Practical No 02

Data Wrangling II

- Create an "Academic performance" dataset of students and perform the following operations using Python.
- Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.
- · Reason and document your approach properly.

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import warnings
  warnings.filterwarnings("ignore")
```

```
In [2]: df = pd.read_excel('data_academic_performance.xlsx')
    df
```

Out [2]:

COD_S11	GENDER	EDU_FATHER	EDU_MOTHER	OCC_FATHER	OCC_MOTHER	STRATUM	SISBEN	PEOPL
---------	--------	------------	------------	------------	------------	---------	--------	-------

Т										
	0	SB11201210000129	F	Incomplete Professional Education	Complete technique or technology	Technical or professional level employee	Home	Stratum 4	It is not classified by the SISBEN	Three
	1	SB11201210000137	F	Complete Secundary	Complete professional education	Entrepreneur	Independent professional	Stratum 5	It is not classified by the SISBEN	Three
	2	SB11201210005154	М	Not sure	Not sure	Independent	Home	Stratum 2	Level 2	Five
	3	SB11201210007504	F	Not sure	Not sure	Other occupation	Independent	Stratum 2	It is not classified by the SISBEN	Three
	4	SB11201210007548	М	Complete professional education	Complete professional education	Executive	Home	Stratum 4	It is not classified by the SISBEN	One
								•••	•••	
,	12406								It is not	
		SB11201420568705	M	Ninguno	Complete Secundary	Other occupation	Auxiliary or Administrative	Stratum 2	classified by the SISBEN	Six
,	12407	SB11201420568705 SB11201420573045	M	Ninguno Complete professional education			,	Stratum 2 Stratum 2	by the	Six
	12407 12408			Complete professional	Secundary Complete	occupation	Administrative Other		by the SISBEN	
,		SB11201420573045	M M	Complete professional education Complete technique or	Complete Secundary Complete technique or	occupation Executive	Administrative Other occupation	Stratum 2	by the SISBEN Level 2	Five Five
	12408	SB11201420573045 SB11201420578809	M M	Complete professional education Complete technique or technology Complete professional	Complete Secundary Complete technique or technology Complete professional	occupation Executive Retired Independent	Administrative Other occupation Home	Stratum 2 Stratum 2	by the SISBEN Level 2 Level 2 It is not classified by the	Five

12411 rows × 45 columns

```
In [3]: df.head() # It's showing top 5 result
```

Technical or It is not	
O SB11201210000129 F Incomplete Professional Education Education February Technology Professional level Education February Technology Professional level Employee SISBEN	Three
1 SB11201210000137 F Complete Secundary Complete Professional Entrepreneur Professional Entrepreneur Professional Stratum 5 SISBEN	Three
2 SB11201210005154 M Not sure Not sure Independent Home Stratum 2 Level 2	Five
3 SB11201210007504 F Not sure Not sure Other occupation Independent Stratum 2 tl is not classified by the SISBEN	Three
Complete Complete 4 SB11201210007548 M professional professional education Executive Home Stratum 4 classified by the SISBEN	One

5 rows × 45 columns

In [4]: df.tail() # It's showing bottom 5 result

Out [4]:

COD_S11 GENDER EDU_FATHER EDU_MOTHER OCC_FATHER OCC_MOTHER STRATUM SISBEN PEOPL

12406	SB11201420568705	М	Ninguno	Complete Secundary	Other occupation	Auxiliary or Administrative	Stratum 2	It is not classified by the SISBEN	Six
12407	SB11201420573045	M	Complete professional education	Complete Secundary	Executive	Other occupation	Stratum 2	Level 2	Five
12408	SB11201420578809	M	Complete technique or technology	Complete technique or technology	Retired	Home	Stratum 2	Level 2	Five
12409	SB11201420578812	F	Complete professional education	Complete professional education	Independent professional	Small entrepreneur	Stratum 3	It is not classified by the SISBEN	Seven
12410	SB11201420583232	М	Complete Secundary	Complete primary	Independent	Home	Stratum 3	Level 1	Four

5 rows × 45 columns

1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.

In [5]: $\boxed{ {\sf df.isnull}(\,).{\sf sum}(\,) \; \# \; {\sf Caluclating} \; \; {\sf the} \; \; {\sf Null} \; \; {\sf values} }$

0

Out [5]: COD_S11 GENDER 0 EDU_FATHER EDU_MOTHER OCC_FATHER OCC_MOTHER STRATUM SISBEN 0 0 0 0 0 PEOPLE_HOUSE 0 Unnamed: 9
INTERNET 12411 TV COMPUTER WASHING_MCH MIC_OVEN CAR DVD FRESH PHONE MOBILE REVENUE JOB SCHOOL_NAME SCHOOL_NAT SCHOOL_TYPE MAT_S11 CC_S11

