

LOGISTIC REGRESSION WITH PYTHON

A FREE CRASH COURSE

About Me

I've been in tech for 26 years and doing hands-on analytics for 12+ years.

I've supported all manner of business functions and advised leaders.

Hands-on analytics consultant and instructor.

I have successfully trained 1000+ professionals in a live classroom setting.

Trained 1000s more via my online courses and tutorials.

Housekeeping

Why Learn Logistic Regression?

The 4 Level of Analytics

Diagnostic Analytics is the minimum level required.

True Data Analysis

Descriptive Analytics

<u>What</u> happened in the past.

Excel Reports
Executive Dashboards
PowerPoint

Diagnostic Analytics

Why it happened in the past.

BI Dashboards Excel Workbooks Analytics Tools PowerPoint

Predictive Analytics

<u>What</u> is likely to happen in the future.

BI Dashboards Excel Workbooks Analytics Tools PowerPoint

Prescriptive Analytics

<u>How</u> to optimize the business.

Excel Workbooks Analytics Tools PowerPoint

Logistic Regression in Action

This webinar is a crash course in *binary logistic regression* analysis.

This form of analysis is useful to ANY professional:

[HR] - What factors are associated with high performers quitting?

[Non-Profit] – What is the chance that a prospect will become a donor?

[Product Management] - What feature usage(s) are highly predictive of a sticky customer?

[Marketing] - What are the demographic factors that predict conversion?

[Finance] – What is chance that this transaction will result in a chargeback?

The list of impactful analyses is endless!

The Heart Dataset

Statlog (Heart)

This dataset is a heart disease database similar to a database already present in the repository (Heart Disease databases) but in a slightly different form

Dataset Characteristics

Multivariate

Attribute Type

Categorical, Real

Subject Area

Life

Instances

270

Associated Tasks

Classification

Attributes

13

DOWNLOAD

CITE

" 16 citations

• 19884 views

DOI

10.24432/C57303

License

This dataset is licensed under a **Creative Commons Attribution 4.0 International**(CC BY 4.0) license.

This allows for the sharing and adaptation of the datasets for any purpose, provided that the appropriate credit is given.

Information

Additional Information

Cost Matrix

_____ abse pres...

SHOW MORE V

Has Missing Values

Symbol: 0

The Heart Dataset

Dependent Variable →

Independent Variables

Feature	Туре	Categorical Levels
HeartDisease	Categorical	Class label. Value of 1 if heart disease is present, 0 otherwise
Age	Numeric	
Male	Categorical	Value of 1 if male, 0 otherwise
ChestPainType	Categorical	Chest pain type. Values are 1 thru 4
BloodPressure	Numeric	
Cholesterol	Numeric	
BloodSugar	Categorical	Value of 1 if fasting blood sugar > 120 mg/dl, 0 otherwise
EEG	Categorical	Values of 0 thru 2
MaxHR	Numeric	
Angina	Categorical	Value of 1 if angina induced, 0 otherwise
OldPeak	Numeric	
PeakST	Numeric	
Flourosopy	Numeric	
Thal	Categorical	3 = normal; 6 = fixed defect; 7 = reversable defect

What Is a Model?

Model Defined

"A **model** is an informative representation of an object, person or system...Models can be divided into **physical models** (e.g., a model plane) and **abstract models** (e.g., mathematical expressions describing behavioral patterns)."

- Wikipedia

This crash course is all about abstract models.

Mathematical Models

Logistic regression models are *mathematical models*.

Mathematical models usually look like this:

$$Y = b_0 + b_1 x_1 + b_2 x_2^2 + b_3 x_1 x_2 + \varepsilon$$

As discussed previously, logistic regression models represent systems with binary outcomes:

- Yes/No
- True/False
- Approve/Deny
- Legit/Fraudulent

Model Equations 101

Set the Way Back Machine...

As discussed, logistic regression models are mathematical models (i.e., equations).

The good news is that you use Python to craft logistic regression models.

There will be some math you need to learn, but Python does the heavy lifting for you.

As the data analyst, you will learn to *interpret the equations*.

Remember this?

The slope

The y-intercept

$$y = mx + b$$

The equation for a line!

This is the same thing.

The y-intercept The slope

$$y = b_0 + b_1 x_1$$

Taking it up a notch.

An Example

Imagine you are a real estate agent and want to be able to predict the selling prices of houses.

In this scenario *price* (y) is the *dependent variable* - the value you are trying to predict.

