Search for Flavor Changing Neutral Currents in Top Quark Decays

B-Tagging Working Point and $e \rightarrow \gamma$ Fakes

Jason Barkeloo

September 12, 2019

Overview

Brief Background
The Top Quark
FCNC at the LHC

B-tagging Working Point Selection B-tagging Background Neural Network on B-tagging WPs

 $e
ightarrow \gamma$ Fake Rate: Initial Studies
Initial Studies
Basic 1D Fake Rate Scale Factor
2D Fake Rate Scale Factor

Outlook and Conclusions

Top Quark Decays in the SM

- ► $t \rightarrow bW \approx 99.83\%$
- ightharpoonup t
 ightarrow sW pprox 0.16%
- $ightharpoonup t
 ightarrow dW \approx 0.01\%$

- $ightharpoonup t o q_{u,c} X pprox 10^{-17} 10^{-12}$
- Limits on $t \rightarrow \gamma q$ processes: [JHEP 04 (2016) 035]
 - ► $t \to \gamma u < 1.3 \times 10^{-4}$
 - ► $t \to \gamma c < 1.7 \times 10^{-3}$

FCNC: What are we looking for? $t\bar{t} \to W(\to l\nu)b + q\gamma$

Will further investigate BJets here.

- Final state topology
 - One Neutrino, from W
 - ► One Lepton, from W
 - ► One B-jet, SM Top
 - One Photon, FCNC Top
 - ► One Jet, FCNC Top

B-tagging

- ▶ B Hadrons travel a measureable distance before decay
- Tracks originate from outside of interaction point (Seconday Vertex)
- Backtracking tracks in displaced vertex gives an impact parameter
- Decay chain MVA attempts to reconstruct decay of the jet
- Outputs of these algorithms used in a BDT to determine if a Jet is from a b-quark

Mv2c10

MV2c10 is used to tag b-jets. The c10 implies a 10% c-jet fraction in the background training sample. Can use various fixed-cut working points for b-jet identification.

Using a different working point can change which jets are identified as originating from b-quarks in the analysis.

JHEP 08 (2018) 89

Neural Network Reminder

Branching ratio with Significance = 2: 1.18e-5

Neural Network Results

Fake Rate Studies

Want to be able to correct the number of fake photons predicted in MC to those present in Data

Fake Rate Object Selection

- ► Want to calculate fake rate in events which could enter the signal region.
- ► Create 2 control regions: $Z \rightarrow ee$ and $Z \rightarrow e\gamma$
- ► Require:
 - ► Common Object Selection (MET, Jets, Triggers, etc.)
 - ► Exactly 1Bjet
 - ▶ $Z \rightarrow ee$: 2 Opposite Sign Electrons, 86.1 GeV $< m_{e^+e^-} < 96.1$ GeV
 - $lacktriangledown Z
 ightarrow e \gamma$:1 Electron, \geq 1 Photon, 86.1 GeV $< m_{e\gamma} <$ 96.1 GeV

Truth Study / Scale Factor

Catagories: Simple mis-match, mis-match to truth photon (Reco pt $\geq 10\%$ higher than truth), non prompt photon, prompt photons

$m_{ee}, m_{e\gamma}$

Data and MC

m_{e y}

Scale Factor

$$\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}} = rac{N_{e,\gamma}}{N_{e,e} + N_{e,\gamma}}$$
 $\mathsf{SF}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{FR}} = rac{\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{data}}}{\mathsf{FR}^{\mathsf{e} ext{-}\mathsf{fake}}_{\mathsf{MC}}}$

Basic Scale Factor can be calculated for the entire spectrum:

$$\begin{aligned} &\mathsf{FR}_{\mathsf{data}}^{\mathsf{e-fake}} = 0.201 \\ &\mathsf{FR}_{\mathsf{MC}}^{\mathsf{e-fake}} = 0.212 \\ &\mathsf{SF}_{\mathsf{FR}}^{\mathsf{e-fake}} = 0.953 \end{aligned}$$

Next Steps - 2D Fake Rate

Outlook

- As always, still lots to be done
- ► Fake Rates $e \to \gamma$ and $j \to \gamma$ are being investigated, $e \to \gamma$ shown here, $j \to \gamma$ to be investigated soon.
- Was able to squeak an extra factor of 2 out of Neural Network since I had to redo it for working points anyway
- ▶ Questions?

Backup

FCNC Diagrams

NN Input Variable Correlations

Neural Network Model Inputs

Separation = $\sum_{i}^{bins} \frac{n_{si} - n_{bi}}{n_{si} + n_{bi}}$

$mu+jets\ channel$

Variable	Separation
photon0iso	41.18
mqgam	28.27
photon0pt	24.07
mtSM	11.60
mlgam	7.56
deltaRjgam	5.64
deltaRbl	4.42
MWT	3.34
ST	3.30
nuchi2	3.12
jet0pt	2.81
njets	2.07
smchi2	1.89
wchi2	1.87
jet0e	1.52
deltaRlgam	1.17
leptone	0.87
deltaRjb	0.86
met	0.68
bjet0pt	0.52
leptoniso	0.27

e+iets channel

cnannei
Separation
23.14
22.73
18.70
11.02
9.53
5.00
4.60
3.83
3.16
2.47
1.70
1.59
1.40
1.33
1.09
0.88
0.85
0.56
0.50
0.47

Input Variables

```
['photon0iso', 'photon0pt', 'mqgam', 'mlgam', 'mtSM', 'deltaRjgam', 'deltaRbl', 'MWT', 'ST', 'njets', 'wchi2', 'jet0pt', 'deltaRlgam', 'leptone', 'met', 'bjet0pt']
```

Integrated Luminosity

A Couple BSM Diagrams

 R-parity-violating supersymmetric models
 [arXiv:hep-ph/9705341]

 Top-color-assisted technicolor models
 [arXiv:hep-ph/0303122]

Jets/AntiKT

$$d_{ij} = min(rac{1}{
ho_{ti}^2}, rac{1}{
ho_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{
ho_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ii}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ► If *d_{iB}* is the minimum i is labelled as a final jet and removed from the list of particles
- ▶ Repeat until all particles are part of a jet with distance between jet axes Δ_{ij} is greater than R

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$