We claim:

1. A compound having the structural formula

$$Z \xrightarrow{R^3} R^2 \xrightarrow{R^1 + H} N \xrightarrow{N + 2} N \xrightarrow{N - N} R$$

$$Z \xrightarrow{R^4} R^5 \xrightarrow{R^5 + H} H \xrightarrow{N + 1} N \xrightarrow{N + 2} N$$

5 or a pharmaceutically acceptable salt thereof, wherein

R is

10

$$\xi \longrightarrow \mathbb{R}^6$$
 or $\xi \longrightarrow \mathbb{R}^7$

 R^1 , R^2 , R^3 , R^4 and R^5 are independently selected from the group consisting of H, alkyl and alkoxyalkyl;

R⁶ is H, alkyl, hydroxyalkyl or –CH₂F;

R⁷, R⁸ and R⁹ are independently selected from the group consisting of H, alkyl, alkoxy, alkylthio, alkoxyalkyl, halo and –CF₃;

Z is R¹⁰-aryl, R¹⁰-heteroaryl or

R¹⁰ is 1 to 5 substituents independently selected from the group consisting of hydrogen, alkyl, alkenyl, hydroxy, alkoxy, hydroxyalkyl, hydroxy-alkoxy, alkoxyalkyl, alkoxyalkoxy, alkoxy-alkoxy-alkyl-, (di-alkoxy)-alkyl, (hydroxy)-alkoxyalkyl, alkoxyalkoxy, alkoxy-alkoxy-alkyl-, (di-alkoxy)-alkyl, (hydroxy)-alkoxyalkyl, R¹⁵-cycloalkyl, R¹⁵-cycloalkylalkyl, cycloalkyl-oxy, cycloalkyl-O-alkoxy, alkyl-SO₂-, alkyl-SO-, halo, -CN, cyanoalkyl, -CHF₂, -CF₃, -OCHF₂, -OCF₃, -C(O)R¹³, -O-alkylene-C(O)OR¹³, -C(O)O-alkyl, -N(R¹¹)(R¹²), N(R¹¹)(R¹²)-alkyl, N(R¹¹)(R¹²)-alkoxy, -C(O)N(R¹³)(R¹⁶), R¹¹-heteroaryl, R¹⁵-heterocycloalkyl-alkyl, R¹⁵-heterocycloalkyl-alkoxy, R¹⁵-heterocycloalkyl-oxy, CF₃-alkylene-O-alkyl, CF₃-hydroxyalkyl, (CF₃)(hydroxy)alkoxy, cyano-alkoxy, -alkylene-C(O)-O-alkyl, -SO₂-N(alkyl)₂, (cycloalkyl)hydroxyalkyl, (hydroxyalkyl)alkoxy, (dihydroxy)alkyl, (dihydroxy)alkoxy, -C(=NOR¹⁷)-alkyl and -C(=NOR¹⁷)-CF₃;

or two R¹⁰ groups on adjacent carbon ring atoms together form -O–CH₂-O-, -O–(CH₂)₂-O-, -CH₂-O-(CH₂)₂-O-, -O-(CH₂)₃-O-, -O-(CH₂)₃-O-, -(CH₂)₃-O-, -(CH₂)₃-O-, -O-(CH₂)₃-O-, -O-(CH₂)₃-O-(CH₂)₃-O-, -O-(CH₂)₃-O-, -O-(CH₂)₃-O-(CH₂)₃-O-(CH₂)₃-O-(CH

wherein the ring formed by the two R¹⁰ substituents and the ring carbon atoms to which they are attached is substituted by R¹⁶;

or two R¹⁰ groups on adjacent carbon ring atoms together form $-N(R^{11})-C(O)-O-$, $-N(R^{11})-C(O)-S-$, $-(CH_2)_2CH(OR^{18})-$, $-CH_2CH(OR^{18})CH_2-$, $-(CH_2)_3CH(OR^{18})-$, $-(CH_2)_2CH(OR^{18})CH_2-$, $-(CH_2)_2C(O)-$, $-CH_2C(O)CH_2-$, $-(CH_2)_2CH(OR^{18})-$ or $-OCH_2CH(OR^{18})CH_2-$, wherein the ring formed by two R¹⁰ substituents and the ring carbon atoms to which they are attached is optionally substituted on a carbon atom by hydroxyalkyl or alkoxyalkyl;

each R¹¹ is independently selected from the group consisting of H and alkyl; each R¹² is independently selected from the group consisting of H, alkyl, hydroxyalkyl, alkoxyalkyl, -C(O)-alkyl, -C(O)O-alkyl, (alkoxy)hydroxyalkyl, alkoxyalkyl-C(O)-, -SO₂alkyl, -alkylene-C(O)alkyl and -alkylene-C(O)O-alkyl;

R¹³ is H, alkyl or -CF₃;

R¹⁴ is H, alkyl, alkoxyalkyl, alkyl-C(O)- or alkoxy-C(O)-;

15 R¹⁵ is 1 to 3 substituents independently selected from the group consisting of H, alkyl, -OH, alkoxy, alkoxyalkyl and hydroxyalkyl; or two R¹⁵ substituents, taken together with the carbon to which they are both attached, form a -C(=O)- group;

R¹⁶ is H, alkyl, alkoxyalkyl, OH or hydroxyalkyl;

R¹⁷ is H or alkyl; and

R¹⁸ is H or alkyl.

