1 Кручения в некоторых тензорных произведениях модулей

В задачах алгебраической геометрии, связанных с разрешением особенностей когерентных алгебраических пучков, бывает необходимо исследовать поведение когерентного алгебраического пучка при преобразованиях базисного многообразия или схемы. Преобразование базисного многообразия подбирается так, чтобы трансформировать не локально свободный когерентный пучок в локально свободный пучок на новом многообразии или схеме.

Локальным аналогом этой задачи является исследование свойств тензорного произведения модуля M над коммутативным кольцом A на A-алгебру \widetilde{A} .

В [?] автором изложена одна из возможных конструкций разрешения особенностей когерентного пучка, локально сводящаяся к преобразованию $M \mapsto \widetilde{A} \otimes_A M$. Алгебра \widetilde{A} получается при этом следующим образом: $\widetilde{A} = \bigoplus_{s \geqslant 0} (I[t] + (t))^s / (t^{s+1})$, где $I \subset A$ – ненулевой собственный идеал, t – элемент, трансцендентный над кольцом A.

Рассмотрим коммутативное ассоциативное нетерово целостное кольцо A с единицей.

Определение 1.1 Пусть $I\subset A$ — идеал. Алгебра раздутия идеала I задается выражением

$$\widehat{A}:=\bigoplus_{s\geqslant 0}I^s.$$

При этом сложение и умножение элементов кольца \widehat{A} и действие элементов кольца A на элементы кольца \widehat{A} наследуются с операций кольца A.

Кольцо \widehat{A} градуировано, то есть, если $x \in I^s, y \in I^t$, то $xy \in I^{s+t}$.

Определение 1.2 Пусть M – произвольный A-модуль, A — целостное кольцо. Πod -модулем кручения tors(M) называется множество

$$tors_A M = \{x \in M | \exists a \in A \setminus 0 : ax = 0\}.$$

Определение 1.3 Будем говорить, что A-модуль M является модулем без кручения, если ${\rm tors}_A\ M=0.$

Заметим, если A не является целостным кольцом, то ${\rm tors}_A \ M$ не обязательно является подмодулем в M.

Далее в тексте под tors(M) без нижнего индекса будем подразумевать $tors_A M$.

Пусть M-A-модуль без кручения. Поскольку тензорное произведение не является точным слева, при тензорном умножении M на алгебру раздутия \widehat{A} в модуле $\widehat{A}\otimes_A M$ может возникнуть кручение.

Решается следующая частная задача: описать подмодуль кручения tors $\left(\widehat{A}\otimes_A I\right)$ A-модуля $\widehat{A}\otimes_A I$.

Пусть, для простоты, идеал I=(x,y) порожден элементами $x,y\in A.$ Выясним как устроены его степени.

Теорема 1.1 Пусть $s \ge 1$, тогда $I^s = (x^s, x^{s-1}y, \dots, xy^{s-1}, y^s)$.

Доказательство. Действуем методом математической индукции. Пусть s=1. Тогда $I^1=(x,y)$ – верно. Пусть утверждение верно для значений $s\leqslant r$. При s=r+1 имеем:

$$I^{r+1} = I^r I = \left\{ \left(\sum_{n=0}^r a_n x^n y^{n-r} \right) (b_1 x + b_0 y) \middle| a_n, b_m \in A, n = \overline{0, r}, m = \overline{0, 1} \right\}.$$

Теперь, раскрывая скобки, получим

$$I^{r+1} = \{b_0 a_0 y^{r+1} + (b_1 a_0 + b_0 a_1) x y^r + \dots + (b_1 a_{r-1} + b_0 a_r) x^r y + b_1 a_r x^{r+1} | a_n, b_m \in A, n = \overline{0, r}, m = \overline{0, 1}\}$$

Таким образом, в силу произвольности коэффициентов a_i, b_j ,

$$I^{r+1} = (x^{r+1}, x^r y, \dots, xy^r, y^{r+1}),$$

что завершает доказательство теоремы.

