Introduction to C++ Programming Its Applications in Finance

Thanh Hoang

Claremont Graduate University

September 19, 2012

Today Agenda

- 1. Random Number
- 2. Selection Statements
 - # statement
 - switch statement
- 3. Iteration Statements
 - for loop statement
 - while loop statement
 - □ do-while loop statement
- Jump Statements
 - break statement
 - continue statement
 - return statemen
 - goto statement
- Summary

Generating Random Numbers

The rand() Function

- 1. Belongs to the *cstdlib* library
- 2. Creates a random number between 0 and RAND_MAX
- 3. Generates a random integer number in the range [a, b]

int num = rand() %
$$(b - a + 1) + a$$
;

Random Problem

Problem of the rand () function

- 1. Does not really generate a random number
- 2. A really long built-in list of integers
- 3. A same list every time when we restart the rand () function

Target Output ‡	Target Output ‡
16807	16807
282475249	282475249
1622650073	1622650073
	984943658
1144108930	1144108930
	470211272
101027544	101027544
	1457850878
	1458777923
	2007237709
823564440	823564440
1115438165	1115438165
	1784484492
74243042	74243042
114807987	114807987
	1137522503
	1441282327
16531729	16531729
	823378840
143542612	143542612
143542612	143542612
823378848	823378848
	CZZZZCOT

Random Problem (cont.)

Solution

- 1. Changes the seed of the random number generator by the srand (int a) function
- 2. Does not want to change a manually every time The easiest way is to use the current time as an initial point.
- 3. Declares a $\langle ctime \rangle$ library to use the time (int t) function
 - 3.1 time (0) returns the number of seconds from January 1, 1970 to the current time.
 - 3.2 (int) time(0) is required since time returns a special number of type time_t.

(d) Windows OS (32-bit)

The if Statement

```
Test expression
if(x>100)
     statement;
                                     Single-statement if body
               Test expression
if (speed<=55)
     statement;
                             Multiple-statement if body
     statement;
     statement;
        Note: no semicolon here
```


Operation of the #Statement

```
Test expression
if (x>100)
     statement:
                                    Single-statement if body
else
     statement:
                                     Single-statement else body
             ☐ Test expression
if (zebra!=0)
     statement;
                          Multiple-statement if body
     statement;
else
     statement;
                          Multiple-statement else body
     statement;
     statement;
                         Multiple-statement else body
```


Guess a Number

```
19
     << ' and the Mega random number is ' << mega_rand << ' ' << endl;
      if (guess - mega_rand)
```


Using an *int* value to Control the *if* Statement

```
4 int main()
       int a, b;
       cin >> a;
       cin >> b;
```

DUATE UNIVER

An Example of Nested

```
mega_rand = rand() % 46 + 1; // gives us a Mega candon number in [1.46]
if (guess == mega_rand)
   if (guess > mega_rand)
```


The *if-else-if* Ladder

```
if-else-if

if (condition)

statements;

else if (condition)

statements;

else if (condition)

statements;

else statements;
```


The switch Statement

```
Integer or character variable
switch (n)()-Note: no semicolon here
            Integer or character constant
     case 1:
       statement:
       statement; First case body
       break;
     case 2:
       statement;
       statement; > Second case body
       break;
     case 3:
        statement;
        statement; Third case body
        break;
     default:
       statement; } Default body
        statement;
     → Note: no semicolon here
```


Operation of the switch Statement

The switch Statement

Some C++ rules:

- 1. The switch expression must be a character or an integer value.
- The case constants must be also a character or an integer value.
- Floating-point values are not allowed.

Four important aspects of the *switch* statement:

- The switch can test only for equality.
- No two case constants in the same switch can have identical values.
- A switch statement is usually more efficient than nested *if.*
- The statement sequences associated with each case are not blocks.

Operation Process of switch Statement

An Example of the switch Statement

```
for (int a=0; a<4; a++) {
```


The for Statement

```
Initialization expression
                    ┌ Test expression
                               Increment expression
for (j=0; j<15; j++) Note: no semicolon here
        statement; Single-statement loop body
for (j=0; j<15; j++) Note: no semicolon here
        statement;
                                       Multiple-statement loop body-
        statement;
                                       a block of code
        statement;
        )()
              Note: no semicolon here
              Note: no semicolon here
```


Operation of the for Loop Statement

An Example of the for Statement

```
#include <iostream>
#include <cmath>
using namespace std;

int main()

{
    for (int a=1; a<=100; a++) {
        double sqroot = sqrt(a);
        cout << sqroot << ' is a square root of ' << a << endl;

10
    return 0;
}</pre>
```


Another Example of the for Statement

```
#include <iostream>
using namespace std;

int main()
{
    for (int a=100; a>=-100; a -= 10)
        cout << a << ' ';

        cout << endl;

return 0;
}</pre>
```


Use Numeric Test in for Loop Statement

```
4 int main()
    cin >> limit;
```


Multiple for Loop Control Variables

```
#include <lostream>
using namespace std;

int main()

{
   int a, b;

for (a=0, b=10; a <= b; a++, b--)
   cout << a << ` ` << b << endl;

return 0;
}</pre>
```

