Shift Invariant Module

Nian-Hsuan Tsai, Fong-An Chang, Mu-Chien Hsu, Kai-Hsiang Liu

Motivation

CNNs are shift invariant...right?

No, it's actually not!

But why?

Problem

Aliasing

The problem lies in downsampling!

Take max pooling as an example:

```
Original: 00 \ 11 \ 00 \ 11 (shift-0)

\rightarrow 0 \ 1 \ 0 \ 1

Shifted: 01 \ 10 \ 01 \ 10 (shift-1)

\rightarrow 1 \ 1 \ 1 \ 1
```

Aliasing

When does aliasing happen?

- Max pool
- Average pool
- Strided convolutions

How to fix this?

Prior Work

AACNN: Add Blur!

Why not learn the aggregation?

9

Proposed Method

x offset=0, y offset=0, stride=2

x offset=0, y offset=1, stride=2

14

Multiple Channels

C * 4 * H/2 * W/2

Looking Through Neighbors: I. Group Convolution

Looking Through Neighbors: II. 3D Convolution

Aggregate by using 1 * 1 convolutions

C * 4 * H/2 * W/2

Cout * H/2 * W/2

Shift Invariant Module

Experiment Results

Settings

Task: Classification

Dataset: ImageNet

Model: RestNet18

Epochs: 16

Metrics

Top 1, Top 5 Accuracy

Classification Consistency:

$$E_{X,h1,w1,h2,w2}\mathbf{1}\{argmax\ P(Shift_{h1,w1}(X))=argmax\ P(Shift_{h2,w2}(X))\}$$

Qualitative

Quantitative

Model	Consistency	Top 1	Top 5
Original	83.012	65.3699	87.0039
AACNN	87.834	69.1259	89.0500
Group	90.422	68.7780	88.7399
3D	90.200	68.5620	88.4079

^{*} All higher the better

Future Work

Other tasks

We want to try on other tasks!

- Segmentation
- Conditioned image generation

Visualization

We want to try on other tasks!

- Segmentation
- Conditioned image generation

Feature Visualization

Thanks!