Disclaimer

Содержание

1.	Билет 1	3							
2.	Билет 2	6							
	ческая формулировка задачи описания волн ТЕ, ТМ, ТЕМ типов.	6							
3.	Билет 3 3.1. МИНИМУМ Дисперсионное уравнение для волн в идеальной ЛП. Критические частоты и длины волн. Зависимости длины волны, фазовой и групповой скорости от частоты. Распространяющиеся и нераспространяющиеся волны.	8							
4.	4.1. ПУСТО Медленные волны, направляемые плоским диэлектри-	13 13							
	4.2. МИНИМУМ Главные (TEM) волны в линиях передач. Условие существования TEM волны. TEM волна в коаксиальной линии	e							
5	Билет 5	17							
J .	5.1. Волны в прямоугольном металлическом волноводе. Спектр соб- ственных волновых чисел волн ТЕ и ТМ типов. Структура поля								
	низших типов волн	17 23							
6.		23 23							
7.	Билет 7								

8.	Билет	8																												23
	8.1													•												•		•		23
9.	Билет	9																												23
	9.1																													
10	.Билет	10																												23
	10.1																													
11	.Билет	11																												2 3
	11.1																				•									23
12	.Билет	12											•																	23
	12.1																													
13	.Билет	13											•				•													23
	13.1. Bo			_		•																				_				
		вені																							-					23
	13.2. 3a																												•	20
	ле	нно	еп	ОТ	ens	нМІ	1Э	не	epr	чиг	1 F	3 3	аг	IO.	ЛΕ	Я	ЮІ	ПЕ	ЭЙ	cr	e)	е								23

1.1. Гармонические волны в линиях передачи. Выражение для векторного потенциала. Дифференциальное уравнение для поперечной волновой функции $\psi(\vec{r_{\perp}})$. Понятия продольного и поперечного волнового числа. Выражения для полей ТЕ, ТМ, ТЕМ. Импедансная связь между поперечными компонентаит электрического и магнитного полей и понятие поперечного волнового сопротивления

Линия передач - это любая цилиндрическая система. В них различают продольное z и поперечное $\vec{r_\perp} = r_\perp(r,\theta)$ направление. При описании таких систем проще использовать векторный потенциал \vec{A} , который должен удовлетворять уравнению Гельмгольца (для амплитуд):

$$\Delta \vec{A}^e + k^2 \vec{A}^e = -\frac{4\pi\mu}{c} \vec{j}^e = 0$$
$$\vec{B} = rot \vec{A}^e$$

0 потому что случай, где нет сторонних источников. Запишем поля в ЛП, когда волна бежит вдоль оси Oz:

$$\vec{E}(\vec{r}_{\perp}, z, \theta) = \vec{E}_0(\vec{r}_{\perp})e^{i(wt-hz)},$$

где h - **продольное волновое число** (постоянная распространения). Реальное поля в таком случае записывается как:

$$E_{R_x} = \operatorname{Re}\{E_x\} = |E_x(\vec{r}_\perp)|\cos(wt - hz + \varphi(\vec{r}_\perp))$$

Запишем веторный потенциал в следующем виде:

$$\vec{A}^e = \psi^e(\vec{r}_\perp)e^{-ihz}\vec{z_0},$$

где $\psi^e(\vec{r}_\perp)$ - поперечная волновая функция. Запишем теперь поля \vec{E} и \vec{H} через $\psi^e(\vec{r}_\perp)$. Вспомним выражение полей через векторный потенциал:

$$\begin{split} \vec{H} &= \frac{1}{\mu} rot \vec{A^e} \\ \vec{E} &= -\nabla \varphi - \frac{1}{c} \frac{\partial \vec{A^e}}{\partial t} = \frac{1}{i k_0 \varepsilon \mu} (\nabla div + k^2) \vec{A^e}, \end{split}$$

где $k = \frac{w}{c}\sqrt{\varepsilon\mu}, k_0 = \frac{w}{c}$. При подстановке выражения для $\vec{A^e}$, для компонент векторов в случае TM - волны получим(надо расписать такие вещи как $\operatorname{div} \vec{A^e}, \ \nabla \operatorname{div} \vec{A^e}, \ \operatorname{rot} \vec{A^e}$):

$$E_{z} = \frac{\varkappa^{2}}{ik_{0}\varepsilon\mu}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{E}_{\perp} = -\frac{h}{k_{0}\varepsilon\mu}\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{H}_{\perp} = \frac{1}{\mu}[\nabla_{\perp}\psi^{e}(\vec{r}_{\perp}) \times \vec{z_{0}}] \cdot e^{i(wt-hz)}$$

$$H_{z} = 0$$

 ${f TM}$ -волна - поперечная магнитная волна (Магнитное поле имеет только поперечную компоненту. Поле ec E имеет и поперечное и продольное направление).

