List MF10

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

General Certificate of Education Advanced Level

FURTHER MATHEMATICS (9231)

AND
STATISTICAL TABLES

PURE MATHEMATICS

Algebraic series

$$\sum_{r=1}^{n} r = \frac{1}{2} n(n+1) , \qquad \sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1) , \qquad \sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Binomial expansion:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{3}a^{n-3}b^3 + \dots + b^n$$
, where *n* is a positive

integer

and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Maclaurin's expansion:

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^n}{n!} f^{(n)}(0) + \dots$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!} x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!} x^r + \dots \qquad (|x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots$$
 (all x)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots$$
 (all x)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots$$
 (all x)

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{r+1}x^r}{r} + \dots$$
 (-1 < x \le 1)

Trigonometry

$$\sin(A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) \equiv \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 3A \equiv 3\sin A - 4\sin^3 A$$

$$\cos 3A \equiv 4\cos^3 A - 3\cos A$$

$$\sin P + \sin Q \equiv 2\sin\frac{1}{2}(P + Q)\cos\frac{1}{2}(P - Q)$$

$$\sin P - \sin Q \equiv 2\cos\frac{1}{2}(P + Q)\sin\frac{1}{2}(P - Q)$$

$$\cos P + \cos Q \equiv 2\cos\frac{1}{2}(P + Q)\sin\frac{1}{2}(P - Q)$$

$$\cos P - \cos Q \equiv -2\sin\frac{1}{2}(P + Q)\sin\frac{1}{2}(P - Q)$$

If $t = \tan \frac{1}{2}x$ then:

$$\sin x = \frac{2t}{1+t^2}$$
 and $\cos x = \frac{1-t^2}{1+t^2}$

Principal values:

$$-\frac{1}{2}\pi \le \sin^{-1} x \le \frac{1}{2}\pi \tag{|x| \le 1}$$

$$0 \le \cos^{-1} x \le \pi \tag{|x| \le 1}$$

$$-\frac{1}{2}\pi < \tan^{-1}x < \frac{1}{2}\pi$$

Integrals

(Arbitrary constants are omitted; a denotes a positive constant.)

$$f(x) \qquad \int f(x) dx$$

$$\frac{1}{x^2 + a^2} \qquad \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$

$$\frac{1}{\sqrt{a^2 - x^2}} \qquad \sin^{-1} \left(\frac{x}{a}\right) \qquad (|x| < a)$$

$$\frac{1}{x^2 - a^2} \qquad \frac{1}{2a} \ln \left(\frac{x - a}{x + a}\right) \qquad (x > a)$$

$$\frac{1}{a^2 - x^2} \qquad \frac{1}{2a} \ln \left(\frac{a + x}{a - x}\right) \qquad (|x| < a)$$

$$\sec x \qquad \ln(\sec x + \tan x) \qquad (|x| < \frac{1}{2}\pi)$$

Numerical methods

Trapezium rule:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h\{y_0 + 2(y_1 + y_2 + ... + y_{n-1}) + y_n\}, \text{ where } h = \frac{b - a}{n}$$

The Newton-Raphson iteration for approximating a root of f(x) = 0:

$$x_{r+1} = x_r - \frac{f(x_r)}{f'(x_r)}$$

Vectors

The point dividing AB in the ratio $\lambda : \mu$ has position vector $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

MECHANICS

Centres of mass of uniform bodies

Triangular lamina: $\frac{2}{3}$ along median from vertex

Solid hemisphere of radius r: $\frac{3}{8}r$ from centre

Hemispherical shell of radius r: $\frac{1}{2}r$ from centre

Circular arc of radius r and angle 2α : $\frac{r \sin \alpha}{\alpha}$ from centre

Circular sector of radius r and angle 2α : $\frac{2r\sin\alpha}{3\alpha}$ from centre

Solid cone or pyramid of height h: $\frac{3}{4}h$ from vertex

Moments of inertia for uniform bodies of mass m

Thin rod, length 2l, about perpendicular axis through centre: $\frac{1}{3}ml^2$

Rectangular lamina, sides 2a and 2b, about perpendicular axis through centre: $\frac{1}{3}m(a^2+b^2)$

