Práctica 02: Longitud Binaria de una Fuente de Información	1
$25~{ m de}$ febrero - $1~{ m de}$ marzo	
Apellidos:	••••
Apellidos:	
GRUPO:	

AVISO: Las soluciones de la práctica deben darse con números decimales de cuatro cifras decimales (aproximaciones por redondeo).

1. Dada una fuente de información \mathcal{F} con lista de probabilidades

$$[0.3, 0.2, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05],$$

calcular una codificación binaria óptima para la fuente \mathcal{F} y la longitud binaria de dicha fuente.

2. Dada una fuente de información \mathcal{F} con 12 símbolos y frecuencia de aparición de los símbolos [27, 16, 4, 56, 22, 2, 78, 45, 36, 13, 12, 7], calcular una codificación binaria óptima para la fuente \mathcal{F} y la longitud binaria de dicha fuente.

3. En el capítulo 6 del libro "MOMO" de Michael Ende podemos encontrar el siguiente texto:

Existe una cosa muy misteriosa, pero muy cotidiana. Todo el mundo participa de ella, todo el mundo la conoce, pero muy pocos se paran a pensar en ella.

Casi todos se limitan a tomarla como viene, sin hacer preguntas.

Esta cosa es el tiempo.

Si \mathcal{F} es la fuente de información asociada al texto anterior (tomando el cambio de línea como un espacio) calcular una codificación binaria óptima para la fuente \mathcal{F} y la longitud binaria de dicha fuente.

