$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

The conditional probability of an event A given that an event B of positive probability has occurred (in short, the probability of A given B) is denoted $P(A \mid B)$ and defined by

$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

• The conditional probability $P(A \mid B)$ is undefined if P(B) = 0.

$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

- The conditional probability $P(A \mid B)$ is undefined if P(B) = 0.
- The event B may be a *composite event* constructed via unions, intersections, and other set operations from other events.

$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

- The conditional probability $P(A \mid B)$ is undefined if P(B) = 0.
- The event B may be a *composite event* constructed via unions, intersections, and other set operations from other events.
- Conditional probability is *not symmetric*: in general, $P(A \mid B) \neq P(B \mid A)$. What is $P(B \mid A)$? When is $P(B \mid A) = P(A \mid B)$?

$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

- The conditional probability $P(A \mid B)$ is undefined if P(B) = 0.
- The event B may be a *composite event* constructed via unions, intersections, and other set operations from other events.
- Conditional probability is *not symmetric*: in general, $P(A \mid B) \neq P(B \mid A)$. What is $P(B \mid A)$? When is $P(B \mid A) = P(A \mid B)$?

$$\mathbf{P}(\mathbf{B} \mid \mathbf{A}) = \frac{\mathbf{P}(\mathbf{B} \cap \mathbf{A})}{\mathbf{P}(\mathbf{A})}$$

The conditional probability of an event A given that an event B of positive probability has occurred (in short, the probability of A given B) is denoted $P(A \mid B)$ and defined by

$$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$$

- The conditional probability $P(A \mid B)$ is undefined if P(B) = 0.
- The event B may be a *composite event* constructed via unions, intersections, and other set operations from other events.
- Conditional probability is *not symmetric*: in general, $P(A \mid B) \neq P(B \mid A)$. What is $P(B \mid A)$? When is $P(B \mid A) = P(A \mid B)$?

$$\mathbf{P}(\mathbf{B} \mid \mathbf{A}) = \frac{\mathbf{P}(\mathbf{B} \cap \mathbf{A})}{\mathbf{P}(\mathbf{A})}$$

$$P(B \mid A) = P(A \mid B)$$
 if, and only if, $P(A) = P(B)$.

Ω