Потенциал $\vec{A^e}$, при любой зависимости от времени, должен удовлетворять волновому уравнению:

$$\Delta \vec{A^e} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \vec{A^e}}{\partial t^2} = 0$$

В нашем случае, когда векторный потенциал имеет вид $\vec{A^e} = \psi^e(\vec{r}_\perp)e^{-ihz}\vec{z_0}$, для гармонических полей справедливы следующие переходы:

$$\frac{\partial}{\partial t} \Rightarrow iw, \ \Delta \vec{A}^e + k^2 \vec{A}^e = 0, \ k^2 = \frac{w^2}{c^2} \varepsilon \mu$$

Рассмотри для z-компоненты:

$$\Delta A_z^e + k^2 A_z^e = 0, \ \Delta = \Delta_\perp + \frac{\partial^2}{\partial z^2}$$

$$\frac{\partial^2}{\partial z^2} \Rightarrow -h^2, \ \text{T.K.} A_z^e = \psi^e(\vec{r}_\perp) e^{-ihz}$$

$$\Delta_\perp \psi^e + \underbrace{(k^2 - h^2)}_{\varkappa^2} \psi^e = 0$$

$$\Delta_\perp \psi^e + \varkappa^2 \psi^e = 0$$

 \varkappa^2 - поперечное волновое число. Если поле удовлетворяет уравнению выше, то такое поле удоветворяет уравнениям Максвелла.

Аналогично сделаем для ТЕ - волны.

ТЕ-волна - поперечная электрическая волна (Электрическое поле имеет только поперечную компоненту. Магнитное поле имеет и поперечное и

продольное направление). По принципу двойственности производим замены:

$$\vec{E} \to \vec{H}, \ \vec{H} \to -\vec{E}, \ \varepsilon \leftrightarrow \mu$$

$$H_{z} = \frac{\varkappa^{2}}{ik_{0}\varepsilon\mu}\psi^{m}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{H}_{\perp} = -\frac{h}{k_{0}\varepsilon\mu}\nabla_{\perp}\psi^{m}(\vec{r}_{\perp}) \cdot e^{i(wt-hz)}$$

$$\vec{E}_{\perp} = -\frac{1}{\mu}[\nabla_{\perp}\psi^{m}(\vec{r}_{\perp}) \times \vec{z_{0}}] \cdot e^{i(wt-hz)}$$

$$E_{z} = 0$$

Вообще говоря, ψ^e и ψ^m могут быть различными, поэтому выше вместо ψ^e записано ψ^m . Аналогично для ψ^m требуется выполнение:

$$\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0$$

ТЕ, ТМ волны - это решения уравнений Максвелла. однак может быть еще один тип решений - **TEM** - волны. Рассмотрим случай $\varkappa=0,\ h=k$:

$$\begin{split} H_z &= E_z = 0 \\ \vec{E_\perp} &= -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_\perp \psi \cdot e^{i(wt - kz)} \\ \vec{H_\perp} &= \frac{1}{\mu} [\nabla_\perp \psi \times \vec{z_0}] \cdot e^{i(wt - kz)} \\ \Delta_\perp \psi &= 0 \end{split}$$

ТЕМ-волна - чисто поперечная волна (Электрическое поле имеет только поперечную компоненту, как и магнитное).

Что имеем в итоге:

- Поля выражаются через поперечную волновую функцию
- Продольные компоненты полей пропорциональны ψ
- ullet Поперечные компоненты полей пропорциональны $abla_{\perp}\psi$

Т.е. если заданы ψ^e, ψ^m , то можно полностью найти поля. Из формул также видно следующее соотношение:

$$\vec{E}_{\perp} = \eta_{\perp \text{\tiny B}} [\vec{H}_{\perp} \times \vec{z_0}],$$

где $\eta_{\perp \rm B}$ - поперечное волновое сопротивление - отношение между поперечными компонентами полей в бегущей волне $\eta_{\perp \rm B}=\frac{E_\perp}{H_\perp}$. Для различных

типов волн записывается как:

$$ext{TE}(+), ext{TM}(-)$$
 - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}} \left(rac{k}{h}
ight)^{\pm 1}$
 $ext{TEM}$ - волны: $\eta_{\perp ext{B}} = \sqrt{rac{\mu}{arepsilon}}$

Заметим, что в бегущей волне поля зависят от координат, а их отношение - $\eta_{\perp \rm B}$ - нет. В стоячей волне это не так.

