Electrical and thermal properties

Henning Friis Poulsen, hfpo@dtu.dk

Curriculum:

Callister edition 10: 18.1-18.13, 18.17, 19

Exercises:

Callister edition 9: 19.2, 19.5, 19.11, 19.21, 19.25, 19.29, 20.2, 20.4, 20.7, 20.23, 20.14, 20.26.

For more physical background try as extras: 19.19, 20.22

Transport into Copenhagen

Stochastic process: net flow

Several carriers: car, train, bikes...

Capacity depends on defintion: per area....

Flow depends on definition: per area, per line ...

Traffic: heterogeneous and non-linear flow

Transport of electrons

Stochastic process with a net current, but homogeneous and linear behaviour

We can understand and quantify this using SOLID STATE PHYSICS

Today: Borhs model that allow a qualitative understanding: conductors, semiconductors, insulators.

Definitions

Resistance, R = V = RI

Units: Ω (V/A), Volt (J/C), Amperes (C/s)

Conductance, C C = 1/R Unit: Ω^{-1}

Current density: J = I/A Unit: A/m^2

Electric field intensity: $\mathcal{E} = V/L$ Unit: V/m

Ohms law:

 $J = 1/\rho \mathcal{E} = \sigma \mathcal{E}$

NB: Linear relationship

Resistivity, ρ ρ = RA/L Unit: Ω m

Conductivity, $\sigma = 1/\rho$ Unit: Ω^{-1} m⁻¹

Bohrs model for one atom

Hydrogen

Sodium

Shell	Subshell	Total Number of Electrons in Shell
1st Shell	1s	2
2nd Shell	2s, 2p	2 + 6 = 8
3rd Shell	3s, 3p, 3d	2+6+10=18
4th Shell	4s, 4p, 4d, 4f	2 + 6 + 10 + 14 = 32

Energy bands

Borhs model for 12 atoms

Bohrs model for N_A atoms => Energy bands

Interatomic

separation

Equilibrium interatomic

spacing

Energy band gap Energy band

Fermi energy and thermal exitation

Thermal variation: probability goes as $exp(-(E-E_f)/kT)$ kT = 25 meV at 300 K

$$\sigma \sim 10^{7} (\Omega \text{m})^{-1}$$
 $\sigma \sim 10^{-20} - 10^{-10} (\Omega \text{m})^{-1}$ $\sigma \sim 10^{-6} - 10^{4} (\Omega \text{m})^{-1}$

Same but with figures from book

What causes the resistance

Perfect crystal lattice:

Imperfect crystal lattice:

impurities
vacancies
dislocations
vibrations (heat)

Electron mobility

Current density

$$J = n |e| v_d$$

NB: SIGN

Electron density:
Drift (net) velocity

$$|e| = 1.6 \, 10^{-19} \, \mathrm{C}$$

$$v_d = \mu_e \mathcal{E}$$

 μ_{e}

Electron mobility,

Unit:
$$m^2/(Vs)$$

NB: depends on scattering processes

Ohms law: $\sigma = J/\mathcal{E} = n |e| \mu_e$

NB: Linear relationship

Electrical resistivity of metals

Metal	Electrical Conductivity $[(\Omega-m)^{-1}]$			
Silver	6.8×10^{7}			
Copper	6.0×10^{7}			
Gold	4.3×10^{7}			
Aluminum	3.8×10^{7}			
Brass (70Cu-30Zn)	1.6×10^{7}			
Iron	1.0×10^{7}			
Platinum	0.94×10^{7}			
Plain carbon steel	0.6×10^{7}			
Stainless steel	0.2×10^{7}			

Several obstacles:	$\rho_{\text{total}} = \rho_{\text{temp}} + \rho_{\text{imp}} + \rho_{\text{disloc}}$
--------------------	---

Temp. Variation:
$$\rho_{\text{temp}} = \rho_0 + aT$$

Impurity variation,

Electrical resistivity of Cu and Cu alloys

Semiconductors

Intrinsic (pure) semiconductors

Intrinsic conductivity:

$$\sigma = -n (-e) \mu_e + p e \mu_h$$

= $n |e| \mu_e + p |e| \mu_h$
= $n_i |e| (\mu_e + \mu_h)$

with intrinsic carrier concentration n_i defined as $n_i = n = p$

Intrinsic (pure) semiconductors

Material	Band Gap (eV)	Electrical Conductivity $[(\Omega-m)^{-1}]$	Electron Mobility (m²/V-s)	Hole Mobility (m²/V-s)
		Element	tal	
Si	1.11	4×10^{-4}	0.14	0.05
Ge	0.67	2.2	0.38	0.18
		III-V Comp	ounds	
GaP	2.25		0.03	0.015
GaAs	1.42	10^{-6}	0.85	0.04
InSb	0.17	2×10^{4}	7.7	0.07
		II-VI Comp	ounds	
CdS	2.40	_	0.03	_
ZnTe	2.26	_	0.03	0.01

Extrinsic (doped) semiconductors: n-type

Extrinsic (doped) semiconductors: p-type

Extrinsic conductivity:

$$\sigma = p |e| \mu_h$$

Temperature variation of carrier concentration

Intrinsic Extrinsic

Temperature variation of carrier mobility in Si

Diode: no circuit

Diode: circuit

Forward bias

Reverse bias

I/V curve

IT revolution

Purify large crystals

Moore's Law Process Technology (µm) 10 0.01 45nm 10,000,000,000 1,000,000,000 Core 2 Duo Core i7 Intel Microprocessors 100,000,000 Number of Transistors per Integrated Circuit Pentium II 00 10,000,000 Pentium 1,000,000 286 086 Invention of the 100,000 8086 0 Transistor 10,000 Doubles every 2.1 yrs 4004 60 1,000 100 10 1940 1950 1960 1970 1980 1990 2000 2010 2020 Year

Nanomanufacturing

Solid state physics

Integration

Transport of heat

Consider for 2.5 minutes:

What is heat?

