N CHANNEL MOS AUDIO AMPLIFIER IN ANALOG CIRCUIT

Designing and implementing an N-channel MOSFET audio amplifier involves several steps, including circuit design, simulation, and hardware implementation. Below is a detailed guide on the process, including the use of software tools like Tinker CAD and Easy EDA.

Step 1: Understand the Circuit Design

An N-channel MOSFET audio amplifier typically involves:

- -Apower supply
- -Input signal (audio source)
- -MOSFET as the main amplification component
- -Biasing resistors
- -Capacitors for coupling and decoupling
- -Load(speaker)

Step 2: Circuit Schematic Design

Components Needed:

- 1.*N-channel MOSFET* (e.g., IRF540N)
- 2. *Resistors* (various values for biasing)
- 3. *Capacitors* (for coupling and bypassing)
- 4. *Audio input source*
- 5. *Power supply* (12V-24V DC, depending on the MOSFET and desired output power)
- 6. *Speaker*

Basic Circuit Layout:

- *Drain* of the MOSFET connects to the positive power supply through the load (speaker).
- -*Source* of the MOSFET is connected to ground.
- -*Gate*is biased using a voltage divider network.
- -*Coupling capacitor* connects the audio signal to the gate of the MOSFET.
- -*Bypass capacitor* is placed across the source resistor to stabilize the operating point.

Step 3: Simulation in Tinker CAD

- 1. *Create a New Project*: Log in to Tinker CAD and create a new project.
- 2. *Add Components*: Add a breadboard, MOSFET, resistors, capacitors, and other components from the components library.
- 3. *Connect Components*: Wire the components according to the schematic design.
- 4. *Simulate*: Run the simulation to check if the amplifier works correctly. Observe the output waveform using the oscilloscope tool within Tinker CAD.

RESULT OF TINKER CAD

Step 4: PCB Design in EasyEDA

- 1. *Create a New Project*: Log in to EasyEDA and create a new project.
- 2. *Draw Schematic*:
- -Use the schematic capture tool to draw the circuit diagram.
- Place the components and connect them according to the schematic.
- 3. *Design PCB Layout*:
 - -Convert the schematic to PCB.
- Place the components on the PCB layout.
- Route the traces manually or use the auto-router.

- Ensure proper grounding and trace width for power handling.
- 4. *Generate Gerber Files*: Once the design is complete, generate the Gerber files necessary for PCB manufacturing.

PCB CIRCUIT

3D CIRCUIT

Step 5: Hardware Implementation

- 1. *Procure Components*: Obtain the required components based on your design.
- 2. *Assemble on Breadboard*: Before moving to PCB, it is often useful to assemble the circuit on a breadboard to test functionality.
- 3. *Test*: Power up the circuit and test with an audio input. Use an oscilloscope to check the output waveform.
- 4. *Assemble on PCB*: If the breadboard test is successful, proceed to solder the components onto the PCB.
- 5. *Final Testing*: Perform final testing with the PCB assembled circuit. Connect it to the audio source and speaker to ensure it functions as expected.

Step-by-Step Procedure

- 1. *Schematic Design*:
 - -Use Easy EDA to create a schematic.
 - -Place components: MOSFET, resistors, capacitors.
 - -Connect components to form the amplifier circuit.

2. *Simulation*:

- -Simulate the circuit in Tinker CAD to verify the design.
- Make adjustments as needed based on simulation results.

3. *PCB Design*:

- Design the PCB layout in Easy EDA.
- Ensure proper placement of components and routing of traces.
 - Export Gerber files for manufacturing.

4. *Breadboard Testing*:

- -Assemble the circuit on a breadboard.
- Test with an actual audio signal.

5. *PCB Assembly*:

- -Solder components onto the fabricated PCB.
- Test the final assembly with audio input and a speaker.

6. *Final Adjustments*:

- Make any necessary adjustments to component values for optimal performance.
 - -Ensure the amplifier is stable and produces clear sound.

Group Candidates Are:

Salomi.s-BU22EECE0200006 Karthik.s-BU22EECE0200007 Pavankumar-BU22EECE0200014

Rakshitha-BU22EECE0200019