MULTICHAMBER PROCESSING SYSTEM AND CLEAN. G METHOD THEREFOR

Patent Number:

JP7086169

Publication date:

1995-03-31

Inventor(s):

RI HIDEKI

Applicant(s)::

Requested Patent:

₩ JP7086169

Application Number: JP19930254681 19930917

TOKYO ELECTRON LTD

Priority Number(s):

IPC Classification:

H01L21/205

EC Classification:

Equivalents:

JP3066691B2

Abstract

PURPOSE:To clean the interior of each chamber without causing any damage on the compositional members by providing each processing chamber, carrying chamber, and preliminary chamber with a.gas supply section and a discharge section and feeding CIF3 gas to each gas supply section individually thereby cleaning each chamber. CONSTITUTION: Processing chambers 1, 2, 3 are coupled with three side faces of a first carrying chamber 4, respectively, through gate valves 5, 6, 7. First and second carrying chambers 4, 16 are provided, in the bottom faces thereof with gas supply ports 4A, 25A through which a cleaning gas is fed into the first and second chambers 4, 16 and eventually discharged through gas discharge ports 4B, 25B provided in the bottom faces thereof. After closing the gate valves of all chambers to interrupt them from each other, CIF3 gas is fed individually from a cleaning gas supply system into each chamber thence discharged individually to the outside. The cleaning gas cleans off metallic adherend from the inside of each chamber individually before it is discharged from the chamber.

Data supplied from the esp@cenet database - 12

BEST AVAILABLE COPY

RECU MAR 0 1 2002

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-86169

(43)公開日 平成7年(1995)3月31日

(51) IntCL*

鐵別記号

庁内整理番号

FΙ

技術表示箇所

H01L 21/205

審査請求 未請求 請求項の数5 FD (全 12 頁)

(21)出題番号

特顧平5-254681

(22)出題日

平成5年(1993)9月17日

特許法第30条第1項適用申請有り 平成5年6月7日発 行の日経産業新聞に掲載 (71) 出頭人 000219967

東京エレクトロン株式会社

京京都港区赤坂5丁目3番6号

(72)発明者 李 秀樹

東京都新宿区西新宿2丁目3番1号 東京

エレクトロン株式会社内

(74)代理人 弁理士 小原 肇

(54) 【発明の名称】 マルチチャンパー処理装置及びそのクリーニング方法

(57) 【要約】

【目的】 プラズマレスで複数の処理室の内部のみならず、搬送室などの他のチャンパーの内部も個別にそれぞれの構成部材を損ねるこなく完全にクリーニングすることができてきるマルチチャンパー処理装置のクリーニング方法を提供する。

【構成】 本マルチチャンパー処理装置のクリーニング方法は、半導体ウエハ8を処理する処理室1、2、3、これら各処理室へ半導体ウエハ8を搬送する搬送室4、及び真空予備室12、13などのチャンパーを有し、例えば第1、第2搬送室4、16にガス供給口4A、25A及びガス排気口4B、25Bを設け、これらガス供給口4A、25A等にクリーニングガス供給系35を接続し、このクリーニングガス供給系35から各チャンパー内にCIF3ガスを個別に供給し、このCIF3ガスにより各チャンパーの内部に付着した付着物をそれぞれ個別にクリーニングするようにしたものである。

【特許請求の範囲】

【請求項1】 被処理体を処理する複数の処理室と、これら各処理室へ被処理体を搬送する搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置において、上記各処理室、搬送室及び予備室にガス供給部及びガス排気部をそれぞれ設け、これらの各ガス供給部にクリーニングガス供給系を接続し、このクリーニングガス供給系から上記各ガス供給部を介して上記各室内にCIF3ガスを個別に供給し、このCIF3ガスにより各室の内部に付着した付着物をそれぞれ個別にクリーニングすることを特徴とするマルチチャンパー処理装置。

【請求項2】 被処理体を処理する複数の処理室と、これら各処理室へ被処理体を搬送する搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、上記各処理室、搬送室及び予備室をそれぞれ他から個別に遮断した後、各室に対してCIF3ガスを個別に供給し、このCIF3ガスにより各室の内部に付着した付着物をそれぞれ個別にクリーニングすることを特徴とするマルチチャンパー処理装置のクリーニング方法。

【請求項3】 上記各室に設けられた排気系配管を介してCIF3グガスを上記各室から排気することを特徴とする請求項2に記載のマルチチャンパー処理装置のクリーニング方法。

【請求項4】 被処理体に成膜処理を施す少なくとも一つの成膜室と、この成膜室へ被処理体を搬送する搬送装置を設けた搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、少なくとも一つの上記成膜室内上記被処理体に成膜処理を施し、成膜後の上記被処理体を上記搬送室及び上記予備室を介して外部へ搬送した後、少なくとも一つの上記成膜室、搬送室及び予備室をそれぞれ他から個別に遮断した後、これらの各室に対りない。このCIF3ガスにより各室の内部に付着した付着物をそれぞれ個別にクリーニングすることを特徴とするマルチチャンパー処理装置のクリーニング方法。

【請求項5】 被処理体に成膜処理を施す少なくとも一つの成膜室と、この成膜室へ被処理体を搬送する搬送装置を設けた搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、上記各室内をクリーニングするCーF3ガスを上記各室に設けられたそれぞれの排気系配管を介して上記各室から個別に排気することを特徴とするマルチチャンパー処理装置のクリーニング方法。

[発明の詳細な説明]

[0001]

【産業上の利用分野】本発明は、マルチチャンパー処理 装置及びそのクリーニング方法に関する。 [0002]

【従来の技術】最近半導体集積回路素子は益々高集積化 されて来ており、その集積度が64MDRAMから25 6 M D R A Mの世代に入りつつある。そのため配線構造 の多層化及び微細化が一層顕著になって来ている。この ように配線構造が多層化するに従って配線工程のステッ プが増加し、配線工程の効率化及び防塵対策が従来以上 に問題になって来ている。また、配線構造の微細化が進 むに従って、従来のアルミニウム(A I)配線ではマイ グレーション断線などが問題となり、AIに代わる材料 としてタングステン (W) などのマイグレーション耐性 に優れた金属が配線材料として種々検討されている。ま た、配線構造の多層化が進むに従ってコンタクトホー ル、ビアホールなどの埋め込みについても材料面など種 々検討されている。更に、被処理体の大口径化及び多層 化に伴って各層のカバレッジ性も重要になって来る。 【0003】例えばタングステンを配線膜として成膜す

