

Вебинар №12. Формула Тейлора.

Напоминание: Теоремы о среднем

Прежде чем перейти к формуле Тейлора, давайте кратко вспомним основные теоремы о среднем, которые будут полезны в дальнейших рассуждениях.

Теорема Ролля:

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. Непрерывна на отрезке [a, b].
- 2. Дифференцируема на интервале (a, b).
- 3. Значения функции на концах отрезка равны: f(a) = f(b).

Тогда существует хотя бы одна точка $\xi \in (a,b)$ такая, что производная функции в этой точке равна нулю:

$$\exists \xi \in (a, b) : f'(\xi) = 0$$

Теорема Лагранжа:

Пусть функция f(x) удовлетворяет следующим условиям:

- 1. Непрерывна на отрезке [a, b].
- 2. Дифференцируема на интервале (a, b).

Тогда существует хотя бы одна точка $\xi \in (a,b)$ такая, что:

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

Теорема Коши:

Пусть функции f(x) и g(x) удовлетворяют следующим условиям:

- 1. Непрерывны на отрезке [a, b].
- 2. Дифференцируемы на интервале (a, b).
- 3. Производная $g'(x) \neq 0$ для всех $x \in (a, b)$.

Тогда существует хотя бы одна точка $\xi \in (a, b)$ такая, что:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Пример 1.

Пусть функция f дифференцируема n раз на (a,b) и непрерывна на [a,b] и равна 0 в n+1 точке этого отрезка. Доказать, что тогда $\exists \xi \in (a,b): f^{(n)}(\xi) = 0$.

Доказательство:

Пусть функция f(x) равна нулю в n+1 точке отрезка [a,b]. Обозначим эти точки как $a_1 < a_2 < \cdots < a_{n+1}$.

Рис. 1: Геометрическая интерпретация задачи

На каждом из отрезков $[a_i;a_{i+1}]$, где $i=\overline{1,n}$, функция f(x) удовлетворяет условиям теоремы Ролля (непрерывна на отрезке, дифференцируема на интервале, и значения на концах равны нулю). Тогда по теореме Ролля, на каждом из этих отрезков $\exists \xi_i: f'(\xi_i)=0$. Это означает, что функция $g_1(x)=f'(x)$ равна нулю как минимум в n различных точках $\xi_1<\xi_2<\dots<\xi_n$ на интервале (a,b).

Теперь применим теорему Ролля к функции $g_1(x) = f'(x)$ на n-1 отрезке $[\xi_i; \xi_{i+1}]$. Функция f'(x) дифференцируема (так как f(x) дифференцируема n раз), следовательно, она непрерывна. Для $g_1(x)$ выполняются все условия теоремы Ролля. Значит, на каждом из таких отрезков $\exists \psi_i : g'_1(\psi_i) = f''(\psi_i) = 0$. Таким образом, функция $g_2(x) = f''(x)$ равна нулю как минимум в n-1 различных точках на интервале (a,b).

Продолжая этот процесс n раз, мы последовательно уменьшаем число точек, в которых производные обращаются в нуль.

- Изначально: f(x) = 0 в n + 1 точках.
- После 1-го применения теоремы Ролля: f'(x) = 0 в n точках.
- После 2-го применения теоремы Ролля: f''(x) = 0 в n-1 точке.
- . . .
- После n-го применения теоремы Ролля: $f^{(n)}(x) = 0$ в 1 точке.

В итоге, применяя теорему Ролля n раз, мы приходим к существованию:

$$\exists \xi \in (a, b) : f^{(n)}(\xi) = 0$$

Пример 2.

Доказать, что
$$\frac{b-a}{b} < \ln\left(\frac{b}{a}\right) < \frac{b-a}{a}$$
 при $0 < a \le b$.