2. Билет 2

2.1. Граничные условия для поперечных волновых функций волн ТЕ, ТМ, ТЕМ типов в идеальной линии передачи. Математическая формулировка задачи описания волн ТЕ, ТМ, ТЕМ типов.

Рассмотрим случай идеального проводника, $\sigma \to \infty$ (Вообще говоря, идеальных проводников не бывает, однако условие идеальной проводимости можно записать в виде: $\sigma \gg w$ ($\delta \ll L$)). Вспомним граничные условия для полей на поверхности идеального проводника:

$$E_{\tau}|_{S} = 0, \ H_{n}|_{S} = 0,$$

а также условие на поперечную волновую функцию:

$$\Delta_{\perp}\psi^{e,m} + \varkappa^2\psi^{e,m} = 0$$

Найдем граничные условия для $\psi^{e,m}$ для идеальной $\Pi\Pi$.

ТМ-волна:

т.к.
$$E_z \sim \psi^e, \ \vec{E}_{\perp \tau} \sim \frac{\partial \psi^e}{\partial \tau}$$
 и $E_z = 0, \ E_{\perp \tau} = 0$ то $\psi^e(\vec{r}_\perp)|_S = 0$

- это граничное условие Дирихле

ТЕ-волна:

т.к.
$$\vec{E}_{\perp \tau} \sim [\nabla_{\perp} \psi^m(\vec{r}_{\perp}) \times \vec{z_0}]_{\tau}$$
 и $E_{\perp \tau} = 0$ то $\frac{\partial \psi^m}{\partial n}|_S = 0$

ТЕМ-волна:

T.K.
$$\vec{E}_{\perp au} \sim
abla_{\perp} \psi^m(\vec{r}_{\perp})$$

TO
$$\frac{\partial \psi}{\partial \tau}|_S = 0 \Rightarrow \psi|_S = const = C_i$$

Отметим, что на разных поверхностях проводников постоянная C_i может быть разной.

Математическая формулировка задач для описания волн. ТМ. Необходимо решить:

$$\Delta_{\perp}\psi^e + \varkappa^2\psi^e = 0$$

 $\psi^e|_L = 0, L$ - граничный контур

ТЕ. Необходимо решить:

$$\frac{\Delta_{\perp}\psi^m + \varkappa^2\psi^m = 0}{\frac{\partial\psi^m}{\partial n}|_L = 0}$$

ТЕМ. Необходимо решить:

$$\Delta_{\perp}\psi^m = 0$$
$$\psi|_{L_i} = C_i$$

Задачи ТЕ, ТМ волн - аналогичны задачам с мембраной, где граница мембраны закреплена неподвижно, а ТЕМ задачу можно назвать «электростатической». Это задачи на нахождение собственных функций

$$\psi_1^{e,m}(\vec{r}_\perp), \psi_2^{e,m}(\vec{r}_\perp), \dots, \psi_i^{e,m}(\vec{r}_\perp)$$

и собственных чисел

$$\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_i$$

Если ЛП идеальна, то спектр сбственных значений и функций бесконечен.

3.1. МИНИМУМ Дисперсионное уравнение для волн в идеальной ЛП. Критические частоты и длины волн. Зависимости длины волны, фазовой и групповой скорости от частоты. Распространяющиеся и нераспространяющиеся волны.

Дисперсионное соотношение

$$\varkappa^2 = k^2 - h^2 = \frac{\omega^2}{c^2} \varepsilon \mu - h^2$$

Рис. 1. Зависимость реальной части поперечного волнового числа от частоты

Где \varkappa – поперечное волновое число, а h - продольное волновое число.

Любая мода в линии передачи характеризуется поперечным волновым числом, а поперечное волновое число определяет продольное.

