SPH simulations for space defense

Maximilian Rutz

July 17, 2020

Roadmap

Dart and Hera missions

2 SPH setup

SPH results

•00000

Dart and Hera missions

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

49 M 93 M (MEAN)

139 M

546 M

SPH setup

Simulation goals

Compare numerical results with observations to:

- test numerical codes
- identify target properties through parameter studies

Simulation goals

Compare numerical results with observations to:

- 1 test numerical codes
- identify target properties through parameter studies

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body $1.3 \times 1.2 \times 1.2$ meter

Smoothed Particle Hydrodynamics

- gridfree method
- particles move through space with a velocity
- particles carry physical quantities like density, pressure or energy
- hydrodynamic equations can be solved for every particle

Smoothed Particle Hydrodynamics

SPH Code

Miluphcuda:

• 500 kg mass

SPH Code

Miluphcuda:

• 500 kg mass

- x3 Kernel function
- Runge Kutta fourth order integrator
- no self gravity
- ullet p-lpha porosity micro vs macroporosity

- x3 Kernel function
- Runge Kutta fourth order integrator
- no self gravity
- ullet p-lpha porosity micro vs macroporosity

- x3 Kernel function
- Runge Kutta fourth order integrator
- no self gravity
- ullet p-lpha porosity micro vs macroporosity

- x3 Kernel function
- Runge Kutta fourth order integrator
- no self gravity
- ullet p-lpha porosity micro vs macroporosity

- x3 Kernel function
- Runge Kutta fourth order integrator
- no self gravity
- ullet p-lpha porosity micro vs macroporosity

- x3 Kernel function
- artifical viscosity
- Runge Kutta Fourth order
- no self gravity
- p- α porosity

- x3 Kernel function
- artifical viscosity
- Runge Kutta Fourth order
- no self gravity
- p- α porosity

- x3 Kernel function
- artifical viscosity
- Runge Kutta Fourth order
- no self gravity
- p- α porosity

- x3 Kernel function
- artifical viscosity
- Runge Kutta Fourth order
- no self gravity
- p- α porosity

- x3 Kernel function
- artifical viscosity
- Runge Kutta Fourth order
- no self gravity
- ullet p-lpha porosity

SPH results

Beta factor

Momentum change because of ejecta: $oldsymbol{eta}=1+rac{p_{ejecta}}{p_{impactor}}$

The DART impact into different targets can produce the same β , but different craters.

Measurements of **both** β and crater size/morphology **together** can be diagnostic of target properties.

Personal observations about SPH

- A lot of individual physics implementable
- Many different codes available
- Difficult to reproduce and compare results between different codes
- Dart setup could be useful as benchmark

Sources and additional information

Illustrations taken from Dart and Hera websites:

- https://dart.jhuapl.edu/
- https://www.nasa.gov/planetarydefense/dart
- https://www.esa.int/Safety_Security/Hera

Papers:

- "Modeling impact outcomes for the Double Asteroid Redirection Test (DART) mission", Stickle et al., Procedia Engineering 2017
- "The role of asteroid strength, porosity and internal friction in impact momentum transfer", Raducan et al., Icarus 2019