目次

第1章	General Topology			
1.1	順序集合			
1.2	位相	5		
1.3	収束	5		
	1.3.1 ネットの収束	5		
	1.3.2 ネットによる完備性の定義	6		
	1.3.3 ネットによる位相空間論	6		
1.4	連続性	6		
	1.4.1 ネットによる議論	6		
	1.4.2 誘導される位相	7		
1.5	分離	7		
	1.5.1 Hausdorff 性	7		
	1.5.2 正規空間と Urysohn の補題	8		
	1.5.3 完備距離空間の内部 hom	8		
	1.5.4 下半連続性	8		
1.6	コンパクト性	9		
	1.6.1 ネットによる議論	9		
	1.6.2 コンパクトハウスドルフ空間	9		
	1.6.3 古典的結果	9		
1.7	局所コンパクト性	10		
	1.7.1 一点コンパクト化	10		
	1.7.2 局所コンパクトハウスドルフ空間	10		
	1.7.3 パラコンパクト性	11		
第2章	Banach Space	12		
2.1	ノルム空間	12		
	2.1.1 ノルム空間と射	12		
	2.1.2 作用素の空間	13		
	2.1.3 完備性の特徴づけ	14		
	2.1.4 Banach 空間の圏とテンソル積	15		
	2.1.5 ノルム空間の商	16		
	2.1.6 Banach 空間の内部構造	17		
	2.1.7 ノルム空間の例	17		
	2.1.8 ノルム空間の構成	18		
	2.1.9 ノルム位相の性質	20		
2.2	カテゴリ	20		
	2.2.1 Baire category theorem	20		
	2.2.2 開写像定理	21		
	2.2.3 閉グラフ定理	22		

<u>目次</u> 2

	2.2.4	一様有界性の原理	22
2.3	双対空	間	22
	2.3.1	Hahn-Banach の拡張定理	23
	2.3.2	零化空間と再双対空間・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	2.3.3	双対ペアと極集合	25
	2.3.4	随伴作用素	26
	2.3.5	核	26
	2.3.6	<u>転置</u>	27
2.4		 	27
2.4			
	2.4.1	局所凸性のセミノルム空間としての特徴付け	27
	2.4.2	弱位相を定める汎関数	28
	2.4.3	弱位相の性質	29
	2.4.4	Hahn-Banach の分離定理	29
	2.4.5	w^st -位相	30
	2.4.6	Hahn-Banach の応用	30
	2.4.7	随伴と w*-位相	30
2.5	w^* - \Box	パクト	31
	2.5.1	Alaoglu の定理	31
	2.5.2	Krein-Milman の定理	31
	2.5.3	確率測度のなす部分空間	32
	2.5.4	Krein-Smulian の定理	33
	2.5.5	可分性と距離化可能性	34
	2.5.6	Banach 空間値積分	35
2.6	位相線	型空間論	36
	2.6.1	基底論	
	2.6.1	基底論	36
第3章	2.6.1 Hilbert		
	Hilbert		36
第3章	Hilbert 内積 .	Space	36 38
第3章	Hilbert 内積 .	Space	36 38 38
第3章	Hilbert 内積. 3.1.1	Space ** ** ** ** ** ** ** ** ** ** ** ** **	36 38 38 38
第3章	Hilbert 内積 . 3.1.1 3.1.2	Space	36 38 38 38 40
第3章	Hilbert 内積 3.1.1 3.1.2 3.1.3	Space *双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例	36 38 38 38 40 41
第3章	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Space *双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理	36 38 38 38 40 41 41 42
第3章	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け	36 38 38 38 40 41 41 42 43
第3章	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	Space	36 38 38 40 41 41 42 43 44
第3章	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け	36 38 38 40 41 41 42 43 44
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9	Space ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36 38 38 40 41 41 42 43 44 45 46
第3章	内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilber	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 t 空間上の作用素	36 38 38 40 41 41 42 43 44 45 46
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1		36 38 38 40 41 41 42 43 44 45 46 46
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2	Space *	36 38 38 40 41 41 42 43 44 45 46 46 46 48
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3	*知線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 t 空間上の作用素 随伴 自己共役作用素 Hilb の同型	36 38 38 40 41 41 42 43 44 45 46 46 46 48
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4	*知線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 (空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素	36 38 38 40 41 41 42 43 44 45 46 46 46 48 48 49
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 t 空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素 半正定値作用素	36 38 38 40 41 41 42 43 44 45 46 46 48 48 49 50
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 t 空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素 半正定値作用素 二乗根補題	36 38 38 40 41 41 42 43 44 45 46 46 48 48 49 50 50
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 **空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素 半正定値作用素 二乗根補題 射影	36 38 38 38 40 41 41 42 43 44 45 46 46 48 49 50 50 50
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 t 空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素 半正定値作用素 二乗根補題 射影 ユニタリ作用素	36 38 38 40 41 41 42 43 44 45 46 46 48 48 49 50 50
第 3 章 3.1	Hilbert 内積 . 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 Hilbert 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	Space 半双線型形式とセミノルムの関係 二次形式と極化恒等式 Hilbert 空間の例 直交分解 Riesz の表現定理 弱位相とその特徴付け 正規直交系 可分 Hilbert 空間の特徴付け 同型な Hilbert 空間 **空間上の作用素 随伴 自己共役作用素 Hilb の同型 正規作用素 半正定値作用素 二乗根補題 射影	36 38 38 38 40 41 41 42 43 44 45 46 46 48 49 50 50 50

<u>目次</u> 3

	3.2.11 数域半径	52
	3.2.12 Hilbert 空間上の作用素の例	53
	3.2.13 一般の *-代数	54
3.3	コンパクト作用素	54
	3.3.1 定義	54
	3.3.2 性質	55
3.4	跡	55
*** * ***		
第4章	Spectral Theory	56
4.1	Categorical Settings	56
4.2	Banach 代数	57
	4.2.1 定義と例	57
	4.2.2 イデアルと商	59
	4.2.3 スペクトル	62
4.3	Gelfand 变換	64
	4.3.1 Gelfand 変換	64
	4.3.2 例	65
4.4	関数代数	65
	4.4.1 Stone-Weierstrass の定理	65
	4.4.2 <i>C*</i> -代数	65
	4.4.3 Gelfand の定理	66
	4.4.4 Gelfand スペクトルの対応	66
	4.4.5 Stone-Cech コンパクト化	66
	4.4.6 Tychonoff 空間	66
4.5	スペクトル理論Ⅰ	66
4.6	スペクトル理論 II	66
4.7	作用素代数	66
4.8	極大可換代数	66
第5章	Unbounded Operators	67
5.1	始域・延長・グラフ	67
5.2	Cayley 変換	67
5.3	無制限スペクトル理論	67
第6章	Integration Theory	68
6.1	Radon 積分	68
0.1	6.1.1 導入	68
	6.1.2 単調極限上への Radon 積分の延長	69
	6.1.3 可積分関数上への延長	70
	6.1.4 Lebesgue の優収束定理	70
0.0	6.1.5 古典的構成	71
6.2	可測性	71
	6.2.1 点列完備性	71
	6.2.2 集合代数	72
	6.2.3 Borel 関数論	72
	6.2.4 可測集合	73
	6.2.5 可測関数	73
6.3	測度	74

目次

	6.3.1	Radon 測度	74	
	6.3.2	Riesz の表現定理	74	
	6.3.3	拡張積分	75	
6.4	L^p -空	間	75	
	6.4.1	零集合	75	
	6.4.2	Radon 積分の Lebesgue 分解	76	
	6.4.3	Lebesgue 空間	76	
	6.4.4	完備化	76	
	6.4.5	稠密部分集合	77	
	6.4.6	Borel 関数近似	77	
	6.4.7	複素関数について	77	
	6.4.8	Lebesgue 空間の相互関係	77	
	6.4.9	包含関係	78	
6.5	双対理	論	78	
	6.5.1	絶対連続性	78	
	6.5.2	Radon-Nikodym の定理	79	
	6.5.3	Jordan 分解	79	
	6.5.4	Radon 電荷の空間	79	
6.6	積分の積			
	6.6.1	関数の積の定義と基本性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80	
	6.6.2	積分の積と Fubini の定理	80	
	6.6.3	位相群上の積分	81	
	6.6.4	調和解析	82	
	6.6.5	対合代数	82	
	6.6.6	対合代数の表現	83	
第7章	非線形	· 関数解析	84	
7.1		et 空間	84	
7.2		· · · · · · · · · · · · · · · · · · ·	84	
	7.2.1	Path smoothness	85	
	7.2.2	微分	85	
7.3	積分論	i	85	
第8章	学習理		86	
8.1	更 関数機		86	
8.2		ラルネットワーク	86	
8.3		プルネットフェク	86	
0.0		カーネル法	86	
** ***			07	
参考文献			87	

第1章

General Topology

- 1.1 順序集合
- 1.2 位相
- 1.3 収束

収束性を議論するにあたって,第1可算な空間は数列の概念で十分だが,弱位相を備えた Hilbert 空間などは足りない.

1.3.1 ネットの収束

Kelly は"A topologist is a person who cannot tell the difference between a doughnut and a coffee cup". と言った人でもある.

定義 1.3.1 (direction, directed set / filtered set, net / generalized sequences, eventuality filter).

- (1) 空でない集合 D 上の,任意の 2 元について上界を持つ (upward-filtering / upward-directed) ような前順序 \leq を方向といい,組 (D,\leq) を有向集合またはフィルター付き集合という.
- (2) 有向集合 D からの写像 $i:D \to X$ を X 上のネットまたは有向系という.ネットも $(x_n)_{n\in D}$ と表し, $x_n=i(n)$ とする.

定義 **1.3.2** (Kelley 1955). $(y_\beta)_{\beta \in B}$ が $(x_\alpha)_{\alpha \in A}$ の部分ネットであるとは,次の 2 条件を満たす写像 $f:B \to A$ が存在することをいう:

- (1) $\forall_{\beta \in B} x_{f(\beta)} = y_{\beta}$.
- (2) strongly cofinal : $\forall_{\alpha \in A} \exists_{\beta \in B} \forall_{\beta_1 \geq \beta} f(\beta_1) \geq \alpha$.

注 1.3.3. Willard も Kelley 1.3.2 も ,(ネット $n:D\to X$ 同様) f に単射性を要求していない点に注意.したがって , $A=\mathbb{N}$ としても , 通常の部分列の定義よりは一般的である.

定義 1.3.4 (eventuality filter / cofinitely often).

(1) $\nu: D \to X$ を集合 X 上のネットとする . ネット ν が定めるフィルター F_{ν} とは ,

$$F_{\nu} := \{ A \in P(X) \mid \exists_{i \in D} \ \forall_{j \geq i} \ \nu_j \in A \}$$

のことである .†1

定義 1.3.5 (convergence of net, limit point, cluster / accumulation point, Cauchy, universal). X を位相空間 , F を S 上のフィルターとする .

 $^{^{\}dagger 1}$ この条件を「 ν は結局 (eventually) A に収まる」と表現する . $D=\mathbb{N}$ のとき , f.e. の条件と同値 .

- (1) ネット $n:D\to X$ が $x\in X$ に収束するとは,任意の x の開近傍(従って近傍) $A\in \mathcal{O}(x)$ に,n が終局する $A\in F_n$ ことをいう.このとき,x を極限点という.X が Hausdorff のとき,一意に定まる.
- (2) ネット $n:D \to X$ が $x \in X$ に集積するとは,任意の x の開近傍(従って近傍) $A \in O(x)$ に,n が無限回入ることをいう: $\forall_{i \in D} \exists_{j \geq i} \ n_j \in A$.このとき,x を集積点という.実は,任意の集積点は必ず部分ネットの極限点になる. $^{\dagger 2}$
- (3) X を距離空間とする.ネット $n:D\to X$ がコーシーであるとは,終局フィルター F_n について, $\forall_{r>0}$ $\exists_{A\in F_n}$ $\operatorname{diam}(A)< r$ を満たすことをいう.
- (4) ネット $n:D\to X$ が普遍的であるとは,任意の集積点が極限点であることをいう.同値だが,任意の $Y\in P(X)$ について, $Y\in F_v\vee X\setminus Y\in F_v$ が成り立つ.

例 1.3.6. 自明なフィルター (the improper filter)P(X) は全ての一点集合を含むので,全ての点に収束し,どの点にも密集しない. 補題 1.3.7 (集積点の特徴付け). B を upward-filtering $^{\dagger 3}$ な X の部分集合系とする.ネット $(x_{\lambda})_{\lambda \in \Lambda}$ について,次の 2 条件は同値.

- (1) Bの任意の元に無限回入る.
- (2) 部分ネット $(x_{h(\mu)})_{\mu \in M}$ が存在して, B に終局する.

系 1.3.8. 位相空間 X 上のネットの任意の集積点 x について, ある部分ネットが存在して x に終局する.

定理 1.3.9 (existence of universal nets (AC)). 任意のネットは,部分ネットとして普遍ネットを持つ.

1.3.2 ネットによる完備性の定義

局所凸空間 (X,\mathcal{F}) において,Cauchy ネットの定義は $\forall_{r>0}$ $\forall_{m\in\mathcal{F}}$ $\forall_{j,k\in D}$ $\exists_{j_0\in D}$ $j,k\geq j_0 \Rightarrow m(x_j-x_k)< r$ に同値.これが必ず極限を持つことは通常の意味でのノルム空間の完備性と同値.こうして完備性の概念は一般の位相空間に拡張できる.

また,ネットの考え方により,位相線型空間で無限和が考えられる.局所凸空間 X の無限族 $(x_i)_{i\in I}$ の和は,添字集合 I の全ての有限部分集合のなす有向集合 D について, $x_J:=\sum_{j\in J}x_j~(J\in D)$ が(ただの有限和なので)それぞれ定まり,ネット $(x_J)_{J\in D}$ を得る.

これが収束する時,これを $(x_i)_{i\in I}$ の無限和とすれば良い.X が完備である時, $\sum_{i\in I}\|x_i\|<\infty$ である場合を除いて,無限和が存在する.

1.3.3 ネットによる位相空間論

P(X) のうち,どのフィルターが終局フィルターであるか,すなわち,どのネットが収束するかを指定することと,空間に位相を指定することは同値になる.

命題 1.3.10 ((AC)). 部分空間 $Y \subset X$ と点 $x \in X$ について,次の2条件は同値.

- (1) $x \in \overline{Y}$.
- (2) x に収束する Y のネットが存在する .

1.4 連続性

1.4.1 ネットによる議論

命題 1.4.1 (連続性の特徴付け). $f:X \to Y$ を位相空間 $(X,\sigma),(Y,\tau)$ の射とする $x \in X$ について , 次の 3 条件は同値 .

- (1) f は x で連続: $\forall_{A \in \mathcal{O}(f(x))} f^{-1}(A) \in \mathcal{O}(x)$.
- (2) $\forall_{A \in \mathcal{O}(f(x))} \exists_{B \in \mathcal{O}(x)} f(B) \subset A$.

^{†&}lt;sup>2</sup> これは英語で cluster と https://ncatlab.org/nlab/show/filter に乗っているが, filter については cluster と accumulate は同じ定義になるのだろうか?

^{†3} ∪ について上に閉じていること

(3) x に収束する任意のネット $(x_\lambda)_{\lambda\in\Lambda}$ について , $f(x_\lambda)\to f(x)$. すなわち , $\Theta(f(x))\subset F_{f(x)}$.

命題 1.4.2 (位相同型の特徴付け). 全単射な連続写像 $f: X \to Y$ について, 次の 2 条件は同値.

- (1) 逆写像 f⁻¹ も連続である.
- (2) f は開写像である.

1.4.2 誘導される位相

無限積に入る積位相は、代数的な有限項制限が入るから、直感よりはよっぽど弱い位相になる、

定義 **1.4.3** (initial topology). 集合 X と写像の族 $(f:X\to Y_f)_{f\in\mathcal{F}}$ を考える. Y_f の位相 τ_f に対して,X に \mathcal{F} を連続にする最弱の位相が定まる.すなわち, $\{f^{-1}(A)\in P(X)\mid A\in\tau_f, f\in\mathcal{F}\}$ が生成する位相である.

命題 1.4.4. 集合 X に写像の族 $\mathcal F$ が定める始位相を入れる.このとき,次の2条件は同値.

- (1) ネット $(x_{\lambda})_{\lambda \in \Lambda}$ は x に収束する.
- (2) 任意の $f \in \mathcal{F}$ について , ネット $(f(x_{\lambda}))_{\lambda \in \Lambda}$ は f(x) に収束する .

系 1.4.5. 集合 X に写像の族 $\mathcal F$ が定める始位相を入れる.このとき,位相空間 Z からの写像 $g:Z\to X$ について,次の 2 条件は同値.

- (1) q は連続.
- (2) 任意の $f \in \mathcal{F}$ について, $f \circ g : Z \to Y_f$ は連続.

定義 **1.4.6** (final topology). 集合 Y への写像の族 $(f:X_f\to Y)_{f\in\mathcal{F}}$ を考える . Y には \mathcal{F} を連続にする最強の位相が考えられる . すなわち , $\{A\in P(Y)\mid \forall_{f\in\mathcal{F}}\ f^{-1}(A)\in \tau_f\}$ が生成する位相である .

命題 ${f 1.4.7.}$ 集合 Y に写像の族 ${\cal F}$ が定める終位相を入れる.このとき,位相空間 Z への写像 $g:Y \to Z$ について,次の 2 条件は同値.

- (1) g は連続.
- (2) 任意の $f \in \mathcal{F}$ について, $g \circ f : X_f \to Z$ は連続.

系 1.4.8. $Q: X \to X/\sim$ が定める商位相について,

- (1) 任意の同値類が X-閉であることと, 対応する X/\sim の点が閉であることは同値.
- (2) Q が開写像であることと ,任意の開集合 $A \overset{\text{open}}{\subset} X$ の飽和 $f^{-1}(f(A))$ が開であること ,すなわち , $\widetilde{A} := \{x \in X \mid x \sim y, y \in A\}$ が開であることに同値 .

1.5 分離

定義 **1.5.1** (separating family). X 上の写像の族 $\mathcal F$ が X の点を分離するとは , $\forall_{x,y\in X}\ x\neq y \Rightarrow [\exists_{f\in\mathcal F}\ f(x)\neq f(y)]$ を満たすことをいう .

1.5.1 Hausdorff 性

命題 1.5.2. 位相空間 (X, τ) について,

- (1) X は Hausdorff である.
- (2) X の任意のネットの極限点は高々1つである.

命題 ${f 1.5.3.}$ X 上に,X の点を分離する写像の族 ${\cal F}$ が定める始位相を考える.このとき, $Y_{f f}$ が全て ${f Hausdorff}$ であるなら,X も

Hausdorff である.

系 1.5.4. Hausdorff 空間の積は Hausdorff である.

1.5.2 正規空間と Urysohn の補題

To ascertaion the existence of an ample supply of continuous real functions on the space, we need a more severe separation condition. T_4 くらい位相が強ければ,隆起関数のような,真に変化のある連続関数の存在が保証される.

定義 **1.5.5** (normal). Hausdorff 空間 X が正規であるとは,任意の互いに素な閉集合 E,F が,互いに素な開集合 A,B で分離できることをいう: $E \subset A,F \subset B$. Hausdorff 性を課さないこともある.

命題 1.5.6. 次の 2条件は同値.

- (1) X は正規である.
- (2) 任意の $F \subset B$ を満たす閉集合 F と開集合 B に対して,開集合 A であって $F \subset A \subset \overline{A} \subset B$ を満たすものが存在する.

[証明]. $B = X \setminus E$ として閉集合 E と F の分離を考えれば良い.

定理 **1.5.7** (Urysohn's lemma). (X, τ) を正規空間とする.互いに素な閉集合の組 E, F に対して,連続関数 $f: X \to [0, 1]$ であって, $f(E) = \{0\}, f(F) = \{1\}$ を満たすものが存在する.

要諦 1.5.8. 距離空間は正規であるが,この場合は $f(x) := \frac{d(E,x)}{d(E,x) + d(F,x)}$ を考えれば良い.

命題 **1.5.9** (Tietze's theorem). (X,τ) を正規空間とする.任意の閉集合 F 上の任意の有界連続関数 $f:F\to\mathbb{R}$ は,X 上に有界連続に延長する.

要諦 **1.5.10.** $\mathbb R$ は絶対引き戻し (absolute retract / extensor) であることを主張している . K が絶対引き戻しであるとは , X が正規で A $\overset{closed}{\subset}$ X を閉部分集合 , $f:A\to K$ をその上の連続関数としたとき , 必ず連続延長 $\overline{f}:X\to K$ が存在することをいう .

1.5.3 完備距離空間の内部 hom

命題 ${f 1.5.11.}$ Y を完備距離空間とする. 位相空間 X からの連続関数の空間 C(X,Y) は, 一様距離

$$d_{\infty}(f,g) := \sup \left\{ d(f(x),g(x)) \land 1 \in \mathbb{R} \mid x \in X \right\}$$

について完備距離空間となる.

