Experiment with PCA on the MNIST dataset

PCA of MNIST sample

We only need 20 PCs to capture 90% of the variance in our dataset.

```
# select the first 20 PCs for the training dataset
pca.tr <- data.frame(label = train_df[, 1], pca$x[, 1:20])
pca.tr$label <- as.factor(pca.tr$label)

# select the first 20 PCs for the test dataset
pca.tst <- test_pca[, 1:20]
pca.tst <- data.frame(label = test_df$label, pca.tst)

pca.tst$label <- as.factor(pca.tst$label)</pre>
```

Random Forest

```
set.seed(1)

rf <- randomForest(pca.tr[, -1], pca.tr$label, ntree=500, importance = TRUE)

rf

##
## Call:
## randomForest(x = pca.tr[, -1], y = pca.tr$label, ntree = 500, importance = TRUE)</pre>
```

```
Type of random forest: classification
##
                          Number of trees: 500
##
  No. of variables tried at each split: 4
##
##
            OOB estimate of error rate: 4.95%
##
##
   Confusion matrix:
##
                                     5
                                                           9 class.error
## 0 5807
                   15
                                                2
                                                              0.01958467
              1
                         5
                              11
                                    8
                                         47
                                                    20
##
        0 6616
                   40
                        21
                               9
                                   11
                                          9
                                               11
                                                    19
                                                           6
                                                              0.01868882
## 2
       36
             10 5663
                        56
                              30
                                    7
                                         26
                                               50
                                                    72
                                                              0.04951326
## 3
        8
              3
                   74
                      5678
                               3
                                  100
                                         20
                                               58
                                                   137
                                                          50
                                                              0.07388680
        8
             23
                   23
                         4
                           5529
                                                              0.05357754
## 4
                                     1
                                         40
                                               19
                                                    19
                                                         176
##
   5
       23
              3
                   20
                        83
                              23 5144
                                         47
                                               11
                                                    39
                                                          28
                                                              0.05109758
       30
                         2
                                   53 5787
## 6
              6
                              14
                                                0
                                                    13
                                                           2
                                                              0.02213586
## 7
        3
             23
                   67
                         9
                              37
                                   10
                                          0 5986
                                                    16
                                                        114
                                                              0.04453312
## 8
       12
             38
                   53
                       170
                              27
                                   93
                                         28
                                               15 5358
                                                          57
                                                              0.08425910
## 9
       18
             15
                   15
                        88
                             154
                                   29
                                             103
                                                    53 5465
                                                              0.08135821
par(mfrow = c(1,2))
varImpPlot(rf)
```

rf


```
pred.rf <- predict(rf, pca.tst, type = "class")</pre>
(conf.rf <- table(pred.rf, pca.tst$label))</pre>
##
## pred.rf
                0
                            2
                                  3
                                                          7
                                                                8
                                                                      9
              962
##
          0
                      0
                           10
                                  1
                                              3
                                                          1
                                                                6
##
          1
                0 1123
                            1
                                  0
                                                                      7
##
          2
                4
                      2
                          976
                                  8
                                        3
                                              5
                                                    1
                                                         19
                                                                7
                                                                      1
          3
                0
                      2
                                954
                                        0
                                             16
##
                           11
                                                               20
                                                                     11
##
          4
                0
                      0
                            5
                                  0
                                      921
                                              6
                                                                     28
                                                          5
          5
                            2
                                                    5
                                                                      8
##
                4
                      1
                                 14
                                        4
                                            845
                                                               19
                                        7
          6
                8
                                              6
                                                  934
                                                                5
                                                                      2
##
                                  0
                                                          1
##
                           10
                                 10
                                        3
                                              1
                                                        969
                                                                5
                                                                     11
##
          8
                1
                      2
                                 20
                                        5
                                              6
                                                    1
                                                          2
                                                              896
                           13
                                                                     10
          9
                      1
                            0
                                  3
                                       36
                                              3
                                                         24
                                                                   927
(sum(conf.rf) - sum(diag(conf.rf))) /
  sum(conf.rf)
```

The misclassification rate is 4.89%. The pair that is most difficult to predict are 4 and 9.

Classification Tree

```
t <- tree(label ~., data = pca.tr, split = "deviance")
summary(t)
##
## Classification tree:</pre>
```

```
## tree(formula = label ~ ., data = pca.tr, split = "deviance")
## Variables actually used in tree construction:
## [1] "PC2" "PC7" "PC4" "PC5" "PC1" "PC6" "PC8" "PC3"
## Number of terminal nodes: 13
## Residual mean deviance: 2.338 = 140200 / 59990
## Misclassification error rate: 0.3579 = 21474 / 60000
plot(t)
text(t, pretty = 0)
```

```
PC2 < -0.706367
         PC7 < 0.0511404
                                              PC1 < -2.43902
       1.18094
      PC5 < -0.20679
                 9
                                                                 PC4 < -0.48236
                                               PC6 < 1
                                       PC5 < -0.882649
                                                                         PC8 < -0.0258577
                                                            6
                                                                 PC6 < 0.166317 PC3 < -0.185826
                                                                    8
                                                                             5
                                                                                      ż
                                                                                              5
pred.tree <- predict(t, newdata = pca.tst, type = "class")</pre>
(conf.tree <- table(pred.tree, test_df$label))</pre>
##
   pred.tree
                                    3
                                               5
                                                           7
                                                                 8
                                                                      9
##
                  0
                              2
                                         4
                                                     6
                        1
##
                747
                        0
                                  99
                                             163
                                                                78
                                                                     10
            0
                             66
                                         1
                                                    39
                                                           3
                                                    10
##
            1
                  0 1055
                             11
                                  11
                                        26
                                              13
                                                          53
                                                                8
                                                                     30
            2
                 26
                            705
                                              42
##
                       24
                                  26
                                        10
                                                    82
                                                          20
                                                               85
                                                                      4
            3
                                 601
                                                                      5
##
                 10
                        4
                             27
                                         2
                                              52
                                                     1
                                                           0
                                                                49
            4
                        0
                             37
                                    9
                                                                37
##
                 17
                                       820
                                             112
                                                    35
                                                         101
                                                                    572
##
            5
                 77
                             42
                                 164
                                        15
                                             388
                                                    83
                                                              169
                       41
                                                          18
                                                                     18
            6
##
                 53
                       11
                             57
                                  37
                                        32
                                              33
                                                   706
                                                          13
                                                               21
                                                                     30
##
            7
                 21
                        0
                              4
                                   5
                                         7
                                              18
                                                     0
                                                         592
                                                                 4
                                                                     38
##
            8
                        0
                             75
                                  47
                                         6
                                              67
                                                     1
                                                          30
                                                              452
                                                                     11
##
            9
                                        63
                                                         198
                                                                    291
                 15
                        0
                                  11
                                                     1
                                                               71
(sum(conf.tree) - sum(diag(conf.tree))) /
  sum(conf.tree)
```

4-9 is still the most difficult pair to predict, followed closely by 5-0, 7-9, 5-3, 5-8.

