STACK EMISSIONS MONITORING REPORT

2-4 Langlands Place Kelvin South Business Park East Kilbride G75 0YF Tel: 01355 246 730 Fax: 01355 249 669

Your contact at SOCOTEC UK LTD

David Hay Business Manager - North Tel: 01355 246 730 Email: david.hay@socotec.com

Permit Reference:

JO IPPC Licence: P0027-04

Release Point: A2-21 (EP9)

Sampling Date(s): 11 January 2018

SOCOTEC UK Job Number:	LEK 10972 / Q1
Report Date:	14-Feb-18
Version:	1
Report By:	Hugh McMahon
MCERTS Number:	MM 15 1347
MCERTS Level:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Report Approved By:	Matthew Green
MCERTS Number:	MM 04 499
Business Title:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Signature:	Marga-

CONTENTS

EXECUTIVE SUMMARY

Stack Emissions Monitoring Objectives

- Plant
- Operator
- Stack Emissions Monitoring Test House

Emissions Summary

Monitoring Times

Process Details

Monitoring Methods

Analytical Methods

- Sampling Methods with Subsequent Analysis
- On-Site Testing

Sampling Location

- Sampling Plane Validation Criteria
- Duct Characteristics
- Sampling Lines & Sample Points
- Sampling Platform
- Sampling Location / Platform Improvement Recommendations

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team, Returned and Charts
APPENDIX 2 - Summaries, Calculations, Raw Data and Charts
APPENDIX 3 - Measurement Uncertainty Budget Calculations

Consent of Conference of Consent of Conference of Consent of Conference of Consent of

MONITORING OBJECTIVES

Medite Europe Ltd. operates a wood fibre drier process at Clonmel which is subject to IPPC Licence P0027-04, under the EPA Act 1992.

SOCOTEC UK LTD were commissioned by Medite Europe Ltd. to carry out stack emissions monitoring to determine the release of prescribed pollutants from the following Plant under normal operating conditions.

The results of these tests shall be used to demonstrate compliance with a set of emission limit values for prescribed pollutants as specified in the Plant's IPPC Licence, P0027-04.

Plant

A2-21 (EP9)

Operator

Medite Europe Ltd. Redmonstown Clonmel Co. Tipperary Ireland

IPPC Licence: P0027-04

Stack Emissions Monitoring Test House

SOCOTEC UK - East Kilbride Laboratory 2-4 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

UKAS and MCERTS Accreditation Number: 1015

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

MCERTS accredited results will only be claimed where both the sampling and analytical stages are UKAS accredited. This test report shall not be reproduced, except in full, without written approval of SOCOTEC UK LTD.

Consent of conviright owner required for any other use.

EMISSIONS SUMMARY					
Parameter	Units	Result	Calculated Uncertainty +/-	Limit	MCERTS accredited result
Total Particulate Matter Particulate Emission Rate	mg/m³ g/hr	8.12 2382	0.50 145	20 -	✓
Formaldehyde Formaldehyde Emission Rate	mg/m³ g/hr	0.44 128	0.05 13.9	20	✓
Oxides of Nitrogen (as NO ₂) Oxides of Nitrogen (as NO ₂) Emission Rate	mg/m³ g/hr	66.8 12909	5.47 1058	110 -	✓
Carbon Monoxide Carbon Monoxide Emission Rate	mg/m³ g/hr	5.37 1037	11.6 2250	600	✓
Oxygen	% v/v	20.3	4.11	-	✓
Moisture Stack Gas Temperature	% °C	16.4 60.0	0.42		√
Stack Gas Velocity Gas Volumetric Flow Rate (Actual)	m/s m³/hr	15.8 236634	0.40 12286	-	
Gas Volumetric Flow Rate (STP, Wet) Gas Volumetric Flow Rate (STP, Dry)	m³/hr m³/hr	193231 161547	10033 8388	-	
Gas Volumetric Flow Rate at Reference Conditions	m³/hr	193231	10033	174160	

ND = None Detected,

Results at or below the limit of detection are highlighted by bold italic text.

The above volumetric flow rate is calculated using data from the preliminary survey. Mass emissions for non isokinetic tests are calculated using these values. For all isokinetic testing the mass emission is calculated using test specific flow date and not the above values.

Reference conditions are 273K, 101.3kPa without correction for water vapour

, survey. Mass emicurated using test specific flow of correction for water vapour served to the correction for water vapour served to the correction for water vapour the constant of the correction for water vapour served to the correction for the correcti

MONITORING TIMES						
Parameter	Sampling Date(s)	Sampling Times	Sampling Duration			
Total Particulate Matter Run 1	11 January 2018	09:22 - 10:22	60 minutes			
Formaldehyde Run 1	11 January 2018	09:22 - 10:22	60 minutes			
Combustion Gases	11 January 2018	09:25 - 10:25	60 minutes			
Preliminary Stack Traverse	11 January 2018	08:49	-			

PROCESS DETAILS

Parameter	Process Details
Description of process	Wood fibre drier
Continuous or batch	Continuous
Product Details	Wood fibre board
Part of batch to be monitored (if applicable)	N/A
Normal load, throughput or continuous rating	Normal
Fuel used during monitoring	N/A
Abatement	Cyclone
Plume Appearance	Heavy moisture plume visible

Monitoring Methods

The selection of standard reference / alternative methods employed by SOCOTEC UK is determined, wherever possible by the hierarchy of method selection outlined in Environment Protection Agency Technical Guidance Note (Monitoring) AG2.

MONITORING METHODS							
Species	Method	SOCOTEC UK	UKAS Lab	MCERTS	Limit of	Calculated	
	Standard Reference Method /	Technical	Number	Accredited	Detection	MU	
	Alternative Method	Procedure		Method	(LOD)	+/- %	
TPM	SRM - EN 13284-1	AE 104	1015	Yes	0.22 mg/m³	6.1%	
Formaldehyde	USEPA M316	AE 114	1015	Yes	0.01 mg/m³	10.8%	
NO _X	SRM - EN 14792:2017	AE 102	1015	Yes	0.86 mg/m ³	8.2%	
СО	SRM - EN 15058:2017	AE 102	1015	Yes	0.57 mg/m³	216.9%	
02	AM - EN 14789:2017	AE 102	1015	Yes	0.01%	20.3%	
H ₂ O	SRM - EN 14790	AE 105	1015	Yes	0.01%	2.55%	
Velocity	SRM - EN ISO 16911-1	AE 154	1015	Yes	5 Pa	2.54%	
-	-	-	-	-	-	_	

Analytical Methods

The following tables list the analytical methods employed together with the custody and archiving details:

SAMPLING METHODS WITH SUBSEQUENT ANALYSIS							
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	UKAS Accredited Lab Analysis	Analysis Lab	Sample Archive Location	Archive Period
TPM	Gravimetric	AE 106	1015	Yes	SOCOTEC UK (East Kilbride)	SOCOTEC UK (East Kilbride)	8 Weeks
Formaldehyde	Spectrophotometry	M103	0605	Yes	RPS	RPS	8 Weeks
-	-	-	-	-	-	i	i

	ON-SITE TESTING						
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	MCERTS Accredited Analysis	Laboratory	Data Archive Location	Archive Period
NO_X	Chemiluminescence	AE 102	1015	Yeşr lise	SOCOTEC UK (East Kilbride)	SOCOTEC UK (East Kilbride)	5 years
СО	Non Dispersive Infra Red	AE 102	1015	d'ariYes	SOCOTEC UK (East Kilbride)	SOCOTEC UK (East Kilbride)	5 years
02	Zirconia Cell	AE 102	10150505	Yes	SOCOTEC UK (East Kilbride)	SOCOTEC UK (East Kilbride)	5 years
H ₂ O	Gravimetric	AE 105	cito 1015	Yes	SOCOTEC UK (East Kilbride)	-	-

