7-5 擴張樹

定義

是指n個頂點的相連圖形,經由前面所介紹演算法拜訪的結果,會得到**用最少的邊來連結所有的頂點**,且**不會形成循環迴路**。並且任何兩個頂點之間的**路徑是唯一**的。因此,這種可連結所有頂點且路徑唯一的樹狀結構,就稱為「**擴張樹」(Spanning Tree)**。

○ 應用

興建的道路:以最少的道路,來連通所有的鄉鎮。

)特性

假設 G = (V, E) 是一個圖形,而 S = (V, T) 是 G 的擴張樹。其中 T 是追蹤時所拜訪 過的邊,而以 K 表示追蹤後所未被拜訪過的邊,此時擴張樹具有下列幾點特性:

圖 7-7 擴張樹

其中: E 代表圖形的各邊。

實線 T 代表圖形追蹤時所拜訪過的邊。

虛線 K 代表圖形追蹤後未被拜訪過的邊。

● 特性二:加入未被拜訪過的 K 邊於擴張樹 S 中,將會造成循環迴路。

圖 7-8

不是擴張樹

例如在上圖中,我們再加入一條虛線 AC 這一個邊到擴張樹 S,此時就**產生循環現象**,循環迴路 $(A \to B \to C \to D)$ 。

參看隨書光碟。

單元評量

- 1. 假設有 *n* 個頂點的相連圖形,利用最少的邊來連結所有頂點,且不會形成迴路,任何兩個頂點之間的路徑唯一,這種可連結所有頂點且路徑唯一的樹狀結構,稱為:
 - (A) 堆積樹 (B) 二元樹 (C) 二元搜尋樹 (D) 擴張樹
- 2. 關於擴張樹的敘述,下列何者有誤?
 - (A) 擴張樹可以用來判斷該圖是否為連通
 - (B) 擴張樹中的任兩個頂點間都是相連的,也就是存在一條路徑可通
 - (C) 擴張樹不會形成迴路現象
 - (D) 擴張樹所連的路徑一定是最短

7-7 最小成本擴張樹

つ 定義

擴張樹在實際的應用上不只是找出頂點和邊而已,如果一個相連圖形的邊加上權重值,來代表邊的成本、距離或關係強度時,則我們希望所產生的擴張樹之所有邊的權重值加總為最小,具有這樣性質的擴張樹稱為最小成本擴張樹 (Minimum-Cost Spanning Tree)。

○ 概念圖

(a) 各處室的邏輯架構圖

(b) 計算機中心到各處室的實 際距離,以權重值來表示

圖 7-9 最小成本擴張樹

實例 ■

假設我們現在想要設計某一大學的校務行政網路系統,並且以計算機中心(也就是 以英文字 O) 為出發點,到各處室 $(A \sim E)$ 的實際距離,是以相連圖形上的邊之權重值 來表示。請追蹤此相連圖形可能的擴張樹。

解答

在上圖的相連圖形中,其追蹤擴張樹可能有以下三種方法:

○ 第一種方法

利用深度優先追蹤法,得到權重值總和為28,其追蹤步驟如下:

● 步驟一:以頂點 O 為從發點,所以,先輸出頂點 O,接著與此一頂點的所有相鄰 並且未拜訪過的頂點 D, C, B, A 放入「堆疊」中,此時,頂點 O 就會被輸出到「已 被拜訪頂點區」中。如下圖所示。

