UFV- CCE - DET

EST 105 – 3^a avaliação - 2^0 semestre de 2016 - $19/\mathrm{nov}/2016$

Nome:	Matrícula:
Assinatura: _	Favor apresentar documento com foto.

- \bullet São 5 questões e formulário em páginas numeradas de 1 a 7, total de 40 pontos, FAVOR CONFERIR ANTES DE INICIAR.
- ATENÇÃO: Assinale (X) a seguir em qual turma está matriculado (sua nota será divulgada no sistema SAPIENS).

		TURMA	HORÁRIO	SALA	PROFESSOR
()	T1	$2^a \ 10\text{-}12 \ 5^a \ 8\text{-}10$	PVB310	Camila
()	T2	$2^a \ 16\text{-}18 \ 5^a \ 14\text{-}16$	PVB310	Camila
()	T5	$3^a \ 16\text{-}18 \ 6^a \ 14\text{-}16$	PVB310	Eduardo
()	T6	$2^a 14-16 4^a 16-18$	PVB107	Paulo/CHOS
()	$\mathrm{T7}$	$4^a \ 08\text{-}10 \ 6^a \ 10\text{-}12$	PVB206	CHOS - coordenador
()	Т8	$2^a 18:30-20:10$ $4^a 20:30-22:10$	PVB306	Eduardo
()	T9	3 ^a 10-12 PVB300 6 ^a 8-10	PVB307	Gerson
()	T20=EST085	$T1 \ 2^a \ 16-18$ $T2 \ 2^a \ 18:30-20:10$	PVA388	Leísa (monitora II)

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA !!!.

FORMULÁRIO & TABELAS

TABELA 1. Área na curva normal padrão entre Z=0 e um valor positivo $Z=z,\ P\left(0\leq Z\leq z\right).$

\overline{z}	0,00	0,01	0,02	0,03	0,04	0,05
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,425
1,5	0,4332	0,4345	$0,\!4357$	$0,\!4370$	$0,\!4382$	0,4394
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$

TABELA 2. Valores de χ^2_{α} tais que, $P\left(\chi^2_{\alpha}(GL) \geq \chi^2_{\alpha}\right) = \alpha$, GL é o número de graus de liberdade.

Graus de	χ^2_{lpha}			
Liberdade	$\alpha = 0,050$	$\alpha = 0,025$	$\alpha = 0,010$	
4	9,488	11,143	13,277	
6	12,592	14,449	16,812	
9	16,919	19,023	21,665	

FORMULÁRIO

$$V(X) = E[X - E(X)]^{2} = E(X^{2}) - [E(X)]^{2}$$

$$COV(X,Y) = E\{[X - E(X)][Y - E(Y)]\} = E(XY) - E(X)E(Y)$$

$$P(X = x) = \binom{N}{x} p^{x} (1 - p)^{N - x} \quad E(X) = Np \quad V(X) = Np(1 - p) \quad \binom{N}{x} = \frac{N!}{x!(N - x)!}$$

$$P(X = x) = \frac{e^{-m}m^{x}}{x!} \qquad E(X) = V(X) = m \quad Z = \frac{X - \mu}{\sigma} \quad E(X) = \mu \quad V(X) = \sigma^{2}$$

$$Z = \frac{\overline{X} - \mu}{\sqrt{n}}$$

$$\chi_{n}^{2} = \sum_{i=1}^{h} \sum_{j=1}^{k} \frac{(FO_{ij} - FE_{ij})^{2}}{FE_{ij}} \qquad n = (h - 1)(k - 1)$$

1.(8 pontos) Seja W = 3X - 5Y + 2, dado que,

$$V(X) = E(X^2) = 2.5$$
 $E(Y) = 1.5$ $E(Y^2) = 16.65$ e $E(XY) = -4.2$.

