Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 11

Clase 11

Circuitos booleanos La clase $\mathbf{P}_{/\mathbf{poly}}$ Tamaño y profundidad de circuitos

Circuitos booleanos

Clase 11

Circuitos booleanos

La clase $P_{/poly}$ Tamaño y profundidad de circuitos

Circuitos booleanos

Definición

Un circuito booleano de n entradas es un grafo acíclico dirigido tal que

- tiene n entradas (sources) = nodos sin flechas de entrada
- tiene 1 nodo destino o salida (sink, sumidero) = nodo sin flecha de salida

El resto de los nodos se llaman compuertas (gates) y están etiquetados con

- \neg : fan-in = 1, fan-out = 1
- \wedge : fan-in = 2, fan-out = 1
- \vee : fan-in = 2, fan-out = 1

El **tamaño** |C| de un circuito booleano C es la cantidad de vértices de C.

Entrada: x_1, x_2

Tamaño: 7

Definición

Dado un circuito booleano C = (V, E)con entradas $X = \{x_1, ..., x_n\}$ y $x \in \{0, 1\}^n$, definimos recursivamente $v: V \to \{0, 1\}$ de esta forma:

- $v(x_i) = x(i)$
- si en C tenemos $u_1 \to u$ y u tiene fan-in = 1 entonces $v(u) = \neg v(u_2)$ (u tenía etiqueta \neg)
- si en C tenemos $u_1 \to u \leftarrow u_2$, y
 - u tiene etiqueta \wedge , entonces $v(u) = v(u_1) \wedge v(u_2)$
 - u tiene etiqueta \vee , entonces $v(u) = v(u_1) \vee v(u_2)$

C(x) = v(t), donde t es nodo de salida de C. El circuito C calcula la función $x \mapsto C(x)$.

Definición

Dado un circuito booleano C = (V, E)con entradas $X = \{x_1, ..., x_n\}$ y $x \in \{0, 1\}^n$, definimos recursivamente $v: V \to \{0, 1\}$ de esta forma:

- $v(x_i) = x(i)$
- si en C tenemos $u_1 \to u$ y u tiene fan-in = 1 entonces $v(u) = \neg v(u_2)$ (u tenía etiqueta \neg)
- si en C tenemos $u_1 \to u \leftarrow u_2$, y
 - u tiene etiqueta \wedge , entonces $v(u) = v(u_1) \wedge v(u_2)$
 - $v(u) = v(u_1) \wedge v(u_2)$
 - u tiene etiqueta \vee , entonces $v(u) = v(u_1) \vee v(u_2)$

C(x) = v(t), donde t es nodo de salida de C. El circuito C calcula la función $x \mapsto C(x)$.

Definición

Dado un circuito booleano C = (V, E)con entradas $X = \{x_1, ..., x_n\}$ y $x \in \{0, 1\}^n$, definimos recursivamente $v: V \to \{0, 1\}$ de esta forma:

- $v(x_i) = x(i)$
- si en C tenemos $u_1 \to u$ y u tiene fan-in = 1 entonces $v(u) = \neg v(u_2)$ (u tenía etiqueta \neg)
- si en C tenemos $u_1 \to u \leftarrow u_2$, y
 - u tiene etiqueta \wedge , entonces $v(u) = v(u_1) \wedge v(u_2)$
 - u tiene etiqueta \vee , entonces $v(u) = v(u_1) \vee v(u_2)$

C(x) = v(t), donde t es nodo de salida de C. El circuito C calcula la función $x \mapsto C(x)$.

Definición

Dado un circuito booleano C = (V, E)con entradas $X = \{x_1, ..., x_n\}$ y $x \in \{0, 1\}^n$, definimos recursivamente $v: V \to \{0, 1\}$ de esta forma:

- $v(x_i) = x(i)$
- si en C tenemos $u_1 \to u$ y u tiene fan-in = 1 entonces $v(u) = \neg v(u_2)$ (u tenía etiqueta \neg)
- si en C tenemos $u_1 \to u \leftarrow u_2$, y
 - u tiene etiqueta \wedge , entonces $v(u) = v(u_1) \wedge v(u_2)$
 - u tiene etiqueta \vee , entonces $v(u) = v(u_1) \vee v(u_2)$

C(x) = v(t), donde t es nodo de salida de C. El circuito C calcula la función $x \mapsto C(x)$.

Definición

 $x \mapsto C(x)$.

