

Parallel Computing Second Project

Implementation and Performance Analysis of Sequential and Parallel Version in CUDA

Giovanni Stefanini

Introduction

Histogram Equalization

- Histogram Equalization is a technique for enhancing image contrast.
- It **redistributes the intensity levels** of an image's histogram to achieve a more uniform distribution.
- It uses the Cumulative Distribution Function (CDF) to remap intensity values.
- Applicable to both grayscale and color images.
- Useful in the preprocessing of low-contrast images to improve visual quality.

Grayscale image equalization result

Color image equalization result

Sequential version

- Seguential version implemented in C++ with OpenCV.
- **Main steps** of the sequential algorithm:
 - Input: Image (grayscale or color).
 - Check if the image is grayscale; otherwise, convert it to grayscale.
 - 1. Compute **histogram**.
 - 2. Compute **CDF**.
 - 3. **Normalize CDF** to obtain new pixel values.
 - 4. Apply **transformation** (pixel remapping).
 - Output: Equalized grayscale image.

Observations

Sequential version

- Slow for large images due to nested loops over rows and columns for histogram computation (step 1) and transformation application (step 4).
- **CDF computation** (step 3) is well-suited for parallel **reduction**, as it is obtained by progressively summing the histogram values.
- Therefore, a **parallel CUDA implementation** can improve efficiency by using **three kernels** to replace the corresponding steps of the sequential version.

Parallel version CUDA

- Parallel version implemented in CUDA to exploit the GPU.
- Parallelized algorithm using **3 kernels**:
 - 1. computeHistogram: computes histogram using tiling.
 - **2.** computeCDF: computes CDF using reduction.
 - 3. applyTransformation: applies transformation using tiling.
- The parallel code includes **memory management** (CPU-GPU), **pinned memory allocation** to speed up data transfers, and **execution time measurement**.
- CDF normalization is performed on CPU.

Memory Management CUDA

- Some objects are allocated using cudaMalloc in the GPU global memory:
 - A buffer for input image, with cudaMemcpy used to transfer the image from host to device.
 - A buffer for output image, with cudaMemcpy used to transfer the image from device to host.
 - An integer array of size 256 for histogram.
 - An integer array of size 256 for CDF.
 - A buffer of size 256 for lookup table.
- Some objects are allocated using cudaHostAlloc in the CPU memory:
 - An integer array of size 256 for CDF, with cudaMemcpyAsync used to copy values from GPU to CPU.
 - A buffer of size 256 for lookup table, with cudaMemcpyAsync used to copy values from GPU to CPU.

First Kernel CUDA: computeHistogram

Its purpose is to compute histogram in parallel.

Main steps:

- **1. Initialize** local histogram to zero.
- **2. Load pixels** from global memory into shared memory (__shared__ uchar tile[16][16]).
- **3. Update local histogram** using atomic operations.
- **4.** Merge with global histogram using 'atomicAdd()'.

Strategy:

- > Shared memory: each thread block has shared memory for a local histogram, reducing access latency. The drawback is that local copies must be merged.
- > **Tiling**: Reduces global memory traffic by enabling **coalesced access**, improving efficiency.

Second Kernel CUDA: computeCDF

- Its purpose is to compute Cumulative Distribution Function (CDF) in parallel.
- Main steps:
 - Load histogram into shared memory.
 - 2. Use **parallel reduction** to progressively sum the values. Each value is updated by adding the previous one with an offset that doubles at each iteration.
 - 3. Write the result to global memory.
- Strategy:
 - > Shared memory: for fast access.
 - Parallel reduce: computing CDF requires O(log N) operations instead of O(N).

Third Kernel CUDA: applyTransformation

• Its purpose is to apply pixel transformation using precomputed lookup table.

Main steps:

After CDF normalization by the CPU, the lookup table is obtained.

- 1. Load data into shared memory using tiling for fast access.
- Each thread reads a pixel and replaces it with the corresponding value from the lookup table.

Strategy:

- > Shared memory: each thread block has shared memory for a local histogram, reducing access latency. The drawback is that local copies must be merged.
- > **Tiling**: enables **coalesced memory access**, maximizing GPU efficiency.

Technical Specifications

Hardware:

CPU: Intel Core i7-7700HQ (2.8 GHz)

GPU: NVIDIA GeForce GTX 1050

RAM: 16 GB

Compute Capability: 6.1

Software:

SO: Microsoft Windows 10 Home

CUDA Compiler: nvcc 12.8.61

Host Compiler: MSVC 1942

■ IDE: CLion 2024.2.2

Analysis Metrics

- Execution time, measured with *std::chrono* for total parallel execution time (T_{cuda}) and *cudaEventElapsedTime* for kernel execution time (T_{kernel}).
- Speedup = $\frac{T_{\text{sequenziale}}}{T_{\text{parallelo}}}$
 - Theoretical Speedup (Skernel):
 - Calculated considering only CUDA kernel execution time (Tkernel).
 - Excludes data transfer costs between CPU and GPU.
 - Measures the efficiency of parallel computing on the GPU.
 - Actual Speedup (Scuda):
 - Based on total parallel execution time (Tcuda), including data transfer.
 - Provides a realistic evaluation of overall performance.

Technical Choices

- Analyzing occupancy and based on experiments, the following dimensions were chosen:
 - blockSize: 16x16, to have 256 threads per block.
 - gridSize: depends on the image dimensions: [(width + blockSize.x-1)/blockSize.x], [(height + blockSize.y-1)/blockSize.y)]

Images used

 Test images were selected to analyze speedup and effectiveness based on different resolutions and lighting conditions.

Sequential images

 Visual result obtained with sequential Histogram Equalization, excellent for low resolution images, terrible for high resolution images.

CUDA Images

 Visual result obtained with CUDA parallel Histogram Equalization, great for low resolution images as well as high resolution images.

Execution Times

• For parallel version, the **kernel execution time** (T_{kernel}) and the **total parallel execution time** (T_{cuda}) are reported, including data transfer times between CPU and GPU.

Immagine	$T_{sequenziale}$ (ms)	T_{kernel} (ms)	T_{cuda} (ms)
lc 256x256	2.1704	0.233248	89.3771
di 1344x768	34.5987	0.580288	78.435
f 1280x813	36.0089	0.575712	91.6379
o 608x406	8.3431	0.450464	89.9615
u 1024x683	22.8673	0.63056	89.523
o 3680x2760	359.179	3.46342	599.038
u 3680x2760	335.684	3.52854	636.197
hr 3072x4096	421.064	4.29763	564.916

Speedup Analysis

• Notice how Theoretical Speedup (Skernel) and Actual Speedup (Scuda) vary.

Immagine	S_{kernel}	S_{cuda}
lc 256x256	9.31	0.024
di 1344x768	59.6	0.44
f 1280x813	62.5	0.39
o 608x406	18.5	0.093
u 1024x683	36.3	0.26
o 3680x2760	103.7	0.6
u 3680x2760	95.13	0.53
hr 3072x4096	97.99	0.75

- Theoretical Speedup (Skernel): up to 100x for high resolution images.
- Actual Speedup (Scuda): lower due to data transfer.

Conclusions

Analysis of results

- The CUDA kernel offers high efficiency, with speedups between 9x and 100x compared to the CPU, demonstrating the superiority and scalability of parallel computing, especially for high-resolution images.
- Images processed with CUDA look visually better.
- However, the total execution time increases significantly due to the data transfer overhead between CPU and GPU, which particularly affects small images.
- For larger images, such as 3680x2760 or 3072x4096, the overhead impact is reduced, allowing for an overall performance improvement. So, the **GPU** really becomes **advantageous for large images**.