Стальная пластина неудобная из за того что там слишком большая частота и вместо этого рассмотрелась алюминиевая пластина.

1 Метод матричных пучков

Для фильтрации используется $Re\gamma > 0$ и $Re\gamma < \pi/\Delta x$.

Рис. 1: Метод матричных пучков для L=5

Результат состоит из правильных точек и плохих точек, которые вычислены неправильно. Для любых параметров правильные точки должны быть одинаковыми так как свойства материала не изменяются.

Ввелись дополнительные фильтры.

 $n\Delta x$ фильтр - вычисление метода матричных пучков дополнительно для входных данных в которых взят только каждый n x_i . Δx при этом возрастает в n раз и уменьшается максимальная величина полюсов которые можно найти. После этого из основного метода матричных пучков оставляются только точки отличаются не более чем 1%. Например для полюс γ_i остается если в дополнительном решении с увеличенным Δx существует γ_j' такое что

$$\left|\frac{\gamma_i - \gamma_j'}{\gamma_i}\right| < 0.01.$$

L+dL фильтр - аналогично можно варьировать L на dL так же как в $n\Delta x$ фильтре.

Рис. 2: Метод матричных пучков на рисунке 1 с $2\Delta x$ фильтром слева и с L+5 фильтром справа

Рис. 3: точки в которых результат отличается в этих 2 фильтрах отличается (точка есть только в 1 из 2 вариантов)

Рис. 4: результат при применении сразу 2 фильтров

Рис. 5: результат при применении сразу 2 фильтров для L=3 и L=10 из которых видно что от L зависит количество найденных точек и оно становиться больше при увеличении L

Рис. 6: результат при применении сразу 2 фильтров для L=50

Рис. 7: Для L=50 плохие точки снова начали появляться, но стали видны почти все дисперсионные кривые

Рис. 8: Результат $L=50\ {
m c}$ наложенными теоретических дисперсионными кривыми для стандартных параметров для алюминия

Рис. 9: Результат $L=50~{\rm c}$ наложенными теоретических дисперсионными кривыми для вручную подогнанных параметров для алюминия и толщины слоя

Рис. 10: Результат L=50 с большим количеством фильтров ($2\Delta x, 3\Delta x, L+5, L+10$) убирает плохие точки. Далее для L=100 нужно еще больше фильтров, но оно еще не вычленилось и в начале до частоты 0.5 найденных точек стало меньше, то есть скорее всего при увеличении L до достаточно больших значений результат перестает становиться лутче