数据结构与算法设计

林永钢

教材:

[王] 王晓东,计算机算法设计与分析(第4版),电子工业.

参考资料:

[C] 潘金贵等译, Cormen等著, 算法导论, 机械工业.

[M] 黄林鹏等译, Manber著, 算法引论-一种创造性方法, 电子.

第四章 贪心算法 Greedy

!!贪心不一定正确(0-1背包),需要证明

- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

构造"贪心"反例

- 找零问题: 一出纳员支付一定数量的现金。假设他手中有各种面值的纸币和硬币,要求他用最少的货币数支付规定的现金
- · 例如,现有4种硬币:它们的面值分别为1分、2分、5分和1角,要支付2角5分
- 首先支付2个1角硬币,然后支付一个5分硬币,这就 是贪心策略
- 反例: 三种: 1、4、6, 支付8

构造"贪心"反例

· 货郎担(TSP)问题:设售货员要到五个城市去售货,最后再回到出发的城市,已知从一个城市到其他城市的费用,求总费用最少的路线

- ·结点a为起点:
- ·结点b为起点:
- · 结点c为起点:
- ·结点d为起点:
- •最优解: 12

构造"贪心"反例:着色

- 1) 将图 G 中的结点按度数递减的次序进行排列(相同度数的结点的排列随意)。
- 2) 用第一种颜色,对第一点着色,并按排列次序对与前面结点不相邻的每一点着同样的颜色。
- 3) 用第二种颜色对尚未着色的点重复第2步,直到所有的点都着上颜色为止。

2022-12-5 5 of 158

构造"贪心"反例:着色

解:

•按度数递减次序排列各点

CABFGHDE

• 第一种颜色: *C*, *A*, *G*

• 第二种颜色: B, H, D, E

• 第三种颜色: F

所以图是三色的。

另外图不能是两色的,因为图中有A,B,F两两相邻,所以 x(G)=3

最短路问题

小张被借调到一个新单位,图中a点是小张的住宅,z为新单位的位置,边上的数字表示距离,则小张到新单位的最短距离为.

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

活动安排问题([王]P90)

 \mathbf{n} 个活动申请一个活动室,各活动起始终止区间 (s_i,f_i)

- 输入: $n, (s_i, f_i), i = 1:n$
- 输出: 最大相容活动子集(无冲突, 活动个数最多)

最优解可以包含 最早结束的

先给出算法,再证明正确性(A[i]=true或false)

- 1. 按终止时间排序 $f_1 \le f_2 \le ... \le f_n$. A[1] = true; pt = 1;
- 2. 对 i = 2:n
- 3. 若 s[i] >= f[pt],则 A[i] = true, pt = i,
- 4. 否则 A[i] = false

活动安排算法正确性证明

- \mathbf{n} 个活动申请一个活动室,活动起始终止区间 (s_i,f_i)
- 输入: $n, (s_i, f_i), i = 1:n$, 输出: 最大相容活动子集
- 第一步证明贪心选择性质: 存在最优解包含相容最早结束的活动1
- 第二步 证明最优子结构性质: 若A是包含活动1的最大相容活动集(最优策略), 则A-{1}(子决策)是 $\{i \mid s_i >= f_1\}$ (子问题)上的最大相容活动集
- 由此用数学归纳法, 就可以证明算法正确性

活动安排算法正确性证明

11个活动已按结束时间排序,用贪心算法求解:

i	1	2	3	4	5	6	7	8	9	10	<u>11</u>
start_time _i	1	3	0	5	3	5	6	8	8	2	12
finish_time _i	4	5	6	7	8	9	10	11	12	13	14

11111211	_u	1110	i		<u> </u>	U			/ 0		
time	\mathbf{a}_1	$\mathbf{a_2}$	\mathbf{a}_3	$\mathbf{a_4}$	a_5	\mathbf{a}_{6}	\mathbf{a}_7	$\mathbf{a_8}$	a ₉	\mathbf{a}_{10}	a ₁₁
0											
1											
3 4 5 6											
3											
4											
5											
6											
7 8											
9											
10											
11											
10 11 12 13 14											
13											
14											

相容活动: {a₃, a₉, a₁₁}, {a₁,a₄,a₈,a₁₁}, {a₂,a₄,a₉,a₁₁}

活动安排算法正确性证明

最优解: $\{a_2,a_4,a_9,a_{11}\}$ $\{a_1,a_4,a_8,a_{11}\}$

第一步 证明贪心选择性质:

