AIM: 1- Data Pre-processing and Exploration

<u>a.</u>
<u>Load a CSV dataset. Handle missing values, inconsistent formatting, and outliers.</u>

b.

Load a dataset, calculate descriptive summary statistics, create visualizations using different graphs, and identify potential features and target variables

```
visualization.import pandas as pd
df=pd.read_csv('project_data.csv')
df.shape
df.columns
df.head(3)
df.tail(2)
df.sample(5)
df.info()
df['annual_income']=df['annual_income'].fillna(df['annual_income'].mean())
df.info()
import matplotlib.pyplot as plt
import seaborn as sns
columns_to_check=[ 'year_of_birth',
   'annual_income', 'online_purchases', 'complaints', 'calls', 'intercoms']
for i,column in enumerate(columns_to_check):
  plt.figure(i)
```

```
sns.boxplot(df[column])
 plt.title(column)
#inconsistency handling
df.columns
df \hbox{['educational\_level'].unique()}\\
df['marital_status'].unique()
df['marital_status']=df['marital_status'].replace('Widow','Widowed')
df['marital_status'].unique()
df['intercoms'].unique()
q1=df['year_of_birth '].quantile(0.25)
q3=df['year_of_birth '].quantile(0.75)
iqr=q3-q1
lower_bound=q1-1.5*iqr
upper_bound=q3+1.5*iqr
print(lower_bound)
```

```
print(upper_bound)

df.loc[df['year_of_birth '] <lower_bound ]

df.loc[df['year_of_birth '] >upper_bound ]

df=df.drop(df.loc[df['year_of_birth '] <lower_bound ].index)

df.loc[df['year_of_birth '] <lower_bound ]</pre>
```


customer_id year_of_birth educational_level marital_status annual_income purhcase_date recency online_purchases store_purchases complaints calls intercoms

AIM:1-C Create or Explore datasets to use all pre-processing routines like label encoding, scaling, and binarization

from sklearn.datasets import fetch_california_housing
california=fetch_california_housing()
import pandas as pd
df=pd.DataFrame(california.data)
df.sample(3)
from sklearn.preprocessing import MinMaxScaler
mn=MinMaxScaler(feature_range=(0,1))
IIIII-IIIIIIIIIIIIAXSCater(reature_rarige=(0,1))
scaled_df=mn.fit_transform(df)
scaled_df=pd.DataFrame(scaled_df)
scaled_df.sample(3)

from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

scaled_df2=sc.fit_transform(df)

scaled_df2=pd.DataFrame(scaled_df2)

scaled_df2.sample(3)

OUTPUT:

AIM:2 Testing Hypothesis

a.

<u>Implement and demonstrate the FIND-S algorithm for finding the most specific</u>

hypothesis based on a given set of training data samples. Read the training data from a. CSV file and generate the final specific hypothesis. (Create your dataset)

import pandas as pd		
import numpy as np		
df=pd.read_csv('Table.csv')		
df		
a=np.array(df)[:,:-1]		
print('The attributes are:',a)		
t=np.array(df)[:,-1]		
print('The target is:',t)		

```
def train(c,t):
for i,val in enumerate(t):
  if val=='yes':
   specific_hypothesis=c[i].copy()
   break
for i,val in enumerate(c):
  if t[i]=='yes':
   for x in range(len(specific_hypothesis)):
    if val[x]!=specific_hypothesis[x]:
     specific_hypothesis[x]='?'
    else:
     pass
return specific_hypothesis
print("Final hypothesis is",train(a,t))
#Second code down
def find_s(examples):
  # Initialize hypothesis to the most specific hypothesis
  hypothesis = ['\varphi', '\varphi', '\varphi', '\varphi', '\varphi']
```

```
# For each positive example in the data
  for example in examples:
    if example[-1] == 'Yes': # Positive example
      for i in range(len(hypothesis)):
        # Update hypothesis if attribute value is different
        if hypothesis[i] == '\varphi':
          hypothesis[i] = example[i]
        elif hypothesis[i] != example[i]:
          hypothesis[i] = '?'
  return hypothesis
# Example usage:
data = [
  ['Sunny', 'Warm', 'Normal', 'Strong', 'Warm', 'Same', 'Yes'],
  ['Sunny', 'Warm', 'High', 'Strong', 'Warm', 'Same', 'Yes'],
  ['Rainy', 'Cold', 'High', 'Strong', 'Warm', 'Change', 'No'],
  ['Sunny', 'Warm', 'High', 'Strong', 'Cool', 'Change', 'Yes']
]
hypothesis = find_s(data)
print("Final hypothesis:", hypothesis)
```

```
Final hypothesis: ['Sunny', 'Warm', '?', 'Strong', '?', '?']
```

