

Team Contest Reference Team: Romath

Roland Haase Thore Tiemann Marcel Wienöbst

Contents

1	DP		2			
•	1.1	LongestIncreasingSubsequence	2			
	1.2		3			
	1,2	Longestmereusingoubsequence	J			
2	2 DataStructures					
	2.1	Fenwick-Tree	3			
	2.2	Range Maximum Query	3			
	2.3	Trie	4			
	2.4		4			
	2.5		5			
3	Gra		5			
	3.1	2SAT	5			
	3.2	Breadth First Search	5			
	3.3	BellmanFord	6			
	3.4	Bipartite Graph Check	6			
	3.5	Maximum Bipartite Matching	6			
	3.6	Bitonic TSP	7			
	3.7	Single-source shortest paths in dag	7			
	3.8	Dijkstra	7			
	3.9	EdmondsKarp	7			
	3.10	Reference for Edge classes	8			
	3.11	FloydWarshall	8			
	3.12	Held Karp	8			
	3.13	Iterative DFS	9			
	3.14	Johnsons Algorithm	9			
	3.15	Kruskal	9			
	3.16	Min Cut	9			
	3.17	Prim	10			
	3.18	Recursive Depth First Search	10			
	3.19	Strongly Connected Components	11			
	3.20	Suurballe	11			
		Kahns Algorithm for TS				
	3.22	Topological Sort	12			
		Tuple				
		Reference for Vertex classes				
4	Mat	h 1	13			
	4.1	Binomial Coefficient	13			
	4.2	Binomial Matrix	13			
	4.3	Divisability	13			
	4.4	Graham Scan	13			
	4.5	Iterative EEA	14			
	4.6	Polynomial Interpolation	14			
	4.7	Root of permutation	15			
	4.8	Sieve of Eratosthenes	16			

	4.9	Greatest Common Devisor		16
	4.10	Least Common Multiple		16
	4.11	GEV		16
		-		
5	Miso	2	1	19
	5.1	•		
	5.2	Next number with n bits set \dots		19
	5.3	Next Permutation		19
	5.4	comparator in C++		20
	5.5	Mo's algorithm		20
_				
6	Stri			21
	6.1			
	6.2			
	6.3	•		
	6.4	Longest common substring		21
7	Mat	h	2	22
′	7.1			
	7.1			
	7.2	* *		
	7.3 7.4			
	7.4	-		
	7.5	•		
	1.3	1		
	7.6			
	7.6			
	7.7			
	7.8			
	7.9			
	7.11	Faltung		23
8	Java	Knowhow	2	23
Ü	8.1			23
	8.2	• • • • • • • • • • • • • • • • • • • •		
	8.3			
	0.5	opeca up 10 · · · · · · · · · · · · · · · · · ·		ل د
		n Runtime $100 \cdot 10^6$ in 3s	long (64 Bit, signed): $-2^{63}2^{63} - 1$	
		$\frac{10,11}{\mathcal{O}(n!)}$		
		$(10,11) \mathcal{C}(n)$ $< 22 \mathcal{O}(n2^n)$		
		· == · · · · · ·	3505	

n	Runtime $100 \cdot 10^{6}$ in 3s
[10, 11]	$\mathcal{O}(n!)$
< 22	$\mathcal{O}(n2^n)$
≤ 100	$\mathcal{O}(n^4)$
≤ 400	$\mathcal{O}(n^3)$
≤ 2.000	$\mathcal{O}(n^2 \log n)$
≤ 10.000	$\mathcal{O}(n^2)$
$\leq 1.000.000$	$\mathcal{O}(n \log n)$
$\leq 100.000.000$	$\mathcal{O}(n)$

byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767

integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647

MD5: cat < string>| tr -d [:space:] | md5sum

1 **DP**

1.1 LongestIncreasingSubsequence

Computes the length of the longest increasing subsequence and is easy to be adapted.

 $\label{linear} \textit{Input: array } arr \text{ containig a sequence of length } N \\ \textit{Output: } \text{length of the longest increasing subsequence in } arr$

```
1 // This has not been tested yet
2 // (adapted from tested C++ Murcia Code)
  public static int LISeasy(int[] arr, int N) {
    int[] m = new int[N];
    for (int i = N - 1; i >= 0; i--) {
      m[i] = 1; //init table
      for (int j = i + 1; j < N; j++) {</pre>
        // if arr[i] increases the length
        // of subsequence from array[j]
        if (arr[j] > arr[i])
10
           if (m[i] < m[j] + 1)
11
             // store lenght of new subseq
12
             m[i] = m[j] + 1;
13
14
    }
15
    // find max in array
16
    int longest = 0;
17
    for (int i = 0; i < N; i++) {</pre>
18
      if (m[i] > longest)
19
         longest = m[i];
20
21
22
    return longest;
23 }
```

MD5: 7561f576d50b1dc6262568c0fc6c42dd $| \mathcal{O}(n^2) |$

1.2 LongestIncreasingSubsequence

Computes the longest increasing subsequence using binary search.¹⁴ Input: array arr containing a sequence and empty array p of length.¹⁵ arr.length for storing indices of the LIS (might be usefull to have).¹⁶ Output: array s containing the longest increasing subsequence

```
public static int[] LISfast(int[] arr, int[] p) {
    // p[k] stores index of the predecessor of arr[k]
     // in the LIS ending at arr[k]
     // m[j] stores index k of smallest value arr[k]
     // so there is a LIS of length j ending at arr[k]
    int[] m = new int[arr.length+1];
     int l = 0;
     for(int i = 0; i < arr.length; i++) {</pre>
       // bin search for the largest positive j <= l</pre>
       // with arr[m[j]] < arr[i]</pre>
10
       int lo = 1;
11
       int hi = l;
12
       while(lo <= hi) {</pre>
13
         int mid = (int) (((lo + hi) / 2.0) + 0.6);
14
         if(arr[m[mid]] <= arr[i])</pre>
15
           lo = mid+1;
16
         else
17
           hi = mid-1;
18
19
       // lo is 1 greater than length of the
20
       // longest prefix of arr[i]
21
       int newL = lo;
22
       p[i] = m[newL-1];
23
       m[newL] = i;
24
       // if LIS found is longer than the ones
25
       // found before, then update l
26
       if(newL > l)
27
         l = newL;
28
29
     // reconstruct the LIS
    int[] s = new int[l];
```

```
int k = m[l];
for(int i= l-1; i>= 0; i--) {
    s[i] = arr[k];
    k = p[k];
}
return s;
}
```

MD5: $1d75905f78041d832632cb76af985b8e \mid \mathcal{O}(n \log n)$

2 DataStructures

2.1 Fenwick-Tree

Can be used for computing prefix sums.

```
//note that 0 can not be used
int[] fwktree = new int[m + n + 1];
public static int read(int index, int[] fenwickTree) {
   int sum = 0;
   while (index > 0) {
      sum += fenwickTree[index];
      index -= (index & -index);
   }
   return sum;
}
public static int[] update(int index, int addValue,
   int[] fenwickTree) {
   while (index <= fenwickTree.length - 1) {
      fenwickTree[index] += addValue;
      index += (index & -index);
   }
   return fenwickTree;
}</pre>
```

MD5: 410185d657a3a5140bde465090ff6fb5 | $\mathcal{O}(\log n)$

2.2 Range Maximum Query

11

12

13

14

process processes an array A of length N in $\mathrm{O}(N\log N)$ such that query can compute the maximum value of A in interval [i,j]. Therefore M[a,b] stores the maximum value of interval $[a,a+2^b-1]$.

Input: dynamic table M, array to search A, length N of A, start index i and end index j

Output: filled dynamic table M or the maximum value of A in interval [i,j]

MD5: db0999fa40037985ff27dd1a43c53b80 $\mid \mathcal{O}(N \log N, 1)$

2.3 Trie

```
public static boolean insert(TrieNode root, String
     char[] s = word.toCharArray();
     TrieNode node = root;
                                                                10
                                                                11
     for(int i = 0; i < s.length; ++i){</pre>
                                                               12
       int index = charToIndex(s[i]);
       if(node.children[index] == null){
                                                                13
         node.children[index] = new TrieNode(node);
                                                                14
                                                               15
10
       node = node.children[index];
                                                               16
11
                                                               17
12
     node.isEnd = true;
                                                               18
13
                                                               19
     return true;
                                                               20
15
                                                               21
                                                               22
17
  public static boolean search(TrieNode root, String
                                                               23
       word) {
                                                               24
     char[] s = word.toCharArray();
                                                               25
19
     TrieNode node = root;
20
                                                               27
     for(int i = 0; i < s.length; ++i){</pre>
21
                                                               28
       int index = charToIndex(s[i]);
22
                                                               29
       if(node.children[index] == null){
23
         return false;
24
25
       node = node.children[index];
26
                                                                32
27
28
29
     return node.isEnd;
  }
30
31
  public static int charToIndex(char c){
32
     return ((int) c - (int) a);
33
  }
34
35
36 static class TrieNode{
                                                                41
37
     boolean isEnd;
38
    TrieNode[] children;
39
     public TrieNode(){
41
       isEnd = false;
42
                                                                45
       children = new TrieNode[26];
43
                                                               46
    }
44
                                                                47
45 }
```

2.4 Union-Find

Union-Find is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets. UnionFind creates n disjoint sets each containing one element. union joins the sets x and y are contained in. find returns the representative of the set x is contained in.