存在最优解包含相容最早结束的活动1 第二步 证明最优子结构性质:

若A是包含活动1的最大相容活动集(最优策略),则A-{1}(子决策)是 $\{i \mid s_i>=f_1\}$ (子问题)上的最大相容活动集

- •一、最小的1可以在里面, {1, 4, 9, 11}
- •则A-{1}={4,9,11}是子问题{4,6,7,8,9,11}的最优解
- •二、最小的4可以在里面, {4,9,11}
- •则A-{4}={9,11}是子问题{8,9,11}的最优解
- 三、最小的8可以在里面, {8,11}
- •则A-{8}={11}是子问题{11}的最优解

活动安排算法DP

设 $f_1 \le f_2 \le ... \le f_n$,添加 $f_0 = 0$, $s_{n+1} = \infty$ dp[i,j] = 在活动i结束后和活动j开始前的最大相容活动的活动个数

■ 输出 dp[0, n+1]

$$dp[i,j] = \begin{cases} 0 & \text{若为}\phi\\ \max_{i < k < j} \{dp[i,k] + dp[k,j] + 1\} & \text{否则} \end{cases}$$

2022-12-5 13 of 158

$$dp[0, n+1]$$
 相容活动: $\{a_3, a_9, a_{11}\}, \{a_1, a_4, a_8, a_{11}\}, \{a_2, a_4, a_9, a_{11}\}$

$$dp[i, j] = \begin{cases} \max_{i < k < j} \{dp[i, k] + dp[k, j] + 1\} \end{cases}$$
 否则

time	\mathbf{a}_1	$\mathbf{a_2}$	$\mathbf{a_3}$	$\mathbf{a_4}$	$\mathbf{a_5}$	\mathbf{a}_6	\mathbf{a}_7	$\mathbf{a_8}$	\mathbf{a}_9	\mathbf{a}_{10}	a ₁₁	= ap[0, 12]
0												$= \max\{dp[0,1] + dp[1,12] +$
1												max(up(0,1) up(1,12)
2												
3												• • •
4												1 [0 0] 1 [0 10]
5												dp[0,3] + dp[3,12] +
6												
7												• • •
8												
9												dp[0,8] + dp[8,12] +
10												$ap[0,0] \cdot ap[0,12]$
11												
12												• • •
13)
14												}

2022-12-5

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

贪心算法的基本要素

对于一个具体问题,怎么知道能否用贪心算法

- 贪心选择性质和最优子结构性质(比较矩阵连乘)
- 贪心选择性质

对比:矩阵连乘,0-1背包,分数背包

贪心算法第一基本要素,与DP主要区别

自顶向下计算

- · OSP: 最优策略的子策略也是最优 //动规, 贪心
- 正确性证明一般过程:

贪心选择+OSP+数学归纳法

条件: 子问题与原问题类似, 相对独立

子问题的最优解和贪心选择联合得整体最优解

分数背包

- •已知一个容量大小为M重量的背包和n种物品,物品i的重量为 w_i ,假定物品i的一部分 x_i 放入背包会得到 $v_i x_i$ 这么大的收益,这里, $0 \le x_i \le 1$, $v_i > 0$,采用怎样的装包方法才会使装入背包的物品总效益最大
- 考虑以下情况下的背包问题 $n=3, M=20, (v_1, v_2, v_3)=(25,24,15)$ $(w_1, w_2, w_3)=(18,15,10)$

分数背包贪心法证明

Case1:所有 $x_i = 1$ 。显然该解就是最优解。

 $Case2: \partial X = (1,...,1,x_j,0,...,0) \quad x_j \neq 1, 1 \leq j \leq n$ 。下证X就是最优解。 设问题的最优解 $Y = (y_1,...,y_n)$,则存在k使得 $y_k \neq x_k$ 的最小下标(否则Y = X,得证)。

$$\Rightarrow \sum_{i=1}^{n} w_{i} y_{i} \geq \sum_{i=1}^{k} w_{i} y_{i} > \sum_{i=1}^{k} w_{i} x_{i} = \sum_{i=1}^{j} w_{i} x_{i} = c : Y不是可行解,矛盾)$$

