• Given the function y = f(x), determine $f'(x_k)$, for a specified x_{k} , use forward and backward Taylor Series expansions of f(x) about x:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{iv}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{iv}(x) - \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{iv}(x) + \cdots$$

$$\frac{\text{THEUNIVERSITY of TENNESSEE Let }}{\text{ENNESSEE Let Environment}} f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{iv}(x) - \cdots$$
Big Orange, Big Ideas.

• Suppose we need sums and differences of those expansions:

Big Orange. Big Ideas.

$$f(x+h) + f(x-h) = 2f(x) + h^{2}f''(x) + \frac{h^{4}}{12}f^{iv}(x) + \cdots$$
even
$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^{3}}{3}f'''(x) + \cdots \qquad \text{odd}$$
derivatives
$$f(x+2h) + f(x-2h) = 2f(x) + 4h^{2}f''(x) + \frac{4h^{4}}{3}f^{iv}(x) + \cdots$$

$$f(x+2h) + f(x-2h) = 2f(x) + 4h^{2}f''(x) + \frac{4h^{4}}{3}f^{iv}(x) + \cdots$$

$$f(x+2h) - f(x-2h) = 4hf'(x) + \frac{8h^{3}}{3}f'''(x) + \cdots$$

• First Central Difference Approximations (FCDA):

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(x) - \cdots$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$
Truncation error behaves like h^2

Now, let's approximate higher-order derivatives:

$$\begin{split} f''(x) &= \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \frac{h^2}{12} f^{iv}(x) + \cdots \\ f''(x) &= \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2) \\ f'''(x) &= \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^3} + O(h^2) \\ f^{iv}(x) &= \frac{f(x+2h) - 4f(x+h) + 6f(x) - 4f(x-h) + f(x-2h)}{h^4} + O(h^2) \end{split}$$

CDA Table of Coefficients

	f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)
2hf'(x)		-1	0	1	
$h^2f''(x)$		1	-2	1	
$2h^3f'''(x)$	-1	2	0	-2	1
$h^4 f^{iv}(x)$	1	-4	6	-4	1

• First Non-central Difference Approximations (when you cannot evaluate f(x) on both sides of x):

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(x) - \frac{h^2}{6}f'''(x) - \frac{h^3}{4!}f^{iv}(x) - \cdots$$

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h) \longleftarrow \text{First Forward Diff. Approx.}$$
 (FFDA)

$$f'(x) = \frac{f(x) - f(x - h)}{h} + O(h) \longleftarrow \text{First Backward Diff. Approx.}$$
 (FBDA)

(Truncation error behaves like h not h^2)

• We can also derive the following for f''(x):

$$f''(x) = \frac{f(x+2h) - 2f(x+h) + f(x)}{h^2} + O(h)$$

 Let's look at the tables of coefficients for FFDA and FBDA – notice the similarities (on next slide).

• FFDA Table of Coefficients

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
hf'(x)	-1	1			
$h^2f''(x)$	1	-2	1		
$h^3f'''(x)$	-1	3	-3	1	
$h^4 f^{iv}(x)$	1	-4	6	-4	1

• FBDA Table of Coefficients

	f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)
hf'(x)				-1	1
$h^2f''(x)$			1	-2	1
$h^3f'''(x)$		-1	3	-3	1
$h^4 f^{iv}(x)$	1	-4	6	-4	1

• How can we produce non-central diff. formulas with truncation errors of $O(h^2)$ rather than O(h)?

Can show that

$$f(x+2h) - 4f(x+h) = -3f(x) - 2hf'(x) + \frac{2h^3}{3}f'''(x) + \cdots$$

and solving for f'(x) yields

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{1 + O(h^2)} + O(h^2)$$
Tening scene (a)

THE UNIVERSITY of TENNESSEE KNOXVILLE
Big Orange. Big Ideas.

Second Forward Diff. Approximation (SFFDA)

SFFDA Table of Coefficients

	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x+5h)
2hf'(x)	-3	4	-1			
$h^2f''(x)$	2	- 5	4	-1		
$2h^3f'''(x)$	-5	18	-24	14	-3	
$h^4f^{iv}(x)$	3	-14	26	-24	11	-2

- A similar table for **SBFDA** (Second Backward Finite Difference Approximation) is shown on p. 187 of the textbook.
- Notice that the sums of coefficients in these tables (when you traverse any row) is always **zero**.
- When h is taken to be very small, the values of f(x), $f(x\pm h)$, $f(x\pm h)$,... become almost equal so taking linear combinations of them can produce cancellation errors (**loss of significant figures**); if h is too large, the truncation error can grow!

- Precautions: use double-precision (64-bit arithmetic) and formulas with $O(h^2)$ truncation errors.
- **Example**: Problem 6 on p. 196 of textbook, use F.D. approximation of $O(h^2)$ to compute f'(2.36) and f''(2.36).

χ	2.36	2.37	2.38	2.39
f(x)	0.85866	0.86289	0.86710	0.87129

Do we need to know what f(x) is?

$$\begin{array}{c|cccc} x & 2.36 & 2.37 & 2.38 & 2.39 \\ \hline f(x) & 0.85866 & 0.86289 & 0.86710 & 0.87129 \\ \hline f'(x) \approx & \frac{-f(x+2h)+4f(x+h)-3f(x)}{2h} \\ f''(x) \approx & \frac{-f(x+3h)+4f(x+2h)-5f(x+h)+2f(x)}{h^2} \end{array}$$

Show f'(2.36) = 0.424 and f''(2.36) = -0.200; what is h?

