

Today activity (05/01/2022)

Take/Edit Attendance 2 days before | View attendance reports | Access time: 06:58:09

SLOT	START	END	SUBJECT	STUDENT	ROOM	CAMPUS	TAKE ATTENDANCE	VIEW ATTENDANCE	EDIT ATTENDANCE
1	07:00	08:30	Mathematics for Engineering	SE1640	209	FUHCM	Closing		
2	08:45	10:15	Mathematics for Engineering	AI1702	215	FUHCM	Closing		
3	10:30	12:00	Mathematics for Engineering	SE1703	214	FUHCM	Closing		
5	14:15	15:45	Mathematics for Engineering	AI1608	220	FUHCM	Closing		
6	16:00	17:30	Mathematics for Engineering	SE1704	209	FUHCM	Closing		

Sinh viên có nhu cầu thực hiện các thủ tục, dịch vụ vui lòng liên hệ Trung tâm Dịch vụ Sinh viên tại Phòng 202, điện thoại : 028.73005585 , email: sschcm@fe.edu.vn © Powered by FPT University | CMS | library | books24x7

APPLICATIONS OF DIFFERENTIATION

3.1

Maximum and Minimum Values

In this section, we will learn:

How to find the maximum

and minimum values of a function.

MAXIMUM & MINIMUM VALUES Definition 1

- A function f has an **absolute maximum** (or global maximum) at c if $f(c) \ge f(x)$ for all x in D, where D is the domain of f.
- The number f(c) is called the maximum value of f on D.

MAXIMUM & MINIMUM VALUES Definition 1

- Similarly, f has an **absolute minimum** at c if $f(c) \le f(x)$ for all x in D and the number f(c) is called the minimum value of f on D.
- The maximum and minimum values of f are called the extreme values of f.

MAXIMUM & MINIMUM VALUES Definition 2

- A function f has a **local maximum** (or relative maximum) at c if $f(c) \ge f(x)$ when x is near c.
- Similarly, f has a **local minimum** at c if $f(c) \le f(x)$ when x is near c.

MAXIMUM & MINIMUM VALUES **Example 4**

The graph of the function

•
$$f(x) = 3x^4 - 16x^3 + 18x^2, -1 \le x \le 4$$

is shown here.

- f(1) = 5 is a local maximum
- the absolute maximum is f(-1) = 37
- f(0) = 0 is a local minimum and
- f(3) = -27 is both a local and an absolute minimum.

EXTREME VALUE THEOREM

In the first figure, why isn't 3 the absolute maximum value?

In the second, does it have the absolute maximum and minimum value?

EXTREME VALUE THEOREM

Theorem 3

- If f is continuous on a closed interval [a, b],
- then f attains an absolute maximum value f(c)
- and an absolute minimum value f(d)
- at some numbers c and d in [a, b].

EXTREME VALUE THEOREM

- The theorem does not tell us how to find these extreme values.
 - We start by looking for local extreme values.

FERMAT'S THEOREM Theorem 4

- If f has a local maximum or minimum at c, and
- if f'(c) exists,
- then f'(c) = 0.

Is it true if say that

"f'(c)=0 if f has local extrem value at c?"

Answer: It is false, see next

CRITICAL NUMBERS

Example

- The function f(x) = |x| has its (local and absolute) minimum value at 0.
- -f'(0) does not exist.

CRITICAL NUMBERS

Definition 6

- A critical number (điểm tới hạn)
- of a function f is a number c in the domain of f
- such that either f'(c) = 0 or f'(c) does not exist.

CRITICAL NUMBERS

Theorem 7

• If f has a local maximum or minimum at c, then c is a critical number of f.

CLOSED INTERVAL METHOD

- To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:
 - Find the values of f at the critical numbers of f in (a, b).
 - 2. Find the values of f at the endpoints of the interval.
 - The largest value from 1 and 2 is the absolute maximum value. The smallest is the absolute minimum value.

APPLICATIONS OF DIFFERENTIATION

3.2

The Mean Value Theorem

In this section, we will learn about: The significance of the mean value theorem.

ROLLE'S THEOREM

- Let f be a function that satisfies the following three hypotheses:
 - 1. f is continuous on the closed interval [a, b]
 - 2. f is differentiable on the open interval (a, b)
 - 3. f(a) = f(b)
- Then, there is a number c in (a, b) such that f'(c) = 0.

