Hidden Markov Models

Sargur N. Srihari

srihari@cedar.buffalo.edu

Machine Learning Course:

http://www.cedar.buffalo.edu/~srihari/CSE574/index.html

HMM Topics

- 1. What is an HMM?
- 2. State-space Representation
- 3. HMM Parameters
- 4. Generative View of HMM
- 5. Determining HMM Parameters Using EM
- 6. Forward-Backward or α – β algorithm
- 7. HMM Implementation Issues:
 - a) Length of Sequence
 - b) Predictive Distribution
 - c) Sum-Product Algorithm
 - d) Scaling Factors
 - e) Viterbi Algorithm

1. What is an HMM?

- Ubiquitous tool for modeling time series data
- Used in
 - Almost all speech recognition systems
 - Computational molecular biology
 - Group amino acid sequences into proteins
 - Handwritten word recognition
- It is a tool for representing probability distributions over sequences of observations
- HMM gets its name from two defining properties:
 - Observation x_t at time t was generated by some process whose state z_t is hidden from the observer
 - Assumes that state at z_t is dependent only on state z_{t-1} and independent of all prior states (First order)
- Example: z are phoneme sequences
 x are acoustic observations

Graphical Model of HMM

 Has the graphical model shown below and latent variables are discrete

• Joint distribution has the form:

$$p(x_1,..x_N,z_1,..z_n) = p(z_1) \left[\prod_{n=2}^{N} p(z_n \mid z_{n-1}) \right] \prod_{n=1}^{N} p(x_n \mid z_n)$$

HMM Viewed as Mixture

- A single time slice corresponds to a mixture distribution with component densities $p(\mathbf{x}|\mathbf{z})$
 - Each state of discrete variable z represents a different component
- An extension of mixture model
 - Choice of mixture component depends on choice of mixture component for previous distribution
- Latent variables are multinomial variables z_n
 - That describe component responsible for generating x_n
- Can use one-of-K coding scheme

2. State-Space Representation

- Probability distribution of z_n depends on state of previous latent variable z_{n-1} through probability distribution $p(z_n|z_{n-1})$

- One-of K coding
 - Since latent variables are Kdimensional binary vectors

$$A_{jk} = p(z_{nk} = 1 | z_{n-1,j} = 1)$$

$$\sum_{k} A_{jk} = 1$$

- These are known as Transition Probabilities
- K(K-1) independent parameters

State	\dot{j}	1	2	•	K
of z _{n-1}	$Z_{n-1,j}$	1	0	•	0

		\leftarrow $\mathbf{z}_{\mathbf{n}}$					
a	trix		1	2		K	
	↑	1	1		• • • •		
		2					
Z	7n-1	2					
		•••			A_{jk}		
		K				5	

Transition Probabilities

Example with 3-state latent variable

	$z_n=1$	$z_n=2$	$z_n=3$
	$z_{nl}=1$	$z_{nl}=0$	$z_{nl}=0$
	$z_{n2}=0$	$z_{n2}=1$	$z_{n2}=0$
	$z_{n3}=0$	$z_{n3}=0$	$z_{n3}=1$
$z_{n-1}=1$	A_{II}	A_{12}	A_{13}
$z_{n-1,1}=1$			
$z_{n-1,2}=0$			
$z_{n-1,3}=0$			
$z_{n-1}=2$	A_{21}	A_{22}	A_{23}
$z_{n-1,1}=0$			
$z_{n-1,2} = 1$			
$z_{n-1,3}=0$			
$z_{n-3}=3$	A_{31}	A_{32}	A_{33}
$z_{n-1,1}=0$			
$z_{n-1,2}=0$			
$z_{n-1,3}=1$			

State Transition Diagram

$$A_{11} + A_{12} + A_{13} = 1$$

- Not a graphical model since nodes are not separate variables but states of a single variable
- Here *K*=3

Machine Learning: CSE 574

Conditional Probabilities

- Transition probabilities A_{jk} represent <u>state-to-state</u> probabilities for each variable
- Conditional probabilities are <u>variable-to-variable</u> probabilities
 - can be written in terms of transition probabilities as

$$p(\mathbf{z}_n | \mathbf{z}_{n-1}, A) = \prod_{i=1}^{K} \prod_{j=1}^{K} A_{jk}^{z_{n-1,j}z_{n,k}}$$