 \bullet 步驟二:拜訪「堆疊」頂端的頂點A,由於與頂點A 相鄰頂點都已被拜訪,此時, 頂點A就會被輸出到「已被拜訪頂點區」中。如下圖所示。

已被拜訪頂點區	堆疊內的元素	
OA 4	A B C D	

● 步驟三:拜訪「堆疊」頂端的頂點 B,再將與頂點 B 相鄰且未拜訪過的頂點 E 放 入堆疊中,此時,頂點B就會被輸出到「已被拜訪頂點區」中。如下圖所示。

已被拜訪頂點區	堆疊內的元素	
OAB •	B C D	

● **步驟四:**拜訪「堆疊」頂端的頂點 E,由於與頂點 E 相鄰頂點都已被拜訪,此時,頂點 E 就會被輸出到「已被拜訪頂點區」中。如下圖所示。

已被拜訪頂點區	堆疊內的元素	
OABE •	E C D	

● 步驟五:拜訪「堆疊」頂端的頂點 C,由於與頂點 C 相鄰頂點都已被拜訪,此時,頂點 C 就會被輸出到「已被拜訪頂點區」中。如下圖所示。

已被拜訪頂點區	堆疊內的元素		
OABEC <	<u>C</u> D		

● 步驟六:最後,再拜訪「堆疊」頂端的頂點 D,此時,頂點 D 就會被輸出到「已被拜訪頂點區」中。即可完成深度優先追蹤法,並且得到權重值總和為 28。如下圖所示。

權重值總和為:1+2+4+7+14=28

7-6 資料結構 ── ॣॿ € 讀言

● 第二種方法

利用廣度優先追蹤法,得到權重值總和為37,其追蹤步驟如下:

• 步驟一:以頂點 O 為從發點,所以,先輸出 O,再將相鄰的頂點 A, B, C, D 加入佇列中。

A	В	C	D	

● 步驟二:輸出頂點 A。

В	C	D		
1				

• 步驟三:輸出頂點 B,再將與頂點 B 相鄰且未拜訪過的頂點 E 加入佇列中。

C D $ E $	
--------------	--

● 步驟四:輸出頂點 C。

D	E		

● 步驟五:輸出預點 D。

F			
L			

● 步驟六:輸出最後的頂點 *E*,即可完成廣度優先追蹤法,並且得到權重值總和為 37。如下圖所示。

廣度優先度

權重值總和為:2+3+4+10+18=37

● 第三種方法

利用最小成本擴張樹追蹤法,得到權重值總和為15,其追蹤步驟如下:

- 步驟一:將所有邊的權重值先由小到大排序。
- 步驟二:首先,找出最小權重值的邊 CD,其權重值為 1。接下來,再找出第 2 小權重值的邊 AO,其權重值為 2,再找出第 3 小權重值的邊 BO,其權重值為 3,接下來,再找出第 4 小權重值的邊 DE,其權重值為 4,最後,再找出第 5 小權重值的邊 BD,其權重值為 5。

由於圖中有6個頂點,而此時最小成本擴張樹中已有5個邊,因此,可得最後結果如下圖所示。

最小成本擴張樹 A 2 3 B 12 18 O 10 5 E C 1 D 4

權重值總和為:1+2+3+4+5=15

綜合以上三種方法,可清楚得知,利用最小成本擴張樹追蹤法,其成本最小。如 下表所示:

基本上,「最小成本擴張樹追蹤法」的演算法有兩種:

- 1. Kruskal 演算法。
- 2. Prims 演算法。

參看隨書光碟。

熱意圖解

- 1. 那個演算法能找出最小擴張樹?
 - (A) Kruskal 演算法
 - (B) 深度優先追蹤演算法
 - (C) 廣度優先追蹤演算法 (D) 雜湊法
- **2.** 在下圖中,A至頂點F的最短路徑為:

(A)
$$A \to C \to D \to E \to F$$
 (B) $A \to B \to E \to F$

(C)
$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow F$$
 (D) $A \rightarrow B \rightarrow C \rightarrow E \rightarrow F$

- **3.** 在下圖中,A至頂點F的最短距離為:
 - (A) 3 (B) 8 (C) 10 (D) 11

- 4. 請問下圖最少成本擴張樹的成本總和為何?
 - (A) 12 (B) 14 (C) 15 (D) 16

7-7.1 Kruskal 演算法

由前一個單元可以清楚得知,利用最小成本擴張樹追蹤法,其成本最小。因此, 我們就來介紹「最小成本擴張樹追蹤法」的第一種演算法,也就是 Kruskal 演算法。

介作法

每次挑選一個權重值最小的邊,加入T中,並形成最小成本擴張樹,但**不可以形成迴圈**,**直到數量達n-1 個邊為止**。此種演算法是根據各邊的加權值大小,再由小到大排序後,再選取要加入T的邊。

