6LoWPAN

IPv6 over IEEE 802.15.4

- IEEE 802.15.4 is great for low-power wireless PANs
- IPv6 is great for the Internet of Things
 - Developers know IP (and higher protocols) well
 - All kinds of link technologies supported
 - Large address space
- Why IPv6 on 802.15.4?
 - We would get all the advantages of IPv6
 - IP-based border routers can connect with other IP networks (no complex gateways needed to translate protocols)

IPv6 over IEEE 802.15.4: Challenges

Can we run IPv6 over 802.15.4 networks?

- **802.15.4**:
 - Maximum frame size 127 bytes
 - Maximum rate: 250kbit/s
- IPv6:
 - Minimum MTU: 1280 bytes
 - → Datagram fragmentation needed
 - Headers:
 - 802.15.4 frame header up to 25 bytes (without security)
 - IPv6 40 bytes
 - UDP 8 bytes, TCP 20 bytes
 - Some IPv6 mechanisms (such as neighbor discovery) use link-local multicast/broadcast: How to do that in a mesh network?

Refresher: IPv6 Header

Fixed header format

Offsets	Octet	0								1								2								3							
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0		Version Traffic Class											Flow Label																			
4	32		Payload Length Next Header Hop Lim														nit																
8	64		Course Address																														
12	96																																
16	128		Source Address																														
20	160																																
24	192																																
28	224														Do	otine	otion	n 4	dd	rooo													
32	256														De	Suria	luOr	I A	uar	ress													
36	288																																

Wikipedia

Refresher: IPv6 Addressing

- 128 bit
- Unicast addresses:
 - 64 bit for routing prefix and subnet id
 - 64 bit for interface identifier (IID; can be directly generated from the interface's MAC address)
 - Global: 2000:... 3FFF:...
 - Link-local: FE80:0:0:0:<IID>
- Multicast: FF......

Refresher: IPv6 Neighbor Discovery (ND)

- Used for:
 - Router discovery (find router forwarding packets)
 - Prefix discovery (find addresses using the prefix)
 - Address resolution (replacing ARP for IPv4)
 - Duplicate address detection
 - Parameter discovery (MTU,...)
 - •
- Relies on multicast messages (sent to all link-local addresses)
 - In a mesh network, not guaranteed that all nodes can be reached

6LoWPAN

- An adaptation layer on 802.15.4 for IPv6 compliance
 - 802.15.4 network typically run in unslotted mode (CSMA/CA) with a mesh topology
- Provides:
 - Header compression: leave out unnecessary IPv6 header fields as much as possible
 - Fragmentation: IPv6 packets fragmented to frames
 - Link layer forwarding in mesh networks
- Not only for 802.15.4, also power-line communication etc.

Stacked Headers

- Only include headers that are needed
- Some typical header configurations:

Hui et al. IPSO Alliance

Stacked Headers

- First byte ("dispatch byte") defines header type
 - 00xxxxxxx: not a 6LoWPAN frame
 - 01xxxxxxx: IPv6 header (source/destination addr., etc.)
 - 10xxxxxx: Mesh header (for multi-hop forwarding)
 - 11xxxxxxx: Fragment header (if packet is fragmented)

IPv6 Compression Header

- First byte of IPv6 Header:
 - 01 000001: uncompressed IPv6 header follows
 - 01 000010: HC1-compressed IPv6 header follows (RFC 4944)
 - 011 xxxxx: LOWPAN_IPHC (RFC 6282)

Addressing in HC1 Header

- Ideally:
 - First 64 bit of the IPv6 address are identical to the link-layer address of the 802.15.4 network
 - Last 64 bit (IID) of the IPv6 address are identical to the linklayer address (MAC address)
- In that case, all the information is already in the 802.15.4 frame header
 - No need to repeat them again in the HC1 header

HC1 Header

Basic Principle: assume default values unless the header explicitly says otherwise