- Note that exponent $z_{n-1,j} \overset{k=1}{z_{n,k}}$ is $\overset{j=1}{a}$ product that evaluates to 0 or 1
- Hence the overall product will evaluate to a single A_{jk} for each setting of values of \mathbf{z}_n and \mathbf{z}_{n-1}
 - E.g., $z_{n-1}=2$ and $z_n=3$ will result in only $z_{n-1,2}=1$ and $z_{n,3}=1$. Thus $p(z_n=3|z_{n-1}=2)=A_{23}$
- A is a global HMM parameter

Initial Variable Probabilities

- Initial latent node z₁ is a special case without parent node
- Represented by vector of probabilities π with elements $\pi_k = p(z_{1k} = 1)$ so that

$$p(\mathbf{z}_1 | \pi) = \prod_{k=1}^{K} \pi_k^{z_{1,k}} \text{ where } \Sigma_k \pi_k = 1$$

- Note that π is an HMM parameter
 - representing probabilities of each state for the first variable

Lattice or Trellis Diagram

State transition diagram unfolded over time

- Representation of latent variable states
- Each column corresponds to one of latent variables z_n

Emission Probabilities $p(\mathbf{x}_n|\mathbf{z}_n)$

- We have so far only specified $p(z_n|z_{n-1})$ by means of transition probabilities
- Need to specify probabilities $p(\mathbf{x}_n|\mathbf{z}_n, \phi)$ to complete the model, where ϕ are parameters
- These can be continuous or discrete
- Because x_n is observed and z_n is discrete $p(x_n|z_n,\phi)$ consists of a table of K numbers corresponding to K states of z_n
 - Analogous to class-conditional probabilities
- Can be represented as

$$p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\varphi}) = \prod_{k=1}^K p(\mathbf{x}_n \mid \boldsymbol{\varphi}_k)^{z_{nk}}$$

3. HMM Parameters

- We have defined three types of HMM parameters: $\theta = (\pi, A, \phi)$
 - 1. <u>Initial Probabilities of first latent variable:</u> π is a vector of K probabilities of the states for latent variable z_1
 - 2. <u>Transition Probabilities (State-to-state for any latent variable):</u> A is a $K \times K$ matrix of transition probabilities A_{ij}
 - 3. Emission Probabilities (Observations conditioned on latent): ϕ are parameters of conditional distribution $p(\mathbf{x}_k|\mathbf{z}_k)$
- A and π parameters are often initialized uniformly
- Initialization of ϕ depends on form of distribution

Joint Distribution over Latent and Observed variables

• Joint can be expressed in terms of parameters:

$$p(X, Z \mid \theta) = p(z_1 \mid \pi) \left[\prod_{n=2}^{N} p(z_n \mid z_{n-1}, A) \right] \prod_{m=1}^{N} p(x_m \mid z_m, \varphi)$$
where $X = \{x_1, ..., x_N\}, Z = \{z_1, ..., z_N\}, \theta = \{\pi, A, \varphi\}$

- Most discussion of HMM is independent of emission probabilities
 - Tractable for discrete tables, Gaussian, GMMs

4. Generative View of HMM

- Sampling from an HMM
- HMM with 3-state latent variable z
 - Gaussian emission model p(x|z)
 - Contours of constant density of emission distribution shown for each state
 - Two-dimensional x
- 50 data points generated from HMM
- Lines show successive observations
- Transition probabilities fixed so that
 - 5% probability of making transition
 - 90% of remaining in same

Machine Learning: CSE 574

Left-to-Right HMM

• Setting elements of $A_{jk}=0$ if k < j

Corresponding lattice diagram

Left-to-Right Applied Generatively to Digits

- Examples of on-line handwritten 2's
- x is a sequence of pen coordinates
- There are 16 states for z, or K=16
- Each state can generate a line segment of fixed length in one of 16 angles
 - Emission probabilities: 16 x 16 table
- Transition probabilities set to zero except for those that keep state index k the same or increment by one
- Parameters optimized by 25 EM iterations
- Trained on 45 digits
- Generative model is quite poor
 - Since generated don't look like training
 - If classification is goal, can do better by using a discriminative HMM

