Hybrid1: A Local Search Algorithm That Switches Between Two Heuristics

Wanxia Wei¹ and Chu Min Li² and Harry Zhang¹

1 Local Search Algorithms $adaptG^2WSAT_P$ and VW

The local search algorithm $adaptG^2WSAT_P$ [3,4] flips the promising decreasing variable with the largest computed promising score if there are promising decreasing variables. It selects a variable to flip from a randomly chosen unsatisfied clause using heuristic $Novelty++_P$ [3,4] otherwise. This heuristic $Novelty++_P$ is described as follows.

Novelty++ $_P(p, dp)$: With probability dp (diversification probability), flip a variable in c whose flip can falsify the least recently satisfied clause. With probability 1 - dp, do as Novelty, but flip second if best is more recently flipped than second and if $pscore(second) \ge pscore(best)$.

The local search algorithm VW [6] introduces variable weighting. This algorithm initializes the weight of a variable x, $variable_weight[x]$, to 0 and updates and smoothes $variable_weight[x]$ each time x is flipped, using the following equation:

$$variable_weight[x] = (1 - s)(variable_weight[x] + 1) + s \times t$$
 (1)

Based on $adaptG^2WSAT_P$ and VW, we develop a new local search algorithm called Hybrid1, which can switch between $adaptG^2WSAT_P$ and VW, according to the evenness or non-evenness of the distribution of variable weights. Although several local search algorithms can switch between heuristics [1,5,2-4], none of the alternating or switching heuristics uses any weighting.

1.1 Algorithm Hybrid1

Assume that variable weights are updated using Equation 1. Assume that γ is an integer and that $\gamma > 1$. If the maximum variable weight is at least γ times as high as the average variable weight, the distribution of variable weights is considered *uneven*. Otherwise, the distribution of variable weights is considered *even*.

Hybrid1 is described in Fig. 1. This algorithm switches between two heuristics. When the distribution of variable weights is uneven, Hybrid1 chooses a variable to flip according to heuristic VW. Otherwise, it selects a variable to flip according to heuristic $adaptG^2WSAT_P$.

To distinguish these heuristics from the original algorithms $adaptG^2WSAT_P$ introduced in [3, 4] and VW introduced in [6], we call these heuristics heuristic $adaptG^2WSAT_P$ and heuristic

¹ Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada, E3B 5A3 {wanxia.wei,hzhang}@unb.ca

² LaRIA, Université de Picardie Jules Verne 33 Rue St. Leu, 80039 Amiens Cedex 01, France chu-min.li@u-picardie.fr

³ A freebie variable is a variable with a break of 0.

Algorithm: Hybrid1(SAT-formula \mathcal{F})

- 1: $A \leftarrow$ randomly generated truth assignment;
- 2: for each variable x do initialize $flip_time[x]$ and $variable_weight[x]$ to 0;
- 3: initialize p, wp, max_weight, and ave_weight to 0;
- 4: store promising decreasing variables in stack *DecVar*;
- 5: **for** *flip*=1 **to** *Maxsteps* **do**
- 6: **if** A satisfies \mathcal{F} then return A;
- 7: **if** $max_weight \ge \gamma \times ave_weight$
- 8: **then** $y \leftarrow$ heuristic VW(p);
- 9: **else** $y \leftarrow$ heuristic $adaptG^2WSAT_P(p, wp)$
- 10: $A \leftarrow A$ with y flipped; adapt p and dp;
- 11: update $flip_time[y]$, $variable_weight[y]$, max_weight , ave_weight , and DecVar;
- 12: return Solution not found;

Fig. 1. Algorithm Hybrid1

VW. In Hybrid1, heuristic $adaptG^2WSAT_P$ is improved in two ways, based on the preliminary $adaptG^2WSAT_P$ described in [3, 4]. The first improvement is that, when promising decreasing variables exist, heuristic $adaptG^2WSAT_P$ no longer computes the promising scores for the δ promising decreasing variables with higher scores, where δ is a parameter, but chooses the least recently flipped promising decreasing variable among all promising decreasing variables to flip. As a result, heuristic $adaptG^2WSAT_P$ no longer needs parameter δ . The second improvement is that, when there is no promising decreasing variable, heuristic $adaptG^2WSAT_P$ uses $Novelty+_P$ instead of $Novelty+_{+P}$ [3, 4], to select a variable to flip from a randomly chosen unsatisfied clause c. The difference between $Novelty+_P$ and $Novelty+_P$ is that, with wp (random walk probability), $Novelty+_P$ randomly chooses a variable to flip from c, but with dp (diversification probability), $Novelty+_P$ chooses a variable in c, whose flip will falsify the least recently satisfied clause. In Hybrid1, heuristic VW is the same as the algorithm VW described in [6].

2 Contest Implementation

For the SAT 2007 competition, parameter γ in Hybrid1 is set to 15.

References

- 1. E. A. Hirsch and A. Kojevnikov. UnitWalk: A New SAT Solver That Uses Local Search Guided by Unit Clause Elimination. *Ann. Math. Artif. Intell.*, 43(1):91–111, 2005.
- 2. C. M. Li and W. Q. Huang. Diversification and Determinism in Local Search for Satisfiability. In *Proceedings of SAT-2005*, pages 158–172. Springer, LNCS 3569, 2005.
- 3. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In *Proceedings of LSCS-2006*, pages 2–16, 2006.
- 4. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local Search for SAT. In F. Benhamou, N. Jussien, and B. O'Sullivan, editors, *Trends in Constraint Programming*, chapter 2. Hermes Science, 2007 (to appear).
- 5. X. Y. Li, M. F. M. Stallmann, and F. Brglez. A Local Search SAT Solver Using an Effective Switching Strategy and an Efficient Unit Propagation. In *Proceedings of SAT-2003*, pages 53–68. Springer, LNCS 2919, 2003.
- 6. S. Prestwich. Random Walk with Continuously Smoothed Variable Weights. In *Proceedings of SAT-2005*, pages 203–215. Springer, LNCS 3569, 2005.