- (1) Review of classification 2) Classification metrics 3) k-NN, SVM, NB

- 3) Spam filter model!

Classification Models

Recap from Class/Module 1: In many settings, we want to estimate the probability of something happening

• This relates to classification (or *class probability estimation*).

• Today, we will discuss some widely used classification algorithms

Confusion matrices summarize classification performance

Picture of confusion matrix:

From sklearn (bank data example):

- Warning: some people flip axes (true = horizontal, predicted = vertical)
- Classifier Accuracy = $\frac{TN+TP}{TN+FN+TP+FP}$ = (correct classifications)/(all classifications)

A targeted marketing example

- Your data analysts have developed two classification models (A and B) to predict which customers will buy a new product (balanced)
- On a training data set of 1,000 samples, the models produce the confusion matrices below.

Example continued

- Suppose within the population that only 10% of customers actually buy the product
- On a data set of 1,000 samples representative of this population, the models produce the confusion matrices below.

Classification scores

- Classification models usually provide a *score* for each set of features (e.g., a potential customer in the targeted marketing example)
- In many settings, these scores are useful to rank alternatives
- Logistic regression illustration:

Using classification models to rank alternatives

- If our estimates of both (a) the class probabilities from a model and (b) costs (or profits) are accurate, making decisions using a classification model is usually straightforward:
 - E.g., "mail a catalog to the customer whenever the expected profit of doing so is positive"
 - o E.g., "offer medical treatment whenever the expected benefit (e.g., in QALYs) is positive"
- Even when this is not true, however, a classification model may nonetheless provide valuable information
- We can use a *single* classification model to generate a continuum of rules:
 - "Predict a 1 (e.g., buy) whenever the classification score is larger than a threshold T.
 Otherwise, predict a 0 (e.g., no buy)."
 - We can see how performance changes as we vary the threshold T

"ROC" curves provide a visualization of classification performance as we change the threshold

• Example from Module 1: bank data

	age	job	marital	education	default	balance	housing	loan	contact	campaign	previous	У
0	58	management	married	tertiary	no	2143	yes	no	unknown	1	0	no
1	44	technician	single	secondary	no	29	yes	no	unknown	1	0	no
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	1	0	no
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	1	0	no
4	33	unknown	single	unknown	no	1	no	no	unknown	1	0	no

ROC curve for the logistic regression model:

(logistic thresh = 0)

Threshold (T) = $-\infty$ Classify everything as a positive (1), i.e., nothing as a negative (0)

Properties of ROC curves

- ROC curves do not depend on the baseline positive rate
- The area under the curve (AUC) is a common summary statistic:
 - All else equal, a higher AUC is better
 - The AUC is equivalent to the probability that a randomly chosen positive (1) instance is ranked higher than a randomly chosen negative (0) instance

Which classification model would you choose?

Nearest neighbor ("k-NN") classification

- Nearest neighbor classification is an example of a non-parametric predictive model
- Basic idea:
 - Choose a positive integer k, which ranges from 1 to N (= size of training set)
 - Classification rule for a new instance: predict the majority target label from the k training points closest to the new instance

- How to choose k?
- Incredibly simple yet remarkably flexible! (Some caveats, though...)

A joke related to k-NN...

k-NN on the social ads data

• Original data:

• k-NN results on test data:

Pros and cons of nearest neighbor methods

- "Incredibly simple yet remarkably flexible! (Some caveats, though...)"
 - Three slides ago
- The caveats:

- 1. Interpretability
- 2. What does "distance" mean?
- 3. Computational complexity

Support vector machines (SVM)

• What line (or "linear discriminant") best separates this data?

Maximum margin classifier

• This data is linearly separable ("hard margin")

Data that is not linearly separable ("soft margin")

• There is a natural tradeoff between:

a) The width of the margin

b) The number of misclassified points, and how far they are from the margin

("hinge loss")

- The parameter C is the weight on component b) above (how do we choose?)
- This is effectively the same as Ridge regression with a different way of measuring errors

Nonlinear SVM

- We can augment SVM with nonlinear transformations of the training data ("the kernel trick") to obtain nonlinear classifiers
- Many such "kernels" are possible "radial basis" kernels are widely used and flexible
- In the social ads data, we use radial bases and tune the scale (γ) and the regularization strength (C) using grid search and cross validation

Results on test data (accuracy = 95%)

Support vectors (training data): 141 of them!

Example: classifying text as spam or not ("ham")

 Data from https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

• 5,572 text messages collected by National University of Singapore;

13.4% of these are spam

• Data frame, pre-cleaning:

 Can we use this data to build a classifier to predict whether a new message is ham or spam?

We can use Bayes' Rule to classify messages

• Probability that a given message is ham:
$$P(\text{Ham}|\text{Message}) = \frac{P(\text{Message}|\text{Ham})P(\text{Ham})}{P(\text{Message}|\text{Spam})P(\text{Spam}) + P(\text{Message}|\text{Ham})P(\text{Ham})}$$

Probability that a given message is spam:

$$P(Spam|Message) = \frac{P(Message|Spam)P(Spam)}{P(Message|Spam)P(Spam) + P(Message|Ham)P(Ham)}$$

• How can we estimate P(Message|Ham) and P(Message|Spam)?

Let's be naïve!

Probability of including words in message if ham

Probability of excluding all other words if ham

• We assume that:

P(Message M | Ham) =
$$\prod_{i \text{ in M}} P(W_i | Ham) \times \prod_{i \text{ not in M}} (1 - P(W_i | Ham))$$
and

$$P(Message M | Spam) = \prod_{i \text{ in } M} P(W_i | Spam) \times \prod_{i \text{ not in } M} (1 - P(W_i | Spam))$$

- Sometimes called a "bag of words" assumption (why "naïve?")
- Note: in the Module 3 video, we discussed Gaussian naïve Bayes: same idea, but the data are continuously distributed, not categorical

Last step: estimating word probabilities in ham & spam

• We make a "vocabulary" of all unique words (7,783 words) in data set then count how many times each word in vocabulary appeared in ham or spam messages

	Label	SMS	quickly	07099833605	lyrics	yrs	unlike	increase	closer	ne	kt	original	annoying	aiyo	largest	previews	some	finds
0	ham	[yep, by, the, pretty, sculpture]	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
1	ham	[yes, princess, are, you, going, to, make, me,	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
2	ham	[welp, apparently, he, retired]	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
3	ham	[havent]	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
4	ham	[i, forgot, 2, ask, ü, all, smth, there, s, a,	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
5 rows × 7785 columns																		

• Then we use:

$$P(w_i|Spam) = \frac{N_{w_i|Spam} + \alpha}{N_{Spam} + \alpha \cdot N_{Vocabulary}}$$

$$P(w_i|Ham) = \frac{N_{w_i|Ham} + \alpha}{N_{Ham} + \alpha \cdot N_{Vocabulary}}$$

Number of times word appears in spam messages

> Number of words across all spam messages

α is a "smoothing parameter"

Prediction quality

Incoming message!

Should we block or allow this message?

Looking ahead to next time (Class 4)

- Homework 3 due at 11:59pm on Monday, February 19
 - Main goals: practice your understanding of classification methods
 - TA support available over the long weekend
- Class 4:
 - Classification trees
 - Ensemble methods:
 - Bagging and "random forests"
 - Boosting