

Digital Forensic

2회차 – 디스크 포렌식

발 표 자 │ 23학번 나소진

E-Mail | sjna@o.cnu.ac.kr

목차

- 01 강의 개요
- 02 Disk Image
- 03 File System
- 04 Windows 주요 아티팩트
- 05 과제 안내

강의 구성 및 계획

• 강의 구성

- 2~3회차 사전 준비 필수 → 카카오톡으로 안내 예정
- 질문은 떠오르는 즉시 해주기
- 과제는 필수는 아니지만, 제출 시 발표자 행복

• 주차별 계획

Week 1 (8/16)

숨겨진 데이터 찾기와 손상된 파일 복구

Week 2 (8/22)

디스크 포렌식

메모리 포렌식

- Digital Forensic 개요
- File Format
- Steganography
- Disk Image
- File System
- Windows 주요 아티팩트
- 휘발성 데이터
- Volatility

- 디스크 포렌식 개요
 - 정의
 - 저장매체에 대한 디지털 포렌식
 - 대상
 - 데스크탑, 노트북, 외장형 HDD, SSD, USB 등

- 디스크 포렌식 개요
 - 일반적으로 활성 데이터 포렌식 포함하여 지칭
 - → 메모리 포렌식을 포함하는 개념

저장 매체의 분류와 디스크 이미지의 이해

• Disk Image 개요

- Disk Image 개요
 - 정의
 - 데이터를 수집 시, 원본 보존과 분석을 위해 모든 데이터를 복제하는 행위
 - 목적
 - 특정 시점의 데이터를 보존
 - 이미지의 해쉬값을 부여 → 디지털 증거 데이터의 무결성을 보장

- Disk Image 개요
 - 대상
 - 물리 드라이브
 - 디스크 전체, MBR 정보와 논리적으로 파티셔닝된 다른 불륨까지 포함
 - 논리 드라이브
 - 파티셔닝된 불륨 (C 드라이브, D 드라이브 등)

- File Format
 - RAW
 - 원본과 완전히 동일한 형태의 이미지 파일 생성
 - 이미징에 오랜 시간 소요
 - RAW 이미지 형식을 변형한 확장자

- File Format
 - EWF(Expert Witness Compression Format)
 - 생성일, 생성자, 해시 등 메타데이터를 포함하여 압축 기능 및 암호화 기능 제공
 - 종류
 - .E01
 - EWF 포맷의 기본 파일 형식
 - .Ex01
 - EWF 포맷의 확장 파일 형식
 - 특정 도구에서만 사용 (ex. Encase v7 이상)

- 이미징 방법
 - 하드웨어를 이용한 방법
 - Forensic Falcon, Tableau Forensic Imager 등

[Forensic Falcon을 사용하는 모습]

- 이미징 방법
 - 소프트웨어를 이용한 방법
 - Encase, FTK Imager 등

장점: 다양한 기능을 제공

단점: 비싼 가격, 개인이 구매 불가

장점: 오픈 소스

단점: 다른 SW에 비해 자동 분석 기능이 부족

- 실습
 - 로컬에서 파티션 나누기
 - 분리된 파티션의 불륨에 파일 생성 및 삭제
 - 파티션 이미징
 - 이미지 마운트

파일 시스템 및 삭제된 파일 복구 방법의 이해

- Why do we study "File System"?
 - 손상된 디스크 이미지 파일 복구 가능
 - → File System의 구조 학습 필요
 - 디스크 내에 존재하는 삭제된 파일 복구 가능
 - → File System 중 MTF, unallocated space에 대한 학습 필요

- File System 개요
 - 정의
 - 컴퓨터에서 파일이나 자료를 쉽게 발견 및 접근할 수 있도록 보관 또는 조직하는 체제
 - 사용 목적 및 기능
 - 데이터는 '파일' 형태로 저장 장치에 저장 → 증가하는 파일을 관리하는 시스템 필요
 - 압축, 암호화, 동적 할당 등의 추가기능을 지원
 - 분류

Disk

Flash

CD-ROM

Network

Virtual File

• Disk file system 분류

- NTFS 개요
 - 등장배경
 - 윈도우 NT 운영체제의 등장으로 서버용 운영체제에서 사용하기 위한 새로운 기능을 추가한 파일시스템 필요
 - 구조

- VBR(Volume Boot Record)
 - NTFS로 포맷된 파티션의 첫 번째 섹터에 위치하는 영역
 - 해당 볼륨의 여러가지 설정 값, 부팅을 위한 실행 코드 포함
 - 부팅 시 POST(Power On Self-Test) 과정 후 VBR 호출
 - 2개 이상의 파티션이 존재할 경우 MBR이 존재 (Master+VBR)

VBR (Volume Boot Record) MFT (Master File Table) Data Area

VBR(Volume Boot Record)

- MFT(Master File Table)
 - NTFS의 핵심으로 파일의 Meta Data를 저장하는 영역
 - 파일이나 디렉토리가 생성될 때마다 MFT 엔트리가 생성
 - 구성
 - MFT Entry Header Fixup Array Attributes End Marker Unused Space

VBR (Volume Boot Record) MFT (Master File Table) Data Area

- MFT(Master File Table)
 - MFT Entry Header 분석

—FIELDS—	VALUES-
magic	FILE
offset to us	0x30
size of us	0x03
logical sequence number	8A739C08
sequence number	0x1C5
hardlinks	0x02
offset to attributes	0x38
flags	0x01
real size	0x1B8
allocated size	0x400
reference to base	0x0000000000000000
next attribute id	0×04
alignment bytes	0x00
record numbers	0x53EA
update sequence	0x02 0x00
update sequence array	0x00 0x00 0x00 0x00

