DENSE VECTORS

PATTERNS IN DATA

- Given a large sets of data, we wish to observe trends and patterns in larger data
- Find out if there are any relationships among variables
- To observe the pattern visually for a vocabulary of size $n \times n$, imagine plotting the m coordinates representing the n vocabulary in n dimensional space.
- → The similar correlated words are clustered in this space hard to imagine
- lacktriangledown We need to recognize n orthogonal axes fro the data set identifying the
- lacktriangle Manual identification of relationship is not feasible, as the task is $O(n^2)$, if n is the size of the data

GOAL

Map the high dimensional samples in R^m to a lower dimensional space R^k , where $k \ll m$, ideally preserving the local and global structure of the original data

Is high dimensional data truly lower dimensional?

WHY DENSE VECTOR?

- Assumption: Data lies in the lower dimensional space
- Input data may have 100K+ dimensions
 - COVID19 data set has 227 Billion tokens no preprocessing
 - Word vector size 3.5 Million
 - lack Dimensionality reduction: can we compress Word vector from $R^{3.5M}$ into R^{100} ?
- Fewer dimensions
 - fewer parameter to fine-tune and fast training
 - Yet discover latent relationship of data

SYMMETRIC WORD-WORD CO-OCCURRENCE MATRIX

If the matrix is real symmetric, then it can be diagonalized

$$S = Q\Lambda Q^T$$

Orthogonal eigen vectors

Real eigen values

Are symmetric word-word co-occurrence matrices positive semi-definite?

SINGULAR VALUE DECOMPOSITION

SINGULAR VALUE DECOMPOSITION

Co-occurrent matrix A is not quite square matrix but symmetrical

 AA^T and A^TA are symmetrical and real, but may not be equal

$$AA^{T}u_{i} = \sigma_{i}^{2}u_{i}$$

$$A^{T}Av_{i} = \sigma_{i}^{2}v_{i}$$

$$Av_{i} = \sigma_{i}u_{i}$$

$$X = U\Sigma V^{T} = u_{1}\sigma_{1}v_{1} + u_{1}\sigma_{1}v_{1} + \cdots + u_{k}\sigma_{k}v_{k}$$

$$\sigma_{1} > \sigma_{2} > \cdots > \sigma_{k}$$

$$u_{i}u_{j}^{T} = \delta_{ij} \text{ and } v_{i}v_{j}^{T} = \delta_{ij}$$

$$\delta_{ij} = \begin{cases} = 1, \text{ if } i = j \\ = 0, \text{ if } i \neq j \end{cases}$$

SVD breaks down the original relationships into linearly independent components

LATENT SEMANTIC ANALYSIS [DEERWESTER ET AL]

SVD

- lacktriangle In any natural language, it is reasonable to assume that the words can be clustered or grouped into latent factors (L) that
 - Share similar connectivity or correlation patterns
 - ◆ Transitive relationship through n-order association
- Many singular values are very small to have any substantial impact
 - lacktriangle Result in $|L| \ll |V|$
- Lead to an approximate model with fewer dimensions
- $+ w_i$ and w_j similarity is now approximated using smaller number of dimensions
- ◆ Dot product or cosine between vectors represent their estimated similarity
- $\star \parallel X \hat{X} \parallel \neq 0$ where $X = AA^T$

CHOICE OF k

 $m{k}$ -large enough to fit all the latent (hard to measure directly) Patterns in the data and small enough to omit unimportant details

PRINCIPAL COMPONENT ANALYSIS

The goal is to express the data set into another basis – a linear combination of the original basis to re-expresses the original data set

SEMANTIC FACTOR ANALYSIS

Let $x_i \in \mathbb{R}^M$ be the set of observations (cooccurrence values) from

where set of observations (cooccurrently)
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{M \times N}$$

- Let X and Y be $m \times n$ matrices related by a linear transformation P.
- lacktriangle X is the original co-occurrent data set and Y is a re-representation of that data set.
- +Y=PX
- ullet Geometrically, P rotates, stretches and transforms X into Y
- + Express the word vectors as a linear combination of latent factors

PCA

 \diamond Choose an orthonormal matrix P where

$$Y = PX$$
 such that $S_Y \equiv \frac{1}{N-1} YY^T$ is diagonalized.

