相对论与量子力学初步练习题

一、选择题

- 1、狭义相对性原理指出(c)
- A、描述一切力学过程, 所有惯性系等价;
- B、描述一切力学过程, 所有非惯性系等价:
- C、描述一切物理过程, 所有惯性系等价;
- D、描述一切物理过程, 所有参照系等价;
- 2、康普顿效应说明在光和微观粒子的相互作用过程中,以下定律严格适用: D
- A、动量守恒、动能守恒; B、牛顿定律、动能定律;
- C、动能守恒、机械能守恒; D、动量守恒、能量守恒。
- 3、普朗克量子假说是为解释(C)
- A. 光电效应实验规律而提出来的 B. X 射线散射的实验规律而提出来的
- C. 黑体辐射的实验规律而提出来的 D. 原子光谱的规律性而提出的
- 4、在惯性系S中某一地点先后发生两事件A和B,其中事件A超前于事件B。则以下说法哪个是正确的
- A、在惯性系S'中,事件 A 和 B 一定发生在同一地点;
- B、在惯性系S'中,事件A一定超前于事件B;
- C、在惯性系S'中,事件 A 和 B 同时发生;
- D、在惯性系S'中,事件 A 落后于事件 B。
- 5、按照狭义相对论的时空观,以下说法正确的是 C
- A、在一个惯性系中,两个同时的事件,在另一个惯性系中一定是同时的;
- B、在一个惯性系中,两个同时的事件,在另一个惯性系中一定是不同时的;
- C、在一个惯性系中,两个同时又同地的事件,在另一个惯性系中一定是同时的;
- D、在一个惯性系中,两个同时不同地的事件,在另一个惯性系中一定是同时的;

6. 关于光的性质,有以下说法: D
(1) 不论真空或介质中的速度都是 c; (2) 它的静止质量为零;
(3) 它的总能量就是它的动能; (4) 它有动量和能量, 但没有质量。
其中正确的是
A. (1) (2) B. (2) (3) C. (3) (4) D. (1) (2) (3) (4)
7、物体相对于观察者静止时,其密度为 ρ_0 ,若物体以高速 u 相对于观察者运动,观察者测
得物体的密度为 $ ho$,则 $ ho$ 与 $ ho_0$ 的关系为 A
(A) $\rho > \rho_0$ (B) $\rho = \rho_0$ (C) $\rho < \rho_0$ (D) 无法确定
二、填空题
1 、一粒子的速率由 $\frac{\sqrt{2}}{2}$ C 增加到 $\frac{\sqrt{3}}{2}$ C ,则该粒子的动量变为原来的 $\underline{\hspace{1cm}}$ 倍,动能变
为原来的 $\sqrt{2}+1$ 倍。
2 、一静质量为 m_0 的质点,当它以 $\frac{\sqrt{3}}{2}c$ 运动时,则它的相对论质量为、所
具有的动量为 $_{}$ $\sqrt{3}m_{0}c$,能量为 $_{}$ $2m_{0}c^{2}$ 、动能为 $_{}$ $m_{0}c^{2}$ 。
三、计算题
1、一静止时的长度为 100 m的宇宙飞船,相对地面以 $0.80c$ 的速度飞行。
(1) 在地面上观测,飞船的长度是多少?
(2) 如果地面上的观察者发现有两束光脉冲同时击中飞船的前后两端,那么飞船上
的观察者看到的是哪一端先被击中,击中飞船两端的时间间隔是多少?
2 、在 S 系中发生两个事件,它们的空间间隔为 300 m,时间间隔为 2.0×10^{-6} s.
(1)设有一个相对 S 系作匀速直线运动的参考系 S' ,在 S' 系中这两个事件在同一地点
发生,求 S' 系相对 S 系的运动速度。
次主,水5 水相内 5 水的色沟还皮。
(2) 在 S' 系中这两个事件的时间间隔是多少?