Investigate the exponential distribution in R and compare it with the CLT

Philip Wong

29/05/2022

Overview

In this project we will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. We will investigate the distribution of averages of 40 exponentials. Note that it will require 1000 simulations.

Simulations

Set the simulation variables lambda, exponentials, and seed.

```
ECHO=TRUE
set.seed(1337)
lambda = 0.2
exponentials = 40
```

Run Simulations with variables

```
simulation_Means = NULL
for (i in 1 : 1000) simulation_Means = c(simulation_Means, mean(rexp(exponentials, lambda)))
```

Sample Mean versus Theoretical Mean

```
mean(simulation_Means)
```

Sample Mean

[1] 5.055995

```
lambda^-1
```

Theoretical Mean

[1] 5

```
abs(mean(simulation_Means)-lambda^-1)
```

${\bf Comparison}$

[1] 0.05599526

Sample Variance versus Theoretical Variance

```
var(simulation_Means)
```

Sample Variance

[1] 0.6543703

```
(lambda * sqrt(exponentials))^-2
```

Theoretical Variance

[1] 0.625

```
abs(var(simulation_Means)-(lambda * sqrt(exponentials))^-2)
```

Comparison

[1] 0.0293703

Distribution

Plot of the Simulations

