How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities

Cell 187, December 12, 2024

Literature Report 12212859 Sijie Li June 4th, 2025

Definition

"simulator of cells and cellular systems under varying conditions and changing contexts"

Definition

the ability of machines to perform tasks that require human intelligence

Artificial Intelligence (AI) → Machine Learning (ML) → Deep Learning (DL) → Neural Networks (NN)

Transformers

CNN Diffusion Models

	Primary coding	Nueral network	Latent Space
Raw Data		Primary Embedding ———	Embedding

Simple Mapping

Linear projection or table lookup

e.g. self-attention token embedding

contextual embedding

Gene A, B, C, D, E [5.2, 0.0, 1.8, 3.3, 7.1]

Gene Expression

Gene A $(5.2) \rightarrow [0.4, 1.1, -0.2]$ Gene B $(0.0) \rightarrow [0.0, 0.0, 0.0]$

Gene C $(1.8) \rightarrow [0.3, 0.2, 0.1]$ Gene D $(3.3) \rightarrow [0.6, 0.7, -0.1]$

Gene E $(7.1) \rightarrow [1.0, 1.2, 0.4]$

× n layers

- [[0.48, 0.90, 0.03],[0.10, 0.05, 0.12],[0.30, 0.35, 0.25],
- [0.52, 0.60, 0.10],
- [0.95, 1.00, 0.60]]

mean pooling [0.47, 0.58, 0.22]

- **Embedding**: a representation for computation
- numerical (2) preserve structure (3) enable further manipulation

Universal Representations (URs)

"embeddings produced by a multi-modal AIVC foundation model"

Raw Data AIVC Foundation Model UR Neural Network Cells Behavior

Manipulator virtual instruments e.g., chemical or genetic pertubation Unperturbed Perturbed cell UR cell UR e.g., changes in phenotype Cell UR Decoder virtual instruments

scale

for the cellular

ġ,

Virtual Instruments (VIs)

Neural networks that take URs as input and produce a desired output

```
pre UR

[0.47, 0.58, 0.22]

Manipulator VI
e.g. drug administration

pro UR

[0.97, 0.04, 0.23]

Dcoder VI

Human

Gene A, B, C, D, E
[4.9, 30.0, 1.7, 17.8, 0.7]
```


- > Tool Building: Architectures for multi-modal biological data
 - "Interconnection of many large models to capture everything in UR" ---- Charlotte Bunne
 - Self-consistent across scale, modality, and context
 - LACK! DNA ≠ texts, medical images ≠ images

- > Tool Building: Architectures for multi-modal biological data
- Data Collection
 - Multi-modal, multi-scale, multi-dimension (t, x), multi-species
 - Information amount: short read 14 pb > 1,000 × dataset used to train ChatGPT Redundant?
 - Perturbation: large combinatorial space; in vivo? → organoid...

- > Tool Building: Architectures for multi-modal biological data
- Data Collection
- > Model Evaluation
 - Generalizability
 - Discovering new biology, †understanding

- > Tool Building: Architectures for multi-modal biological data
- Data Collection
- Model Evaluation
- > Interpretability VS Utility
 - Modular structure enable pinpointing
 - Project result to interpretable space (decoder VI)

- > Tool Building: Architectures for multi-modal biological data
- Data Collection
- Model Evaluation
- > Interpretability VS Utility
- > Community: non-expert interface, for collaboration!
- > Humanity Consideration: diversity, privacy, ethics...

> Predict Response

Cell state 1
e.g. expression
profile
Engineering
Cell state 2
(Response)
Drug delivery

> Unlock Biological Laws

Cold tumor Hot tumor

Tumor heterogeneity and microenvironment transcriptomics cell

Tumor spatial **omics +**Microenvironment **conditions**

Laws of tumor→ Heterogeneity insightsPan-cancer markers

Optimization

[&]quot;Machine Learning is the formalism through which we understand high dimensional data."

Al virtual

cell

Tissue sample

Plasma

RBCs/

WBCs

Cellular system state

Gene A, B, C, D, E [5.2, 0.0, 1.8, 3.3, 7.1]

intervention

Result with confidence

Gene A, B, C, D, E [4.9, 30.0, 1.7, 17.8, 0.7]

Possibility = 0.0001

New Biology or **Model Optimization**

- Generate hypothesis
- Identify valuable data to collect

AIVC: Priorities and Opportunities For us!