- 2. A compound of claim 1 wherein R is $-C = CR^6$.
- 3. A compound of claim 2 wherein R⁶ is H or alkyl.
- 4. A compound of claim 1 wherein R², R³, R⁴ and R⁵ are each H.
- 5. A compound of claim 1 wherein Z is R¹⁰-aryl or R¹⁰-heteroaryl.
- 30 6. A compound of claim 5 wherein Z is R¹⁰-phenyl.
 - 7. A compound of claim 6 wherein R¹⁰ is 1, 2 or 3 substituents independently selected from the group consisting of H, halo, -C(O)R¹³, alkyl, alkoxy, hydroxyalkyl, (cycloalkyl)hydroxyalkyl, hydroxyalkoxy, alkoxyalkoxy, alkoxyalkyl, and cyanoalkyl.

5

10

20

- 8. A compound of claim 7 comprising two R¹⁰ substituents wherein one R¹⁰ is halo and the other R¹⁰ is halo, -C(O)R¹³, alkyl, alkoxy, hydroxyalkyl, (cycloalkyl)hydroxyalkyl, hydroxyalkoxy, alkoxyalkoxy, alkoxyalkyl or cyanoalkyl.
- 9. A compound of claim 8 comprising two R¹⁰ substituents wherein one R¹⁰ is *o*-fluoro and the other R¹⁰ is halo, -C(O)R¹³, alkyl, alkoxy, hydroxyalkyl, (cycloalkyl)hydroxyalkyl, hydroxyalkoxy, alkoxyalkoxy, alkoxyalkyl or cyanoalkyl.
 - 10. A compound of claim 5 wherein Z is R¹⁰-heteroaryl.

10

- 11. A compound of claim 10 wherein Z is R¹⁰-benzoxazolyl or R¹⁰-benzisoxazolyl and R¹⁰ is 1 or 2 substituents independently selected from the group consisting of H, halo and alkyl.
- 15 12. A compound of claim 11 wherein one R¹⁰ is fluoro and one R¹⁰ is methyl.
 - 13. A compound of claim 1 wherein R is $-C \equiv CR^6$, R^2 , R^3 , R^4 and R^5 are each H, and Z is R^{10} -aryl or R^{10} -heteroaryl.
- 20 14. A compound of claim 13 wherein Z is R¹⁰-phenyl and R¹⁰ is two substituents wherein one R¹⁰ is halo and the other R¹⁰ is halo, -C(O)R¹³, alkyl, alkoxy, hydroxyalkyl, (cycloalkyl)hydroxyalkyl, hydroxyalkoxy, alkoxyalkoxy, alkoxyalkyl or cyanoalkyl.
- 25 15. A compound of claim 13 wherein Z is R¹⁰-benzoxazolyl or R¹⁰-benzisoxazolyl and R¹⁰ is 1 or 2 substituents independently selected from the group consisting of H, halo and alkyl.
 - 16. A compound of claim 1 selected from the group consisting of

$$F = \bigcup_{N=1}^{F} \bigcup_{N=1}^{NH_2} \bigcup_{$$

and

- 17. A pharmaceutical composition comprising a therapeutically effective amount of
 10 a compound of claim 1 in a pharmaceutically acceptable carrier.
 - 18. A method of treating central nervous system diseases or stroke, comprising administering an effective amount of a compound of formula I to a mammal in need of such treatment.
 - 19. A method of claim 18 for treating depression, cognitive diseases and neurodegenerative diseases.

5

- 20. A method of claim 18 for treating Parkinson's disease, senile dementia, psychoses of organic origin, attention deficit disorder, Extra Pyramidal Syndrome, dystonia, restless leg syndrome or periodic limb movement in sleep.
- 5 21. A pharmaceutical composition comprising a therapeutically effective amount of a combination of a compound of claim 1, and 1 to 3 other agents useful in treating Parkinson's disease in a pharmaceutically acceptable carrier.
- A method of treating Parkinson's disease comprising administering to a
 mammal in need of such treatment an effective amount of a combination of a
 compound of claim 1, and 1 to 3 other agents useful in treating Parkinson's disease.
 - 23. The method of claim 22 wherein the other agents are selected from the group consisting of L-DOPA, dopaminergic agonists, MAO-B inhibitors, DOPA decarboxylase inhibitors and COMT inhibitors.