Universidad Simón Bolívar Departamento de Fisica Primer Parcial FSIIII. Viernes 21 de febrero de 2001.

Nombre	Carnet
Cada respuesta correcta vale Si no co Cuando lo necesite, use co	E I: SELECCION MULTIPLE 2 puntos, cada respuesta incorrecta vale - 0,5 puntos. ontesta no se le asignará puntaje. omo valor numérico para la aceleración de gravedad $q = 10m/s^2$.
1. Desde una plataforma que se murapidez $v_0 = 5 m/s$ y con un ángul	heve a rapidez constante $u=2$ m/s , se dispara un proyectil con lo θ de inclinación respecto a su horizontal tal que $\cos\theta=4/5$ ac:
() a 1,2 m detrás de la plataforn	lia
() a 1,2 m delante de la platafor	
() a 2,4 m detrás de la plataforn	1a
() a 2,4 m delante de la platafor	ina
() sobre la plataforma	
2. Un disco de radio R gira en el sent angular constante $\alpha > 0$. La figura	tido mostrado en la figura, partiendo del reposo y con aceleración muestra el instante de tiempo $t=0$. El punto A es un punto eleración del punto A cuando el disco ha dado una vuelta?
() $-R\alpha^2$ i	A A
$() -R\alpha^2 \hat{\mathbf{i}} + R\alpha \hat{\mathbf{j}}$	Tel m/s hasia abajo.
$()$ $-4\pi R\alpha \hat{i}$	im/stheria arribal /
$() -4\pi R\alpha \hat{i} + R\alpha \hat{j}$	Trivat hacia abaja.
() $-R\alpha\hat{\mathbf{i}} + R\alpha\hat{\mathbf{j}}$	
sobre una superficie norizontal sin ti	coloca sobre un bloque de masa $M=3$ Kg , el cual descansa ricción. Entre los bloques tampoco hay fricción. Sobre la masa a la derecha; Cuál es la aceleración de la masa m ?
() $5 m/s^2$ hacia la derecha	
() $5 m/s^2$ hacia la izquierda	
() $20 \ m/s^2$ hacia la derecha	
() $20 \ m/s^2$ hacia la izquierda	

descansa sobre la mesa tiene masa m=10~Kg, el intermedio tiene masa m=7~Kg y el que stá en el tope tiene m=3~Kg. Cuál es la fuerza que el bloque intermedio ejerce sobre el que stá en contacto con la mesa.

- () 100N haciá arriba
- () 100N hacia aliaju
- () 70 N hacia arriba
- () 70 N hacia abaju
- () 30N hacia abajo
- 5. Acerca de la fuerza de fricción que actúa sobre un cuerpo ¿ Cuál afirmación es correcta?
 - () La fuerza de fricción siempre apunta en dirección opuesta a la velocidad.
 - () Si la fuerza de fricción es de tipo cinética entonces es tangente a la trayectoria.
- () Si la fuerza de fricción es de ripo cinética entonces el cuerpo está acelerado.
- () La fuerza de fricción es siempre menor o igual al peso del cuerpo.
- () Si la fuerza de fricción es de tipo estático entonces el cuerpo está en reposo.
- 6. Un bloque de masa $m_1 = 5$ Kg está unido a un bloque de masa $m_2 = 2$ Kg por una cuerda ideal que pasa por un par de poleas ideales: una fija y la otra móvil. El bloque de masa m_1 descansa sobre una mesa sin fricción mientras que el otro bloque cuelga del otro extremo. Sobre la polea móvil se aplica una fuerza horizontal de magnitud F = 10 N tal como se muestra en la figura. Las aceleraciones de los bloques son:
 - () $a_1 = 1 \ m/s^2$ hacia la derecha y $a_2 = 7.5 \ m/s^2$ hacia arriba.
- () $a_1 = 1 \ m/s^2$ hacia la derecha y $a_2 = 7.5 \ m/s^2$ hacia abajo.
- (·) $a_1 = 1 \ m/s^2$ hacia la derecha y $a_2 = 5 \ m/s^2$ hacia arriba.
- () $a_1 = 1 \ m/s^2$ hacia la derecha y $a_2 = 5 \ m/s^2$ hacia abajo.
- () $a_1 = 1 \text{ m/s}^2$ hacia la derecha y $a_2 = 0 \text{ m/s}^2$.

Una caja de masa m está atada a una cuerda ideal que pasa por por una polea ideal. Para splazar la caja por el piso resbaladizo, un hombre aplica al otro extremo de la cuerda una fuerza e magnitud constante /. El augulo que la cuerda que sostiene la caja forma con la vertical es denotado por H.

- a) (2 puntos) Mientras la caja se nineve sobre el piso, ¿ Cuánto vale su aceleración? Es ésta
- b) (4 puntos); ('mál es el valor del angulo cuando la caja está a punto de despegarse del piso?

a) Sobre el priso
$$a_y=0$$
: $\vec{a}=a_x\hat{1}$