CAS Datenanalyse April 2017

Prüfungsdauer: 60 Minuten

Nullserie für Regressions- und Zeitreihenanalyse

Total Punkte: 60

Aufgabe 2: Bekanntes Fa	llbe	ispie	
-------------------------	------	-------	--

(___/22P)

Sie wollen den Einfluss der Unternehmensperformance auf das Gehalt der CEOs untersuchen. Sie haben folgende Variablen zur Verfügung:

- SALARY: jährlicher Gehalt in Tausend dollar
- MKTVAL: Börsenkapitalisierung in Mio dollar
- PROFITS: Reingewinn des Unternehmens in Mio dollar
- SALES: Umsatz des Unternehmens in Mio dollar
- CEOTEN: Firmenzugehörigkeit in Jahren im analysierten Unternehmen
- COMTEN: Firmenzugehörigkeit in Jahren
- Profmarg: Gewinnmarge

2.

1.	Die Standardabweichung der Variable <i>SALES</i> beträgt 6'088.7. Interpretieren	Sie diese Zahl (/2P)

Folgendes Regressionsmodell wurde für Sie geschätzt:

Modell 1: $ln(salary) = \beta_1 + \beta_2 ln(sales) + \beta_3 ln(mktval) + u$

Abhängige Va	riable: 1_SA	LARY				
	Koeffizient	Stdfe	hler	t-Quotient	p-Wert	
const	4,62092	0,2544	08	18,16	4,95e-0	42 ***
1 SALES	0,162128	0,0396	703	4,087	6,67e-0	5 ***
1_MKTVAL	0,106708	0,0501	.240	2,129	0,0347	**
Mittel d. ab	h. Var.	6,582848	Stdab	w. d. abh. Va	r. 0,	606059
Summe d. qua	d. Res.	45,30965	Stdfe	hler d. Regre	ss. 0,	510294
R-Quadrat		0,299114	Korri	giertes R-Qua	drat 0,	291057
F(2, 174)		37,12853	P-Wer	t(F)	3,	73e-14
Log-Likeliho	ood -:	130,5594	Akaik	e-Kriterium	26	7,1188
Schwarz-Krit	erium :	276,6472	Hanna	n-Quinn-Krite	rium 27	0,9832

Interpretieren Sie die drei geschätzten Regressionskoeffizienten.	(/6P)
b ₁ :	
b ₂ :	

·	alary) = β ₁ +		es) + [3 ₃ In(mktval)	+ β ₄ p	rofits + u	
		Stdfe		t-Quotient			
const	4,68692 0,161368	0,37972	29	12,34	1,65	e-025 ***	
1 MKTVAL	0,161368 0,0975286 3,56601e-05	0,06368	386	1,531	0,12	75	
	bh. Var.						
Summe d. qua	ad. Res.	15,29524	Stdf	ehler d. Regr	ess.	0,511686	
R-Quadrat F(3, 173)		24.63629	P-We:	igiertes R-Qu rt(F)	ladrat	2,53e-13	
Log-Likelih	ood -:	130,5312	Akai	ke-Kriterium		269,0625	
Schwarz-Kri	terium 2	281,7671	Hann	an-Quinn-Krit	erium	274,2150	
	riablen <i>profit</i> Sie Ihre Antw	_			signifik	cant auf dem 5%	Signifikanzniہ۔ //

4.	Ist die Variable I_sales statistisch signifikant auf dem 5%-Signifikanzniveau? Le der t-Quotient und p-Wert gelöscht. Führen Sie einen t-Test durch und wen Faustregel (t_c = 2) an.	
5.	Interpretieren Sie den geschätzten Koeffizienten von <i>profits</i> .	(/2P)
6.	Warum könnte es dennoch Sinn machen, beide Variablen <i>mktval</i> und <i>profit</i> s in die aufzunehmen?	e Regressio (/6P)

7. Welches Regressionsmodell würden Sie vorziehen? Begründen Sie Ihre Antwort. (___/4P) **Zusammenstellung der Modelle:**

Modell 1: ln(salary) = 4.621 + 0.162 ln(sales) + 0.107 ln(mktval)

Modell 2: ln(salary) = 4.687 + 0.161 ln(sales) + 0.0975 ln(mktval) + 0.0000357 profits

Modell 3: ln(salary) = 4.558 + 0.162 ln(sales) + 0.1018 ln(mktval) + 0.000029 profits + 0.0117ceoten

Modell 4: ln(salary) = 4.441 + 0.164 ln(sales) + 0.0984 ln(mktval) + 0.000039 profits + 0.0452ceoten -0.00121ceoten²

Modell 5: ln(salary) = 4.621 + 0.158 ln(sales) + 0.112 ln(mktval) - 0.00226 profmarg

Modell 6: ln(salary) = 4.438 + 0.187 ln(sales) + 0.1013 ln(mktval) - 0.0026 profmarg + 0.048ceoten - 0.00114ceoten² - 0.008498 comten