AE 105

FOT THE POLIT

CORSENT OF COPYTIGHT C

SAMPLING LOCATION						
Sampling Plane Validation Criteria	Value	Units	Requirement	Compliant	Method	
Lowest Differential Pressure	1	Pa	>= 5 Pa	No	EN 15259	
Lowest Gas Velocity	1.2	m/s	-	-	-	
Highest Gas Velocity	34.8	m/s	-	-	-	
Ratio of Gas Velocities	28.8	:1	< 3:1	No	EN 15259	
Mean Velocity	15.8	m/s	-	-	-	
Maximum angle of flow with regard to duct axis	NM	0	< 15°	-	EN 15259	
No local negative flow	Yes	-	-	Yes	EN 15259	

DUCT CHARACTERISTICS					
	Value	Units			
Shape	Circular	-			
Shape Depth Width	2.30	m			
Width	-	m			
Area	4.16	m^2			
Port Depth	90	mm			

SAMPLING LINES & POINTS					
	Isokinetic	Non-Iso & Gases			
Sample port size	4" Non BSP	4" Non BSP			
Number of lines used	1	1			
Number of points / line	1	1			
Duct orientation Filtration	Vertical	Vertical			
Filtration	-	In Stack			
Filtration for TPM:	Out Stack	-			
oses edicit					

and the second of the second o				
SAMPLINGPLATFORM				
General Platform Information				
Permanent / Temporary Platform / Ground level / Floor Level / Root	Permanent			
Inside / Outside	Outside			
E CONT				

AG1 Platform requirements	
Is there a sufficient working area so work can be performed in a compliant manner	No
Platform has 2 levels of handrails (approximately 0.5 m & 1.0 m high)	Yes
Platform has vertical base boards (approximately 0.25 m high)	Yes
Platform has removable chains / self closing gates at the top of ladders	Yes
Handrail / obstructions do not hamper insertion of sampling equipment	No
Depth of Platform = >Stack depth / diameter + wall and port thickness + 1.5m	No

Sampling Platform Improvement Recommendations (if applicable)

Although the monitoring position doesn't comply with most of the sampling plane validation criteria described in AG1, EN 15259, EN 16911-1, it is the safest & only real means of access practically possible.

Sampling & Analytical Method Deviations

Nozzle size

Due to the high velocities at the sampling point selected in the stack a 4mm nozzle was required to achieve isokinetic monitoring, this does not completely adhere to EN 13284-1.

Sample Line & Sample Point

It was only possible to sample from one representative sampling point for all isokinetic monitoring due to a number of factors i.e. flow being excessively high, swirl being greater than 15° & negative flow experienced throughout sample point locations. This sampling location does not therefore comply with all the requirements of AG1 & IS EN 16911-1.

Velocity & Volumetric Flow Rates

As this sampling location shows high levels of turbulence throughout the results from the standard flow traverse are only indicative. In the past, reports detailing the volumetric flow rate according to fan rating have been used to calculate mass emission rates for this stack.

Negative Flow

During instances of negative flow during the traverse a default figure of 0.01 mmH20 was entered into the traverse data spreadsheet.

Flow Traverse

Due to the erratic nature of the flow at the sampling position a 45 rooms flow traverse was carried out on each line.

Medite Europe Ltd. Clonmel A2-21 (EP9) LEK 10972 / Q1 / Version 1 11/01/2018 IPPC Licence: P0027-04

APPENDICES

CONTENTS

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

APPENDIX 3 - Measurement Uncertainty Budget Calculations

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

	MONITORING SCHEDULE										
Species	Method Standard Reference Method / Alternative Method	SOCOTEC UK Technical Procedure	UKAS Lab Number	MCERTS Accredited Method	Number of Samples						
TPM	SRM - EN 13284-1	AE 104	1015	Yes	1						
Formaldehyde	USEPA M316	AE 114	1015	Yes	1						
NOx	SRM - EN 14792:2017	AE 102	1015	Yes	1						
CO	SRM - EN 15058:2017	AE 102	1015	Yes	1						
02	AM - EN 14789:2017	AE 102	1015	Yes	1						
H ₂ O	SRM - EN 14790	AE 105	1015	Yes	1						
Velocity	SRM - EN ISO 16911-1	AE 154	1015	Yes	1						

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

CALIBRATEABLE EQUIPMENT CHECKLIST								
Extractive Sampling		Instrumental Analyser/	's	Miscellaneous	Miscellaneous			
Equipment	Equipment I.D.	Equipment	Equipment I.D.	Equipment	Equipment I.D.			
Control Box DGM	LEK 9.30	Horiba PG-250 Analyser	LEK 12.2	Laboratory Balance	LEK 15.21			
Box Thermocouples	LEK 9.30	FT-IR Gasmet	-	Tape Measure	-			
Meter In Thermocouple	LEK 9.31	FT-IR Oven Box	-	Stopwatch	LEK 17.11			
Meter Out Thermocouple	LEK 9.31	Bernath 3006 FID	-	Protractor	-			
Control Box Timer	LEK 17.11	Signal 3030 FID	-	Barometer	LEK 16.8			
Oven Box	-	Servomex	-	Digital Micromanometer	-			
Probe	LEK 6.2	JCT Heated Head Filter	-	Digital Temperature Meter	-			
Probe Thermocouple	LEK 3.7	Thermo FID	-	Stack Thermocouple	LEK 3.90			
Probe	-	Stackmaster	-	Mass Flow Controller	-			
Probe Thermocouple	-	FTIR Heater Box for Heated Line	-	MFC Display module	-			
S-Pitot	LEK 9.18	Anemometer	-	1m Heated Line (1)	-			
L-Pitot	-	Ecophysics NOx Analyser	-	1m Heated Line (2)	-			
Site Balance	LEK 23.12	Chiller (JCT/MAK 10)	-	1m Heated Line (3)	-			
Last Impinger Arm	-	Heated Line Controller (1)	LEK 8.23	5m Heated Line (1)	-			
Dioxins Cond. Thermocouple	-	Heated Line Controller (2)	-	10m Heated Line (1)	-			
Callipers	-	Site temperature Logger	-	10m Heated Line (2)	-			
Small DGM	-		-	15m Heated Line (1)	-			
Heater Controller	-		- USE.	20m Heated Line (1)	LEK 8.23			
Inclinometer (Swirl Device)	LEK 24.10		net it	20m Heated Line (2)				

Inclinometer (Swirl Device)

LEK 24.10

NOTE: If the equipment I.D is represented by a dash (-), then this piece of equipment has not been used for this test.

CALIBRATION GASES									
Gas (traceable to ISO 17025)	Cylinder I.D Number	Supplied ited	ppm	%	Analytical Tolerance +/- %				
Nitric Oxide	LEK 123	ect ABOC	200.9	-	2.0				
Carbon Monoxide	LEK 116	BOC BOC	164	-	2.0				
-	4004	-	-	-	-				

STACK EMISSIONS MONITORING TEAM

MONITORING TEAM										
Personnel	MCERTS	MCI	ERTS		TE / H&S Q	ualifications and	Expiry Date			
Personner	Number	Level	Expiry	TE1	TE2	TE3	TE4	H&S		
Hugh Mcmahon	MM 15 1347	MCERTS Level 2	Sep-20	Feb-22	May-22	Jul-22	Feb-22	Sep-20		
Shane Thompstone	MM 16 1395	MCERTS Level	Oct-21	-	-	-	-	Oct-21		

TOTAL PARTICULATE MATTER SUMMARY									
Parameter Sampling Times Concentration Uncertainty Limit Em									
		mg/m³	mg/m³	mg/m³	Rate g/hr				
Run 1	09:22 - 10:22 11 January 2018	8.12	0.49	20	2382				
Blank	-	0.22	-	-	-				

