In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') In [2]: data = pd.read csv('cleaned loans full schema.csv') print(data.shape) data.head(2).T (10000, 50)Out[2]: 0 ΗΙ NJ state **MORTGAGE** homeownership **RENT** individual_annual_income 90000 40000 individual_income_verification Verified Not Verified 5.04 individual_debt_to_income 18.01 40000 joint_annual_income 90000 Not Verified joint_income_verification Not Verified 5.04 joint_debt_to_income 18.01 0 delinq_2y 0 earliest_credit_line 2001 1996 6 1 inquiries_last_12m total_credit_lines 28 30 open_credit_lines 10 14 total_credit_limit 70795 28800 38767 4321 total_credit_utilized num_collections_last_12m 0 0 num_historical_failed_to_pay 0 total_collection_amount_ever 1250 0 current_installment_accounts 0 5 11 accounts_opened_24m months_since_last_credit_inquiry 5 8 10 14 num_satisfactory_accounts num_active_debit_accounts 2 3 11100 16500 total_debit_limit 14 24 num_total_cc_accounts 8 14 num_open_cc_accounts num_cc_carrying_balance 6 4 num_mort_accounts 1 0 92.9 100 account_never_delinq_percent 0 0 tax_liens 0 public_record_bankrupt debt_consolidation loan_purpose moving application_type individual individual 28000 5000 loan_amount 60_month 36_month term 14.07 12.61 interest_rate installment 652.53 167.54 sub_grade C3 C1 issue_month Mar-18 Feb-18 Current loan_status Current initial_listing_status whole whole disbursement_method Cash Cash balance 27015.9 4651.37 paid_total 1999.33 499.12 paid_principal 984.14 348.63 150.49 1015.19 paid_interest grade default 0 0 emp_length 10 0.07 paidPrinciple_to_loanAmnt_ratio 0.04 In [3]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 50 columns): Column Non-Null Count Dtype 0 state 10000 non-null object 1 homeownership 10000 non-null object 2 individual_annual_income 10000 non-null float64 10000 non-null object 3 individual_income_verification 4 individual_debt_to_income 10000 non-null float64 joint annual income 10000 non-null float64 6 joint_income_verification 10000 non-null object 7 10000 non-null float64 joint_debt_to_income 10000 non-null int64 8 delinq_2y 10000 non-null int64 9 earliest_credit_line 10 inquiries_last_12m 10000 non-null int64 11 total_credit_lines 10000 non-null int64 10000 non-null int64 12 open_credit_lines 13 total credit limit 10000 non-null float64 10000 non-null float64 14 total_credit_utilized 10000 non-null int64 15 num_collections_last_12m 16 num historical failed to pay 10000 non-null int64 10000 non-null int64 17 total_collection_amount_ever 18 current_installment_accounts 10000 non-null int64 10000 non-null int64 19 accounts_opened_24m 20 months_since_last_credit_inquiry 10000 non-null float64 21 num_satisfactory_accounts 10000 non-null int64 22 num_active_debit_accounts 10000 non-null int64 10000 non-null float64 23 total_debit_limit 10000 non-null int64 24 num_total_cc_accounts 10000 non-null int64 25 num_open_cc_accounts 10000 non-null int64 26 num cc carrying balance 10000 non-null int64 27 num mort_accounts 28 account never deling percent 10000 non-null float64 10000 non-null int64 29 tax liens 30 public_record_bankrupt 10000 non-null int64 loan purpose 10000 non-null object 31 10000 non-null object 32 application type 10000 non-null int64 33 loan amount 10000 non-null object 34 term 35 interest rate 10000 non-null float64 10000 non-null float64 36 installment 37 sub grade 10000 non-null object 38 issue_month 10000 non-null object 39 loan status 10000 non-null object 40 initial listing status 10000 non-null object 41 disbursement method 10000 non-null object 10000 non-null float64 42 balance 10000 non-null float64 43 paid total 10000 non-null float64 44 paid principal 45 paid interest 