É	Normalization: Normalization is a process to eliminate
	redundancy, as redundancy is the
	root cause of a number of problems.
	the of a contract of pototeries.

Problems brought about by redundancy:

- a) Insurtion anomalies
- b) Deletion anomalies
- c) Updation anomalies.

Eg: Student

_	T T T T T T T T T T T T T T T T T T T						
	Student 10	Name	Age	PraID	PraName	PryChair	
	101	A	20	1111	esc	X 42 7	
	102	B	18	70	CSC	X42	
	301	L)	21	IIIA	cse	XY2	

These anomalies are brought by storing program info in one student table.

5 This can be resolved if we adopt the ER idea.

Chidant

 studen								
Student ID	Name	Age	Prg10		(Prg 10)	PrgName	el PigCh	
101	A	20	111		111	CSC	XY2	
102	В	18	111		MA	CSE.	xY2	
301	_	21	IIIA	,		:		

This logical break down is brought about by Normalization INF -> 2NF -> 3NF -> BCNF Eusing Functional Dep's }

E	Functional Dependencies (FD):
	(this is a tod/technique)
i .	
	Consider the relation . R(x, B) and the
	functional dependency fd: x -> B
	la de la companya de
	R & B determinant dependent
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	search front
	d 4
	i.e., > = search function; what does this mean?
	consider a function $f(x) = y$ and we make
	observations on 'y' by changing the values of 'sc.
	f(1) = a
	f(2) = 6 (do you there the function
	f(2) = b do you think the function $f(1) = c$ is correct?
	the answer is "no" } this is because when x = 1,
	me. Observe different values
	G 1
	So bringing this idea back to a search function /fd; A fd is a function that enables you to find the
	A fd is a function that enables you to find the
	nature of B given X; and this is possible only whon the values of X preserves in logical ordering in
	the values of & preserves a logical ordering in
_	a relation.

so it	we go back	6	molation	P. VRA	halla	i ve no
a dita	are made.	,	recent		four	vog
ucus	age Mude.					

		4	
R	d	B	XCR, BCR
ti ->	a	1	
t2 >	a	1	if $\alpha \to \beta$ "holds true" then $t_1 [\alpha] = t_2 [\alpha] \text{ implies}$
	C	3	t1 [B] = t2[B]
	d	4	

XXX & Types of FD's:

- a) trivial: $AB \rightarrow A$ i.e. here $B \subseteq X$ b) non-trivial: $AB \rightarrow CBA$ ichere $B \not= X / X \subseteq B$ c) completely non-trivial: $AB \rightarrow DE$ i.e. $X \cap B = \phi$

-					-		
	Example: R	A	B	C	D	E	a) $A \rightarrow BC$
		a	2	3	4	5	b) DE → C
		2	a	3	4	5	$(c) C \rightarrow DE$
		a	2	3	6	5	d) BC -> A
		a	2	3	6	6	

given R, determine if a, b, c, & d are valid functional dependencies.

SHINT: look for a given nature of x, do you?

get the same value of B.

								r					
_	Im	por	ant	2	xan	ple	<u>(:</u>		-				
A 100 Maria (100 Maria								Set 1:					
	R ₂	A	B	C	D	E		a) A	→	BCI	>		
		a	2	3	4	5		6) A					
		6	a	3	4	5		c) A					
		C.	2	3	6	5							-
		ol	2	3	6	6	¥	Set 2:					
			0					a) AE	3 ->	C			
								6) E1					
	i i							c) EA					
	4	Obse	rva	tion	, SE	all.	udliei	of A a	rp. 7	mic	2110	° 011	tha
						fd!	s are	valio	1 · j.	e all	val	HEA OLY	he wy
								inant)ai					
					SET2	2: a	u ed's	are na	lid	if	the i	Jalisos	0/
								dants)					t
						7	901	, and a second					
	R3	X	1 2	2	,			Ra	A	B	C		
n.		1	4 2	_				7	1	2	4		,
			5 3				4.		3	5	4		
			6 3						3		2		
18		3	2 2						1		2		
	a) x	(Y->	26	& 2	→ >	1		a) A.	-> B	80	& B	C -> A	
1	6)							b) C-					
	c)							c) B-					
	a)							d) A					
-													

.

ē	Hidden Functional Dependencies:
	hibrary Database: BOOK (ACC-NO, YR-PUB, TITLE)
	USER (CARD-NO, B-NAME, B-ADDR)
	SUPPLIER (S-NAME, S-ADDR)
ř.	BORROW (ACC_NO, CARD-NO, DOI)
	SUPPLY (ACC-NO, S-NAME, PRICE, DOS)
-	fd: S-NAME, DOS -> PRICE (Supply table) CARD-NO -> DOI (borrow table/shema)
	ACC-NO -> YR-PUB
	ACC-NO, TITLE - YR-PUB (Book schima)
	ACC-NO -> YR-PUB, TITLE too many can we
	reduce
	Step 1: look for sudundancies in x 2 B
	ACC_NO, (TITLE) -> YR-PUB
	ACC-NO -> YR-PUR
	ACC NO -> YR-PUB. (TITLE) redundant (not-
	required)
	step2: weedout hidden fids.
	ACC-NO -> S-NAME (supply)
	(ACC-NO -> S-ADDR) redundant
,	5-NAME -> 5-ADDR (supplier) (there is a
	hidden
	dependancy)
	1.e. ACL NO -> S-APDR can be inferred using
	ACC-NO -> S-NAME
	S-AAME -> S-ADDR.
11	