In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

Out[2]:

		country	country_code	sector	sector_number	year	Nominal_value_adde
,	0	Australia	AUS	Total	0	1975	
	1	Australia	AUS	Agriculture	1	1975	
	2	Australia	AUS	Mining	2	1975	
	3	Australia	AUS	Manufacturing	3	1975	
	4	Australia	AUS	Utilities	4	1975	
	35149	Uganda	UGA	Utilities	4	2018	2
	35150	Uganda	UGA	Construction	5	2018	8
	35151	Uganda	UGA	Whole sale, Accommodation and food service act	6	2018	18
	35152	Uganda	UGA	Transportation, information and communication,	7	2018	18
	35153	Uganda	UGA	Government services, Community, social and per	8	2018	1€

35154 rows × 11 columns

In [3]: da=data.head(100)
da

Out[3]:

_number	year	Nominal_value_added_LCU	Nominal_value_added_USD	Real_value_added_LCU	Em
0	1975	76723	100440	427474	
1	1975	4291	5617	18379	
2	1975	3801	4976	16013	
3	1975	15253	19968	65863	
4	1975	2479	3246	15131	
5	1985	16856	11772	42433	
6	1985	28813	20122	69052	
7	1985	63330	44228	177417	
8	1985	52131	36407	149734	
0	1986	263135	175896	602233	

In [4]: | data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35154 entries, 0 to 35153
Data columns (total 11 columns):

Ducu	cordinis (cocar ir cordinis):		
#	Column	Non-Null Count	Dtype
0	country	35154 non-null	object
1	country_code	35154 non-null	object
2	sector	35154 non-null	object
3	sector_number	35154 non-null	int64
4	year	35154 non-null	int64
5	Nominal_value_added_LCU	35154 non-null	int64
6	Nominal_value_added_USD	35154 non-null	int64
7	Real_value_added_LCU	35154 non-null	int64
8	Employment	35154 non-null	int64
9	Real_labor_productivity_LCU	35154 non-null	int64
10	PPP_labor_productivity	35154 non-null	int64

dtypes: int64(8), object(3) memory usage: 3.0+ MB

Out[6]: <seaborn.axisgrid.PairGrid at 0x167017f2ca0>


```
In [9]: sns.distplot(data["Employment"])
```

C:\Users\USER\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Futu reWarning: `distplot` is a deprecated function and will be removed in a futur e version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for his tograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Employment', ylabel='Density'>

Linear Regression

```
In [17]: print(lr.intercept_)
        [-838.75566248]
In [18]: prediction=lr.predict(x_test)
        plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1670a7bbe80>


```
In [19]: print(lr.score(x_test,y_test))
```

0.6817567228468826

Ridge Regression

```
In [21]: from sklearn.linear_model import Ridge
In [22]: rr=Ridge(alpha=0)
    rr.fit(x_train,y_train)
Out[22]: Ridge(alpha=0)
In [23]: rr.score(x_test,y_test)
Out[23]: 0.6817567228468757
```

Lasso Regression

```
In [24]: from sklearn.linear_model import Lasso
```

```
In [25]: la=Lasso(alpha=10)
la.fit(x_train,y_train)

Out[25]: Lasso(alpha=10)

In [26]: la.score(x_test,y_test)

Out[26]: 0.6646662695472622
```

Elastic regression

```
In [27]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)

Out[27]: ElasticNet()

In [28]: print(en.coef_)
    [-4.20980301e+00 2.25776857e-01 4.12207102e-04 5.81578865e-04
    -1.18897592e-03 6.93498212e-02 1.38020131e+00]

In [29]: print(en.score(x_test,y_test))
    0.6776894621477989
```

Logistic Regression

```
In [60]: | from sklearn.preprocessing import StandardScaler
In [61]: | fs=StandardScaler().fit transform(feature matrix)
In [65]: logr=LogisticRegression()
         logr.fit(fs,target_vector)
Out[65]: LogisticRegression()
In [68]: observation=[[1,2,3,4,5,6,7,8]]
In [69]: | predicton=logr.predict(observation)
         print(observation)
         [[1, 2, 3, 4, 5, 6, 7, 8]]
In [71]: logr.classes
Out[71]: array([ 24, 25,
                           28,
                                29,
                                     30,
                                          31,
                                               32,
                                                         37,
                                                              38,
                                                                   39,
                                                    33,
                                                                        40,
                                                                             41,
                 42, 43,
                          45,
                                46,
                                     47,
                                          48,
                                               49,
                                                    50,
                                                         51,
                                                              52,
                                                                   53,
                                                                        54,
                                                                             55,
                      57, 58, 61,
                                     82, 83, 84, 85, 86,
                                                                   90,
                 56,
                                                              88,
                                                                        91, 92,
                 95, 98, 100, 103, 104, 106, 108, 109, 111, 112, 184, 198, 206,
                241, 262, 265, 269, 274, 285, 293, 301], dtype=int64)
In [72]: logr.score(fs,target vector)
Out[72]: 0.31
```

Random Forest