Можем ввести критическую длину волны (продольное волновое число h равно нулю):

$$\varkappa^{2} = \frac{\omega^{2}}{c} \varepsilon \mu$$

$$\omega_{cr} = \frac{\varkappa c}{\sqrt{\varepsilon \mu}}$$

$$\lambda = \frac{2\pi c}{\omega_{cr}} = \frac{2\pi}{\varkappa \sqrt{\varepsilon \mu}}$$

 $\omega < \omega_{cr}$ дисперсионное уравнения не имеет действительных решений – режим нераспространяющейся волны.

При $\omega > \omega_{cr}$ – режим распространяющейся волны. Если волна бежит вправо, то h > 0; если бежит влево, то h < 0

$$Re\vec{E}, Re\vec{H} \sim \cos(\omega t - hz)$$

Рис. 2. Распространение волны (h > 0)

При $\omega < \omega_{cr}$

$$h = \pm i|h|$$

$$ReE_x \sim \cos(\omega t + \phi_0) \exp\{\mp |h|z\}$$

Бегучести нет. Зависимость экспонентальная

Рис. 3. Режим нераспространения (h < 0)

Картинка зависит от способа создания волны, то есть у экспоненты « +» или «-». В зависимости от того, где источник можем сказать, куда бежит волна. То есть определить знак.

Источник может порождать несколько мод, но не все, а какие-то конкретные. Изобразим числовую ось. Пусть задана ω , а то есть $k=\frac{\omega}{c}\sqrt{\varepsilon\mu}$

Если $k < \varkappa_1$ - все моды нераспространяющиеся.

Когда k перейдёт через \varkappa_1 появится низшая мода.

Когда перейдём через \varkappa_2 появится ещё одна критическая частота.

!!Можно дополнить описание числовой прямой!!

Рис. 4. Экспоненциальное нарастание амплитуды (при h < 0)

Рис. 5. Моды в линии передачи с источником

Кинематические соотношения - определяют кинематические параметры волны.

1) Временной период

$$T = \frac{2\pi}{\omega}$$

2) Длина волны в волноводе (подразумевают линию передачи или трубу, когда говорят волновод)

$$\lambda_v = \frac{2\pi}{h} = \frac{2\pi}{\sqrt{k^2 - \varkappa^2}} = \frac{2\pi}{k} \frac{1}{\sqrt{1 - \frac{\varkappa^2}{k^2}}} = \frac{\lambda_0}{\sqrt{1 - \frac{\omega_c r^2}{\omega}}} > \lambda_0$$

Когда $\omega \to \omega_{cr} \ \lambda_v \to \infty$

 λ_0 - длина волны в пространстве без волновода в той же среде.

 λ_v - пространственный период.

3) Фазовая скорость - скорость перемещения плоскости постоянной фазы. Поверхность постоянной фазы - это когда фаза константа.

$$\Phi = \omega t - hz + \phi_0 = \text{const}$$

При данном времени можно найти выражение для поверхности постоянной фазы:

$$z = \frac{\omega t + \phi_0}{h}$$

Координата будет перемещаться со скоростью:

$$v_f = \frac{\omega}{h}$$

$$v_f = \frac{\omega}{\sqrt{k^2 - \varkappa^2}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{k^2}{\varkappa^2}}} = \frac{\omega}{k} \frac{1}{\sqrt{1 - \frac{\omega_{cr}^2}{\omega^2}}} > v_f^{(0)}$$

$$v_f^{(0)} = \frac{c}{\varepsilon \mu} = \frac{\omega}{k}$$

Фазовая скорость может быть больше скорости света.

4) Групповая скорость - скорость перемещения квазимонохроматического волнового пакета.

Рис. 6. Квазимонохроматический волновой пакет

Сигнал характеризуется высокочастотным заполнением и огибающей.

По сути это радиоимпульс.

Пакет движется со скоростью $v_{gr} = \frac{\partial \omega}{\partial k}|_{\omega=\omega_0}$ - это при малом или отсутствующем поглощении. (Это в пространстве, а не в линии передачи). При большом поглощении это понятие теряет смысл. По мере перемещения по волноводу форма сигнала будет меняться.

