PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

MATERIAL DE APOIO CÁLCULO I LIMITES

CHAPECÓ, SC 2022

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

1 LIMITES

A noção de limite admite várias acepções. Pode tratar-se de uma linha que separa dois territórios, de um extremo a que chega um determinado tempo ou de uma restrição ou limitação. Para a matemática, um limite é uma grandeza fixa à qual se aproximam cada vez mais os termos de uma sequência infinita de grandezas.

Em termos simples, calcular o limite é investigar de que forma uma função f(x) se comporta quando a variável independente x se aproxima de certo número c (que não pertence necessariamente ao domínio de f). Os limites estão presentes em um grande número de situações da vida real. Assim, por exemplo, podemos nos aproximar do zero absoluto, a temperatura T_c na qual não existe nenhuma agitação molecular, mas jamais conseguimos atingi-lo. Os economistas que falam do lucro de um investimento em um mercado ideal e os engenheiros que calculam a eficiência de um motor em condições ideias também estão trabalhando com situações limite.

As duas operações matemáticas fundamentais em Cálculo são a *diferenciação* e a *integração* ou *antidiferenciação*. Essas operações envolvem o cálculo da *derivada* e da *integral definida*. Ambas as operações citadas são fundamentadas na noção de *limite*¹.

1.1 NOÇÃO INTUITIVA DE LIMITE

Exemplos de sucessões numéricas

- a) 1, 2, 3, 4, 5, 6, ...
- b) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, ...
- c) $0, 1, -1, -2, -3, \dots$
- d) 1, $\frac{3}{2}$, 3, $\frac{5}{4}$, 5, $\frac{7}{6}$, 7, ...

Análise

a) A sequência está indo para o infinito positivo, $+\infty$, o limite tende $+\infty$.

Portanto denota-se $x \to +\infty$

b) A sequência está se aproximando de 1, onde o limite tende a 1.

Portanto denota-se $x \rightarrow 1$

- c) A sequência está indo para o infinito negativo, onde o limite tende $-\infty$ Portanto denota-se $x \to -\infty$
- d) A sequência oscila sem tender para um limite.

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

ANALISANDO FUNÇÕES

Exemplos: Resolver no quadro junto com professor

- 1. Examinar os valores da função $y = \frac{x}{x+3}$ quando x se aproxima, do x = 2.
- 2. Examinar o comportamento da função $f(x) = \frac{x^2 9}{x 3}$, quando x se aproxima do ponto 3.
- 3. Avaliar o limite da função $f(x) = \sqrt{x}$ quando x se aproxima de 0.

Definição

Seja f(x) uma função $f: R \to R$, e seja $a \in R$ de modo que exista uma "vizinhança reduzida" de a contida no domínio de f(x). O limite dessa função para x tendendo à a é o número real L se, e somente se, para qualquer vizinhança completa de L, existir uma vizinhança reduzida de a. Esta definição é ilustrada esquematicamente pela Figura.

Gráfico da função f(x)

Dessa forma o limite de f(x) será escrito como:

$$\lim_{x \to a} f(x) = L$$

Se a seguinte afirmativa for verdadeira:

Dado $\varepsilon > 0$ qualquer, existe um $\delta > 0$, tal que, se $0 < |x-a| < \delta$ então $|f(x)-L| < \varepsilon$. Isto significa que os valores da função f(x) tendem a um limite L quando x tende a um número a, se o valor absoluto da diferença entre f(x) e L puder

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

se tornar tão pequeno quanto desejarmos, tomando $\,x\,$ suficientemente próximo de $\,a\,$, mas não igual a $\,a\,$.

Teorema da unicidade

Se
$$\lim_{x\to a} f(x) = L_1$$
 e $\lim_{x\to a} f(x) = L_2$, então $L_1 = L_2$.

Assim, se a função f tiver um limite L no número real a, então L será o limite de f em a.

