of the vertex by using $y = -\frac{b}{2a} = -\frac{3}{2} = \frac{3}{2}$ Now that we have the y-coordinate, we can find the s-coordinate

Ouadratic function: is a function that can be written in the form: $s(v) = av^2 + bv + c$ where a, b, and c are real numbers and $a \neq 0$ we have $s(v) = -v^2 + 3v + 13$, note: $-v^2 + 3v + 13$ is in vs-plane

of the vertex by finding $s(\frac{3}{2}) = -1(\frac{3}{2})^2 + 3(\frac{3}{2}) + 13 = -\frac{9}{4} + \frac{9}{2} + 13 = \frac{61}{4}$ Maximum = $\frac{61}{4}$

Solution

Here, we know that a=-1, b=3, c=13

Since a<0 ,we know that the s-coordinate of the vertex is a maximum.However,to find the s-coordinate of our vertex we first need to find the y-coordinate