 $v_{gr}=rac{\partial \omega}{\partial h}|_{\omega=\omega_0}$ - формула для волновода.

$$k^2 = h^2 + \varkappa^2$$
$$k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Берём дифференциал от правой и левой части. \varkappa не зависит от частоты.

$$2kdk = 2hdh$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{h}{k}$$

$$h = +\sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2}$$

$$\frac{\partial \omega}{\partial h} = \frac{c}{\sqrt{\varepsilon \mu}} \frac{c}{\omega \sqrt{\varepsilon \mu}} \sqrt{\frac{\omega^2}{c^2} \varepsilon \mu - \varkappa_n^2} = \frac{v_f^{(0)^2}}{v_f}$$

$$v_f = \frac{\omega}{h}$$

$$v_f^{(0)} = \frac{c}{\omega \sqrt{\varepsilon \mu}}$$

$$v_f v_{gr} = v_f^{(0)2}$$

$$v_{gr} = v_f^{(0)} \sqrt{1 - \frac{\omega_{cr}^2}{\omega}}$$

Всё это справедливо для сред без временной дисперсии.

$$\varepsilon \neq f(\omega), \mu \neq f(\omega)$$

 $v_{gr} < c$ - она несёт информацию.

Рис. 7. Распространение волнового пакета

- 4.1. ПУСТО Медленные волны, направляемые плоским диэлектрическим слоем...
- 4.2. МИНИМУМ Главные (TEM) волны в линиях передач. Условие существования TEM волны. TEM волна в коаксиальной линии (Картинка силовых линий, зависимость полей от координат).

Главные (TEM) волны в линиях передачи с идеальными границами У TEM-волн поперечное волновое число $\varkappa=0$:

$$\varkappa = 0 \Rightarrow h = k = \frac{\omega}{c} \sqrt{\varepsilon \mu}$$

Поля таких воли выражаются следующим образом через функцию φ :

$$\vec{E}_{\perp} = -\frac{1}{\sqrt{\varepsilon\mu}} \nabla_{\perp} \varphi$$

$$ec{H}_{\perp} = -rac{1}{\mu} [
abla_{\perp} arphi, ec{z}_0]$$

При этом выполняются **граничные условия**: на каждом из проводников (допустим, есть набор проводников, вдоль которых распространяется волна)

$$\varphi|_{l_i} = C_i,$$

причем константа не обязана быть одна для всех проводников.

Внутренняя задача

Пусть у нас есть только один проводник, в котором есть цилиндрическая полость (рис. 9). Рассмотрим внутреннюю задачу, т.е. распространение

Рис. 8. Набор проводников в задаче

Рис. 9. Случай одного проводника

волны внутри цилиндрической полости. Оказывается, для граничного условия $\varphi_{\perp}|_{l}=C_{1}$ существует только тривиальное решение $\varphi_{\perp}=C_{1}$. Для доказательства необходимо воспользоваться теоремой и минимуме и максимуме для гармонической функции.

Внешняя задача

Зададимся вопросом о решении той же задачи:

$$\Delta_{\perp}\varphi = 0, \quad \varphi|_l = \text{const}$$

Только теперь будем рассматривать её в области вне проводника

Для начала рассмотрим задачу попроще, поле нити (рис. 10). Её решение известно:

$$\Delta_{\perp}\varphi = 0 \quad \Rightarrow \quad \varphi \sim \ln r$$

Характер убывания полей здесь $E_r \sim \frac{1}{r}$, а для магнитного поля в силу импедансного соотношения $\frac{E_r}{H_\phi} = \eta_{\perp \rm B} = 1, \quad H_\varphi \sim \frac{1}{r}$:

$$E_r = H_\phi \sim \frac{1}{r}$$

Посмотрим на поведение полей при $r \to \infty$. Говорят, нужно поставить граничные условия (или закон убывания) на бесконечности. Чем плох закон $\frac{1}{r}$?

Посчитаем средний по времени поток энергии через поперечное сечение, в котором распространяется волна. Сечение бесконечно, за исключением ко-

Рис. 10. Поле бесконечной проводящей нити

нечной площади проводника.

Сначала вычислим вектор Пойнтинга (средний по времени и в проекции на z):

$$\overline{S}_z = \frac{c}{8\pi} \operatorname{Re}(E_r \cdot H_\phi^*) \sim \frac{1}{r^2}$$

$$\Pi = \iint_{\Sigma} \overline{S}_z ds \sim \iint_{\Sigma} \frac{1}{r^2} (2\pi r \, dr) \sim \int_a^{\infty} = \ln \frac{\infty}{a} = \infty$$

Интеграл расходится на бесконечности. Говорят, что расходимость носит логарифмический характер. Получили бесконечную мощность волны: такую волну невозможно создать реальным источником — волна не удовлетворяет критерию энергетической реализуемости.

