28	28 Coherent monochromatic light illuminates two narrow parallel slits and the interference pattern								
	that results is observed on a screen some distance beyond the slits.								
	Wh	Which change increases the separation between the dark lines of the interference pattern?							
	A	using monochromatic light of higher frequency							
	В	using monochromatic light of a longer wavelength							
	С	decreasing the distance between the screen and the slits							
	D	increasing the distance between the slits							
29		Monochromatic light of wavelength 590 nm is incident normally on a diffraction grating. The angle between the two second-order diffracted beams is 43°.							
	Wh	What is the spacing of the lines on the grating?							
	Α	0.87 μm	В	1.6 µm	С	1.7 µm	D	3.2 µm	
30	Wh	Which equation is used to define resistance?							
	Α	power = $(current)^2 \times resistance$							
	В	resistivity = resistance \times area \div length							
	С	potential difference = current × resistance							
	D	energy = $(current)^2 \times resistance \times time$							

27 A wave of amplitude a has an intensity of $3.0 \,\mathrm{Wm^{-2}}$.

A 4.2 W m⁻²

B 6.0 W m⁻²

What is the intensity of a wave of the same frequency that has an amplitude 2a?

C 9.0 W m⁻²

D 12 W m⁻²