- 1 -

SEQUENCE LISTING

<110> Bayer HealthCare AG

<120> Diagnostics and Therapeutics for Diseases Associated with Puromycin Sensitive Aminopeptidase NPEPPS (NPEPPS)

<130> BHC 04 01 041

<160> 5

<170> PatentIn version 3.2

<210> 1

<211> 4177

<212> DNA

<213> Homo sapiens

<400> 1

totatecece geocceagg cteeceeggt egetetecte eggeggtege eegegetegg 60 tggatgtggc tggcagctgc cgcccctcc ctcgctcgcc gcctgctctt cctcggccct 120 180 ccgcctcctc ccctcctcct tctcgtcttc agccgctcct ctcgccgccg cctccacage ctgggcctcg ccgcgatgcc ggagaagagg cccttcgagc ggctgcctgc cgatgtctcc 240 300 cccatcaact acagcetttg cetcaagee gaettgetgg actteacett egagggeaag ctggaggccg ccgcccaggt gaggcaggcg actaatcaga ttgtgatgaa ttgtgctgat 360 420 attgatatta ttacagcttc atatgcacca gaaggagatg aagaaataca tgctacagga tttaactatc agaatgaaga tgaaaaagtc accttgtctt tccctagtac tctgcaaaca 480 ggtacgggaa ccttaaagat agattttgtt ggagagctga atgacaaaat gaaaggtttc 540 600 tatagaagta aatatactac cccttctgga gaggtgcgct atgctgctgt aacacagttt 660 gaggetactg atgecegaag ggetttteet tgetgggatg ageetgetat caaageaact 720 tttgatatct cattggttgt tcctaaagac agagtagctt tatcaaacat gaatgtaatt 780 qaccqqaaac cataccctga tgatgaaaat ttagtggaag tgaagtttgc ccgcacacct 840 gttatgtcta catatctggt ggcatttgtt gtgggtgaat atgactttgt agaaacaagg tcaaaagatg gtgtgtgtgt ccgtgtttac actcctgttg gcaaagcaga gcaaggaaaa 900 960 tttgcgttag aggttgctgc taaaaccttg cctttttata aggactactt caatgttcct tatcctctac ctaaaattga tctcattgct attgcagact ttgcagctgg tgccatggag 1020 aactggggcc ttgttactta tagggagact gcattgctta ttgatccaaa aaattcctgt 1080 tetteatece qecaqtgggt tgetetggtt gtgggacatg aactegeeca teaatggttt 1140 1200 ggaaatettg ttactatgga atggtggaet catetttggt taaatgaagg ttttgcatee tggattgaat atctgtgtgt agaccactgc ttcccagagt atgatatttg gactcagttt 1260 1320 gtttctgctg attacacccg tgcccaggag cttgacgcct tagataacag ccatcctatt gaagtcagtg tgggccatcc atctgaggtt gatgagatat ttgatgctat atcatatagc 1380 1440 aaaggtgcat ctgtcatccg aatgctgcat gactacattg gggataagga ctttaagaaa ggaatgaaca tgtatttaac caagttccaa caaaagaatg ctgccacaga ggatctctgg 1500 gaaagtttag aaaatgctag tggtaaacct atagcagctg tgatgaatac ctggaccaaa 1560