Reference conditions are 273K, 101.3kPa without correction for water vapour

Acetone Blank Value	Acceptable Value
mg/l	mg/l
2.0	10

FILTER INFORMATION

	SAMPLES									
Test	Filter & Probe Rinse Number	Filter Start Weight	Filter End Weight	Mass Gained on Filter	Probe Rinse Start Weight	Probe Rinse End Weight	Mass Gained on Probe	Combined Total Mass Gained		
		g	g	g	g	g	g	g		
Run 1	AC8748	0.09503	0.10112	0.00609	185.29110	185.29260	0.00150	0.00759		

If total mass gained is less than the LOD then the LOD is reported

				BLANKS	of tisk.			
Test	Filter & Probe Number	Filter Start Weight	Filter End Weight	Mass Gained Filter	Probe Start Weight	Probe End Weight	Mass Gained Probe	Combined Total Mass Gained
		g	g	g oser o	g	g	g	g
Run 1	AC8760	0.09691	0.09687	-0.00004	202.72920	202.72930	0.00010	0.00021
			Consent of cons	ight or				

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

ISOKINETIC SAMPLING EQUATIONS - F	RUN 1			TPM
Absolute pressure of steel resp. D		Molecular weight of dry gas, M _d		
Absolute pressure of stack gas, P _s	770 51	, , , , ,	0,	1.76
Barometric pressure, P _b mm Hg	778.51	CO ₂	%	1.76
Stack static pressure, P _{static} mm H ₂ O	61.59	02	%	17.63
$P_s = P_b + (P_{static})$ mm Hg	783.04	Total	%	19.39
13.6		N ₂ (100 -Total)	%	80.61
Vol. of water vapour collected, V _{wstd}	100.0	$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$		28.99
Moisture trap weight increase,Vlc g	123.0	Molecular weight of wet gas, M _s		
$V_{\text{wstd}} = (0.001246)(V_{\text{lc}})$ m ³	0.153258	$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	g/gmol	27.19
Volume of gas metered dry, V _{mstd}		Actual flow of stack gas, Q _a	2	
Volume of gas sample through gas meter, V _m	0.845	Area of stack, A _s	m ²	4.16
Gas meter correction factor, Y _d	0.937	$Q_a = (60)(A_s)(V_s)$	m³/min	5727.1
Mean dry gas meter temperature, T _m	10.750	Total flow of stack gas, Q		
Mean pressure drop across orifice, DH mmH ₂ O	18.405	Conversion factor (K/mm.Hg)		0.3592
$V_{mstd} = (0.3592)(V_m)(P_b + (DH/13.6))(Y_d)$	0.781	$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	Dry	4087.1
T _m + 273		(T _s) +273		
Volume of gas metered wet, V _{mstw}		$Q_{stdO2} = (Q_a)P_s(0.3592)(1-B_{wo})(O_2REF)$	$@O_2ref$	No O2 Ref
$V_{\text{mstw}} = V_{\text{mstd}} + V_{\text{wstd}}$ m ³	0.9347	$(T_s) + 273$		
Vol. of gas metered at O ₂ Ref. Cond., V _{mstd@X%O2}		$Q_{stw} = (Q_a)P_s(0.3592)$	Wet	4888.71
voi. or gas metered at 02 mer. cond., v _{mstd@X%02}		(T _s) +273		
Is the process burning hazardous waste? (If yes, no	No	Percent isokinetic, %I Nozzle diameter, Dn Nezzle cross A		
favourable oxygen correction)		Nozzle diameter, D _n	mm	4.00
% oxygen measured in gas stream, act%O ₂	17.6	Nozzle area, And and	mm^2	12.57
% oxygen reference condition	21	Total sampling time, q	min	60
O_2 Reference O_2 Ref = 21.0 - act% O_2	No O2 Ref	$%I = (4.6398E6)(T_s + 273)(V_{mstd})$	%	105.3
Factor 21.0 - ref%O ₂		(Ps)(V _s)(A _n)(q)(1-B _{wo})		
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}}) (O_{2 \text{ Ref}})$ m ³	No O2 Ref	Acceptable isokinetic range 95% to 115%		Yes
Moisture content, B _{wo}		Particulate Concentration, C		
** **	0.1640	Mass collected on filter, M _f	g	0.00609
$B_{wo} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}}$ %	0.1640 16.40	Mass collected in probe, M _p	g	0.00150
Moisture by FTIR %	<u>- د د د د د د د د د د د د د د د د د د د</u>	Total mass collected, M _n	q	0.00759
Velocity of stack gas, V _s	asent or	C _{wet} = M _n	mg/m³	8.121
Pitot tube velocity constant, K _p	. 34 97			
Velocity pressure coefficient, C _p	0.88	C = M	mg/m³	9.713
Mean of velocity heads, DP_{avg} mm H_2O	35.83	$C_{dry} = \frac{M_n}{V_{mstd}}$	9,	310
Mean square root of velocity heads, ÖDP	5.99	$C_{dry@X\%O2} = M_n$	mg/m³	No O2 Ref
Mean stack gas temperature, T _s °C	57		1119/111	140 02 1161
	22.97	V _{mstd@X%oxygen} Particulate Emission Rates, E		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.91			2201.06
$(M_s)(P_s)$		$E = [(C_{wet})(Q_{stw})(60)] / 1000$		2381.96

TOTAL PARTICULATE MATTER QUALITY ASSURANCE CHECKLIST

	LEAK RATE									
Run	Mean Sampling Rate	Leak Rate	Post-sampling Leak Rate	Maximum Vacuum	Acceptable Leak Rate	Leak Tests Acceptable?				
	litre/min	litre/min	litre/min	mm Hg	litre/min					
Run 1	13.19	0.01	0.01	-558.8	0.26	Yes				

ISOKINETICITY							
Isokinetic Acceptable Run Variation Isokineticity %							
Run 1	105.35	Yes					

Acceptable isokinetic range 95% to 115%

V	WEIGHING BALANCE UNCERTAINTY								
Run Result 5% ELV LOD < 5% ELV									
	mg/m³	mg/m³							
Run 1	0.22	1.0	Yes						

The above is based on both the Filter and rinse uncertainty

BLANK VALUE						
	Overall Blank	Daily Emission	Acceptable	Overall Blank		
Run	Value	Limit Value	Blank Value	Acceptable		
	mg/m³	mg/m³	mg/m³	mg/m³³³¸°°		
Blank 1	0.22	20	2.0	A. M. Kes		

Run Filter Material Filter Size Max Filtration Pre-use Filter Conditioning Temperature Temperature °C °C °C

Run 1 Glass Fibre 47 0 160 180 160

Medite Europe Ltd. Clonmel A2-21 (EP9)

LEK 10972 / Q1 / Version 1 11/01/2018 IPPC Licence: P0027-04

FORMALDEHYDE SUMMARY						
Test	Sampling Times	Concentration mg/m³	LOD mg/m³	Limit mg/m³	Emission Rate g/hr	
Run 1	09:22 - 10:22 11 January 2018	0.44	0.01	20	128	
Field Blank	-	0.01	-	-	-	

Please note figures in bold italic font are at the limit of detection

Reference conditions are 273K, 101.3kPa without correction for water vapour

FORMALDEHYDE QUALITY ASSURANCE CHECKLIST

Leak Test Results	Mean Sampling Rate I/min	Pre sampling leak rate l/min	Post sampling leak rate I/min	Acceptable leak rate l/min	Leak Tests Acceptable?
Run 1	13.2	0.01	0.01	0.26	Yes

	Filter Material		Max. Filtration		7.	Absorption Solutions
		mm	Temp. °C	Transit Temp.	Absorbers	
Run 1	Glass Fibre	47	160	7. M. 233	Glass	HPLC Water

FORMALDEHYDE ABSORPTION EFFICIENCY

Parameter	Total ug	IMP C TO US FOT ON	Absorption Efficiency %	Acceptable Absorption Efficiency %	Absorption Efficiency Acceptable ?
Run 1	409.35	1505	63	95	N/A- < 1mg/m³
ND - None Detected		Causey			_