【0003】例えばタングステンを配線膜として成膜する場合には、カバレッジ性に優れたCVD法によるブランケットW配線が検討されている。このブランケットWによる配線膜は剥がれ易い欠点があり、それ故パーティクルを発生し易い難点があるため、その防止策として窒化チタン(TiN)などの密着層を下地層として設ける方法が採られている。このTiNは従来はスパッタ法により成膜していたが、スパッタ法ではアスペクト比の高いホール底部でのカバレッジ性に限界があるため、TiNについてもカバレッジ性に優れたCVD法による成膜が検討されている。

【0004】また、コンタクトホール、ピアホールの埋め込みにはブランケットWあるいは、表面の金属被膜などの化学的性質を利用してタングステンを選択的に埋め込む選択Wが検討されている。ブランケットWによる埋め込みは、TiNからなる密着層の形成、ブランケットW、及びエッチパックをなど多くの工程が必要で、コスト的に高くなるため、電流密度の高い特定の半導体集積回路素子の配線に対して適用する傾向にある。一方、選択Wによる埋め込みは、ホール部を選択的に埋め込むとができるため、密着層を必要とせず、多層配線が簡単でコスト的に有利である。そのため、埋め込みを選択Wで行ない、配線をスパッタAIによる方法が検討されている。

【0005】また、配線構造の微細化に伴って水平方向での配線層の間隔が狭くなり、このギャップを埋め込む ための工程も各配線層について必要になり、配線構造の 微細化に伴って配線工程には益々多くの工程が必要になって来ている。

【0006】いずれにしてもこのように半導体集積回路 素子が多層化、微細化するに連れて配線工程が複雑になり、より多くの工程が必要になって来ている。そして、 これらの工程ではカバレッジ性に優れたCVD法による メタル成膜及び埋め込み、あるいは必要に応じてスパッ タ法によるメタル成膜などを適宜組み合わせた処理装置を開発する必要に迫られている。しかも、配線工程では複数のメタル成膜、埋め込み工程を伴う関係上、配線工程全体の高スループット化、及び各工程間でのパーティクルなどからの污染を極力抑制する必要があり、これらの課題を一つ一つ解決しながら今後の256MDRAMでも64MDRAM以下のものと同様の品質を保証すると共に生産性の向上の図る必要がある。

【0007】このような要求を満たす有力な処理装置と して複数の処理を一貫して連続処理するマルチチャンパ 一処理装置が注目されている。このマルチチャンパー処 理装置は、複数の成膜処理装置、埋め込み処理装置を組 み合わせてモジュール化した装置で、所定の真空下で成 膜等の処理を行なう複数の処理室と、これらの処理室へ 被処理体を搬送する搬送装置を有する搬送室と、この搬 送室との間で真空予備室を介して被処理体を搬入、搬出 するカセット室とを備え、各処理室で1枚ずつ連続的に 成膜処理、埋め込み処理などを行なうように構成され た、いわゆる枚葉処理装置である。このマルチチャンパ 一処理装置では、各処理室でCVDあるいはスパッタな どにより成膜処理を行なった後、これらの処理室と同様 の真空度に係たれた搬送室内の搬送装置を介して連続的 に次の処理室へ搬送し、連続的に成膜処理を行なうこと ができ、複数の処理を効率良く行なうことができるた め、スループットを高めることができる。また、各処理 工程を結ぶ搬送室が真空に保たれているため、被処理体 をクリーンな環境下で搬送することができ、被処理体を 各処理工程での処理状態をそのまま維持することがで き、各処理の再現性を高めることができる。更にまた、 このマルチチャンパー処理装置は、多層配線の処理内容 に応じて処理室を適宜組み合わせることができ、処理設 計に高い自由度を有している。

[0008] LbL、64MDRAMb6256DRA Mのような半導体集積回路素子を製造する場合には、ク リーンルームはスーパークリーン化しているため、クリ ーンルームからの汚染が激減する反面、処理装置内部の クリーン度が低下し、パーティクル等の90%は処理装 置内部で発生するとの報告がある。つまり、各処理室で はそれぞれの成膜処理に伴って被処理体のみならず、処 理室内部で被処理体を支持するサセプタや電極なども同 時に成膜され、更に処理室内周面にも成膜が行なわれ、 これらがいずれは剥離してパーティクルとして浮遊した り、処理室の底面に堆積することになる。また、搬送室 では微送装置の駆動部からパーティクルが発生すると共 に散送時の被処理体のスリップなどによりパーティクル が発生して浮遊し、底部に堆積することになる。あるい は成膜時のプロセスガスが十分に反応せず、反応途上の 生成物が被処理体に付着し、生成物が搬送過程で搬送室 や他の処理室へ搬入され、クロスコンタミネーションを 起こす。これらの生成物は徐々に底部などに堆積するこ

とになる。そして、処理時の給排気時の気流により、あるいは搬送系の駆動時に発生する気流によりパーティクルが浮遊し、これらのパーティクルが被処理体表面を汚染して歩留りを低下させることになる。

【0009】そこで、従来からこのような汚染をなくすために、所定回数の成膜処理などが終了する度に処理装置内をクリーニングしてパーティクル等の汚染物を除去するようにしている。そのクリーニング方法としては、マルテチャンパー処理装置自体を解体し、解体後に各構成部品を洗浄液内に浸漬してこれらの部品に付着した汚染物を洗浄したり、あるいは各構成部品に付着した汚染物を拭き取ったりする方法が採られていた。

[0010]

【発明が解決しようとする課題】しかしながら、従来のマルチチャンパー処理装置のクリーニング方法は、マルチチャンパー処理装置を解体した後、各構成部品を洗浄液に浸漬してそれぞれの汚染物を洗浄し、あるいは拭き取るようにしていたため、クリーニングに多大な時間を要し、マルチチャンパー処理装置の稼動効率が著しく低下するという課題があった。

【0011】本発明は、上記課題を解決するためになされたもので、プラズマレスで複数の処理室の内部のみならず、搬送室などの他のチャンパーの内部を構成部材を損ねるこなく完全にクリーニングすることができ、半導体集積回路素子の製造時に問題となるパーティクルなどの汚染源を除去できるマルチチャンパー処理装置のクリーニング方法を提供することを目的としている。

[0012]

【課題を解決するための手段】本発明の請求項1に記載のマルチチャンパー処理装置は、被処理体を処理する複数の処理室と、これら各処理室へ被処理体を搬送する搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置において、上記各処理室、搬送室及び予備室にガス供給部及びガス排気部をそれぞれ設け、これらの各ガス供給部にクリーニングガス供給系を接続し、このクリーニングガス供給系から上記各ガス供給部を介して上記各室内にCIF3ガスを個別に供給し、このCIF3ガスにより各室の内部に付着した付着物をそれぞれ個別にクリーニングするように構成されたものである。