1.5.4 下半連続性

下半連続な関数全体の集合 $C^{1/2}(X)$ は , 位相 au の情報を湛えている .

定義 1.5.12. 写像 $f: X \to \mathbb{R}$ について,

- (1) f が下半連続であるとは , $\forall_{t\in\mathbb{R}} f^{-1}((t,\infty)) \in \tau$ を満たすことをいう .
- (2) f が上半連続であるとは , $\forall_{t \in \mathbb{R}} f^{-1}((-\infty, t)) \in \tau$ を満たすことをいう .
- (3) X 上の下半連続な関数全体の集合を $C^{1/2}(X)$ で表す.

補題 1.5.13 (位相の特徴付け). 位相空間 (X,τ) について,次の2条件は同値.

(1) $\gamma_A \in C^{1/2}(X)$.

(2) $A \in \tau$.

命題 1.5.14 (下半連続性の特徴付け). 関数 $f: X \to \mathbb{R}$ について,次の2条件は同値.

- (1) f は下半連続.
- (2) 極限点を持つネット $(x_{\lambda})_{\lambda \in \Lambda}$ について , $f(\lim x_{\lambda}) \leq \liminf f(x_{\lambda})$ が成り立つ .

命題 1.5.15 (下半連続関数の空間).

- (1) $C^{1/2}(X)$ の任意個の上限は再び $C^{1/2}(X)$ の元.
- (2) $C^{1/2}(X)$ の有限個の下限は再び $C^{1/2}(X)$ の元.
- (3) $C^{1/2}(X)$ は和と積について閉じている.
- (4) $C^{1/2}(X)$ は一様収束について閉じている.

命題 ${f 1.5.16}$ (下半連続関数の描像). 位相空間 X は,連続関数の族 C(X,[0,1]) が点と閉集合を分離するとする (X が正規であるときこれを満たす). 任意の下半連続関数 $f:X\to\mathbb{R}_+$ はある連続関数の族の上限である.

1.6 コンパクト性

1.6.1 ネットによる議論

定理 1.6.1 (コンパクト性の特徴付け). 位相空間 (X, τ) について,次の 5条件は同値.

- (1) 任意の開被覆は有限な部分被覆を持つ.
- (2) 閉集合系 Δ はどの有限交叉も空で無いとすると, Δ の共通部分は非空である.
- (3) X 上のネットは集積点を持つ.
- (4) X 上の普遍ネットは収束する.
- (5) X上のネットは収束する部分ネットを持つ.

注 1.6.2. Jacobson 位相を備えた環の primitive ideal space はコンパクトだが Hausdorff でない.

補題 **1.6.3** (コンパクト集合の分離). C を Hausdorff 空間 X のコンパクト集合とする . 任意の $x \in X \setminus C$ について , 互いに素な 部分集合 A,B が存在して $C \subset A,x \in B$ を満たす .

命題 1.6.4. Hausdorff 空間のコンパクト集合は閉集合である.

1.6.2 コンパクトハウスドルフ空間

コンパクトハウスドルフ空間は rigid である:これより弱い位相は Hausdorff ではなくなる.実際,コンパクトハウスドルフ空間 (X,τ) からそれより弱い位相 σ を入れた (X,σ) への恒等写像 $\mathrm{id}_X:X\to X$ は, σ が Hausdorff なら同型を定める.

命題 1.6.5. 任意のコンパクト Hausdorff 空間は正規である.

1.6.3 古典的結果

Kelley は Tychonoff の定理と選択公理が同値であることを示した.

定理 ${f 1.6.6}$ (Tychonoff). コンパクト空間の族 (X_i) に対して,積空間 $\prod X_i$ はコンパクトである.

[証明]. $X:=\prod_{i\in I}X_i$ の任意の普遍ネット (x_λ) を取る.射影 $\operatorname{pr}_i:X woheadrightarrow X_i$ は連続だから,ネット $(\operatorname{pr}_i(x_\lambda))$ も普遍的である(任

意の $Y \subset X_i$ について Y または $X_i \setminus Y$ に収束するという条件は保たれる $\mathbf{1.4.1}$). X_i はコンパクトだから,これは極限点 $x_i \in X_i$ を持つ.全射性より, $x \in \operatorname{pr}_i^{-1}(x_i)$ が取れる.このとき, $\forall_{i \in I} \operatorname{pr}_i(x) = x_i$ を満たすように取れる.始位相の性質 $\mathbf{1.4.4}$ より, $\forall_{i \in I} \pi_i(x_\lambda) \to \pi_i(x_i)$ は $x_\lambda \to x$ に同値.よって,X もコンパクト(コンパクト性の特徴付け $\mathbf{1.6.1}$).

定理 **1.6.7** (covering theorem of E. Borel). \mathbb{R}^n の有界閉集合はコンパクトである.

定義 **1.6.8** (Tychonoff cube). 積空間 $T:=[0,1]^{\mathbb{N}}$ を Tychonoff cube という. Tychonoff の定理と **1.5.4** より,これはコンパクトハウスドルフ空間である.

補題 **1.6.9.** $d(x,y) \coloneqq \sum \frac{|x_n - y_n|}{2^n}$ は T に距離を定める .

定理 1.6.10 (Urysohn の距離付け定理). 第2可算な正規空間は, Tychonoff cube に埋め込める.特に, 距離化可能である.

1.7 局所コンパクト性

Euclid 空間,離散空間,そのほか多くの解析的・幾何学的対象は局所コンパクトである.コンパクト化の技法が重要になる.

定義 1.7.1. 位相空間 X が局所コンパクトであるとは,任意の点がコンパクトな近傍を持つことをいう.これは,X が相対コンパクトな集合からなる開基を持つことに同値.

1.7.1 一点コンパクト化

定義 1.7.2 (compactification). 位相空間 (X, τ) について,

- (1) コンパクト化とは , コンパクト空間 $(\widetilde{X},\widetilde{\tau})$ とその稠密な部分集合への同型 $i:X\hookrightarrow\widetilde{X}$ との組 $(\widetilde{X},\widetilde{\tau},i)$ をいう .
- (2) 特に $X \setminus X$ が一点集合となる場合を一点コンパクト化という.

要諦 **1.7.3.** Hausdorff 空間のコンパクト化は Hausdorff とは限らない.が, completely regular 空間は Hausdorff なコンパクト化を許す.なお,正規空間は completely regular である.

命題 1.7.4. 任意のコンパクトでない位相空間 (X, τ) について,

- (1) 一点コンパクト化 $(\widetilde{X},\widetilde{\tau})$ が存在する.
- (2) \widetilde{X} が Hausdorff であることと, X が局所コンパクトな Hausdorff 空間であることは同値.

1.7.2 局所コンパクトハウスドルフ空間

局所コンパクトハウスドルフ空間はほぼ多様体であることに注意.隆起関数はこのクラスに対して定義される.関数族 $C_c(X)$ は X のコンパクト集合と閉集合を分離するには十分大きいクラスである. $\overline{C_c(X)}=C_0(X)$ である.

命題 1.7.5. 局所コンパクトハウスドルフ空間の任意の開集合と閉集合は,相対位相に関して再び局所コンパクトハウスドルフである.

命題 1.7.6 (隆起関数の存在). 局所コンパクトハウスドルフ空間 (X,τ) の任意のコンパクト集合 C とこれを含む開集合 $C\subset A$ $\subset X$ について,A に含まれるコンパクト台を持つ連続関数 $f:X\to [0,1]$ が存在して, $f(C)=\{1\}$ を満たす.

定義 1.7.7 (functions vanish at infinity). 連続関数 $f:X\to\mathbb{R}$ が,任意の $\epsilon>0$ に対して $\{x\in X\mid |f(x)|\geq 0\}$ がコンパクトであることは,X の一点コンパクト化への連続延長が $\widetilde{f}(\infty)=0$ を満たすことに同値.これを,無限遠点で消える関数という.そのような関数全体からなる集合を $C_0(X)$ で表す.

1.7.3 パラコンパクト性

局所コンパクトハウスドルフ空間は正規とは限らない. 正規になるためには, σ -コンパクト性, または局所コンパクト性の下では同値だが, パラコンパクト性が必要である. 多様体論も, 1の分割を使うために, 正規性を達成する対象のみを多様体とした.

補題 1.7.8. 局所コンパクトで連結な空間 X について,次の3条件は同値.

- (1) パラコンパクトである.
- (2) σ -コンパクトである.
- (3) $\cup E_n = X$ を満たす相対コンパクトな開集合の増大列 (E_n) で , $\overline{E_n} \subset E_{n+1}$ を満たすものが取れる .

命題 1.7.9 (正規性の十分条件).

- (1) パラコンパクトな Hausdorff 空間は正規である.
- (2) σ -コンパクトは局所コンパクト Hausdorff 空間は正規である.

系 1.7.10. 任意の第2可算な局所コンパクト Hausdorff 空間は距離化可能である.

[証明]. Urysohn の距離付け定理 1.6.10 より.

命題 1.7.11 (1の分割). 正規空間 X の局所有限な開被覆 (A_n) について , これに従属する 1 の分割が存在する .

注 1.7.12. Zorn の補題に依れば,任意の局所有限な開被覆 (A_n) についても取れる.

命題 1.7.13.

- (1) 位相多様体について,第2可算であることと,パラコンパクトかつ連結部分が可算個であることは同値.
- (2) 第2可算ならば, Lindelöfである. すなわち, 可算被覆性を持つ.
- (3) 局所コンパクトで σ -コンパクトは Hausdorff 空間は可算被覆性を持つ.

第2章

Banach Space

Banach 空間とは, CompMet の中の線型空間である. Banach 空間の射は, 有界な線型写像と, short linear map との2つの取り方がある. nLab では前者を Bant, 後者を Ban と表すようだ.

位相線型空間とは,連続群のように,Topの中の線型空間である.

記法 2.0.1.

- (1) B(0,r) を閉球とする . B を閉単位球とする . $rB := \{rx \mid x \in B\}$ と表す .
- (2) 具体的に $\mathbb{F}=\mathbb{R}$, \mathbb{C} とするが,ほとんどの結果は離散的でない付値体一般,または局所体 (local field),すなわち,局所コンパクト Hausdorff な体一般に拡張できる.
- (3) ノルム位相についての閉包を \(\overline{Y} \) で表す.

2.1 ノルム空間

連続と線型が出会うと有界と変化すること,内部 hom を持つことなど,とにかく美しい描像がある.

2.1.1 ノルム空間と射

ノルム空間が定める位相($(\lambda B+x)_{\lambda>0,x\in X}$ が生成する位相)は,ノルムを連続にする最弱位相になる.この位相について 完備なノルム空間を Banach 空間という.するとノルム空間の間の線型写像が連続であることと有界であることは同値で, これが射となる.なお,作用素論では,作用素の語は部分関数,線型写像の語は写像として,定義を使い分ける.作用素 $x:X\to Y$ の定義域を $D(x)\subset X$ と表す,という具合である.

定義 **2.1.1** (valuation, valued field, discrete valuation). 体 K と全順序 Abel 群 G とについて,G-値付値とは,関数 $v:K\to G\cup \{\infty\}$ であって,次を満たすものをいう:

- (1) 制限 $v|_{K^{\times}}$ の値域は G に含まれ,群準同型 $K^{\times} \to G$ を定める.
- (2) $v(0) = \infty$.
- (3) $v(x + y) \ge \min(v(x), v(y))$.

組 (K,v) を付値体という (暗黙に v が定める距離が定める位相を入れる). $G=\mathbb{Z}$ である時 v を離散付値という .

定義 **2.1.2** (norm, seminorm, equivalence, Banach space). X を k-線型空間とし,体 k には絶対値 $|\cdot|: X \to \mathbb{R}_{\geq 0}$ が備わって いるとする.

- (1) 実数値関数 $\| \ \| : X \to \mathbb{R}$ がノルムであるとは,次の3条件を満たすことをいう.
 - (a) (positivity / faithfulness) $\forall_{u \in X} \|u\| = 0 \Rightarrow u = 0$.

 $^{^{\}dagger 1}$ これは通常 $\forall_{u\in X} \ \|u\|\geq 0$ と等号成立条件が u=0 と分けて書かれる.この主張だけで十分である理由は,(2) より $\|-u\|=\|u\|$ であり,(3),(1) より

- (b) (linearity / homogeneity) $\forall_{\alpha \in k} \ \forall_{u \in X} \ \|\alpha u\| = |\alpha| \|u\|$.
- (c) (triangle inequality / subadditivity) $\forall_{u,v \in X} \|u+v\| \leq \|u\| + \|v\|$.
- (2) 条件(1)が成り立たない場合, セミノルムまたは半ノルムという.
- (3) ノルムが同値であるとは, $\exists_{C_1,C_2\in\mathbb{R}_{>0}}\ orall_{u\in X}\ C_1\|u\|_1\leq\|u\|_2\leq C_2\|u\|_1$.これはノルムが定める距離が同値であることに同値 $^{\dagger 2}$ よって,ノルムが生成する位相が同相であることに同値 $^{\dagger 3}$
- (4) ノルム空間が,ノルムが定める距離について完備であるとき,Banach 空間という 🏃
- (5) ノルム空間の間の線型写像を(線型)作用素という.

注 2.1.3. $\|x\| - \|y\| \le \|x - y\|$ より, $\|x\| - \|y\| \le \|x - y\|$ であるため,ノルムは(Lipschitz)連続である.

命題 2.1.4 (有界性:連続性の特徴付け). $T:X\to Y$ を線型写像とする. 次の3条件は同値.

- (1) T は連続である.
- (2) ある $x \in X$ において T は連続である.
- (3) T は有界である: $\exists_{\alpha>0} \ \forall_{x\in X} \ \|Tx\| \le \alpha \|x\|$.これは作用素ノルムが有限であることを意味する.

[証明].

- (1)⇒(2) 自明.
- (2)⇒(3) $x\in X$ で連続であるから, $\exists_{\delta>0}$ $\forall_{y\in X}$ $\|x-y\|<\delta\Rightarrow\|Tx-Ty\|\leq 1$.いま, $\forall_{z\in X\setminus 0}$ $\left\|\left(\delta\frac{z}{\|z\|}+x\right)-x\right\|=\delta\leq\delta$ より,

$$\left\| T\delta \frac{\mathbf{z}}{\|\mathbf{z}\|} + T\mathbf{x} - T\mathbf{x} \right\| \le 1 \quad \Leftrightarrow \quad \|T\mathbf{z}\| \le \delta^{-1}\|\mathbf{z}\|.$$

(3) \Rightarrow (1) $\forall_{x,y \in X} ||Ty - Tx|| = ||T(y - x)|| \le \alpha ||y - x||$ より.

注 2.1.5. なおさらに,

- (1) f は一様連続.
- (2) f は Lipschitz 連続.
- (3) ||f|| が有限.

も同値になる. *5

2.1.2 作用素の空間

Ban には内部 hom を持つ閉圏としての構造がある

Banach 空間の射の集合とは有界線型作用素の空間としたから、「閉単位球をどれくらい飛ばすか」という作用素ノルムが定まり、これについて Banach 空間となる.これは射集合であるからもちろん代数の構造をもち(乗法は合成に一致)、Banach 代数と呼ばれる.Ban は $\mathbb R$ を単位として閉圏をなす。

a https://ncatlab.org/nlab/show/Banach+space

定義 2.1.6 (operator norm). ノルム空間 X,Y の間の有界作用素の集合を B(X,Y) で表す.これは作用素ノルム

$$||T|| := \sup \{||Tx|| \in \mathbb{R}_{>0} \mid x \in X, ||x|| \le 1\}$$

 $^{\|0\| \}leq 2\|u\|$ が従うので,非負値であることが3条件から従う.

 $^{^{\}dagger 2}$ これは , id についての Lipschitz 連続性の条件と見れば良い .

^{†3} 距離空間の定める位相については,開球が近傍のフィルターの基底となるから,位相については簡単である.

 $^{^{\}dagger 4}$ 局所凸空間 (X,\mathcal{F}) において,Cauchy ネットの定義は $\forall_{r>0}\ \forall_{m\in\mathcal{F}}\ \forall_{j,k\in D}\ \exists_{j_0\in D}\ j,k\geq j_0\Rightarrow m(x_j-x_k)< r$ に同値.これが必ず極限を持つことは通常の意味でのノルム空間の完備性と同値.

^{†5} https://ncatlab.org/nlab/show/Banach+space

によって再びノルム空間になる.作用素の合成を乗法として, 6 劣乗法性 $\|ST\| \le \|S\|\|T\|$ が成り立つ 7 .この劣乗法性により,乗法はノルムの定める位相について(両側)連続になるので,B(X) はノルム空間で,かつ,結合的多元環の構造も持つ.これをノルム代数という.

定義 2.1.7 (normed algebra, Banach algebra).

- (1) ノルム代数またはノルム環とは , 連続な双線型写像 \cdot : $A \times A \to A$ によって結合代数の構造も持つノルム空間 A のことをいう \cdot $^{\dagger 8}$
- (2) ノルム空間としての A が完備である場合,これを Banach 代数という.

命題 ${f 2.1.8.}$ X,Y をノルム空間,Y を完備とする.このとき, ${f B}(X,Y)$ は ${f Banach}$ 空間である.特に ${f B}(X)$ は ${f Banach}$ 代数である.

[証明]、B(X,Y) の任意の Cauchy 列 (T_n) が収束することを示せば良い、任意の $x\in X$ について, (T_nx) も Y の Cauchy 列であり,Y は完備であるから,極限 $\lim_{n\to\infty}T_nx$ が定まる.これを Tx として,対応 $T:X\to Y$ を定め,これが $T\in B(X,Y)$ で $\lim_{n\to\infty}T_n=T$ であることを示す.

線形性 $T(x+y)=\lim_{n\to\infty}T_n(x+y)=\lim_{n\to\infty}(T_nx+T_ny)=Tx+Ty$. 有界性と $T_n\to T$ 任意の $n\in\mathbb{N}$ と $x\in X$ について,

が成り立つ. (T_n) は Cauchy 列としたから, $n\to\infty$ のとき, $T_nx \xrightarrow{n\to\infty} Tx$.また,n を十分大きくとれば,T が有界であることもわかる.

2.1.3 完備性の特徴づけ

これまではノルム空間論であった、線形写像が連続であることは有界性と同値だが、線形空間が完備であることは何を引き起こすか?実は、絶対収束級数というものの見方は、Cauchy列と表裏一体である。

自己射の不動点は,作用している群に関する不変量の概念の卵である.

定理 $\mathbf{2.1.9}$ (絶対収束級数なるクラスの定義). ノルム空間 X と任意の列 (x_n) について,次の 2 条件は同値.

- (1) (x_n) が定める級数が有界 $\sum_{n=1}^{\infty}\|x_n\|<\infty$ ならば収束する.
- (2) X は完備である.

[証明].

- (2)⇒(1) 絶対収束級数は Cauchy 列を定めるため.
- (1) \Rightarrow (2) Cauchy 列 (x_n) を任意に取る. $\|x'_{n+1}-x'_n\|\leq rac{1}{2^n}$ を満たす部分列 (x'_n) が取れる.これについて,

$$\sum_{n=1}^{\infty} \|x'_n\| \le \|x'_1\| + \sum_{n=1}^{\infty} \|x'_{n+1} - x'_n\| < \infty$$

より,部分列 (x'_n) は収束する.よって,元のCauchy列 (x_n) も収束する.

 $^{^{\}dagger 6}$ 合成 $S\circ T$ を乗法とするのは行列を念頭におくと違和感がない.

 $^{^{\}dagger7}$ $\|T\|$ が 1 以上か 1 以下かで場合分けすれば良い

 $^{^{\}dagger 8}$ 積が連続とは, $\exists_{C\in\mathbb{R}_{>0}}\ \|ST\|\leq C\|S\|\|T\|$ を含意する.

定理 **2.1.10.** X を Banach 空間 , Y をその閉部分空間とする.自己写像 $f:Y\to Y$ が縮小写像ならば (1 より小さい Lipschitz 定数を持つならば) , Y 内に不動点が一意的に存在する.

2.1.4 Banach 空間の圏とテンソル積

距離空間の圏と同様,Banach 空間の圏の射には選択の余地がある.Banach 空間の同型は通常(位相線型空間の延長と見て)可逆な有界線型写像とするから,射を有界線型写像として得る圏を Bant と書き,"isomorphic category"という.一方で,Banach 空間を特に距離的に見て,同型を線型な等長同型とするとき,射は short map であり,得る圏を Ban と書く.これを"isometric category"という.

Banach 空間の台となる線型空間のテンソル積にノルムを入れる方法はいくつかある. projective と injective の 2 つが代表的である. 一般に代数は,一般のモノイダル圏について定義される。このことが示唆するように,我々の数学的対称についても,テンソル構造が肝要となる.