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

ISOKINETIC SAMPLING EQUATIONS 1			Formaldehyde
Absolute pressure of stack gas, P _s		Velocity of stack gas, V _s	
Barometric pressure, P _b mm Hg	779	Pitot tube velocity constant, K _p	34.97
Stack static pressure, P_{static} mm H_2O	62	Velocity pressure coefficient, C _p	0.88
$P_s = P_b + (P_{static})$ mm Hg	783	Mean of velocity heads, DP _{avg} mm H ₂ 0	35.83
13.6		Mean square root of velocity heads, ÖDP	5.99
Vol. of water vapour collected, V _{wstd}		Mean stack gas temperature, T _s °(
Moisture trap weight increase,Vlc g	-	, , , , , , , , , , , , , , , , , , ,	
$V_{wstd} = (0.001246)(V_{lc})$ m ³	-	$V_s = \frac{(K_p)(C_p)(\ddot{O}DP)(\ddot{O}(T_s + 273))}{(M_s)(P_s)}$ m/s	23.0
Volume of gas metered dry, V _{mstd}		Actual flow of stack gas, Q _a	
Volume of gas sample through gas meter, V _m	0.8450	Area of stack, A _s m	4.16
Gas meter correction factor, Y _d	0.9367	$Q_a = (60)(A_s)(V_s)$ m ³ /mir	5727
Mean dry gas meter temperature, T _m	10.75	Dry total flow of stack gas, Q _{std}	
Mean pressure drop across orifice, DH mmH ₂ O	18.41	Conversion factor (K/mm.Hg)	0.3592
$V_{mstd} = (0.3592)(V_m)(P_b + (DH/13.6))(Y_d)$	0.78	$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$ m ³ /min	4087
T _m + 273		$(T_s) + 273$	
Volume of gas metered wet, V _{mstw}		Wet total flow of stack gas, Q _{stw}	
$V_{\text{mstw}} = V_{\text{mstd}} + V_{\text{wstd}}$ m ³	0.9347	$Q_{stw} = (Q_a)P_s(0.3592)$ m³/mir	4889
Vol. of gas metered at O ₂ Ref. Cond., V _{mstd@X%O2}		(T _s) +273	
voi. of gas metered at O ₂ her. Cond., v _{mstd@X%02}		Dry total flow of stack gas at 💥 O ₂ , Q _{stdO2}	
Is the process burning hazardous waste? (If yes,	No	, 10 ²⁵	
no favourable oxygen correction)		$Q_{std02} = (Q_a)P_s(0.3592)(1-B_{w0})Q_2REF$ m ³ /min	No O2 Ref
$\%$ oxygen measured in gas stream, act $\%$ O $_2$	17.63	(T _s) +273	
% oxygen reference condition	21	Percent isokinetic, %	
O_2 Reference $O2$ Ref = $21.0 - act \% O2$	No O2 Ref	Nozzle diameter D _n mn	4.00
Factor 21.0 - ref%O2		Nozzle area An mm	12.57
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}}) (O_{2 \text{ Ref}})$ m ³	No O2 Ref	Totak sampling time, q mir	n 60
Moisture content, B _{wo}		%(2° (4° 6398E6)(T _s +273)(V _{mstd})	105
$B_{wo} = V_{wstd}$	0.1640 🏑	$(P_s)(V_s)(A_n)(q)(1-B_{wo})$	
$V_{mstd} + V_{wstd}$ %	16.40	Acceptable isokinetic range 95% to 115%	Yes
Moisture by FTIR %	SOS.	Formaldehyde Concentration, C	
Molecular weight of dry gas, M _d	x of	Mass collected, M ug	409
CO ₂	1276	$C_{\text{wet}} = M_{\text{n}}$ mg/m	0.438
O_2	17.63	V _{mstw}	
Total	19.39	$C_{dry} = M_n$ mg/m	0.524
N ₂ (100 -Total)	80.61	$C_{dry} = \frac{M_n}{V_{mstd}}$ mg/m	
·		$C_{dry@X\%O2} = M_n mg/m$	No O2 Ref
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$	28.99	V _{mstd@} X%oxygen	
Molecular weight of wet gas, M _s		Formaldehyde Emission Rates, E	
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$ g/gmol	27.2	$E = [(C_{wet})(Q_{stw})(60)] / 1000$ g/h	r 128.47

COMBUSTION GASES SUMMARY

Test	Sampling Time and Date	Concentration mg/m³	LOD mg/m³	Limit mg/m³	Emission Rate g/hr
NOx	09:25 - 10:25 11 January 2018	66.8	0.86	110	12909
со	09:25 - 10:25 11 January 2018	5.37	0.57	600	1037

Test	Sampling Time and Date	Concentration %	LOD %
O_2	09:25 - 10:25 11 January 2018	20.3	0.01

Reference conditions are 273K, 101.3kPa without correction for water vapour

PRE-SAMPLING CALIBRATION DATA

Date	11 January 2018
Start Time	08:55
End Time	09:02

Chiller Temperature (°C)	2.5
Requirement	< 4°C
Compliant	Yes

Gas	Range	Zero Reading	Span Reading	Zero Check	Zerceheck	Span Check	Response	Leak Rate
	(ppm / %)	at analyser	at analyser	at analyser 💰	🔊 🗞 wn line	down line	Time (Secs)	%
NO	500	2.00	198.9	0.50 وي	1.00	199.4	66	-0.25
СО	500	3.00	166.0	0,30 Jiji	0.80	163.2	45	1.69
02	25	0.00	20.90	:00.10	0.10	20.93	37	-0.14
POST-SAMPLING CALIBRATION DATA Chiller Temperature (°C) 2.5								
Date	11 January 201	8	Cor			Chiller Tempera	ture (°C)	2.5
	-		l				·	· · · · · · · · · · · · · · · · · · ·

Date	11 January 2018
Start Time	01:26
End Time	12:11

Chiller Temperature (°C)	2.5
Requirement	< 4°C
Compliant	Yes

Gas	Zero Check down line	Span Check down line	Zero Drift (%)	Span Drift (%)
NO	0.20	199.9	-0.16	0.26
со	1.00	165.0	0.04	0.32
02	0.10	20.90	0.00	-0.12

OXIDES OF NITROGEN (as NO2) EMISSIONS CHART

CARBON MONOXIDE EMISSIONS CHART

OXYGEN EMISSIONS CHART

MOISTURE CALCULATIONS

	Moisture Determination - Isokinetic						
Test Number	Sampling Time and Date	Start Weight	End Weight	Total gain	Concentration	LOD	Uncertainty
		kg	kg	kg	%	%	%
Run 1	09:22 - 10:22 11 January 2018	3.6574	3.7804	0.1230	16.4	0.0	2.6

Moisture Quality Assurance								
Test Number	Sampling Duration	Total Volume Sampled	Sampling Rate	Start Leak Rate	End Leak Rate	Acceptable Leak Rate	Leak Tests Acceptable?	
	mins	1	l/min	l/min	l/min	l/min		
Run 1	60	935	13.2	0.01	0.01	0.264	Yes	

PRELIMINARY STACK SURVEY

Stack Characteristics		
Stack Diameter / Depth, D	2.30	m
Stack Width, W	-	m
Stack Area, A	4.16	m ²
Average stack gas temperature	60	°C
Stack static pressure	0.6	kPa 🎺 🖔
Barometric Pressure	100.3	KRA Jiji
		section Pries

Stack Gas Composition & Molecular Weights Molar **Dry Conc** Wet Volume Wet Conc Component Conco Dry Volume Dry con kg/m³ kg/m³ kg/m³ % Vol CO_2 0.028885 44 1.963059 1,760000 0.017600 0.034550 1.471410 0.014714 O_2 32 1.427679 20.278497 0.202785 0.289512 16.953396 0.169534 0.242040 N_2 1.249219 77.961503 0.779615 0.973910 65.178016 0.814216 28 0.651780 H_2O 18 0.803070 16.397179 0.163972 0.131681

