In re: Won et al.

Serial No.: 10/800,826 Filed: March 15, 2004

Page 2

In the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Claims 1-42 (Canceled)

43. (Currently amended) A method of forming an integrated circuit device, comprising:

forming a lower electrode on a substrate;

forming a dielectric layer on the lower electrode; and

forming an upper electrode on the dielectric layer;

wherein at least one of the lower electrode and the upper electrode comprises a ruthenium film having a stratified oxygen concentration profile that substantially approximates a step function such that the oxygen concentration profile is relatively high from a surface of an underlayer to a predetermined thickness, the oxygen concentration profile rapidly decreases at the predetermined thickness, and the oxygen concentration profile is relatively low and substantially constant from the predetermined thickness toward a top surface of the ruthenium film.

44 - 45. (Canceled)

46. (Currently amended) The method as recited in claim 45 43, wherein forming the lower electrode and/or forming the upper electrode comprises:

reacting a ruthenium source gas and oxygen at a first pressure and at a first oxygen gas flow rate to deposit ruthenium on the substrate; and

reacting the ruthenium source gas and oxygen at a second pressure and at a second oxygen gas flow rate to deposit ruthenium on the substrate, wherein at least one of the second pressure and the second oxygen gas flow rate is less than the first pressure and the first oxygen gas flow rate, respectively.

In re: Won et al.

Serial No.: 10/800,826 Filed: March 15, 2004

Page 3

- 47. (Previously presented) The method as recited in claim 46, wherein the first oxygen gas flow rate is in the range of about 500 sccm to 2000 sccm and the second oxygen gas flow rate is in a range of about 10 sccm to 300 sccm.
- 48. (Currently amended) The method as recited in claim 45 43, wherein forming the lower electrode and/or forming the upper electrode comprises:

reacting a ruthenium source gas and oxygen to deposit ruthenium on the substrate; and changing at least one of a pressure, an oxygen gas flow rate, and a substrate temperature during the step of reacting the ruthenium source gas and oxygen.

49. (Previously presented) The method as recited in claim 48, wherein changing at least one of the pressure, the oxygen gas flow rate, and the substrate temperature comprises: decreasing the oxygen gas flow rate from a range of about 500 sccm to 2000 sccm to a

range of about 10 to 300 sccm.

50. (Currently amended) The method as recited in claim 45,

A method of forming an integrated circuit device, comprising:

forming a lower electrode on a substrate;

forming a dielectric layer on the lower electrode; and

forming an upper electrode on the dielectric layer;

wherein at least one of the lower electrode and the upper electrode comprises a ruthenium film having a stratified oxygen concentration; and

wherein forming the lower electrode and/or forming the upper electrode comprises:

forming the ruthenium film on the substrate such that the ruthenium nucleation rate is greater than the ruthenium growth rate; and

forming the ruthenium film on the substrate such that the ruthenium growth rate is greater than the ruthenium nucleation rate.