Так как тензорное произведение дистрибутивно относительно прямой суммы, то справедлива цепочка равенств:

$$\widehat{A} \otimes_A I = \left(\bigoplus_{s \geqslant 0} I^s\right) \otimes_A I = \bigoplus_{s \geqslant 0} \left(I^s \otimes_A I\right).$$

Предложение 1.1 Пусть $\{M_j|j\in J\}$ — семейство А-модулей, и кольцо А — целостное. Тогда

tors
$$\left(\bigoplus_{j\in J} M_j\right) = \bigoplus_{j\in J} \operatorname{tors}\left(M_j\right)$$
.

Доказательство. Покажем, что tors $\left(\bigoplus_{j\in J} M_j\right) \subset \bigoplus_{j\in J} \operatorname{tors}\left(M_j\right)$. Пусть

 $t \in \text{tors}\left(\bigoplus_{j \in J} M_j\right)$. По определению, существует такое $a \in A \setminus 0$, что at = 0. Заметим, что $t = (t_0, t_1, \dots, t_j, \dots)$, где только конечное число компонент t_j отлично от нуля. Так как умножение на элементы прямой суммы производится покомпонентно, то

$$at = (at_0, at_1, \dots, at_i, \dots) = 0,$$

из чего следует, что

$$at_1 = at_0 = \dots = at_j = \dots = 0$$

и $t_0 \in \text{tors}\,(M_0), t_1 \in \text{tors}\,(M_1), \ldots, t_j \in \text{tors}\,(M_j), \ldots$ Таким образом, $t \in \bigoplus_{j \in J} \text{tors}\,(M_j)$. Теперь докажем обратное включение. Пусть $t \in \bigoplus_{j \in J} \text{tors}\,(M_j)$. Пусть $t_{i_1}, t_{i_2}, \ldots, t_{i_k}$ – все компоненты t, отличные от нуля. Как отмечалось ранее, их будет конечное число. По определению, найдутся $a_{i_1}, a_{i_2}, \ldots, a_{i_k} \in A$ все отличные от нуля и такие, что $a_{i_1}t_{i_1} = a_{i_2}t_{i_2} = \cdots = a_{i_k}t_{i_k} = 0$. Обозначим $a := a_{i_1}a_{i_2} \ldots a_{i_k}$. Так как кольцо A целостное, то ни при каких отличных от нуля a_{i_l} их произведение не будет равно нулю. Тогда

$$at_{i_l} = (a_{i_1} \dots a_{i_{l-1}} a_{i_{l+1}} \dots a_{i_k}) a_{i_l} t_{i_l} = 0,$$

что справедливо для всех $l=\overline{1,k}$. Тем самым мы показали, что существует такое $a\in A\setminus 0$, что at=0. Значит $t\in \mathrm{tors}\left(\bigoplus_{j\in J} M_j\right)$.

Теперь, воспользовавшись предложением 1.1, можно записать седующее:

$$\operatorname{tors}\left(\bigoplus_{s\geqslant 0}\left(I^s\otimes_A I\right)\right) = \bigoplus_{s\geqslant 0}\operatorname{tors}\left(I^s\otimes_A I\right).$$

Таким образом, исходная задача свелась к вычислению подмодуля кручения $tors(I^s \otimes_A I)$ A-модуля $I^s \otimes_A I$.

Теорема 1.2 Пусть образующие иделала I = (x, y) алгебраически независимы. Тогда $tors(I^s \otimes_A I)$ описывается следующим образом:

tors
$$(I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$
.

Доказательство. Так как идеалы I^s и I являются конечно порожденными A-модулями, то, воспользовавшись свойством тензорного произведения для двух конечно порожденных модулей, имеем

$$I^s \otimes_A I = \left\langle x^n y^{s-n} \otimes x, x^n y^{s-n} \otimes y \middle| n = \overline{0, s} \right\rangle_A.$$

Пусть $\mu: I^s \otimes_A I \to I^{s+1}$ – гомоморфизм, который действует на образующих следующим образом: $x^n y^{s-n} \otimes x \mapsto x^{n+1} y^{s-n}, \ x^n y^{s-n} \otimes y \mapsto x^n y^{s-n+1}$. Докажем, что $\ker \mu = \operatorname{tors} (I^s \otimes_A I)$. Очевидно, что этот гомоморфизм сюръективен. Тогда, согласно теореме о гомоморфизме, $I^{s+1} \simeq (I^s \otimes_A I) / \ker \mu$. Так как кольцо A целостное, то I^{s+1} не имеет подмодуля кручения, следовательно, $\operatorname{tors} (I^s \otimes_A I) \subset \ker \mu$.

Чтобы показать обратное включение, вычислим $\ker \mu$. Пусть $z \in I^s \otimes_A I, z$ имеет вид

$$z = a_0(x^s \otimes x) + a_1(x^{s-1}y \otimes x) + \dots + a_s(y^s \otimes x) + b_1(x^s \otimes y) + \dots + b_s(xy^{s-1} \otimes y) + b_{s+1}(y^s \otimes y),$$

где $a_i, b_i \in A$. Тогда $\mu(z)$ будет иметь следующий вид:

$$\mu(z) = a_0 x^{s+1} + (a_1 + b_1) x^s y + \dots + (a_s + b_s) x y^s + b_{s+1} y^{s+1}.$$

Приравняв $\mu(z)=0$ и воспользовавшись тем фактом, что x,y алгебраически независимы, мы получим условия на коэффициенты:

$$\begin{cases} a_0 &= 0 \\ a_1 + b_1 &= 0 \\ \dots \\ a_s + b_s &= 0 \\ b_{s+1} &= 0. \end{cases}$$

Отсюда, $a_0=b_{s+1}=0,\, a_i=-b_i,\, i=\overline{1,s}$ и

$$\ker \mu = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A$$

Покажем, что любая образующая $\ker \mu$, то есть $x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y$, является элементом кручения. Рассмотрим выражение $xy(x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y)$ и преобразуем его:

$$xy(x^ny^{s-n}\otimes x-x^{n+1}y^{s-n-1}\otimes y)=$$

$$x(x^ny^{s-n})\otimes xy-y(x^{n+1}y^{s-n-1})\otimes xy=$$

$$x^{n+1}y^{s-n}\otimes xy-x^{n+1}y^{s-n}\otimes xy=0.$$

Действительно, каждая образующая $\ker \mu$ является элементом кручения. Тем самым мы показали включнение $\ker \mu \subset \mathrm{tors}\,(I^s \otimes_A I).$

Таким образом, мы доказали, что tors $(I^s \otimes_A I) = \ker \mu$, и имеет место равенство

$$tors (I^s \otimes_A I) = \langle x^n y^{s-n} \otimes x - x^{n+1} y^{s-n-1} \otimes y | n = \overline{1, s-1} \rangle_A.$$

Результат данной теоремы можно обобщить следующим образом.

Теорема 1.3 Пусть образующие идеала I = (x, y) алгебраически независимы. Тогда подмодуль кручения $tors(I^s \otimes_A I^r)$ описывается следующим образом:

$$\operatorname{tors}\left(I^{s} \otimes_{A} I^{r}\right) = \left\{ \sum_{\substack{0 \leq n \leq s \\ 0 \leq m \leq r}} a_{nm} x^{n} y^{s-n} \otimes x^{m} y^{r-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ для всех } n, m.$$

Доказательство. Доказательство проводится по схеме, аналогичной доказательству теоремы 1.2. Модуль $I^s \otimes_A I^r$ имеет вид

$$I^s \otimes_A I^r = \left\langle x^n y^{s-n} \otimes x^m y^{r-m} | n = \overline{0, s}, m = \overline{0, m} \right\rangle_A$$

Рассмотрим гомоморфизм $\mu: I^s \otimes_A I^r \to I^{s+r}$, который действует на образующих как $x^n y^{s-n} \otimes x^m y^{r-m} \mapsto x^{n+m} y^{s+r-n-m}$. Докажем, что $\ker \mu = \operatorname{tors}(I^s \otimes_A I^r)$. Очевидно, что μ сюръективен и, воспользовавшись теоремой о гомоморфизме, мы можем записать $I^{s+r} \simeq (I^s \otimes_A I^r) / \ker \mu$. Так как кольцо A целостное, то I^{s+r} является модулем без кручения, из чего следует, что $\operatorname{tors}(I^s \otimes I^r) \subset \ker \mu$.