2.1.4.1 圏 Ban

定義 **2.1.11** (projective tensor product of Banach space). 2つの Banach 空間 X,Y について, $X\times Y$ 上で自由生成された線型空間 $F(X\times Y)$ 上のノルム

$$\left\| \sum_{1 \le i \le n} a_i (x_i \otimes y_i) \right\| = \sum_{1 \le i \le n} |a_i| \|x_i\| \cdot \|y_i\|$$

に関する完備化 $\overline{F}(X \times Y)$ を , 双線型関係が生成する部分空間の閉包で割った商空間を $X \otimes_{\operatorname{Ban}} Y$ で表す .

要諦 2.1.12. これは , 線型空間としてのテンソル積 $V \otimes W$ 上にノルム

$$\left\| \sum_{i} \alpha_{i} v_{i} w_{i} \right\|_{\pi} := \inf \left\{ \sum_{i} |\alpha_{i}| \|v_{i}\|_{V} \|w_{i}\|_{W} \in \mathbb{R}_{\geq 0} \mid x = \sum_{i} \alpha_{i} v_{i} w_{i} \right\}.$$

を入れて完備化して得たもの $V \hat{\otimes}_{\pi} W$ とみなせる . これを projective cross norm という .

補題 2.1.13. 圏 Ban は射影テンソル積について対称なモノイダル閉圏となる. すなわち, テンソル積を備え, 通常の internal hom について閉じている. 極めて CCC に近い振る舞いの良い圏である! すると, Banach 代数とは, Ban におけるモノイド対象である(半群対象として定義して考察する手法も大事になってくる).

注 2.1.14. したがって圏論者はこちらの圏を重視し,Bant は包含関手 Ban \hookrightarrow TVS の像が生成する充満部分圏であると見る.実際,Bant は Ban の構造のうち距離の構造を忘れている.

補題 **2.1.15.** 圏 Ban での Banach 空間の「台集合」は , 単位閉球となる: $\operatorname{Hom}_{\operatorname{Ban}}(\mathbb{R},X)\simeq_{\operatorname{Set}}B=\{x\in X\mid \|x\|\leq 1\}$.

2.1.4.2 その他のテンソル積

定義 2.1.16 (injective tensor product). λ,μ をそれぞれ V,W 上の線型汎関数とする.テンソル積 $V\otimes W$ をノルム

$$\|x\|_{\epsilon} := \sup \{ |(\lambda \otimes \mu)(x)| \in \mathbb{R}_{>0} \mid \|\lambda\|_{V^*}, \|\mu\|_{W^*} \le 1 \}$$

について完備化したもの $V \hat{\otimes}_{\epsilon} W$ を入射的テンソル積という.

定義 **2.1.17** (tensor product of Hilbert space). V,W を Hilbert 空間とする . $\langle v_1w_1,v_2w_2\rangle:=\langle v_1,v_2\rangle\langle w_1,w_2\rangle$ によって定まる内積が定める ノルム $\|x\|_\sigma$ に関する内積空間 $V\otimes W$ の完備化を , テンソル積 $V\hat{\otimes}_\sigma W$ という .

 $[^]a\, \verb|http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/associative+unital+algebra|$

2.1.4.3 クロスノルム

見てきたように,テンソル積の空間には積によってノルムを入れるのが reasonable に思える.

定義 2.1.18. $V \otimes W$ 上のクロスノルム χ とは,次の2条件を満たすものを言う:

- (1) $\forall_{v \in V, w \in W} \|v \otimes w\|_{\chi} = \|v\|_{V} \|w\|_{W}$.
- $(2) \ \forall_{\lambda \in V^*, \mu \in W^*} \ \|\lambda \otimes \mu\|_{\chi^*} = \|\lambda\|_{V^*} \|\mu\|_{W^*}.$

2.1.4.4 Met について

射は計量写像で,これは特に Lipshitz 連続,特に一様連続である.モノ射は単射な計量写像 (short map),エピ射は像が稠密な計量写像である.等長写像は非縮小な計量写像で必然的にモノ射である.等長写像は Cauchy 列を Cauchy 列に写すから,完備性を保つ.全写な等長写像が同型である.Met は balanced ではない, $\mathbb{Q} \hookrightarrow \mathbb{R}$ が反例である. $\frac{a}{a}$

a https://ja.wikipedia.org/wiki/距離空間の圏

2.1.5 ノルム空間の商

商空間では,新しい原点 Y への最短距離をノルムとする.完備性の遺伝については,環論で見た完全列を通じた議論だ,双対性を感じる.

命題 ${f 2.1.19}$ (商空間). $Y\subset X$ をノルム空間の部分空間とし,Q:X o X/Y を商空間への線形商写像とする.

- $(1) \parallel Qx \parallel := \inf \left\{ \parallel x y \parallel \in \mathbb{R} \mid y \in Y \right\}$ は代表元 x + Y の取り方に依らず,X/Y 上にセミノルムを定める.
- (2) Y が X のノルム閉集合であることと、これがノルムとなることは同値. $^{\dagger 9}$
- (3) X が Banach 空間で Y がその閉部分空間であるとき, X/Y も Banach 空間である.

[証明].

(1) まず,次が成り立つ:

$$\forall_{x_1, x_2 \in X} \ \forall_{\epsilon > 0} \ \exists_{y_1, y_2 \in Y} \quad \|Qx_1\| + \|Qx_2\| + \epsilon \ge \|x_1 - y_1\| + \|x_2 - y_2\| \\ \ge \|(x_1 + x_2) - (y_1 + y_2)\| \ge \|Q(x_1 + x_2)\|.$$

よって, $\|Qx_1+Qx_2\|\leq \|Qx_1\|+\|Qx_2\|$ からノルムの劣加法性,斉次性は商写像 Q の線形性から従う.

- $\|Qx\|=0\Rightarrow x+Y=0+Y$ の必要十分条件を導けば良い. $\|Qx\|=0$ のとき,商ノルムの定義より,列 (y_n) が存在して, $\|y_n-x\|\xrightarrow{n\to\infty}0$.すなわち, $\lim_{n\to\infty}y_n=x$.これはつまり, $\|Qx\|=0\Rightarrow x+Y=0+Y$ は $x\in\overline{\overline{Y}}$ に同値.よって,商ノルムが実際にノルムであることと, $\overline{\overline{Y}}=Y$ は同値.
- (3) X/Y の Cauchy 列 (z_n) を取る.すると, $\|z'_{n+1}-z'_n\|<2^{-n}$ を満たす部分列が取れる.これに対して, $\|x_{n+1}-x_n\|<2^{-n}$ を満たす $x_n\in Q^{-1}(z'_n)$ が存在する.実際,ある $x'_n\in X$ について $Qx'_n=z'_n$ であるが,ある $y\in Y$ が存在して $\|x'_n-x_{n-1}-y\|<2^{-n}$ であるから, $x_n:=x'_n-y$ と定めれば良いことと,帰納法により従う.よって (x_n) は Cauchy 列 だから収束し,Q は連続だから (z'_n) も収束する. (z_n) は Cauchy 列だから,これも Qx に収束する.

注 2.1.20 (商ノルムの well-definedness). (3) の証明内の議論の通り, $\|Qx\| \le \|x\|$ であるから,商写像は連続である.よって,この商空間のノルムが定める位相は商位相より強くないことは分かるが,実は関係 $x_1-x_2 \in Y$ の定める商位相に一致する(系 1.4.8). Y が閉で X が Banach であるとき,商写像は開写像であることは,系 1.4.8 からもわかれば,開写像定理からもわかる.

 $^{^{\}dagger 9}$ 定める位相が Hausdorff であるかの議論と全くパラレルだ.

注 2.1.21 (連続延長の失敗)。商写像 Q は X の単位開球を X/Y の単位開球に全射に写すが,単位閉球は一般にはそうとは限らない.実際, $z\in X/Y$ が $\|z\|=r$ とは, $x\in Q^{-1}(z)$ について $r=\inf\{\|x-y\|\geq 0\mid y\in Y\}$ ということだから,r<1 ならば,ある $y'\in Y$ について $\|x-y'\|<1$ と逆像を見つけることができるが,r=1 の場合は逆像が単位閉球内にみつかるとは限らない.実際,一般の作用素について 2.2.6 のような描像がある.境界上で特異的な振る舞いをする.

命題 ${f 2.1.22}$ (商空間の普遍性). $T\in B(X,Y)$ について,閉部分空間 $Z\subset X$ について $Z\subset {
m Ker}\ T$ が成り立つならば,下図を可換にする \overline{T} であって $\|\overline{T}\|=\|T\|$ を満たすものがただ一つ存在する.

命題 ${f 2.1.23}$ (Banach 空間の標準分解). ノルム空間 ${f X}$ とその部分空間 ${f Y}$ について, ${f Y}$ と ${f X}/{f Y}$ が Banach 空間ならば, ${f X}$ も Banach 空間である.

2.1.6 Banach 空間の内部構造

連続線形延長の算譜

Banach 空間論も,有限の範囲では, k^n だと思って扱える.この消息を正しく捉えるには「稠密」がキーワードになる.

命題 ${\bf 2.1.24}$ (自明な Banach 部分空間). ノルム空間 X の任意の有限次元部分空間 Y は Banach 空間であり,特に閉である.また, $\dim Y=n$ ならば,任意の線型同型 $k^n \stackrel{\sim}{\longrightarrow} Y$ は位相同型でもある.

命題 **2.1.25** (Bounded Linear Transformation theorem). X,Y を Banach 空間, X_0 を X の稠密な部分空間とする.このとき,任意の作用素 $T_0 \in B(X_0,Y)$ は一意的な延長 $T \in B(X,Y)$ をもち, $\|T\| = \|T_0\|$ を満たす.

命題 **2.1.26.** 任意のノルム空間 X について,Banaxh 空間 \overline{X} であって,X を稠密な部分空間として含むものが同型を除いて一意的に存在する.

2.1.7 ノルム空間の例

一般化すると、位相空間上の体値関数に、適切なノルムを入れることで構成する、ほとんどの例はその退化と見れる、

例 2.1.27 (体の積).

- (1) \mathbb{F}^n には $p\in[1,\infty]$ について, $\|x\|_p:=\left(\sum|x_k|^p\right)^{1/p}$ $(p<\infty)$,, $\|x\|_\infty=\max|x_k|$ などのノルムが入り,いずれも同値である.これは特殊な例で,普通 Banach 空間には自然なノルムが一意に定まる.距離空間に同値な距離が大量にあるのと対照的である.
- (2) 体 \mathbb{F} の添字集合J に関する直積 (l^{∞} -直和)を $l^{\infty}(J)$ で表す.
- (3) 体 \mathbb{F} の添字集合J に関する直和 (l^1 -直和)を $l^1(J)$ や $c_0(J)$ で表す.

こうしてノルムが大事になってくる, $L^p(J)$ の入り口である. $J=\mathbb{N}$ のとき,これを省略して書くことが多い.

例 2.1.28 (位相空間上の体値関数). X を局所コンパクトハウスドルフ空間とする.

- (1) $C_c(X) := \{f \in C(X) \mid \text{supp } f \text{ is compact}\}$ は,一様ノルム $\|f\|_{\infty} := \sup|f(x)|$ について,完備でないノルム空間となる.
 - (i) X がコンパクトのとき, $C_b(X,\mathbb{C})=C_c(X,\mathbb{C})$ で,これは C^* -環である.これを連続関数環という.この閉部分環であって,定数を含み,X の点を分離するものを一様環という.これは再び単位的な Banach となる.
 - (ii) $X\subset\mathbb{R}^n$ が開または閉集合の場合,これは局所コンパクトハウスドルフで,さらに Riemann 積分を通じて種々の $p\in[1,\infty]$ -ノルムも入る.この完備化は,**Lebesgue** 空間 $L^p(X)$ となり,Banach 空間である.

- (2) 一般の位相空間 X について, $C_b(X):=\{f\in C(X)\mid {\rm Im}\ f\ {\rm is\ bounded}\}$ は,一様ノルムについて Banach 空間となり,各点 ごとの乗法について Banach 代数になる.
 - (i) 離散空間 X は局所コンパクトである.このとき,X 上の任意の関数は連続になる: $C(X)=\mathrm{Map}(X,\mathbb{F})$.この場合, $C_b(I)$ を $l^\infty(I)$ と表す.
- (3) $C_0(X) := \{f \in C(X) \mid \forall_{\epsilon>0} \ \{x \in X \mid |f(x)| \geq \epsilon\} \text{ is compact} \}$ は<u>可換な C^* -環で 1.7.7</u>, $\overline{C_c(X)} = C_0(X) \subset C_b(X)$ が成り立つ . X がコンパクトであることと Banach 環 $C_0(X)$ が単位的であることは同値 .

X がコンパクトのとき, $(C(X))^st$ は符号付 Radon 測度の空間で, $(C_0(X))^st$ は正則な Borel 測度全体のなす空間となる.

例 ${f 2.1.29}$ (測度空間上の体値関数の同値類)。局所コンパクトハウスドルフ空間 X 上の Radon 積分 $\int:C_c(X)\to\mathbb{R}$ について,可積分関数 f のなす空間

$$\mathcal{L}^p(X) = \left\{ f \in \mathcal{L}(X) \mid \int |f|^p < \infty \quad (p \in [1, \infty)) \right\}, \quad \mathcal{L}^\infty(X) = \left\{ f \in \mathcal{L}(X) \mid \text{ess.sup} |f| < \infty \right\}$$

は,セミノルム

$$\|f\|_p:=\left(\int |f|^p\right)^{1/p} \ (1\leq p<\infty),\quad \|f\|_\infty:=\mathrm{ess.sup}|f|=\inf\left\{s\in\mathbb{R}\ \bigg|\ \int (|f|-|f|\wedge s)=0\right\}$$

と定めると,を持つ. $\mathcal{N}(X)$ を零関数 $\int |f|=0$ のなす部分空間とすると, $L^p(X):=\mathcal{L}^p(X)/\mathcal{N}(X)$ はノルム空間となり,さらにBanach 空間となる(Riesz-Fischer の定理).

測度空間 X と言ったが,測度も Radon 積分から定義できるので明示的には出てこないことに注意.

注 2.1.30 (本質的上限の well-definedness). 固定された f について,ノルム $\|f\|_p$ は p>1 について連続.このとき, $\|f\|_p \xrightarrow{p\to\infty} \|f\|_\infty$ と,本質的上限に収束する.

定理 2.1.31 $(L^p$ 空間の描像). (X,Ω,μ) を測度空間とし, $1\leq p<\infty$,1/p+1/q=1 を共役指数とする. $g\in L^q(\mu)$ に対して, $F_g:L^p(\mu)\to\mathbb{F}$ を $F_g(f):=\int fgd\mu$ で定める.

- (1) $1 のとき , <math>F: L^q(\mu) \xrightarrow{\sim} L^p(\mu)^*$ は等長同型を定める .
- (2) p=1 で (X,Ω,μ) が σ -有限のとき , $F:L^\infty(\mu)\stackrel{\sim}{\to} L^1(\mu)^*$ は等長同型を定める .

例 2.1.32 (群上の Banach algebra). 特別なクラスである.

- (1) 局所コンパクト群 G 上の Radon 測度 $(C(G))^*$ は Banach 環をなす. 積は測度の畳み込みとする.
- (2) Lebesgue 空間 $L^1(\mathbb{R})$ は畳み込みを積として非単位的な Banach 代数をなす.単位元は Dirac 関数に相当する. \mathbb{R} は一般の局所コンパクトハウスドルフな位相群 G , Lebesgue 測度は Haar 測度に一般化出来る. $L^1(G)$ が単位的であることは,G が離散群であることに同値.

2.1.8 ノルム空間の構成

Banach 空間の族に対して,その直積であって,各点毎の一様ノルムを入れたものを直積といい,再び Banach 空間となる.一方で,代数的直和を考えると,様々なノルムを使用できるが,Banach 性が保たれるとは限らず,適宜完備化を考える必要がある.前者を l^∞ -直和,後者を l^1 -直和と呼ぶ.圏 Ban では前者は直積,後者は余直積である.直和の完備化は,直積の言葉で捉えられる.

ただし,これらの概念は族が有限のとき,ノルムの取り方の違いのみに退化する.

2.1.8.1 直積

ノルム空間の直積は , 線型空間の直積のうち , 一様有界な元からなる部分空間として定義される . すると , 圏 Ban はこれについて完備である . ノルムは ∞ ノルムとする . 体 $\mathcal F$ の添字集合 A に関するこの意味での直積を $I^\infty(A):=\prod_{\alpha\in A}\mathcal F$ で表す .

定義 **2.1.33** (direct product of normed spaces). ノルム空間の族 $(X_j)_{j\in J}$ に対して,積空間 $\prod_{j\in J} X_j$ の元であって,次のように定めるノルムが有限である元 $\|x\|_\infty:=\sup\|\mathrm{pr}_j(x)\|<\infty^{\dagger 10}$ (すなわち, $\|\mathrm{pr}_j(x)\|$ が有界である元)のなす空間を,ノルム空間の直積という.

命題 **2.1.34** (Banach 空間の直積に対する閉性). Banach 空間の族 (X_j) について,直積 $\prod_{j \in I} X_j$ も Banach 空間となる.

2.1.8.2 直和

ノルム空間の直和とは,線型空間としての直和の完備化をいう.この余直積についても,圏 Ban は完備である(ノルムは 1 ノルム $\left\| \bigoplus_{s \in S} x_s \right\| = \sum_{s \in S} \|x_s\|$ とする).加群の直和を「代数的直積」とも呼ぶ.ノルム空間の直和は直積の言葉で捉えられる.体 $\mathbb F$ の添字集合 A に関する直和を, $l^1(A)$ で表す.

定義 2.1.35 (algebraic direct product / direct sum). $\sum_{j\in J} X_j := \left\{x \in \prod_{j\in J} \left| \operatorname{pr}_j(x) = 0 \right. \right\} \right\}$ 上に , p-ノルム ($p \in [1,\infty]$) を考えたものを , 代数的直積という . $p = \infty$ の場合を直和とも呼ぶ .

命題 ${f 2.1.36}$ (代数的直積の完備化)。 Banach 空間の族 (X_j) について,p-ノルムについて代数的直積を取ったノルム空間 $\sum_{j\in J} X_j$ を考える.

$$(1)$$
 $p\in [1,\infty)$ のとき , $\sum_{j\in J} X_j$ の完備化は $\left\{x\in\prod_{j\in J} X_j \left|\sum_{j\in J}\|\mathrm{pr}_j(x)\|^p<\infty\right\}\right\}$ に一致する .
$$(2)$$
 $p=\infty$ のとき , $\sum_{j\in J} X_j$ の完備化は $\left\{x\in\prod_{j\in J} X_j \left|\|\mathrm{pr}_-(x)\|:J\to\mathbb{R}\in C_0(J)$, ただし J は離散空間とする $\right\}$ に一致する .

要諦 2.1.37. 結局, 圏 Ban での直和とは, l¹-直和

$$\bigoplus_{i}^{1} W_{i} := \left\{ (w_{i})_{i} \in \prod_{i} W_{i} \mid \sum_{i} \|w_{i}\| < \infty \right\}$$

である.

例 2.1.38. J を離散空間とする.

- (1) $X_j = F$ としたとき , $\prod_{i \in I} F =: l^\infty(J)$ と表し , 有界関数 $J \to F$ のなす空間となる .
- (2) $p < \infty$ ノルムに関して空間 $l^p(J)$ は , $L^p(J)$ と同一視できる .
- (3) 直和は $\sum_{j\in J}F=:c_0(J)$ と表し,無限遠で消える関数 $f:J\to F$,すなわち, $\forall_{\epsilon>0}|\{j\in J\mid |f(j)|\geq \epsilon\}|<\infty$ を満たす関数 f の空間となる.
- (4) $J=\mathbb{N}$ のとき , (J) は省略して l^p,c_0 などと表す . c_0 は単に , 0 に収束する数列のなす空間である .

 $^{^{\}dagger 10} \; |J| < \infty$ のとき , これは常に満たされる .

2.1.8.3 Banach 空間の直和

Hilbert 空間の l^2 -直和は再び Hilbert 空間となり, これを Hilbert 空間の直和と呼んでしまう. これが圏 Hilb の余直積となる.

定義 2.1.39. W を Banach 空間の族とする.

(1)
$$l^p$$
-直和とは, $\bigoplus_i^p W_i := \left\{ (w_i)_i \in \prod_i W_i \middle| \sqrt[q]{\sum_i \|w_i\|^p} < \infty \right\}$.

(2) l^∞ -直和とは, $\bigoplus_i^p W_i := \left\{ (w_i)_i \in \prod_i W_i \middle| \sup_i \|w_i\| < \infty \right\}$.

(3) l^1 -直和とは, $\bigoplus_i^p W_i := \left\{ (w_i)_i \in \prod_i W_i \middle| \sum_i \|w_i\| < \infty \right\}$.

2.1.9 ノルム位相の性質

命題 2.1.40 (有限次元空間の特徴付け). ノルム空間 X の閉単位球 B について,次の 2 条件は同値.

- (1) B はノルム位相についてコンパクトである.
- (2) X は有限次元である.

注 2.1.41. 一方で,弱位相についてはコンパクトになる.

2.2 カテゴリ

ここではノルム空間 X,Y は Banach であるとして,そのノルム位相の性質を調べる.閉グラフ定理を除いては,複素解析学の世界の一般化にも見える.

