# Schriftliche Prüfung aus VO Energieversorgung am 10.11.2015

# 1. Leitungsgleichungen (24 Punkte)

Auf einer Einfachleitung (Wetterfichte) ist ein 220 kV-Drehstromfreileitungssystem in einem 50 Hz-Netz bestehend aus Zweierbündeln mit den folgenden geometrischen Daten der Aufhängung aufgezogen (Koordinatenursprung = Mastfußpunkt):

Leiter 1: 
$$x = 3m$$
,  $y = 23m$   
Leiter 2:  $x = -3m$ ,  $y = 20m$   
Leiter 3:  $x = 4m$ ,  $y = 17m$ 

Der gegenseitige Abstand der Leiter a im Zweierbündel beträgt  $15\ cm$ . Der Querschnitt eines Leiterseils beträgt  $117,0\ mm^2$ . Die Leitung ist  $100\ km$  lang und verdrillt. Die thermische Dauerstrombelastbarkeit eines Einzelleiters beträgt  $365\ A$ .

- a. (3) Zeichnen Sie eine schematische **Skizze der Leiteraufhängung**, beschriften Sie die Leiter und bemaßen Sie die Leiterabstände in beiden Koordinatenachsen.
- b. (6) Wie groß ist die **längenbezogene symmetrische Betriebsinduktivität** und **längenbezogene symmetrische Betriebskapazität** der Leitung?
- c. (3) Wie groß ist der Wellenwiderstand der verlustlosen Leitung  $(R'=0\frac{\Omega}{km},G'=0\frac{S}{km})\,?$
- d. (5) Die Leitung wird im Leerlauf betrieben. Wie groß ist die **Spannung am Ende** der verlustlosen Leitung?
- e. (3) Berechnen Sie die **thermisch übertragbare Scheinleistung** der Leitung.



Die Leitung wird an ihrem Ende mit einer dreiphasigen, ohmschinduktiven Last abgeschlossen (siehe Bild rechts) und am Leitungsanfang mit Nennspannung betrieben.

f. (4) Wie groß ist die ist die Eingangsimpedanz Z<sub>1</sub> der verlustlosen Leitung?

## 2. Zweipoliger Kurschluss mit Erdberührung (24 Punkte)



# **Generator:**

 $U_N = 4kV$ ,  $S_N = 8MVA$ ,  $x_d$ " = 14%

#### Transformator:

YNd5,  $U_1/U_2 = 20/4$ ,  $S_N = 8$  MVA,  $u_k = 16\%$ , (Annahme  $P_k = 0$  kW),  $X_{(0)} = 15 \Omega$  (auf 20kV Seite) Sternpunkt **exakt kompensiert ("gelöschtes Netz")** 

#### Freileitung:

 $X'_{(1)} = 0.45$  Ohm/km,  $X'_{(0)} = 0.9$  Ohm/km,  $C'_{E} = 8$  nF/km, I = 20 km

Am Ende der Freileitung ereignet sich im 50Hz-Netz ein **zweipoliger Kurzschluss** zwischen den Phasen b und c **mit Erdberührung**.

- a. (6) Zeichnen Sie die **Ersatzschaltung** im Mit-, Gegen- und Nullsystem mit korrekter Verschaltung der drei Systeme für den dargestellten Kurzschlussfall
- b. (4) Berechnen Sie die wirksamen Impedanzen des Generators, des Transformators und der Leitung (in Ohm) am Kurzschlussort.
- c. (2) Berechnen Sie die Mit-, Gegen und Nullimpedanz.
- d. (4) Wie groß ist die im Sternpunkt verwendete **Petersenspule**, sodass die Leitungskapazitäten exakt kompensiert werden?
- e. (4) Wie groß sind die drei Komponentenströme <u>I(0)</u>, <u>I(1)</u> und <u>I(2)</u> am Kurzschlussort?
- f. (4) Wie groß sind die drei **Phasenströme**  $\underline{I}_{(a)}$ ,  $\underline{I}_{(b)}$  und  $\underline{I}_{(c)}$  am Kurzschlussort?

## 3. Wirtschaftlichkeitsvergleich (GEMA-Solar) (24 Punkte)

Über das als Versuchsanlage gebaute Solarkraftwerk "Gemasolar" (solarthermisches Kraftwerk mit Salzschmelze und Speicher) in Spanien sind folgende Angaben bekannt:

Leistung 19,9 MW<sub>el</sub> Errichtungskosten 230 Mio. € geschätzte Jahresenergieeinspeisung 110 GWh/a

leistungsabhängige Kosten 6% der Errichtungskosten pro Jahr

Um die Wirtschaftlichkeit dieser Versuchsanlage beurteilen zu können, soll ein konventionelles GuD-Kraftwerk mit folgenden Daten betrachtet werden:

spezifische Errichtungskosten 650 €/kW<sub>el</sub>
leistungsabhängige Kosten 95 €/kW<sub>el</sub>a
Brennstoffkosten 0,40 €/m³ Erdgas

Heizwert von Erdgas H<sub>u</sub> 30 MJ/m<sup>3</sup> Gesamtwirkungsgrad 58 %

betriebsabhängige Kosten 0,001 €/kWh<sub>el</sub>

Für beide Anlagen sollen eine Nutzungsdauer von 25 Jahren und ein Zinssatz am Kapitalmarkt von 7% gelten.

