Title

D. Zack Garza

Thursday 20^{th} August, 2020

Contents

integral \mathbb{C} -scheme.

1	Thursday, August 20	1
	1.1 X a variety over a non-algebraically closed field	2
1	Thursday, August 20	
	References: https://www.daniellitt.com/tale-cohomology	
Pr	erequisites:	
	 Homological Algebra Abelian Categories Derived Functors Spectral Sequences (just exposure!) Sheaf theory and sheaf cohomology Schemes (Hartshorne II and III) 	
Οι	ntline/Goals:	
	 Basics of etale cohomology Etale morphism Grothendieck topologies The etale topology Etale cohomology and the basis theorems Etale cohomology of curves Comparison theorems to singular cohomology Focused on the case where coefficients are a constructible sheaf. Prove the Weil Conjectures (more than one proof) Proving the Riemann Hypothesis for varieties over finite fields One of the greatest pieces of 20th century mathematics! 	
	• Topics Weil 2 (Strongthoning of BH, used in practice)	
	 Weil 2 (Strengthening of RH, used in practice) Formality of algebraic varieties (topological features unique to varieties) 	

What is Etale Cohomology? Suppose X/\mathbb{C} is a quasiprojective variety: a finite type separated

- Other things (monodromy, refer to Katz' AWS notes)

If you take the complex points, it naturally has the structure of a complex analytic space $X(\mathbb{C})^{\mathrm{an}}$: you can give it the Euclidean topology, which is much finer than the Zariski topology.

For a nice topological space, we can associate the singular cohomology $H^i(X(\mathbb{C})^{\mathrm{an}}, \mathbb{Z})$, which satisfies several nice properties:

- Finitely generated Z-modules
- Extra Hodge structure when tensored up to \mathbb{C} (same as \mathbb{C} coefficients)
- Cycle classes (i.e. associate to a subvariety a class in cohomology)

Goal of etale cohomology: do something similar for much more general "nice" schemes. Note that some of these properties are special to complex varieties

E.g. finitely generated: not true for a random topological space

We'll associate X a "nice scheme" $\leadsto H^i(X_{\operatorname{et}}, \mathbb{Z}/\ell^n\mathbb{Z})$. Take the inverse limit over all n to obtain the ℓ -adic cohomology $H^i(X_{\operatorname{et}}, \mathbb{Z}_{\ell})$. You can tensor with \mathbb{Q} to get something with \mathbb{Q}_{ℓ} coefficients. And as in singular cohomology, you can a "twisted coefficient system".

What are nice schemes:

- $X = \operatorname{Spec} \mathcal{O}_k$, the ring of integers over a number field.
- X a variety over an algebraically closed field
 - Typical, most analogous to taking a variety over \mathbb{C} .
 - For \mathbb{C} variety, H_{sing}^i will vanish above i=2d.

•

1.1 X a variety over a non-algebraically closed field