CEGEP Linear Algebra Problems

AN OPEN SOURCE COLLECTION OF CEGEP LEVEL LINEAR ALGEBRA PROBLEMS

EDITED BY

YANN LAMONTAGNE

Contents

1	Syst	tems of Linear Equations	1
	1.1	Gaussian and Gauss-Jordan Elimination]
2	Vec	tor Spaces	•
	2.1	Introduction to Vector Spaces	3
	2.2	Subspaces	4
	2.3	Spanning Sets	4
		Linear Independence	
	2.5	Basis	4
	2.6	Dimension	4
A :	nswei	rs to Exercises	Ę
R	efere	nces	7
In	dex		7

Chapter 1

Systems of Linear Equations

1.1 Gaussian and Gauss-Jordan Elimination

1.1.1 by Jim Hefferon [JH] Use Gauss's Method to find the unique solution for each system.

a.

b.

Chapter 2

Vector Spaces

2.1 Introduction to Vector Spaces

2.1.1 [JH] Name the zero vector for each of these vector spaces.

- a. The space of degree three polynomials under the natural operations.
- b. The space of 2×3 matrices.
- c. The space $\{f: [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}.$
- d. The space of real-valued functions of one natural number variable.

 $\bf 2.1.2~[JH]~$ Find the additive inverse, in the vector space, of the vector.

- a. In \mathcal{P}_3 , the vector $-3 2x + x^2$.
- b. In the space $\mathcal{M}_{2\times 2}$,

$$\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}.$$

- c. In $\{ae^x + be^{-x} \mid a, b \in \mathbb{R}\}$, the space of functions of the real variable x under the natural operations, the vector $3e^x 2e^{-x}$.
- **2.1.3** [JH] For each, list three elements and then show it is a vector space.
 - a. The set of linear polynomials $\mathcal{P}_1 = \{a_0 + a_1x \mid a_0, a_1 \in \mathbb{R}\}$ under the usual polynomial addition and scalar multiplication operations.
 - b. The set of linear polynomials $\{a_0 + a_1x \mid a_0 2a_1 = 0\}$, under the usual polynomial addition and scalar multiplication operations.

2.1.4 [JH] For each, list three elements and then show it is a vector space.

- a. The set of 2×2 matrices with real entries under the usual matrix operations.
- b. The set of 2×2 matrices with real entries where the 2, 1 entry is zero, under the usual matrix operations.
- **2.1.5** by Jim Hefferon [JH] For each, list three elements and then show it is a vector space.
 - a. The set of three-component row vectors with their

usual operations.

b. The set

$$\{(x, y, z, w) \in \mathbb{R}^4 \mid x+y-z+w=0\}$$

under the operations inherited from \mathbb{R}^4 .

2.1.6 [JH] Show that the following are not vector spaces.

a. Under the operations inherited from \mathbb{R}^3 , this set

$$\{(x, y, z) \in \mathbb{R}^3 \mid x+y+z=1\}$$

b. Under the operations inherited from \mathbb{R}^3 , this set

$$\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

c. Under the usual matrix operations,

$$\left\{ \begin{bmatrix} a & 1 \\ b & c \end{bmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

d. Under the usual polynomial operations,

$$\{a_0 + a_1 x + a_2 x^2 \mid a_0, a_1, a_2 \in \mathbb{R}^+ \}$$

where \mathbb{R}^+ is the set of reals greater than zero

e. Under the inherited operations,

$$\left\{\,(x,\ y)\in\mathbb{R}^2\ \middle|\ x+3y=4,\,2x-y=3\ \mathrm{and}\ 6x+4y=10\,\right\}$$

- **2.1.7** [JH] Is the set of rational numbers a vector space over \mathbb{R} under the usual addition and scalar multiplication operations?
- **2.1.8** [JH] Prove that the following is not a vector space: the set of two-tall column vectors with real entries subject to these operations.

