CS420

Introduction to the Theory of Computation

Lecture 8: Context-free grammars

Tiago Cogumbreiro

Attendance code: 5094

estalee.com

Last day to submit a grade of NA

Today we will learn...

- Accepting a string with a CFG
- Chomsky Normal Form
- Exercises
- Study closure under ∩
- Study closure under ·
- Study closure under *
- Converting a DFA into a CFG

Section 2.1

- Lecture notes by Prof. Sariel Har-Peled and Prof. Madhusudan Parthasarathy: <u>courses.engr.illinois.edu/cs373/sp2009/lectures/lect_12.pdf</u>
- Slides by Prof. Laura Kallmeyer: <u>user.phil-fak.uni-duesseldorf.de/~kallmeyer/Parsing/cyk.pdf</u>

Accepting a string with CFGs

Accepting a string with CFGs

CYK Algorithm

- Independently proposed by Cocke, Kasami and Younger in the 60s.
- Expects a normalized grammar
- Today we learn how to normalize a grammar so that a CYK can test acceptance
- The algorithm CYK is outside the scope of the course

Cocke and Schwartz (1970); Grune and Jacobs (2008); Hopcro and Ullman (1979, 1994); Kasami (1965); Younger (1967)

Chomsky Normal Form

Chomsky Normal Form (CNF)

Definition

Every production is in the form of $C \to XY$ or in the form of $C \to c$ where c is a single letter and X and Y are variables. Note the absence of productions yielding ϵ !

Why?

- Used in proofs and algorithms (such as in CYK)
- We will learn a series of steps that take a CFG and yields a CFG that is CNF

CNF algorithm

Let A, B, C, D be variables, c be terminals, and w, u, v are strings of variables/terminals.

- 1. **Add start:** Add A o B, where A is new and A is the initial rule of the given grammar.
- 2. **Remove** ϵ : For all $A \to \epsilon$: for every occurrence of A in $B \to wAu$, add $B \to wu$
- 3. **Remove unit:** Remove all rules $A \to B$. For every rule removed $A \to B$ add a rule $A \to u$ if $B \to u$ and $A \to u$ was not removed.
- 4. **Make binary:** While there are rules A o BCDw add A o BA' and A' o CDw where A' is new.

Step 1: add start rule

Step 1: add start rule

Add A o B, where A is new and A is the initial rule of the given grammar.

Before

$$S o ASA \mid aB \mid a$$

$$A o B \mid S \mid \epsilon$$

$$B o b\mid\epsilon$$

Step 1: add start rule

Add A o B, where A is new and A is the initial rule of the given grammar.

Before

$$S o ASA \mid aB \mid a$$

$$A o B \mid S \mid \epsilon$$

$$B o b\mid\epsilon$$

After

$$S_0 o S$$

$$A o B \mid S \mid \epsilon$$

$$B o b\mid\epsilon$$

$$S o ASA \mid aB \mid a$$

For all $A
ightarrow \epsilon$: for every occurrence of A in B
ightarrow wAu, add B
ightarrow wu Before

$$egin{aligned} S_0 &
ightarrow S \ S &
ightarrow ASA \mid aB \mid a \ A &
ightarrow B \mid S \mid oldsymbol{\epsilon} \ B &
ightarrow b \mid oldsymbol{\epsilon} \end{aligned}$$

Step 2: Remove ϵ

For all $A
ightarrow \epsilon$: for every occurrence of A in B
ightarrow wAu, add B
ightarrow wu

Before

$$S_0 o S$$

$$S o ASA \mid aB \mid a$$

$$A
ightarrow B \mid S \mid \epsilon$$

$$B o b\mid oldsymbol{\epsilon}$$

After

$$S_0 o S$$

$$S
ightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$A o B \mid S$$

We must remove update every right-hand occurrence of A and B

- ullet from $S o {f A}SA$, add S o SA; then, from S o SA, add S o S
- ullet from $S o AS{f A}$, add S o AS; then, from S o AS, add S o S (already there)
- ullet from S o aB, add S o a (already there)
- ullet from $A o {f B}$ we do not add $A o \epsilon$ because ϵ

