

FCC PART 15.249 TEST REPORT

For

Keeson Technology Corporation Limited

No. 158, QIUMAO ROAD, WANGJIANGJING, XIUZHOU DISTRICT, JIAXING, ZHEJIANG, CHINA

FCC ID: 2AK23RF368CA

Report Type:		Product Type:			
Original Report		Remote			
Test Engineer:	Chris Wang	C	hyis. Wang		
Report Number:	RKS170116001-00A				
Report Date:	2017-01-16				
Reviewed By:	Oscar Ye RF Engineer	0.	Scar Ye		
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn				

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	4
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	5
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
TEST EQUITITENT LIST	
FCC§15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION	10
APPLICABLE STANDARD	10
EUT Setup	10
TEST EQUIPMENT SETUP	11
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	12
FCC §15.215(C) – 20 DB BANDWIDTH TESTING	15
APPLICABLE STANDARD	15
Test Procedure	15

Report No.: RKS170116001-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Manufacturer	Keeson Technology Corporation Limited		
Tested Model	RF368C		
Series Model	RF368A,RF368B		
Product Type	Remote		
Dimension	$127 \text{ mm(H)} \times 51 \text{ mm(W)} \times 22.85 \text{ mm(T)}$		
Power input	3*battery AAA 1.5V		

Report No.: RKS170116001-00A

Objective

This type approval report is prepared on behalf of Keeson Technology Corporation Limited in accordance with Part 2-Subpart J, and Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.249 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.249 DXX submissions with FCC ID: 2AK23CU3582P.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Lab Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.249 Page 3 of 19

^{*}Note: The difference between tested model and series model was explained in the declaration letter.

^{*}All measurement and test data in this report was gathered from production sample serial number: 20161219005. (Assigned by BACL, Kunshan). The EUT was received on 2016-12-19.

Measurement Uncertainty

	Item	Uncertainty
RF conducte	ed test with spectrum	0.9dB
RF Output Po	wer with Power meter	0.5dB
	30MHz~1GHz	5.91dB
Dedicad emission	1GHz~6GHz	4.68dB
Radiated emission	6 GHz ~18 GHz	4.92dB
	18 GHz~40 GHz	4.88dB
Occup	ied Bandwidth	0.5kHz
Temperature		1.0℃
I	Humidity	6%

Report No.: RKS170116001-00A

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.249 Page 4 of 19

SYSTEM TEST CONFIGURATION

Justification

The system was configured in testing mode which was provided by manufacturer, 3 channels are provided for testing:

Report No.: RKS170116001-00A

Low Channel: 2403MHz, Middle Channel: 2442MHz, High Channel: 2480MHz

All of buttons trigger the same RF parameters (Contain bandwidth, power level, duty cycle).

EUT Exercise Software

The applicant approved two samples which used different firmware, one is CW mode, and the other is regular mode.

FCC Part 15.249 Page 5 of 19

Block Diagram of Test Setup

For Radiated Emissions (Below 1GHz):

For Radiated Emissions (Above 1GHz):

FCC Part 15.249 Page 6 of 19

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result		
§15.203	Antenna Requirement	Compliance		
§15.207(a)	Conduction Emissions	Not Applicable*		
15.205, §15.209, §15.249	Radiated Emissions& Out of Band Emission	Compliance		
§15.215 (c)	20 dB Bandwidth	Compliance		

Report No.: RKS170116001-00A

FCC Part 15.249 Page 7 of 19

^{*}Not Applicable: The EUT is battery operated equipment.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Rad	iated Emission Tes	st		
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-24
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-24
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-11
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-12-12	2017-12-11
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/
Haojintech	jintech Coaxial Cable		001	2016-12-12	2017-12-11
Haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-11
Haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-11
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-11
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-11
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17
	Rì	F Conducted Test		•	
Rohde & Schwarz	OSP120 Base Unit	OSP120	101247	2016-07-04	2017-07-03
BACL	EMC32 Version	EMC32	09106	/	/
Rohde & Schwarz	SMBV100A Vector Signal Generator	SMBV100A	261558	2016-07-04	2017-07-03
Rohde & Schwarz	SMB 100A Signal Generator	SMB100A	110390	2016-07-04	2017-07-03
Rohde & Schwarz	FSV40 Signal Analyzer	FSV40	101116	2016-07-04	2017-07-03
Keeson	RF Cable	N/A	N/A	2016-12-28	2017-12-27

