

# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

## «МИРЭА – Российский технологический университет»

## ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

## **Типовой расчет** по дисциплине «**Случайные процессы**»

ВАРИАНТ 90

Выполнил: Студент 4-го курса Демченко Г. Д.

Группа: КМБО-04-21

#### Оглавление

| Задания                                  | 3  |
|------------------------------------------|----|
| Задания I. «Цепи Маркова»                | 3  |
| Задание 1                                |    |
| Задание 2                                | 5  |
| II. «Процесс рождения, гибели и мутации» |    |
| Задание 3                                |    |
| Задание 4                                |    |
| Задание 5                                |    |
| Краткие теоретические сведения           |    |
| Результаты расчетов                      |    |
| Задание 1                                | 21 |
| Задание 2                                | 25 |
| Задание 3                                | 26 |
| Задание 4                                | 33 |
| Задание 5                                |    |
| Список литературы                        |    |
| Приложение                               |    |
|                                          |    |

#### Задания

#### І. «Цепи Маркова»

Каждому состоянию системы соответствует определенная последовательность из двух нулей и двух единиц. Состояния системы нумеруются следующим образом:

| Nº | состояние | Nº | состояние |
|----|-----------|----|-----------|
| 1  | 0011      | 4  | 1001      |
| 2  | 0101      | 5  | 1010      |
| 3  | 0110      | 6  | 1100      |

На каждом шаге один из нулей превращается в единицу, и, одновременно, одна из единиц превращается в нуль. Вероятность превращения в единицу для первого слева нуля равна p, а для второго слева нуля равна 1-p. Вероятность превращения в нуль для первой слева единицы равна q, а для второй слева единицы равна 1-q.

#### Задание 1

## Требуется:

1. Составить Таблицу 1.1 всех возможных переходов между состояниями следующего вида:

| №<br>состояния | Состояние | Список возможных состояний на следующем шаге (с<br>ненулевой вероятностью перехода)             |  |
|----------------|-----------|-------------------------------------------------------------------------------------------------|--|
| 1              | 0011      | 1001(4), 1010(5), 0101(2), 0110(3), (состояния с нулевой вероятностью перехода нужно исключить) |  |
| 2              | 0101      | (состояния с нулевой вероятностью перехода нужно исключить)                                     |  |
| 3              | 0110      | •••                                                                                             |  |
| 4              | 1001      |                                                                                                 |  |

| 5 | 1010 |  |
|---|------|--|
| 6 | 1100 |  |

В скобках указываются номера состояний.

- 2. Построить матрицу переходных вероятностей P и граф состояний цепи Маркова.
- 3. Найти матрицы переходных вероятностей за n шагов  $P^n$  (n=2,...,k) и величины отклонений  $\delta_n = max(\vee p_{ij}(n) p_{ij}(n-1) \vee ; i,j=1,2,...,6)$  (n=2,...,k) для k=16. Результаты представить в Таблице 1.2 следующего вида:

| n   | $P^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta_n$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1   | $ \begin{pmatrix} p_{11}(1) & p_{12}(1) & p_{13}(1) & p_{14}(1) & p_{15}(1) & p_{16}(1) \\ p_{21}(1) & p_{22}(1) & p_{23}(1) & p_{24}(1) & p_{25}(1) & p_{26}(1) \\ p_{31}(1) & p_{32}(1) & p_{33}(1) & p_{34}(1) & p_{35}(1) & p_{36}(1) \\ p_{41}(1) & p_{42}(1) & p_{43}(1) & p_{44}(1) & p_{45}(1) & p_{46}(1) \\ p_{51}(1) & p_{52}(1) & p_{53}(1) & p_{54}(1) & p_{55}(1) & p_{56}(1) \\ p_{61}(1) & p_{62}(1) & p_{63}(1) & p_{64}(1) & p_{65}(1) & p_{66}(1) \end{pmatrix} $ | ı          |
| 2   | $ \begin{pmatrix} p_{11}(2) & p_{12}(2) & p_{13}(2) & p_{14}(2) & p_{15}(2) & p_{16}(2) \\ p_{21}(2) & p_{22}(2) & p_{23}(2) & p_{24}(2) & p_{25}(2) & p_{26}(2) \\ p_{31}(2) & p_{32}(2) & p_{33}(2) & p_{34}(2) & p_{35}(2) & p_{36}(2) \\ p_{41}(2) & p_{42}(2) & p_{43}(2) & p_{44}(2) & p_{45}(2) & p_{46}(2) \\ p_{51}(2) & p_{52}(2) & p_{53}(2) & p_{54}(2) & p_{55}(2) & p_{56}(2) \\ p_{61}(2) & p_{62}(2) & p_{63}(2) & p_{64}(2) & p_{65}(2) & p_{66}(2) \end{pmatrix} $ | $\delta_2$ |
| ••• | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |

$$k=16 \begin{array}{|c|c|c|c|c|c|c|}\hline & \begin{pmatrix} p_{11}(k) & p_{12}(k) & p_{13}(k) & p_{14}(k) & p_{15}(k) & p_{16}(k) \\ p_{21}(k) & p_{22}(k) & p_{23}(k) & p_{24}(k) & p_{25}(k) & p_{26}(k) \\ p_{31}(k) & p_{32}(k) & p_{33}(k) & p_{34}(k) & p_{35}(k) & p_{36}(k) \\ p_{41}(k) & p_{42}(k) & p_{43}(k) & p_{44}(k) & p_{45}(k) & p_{46}(k) \\ p_{51}(k) & p_{52}(k) & p_{53}(k) & p_{54}(k) & p_{55}(k) & p_{56}(k) \\ p_{61}(k) & p_{62}(k) & p_{63}(k) & p_{64}(k) & p_{65}(k) & p_{66}(k) \\ \hline \end{array} \right) \\ & \delta_{16}$$

Для каждого состояния цепи Маркова нужно по своим данным вычислить элементы матрицы переходных вероятностей  $P=(p_{ij})$ : например, из состояния №3 (0110) система может перейти в состояние №5 (1010) с вероятностью pq, в состояние №6 (1100) с вероятностью p(1-q), в состояние №1 (0011) с вероятностью p(1-q), в состояние №2 (0101) с вероятностью p(1-q). При этом pq+p(1-q)+(1-p)q+(1-p)(1-q)=1.

#### Задание 2

## Требуется:

1. Найти стационарное распределение вероятностей состояний цепи Маркова

| 1     |       | l     | 4              |         |       |                  |
|-------|-------|-------|----------------|---------|-------|------------------|
| $r_1$ | $r_2$ | $r_3$ | r <sub>4</sub> | $r_{5}$ | $r_6$ | $\sum_{j} r_{j}$ |

Провести проверку стационарности найденного распределения, т.е. вычислить  $(r_1, r_2, ..., r_6)P$  и сравнить с  $\underline{r} = (r_1, r_2, ..., r_6)$ .

2. Выявить существенные и несущественные состояния

| Существенные   | $i_1, \ldots$ |
|----------------|---------------|
| Несущественные | $j_1, \dots$  |

3. Проверить эргодичность цепи Маркова (ответ обосновать).

#### II. «Процесс рождения, гибели и мутации»

В популяции могут находиться объекты двух видов: N-объекты и М-объекты.

#### Дано:

- время жизни каждого N-объекта является случайной величиной, имеющей показательное распределение с заданным параметром  $\lambda$ ;
- время жизни каждого М-объекта является случайной величиной, имеющей показательное распределение с заданным параметром  $\mu$ ;
- по окончании времени жизни каждый N-объект порождает с вероятностью  $pn_1$  один N-объект (событие  $S_N(1)$ ), с вероятностью  $pn_2$  два N-объекта (событие  $S_N(2)$ ), с вероятностью  $pn_{11}=1-pn_1-pn_2$  один N-объект и один М-объект (событие  $S_N(3)$ );
- по окончании времени жизни каждый М-объект порождает с вероятностью  $pm_1$  один М-объект (событие  $S_M(1)$ ), ничего не порождает с вероятностью  $pm_0$  (событие  $S_M(0)$ ), с вероятностью  $pm_{11}=1-pm_1-pm_0$  один N-объект и один М-объект (событие  $S_M(2)$ );
- до начального момента t=0 в популяции не было объектов, в начальный момент происходит событие  $S_N(1)$  и появляется первый объект: N-объект.

Состояние системы в момент времени t характеризуется параметрами (N(t),M(t)), где N(t) – число N-объектов, M(t) – число M-объектов. Событием в развитии системы называется момент окончания жизни (исчезновения) любого из объектов и (одновременно) появления новых объектов.

События могут быть следующих типов:  $S_N(1)$ ,  $S_N(2)$ ,  $S_N(3)$ ,  $S_M(0)$ ,  $S_M(1)$ ,  $S_M(2)$ . При появлении каждого нового объекта случайным образом в соответствии с заданным законом распределения определяется время его жизни. Считать для

первого события: момент наступления события  $t_{cof}(1) = 0;$  тип события  $T \ y \ p \ e(1) = S_N(1).$ 

#### Задание 3

#### Требуется:

- 1. Провести моделирование первых 100 событий в развитии популяции в соответствии с Указаниями.
- 2. Составить Таблицу 3.1 с данными о событиях:
- номер события *i*;
- момент наступления события  $t_{coo}(i)$ ;
- тип события T y pe(i);
- время жизни появившихся новых объектов (2 столбца)  $t_{\kappa 1}(i)$ ,  $t_{\kappa 2}(i)$ ;
- состояние системы после события C(i);
- время ожидания до следующего события  $t_{om}(i)$ ;
- номер  $J_{\kappa\kappa}(i)$  объекта, у которого раньше закончится жизнь;
- вид этого исчезающего объекта  $Gen_{\kappa\kappa}(i)$  (N или M).
- 3. Составить Таблицу 3.2 с данными об объектах:
- номер объекта *j*;
- вид объекта Gen(j) (N или M);
- момент появления (рождения) объекта  $t_b(j)$ ;
- время жизни объекта  $t_l(j)$ ;
- момент исчезновения объекта  $t_d(j)$ ;
- номера объектов-потомков (2 столбца)  $Des_1(j)$ ,  $Des_2(j)$ .

Моделирование событий должно сопровождаться одновременным формированием массивов для заполнения Таблиц 3.1 и 3.2.

В соответствии с Заданием момент наступления первого события  $t_{coo}(1)=0$ , тип первого события  $Type(1)=S_N(1)$ , то есть в популяции появился один объект вида N.

В строку 1 Таблицы 3.1 заносятся:

- номер события i=1;
- момент наступления события  $t_{cof}(1)=0$ ;
- тип события T y  $pe(1)=S_N(1)$ ;
- время жизни  $t_{\kappa 1}(1)$  объекта вида N определяется случайным образом в соответствии с показательным законом распределения с параметром  $\lambda$ , при этом  $t_{\kappa 2}(1)=-1$  (признак того, что появился только один объект);
- состояние системы после события C(1)=(1,0);
- время ожидания до следующего события  $t_{o \pi}(1) = t_{\pi 1}(1)$ ;
- номер объекта, у которого раньше закончится жизнь  $J_{\kappa\kappa}(1)$ =1 (он в данный момент единственный);
- вид этого объекта  $Gen_{\kappa m}(1) = N$ .

В строку 1 Таблицы 3.2 заносятся:

- номер объекта ј 1;
- вид объекта Gen(1)=N;
- момент появления объекта  $t_b(1)=0$ ;
- время жизни объекта  $t_l(1) = t_{ж1}(1)$ ;
- момент исчезновения объекта  $t_d(1) = t_b(1) + t_l(1) = t_{ж1}(1)$ ;
- номера объектов-потомков  $Des_1(1)$ ,  $Des_2(1)$  определяются в момент наступления следующего (второго) события, до этого полагаем  $Des_1(1) = Des_2(1) = -1$ .

