Linear Algebra

[KOMS120301] - 2023/2024

13.1 - Transformasi Linier

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 13 (November 2023)

Tansformasi matriks

(page 75 of Elementary LA Applications book)

Transformasi

Definisi

Jika f adalah fungsi dengan domain \mathbb{R}^n dan kodomain \mathbb{R}^m , maka kita katakan bahwa f adalah transformasi dari \mathbb{R}^n ke \mathbb{R}^m , atau f pemetaan dari \mathbb{R}^n ke \mathbb{R}^m .

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Ketika m = n, transformasi sering disebut operator pada \mathbb{R}^n .

Terminologi:

- Domain: ruang vektor asal transformasi, yaitu \mathbb{R}^n
- Kodomain: ruang vektor tujuan transformasi, yaitu \mathbb{R}^m

Transformasi muncul dari sistem linier

Diberikan sistem linier:

yang dapat ditulis dalam notasi matriks $\mathbf{w} = A\mathbf{x}$:

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Hal ini dapat dilihat sebagai transformasi yang memetakan vektor $\mathbf{x} \in \mathbb{R}^n$ ke dalam vektor $\mathbf{w} \in \mathbb{R}^m$ dengan mengalikan \mathbf{x} di sebelah kiri dengan A.

Transformasi matriks

Matriks yang mengubah vektor $\mathbf{x} \in \mathbb{R}^n$ menjadi vektor $\mathbf{w} \in \mathbb{R}^m$ disebut transformasi matriks (atau matrix operator jika m=n), dan dilambangkan dengan:

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

Notasi lain yang sering digunakan adalah:

- $\mathbf{w} = T_A(\mathbf{x})$, yang disebut perkalian dengan A; atau
- $\mathbf{x} \xrightarrow{T_A} \mathbf{w}$, yang dibaca sebagai T_A memetakan \mathbf{x} ke \mathbf{w} .

Contoh 1

Diberikan sistem persamaan linier

$$w_1 = 2x_1 - 3x_2 + x_3 - 5x_4$$

$$w_2 = 4x_1 + x_2 - 2x_3 + x_4$$

$$w_3 = 5x_1 - x_2 + 4x_3$$

dapat dinyatakan dalam bentuk matriks $\mathbf{w} = A\mathbf{x}$:

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Dalam hal ini, matriks A adalah matriks yang mengubah x menjadi w.

Sebagai contoh, jika
$$\mathbf{x} = \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix}$$
, maka:

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = T_A(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

Contoh 2: transformasi nol

Jika 0 adalah matriks nol $(m \times n)$, maka:

$$T_0(\mathbf{x}) = 0\mathbf{x} = \mathbf{0}$$

Artinya perkalian dengan nol memetakan setiap vektor di \mathbb{R}^n ke dalam vektor nol di \mathbb{R}^m .

 T_0 disebut transformasi nol dari \mathbb{R}^n menjadi \mathbb{R}^m .

Contoh 3: operator identitas

Jika I adalah matriks identitas $(n \times n)$, maka:

$$T_I(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$$

jadi perkalian dengan I memetakan setiap vektor di \mathbb{R}^n ke dirinya sendiri. Kami menyebut T_I sebagai operator identitas di \mathbb{R}^n .

Teorema

Untuk setiap matriks A, transformasi matriks $T_A : \mathbb{R}^n \to \mathbb{R}^m$ mempunyai sifat-sifat berikut untuk semua vektor \mathbf{u} dan \mathbf{v} , dan untuk setiap skalar k.

- **1** $T_A(\mathbf{0}) = \mathbf{0}$
- $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$

\sim Pertanyaan \sim

- Apakah ada sifat aljabar suatu transformasi $T: \mathbb{R}^n \to \mathbb{R}^m$ yang dapat digunakan untuk menentukan apakah T merupakan transformasi matriks?
- Jika kita mengetahui bahwa transformasi $T : \mathbb{R}^n \to \mathbb{R}^m$ adalah transformasi matriks, bagaimana kita dapat mencari matriksnya?

Transformasi linier

Teorema (Kondisi linieritas)

 $T: \mathbb{R}^n \to \mathbb{R}^m$ adalah transformasi matriks jika dan hanya jika hubungan berikut berlaku untuk semua vektor **u** dan **v** di \mathbb{R}^n dan untuk setiap skalar k:

Transformasi yang memenuhi kondisi linearitas disebut transformasi linier

Teorema

Setiap transformasi linier dari \mathbb{R}^n ke \mathbb{R}^m merupakan transformasi matriks, dan sebaliknya, setiap transformasi matriks dari \mathbb{R}^n ke \mathbb{R}^m merupakan transformasi linier.

Linear transformation (cont.)

Teorema

Jika $T_A : \mathbb{R}^n \to \mathbb{R}^m$ dan $T_B : \mathbb{R}^n \to \mathbb{R}^m$ adalah transformasi matriks, dan jika $T_A(\mathbf{x}) = T_B(\mathbf{x})$ untuk setiap vektor $\mathbf{x} \in \mathbb{R}^n$, maka A = B.