Output

- 0 101 9
- 2 8
- 5 /
- -
- 5 5

Do Not Use The Loop Control Variable

```
int main()
  int a, rand_num=0;
   for (a=0; rand_num \le 20000; a++)
      rand_num = rand(); // creates a random number
   cout << "The number is " << rand_num</pre>
     << ". It was generated on try " << a << ".\n";
```


Missing Increment / Decrement Expression

```
#include <iostream>
2    using namespace std;

4    int main()
{
       for (int a=0; a!=911; ) {
            cout << `Enter a number: `;
            cin >> a;
       }

10       return 0;
12 }
```


Missing Both Initial Value and Increment Expression

```
int main()
      cin >> a;
```


Loops Without Body

```
int main()
   int a, sum=0;
     << sum << endl;
```


Loop Control Variables Inside The for Loop Statement

```
6 int main()
    int a, sum=0, factorial=1;
       sum += i;
       factorial *= i:
    cout << 'The total sum from 1 to ' << a << ' is ' << sum << endl;
    cout << a << ! is << factorial << endl;
```


Nested for Loops

```
int main()
    for (b=2; b < a; b++)
```


The while Loop Statement

```
Test expression
while (n!=0) () --- Note: no semicolon here
      statement; Single-statement loop body

    ⊤ Test expression

while (v2<45)()—Note: no semicolon here
      statement;
      statement;
                         Multiple-statement loop body
      statement;
           - Note: no semicolon here
            Note: no semicolon here
```


Operation of the while loop statement

An Example of the while Loop Statement

```
4 int main()
        cin >> n;
16 }
```


Another Example of the while Loop Statement

```
4 int main()
    int length;
    cin >> length;
    while (length>0 && length<80) {
       length--;
```


The do-while Loop Statement

```
do () — Note: no semicolon here
      statement;
                                         Single-statement loop body
while (ch!='n');
 Test expression
                             Note: semicolon
do ( ) --- Note: no semicolon here
      statement;
      statement;
                            Multiple-statement loop body
      statement;
while (numb<96);
 Test expression
                             Note: semicolon
  lest expression
                              NOTE: SEMICOION
```


Operation of the do-while Loop Statement

An Example of the rand() Function

```
5 int main()
      int a=1, b=6;
         int randDice = rand() % (b - a + 1) + a;
          cout << 'A random dice rolled: ' << randDice << endl;</pre>
         cin >> key;
      } while (key != n );
```


An Example of the while Loop Statement

```
int numerator, denominator;
cin >> numerator;
 cin >> denominator;
 cout << numerator << / / << denominator
    << 'is '<< numerator / denominator</pre>
     << ' and remainder is ' << numerator % denominator;
 cin >> keyword;
} while (keyword != n );
```


Jump Statements

1. break statement

An Example of the break Statement

```
4 int main()
    for (int a=0; a<=100; a++) {
      cout << a << ;
```


Jump Statements

- break statement
- continue statemen

An Example of the continue Statement

```
int main()
15 }
```


Jump Statements

- break statement
- continue statement
- . goto statement

General Form

goto somewhere;

somewhere:

An Example of the *goto* Statement

```
int main()
        add1: i++;
     if (i % 2) goto add1;
17 }
```


Summary

Random Number

Selection Statements

if statement

switch statement

Iteration Statements

for loop statement

while loop statement

do-while loop statement

Jump Statements

break statement

continue statement

return statement

□ *goto* statement

Reading

Stephen Prata

C++ Primer Plus, 5th Edition, Chapter 5 and Chapter 6

SAMS Publishing, 200

Sum of Series

Write a C++ program to find the sum of the first n terms of the following series, where n is a number entered by the user:

$$-1 + \left(\frac{1}{3}\right)^2 - \left(\frac{1}{5}\right)^2 + \left(\frac{1}{7}\right)^2 \dots$$

Internal Rate of Return

TVBH Corporation is considering an investment of \$50 million in a capital project that will return after-tax cash flows of \$16 million per year for the next four years plus another \$20 million in Year 5. Calculate the Internal Rate of Return (*IRR*) that makes the Net Present Value (*NPV*) of all cash flows from the project equals to zero.

The decision rule for the IRR is as follow:

- Invest if IRR > r (10%)
- Do not invest if IRR < r (10%)

Simulating Standard Normal Random Variables

A standard normal variable has probability density function ($\mu=0$ and $\sigma^2=1$)

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad (x \in \mathbb{R})$$

Box-Muller Methodology

Step 1 Generates two random uniform numbers U_1 and U_2 distributed over [0,1]

```
srand((int) time(NULL));
double runiform = rand() / (double) RAND_MAX;
```

- Step 2 Sets $V_1 = 2U_1 1$; $V_2 = 2U_2 1$; and $S = V_1^2 + V_2^2$
- Step 3 Returns to Step 1 if S>1
- Step 4 Obtains two standard normal random numbers:

$$X = V_1 * \sqrt{\frac{-2 \log S}{S}} \qquad Y = V_2 * \sqrt{\frac{-2 \log S}{S}}$$