Очевидно, что момент наступления второго события  $t_{coo}(2) = t_{\kappa 1}(1)$ . В момент  $t_{coo}(2)$  определяется тип события 2: генерируется псевдослучайное число  $\omega$  из равномерного распределения на отрезке [0,1] и

$$Type(2) = \begin{cases} S_N(1), & 0 \le \omega < pn_1; \\ S_N(2), & pn_1 \le \omega < pn_1 + pn_2; \\ S_N(3), & pn_1 + pn_2 \le \omega \le 1. \end{cases}$$

Если тип события 2 получился  $S_N(3)$  (с вероятностью  $pn_{11}=1-pn_1-pn_2)$ , то объект № 1 исчез и одновременно появились два новых объекта видов N и M (состояние системы C(2)=(1,1)). Сразу же определяется случайным образом время жизни N-объекта  $t_N$  в соответствии с показательным законом распределения с параметром  $\lambda$  и время жизни M-объекта  $t_M$  в соответствии с показательным законом распределения с параметром  $\mu$ . При появлении сразу двух объектов меньший номер присваивается объекту с меньшим временем жизни.

Предположим, что  $t_M < t_N$ . Тогда М-объект будет объектом № 2 и  $t_{\infty 1}(2) = t_M$ , а N-объект будет объектом № 3 и  $t_{\infty 2}(2) = t_N$ . Объект № 2 (М-объект) исчезнет раньше объекта № 3 (N-объект), поэтому  $t_{\infty}(2) = t_{\infty 1}(2)$ . Строку 1 Таблицы 3.2 можно полностью заполнить:

$$Des_1(1)=2$$
,  $Des_2(1)=3$  (до этого было  $Des_1(1)=Des_2(1)=-1$ ).

В строку 2 Таблицы 3.1 заносятся:

номер события

$$i=2, t_{co6}(2)=t_{sc1}(1), Type(2)=S_{N}(3), t_{sc1}(2), t_{sc2}(2), C(2)=(1,1), t_{osc}(2)=t_{sc1}(2), J_{ksc}(2)=2, \geq n_{ksc}(2)=M.$$

В строку 2 Таблицы 3.2 заносятся:

номер объекта

$$j=2$$
,  $Gen(2)=M$ ,  $t_b(2)=t_{coo}(2)$ ,  $t_l(2)=t_{sco}(2)$ ,  $t_d(2)=t_b(2)+t_l(2)$ ,  $Des_1(2)=Des_2(2)=-1$  (временно, до конца жизни этого объекта, когда будут определены настоящие значения  $Des_1(2)$  и  $Des_2(2)$ ).

В строку 3 Таблицы 3.2 заносятся:

номер объекта

$$j=3$$
,  $Gen(3)=N$ ,  $t_b(3)=t_{coo}(2)$ ,  $t_l(3)=t_{sc}(2)$ ,  $t_d(3)=t_b(3)+t_l(3)$ ,  $Des_1(3)=Des_2(3)=-1$  (временно, до конца жизни этого объекта, когда будут определены настоящие

значения  $Des_1(3)$  и  $Des_2(3)$ ).

Если тип события 2 получился  $S_N(2)$  (с вероятностью  $p\,n_2$ ), то объект  $N_2$  1 исчез и одновременно появились два новых N-объекта (состояние системы

C(2)=(2,0)). Сразу же определяются случайным образом времена жизни этих объектов  $t_{N,1}$  и  $t_{N,2}$  в соответствии с показательным законом распределения с параметром  $\lambda$ . При появлении сразу двух объектов меньший присваивается объекту с меньшим временем жизни.

Предположим, что  $t_{N,1} < t_{N,2}$ . Тогда  $t_{\infty 1}(2) = t_{N,1}$  и этот N-объект будет объектом № 2, а другой N-объект будет объектом № 3 и  $t_{\infty 2}(2) = t_{N,2}$ . Объект № 2 исчезнет раньше объекта № 3, поэтому  $t_{\infty}(2) = t_{\infty 1}(2)$ . Строку 1 Таблицы 3.2 можно полностью заполнить:  $Des_1(1) = 2$ ,  $Des_2(1) = 3$ (до этого было  $Des_1(1) = Des_2(1) = -1$ ).

В строку 2 Таблицы 3.1 заносятся:

номер события

В строку 2 Таблицы 3.2 заносятся:

номер объекта

$$j=2$$
,  $Gen(2)=N$ ,  $t_b(2)=t_{coo}(2)$ ,  $t_l(2)=t_{sec}(2)$ ,  $t_d(2)=t_b(2)+t_l(2)$ ,  $Des_1(2)=Des_2(2)=-1$ 

(временно, до конца жизни этого объекта, когда будут определены настоящие значения  $Des_1(2)_{\mathbf{H}} Des_2(2)$ ).

В строку 3 Таблицы 3.2 заносятся:

номер объекта

$$j=3$$
,  $Gen(3)=N$ ,  $t_b(3)=t_{coo}(2)$ ,  $t_1(3)=t_{sec}(2)$ ,  $t_d(3)=t_b(3)+t_1(3)$ ,  $Des_1(3)=Des_2(3)=-1$ 

(временно, до конца жизни этого объекта, когда будут определены настоящие значения  $Des_1(3)$  и  $Des_2(3)$ ).

Если тип события 2 получился  $S_N(1)$  (с вероятностью  $pn_1$ ), то объект N = 1 исчез и одновременно появился только один новый N-объект (состояние системы не изменилось C(2) = (1,0)). Сразу же определяется случайным образом время жизни этого объекта  $t_N$  в соответствии с показательным законом

распределения с параметром  $\lambda$ . При этом  $t_{osc}(2) = t_{sc}(2) = t_N$ . Строку 1 Таблицы 3.2 можно полностью заполнить:

$$Des_1(1)=2$$
,  $Des_2(1)=-1$ (до этого было  $Des_1(1)=Des_2(1)=-1$ ).

В строку 2 Таблицы 3.1 заносятся:

номер события

$$i=2, t_{\cos}(2)=t_{\text{mi}}(2), \textit{Type}(2)=S_{n}(1), t_{\text{mi}}(2), t_{\text{mi}}(2)=-1, C(2)=(1,0), t_{\text{om}}(2)=t_{\text{mi}}(2), J_{\text{km}}(2)=2, Gen_{\text{km}}(2)=N.$$

В строку 2 Таблицы 3.2 заносятся:

номер объекта

$$j = 2, Gen(2) = N, t_b(2) = t_{co6}(2), t_l(2) = t_{sc1}(2), t_d(2) = t_b(2) + t_l(2), Des_1(2) = Des_2(2) = -1$$

(временно, до конца жизни этого объекта, когда будут определены настоящие значения  $Des_1(2)$  и  $Des_2(2)$ ).

Очевидно, что момент наступления третьего события  $t_{co6}(3) = t_{co6}(2) + t_{ox}(2)$ .

Если тип события 2 был  $S_N(3)$  и  $t_M < t_N$ , т.е. М-объект будет объектом № 2, то в момент  $t_{cof}(3)$  исчезновения этого М-объекта тип события 3 определяется следующим образом: генерируется псевдослучайное число из равномерного распределения на отрезке [0,1] и

$$Type(3) = \begin{cases} S_M(0), & 0 \le \omega < pm_0; \\ S_M(1), & pm_0 \le \omega < pm_0 + pm_1; \\ S_M(2), & pm_0 + pm_1 \le \omega \le 1. \end{cases}$$

Если тип события 3 получился  $S_M(0)$  (с вероятностью  $pm_0$ ), то объект № 2 исчез и новые объекты не появились (состояние системы C(3)=(1,0)).

В строке 2 Таблицы 3.2 останется:  $Des_1(2) = Des_2(2) = -1$ . В таблицу 2 новой информации не заносится.

В строку 3 Таблицы 3.1 заносятся: номер события

$$\begin{split} &i\!=\!3, t_{cob}(3), T\!y\!p\!e(3)\!=\!S_{M}(0), t_{s\!\kappa 1}(3)\!=\!t_{s\!\kappa 2}(3)\!=\!-1, C(3)\!=\!(1,0), \\ &t_{o\!s\!\kappa}(3)\!=\!t_{d}(3)\!-\!t_{cob}(3)\!=\!t_{s\!\kappa 2}(2)\!-\!t_{o\!s\!\kappa}(2), J_{\kappa\!s\!\kappa}(3)\!=\!3, \geq\!n_{\kappa\!s\!\kappa}(3)\!=\!N. \end{split}$$

Если тип события 3 получился  $S_M(1)$  (с вероятностью  $pm_1$ ), то объект № 2 исчез и одновременно появился только один новый М-объект, это объект № 4, состояние системы не изменилось C(3)=(1,1). Сразу же определяется случайным образом время жизни этого объекта  $t_M$  в соответствии с показательным законом распределения с параметром  $\mu$ . При этом  $t_{\infty 1}(3)=t_M$ . Строку 2 таблицы 2 можно полностью заполнить:  $Des_1(2)=4$ ,  $Des_2(2)=-1$  (до этого было  $Des_1(2)=Des_2(2)=-1$ ).

В строку 3 Таблицы 3.1 заносятся:

номер события

В строку 4 Таблицы 3.2 заносятся:

номер объекта

$$j=4$$
 ,  $Gen(4)=M$  ,  $t_b(4)=t_{co6}(3)$  ,  $t_l(4)=t_{sc1}(3)$  ,  $t_d(4)=t_b(4)+t_l(4)$  ,  $Des_1(4)=Des_2(4)=-1$  (временно, до конца жизни этого объекта, когда будут определены настоящие значения  $Des_1(4)$  и  $Des_2(4)$ ).

Если тип события 3 получился  $S_M(2)$  (с вероятностью  $pm_{11}=1-pm_1-pm_0$ ), то объект  $N_{2}$  и счез и одновременно появились два новых объекта видов N и M (состояние системы C(3)=(2,1)). Сразу же определяется случайным образом время жизни N-объекта  $t_N$  в соответствии с показательным законом распределения с параметром  $\lambda$  и время жизни M-объекта  $t_M$  в соответствии с показательным законом распределения с параметром  $\mu$ . При появлении сразу двух объектов меньший номер присваивается объекту с меньшим временем жизни.

Если  $t_N < t_M$ , то  $t_{\infty 1}(3) = t_N$  и этот N-объект будет объектом  $\mathbb{N}_2$  4, а M-объект будет объектом  $\mathbb{N}_2$  5 и  $t_{\infty 2}(3) = t_M$ . Если  $t_M < t_N$ , то  $t_{\infty 1}(2) = t_M$  и этот M-объект будет объектом  $\mathbb{N}_2$  4, а N-объект будет объектом  $\mathbb{N}_2$  5 и  $t_{\infty 2}(3) = t_N$ .

В Таблице 3.2 строку 2 можно полностью заполнить:  $Des_1(2)=4$ ,  $Des_2(2)=5$  (до этого было  $Des_1(2)=Des_2(2)=-1$ ) и начать заполнение строк 4 и 5, занеся в них номер объекта j , Gen(j),  $t_b(j)=t_{coo}(3)$ ,  $t_l(j)$ ,  $t_d(j)=t_b(j)+t_l(j)$ ;  $Des_1(j)=Des_2(j)=-1$  (временно, до конца жизни этих объектов, когда будут определены настоящие значения  $Des_1(j)$  и  $Des_2(j)$ ).