Where: p = M / 22.41 pi = r x p

Calculation of Stack Gas Densities					
Determinand	Result	Units			
Dry Density (STP), P STD	1.2980	kg/m³			
Wet Density (STP), P STW	1.2168	kg/m³			
Dry Density (Actual), P Actual	1.0599	kg/m³			
Average Wet Density (Actual), P ActualW	0.994	kg/m³			

Where:

 $P_{\rm STD}$ = sum of component concentrations, kg/m 3 (not including water vapour)

 $P_{STW} = (P_{STD} + pi \text{ of } H_2O) / (1 + (pi \text{ of } H_2O / 0.8036))$

P_{Actual} = P_{STD} x (Ts / Ps) x (Pa / Ta)

 $P_{ActualW} = P_{STW} x (Ts / Ps) x (Pa / Ta)$

PRELIMINARY STACK SURVEY

TRAVERSE 1

Date of Survey	11 January 2018
Time of Survey	08:49
Velocity Measurement Device:	S-Type Pitot

Point into mmH ₂ O Pa °C m/s Flow Rate (actual) % of duct (m) (average of 3 readings) (average of 3 readings) m³/s Vol 1 0.05 53.0 519 60 27.8 115.4 - 2 0.10 55.0 539 60 28.3 117.6 - 3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.31 56.0 549 60 28.6 118.7 - 7 0.36 55.0 539 60 28.3 117.6 - 8 0.41 53.0 519 60 27.8 115.4 - 9 0.46 18.0 176 60 16.2 56.6 </th <th>NM NM NM NM NM NM NM NM NM NM</th>	NM NM NM NM NM NM NM NM NM NM
Point into mmH ₂ O Pa °C m/s (actual) % of duct (m) (average of 3 readings) (average of 3 readings) m³/s Vol vol <t< th=""><th>NM NM NM NM NM NM NM NM</th></t<>	NM NM NM NM NM NM NM NM
duct (m) (average of 3 readings) (average of 3 readings) (average of 3 readings) m³/s Vol 1 0.05 53.0 519 60 27.8 115.4 - 2 0.10 55.0 539 60 28.3 117.6 - 3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.21 56.0 54.0 60 28.3 117.6 -	NM NM NM NM NM NM NM NM
duct (m) readings) readings) m²/s Vol 1 0.05 53.0 519 60 27.8 115.4 - 2 0.10 55.0 539 60 28.3 117.6 - 3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.21 56.0 54.0 60 20.6 110.7 -	NM NM NM NM NM NM NM NM NM
1 0.05 53.0 519 60 27.8 115.4 - 2 0.10 55.0 539 60 28.3 117.6 - 3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 -	NM NM NM NM NM NM NM NM NM
2 0.10 55.0 539 60 28.3 117.6 - 3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.21 56.0 56.0 20.6 110.7	NM NM NM NM NM NM NM
3 0.15 58.0 568 60 29.1 120.8 - 4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.21 56.0 56.0 60 20.6 110.7	NM NM NM NM NM NM
4 0.20 56.0 549 60 28.6 118.7 - 5 0.26 55.0 539 60 28.3 117.6 - 6 0.21 56.0 56.0 60 20.6 110.7	NM NM NM NM NM
5 0.26 55.0 539 60 28.3 117.6 -	NM NM NM NM
6 0.01 56.0 540 60 20.6 110.7	NM NM NM NM
6 0.31 56.0 549 60 28.6 118.7 - 7 0.36 55.0 539 60 28.3 117.6 - 8 0.41 53.0 519 60 27.8 115.4 - 9 0.46 18.0 176 60 16.2 15 67.3 - 10 0.51 11.0 108 60 12.0 52.6 - 11 0.56 15.0 147 60 52.6 - 12 0.61 2.0 20 60 60 5.4 22.4 - 13 0.66 2.0 20 60 60 5.4 22.4 - 14 0.71 5.0 49 60 60 60 60 60 60 60 60 60 60 60 60 60	NM NM NM
7 0.36 55.0 539 60 28.3 117.6 - 8 0.41 53.0 519 60 27.8 115.4 - 9 0.46 18.0 176 60 16.2 ps² 67.3 - 10 0.51 11.0 108 60 12.7 52.6 - 11 0.56 15.0 147 60 4.8 61.4 - 12 0.61 2.0 20 60 5.4 22.4 - 13 0.66 2.0 20 60 5.4 22.4 - 14 0.71 5.0 49 60 8.5 35.5 -	NM NM
8	NM
9 0.46 18.0 176 60 16.2 67.3 - 10 10 0.51 11.0 108 60 124 52.6 - 11 0.56 15.0 147 60 14.8 61.4 - 12 0.61 2.0 20 60 60 5.4 22.4 - 13 0.66 2.0 20 60 60 5.4 22.4 - 14 0.71 5.0 49 60 60 60 60 60 60 60 60 60 60 60 60 60	
11	
12	NM
12 0.61 2.0 20 60 5.4 22.4 - 14 0.71 5.0 49 60 60 60 8.5 35.5 -	NM NM
14 0.71 5.0 49 60 dille 8.5 35.5 -	NM NM
14 0.71 3.0 45 0.3 35.3	NM
15 0.77 6.0 59 60 9.3 38.8 -	NM
15 0.77 6.0 59 9.3 38.8 - 16 0.82 9.0 88 250 0 11.4 47.6 -	NM
17 0.87 9.0 88 60 11.4 47.6 -	NM
18 0.92 9.0 88 col 11.4 47.6 -	NM
19 0.97 12.0 118 60 13.2 54.9	NM
20 1.02 0.1 1.05 60 1.2 5.0 -	NM
21 1.07 0.1 60 1.2 5.0 -	NM
22 1.12 0.1 60 1.2 5.0 -	NM
23 1.17 0.1 1 60 1.2 5.0 -	NM
24 1.22 20.0 196 60 17.1 70.9 -	NM
25 1.28 32.0 314 60 21.6 89.7 -	NM
26 1.33 17.0 167 60 15.7 65.4 -	NM
	NM
28 1.43 30.0 294 60 20.9 86.8 -	NM
29 1.48 33.0 323 60 21.9 91.1 -	NM
30 1.53 34.0 333 60 22.3 92.5 -	NM
31 1.58 54.0 529 60 28.0 116.5 -	NM
32 1.63 53.0 519 60 27.8 115.4 -	NM
33 1.68 55.0 539 60 28.3 117.6 -	NM
34 1.73 44.0 431 60 25.3 105.2 -	NM
	NM
36 1.84 32.0 314 60 21.6 89.7 -	NM
37 1.89 29.0 284 60 20.5 85.4 -	NM
38 1.94 34.0 333 60 22.3 92.5 -	NM
39 1.99 39.0 382 60 23.8 99.0 -	NM
40 2.04 0.1 1 60 1.2 5.0 -	NM
41 2.09 40.0 392 60 24.1 100.3 -	NM
42 2.14 73.0 715 60 32.6 135.5 -	NM
43 2.19 77.0 755 60 33.5 139.1 -	NM
44 2.24 82.0 804 60 34.6 143.6 -	NM
45 2.30 83.0 813 60 34.8 144.5 -	
Mean - 33.2 325 60 19.6 81.3 -	NM -

