الدورة الإستثناعية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

ارشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات 0 - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالقزام بترتيب المسائل الوارد في المسابقة) 0

I- (2 points) Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Écrire le numéro de chaque question et donner, en justifiant, la réponse qui lui correspond.

Nº	Questions	Réponses		
		a	b	c
1	Soit f la fonction définie sur $IR - \{0\}$ par $f(x) = \frac{1}{x}$ et g la fonction définie sur $IR - \{1\}$ par $g(x) = \frac{x}{x-1}$. Le domaine de définition de $g \circ f$ est :	<i>IR</i> – {0}	IR - {1}	IR - {0;1}
2		p ∧(¬ q)	(¬p) ∧(¬q)	$(q p) \Rightarrow (q p)$
3	A, M et N sont trois points distincts d'affixes respectives i, z_1 et z_2 . Si $z_2 = iz_1 + 1 + i$, alors le triangle AMN est:	équilatéral	demi- équilatéral	rectangle isocèle
4	Avec 10 points distincts situés sur un cercle on peut déterminer :	720 triangles	120 triangles	150 triangles
5	La fonction f définie sur]0;1] par $f(x) = \sqrt{\frac{1-x}{x}}, \text{ admet une fonction}$ réciproque g définie par :	$g(x) = \sqrt{\frac{x}{1-x}}$	$g(x) = \frac{1}{x^2 - 1}$	$g(x) = \frac{1}{x^2 + 1}$
6	Si $z = -2\left(\sin\left(\frac{\pi}{3}\right) + i\cos\left(\frac{\pi}{3}\right)\right)$, alors $\arg\left(\bar{z}\right) =$	$-\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère le point A(-1; 1; 0), le plan (P) d'équation x - 2y + 2z - 6 = 0 et la droite (D)

définie par le système x = 2m - 3 ; y = 3m - 2 ; z = 2m - 2 (m est un paramètre réel).

- 1) a- Vérifier que A n'appartient pas à (P) et calculer la distance de A à (P).
 - b- Montrer que (D) passe par A et qu'elle est parallèle à (P).
- 2) a- Déterminer un système d'équations paramétriques de la droite (d) passant par A et perpendiculaire à (P).
 - b-Déterminer les coordonnées du point B intersection de (d) et (P).
 - c- Déterminer un système d'équations paramétriques de la droite (Δ_0) passant par B et parallèle à (D) et montrer que (Δ_0) est une droite du plan (P).
- 3) Soit (Δ) une droite du plan (P), distincte de (Δ_0) et passant par B.
 - a- Montrer que (Δ) et (D) ne sont pas coplanaires.
 - b- Montrer que (AB) est perpendiculaire à (Δ) et à (D).

III- (3 points)

Dans un plan orienté on donne un rectangle ABCD tel que :

$$(\overrightarrow{AB}; \overrightarrow{AD}) = \frac{\pi}{2} (\text{mod } 2\pi)$$
, $AB = 4$ et $AD = 3$.

Soit H le projeté orthogonal de A sur (BD) et h l'homothétie de centre H qui transforme D en B.

- 1) a- Déterminer l'image de la droite (AD) par h.
 - b- En déduire l'image E du point A par h . Placer E.
 - c- Construire le point F image de B par h et le point G image de C par h puis déterminer l'image du rectangle ABCD par h.
- 2) Soit S la similitude directe qui transforme A en B et D en A.
 - a- Déterminer un angle de S.
 - b- Déterminer l'image de la droite (AH) par S et l'image de la droite (BD) par S.
 - c- En déduire que H est le centre de S.
- 3) Montrer que S(B) = E et en déduire que $S \circ S(A) = h(A)$.
- 4) Montrer que $S \circ S = h$.

IV- (3 points)

Une urne contient **trois** boules blanches et **deux** boules noires.

Un joueur tire successivement et au hasard trois boules de l'urne en respectant la règle suivante:

Pour chaque tirage : si la boule tirée est noire, il la remet dans l'urne ;

si elle est blanche, il ne la remet pas dans l'urne.

- 1) a- Calculer la probabilité de tirer dans l'ordre : une boule noire, une boule noire et une boule blanche.
 - b-Montrer que la probabilité qu'il y ait une seule boule blanche parmi les trois boules tirées

est égale à
$$\frac{183}{500}$$
.

