

FEATURES

Bandwidth: 2.5 GHz
Optical sensitivity: -24.2 dBm^1
Differential transimpedance: 4400 V/A
Power dissipation: 70 mW
Differential output swing: 260 mV p-p
Input overload current: 4.3 mA p-p
On-chip RSSI function
Low frequency cutoff: 20 kHz
On-chip PD filter: $R_F = 200 \Omega$, $C_F = 20 \text{ pF}$
Die size: 0.7 mm \times 1.2 mm

APPLICATIONS

3.2 Gbps or below optical receivers
SONET/GbE/FC optical receivers
SFF-8472-compliant receivers
PIN/APD-TIA receive optical subassemblies (ROSA)

GENERAL DESCRIPTION

The ADN2880 is a 3.3 V, high gain SiGe transimpedance amplifier (TIA). The TIA converts the small signal current of a photo detector into differential voltage output. The ADN2880 features a 315 nA typical input-referred noise, enabling an optical sensitivity of -24.2 dBm (0.85 A/W PIN). With a bandwidth of 2.5 GHz, the ADN2880 allows a data rate operation up to 3.2 Gbps. Typical power dissipation is approximately 70 mW.

To facilitate the assembly in small form factor packages, such as TO-46 headers, the ADN2880 provides an on-chip RC filter (200Ω , 20 pF) and features a 20 kHz low frequency cutoff without using an external capacitor. An on-chip RSSI circuit, which generates a voltage proportional to the average photodiode current, is also available for power monitoring and assembly alignment.

The ADN2880 is available in die form. With a chip area of 1.2 mm \times 0.7 mm, the TIA layout is specifically optimized for TO-Can-based packages.

¹ Based on 1550 nm PIN, responsivity = 0.85 A/W, ER = 9 dB, BER $< 10^{-10}$.

FUNCTIONAL BLOCK DIAGRAM

04945-001

Figure 1.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700 www.analog.com
 Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features	1	Pad Layout and Function Descriptions	5
Applications	1	Typical Performance Characteristics	6
General Description	1	Assembly Recommendations	9
Functional Block Diagram	1	Outline Dimensions	12
Revision History	2	Die Information	12
Electrical Specifications	3	Ordering Guide	12
Absolute Maximum Ratings	4		
ESD Caution	4		

REVISION HISTORY

7/05—Revision 0: Initial Version

ELECTRICAL SPECIFICATIONS

Minimum/maximum VCC = 3.3 V \pm 0.3 V, T_{AMBIENT} = -40°C to +95°C; typical VCC = 3.3 V, T_{AMBIENT} = 25°C, unless otherwise noted.

Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
Bandwidth (BW) ¹	-3 dB	1.9	2.5		GHz
Total Input Referred RMS Noise (I _{RMS})	C _D = 0.8 pF, dc to 2.1 GHz	315	485		nA
Total Input Referred RMS Noise (I _{RMS})	C _D = 0.6 pF, dc to 2.1 GHz	300			nA
Small Signal Transimpedance (Z _T) ¹	100 MHz, differential	2700	4400	6200	V/A
	100 MHz, single-ended	1350	2200	3100	V/A
Low Frequency Cutoff	CAP = open, I _{IN} = 20 μ A		20		kHz
	CAP = 1 nF, I _{IN} = 20 μ A		1.0		kHz
Output Return Loss	DC to 3.5 GHz, differential		-26	-20	dB
Input Overload Current	ER = 10 dB, at 95°C ¹	2.1 ¹	4.3		mA p-p
Maximum Differential Output Swing	I _{IN, P-P} = 2.0 mA	170	260	375	mV p-p
Output Data Transition Time	I _{IN, P-P} = 1.0 mA; 20% to 80% rise/fall time		60		ps
PSRR	I _{IN} = 0 mA, <10 MHz		39		dB
Group Delay Variation	1.0 GHz to 3.0 GHz		50		ps
Transimpedance Ripple	50 MHz to 1.0 GHz, single-ended		0.93		dB
Deterministic Jitter	10 μ A < I _{IN, P-P} \leq 100 μ A, K28.5 @ 3.2 Gbps		16		ps p-p
	100 μ A < I _{IN, P-P} \leq 2.0 mA, K28.5 @ 3.2 Gbps		25		ps p-p
	10 μ A < I _{IN, P-P} \leq 2.0 mA, PRBS 2 ³¹ - 1 at OC48 (FEC)		38		ps p-p
Linear Output Range	Differential, <1 dB compression		210		mV p-p
Linear Input Current Range	Single-ended, <1 dB compression		53		μ A p-p
DC PERFORMANCE					
Power Dissipation	I _{IN, AVE} = 0 mA	70	110		mW
Input Voltage	Compliance voltage	0.85			V
Output Common-Mode Voltage	DC (50 Ω) terminated to VCC	VCC - 0.12			V
Output Impedance	Single-ended	50			Ω
PD FILTER Resistance	R _F	200			Ω
PD FILTER Capacitance	C _F	20			pF
RSSI Gain	I _{IN, AVE} = 5 μ A to 1 mA	0.85			V/mA
RSSI Offset	I _{IN, AVE} = 10 μ A	8.0			mV
RSSI Accuracy	5 μ A < I _{IN, P-P} \leq 20 μ A	\pm 7			%
	20 μ A < I _{IN, P-P} \leq 1 mA	\pm 3			%

¹ An equivalent I_{IN, P-P} = 13 μ A current signal is applied to the TIA input. No input capacitor is applied.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage (VCC to GND)	5 V
Maximum Voltage to All Input and Output Signal Pins	VCC + 0.4 V
Minimum Voltage to All Input and Output Signal Pins	GND – 0.4 V
Maximum Input Current	10 mA
Storage Temperature Range	–65°C to +125°C
Operating Ambient Temperature Range	–40°C to +95°C
Maximum Junction Temperature	125°C
Die Attach Temperature (<30 sec)	410°C

Stresses above those listed under Absolute Maximum Rating may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PAD LAYOUT AND FUNCTION DESCRIPTIONS

Figure 2. Pad Layout

04945-002

Table 3. Pad Function Descriptions

Pad No.	Mnemonic	Pin Type ¹	Description
1	GND	P	Ground. (Input return.)
2	IN	AI	Current Input. Bond directly to a photodiode (PD) anode.
3	TEST	AI	Test Probe Pad. Do not connect.
4, 5	FILTER	AO	Filter Output. Pad 4 and Pad 5 are metal connected. Optional bond to a PD cathode.
6	GND	P	Ground.
7	RSSI	AO	Voltage Output. Provides average input current monitoring. If not used, connect to ground.
8	CAP	AI	Low Frequency Cutoff (LFC) Setpoint. For SONET applications, see Figure 10 and contact sales for assembly details.
9, 10, 13, 14	GND	P	Ground. (Output return.)
11	OUTB	AO	Negative Output, CML, On-Chip 50 Ω Termination (AC or DC Termination).
12	OUT	AO	Positive Output, CML, On-Chip 50 Ω Termination (AC or DC Termination).
15	VCCFILTER	P	On-Chip Filter Supply. Connect to VCC to Enable On-Chip RC Filter (200 Ω, 20 pF). Leave unconnected if not used.
16, 17	VCC	P	3.3 V Supply. Place a 200 pF, RF decoupling capacitor close to the power pad to reduce the power noise.

¹ P = power; AI = analog input; and AO = analog output.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Single-Ended Transimpedance vs. Frequency

04945-017

Figure 4. Differential Transimpedance vs. VCC and Temperature

04945-018

04945-027

Figure 5. Differential Transimpedance vs. Input Current

Figure 6. Bandwidth vs. VCC and Temperature

04945-019

Figure 7. Power Dissipation vs. VCC and Temperature

04945-020

Figure 8. SDD22 vs. Frequency up to 3.5 GHz, CAP = Open

04945-021

ADN2880

Figure 15. Output Eye at 3.2 Gbps with $BER < 10^{-10}$ (Based on a 1550 nm PIN, Responsivity = 0.91 A/W, ER = 9 dB, PRBS 2^{31})

04945-011

Figure 17. Input Overload Current vs. Temperature

04945-030

04945-010

Figure 16. Group Delay vs. Frequency

ASSEMBLY RECOMMENDATIONS

Coplanar PIN Photodiode for SDH/SONET

Figure 18. 5-Pin TO-46 with External Photodiode Supply V_{PD} Connected Through the FILTER Pin

Figure 19. Equivalent Circuit of the Assembly Including Bond Wires

Dual Planar PIN/APD Photodiode for SDH/SONET

Figure 20. 5-Pin TO-46 with External Photodiode Supply V_{PD} to a Dual Planar PIN or APD

Figure 21. For Dual Planar PDs, No Connection to FILTER Pin

Table 4. Bill of Materials (BOM)

Component	Description
PD	1x vendor specific, 2.5 Gbps, photodiode
TIA	1x ADN2880 (0.7 mm x 1.2 mm), 3.2 Gbps, transimpedance amplifier
C_B	1x 200 pF, RF single-layer capacitor
C_{PD}	1x 560 pF, RF single-layer capacitor
C_A	1x 1000 pF, ceramic capacitor (optional for SDH)

Notes

One mil thickness, gold wire, ball bond recommended.