Visually

Draw a directed graph

- the nodes are variables, and the body of each rule
- the arcs go from each variable to each body of the rule

$$egin{aligned} S_0 &
ightarrow S \ S &
ightarrow AS \mid ASA \mid S \mid SA \mid a \mid aB \ A &
ightarrow B \mid S \ B &
ightarrow b \end{aligned}$$

Visually

The resulting grammar: for each variable create a production to each reachable leaf.

$$S_0
ightarrow \underbrace{AS \mid ASA \mid SA \mid a \mid aB}_{S}$$

Visually

The resulting grammar: for each variable create a production to each reachable leaf.

$$S_0
ightarrow AS \mid ASA \mid SA \mid a \mid aB \ S
ightarrow AS \mid ASA \mid SA \mid a \mid aB \ A
ightarrow \ B
ightarrow$$

(Note that we omit the self loop S.)

Visually

B o

The resulting grammar: for each variable create a production to each reachable leaf.

$$S_0
ightarrow AS \mid ASA \mid SA \mid a \mid aB \ S
ightarrow AS \mid ASA \mid SA \mid a \mid aB \ A
ightarrow \underbrace{b}_B \mid \underbrace{AS \mid ASA \mid SA \mid a \mid aB}_S$$

Visually

The resulting grammar: for each variable create a production to each reachable leaf.

$$S_0
ightarrow AS \mid ASA \mid SA \mid a \mid aB$$
 $S
ightarrow AS \mid ASA \mid SA \mid a \mid aB$ $A
ightarrow b \mid AS \mid ASA \mid SA \mid a \mid aB$ $B
ightarrow b$

Step 3: remove unit transitions (formally)

Remove all rules A o B. For every rule removed A o B add a rule A o u if B o u and A o u was not removed. Let $G=(V,\Gamma,R,S)$. Formally, the set of rules can be defined as

$$R_{new} = ig(R \cup \{X
ightarrow w \mid X
ightarrow^* A \in \mathcal{U}^* \wedge A
ightarrow w \in R\}ig) - \mathcal{U}^*$$

Unit pairs

We define the unit pair relation as:

$$\mathcal{U} = \{A o B \mid A o B \in G\}$$

Reachable unit pairs

The **transitive closure** is defined as usual

$$rac{X
ightarrow^* \ Y \in \mathcal{U}^* }{X
ightarrow^* \ Z \in \mathcal{U}^*}$$

$$rac{X
ightarrow Y \in \mathcal{U}}{X
ightarrow^* \in \mathcal{U}^*}$$

Remove all rules $A \to B$. For every rule removed $A \to B$ add a rule $A \to u$ if $B \to u$ and $A \to u$ was not removed.

Before

$$egin{aligned} S_0 &
ightarrow oldsymbol{\underline{S}} \ S &
ightarrow AS \mid ASA \mid oldsymbol{\underline{S}} \mid SA \mid a \mid aB \ A &
ightarrow oldsymbol{\underline{B}} \mid oldsymbol{\underline{S}} \ B &
ightarrow b \end{aligned}$$

After

$$S_0
ightarrow \underbrace{AS \mid ASA \mid SA \mid a \mid aB}_{S}$$
 $S
ightarrow AS \mid ASA \mid SA \mid a \mid aB$
 $A
ightarrow \underbrace{b}_{B} \mid \underbrace{AS \mid ASA \mid SA \mid a \mid aB}_{S}$
 $B
ightarrow b$

Let A o B, A o S, S o S, and $S_0 o S$ be the removed set $\mathcal U$. Here, $\mathcal U^*=\mathcal U$. Add the productions of S to A and to S_0 . Add the productions of B to A.

Step 4: Make binary

Step 4: Make binary

We "break down" every rule with more than two variables/terminals. Next, we replace every terminal in rules that have two variables.

Before

$$egin{align} A
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \mid b \ B
ightarrow b \ S
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \ S_0
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \ B \end{array}$$

Step 4: Make binary

We "break down" every rule with more than two variables/terminals. Next, we replace every terminal in rules that have two variables.