2) Lors du tirage des trois boules, le joueur marque trois points pour chaque boule blanche tirée et marque deux points pour chaque boule noire tirée.

On désigne par X la variable aléatoire égale à la somme des points marqués par le joueur.

- a- Montrer que les valeurs possibles de X sont : 6, 7, 8 et 9.
- b- Déterminer la loi de probabilité de X et calculer son espérance mathématique.
- 3) Le joueur tire maintenant **successivement** et **au hasard** n boules de l'urne (n > 3) en respectant la même règle.
 - a- Calculer, en fonction de n, la probabilité de l'événement : « le joueur tire n boules noires ».
 - b- Calculer, en fonction de n, la probabilité P_n de l'événement :
 - « le joueur tire au moins une boule blanche ».
 - c-Quel est le nombre minimal de boules que le joueur doit tirer pour que $P_n \ge 0.99$?

V- (3 points)

Dans un plan, on donne deux droites parallèles (d) et (Δ) distantes de 5 cm et un point A situé entre (d) et (Δ) à une distance de 3 cm de (Δ).

M est un point variable du plan et H son projeté orthogonal sur (Δ) .

 Montrer que si MA + MH = 5 cm, alors M se déplace sur une parabole (S) de foyer A.

Dans ce qui suit, le plan est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j})$ tel que A(1; 0).

3) Soit E un point de (S) d'ordonnée a telle que $a \neq 0$.

Montrer que $4x - 2ay + a^2 = 0$ est une équation de la tangente (d_1) à (S) en E.

- 4) Soit G un point de (S) d'ordonnée b tel que $\hat{EOG} = 90^{\circ}$.
 - a- Montrer que ab = -16.
 - b- La tangente (d_2) à (S) en G coupe (d_1) en un point L.

Montrer que , lorsque E et G varient sur (S) tels que $E\hat{O}G = 90^{\circ}$, le point L décrit une droite que l'on déterminera.

VI- (7 points)

A-

On considère la fonction f définie sur IR par $f(x) = e^{2x} - 4e^x + 3$.

On désigne par (C) sa courbe représentative dans un repère orthonormé (O; \vec{i} , \vec{j}).

- 1) a- Déterminer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - b- Résoudre l'équation f(x) = 0.
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Montrer que O est un point d'inflexion de (C).
- 4) Ecrire une équation de la tangente (T) en O à (C).
- 5) Soit h la fonction définie sur IR par h(x) = f(x) + 2x.
 - a- Montrer que $h'(x) \ge 0$ pour tout réel x.
 - b- En déduire, suivant les valeurs de x, la position relative de (C) et (T).
- 6) Tracer (T) et (C).
- 7) Calculer l'aire du domaine limité par (C), l'axe des abscisses et les deux droites d'équations: x = 0 et $x = \ln 3$.
- 8) a- Montrer que f admet, sur $[\ln 2; +\infty[$, une fonction réciproque f^{-1} .
 - b- Montrer que l'équation $f(x) = f^{-1}(x)$ admet une solution unique α et vérifier que $1,2 < \alpha < 1,3$.

B-

Soit g la fonction donnée par $g(x) = \ln[f(x)]$.

On désigne par (Γ) sa courbe représentative dans un repère orthonormé.

- 1) Justifier que le domaine de définition de g est $]-\infty;0[\,\cup\,]\ln 3;+\infty[\,.$
- 2) Déterminer $\lim_{x \to -\infty} g(x)$. Déduire une asymptote (D) à (Γ).
- 3) Montrer que la droite (d) d'équation y = 2x est une asymptote à (Γ) en $+\infty$.
- 4) Déterminer les coordonnées des points d'intersection de (Γ) avec (d) et (D).
- 5) Dresser le tableau de variations de g.
- 6) Tracer (Γ) .