§5.3 Richardson Extrapolation

- Can we **boost** the accuracy of finite difference approximations?
- Suppose we approximate the quantity G via G=g(h)+E(h), and suppose the error E(h) has the form $E(h)=ch^p$ (c, p are constants).
- Let h_1 so that $G=g(h_1)+ch_1^p$, then repeat the approx. with $h=h_2$ so that $G=g(h_2)+ch_2^p$.

Richardson Extrapolation

• Using both right-hand-sides for *G* and eliminating

the constant
$$c$$
 yields:
Richardson
Extrapolation Formula
$$G = \frac{\left(\frac{h_1}{h_2}\right)^p g(h_2) - g(h_1)}{\left(\frac{h_1}{h_2}\right)^p - 1}.$$
(REF)

Common to use $h_2 = h_1/2$ so that $2^p g\left(\frac{h_1}{2}\right) - g(h_1)$ formula becomes: $G = \frac{2^p g\left(\frac{h_1}{2}\right) - g(h_1)}{2^p - 1}$.

$$G = \frac{2^{p} g\left(\frac{h_{1}}{2}\right) - g(h_{1})}{2^{p} - 1}$$

• **Example**: suppose we want to approximate f''(1) for $f(x)=e^{-x}$, given g(h)=g(0.64)=0.380610 and g(h/2)=g(0.32)=0.371035.

Estimates obtained from central finite diff. approx. to f''(1).

The truncation error in the central diff. approx. is $E(h)=O(h^2)=c_1h^2+c_2h^4+c_3h^6+...$

• If we approximate f''(1) using REF with h_1 =0.64 and p=2, i.e., $f''(1) = \frac{2^2 g(0.32) - g(0.64)}{2^2 - 1} = 0.367843$

One can show that the $O(h^2)$ term in E(h) will be eliminated so that $E(h)=O(h^4)$.

How well was the approximation improved by REF?

$$f''(1) = \frac{2^2 g(0.32) - g(0.64)}{2^2 - 1} = 0.367843$$

0.36787944	Exact value
0.367843	REF
0.380610	g(0.64)
0.371035	g(0.32)

• Example 5.2 (p.190 in textbook)

χ	0	0.1	0.2	0.3	0.4
f(x)	0.000	0.0819	0.1341	0.1646	0.1797

Compute f'(0) as accurately as possible using REF with two forward diff. approx. of $O(h^2)$ to f'(0). Let h_1 =0.2 and h_2 =0.1 and recall CFFDA of $O(h^2)$:

$$f'(x) \approx \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h}.$$

• Example 5.2 (p.190 in textbook)

$\boldsymbol{\mathcal{X}}$	0	0.1	0.2	0.3	0.4
f(x)	0.000	0.0819	0.1341	0.1646	0.1797

$$g(h_1) = \frac{-f(0.4) + 4f(0.2) - 3f(0)}{2(0.2)} = 0.8918$$

$$g(h_2) = \frac{-f(0.2) + 4f(0.1) - 3f(0)}{2(0.1)} = 0.9675$$

Choose p=2 for REF to remove h^2 term in error.

 $O(h^4)$ accurate

$$f'(0) \approx G = \frac{2^2 g(0.1) - g(0.2)}{2^2 - 1} = 0.9927$$

- Can approximate the derivative of f(x) by the derivative of an interpolant.
- Helpful when data points are not evenly-spaced (i.e., h is not constant).
- Assume f(x) is fit with a polynomial of degree n having the form:

$$P_{n-1}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
.

(use n+1 data points and keep n < 6 to avoid spurious oscillations)

- <u>Important</u>: for evenly-spaced data points, poly. interpolation and finite diff. approximations produce **identical** results.
- Could use a least-squares fit to determine the a_i 's, but the costs of solving a linear system of equations (probably with pivoting) is too high; what about using a cubic spline?

• Compute the second derivatives (K_i) as done earlier for all knots, then take derivatives of cubic spline functions $f_{i,i+1}(x)$:

$$f'_{i,i+1}(x) = \frac{K_i}{6} \left[\frac{3(x - x_{i+1})^2}{x_i - x_{i+1}} - (x_i - x_{i+1}) \right]$$
Quadratic function
$$-\frac{K_{i+1}}{6} \left[\frac{3(x - x_i)^2}{x_i - x_{i+1}} - (x_i - x_{i+1}) \right] + \frac{y_i - y_{i+1}}{x_i - x_{i+1}}$$

• And similar for $f''_{i,i+1}(x)$ we would have:

Linear
$$f''_{i,i+1}(x) = K_i \frac{x - x_{i+1}}{x_i - x_{i+1}} - K_{i+1} \frac{x - x_i}{x_i - x_{i+1}}$$
.

 Next Python-based assignment will be based Problems 12 and 13 from Problem Set 5.1 on pp. 196-197.
 Hints:

• Example 5.4: on pp. 192-193 of textbook; given the data points below compute f'(2) and f''(2) using a quadratic interpolant of the form $P_2(x)=a_0+a_1x+a_2x^2$ and then using a natural cubic splines. Compare the results.

• Example 5.5: on pp. 194-195 of textbook; given the **noisy data** points below compute f'(0) and f'(1) using the best poly. fit (try degrees 2,3,4 and see which one yields the smallest std. dev. error).

\mathcal{X}	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4
f(x)	1.9934	2.1465	2.2129	2.1790	2.0683	1.9448	1.7655	1.5891

<u>Upshot</u>: typically get rough approximations to derivatives when the data is noisy!