Pruning tree

```
t.cv <- cv.tree(t)
plot(t.cv$size, t.cv$dev, type = "b", xlab = "n leaves", ylab = "error")</pre>
```


Not a good case for pruning (best n = 13 was already chosen).

Bagging

```
set.seed(1)
p \leftarrow ncol(pca.tr)-1
rf.bag <- randomForest(label ~., data = pca.tr,</pre>
                   mtry = p/3, importance = TRUE)
rf.bag
##
## Call:
    randomForest(formula = label ~ ., data = pca.tr, mtry = p/3,
##
                                                                            importance = TRUE)
                   Type of random forest: classification
##
##
                          Number of trees: 500
## No. of variables tried at each split: 7
##
##
            OOB estimate of error rate: 5.27%
   Confusion matrix:
##
                                              7
##
        0
              1
                   2
                         3
                              4
                                   5
                                         6
                                                    8
                                                         9 class.error
                  12
                         8
## 0 5796
              0
                             11
                                  15
                                        47
                                              6
                                                   17
                                                        11 0.02144184
                              7
## 1
        0 6611
                  38
                        18
                                  14
                                        14
                                              9
                                                   21
                                                        10 0.01943044
## 2
       39
             10 5637
                        54
                             44
                                   9
                                        28
                                             52
                                                   72
                                                        13
                                                            0.05387714
## 3
              6
                  83 5656
                              4
                                  109
                                        19
                                                  136
                                                        47
                                                            0.07747513
       11
                                             60
## 4
        7
             21
                  32
                         6 5495
                                             28
                                                   24
                                                       187
                                                            0.05939747
```

```
5
                        88
                              30 5107
                                               12
                                                               0.05792289
## 5
       27
                   16
                                         45
                                                     48
                                                           43
                                    54 5783
                                                               0.02281176
## 6
       27
              6
                   17
                         2
                              16
                                                0
                                                     10
                                                           3
                                                               0.04708699
##
             23
                   65
                        10
                              41
                                    12
                                           0 5970
                                                     19
                                                         119
## 8
       13
                              28
                                   110
                                               20 5338
                                                          59
                                                               0.08767732
             41
                   52
                       164
                                         26
## 9
             14
                   14
                        91
                             148
                                    34
                                         11
                                              115
                                                     58 5444
                                                               0.08488822
varImpPlot(rf.bag, main="Bagging")
```

Bagging

[1] 0.0514

The misclassification rate is 5.15%.

Boosting tree

Relative influence

```
##
                 rel.inf
         var
## PC1
         PC1 29.32983526
## PC2
         PC2 20.19729124
## PC4
         PC4 12.52937052
## PC5
         PC5
              8.90577175
## PC6
         PC6
              8.61493591
## PC7
         PC7
              5.83248543
## PC8
         PC8
              3.27468586
## PC3
         PC3
              2.89073995
## PC13 PC13
              2.06341543
## PC16 PC16
              1.75585198
## PC9
         PC9
              1.15496116
## PC20 PC20
              0.92517800
## PC12 PC12
              0.85059045
## PC15 PC15
              0.62954685
## PC19 PC19
              0.37121670
## PC14 PC14
              0.31766673
## PC10 PC10
              0.27587466
## PC17 PC17
              0.05185516
## PC18 PC18
              0.02872696
## PC11 PC11
              0.0000000
```

```
pred.boost <- predict(boost.mnist, newdata = pca.tst, n.trees = 50)</pre>
pred.boost <- apply(pred.boost, 1, which.max) -1</pre>
(conf.boost <- table(pred.boost, pca.tst$label))</pre>
##
## pred.boost
                 0
                       1
                            2
                                 3
                                      4
                                           5
                                                 6
                                                      7
                                                           8
                                                                9
               862
                                      2
                                                      7
##
                       0
                           27
                                14
                                           37
                                                21
                                                          32
                                                                12
            0
            1
                 0 1067
##
                            3
                                7
                                     21
                                           6
                                                 4
                                                     41
                                                           3
                                                               28
            2
               17
                                     16
                                                53
##
                       7
                          781
                                17
                                          31
                                                     30
                                                          25
                                                                11
##
            3
               11
                       6
                           41
                               805
                                     1 119
                                                 7
                                                      2
                                                          72
                                                                13
##
            4
                2
                       0
                           15
                                 9
                                    721
                                          44
                                                10
                                                     10
                                                          10
                                                               158
##
            5
               42
                                     14 571
                       8
                           14
                                59
                                                50
                                                          44
                                                               18
                                                     11
            6
                24
                      20
##
                           49
                                37
                                     45
                                          39
                                               786
                                                     2
                                                           6
                                                                11
##
            7
                10
                       3
                           20
                                12
                                     21
                                           25
                                                 9
                                                    825
                                                               46
                                                          14
##
            8
                 3
                      24
                           72
                                41
                                     22
                                          14
                                                10
                                                     40
                                                         745
                                                               17
##
            9
                 9
                       0
                           10
                                 9 119
                                           6
                                                 8
                                                     60
                                                          23 695
(sum(conf.boost) - sum(diag(conf.boost))) /
  sum(conf.boost)
```

Using 5-fold CV

PCA Dataset


```
print(boost.pca.cv)
```

0.4202600

PC18 PC18

```
## gbm(formula = label ~ ., distribution = "multinomial", data = pca.tr,
## n.trees = 500, interaction.depth = 1, shrinkage = 0.1, cv.folds = 5)
## A gradient boosted model with multinomial loss function.
## 500 iterations were performed.
## The best cross-validation iteration was 413.
## There were 20 predictors of which 20 had non-zero influence.
```