الدورة الإستثنائية للعام 2009	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
	مسابقة في مادة الرياضيات	مشروع معيار التصحيح

QI	Corrigé		Note
1	Corrigé $g \circ f(x) = \frac{1}{1-x}, x \in IR - \{0\} \text{ et } f(x) \neq 1. \text{ donc le domaine de définition de } g \circ f \text{ est}$ $IR - \{0;1\}.$		0.5
	$IR - \{0;1\}$.	(c)	
	$p \Rightarrow q \text{ est } \neg p \lor q \text{ donc } \neg (p \Rightarrow q) \text{ est \'equivalente \`a } p \land (\neg q).$	(a)	0.5
3	$\begin{split} \frac{z_{\overrightarrow{AN}}}{z_{\overrightarrow{AM}}} &= \frac{z_2 - i}{z_1 - i} = \frac{iz_1 + 1 + i - i}{z_1 - i} = \frac{i\left(z_1 - i\right)}{z_1 - i} = i \\ \text{Donc } AM &= AN \text{et} \left(\overrightarrow{AM}; \overrightarrow{AN}\right) = \frac{\pi}{2} \big(2\pi\big), \text{le triangle AMN est rectangle isocèle en } A . \end{split}$	(c)	1
4	Avec 10 points distincts situés sur un cercle on peut déterminer $C_{10}^3 = 120$ triangles.	(b)	0.5
5	$y = \sqrt{\frac{1-x}{x}}$ donne $y^2 = \frac{1-x}{x}$ par suite $x = \frac{1}{y^2 + 1}$, donc $g(x) = \frac{1}{x^2 + 1}$.	(c)	1
6	$\overline{z} = -2\left(\sin\left(\frac{\pi}{3}\right) - i\cos\left(\frac{\pi}{3}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), \arg\left(\overline{z}\right) = \frac{5\pi}{6}.$	(b)	0.5

QII	Corrigé	Note
1a	$-1-2-6=-9 \neq 0, A \text{ n'appartient pas à } (P) ; d(A; (P))=3$.	0.5
	A est le point de (D) correspondant à $m=1$; $(D) \cap (P) = \phi$.	0.5
1b	ou $\vec{n}(1; -2; 2) \perp (P), \vec{u}(2; 3; 2) //(D)$ et $\vec{n} \cdot \vec{u} = 0$.	0.5
2a	$\vec{n}(1;-2;2)$ est un vecteur directeur de (d) ; (d) : $x=t-1$; $y=-2t+1$; $z=2t$.	0.5
2b	$(d) \cap (P) = \{B(0; -1; 2)\}.$	0.5
	$\overrightarrow{u}(2;3;2)$ est un vecteur directeur de (Δ_0) ; (Δ_0) : $x = 2\lambda$; $y = 3\lambda - 1$; $z = 2\lambda + 2$.	0.5
2c	(D) est parallèle à (P) et (Δ_0) passe par le point B de (P) et est parallèle à (D) ;	0.5
	alors, (Δ_0) est une droite de (P) .	
	(Δ) n'est pas parallèle à (D)	
	car (Δ_0) est parallèle à (D) et $(\Delta) \neq (\Delta_0)$.	
	(Δ) et (D) ne sont pas sécantes	
	car (D) est parallèle à (P)	
	et (Δ) est une droite de (P) .	
3a	Donc (Δ) et (D) ne sont pas coplanaires.	
	(AB) est perpendiculaire à (P) en B ; alors (AB) est perpendiculaire à (Δ) et à (Δ_0) en B .	
3b	Or (Δ_0) est parallèle à (D) ; donc (AB) est perpendiculaire à (D) en A et à (Δ_0) en B .	0.5

QIII	Corrigé	Note
10	h(D) = B, donc l'image de la droite (AD) est la droite passant par B et parallèle à (AD) ,	0.5
l la	donc $h(AD) = (BC)$.	0.5

