决策树和随机森林

决策树模型

决策树基于"树"结构进行决策

- □ 每个"内部结点"对应于某个属性上的"测试"(test)
- □ 每个分支对应于该测试的一种可能结果(即该属性的某个取值)
- □ 每个"叶结点"对应于一个"预测结果"

学习过程:通过对训练样本的分析来确定"划分属性"(即内部结点所对应的属性)

预测过程:将测试示例从根结点开始,沿着划分属性所构成的"判定测试序列"下行,直到叶结点

图 4.1 西瓜问题的一棵决策树

基本流程

策略: "分而治之" (divide-and-conquer)

自根至叶的递归过程

在每个中间结点寻找一个"划分" (split or test)属性

三种停止条件:

- (1) 当前结点包含的样本全属于同一类别, 无需划分;
- (2) 当前属性集为空, 或是所有样本在所有属性上取值相同, 无法划分;
- (3) 当前结点包含的样本集合为空,不能划分.

基本算法

```
输入: 训练集 D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\};
     属性集 A = \{a_1, a_2, \dots, a_d\}.
过程: 函数 TreeGenerate(D, A)
 1: 生成结点 node;
                                  递归返回,
2: if D 中样本全属于同一类别 C then
                                  情形(1)
     将 node 标记为 C 类叶结点; return
 4: end if
                                                          递归返回,
 5: if A = \emptyset OR D 中样本在 A 上取值相同 then
                                                          情形(2)
     将 node 标记为叶结点, 其类别标记为 D 中样本数最多的类; return
 7: end if
                              利用当前结点的后验分布
8: 从 A 中选择最优划分属性 a_*;
 9: for a_* 的每一个值 a_*^v do \
   为 node 生成一个分支; \Diamond D_v 表示 D 中在 a_* 上取值为 a_*^v 的样本子集;
10:
                                                             递归返回.
11:
    if D_v 为空 then
                                                             情形(3)
       将分支结点标记为叶结点, 其类别标记为 D 中样本最多的类; return
12:
13:
    else
                                            将父结点的样本分布作为
       以 TreeGenerate(D_v, A \setminus \{a_e\})为分支结点
14:
                                            当前结点的先验分布
    end if
15:
16: end for
                              决策树算法的
输出:以 node 为根结点的一棵决策树
                                 核心
```

信息增益 (information gain)

信息熵 (entropy) 是度量样本集合"纯度"最常用的一种指标假定当前样本集合 D 中第 k 类样本所占的比例为 p_k ,则 D 的信息熵定义为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$

计算信息熵时约定: 若 p = 0, 则 $p \log_2 p = 0$.

Ent(D) 的最小值为 0, 最大值为 $log_2 |\mathcal{Y}|$.

 $\operatorname{Ent}(D)$ 的值越小,则D 的纯度越高

信息增益直接以信息熵为基础,计算当前划分对信息熵所造成的变化

信息增益

离散属性 a 的取值: $\{a^1, a^2, \dots, a^V\}$

 D^v : D 中在 a 上取值 = a^v 的样本集合

以属性 a 对数据集 D 进行划分所获得的信息增益为:

ID3算法中使用

一个例子

•	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	清晰	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
	12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

该数据集包含17个 训练样例, $|\mathcal{Y}| = 2$, 其中正例占 $p_1 = \frac{8}{17}$ 反例占 $p_2 = \frac{9}{17}$

根结点的信息熵为

$$\operatorname{Ent}(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17} \log_2 \frac{8}{17} + \frac{9}{17} \log_2 \frac{9}{17}\right) = 0.998$$

以属性"色泽"为例,其对应的3个子集分别为:

对**D**¹(色泽=青绿), 正例3/6, 反例3/6 于是:

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

$$\operatorname{Ent}(D^1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1.000$$

D²(色泽=乌黑), 正例4/6, 反例2/6

Ent(
$$D^2$$
) =
$$-(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}) = 0.918$$
_

