Class 5: Intermittency

Physics of Turbulence

Test of K41 universality

Ocean

 $k\eta$

Breaking of K41 universality

K41 appears broken in the dissipating range!

Part II: How to measure these singularities? Multifractal theory

Multi-fractal theory

Heuristic interpretation of Parisi&Frisch (1985)

Replace a homogeneous fractal by a »multifractal »

$$\delta u = u(x+\ell) - u(x) = a(x)\ell^{1/3}$$

$$\delta u \sim \ell^{h(x)}$$

over a fractal set of C(h)Codimension
Remark If this is true, necessarily nested structure

Cheskidov&Shvydkoy, 2022

Probabilistic interpretation, using large deviations

Prob
$$[\ln(\delta u) = h \ln(\ell/L)] \sim_{\ell \to 0} e^{\ln(\ell/L)C(h)} = \left(\frac{\ell}{L}\right)^{C(h)},$$

C(h): large deviation function of h

Expressing turbulent laws with C(h)

4/3 law

$$\langle (\delta u)^3 \rangle = \frac{4}{3} \epsilon \ell \sim \ell^{\zeta(3)}$$

Exponent Velocity Structure Functions:

$$\zeta(p) = \min_h(ph + C(h))$$

Parisi&Frisch, 1985

10⁻¹ 10⁻² 10⁻² 10⁻² 10⁻¹ 10

Mean energy dissipation:

$$\langle \epsilon \rangle \sim Re^{-\xi}$$

$$\xi = \min_{h} \left(\frac{3h - 1 + C(h)}{1 + h} \right)$$

Boffetta et al, 2008 Nelkin, 1990 Benzi et al, 1991

Constraints on C(h)

10²

 ℓ/η

10¹

10°

10³

$$C(h) \ge 1 - 3h$$

Benzi &Biferale, 2009

Legendre Property

Parisi&Frisch, 1985

C is convex

Mean energy dissipation: Boffetta et al, 2008

$$C(h) \ge 1 - 3h$$

Observational constraint on C(h)

Iyer, Sreenivasan&Yeung, 2020

Can be fitted by log-Poisson or log-normal

Non periodic bc

Faller et al, 2021

Can we say more about C(h)?

Mathematical constraints using NSE

NSE on a torus (Foias, etc)

Gibbon's theorem for weak solutions of $(\nu^{-1} \|\nabla^n u\|_{2m})^{1/\alpha_{n,m}})$

$$\alpha_{n,m} = \frac{2m}{2m(n+1) - 3}$$

Impossibility to reach h=-1 for periodic boundary conditions (Dubrulle&Gibbon, 2022)

Log-Poisson

$$\begin{split} C(h) &= \frac{h - h_0}{\ln \beta} \\ &+ h_- \left[1 - (h - h_0)/h_- \right] \ln \left[1 - (h - h_0)/h_- \right]; \end{split}$$

Log-normal

$$C(h) = \frac{(h - h_0)^2}{2(h_0 - \zeta(1))}$$

Dissipative vs non-dissipative (Onsager)

C(h): large deviation function of h

The new world beyond Kolmogorov scale

To observe these structures necessity to go at very large resolution!!!

-> Challenge for DNS and experiments!