1.2 PROPRIEDADES OPERATÓRIAS DE LIMITE

Sejam y = f(x) e z = g(x) duas funções para as quais existem os limites:

$$\lim_{x \to a} f(x) e \lim_{x \to a} g(x)$$

Neste caso existirão os limites relacionados em seguida, bem como são válidas as propriedades operatórias que envolvem esses limites e que se encontram relacionadas a seguir:

$$\lim_{x \to a} f(x) = L$$

1. Sejam $a, m, n \in IR$ então:

$$\lim_{x \to a} (xn + n) = am + n$$

Exemplo: Resolver no quadro junto com professor

a)
$$\lim_{x \to -1} 3x + 4$$

b)
$$\lim_{x\to 0} x^2 + 2x + 2$$

2. Se $\lim_{x\to a} f(x)$ e $\lim_{x\to a} g(x)$ existem, e c e um número real qualquer, então:

$$i) \lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

Exemplo: Resolver no quadro junto com professor

a)
$$\lim_{x\to 5} [(5x+4)+(3x^2-1)]$$

b)
$$\lim_{x\to 2}[(x^2+2)-(x+1)]$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

$$ii$$
) $\lim_{x \to a} cf(x) = c$, $\lim_{x \to a} f(x)$

Exemplo: Resolver no quadro junto com professor

a)
$$\lim_{x\to 0} 7(\sqrt{x} - 2x)$$

iii)
$$\lim_{x\to a} f(x)$$
. $g(x) = \lim_{x\to a} f(x)$. $\lim_{x\to a} g(x)$

Exemplo

a)
$$\lim_{x\to 2} (x+2) \cdot (2x-2)$$

$$\mathbf{iv}) \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ desde que } \lim_{x \to a} g(x) \neq 0$$

Exemplo

a)
$$\lim_{x \to a} \frac{-3+x}{\sqrt{2x-1}}$$

$$v$$
) $\lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n$, para qualquer inteiro positivo.

Exemplo

a)
$$\lim_{x \to a} (x^3 + 4x^2)^5$$

$$vi$$
) $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$, se $\lim_{x\to a} f(x) > 0$ e n inteiro ou se $\lim_{x\to a} f(x) \le 0$ n é inteiro

positivo impar

Exemplo

a)
$$\lim \sqrt[4]{2x^3 - x}$$

$$vii$$
) $\lim_{x \to a} ln[f(x)] = ln[\lim_{x \to a} f(x)]$ se $\lim_{x \to a} f(x) > 0$.

Exemplo

a)
$$\lim_{x \to 6} \ln(x + 4)$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

viii)
$$\lim_{x \to a} cos[f(x)] = cos [\lim_{x \to a} f(x)]$$

$$\lim_{x \to a} sen[f(x)] = sen [\lim_{x \to a} f(x)]$$

$$\mathbf{x})\lim_{x\to a} e^{f(x)} = e^{\lim_{x\to a} f(x)}$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

LISTA DE EXERCÍCIO_01

1. Avaliar o valor da função dada por $y = \frac{f(x) - f(2)}{x - 2}$, quando se aproxima de 2, onde

 $f(x) = 3x^2 + 4$.

- 2. Dada função y = $\frac{x^2-4}{x+2}$, podemos afirmar que $\lim_{x\to 3} \frac{x^2-4}{x+2} = 1$. Mostre graficamente.
- 3. Calcular os limites das seguintes funções:

