

Matt Brems
Data Science Immersive, GA

LEARNING OBJECTIVES

- By the end of this lesson, students should be able to:
 - Describe the effect of epsilon and min points on DBSCAN.
 - Implement DBSCAN.
 - Identify advantages and disadvantages of DBSCAN.

K-MEANS

- In unsupervised learning, one strategy is to cluster observations into groups
- Observations in the same group are more similar than observations in different groups
- So far, you've learned how to cluster using k-Means

K-MEANS

• What are the pros/cons to using *k*-Means?

- There's another method of clustering that can sidestep some of the disadvantages of *k*-Means: **DBSCAN**
 - Density-Based Spatial Clustering of Applications with Noise
 - We can detect areas of high and low density
 - Areas of high density will become a cluster
 - Areas of low density will be **not** clustered/regarded as *noise*

- DBSCAN requires you to specify two hyperparameters:
 - min_samples: the minimum number of points needed to form a cluster.
 - epsilon: the "searching" distance when attempting to build a cluster.

HOW DOES DBSCAN WORK?

```
DBSCAN(DB, distFunc, eps, minPts)
   C = 0
   for each point P in database DB
      if label(P) \neq undefined then continue
      Neighbors N = RangeQuery(DB, distFunc, P, eps)
      if |N| < minPts then
         label(P) = Noise
         continue
      C = C + 1
      label(P) = C
      Seed set S = N \setminus \{P\}
      for each point Q in S
         if label(Q) = Noise then label(Q) = C
         if label(0) \neq undefined then continue
         label(0) = C
         Neighbors N = RangeQuery(DB, distFunc, Q, eps)
         if |N| \ge \min Pts then
            s = s U N
```

Source: https://en.wikipedia.org/wiki/DBSCAN#Algorithm

VISUALIZING DBSCAN

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

VISUALIZING DBSCAN

VISUALIZING DBSCAN

- **Core points**: Points inside a cluster that have at least min_samples points within epsilon.
- Border points: Points inside a cluster that do not have at least min_samples points within epsilon.
- **Noise:** Points that belong to no cluster.

• DBSCAN allows us to detect some cluster patterns that *k*-Means might not be able to detect.

- DBSCAN allows us to detect some cluster patterns that k-Means might not be able to detect.
- We don't need to pre-specify the number of clusters; the algorithm will determine how many clusters are appropriate given fixed min samples and epsilon values.
 - This is particularly valuable when we are clustering data in more than two or three dimensions.
- Not every point is clustered!
 - Good for identifying outliers.

DISADVANTAGES OF DBSCAN

- DBSCAN requires us to tune two parameters.
- DBSCAN works well when clusters are of a different density than the overall data, but does not work well when the clusters themselves are of varying density.
 - Fixed epsilon.