UDP Header Compression with 6LoWPAN

- If HC2 bit is set, a HC2 byte immediately follows the HC1 byte (before the hop-limit field)
- +2 bytes for UDP checksum appended

0: length uncompressed

1: length derived from IPv6 payload length field

0: port not compressed (16 bits)

1: port compressed (4 bits + 0xf0b0)

Drawbacks of HC1

- HC1+HC2 compression reduce UPD+IPv6 header to 7 bytes in the best case
 - Best case: link-local unicast addresses -> all information is already in the 802.15.4 frame
- Advantage is lost if the 6LoWPAN device has to communicate with devices external to the 6LoWPAN: Routable addresses needed
 - Full prefix has to be specified: 64 bit
 - Full IID has to be specified: 64 bit
 - Same for multi cast to IPv6 addresses

LOWPAN_IPHC compression (RFC 6282)

- Replaces HC1 compression
- Uses remaining 5 bits of the dispatch byte + 8 extra bits
 - Bits 3+4: for Traffic Class and Flow Label
 - 00, 01, 10: uncompressed or typical configurations
 - 11: Traffic Class and Flow Label set to zero
 - Bit 5:
 - 0: Next-Header uncompressed (8 bit)
 - 1: Next-Header field is compressed and LOWPAN_NHC compression is used for next header
 - Bit 6+7:
 - 00: Hop Limit is uncompressed
 - 01,10,11: Hop Limit is 1, 64 or 255

LOWPAN_NHC

- Compression of various possible next-header values
- Example: UDP compression (similar to HC2)
 - Checksum can be dropped (packets must be checked in application layer)
 - Port number compression:
 - Full 16 bit
 - Port number is 8 bit + 0xf000
 - Port number is 4 bit + 0xf0b0

LOWPAN_IPHC compression

- Remaining 8 bit of the IPHC header control address compression
 - Separately for source and destination address
- Address compression can be stateless (like in HC1) or stateful ("context-based")

LOWPAN_IPHC stateless compression

- Addresses can be defined in
 - Full 128 bit
 - Lower 64 bit
 - Upper 64 bit = network prefix from the link layer
 - Lower 16 bit
 - Upper 112 bit = network prefix from the link layer::0000:00ff:fe00
 - No bits (full compression like HC1), using the link-layer header fields

LOWPAN_IPHC stateless multicast

- Special compression of multicast destination addresses:
 - Full 128 bit
 - 48 bit address of the form FFxx::00xx:xxxx:xxxx
 - 32 bit address of the form FFxx::00xx:xxxx
 - 8 bit address of the form FF02::00xx

LOWPAN_IPHC stateful compression

- The Neighbor Discovery protocol in 6LoWPAN allows to share "context" information between nodes (RFC 6775)
- Context
 - An address prefix of length 0 to 128 bits
 - Can refer to remote addresses or local addresses
 - Has a specific lifetime
- Source and destination addresses in LOWPAN_IPHC can specify which context to use
 - No context (stateless)
 - Context 0
 - 1 out of 16 possible contexts (for source and destination, in an extra 8 bit field)

LOWPAN_IPHC stateful compression (2)

- Contexts allow to compress frequently used address prefixes
- Context compression is stateful: nodes have to store the context definitions

Fragment Header

- IPv6 minimum MTU is 1280
- 6LoWPAN fragments packets that do not fit into frame

Mesh Addressing Header

- IEEE 802.15.4 frames can only be sent single hop
- If multi-hop mesh delivery is needed:
 - RFDs discover FDDs and send all their traffic to them
 - FDDs do forwarding and run a routing protocol to populate their routing tables
- With multi-hop, a packet has to carry two addresses:
 - The link address of the next hop
 - The link address of the original source and destination
 - Why?
 - Because the compressed IP header refers to it

Mesh Addressing Header

- 802.15.4 frame: specifies link-layer address of next hop
- Mesh Addressing Header specifies original/final link-layer address

