算法导论 第十五周作业 12月24日 周四

PB18151866 龚小航

9.1 给出一种 2-SAT 问题的多项式解法。

解: 2-SAT 问题:

n 个布尔型的变量,给出 m 个约束条件,约束条件例如: X_i , X_j 不能同时为真, X_i , X_j 必须同时为真等。寻找是否存在一组布尔取值使所有的约束条件成立。

将 n 个变量划分为二,每个变量 X_i 划分为 X_{it} , X_{if} , 以这新的 2n 个节点为顶点构造图 G. 根据每一个给出的条件,在图上画出表示"必须同时选择"的边。把所有的 m 个条件都画完边后,对图 G 运行 Tarjan 算法求出图 G 的连通分量。检查这些连通分量中有没有同属于一个布尔型变量的两个顶点,若存在则可以判断这个问题不存在解;若不存在则可以简单的选择一条路径出来作为解。

由于 Tarjan 算法复杂度为 O(V+E), 对 n 组顶点依次判断则需要 O(V) 的时间。因此总时间必然是多项式级别的。

9.2 设 G = (V, E) 是一个无向图, 其中是每条边 $(u, v) \in E$ 具有不同的权值 $\omega(u, v)$ 。

对每个顶点 $v\in V$,设 $\max(v)=\operatorname{argmax}_{(u,v)\in E}\{\omega(u,v)\}$ 是与顶点 v 相关联的最大权值边。设 $S_G=\{\max(v):v\in V\}$ 表示与各个顶点相关联的最大权值边的集合, T_G 表示图 G 的最大权值生成 树。对任意的边集 $E'\subseteq E$,定义 $\omega(E')=\sum_{(u,v)\in E'}\omega(u,v)$ 。

- (a). 给出一个至少包含 4 个顶点的图, 使其满足 $S_G = T_G$ 。
- (b). 给出一个至少包含 4 个顶点的图, 使其满足 $S_G \neq T_G$ 。
- (c). 证明:对任意的图 G, $S_G \subseteq T_G$ 。
- (**d**). 证明:对任意的图 G, $\omega(S_G) \geq \omega(T_G)/2$ 。
- (e). 给出一个 O(V+E) 时间算法,用于计算 2 近似的最大生成树。

解: 分别分析:

(a) 如下图: $S_G = T_G = \{AB, BC, CD\}$

(b) 如下图: $S_G = \{AC, BD\}$, $T_G = \{AC, BD, CD\}$

(c) 只需要证明 S_G 的成员一定是 T_G 的成员即可。

反证法,假设存在 $(u_0,v_0)\in S_G$, $(u_0,v_0)\notin T_G$, 那么对于节点 u_0 来说,它所相关联的最大权值边为 (u_0,v_0) , 而 T_G 构成一棵生成树,因此 T_G 必包含一条与 u_0 相关联的边,且这条边的权值比 (u_0,v_0) 更小。此时我们可以这样操作:将 (u_0,v_0) 加入 T_G 同时把原本 T_G 中与 u_0 相关联的边 从 T_G 中删除,这样得到的新 T_G 仍然保证没有环的出现,仍然是一棵生成树,但权值变大了,因 此原本的 T_G 不是最大生成树,与条件相违背,因此反证假设不成立。

因此可以得知 S_G 的成员一定是 T_G 的成员,即 $S_G \subseteq T_G$

(d) 由上一问得出的结论, S_G 的成员必定是 T_G 的成员。而图 G 中的一条边最多被两个节点共享, T_G 最多能包含 G 的每一条边,因此在最坏情况下 S_G 中边的数量至少有 T_G 中的一半,若用 || 表示集合元素个数,必然有 $|S_G| \geq |T_G|/2$;而 S_G 优先取权重大的边,因此 S_G 里面包含的边是这样产生的:将 T_G 内的边按权重降序排列,取前 $|S_G|$ 条。令 $R_G = T_G - S_G$,显然 $\omega(S_G) > \omega(R_G)$,两边同时加 $\omega(S_G)$,即可得到:

$$2\omega(S_G)>\omega(S_G)+\omega(R_G)=\omega(T_G)$$
 \implies $\omega(S_G)\geq\omega(T_G)/2$ (e) 由上一问的结论,2 近似算法只需要保证精确解与近似解相差 2 倍以内即可,因此不论是找最大生

成树的边或是权重,都可以由 S_G 近似。 算法描述:遍历 G 的每一个顶点 $v \in V$,对每个顶点 v 遍历其相关联的所有边 e,记录最大的边

以及最大的边的权重。整个算法访问每个顶点一次,最多访问每条边两次,因此总的时间复杂度为 O(E+V).