caaatgggat	ttcccctcat	ttatgtggaa	gctgaacagg	tagaagatga	cagattattg	1620
aggttgtccc	aaaagaagtt	ctgtgctggt	gggtcatatg	ttggtgaaga	ttgtccccag	1680
tggatggtcc	ctatcacaat	ctctactagt	gaagacccca	accaggccaa	actaaaaatt	1740
ctaatggaca	agccagagat	gaatgtggtt	ttgaaaaatg	tcaaaccaga	ccaatgggtg	1800
aagttaaact	taggaacagt	tgggttttat	cggacccagt	acagctctgc	catgctggaa	1860
agtttattac	caggcattcg	tgacctttct	ctgccccctg	tggatcgact	tggattacag	1920
aatgacctct	tctccttggc	tcgagctgga	atcattagca	ctgtagaggt	tctaaaagtc	1980
atggaggctt	ttgtgaatga	gcccaattat	actgtatgga	gcgacctgag	ctgtaacctg	2040
gggattctct	caactctctt	gtcccacaca	gacttctatg	aggaaatcca	ggagtttgtg	2100
aaagatgtct	tttcacctat	aggggagaga	ctgggctggg	accccaaacc	tggagaaggt	2160
catctcgatg	cactcctgag	gggcttggtt	ctgggaaaac	taggaaaagc	aggacataag	2220
gcaacgttag	aagaagcccg	tegteggttt	aaggaccacg	tggaaggaaa	acagattctc	2280
tccgctgatc	tgaggagtcc	tgtctatctg	actgttttga	agcatggtga	tggcactact	2340
ttagatatta	tgttaaaact	tcataaacaa	gcagatatgc	aagaagagaa	aaaccgaatc	2400
gaaagagtcc	ttggcgctac	tettttgeet	gacctgattc	aaaaagtcct	cacgtttgca	2460
ctttcagaag	aggtacgtcc	acaggacact	gtatcggtaa	ttggtggagt	agctggaggc	2520
agcaagcatg	gtaggaaagc	tgcttggaaa	ttcataaagg	acaactggga	agaactttat	2580
aaccgatacc	agggaggatt	cttaatatcc	agactaataa	agctatcagt	tgagggattt	2640
gcagttgata	aaatggctgg	agaggttaag	gctttcttcg	agagtcaccc	agctccttca	2700
gctgagcgta	ccatccagca	gtgttgtgaa	aatattctgc	tgaatgctgc	ctggctaaag	2760
cgagatgctg	agagcatcca	ccagtacctc	cttcagcgga	aggcctcacc	acccacagtg	2820
tgaatcctga	ggtgccgcca	ttggcggttc	tgctgcttcg	ctgcagggat	aaggtggagc	2880
taccgaacag	ctgattcata	tgccaagaat	ttggagtctt	ctttcaaacc	agtgggggtt	2940
ggacaatgaa	tgtagttaac	tggttcctgc	tcacactcca	gaattaaatt	ctattgaaaa	3000
aggaaaatca	gcaattcagc	aaaaaaataa	ataaaaaata	aaaatgtaaa	tatgatagta	3060
ataaaataga	gcataacgaa	actgtgaaac	tttctgaagc	cttgtcagtg	gttaaaagta	3120
tttaacactc	tactgttaat	gacagatgtt	ctgtttttat	aacctaccaa	aaggaaacta	3180
gaggcttctt	ggtgaagagc	atttttgtga	agtgggttct	gcaaggagcc	tataaagcca	3240
agggtggtgt	ccatttctgg	gaatggttaa	acacaaaagg	ctgatagctg	gtatcacata	3300
gttggagtca	gtgcataatt	ccaagtggct	tttttttt	ttggcacggg	gactgatcag	3360
gaagatatat	tcctgcataa	ctcaatctga	accaaggatt	gtagtttagt	tttcctcctt	3420
gccttccctt	ctgtgtgacc	gaccccttgg	ccaaaaaaaa	aacaaaaagc	aaaaaacaaa	3480
aacctaccct	gttctggttt	ttttcctccc	tttagttcca	cccccaaccc	ccattccctg	3540
gtgtccttct	tagagatgaa	gaaataataa	ggaaacatct	ttcatagcca	cattaaataa	3600
gagaaactga	tatacattat	ttttttctt	ttaaagatga	cttataagaa	ccctgaaatt	3660
tatataggtg	agacaataga	aataaaaaga	tcttcagcca	ggcctttctg	aaggagttat	3720
tctgctaaaa	atggtcttag	ttgtctgaaa	agccagctct	tgaacctctt	cacaacagta	3780
tcaacactgg	cttctcccgg	ttcattttat	gcgtgcgaga	agtcagtggt	aactgctgca	3840
gggcttaata	cattagtggt	aactggttta	aaaaacaaag	actgtaagcc	tgtgtgtgcc	3900
actgtttgct	tcaacagtat	atcctactaa	taagcctcac	ctatttaatc	caatgagttt	3960
taaatctaaa	tctcattccc	ttcttcttc	cctacctttt	ttttctttt	ttcttaaaaa	4020
aatattttgt	gttattaaca	gaaattcata	tttggtgtgg	cttaacggta	tttcagaagg	4080
tcatcagatt	gtgagactgc	ttccttgaaa	catttttgtg	ctattgtttt	aaaaaaataa	4140
ttaaaaaaca	gttggcgtta	ataaaaatgt	caatgtg			4177

WO 2005/075666 PCT/EP2005/000609

<210> 2 <211> 919 <212> PRT

<213> Homo sapiens

<400> 2

Met Trp Leu Ala Ala Ala Ala Pro Ser Leu Ala Arg Arg Leu Leu Phe 1 5 5 7 10 5 10 10 15 15 Leu Gly Pro Pro Pro Pro Pro Leu Leu Leu Leu Val Phe Ser Arg Ser