Training Set

2
2
2
Cenerated Set

Machine Learning: CSE 574

5. Determining HMM Parameters

- Given data set $X = \{x_1, ... x_n\}$ we can determine HMM parameters $\theta = \{\pi, A, \phi\}$ using maximum likelihood
- Likelihood function obtained from joint distribution by marginalizing over latent variables $Z = \{z_1, ... z_n\}$

Computational issues for Parameters

$$p(X|\theta) = \sum_{Z} p(X,Z|\theta)$$

- Computational difficulties
 - Joint distribution $p(X,Z|\theta)$ does not factorize over n, in contrast to mixture model
 - Z has exponential number of terms corresponding to trellis
- Solution
 - Use conditional independence properties to reorder summations
 - Use EM instead to maximize log-likelihood function of joint $ln\ p(X,Z\mid\theta)$

Efficient framework for maximizing the likelihood function in HMMs

EM for MLE in HMM

- 1. Start with initial selection for model parameters θ^{pld}
- 2. In E step take these parameter values and find posterior distribution of latent variables $p(Z|X, \theta^{old})$

Use this posterior distribution to evaluate expectation of the logarithm of the complete-data likelihood function $\ln p(X,Z \mid \theta)$

Which can be written as

$$Q(\theta, \theta^{old}) = \sum_{Z} \underline{p(Z \mid X, \theta^{old})} \ln p(X, Z \mid \theta)$$

underlined portion independent of θ is evaluated

3. In M-Step maximize Q w.r.t. θ

Expansion of Q

Introduce notation

 $\gamma(z_n) = p(z_n|X,\theta^{old})$: Marginal posterior distribution of latent variable z_n

 $\xi(z_{n-1}, z_n) = p(z_{n-1}, z_n | X, \theta^{old})$: Joint posterior of two successive latent variables

• We will be re-expressing Q in terms of γ and ξ

Detail of γ and ξ

For each value of n we can store

 $\gamma(z_n)$ using K non-negative numbers that sum to unity $\xi(z_{n-1},z_n)$ using a K x K matrix whose elements also sum to unity

Using notation

 $\gamma(z_{nk})$ denotes conditional probability of $z_{nk}^{=1}$ Similar notation for $\xi(z_{n-1,i},z_{nk})$

 Because the expectation of a binary random variable is the probability that it takes value 1

$$\gamma(\mathbf{z}_{nk}) = E[z_{nk}] = \sum_{\mathbf{z}} \gamma(\mathbf{z}) z_{nk}$$

$$\xi(\mathbf{z}_{n-1,j}, \mathbf{z}_{nk}) = E[\mathbf{z}_{n-1,j}, \mathbf{z}_{nk}] = \sum_{\mathbf{z}} \gamma(\mathbf{z}) \ \mathbf{z}_{n-1,j} z_{nk}$$

Expansion of Q

We begin with

$$Q(\theta, \theta^{old}) = \sum_{Z} \underline{p(Z \mid X, \theta^{old})} \ln p(X, Z \mid \theta)$$

Substitute

$$p(X, Z \mid \theta) = p(z_1 \mid \pi) \left[\prod_{n=2}^{N} p(z_n \mid z_{n-1}, A) \right] \prod_{m=1}^{N} p(x_m \mid z_m, \varphi)$$

• And use definitions of γ and ξ to get:

$$Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk}$$

$$+ \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(x_n \mid \phi_k)$$

E-Step

$$Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k}) \ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(z_{n-1,j}, z_{nk}) \ln A_{jk}$$
$$+ \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(x_n | \phi_k)$$

• Goal of E step is to evaluate $\gamma(z_n)$ and $\xi(z_{n-1},z_n)$ efficiently (Forward-Backward Algorithm)

M-Step

- Maximize $Q(\theta, \theta^{old})$ with respect to parameters $\theta = \{\pi, A, \phi\}$
 - Treat $\gamma(z_n)$ and $\xi(z_{n-1}, z_n)$ as constant
- Maximization w.r.t. π and A
 - easily achieved (using Lagrangian multipliers)

$$\pi_k = rac{\gamma(z_{1k})}{\displaystyle\sum_{j=1}^K \gamma(z_{1j})} \qquad \qquad A_{jk} = rac{\displaystyle\sum_{n=2}^N \xi(z_{n-1,j}, z_{nk})}{\displaystyle\sum_{l=1}^K \sum_{n=2}^N \xi(z_{n-1,j}, z_{nl})}$$

- Maximization w.r.t. ϕ_k
 - Only last term of Q depends on $\phi_k \to \sum_{n=1}^N \sum_{k=1}^K \gamma(z_{nk}) \ln p(x_n \mid \phi_k)$
 - Same form as in mixture distribution for i.i.d.