【0013】また、本発明の請求項2に記載のマルチチャンパー処理装置のクリーニング方法は、被処理体を処理する複数の処理室と、これら各処理室へ被処理体を搬送する搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、上記各処理室、搬送室及び予備室をそれぞれ他から個別に遮断した後、各室に対してCIF3ガスを個別に供給し、このCIF3ガスにより各室の内部に付着した付着物をそれぞれ個別にクリーニングするようにしたものである。

【0014】また、本発明の請求項3に記載のマルチチャンパー処理装置のクリーニング方法は、請求項2に記載の発明において、上記各室に設けられた排気系配管を介してCIF3グガスを上記各室から排気するようにしたものである。

【0015】また、本発明の請求項4に記載のマルチチャンパー処理装置のクリーニング方法は、被処理体には 膜処理を施す少なくとも一つの成膜室と、この成膜室 と、この成膜室 と、この成膜室 と、この成膜室 と、この成膜室 と、この成膜室 と、この成膜室 とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、少理を置の内部をクリーニングする方法において、処理をも一つの上記成膜室内で上記被処理体に成膜処理体に成膜後の上記被処理体を上記搬送室及び上記予備室を介して外部へ搬送した後、少なくとも一つの上記成度室、搬送室及び予備室をそれぞれ他から個別に連結を入このCIF3ガスにより各室の内部に付着した付着である。

【0016】また、本発明の請求項5に記載のマルチチャンパー処理装置のクリーニング方法は、被処理体に成膜処理を施す少なくとも一つの成膜室と、この成膜室へ被処理体を搬送する搬送装置を設けた搬送室と、この搬送室に接続された予備室とを備えたマルチチャンパー処理装置の内部をクリーニングする方法において、上記各室内をクリーニングするCIF3ガスを上記各室に設けられたそれぞれの排気系配管を介して上記各室から個別に排気するようにしたものである。

[0017]

【作用】本発明の請求項1及び請求項2に記載の発明によれば、処理室、搬送室などの複数のチャンパーをそれぞれ他のチャンパーから個別に遮断した後、各チャンパーに対してそれぞれのガス供給部を介してCIF3ガスをクリーニングガス供給系から個別に供給すると、このCIF3ガスがそれぞれのチャンパーに付着した付着物と反応し、この時の反応熱で更にCIF3ガスが活性化され、この活性化したCIF3ガスと付着物との反応が促進されて各チャンパーに付着した付着物を除去することができる。

【0018】また、本発明の請求項3に記載の発明によれば、請求項2に記載の発明において、上記各チャンパーに設けられた排気系配管からC!F3ガスを排気すると、このC!F3ガスが上記各チャンパーからそれぞれ」の排気系配管を通過する間にそれぞれの内面の付着物と反応し、それぞれの排気系配管の付着物を除去することができる。

【0019】また、本発明の請求項4に記載の発明によれば、少なくとも一つの成膜室内で被処理体に成膜処理を施し、成膜後の被処理体を搬送室及び予備室を介して外部へ搬送した後、少なくとも一つの成膜室、搬送室及

び予備室をそれぞれ他から個別に遮断した後、これらの各チャンパーに対してCIF3ガスを個別に供給すると、各チャンパー内においてCIF3ガスがそれぞれのチャンパーに付着した付着物と反応し、この時の反応熱で更にCIF3ガスが活性化され、この活性化したCIF3ガスと付着物との反応が促進されて各チャンパーに付着した付着物を個別に除去することができる。

【0020】また、本発明の請求項5に記載の発明によれば、被処理体に成膜処理を施す少なくとも一つの成膜室、この成膜室へ被処理体を搬送する搬送装置を設けた搬送室、及びこの搬送室に接続された予備室を備えたマルチチャンパー処理装置の内部をクリーニングする際に、CIF3ガスを上記各室に設けられたそれぞれの排気系配管を介して上記各室から個別に排気すると、CIF3ガスが上記各室からそれぞれの排気系配管を通過する間にそれぞれの内面の付着物と反応し、それぞれの排気系配管の付着物を除去することができる。

[0021]

【実施例】以下、図1~図5に示す実施例に基づいて本 発明を説明する。本実施例のマルチチャンパー処理装置 は例えば図 1 に示すように処理室からクリーニングガス を供給するように構成されている。即ち、クリーニング ガスを供給する複数、本実施例では3つの処理室1、 2、3は、後述するように熱CVDなどにより所定の真 空下でタングステンなどのメタル成膜処理などを行なう ように構成されている。そして、これらの処理室1、 2、3は、同図に示すように、略矩形状に形成された第 1 搬送室4の3箇所の側面にゲートパルブ5、6、7を 介して接続され、これらのゲートパルブ5、6、7を開 放することにより第1搬送室4と連通し、これらを閉じ ることにより第1搬送室4から遮断できるように構成さ れている。また、この第1搬送室4内には各処理室1、 2、3へ被処理体、例えば半導体ウエハ8を搬送する搬 送装置9を備え、処理室1、2、3と同程度の真空度を 保持できるように構成されている。この搬送装置9は、 第1搬送室4の略中央に配設されており、屈伸可能に構 成されたアーム9Aを有し、このアーム9Aに半導体ウ エハ8を載せて半導体ウエハ8を搬送するように構成さ れている。更に、この第1搬送室4の底面には図1に示 すようにガス供給部としてガス供給口4Aが形成され、 このガス供給ロ4Aはクリーニングガスを供給する後述 のクリーニングガス供給系35へ接続されている。ま た、このガス供給口4Aから供給されたクリーニングガ スは第1 搬送室4の底面にガス排気部として形成された ガス排気口4日から排気するように構成されている。ま た、この第1搬送室9の残りの一側面にはゲートパルブ 10、11を介して2つの後述する真空予備室12、1 3がそれぞれ連通可能に並設され、これらの真空予備室 12、13はゲートパルブ10、11を開放することに より第1搬送室4に連通し、これらのゲートパルプ1

0、11を閉じることにより第1数送室4から遮断できるように構成されている。従って、所定の真空雰囲気下で数数送装置9により半導体ウエハ8を例えば真空予備室12から所定の処理室へ移載し、この処理室内で所定の成膜処理などを行なった後、その処理室から散送装置9を介して順次他の処理室へ移載してそれぞれの処理室で所定の処理を終了した後、再び他の真空予備室13へ移載するように構成されている。