a)
$$\lim_{x \to 4} \left(\frac{1}{2} x + 3 \right)$$

R: 5

b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

R: 2

c)
$$\lim_{x\to 0} (3-7x-5x^2)$$

R: 3

d)
$$\lim_{x\to 3} (3x^2 - 7x + 2)$$

R: 8

e)
$$\lim_{x \to -1} (-5x^2 + 6x^4 + 2)$$

R: 9

f)
$$\lim_{x \to \frac{1}{2}} (2x + 7)$$

R: 8

g)
$$\lim_{x \to -1} \left[(x+4)^3 \cdot (x-2)^{-1} \right]$$

R: 27

h)
$$\lim_{x \to 0} [(x-2)^{10} \cdot (x+4)]$$

R: 4096

i)
$$\lim_{x \to 2} \frac{x+4}{3x-1}$$

R: 6/5

$$j) \quad \lim_{t \to 2} \frac{t+3}{t+2}$$

R: 5/4

k)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

R: 2

1)
$$\lim_{t\to 2} \frac{t^2 + 5t + 6}{t + 2}$$

R: 5

m)
$$\lim_{t \to 2} \frac{t^2 - 5t + 6}{t - 2}$$

R: - 1

$$n) \lim_{ts \to \frac{1}{2}} \frac{s+4}{2s}$$

R: 9/2

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

o)
$$\lim_{x \to 4} \sqrt[3]{2x+3}$$

p)
$$\lim_{x \to 7} (3x+2)^{\frac{2}{3}}$$

$$q) \lim_{x \to \sqrt{2}} \frac{2x^2 - x}{3x}$$

$$r) \lim_{x \to 2} \frac{x\sqrt{x} - \sqrt{2}}{3x - 4}$$

R:
$$\sqrt[3]{11}$$

R:
$$\sqrt[3]{23^2}$$

R:
$$\frac{2\sqrt{2}-1}{3}$$

$$\mathbf{R:}\ \frac{\sqrt{2}}{2}$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

2 LIMITES LATERAIS

Definição

Seja f uma função definida em um determinado intervalo aberto (a, c). Dizemos que um número L é o limite à direita da função f quando x tende para a e escrevemos

$$\lim_{x \to a^+} f(x) = L$$

se dado $\Sigma > 0$, existe $\delta > 0$, tal que $|f(x) - L| < \Sigma$, se $0 < x < a + \Sigma$

Definição

Seja f uma função definida em um intervalo aberto (d, a). Dizemos que um número L é o limite à esquerda da função f quando x tende para a e escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

Se dado $\Sigma > 0$, existe $\delta > 0$, tal que $|f(x) - L| < \Sigma$, se $\alpha - \delta < x < 0$.

Exemplo

- 1. Calcular os limites laterais se possível.
- a) $\lim_{x \to 3} 1 + \sqrt{x 3}$

b)
$$\lim_{x \to 0} \begin{cases} -\frac{|x|}{x}, se \ x \neq 0 \\ 1, se \ x = 0 \end{cases}$$

c) Seja f(x) = |x|, quando x se aproxima de o.

Teorema

Se f é definida em um intervalo aberto a, exceto possivelmente no ponto a, então $\lim_{x\to a} f(x) = L \text{ se e somente se } \lim_{x\to a^+} f(x) = L e \lim_{x\to a^-} f(x) = L \,.$

Exemplo

1. Determinar $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x) e \lim_{x\to 2} f(x)$ da função se existir.

$$f(x) = \begin{cases} x^2 + 1, para \ x < 2 \\ 2, paa \ x = 2 \\ 9 - x^2, para \ x > 2 \end{cases}$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

2.1 INDETERMINAÇÃO

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty - \infty$, $0 + \infty$, 0^2 , ∞^0 , 1^∞

Observação: Neste caso faz-se necessário organizar o limite.

Exemplo

a)
$$\lim_{x \to -2} \frac{x^3 - 3x + 2}{x^2 - 4}$$

b)
$$\lim_{x\to 0} \frac{\sqrt{X+2}-\sqrt{2}}{x}$$

2.2 LIMITES NO INFINITO

Definição

Seja f uma função definida em um intervalo aberto $(a, +\infty)$. Escrevemos,

$$\lim_{x \to +\infty} f(x) = L$$

quando o número L satisfaz a seguinte condição:

Para qualquer $\Sigma > 0$, exite A > 0 tal que $|f(x) - L| < \Sigma$ sempre que x > A.

Definição

Seja f definido em $(-\infty, b)$. Escrevemos

$$\lim_{x \to -\infty} f(x) = L.$$

Se L satisfaz a seguinte condição:

Para $\forall \ \Sigma > 0$, existe B < 0 tal que $|f(x) - L| < \Sigma$ sempre que x < B.