Minimize all GND bond-wire lengths.

Minimize IN, FILTER, OUT, and OUTB bond-wire lengths.

Maintain symmetry in length and orientation between OUT and OUTB bond wires.

Maintain symmetry in length and orientation between IN and FILTER bond wires.

Maintain symmetry between IN/FILTER and OUT/OUTB bond wires.

ADN2880

PIN Photodiode for a Non-SDH/SONET Application

Figure 22. Coplanar PIN and RSSI Layout for a 5-Pin TO-46

Figure 24. Dual Planar PIN and RSSI Layout for a 5-Pin TO-46

Figure 23. Equivalent Circuit with Bond Wires, as Shown in Figure 22

Figure 25. Side View of the Assembly, as Shown in Figure 22

Table 5. Bill of Materials (BOM)

Component	Description
PD	1x vendor specific, 2.5 Gbps, photodiode
TIA	1x ADN2880 (0.7 mm x 1.2 mm), 3.2 Gbps, transimpedance amplifier
CB	1x 200 pF, RF single-layer capacitor
SC	1x ceramic standoff or 1x optional capacitor

Notes

One mil thickness, gold wire, ball bond recommended.

Minimize all GND bond-wire lengths.

Minimize IN, FILTER, OUT, and OUTB bond-wire lengths.

Maintain symmetry in length and orientation between OUT and OUTB bond wires.

Maintain symmetry in length and orientation between IN and FILTER bond wires.

Maintain symmetry between IN/FILTER and OUT/OUTB bond wires.

PIN Photodiode for Non-SDH/SONET Applications

Figure 26. Coplanar PIN for a 4-Pin TO-46

Figure 28. Dual Planar PIN for a 4-Pin TO-46

Figure 27. Equivalent Circuit with Bond Wires, as Shown in Figure 26

Figure 29. Side View of the Assembly, as Shown in Figure 26

Table 6. Bill of Materials (BOM)

Component	Description
PD	1× vendor specific, 2.5 Gbps, photodiode
TIA	1× ADN2880 (0.7 mm × 1.2 mm), 3.2 Gbps, transimpedance amplifier
C_B	1× 200 pF, RF single-layer capacitor
Sc	1× ceramic standoff or 1× optional 1000 pF capacitor

Notes

One mil thickness, gold wire, ball bond recommended.

Minimize all GND bond-wire lengths.

Minimize IN, FILTER, OUT, and OUTB bond-wire lengths.

Maintain symmetry in length and orientation between OUT and OUTB bond wires.

Maintain symmetry in length and orientation between IN and FILTER bond wires.

Maintain symmetry between IN/FILTER and OUT/OUTB bond wires.

OUTLINE DIMENSIONS

Figure 30. 17-Pad Bare Die Sales [CHIP]
Dimensions shown in millimeters

Table 7. Pad Coordinates

Pad No.	Mnemonic	X (μm)	Y (μm)
1	GND	-500	+260
2	IN	-500	+130
3	TEST	-500	+10
4	FILTER	-500	-120
5	FILTER	-500	-260
6	GND	-350	-260
7	RSSI	-200	-260
8	CAP	-50	-260
9	GND	+130	-260
10	GND	+500	-260
11	OUTB	+350	-60
12	OUT	+350	+60
13	GND	+500	+260
14	GND	+130	+260
15	VCCFILTER	-50	+260
16	VCC	-200	+260
17	VCC	-350	+260

DIE INFORMATION

Die Size

0.7 mm × 1.2 mm (edge-to-edge, including 1 mil scribe)

Die Thickness

10 mils = 0.25 mm

Passivation Openings

0.075 mm × 0.075 mm (Pad 1 to Pad 8, Pad 10, Pad 13, Pad 15 to Pad 17)

0.144 mm × 0.075 mm (Pad 9, Pad 11, Pad 12, Pad 14)

Passivation Composition

5000 Å Si₃N₄ (top)

5000 Å SiO₂ (bottom)

Pad Composition

Al/1%Cu

Substrate Contact

To ground

ORDERING GUIDE

Model	Temperature	Package Description
ADN2880ACHIPS	-40°C to +95°C	17-Pad Die Sales