

# CARBOHYDRATE CONJUGATION

*S<sub>2</sub>4 / 14.4.1  
P*

OB 456694



Figure 1



Figure 2

# MODEL OF DUAL CARRIER VACCINE

IR 456694

4/24/1941  
PA



SECONDARY CARRIER CONJUGATED TO PRIMARY CARRIER



HAPTED SECONDARY CARRIER CONJUGATED TO PRIMARY CARRIER



Figure 3

OB 456694

$\times 24/194.1$   
PA



Figure 4

11 456694

$\text{Fe}^{2+}(\text{P}4.1)$   
PC



Fig. 5

OB 456694

4/24/1941  
PH



Figure 6

$\times 24/(ac.)$   
Pp



Tube #

OB 456694

42x1(94.1)  
P2



Figure 8

4241(94.1)  
PP



W 456694

x2x/c4.1  
PA

Derivatization of dextran with hexane diamine with CDAP



Figure 10

11 456694



Figure 11

II 456894

$\frac{f_{24}}{f_0} / (5\%)$   
P<sub>0</sub>

**CDAP ACTIVATION  
CDAP:Ps RATIO**



Figure 12

X24/1941  
PA

### OPTIMUM CDAP ACTIVATION TIME



Figure 13

BB 456694

4/24/1994  
P.A.G.

### Stability of CDAP in water

This experiment indicates that CDAP is stable in water. The reaction commences with the addition of the polysaccharide and the increase in pH.



Figure 14

W 456694

12/21/94  
P 94

Kinetics of Protein Coupling to  
CDAP Activated Polysaccharide



Figure 15

II 456694

4/24/1984  
PP

Effect of pH on CDAP activation and  
direct conjugation BSA/dex.  
315 CDAP/100K dex; 2 mg BSA/mg dex  
BSA @ 9 mg/ml



Figure 16

H 456894

4/24/94  
PA

pH of protein conjugation



Figure 17