MODEL JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI PENDAPATAN PERKAPITA MASYARAKAT PERKOTAAN PADA GARIS KEMISKINAN BERDASARKAN PROPINSI

¹Ahmad Revi, ²Syahrul Ramadan, ³Rina Novita Sari, ⁴Solikhun ^{1,2,3,4}Program Studi Manajemen Informatika, AMIK Tunas Bangsa Pematangsiantar Jln. Jenderal Sudirman Blok A No. 1,2,3 Pematangsiantar ahmadrevi98@gmail.com, syahrul.ramadan208@gmail.com, rinanovitasari538@gmail.com, solikhun@amiktunasbangsa.ac.id

Abstract

The problem of poverty is one of the fundamental issues that becomes the center of attention of the Government in any country. In an effort to realize the provisions as stipulated in Article 28A of the 1945 Constitution of the State of the Republic of Indonesia which affirms that every person has the right to live and has the right to maintain his life and life, the GOI has established a poverty reduction program as a priority program. The primary target of poverty is mostly in urban areas, because the large number of residents who do transmigration to improve the economy but failed to get results. This study contributes to the government to predict the per capita opinion of urban communities according to the poverty line based on the province in the future. The data used is data from the National Statistics Agency through the website <u>www.bps.go.id</u>. The data is data on per capita income of urban communities on poverty line by province in 2013 semester 2 until 2016 semester 2. Algorithm used in this research is Artificial Neural Network with Backpropagation method. The input variables are data of year 2014 semester (X1), data of 2014 semester 1 (X2), data of 2014 semester 2 (X3), data of 2015 semester 1 (X4), data of 2015 semester 2 (X5) and data of 2016 semester 1 (X6) with architectural model of training and testing as much as 4 architecture that is 6-2-1, 6-6-1, 6-3-2-1 and 6-2-3-1. The output generated is the best pattern of the ANN architecture. The best architectural model is 6-3-2-1 with epoch 1190, MSE 0,0102524619 and 100% accuracy rate. From this model, the prediction of per capita income of urban community on the poverty line is based on the provinces of each province in Indonesia.

Keywords: Income Per Capita, ANN, Backpropagation and Prediction

Abstrak

Masalah kemiskinan merupakan salah satu persoalan mendasar yang menjadi pusat perhatian Pemerintah di negara manapun. Dalam Upaya mewujudkan ketentuan sebagaimana ditetapkan Pasal 28A Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 yang menegaskan bahwa setiap orang berhak untuk hidup serta berhak mempertahankan hidup dan kehidupannya, maka Pemerintah Indonesia telah menetapkan program penanggulangan kemiskinan sebagai program prioritas. Sasaran primer kemiskinan mayoritas lebih banyak terdapat di perkotaan, sebab banyaknya para penduduk yang melakukan transmigrasi guna memperbaiki perekonomian namun malah gagal mendapatkan hasil. Penelitian ini memberikan kontribusi bagi pemerintah untuk dapat

memprediksi pendapat perkapita masyarakat perkotaan menurut garis kemiskinan berdasarkan propinsi ke depan. Data yang digunakan adalah data dari Badan Statistik Nasional melalui website www.bps.go.id. Data tersebut adalah data pendapatan perkapita masvarakat perkotaan pada garis kemiskinan berdasarkan propinsi tahun 2013 semster 2 sampai dengan tahun 2016 semester 2. Algoritma yang digunakan pada penelitian ini adalah Jaringan Saraf Tiruan dengan metode Backpropogation. Variabel masukan (input) yang digunakan adalah data tahun 2013 semester 2(X1), data tahun 2014 semester 1(X2), data tahun 2014 semester 2(X3), data tahun 2015 semester 1(X4), data tahun 2015 semester 2(X5) dan data tahun 2016 semester 1(X6) dengan model arsitektur pelatihan dan pengujian sebanyak 4 arsitektur yakni 6-2-1, 6-6-1, 6-3-2-1 dan 6-2-3-1. Data target diambil dari data tahun 2016 semster 2. Keluaran yang dihasilkan adalah pola terbaik dari arsitektur JST. Model arsitektur terbaik adalah 6-3-2-1 dengan epoch 1190, MSE 0,0102524619 dan tingkat akurasi 100%. Dari model ini maka dihasilkan prediksi pendapatan perkapita masyarakat perkotaan pada garis kemisikinan berdasarkan propinsi dari masing-masing propinsi di Indonesia.

Kata Kunci: Pendapata Perkapita, JST, Backpropogation dan Prediksi

1. PENDAHULUAN

Masalah kemiskinan merupakan salah satu persoalan mendasar yang menjadi pusat perhatian pemerintah di negara manapun. Dalam Upaya mewujudkan ketentuan sebagaimana ditetapkan Pasal 28A Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 yang menegaskan bahwa setiap orang berhak untuk hidup serta berhak mempertahankan hidup dan kehidupannya, maka pemerintah Indonesia telah menetapkan program penanggulangan kemiskinan sebagai program prioritas.Sasaran primer kemiskinan mayoritas lebih banyak terdapat di perkotaan, sebab banyaknya para penduduk yang melakukan transmigrasi guna memperbaiki perekonomian namun malah gagal mendapatkan hasil.