- lacktriangle The rows of P are the principal components of X
- lacktriangle The i^{th} diagonal value of S_Y is the variance of X along p_i
- → Note: X is a zero-mean data $X = X \bar{X}$ A tutorial on PCA

$$S_{y} = \frac{1}{N-1} PX(PX)^{T}$$

$$= \frac{1}{N-1} PXX^{T}P^{T}$$

$$= \frac{1}{N-1} PAP^{T}$$

$$A = Q\Lambda Q^{T}$$

 \boldsymbol{A} is symmetric and is diagonalizable. Now,

$$S_Y = \frac{1}{n-1} P(Q\Lambda Q^T) P^T$$
 - here Substituting $P^T = Q$, we get
$$= \frac{1}{n-1} \Lambda$$

WORD VECTORS USING PCA

- 1. Construct the co-occurrence matrix of size $m \times n$ matrix, where m is the vocabulary of the corpus and n is the number of context words
- 2. Subtract the mean from each row x_i
- 3. Compute SVD to find eigen vectors and eigen values ($A = U\Sigma V^T$), where $A = XX^T$
- 4. The principal components of X are the eigenvectors of A
- 5. The largest eigen value correspond to the principal component with a maximum variance
- 6. Find a suitable ${\it r}$ to reduce the rank of ${\it U}$
- 7. The rows of the eigen vectors (u_i) correspond to the word vector of x_i

SIGNAL TO NOISE RATIO (SNR) σ_s^2 σ_n^2 Not bad Good Bad

HOW ABOUT SIGNAL 2 REDUNDANCY (SRR)? σ_s^2 σ_s^2 σ_r^2

REDUNDANCY IN THE DATA

- Semantic redundancy
- Dimensional redundancy
 - Few basis vectors many vectors are the linear combinations of the basis vectors
 - projecting onto a lower dimension makes sense
 - Orthogonal projection of the data onto a lower dimensional space

INTERPRETATION INTUITION

- Original matrix is decomposed into linearly independent components
- ◆ Each of the original component in broken into small number of components
- ◆ These components represent may be thought of representing the latent features of concepts present in the vocabulary
- → The first component accounts for most of the possible variability of the original data
- ◆ The elements of the word embedding represents the strength of association with every underlying concepts
 - \rightarrow the meaning of every word is expressed as k components
 - lack Each latent feature column of U can be seen as a conceptual structure that characterizes a set of related terms
 - For example Size, finance, fruit, color, · · · can be considered as hidden/latent abstract concepts
 - Words that fall into any of these concepts have similar word vectors

LATENT FACTOR ANALYSIS

Express the word vectors as a linear combination of latent factors

LATENT FACTOR MODELS

→ Latent factor models study a random vector $X \in \mathbb{R}^m$ by assuming that it is generated by a linear combination of a set of basis vectors

$$\star x = B\Lambda + \epsilon = B_1\lambda_1 + \dots + B_K\lambda_K + \epsilon$$

- lacktriangle where $B=[B_1,\cdots,B_K]$ is the set of fixed but unknown basis. ϵ describes noise and s is the latent factor
- We want to minimize $\|X B\Lambda\|_{F'}^2$ where $\|\cdot\|$ is the matrix Frobenius norm

$$||A||_F^2 = \sqrt{\sum_{i}^{m} \sum_{j}^{n} |A_{ij}|^2}$$

- ◆ Loadings represent degree to which each of the variables "correlates" with each of the latent factors
- ◆ Latent factor loadings reveals extent to which each of the variables contributes to the meaning of each of the factors.

LATENT FACTOR MODELS

$$X = B\Lambda + \Delta$$

$$\begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} \lambda_{11} & \cdots & \cdots & \lambda_{1m} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_{n1} & \cdots & \cdots & \lambda_{nm} \end{bmatrix}_{n \times m} \begin{bmatrix} b_{11} \\ \vdots \\ b_m \end{bmatrix}_{m \times 1} + \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix}_{n \times 1}$$

WORD VECTORS COMPUTATION AS OPTIMIZATION PROBLEM?