【0022】これらの各真空予備室12、13は、ゲー トパルブ10、11に対向する側で、ゲートパルブ1 4、15を介して第2般送室16に連通可能に接続さ れ、これらのゲートバルブ14、15を開放することに より第2搬送室16と連通し、これらを閉じることによ り第2搬送室16から遮断できるように構成されてい る。また、この第2搬送室16の左右両側面にはゲート パルブ17、18を介してカセット19を収納するカセ ット室20、21が運通可能に接続され、これらのカセ ット室20、21は、ゲートパルブ14、15を開放す ることにより第2搬送室16と連通し、これらを閉じる ことにより第2搬送室16から遮断できるように構成さ れている。また、第2搬送室16内には左右のカセット 室20、21間の中央に位置させた第2搬送装置23が 配設され、この第2搬送装置23により真空予備室1 2、13とカセット室20、21間で半導体ウエハ8を 移載するように構成されている。更に、この第2搬送装 置23と真空予備至12、13の間には半導体ウエハ8 のオリエンテーションフラットにより半導体ウエハ8の 位置決めをする位置決め装置24が配設され、この位置 決め装置24により一旦位置決めした後、第2搬送装置 23により真空予備室12へ半導体ウエハ8を移載する ように構成されている。

【0023】また、第2搬送室16は室内に窒素ガス等の不活性ガスを供給し、そのガス圧を大気圧に調整して保持する気圧調整装置(図示せず)とを備え、この気圧調整装置によって大気圧に調整された窒素ガス中で、第2搬送装置23を用いてカセット至20、21内のカセット19と真空予備室12、13の間での半導体ウエハ8を搬送するように構成されている。また、この第2搬送室16はクリーニング時に所定の真空度を保持できるように構成されている。

【0024】また、この第2数送室16の底面にはガス供給部としてガス供給口25Aが形成され、このガス供給口25Aは例えば配管33を介してクリーニングガスを供給するクリーニングガス供給系35へ接続されている。そして、このガス供給口4Aから供給されたクリーニングガスは第2数送室16の底面にガス排気印として形成されたガス排気口25Bから排気するように構成されている。このガス排気口25Bは例えば真空予備室12、13の排気系にパルブ(図示せず)を介して接続され、この排気系を利用してクリーニング時の真空排気す

るように構成され、その他の時はパルブを閉じて真空予備室12、13のみを真空排気するように構成されている。そして、上記各処理室1、2、3、第1搬送室4、真空予備室12、13などの各チャンパーに排気系を備え、それぞれのテャンパーから排気できるように構成されている。尚、26、27はカセット室20、21の正面に取り付けられたゲートパルブである。

· *)

【0025】次に、本発明のクリーニング方法の一実施 例について説明する。このクリーニング方法では、マル チチャンパー処理装置の全チャンパーのゲートバルブを 閉じて各チャンパーを互いに遮断した後、例えば後述す る1箇所のクリーニングガス供給系から各チャンパーに 対してCIF3ガスをクリーニングガスとして個別に供 給し、各チャンパーから個別に外部へ排気し、この間に クリーニングガスにより各チャンパーの内部に付着した 金属系の付着物をそれぞれ個別にクリーニングするが、 このクリーニング方法によるクリーニングガスの流れを 概念的に示したものが図2である。即ち、一つのクリー ニングガス供給系35の配管は、マルチチャンパー処理 装置の全チャンパーに対応して分岐し、分岐した配管が それぞれ全チャンパーに対して個別に接続され、クリー ニングガス供給系35から全チャンパーに対して個別に クリーニングガスを供給するように構成されている。そ して、各チャンパーにはそれぞれガス排気口がそれぞれ 形成され、それぞれのガス排気口からクリーニングガス を外部へ排気するように構成されている。このクリーニ ングガスは予め定められた濃度で各チャンパー内に分布 した時点で所定時間排気を停止して良く、また、排気停 止後予め定められた時間を経過した後クリーニングガス の供給を停止するようにしても良い。また排気とクリー ニングガスの供給をパルス的に繰り返して実施しても良 い。クリーニングガスはCIF3ガスあるいは窒素ガス などの希釈用ガスを含むガスとして構成されている。こ のCIF3は化学的に活性で、特にタングステン系の被 膜と良く反応し、タングステン系の付着物を効果的に除 去することができる。しかし、このCIF3はタングス テンに限らず、他の金属例えばチタン系、モリブデン系 などの金属化合物とも良く反応し、これらの金属化合物 を効果的に除去することができる。このクリーニングに 際し、クリーニング雰囲気を加熱しても良く、更にクリ ーニングガスは全チャンパーから供給するよ<u>うにして</u>も 良い。

【0026】このクリーニングガスがCIF3ガスのみである場合には、CIF3ガスの流量が5リットル/分以下で、その温度がCIF3の沸点~700℃、内部の圧力が0.1~100Torrの条件でクリーニングすることが好ましい。CIF3ガスの流量が5リットル/分を超えると、各チャンパーの構成材料を損ねる虞がある。CIF3ガスの温度が沸点未満ではCIF3が構成部村に結露してその材料を損ねる虞があり、700℃を超えて

もCIF3ガスが活性化されてやはり材料を損ねる虞がある。CIF3ガスの圧力がO.1Torr未満ではクリーニング効果が期待できなくなる虞があり、100Torrを超えると構成材料を損ねる虞がある。また、CIF3ガスを主成分とするクリーニングガスは、不活性ガス例えば窒素ガスでCIF3を希釈したものである。

【0027】次に、クリーニングガスを供給するガス供 給系及び処理装置1、2、3について図3を参照しなが ら説明する。ここでは例えば処理装置 1 がスパッタリン グ装置として構成され、処理装置2が熱CVD装置とし て構成され、処理装置3がエッチング装置として構成さ れている。そこで、これらの処理装置を代表して処理装 置2について説明する。この処理室2は、図3に示すよ うに、所定の真空度を保持できるアルミニウムなどから 円筒状として形成されている。この処理室2内の底面2 Aの略中央に配設された、半導体ウエハ8を載置するサ セプタ28と、このサセプタ28の上方でこれに対向し て配置され、プロセスガスまたはクリーニングガスを供 給するガス分散供給部29とを備えて構成されている。 また、この処理容器28の底面にはサセプタ28に対向 させた石英窓30が形成され、この石英窓30のやや下 方に配設された加熱用のハロゲンランプ31から石英窓 30を介してサセプタ28上の半導体ウエハ8を光エネ ルギーにより加熱するように構成されている。