Kemiskinan selalu berhubungan dengan pendapatan yang diperoleh oleh setiap masyarakat. Berdasarkan UUD Pasal 28D ayat (2), bahwa setiap warga negara berhak bekerja dan mendapat imbalan, maka masyarakat diberi kebebasan dalam memilih pekerjaan nya selama tidak menyimpang dari UU yang ada dan mempunyai "hak" nya masing-masing yaitu sebuah imbalan/pendapatan. Sumber pendapatan masyarakat antara lain pabrik industri, PNS, BUMN, investasi, buruh, pedagang dan lain-lain. Setiap pendapatan masyarakat yang diterima harus sesuai dengan upah minimum yang telah ditentukan oleh pemerintah. Menurut Pasal 90 2 ayat (1) UU No.13 Tahun 2003 tentang Ketenagakerjaan menyatakan bahwa "Pengushaha dilarang membayar upah lebih rendah dari upah minimum,......". Berikut merupakan data pendapatan masyarakat perkotaan disusun berdasarkan kelompok umur pada tiap provinsi.

Perkembangan teknologi saat ini semakin pesat, menghantarkan semua aktifitas yang sulit untuk dilakukan oleh manusia dapat dikerjakan dengan mudah, efektif dan efisien. Adapun metode yang akan digunakan dalam penelitian ini adalah Jaringan Syaraf Tiruan (JST) . Dalam JST terdapat teknik peramalan yang

dapat digunakan untuk melakukan prediksi yaitu backpropogation. Dengan menggunakan teknik ini dimaksudkan untuk membuat sebuah sistem yang dapat memprediksi pendapatan perkapita masyarakat dalam garis kemiskinan di setiap provinsi. Dengan adanya sistem ini diharapkan dapat membantu mengambil keputusan untuk melakukan kegiatan-kegiatan yang menyangkut tentang peningkatan pendapatan masyarakat sehingga kesejahteraan di perkotaan dapat merata.

2. METODOLOGI PENELITIAN

2.1. Kecerdasan Buatan (Artificial Intelegent)

Kecerdasan buatan atau disebut juga Artificial Intelegent (AI) merupakan salah satu bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer) dapat melakukan pekerjaan seperti dan sebaik yang dilakukan oleh manusia bahkan bisa lebih baik daripada yang dilakukan manusia [1].

2.2. Jaringan Saraf Tiruan

Jaringan syaraf tiruan (JST) adalah paradigm pemrosesan suatu informasi yang terinspirasi oleh sistem sel syaraf biologi. Jaringan ini biasanya diimplementasikan dengan menggunakan komponen elektronik atau disimulasikan pada aplikasi computer[2].

2.3. Arsitektur Backpropogation

Backpropagation memiliki beberapa unit yang ada dalam satu atau lebih lapis tersembunyi. Pada gambar 2.7 di bawah adalah arsitektur Backpropagation dengan n buah masukan (x1, x2, x3, xn) ditambah sebuah bias, sebuah lapis tersembunyi yang terdiri dari j unit ditambah sebuah bias, serta k buah unit keluaran[3]

Gambar 1 Arsitektur Backpropagation dengan 3 layer

Simbol-simbol yang digunakan ini tidaklah mutlak, bisa saja berganti dengan simbol-simbol yang lainnya asalkan fungsi logika yang dimaksudkannya tetap sama. Secara sederhana dapat dikatakan bahwa jika output memberikan hasil yang salah, maka penimbang (bobot) dikoreksi supaya *error*nya (galat) dapat diperkecil dan respon jaringan selanjutnya diharapkan akan lebih mendekati harga yang benar.

2.4. Langkah-Langkah Jaringan Saraf Tiruan Backpropagation

Langkah-langkah dalam Jaringan Saraf Tiruan *Backpropagation* meliputi tiga fase yaitu :

a. Fase I: Propagasi Maju

Selama propagasi maju, sinyal masukan (= xi) dipropagasikan ke lapis tersembunyi menggunakan fungsi aktivasi yang ditentukan. Keluaran dari setiap unit lapis tersembunyi (= zj) tersebut selanjutnya dipropagasikan maju lagi ke lapis tersembunyi di atasnya menggunakan fungsi aktivasi yang ditentukan. Demikian seterusnya hingga menghasilkan keluaran jaringan (= yk). Berikutnya, keluaran jaringan (= yk) dibandingkan dengan target yang harus dicapai (= tk). Selisih tk-yk adalah kesalahan yang terjadi. Jika kesalahan ini lebih kecil dari batas toleransi yang ditentukan, maka iterasi dihentikan. Akan tetapi apabila kesalahan masih lebih besar dari batas toleransinya, maka bobot setiap garis dalam jaringan akan dimodifikasikan untuk mengurangi kesalahan yang terjadi.

b. Fase II: Propagasi Mundur

Berdasarkan kesalahan tk-yk, dihitung faktor δk (k=1, 2, ..., m) yang dipakai untuk mendistribusikan kesalahan di unit yk ke semua unit tersembunyi yang terhubung langsung dengan yk. δk juga dipakai untuk mengubah bobot garis yang menghubungkan langsung dengan unit keluaran. Dengan cara yang sama, dihitung δj di setiap unit di lapis tersembunyi sebagai dasar perubahan bobot semua garis yang berasal dari unit tersembunyi di lapis di bawahnya. Demikian seterusnya hingga faktor δ di unit tersembunyi yang berhubungan langsung dengan unit masukan dihitung.

c. Fase III: Perubahan Bobot

Setelah semua faktor δ dihitung, bobot semua garis dimodifikasi bersamaan. Perubahan bobot suatu garis didasarkan atas faktor δ neuron di lapis atasnya. Sebagai contoh, perubahan bobot garis yang menuju ke lapis keluaran didasarkan atas dasar δk yang ada di unit keluaran. Ketiga fase tersebut diulang ulang terus hingga kondisi penghentian dipenuhi. Umumnya kondisi penghentian yang sering dipakai adalah jumlah iterasi atau kesalahan. Iterasi akan dihentikan jika jumlah iterasi yang dilakukan sudah melebihi jumlah maksimum iterasi yang ditetapkan, atau jika kesalahan yang terjadi sudah lebih kecil dari batas toleransi yang dijinkan [4].