Dado un circuito booleano C = (V, E)con entradas $X = \{x_1, ..., x_n\}$ y $x \in \{0, 1\}^n$, definimos recursivamente $v: V \to \{0, 1\}$ de esta forma:

- $v(x_i) = x(i)$
- si en C tenemos $u_1 \to u$ y u tiene fan-in = 1 entonces $v(u) = \neg v(u_2)$ (u tenía etiqueta \neg)
- si en C tenemos u₁ → u ← u₂, y
 u tiene etiqueta ∧, entonces
 - $v(u) = v(u_1) \wedge v(u_2)$ u tiene etiqueta \vee , entonces $v(u) = v(u_1) \vee v(u_2)$

C(x)=v(t), donde t es nodo de salida de C. El circuito C calcula la función

Entrada: x_1, x_2 Salida: $C(x_1, x_2) = x_1 \oplus x_2 = (\neg x_1 \land x_2) \lor (x_1 \land \neg x_2)$

Definición

Sea $S: \mathbb{N} \to \mathbb{N}$. Una familia de circuitos de tamaño S(n) es una secuencia $(C_n)_{n \in \mathbb{N}}$ tal que

- C_n es un circuito con n entradas
- $|C_n| \leq S(n)$

Definición

Sea $S: \mathbb{N} \to \mathbb{N}$. Una familia de circuitos de tamaño S(n) es una secuencia $(C_n)_{n \in \mathbb{N}}$ tal que

- C_n es un circuito con n entradas
- $|C_n| \leq S(n)$

Definición

Una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ [de tamaño S(n)] **decide** un lenguaje \mathcal{L} si para todo $n\geq 1$ y todo $x\in\{0,1\}^n$

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$

Identificamos la tupla $(x_1, \ldots, x_n) \in \{0, 1\}^n$ con la cadena $x_1 \ldots x_n$.

6

Definición

Sea $S: \mathbb{N} \to \mathbb{N}$. Una familia de circuitos de tamaño S(n) es una secuencia $(C_n)_{n \in \mathbb{N}}$ tal que

- C_n es un circuito con n entradas
- $|C_n| \leq S(n)$

Definición

Una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ [de tamaño S(n)] **decide** un lenguaje \mathcal{L} si para todo $n\geq 1$ y todo $x\in\{0,1\}^n$

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$

Identificamos la tupla $(x_1, \ldots, x_n) \in \{0, 1\}^n$ con la cadena $x_1 \ldots x_n$.

- Observar que alcanza con que exista la familia de circuitos $(C_n)_{n\in\mathbb{N}}$.
- No pedimos (por ahora) que sea **uniforme**, es decir que exista una máquina determinística M tal que $M(n) = \langle C_n \rangle$.

Clase de complejidad: Size(S(n))

SIZE(S(n)) es la clase de lenguajes \mathcal{L} ($\epsilon \notin \mathcal{L}$) tal que existe un familia de circuitos $(C_n)_{n \in \mathbb{N}}$ de tamaño S(n) que decide \mathcal{L} .

7

Ejemplo: cualquier lenguaje unario

$$\mathcal{L} \subseteq \{1^n \colon \ge 1\}$$

Si $x = x_1 \dots x_n \in \mathcal{L}$ definimos

 $C_n =$

$$(x_1)$$
 (x_2) (x_3) (x_n)

si no,

 $\mathcal{L} \in \mathbf{Size}(S(n))$ para S lineal.

Ejemplo: suma bit a bit

$$\mathcal{L} = \{xyz \colon |x| = |y| = n, |z| = n+1, x+y = z, n \ge 1\}$$

0000, 0101, 1001, 1110 $\in \mathcal{L}$ El resto de las palabras de largo 4 no están en \mathcal{L} En general,

$$x_n \dots x_1 \ y_n \dots y_1 \ z_{n+1} \dots z_1 \in \mathcal{L}$$
sii

. . .

• $c_1 = 0$

- para $j = 1 \dots n$: $z_j = x_j \oplus y_j \oplus c_j$ $c_{j+1} = (c_j \wedge (x_j \vee y_j)) \vee (x_j \wedge y_j)$
- $z_{n+1} = c_{n+1}$

- representa el circuito para xor (o exclusivo)
- = representa el circuito para el sii

 $\mathcal{L} \in \mathbf{Size}(S(n))$ para S lineal.

Codificación de un circuito de tamaño S

Representamos C en binario:

- Supongamos nodos de $C: u_0, \ldots, u_{S-1}$ de modo tal que $u_1, \ldots u_n$ corresponden a la entrada y u_0 a la salida
- codificamos cada nodo u con [u], es decir, con $\lceil \log S \rceil$ bits
- cada nodo de C tiene a lo sumo dos hijos (porque las operaciones son unarias o binarias)
- codificamos C con $\tau_0\sigma_0$... $\tau_{S-1}\sigma_{S-1}$, donde
 - si u_i es una entrada y por lo tanto no tiene hijos $\tau_i = 00$ y $\sigma_i = \varepsilon$ (en realidad alcanza con codificar la cantidad de entradas)
 - si u_i tiene etiqueta ¬ (tiene solo 1 hijo v_i), $\tau_i = 01 \text{ y } \sigma_i = [v_i]$
 - si u_i tiene etiqueta \wedge y tiene hijos v_i, w_i , $\tau_i = 10$ y $\sigma_i = [v_i][w_i]$
 - si u_i tiene etiqueta \vee y tiene hijos v_i, w_i , $\tau_i = 11$ y $\sigma_i = [v_i][w_i]$
- codificamos C con $\leq S \cdot (2 \cdot \lceil \log S \rceil + 2) \leq 4 \cdot S \cdot \log S$ bits para S > 1.