Teorema

Se n é um número inteiro positivo, então:

i)
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\mathbf{ii}) \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

Exemplo

1. Calcular os limites

a)
$$\lim_{x \to +\infty} \frac{2x-5}{x+8}$$

b)
$$\lim_{x \to -\infty} \frac{2x^2 - 3x + 5}{4x^5 - 2}$$

c)
$$\lim_{x \to -\infty} \frac{2x+5}{\sqrt{2x^2-5}}$$

$$d) \quad \lim_{x \to +\infty} \frac{x^2 + 3}{x + 2}$$

e)
$$\lim_{x \to +\infty} \frac{5 - x^3}{8x + 2}$$

f)
$$\lim_{x \to +\infty} \frac{2x^4 + 3x^2 + 2x + 1}{4 - x^4}$$

2.3 LIMITES INFINITOS

Definição

Seja f uma função definida em um intervalo aberto contendo um ponto a exceto possivelmente em x=a dizemos que:

$$\lim_{x \to a} f(x) = +\infty$$
 ou analogamente $\lim_{x \to a} f(x) = -\infty$

Teorema

Se n é um número inteiro positivo qualquer então:

$$\mathbf{i)} \quad \lim_{x \to 0^+} \frac{1}{x^n} = +\infty$$

ii)
$$\lim_{x\to 0^-} \frac{1}{x^n} \begin{cases} +\infty, se \ n \in par \\ -\infty, se \ n \in impar \end{cases}$$

Exemplo

1. Calcular os limites

a)
$$\lim_{x \to 0} x^3 + \sqrt{x} + \frac{1}{x^2}$$

b)
$$\lim_{x\to 0} \frac{|x|}{x^2}$$

c)
$$\lim_{x \to -1} \frac{5x+2}{|x+1|}$$

LISTA DE EXERCÍCIO_02

1. Calcule, caso existam, os limites abaixo

$$\lim_{a) \to 1} \frac{3x^2 + 3x - 6}{x^2 + 2x - 3}$$

$$\lim_{x \to \frac{1}{3}} \frac{3x^2 + 2x - 1}{9x^2 - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$

$$\lim_{d \to 1} \frac{\sqrt{2 - x^2} - 1}{x - 1}$$

$$\lim_{e) \xrightarrow{x \to +\infty} \frac{\sqrt[3]{5x^3 - 2}}{7x}$$

$$\lim_{x \to +\infty} \frac{3x^7 - x^{10}}{5x^{15} - x^{10}}$$

$$\lim_{g)^{x \to -\infty}} \frac{5x}{\sqrt[4]{5x^4 + 3}}$$

$$\lim_{h \to -\infty} \frac{6x^3 + 5x^2 - 7x + 3}{4x^3 - 5x + 1}$$

$$\lim_{i)^{x\to 0}} \frac{x^2}{|x|}$$

$$\lim_{\substack{j \\ j}} \lim_{x \to 1^+} \frac{2\sqrt{x} - 2}{x^2 - 2x + 1}$$

k)
$$\lim_{x\to 1} \frac{x^2 - 8x + 7}{1 - x}$$

$$\lim_{x \to \frac{2}{3}^{+}} \frac{5}{3x-2}$$

$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{|x^2 - 4|}$$

$$\lim_{n \to 0} \frac{|x|}{x}$$

$$\lim_{0 \to -\infty} \frac{x^2 - 3x + 1}{5x^2 - 3}$$

p)
$$\lim_{x\to 2} \frac{x^3 - 8x^2 + 12x}{x - 2}$$

$$\lim_{x \to 2} f(x) \text{ sendo } f(x) = \begin{cases} \frac{1}{2 - 5x}, se & x > 2 \\ \frac{3}{\sqrt{x - 3}}, se & x \le 2 \end{cases}$$

r)
$$\lim_{x\to 0} f(x)$$
 sendo $f(x) \begin{cases} 5x+1, se \ x<0 \\ 7, se \ x=0 \\ 1-3x, se \ x>0 \end{cases}$

