Relazione di Complessitá

Marco Stenico 211qc

22 giugno 2003

Indice

1	Dominating Set	2
2	Independent Set	4

1 Dominating Set

In questa sezione introduciamo il problema di *Dominating Set* (da ora DS) e ne dimostriamo l'NP-completezza.

Dominating Set (DS)

INPUT: un grafo G = (V, E) ed un intero positivo k.

OUTPUT: esiste un dominating set di dimensione al più k per G, cioé un sottoinsieme $D \subseteq V$ tale che $|D| \le k$ e tale che ogni vertice $v \in V - D$ é unito ad almeno un elemento di D da un lato in E?

Rendersi conto che DS é in NP é abbastanza semplice, ma é comunque una buona idea affermarlo in evidenza.

Osservazione 1.1 DS é in NP.

Dimostazione se l'oracolo ci dá una soluzione D al problema siamo in grado di verificare che é giusta in tempo polinomiale. Basta verificare che $|D| \leq k$ e che ogni vertice $v \in V - D$ é unito ad almeno un vertice in D da un lato in E.

La dimostrazione di NP-completezza a cui sono pervenuto é un po' piú complessa. Prima di descriverla, cercheró di riportare alcune considerazioni di carattere intuitivo che mi hanno permesso di giungere alla soluzione proposta. Sono partito cercando un problema noto NP-completo da trasformare in DS. Vertex Cover (VC) sembrava il piú simile. Riporto qui la definizione del problema.

Vertex Cover (VC)

INPUT: un grafo G = (V, E) ed un intero positivo k.

OUTPUT: esiste un vertex cover di dimensione al più k per G, cioé un sottoinsieme $C \subseteq V$ tale che $|C| \le k$ e tale che per ogni lato $uv \in E$ almeno uno tra u e v appartiene a C?

Teorema 1.2 DS é NP-completo.

Dimostazione Abbiamo giá osservato (vedi Osservazione 1.1) che DS \in NP. Proponiamo ora una riduzione polinomiale da VC a DS. Si consideri una generica istanza $\langle G, k \rangle$ di VC, dove G = (V, E) e k > 0. Dobbiamo costruire un grafo G' = (V', E') e un intero positivo k' tale che G ha un $vertex\ cover$ di dimensione al piú k se e solo se G' ha un $dominating\ set$ di dimensione al piú k'.

Costruiremo un nuovo grafo che ha come vertici sia i vertici di G sia i lati di G e prenderemo k'=k.

Sia l'insieme dei nodi-lato definito come $V_e = \{v_e | e \in E\}$. Definiamo l'insieme dei nodi del nuovo grafo $V' = V \bigcup V_e$. Metto in relazione i lati del grafo G con i vertici che lo compongono, cioé costruisco l'insieme dei lati $E_e = \{uv_e | u \in e\}$.

Costruisco una clique su i vertici di V, introducendo un nuovo insieme di lati $E_v = \{uv | u, v \in V \text{ con } v \neq u\}$. Definisco finalmente l'insieme dei lati del nuovo grafo come $E' = E_v \cup E_e$.

Figura 1: Costruzione del grafo. (a) un'istanza $\langle G, k \rangle$ con k=3 di VC, l'area colorata é un possibile vertex cover per G (b) risultato della riduzione a DS, l'area colorata é un dominating set.

 $\,$ La Figura 1 illustra come avviene la costruzione del grafo.

É evidente che tale trasformazione puó essere condotta in tempo polinomiale. Rimane da dimostrare che G' ha un dominating set di dimensione al piú k' = k se e solo se G ha un $vertex\ cover$ di dimensione al piú k.

- (\Leftarrow) supponiamo che G abbia un vertex cover C di dimensione al piú k. Dimostriamo che C é un dominating set per G'. Prendiamo un nodo $v \in V'$. Se $v \in V_e$ allora di sicuro é adiacente ad un nodo in C, infatti v é un lato $u_iu_j \in G$ e almeno uno dei vertici u_i , u_j deve appartenere al vertex cover. Se il nodo $v \in V$ allora abbiamo due possibilitá o il nodo $v \in C$ e quindi abbiamo concluso, oppure $v \notin C$, ma per come abbiamo costruito il grafo G', v é adiacente ad ogni nodo di V e in particolar modo ad un nodo $u \in C$. v
- (\Rightarrow) supponiamo che G' abbia un dominating set D di dimensione al più k. Questa volta non possiamo dire che D é un vertex cover per G perché nel dominating set ci potrebbero essere selezionati alcuni nodi-lato.

Prendiamo un nodo-lato $v_e \in D$, dove e = uv é un lato di G. Per costruzione v_e é adiacente solo ai nodi v ed u. Definisco un nuovo insieme $D' = D - \{v_e\} \bigcup \{v\}$. É facile vedere che $|D| \leq |D'|$ e che D' é ancora un dominating set.

Posso ripetere l'algoritmo sopra per ogni nodo-lato nel dominating set ed ottengo un nuovo dominating set \widetilde{D} con $|\widetilde{D}| \leq k$ e composto solo da nodi in V. Resta da dimostrare che \widetilde{D} é un vertex cover per G. Consideriamo un nodo lato $uv \in V_e$. Per come abbiamo costruito \widetilde{D} , uv non appartiene al dominating set, ma allora, in quanto uv é adiacente solo ai due nodi u e $v \in V$ e per la definizione di dominating set, $u \in \widetilde{D}$ oppure $v \in \widetilde{D}$. Quindi \widetilde{D} é un vertex cover per $G.\square$

 $^{^{1}}$ Possiamo supporre senza perdita di generalitá che il grafo G contega almeno un arco.

2 Independent Set

In questa sezione introduciamo ora il problema di *Independent Set* (IS). Tale problema é noto essere NP-completo (vedi [1, p.188]). Mostreremo come rimanga NP-completo anche se ci si restringe a considerare solo grafi planari.

Planar Independent Set (Planar IS)

INPUT: un grafo G=(V,E) planare, un intero positivo k. OUTPUT: esiste un *independent set* di dimensione k per G, cioé un sottoinsieme $I\subseteq V$ tale che |I|=k e tale che se $u,v\in I$ non c'é alcun lato tra u e v?

Osservazione 2.1 Planar IS é in NP.

Dimostazione segue immediatamente dal fatto che IS é in NP.□

Figura 2: (a) caso generale (b) riduzione (c) crossing semplice.

In generale un lato puó formare piú di un crossing, vedi Figura 2 (a). Possiamo peró ricondurci al caso piú semplice di Figura 2 (c), dove ogni lato puó formare al piú un crossing. Basta applicare la riduzione proposta nella Figura 2 (b). Dimostriamo questo fatto attraverso il seguente lemma.

Lemma 2.2 IS é NP-completo anche se ci si restringe a considerare grafi in cui un lato forma al piú un crossing (IS').

Dimostazione IS' é in NP in quanto IS é in NP. Proponiamo ora una riduzione polinomiale da IS a IS'. Si consideri una generica istanza $\langle G, k \rangle$ di IS, dove G = (V, E) e k é un intero positivo. Dobbiamo costruire un grafo G' = (V', E') dove ogni lato forma al piú un crossing e un intero positivo k' tale che G ha un independent set di dimensione k se e solo se G' ha un independent set di dimensione k'. Per costruire G' procediamo come segue. Sia c_{uv} il numero di crossing formati dal lato $uv \in E$. Suddividiamo ogni lato $uv \in E$ con l'aggiunta di $2c_{uv}$ nodi artificiali $a_1, a_2, \ldots, a_{2c_{uv}}$, due tra il vertice v e il piú vicino crossing, due tra ogni coppia di crossing adiacenti (vedi Figura 2). Completiamo la riduzione

settando k' = k + c dove $c = \sum_{uv \in E} c_{uv}$. É evidente che tale trasformazione puó essere condotta in tempo polinomiale.

Rimane da dimostrare che G' ha un *independent set* di dimensione k' se e solo se G ha un *independent set* di dimensione k.

- (\Leftarrow) Supponiamo che G abbia un independent set I con |I|=k. Allora possiamo costruire un independent set I' per G' di dimensione k' procedendo come segue. Inizialmente poniamo I'=I. Per ogni lato $uv \in E$, entrambi i vertici v e u non possono appartenere all'insieme indipendente I. Quindi senza perdita di generalitá assumiamo che $u \notin I$ e quindi $u \notin I'$. Consideriamo il cammino $u, a_1, a_2, \ldots, a_{2c_{uv}}, v$ nel grafo G', dove $a_1, a_2, \ldots, a_{2c_{uv}}$ sono i nodi artificiali aggiunti al lato $uv \in E$. Aggiungiamo all'insieme indipendente I' i c_{uv} nodi artificiali di indice dispari $a_1, a_3, \ldots, a_{2c_{uv}-1}$. É facile vedere che I' é ancora un insieme indipendente. Ripetendo lo stesso algoritmo per tutti i lati di G otteniamo un insieme indipendente I' di dimensione k'.
- (\Rightarrow) supponiamo che G' abbia un independent set I' con |I'|=k'. Posso ottenere un insieme indipendente per G di dimensione k procedendo nel seguente modo. Inizialmente pongo I=I'. Consideriamo $uv\in E$, allora si possono verificare i seguenti casi:
 - i. i nodi u e v non appartengono entrambi a I. Allora al piú c_{uv} dei nodi artificiali $a_1, a_2, \ldots, a_{2c_{uv}}$ che sono stati aggiunti al lato uv possono essere nell'insieme indipendente I. Tolgo da I i nodi artificiali $a_1, a_2, \ldots, a_{2c_{uv}}$.
 - ii. entrambi i nodi u e v appartengono a I. Allora al piú $c_{uv} 1$ dei nodi artificiali $a_1, a_2, \ldots, a_{2c_{uv}}$ possono essere in I. Tolgo da I i nodi artificiali e il nodo v.

Ripetendo lo stesso procedimento per ogni lato $uv \in E$ ottengo un insieme indipendente per G, I, tale che $|I| > k' - \sum_{uv \in E} c_{uv} = k$. Eliminando alcuni nodi da I posso ottenere finalmente un insieme indipendente di cardinalitá esattamente k. \square

Per dimostrare l'NP-completezza di Planar IS presenteremo una riduzione polinomiale dal problema generale (con istanze non necessariamente planari), utilizzando la tecnica di local replacement. Useremo il gadget proposto da [3].

Teorema 2.3 Planar IS é NP-completo.

Dimostazione Abbiamo giá osservato (vedi Osservazione 2.1) che Planar IS é in NP. Proponiamo ora una riduzione polinomiale da IS a Planar IS. Si consideri una generica istanza $\langle G, k \rangle$ di IS, dove G = (V, E) e k é un intero positivo. Dobbiamo costruire un grafo planare G' = (V', E') e un intero positivo k' tale che G ha un independent set di dimensione k se e solo se G' ha un independent set di dimensione k'.

Come osservato nel Lemma 2.2, possiamo supporre che ogni lato di G formi al piú un crossing.

Per costruire G' sostituiamo ogni crossing nel grafo G con il grafo-gadget $H = (R \bigcup B, E_h)$ di Figura 2 (b). Come mostra la figura, l'insieme B corrisponde

Figura 3: Il grafo-gadget $H = (R \bigcup B, E_h)$ dove $B = \{top, bottom, left, right\}$ e $R = \{a, b, c, d, e, f, g, h, i, l, m, n, o, p, q, r\}.$

all'insieme dei nodi degli archi che formano il crossing in G. Il gadget ha le seguenti proprietá:

- p1) é planare;
- p2) se due nodi in B ed opposti (ad esempio left e right) sono nell'independent set, posso inserire nell'independent set ancora al più 5 nodi tra quelli appartenetenti a R;
- p3) se tutti i nodi in B (cioé left, right, top, bottom) sono nell'independent set posso inserire nell'independent set, ancora al più 4 nodi tra quelli appartenetenti a R;
- p4) in tutti gli altri casi posso inserire fino ad esattamente 6 nodi appartenenti a R nell'independent set;

Completiamo la riduzione settando k' = k + 6c dove c é il numero di crossing in G. É evidente che tale trasformazione puó essere condotta in tempo polinomiale. Rimane da dimostrare che G' ha un independent set di dimensione k' se e solo se G ha un independent set di dimensione k.

- (\Leftarrow) Supponiamo che G abbia un independent set I con |I|=k. Allora possiamo costruire un independent set I' per G' di dimensione k' procedendo come segue: inizialmente pongo I'=I, poi aggiungo ad I' sei nodi appartenenti ad R per ogni gadget in modo tale che I' continui ad essere un insieme indipendente . In tutto abbiamo c gadget e quindi alla fine otterremo che |I'|=k+6c. Per la Proprietá p4 é sempre possibile aggiungere ad I' sei nodi di R per ogni gadget preservando la proprietá di indipendenza perché per ipotesi I é un independent set per G e quindi non possono esservi inseriti due nodi in B opposti. La Figura 2 mostra i casi che possono capitare (non ho riportato quelli simmetrici).
- (\Rightarrow) supponiamo che G' abbia un independent set I' con |I'|=k'. Costruiremo un insieme indipendente I per G di cardinalitá k.

Impostiamo inizialmente I=I'. Ripetiamo il seguente algoritmo. Per ogni gadget g in G' possono capitare i seguenti casi:

Figura 4: (a) Nessun nodo blu é in I (b) due nodi blu non opposti sono in I (c, d) un nodo blu in I.

- i. se $|I \bigcap \{top_g, bottom_g\}| \leq 1$ e $|I \bigcap \{left_g, right_g\}| \leq 1$, allora per la Proprietá p4 $|I \bigcap R_g| \leq 6$. Possiamo definire un nuovo insieme indipendente $\widetilde{I} = I \setminus R_g$ dove $|\widetilde{I}| \geq |I| 6$. Assegno $I = \widetilde{I}$.
- ii. se $|I \bigcap \{left_g, right_g\}| \leq 1$ e $|I \bigcap \{top_g, bottom_g\}| = 2$, allora per la Proprietá p $2 |I \bigcap R_g| \leq 5$. Possiamo definire un nuovo insieme indipendente $\widetilde{I} = I \setminus (R_g \bigcup \{top_g\})$ dove $|\widetilde{I}| \geq |I| 6$. Assegno $I = \widetilde{I}$.
- iii. se $|I \bigcap \{top_g, bottom_g\}| \leq 1$ e $|I \bigcap \{left_g, right_g\}| = 2$, allora per la Proprietá p2 $|I \bigcap R_g| \leq 5$. Possiamo definire un nuovo insieme indipendente $\widetilde{I} = I \setminus (R_g \bigcup \{left_g\})$ dove $|\widetilde{I}| \geq |I| 6$. Assegno $I = \widetilde{I}$.
- iv. se $top_g, bottom_g, left_g, right_g \in I$, allora per la Proprietá p $3 \mid I \bigcap R_g \mid \leq 4$. Possiamo definire un nuovo insieme indipendente $\widetilde{I} = I \setminus (R_g \bigcup \{bottom_g, right_g\})$ dove $\mid \widetilde{I} \mid \geq |I| - 6$. Assegno $I = \widetilde{I}$.

Alla fine otteniamo un insieme indipendente I per G di dimensione $k \geq k' - 6 \cdot c$. Possiamo ottenere un insieme indipendente \widetilde{I} per G di dimensione esattamente $\widetilde{k} = k' - 6 \cdot c$ togliendo $k - k' + 6 \cdot c$ vertici qualsiasi da I, cioé $\widetilde{I} = I \setminus \{v_{i_1}, v_{i_2} \cdots v_{i_{k-k'+6\cdot c}}\}$ con $v_{i_1}, v_{i_2} \cdots v_{i_{k-k'+6\cdot c}} \in I$. \square

Riferimenti bibliografici

- [1] Christos H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1993)
- [2] Michael R. Garey, David S. Johnson, Computers and intractability: a guide to the theory of NP-completeness (W.H.Freeman and company, 1978)
- [3] Thomas Emden-Weinert, StefanHougardy, Bernd Kreuter, Jrgen Prmel, Angelika Einfhrung Hans Steger, inGraphen undAlgorithmen(http://www.informatik.huberlin.de/Institut/struktur/algorithmen/ga/)