Additionally, your *independent variables* are:

- The size of the house in square feet (x_1)
- The number of bedrooms (x_2)
- The number of bathrooms (x_3)

Let's say your model is as follows:

Estimated from the data.
$$y = 135000 + 23.76x_1 + 4323.59x_2 + 1881.13x_3$$

Using the model to predict the price for this house:

- 2,300 square feet
- 4 bedrooms
- 2.5 bathrooms

$$y = 135000 + (23.76 \times 2300) + (4323.59 \times 4) + (1881.13 \times 2.5)$$

 $y = 135000 + 54648 + 17294.36 + 4702.83$

$$y = 211,645.19$$

The Logistic Curve

The Problem

The equations from the previous slides produce *straight lines*.

For example, the equation to predict degrees Fahrenheit from degrees Celsius.

However, we need an equation to predict binary outcomes.

In this crash course we will focus on predicting *binary labels*:

- Legitimate/Fraudulent
- Approve/Deny
- True/False (i.e., 1/0)

We need an equation that produces values between 0 and 1.

Putting It All Together

The Problem

We know logistic regression models are math equations:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

We also know these math equations do not produce labels (i.e., binary outcomes).

We can use the logistic curve to get the labels we need:

$$\frac{1}{1+e^{-\lambda}}$$

The logistic curve gives us the *probability* of a label occurring given the data.

When we combine these two, we get the magic of logistic regression:

$$P(y) = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3)}}$$

Let's cement these ideas with your first model.

You have become convinced there is an association between being male and heart disease.

Using the Heart Data Set, you can perform a logistic regression analysis.

You craft a logistic regression model with the following *dependent/independent variables*:

- HeartDisease (y) value of 1 or 0
- *Male* (x_1) value of 1 or 0

$$b_0 + b_1 x_1$$

Using the *Heart* data, the model *intercept* and *coefficient* are estimated:

•
$$b_0 = -1.2090$$

•
$$b_1 = 1.3953$$

Combining the equation with the logistic curve give the full model:

$$-1.2090 + 1.3953x_1$$

$$P(y) = \frac{1}{1 + e^{-(-1.2090 + (1.3953x_1))}}$$

When male, per the model, what's the probability of heart disease?

$$P(y) = \frac{1}{1 + e^{-(-1.2090 + (1.3953 \times 1))}} = \frac{1}{1 + e^{-(-1.2090 + 1.39553)}}$$

$$P(y) = \frac{1}{1 + e^{-(0.1883)}} = \frac{1}{1 + 0.82837} = 0.5469 = 54.69\%$$

Is this a good model?

What's the Baseline?

Let's return to your first model – the association of being male with heart disease.

To establish a baseline, you look at the *Heart* data used to craft your logistic regression model.

The following summarizes the data:

- There are 270 rows of data (i.e., observations)
- Of the 270 observations, 120 have *HeartDisease* indicated (i.e., a *label* of 1)

The *baseline model* is the proportion of labels:

$$P(y) = 120 \div 270 = 0.4444 = 44.44\%$$

The baseline model provides the simplest predictive model.

With only the label data, we would predict heart disease 44.44% of the time.

Using a simple decision threshold (e.g., >50%), we would never predict heart disease.

Here's the question – is the logistic regression model more useful?

Baseline Usefulness

Analyzing data with logistic regression is an iterative process.

You typically craft many models during a single data analysis (e.g., using different independent variables).

Throughout the process, your goal is to craft more accurate models than the baseline.

Revisiting the *Heart* data example baseline and logistic regression models:

Baseline model

$$P(y) = 120 \div 270 = 0.4444$$

The baseline predicts no heart disease!

Which model is more accurate?

"Male model"
$$(x_1 = 1 \text{ male, 0 otherwise})$$

$$P(y) = \frac{1}{1 + e^{-(-1.2090 + (1.3953x_1))}}$$

$$P(y_{male}) = \frac{1}{1 + e^{-(-1.2090 + (1.3953 \times 1))}} = 0.5469$$

$$P(y_{otherwise}) = \frac{1}{1 + e^{-(-1.2090 + (1.3953 \times 0))}} = 0.2299$$

This model predicts only males have heart disease.

Goodness of Fit

Goodness for Everyone

Comparing models for usefulness (i.e., accuracy) cannot be left to gut feel.

Luckily for us, statisticians figured out a way to compare logistic regression models in a standardized way.

Not surprisingly, they crafted a mathematical calculation to quantify a model's goodness of fit.

The goodness of fit calculation is called the log-likelihood.

Before looking at the math, it best to think about the intuition that drives the math.

