ENVIRONMENTAL MANAGEMENT PLAN

GUDARIKANDA STONE QUARRY KHATA NO: 86, PLOT NO: 492
AT: GUDARIKANDA, TAHASIL: DIGAPAHANDI, DIST: GANJAM, STATE: ODISHA.

FOR

PRODUCTION OF 7000 CUM/YEAR OF STONE OVER AN AREA OF 1.214 Ha.

OF

M/S PREMEX
Plot no-652,Ekamra villa,
IRC Village, Nayapalli, Bhubaneswar,Dist-Khordha

PREPARED BY

M/S EARTH AND ENVIRONMENT,
MR. PRAVA RANJAN MISHRA,
PLOT NO. 652, EKAMRA VILLA, IRC VILLAGE,
NAYAPALLI, PS -BHUBANESWAR, KHURDA
DISTRICT, ODISHA 751015

INTRODUCTION

PREAMBLE

Environmental Management Plan (EMP) is a site specific plan developed to ensure that the Gudarikanda Stone Quarry project is implemented in an environmentally suitable manner. Environmental Management Plan also ensures that the project implementation is carried out in accordance with design by taking appropriate mitigation methods to minimize impacts on the environment during the construction and/ or operational phase. Environmental Management Plan will outline Environmental Aspects of concern as well as their level of risk and environmental protection measures to diminish this risk. It emphasizes how the development may impact on relevant environmental factors and how these impacts may be mitigated and managed so that they are environmentally acceptable accordingly Environmental Management Plan is prepared.

As per the MOEF& CC notification Dtd.17.12.2019, this mining project of B2 category, less than 5Ha should be considered by State Level Environment Impact Assessment Authority (SEIAA).

OBJECTIVES

The objective of the Gudarikanda Stone Quarry is to produce 7000 CuM of Stone per year to meet the requirement of nearby Cities as per the mart of Building materials.

The community needs by ensuring the economy feasibility pointing the following objectives.

- Ensure that ecological balance of the area is not adversely affected by air, noise missions and solid wastes.
- To minimize operational risk and maximize safety of working persons.
- Improvement in the living standard of local inhabitants.
- Improvement of indirect means of livelihood.

Table No:1 Salient feature of the $10\ \mathrm{Km}$ of the study area.

Project Name	Gudarikanda Stone Quarry			
Mining Lease Area	3.000 acre/1.2141ha			
Location of Mine	Khata No.86,			
	Plot No.492, Gudarikanda village of			
	Digapahandi Tahasil of Ganjam District,			
	Odisha.			
	Latitude: N19 ⁰ 20'30.9"to N19 ⁰ 20' 33.4" Longitude: E 84 ⁰ 38' 23.5" to E84 ⁰ 38' 28.5"			
Toposheet number	74A/11			
Proposed production of mine	Stone mining-1030 cubic Meters/annum.			
	Mineable Reserves:136370			
Method of mining	Semi-Mechanized			
No. of working days	270days			
Water demand	3.0 KLD			
Man Power	10			
Nearest Railway station	Berhampur Railway Station at 20Km from the mining site.			
Nearest Airport	Bhubaneswar airport at 185 km from the mining site.			
Nearest Habitation	Gudarikanda Village – Adjacent			
Nearest Road	SH – 29– 9km NH-59- 14 km			
Water bodies	Ghodahada River- 22.2km			
Reserve Forest	Chikiti forest- 25km			
Project Cost	12.0 Lakhs			

Figure:1 Topographical map of mine lease area.

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Figure:2 Google map of mine lease area

PROJECT DESCRIPTION

THE PROJECT

The mine lease area for Stone mining was granted to M/s Premex, Gudarikanda at Khata No.86, Plot No.492, Gudarikanda Village, Digapahandi Tahasil, Ganjam District, Odisha state. The project proponent is the successful bidder. The lease was granted to M/s Premex, Plot no-652,Ekamra Villa, IRC Village, Bhubaneswar, Khordha District, Odisha Vide Letter No.: 286, dated 16/11/2021 from Tahasildar cum-Competent Authority, Ganjam, Odisha State.

NEED FOR THE PROJECT

The Stone is to be used for construction purpose light road building etc. and the government wishes to minimize the gap between demand and supply, thereby facilitating the availability of Stone to the public. In order to meet the statutory requirements the lessee intends to obtain Environmental Clearance from Statutory Authorities.

TOPOGRAPHY

The ML area topography is a plain lane with a gentle slope towards the East.