- 삭제된 파일 복구
 - 파일 삭제 = File system에서 해당 파일의 Flag를 변경
 - → 파일이 차지하고 있는 공간은 할당해제 상태로 변경 (unallocated space)
 - 실제 파일 삭제는 다른 데이터로 덮어 써졌을 때 발생

- 실습
 - NTFS.001 이미지 복구
 - Q. 복구된 이미지에서 확인할 수 있는 "컴퓨터 포렌식 가이드라인"의 제정일은?
 - Hint. Not VBR! It's MBR

파일 시스템 및 삭제된 파일 복구 방법의 이해

CHAPTER

03 File System

• 실습 해설 및 향후 활용 방향

윈도우 레지스트리와 이벤트 로그의 이해

- 아티팩트 개요
 - 의미
 - 시스템의 흔적 (by. me0w2en)
 - 디지털 포렌식 과정에서 증거로 사용할 수 있는 모든 데이터
 - 특징
 - 사용자의 행위 및 여러 정보를 담고 있음
 - 사용자의 의지와 상관없이 시스템이나 프로그램에 의해 생성될 수 있음

- 아티팩트 개요
 - 분석 대상
 - 레지스트리
 - 이벤트 로그
 - 프리패치
 - 웹 브라우저
 - 외부매체 및 기기 연결 흔적 (ex. USB, Printer 등)
 - •

• 레지스트리

- 의미
 - Windows 운영체제에서 작동하는 모든 하드웨어, 소프트웨어, 사용자 정보 및 시스템 구성 요소 등을 담고 있는 계층형 데이터베이스
 - 부팅부터 로그인, 응용프로그램 실행, 사용자 행위 등 모든 활동에 관여
- 분석 Tool
 - 윈도우 탐색기 '레지스트리 편집기' 검색
 - 실행(Win+R) 'regedit.exe' 입력

- 레지스트리
 - 분석을 통해 얻을 수 있는 정보
 - 운영체제, 사용자 계정, 시스템 정보
 - 네트워크 연결 목록
 - 응용프로그램 실행 시간, 횟수 등의 이용 기록
 - 자동 시작 프로그램(Autoruns)의 설치/삭제 여부
 - 저장매체 사용 흔적 분석
 - 최근 열람/저장한 문서
 - 사용자/시스템/저장매체 사용 흔적 분석 → <u>추가적인 포렌식 분석 대상 선별</u>

- 레지스트리
 - 경로별로 획득 가능한 정보
 - 운영체제 정보 : HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion
 - 컴퓨터 이름 : HKLM\SYSTEM\CurrentControlSet\Control\ComputerName\ComputerName
 - 시스템 표준 시간 : HKLM\SYSTEM\CurrentControlSet\Control\TimeZoneInformation
 - 컴퓨터 종료 시간 : HKLM\SYSTEM\CurrentControlSet\Control\Windows

• ...

- 레지스트리
 - 수많은 레지스트리 경로를 외우는 것은 어려움 → 정리된 자료를 적극 활용!

- 이벤트 로그
 - 의미
 - 시스템에 접속한 사용자들의 행위들을 저장해 놓은 기록
 - System, Security, Application 등 여러 종류의 파일이 존재
 - 각 파일은 Windows 버전에 따라 기록되는 위치와 형태가 변화
 - 분석 Tool
 - Microsoft사의 Windows Event Viwer
 - Nirsoft사의 FullEventLogView

- 이벤트 로그
 - 분석을 통해 얻을 수 있는 정보
 - 사용자의 특정 파일에 대한 접근 정보
 - 사용자의 시스템 로그인 성공/실패 여부
 - 특정 어플리케이션 사용 여부
 - 감사 정책 변경 여부
 - 사용자 권한 변경 여부

- 이벤트 로그
 - 주요 이벤트 ID

이벤트 ID		
Type 1 (~ Windows 2003)	Type 2 (Windows Vista ~)	내용
528, 540	4624	로그온 실패 – 알 수 없는 사용자 이름 또는 암호
529	4625	로그온 실패- 시간 제한
530	4625	로그온 실패 – 현재 사용할 수 없는 계정
531	4625	로그온 실패 – 지정한 사용자 계정이 만료됨
532	4625	로그온 실패 – 사용자가 이 시스템에 로그온이 허용되지 않았음
533	4625	로그온 실패 – 허용되지 않은 로그온 유형
534	4625, 5461	로그온 실패 – 지정된 계정 암호가 만료됨
535	4625	로그온 실패- NetLogon 구성 요소가 활성화되어 있지 않음

- 이벤트 로그
 - 수많은 이벤트 유형을 외우는 것은 어려움 → 정리된 자료를 적극 활용!

- 실습
 - 1. REGA로 주어진 레지스트리 파일 분석
 - 2. 로컬 PC에서 이벤트 로그 확인하기
 - 3. 이벤트 로그 파일의 CTF 문제 풀이

• 실습 해설 및 향후 활용 방향

과제 안내

05 과제 안내

- 과제
 - 1. RecoveryAndHide 문제 풀이
 - → 절대 유출 금지!

- 제출 방법
 - 정답과 풀이 과정을 자유로운 양식으로 작성하여 카카오톡으로 전달

Reference

- 1. Forensic Proof, http://forensic-proof.com/ 2.디지털 포렌식 A-Z, 충남대학교