Tema 13. Convolucionales

Razonamiento y Representación del Conocimiento

Introducción

- Partimos de redes neuronales (NN) para realizar el aprendizaje automático
- Aprender es sinónimo de encontrar una frontera en un espacio k-dimensional que separe los elementos de clases diferentes
- Con un número de dimensiones bajo, las NN funcionan satisfactoriamente

Introducción

- Si la entrada a una NN es una imágen, la dimensión del espacio de soluciones es el número de píxeles de la imagen:
 - En $64x64 \rightarrow 4096$ dimensiones
 - En $100x100 \rightarrow 10000$ dimensiones
 - En $1024x768 \rightarrow 7.86 \times 10^6$

Inmanejable! → la maldición de la dimensionalidad

- Necesitamos reducir la información que aparece en las imágenes
- Idea: filtrar las imágenes para destacar en ellas las características que nos permitan reconocer los objetos que aparecen en ellas

image

Original image

Ejemplo: filtro de Canny

- Primeros filtros de imagen
 - Extraen características que nos parecen relevantes:
 - Bordes, puntos esquina, cambios de textura, etc.
 - Problema: no se consigue mejorar de forma significativa los resultados del aprendizaje al utilizar estos filtros

- Los filtros: ¿Por qué no funcionan?
- ¿Seguro que no funcionan?
- ¿Qué filtros funcionan mejor?
- ¿Y si... en vez de elegir los filtros 'a mano' dejamos que sea el algoritmo el que decida qué filtros son los mejores?

Convoluciones

- Convoluciones en imágenes:
 - Convoluciones 2D
- Convolución: combinación lineal de los píxeles de una imagen ponderados por los valores de un filtro de convolución (kernel)
- ¿Nos suena?

Convoluciones

- ¿Cómo funcionan?
 - Ejemplo 1D
 - Entrada y kernel son vectores
 - Resultado: otro vector

Convoluciones

• 2D

- Patimos del concepto de una fully connected
 - Una imagen es una matriz
 - Necesitamos 'aplanarla'
 - Tendremos un vector (w x h) en el que la imagen está almacenada por filas
 - Un elemento del vector a +w posiciones de otro es el pixel inmediatamente inferior en la imagen

Capa Fully connected – Ejemplo 4x4

$$\mathbf{x} = \left[x_1, x_2, x_3, x_4 \right]$$

Capa con 4 neuronas:

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} W_{11} & W_{12} & W_{13} & W_{14} \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \\ W_{41} & W_{42} & W_{43} & W_{44} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

- Concepto de capa local
 - Parche: dado un pixel de la imagen (i,j), el conjunto de pixeles que están a una distancia menor o igual a k
 - Capa local → capas en las que un pixel en la salida solo se ve afectado por un parche de un tamaño determinado

- Concepto de capa local:
 - Hacemos 0 los pesos de la capa que no están dentro del área de influencia de un pixel

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} W_{12} & W_{13} & \mathbf{0} & \mathbf{0} \\ W_{21} & W_{22} & W_{23} & \mathbf{0} \\ \mathbf{0} & W_{31} & W_{32} & W_{33} \\ \mathbf{0} & \mathbf{0} & W_{41} & W_{42} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Operamos también con los bordes

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} W_{11} & W_{12} & W_{13} & 0 & 0 & 0 \\ 0 & W_{21} & W_{22} & W_{23} & 0 & 0 \\ 0 & 0 & W_{31} & W_{32} & W_{33} & 0 \\ 0 & 0 & 0 & W_{41} & W_{42} & W_{43} \end{bmatrix} \begin{bmatrix} 0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ 0 \end{bmatrix}$$

- Concepto de equivarianza a la traslación
 - Una convolución debe dar el mismo resultado si se aplica en dos zonas de la imagen con los mismos píxeles

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} = \begin{bmatrix} W_2 & W_3 & 0 & 0 \\ W_1 & W_2 & W_3 & 0 \\ 0 & W_1 & W_2 & W_3 \\ 0 & 0 & W_1 & W_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Matriz toeplitz

- Matrices Toeplitz
 - Permite realizar la operación de convolución de una imagen con un kernel de forma eficiente
 - La función que se aplica sigue siendo una combinación lineal de las entradas con los pesos de la capa (kernel)

- El efecto de usar dos filtros convolucionales consecutivos → igual que uno de mayor tamaño de kernel
- Si el número de filtros consecutivos es grande → capa fully connected
- Solución: incluir una función de activación como las de las neuronas tras la convolución

Reducción de tamaño

- Las convoluciones no cambian el tamaño de la entrada
 - Suele convenir ir reduciendo el tamaño antes de llegar a la capa fully-connected
 - Tratamos de respetar la distribución espacial
 - Suma de los valores de una región
 - Máximo valor de una región ←

Capas Max-Pooling

Reducen el tamaño de la entrada a la mitad

3.2	-1.5	2.7	0.5	May-pooling		
0.2	0.7	-1.8	3.0	Max-pooling	3.2	3.0
0.4	1.3	1.25	-0.6		1.3	1.25
-2.0	0.1	-0.8	1.0			

Arquitectura de una CNN

- Generalmente alternaremos
 - Varios filtros convolucionales
 - Una capa max-pooling
- Finalmente: una capa fully-connected

Arquitectura de una CNN

Ejemplo: Clasificador de 10 clases

