

Beschreibung

Konfiguration zum Ersatzschalten von räumlich getrennten Vermittlungssystemen

5 Zeitgemäße Vermittlungssysteme (Switch) verfügen durch redundantes Bereitstellen wichtiger interner Komponenten über ein hohes Maß an interner Betriebssicherheit. Damit wird im Normalbetrieb (d.h. störungsfreier Betrieb, also keine äußeren Einwirkungen, kein langandauernder Stromausfall, usw.) eine sehr hohe Verfügbarkeit der vermittlungstechnischen Funktionen erreicht. Treten jedoch massive äußere Einwirkungen auf (z.B. Feuer, Naturkatastrophen, Terroranschläge, kriegerische Einwirkungen etc.), so nutzen die getroffenen 10 Vorkehrungen zur Erhöhung der Betriebssicherheit in der Regel wenig, weil Original- und Ersatzkomponenten des Vermittlungssystems sich am gleichen Ort befinden und damit in einem solchen Katastrophenfall mit hoher Wahrscheinlichkeit beide Komponenten zerstört bzw. funktionsunfähig geworden sind.

15 20 Die Folge ist ein lang anhaltender Totalausfall, wie dies auch am 11. September 2001 in New York der Fall war. Hinzu kommen dann noch erhebliche logistische und technische Aufwendungen sowie in erheblichem Masse Expertenwissen, um in einem solchen Fall die ausgefallene Kommunikationsfunktion wieder bereitzustellen. Dies bedeutet in der Praxis, dass der tatsächliche Ausfall erheblich länger dauern kann, als dies 25 technisch notwendig gewesen wäre. Als Folge können finanzielle Verluste in enormer Größenordnung bis zur Lähmung der Wirtschaftsaktivitäten oder annäherndem Zusammenbruch der Infrastruktur gerade im Falle kleinerer Länder entstehen.

30 35 Diese Abhängigkeit/ Verwundbarkeit einer Organisation/ Gesellschaft von einer funktionierenden Kommunikation könnte Vermittlungssysteme zu einem attraktiven Ziel für terroristische Anschläge oder auch kriegerische Angriffe machen.

Als Lösung wird beim Stand der Technik eine geographische Redundanz vorgeschlagen, wonach ein redundantes Vermittlungssystem im Netz für eine Mehrzahl von Vermittlungssystemen vorzusehen ist (1:n Redundanz). Damit existiert aus Sicht der

5 Hardware ein komplettes, redundantes Vermittlungssystem, das sich im Normalfall im Zustand "offline" befindet und eine leere Datenbasis beinhaltet. Es ist so ausgelegt, dass es mit seiner Hardwarekonfiguration ein ausgesfallenes Vermittlungssystem ersetzen kann. Weist also eines der n Vermittlungssys-

10 teme einen Totalausfall auf, so wird auf die jüngste Sicherung seiner Datenbasis zurückgegriffen, und das redundante Vermittlungssystem wird mit dieser Datenbasis in Betrieb genommen. Nach erfolgreichem Hochfahren kann dieses die Funktion des ausgesunkenen Vermittlungssystems übernehmen.

15 Zwar wird mit diesem Vorschlag lediglich ein einziges redundantes Vermittlungssystem für weitere n Vermittlungssysteme benötigt, womit ein vergleichsweise geringer Aufwand des Netzbetreibers für die Bereitstellung einer geographischen

20 Redundanz erforderlich ist. Dieser Vorteil ist aber mit einer Reihe gravierender Nachteile verbunden:

So ist es zwingend erforderlich, dass die jüngste Sicherung der Datenbasis des ausgesunkenen Vermittlungssystems unver-

25 sehrft geblieben bzw. unversehrt zum Standort des redundanten Vermittlungssystems transferiert worden ist. Um dies zu erreichen, müssen im Normalbetrieb in kurzen zeitlichen Abständen (z.B. jede Woche) Abzüge der Datenbasen aller theoretisch zu ersetzenen Vermittlungssysteme zu dem redundanten Ver-

30 mittlungssystem transferiert werden oder schnell dorthin transferierbar sein. Dies bedeutet, wie auch immer es technisch gelöst wird, einen erheblichen Aufwand und damit erhebliche, regelmäßige anfallende Kosten.

