

## Aprendizado de Máquina Aula 3.3 - Classificação multi-classe

#### Adriano Rivolli

rivolli@utfpr.edu.br

#### Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação



### Conteúdo

- 1 Decomposição de problemas
- 2 Medidas de avaliação



×

## Decomposição de problemas





### Problemas multi-classe

- Quando o atributo alvo possui mais de duas classes
- Alguns algoritmos não suportam nativamente
  - É possível transformar um problema multiclasse em N problemas binários
- As medidas de avaliação também precisam de ajuste



## Estratégias

- One-versus-all (OVA) ou One-verus-rest (OVR)
  - Um contra todos
  - Um conjunto de dados para cada classe
- One-versus-one (OVO)
  - Um contra um (um contra outro)
  - Um conjunto de dados para cada par de classes



#### Um contra todos

- Um conjunto de dados para cada classe
  - As instâncias que possuem a classe serão positivas
  - ► As instâncias das demais classes serão negativas
- Aumenta a taxa de desbalanceamento
- Induz um modelo para cada conjunto binário
  - A maior probabilidade define a classe da instância



# Exemplo de OVA

| Multi-classe   |        |
|----------------|--------|
| Attr           | Classe |
| $X_1$          | Α      |
| X <sub>2</sub> | Α      |
| X <sub>3</sub> | В      |
| X <sub>4</sub> | В      |
| X <sub>5</sub> | В      |
| X <sub>6</sub> | С      |
| X <sub>7</sub> | С      |

| Classe A              |        |  |
|-----------------------|--------|--|
| Attr                  | Classe |  |
| $X_1$ $X_2$           | 1      |  |
| X <sub>2</sub>        | 1      |  |
| X <sub>3</sub>        | 0      |  |
| X <sub>4</sub>        | 0      |  |
| X <sub>5</sub>        | 0      |  |
| <i>X</i> <sub>6</sub> | 0      |  |
| $X_7$                 | 0      |  |

| Classe B                                                    |        |   |
|-------------------------------------------------------------|--------|---|
| Attr                                                        | Classe |   |
| $X_1$ $X_2$ $X_3$                                           | 0      | ] |
| $X_2$                                                       | 0      |   |
| X <sub>3</sub>                                              | 1      |   |
| X <sub>4</sub>                                              | 1      | ] |
| X <sub>5</sub>                                              | 1      | ] |
| X <sub>4</sub> X <sub>5</sub> X <sub>6</sub> X <sub>7</sub> | 0      |   |
| X <sub>7</sub>                                              | 0      | 1 |

| Classe C              |        |
|-----------------------|--------|
| Attr                  | Classe |
| $X_1$                 | 0      |
| <i>X</i> <sub>2</sub> | 0      |
| <i>X</i> <sub>3</sub> | 0      |
| X <sub>4</sub>        | 0      |
| X <sub>5</sub>        | 0      |
| <i>X</i> <sub>6</sub> | 1      |
| X <sub>7</sub>        | 1      |



#### Um contra um

- Um conjunto de dados para cada par de classes
  - Ao todo são gerados  $\frac{q(q-1)}{2}$  conjuntos
  - Uma das classes assume a classe positiva e a outra a classe negativa
  - Os demais exemplos são descartados
- Induz um modelo para cada conjunto binário
  - Cada modelo vota em uma classe (classe predita)
  - > A classe que receber o maior número de votos é predita



# Exemplo de OVO

| Multi-classe          |        |  |
|-----------------------|--------|--|
| Attr                  | Classe |  |
| X <sub>1</sub>        | Α      |  |
| <i>X</i> <sub>2</sub> | Α      |  |
| <i>X</i> <sub>3</sub> | В      |  |
| X <sub>4</sub>        | В      |  |
| <i>X</i> <sub>5</sub> | В      |  |
| <i>X</i> <sub>6</sub> | С      |  |
| X <sub>7</sub>        | С      |  |

|                       | e A × B<br>Classe |
|-----------------------|-------------------|
| X <sub>1</sub>        | 1                 |
| <i>X</i> <sub>2</sub> | 1                 |
| <i>X</i> <sub>3</sub> | 0                 |
| X <sub>4</sub>        | 0                 |
| $X_5$                 | 0                 |

| Classe B x C          |        | _ |
|-----------------------|--------|---|
| Attr                  | Classe |   |
| X <sub>3</sub>        | 1      |   |
| X <sub>4</sub>        | 1      |   |
| <i>X</i> <sub>5</sub> | 1      |   |
| <i>X</i> <sub>6</sub> | 0      |   |
| X <sub>7</sub>        | 0      |   |

| Classe A $\times$ C   |        |
|-----------------------|--------|
| Attr                  | Classe |
| X <sub>1</sub>        | 1      |
| $X_2$                 | 1      |
| <i>X</i> <sub>6</sub> | 0      |
| X <sub>7</sub>        | 0      |



>

## Medidas de avaliação







#### Matriz de confusão



Fonte: https://scikit-learn.org/stable/auto\_examples/model\_selection/plot\_confusion\_matrix.html





## Abordagens

- Micro-averaged
  - ► Usa uma única matriz de confusão (totalizando todas as classes)
  - ► Trata cada instância igualmente
- Macro-averaged
  - Usa uma matriz de confusão para cada classe e calcula a média
  - ▶ Trata cada classe igualmente
- Weighted-averaged
  - Abordagem similar a macro, porém usa a distribuição das classes como pesos

3



### Acurácia

- Não há diferença entre a acurácia micro e macro
- Micro:

$$\textit{Acc} = \frac{\sum_{j=0}^{q} \textit{TP}_{j} + \sum_{j=0}^{q} \textit{TN}_{j}}{\sum_{j=0}^{q} \textit{TP}_{j} + \sum_{j=0}^{q} \textit{TN}_{j} + \sum_{j=0}^{q} \textit{FP}_{j} + \sum_{j=0}^{q} \textit{FN}_{j}}$$

$$Acc = \frac{1}{q} \sum_{i=0}^{q} Acc_{i}$$



### Precisão

■ Micro:

$$\textit{Prec} = \frac{\sum_{j=0}^{q} \textit{TP}_{j}}{\sum_{j=0}^{q} \textit{TP}_{j} + \sum_{j=0}^{q} \textit{FP}_{j}}$$

$$Prec = \frac{1}{q} \sum_{i=0}^{q} Prec_{j}$$



## Revocação

■ Micro:

$$\mathit{Rec} = rac{\sum_{j=0}^{q} \mathit{TP}_{j}}{\sum_{j=0}^{q} \mathit{TP}_{j} + \sum_{j=0}^{q} \mathit{FN}_{j}}$$

$$Rec = \frac{1}{q} \sum_{i=0}^{q} Rec_{i}$$



F1

■ Micro:

$$F1 = 2 \frac{precision_{micro} \cdot recall_{micro}}{precision_{micro} + recall_{micro}}$$

$$F1 = \frac{1}{q} \sum_{i=0}^{q} F1_{i}$$