Classifying Risk of Injury for Traffic Crashes in the City of Chicago

Lorela Blaka Allison Gao Raylin Soriano

Presentation Outline

- Purpose of Analysis
- Data & Methods
- Results
- Conclusions
- Future Steps

Purpose of Analysis

Stakeholder: The Chicago Department of Transportation (CDOT)

Target: Predicting levels of injury (mild, medium, and severe)

Question of interest: What variables can help us predict different levels of injury from car crashes?

Data & Methods

- Data: 2019 Chicago car crashes
 - \circ N = 550,000
 - Source: Chicago Data Portal
- Method:
 - Several classification models
 - o 9 main features

Modeling Results

	Score Type	Dummy	Logistic	Random Forest	XGBoost
Training Data	Accuracy	0.8729	0.8720	0.9224 I	0.9715
	Macro Precision	0.2906	0.3290	0.7690 I	0.9275
Test Data	Accuracy			 	0.9488
	Macro Precision				0.8690

1

The percent of accidents for most severe injuries was highest when the road was defected

2

The accident count for most severe injuries was highest when the airbag was not deployed

Accident Likelihood by Area

3

The accident likelihood is highest in areas of Northern Chicago

- 30

- 20

- 10

Recommendations

- 1. Fix road infrastructure to reduce severe level of injury
- 2. Investigate airbag safety issues
- 3. Implement safety measures in high accident zones (i.e. address congestion issue, implement more safety signs)

Future Steps

• Increase dataset to include greater number of years

• Further modeling and hyperparameter tuning. For example, compare difference between rural and urban Chicago

Thank you!

Questions, Comments, Feedbacks