The best number of trees chosen by the boosted model using 5-fold CV on the PCA dataset is 411.

```
pred.boost.cv <- predict(boost.pca.cv, newdata = pca.tst, n.trees = 500)</pre>
pred.boost.cv <- apply(pred.boost.cv, 1, which.max) -1</pre>
(conf.boost <- table(pred.boost.cv, pca.tst$label))</pre>
##
## pred.boost.cv
                       0
                            1
                                  2
                                        3
                                             4
                                                   5
                                                         6
                                                               7
                                                                    8
                                                                          9
                                              2
                                                         9
                                                                          8
##
                    943
                            0
                                 12
                                        6
                                                  10
                                                               4
                                                                    9
                 0
                                                                          7
##
                 1
                       0 1113
                                  3
                                             6
                                                   4
                                                         4
                                                              13
                                        1
                                                                    1
                 2
                      8
                                896
                                             6
                                                         3
                                                              37
                                                                          7
##
                            5
                                       17
                                                  10
                                                                    9
                            3
##
                 3
                      2
                                 19
                                     886
                                             1
                                                  46
                                                         1
                                                               3
                                                                   33
                                                                         15
##
                 4
                       0
                            1
                                 12
                                        3
                                           882
                                                  15
                                                        16
                                                               6
                                                                   10
                                                                         60
                 5
                            2
                                                 745
##
                      8
                                 9
                                       38
                                             4
                                                        20
                                                               2
                                                                   26
                                                                         13
                 6
                            3
                                 25
##
                      11
                                        3
                                            11
                                                  22
                                                       902
                                                               0
                                                                   11
                                                                          3
##
                 7
                      1
                            2
                                 17
                                             2
                                                  10
                                                         0
                                                            920
                                                                    8
                                                                         23
                                       13
##
                 8
                       6
                            6
                                 30
                                       32
                                            14
                                                  20
                                                         3
                                                               6
                                                                  850
                                                                         13
##
                       1
                            0
                                  9
                                       11
                                            54
                                                  10
                                                         0
                                                              37
                                                                   17
                                                                        860
(sum(conf.boost) - sum(diag(conf.boost))) /
  sum(conf.boost)
```

The misclassification rate is 9.81. 4-9 is still the most difficult pair to predict.

Original Dataset


```
var
                 rel.inf
## X351 X351 2.5462195500
## X212 X212 2.1413055303
## X359 X359 2.1271324193
## X436 X436 1.9022945603
## X387 X387 1.8833568053
## X101 X101 1.8199774890
## X408 X408 1.7723903032
## X438 X438 1.6830568348
## X406 X406 1.6376548168
## X515 X515 1.6150122829
## X221 X221 1.3490162999
## X324 X324 1.2278729872
## X102 X102 1.2110645172
## X103 X103 1.1007288568
## X584 X584 1.0638216664
## X409 X409 1.0528091151
## X713 X713 1.0232646391
## X347 X347 1.0154425547
## X407 X407 1.0143286990
## X490 X490 0.9874882352
## X743 X743 0.9812381751
## X375 X375 0.9615574067
## X740 X740 0.9381115000
## X658 X658 0.9161566260
## X711 X711 0.9006404310
## X125 X125 0.8915762829
## X429 X429 0.8493568557
## X718 X718 0.8101597781
## X70
        X70 0.7828783938
## X410 X410 0.7713370658
## X712 X712 0.7624657721
## X516 X516 0.7606544107
## X435 X435 0.7604432822
## X243 X243 0.7445896590
## X71
        X71 0.7397610636
## X742 X742 0.7351344810
## X379 X379 0.7188744265
## X156 X156 0.7066873849
## X491 X491 0.6742048185
## X744 X744 0.6660141750
## X544 X544 0.6574411347
## X72
         X72 0.6551371067
## X599 X599 0.6324701837
## X211 X211 0.6318856758
## X327 X327 0.6307862514
## X236 X236 0.6283033734
## X488 X488 0.6239195316
## X383 X383 0.6225974530
## X381 X381 0.6129332069
## X463 X463 0.6127933782
## X512 X512 0.6111551661
## X348 X348 0.6041376830
## X192 X192 0.5868006510
```

- ## X104 X104 0.5836730854
- ## X401 X401 0.5510722552
- ## X151 X151 0.5437574349
- ## X157 X157 0.5340833043
- ## X405 X405 0.5318952013
- ## X350 X350 0.5305440279
- ## X541 X541 0.5304576524
- ## X434 X434 0.5292355934
- ## X278 X278 0.5265053990
- ## X271 X271 0.5207560090
- ## X714 X714 0.4939556366
- ## X657 X657 0.4890541276
- ## X377 X377 0.4875239834
- ## X291 X291 0.4813662017
- ## X250 X250 0.4688392735
- ## X318 X318 0.4575462812
- ## X433 X433 0.4552935090
- ## X177 X177 0.4521001899
- ## X349 X349 0.4494385473
- ## X571 X571 0.4442720765
- ## X378 X378 0.4233693561
- ## X522 X522 0.4206022506
- ## X328 X328 0.4056476463
- ## X719 X719 0.4008940589
- ## X178 X178 0.3830110808
- ## X518 X518 0.3825774523
- ## X403 X403 0.3788710169
- ## X489 X489 0.3787705775
- ## X360 X360 0.3646052208
- ## X539 X539 0.3612972640
- ## X570 X570 0.3609052955
- ## X583 X583 0.3450153952
- ## X517 X517 0.3443075164
- ## X264 X264 0.3441915927
- ## X428 X428 0.3393101607
- ## X598 X598 0.3379119582
- ## X466 X466 0.3378652401 ## X376 X376 0.3361110305
- ## X430 X430 0.3350466002
- ## X745 X745 0.3340418705
- ## X487 X487 0.3339480602
- ## X152 X152 0.3288064263
- ## X105 X105 0.3123401221
- ## X127 X127 0.3054142968
- ## X465 X465 0.3039435168
- ## X432 X432 0.3009823986
- ## X557 X557 0.3008952899
- ## X244 X244 0.2992021139
- ## X126 X126 0.2987472409
- ## X184 X184 0.2864676911 ## X373 X373 0.2851239538
- ## X431 X431 0.2805863449
- ## X240 X240 0.2797078165
- ## X193 X193 0.2796460877

```
## X721 X721 0.2723615615
## X568 X568 0.2719343194
## X738 X738 0.2634017062
## X710 X710 0.2556179891
## X67
         X67 0.2530605024
## X277 X277 0.2527016756
## X259 X259 0.2521740608
## X543 X543 0.2504766987
## X382 X382 0.2499140209
## X484 X484 0.2481309801
## X437 X437 0.2425179529
## X208 X208 0.2420238580
## X709 X709 0.2406548749
## X179 X179 0.2384046126
## X319 X319 0.2371818706
## X550 X550 0.2370948734
## X249 X249 0.2351147751
## X323 X323 0.2332193397
## X269 X269 0.2317283939
## X722 X722 0.2290078002
## X502 X502 0.2275863185
         X69 0.2249348443
## X623 X623 0.2248213421
## X415 X415 0.2223711696
## X346 X346 0.2133078589
## X124 X124 0.2122434827
## X464 X464 0.2079387316
## X285 X285 0.2052457194
## X68
        X68 0.2010655041
## X402 X402 0.1969242636
## X659 X659 0.1861672493
## X456 X456 0.1798150683
## X358 X358 0.1781276675
## X404 X404 0.1769112438
## X519 X519 0.1766658280
## X320 X320 0.1709643779
## X106 X106 0.1667394891
## X564 X564 0.1652868923
## X321 X321 0.1585433682
## X611 X611 0.1564333268
## X190 X190 0.1558696657
## X345 X345 0.1556722837
## X268 X268 0.1521653145
## X716 X716 0.1512125192
## X708 X708 0.1465058420
## X573 X573 0.1462204920
## X355 X355 0.1449679183
## X306 X306 0.1449063823
## X715 X715 0.1445013592
## X163 X163 0.1411829864
## X100 X100 0.1404067935
## X183 X183 0.1401996137
## X660 X660 0.1388620648
```