RESERVES

The geological reserve and minable reserve estimated in the approved mining plan are 214000 cum and 136370 cum respectively.

MINING

The mining is confined to extraction of Stone from the Quarry of Gudarikanda Stone Quarry. The mining will be semi mechanised in which the material will be collected in its existing form and transportation through tipper/ tractors. Mining of minor minerals in Stone Quarry proves to be most viable and least disturbing to the environment. The mining process is Semi-Mechanized method without drilling & blasting. There would be no risk to the employee working in the mines. Except in cases of emergency, when suppliers are to be prompted to Government agencies and other requisite of need, Semi-mechanized mining operations may be restor to without drilling & blasting. The lease area is 1.2141 hectares with maximum production of 7000 cum/annum.

USE OF MINERAL

The Stone quarried will be utilized for civil construction purpose

MINERAL PROCESSING

The construction Stone blocks excavated from the Gudarikanda Stone quarry would require crushing. The construction Stone will be broken by cracking and splitting and the excavated material will be transported to the nearest Stone crusher from the lease area. These small excavated Stone ranging +30 mm to 150 mm will be directly feed in to crusher hopper. The sorting and sizing of -30 mm Material will be done by manual labourers. The +30 mm materials will be crushed through Stone crusher and will converted to required size as per the demand of construction material. The finished products size ranges from 10-20 mm,5-10mm,3-5 mm and 3mm fines which becomes 50%,25%,and 10% volume respectively.

SITE SERVICES

A make shift quarry office shall be established at the ramp of the quarry-site. Other statutory constructions like rest shelter, drinking water supply, and first aid facility may not be required as the laborers involved in the quarry operation will be from the adjoining villages.

EVALUATION OF IMPACTS

INTRODUCTION

Open excavation Stone quarrying activity will not causes adverse impacts on the surround environment. Selecting suitable sites for Stone quarrying and adopting the guidelines prescribed by the Ministry of Environment & Forests (MoEF& CC).

AIR ENVIRONMENT

The impacts envisaged due to mining activity are evaluated based on various factors like production capacity, vehicles involved, transportations of Stone to the stocking yard etc. The emission inventory of the pollutants is as follows, the main air pollutant would be dust or particulate matter generated by handling and transportation of ore. The persons employed at the above areas are likely to get lung related diseases like silicosis, after prolonged exposure to the Stone particles without protective measures. But the impact of mining operations on air quality is negligible as mining involved is only scooping of Stone deposits.

Dust Generation and Control

There is generation of dust due to the proposed Mining activities because activities are restricted to only scooping of ordinary Stone from Stone quarry. The impact of mining operations on air quality is high in and around the mining zone as there is utilization of machinery.

The existing concentrations in buffer zone are due to windblown dust. The gaseous pollutants like SO2 & NOx are below detectable limits. Since the proposed method is manual and occasional machinery is required then there is no question of gaseousemissions. The net pollution scenario due to the proposed activity is insignificant to cause any adverse impact.

NOISE ENVIRONMENT

Noise will be produced at the quarry due to movement of Tippers, tractors, Drilling and blasting etc. The noise generated by the quarrying activity is dissipated within a small zone around the quarry. The lease area is not inhabited by any wild life, as there is no forest cover. Hence there will not be any effect on migration or extinction of wildlife from the lease area as the noise created by the quarry operation is insignificant so as to cause any impacts.

As the process involves only extraction of ordinary Stone from the river bed manually, there is no major noise generation; Mitigative measures are not necessary and hence not proposed.

WATER ENVIRONMENT

There are no waste water discharges to water bodies from the quarry operations. The inflow of sewage or effluents from the surrounding locality is also considered nil. The only water contaminant is rainwater run-off during the monsoon season. There will be no impact due to the proposed quarrying on the water environment and the water flow pattern does not disturb the turbidity and velocity, hence no mitigation measures are suggested.

Water Consumption & Wastewater Generation

The water requirement for this proposed quarrying activity will be 3 KLD. Water will be source from nearby villages. There is no generation & discharge of wastewater from this quarry.