Algoritma pelatihan untuk jaringan *Backpropagation* dengan satu layar tersembunyi (dengan fungsi *aktivasi sigmoid biner*) adalah [5]:

Langkah 0 : Inisialisasi semua bobot dengan bilangan acak kecil.

Langkah 1 : Jika kondisi penghentian belum dipenuhi, lakukan langkah 2-8.

Langkah 2 : Untuk setiap pasang data pelatihan, lakukan langkah 3-8.

Langkah 3 : Langkah 3 (langkah 3-5 merupakan fase 1).

Tiap unit masukan menerima sinyal dan meneruskannya ke unit

tersembunyi diatasnya.

Langkah 4 : Hitung semua keluaran di unit tersembunyi zj (j = 1, 2,..., p).

$$Z_{net_j} = V_{jo} + \sum_{i=1}^{n} X_i V_{ji}$$

$$Z_j = f \big(Z_{net_j} \big) = \frac{1}{1 + exp^{\, \left(-z_{net_j} \right)}}$$

Langkah 5 : Hitung semua keluaran jaringan di unit keluaran yk (k = 1, 2,...,m):

$$y_{net_k} = W_{ko} + \sum_{j=1}^{p} Z_j W_{kj}$$

Menghitung kembali sesuai dengan fungsi aktivasi:

$$\begin{aligned} y_k &= f(y_net_k) \\ Z_j &= \frac{1}{1 + exp(-y_net_k)} \end{aligned} \big)$$

Langkah 6 : (langkah 6-7 merupakan fase 2)

Hitung faktor δ unit keluaran berdasarkan kesalahan di setiap unit keluaran yk (k = 1, 2, ..., m).

$$\delta_k = (t_k - y_k)f'(y_net_k) = (t_k - y_k)y_k(1 - y_k)$$
$$t_k = target$$

keluaran δk merupakan unit kesalahan yang akan dipakai dalam perubahan bobot layar dibawahnya. Hitung perubahan bobot wkj dengan laju pemahaman α .

$$\Delta W_{kj} = \alpha \, \delta_k z_j$$
, $k = 1, 2, ..., m, j = 0, 1, ..., p$

Langkah 7 : Hitung faktor δ unit tersembunyi berdasarkan kesalahan di setiap unit tersembunyi zj (j=1,2,...,p)

$$\delta_{net_j} = \sum_{k=1}^{m} \delta_k W_{kj}$$

Faktor δ unit tersembunyi.

$$\delta_j = \delta_{_net_j} f'(Z_net_j) = \delta_{_net_j} z_j (1 - z_j)$$

Hitung suku perubahan bobot vji.

$$\Delta V_{ji} = \alpha \delta_j x_i, j = 1, 2, ..., p, i = 0, 1, ..., n$$

Langkah 8 : Hitung semua perubahan bobot. Perubahan bobot garis yang menuju ke unit keluaran, yaitu

$$W_{kj}(baru) = W_{kj}(lama) + \Delta W_{kj},$$

 $k = 1, 2, ..., m, j = 0, 1, ..., p n$

Perubahan bobot garis yang menuju ke unit tersembunyi, yaitu:

$$V_{ji}(baru) = V_{ji}(lama) + \Delta V_{ji},$$

 $j = 1, 2, ..., p, i = 0, 1, ..., n$

2.5. Karakteristik Jaringan Saraf Tiruan

Jaringan Saraf Tiruan memiliki beberapa karakteristik yang unik, diantaranya adalah:

- Kemampuan untuk belajar
- b. Kemampuan untuk mengeneralisasi
- c. 3. Kemampuan untuk menyolusikan permasalahan yang tidak bisa atau kurang baik bila dimodelkan sebagai sistem linier, yang menjadi persyaratan pada

beberapa metode peramalan lainnya, seperti model data deret waktu (time series model)[6].

3. HASIL DAN PEMBAHASAN

3.1. Perancangan Sistem

3.1.1. Pendefinisian *Input* dan Target

Perdapatan Perkapita Masyarakat Perkotaan Pada KemiskinanBerdasarkan Propinsi akan diolah oleh Jaringan Saraf Tiruan dengan metode backpropogation. Agar data dapat dikenali oleh Jaringan Saraf Tiruan, maka data harus direpresentasikan ke dalam bentuk numerik antara 0 sampai dengan 1, baik variabel maupun isinya yang merupakan masukan data Data Perdapatan Perkapita Masyarakat Perkotaan sebagai pengenalan pola dan keluaran yang merupakan prediksi Data Perdapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan vang diperoleh dari model arsitektur terbaik pada saat penentuan pola terbaik. Hal ini dikarenakan jaringan menggunakan fungsi aktivasi sigmoid biner (logsig) yang rangenya dari 0 sampai 1. Nilai-nilai yang digunakan diperoleh berdasarkan kategori dari masing-masing variabel selain juga untuk memudahkan mengingat dalam pendefinisiannya.