X582 X582 0.1382594821

```
## X530 X530 0.1381851207
## X235 X235 0.1377770983
## X297 X297 0.1367876826
## X299 X299 0.1360858812
## X529 X529 0.1356141180
## X191 X191 0.1352712482
## X653 X653 0.1313246170
## X593 X593 0.1252527003
## X442 X442 0.1244494061
## X440 X440 0.1240097883
## X260 X260 0.1232502324
## X334 X334 0.1214551011
## X213 X213 0.1213786055
## X298 X298 0.1212373294
## X107 X107 0.1191884154
## X128 X128 0.1155643440
## X737 X737 0.1155162087
## X542 X542 0.1140921341
## X551 X551 0.1123743512
## X746 X746 0.1092806092
## X427 X427 0.1089607665
## X494 X494 0.1073272352
## X272 X272 0.1063644922
## X380 X380 0.1045722182
## X292 X292 0.1008557095
## X462 X462 0.0999236237
## X185 X185 0.0992288767
## X258 X258 0.0980481035
## X118 X118 0.0979967713
## X153 X153 0.0974603178
## X98
         X98 0.0963405988
## X628 X628 0.0934940607
## X538 X538 0.0898579831
## X600 X600 0.0896221287
## X276 X276 0.0877857344
## X275 X275 0.0872478049
## X486 X486 0.0868309510
## X566 X566 0.0857038750
## X565 X565 0.0848741758
## X540 X540 0.0832636382
## X513 X513 0.0828934659
## X460 X460 0.0819451622
## X66
         X66 0.0804902709
## X344 X344 0.0804693044
## X109 X109 0.0804245205
## X652 X652 0.0802385070
## X475 X475 0.0792725371
## X467 X467 0.0792654730
## X329 X329 0.0772170911
## X610 X610 0.0771477582
## X99
         X99 0.0769199883
## X386 X386 0.0767834132
## X96
        X96 0.0754968083
```

X720 X720 0.0750833958

```
## X470 X470 0.0739649875
## X206 X206 0.0737501885
## X388 X388 0.0725871875
## X536 X536 0.0723266471
## X209 X209 0.0717123991
## X207 X207 0.0713577295
## X474 X474 0.0711976081
## X214 X214 0.0708222176
## X232 X232 0.0704312142
## X317 X317 0.0697892904
## X629 X629 0.0677120909
## X574 X574 0.0674344887
## X150 X150 0.0674256619
## X175 X175 0.0674172238
## X356 X356 0.0667727888
## X483 X483 0.0652975452
## X129 X129 0.0651333315
## X77
         X77 0.0639323379
## X210 X210 0.0635994036
## X662 X662 0.0635169177
## X622 X622 0.0629579338
## X569 X569 0.0625534089
## X108 X108 0.0623836511
## X205 X205 0.0617736288
## X625 X625 0.0611467940
## X303 X303 0.0608396231
## X305 X305 0.0607487727
## X274 X274 0.0597010596
## X576 X576 0.0587515211
## X302 X302 0.0573925515
## X353 X353 0.0570915368
## X372 X372 0.0568082932
## X508 X508 0.0566835217
## X545 X545 0.0566053302
## X290 X290 0.0562608350
## X439 X439 0.0556965985
## X362 X362 0.0553233483
## X330 X330 0.0550064358
## X174 X174 0.0549849852
## X458 X458 0.0548554247
## X158 X158 0.0547847321
## X747 X747 0.0529678356
## X352 X352 0.0526993804
## X65
         X65 0.0523193676
## X332 X332 0.0519624552
## X263 X263 0.0510907738
## X417 X417 0.0501329398
## X204 X204 0.0489530414
## X202 X202 0.0489039238
## X181 X181 0.048883508
## X696 X696 0.0488480033
## X706 X706 0.0480598781
## X457 X457 0.0472262825
```

X239 X239 0.0469819854

```
## X579 X579 0.0468099579
## X284 X284 0.0464613842
## X655 X655 0.0458121938
## X391 X391 0.0457589951
## X270 X270 0.0450619760
## X419 X419 0.0449740766
## X215 X215 0.0448670074
## X159 X159 0.0447398665
## X374 X374 0.0443791771
## X603 X603 0.0438200347
## X368 X368 0.0434506008
## X304 X304 0.0431715279
## X241 X241 0.0431597899
## X189 X189 0.0430746259
## X572 X572 0.0424252637
## X537 X537 0.0420115114
## X242 X242 0.0416827318
## X635 X635 0.0416068922
## X400 X400 0.0414786787
## X524 X524 0.0401199340
## X248 X248 0.0393342160
## X496 X496 0.0388064946
## X295 X295 0.0368555225
## X492 X492 0.0363701429
## X639 X639 0.0362498454
## X390 X390 0.0354594835
## X201 X201 0.0354295276
## X354 X354 0.0353658628
## X609 X609 0.0347699219
## X707 X707 0.0347428220
## X122 X122 0.0344554151
## X340 X340 0.0341515903
## X717 X717 0.0340676066
## X333 X333 0.0337725137
## X164 X164 0.0333861618
## X155 X155 0.0333265904
## X649 X649 0.0326138911
## X389 X389 0.0325329196
## X219 X219 0.0323749971
## X468 X468 0.0322753480
## X511 X511 0.0315037724
## X370 X370 0.0310720054
## X267 X267 0.0310268803
## X630 X630 0.0308638370
## X301 X301 0.0306167910
## X459 X459 0.0305337887
## X679 X679 0.0304908544
## X694 X694 0.0302652625
## X723 X723 0.0301074509
## X176 X176 0.0300779085
## X581 X581 0.0299680980
## X371 X371 0.0299106328
## X601 X601 0.0290459289
```

