Fractal Computation

Yves Lucet

Abstract

The objective of the lab is to compute the basin of attractions of Newton's method to compute the cubic roots of unity. The resulting set is an example of a Julia set (fractal).

Write a CUDA code to compute the Julia set associated with the Newton iteration for the complex function $f(z)=z^3-1$. In other words, consider the complex function f(z)=z-g(z)/g'(z) where $g(z)=z^3-1$. If has 3 attractors: the cubit roots of unity. For each point z_0 in the complex plane, compute the sequence $z_1=f(z_0),\ z_{n+1}=f(z_n)$. That sequence converges to one of the attractors. Color your image with red for 1, green for $e^{2i\pi/3}$ and blue for $e^{-2i\pi/3}$.

Compute a 1024×768 matrix storing the image corresponding to the complex plane with the range of the real part between -2.2 and 2.2. The range of the imaginary part should be such that the basis is orthonormal i.e. 1 unit of distance on the x-axis corresponds to 1 unit of distance on the y axis.

Submit:

- 1. a serial code computing the matrix with values of 1 for red, 2 for blur, and 3 for green.
- 2. a CUDA code doing the same computation using 1 thread per pixel.
- 3. a CUDA code computing the matrix and then plotting the image.
- 4. the image you obtained in png format.

To check your answer, your image should be similar to http://upload.wikimedia.org/wikipedia/commons/6/6a/Julia-set_N_z3-1.png except that boundaries should be sharps instead of smooth.

P.S. Many fancy pictures can be generated from that code when using $f(z) = z^2 + c$ for different values of c. See http://en.wikipedia.org/wiki/Julia_set.