Покажем обратное включение. Для этого вычислим $\ker \mu$. Любой элемент $z \in I^s \otimes_A I^r$ записывается в виде линейной комбинации образующих

$$z = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^n y^{s-n} \otimes x^m y^{r-m},$$

где $a_{nm} \in A$. Вычислив $\mu(z)$ получим следующее

$$\mu(z) = \sum_{\substack{0 \le n \le s \\ 0 \le m \le r}} a_{nm} x^{n+m} y^{s+r-n-m}.$$

Сгруппируем слагаемые с одинаковыми степенями x и тогда полученное выражение запишется в виде

$$\mu(z) = \sum_{k=0}^{s+r} \left(\sum_{i+j=k} a_{ij} \right) x^k y^{s+r-k}.$$

Так как образующие алгебраически независимы, то из равенства $\mu(z)=0$ следует, что

$$\sum_{i+j=k} a_{ij} = 0.$$

С учетом полученного соотношения, элементы ядра имеют вид

$$z = \sum_{k=0}^{s+r} \sum_{n=0}^{\min(s,k)} a_{n,k-n} x^n y^{s-n} \otimes x^{k-n} y^{r-k+n}, \tag{1}$$

докажем, что $z\in {\rm tors}\,(I^s\otimes_A I^r)$. Действительно, зафиксируем $k,\,n\leqslant {\rm min}(s,k)$. Рассмотрим образующую $x^ny^{s-n}\otimes x^{k-n}y^{r-k+n}$ и умножим ее на x^ry^r , где r — показатель степени идеала I^r . Имеем

$$x^{r}y^{r}(x^{n}y^{s-n} \otimes x^{k-n}y^{r-k+n}) = x^{k-n}y^{r-(k-n)}x^{n}y^{s-n} \otimes x^{r-(k-n)}y^{k-n}x^{k-n}y^{r-k+n} = x^{k}y^{r+s-k} \otimes x^{r}y^{r}.$$

Умножив выражение (1) на $x^r y^r$, мы получим сумму следующего вида

$$x^{r}y^{r}\sum_{k=0}^{s+r}\sum_{n=0}^{\min(s,k)}a_{n,k-n}x^{n}y^{s-n}\otimes x^{k-n}y^{r-k+n} = \sum_{k=0}^{s+r}\left[\left(\sum_{n=0}^{\min(s,k)}a_{n,k-n}\right)x^{k}y^{r+s-k}\otimes x^{r}y^{r}\right] = 0,$$

где последнее равенство следует из условия, наложенного на коэффициенты a_{ij} . Данное равенство выполнено при всех $k = \overline{0, s+r}$. Таким образом, мы доказали, что $\ker \mu \subset \operatorname{tors}(I^s \otimes_A I^r)$.

Следствие 1.4 Пусть числа a, b – натуральные, $I = (x, y)^a, J = (x, y)^b,$ тогда

$$\operatorname{tors}\left(I^{s} \otimes_{A} J\right) = \left\{ \sum_{\substack{0 \leqslant n \leqslant as \\ 0 \leqslant m \leqslant b}} a_{nm} x^{n} y^{as-n} \otimes x^{m} y^{b-m} \right\},\,$$

где коэффициенты a_{ij} удовлетворяют соотношению

$$\sum_{i+j=n+m} a_{ij} = 0 \text{ для всех } n, m.$$

Исходную задачу можно обобщить, заменив алгебру раздутия на алгебру

$$\widetilde{A} := \bigoplus_{s \ge 0} (I[t] + (t))^s / (t^{s+1}),$$

где t – элемент, трансцендентный над A. Отметим, что алгебра \widetilde{A} является A-алгеброй без кручения, однако, если рассмотривать \widetilde{A} как алгебру над \widetilde{A} , то возникают элементы кручения, например, $(0,t,0,\ldots)$. Далее будем работать с \widetilde{A} как с A-алгеброй.