Proof.

$$T_A(\mathbf{x}) = T_B(\mathbf{x}) \Leftrightarrow A\mathbf{x} = B\mathbf{x}, \ \forall \mathbf{x} \in \mathbb{R}^n$$

Ambil $\mathbf{x} = \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$ (basis standar), menghasilkan:

$$A\mathbf{e}_j = B\mathbf{e}_j \ \text{ for } j = 1, 2, \dots, n$$

Karena $A\mathbf{e}_j$ adalah kolom ke-j dari A dan $B\mathbf{e}_j$ adalah kolom ke-j dari B, ini berarti kolom ke-j dari A dan kolom ke-j dari B adalah sama. Oleh karena itu A=B.

Menemukan matriks standar untuk transformasi matriks

Dari teorema sebelumnya, kita dapat menyimpulkan bahwa:

Terdapat korespondensi satu-satu antara matriks $(m \times n)$ dan transformasi matriks dari \mathbb{R}^n ke \mathbb{R}^m .

Matriks A disebut matriks standar untuk transformasi dari $T_A : \mathbb{R}^n \to \mathbb{R}^m$.

Jika $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ adalah vektor basis standar untuk \mathbb{R}^n , maka matriks standar untuk transformasi linier $T : \mathbb{R}^n \to \mathbb{R}^m$ adalah diberikan oleh:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2) \mid \cdots \mid T(\mathbf{e}_n)]$$

Prosedur

Langkah 1. Temukan gambar vektor basis standar $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ untuk \mathbb{R}^n .

Langkah 2. Bangunlah matriks yang memiliki gambar yang diperoleh pada Langkah 1 sebagai kolom berturut-turut. Matriks ini merupakan matriks standar untuk transformasi

Contoh 1: Mencari matriks standar

Contoh

Temukan matriks standar untuk transformasi linier $T: \mathbb{R}^2 \to \mathbb{R}^3$ yang ditentukan oleh:

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 - 3x_2 \\ -x_1 + x_2 \end{bmatrix}$$

Solusi:

Lakukan Langkah 1:

$$T(\mathbf{e}_1) = T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\1\\-1\end{bmatrix}$$
 and $T(\mathbf{e}_2) = T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-3\\1\end{bmatrix}$

Jadi, matriks standarnya adalah:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} 2 & 1 \\ 1 & -3 \\ -1 & 1 \end{bmatrix}$$

Contoh 2: Transformasi komputasi dengan matriks standar

Contoh

Diberikan matriks standar untuk transformasi $T: \mathbb{R}^2 \to \mathbb{R}^3$ sebagai berikut:

$$A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} 2 & 1 \\ 1 & -3 \\ -1 & 1 \end{bmatrix}$$

Tentukan $T \begin{pmatrix} 1 \\ 4 \end{pmatrix}$

Solusi:

$$T\left(\begin{bmatrix}1\\4\end{bmatrix}\right) = \begin{bmatrix}2 & 1\\1 & -3\\-1 & 1\end{bmatrix}\begin{bmatrix}1\\4\end{bmatrix} = \begin{bmatrix}6\\-11\\3\end{bmatrix}$$

Contoh 3: Menemukan matriks standar

Contoh

Temukan matriks standar untuk transformasi:

$$T(x_1, x_2) = (3x_1 + x_2, 2x_1 - 4x_2)$$

Solusi:

Tulis transformasi dalam vektor kolom:

$$T\begin{pmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}\end{pmatrix} = \begin{bmatrix}3x_1 + x_2\\2x_1 - 4x_2\end{bmatrix} = \begin{bmatrix}3 & 1\\2 & -4\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}$$

Jadi, matriks standarnya adalah: $\begin{bmatrix} 3 & 1 \\ 2 & -2 \end{bmatrix}$

Tugas: diskusi kelompok

- Bagilah diri Anda menjadi 5 kelompok (jadi masing-masing kelompok terdiri dari 4-5 siswa.
- Setiap kelompok mendiskusikan salah satu topik berikut (baca Bagian 1.9, halaman 84 - 93)
 - Analisis Jaringan Menggunakan Sistem Linier
 - Oesain Pola Lalu Lintas
 - Sirkuit dengan Satu Loop Tertutup dan Sirkuit dengan Tiga Loop Tertutup
 - Interpolasi Polinomial dengan Eliminasi Gauss-Jordan
 - 6 Perkiraan Integrasi

Carilah materi tambahan jika topik yang diberikan tidak cukup komprehensif untuk presentasi Anda (misalnya jika Anda mendapatkan topik nomor 4 dan 5).

Buatlah presentasi video untuk mempresentasikan hasil diskusi Anda. Durasinya sekitar 15-20 menit, dan setiap orang dalam kelompok harus hadir dalam proporsi yang sama.

bersambung..