Exploration and Exploitation (Bandits)

(s,A,T, R,Y)

- What is Reinforcement Learning?
- What are the main challenges in Reinforcement Learning?

- Credit Assignment
- Generalization

- What is Reinforcement Learning?
- What are the main challenges in Reinforcement Learning?
- How do we categorize RL approaches?

Online Offline

On Policy Off Policy Batch Tabular Deep Model-free A, A Model-Free T, R Model-Based

First RL Algorithm:

First RL Algorithm:

Tabular Maximum Likelihood Model-Based Reinforcement Learning

First RL Algorithm:

Tabular Maximum Likelihood Model-Based Reinforcement Learning

loop choose action again experience estimate T, Rsolve MDP with T, R

Guiding Questions

• What are the best ways to trade off Exploration and Exploitation?

• Bernoulli Bandit with parameters θ

- Bernoulli Bandit with parameters θ
- $\theta^* \equiv \max \theta$

- Bernoulli Bandit with parameters θ
- $\theta^* \equiv \max \theta$

**According to Peter Whittle, "efforts to solve [bandit problems] so sapped the energies and minds of Allied analysts that the suggestion was made that the problem be dropped over Germany as the ultimate instrument of intellectual sabotage."

Greedy Strategy

$$ho_a = rac{ ext{number of wins} + 1}{ ext{number of tries} + 1}$$

Choose $\operatorname*{argmax}_{a} \rho_{a}$

- Explore then Commit Choose a randomly for k steps Then choose $\mathop{\rm argmax} \rho_a$
- ullet ϵ greedy With probability ϵ , choose randomly Otherwise choose $rgmax
 ho_a$

- Explore then Commit Choose a randomly for k steps Then choose $\mathop{\rm argmax} \rho_a$
- ullet ϵ greedy With probability ϵ , choose randomly Otherwise choose $rgmax
 ho_a$

- Explore then Commit Choose a randomly for k steps Then choose $\mathop{\rm argmax} \rho_a$
- ϵ greedy With probability ϵ , choose randomly Otherwise choose $rgmax
 ho_a$

- Explore then Commit Choose a randomly for k steps Then choose $\mathop{\rm argmax} \rho_a$
- ullet ϵ greedy With probability ϵ , choose randomly Otherwise choose $rgmax
 ho_a$

$$P(a) = \frac{e^{\lambda p_a}}{\sum_{i} e^{\lambda p_i}} \quad \frac{\lambda = 0}{\sum_{i} e^{\lambda p_i}}$$

- Softmax Choose a with probability proportional to $e^{\lambda \rho_a}$
- Upper Confidence Bound (UCB) Choose $rgmax
 ho_a + c \, \sqrt{rac{\log N}{N(a)}}$

- Softmax Choose a with probability proportional to $e^{\lambda \rho_a}$
- Upper Confidence Bound (UCB) Choose $rgmax
 ho_a + c \, \sqrt{rac{\log N}{N(a)}}$

Break

Discuss with your neighbor: Suppose you have the following *belief* about the parameters θ . Which arm should you choose to pull next?

Bayesian Estimation

Bayesian Estimation

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Distribution

 $Bernoulli(\theta)$

Discussion: Given that I have received w wins and l losses, what should my belief (probability distribution) about θ look like?

Bernoulli Distribution

 $Bernoulli(\theta)$

Discussion: Given that I have received w wins and l losses, what should my belief (probability distribution) about θ look like?

Bernoulli Distribution

 $Bernoulli(\theta)$

Discussion: Given that I have received w wins and l losses, what should my belief (probability distribution) about θ look like?

Bernoulli Distribution

Bernoulli Distribution

 $Bernoulli(\theta)$

Beta Distribution (distribution over Bernoulli distributions)

Bernoulli Distribution

 $Bernoulli(\theta)$

P(x) 1-0

Beta Distribution (distribution over Bernoulli distributions) $\operatorname{Beta}(\alpha,\beta)$

Bernoulli Distribution

 $Bernoulli(\theta)$

P(X) 1-0 X

Beta Distribution (distribution over Bernoulli distributions)

 $\mathrm{Beta}(\alpha,\beta)$

Given a Beta(1,1) prior distribution

Given a Beta(1,1) prior distribution

Given a Beta(1,1) prior distribution

The posterior distribution of heta is $\mathrm{Beta}(w+1,l+1)$

Given a Beta(1,1) prior distribution

The posterior distribution of heta is $\mathrm{Beta}(w+1,l+1)$

t = time a = arm pulled r = reward

• Quantile Selection Choose a for which the α quantile of $b(\theta)$ is highest

higher
$$\alpha = 0.9$$
 more optimistic

• Quantile Selection Choose a for which the α quantile of $b(\theta)$ is highest

- Quantile Selection Choose a for which the α quantile of $b(\theta)$ is highest
- Thompson Sampling Sample $\hat{\theta}$ from $b(\theta)$ Choose $\underset{a}{\operatorname{argmax}} \hat{\theta}_a$

 $\alpha = 0.9$

Optimal Algorithm - Dynamic Programming

Easier to Implement

Review

Optimal in limit andirected - E-Greedy - explore-commit - softmax & elpa $\lambda \rightarrow \infty$

Regret = ON-E4 O(N) O(N) $\mathcal{O}(N)$ O(log(N))

-UCB anguax $p_a + c \sqrt{\frac{\log N}{N(a)}}$

Bayesian - Quantile Selection -Thompson Sampling

- Dynamic Programming

Guiding Questions

• What are the best ways to trade off Exploration and Exploitation