Обозначим s-ое слагаемое в прямой сумме как $I_t^s := (I[t] + (t))^s/(t^{s+1})$. Сформулируем вспомогательную теорему

Лемма 1.1 A-модуль I_t^s допускает следующее разложение в сумму своих A-подмодулей

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A.$$
 (2)

Доказательство. Сразу отметим, что при вычислении I_t^s будем рассматривать многочлены степени не больше s, так как при факторизации по (t^{s+1}) большие степени

обратятся в 0. По определению, $(I[t]+(t))^s$ состоит из произведений s произвольных элементов I[t]+(t). Поэтому, чтобы выяснить структуру $(I[t]+(t))^s$, необходимо рассмотреть произведение

$$\prod_{n=1}^{s} \left(a_{n0} + (a_{n1} + b_n)t + a_{n2}t^2 + \dots + a_{ns}t^s \right),\,$$

где $a_{nj} \in I, b_n \in A, n = \overline{1, s}, j = \overline{0, s}$. Выясним, к каким степеням идеала I принадлежат коэффициенты при $t^k, 0 \le k \le s$. Рассмотрим слагаемые в коэффициенте при t^k , которые имеют вид

$$b_{i_1}b_{i_2}\dots b_{i_k}a_{i_{k+1}0}\dots a_{i_s0},$$

где множества $\{j_1,\ldots,j_k\},\{j_{k+1},\ldots,j_s\}\subset\{1,\ldots,s\}$ не пересекаются, а $\{j_1,\ldots,j_s\}=\{1,\ldots,s\}$. Очевидно, что это слагаемое принадлежит I^{s-k} , при этом взять в произведении большее число множителей, необязательно принадлежащих идеалу I, нельзя, так как мы ограничены степенью k. Поэтому I^{s-k} является наименьшей степенью идеала, к которой могут принадлежать слагаемые в коэффициенте при t^k . Однако, отметим, что для любой степени идеала I^r , где $r\geqslant s-k$ найдется такое слагаемое в коэффициенте при t^k , что оно принадлежит I^r , например, пусть r=l+(s-k)

$$a_{11}a_{21}\dots a_{l1}b_{l+1}\dots b_k a_{k+1,0}\dots a_{s0}\in I^r$$
.

Так как все коэффициенты были произвольные, то имеет место разложение I_t^s , как A-модуля, в сумму своих A-подмодулей

$$I_t^s = \langle 1, t, \dots, t^s \rangle_{I^s} + \langle t, t^2, \dots, t^s \rangle_{I^{s-1}} + \dots + \langle t^{s-1}, t^s \rangle_{I} + \langle t^s \rangle_{A}.$$

Заметим, так как справедливы включения $I^s \subset I^{s-1} \subset \cdots \subset I \subset A$, то справедливы включения $\langle t^k \rangle_{I^s} \subset \langle t^k \rangle_{I^{s-k}}$. Поэтому исходное разложение можно переписать в виде

$$I_t^s = \langle 1 \rangle_{I^s} + \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A$$
.

Заметим, что сумма (2) является прямой внутренней суммой своих подмодулей. Теперь, зная строение A-модуля I_t^s , можно сформулировать теорему

Теорема 1.5 Пусть $J \subset A$ – идеал в A, тогда

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

В частности,

$$tors (I_t^s \otimes_A I) = t^0 tors (I^s \otimes_A I) + t^1 tors (I^{s-1} \otimes_A I) + \dots + t^{s-1} tors (I \otimes_A I).$$

Доказательство. Так как тензорное произведение дистрибутивно относительно прямой суммы и, в силу теоремы 1.1, можно записать

$$tors (I_t^s \otimes_A J) = tors (\langle t^0 \rangle_{I^s} \otimes_A J) + tors (\langle t^1 \rangle_{I^{s-1}} \otimes_A J) + \dots + tors (\langle t^{s-1} \rangle_{I^1} \otimes_A J) + tors (\langle t^s \rangle_A \otimes_A J).$$

Так как t – элемент, трансцендентный над A, то его не аннулирует никакой многочлен с коэффициентами из A. Значит, он не даст вклада в кручение и его можно вынести