Disc or solid cylinder of radius r about axis: $\frac{1}{2}mr^2$

Solid sphere of radius r about a diameter: $\frac{2}{5}mr^2$

Spherical shell of radius r about a diameter: $\frac{2}{3}mr^2$

PROBABILITY AND STATISTICS

Sampling and testing

Unbiased variance estimate from a single sample:

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{(\sum x)^{2}}{n} \right) = \frac{1}{n-1} \sum (x - \overline{x})^{2}$$

Two-sample estimate of a common variance

$$s^{2} = \frac{\sum (x_{1} - \overline{x}_{1})^{2} + \sum (x_{2} - \overline{x}_{2})^{2}}{n_{1} + n_{2} - 2}$$

Regression and correlation

Estimated product moment correlation coefficient:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left\{\sum (x - \overline{x})^2\right\}\left\{\sum (y - \overline{y})^2\right\}}} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right)\left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}$$

Estimated regression line of *y* on *x*:

$$y - \overline{y} = b(x - \overline{x}),$$
 where $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

4

THE NORMAL DISTRIBUTION FUNCTION

If *Z* has a normal distribution with mean 0 and variance 1 then, for each value of *z*, the table gives the value of $\Phi(z)$, where

$$\Phi(z) = \mathrm{P}(Z \le z) \; .$$

For negative values of z use $\Phi(-z) = 1 - \Phi(z)$.

z	0	1	2	3	4	5	6	7	8	9	1	2	3		5 ADI		7	8	9
0.0	0.5000		0.5080			0.5199			0.5319		4	8	12	-			_	32	
0.1	0.5398	0.5438		0.5517	0.5557	0.5596	0.5636	0.5675	0.5714		4	8	12	-		24	_	32	
0.2	0.5793	0.5832		0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12	_				31	
0.3	0.6179	0.6217		0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	7	11	_			_	30	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	14	18	22	25	29	32
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10	14	17	20	24	27	31
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10	13	16	19	23	26	29
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9	12	15	18	21	24	27
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	3	5	8	11	14	16	19	22	25
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	10	13	15	18	20	23
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	2	5	7	9	12	14	16	19	21
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	2	4	6	8	10	12	14	16	18
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	2	4	6	7	9	11	13	15	17
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	2	3	5	6	8	10	11	13	14
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1	3	4	6	7	8	10	11	13
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1	2	3	4	5	6	7	8	9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1	2	3	4	4	5	6	7	8
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1	1	2	3	4	4	5	6	6
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1	1	2	2	3	4	4	5	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	0	0	1	1	1	1	1	2	2
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0	0	0	0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and variance 1 then, for each value of p, the table gives the value of z such that

$$P(Z \le z) = p .$$

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

CRITICAL VALUES FOR THE t-DISTRIBUTION

If T has a t-distribution with v degrees of freedom then, for each pair of values of p and v, the table gives the value of t such that

$$P(T \le t) = p.$$

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
v=1	1.000	3.078	6.314	12.71	31.82	63.66	127.3	318.3	636.6
2	0.816	1.886	2.920	4.303	6.965	9.925	14.09	22.33	31.60
3	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92
4	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.894	6.869
6	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.768
24	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.689
28	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.660
30	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
∞	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

CRITICAL VALUES FOR THE χ^2 -DISTRIBUTION

If *X* has a χ^2 -distribution with *v* degrees of freedom then, for each pair of values of *p* and *v*, the table gives the value of *x* such that