Pede-se: utilize as propriedades do valor esperado, da variância e da covariância para calcular:

a.(3 pts) E(W).

$$E(W) = E(3X - 5Y + 2) = E(3X) - E(5Y) + E(2)$$

= $3E(X) - 5E(Y) + 2 = 3 \times 0 - 5 \times 1, 5 + 2$
= $-5, 5$

Note que

$$V(X) = E(X^{2}) - (E(X))^{2}$$

 $2, 5 = 2, 5 - (E(X))^{2}$
 $E(X) = 0$

b.(5 pts) V(W).

$$V(Y) = E(Y^{2}) - (E(Y))^{2} = 16,65 - 1,5^{2}$$

$$= 14,4$$

$$Cov(X,Y) = E(XY) - E(X)E(Y) = -4,2 - 0 \times 1,5$$

$$= -4,2$$

$$V(W) = V(3X - 5Y + 2) = V(3X - 5Y)$$

$$= V(3X) + V(5Y) - 2Cov(3X,5Y)$$

$$= 9V(X) + 25V(Y) - 2 \times 3 \times 5COV(X,Y)$$

$$= 9 \times 2,5 + 25 \times 14,4 - 30 \times (-4,2) = 22,5 + 360 + 126$$

$$= 508,5$$

2.(8 pontos) O tempo total (X, em minutos) para a montagem de uma peça é a soma do tempo de montagem da primeira etapa (X_1) com o tempo de montagem da segunda etapa (X_2) , portanto, $X = X_1 + X_2$. Se $X_1 \sim N(\mu_1 = 21, 1; \sigma_1^2 = 15, 6)$ e $X_2 \sim N(\mu_2 = 40; \sigma_2^2 = 36, 24)$ são duas variáveis independentes, pede-se: utilize o teorema da combinação linear para calcular a probabilidade de que o tempo total para a montagem de uma peça seja inferior a 50 minutos. Faça um desenho ilustrativo dos cálculos.

$$\mu = E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = \mu_1 + \mu_2$$

$$= 21, 1 + 40 = 61, 1$$

$$\sigma^2 = V(X) = V(X_1 + X_2) = V(X_1) + V(X_2) + 2Cov(X, Y)$$

$$= \sigma_1^2 + \sigma_2^2 + 2 \times 0 = 15, 6 + 36, 24 = 51, 84$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{51, 84} = 7, 2$$

$$P(X < 50) = P\left(\frac{X - \mu}{\sigma} < \frac{50 - 61, 1}{\sqrt{51, 84}}\right) \approx P(Z < -1, 54)$$

$$= P(Z > 1, 54) = 0, 5 - P(0 \le Z < 1, 54) = 0, 5 - 0, 4382$$

$$= 0, 0618$$

3.(8 pontos) Seja X a variável aleatória que represente o número de homens com mais de 40 anos de idade, diagnosticados com câncer de próstata, que sobrevivam por 10 anos ou mais. Admita também que a taxa de sobrevivencia seja de apenas 1,5%. Pede-se: em uma amostra aleatória de 400 homens com mais de 40 anos de idade, diagnosticados com câncer de próstata, calcule a probabilidade de que pelo menos 2 homens sobrevivam.

a.(4 pts) Admita $X \sim \text{Binomial}(N, p)$.

$$N = 400, p = 0,015 \text{ e } P(X = x) = \binom{N}{x} p^x (1-p)^{N-x}$$
. Temos pelo complemento que

$$\begin{split} P\left(X \geq 2\right) &= 1 - P\left(X < 2\right) = 1 - \left(P\left(X = 0\right) + P\left(X = 1\right)\right) \\ &= 1 - \left[\binom{400}{0} \times 0,015^{0} \times 0,985^{400} + \binom{400}{1} \times 0,015^{1} \times 0,985^{399}\right] \\ &= 1 - \left(0,0024 + 0,0144\right) \\ &= 0,9832 \end{split}$$

b.(4 pts) Admita $X \sim Poisson(m)$

$$m = Np = 400 \times 0,015 = 6$$
 e $P(X = x) = \frac{e^{-m_m x}}{x!}$. Temos pelo complemento que

$$P(X \ge 2) = 1 - P(X < 2) = 1 - (P(X = 0) + P(X = 1))$$

$$= 1 - \left(\frac{e^{-6}6^{0}}{0!} + \frac{e^{-6}6^{1}}{1!}\right) = 1 - \left(e^{-6} + 6e^{-6}\right) = 1 - 7e^{-6}$$

$$= 1 - 0.0174 = 0.9826$$

De outra forma:

$$P(X \ge 2) = 1 - e^{-m} \left(\frac{m^0}{0!} + \frac{m^1}{1!} \right)$$
$$= 1 - e^{-6} (1+6) = 1 - 7e^{-6}$$
$$= 1 - 0,0174 = 0,9826$$