Think of the labels we try to predict:

- 1. When the label in the data is 0, models fit well when they predict a probability close to 0
- 2. When the label in the data is 1, models fit well when they predict a probability close to 1

Plug & Chug

log-likelihood =
$$\sum_{i=1}^{n} [y_i \ln(P(y_i)) + (1 - y_i) \ln(1 - P(y_i))]$$

The label in the data

The model's prediction

ediction				
		_		

Correct predictions

i	y	$P(y_i)$
1	0	0.00001
2	0	0.99999
3	1	0.00001
4	1	0.99999

In(<i>P(y_i)</i>)	In(1 - <i>P(yi)</i>)
-11.51293	-0.00001
-0.00001	-11.51293
-11.51293	-0.00001
-0.00001	-11.51293

y _i ln(<i>P(y_i)</i>)	$(1 - y_i) \ln(1 - P(y_i))$	ı	row total
0.00000	-0.00001		-0.00001
0.00000	-11.51293		-11.51293
-11.51293	0.00000		-11.51293
-0.00001	0.00000		-0.00001

- 1. The log-likelihood is always negative.
- 2. The log-likelihood calculation scores correct predictions close to zero.
- 3. The log-likelihood calculation scores incorrect predictions away from zero.
- 4. The most useful (i.e., accurate) models have grand totals as close to zero as possible.

Logistic Regression with Python


```
import pandas as pd

# Load the Heart dataset
heart = pd.read_csv('Heart.csv')
heart.head()
```

	HeartDisease	Age	Male	ChestPainType	BloodPressure	Cholesterol	BloodSugar	EEG	MaxHR	Angina	OldPeak	PeakST	Flourosopy	Thal
0	1	70	1	4	130	322	0	2	109	0	2.4	2	3	3
1	0	67	0	3	115	564	0	2	160	0	1.6	2	0	7
2	1	57	1	2	124	261	0	0	141	0	0.3	1	0	7
3	0	64	1	4	128	263	0	0	105	1	0.2	2	1	7
4	0	74	0	2	120	269	0	2	121	1	0.2	1	1	3

Your first model will predict HeartDisease using Male


```
import statsmodels.formula.api as smf

# Craft a Logistic regression model to predict HeartDisease based on being Male
heart_model_1 = smf.logit(formula = 'HeartDisease ~ Male', data = heart)

# Train the model from the data
model_1_results = heart_model_1.fit()

# What are the model results?
print(model_1_results.summary())
```


Optimization terminated Current function							
Iterations 5	Iterations 5 Logit Regression Results						
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	HeartDisease Logit MLE n, 23 Jul 2023 11:24:48 True nonrobust	<pre>Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null:</pre>		=======		✓ Your model✓ Baseline model	
coef Intercept -1.2090 Male 1.3953	std err 	z	P> z	 [0.025 -1.708 0.817	0.975]		
=======================================			=========				

Your model is better than the baseline, but not by much!

When Simple Won't Do

Adding Complexity

The last section covered *simple logistic regression* where models take the form of:

$$b_0 + b_1 x_1$$

However, modeling systems sufficiently usually requires more than a single independent variable.

Multiple logistic regression allows you to use more than one independent variable:

$$b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3$$

We could try to improve upon the "male model" by adding a 2nd independent variable...

HeartDisease	Age	Male
1	70	1
0	67	0
1	57	1
0	64	1
0	74	0

$$b_0 + b_1 x_1 + b_2 x_2$$

$$\uparrow \qquad \uparrow$$

$$Male \quad Age \qquad P(y) = \frac{1}{1 + e^{-(b_0 + b_1)}}$$
Predictions

$$P(y) = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2)}}$$

$$b_0 + b_1 x_1 + b_2 x_2$$

$$p(y) = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2)}}$$

$$\sum_{i=1}^{n} [y_i \ln(P(y_i)) + (1 - y_i) \ln(1 - P(y_i))]$$

Goodness of fit

The process of adding variables, expanding models, and all calculations remains the same whether you have 2, 3, 4, or 15 independent variables.

This makes crafting multiple logistic regression models in Python quite easy.

Your Second Model


```
# A Logistic regression model to predict HeartDisease using Male and Age
heart_model_2 = smf.logit(formula = 'HeartDisease ~ Male + Age', data = heart)
# Train the model from the data
model_2_results = heart_model_2.fit()
# What are the model results?
print(model_2_results.summary())
```

Your Second Model

Curr	Optimization terminated successfully. Current function value: 0.607039 Iterations 5						
		Logit Reg	gression Re	sults			
Dep. Variable Model: Method: Date: Time: converged: Covariance Ty	Sun	, 23 Jul 202 17:01:0	Df Res LE Df Mod 23 Pseudo 88 Log-Li ue LL-Nul	R-squ.: kelihood: .l:			
=========	coef	std err	z	P> z	[0.025	0.975]	
Intercept Male Age	-4.8637 1.6222 0.0639	0.959 0.315 0.016	-5.071 5.156 4.060	0.000 0.000 0.000	-6.744 1.006 0.033	-2.984 2.239 0.095	

Your 2nd model is better than the first!

Interpreting Your Models

Your Third Model


```
# A Logistic regression model to predict HeartDisease using Male, Age, & Angina
heart_model_3 = smf.logit(formula = 'HeartDisease ~ Male + Age + Angina', data = heart)
# Train the model from the data
model_3_results = heart_model_3.fit()
# What are the model results?
print(model_3_results.summary())
```

Your Third Model


```
Optimization terminated successfully.
       Current function value: 0.538839
       Iterations 6
                       Logit Regression Results
Dep. Variable:
                     HeartDisease No. Observations:
                                                                 270
Model:
                           Logit Df Residuals:
                                                                 266
Method:
                             MLE Df Model:
                  Sun, 23 Jul 2023 Pseudo R-squ.:
Date:
                                                              0.2156
                                                             -145.49 ← Your 3<sup>rd</sup> model
                         17:10:56 Log-Likelihood:
Time:
                            True LL-Null:
converged:
                                                              -185.48 ← Baseline model
Covariance Type:
                       nonrobust LLR p-value:
                                                            3.090e-17
                                                                      Confidence
                                                    [0.025
                                                              0.975]
              coef std err z P> z
                                                                      Intervals
Intercept
        -5.2011 1.030 -5.051 0.000
                                                    -7.219
                                                              -3.183
Male
                                                    0.813
                                                               2.117
          1.4648 0.333 4.404 0.000
          0.0614 0.017 3.643 0.000
                                                     0.028
                                                               0.094
Age
            1.7952 0.312 5.761
                                                     1.184
Angina
                                          0.000
                                                               2.406
```

Confidence Intervals

Think of confidence intervals as the logistic regression model estimating the range of plausible values for your model's coefficients.

You are looking for any confidence intervals that do not include the value of 0.0...

"95% Confidence Interval"

When the confidence interval **does not** include 0.0, the coefficient is *statistically significant*.

Based on the data used to craft the logistic regression model, statistically significant coefficients are important predictors.

NOTE – Confidence intervals are estimated for a particular dataset and a particular set of independent variables!

Your Third Model

Optimization	Optimization terminated successfully.						
Curi	Current function value: 0.538839						
Ite	Iterations 6						
		Logit R	egression 	Results			
Dep. Variable: HeartDisease No. Observations:					270		
Model:		Lo	git Df R	esiduals:		266	
Method:			MLE Df M	lodel:		3	
Date:	Su	ın, 23 Jul 2	023 Pseu	do R-squ.:		0.2156	
Time:		17:10	:56 Log-	Likelihood:		-145.49	
converged:		Т	rue LL-N	ull:		-185.48	
Covariance Ty	/pe:	nonrob	ust LLR	p-value:		3.090e-17	
	coef	std err	Z	P> z	[0.025	0.975]	
Intercept	-5.2011	1.030	-5.051	0.000	-7.219	-3.183	
Male	1.4648	0.333	4.404	0.000	0.813	2.117	
Age	0.0614	0.017	3.643	0.000	0.028	0.094	
Angina	1.7952	0.312	5.761	0.000	1.184	2.406	

Coefficients

Interpreting Coefficients

Logistic regression model coefficients require a transformation to make them useful for interpretation.

The transformation allows the coefficients to be interpreted as odds ratios.

Odds ratios represent the *strength of association* between two *events*.

As it turns out, there is a very specific mathematical relationship between the coefficients of your models and the odds ratio calculation.

This relationship provides a shortcut for your calculations:

 $odds \ ratio = e^{Coefficient \ Value}$

Given your third model and the *Male* independent variable:

 $odds \ ratio = e^{1.4648} = 4.3265$

In Python code:

```
from math import exp
print(exp(model_3_results.params['Male']))
from math import exp
print(exp(model_3_results.params['Male']))
```

Interpreting Your Third Model

	coef
Intercept	-5.2011
Male	1.4648
Age	0.0614
Angina	1.7952

```
from math import exp
print(exp(model_3_results.params['Male']))

4.326528261966836  The model estimates that males are 4.33 times more likely to have heart disease
```

```
1 # Get the odds ratio for the Age coefficient
2 print(exp(model_3_results.params['Age']))

1.0633171823751426 The model estimates that each year of age raises
the relative risk of heart disease by 6.3%
```

```
1 # Get the odds ratio for the Angina coefficient
2 print(exp(model_3_results.params['Angina']))
```

6.020938842080951 ← The model estimates that patients with angina are 6 times more likely to have heart disease.

Wrap-Up

Continue Your Learning

Thank You!