

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P.O. Bo. 1450 Altxand ia, Virginia 22313-1450 www.unito.gov

APPLICATION NO.	F	ILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO
09/847,642	05/01/2001		Luciano Lavagno	261/246	6620
23639	7590	10/24/2006		EXAMINER	
	•	ITCHEN LLP DERO CENTER	GUILL, RUSSELL L		
18 FLOOR				ART UNIT	PAPER NUMBER
SAN FRANC	CISCO, (CA 94111-4067	2123		

DATE MAILED: 10/24/2006

Please find below and/or attached an Office communication concerning this application or proceeding.

	Application No.	Applicant(s)
	09/847,642	LAVAGNO ET AL.
Office Action Summary	Examiner	Art Unit
	Russ Guill	2123
The MAILING DATE of this communication app Period for Reply	ears on the cover sheet with the c	orrespondence address
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim rill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE	N. nely filed the mailing date of this communication. D (35 U.S.C. § 133).
Status		
Responsive to communication(s) filed on 14 Sec 2a) This action is FINAL. 2b) This 3) Since this application is in condition for allowar closed in accordance with the practice under E	action is non-final. nce except for formal matters, pro	
Disposition of Claims		
4) Claim(s) 1-22 and 33-60 is/are pending in the a 4a) Of the above claim(s) is/are withdray 5) Claim(s) is/are allowed. 6) Claim(s) 1-22 and 33-60 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or	vn from consideration.	
Application Papers		
9) ☐ The specification is objected to by the Examine 10) ☑ The drawing(s) filed on 27 July 2001 is/are: a) ☐ Applicant may not request that any objection to the Replacement drawing sheet(s) including the correction 11) ☐ The oath or declaration is objected to by the Examine 11.	☑ accepted or b)☐ objected to be drawing(s) be held in abeyance. See ion is required if the drawing(s) is ob	e 37 CFR 1.85(a). jected to. See 37 CFR 1.121(d).
Priority under 35 U.S.C. § 119		
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority documents 2. Certified copies of the priority documents 3. Copies of the certified copies of the prior application from the International Bureau * See the attached detailed Office action for a list of	s have been received. s have been received in Applicati ity documents have been receive i (PCT Rule 17.2(a)).	on No ed in this National Stage
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	ate

Art Unit: 2123

DETAILED ACTION

Page 2

1. This Office Action is in response to an amendment filed September 14, 2006. Claims 23 – 32 were previously canceled. No claims were added. Claims 1 – 22 and 33 – 60 are pending. Claims 1 – 22 and 33 – 60 have been rejected.

- 2. This Office Action is **NON-final** because of new rejections made as a result of Applicant's persuasive arguments.
- 3. In the previous Office Action dated April 11, 2006, the Examiner noted that the application will be forwarded to the Office of Initial Patent Examination for issuance of a corrected filing receipt, and correction of Office records to reflect the inventorship as corrected. This action is being retracted because it appears that the provisions of rule 1.48 (b) were not completely satisfied, since a processing fee does not appear to have been paid (rule 1.48 (b)(2)). However, in order to expedite the examination process, the Examiner is proceeding with examination as if the inventorship will be corrected.
- 4. The Examiner would like to thank the Applicant for the well-presented amendment, which was useful in the examination process.

Response to Remarks

5. Regarding claims 1 - 13, 15 - 19, 21 - 22, 33 - 45, 47 - 51, and 53 - 54 rejected under 35 USC § 102(b):

Art Unit: 2123

5.1. Applicant's arguments have been fully considered, and are persuasive. However, after further search and consideration, new rejections have been made, as follows below.

Page 3

- 6. Regarding claims 14, 20, 46, 52, and 55 60 rejected under 35 USC § 103:
 - **6.1.** Applicant's arguments have been fully considered, and are persuasive. However, after further search and consideration, new rejections have been made, as follows below.

Claim Rejections - 35 USC § 101

7. 35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

- 8. Claims 1 22 and 33 60 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.
 - 8.1. Regarding claims 1 22 and 33 60, the claims do not appear to produce a useful and tangible result to form the basis of a practical application needed to be statutory. Particularly regarding claim 55, outputting a simulation model does not appear to necessarily produce a tangible result.

Art Unit: 2123

8.2. Regarding **claims 33 - 40 and 41 - 54**, the claims are directed to a computer program product that includes a medium useable by a processor, the medium comprising a sequence of instructions. However, the specification appears to allow the medium to include carrier waves (pages 29 - 30, paragraphs 138 - 139), which do not appear to be a process, machine, manufacture or composition of matter. Accordingly, the claims appear to be directed to a non-statutory category, and are rejected.

Page 4

8.3. Regarding claims 33 - 40 and 41 - 54, the claims are directed to a computer program product that includes a medium useable by a processor, the medium comprising a sequence of instructions. However, the specification appears to allow the medium to include transmission media such as copper wires, coaxial cable and fiber optics (pages 29 - 30, paragraphs 138 - 139). A computer program propagating in a transmission media is not a physical element. Such claimed computer programs do not define any structural and functional interrelationship between the computer program and other elements of a computer which permit the computer program's functionality to be realized. Accordingly, transmission media appear to be a non-statutory category, and the claims are rejected.

Claim Rejections - 35 USC § 103

9. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2123

- 10. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 11. Claims 1 13, 15 19, 21 22, 33 45, 47 51, 53 55, 57 58 and 60 are rejected under 35 U.S.C. 103(a) as being unpatentable over Passerone (Claudio Passerone et al.; "Fast hardware/software co-simulation for virtual prototyping and trade-off analysis", 1997, Proceedings of Design Automation Conference 1997) in view of Hellestrand (U.S. Patent Number 6,230,114).
 - 11.1. Regarding claims 1 and 33:
 - **11.2.** Passerone appears to teach:
 - 11.2.1. Describing a system design as a network of logical entities (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");
 - 11.2.2. Selecting at least one of the logical entities for a software implementation (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a

Art Unit: 2123

network of CFSMs, and then synthesized as timing-annotated C code as described above");

- 11.2.3. Synthesizing a software program from the logical entities selected for the software implementation (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");
- 11.2.4. Compiling the software program to generate an optimized assembler code representation of the software program (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; it would have been obvious that C code is compiled in order to run a simulation, and that a compiler generates optimized assembler code);
- simulation model (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above" and "The C code is used in Ptolemy as a model for both hardware and software components"; and page 1, right-side column, third paragraph that starts with, "It is based on . . .");
- **11.3.** Passerone does not specifically teach:
 - **11.3.1.** Performing a performance analysis using the assembler code;

Art Unit: 2123

11.3.2. Generating a software simulation model using the assembler code;

11.4. Hellestrand appears to teach:

11.4.1. Performing a performance analysis using the assembler code (figure 3A, elements 311, 313; and column 26, lines 6 - 18);

11.4.2. Generating a software simulation model using the assembler code

(figure 3A, elements 311, 313, 315, 317, 319, 331, 333; and column 32,

lines 14 - 36);

- 11.5. The motivation to use the art of Hellestrand with the art of Passerone would have been the benefit recited in Hellestrand that there is an important advantage to the system a linear block can be as short as a single instruction, and the user has the option of so analyzing the code to get instruction-by-instruction timing (column 25, lines 27 33).
- 11.6. Therefore, as discussed above, it would have been obvious to the ordinary artisan at the time of invention to use the art of Hellestrand and Passerone to produce the claimed invention.
- 11.7. Regarding claims 2 and 34:
- **11.8.** Passerone appears to teach:
 - 11.8.1. the compiling step further comprises incorporating a description of the target machine (page 1, right-side column, third paragraph that starts with, "It is based on using . . .");

Art Unit: 2123

- 11.9. Regarding claims 3 and 35:
- **11.10.** Passerone appears to teach:
 - 11.10.1. the software simulation model is an assembler-level C code simulation model (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above);
- 11.11. Regarding claims 4 and 36:
- **11.12.** Passerone appears to teach:
 - implementation, and synthesizing a software model of the hardware implementation from the selected logical entities, wherein the hardware/software co-simulation model is generated using the software model of the hardware implementation (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above" and "The C code is used in Ptolemy as a model for both hardware and software components"; and page 1, right-side column, third paragraph that starts with, "It is based on . . .");

Art Unit: 2123

11.13. Regarding claims 5 and 37:

- **11.14.** Passerone does not specifically teach:
 - **11.14.1.** the performance analysis measures an execution time of an element of the assembler code.
- **11.15.** Hellestrand appears to teach:
 - 11.15.1. the performance analysis measures an execution time of an element of the assembler code (figure 3A, elements 311, 313; and column 26, lines 6 18).
- 11.16. Regarding claims 6 and 38:
- 11.17. Passerone does not specifically teach:
 - **11.17.1.** the software program is compiled using the same compiler used to compile a production executable.
- 11.18. Hellestrand appears to teach:
 - 11.18.1. the software program is compiled using the same compiler used to compile a production executable (*figure 3A*, *elements 331*, 333).
- 11.19. Regarding claims 7 and 39:
- **11.20.** Passerone appears to teach:

Art Unit: 2123

11.20.1. performing the performance analysis comprises annotating the code with performance information (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above").

- **11.21.** Passerone does not specifically teach:
 - **11.21.1.** performing the performance analysis comprises annotating the <u>assembler</u> code with performance information.
- **11.22.** Hellestrand appears to teach:
 - 11.22.1. assembler code (figure 3A, element 311; it would have been obvious to annotate assembler code because it was old and well known to annotate code with performance information; for example, Verilog HDL includes syntax to annotate code with timing information);
- 11.23. Regarding claims 8 and 40:
- 11.24. Passerone appears to teach:
 - 11.24.1. the performance information is timing information (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above").

Art Unit: 2123

11.25. Regarding claims 9 and 41:

11.26. Passerone appears to teach:

- 11.26.1. providing a software code module (page 3, section 2.2, first

 paragraph, the sentence, "The formal specification of the system to be

 modeled is first translated by POLIS into a network of CFSMs, and then

 synthesized as timing-annotated C code as described above";
- 11.26.2. translating the software code module into a simulation model (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above" and "The C code is used in Ptolemy as a model for both hardware and software components"; and page 1, right-side column, third paragraph that starts with, "It is based on . . .");
- 11.26.3. annotating the simulation model with performance information (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; it was old and well known in the art to annotate code with performance information; for example, Verilog HDL includes syntax to annotate code with timing information);
- 11.27. Passerone does not specifically teach (the missing parts are indicated in <u>bold</u>, <u>italic</u>, <u>underline</u>):
 - **11.27.1.** providing a software **assembly** code module;

Page 12

Art Unit: 2123

- 11.27.2. translating the software <u>assembly</u> code module into a simulation model;
- **11.28.** Hellestrand appears to teach:
 - 11.28.1. providing a software assembly code module (figure 3A, element 311);
- 11.29. Regarding claims 10 and 42:
- **11.30.** Passerone does not specifically teach:
 - **11.30.1.** providing a software assembly code module comprises compiling software source code to assembly.
- **11.31.** Hellestrand appears to teach:
 - 11.31.1. providing a software assembly code module comprises compiling software source code to assembly (figure 3A, elements 309, 311).
- 11.32. Regarding claims 11 and 43:
- **11.33.** Passerone appears to teach:
 - 11.33.1. the software code module is compiled using a compiler adapted to create code that will execute on a first machine architecture (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; it would have been obvious that the C code was compiled);

Art Unit: 2123

11.34. Passerone does not specifically teach:

- 11.34.1. assembly code
- **11.35.** Hellestrand appears to teach:
 - 11.35.1. assembly code (figure 3A, element 311).
- 11.36. Regarding claims 12 and 44:
- **11.37.** Passerone appears to teach:
 - 11.37.1. the performance information is associated with the first machine architecture (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");
- 11.38. Regarding claims 13 and 45:
- **11.39.** Passerone appears to teach:
 - 11.39.1. the simulation model is compiled to execute on a second machine architecture, the second machine architecture being different from the first machine architecture (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");

Art Unit: 2123

- **11.40.** Regarding **claims 15 and 47**:
- **11.41.** Passerone appears to teach:
 - 11.41.1. the simulation model is an assembler-level representation of the software, expressed in a high-level language (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");
- 11.42. Regarding claims 16 and 48:
- **11.43.** Passerone appears to teach:
 - 11.43.1. the translation step gathers information from another software module

 (page 3, section 2.2, first paragraph, the sentence, "The formal

 specification of the system to be modeled is first translated by POLIS into a

 network of CFSMs, and then synthesized as timing-annotated C code as

 described above"; it would have been obvious that in order to annotate code

 with timing information that another software module provided

 information);
- 11.44. Regarding claims 17 and 49:
- 11.45. Passerone does not appear to teach:

Art Unit: 2123

11.45.1. information gathered comprises high-level hints about the software assembly code module.

- **11.46.** Hellestrand appears to teach:
 - 11.46.1. information gathered comprises high-level hints about the software assembly code module (*figure 3A*, *elements 313*, *315*).
- 11.47. Regarding claims 18 and 50:
- 11.48. Passerone does not appear to teach:
 - **11.48.1.** the performance information comprises estimated performance information.
- **11.49.** Hellestrand appears to teach:
 - 11.49.1. the performance information comprises estimated performance information (*figure 3A, elements 313, 315*).
- 11.50. Regarding claims 19 and 51:
- 11.51. Passerone does not appear to teach:
 - **11.51.1.** the performance information is statically estimated.
- 11.52. Hellestrand appears to teach:

Art Unit: 2123

11.52.1. the performance information is statically estimated (*figure 3A*, *elements*313, 315).

- 11.53. Regarding claims 21 and 53:
- 11.54. Passerone appears to teach:
 - 11.54.1. compiling the simulation model to a simulator host program (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; and page 1, right-side column, third paragraph that starts with, "It is based on ...");
 - 11.54.2. executing the simulator host program on a simulator to allow performance measurements to be taken (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; and page 1, right-side column, third paragraph that starts with, "It is based on . . .");
- 11.55. Regarding claims 22 and 54:
- **11.56.** Passerone appears to teach:
 - 11.56.1. linking an already annotated module with the simulation model (page 3, section 2.2, first paragraph, the sentences, "The formal specification of the

Art Unit: 2123

Page 17

system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above"; and page 1, right-side column, third paragraph that starts with, "It is based on ...");

- 11.57. Regarding claim 55:
- 11.58. Passerone appears to teach:
 - 11.58.1. associating performance information with an element of the software module (page 3, section 2.2, first paragraph, the sentence, "The formal specification of the system to be modeled is first translated by POLIS into a network of CFSMs, and then synthesized as timing-annotated C code as described above");
- 11.59. Passerone does not specifically teach (the missing parts are indicated in <u>bold</u>,<u>italic</u>, <u>underline</u>):
 - 11.59.1. receiving the assembly language software module;
 - 11.59.2. parsing the assembly language software module into a data

 structure, the data structure comprising one or more nodes, each of the one
 or more nodes being mapped to a period of time using a mapping definition,
 each of the one or more nodes containing an element of the assembly
 language software module;
 - 11.59.3. processing the data structure to refine the accuracy of the simulation model;

Art Unit: 2123

11.59.4. associating performance information with an element of the <u>assembly</u>

<u>language</u> software module;

- 11.59.5. outputting the simulation model;
- 11.60. Hellestrand appears to teach:
 - 11.60.1. receiving the assembly language software module (*figure 3A*, *element*311);
 - 11.60.2. parsing the assembly language software module into a data structure, the data structure comprising one or more nodes, each of the one or more nodes being mapped to a period of time using a mapping definition, each of the one or more nodes containing an element of the assembly language software module (figure 3A, elements 313, 315);
 - 11.60.3. processing the data structure to refine the accuracy of the simulation model (*figure 3A*, *elements 313*, *315*);
 - 11.60.4. associating performance information with an element of the assembly language software module (figure 3A, elements 311, 313; and column 26, lines
 6-18);
 - 11.60.5. outputting the simulation model (figure 3A, elements 331, 333);
- 11.61. Regarding claim 57:
- **11.62.** Passerone does not specifically to teach:

Art Unit: 2123

11.62.1. the performance information comprises an execution delay value for the element of the assembly language software module.

- **11.63.** Hellestrand appears to teach:
 - 11.63.1. the performance information comprises an execution delay value for the element of the assembly language software module (*figure 3A*, *elements 311*, 313, 315, 317, 303, 319).
- 11.64. Regarding claim 58:
- 11.65. Passerone does not specifically to teach:
 - **11.65.1.** the performance information is a statically computed value.
- **11.66.** Hellestrand appears to teach:
 - 11.66.1. the performance information is a statically computed value (*figure 3A*, elements 311, 313, 315, 317, 303, 319).
- 11.67. Regarding claim 60:
- **11.68.** Passerone does not specifically to teach:
 - **11.68.1.** processing the data structure comprises replicating the behavior of the assembly language software model in the simulation model.
- **11.69.** Hellestrand appears to teach:

Art Unit: 2123

11.69.1. processing the data structure comprises replicating the behavior of the assembly language software model in the simulation model (*figure 3A*, *elements* 311, 313, 315, 317, 303, 319).

- 12. Claims 14 and 46 are rejected under 35 U.S.C. 103(a) as being unpatentable over Passerone as modified by Hellestrand as applied to claims 1 13, 15 19, 21 22, 33 45, 47 51, 53 55, 57 58 and 60 above, further in view of Hartoog (Hartoog, Mark R.; Rowson, James A.; Reddy, Prakash D.; Desai, Soumya; Dunlop, Douglas D.; Harcourt, Edwin A.; Khullar, Neeti; "Generation of Software Tools from Processor Descriptions for Hardware/Software Codesign", Proceedings of the 34th Design Automation Conference, June 9 13 1997).
 - 12.1. Passerone as modified by Hellestrand teaches a method for preparing software for a performance estimation as applied to claims 1 13, 15 19, 21 22, 33 45, 47 51, 53 55, 57 58 and 60 above.
 - 12.2. Regarding claims 14 and 46:
 - **12.3.** Passerone as modified by Hellestrand does not specifically teach:
 - **12.3.1.** disassembling software binary code to assembly code.
 - **12.4.** Hartoog appears to teach:
 - 12.4.1. disassembling software binary code to assembly code (page 305, section5).
 - 12.5. The motivation to use the art of Hartoog with the art of Passerone as modified by Hellestrand would have been the benefit recited in Hartoog that, using a declarative

Art Unit: 2123

description of an instruction set makes it possible to automatically generate several useful tools such as an Instruction Set Simulator and a Compiled Instruction Set Simulator (*page 304, section 3. Tools, first paragraph*), which would have been recognized as important benefit to save time by the ordinary artisan.

