Universidad Nacional de Educación a Distancia – Escuela Técnica Superior de Ingeniería Informática 71901072 - PROGRAMACIÓN ORIENTADA A OBJETOS (GRADO EN INGENIERÍA INFORMÁTICA / TECNOLOGÍAS DE LA INFORMACIÓN) JUNIO 2011 - MODELO B - NO ESTÁ PERMITIDO EL USO DE MATERIAL ADICIONAL

PARTE TEÓRICA - TEST [2,5 PUNTOS]:

Sólo una de las respuestas es válida. Las respuestas correctas se puntuarán con +1.0, mientras que las respondidas de manera incorrecta se puntuarán con -0.25. Las no contestadas no tendrán influencia ni positiva ni negativa en la nota.

Pregunta 1: Dada la declaración de las siguientes variables, indicar cuáles de ellas son correctas.

```
float foo = -1;
      1.
                float fool = 1.0;
      2.
                float foo2 = 42e1;
      3.
                float foo3 = 2.02f;
      4.
                float foo4 = 3.03d;
      5.
                float foo5 = 0 \times 0123;
      6.
a. 1 y 2
b. 1 y 3
c. 4 y 6
d. 3 y 4
```

Pregunta 2: Dado el siguiente fragmento de código, indica cuál de las siguientes afirmaciones es correcta en relación al valor de la variable foo.

```
Número de Línea Código
```

```
int index = 1;
4
       boolean[] test = new boolean[3];
5
       boolean foo = test [index];
```

- a. foo tiene el valor 0
- b. foo tiene el valor null
- c. foo tiene el valor false
- d. Se produce una excepción y foo no posee ningún valor

Pregunta 3: Dadas las siguientes expresiones, indica cuál de las opciones es la correcta.

```
(1 > 1) \&\& (1 > 1) == (1 > 1) == false
1.
        (1 == 1) | (10 > 1) == true | true == true
```

- a. La expresión 1 es evaluada como falsa y la expresión 2 como falsa.
- b. La expresión 1 es evaluada como falsa y la expresión 2 como verdadera.
- c. La expresión 1 es evaluada como verdadera y la expresión 2 como falsa.
- d. La expresión 1 es evaluada como verdadera y la expresión 2 como verdadera.

Pregunta 4: Dado el siguiente código, ¿cuál es su resultado?

```
Número de Línea Código
              class Top {
     4
      5
                    public Top(String s) { System.out.print("B"); }
     6
              public class Bottom2 extends Top {
     7
                    public Bottom2(String s) { System.out.print("D"); }
     8
                    public static void main(String [] args) {
     9
                         Bottom2 obj=new Bottom2("C");
     10
                         System.out.println(" ");
     11
     12
                    }
     13
b. DB
```

- a. BD
- c. BDC
- d. Error de compilación

Pregunta 5: Dado el siguiente código, ¿cuál de las afirmaciones es cierta?

Número de Línea Código

```
class Hotel {
4
              public int reservas;
5
              public void reservar() {
6
7
                    reservas++;
8
9
        public class SuperHotel extends Hotel {
10
              public void reservar() {
11
12
                    reservas--;
13
              public void reservar(int size) {
14
15
                    reservar();
                    super.reservar();
16
                    reservas += size;
17
18
              public static void main(String[] args) {
19
                    SuperHotel hotel = new SuperHotel();
20
                    hotel.reservar(2);
21
                    System.out.print(hotel.reservas);
22
23
24
```

- a. Error de compilación.
- b. Lanza una excepción en tiempo de ejecución.
- c. 0.
- d. 2.

<u>Pregunta 6</u>: Según el texto de la bibliografía básica de la asignatura, indique cuál de las siguientes afirmaciones es correcta:

- a. La depuración es la actividad cuyo objetivo es determinar si una pieza de código produce el comportamiento pretendido.
- b. La prueba viene a continuación de la depuración.
- c. La depuración es una actividad dedicada a determinar si un segmento de código contiene errores.
- d. La depuración es el intento de apuntar con precisión y corregir un error en el código.

<u>Pregunta 7</u>: Según el texto de la bibliografía básica de la asignatura, indique cuál de las siguientes afirmaciones es correcta:

- a. Un encapsulamiento apropiado en las clases reduce el acoplamiento.
- b. El término acoplamiento describe cuánto se ajusta una unidad de código a una tarea lógica o a una entidad.
- c. El acoplamiento describe la conectividad de los propios objetos de una clase.
- d. Un sistema débilmente acoplado se caracteriza por la imposibilidad de modificar una de sus clases sin tener que realizar cambios en ninguna otra.

