IEEE 1149.1 JTAG Boundary Scan Standard

Purpose of Standard

- Allow test instructions and test data to be serially fed into a component-under-test (CUT).
 - Allows reading out of test results.
 - Allows RUNBIST command as an instruction.
- JTAG can operate at chip, PCB, & system levels.
- Allows control of tri-state signals during testing.
- Allows other chips collect responses from CUT.
- Allows system interconnects be tested separately from components.

History

- 1985
 - Joint European Test Action Group (JETAG, Philips)
- 1986
 - VHSIC Element-Test & Maintenance (ETM) bus standard (IBM et al.)
 - VHSIC Test & Maintenance (TM) Bus structure (IBM et al.)
- 1988
 - Joint Test Action Group (JTAG) proposed Boundary Scan Standard
- 1990
 - Boundary Scan approved as IEEE Std. 1149.1-1990
 - Boundary Scan Description Language (BSDL) proposed by HP

- · 1993
 - 1149.1a-1993 approved to replace 1149.1-1990
- 1994
 - 1149.1b BSDL approved
- 1995
 - 1149.5 (Module Test and Maintenance Bus) approved

Basic Chip Architecture for 1149.1

- Test Access Port (TAP)
- TAP controller
 - A finite-state machine with 16 states.
- Test Data Registers
 - Mandatory
 - Boundary scan register
 - Bypass register
 - Instruction register
 - Optional
 - Device-id register
 - Design-specific registers

Signals:

– TDI: Test Data In

– TDO: Test Data Out

– TMS: Test Mode Selection

- TCK: Test Clock

– TRST* (optional): Test Reset

Basic operation:

- Instruction sent (serially) over TDI into instruction register.
- Selected test circuitry configured to respond to instruction.
- Test instruction executed.
- Test results shifted out through TDO.
 - New test data on TDI may be shifted in at the same time.

Elementary Boundary Scan Cell

Operation modes:

- Normal: Mode = 0;

 $\text{IN} \to \text{OUT}$

– Scan: ShiftDR = 1, ClockDR;

 $TDI \rightarrow ... \rightarrow S_{IN} \rightarrow S_{OUT} \rightarrow ... \rightarrow TDO$

– <u>Capture</u>: ShiftDR = 0, ClcokDR;

 $IN \rightarrow Q_A$, OUT driven by IN or Q_B

— <u>Update</u>: Mode = 1, UpdateDR;

 $Q_A \rightarrow OUT$

State Diagram of TAP Controller

States of TAP Controller

- Test-Logic-Reset: normal mode
- Run-Test/Idle: wait for internal test such as BIST
- Select-DR-Scan: initiate a data-scan sequence
- Capture-DR: load test data in parallel
- Shift-DR: load test data in series
- Exit1-DR: finish phase-1 shifting of data
- Pause-DR: temporarily hold the scan operation (allow the bus master to reload data)
- Exit2-DR: finish phase-2 shifting of data
- Update-DR: parallel load from associated shift registers

Instruction Set

EXTEST

Test interconnection between chips on board.

SAMPLE/PRELOAD

Sample and shift out data, or shift in data only.

BYPASS

Bypass data through a chip.

Optional instructions

 INTEST, RUNBIST, CLAMP, IDCODE, HIGH-Z, USERCODE.

EXTEST

SAMPLE/PRELOAD

BYPASS

INTEST

Test Bus Configuration

Ring configuration

Star configuration