CS201: Discrete Math for Computer Science 2022 Spring Semester Written Assignment # 3

Due: Apr. 6th, 2022, please submit one pdf file through Sakai Please answer questions in English. Using any other language will lead to a zero point.

Q. 1. (5 points) Show that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Solution: If $a \mid b$, then there exists an integer k such that a = kb. If $b \mid a$, then there exists an integer l such that b = al. Thus, b = klb. Since k and l are integers and b = b, we have kl = 1. This implies that either (k = 1, l = 1) or (k = -1, l = -1). Consequently, either a = b or a = -b.

Q. 2. (5 points)

- (a) Convert $(1768)_{10}$ to hexadecimal
- (b) Convert $(10101)_2$ to octal
- (c) Convert $(3B5A)_{16}$ to binary number

Solution:

- (a) $1768 = 6 \cdot 16^2 + 14 \cdot 16 + 8 \cdot 16^0$, Thus, $(1768)_{10} = (6E8)_{16}$
- (b) Since $(010)_2 = (2)_8$ and $(101)_2 = (5)_8$, we have $(10101)_2 = (25)_8$.

[Alternative solution] We first convert binary to decimal, i.e., $1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 + 1 \cdot 2^4 = 21$. Then, we can convert decimal to octal, i.e., $21 = 5 \cdot 8^0 + 2 \cdot 8$. Thus, $(21)_{10} = (25)_8$.

(c) Since $(3)_{16} = (11)_2$, $(B)_{16} = (1011)_2$, $(5)_{16} = (0101)_2$, and $(A)_{16} = (1010)_2$. Thus, $(3B5A)_{16} = (11101101011010)_2$.

[Alternative solution] Convert hexadecimal to decimal first. Then, convert decimal to binary number. ...

- **Q. 3.** (5 points) What are the prime factorizations of
 - (a) 256
 - (b) 1890

(c) 5!

Solution:

- (a) $256 = 2^8$.
- (b) $1890 = 2 \cdot 3^3 \cdot 5 \cdot 7$.
- (c) $5! = 2^3 \cdot 3 \cdot 5$.

Q. 4. (5 points)

- (a) Use Euclidean algorithm to find gcd(267,79).
- (b) Find integers s and t such that gcd(267,79) = 79s + 267t.
 - (a) By Euclidean algorithm, we have

$$267 = 3 \cdot 79 + 30$$

$$79 = 2 \cdot 30 + 19$$

$$30 = 1 \cdot 19 + 11$$

$$19 = 1 \cdot 11 + 8$$

$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1.$$

Thus, gcd(267, 79) = 1.

(b) By (a), we have

$$1 = 3-2$$

$$= 3-(8-2\cdot3)$$

$$= 3\cdot3-8$$

$$= 3\cdot(11-8)-8$$

$$= 3\cdot11-4\cdot8$$

$$= 3\cdot11-4\cdot(19-11)$$

$$= 7\cdot11-4\cdot19$$

$$= 7\cdot(30-19)-4\cdot19$$

$$= 7\cdot30-11\cdot19$$

$$= 7\cdot30-11\cdot(79-2\cdot30)$$

$$= 29\cdot30-11\cdot79$$

$$= 29\cdot(267-3\cdot79)-11\cdot79$$

$$= 29\cdot267-98\cdot79.$$

Thus, s = -98 and t = 29.

Q. 5. (5 points) For three integers a, b, y, suppose that $gcd(a, y) = d_1$ and $gcd(b, y) = d_2$. Prove that

$$\gcd(\gcd(a,b),y)=\gcd(d_1,d_2).$$

Solution: To begin, we show $gcd(gcd(a, b), y) \leq gcd(d_1, d_2)$. Suppose that $d \mid gcd(a, b)$ and $d \mid y$. As $d \mid gcd(a, b)$, we know $d \mid a$ and $d \mid b$. Thus, $d \mid a$ and $d \mid y$ so $d \mid gcd(a, y) = d_1$. Similarly, $d \mid b$ and $d \mid y$, so $d \mid gcd(b, y) = d_2$. Because $d \mid d_1$ and $d \mid d_2$ we know $d \mid gcd(d_1, d_2)$. Hence we have $gcd(gcd(a, b), y) = d \leq gcd(d_1, d_2)$.