下面改造Y成为新解 $Z=(z_1,...,z_n)$,并使Z仍为最优解。将 y_k 增加到 x_k ,从 $(y_{k+1},...,y_n)$ 中减同样的重量使总量仍是c。即,

$$z_i = x_i$$
 $i = 1, 2, ..., k$; $\neq \infty$ $\sum_{i=k+1}^n w_i y_i - w_k (z_k - y_k) = \sum_{i=k+1}^n w_i z_i$

分数背包贪心法证明(举例)

j是使 $x_j \neq 1$ 的最小下标,k是使 $y_k \neq x_k$ 的最小下标

分数背包贪心法证明

 $\therefore Z$ 也是最优解,且 $Z_i = X_i$ i = 1,...,k; 重复上面过程 $\Rightarrow X$ 为最优解。

分数背包贪心法证明(举例)

j是使 $x_j \neq 1$ 的最小下标, k是使 $y_k \neq x_k$ 的最小下标 n=4, M=16, $(v_1, v_2, v_3, v_4)=(20,12,6,6)$

 $(w_1, w_2, w_3, w_4) = (10, 12, 6, 6)$

X=(1,1/2, 0, 0)

Y=(1,1/3,1/6,1/6) 并且k=2,j=2 代换 $Z=(1,1/2,z_3,z_4)$

 $w_3(y_3-z_3)+w_4(y_4-z_4)=w_2(1/2-1/3)$

 $6(1/6-z_3)+6(1/6-z_4)=12*1/6$

 $z_3+z_4=0$ 即推得Z=(1,1/2,0,0)=X

- •用贪心法求解有限期的任务安排问题:假设只能在同一台机器上加工n个任务,每个任务i完成时间均是一个单位时间,又设每个任务i都有一个完成期限d_i>0,当且仅当任务i在它的期限截止以前被完成时,任务i才能获得p_i的效益,每个任务的期限从整个工序的开工开始计时,问应如何安排加工顺序,才能获得最大效益
- $n=6,(p_1,p_2,p_3,p_4,p_5,p_6)=(5,25,20,30,10,15),$

$$(d_1,d_2,d_3,d_4,d_5,d_6)=(1, 5, 2, 3, 3, 2)$$

• 任务i完成时间均是一个单位时间,当且仅当任务i 在它的期限截止以前被完成时,i才能获得 p_i 的效益 $n=6,(p_1,p_2,p_3,p_4,p_5,p_6)=(5,25,20,30,10,15),$ $(d_1,d_2,d_3,d_4,d_5,d_6)=(1,5,2,3,3,2)$

- 类似单价排序?
- 法一: 按效益从大到小排序

任务 0 1 2 3 4 5 6 p_i 0 30 25 20 15 10 5 d_i 0 3 5 2 2 3 1

• 任务i完成时间均是一个单位时间,当且仅当任务i在它的期限截止以前被完成时,i才能获得p_i的效益

法一:按效益从大到小排序

```
任务 0 1 2 3 4 5 6 p<sub>i</sub> 0 30 25 20 15 10 5 d<sub>i</sub> 0 3 5 2 2 3 1
```

• 任务i完成时间均是一个单位时间,当且仅当任务i在它的期限截止以前被完成时,i才能获得 p_i 的效益

法二:按期限从大到小排序

```
任务 0 1 2 3 4 5 6 p<sub>i</sub> 0 25 30 10 20 15 5 d<sub>i</sub> 0 5 3 3 2 2 1
```

• 任务i完成时间均是一个单位时间,当且仅当任务i在它的期限截止以前被完成时,i才能获得p_i的效益

法三:时间槽 [C]

按效益从大到小排序

任务 1 2 3 4 5 6 p_i 30 25 20 15 10 5 d_i 3 5 2 2 3 1

1	2	3	4	5	

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

最优装载

最优装载

- 输入: n物品重W[1:n], 背包容量C
- 输出: 装包使得件数最多.
- 每件物品只能取或不取

$$\max \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} W_{i} x_{i} \leq C$$

$$x_i \in \{0,1\}, 1 \le i \le n$$

- n =8, [w1, ..., w8] = [100,200,50,90,150,50,20,80], C=400 从剩下的货箱中,选择重量最小的货箱
- 贪心选择性质: 最优解可以包含重量最小的
- OSP: 最优解([1:n],C)去掉重量最小([2:n],C-W[1])仍 是最优解