Input: number of elements n, element x, element y

Output: the representative of element x or a boolean indicating whether sets got merged.

```
class UnionFind {
 private int[] p = null;
 private int[] r = null;
 private int count = 0;
 public int count() {
    return count:
 } // number of sets
 public UnionFind(int n) {
    count = n; // every node is its own set
    r = new int[n]; // every node is its own tree with
         height 0
    p = new int[n];
    for (int i = 0; i < n; i++)</pre>
      p[i] = -1; // no parent = -1
 public int find(int x) {
    int root = x;
    while (p[root] >= 0) { // find root
      root = p[root];
    while (p[x] >= 0) \{ // \text{ path compression } 
      int tmp = p[x];
      p[x] = root;
      x = tmp;
    return root;
  // return true, if sets merged and false, if already
       from same set
 public boolean union(int x, int y) {
    int px = find(x);
    int py = find(y);
    if (px == py)
      return false; // same set -> reject edge
    if (r[px] < r[py]) { // swap so that always h[px]
        ]>=h[py]
      int tmp = px;
      px = py;
      py = tmp;
    p[py] = px; // hang flatter tree as child of
        higher tree
    r[px] = Math.max(r[px], r[py] + 1); // update (
        worst-case) height
    count--;
    return true;
 }
```

}

2.5 Suffix array

```
#include<vector>
#include<string>
3 #include<algorithm>
s using namespace std;
                                                                72
vector<int> sa, pos, tmp, lcp;
8 string s;
9 int N, gap;
10
11 bool sufCmp(int i, int j) {
    if(pos[i] != pos[j])
12
       return pos[i] < pos[j];</pre>
13
    i += gap;
14
    j += gap;
15
    return (i < N && j < N) ? pos[i] < pos[j] : i > j;
16
17 }
18
19 void buildSA()
20 {
     N = s.size();
21
22
     for(int i = 0; i < N; ++i) {</pre>
23
       sa.push_back(i);
24
       pos.push_back(s[i]);
25
     tmp.resize(N);
26
27
     for(gap = 1;;gap *= 2) {
28
       sort(sa.begin(), sa.end(), sufCmp);
29
       for(int i = 0; i < N - 1; ++i) {</pre>
30
         tmp[i+1] = tmp[i] + sufCmp(sa[i], sa[i+1]);
31
32
       for(int i = 0; i < N; ++i) {</pre>
33
         pos[sa[i]] = tmp[i];
                                                                14
35
       if(tmp[N-1] == N-1) break;
36
37 }
39
  void buildLCP()
40
41
     lcp.resize(N);
     for(int i = 0, k = 0; i < N; ++i) {</pre>
42
       if(pos[i] != N - 1) {
43
         for(int j = sa[pos[i] + 1]; s[i + k] == s[j + k
44
              ];) {
45
            ++k;
         }
46
         lcp[pos[i]] = k;
47
         if (k) --k;
48
49
    }
50
51 }
52
53 int main()
54
     string r, t;
55
    cin >> r >> t;
56
     s = r + "§" + t;
57
    buildSA();
58
                                                                11
     buildLCP();
59
     for(int i = 0; i < N; ++i) {</pre>
60
       cout << sa[i] << "" << lcp[i] << endl;</pre>
61
62
    int mx = 0, mxi = -1;
63
    for(int i = 0; i+1 < s.size(); ++i) {</pre>
```

MD5: 96e0269748dc2834567a075768eb871a | $\mathcal{O}(?)$

3 Graph

3.1 2SAT

```
//We assume that ind(not a) = ind(a) + N, with N being
        the number of variables
  //could however be changed easily
  public static boolean 2SAT(Vertex[] G) {
    //call SCC
    double DFS(G);
    //check for contradiction
    boolean poss = true;
    for(int i = 0; i < S+A; i++) {</pre>
      if(G[i].comp == G[i + (S+A)].comp) {
        poss = false;
11
    }
12
    return poss;
13
  }
```

MD5: 6c06a2b59fd3a7df3c31b06c58fdaaf5 | $\mathcal{O}(V+E)$

3.2 Breadth First Search

Iterative BFS. Uses ref Vertex class, no Edge class needed. In this version we look for a shortest path from s to t though we could also find the BFS-tree by leaving out t. *Input:* IDs of start and goal vertex and graph as AdjList *Output:* true if there is a connection between s and q, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
    //make sure that Vertices vis values are false etc
    Queue<Vertex> q = new LinkedList<Vertex>();
    G[s].vis = true;
    G[s].dist = 0;
    G[s].pre = -1;
    q.add(G[s]);
    //expand frontier between undiscovered and
        discovered vertices
    while(!q.isEmpty()) {
      Vertex u = q.poll();
      //when reaching the goal, return true
      //if we want to construct a BFS-tree delete this
12
          line
      if(u.id = t) return true;
13
      //else add adj vertices if not visited
14
      for(Vertex v : u.adj) {
15
        if(!v.vis) {
```

```
v.vis = true;
           v.dist = u.dist + 1;
           v.pre = u.id;
           q.add(v);
21
      }
22
23
    //did not find target
24
    return false;
25
```

MD5: 71f3fa48b4f1b2abdff3557a27a9a136 $|\mathcal{O}(|V| + |E|)$

3.3 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
    //source is 0
    G[0].dist = 0;
    //calc distances
    //the path has max length |V|-1
    for(int i = 0; i < G.length-1; i++) {</pre>
       //each iteration relax all edges
       for(int j = 0; j < G.length; j++) {</pre>
         for(Edge e : G[j].adj) {
           if(G[j].dist != Integer.MAX_VALUE
10
           && e.t.dist > G[j].dist + e.w) {
11
             e.t.dist = G[j].dist + e.w;
12
13
         }
14
      }
15
16
17
    //check for negative-length cycle
    for(int i = 0; i < G.length; i++) {</pre>
18
       for(Edge e : G[i].adj) {
19
         if(G[i].dist != Integer.MAX_VALUE
20
             && e.t.dist > G[i].dist + e.w) {
21
22
           return true;
23
25
26
    return false;
27 }
```

MD5: d101e6b6915f012b3f0c02dc79e1fc6f | $\mathcal{O}(|V| \cdot |E|)$

16

17

Bipartite Graph Check 3.4

Checks a graph represented as adjList for being bipartite. Needs a²⁶ little adaption, if the graph is not connected.

Input: graph as adjList, amount of nodes N as int Output: true if graph is bipartite, false otherwise

```
public static boolean bipartiteGraphCheck(Vertex[] G){32
   // use bfs for coloring each node
   G[0].color = 1;
   Queue<Vertex> q = new LinkedList<Vertex>();
   q.add(G[0]);
   while(!q.isEmpty()) {
     Vertex u = q.poll();
     for(Vertex v : u.adj) {
       // if node i not yet visited,
      // give opposite color of parent node u
```

```
if(v.color == -1) {
        v.color = 1-u.color;
        q.add(v);
      // if node i has same color as parent node u
      // the graph is not bipartite
      } else if(u.color == v.color)
        return false;
      // if node i has different color
      // than parent node u keep going
  }
  return true;
}
```

MD5: e93d242522e5b4085494c86f0d218dd4 $|\mathcal{O}(|V| + |E|)$

3.5 **Maximum Bipartite Matching**

Finds the maximum bipartite matching in an unweighted graph us-

Input: An unweighted adjacency matrix boolean[M][N] with M nodes being matched to N nodes.

Output: The maximum matching. (For getting the actual matching, little changes have to be made.)

```
// A DFS based recursive function that returns true
  // if a matching for vertex u is possible
  boolean bpm(boolean bpGraph[][], int u,
              boolean seen[], int matchR[]) {
    // Try every job one by one
    for (int v = 0; v < N; v++) {
      // If applicant u is interested in job v and v
      // is not visited
      if (bpGraph[u][v] && !seen[v]) {
        seen[v] = true; // Mark v as visited
        // If job v is not assigned to an applicant OR
        // previously assigned applicant for job v
        // (which is matchR[v]) has an alternate job
        // available. Since v is marked as visited in
        // the above line, matchR[v] in the following
        // recursive call will not get job v again
        if (matchR[v] < 0 ||
        bpm(bpGraph, matchR[v], seen, matchR)) {
          matchR[v] = u;
          return true;
22
        }
      }
23
    }
    return false;
  // Returns maximum number of matching from M to N
  int maxBPM(boolean bpGraph[][]) {
    // An array to keep track of the applicants assigned
    // to jobs. The value of matchR[i] is the applicant
    // number assigned to job i, the value -1 indicates
    // nobody is assigned.
    int matchR[] = new int[N];
    // Initially all jobs are available
    for(int i = 0; i < N; ++i)</pre>
      matchR[i] = -1;
    // Count of jobs assigned to applicants
    int result = 0;
    for (int u = 0; u < M; u++) {
     // Mark all jobs as not seen for next applicant.
```

```
boolean seen[] = new boolean[N];
for(int i = 0; i < N; ++i)

seen[i] = false;

// Find if the applicant u can get a job

if (bpm(bpGraph, u, seen, matchR))

result++;

return result;

}</pre>
```

MD5: a4cc90bf91c41309ad7aaa0c2514ff06 | $\mathcal{O}(M\cdot N)$

3.6 Bitonic TSP

Input: Distance matrix d with vertices sorted in x-axis direction. Output: Shortest bitonic tour length

```
public static double bitonic(double[][] d) {
    int N = d.length;
    double[][] B = new double[N][N];
    for (int j = 0; j < N; j++) {
      for (int i = 0; i <= j; i++) {</pre>
         if (i < j - 1)
           B[i][j] = B[i][j - 1] + d[j - 1][j];
         else {
           double min = 0;
           for (int k = 0; k < j; k++) {
10
             double r = B[k][i] + d[k][j];
11
12
             if (min > r || k == 0)
               min = r;
13
14
           }
15
           B[i][j] = min;
16
                                                             21
17
      }
                                                             22
18
    }
                                                             23
    return B[N-1][N-1];
19
20
  }
```

MD5: 49fca508fb184da171e4c8e18b6ca4c7 $\mid \mathcal{O}(?)$

3.7 Single-source shortest paths in dag

Not tested but should be working fine Similar approach can be used a for longest paths. Simply go through ts and add 1 to the largest a longest path value of the incoming neighbors

```
public static void dagSSP(Vertex[] G, int s) {
    //calls topological sort method
    LinkedList<Integer> sorting = TS(G);
    G[s].dist = 0;
    //go through vertices in ts order
    for(int u : sorting) {
       for(Edge e : G[u].adj) {
        Vertex v = e.t;
         if(v.dist > u.dist + e.w) {
           v.dist = u.dist + e.w;
10
                                                             15
           v.pre = u.id;
11
                                                             16
         }
12
                                                             17
      }
13
                                                             18
    }
14
                                                             19
15
                                                             20
                                                             21
```

MD5: 552172db2968f746c4ac0bd322c665f9 | $\mathcal{O}(|V| + |E|)$

3.8 Dijkstra

Finds the shortest paths from one vertex to every other vertex in the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from result.

