

Sobre as Tabelas...

- As linhas de uma tabela *não tem ordenação*. A ordem de recuperação pelo SGBD é arbitrária, a menos que a instrução de consulta tenha especificado explicitamente uma ordenação. Não é possível referenciar linhas de uma tabela por posição.
- Os valores de campo de uma tabela são *atômicos* e *monovalorados*. Ser atômico significa que o campo não pode ser composto de outros. Ser monovalorado significa que o campo possui um único valor e não um conjunto de valores.
- As linguagens de consulta a bases de dados relacionais permitem o *acesso por quaisquer critérios* envolvendo os campos de uma ou mais linhas.

5

Chave

O conceito básico para identificar linhas e estabelecer relações entre linhas de tabelas de um BD relacional é o de chave.

Em um BD relacional há ao menos três tipos de chaves a considerar:

- 1. Chave Primária
- 2. Chave Estrangeira
- 3. Chave Alternativa

2. Chave Estrangeira (cont.)

A existência de uma chave estrangeira impõe restrições que devem ser garantidas ao executar diversas operações de alteração do BD:

- Quando da inclusão de uma linha na tabela que contém a chave estrangeira Deve ser garantido que o valor da chave estrangeira apareça na coluna da chave primária referenciada.
- Quando da alteração do valor da chave estrangeira Deve ser garantido que o novo valor de uma chave estrangeira apareça na coluna da chave primária referenciada.
- Quando da exclusão de uma linha da tabela que contém a chave primária referenciada pela chave estrangeira Deve ser garantido que, na coluna da chave estrangeira, não apareça o valor da chave primária que está sendo excluída.
- Quando da alteração do valor da chave primária referenciada pela chave estrangeira – Deve ser garantido que, na coluna da chave estrangeira, não apareça o valor antigo da chave primária que está sendo alterada.

2. Chave Estrangeira (cont.)

A palavra "estrangeira" usada para denominar este tipo de chave pode ser enganosa. Ela pode dar a entender que a chave estrangeira sempre referencia uma chave primária de **outra tabela**. Entretanto, **esta restrição não existe**.

EIIIP					
CodEmp	Nome	CodDepto	CodEmpGerente		
E1	Souza	D1	_		
E2	Santos	D2	E5		
E3	Silva	D2	E5		
E5	Soares	D1	E1		

Nesta tabela, a coluna CodEmpGerente é o código de outro empregado. Como todo gerente também é um empregado da empresa, existe a restrição de que todo valor da coluna CodEmpGerente deve aparecer na coluna CodEmp.

A coluna CodEmpGerente é chave estrangeira em relação à chave primária da própria tabela Emp.

3. Chave Alternativa

Em alguns casos, mais de uma coluna ou combinações de colunas podem servir para distinguir uma linha das demais. Uma das colunas (ou combinação de colunas) é escolhida como chave primária. As demais colunas ou combinações de colunas são denominadas chaves alternativas.

x: E

Lilip						
CodEmp	Nome	CodDepto	CatFunc	CPF		
E1	Souza	D1	_	132.121.331-20		
E2	Santos	D2	C5	891.221.111-11		
E3	Silva	D2	C5	341.511.775-45		
E5	Soares	D1	C2	631.692.754-88		

Neste exemplo, tanto a coluna CodEmp quanto a coluna CPF podem ser usadas para distinguir uma linha das demais.

Como a coluna CodEmp foi escolhida como chave primária, diz-se que a coluna CPF é uma chave alternativa.

13

Observação sobre as Chaves

Quando, em uma tabela, mais de uma coluna ou combinações de colunas servem para distinguir uma linha das demais, surge a questão de que critério deve ser usado para determinar qual das possíveis colunas (ou combinação de colunas) será usada como chave primária. No exemplo anterior, por que a coluna CodEmp foi usada como chave primária e não a coluna CPF? Por que CPF não foi usada como chave primária e CodEmp como chave alternativa?

Se considerarmos apenas a tabela em que a coluna aparece, não há diferença entre uma coluna ser chave primária ou alternativa. Em ambos os casos, apenas está sendo especificada a unicidade de valores de chave. Entretanto, ao considerarmos chaves estrangeiras, a diferenciação entre chave primária e chave alternativa passa a ser relevante.

Quando especificamos que uma chave é primária, estamos especificando, além da unidade de valores, também o fato de esta coluna ser usada nas chaves estrangeiras que referenciam a tabela em questão.

