Predicting Blood Glucose

•••

Time Series Analysis

Blood glucose out of range requires frequent adjustments ...

... that could be avoided with a glucose prediction.

The best model ...

 Model selection based on mean absolute percentage error of predicted vs. actual blood glucose

SARIMAX (2, 1, 1)	TCN
34%	31%

SARIMAX: Seasonal AutoRegressive Integrated Moving Average with eXogenous variables

TCN: Temporal Convolutional Network

... is not good enough, ...

- A 30% error can make the difference between hyperglycemia vs. hypoglycemia
- The predicted range is too large to determine the exact insulin dose

... but may still be useful for 2 hours of the forecast.

Using CGM data...

CGM: continuous glucose monitor

... requires connecting the dots.

Gaps up to 3 hours

Resampled at 15
minute intervals
with linear
interpolation

Small ARIMA model order is good enough...

Note: model order for once differenced series

.. and used to fit a SARIMAX (2, 1, 1) model with 3 covariates.

A TCN model with 3 covariates looks similar to SARIMAX....

... after TNC with 1 covariate seemed so promising.

A better model is needed...

- Salvage current models
 - Use smaller forecast horizon
 - Improve tuning
- Try different model
 - Temporal Fusion Transformer (TFT)

...meanwhile, only use the first 2 hours of forecast.