Before

$$egin{align} A
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \mid b \ B
ightarrow b \ S
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \ S_0
ightarrow AS \mid ASA \mid SA \mid a \mid {\color{red} aB} \ B \end{array}$$

After

$$egin{aligned} A
ightarrow AS \mid AX_1 \mid SA \mid a \mid X_aB \mid b \ B
ightarrow b \ S
ightarrow AS \mid AX_2 \mid SA \mid a \mid X_aB \ S_0
ightarrow AS \mid AX_3 \mid SA \mid a \mid X_aB \ X_1
ightarrow SA \ X_2
ightarrow SA \ X_3
ightarrow SA \ X_3
ightarrow SA \ X_b
ightarrow b \end{aligned}$$

On unit transitions and transitivity

Example 2

What do you think is the resulting grammar?

On unit transitions and transitivity

Example 2 (S_0)

On unit transitions and transitivity

Example 2 (S_0)

On unit transitions and transitivity

Example 2 (S)

On unit transitions and transitivity

Example 2 (S)

On unit transitions and transitivity

Example 2 (A)

On unit transitions and transitivity

Example 2 (A)

On unit transitions and transitivity

Example 2 (B)

On unit transitions and transitivity

Example 2 (B)

We must take into consideration all possible paths via unit-edges.

On unit transitions with loops

Example 3

$$egin{aligned} S_0 &
ightarrow S \ S &
ightarrow A \mid bB \ A &
ightarrow B \mid a \ B &
ightarrow b \mid C \ C &
ightarrow abB \mid S \end{aligned}$$

What do you think is the resulting grammar?

On unit transitions with loops

Example 3 (S_0)

On unit transitions with loops

Example 3 (S_0)

More on removing unit transitions

On unit transitions with loops

Example 3 (C)

More on removing unit transitions

On unit transitions with loops

Example 3 (C)

Note that we musth handle loops. All variables in the loop have the same productions.

CYK Deductively

The accept algorithm for CFGs

CYK Deductively

$$egin{aligned} rac{w(i) = c \qquad A
ightarrow c}{A \in \mathrm{CYK}(i, 1)} \ & rac{A
ightarrow BC \quad B \in \mathrm{CYK}(i, l_1) \quad C \in \mathrm{CYK}(i + l_1, l_2)}{A \in \mathrm{CYK}(i, l_1 + l_2)} \ & rac{|w| = N \quad \mathrm{CYK}(1, N)
eq \emptyset}{G ext{ accepts } w} \end{aligned}$$

Formalization based on Laura Kallmeyer's slides.

Write a CFG whose language is $\{w \mid w \text{ is a palindrome}\}$. We say that string w is a palindrome if w = reverse(w). Let us use the alphabet $\{0,1\}$.

Write a CFG whose language is $\{w \mid w \text{ is a palindrome}\}$. We say that string w is a palindrome if w = reverse(w). Let us use the alphabet $\{0,1\}$.

Solution

$$S
ightarrow 0S0 \mid 1S1 \mid 1 \mid 0 \mid \epsilon$$

Write a CFG whose language is $\{w \mid w \text{ is a palindrome}\}$. We say that string w is a palindrome if w = reverse(w). Let us use the alphabet $\{0,1\}$.

Solution

$$S
ightarrow 0S0 \mid 1S1 \mid 1 \mid 0 \mid \epsilon$$

Exercise

What if our alphabet is $\{0, 1, 2, 3, 4, 5, 6\}$?

Write a CFG whose language is $\{w \mid w \text{ is a palindrome}\}$. We say that string w is a palindrome if w = reverse(w). Let us use the alphabet $\{0,1\}$.

Solution

$$S
ightarrow 0S0 \mid 1S1 \mid 1 \mid 0 \mid \epsilon$$

Exercise

What if our alphabet is $\{0, 1, 2, 3, 4, 5, 6\}$?

$$S
ightarrow 0S0 \mid 1S1 \mid 2S2 \mid 3S3 \mid 4S4 \mid 5S5 \mid 6S6 \mid A \mid \epsilon$$

$$A
ightarrow 0\mid 1\mid 2\mid 3\mid 4\mid 5\mid 6$$

(The rule S o ASA would not work because we would not be able to enforce both A's to be equal.)

