

Automata vs. linear-programming discounted-sum inclusion

Suguman Bansal, Rice U.

Swarat Chaudhuri, Rice U.

Moshe Y. Vardi, Rice U.

CAV 2018, FLoC 2018, Oxford, UK

July 17, 2018

Beyond qualitative reasoning ...

Quantitative systems with quantitative properties

Quantitative reasoning

Algorithmic approaches

- Structural aspects About the structure of systems
- Quantitative aspects About quantities associated with systems

Algorithmic approaches

- Modular approach Separates both reasonings
- Integrated approach Combines both reasonings

Which approach is more viable in practice for Discounted-sum inclusion?

Contributions

Understand performance of algorithmic approaches for discountedsum inclusion

Conduct theoretical and empirical evaluation of tools of both approaches

Identify their strengths and weaknesses

Discounted-sum (DS) inclusion

- Discounted-sum (discount-factor d > 0)
 - Accumulates diminishing returns
- Discounted-sum automaton
 - Büchi automaton with weights on transitions
 - Weight of word DS of weight sequence of its run
- DS inclusion between P and Q ($P \subseteq_d Q$)
 - Weight of every word is lower in P than Q
 - Applications in quantitative safety, game-theory, etc

Modular approach

Algorithm

- Structural aspect DS-determinization [Boker, Henzinger; LICS 2015]
- Quantitative aspect Linear programming [Chatterjee, Doyen, Henzinger; ACM ToCL 2010]

Complexity - Exponential in time and space

Integrated approach [Bansal, Chaudhuri, Vardi; Fossacs 2018]

Algorithm: Polynomial-time reduction to Büchi language-inclusion

- Comparator-based reduction
 - Büchi automata accepts pair of bounded integer sequences (A, B) iff discounted-sum of A is lower

Complexity - PSPACE

Establishes PSPACE-completeness

Complexity comparison

Modular approach Integrated approach **Theoretical PSPACE** Exp. in time and space complexity Upper bound on Exp. in time and space Exp. in time and space implementation

Tool description

DetLP

(Modular approach)

DS-determinization

[Boker, Henzinger; LICS 2015]

Linear-programming solver CPLEX

QuIP

(Integrated approach)

Improved comparator

 $O(n^2)$ to O(n) states

Language-inclusion solver RABIT

[Mayr, Clemente; POPL 2013]

Tool description

DetLP

(Modular approach)

DS-determinization

[Boker, Henzinger; LICS 2015]

Linear-programming solver
CPLEX

QuIP

(Integrated approach)

Improved comparator

 $O(n^2)$ to O(n) states

Language-inclusion solver RABIT
[Mayr, Clemente; POPL 2013]

Input instances represented with explicit states and transitions

Experimental evaluation

- Randomly generated benchmarks
 - Number of states range in 25-1500
 - Transition-density ranges in 2.5-4
 - Weight on edges ranges from 0-5
- For $P \subseteq_d Q$, fix P, increase Q
- 50 sets of inputs per parameter-tuple
 - Timeout 1000s
- Report median of all runs

Scalability

DetLP scales quadratically, QuIP scales linearly

Scalability inferences

DetLP spends ~95% time in DS-determinization

No early termination of DS-determinization Full DS-determinization before LP-constraints are set up

Modular approach suffers from modularity

Complexity comparison

Modular approach Integrated approach (DetLP) (QuIP) **Theoretical** Exp. in time and space **PSPACE** complexity Upper bound of Exp. in time and space Exp. in time and space implementation Performance Scales linearly Scales quadratically

Benchmarks solved

Implementation of RABIT is not space-efficient

To summarize

- Integrated vs. modular approach Nuanced
 - Integrated approach scales better
 - Modular approach solves more benchmarks
 - May change with space-efficient implementation of RABIT
- Disparity between theoretical upper bound and performance of tools
 - Better metrics for performance evaluation of algorithms
- Integrated approach with on-the-fly DS-determinization and LP
- Develop non-random benchmark suites by identifying application areas