- → The goal is to learn word vectors that capture semantic relationships between words by minimizing an objective function
- Is this possible?

$$\langle v_i, v_j \rangle \approx T(x_{ij})$$

OR

$$\min_{v,v'} \sum_{v,v'} (\langle v,v' \rangle - T(x_{ij})^2$$

 \downarrow

$$\min_{v,v'} \sum_{v,v'} f(\cdot) \left(\langle v,v' \rangle - T(x_{ij}) \right)^2$$

OBJECTIVE FUNCTION AS LOG LIKELIHOOD

• Given a word w_n and its context $w_{\rm context}$, the objective is to maximize the log-probability of the context words:

$$\mathcal{L} = \sum_{n=1}^{|V|} \sum_{-c \le j \le c, j \ne 0} \log P(w_{n+j} \mid w_n)$$

The probability of observing the context word w_{n+j} given the target word w_n .

LATENT FACTORS

	~
	7
7	
01-00	_
	0
	/
apple	

iphone	0.266
ipad	0.287
apples	0.356
blackberry	0.361
ipod	0.365
macbook	0.383
mac	0.391
android	0.391
google	0.395
microsoft	0.418
ios	0.433
iphones	0.445
touch	0.446
sony	0.447

apple – iphone

raisin	0.574
pecan	0.576
cranberry	0.584
butternut	0.588
cider	0.591
apricot	0.603
tomato	0.607
rosemary	0.615
rhubarb	0.615
feta	0.618
apples	0.623
avocado	0.624
fennel	0.631
chutney	0.631

0.412
0.433
0.435
0.445
0.465
0.473
0.490
0.512
0.514
0.514
0.520
0.524
0.534
0.541

$$W_{apple} \approx \lambda_1 v_{company} + \lambda_2 v_{tech} + \lambda_3 v_{product} + \cdots + \lambda_n v_{fruit}$$

$$\langle w_i, \tilde{w}_k \rangle \approx \log(X_{ik})$$

SIMILAR WORDS

language		programmin	g	lang	guage – progr	ramming	language – er	iglish
languages	0.18	programing	0.29		language	0.55	constructs	0.62
English	0.25	programmers	0.38		english	0.57	domain-specific	0.63
spoken	0.30	programs	0.38		spoken	0.60	implicit	0.64
translation	0.34	programmer	0.39		pronunciation	0.60	object-oriented	0.64
vocabulary	0.34	program	0.40		malay	0.61	language	0.64
word	0.36	C++	0.40		spanish	0.61	scripting	0.65
learning	0.36	language	0.40		portuguese	0.61	concurrency	0.65
speaking	0.36	languages	0.42		hebrew	0.63	pervasive	0.66
grammar	0.36	java	0.42		etymology	0.63	semantics	0.66
meaning	0.37	visual	0.42		french	0.64	programming	0.66
linguistic	0.37	coding	0.43		afrikaans	0.64	cognition	0.66
words	0.38	development	0.43		nationality	0.65	declarative	0.67
spanish	0.38	learning	0.44		sanskrit	0.65	categorization	0.67
speak	0.39	applications	0.44		fluently	0.65	relational	0.67

$$W_{language} \approx \lambda_1 v_{NL} + \lambda_2 v_{CL} + \lambda_3 v_{grammar} + \cdots + \lambda_n v_{Tech}$$

ANOTHER EXAMPLE

virus

viruses 0.182 malware 0.303 infected 0.307 infection 0.315 spyware 0.344 0.352 viral influenza 0.358 0.375 flu 0.392 trojan 0.401 hiv vaccine 0.405 0.405 h1n1 hepatitis 0.414

malware

spyware	0.184
viruses	0.246
adware	0.264
virus	0.303
malicious	0.304
anti-virus	0.321
trojan	0.331
phishing	0.343
antivirus	0.379
rootkits	0.386
hackers	0.407
rootkit	0.410
spam	0.417

virus – malware

0.600
0.600
0.608
0.611
0.619
0.623
0.624
0.625
0.639
0.642
0.652
0.654
0.655

$$w_{virus} \approx \lambda_1 v_{virus_1} + \lambda_2 v_{virus_2} + \cdots + \lambda_n v_{virus_n}$$