<u>Pregunta 8</u>: Según el texto de la bibliografía básica de la asignatura, indique cuál de las siguientes afirmaciones es <u>FALSA</u> en relación a los métodos polimórficos:

- a. Una variable polimórfica es aquella que puede almacenar objetos de diversos tipos.
- b. Las llamadas a métodos en Java no son polimórficas.
- c. El mismo método puede invocar en diferentes momentos diferentes métodos dependiendo del tipo dinámico de la variable usada para hacer la invocación.
- d. Cada objeto en Java tiene un método toString que puede usarse para devolver un String de su representación.

<u>Pregunta 9</u>: Según el texto de la bibliografía básica de la asignatura, indique cuál de las siguientes opciones declarará un método en una clase que fuerza a una subclase a implementarlo:

```
a. static void methoda (double d1) {}
b. public native double methoda();
c. abstract public void methoda();
d. protected void methoda (double d1) {}
```

<u>Pregunta 10</u>: Dado el siguiente fragmento de código que pretende mostrar un ejemplo de sobrescritura, indique cuál de las siguientes opciones completaría el código para dar lugar a un ejemplo correcto de sobrescritura:

Número de Línea Código

```
class BaseClass {
      4
                   private float x = 1.0f;
      5
                   protected float getVar () {return x;}
      6
      7
              class Subclass extends BaseClass {
      8
                   private float x = 2.0f;
      9
                    //Insertar código aquí
     10
     11
a. float getVar ( ) { return x;}
b. public float getVar ( ) { return x;}
c. float double getVar ( ) { return x;}
d. public float getVar (float f ) { return f;}
```

<u>Pregunta 11</u>: Según el texto de la bibliografía básica de la asignatura, indique cuál de las siguientes afirmaciones es correcta en relación a la programación por parejas:

- a. Consiste en programar una clase por duplicado con el objetivo de depurar los errores más fácilmente.
- b. Es una manera de producir código, opuesta a la programación extrema en la que un solo programador desarrolla las clases asignadas.
- c. Era una técnica de programación tradicional que las empresas eliminaron para reducir costes.
- d. Es uno de los elementos de una técnica que se conoce como programación extrema.

Pregunta 12: La ejecución del siguiente fragmento de código ...

```
Número de Línea Código
4 impor
```

```
import javax.swing.*;
         class PrimerFrame extends JFrame
5
6
              public PrimerFrame()
7
8
                    setTitle ("Mi primer programa gráfico");
9
                    setSize(400,100);
10
11
               }
12
        public class FrameTest
13
14
              public static void main (String[] args)
15
16
                    JFrame frame = new PrimerFrame();
17
                    frame.setVisible (true);
18
19
20
```

Da lugar al siguiente programa:

Pero este último programa tiene el problema de que cuando se cierra la ventana, a pesar de que dejamos de verla, el programa no finaliza su ejecución. De esta forma, para que el programa funcione correctamente, hemos de interceptar el evento que se produce cuando cerramos la ventana y hacer que el programa termine su ejecución en ese momento. Indique qué clase hemos de definir en este caso y asociárselo al JFrame del ejemplo:

- a. ActionListener
- b. ComponentListener
- c. WindowListener
- d. ItemListener

<u>Pregunta 13</u>: En el siguiente fragmento de código hemos definido la ejecución de cinco bloques. Estos bloques se ejecutarán dependiendo de las excepciones que se produzcan en cada caso. Indique cuál de las siguientes afirmaciones es correcta:

```
Código
Número de Línea
               // Bloque1
      4
               try{
      5
                     // Bloque2
      6
               }catch (ArithmeticException e) {
      7
                     // Bloque3
      8
               }finally{
      9
                     // Bloque4
     10
     11
               // Bloque5
     12
```

- a. El Bloque4 no se ejecutará si se produce una excepción de tipo aritmético en el Bloque2
- b. El Bloque4 no se ejecutará si se produce un acceso a un objeto nulo (null) en el Bloque2
- c. El Bloque4 se ejecutará antes que el Bloque3 si se produce una excepción de tipo aritmético en el Bloque2
- d. El Bloque4 se ejecutará antes de que la excepción producida por un acceso a un objeto nulo (null) en el Bloque2 se propague hacia arriba