AIM:3 Linear Models

a-Simple Linear Regression Fit a linear regression model on a dataset. Interpret coefficients, make predictions, and evaluate performance using metrics like R-squared and MSE

```
□ ↑ ↓ 古 早 1
!pip install pandas
Requirement already satisfied: pandas in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (2.2.3)
Requirement already satisfied: numpy>=1.26.0 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from pandas) (2.1.3)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from pandas) (2.
9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from pandas) (2024.2)
Requirement already satisfied: tzdata>=2022.7 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from pandas) (2024.2)
Requirement already satisfied: six>=1.5 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from python-dateutil>=2.8.2->p
andas) (1.16.0)
!pip install scikit-learn
Requirement already satisfied: scikit-learn in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (1.5.2)
Requirement already satisfied: numpy>=1.19.5 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn) (2.1.
Requirement already satisfied: scipy>=1.6.0 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn) (1.14.
Requirement already satisfied: joblib>=1.2.0 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn) (1.4.
Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from scikit-learn)
(3.5.0)
!pip install matplotlib
Collecting matplotlib
  Downloading matplotlib-3.10.0-cp313-cp313-win_amd64.whl.metadata (11 kB)
Collecting contourpy>=1.0.1 (from matplotlib)
  Downloading contourpy-1.3.1-cp313-cp313-win_amd64.whl.metadata (5.4 kB)
Collecting cycler>=0.10 (from matplotlib)
  Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting fonttools>=4.22.0 (from matplotlib)
  Downloading fonttools-4.55.3-cp313-cp313-win_amd64.whl.metadata (168 kB)
Collecting kiwisolver>=1.3.1 (from matplotlib)
  Downloading kiwisolver-1.4.8-cp313-cp313-win amd64.whl.metadata (6.3 kB)
Requirement already satisfied: numpy>=1.23 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from matplotlib) (2.1.3)
Requirement already satisfied: packaging>=20.0 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from matplotlib) (24.2) Collecting pillow>=8 (from matplotlib)
  Downloading pillow-11.1.0-cp313-cp313-win_amd64.whl.metadata (9.3 kB)
Collecting pyparsing>=2.3.1 (from matplotlib)
Downloading pyparsing-3.2.1-py3-none-any.whl.metadata (5.0 kB)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from matplotlib)
Requirement already satisfied: six>=1.5 in c:\users\ravi maurya\appdata\local\programs\python\python313\lib\site-packages (from python-dateutil>=2.7->mat
```

YearsExperience		Salary	
0	1.1	39343.0	
1	1.3	46205.0	
2	1.5	37731.0	
3	2.0	43525.0	
4	2.2	39891.0	
5	2.9	56642.0	
6	3.0	60150.0	
7	3.2	54445.0	
8	3.2	64445.0	
9	3.7	57189.0	
10	3.9	63218.0	
11	4.0	55794.0	
12	4.0	56957.0	
13	4.1	57081.0	
14	4.5	61111.0	

15	4.9	67938.0
16	5.1	66029.0
17	5.3	83088.0
18	5.9	81363.0
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
]: df.shape
]: (30, 2)
]: X=df.iloc[:,:-1]
]: X
```

]:	YearsExperience		
	0	1.1	
	1	1.3	
	2	1.5	
	3	2.0	
	4	2.2	
	5	2.9	
	6	3.0	
	7	3.2	
	8	3.2	
	9	3.7	

10	3.9
11	4.0
12	4.0
13	4.1
14	4.5
15	4.9
16	5.1
17	5.3
18	5.9
19	6.0
20	6.8
21	7.1
22	7.9
23	8.2
24	8.7
25	9.0

