N [30]. When we have a branch point of ramification index N at t = 0, the corresponding curve is $t = x^N$, and the differential equation that governs the behavior of each S_{ij} on the t-plane is

$$\omega_{ij}t^{1/N}\frac{\partial t}{\partial \tau} = \exp(i\theta),\tag{5.6}$$

where $\omega_{ij} = \omega_i - \omega_j$ and

$$\omega_k = \exp\left(\frac{2\pi i}{N}k\right), \ k = 0, 1, \dots, N - 1.$$
 (5.7)

Then the solution for an S_{ij} is

$$t_{ij}(\tau) = \left(\frac{\tau}{\omega_{ij}}\right)^{N/N+1} \exp\left(\frac{N}{N+1}i\theta\right)$$
 (5.8)

after rescaling τ to absorb a real numerical coefficient. From the factor $1/\omega_{ij}$ we find N(N-1) walls, and the exponent $\frac{N}{N+1}$ makes the angles between the walls to be multiplied by the factor $\frac{N}{N+1}$ from the differences of $\arg(1/\omega_{ij})$'s. As in the N=2 case, the whole spectral network rotates by $\frac{2Nk\pi}{N+1}$ when we change θ from 0 to $2k\pi$. Consistency of a spectral network under this rotation requires N-1 additional walls and we have N^2-1 S-walls around the branch point. The indices of S-walls are determined by choosing the branch cut. Figures 5.1b, 5.1c shows spectral networks around a branch point of index 3 and 4, respectively.

5.1.3 Around a regular puncture of ramification index N

Let us first consider a regular puncture that carries an SU(2) flavor symmetry in the A_1 theory. The residue of the Seiberg-Witten differential at the puncture is the Cartan of the flavor symmetry, in this case a mass parameter m. Consider such a regular puncture at t = 0, having $m \neq 0$. Then the corresponding (local) Seiberg-Witten curve is

$$t = (v - m)(v + m) = v^{2} - m^{2}$$
(5.9)

and the Seiberg-Witten differential is $\lambda = \frac{v}{t}dt$. When we project the curve on the t-plane, we have one branch point of index 2 at $t = -m^2$ and one puncture at t = 0.

Figure 5.3: S-walls around an SU(2) puncture.

When $m \neq 0$, we can start with a spectral network from a branch point of index 2, as shown in Figure 5.3a. Note that one S-wall flows into the puncture, while the other two escape to infinity [19]. When $\theta = \theta_c$, where $\theta_c = \arg(m_1 - m_2) + \pi/2 = \arg(2m) + \pi/2$, closed S-walls can form around the puncture. This S-wall has a topology of a cylinder, with its boundaries lying along the S-walls on the two sheets. Therefore it corresponds to a BPS state carrying an SU(2) flavor charge. This is consistent with the fact that an $\mathcal{N} = 2$ vector multiplet corresponds to an M2-brane with a topology of a cylinder, and when we gauge the flavor symmetry the S-wall corresponds to a vector multiplet. Now consider the limit of $m \to 0$. Then the branch point moves toward the puncture as shown in Figure 5.3c, and when the two collide, we have a doublet of S-walls emanating from the puncture.

Let us then consider the puncture with an SU(N) flavor symmetry in the A_{N-1} theory.

Figure 5.4: S-walls forming a joint.

The curve around the puncture is described by

$$t = \prod_{i=1}^{N} (v - m_i), \tag{5.10}$$

where $\sum_i m_i = 0$ and the Seiberg-Witten differential is $\lambda = \frac{v}{t} dt$. Let us focus on the massless limit where t = 0 becomes the branch point of index N, in addition to being the puncture. The asymptotic behavior of the S-walls is obtained by solving

$$\int_0^t \omega_{ij} \frac{t'^{1/N}}{t'} dt' = e^{i\theta} \tau, \tag{5.11}$$

where we get $t(\tau) = \left(e^{iN\theta}/\omega_{ij}^N\right)\tau$ after rescaling real parameter τ . There are N-1 sets of asymptotic directions for a value of θ due to the factor $1/\omega_{ij}^N$, and along each direction N S-walls of same indices flow from the puncture. In total there are N(N-1) S-walls from the massless puncture.

5.1.4 BPS Joint of S-Walls

When we consider the spectral networks in (the compactification of) the A_{N-1} theory, N > 2, then there are more than two types of S-walls. When there is a set of n S-walls $S_{i_1i_2}, S_{i_2i_3}, \ldots, S_{i_ni_1}$, there can be a joint of the S-walls. This is because $\lambda_{i_1i_2} + \lambda_{i_2i_3} + \cdots + \lambda_{i_ni_1} = 0$ is satisfied at the joint such that it preserves supersymmetry.

Figure 5.4a shows the spectral network of the A_2 theory with two branch points of index 2, where we have S_{13} coming from the joint of S_{12} and S_{23} . Figure 5.4b illustrates