LAND ENVIRONMENT

Existing land use pattern:

The total land degradation at the end of the life of the mine shall be 0.285 ha as detailed below:

Table No: 2

Present and Conceptual land use pattern of the M.L area

Type of land use	At the beginning of the Plan Period in Ha	At the end of the Plan Period (2022-23) in Ha
Mining	Nil	0.2231
Top soil stack	Nil	Nil
Overburden dump	Nil	Nil
Mineral Storage	Nil	Nil

Sub-Grade Storage	Nil	Nil
Infrastructure	Nil	Nil
Roads	0.0075	0.0084
Green belt area	Nil	0.0535
Screening plant/ Washing plant	Nil	Nil
Tailing pond	Nil	Nil
Total land degradation	0.0075	0.285
Area Which will Remain	1.2066	0.9291
Untouched (River)		
Total	1.2141	1.2141

Land use pattern in the buffer zone

The land use of the 10kms radius study area is studied by analyzing the available secondary data like SOI Toposheet, field visits etc. Most of the lands are around the river body are agricultural lands. The major activity in the buffer zone is mainly agriculture. Agriculture is the main profession of people in the study area with nearly $2/3^{\text{rd}}$ of the population engaged in one or the other form of agriculture.

Anticipated Impacts.

As far as impact on the land use pattern is concerned, the buffer zone will not be affected as the quarry operations are totally confined to the core zone. Dump yards are not proposed as no waste is generated. The Stone extracted will be directly disposed to Stone depots located outside the quarry lease area. The proposed activity of Stone quarrying is not envisaged to cause any impacts on the topography or the water drainage pattern as the excavation carried out is only manual scooping of Stone from the Stone quarry. The impact on soil quality is not likely to be more intensive than the present status and hence degradation although inevitable, is not likely to affect soilquality. The loss of the fertile soil from the agricultural lands lying alongside the Lease area are observed during the Mining due to differential lateral deposition of Stone on the land surface.

As the proposed quarrying of Stone from the Stone quarry is only during the non monsoon season of the year, However as a preventive measure afforestation in terms of herbs and shrubs is proposed along the approach to the lease area.

Ground water pollution is not envisaged as the proposed activity is not generating any kind of waste such that there can be seepage of pollutants to cause any impacts. The quarrying activity proposed is Excavating of Stone and hence no impact is envisaged on the local biodiversity. Since no agricultural or common property lands are involved in the proposed activity action plan for abatement and compensation for the same is not proposed.

BIOLOGICAL ENVIRONMENT

There are no rare or endangered or threatened species in the mine lease area. There are Stone binders and no palatable perennial grasses. These plants are common everywhere. Hence the anticipated negative impacts if any are only minor, temporary and easily reversible. Natural restoration to original condition can occur within about one or two years. Hence it can be safely concluded that the proposed ordinary Stone mining for one year as per rules is safe with very little negative impact.

SOCIO- ECONOMIC ENVIRONMENT

The proposed excavations are not envisaged to have impact on the cropping pattern and the crop productivity of the agricultural lands within 2kms of the core zone. As the quarrying involved is excavation of Stone from the Stone quarry no source of livelihood is affected in the surrounding areas.

In terms of positive impact some of the villagers in the surrounding area will be provided with petty contract works and other unskilled work such that a source of living is provided. The quarry lease area does not cover any habitation hence the quarrying activity does not involve any displacement of human settlements. No public buildings or monuments exist within the lease area or in the vicinity. The quarrying operations will not disturb or relocate any village or need resettlement. Thus no impact is anticipated.

OCCUPATIONAL HEALTH & SAFETY

There is no environmental pollution due to the proposed quarrying as it is proposed to be Excavating of ordinary Stone at the Lease area of Gudarikanda Stone quarry. Hence there will be no major occupational health hazards.

ENVIRONMENTAL MANAGEMENT PLAN

INTRODUCTION

Environmental Management Plan (EMP) is a site specific plan developed to ensure that the project is implemented in an environmentally suitable manner. Environmental Management Plan also ensures that the project implementation is carried out in accordance with design by taking appropriate mitigation methods to minimize impacts on the environment during the construction and/or operational phase. Environmental Management Plan will outline Environmental Aspects of concern as well as their level of risk and environmental protection measures to diminish this risk. It emphasizes how the development may impact on relevant environmental factors and how these impacts may be mitigated and managed so that they are environmentally acceptable.

Environmental Management Plan plays a vital role in safeguarding the environment and ensures, where all contractors and sub-contractors including consultants, understand the potential environmental risks arising from the project. The formulation of Environmental Management Plan is based on the considerations Evaluation of proposed project activities.

