Raisonnement par récurrence

Exercice 1

Démontrer par récurrence que pour tout $n \ge 1$, on a:

$$S_n = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Exercice 2

Soit $a \in \mathbb{R}^+$. Démontrer par récurrence que pour tout $n \in \mathbb{N}$, on a $(1+a)^n \ge 1+na$.

Exercice 3

Démontrer par récurrence que pour tout $n \ge 1$, on a :

$$S_n = \sum_{i=1}^n i^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

Exercice 4

On considère la suite (u_n) définie par (u_n) : $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{1 + u_n} \end{cases} \forall n \in \mathbb{N}$

Démontrer que la suite (u_n) est croissante.

Exercice 5

Démontrer que pour tout $n \in \mathbb{N}$, $10^n - 1$ est un multiple de 9.