To get a different shortest path when edges are ints, add an $\varepsilon = \frac{1}{k+1}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessor vertices set.

```
public static void dijkstra(Vertex[] G, int s) {
  G[s].dist = 0;
  Tuple st = new Tuple(s, 0);
  PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
  q.add(st);
  while(!q.isEmpty()) {
    Tuple sm = q.poll();
    Vertex u = G[sm.id];
    //this checks if the Tuple is still useful, both
        checks should be equivalent
    if(u.vis || sm.dist > u.dist) continue;
    u.vis = true;
    for(Edge e : u.adj) {
      Vertex v = e.t;
      if(!v.vis && v.dist > u.dist + e.w) {
        v.pre = u.id;
        v.dist = u.dist + e.w;
        Tuple nt = new Tuple(v.id, v.dist);
        q.add(nt);
      }
    }
  }
}
```

MD5: e46eb1b919179dab6a42800376f04d7a $\mid \mathcal{O}(|E|\log|V|)$

3.9 EdmondsKarp

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
    int N = G.length;
    for(int i = 0; i < N; i++) {</pre>
      G[i].vis = false;
    Queue<Vertex> q = new LinkedList<Vertex>();
    G[s].vis = true;
    G[s].pre = -1;
    q.add(G[s]);
    while(!q.isEmpty()) {
      Vertex u = q.poll();
      if(u.id == t) return true;
      for(int i : u.adj.keySet()) {
        Edge e = u.adj.get(i);
        Vertex v = e.t;
        if(!v.vis && e.rw > 0) {
          v.vis = true;
          v.pre = u.id;
          q.add(v);
        }
22
```

```
return (G[t].vis);
25
26 }
27 //We store the edges in the graph in a hashmap
  public static int edKarp(Vertex[] G, int s, int t) {
    int maxflow = 0;
    while(BFS(G, s, t)) {
       int pflow = Integer.MAX_VALUE;
       for(int v = t; v!= s; v = G[v].pre) {
32
         int u = G[v].pre;
         pflow = Math.min(pflow, G[u].adj.get(v).rw);
34
35
       for(int v = t; v != s; v = G[v].pre) {
         int u = G[v].pre;
37
        G[u].adj.get(v).rw -= pflow;
38
         G[v].adj.get(u).rw += pflow;
39
40
      maxflow += pflow;
41
42
    }
43
    return maxflow;
44 }
```

MD5: 6067fa877ff237d82294e7511c79d4bc | $\mathcal{O}(|V|^2 \cdot |E|)$

3.10 Reference for Edge classes

Used for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
//for Kruskal we need to sort edges, use: java.lang.
       Comparable
  class Edge implements Comparable<Edge> {}
  class Edge {
    //for Kruskal it is helpful to store the start as
    //well, moreover we might not need the vertex class 13
    int s:
    int t;
                                                             15
    //for EdKarp we also want to store residual weights _{16}
10
    int rw;
11
12
                                                             18
    Vertex t;
13
                                                             19
    int w;
14
15
    public Edge(Vertex t, int w) {
16
      this.t = t:
17
      this.w = w:
18
      this.rw = w;
19
20
21
    public Edge(int s, int t, int w) {...}
22
23
    public int compareTo(Edge other) {
24
      return Integer.compare(this.w, other.w);
25
26
27 }
```

MD5: aae80ac4bfbfcc0b9ac4c65085f6f123 | $\mathcal{O}(1)$

3.11 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

```
public static void floydWarshall(int[][] graph,
int[][] next, int[][] ans) {
```

MD5: a98bbda7e53be8ee0df72dbd8721b306 | $\mathcal{O}(|V|^3)$

3.12 Held Karp

Algorithm for TSP

```
public static int[] tsp(int[][] graph) {
  int n = graph.length;
  if(n == 1) return new int[]{0};
  //C stores the shortest distance to node of the
      second dimension, first dimension is the
      bitstring of included nodes on the way
  int[][] C = new int[1<<n][n];</pre>
  int[][] p = new int[1<<n][n];</pre>
  //initialize
  for(int k = 1; k < n; k++) {</pre>
    C[1<< k][k] = graph[0][k];
  for(int s = 2; s < n; s++) {
    for(int S = 1; S < (1<<n); S++) {</pre>
      if(Integer.bitCount(S)!=S || (S&1) == 1)
           continue;
      for(int k = 1; k < n; k++) {</pre>
        if((S & (1 << k)) == 0) continue;
        //Smk is the set of nodes without k
        int Smk = S ^ (1<<k);</pre>
        int min = Integer.MAX_VALUE;
        int minprev = 0;
        for(int m=1; m<n; m++) {</pre>
          if((Smk & (1<<m)) == 0) continue;</pre>
           //distance to m with the nodes in Smk +
               connection from m to k
          int tmp = C[Smk][m] +graph[m][k];
          if(tmp < min) {</pre>
            min = tmp;
            minprev = m;
          }
        }
        C[S][k] = min;
        p[S][k] = minprev;
      }
    }
  }
  //find shortest tour length
  int min = Integer.MAX_VALUE;
  int minprev = -1;
  for(int k = 1; k < n; k++) {
    //Set of all nodes except for the first + cost
```

from 0 to k

```
int tmp = C[(1 << n) - 2][k] + graph[0][k];
      if(tmp < min) {</pre>
43
         min = tmp;
         minprev = k;
    }
48
    //Note that the tour has not been tested yet, only
         the correctness of the min-tour-value backtrack 17
         tour
    int[] tour = new int[n+1];
    tour[n] = 0;
    tour[n-1] = minprev;
    int bits = (1 << n) - 2;
    for(int k = n-2; k>0; k--) {
      tour[k] = p[bits][tour[k+1]];
      bits = bits ^ (1<<tour[k+1]);
57
    tour[0] = 0;
58
59
    return tour;
60 }
```

MD5: f3e9730287dcbf2695bf7372fc4bafe0 | $\mathcal{O}(2^n n^2)$

3.13 Iterative DFS

Simple iterative DFS, the recursive variant is a bit fancier. Not³ tested.

```
1 //if we want to start the DFS for different connected
      components, there is such a method in the
      recursive variant of DFS
public static boolean ItDFS(Vertex[] G, int s, int t){
    //take care that all the nodes are not visited at
        the beginning
    Stack<Integer> S = new Stack<Integer>();
    s.push(s);
    while(!S.isEmpty()) {
      int u = S.pop();
      if(u.id == t) return true;
      if(!G[u].vis) {
        G[u].vis = true;
10
11
        for(Vertex v : G[u].adj) {
12
          if(!v.vis)
13
            S.push(v.id);
14
15
16
    return false;
17
```

MD5: 80f28ea9b2a04af19b48277e3c6bce9e | $\mathcal{O}(|V| + |E|)$

3.14 Johnsons Algorithm

```
Gd[G.length] = S;
//bellman-ford to check for neg-weight-cycles and to
     adapt edges to enable running dijkstra
if(bellmanFord(Gd, s)) {
  System.out.println("False");
  //this should not happen and will cause troubles
  return null;
//change weights
for(int i = 0; i < G.length; i++)</pre>
  for(Edge e : Gd[i].adj)
    e.w = e.w + Gd[i].dist - e.t.dist;
//store distances to invert this step later
int[] h = new int[G.length];
for(int i = 0; i < G.length; i++)</pre>
 h[i] = G[i].dist;
//create shortest path matrix
int[][] apsp = new int[G.length][G.length];
//now use original graph G
//start a dijkstra for each vertex
for(int i = 0; i < G.length; i++) {</pre>
  //reset weights
  for(int j = 0; j < G.length; j++) {</pre>
    G[j].vis = false;
    G[j].dist = Integer.MAX_VALUE;
  dijkstra(G, i);
  for(int j = 0; j < G.length; j++)</pre>
    apsp[i][j] = G[j].dist + h[j] - h[i];
}
return apsp;
```

MD5: 0a5c741be64b65c5211fe6056ffc1e02 | $\mathcal{O}(|V|^2 \log V + VE)$

3.15 Kruskal

Computes a minimum spanning tree for a weighted undirected graph.

```
public static int kruskal(Edge[] edges, int n) {
    Arrays.sort(edges);
    //n is the number of vertices
    UnionFind uf = new UnionFind(n);
    //we will only compute the sum of the MST, one could
         of course also store the edges
    int sum = 0;
    int cnt = 0;
    for(int i = 0; i < edges.length; i++) {</pre>
      if(cnt == n-1) break;
      if(uf.union(edges[i].s, edges[i].t)) {
11
        sum += edges[i].w;
12
        cnt++;
      }
    }
    return sum;
```

MD5: 91a1657706750a76d384d3130d98e5fb | $\mathcal{O}(|E| + \log |V|)$

3.16 Min Cut

Calculates the min cut using Edmonds Karp algorithm.

```
public static void bfs(Vertex[] G, int s) {
       for(int i = 0; i < G.length; i++) {</pre>
    G[i].vis = false;
       Queue<Vertex> q = new LinkedList<Vertex>();
       q.add(G[s]);
       while(!q.isEmpty()) {
    Vertex u = q.poll();
    u.vis = true;
10
11
    for(int i : u.adj.keySet()) {
12
         Edge e = u.adj.get(i);
13
         if(e.rw == 0) continue;
14
         Vertex v = e.t;
15
         if(v.vis) continue;
16
         q.add(v);
17
18
      }
19
  }
20
21
  public static int minCut(Vertex[] G, int s, int t) {
22
       //get residual graph
23
       edmondsKarp(G, s, t);
24
       //find all vertices reachable from s
25
       bfs(G, s):
26
       int sum = 0;
27
       for(int i = 0; i < G.length; i++) {</pre>
28
    for(int j : G[i].adj.keySet()) {
29
         Edge e = G[i].adj.get(j);
30
         Vertex v = e.t;
31
         //if i is reachable and j not this is a cut edge
32
33
         if(G[i].vis && !G[j].vis) {
       //System.out.println((i+1) + " " + (j+1));
34
       sum += e.w;
35
36
37
    }
       }
38
       return sum;
39
40 }
```

MD5: 3f081f37a378d8dd750bfe8877e50a87 | $\mathcal{O}(?)$

13

3.17 Prim

```
//s is the startpoint of the algorithm, in general not 17
        too important; we assume that graph is connected
public static int prim(Vertex[] G, int s) {
                                                           18
    //make sure dists are maxint
                                                           19
    G[s].dist = 0;
                                                           20
    Tuple st = new Tuple(s, 0);
    PriorityQueue<Tuple> q = new PriorityQueue<Tuple>();
    q.add(st);
    //we will store the sum and each nodes predecessor
    int sum = 0;
10
11
    while(!q.isEmpty()) {
12
      Tuple sm = q.poll();
13
      Vertex u = G[sm.id];
14
      //u has been visited already
15
      if(u.vis) continue;
16
      //this is not the latest version of u
17
                                                           31
      if(sm.dist > u.dist) continue;
                                                           32
18
      u.vis = true;
```

MD5: c82f0bcc19cb735b4ef35dfc7ccfe197 | $\mathcal{O}(?)$

3.18 Recursive Depth First Search

Recursive DFS with different options (storing times, connected/unconnected graph). Needs testing.