```
UNIVERSITY
         ACADEMIC_PROGRAM
         QR PRO
                                    0
         CR_PRO
         CC_PRO
ENG_PRO
                                   0
                                   0
         WC_PRO
         FEP_PRO
                                    0
         G_SC
PERCENTILE
                                    0
         2ND_DECILE
                                    0
         OUARTILE
                                    0
                                   0
         SEL
         SEL_IHE
         dtype: int64
 In [6]:
          df.drop('Unnamed: 9',axis=1,inplace=True) # Droping Cabin Column becasue here lots of null values
 In [7]:
          df.dropna(inplace=True)
 In [8]:
          \mathsf{df.head}(\,)
Out [8]:
                         COD_S11 GENDER EDU_FATHER EDU_MOTHER OCC_FATHER
                                                                                              OCC_MOTHER STRATUM
                                                                                                                             SISBEN
                                                                                                                                       PEOPLE_HC
                                                                               Technical or
                                                                                                                            It is not
                                               Incomplete
                                                               Complete
                                                                                                                           classified
                                                                               professional
          0 SB11201210000129 F
                                               Professional
                                                              technique or
                                                                                                               Stratum 4
                                                                                                                                       Three
                                                                                              Home
                                                                               level
                                                                                                                            by the
                                               Education
                                                              technology
                                                                                                                            SISBEN
                                                                               employee
                                                                                                                           It is not
                                                              Complete
                                               Complete
                                                                                              Independent
                                                                                                                            classified
          1 SB11201210000137 F
                                                                                                                                       Three
                                                              professional
                                                                               Entrepreneur
                                                                                                               Stratum 5
                                               Secundary
                                                                                              professional
                                                                                                                            by the
                                                              education
                                                                                                                            SISBEN
          2 SB11201210005154 M
                                               Not sure
                                                              Not sure
                                                                               Independent
                                                                                                               Stratum 2
                                                                                                                           Level 2
                                                                                              Home
                                                                                                                                       Five
                                                                                                                            It is not
                                                                               Other
                                                                                                                            classified
          3 SB11201210007504 F
                                               Not sure
                                                              Not sure
                                                                                              Independent
                                                                                                               Stratum 2
                                                                                                                                       Three
                                                                                                                            by the
                                                                               occupation
                                                                                                                            SISBEN
                                                                                                                            It is not
                                               Complete
                                                               Complete
                                                                                                                            classified
          4 SB11201210007548 M
                                                              professional
                                                                                                                                       One
                                               professional
                                                                               Executive
                                                                                              Home
                                                                                                               Stratum 4
                                                                                                                            by the
                                                              education
                                               education
                                                                                                                            SISBEN
         5 rows × 44 columns
 In [9]: df.isnull().sum() # Caluclating the Null values
Out [9]: COD_S11
                               0
         GENDER
                               0
         EDU FATHER
                               0
         EDU_MOTHER
         OCC_FATHER
OCC_MOTHER
                               0
         STRATUM
                               0
         SISBEN
         PEOPLE_HOUSE
INTERNET
         COMPUTER
WASHING_MCH
         MIC_OVEN
         CAR
DVD
         FRESH
         PHONE
         MOBILE
         REVENUE
         JOB
SCHOOL_NAME
         SCHOOL_NAME
SCHOOL_NAT
SCHOOL_TYPE
MAT_S11
CR_S11
         CC_S11
BIO_S11
ENG_S11
                               0
         Cod_SPro
UNIVERSITY
         ACADEMIC_PROGRAM
         QR_PRO
CR_PRO
CC_PRO
                               0
         ENG_PRO
ENG_PRO
WC_PRO
FEP_PRO
G_SC
PERCENTILE
                               0
                               0
         2ND_DECILE
         QUARTILE
```

Cod SPro

0