) 演算法

- 1. 邊的權重值先由小到大排序。
- 2. 從所有未走訪的邊中取出最小權重值的邊, 記錄此邊已走訪, 檢查是否形成迴路。
 - (1) 形成迴路,此邊不能加入 MST 中,回到步驟 2。
 - (2) **未形成迴路**,此邊加入 MST 中,如果邊數已達 (n-1) 條則到步驟 3,否則回 到步驟 2。
- 3. Kruskal 演算法可以找出 MST, 結束。

實例■

假設我們現在有一個具有六個頂點的相連圖形,請利用 Kruskal 演算法來求出此 圖形的最小成本擴張樹。

解答

● 步驟一:將所有邊的權重值先由小到大排序。

起始頂點	終止頂點	權重值(成本)	由小到大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F	7	4
В	E	8	5
C	D	9	6
A	С	10	7
D	E	11	8
A	E	12	9
С	E	16	10

● 步驟二:選擇最小權重值的邊當作最小成本擴張樹的起點。

起始頂點	終止頂點	權重值 (成本)	由小到 大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F B	人權重值 1	4
В	E	8	5
C	D	9	6
A	С	10	7
D	E	11	8
A	E	12	9
С	E	16	10

● **步驟三**:依照步驟 1 的表格之權重值大小,加入第 2 小的權重值於最小成本擴張 樹中。

起始頂點	終止頂點	權重值 (成本)	由小到大排序
B	F	4	1
В	D	5	2
A	В	6	3
D	F	7	1 4 1
В	E B	2 小的權	里值——
C	D	9	6
A	C	10	7
D	E	11	8
A	E	12	9
C	E	16	10

<u>7-12</u> 資料結構 ── ॣॿ **€** 語言

● 步驟四:依照步驟1的表格之權重值大小,加入第3小的權重值於最小成本擴張 樹中。

起始頂點	終止頂點	權重值 (成本)	由小到 大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F	7	4
В	E	2 1 44 144	5
С	D 求	3 小的權 ^	里但 —
A	С	10	7
D	E	11	8
A	E	12	9
С	E	16	10

● 步驟五:依照步驟1的表格之權重值大小,加入第4小的權重值於最小成本擴張 樹中,但是形成迴路,不能加入MST中,所以直接跳過。

起始頂點	終止頂點	權重值 (成本)	由小到大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F	7	4
В	E	8	5
C	D 🖄	0 1 44 Hill	6 5 5 /t
A	C	4 小的權 10	里但 —
D	E	11	8
A	E	12	9
C	E	16	10

7-14 資料結構 —— ॡ用 **€** 語言

● **步驟六**:依照步驟1的表格之權重值大小,加入第5小的權重值於最小成本擴張 樹中。

起始頂點	終止頂點	權重值 (成本)	由小到大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F	7	4
В	E	8	5
C	D	9	6
A	C	10	7
D	E R	5 小的權	里但
A	E	12	9
С	Е	16	10

● 步驟七:依照步驟 1 的表格之權重值大小,加入第 6 小的權重值於最小成本擴張 樹中。由於圖中有 6 個頂點,而此時最小成本擴張樹中已有 5 個邊,因此,最後 結果如下圖所示。

解析過程

起始頂點	終止頂點	權重值 (成本)	由小到大排序
В	F	4	1
В	D	5	2
A	В	6	3
D	F	7	4
В	E	8	5
C	D	9	6
A	C	10	7
D	E	11	Q i f /t
A	E F	6 小的權 1 1 4	里狙
С	E	16	10

參看隨書光碟。

單元評量

在下圖中,以 Kruskal 演算法求最小成本擴張樹,選擇邊的順序可為:
 (A) 456789 (B) 45678 (C) 45689 (D) 4567

2. 在下圖中,以 Kruskal 演算法求最小成本擴張樹,總成本為:

(A) 39 (B) 32 (C) 31 (D) 47

3. 使用 Kruskal 演算法求最小成本擴張樹的成本總和時;若樹的節點共有 6 個,則最小花費擴張樹的邊會有幾個?

