

$\textbf{SIPMOS} \ ^{\circledR} \textbf{Small-Signal Transistor}$

- N channel
- Enhancement mode
- Logic Level
- $V_{GS(th)} = 0.8...2.0V$

BSS 123

Pin 1	Pin 2	Pin 3
G	S	D

Туре	V _{DS}	l _D	R _{DS(on)}	Package	Marking
BSS 123	100 V	0.17 A	6 Ω	SOT-23	SAs
Туре	Ordering C	ode	Tape and Reel In	formation	
BSS 123	Q62702-S5	12	E6327		
BSS 123	Q67000-S2	45	E6433		

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain source voltage	V _{DS}	100	V
Drain-gate voltage	V DGR		
$R_{\rm GS}$ = 20 k Ω		100	
Gate source voltage	V_{GS}	± 20	
ESD Sensitivity (HBM) as per MIL-STD 883		Class 1	
Continuous drain current	I _D		Α
$T_{A} = 28 ^{\circ}\text{C}$		0.17	
DC drain current, pulsed	/ _{Dpuls}		
$T_{A} = 25 ^{\circ}\text{C}$		0.68	
Power dissipation	P _{tot}		W
$T_{A} = 25^{\circ}C$		0.36	

Maximum Ratings

Parameter	Symbol	Values	Unit
Chip or operating temperature	T _j	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip to ambient air 1)	R _{thJA}	≤ 350	K/W
Therminal resistance, chip-substrate- reverse side 1)	R _{thJSR}	≤ 285	
DIN humidity category, DIN 40 040		Е	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

¹⁾ For package mounted on aluminium $\,$ 15 mm x 16.7 mm x 0.7 mm

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	$V_{(BR)DSS}$				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.25 \text{ mA}, T_{\rm j} = 25 ^{\circ}\text{C}$		100	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		0.8	1.5	2	
Zero gate voltage drain current	I _{DSS}				
V_{DS} = 100 V, V_{GS} = 0 V, T_{j} = 25 °C		-	0.1	1	μΑ
$V_{\rm DS}$ = 100 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	2	60	
V_{DS} = 20 V, V_{GS} = 0 V, T_{j} = 25 °C		-	-	10	nA
Gate-source leakage current	I _{GSS}				nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$		-	10	50	
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{GS} = 10 \text{ V}, I_{D} = 0.17 \text{ A}$		-	3	6	
$V_{\rm GS}$ = 4.5 V, $I_{\rm D}$ = 0.17 A		-	4.5	10	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	g_{fs}				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = 0.17 \text{ A}$		0.08	0.2	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	65	85	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	10	15	
Reverse transfer capacitance	C _{rss}				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	4	6	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.28 A					
$R_{\rm GS} = 50 \ \Omega$		-	5	8	
Rise time	t_{r}				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.28 A					
$R_{\rm GS}$ = 50 Ω		-	5	8	
Turn-off delay time	$t_{d(off)}$				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 0.28 A					
$R_{\rm GS}$ = 50 Ω		-	10	13	
Fall time	t _f				
$V_{\rm DD} = 30 \; {\rm V}, \; V_{\rm GS} = 10 \; {\rm V}, \; I_{\rm D} = 0.28 \; {\rm A}$					
$R_{\rm GS}$ = 50 Ω		-	12	16	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				А
$T_A = 25 ^{\circ}\text{C}$		-	-	0.17	
Inverse diode direct current,pulsed	I _{SM}				
$T_A = 25 ^{\circ}\text{C}$		-	-	0.68	
Inverse diode forward voltage	V_{SD}				V
$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 0.34 \text{ A}, T_{\rm j} = 25 ^{\circ}\text{C}$		-	0.85	1.3	

Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

Safe operating area $I_{\rm D} = f(V_{\rm DS})$

parameter : D = 0.01, $T_C=25$ °C

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{A}})$

parameter: V_{GS} ≥ 10 V

Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

Typ. output characteristics

 $I_{\mathsf{D}} = f(V_{\mathsf{DS}})$

parameter: $t_p = 80 \mu s$, $T_j = 25 \,^{\circ}C$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\rm DS~(on)} = f(I_{\rm D})$ parameter: $t_{\rm p} = 80~\mu \rm s,~T_{\rm j} = 25~^{\circ} C$

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$,

 $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D} = 0.17~{\rm A},~V_{\rm GS} = 10~{\rm V}$

Gate threshold voltage

 $V_{\rm GS~(th)} = f(T_{\rm j})$ parameter: $V_{\rm GS} = V_{\rm DS}, I_{\rm D} = 1~{\rm mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: V_{GS} =0V, f = 1 MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_j , $t_p = 80 \mu s$

