Lecture Notes for Machine Learning in Python

Professor Eric Larson Logistic Regression

Class Logistics and Agenda

- Welcome back to lecture!
- Logistics
 - Nothing due this week
 - Next week: A3
- Agenda
 - Logistic Regression
 - Solving
 - Programming
 - Finally some real python!

Solving Logistic Regression

Setting Up Binary Logistic Regression

From flipped lecture:

$$p(y^{i}) | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{i}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w) = \frac{1}{1 + \exp(-w^{T}\chi^{(i)})}$$

$$p(y^{0}) = 0 | \chi^{(i)}, w)$$

$$p(y^{0}) = 0 | \chi^{(i)}, w)$$

$$p(y^{0}) = 0 | \chi^{(i)}, w$$

$$p(y^{0}) = 0 | \chi^{(i)}$$

Binary Solution for Update Equation

- Video Supplement (also on canvas):
 - https://www.youtube.com/watch?v=FGnoHdjFrJ8
- General Procedure:
 - Simplify L(w) with logarithm, I(w)

$$l(n) = \sum_{i} y^{i)} l_{i} g(n^{T} x^{(i)}) + (1 - y^{(i)}) l_{n} (1 - g(n^{T} x^{(i)}))$$

Take Gradient

$$= - \underbrace{\leq (g^{(i)} - g(w^{\mathsf{T}}\chi^{(i)})}_{i} \chi^{(i)}$$

Use gradient inside update equation for w

Binary Solution for Update Equation

Use gradient inside update equation for w

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{M} (y^{(i)} - g(x^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x^{(i)}$$

05. Logistic Regression.ipynb

Demo

Programming

Vectorization

Regularization

Multi-class extension

Other Tutorials:

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

For Next Lecture

- Next time: Gradient based optimization for logistic regression
- Next Next time: SVMs in-class assignment

Lecture Notes for Machine Learning in Python

Professor Eric Larson

Optimization Techniques for Logistic Regression

Class Logistics and Agenda

- Agenda
 - Numerical Optimization Techniques
 - Types of Optimization
 - Programming the Optimization
- Whirlwind Lecture Alert
 - Entire classes cover these concepts in expanded form
 - But you are smart enough to get them in one lecture!
 - Because science!

Gradient Descent Techniques

Last time

$$p(y^{(i)} = 1 \mid x^{(i)}, w) = \frac{1}{1 + \exp(w^T x^{(i)})}$$

$$l(w) = \sum_{i} \left(y^{(i)} \ln[g(w^{T} x^{(i)})] + (1 - y^{(i)})(\ln[1 - g(w^{T} x^{(i)})]) \right)$$

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{n} (y^{(i)} - g(x^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x^{(i)}$$

$$w \leftarrow w + \eta \left[\underbrace{\nabla l(w)_{old}}_{\text{old gradient}} - C \cdot 2w \right]$$

return gradient/float(len(y))

def get gradient(self,X,y):

Optimization: gradient descent

What we know thus far:

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \left[\left(\sum_{i=1}^{M} (y^{(i)} - g(x^{(i)})) x_j^{(i)} \right) - C \cdot 2w_j \right]$$

$$w \leftarrow w + \eta \nabla l(w)$$

Line Search: a better method

Line search in direction of gradient:

$$\eta \leftarrow \arg\max_{\eta} \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})^2 - C \cdot \sum_{j} w_j^2$$

$$w \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \underbrace{\eta}_{\text{best step?}} \nabla l(w)$$

Revisiting the Gradient

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w$$

M = number of instances

N = number of features

Self Test: How many multiplies per gradient calculation?

A. M*N+1 multiplications

B. (M+1)*N multiplications

C. 2N multiplications

D. 2N-M multiplications

Stochastic Methods

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w$$

Per iteration:

(M+1)*N multiplications 2M add/subtract

i chosen at random

Per iteration:

N+1 multiplications 1 add/subtract

Demo

Numerical Optimization

Gradient Descent (with line search)
Stochastic Gradient Descent

Optimization Techniques with the Hessian

Can we do better than the gradient?