Next we show $\gcd(d_1, d_2) \leq \gcd(\gcd(a, b), y)$. Suppose that $d \mid d_1$ and $d \mid d_2$. As $d \mid \gcd(a, y) = d_1$ we know $d \mid a$ and $d \mid y$. Similarly, as $d \mid \gcd(b, y) = d_2$, we know $d \mid b$ and $d \mid y$. Thus, $d \mid a$, $d \mid b$, and $d \mid y$. Because $d \mid a$ and $d \mid b$, we show $d \mid \gcd(a, b)$. Then $d \mid \gcd(a, b)$ and $d \mid y$. We know $d \mid \gcd(\gcd(a, b), y)$. Hence, $\gcd(d_1, d_2) = d \leq \gcd(\gcd(a, b), y)$.

The theorem follows.

[Alternate solution.] We can also prove this via unique prime factorizations. Let p_1, p_2, \ldots, p_k be the first k primes for some large k, then for a, b and y, we can define sequences of integers (possibly zero) $a_1, \ldots, a_k, b_1, \ldots, b_k$ and y_1, \ldots, y_k such that

$$a = \prod_{i=1}^k p_i^{a_i} = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}, \quad b = \prod_{i=1}^k p_i^{b_i} \quad \text{ and } y = \prod_{i=1}^k p_i^{y_i}.$$

Now we have

$$\gcd(a,b) = \prod_{i=1}^k p_i^{\min\{a_i,b_i\}}$$
 and $\gcd(a,b) = \prod_{i=1}^k p_i^{\min\{\min\{a_i,b_i\},y\}}$.

Similarly,

$$d_1 = \gcd(a, y) = \prod_{i=1}^k p_i^{\min\{a_i, y_i\}}$$
 and $d_2 = \gcd(b, y) = \prod_{i=1}^k p_i^{\min\{b_i, y_i\}}$

SO

$$\gcd(d_1, d_2) = \prod_{i=1}^k p_i^{\min\{\min\{a_i, y_i\}, \min\{b_i, y_i\}\}}.$$

But, since min $\{\min\{a_i, b_i\}, y_i\} = \min\{\min\{a_i, y_i\}, \min\{b_i, y_i\}\}\$, these values are equal.

Q. 6. (5 points) Suppose that gcd(b, a) = 1. Prove that $gcd(b+a, b-a) \le 2$.

Solution: W.l.o.g., assume that $b \ge a$. Now suppose that $d \mid (b+a)$ and $d \mid (b-a)$. Then, $d \mid [(b+a)+(b-a)]=2b$ and $d \mid [(b+a)-(b-a)]=2a$. Thus, we have

$$d \mid \gcd(2b, 2a) = 2\gcd(b, a) = 2.$$

Therefore, we have $d \leq 2$.

Q. 7. (10 points) Fermat's little theorem: If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.

- (a) Show that Fermat's little theorem does not hold if p is not prime.
- (b) Computer $302^{302} \pmod{11}$, $4762^{5367} \pmod{13}$, $2^{39674} \pmod{523}$.

Solution:

(a) Take p = 4 and a = 6. Note that 6 is not divisible by 4 and that

$$6^{4-1} \bmod 4 \equiv (3 \cdot 2)^3 \pmod 4$$
$$\equiv 2^3 \cdot 3^3 \pmod 4$$
$$\equiv 8 \cdot 3^3 \pmod 4$$
$$= 0$$

(b) By Fermat's little theorem, we have

$$302^{302} \pmod{11} \equiv (27 \cdot 11 + 5)^{302} \pmod{11}$$

 $\equiv 5^{302} \pmod{11}$
 $\equiv 5^{30 \cdot 10 + 2} \pmod{11}$
 $\equiv 5^2 \cdot (5^{10})^{30} \pmod{11}$
 $\equiv 5^2 \pmod{11}$
 $\equiv 3$.

Note that 13 is a prime. Then by Fermat's little theorem, we have

$$4762^{5367} \pmod{13} \equiv (366 \cdot 13 + 4)^{5367} \pmod{13}$$

 $\equiv 4^{5367} \pmod{13}$
 $\equiv 4^{447 \cdot 12 + 3} \pmod{13}$
 $\equiv 4^3 \pmod{13}$
 $\equiv 64 \pmod{13}$
 $\equiv 12.$

Note that 523 is a prime. Then by Fermat's little theorem, we have

$$2^{39674} \pmod{523} \equiv 2^{76 \cdot 522 + 2} \pmod{523}$$

 $\equiv 2^2 \pmod{523}$
 $\equiv 4.$

Q. 8. (5 points) Solve the following modular equations.

- (a) $267x \equiv 3 \pmod{79}$.
- (b) $312x \equiv 3 \pmod{97}$.