X94

X94 0.0290336930

```
## X661 X661 0.0288788044
        X95 0.0288526436
## X95
## X296 X296 0.0278832339
## X585 X585 0.0277940600
## X361 X361 0.0275625890
## X447 X447 0.0274983461
## X343 X343 0.0272378305
## X312 X312 0.0270658936
## X606 X606 0.0270522486
## X510 X510 0.0269759915
## X552 X552 0.0268927171
## X229 X229 0.0265436495
## X416 X416 0.0265297517
## X705 X705 0.0261106404
## X697 X697 0.0260889358
## X597 X597 0.0258940560
## X656 X656 0.0254842157
## X683 X683 0.0251775083
## X509 X509 0.0250294791
## X396 X396 0.0246025670
## X322 X322 0.0245368827
## X748 X748 0.0241150464
## X363 X363 0.0240329036
## X461 X461 0.0236179409
## X369 X369 0.0223847389
## X677 X677 0.0223066313
## X154 X154 0.0222701258
## X680 X680 0.0221821824
## X203 X203 0.0221307653
## X724 X724 0.0220789352
## X136 X136 0.0214001871
## X161 X161 0.0213595262
## X595 X595 0.0211607272
## X148 X148 0.0201688743
## X580 X580 0.0201559215
## X681 X681 0.0200220654
## X307 X307 0.0197926835
## X326 X326 0.0196336075
## X678 X678 0.0194783082
## X695 X695 0.0194136429
## X331 X331 0.0193917409
## X634 X634 0.0192736346
## X750 X750 0.0191625103
## X546 X546 0.0188416047
## X339 X339 0.0188091791
## X97
         X97 0.0187517069
## X341 X341 0.0186669757
## X640 X640 0.0185320198
## X480 X480 0.0183163685
## X446 X446 0.0182191417
## X602 X602 0.0182014811
## X233 X233 0.0175404326
## X485 X485 0.0175127106
```

X663 X663 0.0174971399

```
## X578 X578 0.0174295418
## X633 X633 0.0167685763
## X689 X689 0.0167189672
## X693 X693 0.0166054718
## X93
         X93 0.0163173407
## X123 X123 0.0162611837
## X452 X452 0.0161450232
## X495 X495 0.0161435933
## X650 X650 0.0159713420
## X135 X135 0.0158917654
## X289 X289 0.0155455822
## X325 X325 0.0155166505
## X418 X418 0.0154655680
## X247 X247 0.0154498665
## X149 X149 0.0152460504
## X666 X666 0.0149190278
## X451 X451 0.0147246702
## X638 X638 0.0146904584
## X608 X608 0.0145087756
## X222 X222 0.0144963481
## X300 X300 0.0144202894
         X64 0.0140612673
## X64
## X612 X612 0.0140116037
## X234 X234 0.0139678245
## X357 X357 0.0138167484
## X399 X399 0.0136973859
## X137 X137 0.0134956376
## X245 X245 0.0132944610
## X76
         X76 0.0132908280
## X521 X521 0.0131267454
## X424 X424 0.0128362172
## X607 X607 0.0126648345
## X384 X384 0.0126446510
## X664 X664 0.0123678227
## X554 X554 0.0120520436
## X684 X684 0.0119056630
## X257 X257 0.0118503318
## X567 X567 0.0117169002
## X686 X686 0.0116441026
## X553 X553 0.0114321861
## X134 X134 0.0113956897
## X262 X262 0.0112361507
## X121 X121 0.0111801302
## X632 X632 0.0111780999
## X676 X676 0.0111500154
## X455 X455 0.0109512902
## X454 X454 0.0107890334
## X751 X751 0.0106353976
## X220 X220 0.0105399714
## X110 X110 0.0105052779
## X397 X397 0.0104852349
## X605 X605 0.0104195333
## X469 X469 0.0103649759
## X520 X520 0.0101929121
```

X627 X627 0.0101268314 ## X482 X482 0.0097576019 ## X481 X481 0.0096656416 ## X665 X665 0.0096223439 ## X172 X172 0.0095589224 ## X237 X237 0.0093496503 ## X523 X523 0.0093153033 ## X293 X293 0.0093031790 ## X266 X266 0.0092673864 ## X555 X555 0.0092213668 ## X273 X273 0.0090740860 ## X316 X316 0.0090228143 ## X501 X501 0.0088528969 ## X186 X186 0.0087856182 ## X493 X493 0.0086686634 ## X230 X230 0.0086488280 X92 0.0086226659 ## X92 ## X335 X335 0.0085791555 ## X596 X596 0.0080364973 ## X256 X256 0.0080013835 ## X238 X238 0.0079674649 ## X685 X685 0.0079235075 ## X182 X182 0.0079165305 ## X636 X636 0.0078639669 ## X188 X188 0.0077316482 ## X411 X411 0.0076738536 ## X217 X217 0.0072098772 ## X670 X670 0.0069848405 ## X288 X288 0.0066174069 ## X527 X527 0.0065845431 ## X133 X133 0.0065292561 ## X166 X166 0.0064612181 ## X313 X313 0.0063114960 ## X734 X734 0.0060641394 ## X558 X558 0.0060259313 ## X692 X692 0.0060129039 ## X146 X146 0.0059992194

