Logica e Algebra 17 Febbraio 2017 Parte di Algebra

Esercizio 1 Dato un numero naturale, indichiamo con $\gamma(n)$ l'esponente massimo di 2 tale che $2^{\gamma(n)}$ divida n (per esempio $\gamma(24)=3$ dato che $24=2^33$, mentre $\gamma(5)=0$). Considerare la funzione $f:\mathbb{N}\to\mathbb{N}$ definita da:

$$f(n) = \begin{cases} \frac{n}{2^{\gamma(n)}} & \text{se } n \text{ è pari} \\ 2n & \text{se } n \text{ è dispari} \end{cases}$$

- 1. Dire se f ammette inversa sinistra e/o inversa destra, in caso determinarla
- 2. Descrivere le Ker(f)-classi di equivalenza.
- 3. Sia $X = \{1, 2, 3, 4, 5, 6\}$ e sia R la relazione binaria su X definita da xRy se $\gamma(x) \leq \gamma(y)$ e $x \leq y$. La relazione R è d'ordine? Eventualmente trovare, se esistono $\sup\{2,3\}$, $\inf\{2,3\}$, gli elementi massimali, minimali, massimi e minimi di X rispetto a R.

Esercizio 2 Sia l'insieme

$$G = \left\{ \begin{bmatrix} a^2 & 0 \\ b & a \end{bmatrix} : a, b \in \mathbb{Q}, a \neq 0 \right\}$$

dotata dell'usuale operazione di prodotto tra matrici.

- 1. Mostrare che G è un gruppo.
- 2. Mostrare che

$$H = \left\{ \left[\begin{array}{cc} 1 & 0 \\ b & 1 \end{array} \right] \colon b \in \mathbb{Q} \right\}$$

è un sottogruppo normale di G.

3. Provare che la funzione $g: G \to \mathbb{Q}$ definita da

$$g\left(\left[\begin{array}{cc} a^2 & 0 \\ b & a \end{array}\right]\right) = a$$

è un omomorfismo di gruppi e che H è la Ker(g)-classe della matrice identica.

Esercizio 1

- 1. La funzione f manda gli interi pari in interi dispari e gli interi dispari in interi pari, dunque non è suriettiva, infatti nessun intero della forma 2^n con n>1 ammette controimmagini in quanto essendo un intero pari dovrebbe avere una controimmagine dispari, ma non esistono interi dispari m tali che $2m=2^n$ con n>1. La funzione non è neppure iniettiva in quanto tutti gli interi di forma 2^n hanno come immagine 1. Dunque f non ammette inversa sinistra e/o destra.
- 2. Per ogni intero dispari n, si ha f(n)=2n e non esiste un intero $m\neq n$ per cui f(n)=f(m), infatti se m fosse pari la sua immagine sarebbe dispari e se m fosse dispari sia vrebbe $2m\neq 2n$, di conseguenza la ker(f) classe di un intero dispari n è costituita dal solo elemnto n. Per ogni intero pari n esiste $h=\gamma(n)$ tale che $n=2^hd$ con d dispari e si ha f(n)=d di conseguenza la ker(f) classe di ogni intero pari n è costituita da tutti e soli gli interi pari della forma $m=2^kd$ con $k\in\mathbb{N}$.
- 3. La relazione R gode della proprietà riflessiva in quanto per ogni $x \in X$ si ha $\gamma(x) \leq \gamma(x)$ e $x \leq x$, dunque xRx, gode anche della proprietà antisimmetrica in quanto per ogni $x,y \in X$, xRy ed yRx implicano rispettivamente $x \leq y$ e $y \leq x$ dunque x = y, infine R gode della proprietà transitiva in quanto per ogni $x,y,z \in X$, xRy ed yRz implicano rispettivamente $\gamma(x) \leq \gamma(y)$, $x \leq y$ e $\gamma(y) \leq \gamma(z)$, $y \leq z$ dunque $\gamma(x) \leq \gamma(z)$, $x \leq z$ ovvero xRz. R è pertanto una relazione d'ordine. Essendo $\gamma(1) = \gamma(3) = \gamma(5) = 0$, $\gamma(2) = \gamma(6) = 1$ e $\gamma(4) = 2$, il diagramma di Hasse di X rispetto ad R diventa

da cui si evince subito che 1 è minimale ed anche minimo, 4,6 sono massimali e non esiste massimo, $inf\{2,3\} = 1$ e $sup\{2,3\}$ non esiste.