Можно сделать важный вывод: **вдоль одиночного проводника ТЕМ-волна с конечной энергией распространятся не может**. Распространение возможно, если количество проводников будет больше одного. Например, в линии из двух проводников (рис. 11) ТЕМ-волна уже возможна.

Рис. 11. Закрытая линия из двух проводников

Можно модифицировать задачу с нитью (рис. 12): В поперечном разрезе это поле диполя, а оно спадает быстрее, $\sim \frac{1}{r^2}$.

Рис. 12. Поле двухпроводной линии

Тогда

$$E_{\perp} \sim H_{\perp} \sim \frac{1}{r^2} \quad \Rightarrow \quad \overline{S}_z \sim \frac{1}{r^4}, \quad \Pi \sim \int\limits_{L_{ ext{xapakt}}}^{\infty} \frac{1}{r^3} \, \mathrm{d}r$$

Мощность волны конечна, значит, в модифицированной задаче ТЕМволна энергетически реализуема.

Конечный вывод: ТЕМ-волна в идеальной линии передачи возможна, если число проводников ≥ 2 .

Например, в коаксиальной линии (рис. 13) ТЕМ-волна возможна.

Рис. 13. Поле в коаксиальном кабеле

Зададимся вопросом: возможны ли в такой линии ТЕ и ТМ волны? Сформулируем утверждение, пока без доказательства: в открытых линиях передачи ТЕ и ТМ волны не существуют.

5.1. Волны в прямоугольном металлическом волноводе. Спектр собственных волновых чисел волн ТЕ и ТМ типов. Структура поля низших типов волн

Решение для ТМ-волн. Займемся решением ТМ-волны в прямоугольном волноводе (рис. 14). Условимся что a > b. Эта задача поиска собственных функций ϕ^e и собственных значений \varkappa :

$$\Delta_{\perp}\phi^e + \varkappa^2\phi^e = 0, \quad \phi^e|_l = 0$$

Рис. 14. Прямоугольный волновод

В матфизике эта задача о колебании мембраны с закрепленным краем. Она решается разделением переменных:

$$\phi^e = X(x) \cdot Y(y)$$

$$\frac{\partial^2 \phi^e}{\partial x^2} + \frac{\partial^2 \phi^e}{\partial y^2} + \varkappa^2 \phi^e = 0 \quad \left| \cdot \frac{1}{XY} \right| \Rightarrow \quad \frac{X''}{X} + \frac{Y''}{Y} + \varkappa^2 = 0$$

Тут надо произнести магическую фразу: так как первое слагаемое функция от x, второе функция от y, и их сумма равна константе для любых x, y, значит — сами слагаемые тоже какие-то константы:

$$\frac{X''}{X} = -\varkappa_x^2, \quad \frac{Y''}{Y} = -\varkappa_y^2$$

Определив таким образом константы, мы получаем:

$$\varkappa_x^2 + \varkappa_y^2 = \varkappa^2$$

Пока мы не нашли само \varkappa . Это собственное число, и оно подлежит определе-

нию. Прежде чем его найти, найдем собственные функции, решая уравнения

$$X'' + \varkappa_x^2 X = 0, \quad Y'' + \varkappa_y^2 Y = 0$$

Это уравнения известного вида, их решение

$$X = C_1 \cdot \cos \varkappa_x x + C_2 \cdot \sin \varkappa_x x \qquad Y = A_1 \cdot \cos \varkappa_y y + A_2 \cdot \sin \varkappa_y y$$

Нужно удовлетворить граничным условиям:

$$\phi^{e}|_{y=0} = 0 \quad \Rightarrow \quad X(x)Y(0) = 0 \quad \forall x \Rightarrow Y(0) = 0 \quad \Rightarrow \quad A_{1} = 0$$

$$\phi^{e}|_{x=0} = 0 \quad \Rightarrow \quad X(0)Y(y) = 0 \quad \forall y \Rightarrow X(0) = 0 \quad \Rightarrow \quad C_{1} = 0$$

$$\phi^{e}|_{x=a} = 0 \quad \Rightarrow \quad X(a)Y(y) = 0 \quad \forall y \Rightarrow$$

$$\Rightarrow X(a) = 0 \quad \Rightarrow \quad \varkappa_{x}a = m\pi, \quad m = 0, 1, 2, \dots$$

Поскольку m=0 дает тривиальное решение, мы его откидываем.