Pregunta 14: Indique el resultado de ejecutar el siguiente código que se muestra a continuación:

```
Número de Línea Código
```

```
public class test {
4
              public static void add3 (Integer i) {
5
                    int val = i.intValue();
6
                    val += 3;
7
                    i = new Integer (val);
8
9
              public static void main (String args[]) {
10
                    Integer i = new Integer (0);
11
                    add3 (i);
12
                    System.out.println (i.intValue ( ) );
13
14
15
```

- a. El programa indicará un fallo en tiempo de compilación.
- b. El programa imprime por pantalla el valor "0".
- c. El programa imprime por pantalla el valor "3".
- d. El programa lanzará una excepción en la línea 6 (int val = i.intValue();).

Pregunta 15: Dado el siguiente código ...

```
Número de Línea Código
4     public class testJunio {
5         public void setVar (int a, int b, float c) {
6         }
7         // INSERTAR CÓDIGO AQUÍ
8 }
```

Y los siguientes métodos:

```
private void setVar (int a, float c, int b) { }
protected void setVar (int a, int b, float c) { }
public int setVar (float a, int b, int c) {return b; }
public int setVar (int a, int b, float c) {return a; }
protected float setVar (int a, int b, float c) {return c; }
```

Indique qué métodos permiten una sobrecarga del método setVar de manera correcta:

- a. 1 y 2
- b. 1 y 3
- c. 3 y 5
- d. 3 y 4

PARTE PRÁCTICA [6,5 PUNTOS]:

El juego del Cinquillo Solitario es una variedad del popular Cinquillo en el cual un jugador puede jugar de manera online contra el ordenador. El juego se inicia con el reparto de todas las cartas de una baraja española que consta de 48 naipes o cartas, clasificados en cuatro palos (oros, bastos, copas y espadas) y numerados del 1 al 12. El objetivo del juego consiste en descartarse (quedarse sin cartas) antes que el oponente.

El jugador que posee el cinco de oros lo coloca boca arriba encima de la mesa y de esta forma empieza el turno de descartes. En turnos alternativos, cada jugador puede descartarse de máximo un naipe. Solo se pueden colocar cincos o todas aquellas cartas que siguen en progresión ascendente o descendente a las que hay en la mesa y sean del mismo palo. Es decir, si por ejemplo solamente está colocado el cinco de oros en la mesa, los jugadores solo podrán colocar el seis o el cuatro de oros o un cinco de otro palo.

Si un jugador no puede colocar ninguna carta pasa, y le toca el turno al siguiente jugador. Nunca se puede pasar si se puede colocar alguna carta. El primer jugador que consigue colocar todas sus cartas sobre la mesa es el ganador.

En cuanto a la dinámica del juego, uno de los contrincantes será un jugador humano (introducimos sus datos y sus preferencias por el teclado) y el otro contrincante será el propio ordenador.

- a) [1,5 puntos] Diseñe las clases necesarias que permita desarrollar el juego del Cinquillo Online utilizando un paradigma orientado a objetos. Debe hacerse uso de los mecanismos de la programación orientada a objetos siempre que sea posible y un diseño que permita la reutilización del código y facilite su mantenimiento.
- b) [1,5 puntos] Implemente un método que defina el funcionamiento del ordenador, teniendo en cuenta que todos sus procesos tienen que hacerse automáticamente sin la intervención del usuario.
- c) [1,5 puntos] Proporcione un método que muestre la lógica del juego, definiendo la información necesaria para establecer el uso de clases, interacciones entre elementos, declaración y uso de variables y métodos necesarios, etc.
- d) [2,0 puntos] Indiqué qué modificaciones son necesarias introducir en la aplicación para permitir la participación de varios jugadores humanos (hasta 4). Para ello el juego en lugar de constar de partidas individuales en las cuales gana el jugador que antes se descarta, para a ser una partida formada por un conjunto de rondas. El ordenador deberá llevar un registro de los puntos que cada jugador ha conseguido en cada ronda. El jugador que consigue descartarse primero logrará 3 puntos, el jugador o jugadores que se quede con un mayor número de cartas al finalizar la ronda obtendrá 0 puntos. El resto obtendrá 1 punto. La partida finaliza cuando un jugador consiga llegar al menos a los 10 puntos, ganando el que más puntos tenga en caso de superar esta puntuación varios jugadores. En caso de empate se jugará una ronda extra para decidir el ganador.