Hardy-Weinberg Law in Galetics 2 types of gene ! A, a each photo (ar have a pair i Po 8. r. viely Prob. i Po 8. r. (Po+80 + ro = 3) mating occurs honogeneously. What is the phob. dist. of hext generation?

٠,

P { give of A }

$$=\frac{2}{2}R_0+0+\frac{1}{2}r_0$$

P { give a }

= p{a|AA3P0 + P{a|aa390 + P{a|Aa31

THE STREET STREET

 $= 0 + \frac{1}{2}$ $\frac{1}{2}$

$$= \left(P_0 + \frac{V_0}{2}\right)^2$$

$$= \left(9. + \frac{r_0}{2}\right)^2$$

$$P(Aa) = P(father gives A, wother gives a)$$
 $+P("a, "A)$

=
$$2 \cdot P(A) \cdot P(\alpha)$$

	Ben o	Gen 1	Gen 2
AA	Po	P(AA) = P	
aa	9.	$P_{A}(P_{o} + \frac{r_{o}}{2})^{2} = P(AA) = P$ $P_{A}(P_{o} + \frac{r_{o}}{2})^{2} = P(\alpha\alpha) = Q$	
Aa	(°)	$\operatorname{Rem} 2 \left(P_0 + \frac{V_0}{2} \right) \left(\frac{9}{9} + \frac{V_0}{2} \right) = V$ $= P(A\alpha)$	
		= P(Aa)	

	Ben o	Gen 1	
AA	Po	$P = (P_0 + \frac{r_0}{2})^2$	(P+ 5)
aa			
A a	(0	$8 = (90 + \frac{50}{2})$ $7 = 2(80 + \frac{50}{2})(90 + \frac{50}{2})$	(g + \(\frac{1}{2}\))
			2 (P+ 2) (3+ 2)
		-	

·

:

$$\left(P + \frac{r}{2}\right) = \left[\frac{\left(P_0 + \frac{r_0}{2}\right)\left(\frac{q_0 + \frac{r_0}{2}}{2}\right)}{2}\right]$$

$$= \left(P_0 + \frac{V_0}{2}\right) \left[P_0 + \frac{V_0}{2} + \frac{V_0}{2}\right]$$

$$= P_0 + \frac{V_0}{2}$$

$$= P(A)$$

$$(2+\frac{1}{2})^{2} = (2+\frac{1}{2})^{2} + \frac{2(2+\frac{1}{2})(2+\frac{1}{2})}{2}$$

$$= \left(\frac{9}{60} + \frac{r_0}{2}\right) \left[\frac{9}{60} + \frac{r_0}{2} + \frac{r_0}{2}\right]$$

$$= \begin{cases} \frac{\sqrt{6}}{2} = p(a) \end{cases}$$

	Gen 0	Gey 1	Ger 2
			$\left(\begin{array}{c} 2 \\ 2 \end{array} \right) = 0$
		9=(9.+ 5)	(g+5) = g=
Aa	Co	V= 2(Po+ (2)(8,+ (2))	$2(P+\frac{v}{2})(g+\frac{v}{2}) = 2PQ$
			$=2\left(P_{o}+\frac{V_{o}}{2}\right)\left(2_{o}+\frac{V_{o}}{2}\right)$

Hardy - Weinberg Law

Distribution of Gene-types stabilizes after 1 generation.

As MC Single subject and sibling

	Δ.Α	aa	Aa
AA	P(A)	0	p(a)
۵۵	Ø	P(a)	P(A)
Αα		(1)	3

$$P(\frac{1}{2}) \rightarrow P(\frac{1}{2}) \cdot P(\frac{1}{2}) \cdot P(\frac{1}{2}) = (\frac{1}{2}) \cdot P(\frac{1}{2})$$
From party p

$$(3) \rightarrow (1-(1)+2)$$

$$\frac{AS}{AA} \frac{MC}{P+\frac{r}{2}} = \frac{AA}{AA} \frac{AA}{P+\frac{r}{2}}$$

$$= \frac{AA}{AA} \frac{P+\frac{r}{2}}{P+\frac{r}{2}} \frac{P+\frac{r}{2}}{2(q+\frac{r}{2})} \frac{1}{2(q+\frac{r}{2})} \frac{1}{2}$$

$$1 - \left(\frac{1}{2}(p+\frac{r}{2}) + \frac{1}{2}(8+\frac{r}{2})\right)$$

$$= \left(-\frac{1}{2} \left(P + 9 + r \right) \right) = \frac{1}{2}$$

T = [P 2 r]

is a stable distribution for MC with

P