最优装载贪心法证明

设集装箱已依其重量从小到大排序, (x_1,x_2,\cdots,x_n) 是最优装载问题的一个最优解。又设 $k=\min_{1\leq i\leq n}|i|x_i=1$ 。易知,如果给定的最优装载问题有解,则 $1\leq k\leq n$ 。

- (1) 当 k = 1 时, (x_1, x_2, \dots, x_n) 是一个满足贪心选择性质的最优解。
- (2) 当 k > 1 时,取 $y_1 = 1$; $y_k = 0$; $y_i = x_i$, $1 < i \leq n$, $i \neq k$,则,

$$\sum_{i=1}^{n} w_{i} y_{i} = w_{1} - w_{k} + \sum_{i=1}^{n} w_{i} x_{i} \leqslant \sum_{i=1}^{n} w_{i} x_{i} \leqslant c$$

因此,(y1, y2, …, yn)是所给最优装载问题的一个可行解。

另一方面,由 $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} x_i$ 知, (y_1, y_2, \dots, y_n) 是一个满足贪心选择性质的最优解。所以,最优装载问题具有贪心选择性质。

设 (x_1,x_2,\cdots,x_n) 是最优装载问题的一个满足贪心选择性质的最优解,则易知, $x_1=1$, (x_2,\cdots,x_n) 是轮船载重量为 $c-w_1$ 且待装船集装箱为 $\{2,3,\cdots,n\}$ 时相应最优装载问题的一个最优解。也就是说,最优装载问题具有最优子结构性质。

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

哈夫曼编码([王]P96)

- ·某通讯系统使用5种字符a、b、c、d、e,使用频率分别为0.1,0.14,0.2,0.26,0.3,利用二叉树设计不等长编码
- 1)构造以a、b、c、d、e为叶子的二叉树;
- 2) 将该二叉树所有左分枝标记0, 所有右 分枝标记1;
- 3) 从根到叶子路径上标记作为叶子结点所对应字符的编码;

哈夫曼编码([王]P96)

•5种字符a、b、c、d、e,使用频率分别为0.1,0.14,0.2,0.26,0.3

a: 000 b: 001

c: 01 d: 10

e: 11

30000-(1000+1400)*3-(2000+2600+3000)*2 =7600

哈夫曼编码贪心选择性质

Let a and b be two characters that are sibling leaves of maximum depth in T. Without loss of generality, we assume that $f[a] \le f[b]$ and $f[x] \le f[y]$. Since f[x] and f[y] are the two lowest leaf frequencies, in order, and f[a] and f[b] are two arbitrary frequencies, in order, we have $f[x] \le f[a]$ and $f[y] \le f[b]$. As shown in Figure 16.6, we exchange the positions in T of a and x to produce a tree T', and then we exchange the positions in T' of b and y to produce a tree T'. By equation (16.5), the difference in cost between T and T' is

$$\begin{split} B(T) - B(T') &= \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c) \\ &= f[x] d_T(x) + f[a] d_T(a) - f[x] d_{T'}(x) - f[a] d_{T'}(a) \\ &= f[x] d_T(x) + f[a] d_T(a) - f[x] d_T(a) - f[a] d_T(x) \\ &= (f[a] - f[x]) (d_T(a) - d_T(x)) \\ &> 0 \, . \end{split}$$

because both f[a] - f[x] and $d_T(a) - d_T(x)$ are nonnegative. More specifically, f[a] - f[x] is nonnegative because x is a minimum-frequency leaf, and $d_T(a) - d_T(x)$ is nonnegative because a is a leaf of maximum depth in T. Similarly, exchanging y and b does not increase

第四章 贪心算法 Greedy

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树

最小生成树(MST[王]P103)

- 无向连通带权图G=(V,E,w).
- · G的生成树是G的包含所有顶点的一颗子树
- ·若G的生成树T'在所有G的生成树中各边权总和最小,则T'称为G的最小生成树(MST, minimum spanning tree)

MIST性质(贪心选择+归纳)

- •设G=(V,E)是连通带权图,U是V的真子集。若(u,v) \in E,且u \in U,v \in V-U,且在所有这样的边中,(u,v)的权w(u,v)最小,那么一定存在G的一棵最小生成树,它以(u,v)为其中一条边。这个性质有时也称为MST性质。
- 证明: 如图, 设T是MST, (u,v)∉T, (u',v')∈T.
 则必有 w(u,v) ≤ w(u',v'). 由T去(u',v')添(u,v)得树T'.