```
SEL
SEL_IHE
dtype: int64
```

In [10]: df.describe() # Get some initial statistics.

0

()11	+	11	nı.
υu	L	L II	υj.
		_	

·	MAT_S11	CR_S11	CC_S11	BIO_S11	ENG_S11	QR_PRO	CR_PRO	CC_PRC
count	12411.000000	12411.000000	12411.000000	12411.000000	12411.000000	12411.000000	12411.000000	12411.00000
mean	64.320764	60.778422	60.705181	63.950528	61.801064	77.417291	62.199339	59.18677
std	11.873650	10.025876	10.120524	11.156869	14.297777	22.673444	27.666558	28.99184
min	26.000000	24.000000	0.000000	11.000000	26.000000	1.000000	1.000000	1.00000
25%	56.000000	54.000000	54.000000	56.000000	50.000000	65.000000	42.000000	36.00000
50%	64.000000	61.000000	60.000000	64.000000	59.000000	85.000000	67.000000	65.00000
75%	72.000000	67.000000	67.000000	71.000000	72.000000	96.000000	86.000000	85.00000
max	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.00000

In [11]: df.info() # Getting some informatation about dataset

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 12411 entries. 0 to 12410
Data columns (total 44 columns):
      Column
                            Non-Null Count
0
      COD_S11
                            12411 non-null
                                                object
      GENDER
                             12411 non-null
                                                object
      EDU_ FATHER
                            12411 non-null
                                                object
      EDU_MOTHER
                             12411 non-null
                                                object
      OCC_FATHER
OCC_MOTHER
                             12411 non-null
                                                object
                            12411 non-null
                                                object
      STRATUM
                             12411 non-null
                                                object
      SISBEN
                             12411 non-null
                            12411 non-null
12411 non-null
 8
9
      PEOPLE_HOUSE
                                                object
      INTERNET
                                                object
 10
                             12411 non-null
                                                object
      COMPUTER
                            12411 non-null
12411 non-null
                                                object
      WASHING MCH
                                                object
object
 12
 13
      MIC_OVEN
                             12411 non-null
     CAR
DVD
                            12411 non-null
12411 non-null
                                                object
 15
                                                object
object
 16
      FRESH
                             12411 non-null
                            12411 non-null
12411 non-null
 17
      PHONE
                                                object
 18
      MOBILE
                                                object
object
 19
      REVENUE
                             12411 non-null
 20
      J0B
                             12411 non-null
                                                object
      SCHOOL NAME
                             12411 non-null
                                                object
object
 21
 22
      SCHOOL_NAT
                             12411 non-null
     SCHOOL_NAT
SCHOOL_TYPE
MAT_S11
CR_S11
CC_S11
BIO_S11
ENG_S11
 23
                             12411 non-null
                                                object
                             12411 non-null
 24
                                                int64
 25
                             12411 non-null
                                                int64
 26
                             12411 non-null
                                                int64
                             12411 non-null
 27
                                                int64
 28
                             12411 non-null
                                                int64
     Cod_SPro
UNIVERSITY
 29
                             12411 non-null
                                                object
                             12411 non-null
                                                object
object
 30
 31
      ACADEMIC_PROGRAM
                             12411 non-null
      QR_PRO
CR_PRO
CC_PRO
 32
                             12411 non-null
                                                int64
                             12411 non-null
 33
                                                int64
 34
                             12411 non-null
                                                int64
     ENG_PRO
WC_PRO
FEP_PRO
 35
                             12411 non-null
                                                int64
 36
                             12411 non-null
                                                int64
 37
                             12411 non-null
                                                int64
     G_SC
PERCENTILE
 38
                             12411 non-null
                                                int64
 39
                             12411 non-null
                                                int64
                             12411 non-null
 40
      2ND_DECILE
                                                int64
      QUARTILE
                             12411 non-null
                                                int64
                            12411 non-null
12411 non-null
 42
      SEL
                                                int64
     SEL_IHE
 43
                                                int64
dtypes: int64(17), object(27) memory usage: 4.3+ MB
```