Ejemplo: codificación de un circuito

nodo	tipo	hijos	
u_i	$ au_i$	σ_i	
0	V	5	6
1	entrada		
2	entrada		
3	Г	1	
4	7	2	
5	٨	3	2
6	٨	1	4

tipo	hijos	
$ au_i$	σ_i	
11	101	110
00		
00		
01	001	
01	010	
10	100	010
10	001	010

(los espacios no forman parte de la codificación)

La clase $P_{/poly}$

Clase 11

Circuitos booleanos

La clase $\mathbf{P}_{/\mathbf{poly}}$

Tamaño y profundidad de circuitos

Circuitos con salidas m-arias

Lo mismo que ya vimos sirve para representar funciones $\{0,1\}^n \to \{0,1\}^m$.

- hay n nodos de entrada (con fan-in = 0)
- hay m nodos de salida (con fan-out = 0)
- las representaciones son análogas a las que vimos solo que representamos todos los nodos de salida

Calcula $x_1x_2x_3x_4\mapsto y_0y_1y_2$, donde $y_0y_1y_2=x_1x_2+x_3x_4$ (suma en binario)

Repaso de la idea del teorema de Cook-Levin (una vez más)

Supongamos una máquina determinística M tal que

- M corre en tiempo t(n)
- ullet M es oblivious y sin cinta de salida
- $x \in \mathcal{L}$ sii existe una secuencia de mini-configuraciones $z_0, \ldots, z_{t(|x|)}$ de M con entrada x tal que
 - z_0 es inicial para x
 - z_i evoluciona en un paso en z_{i+1}
 - $z_{t(|x|)}$ es final

Repaso de la idea del teorema de Cook-Levin (una vez más)

Supongamos una máquina determinística M tal que

- M corre en tiempo t(n)
- ullet M es oblivious y sin cinta de salida
- $x \in \mathcal{L}$ sii existe una secuencia de mini-configuraciones $z_0, \ldots, z_{t(|x|)}$ de M con entrada x tal que
 - z_0 es inicial para x
 - z_i evoluciona en un paso en z_{i+1}
 - $z_{t(|x|)}$ es final
- cada mini-configuración tiene información sobre el estado, el bit leído de la cinta de trabajo y el bit leído de la cinta de entrada

Repaso de la idea del teorema de Cook-Levin (una vez más)

Supongamos una máquina determinística M tal que

- M corre en tiempo t(n)
- ullet M es oblivious y sin cinta de salida
- $x \in \mathcal{L}$ sii existe una secuencia de mini-configuraciones $z_0, \ldots, z_{t(|x|)}$ de M con entrada x tal que
 - z_0 es inicial para x
 - z_i evoluciona en un paso en z_{i+1}
 - $z_{t(|x|)}$ es final
- cada mini-configuración tiene información sobre el estado, el bit leído de la cinta de trabajo y el bit leído de la cinta de entrada
- Recordar que, para n = |x|:
 - $|z_i| = k$, k depende solo depende de M
 - z_0 solo depende de x
 - z_{i+1} solo depende de 1 bit de x, z_i y $z_{prev(i,n)}$, donde $prev(i,n) = \max\{j < i : t(j,n) = t(i,n)\} \cup \{1\}$ (t(n,j) es la posición de la cabeza de trabajo al paso j)

La clase $P_{/poly}$

Clase de complejidad:
$$P_{/poly}$$

$$\mathbf{P_{/poly}} = \bigcup_{c} \mathbf{Size}(c \cdot n^c)$$

 $\mathbf{P} \subseteq \mathbf{P}_{/\mathbf{poly}}$.

$$P \subseteq P_{/poly}$$
.

Demostración

Sea $\mathcal{L} \in \mathbf{P}$ y sea Muna máquina determinística tal que

- M corre en tiempo t(n) con t un polinomio
- ullet M es oblivious, con 1 cinta de trabajo, sin cinta de salida
- $x \in \mathcal{L}$ sii existe una secuencia de mini-configuraciones $z_0, \ldots, z_{t(|x|)}$ de M con entrada x tal que
 - z_0 es inicial para x
 - z_i evoluciona en z_{i+1}
 - $z_{t(|x|)}$ es final

$$P \subseteq P_{/poly}$$
.

Demostración

Sea $\mathcal{L} \in \mathbf{P}$ y sea Muna máquina determinística tal que

- M corre en tiempo t(n) con t un polinomio
- ullet M es oblivious, con 1 cinta de trabajo, sin cinta de salida
- $x \in \mathcal{L}$ sii existe una secuencia de mini-configuraciones $z_0, \ldots, z_{t(|x|)}$ de M con entrada x tal que
 - z_0 es inicial para x
 - z_i evoluciona en z_{i+1}
 - $z_{t(|x|)}$ es final

Representamos z_i con la cadena ets, donde:

- $e \in \{0,1\}^2$ codifica el símbolo en la cinta de entrada,
- $t \in \{0,1\}^2$ codifica el símbolo en la cinta de trabajo,
- $s \in \{0,1\}^c$ codifica el estado de M (c es constante)

Entonces $|z_i| = k = 4 + c$ (constante).