Доказательство:

Рассмотрим функцию $f(x) = \ln(x)$ на отрезке [a,b]. Функция $f(x) = \ln(x)$ непрерывна на [a,b] и дифференцируема на (a,b) (так как $f'(x) = \frac{1}{x}$). По теореме Лагранжа, существует $\xi \in (a,b)$ такая, что $\frac{f(b) - f(a)}{b - a} = f'(\xi)$. Подставим $f(x) = \ln(x)$:

$$\frac{\ln(b) - \ln(a)}{b - a} = \frac{1}{\xi}$$

Поскольку $\xi \in (a,b),$ то есть $a < \xi < b,$ отсюда следует, что $\frac{1}{b} < \frac{1}{\xi} < \frac{1}{a}.$ Таким образом, получаем:

$$\frac{1}{b} < \frac{\ln(b) - \ln(a)}{b - a} < \frac{1}{a}$$

Умножим все части неравенства на (b-a). Поскольку $b-a \ge 0$, знаки неравенств сохранятся:

$$\frac{b-a}{b} < \ln(b) - \ln(a) < \frac{b-a}{a}$$

Так как $\ln(b) - \ln(a) = \ln\left(\frac{b}{a}\right)$, получаем итоговое неравенство:

$$\frac{b-a}{b} < \ln\left(\frac{b}{a}\right) < \frac{b-a}{a}$$

Пример 3.

Доказать, что $e^x > ex$ при x > 1.

Доказательство:

Нам нужно доказать, что $e^x - ex > 0$ при x > 1. Рассмотрим вспомогательную функцию $f(t) = e^t - et$ на отрезке [1,x] для x > 1. Функция f(t) непрерывна на [1,x] и дифференцируема на (1,x). Производная функции f(t):

$$f'(t) = e^t - e$$

По теореме Лагранжа, существует $\xi \in (1,x)$ такая, что $\frac{f(x)-f(1)}{x-1}=f'(\xi)$. Подставим значения: $f(1)=e^1-e\cdot 1=0$.

$$\frac{(e^x - ex) - (e^1 - e \cdot 1)}{x - 1} = e^{\xi} - e^{\xi}$$

Упрощаем:

$$\frac{(e^x - ex) - 0}{x - 1} = e^{\xi} - e^{-\frac{\xi}{2}}$$

Умножим обе части на (x-1). Поскольку x > 1, то x-1 > 0:

$$e^x - ex = (e^{\xi} - e)(x - 1)$$

Поскольку $\xi \in (1, x)$, то $\xi > 1$. Отсюда следует, что $e^{\xi} > e^1 = e$, а значит $e^{\xi} - e > 0$. Также x - 1 > 0. Произведение $(e^{\xi} - e)(x - 1)$ является положительным. Следовательно:

$$e^x - ex > 0$$

Пример 4.

Доказать, что $\frac{x}{x+1} < \ln(1+x) < x$ при x > 0.

Доказательство:

Рассмотрим функцию $f(t) = \ln(1+t)$ на отрезке [0,x] для x>0. Функция f(t) непрерывна на [0,x] и дифференцируема на (0,x). Производная функции f(t):

$$f'(t) = \frac{1}{1+t}$$

По теореме Лагранжа, существует $\xi \in (0,x)$ такая, что $\frac{f(x)-f(0)}{x-0}=f'(\xi)$. Подставим значения: $f(0)=\ln(1+0)=0$.

$$\frac{\ln(1+x) - \ln(1+0)}{x - 0} = \frac{1}{1+\xi}$$

Упрощаем:

$$\frac{\ln(1+x)}{x} = \frac{1}{1+\xi}$$

Умножим обе части на x. Поскольку x > 0, знак неравенства сохраняется при введении его:

$$\ln(1+x) = \frac{x}{1+\xi}$$

Поскольку $\xi \in (0,x)$, то $0 < \xi < x$. Отсюда $1 < 1 + \xi < 1 + x$. Тогда $\frac{1}{1+x} < \frac{1}{1+\xi} < 1$. Подставим это в выражение для $\ln(1+x)$:

$$\frac{x}{1+x} < \ln(1+x) < x$$
при $x > 0$

Рис. 2: Геометрическая интерпретация неравенства

Пример 5.

Доказать, что если f(x) непрерывна на [1,2] и дифференцируема на (1,2), то $\exists \xi \in (1,2): f(2)-f(1)=\frac{\xi^2}{2}f'(\xi).$

Доказательство:

Для доказательства воспользуемся теоремой Коши. Рассмотрим функцию f(x) и вспомогательную функцию $g(x) = -\frac{1}{x}$.

- 1. Функции f(x) и $g(x) = -\frac{1}{x}$ непрерывны на [1,2].
- 2. Функции f(x) и $g(x) = -\frac{1}{x}$ дифференцируемы на (1,2).
- 3. Производная $g'(x) = \left(-\frac{1}{x}\right)' = \frac{1}{x^2}$. На интервале $(1,2), g'(x) = \frac{1}{x^2} \neq 0$.