Assume function is quadratic:

function of one variable:

$$w \leftarrow w - \left[\underbrace{\frac{\partial^2}{\partial w} l(w)}_{\text{inverse 2nd deriv}}\right]^{-1} \underbrace{\frac{\partial}{\partial w} l(w)}_{\text{derivative}}$$

will solve in one step!

what is the second order derivative for a multivariate function?

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Hessian

Assume function is quadratic:

function of one variable:

$$\mathbf{H}[l(w)] = \begin{bmatrix} \frac{\partial^2}{\partial w_1} l(w) & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_N} l(w) \\ \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_1} l(w) & \frac{\partial^2}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_N} l(w) \\ \vdots & & & \vdots \\ \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_1} l(w) & \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial^2}{\partial w_N} l(w) \end{bmatrix}$$

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Newton Update Method

Assume function is quadratic (in high dimensions):

$$w \leftarrow w - \left[\underbrace{\frac{\partial^2}{\partial w} l(w)}^{-1} \underbrace{\frac{\partial}{\partial w} l(w)}^{-1} \underbrace{\frac{\partial}{\partial$$

$$w \leftarrow w + \eta \cdot \underbrace{\mathbf{H}[l(w)]^{-1}}_{\text{inverse Hessian}} \cdot \underbrace{\nabla l(w)}_{\text{gradient}}$$

J. newlon'

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

$$H[k,j] = \frac{\partial}{\partial W_{k}} \frac{1}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - g(x^{(i)})) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - g(x^{(i)})) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} g(x^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} g(x^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial W_{k}} \frac{\partial}{\partial W_{k}} \left(\frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)} - \frac{\partial}{\partial W_{k}} (y^{(i)}) \chi_{j}^{(i)} \right)$$

$$= \frac{\partial}{\partial$$

The Hessian for Logistic Regression

 The hessian is easy to calculate from the gradient for logistic regression

Demo

Numerical Optimization

Newton's method

Problems with Newton's Method

- Quadratic isn't always a great assumption:
 - highly dependent on starting point
 - jumps can get really random!
 - near saddle points, inverse hessian unstable
 - hessian not always invertible...
 - or invertible with correct numerical precision

The solution: quasi Newton methods

- In general:
 - approximate the Hessian with something numerically sound and efficiently invertible
 - back off to gradient descent when the approximate hessian is not stable
 - use momentum to update approximate hessian
- A popular approach: use Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - which you can look up if you are interested ...

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

$$\mathbf{H}_0 = \mathbf{I}$$
 init

$$p_k = -\mathbf{H}_k^{-1} \nabla l(w_k)$$

get update direction

find next w
$$w_{k+1} \leftarrow w_k + \eta \cdot p_k$$

get scaled direction $s_k = \eta \cdot p_k$

$$v_k = \nabla l(w_{k+1}) - \nabla l(w_k)$$

approx gradient change

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \underbrace{\frac{v_k v_k^T}{v_k^T s_k}}_{\text{approx. Hessian}} - \underbrace{\frac{\mathbf{H}_k s_k s_k^T \mathbf{H}_k}{s_k^T \mathbf{H}_k s_k}}_{\text{momentum}}$$

update Hessian and inverse Hessian approx

$$\mathbf{H}_{k+1}^{-1} = \mathbf{H}_{k}^{-1} + \frac{(s_{k}^{T}v_{k} + \mathbf{H}_{k}^{-1})(s_{k}s_{k}^{T})}{(s_{k}^{T}v_{k})^{2}} - \frac{\mathbf{H}_{k}^{-1}v_{k}s_{k}^{T} + s_{k}v_{k}^{T}\mathbf{H}_{k}^{-1}}{s_{k}^{T}v_{k}}$$

k = k + 1 increment k and repeat

invertibility of H well defined / only matrix operations

Numerical Optimization

BFGS (if time) parallelization

For Next Lecture

- **Next time**: SVMs via in class assignment
- Next Next time: Neural Networks

Scratch Paper

Scratch Paper

Scratch Paper