10000 non-null float64 46 grade 10000 non-null object 47 default 10000 non-null int64 10000 non-null float64 48 emp_length 49 paidPrinciple_to_loanAmnt_ratio 10000 non-null float64 dtypes: float64(17), int64(20), object(13) memory usage: 3.8+ MB In [4]: data loan status = data.drop(columns= ['loan status', 'sub grade', 'balance'], axis= 1) In [5]: default = round(100 * data_loan_status.default.value_counts(normalize= True, dropna= False), 2) bars = plt.bar(default.index, default, align='center') for bar in bars: plt.gca().text(bar.get_x() + bar.get_width()/2, 1.02 * bar.get_height(), bar.get height().round(2), ha= 'center', color= 'red', fontsize= 11) for spine in plt.gca().spines.values(): spine.set_visible (False) plt.tick params (top='off', bottom='off', left=False, right=False, labelleft=False, labelbottom='on') plt.title('Loan Status', color='red', fontsize=15) plt.xticks(default.index , ['Non Default', 'Default'], fontsize=13) plt.show() Loan Status 99.93 0.07 Non_Default Default In [6]: **from itertools import** combinations def multicoll(df): lst= [] comb = list(combinations(df.columns, 2)) for tup in comb: corr coef = abs(df.loc[tup[0] , tup[1]]) if corr coef > 0.70 : lst.append((tup[0] , tup[1], corr_coef)) return 1st In [7]: X corr = round(data loan status.drop(columns=['default'], axis= 0).corr(),2) multicoll(X corr)[:2] [('individual_annual_income', 'joint_annual_income', 0.85), ('individual_debt_to_income', 'joint_debt_to_income', 0.84)] multicoll X = pd.DataFrame(multicoll(X corr), columns= ['var1', 'var2', 'corr coef']) In [8]: multicoll X Out[8]: var1 var2 corr_coef 0 0.85 individual_annual_income joint_annual_income individual_debt_to_income joint_debt_to_income 0.84 2 0.76 total_credit_lines open_credit_lines 3 total_credit_lines 0.76 num_satisfactory_accounts total_credit_lines num_total_cc_accounts 0.77 5 open_credit_lines 1.00 num_satisfactory_accounts 6 0.71 open_credit_lines num_total_cc_accounts 7 0.84 open_credit_lines num_open_cc_accounts 0.87 num_historical_failed_to_pay tax_liens 9 num_satisfactory_accounts num_total_cc_accounts 0.71 10 0.84 num_satisfactory_accounts num_open_cc_accounts 11 0.83 num_active_debit_accounts num_cc_carrying_balance 12 num_open_cc_accounts 0.83 num_total_cc_accounts 13 num_cc_carrying_balance 0.80 num_open_cc_accounts 14 installment 0.94 loan_amount 15 paid_interest 0.74 loan_amount 16 0.71 installment paid_interest 17 paid_total 0.91 paid_principal paidPrinciple_to_loanAmnt_ratio 18 0.74 paid_principal **Encoding** In [9]: categorical_features = data_loan_status.select_dtypes('object').columns.values uniq_values = data_loan_status[categorical_features].nunique().sort_values(ascending= False) uniq_values = pd.DataFrame(uniq_values).reset_index() uniq_values.columns = ['categorical_feature', 'n_unique_values'] uniq_values Out[9]: categorical_feature n_unique_values 0 50 state 1 loan_purpose 12 2 7 grade 3 3 issue_month joint_income_verification 3 3 5 individual_income_verification 3 6 homeownership 7 2 disbursement_method initial_listing_status 2 8 2 9 term 10 2 application_type **One-Hot Encoding** In [10]: def One hot encoder(df, lst cols): encoded_columns = pd.get_dummies(df[lst_cols]) df = df.join(encoded columns).drop(lst cols, axis=1) return df In [11]: | lst cols = ['issue month', 'joint income verification', 'individual income verification' , 'homeownership', 'disbursement_method', 'initial_listing_status', 'term', 'application_ type', 'grade'] data_loan_status = One_hot_encoder(data_loan_status, lst_cols) In [12]: data_loan_status.shape Out[12]: (10000, 65) Split X, Y into train and test In [13]: | y1 = data_loan_status['default'] X1 = data_loan_status.drop(['default'], axis=1) In [14]: from sklearn.model_selection import train test split X1_train, X1_test, y1_train, y1_test= train_test_split(X1, y1, test_size=0.30, random_state= 42, strati fy=y1)In [15]: round(100 * y1 test.value counts(normalize= **True**, dropna= **False**),2) Out[15]: 0 99.93 1 0.07 Name: default, dtype: float64 In [16]: round(100 * y1_train.value_counts(normalize= True, dropna= False),2) Out[16]: 0 99.93 0.07 Name: default, dtype: float64 Resampling In [17]: df majority = data loan status[data loan status.default == 0] # 0 indicates non default loans df_minority = data_loan_status[data_loan_status.default == 1] # 1 indicates default loans In [18]: print('Default Loans Data: ', df_majority .shape) print('Non_Default Loans Data: ', df_minority.shape) Default Loans Data: (9993, 65) Non Default Loans Data: (7, 65) In [19]: **from sklearn.utils import** resample #Resample of minority class df_minority_resample = resample(df_minority, n_samples = 6500, replace = True, random_state= 42) X1_train_oversampled = pd.concat([X1_train , df_minority_resample.drop('default',axis=1)]) y1 train oversampled = pd.concat([y1 train, df minority resample['default']]) y1 train oversampled.value counts(normalize=True) Out[19]: 0 0.518148 0.481852 Name: default, dtype: float64 In [20]: X1 train oversampled.shape Out[20]: (13500, 64) In [21]: y1_train_oversampled.shape Out[21]: (13500,) In [22]: round(100 * y1 train oversampled.value counts(normalize= **True**, dropna= **False**),2) Out[22]: 0 51.81 48.19 Name: default, dtype: float64 In [23]: round(100 * y1 test.value counts(normalize= **True**, dropna= **False**),2) Out[23]: 0 99.93 1 0.07 Name: default, dtype: float64 BinaryEncoder In [24]: import category_encoders as ce def binary encoder(X, X train, X test, y train, y test, col): ce_bi = ce.BinaryEncoder(col).fit(X_train[col] , y_train) encoded_train = ce_bi.transform(X_train[col] , y_train) $\#X_test = ce_bi.transform(X_test[col] , y_test)$ encoded_test = ce_bi.transform(X_test[col] , y_test) return encoded_train, encoded_test In [25]: encoded train, encoded test = binary encoder(X1, X1 train oversampled, X1 test, y1 train oversampled, y 1 test\ , ['state','loan purpose']) In [26]: | X1 Train = pd.concat([X1 train oversampled, encoded train], axis=1, join='inner') temp = X1 Train.drop(columns=['state','loan purpose'], axis=1) X1_Train = temp.copy() y1_Train = y1_train_oversampled.copy() In [27]: X1_Test = pd.concat([X1_test, encoded_test], axis=1, join='inner') temp = X1_Test.drop(columns=['state','loan_purpose'], axis=1) $X1_{\text{Test}} = \text{temp.copy()}$ y1_Test = y1_test.copy() In [28]: print(X1_Test.shape) print(y1_Test.shape) (3000, 74)(3000,) In [29]: print(X1_Train.shape) print(y1_Train.shape) (13500, 74) (13500,)Scaling When is the skewness too much? If the skewness is between -0.5 and 0.5, the data are fairly symmetrical If the skewness is between -1 and – 0.5 or between 0.5 and 1, the data are moderately skewed If the skewness is less than -1 or greater than 1, the data are highly skewed In [30]: data skew = pd.DataFrame(round(data loan status.drop(columns=['default'],axis=1).skew()\ .sort_values(ascending= False),1)).reset index()[:35] data_skew.columns = ['feature' , 'skewness'] data skew Out[30]: feature skewness 0 total_collection_amount_ever 74.6 68.2 1 tax_liens num_historical_failed_to_pay 44.0 3 28.8 grade_G grade_F 13.0 10.3 5 num_collections_last_12m paid_total 5.9 5.2 7 grade_E 8 joint_income_verification_Verified 5.1 9 paidPrinciple_to_loanAmnt_ratio 4.3 joint_income_verification_Source Verified 4.1 3.9 11 paid_principal 12 disbursement_method_DirectPay 3.3 13 current_installment_accounts 2.9 