2.2.1 Baire category theorem

3つの Banach 空間上の作用素の基本結果は,全て Baire の範疇定理の上に拠って立つ.これは,完備距離空間の稠密開集合の可算交叉は再び稠密である(くらいに「濃い」)ことを主張している.

定義 2.2.1 (Baire space, nowhere dense).

- (1) 閉包が内点を持たない集合を疎集合という.集合が疎であることと,その補集合が稠密であることは同値.
- (2) 可算個の疎集合の合併として表せる集合を第一類という.
- (3) そうでない集合, すなわち, 任意の稠密開集合の可算共通部分は稠密であるような位相空間を第二類または Baire 空間という.

[証明]. 任意の半径 r>0 の閉球 B_0 を取り,これと $\bigcap_{n=1}^\infty A_n$ との共通部分が空でないことを示せば, $\bigcap_{n=1}^\infty A_n$ の稠密性が示せる.いま, $A_1\cap B_0^\circ$ は空でない開集合だから,ある半径 $2^{-1}r$ より小さい閉球 B_1 が取れる.これを繰り返すことで, $B_n\subset A_n\cap B_{n-1}^\circ$, $r(B_n)<2^{-n}r$ を満たす閉球の列 (B_n) が取れる.X は完備だから, $\exists_{x\in X}\ \{x\}=\bigcap_{n=1}^\infty B_n\subset B_0\cap (\bigcap_{n=1}^\infty A_n)$ が成り立ち,共通部分が空でないことがわかった.

命題 ${f 2.2.2}$ (Baire category theorem 1). 任意の完備距離空間 X は Baire 空間である .

すなわち, (A_n) を X の稠密開集合の列とすると,この共通部分 $\bigcap_{n\in\mathbb{N}}A_n$ は X で稠密である.また双対命題は,閉集合列を用いて $X=\cup_{n=1}^\infty F_n$ と表せたとき,少なくとも一つの F_n は疎でない(内点を持つ).

注 2.2.3. 実は ZF の下で従属選択公理と呼ばれる弱い選択公理と同値になる.

命題 2.2.4 (BCT2). 任意の局所コンパクトハウスドルフ空間は Baire 空間である.

要諦 2.2.5. こちらは函数解析学では使わないが,任意の有限次元多様体が Baire 空間であることがわかる.多様体がパラコンパクトでない場合でも成り立つ.なお,局所コンパクトでない完備距離空間も,距離化可能でない局所コンパクトハウスドルフ空間も存在することに注意.

2.2.2 開写像定理

開写像定理と逆写像定理という,複素解析と並行な議論.

補題 ${\bf 2.2.6}$ (単位閉球の像の描像)。X,Y を Banach 空間とする. $T\in B(X,Y)$ による単位閉球 B(0,1) の像が,Y のある球 B(0,r) (r>0) の中で稠密であるとする.この時, $\forall_{\epsilon\in(0,1)}$ $B(0,(1-\epsilon)r)\subset T(B(0,1))$.

[証明].

方針 A:=T(B(0,1)) と表すと,これは B(0,r) 上稠密である.任意の $y\in B(0,r)$ と $\epsilon\in(0,1)$ を取り, $y\in(1-\epsilon)^{-1}A$ が従うことを示せば良い.

構成 まず,y に収束する A の列(y_n)を構成する.A は B(0,r) 上稠密だから, $\exists_{y_1\in A} \|y-y_1\| < \epsilon r$ を満たす.次に, $y-y_1\in B(0,\epsilon r)$ であることに注目すると, ϵA はこの上で稠密だから, $\exists_{y_2\in\epsilon A} \|y-y_1-y_2\| < \epsilon^2 r$ を満たす.これを繰り返すことで $y_n\in\epsilon^{n-1}A$, $\left\|y-\sum_{k=1}^n y_k\right\| < \epsilon^n r$ を満たす A の列(y_n)が取れ,対応する X の列(x_n)が $\|x_n\| \le \epsilon^{n-1}$, $Tx_n=y_n$ を満たすように取れる.

証明 するとこの列 (x_n) は絶対収束級数 $x:=\sum_{n\in\mathbb{N}}x_n$ を定めるが,Tx=y であり,また $\|x\|\leq\sum_{n\in\mathbb{N}}\epsilon^{n-1}=(1-\epsilon)^{-1}$ を満たすから, $y\in(1-\epsilon)^{-1}A$.

定理 ${f 2.2.7}$ (開写像定理). X,Y を ${f Banach}$ 空間とし,有界線型作用素 $T\in B(X,Y)$ を全射とする.このとき,T は開写像である. [証明] .

方針 T の線形性と,X の位相は開球を基として生成されることより,T(B(0,1)) が 0 を内点に持つことを示せれば十分である. 実際このとき,任意の開集合の基底 U(x,r) について, $B(x,\delta)\subset T(B(x,r))\subset \overline{T(U(x,r))}$ より, $U(x,\delta)\subset T(U(x,r))$ が取れることがわかる.他の点についても,X,Y の各点の等質性より従う. 11

証明 全射性より, $Y=T(X)=\cup_{n\in\mathbb{N}}\overline{T(B(0,n))}$.Baire の定理より, $\exists_{n\in\mathbb{N}}\ B(y,\epsilon)\subset\overline{T(B(0,n))}$.よって,T(B(0,n)) は $B(y,\epsilon)$ 上稠密,T(B(0,1)) は $B(y/n,\epsilon/n)$ 上稠密である. $2B(0,\epsilon/n)\subset B(y/n,\epsilon/n)-B(y/n,\epsilon/n)$ と,像 T(B(0,1)) が対称凸であることより, $B(0,\epsilon/n)$ 上稠密でもある.よって補題より, $\forall_{\delta\in(0,\epsilon/n)}\ B(0,\delta)\subset T(B(0,1))$.

系 2.2.8 (逆写像定理). Banach 空間の間の任意の全単射な有界線型作用素は,有界な逆射を持つ.

系 2.2.9(ノルムが同値であることの十分条件)。線型空間 X が, 2 つのノルム $\|-\|_1$, $\|-\|_2$ について Banach 空間をなし, $\exists_{\alpha>0}$ $\|-\|_1 \le \alpha\|-\|_2$ が成り立つとする.この時, $\beta>0$ が存在して, $\|-\|_2 \le \beta\|-\|_1$ も満たす.

^{†11} 原点に引き戻して考えるのは,位相群と同じ.

2.2.3 閉グラフ定理

全空間で定義された閉作用素は有界である

関数が連続であることとグラフが閉であることは同値である.同様のことが作用素でも起こる.

グラフが閉である作用素は閉作用素という.グラフが閉で,全空間 X 上で定義された線型作用素は有界であるが,部分集合 $D(T) \subseteq X$ 上で定義された線型作用素については一般には有界とは限らない.

定理 **2.2.10** (closed graph theorem). 作用素 $T: X \to Y$ のグラフ $G(T) := \{(x,y) \in X \times Y \mid Tx = y\}$ が直積空間 $X \times Y$ の閉集合ならば,T は有界である.

[証明]. 仮定より ,G(T) は $X \times Y$ 内の閉部分空間をなす ,特に Banach である.このとき , pr_1 , pr_2 はいずれもノルム減少的であるから ,特に有界である.また pr_1 は全単射を定めるから ,逆写像定理より ,有界な逆 $\operatorname{pr}_1^{-1} \in B(X,G(T))$ を持つ. $T=\operatorname{pr}_2 \circ \operatorname{pr}_1^{-1}$ より , T も有界.

2.2.4 一様有界性の原理

内部 hom の構造について,有界性が綺麗に対応する.すなわち,有界作用素の族が各点有界ならば,一様有界である.結局,有界線型作用素列が一様有界であることを示すには,任意の $x\in X$ について ev_x の像が収束列を定めることを示せば良い.

定理 2.2.11 (作用素族は各点有界ならば一様有界)。B(X,Y) の族 (T_{λ}) について,各点有界(全ての $x\in X$ について列 $(T_{\lambda}x)$ が Y で有界)ならば,作用素 ノルム $\{\|T_{\lambda}\|\in\mathbb{R}\mid\lambda\in\Lambda\}$ も有界である.

[証明]. $Y_{\Lambda} := \prod_{\lambda \in \Lambda} Y$ を直積空間, $T := \prod_{\lambda \in \Lambda} T_{\lambda} : X \to Y_{\Lambda}$ を積作用素とすると,仮定より $\forall_{x \in X} \|T_{\lambda}x\| < \infty$ だから,T はたしかに well-defined である.この T が有界であることを示せば,積作用素の普遍性 $\forall_{\lambda \in \Lambda} T_{\lambda} = \operatorname{pr}_{\lambda} \circ T$ より, $\forall_{\lambda \in \Lambda} \|T_{\lambda}\| \leq \|T\| < \infty$ が従う.

 $(x,y)\in X\times Y_{\Lambda}$ に収束する列 (x_n,Tx_n) を任意にとり,Tx=y を示せば良い.各 $\lambda\in\Lambda$ について T_{λ} は連続であるから, $T_{\lambda}x=\operatorname{pr}_{\lambda}(y)$.これは y=Tx を意味する.

注 2.2.12. Y は一般のノルム空間とできる、基本的には、積作用素のノルムが上界として見つかるのが原理である、

系 2.2.13 (作用素ネットが各点有界であることの十分条件). $(T_{\lambda})_{\lambda \in \Lambda}$ を , B(X,Y) のネットであって , 任意の $x \in X$ について Y のネット $(T_{\lambda}x)_{\lambda \in \Lambda}$ は有界で収束するとする . このとき , $T \in B(X,Y)$ が存在して , これに各点収束する $\forall_{x \in X} T_{\lambda}x \to Tx$.

[証明]. $Tx:=\lim_{\lambda\in\Lambda}T_{\lambda}x$ によって定まる作用素 $T:X\to Y$ が有界であることを示せば良い.この $\{T_{\lambda}\}$ は各点有界族だったから 一様有界でもある: $\exists_{\alpha\in\mathbb{R}}\ \forall_{\lambda\in\Lambda}\ \|T_{\lambda}\|\le \alpha$.したがって, $\forall_{x\in X}\ \|Tx\|\le \alpha\|x\|$.すなわち,T は有界である.

注 2.2.14. 命題 2.1.25 より, X の稠密な部分集合上で任意のネットが有界で収束することを示せば十分.

2.3 双対空間

According to Helmut H. Schaefer, "the study of a locally convex space in terms of its dual is the central part of the modern theory of topological vector spaces, for it provides the deepest and most beautiful results of the subject."

2.3.1 Hahn-Banach の拡張定理

双対空間の元の存在

超平面の分離定理は,これの特別な場合である.このことも含めて, $|X^*| \neq \emptyset$ を主張する位相線型空間論での Hahn-Banach の定理は,位相空間論における Urysohn の補題と同じ立ち位置である.Urysohn の補題は正規空間において閉集合を分離するという主張であるが,連続関数を構成する際にも用いられる.It ensures that such a space will have enough continuous linear functionals such that the topological dual space is interesting. さらに言えば,選択公理と同じ役割をするともみれる.

定義 2.3.1 (dual space, Minkowski functional). X を F-ノルム空間とする.

- (1) 汎関数の空間 $X^* := B(X,F)$ を双対空間という . F は完備だからこれは Banach 空間である 2.1.8 .
- (2) 関数 $m: X \to \mathbb{R}$ が Minkowski 汎関数または劣線形汎関数であるとは,次の2条件を満たすことをいう:
 - (a) (劣加法性) $m(x + y) \le m(x) + m(y)$.
 - (b) (正斉次性) $\forall_{t \in \mathbb{R}_{>0}} m(tx) = tm(x)$.

要諦 2.3.2. Minkowski 汎関数は汎関数とは限らない. これは, セミノルム(よりも一般的だが)を表現する装置である. 実際セミノルムは Minkowski 汎関数である. だから値は実数となっている.

補題 2.3.3 (fundamental lemma). $m:X\to\mathbb{R}$ を実線型空間上の Minkowski 汎関数とし, $\varphi:Y\to\mathbb{R}$ を部分空間上の汎関数で m で抑えられるものとする: $\forall_{y\in Y} \varphi(y)\leq m(y)$.このとき,X 上の汎関数 $\widetilde{\varphi}:X\to\mathbb{R}$ であって m によって抑えられる延長 $\widetilde{\varphi}|_{Y}=\varphi$ が存在する.

「証明].

m 以下の延長の存在 いま Y を任意の部分空間, φ をその上の線型汎関数とする.このとき,任意の $x\in X\setminus Y$ に対して,延長 $\widetilde{\varphi}: Y+\mathbb{R}x\to\mathbb{R}$ であって m によって抑えられるものが存在することを示す.

いま, $\alpha:=\widetilde{\varphi}(x)$ の定め方であって, $\forall_{s\in\mathbb{R},y\in Y}$ $\widetilde{\varphi}(y+sx)=\varphi(y)+s\alpha$ かつ $\varphi(y)+s\alpha\leq m(y+sx)$ を $s=\pm 1$ の場合について満たすことが必要十分.これは, $\forall_{y,z\in Y}$ $\varphi(y)-m(y-x)\leq \alpha\leq -\varphi(z)+m(z+x)$ が必要十分.仮定より,

$$-\varphi(z) + m(z + x) - \varphi(y) + m(y - x) = m(y - x) + m(z + x) - \varphi(y + z)$$

$$\geq m(y + z) - \varphi(y + z) \geq 0$$

Zorn の補題により極大な延長を探す こうして, $Y\subset Z\subset X$ を満たす部分空間 Z と,その上の φ の m 以下の延長 ψ の組(Z, ψ) 全体からなる集合 Λ を考えると,これは空でない.また, $(Z_1,\psi_1)\leq (Z_2,\psi_2):\Leftrightarrow Z_1\subset Z_2\wedge\psi_2|_{Z_1}=\psi_1$ と定めると, Λ は順序集合をなす.さらにこれは帰納的であることを示す. $N=\{(Z_\mu,\psi_\mu)\}_{\mu\in M}\subset \Lambda$ を全順序部分集合としたとき, $Z:=\cup_{\mu\in M}Z_\mu,\psi(z):=\psi_\mu(z)$ ($z\in Z_\mu$) と定めると, $(Z,\psi)\in \Lambda$ で,N の上界である.よって Zorn の補題より, Λ の極大元($Z,\widetilde{\varphi}$)が存在するが,仮に $Z\neq X$ としたら, $Z+\mathbb{R}x$ ($x\in X\setminus Z$)上の延長を考えることで Z の極大性に矛盾する.よって, Z=X.

定理 **2.3.4** (Hahn-Banach extension theorem). $m:X\to\mathbb{R}$ を線型空間上のセミノルム, φ を部分空間 $Y\subset X$ 上の汎関数であり $|\varphi|\leq m$ を満たすとする.このとき,汎関数 $\widetilde{\varphi}$ であって, $|\widetilde{\varphi}|\leq m$ を満たし, $\widetilde{\varphi}|_Y=\varphi$ を満たす延長が存在する.

[証明] . $\mathbb{F}=\mathbb{R}$ の場合 , セミノルムは Minkowski 汎関数で , $|arphi|\leq m\Rightarrow arphi\leq m$ だから , これは補題の特別な場合である . よって , $\mathbb{F}=\mathbb{C}$ の場合を考える .

 $[^]a \; \mathtt{https://ncatlab.org/nlab/show/Hahn-Banach+theorem}$

系 ${f 2.3.5}$ (汎関数の構成). ノルム空間 X において,任意の元 $x\in X\setminus\{0\}$ に対して,汎関数 ${f \phi}\in X^*$ が存在して, $\|{f \phi}\|=1$ かつ ${f \phi}(x)=\|x\|$ を満たす.

[証明]. $\varphi: \mathbb{F}x \to \mathbb{F}$ を , $\varphi(\alpha x) = \alpha \|x\|$ で定めると , $\|\varphi\| = 1$ である . これはノルム $\|-\|$ より大きくないままの X 上への延長が存在するが , $\|\alpha x\| = 1$ を満たす $\alpha x \in \mathbb{F}x$ について $\varphi(\alpha x) = 1$ であるから , $\|\varphi\| = 1$ のままである .

要諦 2.3.6. 汎関数による点の分離能力は十分に高い. 定理 4.2.25 などに使う.

系 2.3.7. ノルム空間 X において,任意の閉部分空間 $Y \subset X$ と $x \in X \setminus Y$ に対して,汎関数 $\varphi \in X^*$ が存在して, $\|\varphi\| = 1$ かつ $\varphi|_Y = 0$ かつ $\varphi(x) = \inf \{\|x - y\| \in \mathbb{R} \mid y \in Y\}$ を満たす.

要諦 2.3.8. 2.4.27 に関連する.

2.3.2 零化空間と再双対空間

Hahn-Banach の拡張定理より,標準的な単射 $\kappa_X: X \hookrightarrow (X^*)^*$ は等長写像であることが従う.これが Ban の iso でもあるとき,X を回帰的という(Hahn-Banach の定理より等長写像であることが従うから,Ban の同型でもある). annihilator の概念は一般の加群について定義され,可換環に対しては随伴と関係が深く,内積に関する場合を直交補空間という.

- (1) Y の零化空間とは , $Y^{\perp}=\{\varphi\in X^*\mid \forall_{y\in Y}\; \varphi(y)=0\}$ を指す .
- (2) Z の零化空間とは , $Z^{\perp}=\{x\in X\mid \forall_{\varphi\in Z}\; \varphi(x)=0\}$ を指す .

補題 2.3.10.

- (1) 一般に $Y \subset (Y^{\perp})^{\perp}$ である.
- (2) Y が閉部分空間である時 , $Y=(Y^{\perp})^{\perp}$ である .
- (3) 一方で, Z が閉部分空間であってもお, $Z = (Z^{\perp})^{\perp}$ とは限らない.

もちろん,Xが有限次元の場合はいずれの等号も常に成り立つ.

命題 ${f 2.3.11.}$ 局所凸空間 ${f X}$ の部分集合 ${f A}$ が生成する部分空間を ${f Y}$ とする ${f .}$

- (1) $A^{\perp} = Y^{\circ}$ である.
- (2) A が X 上線形稠密である ($\overline{Y} = X$) ことと , $A^{\perp \perp} = X$ は同値 .

[証明].

- (1) a
- (2) 系 3.1.18 と同様に証明できるはず.

定義 ${f 2.3.12}$ (bidual space, double-dual embedding, reflexive). X をノルム空間とすると , X^* , X^{**} は Banach 空間である .

- (1) $i:X \to X^{**}$ を $i(x)(\varphi) = \varphi(x)$ と定めると , これは単射線型作用素である .
- (2) すると i はノルム減少作用素で特に有界であることはすぐにわかるが,実は等長写像を定める(系 2.3.5). よって,i を埋め込みとして,X を X^{**} の部分空間と同一視し,X が Banach 空間でない場合は, $i(X) \subset X^{**}$ の閉包を取ることで完備化できる.
- (3) i が全射でもある (したがって i は Ban の同型である) とき , Banach 空間 X を回帰的という .

[証明].i が単射であるのは明らか.任意の $x\in X$ について, $\|i(x)\|=\sup_{x\in \mathbb{R}^k} \varphi(x)\leq \|x\|$ であるが,系 2.3.5 より, $\varphi(x)=x$ を

満たす $\varphi \in B^*$ が取れるから,実際 $\|i(x)\| = \|x\|$ とわかる.

例 2.3.13.

- (1) 有限次元線型空間は回帰的である.
- (2) L^p 空間は 1 のとき,回帰的である.
- (3) Riesz の双対定理より,任意の可分 Hilbert 空間は回帰的である.

定理 2.3.14. Banach 空間 X について,次の2条件は同値.

- (1) *X* は回帰的である.
- (2) ノルム閉単位球 B は , $\sigma(X, X^*)$ -位相についてコンパクト .

系 2.3.15.

- (1) X が回帰的であるとき, 任意の有界線型作用素 $E \to X$, $X \to F$ について, 合成 $E \to F$ は弱コンパクトである.
- (2) (Davis-Figiel-Johnson-Pelczynski 74) 任意の弱コンパクトな有界線型作用素 $E \to F$ について,ある回帰的な Banach 空間 X が存在してこれに沿って分解する.

2.3.3 双対ペアと極集合

2 つの線型空間上のペアリングと呼ばれる双線型汎函数を与え,これを用いて互いに他へ位相を流入させることを考える.そのとき現れる有限次元的性格を持つ位相のうち,よく使われるのが弱 * 位相と Mackey 位相である.ペアリングは Hilbert 空間における射影を,内積がない空間でも模倣したものになる.その内積がある空間では直交補空間 X^{\perp} に当たる概念が零化空間で,これを支える道具が極集合である.零化空間は $A^{\perp}=\langle A \rangle^{\circ}$ と特徴づけられる.2.3.11.

定義 2.3.16 (algebraic duality / dual pair, duality).

