FUNCTION

If A and B are sets, a function is a unique assignment of every element in A to an element of B. We write $f: A \to B$ to denote a function.

- Domain = A
- Codomain = B
- Range = $f(A) = \{f(x) : x \in A\} \subseteq B$

Def. Well-defined function.

A map $f: A \to B$ is well-defined, if $(\forall x, y \in A)[x = y \Rightarrow f(x) = f(y)]$.

INJECTIVITY

A function $f: A \to B$ is *injective*, if $(\forall x, y \in A)[f(x) = f(y) \Rightarrow x = y]$.

- Every A has unique B.
- Every B comes from unique A or nothing at all.

SURJECTIVITY

A function $f: A \to B$ is surjective, if $(\forall y \in B)[\exists x \in A, f(x) = y]$.

- Every element in the codomain is obtainable.

BIJECTIVITY

A function $f: A \to B$ is bijective, if it is both injective and surjective.

- Every element is obtainable in a unique way.
- There is matching between elements of A and B, i.e. function f is *invertible*.

Def. Cardinality.

Cardinality of a set S is the a measure of the "number of elements" in S, denoted |S|.

- **Injectivity.** If there is an injection from $S \to T$, then $|S| \le |T|$.
- Countability. A set S is countable, if $|S| \leq |\mathbb{N}|$.
- Bijectivity. |S| = |T|, if there exists a bijection $S \to T$.

Thm. [Cantor-Bernstein-Schröder], a.k.a. the CBT

If S, T are two sets with $|S| \leq |T|$ and $|T| \leq |S|$, then |S| = |T|.

- "Left injection" + "Right injection" = "Bijection".

Thm. Transitivity of injectivity.

If $f: B \to C$ and $g: A \to B$ are both injective then their composition $f \circ g$ is also injective.

Proof.

By the definition of injectivity, we have the following.

$$(\forall a_1, a_2)[g(a_1) = g(a_2) \Rightarrow a_1 = a_2]$$

$$(\forall b_1, b_2)[f(b_1) = f(b_2) \Rightarrow b_1 = b_2]$$

Want to show, the following.

$$(\forall a_1, a_2)[f(g(a_1)) = f(g(a_2)) \Rightarrow a_1 = a_2]$$

Assume that $f(g(a_1)) = f(g(a_2))$.

- Since f is injective, $g(a_1) = g(a_2)$.
- Since g is injective, $a_1 = a_2$.

Problem 1.

If $f: B \to C$ and $g: A \to B$ are such that $f \circ g$ is injective, then g is injective. Also, f does not have to be injective.

Solution.

We have the following.

$$(\forall a, b)[f(g(a)) = f(g(b)) \Rightarrow a = b]$$

Want to show the following.

$$(\forall a, b)[g(a) = g(b) \Rightarrow a = b]$$

Assume g(a) = g(b).

- Since f is a well-defined function, f(g(a)) = f(g(b)).
- Since $f \circ g$ is injective, a = b.

INVERTIBILITY

Inverse of a function $f: A \to B$ is a function $f^{-1}: B \to A$ that satisfies $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

- Function is called *left-invertible*, if $f^{-1} \circ f = id_A$.
- Function is called *right-invertible*, if $f \circ f^{-1} = \mathrm{id}_B$.

Thm. Injectivity \Leftrightarrow Left-invertibility

Suppose $g:A\to B$ is a function. Then g is injective if and only if there exists a function $h:B\to A$ such that $(h\circ g)=\mathrm{id}_A.$

Proof. (\Leftarrow) , (mimics Problem 1.)

We have that $h \circ g = id_A$, consequently the following is true.

$$(\forall a, b \in A)[h(g(a)) = h(g(b)) \Rightarrow a = b]$$

Want to show the following.

$$(\forall a, b \in A)[g(a) = g(b) \Rightarrow a = b]$$

Find the exact solution in **Problem 1.**

Proof. (\Longrightarrow)

The function can be defined explicitly.

1. Fix some element $a_0 \in A$.

2. Define
$$h: B \to A$$
 as $\left[h(b) = \begin{cases} a & \text{if } g(a) = b \\ a_0 & \text{otherwise} \end{cases} \right]$.

$$(h \circ g)(a) = h(g(a)) = a$$
, so we have $h \circ g = id_A$

Thm. Surjectivity \Leftrightarrow Right-invertibility

Suppose $g:A\to B$ is a function. Then g is injective if and only if there exists a function $h:B\to A$ such that $(g\circ h)=\mathrm{id}_B$.

Thm. BIJECTIVITY ⇔ INVERTIBILITY

A function $f: A \to B$ is bijective $\Leftrightarrow f$ has an inverse.

Thm. A countable union of (disjoint) countable sets is countable.

For any collection $\{A_i : i \in I, |A_i| \le |\mathbb{N}|\}$ where $|I| \le |\mathbb{N}|$, we have $|\cup_{i \in I} A_i| \le |\mathbb{N}|$.

- "Countability squared" = "Countability"

Proof.

We know $\exists f: I \hookrightarrow \mathbb{N}$ which is injective, and $(\forall i \in I)[\exists g_i: A_i \hookrightarrow \mathbb{N}]$ which is injective.

Define a map

$$F: \bigcup_{i \in I} A_i \to \mathbb{N}, \quad a \mapsto 2^{f(n)} \cdot 3^{g_n(a)}, \quad \text{where } a \in A_n.$$

Power of 2 tracks the set. Power of 3 tracks the element within the set. By the Fundamental Theorem of Arithmetic, F is truly injective.

Thm. $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|$

Integers and rationals are countable.

Proof.

Proof if these facts is fairly simply.

1.
$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \Rightarrow |\mathbb{N}| \leq |\mathbb{Z}| \leq |\mathbb{Q}|$$

2.
$$\mathbb{Z} = \{-1, 0, 1\} \times \mathbb{N} \Rightarrow |\mathbb{Z}| \leq |\mathbb{N}|$$
, according to the properties of a countable union of countable sets.

3.
$$\mathbb{Q} = \mathbb{N} \times \mathbb{Z} \Rightarrow |\mathbb{Q}| \leq |\mathbb{N}|$$
, according to the properties of a countable union of countable sets.

Thus, integers and rationals are truly countable.

Thm. $|\mathbb{R}| > |\mathbb{N}|$

The set of real numbers is not countable.

Proof. "Gaussian Diagonalization"

This is just an instruction for the proof.

- 1. Prove that $|(0,1)| = |\mathbb{R}|$.
- 2. For the sake of contradiction, assume that $|(0,1)| = |\mathbb{N}|$.
- 3. "Invert" all digits on the diagonal, avoiding assigning the base-1 digit.
- 4. The obtained number is real and will not match with any of our numbers.
- 5. Since we claimed to write down all real numbers this is a contradiction.