【0028】また、ガス分散供給部29には図3に示す ようにプロセスガスを供給するプロセスガス供給系32 が配管33を介して接続され、この配管33に取り付け られたパルブ34を開放することにより所定のプロセス ガスをガス分散供給部29を介して処理室2内に供給す るように構成されている。そして、この処理室2内で例 えばブランケットW処理を行なう場合にはプロセスガス 供給系32からガス分散供給部29へ例えば六フッ化タ ングステン(WF6)及び水素をプロセスガスとして供 給し、ガス分散供給部29の下面に多数分散させて形成 され分散孔29Aから処理室2内全体へプロセスガスを 均等に供給するように構成されている。尚、金属配線用 のプロセスガスとしては、ハロゲン化物、カルボニル化 合物、有機金属化合物があり、これらは還元性ガスと共 に供給される。そして、プロセスガスは比較的蒸気圧の 低い化合物が配線材料としては好ましい。

【0029】また、配管33には図3に示すようにクリーニングガスを供給するクリーニングガス供給系35が配管36を介して接続され、クリーニング時にはこのクリーニングガス供給系35から配管36、配管33、ガス分散供給部29を介して処理室2内へクリーニングガスを供給するように構成されている。即ち、このガス分散供給部29は処理室2のクリーニングガスの供給部としての役割も果たしている。また、この配管33は、同図に示すように、処理室2の上流側で他の処理室1、

3、第1般送室4、真空予備室12、13及び第2搬送

室 1 6 ヘクリーニングガスを供給できるように分岐し、 分岐した配管33の下流端がこれらのチャンパーのガス 供給口にそれぞれ接続され、全チャンパーへ個別にクリ ーニングガスを供給できるように構成されている。この クリーニングガス供給系35は、クリーニングガスであ るC!F3ガスを貯留するC!F3ガスポンペ37と、こ のCIF3ガスを希釈する窒素ガスを貯留する窒素ガス ボンペ38を備え、これら両者37、38はそれぞれ配 **管36から分岐する配管36A、36Bの端部にそれぞ** れ接続されている。CIF3ガスボンベ37が接続され た配管36Aには上流側から下流側へパルブ39、マス フローコントローラ40、パルブ41が順次配設され、 また、窒素ガスポンベ37が接続された配管36日には 上流側から下流側へパルブ42、マスフローコントロー ラ43、バルブ44が順次配設され、これら両者37、 38からのガスが配管36で合流し、パルブ45を開放 することにより配管33を介して各処理室1、2、3、 第1搬送室4、真空予備室12、13及び第2搬送室1 6内へクリーニングガスを供給できるように構成されて いる。

【0030】処理室2の底面2Aにはサセプタ28の近 傍に位置する排気口46が形成されている。そして、こ の排気口46には排気管48を介して真空排気ポンプ4 9が接続され、この真空排気ポンプ49により処理室2 内を排気して所定の真空度を維持するように構成されて いる。この真空排気ポンプ49は本発明のクリーニング 方法を実施する場合にもクリーニングガスの排気用とし て兼用することができる。従って、この排気口46は処 理室 2 のクリーニングガスの排気部としての役割も果た している。この真空ポンプ49としては排気されるガス の影響を受けないようにオイルフリーのドライボンプを 用いることが好ましい。更に、この真空排気ポンプ49 の下流側には、この真空排気ポンプ49から排気された プロセスガス、クリーニングガスなどの有害なガスを捕 促して排気ガスからこれらの有害ガスを除去する除害装 置50が配設されている。この除審装置50にはC!F 3を良く溶解する溶剤、例えばアルカリ溶液などを満た したものが用いられる。

【0031】また、処理装置1、2、3に対して第1 機送室4を介してその前方、即ち図1では紙面下方に接続されている真空予備室12、13は図4(a)に示すように構成されている。この真空予備室12は、同図に示すように、処理室と同材料によって形成された予備室本体51と、この予備室本体51内に配設された、半導体ウエハを冷却ステージ52に対向させて予備室本体51天面の上方に配設された、半導体ウエハを予備加熱する加熱装置53と、これた、半導体ウエハを予備加熱する加熱装置53と冷却ステージ52間で半導体ウエハを支持する上下2段の支持具54、55と、これらの支持具54、55を一体化して連結し、予備室本体51の底

面を貫通する連結軸56と、この連結軸56の下端に連 結され、支持具54、55を昇降させる昇降機構57と を備えて構成されている。また、予備室本体51の底面 には排気口51Aが形成され、この排気口51Aに排気 配管58を介して真空排気ポンプ59が接続され、この 真空排気ポンプ59により予備室本体51内を真空排気 するように構成されている。この真空排気ポンプ59 は、本発明のクリーニング方法を実施する際にも利用す ることができる。また、この排気口51Aの近傍にガス 供給口51日が形成され、このガス供給口51日に供給 配管60を介してガス供給源(図示せず)が接続され、 真空状態の予備本体 5 1 内に不活性ガスなどを供給して 内部を大気圧に戻すように構成されている。また、この 供給配管60にはクリーニングガス供給系35の配管3 3が接続され、この配管33、供給配管60を介して真 空予備室12内へクリーニングガスを供給できるように 構成されている。

【0032】上記加熱装置53は、ハロゲンランプなど からなる加熱ランプ53Aと、この加熱ランプ53Aの 光を予備室本体51側へ反射する反射板53日を有し、 この反射板53日で反射された加熱ランプ53Aからの 光エネルギーを予備室本体51の天面に配設された石英 窓53℃を介してその内部の半導体ウエハを照射して加 **熟するように構成されている。即ち、半導体ウエハを処** 理室へ搬入する前に予め予備加熱するが、この際には、 昇降機構57によって支持具54を上昇させて加熱装置 53に接近させて処理前の半導体ウエハを予備加熱す る。また、処理後の半導体ウエハを搬出する場合は外部 の温度に合わせて半導体ウエハを冷却するが、この際に は、昇降機構57によって支持具55を下降させて冷却 ステージ52に接触させて処理後の半導体ウエハを冷却 する。また、上記支持具54、55は、図4(b)に示 すように、冷却ステージ52の外径よりやや大径に形成 されたリング54A、55Aと、各リング54A、55 Aに周方向等間隔に3個取り付けられた保持爪54B、 55日とからなり、これらの保持爪保持爪54日、55 Bで半導体ウエハを支持するように構成されている。ま た、他の真空予備室13も真空予備室12と同様に予備 室本体61、冷却ステージ62、加熱装置63、支持具 64、65、連結軸66、昇降機構67、排気配管68 及び供給配管70を備えている。そして、真空予備室1 2との場合と同様にこの供給配管70にはクリーニング ガス供給系35の配管33が接続され、この配管33、 供給配管70を介して真空予備室-13内へクリーニング ガスを供給できるように構成されている。そして、真空 予備至12、13の排気口及びガス供給口はいずれもク リーニングガスの排気部及び供給部としての役割をも果 たしている。