Assim, no caso do exemplo anterior, estamos especificando que tanto os valores de CodEmp, quanto os valores de CPF são únicos e, adicionalmente, que a coluna CodEmp será usada nas chaves estrangeiras que referenciam a tabela Emp.

Domínios

Quando uma tabela do BD é definida, para cada coluna da tabela deve ser especificado um conjunto de valores (alfanumérico, numérico, data, ...) que os campos da respectiva coluna podem assumir. Este conjunto de valores é chamado de **domínio da coluna** ou **domínio do campo**.

15

Valores Vazios

Em uma tabela, deve ser especificado se os campos da coluna podem estar vazios (null em inglês) ou não.

Estar vazio indica que o campo não recebeu valor de seu domínio.

Valores Vazios (cont.)

As colunas nas quais **não** são permitidos valores vazios chamam-se colunas obrigatórias.

Já as colunas que permitem valores vazios chamam-se colunas opcionais.

Normalmente os SGBDs relacionais exigem que todas as colunas que compõem a chave primária sejam obrigatórias.

Para as demais chaves não existe esta exigência.

17

Em um BD, os registros de uma tabela podem ser armazenados de acordo com a sua ordem de chegada (ou de cadastro). E, sem nenhuma regra facilitadora, o processo de busca de um registro é comparar linha por linha da tabela até encontrar o registro determinado.

Vamos supor um cadastro de clientes com mais de dez mil registros, e que um usuário recém cadastrado, portanto último registro da tabela, tente se autenticar no sistema. Neste caso, o BD irá comparar o nome do usuário digitado com cada nome cadastrado por ordem de chegada (ou seja, dez mil comparações).

Esta situação poderia ser otimizada caso a coluna de nomes de usuários fosse mantida em ordem alfabética crescente e também fosse utilizado um algoritmo de busca de registro mais eficiente.

É este conceito de ordenação dos dados que se denomina índice.

Cada tabela pode possuir vários índices. É recomendável que seja criado um índice para cada coluna da tabela, caso a coluna seja significativamente utilizada em consultas.

Restrições de Integridade

É uma regra de consistência de dados que é garantida pelo próprio SGBD.

Em abordagem relacional, costuma-se classificar as restrições de integridade nas seguintes categorias:

- 1. Integridade de Domínio
- 2. Integridade de Vazio
- 3. Integridade de Chave
- 4. Integridade Referencial

19

1. Integridade de Domínio

Restrições deste tipo especificam que o valor de um campo deve obedecer a definição de valores admitidos para a coluna (o domínio da coluna).

Nos SGBDs relacionais antigos, era possível usar apenas domínios pré-definidos (nº inteiro, nº real, alfanumérico de tamanho definido, data, ...).

Nos SGBDs relacionais atuais, o usuário pode definir domínios próprios de sua aplicação (por exemplo, o domínio dos dias da semana ou das unidades da federação).

2. Integridade de Vazio

Através deste tipo de restrição de integridade é especificado se os campos de uma coluna podem ou não ser vazios, ou seja, se a coluna é obrigatória ou opcional.

Vale lembrar que campos que compõem a chave primária devem ser obrigatórios, pois não podem ficar vazios.

21

3. Integridade de Chave

Trata-se da restrição que define que os valores da chave primária e alternativa devem ser únicos.

4. Integridade Referencial

É a restrição que define que os valores dos campos que aparecem em uma chave estrangeira devem aparecer na chave primária da tabela referenciada.

Restrições de Integridade (cont.)

As restrições de integridade devem ser garantidas automaticamente por um SGBD relacional, isto é, não deve ser exigido que o programador escreva procedimentos para garanti-las explicitamente.

Há outras restrições de integridade que não se encaixam nas categorias citadas anteriormente e que normalmente não são garantidas pelos SGBDs. Essas restrições são chamadas de restrições semânticas.

Ex:

- Um empregado do departamento denominado "Finanças" não pode ter a categoria funcional "Engenheiro".
- Um empregado não pode ter salário maior que seu superior imediato.

23

Modelo de BD Relacional

A especificação de um Banco de Dados Relacional, ou seja, um modelo de BD Relacional, deve conter no mínimo a definição dos seguintes itens:

- Tabelas que formam o banco de dados
- Colunas que as tabelas possuem
- Restrições de integridade.

