna di B

I prodotti scalari sono calcolati

<u>in maniera indipendente</u>

l'uno dall'altro

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Decomposizione del problema Matrice per Matrice

Partizionamento delle matrici A e B IN BLOCCHI

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

11

11

Algoritmo a blocchi - I strategia

Decomposizione di A per p blocchi di righe e di B per p blocchi di colonne

$$\begin{bmatrix} \mathbf{A}_{0} \\ \mathbf{A}_{1} \\ \dots \\ \mathbf{A}_{p-1} \end{bmatrix} \bullet \begin{bmatrix} \mathbf{B}_{0} \mathbf{B}_{1} \dots \mathbf{B}_{p-1} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{00} & \mathbf{C}_{01} & \dots & \mathbf{C}_{0,p-1} \\ \mathbf{C}_{10} & \dots & \dots & \mathbf{C}_{1,p-1} \\ \dots & \dots & \dots & \dots \\ \mathbf{C}_{p-1,0} & \dots & \dots & \mathbf{C}_{p-1,p-1} \end{bmatrix}$$

$$I_i \in \mathbb{R}^{r \times n}$$

$$\boldsymbol{B}_{j} \in \boldsymbol{R}^{n \times r}$$

$$i, j = 0, p-1$$

$$A_i B_j = C$$

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

15

15

Introduzione del parallelismo

Distribuiamo tra i processori il calcolo dei diversi prodotti matrice-matrice

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

35

35

I STRATEGIA

suddividiamo
la matrice A in
blocchi di RIGHE
e la matrice B in
blocchi di COLONNE

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

٠.

Domanda

Con i dati così distribuiti cosa può calcolare ciascuno studente

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

39

Domanda

Dopo lo scambio dei blocchi di B cosa può calcolare ciascuno studente

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

I STRATEGIA: In generale

II passo: risoluzione dei sottoproblemi

Il prodotto $A \cdot B = C$ viene decomposto in p prodotti del tipo $A_i \cdot B_j = C_{ij}$

Ciascun processore calcola

p prodotti matrice-matrice

(di dimensione più piccola di quello assegnato!).

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

51

51

I strategia: caratteristiche

 Analogo localmente alla I strategia del prodotto matrice-vettore

MA

 sono necessari degli scambi di colonne della matrice B tra i processori

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Domanda

Qual è l'algoritmo parallelo della I Strategia di decomposizione

?

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

53

II strategia

suddividiamo
la matrice A in
blocchi di COLONNE
e la matrice B in
blocchi di RIGHE

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Domanda

Con i dati così distribuiti cosa può calcolare ciascuno studente

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

59

II Strategia: Esempio n=6

II Strategia: Esempio n=6

A₁ $\begin{bmatrix} a_{03} & a_{04} & a_{05} \\ a_{13} & a_{14} & a_{15} \\ a_{23} & a_{24} & a_{25} \\ a_{33} & a_{34} & a_{35} \\ a_{43} & a_{44} & a_{45} \\ a_{85} & a_{86} & a_{86} \end{bmatrix} \bullet \begin{bmatrix} b_{30} & b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\ b_{50} & b_{51} & b_{52} & b_{53} & b_{54} & b_{55} \end{bmatrix}$ Lo studente 2 può calcolare un contributo per OGNI elemento della matrice C

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

66

01/11/2023

Domanda

Come calcolare la matrice C

$$C = C^1 + C^2$$

?

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

71

71

II STRATEGIA: Esempio n= 6

Per ottenere la matrice C gli studenti devono "interagire" sommando i loro risultati parziali

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

II STRATEGIA: In generale

◆ Calcolo:

Inizialmente tutti i processori calcolano, indipendentemente, un contributo parziale di tutte le componenti di *C*

 ◆ Comunicazione/calcolo
 Successivamente in parallelo tutti i processori concorrono alla somma dei contributi parziali

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

73

73

II STRATEGIA: In generale

I passo: decomposizione del problema

La matrice A viene distribuita in BLOCCHI di COLONNE fra p processori

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

II STRATEGIA: In generale

I passo: decomposizione del problema

La matrice B viene distribuita in BLOCCHI di RIGHE fra p processori

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

75

75

II STRATEGIA: In generale

II passo: risoluzione dei sottoproblemi

Il prodotto $A \cdot B = C$ viene decomposto in p prodotti del tipo $A_i \cdot B_i = C^i$ dove $C = \sum_{i=0}^{P-1} C^i$

Ciascun processore calcola un prodotto matrice matrice

(di dimensione più piccola di quello assegnato).

