Odds Ratios

Randy Johnson

3/9/2017

Quick review of probability

This Venn diagram represents the event space for two events, A and B. The area inside of the rectangle is 1.

Quick review of probability

This represents P(A).

Quick review of probability: Union

This represents $P(A \cup B)$.

Quick review of probability: Intersection

This represents $P(A \cap B)$.

Quick review of probability: Practice

$$P(!(A \cup B)) = P(A \cap B) = P(A|B) = P(A \cap !B) = P(A|B) =$$

Definition: Odds

Given a disease outcome, D, an exposure, E, and

	D=1	D = 0	row total
E=1	$n_{1,1}$	$n_{1,0}$	$n_{1,ullet}$
E=0	$n_{0,1}$	$n_{0,0}$	<i>n</i> _{0,•}
col total	$n_{ullet,1}$	$n_{\bullet,0}$	N

the odds of event D given exposure / no exposure are

$$odds(D = 1|E = 1) = \frac{P(D = 1|E = 1)}{P(D = 0|E = 1)} \qquad odds(D = 1|E = 0) = \frac{P(D = 1|E = 0)}{P(D = 0|E = 0)}$$

$$= \frac{n_{1,1}}{n_{2,\bullet}} / \frac{n_{1,0}}{n_{2,\bullet}}$$

$$= \frac{n_{0,1}}{n_{1,0}} / \frac{n_{0,0}}{n_{0,\bullet}}$$

$$= \frac{n_{0,1}}{n_{0,0}}$$

$$= \frac{n_{0,1}}{n_{0,0}}$$

Definition: Odds Ratio

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	<i>n</i> _{1,•}
E=0	$n_{0,1}$	<i>n</i> _{0,0}	<i>n</i> _{0,•}
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the ratio of the odds of disease comparing exposure vs no exposure is

$$OR(D|E) = \frac{odds(D = 1|E = 1)}{odds(D = 1|E = 0)}$$
$$= \frac{n_{1,1}}{n_{1,0}} / \frac{n_{0,1}}{n_{0,0}}$$
$$= \frac{n_{1,1}n_{0,0}}{n_{1,0}n_{0,1}}.$$

Definition: $se(\log OR)$

Given a disease outcome, D, an exposure, E, and

	D=1	D=0	row total
E=1	$n_{1,1}$	n _{1,0}	$n_{1,ullet}$
E = 0	$n_{0,1}$	<i>n</i> _{0,0}	<i>n</i> _{0,•}
col total	$n_{ullet,1}$	<i>n</i> _{•,0}	N

the log OR is normally distributed, and its standard error is

$$se(\log OR) = \sqrt{\frac{1}{n_{1,1}} + \frac{1}{n_{1,0}} + \frac{1}{n_{0,1}} + \frac{1}{n_{0,0}}}.$$

Putting everything together

Given a disease outcome, D, and exposure, E, and

	D=1	D = 0	row total
E=1	62	45	
E = 0	23	89	
col total			

what is the OR and 95% CI for the exposre, *E*? Is this statistically significant?