```
26
                 9.5
27
                 9.6
28
                10.3
                10.5
29
```

y=df.iloc[:,-1]

1]:

1]: 39343.0 1 46205.0 2 37731.0 3 43525.0 4 39891.0 5 56642.0 6 60150.0 7 54445.0

8

9 57189.0 10 63218.0 11 55794.0 12 56957.0 13 57081.0 14

64445.0

```
15 67938.0
16
      66029.0
17
     83088.0
18
     81363.0
19
      93940.0
     91738.0
20
      98273.0
21
    101302.0
23 113812.0
24 109431.0
25
     105582.0
26 116969.0
27 112635.0
     122391.0
28
29
     121872.0
Name: Salary, dtype: float64
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.15,random_state=1)
lr=LinearRegression()
lr.fit(xtrain,ytrain)
    LinearRegression
LinearRegression()
```

```
predictions=lr.predict(xtest)

from sklearn.metrics import r2_score
```

r2_score(ytest,predictions)

0.7486825407561983

OUTPUT

AIM:3B Multiple Linear Regression

Extend linear regression to multiple features. Handle feature selection and potential multicollinearity.

import pandas as pd
df=pd.read_csv('Advertising.csv')
df.shape
df.columns
df.drop(['Unnamed: 0'],axis=1,inplace=True)
df.columns
X=df.iloc[:,:-1]
X.columns
y=df.iloc[:,-1]
у

AIM:3C Regularized Linear Models (Ridge, Lasso, ElasticNet)

<u>Implement regression variants like LASSO and Ridge on any generated</u> dataset.

```
[2]: import pandas as pd
 [3]: df=pd.read_csv('Advertising.csv')
 [4]: (200, 5)
 [6]: df.columns
 [6]: Index(['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales'], dtype='object')
 [7]: df.drop(['Unnamed: 0'],axis=1,inplace=True)
 [8]: df.columns
 [8]: Index(['TV', 'radio', 'newspaper', 'sales'], dtype='object')
[10]: from sklearn.linear_model import Ridge,Lasso
[11]: rr=Ridge(alpha=0.2)
[12]: lr=Lasso(alpha=0.2)
[15]: X=df.iloc[:,:-1]
[16]: y=df.iloc[:,-1]
[17]: from sklearn.model_selection import train_test_split
[18]: xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=4)
[19]: rr.fit(xtrain,ytrain)
[19]: v Ridge
     Ridge(alpha=0.2)
[20]: lr.fit(xtrain,ytrain)
[20]: + Lasso
     Lasso(alpha=0.2)
[21]: pred1=rr.predict(xtest)
[22]: pred2=lr.predict(xtest)
```

```
[23]: from sklearn.metrics import mean_absolute_error,r2_score

[24]: mean_absolute_error(ytest,pred1)

[24]: np.float64(1.153244394468935)

[26]: r2_score(ytest,pred1)

[26]: 0.9157183530461694

[27]: mean_absolute_error(ytest,pred2)

[27]: np.float64(1.1564703521717854)

[28]: r2_score(ytest,pred2)