(A) 4 (B) 5 (C) 6 (D) 7 (E) 不一定

- **4.** 何種演算法是每次挑選一個權重最小的邊,加入T中,並形成最小成本擴張樹,但不可形成迴圈,直到數量達n-1個邊為止?
 - (A) Prims 演算法 (B) Kruskal 演算法 (C) Dijkstra's 演算法 (D) 以上皆非

7-7.2 Prims 演算法

定義

假設有一個圖形 G = (V, E) ,其中 $V = \{1, 2, 3, \cdots, n\}$,且最初設定 $U = \{1\}$,U, V 是兩個頂點的集合,並且**每次會產生一個邊**。亦即從 U-V 集合中找一個頂點 V ,能與 U 集合中的某頂點**形成最小成本的邊**,把這一頂點 V 加入 U 集合,繼續此步驟,直到 U 集合等於 V 集合為止。

○ 演算法

1. 選出某一節點 U 作為出發點。

- 2. 從與U節點相連且尚未被選取的節點中,選擇權重最小的邊,加入新節點。
- **3.** 重複加入新節點,直到n-1條邊為止。(其中n為節點數)

實例 -

假設我們現在有一個具有六個頂點的相連圖形,請利用 Prims 演算法求出此圖形的最小成本擴張樹。

解答

步驟一:設定 U 及 V 是圖形中頂點的集合,假設 U 集合的起始點為 1,而 V 集合 就是全部的頂點 $(1 \ \ \ \ \)$ 。

$$U = \{1\}$$
 $V = \{1, 2, 3, 4, 5, 6\}$

● 步驟二:從頂點1出發,與頂點1相連且尚未被選取的頂點有頂點2、頂點3、頂點5,因此,我們找到頂點2,其邊為最小6,所以,將頂點2加入U集合中。

7-18 資料結構 ── ❤️用 € 語言

● 步驟三:再從頂點 2 出發,與頂點 2 相連且尚未被選取的頂點有頂點 4、頂點 5、 頂點 6,因此,我們找到頂點 6,其邊為最小 4,所以將頂點 6 加入 *U* 集合中。

● 步驟四:接下來,一樣從頂點2出發,與頂點2相連且尚未被選取的頂點有頂點4、頂點5,因此,我們找到頂點4,其邊為最小5,所以將頂點4加入 *U* 集合中。

● 步驟五:接下來,一樣從頂點 2 出發,與頂點 2 相連且尚未被選取的頂點有頂點 5,因此,我們找到頂點 5,其邊為 8,將頂點 5 加入 *U* 集合中。

$$U = \{1, 2, 4, 6\}$$

$$V - U = \{3, 5\}$$

$$U = \{1, 2, 4, 5, 6\}$$

 $V - U = \{3\}$

● 步驟六:接下來,再從頂點4出發,與頂點4相連且尚未被選取的頂點有頂點3, 因此,我們找到頂點3,其邊為9,將頂點3加入 *U*集合中。

$$U = \{1, 2, 4, 5, 6\}$$

$$\sqrt{9}$$

$$V - U = \{3\}$$

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$V - U = \{ \}$$

 $V = \{1, 2, 3, 4, 5, 6\}$

• 步驟七:最後,將頂點 3 加入 U集合,此時集合 U等於集合 V,動作結束。

動器

參看隨書光碟。

單元評量

1. 在下圖中,請利用 Prims 演算法求出最小成本擴張樹,選擇邊的順序可為:
(A) 8, 2, 7, 9, 13, 32 (B) 8, 2, 7, 32, 9, 13 (C) 8, 2, 7, 13, 32, 9 (D) 8, 2, 7, 13, 9, 32

