AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) A method of decoding a signal vector, the method comprising the steps of:

receiving a signal vector \mathbf{y}_k ;

- multiplying the received signal vector \mathbf{y}_k by a conjugate transpose of a channel matrix \mathbf{H}^* and generating a column vector \mathbf{z}_k therefrom;
- reordering entries associated within the column vector \mathbf{z}_k and generating an estimated channel matrix $\widetilde{\mathbf{H}}$ therefrom;
- decomposing the estimated channel matrix $\tilde{\mathbf{H}}$ via Cholesky decomposition and generating a triangular matrix \mathbf{L} therefrom;
- solving the triangular matrix **L** backwards and estimating a signal vector $\tilde{\mathbf{s}}_k$ therefrom, wherein $\tilde{\mathbf{s}}_k$ is a true sorted symbol vector; and
- sorting the signal vector $\tilde{\mathbf{s}}_k$ and generating an estimate of thea transmitted symbol vector $\hat{\mathbf{s}}_k$ therefrom.
- 2. (Currently Amended) The method according to claim 1, wherein the received signal vector \mathbf{y}_k is represented by thea relationship $\mathbf{y}_k = \mathbf{H}\mathbf{s}_k + \mathbf{v}$ and the column vector \mathbf{z}_k is represented by thea relationship $\mathbf{z}_k = \mathbf{H}^*\mathbf{H}\mathbf{s}_k + \mathbf{H}^*\mathbf{v}$, wherein \mathbf{H} is a matrix of complex numbers, \mathbf{s}_k is a multidimensional symbol vector transmitted at time k, \mathbf{v} is a multidimensional vector of additive noise+interference, and $\mathbf{H}\mathbf{s}_k$ is thea matrix product of \mathbf{H} and \mathbf{s} .

3. (Currently Amended) The method according to claim 2, wherein the multidimensional vector of additive noise+interference \mathbf{v} , is represented by thea relationship $\mathbf{L}^{*-1} \left(\widetilde{\mathbf{H}}^* \mathbf{v} - \sigma^2 \mathbf{I}_{M_i} \widetilde{\mathbf{s}}_k \right)$, and further wherein \mathbf{v} has a zero mean value with a covariance matrix defined as $\sigma^2 \mathbf{I}_{M_i}$ under the assumption that associated communication system transmitters transmit each point in thean associated communication system constellation with equal probability.