35 Aber auch wenn die jüngste Sicherung der Datenbasis unver-sehrt eingespielt worden ist, wird dies in der Regel nie das hundertprozentige Abbild der Datenbasis des ausgesunkenen

Vermittlungssystems sein. So können in der Zwischenzeit seit der letzten Sicherung administrative/ konfigurative Veränderungen oder Teilnehmerselbsteingaben in die Datenbasis eingegeben worden sein, die jetzt fehlen. Gleiches gilt für die

5 für den Netzbetreiber wichtigen Gebühreninformationen. Besonders problematisch hieran ist, dass das Delta zwischen der beim Ausfall aktuellen Datenbasis und der Datenbasis der jüngsten Sicherung i.a. unbekannt ist und damit auch eine völlige Restaurierung nicht möglich ist. Damit besteht die
10 Gefahr, dass die gesicherte (alte) Datenbasis inkonsistent zu den Datenbasen der Partner Vermittlungssysteme sein kann, was gegebenenfalls zu einer vermittlungstechnischen Nichtbedienbarkeit von Teilnehmern und Trunks führt. Das erfolgreiche Hochfahren eines redundanten Vermittlungssystems stellt also
15 noch lange nicht seinen störungsfreien Betrieb bis auf Teilnehmer/ Leitungsebene sicher.

Zusätzlich kommt noch hinzu, dass das redundante Vermittlungssystem bei allen Erweiterungs- und Umbaumaßnahmen der
20 anderen Vermittlungssysteme mitbetrachtet werden muss. Es muß so aus- und aufgebaut sein, dass die Datenbasis der übrigen Vermittlungssysteme dort ohne Einschränkung oder Manipulation zugreifbar wird. Auch die Performanzanforderungen müssen durch das redundante Vermittlungssystem in gleicher Weise
25 oder besser abgedeckt werden. Dies alles bedeutet, dass der Netzbetreiber mit zusätzlicher Komplexität in der Netzplanung und im Engineering der Switches des Netzes konfrontiert ist, wobei er darüber hinaus noch an den gleichen Hersteller im Bereich der Redundanz-Einheit gebunden ist.

30 Der Erfindung liegt daher die Aufgabe zugrunde, eine Netzstruktur anzugeben, wie eine geographische Redundanz von Vermittlungssystemen weiterzubilden ist, um im Fehlerfall das effiziente Umschalten eines ausgefallenen Vermittlungssystems
35 auf einen Redundanzpartner sicherstellen zu können.

Diese Aufgabe wird ausgehend von den im Oberbegriff von Patentanspruch 1 angegebenen Merkmalen durch die im kennzeichnenden Teil beanspruchten Merkmale gelöst.