Все условия теоремы Коши выполнены для функций f(x) и g(x) на отрезке [1,2]. Тогда существует $\xi \in (1,2)$ такая, что $\frac{f(2)-f(1)}{g(2)-g(1)} = \frac{f'(\xi)}{g'(\xi)}$. Подставим значения g(x) и g'(x): $g(2) = -\frac{1}{2}$, g(1) = -1.

$$\frac{f(2) - f(1)}{-\frac{1}{2} - (-1)} = \frac{f'(\xi)}{\frac{1}{\xi^2}}$$

Упрощаем знаменатель левой части: $-\frac{1}{2}-(-1)=-\frac{1}{2}+1=\frac{1}{2}.$ Упрощаем правую часть: $\frac{f'(\xi)}{1/\xi^2}=\xi^2f'(\xi).$

$$\frac{f(2) - f(1)}{\frac{1}{2}} = \xi^2 f'(\xi)$$

Умножим обе части на $\frac{1}{2}$:

$$f(2) - f(1) = \frac{1}{2}\xi^2 f'(\xi)$$

Перепишем:

$$f(2) - f(1) = \frac{\xi^2}{2} f'(\xi)$$

Формула Тейлора

Формула Тейлора — это мощный инструмент для аппроксимации функций многочленами в окрестности некоторой точки. Она позволяет представлять функцию в виде суммы её значений и производных в этой точке.

Зачем нужна формула Тейлора?

Мы уже видели, как использовать эквивалентности для вычисления пределов, но иногда их точности недостаточно. Например:

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

Используя эквивалентность $1-\cos(x)\sim\frac{x^2}{2},$ мы получаем $\cos(x)-1\sim-\frac{x^2}{2}.$ Подставляем в предел:

$$\lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2}$$

Это сработало. Но что, если эквивалентности сокращаются до нуля?

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

Если просто использовать эквивалентность $\sin(x) \sim x$ (первого порядка), то:

$$\lim_{x\to 0} \frac{x-x}{x^3} = \lim_{x\to 0} \frac{0}{x^3} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
 — не хватает степеней.

Здесь эквивалентности первого порядка оказались недостаточными. Нам нужны более высокие степени для точной аппроксимации.

Было бы удобно научиться аппроксимировать функции многочленами в окрестности какой-нибудь точки x_0 . То есть $f(x) \sim a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n = P_n(x)$ при $x \to x_0$. В окрестности x = 0 (это частный случай, называемый формулой Маклорена):

$$f(x) \sim a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + \dots + a_n x^n = P_n(x)$$
 при $x \to 0$

Идея состоит в том, чтобы подобрать коэффициенты a_k так, чтобы многочлен $P_n(x)$ и его производные до n-го порядка совпадали с функцией f(x) и её производными в точке x=0.

Давайте найдем эти коэффициенты a_k для x=0:

1. Значение функции в точке x = 0:

$$f(0) = P_n(0)$$

Из $P_n(0) = a_0 + a_1(0) + a_2(0)^2 + \dots + a_n(0)^n = a_0$, получаем:

$$f(0) = a_0 \hookrightarrow a_0 = \frac{f(0)}{0!}$$

2. Значение первой производной в точке x = 0:

$$P'_n(x) = a_1 + 2a_2x^1 + 3a_3x^2 + 4a_4x^3 + \dots + na_nx^{n-1}$$
$$f'(0) = P'_n(0)$$

Из $P'_n(0) = a_1$, получаем:

$$f'(0) = a_1 \hookrightarrow a_1 = \frac{f'(0)}{1!}$$

3. Значение второй производной в точке x = 0:

$$P_n''(x) = 2 \cdot 1a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + \dots + n(n-1)a_nx^{n-2}$$
$$f''(0) = P_n''(0)$$

Из $P''_n(0) = 2 \cdot 1a_2$, получаем:

$$f''(0) = 2 \cdot 1a_2 \hookrightarrow a_2 = \frac{f''(0)}{2!}$$

Продолжая эту закономерность, для n-й производной:

$$f^{(n)}(0) = P_n^{(n)}(0) = n! a_n \hookrightarrow a_n = \frac{f^{(n)}(0)}{n!}$$

