The condition $\sum_{i=1}^{n} y_i = 1$ is obviously necessary, as well as the conditions $y_i > 0$, for i = 1, ..., n. Conversely, if $\mathbf{1}^{\top} y = 1$ and y > 0, then $x_j = \log y_i$ for i = 1, ..., n is a solution. Since (*) implies that

$$x_i = \log y_i + \log \left(\sum_{i=1}^n e^{x_i} \right), \tag{**}$$

we get

$$y^{\top}x - f(x) = \sum_{i=1}^{n} y_{i}x_{i} - \log\left(\sum_{i=1}^{n} e^{x_{i}}\right)$$

$$= \sum_{i=1}^{n} y_{i}\log y_{i} + \sum_{i=1}^{n} y_{i}\log\left(\sum_{i=1}^{n} e^{x_{i}}\right) - \log\left(\sum_{i=1}^{n} e^{x_{i}}\right) \quad \text{by (**)}$$

$$= \sum_{i=1}^{n} y_{i}\log y_{i} + \left(\sum_{i=1}^{n} y_{i} - 1\right)\log\left(\sum_{i=1}^{n} e^{x_{i}}\right)$$

$$= \sum_{i=1}^{n} y_{i}\log y_{i} \qquad \text{since } \sum_{i=1}^{n} y_{i} = 1.$$

Consequently, if $f^*(y)$ is defined, then $f^*(y) = \sum_{i=1}^n y_i \log y_i$. If we agree that $0 \log 0 = 0$, then it is an easy exercise (or, see Boyd and Vandenberghe [29], Section 3.3, Example 3.25) to show that

$$f^*(y) = \begin{cases} \sum_{i=1}^n y_i \log y_i & \text{if } \mathbf{1}^\top y = 1 \text{ and } y \ge 0\\ \infty & \text{otherwise.} \end{cases}$$

Thus we obtain the negative entropy restricted to the domain $\mathbf{1}^{\top}y = 1$ and $y \geq 0$.

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable, then x^* maximizes $x^\top y - f(x)$ iff x^* minimizes $-x^\top y + f(x)$ iff

$$\nabla f_{x^*} = y,$$

and so

$$f^*(y) = (x^*)^\top \nabla f_{x^*} - f(x^*).$$

Consequently, if we can solve the equation

$$\nabla f_z = y$$

for z given y, then we obtain $f^*(y)$.

It can be shown that if f is twice differentiable, strictly convex, and surlinear, which means that

$$\lim_{\|y\| \to +\infty} \frac{f(y)}{\|y\|} = +\infty,$$