ROLLE'S THEOREM

 The figures show the graphs of four such functions.

Let $f(x)=x^3-2x^2+x-5$. Find the numbers c in the Rolle's theorem?

MEAN VALUE THEOREM

Equations 1 and 2

- Let f be a function that fulfills two hypotheses:
 - 1. f is continuous on the closed interval [a, b].
 - 2. f is differentiable on the open interval (a, b).

Then, there is a number c in (a, b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or, equivalently,

$$f(b) - f(a) = f'(c)(b-a)$$

MEAN VALUE THEOREM

- f'(c) is the slope of the tangent line at (c, f(c)).
 - There is at least one point P(c, f(c)) on the graph where the slope of the tangent line is the same as the slope of the secant line AB.

Example 5

- Suppose that f(0) = -3 and $f'(x) \le 5$ for all values of x.
 - How large can f(2) possibly be?
- \Rightarrow We are given that f is differentiable and therefore continuous everywhere.
- ⇒ In particular, we can apply the Mean Value Theorem on the interval [0, 2].
 - There exists a number c such that

$$f(2) - f(0) = f'(c)(2 - 0)$$

$$- So, f(2) = -3 + 2 f'(c)$$

Example 5

- We are given that $f'(x) \le 5 \forall x$

$$\Rightarrow f'(c) \leq 5.$$

$$\Rightarrow$$
 2 $f'(c) \leq 10$.

$$\Rightarrow f(2) = -3 + 2 f'(c) \le -3 + 10 = 7$$

– The largest possible value for f(2) is 7.

MEAN VALUE THEOREM Theorem 5

- If f'(x) = 0 for all x in an interval (a, b),
- then f is constant on (a, b).

MEAN VALUE THEOREM Corollary 7

- If f'(x) = g'(x) for all x in an interval (a, b),
- then f g is constant on (a, b).
- That is, f(x) = g(x) + c where c is a constant.

APPLICATIONS OF DIFFERENTIATION

3.3

Derivatives and the Shapes of Graphs

In this section, we will learn:

How the derivative of a function gives us the direction in which the curve proceeds at each point.

INCREASING/DECREASING TEST (I/D TEST) a. If f'(x) > 0 on an interval, then f is increasing

- a. If f'(x) > 0 on an interval, then f is increasing on that interval.
- b. If f'(x) < 0 on an interval, then f is decreasing on that interval.

• **Drill Question:** The graph of f is shown below. Which of the following could be the graph of f?

Answer: (A)

FIRST DERIVATIVE TEST

- Suppose that c is a critical number of a continuous function f.
- a. If f' changes from positive to negative at c, then f has a local maximum at c.

FIRST DERIVATIVE TEST

• b. If f' changes from negative to positive at c, then f has a local minimum at c.

FIRST DERIVATIVE TEST

c. If f' does not change sign at c
 then f has no local maximum or minimum at c.

CONCAVE UPWARD/DOWNDWARD

- The curve lies above the tangents and f is called concave upward (lom len) on (a, b).
- The curve lies below the tangents and g is called concave downward (lom xuóng) on (a, b).

CONCAVITY TEST

- a. If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- b. If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

INFLECTION POINT—DEFINITION

- A point P on a curve y = f(x) is called an **inflection point (điểm** uốn)
- if *f* is continuous there and the curve changes from concave upward to concave downward
- (or from concave downward to concave upward at P).

 Given a graph of f" as below, have the students indicate the points of inflection of f, and explain their reasoning.

Answer: (-1,f(-1)),(1,f(1)),(3,f(3)),(6,f(6))

SECOND DERIVATIVE TEST

- Suppose f" is continuous near c.
- a. If f'(c) = 0 and f''(c) > 0, then f has a **local minimum** at c.
- b. If f'(c) = 0 and f''(c) < 0, then f has a **local maximum** at c.

Choose tl	Choose the correct one.					
A	If f has local extreme value at c then					
A	f'(c)=0.					
D	If f'(c)=0 then f has local extreme					
В	value at c.					
	If $f''(3)=0$ then $(3,f(3))$ is an					
C	inflection point of f.					
	There exists a function such that					
D	f'(x) is nonzero for all x and					
	f(1)=f(0).					
Answer:	None of the above					

APPLICATIONS OF DIFFERENTIATION

3.5 Optimization Problems

In this section, we will learn:

How to solve problems involving
maximization and minimization of factors.

