Лабораторная работа №2

Сетевые технологии

Андреева Софья Владимировна

Содержание

1	Цель	ь работ	Ы														4
2	Вып	олнени	е лабораторной ра	аб	ОТ	Ы											5
3	Выч	ислени	Я														8
	3.1	Вариа	ит 1														8
		3.1.1															8
		3.1.2															8
	3.2	Вариа	инт 2														9
		3.2.1	Первая модель														9
		3.2.2	Вторая модель														9
	3.3	Вариа	инт 3														10
		3.3.1															10
		3.3.2															10
	3.4	Вариа	инт 4														11
		3.4.1															11
		3.4.2															11
	3.5	Вариа	инт 5														12
		3.5.1	Первая модель														12
		3.5.2	Вторая модель														12
	3.6	Вариа	инт 6														13
		3.6.1															13
		3.6.2															13
4	Выв	ОЛ															14

Список иллюстраций

2.1	Конфигурации
2.2	Топология
2.3	Таблица предельно допустимый диаметр домена коллизий в Fast
	Ethernet
	Выполнение работы
2.5	Временные задержки компонентов сети Fast Ethernet
2.6	Выполнение работы

1 Цель работы

Цель данной работы — изучение принципов технологий Ethernet и FastEthernet и практическое освоение методик оценки работоспособности сети,построенной на базе технологии FastEthernet.

2 Выполнение лабораторной работы

Нам нужно оценить работоспособность сети Fast Ethernet (100 Мбит/с) по первой и второй моделям. Конфигурации даны в таблице (6 вариантов), топология — на рисунке. Топология представляет собой домен коллизий с двумя повторителями класса II, соединёнными соединяющим сегментом. Сегменты 1, 2, 3 подключены к первому повторителю (левая сторона), сегменты 5, 6 — ко второму (правая сторона), а сегмент 4 — соединяющий между повторителями. Все сегменты — 100BASE-TX на витой паре категории 5.

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м	
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м	
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м	
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м	
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м	
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м	

Рис. 2.1: Конфигурации

Рис. 2.4. Топология сети

Рис. 2.2: Топология

Первая модель Это правила построения сети (таблица предельно допустимый диаметр домена коллизий в Fast Ethernet). Для двух повторителей класса II и сегментов ТХ предельный диаметр домена коллизий — 205 м. Диаметр рассчитывается как сумма длин на наихудшем пути: максимальная длина сегмента слева (max(cer1, cer2, cer3)) + длина соединяющего (cer4) + максимальная длина справа (max(cer5, cer6)). Если диаметр ≤ 205 м, сеть работоспособна по первой модели.

Таблица 2.1 Предельно допустимый диаметр домена коллизий в Fast Ethernet

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	_	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	_	308,8
Два повторителя класса II	205	228,0	-	216,2

Рис. 2.3: Таблица предельно допустимый диаметр домена коллизий в Fast Ethernet

Рис. 2.4: Выполнение работы

Вторая модель Это расчёт времени двойного оборота (RTT) в битовых интервалах (би). Параметры из таблицы Временные задержки компонентов сети Fast Ethernet : - Пара терминалов ТХ/FX: 100 би. - Повторители класса II ТХ/FX: 92 би каждый (всего 184 би). - Удельное время для витой пары саt.5: 1,112 би/м. - RTT = 100 + (1,112 × len_left_max) + (1,112 × len_connect) + (1,112 × len_right_max) + 92 + 92. - Добавить 4 би (страховой запас). Если RTT + 4 ≤ 512 би, сеть работоспособна по второй модели.

Таблица 2.2 Временные задержки компонентов сети Fast Ethernet

Компонент	Удельное время двойно- го оборота (би/м)	Максимальное время двойного оборота (би)				
Пара терминалов TX/FX	-	100				
Пара терминалов Т4	-	138				
Пара терминалов Т4 и TX/FX	-	127				
Витая пара категории 3	1,14	114 (100 м)				
Витая пара категории 4	1,14	114 (100 м)				
Витая пара категории 5	1,112	111,2 (100 м)				
Экранированная витая пара	1,112	111,2 (100 м)				
Оптоволокно	1,0	412 (412 м)				
Повторитель класса I	-	140				
Повторитель класса II, имеющий порты типа TX/FX	-	92				
Повторитель класса II, имеющий порты типа Т4	-	67				

Рис. 2.5: Временные задержки компонентов сети Fast Ethernet

Рис. 2.6: Выполнение работы

3 Вычисления

3.1 Вариант 1

3.1.1 Первая модель

- left max = max(S1,S2,S3) = max(96, 92, 80) = 96 M
- right max = max(S5,S6) = max(97, 97) = 97 M
- diameter = left max + S4 + right max = 96 + 5 + 97 = 198 m
- Лимит: 205 м работоспособная

3.1.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 96 × 1.112 = **106.752** би
- seg4 bi = 5 × 1.112 = **5.560** би
- right_bi = 97 × 1.112 = **107.864** би
- Сумма сегментов = 106.752 + 5.560 + 107.864 = **220.176 би**
- - терминалы (100 би) 320.176 би
- – 2 повторителя (2×92 би = 184 би) 504.176 би
- **-** запас 4 би **508.176 би**