In [12]: df.dtypes # Finding Data Types

Out [12]: COD_S11

object **GENDER** object object EDU_FATHER EDU_MOTHER object OCC_FATHER OCC_MOTHER object object STRATUM object SISBEN object PEOPLE_HOUSE object object INTERNET object COMPUTER object object WASHING_MCH MIC_OVEN object CAR object object DVD **FRESH** object PHONE object MOBILE object

```
REVENUE
                                object
J0B
                                object
SCHOOL_NAME
SCHOOL_NAT
SCHOOL_TYPE
MAT_S11
CR_S11
CC_S11
                                object
object
                                 int64
                                 int64
                                 int64
BIO_S11
ENG_S11
Cod_SPro
                                 int64
                                 int64
                                object
UNIVERSITY
{\tt ACADEMIC\_PROGRAM}
                                object
int64
QR_PRO
CR_PRO
CC_PRO
ENG_PRO
WC_PRO
                                 int64
                                 int64
                                 int64
                                 int64
FEP_PRO
G SC
                                 int64
int64
PERCENTILE
                                 int64
2ND_DECILE
QUARTILE
                                 int64
int64
                                 int64
SEL_IHE
                                 int64
dtype: object
```

```
In [14]: df.shape # Finding Dimensions of the data frame.
```

Out [14]: (12411, 44)

Finding Outliers

1. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.

```
In [15]: def ploting(df,st):
    plt.figure(figsize=(16,4))
    plt.subplot(1,2,2)
    sns.boxplot(df[st])
    plt.show()
```

```
In [16]: ploting(df,'MAT_S11')
```



```
In [17]: ploting(df,'CR_S11')
```



```
In [18]: ploting(df,'CC_S11')
```


In [19]: ploting(df,'BIO_S11')

In [20]: ploting(df,'ENG_S11')

In [21]: ploting(df,'QR_PRO')

In [22]: ploting(df,'CR_PRO')

In [23]: ploting(df,'CC_PRO')

In [24]: ploting(df,'ENG_PRO')

In [25]: ploting(df,'WC_PRO')

In [26]: ploting(df,'FEP_PRO')

In [27]: ploting(df,'G_SC')

In [28]: ploting(df,'PERCENTILE')

In [29]: ploting(df,'2ND_DECILE')

In [30]: ploting(df,'QUARTILE')


```
In [31]: ploting(df,'SEL')
```



```
In [32]: ploting(df,'SEL_IHE')
```