1b	$E \in (AH)$. $A \in (AD)$, donc $E \in (BC)$, par suite $\{E\} = (AH) \cap (BC)$.	0.5
1c	$F \in (BH)$. $B \in (AB)$, donc $F \in (d)$ passant par E et parallèle à (AB) , par suite $\{F\} = (BH) \cap (d)$. G est l'intersection de (HC) avec la parallèle menée de B à (DC).	
	L'image du rectangle $ABCD$ par h est le rectangle $EFGB$	1
2a	$\alpha = \left(\overrightarrow{AD}; \overrightarrow{BA}\right) = \frac{\pi}{2}(2\pi)$	0.5
2b	S(A) = B, donc l'image de la droite (AH) est la droite passant par B et perpendiculaire à (AH) , donc c'est (BD) . $S(D) = A$, donc l'image de la droite (BD) est la droite passant par A et perpendiculaire à (BD) , donc c'est (AH) .	1.5
2c	$\{H\} = (AH) \cap (BD)$, donc $\{S(H)\} = (BD) \cap (AH)$, donc $S(H) = H$ par suite H est le	
	centre de S .	0.5
	$B \in (BD)$, donc $S(B) \in (AH)$ et $S(AB) = (BC)$	
3	donc $S(B) = E$ intersection des deux droites (AH) et (BC) . $S \circ S(A) = S(S(A)) = S(B) = E = h(A)$.	1
4	SoS est une similitude de centre H et d'angle π , d'où SoS est une homothétie négative. Comme $S \circ S(A) = h(A)$, alors $SoS = h$,	0.5

QIV	Corrigé	Note
1a	$P_{r}(nnb) = \left(\frac{2}{5}\right)^{2} \times \frac{3}{5} = \frac{12}{125}$	0.5
1b	$P_{r}(bnn) + P_{r}(nbn) + P_{r}(nnb) = \frac{3}{5} \times \left(\frac{2}{4}\right)^{2} + \left(\frac{2}{5} \times \frac{3}{5} \times \frac{2}{4}\right) + \left(\frac{2}{5}\right)^{2} \times \frac{3}{5} = \frac{75 + 60 + 48}{500} = \frac{183}{500}$	1
2a	Dans trois tirages successifs, on obtient : 3 noires ou 1 blanche et 2 noires ou 2 blanches et 1 noire ou 3 blanches,parsuite les valeurs possibles de X sont : 6;7;8 et 9.	0.5
	$P_r(X=6)=P_r(0boule blanche)=P_r(nnn)=\left(\frac{2}{5}\right)^3=\frac{8}{125}$	
	$P_r(X=7)=P_r(1\text{boule blanche})=P_r(F)=\frac{183}{500}$; $P_r(X=8)=P_r(2\text{boules blanches})$	
2b	$= P_r(bbn) + P_r(bnb) + P_r(nbb) = \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} + \frac{3}{5} \times \left(\frac{2}{4}\right)^2 + \frac{2}{5} \times \frac{3}{5} \times \frac{2}{4} = \frac{235}{500}$	2
	$P_r(X=9)=P_r(3\text{boules blanches})=\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} = \frac{1}{10}$	

	$E(X) = \frac{6 \times 32 + 7 \times 183 + 8 \times 235 + 9 \times 50}{500} = 7,606$	
3a	P_r (n boules noires en n triages)= $\left(\frac{2}{5}\right)^n$	0.5
3b	P_r (au moins une boule blanche)=1- $\left(\frac{2}{5}\right)^n$ = P_n	1
3c	$\left P_{n} \ge 0.99 \iff 1 - \left(\frac{2}{5}\right)^{n} \ge 0.99 \iff \left(\frac{2}{5}\right)^{n} \le 0.01 \iff n \ge \frac{\ln(0.01)}{\ln(0.4)} \iff n \ge 5.026$	0.5
	Donc le nombre minimal des triages est 6.	

QV	Corrigé	Note
1	(MH) est perpendiculaire à (d) en K . $MA+MH=MK+MH=5$ alors $MA=MK=d(M+M)$ est la partie de la parabole (P) de foyer A et de directrice (d) située entre (d) et (Δ) .	1
2a	$A(1;0)$ et $(d): x = -1$ alors $(P): y^2 = 4x$.car l'origine est le sommet et $p = 2$.	1
2b		
3	$2yy'=4$; $y'=\frac{2}{y}$ d'où (d_1) : $y-a=\frac{2}{a}\left(x-\frac{a^2}{4}\right)$ alors (d_1) : $4x-2ay+a^2=0$	0.5
4a	$M(\frac{a^2}{4}; a)$ et $M(\frac{b^2}{4}; b)$. $\overrightarrow{OM} \cdot \overrightarrow{ON} = 0$ donne $ab = -16$.	1
4b	$(d_2): 4x - 2by + b^2 = 0. (d_1) \cap (d_2) = \left\{ L(-4; \frac{a+b}{2}) \right\} \text{ .Lorsque } M \text{ et } N \text{ varient}$ $\text{sur } (P), \ y_L \text{ décrit } IR. \ L \text{ se déplace sur la droite d'équation } x = -4.$	1.5