Report No.: RKS170116001-00A

FCC Part 15.249 Page 8 of 19

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Report No.: RKS170116001-00A

Antenna Connector Construction

The EUT has a PCB antenna arrangement and antenna gain is 1dBi, which was permanently attached ,fulfill the requirement of this section, please refer to the EUT photos.

Result: Compliant.

FCC Part 15.249 Page 9 of 19

FCC§15.205, §15.209&§15.249- RADIATED EMISSIONS& OUT OF BAND EMISSION

Report No.: RKS170116001-00A

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902–928 MHz	50	500		
2400–2483.5 MHz	50	500		
5725–5875 MHz	50	500		
24.0–24.25 GHz	250	2500		

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

EUT Setup

Below 1 GHz:

FCC Part 15.249 Page 10 of 19

Above 1 GHz:

Report No.: RKS170116001-00A

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Test Equipment Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector	
30 MHz – 1000 MHz	30 MHz – 1000 MHz 120 kHz		120 kHz	QP	

Frequency Range	RBW	Video B/W Duty cycle		Detector
	1MHz	3 MHz	Any	PK
1GHz – 25GHz	1MHz	10 Hz	>98%	
	1MHz	1/T	<98%	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

FCC Part 15.249 Page 11 of 19

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RKS170116001-00A

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209 &15.205 & 15.249.

Test Data

Environmental Conditions

Temperature:	24.6°C
Relative Humidity:	52%
ATM Pressure:	101.2 kPa

The testing was performed by Chris Wang on 2017-01-13.

Test Mode: Transmitting (Scan with X-Axis, Y-Axis and Z-Axis position, the worst case Y-Axis was recorded)

FCC Part 15.249 Page 12 of 19

30MHz-25GHz:

Field Strength of Peak Emission

	Receiver			Rx An	tenna	Corrected	Corrected		FCC Part 15.249/205/209	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	
			Low Char	nnel (2403	3.00MHz)				
201.40	30.68	QP	271	1.0	V	-12.51	18.17	43.5	25.33	
654.90	29.02	QP	21	1.0	V	-3.61	25.41	46	20.59	
2403.00	96.58	PK	124	1.2	Н	-6.19	90.39	114	23.61	
2403.00	95.47	PK	103	1.8	V	-6.19	89.28	114	24.72	
2390.00	42.96	PK	142	2.3	Н	-6.22	36.74	74	37.26	
2390.00	42.95	PK	151	2	V	-6.22	36.73	74	37.27	
2400.00	50.58	PK	99	1.1	Н	-6.19	44.39	74	29.61	
2400.00	48.54	PK	102	1.5	V	-6.19	42.35	74	31.65	
4806.00	47.70	PK	265	1.6	Н	1.62	49.32	74	24.68	
4806.00	47.16	PK	278	1.4	V	1.62	48.78	74	25.22	
7209.00	39.15	PK	112	2.2	Н	7.55	46.70	74	27.30	
7209.00	39.23	PK	121	2.5	V	7.55	46.78	74	27.22	
			Middle Cha	annel (244	12.00MH	z)				
201.40	28.68	QP	271	1.0	V	-12.51	16.17	43.5	27.33	
654.90	31.37	QP	21	1.0	V	-3.61	27.76	46	18.24	
2442.00	97.25	PK	218	1.6	Н	-6.1	91.15	114	22.85	
2442.00	95.83	PK	186	1.9	V	-6.1	89.73	114	24.27	
4884.00	47.74	PK	307	1.8	Н	1.80	49.54	74	24.46	
4884.00	46.62	PK	319	1.1	V	1.80	48.42	74	25.58	
5965.00	44.35	PK	254	1.6	Н	3.97	48.32	74	25.68	
5965.00	43.29	PK	247	1.5	V	3.97	47.26	74	26.74	
6483.00	42.78	PK	198	2.1	Н	5.85	48.63	74	25.37	
6483.00	40.51	PK	175	1.9	V	5.85	46.36	74	27.64	
7326.00	39.42	PK	155	1.7	Н	7.67	47.09	74	26.91	
7326.00	39.10	PK	160	1.5	V	7.67	46.77	74	27.23	

