Examples of Two-Dimensional Systolic Arrays

Obvious Matrix Multiply

• Multiplication

Here the matrix B is Transposed!

Example 4: A Related Algorithm: Cannon's Method

- Let's take another view of systolic multiplication:
 - Consider the rows and columns of the matrices to be multiplied as strips that are slide past each other.
- The strips are staggered so that the correct elements are multiplied at each time step.

Second step

columns of b (inverted)

Third step

Fourth step columns of b (inverted)

Fifth step columns of b (inverted)

Cannon's Method

- Rather than have some processors idle,
 - wrap the array rows and columns so that every processor is doing something on each step.
- In other words, rather than feeding in the elements, they are rotated around,
 - starting in an initially staggered position as in the systolic model.
- We also change the order of products slightly, to make it correspond to more natural storage by rows and columns.

Cannon Variation

Note that the a diagonal is in the left column and the b diagonal is in the top row.

Application of Cannon's Technique

- Consider matrix multiplication of 2 n x n matrices on a distributed memory machine, on say, n² processing elements.
- An obvious way to compute is to think of the PE's as a matrix, with each computing one element of the product.
- We would send each row of the matrix to n processors and each column to n processors.
- In effect, in the obvious way, each matrix is stored a total of n times.

Cannon's Method

- Cannon's method avoids storing each matrix n times, instead **cycling** ("piping") the elements through the PE array.
- (It is sometimes called the "pipe-roll" method.)
- The problem is that this cycling is typically too fine-grain to be useful for element-by-element multiply.

Partitioned Multiplication

• Partitioned multiplication divides the matrices into **blocks**.

• It can be shown that multiplying the individual blocks as if elements of matrices themselves gives the matrix product.

Block Multiplication

Cannon's Method is Fine for Block Multiplication

• The blocks are aligned initially as the elements were in our description.

• At each step, entire blocks are transmitted down and to the left of neighboring PE's.

• Memory space is conserved.

Exercise

• Analyze the running time for the block version of Cannon's method for two n x n matrices on p processors, using t_{comp} as the unit operation time and t_{comm} as the unit communication time and t_{start} as the permessage latency.

• Assume that any pair of processors can communicate in parallel.

• Each block is (n/sqrt(p)) x (n/sqrt(p)).

Example 6: Fox's Algorithm

• This algorithm is also for block matrix multiplication; it has a resemblance to Cannon's algorithm.

- The difference is that on each cycle:
 - A row block is **broadcast** to every other processor in the row.
 - The column blocks are rolled cyclically.

Fox's Algorithm

Step 1

a00*b00	a00*b01	a00*b02	•
a11*b10	a11*b11	a11*b12	•
a22*b20	a22*b21	a22*b22	•

A different row block of a is broadcast in each step.

Step 2

a01*b10	a01*b11	a01*b12
a12*b20	a12*b21	a12*b22
a20*b00	a20*b01	a20*b02

b columns are rolled

Step 3

a02*b20	a02*b21	a02*b22
a10*b00	a10*b01	a10*b02
a21*b10	a21*b11	a21*b12

Synchronous Computations

Barriers

- Mentioned earlier
- Synchronize all of a group of processes
- Used in both distributed and shared-memory
- Issue: Implementation & cost

Counter Method for Barriers

- One-phase version
 - Use for distributed-memory
 - Each processor sends a message to the others when barrier reached.
 - When each processor has received a message from all others, the processors pass the barrier

Counter Method for Barriers

- Two-phase version
 - Use for shared-memory
 - Each processor sends a message to the master process.
 - When the master has received a message from all others, it sends messages to each indicating they can pass the barrier.
 - Easily implemented with blocking receives, or semaphores (one per processor).

Tree Barrier

- Processors are organized as a tree, with each sending to its parent.
- Fan-in phase: When the root of the tree receives messages from both children, the barrier is complete.
- Fan-out phase: Messages are then sent down the tree in the reverse direction, and processes pass the barrier upon receipt.

Butterfly Barrier

- Essentially a fan-in tree for **each** processor, with some sharing toward the leaves.
- Advantage is that no separate fan-out phase is required.

Butterfly Barrier

Figure 6.6 Butterfly construction.

Barrier Bonuses

- To implement a barrier, it is only necessary to increment a count (shared memory) or send a couple of messages per process.
- These are communications with null content.
- By adding content to messages, barriers can have added utility.

Barrier Bonuses

- These can be accomplished along with a barrier:
 - Reduce according to binary operator (esp. good for tree or butterfly barrier)
 - All-to-all broadcast

Data Parallel Computations

• forall statement:

```
forall( j = 0; j < n; j++ )
{
... body done in parallel for all j ...
}
```

forall synchronization assumptions

- There are different interpretations of **forall**, so you need to "read the fine print".
- Possible assumptions from weakest to strongest:
 - No implied synchronization
 - Implied barrier at the end of each loop body
 - Implied barrier before each assignment
 - Each machine instruction synchronized, SIMD-fashion

Example: Prefix-Sum

Figure 6.8 Data parallel prefix sum operation.