В строку 3 Таблицы 3.1 заносятся:

номер события 
$$i=3, t_{co6}(3)=t_{co6}(2)+t_{osc}(2), \textit{Турe}(3)=S_{\textit{M}}(2), t_{sc1}(3), \\ t_{sc2}(3), C(3)=(2,1), t_{cosc}(3)=min\{t_{sc1}(3), t_{d}(3)-t_{co6}(3)\},$$

$$J_{_{\mathcal{K}\mathcal{H}\!\mathcal{C}}}(3)\!=\!\!\begin{cases} 3,\; \text{если}\; t_{_{\!\mathit{O}\!\mathit{H}\!\mathcal{C}}}(3)\!=\!t_{_{\!\mathit{d}}}(3)\!-\!t_{_{\!\mathit{C}\!\mathit{O}\!\mathit{O}}}(3);\\ 4,\; \text{если}\; t_{_{\!\mathit{O}\!\mathit{H}\!\mathcal{C}}}(3)\!=\!t_{_{\!\mathit{M}\!\mathcal{C}}}\!(3); \end{cases},\; Gen_{_{\!\mathit{K}\!\mathcal{H}\!\mathcal{C}}}(3)\!=\!\begin{cases} \mathrm{N},\quad \text{если}\; J_{_{\!\mathit{K}\!\mathcal{H}\!\mathcal{C}}}(3)\!=\!3;\\ Gen(4),\quad \text{если}\; J_{_{\!\mathit{K}\!\mathcal{H}\!\mathcal{C}}}(3)\!=\!4. \end{cases}$$

В общем случае для определения значения  $t_{osc}(i)$  следует найти время дожития каждого живого объекта j после события i (включая объекты которые могли появиться в событии i)  $T_{end}(i,j) = t_d(j) - t_{coo}(i) > 0$ ,  $t_{osc}(i)$  будет равно наименьшему из таких  $T_{end}(i,j)$ .

## Задание 4

#### Требуется:

1. Составить Таблицу 4.1 с данными о типах событий следующего вида:

| Тип события              | $S_N(1)$ | $S_N(2)$ | $S_N(3)$ | $S_M(0)$ | $S_M(1)$ | $S_M(2)$ |   |
|--------------------------|----------|----------|----------|----------|----------|----------|---|
| Число событий            |          |          |          |          |          |          | Σ |
| Относительная<br>частота |          |          |          |          |          |          | Σ |

Относительная частота типа события равна числу событий данного типа деленному на 100.

2. Составить Таблицу 4.2 с данными о видах объектов следующего вида:

| Вид объекта | Число появившихся объектов за время $[0,t_{coo}(100)]$ | Число объектов в момент $t_{coo}(100)$ |
|-------------|--------------------------------------------------------|----------------------------------------|
| N           |                                                        |                                        |
| M           |                                                        |                                        |

## Задание 5

## Требуется:

1. Составить Таблицу 5.1 с данными о состояниях (которые появились при моделировании и имеются в Таблице 3.1) следующего вида:

| No  | Состояние | $N_{\scriptscriptstyle cocm}$ | $V_{cocm}$ | $T_{cocm}$ | $\Delta_{cocm}$ |
|-----|-----------|-------------------------------|------------|------------|-----------------|
| 1   | (1,0)     |                               |            |            |                 |
| 2   | (1,1)     |                               |            |            |                 |
| ••• | •••       |                               |            |            |                 |
| ••• | (2,0)     |                               |            |            |                 |
| ••• | (2,1)     |                               |            |            |                 |
|     | •••       |                               |            |            |                 |

| 1   | (n(l),m(l)) | $N_{cocm}(l)$ | $V_{cocm}(l)$ | $T_{cocm}(l)$ | $\Delta_{cocm}(l)$ |
|-----|-------------|---------------|---------------|---------------|--------------------|
| ••• | •••         |               |               |               |                    |
|     |             | Σ             | Σ             | Σ             | Σ                  |

где n(l) – число N-объектов в состоянии с номером l;

m(1) – число М-объектов в состоянии с номером l;

 $N_{\mathit{cocm}}(l)$  – число попаданий в состояние с номером l;

 $v_{cocm}(l) = \frac{N_{cocm}(l)}{100}$  — относительная частота попаданий в состояние с номером l;

 $T_{\it cocm}(l)$  — общее время пребывания в состоянии с номером l за время  $[0,t_{\it cof}(100)];$ 

 $\Delta_{cocm}(l) = rac{T_{cocm}(l)}{t_{co6}(100)}$  — доля времени пребывания в состоянии с номером l за время  $[0,t_{co6}(100)]$ .

#### 2. Вычислить по Таблице 5.1:

среднее число N-объектов и M-объектов соответственно по относительным частотам попаданий в состояния

$$\underline{N}_{uacm} = \sum_{l} n(l) \cdot v_{cocm}(l)$$
 и  $\underline{M}_{uacm} = \sum_{l} m(l) \cdot v_{cocm}(l)$ ;

среднее число N-объектов и M-объектов соответственно по долям времени пребывания в состояниях

$$\underline{N}_{\partial e} = \sum_{l} n(l) \cdot \Delta_{cocm}(l)$$
 и  $\underline{M}_{\partial e} = \sum_{l} m(l) \cdot \Delta_{cocm}(l)$ .

Вывод результатов проводить с округлением до 0,000001.

#### Краткие теоретические сведения

**Определение 1.** Последовательность с.в.  $\{X_n\}_{n=0}^{\infty}$  называется *цепью Маркова*, если для произвольного набора  $i_1 < i_2 < i_3 < \ldots < i_k (k=3,4,\ldots)$  и любых  $E_{j_1}, \ldots, E_{j_k}$  справедливо равенство

$$P(X_{i_k} = E_{j_k} \lor X_{i_1} = E_{j_1}, \dots, X_{i_{k-1}} = E_{j_{k-1}}) = P(X_{i_k} = E_{j_k} \lor X_{i_{k-1}} = E_{j_{k-1}})$$

**Определение 2.** Цепь Маркова  $\{X_n\}_{n=0}^{\infty}$  называется *однородной*, если для всех i и j вероятности  $P(X_{n+1}=E_j\vee X_n=E_i)$  не зависят от n.

**Определение 3.** Если существует  $\lim_{n\to\infty} \underline{p}(n) = \underline{p}(\infty)$  и  $\sum_{i} p_{i}(\infty) = 1$ , то распределение  $\underline{p}(\infty)$  называется *предельным*.

**Определение 4.** Распределение p цепи Маркова называется *стационарным*, если оно остается неизменным на каждом шаге. Стационарное распределение  $p^* = p^* P$ .

**Определение 5.** Состояние i-существенное, если из  $i \to j$  следует  $j \to i$ . Если i- существенное состояние и  $i \to j$ , то j- существенное.

**Определение 6.** Если для состояния i существует такое состояние j, что j достижимо из состояния i, но i недостижимо из j, то состояние i называется несущественным.

**Определение 7.** Периодом состояния  $i \in S$  называется  $k_i = HOД(k:p_{ii}(k)>0)$ .

**Определение 8.** Цепь Маркова называется эргодической, если для всех j существует не зависящий от i предел.

$$\lim_{n \to \infty} p_{ij}(n) = q_j > 0, \sum_j q_j = 1$$

#### Условия эргодичности:

- 1) существует предел  $\lim_{m\to\infty} p_j(m) = q_j$ ;
- 2)  $q_i$  не зависят от начального распределения;
- 3)  $q_i > 0$ для всех j.

**Теорема 1.** Цепь Маркова является эргодической в том и только том случае, если существует предел  $\lim_{n\to\infty} \underline{p}(n) = q$ , не зависящий от начального распространения, и  $q_i > 0$  для всех j,  $\sum_i q_j = 1$ .

**Теорема 2.** (Теорема Маркова) Если для конечной цепи Маркова существует такое n, что  $p_{ij}(n)>0$  для всех i и j, то цепь Маркова является эргодической.

#### О процессах рождения и гибели с конечным числом состояний:

Граф процесса рождения и гибели с конечным числом состояний:



Система дифференциальных уравнений Колмогорова:

$$\frac{d p_i(t)}{dt} = \sum_j \lambda_{ji} \cdot p_j(t) = \lambda_{ii} \cdot p_i(t) + \sum_{j \neq i} \lambda_{ji} \cdot p_j(t) =$$

$$= \sum_{j \neq i} \lambda_{ji} \cdot p_j(t) = p_i(t) \cdot \sum_{j \neq i} \lambda_{ij}; i = 1, 2, ....$$

**Дифференциальные уравнения Колмогорова процесса рождения и** гибели с конечным числом состояний:

$$\begin{cases} p'_{0}(t) = -\lambda_{0}p_{0}(t) + \mu_{1}p_{1}(t); \\ p'_{k}(t) = \lambda_{k-1}p_{k-1}(t) - (\lambda_{k} + \mu_{k})p_{k}(t) + \mu_{k+1}p_{k+1}(t), 1 \le k < n; \\ p'_{n}(t) = \lambda_{n-1}p_{n-1}(t) - \mu_{n}p_{n}(t). \end{cases}$$

Векторная форма дифференциальных уравнений Колмогорова для вероятностей состояний:

$$\underline{p}'(t) = \underline{p}(t)\Lambda$$
.

Прямое уравнение Колмогорова:

$$P'(t)=P(t)\Lambda$$
.

Обратное уравнение Колмогорова:

$$P'(t) = \Lambda P(t)$$
.

#### Формулы для нахождения стационарного распределения:

Стационарные вероятности состояний  $r_0, r_1, r_2, \dots, r_n$  процесса рождения и гибели с конечным числом состояний удовлетворяют системе линейных алгебраических уравнений

$$\begin{cases} 0 = -\lambda_0 r_0 + \mu_1 r_1; \\ 0 = \lambda_{k-1} r_{k-1} - (\lambda_k + \mu_k) r_k + \mu_{k+1} r_{k+1}, \ 1 \le k < n; \\ 0 = \lambda_{n-1} r_{n-1} - \mu_n r_n. \end{cases}$$

а также уравнению нормировки

$$\sum_{k=0}^{n} r_k = 1.$$

Из уравнений для стационарных вероятностей состояний следуют формулы  $\lambda_{k-1}r_{k-1}=\mu_k r_k$  при  $k=1,2,\ldots,n$ . Значит

$$r_1 = \frac{\lambda_0}{\mu_1} r_0, r_k = \frac{\lambda_{k-1}}{\mu_k} r_{k-1} = \dots = \frac{\lambda_{k-1} \cdots \lambda_0}{\mu_k \cdots \mu_1} r_0.$$

Из уравнений нормировки получаем

$$r_0 = \left\{1 + \frac{\lambda_0}{\mu_1} + \ldots + \frac{\lambda_0 \cdot \lambda_1 \cdot \cdots \lambda_{n-1}}{\mu_1 \cdot \mu_1 \cdots \mu_n}\right\}^{-1}.$$

#### Результаты расчетов

## Задание 1

$$V=90, p=0, q=0.349$$

Таблица 1.1. Возможные переходы между состояниями

| №<br>состояния | Состояние | Список возможных состояний на следующем шаге<br>(с ненулевой вероятностью перехода) |
|----------------|-----------|-------------------------------------------------------------------------------------|
| 1              | 0011      | 0110(3), 0101(2)                                                                    |
| 2              | 0101      | 0011(1), 0110(3)                                                                    |
| 3              | 0110      | 0011(1), 0101(2)                                                                    |
| 4              | 1001      | 1010(5), 0011(1)                                                                    |
| 5              | 1010      | 0011(1), 1001(4)                                                                    |
| 6              | 1100      | 0101(2), 1001(4)                                                                    |

#### Матрица переходных вероятностей P:

$$P = \begin{pmatrix} 0 & 0.349 & 0.651 & 0 & 0 & 0 \\ 0.349 & 0 & 0.651 & 0 & 0 & 0 \\ 0.349 & 0.651 & 0 & 0 & 0 & 0 \\ 0.349 & 0 & 0 & 0 & 0.651 & 0 \\ 0.349 & 0 & 0 & 0.651 & 0 & 0 \\ 0 & 0.349 & 0 & 0.651 & 0 & 0 \end{pmatrix}$$