$$P(X \le x) = p$$

p	0.01	0.025	0.05	0.9	0.95	0.975	0.99	0.995	0.999
ν = 1	0.0^31571	0.0^39821	0.0^23932	2.706	3.841	5.024	6.635	7.879	10.83
2	0.02010	0.05064	0.1026	4.605	5.991	7.378	9.210	10.60	13.82
3	0.1148	0.2158	0.3518	6.251	7.815	9.348	11.34	12.84	16.27
4	0.2971	0.4844	0.7107	7.779	9.488	11.14	13.28	14.86	18.47
5	0.5543	0.8312	1.145	9.236	11.07	12.83	15.09	16.75	20.51
6	0.8721	1.237	1.635	10.64	12.59	14.45	16.81	18.55	22.46
7	1.239	1.690	2.167	12.02	14.07	16.01	18.48	20.28	24.32
8	1.647	2.180	2.733	13.36	15.51	17.53	20.09	21.95	26.12
9	2.088	2.700	3.325	14.68	16.92	19.02	21.67	23.59	27.88
10	2.558	3.247	3.940	15.99	18.31	20.48	23.21	25.19	29.59
11	3.053	3.816	4.575	17.28	19.68	21.92	24.73	26.76	31.26
12	3.571	4.404	5.226	18.55	21.03	23.34	26.22	28.30	32.91
13	4.107	5.009	5.892	19.81	22.36	24.74	27.69	29.82	34.53
14	4.660	5.629	6.571	21.06	23.68	26.12	29.14	31.32	36.12
15	5.229	6.262	7.261	22.31	25.00	27.49	30.58	32.80	37.70
16	5.812	6.908	7.962	23.54	26.30	28.85	32.00	34.27	39.25
17	6.408	7.564	8.672	24.77	27.59	30.19	33.41	35.72	40.79
18	7.015	8.231	9.390	25.99	28.87	31.53	34.81	37.16	42.31
19	7.633	8.907	10.12	27.20	30.14	32.85	36.19	38.58	43.82
20	8.260	9.591	10.85	28.41	31.41	34.17	37.57	40.00	45.31
21	8.897	10.28	11.59	29.62	32.67	35.48	38.93	41.40	46.80
22	9.542	10.98	12.34	30.81	33.92	36.78	40.29	42.80	48.27
23	10.20	11.69	13.09	32.01	35.17	38.08	41.64	44.18	49.73
24	10.86	12.40	13.85	33.20	36.42	39.36	42.98	45.56	51.18
25	11.52	13.12	14.61	34.38	37.65	40.65	44.31	46.93	52.62
30	14.95	16.79	18.49	40.26	43.77	46.98	50.89	53.67	59.70
40	22.16	24.43	26.51	51.81	55.76	59.34	63.69	66.77	73.40
50	29.71	32.36	34.76	63.17	67.50	71.42	76.15	79.49	86.66
60	37.48	40.48	43.19	74.40	79.08	83.30	88.38	91.95	99.61
70	45.44	48.76	51.74	85.53	90.53	95.02	100.4	104.2	112.3
80	53.54	57.15	60.39	96.58	101.9	106.6	112.3	116.3	124.8
90	61.75	65.65	69.13	107.6	113.1	118.1	124.1	128.3	137.2
100	70.06	74.22	77.93	118.5	124.3	129.6	135.8	140.2	149.4

CRITICAL VALUES FOR THE PRODUCT MOMENT CORRELATION COEFFICIENT

	Significance level								
One-tail	5%	2.5%	1%	0.5%					
Two-tail	10%	5%	2%	1%					
n = 3	0.988	0.997							
4	0.900	0.950	0.980	0.990					
5	0.805	0.878	0.934	0.959					
6	0.729	0.811	0.882	0.917					
7	0.669	0.754	0.833	0.875					
8	0.621	0.707	0.789	0.834					
9	0.582	0.666	0.750	0.798					
10	0.549	0.632	0.715	0.765					
11	0.521	0.602	0.685	0.735					
12	0.497	0.576	0.658	0.708					
13	0.476	0.553	0.634	0.684					
14	0.458	0.532	0.612	0.661					
15	0.441	0.514	0.592	0.641					
16	0.426	0.497	0.574	0.623					
17	0.412	0.482	0.558	0.606					
18	0.400	0.468	0.543	0.590					
19	0.389	0.456	0.529	0.575					
20	0.378	0.444	0.516	0.561					
25	0.337	0.396	0.462	0.505					
30	0.306	0.361	0.423	0.463					
35	0.283	0.334	0.392	0.430					
40	0.264	0.312	0.367	0.403					
45	0.248	0.294	0.346	0.380					
50	0.235	0.279	0.328	0.361					
60	0.214	0.254	0.300	0.330					
70	0.198	0.235	0.278	0.306					
80	0.185	0.220	0.260	0.286					
90	0.174	0.207	0.245	0.270					
100	0.165	0.197	0.232	0.256					