14 delinq_2y 2.6 15 public_record_bankrupt 2.5 16 homeownership_OWN 2.1 17 2.0 grade_D application_type_joint 18 2.0 individual_annual_income 19 1.8 20 total_credit_utilized 1.7 initial_listing_status_fractional 1.7 21 22 joint_annual_income 1.6 23 num_cc_carrying_balance 1.5 24 1.4 num_open_cc_accounts 25 total_credit_limit 1.4 26 num_total_cc_accounts 1.3 27 accounts_opened_24m 1.3 28 individual_income_verification_Verified 1.3 paid_interest 1.3 29 grade_A 30 1.2 inquiries_last_12m 31 1.2 num_mort_accounts 32 1.1 33 individual_debt_to_income 1.1 34 grade_C 1.1 **'Box-Cox Power Transformation:** The statisticians George Box and David Cox developed a procedure to identify an appropriate exponent (Lambda = I) to use to transform data into a "normal shape." The Lambda value indicates the power to which all data should be raised. In order to do this, the Box-Cox power transformation searches from Lambda = -5 to Lamba = +5 until the best value is found. Table 1 shows some common Box-Cox transformations, where Y' is the transformation of the original data Y. Note that for Lambda = 0, the transformation is NOT Y (because this would be 1 for every value) but instead the logarithm of Y.' transformed Y -2---> 1/power(Y,2) -1---> 1/Y -0.5---> 1/(Sqrt(Y)) $0 --- > \log(Y)$ 0.5 --- > Sqrt(Y)1----> Y 2 ---> power(Y,2)In [31]: from sklearn import preprocessing scaler = preprocessing.MinMaxScaler().fit(X1 Train) X1_train_scaled = scaler.transform(X1 Train) X1 test scaled = scaler.transform(X1 Test) In [32]: print(X1 train scaled.shape) print(y1_Train.shape) (13500, 74)(13500,)In [33]: print(X1 test scaled .shape) print(y1 Test.shape) (3000, 74)(3000,)y1 Test.value_counts() In [34]: Out[34]: 0 2998 Name: default, dtype: int64 **Modeling Evaluation** In [35]: from sklearn.metrics import accuracy score, precision score, recall score, f1 score, roc auc score, cla ssification report results = pd.DataFrame(columns= ['model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'AUC']) def evaluation(model_name, y_test, y_pred): $print(' \setminus n_{n'}.format(model name), classification report(y test, y pred))$ eval_res = pd.Series([model_name] + [round(accuracy_score(y_test, y_pred),2), round(precision score(y test, y pred, average='weighted'),2), round(recall_score(y_test, y_pred),2), round(f1 score(y test, y pred),2), round(roc auc score(y test, y pred),2)], index= ['model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'AUC']) return eval res.to_frame().T In [36]: from sklearn.metrics import confusion_matrix def conf_mat(y_true, y_pred, set_name, model_name): print(model_name,'-', 'Confusion Matrix on', set_name) cnf_table = pd.DataFrame(confusion_matrix(y_true, y_pred), index = ['Non_Default', 'Default'], columns=['predicted_Non_Default', 'predicted_Default']) return cnf_table In [37]: model_features = ['model_name'] + X1_Train.columns.tolist() features = pd.DataFrame(columns = model_features) def importance(model_name, feature_importances_): feat importance = pd.Series([model name] + np.round(100 * feature importances ,2).tolist(), index= model_features) feat_importance = feat_importance.to_frame() return feat_importance In [38]: def feature_selection(feature_importance, feature_name): rel_feat_importance = np.round(100 * (feature_importance / abs(feature_importance).max()),2) feat_imp = pd.DataFrame(pd.Series(rel_feat_importance, index = feature_name).sort_values(ascending= False)).reset_index() feat_imp.columns = ['Feature', 'Relative Importance'] important features = feat imp [abs(feat imp['Relative Importance']) > 5]\ .sort_values(by='Relative Importance', ascending= True) return important_features In [39]: def