D³(色泽=浅白), 正例1/5, 反例4/5

Ent(
$$D^3$$
) =
- $(\frac{1}{5}\log_2\frac{1}{5} + \frac{4}{5}\log_2\frac{4}{5}) = 0.722$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

于是,属性"色泽"的信息增益为

$$Gain(D, 色泽) = Ent(D) - \sum_{v=1}^{3} \frac{|D^{v}|}{|D|} Ent(D^{v})$$
$$= 0.998 - \left(\frac{6}{17} \times 1.000 + \frac{6}{17} \times 0.918 + \frac{5}{17} \times 0.722\right) = 0.109$$

类似的, 其他属性的信息增益为

$$Gain(D, 根蒂) = 0.143$$

$$Gain(D, 纹理) = 0.381$$

$$Gain(D, 触感) = 0.006$$

$$Gain(D, 敲声) = 0.141$$

$$Gain(D, 脐部) = 0.289$$

属性"纹理"的信息增益最大,被选为划分属性

对每个分支结点做进一步划分, 最终得到决策树

增益率 (gain ratio)

信息增益: 对可取值数目较多的属性有所偏好

有明显弱点,例如:考虑将"编号"作为一个属性

增益率:
$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

其中
$$IV(a) = -\sum_{v=1}^{V} \frac{|D^v|}{|D|} \log_2 \frac{|D^v|}{|D|}$$

属性 a 的可能取值数目越多 (即 V 越大),则 IV(a) 的值通常就越大

启发式: 先从候选划分属性中找出信息增益高于平均水平的, 再从中选取增益率最高的

基尼指数 (gini index)

$$Gini(D) = \sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_k p_{k'}$$

反映了从D中随机抽取两个样例, 其类别标记不一致的概率

$$=1-\sum_{k=1}^{|\mathcal{Y}|}p_k^2$$
.

 $=1-\sum_{k=0}^{|\mathcal{Y}|}p_k^2$. Gini(D) 越小,数据集 D 的纯度越高

属性 a 的基尼指数: $\operatorname{Gini_index}(D,a) = \sum_{i=1}^{v} \frac{|D^v|}{|D|} \operatorname{Gini}(D^v)$

在候选属性集合中,选取那个使划分后基尼指数最小的属性

决策树回归

- 训练时找到一个最优的树划分,使得每个叶节点中的样本具有最低的均方误差(MSE)。
- 预测时取所属叶节点中所有样本的 平均值

$$\min_D \left(\sum_{v=1}^V \sum_{i \in D^v} (y_i - \hat{y}^v)^2
ight)$$

$$\hat{y}(x)=\hat{y}^v=rac{1}{|D^v|}\sum_{i\in D^v}y_i,\quad x\in D^v.$$

划分选择 vs. 剪枝

研究表明: 划分选择的各种准则虽然对决策树的尺寸有较大影响, 但对泛化性能的影响很有限

例如信息增益与基尼指数产生的结果, 仅在约 2% 的情况下不同

剪枝方法和程度对决策树泛化性能的影响更为显著

在数据带噪时甚至可能将泛化性能提升 25%

Why?

剪枝 (pruning) 是决策树对付"过拟合"的 主要手段!

为了尽可能正确分类训练样本,有可能造成分支过多 > 过拟合可通过主动去掉一些分支来降低过拟合的风险

基本策略:

- 预剪枝 (pre-pruning): 提前终止某些分支的生长
- 后剪枝 (post-pruning): 生成一棵完全树,再 "回头"剪枝

剪枝过程中需评估剪枝前后决策树的优劣 → 第2章

现在我们假定使用"留出法"

数据集

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1	青绿	蜷缩	独响	清晰	凹陷	硬滑	是
	$\frac{2}{3}$	乌黑 乌黑	蜷缩 蜷缩	沉闷 浊响	清晰 清晰	凹陷 凹陷	硬滑 硬滑	是是
	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
训练集 →	7	乌黑	稍蜷 ————	<u>油响</u>	稍糊	稍凹	软粘	是
	10 14	青绿 浅白	硬挺 稍蜷	清脆 沉闷	清晰 稍糊	平坦 凹陷	软粘 硬滑	否否
	15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
	16 17	浅白 青绿	蜷缩 蜷缩	独响 沉闷	模糊 稍糊	平坦 稍凹	硬滑 硬滑	否 否
-	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5	青绿 浅白	蜷缩 蜷缩	沉闷 浊响	清晰 清晰	凹陷 凹陷	硬滑 硬滑	是是
	8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
验证集	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否不
	11 12	浅白 浅白	硬挺 蜷缩	清脆 浊响	模糊 模糊	平坦 平坦	硬滑 软粘	否 否
	. 13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

未剪枝决策树

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅白 青绿	稍 梃 機 縦 機 機 機	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8} 被分类正确,验证集精度为 3/7 x 100% = 42.9%

验证集精度 划分前: 42.9%

		编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	ſ	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
验		5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
- コハ		8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
证	ᅥ	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
集		11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
朱		12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
	Į	1 3	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

结点1:若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8}被分类正确,验证集精度为 3/7 x 100% = 42.9%

结点1若划分,则根据划分后结点②③④的训练样例,它们将分别标记为"好瓜""好瓜""坏瓜"。此时,验证集中编号为 {4,5,8,11,12}的样例被划分正确,验证集精度为 5/7 x 100% = 71.4%

		编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验		4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
证集	1	9 11 12 13	乌 浅 浅 治 自 分 号 分 号 分 号 号 分 号 分 号 分 号 分 号 分 号 分 る ろ の ろ の ろ の ろ の ろ の ろ の ろ の ろ の ろ の ろ	稍挺 網 機 網 機	沉脆 清响 浊响	稍 糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	· · · · · · · · · · · · · · · · · · ·	否否否否

结点2: 若划分,则验证集中{4,8,11,12} 被分 ^{预剪枝决策}: **禁止划分** 类正确,验证集精度为 4/7 x100% = 57.1%

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证集	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬蜷缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点3: 若划分,则验证集中{4,5,8,11,12}被分类正确,验证集精度为 5/7 x100% = 71.4%

		编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验		4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证集	1	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缝缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

最终, 预剪枝的得到的决策树

后剪枝

先生成一棵完整的决策树, 其验证集精度测得为 42.9%

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 {7,15} 将其标记为"好瓜",测得验证集精度提高至 57.1%,于是

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 $\{7,15\}$ 将其标记为"好瓜",测得验证集精度提高至 57.1%,于是决定剪枝

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 57.1%,可以

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 $\mathbf{57.1\%}$,可以

对结点②,若将其替换为叶结点,根据落在其上的训练样例 $\{1,2,3,14\}$,将其标记为"好瓜",测得验证集精度提升至 71.4%,

剪枝后: 71.4%

后剪枝决策: 剪枝

对结点③和①, 先后替换为叶结点, 均未测得验证集精度提升, 于是不剪枝

最终,后剪枝得到的决策树:

预剪枝 vs. 后剪枝

□ 时间开销:

- 预剪枝:测试时间开销降低,训练时间开销降低
- 后剪枝: 测试时间开销降低, 训练时间开销增加

□ 过/欠拟合风险:

- 预剪枝: 过拟合风险降低, 欠拟合风险增加
- 后剪枝: 过拟合风险降低, 欠拟合风险基本不变
- □ 泛化性能: 后剪枝 通常优于 预剪枝

连续值

基本思路:连续属性离散化

常见做法:二分法 (bi-partition)

- n 个属性值可形成 n-1 个候选划分
- 然后即可将它们当做 n-1 个离散属性值处理

缺失值

现实应用中,经常会遇到属性值"缺失"(missing)现象

仅使用无缺失的样例? → 对数据的极大浪费

使用带缺失值的样例, 需解决:

Q1: 如何进行划分属性选择?

Q2: 给定划分属性, 若样本在该属性上的值缺失, 如何进行划分?

基本思路: 样本赋权, 权重划分

纹理

陪部

舳咸

好爪

盐富

	細与	巴律	作(市)	凤灯	纹理	भा । न	用虫化	好瓜
	1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	_	是
クネンナエケサル 古	3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
仅通过无缺失值	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
的样例来判断划	5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	_	软粘	是
分属性的优劣	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
ノンには「土口ンドロンン	8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
	9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	_	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	_	否
	12	浅白	蜷缩	_	模糊	平坦	软粘	否
2274	13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
学习开始时,根结点包	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
含样例集 D 中全部17个	15	乌黑	稍蜷	浊响	清晰	_	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
样例,权重均为 1	17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

台泽

编号

粗蓠

以属性 "色泽"为例,该属性上无缺失值的样例子集 \tilde{D} 包含 14 个样例,信息熵为 \tilde{D}

 $\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{\infty} \tilde{p}_k \log_2 \tilde{p}_k = -\left(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}\right) = 0.985$

一个例子

令 \tilde{D}^1 , \tilde{D}^2 , \tilde{D}^3 分别表示在属性"色泽"上取值为"青绿""乌黑"以及"浅白"的样本子集,有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000 \quad \operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$$

因此,样本子集 \tilde{D} 上属性"色泽"的信息增益为

$$Gain(\tilde{D}, 色泽) = Ent(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_v Ent(\tilde{D}^v)$$
 无缺失值样例中属性 a 取值为 v 的占比
$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$

$$= 0.306$$

于是,样本集 D 上属性 "色泽"的信息增益为

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$
 无缺失值样例占比

一个例子

类似地可计算出所有属性在数据集上的信息增益

Gain(D, 色泽) = 0.252

Gain(D, 根蒂) = 0.171

Gain(D, 敲声) = 0.145

Gain(D, 纹理) = 0.424

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

	进入	"纹理=	=清晰"	分支
--	----	------	------	----

样本权重在各子结点仍为1

在"纹理"上出现缺失值, 样本 8, 10 同时进入三个 分支,三分支上的权重分 别为 7/15, 5/15, 3/15

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	_	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	便渭	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

权重划分

从"树"到"规则"

- 一棵决策树对应于一个"规则集"
- 每个从根结点到叶结点的分支路径对应于一条规则

好处:

- □改善可理解性
- □进一步提升泛化能力

- IF (纹理=清晰) ∧ (密度≤0.381) THEN 坏瓜
- IF (纹理=清晰) ^ (密度>0.381) THEN 好瓜
- IF (纹理=稍糊) ^ (触感=硬滑) THEN 坏瓜
- IF (纹理=稍糊) ^ (触感=软粘) THEN 好瓜
- IF (纹理=模糊) THEN 坏瓜

由于转化过程中通常会进行前件合并、泛化等操作例如 C4.5Rule 的泛化能力通常优于 C4.5决策树

轴平行划分

单变量决策树: 在每个非叶结点仅考虑一个划分属性

产生"轴平行"分类面

轴平行 vs. 倾斜

当学习任务所对应的分类边界很复杂时,需要非常多段划分才能获得较好的近似

多变量(multivariate)决策树

多变量决策树:每个非叶结点不仅考虑一个属性

例如"斜决策树" (oblique decision tree) 不是为每个非叶结点寻找最优划分属性,而是建立一个线性分类器

更复杂的"混合决策树"甚至可以在结点嵌入神经网络或其他非线性模型

集成学习

Ensemble Learning (集成学习):

Using multiple learners to solve the problem

Demonstrated great performance in real practice

- KDDCup'07: 1st place for "... Decision Forests and ..."
- KDDCup'08: 1st place of Challenge1 for a method using Bagging; 1st place of Challenge2 for "... Using an Ensemble Method"
- KDDCup'09: 1st place of Fast Track for "Ensemble ..."; 2nd place of Fast Track for "... bagging ... boosting tree models ...", 1st place of Slow Track for "Boosting ... "; 2nd place of Slow Track for "Stochastic Gradient Boosting"
- KDDCup'10: 1st place for "... Classifier ensembling"; 2nd place for "... Gradient Boosting machines ... "
- KDDCup'11: 1st place of Track 1 for "A Linear Ensemble ... "; 2nd place of Track 1 for "Collaborative filtering Ensemble", 1st place of Track 2 for "Ensemble ..."; 2nd place of Track 2 for "Linear combination of ..."