[28]: 0.9152342518213656
```

OUTPUT

[28]: 0.9152342518213656

Aim4.a Discriminative Models

<u>a Logistic Regression Perform binary classification using logistic</u> <u>regression. Calculate accuracy, precision, recall, and understand the ROC</u> <u>curve.</u>

from sklearn.datasets import load_breast_cancer	
ds=load_breast_cancer()	
X=ds.data	
y=ds.target	
<pre>from sklearn.model_selection import train_test_split</pre>	
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=4)	
from sklearn.linear_model import LogisticRegression	
<pre>lr=LogisticRegression()</pre>	
lr.fit(xtrain,ytrain)	
<pre>preds=lr.predict(xtest)</pre>	
from sklearn.metrics import accuracy_score,precision_score,recall_score,roc_auc_score	
accuracy_score(ytest,preds)	
0.8811188811188811	
precision_score(ytest,preds)	
np.float64(0.9148936170212766)	
recall_score(ytest,preds)	
np.float64(0.9052631578947369)	
roc_auc_score(ytest,preds)	
np.float64(0.8692982456140352)	

OUTPUT

np.float64(0.8692982456140352)

Aim4.

B Implement and demonstrate k-nearest Neighbor algorithm. Read the training data from a .CSV file and build the model to classify a test sample. Print both correct and wrong predictions

```
import pandas as pd
df=pd.read_csv('Iris.csv')
df.shape
(150, 5)
df.columns
Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
       'Species'],
     dtype='object')
X=df.iloc[:,:-1]
y=ddf.iloc[:,:-1]
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=26)
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=6)
knn.fit(xtrain,ytrain)
       KNeighborsClassifier
KNeighborsClassifier(n_neighbors=6)
preds=knn.predict(xtest)
from sklearn.metrics import accuracy_score
accuracy_score(ytest,preds)
0.9473684210526315
```

OUTPUT

: 0.9473684210526315

<u>Aim4.CBuild a decision tree classifier or regressor. Control</u> hyperparameters like tree depth to avoid overfitting. Visualize the tree.

```
import pandas as pd
df=pd.read_csv('Iris.csv')
df.columns
Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
      'Species'],
     dtype='object')
x=df.iloc[:,:-1]
y=df.iloc[:,-1]
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.25,random_state=4)
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier(max_depth=3)
dt.fit(xtrain,ytrain)
       DecisionTreeClassifier
DecisionTreeClassifier(max_depth=3)
 preds=dt.predict(xtest)
 from sklearn.metrics import accuracy_score
 accuracy_score(ytest,preds)
 0.9736842105263158
 from sklearn import tree
 tree.plot_tree(dt)
```

```
[Text(0.375, 0.875, 'x[3] <= 0.8\ngini = 0.663\nsamples = 112\nvalue = [32, 42, 38]'),
    Text(0.25, 0.625, 'gini = 0.0\nsamples = 32\nvalue = [32, 0, 0]'),
    Text(0.3125, 0.75, 'True '),
    Text(0.5, 0.625, 'x[3] <= 1.75\ngini = 0.499\nsamples = 80\nvalue = [0, 42, 38]'),
    Text(0.4375, 0.75, 'False'),
    Text(0.25, 0.375, 'x[2] <= 4.95\ngini = 0.162\nsamples = 45\nvalue = [0, 41, 4]'),
    Text(0.125, 0.125, 'gini = 0.048\nsamples = 41\nvalue = [0, 40, 1]'),
    Text(0.375, 0.125, 'gini = 0.375\nsamples = 4\nvalue = [0, 1, 3]'),
    Text(0.75, 0.375, 'x[2] <= 4.85\ngini = 0.056\nsamples = 35\nvalue = [0, 1, 34]'),
    Text(0.625, 0.125, 'gini = 0.444\nsamples = 3\nvalue = [0, 1, 2]'),
    Text(0.875, 0.125, 'gini = 0.0\nsamples = 32\nvalue = [0, 0, 32]')]
```



```
[21]: #Below code for e
from sklearn.ensemble import RandomForestClassifier
```

```
rf=RandomForestClassifier()
```

]: rf.fit(xtrain,ytrain)

RandomForestClassifier RandomForestClassifier()

```
]: preds2=rf.predict(xtest)
```

]: accuracy_score(ytest,preds2)

]: 0.9736842105263158

OUTPUT

Aim4.D Implement a Support Vector Machine for any relevant dataset

from sklearn.datasets import load_breast_cancer
ds=load_breast_cancer()
x=ds.data
y=ds.target
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.25,random_state=4)
from sklearn.svm import SVC
<pre>sv=SVC(kernel='linear')</pre>
sv.fit(xtrain,ytrain)
<pre>SVC(kernel='linear')</pre>
<pre>preds=sv.predict(xtest)</pre>
from sklearn.metrics import accuracy_score
accuracy_score(ytest,preds)
0.9370629370629371

OUTPUT

<u>Aim4.E Train a random forest ensemble. Experiment with the number of trees and feature sampling. Compare performance to a single decision tree.</u>