【0033】上記真空予備室12、13の前方に接続されている第2搬送室16内に配設された第2搬送室2

3は、リンク機構によって屈伸自在に構成されたアームフェクスフェの先端に連結されたハンドフェと、このアームフェの先端に連結されたハンドフェと、このハンドフェの上面に形成された孔フェで半導でサームを、このハンドフェの上面に形成された孔フェで半導位では、一次では、大変では、大変では、大変では、大変では、大変では、大変には、大変には、大変には、大変には、大変には、大変には、大変には、アームフェを伸ばしてカセット19内の半導体ウェハ8間へ挿入し、ハンドフェに半導体ウェハ8間へが表により真空排気ボンブにより真空排気であると共に真空排気が、カして半導体ウェハ8をハンドフェを脱さらに対して半導体ウェハ8をアンドフェを脱送して半導体ウェハ8を正確に吸着を解除して所定の位置へ半導体ウェハ8を正確に対している。

【0034】また、第1機送室4のガス排気口4B及び第2機送室16内のガス排気口25Bは図2に示すように例えば真空予備室12、13の真空排気ポンプ59に配管75を介して接続され、この真空排気ポンプ59により配管75を介して各機送室4、16内のクリーニングガスを排気するように構成されている。そして、図示しないがこの配管75は上述した除害装置50に接続され、この除害装置50によって排気ガス中の有害成分を除去した後外部へ排気するように構成されている。

【0035】次に、上記マルチチャンパー処理装置を用いた配線用成膜処理の一例について説明する。例えば、処理室1内ではスパッタリングによりTiNを半導体ウエハのコンタクトホールの表面に密着層を形成し、コンタクトホールの表面に密着層を形成し、コンタクトホールの表面に密着層を形成し、コンタクトホールにブランケットWによりタングステンをリウンケットでは処理室2内でタングステンを生める。必要では処理室3内では処理室2内でタングステンをより、ツクしてコンタクトホールにのみタングステンを表が、ツクしてコンタクトホールにのみタングステンを表が、ツクしてコンタクトホールにのみタングステンを残り、というでは、1般送装置9を介して搬送する。勿論、各処理室での処理後は連続して次の工程や半導体のエストで、2を第1般送装置9を介して搬送する。勿論、各処理室内はいずれもそれぞれの処理に必要な真空度に保持されている。

【0036】例えば処理室2でのブランケットWについて説明すると、プロセスガス供給系32からガス分散供給部29へ六フッ化タングステン(WF6)及び水素をプロセスガスとして供給すると、ガス分散供給部29下面の分散孔29Aからプロセスガスが室内全体へ均等に供給される。この時、ハロゲンランブ31の光エネルギーが石英窓30を介してサセブタ28に照射されてエネルで支持された半導体ウエハ8が所定温度まで加熱されており、加熱された半導体ウエハ8にプロセスガスが接触すると、その熱エネルギーによりWF6が水素還元されてタングステンの被膜が半導体ウエハ8の前表面に形成される。この処理によってタングステンの被膜は半導体

ウエハ8の表面のみならずサセプタ28などその他の部分にも形成される。

【0037】そして、ブランケットWの成膜工程が終了 すれば、他の処理室1、3でもそれぞれの処理を終了 し、それぞれの処理室から次工程へ半導体ウエハ8を第 1敚送室4内の第1敚送装置9により搬送する。即ち、 **各半導体ウエハ8の搬送時には、各処理室のゲートバル** ブ5、6、7を開くと共に真空予備室12、13のゲー トパルブ10、11を順次開いてこれらの各チャンパー を互いに連通させる。この状態で第1搬送装置9を駆動 させて処理室3内の半導体ウエハ8を真空予備室13内 へ搬送し、その内部の支持具55へ半導体ウエハ8を移 載する。そして、第1搬送装置9のアーム9Aを真空予 備室13から後退させ、引き続き処理室2内へアーム9 A を伸ばし、サセプタ28上のブランケットW後の半導 体ウエハ8を取り出して処理室3へ移載する。更に、ア ーム9Aを処理室1内へ伸ばし、その内部からTiN成 膜後の半導体ウエハ8を取り出して処理室2内のサセブ タ28へその半導体ウエハ8を移載する。その後、アー ム9Aを**真空予備室2内へ伸ばし、加熱装置53による** 予備加熱後の半導体ウエハ8を支持具54から取り出 し、処理室1内へ半導体ウエハ8を移載する。これらの 一連の連続操作が順次終了すれば順次それそれのゲート パルブを閉じて次の操作に備える。

【〇〇38】真空予備室12ではゲートバルブ10が閉 じると、その後ゲートパルブ14を開いて次の半導体ウ エハ8を第2搬送装置23により位置決め後の半導体ウ エハ8を支持具55で受け取る。次いで昇降機構57が 駆動して運結軸56を介して支持具55を予備室本体5 1の天面に接近させる。この時予備室本体51内では真 空排気ポンプ59が駆動して室内の圧力を第1搬送室4 の真空度と同レベルまで真空引きすると共に、加熱装置 53により半導体ウエハ8を予備加熱し、次の処理に備 える。一方、ゲートバルブ11が閉じた真空予備室13 ではガス供給配管70から窒素ガスを予備室本体61内 に供給し、室内の圧力を大気圧レベルに戻すと共に、昇 降機構67が駆動して連結軸66を介して支持具64を 冷却ステージ62に接触させて半導体ウエハ8を常温ま で冷却する。冷却後ゲートパルブ開放して窒素ガスによ り大気圧に調整された第2搬送室16に運通し、第2機 送装置23により支持具65上の半導体ウエハ8をカセ ット室21内のカセット19へ移載する。この際、第2 搬送装置23はハンド72の孔73を介して半導体ウエ ハ8を真空吸着するため、半導体ウエハ8を取りこぼす ことなく移載できる。これによりマルチチャンパー処理 装置内での一連の処理が終了する。これらの一連の処理 工程をカセット19に収納された半導体ウエハ8の全て について行ない、その後未処理の半導体ウエハ8と交換 する。

【〇〇39】このような成膜処理により処理装置1、

2、3内ではそれぞれの壁面、サセプタ28及びその他 の部分にも多少の被膜が形成され、成膜処理を所定回数 繰り返すと、その都度被膜が積層されていずれはこれら が剥離してパーティクルとして室内を浮遊し清浄な半導 体ウエハ8を汚染するようになることは前述の通りであ る。また、処理室1、2、3内では完全に反応しきれな い反応生成物や分解生成物が半導体ウエハ8に付着す。 そのためこれらの反応生成物や分解生成物が半導体ウエ ハ8の搬送過程で半導体ウエハ8から飛散して処理室 1、2、3は勿論のこと、他の第1微送室4、真空予備 室12、13及び第2搬送室16などのチャンパーにも 飛散してそれぞれのチャンパーの底部に徐々に蓄積され る。そして、これらもパーティクルになって半導体ウエ ハ8を汚染する虞がある。更には、第1、第2搬送室 4、16内ではそれぞれの搬送装置9、23の駆動部か らパーティクルが発生し、これらが徐々にそれぞれの底 面に蓄積し、これらが半導体ウエハ8の搬送時に舞い上 がり半導体ウエハ8を汚染する虞がある。