3.1.2. Pendefinisian *Input*

Variabel Data Perdapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan adalah kriteria yang menjadi acuan dalam pengambilan keputusan pada penilaian dengan menggunakan Jaringan Saraf Tiruan. Variabel ditentukan dengan cara melihat ketergantungan data terhadap penelitian yang dilakukan. Kriteria yang digunakan berdasarkan Data Badan Pusat Statistik Nasional dari website url: www.bps.go.id. Adapun daftar variabel dalam memprediksi Data Perdapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan tabel 1:

Tabel 1 : Daftar Kriteria Data Perdapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan

		dai is itelliiskillali
No	Variabel	Nama Kriteria
1	X1	Data Tahun 2013 Semester 2
2	X2	Data Tahun 2014 Semester 1
3	Х3	Data Tahun 2014 Semester 2
4	X4	Data Tahun 2015 Semester 1
5	X5	Data Tahun 2015 Semester 2
6	X6	Data Tahun 2016 Semester 1

Sumber: Badan Pusat Statistik Nasional

Data input diperoleh dari website Badan Pusat Statistik Nasional tentang Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi. Data sampel yang digunakan adalah Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi Tahun 2013 Semester 2 sampai Tahun 2016 Semester 2 yang terdiri dari 32 yang lengkap data dan masing masing data memiliki 6 variabel dan 1 target. Data ini nantinya akan

ditransformasikan ke sebuah data antara 0 sampai 1 sebelum dilakukan pelatihan dan pengujian menggunakan Jaringan Saraf Tiruan metode *backpropagation* dengan rumus :

$$x' = \frac{0.8(x-a)}{b-a} + 0.1$$

3.1.3 Pendefinisian Target

Adapun data target adalah Data Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi Tahun 2016 Semester 2.

3.2. Pengolahan Data

Pengolahan data dilakukan dengan bantuan Matlab 6.1 aplikasi perangkat lunak. Sampel Data adalah Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi. Data ini akan digunakan pada data pelatihan dan data pengujian. Sampel data yang telah diproses dan ditranformasikan adalah sebagai berikut.

Tabel 2. Sampel Data Mentah Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi

No	Nama			Varia	abel			Targot
No	Nama	X1	X2	Х3	X4	X5	X6	Target
1	ACEH	374261	383186	396939	410414	420324	427970	445488
2	SUMATERA UTARA	330517	338234	349372	364320	379898	398408	413835
3	SUMATERA BARAT	360768	374968	390862	406335	423339	441523	454674
4	RIAU	366057	375286	386606	404802	417768	426346	439542
5	JAMBI	369835	379183	390931	406074	423855	438600	448615
6	SUMATERA SELATAN	328335	336929	346238	365336	378739	388060	400159
7	BENGKULU	358294	362614	378881	397489	425642	430572	458435
8	LAMPUNG	326468	336927	350024	370839	386728	392488	398378
9	KEP. BANGKA BELITUNG	416935	439377	458055	475478	516835	521773	553681
10	KEP. RIAU	405578	421733	431127	454147	485496	494418	505980
11	DKI JAKARTA	434322	447797	459560	487388	503038	510359	520690
12	JAWA BARAT	281189	288742	294700	307487	318297	325017	332145
13	JAWA TENGAH	268397	279036	286014	299011	308163	315269	322799
14	DI YOGYAKARTA	317925	327273	333561	347787	359470	364786	370510
15	JAWA TIMUR	278653	287582	293391	304918	314320	319662	329241
16	BANTEN	300109	315239	324902	344855	365672	377052	382903
17	BALI	298449	310321	316235	332999	341554	348571	357427
18	NUSA TENGGARA BARAT	299886	307147	315470	328125	335284	343580	346581
19	NUSA TENGGARA TIMUR	321163	337367	340459	364920	374355	386139	389661
20	KALIMANTAN BARAT	280423	291533	307789	334575	347516	353143	366477
21	KALIMANTAN TENGAH	299970	307382	316683	328674	339239	348254	357224
22	KALIMANTAN SELATAN	313691	322006	336782	354103	371793	386462	399162
23	KALIMANTAN TIMUR	435313	448220	459004	485887	504551	519653	535137

NI-	N	Variabel								
No	Nama	X1	X2	Х3	X4	X5	Х6	Target		
24	SULAWESI UTARA	255566	265093	269212	290820	302378	312328	314004		
25	SULAWESI TENGAH	324072	336900	349978	358399	376496	391070	399413		
26	SULAWESI SELATAN	235488	240276	246416	262163	274140	281676	286669		
27	SULAWESI TENGGARA	240089	241921	254015	269703	282230	289827	294286		
28	GORONTALO	237600	246633	250157	263288	274581	284308	287156		
29	SULAWESI BARAT	230973	235934	245959	257004	269080	273224	280117		
30	MALUKU	358068	362783	369738	400347	404929	412980	424788		
31	MALUKU UTARA	317176	321231	339561	360933	378538	390788	405368		
32	PAPUA BARAT	414900	416158	440241	452022	478699	487727	508262		