AIR POLLUTION

Due to its very nature and scale of operation is likely to contribute marginally towards air pollution in the area. The effect is localized and this effect is mostly due to fugitive emission. For the mine, the only pollution occurs from dust (PM10) during vehicular traffic, blasting, loading/unloading etc. As the particles are heavy in nature, they settle easily in the immediate vicinity.

The Air Monitoring is made in the following stations tabulated below as per the wind direction.

Location of air monitoring station

Table no: 3

Station Code	Location	Station Code	Location
A1	Lease area	A3	Buffer Zone
A2	Buffer Zone	A4	Buffer Zone

The baseline data collected for the air is tabulated below:

SI. No	Air Monitoring station	PM ₁₀ (μG/m ³)	PM _{2.5} (μG/m ³)	SO ₂ (μG/m ³)	NO _X (μG/m ³)	CO (μG/m³)
1	A1	66.45	34.50	9.08	10.88	0.147
2	A2	65.38	35.75	6.26	13.40	0.132
3	A3	59.50	38.41	5.86	15.82	0.125
4	A4	65.54	36.34	7.40	10.35	0.134

WATER MANAGEMENT AND WATER POLLUTION CONTROL

The cause and source of pollution of water in the area could be attributed mostly to the surface run-off during rainy season which will be discharged after siltation tank as shown in the environmental plan. The outflow come from the siltation tank will be monitored every quarterly.

Surface Water sampling station.

Table no: 4

Station No	Project area/study area
SW1	Lease area
SW2	Buffer Zone

The baseline data collected for the Surface water is tabulated below:

Table no: 5

SI NO	Parameters	Unit	Analysis Result Of SW1	Analysis Result Of SW2
1	Colour	Hazen	Nil	Nil
	Odour		Odourless	Odourless
2	Total suspended solid	Mg/l	6.5	6.1
3	pH value		7.2	7.0
4	Temperature	°C	22.6	23.0
5	Oil & Grease	Mg/l	Nil	Nil
6	Total Residual Chloride	Mg/l	0.0584	0.0565
7	Ammoniacal Nitrogen as N	Mg/l	<0.03	<0.02
8	Total Nitrogen as NH3	Mg/l	<0.01	<0.01
9	Free Ammonia as NH3	Mg/l	<0.011	<0.012
10	BOD(3days as CO3)	Mg/l	7	6
11	COD	Mg/l	25.8	24.0
12	Arsenic as As	Mg/l	<0.005	< 0.005
13	Mercury as Hg	Mg/l	<0.022	<0.025
14	Lead as Pb	Mg/l	<0.01	<0.01
15	Cadmium as Cd	Mg/l	<0.002	< 0.002
16	Hex, Chromium+6	Mg/l	<0.02	<0.02
17	Total Chromium as Cr	Mg/l	<0.01	<0.01
18	Copper as Cu	Mg/l	<0.0362	< 0.0373
19	Zinc as Zn	Mg/l	<0.05	<0.06
20	Selenium as Se	Mg/l	<0.06	<0.07
21	Nickel as Ni	Mg/l	<0.1165	<0.1177

22	Cyanide as Cn	Mg/l	<0.002	<0.002
23	Fluoride as F	Mg/l	3.202	3.203
24	Dissolved Phosphate as P	Mg/l	<0.52	<0.49
25	Sulphide as S	Mg/l	<0.02	<0.02
26	Phenolic Compound as C6 H5 OH	Mg/l	<0.004	<0.005
27	Manganese as Mn	Mg/l	<0.1472	<0.1531
28	Iron as Fe	Mg/l	<0.0811	<0.0793
29	Vanadium as V	Mg/l	<0.04	<0.05
30	Nitrate Nitrogen	Mg/l	<0.11	<0.12
31	Chloride as Cl	Mg/l	12.4	12.44
32	Total alkanility	Mg/l	85.1	87.2
33	Acidity	Mg/l	0.0	0.0
34	Dissolved Oxygen	Mg/l	<0.01	<0.01

Ground Water sampling station

Table no: 6

Station No	Project area/study area	
GW1	Lease area	
GW2	Lease area	
GW3	Buffer Zone	