Detecting Outliers

```
In [33]: # Detecting Outliers
  import numpy as np
  outliers = []
  def detect_outliers_zscore(df):
        thres = 3
        mean = np.mean(df)
        std = np.std(df)
        # print(mean, std)
        for i in df:
            z_score = (i-mean)/std
            if (np.abs(z_score) > thres):
                  outliers.append(i)
        return outliers
```

```
In [36]: cc = detect_outliers_zscore(df['CC_S11'])
   print("Outliers from Z-scores method: ", cc)
   In [37]: | bio = detect_outliers_zscore(df['BIO_S11'])
   print("Outliers from Z-scores method: ", bio)
   In [38]: eng = detect_outliers_zscore(df['ENG_S11'])
   print("Outliers from Z-scores method: ", eng)
   In [39]: | qr = detect_outliers_zscore(df['QR_PRO'])
   print("Outliers from Z-scores method: ", qr)
   In [40]: crpro = detect_outliers_zscore(df['CR_PRO'])
   print("Outliers from Z-scores method: ", crpro)
   In [41]: | ccpro = detect_outliers_zscore(df['CC_PRO'])
   print("Outliers from Z-scores method: ", ccpro)
   In [42]: engpro = detect_outliers_zscore(df['ENG_PRO'])
   print("Outliers from Z-scores method: ", engpro)
   In [43]: | wcpro = detect_outliers_zscore(df['WC_PRO'])
   print("Outliers from Z-scores method: ", wcpro)
   In [44]: | feppro = detect_outliers_zscore(df['FEP_PRO'])
   print("Outliers from Z-scores method: ", feppro)
   In [45]: | gsc = detect_outliers_zscore(df['G_SC'])
   print("Outliers from Z-scores method: ", gsc)
   In [46]:
   percentile = detect_outliers_zscore(df['PERCENTILE'])
   print("Outliers from Z-scores method: ", percentile)
   In [47]: | decile = detect_outliers_zscore(df['2ND_DECILE'])
   print("Outliers from Z-scores method: ", decile)
   In [48]: | quartile = detect_outliers_zscore(df['QUARTILE'])
   print("Outliers from Z-scores method: ", quartile)
   In [49]: | sel = detect_outliers_zscore(df['SEL'])
   print("Outliers from Z-scores method: ", sel)
```

```
In [50]: | selihe = detect_outliers_zscore(df['SEL_IHE'])
       print("Outliers from Z-scores method: ", selihe)
       Finding IQR
In [51]: def finding_Iqr(df,st):
           #lets find the IQR (inter quantile range)
           Q1 = df[st].quantile(0.25)
           Q3 = df[st].quantile(0.75)
           IQR = Q3-Q1
           lower\_boundry = Q1 -1.5*IQR
           upper_boundry = Q3 +1.5*IQR
           return lower_boundry , upper_boundry
In [52]: lower_MAT_S11, upper_MAT_S11 = finding_Iqr(df,'MAT_S11')
       print('upper limit is' , upper_MAT_S11)
       print('lower limit is' , lower_MAT_S11)
       upper limit is 96.0
       lower limit is 32.0
In [53]: lower_CR_S11, upper_CR_S11 = finding_Iqr(df,'CR_S11')
       print('upper limit is' , upper_CR_S11)
       print('lower limit is' , lower_CR_S11)
       upper limit is 86.5
       lower limit is 34.5
In [54]: lower_CC_S11, upper_CC_S11 = finding_Iqr(df,'CC_S11')
       print('upper limit is' , upper_CC_S11)
       print('lower limit is' , lower_CC_S11)
       upper limit is 86.5 lower limit is 34.5
In [55]: lower_BIO_S11, upper_BIO_S11 = finding_Iqr(df,'BIO_S11')
       print('upper limit is' , upper_BIO_S11)
       print('lower limit is' , lower_BIO_S11)
       upper limit is 93.5
       lower limit is 33.5
In [56]: lower_ENG_S11, upper_ENG_S11 = finding_Iqr(df,'ENG_S11')
       print('upper limit is' , upper_ENG_S11)
       print('lower limit is' , lower_ENG_S11)
       upper limit is 105.0 lower limit is 17.0
In [57]: lower_QR_PRO, upper_QR_PRO = finding_Iqr(df,'QR_PRO')
       print('upper limit is' , upper_QR_PRO)
       print('lower limit is' , lower_QR_PRO)
       upper limit is 142.5
       lower limit is 18.5
In [58]: lower_CR_PRO, upper_CR_PRO = finding_Iqr(df,'CR_PRO')
       print('upper limit is' , upper_CR_PRO)
       print('lower limit is' , lower CR PRO)
       upper limit is 152.0
       lower limit is -24.0
In [59]: lower_ENG_PRO, upper_ENG_PRO = finding_Iqr(df,'ENG_PRO')
       print('upper limit is' , upper_CR_PRO)
       print('lower limit is' , lower_CR_PRO)
```

```
upper limit is 152.0
        lower limit is -24.0
 In [60]: lower_WC_PRO, upper_WC_PRO = finding_Iqr(df,'WC_PRO')
         print('upper limit is' , upper_WC_PRO)
         print('lower limit is' , lower_WC_PRO)
        upper limit is 158.0
        lower limit is -50.0
In [61]: lower_FEP_PRO, upper_FEP_PRO = finding_Iqr(df,'FEP_PRO')
         print('upper limit is' , upper_FEP_PRO)
         print('lower limit is' , lower FEP PRO)
        upper limit is 249.0
        lower limit is 49.0
 In [62]: lower_G_SC, upper_G_SC = finding_Iqr(df,'G_SC')
         print('upper limit is' , upper_G_SC)
         print('lower limit is' , lower_G_SC)
        upper limit is 227.0 lower limit is 99.0
In [63]: lower_PERCENTILE, upper_PERCENTILE = finding_Iqr(df,'PERCENTILE')
         print('upper limit is' , upper_PERCENTILE)
         print('lower limit is' , lower_PERCENTILE)
        upper limit is 148.5
        lower limit is -7.5
In [64]: lower_2ND_DECILE, upper_2ND_DECILE = finding_Iqr(df,'2ND_DECILE')
         print('upper limit is' , upper_2ND_DECILE)
         print('lower limit is' , lower_2ND_DECILE)
        upper limit is 8.0 lower limit is 0.0
 In [65]: lower_QUARTILE, upper_QUARTILE = finding_Iqr(df,'QUARTILE')