Input: A source vertex s, a target vertex t, and adjlist G and the time (0 at the start)

//if we want to visit the whole graph, even if it is

Output: Indicates if there is connection between s and t.

```
not connected we might use this
public static void DFS(Vertex[] G) {
  //make sure all vertices vis value is false etc
  int time = 0;
  for(int i = 0; i < G.length; i++) {</pre>
    if(!G[i].vis) {
      //note that we leave out t so this does not work
           with the below function
      //adaption will not be too difficult though
      //time should not always start at zero, change
          if needed
      recDFS(i, G, 0);
  }
}
//first call with time = 0
public static boolean recDFS(int s, int t, Vertex[] G,
     int time){
  //it might be necessary to store the time of
      discovery
  time = time + 1;
  G[s].dtime = time;
  G[s].vis = true; //new vertex has been discovered
  //For cycle check vis should be int and 0 are not
      vis nodes
  //1 are vis nodes which havent been finished and 2
      are finished nodes
  //cycle exists iff edge to node with vis=1
  //when reaching the target return true
  //not necessary when calculating the DFS-tree
  if(s == t) return true;
  for(Vertex v : G[s].adj) {
    //exploring a new edge
    if(!v.vis) {
      v.pre = u.id;
      if(recDFS(v.id, t, G)) return true;
```

```
34  }
35  //storing finishing time
36  time = time + 1;
37  G[s].ftime = time;
38  return false;
39 }
```

MD5: 0829da7a5f49d16eeb886174e5d45213 $\mid \mathcal{O}(|V| + |E|)$

17

57

62

3.19 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer>
       sorting) {
     //compare with TS
                                                               21
     u.vis = true;
                                                               22
     for(Vertex v : u.out)
                                                               23
       if(!v.vis)
         fDFS(v, sorting);
                                                               25
     sorting.addFirst(u.id);
                                                               26
     return sorting;
                                                               27
9 }
11
public static void sDFS(Vertex u, int cnt) {
    //basic DFS, all visited vertices get cnt
13
                                                               31
    u.vis = true;
14
                                                               32
    u.comp = cnt;
15
                                                               33
     for(Vertex v : u.in)
16
17
       if(!v.vis)
                                                               35
         sDFS(v, cnt);
18
19
                                                               37
20
public static void doubleDFS(Vertex[] G) {
     //first calc a topological sort by first DFS
22
     LinkedList<Integer> sorting = new LinkedList<Integer 41
23
                                                               42
     for(int i = 0; i < G.length; i++)</pre>
                                                               43
       if(!G[i].vis)
25
                                                               44
         fDFS(G[i], sorting);
                                                               45
     for(int i = 0; i < G.length; i++)</pre>
27
                                                               46
       G[i].vis = false;
28
     //then go through the sort and do another DFS on \mathsf{G^{\Lambda}}_{48}
     //each tree is a component and gets a unique number 49
     int cnt = 0;
31
     for(int i : sorting)
                                                               50
       if(!G[i].vis)
33
                                                               51
         sDFS(G[i], cnt++);
34
35 }
```

MD5: 1e023258a9249a1bc0d6898b670139ea | $\mathcal{O}(|V| + |E|)$

3.20 Suurballe

Finds the min cost of two edge disjoint paths in a graph. If vertex₆₀ disjoint needed, split vertices.

Input: Graph G, Source s, Target t

Output: Min cost as int

```
public static int suurballe(Vertex[] G, int s, int t){
   //this uses the usual dijkstra implementation with
        stored predecessors

dijkstra(G, s);

//Modifying weights

for(int i = 0; i < G.length; i++)

for(Edge e : G[i].adj)

e.dist = e.dist - e.t.dist + G[i].dist;</pre>
```

```
//reversing path and storing used edges
int old = t;
int pre = G[t].pre;
HashMap<Integer, Integer> hm = new HashMap<Integer,</pre>
    Integer>();
while(pre != -1) {
  for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
    if(G[pre].adj.get(i).t.id == old) {
      hm.put(pre * G.length + old, G[pre].adj.get(i)
           .tdist);
      G[pre].adj.remove(i);
      break;
    }
  }
  boolean found = false;
  for(int i = 0; i < G[old].adj.size(); i++) {</pre>
    if(G[old].adj.get(i).t.id == pre) {
      G[old].adj.get(i).dist = 0;
      found = true;
      break;
    }
  }
  if(!found)
    G[old].adj.add(new Edge(G[pre], 0));
  old = pre;
  pre = G[pre].pre;
//reset graph
for(int i = 0; i < G.length; i++) {</pre>
  G[i].pre = -1;
  G[i].dist = Integer.MAX_VALUE;
  G[i].vis = false;
}
dijkstra(G, s);
//store edges of second path
old = t;
pre = G[t].pre;
while(pre != -1) {
  //store edges and remove if reverse
  for(int i = 0; i < G[pre].adj.size(); i++) {</pre>
    if(G[pre].adj.get(i).t.id == old) {
      if(!hm.containsKey(pre + old * G.length))
        hm.put(pre * G.length + old, G[pre].adj.get(
             i).tdist);
        hm.remove(pre + old * G.length);
      break;
  }
  old = pre;
  pre = G[pre].pre;
//sum up weights
int sum = 0;
for(int i : hm.keySet())
  sum += hm.get(i);
return sum;
```

MD5: 222dac2a859273efbbdd0ec0d6285dd7 $\mid \mathcal{O}(VlogV+E)$

3.21 Kahns Algorithm for TS

Gives the specific TS where Vertices first in G are first in the sorting

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer</pre>
    PriorityQueue<Vertex> p = new PriorityQueue<Vertex</pre>
         >();
    //inc counts the number of incoming edges, if they
         are zero put the vertex in the queue
    for(int i = 0; i < G.length; i++) {</pre>
      if(G[i].inc == 0) {
         p.add(G[i]);
         G[i].vis = true;
      }
    }
    while(!p.isEmpty()) {
11
      Vertex u = p.poll();
12
                                                              12
       sorting.add(u.id);
13
                                                              13
14
       //update inc
                                                              14
15
       for(Vertex v : u.out) {
         if(v.vis) continue;
16
         v.inc--;
17
         if(v.inc == 0) {
18
           p.add(v);
19
20
           v.vis = true;
21
         }
22
      }
23
24
    return sorting;
25
```

MD5: e53d13c7467873d1c5d210681f4450d8 | $\mathcal{O}(V+E)$

3.22 Topological Sort

```
public static LinkedList<Integer> TS(Vertex[] G) {
    LinkedList<Integer> sorting = new LinkedList<Integer</pre>
         >();
                                                             13
    for(int i = 0; i < G.length; i++)</pre>
       if(!G[i].vis)
         recTS(G[i], sorting);
       //check sorting for a -1 if the graph is not
           necessarily dag
       //maybe checking if there are too many values in
           sorting is easier?!
       return sorting;
9
  }
10
                                                             21
  public static LinkedList<Integer> recTS(Vertex u,
       LinkedList<Integer> sorting) {
    u.vis = true;
12
    for(Vertex v : u.adj)
13
       if(v.vis)
14
         //the -1 indicates that it will not be possible
15
             to find an TS
         //there might be a much faster and elegant way ( _{_{27}}
16
             flag?!)
         sorting.addFirst(-1);
17
18
         recTS(v, sorting);
19
                                                             31
    sorting.addFirst(u.id);
20
    return sorting;
21
22 }
```

MD5: f6459575bf0d53344ddd9e5daf1dfbb8 | $\mathcal{O}(|V| + |E|)$

3.23 Tuple

Simple tuple class used for priority queue in Dijkstra and Prim

```
class Tuple implements Comparable<Tuple> {
  int id;
  int dist;

public Tuple(int id, int dist) {
    this.id = id;
    this.dist = dist;
  }

public int compareTo(Tuple other) {
  return Integer.compare(this.dist, other.dist);
  }
}
```

MD5: fb1aa32dc32b9a2bac6f44a84e7f82c7 | $\mathcal{O}(1)$

3.24 Reference for Vertex classes

Used in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
  int id;
  boolean vis = false;
  int pre = -1;
  //for dijkstra and prim
  int dist = Integer.MAX_VALUE;
  //for SCC store number indicating the dedicated
      component
  int comp = -1;
  //for DFS we could store the start and finishing
      times
  int dtime = -1;
  int ftime = -1;
  //use an ArrayList of Edges if those information are
  ArrayList<Edge> adj = new ArrayList<Edge>();
  //use an ArrayList of Vertices else
  ArrayList<Vertex> adj = new ArrayList<Vertex>();
  //use two ArrayLists for SCC
  ArrayList<Vertex> in = new ArrayList<Vertex>();
  ArrayList<Vertex> out = new ArrayList<Vertex>();
  //for EdmondsKarp we need a HashMap to store Edges,
      Integer is target
  HashMap<Integer, Edge> adj = new HashMap<Integer,</pre>
      Edge>();
  //for bipartite graph check
  int color = -1;
  //we store as key the target
  public Vertex(int id) {
    this.id = id;
  }
}
```

4 Math

4.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
   if (k == 0)
     return 1;
   else if (k > n/2)
     return bin(n, n-k);
   else
   return n*bin(n-1, k-1)/k;
   }
```

MD5: 32414ba5a444038b9184103d28fa1756 | $\mathcal{O}(k)$

4.2 Binomial Matrix

Gives binomial coefficients for all $K \le N$.

```
public static long[][] binomial_matrix(int N, int K) {
    long[][] B = new long[N+1][K+1];
    for (int k = 1; k <= K; k++)
        B[0][k] = 0;
    for (int m = 0; m <= N; m++)
        B[m][0] = 1;
    for (int m = 1; m <= N; m++)
        for (int k = 1; k <= K; k++)
        B[m][k] = B[m-1][k-1] + B[m-1][k];
    return B;
        return B;
```

