CONSERVATORIO STATALE DI MUSICA G. ROSSINI - PESARO

Esame di Diploma del Corso Quadriennale di Musica Elettronica A.A. 2003/2004

Sessione Autunnale

PROVA N. 2 (Composizione-Parte I- Progetto)

Durata della prova: 8 ore

Il candidato, nel tempo di 8 (otto) ore, dovrà elaborare un progetto per la composizione di un brano musicale di durata non inferiore a 10 minuti che faccia uso delle tecnologie elettroniche e digitali conosciute, e produrre la sua realizzazione libera in 30 (trenta) giorni e relativa partitura definitiva in duplice copia. Il candidato può scegliere tra i due temi proposti:

TEMA N.1

Si progetti un brano su due tracce audio utilizzando i materiali¹ forniti su supporto CD (wav a 44.1 Khz) stereo e/o mono tenendo conto dei seguenti vincoli:

- a) Il brano dovrà avere non meno di 3 macrosezioni distinte, ma non necessariamente separate.
- b) Oltre ai materiali forniti, il candidato dovrà produrre materiale sintetico derivante da almeno due tipi diversi di sintesi scelti fra tre assegnati: Sintesi Additiva Sintesi Fm Sintesi Granulare, cercando, ove possibile di trovare qualche forma di relazione con quelli assegnati su CD. Il tipo di relazione è libero.
- c) In ciascuna macrosezione dovrà essere riprodotta (prevalentemente con materiale sintetico o fortemente trasfigurato) il tipo d'articolazione temporale e/o timbrica e/o frequenziale di uno o più materiali originali che assumerà il ruolo di elemento tematico.
- d) In almeno una macrosezione, il carattere dominante dovrà essere la spazializzazione intesa come parametrizzazione degli oggetti nella loro localizzazione, movimento e piano sonoro.

Per la realizzazione, il candidato potrà utilizzare qualunque tipo di sintesi e sistema di generazione, indicandone nel progetto, almeno in grandi linee, quali intenderà usare e come. Copia del progetto dovrà essere conservato per la realizzazione del brano nei 30 gg. successivi. Il brano dovrà essere realizzato su supporto digitale stereo a 44.1 Khz (CD o DAT). La relativa partitura (in duplice copia) dovrà essere consegnata alla commissione esaminatrice assieme al CD il giorno lunedì 18 ottobre, alle ore 9:00.

Da Track 1 a track 7: diverse tipologie di suoni di flauto

Track 8 : cordiera di clavicembalo (effetto)

Da Track 9 a track 12 : diverse tipologie di suoni di percussioni

¹ I materiali forniti su CD sono in totale costituiti da 12 tracce audio in formato wav tratte dalla composizione strumentale "Fonogrammi" di Krystzof Penderecki e sono così suddivisi:

CONSERVATORIO STATALE DI MUSICA G. ROSSINI - PESARO

Esame di Diploma del Corso Quadriennale di Musica Elettronica

A.A. 2003/2004

Sessione Autunnale

PROVA N. 2 (Composizione-Parte I- Progetto)

Durata della prova: 8 ore

TEMA N.2

Si progetti un brano su due tracce audio impiegando combinazione di suoni generati attraverso Sintesi Additiva e/o FM.

La struttura generale del brano e la sua organizzazione micro-formale dovrà essere realizzata sfruttando i primi 21 termini della Serie di Fibonacci ² riportati nella Tabella 1 e tenendo conto delle seguenti proprietà della serie stessa:

La somma di due numeri contigui forma il numero successivo della sequenza: 2+3=5; 13+21=34; 89+144=233; etc...

- Il limite che tende ad infinito del rapporto tra il numero e il successivo è uguale a 0,61803.
- Il limite che tende ad infinito del rapporto tra un numero e il suo precedente è uguale a 1,618.
- Il rapporto di un numero per il secondo che lo precede è sempre pari e tende a 2,618, che è il quadrato di 1,618.

Il termine n-esimo della SdF si può ottenere in modo approssimato attraverso la formula

$$Fib(n) = \frac{\Phi^{n} - (1 - \Phi)^{n}}{\sqrt{5}}$$
 $\Phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$

Suggerimento: si sfrutti poi un'altra proprietà interessante della SdF. Infatti il numero 0,618 rappresenta il Rapporto di Sezione Aurea del segmento che si definisce nel modo seguente:

Il segmento AB viene diviso dal punto M in modo tale che il rapporto tra le due parti, la più piccola con la più grande (AM e MB), e' uguale al rapporto della parte più grande (MB) con tutto AB.

Se AB è di lunghezza 1, e chiamiamo x la lunghezza del segmento AB, allora la definizione sopra fornita dà luogo alla seguente equazione:

$$1 - x = \underline{x}$$
, e cioè $1-x = x^2$

² Leonardo Fibonacci (Pisa 1170-1240), algebrista cristiano a cui si deve la scoperta della serie omonima.

che ha due soluzioni per x, $(-1-\sqrt[4]{5})/2$ and $(\sqrt[4]{5}-1)/2$.

La prima è negativa, per cui non soddisfa le condizioni del problema. La seconda rappresenta proprio il rapporto di sezione aurea ed è un numero irrazionale corrispondente a circa **0,618**. Il reciproco di x (1/x) viene indicato con **Ø** e corrisponde a 1+x, cioè circa **1,618**. Molto spesso questo rapporto viene indicato come **rapporto aureo** e viene utilizzato nella costruzione del rettangolo aureo.

La proporzione aurea fu molto utilizzata dagli antichi Greci come rapporto armonico nelle costruzioni architettoniche e nelle rappresentazioni scultoree, per esempio nelle proporzioni delle *Cariatidi* che reggono l'*Eretteo* o nel *Partenone* nell'*Acropoli Ateniese*. Il rapporto aureo fu largamente ripreso anche nel Rinascimento: le dimensioni della *Monnalisa*, di *Leonardo da Vinci*, sono in rapporto aureo. E ancora fino ai giorni nostri, nell'architettura moderna: il *Palazzo di Vetro* dell'ONU ha proporzioni auree.

Tabella 1

Serie	Rapporto x(n)/x(n+1)
1	
1	0,500000000000000
2	0,66666666666667
3	0,600000000000000
5	0,625000000000000
8	0,615384615384615
13	0,619047619047619
21	0,617647058823529
34	0,618181818181818
55	0,617977528089888
89	0,61805555555556
144	0,618025751072961
233	0,618037135278515
377	0,618032786885246
610	0,618034447821682
987	0,618033813400125
1597	0,618033963166707
2584	0,618033998521803
4181	0,618033985017358
6765	0,618033990175597
10946	0,618033988205325

Con questa costruzione si può invece determinare il segmento di cui un certo segmento assegnato è la sezione aurea.

Sia AC il segmento dato. Si costruiscono le due perpendicolari al segmento passanti per i suoi estremi. Quindi si costruiscono le due circonferenze di centro rispettivamente A e C. I punti di intersezione con le precedenti rette, insieme ad A e C costituiscono i vertici di un quadrato. Individuiamo il punto medio M del segmento AC, e tracciamo la circonferenza con centro in M e raggio MC. Viene così individuato il punto B intersezione della circonferenza con la retta passante per A e M. Tracciamo infine la retta perpendicolare passante per B che interseca la retta per C nel punto D. Il rettangolo ABCD è il poligono ricercato, in quanto le sue misure, AB e AC, stanno in proporzione aurea.