## Граф состояний цепи Маркова



Таблица 1.2. Матрицы переходных вероятностей за n шагов  $P^n$  ( $n=1,\ldots,16$ )

| n |         |         | $P^n$   |         |         |   |     | $\delta_n$ |
|---|---------|---------|---------|---------|---------|---|-----|------------|
| 1 | 0       | 0.34900 | 0.65100 | 0       | 0       | 0 |     | -          |
|   | 0.34900 | 0       | 0.65100 | 0       | 0       | 0 |     |            |
|   | 0.34900 | 0.65100 | 0       | 0       | 0       | 0 |     |            |
|   | 0.34900 | 0       | 0       | 0       | 0.65100 | 0 |     |            |
|   | 0.34900 | 0       | 0       | 0.65100 | 0       | 0 |     |            |
|   | 0       | 0.34900 | 0       | 0.65100 | 0       | 0 |     |            |
| 2 | 0.34900 | 0.42380 | 0.22720 | 0       | 0       | 0 | 0.  | 651        |
|   | 0.22720 | 0.54560 | 0.22720 | 0       | 0       | 0 |     |            |
|   | 0.22720 | 0.12180 | 0.65100 | 0       | 0       | 0 |     |            |
|   | 0.22720 | 0.12180 | 0.22720 | 0.42380 | 0       | 0 |     |            |
|   | 0.22720 | 0.12180 | 0.22720 | 0       | 0.42380 | 0 |     |            |
|   | 0.34900 | 0       | 0.22720 | 0       | 0.42380 | 0 |     |            |
| 3 | 0.22720 | 0.26971 | 0.50309 | 0       | 0       | 0 | 0.5 | 0309       |
|   | 0.26971 | 0.22720 | 0.50309 | 0       | 0       | 0 |     |            |
|   | 0.26971 | 0.50309 | 0.22720 | 0       | 0       | 0 |     |            |
|   | 0.26971 | 0.22720 | 0.22720 | 0       | 0.27589 | 0 |     |            |
|   | 0.26971 | 0.22720 | 0.22720 | 0.27589 | 0       | 0 |     |            |
|   | 0.22720 | 0.26971 | 0.22720 | 0.27589 | 0       | 0 |     |            |
| 4 | 0.26971 | 0.40681 | 0.32349 | 0       | 0       | 0 | 0.5 | 0309       |
|   | 0.25487 | 0.42164 | 0.32349 | 0       | 0       | 0 |     |            |
|   | 0.25487 | 0.24203 | 0.50309 | 0       | 0       | 0 |     |            |
|   | 0.25487 | 0.24203 | 0.32349 | 0.17961 | 0       | 0 |     |            |
|   | 0.25487 | 0.24203 | 0.32349 | 0       | 0.17961 | 0 |     |            |
|   | 0.26971 | 0.22720 | 0.32349 | 0       | 0.17961 | 0 |     |            |
| 5 | 0.25487 | 0.30472 | 0.44041 | 0       | 0       | 0 | 0.4 | 4041       |
|   | 0.26005 | 0.29954 | 0.44041 | 0       | 0       | 0 |     |            |
|   | 0.26005 | 0.41646 | 0.32349 | 0       | 0       | 0 |     |            |
|   | 0.26005 | 0.29954 | 0.32349 | 0       | 0.11692 | 0 |     |            |
|   | 0.26005 | 0.29954 | 0.32349 | 0.11692 | 0       | 0 |     |            |
|   | 0.25487 | 0.30472 | 0.32349 | 0.11692 | 0       | 0 |     |            |
| 6 | 0.26005 | 0.37566 | 0.36429 | 0       | 0       | 0 | 0.4 | 4041       |
|   | 0.25824 | 0.37746 | 0.36429 | 0       | 0       | 0 |     |            |
|   | 0.25824 | 0.30135 | 0.44041 | 0       | 0       | 0 |     |            |
|   | 0.25824 | 0.30135 | 0.36429 | 0.07612 | 0       | 0 |     |            |
|   | 0.25824 | 0.30135 | 0.36429 | 0       | 0.07612 | 0 |     |            |
|   | 0.26005 | 0.29954 | 0.36429 | 0       | 0.07612 | 0 |     |            |

|    |   | 1       |         |         |         |         |   |         |
|----|---|---------|---------|---------|---------|---------|---|---------|
| 7  |   | 0.25824 | 0.32791 | 0.41385 | 0       | 0       | 0 | 0.41385 |
|    |   | 0.25887 | 0.32728 | 0.41385 | 0       | 0       | 0 |         |
|    |   | 0.25887 | 0.37683 | 0.36429 | 0       | 0       | 0 |         |
|    |   | 0.25887 | 0.32728 | 0.36429 | 0       | 0.04955 | 0 |         |
|    |   | 0.25887 | 0.32728 | 0.36429 | 0.04955 | 0       | 0 |         |
|    |   | 0.25824 | 0.32791 | 0.36429 | 0.04955 | 0       | 0 |         |
| 8  |   | 0.25887 | 0.35954 | 0.38159 | 0       | 0       | 0 | 0.41385 |
|    |   | 0.25865 | 0.35976 | 0.38159 | 0       | 0       | 0 |         |
|    |   | 0.25865 | 0.32750 | 0.41385 | 0       | 0       | 0 |         |
|    |   | 0.25865 | 0.32750 | 0.38159 | 0.03226 | 0       | 0 |         |
|    |   | 0.25865 | 0.32750 | 0.38159 | 0       | 0.03226 | 0 |         |
|    |   | 0.25887 | 0.32728 | 0.38159 | 0       | 0.03226 | 0 |         |
| 9  |   | 0.25865 | 0.33876 | 0.40259 | 0       | 0       | 0 | 0.40259 |
|    | 1 | 0.25873 | 0.33868 | 0.40259 | 0       | 0       | 0 |         |
|    |   | 0.25873 | 0.35968 | 0.38159 | 0       | 0       | 0 |         |
|    |   | 0.25873 | 0.33868 | 0.38159 | 0       | 0.02100 | 0 |         |
|    |   | 0.25873 | 0.33868 | 0.38159 | 0.02100 | 0       | 0 |         |
|    |   | 0.25865 | 0.33876 | 0.38159 | 0.02100 | 0       | 0 |         |
| 10 |   | 0.25873 | 0.35235 | 0.38892 | 0       | 0       | 0 | 0.40259 |
|    | 1 | 0.25870 | 0.35238 | 0.38892 | 0       | 0       | 0 |         |
|    |   | 0.25870 | 0.33871 | 0.40259 | 0       | 0       | 0 |         |
|    | I | 0.25870 | 0.33871 | 0.38892 | 0.01367 | 0       | 0 |         |
|    |   | 0.25870 | 0.33871 | 0.38892 | 0       | 0.01367 | 0 |         |
|    |   | 0.25873 | 0.33868 | 0.38892 | 0       | 0.01367 | 0 |         |
| 11 |   | 0.25870 | 0.34348 | 0.39782 | 0       | 0       | 0 | 0.39782 |
|    |   | 0.25871 | 0.34347 | 0.39782 | 0       | 0       | 0 |         |
|    |   |         | 0.35237 |         | 0       | 0       | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.38892 | 0       | 0.00890 | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.38892 | 0.00890 | 0.00050 | 0 |         |
|    |   | 0.25870 | 0.34348 | 0.38892 | 0.00890 | 0       | 0 |         |
| 12 |   | 0.25871 | 0.34927 | 0.39202 | 0       | 0       | 0 | 0.39782 |
|    |   | 0.25871 | 0.34927 | 0.39202 | 0       | 0       | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.39782 | 0       | 0       | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.39202 | 0.00579 | 0       | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.39202 | 0.00575 | 0.00579 | 0 |         |
|    |   | 0.25871 | 0.34347 | 0.39202 | 0       | 0.00579 | 0 |         |

|    |         |         |         |         |         |   | ı       |
|----|---------|---------|---------|---------|---------|---|---------|
| 13 | 0.25871 | 0.34550 | 0.39579 | 0       | 0       | 0 | 0.39579 |
|    | 0.25871 | 0.34550 | 0.39579 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34927 | 0.39202 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34550 | 0.39202 | 0       | 0.00377 | 0 |         |
|    | 0.25871 | 0.34550 | 0.39202 | 0.00377 | 0       | 0 |         |
|    | 0.25871 | 0.34550 | 0.39202 | 0.00377 | 0       | 0 |         |
| 14 | 0.25871 | 0.34795 | 0.39334 | 0       | 0       | 0 | 0.39579 |
|    | 0.25871 | 0.34795 | 0.39334 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34550 | 0.39579 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34550 | 0.39334 | 0.00246 | 0       | 0 |         |
|    | 0.25871 | 0.34550 | 0.39334 | 0       | 0.00246 | 0 |         |
|    | 0.25871 | 0.34550 | 0.39334 | 0       | 0.00246 | 0 |         |
| 15 | 0.25871 | 0.34635 | 0.39494 | 0       | 0       | 0 | 0.39494 |
|    | 0.25871 | 0.34635 | 0.39494 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34795 | 0.39334 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34635 | 0.39334 | 0       | 0.00160 | 0 |         |
|    | 0.25871 | 0.34635 | 0.39334 | 0.00160 | 0       | 0 |         |
|    | 0.25871 | 0.34635 | 0.39334 | 0.00160 | 0       | 0 |         |
| 16 | 0.25871 | 0.34739 | 0.39390 | 0       | 0       | 0 | 0.39494 |
|    | 0.25871 | 0.34739 | 0.39390 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34635 | 0.39494 | 0       | 0       | 0 |         |
|    | 0.25871 | 0.34635 | 0.39390 | 0.00104 | 0       | 0 |         |
|    | 0.25871 | 0.34635 | 0.39390 | 0       | 0.00104 | 0 |         |
|    | 0.25871 | 0.34635 | 0.39390 | 0       | 0.00104 | 0 |         |

#### Задание 2

$$V=90, p=0, q=0.349$$

## Стационарное распределение вероятностей состояний цепи Маркова

| 1       | 2       | 3       | 4 | 5 | 6 | $\sum_{i=1}^{6} r_i$ |
|---------|---------|---------|---|---|---|----------------------|
| 0.25871 | 0.34698 | 0.39431 | 0 | 0 | 0 | 1                    |

#### Проверка стационарности найденного распределения

$$(r_1,r_2,\ldots,r_6)P = \\ = (0.25871 \quad 0.34698 \quad 0.39431 \quad 0 \quad 0) \begin{vmatrix} 0 & 0.34900 & 0.65100 & 0 & 0 & 0 \\ 0.34900 & 0 & 0.65100 & 0 & 0 & 0 \\ 0.34900 & 0 & 0 & 0 & 0.65100 & 0 \\ 0.34900 & 0 & 0 & 0.65100 & 0 & 0 \\ 0.34900 & 0 & 0 & 0.65100 & 0 & 0 \\ 0 & 0.34900 & 0 & 0.65100 & 0 & 0 \\ 0 & 0.34900 & 0 & 0.65100 & 0 & 0 \end{vmatrix} = \\ = (0.25871 \quad 0.34698 \quad 0.39431 \quad 0 \quad 0 \quad 0) = (r_1, r_2, \ldots, r_6)$$

## Существенные и несущественные состояния

| Существенные   | 1, 2, 3 |
|----------------|---------|
| Несущественные | 4, 5, 6 |

Цепь Маркова не является эргодической, т.к. не является неприводимой.