M-step for Gaussian emission

- Maximization of $Q(\theta, \theta^{old})$ wrt ϕ_k
- Gaussian Emission Densities

$$p(\mathbf{x}|\boldsymbol{\phi}_k) \sim N(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Solution:

$$\mu_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

$$\Sigma_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

M-Step for Multinomial Observed

 Conditional Distribution of Observations have the form

$$p(\mathbf{x} \mid \mathbf{z}) = \prod_{i=1}^{D} \prod_{k=1}^{K} \mu_{ik}^{x_i z_k}$$

• M-Step equations:

$$\mu_{ik} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) x_{ni}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

 Analogous result holds for Bernoulli observed variables

6. Forward-Backward Algorithm

E step: efficient procedure to evaluate

 $\gamma(z_n)$ and $\xi(z_{n-1},z_n)$

- Graph of HMM, a tree→
 - Implies that posterior distribution of latent variables can be obtained efficiently using message passing algorithm
- In HMM it is called forward-backward algorithm or Baum-Welch Algorithm
- Several variants lead to exact marginals
 - Method called alpha-beta discussed here

Derivation of Forward-Backward

Several conditional-independences (A-H) hold

A.
$$p(X|z_n) = p(x_1...x_n|z_n) p(x_{n+1}...x_N|z_n)$$

• Proved using d-separation:

Path from x_1 to x_{n-1} passes through z_n which is observed.

Path is head-to-tail. Thus $(x_1,...x_{n-1})$ ____ $x_n \mid z_n$

Similarly $(x_1,...x_{n-1},x_n)$ $\underline{\parallel}$ $x_{n+1},...x_N | z_n$

27

Conditional independence B

• Since $(x_1,...x_{n-1}) \perp \!\!\! \perp \!\!\! \perp x_n \mid z_n$ we have

B.
$$p(\mathbf{x}_1,...\mathbf{x}_{n-1}|\mathbf{x}_n,\mathbf{z}_n) = p(\mathbf{x}_1,...\mathbf{x}_{n-1}|\mathbf{z}_n)$$

Conditional independence C

• Since $(\mathbf{x}_1,...\mathbf{x}_{n-1}) \perp \!\!\! \perp \!\!\! \perp \mathbf{z}_n \mid \mathbf{z}_{n-1}$

C.
$$p(\mathbf{x}_1,...\mathbf{x}_{n-1}|\mathbf{z}_{n-1},\mathbf{z}_n) = p(\mathbf{x}_1,...\mathbf{x}_{n-1}|\mathbf{z}_{n-1})$$

Conditional independence D

• Since $(\mathbf{x}_{n+1},...\mathbf{x}_N) \perp \perp \mathbf{z}_n \mid \mathbf{z}_{n+1}$

D.
$$p(\mathbf{x}_{n+1},...\mathbf{x}_N|\mathbf{z}_n,\mathbf{z}_{n+1}) = p(\mathbf{x}_1,...\mathbf{x}_N|\mathbf{z}_{n+1})$$

Conditional independence E

• Since $(\mathbf{x}_{n+2},...\mathbf{x}_N) \perp \perp \mathbf{z}_n \mid \mathbf{z}_{n+1}$

E.
$$p(\mathbf{x}_{n+2},...\mathbf{x}_N|\mathbf{z}_{n+1},\mathbf{x}_{n+1}) = p(\mathbf{x}_{n+2},...\mathbf{x}_N|\mathbf{z}_{n+1})$$

31

Conditional independence F

F.
$$p(X|z_{n-1},z_n) = p(x_1,...x_{n-1}|z_{n-1})p(x_n|z_n)$$

 $p(x_{n+1},...x_N|z_n)$

Conditional independence G

Since
$$(x_1,...x_N) \perp \perp x_{N+1} \mid z_{N+1}$$

G.
$$p(\mathbf{x}_{N+1}|X,\mathbf{z}_{N+1})=p(\mathbf{x}_{N+1}|\mathbf{z}_{N+1})$$

Conditional independence H

H.
$$p(\mathbf{z}_{N+1}|\mathbf{z}_N, X) = p(\mathbf{z}_{N+1}|\mathbf{z}_N)$$

Evaluation of $\gamma(z_n)$

 Recall that this is to efficiently compute the E step of estimating parameters of HMM