• Лимит: 512 би работоспособная

3.2 Вариант 2

Исходные сегменты (м): S1=95 m, S2=85 m, S3=85 m, S4=90 m, S5=90 m, S6=98 m

3.2.1 Первая модель

- left max = max(S1,S2,S3) = max(95,85,85) = 95 m
- right max = max(S5,S6) = max(90,98) = 98 m
- diameter = left_max + S4 + right_max = 95 + 90 + 98 = **283** M
- Лимит: 205 м НЕ работоспособная

3.2.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 95 × 1.112 = **105.640 би**
- seg4 bi = 90 × 1.112 = **100.080** би
- right bi = 98 × 1.112 = **108.976 би**
- Сумма сегментов = 105.640 + 100.080 + 108.976 = **314.696 би**
- терминалы (100 би) 414.696 би
- – 2 повторителя (2×92 би = 184 би) 598.696 би
- **-** запас 4 би **602.696 би**
- Лимит: 512 би НЕ работоспособная

3.3 Вариант 3

Исходные сегменты (м): S1=60 m, S2=95 m, S3=10 m, S4=5 m, S5=90 m, S6=100 m

3.3.1 Первая модель

- left_max = max(S1,S2,S3) = max(60, 95, 10) = 95 M
- right max = max(S5,S6) = max(90, 100) = 100 M
- diameter = left max + S4 + right max = 95 + 5 + 100 = 200 M
- Лимит: 205 м работоспособная

3.3.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 95 × 1.112 = **105.640** би
- seg4_bi = 5 × 1.112 = **5.560 би**
- right bi = 100 × 1.112 = **111.200** би
- Сумма сегментов = 105.640 + 5.560 + 111.200 = **222.400 би**
- – терминалы (100 би) 322.400 би
- – 2 повторителя (2×92 би = 184 би) 506.400 би
- - запас 4 би **510.400 би**
- Лимит: 512 би работоспособная

3.4 Вариант 4

Исходные сегменты (м): S1=70 m, S2=65 m, S3=10 m, S4=4 m, S5=90 m, S6=80 m

3.4.1 Первая модель

- left max = max(S1,S2,S3) = max(70,65,10) = 70 M
- right max = max(S5,S6) = max(90,80) = 90 M
- diameter = left max + S4 + right max = 70 + 4 + 90 = 164 m
- Лимит: 205 м работоспособная

3.4.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 70 × 1.112 = **77.840 би**
- seg4 bi = 4 × 1.112 = **4.448 б**и
- right bi = 90 × 1.112 = **100.080** би
- Сумма сегментов = 77.840 + 4.448 + 100.080 = **182.368** би
- - терминалы (100 би) 282.368 би
- 2 повторителя (2×92 би = 184 би) 466.368 би
- запас 4 би 470.368 би
- Лимит: 512 би работоспособная

3.5 Вариант 5

Исходные сегменты (м): S1=60 m, S2=95 m, S3=10 m, S4=15 m, S5=90 m, S6=100 m

3.5.1 Первая модель

- left max = max(S1,S2,S3) = max(60, 95, 10) = 95 M
- right max = max(S5,S6) = max(90, 100) = 100 M
- diameter = left max + S4 + right max = 95 + 15 + 100 = 210 M
- Лимит: 205 м НЕ работоспособная

3.5.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 95 × 1.112 = **105.640** би
- seg4 bi = 15 × 1.112 = **16.680** би
- right bi = 100 × 1.112 = **111.200** би
- Сумма сегментов = 105.640 + 16.680 + 111.200 = **233.520 би**
- - терминалы (100 би) 333.520 би
- 2 повторителя (2×92 би = 184 би) 517.520 би
- - запас 4 би 521.520 би
- Лимит: 512 би НЕ работоспособная

3.6 Вариант 6

Исходные сегменты (м): S1=70 m, S2=98 m, S3=10 m, S4=9 m, S5=70 m, S6=100 m

3.6.1 Первая модель

- left max = max(S1,S2,S3) = max(70, 98, 10) = 98 m
- right max = max(S5,S6) = max(70, 100) = 100 M
- diameter = left max + S4 + right max = 98 + 9 + 100 = 207 M
- Лимит: 205 м НЕ работоспособная

3.6.2 Вторая модель

- Удельное: 1.112 би/м
- left bi = 98 × 1.112 = **108.976** би
- seg4_bi = 9 × 1.112 = **10.008 би**
- right bi = 100 × 1.112 = **111.200** би
- Сумма сегментов = 108.976 + 10.008 + 111.200 = **230.184 би**
- - терминалы (100 би) 330.184 би
- 2 повторителя (2×92 би = 184 би) 514.184 би
- - запас 4 би 518.184 би
- Лимит: 512 би НЕ работоспособная

4 Вывод

Я изучила принципы технологий Ethernet и FastEthernet и практическое освоение методик оценки работоспособности сети,построенной на базе технологии FastEthernet. - По первой модели работоспособны варианты 1, 3, 4. - По второй модели работоспособны варианты 1, 3, 4. - Варианты 2, 5, 6 неработоспособны по обеим моделям из-за превышения диаметра и/или RTT (коллизии не будут правильно обнаруживаться).