Solution:

(a) First, we compute the inverse of 267 modulo 79, denoted by \bar{a} . By Euclidean algorithm, we have

$$267 = 3 \cdot 79 + 30$$

$$79 = 2 \cdot 30 + 19$$

$$30 = 1 \cdot 19 + 11$$

$$19 = 1 \cdot 11 + 8$$

$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

(For this part, it is ok for the students to directly refer to Q. 4.)

Since $\gcd(267,79)=1$, the inverse of 267 modulo 79 exists. Reading backwards, we have $29 \cdot 267 \equiv 1 \pmod{79}$, i.e., $\bar{a}=29$. Thus, we have $x \equiv 29 \cdot 3 \equiv 87 \equiv 8 \pmod{79}$.

(b) We first compute the invest of 312 modulo 97, denoted by \bar{a} . Applying Euclidean algorithm, we have

$$312 = 3 \cdot 97 + 21$$

$$97 = 4 \cdot 21 + 13$$

$$21 = 1 \cdot 13 + 8$$

$$13 = 1 \cdot 8 + 5$$

$$8 = 1 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

Since gcd(312, 97) = 1, the inverse of 312 modulo 97 exists. Reading Euclidean algorithm backwards, we have $1 = 37 \cdot 312 - 119 \cdot 97$. So,

 $312 \cdot 37 \equiv 1 \pmod{97}$, i.e., $\bar{a} = 37$. Thus, $x \equiv 37 \cdot 3 \equiv 111 \equiv 14 \pmod{97}$.

Q. 9. (5 points) Prove that if a and m are positive integer such that gcd(a, m) = 1, then the function

$$f: \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

defined by

$$f(x) = (a \cdot x) \bmod m$$

is a bijection.

Solution: Since gcd(a, m) = 1, we know that a has an inverse modulo m. Let b be such an inverse, i.e.,

$$ab \equiv 1 \pmod{m}$$
.

To show that f is a bijection, we need to show that it is one-to-one and onto. Let $S = \{0, ..., m-1\}$ denote the domain and codomain. We first show that f is one-to-one. Assume that $x, y \in S$ and f(x) = f(y), i.e.,

$$ax \mod m = ay \mod m$$
.

This is equivalent to saying that

$$ax \equiv ay \pmod{m}$$
.

Multiplying both sides by b, we have

$$bax \equiv bay \pmod{m}$$
,

which is just

$$x \equiv y \pmod{m}$$
.

Thus, m|x-y. Note that since $0 \le x, y < m$, we have |x-y| < m. Thus, this is only possible if x = y = 0 or x = y as desired.

To show that f is onto, let $z \in S$ be some element in the codomain. Let

$$x = bz \mod m$$
,

and note that $x \in S$ and

$$ax \equiv abz \equiv z \pmod{m}$$
.

Since $z \in \{0, ..., m-1\}$, this means that $ax \mod m = z$. Thus, f(x) = z, as desired.

Q. 10. (5 points) Show that if n is an integer, then $n^2 \equiv 0$ or 1 (mod 4).

Solution: There are two cases. If n is even, then n = 2k for some integer k, so $n^2 = 4k^2$, which means that $n^2 \equiv 0 \pmod{4}$. If n is odd, then n = 2k + 1 for some integer k, so $n^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$, which means that $n^2 \equiv 1 \pmod{4}$.

Q. 11. (5 points) Use Q. 10 to show that if m is a positive integer of the form 4k + 3 for some nonnegative integer k, then m is not the sum of the squares of two integers.

Solution: Assume that m is the sum of two integers, i.e., $m = s^2 + t^2$. By Q.10, $s^2 + t^2 \equiv 0 \pmod{4}$, $s^2 + t^2 \equiv 1 \pmod{4}$, or $s^2 + t^2 \equiv 2 \pmod{4}$. However, $4k + 3 \equiv 3 \pmod{4}$. This leads to contradiction.

Q. 12. (5 points) Prove that if a and m are positive integers such that $gcd(a, m) \neq 1$, then a does not have an inverse modulo m.

Solution: We prove this by contrapositive. Assume that a has an inverse modulo m, i.e., there exists an integer b such that

$$ab \equiv 1 \pmod{m}$$
.