20 25 30 Ser Arg Arg Leu His Ser Leu Gly Leu Ala Ala Met Pro Glu Lys

35 40 45

Arg Pro Phe Glu Arg Leu Pro Ala Asp Val Ser Pro Ile Asn Tyr Ser 50 55 60

Leu Cys Leu Lys Pro Asp Leu Leu Asp Phe Thr Phe Glu Gly Lys Leu
65 70 75 80

Glu Ala Ala Gln Val Arg Gln Ala Thr Asn Gln Ile Val Met Asn
85 90 95

Cys Ala Asp Ile Asp Ile Ile Thr Ala Ser Tyr Ala Pro Glu Gly Asp
100 105 110

Glu Glu Ile His Ala Thr Gly Phe Asn Tyr Gln Asn Glu Asp Glu Lys
115 120 125

Val Thr Leu Ser Phe Pro Ser Thr Leu Gln Thr Gly Thr Gly Thr Leu 130 135 140

Lys Ile Asp Phe Val Gly Glu Leu Asn Asp Lys Met Lys Gly Phe Tyr 145 150 155 160

Arg Ser Lys Tyr Thr Pro Ser Gly Glu Val Arg Tyr Ala Ala Val

165 170 175

Thr Gln Phe Glu Ala Thr Asp Pro Arg Arg Ala Phe Pro Cys Trp Asp

180 185 190

Glu Pro Ala Ile Lys Ala Thr Phe Asp Ile Ser Leu Val Val Pro Lys 195 200 205

Asp Arg Val Ala Leu Ser Asn Met Asn Val Ile Asp Arg Lys Pro Tyr 210 215 220

Pro Asp Asp Glu Asn Leu Val Glu Val Lys Phe Ala Arg Thr Pro Val 225 230 235 240

Met Ser Thr Tyr Leu Val Ala Phe Val Val Gly Glu Tyr Asp Phe Val
245 250 255

Glu Thr Arg Ser Lys Asp Gly Val Cys Val Arg Val Tyr Thr Pro Val
260 265 270

Gly Lys Ala Glu Gln Gly Lys Phe Ala Leu Glu Val Ala Ala Lys Thr 275 280 285

Leu Pro Phe Tyr Lys Asp Tyr Phe Asn Val Pro Tyr Pro Leu Pro Lys
290 295 300

Ile	Asp	Leu	Ile	Ala	Ile	Ala	Asp	Phe	Ala		Gly	Ala	Met	Glu	Asn
305					310					315					320
Trp	Gly	Leu	Val	Thr	Tyr	Arg	Glu	Thr		Leu	Leu	Ile	Asp		Lys
				325					330					335	
Asn	Ser	Cys		Ser	Ser	Arg	Gln		Val	Ala	Leu	Val		Gly	His
			340					345					350		
Glu	Leu		His	Gln	Trp	Phe		Asn	Leu	Val	Thr		Glu	Trp	Trp
		355					360		_		_	365			_
Thr	His	Leu	Trp	Leu	Asn		Gly	Phe	Ala	Ser		Ile	Glu	Tyr	Leu
	370					375				_=	380				
	Val	Asp	His	Cys		Pro	Glu	Tyr	Asp		Trp	Thr	GIn	Pne	
385					390				_	395	_ =	_	_	_	400
Ser	Ala	Asp	Tyr		Arg	Ala	Gln	Glu		Asp	Ala	Leu	Asp		ser
				405					410	_			_	415	
His	Pro	Ile		Val	Ser	Val	Gly		Pro	Ser	Glu	Val	_	Glu	IIe
		_	420					425			=		430		_
Phe	Asp		Ile	Ser	Tyr	Ser		GIĀ	Ala	Ser	Val		Arg	Met	Leu
		435					440			_		445	_		_
His	Asp	Tyr	Ile	Gly	Asp		Asp	Phe	Lys	Lys		Met	Asn	Met	Tyr
	450					455					460		_	_	
	Thr	Lys	Phe	Gln		Lys	Asn	Ala	Ala		Glu	Asp	Leu	Trp	
465	_		_		470		_	_		475				_	480
Ser	Leu	Glu	Asn		Ser	Gly	Lys	Pro		Ala	Ala	Val	Met		Thr
		_		485				_	490	_		- -	_ =	495	
Trp	Thr	Lys		Met	Gly	Phe	Pro		ITe	Tyr	Val	GLu		GIu	GIn
		_	500	_			_	505	\subseteq		_		510	_	
Val	Glu	_	Asp	Arg	Leu	Leu	_	Leu	Ser	Gln	Lys	_	Phe	Cys	Ala
		515	_				520		_		_	525		_	
GΤΆ	Gly	Ser	Tyr	Val	GIY		Asp	Cys	Pro	GIN	_	Met	vaı	Pro	TTE
	530	_				535	_				540				
	Ile	ser	Thr	ser		Asp	Pro	Asn	GII		ьys	ьеи	гАг	тте	
545	_	_	_	~7	550			~~~ 7	-	555	3	**- 7	T	D	560
Met	Asp	ьys	Pro		wet	Asn	vaı	vai		ьуѕ	ASI	vaı	цуѕ		Asp
	_		_	565			a 1		570	~ 7	77	PH	3	575	77
GIn	Trp	Val	-	ren	ASN	геп	GIY		Val	GTĀ	Pne	TYT		THE	GIII
_	_	_	580		_		_	585	_	_	~-		590		.
Tyr	Ser		ATA	Met	Leu	GIU		Leu	Leu	Pro	GTĀ		Arg	Asp	ren
	_	595	_			_	600		_		_	605	_	- 1	a
Ser	Leu	Pro	hto	val	Asp	_	теп	GТĀ	ьeп	GIN		Asp	теп	rne	per
_	610	•		~ 7		615	a	m1	~~~ ~	~ 7	620	.	T	77- 7	3/C-
	Ala	arg	Ala	GTĀ	тте	тте	ser	Tur	vaı		vaı	геп	тАг	val	Met 640
					~~~										
625				_	630	_	_		1	635	-	<b></b> .	_	<b>-</b>	
	Ala	Phe	<b>Val</b>	Asn 645		Pro	Asn	Tyr	Thr 650		Trp	Ser	Asp	Leu 655	