- (1) 2 つの線型空間 X,Y が(代数的)双対または双対ペアであるとは,双線型写像 $\langle -,-\rangle:X\times Y\to \mathbb{F}$ であって,部分空間 $\langle -,Y\rangle:=\{b(-,y)\in X^*\mid y\in Y\}\subset X^*$ は X 上の点を分離し, $\langle X,-\rangle\in Y^*$ は Y 上の点を分離するようなものが存在する ことをいう. 112
- (2) X,Y がノルム空間でもあり,さらに $\langle -,Y \rangle \subset X^*$, $\langle X,- \rangle \subset Y^*$ を満たす(すなわち有界になる)とき,単に双対または双対ペアという.
- (3) X において,任意の $y \in Y$ を用いて $p_y(-) := |\langle -, y \rangle|$ とおけば,これは X 上の半ノルムを定める.族 $(p_y)_{y \in Y}$ が X 上に定める始位相を $\sigma(X,Y)$ 位相という.同様に,Y 上にも $\sigma(Y,X)$ 位相が考えられる.すなわち, $\sigma(X,Y)$ 位相とは,Y の元を(双対を通じて)X 上の線型汎関数とみなしたとき,これらを連続にする最弱の位相である.

例 2.3.17 (自然なペアリング).

- (1) 組 (X, X^*) は双対ペアである. 双線型形式は $\langle x, \varphi \rangle = \varphi(x)$ で与えられる.
- (2) 組 (X^{**}, X^*) も双対ペアである. 双線型形式は $\langle z, \varphi \rangle = z(\varphi)$ で与えられる.

E における $\sigma(E,E^*)$ 位相も, E^* における $\sigma(E^*,E^{**})$ 位相も弱位相と呼ぶ.一方で, $\sigma(E^*,E)$ による E^* 上の位相を弱 *-位相 2.4.18 という.埋め込み $i:X\hookrightarrow X^{**}$ の存在より,弱 * 位相は弱位相より弱い.が,いずれの場合も局所凸である.

定義 2.3.18 (real polar, bipolar). 双対ペア (X,Y) と部分集合 $A \subset X$ に対して,

- (1) 対応する Y の部分集合 $\{y \in Y \mid \forall_{x \in A} \text{ Re } (x,y) \geq -1\}$ を A の極集合といい , A° または A^r または P(A) で表す .
- (2) A° の極集合を $A^{\circ \circ}$ と表し,双極集合という.

注 2.3.19. 極集合の定義に単位円板 $\sup_{x \in X} |\langle x,y \rangle| \le 1$ を用いることもあり,この時を absolute polar という. $\partial BA = A$ を満たす

 $^{^{\}dagger 12}$ これは $orall_{x \in X \setminus \{0\}}$ $\exists_{y \in Y}$ $\langle x,y \rangle \neq 0$ に同値で,双線型形式が非退化であるともいう. pairing bilinear form という.

集合 A (これは A が均衡集合であることに同値 $^{\dagger 15}$) については両定義は一致するが , そうでない場合は違うが , その後の議論では同種の命題が成り立つことが知られている .

定義 2.3.20 (convex cone). 順序体 $\mathbb R$ 上の局所凸線型空間内の集合 A について,

- (1) A が錐であるとは , $\mathbb{R}_+A \subset A$ を満たすことをいう .
- (2) A が凸錐であるとは , 正係数の線型結合に閉じていることをいう : $A+A\subset A$, $\mathbb{R}_+A\subset A$.
- (3) 凸錐 A が $A \cap -A = 0$ を満たすとき $A \cap A \cap A = 0$ に頂点を持つという .

補題 2.3.21.

- (1) A° は凸で, $\sigma(Y,X)$ -閉である.
- (2) A が絶対凸であるときは A° も絶対凸であり, $A^\circ = \{y \in Y \mid \forall_{x \in A} \mid \langle x,y \rangle \mid \leq 1\}$ と表せる.
- (3) A が部分空間であるときは A° も Y の部分空間であり , $A^\circ = \{y \in Y \mid \forall_{x \in A} \langle x, y \rangle = 0\}$ と表せる .
- (4) A が 0 に頂点を持つ凸錐であるときは A° も 0 に頂点を持つ凸錐であり, $A^\circ=\{y\in Y\mid \forall_{x\in A}\ \langle x,y\rangle\geq 0\}$ と表せる.

定理 ${\bf 2.3.22}$ (双極定理). (X,Y) を双対ペアとする.部分集合 $A\subset X$ について,双極集合 $A^{\circ\circ}$ は $A\cup\{0\}$ の $\sigma(X,Y)$ -閉凸包である.系 ${\bf 2.3.23}$. 局所凸空間 X は,再双対空間 X^{**} 上で, $\sigma(X^{**},X^*)$ -稠密である.

2.3.4 随伴作用素

随伴とは,標準的な双対双線型形式 $\operatorname{ev}(-)$ を介して,互いに相等する関係にある元をいう.

定義 **2.3.24** (adjoint operator). ノルム空間の射 $T \in B(X,Y)$ に対して , 随伴作用素 $T^*: Y^* \to X^*$ を $\langle x, T^*\varphi \rangle = \langle Tx, \varphi \rangle$ で定まる .

補題 2.3.25 (*-作用素の関手性). $S \in B(X,Y)$, $R \in B(Y,Z)$, $\alpha \in \mathbb{F}$ について,

- (1) $(\alpha T + S)^* = \alpha T^* + S^*$.
- (2) $(RT)^* = T^*R^*$.

命題 2.3.26 (*-作用素の等長性). $T \in B(X,Y)$ をノルム空間の射とすると ,その随伴作用素も $T^* \in B(Y^*,X^*)$ であり , $\|T^*\| = \|T\|$.

命題 2.3.27 (随伴であるための十分条件). X,Y を Banach 空間 , $T:X\to Y,S:Y^*\to X^*$ を任意の作用素であり , $\forall_{x\in X, \varphi\in Y^*}\langle Tx,\varphi\rangle=\langle x,S\varphi\rangle$ を満たすとする . このとき , S,T はいずれも有界で , $S=T^*$ である .

要諦 2.3.28. これは,非有界な作用素を,その随伴を通じて調べる試みの失敗も意味する.非有界な自己共役作用素の理論は,必ず部分写像(not everywhere defined)の考え方がついてくることがわかる.

2.3.5 核

命題 2.3.29. 線型汎函数 $f:X\to\mathbb{F}$ について,

- (1) $f \neq 0$ ならば, $X \simeq \operatorname{Ker} f \oplus \mathbb{F}$.
- (2) X が局所凸とする .f が連続であることと $, \operatorname{Ker} f$ が閉部分空間であることとは同値 .

[証明].

(1) $f \neq 0$ のとき、f は全射だから、 $x \in f^{-1}(1)$ が取れる、すると任意の $y \in X$ について、 $y = (y - f(y)x) + f(y)x \in \operatorname{Ker} f + \mathbb{C}x$ である、実際、f(y - f(y)x) = f(y) - f(y)f(x) = 0 .

 $^{^{\}dagger 13}$ https://en.wikipedia.org/wiki/Polar_set

2.3.6 転置

定義 2.3.30 (transpose). 線型作用素 $x:X\to Y$ に対して,precomposition ${}^tx:=x^*:Y^*\to X^*;f\mapsto f\circ x$ を転置写像という. 補題 2.3.31. X,Y をノルム空間とする. $\|{}^tx\|=\|x\|$.

2.4 弱位相

作用素環の意味での弱位相 / 強位相とは,混用されるが全くの別物である.区別の意味で,こちらは Banach 空間としての 弱位相などと呼ばれる.

 X^* (の部分集合)が X に定める始位相を弱位相といい, X^{**} (の部分集合)が X^* に定める始位相を *-弱位相という.

2.4.1 局所凸性のセミノルム空間としての特徴付け

解析学における位相線型空間は、ほとんど局所凸である.そして局所凸空間は、セミノルム空間であるから、ノルム空間論の延長と捉えられる.こうして、位相空間論的な近傍系の議論ではなく、セミノルムから議論することが出来る.セミノルム空間の位相は、ノルム空間の位相はノルムを連続にする最弱位相である点を一般化する.

定義 2.4.1 (topological vector space, locally convex).

- (2) 位相線型空間 X が局所凸であるとは , 0 の近傍フィルター O(0) が凸集合からなる開基を持つことをいう . 等質性 O(x)=x+O(0) に注意 . 115
- (3) 位相線型空間 X 上の連続な線型汎関数全体からなる集合 X^* は再び線型空間となり,これを双対空間という.X が局所凸である限り, X^* は十分大きい.

定義 **2.4.2** (seminorm topology). 線型空間 X とこれを分離するセミノルムの族 $\mathcal F$ を考える.すなわち,関数族 $\mathcal F$ × X \to $\mathrm{Map}(X,\mathbb R)$; $(m,y)\mapsto m(\cdot-y)$ は X の点を分離する.これが X に定める始位相を, $\mathcal F$ が定めるセミノルム位相とする $^{\dagger 16}$ 換言すれば,次のフィルター準基が各 $\mathcal O(x)$ に生成する位相である:

$${y \in X \mid |m(y-z) - m(x-z)| < \epsilon, m \in \mathcal{F}, z \in Z, \epsilon > 0}$$

すると、ℝは Hausdorff であるから、セミノルム位相は Hausdorff となる 1.5.3.

要諦 2.4.3. セミノルムはそのままでは Hausdorff な位相を定めないから,このように族 $\mathcal F$ を用意して定義とする.X を分離する族 $\mathcal F$ が単元集合 $\{m\}$ であるためには,m がノルムであることが必要十分.任意の $\mathcal F$ の元 $m\in \mathcal F$ が,X の汎関数 $\varphi\in Y\subset X^*$ の族 Y を用いて $m=|\varphi|$ と表せるとき,このセミノルム位相を Y が定める弱位相 $\sigma(X,Y)$ という.

補題 2.4.4 (セミノルム位相の性質). \mathcal{F} が定めるセミノルム空間 X において,

(1) ある有限集合 $\{m_1,\cdots,m_n\}\subset \mathcal{F}$ について,次のように表される集合全体が,近傍フィルター $\mathcal{O}(x)$ の基底をなす:

$$\bigcap_{k\in[n]} \{y\in X\mid m_k(y-x)<\epsilon,\epsilon>0\}$$

 $^{^{\}dagger 14}$ Hausdorff でない位相が定義されている場合は , 0 の近傍系について $N:=\cap_{U\in\mathcal{O}(x)}U$ とおくと閉部分空間で , E/N を考えると Hausdorff 性を満たす .

 $^{^{\}dagger 15}$ 平行移動が連続になるという設定は、連続群の理論の特殊化そのものである.

 $^{^{\}dagger 16}$ 一般に,擬距離の族によって定められた位相を持つ位相空間を,ゲージ空間という.

- (2) ネット (x_{λ}) が収束することは , $\forall_{m \in \mathcal{F}} m(x_{\lambda} x) \to 0$ に同値 .
- (3) $f:Y \to X$ が連続であることは , 任意の Y の収束ネット (y_λ) に対して , $\forall_{m \in \mathcal{F}} \ m(f(y_\lambda) f(y)) \to 0$ が成り立つことに同値 .

[証明].

- (1) 特に z=x の場合を考えると, $\{y\in X\mid m(y-x)<\epsilon\}$ は準基である.しかし,m の劣加法性(三角不等式)より, $m(y-x)<\epsilon$ ならば $|m(y-z)-m(x-z)|<\epsilon$ が従う.よって準基としてはこの形のもののみを考えれば良いから,これらの有限交叉の全体は基底をなす.
- (2) 1.4.4 より.
- (3) 1.4.5 より.

命題 2.4.5 (局所凸性の特徴付け). 位相線型空間 X について, 次の 2 条件は同値.

- (1) X は局所凸である.
- (2) X の位相はセミノルム位相である.

[証明].

(2) \Rightarrow (1) 任意の X の収束ネット $x_{\lambda} \rightarrow x$, $y_{\lambda} \rightarrow y$ について , $x_{\lambda} + y_{\lambda} \rightarrow x + y$ を示せば良い .

要諦 2.4.6. この命題より,ノルム空間の理論の延長として局所凸空間を考えることができる.以降,線型空間 X とその上の半ノルムの族 $\mathcal F$ との組 $(X,\mathcal F)$ を局所凸空間といい,混用する.実は開写像定理 2.2.7 の証明ですでに線形性と凸性との関係を使っている.

2.4.2 弱位相を定める汎関数

命題 2.4.8 は, $\sigma(X,Y)$ -位相に関する一般理論を主張する.線型汎関数の空間 Y を連続にする最弱な位相は,正確に Y のみの線型汎関数を連続にする.Y として評価写像を取れば,これは収束に関する言葉で特徴づけられることになる(弱位相の収束の特徴付け 2.4.20).

補題 ${f 2.4.7.}$ ${f arphi}, {f arphi}_1, \cdots, {f arphi}_n \in X^*$ を線型空間 X 上の汎関数とする.次の 3 条件は同値.

- (1) $\exists_{\{\alpha_1,\cdots,\alpha_n\}\subset\mathbb{F}} \varphi = \sum_{k\in[n]} \alpha_k \varphi_k$.
- $(2) \exists_{\alpha>0} \forall_{x\in X} |\varphi(x)| \leq \alpha \max_{k\in [n]} |\varphi_k(x)|.$
- (3) $\cap_{k \in [n]} \operatorname{Ker} \varphi_k \subset \operatorname{Ker} \varphi$.

命題 ${f 2.4.8}$ $(\sigma(X,Y)$ -位相の一般理論). 線型空間 X と,X の点を分離する線型汎関数のなす線型空間 Y を考える.X に Y 定める弱位相 $\sigma(X,Y)$ を入れて考える.このとき,線型汎関数 φ がこの弱位相について連続ならば, $\varphi\in Y$ である.

系 2.4.9 (symmetric version). (X,Y) は,双線型写像 $\langle -,-\rangle$ によって代数的双対組であるとする.すると, $\langle -,Y\rangle$, $\langle X,-\rangle$ はそれぞれ X,Y に弱位相を定める.これについて,X,Y は局所凸な位相空間になり, $X^*=Y,Y^*=X$ を満たす.

2.4.3 弱位相の性質

これは,命題 2.4.8 に始まる $\sigma(X,Y)$ -位相の一般理論の一部であるが,弱位相の得意な点は,ノルム位相とは有限次元の場合を除いて一般的には異なるが,双対空間は等しく X^* になることである.凸集合について,閉性は同値になる.

命題 2.4.10 (弱収束は各点収束). X 上のネット $(x_{\lambda})_{\lambda \in \Lambda}$ について,次の2条件は同値.

- (1) x に弱位相 $\sigma(X, X^*)$ について収束する.
- (2) $\forall_{\varphi \in X^*} \varphi(x_\lambda) \to \varphi(x)$.

要諦 2.4.11. これは w^* -収束の特徴付け 2.4.20 の特別な場合である.

命題 2.4.12. 凸集合 $C \subset X$ について,次の2条件は同値.

- (1) ノルム閉である.
- (2) 弱閉である.

[証明].(1)⇒(2) は明らかだから,(2)⇒(1) を示す. $x \in X \setminus C$ を任意に取る.すると,C と互いに素なx 中心の開球 B が取れる.Hahn-Banach の分離定理 2.4.17 より, $U := \{y \in X \mid \operatorname{Re} \varphi(y) \geq t\}$ なる C の弱位相における閉近傍が見つかる.この補集合は, $x \in C$ の開近傍である.よって, $X \setminus C$ は弱位相について開いている.

要諦 2.4.13. 弱位相はノルム位相よりも開集合の数は同じか少ない、閉集合の数も同様であるが、凸集合については保たれる、この議論を一般化すると、凸集合が閉であるという条件は、同じ双対を持つどの局所凸位相についても同値である。

2.4.4 Hahn-Banach の分離定理

Top における「正規性」にあたるものは,TVS では「局所凸」である.Among non-locally convex spaces, however, there are examples such that the only continuous linear functional is the constant map onto $0 \in k$.

a https://ncatlab.org/nlab/show/linear+functional

定義 2.4.14 (balanced). \mathbb{F} -線型空間 X の部分集合 C について,

- (1) $\forall_{\alpha\in\mathbb{F}}$ $|\alpha|\leq 1\Rightarrow \alpha C\subset C$ を満たすとき , C を均衡集合または円板という .
- (2) 均衡な凸集合を絶対凸という.
- (3) C を含む絶対凸集合全体の共通部分を,絶対凸包という.

補題 2.4.15. \mathbb{F} -線型空間 X の部分集合 C について,次の 2 条件は同値.

- (1) C は絶対凸である.
- (2) $\forall_{x,y \in C} \forall_{\lambda_1,\lambda_2 \in \mathbb{F}} |\lambda_1| + |\lambda_2| \leq 1 \Rightarrow \lambda_1 x + \lambda_2 y \in C$.

補題 **2.4.16.** X を位相線型空間 , $C \overset{\mathrm{open}}{\subset} X$ を 0 における凸開近傍とする.関数 $m:X \to \mathbb{R}_+$ を

$$m(x) := \inf \{ s > 0 \mid s^{-1}x \in C \}$$

と定めると , これは Minkowski 汎関数で , $C = \{x \in X \mid m(x) < 1\}$ と表せる .

定理 **2.4.17** (Hahn-Banach separation theorem). A,B を非空で互いに素な,位相線型空間 X における凸集合とする.A が開ならば, $\varphi \in X^*$ と $t \in \mathbb{R}$ が存在して, $\forall_{x \in A,y \in B}$ Re $\varphi(x) < t \leq \operatorname{Re} \varphi(y)$ を満たす.

2.4.5 w*-位相

汎関数の空間 X^* には標準的な分離族 $X \hookrightarrow X^{**}$ が考えられ,これについての始位相を *-弱位相という.これは, $x \in X$ での評価写像 ev_x を連続にする最弱の位相である. X^* の作用素ノルムが定める位相より弱く,弱位相よりも弱いが, w^* -位相は各点収束位相として特徴付けられるため,自然な対象である. $\operatorname{Alaoglu}$ の定理より, $\operatorname{dim}(X) < \infty$ の場合のみノルム位相と w^* -位相は一致する.回帰的な場合のみ弱位相と w^* -位相は一致する.

定義 2.4.18 (weak-star topology). ノルム空間 X は,2.3.17(2) の埋め込み $i: X \hookrightarrow X^{**}$ により,線型汎函数の空間 X^* 上の分離 族とみれる.こうして X^* に引き起こされる $\sigma(X^*,X)$ 位相を,*-弱位相という $\dot{}^{117}$ こうして, X^* は局所凸な位相線型空間となり, X を双対空間と同一視できる(命題 2.4.8).

要諦 ${f 2.4.19.}$ *-弱位相の始位相としての定義より, X^* にノルムが定める位相よりも,弱位相 $\sigma(X^*,X^{**})$ よりも弱い.このことから名前がついた.

補題 ${f 2.4.20}$ (*-弱収束は各点収束). *-弱位相における収束は各点収束である.すなわち, X^* 上のネット $(m{arphi}_{\lambda})_{\lambda\in\Lambda}$ について,次の ${f 2}$ 条件は同値.

- (1) w^* -位相について φ に収束する.
- (2) $\forall_{x \in X} \varphi_{\lambda}(x) \to \varphi(x)$.

命題 ${f 2.4.21}$ $(w^*$ -閉な部分空間の表現). X をノルム空間とし,Z を双対空間 X^* の *-閉な部分空間とする.このとき,任意の ${f \phi} \in X^* \setminus Z$ について, $x \in Z^\perp$ が存在して, $\langle x, {f \phi} \rangle \neq 0$ を満たす.

系 $\mathbf{2.4.22.}$ X^* の任意の w^* -閉な部分空間について,あるノルム閉な部分空間 Y が存在して, Y^\perp と表せる.

2.4.6 Hahn-Banach の応用

系 2.4.23 ([3]IV.3.14). X を局所凸空間, Y をその部分空間とする、次の 2 条件は同値.

- Y は X 上稠密である.
- (2) X 上の連続な線型汎函数であって Y 上で消えるものは零関数に限る.

要諦 2.4.24. 一致の定理はこの特別な場合?

系 2.4.25. 部分空間 $Y \subset X^*$ を Banach 空間 X の分離族とする Y は X^* 上 w^* -稠密である X

[証明]. X^* 上 w^* -稠密でないと仮定すると,Y 上で 0 だが,恒等的に 0 ではないような w^* -連続な線型汎関数が存在することになるが, w^* -位相を備えた空間 X^* 上で連続な汎関数は $(\mathrm{ev}_x)_{x\in X^*}$ に限る.

2.4.7 随伴と w*-位相

随伴とは $\sigma(X,X^*)$ -位相に関する対応であるから, $\sigma(X^*,X)$ の言葉で特徴づけられるのは自然なことである.

命題 2.4.26 (随伴の特徴付け).

- (1) Banach 空間 X,Y 間の作用素 $T \in B(X,Y)$ について , その随伴 $T^*:Y^* \to X^*$ は w^* -連続である .
- (2) 任意の w^* -連続な作用素 $S:Y^* o X^{*\dagger 18}$ について , ある $T\in B(X,Y)$ が存在して , $S=T^*$ と表せる . 特に , $S\in B(Y^*,X^*)$.