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix} \qquad r \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} rx \\ ry \end{pmatrix}$$

2.1.9 [JH] Prove or disprove that \mathbb{R}^3 is a vector space under these operations.

a.
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 and $r \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} rx \\ ry \\ rz \end{pmatrix}$
b. $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and $r \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

- **2.1.10** [JH] For each, decide if it is a vector space; the intended operations are the natural ones.
 - a. The set of diagonal 2×2 matrices

$$\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

b. The set of 2×2 matrices

$$\left\{ \begin{bmatrix} x & x+y \\ x+y & y \end{bmatrix} \mid x,y \in \mathbb{R} \right\}$$

- c. $\{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + w = 1\}$
- d. The set of functions $\{f : \mathbb{R} \to \mathbb{R} \mid df/dx + 2f = 0\}$
- e. The set of functions $\{f : \mathbb{R} \to \mathbb{R} \mid df/dx + 2f = 1\}$
- **2.1.11** [JH] Show that the set \mathbb{R}^+ of positive reals is a vector space when we interpret 'x+y' to mean the product of x and y (so that 2+3 is 6), and we interpret ' $r \cdot x$ ' as the r-th power of x.
- **2.1.12** [JH] Prove or disprove that the following is a vector space: the set of polynomials of degree greater than or equal to two, along with the zero polynomial.

2.1.13 [JH]

Is $\{(x, y) \mid x, y \in \mathbb{R}\}$ a vector space under these operations?

- a. $(x_1, y_1)+(x_2, y_2)=(x_1+x_2, y_1+y_2)$ and $r \cdot (x, y)=(rx, y)$
- b. $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $r \cdot (x, y) = (rx, 0)$

2.1.14 [JH]

Prove the following:

- a. For any $\vec{v} \in V$, if $\vec{w} \in V$ is an additive inverse of \vec{v} , then \vec{v} is an additive inverse of \vec{w} . So a vector is an additive inverse of any additive inverse of itself.
- b. Vector addition left-cancels: if $\vec{v}, \vec{s}, \vec{t} \in V$ then $\vec{v} + \vec{s} = \vec{v} + \vec{t}$ implies that $\vec{s} = \vec{t}$.

2.1.15 [JH]

The definition of vector spaces does not explicitly say that $\vec{0} + \vec{v} = \vec{v}$ (it instead says that $\vec{v} + \vec{0} = \vec{v}$). Show that it must nonetheless hold in any vector space.

2.1.16 [JH]

Prove or disprove that the following is a vector space: the set of all matrices, under the usual operations.

2.1.17 [JH]

In a vector space every element has an additive inverse. Is the additive inverse unique (Can some elements have two or more)?

2.1.18 [JH]

Assume that $\vec{v} \in V$ is not $\vec{0}$.

- a. Prove that $r \cdot \vec{v} = \vec{0}$ if and only if r = 0.
- b. Prove that $r_1 \cdot \vec{v} = r_2 \cdot \vec{v}$ if and only if $r_1 = r_2$.
- c. Prove that any nontrivial vector space is infinite.
- 2.2 Subspaces
- 2.3 Spanning Sets
- 2.4 Linear Independence
- 2.5 Basis
- 2.6 Dimension

Answers to Exercises

1.1.1

- a. x = 2, y = 3
- b. x = -1, y = 4, and z = -1.

2.1.1

- a. $0 + 0x + 0x^2 + 0x^3$ b. $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- c. The constant function f(x) = 0
- d. The constant function f(n) = 0

2.1.2

- b. $\begin{bmatrix} -1 & +1 \\ 0 & -3 \end{bmatrix}$

2.1.3

- a. 1 + 2x, 2 1x, and x.
- b. 2 + 1x, 6 + 3x, and -4 2x.

2.1.4

a.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

b.

$$\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} -1 & -2 \\ 0 & -4 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

2.1.5

- a. (1, 2, 3), (2, 1, 3), and (0, 0, 0).
- b. (1, 1, 1, -1), (1, 0, 1, 0) and (0, 0, 0, 0).

2.1.6

For each part the set is called Q. For some parts, there are more than one correct way to show that Q is not a vector space.

- a. It is not closed under addition.
 - $(1, 0, 0), (0, 1, 0) \in Q$ $(1, 1, 0) \notin Q$
- b. It is not closed under addition.
 - $(1, 0, 0), (0, 1, 0) \in Q$ $(1, 1, 0) \notin Q$

c. It is not closed under addition.

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in Q \qquad \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \not\in Q$$

d. It is not closed under scalar multiplication.

$$1 + 1x + 1x^2 \in Q$$
 $-1 \cdot (1 + 1x + 1x^2) \notin Q$

- e. The set is empty, violating the existence of the zero vector.
- 2.1.7 No, it is not closed under scalar multiplication since, e.g., $\pi \cdot (1)$ is not a rational number.
- 2.1.8 The '+' operation is not commutative; producing two members of the set witnessing this assertion is easy.