X162 X162 0.0041740596 ## X613 X613 0.0041219777

X395 X395 0.0058617565
X525 X525 0.0058197985
X160 X160 0.0055787935
X261 X261 0.0054811271
X691 X691 0.0054749834
X669 X669 0.0054678581
X120 X120 0.0054529680
X473 X473 0.0052639623
X385 X385 0.0051721829
X604 X604 0.0051394226
X180 X180 0.0051062761
X631 X631 0.0048570675
X132 X132 0.0045610579
X514 X514 0.0043211425
X549 X549 0.0043143437

```
## X441 X441 0.0040924499
## X777 X777 0.0040901822
## X687 X687 0.0040487660
## X218 X218 0.0040022452
## X741 X741 0.0039938436
## X667 X667 0.0039806452
        X90 0.0039331319
## X90
## X426 X426 0.0039122699
## X548 X548 0.0037636447
## X78
         X78 0.0037475880
## X749 X749 0.0037170013
## X412 X412 0.0036909230
## X526 X526 0.0035779758
        X79 0.0035608903
## X79
## X145 X145 0.0035237367
## X398 X398 0.0034558748
## X577 X577 0.0034211047
## X231 X231 0.0031683380
## X45
        X45 0.0030566608
## X425 X425 0.0029663348
## X413 X413 0.0029080569
## X165 X165 0.0028865699
## X187 X187 0.0028151959
## X556 X556 0.0028051491
## X637 X637 0.0027665749
## X528 X528 0.0027435107
## X294 X294 0.0026646368
         X75 0.0026408227
## X75
## X287 X287 0.0024930415
## X688 X688 0.0024537302
## X138 X138 0.0023594214
## X228 X228 0.0023569697
## X265 X265 0.0022273322
## X559 X559 0.0018727858
## X668 X668 0.0018221829
## X246 X246 0.0017583212
## X592 X592 0.0017401551
## X471 X471 0.0015910939
## X37
         X37 0.0015433579
## X131 X131 0.0015157159
## X624 X624 0.0014761683
## X147 X147 0.0014586122
## X586 X586 0.0013821258
## X311 X311 0.0013795572
## X547 X547 0.0013707967
## X642 X642 0.0013675945
## X117 X117 0.0013338335
## X423 X423 0.0013323037
## X614 X614 0.0013035413
## X194 X194 0.0012783459
## X453 X453 0.0012780714
## X775 X775 0.0011315180
## X648 X648 0.0010617526
```