RESPOSTAS

$$0 j) + \infty k) 6 l) + \infty m) -1 n) NE o) 1/5 p) -8 q)$$

NE r) 1

2. Calcule os limites:

a)
$$\lim_{x\to 6^+} \frac{4}{x-6} =$$

c)
$$\lim_{x \to 1^+} \frac{3}{1-x} =$$

e)
$$\lim_{x \to 0^+} \frac{x+5}{x} =$$

g)
$$\lim_{x \to 1^+} \frac{x^2}{x - 1} =$$

i)
$$\lim_{r\to 0^+} \frac{-1}{r^2} =$$

b)
$$\lim_{x\to 6^{-}} \frac{4}{x-6} =$$

d)
$$\lim_{x \to 1^{-}} \frac{3}{1-x} =$$

$$f) \lim_{x\to 0^-} \frac{x+5}{x} =$$

h)
$$\lim_{x \to 1^{-}} \frac{x^2}{x - 1} =$$

j)
$$\lim_{x\to 0^{-}} \frac{-1}{x^2} =$$

RESPOSTAS

$$\mathbf{a}. \infty \quad \mathbf{b}. - \infty \quad \mathbf{c}. - \infty \quad \mathbf{d}. \infty \quad \mathbf{e}. \infty \quad \mathbf{f}. - \infty \quad \mathbf{g}. \infty \quad \mathbf{h}. - \infty \quad \mathbf{i}. - \infty$$

j.- ∞

3. Encontre o valor do limite:

a)
$$\lim_{x \to -2} (x^2 + 2x - 1) =$$

b)
$$\lim_{y \to -1} (y^3 - 2y^2 + 3y - 4) =$$

c)
$$\lim_{t \to 2} \frac{t^2 - 5}{2t^3 + 6} =$$

d)
$$\lim_{x \to -1} \frac{2x+1}{x^2-3x+4} =$$

e)
$$\lim_{y \to -2} \frac{y^3 + 8}{y + 2} =$$

f)
$$\lim_{s \to 1} \frac{s^3 - 1}{s - 1} =$$

g)
$$\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 - x - 12} =$$

$$h) \quad \lim_{r \to 1} \sqrt{\frac{8r+1}{r+3}} =$$

i)
$$\lim_{x \to 2} \sqrt{\frac{x^2 + 3x + 4}{x^3 + 1}} =$$

j)
$$\lim_{y \to -3} \sqrt{\frac{y^2 - 9}{2y^2 + 7y + 3}} =$$

k)
$$\lim_{t \to \frac{3}{2}} \sqrt{\frac{8t^3 - 27}{4t^2 - 9}} =$$

1)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x} =$$

$$m) \lim_{t\to 0} \frac{2-\sqrt{4-t}}{t} =$$

n)
$$\lim_{x\to 1} \frac{x^2-6x+5}{x+1} =$$

o)
$$\lim_{x \to -2} \frac{x^3 - x^2 - x + 10}{x^2 + 3x + 2} =$$

p)
$$\lim_{x \to 3} \frac{2x^3 - 5x^2 - 2x - 3}{4x^3 - 13x^2 + 4x - 3} =$$

RESPOSTAS

a)7 b) -10 c)
$$-\frac{1}{22}$$
 d) $-\frac{1}{8}$ **e) 12 f) 3 g)** $\frac{1}{7}$ **h)** $\frac{3}{2}$ **i)** $\frac{\sqrt{14}}{3}$ **j)** $\frac{1}{5}\sqrt{30}$

c)
$$-\frac{1}{22}$$

d)
$$-\frac{1}{8}$$

g)
$$\frac{1}{7}$$

h)
$$\frac{3}{2}$$

i)
$$\frac{\sqrt{14}}{3}$$

j)
$$\frac{1}{5}\sqrt{30}$$

k)
$$\frac{3\sqrt{2}}{2}$$
 l) $\frac{1}{4}\sqrt{2}$ **m**) $\frac{1}{4}$ **n**)- 4 **o**) -15 **p**) $\frac{11}{17}$

b) -15 p)
$$\frac{1}{1}$$

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

4. Calcule os seguintes limites indeterminados:

a)
$$\lim_{x\to 3} \frac{x^2-9}{x-3} =$$

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} =$$
 e) $\lim_{x \to 0} \frac{x^3}{2x^2 - x} =$

i)
$$\lim_{x\to 4} \frac{x^2 - 7x + 12}{x - 4} =$$

b)
$$\lim_{x \to -7} \frac{49 - x^2}{7 + x} =$$

b)
$$\lim_{x \to -7} \frac{49 - x^2}{7 + x} =$$
 f) $\lim_{x \to -7} \frac{49 + 14x + x^2}{7 + x} =$ j) $\lim_{x \to 1} \frac{x - 1}{x^2 - 3x + 2} =$

