Single and multiscale entropy - Regularity and complexity of human movement

Peter C. Raffalt, PhD raffalt@nexs.ku.dk

Department of Nutrition, Exercise and Sports University of Copenhagen

Content

- Relative input parameter consistency
- Discrete vs. continuous data
- m vector length
- r tolerance limit
- N number of data points
- Recommended reading

Sample entropy – relative input parameter consistency

- Many (if not all) nonlinear mathematical tools have input parameters.
- Changing the input parameters affects the outcome of the calculation.
- Any observed biological phenomenon should remain the same when changing input parameters (within a range) to be considered valid.
 - Differences between tasks
 - Differences between groups
 - Differences before/after intervention

Always test and report the relative input parameter consistency of your data!

For sample entropy: m, r and N

Three studies:

- Yentes et al. 2012 (discrete data)
 - Treadmill walking of young adults for 3 minutes.
 - Motion capture quantified step time, step width and step length.
 - Comparisons of ApEn and SaEn with different input parameters.
- Yentes et al. 2018 (discrete data)
 - Overground and treadmill walking in young adults for one hour.
 - Step time quantified using heel switches.
 - Comparisons of ApEn and SaEn with different input parameters.
- Raffalt et al. 2023 (continuous data)
 - Isometric submaximal force in young adults for 180 seconds.
 - Investigate relative input parameter consistency of r, m, and N.

$$SaEn(m,r,N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

Discrete vs continuous data – N is the number of observations of a particular event e.g., strides/steps

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

 Discrete vs continuous data – N is the number of data points given by the observation time and the sampling frequency

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

 Discrete vs continuous data – N is the number of data points given by the observation time and the sampling frequency

$$SaEn(m, r, N) = -\ln \left[\frac{A^{m+1}(r)}{B^m(r)} \right]$$

- m is the vector length
- ApEn vs SaEn across different N (from 500 to 5000) with r=0.25 and m=2 or 3.

Gray: overground walking Black: treadmill walking

ApEn: diamond

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- m is the vector length
- SaEn across different r with m=2 and 3, sampling frequency=100Hz and observation time = 180s

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 100 to 200) and different r (from 0.05 to 0.3) and m=2.

$$SaEn(m, r, N) = -\ln \left[\frac{A^{m+1}(r)}{B^m(r)} \right]$$

R is the tolerance limit (r x SD)

ApEn vs SaEn across different N (from 100 to 200) and different r (from 0.05

to 0.3) and m=2.

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 100 to 200) and different r (from 0.05 to 0.3) and m=2.

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 100 to 200) and different r (from 0.05 to 0.3) and m=2.

 $SaEn(m,r,N) = -\ln\left[\frac{A^{m+1}}{B^{m}}\right]$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 500 to 5000)
- r=0.15 (A), r=0.2 (B), r=0.25 (C) and r = 0.3 (D)
- m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

 $SaEn(m,r,N) = -\ln \left[\frac{A^{m+1}}{D^{m}} \right]$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 500 to 5000)
- r=0.15 (A), r=0.2 (B), r=0.25 (C) and r = 0.3 (D)
- m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

 $SaEn(m, r, N) = -\ln \left[\frac{A^{m+1}(r)}{B^m(r)} \right]$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 500 to 5000)
- r=0.15 (A), **r=0.2** (B), r=0.25 (C) and r=0.3 (D)
- m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

17

Sample entropy – input parameter r

 $SaEn(m,r,N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 500 to 5000)
- r=0.15 (A), r=0.2 (B), **r=0.25** (C) and r=0.3 (D)
- m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

 $SaEn(m,r,N) = -\ln\left[\frac{A^{m+1}}{B^{m}}\right]$

- R is the tolerance limit (r x SD)
- ApEn vs SaEn across different N (from 500 to 5000)
- r=0.15 (A), r=0.2 (B), r=0.25 (C) and r = 0.3 (D)
- m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^{m}(r)}\right]$$

- R is the tolerance limit (r x SD)
- SaEn across different r with m=2 and 3, sampling frequency=100Hz and observation time = 180s