Esercizio 2

1. G è un sottoinsieme dell'insieme delle matrici quadrate di ordine 2 non singolari su $\mathbb Q$ che sappiamo costituire il gruppo $GL_2(\mathbb Q)$ rispetto all'usuale prodotto di matrici. Basta perciò dimostrare che G è sottogruppo di $GL_2(\mathbb Q)$. Siano $A=\begin{bmatrix}a^2&0\\c&a\end{bmatrix}, B=\begin{bmatrix}b^2&0\\d&b\end{bmatrix}$ due generici elementi di G, si ha $AB=\begin{bmatrix}a^2b^2&0\\cb^2+ad&ab\end{bmatrix}$, e $A^{-1}=\begin{bmatrix}\frac1{a^2}&0\\\frac{a^2}{a^3}&\frac1a\end{bmatrix}$. Pertanto $AB\in G$, essendo AB triangolare bassa con elemanti razionali, $ab\neq 0$ e $a^2b^2=(ab)^2$, analogamente $A^{-1}\in G$ in quanto A^{-1} è triangolare bassa con elemanti razionali, $\frac1a\neq 0$ e $\frac1{a^2}=(\frac1a)^2$, pertanto G è un sottogruppo di $GL_2(\mathbb Q)$ e dunque è un gruppo.

- 2. H è un sottogruppo di G in quanto presi $K = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \in H$, $J = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \in H$, si ha $KJ = \begin{bmatrix} 1 & 0 \\ a+b & 1 \end{bmatrix}$ e $K^{-1} = \begin{bmatrix} 1 & 0 \\ -a & 1 \end{bmatrix}$ entrambi elementi di H. Rimane quindi da dimostrare che H è normale in G, ovvero che per ogni $A = \begin{bmatrix} a^2 & 0 \\ c & a \end{bmatrix} \in G$, $J = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix} \in H$, $A^{-1}JA$ appartiene ad H. Si ha $A^{-1}JA = \begin{bmatrix} 1 & 0 \\ \frac{c}{a^2} & 1 \end{bmatrix}$, che appartiene ad H in quanto matrice triangolare bassa ad elementi razionali con elementi diagonali uguali ad 1,
- 3. L'applicazione f è un omomorfismo fra gruppi in quanti per ogni $A = \begin{bmatrix} a^2 & 0 \\ c & a \end{bmatrix}$, $B = \begin{bmatrix} b^2 & 0 \\ d & b \end{bmatrix}$ appartenenti ad G si ha

$$f(AB) = f\left(\left[\begin{array}{cc} a^2 & 0 \\ c & a \end{array}\right] \left[\begin{array}{cc} b^2 & 0 \\ d & b \end{array}\right]\right) = f\left(\left[\begin{array}{cc} a^2b^2 & 0 \\ cb^2 + ad & ab \end{array}\right]\right) = ab$$

$$\operatorname{e} f(A)f(B) = f\bigg(\left[\begin{array}{cc} a^2 & 0 \\ c & a \end{array}\right]\bigg)f\bigg(\left[\begin{array}{cc} b^2 & 0 \\ d & b \end{array}\right]\bigg) = ab,\operatorname{cioè} f(AB) = f(A)f(B).$$

Per ogni $K \in H$ si ha $f(K) = 1 = f(I_2)$ quindi K appartiene alla ker(f)-classe della matrice identica I_2 , quindi H è contenuto nella ker(f)-classe della matrice identica. Viceversa se $A = \begin{bmatrix} a^2 & 0 \\ c & a \end{bmatrix}$ appartiene alla ker(f)-classe della matrice identica si ha $f(A) = a = f(I_2) = 1$ cioè a = 1 e $A = \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$, ovvero $A \in H$, quindi la ker(f)-classe della matrice identica è contenuta in H. Pertanto H coincide con la ker(f)-classe della matrice identica. Notate che una volta dimostrato questo ultimo fatto si poteva dire che si era provato che H è un sottogruppo normale di G, in quanto è noto che dato un omomorfimo di G in G' la ker(f)-classe dell'elemento neutro di G è un sottogruppo normale di G.