Para n fijo, construimos un circuito C_n tal que $M(x)=C_n(x)$ para todo $x\in\{0,1\}^n$. Sea $x\in\{0,1\}^n$ y $z_i=ets,\,|z_i|=4+c$. z_{i+1} solo depende de

- el símbolo leído por la cabeza de entrada (codificado con 2 bits),
- \bullet z_i
- $z_{prev(i,n)}$

Para n fijo, construimos un circuito C_n tal que $M(x) = C_n(x)$ para todo $x \in \{0,1\}^n$. Sea $x \in \{0,1\}^n$ y $z_i = ets$, $|z_i| = 4 + c$.

Sea $x \in \{0,1\}^n$ y $z_i = ets$, $|z_i| = 4 + c$. z_{i+1} solo depende de

- el símbolo leído por la cabeza de entrada (codificado con 2 bits),
- ullet z_i
- $z_{prev(i,n)}$

Sea $F_n:\{0,1\}^{2k+2} \to \{0,1\}^k$ tal que

$$F_n(e \ z_i \ z_{prev(i,n)}) = z_{i+1}$$

 F_n se representa con un circuito de tamaño constante.

Para n fijo, construimos un circuito C_n tal que $M(x) = C_n(x)$ para todo $x \in \{0,1\}^n$.

Sea $x \in \{0,1\}^n$ y $z_i = ets$, $|z_i| = 4 + c$. z_{i+1} solo depende de

- el símbolo leído por la cabeza de entrada (codificado con 2 bits),
- z_i
- $z_{prev(i,n)}$

Sea $F_n: \{0,1\}^{2k+2} \to \{0,1\}^k$ tal que

$$F_n(e \ z_i \ z_{prev(i,n)}) = z_{i+1}$$

 F_n se representa con un circuito de tamaño constante.

Entonces todo el circuito C_n cumple

$$|C_n| = O(t(n))$$
 y $C_n(x) = M(x)$

 $\mathbf{P}\not\supseteq\mathbf{P_{/poly}}.$

 $\mathbf{P} \not\supseteq \mathbf{P}_{/\mathbf{poly}}$.

Demostración.

Recordemos que si $\mathcal{L} \subseteq \{1^n : n \in \mathbb{N}\}$ entonces $\mathcal{L} \in \mathbf{P}_{/\mathbf{poly}}$. Podemos tomar un $\mathcal{L} \subseteq \{1^n : n \in \mathbb{N}\}$ indecidible, por ejemplo

$$\mathcal{H} = \{1^n \colon x \text{ es la } n\text{-\'esima cadena y } halt(x) = 1\}$$

(numeramos las cadenas ϵ , 0, 1, 00, 01, 10, 11, 000, ...)

$$\mathcal{H} \in \mathbf{P}_{/\mathbf{poly}} \setminus \mathbf{P}$$
.

Notación para reemplazo de variables por constantes

Notación: Variables de una fórmula booleana

Si φ es una fórmula booleana con variables entre x_1,\ldots,x_n (pueden ser menos), la notamos

$$\varphi(x_1,\ldots,x_n).$$

Notación: Reemplazo de variable por constante

Sea $\varphi(x_1,\dots,x_n)$ una fórmula booleana. Representamos

$$\varphi(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

a la fórmula booleana que resulta de reemplazar todas las apariciones de x_i por $b \in \{0, 1\}$.

Notar que

$$\underbrace{b_1 \dots b_n}_{\text{valuación}} \models \varphi(\underbrace{x_1, \dots, x_n}) \quad \text{sii} \quad \models \varphi(\underbrace{b_1, \dots, b_n})$$

$$valuación \quad variables \quad v \in \{0, 1\}^n$$

Ejemplo

$$\varphi(x_1, x_2, x_3) = (x_1 \land \neg x_2) \lor (x_3 \land x_2)$$

$$\varphi(x_1, 1, x_3) = (x_1 \land \neg 1) \lor (x_3 \land 1)$$

$$\varphi(x_1, 0, x_3) = (x_1 \land \neg 0) \lor (x_3 \land 0)$$

Ejemplo

$$\varphi(x_1, x_2, x_3) = (x_1 \land \neg x_2) \lor (x_3 \land x_2)$$

$$\varphi(x_1, 1, x_3) = (x_1 \land \neg 1) \lor (x_3 \land 1)$$

$$\varphi(x_1, 0, x_3) = (x_1 \land \neg 0) \lor (x_3 \land 0)$$

Ejemplo

$$\varphi(x_1, x_2, x_3) = (x_1 \land \neg x_2) \lor (x_3 \land x_2)$$

$$\varphi(x_1, 1, x_3) = (x_1 \land \neg 1) \lor (x_3 \land 1)$$

$$\varphi(x_1, 0, x_3) = (x_1 \land \neg 0) \lor (x_3 \land 0)$$

$$110 \models \varphi(x_1, x_2, x_3) \text{ sii } \models \varphi(1, 1, 0) \text{ sii } \models (1 \land \neg 1) \lor (0 \land 1)$$

