MULTIPLIERS AND MAGNITUDE COMPARATORS

Lagnitude Comparator bit Magnitude comparator → A < B</p> 1 bit A = BMagnitude Comparator A > B 2 bit magnitude comparator

Inputs				Outputs		
A_1	A_0	B ₁	B_0	A>B	A=B	A <b< td=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0		0
0	1	1	0	0	0	(1)
0	1	1	1	0	0	1)
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	(1)	0
1	0	1	1	0	0	
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	11	1	1	0	1	0

2-14

G1= A1B1 G0= A0B0 G1= G1+L1 K0= G0+L0

Lus Har: - LI= A,B,
Lo= FoBo

$$E = \overline{A_1} \overline{A_0} \overline{B_1} \overline{B_0} + \overline{A_1} \overline{A_0} \overline{B_1} \overline{B_0} + \overline{A_1} \overline{A_0} \overline{B_1} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} + \overline{A_1} \overline{B_1} \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} + \overline{A_1} \overline{B_1} \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} + \overline{A_1} \overline{B_1} \overline{A_0} \overline{A_0} \overline{B_0} + \overline{A_0} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} + \overline{A_1} \overline{B_1} \overline{A_0} \overline{A_0} \overline{A_0} + \overline{A_0} \overline{B_0}$$

$$= \overline{A_1} \overline{B_1} + \overline{A_1} \overline{B_1} \overline{A_0} \overline{A_0} \overline{A_0} + \overline{A_0} \overline{B_0}$$

L=A, AB, Bo, + A, AoB, Bo, + A, AoB, Bo + AABIBO+ AIABIBO = A, B, AoBo + AoBo + AoBo) = A₁B₁+ A₀B₀ (A₁B₁+A₁B₁). = A₁B₁+ A₀B₀ (E₁) | = L₁+ L₀E₁.

3 bit magnitude comparator

$$L = L_2 + E_2L_1 + E_2E_1L_0$$

$$E = E_2E_1E_0$$

$$G = G_2 + E_2G_1 + E_2E_1G_0$$

4 bit magnitude comparator

Design 8 bit magnitude comparator using 7485 ICs