- a. (7) Ermitteln Sie die **Stromgestehungskosten** für das **Versuchskraftwerk** "Gemasolar".
- b. (4) Wie hoch sind die **Stromgestehungskosten** des **GuD-Kraftwerks**, wenn es die gleiche Volllaststundenzahl pro Jahr aufweist, wie das Versuchskraftwerk?
- c. (6) Wie hoch dürften die **spezifischen Errichtungskosten** von "Gemasolar" **maximal** sein, damit dieses mit dem konventionellen GuD-Kraftwerk konkurrieren kann? **Hinweis:** Auch die leistungsabhängigen Kosten ändern sich, sie belaufen sich weiterhin auf 6% der jeweiligen Errichtungskosten!
- d. (7) Um zusätzliche 25 Mio. € könnte das Versuchskraftwerk "Gemasolar" mit größeren Speichern ausgestattet werden, wodurch sich die Volllaststundenzahl um 15% erhöht. Wäre dies eine sinnvolle Investition? (Es gilt hier ebenso der Hinweis von Punkt c.)

# 4. Fünf Sicherheitsregeln (4 Punkte)

| Dringon  | Cin dia | fiinf Ci | cherheitsr | ogoln in | منا | richtian | Daihanfal | α٥٠ |
|----------|---------|----------|------------|----------|-----|----------|-----------|-----|
| DHIIIREH | ole ule | Tulli Si | chemensi   | egenini  | uie | nunuge   | rememo    | ge. |
| _        |         |          |            | •        |     | _        |           | _   |

| Gegen Wiedereinschalten sichern                                                                   |
|---------------------------------------------------------------------------------------------------|
| Spannungsfreiheit allpolig feststellen                                                            |
| Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von spannung<br>führenden Teilen) |
| Benachbarte, unter Spannung stehende Teile abdecken oder abschranken                              |
| Erden und kurzschließen                                                                           |

# Schriftliche Prüfung aus VO Energieversorgung am 10.11.2015

| Na | me/Vorname:                                                                                                      |                  | MatrNr./Knz.:             | /                 |
|----|------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|-------------------|
| 5. | Theoriefragen (24 Punkte)                                                                                        |                  |                           |                   |
|    | 1. Wie setzt sich die Erzeugung                                                                                  | elektrischer Ene | rgie in Österreich in etw | va zusammen?      |
|    | 60% Wasserkraft, 10% and 60% Wasserkraft, 30% and 60% fossil-thermische Kra                                      | dere Erneuerbar  | e, 10% fossil-thermisch   | e Kraftwerke      |
|    | 2. Wie bezeichnet man die siche schaftlich gewinnbaren Vorko                                                     | =                |                           | <del>-</del>      |
|    | <ul><li>Reserven</li><li>Ressourcen</li><li>statische Reichweite</li></ul>                                       |                  |                           |                   |
|    | 3. Welche Wasserturbine ist in o                                                                                 | diesem Bild darg | gestellt?                 |                   |
|    | <ul><li>Eine Kaplanturbine</li><li>Eine Francisturbine</li><li>Eine Peltonturbine</li></ul>                      |                  |                           |                   |
|    | 4. Welche Wasserturbine kann                                                                                     | auch als Pumpe   | verwendet werden?         |                   |
|    | <ul><li>Die Kaplanturbine</li><li>Die Francisturbine</li><li>Die Peltonturbine</li></ul>                         |                  |                           |                   |
|    | <ol> <li>An einem möglichen Standor<br/>von 1,25 m³/s über eine Höl<br/>wäre ungefähr die elektrische</li> </ol> | hendifferenz voi | n 20 Metern genutzt w     | verden. Wie groß  |
|    | <ul><li> 20 kW</li><li> 25 kW</li><li> 200 kW</li><li> 1,25 MW</li></ul>                                         |                  |                           |                   |
|    | 6. In welchem Kernreaktortyp v Dampfturbine geführt?                                                             | wird der Primär  | kühlkreis direkt durch    | die angetriebene  |
|    | <ul><li>Im Siedewasserreaktor</li><li>Im Druckwasserreaktor</li><li>In keinem der beiden Real</li></ul>          | ktortypen        |                           |                   |
|    | 7. Wie hängt die mögliche Leis ab?                                                                               | tung einer Wind  | lturbine von der Windg    | seschwindigkeit v |
|    | <ul> <li>□ Linear (~v)</li> <li>□ Quadratisch (~v²)</li> <li>□ Kubisch (~v³)</li> <li>□ Gar nicht</li> </ul>     |                  |                           |                   |

