Linear regression model: classical approach

The observed data

- (i). Any single observation is given by (Y, z):
 - Y is the observed variable;
 - $z = (z_0, \ldots, z_k)$ is the covariate;
 - $-z_0 \in \{0,1,2\}$ is assumed to be a genotype.

The distribution of Y is assumed to be a normal; any element z_i of the covariate z can be

- nominal (alias categorical or factor);
- ordinal;
- quantitative (alias numeric).

Covariates:

- the covariate $z_0 \in \{0,1,2\}$ (genotype) is assumed to be of special ordinal/nominal type (object "genotype");
- type of each other covariate should be specified by user or selected by default;

By default

- a binary categorical covariate (2 levels) is assumed to be a nominal, and should be converted to 0 and 1 levels;
- a categorical covariate having 3-8 levels is assumed to be an ordinal;
- other covariates are assumed to be numeric.
- (ii). The observed data is a sample (Y, z):
 - $Y = (Y_1, \ldots, Y_n)'$ is $(n \times 1)$ -vector;
 - $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_n), \ \mathbf{z}_i = (z_{i,0}, \dots, z_{i,k})$ are the covariates;

 - Y_1, \dots, Y_n are conditionally independent on given \mathbf{z} ; $\mathbf{z} = \mathbf{var}(Y \mid \mathbf{z}) = \sigma^2$ for any \mathbf{z} ($\mathbf{var}(Y_1) = \dots = \mathbf{var}(Y_n)$).

Linear regression model

- (i). Regressor $X : \mathbb{R}^k \to \mathbb{R}^m$; X(z) is defined for any observation.
- (ii). Linear regression model for single observation

$$\mathbb{E}_{\theta}(Y \mid \boldsymbol{z}) = \boldsymbol{X}(\boldsymbol{z})'\boldsymbol{\beta},$$

- $\beta = (\beta_1, \dots \beta_m)'$ is $m \times 1$ -vector of parameters;
- $Y \sim \mathcal{N}(\boldsymbol{X}(\boldsymbol{z})'\boldsymbol{\beta}, \sigma)$, where σ is the nuisance variance parameter;
- $\boldsymbol{\theta} = (\beta_1, \dots, \beta_m, \sigma)$ is the full parameter of the model.

The linear regression model is determined by the formula

$$Y \sim g(z_0) + f(z^*), \quad z^* = (z_1, \dots, z_k),$$

where $g \in \{CD, D, R, A\}$ is the genetic model and f is the covariate term

- $-f(z^*) = f_1(z^*) + \ldots + f_r(z^*),$
- $-f_i(z^*) = z_1^{r_{1i}} * \dots * z_k^{r_{ki}}, r_{1i}, \dots, r_{ki} \in \{0, 1, \dots\}$ is of multiple regression type;
- warning: values $r_{ki} \geq 2$ are not available for factors.

The parameter.

— The intercept parameter is included into the model by default.

- The covariate z_0 generates
 - single parameter if $g \in \{ D, R, A \}$ (difference with the baseline level $z_0 = 0$);
 - vector of length two if g = CD (main effect with respect to the baseline level $z_0 = 0$).
- Term $f(z^*)$ defines the (ordered) set K of subsets of $\{1,\ldots,k\}$, every $\kappa\in K$ will be equipped with the map $\operatorname{Deg}_{\kappa} : \kappa \to \mathbb{N}$ defined below:
 - consider the term $f_i(\boldsymbol{z}^*) = z_1^{r_{1i}} * \dots * z_k^{r_{ki}}$ and the set $\kappa_i = \{\ell \mid r_{\ell i} > 0\};$ then $K = \bigcup_{i=1}^r \mathbf{2}^{\kappa_i}$, where $\mathbf{2}^{\kappa_i}$ is a powerset of a set κ_i ;

 - for each $\kappa \in K$ by definition $\operatorname{Deg}_{\kappa}(\ell) = \max\{r_{\ell i} \mid \kappa_i \supset \kappa, i = 1, \dots, k\};$
 - the elements of K should be sorted (e.g. κ 's of smaller length may be sorted before κ 's of larger length).

We associate a number d_{κ} to each index $\kappa \in K$. For each $i \in \kappa$

- define $d_i = \text{Deg}_{\kappa}(i)$ if z_i is numeric or ordinal;
- define d_i , so that $d_i + 1$ is a number of levels of the covariate z_i , if z_i is a factor. Note, that $\operatorname{Deg}_{\kappa}(i) = 1$. Also note, that in that case d_i does not actually depend on κ , which will be used below;
- in general case $d_{\kappa} = \prod_{i \in \kappa} d_i$.

The total length of the nuisance (part corresponding to f) parameter is $d = \sum_{\kappa \in K} d_{\kappa}$.

The regressor.

- The regressor is a vector (x_0, x_K) such that
 - $-x_0 = (1, z_0) \text{ if } g \in \{ D, R, A'' \};$
 - $\begin{array}{ll} -- x_0 = (1, 1\!\!1_{\{z_0=1\}}, 1\!\!1_{\{z_0=2\}}) \text{ if } g = \text{``CD''} \text{ (``Model for TEST'')}; \\ -- x_0 = (1, z_0) \text{ if } g = \text{``CD''} \text{ (``Model for QAS'')}. \end{array}$

 - $x_0 = 1$ ("Baseline model").