Report No.: RKS170116001-00A

FCC Part 15.249 Page 13 of 19

Frequency (MHz)	Receiver			Rx Antenna		Corrected	Corrected		FCC Part 15.249/205/209	
	Reading (dBµV)	Detector (PK/QP/Ave.)	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dB µ V/m)	Margin (dB)	
			High Cha	nnel (2480	0.00MHz	:)				
201.40	29.54	QP	271	1.0	V	-12.51	17.03	43.5	26.47	
654.90	30.25	QP	21	1.0	V	-3.61	26.64	46	19.36	
2480.00	96.57	PK	284	1.2	Н	-6.01	90.56	114	23.44	
2480.00	96.25	PK	256	1.5	V	-6.01	90.24	114	23.76	
2483.50	45.42	PK	70	1.3	Н	-6.01	39.41	74	34.59	
2483.50	45.82	PK	65	1.6	V	-6.01	39.81	74	34.19	
4960.00	47.65	PK	83	2.2	Н	1.97	49.62	74	24.38	
4960.00	46.98	PK	80	2.3	V	1.97	48.95	74	25.05	
6844.00	44.37	PK	192	1.8	Н	6.89	51.26	74	22.74	
6844.00	42.89	PK	174	2.1	V	6.89	49.78	74	24.22	
7440.00	41.09	PK	63	2.6	Н	7.79	48.88	74	25.12	
7440.00	40.23	PK	72	1.9	V	7.79	48.02	74	25.98	

Report No.: RKS170116001-00A

Note:

Corrected Amplitude = Corrected Factor + Reading

Corrected Factor = Antenna factor (Rx) + cable loss – amplifier factor

Margin = Limit - Corr. Amplitude

The peak value is lower than the average limit, so field strength of average emission was not recorded.

FCC Part 15.249 Page 14 of 19

FCC §15.215(c) – 20 dB BANDWIDTH TESTING

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: RKS170116001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24.2°C	
Relative Humidity:	51 %	
ATM Pressure: 101.2kPa		

The testing was performed by Chris Wang on 2016-12-28.

Test Result: Compliant.

Please refer to following tables and plots

FCC Part 15.249 Page 15 of 19

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	2403.00	0.890	0.959
Middle	2442.00	0.890	0.951
High	2480.00	0.890	0.964

Report No.: RKS170116001-00A

20dB bandwidth Low Channel

Date: 28 DEC .2016 14:39:48

FCC Part 15.249 Page 16 of 19

20dB bandwidth Middle Channel

Report No.: RKS170116001-00A

Date: 28 DEC 2016 14:36:05

20dB bandwidth High Channel

Date: 28 DEC 2016 14:37:44

FCC Part 15.249 Page 17 of 19

99% Bandwidth Low Channel

Report No.: RKS170116001-00A

Date: 28 DEC 2016 14:41:08

99% Bandwidth Middle Channel

Date: 28 DEC 2016 14:42:33

FCC Part 15.249 Page 18 of 19

99% Bandwidth High Channel

Report No.: RKS170116001-00A

Date: 28 DEC 2016 14:43:49

***** END OF REPORT *****

FCC Part 15.249 Page 19 of 19