命題 2.4.27. ノルム空間 X の閉部分空間 Y と , 包含写像 $I:Y\to X$ と商写像 $Q:X\to X/Y$ について ,

 $^{^{\}dagger 17}$ すなわち , 二重共役空間の部分空間 $X \hookrightarrow X^{**}$ に属する写像を全て連続にする最弱の位相 .

 $^{^{\}dagger 18}$ 有界性 , すなわち $S \in B(Y^*, X^*)$ は仮定しない

- (1) 随伴 Q^* と包含写像 $J: Y^{\perp} \to X^*$ とを同一視できる.
- (2) 随伴 I^* と商写像 $R: X^* \to X^*/Y^{\perp}$ とを同一視できる.

2.5 w^* -コンパクト

Banach 空間上の汎関数のなす空間 = 双対空間 (例えば測度の空間など)の解析にあたって,最も大事な位相である w^* -位相を考える.コンパクト集合がたくさんあることが良い.特にコンパクトな凸集合には強力な一般論があり,基本的な対象となる.「これにより,コンパクト性を通じて無限の世界が私たちの手元に届けられるようになった.」 [2]

2.5.1 Alaoglu の定理

実は,単位閉球が $\sigma(X^*,X)$ -コンパクトであることは, w^* -位相による X^* の双対空間が X になることに起因するから, $^{\circ}$ ノルム空間の単位閉球がコンパクトになることは,そのノルム空間が回帰的であることに同値.

 $^{\alpha}$ 凸集合についてはノルム閉と弱閉が同値である議論と並行だろう .

記法 2.5.1. ノルム空間の双対空間 X^* の閉単位球を B^* と表す.

補題 **2.5.2.** ノルム空間 X について,双対空間 X^* の単位閉球 B^* は w^* -閉集合でもあるが,一般に 0 の w^* -近傍であるとは限らない.

定理 2.5.3 (Alaoglu's theorem). ノルム空間 X について, 双対空間 X^* の単位閉球 B^* は w^* -コンパクトである.

要諦 **2.5.4** (Bourbaki-Alaoglu). 実は一般に , X における 0 の絶対凸近傍 U の極集合 U° が $\sigma(X^*,X)$ -コンパクトになる . これは Bourbaki-Alaoglu の定理という .

2.5.2 Krein-Milman の定理

コンパクト凸集合の代数的特徴付けを与える

凸集合には、凸結合 (convex conbination) を線型結合のようなものだと思うと「基底」なるべき概念があり、それらの情報だけで全体の形を復元できる.極点に当たる関数は大抵特殊な振る舞いをするので、取っ掛かりになる.その後、凸結合に対する安定性(これは線形性が十分条件となることが注意)と連続性を確認すれば、目標の凸集合上での成立を示せる.実際、デルタ分布だけでなく、Cauchyの積分表示が対象とする関数クラス、ユニタリ行列、直交行列はすべてある凸集合の極点として特徴付けられる.

定義 2.5.5 (face, extreme point, extremal boundary). 線型空間 X の凸集合 C について,

- (1) C の面とは, 凸な部分集合 $F \subset C$ であって, $\forall_{\lambda \in (0,1),x,y \in C} \lambda x + (1-\lambda)y \in F \Rightarrow x \in F \land y \in F$ を満たすものをいう.
- (2) 特に,一点集合からなる面を,極点または端点という.すなわち,C の異なる 2 点を結ぶ線分上の点として表せない点である.
- (3) C の極点全体からなる集合を,極境界といい, ∂C や $\operatorname{Ex}(C)$ で表す.

命題 2.5.6 (極点の特徴付け). 線型空間 X の凸集合 K と点 $p \in K$ について ,

- (1) $p \in K$ は極点である.
- (2) $K \setminus \{p\}$ は凸集合である.
- (3) p は K 内の非退化な開線分上の点として表せない.
- (4) $\forall_{x \in X} p + x \in K \land p x \in K \Rightarrow x = 0$.

(5) $\{p\}$ は K の面である.

定理 **2.5.7** (Krein-Milman). 線型空間 X に , 双対空間 X^* が定める弱位相を備えて考える.コンパクトな凸集合 $C \subset X$ について , 極境界 ∂C の凸包は C 上弱稠密である: $C = \overline{\mathrm{Conv}}(\mathrm{Ex}(C))$.

例 2.5.8 (凸集合の極点).

- (1) コンパクトハウスドルフ空間上の連続関数の空間 C(X) の単位球は,X が無限集合のとき, ∞ -ノルムについてコンパクトでない 2.1.40.しかし一般に $\forall_{x \in X} |f(x)| = 1$ を満たす関数 $f \in C(X)$ が極点となるが, $\mathbb{F} = \mathbb{R}$ で X が連結ならば,これはただ 2 つで, $F = \mathbb{C}$ ならば,これはユニタリ関数を意味し,ノルム閉単位球の中で一様に稠密である.(C(X) は回帰的でないから,ノルム閉単位球は弱コンパクトではないのに!?)
- (2) $L^1(X)$ $(X \subset \mathbb{R}^n)$ について,単位球はコンパクトでなく,極点を持たない.
- (3) $L^p(X)$ $(p \in (1,\infty))$ は回帰的だから,閉単位球は w^* -コンパクトである.極境界は位相境界に一致する.これは p-ノルムが「一様に丸」くて尖った点のない球を与えるという幾何的消息を示唆している.
- (4) $L^\infty(X)$ の単位球の極境界は $\{f\in\mathcal{L}^\infty(X)\mid |f(x)|=1 \text{ a.e. }\}$.
- (5) 単調増加関数の集合は凸で,各点収束位相についてコンパクトである.極点は ${
 m Im}\,f\subset\{0,1\}$ をみたす関数.
- (6) 開集合 $\Omega \subset \mathbb{C}$ 上の正則関数で $\|f\|_{\infty} \leq 1$ を満たすものがなす凸集合 $O(\Omega)$ の極点は $f(z) = \frac{\alpha}{z-z_0}$ $(z_0 \notin \Omega, |\alpha| = d(z_0, \Omega))$ と表せる関数.これは Cauchy の積分公式で対称となる関数のクラスにほかならない!
- (7) $M_n(\mathbb{F})=B(\mathbb{F}^n)$ に \mathbb{F}^n の 2-ノルムから定まる作用素ノルムを考え,これについてノルム単位球は \mathbb{F}^n の等長同型.すなわち, $\mathbb{F}=\mathbb{R}$ のときは直交行列で, $\mathbb{F}=\mathbb{C}$ のときはユニタリ行列.
- (8) B(H) ($\dim H \ge \aleph_0$) は回帰的で($B^1(H)$ の双対空間と考えられる), 単位球は w^* -コンパクトである (σ -弱位相という) . その極点は $T^*T = I$ を満たす等長同型か, $TT^* = I$ を満たす余等長同型である.また,この極点の凸包はそのまま閉単位球となる.実際,ユニタリ作用素の凸包ですでに開単位球を含む.
- (9) $B(H)_{\rm sa}$ は実 Banach 空間で, σ -弱位相の双対空間である.この極点は対称変換 $S=S^*, S^2=I$ である.
- (10) $B(H)_+$ は閉錐で,B(H) を生成する.この単位球の極点は直交射影 $P=P^*$, $P^2=P$ である.このクラスの作用素に対する結果がスペクトル定理である.

系 2.5.9. $X^* \simeq C_0$ となるような Banach 空間 X は存在しない.

注 2.5.10. 他にも , $L^1([0,1])$ も predual を持たない .

2.5.3 確率測度のなす部分空間

例として,確率測度が Banach 代数の双対空間 $(C(X))^*$ の中でなす部分空間としての性質を見る.測度を,関数の双対空間の元と考える.つまり,セミパラ理論でも見た,関数への作用素としての測度の理解である.これは,積分を有界線形作用素とみる世界観の始まりでもある.「加法的集合関数」なる概念は時代遅れである.

命題 **2.5.11.** ∞ -ノルムを備えたコンパクトハウスドルフ空間上の Banach 代数 C(X) を考える . C(X) の双対空間を M(X) , $P(X):=\{\mu\in M(X)\mid \|\mu\|\leq 1, \mu(1)=1\}$ を確率測度のなす部分空間とする .

- (1) P(X) は M(X) の凸集合である.
- (2) P(X) は w^* -コンパクトである.
- (3) P(X) の極点は Dirac 測度 δ_x $(x \in X)$, $\forall_{f \in C(X)} \delta_x(f) = f(x)$ である.

[証明].

- (1) $\mu_1, \mu_2 \in P(X)$ と $\lambda \in (0,1)$ を任意に取ると , $\lambda \mu_1 + (1-\lambda)\mu_2 \in P(X)$ がわかる .
- (2) 線型汎函数 $\operatorname{ev}_1:M(X)\to \mathbb{F}; \mu\mapsto \mu(1)$ は w^* -位相について連続である $M(X)=(C(X))^*$ の閉単位球 B^* は w^* -コンパクト 2.5.3 である .

要諦 2.5.12. コンパクトハウスドルフ空間 X 上の確率測度は , $(C(X))^*$ 上において , 有限な台を持つ測度 (= Dirac 測度の凸結合) によって各点近似(各点収束の位相で近似)が出来る.これは経験過程に対する大数の法則である.

2.5.4 Krein-Smulian の定理

w*-閉性の特徴付けは,単位閉球の言葉によってなされる.

ある凸集合が弱 *-閉であることを示したいとき , 弱位相での特徴付け 2.4.12 は弱 *-位相が弱位相より真に弱い時には失敗するから (ノルム閉だが w^* -閉でない集合が存在する : $\operatorname{Ker} x^{**} (x^{**} \in X^{**} \setminus X)$ など) , 別の特徴付けを探したい . Krein-Smulian の定理は , 弱 *-位相一般について成り立つ .

定理 2.5.13 (Krein-Smulian theorem). X を Banach 空間 , B^* を双対空間 X^* の閉単位球とする . 凸集合 $C \subset X^*$ について , 次の 2 条件は同値 .

- (1) $\forall_{r>0} rB^* \cap C$ は w^* -閉である, すなわち, w^* -コンパクトである.
- (2) Cはw*-閉である.

[証明].

方針 (2)⇒(1) は明らかだから ,(1)⇒(2) を示す . $\forall_{r>0}$ $rB^* \cap C$ が w^* -閉であるとき ,C はノルム閉でもある . $^{\dagger 19}$ よって $,\varphi \in X^* \setminus C$ のとき $,0 \notin C-\varphi$ だから , ある r>0 が存在して $rB^* \cap (C-\varphi)=\emptyset$ が成り立つ . そこで ,r=1 とし ,C を $C-\varphi$ として取り直すことで $,B^* \cap C=\emptyset$ なる状況について , 必ず $0 \notin \overline{C}$ であることを示せば良い .

主張 X^* の閉球は,極集合として $(rB)^\circ = r^{-1}B^*$ と表せる.

 $r^{-1}B^* \subset (rB)^\circ$ は明らか.実際,任意の $\varphi \in r^{-1}B^*$ について, $\|\varphi\| \leq r^{-1}$ より,任意の $x \in rB$ に対して, $|\varphi(x)| \leq \|x\|\|\varphi\| \leq 1$ だから,特に $\operatorname{Re} \varphi(x) \geq -1$.よって, $\varphi \in (rB)^\circ$.

 $r^{-1}B^*\supset (rB)^\circ$ について,任意に $\varphi\notin r^{-1}B^*$ を取る. w^* -位相を備えた空間 X^* の双対空間は X であることに注意すると, φ の $r^{-1}B^*$ と交わらない任意の開球と $r^{-1}B^*$ とについて,Hahn-Banach の分離定理 2.4.17 より, $x\in X$ と $t\in \mathbb{R}$ が存在して,

$$\operatorname{Re}\langle x, \varphi \rangle < t \leq \operatorname{Re}\langle x, r^{-1}B^* \rangle$$

を満たす.ここで,Re $\langle x, r^{-1}B^* \rangle = [-r^{-1}\|x\|, r^{-1}\|x\|] \subset \mathbb{R}$ だから(作用素ノルムの定義と系 2.3.5 より), $x \in rB$ を $\|x\| = r$ を満たすように上式を正規化することで,Re $\langle x, \varphi \rangle < t \le -1$,特に $\varphi \notin (rB)$ ° を得る.

有界線型作用素の構成 X の有限部分集合の列 (F_n) を次のように定める:

- (1) $F_1 = \{0\}$.
- (2) $D:=(n+1)B^*\cap C\cap P(F_1)\cap\cdots\cap P(F_n)=\emptyset$ とおくと, w^* -コンパクトな凸集合の有限共通部分だから D も w^* -コンパクトな凸集合で 2.3.21,帰納的に $D\cap nB^*=\emptyset$ を満たす(n=1 のときは $C\cap B^*=\emptyset$ は仮定した).すなわち, $\emptyset=D\cap P(n^{-1}B)=\cap_{x\in n^{-1}B}D\cap P(\{x\})$ であるから,D のコンパクト性より, $D\cap P(F_{n+1})=\emptyset$ を満たす有限部分集合 $F_{n+1}\subset n^{-1}B$ が取れる.
- こうして構成した (F_n) は

$$F_n \subset (n-1)^{-1}B$$
 $nB^* \cap C \cap P(F_1) \cap \cdots \cap P(F_n) = \emptyset$

を満たす.したがって, $\cup_{n\in\mathbb{N}}F_n=\{x_n\}$ は 0 に収束する点列と思える.こうして,次の写像 2.1.38

は有界線型作用素となる.

 $[\]dagger^{19}$ 実際,C の任意のノルム収束列 (x_n) を取ると,これは有界列だから, $\exists_{r>0}~\{x_n\}\subset rB^*\cap C.~rB^*\cap C$ は w^* -閉という仮定よりノルム閉でもあるから, (x_n) は C 上でノルム収束する.

数列の空間への対応を用いて証明 $\varphi\in C$ について,十分大きな $m\in\mathbb{N}$ についても $mB^*\cap\{\varphi\}\cap P(\{x_n\mid n\in\mathbb{N}\})=\emptyset$ より, $\inf_{n\in\mathbb{N}}\operatorname{Re}\langle x_n,\varphi\rangle\leq -1$,よって特に $\|T\varphi\|_\infty\geq 1$.すなわち,像 T(C) も凸であるが, $c_0(\mathbb{N})$ における単位開球 B_0 と互いに素である.よって Hahn-Banach の分離定理 2.4.17 より,ある $\lambda=(\lambda_n)\in(c_0(\mathbb{N}))^*=l^1$ と $t\in\mathbb{R}$ が存在して,

$$\operatorname{Re} \langle B_0, \lambda \rangle < t \leq \operatorname{Re} \langle T(C), \lambda \rangle$$

を満たす.上式を $\|\lambda\|_1=1$ を満たすように正規化すると, $1\leq t$ をみたすように t を取れる.よって, $x:=\sum_{n\in\mathbb{N}}\lambda_nx_n$ とおくと $x\in X$ で,任意の $\varphi\in C$ について

$$\operatorname{Re}\langle x, \varphi \rangle = \sum_{n \in \mathbb{N}} \operatorname{Re}\langle \lambda_n x_n, \varphi \rangle = \operatorname{Re}\langle T\varphi, \lambda \rangle \geq t \geq 1^{\dagger 20}$$

が成り立つ.特に, $0 \notin C$ で,Cの w^* -閉包にも含まれないことがわかる.

要諦 2.5.14. Banach 空間 X のノルム位相と弱位相について,凸集合 $A \subset X$ が弱閉であることと $\forall_{r>0}$ $A \cap rB$ が弱閉であることは同値.なぜならば, \Rightarrow : 凸集合 rB はノルム閉であるから弱閉でもある 2.4.12. \Leftrightarrow : A がノルム閉であることを示せば十分だが,A のノルム収束列は有界で,あるノルム閉集合 $\exists_{r>0}$ $A \cap rB$ に含まれるから,結局 A はノルム閉.X が回帰的である場合は,弱 *-位相は弱位相と同じ強さだから,全く同様の事実が成り立つ.しかし,弱 *-位相が弱い場合は?

系 2.5.15. 部分空間 $Z \subset X^*$ (任意の凸集合 Z) について,次の2条件は同値.

- (1) Z は w^* -閉である.
- (2) $Z \cap B^*$ は w^* -閉である.

特に, B^* は w^* -コンパクト 2.5.3 だから, $Z\cap B^*$ も w^* -閉ならば w^* -コンパクトである \dot{z}^{21}

[証明] . (1) \Rightarrow (2) は明らか . (2) \Rightarrow (1) を考える . 部分空間 Z は凸集合である . $Z\cap B^*$ が w^* -閉ならば . rB^* (r>0) も w^* -閉だから . $Z\cap rB^*$ も w^* -閉 . よって Krein-Smulian の定理より Z は w^* -閉 .

系 2.5.16. X^* 上の汎関数 $x \in X^{**}$ について,次の2条件は同値.

- (1) w^* -連続である. すなわち, $x \in X$. †22
- (2) 閉単位球への制限 $x|_{B^*}$ が w^* -連続である.

[証明] . (1) \Rightarrow (2) は明らかだから (2) \Rightarrow (1) を示す $.x:X^* \to \mathbb{F}$ が零であるとき , (2) \Rightarrow (1) は成り立つ . 任意の凸な閉集合 $E \subset \mathbb{F}$ に対して , ($x|_{B^*}$) $^{-1}$ (E) $= x^{-1}$ (E) $\cap B^*$ は w^* -閉集合だから , x^{-1} (E) も w^* -閉集合である .

2.5.5 可分性と距離化可能性

弱位相と w^* -位相は決して距離化可能でないが,有界な集合に限ると距離化可能たり得る $\lceil 3 \rceil V.5.1$.

定理 2.5.17 (単位閉球の距離化可能性). X を Banach 空間とする、次の 2 条件は同値、

- (1) X は可分である.
- (2) X^* の単位閉球 B^* は w^* 位相に関して距離化可能である.

命題 2.5.18 (Schur). l^1 の列は,弱収束するならばノルム収束する.

要諦 2.5.19. 弱位相に関する同様の結論は,定理について $X\hookrightarrow X^{**}$ を考えることで, X^* が可分ならば単位閉球 $B\subset X$ は距離化可能であることがわかる.しかし,双対空間が可分である例は(回帰的な例を除くと)少なく,代表的なのは $X=c_0,X^*=l^1$ の場

 $^{^{\}dagger 20}$ X と X^* 上の双線型形式から, l^1 上の内積に写している.

 $^{^{\}dagger 21}$ コンパクト集合と閉集合との共通部分はコンパクト. コンパクト性の特徴付けから示す.

 $^{^{\}dagger 22}$ w^* 位相の定義 2.4.18 と命題 2.4.8 より .

合のみである.なお,X が可分だからといって B は弱位相に関して距離化可能ではないことが,この命題からわかる. l^1 の閉単位球が弱位相について距離化可能だとすると, l^1 上の弱位相とノルム位相が一致してしまい,矛盾.これが,弱位相を調べる際には点列のみを考えては粒度が足りない好例である.

2.5.6 Banach 空間値積分

Bochner 積分

局所コンパクトハウスドルフ空間 X から Banach 空間 $\mathfrak X$ への関数 $f:X\to\mathfrak X$ を考える . X 上の Radon 積分 $\int:C_c(X)\to\mathbb R$ について,積分 $\int f\in\mathfrak X$ にあたる元を考えたい. $\mathbb R^n$ -値積分が成分毎であるのと同様に,全ての連続な線型形式(射影みたいなもの)について,可換性

 $\forall_{\varphi \in \mathfrak{X}^*} \left\langle \int f, \varphi \right\rangle = \int \langle f(-), \varphi \rangle$

を満たしてほしい.実はこの性質だけで積分は特徴付けられる,ということを議論する. 1 つ目の命題は双対ペア (X^*,X) についてで, 2 つ目は (X,X^*) についてである.ただし,左辺がこれから定義しようとしている $\mathfrak X$ 上の積分,右辺が X 上の Radon 積分となる.

Lebesgue 積分の Banach 空間値関数への拡張を Bochner 積分といい, 代数的場の量子論で頻繁に用いられる. 優収束定理は引き続き成り立つが, Radon-Nikodymnoの定理は成り立たなくなる.

注 2.5.20 (integrable norm). $\|f(-)\|:X o\mathbb{R}$ は X 上の可積分関数を定めるとする.このノルムを可積分ノルムと呼ぶ.

定義 **2.5.21** (weakly measurable, Bochner measurable). Banach 空間値関数 $f: X \to \mathfrak{X}$ について,

- (1) f が弱可測であるとは , $\forall_{g \in \mathfrak{X}^*} g \circ f : X \to \mathbb{F}$ が可測であることをいう .
- (2) f が Bochner 可測または強可測であるとは,ある可算値関数の列 (f_n) $|\mathrm{Im}\ f_n| \le \aleph_0$ が存在して, $f(t) = \lim_{n \to \infty} f_n(t)$ (t-a.e.) を満たすことをいう.
- (3) \mathfrak{X} が可分であるとき, 2 つの条件は同値になる.