MD5: e6f103bd9852173c02a1ec64264f4448 | $\mathcal{O}(N \cdot K)$

4.3 Divisability

Calculates (alternating) k-digitSum for integer number given by 32 M.

```
public static long digit_sum(String M, int k, boolean 35
      alt) {
    long dig_sum = 0;
                                                            37
    int vz = 1;
                                                            38
    while (M.length() > k) {
      if (alt) vz *= -1;
      dig_sum += vz*Integer.parseInt(M.substring(M.
                                                            41
           length()-k));
      M = M.substring(0, M.length()-k);
                                                            42
    }
    if (alt)
10
      vz *= -1;
11
    dig_sum += vz*Integer.parseInt(M);
12
    return dig_sum;
13 }
14
15 // example: divisibility of M by 13
                                                            49
public static boolean divisible13(String M) {
    return digit_sum(M, 3, true)%13 == 0;
17
                                                            51
18 }
                                                            52
                                                            53
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 | $\mathcal{O}(|M|)$

4.4 Graham Scan

11

12

13

15

16

Multiple unresolved issues: multiple points as well as collinearity. N denotes the number of points

```
public static Point[] grahamScan(Point[] points) {
  //find leftmost point with lowest y-coordinate
  int xmin = Integer.MAX_VALUE;
  int ymin = Integer.MAX_VALUE;
  int index = -1;
  for(int i = 0; i < points.length; i++) {</pre>
    if(points[i].y < ymin || (points[i].y == ymin &&</pre>
        points[i].x < xmin)) {</pre>
      xmin = points[i].x;
      ymin = points[i].y;
      index = i;
    }
  }
  //get that point to the start of the array
  Point tmp = new Point(points[index].x, points[index
      1.v);
  points[index] = points[0];
  points[0] = tmp;
  for(int i = 1; i < points.length; i++)</pre>
    points[i].src = points[0];
  Arrays.sort(points, 1, points.length);
  //for collinear points eliminate all but the
      farthest
  boolean[] isElem = new boolean[points.length];
  for(int i = 1; i < points.length-1; i++) {</pre>
    Point a = new Point(points[i].x - points[i].src.x,
         points[i].y - points[i].src.y);
    Point b = new Point(points[i+1].x - points[i+1].
        src.x, points[i+1].y - points[i+1].src.y);
    if(Calc.crossProd(a, b) == 0)
      isElem[i] = true;
  //works only if there are more than three non-
      collinear points
  Stack<Point> s = new Stack<Point>();
  int i = 0;
  for(; i < 3; i++) {
    while(isElem[i++]);
    s.push(points[i]);
  for(; i < points.length; i++) {</pre>
    if(isElem[i]) continue;
    while(true) {
      Point first = s.pop();
      Point second = s.pop();
      s.push(second);
      Point a = new Point(first.x - second.x, first.y
          - second.y);
      Point b = new Point(points[i].x - second.x,
          points[i].y - second.y);
      //use >= if straight angles are needed
      if(Calc.crossProd(a, b) > 0) {
        s.push(first);
        s.push(points[i]);
        break;
      }
    }
  }
  Point[] convexHull = new Point[s.size()];
  for(int j = s.size()-1; j >= 0; j--)
    convexHull[j] = s.pop();
  return convexHull;
  /*Sometimes it might be necessary to also add points
```

```
to the convex hull that form a straight angle. 10
         The following lines of code achieve this. Only
         at the first and last diagonal we have to add
         those. Of course the previous return-statement
         has to be deleted as well as allowing straight
         angles in the above implementation. */
57 class Point implements Comparable<Point> {
    Point src; //set seperately in GrahamScan method
    int x;
    int y;
    public Point(int x, int y) {
62
      this.x = x;
63
      this.y = y;
64
65
    //might crash if one point equals src
67
    //major issues with multiple points on same location
        - 1
    public int compareTo(Point cmp) {
69
    Point a = new Point(this.x - src.x, this.y - src.y);
70
    Point b = new Point(cmp.x - src.x, cmp.y - src.y);
71
    //checks if points are identical
72
    if(a.x == b.x && a.y == b.y) return 0;
73
    //if same angle, sort by dist
74
    if(Calc.crossProd(a, b) == 0 && Calc.dotProd(a, b) >
75
          0)
      return Integer.compare(Calc.dotProd(a, a), Calc.
76
           dotProd(b, b));
    //angle of a is 0, thus b>a
77
                                                           13
    if(a.y == 0 && a.x > 0) return -1;
78
                                                           14
    //angle of b is 0, thus a>b
79
                                                           15
    if(b.y == 0 && b.x > 0) return 1;
80
                                                           16
    //a ist between 0 and 180, b between 180 and 360
81
    if(a.y > 0 && b.y < 0) return -1;
82
    if(a.y < 0 && b.y > 0) return 1;
83
    //return negative value if cp larger than zero
84
    return Integer.compare(0, Calc.crossProd(a, b));
85
86
                                                           21
87 }
88
  class Calc {
89
    public static int crossProd(Point p1, Point p2) {
90
      return p1.x * p2.y - p2.x * p1.y;
91
92
    public static int dotProd(Point p1, Point p2) {
93
                                                           28
      return p1.x * p2.x + p1.y * p2.y;
94
                                                           29
95
96 }
```

MD5: 2555d858fadcfe8cb404a9c52420545d $\mid \mathcal{O}(N \log N)$

4.5 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare In-38 verse $x=a^{-1} \mod b$ und $y=b^{-1} \mod a$.

```
// Extended Euclidean Algorithm - iterativ
public static long[] eea(long a, long b) {
    if (b > a) {
        long tmp = a;
        a = b;
        b = tmp;
    }
    long x = 0, y = 1, u = 1, v = 0;
    while (a != 0) {
        retail terativ
        41
        42
        43
        44
        45
        46
        47
        48
        49
```

```
long q = b / a, r = b % a;
long m = x - u * q, n = y - v * q;
b = a; a = r; x = u; y = v; u = m; v = n;
}
long gcd = b;
// x = a^-1 % b, y = b^-1 % a
// ax + by = gcd
long[] erg = { gcd, x, y };
return erg;
}
```

MD5: 81fe8cd4adab21329dcbe1ce0499ee75 $|\mathcal{O}(\log a + \log b)|$

4.6 Polynomial Interpolation

```
public class interpol {
  // divided differences for points given by vectors x
       and y
  public static rat[] divDiff(rat[] x, rat[] y) {
    rat[] temp = y.clone();
    int n = x.length;
    rat[] res = new rat[n];
    res[0] = temp[0];
    for (int i=1; i < n; i++) {</pre>
      for (int j = 0; j < n-i; j++) {</pre>
        temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].
            sub(x[j]));
      res[i] = temp[0];
    return res;
  // evaluates interpolating polynomial p at t for
      given
  // x-coordinates and divided differences
  public static rat p(rat t, rat[] x, rat[] dD) {
    int n = x.length;
    rat p = new rat(0);
    for (int i = n-1; i > 0; i--) {
      p = (p.add(dD[i])).mult(t.sub(x[i-1]));
    p = p.add(dD[0]);
    return p;
 }
// implementation of rational numbers
class rat {
  public long c;
  public long d;
  public rat (long c, long d) {
    this.c = c:
    this.d = d;
    this.shorten();
  public rat (long c) {
    this.c = c;
    this.d = 1;
  public static long ggT(long a, long b) {
    while (b != 0) {
```

```
long h = a\%b;
          a = b:
51
          b = h;
52
53
54
        return a;
55
56
     public static long kgV(long a, long b) {
57
        return a*b/ggT(a,b);
58
     public static rat[] commonDenominator(rat[] c) {
61
        long kgV = 1;
                                                                  15
62
        for (int i = 0; i < c.length; i++) {</pre>
63
          kgV = kgV(kgV, c[i].d);
                                                                  17
64
65
        for (int i = 0; i < c.length; i++) {</pre>
67
          c[i].c *= kgV/c[i].d;
                                                                  19
68
          c[i].d *= kgV/c[i].d;
                                                                  20
                                                                  21
69
        return c;
                                                                  22
70
     }
                                                                  23
71
72
                                                                  24
73
     public void shorten() {
                                                                  25
74
        long ggT = ggT(this.c, this.d);
                                                                  26
75
        this.c = this.c / ggT;
                                                                  27
76
        this.d = this.d / ggT;
                                                                  28
        if (d < 0) {
77
                                                                  29
          this.d *= -1;
78
          this.c *= -1;
79
                                                                  31
80
                                                                  32
     }
81
                                                                  33
82
     public String toString() {
83
                                                                  35
        if (this.d == 1) return ""+c;
84
                                                                  36
        return ""+c+"/"+d;
85
                                                                  37
86
                                                                  38
87
     public rat mult(rat b) {
88
        return new rat(this.c*b.c, this.d*b.d);
89
                                                                  41
                                                                  42
90
                                                                  43
91
     public rat div(rat b) {
92
        return new rat(this.c*b.d, this.d*b.c);
93
                                                                  45
94
                                                                  46
                                                                  47
95
     public rat add(rat b) {
96
        long new_d = kgV(this.d, b.d);
97
        long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.50
98
        return new rat(new_c, new_d);
                                                                  52
99
                                                                  53
100
                                                                  54
101
     public rat sub(rat b) {
                                                                  55
102
        return this.add(new rat(-b.c, b.d));
103
104
                                                                  57
105
```

MD5: e7b408030f7e051e93a8c55056ba930b | $\mathcal{O}(?)$

61

62

4.7 Root of permutation

Calculates the K'th root of permutation of size N. Number at place i indicates where this dancer ended. needs commenting

```
public static int[] rop(int[] perm, int N, int K) {
  boolean[] incyc = new boolean[N];
```

```
int[] cntcyc = new int[N+1];
int[] g = new int[N+1];
int[] needed = new int[N+1];
for(int i = 1; i < N+1; i++) {</pre>
  int j = i;
  int k = K;
  int div;
  while(k > 1 && (div = gcd(k, i)) > 1) {
    k /= div;
    j *= div;
  needed[i] = j;
  g[i] = gcd(K, j);
}
HashMap<Integer, ArrayList<Integer>> hm = new
    HashMap<Integer, ArrayList<Integer>>();
for(int i = 0; i < N; i++) {
  if(incyc[i]) continue;
  ArrayList<Integer> cyc = new ArrayList<Integer>();
  cyc.add(i);
  incyc[i] = true;
  int newelem = perm[i];
  while(newelem != i) {
    cyc.add(newelem);
    incyc[newelem] = true;
    newelem = perm[newelem];
  int len = cyc.size();
  cntcyc[len]++;
  if(hm.containsKey(len)) {
    hm.get(len).addAll(cyc);
  } else {
    hm.put(len, cyc);
}
boolean end = false;
for(int i = 1; i < N+1; i++) {</pre>
  if(cntcyc[i] % g[i] != 0) end = true;
if(end) {
  //not possible
  return null;
} else {
  int[] out = new int[N];
  for(int length = 0; length < N; length++) {</pre>
    if(!hm.containsKey(length)) continue;
    ArrayList<Integer> p = hm.get(length);
    int totalsize = p.size();
    int diffcyc = totalsize / needed[length];
    for(int i = 0; i < diffcyc; i++) {</pre>
      int[] c = new int[needed[length]];
      for(int it = 0; it < needed[length]; it++) {</pre>
        c[it] = p.get(it + i * needed[length]);
      int move = K / (needed[length]/length);
      int[] rewind = new int[needed[length]];
      for(int set = 0; set < needed[length]/length;</pre>
          set++) {
        int pos = set * length;
        for(int it = 0; it < length; it++) {</pre>
          rewind[pos] = c[it + set * length];
          pos = ((pos - set * length + move) %
               length)+ set * length;
      int[] merge = new int[needed[length]];
```

for(int it = 0; it < needed[length]/length; it</pre>

```
++) {
             for(int set = 0; set < length; set++) {</pre>
               merge[set * needed[length] / length + it]
                    = rewind[it * length + set];
             }
           }
           for(int it = 0; it < needed[length]; it++) {</pre>
72
             out[merge[it]] = merge[(it+1) % needed[
                  length]];
         }
75
       }
       return out;
77
78
79
  }
```

MD5: b446a7c21eddf7d14dbdc71174e8d498 | $\mathcal{O}(?)$

4.8 Sieve of Eratosthenes

Calculates Sieve of Eratosthenes.

 Input : A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

MD5: 95704ae7c1fe03e91adeb8d695b2f5bb | $\mathcal{O}(n)$

4.9 Greatest Common Divisor

Calculates the gcd of two numbers a and b or of an array of numbers input.

Input: Numbers a and b or array of numbers input

Output: Greatest common divisor of the input

```
private static long gcd(long a, long b) {
                                                             27
      while (b > 0) {
          long temp = b;
          b = a % b; // % is remainder
          a = temp;
                                                             32
      return a;
                                                             33
  }
  private static long gcd(long[] input) {
11
      long result = input[0];
      for(int i = 1; i < input.length; i++)</pre>
13
      result = gcd(result, input[i]);
      return result;
14
15 }
```

MD5: 48058e358a971c3ed33621e3118818c2 $\mid \mathcal{O}(\log a + \log b)$

4.10 Least Common Multiple

Calculates the lcm of two numbers a and b or of an array of num
48
bers input.

Input: Numbers a and b or array of numbers input Output: Least common multiple of the input

```
private static long lcm(long a, long b) {
    return a * (b / gcd(a, b));
}

private static long lcm(long[] input) {
    long result = input[0];
    for(int i = 1; i < input.length; i++)
        result = lcm(result, input[i]);
    return result;
}</pre>
```

MD5: 3cfaab4559ea05c8434d6cf364a24546 | $\mathcal{O}(\log a + \log b)$

4.11 **GEV**

25

```
#include <vector>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
template<int M> class vec
public:
  double co[M];
  vec<M>() { memset(co, 0, M * sizeof(double)); }
  double* operator[](int i) { return &co[i]; }
  vec<M> operator+(vec<M> v)
    vec<M> r;
    for(int i = 0; i < M; ++i)</pre>
      *r[i] = co[i] + *v[i];
    return r;
  }
  vec<M> operator-(vec<M> v)
    vec<M> r;
    for(int i = 0; i < M; ++i)</pre>
      *r[i] = co[i] - *v[i];
    return r;
  }
  vec<M> operator-()
    vec<M> r;
    for(int i = 0; i < M; ++i)</pre>
      *r[i] = -co[i];
    return r;
  }
  vec<M> operator*(double s)
  {
    vec<M> r;
    for(int i = 0; i < M; ++i)</pre>
      *r[i] = s * co[i];
    return r;
```

```
// Kreuzprodukt
51
                                                                  113
     vec<3> cross(vec<3> v)
52
                                                                  114
53
                                                                  115
        vec<3> r;
54
                                                                  116
        *r[0] = co[1] * *v[2] - co[2] * *v[1];
55
        *r[1] = co[2] * *v[0] - co[0] * *v[2];
56
                                                                  118
        *r[2] = co[0] * *v[1] - co[1] * *v[0];
57
        return r;
59
     }
60 };
                                                                  120
                                                                  121
   template<int M, int N> class mat
                                                                  122
63
   public:
64
     double el[M][N];
65
                                                                  123
66
     mat<M, N>() { memset(el, 0, M * N * sizeof(double));125
67
68
                                                                  126
     double* operator[](int i) { return el[i]; } // Gib 127
69
          7eile i
                                                                  128
                                                                  129
70
     // MxN-Matrix mal Nx1-Vektor = Mx1-Vektor
71
72
     vec<M> operator*(vec<N> v)
                                                                  130
73
                                                                  131
        vec<M> r;
74
        for(int i = 0; i < M; ++i)</pre>
75
          for(int j = 0; j < N; ++j)</pre>
76
                                                                  132
             *r[i] += el[i][j] * *v[j]; // r ist durch
77
                                                                  133
                 Konstruktur genullt
                                                                  134
78
        return r;
                                                                  135
79
                                                                  136
80
                                                                  137
     // Gauß-Jordan-Algorithmus-Aufruf für MxN-Matrix und
81
           Mx1-Vektor
                                                                  138
     // Setzt voraus, dass Lösung existiert! => Nur bei
82
                                                                  139
          MxM-Matrizen sinnvoll
                                                                  140
     vec<M> solveLGS(vec<M> in)
83
                                                                  141
84
     {
                                                                  142
        mat<M, N> inp;
85
                                                                  143
        for(int i = 0; i < M; ++i)</pre>
86
                                                                  144
          inp[i][0] = *in[i];
87
                                                                  145
        mat<M, N> re = gaussJordan(inp);
88
                                                                  146
        vec<M> r;
                                                                  147
89
        for(int i = 0; i < M; ++i)</pre>
90
                                                                  148
          *r[i] = re[i][0];
                                                                  149
91
92
        return r;
                                                                  150
93
                                                                  151
94
                                                                  152
     // Gauß-Jordan-Algorithmus für zwei MxN-Matrizen
95
                                                                  153
     // Setzt voraus, dass Lösung existiert! => Nur bei
                                                                  154
          MxM-Matrizen sinnvoll
                                                                  155
     mat<M, N> gaussJordan(mat<M, N> in)
97
                                                                  156
                                                                  157
98
        // Erweiterte Matrix erstellen
                                                                  158
99
        double ext[M][N << 1];</pre>
                                                                  159
        for(int i = 0; i < M; ++i)</pre>
                                                                  160
          memcpy(ext[i], el[i], N * sizeof(double));
                                                                  162
          memcpy(ext[i] + N, in[i], N * sizeof(double));
                                                                  163
105
                                                                  164
                                                                  165
        // Für jede Restmatrix Schritte durchführen
107
                                                                  166
108
        for(int LC = 0; LC < M && LC < N; ++LC)</pre>
109
                                                                  167
          // Finde Spalte mit Zelle != 0
                                                                  168
110
          int c = LC;
111
                                                                  169
```

```
int l = LC;
      for(; c < N ; ++c, l = LC)</pre>
        for(; l < M; ++l)</pre>
          if(!(ext[l][c] == 0))
             goto br;
      // Zeile mit gewähltem Element nach oben
           schieben und alle anderen Elemente durch
           dieses teilen
    br:
      double tmp[N << 1];</pre>
      double top = ext[l][c];
      //if(top == 0) // Dies ist erforderlich, wenn
           keine Lösung existiert oder das System
           überbestimmt ist
      // break;
      if(l > LC)
        memcpy(tmp, ext[LC], (N << 1) * sizeof(double)</pre>
             );
      for(int j = LC; j < (N << 1); ++j)</pre>
        ext[LC][j] = ext[l][j] / top;
      if(l > LC)
        memcpy(ext[l], tmp, (N << 1) * sizeof(double))</pre>
      // Erstes Element jeder Zeile durch Subtraktion
           von Vielfachen der ersten Zeile auf 0
          bringen
      for(int i = LC + 1; i < M; ++i)</pre>
        for(int j = (N << 1) - 1; j >= c; --j)
           ext[i][j] -= ext[i][c] * ext[LC][j];
    }
    // Aus oberer Dreiecksmatrix Einheitsmatrix
        erstellen
    for(int i = M - 1; i > 0; --i)
    for(int i2 = i - 1; i2 >= 0; --i2)
    for(int j = (N << 1) - 1; j > i2; --j)
      ext[i2][j] -= ext[i2][i] * ext[i][j];
    // Ergebnismatrix erstellen
    mat<M, N> r;
    for(int i = 0; i < M; ++i)</pre>
      memcpy(r[i], ext[i] + N, N * sizeof(double));
    return r;
  }
};
int main()
  int T:
  cin >> T;
  while(T --> 0)
    mat<7, 7> m;
    for(int i = 0; i < 7; ++i)</pre>
    for(int j = 0; j < 7; ++j)
      cin >> m[i][j];
    mat<7, 7> unit;
    for(int i = 0; i < 7; ++i)</pre>
      unit[i][i] = 1;
    mat<7, 7> res = m.gaussJordan(unit); // Inverses
        berechnen
    for(int i = 0; i < 7; ++i)</pre>
      for(int j = 0; j < 7; ++j)
```

```
printf("%.03f<sub>□□□</sub>", res[i][j]);
           cout << endl;</pre>
171
172
        cout << endl;</pre>
173
174
175
      mat<3, 3> m2;
176
      m2[0][0] = 1;
      m2[0][1] = 1;
      m2[0][2] = 1;
      m2[1][0] = 4;
      m2[1][1] = 2;
      m2[1][2] = 1;
182
      m2[2][0] = 9;
      m2[2][1] = 3;
184
      m2[2][2] = 1;
185
187
      vec<3> v2;
      *v2[0] = 0;
188
      *v2[1] = 1;
189
      *v2[2] = 3;
190
191
      vec<3> result = m2.solveLGS(v2);
192
      cout << *result[0] << "\square" << *result[1] << "\square" << *
193
           result[2] << endl;</pre>
194
   }
                                                                       60
                                                                       61
```

MD5: b67cae273b9f6ac04b16ee619c9b351d | $\mathcal{O}(?)$

62 63

64

65

66

67

68

69

70

75

76

4.12 Fourier transform