We use the ordered set K to create regressor x_K for nuisance parameter by merging x_{κ} over $\kappa \in K$ in a proper order, where x_{κ} is defined as follows. For each $i \in \kappa$

- define $x_i = (z_i, z_i^2, \dots, z_i^{\text{Deg}_{\kappa}(i)})$ if z_i is numeric or ordinal;
- define x_i as the vector of length d_i of $\{0,1\}$ with 1 on j-th position and 0 elsewhere if $z_i = a_{j+1}$, where a_j is the j-th level of z_i (for example (0, 0, 1, 0, 0));
- in general case $x_{\kappa} = \text{as.vector}(\otimes_{i \in \kappa} x_i)$, where \otimes is the outer product (vector should be sorted in a proper order).
- (iii). Linear regression model for the observed data

$$\mathbb{E}(Y \mid \mathbf{z}) = \mathbf{X}'\boldsymbol{\beta},$$

- $\mathbf{X} = (\mathbf{X}(\mathbf{z}_1), \dots, \mathbf{X}(\mathbf{z}_n))$ is the $m \times n$ -matrix of regressors;
- β is the $1 \times m$ -vector of parameters;
- assumption $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}'\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$, \mathbf{I}_n is the identity matrix;
- the matrix $\mathbf{X} = (\mathbf{X}'_q, \mathbf{X}^{*\prime})'$, where \mathbf{X}_q contains the regressors related to g and \mathbf{X}^* are the last d rows of the matrix \mathbf{X} .

Nuisance parameter reduction

- the parameter related to (z_1, \ldots, z_k) is not a subject of our interests;
- If the matrix \mathbf{X}^* , which contains the last d rows of the matrix \mathbf{X} , is not of the full rank d, we reduce the matrix \mathbf{X}^* to \mathbf{X}° by choosing only basis vectors of the linear space generated by rows of the matrix X^* ;
- The reduced matrix X is determined by changing block X^* to X° in the matrix X.

QAS and P-value

Under XX' is of full rank (positively definite), the least square estimator (LSE) is given by

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}\mathbf{X}')^{-1}\mathbf{X}\,\mathbf{Y}.$$

The sum of squares

$$S(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}'\boldsymbol{\beta}\|^2 = (\mathbf{Y} - \mathbf{X}'\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}'\boldsymbol{\beta}).$$

Notations

Note, that "Model for QAS" is equal to "Model for TEST" if g = A, D, R".

- \mathbf{X} , \mathbf{X}_q , \mathbf{X}_0 are the regressors in the "Model for TEST", "Model for QAS", "Baseline model" respectively;
- $\widehat{\boldsymbol{\beta}}$, $\widehat{\boldsymbol{\beta}}_q$, $\widehat{\boldsymbol{\beta}}_0$ is the LSE from the "Model for TEST", "Model for QAS", "Baseline model" respectively;
- $S(\widehat{\boldsymbol{\beta}}), S_q(\widehat{\boldsymbol{\beta}}_q), S_0(\widehat{\boldsymbol{\beta}}_0)$ is the sums of squares from the "Model for TEST", "Model for QAS", "Baseline model" respectively.

The algorithm

The input data contain: "phenotype" (numeric vector), "genotype", "covariates" (matrix), "covariate types" (vector) and "formula".

- (i) Create regressors related to covariates \mathbf{X}^* .
- (ii) Check that the rank of the matrix \mathbf{X}^* is full.
 - if the rank of matrix \mathbf{X}^* is not equal to d, apply nuisance parameter reduction $\mathbf{X}^* := \mathbf{X}^\circ$.
- (iii) Loop by genotypes.
 - Create regressors \mathbf{X}_q for "Model for TEST", for "Model for QAS" and for "Baseline model".
 - Check that the rank of the matrix \mathbf{X}_g related to g is maximal (2 if g = ``A,D,R'' or 3 if g = ``CD''):
 - if the rank of the matrix \mathbf{X}_g in the "Model for TEST" is not maximal, report qas[i] = NA and pv[i] = NA;
 - otherwise, continue.
 - Create matrix **X** by merging \mathbf{X}_q and \mathbf{X}^* .
 - If the rank of matrix \mathbf{X} is not equal to its number of rows use nuisance parameter reduction to whole \mathbf{X} (\mathbf{X}_q should not be changed).
 - Fit the "Model for QAS":
 - assign qas[i] the coefficient, related to z_0 (second element of the vector $\hat{\beta}$).
 - Fit the "Model for TESTS" and the "Baseline model":
 - $SS_e = S(\widehat{\boldsymbol{\beta}}); \overline{SS}_e = SS_e/\mathrm{df}, \text{ where } \mathrm{df} = n \mathrm{rk}(\mathbf{X});$
 - $SS_h = S_0(\widehat{\beta}_0) SS_e$; $\overline{SS}_h = SS_h/\mathrm{df}_h$, where $\mathrm{df}_h = 2$ if g = CD and $\mathrm{df}_h = 1$ if g = A,D,R;
 - $\mathbb{F} = \overline{SS}_h/\overline{SS}_e$ is the F-statistic, which has under null hypothesis $F_{\mathrm{df}_h,\mathrm{df}}$ -distribution;
 - assign $pv[i] = 1 F_{df_h,df}(\mathbb{F})$, where $F_{df_h,df}$ is the distribution function of the Fisher–Snedecor distribution $F_{df_h,df}$.
- (iv) Return the vectors pv and qas.