за знак $tors(\cdot)$. Таким образом имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (\langle 1 \rangle_{I^s} \otimes_A J) + t^1 tors (\langle 1 \rangle_{I^{s-1}} \otimes_A J) + \dots + t^{s-1} tors (\langle 1 \rangle_{I^1} \otimes_A J) + t^s tors (\langle 1 \rangle_A \otimes_A J).$$

Но $\langle 1 \rangle_{I^k}$, очевидно, является самим идеалом I^k . Таким образом, имеем

$$tors (I_t^s \otimes_A J) = t^0 tors (I^s \otimes_A J) + t^1 tors (I^{s-1} \otimes_A J) + \dots + t^{s-1} tors (I \otimes_A J).$$

Задача свелась к вычислению tors $(I^s \otimes J)$. Пусть J = I, тогда справедлива следующая

Теорема 1.6 Пусть образующие идеала I алгебраически независимы, тогда кручения A-модуля $I_t^s \otimes_A I$ дается суммой своих подмодулей:

$$t^{0} \left\langle x^{s-1}y \otimes x - x^{s} \otimes y, x^{s-2}y^{2} \otimes x - x^{s-1}y \otimes y, \dots, y^{s} \otimes x - xy^{s-1} \otimes y \right\rangle_{A} + t^{1} \left\langle x^{s-2}y \otimes x - x^{s-1} \otimes y, x^{s-3}y^{2} \otimes x - x^{s-2}y \otimes y, \dots, y^{s-1} \otimes x - xy^{s-2} \otimes y \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_{A} + t^{s-1} \left\langle x \otimes y - y \otimes x \right\rangle_$$

Доказательство. Воспользуемся теоремой 1.5 и для каждого $(I^s \otimes_A I)$ применим теорему 1.2.

Как было отмечено ранее, \widetilde{A} является алгеброй с кручением как алгебра над \widetilde{A} с покомпонентным умножением. Выясним, какой вид имеет $\mathrm{tors}_{\widetilde{A}}$ \widetilde{A} . Заметим следующее

$$\operatorname{tors}_{\widetilde{A}} \widetilde{A} = \operatorname{tors}_{\bigoplus I_t^s} \bigoplus I_t^s = \bigoplus \operatorname{tors}_{I_t^s} I_t^s,$$

так как умножение в прямой сумме осуществляется покомпонентно. Таким образом, мы свели исходную задачу к следующей: описать $\mathrm{tors}_{I^s_t} I^s_t$. Справедлива

Теорема 1.7

$$\operatorname{tors}_{I_t^s} I_t^s = \langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A.$$

Доказательство. Рассмотрим элемент I_t^s следующего вида

$$a_1t + a_2t^2 + \dots + a_st^s, \tag{3}$$

где $a_i \in I^{s-i}$, и умножим его на $1 \cdot t^s \neq 0$.

$$(a_1t + a_2t^2 + \dots + a_st^s)t^s = a_1t^{s+1} + a_2t^{s+2} + \dots + a_st^{2s} = 0,$$

то есть, мы показали, что элементы вида (3) действительно являются элементами кручения. Покажем, что никакие другие элементы вклада в кручение не дадут. Предположим, что

$$f = a_0 + a_1 t + a_2 t^2 + \dots + a_s t^s \in \text{tors}_{I_t^s} \ I_t^s,$$

где $a_0 \neq 0$. По определению, существует такой элемент $g \in I_t^s \setminus 0$, что fg = 0. Пусть

$$q = b_0 + b_1 t + \dots + b_s t^s \neq 0.$$

Рассмотрим коэффициенты при $t^k, k = \overline{0,s}$ в произведении fg. Коэффициент при t^k

обозначим как $[t^k]$.

$$[t^{0}] = a_{0}b_{0} = 0$$

$$[t^{1}] = a_{0}b_{1} + a_{1}b_{0} = 0$$

$$\vdots$$

$$[t^{s}] = a_{0}b^{s} + \dots + a_{s-1}b_{1} + a_{s}b_{0} = 0.$$

Так как кольцо целостное, $a_0 \neq 0$, то, из уравнения на $[t^0]$, получаем $b_0 = 0$. Подставив $b_0 = 0$ в уравнение на $[t^1]$ и воспользовавшись целостностью кольца, получим $b_1 = 0$. Повторяя эти рассуждения далее, получим, что $b_0 = b_1 = \cdots = b_s = 0$. Таким образом, f аннулирует только 0, значит $f \notin \operatorname{tors}_{I_t^s} I_t^s$.

