Обзор конструктора

В рамках курса предлагается изучить микроконтроллер **stm32f103c8** на примере готового устройства — часов. Вместо дисплея используются две светодиодные матрицы (в общей сложности 16 x 8 светодиодов), на плате присутствует датчик освещённости и температуры, пьезоэлектрический излучатель, а в качестве элемента управления применён инкрементальный энкодер со встроенной кнопкой. Курс покрывает только минимальную программу, реализуя минимально возможные функции устройства: отображения времени и температуры. Но это не значит, что функциональность устройства на этом ограничена. Вы можете реализовать такие игры как Пин-Понг, Змейку или даже Тетрис, попутно задействовав другие возможности МК, тем самым усовершенствовав программу.

Кроме текста курса к набору прилагается бинарный файл <u>стоковой прошивки</u>. В ней реализованы несколько игр и задействованы некоторые другие возможности микроконтроллера. Её код не будет выложен в открытый доступ, чтобы уберечь вас от бездумного копирования кусков кода. Напротив, к основной части курса прилагаются дополнительные главы, опираясь на которые можно усовершенствовать вашу прошивку.

Приобрести набор можно связавшись с автором через электронную почту.

Само устройство спроектировано таким образом, чтобы по-максимуму задействовать все возможности МК.

В набор входит двухсторонняя программатор ST-Link, печатная плата и компоненты, которые вам (в идеале) предстоит самостоятельно припаять: имеются элементы как поверхностного монтажа (англ. surface mounted device, или SMD) — начиная от конденсаторов 0603 до большой микросхемы в корпусе SOIC-24W, так и выносного (англ. through-hole technology или THT) — от кварцевого резонатора до модулей матриц.

Если до настоящего момента вы не имели опыта пайки, то возможно, вам стоит потренироваться на какой-нибудь старой электронике, для того чтобы не испортить компоненты или печатную плату. При черезмерном нагреве и механическом воздействии печатные дорожки и посадочные площадки могут оторваться.

Самая сложная часть пайки — микроконтроллер. LQFP48 — квадратный корпус 7х7 мм, по 12 ножек на сторону. Заказать набор можно с предварительно запаянным МК. Если вы планируете запаять его самостоятельно внимательно ознакомьтесь с разделом «Рекоммендации по сборке».

По прохождению курса вы научитесь программировать микроконтроллеры STM32. Для измерения температуры используется датчик DS18B20 (протокол 1-Wire), а в качестве датчика освещённости применён фоторезистор. Для управления применён инкрементальный энкодер со встроенной кнопкой. Извлечение звука предлагается осуществлять через пьезоэлектрический излучатель.

Вы познакомитесь: с блоком тактирования и сброса (RCC); настроите микроконтроллер на нужную частоту (PLL); познакомитесь с портами ввода/вывода (GPIO) и блоком внешних прерываний (EXTI); таймерами (системным, базовым и продвинутым); изучите некоторые режимы их работы (энкодер, ШИМ, переполнение, синхронизация); запустите аналого-цифровой преобразователь (ADC); используете часы реального времени (RTC) с внешним кварцевым резонатором (LSE); познакомитесь с различными интерфейсами передачи данных (SPI, UART, 1-Wire); научитесь работать со встроенной flash-памятью; и другим.

Так как экосистема ST не стоит на месте, в курсе прилагаются примеры кода на 4 библиотеках (когда и какую лучше использовать описано далее): CMSIS, SPL, LL и HAL 1.

Весь код по курсу доступен на github.com/chrns/storming_stm32

В конце курса будет детально рассмотрен процесс проектирования устройства, а также применяемые для этого инструменты, чтобы вы могли приступить к своим собственным разработкам.

Спецификация

Обозначение	Количество	Примечание	
U ₁	1	РДБ Стабилизатор напряжения L78L33 (SOT89)	
U ₂	1	РДБ Микроконтроллер STM32F103C8 (LQFP48)	
U ₃	1	РДБ Датчик температуры DS18B20 (TO-92)	
U ₄ , U ₅	2	РОБ Драйвер светодиодной матрицы MAX7219 (SOIC-24W)	
Q ₁	1	PDF NPN-транзистор общего назначения BC817 (SOT23)	
LM ₁ , LM ₂	2	Светодиодная матрица ТС15-11 8 x 8 (38 x 38 мм)	
D ₁	1	Светодиод (0805)	
Y ₁	1	Кварцевый резонатор 32'768 Гц	
BZ ₁	1	Пьезоэлектрический излучатель (12 мм)	
C ₁	1	0,33 мкФ, керамический конденсатор (0603)	
C ₂ , C ₄ -C ₉ , C ₁₂	8	0,1 мкФ, керамический конденсатор (0603)	
C ₃	1	4,7 мкФ, танталовый конденсатор (Case-A)	
C ₁₀ , C ₁₁	2	22 пФ, керамический конденсатор (0603)	
R ₁	1	10 кОм, фоторезистор	
R ₂ , R ₁₂	2	100 кОм, резистор (0805)	
R ₃	1	4,7 кОм, резистор (0805)	
R ₄ , R ₁₁	2	10 кОм, резистор (0805)	
R ₅ , R ₇ , R ₉	3	1 кОм, резистор (0805)	
R ₅ , R ₆ , R ₁₀	3	220 Ом, резистор (0805)	
R ₁₃ , R ₁₄	2	40 кОм, резистор (0805)	
SW ₁	1	Инкрементальный энкодер со встроенной кнопкой	
BT ₁	1	Батарейка CR2032	
TP ₁	1	Тестовая точка, выпод тактового сигнала (МСО)	
TP ₂	1	Тестовая точка, выпод для калибровки часов (RTC_TAMPER)	

Обозначение	Количество	Примечание
J ₁	1	Разъём microUSB
J ₂	1	Разъём программатора (SWD, PLSx5)
J ₃	1	Разъём терминала UART (PLS x3)
JP ₁	1	Перемычка, должна быть запаяна для корректной работы

Перемычка JP₁ должна быть замкнута каплей припоя.

Спецификация в <u>pdf</u>.

Принципиальная схема устройства

Принципиальная схема в <u>PDF</u>.

Распиновка

Ножка	Функция	Периферия
PA0	Датчик освещённости (фоторезистор)	ADC1_IN0
PA1	Датчик температуры DS18B20 (протокол 1-Wire)	GPIO (output)
PA2	Пьезоэлектрический излучатель (управление ШИМ)	TIM2_CH3
PA3	Светодиод (возможно диммирование через ШИМ)	GPIO (output), TIM2_CH4
PA5	Кнопка (внешнее прерывание, сканирование)	GPIO (input), EXTI9_5
PA6, PA7	Инкрементальный энкодер (линии TI1/A и TI2/B)	TIM3_CH1, TIM3_CH2
PA8	Вывод тактового сигнала	RCC (MCO)
PB5	Линия выбора микросхемы MAX7219 (SPI)	GPIO (output)
PB10, PB11	UART-терминал	USART3_TX , USART3_RX
PB13, PB15	Линии тактирования и данных для драйверов MAX7219 (SPI)	SPI2_SCK , SPI2_MOSI
PC13	Выход для калибровки часов реального времени	RCC_TAMPER
PC14, PC15	Вход/выход низкочастотного кварцевого резонатора (32'768 Гц)	OSC32_IN , OSC32_OUT

Распиновка в <u>PDF</u>.

Назад | Оглавление | Дальше

^{1.} Всё описание в курсе ведётся с позиции библиотеки CMSIS. Код для SPL, LL и HAL появятся со временем в репозитории. 👱