X621 X621 0.0010495336

```
## X443 X443 0.0010139982
## X500 X500 0.0010091144
## X778 X778 0.0010011584
## X342 X342 0.0009407367
## X733 X733 0.0009202255
## X119 X119 0.0009165057
## X173 X173 0.0008768709
## X216 X216 0.0008728034
## X251 X251 0.0008366514
## X619 X619 0.0008211205
## X654 X654 0.0007902223
## X130 X130 0.0007819905
## X472 X472 0.0007506361
## X445 X445 0.0006883035
## X776 X776 0.0006754497
## X91
         X91 0.0006216872
## X74
         X74 0.0006078406
  X139 X139 0.0005545893
## X200 X200 0.0005470334
## X42
         X42 0.0005160387
## X615 X615 0.0005142636
## X38
         X38 0.0004485316
## X575 X575 0.0004072754
## X651 X651 0.0002996371
## X626 X626 0.0002137341
## X444 X444 0.0002093869
## X1
          X1 0.0000000000
##
          X2 0.000000000
  Х2
## X3
          X3 0.000000000
## X4
          X4 0.0000000000
## X5
          X5 0.0000000000
## X6
          X6 0.0000000000
## X7
          X7 0.000000000
## X8
          X8 0.0000000000
## X9
          X9 0.0000000000
## X10
         X10 0.0000000000
## X11
         X11 0.0000000000
## X12
         X12 0.0000000000
## X13
         X13 0.0000000000
## X14
         X14 0.0000000000
## X15
         X15 0.0000000000
## X16
         X16 0.0000000000
## X17
         X17 0.0000000000
## X18
         X18 0.0000000000
## X19
         X19 0.0000000000
## X20
         X20 0.0000000000
## X21
         X21 0.0000000000
## X22
         X22 0.0000000000
## X23
         X23 0.0000000000
## X24
         X24 0.0000000000
## X25
         X25 0.0000000000
## X26
         X26 0.0000000000
## X27
         X27 0.0000000000
## X28
         X28 0.0000000000
```

```
## X29
         X29 0.0000000000
## X30
         X30 0.0000000000
##
  X31
         X31 0.0000000000
  X32
##
         X32 0.0000000000
##
  X33
         X33 0.0000000000
##
  X34
         X34 0.0000000000
## X35
         X35 0.0000000000
## X36
         X36 0.0000000000
##
  X39
         X39 0.0000000000
## X40
         X40 0.0000000000
## X41
         X41 0.0000000000
  X43
##
         X43 0.0000000000
##
  X44
         X44 0.0000000000
## X46
         X46 0.0000000000
## X47
         X47 0.0000000000
## X48
         X48 0.0000000000
## X49
         X49 0.0000000000
##
  X50
         X50 0.0000000000
##
  X51
         X51 0.0000000000
##
  X52
         X52 0.0000000000
##
  X53
         X53 0.0000000000
## X54
         X54 0.0000000000
## X55
         X55 0.0000000000
  X56
         X56 0.0000000000
##
## X57
         X57 0.0000000000
##
  X58
         X58 0.0000000000
  X59
         X59 0.0000000000
##
   X60
##
         X60 0.0000000000
         X61 0.0000000000
##
  X61
## X62
         X62 0.0000000000
## X63
         X63 0.0000000000
##
  X73
         X73 0.0000000000
##
  X80
         X80 0.0000000000
  X81
##
         X81 0.0000000000
##
   X82
         X82 0.0000000000
         X83 0.0000000000
##
  X83
## X84
         X84 0.0000000000
## X85
         X85 0.0000000000
##
  X86
         X86 0.0000000000
         X87 0.0000000000
## X87
  X88
         X88 0.0000000000
##
## X89
         X89 0.0000000000
## X111 X111 0.000000000
## X112 X112 0.000000000
## X113 X113 0.000000000
## X114 X114 0.000000000
## X115 X115 0.000000000
## X116 X116 0.000000000
## X140 X140 0.000000000
## X141 X141 0.000000000
## X142 X142 0.000000000
## X143 X143 0.000000000
## X144 X144 0.000000000
## X167 X167 0.0000000000
```

```
## X168 X168 0.000000000
## X169 X169 0.0000000000
## X170 X170 0.000000000
## X171 X171 0.000000000
## X195 X195 0.0000000000
## X196 X196 0.000000000
## X197 X197 0.000000000
## X198 X198 0.000000000
## X199 X199 0.0000000000
## X223 X223 0.0000000000
## X224 X224 0.000000000
## X225 X225 0.000000000
## X226 X226 0.0000000000
## X227 X227 0.0000000000
## X252 X252 0.0000000000
## X253 X253 0.0000000000
## X254 X254 0.0000000000
## X255 X255 0.000000000
## X279 X279 0.0000000000
## X280 X280 0.000000000
## X281 X281 0.000000000
## X282 X282 0.0000000000
## X283 X283 0.000000000
## X286 X286 0.0000000000
## X308 X308 0.000000000
## X309 X309 0.000000000
## X310 X310 0.0000000000
## X314 X314 0.000000000
## X315 X315 0.000000000
## X336 X336 0.0000000000
## X337 X337 0.000000000
## X338 X338 0.000000000
## X364 X364 0.000000000
## X365 X365 0.0000000000
## X366 X366 0.0000000000
## X367 X367 0.0000000000
## X392 X392 0.000000000
## X393 X393 0.000000000
## X394 X394 0.000000000
## X414 X414 0.000000000
## X420 X420 0.0000000000
## X421 X421 0.0000000000
## X422 X422 0.0000000000
## X448 X448 0.000000000
## X449 X449 0.000000000
## X450 X450 0.0000000000
## X476 X476 0.0000000000
## X477 X477 0.0000000000
## X478 X478 0.0000000000
## X479 X479 0.0000000000
## X497 X497 0.000000000
## X498 X498 0.000000000
## X499 X499 0.0000000000
## X503 X503 0.000000000
```

```
## X504 X504 0.000000000
## X505 X505 0.0000000000
## X506 X506 0.000000000
## X507 X507 0.000000000
## X531 X531 0.000000000
## X532 X532 0.000000000
## X533 X533 0.0000000000
## X534 X534 0.0000000000
## X535 X535 0.0000000000
## X560 X560 0.000000000
## X561 X561 0.0000000000
## X562 X562 0.000000000
## X563 X563 0.0000000000
## X587 X587 0.0000000000
## X588 X588 0.0000000000
## X589 X589 0.000000000
## X590 X590 0.000000000
## X591 X591 0.000000000
## X594 X594 0.000000000
## X616 X616 0.0000000000
## X617 X617 0.000000000
## X618 X618 0.000000000
## X620 X620 0.000000000
## X641 X641 0.0000000000
## X643 X643 0.0000000000
## X644 X644 0.0000000000
## X645 X645 0.000000000
## X646 X646 0.000000000
## X647 X647 0.000000000
## X671 X671 0.0000000000
## X672 X672 0.0000000000
## X673 X673 0.0000000000
## X674 X674 0.000000000
## X675 X675 0.000000000
## X682 X682 0.0000000000
## X690 X690 0.0000000000
## X698 X698 0.000000000
## X699 X699 0.000000000
## X700 X700 0.000000000
## X701 X701 0.000000000
## X702 X702 0.0000000000
## X703 X703 0.000000000
## X704 X704 0.0000000000
## X725 X725 0.000000000
## X726 X726 0.0000000000
## X727 X727 0.000000000
## X728 X728 0.000000000
## X729 X729 0.0000000000
## X730 X730 0.000000000
## X731 X731 0.0000000000
## X732 X732 0.0000000000
## X735 X735 0.0000000000
## X736 X736 0.0000000000
## X739 X739 0.000000000
```

```
## X752 X752 0.000000000
## X753 X753 0.0000000000
## X754 X754 0.0000000000
## X755 X755 0.0000000000
## X756 X756 0.000000000
## X757 X757 0.000000000
## X758 X758 0.0000000000
## X759 X759 0.000000000
## X760 X760 0.0000000000
## X761 X761 0.000000000
## X762 X762 0.0000000000
## X763 X763 0.000000000
## X764 X764 0.0000000000
## X765 X765 0.0000000000
## X766 X766 0.000000000
## X767 X767 0.000000000
## X768 X768 0.0000000000
## X769 X769 0.000000000
## X770 X770 0.0000000000
## X771 X771 0.0000000000
## X772 X772 0.0000000000
## X773 X773 0.000000000
## X774 X774 0.000000000
## X779 X779 0.0000000000
## X780 X780 0.000000000
## X781 X781 0.000000000
## X782 X782 0.0000000000
## X783 X783 0.0000000000
## X784 X784 0.0000000000
print(boost.og.cv)
## gbm(formula = label ~ ., distribution = "multinomial", data = train_df,
       n.trees = 500, interaction.depth = 1, shrinkage = 0.1, cv.folds = 5)
## A gradient boosted model with multinomial loss function.
## 500 iterations were performed.
## The best cross-validation iteration was 500.
## There were 784 predictors of which 565 had non-zero influence.
The best number of trees chosen by the boosted model using 5-fold CV on the PCA dataset is 454.
pred.boost.og.cv <- predict(boost.og.cv, newdata = test_df, n.trees=500)</pre>
pred.boost.og.cv <- apply(pred.boost.og.cv, 1, which.max) -1</pre>
(conf.boost <- table(pred.boost.og.cv, test_df$label))</pre>
   pred.boost.og.cv
                                                             7
                                                                        9
                                   2
                                        3
                                             4
                                                   5
                                                        6
                                                                  8
##
                   0
                      957
                             0
                                  11
                                        4
                                             1
                                                  9
                                                       12
                                                             2
                                                                 10
                                                                       10
##
                   1
                        0 1116
                                  5
                                                   0
                                                        4
                                                                        9
##
                   2
                        3
                             3
                                906
                                       20
                                             5
                                                  2
                                                        6
                                                            24
                                                                  8
                                                                        2
                                             2
                   3
                        1
                             2
                                  20
                                      904
                                                 37
                                                        1
                                                             9
                                                                 22
##
                                                                       15
                                 16
                   4
                        0
                             0
                                        2
                                           905
                                                 12
                                                       12
##
                                                            11
                                                                 11
                                                                       29
                   5
                        6
##
                                  0
                                       23
                                             3
                                                759
                                                       24
                                                                        6
                   6
                        8
                             4
                                  21
                                            13
                                                 22
                                                      888
                                                                        2
##
                                        4
                                                             1
                                                                 13
                   7
##
                                 16
                                                  11
                                                           938
                                       14
                                                                       19
```

```
##
                                        27
                                                   31
                                                         7
                                                                  857
                                                                        15
                                                              1
##
                   9
                         1
                              0
                                   5
                                        11
                                             40
                                                    9
                                                         0
                                                              32
                                                                       902
                                                                   17
(sum(conf.boost) - sum(diag(conf.boost))) /
  sum(conf.boost)
## [1] 0.0868
```

The misclassification rate is 8.38. 4-9 is still the most difficult pair to predict.