4. (8 pontos) Um fabricante informa que a durabilidade média de uma bateria recarregável é 300 horas com desvio-padrão 20 horas. Suspeita-se que a durabilidade média seja inferior ao valor informado pelo fabricante, e, para testar esta hipótese tomou-se uma amostra aleatória de 49 baterias que forneceu durabilidade média igual a 295 horas. Pede-se: realize um teste de hipótese a 5% conforme os itens a seguir:

(ATENÇÃO, indique suas respostas nos espaços apropriados.)

a.(2 pts) Hipóteses estatísticas

H₀:
$$\mu = 300$$

H₁:
$$\mu < 300$$

b.(2 pts) Valor tabelado = $\boxed{-1,64}$ olhando-se 0,0495 na tabela.

-1,65 olhando-se 0,0505 na tabela.

 $\mathbf{c.(2 pts)}$ Valor calculado = $\boxed{-1,75}$

d.(2 pts) Decisão e interpretação,

- (${\bf X}$) Rejeitar $H_0: \mu=300$ e considerar que a informação do fabricante está incorreta.
- () Não rejeitar $H_0: \mu < 300$ e considerar que a informação do fabricante está correta.
- () Não rejeitar $H_0: \mu = 300$ e considerar que a informação do fabricante está correta.
- () Rejeitar $H_0: \mu < 300$ e considerar que a informação do fabricante está incorreta.

Mostre os cálculos abaixo (utilize duas casas decimais)

$$z_{\text{cal}} = z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{295 - 300}{\sqrt{\frac{20^2}{49}}} = \frac{-5}{\frac{20}{7}} = -\frac{35}{20} = -1,75$$

6

5.(8 pontos) O Poder Executivo apresentou ao Congresso Nacional, no último dia 15 de junho, a PEC 241/2016, Proposta de Emenda à Constituição cujo objetivo é o de instituir um novo regime fiscal para o país. A PEC limita as despesas primárias da União aos gastos do ano anterior corrigidos pelo Índice Nacional de Preços ao Consumidor Amplo (IPCA). Os dados apresentados na tabela a seguir foram obtidos em um estudo conduzido para se avaliar a opinião quanto à referida PEC. Considere o teste de qui-quadrado para independência com a seguinte hipótese de nulidade: H_0 : opinião e ocupação são duas variáveis aleatórias independentes. Adote o nível de significância igual a 2,5% e responda os itens abaixo. (ATENÇÃO, indique suas respostas nos espaços apropriados.)

		Ocupação		
Opinião_	Estudante	Profissional liberal	Prof. universitário	Total
Contrário	80 (53,33)	20 (53,33)	60 (53,33)	(160)
Indiferente	10 (20)	30 (20)	20 (20)	(60)
A favor	10 (26,67)	50 (26,67)	20 (26,67)	(80)
Total	(100)	(100)	(100)	(300)

 $\mathbf{a.(2\ pt)}$ Complete a tabela com as frequências esperadas sob H_0 .

b.(4 pts) Valor calculado: $\boxed{77,5} \approx 77,50$

c.(1 pt) Valor tabelado: 11,143

d.(1 pts) Decisão: Rejeita-se H_0 a 2,5% de significância, portanto opinião e ocupação não são independentes.

Mostre os cálculos abaixo (utilize duas casas decimais)

G.L.=
$$n = (3-1)(3-1) = 2 \times 2 = 4 \text{ e } \chi^2_{(4;2,5\%)} = 11,143.$$

$$\chi_{\text{cal}}^{2} = \frac{(80 - 53, 33)^{2}}{53, 33} + \frac{(20 - 53, 33)^{2}}{53, 33} + \frac{(60 - 53, 33)^{2}}{53, 33} + \frac{(10 - 20)^{2}}{20} + \frac{(30 - 20)^{2}}{20} + \frac{(20 - 20)^{2}}{20} + \frac{(10 - 26, 67)^{2}}{26, 67} + \frac{(50 - 26, 67)^{2}}{26, 67} + \frac{(20 - 26, 67)^{2}}{26, 67}$$

$$\cong 13, 33 + 20, 83 + 0, 83 + 5 + 5 + 0 + 10, 42 + 20, 42 + 1, 67$$

$$= 77, 5 \approx 77, 50$$