WZTO - L04

Przed laboratorium warto:

- 1. Przeanalizować układ pokazany poniżej ręcznie albo za pomocą programu LTSpice.
- 2. Wyszukać w Internecie i zapoznać się z problematyką kompensacji sondy do oscyloskopu.

W układzie pomiarowym przedstawionym na rysunku poniżej dla podanych przez prowadzącego wartości elementów:

- 1. Zmierz odpowiedź jednostkową r(t) dla małych czasów $(t \to \infty)$ i porównaj ją z charakterystyka amplitudową odpowiednio dla dużych częstotliwości $(\omega_{\infty} = 2\pi \cdot 10 \text{ kHz})$ i dla małych częstotliwości $(\omega_{0} = 2\pi \cdot 10 \text{ Hz})$.
- 2. Zastąp opornik R1 odpowiednim potencjometrem, wyreguluj jego wartość tak, aby dla pobudzenia prostokątnego uzyskać na wyjściu sygnał także o kształcie prostokąta i dla tak dobranej wartości R1 zmierz odpowiedź jednostkową r(t) dla małych czasów (t=0) i dla dużych czasów $(t\to\infty)$ oraz charakterystykę amplitudową dla dużych częstotliwości $(\omega_{\infty}=2\pi\cdot 10 \text{ kHz})$ i dla małych częstotliwości $(\omega_{0}=2\pi\cdot 10 \text{ Hz})$. Ile wynosi R1? Co to polecenie ma wspólnego z kompensacją sondy do oscyloskopu?

Wyniki pomiarów:

R1 [kΩ]	r(0)	$A(\omega_{\infty})$	$r(\infty)$	$A(\omega_0)$

Uwagi praktyczne:

- 1. Odpowiedź jednostkową należy mierzyć ustawiając generator na generację sygnału prostokątnego o współczynniku wypełnienia 50%, bez składowej stałej, o wartości międzyszczytowej napięcia 2 V i częstotliwości ok. 100 Hz.
- 2. Charakterystykę amplitudową należy mierzyć ustawiając generator na generację sygnału sinusoidalnego bez składowej stałej, o wartości międzyszczytowej napięcia 2 V i o częstotliwości $\omega_0/(2\pi)$ lub $\omega_\infty/(2\pi)$.

