Practical Dynamic Programming: Game

Playing Piano

F Major scale 2 octaves (right hand)

Implements a dynamic programming algorithm

- 1. Clarify your goal (problem)
- 2. Divide the final goal to subproblems
- 2-1. Find a recursive method to derive the final result from previous results and additional search
- 2-2. Check your method guarantees the results of searching all possible solutions
- 2-3. Do not need to search all possible solutions. We may prune unnecessary search.
- 3. Find initial states
- * Store the results of subproblems

- Given input
 - P: a guitar score (many notes for each time step)
 - H: a set of finger ID
 - C: a cost function of p1, p2, f1, f2 where p1, p2 in P F1 and F2 are a subset of F
- Output
 - F: a sequence of f in H (size = |P|)
- Goal?
 - $argmax_F \sum_{i=0}^{n-2} C(f_i, f_{i+1}, p_i, p_{i+1})$

- Goal
 - $argmax_F \sum_{i=0}^{n-2} C(f_i, f_{i+1}, p_i, p_{i+1})$
 - = $argmax_F \sum_{i=0}^{n-3} C(f_i, f_{i+1}, p_i, p_{i+1}) + cost \ of \ all \ possible \ cases \ for \ p_{n-2} \ and \ p_{n-1}$
 - = $argmax_F Cost_{1,n-2} + Cost_{n-2,n-1}$
- Subproblem?
 - Finding a subsequence of F minimizing the cost
 - Repeat the split

- Goal
 - $argmax_F Cost_{1,n-2} + Cost_{n-2,n-1}$
- Can we split the goal as
 - $\bullet = argmax_{F_{1,n-2}} Cost_{1,n-2} + argmax_{F_{n-2,n-1}} Cost_{n-2,n-1}$
- $F_{n-2,n-1}$: a finger selection
- $F_{1,n-2}$:a sequence for p_1 to p_{n-2}
- After we minimize the cost for $F_{n-2,n-1}$, finding the minimal cost of $F_{n-2,n-1}$ guarantees the optimal?

- NO!
 - $Cost_{n-2,n-1} = C(f_{n-2}, f_{n-1}, p_{n-2}, p_{n-1})$
 - f_{n-2} is in $F_{1,n-2}$
 - $Cost_{n-2,n-1}$ is dependent to the result of $Cost_{1,n-2}$
 - Selecting $F_{1,n-2}$ without the consideration of $Cost_{n-2,n-1}$ may not find the optimal

- Goal
 - $\begin{array}{l} \bullet \ argmax_F \ Cost_{1,n-2} + Cost_{n-2,n-1} \\ \neq \ argmax_{F_{1,n-2}} \ Cost_{1,n-2} + argmax_{F_{n-2,n-1}} Cost_{n-2,n-1} \end{array}$
- If the terms are dependent?
 - Make them independent
 - may be impossible, conditional independence is required
 - Check all conditions

- Goal
 - If f_{n-2} is given (fixed),
 - $\begin{array}{l} \bullet \ argmax_F \ Cost_{1,n-2} + Cost_{n-2,n-1} = \\ argmax_{F_{1,n-3}} \ Cost_{1,n-2} + argmax_{f_{n-1}} Cost_{n-2,n-1} \end{array}$
 - We do not know what is correct f_{n-2}
 - Check for all f_{n-2} , $argmax_F Cost_{1,n-2} + Cost_{n-2,n-1} = argmax_{f_{n-2}} Cost(argmax_{F_{1,n-3}} Cost_{1,n-2} + argmax_{f_{n-1}} Cost_{n-2,n-1})$ Store in memory

Playing Guitar

- Given input
 - P: a guitar score (many notes for each time step)
 - I: a set of finger ID (0~5)
 - H: a combination of elements in I
 - C: a cost function of p1, p2, f1, f2 where p1, p2 in P F1 and F2 are a subset of F
- Output
 - F: a sequence of f in H (size = |P|)
- Goal?
 - $argmax_F \sum_{i=0}^{n-2} C(f_i, f_{i+1}, p_i, p_{i+1})$

- Goal
 - $argmax_F Cost_{1,n-2} + Cost_{n-2,n-1}$
- Subproblems

```
argmax_{F} Cost_{1,n-2} + Cost_{n-2,n-1} = \\ argmax_{f_{n-2}} Cost(argmax_{F_{1,n-3}} Cost_{1,n-2} + argmax_{f_{n-1}} Cost_{n-2,n-1})
```

- The number of f_{n-2} to check?
 - $O(I^2)$ (if fingers in a combination is 2)
- Time complexity
 - $O(I^2|P|)$

Tetris

https://youtu.be/jH2HGTkAhWo

- Given input
 - B: a set of blocks
 - P: a sequence of blocks in B
 - M: a set of block maps
 - L: a set of positions to put a block
 - C: a cost function of current block arrangement in M, an input block in B, and a target position in L
- Output
 - F: a sequence of selected positions f in B (size = |P|)
- Goal?
 - $argmax_F \sum_{i=0}^{n-1} C(m_i, b_i, l_i)$

- Subproblem
 - If a block map is determined, the cost is simply obtained by maximizing $C(m_i, b_i, l_i)$ for all locations.
 - Does not guarantee to see previous final.
 - We need to check again all possible conditions.
 - Conditions : m_i
 - For all m_i ?
 - Impossible to calculate all combinations $L_{0,i-1}$
 - The next cost is determined by the surface of m_i (maybe with the depth as the longest block)
 - conditions : $S(m_i)$

Supermario

https://youtu.be/ZzV8NBHu2TY

- Given input
 - δ : transition function of objects
 - M: a set of object maps
 - A: a set of actions
 - C: a cost function of current map in M, an input action in A
- Output
 - F: a sequence of acitions in A (size = ?)
- Goal?
 - $argmax_F \sum_{i=0}^{n-1} C(m_i, a_i)$

Subproblem

 $S(m_i)$: the object arrangements to affect the cost evaluation of a current action

How to evaluate $S(m_i)$??

- Complex in this problem, but possible
- $S(m_i)$ may not be deterministic (by nondeterministic transition functions)
 - In this case, current decision is conditioned by the next transition results.
 - We need to check all possible transition conditions
- Too many future conditions?
 - Estimate model is required