Sumber : Badan Pusat Statistik Nasional

Tabel 3. Sampel dari data yang telah ditransformasikan

No	Nama	•		Variab	oel		·	Tanget
No	Nama –	X1	X2	Х3	X4	X5	Х6	Target
1	Data 1	0,4552	0,4773	0,5114	0,5448	0,5694	0,5884	0,6318
2	Data 2	0,3468	0,3659	0,3935	0,4306	0,4692	0,5151	0,5533
3	Data 3	0,4218	0,4570	0,4964	0,5347	0,5769	0,6220	0,6546
4	Data 4	0,4349	0,4578	0,4858	0,5309	0,5631	0,5843	0,6170
5	Data 5	0,4442	0,4674	0,4965	0,5341	0,5782	0,6147	0,6395
6	Data 6	0,3414	0,3627	0,3857	0,4331	0,4663	0,4894	0,5194
7	Data 7	0,4156	0,4263	0,4667	0,5128	0,5826	0,5948	0,6639
8	Data 8	0,3367	0,3627	0,3951	0,4467	0,4861	0,5004	0,5150
9	Data 9	0,5610	0,6166	0,6629	0,7061	0,8087	0,8209	0,9000
10	Data 10	0,5328	0,5729	0,5962	0,6533	0,7310	0,7531	0,7817
11	Data 11	0,6041	0,6375	0,6667	0,7357	0,7745	0,7926	0,8182
12	Data 12	0,2245	0,2432	0,2580	0,2897	0,3165	0,3331	0,3508
13	Data 13	0,1928	0,2191	0,2364	0,2687	0,2914	0,3090	0,3276
14	Data 14	0,3156	0,3387	0,3543	0,3896	0,4185	0,4317	0,4459
15	Data 15	0,2182	0,2403	0,2547	0,2833	0,3066	0,3199	0,3436
16	Data 16	0,2714	0,3089	0,3329	0,3823	0,4339	0,4621	0,4766
17	Data 17	0,2673	0,2967	0,3114	0,3529	0,3741	0,3915	0,4135
18	Data 18	0,2708	0,2888	0,3095	0,3408	0,3586	0,3792	0,3866
19	Data 19	0,3236	0,3638	0,3714	0,4321	0,4554	0,4847	0,4934
20	Data 20	0,2226	0,2501	0,2904	0,3568	0,3889	0,4029	0,4359
21	Data 21	0,2710	0,2894	0,3125	0,3422	0,3684	0,3907	0,4130
22	Data 22	0,3051	0,3257	0,3623	0,4052	0,4491	0,4855	0,5169
23	Data 23	0,6066	0,6386	0,6653	0,7319	0,7782	0,8156	0,8540
24	Data 24	0,1610	0,1846	0,1948	0,2484	0,2770	0,3017	0,3058
25	Data 25	0,3308	0,3626	0,3950	0,4159	0,4608	0,4969	0,5176
26	Data 26	0,1112	0,1231	0,1383	0,1773	0,2070	0,2257	0,2381
27	Data 27	0,1226	0,1271	0,1571	0,1960	0,2271	0,2459	0,2570

N.o.	Name	Variabel							
No	Nama	X1	X2	Х3	X4	X5	Х6	Target	
28	Data 28	0,1164	0,1388	0,1476	0,1801	0,2081	0,2322	0,2393	
29	Data 29	0,1000	0,1123	0,1372	0,1645	0,1945	0,2047	0,2218	
30	Data 30	0,4151	0,4268	0,4440	0,5199	0,5312	0,5512	0,5805	
31	Data 31	0,3137	0,3238	0,3692	0,4222	0,4658	0,4962	0,5323	
32	Data 32	0,5560	0,5591	0,6188	0,6480	0,7141	0,7365	0,7874	

Sumber: Badan Pusat Statistik Nasional

3.3. Perancangan Arsitektur Jaringan Saraf Tiruan

Jaringan yang digunakan untuk dalam memprediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi dengan backpropogation dengan langkah pembelajaran feedforward. Jaringan ini memiliki beberapa lapisan, yaitu lapisan masukan (input), lapisan keluaran (output) dan beberapa lapisan tersembunyi (hidden). Lapisan tersembunyi tersebut membantu jaringan untuk dapat mengenali lebih banyak pola masukan dibandingkan dengan jaringan yang tidak memiliki lapisan tersembunyi. Parameter-parameter dalam pembentukan jaringan backpropagation menggunakan 6 variabel masukan, 1 atau lebih lapisan tersembunyi dan 1 lapisan keluaran. Adapun model arsitektur yang digunakan untuk mendapatkan arsitektur terbaik adalah 6-2-1, 6-6-1, 6-3-2-1 dan 6-2-3-1. Model sampel arsitektur 6-2-1 dapat dilihat pada gambar dibawah ini:

Gambar 1. Arsitektur Jaringan Saraf Tiruan dalam memprediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi

Jaringan Saraf yang akan dibangun adalah algoritma propagasi balik (backpropagation) dengan fungsi aktivasi Sigmoid. Fungsi aktivasi dalam Jaringan Saraf Tiruan dipakai untuk proses perhitungan terhadap nilai aktual output pada hidden layer dan menghitung nilai aktual output pada output layer.

3.4. Pendefinisian Output

Hasil yang diharapkan pada tahap ini adalah deteksi pola menentukan nilai terbaik untuk memprediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi. Hasil pengujian adalah sebagai berikut:

- a. Untuk mengetahui prediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi tentu saja didasarkan pada Data Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi. Output dari prediksi ini adalah pola arsitektur terbaik dalam memprediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi dengan melihat error minimum.
- b. Kategorisasi Output pelatihan (*train*) dan pengujian (*test*)
 Kategori untuk output ditentukan oleh tingkat *error minimum* dari target.
 Batasan kategori tersebut terdapat pada tabel berikut:

Tabel 4. Data Kategorisasi

No		Keterangan	Error Minimum
1	Benar		0.05 - 0.001
2	Salah		> 0.05

3.5. Perancangan arsitektur Jaringan Saraf Tiruan

Perancangan arsitektur Jaringan Saraf Tiruan untuk data pelatihan dan pengujian, maka digunakan 6 variabel input yaitu:

X_1	=	Data Tahun 2013 Semester 2
X_2	=	Data Tahun 2014 Semester 1
<i>X</i> ₃	=	Data Tahun 2014 Semester 2
X_4	=	Data Tahun 2015 Semester 1
X_5	=	Data Tahun 2015 Semester 2
X_6	=	Data Tahun 2016 Semester 1

Berikut tahapan-tahapan yang akan dilakukan dalam pengguna algoritma propagasi balik dengan fungsi aktivasi sigmoid. Tahapan yang harus dilakukan adalah sebagi berikut:

- a. Inisialisasi (initialization), merupakan tahap di mana variabel-variabel nilai akan diset atau didefinisikan terlebih dahulu, misalnya seperti: nilai data input, weight, nilai output yang diharapkan, learning rate dan nilai-nilai data lainnya.
- b. Aktivasi (activation),merupakan proses perhitungan terhadap nilai aktual output pada hidden layer dan menghitung nilai actual output pada output layer.
- c. Weight Training, merupakan proses perhitungan nilai error gradient pada output layer dan menghitung nilai error gradient pada hidden layer
- d. *Iteration*, merupakan tahap akhir dalam penggujian, dimana jika masih terjadi *error minimum* yang diharapkan belum ditemukan maka kembali pada tahap aktivasi (*activation*).

3.5.1. Pelatihan dan Pengujian Arsitektur 6-2-1

Data Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi terdiri dari 32 Data. Data dibagi menjadi 2 bagian yaitu 16 data pelatihan dan 16 data pengujian. Berikut adalah hasil pengujian dengan 16 data pengujian dengan pola pengujian 6-2-1. Data hasil pengujian dan Pelatihan dapat dilihat pada tabel sebagai berikut:

Tabel 5. Hasil Pelatihan dan Pengujian dengan Model 6-2-1

		Pelatiha	n (Train)			Pengujian (Test)				
No	Target	Output JST	Error	SSE	No	Target	Output JST	Error	SSE	
1	0,6318	0,6613	-0,0295	0,0008702500	1	0,4135	0,4399	-0,0264	0,0006969600	
2	0,5533	0,4659	0,0874	0,0076387600	2	0,3866	0,4412	-0,0546	0,0029811600	
3	0,6546	0,6529	0,0017	0,0000028900	3	0,4934	0,4420	0,0514	0,0026419600	
4	0,6170	0,6270	-0,0100	0,0001000000	4	0,4359	0,4503	-0,0144	0,0002073600	
5	0,6395	0,6618	-0,0223	0,0004972900	5	0,4130	0,4460	-0,0330	0,0010890000	
6	0,6318	0,4507	0,1811	0,0327972100	6	0,5169	0,4566	0,0603	0,0036360900	
7	0,5533	0,6129	-0,0596	0,0035521600	7	0,8540	0,7205	0,1335	0,0178222500	
8	0,6546	0,4566	0,1980	0,0392040000	8	0,3058	0,4748	-0,1690	0,0285610000	
9	0,6170	0,7344	-0,1174	0,0137827600	9	0,5176	0,4717	0,0459	0,0021068100	
10	0,6395	0,7293	-0,0898	0,0080640400	10	0,2381	0,4967	-0,2586	0,0668739600	
11	0,8182	0,7174	0,1008	0,0101606400	11	0,2570	0,4939	-0,2369	0,0561216100	
12	0,3508	0,4555	-0,1047	0,0109620900	12	0,2393	0,4997	-0,2604	0,0678081600	
13	0,3276	0,4663	-0,1387	0,0192376900	13	0,2218	0,5031	-0,2813	0,0791296900	
14	0,4459	0,4363	0,0096	0,0000921600	14	0,5805	0,5370	0,0435	0,0018922500	
15	0,3436	0,4561	-0,1125	0,0126562500	15	0,5323	0,4525	0,0798	0,0063680400	
16	0,4766	0,4568	0,0198	0,0003920400	16	0,7874	0,7290	0,0584	0,0034105600	
	Total 0,160010						Total		0,3413468600	
	MSE 0,010000639						MSE		0,0213341788	
			75%			Akurasi	Kebenaran ([%]	75%	

3.5.2. Pelatihan dan Pengujian Arsitektur 6-6-1

Berikut adalah hasil pengujian dengan 16 data pengujian dengan pola pengujian 6-6-1. Data hasil pengujian dan Pelatihan dapat dilihat pada tabel sebagai berikut:

Tabel 6. Hasil Pelatihan dan Pengujian dengan Model 6-6-1

		Pelatihan	(Train)		Pengujian (Test)					
No	Target	Output JST	Error	SSE	No	Target	Output JST	Error	SSE	
1	0,6318	0,6472	-0,0154	0,0002371600	1	0,4135	0,4005	0,0130	0,0001690000	
2	0,5533	0,6138	-0,0605	0,0036602500	2	0,3866	0,3766	0,0100	0,0001000000	
3	0,6546	0,6613	-0,0067	0,0000448900	3	0,4934	0,5904	-0,0970	0,0094090000	
4	0,6170	0,6482	-0,0312	0,0009734400	4	0,4359	0,3780	0,0579	0,0033524100	
5	0,6395	0,6529	-0,0134	0,0001795600	5	0,4130	0,3889	0,0241	0,0005808100	
6	0,6318	0,6023	0,0295	0,0008702500	6	0,5169	0,5803	-0,0634	0,0040195600	