         print('upper limit is' , upper_QUARTILE)
         print('lower limit is' , lower_QUARTILE)
        upper limit is 5.5
        lower limit is 1.5
In [66]: lower_SEL, upper_SEL = finding_Iqr(df,'SEL')
         print('upper limit is' , upper_SEL)
         print('lower limit is' , lower SEL)
        upper limit is 7.0
 In [67]: lower_SEL_IHE, upper_SEL_IHE = finding_Iqr(df,'SEL_IHE')
         print('upper limit is' , upper_SEL_IHE)
         print('lower limit is' , lower_SEL_IHE)
        upper limit is 4.5 lower limit is 0.5
        Removing Outliers
 In [68]: #Removing Outliers
         outliers_MAT_S11 = np.where(df['MAT_S11'] > upper_MAT_S11,True ,np.where(df['MAT_S11'] < lower_MAT_
         outliers_MAT_S11
Out [68]: array([False, False, False, False, False, False])
In [69]: #Removing Outliers
         outliers_CR_S11 = np.where(df['CR_S11'] > upper_CR_S11, True ,np.where(df['CR_S11'] < lower_CR_S11,
         outliers_CR_S11
Out [69]: array([False, False, False, ..., False, False, False])
```

```
In [70]: #Removing Outliers
                                                                outliers_CC_S11 = np.where(df['CC_S11'] > upper_CC_S11, True ,np.where(df['CC_S11'] < lower_CC_S11,
                                                              outliers CC S11
Out [70]: array([False, False, False, ..., False, False, False])
      In [71]: #Removing Outliers
                                                              outliers_BIO_S11 = np.where(df['BIO_S11'] > upper_BIO_S11,True ,np.where(df['BIO_S11'] < lower_BIO_
                                                               outliers_BIO_S11
Out [71]: array([False, True, False, ..., False, False, False])
      In [72]: #Removing Outliers
                                                               outliers\_QR\_PRO = np.where(df['QR\_PRO'] > upper\_QR\_PRO, True \\ , np.where(df['QR\_PRO'] < lower\_QR\_PRO, true \\ , np.where(df['QR\_PRO'] < lower\_QR\_PRO'] < lower\_QR\_PR
                                                               outliers_QR_PRO
 Out [72]: array([False, False, True, ..., False, False, False])
      In [73]: #Removing Outliers
                                                               outliers_FEP_PRO = np.where(df['FEP_PRO'] > upper_FEP_PRO,True ,np.where(df['FEP_PRO'] < lower_FEP_
                                                              outliers FEP PRO
 Out [73]: array([False, False, False, ..., False, False, False])
      In [74]: #Removing Outliers
                                                              outliers_G_SC = np.where(df['G_SC'] > upper_G_SC,True ,np.where(df['G_SC'] < lower_G_SC, True , Fal
                                                              outliers_G_SC
 Out [74]: array([False, False, False, ..., False, False, False])
      In [75]: #Removing Outliers
                                                               outliers_QUARTILE = np.where(df['QUARTILE'] > upper_QUARTILE,True ,np.where(df['QUARTILE'] < lower_
                                                              outliers_QUARTILE
  Out [75]: array([False, False, True, ..., False, False, False])
       \begin{array}{lll} & \text{In [76]:} & \text{df['MAT\_S11']= np.where(df['MAT\_S11']> upper\_MAT\_S11 \ , upper\_MAT\_S11,np.where(df['MAT\_S11'] < lowered lo
                                                              df['CR\_S11'] = np.where(df['CR\_S11'] > upper\_CR\_S11 \ , \ upper\_CR\_S11, np.where(df['CR\_S11'] < lower\_CR\_S11'] < lower\_CR\_S
                                                              df['CC\_S11'] = np.where(df['CC\_S11'] > upper\_CC\_S11 \ , \ upper\_CC\_S11, np.where(df['CC\_S11'] < lower\_CC\_S11'] < lower\_CC\_S
                                                              df['BIO_S11'] = np.where(df['BIO_S11'] > upper_BIO_S11 , upper_BIO_S11, np.where(df['BIO_S11'] < lower_BIO_S11 )
                                                              df['QR\_PRO'] = np.where(df['QR\_PRO'] > upper\_QR\_PRO , upper\_QR\_PRO, np.where(df['QR\_PRO'] < lower\_QR\_PRO , upper\_QR\_PRO , upper\_QR\_PRO , upper\_QR\_PRO , upper\_QR\_PRO , upper\_QR\_PRO , upper_QR\_PRO , upper\_QR\_PRO , up
                                                              df['FEP\_PRO'] = np.where(df['FEP\_PRO'] < lower = lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO'] < lower[FEP\_PRO, np.where(df['FEP\_PRO'] < lower[FEP\_PRO'] < lower[F
                                                              df['G_SC'] = np.where(df['G_SC'] > upper_G_SC , upper_G_SC, np.where(df['G_SC'] < lower_G_SC , lower_G_SC )
                                                              df['QUARTILE'] = np.where(df['QUARTILE'] > upper_QUARTILE , upper_QUARTILE, np.where(df['QUARTILE'] 
                                                           After Removing Outliers
      In [77]: def boxplt(df,st):
                                                                                           plt.figure(figsize=(16,4))
                                                                                           plt.subplot(1,2,2)
                                                                                           sns.boxplot(df[st])
```

```
plt.show()
```



```
In [79]: boxplt(df, 'CR_S11')
```