```
#include<complex>
  #include<vector>
  #include<algorithm>
  #include<cmath>
                                                               71
6 using namespace std;
  void iterativefft(const vector<long long> &pol, vector<sup>73</sup>
       <complex<double>> &fft, int n, bool inv)
9
       //copy pol into fft
11
       if(!inv) {
           for(int i = 0; i < n; ++i) {</pre>
12
                complex<double> cp (pol[i], 0);
13
                fft[i] = cp;
           }
16
       //swap positions accordingly
17
       for(int i = 0, j = 0; i < n; ++i) {</pre>
18
           if(i < j) swap(fft[i], fft[j]);</pre>
19
           int m = n >> 1;
20
           while(1 <= m && m <= j) j -= m, m >>= 1;
21
           j += m;
22
23
       for(int m = 1; m <= n; m <<= 1) { //<= or <</pre>
24
           double theta = (inv ? -1 : 1) * 2 * M_PI / m;
25
           complex<double> wm(cos(theta), sin(theta));
26
           for(int k = 0; k < n; k += m) {</pre>
27
                complex<double> w = 1;
28
                for(int j = 0; j < m/2; ++j) {</pre>
29
                    complex<double> t = w * fft[k + j + m]
                         /2];
                    complex<double> u = fft[k + j];
                    fft[k + j] = u + t;
32
                    fft[k + j + m/2] = u - t;
33
```

w = w*wm;

```
}
    if(inv) {
        for(int i = 0; i < n; ++i) {</pre>
            fft[i] /= complex<double> (n);
    }
int main()
    int N;
    cin >> N;
    vector<long long> pol (262144);
    int min = 60000;
    int max = -60000;
    for(int i = 0; i < N; ++i) {</pre>
        int ind;
        cin >> ind;
        if(ind < min) min = ind;</pre>
        if(ind > max) max = ind;
        ++pol[ind+65536];
    }
    vector<complex<double>> fft (262144);
    iterativefft(pol, fft, 262144, false);
    for(int i = 0; i < 262144; ++i) {</pre>
        fft[i] *= fft[i];
    iterativefft(pol, fft, 262144, true);
    long long sum = 0;
    for(int i = 81072; i <= 181072; ++i) {</pre>
        int ind = i - 131072;
        if(ind < min) continue;</pre>
        if(ind > max) break;
        long long resi = round(fft[i].real());
        if(ind % 2 == 0 && ind != 0) {
            resi -= pol[ind/2 + 65536] * pol[ind/2 +
             resi += pol[ind/2 + 65536]*(pol[ind/2 +
                 65536]-1);
        }
        resi *= pol[ind + 65536];
        if(ind != 0) {
            resi -= 2*pol[65536] * pol[ind + 65536] *
                 pol[ind + 65536];
             resi += 2*pol[65536] * pol[ind + 65536] *
                 (pol[ind + 65536]-1);
        sum += resi;
    sum -= pol[65536] * pol[65536];
    sum += pol[65536] * (pol[65536] - 1) * (pol[65536]
         - 2);
    cout << sum << endl;</pre>
```

MD5: fd9669c4967b6f26c13f464f98bdfb2a | $\mathcal{O}(?)$

Matrix exponentiation

```
void mult(int a[][nos], int b[][nos], int N)
    int res[nos][nos] = {0};
    for(int i = 0; i < N; i++) {</pre>
        for(int j = 0; j < N; j++) {</pre>
             for(int k = 0; k < N; k++) {
```

```
res[i][j] = (res[i][j] + a[i][k]*b[k][
                         j]) % 10000;
                }
           }
10
       for(int i = 0; i < N; i++) {</pre>
11
           for(int j = 0; j < N; j++) {
12
                a[i][j] = res[i][j];
13
14
       }
15
16
            //start with g^L by succ squaring
17
           int res[nos][nos] = {0};
18
            for(int i = 0; i < N; i++) {</pre>
19
                for(int j = 0; j < N; j++) {
20
                     if(i == j) res[i][j] = 1;
21
22
23
           }
            for(int i = 0; (1 << i) <= L; i++) {
24
25
                if(((1 << i) & L) == (1 << i)) {
                     mult(res, g, N);
26
27
                }
                                                                11
28
                mult(g, g, N);
                                                                12
           }
29
                                                                13
                                                                14
```

MD5: dcabdd3a0beceb4221f4c41071ac9b6d | $\mathcal{O}(?)$

4.14 phi function calculator

takes sqrt(n) time

```
int phi(int n)
  {
2
      double result = n;
      for(int p = 2; p * p <= n; ++p) {
          if(n % p == 0) {
              while(n % p == 0) n /= p;
              result *= (1.0 - (1.0 / (double) p));
          }
      }
      if(n > 1) result *= (1.0 - (1.0 / (double) n));
10
      return round(result);
11
12 }
```

MD5: 2ec930cc10935f1638700bb74e3439d9 | $\mathcal{O}(?)$

prints farey seq

```
def farey( n, asc=True ):
      ""Python function to print the nth Farey sequence
          , either ascending or descending.""
      if asc:
          a, b, c, d = 0, 1, 1, n
                                         # (*)
5
      else:
          a, b, c, d = 1, 1, n-1, n
                                         # (*)
      print "%d/%d" % (a,b)
      while (asc and c \le n) or (not asc and a > 0):
          k = int((n + b)/d)
          a, b, c, d = c, d, k*c - a, k*d - b
10
          print "%d/%d" % (a,b)
11
```

MD5: 5fe50f5717cb7d4e3eb91c8c8f6a1e85 | $\mathcal{O}(?)$

Misc 5

15

17

5.1 Binary Search

Binary searchs for an element in a sorted array.

Input: sorted array to search in, amount N of elements in array, element to search for a

Output: returns the index of a in array or -1 if array does not contain a

```
public static int BinarySearch(int[] array,
                                       int N, int a) {
    int lo = 0;
    int hi = N-1;
    // a might be in interval [lo,hi] while lo <= hi
    while(lo <= hi) {</pre>
      int mid = (lo + hi) / 2;
      // if a > elem in mid of interval,
      // search the right subinterval
      if(array[mid] < a)</pre>
        lo = mid+1;
      // else if a < elem in mid of interval,
      // search the left subinterval
      else if(array[mid] > a)
        hi = mid-1;
      // else a is found
16
      else
        return mid;
18
    }
19
    // array does not contain a
20
    return -1;
21
  }
```

MD5: 203da61f7a381564ce3515f674fa82a4 $| \mathcal{O}(\log n) |$

5.2 Next number with n bits set

From x the smallest number greater than x with the same amount of bits set is computed. Little changes have to be made, if the calculated number has to have length less than 32 bits.

Input: number x with n bits set (x = (1 << n) - 1)

Output: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
  //break when larger than limit here
 if(x == 0) return 0;
 int smallest = x \& -x;
 int ripple = x + smallest;
  int new_smallest = ripple & -ripple;
  int ones = ((new_smallest/smallest) >> 1) - 1;
  return ripple | ones;
}
```

MD5: 2d8a79cb551648e67fc3f2f611a4f63c $\mathcal{O}(1)$

5.3 **Next Permutation**

Returns true if there is another permutation. Can also be used to compute the nextPermutation of an array.

Input: String a as char array

Output: true, if there is a next permutation of a, false otherwise

```
public static boolean nextPermutation(char[] a) {
     int i = a.length - 1;
     while(i > 0 && a[i-1] >= a[i])
     if(i <= 0)
       return false;
     int j = a.length - 1;
     while (a[j] <= a[i-1])
     char tmp = a[i - 1];
     a[i - 1] = a[j];
     a[j] = tmp;
12
                                                               31
     j = a.length - 1;
14
     while(i < j) {</pre>
15
       tmp = a[i];
16
       a[i] = a[j];
17
       a[j] = tmp;
18
      i++;
19
20
21
     return true;
22
23
                                                               42
```

MD5: 7d1fe65d3e77616dd2986ce6f2af089b | $\mathcal{O}(n)$

44

58

59

comparator in C++

```
bool myfunction (int i, int j) {return (i<j); }</pre>
 int main() {
                                                            51
      vector<int> vec;
                                                            52
      sort(vec.begin(), vec.end(), myfunction);
                                                            53
      priority_queue<int, vector<int>, decltype(
                                                            54
          myfunction) *> pq(myfunction);
                                                            55
7 }
```

MD5: f4beb6e197be08977fd4f74b2537ae09 | $\mathcal{O}(?)$

5.5 Mo's algorithm

Works for queries on intervals. Sort queries and add, remove on⁶³ borders in O(1). Thus only usable when this is possible for the task.

```
66
  #include<vector>
                                                           67
  #include<utility>
  #include<algorithm>
s using namespace std;
7 int BLOCK_SIZE;
8 int cur_answer;
  vector<int> lmen;
vector<int> lwomen;
vector<int> cmen;
  vector<int> cwomen;
13
  bool cmp(const pair<pair<int, int>, int> &i, const
       pair<pair<int, int>, int> &j) {
       if(i.first.first / BLOCK_SIZE != j.first.first /
15
                                                           82
           BLOCK_SIZE) {
           return i.first.first < j.first.first;</pre>
```

```
return i.first.second < j.first.second;</pre>
  void add(int i, int j) {
      //adds values i, j to function
      cur_answer -= min(cmen[i], cwomen[i]);
      cur_answer -= min(cmen[j], cwomen[j]);
      if(i == j) cur_answer += min(cmen[j], cwomen[j]);
      ++cmen[i];
      ++cwomen[j];
      cur_answer += min(cmen[i], cwomen[i]);
      cur_answer += min(cmen[j], cwomen[j]);
      if(i == j) cur_answer -= min(cmen[j], cwomen[j]);
  }
  void remove(int i, int j) {
      //removes values i, j from function
      cur_answer -= min(cmen[i], cwomen[i]);
      cur_answer -= min(cmen[j], cwomen[j]);
      if(i == j) cur_answer += min(cmen[j], cwomen[j]);
      --cmen[i];
      --cwomen[j];
      cur_answer += min(cmen[i], cwomen[i]);
      cur_answer += min(cmen[j], cwomen[j]);
      if(i == j) cur_answer -= min(cmen[j], cwomen[j]);
43
  int main()
45
46
      int N, M, K;
47
      cin >> N >> M >> K;
      lmen.resize(N);
      lwomen.resize(N);
      cmen.resize(K);
      cwomen.resize(K);
      BLOCK_SIZE = static_cast<int>(sqrt(N));
      vector<pair<int, int>, int>> queries(M);
      vector<int> answers(M);
      for(int i = 0; i < N; ++i) {</pre>
          cin >> lmen[i];
      for(int i = 0; i < N; ++i) {</pre>
60
          cin >> lwomen[i];
61
      for(int i = 0; i < M; ++i) {</pre>
          cin >>queries[i].first.first >> queries[i].
               first.second;
          queries[i].second = i;
      //sort the queries into buckets
      sort(queries.begin(), queries.end(), cmp);
      int mo_left = 0, mo_right = -1;
      for(int i = 0; i < M; ++i) {</pre>
          int left = queries[i].first.first;
          int right = queries[i].first.second;
          while(mo_right < right) {</pre>
               ++mo_right;
               add(lmen[mo_right], lwomen[mo_right]);
          while(mo_right > right) {
               remove(lmen[mo_right], lwomen[mo_right]);
               --mo_right;
          while(mo_left < left) {</pre>
               remove(lmen[mo_left], lwomen[mo_left]);
               ++mo_left;
          while(mo_left > left) {
```