**Задание 3**  $V\!=\!90,\ p\!=\!0,\ q\!=\!0.349,\ \lambda\!=\!0.813,\ \mu\!=\!1.105,\ pn_1\!=\!0.319,\ pn_2\!=\!0.470,\ pm_0\!=\!0.494,\ pm_1\!=\!0.252$  Таблица 3.1. Данные о событиях

| i  | $t_{co6}$ | Type(i) | $t_{\kappa 1}(i)$ | $t_{\infty 2}(i)$ | C(i)    | $t_{osc}(i)$ | $J_{\kappa \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | $Gen_{\kappa \varkappa}(i)$ |
|----|-----------|---------|-------------------|-------------------|---------|--------------|----------------------------------------------------------------------|-----------------------------|
| 1  | 0.00000   | S_n(1)  | 0.20103           | -1.00000          | (1, 0)  | 0.20103      | 1                                                                    | N                           |
| 2  | 0.20103   | S_n(3)  | 0.10287           | 0.04781           | (1, 1)  | 0.04781      | 2                                                                    | M                           |
| 3  | 0.24883   | S_m(0)  | -1.00000          | -1.00000          | (1, 0)  | 0.05506      | 3                                                                    | N                           |
| 4  | 0.30390   | S_m(2)  | 0.34599           | 1.59162           | (2, 0)  | 0.29092      | 4                                                                    | N                           |
| 5  | 0.59482   | S_n(2)  | 7.03260           | 0.50488           | (3, 0)  | 0.02416      | 8                                                                    | N                           |
| 6  | 0.61898   | S_n(2)  | 0.60639           | 0.02416           | (4, 0)  | 0.18980      | 6                                                                    | N                           |
| 7  | 0.80878   | S_n(2)  | 0.35067           | 3.01670           | (5, 0)  | 0.16087      | 10                                                                   | N                           |
| 8  | 0.96965   | S_n(2)  | 4.32160           | 2.31280           | (6, 0)  | 0.18476      | 15                                                                   | N                           |
| 9  | 1.15441   | S_n(1)  | 4.81308           | -1.00000          | (6, 0)  | 0.04680      | 9                                                                    | N                           |
| 10 | 1.20121   | S_n(3)  | 0.18476           | 0.51891           | (6, 1)  | 0.13791      | 18                                                                   | M                           |
| 11 | 1.33912   | S_n(1)  | 0.33737           | -1.00000          | (6, 1)  | 0.00836      | 21                                                                   | M                           |
| 12 | 1.34748   | S_n(3)  | 1.93443           | 0.18471           | (6, 2)  | 0.00215      | 23                                                                   | N                           |
| 13 | 1.34963   | S_n(1)  | 0.02446           | -1.00000          | (6, 2)  | 0.02446      | 27                                                                   | N                           |
| 14 | 1.37408   | S_n(3)  | 1.22265           | 0.14626           | (6, 3)  | 0.01189      | 20                                                                   | N                           |
| 15 | 1.38597   | S_m(2)  | 0.01051           | 0.30372           | (7, 3)  | 0.10259      | 16                                                                   | M                           |
| 16 | 1.48856   | S_m(2)  | 1.36363           | 2.74237           | (8, 3)  | 0.15428      | 24                                                                   | M                           |
| 17 | 1.64284   | S_n(1)  | 0.39397           | -1.00000          | (8, 3)  | 0.02236      | 30                                                                   | N                           |
| 18 | 1.66521   | S_n(3)  | 0.48816           | 2.05245           | (8, 4)  | 0.17258      | 28                                                                   | N                           |
| 19 | 1.83779   | S_n(2)  | 0.29112           | 0.90136           | (9, 4)  | 0.00267      | 5                                                                    | M                           |
| 20 | 1.84045   | S_n(2)  | 3.08870           | 0.95840           | (10, 4) | 0.16914      | 36                                                                   | M                           |
| 21 | 2.00960   | S_m(0)  | -1.00000          | -1.00000          | (10, 3) | 0.05920      | 34                                                                   | M                           |
| 22 | 2.06880   | S_m(2)  | 2.74240           | 0.58024           | (11, 3) | 0.17913      | 43                                                                   | M                           |
| 23 | 2.24794   | S_m(1)  | 0.36676           | -1.00000          | (11, 3) | 0.02008      | 44                                                                   | N                           |
| 24 | 2.26801   | S_n(3)  | 1.57802           | 1.96231           | (11, 4) | 0.00743      | 31                                                                   | N                           |
| 25 | 2.27544   | S_n(3)  | 1.18956           | 0.64954           | (11, 5) | 0.06893      | 32                                                                   | N                           |
| 26 | 2.34438   | S_m(0)  | -1.00000          | -1.00000          | (11, 4) | 0.06599      | 53                                                                   | M                           |
| 27 | 2.41037   | S_m(2)  | 0.80521           | 2.95379           | (12, 4) | 0.01349      | 22                                                                   | N                           |

| 28 | 2.42386 | S_m(1) | 0.23834  | -1.00000 | (12, 4) | 0.06347 | 39  | M |
|----|---------|--------|----------|----------|---------|---------|-----|---|
| 29 | 2.48733 | S_m(2) | 0.19921  | 1.18810  | (13, 4) | 0.01593 | 50  | M |
| 30 | 2.50325 | S_m(1) | 0.49764  | -1.00000 | (13, 4) | 0.00301 | 60  | M |
| 31 | 2.50626 | S_n(2) | 0.61216  | 2.05139  | (14, 4) | 0.06927 | 62  | M |
| 32 | 2.57553 | S_n(1) | 0.26298  | -1.00000 | (14, 4) | 0.07014 | 41  | N |
| 33 | 2.64567 | S_n(3) | 2.17280  | 0.22781  | (14, 5) | 0.01653 | 57  | N |
| 34 | 2.66219 | S_n(1) | 1.22894  | -1.00000 | (14, 5) | 0.01962 | 69  | N |
| 35 | 2.68182 | S_n(3) | 8.74150  | 0.06599  | (14, 6) | 0.02929 | 25  | N |
| 36 | 2.71111 | S_m(0) | -1.00000 | -1.00000 | (14, 5) | 0.03447 | 46  | M |
| 37 | 2.74557 | S_m(2) | 0.83894  | 0.65811  | (15, 5) | 0.02027 | 67  | N |
| 38 | 2.76584 | S_n(1) | 0.19594  | -1.00000 | (15, 5) | 0.01267 | 65  | N |
| 39 | 2.77851 | S_n(3) | 1.15242  | 1.58185  | (15, 6) | 0.03895 | 61  | N |
| 40 | 2.81746 | S_m(2) | 0.33013  | 0.01894  | (16, 6) | 0.01542 | 80  | N |
| 41 | 2.83288 | S_m(1) | 0.07228  | -1.00000 | (16, 6) | 0.04730 | 47  | N |
| 42 | 2.88017 | S_m(0) | -1.00000 | -1.00000 | (16, 5) | 0.00022 | 66  | M |
| 43 | 2.88040 | S_m(2) | 0.63262  | 0.52541  | (17, 5) | 0.02476 | 84  | N |
| 44 | 2.90516 | S_m(2) | 0.20298  | 0.30487  | (18, 5) | 0.00014 | 85  | N |
| 45 | 2.90530 | S_n(2) | 0.55755  | 0.12018  | (19, 5) | 0.04858 | 87  | N |
| 46 | 2.95388 | S_n(2) | 0.76064  | 0.01962  | (20, 5) | 0.00791 | 77  | N |
| 47 | 2.96178 | S_n(3) | 1.91647  | 1.31247  | (20, 6) | 0.04586 | 78  | N |
| 48 | 3.00765 | S_n(3) | 0.51732  | 0.71007  | (20, 7) | 0.01971 | 40  | N |
| 49 | 3.02735 | S_m(0) | -1.00000 | -1.00000 | (20, 6) | 0.00432 | 63  | M |
| 50 | 3.03168 | S_m(2) | 1.69153  | 0.43167  | (21, 6) | 0.03680 | 55  | M |
| 51 | 3.06848 | S_n(1) | 0.86257  | -1.00000 | (21, 6) | 0.01741 | 106 | N |
| 52 | 3.08589 | S_n(3) | 0.24180  | 0.54711  | (21, 7) | 0.00295 | 19  | N |
| 53 | 3.08884 | S_n(2) | 1.09501  | 0.05436  | (22, 7) | 0.01930 | 91  | N |
| 54 | 3.10814 | S_n(2) | 1.66594  | 0.47979  | (23, 7) | 0.00177 | 94  | N |
| 55 | 3.10991 | S_n(1) | 1.20210  | -1.00000 | (23, 7) | 0.01167 | 12  | N |
| 56 | 3.12158 | S_n(3) | 0.07242  | 2.22157  | (23, 8) | 0.01730 | 64  | N |
| 57 | 3.13888 | S_n(2) | 0.07370  | 0.94906  | (24, 8) | 0.00798 | 92  | M |
| 58 | 3.14686 | S_m(2) | 0.29568  | 1.15688  | (25, 8) | 0.02922 | 89  | N |
| 59 | 3.17607 | S_n(1) | 1.56701  | -1.00000 | (25, 8) | 0.00117 | 75  | M |

| 60 | 3.17724 | S_n(3) | 0.53120  | 0.24170  | (25, 9)  | 0.02598 | 68  | N |
|----|---------|--------|----------|----------|----------|---------|-----|---|
| 61 | 3.20322 | S_n(2) | 0.78844  | 0.20461  | (26, 9)  | 0.00007 | 104 | M |
| 62 | 3.20329 | S_n(1) | 1.48226  | -1.00000 | (26, 9)  | 0.00929 | 119 | N |
| 63 | 3.21258 | S_n(3) | 0.62207  | 1.91319  | (26, 10) | 0.01585 | 73  | N |
| 64 | 3.22843 | S_n(1) | 2.88775  | -1.00000 | (26, 10) | 0.00137 | 105 | N |
| 65 | 3.22979 | S_n(3) | 0.48359  | 0.49422  | (26, 11) | 0.01343 | 37  | N |
| 66 | 3.24322 | S_n(3) | 1.28195  | 1.45149  | (26, 12) | 0.00609 | 56  | N |
| 67 | 3.24931 | S_n(3) | 0.20244  | 0.17594  | (26, 13) | 0.00759 | 45  | M |
| 68 | 3.25690 | S_m(2) | 0.05421  | 0.68928  | (27, 13) | 0.01741 | 134 | M |
| 69 | 3.27431 | S_m(1) | 0.29680  | -1.00000 | (27, 13) | 0.02293 | 82  | N |
| 70 | 3.29725 | S_n(2) | 0.21390  | 2.81206  | (28, 13) | 0.00254 | 109 | N |
| 71 | 3.29979 | S_n(3) | 0.82774  | 0.21468  | (28, 14) | 0.00374 | 111 | M |
| 72 | 3.30352 | S_n(2) | 0.77748  | 0.47438  | (29, 14) | 0.00778 | 138 | M |
| 73 | 3.31131 | S_n(3) | 0.66573  | 1.05579  | (29, 15) | 0.00165 | 79  | M |
| 74 | 3.31296 | S_n(2) | 1.65465  | 1.18439  | (30, 15) | 0.02031 | 132 | N |
| 75 | 3.33327 | S_n(1) | 1.04951  | -1.00000 | (30, 15) | 0.03200 | 108 | M |
| 76 | 3.36527 | S_n(3) | 3.37157  | 0.22840  | (30, 16) | 0.00201 | 120 | M |
| 77 | 3.36728 | S_m(0) | -1.00000 | -1.00000 | (30, 15) | 0.03480 | 29  | M |
| 78 | 3.40208 | S_m(2) | 1.90642  | 2.27841  | (31, 15) | 0.00323 | 150 | M |
| 79 | 3.40531 | S_n(3) | 2.11057  | 0.83324  | (31, 16) | 0.00376 | 162 | M |
| 80 | 3.40907 | S_m(2) | 3.01443  | 0.31594  | (32, 16) | 0.01110 | 144 | M |
| 81 | 3.42017 | S_n(2) | 0.45863  | 0.65951  | (33, 16) | 0.00101 | 74  | M |
| 82 | 3.42118 | S_m(2) | 2.70841  | 0.91943  | (34, 16) | 0.00165 | 70  | N |
| 83 | 3.42283 | S_n(3) | 0.12069  | 0.86055  | (34, 17) | 0.01353 | 93  | N |
| 84 | 3.43636 | S_n(3) | 1.07150  | 0.04589  | (34, 18) | 0.00902 | 100 | N |
| 85 | 3.44538 | S_n(2) | 1.18694  | 0.78651  | (35, 18) | 0.01063 | 101 | M |
| 86 | 3.45600 | S_n(3) | 0.25196  | 0.06808  | (35, 19) | 0.00900 | 49  | N |
| 87 | 3.46501 | S_n(3) | 2.00337  | 0.69485  | (35, 20) | 0.02817 | 126 | M |
| 88 | 3.49318 | S_m(0) | -1.00000 | -1.00000 | (35, 19) | 0.00003 | 156 | N |
| 89 | 3.49321 | S_m(2) | 2.07588  | 0.60746  | (36, 19) | 0.00015 | 146 | M |
| 90 | 3.49336 | S_m(1) | 0.14586  | -1.00000 | (36, 19) | 0.00183 | 139 | N |
| 91 | 3.49519 | S_n(1) | 2.41486  | -1.00000 | (36, 19) | 0.00562 | 169 | N |