In [80]: boxplt(df, 'CC_S11')

In [81]: boxplt(df, 'BIO_S11')

In [82]: boxplt(df, 'QR_PRO')


```
In [83]: boxplt(df, 'FEP_PRO')
```


In [84]: boxplt(df, 'G_SC')

In [85]: boxplt(df, 'QUARTILE')

1. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

In [86]: df.head()

COD_S11 GENDER EDU_FATHER EDU_MOTHER OCC_FATHER OCC_MOTHER S	STRATUM SISBEN PEOPLE_HC
--	--------------------------

	COD_311	GLINDLK	LDU_FATTILK	LDO_INIOTHLK	OCC_FATTLER	OCC_INIOTTIER	STRATUM	SISBLIA	PLOPEL_IIC
0	SB11201210000129	F	Incomplete Professional Education	Complete technique or technology	Technical or professional level employee	Home	Stratum 4	It is not classified by the SISBEN	Three
1	SB11201210000137	F	Complete Secundary	Complete professional education	Entrepreneur	Independent professional	Stratum 5	It is not classified by the SISBEN	Three
2	SB11201210005154	М	Not sure	Not sure	Independent	Home	Stratum 2	Level 2	Five
3	SB11201210007504	F	Not sure	Not sure	Other occupation	Independent	Stratum 2	It is not classified by the SISBEN	Three
4	SB11201210007548	М	Complete professional education	Complete professional education	Executive	Home	Stratum 4	It is not classified by the SISBEN	One