What is the unit of heat?

What is the carrier of heat transport?

Transport of heat through coffee mug

 $E = \frac{1}{2} \sum_{molecules} mv^2$

$$E = \frac{1}{2} \sum_{molecules} mv^2$$

Heat

Heat Q Unit: J

Heat capacity: C = dQ/dT Unit: J/(mol K)

Specific heat c_v , c_p Unit: J/(kg K) – for fixed volume or pressure

 $\Delta E = m c_p \Delta T$

m is mass

Capacitors:

Vibrational heat capacity

Conduction electron heat capacity (only metals and only minor contribution)

Vibrational Heat

Debye

Debye: Nr of occupied vibrational states times energy of states

General
$$\mathsf{C}_\mathsf{V} = 9NkT(T/T_D)^3 \int_0^{T_D/T} \, rac{x^3}{e^x-1} \, dx \, ,$$

T <<
$${
m T_D}$$
 ${C_V \over Nk} \sim {12 \pi^4 \over 5} {\left({T \over T_D}
ight)}^3$

T>>
$$T_{\text{D}}$$
 $\frac{C_V}{Nk}\sim 3$.

So dependence is defined by one parameter the Debye temperature: T_D

Aluminium	428 K	Manganese	410 K	
Beryllium	1440 K	Nickel	450 K	
Cadmium	209 K	Platinum	240 K	
Caesium	38 K	Sapphire	1047 K	
Carbon	2230 K	Silicon	645 K	l
Chromium	630 K	Silver	215 K	L
Copper	343.5 K	Tantalum	240 K	
Gold	170 K	Tin (white)	200 K	
Iron	470 K	Titanium	420 K	
Lead	105 K	Tungsten	400 K	

Thermal expansion

Linear expansion coefficient, α_1 : $\Delta L/L = \alpha_1 \Delta T$ Unit: K^{-1}

Volume expansion coefficient, α_v : $\Delta V/V = \alpha_v \Delta T$ Unit: K^{-1}

Thermal stress

Stress: $\sigma = E \alpha_I \Delta T$

Transport of heat

Steady state heat flow

$$q = -k \Delta T/\Delta x$$
 Ficks first law

Heat flow
$$q = Q/(At)$$
 Unit: Wm⁻²
Thermal conductivity k Unit: W/(mK)

Several carriers:
$$k = k_{lattice} + k_{electron}$$
 (plus convection and radiation)

How can atoms dissipate heat when they are fixed in position within a few Å?

Transport in solids

Phonons = waves in lattice:

Free electrons

Thermal properties of metals and ceramics

Material	$\frac{c_p}{(J/kg-K)^a}$	$[(^{\circ}C)^{-1} \times 10^{-6}]^b$	$(W/m-K)^c$	$\frac{L}{[\Omega\text{-}W/(K)^2\times 10^{-8}]}$
		Metals		
Aluminum	900	23.6	247	2.20
Copper	386	17.0	398	2.25
Gold	128	14.2	315	2.50
Iron	448	11.8	80	2.71
Nickel	443	13.3	90	2.08
Silver	235	19.7	428	2.13
Tungsten	138	4.5	178	3.20
1025 Steel	486	12.0	51.9	_
316 Stainless steel	502	16.0	15.9	_
Brass (70Cu-30Zn)	375	20.0	120	_
Kovar (54Fe-29Ni-17Co)	460	5.1	17	2.80
Invar (64Fe-36Ni)	500	1.6	10	2.75
Super Invar (63Fe-32Ni-5Co)	500	0.72	10	2.68
		Ceramics		
Alumina (Al ₂ O ₃)	775	7.6	39	_
Magnesia (MgO)	940	13.5^{d}	37.7	_
Spinel (MgAl ₂ O ₄)	790	7.6^{d}	15.0°	_
Fused silica (SiO ₂)	740	0.4	1.4	_
Soda-lime glass	840	9.0	1.7	_
Borosilicate (Pyrex TM) glass	850	3.3	1.4	_

Metals: same carrier for both heat and electricity

The ratio $L = k/\sigma T$ is a constant

Thermal conductivity, ceramics

Only phonons as carriers!

Drastic effect of porosity

Polymers

Thermal expansion , α_{l}	100 – 200 10 ⁻⁶ K ⁻¹	10 times metals
Specific heat, C _p	1000-2000 J/(kgK)	2 times metals
Electrical conductivity, σ	$10^{-10} - 10^{-15} (\Omega m)^{-1}$	10 ⁻¹⁵ – 10 ⁻²⁰ times metals

Properties

	ELECTRICAL CONDUCTIVITY $\Omega^{-1} \ \mathrm{m}^{-1}$	SPECIFIC HEAT J/(kg K))	THERMAL CONDUCTIVITY W/(mK)
METALS	2 106 - 108	10 ² - 10 ³	10-400
CERAMICS	10-9 - 10-15	$6\ 10^2 - 10^3$	1-50
SEMICONDUCTORS	10-4 - 104	10 ² - 10 ³	100
POLYMERS	$10^{-10} - 10^{-15}$	$10^3 - 2 \ 10^3$	0.1-0.2