ALGORITMOS PARALELOS Tema 1: Introducción a la Computación Paralela

- Necesidad de la computación paralela
- ¿Qué es la programación paralela?
- Modelos de computadores
- Evaluación de los computadores paralelos

- La velocidad de los computadores secuenciales convencionales se ha incrementado continuamente para adaptarse a las necesidades de las aplicaciones
- Simultáneamente hay una demanda continua de un poder computacional superior
 - Modelado y simulación numérica de problemas en ciencias e ingeniería
 - Costosos cálculos iterativos sobre grandes cantidades de datos y fuertes restricciones temporales:
 - Ejemplos: predicción meteorológica, biocomputación, astrofísica
 - Son sistemas cada vez más complejos que requieren mayor tiempo de cómputo

Applications: Unlimited Opportunities

- Generic mathematics; visualization & virtual reality
- Computational chemistry, e.g. biochemistry and materials
- Mechanical engineering without prototypes
- Image/signal processing: medicine, maps, surveillance.

Global Weather Forecasting Example

- Suppose whole global atmosphere divided into cells of size 1 mile \times 1 mile \times 1 mile to a height of 10 miles (10 cells high) - about 5 \times 10⁸ cells.
- Suppose each calculation requires 200 floating point operations. In one time step, 10^{11} floating point operations necessary.
- To forecast the weather over 7 days using 1-minute intervals, a computer operating at 1Gflops (109 floating point operations/s) takes 10^6 seconds or over 10 days.
- To perform calculation in 5 minutes requires computer operating at 3.4 Tflops (3.4×10^{12}) floating point operations/sec).

Modeling Motion of Astronomical Bodies

- Each body attracted to each other body by gravitational forces. Movement of each body predicted by calculating total force on each body.
- With N bodies, N 1 forces to calculate for each body, or approx. N2 calculations. (N log2 N for an efficient approx. algorithm.)
- After determining new positions of bodies, calculations repeated.
- A galaxy might have, say, 10^{11} stars.
- Even if each calculation done in 1 ms (extremely optimistic figure), it takes 10^9 years for one iteration using N^2 algorithm and almost a year for one iteration using an efficient N \log_2 N approximate algorithm.

- Siempre habrá aplicaciones que requieren más poder computacional
- La relación coste/prestaciones se hace desfavorable si se pretende incrementar más aún la potencia de los computadores secuenciales.
- Además, el rendimiento de los computadores secuenciales está comenzando a saturarse.
- En todo caso hay límites para una única CPU
 - Memoria disponible
 - Prestaciones
- Solución: Usar varios procesadores. Sistemas paralelos Con la tecnología VLSI, el costo de los procesadores es menor.

- Solución: Usar varios procesadores. Sistemas paralelos Con la tecnología VLSI, el costo de los procesadores es menor.
- Muchas posibilidades:
 - Pipeline
 - Cachés
 - Paralelismo a nivel de instrucción
 - Ejecución fuera de orden
 - Especulación
 - Varios procesadores en un chip
 - LAN de altas prestaciones

¿Qué es la programación paralela?

 Uso de varios procesadores trabajando juntos para resolver una tarea común

- El modo de uso de los procesadores puede ser diseñado por el programador:
 - Cada procesador trabaja en una porción del problema.
 - Los procesos pueden intercambiar datos, a través de la memoria o por una red de interconexión.

Ventajas de la Computación Paralela

- La programación paralela permite:
 - Resolver problemas que no caben en una CPU
 - Resolver problemas que no se resuelven en un tiempo razonable
- Se pueden ejecutar
 - Problemas mayores
 - Más rápidamente (aceleración)
 - Más problemas

Conceptos relacionados pero no iguales

• Programación concurrente:

Varios procesos trabajando en la solución de un problema, puede ser paralela (varios procesadores)

• Computación heterogénea:

Varios procesadores con características distintas

• Programación adaptativa:

Durante la ejecución el programa se adapta a las características del sistema

Programación distribuida:

Varios procesadores geográficamente distribuidos. Hay paso de mensajes pero se necesita infraestructura especial

Computación en la web:

Necesidad de herramientas que permitan la utilización de sistemas de computación en la web

Computación cuántica o biológica

Aspectos a considerar

Aspectos a tener en cuenta en la computación paralela son:

- Diseño de computadores paralelos. Escalabilidad y Comunicaciones.
- Diseño de algoritmos eficientes. No hay ganancia si los algoritmos no se diseñan adecuadamente.
- Métodos para evaluar los algoritmos paralelos: ¿Cómo de rápido se puede resolver un problema usando una máquina paralela? ¿Con qué eficiencia se usan esos procesadores?
- Lenguajes para computadores paralelos, flexibles para permitir una implementación eficiente y que sean fáciles de programar.
- Herramientas para la programación paralela.
- Programas paralelos portables.
- Compiladores paralelizantes.

Tipos de computadores

Tipos de computadores según la taxonomía de Flynn

- **SISD**: Computador secuencial. Un procesador y una memoria. **Computador secuencial**.
- **SIMD**: Máquina con varios procesadores pero una única Unidad de Control. **Computador vectorial**.
- MIMD: Máquina con varios procesadores "completos". Computador paralelo.