- 5 Ein wesentlicher Vorteil der Erfindung ist darin zu sehen, dass die Umschaltung schnell, sicher und automatisch geschieht, wobei es keine Rolle spielt, ob das ersatzzuschaltende Vermittlungssystem paketbasierte und/ oder TDM-basierte Schnittstellen aufweist. Dies wird dadurch erreicht, indem
- 10 jedem zu schützenden Vermittlungssystem ein identischer Klon als Redundanzpartner mit identischer Hardware, Software und Datenbasis zugeordnet ist. Der Klon befindet sich im hochgefahrenen Zustand, ist aber trotzdem vermittlungstechnisch nicht aktiv. Damit ist eine hochverfügbare, über mehrere Lokationen verteilte 1:1 Redundanz von Vermittlungssystemen definiert. Das aktive Vermittlungssystem und sein Redundanzpartner werden über das Paketnetz von einem abgesetzten, übereordineten realzeitfähigen (d. h. im Sekundenbereich) Monitor gesteuert. Dieser kann aus Hardware und/oder Software bestehen. Die Voraussetzung für eine möglichst sichere Lösung besteht hierbei in einer deutlichen räumlichen Trennung von aktivem Vermittlungssystem und seinem Redundanzpartner, des Managementsystems und des Monitors.
- 15
- 20
- 25 Ferner wird im Rahmen der Ersatzschaltung eine den Kommunikationspartnern sichtbare Adressänderung bedarfsweise vermieden. Dadurch entsteht eine nur kurze Nichtverfügbarkeit aus Sicht der Teilnehmer und Verbindungsleitungen, womit die Voraussetzung für das Retten stabiler Verbindungen im Rahmen der Ersatzschaltung geschaffen sind. Schließlich gehen nach Möglichkeit keine Gebührendaten und Teilnehmerselbsteingaben verloren, bzw. entstehen keine falsche Gebühren.
- 30
- 35 Ein weiterer Vorteil der Erfindung ist in der Einführung eines neuen "hot standby" Zustandes für Vermittlungssysteme zu sehen. Dieser ist durch das Vorhandensein einer aktuellen Datenbasis, aktive Applikationen, insbesondere vermittlungs-

technische Prozesse, sowie durch das Blockieren aller vermittelungstechnischer Interfaces des Klons nach aussen geprägt. Dies bedeutet, die volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Be-
5 arbeitung vermittelungstechnischer Anreize).

Grundsätzlich ist mit einer derartigen Lösung die Erfindung auch auf einen reinen Softswitch, einen reinen TDM Switch wie auch die ganze Spanne der Misch-Konfigurationen (Hybrid Swit-
10 che) anwendbar.

Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

15 Die Erfindung wird im folgenden anhand eines figürlich dargestellten Ausführungsbeispiels näher erläutert.

20 Es zeigen:

Figur 1 die Netzkonfiguration gemäss der Erfindung im Falle eines lokal redundanten Monitors

25 Figur 2 die Netzkonfiguration gemäss der Erfindung im Falle eines geographisch und lokal redundanten Monitors

In Fig. 1 ist eine Konfiguration gemäss der Erfindung aufgezeigt. Demgemäß ist vorgesehen, jedem zu schützenden Ver-
30 mittlungssystem (z. B. S₁) einen identischen Klon als Redun-
danzpartner (z. B. S_{1b}) mit identischer Hardware, Software
und Datenbasis zuzuordnen. Der Klon befindet sich im hochge-
fahrenen Zustand, ist aber trotzdem vermittelungstechnisch
nicht aktiv (Betriebszustand "hot standby"). Damit ist eine
35 hochverfügbare, über mehrere Lokationen verteilte 1:1 Redun-
danz von Vermittlungssystemen definiert.

Falls die Vermittlungssysteme S_1 , S_{1b} TDM Anteile aufweisen, ist zusätzlich mindestens eine Crossconnect-Vorrichtung CC erforderlich, die den gesamten TDM Verkehr zwischen Vermittlungssystem S_1 und redundantem Vermittlungssystem S_{1b} umschalten kann. Die TDM Strecken des Vermittlungssystems S_1 treten im Normalbetrieb am Punkt CC_1 der Crossconnect-Vorrichtung CC ein bzw. aus und am Punkt CC_a wieder aus bzw. ein. Die TDM Strecken des Vermittlungssystems S_{1b} treten am Punkt CC_{1b} in die Crossconnect-Vorrichtung CC ein bzw. haben dort in Rückrichtung ihren Ursprung. Eine Durchschaltung erfolgt jedoch nicht.

Beide Vermittlungssysteme (Vermittlungssystem S_1 und der Klon oder Redundanzpartner S_{1b}) werden gemäss Fig. 1 von demselben Netzwerkmanagementsystem NM gesteuert. Die Steuerung erfolgt derart, dass der aktuelle Stand von Datenbasis und Software beider Vermittlungssysteme S_1 , S_{1b} identisch gehalten wird. Dies wird erreicht, indem jedes betriebstechnische Kommando, jedes Konfigurationskommando und jedes Software-Update inklusive Patches identisch an beide Partner ausgebracht wird. Damit wird ein räumlich abgesetzter, identischen Klon zu einem in Betrieb befindlichen Switch mit identischer Datenbasis und identischem Softwarestand definiert.

Die Datenbasis beinhaltet grundsätzlich alle semipermanenten und permanenten Daten. Hierbei werden unter permanenten Daten die Daten verstanden, die als Code in Tabellen abgelegt sind und die sich nur per Patch oder Software-Update ändern lassen. Unter semipermanenten Daten werden die Daten verstanden, die z. B. über die Bedienerschnittstelle in das System gelangen und die für längere Zeit dort in der Form der Eingabe gespeichert sind. Mit Ausnahme der Konfigurationszustände des Systems werden diese Daten i.a. vom System nicht selbst verändert. Nicht in der Datenbasis enthalten sind die einen Ruf begleitenden transienten Daten, die das Vermittlungssystem nur kurzzeitig speichert und die über die Dauer eines Calls hinaus i.a. keine Bedeutung haben oder Zustandsinformationen,

die transiente Überlagerungen/ Ergänzungen von konfigurativ vorgegebenen Grundzuständen sind (So könnte ein Port zwar im Grundzustand aktiv sein, aber wegen einer transienten (vorübergehenden) Störung momentan nicht zugreifbar sein).

5

Im weiteren verfügen die Vermittlungssysteme S_1 , S_{1b} beide über mindestens ein aktives, paketorientiertes Interface zum gemeinsamen Netzwerkmanagementsystem NM. Dies sollen gemäss Fig. 1 die beiden Interfaces IF_1 sein. Die beiden Interfaces IF_1 nehmen dabei einen aktiven Betriebzustand ("act") ein. Während aber beim Vermittlungssystem S_1 auch alle verbleibenden paketorientierten Interfaces $IF_2 \dots IF_n$ aktiv sind, sind beim Vermittlungssystem S_{1b} hingegen die verbleibenden Interfaces im Betriebzustand "idle". Der Zustand "idle" bedeutet, dass die Interfaces keinen vermittlungstechnischen Nachrichtenaustausch erlauben, aber von außen, d.h. durch eine außerhalb von Vermittlungssystem S_1 und Vermittlungssystem S_{1b} gelegenen, übergeordneten realzeitfähigen Monitor aktiviert werden können. Der Monitor kann in Hardware und/oder Software realisiert sein, und schaltet im Fehlerfall in Realzeit auf den Klon um. Realzeit bedeutet hier eine Zeitspanne von wenigen Sekunden. Abhängig von der Qualität des Netzes kann auch eine höhere Umschalteerkennungszeitspanne definiert werden. Gemäss Fig. 1 ist der Monitor als Steuereinrichtung SC und aus Sicherheitsgründen gedoppelt (lokale Redundanz).

Die Interfaces I_n sind paketbasiert und stellen somit Kommunikationsschnittstellen zu paketbasierten Peripherieeinrichtungen (wie z. B. IAD, SIP Proxy-Einrichtungen), fernen paketbasierte Switches (S_x), paketbasierten Media Servern (MG) dar. Wie Fig. 1 entnommen werden kann, werden sie mittelbar von der Steuereinrichtung SC (Switch Controller, SC) gesteuert. Dies bedeutet, dass die Steuereinrichtung SC die Interfaces IF_n aktivieren und deaktivieren, und somit beliebig zwischen den Betriebszuständen "act" und "idle" hin- und herschalten kann.

Die Konfiguration gemäss Fig. 1 soll die Default Konfiguration darstellen. Dies bedeutet, dass Vermittlungssystem S_1 vermittlungstechnisch aktiv ist, während sich Vermittlungssystem S_{1b} sich in einem Betriebszustand "hot standby" befindet.