```
parameters={ 'max_depth':[1,2,3,4,5],
In [82]:
                     'min_samples_leaf':[5,6,7,8,9,10],
                     'n_estimators':[10,20,30,40,50]}
In [83]:
         from sklearn.model_selection import GridSearchCV
         grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring='accl
         grid search.fit(x train,y train)
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\model_selection\_split.p
         y:676: UserWarning: The least populated class in y has only 1 members, whic
         h is less than n splits=2.
           warnings.warn(
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\model selection\ validati
         on.py:680: DataConversionWarning: A column-vector y was passed when a 1d ar
         ray was expected. Please change the shape of y to (n samples,), for example
         using ravel().
           estimator.fit(X train, y train, **fit params)
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\model_selection\_validati
         on.py:680: DataConversionWarning: A column-vector y was passed when a 1d ar
         ray was expected. Please change the shape of y to (n_samples,), for example
         using ravel().
           estimator.fit(X_train, y_train, **fit_params)
         C:\Users\USER\anaconda3\lib\site-packages\sklearn\model selection\ validati
         on.py:680: DataConversionWarning: A column-vector y was passed when a 1d ar
         ray was expected. Please change the shape of y to (n_samples,), for example
         using ravel().
           estimator.fit(X_train, y_train, **fit_params)
In [84]: |grid_search.best_score_
Out[84]: 0.12857142857142856
In [85]: rfc best=grid search.best estimator
```

```
In [86]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
```

Out[86]: [Text(0.5, 0.9, 'Employment <= 120.0\ngini = 0.955\nsamples = 45\nvalue = [0, $1, 0, 2, 4, 2, 4, 4, 1, 2, 0, 4, 0, 2 \setminus 0, 2, 1, 5, 1, 1, 2, 0, 2, 6, 2, 2, 0,$ $1 \cdot n0, 6, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1 \cdot n1, 2, 1]'),$ 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 6, 0, 0, 0, $0, 0, 0, 0, 0, 0, 0, 1, 1 \setminus 1, 2, 1]'),$ $Text(0.625, 0.7, 'sector number <= 7.5 \ngini = 0.948 \nsamples = 39 \nvalue =$ $[0, 1, 0, 2, 4, 2, 4, 4, 1, 2, 0, 4, 0, 2 \mid n0, 2, 1, 5, 1, 1, 2, 0, 2, 6, 2,$ 2, 0, 1\n0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0\n0, 0, 0]'), Text(0.5, 0.5, 'year $<= 1978.5 \setminus = 0.939 \setminus = 33 \setminus = [0, 1, 1]$ $0, 2, 4, 2, 1, 0, 0, 0, 0, 4, 0, 2 \setminus 1, 5, 1, 1, 2, 0, 2, 6, 2, 2, 0, 1$ $\n0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0 \n0, 0, 0]'),$ Text(0.25, 0.3, 'Real value added LCU <= 46351.5\ngini = 0.837\nsamples = 11 0, 0, 0, 0, 0, 0\n0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0\n0, 0\]'), Text(0.125, 0.1, 'gini = 0.64\nsamples = 5\nvalue = [0, 0, 0, 0, 0, 0, 1, 0,0, 0, 0, 3, 0, 0\n0, 1, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0]'), Text(0.375, 0.1, 'gini = 0.716\nsamples = 6\nvalue = [0, 0, 0, 2, 4, 0, 0, 0]0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0\'), Text(0.75, 0.3, 'Nominal value added USD <= 9564.0\ngini = 0.913\nsamples =</pre> 22\nvalue = [0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 2\n0, 1, 0, 0, 0, 1, 2, 0, 2, 6, 2, 2, 0, 1\n0, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0\n0, 0, 0]'), Text(0.625, 0.1, 'gini = 0.816\nsamples = 6\nvalue = [0, 0, 0, 0, 0, 1, 0, 0]0, 0, 0, 0, 1, 0, 2\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1\n0, 0, 0, 0, 0, $0, 0, 1, 0, 1, 0, 0, 0, 0 \setminus n0, 0, 0]'),$ Text(0.875, 0.1, 'gini = 0.872\nsamples = 16\nvalue = [0, 1, 0, 0, 0, 1, 0, 0]0, 0, 0, 0, 0, 0, $0 \setminus n0$, 1, 0, 0, 0, 1, 2, 0, 2, 6, 2, 2, 0, $0 \setminus n0$, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0\n0, 0, 0]'), Text(0.75, 0.5, 'gini = 0.7\nsamples = 6\nvalue = [0, 0, 0, 0, 0, 0, 3, 4, 1, 2, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0]')]

In []: