Airbus – where are we going next (evolution or revolution)?

Neil Scott Vice President Engineering Airbus UK

IMechE Western Aerospace Centre 2013 Prestige Lecture

Airbus in the UK History/background Market **Evolutions Future challenges Future by Airbus**

Filton

- Filton provides design and support of wings for all Airbus aircraft. Half of the Filton workforce are in engineering.
- The A400M wing assembly facility pioneers bespoke manufacturing techniques & the use of advanced composite materials.
- Airbus in Filton also has design and supply responsibility for fuel systems and for most variants, the landing gear.
- There are over £100M worth of test facilities at Filton including the fuels test centre, wind tunnel, structures and landing gear test facilities
- Customer Services teams are also based at Filton.
- Aircraft design and manufacturing has taken place on this site for over 100 years.
- Airbus Aerospace Park is under construction and will open next month.

Airbus family

Airbus family

Innovation

40 years of innovation, a driver for success

A300B:

First ever widebody twin-engine in the 70s forward-facing crew cockpits in the 80s

A320 Family:

Side-stick & electronic engine controllers
Digital auto flight system
Aerodynamic improvements (winglets, sharklets)

A380:

Unprecedented fuel efficiency and comfort

A350 XWB: a game changer over 53% of composite material

Environment:

First aircraft manufacturer awarded ISO 14001 - all sites and products

Airbus family

A full range of market leading civil airliners

A320 family:

A take-off or landing every 2.5 seconds, 7 billion passengers carried since EIS in 1988

A330 family:

A take-off or landing every 25 seconds, More than 800 A330s sold since 787 launch

A350 XWB:

First Flight mid 2013
582 firm orders from 34 customers

A380:

Takes-off or lands approx. every 6 minutes 125 flights per day and 1 million pax per month

Market

Airbus predict 'global air fleet will double by 2032' with two thirds of the population taking at least one flight a year

Eastern promise raises hopes at Airbus

Airbus predicts 29,000 new planes needed by 2032

Edited by PETER CUNLIFFE
only peter cultiflerge rate at a large peter cult

Airbus Sees \$4.4 Trillion Commercial Jet Market Over 20 Years

By Robert Wall - Sep 24, 2013 11:10 AM GMT+0200

Traffic will double in the next 15 years

Air travel has proved to be resilient to external shocks

67% growth through multiple crises over the last ten years

Source: ICAO, Airbus GMF 2013

Manufacturers: An attractive market for new competitors

Evolutions

Airbus A320 family

A320 family - one type, four equally spaced models

The most efficient and comprehensive coverage of the single aisle market

*Typical two-class and high-density seat counts

Airbus A320 family

A320 family - evolution

Build on proven values

A320 Family non-stop innovation

ROPS: Runway End Overrun Protection
OANS: On-board Airport Navigation System

Cash Operating Cost for Single Aisle Aircraft

A320 2-class 150 pax On a 500nm mission

Fuel will become the dominant cost item

A320neo

- Efficient engines
 CFM56-5B featuring a 68" fan diameter
 IAE V2500 featuring a 63" fan diameter
- Wing tip fences

Low risk, minimum change aircraft ...

- More efficient engines
 CFM LEAP-X featuring a 76" fan diameter
 PW1100G featuring a 81" fan diameter
- Sharklets

up to 15% fuel burn reduction

Global changes on the aircraft

PurePower ® PW1100G engine by Pratt & Whitney

Geared Turbofan enables:

- Double digit lower fuel burn
- Significant reduction in noise and emissions
- Lower engine operating costs
- Wide design space for future technology insertion

Proven reliability and product maturity at A320neo EIS:

- Benefits and durability validated in engine demonstrator and core test programs
- Fan Drive Gear System matured through extensive test program
- First GTF validation and certification engine at test
- Revenue service by EIS

Sharklets design: new wing-sharklet join & sharklet device assembly

Rib 27 (wing-side)

Rib 27A (sharklet-side)

A320 Wing Changes

What does 15% fuel burn reduction represent?

Reduced fuel burn Per aircraft per year

Reduced CO₂ emissions
 Per aircraft per year

800 nm sector 1585 trips per year

Cash Operating Cost Comparison

Better cash operating cost

Fuel \$2.5 per USG 800 nm sector 1585 trips per year

A significant efficiency improvement package

A380

Latest Airbus Technology

-15% fuel burn

Lower noise levels – up to 17dB below ICAO Ch4 standard

NOx emissions 50% below CAEP6 Standards

-25% fuel burn

Lower noise levels - up to 16dB below ICAO Ch4 standard

NOx emissions 35% below CAEP6

-20% fuel burn

Lower noise levels – up to 17 dB below ICAO Ch4 standard

Challenges

2050 TARGETS

To reduce:

- CO₂ by 75%
- NOx by 90%
- Noise by 65%

Other Challenges:

Aircraft Cost/Price
Air traffic and
Airport congestion

Reduced the last 40-50 years:

• CO2 by 70%

NOx by 90%

Noise by 75%

Volume of Noise Event

Duration of Noise Event

Pitch and Tone of Noise Event

Frequency of Noise Events

Time of Day

Individuals Reaction to Event

> Density of Population

Level of Background Noise

Individuals Location to Event

> Weather Conditions

Number of People Annoyed by Aircraft Noise Reducing ability for Aviation Industry to Control or Influence

No ability for Aviation Industry to Control or Influence

The Noise Challenge

Aircraft and engine technology

Main airframe noise sources Landing gear

Noise source localization Slat/Flap extended, LG down

Driving parameter: aircraft airspeed ΔSPL ~ 60 log (V) Rough Order of Magnitude

Main airframe noise sources High lift systems

Noise source localization Slat/Flap extended, LG down

Driving parameter: aircraft airspeed ∆SPL ~ 60 log (V) Rough Order of Magnitude Flow distributions -hight lifted profile -slat cove

THE PERFECT FLIGHT -4-0°CO2

Aircraft Technology Operations Alternative Fuels

18 June 2012: Airbus and Air Canada made North America's first ever Perfect Flight (over 40% of CO₂ reduction compared to a similar regular flight)

14 October 2011: Airbus and Air France completed the world's first greenest commercial flight (50% of CO₂ reduction compared to a similar regular flight)

The Perfect Flight

 Implementing sustainable best practices for a "Perfect Flight"...

Industry Commitments – CO2

Transport Action Group Source

Targets

- 1. Improve fleet fuel efficiency by 1.5% to 2020
- 2. Cap net CO2 emissions through carbon-neutral growth
- 3. Reduce net CO2 emissions by 50% below 2005 levels by 2050

The four pillars

- Technology (incl. biofuels)
- Operations
- Infrastructure
- Economic measures

Demonstration flights

Value chains

Commercial flights

The future

"Game Changing" technology readiness

Innovation

A long term future technology vision

Configuration and Non-conventional aircraft concept new power plant

New propulsion concepts

Full active flow Flow control

and load control

Adaptive, **Airframe**

intelligent structures

Value adding cabin New passenger services full wireless

Flight or ground based Mission Mission management management

Drag reduction through Laminar Flow

SFWA WP3.1 BLADE

Overall configuration challenge

Need to shift from single discipline asymptotic trend...
thanks to capabilities and skills enabling multipoint and multidisciplinary
configuration optimisation

The Future – Our Vision, Our Concept Plane

AIRBUS SMARTER SKIES

Assisted take off and continuous 'eco-climb'

Aircraft in free flight and formation along 'express skyways'

Low-noise, free-glide approaches and landings

Low emission ground operations

Main ambitions for future

The technical rupture is pulled by multiple drivers

Engine maintenance

Flight crew cost

