In [1]:

#PROJECT INTRODUCTION and WHAT IT IS ABOUT

#For this project I will be exploring publicly available data from LendingClub.com. Lending Club connects people who need

#money (borrowers) with people who have money (investors). Hopefully, as an investor you would want to invest in people

#who showed a profile of having a high probability of paying you back. We will try to c reate a model that

#will help predict this.

#Lending club had a very interesting year in 2016, so let's check out some of their dat a and keep the context in mind.

#This data is from before they even went public.

#I will use lending data from 2007-2010 and be trying to classify and predict whether o r not the borrower paid back #their loan in full.

In [2]:

import pandas as pd
import numpy as np

In [3]:

import matplotlib.pyplot as plt
import seaborn as sns

In [5]:

loan=pd.read_csv('loan_data.csv')

In [7]:

#Let's start to know what's our data all about
loan.head()

Out[7]:

	credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.with.c
0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5639.9
1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2760.00
2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710.00
3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	2699.9
4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4066.00
4								

In [8]:

loan.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	credit.policy	9578 non-null	int64
1	purpose	9578 non-null	object
2	int.rate	9578 non-null	float64
3	installment	9578 non-null	float64
4	<pre>log.annual.inc</pre>	9578 non-null	float64
5	dti	9578 non-null	float64
6	fico	9578 non-null	int64
7	days.with.cr.line	9578 non-null	float64
8	revol.bal	9578 non-null	int64
9	revol.util	9578 non-null	float64
10	inq.last.6mths	9578 non-null	int64
11	delinq.2yrs	9578 non-null	int64
12	pub.rec	9578 non-null	int64
13	<pre>not.fully.paid</pre>	9578 non-null	int64
dtvn	es: float64(6), int	64(7), object(1)	

dtypes: float64(6), int64(7), object(1)

memory usage: 1.0+ MB

In [9]:

loan.describe()

Out[9]:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	day
count	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	
mean	0.804970	0.122640	319.089413	10.932117	12.606679	710.846314	
std	0.396245	0.026847	207.071301	0.614813	6.883970	37.970537	
min	0.000000	0.060000	15.670000	7.547502	0.000000	612.000000	
25%	1.000000	0.103900	163.770000	10.558414	7.212500	682.000000	
50%	1.000000	0.122100	268.950000	10.928884	12.665000	707.000000	
75%	1.000000	0.140700	432.762500	11.291293	17.950000	737.000000	
max	1.000000	0.216400	940.140000	14.528354	29.960000	827.000000	1
4							•

In [10]:

#Here's moving on to some exploratory data analysis and visualisation to get some insights from our data

In [14]:

```
#A histogram of two FICO distributions on top of each other, one for each credit.polic
y outcome
plt.figure(figsize=(11,7))
loan[loan['credit.policy']==1]['fico'].hist(bins=40,color='green',label='Credit Policy
= 1 ',alpha=0.5)
loan[loan['credit.policy']==0]['fico'].hist(bins=40,color='red',label='Credit policy =
    0',alpha=0.5)
plt.legend()
plt.xlabel('FICO')
```

Out[14]:

Text(0.5, 0, 'FICO')

In [15]:

#We can see that the fico scores are directly proportional to the credit policy criteria,

#We can also see that there is some kind of a cut off point around 660 fico score, below which credit policy is not matched

In [34]:

Out[34]:

Text(0.5, 0, 'FICO')

In [19]:

#Seems like most people have paid up, good work people, keep up the grind

In [21]:

```
#A countplot using seaborn showing the counts of loans by purpose, with the color hue d
efined by not.fully.paid
plt.figure(figsize=(11,8))
sns.countplot(x='purpose',data=loan,hue='not.fully.paid',palette='Set1')
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x20f5ebf1708>

In [22]:

#Hmm, so we observe that debt consolidation is the most common reason of wanting a loan

In [25]:

#Let's see the trend between FICO score and interest rate with the following jointplot.
sns.jointplot(x='fico',y='int.rate',data=loan,color='purple')

Out[25]:

<seaborn.axisgrid.JointGrid at 0x20f5e917788>

In [26]:

#Now what we observe is as the fico score increases you have better credit, #so the interest rate is probably going to go lower . Makes sense.

In [27]:

The following lmplots are to see if the trend differed between not.fully.paid and cre dit.policy.

In [30]:

Out[30]:

<seaborn.axisgrid.FacetGrid at 0x20f5ed12f88>

<Figure size 864x576 with 0 Axes>

In [31]:

#Behavior seems pretty much the same, on both paid and not paid sides , based on the credit policy

In [32]:

#We've done some good amount of exploratory data analysis

In [33]:

#Let's get ready to set up our data for our Random Forest Classification Model

In [35]:

#Notice that the purpose column as categorical

#That means we need to transform them using dummy variables so sklearn will be able to understand them.

#Let's do this in one clean step using pd.get_dummies.

In [36]:

```
category_feats=['purpose']
```

In [37]:

set_data=pd.get_dummies(loan,columns=category_feats,drop_first=True)

In [38]:

```
set_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	credit.policy	9578 non-null	int64		
1	int.rate	9578 non-null	float64		
2	installment	9578 non-null	float64		
3	log.annual.inc	9578 non-null	float64		
4	dti	9578 non-null	float64		
5	fico	9578 non-null	int64		
6	days.with.cr.line	9578 non-null	float64		
7	revol.bal	9578 non-null	int64		
8	revol.util	9578 non-null	float64		
9	inq.last.6mths	9578 non-null	int64		
10	delinq.2yrs	9578 non-null	int64		
11	pub.rec	9578 non-null	int64		
12	not.fully.paid	9578 non-null	int64		
13	purpose_credit_card	9578 non-null	uint8		
14	<pre>purpose_debt_consolidation</pre>	9578 non-null	uint8		
15	purpose_educational	9578 non-null	uint8		
16	purpose_home_improvement	9578 non-null	uint8		
17	purpose_major_purchase	9578 non-null	uint8		
18	purpose_small_business	9578 non-null	uint8		
dtypes: float64(6), int64(7), uint8(6)					

In [39]:

#We can see that the purpose column is disintegrated

In [40]:

```
set_data.head()
```

memory usage: 1.0 MB

Out[40]:

	credit.policy	int.rate	installment	log.annual.inc	dti	fico	days.with.cr.line	revol.bal	rı
0	1	0.1189	829.10	11.350407	19.48	737	5639.958333	28854	
1	1	0.1071	228.22	11.082143	14.29	707	2760.000000	33623	
2	1	0.1357	366.86	10.373491	11.63	682	4710.000000	3511	
3	1	0.1008	162.34	11.350407	8.10	712	2699.958333	33667	
4	1	0.1426	102.92	11.299732	14.97	667	4066.000000	4740	
4									•

In [41]:

#So our data is ready , lets move forward #Time to split our data into a training set and a testing set.

```
In [42]:
```

```
from sklearn.model_selection import train_test_split
```

In [45]:

```
#Splitting up our data
X=set_data.drop('not.fully.paid',axis=1)
y=set_data['not.fully.paid']
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=
101)
```

In [46]:

from sklearn.tree import DecisionTreeClassifier

In [47]:

#Lets begin with a single tree, and then we'll move forward to random forrests
dtree=DecisionTreeClassifier()

In [48]:

```
dtree.fit(X_train,y_train)
```

Out[48]:

```
DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=N one,

min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')
```

In [49]:

#Predictions and Evaluation of Decision Tree

In [50]:

```
dtree_pred=dtree.predict(X_test)
```

In [51]:

from sklearn.metrics import classification_report,confusion_matrix

In [52]:

```
print(confusion_matrix(y_test,dtree_pred))
print('\n')
print(classification_report(y_test,dtree_pred))
```

```
[[1988 443]
[ 336 107]]
```

	precision	recall	f1-score	support
0	0.86	0.82	0.84	2431
1	0.19	0.24	0.22	443
accuracy			0.73	2874
macro avg	0.52	0.53	0.53	2874
weighted avg	0.75	0.73	0.74	2874

In [53]:

```
#Training the Random Forest model

from sklearn.ensemble import RandomForestClassifier
```

In [54]:

```
rfc=RandomForestClassifier(n_estimators=350)
```

In [55]:

```
rfc.fit(X_train,y_train)
```

Out[55]:

max_leat_nodes=None, max_samples=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=350,
n_jobs=None, oob_score=False, random_state=None,
verbose=0, warm_start=False)

In [57]:

```
rfc_pred=rfc.predict(X_test)
```

In [58]:

```
print(confusion_matrix(y_test,rfc_pred))
print('\n')
print(classification_report(y_test,rfc_pred))
```

```
[[2423 8]
[ 431 12]]
```

	precision	recall	f1-score	support
0	0.85	1.00	0.92	2431
1	0.60	0.03	0.05	443
accuracy			0.85	2874
macro avg	0.72	0.51	0.48	2874
weighted avg	0.81	0.85	0.78	2874

In [59]:

#What performed better the random forest or the decision tree??

In [61]:

#Well it really depends what metric we are trying to optimise for #Look at recall,a single decision tree did well for class 1 than random forrest #So it depends what the cost associated with each of the metrics #overall average of random forrest was better, but not alike in some particular metrics #There comes the business domain experience

In []: