

Exercise Sheet 4

General remarks:

- Due date: November 18nd 12:30 (before the exercise class).
- Please submit your solutions via MOODLE. Remember to provide your matriculation number. It is necessary to hand in your solutions in groups of **three**. You may use the MOODLE forum to form groups.
- Solutions must be written in English.
- While we will publish sketches of exercise solutions, we do *not* guarantee that these sketches contain all details that are necessary to properly solve an exercise. Hence, it is recommended to attend the exercise classes.
- If you have any questions regarding the lecture or the exercise, please use the forum in MOODLE.

Exercise 1 (Markov Chains and Fixed Points)

25P

Consider a Markov chain $D = (\Sigma, \sigma_I, \mathbf{P})$ with goal set $G \subseteq \Sigma$. Let $\Sigma_? = \Sigma \setminus G$. Further, define the matrix \mathbf{A} via $\mathbf{A} = (\mathbf{P}(\sigma, \tau))_{\sigma, \tau \in \Sigma_?}$, and the vector $\mathbf{b} = (b_\sigma)_{\sigma \in \Sigma_?}$ where $b_\sigma = \sum_{\gamma \in G} \mathbf{P}(\sigma, \gamma)$.

In the rest of this exercise we identify vectors whose entries are indexed by the states in $\Sigma_?$ with functions of type $\Sigma_? \to [0,1]$. For instance, we have $\mathbf{b} \colon \Sigma_? \to [0,1], \mathbf{b}(\sigma) = b_{\sigma}$. Now consider the function

$$f \colon (\Sigma_? \to [0,1]) \to (\Sigma_? \to [0,1]), \ \mathbf{x} \mapsto \mathbf{A}\mathbf{x} + \mathbf{b} \ .$$

- (a) [15P] Define a partial order on $\Sigma_? \to [0,1]$ and prove that f has a least fixed point wrt. this order.
- (b) [10P] Use the results of lecture #7 to formulate an iterative algorithm that approximates the least fixed point of f from below.

Exercise 2 (Program verification with weakest pre-conditions)

25P

(a) [10P] Compute wp(P, f) for the program P and post-condition P below:

$$P\colon \quad \text{if } (x>0) \ \big\{ \ x:=y+1 \ \big\} \ \text{else} \ \big\{ \ \text{if } (x=0) \ \big\{ \ \text{skip} \ \big\} \ \text{else} \ \big\{ \ x:=x+1 \ \big\} \ \big\}$$

$$f\colon \quad x>y$$

(b) [15P] For the following loop P, compute the loop-characteristic functional $\Phi_f(f)$ with post-condition f and parameter f. What does the result tell you about lfp Φ_f and wp(P, f)? Hint: $(\mathbb{P}, \Rightarrow)$ is a complete lattice.

$$\begin{array}{ll} P\colon & \text{ while } (x\geq 1) \ \{ \ a:=a*x; \ x:=x-1 \ \} \\ f\colon & a=x! \end{array}$$

¹Note that this definition of $\Sigma_{?}$ slightly differs from the one given in lecture #3

Exercise 3 (Monotonicity of weakest pre-expectations)

25P

The goal of this exercise is to prove that wp(P) is a monotonic predicate transformer.

- (a) [8P] Let (D, \sqsubseteq) be a complete lattice and $f, g: D \to D$ be monotonic such that for all $d \in D$, $f(d) \sqsubseteq g(d)$. Show that Ifp $f \sqsubseteq$ Ifp g.

 Hint: You may use without proof that Ifp $f = \bigcap S$, where $S = \{d \in D \mid f(d) \sqsubseteq d\}$.
- (b) [17P] Prove that for all GCL programs P, the function $wp(P) \colon \mathbb{P} \to \mathbb{P}$ is monotonic.

Exercise 4 (Weakest liberal pre-conditions)

25P

- (a) [5P] Give a GCL program P along with a post-condition f such that $wp(P, f) \neq wlp(P, f)$. You may not use the diverge statement in your program!
- (b) [10P] Determine the inputs for which the following program P does not terminate by computing the weakest liberal pre-condition with respect to a suitable post-condition:

while
$$(x \neq 0) \{ x := x - 2 \}$$

(c) [10P] Prove by induction on the program structure that for any GCL program P and post-condition f it holds that $wp(P, f) \sqsubseteq wlp(P, f)$.

Hint: Use Exercise 3 (b). You may use that wlp(P) is monotonic without proof.