Prim算法举例

Kruskal算法举例

并查集算法(Make-set, Find-set)

p[x]: x的父亲; rank[x]: x的阶; Find(x): 找x的根

Make(x)

1 p[x] = x

 $2 \operatorname{rank}[x] = 0$

Find(x)

1 若 x≠p[x],则

2 p[x] = Find(p[x])

3 返回 p[x]

路径压缩(pc)技术

Union(x,y)

1 Link(Find(x), Find(y))

Link(x,y) //合并两树根

1 若 rank[x]>rank[y]

2 则 p[y]=x

3 否则 p[x]=y

4 若 rank[x]=rank[y]

5 则 rank[y]=rank[y]+1

加入并查集结构的Kruskal算法

- 1. A为空, Q=E按边权升序排列, 每个点是一颗树
- 2. 当Q非空
- 3. 顺序取Q中边(u,v)
- 4. 若u,v在不同树中,则添(u,v)到A,合并u,v所在树,
- 5. 输出A
- 1. A为空, Q=E按边权升序排列, ∀x Make(x)
- 2. 当Q非空
- 3. 顺序取Q中边(u,v)
- 4. 若Find(u)≠Find(v),则添(u,v)到A, Union(u,v),
- 5. 输出A

Kruskal: 取边, 查找, 合并

 $Q={31, 46, 25, 36, 34, 23, 14, 12, 35, 56}$

Kruskal: 取边, 查找, 合并

 $Q={31, 46, 25, 36, 34, 23, 14, 12, 35, 56}$

查并(3,6)

查(3,4)

Kruskal: 取边, 查找, 合并

一:一台机器、n个零件,使得各加工零件在车间里停留的平均时间最短。

零件	加工时间
1	1.8
2	2.0
3	0.5
4	0.9
5	1.3
6	1.5

若按此顺序:

(1.8+3.8+4.3+5.2+6.5+8)/6=4.9

实际上最短: 3, 4, 5, 6, 1, 2 (0.5+1.4+2.7+4.2+6+8)/6=3.8

二:两台机器、n个零件的排序

目的: 使得完成全部工作的总时间最短。

2022-12-5 45 of 158

用一台车床和一台铣床加工A、B、C、D四个零件。每个零件都需要先用车床加工,再用铣床加工。车床与铣床加工每个零件所需的工时:

工时(小时)	A	В	C	D
车床	8	6	2	4
铣床	3	1	3	12

若以A、B、C、D零件顺序安排加工,则共需32小时。适当调整零件加工顺序,可产生不同实施方案,我们称可使所需总工时最短的方案为最优方案。在最优方案中,零件A在车床上的加工顺序安排在第_(1)_位,四个零件加工共需(2)小时。

2022-12-5

工时(小时)	A	В	C	D
车床	8	6	2	4
铣床	3	1	3	12

以A、B、C、D零件顺序安排加工,则共需32小时。

基本方法:

在第一台机器上加工时间越少的零件越早加工;

在第二台机器上加工时间越少的零件越晚加工;

2022-12-5 47 of 158

工时(小时)	A	В	C	D
车床	8	6	2	4
铣床	3	1	3	12

(1)(2)第一个:第一个:第二个:第二个:第三个:第三个:第四个:B

(3) (4) 第一个: C 第一个: C 第二个: 第二个: D 第三个: A 第三个: A 第四个: B 第四个: B

CDAB: 22

教室安排问题

- 假设要用很多个教室对一组活动进行调度。我们希望使用尽可能少的教室来调度所有的活动。
- 例如,有如下活动的开始和结束时间。
- **1** 3
- **2** 4
- **4** 7
- **3** 5
- **1** 4
- 统一排序

教室安排问题

- 1 3
- 2 4
- 4 7
- 3 5
- 1 4
- 分别排序
- 若开始<结束,则count++,指针j后移1 1 2 3 4

• 3 4 4 5 7

- 1 3
- 2 4
- 4 7
- 3 5
- 1 4
- 只按开始时间排序(1,3)(1,4)(2,4)(3,5)(4,7)

依序遍历	优先队列,为结束时间	原因

本章小结

- !!贪心不一定正确(0-1背包),需要证明
- 4.1 活动安排问题
- 4.2 贪心算法的基本要素(分数背包)
- 4.3 最优装载
- 4.4 哈夫曼编码
- 4.6 最小生成树