Таким образом, действительно, только элементы вида (3) являются элементами кручения. Все такие элементы описываются суммой

$$\langle t \rangle_{I^{s-1}} + \dots + \langle t^{s-1} \rangle_I + \langle t^s \rangle_A$$
.

Рассмотрим следующую задачу. Описать кручения \widehat{A} -модуля $M \otimes_A \widehat{A}$, если он включается в короткую точную последовательность вида

$$0 \to I_1 \xrightarrow{i} M \xrightarrow{\varepsilon} I_2 \to 0,$$

где $I_1, I_2 \subset A$ — идеалы в кольце A, A — целостное, нетерово кольцо.

Обозначим $\widehat{M}:=M\otimes_A\widehat{A}$. Так как тензорное произведение не точно слева, то имеем последовательность вида

$$\widehat{I}_1 \xrightarrow{\widehat{i}} \widehat{M} \xrightarrow{\widehat{\varepsilon}} \widehat{I}_2 \to 0,$$

в которой $\hat{i}:=i\otimes 1,\ \widehat{\varepsilon}:=\varepsilon\otimes 1.$ Пусть $\tau:=\ker\widehat{i}.$ Тогда получим точную последовательность

$$0 \to \tau \to \widehat{I}_1 \xrightarrow{\widehat{i}} \widehat{M} \xrightarrow{\widehat{\varepsilon}} \widehat{I}_2 \to 0.$$

Справедливы вложения

$$0 \longrightarrow \tau \longrightarrow \widehat{I}_{1} \longrightarrow \widehat{i} \longrightarrow \widehat{M} \longrightarrow \widehat{\varepsilon} \longrightarrow \widehat{I}_{2} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

где гомоморфизмы в нижней строке получены путем ограничения гомоморфизмов верхней строки на соответствующие множества. Разложим гомоморфизм \hat{i}' в композицию сюръективного и инъективного гомоморфизмов и рассмотрим нижнюю строку

$$0 \longrightarrow \operatorname{tors}_{\widehat{A}} \tau \longrightarrow \operatorname{tors}_{\widehat{A}} \widehat{I}_{1} \xrightarrow{\widehat{i}'} \operatorname{tors}_{\widehat{A}} \widehat{M} \xrightarrow{\widehat{\varepsilon}'} \operatorname{tors}_{\widehat{A}} \widehat{I}_{2} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Отметим, что $\widehat{I}_1, \widehat{I}_2$ конечно порождены, согласно предложению 2.17 книги **[ссылка**

Атья], как \widehat{A} -модули, поэтому $\operatorname{tors}_{\widehat{A}}\widehat{I}_2$ конечно порожден как подмодуль нетерового модуля, $\frac{\operatorname{tors}_{\widehat{A}}\widehat{I}_1}{\operatorname{tors}_{\widehat{A}}\tau}$ конечно порожден как образ конечно порожденного модуля. Поэтому мы можем воспользоваться предложением 4 §4 гл. 1 книги [ссылка Зуланке], которое утверждает, что расширение последовательности

$$0 \to \frac{\operatorname{tors}_{\widehat{A}} \widehat{I}_1}{\operatorname{tors}_{\widehat{A}} \tau} \to \operatorname{tors}_{\widehat{A}} \widehat{M} \xrightarrow{\widehat{\varepsilon}'} \operatorname{tors}_{\widehat{A}} \widehat{I}_2 \to 0$$

порождено образами порождающих ядра и прообразами порождающих коядря последовательности. Пусть $\widehat{I}_2 = \langle \overline{z_1}, \overline{z_2}, \dots, \overline{z_m} \rangle_{\widehat{A}}, \ z_i \in \operatorname{tors}_{\widehat{A}} \widehat{M}$ — произвольно выбранный проообраз $\overline{z_i} \ (i = \overline{1,m})$ и $\frac{\operatorname{tors}_{\widehat{A}} \widehat{I_1}}{\operatorname{tors}_{\widehat{A}} \tau} = \langle x_1, x_2, \dots, x_n \rangle_{\widehat{A}}, \ \overline{x_j}$ — образ x_j в $\operatorname{tors}_{\widehat{A}} \widehat{M} \ (j = \overline{1,n}),$ тогда