 $\gamma(z_n) = p(z_n|X,\theta^{old})$: Marginal posterior distribution of latent variable z_n

- We are interested in finding posterior distribution $p(\mathbf{z}_n|\mathbf{x}_1,...\mathbf{x}_N)$
- This is a vector of length K whose entries correspond to expected values of z_{nk}

Introducing α and β

- Using Bayes theorem $\gamma(z_n) = p(z_n | X) = \frac{p(X | z_n)p(z_n)}{p(X)}$
- Using conditional independence A

$$\gamma(z_n) = \frac{p(x_1, ... x_n | z_n) p(x_{n+1}, ... x_N | z_n) p(z_n)}{p(X)}$$

$$= \frac{p(x_1, ... x_n, z_n) p(x_{n+1}, ... x_N | z_n)}{p(X)} = \frac{\alpha(z_n) \beta(z_n)}{p(X)}$$

• where $\alpha(z_n) \equiv p(x_1,...,x_n,z_n)$

which is the probability of observing all given data up to time n and the value of \mathbf{z}_n

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1},...,\mathbf{x}_N|\mathbf{z}_n)$$

which is the conditional probability of all future data from time n+1 up to N given the value of \mathbf{z}_n

Recursion Relation for α

$$\alpha(z_{n}) = p(x_{1},...,x_{n},z_{n})$$

$$= \underline{p(x_{1},...,x_{n}|z_{n})}p(z_{n}) \text{ by Bayes rule}$$

$$= \underline{p(x_{n}|z_{n})p(x_{1},...,x_{n-1}|z_{n})}p(z_{n}) \text{ by conditional independence B}$$

$$= \underline{p(x_{n}|z_{n})p(x_{1},...,x_{n-1},z_{n})} \text{ by Bayes rule}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n-1},z_{n}) \text{ by Sum Rule}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n}|z_{n-1})p(z_{n-1}) \text{ by Bayes rule}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} p(x_{1},...,x_{n-1}|z_{n-1})p(z_{n}|z_{n-1})p(z_{n-1}) \text{ by cond. ind. C}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n-1})p(z_{n}|z_{n-1}) \text{ by Bayes rule}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} p(x_{1},...,x_{n-1},z_{n-1}) p(z_{n}|z_{n-1}) \text{ by Bayes rule}$$

$$= \underline{p(x_{n}|z_{n})} \sum_{z_{n-1}} \alpha(z_{n-1})p(z_{n}|z_{n-1}) \text{ by definition of } \alpha$$

 \mathbf{z}_{n-1}

Forward Recursion for a Evaluation

Recursion Relation is

$$\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})$$

- There are K terms in the summation
 - Has to be evaluated for each of K values of z_n
 - Each step of recursion is $O(K^2)$
- Initial condition is

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1) p(\mathbf{x}_1 \mid \mathbf{z}_1) = \prod_{k=1}^{K} \{ \pi_k p(\mathbf{x}_1 \mid \phi_k) \}^{z_{1k}}$$

 Overall cost for the chain in O(K²N)

Recursion Relation for β

$$\beta(z_{n}) = p(x_{n+1},...,x_{N} | z_{n})$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N}, z_{n+1} | z_{n}) \text{ by Sum Rule}$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N} | z_{n},z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Bayes rule}$$

$$= \sum_{z_{n+1}} p(x_{n+1},...,x_{N} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Cond ind. D}$$

$$= \sum_{z_{n+1}} p(x_{n+2},...,x_{N} | z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by Cond. ind E}$$

$$= \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_{n}) \text{ by definition of } \beta$$

Backward Recursion for B

Backward message passing

$$\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1}|z_n) p(z_{n+1}|z_n)$$

- Evaluates $\beta(z_n)$ in terms of $\beta(z_{n+1})$
- Starting condition for recursion is

$$p(\mathbf{z}_N \mid \mathbf{X}) = \frac{p(\mathbf{X}, \mathbf{z}_N) \beta(\mathbf{z}_N)}{p(\mathbf{X})}$$

