补充内容(选学): 3前束范式的存在定理及其证明 --选自 王宪钧编《数理逻辑引论》,1982,北京大学出版 社

定理 谓词逻辑的任一公式 A,都可化成相应的<mark>∃前束范式</mark>,并且 A 是普遍有效的当且仅当其<mark>∃前束范式</mark>是普遍有效的。

说明:对普遍有效的公式,它与其∃前束范式是等值的。而一般的公式与其∃前束范式并不等值。自然仅当 A 是普遍有效的,方使用∃前束范式。

定理的证明:

上述定理可叙述为: 谓词逻辑的任一公式 D 都有一3前束范式 E, 并且 D 和 E 可互推, 亦即: D 普遍有效是 E 普遍有效的充要条件。

- (1) 必有一前東范式 E_1 , 且 \vdash $D \leftrightarrow E_1$ 。(前東范式存在定理)
- (2) $\underline{\text{如 } E_1}$ 中有自由个体变项 $\underline{\text{1}},\underline{\text{2}},\underline{\text{\dots}},\underline{\text{2}}$,则可引用概括规则 得

$$E_2 = (\Delta_1)(\Delta_2)\cdots(\Delta_m)E_1, m \geqslant 0.$$

E2和 E1可以互推,如 E1中无自由个体变项,则 E2即是 E1。

(3) 如 E_2 中只有命题变项而无谓词变项,即是说, E_2 为一命题 演算的公式,则可引用定理

$$\vdash P \leftrightarrow (\exists x)(F(x) \lor \neg F(x) \land P)$$

引入一个处于最前方的存在量词。右侧公式即为存在前束范式

(4) $\underline{\text{如 } E_2}$ 为3前東范式,则 $\underline{\text{E}}_2$ 即为 $\underline{\text{E}}$ 。否则 $\underline{\text{E}}_2$ 的形式为

$$(\exists x_1) (\exists x_2) \cdots (\exists x_n) (\forall y) A(x_1, \cdots, x_n, y), n \ge 0.$$

在这里, $A(x_1, \dots, x_n, y)$ 为一前束范式,其中只有 x_1, \dots, x_n, y 是自由个体变项。 E_2 有两种可能:

- (a) 全称量词"(∀y)"之前无存在量词,其后也无存在量词。
- (b) "(∀y)"后只有 k-1 个全称量词出现于存在量词之前。

现在如果能够证明,在上述情形下,必然可以求得一前束范式 E_3 , E_3 和 E_2 可以互推,并且,如为情况 (a),则 E_3 的最前方为一存在量

词,也就是说, E_3 是一个3前束范式。如为情况(b),则 E_3 中只有 k – 1 个全称量词出现于存在量词之前,也就是说,比 E_2 少一个这样的全称量词。在情况(b)下,经过 k 次这样的转换,就可以得到一3 前束范式,因此存在定理得证。

为了求得 E3, 可先构造 E*如下。

 $(\exists x_1) \ (\exists x_2) \cdots (\exists x_n) \{ (\exists y) \ [A(x_1, \cdots, x_n, y) \land \neg S(x_1, \cdots, x_n, y)] \lor (\forall z) S(x_1, \cdots, x_n, z) \}$

其中 $S(\cdots)$ 是在 A 中不出现的谓词变项,z 是在 A 中不出现的个体变项。现在需要证明:

- (i) E₂和 E*可以互推,
- (ii)从 E*可以得到所需要的 E3, E*和 E3可以互推。
- (5) E₂和 E*可以互推。

根据定理

$$\vdash (\forall x)(F(x) \rightarrow G(x)) \rightarrow ((\forall x)F(x) \rightarrow (\forall x)G(x))$$

可得

$$\vdash (\forall y)F(y) \rightarrow (\exists y)(F(y) \land \neg G(y)) \lor (\forall z)G(z)$$
 (iii)

在上列公式中,以 $A(x_1,\dots,x_n,\Delta)$ 代 $F(\Delta)$,以 $S(x_1,\dots,x_n,\Delta)$ 代 $G(\Delta)$,可得

 $\vdash (\forall y) A(x_1, \dots, x_n, y) \rightarrow (\exists y) [(A(x_1, \dots, x_n, y) \land \neg S(x_1, \dots, x_n, y))] \lor (\forall z) S(x_1, \dots, x_n, z)$ (aa)