- KDDCup'12: 1st place of Track 1 for "Combining... Additive Forest..."; 1st place of Track 2 for "A Two-stage Ensemble of..."
- KDDCup'13: 1st place of Track 1 for "Weighted Average Ensemble"; 2nd place of Track 1 for "Gradient Boosting Machine"; 1st place of Track 2 for "Ensemble the Predictions"
- KDDCup'14: 1st place for "ensemble of GBM, ExtraTrees, Random Forest..." and "the weighted average"; 2nd place for "use both R and Python GBMs"; 3rd place for "gradient boosting machines... random forests" and "the weighted average of..."
- KDDCup'15: 1st place for "Three-Stage Ensemble and Feature Engineering for MOOC Dropout Prediction"
- KDDCup'16: 1st place for "Gradient Boosting Decision Tree"; 2nd place for "Ensemble of Different Models for Final Prediction"
- KDDCup'17: 1st and 2nd place of Task 1 for "XGBoost"; 1st place of Task 2 for "XGBoost", 2nd place of Task 2 for "Weighted Average of Multiple Models"
 - KDDCup'18: 1st place for "Gradient Boosting"; 2nd place for "Two-stage stacking"; 3rd place for "Weighted Average of Multiple Models"

During the past decade, almost all winners of KDDCup, Netflix competition, Kaggle competitions, etc., utilized ensemble techniques in their solutions

To win? Ensemble!

如何得到好的集成?

Some intuitions:

Ensemble really helps

Individuals must be different

Individuals must be not-bad

令个体学习器"好而不同"

"多样性"(diversity)是关键

误差-分歧分解 (error-ambiguity decomposition):

The more **accurate** and **diverse** the individual learners, the better the ensemble

However,

- the "ambiguity" does not have an operable definition
- The error-ambiguity decomposition is derivable only for regression setting with squared loss

很多成功的集成学习方法

■ 序列化方法

AdaBoost

[Freund & Schapire, JCSS97]

GradientBoost

[Friedman, AnnStat01]

LPBoost

[Demiriz, Bennett, Shawe-Taylor, MLJ06]

•

并行化方法

Bagging

Random Forest

Random Subspace

•

[Breiman, MLJ96]

[Breiman, MLJ01]

[Ho, TPAMI98]

Boosting: A flowchart illustration

Bagging

随机森林

- Bagging+决策树
- 多样性 (随机性) 来源: 样本扰动, 属性扰动

学习器结合

图 8.8 学习器结合可能从三个方面带来好处 [Dietterich, 2000]

常用结合方法:

- □投票法
- 绝对多数投票法
- 相对多数投票法
- 加权投票法

- □平均法
- 简单平均法
- 加权平均法
- □学习法

Stacking

```
输入: 训练集 D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_m, y_m)\};
         初级学习算法 \mathfrak{L}_1,\mathfrak{L}_2,\ldots,\mathfrak{L}_T;
         次级学习算法 €.
过程:
 1: for t = 1, 2, ..., T do
                                  使用初级学习算法 £
 2: h_t = \mathfrak{L}_t(D);
                                 产生初级学习器 ht.
 3: end for
 4: D' = \emptyset;
 5: for i = 1, 2, ..., m do
 6: for t = 1, 2, ..., T do
                                                    生成次级训练集.
 7: z_{it} = h_t(\boldsymbol{x}_i);
 8: end for
 9: D' = D' \cup ((z_{i1}, z_{i2}, \dots, z_{iT}), y_i);
10: end for
11: h' = \mathfrak{L}(D');
输出: H(x) = h'(h_1(x), h_2(x), \dots, h_T(x))
```

图 8.9 Stacking 算法

参考文献

- 1. 周志华《机器学习》(西瓜书)
- 2. 叶翰嘉 机器学习导论 2024秋 课件 chapter4, chapter8