This is equivalent to $m \mid (ab-1)$, which means that there is an integer k such that

$$ab - 1 = mk$$
,

which is

$$ba + (-k)m = 1.$$

Suppose that d is any common divisor of a and m, i.e., $d \mid a$ and $d \mid m$. Since b and k are integers, it follows that $d \mid (ba - km)$, so $d \mid 1$. Thus, we must have d = 1, which completes the proof.

Q. 13. (5 points)

- (a) Convert $(1768)_{10}$ to hexadecimal
- (b) Convert $(10101)_2$ to octal
- (c) Convert $(3B5A)_{16}$ to binary number

Solution: ...

Q. 14. (5 points) Show that if a, b, and m are integers such that $m \ge 2$ and $a \equiv b \mod m$, then $\gcd(a, m) = \gcd(b, m)$.

Solution: From $a \equiv b \mod m$, we know that b = a + sm for some integer s. Now if d is a common divisor of a and m, then it divides the right-hand side of this equation, so it also divides b. We can rewrite the equation as a = b - sm, and then by similar reasoning, we see that every common divisor of b and b is also a divisor of b. This shows that the set of common divisors of b and b is equal to the set of b and b is equal to the set of b is equal to the set of b and b is equal to the set of b

Q. 15. (5 points) Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the method of back substitution.

Solution: By definition, the first congruence can be written as x = 6t + 3 where t is an integer. Substituting this expression for x into the second congruence tells us that $6t + 3 \equiv 4 \pmod{7}$, which can be easily be solved to show that $t \equiv 6 \pmod{7}$. From this we can write t = 7u + 6 for some integer u. Thus, $x = 6t + 3 = 6 \cdot (7u + 6) + 3 = 42u + 39$. Thus, our answer is all numbers congruent to 39 modulo 42.

Q. 16. (10 points) Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.

Solution: We cannot apply the Chinese remainder theorem directly, since the moduli are not pairwise relatively prime. However, we can using the Chinese remainder theorem, translate these congruences into a set of congruences that together are equivalent to the given congruence. Since we want $x \equiv 5 \pmod{6}$, we must have $x \equiv 5 \equiv 1 \pmod{2}$ and $x \equiv 5 \equiv 2 \pmod{3}$. Similarly, fromt he second congruence we must have $x \equiv 1 \pmod{2}$ and $x \equiv 3 \pmod{5}$; and from the third congruence we must have $x \equiv 2 \pmod{3}$ and $x \equiv 3 \pmod{5}$. Since these six statements are consistent, we see that our system is equivalent to the system $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$. These can be solved using the Chinese remainder theorem to yield $x \equiv 23 \pmod{30}$. Therefore, the solutions are all integers of the form 23 + 30k, where k is an integer.

Q. 17. (10 points) Suppose that (n, e) is an RSA encryption key, with n = pq where p and q are large primes and $\gcd(e, (p-1)(q-1)) = 1$. Furthermore, suppose that d is an inverse of e modulo (p-1)(q-1). Suppose that $C \equiv M^e \pmod{pq}$. In the lecture, we showed that RSA decryption, that is, the congruence $C^d \equiv M \pmod{pq}$ holds when $\gcd(M, pq) = 1$. Show that this decryption congruence also holds when $\gcd(M, pq) > 1$. [Hint: Use congruences modulo p and modulo q and apply the Chinese remainder theorem.]

Solution:

If $M \equiv 0 \pmod{n}$, then $C \equiv M^e \equiv 0 \pmod{n}$ and so $C^d \equiv 0 \equiv M \pmod{n}$. Otherwise, $\gcd(M,p) = p$ and $\gcd(M,q) = 1$, or $\gcd(M,p) = 1$ and $\gcd(M,q) = q$. By symmetry it suffices to consider the first case, where $M \equiv 0 \pmod{p}$. We have $C^d \equiv (M^e)^d \equiv (0^e)^d \equiv 0 \equiv M \pmod{p}$. As in the case considered in the text, de = 1 + k(p-1)(q-1) for some integer k, so

$$C^d \equiv M^{de} \equiv M^{1+k(p-1)(q-1)} \equiv M \cdot (M^{q-1})^{k(p-1)} \equiv M \cdot 1 \equiv M \pmod{q}$$

by Fermat's little theorem. Thus by the Chinese remainder theorem, $C^d \equiv M \pmod{pq}$.