| 92  | 3.50081 | S_n(3) | 0.28489  | 0.19611  | (36, 20) | 0.01034 | 145 | N |
|-----|---------|--------|----------|----------|----------|---------|-----|---|
| 93  | 3.51115 | S_n(2) | 1.65944  | 0.22620  | (37, 20) | 0.00243 | 165 | N |
| 94  | 3.51357 | S_m(0) | -1.00000 | -1.00000 | (37, 19) | 0.01242 | 148 | N |
| 95  | 3.52599 | S_m(2) | 1.03549  | 0.10179  | (38, 19) | 0.01071 | 163 | N |
| 96  | 3.53670 | S_m(1) | 1.25427  | -1.00000 | (38, 19) | 0.02631 | 177 | M |
| 97  | 3.56301 | S_m(1) | 1.44855  | -1.00000 | (38, 19) | 0.00015 | 194 | N |
| 98  | 3.56316 | S_n(3) | 1.14907  | 0.96551  | (38, 20) | 0.01279 | 97  | N |
| 99  | 3.57595 | S_m(0) | -1.00000 | -1.00000 | (38, 19) | 0.00033 | 58  | N |
| 100 | 3.57628 | S_m(2) | 0.12794  | 0.71362  | (39, 19) | 0.00586 | 147 | N |

Таблица 3.2. Данные об объектах

| j  | Gen(j) | $t_b(j)$ | $t_l(j)$ | $t_d(j)$ | <i>Des</i> 1( <i>j</i> ) | Des 2(j) |
|----|--------|----------|----------|----------|--------------------------|----------|
| 1  | N      | 0.00000  | 0.20103  | 0.20103  | 2                        | 3        |
| 2  | M      | 0.20103  | 0.04781  | 0.24883  | 4                        | 5        |
| 3  | N      | 0.20103  | 0.10287  | 0.30390  | 6                        | 7        |
| 4  | N      | 0.24883  | 0.34599  | 0.59482  | 8                        | 9        |
| 5  | M      | 0.24883  | 1.59162  | 1.84045  | 41                       | 42       |
| 6  | N      | 0.30390  | 0.50488  | 0.80878  | 12                       | 13       |
| 7  | N      | 0.30390  | 7.03260  | 7.33649  | -1                       | -1       |
| 8  | N      | 0.59482  | 0.02416  | 0.61898  | 10                       | 11       |
| 9  | N      | 0.59482  | 0.60639  | 1.20121  | 21                       | 22       |
| 10 | N      | 0.61898  | 0.35067  | 0.96965  | 15                       | 16       |
| 11 | N      | 0.61898  | 3.01670  | 3.63568  | -1                       | -1       |
| 12 | N      | 0.80878  | 2.31280  | 3.12158  | 117                      | 118      |
| 13 | N      | 0.80878  | 4.32160  | 5.13037  | -1                       | -1       |
| 14 | N      | 0.96965  | 4.32160  | 5.29124  | -1                       | -1       |
| 15 | N      | 0.96965  | 0.18476  | 1.15441  | 18                       | 19       |
| 16 | M      | 0.96965  | 0.51891  | 1.48856  | 34                       | 35       |
| 17 | N      | 1.15441  | 4.81308  | 5.96749  | -1                       | -1       |
| 18 | M      | 1.15441  | 0.18471  | 1.33912  | 23                       | 24       |
| 19 | N      | 1.15441  | 1.93443  | 3.08884  | 111                      | 112      |
| 20 | N      | 1.20121  | 0.18476  | 1.38597  | 32                       | 33       |

| 21       M       1.20121       0.14626       1.34748       25         22       N       1.20121       1.22265       2.42386       58         23       N       1.33912       0.01051       1.34963       28         24       M       1.33912       0.30372       1.64284       36         25       N       1.34748       1.36363       2.71111       73         26       M       1.34748       2.74237       4.08984       -1         27       N       1.34963       0.02446       1.37408       30         28       N       1.34963       0.48816       1.83779       39         29       M       1.34963       2.05245       3.40208       160         30       N       1.37408       0.29112       1.66521       37 | 26<br>59<br>29<br>-1<br>74<br>-1<br>31<br>40<br>161 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 23       N       1.33912       0.01051       1.34963       28         24       M       1.33912       0.30372       1.64284       36         25       N       1.34748       1.36363       2.71111       73         26       M       1.34748       2.74237       4.08984       -1         27       N       1.34963       0.02446       1.37408       30         28       N       1.34963       0.48816       1.83779       39         29       M       1.34963       2.05245       3.40208       160                                                                                                                                                                                                                   | 29<br>-1<br>74<br>-1<br>31<br>40                    |
| 24       M       1.33912       0.30372       1.64284       36         25       N       1.34748       1.36363       2.71111       73         26       M       1.34748       2.74237       4.08984       -1         27       N       1.34963       0.02446       1.37408       30         28       N       1.34963       0.48816       1.83779       39         29       M       1.34963       2.05245       3.40208       160                                                                                                                                                                                                                                                                                         | -1<br>74<br>-1<br>31<br>40                          |
| 25       N       1.34748       1.36363       2.71111       73         26       M       1.34748       2.74237       4.08984       -1         27       N       1.34963       0.02446       1.37408       30         28       N       1.34963       0.48816       1.83779       39         29       M       1.34963       2.05245       3.40208       160                                                                                                                                                                                                                                                                                                                                                               | 74<br>-1<br>31<br>40                                |
| 26       M       1.34748       2.74237       4.08984       -1         27       N       1.34963       0.02446       1.37408       30         28       N       1.34963       0.48816       1.83779       39         29       M       1.34963       2.05245       3.40208       160                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1<br>31<br>40                                      |
| 27     N     1.34963     0.02446     1.37408     30       28     N     1.34963     0.48816     1.83779     39       29     M     1.34963     2.05245     3.40208     160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31<br>40                                            |
| 28     N     1.34963     0.48816     1.83779     39       29     M     1.34963     2.05245     3.40208     160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                  |
| 29 M 1.34963 2.05245 3.40208 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161                                                 |
| 30 N 1.37408 0.29112 1.66521 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                                  |
| 31 N 1.37408 0.90136 2.27544 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51                                                  |
| 32 N 1.38597 0.95840 2.34438 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54                                                  |
| 33 N 1.38597 3.08870 4.47468 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 34 M 1.48856 0.58024 2.06880 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                  |
| 35 N 1.48856 2.74240 4.23097 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 36 M 1.64284 0.36676 2.00960 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 37 N 1.66521 1.57802 3.24322 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139                                                 |
| 38 M 1.66521 1.96231 3.62752 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 39 M 1.83779 0.64954 2.48733 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61                                                  |
| 40 N 1.83779 1.18956 3.02735 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105                                                 |
| 41 N 1.84045 0.80521 2.64567 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                  |
| 42 M 1.84045 2.95379 4.79424 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 43         M         2.00960         0.23834         2.24794         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                  |
| 44 N 2.06880 0.19921 2.26801 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                                  |
| 45 M 2.06880 1.18810 3.25690 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 143                                                 |
| 46 M 2.24794 0.49764 2.74557 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76                                                  |
| 47 N 2.26801 0.61216 2.88017 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                                                  |
| 48 N 2.26801 2.05139 4.31940 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 49 N 2.27544 1.18956 3.46501 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                                 |
| 50 M 2.27544 0.22781 2.50325 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 51 N 2.27544 2.17280 4.44824 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1                                                  |
| 52 N 2.34438 -1.00000 1.34438 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1                                                  |

| 53       M       2.34438       0.06599       2.41037       55         54       N       2.34438       8.74150       11.08587       -1         55       M       2.41037       0.65811       3.06848       108         56       N       2.41037       0.83894       3.24931       140         57       N       2.42386       0.23834       2.66219       69         58       N       2.42386       1.15242       3.57628       208         59       M       2.42386       1.58185       4.00571       -1         60       M       2.48733       0.01894       2.50626       63 | 56<br>-1<br>-1<br>141<br>70<br>209<br>-1<br>64 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 55       M       2.41037       0.65811       3.06848       108         56       N       2.41037       0.83894       3.24931       140         57       N       2.42386       0.23834       2.66219       69         58       N       2.42386       1.15242       3.57628       208         59       M       2.42386       1.58185       4.00571       -1                                                                                                                                                                                                                    | -1<br>141<br>70<br>209<br>-1                   |
| 56       N       2.41037       0.83894       3.24931       140         57       N       2.42386       0.23834       2.66219       69         58       N       2.42386       1.15242       3.57628       208         59       M       2.42386       1.58185       4.00571       -1                                                                                                                                                                                                                                                                                           | 141<br>70<br>209<br>-1                         |
| 57       N       2.42386       0.23834       2.66219       69         58       N       2.42386       1.15242       3.57628       208         59       M       2.42386       1.58185       4.00571       -1                                                                                                                                                                                                                                                                                                                                                                  | 70<br>209<br>-1                                |
| 58     N     2.42386     1.15242     3.57628     208       59     M     2.42386     1.58185     4.00571     -1                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 209                                            |
| 59 M 2.42386 1.58185 4.00571 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 60 M 2.48733 0.01894 2.50626 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                                             |
| 61 N 2.48733 0.33013 2.81746 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                                             |
| 62 M 2.50325 0.07228 2.57553 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66                                             |
| 63 M 2.50626 0.52541 3.03168 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107                                            |
| 64 N 2.50626 0.63262 3.13888 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121                                            |
| 65 N 2.57553 0.20298 2.77851 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                             |
| 66 M 2.57553 0.30487 2.88040 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                             |
| 67 N 2.64567 0.12018 2.76584 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                             |
| 68 N 2.64567 0.55755 3.20322 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129                                            |
| 69 N 2.66219 0.01962 2.68182 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                             |
| 70 N 2.66219 0.76064 3.42283 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                            |
| 71 M 2.68182 1.31247 3.99429 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
| 72 N 2.68182 1.91647 4.59829 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
| 73 N 2.71111 0.51732 3.22843 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135                                            |
| 74         M         2.71111         0.71007         3.42118         167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 168                                            |
| 75 M 2.74557 0.43167 3.17724 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127                                            |
| 76 N 2.74557 1.69153 4.43710 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
| 77 N 2.76584 0.19594 2.96178 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101                                            |
| 78 N 2.76584 0.24180 3.00765 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103                                            |
| 79 M 2.76584 0.54711 3.31296 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                             |
| 80 N 2.77851 0.05436 2.83288 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86                                             |
| 81 N 2.77851 1.09501 3.87352 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
| 82 N 2.81746 0.47979 3.29725 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 147                                            |
| 83 N 2.81746 1.66594 4.48340 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                             |
| 84 N 2.83288 0.07228 2.90516 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                             |