Modell 7: ln(salary) = 4.424 + 0.186 ln(sales) + 0.1018 ln(mktval) - 0.0026 profmarg + 0.0477ceoten - 0.00112ceoten² - 0.006063 comten - 0.000054 comten²

	Modell 1	Modell 2	Modell 3	Modell 4	Modell 5	Modell 6	Modell 7
# Regressor	3	4	5	6	4	7	8
adj. R ²	0.291	0.2872	0.302	0.324	0.291	0.3522	0.3486
Akaike	267.12	269.06	266.21	261.61	268.01	255.03	256.98

Aufgabe 3: Unbekanntes Fallbeispiel

(___/18P)

Sie wollen die Bestimmungsfaktoren für den Hauspreis statistisch analysieren. Sie sammeln Daten über den Verkaufspreis, die Fläche der Häuser in Quadratfuss (square feet) und deren Alter.

Folgende Variablen stehen zur Verfügung:

- Preis: Hauspreis
- sqft: Wohnfläche in Quadratfuss
- age: Alter des Hauses
- 1. Betrachten Sie folgendes Streudiagramm vom Hauspreis gegen Hausfläche (SQFT) für traditionelle Häuser. Was stellen Sie fest? (___/2P)

Folgendes Modell wurde für Sie geschätzt: Preis = β_1 + β_2 SQFT + β_3 AGE + u

Modell 4: KQ, benutze die Beobachtungen 1-1080 Abhängige Variable: Preis

	Koeffizient	Stdfe	nler	t-Quotient	p-We	ert	
const	-41947,7	6989,64		-6,001	2,676	=-09	***
sqft	90,9698	2,40	310	37,86	4,266	=-200	***
age	-755,041	140,89	4	-5,359	1,026	≥-07	***
Mittel d. abl	h. Var.	154863,2	Stdab	w. d. abh. Va	ar.	12291	12,8
Summe d. quad	d. Res.	6,69e+12	Stdfel	hler d. Regre	ess.	78814	1,86
R-Quadrat		0,589592	Korri	giertes R-Qua	adrat	0,588	8829
F(2, 1077)		773,6077	P-Wer	t(F)		5,2e-	-209
Log-Likeliho	od -	13707,80	Akaik	e-Kriterium		27421	1,59
Schwarz-Krit	erium	27436,55	Hannai	n-Quinn-Krit	erium	27427	7,26

2.	Interpretieren Sie die Regressionskoeffizienten b ₂ und b ₃ . b ₂ :	(/4P)
	b ₃ :	
3.	Erstellen Sie ein 95%-Konfidenzintervall für den Parameter b_2 . Der kritisch beträgt $t_c(0.975,1077)=1.96$. Wie viele Beobachtungen liegen zugrunde Hinweis: Es reicht, wenn 2 Kommastellen in die Berechnung aufgenommen wer Konfidenzintervall mit zwei Kommastellen berechnen.	? (/4P)
	Anzahl Beobachtungen =	
4.	Interpretieren Sie konkret Ihr 95%-Konfidenzintervall	(/2P)
5.	Testen Sie folgende Vermutung: Wenn ein Haus um 1 Jahr altert, sinkt de (P) um weniger als USD 1000. Wie lautet Ihre Schlussfolgerung mittels t-Test? Der kritische Wert für das 5%-Signifikanzniveau beträgt $t_c(0.95, 1077) =$	
	Stellen Sie die Null- und Alternativhypothese auf:	(/2P)
	H_0 : H_1 :	
	Berechnen Sie den t-Wert: $t_e = \frac{b_3 - c}{se(b_3)} =$	(/2P)
Sc	hlussfolgerung:	(/2P)

Aufgabe 4: Zeitreihenanalyse

___/12P)

Das Holt-Verfahren mit α = 0.4 und γ = 0.6 wurde angewandt.

Niveaugleichung: $L_t = \alpha y_t + (1-\alpha)(L_{t-1} + b_{t-1})$

Trendgleichung: $b_t = \gamma(L_{t-1}) + (1-\gamma)b_{t-1}$

 $\hat{y}_{\scriptscriptstyle 19}(18)$: Prognosewert zum Zeitpunkt 18 für Periode 19

Sie bekommen folgende Werte:

$y_{20} - \hat{y}_{20}(19)$	$\hat{y}_{19}(18)$	b ₁₈	L ₁₉
24	1980	1200	700

- 1. Welche Gleichung beschreibt am besten den zugrunde liegenden, datenerzeugenden Prozess nach dem Holt Verfahren? (___/2P)
- 2. Bestimmen Sie den Wert von L₁₈? (___/2P)
- 3. Bestimmen Sie den Wert von b₁₉ (___/2P)

4. Bestimmen Sie den Wert von L₂₀ (___/2P)

5. Schreiben Sie die Gleichung der einfachen exponentiellen Glättung in Fehlerkorrekturform.
Exponentielle Glättung: ŷ_{t+1}(t) = αy_t + (1-α)ŷ_t(t-1) (___/2P)
6. Was ist im Allgemeinen die Folge, wenn die einfache exponentielle Glättung für Daten mit einem abnehmenden Trend angewendet wird? (___/2P)