QVI	Corrigé	Note
A1a	$\lim_{x \to -\infty} f(x) = 3, \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[e^x \left(e^x - 4 \right) + 3 \right] = +\infty$ $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left[\frac{e^x}{x} \left(e^x - 4 \right) + \frac{3}{x} \right] = +\infty.$	1
A1b	$f(x) = 0$, $e^x = 1$ ou $e^x = 3$; $x = 0$ ou $x = \ln 3$	0.5
A2	$f'(x) = 2e^{x}(e^{x} - 2)$ $x - \infty \ln 2 + \infty$ $f'(x) - 0 + \cdots$ $f(x) = 3$	1

A3	$f''(x) = 4e^x(e^x - 1), \ f''(x) > 0 \text{ pour } x > 0, \ f''(x) < 0 \text{ pour } x < 0 \text{ et } f''(x) = 0 \text{ pour } x = 0,$ f(0) = 0.	1
A4	y-0=f'(0)(x-0)et $f'(0)=-2$, d'où $y=-2x$.	0.5
A5a	$h'(x) = f'(x) + 2 = 2(e^x - 1)^2$. $h'(x) \ge 0$ pour tout x.	1
A5b	h(x) = f(x) - (-2x), h est strictement croissante et $h(0) = 0$, $x > 0$, $h(x) > 0$ donc (C) est au-dessus de (T) . $x < 0$, $h(x) < 0$ donc (C) est au-dessous de (T) . (C) et (T) se coupent en (C) .	1
A6	$y = 3$ est une asymptote en $-\infty$ et y 'y est une direction asymptotique en $+\infty$	1.5
A7	$S = \int_{0}^{\ln 3} -f(x)dx = \left[-\frac{1}{2}e^{2x} + 4e^{x} - 3x \right]_{0}^{\ln 3} = (4 - 3\ln 3) \text{ unit\'es d'aire.}$	1
A8a	f est continue et strictement croissante sur $[\ln 2; +\infty[, f \text{ admet une fonction réciproque } f^{-1}]$.	0.5
A8b	Les courbes des deux fonctions f et f^{-1} se coupent sur la droite d'équation $y = x$. La droite d'équation $y = x$ coupe (C) en un seul point d'abscisse α . Soit $\psi(x) = f(x) - x$, $\psi(1,2) \approx -0.4$, $\psi(1,3) \approx 0.4$ donc $\alpha \in]1,2;1,3[$.	1
B1	$f(x) > 0$ pour $x < 0$ ou $x > \ln 3$ donc le domaine de définition de g est $-\infty; 0$ $-\infty; 0$ $-\infty; 0$	0.5
B2	$\lim_{x \to -\infty} g(x) = \ln 3 \text{ donc y=} \ln 3 \text{ est une asymptote horizontale à}(\Gamma).$	0.5
В3	$\lim_{x \to +\infty} g(x) - 2x = \lim_{x \to +\infty} \ln\left(e^{2x} - 4e^{x} + 3\right) - \ln e^{2x} = \lim_{x \to +\infty} \ln\left(1 - 4e^{-x} + 3e^{-2x}\right) = 0.$ $g(x) = \ln 3 \text{ donne } e^{2x} - 4e^{x} = 0, \ x = \ln 4, \ I(\ln 4; \ln 3).$	0.5
B4	$g(x) = \ln 3$ donne $e^{2x} - 4e^x = 0$, $x = \ln 4$, $I(\ln 4; \ln 3)$. $g(x) = 2x$ donne $-4e^x + 3 = 0$, $J(\ln \frac{3}{4}; 2\ln \frac{3}{4})$.	0.5
В5	$\frac{x}{g'(x)} = \infty \qquad \lim_{x \to \infty} \frac{1 + \infty}{x}$ $g(x) = \lim_{x \to \infty} \frac{1 + \infty}{x}$	1
В6	2 / (Γ) -4 -2 J 0 2	1