Encontrar valuaciones booleanas

Supongamos $\varphi(x_1,\ldots,x_n)$ satisfacible. Entonces

$$\varphi(1, x_2, \dots, x_n) \in \mathsf{SAT} \implies \exists v \in \{0, 1\}^{n-1} \ v \models \varphi(1, x_2, \dots, x_n)$$

$$\varphi(1, x_2, \dots, x_n) \notin \mathsf{SAT} \implies \exists v \in \{0, 1\}^{n-1} \ v \models \varphi(0, x_2, \dots, x_n)$$

Encontrar valuaciones booleanas

Supongamos $\varphi(x_1,\ldots,x_n)$ satisfacible. Entonces

$$\begin{split} & \varphi(1,x_2,\ldots,x_n) \in \mathsf{SAT} & \implies \exists v \in \{0,1\}^{n-1} \ v \models \varphi(1,x_2,\ldots,x_n) \\ & \varphi(1,x_2,\ldots,x_n) \notin \mathsf{SAT} & \implies \exists v \in \{0,1\}^{n-1} \ v \models \varphi(0,x_2,\ldots,x_n) \end{split}$$

Es decir,

$$\varphi(\overbrace{\chi_{\mathsf{SAT}(\varphi(1,x_2,\ldots,x_n))}}^{\in\{0,1\}},x_2,\ldots,x_n)$$

es satisfacible.

Encontrar valuaciones booleanas

Supongamos $\varphi(x_1,\ldots,x_n)$ satisfacible. Entonces

$$\varphi(1, x_2, \dots, x_n) \in \mathsf{SAT} \implies \exists v \in \{0, 1\}^{n-1} \ v \models \varphi(1, x_2, \dots, x_n)$$

$$\varphi(1, x_2, \dots, x_n) \notin \mathsf{SAT} \implies \exists v \in \{0, 1\}^{n-1} \ v \models \varphi(0, x_2, \dots, x_n)$$

Es decir,

$$\varphi(\overbrace{\chi_{\mathsf{SAT}(\varphi(1,x_2,\ldots,x_n))}}^{\in\{0,1\}},x_2,\ldots,x_n)$$

es satisfacible.

Podemos seguir adelante con el mismo razonamiento:

$$\varphi(\overbrace{\chi_{\mathsf{SAT}(\varphi(1,x_2,\dots,x_n))}}^{b\in\{0,1\}},\overbrace{\chi_{\mathsf{SAT}(\varphi(b,1,x_3\dots,x_n))}}^{\in\{0,1\}},x_3,\dots,x_n)$$

es satisfacible. Y así sucesivamente.

Circuito para encontrar valuaciones booleanas

- Podemos codificar fórmulas booleanas (con constantes 0 y 1) en binario.
- Cada fórmula de tamaño n tiene a lo sumo n variables y las suponemos numeradas $x_1, \ldots, x_i, i \leq n$.
- Consideramos circuitos booleanos con n entradas y m salidas, que representan funciones $\{0,1\}^n \to \{0,1\}^m$.

Circuito para encontrar valuaciones booleanas

- Podemos codificar fórmulas booleanas (con constantes 0 y 1) en binario.
- Cada fórmula de tamaño n tiene a lo sumo n variables y las suponemos numeradas $x_1, \ldots, x_i, i \leq n$.
- Consideramos circuitos booleanos con n entradas y m salidas, que representan funciones $\{0,1\}^n \to \{0,1\}^m$.

Proposición

Sea $(C_n)_{n\in\mathbb{N}}$ una familia de circuitos de tamaño S(n) tal que $C_n(\varphi)=\chi_{\mathsf{SAT}}(\varphi)$ para toda fórmula booleana $\varphi=\varphi(x_1,\ldots,x_n)$ con $|\varphi|=n$. Entonces existe una familia de circuitos $(C'_n)_{n\in\mathbb{N}}$ de tamaño polinomial en S(n) tal que para todo n: C'_n tiene n salidas y para toda fórmula booleana $\varphi=\varphi(x_1,\ldots,x_n)$ con $|\varphi|=n$, tenemos

$$\varphi(C'_n(\varphi)) = \chi_{\mathsf{SAT}}(\varphi).$$

(notamos $C_n(\varphi)$ en vez de $C_n(\langle \varphi \rangle)$ y lo mismo para C'_n)

Demostración.