•	Read the	problem	carefully	until it	is clearly	y understood.
---	----------	---------	-----------	----------	------------	---------------

- What is the unknown?
- What are the given quantities?
- What are the given conditions?

6. FIND THE ABSOLUTE MAX./MIN. VALUE OF *f*

- Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or minimum value of *f*.
 - In particular, if the domain of f is a closed interval,
 then the Closed Interval Method in Section 4.1
 can be used.

OPTIMIZATION PROBLEMS Example 1

- A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river.
 - What are the dimensions of the field that has the largest area?

OPTIMIZATION PROBLEMS Example 1

 This figure illustrates the general case.

- We wish to maximize the area A of the rectangle.
 - Then, we express A in terms of x and y: A = xy
 - -2x + y = 2400
 - So, $A(x) = 2400x 2x^2$, $0 \le x \le 1200$

— ...

APPLICATIONS OF DIFFERENTIATION

3.6 Newton's Method

In this section, we will learn:

How to solve high-degree equations using Newton's method.

- How do those numerical rootfinders work?
 - They use a variety of methods.
 - Most, though, make some use of Newton's
 method, also called the Newton-Raphson method.

NEWTON'S METHOD

• We start with a first approximation $x_{1,}$ which is obtained by one of the following methods:

-Guessing

- A rough sketchof the graph of f
- –A computer-generated graph of f

NEWTON'S METHOD

• Consider the tangent line L to the curve y = f(x) at the point $(x_1, f(x_1))$ and look at the x-intercept of L, labeled x_2 .

• As the x-intercept of L is x_2 , we set y = 0 and obtain:

•
$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

• If $f'(x_1) \neq 0$, we can solve this equation for x_2 :

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

– We use x_2 as a second approximation to r.

SUBSEQUENT APPROXIMATION

Equation/Formula 2

• In general, if the *n*th approximation is x_n and $f'(x_n) \neq 0$, then the next approximation is given by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 If the numbers x_n become closer and closer to r as n becomes large, then we say that the sequence converges to r and we write:

$$\lim_{n\to\infty} x_n = r$$

NEWTON'S METHOD Example 2

- Use Newton's method to find $\sqrt[6]{2}$ correct to eight decimal places.
 - First, we observe that finding $\sqrt[6]{2}$ is equivalent to finding the positive root of the equation $x^6 2 = 0$
 - So, we take $f(x) = x^6 2$
 - Then, $f'(x) = 6x^5$

NEWTON'S METHOD Example 2

So, Formula 2 (Newton's method) becomes:

$$x_{n+1} = x_n - \frac{x_n^6 - 2}{6x_n^5}$$

NEWTON'S METHOD Example 2

• Choosing $x_1 = 1$ as the initial approximation, we obtain:

$$x_2 \approx 1.16666667$$
 $x_3 \approx 1.12644368$
 $x_4 \approx 1.12249707$
 $x_5 \approx 1.12246205$
 $x_6 \approx 1.12246205$

- As x_5 and x_6 agree to eight decimal places, we conclude that $\sqrt[6]{2} \approx 1.12246205$ to eight decimal places.

APPLICATIONS OF DIFFERENTIATION

3.7 Antiderivatives

In this section, we will learn about:

Antiderivatives and how they are useful in solving certain scientific problems.

DEFINITION

• A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

ANTIDERIVATIVES

Theorem 1

• If *F* is an antiderivative of *f* on an interval *I*, the most general antiderivative of *f* on *I* is

$$F(x) + C$$

• where C is an arbitrary constant.

ANTIDERIVATIVE FORMULA Table 2

Here, we list some particular antiderivatives.

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	$\sin x$	$-\cos x$
f(x) + g(x)	F(x) + G(x)	$\sec^2 x$	tan x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	sec x tan x	sec x
1/x	$\ln x $	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
e^x $\cos x$	e^x $\sin x$	$\frac{1}{1+x^2}$	$tan^{-1}x$

© 2007 Thomson Higher Education

RECTILINEAR MOTION

Example 6

- A particle moves in a straight line and has acceleration given by a(t) = 6t + 4.
- Its initial velocity is v(0) = -6 cm/s and its initial displacement is s(0) = 9 cm.
 - Find its position function s(t).

Thanks