2.1 Określenie funkcji jednej zmiennej, właściwości

Rozpatrzmy dwa niepuste zbiory $X, Y \subset \mathbb{R}$.

Definicja 2.1. Funkcją określoną na elementach zbioru X oraz o wartościach w zbiorze Y nazywamy dowolne przyporządkowanie każdemu elementowi zbioru X dokładnie jednego elementu zbioru Y. Zapisujemy to następujaco

$$y = f(x)$$
 dla $x \in X, y \in Y$ lub $f: X \to Y$.

Zmienną $x \in X$ nazywamy argumentem funkcji natomiast zbiór X dziedziną funkcji.

Podamy kilka użytecznych własności funkcji

1. Funkcja f jest parzysta jeśli

$$f(-x) = f(x),$$

funkcja f jest nieparzysta jeśli

$$f(-x) = -f(x).$$

2. Funkcja f jest okresowa, o okresie T, jeżeli

$$f(x) = f(x + nT)$$

dla każdego $x \in X$ oraz dowolnej liczby całkowitej n. Stałą T > 0 nazywamy okresem podstawowym.

3. Funkcja f jest ograniczona w przedziale (a,b) jeżeli istnieje taka liczba M>0, że dla każdego $x\in(a,b)$ mamy

$$|f(x)| \leq M$$
.

4. Funkcja f jest rosnąca w przedziale (a,b) jeżeli dla każdych $x_1,x_2 \in (a,b)$ takich, że $x_1 < x_2$ zachodzi

$$f(x_1) < f(x_2).$$

Funkcja f jest malejąca jeżeli dla każdych $x_1, x_2 \in (a, b)$ takich, że $x_1 < x_2$ zachodzi

$$f(x_1) > f(x_2).$$

Jeżeli funkcja jest w danym przedziale tylko rosnąca lub tylko malejąca to mówimy, że jest ściśle monotoniczna. Mówimy, że funkcja jest monotoniczna jeżeli jest nierosnąca lub niemalejąca. Funkcja f(x) ograniczona w przedziale (a,b) jest przedziałami monotoniczna jeżeli przedział (a,b) możemy podzielić na skończoną ilość podprzedziałów w których funkcja jest monotoniczna.

5. Funkcja f jest r'oznowarto'sciowa jeżeli dla dowolnych $x_1, x_2 \in X$ z faktu, że $x_1 \neq x_2$ wynika, że $f(x_1) \neq f(x_2)$.

6. Złożeniem dwóch funkcji $f:X\to Y,\,g:Y\to Z$ nazywamy funkcję $h:X\to Z$ określoną wzorem

$$h(x) = g(f(x)).$$

7. Dla dowolnej różnowartościowej funkcji $f: X \to Y$ istnieje dokładnie jedna funkcja $g: Y \to X$ taka, że gdy f(x) = y, to g(y) = x. Funkcję g nazywamy wówczas funkcją odwrotną do f oraz oznaczamy f^{-1} . Argument funkcji odwrotnej będziemy oznaczali tym samym symbolem co argument funkcji f tzn. x. Wykres funkcji f jest symetryczny do wykresu funkcji f^{-1} względem prostej y = x.

W zbiorze wszystkich funkcji o wartościach rzeczywistych wyróżniamy funkcje, które nazywamy funkcjami elementarnymi. Do funkcji elementarnych zaliczamy

- a) funkcje stałe,
- b) funkcje potęgowe tzn. funkcje postaci $f(x) = x^{\alpha}, \ \alpha \in \mathbb{R}, \ \alpha \neq 0$,
- c) funkcje wykładnicze $f(x) = a^x$, $a \in \mathbb{R}$, a > 0,
- d) funkcje trygonometryczne $\sin x$, $\cos x$,
- e) funkcje powstałe z a), b), c), d) przez wykonanie skończonej ilości operacji mnożenia, dzielenia, dodawania, odejmowania, składania lub brania funkcji odwrotnych. Z określenia funkcji elementarnych wynika, że należą do takich funkcji również

$$ax^2 + bx + c$$
, $\operatorname{tg} x = \frac{\sin x}{\cos x}$, $\operatorname{ctg} x = \frac{\cos x}{\sin x}$

dowolne wielomiany oraz funkcje wymierne. Do funkcji elementarnych należą również funkcje hiperboliczne

$$\sinh(x) = \frac{e^x - e^{-x}}{2} \quad \text{sinus hiperboliczny,}$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \text{cosinus hiperboliczny,}$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} \quad \text{tangens hiperboliczny,}$$

$$\coth(x) = \frac{\cosh(x)}{\sinh(x)} \quad \text{cotangens hiperboliczny.}$$

Nie wszystkie z funkcji elementarnych posiadają funkcje odwrotne.

Funkcją odwrotną do funkcji $f(x) = e^x$ jest logarytm naturalny $\ln(x)$, który oczywiście również jest funkcją elementarną.

Osobną klasę funkcji odwrotnych stanowią funkcje cyklometryczne będące funkcjami odwrotnymi do funkcji trygonometrycznych. Funkcje takie zwane są również funkcjami kołowymi

 $\arcsin(x)$ arcus sinus, $\arccos(x)$ arcus cosinus, $\arctan \operatorname{tg}(x)$ arcus tangens, $\operatorname{arc} \operatorname{tg}(x)$ arcus cotangens.

Rysunek 2.1: Wykres funkcji sinh(x)

Funkcje cyklometryczne są zdefiniowane na zbiorze wartości x, dla których funkcje są różnowartościowe: $\sin x$ dla $x \in (-\pi/2, \pi/2)$, $\cos x$ dla $x \in (0, \pi)$ oraz $\operatorname{tg} x$, $\operatorname{ctg} x$ dla $x \in \mathbb{R}$. Mamy na przykład

$$y = \arcsin x \quad x \in (-1,1) \quad y \in (-\pi/2, \pi/2)$$

$$y = \arccos x \quad x \in (-1,1) \quad y \in (0,\pi)$$

$$y = \arctan \operatorname{tg} x \quad x \in \mathbb{R} \quad y \in (-\pi/2, \pi/2)$$

$$y = \operatorname{arc} \operatorname{tg} x \quad x \in \mathbb{R} \quad y \in (0,\pi)$$

Poniżej podajemy kilka podstawowych wzorów dla funkcji elementarnych

$$\sin 2x = 2 \sin x \cos x$$
, $\cos 2x = \cos^2 x - \sin^2 x$,
 $\sin^2 x = \frac{1}{2} (1 - \cos 2x)$, $\cos^2 x = \frac{1}{2} (1 + \cos 2x)$,
 $\cosh^2 x - \sinh^2 x = 1$, $\cosh 2x = \cosh^2 x + \sinh^2 x$,
 $\sinh 2x = 2 \sinh x \cosh x$.

Przykład 2.2. Obliczymy

$$\begin{aligned} \arcsin(1/2) &= b & \sin b = 1/2 \Rightarrow b = \pi/6 \\ \arccos(-\sqrt{3}/2) &= b & \cos b = -\sqrt{3}/2 \Rightarrow b = 5/6\pi \\ \arctan 1 &= b & \tan b = 1 \Rightarrow b = \pi/4 \\ \arccos(-\sqrt{3}) &= b & \operatorname{ctg} b = -\sqrt{3} \Rightarrow b = 5/6\pi \end{aligned}$$

Rysunek 2.2: Wykres funkcji $\cosh(x)$

Rysunek 2.3: Wykres funkcji $\operatorname{tgh}(x)$