- Is correct provided we set $\beta(z_N) = 1$ for all settings of z_N
 - This is the initial condition for backward computation

M step Equations

• In the M-step equations p(x) will cancel out

$$\mu_k = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{X}_n}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

$$p(X) = \sum_{z_n} \alpha(z_n) \beta(z_n)$$

Evaluation of Quantities $\xi(z_{n-1}, z_n)$

• They correspond to the values of the conditional probabilities $p(z_{n-1},z_n|X)$ for each of the $K \times K$ settings for (z_{n-1},z_n)

$$\xi(z_{n-1}, z_n) = p(z_{n-1}, z_n \mid X) \text{ by definition}$$

$$= \frac{p(X|z_{n-1}, z_n)p(z_{n-1}, z_n)}{p(X)} \text{ by Bayes Rule}$$

$$= \frac{p(x_1, ... x_{n-1}|z_{n-1})p(x_n \mid z_n)p(x_{n+1}, ..., x_N \mid z_n)p(z_n \mid z_{n-1})p(z_{n-1})}{p(X)} \text{ by cond ind F}$$

$$= \frac{\alpha(z_{n-1})p(x_n \mid z_n)p(z_n \mid z_{n-1})\beta(z_n)}{p(X)}$$

• Thus we calculate $\xi(z_{n-1}, z_n)$ directly by using results of the α and β recursions

Summary of EM to train HMM

Step 1: Initialization

- Make an initial selection of parameters θ^{old} where $\theta = (\pi, A, \phi)$
 - 1. π is a vector of K probabilities of the states for latent variable z_1
 - 2. A is a $K \times K$ matrix of transition probabilities A_{ij}
 - 3. ϕ are parameters of conditional distribution $p(\mathbf{x}_k|\mathbf{z}_k)$
- A and π parameters are often initialized uniformly
- Initialization of ϕ depends on form of distribution
 - For Gaussian:
 - parameters μ_k initialized by applying K-means to the data, Σ_k corresponds to covariance matrix of cluster

Summary of EM to train HMM

Step 2: E Step

- Run both forward α recursion and backward β recursion
- Use results to evaluate $\gamma(z_n)$ and $\xi(z_{n-1},z_n)$ and the likelihood function

Step 3: M Step

• Use results of E step to find revised set of parameters θ^{new} using M-step equations

Alternate between E and M

until convergence of likelihood function

Values for $p(\mathbf{x}_n|\mathbf{z}_n)$

- In recursion relations, observations enter through conditional distributions $p(\mathbf{x}_n|\mathbf{z}_n)$
- Recursions are independent of
 - Dimensionality of observed variables
 - Form of conditional distribution
 - So long as it can be computed for each of K possible states of \mathbf{z}_n
- Since observed variables $\{x_n\}$ are fixed they can be pre-computed at the start of the EM algorithm

7(a) Sequence Length: Using Multiple Short Sequences

- HMM can be trained effectively if length of sequence is sufficiently long
 - True of all maximum likelihood approaches
- Alternatively we can use multiple short sequences
 - Requires straightforward modification of HMM-EM algorithm
- Particularly important in left-to-right models
 - In given observation sequence, a given state transition for a non-diagonal element of A occurs only once

7(b). Predictive Distribution

- Observed data is $X = \{x_1, ..., x_N\}$
- Wish to predict x_{N+1}
- Application in financial forecasting

$$p(\mathbf{x}_{N+1} \mid X) = \sum_{z_{N+1}} p(\mathbf{x}_{N+1}, \mathbf{z}_{N+1} \mid X)$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1} | X) p(\mathbf{z}_{N+1} | X) \text{ by Product Rule}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1}, z_{N} | X) \text{ by Sum Rule}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) p(z_{N} | X) \text{ by conditional ind H}$$

$$= \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) \frac{p(z_{N}, X)}{p(X)} \text{ by Bayes rule}$$

$$= \frac{1}{p(X)} \sum_{z_{N+1}} p(\mathbf{x}_{N+1} | \mathbf{z}_{N+1}) \sum_{z_{N}} p(\mathbf{z}_{N+1} | z_{N}) \alpha(z_{N}) \text{ by definition of } \alpha$$

- Can be evaluated by first running forward α recursion and summing over z_N and z_{N+1}
- Can be extended to subsequent predictions of x_{N+2} , after x_{N+1} is observed, using a fixed amount of storage

