

ROBÓTICA

José Manuel Molina López Grupo de Inteligencia Artificial Aplicada

EJEMPLOS DE ROBOTS

¿Qué son? ¿Dónde se utilizan? ¿Para qué? • Para la Industria

REALIDAD Para Exploración

Para la Medicina

Para vigilancia policial y militar

Para entretenimiento

Para juguetes

OTS EN INVESTIGACIÓN

Aibo (Sony Corp)

P3 (Honda Corp)

SDR-3X (Sony Corp)

ERS-220

ROBOTS EN INVESTIGACIÓN

Minerva (CMU)

In the Smithsonian Institution's National Museum of American History and ON THIS WEB SITE!

Rhino (U. Bonn)

Robot III (Case Western Reserve University)

ROBOTS EN INVESTIGACIÓN

Kismet (MIT)

EQUIPOS DE ROBOTS

1. Robocup: http://www.robocup.org/

- By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champions. –
- Soccer Simulation League
- Small-Size Soccer Robot (F-180) League
- Middle-Size Soccer Robot (F-2000)League
- Sony Legged Robot League
- RoboCupJunior Soccer, Rescue and Dancing Robot
- 2. Roborescue: http://www-2.cs.cmu.edu/%7Erobocup2001/rescue-simulation.htm
 - IRescue Simulation League
 - Rescue Robot League

ECUPOS DE ROBOTS"

RoboCup Soccer Sir

EQUIPOS DE ROBOTS

EQUIPOS DE ROBOTS

ROBÓTICA

Introducción.
Niveles de Control
Tipos de Controladores
Arquitecturas de Robots
Aprendizaje de controladores sencillos

EL CONCEPTO DE ROBOT

SENSORES

TIPOS DE SENSORES

- Infrarojos
- Láser
- Cámaras: fijas, móviles
- IMU
- GPS
- Bumpers
- Sonidos
- De luz, de movimiento, de escaleras, software, . . .

FUSION DE DATOS

ACTUADORES

Velocidad en ruedas

Brazo

Patas

Brazos

Sonido

Cámara

Software: email, . . .

CONTROLADORES

Teoría de Control Clásica

Valores de los controladores relacionados matemáticamente con la entrada. Aplicaciones industriales.

Sistemas de Reglas

 Valores de los controladores relacionadas semánticamente con las entradas. Juegos, entornos planificados, etc..

Sistemas Borrosos

 El uso de los conceptos borrosos permite un controlador que aúna los dos anteriores. Lavadoras, frenos de trenes, ABS, enfoque de las cámaras.

TIPOS DE CONTROLADORES. TEORÍA DE CONTROL CLÁSICA

TIPOS DE CONTROLADORES. TEORÍA DE CONTROL CLÁSICA

- Función matemática que relaciona las entradas con las salidas.
- Por ejemplo la fuerza a aplicar a este robot para que siga la línea recta en función del ángulo que forma su dirección con la línea y la velocidad con la que cambia dicho ángulo

 $F = K_1 \theta + K_2 d\theta/dt$

TIPOS DE CONTROLADORES. SISTEMAS DE REGLAS

Conjunto de reglas

SI <los valores de entrada se encuentran en este rango> ENTONCES <los valores de salida se ponen a este valor>

Estos controladores generan superficies de control en planos horizontales, por lo que generan movimientos bruscos, la superficie para el problema anterior sería de este estilo:

TIPOS DE CONTROLADORES. SISTEMAS

que sigue la recta:

EL CEREBRO DEL ROBOT

Tareas Complejas

ALTO NIVEL

⇒Razonamiento a largo plazo

⇒Seguimiento/Monitorización

⇒Razonamiento a corto plazo

⇒Evaluación de los resultados

Tareas Sencillas

BAJO NIVEL

VISIÓN CLÁSICA DEL CEREBRO DEL ROBOT

Representación del Mundo de manera semántica mediante relaciones entre objetos o mediante quadtree

Generación de acciones mediante planificación

Uso fundamentalmente de las capacidades de razonamiento y del Alto nivel

REPRESENTACIÓN DEL MUNDO

Construcción del mapa: pre-programado, aprendido

Localización: GPS, balizas, Markov, Montecarlo, filtro de Kalman, . . .

Planificación de trayectorias

REPRESENTACIÓN DEL MUNDO

PLANIFICACIÓN DE CAMINOS

PLANIFICACIÓN POR TAREAS Y SUBTAREAS

RELACIÓN ENTRE LA REPRESENTACIÓN DEL MUNDO Y LAS ACCIONES DEL PLANIFICADOR

- Estado o situación: descripción instantánea en(robot1,sala1), puerta-abierta(puerta1,sala1,sala2), puerta-cerrada(puerta2,sala1,sala3),...
- Acción u Operador: qué puede hacer el robot levantar, dejar, empujar, mover, girar, ... Metas: visitada(sala3) Plan: mover(robot1,sala1,sala2,puerta1), ...
- Criterios: tiempo, precio, ...

VISIÓN REACTIVA DEL CEREBRO DEL ROBOT

- Reactiva (Brooks 1986)
 - Todo el controladores está fundamentado en el desarrollo de comportamientos reactivos
 - Sólo bajo nivel

VISIÓN DEL CEREBRO DEL ROBOT

EJEMPLO DE ARQUITECTURA REACTIVA

APRENDIZAJE DE COMPORTAMIENTOS

EJEMPLOS DE APRENDIZAJE DE COMPORTAMIENTOS

EJEMPLOS DE APRENDIZAJE DE COMPORTAMIENTOS

EJEMPLOS DE APRENDIZAJE DE COMPORTAMIENTOS

APRENDIZAJE DE COMPORTAMIENTOS CON UN PERCEPTRÓN SIMPLE

Capa de Entrada

Capa de Salida

$$v_j = f\left(\sum_{i=1}^5 w_{ij} s_i\right); \qquad j = 1,2$$