Linear Model Selection and Regularization

Dr. Lan Du

Faculty of Information Technology, Monash University, Australia

FIT5149 week 6

Outline

- Subset Selection Methods
 - Best Subset Selection
 - Stepwise Selection
- Shrinkage Methods
 - Ridge regression
 - The Lasso
 - Elastic net
 - Group Lasso
- Summary

Improve linear model fitting procedure

Recall the linear model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

- The linear model has distinct advantages in terms of its interpretability and often shows good predictive performance, while the assumptions are satisfied.
- Improve the simple linear model:
 - replace ordinary least squares fitting with some alternative fitting procedures.
- Yield better prediction accuracy and model interpretability

Why consider alternatives to least squares?

- Prediction Accuracy: especially when p > n, to control the variance.
 - ▶ If the true linear relationship between the Y and X \Rightarrow low bias
 - ▶ If $n \gg p \Rightarrow$ low variance
 - ▶ If $n \approx p \Rightarrow$ high variance & overfitting & poor prediction
 - ▶ if n infinite variance & no unique OLS coefficient estimate
- Model Interpretability:
 - ▶ When we have a large number of variables *X*, there will generally be some or many that are not associated with the response *Y*.
 - Including irrelevant variables leads to unnecessary complexity in the model
 - ▶ Removing irrelevant variables by setting their coefficient to 0 increases the interpretability of the resulting model.
- Solution: feature (variable) selection.

Three classes of selection methods

- Subsect Selection: Identifying a subset of all *p* predictors *X* that we believe to be related to the response *Y*, and then fitting the model least squares on the reduced set of variables.
 - Best subset selection
 - ► Forward/Backward stepwise selection
 - Hybrid selection
- Shrinkage, also known as regularisation
 - The estimated coefficients are shrunken towards zero relative to the least squares estimates.
 - ► The shrinkage has the effect of reducing variance.
 - ► The shrinkage can also perform variable selection.
 - Ridge regression: L2 regularisation
 - The Lasso: L1 regularisation
 - Elastic Net: the mixture of L1 and L2
 - Group Lasso
- Dimension Reduction: Involves projecting all p predictors into an M-dimensional space where M < p, and then fitting regression model.
 - e.g., Principle Component Analysis

Outline

- Subset Selection Methods
 - Best Subset Selection
 - Stepwise Selection
- Shrinkage Methods
- Summary

Best Subset Selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

7/38 FIT5149

Example: Credit data set

For each possible model containing a subset of the ten predictors in the Credit data set, the RSS and R^2 are displayed. The red frontier tracks the best model for a given number of predictors, according to RSS and R^2 . Though the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one of the variables is categorical and takes on three values, leading to the creation of two dummy variables

More on Best Subset Selection

- It apply to other types of models, such as logistic regression.
 - ▶ The deviance negative two times the maximized log-likelihood plays the role of RSS for a broader class of models.
- For computational reasons, best subset selection cannot be applied with very large p. Why not?
- Overfitting: when p is large, larger the search space, the higher the chance
 of finding models with a low training error, which by no means guarantees a
 low test error.
- Stepwise methods: which explore a far more restricted set of models, are attractive alternatives to best subset selection.

(Monash) FIT5149 9 / 38

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathcal{M}_{k+1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

10 / 38 FIT5149

More on Forward Stepwise Selection

- Computational advantage over best subset selection is clear.
 - ▶ Best subset selection: 2^p models
 - Forward stepwise selection: $1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2$
- It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.
 - Why not? Give an example.

More on Forward Stepwise Selection

- Computational advantage over best subset selection is clear.
 - ▶ Best subset selection: 2^p models
 - Forward stepwise selection: $1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2$
- It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.
 - Why not? Give an example.
 - **>** suppose that in a given data set with p = 3 predictors,
 - the best possible one-variable model contains X_1
 - the best possible two-variable model instead contains X_2 and X_3

Then forward stepwise selection will fail to select the best possible two-variable model, because M_1 will contain X_1 , so M_2 must also contain X_1 together with one additional variable.

More on Forward Stepwise Selection

- Computational advantage over best subset selection is clear.
 - ▶ Best subset selection: 2^p models
 - Forward stepwise selection: $1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2$
- It is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors.
 - Why not? Give an example.
 - ightharpoonup suppose that in a given data set with p=3 predictors,
 - the best possible one-variable model contains X_1
 - the best possible two-variable model instead contains X_2 and X_3

Then forward stepwise selection will fail to select the best possible two-variable model, because M_1 will contain X_1 , so M_2 must also contain X_1 together with one additional variable.

