INITIALIZATION USING THE DUAL

Simplex Algorithm

Initialization

• Goal: Find a feasible dictionary for the problem.

Observation:

Objective does not matter.

Initialization

$$\begin{array}{ccc}
\mathbf{max} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
A \mathbf{x} & \leq \mathbf{b} \\
\mathbf{x} & \geq 0
\end{array}$$

If all entries in $b \ge 0$

- Initialization not needed.

If any entry in **b <0**

- initialization needed.

Original Problem

Linear Program (Dual)

 $egin{array}{ccccc} oldsymbol{ ext{Dual Problem}} & oldsymbol{ ext{Dual Problem}} \ & oldsymbol{ ext{b}}^{\mathsf{T}} \mathbf{y} & & \geq \mathbf{c} \ & \mathbf{y} & & \geq 0 \end{array}$

$$\begin{array}{cccc}
\mathbf{max} & -\mathbf{b}^{\mathsf{T}}\mathbf{y} \\
-A^{\mathsf{T}} & \mathbf{y} & \leq & -\mathbf{c} \\
\mathbf{y} & \geq & 0
\end{array}$$

Standard Form Converted Dual

Initialization Using Dual: Basic Idea

1. Change the objective function

Idea: choose **d** to be all negative entries.

Initialization Using Dual

d has all negative entries

Dualize

 $\begin{array}{rcl}
\max & -\mathbf{b}^{\mathsf{T}}\mathbf{y} \\
-A^{\mathsf{T}}\mathbf{y} & \leq & -\mathbf{d} \\
\mathbf{y} & \geq & 0
\end{array}$

Feasible
Primal Dictionary

Dualize

Final Dual Dictionary

Optimization

Phase Simplex

Example

```
max. x_1 + 2x_2

s.t. -2x_1 + x_2 \le -2

x_2 \le 4

x_1 - 2x_2 \le -2

x_1 \le 4

x_1, x_2 \ge 0
```


Example #1: Problem Transformation

Solving the modified dual

 y_1 enters and y_5 leaves

Solving the modified dual (step 2)

 y_3 enters and y_6 leaves

Solving the modified dual (step 3)

Final Dual Dictionary

Convert Dual back to Primal

x_1	y_5
x_2	y_6
x_3	y_1
x_4	$\mid y_2 \mid$
x_5	y_3
x_6	y_4

Conversion to Primal Dictionary

x_1	y_5
x_2	y_6
x_3	y_1
x_4	y_2
x_5	y_3
x_6	y_4

Initialization: Restoring Objective

$$z = x_1 + 2x_2$$

$$= 2 + \frac{2}{3}x_3 + \frac{1}{3}x_5 + 2(2 + \frac{1}{3}x_3 + \frac{2}{3}x_5)$$

$$= 6 + \frac{4}{3}x_3 + \frac{5}{3}x_5$$

Initial Feasible Dictionary Found. We can now proceed to optimize!!

Example

max.
$$x_1 + 2x_2$$

s.t. $-2x_1 + x_2 \le -2$
 $x_2 \le 4$
 $x_1 - 2x_2 \le -2$
 $x_1 \le 4$
 $x_1, x_2 \ge 0$
 $x_1 \mid 2 + \frac{2}{3}x_3 + \frac{1}{3}x_5$
 $x_4 \mid 2 - \frac{1}{3}x_3 - \frac{2}{3}x_5$
 $x_2 \mid 2 + \frac{1}{3}x_3 + \frac{2}{3}x_5$
 $x_6 \mid 2 - \frac{2}{3}x_3 - \frac{1}{3}x_5$
 $x_1 \mid 6 + \frac{4}{3}x_3 + \frac{5}{3}x_5$

Initialization Using Dual

Dualize

$$\begin{array}{rcl}
 \text{max} & -\mathbf{b}^{\mathsf{T}}\mathbf{y} \\
 -A^{\mathsf{T}}\mathbf{y} & \leq & -\mathbf{d} \\
 \mathbf{y} & \geq & 0
\end{array}$$

d has all negative entries

Optimization
Phase Simplex

Unbounded!

Original primal problem is infeasible.

\mathbf{y}_b	\mathbf{q}	$+P \mathbf{y}_n$
w	w_0	$+\mathbf{r}^T \; \mathbf{y}_n$

Final Dual Dictionary