- **12.6.** Therefore, as discussed above, it would have been obvious to the ordinary artisan at the time of invention to use the art of Hartoog with the art of Passerone as modified by Hellestrand to produce the claimed invention.
- 13. Claims 20, 52 and 59 are rejected under 35 U.S.C. 103(a) as being unpatentable over Passerone as modified by Hellestrand as applied to claims 1 13, 15 19, 21 22, 33 45, 47 51, 53 55, 57 58 and 60 above, further in view of Suzuki (Suzuki, Kei; Sangiovanni-Vincentelli, Alberto; "Efficient Software Performance Estimation Methods for Hardware/Software Codesign", 1996, Proceedings of the 33rd annual conference on Design Automation).
 - 13.1. Passerone as modified by Hellestrand teaches a method for preparing software for a performance estimation as applied to claims 1 13, 15 19, 21 22, 33 45, 47 51, 53 55, 57 58 and 60 above.
 - 13.2. Regarding claims 20 and 52:
 - **13.3.** Passerone as modified by Hellestrand does not specifically teach:
 - **13.3.1.** performance information is computed dynamically at run-time, using a formula provided during the annotating step.
 - 13.4. Suzuki appears to teach:

Art Unit: 2123

13.4.1. performance information is computed dynamically at run-time, using a formula provided during the annotating step (page 5, figure 4, run-time formula to calculate C_i.max time).

- 13.4.1.1. Regarding (page 5, figure 4, run-time calculation of C₁.max time); it would have been obvious to use the dynamic run-time formula as the annotation.
- 13.5. Regarding claim 59:
- **13.6.** Passerone as modified by Hellestrand does not specifically teach:
 - **13.6.1.** performance information is a formula for dynamically computing a value.
- **13.7.** Suzuki appears to teach:
 - 13.7.1. performance information is a formula for dynamically computing a value (page 5, figure 4, run-time formula to calculate C₁.max time).
- 13.8. The motivation to use the art of Suzuki with the art of Passerone as modified by Hellestrand would have been the benefit recited in Suzuki that, two methods are presented for accurate and fast estimation of software performance in embedded real-time reactive systems designed with the POLIS system (page 1, section 1.

 Introduction, second paragraph that starts with, "In this paper, we..."), which would have been recognized as important benefit to save time by the ordinary artisan.
- 13.9. Therefore, as discussed above, it would have been obvious to the ordinary artisan at the time of invention to use the art of Suzuki with the art of Passerone as modified by Hellestrand to produce the claimed invention.

Art Unit: 2123

14. Examiner's Note: Examiner has cited particular columns and line numbers in the references applied to the claims above for the convenience of the applicant. Although the specified citations are representative of the teachings of the art and are applied to specific limitations within the individual claim, other passages and figures may apply as well. It is respectfully requested from the Applicant in preparing responses, to fully consider the references in their entirety as potentially teaching all or part of the claimed invention, as well as the context of the passage as taught by the prior art or disclosed by the Examiner. The entire reference is considered to provide disclosure relating to the claimed invention.

Art Unit: 2123

Conclusion

- 15. The prior art made of record and not relied upon is considered pertinent to the applicant's disclosure:
 - **15.1.** Pegatoquet (U.S. Patent 6,598,221) teaches annotating application source code and to generate an estimation of an optimized assembly code.
 - **15.2.** Cockx (U.S. Patent 6,952,825) teaches code in a model is compiled for and runs on a (UNIX) workstation. It is annotated with delay statements to model the estimated or measured execution time on the target processor.
 - **15.3.** Maxwell III (U.S. Patent 6,973,417) teaches instrumented assembly code for performance determination.
 - **15.4.** Segal (U.S. Patent 6,678,644) teaches annotating models with timing information.
 - **15.5.** Rostoker (U.S. Patent 6,470,482) teaches annotating a model with timing information.
 - 15.6. Baxter (U.S. Patent 6,018,624) teaches annotating a model with timing information.
- **16.** Any inquiry concerning this communication or earlier communications from the examiner should be directed to Russ Guill whose telephone number is 571-272-7955. The examiner can normally be reached on Monday Friday 9:30 AM 6:00 PM.

Art Unit: 2123

- 17. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Paul Rodriguez can be reached on 571-272-3753. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306. Any inquiry of a general nature or relating to the status of this application should be directed to the TC2100 Group Receptionist: 571-272-2100.
- 18. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

RG

PAUL RODRIGUEZ
DERVISORY PATENT EXAMINER
DERVISORY PATENT EXAMINER
2100