5 rows × 44 columns

```
In [87]: df.hist(figsize=(12,12))
          plt.show()
                     MAT_S11
                                             CR_S11
                                                                     CC_S11
                                                                                             BIO_S11
                                   2000
           2000
                                                           2000
                                                                                   2000
                                   1000
                                                           1000
                                                                                   1000
           1000
                                                      80
                                             QR_PRO
                     60 80
ENG S11
                                                                     CR PRO
                                                                                             CC PRO 80
                                                                                   2000
           3000
                                                           2000
                                   4000
                                                                                   1500
                                                           1500
           2000
                                   3000
                                                                                   1000
                                                           1000
                                   2000
                                                                                    500
                                   1000
                                                            500
                                                                     FEP_PRO
                                             50 75
WC_PRO
                                                                                100
                    50 75
ENG_PRO
                                                           3000
                                   1500
           2000
                                                                                   2000
                                                           2000
                                   1000
           1000
                                                                                   1000
                                                           1000
                                    500
             0
                                                                                             150
SEL
                                                                                       100
                                                                                                    200
                               100
                                                                   100 200
QUARTILE
                    PERCENTILE
                                            2ND_DECILE
           3000
                                                           6000
                                                                                   4000
                                   4000
                                                                                   3000
                                                           4000
                                                                                   2000
                                   2000
           1000
             0
                                                                                      0 -
                               100
                     SEL IHE
           8000
           6000
           2000
 In [88]: X = df.iloc[:,[24,25,26,27,28,32,33,34,35,36,37,38,39,40]]
 In [89]:
          X.head(5)
Out [89]:
              MAT_S11 CR_S11 CC_S11 BIO_S11 ENG_S11 QR_PRO CR_PRO CC_PRO ENG_PRO WC_PRO FEP_PRO G_SC PERCI
           0 71.0
                         81.0
                                   61.0
                                            86.0
                                                                 71.0
                                                                           93
                                                                                     71
                                                                                               93
                                                                                                          79
                                                                                                                     181.0
                                                                                                                                180.0 91
             83.0
           1
                         75.0
                                   66.0
                                            93.5
                                                      88
                                                                 97.0
                                                                           38
                                                                                     86
                                                                                               98
                                                                                                          78
                                                                                                                     201.0
                                                                                                                               182.0 92
           2 52.0
                         49.0
                                   38.0
                                            46.0
                                                      42
                                                                 18.5
                                                                           1
                                                                                     18
                                                                                               43
                                                                                                          22
                                                                                                                     113.0
                                                                                                                                113.0 7
           3 56.0
                         55.0
                                   51.0
                                            64.0
                                                      73
                                                                 65.0
                                                                           35
                                                                                     76
                                                                                               80
                                                                                                          48
                                                                                                                     137.0
                                                                                                                               157.0 67
           4 80.0
                         65.0
                                   76.0
                                            85.0
                                                      92
                                                                 94.0
                                                                           94
                                                                                     98
                                                                                               100
                                                                                                          71
                                                                                                                     189.0
                                                                                                                               198.0 98
 In [90]: from sklearn.preprocessing import MinMaxScaler
 In [91]:
          scaler=MinMaxScaler(feature_range=(0, 1))
           scaler.fit(X)
Out [91]: MinMaxScaler()
 In [92]:
          scaled_data=scaler.transform(X)
 In [93]:
          scaled_data
Out [93]: array([[0.609375
                               0.89423077, \ 0.50961538, \ \dots, \ 0.6328125 , 0.90909091,
                 [0.796875
                              0.77884615, 0.60576923, ..., 0.6484375 , 0.91919192,
                 [0.3125
                               0.27884615, \ 0.06730769, \ \dots, \ 0.109375 , 0.06060606,
                  0.
                 [0.53125
                               0.66346154, \ 0.77884615, \ \dots, \ 0.6953125 , 0.94949495,
                 [0.328125
                               0.66346154, 0.56730769, ..., 0.3671875 , 0.49494949,
```

[0.734375 , 0.58653846, 0.52884615, ..., 0.6171875 , 0.88888889, 1.]])