Architecture Notebook

Sistema de Gestão de Feiras

Higor Roger de Freitas Santos - 221006440 Victor Eneias Oliveira - 221038364

Engenharia de Software CIC0105 Turma 01 2025.1 29 de junho de 2025

Conteúdo

1	Vis	ão Geral da Arquitetura	
	1.1	Elementos Principais	
	1.2	Comunicação e Fluxo de Dados	
2			
	2.1	Camada de Apresentação (Frontend)	
	2.2	Camada de Aplicação (Backend)	
	2.3	Camada de Persistência	
3	Tecnologias e Ferramentas		
	3.1	FastAPI (Backend)	
	3.2	React.js (Frontend)	
	3.3	SQLite (Banco de Dados)	
	3.4	JWT (Autenticação)	
4	Diagramas de Fluxo		
	4.1	Fluxo de Autenticação	
		Controle de Autorização	

1 Visão Geral da Arquitetura

O Sistema de Gestão de Feiras implementa uma arquitetura de três camadas (3-tier) baseada no padrão cliente-servidor, com separação clara entre interface de usuário, lógica de aplicação e persistência de dados. A comunicação entre as camadas ocorre através de uma API REST, permitindo independência tecnológica e facilidade de manutenção.

1.1 Elementos Principais

O sistema é composto por três elementos fundamentais:

- Frontend (Cliente): Interface web desenvolvida em React.js que executa no navegador do usuário
- Backend (Servidor): API REST desenvolvida em FastAPI que processa requisições e implementa regras de negócio
- Banco de Dados: SQLite para persistência de dados com estrutura relacional

1.2 Comunicação e Fluxo de Dados

A comunicação entre os elementos segue o protocolo HTTP/HTTPS com troca de dados em formato JSON. O frontend realiza requisições para endpoints específicos do backend, que processa as operações e retorna respostas estruturadas. A autenticação é mantida através de tokens JWT armazenados no navegador.

Figura 1: Arquitetura Geral do Sistema

2 Elementos e Relacionamentos

2.1 Camada de Apresentação (Frontend)

O frontend é uma Single Page Application (SPA) desenvolvida em React.js que executa no navegador do usuário. Seus principais componentes são:

- Componente Principal (App): Gerencia o estado de autenticação e controla a navegação
- Componente de Login: Responsável pela autenticação e registro de usuários
- Componentes de Gestão: Interfaces para CRUD de feiras, expositores, produtos e ingressos
- Módulo API: Centraliza a comunicação com o backend e gerencia tokens JWT

2.2 Camada de Aplicação (Backend)

O backend implementa uma API REST usando FastAPI, organizando a lógica em módulos especializados:

- Routers: Definem endpoints HTTP e processam requisições (usuarios.py, feiras.py, etc.)
- Modelos: Representam entidades do banco de dados usando SQLAlchemy (models.py)
- Schemas: Validam dados de entrada e saída usando Pydantic (schemas.py)
- Autenticação: Gerencia tokens JWT e autorização (auth.py)
- CRUD: Implementa operações de banco de dados (crud.py)

2.3 Camada de Persistência

O banco de dados SQLite armazena informações em cinco tabelas principais:

- Usuários: Dados de autenticação e identificação
- Feiras: Eventos principais do sistema
- Expositores: Participantes vinculados a feiras específicas
- Produtos: Catálogo de itens por expositor
- Ingressos: Tickets de acesso às feiras

3 Tecnologias e Ferramentas

3.1 FastAPI (Backend)

Descrição: Framework web Python para desenvolvimento de APIs REST com foco em performance e facilidade de uso.