The baseline data collected for the Ground water is tabulated below:-

Table no: 7

Sl. No.	Parameters	Unit	Analysis Result of GW1	Analysis Result of GW2	Analysis Result of GW3
1.	рН		7.6	6.2	6.2
2.	Total Alkalinity as CaCO ₃	Mg/l	21	43	50
3.	Temperature	°C	20.5	22.0	21.5
4.	Turbidity	NTU	<0.5	<0.5	< 0.5
5.	Electrical Conductivity	μmhos/cm	739	538	880
6.	Total Dissolved Solids	Mg/l	490	810	581
7.	Total Hardness as CaCO ₃	Mg/l	325	474	372
8.	Iron as F	Mg/l	0.0076	0.0087	0.0065
9.	Chloride as Cl	Mg/l	80.3	215.1	120
10.	Sulphate as SO ₄	Mg/l	8.6	8.4	8.2

11.	Cupper as Cu	Mg/l	< 0.02	< 0.02	< 0.02
12	Arsenic as As	Mg/l	< 0.005	< 0.005	< 0.005
13	Lead as Pb	Mg/l	< 0.001	< 0.001	< 0.001
14	Aluminum as Al	Mg/l	< 0.002	< 0.002	< 0.002
15	Magnesium as Mg	Mg/l	36	55	44
16	Odour	Agreeable/ Disagreeable	Agreeable	Agreeable	Agreeable
17	Colour	Hazen	<5	<5	<5
18	Taste		Agreeable	Agreeable	Agreeable
19	Total Residual Chlorine	Mg/l	0.031	0.038	0.032
20	Calcium as Ca	Mg/l	70.10	104	81
21	Manganese	Mg/l	< 0.001	< 0.001	< 0.001
22	Nitrate	Mg/l	<5	<5	<5
23	*Fluoride	Mg/l	0.78	0.92	0.83
24	Mercury as Hg	Mg/l	< 0.001	< 0.001	< 0.001
25	*Cadmium	Mg/l	<0.002	< 0.002	<0.002

26	Cyanide	Mg/l	< 0.002	< 0.002	< 0.002
27	*Zinc	Mg/l	< 0.05	< 0.05	< 0.05
28	Total Chromium	Mg/l	< 0.02	< 0.02	< 0.02
29	Mineral Oil	Mg/l	Nil	Nil	Nil
30	*Acidity	ml	NA	NA	NA
31	Boron	Mg/l	< 0.05	< 0.05	< 0.05
32	*E Coil	CFU/ml	2.2	2.3	2.35
33	*Total Bacterial Court	CFU/ml	1.55	1.7	2.2
34	Sodium	Mg/l	40	63	41
35	potassium	Mg/l	12	20	17

The following measures for water pollution are proposed.

- i) Quarterly monitoring will be done from the sampling station at the siltation tank.
- ii) Garland drain is to be maintained around the quarry.

SOIL QUALITY

Soil Samples are collected from two locations in the study area and were analyzed to knowabout the soil type, moisture content, nutrients level and other physical and chemical parameters

. The physical and chemical properties of soil are shown in table no 9.

Soil sampling station

Table no: 8

Station No	Project area/study area	
S 1	Lease area	
S2	Buffer Zone	
S3	Buffer Zone	

Table no: 9 Physical and Chemical properties of soil.

Station Code	Colour	porosity	Permeability	pН	Conductivity	Magnesium	Nitrogen	Phosphorus
S1	Red	35.0	69.4	6.3	160	1.42	0.45	0.44
S2	Red	34.8	67.3	6.1	175	1.32	0.38	0.39
S3	Red	37.7	70.5	6.3	168	1.29	0.39	0.31

NOISE

The sources and causes of noise due to blasting will be within the limit as proposed. However, the following measures will be taken to minimize the adverse impact of noise, though negligible within the project area and its surrounding region.

- Provision of supplying hearing protection devices like ear plugs/ Ear muffs for jack hammer drillers and compressor operators.
- Blasting will be carried out with limited explosives at a time so that the noise generation can be well maintained with the prescribed limits.
- Provision of Green Belt (thick foliage) along the lease boundary and road

The baseline data for noise level is shown in table no 10

Table No 10

Sl. No.	Quarry Name	Station Code	Noise Contribution	Location	Result and Noise Level
1	Gudarikanda Stone Quarry	N1	Nil	Lease area	48.5

GREENBELT DEVELOPMENT

A green belt is provided to mitigate various emissions. Green belts are wide strip of trees and shrubs planted in rows to reduce air velocity there by facilitating settling of the particles on the leaf surfaces and allowing absorption of the pollutant gases. It also serves to cool the atmosphere by transpiration from the leaf surface and also provide habitat for birds, reptiles and insects. The advantages of a green belt are given below:

Greenbelts are important habitats for birds and animals, which add to the aesthetic value of the environment. Generally, birds prefer to make their habitat, nest, on trees.