```
import pandas as pd
df=pd.read_csv('Iris.csv')
df.columns
Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
      'Species'],
     dtype='object')
x=df.iloc[:,:-1]
y=df.iloc[:,-1]
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.25,random_state=4)
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier(max_depth=3)
dt.fit(xtrain,ytrain)
       DecisionTreeClassifier
DecisionTreeClassifier(max_depth=3)
 preds=dt.predict(xtest)
 from sklearn.metrics import accuracy_score
 accuracy_score(ytest,preds)
 0.9736842105263158
 from sklearn import tree
 tree.plot_tree(dt)
```

```
[Text(0.375, 0.875, 'x[3] <= 0.8\ngini = 0.663\nsamples = 112\nvalue = [32, 42, 38]'),
    Text(0.25, 0.625, 'gini = 0.0\nsamples = 32\nvalue = [32, 0, 0]'),
    Text(0.3125, 0.75, 'True '),
    Text(0.5, 0.625, 'x[3] <= 1.75\ngini = 0.499\nsamples = 80\nvalue = [0, 42, 38]'),
    Text(0.4375, 0.75, 'False'),
    Text(0.25, 0.375, 'x[2] <= 4.95\ngini = 0.162\nsamples = 45\nvalue = [0, 41, 4]'),
    Text(0.125, 0.125, 'gini = 0.048\nsamples = 41\nvalue = [0, 40, 1]'),
    Text(0.375, 0.125, 'gini = 0.375\nsamples = 4\nvalue = [0, 1, 3]'),
    Text(0.75, 0.375, 'x[2] <= 4.85\ngini = 0.056\nsamples = 35\nvalue = [0, 1, 34]'),
    Text(0.625, 0.125, 'gini = 0.444\nsamples = 3\nvalue = [0, 1, 2]'),
    Text(0.875, 0.125, 'gini = 0.0\nsamples = 32\nvalue = [0, 0, 32]')]
```

#Below code for e

from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier()

rf.fit(xtrain,ytrain)

RandomForestClassifier

RandomForestClassifier()

preds2=rf.predict(xtest)

accuracy_score(ytest,preds2)

0.9736842105263158

OUTPUT

AIM:5- Generative Models

Implement and demonstrate the working of a Naive Bayesian classifier using a sample data set. Build the model to classify a test sample.

	from sklearn.datasets import load_breast_cancer
	ds=load_breast_cancer()
	X=ds.data
8	y=ds.target
	<pre>from sklearn.model_selection import train_test_split</pre>
	xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=4)
	from sklearn.naive_bayes import GaussianNB
	nb=GaussianNB()
	nb.fit(xtrain,ytrain)
	▼ GaussianNB
	GaussianNB()
1	<pre>preds=nb.predict(xtest)</pre>
1	from sklearn.metrics import accuracy_score
1	accuracy_score(ytest,preds)
1	0.9300699300699301
c	DUTPUT

AIM:6-B Implement Bayesian Linear Regression to explore prior and posterior distribution

```
import pandas as pd
from sklearn.mixture import GaussianMixture
df=pd.read_csv('Clustering_gmm.csv')
       Weight
                   Height
   0 67.062924 176.086355
   1 68.804094 178.388669
   2 60.930863 170.284496
  3 59.733843 168.691992
   4 65.431230 173.763679
495 59.976983 169.679741
496 66.423814 174.625574
    497 53.604698 161.919208
    498 50.433644 160.794875
    499 60.224392 169.689709
    500 rows × 2 columns
[5]: import matplotlib.pyplot as plt
     plt.scatter(df['Weight'],df['Height'], color='blue')
    #df.plot(kind='scatter', x='x', y='y', color='blue', alpha=0.5, title="Scatter Plot using Pandas")
[5]: <matplotlib.collections.PathCollection at 0x14162a9cb90>
```


gmm=GaussianMixture(n_components=4)

gmm.fit(df)

→ GaussianMixture
GaussianMixture(n_components=4)

predictions=gmm.predict(df)

predictions