7-3 最短路徑

單點到其他各頂點之最短路徑問題的典型應用是由甲城市(頂點)到乙城市(頂點)之間的距離(權重值),計算由甲城市出發,經由多重交通網路的計算,到達乙城市的最短路徑,此種問題往往有多條可行走的路徑,因此,我們必須從這多條路徑中選擇最短路徑。

つ 定義

最短路徑 (Shortest Path) 問題是目前圖形結構中常見的典型問題之一。因為圖形中某頂點到達各頂點的路徑不是唯一,如果要從眾多的路徑中找出路徑最短者,則稱為最短路徑問題。一般而言,常用的方法是利用 Dijkstra's Algorithm 求得。

○ 形式

- 1. 單點到其他各頂點之最短路徑。
- 2. 各個節點之間之最短路徑。

○ 演算法

● 步驟一

 $D[I] = A[F, I] \ (I = 1, \dots, N)$

 $S = \{F\}$

 $V = \{1, 2, 3, \dots, N\}$

其中: D為N個位置的陣列,用來儲存某一頂點到其他頂點的最短距離。

F表示由某一起始點開始。

A[F, I] 是表示 F 點到 I 點的距離。

V 是網路中所有頂點的集合。

S 也是頂點的集合。

● 步驟二

從 V-S 集合中找一頂點 t 使得 D[t] 是最小值,並將 t 放入 S 集合,一直到 V-S 是空集合為止。

● 步驟三

根據下面的公式調整 D 陣列中的值。

$$D[I] = \min(D[I], D[t] + A[t, I])$$

此處 I 是指 t 的相鄰各頂點。繼續回到步驟 2 執行。

假設我們現在有一個具有 7 個頂點的圖形結構,請利用「最短路徑」的演算法來 求出下圖中,頂點 1 到各點的最短距離。

解答

● 步驟一: F=1; S={1}; V={1,2,3,4,5,6,7}

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	12	12	∞	∞	∞

(1) 假設我們從起始頂點 1 開始,頂點 1 到頂點 2 的距離為 8,我們就可以把陣列 D[2] 寫成 8 ,而 D[3] 、D[4] 的值也是由頂點 1 到頂點 3 和頂點 4 的距離,但 是由於頂點 1 無法由直接到達頂點 5、頂點 6 及頂點 7,因此,我們把 D[5] 、 D[6] 、D[7] 的值設定為 ∞ 。

D[1]						
0	8	12	12	8	8	∞

(2) 上面的陣列中,頂點 1 到頂點 2 的距離最短 (即 D[2]),因此,將頂點 2 加入 S 的集合中, $S = \{1, 2\}, V - S = \{3, 4, 5, 6, 7\}$ 。

原始狀態: $S = \{1\}, V - S = \{2, 3, 4, 5, 6, 7\}$

目前狀態: $S = \{1, 2\}, V - S = \{3, 4, 5, 6, 7\}$

(3) 頂點 2 的相鄰頂點為 3,5 ,則:

$$D[3] = \min(D[3], D[2] + A[2, 3]) = \min(12, 8 + 2) = 10$$

此時,頂點1到頂點3可透過頂點2,其距離就變成10。

$$D[5] = \min(D[5], D[2] + A[2, 5]) = \min(\infty, 8 + 14) = 22$$

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	12	12	$\infty \to 22$	∞	∞

此時,頂點1到頂點5可透過頂點2,其距離就變成22。陣列中的內容如下:

步驟二:

(1) 上面的陣列中,頂點 1 到頂點 3 的距離最短 (即 D[3]),因此,將頂點 3 加入 S 的集合中,因此, $S = \{1,2,3\}, V-S = \{4,5,6,7\}$ 。

上次狀態:
$$S = \{1, 2\}, V - S = \{3, 4, 5, 6, 7\}$$

目前狀態:
$$S = \{1, 2, 3\}, V - S = \{4, 5, 6, 7\}$$

(2) 頂點 3 的相鄰頂點為 5,6 , 則:

$$D[5] = \min(D[5], D[3] + A[3, 5]) = \min(22, 10 + 12) = 22$$

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	22	∞	∞

此時,頂點 3 的相鄰頂點為頂點 5 與頂點 6 ,因此,頂點 1 到頂點 5 可透 過頂點 2 與頂點 3 ,其距離就變成 22。

$$D[6] = \min(D[6], D[3] + A[3, 6]) = \min(\infty, 10 + 8) = 18$$

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	22	$\infty \rightarrow 18$	∞