根据概括规则及定理

 \vdash (∀x)(F(x)→G(x))→ ((∃x)F(x)→(∃x)G(x)) (iv) 条件放松 可得

$$\vdash (\exists x_1) (\exists x_2) \cdots (\exists x_n) (\forall y) A (x_1, \dots, x_n, y)$$

$$\rightarrow (\exists x_1) (\exists x_2) \cdots (\exists x_n) \{ (\exists y) [A(x_1, \dots, x_n, y)] \land \neg S(x_1, \dots, x_n, y) \} \lor (\forall z) S(x_1, \dots, x_n, z) \}$$

【备注: 在 aa 式中,对 $x_1,x_2,x_3...$ 施加∀量词,可以得到存在量词的

结论

 $\vdash \forall x_n \{ (\forall y) F(y) \rightarrow (\exists y) (F(y) \land \neg G(y)) \lor (\forall z) G(z) \}$ 根据(iii)

 $\vdash \forall x_n \{ (\forall y) F(y) \rightarrow (\exists y) (F(y) \land \neg G(y)) \lor (\forall z) G(z) \} \rightarrow \{\exists x_n \forall y F(y) \rightarrow \exists x_n \forall x_n$

 $(\exists y)(F(y) \land \neg G(y)) \lor (\forall z)G(z)$ (根据 iv)

 $\vdash \{\exists x_n \forall y F(y) \rightarrow \exists x_n (\exists y) (F(y) \land \neg G(y)) \lor (\forall z) G(z)\}$ 分离规则

如此重复施加于 x_{n-1},...,x₁】

以上即是 -E2→E*。可见从 E2可以推出 E*。

现证从 E*可以推出 E2。

在 E*中作代入,以 A $(x_1, \dots, x_n, \triangle)$ 代 S $(x_1, \dots, x_n, \triangle)$,可得 $(\exists x_1)(\exists x_2)\cdots(\exists x_n)\{(\exists y)[A(x_1, \dots, x_n, y)]\land \neg S(x_1, \dots, x_n, y)]\lor (\forall z)S(x_1, \dots, x_n, y)\}$ z)}

消去其中的矛盾式则得

 $(\exists x_1) (\exists x_2) \cdots (\exists x_n) (\forall z) A (x_1, \cdots, x_n, z)_{\circ}$

再用约束变项易名可得 E_2 ,即是

 $(\exists x_1) (\exists x_2) \cdots (\exists x_n) (\forall y) A (x_1, \cdots, x_n, y)$

因此,E2和 E*可互推得证。

(6) <u>从 E*可以推出 E₃。</u>

E*为

 $(\exists x_1)(\exists x_2)\cdots(\exists x_n)\{(\exists y)\ [A(x_1,\cdots,x_n,y)\land\neg S(x_1,\cdots,x_n,\ y)]\lor \\ (\forall z)S(x_1,\cdots,x_n,\ z)\}$

 $A(\cdots)$ 为一前束范式,其中只有 k-1 个全称量词出现于存在量词之前,设 $A(\cdots)$ 为

 $Z_1Z_2\cdots Z_l A^*(x_1,\cdots,x_n,y)$, $l \ge k$.

其中 Z₁,…,Z₁ 皆为量词,且约束变项中无 z。现将量词(∃y), Z₁,…,Z₁

等依次前移使其辖域延伸至公式的末端,最后将($\forall z$)前移。这样前移的结果即为 \mathbb{E}_3 :

$$(\exists x_1)(\exists x_2)\cdots(\exists x_n)(\exists y)\ Z_1Z_2\cdots Z_l(\forall z)\{[\ A(x_1,\cdots,x_n,y)\\ \land \neg S(x_1,\cdots,x_n,y)] \lor S(x_1,\cdots,x_n,z)\}.$$

由于 Z_1 前的 "($\forall y$)" 已转换为一存在量词 "($\exists y$)",同时 "($\forall z$)" 已移至前束词末端,因此 (a) 如果 E_2 中原无存在量词, E_3 的第一个量词即为存在量词,所以 E_3 是一个 \exists 前束范式,(b) 如果 E_2 中原有的 k 个全称量词出现于存在量词之前,在 E_3 中只有 k-1 个全称量词在某些存在量词之前,与 E_3 相比较已减少一个。

E*和 E3是等值的,因此也是可以互推的。

至此, 3前束范式的存在定理得证。