 $\operatorname{tors}_{\widehat{A}} \widehat{M} = \langle \overline{x}_1, \overline{x}_2, \dots, \overline{x}_n \rangle_{\widehat{A}} + \langle z_1, z_2, \dots, z_m \rangle_{\widehat{A}}.$

Теперь выясним как охаракетризовать кручения произвольного \widehat{A} -модуля $M\otimes_A\widehat{A}$, при условии что M — нетеров A-модуль. Для этого нам потребуются известные утверждения:

Теорема 1.8 $M^{\vee} := \operatorname{Hom}_A(M, A) - Modynb$ без кручения.

Теорема 1.9 Если M — модуль без кручения, то гомоморфизм $M \to M^{\vee\vee}$ инъективен.

Пусть $m \in M^{\vee} \setminus 0$. Рассмотрим гомоморфизм $A \to M^{\vee}$, $\alpha \mapsto \alpha m$. Заметим, что этот гомоморфизм инъективен, так как в противном случае m являлся бы элементом кручения, что невозможно по теореме 1.8. Имеем точную тройку A-модулей:

$$0 \to A \to M^{\vee} \to N \to 0.$$

Перейдя от нее к двойственной получим последовательность, неточную справа

$$0 \to N^{\vee} \to M^{\vee\vee} \to A \to \dots$$

Разложим гомоморфизм $M^{\vee\vee} \to A$ в композицию сюръективного и инъективного гомоморфизмов

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow A \longrightarrow \dots$$

$$M^{\vee\vee}/N^{\vee}$$

Так как $M^{\vee\vee}/N^\vee$ обладает вложением в A как A-модуль, то имеет место изоморфизм $M^{\vee\vee}/N^\vee\simeq J\subset A$ — некоторый идеал в кольце A. Таким образом имеем новую точную тройку

$$0 \to N^{\vee} \to M^{\vee\vee} \to J \to 0.$$

Воспользовавшись теоремой 1.9 имеет место вложение

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow J \longrightarrow 0$$

Обозначим $M_1:=\ker(M\to J_1),\ J_1:=\operatorname{im}\ (M\hookrightarrow M^{\vee\vee}\to J)$ — идеал в A, при этом

выполнены вложения $J_1 \subset J \subset A$. Имеем диаграмму с точными строками

$$0 \longrightarrow N^{\vee} \longrightarrow M^{\vee\vee} \longrightarrow J \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

Так как $M_1 \subset M$, M — нетеров, следовательно, M_1 тоже нетеров. Повторим эти же действия для M_1 , потом для M_2 и так далее. Имеем убывающую фильтрацию

$$\cdots \subset M_2 \subset M_1 \subset M. \tag{4}$$

Так как нетеров модуль необязательно артинов, то эта последовательность может быть бесконечной. Покажем что это не так и цепочка будет обрываться. Перейдем к локализации в нулевом идеале кольца $A. A \hookrightarrow A_0 =: Q(A)$ — поле частных кольца A. По свойству точности локализации имеем точную тройку A_0 -векторных пространств

$$0 \to (M_{i+1})_0 \to (M_i)_0 \to (J_{i+1})_0 \to 0.$$

Так как $(J_{i+1})_0 \simeq A_0$, то из свойсва аддитивности A_0 -размерности (Предложение 2.11 книги [ссылка Атья]) имеют место равенства

$$\dim_{A_0}(M_i)_0 - \dim_{A_0} A_0 = \dim_{A_0}(M_i)_0 - 1 = \dim_{A_0}(M_{i+1})_0.$$

Таким образом, последовательность (4) действительно обрывается. В базовом случае будем иметь точную тройку вида

$$0 \to I_1 \to M_n \to I_2 \to 0$$
,

в которой для A-модуля M_n уже можем вычислить кручения \widehat{A} -модуля \widehat{M}_n .