補題 **2.5.22.** 関数 $f:X o\mathfrak{X}$ に対して, $\mathfrak{Y}_f:=\left\{ oldsymbol{arphi}\in\mathfrak{X}^*\mid \langle f(\cdot),oldsymbol{arphi}
ight\}:X o\mathfrak{X} o\mathbb{R}$ は可測 $\right\}$ と定める.このとき,

- (1) \mathfrak{Y}_f は w^* -閉 ,特にノルム閉な \mathfrak{X}^* の部分空間である .
- (2) \mathfrak{Y}_f が \mathfrak{X} の点を分離するならば , 高々 1 つの元 $\int f \in \mathfrak{X}$ が存在して ,

$$\forall_{\varphi \in \mathfrak{Y}_f} \left\langle \int f, \varphi \right\rangle = \int \langle f(-), \varphi \rangle$$

を満たす.

[証明].

- (1) \mathfrak{Y}_f の列 (φ_n) であって $\varphi \in X^*$ に w^* -収束するものを任意に取る.すると ,任意の $x \in X$ について , $\mathfrak{X}^* \ni \varphi_n \mapsto \langle f(x), \varphi_n \rangle \in \mathbb{F}$ は連続だから , $\{\langle f(-), \varphi_n \rangle\}$ \subset Meas (X, \mathbb{F}) は $\langle f(-), \varphi \rangle$ に各点収束する.このとき ,極限である $\langle f(-), \varphi \rangle$ は可測.よって , $\varphi \in \mathfrak{Y}_f$. したがって , \mathfrak{Y}_f は w^* -閉で ,特にノルム閉である.線型部分空間であることは明らか.
- (2) 作用素 ノルムの定義から $|\langle f(-), \varphi \rangle| \le \|f(-)\|\|\varphi\|$ であり,右辺の関数は仮定より可積分であるから, $\langle f(-), \varphi \rangle: X \to \mathbb{F}$ も可積分である.すると, $\mathfrak{Y}_f = \left\{ \varphi \in X^* \mid \langle f(-), \varphi \rangle \in \mathcal{L}^1(X) \right\}$ とも表せる.分離的な部分空間 \mathfrak{Y}_f は w^* -稠密である 2.4.25 から, X^* 上への一意的な延長を持つ 2.1.25.よって一意に定まる.

命題 2.5.23. $\mathfrak Y$ を Banach 空間で, $f:X o \mathfrak Y^*$ は w^* -可測で,ノルム $\|f(-)\|$ は可積分であるとする.このとき,ただ一つの元

 $\int f \in \mathfrak{Y}^*$ が存在して,

$$\forall_{y \in \mathfrak{Y}} \left\langle y, \int f \right\rangle = \int \langle y, f(-) \rangle$$

を満たす.

[証明]. $\mathfrak{X}:=\mathfrak{Y}^*$ とすると,f は w^* -可測で,任意の $y\in\mathfrak{Y}$ に対して $\langle y,-\rangle:\mathfrak{Y}^*\to\mathbb{F}$ も w^* -連続より w^* -可測だから, $\langle y,f(-)\rangle:X\to\mathbb{F}$ も可測.よって, $\mathfrak{Y}\subset\mathfrak{Y}_f$.したがって補題より,任意の $y\in\mathfrak{Y}$ について $\langle f(-),y\rangle\in\mathcal{L}^1(X)$ だから, $\int \langle y,f(-)\rangle\in\mathbb{F}$.この対応 $\mathfrak{Y}\to\mathbb{R};y\mapsto\int \langle y,f(-)\rangle$ は明らかに \mathfrak{Y} 上で線型である.この対応を $\int f$ と表すと,一意性は補題より 従うから,連続性すなわち $\int f\in\mathfrak{Y}^*$ を示せば良い.

$$\left|\left\langle y, \int f \right\rangle\right| = \left|\int \langle y, f(-) \rangle\right| = \|y\| \int \left\langle \frac{y}{\|y\|}, f(-) \right\rangle \le \|y\| \int \|f(-)\|$$

より,線型汎函数 $\int f$ は有界である.よって, $\int f \in \mathfrak{Y}^*$.

命題 **2.5.24.** $f:X o\mathfrak{X}$ を弱可測関数で, \mathfrak{X} を可分とする. $\|f(-)\|\in\mathcal{L}^1(X)$ とする.このとき,ただ一つの $\int f\in\mathfrak{X}$ が存在して,

$$\forall_{\varphi \in \mathfrak{X}^*} \left\langle \int f, \varphi \right\rangle = \int \left\langle f(-), \varphi \right\rangle$$

を満たす.

[証明].

方針 $f:X \to \mathfrak{X}$ は弱可測としたから, $\langle -, \varphi \rangle:X \to \mathbb{F}$ は弱連続より弱可測であることと併せると, $\mathfrak{Y}_f=\mathfrak{X}^*$.よって, $f:X \to \mathfrak{X} \hookrightarrow \mathfrak{X}^{**}$ も弱可測で特に w^* -可測だから,命題より, $\int f \in \mathfrak{X}^{**}$ が存在して,

$$\forall_{\varphi \in \mathfrak{X}^*} \left\langle \int f, \varphi \right\rangle = \int \left\langle f(-), \varphi \right\rangle$$

を満たす.あとはこれが $\int f\in\mathfrak{X}$ であること,すなわち, $\int f:\mathfrak{X}^* o\mathbb{F}$ が w^* -連続であることを示せば良い.

証明 $\mathfrak X$ は可分としたから, $\mathfrak X^*$ の単位閉球 B^* は w^* -位相についても第 2 可算であり,距離化可能 2.5.17.よって, B^* の列 (φ_n) が φ に w^* -収束する,すなわち, $\mathcal X^1(X)$ の列 $(\langle f(-),\varphi_n\rangle)$ が $\langle f(-),\varphi\rangle$ に各点収束する($\forall_{x\in\mathfrak X}$ $\langle f(x),-\rangle:\mathfrak X^*\to\mathbb F$ は w^* -連続)と仮定して, $\left(\int \langle f(-),\varphi_n\rangle\right)$ も $\mathbb F$ 上で $\int \langle f(-),\varphi\rangle$ に収束することを示せば良い 2.5.16.が,これは $\|f(-)\|$ という可積分な非負値の優関数が見つかるから,Lebesgue の優収束定理より従う.

2.6 位相線型空間論

2.6.1 基底論

有限次元線型空間論では、基底論がほぼ全てであった、無限次元の場合、無限の切り取り方に任意性がある、

定義 2.6.1 (Hamel, topological, Schauder basis). 位相線型空間 V と部分集合 $B \subset V$ について,

- (1) B が Hamel 基底であるとは、任意の元が B の有限線型和で一意的に表せることをいう。すなわち、 $\operatorname{Span}(B)=V$ かつ、任意の B の真の部分集合はこれを満たさないことをいう。
- (2) B が位相基底であるとは,任意の元が B の有限線型和の列の極限で表わせ,任意の B の元は他の B の元の有限線型和の列の極限で表せないことをいう.すなわち, $\overline{\mathrm{Span}(B)}=V$ (これを total という)かつ任意の B の真の部分集合は total でないことをいう.

(3) B が Schauder 基底であるとは、任意の元が B の (無限足り得る)線型和で一意的に表せることをいう。

要諦 2.6.2. Hamel 基底の存在は選択公理と同値. Schauder 基底は位相基底であり, 位相基底には双対基底が存在する.

第3章

Hilbert Space

完備な距離を内積が誘導する場合を Hilbert 空間という. 些細な違いかもしれないが, 理論がフルパワーを発するのはこの場合のみである. 特に, Banach 空間上の作用素にはほとんど一般論が成り立たない.

Banach 空間上に,内積 $L^p(X) \times L^q(X) \ni (f,g) \mapsto \langle f,g \rangle := \int f\overline{g}$ によって, $(L^p(X))^* \simeq L^q(X)$ なる同型が誘導される 6.5.17.2 次のノルムが Hilbert 空間として重要である理由は,自身と共役だからである.

3.1 内積

3.1.1 半双線型形式とセミノルムの関係

Hilbert 空間とは,Banach 空間であって,ノルムが中線定理を満たすような空間である. 双線型形式が関数 x^2 であるとしたら,半双線型形式がノルム $|x^2|$ を定める.

定義 3.1.1 (sesquilinear form, adjoint form, self-adjoint, positive, semi-inner product, inner product). \mathbb{F} -線型空間 X について、

- (1) 写像 $(-|-): X \times X \to \mathbb{F}$ が半双線型形式であるとは,第一引数について線型で,第二引数について共役線型であることをいう $\dot{\mathbb{F}} = \mathbb{R}$ のときは双線型性に同値.
- (2) 半双線型形式 (-|-) の随伴形式 $(-|-)^*$ とは , $(x|y)^* := \overline{(y|x)}$ で定まる半双線型形式をいう.
- (3) $(-|-)^* = (-|-)$ を満たす半双線型形式を自己共役という $\mathbb{F} = \mathbb{R}$ であるときは対称ともいう .
- (4) $\forall_{x \in X} (x|x) \geq 0$ を満たすとき , (-|-|) を半正定値という .
- (5) 半正定値な自己共役半双線型形式を, X 上の半内積という.
- (6) $(x|x) = 0 \Rightarrow x = 0$ を満たす半内積を, X 上の内積という.

補題 3.1.2 (自己共役性の特徴付け). ℂ-線型空間上の半双線型形式について,

(1)
$$4(x|y) = \sum_{k=0}^{3} i^k (x + i^k y | x + i^k y)$$
.

(2) (-|-) が自己共役であることは, $orall_{x\in X}(x|x)\in\mathbb{R}$ に同値.特に,(-|-) が正定値ならば自己共役である 12

[証明].

(1)

$$(x + y|x + y) + i(x + iy|x + iy) + (-1)(x - y|x - y) + (-i)(x - iy|x - iy)$$

= $(x + y|x + y) + (x + iy|y - ix) + (x - y|y - x) + (x - iy|y + ix) = 4(x|y).$

^{†1} 数理物理では逆

^{†2} 実数値の正定値双線型形式が対称とは限らない.

(2) (-|-) が自己共役とすると, y=0 と任意の $x\in X$ について, (1) を用いて展開すると

$$(x|0) = (x|x) + i(x|x) + (-1)(x|x) + (-i)(x|x)$$

$$(0,x) = \overline{(x|x)} + (-i)\overline{(x|x)} + (-1)\overline{(x|x)} + i\overline{(x|x)}$$

$$(x|y) = (x + y|x + y) + i(x + iy|x + iy) + (-1)(x - y|x - y) + i(-x + iy|x - iy)$$

$$= (2y|2x) + i\underbrace{(2iy|2x)}_{\in \mathbb{R}}$$

$$(y|x) = (x + y|x + y) + i(y + ix|y + ix) + (-1)(y - x|y - x) + i(y - ix|ix - y)$$

$$= (2y|2x) + i\underbrace{(2y|2ix)}_{\in \mathbb{R}}$$

となるが,それぞれの虚部について (2iy|2x)=i(2y|ix),(2y|2ix)=-i(2y|2x) だから,たしかに $(x|y)=\overline{(y|x)}$ を満たす.

要諦 3.1.3. 一変数じゃないが,鏡像の原理を奥に感じる.

命題 3.1.4 (polarization identity, parallellogram law). 半内積 $(-|-): X \times X \to \mathbb{F}$ について,

- (1) 関数 $\|-\|:X\to\mathbb{R}_+$ を $\|x\|:=(x|x)^{1/2}$ で定めると,これは斉次関数である.
- (2) 次の極化恒等式が成り立つ:

(a)
$$\mathbb{F} = \mathbb{C}$$
 のとき , $4(x|y) = \sum_{k=0}^{3} i^{k} \|x + i^{k}y\|^{2}$.

- (b) $\mathbb{F} = \mathbb{R}$ のとき, $4(x|y) = \|x + y\|^2 \|x y\|^2$.
- (c) $\mathbb{F}=\mathbb{C}$ のとき,実部と虚部に分けて $\|x+y\|^2=\|x\|^2+2\mathrm{Re}\,\langle x,y\rangle+\|y\|^2$ も極化恒等式と呼ぶ.
- (3) (Cauchy-Bunyakowsky-Schwarz) $|(x|y)| \leq ||x|| ||y||$. 特に , $||-||: X \to \mathbb{R}_+$ は劣加法的であり,X 上のセミノルムを定める.(-|-) が内積であるとき,||-|| はノルムを定める.
- (4) セミノルム $\|-\|$ について中線定理が成り立つ: $\|x+y\|^2+\|x-y\|^2=2(\|x\|^2+\|y\|^2)$.
- (5) ノルム || || が中線定理を満たすとき,(2)の極化恒等式によって定まる半双線型形式は内積を定める.

[証明].

- (1) 半内積 $(-|-): X \times X \to \mathbb{F}$ は特に半正定値だから,特に $\forall_{x \in X} (x|x) \ge 0$.よって確かに $\|-\|: X \to \mathbb{R}_+$ は well-defined. $\forall_{a \in \mathbb{F}} \|ax\| = (|a|^2(x|x))^{1/2} = |a|\|x\|$.
- (2) (a) は補題(1)より.(b)は

$$(x+y|x+y)-(x-y|x-y)=(x|x)+(x|y)+(y|x)+(y|y)-((x|x)-(y|x)-(x|y)+(y|y))=4(x|y)$$

より.(c)は

$$||x + y||^2 = ||x||^2 + (y|x) + (x|y) + ||y||^2 = ||x||^2 + 2\operatorname{Re}(x|y) + ||y||^2.$$

(3) Cauchy-Schwarz (2)(c) と同様にして,

$$\forall_{\alpha \in \mathbb{F}} |\alpha|^2 ||x||^2 + 2 \operatorname{Re} \alpha(x|y) + ||y||^2 = ||\alpha x + y||^2 \ge 0$$

を得る.これを α の方程式と見ると,実数解は高々1つであるから,判別式は非正でなくてはならない.よって,

$$(\operatorname{Re} (x|y))^2 - ||x||^2 ||y||^2 \le 0$$

であるが , ここで $(x|y)=be^{i\theta}$ $(b\geq 0)$ とおいたとき , $\alpha:=te^{-i\theta}$ $(t\geq 0)$ を考えることで ,

$$||x||^2 t^2 + 2bt + ||y||^2 \ge 0$$

を得る.特に,左辺を実数 t についての二次方程式と見たときに解は高々 1 つだから, $b^2-\|x\|^2\|y\|^2\leq 0$ が必要.ここから $|(x|y)|\leq \|x\|^2\|y\|^2$ を得る.

劣加法性 Cauchy-Schwarz の不等式より Re $(x|y) \le |(x|y)| \le ||x|| ||y|| \ge (2)(c)$ を併せると , $||x+y||^2 \le (||x|| + ||y||)^2$ を得る .

斉次性 (1) で示した.

分離 ||x|| = 0 とすると , $||x||^2 = (x|x) = 0$. (-|-|) が内積であるとき , これは x = 0 を導く .

- (4) 省略.
- (5)

要諦 3.1.5. 一般に(共役)対称形式は二次形式を定めるが,二次形式から対称性を復元する際に必要なノルムと内積を結ぶ条件を極化恒等式という.

定義 3.1.6 (orthogonal). $(-|-): X \times X \to \mathbb{F}$ を半双線型形式とする.

- (1) ベクトルx,y が直交する $x \perp y$ とは , (x|y) = 0 を満たすことをいう .
- (2) 部分集合 $Y,Z\subset X$ が直交する $Y\perp Z$ とは , $\forall_{y\in Y,z\in Z}\ y\perp z$ を満たすことをいう .
- (3) 部分集合 $X \subset H$ について , $X^{\perp} := \{x^{\perp} \in H \mid x^{\perp} \perp X\}$ と表すと , X^{\perp} は閉部分空間である .

補題 3.1.7 (Pythagoras identity). X が実線型空間であるとき , $x,y \in X$ について , 次の 2 条件は同値 .

- (1) $x \perp y = 0$.
- (2) $||x + y||^2 = ||x||^2 + ||y||^2$.

[証明] . (1) \Rightarrow (2) は極化恒等式 (c) より . (2) \Rightarrow (1) は,極化恒等式 (c) より $\mathrm{Re}\;(x|y)=0$ と,(x|iy)=0 より $\mathrm{Im}\;(x|y)=0$ を,別々に得る.

3.1.2 二次形式と極化恒等式

内積をノルムで表した式を極化不等式と呼んだが,これには双線型形式と二次形式との間の一般論がある.これが,2という数字が重要たる所以であろうか?

定義 3.1.8 (quadratic form, quadratic refinement).

- (1) k-加群 V 上の二次形式とは ,関数 $q:V\to k$ であって ,2 次の斉次性をもち ,さらにその極化 $(v,w)\mapsto q(v+w)-q(v)-q(w)$ が双線型形式を定めることをいう .
- (2) 双線型形式 $\langle -, \rangle$: $V \otimes V \to k$ が定める二次形式とは , $\forall_{v,w \in V} \langle v, w \rangle = q(v,w) q(v) q(w) + q(0)$ を満たすものをいう \dot{z}^3

R を可換環とし,V,W を R 上の加群とする. $m:V\times V\to W$ を双線型写像とし,Q(x):=m(x,x) をこれが定める二次形式とする. $m:V\otimes V\to W$ は R-加群の準同型であるが, $Q:V\to W$ はそうではない.

この設定の下で,次が成り立つ.

命題 3.1.9.

- (1) 中線定理: 2Q(x) + 2Q(y) = Q(x + y) + Q(x y).
- (2) 極化恒等式: 2m(x,y) + 2m(y,x) = Q(x+y) Q(x-y).

中線定理と和差を取ったり,W上で 2 が可逆であるかによって,極化不等式は他の表現も持つ.

命題 3.1.10 (極化不等式の一般形). $\sum_{i\in I}a_i^2c_i=\sum_{i\in I}b_i^2c_i=0$ を満たす R^3 の有限列 (a_i,b_i,c_i) について, $k:=\sum_{i\in I}a_ib_ic_i$ とおいた

 $^{^{\}dagger 3}$ $2 \in k$ が可逆ならば常に存在する

とき,

$$kxy + kyx = \sum_{i \in I} c_i (a_i x + b_i y)^2.$$

m が対称であるとき,極化不等式を通じて, $Q(x)=x^2$ から,m(x,y)=xy の値を復元できる.

3.1.3 Hilbert 空間の例

定義 **3.1.11** (pre-Hilbert space). 内積空間 H が , 付随するノルムについて Banach 空間をなすとき , これを **Hilbert** 空間という . また内積空間を前 Hilbert 空間ともいう .

例 3.1.12 (二乗可積分関数の空間:特殊から一般へ).

- (1) Euclid 空間 \mathbb{F}^n は,通常の内積について Hilbert 空間をなし,付随するノルムは 2-ノルムである.
- $(2) \ l^2(\mathbb{Z}) := \left\{ (a_n)_{n \in \mathbb{Z}} \in \prod_{n \in \mathbb{Z}} \mathbb{F} \ \bigg| \ \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right\} \ \mathsf{t} \ \text{, 内積} \left((a_n) | (b_n) \right) = \sum_{n \in \mathbb{Z}} a_n \overline{b_n} \ \mathsf{tc} \ \mathsf{g} \ \mathsf{b} \ \mathsf{b}$
- (3) コンパクト台を持つ関数の空間 $C_{\mathrm{c}}(\mathbb{R}^n)$ は,内積 $(f|g):=\int f(x)\overline{g(x)}dx$ について pre-Hilbert 空間をなし,付随するノルムは 2-ノルムである.これを完備化したものは $L^2(\mathbb{R}^n)$ であった 2.1.28 が,これが Hilbert 空間である.
- (4) 一般に ,局所コンパクトハウスドルフ空間 X 上の Radon 積分 \int について二乗可積分な関数のなす空間の完備化 $L^2(X)$ 2.1.29 は , 内積 $(f|g)=\int f\overline{g}$ について Hilbert 空間となる .

定義 3.1.13 (orthogonal sum / direct sum). Hilbert 空間の族 $(H_i)_{i \in I}$ について,

- (1) 代数的直和 $\sum_{i \in I} H_j$ には , $(x|y) := \sum_{i \in I} (\mathrm{pr}_j x | \mathrm{pr}_j y)$ によって内積が定まる .
- (2) この内積に付随するノルムは 2-ノルムであり,これについての完備化を(直交)直和といい, $\oplus_{j\in J}H_j$ と表す.
- (3) 命題 2.1.36 より,集合としては

$$\bigoplus_{j \in J} = \left\{ x \in \prod_{j \in J} H_j \left| \sum_{j \in J} \| \operatorname{pr}_j(x) \|^2 < \infty \right. \right\}$$

と表せる.特に,Hilbert 空間の直和 $\oplus H_i$ の元 x は,可算個の $j \in J$ を除いて $\operatorname{pr}_i(x) = 0$ である.

