数据管理基础

ch02_2_关系代数 复习思考题 (参考答案)

智能软件与工程学院

复习思考题 1

- 1. 在关系代数中: (参考答案)
 - ① 关系是如何表示的? 关系上的数据操纵是如何表示的?
 - ② 在关系模型上进行数据操纵, 其结果是什么?
- 2. 关于两个关系之间的并、交、差运算(参考答案)
 - ① 什么样的两个关系,可以在它们之间执行并、交或差运算?
 - ② 如果在两个关系之间执行并、交或差运算,那么结果关系的关系模式和结果元组集合分别是什么?
 - ③ 为什么说'交'运算不是关系代数中的基本运算?
 - ④ 在什么情况下需要使用'差'运算?在使用'差'运算时需要注意什么?
 - ⑤ 请比较'差'运算和'≠'(不等)比较运算之间的区别。
- 3. 关于两个关系之间的'笛卡尔积'(product)运算(参考答案)
 - ① 什么样的两个关系,可以在它们之间执行笛卡尔积运算?
 - ② 在两个关系之间执行笛卡尔积运算, 结果关系的关系模式和结果元组集合分别是什么?
 - ③ 笛卡尔积运算在关系数据库访问中有什么实际作用?

复习思考题 2

4. 设有一个公司产品零售数据库, 其关系模式如下(带下划线的属性是码):

关系名	属性集	关系模式
顾客	顾客编号, 姓名, 居住城市, 折扣	customers (cid, cname, city, discnt)
供应商	供应商编号, 名称, 所在城市, 佣金比例	agents (aid, aname, city, percent)
商品	商品编号, 名称, 库存城市, 库存数量, 单价	products (pid, pname, city, stqty, price)
订单	<u>订单编号</u> , 订购日期, 顾客编号, 供应商编号, 商品编号, 订购数量, 销售金额	orders(ordno, orddate, cid, aid, pid, qty, dols)

在下述六组关系代数查询表达式中,请分析他们各自查询的目标对象、查询语义和结果集的相互关系。

第1组	Q_1 : $\sigma_{pid='p01'}(orders)$	Q ₂ : $\sigma_{\text{pid}\neq '\text{p01'}}(\text{orders})$
第2组	Q ₃ : $\pi_{cid}(\sigma_{pid='p01'}(orders))$	Q ₄ : $\pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$
第3组	Q ₅ : $\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid='p01'}(orders))$	Q ₆ : $\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$
第4组	Q ₇ : π_{cid} (customers) - π_{cid} ($\sigma_{pid='p01'}$ (orders))	Q ₈ : π_{cid} (customers) - π_{cid} ($\sigma_{pid\neq 'p01'}$ (orders))
第5组	Q_9 : orders – $\sigma_{pid='p01'}$ (orders)	Q_{10} : orders - $\sigma_{pid\neq 'p01'}$ (orders)
第6组	$Q_{11} : \pi_{cid}(orders - \sigma_{pid='p01'}(orders))$	$Q_{12}: \pi_{cid}(orders - \sigma_{pid \neq 'p01'}(orders))$

第1题--参考答案

- 1. 在关系代数中:
 - ① 关系是如何表示的? 关系上的数据操纵是如何表示的?
 - ② 在关系模型上进行数据操纵, 其结果是什么?
- □ 关系的表示: 在关系代数中,关系是元组的集合。 设有一个n目关系R, A_1 , A_2 , ..., A_n 是关系R的n个属性,domain (A_i) 是属性 A_i 的域 (i=1,2,...,n)
 - ▶ 用关系名来表示一个关系: R
 - \rightarrow 关系模式的表示: $R(A_1, A_2, ..., A_n)$
 - ▶ 元组及分量的表示:设t是关系R中的一个元组,那么t就是一个具有如下形式的n元组: $(a_1, a_2, ..., a_n)$ 其中: $a_i \in domain(A_i)$ for i = 1, 2, ..., n 元组t在属性 A_i 上的取值可以被表示为 $t[A_i]$
 - ▶ 关系R就是如上所示的n元组的集合,可以形式化表示为: $R = \{ (a_1, a_2, ..., a_n) \mid a_i \in domain(A_i) \text{ for } i = 1, 2, ..., n \}$ 或者表示为: $R = \{ t \mid t[A_i] \in domain(A_i) \text{ for } i = 1, 2, ..., n \}$ 由笛卡尔积的定义可知: $R \subseteq domain(A_1) \times domain(A_2) \times ... \times domain(A_n)$
- □ 数据操纵的表示: 以关系为运算对象, 用关系代数运算符可以组成一个关系代数表达式, 用关系代数表达式来表示用户在关系模型上的数据操纵请求。
- □ 数据操纵结果的表示: 在关系数据模型上进行数据操纵, 其结果也构成一个关系。关系代数表达 式的运算结果就是用户数据操纵请求的结果关系。

第2题--参考答案

- 2. 关于两个关系之间的并、交、差运算
 - ① 什么样的两个关系,可以在它们之间执行并、交或差运算?
 - ② 如果在两个关系之间执行并、交或差运算,那么结果关系的关系模式和结果元组集合分别是什么?
 - ③ 为什么说'交'运算不是关系代数中的基本运算?
 - ④ 在什么情况下需要使用'差'运算?在使用'差'运算时需要注意什么?
 - ⑤ 请比较'差'运算和'≠'(不等)比较运算之间的区别。
- ① 当两个关系"具有相同的目n(即两个关系都有n个属性)"且"相应的属性取自同一个域"时,才能在关系R和S之间执行并、交、差运算。
- ② 当两个关系R和S执行并、交、差运算时,结果关系的关系模式不变,与关系R(或关系S)的关系模式一样。结果关系中的元组集合定义如下:

$$R \cup S = \{t \mid t \in R \lor t \in S\}$$

$$R - S = \{t \mid t \in R \land t \notin S\}$$

$$R \cap S = \{t \mid t \in R \land t \notin S\}$$

$$S - R = \{t \mid t \in S \land t \notin R\}$$

③ 可以用'差'运算来实现'交'运算的运算功能:

$$R \cap S = R - (R - S) = S - (S - R)$$

第2题--参考答案 (cont.)

- 2. 关于两个关系之间的并、交、差运算
 - ① 什么样的两个关系,可以在它们之间执行并、交或差运算?
 - ② 如果在两个关系之间执行并、交或差运算,那么结果关系的关系模式和结果元组集合分别是什么?
 - ③ 为什么说'交'运算不是关系代数中的基本运算?
 - ④ 在什么情况下需要使用'差'运算? 在使用'差'运算时需要注意什么?
 - ⑤ 请比较'差'运算和'≠'(不等)比较运算之间的区别。
- ④ 当查询条件带有'否定'语义,或者具有明显'排它性'的时候,通常需要使用到'差'运算; 使用'差'运算时,在减数和被减数关系中,通常需要包含查询目标对象的码。
- ⑤ 是两种不同类型的运算符,但在应用中又具有一定的'相关性'。
 - (1)'差'运算是两个关系之间的集合运算,'≠'是两个分量之间的逻辑比较运算,常用于构造数据查询的查询条件表达式;
 - (2) 在数据库查询中, 需谨慎使用'≠'比较运算;
 - (3) 即使查询条件带有'否定'语义,通常也不是直接使用'≠'比较运算来构造查询条件,而是使用两个子查询之间的'差'运算来实现查询目标。(具体应用场景可参考后面的关系代数应用)