Computador secuencial: SISD

Instructions (to processor)
Data (to or from processor)

Processor

Figure 1.1 Computer having a single processor and memory

Computador "paralelo": SIMD

 SIMD. Una única Unidad de Control. La misma instrucción se ejecuta síncronamente por todas las unidades de procesamiento. Sincronización automática. Requiere menos hardware porque sólo necesita una U.C global y menos memoria porque tiene una sola copia del programa.

Figure 1.5 SIMD model

Computador paralelo: MIMD

• <u>MIMD</u>. Cada procesador ejecuta un programa diferente independientemente de los otros procesadores.

Tipos de computadores paralelos

Memoria compartida – un único espacio de memoria. Todos los procesadores tienen acceso a la memoria a través de una red de conexión:

- Bus
- Red de barras cruzadas
- Red multietapa

MULTIPROCESADOR

Memoria distribuida – cada procesador tiene su propia memoria local. Se utiliza paso de mensajes para intercambiar datos.

MULTICOMPUTADOR

Comp.Paralelos de memoria compartida

Uniform memory access (UMA) Cada procesador tiene acceso uniforme a memoria. También se Ilaman symmetric multiprocessors (SMPs)

Non-uniform memory access (NUMA) El tiempo de acceso depende de dónde están los datos. El acceso local es más rápido. Más fácil y barato de escalar que SMPs

Sistemas de memoria compartida

Redes basadas en buses.

Cuando un procesador necesita acceso global a memoria, genera una solicitud al bus.

Esta red es atractiva, dada su simplicidad y capacidad para proporcionar acceso uniforme a la memoria compartida.

Pero el bus sólo puede llevar una determinada cantidad de datos entre la memoria y los procesadores.

El rendimiento se satura para un número pequeño de procesadores.

Si los procesadores disponen de memorias locales caché se puede solventar el problema.

Sistemas de memoria compartida

Redes de barras cruzadas.

Utiliza una red de conmutadores.

Conecta *p* procesadores con *b* módulos de memoria.

Memories

El número total de conmutadores requeridos es $\Theta(pb)$.

Conforme crece p, la complejidad de la red aumenta según Ω (p^2) .

Por tanto no son muy escalables en términos de coste.

Sistemas de memoria compartida

Redes de interconexión multietapa.

Es un tipo de red intermedia en términos de escalabilidad en

Problemas de los sistemas UMA

- Los sistemas UMA no escalan bien
 - Los sistemas basados en bus se pueden saturar.
 - Una red de barras cruzadas grande puede ser muy cara.
- Problema de la coherencia de caché
 - Puede haber copia de una variable en varias cachés
 - Cuando un procesador escribe puede no ser visible al resto
 - Es necesario asegurar la visibilidad o la coherencia de caché

Ejemplo NUMA: SGI Origin 2000

Comp.Paralelos con memoria distribuida

- En esta arquitectura, el computador paralelo es esencialmente una colección de procesadores secuenciales, cada uno con su propia memoria local, que pueden trabajar conjuntamente.
- Cada nodo tiene rápido acceso a su propia memoria y acceso a la memoria de otros nodos mediante una red de comunicaciones, habitualmente una red de comunicaciones de alta velocidad.
- Los datos son intercambiados entre los nodos como mensajes a través de la red.

Comp.Paralelos con memoria distribuida

Redes de ordenadores

 Una red de ordenadores, especialmente si disponen de una interconexión de alta velocidad, puede ser vista como un multicomputador de memoria distribuida y como tal ser utilizada para resolver problemas mediante computación paralela.

Figure 2.6 Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

Topologías de interconexión estáticas

•Línea / Anillo

- •Conexión completa
- •Matriz 2-D (malla) / Toro
- •Estrella

•Hipercubo

•Árbol

Figure 1.7 Two-dimensional array (mesh)

Figure 1.10 Three-dimensional hypercube

Figure 1.12 Six-dimensional hypercube laid out in one plane

Figure 1.11 Four-dimensional hypercube

Figure 1.9 Tree structure

Topologías de interconexión estáticas

Resumen de características

Table 2.1 A summary of the characteristics of various static network topologies connecting p nodes.

Network	Diameter	Bisection Width	Arc Connectivity	Cost (No. of links)
Completely-connected	1	$p^{2}/4$	p - 1	p(p-1)/2
Star	2	1	1	p - 1
Complete binary tree	$2\log((p+1)/2)$	1	1	p - 1
Linear array	p - 1	1	1	p - 1
2-D mesh, no wraparound	$2(\sqrt{p}-1)$	\sqrt{p}	2	$2(p-\sqrt{p})$
2-D wraparound mesh	$2\lfloor \sqrt{p}/2 \rfloor$	$2\sqrt{p}$	4	2p
Hypercube	$\log p$	p/2	$\log p$	$(p \log p)/2$
Wraparound <i>k</i> -ary <i>d</i> -cube	$d\lfloor k/2 \rfloor$	$2k^{d-1}$	2 <i>d</i>	dp

Figure 1.15 Ethernet type single wire network