5 Dieser Zustand ist durch eine aktuelle Datenbasis und volle Aktivität aller Komponenten bis auf die paketbasierten Interfaces (und eventuell die Bearbeitung vermittlungstechnischer Anreize) geprägt. Das (geographisch redundante) Vermittlungssystem S_{1b} kann somit von der Steuereinrichtung SC durch Aktivierung der Interfaces $IF_{2..n}$ schnell in den vermittlungstechnisch aktiven Zustand überführt werden.

10

Falls vom Vermittlungssystem S_1 TDM Informationsströme gesendet/ empfangen werden, ist eine Crossconnect-Vorrichtung CC notwendig. Diese verfügt ebenfalls über (mindestens) ein paketbasiertes (jederzeit aktives) Interface IF_{cc} und ist sowohl mit dem Netzwerkmanagement NM als auch optional mit der Steuereinrichtung SC verbunden. Steuereinrichtung SC und Netzwerkmanagement NM haben jederzeit die Möglichkeit, die 15 Crossconnect-Vorrichtung CC umzuschalten (die Steuereinrichtung SC für den Normalfall, das Netzwerkmanagementsystem NM für Notfälle). Als wesentlicher Aspekt ist anzusehen, dass die beiden geographisch redundanten Vermittlungssysteme S_1 , S_{1b} sowie das Netzwerkmanagement NM und die gedoppelte Steuereinrichtung SC jeweils räumlich deutlich getrennt sein müssen.

20

25

Die Steuereinrichtung SC übermittelt dem Netzwerkmanagement NM regelmäßig oder bedarfsweise auf Anforderung den aktuellen 30 Betriebszustand der Vermittlungssysteme S_1 und S_{1b} (act/standby, Zustand der Interfaces) sowie den eigenen Betriebszustand. Die Funktionen der Steuereinrichtung SC können optional teilweise oder auch komplett vom Netzwerkmanagement NM durchgeführt werden. Aus Sicherheitsgründen sollte das Netzwerkmanagement NM die Funktion haben, die oben beschriebenen Umschaltungen auch manuell herbeiführen zu können. Optional 35

kann die automatische Umschaltung blockiert werden, so dass die Umschaltung nur manuell durchgeführt werden kann.

Die Vermittlungssysteme S_1 und S_{1b} können regelmäßig auch

5 selbst überprüfen, ob ihre paketbasierten Interfaces aktiv sind. Ist dies für die Interfaces $IF_{2..n}$ nicht der Fall, kann man indirekt auf den Zustand "hot standby" schließen und gezielt gewisse Alarme, die sich aus der Nicht-Verfügbarkeit der Interfaces $IF_{2..n}$ ergeben, blockieren. Weiterhin kann auf

10 diese Weise auch der Übergang eines Switches von "hot standby" auf "aktiv" erkannt werden. Dies ermöglicht, gegebenenfalls gezielte Maßnahmen beim Start des Vermittlungsverkehrs zu ergreifen.

15 Um das Umschalten von Vermittlungssystem S_1 auf Vermittlungssystem S_{1b} möglichst sicher und genau dann durchzuführen, wenn ein schwerwiegender Ausfall von Vermittlungssystem S_1 vorliegt, wird empfohlen, dass die paketbasierten Interfaces des Switches von selbst in den Zustand "idle" gehen, wenn sie

20 den Kontakt zu ihrer Zentral-Einheit (falls vorhanden) verloren haben.

Die Paket-Adressen (IP Adressen) der Interfaces $I_{2..n}$ des Vermittlungssystems S_1 und ihrer jeweiligen Partner Interfaces

25 von Vermittlungssystem S_{1b} können identisch sein, müssen es aber nicht. Wenn sie identisch sind, wird das Umschalten nur von vorgesetzten Routern bemerkt. Für die Partner-Applikation im Netz ist es dagegen völlig transparent. Man spricht in diesem Zusammenhang auch von der IP Failover Funktion. Falls das Protokoll, das ein Interface bedient, ein Umschalten des Kommunikationspartners auf eine andere Paket-Adresse erlaubt, wie dies z.B. beim H.248 Protokoll der Fall ist (ein Media Gateway kann selbstständig eine neue Verbindung zu einem anderen Media Gateway Controller mit anderer IP Adresse herstellen), können die IP Adressen auch unterschiedlich sein.

Falls das Umschalten von Vermittlungssystem S₁ auf Vermittlungssystem S_{1b} durch ein Netzproblem hervorgerufen wurde und Vermittlungssystem S₁ hardwaremäßig in Ordnung ist, ist das Umschalten ebenfalls die korrekte Maßnahme, weil Vermittlungssystem S₁ nicht mehr ausreichend erreichbar war und damit vermittlungstechnisch möglicherweise ein wesentlicher Ausfall vorlag. Die Steuereinrichtung SC sollte dabei möglichst so mit dem Netz verbunden sein, dass ein isolierter Ausfall der Verbindung des Vermittlungssystems S₁ zur Steuereinrichtung SC faktisch ausgeschlossen werden kann, während das Vermittlungssystem S₁ noch vermittlungstechnisch erreichbar ist. Die Umschaltung der Betriebszustände von Vermittlungssystem S₁ und Vermittlungssystem S_{1b} (act -> stb / stb -> act) kann auch durch die Zentralteile (CP) der Switches koordiniert werden.

In einer Ausgestaltung der Erfindung wird vorgesehen, als Steuereinrichtung SC den Zentralrechner eines weiteren Vermittlungssystems zu verwenden. Damit existiert dann eine Steuereinrichtung mit höchster Verfügbarkeit. Ferner kann die Funktionalität der Steuereinrichtung SC auf das reine Erkennen der Notwendigkeit des Ersatzschaltes reduziert werden. Damit wird die Initiierung des Umschaltens über das Netzwerkmanagement NM, also auf den Bediener verlagert, womit dann auch vorgelagerte Multiplexer und Crossconnect-Vorrichtungen nicht mehr von der Steuereinrichtung SC gesteuert werden müssen.

In einer Weiterbildung der Erfindung kommt die Etablierung einer unmittelbaren Kommunikationsschnittstelle zwischen Vermittlungssystem S₁ und Vermittlungssystem S_{1b} in Betracht. Diese kann zum Update der Datenbasis z. B. im Hinblick auf SCI -(Subscriber Controlled Input) und Gebühren-Daten genutzt werden sowie auch zum Austausch transienter Daten von einzelnen Verbindungen oder wesentlichen weiteren transienten Daten (z. B. H.248 Association Handle). Damit sind die Störungen des Betriebs aus Teilnehmer- und Betreibersicht minimierbar.

Die semipermanenten und transienten Daten können dann von dem jeweiligen aktiven Vermittlungssystem in das redundante standby Vermittlungssystem in einem zyklischen Zeitraster (Update) oder nach Ausfallende komplett übertragen werden.

5 Das Update der SCI-Daten hat den Vorteil, dass das zyklische Restore auf dem standby-System vermieden wird und jederzeit Aktualität bzgl. SCI Daten im standby System herrscht.

Durch das Update Stack-relevanter Daten, wie dem H.248 association handle, kann der Peripherie die Übernahme der Peripherie durch ein Ersatzsystem verborgen werden, und es können die Ausfallzeiten noch stärker reduziert werden.

10 Das Kontrollprotokoll zwischen Steuereinrichtung SC und Crossconnect-Einrichtung CC kann ein normales OAM Protokoll sein (z.B. SNMP) und kann dem vom Netzwerkmanagement NM entsprechen.

15 Im folgenden sei nun von einem schwerwiegenden Ausfall des Vermittlungssystem S_1 ausgegangen. Aufgrund der geographischen Redundanz ist mit hoher Wahrscheinlichkeit der Klon (Vermittlungssystem S_{1b}) ebenso nicht betroffen wie die Steuereinrichtung SC. Die Steuereinrichtung SC stellt den Ausfall von Vermittlungssystem S_1 fest, da hinreichend viele Interfaces von Vermittlungssystem S_1 nicht mehr antworten.

20 Die Steuereinrichtung SC schaltet nun auf das Bemerk des Ausfalls von Vermittlungssystem S_1 hin das geographisch redundante Vermittlungssystem S_{1b} in einen aktiven Betriebszustand und deaktiviert die Reste des ausgefallenen Vermittlungssystems S_1 . Dieses geht nach Reparatur/ recovery in den Betriebszustand "hot standby". Gegebenenfalls sind manuelle Eingriffe nötig, um beim Hochfahren von Vermittlungssystem S_1 die aktuelle Datenbasis von Vermittlungssystem S_{1b} zu laden.

25 Falls beide Steuereinrichtungen SC zerstört sind, kann das Umschalten auch vom Netzwerkmanagement NM aus manuell durchgeführt werden.

Dasselbe Verfahren funktioniert auch in den beiden Spezialfällen "reiner Softswitch" und "reiner TDM Switch". In erstem Fall muss man sich nur den Crossconnect-Vorrichtung CC und das zugehörige Handling wegdenken. In letzterem Fall gibt es nur ein paketbasiertes Interface, nämlich das zum Netzwerkmanagement NM. Entsprechend wird nur dieses Interface von der Steuereinrichtung SC überwacht und als Umschaltekriterium hergenommen. Aus Sicherheitsgründen sollte es für diese Anwendung physikalisch gedoppelt werden. Hat man einen reinen TDM Switch, der über gar kein paketbasiertes Interface verfügt, muss er um ein solches, physikalisch gedoppeltes Interface erweitert werden, das ausschließlich der Überwachung durch Steuereinrichtung SC dient.

15 Die erfindungsgemäße Lösung ist auch auf eine gestörte Kommunikation zwischen Vermittlungssystem S₁ und Steuereinrichtung SC anwendbar, solange das Vermittlungssystem S₁ noch als Plattform funktionsfähig ist. Die Steuereinrichtung SC erreicht das Vermittlungssystem S₁ über dieselben Router wie der Vermittlungsverkehr. Dazwischen liegt lediglich das IP core Netz. In diesem Fall hat die Steuereinrichtung SC keinen Kontakt zum Vermittlungssystem S₁, wohl aber zum Vermittlungssystem S_{1b}. Das Vermittlungssystem S₁ ist aber noch vermittlungstechnisch aktiv und hat Kontakt zu seinen vermittlungstechnischen Netzpartnern. Die Steuereinrichtung SC aktiviert nun nach Bemerken eines (vermeintlichen) Ausfalls von Vermittlungssystem S₁ das redundante Vermittlungssystem S_{1b}, kann aber Vermittlungssystem S₁ nicht deaktivieren.

30 Das Vermittlungssystem S₁ hat aktive Interfaces IF und beantwortet die ARP requests der ihm vorgelagerten Router. Vermittlungssystem S_{1b} hat aber auch aktive Interfaces IF und beantwortet die ARP requests seiner vorgelagerten Router.

35 Damit wären u. U. gleiche IP Adressen doppelt vergeben (Split Brain).

In Fig. 2 ist eine Weiterbildung gemäss der Konfiguration nach Fig. 1 aufgezeigt. Demgemäß sind zwei Steuereinrichtungen SC₁, SC₂ vorgesehen. Der Unterschied zu der in Fig. 1 aufgezeigten Konfiguration liegt im Vorsehen zweier Steuer-
5 einrichtungen SC₁ und SC₂, die an verschiedenen Orten unter-
gebracht sind. Die Steuereinrichtung SC besteht somit aus
zwei Hälften SC₁ und SC₂. Steuereinrichtung SC₁ ist mit Ver-
mittlungssystem S₁, S_{1b} und der redundanten Steuereinrichtung
SC₂ verbunden. Steuereinrichtungen SC₂ ist ebenso mit Ver-
10 mittlungssystem S₁, S_{1b} und der zu ihr redundanten Steuerein-
richtung SC₁ verbunden. Die beiden (räumlich getrennten)
Steuereinrichtungen SC₁ und SC₂ überwachen sich gegenseitig.

