

2/22

FIGURE 2

Cell lines, IC ₅₀ (ng/mL)		Synthesis inhibition IC ₅₀ (μg/mL)	
P 388	0.2	D4	. 1
A 549	0.2	Prot	>1
HT 29	0.5	DNA	0.1
MEL 28	5.0	RNA	0.03
CV-1	1.0		

FIGURE 3

'R4 [_/

MeNH

Saframycin II: R₁=R₂=R₃=Me, R₄=OMe

Intermediate for:

ET 743: R1, R2=-CH2-, R3=Ac, R4=H

Strategy B: Mannich-like cyclization

TIBSO

2) BnBr, K2CO3, CH3CN, 80°C

3) TBAF, THF

> 70%

1) ScO₂, H₂O₂, t-BuOH, 40°C

then Et3N, MeOH

FIGURE 5B

High regioselectivity and unexpected low stereoselectivity for the azide-opening step:

R = Bn, TBS, MOM

(other two analogues were synthesized by the same way)

Wrong stereolsomer

4) n. 1N HCI,THF b. NaIO4, KMnO4,Nu₂CO₃

3) McI, NaII, DMF, THF

2) Ph3P,(Boc)2O,THF-H2O

H00¢

McBocN,

FIGURE 6

(Mosher ester analysis, >95% ee)

9/22

OMe

Cyclization Conditions:

Product:

OMe

HO

OMe O

> CH(OMe)₃, BF₃·Et₂O, reflux

> CH(OMe)3, HCl or CH3SO3H, r.t. or heat

> Cl₂CHOCH₃, TiCl₄, CH₂Cl₂, 0°C-> reflux

> Acetic formyl anhydride, CH2Cl2, POCl3, DMF

> CH(OMe)₃, polyphosphoric acid, reflux > t-BuOCH(NMe₂)₂, toluene, r.t. or reflux

compound A

Compound A

OMe

54

OMe

TBSO.

2) Ti(OiPr)₂(N₃)₂. PhH, reflux

1) SAE, 95%

...IIN3

HOH

61%, Single isomer!!

OMe

OMe

Et2AICI, (CII2O),

Me

OMe

CH2Cl2, 0°C-> rt.

ii%96

Me

OMe

FIGURE 8A

TBSO

3) DIBAL-II, CH₂Cl₂, 0°C

>88%

2) Ph3P,(Boc)2O,THF-H2O

25%!!

1) DMP, p-TsOH, acctone

step based on few failed attempts, b/c of Not a good candidate for the cyclization lack of N-Methyl group! OMe

TBSO

,Me

McO,

HOH

1) DIBAL-H, CH₂C₂, 0°C (94%)

2) SAE, 98%, (>95%ee)

Ti(OiPr)₂(N₃)₂, PhH, reflux

Me

McO,

TBSO

OMe

76%, Single isomer!!

3) PMBCI, NaII, THF-DMF

89%

1) Acetonide formation

2) TBAF, THF

OH 0°C to 10°C CH_2Cl_2 (10 g scale) (20%) NBS CH₂Cl2/H₂O 20:1 H₃CO (67%) (50 g scale) DDO (50 g scale) (90%, 5% 5-Me Compound) ÓH 0°C,10°C,-40°C 3 Buli then Mel OCH (TosOH) (50 g scale) FIGURE 9A MeOH (quant.) Ŕ

FIGURE 9B

Y

F

16/22

OMe

MeHN

McO.

Me

MeO_

PMBO

OMe O

Me

<u>O</u>Me

%0/-

Me

MeO,

ÓMe

Œ.

FIGURE 12

3) PlvCl, Pyridine, CH2Cl2

91%

I) Mel,K2CO3,CH3CN

HOzc

Ĕ

MOMO

2) TBAF, THF

· I NMeBoc

ž

MOMO

OMe

86%

84%

2) Ti(OiPr)2(N3)2, Benzene, reflux

1) SAE, 97%, >95% ee

3) DMP, Acetone, p-TsOH

88%

HO2C

OMe OII

Formic acid, 105°C

excellent yield

>06<

2) Dess-Martin P., CH₂Cl₂

BocNMe

26%

ĊO₂H

2:3 diastereomers

BocNMe H(0)C

OMe O

1) HFPy, THF

2) MnO₂, Acctone good yield

%09