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 3x + 2} =$$

c)
$$\lim_{x\to 5} \frac{5-x}{25-x^2} =$$

c)
$$\lim_{x \to 5} \frac{5 - x}{25 - x^2} =$$
 g) $\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3} =$

1)
$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x - 1} =$$

d)
$$\lim_{x\to 0} \frac{x^2 + x}{x^2 - 3x} =$$

d)
$$\lim_{x \to 0} \frac{x^2 + x}{x^2 - 3x} =$$
 h) $\lim_{x \to 1} \frac{x^2 - 4x + 3}{x - 1} =$

m)
$$\lim_{x\to 2} \frac{x-2}{x^2-4} =$$

5. Se $f(x) = x^2 + 5x - 3$ mostre que $\lim_{x \to 2} f(x) = f(2)$.

6. Se $g(x) = \frac{x^2 - 4}{x - 2}$ mostre que $\lim_{x \to 2} g(x) = 4$, mas que g(2) não está definida.

RESPOSTAS

a) 6 **b**) 14

c) 1/10 d) -1/3 e) 0 f) 0 g) 0 h) -2 i) 1 j) -1 l) 0 m) 1/4

LISTA DE EXERCÍCIO_03

$$\lim_{x \to 1} \frac{x - x^2}{1 - x^2} = 1$$
1. Mostre que

$$\lim_{x \to 0^{-}} (x + \frac{x}{|x|}) = -1 \qquad \lim_{x \to 0^{+}} (x + \frac{x}{|x|}) = 1$$
2. Mostre que

3. Calcule, caso existam, os limites abaixo

$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4}$$
a) Resp: - 3/4

$$\lim_{x \to 3} \frac{5x^2 - 8x - 13}{x^2 - 5}$$
b) Resp: 2

$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$$
Resp: 11/4

$$\lim_{d)} \frac{2x^3 + 1}{x^3 - 2x^2}$$
Resp: 2

$$\lim_{x \to \infty} \frac{3x^3 + 4x^2 - 2}{2x^3}$$
Resp: 3/2

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
f) Resp: 2

$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$
Resp. $\frac{1}{2\sqrt{2}}$

$$\lim_{\text{h)}} f(x) = \begin{cases} x - 1, se \ x \le 3 \\ 3x - 7, se \ x > 3 \end{cases}$$
Resp: 2

PROF^a. Dra. ELISETE ADRIANA JOSÉ LUIZ

$$\lim_{t \to 2} \frac{t^2 - 5t + 6}{t - 2}$$

R: - 1

$$\lim_{j \to 1} \frac{x^2 - 1}{x - 1}$$

R: 2

k)
$$\lim_{x \to 3} \sqrt{\frac{x^2 + x - 2}{x^2 + 1}}$$

1)
$$\lim_{x\to 0} \frac{\sqrt{x+25}-5}{x}$$

$$\underline{f(x)-f(2)}$$

4. Avaliar o valor da função dada por y = $\frac{f(x) - f(2)}{x - 2}$, quando se aproxima de 2, onde

$$f(x) = 3x^2 + 5x - 1$$
. Resp: 17

5. Calcule os limites laterais:

$$\lim_{a)} \frac{4}{x-6} =$$
Resp: ∞

$$\lim_{b \to 6^{-}} \frac{4}{x - 6} =$$
Resp: $-\infty$

6. Mostre que
$$\lim_{x\to 0} (x + \frac{x}{|x|})$$
 não existe.

7. Seja
$$f(x) = \frac{1}{x+1}, x \neq -1$$
. Determine $\lim_{x \to 3} \frac{f(x) - f(3)}{x-3}$.