Example: Prefix-Sum

- Assume that n is a power of 2.
- Assume shared memory.
- Assume barrier before assignments
- for(j = 0; j < log(n); j++)

forall(
$$i = 2^{j}$$
; $i < n$; $i++$)

$$x[i] += x[i-2^j];$$

effectively **buffered** new value

Implementing forall using SPMD:

Assuming PP: "Synchronous Iteration" (barrier at end of body)

```
    for(j = 0; j < log(n); j++)</li>
    forall(i = 0; i < n; i++)</li>
    Body(i);
```

implementable in SPMD as:

```
Outer forall processes implicit
```

Example: Iterative Linear Equation Solver

```
for( iter = 0; iter < numIterations; iter++)
         forall( i = 0; i < n; i++)
                double sum = 0;
Note:
Local memory
                for( j = 0; j < n; j++)
for each i.
                       sum += a[i][j]*x[j];
                x[i] = sum;
                                                    barrier desired here
```

Iterative Linear Equation Solver: Translation to SPMD

```
Outer
                                                forall processes
for( iter = 0; iter < numIterations; iter++
                                                implicit
    i = my_process_rank();
    double sum = 0;
    for(j = 0; j < n; j++)
           sum += a[i][j]*x[j];
    new_x[i] = sum;
    all gather new_x to x (implied barrier)
```

Nested for all's

```
• for(iter = 0; iter < numIterations; iter++)
forall(i = 0; i < m; i++)
forall(j = 0; j < n; i++)
Body(i, j)
```

Example of nested forall's: Laplace Heat equation

```
• for( iter = 0; iter < numIterations; iter++) forall( i = 0; i < m; i++) forall( j = 0; j < n; i++) x[i][j] = (x[i-1][j] + x[i][j-1] + x[i+1][j] + x[i][j+1])/4.0;
```

Exercise

• How would you translate nested forall's to SPMD?

Synchronous Computations

• Synchronous computations have the form

```
(Barrier)
Computation
Barrier
Computation
```

. . .

- Frequency of the barrier and homogeneity of the intervening computations on the processors may vary
- We've seen some synchronous computations already (Jacobi2D, Systolic MM)

Synchronous Computations

- Synchronous computations can be simulated using asynchronous programming models
 - Iterations can be tagged so that the appropriate data is combined
- Performance of such computations depends on the granularity of the platform, how expensive synchronizations are, and how much time is spent idle waiting for the right data to arrive

Barrier Synchronizations

- Barrier synchronizations can be implemented in many ways:
 - As part of the algorithm
 - As a part of the communication library
 - PVM and MPI have barrier operations
 - In hardware
- Implementations vary

Review

- What is time balancing? How do we use time-balancing to decompose Jacobi2D for a cluster?
- Describe the general flow of data and computation in a pipelined algorithm. What are possible bottlenecks?
- What are the three stages of a pipelined program? How long will each take with P processors and N data items?
- Would pipelined programs be well supported by SIMD machines? Why or why not?
- What is a systolic program? Would a systolic program be efficiently supported on a general-purpose MPP? Why or why not?

Common Parallel Programming Paradigms

- Embarrassingly parallel programs
- Workqueue
- Master/Slave programs
- Monte Carlo methods
- Regular, Iterative (Stencil) Computations
- Pipelined Computations
- Synchronous Computations

Synchronous Computations

- Synchronous computations are programs structured as a group of separate computations which must at times wait for each other before proceeding
- Fully synchronous computations = programs in which all processes synchronized at regular points
- Computation between synchronizations often called stages

Synchronous Computation Example: Bitonic Sort

- Bitonic Sort an interesting example of a synchronous algorithm
- Computation proceeds in stages where each stage is a (smaller or larger) shuffle-exchange network
- Barrier synchronization at each stage

Bitonic Sort

A bitonic sequence is a list of keys

$$a_0, a_1, \dots, a_{n-1}$$
 such that

1 For some i, the keys have the ordering

$$a_0 \le a_1 \le \dots \le a_i \ge \dots \ge a_{n-1}$$
 or

2 The sequence can be shifted cyclically so that

Bitonic Sort Algorithm

- The bitonic sort algorithm recursively calls two procedures:
 - BSORT(i,j,X) takes bitonic sequence a_i, a_{i+1}, \dots, a_j and produces a non-decreasing (X=+) or a non-increasing sorted sequence (X=-)
 - BITONIC(i,j) takes an unsorted sequence a_i, a_{i+1}, \dots, a_j and produces a bitonic sequence
- The main algorithm is then
 - BITONIC(0,n-1)
 - -BSORT(0,n-1,+)

How does it do this?