第3题--参考答案

- 3. 关于两个关系之间的'笛卡尔积'(product)运算(参考答案)
 - ① 什么样的两个关系,可以在它们之间执行笛卡尔积运算?
 - ② 在两个关系之间执行笛卡尔积运算, 结果关系的关系模式和结果元组集合分别是什么?
 - ③ 笛卡尔积运算在关系数据库访问中有什么实际作用?
- ① 任意两个关系之间,都可以执行笛卡尔积运算。
- ② 设有一个n目关系R和m目关系S,那么笛卡尔积 $R \times S$ 的结果是一个(n+m)目的关系,关系R和关系S的所有属性都会被投影到它们的笛卡尔积的结果关系中。
 - 来自关系R的每一个元组u和来自关系S的每一个元组v,都会组合得到 $R \times S$ 结果关系中的一个元组,可形式化表示为: $R \times S = \{(u,v) \mid u \in R \land v \in S\}$
- ③ 笛卡尔积是关系代数中的一个基本运算符。当数据查询需要使用到不同关系时,通常可以先通过笛卡尔积运算将多个关系合并成一个关系,然后再用单个关系上的选择和投影运算实现用户的数据查询请求,实现跨关系的数据访问。

第1组 $|\mathbf{Q}_1: \sigma_{pid} = \gamma_{pol}(orders)$

 Q_2 : $\sigma_{pid \neq 'p01'}(orders)$

□ 查询结果集的语义是什么?

Q1: p01号商品的所有购买'订单'

Q:除了p01号商品外,其他所有商品的购买'订单'

□ 两个结果集的关系是什么?

 $Q_1 \cap Q_2 = 空集$

 $Q_1 \cup Q_2 = Orders$

第2组 $|\mathbf{Q}_3$: $\pi_{cid}(\sigma_{pid='p01'}(orders))$ $|\mathbf{Q}_4$: $\pi_{cid}(\sigma_{pid\neq'p01'}(orders))$

□ 查询结果集的语义是什么?

Q: 购买过p01号商品的'顾客(编号)'

Qa: 购买过其他商品(pid不等于p01)的'顾客(编号)'

- □ 两个结果集的关系是什么?
 - > 两个结果集之间的关系,取决于当前orders表中的订单情况
 - > 两个结果集之间可能有交集,也可能没有交集,甚至于一个结 果集包含着另一个结果集,一切皆有可能!
 - \triangleright Q₃ \cup Q₄ = π_{cid} (orders)

Q_5	$\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid = 'p01'}(orders))$
Q_6	$\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid \neq 'p01'}(orders))$

□ 查询结果集的语义是什么?

Q5: 购买过商品但没有购买过p01号商品的'顾客(编号)'

Q6: 只购买过p01号商品的'顾客(编号)'

□ 两个结果集的关系是什么?

$$Q_5 \cap Q_6 = 空集$$

$$Q_5 \subseteq Q_4$$

$$Q_5 \cup Q_6 = \pi_{cid}$$
 (orders) $Q_6 \subseteq Q_3$

Q₄:
$$\pi_{cid}(\sigma_{pid \neq 'p01'}(orders))$$

Q₃:
$$\pi_{cid}(\sigma_{pid} = 'p01'(orders))$$

Q ₇	$\pi_{cid}(customers) - \pi_{cid}(\sigma_{pid = 'p01'}(orders))$
Q ₈	$\pi_{cid}(customers) - \pi_{cid}(\sigma_{pid \neq 'p01'}(orders))$

□ 查询结果集的语义是什么?

Q₇: 没有购买过p01号商品的顾客(包括"没有购买过任何商品"的顾客)

Qs: "只购买过p01号商品"的顾客和"没有购买过任何商品"的顾客

□ 两个结果集的关系是什么?

