3 Rayleigh-Benard Convection

Chandrasekhar⁴ has carefully studied linear stability of Rayleigh-Benard convection using the Boussinesq approximation, given in terms of the Rayleigh (Ra) and Prandtl (Pr) numbers as

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + Pr \nabla^2 \mathbf{u} - RaPrT, \qquad \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \nabla^2 T,$$

along with continuity, $\nabla \cdot \mathbf{u} = 0$. Above a certain critical Rayleigh number Ra_c , the conduction due to adverse temperature gradient becomes linearly unstable to small perturbations and convection rolls develop (Fig. 10 top). The table below shows predictions of Ra_c at the most unstable wavenumber k_c for $\Omega = [0:2\pi/k_c] \times [0:1]$ having periodic conditions in x. Dirichlet conditions T = 1 - y are specified for temperature on the horizontal boundaries, and three different conditions are considered for velocity: both walls (Dirichlet-Dirichlet), both stress-free (Neumann-Neumann) and a mix (Dirichlet-Neumann).

Critical Rayleigh number for 3 types of boundaries							
BC	Ra_{12}	Ra_{23}	Ra_c^{4}	k_c^4	Ra_1	Ra_2	Ra_3
D–D	1707.75	1707.74	1707.76	3.117	1760	1740	1725
D-N	1100.71	1100.64	1100.65	2.682	1144	1122	1111
N-N	657.639	657.566	657.511	2.2214	690	680	670

According to dynamical systems theory, the saturation amplitude (U) and kinetic energy (\bar{E}_k) grow, respectively, as $\sqrt{\epsilon}$ and ϵ , for $\epsilon := (Ra - Ra_c)/Ra_c \ll 1$. Thus Ra_c can be determined from a linear fit of (volume-averaged steady state) \bar{E}_k versus Ra for two or more values of Ra as shown in Fig. 10 (left). In the table above, the estimates Ra_{12} and Ra_{23} are determined from solution pairs at (Ra_1, Ra_2) and (Ra_2, Ra_3) , respectively. For each case, E_k is computed in a single unsteady run (Fig. 10 right) by varying Ra after time marching to a steady state such that $|dE_k/dt| \leq \sigma \times \bar{E}_k$ with $\sigma = 10^{-4}$. Larger σ or lower polynomial orders N < 7 lead to a drop in accuracy for the estimates of Ra_c . Iteration tolerances were controlled by setting TOLREL = 10^{-5} . Larger values (10^{-3}) did not yield a clear initial linear stage with exponential growth but the Ra_c estimate was not affected.

Figure 2: Rayleigh-Benard convection with walls: (top) streamlines for E=9 elements and N=7; (left) kinetic energy for E=3 and N=7 versus Rayleigh number and (right) time.

⁴S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability," Oxford University Press (1961)