Patentansprüche

1. Vorrichtung zum Ersatzschalten eines Vermittlungssystems, dadurch gekennzeichnet,
- 5 dass jedem Vermittlungssystem (S_1) ein redundantes Vermittlungssystem (S_{1b}) als Redundanzpartner zugeordnet ist, die beide Zugriff auf ein Transportnetz haben,
dass ein Netzwerkmanagementsystem (NM) und mindestens ein realzeitfähiger Monitor (SC) vorgesehen sind, die in Wirkverbindung miteinander sowie mit jedem der Vermittlungssysteme (S_1), den jeweils redundanten Vermittlungssystemen (S_{1b}) und dem Transportnetz stehen.
- 10
- 15 2. Vorrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass das Vermittlungssystem (S_1) sowie das redundante Vermittlungssystem (S_{1b}) einen identischen Aufbau in Hardware und Software aufweisen.
- 20 3. Vorrichtung nach Anspruch 1, 2,
dadurch gekennzeichnet,
dass die Datenbasis des Vermittlungssystem (S_1) sowie des redundanten Vermittlungssystem (S_{1b}) im Hinblick auf permanente/ semipermanente Daten zu jedem Zeitpunkt im wesentlichen
25 identisch ist.
4. Vorrichtung nach Anspruch 1 bis 3,
dadurch gekennzeichnet,
dass die aus Vermittlungssystem (S_1), redundantem Vermittlungssystem (S_{1b}), Netzwerkmanagementsystem (NM) und dem mindestens einen Monitor (SC) ausgebildete Konfiguration über mehrere Lokationen verteilt ist.
- 30
- 35 5. Vorrichtung nach Anspruch 1 bis 4,
dadurch gekennzeichnet,
dass das Vermittlungssystem (S_1) und das jeweils redundante Vermittlungssystem (S_{1b}) paketbasierte Interfaces aufweisen.

6. Vorrichtung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
dass das redundante Vermittlungssystem (S_{1b}) einen Betriebs-
zustand (hot-standby) einnimmt, der durch das Vorhandensein
einer im wesentlichen aktuellen Datenbasis, aktive Applikati-
onen sowie durch das Blockieren aller vermittlungstechnisch
genutzten paketbasierten Interfaces nach aussen geprägt ist.
- 10 7. Vorrichtung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
dass die Paket-Adressen (IP-Adressen) der paketbasierten In-
terfaces des Vermittlungssystems (S_1) und der jeweiligen pa-
ketbasierten Partner Interfaces des redundanten Vermittlungs-
systems (S_{1b}) identisch sind.
- 15 8. Vorrichtung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
dass das Transportnetz mindestens eine durch NM oder SC steu-
erbare Crossconnect Vorrichtung (CC) zum Durchschalten von
TDM Verbindungen aufweist.
- 20 9. Vorrichtung nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet,
dass das Transportnetz eine unmittelbare Kommunikations-
schnittstelle zwischen Vermittlungssystem (S_1) und Vermitt-
lungssystem (S_{1b}) aufweist.
- 25 10. Monitor zum Überwachen und Schalten von Vermittlungssys-
temen, der bei Ausfall eines Vermittlungssystems in Realzeit
auf ein redundant zugeordnetes Vermittlungssystem umschaltet.
- 30 11. Mehrzahl von geographisch redundanten Monitoren nach An-
spruch 10, die sich gegenseitig überwachen und koordiniert
35 die Ersatzschaltung eines Vermittlungssystems in Realzeit auf
ein redundant zugeordnetes Vermittlungssystem vornehmen.

12. Mehrzahl von Monitoren gemäß Anspruch 11, die bei gestörter Interkommunikation keine Ersatzschaltung paarweise redundanter Vermittlungssysteme vornehmen.

1/2

FIG 1

2/2

