

INTRO TO DATA SCIENCE LECTURE 3: KNN CLASSIFICATION AND MODEL SELECTION

January 5, 2015 DAT11-SF

Date	Day	Topic	HW	Project
Nov 19	W	Introduction to data science		
Nov 24	M	Exploratory data analysis		
Dec 1	M	Introduction to machine learning	1	
Dec 3	W	Linear regression and regularization		
Dec 8	M	Logistic regression	2	
Dec 10	W	Support Vector Machines (SVM)		
Dec 15	M	Decision trees		
Dec 17	W	Practice session		
Jan 5	M	kNN and model selection		
Jan 7	W	Ensemble methods: random forest	3	Title
Jan 12	M	Naïve Bayes		
Jan 14	W	K-means and hierarchical clustering	4	Summary
Jan 21	W	Dimensionality reduction: PCA and SVD		
Jan 26	M	Text mining and information retrieval	5	
Jan 28	W	Network analysis		Proposal
Feb 2	M	Recommender systems	6	
Feb 4	W	Relational databases, SQL		
Feb 9	M	Big data storage and retrieval: noSQL, GraphDB		
Feb 11	W	Big data distributed computing: map-reduce, spark rdd		
Feb 18	W	Guest lecture		
Feb 23	M	Final projects presentations		Presentation
Feb 25	W	Final projects presentations		Presentation

AGENDA 3

I. KNN CLASSIFICATION
II. BIAS AND VARIANCE
III. MODEL SELECTION

LABS:

IV. KNN CLASSIFICATION IN SCIKIT-LEARN

INTRO TO DATA SCIENCE

I. KNN CLASSIFICATION

KNN CLASSIFICATION - BASICS

Suppose we want to predict the color of the grey dot.

Suppose we want to predict the color of the grey dot.

1) Pick a value for k.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

Suppose we want to predict the color of the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

KNN METHOD 9

- Similarity/distance based method:
 - Euclidean distance
- Non-parametric method (no model to learn)
- Instance-based learning (in memory learning, no computations until classification)
- Can be used for :
 - classification (majority vote)
 - regression (averaging)

KNN: K=1

KNN: K=100

NEAREST NEIGHBOR CLASSIFICATION (KNN WITH K=1)

Voronoi diagram / tessellation

NEAREST NEIGHBOR SEARCH

Kd-tree (k-dimensional tree) is a space partitioning data structure for organizing points in k-dimensional space by splitting by alternating axis-aligned hyperplanes

INTRO TO DATA SCIENCE

IL BIAS AND VARIANCE

From http://cs109.github.io/2014/

POLYNOMIAL FIT (LINEAR MODEL)

POLYNOMIAL FIT ERROR

TRAINING-SET VS TEST-SET PERFORMANCE

Bias — variance decomposition is a decomposition of the test (out of sample) error into two components:

- Bias difference between average prediction of the model and the true values. Bias is due to systematic erroneous assumptions in the learning algorithm
- Variance variability of model prediction for a given value. It is due to sensitivity to fluctuations in the training data set

BIAS AND VARIANCE

d = 6 (over-fit)

BIAS - VARIANCE TRADEOFF

$$Err(x) = \left(E[\hat{f}(x)] - f(x)\right)^{2} + E[\hat{f}(x) - E[\hat{f}(x)]]^{2}$$

$$Err(x) = \text{Bias}^{2} + \text{Variance}$$

d = 1 (under-fit)

BIAS-VARIANCE TRADEOFF

bias =
$$\mathbb{E}_{\mathbf{x}} \left[\left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$\mathsf{var} = \mathbb{E}_{\mathbf{x}} \left[\, \mathbb{E}_{\mathcal{D}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - ar{g}(\mathbf{x})
ight)^2
ight]
ight]$$

BIAS AND VARIANCE

INTRO TO DATA SCIENCE

III. MODEL SELECTION

LEARNING ALGORITHMS

- Model training fitting to training data
- Model selection selecting the best model (model parameters)
- Model assessment estimating prediction error

Dataset:

MODEL SELECTION 35

- Selecting the best model complexity:
 - Hyperparameter tuning
 - Regularization level
- Parameter search:
 - Exhaustive grid search
 - Randomized optimization

Learning curves

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

Learning curves

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Simple model (high bias)

Learning curves

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$

Complex model (high variance)

LEARNING CURVE

Simple Model

Complex Model

LEARNING CURVE

Number of Data Points, ${\it N}$

INTRO TO DATA SCIENCE

IV LAB: KNN CLASSIFICATION IN SCIKIT-LEARN