Further trees provide shade and hiding places to wild life.

- > Greenbelt helps to restore the ecological balance.
- > Greenbelt helps in prevention of soil erosion.
- > Greenbelt helps to improve the aesthetics in the area.
- ➤ The greenbelt also diminishes noise pollution by absorbing high degree of noise due to their spongy foliar crown.

Proposed Programme of Plantation

The year wise plantation programmes are tabulated below.

YEAR WISE PLANTATION SCHEDULE

Table No: 11

Year	Number of saplings	Area covering in ha	Type of saplings
	proposed		
1 st Year	100	0.0107	_ ,
2 st year	100	0.0107	Teak, Acasia, Jammu, Neem.
3 nd year	100	0.0107	Janniu, Neem.
4 rd year	100	0.0107	
5 th year	100	0.0107	
Total	500	0.0535	

LAND USE PLANNING AND MINE CLOSURE

The details Land use planning and Mine Closure is given below in Tabular form.

Post Mining Land Use

Table No: 12

Type of land use	At the beginning of the Plan Period in Ha	At the end of the 4 years Plan Period in Ha
Mining	Nil	0.2231
Top soil stack	Nil	Nil
Overburden dump	Nil	Nil
Mineral Storage	Nil	Nil
Sub-Grade Storage	Nil	Nil
Infrastructure	Nil	Nil
Roads	0.0075	0.0084
Green belt area	Nil	0.0535
Screening plant/Washing plant	Nil	Nil
Tailing pond	Nil	Nil
Total land degradation	0.0075	0.285
Area Which will Remain	1.2066	0.9291
Untouched (River)		
Total	1.2141	1.2141

Solid Waste Management

Top soil:

Nil

Overburden:

There will be no overburden generated during Gudarikanda Stone Quarry mining operation.

EMP FOR SOCIO – ECONOMIC ENVIRONMENT

Apart from overall beneficial impact of the project on the local people of the region, it is felt necessary to augment facilities in the fields of education, health and social awareness including concern for ecology like employment, service, and trade/commerce. These are presented as follows

Table No-13

Sl. No.	Environmental Attributes	Nature of Impact
1	Employment	10 people will be employed of the
		village Gudarikanda.
2	Service, trade/commerce	- do -
3	Public utility/education, social awareness	Consultation with the Panchayat
4	Health care facilities	Awareness programmer will be made
		for different type of food poisoning and
		other infections.

BUDGETS FOR EMP AND MONITORING PROGRAMME

- To evaluate the effectiveness of Environmental Management Programme, regular monitoring of the important environment protection activities will be taken up. Reclamation of areas disturbed during construction but not required for any activity during operation.
- Measures to control the surface and ground water pollution due to various effluents to be discharged
- Measures to control air pollution due to proposed activities/ operation.
- Green belt development and identification of flora species which can be planted in and around the project
- Measures to control
- pollution and mitigate adverse impact on workers and habitat in core and buffer zone
- Pronounce the improvement in socio-economic conditions and benefits the people will get on implementation of the project
- Measures to control health hazard of workers and surrounding population
- Total and specific cost of implementation of control measures
- Environmental monitoring, implementation organization and feedback mechanism to effect mid course corrections.
- Impact due to displacement, if any

The experience of similar project(s) will be made use of for envisaging the pollution control measures by pronouncing the success in the past.

"I hereby given undertaking that the data and information given in the application and enclosures are true to the best of my knowledge and believe and I am aware that if any part of the data and information submitted is found to be false or misleading at any stage, the project rejected and clearance given, if any to the project will be revoked at our risk and cost.

The details break up cost for implementing the environmental protection measures is given below:

Table 14 Environmental Management Programme

Sl. No.	Activity	Cost/annum
1.	Water Sprinkling	Rs 2,000
2.	Plantation & Maintenance	Rs 5,000
3.	Maintenance of Vehicles	Rs 3,000
4.	Environmental Monitoring	Rs 11,400
	Total Expenses	Rs 21,,400

CONCLUSION

5.0 <u>CONCLUSION</u>

All possible environment aspects have been adequately assessed and necessary control measures have been formulated to meet statutory requirements. Thus implementing the proposed project will not have any appreciable negative impacts. Moreover, the afforestation done will help in creation of a green belt, which not only be aesthetically pleasing, but also add to the vegetation cover area of this region.