		Pelatihan	(Train)			Pengujian (Test)					
No	Target	Output JST	Error	SSE	No	Target	Output JST	Error	SSE		
7	0,5533	0,6598	-0,1065	0,0113422500	7	0,8540	0,6570	0,1970	0,0001690000		
8	0,6546	0,6220	0,0326	0,0010627600	8	0,3058	0,0862	0,2196	0,0388090000		
9	0,6170	0,6647	-0,0477	0,0022752900	9	0,5176	0,5951	-0,0775	0,0482241600		
10	0,6395	0,6611	-0,0216	0,0004665600	10	0,2381	0,0563	0,1818	0,0060062500		
11	0,8182	0,6551	0,1631	0,0266016100	11	0,2570	0,0626	0,1944	0,0330512400		
12	0,3508	0,1796	0,1712	0,0293094400	12	0,2393	0,0555	0,1838	0,0377913600		
13	0,3276	0,1216	0,2060	0,0424360000	13	0,2218	0,543	0,1675	0,0337824400		
14	0,4459	0,5246	-0,0787	0,0061936900	14	0,5805	0,6464	-0,0659	0,0280562500		
15	0,3436	0,1626	0,1810	0,0327610000	15	0,5323	0,6095	-0,0772	0,0043428100		
16	0,4766	0,5159	-0,0393	0,0015444900	16	0,7874	0,6621	0,1253	0,0059598400		
		0,1599586400			Total		0,2693542200				
		MSE		0,0099974150		MSE			0,0168346390		
						Akurasi l	Kebenaran ([%)	100 %		

3.5.3. Pelatihan dan Pengujian Arsitektur 6-3-2-1

Berikut adalah hasil pengujian dengan 16 data pengujian dengan pola pengujian 6-3-2-1. Data hasil pengujian dan Pelatihan dapat dilihat pada tabel sebagai berikut:

Tabel 7. Hasil Pelatihan dan Pengujian dengan Model 6-3-2-1

		Pelatiha	n (Train)			Pengujian (Test)				
No	Target	Output JST	Error	SSE	No	Target	Output JST	Error	SSE	
1	0,6318	0,6964	-0,0646	0,0041731600	1	0,4135	0,4168	-0,0033	0,0000108900	
2	0,5533	0,6679	-0,1146	0,0131331600	2	0,3866	0,3828	0,0038	0,0000144400	
3	0,6546	0,7123	-0,0577	0,0033292900	3	0,4934	0,6546	-0,1612	0,0259854400	
4	0,6170	0,7011	-0,0841	0,0070728100	4	0,4359	0,3389	0,0970	0,0094090000	
5	0,6395	0,7073	-0,0678	0,0045968400	5	0,4130	0,3988	0,0142	0,0002016400	
6	0,6318	0,6522	-0,0204	0,0004161600	6	0,5169	0,6182	-0,1013	0,0102616900	
7	0,5533	0,7035	-0,1502	0,0225600400	7	0,8540	0,6471	0,2069	0,0428076100	
8	0,6546	0,6615	-0,0069	0,0000476100	8	0,3058	0,2001	0,1057	0,0111724900	
9	0,6170	0,6760	-0,0590	0,0034810000	9	0,5176	0,6525	-0,1349	0,0181980100	
10	0,6395	0,7060	-0,0665	0,0044222500	10	0,2381	0,1888	0,0493	0,0024304900	
11	0,8182	0,6424	0,1758	0,0309056400	11	0,2570	0,1893	0,0677	0,0045832900	
12	0,3508	0,2312	0,1196	0,0143041600	12	0,2393	0,1894	0,0499	0,0024900100	
13	0,3276	0,2067	0,1209	0,0146168100	13	0,2218	0,1865	0,0353	0,0012460900	
14	0,4459	0,5705	-0,1246	0,0155251600	14	0,5805	0,6960	-0,1155	0,0133402500	
15	0,3436	0,2216	0,1220	0,0148840000	15	0,5323	0,6309	-0,0986	0,0097219600	
16	0,4766	0,5568	-0,0802	0,0064320400	16	0,7874	0,6771	0,1103	0,0121660900	
	Total			0,1599001300		Total			0,1640393900	
		MSE		0,0099937581		MSE 0,			0,0102524619	
						Akurasi	Kebenaran ((%)	100 %	

3.5.4. Pelatihan dan Pengujian Arsitektur 6-2-3-1

Berikut adalah hasil pengujian dengan 16 data pengujian dengan pola pengujian 6-2-6-1. Data hasil pengujian dan Pelatihan dapat dilihat pada tabel sebagai berikut:

Tabel 8. Hasil Pelatihan dan Pengujian dengan Model 6-2-3-1

		Pelatiha	n (Train)			Pengujian (Test)					
		Output					Output				
No	Target	JST	Error	SSE	No	Target	JST	Error	SSE		
1	0,6318	0,5545	0,0773	0,0059752900	1	0,4135	0,5074	-0,0939	0,0088172100		
2	0,5533	0,5192	0,0341	0,0011628100	2	0,3866	0,5059	-0,1193	0,0142324900		
3	0,6546	0,5502	0,1044	0,0108993600	3	0,4934	0,5204	-0,0270	0,0007290000		
4	0,6170	0,5476	0,0694	0,0048163600	4	0,4359	0,4982	-0,0623	0,0038812900		
5	0,6395	0,5535	0,0860	0,0073960000	5	0,4130	0,5030	-0,0900	0,0081000000		
6	0,6315	0,5217	0,1101	0,0121220100	6	0,5169	0,5083	0,0086	0,0000739600		
7	0,5533	0,5439	0,0094	0,0000883600	7	0,8540	0,7232	0,1308	0,0171086400		
8	0,6546	0,5223	0,1323	0,0175032900	8	0,3085	0,4627	-0,1569	0,0246176100		
9	0,6170	0,7534	-0,1364	0,0186049600	9	0,5176	0,5114	0,0062	0,0000384400		
10	0,6395	0,6913	-0,0518	0,0026832400	10	0,2381	0,4146	-0,1765	0,0311522500		
11	0,8182	0,7147	0,1035	0,0107122500	11	0,2570	0,4231	-0,1661	0,0275892100		
12	0,3508	0,4899	-0,1391	0,0193488100	12	0,2393	0,4088	-0,1695	0,0287302500		
13	0,3276	0,4761	-0,1485	0,0220522500	13	0,2218	0,3974	-0,1756	0,0308353600		
14	0.4459	0,5166	-0,0707	0.0049984900	14	0,5805	0,5391	0,0414	0,0017139600		
15	0,3436	0,4887	-0,1451	0,0210540100	15	0,5323	0,5140	0,0183	0,0003348900		
16	0,4766	0,5004	-0,0238	0,0005664400	16	0,7874	0,7038	0,0836	0,0069889600		
	,	Total		0,1599839300		, -	Total		0,2049435200		
		0,0099989956			MSE		0,0128089700				
		MSE		0,0077909930					•		
						Akurasi	Kebenaran	(%)	100 %		

3.5.5. Pemilihan Arsitektur Terbaik Jaringan Saraf Tiruan

Hasil software aplikasi Matlab 6.1 yang digunakan untuk model arsitektur 6-2-1, arsitektur 6-6-1, arsitektur 6-3-2-1 dan arsitektur 6-2-3-1 adalah memperoleh pola arsitektur terbaik. Dari pola ini nanti akan digunakan untuk mempredikasi Pendapatn Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan. Penilaian model arsitektur terbaik dilihat dari beberapa aspek seperti *epoch, error* minimum dan akurasi kebenaran. Untuk lebih jelas dapat dilihat pada berikut:

Tabel 9. Rekapitulasi Model Arsitektur

		1		i
Model	6-2-1	6-6-1	6-3-2-1	6-2-3-1
Epochs	6545	5035	1190	37535
MSE	0,0213341788	0,0168346390	0,0102524619	0,0128089700
Akurasi	75%	100%	100%	100%

Dari tabel 9 dapat dilihat bahwa model arsitektur terbaik yang akan digunakan untuk melakukan prediksi dari serangkaian uji coba model adalah 6-3-2-1 dengan epoch 1190, MSE 0,0102524619 dan tingkat akurasi 100%.

4. KESIMPULAN

Berdasarkan hasil dan pembahasan diatas, maka penulis dapat mengambil kesimpulan sebagai berikut:

- a. Setelah dilakukan percobaan dalam proses pelatihan dan pengujian sistem yang dilakukan dengan menggunakan *software* aplikasi *Matlab* 6.1. Model Jaringan Syaraf Tiruan yang digunakan adalah 6-2-1, model 6-6-1, model 6-3-2-1 dan model 6-2-3-1, dapat diperoleh hasil yang baik dengan melihat MSE Pengujian yang terkecil adalah 6-3-2-1.
- b. Dengan model arsitektur 6-3-2-1, dapat melakukan prediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi dengan menunjukkan performa 100%.

UCAPAN TERIMA KASIH

Ucapan terima kasih kami sampaikan kepada Direktorat Jendral Pembelajaran Dan Kemahasiswaan Kementerian Riset, Teknologi dan Pendidikan Tinggi atas pendanaan Program Kreativitas Mahasiswa Penelitian (PKM-PE) tahun pelaksanaan 2018.

DAFTAR PUSTAKA

- [1] M. Solikhun, Agus Perdana Windarto, Handrizal and Fauzan, "Jaringan Saraf Tiruan Dalam Memprediksi Sukuk Negara Ritel Berdasarkan Kelompok Profesi Dengan Backpropagation Dalam Mendorong Laju Pertumbuhan Ekonomi," pp. 14–31, 2017.
- [2] A. T. Solikhun, M. Safii, "Jaringan Saraf Tiruan Untuk Memprediksi Tingkat Pemahaman Siswa Terhadap Matapelajaran Dengan Menggunakan Algoritma Backpropagation," no. 1, pp. 24–36, 2017.
- [3] Z. A. Matondang, "Jaringan Syaraf Tiruan Dengan Algoritma Backpropagation Untuk Penentuan Kelulusan Sidang Skripsi," *Pelita Inform. Budi Darma*, vol. IV, no. 1, pp. 84–93, 2013.
- [4] A. Jumarwanto, "Aplikasi Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Penyakit THT Di Rumah Sakik Mardi Rahayu Kudus," J. Tek. Elektro, vol. 1, no. 1, pp. 11–21, 2009.
- [5] D. O. (Faculty of I. E.-G. U. Maru'ao, "Neural Network Implementation in Foreign Exchange Kurs Prediction," 2010.
- [6] A. P. Windarto, P. Studi, and S. Informasi, "Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman KUR Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropagation," no. 1, pp. 12–23, 2017.