MD5: a7af72b67f95a76818d1dabadf4f9e5c | $\mathcal{O}(?)$

6 String

6.1 Knuth-Morris-Pratt

Input: String s to be searched, String w to search for. *Output:* Array with all starting positions of matches

```
public static ArrayList<Integer> kmp(String s, String
      w) {
    ArrayList<Integer> ret = new ArrayList<>();
    //Build prefix table
    int[] N = new int[w.length()+1];
    int i=0; int j =-1; N[0]=-1;
    while (i<w.length()) {</pre>
      while (j>=0 && w.charAt(j) != w.charAt(i))
        j = N[j];
      i++; j++; N[i]=j;
10
11
    //Search string
12
    i=0; j=0;
13
    while (i<s.length()) {</pre>
      while (j>=0 && s.charAt(i) != w.charAt(j))
14
                                                              12
        j = N[j];
        i++; j++;
                                                              13
        if (j==w.length()) { //match found
18
         ret.add(i-w.length()); //add its start index
19
        j = N[j];
                                                              15
20
      }
                                                              16
21
    }
                                                              17
22
    return ret;
                                                              18
23
  }
```

MD5: $3cb03964744db3b14b9bff265751c84b \mid \mathcal{O}(n+m)$

6.2 Levenshtein Distance

Calculates the Levenshtein distance for two strings (minimum²⁵ number of insertions, deletions, or substitutions).

Input: A string a and a string b.

Output: An integer holding the distance.

MD5: 79186003b792bc7fd5c1ffbbcfc2b1c6 $|\mathcal{O}(|a| \cdot |b|)$

6.3 Longest Common Subsequence

Finds the longest common subsequence of two strings.

Input: Two strings string1 and string2.

Output: The LCS as a string.

21

22

```
public static String longestCommonSubsequence(String
    string1, String string2) {
  char[] s1 = string1.toCharArray();
  char[] s2 = string2.toCharArray();
  int[][] num = new int[s1.length + 1][s2.length + 1];
  // Actual algorithm
  for (int i = 1; i <= s1.length; i++)</pre>
    for (int j = 1; j <= s2.length; j++)</pre>
      if (s1[i - 1] == s2[j - 1])
        num[i][j] = 1 + num[i - 1][j - 1];
      else
        num[i][j] = Math.max(num[i - 1][j], num[i][j -
  // System.out.println("length of LCS = " + num[s1.
      length][s2.length]);
  int s1position = s1.length, s2position = s2.length;
  List<Character> result = new LinkedList<Character>()
  while (s1position != 0 && s2position != 0) {
    if (s1[s1position - 1] == s2[s2position - 1]) {
      result.add(s1[s1position - 1]);
      s1position--;
      s2position--;
    } else if (num[s1position][s2position - 1] >= num[
        s1position][s2position])
      s2position--;
    else
      s1position--;
  Collections.reverse(result);
  char[] resultString = new char[result.size()];
  int i = 0;
  for (Character c : result) {
    resultString[i] = c;
  return new String(resultString);
}
```

MD5: 4dc4ee3af14306bea5724ba8a859d5d4 $\mid \mathcal{O}(n \cdot m)$

6.4 Longest common substring

gets two String and finds all LCSs and returns them in a set

```
public static TreeSet<String> LCS(String a, String b)
     int[][] t = new int[a.length()+1][b.length()+1];
     for(int i = 0; i <= b.length(); i++)</pre>
       t[0][i] = 0;
     for(int i = 0; i <= a.length(); i++)</pre>
       t[i][0] = 0;
     for(int i = 1; i <= a.length(); i++)</pre>
9
       for(int j = 1; j <= b.length(); j++)</pre>
10
         if(a.charAt(i-1) == b.charAt(j-1))
11
           t[i][j] = t[i-1][j-1] + 1;
12
13
           t[i][j] = 0;
14
     int max = -1;
15
     for(int i = 0; i <= a.length(); i++)</pre>
16
       for(int j = 0; j <= b.length(); j++)</pre>
17
         if(max < t[i][j])
18
           max = t[i][j];
19
     if(max == 0 || max == -1)
20
       return new TreeSet<String>();
21
     TreeSet<String> res = new TreeSet<String>();
22
     for(int i = 0; i <= a.length(); i++)</pre>
23
       for(int j = 0; j <= b.length(); j++)</pre>
24
         if(max == t[i][j])
25
           res.add(a.substring(i-max, i));
26
     return res;
27
28 }
```

MD5: 9de393461e1faebe99af3ff8db380bde | $\mathcal{O}(|a|*|b|)$

7 Math

7.1 Tree

Diameter: BFS from any node, then BFS from last visited node. Max dist is then the diameter. Center: Middle vertex in second step from above.

7.2 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \text{digit_sum}(M, k, \text{alt})$, refer to table for values of D, k, alt.

7.3 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},$ $|M| = \frac{n!}{(n-k)!}$
 - with repetition: $M = \{(x_1, ..., x_k) : 1 \le x_i \le n\}, |M| = n^k$
- Combinations (unordered): k out of n objects
 - without repetition: $M = \{(x_1, ..., x_n) : x_i \in \{0, 1\}, x_1 + ... + x_n = k\}, |M| = \binom{n}{k}$
 - with repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1, \dots, k\}, x_1 + \dots + x_n = k\}, |M| = \binom{n+k-1}{k}$

- Ordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)
 - #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points): $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

7.4 Polynomial Interpolation

7.4.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}$ find $p \in \Pi_n$ with $p(x_i) = y_i$ for all $i = 0, \dots, n$.

Solution: $p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x - x_i)$ where $\gamma_{j,k} = y_j$ for k = 0 and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$ otherwise.

Efficient evaluation of p(x): $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x - x_i) + \gamma_{0,i}$ for $i = n - 1, \ldots, 0$ with $b_0 = p(x)$.

7.5 Fibonacci Sequence

7.5.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \text{ where }$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

7.5.2 Generalization

$$g_n = \frac{1}{\sqrt{5}}(g_0(\phi^{n-1} - \tilde{\phi}^{n-1}) + g_1(\phi^n - \tilde{\phi}^n)) = g_0 f_{n-1} + g_1 f_n$$
 for all $g_0, g_1 \in \mathbb{N}_0$

7.5.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

7.6 Reihen

$$\begin{split} &\sum_{i=1}^{n}i=\frac{n(n+1)}{2},\sum_{i=1}^{n}i^{2}=\frac{n(n+1)(2n+1)}{6},\sum_{i=1}^{n}i^{3}=\frac{n^{2}(n+1)^{2}}{4}\\ &\sum_{i=0}^{n}c^{i}=\frac{c^{n+1}-1}{c-1},c\neq1,\sum_{i=0}^{\infty}c^{i}=\frac{1}{1-c},\sum_{i=1}^{n}c^{i}=\frac{c}{1-c},|c|<1\\ &\sum_{i=0}^{n}ic^{i}=\frac{nc^{n+2}-(n+1)c^{n+1}+c}{(c-1)^{2}},c\neq1,\sum_{i=0}^{\infty}ic^{i}=\frac{c}{(1-c)^{2}},|c|<1 \end{split}$$

7.7 Binomialkoeffizienten

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}$$

7.8 Catalanzahlen

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, C_{n+1} = \frac{4n+2}{n+2} C_n$$

7.9 Geometrie

Polygonfläche: $A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + \cdots + x_{n-1}y_n - x_ny_{n-1} + x_ny_1 - x_1y_n)$

7.10 Zahlentheorie

Chinese Remainder Theorem: Es existiert eine Zahl C, sodass: $C \equiv a_1 \mod n_1, \cdots, C \equiv a_k \mod n_k, \operatorname{ggt}(n_i, n_j) = 1, i \neq j$ Fall k = 2: $m_1 n_1 + m_2 n_2 = 1$ mit EEA finden.

Lösung ist $x = a_1 m_2 n_2 + a_2 m_1 n_1$.

Allgemeiner Fall: iterative Anwendung von k=2

Eulersche φ -Funktion: $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}), p \text{ prim } \varphi(p) = p - 1, \varphi(pq) = \varphi(p)\varphi(q), p, q \text{ prim } \varphi(p^k) = p^k - p^{k-1}, p, q \text{ prim, } k \geq 1$

Eulers Theorem: $a^{\varphi(n)} \equiv 1 \mod n$

Fermats Theorem: $a^p \equiv a \mod p$, p prim

7.11 Faltung

$$(f * g)(n) = \sum_{m=-\infty}^{\infty} f(m)g(n-m) = \sum_{m=-\infty}^{\infty} f(n-m)g(m)$$

8 Java Knowhow

8.1 System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv]

flags:

- left-justify (default: right)

+ always output number sign

0 zero-pad numbers

(space) space instead of minus for pos. numbers

, group triplets of digits with,

width specifies output width

precision is for floating point precision

conv:

d byte, short, int, long

f float, double

c char (use C for uppercase)

s String (use S for all uppercase)

8.2 Modulo: Avoiding negative Integers

```
int mod = (((nums[j] % D) + D) % D);
```

8.3 Speed up IO

Use

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

Use

Double.parseDouble(Scanner.next());