Charlotte Bunne, 1,2,3,4,50 Yusuf Roohani, 1,3,5,50 Yanay Rosen, 1,3,50 Ankit Gupta, 3,6 Xikun Zhang, 1,3,7 Marcel Roed, 1,3 Theo Alexandrov. 8,9 Mohammed AlQuraishi. 9 Patricia Brennan. 3 Daniel B. Burkhardt. 11 Andrea Califano. 10,12,13 Jonah Cool, Abby F. Dernburg, 14 Kirsty Ewing, Emily B. Fox, 1,15,16 Matthias Haury, 17 Amy E. Herr, 16,18 Eric Horvitz, 19 Patrick D. Hsu, 5,18,20 Viren Jain, 21 Gregory R. Johnson, 22 Thomas Kalil, 23 David R. Kelley, 24 Shana O. Kelley, 25,26 Anna Kreshuk,²⁷ Tim Mitchison,²⁸ Stephani Otte,¹⁷ Jay Shendure,^{29,30,31,32} Nicholas J. Sofroniew,³³ Fabian Theis,^{34,35,36} Christina V. Theodoris, 37,38 Srigokul Upadhyayula, 14,16,39 Marc Valer, 3 Bo Wang, 40,41 Eric Xing, 42,43 Serena Yeung-Levy, 1,44 Marinka Zitnik, 45,46,47 Theofanis Karaletsos, 3,* Aviv Regev, 2,* Emma Lundberg, 3,6,7,48,* Jure Leskovec, 1,3,* and Stephen R. Quake 3,7,49,*

- 42-author 50-institute blueprint
- A roadmap for a once-vague dream
- Require interdisciplinary collaboration
- BOLD! Doable?
- Together, I believe YES!

- ¹Department of Computer Science, Stanford University, Stanford, CA, USA
- ²Genentech, South San Francisco, CA, USA
- ³Chan Zuckerberg Initiative, Redwood City, CA, USA
- ⁴School of Computer and Communication Sciences and School of Life Sciences, EPFL, Lausanne, Switzerland ⁵Arc Institute, Palo Alto, CA, USA
- ⁶Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- ⁷Department of Bioengineering, Stanford University, Stanford, CA, USA
- ⁸Department of Pharmacology, University of California, San Diego, San Diego, CA, USA ⁹Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- ¹⁰Department of Systems Biology, Columbia University, New York, NY, USA
- ¹¹Cellarity, Somerville, MA, USA
- ¹²Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- ¹³Chan Zuckerberg Biohub, New York, NY, USA
- ¹⁴Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- ¹⁵Department of Statistics, Stanford University, Stanford, CA, USA
- ¹⁶Chan Zuckerberg Biohub, San Francisco, CA, USA
- ¹⁷Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
- ¹⁸Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- ¹⁹Microsoft Research, Redmond, WA, USA
- ²⁰Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- ²¹Google Research, Mountain View, CA, USA
- ²²NewLimit, San Francisco, CA, USA
- ²³Schmidt Futures, New York, NY, USA
- ²⁴Calico Life Sciences LLC, San Francisco, CA, USA
- ²⁵Chan Zuckerberg Biohub, Chicago, IL, USA
- ²⁶Northwestern University, Evanston, IL, USA
- ²⁷Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- ²⁸Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- ²⁹Department of Genome Sciences, University of Washington, Seattle, WA, USA
- 30Brotman Batv Institute for Precision Medicine, Seattle, WA, USA
- 31Seattle Hub for Synthetic Biology, Seattle, WA, USA
- 32Howard Hughes Medical Institute, Seattle, WA, USA
- 33EvolutionaryScale, PBC, New York, NY, USA
- ³⁴Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- ³⁵School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- ³⁶TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- ³⁷Gladstone Institute of Cardiovascular Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- 38 Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- ³⁹Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- ⁴⁰Department of Computer Science, University of Toronto, Toronto, ON, Canada
- ⁴¹Vector Institute, Toronto, ON, Canada
- ⁴²Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA
- ⁴³Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
- ⁴⁴Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- ⁴⁵Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- ⁴⁶Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA
- ⁴⁷Broad Institute of MIT and Harvard, Cambridge, MA, USA
- ⁴⁸Department of Pathology, Stanford University, Stanford, CA, USA
- ⁴⁹Department of Applied Physics, Stanford University, Stanford, CA, USA
- 50These authors contributed equally

References

Bunne, C., Roohani, Y., Rosen, Y., Gupta, A., Zhang, X., Roed, M., Alexandrov, T., AlQuraishi, M., Brennan, P., Burkhardt, D. B., Califano, A., Cool, J., Dernburg, A. F., Ewing, K., Fox, E. B., Haury, M., Herr, A. E., Horvitz, E., Hsu, P. D., ... Quake, S. R. (2024). How to build the virtual cell with artificial intelligence: Priorities and opportunities. *Cell*, *187*(25), 7045–7063.

https://doi.org/10.1016/j.cell.2024.11.015

Topol, E. (2025, March 18). Steve Quake and Charlotte Bunne: The Holy Grail of Biology. *Ground Truths*. https://erictopol.substack.com/p/the-holy-grail-of-biology