7(c). Sum-Product and HMM

- HMM graph is a tree and hence sum-product algorithm can be used to find local marginals for hidden variables
 - Equivalent to forwardbackward algorithm
 - Sum-product provides a simple way to derive alphabeta recursion formulae
- Transform directed graph to factor graph
 - Each variable has a node, small squares represent factors, undirected links connect factor nodes to variables used

Machine Learning: CSE 574

HMM Graph

Joint distribution

$$p(x_1,..x_N,z_1,..z_n) = p(z_1) \left[\prod_{n=2}^{N} p(z_n \mid z_{n-1}) \right] \prod_{n=1}^{N} p(x_n \mid z_n)$$

Fragment of Factor Graph

Deriving alpha-beta from Sum-Product

- Begin with simplified form of factor graph
- Factors are given by

$$h(z_1) = p(z_1)p(x_1 | z_1)$$

$$f_n(z_{n-1}, z_n) = p(z_n | z_{n-1})p(x_n | z_n)$$

Messages propagated are

$$\mu_{\mathbf{z}_{n-1} \to f_n}(\mathbf{z}_{n-1}) = \mu_{f_{n-1} \to \mathbf{z}_{n-1}}(\mathbf{z}_{n-1})$$

$$\mu_{f_n \to \mathbf{z}_n}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n-1}} f_n(\mathbf{z}_{n-1}, \mathbf{z}_n) \mu_{\mathbf{z}_{n-1} \to f_n}(\mathbf{z}_{n-1})$$

- Can show that α recursion is computed
- Similarly starting with the root node β recursion is computed
- So also γ and ξ are derived

Fragment of Factor Graph

Simplified by absorbing emission probabilities into transition probability factors

Final Results

$$\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})$$

$$\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1}) p(x_{n+1} | z_n) p(z_{n+1} | z_n)$$

$$\gamma(\mathbf{z}_n) = \frac{\alpha(\mathbf{z}_n)\beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

$$\xi(z_{n-1},z_n) = \frac{\alpha(z_{n-1})p(x_n | z_n)p(z_n | z_{n-1})\beta(z_n)}{p(X)}$$

Machine Learning: CSE 574

7(d). Scaling Factors

- Implementation issue for small probabilities
- At each step of recursion

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n \mid \mathbf{z}_n) \sum_{z_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$$

- To obtain new value of $\alpha(z_n)$ from previous value $\alpha(z_{n-1})$ we multiply $p(z_n|z_{n-1})$ and $p(x_n|z_n)$
- These probabilities are small and products will underflow
- Logs don't help since we have sums of products

- Solution is rescaling
 - of $\alpha(z_n)$ and $\beta(z_n)$ whose values remain close to unity

7(e). The Viterbi Algorithm

- Finding most probable sequence of hidden states for a given sequence of observables
- In speech recognition: finding most probable phoneme sequence for a given series of acoustic observations
- Since graphical model of HMM is a tree, can be solved exactly using max-sum algorithm
 - Known as Viterbi algorithm in the context of HMM
 - Since max-sum works with log probabilities no need to work with re-scaled varaibles as with forwardbackward

Viterbi Algorithm for HMM

- Fragment of HMM lattice showing two paths
- Number of possible paths grows exponentially with length of chain
- Viterbi searches space of paths efficiently
 - Finds most probable path with computational cost linear with length of chain

Deriving Viterbi from Max-Sum

Start with simplified factor graph

- Treat variable z_N as root node, passing messages to root from leaf nodes
- Messages passed are

$$\mu_{z_n \to f_{n+1}}(z_n) = \mu_{f_n \to z_n}(z_n)$$

$$\mu_{f_{n+1} \to z_{n+1}}(z_{n+1}) = \max_{z_n} \left\{ \ln f_{n+1}(z_n, z_{n+1}) + \mu_{z_n \to f_{n+1}}(z_n) \right\}$$

Other Topics on Sequential Data

Sequential Data and Markov Models:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.1-MarkovModels.pdf

• Extensions of HMMs:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.3-HMMExtensions.pdf

• Linear Dynamical Systems:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.4-LinearDynamicalSystems.pdf

Conditional Random Fields:

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap11/Ch11.5-ConditionalRandomFields.pdf