Raffalt et al. 2023

,

$$SaEn(m, r, N) = -\ln \left[\frac{A^{m+1}(r)}{B^m(r)} \right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 100 to 200), different rxSD and m=2

Filled symbols: young adults Open symbols: older adults

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 100 to 200), different rxSD and m=2

Filled symbols: young adults Open symbols: older adults

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 100 to 200), different rxSD and m=2

Filled symbols: young adults Open symbols: older adults

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 100 to 200), different rxSD and m=2

Filled symbols: young adults Open symbols: older adults

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 500 to 5000) for r=0.2xSD and m=2

Gray: overground walking Black: treadmill walking

ApEn: diamond

$$SaEn(m, r, N) = -\ln \left[\frac{A^{m+1}(r)}{B^m(r)} \right]$$

- When N is the number of walking steps
- ApEn vs SaEn across different N (from 500 to 5000) for $r = 0.25 \times SD$ and m = 2

Gray: overground walking Black: treadmill walking

ApEn: diamond

$$SaEn(m, r, N) = -\ln\left[\frac{A^{m+1}(r)}{B^m(r)}\right]$$

- When N is the length of the force time series
- SaEn across different N (from 500 to 18000) for r=0.2xSD, m=2 and sampling frequency = 100Hz

A: different from SaEn of 500 data points.

B: different from SaEn of 1500 data points

Sample entropy – input parameter N with discrete data

- N is the number of observations of a particular event e.g., strides/steps.
- The used N should provide relative input parameter consistency.
- Changing the sampling frequency affects the binning of vectors in SaEn calculation. McCamley et al. 2018
- A high sampling frequency enables accurate detection of events.
- To capture the temporal evolution of any given biological phenomenon through **discrete** data requires *sufficient observations* and *adequate* observation frequency for the detailed dynamics of the phenomenon to unfold.

Sample entropy – input parameter N with continuous data

- N is the number of data points.
- The used N should provide relative input parameter consistency.
- N = sampling time x sampling frequency.
- Choose sampling frequency based on:
 - A priori power spectral analysis
 - The neuromuscular system operates on a millisecond level
- To capture the temporal evolution of any given biological phenomenon through continuous data requires sufficient observation time and adequate observation frequency for the detailed dynamics of the phenomenon to unfold.

Methodological recommendations

Annals of Biomedical Engineering (© 2021) https://doi.org/10.1007/s10439-020-02616-8

Review

Entropy Analysis in Gait Research: Methodological Considerations and Recommendations

JENNIFER M. YENTES 1 and Peter C. RAFFALT^{2,3}

¹Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE 68182-0860, USA; ²Department of Physical Performance, Norwegian School of Sport Sciences, Sognsveien 220, 0806 Oslo, Norway; and ³Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark

(Received 12 February 2020; accepted 8 September 2020)

European Journal of Applied Physiology https://doi.org/10.1007/s00421-021-04684-7

LETTER TO THE EDITOR

Methodological considerations for a non-linear analysis of running in the heavy and severe intensity domains

Jennifer M. Yentes¹ · Peter C. Raffalt² · João R. Vaz³

Received: 7 March 2021 / Accepted: 8 April 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Frontiers in Physiology

TYPE Original Research
PUBLISHED 01 June 2023
DOI 10.3389/fphys.2023.1173702

Calculating sample entropy from isometric torque signals: methodological considerations and recommendations

Peter C. Raffalt^{1,2}, Jennifer M. Yentes³, Sandro R. Freitas⁴ and João R. Vaz⁵*

¹Department of Biology, University of Southern Denmark, Odense, Denmark, ²Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark, ³Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX, United States, ⁴Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal, ⁵Egas Moniz Center for Interdisciplinary Research (CiiEM), Eqas Moniz School of Health & Science, Caparica, Almada, Portugal

Time for some Matlab!

- Try to implement sample entropy calculation to different time series
- Investigate the effect of filtering
- Investigate relative parameter consistency
- Try to implement multiscale entropy
- Two scripts
- Five data sets