$$\phi^e|_{y=b} = 0 \implies X(x)Y(b) = 0 \quad \forall x \Rightarrow$$

 $\Rightarrow Y(b) = 0 \implies \varkappa_y b = n\pi, \quad n = 0, 1, 2, \dots$

Теперь мы получили выражения для X и Y:

$$X_m(x) = C_2 \cdot \sin \frac{\pi mx}{a}$$
$$Y_n(x) = A_2 \cdot \sin \frac{\pi ny}{b}$$

Теперь можем окончательно записать выражения для собственных функций и собственных значений в решении ТМ-волн:

$$\phi_{mn}^{e} = B_{mn} \sin \frac{\pi mx}{a} \sin \frac{\pi ny}{b}$$

$$\varkappa_{mn}^{2} = \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}$$

$$, \quad m, n = 1, 2, \dots$$

Решение для ТЕ-волн. Приведем решение без вывода:

$$\phi_{mn}^{m} = B_{mn} \cos \frac{\pi mx}{a} \cos \frac{\pi ny}{b}$$

$$\varkappa_{mn}^{2} = \left(\frac{m\pi}{a}\right)^{2} + \left(\frac{n\pi}{b}\right)^{2}$$

$$, \quad m, n = (0), 1, 2, \dots$$

$$(1)$$

Важным отличием является то, что теперь одно из чисел m, n может быть равно нулю (решение от этого не станет тривиальным).

Низшая мода. По определению, низшая мода — та, у которой минимальное поперечное волновое число. Так как мы предполагали, что a>b, то в нашем случае это мода TE_{10} :

$$\varkappa_{10} = \frac{\pi}{a} \quad \to \quad \omega_{cr\,10} = \frac{\varkappa_{10} \cdot c}{\sqrt{\varepsilon \mu}}$$

Именно моду TE_{10} чаще всего используют на практике в линиях передачи.

Рассмотрим перпендикулярную структуру поля TE_{10} -волны. Нарисуем силовые линии полей E и H в плоскости (x,y) – перпендикулярной распространению волны (рис. 15)

Рис. 15. Структура полей \vec{E} и \vec{H} (\vec{H} изображено пунктиром)

На границах волновода поле E равно нулю (в силу условия $E_{\tau}=0$). Поле \vec{E} можем получить из уравнений (1),(4.2):

$$\vec{E} = \vec{E}_{\perp} = \vec{y}_0 E_0 \cdot \sin \frac{\pi x}{a} \exp[i(\omega t - hz)],$$

где

$$h = \sqrt{\frac{\omega^2}{c^2}\varepsilon\mu - \left(\frac{\pi}{a}\right)^2}$$

Поле H можно найти из импедансного соотношения (для TE-волны):

$$\frac{E_y}{H_x} = -\sqrt{\frac{\mu}{\varepsilon}} \frac{k}{h}$$

За перенос энергии отвечают именно поперечные компоненты поля. Компонента поля $H_z \sim \cos \frac{\pi a}{x}$, а также сдвинута по фазе во времени.

Рис. 16. Поперечная структура полей \vec{E} и \vec{H} (мода TE)

Рис. 17. Продольная структура полей \vec{E} и \vec{H} (мода TE)

Рис. 18. Структура поля \vec{H} (изображены силовые линии) и поля \vec{E} (напряженность изображена цветом) волны TE_{10} в прямоугольном волноводе

Высшие моды. В зависимости от соотношения между a и b, порядок мод может быть разным (он определяется величиной поперечного волнового числа). Некоторые высшие моды:

TE₁₁:
$$\varkappa_{11} = \sqrt{\left(\frac{\pi}{a}\right)^2 + \left(\frac{\pi}{b}\right)^2}$$

TE₂₀: $\varkappa_{20} = \frac{2\pi}{a}$
TE₀₁: $\varkappa_{11} = \frac{\pi}{b}$

- 5.2. Затухание собственных колебаний в полом резонаторе, обусловленное потерями энергии в заполняющей среде
- 6. Билет 6
- 6.1.
- 7. Билет 7
- 7.1.
- 8. Билет 8
- 8.1.
- 9. Билет 9
- 9.1.
- 10. Билет 10
- 10.1.
- 11. Билет 11
- 11.1.
- 12. Билет 12
- 12.1.
- 13. Билет 13
- 13.1. Волны в прямоугольном металлическом волноводе. Спектр собственных волновых чисел волн ТЕ и ТМ типов. Структура поля низших типов волн
- 13.2. Затухание собственных колебаний в полом резонаторе, обусловленное потерями энергии в заполняющей среде