Dimensionality Reduction

Problem: curse of dimensionality

• The higher the dimension is, the more likely it would be to get close to the border.

- Risk of being sparse in high-dimensional datasets
 - More dimensions == overfitting

- Solution:
 - Increase datasets' size sufficient density
 - Fact: exponentially (size and dimensionality)
 - o Feature selection algorithms: ensemble learning (Random Forest)
 - Feature extraction algorithms: projection (PCA)

Pros and cons:

- Pros
 - o Filter noise and unnecessary detail higher performance
 - Speed up training
- Cons
 - o Lose information worse performance

Two Methods:

(1) Projection

- Features: constant or highly-correlated
- Fearture instance lie within a much lower-dimensional subspace of the high-dimensional space

(2) Manifold Learning

- Manifold hypothesis: most real-world high-dimensional datasets lie close to a much lower-dimensional manifold.
- Implicit assumption: the task at hand (e.g., classification or regression) will be simpler if expressed in the lower-dimensional space of the manifold.

Projection:

- PCA (Principal Component Analysis)
 - o Essence:
 - Indentify the hyperlane that lies closest to the data
 - Projects the data onto it

o evaluation:

- select the axis that preserves the maximum amount of variance
- select the axis that minimizes the mean squared distance between the original dataset and its projection onto that axis.

o Process:

- identify the axis that accounts for the largest amount of variance
- find a second axis, orthogonal to the first one, that accounts for the largest amount of remaining variance
- if high dimension, find the third one, orthogonal to both previous axes until as many as the number of dimensions in the dataset

Standard matrix factorization technique:

- SVD(Singular Value Decomposition)
 - Decompose the training set matrix \mathbf{X} into the matrix multiplication of three matrices $\mathbf{U} \Sigma \mathbf{V}^T$, where \mathbf{V} contains all the **principal components**.

$$\mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{c_1} & \mathbf{c_2} & \cdots & \mathbf{c_n} \\ | & | & | \end{pmatrix}$$

Project to hyperplane:

- $\mathbf{X}_{d\text{-proj}} = \mathbf{X}\mathbf{W}_d$
- compute the matrix multiplication of the training set matrix X by the matrix \mathbf{W}_d
- **W**_d: the matrix containing the first d principal components (i.e., the matrix composed of the first d columns of **V**)

Inverse transformation:

- Retore the original data
- $\mathbf{X}_{\text{recovered}} = \mathbf{X}_{d\text{-proj}} \mathbf{W}_d^T$
- Reconstruction error: mean squared distance

Variants:

- Randomized PCA: speed up computation
 - Its computational complexity is $O(m \times d^2) + O(d^3)$, instead of $O(m \times n^2) + O(n^3)$ for the full SVD approach
- Incremental PCA: lower the burdon of memory
 - split the training set into mini-batches and feed an IPCA algorithm one mini-batch at a time