WO 2005/075666 PCT/EP2005/000609

Cys Asn Leu Gly Ile Leu Ser Thr Leu Leu Ser His Thr Asp Phe Tyr 660 665 Glu Glu Ile Gln Glu Phe Val Lys Asp Val Phe Ser Pro Ile Gly Glu 680 Arg Leu Gly Trp Asp Pro Lys Pro Gly Glu Gly His Leu Asp Ala Leu 695 700 Leu Arg Gly Leu Val Leu Gly Lys Leu Gly Lys Ala Gly His Lys Ala 710 715 Thr Leu Glu Glu Ala Arg Arg Phe Lys Asp His Val Glu Gly Lys 725 730 Gln Ile Leu Ser Ala Asp Leu Arg Ser Pro Val Tyr Leu Thr Val Leu 740 745 Lys His Gly Asp Gly Thr Thr Leu Asp Ile Met Leu Lys Leu His Lys 760 Gln Ala Asp Met Gln Glu Glu Lys Asn Arg Ile Glu Arg Val Leu Gly 775 780 Ala Thr Leu Leu Pro Asp Leu Ile Gln Lys Val Leu Thr Phe Ala Leu 795 790 Ser Glu Glu Val Arg Pro Gln Asp Thr Val Ser Val Ile Gly Gly Val 805 810 Ala Gly Gly Ser Lys His Gly Arg Lys Ala Ala Trp Lys Phe Ile Lys 825 820 Asp Asn Trp Glu Glu Leu Tyr Asn Arg Tyr Gln Gly Gly Phe Leu Ile 840 Ser Arg Leu Ile Lys Leu Ser Val Glu Gly Phe Ala Val Asp Lys Met 855 Ala Gly Glu Val Lys Ala Phe Phe Glu Ser His Pro Ala Pro Ser Ala 870 875 880 865 Glu Arg Thr Ile Gln Gln Cys Cys Glu Asn Ile Leu Leu Asn Ala Ala 890 885 Trp Leu Lys Arg Asp Ala Glu Ser Ile His Gln Tyr Leu Leu Gln Arg 910 900 905 Lys Ala Ser Pro Pro Thr Val 915

<210> 3 <211> 18

<212> DNA

<213> artificial sequence

<220>

<223> forward primer

<400> 3

tttctctgcc ccctgtgg

WO 2005/075666 PCT/EP2005/000609 - 6 -

```
<210> 4
<211> 23
<212> DNA
<213> artificial sequence
<220>
<223> reverse primer
<400> 4
                                                                  23
agtgctaatg attccagctc gag
<210> 5
<211> 33
<212> DNA
<213> artificial sequence
<220>
<223> probe
<400> 5
                                                                  33
cgacttggat tacagaatga cctcttctcc ttg
```