Итого, многочлен Маклорена (или многочлен Тейлора для $x_0=0$) имеет вид:

$$f(x) \sim \frac{f(0)}{0!}x^0 + \frac{f'(0)}{1!}x^1 + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$
 при $x \to 0$

Лаконичнее, в виде суммы:

$$f(x) \sim \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}$$
 — многочлен Маклорена (или Тейлора при $x_{0}=0$)

Формула Маклорена (с остаточным членом в форме Пеано):

Многочлен Маклорена не является точным равенством, а дает лишь приближение функции в окрестности какой-то точки. Для достижения точного равенства между f(x) и $P_n(x)$ приближения используется остаточный член.

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + o(x^n)$$
 при $x \to 0$

где $o(x^n)$ - остаточный член в форме Пеано. Читается как "о-малое от x^n ". $\alpha(x) = o(x^n)$ — это класс функций, которые являются бесконечно малыми по сравнению с x^n при $x \to 0$. То есть:

$$\lim_{x\to 0}\frac{\alpha(x)}{x^n}=0$$

Точность аппроксимации: чем больше n, тем выше точность приближения функции многочленом.

Разложение функций по формуле Тейлора

Давайте найдем разложения для некоторых основных функций в окрестности x=0.

1. Разложение $f(x) = e^x$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$e^{x} = \sum_{k=0}^{n} \frac{(e^{x})^{(k)}|_{x=0}}{k!} x^{k} + o(x^{n})$$

Найдем значения функции и её производных в точке x=0:

Подставляем эти значения в формулу Маклорена:

$$e^x = \sum_{k=0}^{n} \frac{1}{k!} x^k + o(x^n) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Рис. 3: Формула Тейлора для e^x

Это разложение позволяет аппроксимировать e^x многочленом. Например, для e^1 (при n=5):

$$e^{1} \approx 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120}$$

$$e \approx \frac{120}{120} + \frac{120}{120} + \frac{60}{120} + \frac{20}{120} + \frac{5}{120} + \frac{1}{120} = \frac{326}{120} = \frac{163}{60} \approx 2.7166...$$

2. Разложение $f(x) = \sin x$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$
$$\sin x = \sum_{k=0}^{n} \frac{(\sin x)^{(k)}|_{x=0}}{k!} x^{k} + o(x^{n})$$

Найдем значения функции и её производных в точке x = 0:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$\sin x$	$\sin 0 = 0$
1	$\cos x$	$\cos 0 = 1$
2	$-\sin x$	$-\sin 0 = 0$
3	$-\cos x$	$-\cos 0 = -1$
4	$\sin x$	$\sin 0 = 0$
5	$\cos x$	$\cos 0 = 1$
6	$-\sin x$	$-\sin 0 = 0$
7	$-\cos x$	$-\cos 0 = -1$
:	•	:

Мы заметили закономерность: значения производных в точке 0 повторяются с периодом 4 $(0,1,0,-1,0,1,0,-1,\ldots)$. При этом нечетные производные в 0 равны ± 1 , а четные равны 0. Подставляем эти значения в формулу Маклорена:

$$\sin x = \frac{0}{0!}x^0 + \frac{1}{1!}x^1 + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!}x^5 + \frac{0}{6!}x^6 + \frac{-1}{7!}x^7 + \dots + o(x^n)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + o(x^n)$$

Это разложение содержит только нечетные степени х. В общем виде:

$$\sin x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

Рис. 4: Формула Тейлора для $\sin x$

3. Разложение $f(x) = \cos x$:

Аналогично найдем разложение для косинуса.

$$\cos x = \sum_{k=0}^{n} \frac{(\cos x)^{(k)}|_{x=0}}{k!} x^{k} + o(x^{n})$$

Найдем значения функции и её производных в точке x=0:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$\cos x$	$\cos 0 = 1$
1	$-\sin x$	$-\sin 0 = 0$
2	$-\cos x$	$-\cos 0 = -1$
3	$\sin x$	$\sin 0 = 0$
4	$\cos x$	$\cos 0 = 1$
5	$-\sin x$	$-\sin 0 = 0$
6	$-\cos x$	$-\cos 0 = -1$
7	$\sin x$	$\sin 0 = 0$
i	:	:

Значения производных в точке 0 также повторяются с периодом 4 $(1,0,-1,0,1,0,-1,0,\ldots)$. При этом четные производные в 0 равны ± 1 , а нечетные равны 0. Подставляем эти значения в формулу:

$$\cos x = \frac{1}{0!}x^{0} + \frac{0}{1!}x^{1} + \frac{-1}{2!}x^{2} + \frac{0}{3!}x^{3} + \frac{1}{4!}x^{4} + \frac{0}{5!}x^{5} + \frac{-1}{6!}x^{6} + \frac{0}{7!}x^{7} + \dots + o(x^{n})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + o(x^{n})$$

Это разложение содержит только четные степени x. В общем виде:

$$\cos x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n})$$

Рис. 5: Формула Тейлора для $\cos x$

4. Формула Эйлера: $e^{ix} = \cos x + i \sin x$

Используем разложение e^z для комплексного аргумента z = ix:

$$e^{ix} = 1 + (ix) + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \frac{(ix)^7}{7!} + \dots$$

Вспомним степени мнимой единицы i: $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. Заметили закономерность: степени повторяются с периодом 4. Подставим эти значения:

$$e^{ix} = 1 + ix + \frac{(-1)x^2}{2!} + \frac{(-i)x^3}{3!} + \frac{1 \cdot x^4}{4!} + \frac{ix^5}{5!} + \frac{(-1)x^6}{6!} + \frac{(-i)x^7}{7!} + \dots$$

Сгруппируем действительные и мнимые части:

$$e^{ix} = \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots\right)$$

Сравнивая это с разложениями для $\cos x$ и $\sin x$, которые мы получили ранее, мы видим, что:

$$e^{ix} = \cos x + i \sin x$$

Это и есть знаменитая формула Эйлера, полученная из разложений в ряд Маклорена.

5. Разложение $f(x) = \frac{1}{1-x}$:

$$f(x) = (1-x)^{-1}$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} \frac{\left(\frac{1}{1-x}\right)^{(k)}|_{x=0}}{k!} x^{k} + o(x^{n})$$

Найдем значения функции и её производных в точке x=0:

Мы заметили закономерность: $f^{(k)}(0) = k!$. Подставляем эти значения в формулу Маклорена:

$$\frac{1}{1-x} = \sum_{k=0}^{n} \frac{k!}{k!} x^k + o(x^n) = \sum_{k=0}^{n} x^k + o(x^n)$$

Таким образом, разложение функции $\frac{1}{1-x}$ — это геометрическая прогрессия:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$

6. Разложение $f(x) = \frac{1}{1+x}$:

Мы можем получить это разложение, подставив (-x) вместо x в разложение для $\frac{1}{1-x}$:

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 + (-x) + (-x)^2 + (-x)^3 + \dots + (-x)^n + o(x^n)$$
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + o(x^n)$$

7. Разложение $f(x) = \frac{1}{1+x^2}$:

Аналогично, подставим $(-x^2)$ вместо x в разложение для $\frac{1}{1-x}$:

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \dots + (-x^2)^n + o((x^2)^n)$$

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \dots + (-1)^n x^{2n} + o(x^{2n})$$

8. Разложение $f(x) = \arctan x$:

Мы знаем, что $(\arctan x)' = \frac{1}{1+x^2}$. И мы получили разложение для $\frac{1}{1+x^2}$:

$$(\arctan x)' = \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \dots + (-1)^n x^{2n} + o(x^{2n})$$

Поскольку производная равна этому ряду, то саму функцию $\arctan(x)$ можно получить обратной операцией (как бы антипроизводной, или, если говорить строго, с помощью интегрирования) к каждому члену ряда.

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

В общем виде:

$$\arctan x = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+1})$$

9. Разложение $f(x) = \ln(1+x)$:

Мы знаем, что $(\ln(1+x))' = \frac{1}{1+x}$. И мы получили разложение для $\frac{1}{1+x}$:

$$(\ln(1+x))' = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + o(x^n)$$

Аналогично предыдущему случаю, "обратной операцией" к каждому члену ряда, и учитывая, что $\ln(1+0)=0$, получаем:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

В общем виде:

$$\ln(1+x) = \sum_{k=1}^{n+1} (-1)^{k+1} \frac{x^k}{k} + o(x^{n+1})$$