| N | 2.83288                                 | 0.07242                                                                                                                                     | 2.90530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M | 2.83288                                 | 2.22157                                                                                                                                     | 5.05445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.88017                                 | 0.07370                                                                                                                                     | 2.95388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.88017                                 | 0.94906                                                                                                                                     | 3.82924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.88040                                 | 0.29568                                                                                                                                     | 3.17607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M | 2.88040                                 | 1.15688                                                                                                                                     | 4.03728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.90516                                 | 0.20298                                                                                                                                     | 3.10814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M | 2.90516                                 | 0.24170                                                                                                                                     | 3.14686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N | 2.90516                                 | 0.53120                                                                                                                                     | 3.43636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N | 2.90530                                 | 0.20461                                                                                                                                     | 3.10991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N | 2.90530                                 | 0.78844                                                                                                                                     | 3.69374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.95388                                 | 0.76064                                                                                                                                     | 3.71451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.95388                                 | 0.62207                                                                                                                                     | 3.57595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| M | 2.95388                                 | 1.91319                                                                                                                                     | 4.86706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.96178                                 | 1.91647                                                                                                                                     | 4.87826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N | 2.96178                                 | 0.48359                                                                                                                                     | 3.44538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | M N N N N M N M N N N N N N N N N N N N | M 2.83288 N 2.88017 N 2.88017 N 2.88040 M 2.88040 N 2.90516 M 2.90516 N 2.90530 N 2.90530 N 2.95388 N 2.95388 M 2.95388 N 2.95388 N 2.95388 | M       2.83288       2.22157         N       2.88017       0.07370         N       2.88017       0.94906         N       2.88040       0.29568         M       2.88040       1.15688         N       2.90516       0.20298         M       2.90516       0.24170         N       2.90516       0.53120         N       2.90530       0.20461         N       2.95388       0.76064         N       2.95388       0.62207         M       2.95388       1.91319         N       2.96178       1.91647 | M       2.83288       2.22157       5.05445         N       2.88017       0.07370       2.95388         N       2.88017       0.94906       3.82924         N       2.88040       0.29568       3.17607         M       2.88040       1.15688       4.03728         N       2.90516       0.20298       3.10814         M       2.90516       0.24170       3.14686         N       2.90516       0.53120       3.43636         N       2.90530       0.20461       3.10991         N       2.90530       0.78844       3.69374         N       2.95388       0.76064       3.71451         N       2.95388       0.62207       3.57595         M       2.95388       1.91319       4.86706         N       2.96178       1.91647       4.87826 | M       2.83288       2.22157       5.05445       -1         N       2.88017       0.07370       2.95388       97         N       2.88017       0.94906       3.82924       -1         N       2.88040       0.29568       3.17607       124         M       2.88040       1.15688       4.03728       -1         N       2.90516       0.20298       3.10814       113         M       2.90516       0.24170       3.14686       122         N       2.90516       0.53120       3.43636       172         N       2.90530       0.20461       3.10991       115         N       2.95388       0.76064       3.71451       -1         N       2.95388       0.62207       3.57595       206         M       2.95388       1.91319       4.86706       -1         N       2.96178       1.91647       4.87826       -1 |

## Задание 4

 $V=90,\; p=0,\; q=0.349,\; \lambda=0.813,\; \mu=1.105,\; pn_1=0.319,\; pn_2=0.470,\; pm_0=0.494,\; pm_1=0.252$ 

Таблица 4.1. Данные о событиях

| Тип события   | $S_N(1)$ | $S_N(2)$ | $S_N(3)$ | $S_M(0)$ | $S_M(1)$ | $S_M(2)$ |     |
|---------------|----------|----------|----------|----------|----------|----------|-----|
| Число событий | 15       | 19       | 29       | 10       | 8        | 19       | 100 |
| Относительная | 0.15     | 0.19     | 0.29     | 0.1      | 0.08     | 0.19     | 1   |
| частота       |          |          |          |          |          |          |     |

## Таблица 4.2. Данные о видах объектов

| Вид<br>объекта | Число появившихся объектов за время $[0,t_{coo}(100)]$ | Число объектов в момент $t_{coo}(100)$ |
|----------------|--------------------------------------------------------|----------------------------------------|
| N              | 135                                                    | 72                                     |
| M              | 74                                                     | 37                                     |

Задание 5  $V=90,\ p=0,\ q=0.349,\ \lambda=0.813,\ \mu=1.105,\ pn_1=0.319,\ pn_2=0.470,\ pm_0=0.494,\ pm_1=0.252$ 

| No | Состояние | $N_{cocm}$ | $V_{cocm}$ | $T_{cocm}$ | $\Delta_{cocm}$ |
|----|-----------|------------|------------|------------|-----------------|
| 0  | (1, 0)    | 1          | 0.01000    | 0.25609    | 0.07161         |
| 1  | (1, 1)    | 1          | 0.01000    | 0.04781    | 0.01337         |
| 2  | (2, 0)    | 1          | 0.01000    | 0.29092    | 0.08135         |
| 3  | (3, 0)    | 1          | 0.01000    | 0.02416    | 0.00676         |
| 4  | (4, 0)    | 1          | 0.01000    | 0.18980    | 0.05307         |
| 5  | (5, 0)    | 1          | 0.01000    | 0.16087    | 0.04498         |
| 6  | (6, 0)    | 2          | 0.02000    | 0.23156    | 0.06475         |
| 7  | (6, 1)    | 2          | 0.02000    | 0.14626    | 0.04090         |
| 8  | (6, 2)    | 2          | 0.02000    | 0.02661    | 0.00744         |
| 9  | (6, 3)    | 1          | 0.01000    | 0.01189    | 0.00333         |
| 10 | (7, 3)    | 1          | 0.01000    | 0.10259    | 0.02869         |
| 11 | (8, 3)    | 2          | 0.02000    | 0.17664    | 0.04939         |
| 12 | (8, 4)    | 1          | 0.01000    | 0.17258    | 0.04826         |
| 13 | (9, 4)    | 1          | 0.01000    | 0.00267    | 0.00075         |
| 14 | (10, 4)   | 1          | 0.01000    | 0.16914    | 0.04730         |
| 15 | (10, 3)   | 1          | 0.01000    | 0.05920    | 0.01655         |
| 16 | (11, 3)   | 2          | 0.02000    | 0.19921    | 0.05570         |
| 17 | (11, 4)   | 2          | 0.02000    | 0.07342    | 0.02053         |
| 18 | (11, 5)   | 1          | 0.01000    | 0.06893    | 0.01928         |
| 19 | (12, 4)   | 2          | 0.02000    | 0.07696    | 0.02152         |
| 20 | (13, 4)   | 2          | 0.02000    | 0.01894    | 0.00530         |
| 21 | (14, 4)   | 2          | 0.02000    | 0.13940    | 0.03898         |
| 22 | (14, 5)   | 3          | 0.03000    | 0.07061    | 0.01975         |
| 23 | (14, 6)   | 1          | 0.01000    | 0.02929    | 0.00819         |
| 24 | (15, 5)   | 2          | 0.02000    | 0.03294    | 0.00921         |
| 25 | (15, 6)   | 1          | 0.01000    | 0.03895    | 0.01089         |
| 26 | (16, 6)   | 2          | 0.02000    | 0.06272    | 0.01754         |
| 27 | (16, 5)   | 1          | 0.01000    | 0.00022    | 0.00006         |

| 28 | (17, 5)  | 1 | 0.01000 | 0.02476 | 0.00692 |
|----|----------|---|---------|---------|---------|
| 29 | (18, 5)  | 1 | 0.01000 | 0.00014 | 0.00004 |
| 30 | (19, 5)  | 1 | 0.01000 | 0.04858 | 0.01358 |
| 31 | (20, 5)  | 1 | 0.01000 | 0.00791 | 0.00221 |
| 32 | (20, 6)  | 2 | 0.02000 | 0.05018 | 0.01403 |
| 33 | (20, 7)  | 1 | 0.01000 | 0.01971 | 0.00551 |
| 34 | (21, 6)  | 2 | 0.02000 | 0.05421 | 0.01516 |
| 35 | (21, 7)  | 1 | 0.01000 | 0.00295 | 0.00083 |
| 36 | (22, 7)  | 1 | 0.01000 | 0.01930 | 0.00540 |
| 37 | (23, 7)  | 2 | 0.02000 | 0.01344 | 0.00376 |
| 38 | (23, 8)  | 1 | 0.01000 | 0.01730 | 0.00484 |
| 39 | (24, 8)  | 1 | 0.01000 | 0.00798 | 0.00223 |
| 40 | (25, 8)  | 2 | 0.02000 | 0.03038 | 0.00850 |
| 41 | (25, 9)  | 1 | 0.01000 | 0.02598 | 0.00726 |
| 42 | (26, 9)  | 2 | 0.02000 | 0.00936 | 0.00262 |
| 43 | (26, 10) | 2 | 0.02000 | 0.01721 | 0.00481 |
| 44 | (26, 11) | 1 | 0.01000 | 0.01343 | 0.00376 |
| 45 | (26, 12) | 1 | 0.01000 | 0.00609 | 0.00170 |
| 46 | (26, 13) | 1 | 0.01000 | 0.00759 | 0.00212 |
| 47 | (27, 13) | 2 | 0.02000 | 0.04034 | 0.01128 |
| 48 | (28, 13) | 2 | 0.02000 | 0.00254 | 0.00071 |
| 49 | (28, 14) | 1 | 0.01000 | 0.00374 | 0.00104 |
| 50 | (29, 14) | 1 | 0.01000 | 0.00778 | 0.00218 |
| 51 | (29, 15) | 1 | 0.01000 | 0.00165 | 0.00046 |
| 52 | (30, 15) | 3 | 0.03000 | 0.08711 | 0.02436 |
| 53 | (30, 16) | 1 | 0.01000 | 0.00201 | 0.00056 |
| 54 | (31, 15) | 1 | 0.01000 | 0.00323 | 0.00090 |
| 55 | (31, 16) | 1 | 0.01000 | 0.00376 | 0.00105 |
| 56 | (32, 16) | 1 | 0.01000 | 0.01110 | 0.00310 |
| 57 | (33, 16) | 1 | 0.01000 | 0.00101 | 0.00028 |
| 58 | (34, 16) | 1 | 0.01000 | 0.00165 | 0.00046 |
| 59 | (34, 17) | 2 | 0.02000 | 0.01353 | 0.00378 |
|    |          |   |         |         |         |

| 60 | (34, 18) | 1   | 0.01000 | 0.00902 | 0.00252 |
|----|----------|-----|---------|---------|---------|
| 61 | (35, 18) | 1   | 0.01000 | 0.01063 | 0.00297 |
| 62 | (35, 19) | 2   | 0.02000 | 0.00903 | 0.00253 |
| 63 | (35, 20) | 1   | 0.01000 | 0.02817 | 0.00788 |
| 64 | (36, 19) | 3   | 0.03000 | 0.00760 | 0.00212 |
| 65 | (36, 20) | 1   | 0.01000 | 0.01034 | 0.00289 |
| 66 | (37, 20) | 1   | 0.01000 | 0.00243 | 0.00068 |
| 67 | (37, 19) | 1   | 0.01000 | 0.01242 | 0.00347 |
| 68 | (38, 19) | 4   | 0.04000 | 0.03750 | 0.01049 |
| 69 | (38, 20) | 1   | 0.01000 | 0.01279 | 0.00358 |
|    |          | 100 | 0.10000 |         |         |

Среднее число N-объектов по относительным частотам попаданий в состояния –  $N_{\textit{\tiny uacm}}$  = 20.96

Среднее число М-объектов по относительным частотам попаданий в  ${\rm состояния} - {\it M}_{{\it \tiny uacm}} = 9$ 

Среднее число N-объектов по долям времени пребывания в состояниях –  $N_{\rm ds} = 11.14354$ 

Среднее число M-объектов по долям времени пребывания в состояниях –  $M_{\rm de} = 3.96142$ 

#### Список литературы

- 1. Лобузов А.А. Системы массового обслуживания [Электронный ресурс]: методические указания. М.: РТУ МИРЭА, 2022.
- 2. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993. 68 с.
- 3. Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: ЛКИ, 2021. 400 с.
- 4. Кирпичников А.П. Методы прикладной теории массового обслуживания. М.: URSS, 2018. 224 с.
- 5. Ивченко Г.И., Каштанов В.А., Коваленко И.Н. Теория массового обслуживания. М.: URSS, 2012. 304 с.