Dada $\varphi = \varphi(x_1, \dots, x_n)$ de tamaño n y el circuito C_n tal que $C_n(\varphi) = \chi_{\mathsf{SAT}}(\varphi)$ definimos el circuito C'_n con entrada φ y salidas r_1, \dots, r_n de esta forma: (ejemplo para n = 4):

Problemas $\Pi_i^{\rm p}$ -completos

Ya probamos que para todo i > 0, $\Sigma_i \mathsf{SAT} \in \Sigma_i^{\mathbf{p}}$ -completo. Análogamente,

Problema: Satisfacibilidad de QBF acotada

 $\varphi \text{ es una QBF de la forma} \\ \forall \bar{y}_1 \exists \bar{y}_2 \dots Q_i \bar{y}_i \psi(\bar{y}_1, \dots, \bar{y}_i) \text{ donde las } \bar{y}_i \text{ son} \\ \Pi_i \mathsf{SAT} = \big\{ \langle \varphi \rangle \colon \text{ tuplas de variables booleanas, } \psi \text{ es una fór-} \big\} \\ \text{mula booleana, los cuantificadores se alternan} \\ y \models \varphi$

Proposición

Para todo i > 0, $\Pi_i SAT \in \Pi_i^{\mathbf{p}}$ -completo.

Teorema de Karp-Lipton

Teorema (Karp-Lipton)

Si $\mathbf{NP} \subseteq \mathbf{P}_{/\mathbf{poly}}$, entonces $\mathbf{PH} = \Sigma_2^{\mathbf{p}}$.

Como se cree que $\bf PH$ no colapsa, es un indicio de que $\bf NP\not\subseteq P_{/poly}.$

Notación: Reemplazo de variables por constantes

Para la fórmula booleana

$$\varphi = \varphi(x_1, \dots, x_i, y_1, \dots, y_j)$$

con variables $x_1, ..., x_i, y_1, ..., y_j, y \bar{u} = u_1, ..., u_i \in \{0, 1\}^*$ notamos

$$\varphi_{\bar{u}} = \varphi_{\bar{u}}(y_1, \dots, y_j) = \varphi(u_1, \dots, u_i, y_1, \dots, y_j)$$

Demostración

Alcanza con probar $\Pi_2^P \subseteq \Sigma_2^P$, o $\Pi_2 \mathsf{SAT} \in \Sigma_2^P$ porque $\Pi_2 \mathsf{SAT}$ es Π_2^P -completo.

Demostración

Alcanza con probar $\Pi_2^P \subseteq \Sigma_2^P$, o $\Pi_2 \mathsf{SAT} \in \Sigma_2^P$ porque $\Pi_2 \mathsf{SAT}$ es Π_2^P -completo.

Supongamos $\mathbf{NP} \subseteq \mathbf{P}_{/\mathbf{poly}}$. Existe un polinomio p y una familia de circuitos $(C_n)_{n \in \mathbb{N}}$ de tamaño p(n) tal que para toda fórmula booleana φ de tamaño n

$$\varphi \in \mathsf{SAT}$$
 sii $\exists \bar{v} \in \{0,1\}^n \ \bar{v} \models \varphi$
sii $\exists \bar{v} \in \{0,1\}^n \ \models \varphi(\bar{v})$
sii $C_n(\varphi) = 1$

Demostración

Alcanza con probar $\Pi_2^P \subseteq \Sigma_2^P$, o $\Pi_2 \mathsf{SAT} \in \Sigma_2^P$ porque $\Pi_2 \mathsf{SAT}$ es Π_2^P -completo.

Supongamos $\mathbf{NP} \subseteq \mathbf{P}_{/\mathbf{poly}}$. Existe un polinomio p y una familia de circuitos $(C_n)_{n \in \mathbb{N}}$ de tamaño p(n) tal que para toda fórmula booleana φ de tamaño n

$$\varphi \in \mathsf{SAT}$$
 sii $\exists \bar{v} \in \{0,1\}^n \ \bar{v} \models \varphi$
sii $\exists \bar{v} \in \{0,1\}^n \ \models \varphi(\bar{v})$
sii $C_n(\varphi) = 1$

Supongamos $\varphi = \varphi(\underbrace{x_1, \dots, x_i}_{\bar{x}}, \underbrace{y_1, \dots, y_j}_{\bar{y}})$ de tamaño n:

$$\forall \bar{u} \in \{0,1\}^i \left(\underbrace{\exists \bar{v} \in \{0,1\}^j \models \varphi_{\bar{u}}(\bar{v})}_{\varphi_{\bar{u}} = \varphi_{\bar{u}}(\bar{y}) \in \mathsf{SAT}} \Longleftrightarrow C_n(\varphi_{\bar{u}}) = 1\right)$$

$$\forall \bar{x} \exists \bar{y} \ \varphi(\bar{x}, \bar{y}) \in \Pi_2 \mathsf{SAT} \qquad \mathrm{sii}$$

$$\varphi_{\bar{u}} = \varphi_{\bar{u}}(y) \in \mathsf{SAT}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \exists \bar{v} \in \{0, 1\}^j \ \models \varphi(\bar{u}, \bar{v}) \qquad \mathrm{sii}$$

$$\forall \bar{x} \exists \bar{y} \ \varphi(\bar{x}, \bar{y}) \in \Pi_2 \mathsf{SAT} \qquad \mathrm{sii}$$

$$\varphi_{\bar{u}} = \varphi_{\bar{u}}(y) \in \mathsf{SAT}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \exists \bar{v} \in \{0, 1\}^j \ \models \varphi(\bar{u}, \bar{v}) \qquad \mathrm{sii}$$

$$\forall \bar{u} \in \{0, 1\}^i \ C_n(\varphi_{\bar{u}}) = 1 \qquad \mathrm{sii}$$