				Sampling Line B				
Traverse	Distance	D <i>P</i> pt	DP pt	Temp	Velocity	Volumetric	02	Angle
						Flow Rate		
Point	into	mmH ₂ O	Pa	°C	m/s	(actual)	%	of Swirl
		(average of 3	(average of 3					
	duct (m)	readings)	readings)			m³/s	Vol	0
1	0.05	0.1	1	60	1.2	5.0	-	NM
2	0.10	52.0	510	60	27.5	114.3	-	NM
3	0.15	55.0	539	60	28.3	117.6	-	NM
4	0.20	56.0	549	60	28.6	118.7	-	NM
5	0.26	0.1	1	60	1.2	5.0	-	NM
6	0.31	50.0	490	60	27.0	112.1	-	NM
7	0.36	56.0	549	60	28.6	118.7	-	NM
8	0.41	55.0	539	60	28.3	117.6	-	NM
9	0.46	0.1	1	60	1.2	5.0	-	NM
10	0.51	18.0	176	60	16.2	67.3	-	NM
11	0.56	12.0	118	60	13.2	54.9	-	NM
12	0.61	55.0	539	60	28.3	117.6	-	NM
13	0.66	16.0	157	60	15.3	63.4	-	NM
14	0.71	24.0	235	60	18.7	77.7	-	NM
15	0.77	37.0	363	60	23.2	96.5	-	NM
16	0.82	55.0	539	60	28.3	117.6	-	NM
17	0.87	19.0	186	60	16.6	69.1	-	NM
18	0.92	0.1	1	60	1.2	5.0	-	NM
19	0.97	0.1	1	60	1.2	5.0	-	NM
20	1.02	0.1	1	60	1,20	5.0	-	NM
21	1.07	0.1	1	60	4. A 1.2	5.0	-	NM
22	1.12	0.1	1	60 S	1.2	5.0	-	NM
23	1.17	0.1	1	60 000	1.2	5.0	-	NM
24	1.22	0.1	1	600 dill	1.2	5.0	-	NM
25	1.28	0.1	1	101 60/60 V	1.2	5.0	-	NM
26	1.33	0.1	1	Sec. 17/1/20	1.2	5.0	-	NM
27	1.38	0.1	1 115	60	1.2	5.0	-	NM
28	1.43	10.0	98 FOLK	60	12.1	50.1	-	NM
29	1.48	2.0	ِ رَحْمَىٰ 20 أيان 20 أيان	60	5.4	22.4	-	NM
30	1.53	9.0	98 to 3	60 60 60 60 60 60 60 60 60 60 60 60 60 6	11.4	47.6	-	NM
31	1.58	14.0	<u>4</u> 37	60	14.3	59.3	-	NM
32	1.63	34.0	C _{Q1} 333	60	22.3	92.5	-	NM
33	1.68	52.0	510	60	27.5	114.3	-	NM
34	1.73	64.0	627	60	30.5	126.9	-	NM
35	1.79	0.1	1	60	1.2	5.0	-	NM
36	1.84	71.0	696	60	32.2	133.6	-	NM
37	1.89	0.1	1	60	1.2	5.0	-	NM
38	1.94	73.0	715	60	32.6	135.5	-	NM
39	1.99	0.1	1	60	1.2	5.0	-	NM
40	2.04	0.1	1	60	1.2	5.0	-	NM
41	2.09	0.1	1	60	1.2	5.0	-	NM
42	2.14	0.1	1	60	1.2	5.0	-	NM
43	2.19	0.1	1	60	1.2	5.0	-	NM
44	2.24	0.1	1	60 60	1.2	5.0	-	NM
45 Maan	2.30	0.1	104	60	1.2	5.0	-	NM
Mean	-	19.8	194	60	12.1	50.1	-	-

PRELIMINARY STACK SURVEY QUALITY ASSURANCE CHECKLIST

PITOT LEAK CHECK								
	Pre Traverse Leak Rate			Rate Post Traverse Leak Rate				
Run	Start Value	End Value	Difference	Outcome	Start Value	End Value	Difference	Outcome
	Pa	Pa	%		Pa	Pa	%	
Run 1	90	90	0.0	Pass	103	102	1.0	Pass

To complete a compliant pitot leak check a pressure of over 80 mmH₂O (or 800 Pa) is applied and the pressure drop monitored over 5 mins. A drop of less than 5% must be observed.

S-Type Pitot Stagnation Check							
Run	Stagnation (Pa)	Reference (Pa)	Difference (Pa)	Outcome (Permitted +/- 10 Pa)			
Run 1	102	101	1.0	Pass			

PRELIMINARY STACK SURVEY (CONTINUED)

Sampling Plane Validation Criteria							
EA Technical Guidance Note (Monitoring) M1	Result	Units	Requirement	Compliant			
Lowest Differential Pressure	1	Pa	>= 5 Pa	No			
Lowest Gas Velocity	1.2	m/s	-	-			
Highest Gas Velocity	34.8	m/s	-	-			
Ratio of Gas Velocities	28.8	-	< 3:1	No			
Maximum angle of flow with regard to duct axis	NM	0	< 15°	-			
No local negative flow	Yes	-	-	Yes			

Calculation of Stack Gas V	Velocity, V	
Velocity at Traverse Point, V = K_{pt} x (1-e) * $\ddot{O}(2 * DF)$	P _{pt} / P _{ActualW})	
Where:		
K _{pt} = Pitot tube calibration coefficient		
(1-e) = Compressibility correction factor, assumed	at a constant 0.99	98
Average Stack Gas Velocity Va	15.8	m/a

Calculation of Stack Gas Volumetric Flowrate, Q								
Duct gas flow conditions	Actua	Reference	Units					
Temperature		0	°C					
Total Pressure	10100.9	101.3	kPa					
Oxygen	Q ^C 317.6	21	%					
Moisture	16.40	16.40	%					
Pitot tube calibration coefficient, K_{pt}	0.89							
	६०							

<u> </u>		
Gas Volumetric Flowrate	Result	Units
Average Stack Gas Velocity (Va)	15.82	m/s
Stack Area (A)	4.16	m ²
Gas Volumetric Flowrate (Actual), Q _{Actual}	236634	m³/hr
Gas Volumetric Flowrate (STP, Wet), Q _{STP}	193231	m³/hr
Gas Volumetric Flowrate (STP, Dry), Q _{STP,Dry}	161547	m³/hr
Gas Volumetric Flowrate (REF), Q _{Ref}	193231	m³/hr

 $Q_{Actual} = Va x A x 3600$

Q_{STP} = Q (Actual) x (Ts / Ta) x (Pa / Ps) x 3600

 $Q_{STP,Dry} = Q (STP) / (100 - (100 / Ma)) x 3600$

 $Q_{Ref} = Q (STP) x ((100 - Ma) / (100 - Ms)) x ((20.9 - O_2a) / (20.9 - O_2s))$

Ts = Absolute Temperature, Standard Conditions, 273 K

Ps = Absolute Pressure, Standard Conditions, 101.3 kPa

Ta = Absolute Temperature, Actual Conditions, K

Pa = Absolute Pressure, Actual Conditions, kPa Ma = Water vapour, Actual Conditions, % Vol

Ms = Water vapour, Reference Conditions, % Vol

O₂a = Oxygen, Actual Conditions, % Vol

O₂s = Oxygen, Reference Conditions, % Vol

Medite Europe Ltd. Clonmel A2-21 (EP9)

LEK 10972 / Q1 / Version 1 11/01/2018 IPPC Licence: P0027-04

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK DIAGRAM

	Value	Units
Stack Depth	2.30	m
Stack Width	-	m
Area	4.16	m^2

	Non-Isokinetic/Gases Sampling						
Sampling	Distance	Distance into	Units				
Point	(% of Depth)	Stack					
Α	33	0.76	m				

- 0 Isokinetic sampling point
- Isokinetic sampling points not used
- 0 Non Isokinetic/Gases sampling point

		Isokinetio	Sampling	
	Sampling	Distance	Distance into	Swirl
	Point	(% of Depth)	Stack (m)	
	Point Not Used	2.6	0.06	-
	Point Not Used	8.2	0.19	-
	Point Not Used	14.6	0.34	-
	Point Not Used	22.6	0.52	-
	Point Not Used	34.2	0.79	-
Sampling Line B	6	65.8	1.51	-
	Point Not Used	77.4	1.78	-
	Point Not Used	85.4	1.96	-
	Point Not Used	91.8	2.11	-
	Point Not Used	97.4	2.24	-
	Point Not Used	2.6	0.06	-
	Point Not Used	8.2	0.19	-
	Point Not Used	14.6	0.34	-
	Point Not Used	22.6	0.52	-
		34.2	0.79	-
م ^ر د	Roint Not Used	65.8	1.51	-
200 ⁵	Point Not Used	77.4	1.78	-
Durkdi	Point Not Used	85.4	1.96	-
ction ner 18	Point Not Used	91.8	2.11	-
age, ogh	Point Not Used	97.4	2.24	-
LOCAMPLING LOC				
AMPLING LOC	<u>ATION</u>			

LEK 10972 / Q1 / Version 1 11/01/2018 IPPC Licence: P0027-04

MEASUREMENT UNCERTAINTY BUDGET - TOTAL PARTICULATE MATTER

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity	Oxygen Content	Limit of Detection	Leak	Uncollected Mass
	m³	K	kPa	% by volume	% by volume	% by mass	%	mg
MU required	<u><</u> 2%	<u><</u> 2%	<u><</u> 1%	<u><</u> 1%	<u><</u> 10%	≤ 5% of ELV	<u><</u> 2%	≤ 10% of ELV
Run 1	0.001	2.0	0.50	1.0	N/A	0.2100	-	-
as a %	0.13	0.61	0.48	1.0	N/A	1.12340	0.08	0.001
compliant?	Yes	Yes	Yes	Yes	N/A	Yes	Yes	Yes

Run	Volume (STP)	Mass of	O ₂ Correction	Leak	Uncollected	Combined
		particulate			Mass	uncertainty
	m³	mg	-	mg/m³	mg	
Run 1	0.67	7.5900	1.0	0.004	0.0001	-
MU as mg/m³	0.10	0.2247	-	0.004	0.0001	0.25
MU as %	1.27	2.7668	-	0.044	0.0016	-

1 - Uncertainty expressed at a 95% confidence level (where k = 2)	0.49	mg/m³	6.09	%
is a coverage factor which gives a 95% confidence in the quoted figures)				
eference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertain	ty of Measurement			
	, 11 ⁵⁶			
	ihei			
	14. 24 Ot			
	Only all.			
	ses a for			
	O' titel			
	Soft			
citor net				
Sec. of				
and it is all the second of th				
to diff.				
A COL				
ference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertaint				
a Otise				
C				

MEASUREMENT UNCERTAINTY BUDGET - ISOKINETIC FORMALDEHYDE

Run	Sampled	Sampled Gas	Sampled Gas	Sampled Gas	Oxygen	Limit of	Leak
	Volume	Temp	Pressure	Humidity	Content	Detection	
	m³	K	kPa	% by volume	% by volume	% by mass	%
MU required	<=2%	<2.5 k	<=1%	<=1%	<=5%	≤ 5% of ELV	<=2%
Run 1	0.934660773	283.75	109.84	1.0	-	0.97665	=
as a %	0.11	0.70	0.46	1.0	-	0.06	0.08
compliant?	Yes	Yes	Yes	Yes	N/A	Yes	Yes

Run	Volume (STP)	Mass of	O2 Correction	Leak	Lab	Combined
		Formaldehyde			Uncertainty	uncertainty
	m³	mg	-	mg/m³	mg	
Run 1	0.9751	0.9767	-	0.0002	-	-
MU as mg/m³	0.0057	0.0116	-	0.0002	0.0197	0.0236
MU as %	1.3094	2.6403	-	0.0438	4.5	-

R1 - Uncertainty expressed at a 95% confidence level (where k = 2)	0.05	mg/m³	10.76	%

(k is a coverage factor which gives a 95% confidence in the quoted figures)

Reference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertainty of Measurement

MEASUREMENT UNCERTAINTY BUDGET - MOISTURE

Run	Sampled	Sampled Gas	Sampled Gas	Sampled Gas o	Oxygen	Leak
	Volume	Temp	Pressure	Humantait	Content	
	m³	ĸ.	kPa	% by Volume	% by volume	%
MU required	<u><</u> 2%	<u><</u> 2%	<u><</u> 1%	ections 1%	<u><</u> 10%	<u><</u> 2%
Run 1	0.001	2.0	0.50 💉	1.0	N/A	-
as a %	0.13	0.61	0.48	1.0	N/A	0.08
compliant?	Yes	Yes	Yes	Yes	N/A	Yes

Run	Volume (STP)	Mass Gained	O ₂ Correction	Leak	Uncollected Mass	Combined uncertainty
	m³	mg	-	mg/m³	mg	
Run 1	0.67	123000	1.0	68.89	58	-
MU as % v/v	0.25	0.02	-	0.01	0.009	0.25
MU as %	1.27	0.08	-	0.04	0.05	-

R1 - Uncertainty expressed at a 95% confidence level (where k = 2)	0.51	% v/v	2.55	%

(k is a coverage factor which gives a 95% confidence in the quoted figures)

Reference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertainty of Measurement

MEASUREMENT UNCERTAINTY BUDGET - OXIDES OF NITROGEN

Limit value	110	mg/m ³
Concentration @ Ref conditions	66.8	mg/m ³
Cal gas conc	412	mg/m ³
Analyser Full Scale	1025	mg/m ³

	Value	Units	specification	MU Met?
Response time	66	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	60	minutes	-	-
Number of readings in measurement	60	-	-	-
Repeatability at zero	0.11	% full scale	<1 % range	Yes
Repeatability at span level	0.1	% full scale	<2 % range	Yes
Deviation from linearity	-0.40	% of value	<2 % range	Yes
Zero drift	-0.16	% full scale	<2% range / 24hr	Yes
Span drift	0.26	% full scale	<2% range/24hr	Yes
volume or pressure flow dependence	0.5	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.50	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence zero / span	0.50	% full scale/10K	<3% range / 10 K	Yes
Combined interference	3.00	% range	<4% of Range	Yes
dependence on voltage	0.32	% full scale/10V	< 0.1%vol /10 volt	Yes
Influence of Vibration	N/A	% of upper limit of Cal range	<2%	-
losses in the line (leak)	0.32	% of value	< 2% of value	Yes

recess in the mile (really	0.02	o or varies
		ally, suly or
Performance characteristic	Uncertainty	Value of uppertainty quantity
repeatability	$U_r = S_r$	300.000
lack of fit	U_{lof}	011 - 012-0.231
short term zero drift	$U_{d,z}$: 0.092
short term span drift	$U_{d,s}$	200 Mile 0.150
influence of Ambient Temp at Zero	U _{t,z}	2004 -0.231 -0.092 -0.150 -0.100
influence of Ambient Temp at Span	Uts cot	1.800
influence of sample gas pressure	U _D COS	0.000
influence of sample gas flow	U fit	0.346
influence of supply voltage	U fit of	0.000
Combined Interfence	CONTU i	0.004
Uncertainty of Cal gas	$U_{\rm adj}$	2.009

Measurement uncertainty (Concentration Measured)	66.81	mg/m ³
Combined uncertainty	2.74	mg/m ³
Expanded at a 95% confidence interval	5.47	ma/m ³

Expanded uncertainty expressed with a level of confidence of 95%	4.98	% ELV
Expanded uncertainty expressed with a level of confidence of 95%	5.47	mg/m³
Expanded uncertainty expressed with a level of confidence of 95%	8.19	% value

Developed for the STA by R Robinson, NPL

MEASUREMENT UNCERTAINTY BUDGET - CARBON MONOXIDE

Limit value	600	mg/m ³
Concentration @ Ref conditions	5.4	mg/m ³
Cal gas conc	205.0	mg/m ³
Analyser Full Scale	625	mg/m ³

Performance characteristics	Value	Units	specification	MU Met?
Response time	45	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	60	minutes	-	-
Number of readings in measurement	60	-	-	-
Repeatability at zero	0.1	% full scale	<1 % range	Yes
Repeatability at span level	0.2	% full scale	<2 % range	Yes
Deviation from linearity	0.61	% of value	<2 % range	Yes
Zero drift	0.04	% full scale	<2% range / 24hr	Yes
Span drift	0.32	% full scale	<2% range/24hr	Yes
volume or pressure flow dependence	0.5	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	1.1	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence zero / span	2.5	0.9	<3% range / 10 K	Yes
Combined interference	0.03	% of Range	<4% of Range	Yes
dependence on voltage	-1.75	% full scale/10V	< 0.1%vol /10 volt	Yes
Influence of Vibration	N/A	% of upper limit of Cal range	<2%	N/A
losses in the line (leak)	0.02	% of value	< 2% of value	Yes
Uncertainty of calibration gas	1.00	% of value	< 2% of value	Yes

N/A - Horiba's are not effected by Vibration		Oritina arti
Performance characteristic	Uncertainty	Value of uscertainty quantity
repeatability	$U_r = S_r$	117 110.003
lack of fit	U_{lof}	0.12
short term zero drift	$U_{d,z}$	ection 0.35
short term span drift	U _{d,s}	0.35 0.02
influence of Ambient Temp zero	Ut,z	0.10
influence of Ambient Temp span	U _{t,s}	0.18
influence of sample gas pressure	Ups	-5.77
influence of sample gas flow	L fit	0.35
influence of supply voltage	COTOU	0.00
Combined Interfence	U _i	3.77
Uncertainty of Cal gas	U_{adj}	0.82

Measurement uncertainty (Concentration Measured)	6.4	mg/m ³
Combined uncertainty	7.0	mg/m ³
Expanded uncertainty	13.9	mg/m ³

Expanded uncertainty expressed with a level of confidence of 95%	2.32	% ELV
Expanded uncertainty expressed with a level of confidence of 95%	13.9	mg/m³
		<u> </u>
Expanded uncertainty expressed with a level of confidence of 95%	217	% value

Developed for the STA by R Robinson, NPL

Reference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertainty of Measurement

MEASUREMENT UNCERTAINTY BUDGET - OXYGEN

Reference	N/A	%vol
Reported Concentration	20.28	%vol
Calibration gas	20.95	%vol
Analyser Full Scale	25	%vol

	Value	Units	specification	MU Met?
Response time	37	seconds	180	Yes
Logger sampling interval	60	seconds	-	-
Measurement period	60	minutes	-	-
Number of readings in measurement	60	-	-	-
Repeatability at zero	0.25	% full scale	<1 % range	Yes
Repeatability at span level	0.15	% full scale	<2 % range	Yes
Deviation from linearity	0.13	% of value	<2 % range	Yes
Zero drift	0.00	% full scale	<2% range / 24hr	Yes
Span drift	-0.12	% full scale	<2% range/24hr	Yes
volume or pressure flow dependence	0.03	% of full scale/3 kPa	<2 % / 3 kPa	Yes
atmospheric pressure dependence	0.05	% of full scale/2 kPa	<3% / 2 kPa	Yes
ambient temperature dependence	-0.08	9	<3% range / 10 K	Yes
Combined interference	0.14	% range يى٠	<4% of Range	Yes
dependence on voltage	0.01	% full scale/10V 💉	< 0.1%vol /10 volt	Yes
losses in the line (leak)	0.14	% full scale/10V % of value office % of value	< 2% of value	Yes
Uncertainty of calibration gas	0.1	% Ul value	< 2% of value	Yes
-		es 3 (0)	·	·

	\$0° \$ \$		
Performance characteristic	Uncertainty	Value of Uncer	tainty quantity
repeatability	$U_r = S_r$	of puried 0.0	083
lack of fit	U_{lof}	diother 0.0	751
short term zero drift	U _{d,z}	0.0	000
short term span drift	U _{d,s}	pecifoli or one	693
influence of Ambient Temp at Zero	Utz FOO	0.0	000
influence of Ambient Temp at Span	U _{d,s} U _{t,z} U _{t,s} U _{t,s} U _t	0.0540	
influence of sample gas pressure	US C	0.0000	
influence of sample gas flow	fit fit	0.0173	
influence of supply voltage	U_{v}	0.0006	
Combined Interfence	U _i	0.0485	
Uncertainty of Cal gas	U_{adj}	0.1048	
Measurement uncertainty (Concentration Measure	ed)	20.28	%
ombined uncertainty		0.16 %	
Expanded uncertainty		0.32	%

Expanded uncertainty expressed with a level of confidence of 95%	0.32	%
Expanded uncertainty expressed with a level of confidence of 95%	0.07	% vol

Developed for the STA by R Robinson, NPL

MEASUREMENT UNCERTAINTY BUDGET - VELOCITY & VOLUMETRIC FLOW RATE

Measured Velocity at Actual Conditions	15.8	m/s
Measured Volumetric Flow rate at Actual Conditions	236634	m³/hr

Performance Characteristics & Source of Value	Units	Values	Requirement	Compliant
Uncertainty of Local Gas Velocity Determination				
Uncertainty of pitot tube coefficient	-	0.010		
Uncertainty of mean local dynamic pressures	-	0.43		
Factor loading, function of the number of measurements.	3 readings	0.591	minimum 3	Yes
Range of measurment device	ра	1000		
Resolution	ра	1.00		
Calibration uncertainty	ра	5.78	<1% of Value or 20 Pa whichever is greater	Yes
Drift	% range	0.10		
Linearity	% range	0.06	<2% of value	Yes
Uncertainty of gas density determination				
Uncertainty of molar mass determination	kg/mol	0.00003		
Uncertainty of temperature measurement	K Jee.	1.70	<1% of value	Yes
Uncertainty of absolute pressure in the duct	paci	515		
Uncertainty associated with the estimate of density	4. 20 or	0.008		
Uncertainty associated with the measurement of local velocity	of or and of other reserved by the second se	0.0001		
Uncertainty associated with the measurement of local velocity Uncertainty associated with the measurement of mean velocity	_S Q	0.0002		

Measurement Uncertainty - Velocity		m/s
Combined uncertainty	cot still	0.21
Expanded uncertainty at a 95% Confidence Interval	, cog,	0.40

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Velocity at a 95% Confidence Interval	%
Expressed as a % of the Measured Velocity	1.30
Expanded uncertainty at a 95% Confidence Interval	2.54

Measurement Uncertainty Volumetric Flow Rate	m³/hr
Combined uncertainty	6268
Expanded uncertainty at a 95% Confidence Interval	12286

Note - The expanded uncertainty uses a coverage factor of k = 2.

Expanded Measurement Uncertainty of Volumetric Flow Rate at a 95% Confidence Interval	%
Expressed as a % of the Measured Volumetric Flow Rate	2.65
Expanded uncertainty at a 95% Confidence Interval	5.19

Reference – SOCOTEC UK Technical Procedure AE150 Estimation of Uncertainty of Measurement

END OF REPORT

Thank you for choosing SOCOTEC UK for your environmental monitoring needs. We hope our services have met your requirements and that you are fully satisfied with your experience of working with us, we really do value your custom and would welcome your feedback. We would appreciate it if you could take a moment to complete a short online questionnaire so that we can improve our operations and address any areas that have not met with your expectations, by clicking on the following

https://www.surveymonkey.co.uk/r/CAE_customer_fgedback_weblink

consent of copyright owner required for any other

Medite Europe Ltd. Clonmel A2-21 (EP9)

LEK 10972 / Q1 / Version 1 11/01/2018 IPPC Licence: P0027-04