2.1.9

a. It is not a vector space.

$$(1+1) \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

b. It is not a vector space.

$$1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

- 2.1.10 For each "yes" answer, you must give a check of all the conditions given in the definition of a vector space. For each "no" answer, give a specific example of the failure of one of the conditions.
 - a. Yes.
 - b. Yes.
 - c. No, this set is not closed under the natural addition operation. The vector of all 1/4's is an element of this set but when added to itself the result, the vector of all 1/2's, is not an element of the set.
 - d. Yes.
 - e. No, $f(x) = e^{-2x} + (1/2)$ is in the set but $2 \cdot f$ is not (that is, closure under scalar multiplication fails).
- 2.1.11 Check all 10 conditions of the definition of a vector space.

2.1.12 It is not a vector space since it is not closed under addition, as $(x^2) + (1 + x - x^2)$ is not in the set.

2.1.13

- a. No since $1 \cdot (0, 1) + 1 \cdot (0, 1) \neq (1+1) \cdot (0, 1)$.
- b. No since the same calculation as the prior part shows a condition in the definition of a vector space that is violated. Another example of a violation of the conditions for a vector space is that $1 \cdot (0, 1) \neq (0, 1)$.

2.1.14

- a. Let V be a vector space, let $\vec{v} \in V$, and assume that $\vec{w} \in V$ is an additive inverse of \vec{v} so that $\vec{w} + \vec{v} = \vec{0}$. Because addition is commutative, $\vec{0} = \vec{w} + \vec{v} = \vec{v} + \vec{w}$, so therefore \vec{v} is also the additive inverse of \vec{w} .
- b. Let V be a vector space and suppose $\vec{v}, \vec{s}, \vec{t} \in V$. The additive inverse of \vec{v} is $-\vec{v}$ so $\vec{v} + \vec{s} = \vec{v} + \vec{t}$ gives that $-\vec{v} + \vec{v} + \vec{s} = -\vec{v} + \vec{v} + \vec{t}$, which implies that $\vec{0} + \vec{s} = \vec{0} + \vec{t}$ and so $\vec{s} = \vec{t}$.

2.1.15

Addition is commutative, so in any vector space, for any vector \vec{v} we have that $\vec{v} = \vec{v} + \vec{0} = \vec{0} + \vec{v}$.

2.1.16

It is not a vector space since addition of two matrices of unequal sizes is not defined, and thus the set fails to satisfy the closure condition.

2.1.17

Each element of a vector space has one and only one additive inverse.

For, let V be a vector space and suppose that $\vec{v} \in V$. If $\vec{w}_1, \vec{w}_2 \in V$ are both additive inverses of \vec{v} then consider $\vec{w}_1 + \vec{v} + \vec{w}_2$. On the one hand, we have that it equals $\vec{w}_1 + (\vec{v} + \vec{w}_2) = \vec{w}_1 + \vec{0} = \vec{w}_1$. On the other hand we have that it equals $(\vec{w}_1 + \vec{v}) + \vec{w}_2 = \vec{0} + \vec{w}_2 = \vec{w}_2$. Therefore, $\vec{w}_1 = \vec{w}_2$.

2.1.18

Assume that $\vec{v} \in V$ is not $\vec{0}$.

- a. One direction of the if and only if is clear: if r=0 then $r\cdot\vec{v}=\vec{0}$. For the other way, let r be a nonzero scalar. If $r\vec{v}=\vec{0}$ then $(1/r)\cdot r\vec{v}=(1/r)\cdot \vec{0}$ shows that $\vec{v}=\vec{0}$, contrary to the assumption.
- b. Where r_1, r_2 are scalars, $r_1 \vec{v} = r_2 \vec{v}$ holds if and only if $(r_1 r_2)\vec{v} = \vec{0}$. By the prior item, then $r_1 r_2 = 0$.
- c. A nontrivial space has a vector $\vec{v} \neq \vec{0}$. Consider the set $\{k \cdot \vec{v} \mid k \in \mathbb{R}\}$. By the prior item this set is infinite.

References

[JH] Jim Hefferon, *Linear Algebra*, http://joshua.smcvt.edu/linearalgebra/, Licensed under the GNU Free Documentation License or the Creative Commons License Creative Commons Attribution-ShareAlike 2.5 License, 2014.

Index

```
additive inverse, 3, 4
diagonal matrix, 4
function space, 3, 4
Gaussian Elimination, 1
matrix space, 3, 4
polynomial space, 3
positive real numbers, 4
rational numbers, 3
vector space, 3, 4
zero vector, 3, 4
```