•
$$|\varphi(\bar{x}, \bar{y})| = |\varphi_{\bar{u}}(\bar{y})| = n$$

$$\forall \bar{x} \exists \bar{y} \ \varphi(\bar{x}, \bar{y}) \in \Pi_2 \mathsf{SAT} \qquad \mathsf{sii}$$

$$\varphi_{\bar{u}} = \varphi_{\bar{u}}(y) \in \mathsf{SAT}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \exists \bar{v} \in \{0, 1\}^j \ \models \varphi(\bar{u}, \bar{v}) \qquad \mathsf{sii}$$

$$\forall \bar{u} \in \{0, 1\}^i \ C_n(\varphi_{\bar{u}}) = 1 \qquad \mathsf{sii}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \models \varphi_{\bar{u}}(C_n'(\varphi_{\bar{u}})) \qquad \mathsf{sii}$$

- $|\varphi(\bar{x}, \bar{y})| = |\varphi_{\bar{u}}(\bar{y})| = n$
- C'_n es tiene una codificación de tamaño q(n) con q un polinomio tal que $\psi(C'_n(\psi)) = \chi_{\mathsf{SAT}}(\psi)$ para toda ψ de tamaño n

$$\forall \bar{x} \exists \bar{y} \ \varphi(\bar{x}, \bar{y}) \in \Pi_2 \mathsf{SAT} \qquad \mathsf{sii}$$

$$\varphi_{\bar{u}} = \varphi_{\bar{u}}(y) \in \mathsf{SAT}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \exists \bar{v} \in \{0, 1\}^j \ \models \varphi(\bar{u}, \bar{v}) \qquad \mathsf{sii}$$

$$\forall \bar{u} \in \{0, 1\}^i \ C_n(\varphi_{\bar{u}}) = 1 \qquad \mathsf{sii}$$

$$\forall \bar{u} \in \{0, 1\}^i \ \models \varphi_{\bar{u}}(C_n'(\varphi_{\bar{u}})) \qquad \mathsf{sii}$$

$$\exists c \in \{0, 1\}^{q(n)} \forall \bar{u} \in \{0, 1\}^i \ \models \varphi_{\bar{u}}(R_c(\varphi_{\bar{u}}))$$

$$\exists c \in \{0, 1\}^{q(n)} \forall \bar{u} \in \{0, 1\}^i \ [\mathsf{Polinomial}] \in \Sigma_2^\mathsf{P}$$

- $|\varphi(\bar{x}, \bar{y})| = |\varphi_{\bar{u}}(\bar{y})| = n$
- C'_n es tiene una codificación de tamaño q(n) con q un polinomio tal que $\psi(C'_n(\psi)) = \chi_{\mathsf{SAT}}(\psi)$ para toda ψ de tamaño n
- R_c es el circuito representado por $c \in \{0,1\}^*$
- Decidimos $\varphi_{\bar{u}}(R_c(\varphi_u))$ en tiempo polinomial

Tamaño y profundidad de circuitos

Clase 11

Circuitos booleanos La clase $\mathbf{P}_{/\mathrm{poly}}$ Tamaño y profundidad de circuitos

Cotas al tamaño mínimo de circuitos

Definición

Sea $f:\{0,1\}^n \to \{0,1\}$. Definimos

 $\operatorname{minSize}(f) = \operatorname{min}\{|C| \colon C \text{ tiene } n \text{ entradas y } \forall \bar{x} \ C(\bar{x}) = f(\bar{x})\}$

Cotas al tamaño mínimo de circuitos

Definición

Sea
$$f:\{0,1\}^n \to \{0,1\}$$
. Definimos

$$\min \mathrm{Size}(f) = \min \{ |C| \colon C \text{ tiene } n \text{ entradas y } \forall \bar{x} \ C(\bar{x}) = f(\bar{x}) \}$$

Proposición

 $\operatorname{minSize}(f) = O(n2^n) \text{ para toda } f: \{0,1\}^n \to \{0,1\}.$

Cotas al tamaño mínimo de circuitos

Definición

Sea $f:\{0,1\}^n \to \{0,1\}$. Definimos

 $\min \operatorname{Size}(f) = \min\{|C| \colon C \text{ tiene } n \text{ entradas y } \forall \bar{x} \ C(\bar{x}) = f(\bar{x})\}$

Proposición

 $\min \mathrm{Size}(f) = O(n2^n) \text{ para toda } f: \{0,1\}^n \to \{0,1\}.$

Demostración.