【0040】そこで、所定回数の成膜処理後、その処理を一旦中断しこれらのパーティクル等の塵埃を本発明のクリーニング方法により除去する。それにはまず、処理室2のハロゲンランブ31などの電源を切った後、半導体ウエハ8が各処理室1、2、3にない状態にする。ペウエハ8が各処理室1、2、3にない状態にする。ペウエハ8が各処理室1、2、3にない状態にする。ペウトパルブを閉じて各チャンパーを互いに遮断した後、クリーニングが力ス供給系35から各チャンパーに対して希釈用ガスを含むことがあるC1F3ガスをクリーニングが外表として図2で示すように各チャンパーへ個別に供給することにより本実施例のクリーニングを実施する。このクリーニングに際して各チャンパー内を窒素ガスなどで予め置換しておくことが好ましい。

【0041】次いで、CIF3の沸点より高い常温下で 各処理室1、2、3の真空排気ポンプ49等及び真空予 備室12、13の真空排気ポンプ59を駆動し、各処理 室1、2、3、第1搬送室4、真空予備室12、13及 び第2搬送室16から窒素ガスを排気して各チャンパー 内の真空度を所定値に維持する。そして、この排気状態 下でクリーニングガス供給系35のパルブ39、41、 45を所定の開度で開放すると共にマスフローコントロ 一ラ40により各チャンパーにおけるCIF3ガスを所 定の流量、例えば5リットル/分以下の流量で配管33 を介して供給する。この配管33に接続された処理室2 のガス分散供給部2-9、その他の処理室1、3のガス供 給口、第1搬送室4のガス供給口4A、各真空予備室1 2、13のガス供給ロ51日、61日及び第2機送室1 6のガス供給口25Aからそれぞれのチャンパー内へク リーニングガスを個別に導入し、各チャンパーでのCI F3ガスの圧力を0.1~100Torrに維持する。この 時、クリーニングガスは、処理室2の排気口46、その 他の処理室の排気口(図示せず)、第1搬送室4のガス

排気口4日、真空予備室12、13の排気口51A、61A及び第2搬送室16のガス排気口25日からクリーニングにより消費されたクリーニングカスを真空排気ポンプ49、59などに常時排気して更新しているため、各チャンパー内のクリーニングガスの圧力を0.1~100forに維持すると共に更新された新鮮なクリーニングガスで効率良く各チャンパーを個別にクリーニングすることができる。

【0042】各チャンパーに供給されたCIF3ガスは化学的に活性なガスであるため、処理室1、2、3に形成されたタングステン系の被膜やこれらの処理室1、2、3及びその他の全てのチャンパーの底面などに処理過程で付着した付着物と反応してこれらの被膜及び付着物を各チャンパー内で個別に除去して各チャンパー内を清浄にクリーニングすることができる。また、CIF3ガスの被膜等との反応が発熱反応であるため、この発熱によりCIF3ガスの反応は益々促進されてより被膜等の付着物を除去することができる。特に、CIF3ガスはタングステンと良く反応するため、本実施例で各チャンパー内に付着したタングステン系の付着物を良くクリーニングすることができる。

【0043】しかも、本実施例ではクリーニングガスを排気系配管を介して外部へ排出するようにしているため、それぞれの排気配管、特に各処理室1、2、3の排気管48のように反応生成物の被膜を形成し易い部分についても、その被膜をクリーニングガスにより除去することができる。また、排気系から排出される有毒ガスを除客装置50により除去できるため、クリーンな排気を行なうことができる。

【0044】以上説明したように本実施例によれば、N F3ガスなどのプラズマを利用して内部をクリーニング する方法では除去できなかった各チャンバーの底面など プラスマが及ばない部分でも、CIF3ガスが各チャン パー内で個別に完全に行き渡って各チャンパーの隅々ま で完全にクリーニングすることができ、このことから6 4 MDRAM以上の多層配線からなる半導体集積回路素 子の製造装置の主流となりえるマルチチャンパー処理装 置を構成する全チャンパーを完全にクリーニングするこ とができ、64MDRAM以上の集積度を有する半導体 集積回路素子の製造で問題になるパーティクルなどの汚 **染源を除去できる。しかも、本実施例によれば、CIF** 3ガスが活性なガスであるとはいえ、材料に対する腐食 性がなく、しかもプラズマレスであるため、プラズマに よる装置内部を損傷などさせることなく極めて穏やかな クリーニングを行なうことができる。また、本実施例に よれば、既存のマルチチャンパー処理装置にクリーニン グシステムとしてクリーニングガス供給系35を設ける 他、多少の排気系の改良を加えるだけ良いため、極めて 低コストで効果的なクリーニングを行なうことができ る。また、当然のことながら作業員が装置を解体してク

リーニングする方式と比較すれば、クリーニング時間を 格段に短縮できる。

) J

【0045】また、他のクリーニング方法としては、C IF3ガスのブラズマを利用して処理装置内をクリーニ ングする方法もある。このクリーニング方法では、CI F3ガスを例えば成膜室である処理室1、2及びエッチ ング室である処理室3内に個別に供給し、これらの処理 室 1 、 2 、 3 内でCIF3ガスのプラズマを立て、それ ぞれのプラズマにより各処理室1、2、3内の図示しな いサセプタ、電極及びその近傍をそれぞれ個別にクリー ニングすると共に、このCIF3ガスを他の第1搬送室 4、予備真空室12、13及び第2搬送室16へも同時 且つ個別に供給することにより、マルチチャンパー処理 装置の全チャンパーを個別にクリーニングすることがで きる。この方法によれば、処理室1、2における成膜処 理によりそれぞれの内面、サセプタ、電極が成膜され、 あるいは処理室3におけるエッチパック処理によりその 内面、サセプタ、電極が成膜されても、サセプタ、電極 をC | F3のプラズマ中の活性種により堆積膜を効果的 に除去することができると共に、他の全てのチャンパー についてはCIF3ガスによって上述した場合と同様に クリーニングすることができる。この場合にも装置を解 体することなく、CIF3ガスなどのクリーニングガス を処理室2内でプラズマ化してサセプタ、電極などに形 成された被膜あるいは付着したパーティクルなどをエッ チングにより除去することができるため、クリーニング 時間を短縮することができ、しかも稼動時の状態のまま 簡便に行なうことができる。