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

II strategia: caratteristiche

- I risultati parziali devono essere sommati tra i processori
- In questo caso l'algoritmo parallelo è analogo a quello del prodotto matricevettore (II strategia)

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

77

77

Domanda

Qual è l'algoritmo parallelo della II Strategia di decomposizione

?

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

III strategia

Suddividiamo ENTRAMBE le matrici A e B in blocchi di COLONNE

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

81

Domanda

Con i dati così distribuiti cosa può calcolare ciascuno studente

?

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

III Strategia: Esempio n=6 B_1 \mathbf{b}_{05} **a**05 P₀₃ aos **a**₀₄ **a**₁₃ **a**₁₄ **a**₁₅ **a**₂₃ b_{23} **a**₂₄ **a**₂₅ **a**₃₄ **b**₃₅ b₃₃ **a**33 **a**,45 **b**₄₃ **a**,3 **a**44 quali componenti **a**₅₃ **a**₅₅ **b**₅₃ della matrice C calcola lo studente 2 Studente 2 86 01/11/2023 PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

87

87

Premessa... $\begin{bmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} & a_{05} \\ a_{00} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{30} & a_{31} & a_{32} & a_{33} & a_{44} & a_{45} \\ a_{40} & a_{41} & a_{42} & a_{33} & a_{44} & a_{45} \\ a_{40} & a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{bmatrix} \begin{bmatrix} b_{00} & b_{01} & b_{02} & b_{03} & b_{04} & b_{05} \\ b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{20} & b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{30} & b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\ b_{40} & b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\ b_{50} & b_{51} & b_{52} & b_{53} & b_{54} & b_{55} \end{bmatrix}$ Riorganizziamo la matrice C in blocchi quadrati Allo stesso modo riorganizziamo i blocchi di colonne di A e B!

Osservazione...

 $C_{11} = A_{10} B_{01} + A_{11} B_{11}$

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Domanda

Come "completare" i contributi calcolati

?

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

95

III STRATEGIA: In generale

I passo: decomposizione del problema

La matrice B viene distribuita in BLOCCHI di COLONNE fra p processori

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

101

101

III STRATEGIA: In generale

II passo: risoluzione dei sottoproblemi

Il prodotto $A \cdot B = C$ viene decomposto in p×p prodotti del tipo

$$C_i = \sum_{k=0}^{p-1} A_k B_{ki}$$

Ciascun processore calcola

p prodotti matrice matrice

(di dimensione più piccola di quello assegnato).

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Domanda

Qual è l'algoritmo parallelo della III Strategia di decomposizione

?

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti

103

103

Risposta

Partizionamento delle matrici

A e B in blocchi di colonne


```
begin

for i=0 to p-1 do

C_i = 0

for j=0 to p-1 do

C_i = C_i + A_j \cdot B_{ji}

endfor

endfor

end
```


Parallelizzazione dell'algoritmo a blocchi!

01/11/2023

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

Risposta

Partizionamento delle matrici

A e B in blocchi di colonne


```
begin
 for i=0 to p-1 do
  C_i = 0
  for j=0 to p-1 do
    C_i = C_i + A_j \cdot B_{ji}
  endfor
 endfor
end
```

01/11/2023

Algoritmo parallelo

```
Begin
for k=0 to p-1 do
  forall P_i (i=0,...,p-1)
  j=mod(i+k,p);
  {P_i \ calcola}
        C_i = C_i + A_j \cdot B_{ji}
 send (\mathbf{A}_{i}, P_{i-1}) {p = 0}
 recv (A_{i+1}, P_{i+1}) {-1=p-1}
endfor
```

105

Fine Lezione

PDC – MAT-MAT – 2023/2024 prof. Giuliano Laccetti

01/11/2023

PDC - MAT-MAT - 2023/2024 prof. Giuliano Laccetti