```
array([1, 1, 0, 0, 1, 3, 3, 0, 0, 2, 3, 1, 3, 2, 0, 0, 1, 0, 2, 0, 0, 1,
       3, 2, 0, 2, 1, 3, 2, 3, 3, 3, 1, 3, 3, 1, 2, 0, 2, 1, 2, 0, 0, 1,
       3, 1, 0, 0, 1, 1, 2, 2, 3, 0, 0, 3, 3, 2, 2, 1, 1, 2, 1, 1, 1, 3,
      0, 1, 0, 3, 2, 0, 2, 1, 2, 1, 3, 3, 0, 0, 2, 0, 2, 0, 0, 3, 2, 2,
      1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 0, 2, 2, 1, 2, 0, 0, 3, 1, 0, 2,
       2, 3, 2, 2, 1, 2, 1, 0, 3, 1, 0, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0, 2,
      3, 2, 2, 2, 0, 1, 0, 3, 1, 1, 1, 1, 3, 2, 0, 0, 3, 2, 2, 1, 0, 0,
      0, 3, 3, 1, 3, 0, 1, 0, 1, 1, 3, 3, 1, 0, 2, 3, 1, 2, 1, 3, 0, 2,
      0, 2, 2, 2, 1, 1, 1, 0, 3, 2, 3, 1, 3, 2, 1, 3, 2, 3, 3, 2, 0, 3,
      0, 2, 2, 0, 3, 3, 0, 3, 3, 0, 3, 3, 3, 1, 1, 1, 0, 1, 3, 2, 2, 2,
      0, 1, 3, 2, 3, 1, 2, 0, 2, 3, 3, 3, 3, 3, 0, 0, 0, 3, 2, 1, 1, 3,
      3, 1, 2, 2, 0, 1, 0, 0, 0, 3, 1, 2, 0, 2, 2, 3, 2, 3, 0, 0, 1, 2,
      1, 1, 0, 0, 2, 1, 0, 2, 1, 3, 1, 2, 3, 3, 0, 1, 1, 0, 1, 3, 1, 3,
      3, 1, 0, 0, 0, 1, 2, 2, 1, 2, 2, 2, 0, 1, 1, 2, 0, 2, 1, 1, 3, 2,
      2, 0, 2, 0, 1, 0, 2, 3, 2, 3, 3, 0, 0, 0, 3, 3, 2, 1, 0, 3, 2, 1,
      0, 0, 1, 1, 3, 1, 3, 3, 0, 3, 2, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,
      0, 1, 0, 0, 2, 1, 0, 2, 2, 3, 0, 1, 1, 3, 3, 1, 3, 2, 0, 0, 0, 2,
      0, 3, 0, 2, 2, 0, 2, 2, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 1, 2, 1,
      0, 1, 2, 0, 1, 0, 1, 0, 3, 3, 2, 0, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
      3, 0, 1, 0, 1, 3, 1, 0, 1, 2, 3, 1, 2, 1, 0, 3, 0, 3, 1, 2, 0, 0,
      3, 1, 1, 0, 0, 3, 0, 3, 2, 1, 3, 1, 2, 3, 3, 3, 2, 3, 0, 2, 3, 3,
      3, 3, 3, 0, 2, 1, 3, 1, 0, 1, 3, 2, 0, 2, 3, 2, 0, 2, 0, 3, 3, 2,
      3, 3, 3, 2, 1, 3, 3, 2, 0, 3, 3, 0, 1, 2, 2, 0])
```