Logistic Regression

```
ProbabilityOfEachValue <- data.frame(predict(prob.zero, test.zero),</pre>
                                        predict(prob.one, test.one),
                                        predict(prob.two, test.two),
                                        predict(prob.three, test.three),
                                        predict(prob.four, test.four),
                                        predict(prob.five, test.five),
                                        predict(prob.six, test.six),
                                        predict(prob.seven, test.seven),
                                        predict(prob.eight, test.eight),
                                        predict(prob.nine, test.nine))
# Find the index with the highest probability predicted by the models for each class and store it in a
Label <- rep(NA, nrow(ProbabilityOfEachValue))
for (i in seq(nrow(ProbabilityOfEachValue)))
  Label[i] <- which.max(ProbabilityOfEachValue[i,]) - 1</pre>
}
(conf.log <- table(Label, pca.tst$label))</pre>
##
## Label
                        2
                             3
                                   4
                                        5
                                              6
                                                   7
                                                         8
                                                              9
##
       0
          948
                  0
                       14
                             4
                                   3
                                       19
                                             18
                                                   4
                                                        16
                                                              9
##
       1
             0
               1100
                       16
                             1
                                   3
                                        4
                                              4
                                                  10
                                                        17
                                                             10
       2
             4
                  3
                      844
                            22
                                   9
                                        7
                                             12
                                                  39
##
                                                        16
                                                             16
##
       3
             3
                  2
                       29
                           872
                                   1
                                       68
                                                        52
                                                             16
                                       21
##
       4
             1
                  0
                       13
                             1
                                 868
                                             15
                                                  15
                                                        10
                                                             76
##
       5
            10
                  3
                        5
                            43
                                  13
                                      679
                                             26
                                                        39
                                                              29
                                            878
                                                              0
##
       6
            8
                  4
                       30
                             4
                                  14
                                       25
                                                   1
                                                        16
       7
##
             1
                  1
                       19
                            19
                                   2
                                       15
                                              1
                                                 914
                                                         6
                                                             38
                                              2
##
       8
             5
                 22
                       45
                                       33
                                                   5
                                                       781
                                                             14
                            30
                                  12
                       17
                            14
                                       21
                                                  33
                                  57
                                              0
                                                        21
                                                            801
(sum(conf.log) - sum(diag(conf.log))) / sum(conf.log)
```

[1] 0.1315

The misclassification rate is 13.15%.

KNN

```
knn.pred \leftarrow knn(pca.tr[,-1], pca.tst[, -1], pca.tr[,1], k =5) # use CV the best k is 5
table(knn.pred, pca.tst[,1])
##
## knn.pred
                 0
                              2
                                    3
                                          4
                                                5
                                                      6
                                                            7
                                                                  8
                                                                        9
                        1
               971
                        0
                              5
##
            0
                                                      3
                                                            1
                                                                        1
                  1 1129
                              0
                                    2
                                                2
##
                                          0
                                                      4
                                                           16
                                                                        4
            1
                                                                  1
                                                3
##
            2
                  1
                        2 1002
                                    6
                                                      1
                                                           10
                                                                  3
                                                                        2
##
            3
                  1
                        1
                              0
                                 967
                                          0
                                                7
                                                      0
                                                            0
                                                                 12
                                                                        6
            4
                  0
                        0
                              0
                                       946
                                                0
                                                      2
                                                            1
##
                                    0
                                                                  3
                                                                       11
            5
                              2
##
                        0
                                   11
                                          0
                                             859
                                                      1
                                                            0
                                                                 12
                                                                        3
                  1
            6
                  4
                             3
                                                7
                                                   945
##
                        1
                                    0
                                          3
                                                            1
                                                                  4
                                                                        1
            7
##
                  1
                        0
                             12
                                    8
                                          1
                                                1
                                                         985
                                                                  3
                                                                        8
##
            8
                  0
                        1
                              8
                                   15
                                          1
                                                3
                                                      1
                                                            0
                                                               930
                                                                        9
##
            9
                  0
                              0
                                        31
                                                6
                                                      0
                                                           14
                                                                     964
                        1
                                    1
                                                                  5
knn.MCR <- mean(knn.pred != pca.tst[,1])</pre>
knn.MCR
```

[1] 0.0302

Clearly, with KNN method, the misclassification rate is 3.02%. 4-9 pair is the hardest one to predict.

SVM

```
pca.svm <- svm(label~., data = pca.tr, method="C-classification", kernal="radial", gamma= 0.1, cost=10)
svm.pred <- predict(pca.svm, pca.tst)</pre>
table(svm.pred, pca.tst[,1])
##
## svm.pred
                 0
                             2
                                   3
                                         4
                                              5
                                                    6
                                                          7
                                                                8
                                                                      9
                       1
##
           0
               973
                       0
                             4
                                   0
                                               2
                                                     5
                                                          1
                                                                      1
                             2
##
           1
                 0 1127
                                   0
                                         0
                                              0
                                                     3
                                                          3
                                                                0
                                                                      3
           2
                       2 1008
                                         2
                                              0
##
                 1
                                   5
                                                     1
                                                         11
                                                                      0
           3
                             5
                                989
                                         0
                                             13
                                                    0
                                                          0
                                                                      4
##
                 0
                       1
                                                                5
##
           4
                 0
                       0
                             0
                                   0
                                      960
                                              2
                                                                     13
##
           5
                 2
                       0
                             0
                                   4
                                         0
                                            865
                                                     4
                                                          0
                                                                2
                                                                      5
##
           6
                 1
                       1
                             1
                                   0
                                         3
                                               2
                                                  936
                                                          0
                                                                0
                                                                      1
           7
                             9
                                                                2
                                                                      7
##
                 1
                       1
                                   4
                                         0
                                               1
                                                        998
                                                     1
##
                 2
                       2
                             3
                                         2
                                               3
                                                                      3
           8
                                   5
                                                     4
                                                          1
                                                              955
                 0
                             0
                                                         10
                                                                    972
                       1
                                   3
                                        15
                                                    0
                                                                4
svm.MCR <- mean(svm.pred != pca.tst[,1])</pre>
svm.MCR
```

[1] 0.0217

Clearly, with SVM method, the misclassification rate is 2.17%. 4-9 pair is the hardest one to predict.