

Implementing Isogeny-based Cryptography

June 02, 2021 성신여자대학교 수리통계데이터사이언스학부 김수리

Contents

- Introduction
- Implementing isogeny-based cryptography
 - SIDH
 - Isogeny
 - Others

• Standard Elliptic Curve Cryptography

Isogeny-based cryptography

- Pros : Small key size compared to other PQC algorithms
- Cons: Magnitude slower than any other PQC algorithms

Isogeny-based cryptography

Isogeny-based cryptography

History

2006 CRS Scheme

ordinary curves

- subexponential,
- inefficient

2016 SIDH Library

Costello et al. Practical implementation

2018 CSIDH

Castryck et al. CRS using supersingular curve

Jao, De Feo supersingular curves

- exponential

2017 SIKE

NIST PQC Submission
Round 3 alternative candidate

Implementing Isogeny-based Cryptography

Supersingular Isogeny Diffie Hellman (SIDH)

Parameter Settings

	SIDH	ECC
Prime	$p=2^{e_A}3^{e_B}-1$	$p = 2^{256} - 2^{224} + 2^{192} + 2^{96} + 1$
Field	F_{p^2}	$F_{\mathcal{p}}$
Curve	Supersingular elliptic curve	Ordinary curve
Order of a curve	$(2^{e_A}3^{e_B})^2$	Near prime
Security	Hardness of finding isogeny between given two elliptic curve	Hardness of solving ECDLP
Private key	Isogeny (kernel)	d

Supersingular Isogeny Diffie Hellman (SIDH)

Implementing Isogeny-based cryptography

Building blocks

Implementing Isogeny-based cryptography

Building blocks

- Isogeny $oldsymbol{\phi} \colon oldsymbol{E_1} o oldsymbol{E_2}$ 모든곳에서 정의되는 유리함수
 - Non-constant morphism that maps the distinguished point of ${\cal E}_1$ to the distinguished point of ${\cal E}_2$

• Standard form of ϕ

$$\phi(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right)$$

- Where (u(x), v(x)) = 1, (s(x), t(x)) = 1
- $deg \phi = max\{deg u, deg v\}$

• Example (
$$F = F_{109}$$
)
• $E_0: y^2 = x^3 + 2x + 2$ ϕ $E_1: y^2 = x^3 + 34x + 45$

$$\phi(x,y) = \left(\frac{x^3 + 20x^2 + 50x + 6}{x^2 + 20x + 100}, \frac{x^3 + 30x^2 + 23x + 52}{x^3 + 30x^2 + 82x + 19}y\right)$$

- Velu formula
 - 주어진 타원곡선 $E_1(\bar{K})$ 의 유한 subgroup $G \subset E_1(\bar{K})$ 를 kernel로 하는 isogeny ϕ 를 만들 수 있다 (Velu)
 - Order of such isogeny $\phi = ord G$
 - Complexity : O(n), n = ord G

$$\phi(P)=\left(x_P+\sum_{Q\in F-\{\infty\}}^{}^{}\frac{$$
모든 커널의 원소와 연산해야 함 $}{(x_{P+Q}-x_Q),y_P+\sum_{Q\in F-\{\infty\}}^{}}(y_{P+Q}-y_Q)
ight).$ Kernel

- Velu formula
 - 주어진 타원곡선 $E_1(\bar{K})$ 의 유한 subgroup $G \subset E_1(\bar{K})$ 를 kernel로 하는 isogeny ϕ 를 만들 수 있다 (Velu)
 - Order of such isogeny $\phi = ord G$
 - Complexity : O(n), n = ord G

$$\phi(P) = \left(x_P + \sum_{Q \in F - \{\infty\}}^{} \frac{\mathbf{모든 커널의 원소와 연산해야 함}}{(x_{P+Q} - x_Q), y_P + \sum_{Q \in F - \{\infty\}}^{} (y_{P+Q} - y_Q)}\right).$$
 Kernel

- → Velu의 공식에 의해 임의의 subgroup 을 커널로 하는 아이소제니 생성 가능
- → 함수값 연산하기 위해 커널의 모든 원소와 타원곡선 연산 수행해야함
- → 효율성을 위해 cyclic subgroup 이용 : $\langle m_A P_A + n_A Q_A \rangle$

SIDH

$$E \qquad \xrightarrow{\phi} \qquad E_A \qquad E_A$$

Kernel P w/ order 2^{372} → 연산량 많음

- Idea
 - Isogenies used in SIDH is a separable isogeny
 - $\phi = \phi_n \circ \cdots \circ \phi_1$
 - Isogeny of degree $2^{372} \to O(2^{372})$
 - 2-isogeny 372 times \rightarrow 372 · O(2)

