

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени

Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №3 по курсу "Архитектура ЭВМ"

Тема Организация памяти суперскалярных ЭВМ		
Студент Шавиш тарек		
Группа ИУ7и-54Б		
Преподаватель Попов Ю.А.		

Оглавление

Введение			
1	Основные теоретические сведения	3	
2	Эксперименты	4	
	2.1 Задание 1	4	
	2.2 Задание 2	5	
	2.3 Задание 3	5	
	2.4 Задание 4	6	
	2.5 Задание 5	7	
	2.6 Задание 6	8	
3:	эк пючение	10	

Введение

Целью данной работы является освоение принципов эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство. Работа проводится сиспользованием программы для сбора и анализа производительности РСLAB.

В ходе работы необходимо ознакомиться с теоретическим материалом, касающимся особенностей функционирования подсистемы памяти современных конвейерных суперскалярных ЭВМ, граммы РСLAB, изучить средства идентификации микропроцессоров, провести исследования времени выполнения тестовых программ, воды о архитектурных особенностях используемых ЭВМ.

1 Основные теоретические сведения

Программа PCLAB предназначена для исследования производительности х86 совместимых ЭВМ cIA32 архитектурой, работающих под управлением операционнойсистемы Windows (версий 95 и староведение) организации ЭВМ заключается впроведении ряда экспериментов, направленных на построение зависимостей времениобработки критических участков кода от изменяемых параметрабор реализуемых программой экспериментов позволяет исследовать особенности построения современных подсистем памяти ЭВМ и процессорных устройств, выявить конструктивные параметрыконкретных моделей ЭВМ.

Процесс сбора и анализа экспериментальных данных в РСLAВ основан на процедурепрофилировки критическоготке даизмерении времени его обработки центральнымпроцессорным устройством. При исследовании конвейерных суперскалярных процессорныхустройств, таких как 32-х разрядные процессоры фирмы Intel или AMD, способныхвыполнять переупорядоченную обработку последовательности команд программы, требуется использовать специальные средства измерения временных интервалов изапрещения переупорядочивания микрокоманд.

2 Эксперименты

Для исследования производительности был проведен ряд экспериментов, которые представлены ниже.

2.1 Задание 1

Цель эксперимента пределение способа трансляции физического адреса, используемого при обращении к динамической памяти.

Суть экспериментадля определения способа трансляции физического адреса при формировании сигналов выборки банка, выборки строки и столбца запоминающего массива применяется процедура замера времени обращения к динамической памяти по последовательным адресам с изменяющимся шагом чтения сравнения времен используется обращение к одинаковому количеству различных явеекоящих друг от друга на определенный шаг. Результат эксперимента представляется зависимостью времени (или количества тактов процессора), потраченного на чтение ячеек, от шага чтения.

Рис. 2.1: Исследования расслоения динамической памяти

2.2 Задание 2

Цель эксперимента: оценка влияния зависимости команд по данным на эффективность вычислений.

Суть эксперимента: для сравнения эффективности векторных и списковых структур в эксперименте применяется профилировка кода двух алгоритмов поиска минимального значе Первый алгоритм использует для хранения данных список, в то время как во втором применяется массив. Очевидно время работы алгоритма поиска минимального значения в списке зависит от его фрагмента приви, от среднего расстояния между элементами списка.

Рис. 2.2: Сравнение эффективности ссылочных и векторных структур

2.3 Задание 3

Цель эксперимента: выявление способов ускорения вычислений благодаря применению предвыборки данных.

Суть экспериментаэксперимент основан на замере времени двух вариантов подпрограмм последовательного чтения страниц оперативной

памятиВ первом варианте выполняется последовательное чтение без дополнительной оптимизации, что приводит к дополнительным двойным обращениямВо втором варианте перед циклом чтения страниц используется дополнительный цикл предвыборки, обеспечивающий своевременную загрузку информации в TLB данных.

Рис. 2.3: Исследование эффективности программной предвыборки

2.4 Задание 4

Цель эксперимента: исследование возможности ускорения вычислений благодаря использованию структур даюным изирующих механизм чтения оперативной памяти.

Суть эксперимента: для сравнения производительности алгоритмов, использующих оптимизированные и неоптимизированные структуры данных используется профилировка кода двух подпрограмм, каждая из которых должна выполнить обработку нескольких блоков оперативной памяти. В алгоритмах обрабатываются двойные слова данных (4 быйта), существенно меньше размера пакета (32-128 быйт) имизированный вариант структуры данных представляет собой несколько массивов в оперативной памяти, в то время как оптимизированная структура состоит из

чередующихся данных каждого массива.

Рис. 2.4: Исследование способов эффективного чтения оперативной памяти

2.5 Задание 5

Цель эксперимента: исследование влияния конфликтов кэш-памяти на эффективность вычислений.

Суть эксперимента: для определения степени влияния конфликтов в кэшпамяти на эффективность вычислений используется профилировка двух процедур чтения и обработки даннервая процедура построена таким образом, что чтение данных выполняется с шагом, кратным размеру банка. Это порождает постоянные конфликты в кэш-памяти. Вторая процедура оптимизирует размещение данных в кэш с помощью задания смещения востребованных данных на некоторый шаг, достаточный для выбора другого набора. Этот шаг соответствует размеру линейки.

Рис. 2.5: Исследование конфликтов в кэш-памяти

2.6 Задание 6

Цель эксперимента: исследование способов эффективного использования памяти и выявление наиболее эффективных алгоритмов сортировки, применимых в вычислительных системах.

Суть эксперимента: эксперимент основан на замере времени трех вариантов алгоритмов сортировки (Quick Sort, Radix-Counting Sort, оптимизированный Radix-Counting Sort).

Рис. 2.6: Сравнение алгоритмов сортировки

Заключение

В ходе выполнения данной лабораторной работы были освоены принципы эффективного использования подсистемы памяти современных универсальных ЭВМ, обеспечивающей хранение и своевременную выдачу команд и данных в центральное процессорное устройство.