Анализ сетевых данных

Лекция 2. Random Graph models.

11 Сентября, 2019

MOOCs

- http://tuvalu.santafe.edu/~aaronc/courses/5352/ Aaron Clauset, lecture notes
- https://goo.gl/8CghUx Leonid Zhukov, https://goo.gl/8CghUx Leonid Zhukov, https://www.leonidzhukov.net/, Full course videos + lecture notes.
- http://web.stanford.edu/class/cs224w/ Jure Leskovec, lecture notes, bunch of useful materials, videos are unavailable.

Compare different networks

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

source

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)
- DL Embeddings/Graph convolutions

Erdos-Renyi random graph

• $G_{n,p}$ model:

Graph with n nodes and for each pair of nodes the probability of an edge between them is equal to p.

• $G_{n, m}$ model:

A randomly selected graph from the set of C_N^m graphs, with N = n(n-1)/2, where n = #nodes and m = #edges

Random graph model (Erdos & Renyi, 1959)

Erdos-Renyi random graph

• $G_{n,p}$ model:

Graph with n nodes and for each pair of nodes the probability of an edge between them is equal to p.

• $G_{n, m}$ model:

A randomly selected graph from the set of C_N^m graphs, with N = n(n-1)/2, where n = #nodes and m = #edges

Random graph model (Erdos & Renyi, 1959)

Эти две модели - эквивалентны, Приведем набросок доказательства

$G_{n,p}$ model:

- < m > = p*n*(n-1)/2
- $\langle k \rangle = (n-1)^* p \approx n^* p$

 $G_{n,p}$ model:

- < m > = p*n*(n-1)/2
- $\langle k \rangle = (n-1)^* p \approx n^* p$

What is node degree distribution?

 $G_{n,p}$ model:

- < m > = p*n*(n-1)/2
- $\langle k \rangle = (n-1)^* p \approx n^* p$

What is node degree distribution?

Probability that given node *i* has degree $k_i = k$

G_{n,p} model:

•
$$< m > = p*n*(n-1)/2$$

$$\bullet \quad \langle k \rangle = (n-1)^* p \approx n^* p$$

What is node degree distribution?

Probability that given node i has degree $k_i = k$

$$P(k_i = k) = P(k) = C_{n-1}^k p^k (1-p)^{n-1-k}$$

(Bernoulli distribution)

Erdos-Renyi degree distribution

Limiting case of Bernoulli distribution (when *n* goes to infinity) - Poisson distribution (with parameter $\lambda = \langle k \rangle = np$)

$$P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}$$

Erdos-Renyi degree distribution

Limiting case of Bernoulli distribution (when n goes to infinity) - Poisson distribution (with parameter $\lambda = \langle k \rangle = np$)

$$P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$0.40$$

$$0.35$$

$$0.30$$

$$0.25$$

$$0.25$$

$$0.10$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0.00$$

$$0$$

Erdos-Renyi degree distribution

Limiting case of Bernoulli distribution (when n goes to infinity) - Poisson distribution (with parameter $\lambda = \langle k \rangle = (n-1)p$)

$$P(k) = \frac{\langle k \rangle^k e^{-\langle k \rangle}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$0.40$$

$$0.35$$

$$0.30$$

$$0.25$$

$$0.25$$

$$0.10$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.15$$

$$0.10$$

$$0.05$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.10$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0$$

Which in case of $np \rightarrow \infty$, goes to Gaussian

$$P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn$$

$$G_{n,p}$$
 vs $G_{n,m}$

Bernoulli distribution

- $\bullet \quad \text{Mean} = \langle k \rangle = (n-1)p$
- Variance = $\sigma^2 = p(1-p)(n-1)$

With fixed p and $n \to \infty$, distribution becomes *narrow*:

$$G_{n,p}$$
 vs $G_{n,m}$

Bernoulli distribution

- Mean = $\langle k \rangle = (n-1)p$
- Variance = $\sigma^2 = p(1-p)(n-1)$

With fixed p and $n \to \infty$, distribution becomes *narrow*:

$$\sigma / < k > = [(1-p) / p(n-1)]^{1/2} \approx 1 / (n-1)^{1/2}$$

thus we are increasingly confident that the degree of a node is equal to $\leq k \geq$

$$G_{n,p}$$
 vs $G_{n,m}$

Bernoulli distribution

- Mean = $\langle k \rangle = (n-1)p$
- Variance = $\sigma^2 = p(1-p)(n-1)$

With fixed p and $n \to \infty$, distribution becomes *narrow*:

$$\sigma / < k > = [(1-p) / p(n-1)]^{1/2} \approx 1 / (n-1)^{1/2}$$

thus we are increasingly confident that the degree of a node is equal to $\langle k \rangle$

 $G_{n,p}$ and $G_{n,m}$ are the same

Erdos-Renyi clustering coefficient

$$C_{i} = \frac{2 n_{i}}{k_{i} \left(k_{i} - 1\right)}$$

since edges appear i.i.d. with probability p:

 $n_i = p * k_i(k_i - 1) / 2$

then $C_i \approx \langle k \rangle / n$

Erdos-Renyi clustering coefficient

$$C_{i} = \frac{2 n_{i}}{k_{i} \left(k_{i} - 1\right)}$$

since edges appear i.i.d. with probability p:

$$n_i = p * k_i(k_i - 1) / 2$$

then $C_i \approx \langle k \rangle / n$

This means that with n goes to infinity clustering coefficient of a random graph goes to 0

What about connectivity?

What about connectivity?

What about connectivity?

- It could be shown than with $\leq k \geq 1$ the largest connected component contains $O(n^{2/3})$ nodes.
- With $\leq k \geq 1$ it quickly has all the nodes.

Average path length

For Erdos-Renyi graph average path length is of order $O(\log n)$

- # nodes, #edges, density
- (Average) node degree
- (Average) clustering coefficient
- (Average) path length
- Node degree distribution
- Centrality measures (next lecture)

Key properties

• (Average) clustering coefficient

• (Average) path length

• Node degree distribution

Clustering coefficient (local connectivity)

Key properties

• (Average) clustering coefficient

• (Average) path length

• Node degree distribution

Recall Milgram's experiment

Average path length (idea)

An estimate: $z^d = N$, $d = \log N / \log z$ $N \approx 6.7$ bln, z = 50 friends, $d \approx 5.8$. Consider a simple model:

Each person has the same number of friends *z*, total # of people in the world is N, then what is a diameter?

<u>Diameter</u> = the longest of all the calculated shortest paths in a network

Key properties

• (Average) clustering coefficient

• (Average) path length

• Node degree distribution

Empirical distributions

Facebook degree distribution

Empirical network features

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component, hierarchical structure, etc