Isogeny computation on Alice side

Isogeny - Evaluation

- General formula (Montgomery curves)
 - $\phi: (x,y) \to (f(x),yf'(x))$ for degree d=2s+1

$$f(x) = x \prod_{i=1}^{s} \left(\frac{x \cdot x_i - 1}{x - x_i} \right)^2$$

 $\langle P \rangle = \{ 0, P, -P \} = \{ 0, (x_3, y_3), (x_3, -y_3) \}$

- 3-isogeny
 - $P = (x_3, y_3) \in E$, 3-torsion point in E([3]P = 0)
 - $\phi: E \to E' = E/\langle P \rangle$
 - For a point $Q \in E$, $x(\phi(Q)) \in E$ is computed as,

$$x(\phi(Q)) = x\left(\frac{x \cdot x_3 - 1}{x - x_3}\right)^2$$

Isogeny - Evaluation

• 3-isogeny

$$x(\phi(Q)) = x\left(\frac{x \cdot x_3 - 1}{x - x_3}\right)^2$$

- In projective coordinates,
 - $x_3 = X_3/Z_3$, x = X/Z

$$\frac{X'}{Z'} = \frac{X}{Z} \cdot \left(\frac{XX_3 - ZZ_3}{XZ_3 - X_3Z}\right)^2$$

$$F = (X - Z)(X_3 + Z_3) = XX_3 + XZ_3 - ZX_3 - ZZ_3$$

$$G = (X + Z)(X_3 - Z_3) = XX_3 - XZ_3 + ZX_3 - ZZ_3$$

$$F + G = 2(XX_3 - ZZ_3)$$

$$F - G = 2(XZ_3 - ZX_3)$$

→ COST : 2M

• Outline

- Image curve에서의 계수 복원
 - Example : 3-isogeny

$$E: y^2 = x^3 + Ax^2 + x$$

$$E: x_3^2 y^2 = x^3 + \left(A + \frac{6}{x_3} - 6x_3\right)x^2 + x$$

$$ker\phi = \langle P \rangle$$

- Image curve에서의 계수 복원
 - Example : 3-isogeny

$$E: y^2 = x^3 + Ax^2 + x$$

$$E: x_3^2 y^2 = x^3 + \left(A + \frac{6}{x_3} - 6x_3\right)x^2 + x$$

$$ker\phi = \langle P \rangle$$

- 타원곡선의 curve coefficient
 - n 차 division polynomial 을 이용해 n-torsion point 의 좌표로 표현 가능
 - $A \equiv x_3$ 이용해 표현 가능
 - Curve coefficient 도 분수 형태로 표현
 - 연산 효율을 위해 projective version 이용
 - 기존 ECC 구현과 다르게 projective curve coefficient 이용
 - 타원곡선 연산 공식도 이에 맞게 변경함

- Image curve에서의 계수 복원
 - Example: 3-isogeny

$$E: y^2 = x^3 + Ax^2 + x$$

$$E: x_3^2 y^2 = x^3 + \left(A + \frac{6}{x_3} - 6x_3\right)x^2 + x$$

$$ker\phi = \langle P \rangle$$

- 타원곡선의 curve coefficient
 - n 차 division polynomial 을 이용해 n-torsion point 의 좌표로 표현 가능
 - $A = x_3$ 이용해 표현 가능
 - Curve coefficient 도 분수 형태로 표현
 - 연산 효율을 위해 projective version 이용
 - 기존 ECC 구현과 다르게 projective curve coefficient 이용
 - 타원곡선 연산 공식도 이에 맞게 변경함

$$\frac{A'}{C'} = \frac{Z_3^4 + 18X_3^2 Z_3^2 - 27X_3^4}{4X_3 Z_3^2}$$

→ TOTAL COST : 2M+3S

Others

• Strategies in SIDH

연속적인 ℓ -isogeny 연산을 위해 필요 ℓ -isogeny 연산량과 $[\ell]P$ 연산량 비교를 통해 계산

Isogeny – Evaluation + Coefficient

Isogeny in SIDH

```
// Traverse tree
index = 0:
for (row = 1; row < MAX Bob; row++) {
   while (index < MAX Bob-row) {
       fp2copy(R->X, pts[npts]->X);
       fp2copy(R->Z, pts[npts]->Z);
       pts_index[npts++] = index;
       m = strat_Bob[ii++];
       xTPLe(R, R, A24minus, A24plus, (int)m);
                                                          특정 위수로 만들기 위해 tripling
       index += m;
   get_3_isog(R, A24minus, A24plus, coeff);
                                                          Image curve의 계수 연산 (한 번)
   for (i = 0; i < npts; i++) {
       eval_3_isog(pts[i], coeff);
   eval 3 isog(phiP, coeff);
                                                          커널 point image curve 로 이동 (phiR)
   eval_3_isog(phiQ, coeff);
                                                          상대방 공개키 연산 (phiP, phiQ)
   eval 3 isog(phiR, coeff);
   fp2copy(pts[npts-1]->X, R->X);
   fp2copy(pts[npts-1]->Z, R->Z);
   index = pts_index[npts-1];
   npts -= 1;
```

연구 동향

• 속도 향상을 위해 연구 진행