- Forward stepwise selection can be applied even in the high-dimensional setting where n < p.
 - ▶ Just construct submodels $M_0, ..., M_{n-1}$ only. Why?

(Monash) FIT5149 11 / 38

Compare best subset selection with forward selection

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income,	rating, income,
	student, limit	student, limit

TABLE 6.1. The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_n (AIC), BIC, or adjusted R^2 .

13 / 38 FIT5149

More on Backward Stepwise Selection

- Like forward stepwise selection, the backward selection approach searches through only 1 + p(p+1)/2 models, and so can be applied in settings where p is too large to apply best subset selection.
- Like forward stepwise selection, backward stepwise selection is not guaranteed to yield the best model containing a subset of the p predictors.
- Backward selection requires that the number of samples n is larger than the number of variables p (so that the full model can be fit).

(Monash) FIT5149 14/38

Choosing the Optimal Model

- RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.
 - ▶ The RSS of these p+1 models decreases monotonically, and the R^2 increases monotonically, as the number of features included in the models increases.
 - These quantities are related to the training error. Recall that training error is usually a poor estimate of test error.

We wish to choose a model with low test error, not a model with low training error.

• How to estimate test error?

(Monash) FIT5149 15 / 38

Choosing the Optimal Model

- RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.
 - ▶ The RSS of these p+1 models decreases monotonically, and the \mathbb{R}^2 increases monotonically, as the number of features included in the models increases.
 - ► These quantities are related to the training error. Recall that training error is usually a poor estimate of test error.

We wish to choose a model with low test error, not a model with low training error.

- How to estimate test error?
 - ▶ To estimate test error by making an adjustment to the training error to account for the bias due to overfitting.
 - ► To directly estimate the test error, using either a validation set approach or a cross-validation approach.

(Monash) FIT5149 15 / 38

Measures for selection the best model

- Other measures can be used to select among a set of models with different numbers of variables:
 - Mallow's C_p : $C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$
 - AIC (Akaike information criterion): $AIC = \frac{1}{n\hat{\sigma}_{1}^{2}}(RSS + 2d\hat{\sigma}^{2})$
 - ▶ BIC (Bayesian information criterion): $BIC = \frac{1}{n}(RSS + log(n)d\hat{\sigma}^2)$
 - Adjusted R^2 : Adjusted $R^2 = 1 \frac{RSS/(n-d-1)}{TSS/(n-1)}$
- These methods add penalty to RSS for the number of variables (i.e. complexity) in the model.

Example on the Credit data

- A small value of C_p and BIC indicates a low error, and thus a better model.
- A large value for the Adjusted R^2 indicates a better model.

(Monash) FIT5149 17 / 38

Validation and Cross-Validation

- We can compute the validation set error or the cross-validation error for each model under consideration, and then select the model for which the resulting estimated test error is smallest
- Advantage: it provides a direct estimate of the test error, and makes fewer assumptions about the true underlying model.

Outline

- Subset Selection Methods
- Shrinkage Methods
 - Ridge regression
 - The Lasso
 - Flastic net
 - Group Lasso
- Summary

Shrinkage Methods

Ridge regression and Lasso

- The subset selection methods use least squares to fit a linear model that contains a subset of the predictors.
- As an alternative, we can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero.
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance.

Ridge regression

• The Ordinary Least Squares (OLS) fitting procedure estimates $\beta_0, \beta_1, \dots, \beta_p$ using the values that minimize

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2$$

The ridge regression coefficient estimates are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \| \boldsymbol{\beta} \|_2^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where

- $\lambda \geq 0$ is a regularisation parameter (or tuning parameter).
- $\triangleright \lambda \parallel \beta \parallel_2^2$ is called a shrinkage penalty.

(Monash) FIT5149 21/38

What does the shrinkage penalty do?

Figure: The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2} / \|\hat{\beta}\|_{2}$

- The shrinkage penalty has the effect of shrinking the estimates of β_j towards zero.
 - $\lambda = 0$: ridge regression will produce the least squares estimates.
 - $\lambda \to \infty$: the ridge regression coefficient estimates will approach zero.

(Monash) FIT5149 22 / 38

What does the shrinkage penalty do?

Figure: The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2} / \|\hat{\beta}\|_{2}$

• The notation $\|\beta\|_2$ denotes the I_2 norm, $\|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$, which measures the distance of β from zero.

(Monash) FIT5149 22 / 38

Why does ridge regression improve over OLS?

Recall that MSE is a function of the variance plus the squared bias.

Figure: The Bias-Variance tradeoff with a simulated data set containing p=45 predictors and n=50 samples. It shows that as λ increases, the flexibility of the ridge regression fit decreases, leading to decreased variance but increased bias.

- Black: Squared bias
- Green: Variance
- Purple: the test mean squared error (MSE), a function of the variance plus the squared bias.
- Horizontal dash line: the minimum possible MSE.

More on ridge regression

- For $p \approx n$ and p > n.
 - OLS estimates are extremely variable
 - Ridge regression performs well by trading off a small increase in bias for a large decrease in variance.
- Computational advantages over best subset selection: for any fixed value of λ , ridge regression only fits a single model.

The Lasso

- One obvious disadvantage of Ridge regression:
 - ► The shrinkage penalty will never force any of the coefficient to be exactly zero.
 - ▶ The final model will include all variables, which makes it hard to interpret.
- The LASSO uses the \mathcal{L}_1 penalty to force some of the coefficient estimates to be exactly equal to zero, when the tuning parameter λ is sufficiently large.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \| \boldsymbol{\beta} \|_1 = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge regression:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \| \boldsymbol{\beta} \|_2^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

• The LASSO performs variable selection.

(Monash) FIT5149 25/38

What does the \mathcal{L}_1 penalty do?

Figure: The standardized lasso coefficients on the Credit data set.

- When λ becomes sufficiently large, the lasso gives the null model.
- In the right-hand panel: rating ⇒ rating + student + limit ⇒ rating + student + limit + income

(Monash) FIT5149 26 / 38

Comparing the Lasso and Ridge Regression

27 / 38

Figure: Plots of squared bias (black), variance (green), and test MSE (purple).

- Left plot: The lasso leads to qualitatively similar behavior to ridge regression.
- Right plot:
 - A plot against training R^2 can be used to compare models with different types of regularisation.
 - ► The minimum MSE of ridge regression is slightly smaller than that of the lasso
 - In the simulated dataset: all predicators were related to the response.

Comparing the Lasso and Ridge Regression

Figure: Plots of squared bias (black), variance (green), and test MSE (purple).

- In the above plots, the simulated data is generated in such a way that only 2 out of 45 predicators were related to the response.
- Conclusion: Neither ridge regression nor the lasso will universally dominate the other.

(Monash) FIT5149 28 / 38

Conlcusions

- We expect:
 - The lasso to perform better in a setting where a relatively small number of predictors have substantial coefficients.
 - ▶ Ridge regression will perform better when the response is a function of many predictors, all with coefficients of roughly equal size
- However, the number of predictors that is related to the response is never known a priori for real data sets.
 - Document classification: Given 10,000 words in a vocabulary, which words are related to document classes?
- Solution: cross validation!

Selecting the tuning parameter — 1

Figure: The choice of λ that results from performing leave- one-out cross-validation on the ridge regression fits from the Credit data set

- Select a grid of potential values, use cross validation to estimate the error rate on test data for each value of λ , and select the value that gives the least error rate
- Similar strategy applies to the Lasso.

(Monash) FIT5149 30 / 38

Selecting the tuning parameter — 2

Figure: Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data set. Right: The corresponding lasso coefficient estimates are displayed. The vertical dashed lines indicate the lasso fit for which the cross-validation error is smallest.

(Monash) FIT5149 31 / 38

Outline

- Subset Selection Methods
- Shrinkage Methods
 - Ridge regression
 - The Lasso
 - Elastic net
 - Group Lasso
- Summary

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \parallel \boldsymbol{\beta} \parallel_1$$

- Limitations of the lasso
 - ightharpoonup if p > n, the lasso selects at most n variables
 - Grouped variables: the lasso fails to do grouped selection.

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \left((1-\alpha) \frac{\|\boldsymbol{\beta}\|_2^2}{2} + \alpha \|\boldsymbol{\beta}\|_1 \right)$$

- The L_1 part of the penalty generates a sparse model.
- The quadratic part of the penalty
 - ▶ Removes the limitation on the number of selected variables:
 - Encourages grouping effect;
 - \triangleright Stabilizes the L_1 regularization path.
- Automatically include whole groups into the model if one variable amongst them is selected.