Por que foi escolhido:

- Documentação Automática: Gera automaticamente documentação OpenAPI/Swagger sem configuração adicional
- Validação Automática: Integração nativa com Pydantic para validação de dados
- Performance: Oferece alta performance comparável a frameworks Node.js
- **Tipagem**: Suporte nativo para type hints Python, melhorando qualidade do código

Limitações:

- Ecossistema menor comparado ao Django
- Requer conhecimento de Python assíncrono para recursos avançados

3.2 React.js (Frontend)

Descrição: Biblioteca JavaScript para construção de interfaces de usuário baseada em componentes.

Por que foi escolhido:

- Componentização: Facilita reutilização e manutenção de código
- Ecossistema Maduro: Ampla comunidade e disponibilidade de recursos
- Virtual DOM: Otimiza atualizações de interface
- Curva de Aprendizado: Relativamente simples para desenvolvedores JavaScript

Limitações:

- Requer conhecimento de JavaScript moderno (ES6+)
- Pode ser excessivo para aplicações muito simples

3.3 SQLite (Banco de Dados)

Descrição: Sistema de banco de dados relacional embarcado, sem necessidade de servidor dedicado.

Por que foi escolhido:

- Simplicidade: Zero configuração para desenvolvimento
- Portabilidade: Arquivo único facilita distribuição
- Padrão SQL: Compatível com SQL padrão

• Adequação ao Escopo: Suficiente para demonstração acadêmica

Limitações:

- Limitações de concorrência para múltiplos escritores
- Não adequado para aplicações de alta escala
- Funcionalidades avançadas limitadas comparado a PostgreSQL/MySQL

3.4 JWT (Autenticação)

Descrição: JSON Web Tokens para autenticação stateless entre cliente e servidor.

Por que foi escolhido:

- Stateless: Elimina necessidade de armazenamento de sessão no servidor
- Portabilidade: Funciona bem em arquiteturas distribuídas
- Padrão da Indústria: Amplamente adotado em APIs REST
- Simplicidade: Implementação direta com bibliotecas existentes

Limitações:

- Tokens não podem ser revogados facilmente
- Tamanho maior que cookies de sessão tradicionais
- Requer cuidado com tempo de expiração

4 Diagramas de Fluxo

4.1 Fluxo de Autenticação

O processo de autenticação segue o padrão JWT, onde o usuário fornece credenciais, o sistema valida e retorna um token que será usado nas requisições subsequentes.

Etapas do processo:

- 1. Usuário insere email e senha no frontend
- 2. Frontend envia requisição POST para /usuarios/login
- 3. Backend valida credenciais no banco de dados
- 4. Se válidas, backend gera token JWT com expiração de 60 minutos
- 5. Token é retornado ao frontend e armazenado no LocalStorage
- 6. Frontend inclui token em todas as requisições subsequentes

4.2 Fluxo de Criação de Feira

Este fluxo demonstra como funciona a criação de recursos com autenticação e autorização.

Etapas do processo:

- 1. Usuário preenche formulário de criação de feira
- 2. Frontend envia requisição POST para /feiras/ incluindo token JWT
- 3. Backend verifica validade do token e extrai ID do usuário
- 4. Dados são validados usando schemas Pydantic
- 5. Nova feira é criada no banco com id_criador do usuário autenticado
- 6. Dados da feira criada são retornados ao frontend
- 7. Interface é atualizada com a nova feira

4.3 Controle de Autorização

O sistema implementa autorização baseada em propriedade, onde apenas o criador de um recurso pode modificá-lo.

Etapas do processo:

- 1. Usuário solicita edição de uma feira específica
- 2. Frontend envia requisição PUT incluindo token JWT
- 3. Backend extrai ID do usuário do token
- 4. Sistema busca a feira no banco de dados
- 5. Compara id_criador da feira com ID do usuário autenticado
- 6. Se diferentes, retorna erro 403 (Forbidden)
- 7. Se iguais, permite a operação de edição

Figura 2: Relacionamentos entre Componentes

Figura 3: Sequência de Autenticação JWT

Figura 4: Sequência de Criação de Feira

Figura 5: Sequência de Autorização por Propriedade