

Basics of Neural Network Programming

Binary Classification

Binary Classification

Andrew Ng

Notation

$$(x,y) \qquad \times \in \mathbb{R}^{n_{x}}, \quad y \in \{0,1\}$$

$$m \quad + \text{rainiy} \quad \text{evarple} : \left\{ (x^{(i)}, y^{(i)}), (x^{(i)}, y^{(i)}), \dots, (x^{(m)}, y^{(m)}) \right\}$$

$$M = M \quad + \text{rain} \qquad m \quad + \text{test} \quad = \text{thest} \quad \text{examples}.$$

$$X = \begin{bmatrix} x^{(i)} & x^{(i)} & \dots & x^{(m)} \\ x^{(i)} & x^{(i)} & \dots & x^{(m)} \end{bmatrix}$$

$$X = \begin{bmatrix} x^{(i)} & x^{(i)} & \dots & x^{(m)} \\ x^{(m)} & \dots & x^{(m)} \end{bmatrix}$$

$$Y \in \mathbb{R}^{n_{x}} \quad \times \text{shape} = (n_{x}, m)$$

$$X \in \mathbb{R}^{n_{x}} \quad \times \text{shape} = (n_{x}, m)$$

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given
$$x$$
, want $\hat{y} = P(y=1|x)$
 $x \in \mathbb{R}^{n}x$
Parauters: $w \in \mathbb{R}^{n}x$, $b \in \mathbb{R}$.
Output $\hat{y} = \sigma(w^{T}x + b)$

Basics of Neural Network Programming

Logistic Regression cost function

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Since $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int_{\mathcal{C}} (\hat{y}, y) = \frac{1}{2} (\hat{y} - y)^2$

If $y = 1$: $\int_{\mathcal{C}} (\hat{y}, y) = -\log \hat{y} \in \text{Mont log} \hat{y} \text{ large } \text{Mont } \hat{y} \text{ large } \text{$

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}}$ \leftarrow

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize I(w, b)

Gradient Descent

Andrew Ng

Basics of Neural Network Programming

Derivatives

deeplearning.ai

Intuition about derivatives

Basics of Neural Network Programming

More derivatives examples

Intuition about derivatives

More derivative examples

$$f(a) = a^2$$

$$f(a) = a^3$$

$$\frac{d}{da}(b) = 3a^{2}$$
 $3*2^{3} = 12$

$$a = 2$$
 $f(a) = 4$
 $a = 2.001$ $f(a) = 4.004$

$$a = 5.001$$
 $f(a) = 8$
 $a = 5.001$ $f(a) = 8$

$$0.0002$$

$$0.0002$$

$$0.0002$$

$$0.0002$$

Basics of Neural Network Programming

Computation Graph

Computation Graph

$$J(a,b,c) = 3(a+bc) = 3(5+3n^2) = 33$$
 $U = bc$
 $V = a+u$
 $J = 3v$
 $U = bc$
 $U = bc$
 $U = bc$
 $U = a+u$
 $U = bc$
 $U = a+u$
 $U = bc$
 $U = a+u$
 $U = a+u$

Basics of Neural Network Programming

Derivatives with a Computation Graph

Computing derivatives

Computing derivatives

Basics of Neural Network Programming

Logistic Regression Gradient descent

deeplearning.ai

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Basics of Neural Network Programming

Gradient descent on m examples

Logistic regression on m examples

$$\frac{J(\omega,b)}{S(\omega)} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)}) \\
S(\alpha^{(i)}, y^{(i)}) = G(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)}) \\
\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m}$$

Logistic regression on m examples

$$J=0$$
; $d\omega_{i}=0$; $d\omega_{2}=0$; $db=0$
 $Z^{(i)}=\omega^{T}\chi^{(i)}+b$
 $a^{(i)}=\varepsilon(z^{(i)})$
 $J+=-[y^{(i)}(\log a^{(i)}+(1-y^{(i)})\log(1-a^{(i)})]$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $dz^{(i)}=a^{(i)}-y^{(i)}$
 $d\omega_{1}+z^{(i)}+z^{(i)}+z^{(i)}$
 $d\omega_{2}+z^{(i)}+z^{(i)}+z^{(i)}+z^{(i)}$
 $d\omega_{2}+z^{(i)}+z^{(i)}+z^{(i)}+z^{(i)}+z^{(i)}+z^{(i)}$
 $d\omega_{1}+z^{(i)}+z^{(i$

$$d\omega_1 = \frac{\partial J}{\partial w_1}$$
 $\omega_1 := w_1 - d dw_1$
 $\omega_2 := \omega_2 - \alpha dw_2$
 $b := b - d db$

Vectorization