plot_importance(clf_name, important_features, fgsize): plt.figure(figsize= fgsize) plt.barh(y = important_features.Feature, width=important_features['Relative Importance'], align='ce plt.yticks(important_features.Feature, fontsize= 13) plt.xlabel('Relative Feature Importance', fontsize= 13) plt.title('Features Importance _ {}'.format(clf_name), color='red', fontsize=16) plt.show() **Models Random Forest Classifier** from sklearn.model selection import GridSearchCV In [40]: from sklearn.ensemble import RandomForestClassifier #Setup the hyperparameter grid param_grid = {'n_estimators': [100, 200, 300], 'max_features': ['auto', 'sqrt'], # Number of features to consider at every split 'max depth': [int(x) for x in np.linspace(10, 140, num = 14)], 'bootstrap': [True, False] } rf = RandomForestClassifier(random_state=42) # Instantiate the GridSearchCV object rf_cv= GridSearchCV(rf, param_grid, cv= 5) # Fit it to the scaled train data rf cv.fit(X1 Train, y1 Train) Out[40]: GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=42), param_grid={'bootstrap': [True, False], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140], 'max features': ['auto', 'sqrt'], 'n_estimators': [100, 200, 300]}) In [41]: best_rf_cv = rf_cv.best_estimator_ y1_Train_pred = best rf cv.predict(X1 Train) y1_Test_pred = best_rf_cv.predict(X1_Test) eval_df = evaluation('Random Forest Clf on Train ', y1_Train, y1_Train_pred) results = pd.concat([results, eval_df]) results = evaluation('Random Forest Clf on Test', y1_Test, y1_Test_pred) results = pd.concat([results, eval_df]) feat_importance = importance('RF_Clf', best_rf_cv.feature_importances_).T features = pd.concat([features, feat importance]) Random Forest Clf on Train precision recall f1-score support 0 1.00 1.00 1.00 6995 1.00 1.00 1.00 6505 1.00 13500 accuracy macro avg 1.00 1.00 1.00 13500 weighted avg 1.00 1.00 1.00 13500 Random Forest Clf on Test precision recall f1-score support 1.00 0 1.00 1.00 2998 1.00 1.00 1.00 1 2 accuracy 1.00 3000 1.00 1.00 1.00 3000 macro avg 1.00 1.00 1.00 weighted avg 3000 In [42]: | conf mat(y1 Train, y1 Train pred, 'Train', 'Random Forest Clf') Random Forest Clf - Confusion Matrix on Train Out[42]: predicted_Non_Default predicted_Default Non_Default 6995 **Default** 6505 In [43]: conf mat(y1 Test, y1 Test pred, 'Test', 'Random Forest Clf') Random Forest Clf - Confusion Matrix on Test Out[43]: predicted_Non_Default predicted_Default Non Default 2998 Default 0 In [44]: rf clf imp feat = feature_selection(best_rf_cv.feature_importances_, X1_Test.columns) plot_importance('Random Forest Classifier',rf_clf_imp_feat,(10,10)) Features Importance Random Forest Classifier paidPrinciple_to_loanAmnt_ratio paid_principal paid total months_since_last_credit_inquiry paid_interest total_credit_limit individual_annual_income inquiries_last_12m total_credit_utilized joint_annual_income loan_amount num_open_cc_accounts earliest credit line issue_month_Jan-18 installment loan_purpose_2 individual debt to income num total cc accounts joint_debt_to_income emp_length total debit limit total credit lines num_satisfactory_accounts interest_rate issue month Mar-18 open_credit_lines total collection amount ever current installment accounts num_cc_carrying_balance accounts_opened_24m term 36 month account_never_delinq_percent num_mort_accounts 100 20 60 80 40 Relative Feature Importance **Light Gradient Boosting Model** LightGBM is uses tree-based learning algorithms. It is designed to be distributed and efficient with the following advantages: Faster training speed and higher efficiency, Lower memory usage, Better accuracy, Support of parallel and GPU learning, Capable of handling large-scale data. Build a light GBM model to test the bayesian optimizer. 