(Monash) FIT5149 34 / 38

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \left((1 - \alpha) \frac{\|\boldsymbol{\beta}\|_2^2}{2} + \alpha \|\boldsymbol{\beta}\|_1 \right)$$

2-dimensional illustration $\alpha = 0.5$

(Monash) FIT5149 34/38

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_j \right)^2 + \lambda \left((1-\alpha) \frac{\|\boldsymbol{\beta}\|_2^2}{2} + \alpha \|\boldsymbol{\beta}\|_1 \right)$$

- The elastic net performs simultaneous regularization and variable selection.
- Ability to perform grouped selection
- Appropriate for the p >> n problem

Elastic net example

A simple illustration: elastic net vs. lasso

 \bullet Two independent "hidden" factors $\mathbf{z_1}$ and $\mathbf{z_2}$

$$\mathbf{z}_1 \sim U(0, 20), \quad \mathbf{z}_2 \sim U(0, 20)$$

- Generate the response vector $\mathbf{y} = \mathbf{z}_1 + 0.1 \cdot \mathbf{z}_2 + N(0, 1)$
- Suppose only observe predictors

$$\mathbf{x}_1 = \mathbf{z}_1 + \epsilon_1, \quad \mathbf{x}_2 = -\mathbf{z}_1 + \epsilon_2, \quad \mathbf{x}_3 = \mathbf{z}_1 + \epsilon_3$$

 $\mathbf{x}_4 = \mathbf{z}_2 + \epsilon_4, \quad \mathbf{x}_5 = -\mathbf{z}_2 + \epsilon_5, \quad \mathbf{x}_6 = \mathbf{z}_2 + \epsilon_6$

- Fit the model on (\mathbf{X}, \mathbf{y})
- An "oracle" would identify $\mathbf{x}_1, \mathbf{x}_2$, and \mathbf{x}_3 (the \mathbf{z}_1 group) as the most important variables.

Figure: Slide from "Regularization and Variable Selection via the Elastic Net" by Zou and Hastie

(Monash) FIT5149 35 / 38

Elastic net example

Figure: Slide from "Regularization and Variable Selection via the Elastic Net" by Zou and Hastie

(Monash) FIT5149 35 / 38

Group Lasso

- Some advantages of group lasso
 - ▶ The information contained in the grouping structure is informative in learning.
 - Selecting important groups of variables gives models that are more sensible and interpretable
- Group Lasso formulation
 - We denote **X** as being composed of J groups \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3 , ..., \mathbf{X}_J with p_j denoting the size of group j; i.e., $\sum_i p_i = P$

$$\min_{\boldsymbol{\beta} \in \mathbf{R}^{P}} \left(\parallel \mathbf{y} - \sum_{j}^{L} \mathbf{X}_{j} \boldsymbol{\beta}_{j} \parallel_{2}^{2} + \lambda \sum_{l}^{L} \sqrt{p_{l}} \parallel \boldsymbol{\beta}_{l} \parallel_{2} \right)$$

- ► Group lasso acts like the lasso at the group level.
- ► Group lasso does not yield sparsity within a group.

(Monash) FIT5149 36 / 38

Sparse Group Lasso

- Sparse Group Lasso formulation
 - We denote **X** as being composed of *J* groups \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3 , ..., \mathbf{X}_J with p_j denoting the size of group *j*; i.e., $\sum_i p_j = P$

$$\min_{\boldsymbol{\beta} \in \mathsf{R}^{P}} \left(\| \mathbf{y} - \sum_{j}^{L} \mathbf{X}_{j} \boldsymbol{\beta}_{j} \|_{2}^{2} + \lambda_{1} \sum_{l}^{L} \sqrt{p_{l}} \| \boldsymbol{\beta}_{l} \|_{2} + \lambda_{2} \| \boldsymbol{\beta} \|_{1} \right)$$

Sparse Group lasso yields sparsity at both the group and individual feature levels.

(Monash) FIT5149 37 / 38

Summary

- Model selection methods are an essential tool for data analysis, especially for big datasets involving many predictors.
- Reading materials:
 - "Linear Model Selection and Regularization", Chapter 6 of "Introduction to Statistical Learning", 6th edition
 - Section 6.1 "Subset Selection"
 - Section 6.2 "Shrinkage Methods"
- References:
 - ► Figures in this presentation were taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani
 - Some of the slides are reproduced based on the slides from T. Hastie and R. Tibshirani