Development of a Frailty Risk Score Model

Shehbeel Arif

Drexel University College of Medicine Contact: shehbeelarif@gmail.com

Github: @shehbeel

Method

Muscle Biopsy RNA-Seq Data 58,283 RNA transcripts 80 Samples 41 Male, 39 Female 24 pre-frail (13 male, 11 female) 26 young (13 male, 13 female), 30 fit (15 male, 15 female) Data

Data Preprocessing

Map transcripts: 35,835 genes Remove lowly-expressed genes (counts < 10): 20,296 genes

DE Analysis

LFC > 1 or LFC < -1,p<0.05 222 genes

Feature Reduction

Recursive Feature Elimination

Estimator: Random Forest 10-fold CV CV-Score = 0.785 164 genes

Minimum Redundancy Maximum Relevance (MRMR)

Top 5-10 genes

Feature Selection

Multinomial Logistic Regression Classifier 5 genes

Model Development

DE Analysis

Volcano plot

EnhancedVolcano

Recursive Feature Elimination using Random Forest

GO Pathways (Molecular Function)

164 Genes

	Homo sapiens (REF)	upload_1 (Hierarchy) NEW! 3)					
GO molecular function complete	<u> </u>	#	expected	Fold Enrichment	<u>+/-</u>	raw P value	FDR
protein tyrosine kinase activator activity	<u>34</u>	<u>6</u>	.30	20.19	+	1.17E-06	5.92E-03
signaling receptor regulator activity	<u>567</u>	<u>17</u>	4.96	3.43	+	1.38E-05	3.49E-02

Minimum Redundancy Maximum Relevance (MRMR)

Top 5 genes

- Accuracy = 0.9
- AUC = 0.884

	frailty			
Predictors	Odds Ratios	CI	p	
(Intercept)	0.0007	0.0000 - 0.0262	<0.001	
HABP2	1.3626	1.0735 - 1.7295	0.012	
MYBPHL	1.2475	0.6636 - 2.3452	0.487	
TJP3	1.2777	1.0255 - 1.5918	0.029	
TEX56P	5.8360	1.8895 - 18.0252	0.003	
CCL14	1.2661	1.0500 - 1.5268	0.014	
Observations	80			

 R^2 / R^2 adjusted 0.676 / 0.655

Top 10 genes

- Accuracy = 0.95
- AUC = 0.942

	frailty			
Predictors	Odds Ratios	CI	p	
(Intercept)	0.0000	0.0000 - 0.0119	0.005	
EFNA5	0.9088	0.5795 - 1.4254	0.673	
HABP2	1.5961	1.0245 - 2.4866	0.039	
MYBPHL	1.2473	0.3812 - 4.0809	0.711	
TJP3	1.2752	0.9091 - 1.7886	0.156	
TEX56P	11.7245	1.1736 - 117.1343	0.036	
ACRP1	1.2960	0.1127 - 14.9076	0.833	
LRTM1	3.0851	0.6585 - 14.4552	0.150	
CCL14	1.5228	1.0408 - 2.2280	0.031	
SEMA3E	1.2113	0.7475 - 1.9629	0.431	
PDF	1.3758	1.0092 - 1.8757	0.044	
Observations	80			

Observations

 R^2/R^2 adjusted 0.815 / 0.795

Multinomial Logistic Regression Classifier

Accuracy: 0.95

AUC: 0.931

Model Equation:

LP = 0.000007422891 + (1.463481209314**HABP2*) + (1.432561618292**TJP3*) + (11.787795400887**TEX56P*) + (1.540721723569**CCL14*) + (1.324008646151**PDF*)

Frailty Risk Score = $1/(1+\exp(-LP))$

Score Range: [0,1.0]

	frailty			
Predictors	Odds Ratios	CI	p	
(Intercept)	0.0000	0.0000 - 0.0107	0.002	
HABP2	1.4635	1.0716 – 1.9986	0.017	
TJP3	1.4326	1.0968 - 1.8712	0.009	
TEX56P	11.7878	1.9031 - 73.0128	0.009	
CCL14	1.5407	1.1132 - 2.1324	0.010	
PDF	1.3240	1.0459 – 1.6760	0.020	

Observations 80

 R^2 / R^2 adjusted 0.761 / 0.741

Gene Expression

References

- Abbas, M., & El-Manzalawy, Y. (2020). Machine learning based refined differential gene expression analysis of pediatric sepsis. BMC medical genomics, 13(1), 122. https://doi.org/10.1186/s12920-020-00771-4
- Abraham, G., Malik, R., Yonova-Doing, E., Salim, A., Wang, T., Danesh, J., Butterworth, A. S., Howson, J. M. M., Inouye, M., & Dichgans, M. (2019). Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nature communications, 10(1), 5819. https://doi.org/10.1038/s41467-019-13848-1
- De Jay, N., Papillon-Cavanagh, S., Olsen, C., El-Hachem, N., Bontempi, G., & Haibe-Kains, B. (2013).
 mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics (Oxford, England), 29(18), 2365–2368. https://doi.org/10.1093/bioinformatics/btt383
- Grant, S. W., Collins, G. S., & Nashef, S. A. M. (2018). Statistical Primer: developing and validating a risk prediction model. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery, 54(2), 203–208. https://doi.org/10.1093/ejcts/ezy180
- Pavlou, M., Ambler, G., Seaman, S. R., Guttmann, O., Elliott, P., King, M., & Omar, R. Z. (2015). How to develop a more accurate risk prediction model when there are few events. BMJ (Clinical research ed.), 351, h3868. https://doi.org/10.1136/bmj.h3868
- Selby, J. V., & Fireman, B. H. (2021). Building Predictive Models for Clinical Care-Where to Build and What to Predict?. JAMA network open, 4(1), e2032539. https://doi.org/10.1001/jamanetworkopen.2020.32539