IS Notes

- DES (Data Encryption Standard) => Block Cypher => Fiestal Design
- It takes 64 Bits of Input Size while AES takes 128 bit Size.

**Step By Step DES : <u>DES Algorithm | Working of DES Algorithm | DES Encryption Process | Data Encryption Standard - YouTube</u>

(He Missed the Last Swapping Step but remaining is COOL)**

Here these numbers are Index (Positions) and not Values (for sake of explanation)

- Red Area is Function (F) called Mangler Function =>
 - 1. Doing Expansion (32 bits to 48 bits)
 - 2. XOR (Round Key and 48 bits)
 - 3. Apply Confusion and Diffusion by S-Box and P-Box (Generate 32 bits).
 - 4. Perform XOR (Output 32 bits)

- 5. Take XOR (Right Half with Left Half).
- 6. Now Output is 32 bit Right Half.
- 7. Initial Right Half (Before F Function) is now Left Half.
- Key is 64 bit (Broken to 32 bit Left and Right Half)
- Perform Left Shift on Both Halves.
- Pass both Halves to Permute Function to Generate 48-bit Round Key.

- 1. Li and Ri are Outputs (which is our Cypher Text).
- 2. Li-1 and Ri-1 are Initial Inputs (Acquired after Initial Permutation: IP).
- 3. Ki is Key for Current ith Round.

• How to Apply (E) => Expansion Function (32 bits to 48 bits)?

The Expansion Permutation

This is how you displace the index positions.

 After XOR with Key we pass (48 bits) to 8 S-Boxes, Each S-Box has 6 bits Each S-Box converts 6 bits to 4 bits

Now 8 S-Boxes with 4 Bits as Output, Total Output is 4x8 = 32 Bits

How S-Box converts 6-bits to 4-bits?

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
00	14	4	13	1	2	15	11	8	3	10	6	12	5	9	o	7
01	o	15	7	4	14	2	13	1	10	6	12	11	6	5	3	8
10	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
11	15	12	8	2	4	9	1	7	5	11	3	14	10	O	6	13

For example, $S_1(101010) = 6 = 0110$.

Now Pass 32 Bits to P-Box and it Outputs (Shuffled 32-Bits)
 Like this

The Permutation Function (P)											
16	7	20	21	29	12	28	17				
• 1	15	23	26	5	18	31	10				
2	8	24	14	32	27	3	9				
19	13	30	6	22	11	4	25				

These are Index or Positions

So Basically inside (F) => Mangler Function,

- 1. Expansion
- 2. XOR with Key
- 3. S-Box
- 4. P-Box
- 5. Output of Mangler Function (F): 32-Bits (Right Half)

- Now How does Main Key (64-Bit) convert into 56-Bit Sub-Key ??
- This Step is called (Permuted Choice 1)
 64 8 = 56 => Which 8 Bits are Dropped ?
 Bit positions 8, 16, 24, 32, 40, 48, 56, and 64 are discarded.
- Left Circular Shift =>
- In Which Way Shifts Applied for
- Each Round?

- 1 Shift for Rounds 1, 2, 9, 16
- 2 Shifts for all other rounds.

Now In (Permuted Choice 2), We will drop 8 Bits from 56 Bits, We will get 48-Bits Round Key

LINK FOR EXTRA STEPS NOT MENTIONED HERE

FOR EXAMPLE: Circular Left Shift and XOR:

<u>Cryptography Basics - Bitwise XOR , Shift , Circular Shift Operations - Cyber Security - CSE4003 - YouTube</u>

Circular Left Shift: Left se 1 ya 2 Bits uthao aur Right Side ke End pe Phenk do (SIMPLE) XDs

An Advantage of DES but it was Broken by Some Chad Person XDD

DES has a 56-bit key which raises the possibility of 2⁵⁶ possible keys. This statement deals with _____ attack.

- a. Timing
- b. Mathematical
- c. Brute Force
- d. DoS