The union operator

Grammar 1

A grammar that recognizes well-balanced brackets

$$B o \{B\} \mid \epsilon \mid BB$$

Grammar 2

A grammar that recognizes well-balanced parenthesis

$$P
ightarrow (P) \mid \epsilon \mid PP$$

Exercise:

Write a grammar that recognizes either well-balanced parenthesis or well-balanced brackets

Grammar 1

A grammar that recognizes well-balanced brackets

$$B o \{B\} \mid \epsilon \mid BB$$

Grammar 2

A grammar that recognizes well-balanced parenthesis

$$P
ightarrow (P) \mid \epsilon \mid PP$$

Exercise:

Write a grammar that recognizes either well-balanced parenthesis or well-balanced brackets

$$A o B\mid P$$

The union operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$ and $B=(V_B,\Sigma_B,R_B,S_B)$, how do we define $A\cup B$?

The union operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$ and $B=(V_B,\Sigma_B,R_B,S_B)$, how do we define $A\cup B$?

- 1. Let $V_A \cap V_B = \emptyset$
- 2. Let $S
 otin (V_A\cup V_B\cup \Sigma_A\cup \Sigma_B)$

3.
$$A \cup B = (V_A \cup V_B \cup \{S\}, \Sigma_A \cup \Sigma_B, R_A \cup R_B \cup \{S \rightarrow S_A, S \rightarrow S_B\}, S)$$

The union operator is closed under context-free languages!

The concat operator

Grammar 1

$$L(A) = \{0^n 1^n \mid n \ge 0\}$$

Grammar 2

$$L(B) = \{1^n 0^n \mid n \ge 0\}$$

Exercise 2:

Write a grammar that recognizes $\{0^m1^m1^n0^n\mid n\geq 0 \land m\geq 0\}$

Grammar 1

$$L(A) = \{0^n 1^n \mid n \ge 0\}$$

$$L(B) = \{1^n 0^n \mid n \ge 0\}$$

Exercise 2:

Write a grammar that recognizes $\{0^m1^m1^n0^n\mid n\geq 0 \land m\geq 0\}$

The concat operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$ and $B=(V_B,\Sigma_B,R_B,S_B)$, how do we define $A\cdot B$?

The concat operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$ and $B=(V_B,\Sigma_B,R_B,S_B)$, how do we define $A\cdot B$?

- 1. Let $V_A \cap V_B = \emptyset$
- 2. Let $S
 otin (V_A \cup V_B \cup \Sigma_A \cup \Sigma_B)$

3.
$$A \cdot B = (V_A \cup V_B \cup \{S\}, \Sigma_A \cup \Sigma_B, R_A \cup R_B \cup \{S \rightarrow S_A S_B\}, S)$$

The concat operator is closed under context-free languages!

The star operator

$$A o \{A\} \mid \epsilon$$

How would we represent A^* ?

$$A o \{A\} \mid \epsilon$$

How would we represent A^* ?

$$S o AS \mid \epsilon$$

The star operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$, how do we define A^\star ?

The star operator

Let $A=(V_A,\Sigma_A,R_A,S_A)$, how do we define A^\star ?

- 1. Let $S
 otin (V_A\cup \Sigma_A)$
- 2. $A^\star = (V_A \cup \{S\}, \Sigma_A, R_A \cup \{S \to S_A S, S \to \epsilon\}, S)$

The star operator is closed under context-free languages!

Convert a DFA into a CFG

Convert a DFA into a CFG


```
def dfa_to_cfg(dfa):
  nodes, edges = dfa.as_graph()
  variables = set()
  terminals = set()
  rules = []
  start = dfa.start_state
  for q in dfa.end_states:
    rules.append(Rule(q, []))
  for ((src,dst), elems) in edges.items():
    variables.add(src)
    variables.add(dst)
    for char in elems:
      terminals.add(char)
      rules.append(Rule(src, [char, dst]))
  return CFG(variables, terminals, rules, start)
```

- 1. States are variables
- 2. Each edge $Q \stackrel{a}{\longrightarrow} Q'$ yields a rule $Q \to aQ'$
- 3. Each final state Q yields a rule $Q
 ightarrow \epsilon$

Given the following NFA, write an equivalent CFG

Given the following NFA, write an equivalent CFG

Solution

$$egin{aligned} S_1 &
ightarrow 1S_2 \mid 0S_1 \ S_2 &
ightarrow \epsilon \mid 1S_2 \mid 0S_3 \ S_3 &
ightarrow 1S_2 \mid 0S_2 \end{aligned}$$