【〇〇46】尚、上記実施例ではクリーニングガスとし てCIF3ガスを用いたものについて説明したが、本発 明では、このCIF3ガスを除去すべき被膜等の付着物 の成分に応じて窒素ガスによって適宜希釈し、その活性 を適宜調整することもできる。また、本実施例ではクリ ーニングガスを1箇所のクリーニングガス供給系35か ら各チャンパーへ個別にクリーニングガスを供給するよ うにしたものについて説明したが、クリーニングガス供 給系は各チャンパーに対して個別に取り付けても良い。 また、上記実施例では処理室以外のチャンパーではクリ ーニングガスのガス供給口及びガス排気口をそれぞれの 底面に設けたものについて説明したが、これらを設ける 場所及び数は必要に応じて適宜設定することができる。 また、上記実施例ではカセット室20、21のクリーニ ングについては説明しなかったが、これらのチャンバー の場合には、ゲートパルブ26、27を開放した状態で 作業員が簡単に内部を清掃できるため、本発明のクリー ニング方法を用いるまでもない。仮に本発明のクリーニ ング方法をカセット室20、21のクリーニングにも適 用するとすれば、上述したように各カセット室20、2 1にクリーニングガスの供給口と排気口を設けるように すれば良い。

[0047]

【発明の効果】以上説明したように本発明の請求項 1 に 記載の発明によれば、マルチチャンパー処理装置の複数 のチャンパーをそれぞれ他の個別に遮断した後、各チャ ンパーに対してCIF3ガスをクリーニングガス供給系 から個別に供給し、このCIF3ガスにより各チャンパ 一の内部に付着した付着物をそれぞれ個別にクリーニン グするようにしたため、ブラズマレスで複数の処理室の 内部のみならず、搬送室などの他のチャンパーの内部も 個別にそれぞれの構成部材を損ねるこなく完全にクリー ニングすることができ、半導体集積回路素子の製造時に 問題となるパーティクルなどの汚染源を除去できるマル チチャンパー処理装置及びそのクリーニング方法を提供 することができる。

【〇〇48】また、本発明の請求項2に記載の発明によ れば、マルチチャンパー処理装置の複数のチャンパーを それぞれ他の個別に遮断した後、各チャンパーに対して C!F3ガスを個別に供給し、このC!F3ガスにより各 チャンパーの内部に付着した付着物をそれぞれ個別にク リーニングするようにしたため、プラズマレスで複数の 処理室の内部のみならず、搬送室などの他のチャンパー の内部も個別にそれぞれの構成部材を損ねるこなく完全 にクリーニングすることができ、半導体集積回路素子の 製造時に問題となるパーティクルなどの汚染源を除去で きるマルチチャンバー処理装置及びそのクリーニング方 法を提供することができる。

【0049】また、本発明の請求項3に記載の発明によ れば、請求項2に記載の発明において、各チャンパーの 排気系配管を介してC!F3ガスを上記各チャンパーか ら排気するようにしたため、各処理室などの排気系配管 の内面に付着した付着物をCIF3ガスにより個別に除 去できるマルチチャンパー処理装置のクリーニング方法 を提供することができる。

【0050】また、本発明の請求項4に記載の発明によ れば、少なくとも一つの成膜室内で被処理体に成膜処理 を施し、成膜後の被処理体を搬送室及び予備室を介して 装置外部へ搬送した後、少なくとも一つの成膜室、搬送 室及び予備室をそれぞれ他から個別に遮断してた後、こ れらの各チャンバーに対してCIF3ガスを個別に供給 し、このCIF3ガスにより各チャンパーの内部に付着 した付着物をそれぞれ個別にクリーニングするようにし たため、ブラズマレスで少なくとの一つの成膜室の内部 のみならず、搬送室などの他のチャンパーの内部も個別 にそれぞれの構成部材を損ねるこなく完全にクリーニン

グすることができ、半導体集積回路素子の製造時に問題 となるパーティクルなどの汚染源を除去できるマルチチ ャンパー処理装置のクリーニング方法を提供することが できる。

【〇〇51】また、本発明の請求項5に記載の発明によ れば、CIF3ガスを各チャンパーに設けられたそれぞ れの排気系配管を介して上記各チャンパーから個別に排 気するようにしたため、少なくとも一つに成膜室、その 他のチャンパーに設けられた排気系配管の内面に付着し た付着物をCIF3ガスにより個別に除去できるマルチ チャンパー処理装置のクリーニング方法を提供すること ができる。

[図面の簡単な説明]

【図 1】 本発明のマルチチャンパー処理装置の一実施例 の全体を示す平面図である。

【図2】本発明のクリーニング方法の一実施例における クリーニングガスの流れを概念的に説明する説明図であ

【図3】図1に示すマルチチャンパー処理装置の処理室 及びクリーニングガスの供給系を示す構成図である。

【図4】図1に示すマルチチャンパー処理装置の真空予 備室を示す図で、同図(a)はその断面図、同図(b) は真空予備室の半導体ウエハを支持する支持具を取り出 して示す斜視図である。

【図5】図1に示す第2搬送装置の要部を示す図で、同 図(a)はその平面図、同図(b)はその側面図であ **る**。

【符号の説明】

気部)

1, 2, 3	処埋室(チャンパー)
4	第1搬送室(チャンパー)
4 A	クリーニングガスのガス供給口 (ガス供
給部)	MYNOR III
4 B	クリーニングガスのガス排気口(ガス排
(暗虎	2000万人研究口(万人排
8	半導体ウエハ(被処理体)
9	搬送装置
12, 13	真空予備室(チャンパー)
16	·
· -	第2搬送室(チャンパー)
2 3	第2搬送装置
2 5 A	クリーニングガスのガス供給口(ガス供
給部)	一つフススのカス鉄路口(万久供
258	クリーニングガスのガス排気口(ガス排
気無)	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

THE STATE OF THE SECOND STATES OF THE SECOND SECOND

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked: □ BLACK BORDERS ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES ☐ FADED TEXT OR DRAWING ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING ☐ SKEWED/SLANTED IMAGES ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS ☐ GRAY SCALE DOCUMENTS ☐ LINES OR MARKS ON ORIGINAL DOCUMENT REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY OTHER: IMAGES ARE BEST AVAILABLE COPY. As rescanning these documents will not correct the image problems checked, please do not report these problems to

the-IFW-Image-Problem-Mailbox.