```
plt.scatter(df['Weight'],df['Height'],c=predictions)
```

<matplotlib.collections.PathCollection at 0x14162ce8f50>

OUTPUT

AlM:7-A Implement cross-validation techniques (k-fold, stratified, etc.) for robust model evaluation

```
from sklearn.datasets import load_iris
from sklearn.model selection import cross val score, KFold
from sklearn.linear_model import LogisticRegression
iris=load_iris()
X = iris.data
Y = iris.target
Ir = LogisticRegression()
k_fold = KFold(n_splits = 5)
score = cross_val_score(Ir, X, Y , cv = k_fold)
print ("Cross Validation Score : {}", format(score))
Cross Validation Score : {} [1. 1.
                                                        0.86666667 0.93333333 0.83333333]
holdout cross validation
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
iris = load_iris()
X = iris.data
Y = iris.target
Ir = LogisticRegression()
xtrain,xtest,ytrain,ytest = train_test_split(X , Y , test_size = 0.25 , random_state = 1)
Ir.fit(xtrain, ytrain)
* LogisticRegression
LogisticRegression()
prediction = Ir.predict(xtest)
print("Testing Accurcy : {}".format(accuracy_score(ytest,prediction)))
Testing Accurcy : 0.9736842105263158
Stratified K-Fold cross Validation
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.linear_model import LogisticRegression
import pandas as pd
df = pd.read_csv('pima-indians-diabetes.data.csv')
```

```
X=df.iloc[:,:-1]

y=df.iloc[:,-1]

lr=LogisticRegression()

skf=StratifiedKFold(n_splits=3)

score = cross_val_score(lr, X, y , cv = skf)

print('Scores',score)
    Scores [0.76953125 0.73046875 0.8 ]

OUTPUT

Scores [0.76953125 0.73046875 0.8 ]
```

AIM:8 Implement Bayesian Learning using inferences

from sklearn.datasets import load_breast_cancer
ds=load_breast_cancer()
X=ds.data
y=ds.target
<pre>from sklearn.model_selection import train_test_split</pre>
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.25,random_state=4)
from sklearn.naive_bayes import GaussianNB
nb=GaussianNB()
nb.fit(xtrain,ytrain)


```
preds=nb.predict(xtest)

from sklearn.metrics import accuracy_score
accuracy_score(ytest,preds)
```

0.9300699300699301

OUTPUT

Aim:9-A Set up a generator network to produce samples and a discriminator network to distinguish between real and generated data. (Use a simple small dataset)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.utils import shuffle

# Generate real dataset (points in a 2D Gaussian)
np.random.seed(0)
real_data = np.random.randn(500, 2) # 500 points in 2D
real_data

def generate_fake_samples(n=500):
    return np.random.uniform(-3, 3, size=(n, 2))

y_real = np.ones(500) # Real Labels
y_fake = np.zeros(500) # Fake Labels

y_fake
```

```
]: X_train = np.vstack([real_data, generate_fake_samples()])
y_train = np.hstack([y_real, y_fake])
]: X_train.shape
]: (1000, 2)
]: y_train.shape
]: (1000,)
]: X_train, y_train = shuffle(X_train, y_train, random_state=0)
]: discriminator = LogisticRegression()
discriminator.fit(X_train, y_train)
 LogisticRegression
LogisticRegression()
```

```
accuracy = discriminator.score(X_train, y_train)

print(f"Discriminator Accuracy: {accuracy:.2f}")

Discriminator Accuracy: 0.53

# Improve generator: Adjust distribution to fool discriminator

fake_samples = generate_fake_samples()

fake_probs = discriminator.predict_proba(fake_samples)[:, 1] # Probability of being real

better_fake_samples = fake_samples[fake_probs > 0.5] # Keep more realistic samples

plt.figure(figsize=(6, 6))

plt.scatter(real_data[:, 0], real_data[:, 1], label="Real Data", alpha=0.6)

plt.scatter(better_fake_samples[:, 0], better_fake_samples[:, 1], label="Generated Data", alpha=0.6)

plt.legend()

plt.title("Real vs. Generated Data (Sklearn GAN)")

plt.show()
```