Ya lo vimos para CNF. Más directo es verlo para DNF (forma normal disyuntiva):

$$f(x_1, \dots, x_n) = \bigvee_{\substack{(y_1, \dots, y_n) \in \{0, 1\}^n : \\ f(y_1, \dots, y_n) = 1}} \bigwedge_{1 \le i \le n} x_i = y_i$$

La subfórmula $x_i = y_i$ es x_i si $y_i = 1$ y $\neg x_i$ si no. La fórmula se representa con un circuito de tamaño $O(n2^n)$.

Para todo n>1,existe $f:\{0,1\}^n \to \{0,1\}$ tal que $\mathrm{minSize}(f)>2^n/4n.$

Para todo n>1, existe $f:\{0,1\}^n\to\{0,1\}$ tal que minSize $(f)>2^n/4n.$

Demostración.

Recordemos que codificamos u circuito de tamaño S con $\leq 4 \cdot S \cdot \log S$ bits. Para una función $S : \mathbb{N} \to \mathbb{N}$ cualquiera, definimos

$$K_{n,S} = \{ \text{circuitos con } n \text{ entradas de tamaño} \le S(n) \}$$

$$\# K_{n,S} \le 2^{4S(n)\log S(n)}$$

Para todo n > 1, existe $f : \{0,1\}^n \to \{0,1\}$ tal que minSize $(f) > 2^n/4n$.

Demostración.

Recordemos que codificamos u circuito de tamaño S con $\leq 4 \cdot S \cdot \log S$ bits. Para una función $S: \mathbb{N} \to \mathbb{N}$ cualquiera, definimos

$$K_{n,S} = \{\text{circuitos con } n \text{ entradas de tamaño } \leq S(n)\}$$

 $\#K_{n,S} \leq 2^{4S(n)\log S(n)}$

Tomemos $S(n) = 2^n/4n$. Codificamos $C \in K_{n,S}$ con a lo sumo esta cantidad de bits:

$$4S(n)\log S(n) = 4\frac{2^n}{4n}\log \frac{2^n}{4n}$$
$$< \frac{2^n}{n}\log 2^n = 2^n$$

Para todo n > 1, existe $f : \{0,1\}^n \to \{0,1\}$ tal que minSize $(f) > 2^n/4n$.

Demostración.

Recordemos que codificamos u circuito de tamaño S con $\leq 4 \cdot S \cdot \log S$ bits. Para una función $S: \mathbb{N} \to \mathbb{N}$ cualquiera, definimos

$$K_{n,S} = \{\text{circuitos con } n \text{ entradas de tamaño} \leq S(n)\}$$

 $\#K_{n,S} \leq 2^{4S(n)\log S(n)}$

Tomemos $S(n) = 2^n/4n$. Codificamos $C \in K_{n,S}$ con a lo sumo esta cantidad de bits:

$$4S(n)\log S(n) = 4\frac{2^n}{4n}\log\frac{2^n}{4n}$$
$$< \frac{2^n}{n}\log 2^n = 2^n$$

Entonces $\#K_{n,S} < 2^{2^n}$.

Para todo n > 1, existe $f : \{0,1\}^n \to \{0,1\}$ tal que minSize $(f) > 2^n/4n$.

Demostración.

Recordemos que codificamos u circuito de tamaño S con $\leq 4 \cdot S \cdot \log S$ bits. Para una función $S: \mathbb{N} \to \mathbb{N}$ cualquiera, definimos

$$K_{n,S} = \{\text{circuitos con } n \text{ entradas de tamaño } \leq S(n)\}$$

 $\#K_{n,S} \leq 2^{4S(n)\log S(n)}$

Tomemos $S(n) = 2^n/4n$. Codificamos $C \in K_{n,S}$ con a lo sumo esta cantidad de bits:

$$4S(n)\log S(n) = 4\frac{2^n}{4n}\log\frac{2^n}{4n}$$
$$< \frac{2^n}{n}\log 2^n = 2^n$$

Entonces $\#K_{n,S} < 2^{2^n}$.

La cantidad de funciones $\{0,1\}^n \to \{0,1\}$ es 2^{2^n} . Por lo tanto existe una función $f: \{0,1\}^n \to \{0,1\}$ tal que minSize $(f) > 2^n/4n$.

Profundidad de un circuito

Definición

La **profundidad** de un circuito C, notado $\operatorname{prof}(C)$, es la longitud del camino más largo desde alguna entrada hasta alguna salida.

Profundidad de un circuito

Definición

La **profundidad** de un circuito C, notado $\operatorname{prof}(C)$, es la longitud del camino más largo desde alguna entrada hasta alguna salida.

Profundidad de un circuito

Definición

Una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ tiene profundidad d(n) si $\operatorname{prof}(C_n) \leq d(n)$ para todo n.

Profundidad logarítmica

 $\{1^n\colon n\geq 1\}$ es decidible por una familia de circuitos de profundidad $O(\log n)$

Conjunciones y disyunciones de aridad arbitraria

A veces vamos a considerar circuitos con \land y \lor con fan-in arbitrario. Esto permite profundidades más bajas.

Profundidad constante

Existe una familia de circuitos con \wedge de fan-in arbitrario de profundidad O(1) que acepta $\{1^n \colon n \geq 1\}$.