'Important Parameters of light GBM: task : default value = train ; options = train , prediction ; Specifies the task we wish to perform which is either train or prediction. application: default=regression, type=enum, options= options: regression: perform regression task binary: Binary classification multiclass: Multiclass Classification lambdarank: lambdarank application data: type=string; training data, LightGBM will train from this data num_iterations: number of boosting iterations to be performed; default=100; type=int num_leaves: number of leaves in one tree; default = 31; type =int device: default= cpu; options = gpu,cpu. Device on which we want to train our model. Choose GPU for faster training. max_depth: Specify the max depth to which tree will grow. This parameter is used to deal with overfitting. min_data_in_leaf: Min number of data in one leaf. feature_fraction: default=1; specifies the fraction of features to be taken for each iteration bagging_fraction: default=1; specifies the fraction of data to be used for each iteration and is generally used to speed up the training and avoid overfitting. min_gain_to_split: default=.1; min gain to perform splitting max_bin: max number of bins to bucket the feature values. min_data_in_bin: min number of data in one bin num_threads: default=OpenMP_default, type=int ;Number of threads for Light GBM. label : type=string ; specify the label column categorical_feature : type=string ; specify the categorical features we want to use for training our model num_class: default=1 ; type=int ; used only for multi-class classification' https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/ In [45]: import lightgbm def lgb_eval(num_leaves, max_depth, lambda_12 , lambda_11, min_child_samples, min_data_in_leaf): #set the params grid params = {'objective': 'binary', 'metric': 'auc', 'is_unbalance': True, #Train set is imbalanced 'num leaves': int(num leaves), 'max_depth': int(max_depth), 'lambda12': lambda_12, #L2 regularization 'lambda_l1' :lambda_l1, #L1 regularization 'num thread': 20, #set this to the number of real CPU cores 'min_child_samples': int(min_child_samples), 'min_data_in_leaf': int(min_data_in_leaf), 'learning_rate' : 0.03, 'subsample_freq' : 5, #frequency for bagging; perform bagging at every 5 iteration 'bagging_seed': 42, #controls the level of LightGBM's verbosity. verbosity<0 :Fatal 'verbosity': -1 lgb_train = lightgbm.Dataset(X1_Train, y1_Train) #cross-validation with given paramaters. cv result = lightgbm.cv(params, train_set = lgb_train, #Number of boosting iterations num boost round= 1000, early_stopping_rounds= 100, #CV score needs to improve at least every 100 rounds to continue. stratified = True, #perform stratified sampling. nfold= 3 return cv_result['auc-mean'][-1] In [46]: from bayes opt import BayesianOptimization lgbBO = BayesianOptimization(lgb eval, {'num leaves': (25,100), 'max depth': (5,63), 'lambda 12': (0.0, 0.05), 'lambda_11': (0.0, 0.05), 'min_child_samples': (50, 100), 'min_data_in_leaf': (100, 200)} lgbBO.maximize(n_iter= 10, init_points= 2) | iter | target | lambda_11 | lambda_12 | max_depth | min_ch... | min_da... | num_le... | [LightGBM] [Warning] Unknown parameter: lambdal2 [LightGBM] [Warning] min_data_in_leaf is set=146, min_child_samples=82 will be ignored. Current valu e: min data in leaf=146 | 1.0 | 0.0149 | 0.02439 | 43.31 | 82.11 | 146.6 | 84.2 | 2 | 3 4 | 5 | 6 | 7 | 0.01297 | 0.01765 | 5.249 | 98.37 | 191.9 | 98.43 | | 0.03934 | 0.04321 | 62.91 | 99.91 | 199.7 | 25.68 | | 0.04734 | 0.001363 | 5.119 | 98.24 | 110.0 | 25.12 | 1.0 | 8 | 1.0 | 9 1.0 | 10 | 97.0 11 | 26.72 | 12 ______