| 8.  | Was ist ein Vorteil von symmetrischen Drehstromsystemen gegenüber Gleichspannungssystemen?                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul><li>☐ Transformierbarkeit</li><li>☐ Keine Blindleistung</li><li>☐ Konstante Augenblicksleistung</li></ul>                                                  |
| 9.  | Welche Betriebsmittel verhalten sich im Mit- und Gegensystem gleich?                                                                                           |
|     | <ul><li>☐ Transformatoren</li><li>☐ Motoren</li><li>☐ Generatoren</li></ul>                                                                                    |
| 10. | Welche Amplitude haben die Leiter-Leiter-Spannungen in einem symmetrischen 110kV-Netz?                                                                         |
|     | <ul> <li>□ Etwa 110kV·√2</li> <li>□ Etwa 110kV</li> <li>□ Etwa 110kV/√3</li> <li>□ Etwa 110kV/√3·√2</li> </ul>                                                 |
| 11. | Welche Auswirkung haben Bündelleiter bei Freileitungen gegenüber Einfachleitern?                                                                               |
|     | <ul><li>☐ Sie erhöhen die natürliche Leistung</li><li>☐ Sie reduzieren die natürliche Leistung</li><li>☐ Sie reduzieren die thermische Grenzleistung</li></ul> |
| 12. | Auf welche Art ist die dargestellte Einfachleitung verdrillt?                                                                                                  |
|     |                                                                                                                                                                |
| 13. | Um welchen Winkel sind die Primär- und Sekundärspannungen eines Dy11-Transformators gegeneinander verdreht?  — Um 11°                                          |
|     | ☐ Um 330° ☐ Gar nicht. Nur die Ströme werden verdreht.                                                                                                         |
| 14. | Welche Art von Schaltern kann Kurzschlussströme ausschalten?                                                                                                   |
|     | ☐ Trenner ☐ Lastschalter                                                                                                                                       |
|     | Leistungsschalter                                                                                                                                              |
| 15. | Kann der einpolige Fehlerstrom größer als der dreipolige Fehlerstrom sein?                                                                                     |
|     | □ Ja<br>□ Nein                                                                                                                                                 |

| 16. V   | Vann tritt praktisch kein Gleichglied im Kurzschlussstromverlauf auf?                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>Wenn der stationäre Fehlerstrom im Zeitpunkt des Fehlereintritts gerade seinen Nulldurchgang hätte</li> <li>Wenn der stationäre Fehlerstrom im Zeitpunkt des Fehlereintrittes gerade seinen maximalen Wert hätte</li> </ul>                     |
| L       | Wenn der Strom unmittelbar vor Fehlereintritt gerade seinen maximalen Wert hatte                                                                                                                                                                         |
| ir<br>v | n einem Verbundsystem, das aus den drei Regelzonen A, B und C besteht, kommt es<br>n der Regelzone A zu einem ungeplanten Ausfall eines Kraftwerkes, das zuvor mit<br>oller Leistung eingespeist hat.<br>Vie verhält sich die Frequenz im Verbundsystem? |
|         | <ul><li>□ Die Frequenz steigt an</li><li>□ Die Frequenz sinkt ab</li><li>□ Die Frequenz bleibt konstant</li></ul>                                                                                                                                        |
| V       | Velche der Regelzonen beteiligen sich an der Primärregelung?                                                                                                                                                                                             |
|         | <ul> <li>Nur die Regelzone A</li> <li>Nur die Regelzonen B und C</li> <li>Alle Regelzonen gemeinsam</li> </ul>                                                                                                                                           |
| V       | Velche der Regelzonen beteiligen sich an der Sekundärregelung?                                                                                                                                                                                           |
|         | <ul><li>Nur die Regelzone A</li><li>Nur die Regelzonen B und C</li><li>☐ Alle Regelzonen gemeinsam</li></ul>                                                                                                                                             |
|         | Vie verhält sich ein Kabel, das unterhalb der natürlichen Leistung betrieben wird, egenüber dem Energiesystem?                                                                                                                                           |
|         | <ul><li>Eher wie eine Induktivität</li><li>Eher wie eine Kapazität</li><li>Eher wie ein Widerstand</li></ul>                                                                                                                                             |
|         | Velches Bauelement kann eingesetzt werden, um eine oberhalb der natürlichen Leis-<br>ung betriebene Leitung zu kompensieren?                                                                                                                             |
|         | ☐ Eine Drosselspule (Induktivität) ☐ Eine Kondensatorbatterie (Kapazität) ☐ Ein Widerstand                                                                                                                                                               |

| 20. Welche Form der Energiewandlung verwendet keine rotierenden elektrischen Maschinen zur Erzeugung elektrischer Energie?                                                                                  |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Die Photovoltaik</li> <li>Die Wasserkraft</li> <li>Die Kraft-Wärme-Kopplung in Blockheizkraftwerken</li> </ul>                                                                                     |   |
| 21. Was sollte beim Parallelschalten von Transformatoren berücksichtigt werden?                                                                                                                             |   |
| <ul> <li>Die Leistungen sollten ähnlich groß sein</li> <li>Der Aufstellungsort sollte gleich sein</li> <li>Die Anzahl der Windungen auf der Primär- und Sekundärseite sollten jeweil gleich sein</li> </ul> | S |