#### Приложение

```
V=90
p=0
q = 0.349
lamda=0.813
mu=1.105
pn_1=0.319
pn_2=0.470
pm_0=0.494
pm_1=0.252
import numpy as np
P1 = np.array([
  [0, 0.349, 0.651, 0, 0, 0],
  [0.349, 0, 0.651, 0, 0, 0],
  [0.349, 0.651, 0, 0, 0, 0],
  [0.349, 0, 0, 0, 0.651, 0],
  [0.349, 0, 0, 0.651, 0, 0],
  [0, 0.349, 0, 0.651, 0,
                             0],
      1)
print("matrix{")
for i in P1:
  print(f" {i[0]} # {i[1]} # {i[2]} # {i[3]} # {i[4]} # {i[5]} ##")
print("}")
P_{list} = [P1]
for i in range(1, 16):
P_list.append(np.dot(P1, P_list[i-1]))
def mlatex(m):
  print("left (")
  print("matrix{")
  for i in m:
    s = []
    for value in i:
       if value == 0:
          s.append("0")
          s.append(f"{value:.5f}")
    print(" " + " # ".join(s) + " ##")
  print("}")
  print("right )")
```

```
#for i in P_list:
# print(round(np.amax(i), 5))

for i in range (7, 16):
    print(i)
    print(mlatex(P_list[i]))
```

Приложение 1. SP\_1.py

```
V = 90
p=0
q = 0.349
lamda=0.813
mu=1.105
pn_1=0.319
pn_2=0.470
pm 0=0.494
pm_1=0.252
import numpy as np
from random import randint
I = [1]
t\_sob = [0]
Type = ['S_n(1)']
t_zh1 = [np.random.exponential(1/lamda)]
t zh2 = [-1]
C = [[1, 0]]
t_ozh = [t_zh1[0]]
J_kzh = [1]
Gen_kzh = ['N']
J = [1]
Gen = ['N']
t_b = [0]
t_l = [t_zh1[0]]
t_d = [t_b[0] + t_l[0]]
Des1 = [-1]
Des2 = [-1]
for i in range(1, 100):
 I.append(i+1)
 t\_sob.append(t\_sob[i-1] + t\_ozh[i-1])
 prob = randint(0, 1000) / 1000
 n_ob = t_d.index(t_sob[-1])
 if (Gen_kzh[-1] == 'N'):
  if (prob < pn_1): ##N0
```

```
Type.append('S_n(1)')
 t_zh1.append(np.random.exponential(1/lamda))
 t_zh2.append(-1)
 C.append([C[-1][0], C[-1][1]])
j = max(J) + 1
 Des1.append(-1)
 Des2.append(-1)
 J.append(j)
 Gen.append('N')
 t_b.append(t_sob[i])
 t_l.append(t_zh1[i])
 t_d.append(t_sob[i] + t_zh1[i])
 Des1[n_ob] = j
 Des2[n\_ob] = -1
if (prob > pn_1 and prob < pn_1 + pn_2): ##NN
 Type.append('S_n(2)')
 t_zh1.append(np.random.exponential(1/lamda))
 t_zh2.append(np.random.exponential(1/lamda))
 C.append([C[-1][0] + 1, C[-1][1]])
 if (t_zh1[-1] \le t_zh2[-1]):
  j1 = \max(J) + 1
  J.append(j1)
  j2 = j1 + 1
  J.append(j2)
  t_l.append(t_zh1[-1])
  t_l.append(t_zh2[-1])
  t_d.append(t_sob[-1] + t_zh1[-1])
  t_d.append(t_sob[-1] + t_zh2[-1])
  Des1[n_ob] = j1
  Des2[n_ob] = j2
 else:
  j2 = \max(J) + 1
  J.append(j2)
  j1 = j2 + 1
  J.append(j1)
  t l.append(t zh2[-1])
  t_l.append(t_zh1[-1])
  t_d.append(t_sob[-1] + t_zh2[-1])
  t_d.append(t_sob[-1] + t_zh1[-1])
  Des1[n_ob] = j2
  Des2[n_ob] = j1
 Des1.append(-1)
 Des1.append(-1)
 Des2.append(-1)
 Des2.append(-1)
 Gen.append('N')
```

```
Gen.append('N')
  t_b.append(t_sob[-1])
  t_b.append(t_sob[-1])
 else: ##NM
  Type.append('S_n(3)')
  t_zh1.append(np.random.exponential(1/lamda))
  t_zh2.append(np.random.exponential(1/mu))
  C.append([C[-1][0], C[-1][1] + 1])
  if (t_zh1[-1] <= t_zh2[-1]):
   j1 = \max(J) + 1
   J.append(j1)
   j2 = \max(J) + 1
   J.append(j2)
   t_l.append(t_zh1[-1])
   t_l.append(t_zh2[-1])
   t_d.append(t_sob[-1] + t_zh1[-1])
   t_d.append(t_sob[-1] + t_zh2[-1])
   Des1[n_ob] = j1
   Des2[n_ob] = j2
   Gen.append('N')
   Gen.append('M')
  else:
   j2 = \max(J) + 1
   J.append(j2)
   j1 = \max(J) + 1
   J.append(j1)
   t_l.append(t_zh2[-1])
   t_l.append(t_zh1[-1])
   t_d.append(t_sob[-1] + t_zh2[-1])
   t_d.append(t_sob[-1] + t_zh1[-1])
   Des1[n_ob] = j2
   Des2[n_ob] = j1
   Gen.append('M')
   Gen.append('N')
  Des1.append(-1)
  Des1.append(-1)
  Des2.append(-1)
  Des2.append(-1)
  t_b.append(t_sob[-1])
  t_b.append(t_sob[-1])
else:
 if (prob < pm_0):##00
  Type.append('S_m(0)')
  t_zh1.append(-1)
  t_zh2.append(-1)
  C.append([C[-1][0], C[-1][1] - 1])
```

```
if (prob > pm \ 0 \text{ and } prob < (pm \ 0 + pm \ 1)):##M0
 Type.append('S_m(1)')
 t_zh1.append(np.random.exponential(1/mu))
 t_zh2.append(-1)
 C.append([C[-1][0], C[-1][1]])
j = max(J) + 1
 Des1.append(-1)
 Des2.append(-1)
 J.append(j)
 Gen.append('M')
 t_b.append(t_sob[-1])
 t_l.append(t_zh1[-1])
 t_d.append(t_sob[-1] + t_zh1[-1])
 Des1[n_ob] = j
 Des2[n ob] = -1
else:##MN
 Type.append('S_m(2)')
 t_zh1.append(np.random.exponential(1/lamda))
 t zh2.append(np.random.exponential(1/mu))
 C.append([C[-1][0] + 1, C[-1][1]])
 if (t_zh1[-1] <= t_zh2[-1]):
  j1 = \max(J) + 1
  J.append(j1)
  j2 = \max(J) + 1
  J.append(j2)
  t_l.append(t_zh1[-1])
  t_l.append(t_zh2[-1])
  t_d.append(t_sob[-1] + t_zh1[-1])
  t_d.append(t_sob[-1] + t_zh2[-1])
  Des1[n_ob] = j1
  Des2[n_ob] = j2
  Gen.append('N')
  Gen.append('M')
 else:
  j2 = \max(J) + 1
  J.append(j2)
  j1 = \max(J) + 1
  J.append(j1)
  t_l.append(t_zh2[-1])
  t_l.append(t_zh1[-1])
  t_d.append(t_sob[-1] + t_zh2[-1])
  t_d.append(t_sob[-1] + t_zh1[-1])
  Des1[n_ob] = j2
  Des2[n_ob] = j1
  Gen.append('M')
  Gen.append('N')
```

```
Des1.append(-1)
   Des1.append(-1)
   Des2.append(-1)
   Des2.append(-1)
   t_b.append(t_sob[-1])
   t_b.append(t_sob[-1])
 t_ozh.append(1000000)
 for k in t_d:
  if (k > t\_sob[-1]) and k < t\_ozh[-1]:
   t_ozh[-1] = k
 J_kzh.append(J[t_d.index(t_ozh[-1])])
 Gen_kzh.append(Gen[t_d.index(t_ozh[-1])])
 t_{ozh}[-1] = t_{ozh}[-1] - t_{sob}[-1]
#print(I)
#print(t_sob)
#print(Type)
#print(t_zh1)
#print(t zh2)
\#print(C) \# > 0
#print(t_ozh)
#print(J_kzh)
#print(Gen_kzh)
print("I;t_sob;Type;t_zh1;t_zh2;C;t_ozh;J_kzh;Gen_kzh")
for i in range(100):
print(f"{I[i]};{t_sob[i]};{Type[i]};{t_zh1[i]};{t_zh2[i]};({C[i][0]}, {C[i][1]});{t_ozh[i]};
{J_kzh[i]};{Gen_kzh[i]}")
#print(J)
#print(Gen)
#print(t_b)
\#print(t_l) \# > 0
#print(t_d)
#print(Des1)
#print(Des2)
print("J;Gen;t_b;t_l;t_d;Des1;Des2")
for i in range(100):
print(f"{J[i]};{Gen[i]};{t_b[i]};{t_l[i]};{t_d[i]};{Des1[i]};{Des2[i]}")
Type\_old = Type
Type = Type[0:100]
for i in ['S_n(1)', 'S_n(2)', 'S_n(3)', 'S_m(0)', 'S_m(1)', 'S_m(2)']:
print(Type.count(i))
print(len(Type))
```

```
# 4.2
print(Gen.count('N'))
print(Gen.count('M'))
# N - S_n(1,2,3)
#M - S_m(1,2,3)
sost = []
cnt = []
time = []
for i in range(99):
 if C[i] not in sost:
  sost.append(C[i])
  cnt.append(1)
  time.append(t_sob[i+1] - t_sob[i])
  cnt[sost.index(C[i])] += 1
  time[sost.index(C[i])] += (t\_sob[i+1] - t\_sob[i])
print("№;Состояние;N_сост;%nu_сост;Т_сост;%DELTA_сост")
for i in range(len(sost)):
print(f"{i};({sost[i][0]}, {sost[i][1]});{cnt[i]};{cnt[i] / 100};{time[i]};{round(time[i] / t_sob[-1],
5)}")
for i in cnt:
 print(i / 100)
for i in time:
print(round(i / t_sob[-1], 5))
print(time)
for i in range(len(sost)):
  print(sost[i][1])
```

Приложение 2. SP\_2.py