根据顾客的商品购买情况,将所有顾客划分为以下互不相交的四个子集:

- 没有购买过任何商品的顾客集合 S_1
- 只购买过p01这一种商品的顾客集合 S_2
- 没有购买过p01但购买过其他商品的顾客集合 S_3
- 既购买过p01又购买过其他商品的顾客集合 S_4

$$\mathbb{Q}_7 = S_1 \cup S_3$$

$$Q_8 = S_1 \cup S_2$$

$$Q_7 \cap Q_8 = S_1$$

$$\boldsymbol{Q}_7 \cup \boldsymbol{Q}_8 = \boldsymbol{S}_1 \cup \boldsymbol{S}_2 \cup \boldsymbol{S}_3$$

第5组

\mathbf{Q}_9	$orders - \sigma_{pid = 'p01'}(orders)$
Q ₁₀	$orders - \sigma_{pid \neq 'p01'}(orders)$

□ 查询结果集的语义是什么?

Qo:除了p01号商品之外,其他商品的所有销售订单

Q10: p01号商品的所有销售订单

□ 两个结果集的关系是什么?

$$Q_9$$
 ∩ Q_{10} = 空集

$$Q_9 \cup Q_{10} = \text{orders}$$

$$Q_9 = Q_2$$

$$\boldsymbol{Q_{10}} = \boldsymbol{Q_1}$$

$$Q_1: \sigma_{pid = 'p01'}(orders)$$

$$Q_2$$
: $\sigma_{pid \neq 'p01'}(orders)$

(注: orders表中的pid不可能取空值)

Q ₁₁	$\pi_{cid}(orders - \sigma_{pid = 'p01'}(orders))$
Q ₁₂	$\pi_{cid}(orders - \sigma_{pid \neq 'p01'}(orders))$

□ 查询结果集的语义是什么?

Q11: 购买过其他商品 (pid不等于'p01') 的顾客编号的集合

Q12: 购买过商品'p01'的顾客编号的集合

□ 两个结果集的关系是什么?

就如同前面的Q3和Q4一样,Q11和Q12的结果集之间也没有确定的相互关系,

- 一切取决于当前orders表中的订单情况。
- ▶ Q₁₁是"购买过其他商品"的顾客集合,其中的顾客有的可能也购买过'p01',也有的可能没有购买过'p01';
- ▶ Q₁₂是"购买过商品p01"的顾客集合,其中的顾客可能也购买过其他商品,也可能没有购买过其他商品。

总结 & 思考

(注: '其他商品' 是指商品编号pid不等于'p01'的商品)

	查询表达式	目标对象	目标对象需要满足的条件
Q_1	σ _{pid='p01'} (orders)	订单	'p01'号商品的销售订单
Q_2	σ _{pid≠'p01'} (orders)	订单	其他商品的销售订单
Q_3	$\pi_{cid}(\sigma_{pid='p01'}(orders))$	顾客	该顾客购买过'p01'号商品
Q_4	$\pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$	顾客	该顾客购买过其他商品
Q_5	$\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid='p01'}(orders))$	顾客	该顾客没有购买过'p01',但购买过其他商品
Q_6	$\pi_{cid}(orders) - \pi_{cid}(\sigma_{pid \neq 'p01'}(orders))$	顾客	该顾客只购买过'p01',但没有购买过其他商品
Q ₇	$\pi_{cid}(customers) - \pi_{cid}(\sigma_{pid='p01'}(orders))$	顾客	该顾客没有购买过'p 01 '号商品(请注意与 Q_5 的区别)
Q ₈	$\pi_{cid}(customers) - \pi_{cid}(\sigma_{pid\neq 'p01'}(orders))$	顾客	该顾客没有购买过其他商品(请注意与Q6的区别)
Q_9	$orders - \sigma_{pid='p01'}(orders)$	订单	其他商品的销售订单
Q_{10}	orders – $\sigma_{pid\neq 'p01'}$ (orders)	订单	'p01'号商品的销售订单
Q ₁₁	$\pi_{cid}(orders - \sigma_{pid=',p01'}(orders))$	顾客	购买过其他商品的顾客(请注意与Q5的区别)
Q ₁₂	$\pi_{cid}(orders - \sigma_{pid \neq 'p01'}(orders))$	顾客	购买过'p01'号商品的顾客(请注意与Q6的区别)