南京航空航天大学

第1页 (共6页)

二〇一八~二〇一九学年 第1学期《控制系统工程》考试试题

考试日期: 2019年1月11日 试卷类型:闭卷 试卷代号:B

		班号	学	:号	姓名		
题号	1	11	111	四	五	六	总分
得分							

本题分数	15 分		
得 分			

一. 用梅森公式求下图所示系统传递函数 $rac{C(s)}{R(s)}$ 以及 $rac{C(s)}{N(s)}$ 。

本题分数	20 分
得 分	

二、系统的结构如图所示, $G_1(s) = \frac{a}{s}$, $G_2(s) = \frac{1}{s+b}$

- 1. 当输入r(t)=2 $(t\geq 0)$ 时,输出 $c(\infty)=2$,并且输出响应曲线的峰值时间 $t_p=2s$,超调量 $\sigma\%=20\%$,试确定a,b 的值。
 - 2. 该系统是否存在谐振频率?如有,求出谐振频率。如没有,请说明为什么没有。
 - 3. 当输入分别为r(t) = 4 $(t \ge 0)$ 和 r(t) = 2t $(t \ge 0)$ 时,试求出稳态误差分别为多少。

本题分数	15 分
得 分	

- 三、已知系统的特征方程 $D(s) = s^4 + 12s^3 + 30s^2 + 24s + 56 = 0$
 - 1. 试用劳斯判据判定系统的稳定性。
 - 2. 试求出特征方程的全部特征根。

本题分数	15 分		
得 分			

四、最小相位系统的开环对数幅频特性曲线如图,试确定系统的开环 传递函数。

本题分数	15 分
得 分	

五、系统的结构如图所示, $G_1(s) = \frac{a}{s}$, $G_2(s) = \frac{1}{s+b}$

- 1. 当输入 $r(t) = 4\cos(2t)$ 时,系统的稳态输出 $c_{ss} = 12\cos(2t 90^\circ)$,试确定参数a,b。
- 2. 对该系统,当输入 $r(t) = 2\sin(t) + 4\cos(3t + 45^\circ)$ 时,试求出系统的稳态输出。

本题分数	20 分
得 分	

六、某单位反馈系统的开环传递函数为 $G(s) = \frac{200}{s(s+1)(s+16)}$,

- 1. 试绘制系统的开环极坐标图,并判断与实轴是否有交点。
- 2. 用奈氏稳定判据判断该系统的稳定性。若稳定,试求出幅值裕度。若不稳定,试求出正实部根 个数。