TOPOLOGY MATH4121A/9021 LECTURE 1

Definition. Suppose X is a set. Then \mathcal{T} is a **topology** on X if and only if \mathcal{T} is a collection of subsets of X such that

- (1) $\emptyset \in \mathcal{T}$,
- (2) $X \in \mathcal{T}$, (3) if $U \in \mathcal{T}$ and $V \in \mathcal{T}$, then $U \cap V \in \mathcal{T}$, and
- (4) if $\{U_{\alpha}\}_{{\alpha}\in{\lambda}}$ is any collection of sets of \mathscr{T} , then $\bigcup_{{\alpha}\in{\lambda}}U_{\alpha}\in\mathscr{T}$.

Theorem 1. Let $\{U_i\}_{i=1}^n$ be a finite collection of open sets in a topological space (X,\mathcal{F}) . Then $\bigcap_{i=1}^n U_i$ is open.

Proof.

2

Solution.

of open sets is necessarily open?

Theorem 3. A set U is open in a topological space (X,\mathcal{T}) if and only if for every point $x \in U$, there exists an open set U_x such that $x \in U_x \subset U$. Proof.

Definition. An open set containing x is called a **neighbourhood** of x.

This means that a set is open if and only if every point has an open neighborhood that lies within U.

Definition. The standard topology on \mathbb{R} , denoted \mathcal{T}_{std} is defined as follows: a subset U of \mathbb{R} belongs to \mathcal{T}_{std} if and only if for every point p of U there is some $\epsilon_p > 0$ such that the interval $(p - \epsilon_p, p + \epsilon_p)$ is contained in U. We write \mathbb{R}_{std} for $(\mathbb{R}, \mathcal{T}_{std})$, but if we every see \mathbb{R} without some toplogy mentioned, we should assume it has the standard topology.

Exercise 4. Illustrate an open set on \mathbb{R} . Generalize the standard topology to \mathbb{R}^2 . Can you generalize the standard topology to \mathbb{R}^n ?

Solution.

Exercise 5. Verify that \mathcal{T}_{std} is a topology on \mathbb{R}^n ; in other words, it satisfies the four conditions of the definition of a topology.

Solution.

Definition. Let (X, \mathcal{F}) be a topological space, A be a subset of X, and p be a point in X. Then p is a **limit point** of A if and only if for each open set U containing p, $(U - \{p\}) \cap A \neq \emptyset$. Notice that p may or may not belong to A.

Exercise 6. Illustrate the definition of a limit point. The *indiscrete topology* is the topology such that $\mathcal{T} = \{\emptyset, X\}$. Let $X = \mathbb{R}$ and A = (1, 2). Verify that 0 is a limit point of A in the indiscrete topology but not in the standard topology on \mathbb{R} .

Solution.