此時,頂點 1 到頂點 6 可透過頂點 2 與頂點 3 , 其距離就變成 18 。 陣列中的內容如下:

● 步驟三:

(1) 上面的陣列中,頂點 1 到頂點 4 的距離最短 (即 D[4]),因此,將頂點 4 加入 S 的集合中,因此, $S = \{1, 2, 3, 4\}, V - S = \{5, 6, 7\}$ 。

上次狀態:
$$S = \{1, 2, 3\}, V - S = \{4, 5, 6, 7\}$$

目前狀態:
$$S = \{1, 2, 3, 4\}, V - S = \{5, 6, 7\}$$

(2) 頂點 4 的相鄰頂點為 3, 6 , 則:

$$D[3] = \min(D[3], D[4] + A[4, 3]) = \min(10, 12 + 4) = 10$$

$$D[6] = \min(D[6], D[4] + A[4, 6]) = \min(18, 12 + 10) = 18$$

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	22	$\infty \rightarrow 18$	8

此時,頂點1到頂點3,其距離就變成10。頂點1到頂點6,可透過頂點2與頂點3,其距離就變成18。

所以陣列內容如下:

	D[2]					
0	8	10	12	22	18	8

步驟四:

(1) 上面的陣列中,頂點 1 到頂點 6 的距離最短 (即 D[6]),因此,將頂點 6 加入 S 的集合中,因此, $S = \{1, 2, 3, 4, 6\}$, $V - S = \{5, 7\}$

$$D[1]$$
 $D[2]$ $D[3]$ $D[4]$ $D[5]$ $D[6]$ $D[7]$
0 8 10 12 22 18 ∞

上次狀態:
$$S = \{1, 2, 3, 4\}, V - S = \{5, 6, 7\}$$

目前狀態:
$$S = \{1, 2, 3, 4, 6\}, V - S = \{5, 7\}$$

(2) 頂點 6 的相鄰頂點為 5, 7, 則:

 $D[5] = \min(D[5], D[6] + A[6, 5]) = \min(22, 18 + 2) = 20$

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	$22 \rightarrow 20$	18	8

此時,頂點 6 的相鄰頂點為頂點 5 與頂點 7 ,因此,頂點 1 到頂點 5 ,可透過頂點 2 與頂點 3 ,其距離就變成 20 。

$$D[7] = \min(D[7], D[6] + A[6, 7]) = \min(\infty, 18 + 16) = 34$$

	D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
I	0	8	10	12	20	18	34

此時,頂點 1 到頂點 7,可透過頂點 2、頂點 3 及頂點 6,其距離就變成 34。陣列內容變為:

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	20	18	34

● 步驟五:

(1) 上面的陣列中,頂點 1 到頂點 5 的距離最短 (即 D[5]),因此,將頂點 5 加入 S 的集合中,因此, $S = \{1, 2, 3, 4, 5, 6\}$, $V - S = \{7\}$ 。

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
0	8	10	12	20	18	34

上次狀態:
$$S = \{1, 2, 3, 4, 6\}, V - S = \{5, 7\}$$

目前狀態:
$$S = \{1, 2, 3, 4, 5, 6\}, V - S = \{7\}$$

(2) 頂點 5 的相鄰頂點為 7,則:

$$D[7] = \min(D[7], D[5] + A[5, 7]) = \min(34, 20 + 12) = 32$$

							D[7]
,	0	8	10	12	20	18	$34 \rightarrow 32$

此時,頂點 5 的相鄰頂點為頂點 7 ,因此,頂點 1 到頂點 7 ,可透過頂點 2、頂點 3、頂點 6 及頂點 5 ,其距離就變成 32。

由於頂點 7 為最終頂點,將其加入 S 集合,此時, $S = \{1, 2, 3, 4, 5, 6, 7\}$ 因此, $V-S = \{\}$,最後陣列內容為:

	D[1]	D[2]	D[3]	D[4]	D[5]	D[6]	D[7]
1	0	8	10	12	20	18	32

此陣列表示由頂點1到任一頂點的最短距離。

重、書圖解

7-3 拓撲排序

所謂「工作」(Activity)是指將一個計畫分成數個子計畫,而每一個子計畫完成時,即是整個計畫的完成。因此,如果我們將「工作」稱為工作網路上的「頂點」,而工作與工作之間的連線,代表著工作的優先順序時稱為工作網路上的「邊」。因此,這種以頂點來代表工作項目的網路稱為頂點工作網路 (Activity On Vertex Network),簡稱為 AOV 網路。

定義

在「頂點工作網路」中,若 V_i 工作 是 V_j 工作的前行者,則在線性的排列中, V_i 工作一定要在 V_i 工作的前面完成,此種特性稱之為「**拓樸排序」(Topological Sort)**。

○ 演算法

- 1. 在 AOV 網路中任意挑選一個沒有前行者的頂點。
- **2.** 輸出此頂點,並將該頂點所連接的邊刪除。重複步驟(1)及步驟(2),一直到全部的頂點皆輸出為止。

() 應用

這種事件應用的例子很多,例如:大專院校的選課資訊系統**先修或擋修等限制、** 政府部門的**公文有層層呈報和會簽的流程、資訊系統開發**及**專案管理**等。

實例■

假設我們現在有一個具有 7 個頂點的工作網路圖,請求出此工作網路圖的「拓樸排序」。

解答

1. 輸出 A , 並刪除 <A, B> 與 <A, E> 兩個邊。

目前輸出的頂點: 4

2. 輸出 B , 並刪除 <B, C>、<B, E> 及 <B, F> 三個邊。

目前輸出的頂點:AB

3. 輸出 C,並刪除 < C, D >、< C, F > 及 < C, G > 三個邊。

目前輸出的頂點:ABC

4. 輸出 F, 並刪除 <F, E> 與 <F, G> 兩個邊。

7-30 資料結構 —— ॡ用 **€** 語言

目前輸出的頂點:ABCF

5. 輸出 E , 並刪除 <E, G>。

目前輸出的頂點:ABCFE

6. 輸出 *G* , 並刪除 <*G*, *D*>。

目前輸出的頂點: ABCFE G

7. 最後,再輸出頂點 D,其所得的資料輸出順序為頂點 A, B, C, F, E, G, D,以上的輸出順序即為拓樸排序。

目前輸出的頂點:ABCFEGD

參看隨書光碟。

- **1.** 若在 AOV 網路中, V_i 是 V_j 的前行者,則在線性的排列中, V_i 一定在 V_j 的前面,此種特性稱為何種排序方式?
 - (A) 基數排序 (B) 優先排序 (C) 堆積排序 (D) 拓樸排序
- 2. 有關於 AOV 網路之拓樸排序實際的應用,下列那一種情況適合?
 - (A) 大專院校的選課資訊系統先修或擋修等限制
 - (B) 政府部門的公文有層層呈報和會簽的流程
 - (C) 資訊系統開發
 - (D) 以上皆是
- 3. 下圖 AOV 網路之拓樸排序為何?
 - (A) 1, 2, 3, 5, 6, 7, 4 (B) 1, 2, 3, 6, 5, 7, 4
 - (C) 1, 2, 3, 7, 5, 6, 4 (D) 1, 2, 3, 6, 7, 5, 4

7-32 資料結構 —— 每用 **€** 語言

EXERCISES

題庫來源:研究所及高普考

A-1. 下面圖形利用 Kruskal 演算法求出最小擴張樹。

A-2. 下面圖形利用 Kruskal 演算法求出最小擴張樹。

A-3. 試就下列兩小題的有向圖形列出其拓樸序列。

