CS28010 Question for Final

Guoxin SUI

December 20, 2017

1 Multivariate least squares

Given a training set with mulitple outputs for each example:

$$\{(x^{(i)}, y^{(i)}), i = 1, ..., m\}; x^{(i)} \in \mathbb{R}^n; y^{(i)} \in \mathbb{R}^p$$

Similar to linear regression, to use a linear model to predict the outputs: $y = \Theta^T x$, where $\Theta \in \mathbb{R}^{n*p}$. We define the cost function as

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{p} \left((\Theta^{T} x^{(i)})_{j} - y_{j}^{(i)} \right)^{2}$$

Write $J(\Theta)$ in matrix-vector notation and find the closed form solution for Θ which minimizes $J(\Theta)$ Answer:

The objective function can be expressed as

$$J(\Theta) = \frac{1}{2} tr \left((X\Theta - Y)^T (X\Theta - Y) \right)$$

The closed form is

$$\Theta = (X^T X)^{-1} X^T Y$$

where $Y \in \mathbb{R}^{m * p}$. This is quite similar to the case in univariate case.