• We'll show how BSORT and BITONIC work but first consider an interesting property of bitonic sequences:

Assume that a_0, a_1, \dots, a_{n-1} is bitonic and that n is even. Let

$$\begin{split} B_1 &= \min\{a_0, a_{\frac{n}{2}}\}, \min\{a_1, a_{\frac{n}{2}+1}\}, \cdots, \min\{a_{\frac{n}{2}-1}, a_{n-1}\} \\ B_2 &= \max\{a_0, a_{\frac{n}{2}}\}, \max\{a_1, a_{\frac{n}{2}+1}\}, \cdots, \max\{a_{\frac{n}{2}-1}, a_{n-1}\} \end{split}$$

Then B_1 and B_2 are bitonic sequences and for all $x \in B_1, y \in B_2$ $x \le y$

Picture "Proof" of Interesting Property

• Consider

$$\begin{split} B_1 &= \min\{a_0, a_{\frac{n}{2}}\}, \min\{a_1, a_{\frac{n}{2}+1}\}, \cdots, \min\{a_{\frac{n}{2}-1}, a_{n-1}\}\\ B_2 &= \max\{a_0, a_{\frac{n}{2}}\}, \max\{a_1, a_{\frac{n}{2}+1}\}, \cdots, \max\{a_{\frac{n}{2}-1}, a_{n-1}\} \end{split}$$

• Two cases: $i \ge \frac{n}{2}$ and $i < \frac{n}{2}$

Picture "Proof" of Interesting Property

• Consider

$$B_{1} = \min\{a_{0}, a_{\frac{n}{2}}\}, \min\{a_{1}, a_{\frac{n}{2}+1}\}, \cdots, \min\{a_{\frac{n}{2}-1}, a_{n-1}\}$$

$$B_{2} = \max\{a_{0}, a_{\frac{n}{2}}\}, \max\{a_{1}, a_{\frac{n}{2}+1}\}, \cdots, \max\{a_{\frac{n}{2}-1}, a_{n-1}\}$$

Picture "Proof" of Interesting Property

• Consider

$$B_{1} = \min\{a_{0}, a_{\frac{n}{2}}\}, \min\{a_{1}, a_{\frac{n}{2}+1}\}, \cdots, \min\{a_{\frac{n}{2}-1}, a_{n-1}\}$$

$$B_{2} = \max\{a_{0}, a_{\frac{n}{2}}\}, \max\{a_{1}, a_{\frac{n}{2}+1}\}, \cdots, \max\{a_{\frac{n}{2}-1}, a_{n-1}\}$$

Back to Bitonic Sort

- Remember
 - BSORT(i,j,X) takes bitonic sequence a_i, a_{i+1}, \dots, a_j and produces a non-decreasing (X=+) or a non-increasing sorted sequence (X=-)
 - BITONIC(i,j) takes an unsorted sequence a_i, a_{i+1}, \dots, a_j and produces a bitonic sequence
- Let's look at BSORT first ...

Here's where the shuffle-exchange comes in ...

- Shuffle-exchange network routes the data correctly for comparison
- At each shuffle stage, can use + switch to separate B1 and B2

 $\begin{array}{c|c}
a \\
b
\end{array}
+ \begin{array}{c}
\min\{a,b\} \\
\max\{a,b\}
\end{array}$

Sort bitonic subsequences to get a sorted sequence

• BSORT(i,j,X)

- If |j-i| < 2 then return [min(i,i+1), max(i,i+1)]
- Else
 - Shuffle(i,j,X)
 - Unshuffle(i,j)
 - Pardo
 - BSORT (i,i+(j-i+1)/2 1,X)
 - BSORT (i+(j-i+1)/2+1,j,X)

BITONIC takes an unsorted sequence as input and returns a bitonic sequence

- BITONIC(i,j)
 - If |j-i|<2 then return [i,i+1]
 - Else

(note that any 2 keys are already a bitonic sequence)

- Pardo
 - BITONIC(i,i+(j-i+1)/2-1); BSORT (i,i+(j-i+1)/2-1,+)
 - BITONIC(i+(j-i+1)/2+1,j); BSORT (i+(j-i+1)/2+1,j,-)

unsorted

2-way
bitonic

bitonic

3-way
bitonic

Sort
first
half
Sort
second
half

Putting it all together

• Bitonic sort for 8 keys:

Complexity of Bitonic Sort

$$T_{BSORT}(n = 2^{j}) = 2 + T(2^{j-1})$$

$$= \cdots = 2(J-1) + T(2) = O(j)$$

$$= O(\log n)$$

$$T_{BITONIC}(n = 2^{j}) = T(2^{j-1}) + 2(j-1) + 1$$

$$= \sum_{i=2}^{j-1} 2(i-1) + 1$$

$$= O(j^{2})$$

$$= O(\log^{2} n)$$

Programming Issues

- Flow of data is assumed to transfer from stage to stage synchronously; usual issues with performance if algorithm is executed asynchronously
- Note that logical interconnect for each problem size is different
 - Bitonic sort must be mapped efficiently to target platform
- Unless granularity of platform very fine, multiple comparators will be mapped to each processor

Review

- What is a a synchronous computation? What is a fully synchronous computation?
- What is a bitonic sequence?
- What do the procedures BSORT and BITONIC do?
- How would you implement Bitonic Sort in a performance-efficient way?

Mapping Bitonic Sort

For every stage the 2X2 switches compare keys which differ in a single bit

$$a_k \cdots a_{i+1} 1 a_{i-1} \cdots a_0$$

 $a_k \cdots a_{i+1} 0 a_{i-1} \cdots a_0$

Supporting Bitonic Sort on a hypercube

• Switch comparisons can performed in constant time on hypercube interconnect.

$$a_k \cdots a_{i+1} 1 a_{i-1} \cdots a_0$$

 $a_k \cdots a_{i+1} 0 a_{i-1} \cdots a_0$

Mappings of Bitonic Sort

- Bitonic sort on a multistage full shuffle
 - Small shuffles do not map 1-1 to larger shuffles!
 - Stone used a clever approach to map logical stages into full-sized shuffle stages while preserving O(log^2 n) complexity

Outline of Stone's Method

- Pivot bit = index being shuffled
- Stone noticed that for successive stages, the pivot bits are $a_0, a_1, a_0, a_2, a_1, a_0, \dots, a_i, a_{i-1}, \dots, a_1, a_0, \dots$
- If the pivot bit is in place, each subsequent stage can be done using a full-sized shuffle (a_0 done with a single comparator)
- For pivot bit j, need k-j full shuffles to position bit j for comparison $a_k \cdots a_{j+1} a_j \cdots a_0 \rightarrow a_j \cdots a_0 a_k \cdots a_{j+1}$
- Complexity of Stone's method:

$$k + [(k-1)+1] + [(k-2)+1+1] + \dots + [(k-k)+1+\dots + 1]$$

$$= k(k+1) = O(k^2) = O(\log^2 n)$$

Many-one Mappings of Bitonic Sort

- For platforms where granularity is coarser, it will be more cost-efficient to map multiple comparators to one processor
- Several possible conventional mappings

• Compare-split provides another approach ...

Compare-Split

- For a block of keys, may want to use a comparesplit operation (rather than compare-exchange) to accommodate multiple keys at a processor
- Idea is to assume that each processor is assigned a block of keys, rather than 2 keys
 - Blocks are already sorted with a sequential sort
 - To perform compare-split, a processor compares blocks and returns the smaller half of the aggregate keys as the min block and the larger half of the aggregate keys as the max block

Compare-Split

- Each Block represents more than one datum
 - Blocks are already sorted with a sequential sort
 - To perform compare-split, a processor compares blocks and returns the smaller half of the aggregate keys as the min block and the larger half of the aggregate keys as the max block

Performance Issues

- What is the complexity of compare-split?
- How do we optimize compare-split?
 - How many datum per block?
 - How to allocate blocks per processors?
 - How to synchronize intra-block sorting with inter-block communication?

Conclusion on Systolic Arrays

- Advantages of systolic arrays are:
 - 1. Regularity and modular design(Perfect for VLSI implementation).
 - 2. Local interconnections(Implements algorithms locality).
 - 3. High degree of pipelining.
 - 4. Highly synchronized multiprocessing.
 - 5. Simple I/O subsystem.
 - 6. Very efficient implementation for great variety of algorithms.
 - 7. High speed and Low cost.
 - 8. Elimination of global broadcasting and modular expansibility.

Disadvantages of systolic arrays

- The main disadvantages of systolic arrays are:
 - 1. Global synchronization limits due to signal delays.
 - 2. High bandwidth requirements both for periphery(RAM) and between PEs.
 - 3. Poor run-time fault tolerance due to lack of interconnection protocol.

Parallel overhead.

- Running time for a program running on several processors including an allowance for parallel overhead compared with the ideal running time.
- There is often a point beyond which adding further processors doesn't result in further efficiency.
- There may also be a point beyond which adding further processors results in slower execution.

Sources

- 1. Seth Copen Goldstein, CMU
- 2. David E. Culler, UC. Berkeley,
- 3. Keller@cs.hmc.edu
- 4. Syeda Mohsina Afroze and other students of Advanced Logic Synthesis, ECE 572, 1999 and 2000.
- 5. Berman