要諦 3.1.14. これが Hamel 基底を超える,待ち望まれた無限次元の直和空間の構成である. 有限の場合は Hamel 基底と変わらないが,無限の場合は,無限和が二乗収束するものからなる空間を考えると完備な内積が定まる.

3.1.4 直交分解

直交分解を距離の言葉によって議論するところは、商ノルムの定義と同じ作戦である。

補題 3.1.15. C を Hilbert 空間 H の非空な閉凸集合とする.このとき,任意の $y\in H$ に対して,距離 d(y,C) を最小にするときの点 $x=\arg\min d(y,x)\in C$ が唯一つ存在する.

[証明]. C を C-y と取り直すことで,d(0,C) を最小にする $x\in C$ を考えても,一般性は失われない.

存在 $\alpha := \inf \left\{ \|x\| \ge 0 \int x \in C \right\}$ とおき , $\|x_n\| \to \alpha$ を満たす C の点列 (x_n) を任意に取る.C の凸性より $\forall_{y,z \in C} (y+z)/2 \in C$ だから.中線定理 3.1.4 より.

$$\forall_{y,z\in C} \quad 2(\|y\|^2 + \|z\|^2) = \|y + z\|^2 + \|y - z\|^2 \ge 4\alpha^2 + \|y - z\|^2.$$

特に $y=x_n,z=x_m$ の場合を考えることで, (x_n) は Cauchy 列であることが分かる.よって,C は閉集合だから,ある $x\in C$ が存在して, $\lim_{n\to\infty}x_n=x$, $\|x\|=\alpha$ を満たす.

一意性 $z \in C$ も $\|z\| = \alpha$ を満たすとする. すると,中線定理より, $4\alpha^2 \ge 4\alpha^2 + \|x-z\|^2$ だから,x = z を得る.

定理 3.1.16. 任意の閉部分空間 $X \subset H$ について,

- (1) 任意の元 $y \in H$ は一意的な分解 $y = x + x^{\perp} \in X \oplus X^{\perp}$ を持つ.また, $H = X \oplus X^{\perp}$ と直交直和で表せる.
- (2) この $x\in X$ は y に一番近い点 $\arg\min d(y,x)$ であり, $x^\perp\in X^\perp$ も y に一番近い点 $\arg\min d(y,x^\perp)$ である.
- (3) $(X^{\perp})^{\perp} = X$ が成り立つ.

「証明].

(1) 任意に $y \in H$ をとり, $x := \arg \min d(y, X)$ とおく.

存在 $x^{\perp} := y - x \in X^{\perp}$ を示す.

$$\forall_{z \in X} \ \forall_{\epsilon > 0} \quad \|x^{\perp}\|^2 = \|y - x\|^2 \le \|y - (x + \epsilon x)\|^2$$
 :: x の取り方
$$= \|x^{\perp} - \epsilon z\|^2 = \|x^{\perp}\|^2 - 2\epsilon \operatorname{Re}(x^{\perp}|z) + \epsilon^2 \|z\|^2$$
 :: 極化恒等式 3.1.4

より, $\forall_{z \in X} \ \forall_{\epsilon > 0} \ 2 \mathrm{Re} \ (x^\perp | z) \leq \epsilon \|z\|^2$.よって, $\forall_{z \in X} \ \mathrm{Re} \ (x^\perp | z) \leq 0$.z,-z, iz,-iz について考えることで, $\forall_{z \in X} \ (x^\perp | z) = 0$ を得る.以上より,対応 $\Phi: H \to X \oplus X^\perp; y \mapsto x + x^\perp$ が定まった.明らかに全射で,Pythagoras の恒等式 3.1.7 より,等長写像であることも分かる.あとは単射性を示せば良い.

- 一意性 $y=z+z^\perp$ $(z\in X,z\in X^\perp)$ とも表せたとする.このとき $0=(x-z)+(x^\perp-z^\perp)$ であるが,Pythagoras の恒等式 3.1.7 より, $0=\|x-z\|^2+\|x^\perp-z^\perp\|^2$.すなわち, $x=z\wedge x^\perp=z^\perp$.よって, $\Phi:H\xrightarrow{\sim} X\oplus X^\perp$ は等長同型である.
- (3) $X \perp X^{\perp}$ より $X \subset (X^{\perp})^{\perp}$ であるから, $X \supset (X^{\perp})^{\perp}$ を示せば良い.任意に $y \in (X^{\perp})^{\perp}$ をとると,一意的な分解 $y = z + z^{\perp}$ を持つ. $x^{\perp} = y x \in X^{\perp} \cap (X^{\perp})^{\perp}$ より, $x^{\perp} = 0$ が従い, $X = (X^{\perp})^{\perp}$ が分かる.
- (2) $(X^\perp)^\perp = X$ より,(1) の証明を X を X^\perp として行うことより, $x^\perp = \operatorname*{arg\,min}_{x^\perp} d(y,x^\perp)$ も分かる.

系 3.1.17 (closed linear span). 任意の部分集合 $X\subset H$ について,X を含む最小の閉部分空間は $(X^\perp)^\perp$ である.特に,X が H の部分空間ならば, $\overline{\overline{X}}=(X^\perp)^\perp$.

[証明]. X^\perp は閉部分空間であるから,定理より $(X^\perp)^\perp$ も閉部分空間である.これが X を含む最小の閉部分空間であることを示す. $X\subset Y$ を H の閉部分空間とすると, $Y^\perp\subset X^\perp$ で, $(X^\perp)^\perp\subset (Y^\perp)^\perp=Y$ が従う.

H の部分空間 X を含む最小の閉集合が \overline{X} で, \overline{X} 自身も部分空間であるから,これは最初の閉部分空間でもある.

系 3.1.18 (部分空間の稠密性の特徴付け). X を H の部分空間とする.次の 2 条件は同値.

- (1) *X* は *H* 上稠密である.
- (2) $X^{\perp} = 0$.

[証明]. 部分空間 X について, X^\perp は H の閉部分空間だから, $X^\perp\oplus (X^\perp)^\perp=H$.系より $(X^\perp)^\perp=\overline{X}$ であるから, $\overline{X}=H$ は $X^\perp=0$ と同値.

3.1.5 Riesz の表現定理

Riesz の表現定理は変種が多々あり、いずれもある種の位相線型空間とその双対空間との間に(反)同型を取る知識である、なお、Met の同型は全射な等距離写像である(全単射な等長写像は、等長な逆を持つ). これは擬距離空間や Riemann 多様体では成り立たない。

命題 3.1.19 (Riesz representation theorem). 写像 $\Phi: H \to H^*; x \mapsto (-|x|)$ は , 共役線型な等長同型である .

[証明].

共役線形性 $\Phi(ax) = (-|ax) = \overline{a}(-|x) = \overline{a}\Phi(x)$.

等長写像 Cauchy-Schwarz の不等式 3.1.4 より,

$$\forall_{x \in H} \ \|\Phi(x)\| = \sup_{y \in B} |(y|x)| \le \sup_{y \in B} \|y\| \|x\| = \|x\|.$$

また一方で,

$$\forall_{x \in H} \|x\|^2 = \Phi(x)(x) = \Phi(x) \left(\|x\| \frac{x}{\|x\|} \right) \le \|x\| \|\Phi(x)\|$$

より $||x|| \le ||\Phi(x)||$.

全単射 等長写像は単射であるから,全射性を示せば良い.任意に $\varphi\in H^*\setminus\{0\}$ をとって逆像が像が空で無いことを示す. $X:=\mathrm{Ker}\ \varphi$ とおくと, $\varphi\neq 0$ よりこれは H の真の閉部分空間をなすから,ある $x\in X^\perp$ が存在して $\varphi(x)=1$ を満たす. すると, $\forall_{y\in H}\ y-\varphi(y)x\in X$ より,

$$(y|x) = (y - \varphi(y)x + \varphi(y)x|x) = \varphi(y)||y||^2$$

が任意の $y\in H$ について成り立つから, $\Phi^{-1}(oldsymbol{arphi})\ni rac{x}{\|x\|^2}$.

系 3.1.20 $(L^2$ 上の有界線形関数の積分表現). (X,Ω,μ) を測度空間とする.任意の有界線型汎函数 $F:L^2(\mu)\to \mathbb{F}$ に対して,ただ一つの元 $h_0\in L^2(\mu)$ が存在して,

$$\forall_{h\in L^2(\mu)} \quad F(h) = \int h\overline{h_0}d\mu$$

と表せる.

3.1.6 弱位相とその特徴付け

定義 **3.1.21** (weak topology on Hilbert space). Hilbert 空間 H 上の弱位相とは,有界な線型汎函数の集合 H^* が定める始位相をいう.これは,標準的な同型 $\Phi: H \to H^*$ **3.1.19** により, H^* 上の w^* -位相を引き戻したものに一致する.よって特に,Alaogluの定理 **2.5.3** より,H 内の単位球は弱コンパクトである.

補題 3.1.22. 任意の Hilbert 空間の作用素 $T: H \to H$ について,次の2条件は同値.

- (1) $T \in B(H)$ である (H のノルム位相について連続, すなわち, 有界).
- (2) T は弱位相について連続である (weak-weak continuous).
- (3) T はノルム-弱連続である (norm-weak continuous).

[証明].

(1) \Rightarrow (2) 任意の $y\in H$ を取れば,随伴作用素 3.2.4 を考えることにより, $T^*y\in H$ が存在して,次の図式は可換.

$$H \xrightarrow{T} H$$

$$(-|T^*y) \qquad \bigvee_{\mathbb{F}} (-|y)$$

H上に弱位相を考えるとき , $(-|T^*y)$, (-|y) はいずれも連続だから , $T:H \to H$ も連続である .

- (2)⇒(1) グラフ $G(T):=\{(x,y)\in H\times H\mid Tx=y\}$ がノルム閉集合であることを示せば良い 2.2.10 . 任意に,G(T) の列 (x_n,Tx_n) を取り,これは (x,y) にノルム収束するとする.すると,ノルム位相は弱位相よりも強いため,特に弱収束する.よって,T が弱位相について連続であるとすると,弱位相について $Tx_n\to Tx$ であるから,これは Tx=y を含意する.すなわち, $(x,y)\in G(T)$.
- (2)⇒(3) ノルム位相は弱位相よりも強いため.
- (3)⇒(1) (2)⇒(1) と同様の議論によって示せる.

要諦 3.1.23. weak-norm 連続な作用素は,有限なランクを持つ.この議論は,コンパクト作用素の特徴付けにつながる.

3.1.7 正規直交系

任意の線型空間には,極大な線型独立系が存在するという意味で,Hamel 基底を持つ.Hilbert 空間では,内積から定まる基底が存在し,これは常に Hamel 基底とは異なる.正規直交基底を用いて,Hilbert 空間の同型を特徴づけることが出来る.

定義 3.1.24 (orthonormal, orhonormal basis). Hilbert 空間 H の部分集合 $\{e_i\}_{i\in I}$ について,

- $\{e_j\}_{j\in J}$ が正規直交であるとは , $\forall_{j\in J} \|e_j\|=1$ かつ $(e_j|e_i)=\delta_{ij}$ を満たすことをいう .
- $\{e_j\}_{j\in J}$ が正規直交基底であるとは,生成する部分空間が H 上稠密であることをいう: $\overline{\langle e_j\rangle_{j\in J}}=H$.これは, $\oplus_{j\in J}\mathbb{F}e_j=H$ に同値 3.1.13.すなわち,2-ノルムで収束する表示 $x=\sum_{i\in J}\alpha_ie_j$ が存在する.
- (3) (Parseval identity) $\|x\|^2 = \sum_{j \in J} |\alpha_j|^2 \left(x = \sum_{j \in J} \alpha_j x_j\right)$ が成り立つ .

[証明].
$$(3)$$
 は, $(x|x)=\sum_{j\in J}|lpha_j|^2$ であるが,内積 $(-|-):H imes H o \mathbb{F}$ が連続であることより,右辺は収束する.

命題 3.1.25. Hilbert 空間 H の任意の正規直交系は,正規直交基底へと拡大できる.

[証明].

- 方針 $\{e_j\}_{j\in J_0}\subset H$ を正規直交系とする. $\{e_j\}_{j\in J_0}$ を含む H の正規直交系全体からなる集合は,包含関係について帰納的順序集合を定めるから,Zorn の補題より極大元 $\{e_j\}_{j\in J}$ $J_0\subset J$ が存在する.これが生成する閉部分空間を X としたとき,X=H を示せば良い.
- 証明 $X \neq H$ のとき, $X^{\perp} \neq 0$ だから,ある $e \in X^{\perp}$ が存在して, $\forall_{j \in J} \ (e_j|e) = 0$,(e|e) = 1 を満たす.これは $\{e_j\}_{j \in J}$ の極大性に矛盾する.

例 3.1.26.

- (1) $\{\varphi_n(t):=\exp(2\pi int)\}_{n\in\mathbb{Z}}$ は複素 Hilbert 空間 $L^2([0,1])$ の正規直交基底である.この基底についての展開を Fourier 展開といい,係数 $\lambda_n=(f|\varphi_n)$ を Fourier 係数という.ノルムの等式 $\|f\|^2=\sum_{n\in\mathbb{Z}}|\lambda_n|^2$ を Plancherel の式という.この基底による Hilbert 空間の同型 $L^2([0,1])\stackrel{\sim}{\longrightarrow} l^2(\mathbb{Z})$ を Fourier 変換という. $^{\dagger 4}$
- (2) Hilbert 空間 $L^2(\mathbb{R})$ における Fourier 変換はどう違うのか?

定理 **3.1.27** (Gram-Schmidt Orthogonalization Process). $\{h_n\}_{n\in\mathbb{N}}$ を線型独立な部分集合とする.このとき,正規直交系 $\{e_n\}_{n\in\mathbb{N}}$ が存在して, $\forall_{n\in\mathbb{N}}$ $\langle e_1,\cdots,e_n\rangle=\langle h_1,\cdots,h_n\rangle$.

命題 3.1.28 (Hilbert 空間の同型類)。H,K を Hilbert 空間とし, $\{e_i\}_{i\in I},\{f_j\}_{j\in I}$ をそれぞれの正規直交基底とし,I と J は集合として同型であるとする.この時,等長同型 $U:H\to K$ が存在して, $\forall_{x,y\in H} (Ux|Uy)=(x|y)$ を満たすものが存在する.

[証明].

稠密部分集合上の作用素 全単射 $\gamma:I o J$ をとる.これを用いて,作用素 $U_0:\sum_{i\in I}\mathbb{F}_ie_i o\sum_{j\in J}\mathbb{F}_jf_j$ を $U_0x:=\sum_{i\in I}a_if_{\gamma(i)}$ と定めると,これは全射な線型作用素で,Parseval 恒等式より等長写像である: $\|U_0x\|=\sum_{i\in I}|\alpha_i|=\|x\|$.特にこれは連続写像で

 $^{^{\}dagger 4}$ Schrödinger と Heisenberg による 2 つの量子力学の定式化の等価性の証明もこれによる、物理的には,f が [0,1] 上の波の形状を表す場合, λ_n は振動数 n の波の成分を表し,n の符号は進行方向に対応する.

あるから , 一意な延長 $U: H \to K$ を持つ 2.1.25 . これは再び全射であり , 極化恒等式 3.1.4 より ,

$$4(Ux|Uy) = \sum_{k=0}^{3} i^{k} ||U(x+i^{k}y)||^{2}$$
$$= \sum_{k=0}^{3} i^{k} ||x+i^{k}y||^{2} = 4(x|y).$$

要諦 3.1.29. 無限次元の可分な Hilbert 空間は,全て可算な正規直交基底を持つため,全て同型である.標準的に l^2 を考えると良い.これは Euclid 空間の非常に自然な一般化となっている.Hilbert 空間論の今後の主な対象は,その上の作用素となり,これが同型類よりもさらに細かい構成を特徴付ける.

3.1.8 可分 Hilbert 空間の特徴付け

可分な Hilbert 空間では可算無限な正規直交系が取れる。

定理 3.1.30 (Bessel's inequality). $\{e_n\}_{n\in\mathbb{N}}\subset H$ を正規直交系とする . $\forall_{h\in H}\sum_{n=1}^{\infty}|\langle h,e_n\rangle|^2\leq \|h\|^2$.

系 3.1.31. $Z\subset H$ を正規直交系とする. $\forall_{h\in H}~\{e\in Z~|~\langle h,e\rangle\neq 0\}\leq leph_0$.特に,Bessel の不等式は任意濃度の正規直交系について成り立つ.

定義 3.1.32. 族 $(h_i)_{i\in I}$ の添字集合 I について,その有限部分集合全体の集合を $\mathcal F$ とする. $\mathcal F$ は包含関係について帰納的順序を持つ有向集合である. $\left(h_F:=\sum_{i\in F}h_i\right)_{F\in\mathcal F}$ は H のネットである.このネットが収束するとき,無限和 $\sum_{i\in I}h_i$ は収束するとする.このように定義すると,系より, $\sum_{e\in Z}|\langle h,e\rangle|^2\leq \|h\|^2$ だから,これは「収束する」と言える.

要諦 3.1.33. I が可算無限集合である場合も,通常の定義 $\sum_{n=1}^{\infty}h_n=\lim_{N o\infty}\sum_{n=1}^{N}h_n$ とは一般には一致しない.

定理 3.1.34 (正規直交基底の特徴付け). 正規直交系 $Z \subset H$ について,次の6条件は同値.

- (1) Z は正規直交基底である.
- (2) $\forall_{h \in H} \ h \perp Z \Rightarrow h = 0$.
- (3) Z は極大な正規直交系である.
- (4) $\forall_{h \in H} h = \sum_{e \in Z} \langle h, e \rangle e$.
- (5) $\forall_{g,h\in H} \langle g,h \rangle = \sum_{g\in Z} \langle g,e \rangle \langle e,h \rangle$.
- (6) (Parseval's identity) $\forall_{h \in H} \|h\|^2 = \sum_{e \in Z} |\langle h, e \rangle|^2$.

定義 3.1.35 (dimension). Hilbert 空間 H の正規直交基底の濃度は等しい 3.1.28 . これを次元 dim H で表す .

命題 3.1.36 (the separable Hilbert space). H を無限次元 Hilbert 空間とする.次の2条件は同値.

- (1) H は可分である.
- (2) dim $H = \aleph_0$.

3.1.9 同型な Hilbert 空間

Hilbert 空間の同型の典型的な例が Fourier 変換である

各基底との内積を Fourier 係数といい , 成分表示を Fourier 展開という . Parseval の恒等式は Riemann-Lebesgue の補 題に特殊化される .

Ban と同様,等長同型(=全単射な等長写像)な線型写像を同型とする.なお,距離を保つことと内積を保つことは同値になる.等長写像はCauchy列を保つから,等長同型は完備性を保つ.Hilbの自己同型をユニタリー作用素という.

定理 3.1.37. $f:\partial\Delta\to\mathbb{C}$ を連続関数とする.このとき,列 $\{p_n(z,\overline{z})\}\subset\mathbb{C}[z,\overline{z}]$ が存在して, $\partial\Delta$ 上で一様に $p_n(z,\overline{z})\to f(z)$.

要諦 3.1.38 (trigonometric polynomials / Fourier polynomials). $\partial \Delta$ 上で $\overline{z}=z^{-1}$ だから , p_n は $\partial \Delta$ で $\sum_{k=-m}^n \alpha_k z^k$ という形の表示を持つ . 特に , $z=\mathrm{e}^{i\theta}$ としたとき , この形の関数を三角多項式と呼ぶ .

定理 3.1.39.
$$\left\{e_n(t):=rac{1}{\sqrt{2\pi}}\mathrm{e}^{int}
ight\}_{n\in\mathbb{Z}}$$
 は $L^2_{\mathbb{C}}([0,2\pi])$ の基底である.

各係数 $\hat{f}(n) := \langle f, \mathbf{e}_n \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$ を Fourier 係数という . Fourier 展開は L^2 -ノルムで収束する .

定理 3.1.40 (Carleson, Hunt). $f \in L^p_\mathbb{C}([0,2\pi])$ (1 について , <math>f の Fourier 級数は f にほとんど至る所収束する .

要諦 ${f 3.1.41.}$ 一方で $L^1_{\mathbb C}([0,2\pi])$ でほとんど至る所収束しない関数の例が ${f Kolmogorov}$ によってたくさん発見されている .

補題 **3.1.42** (Riemann-Lebesgue lemma).
$$\forall_{f \in L^2_{\mathbb{C}}([0,2\pi])} \int_0^{2\pi} f(t) \mathrm{e}^{-int} dt \to 0 \ (n \to \pm \infty)$$
.

定理 3.1.43 (Fourier transform). $U:L^2_{\mathbb{C}}([0,2\pi]) \to l^2(\mathbb{Z})$ を $Uf=\hat{f}$ で定める.これは等長同型な線型作用素である.

要諦 3.1.44. $L^2_{\mathbb{C}}([0,2\pi])\simeq L^2_{\mathbb{C}}(\partial\Delta)$ であるから,これは単位円上の関数の Fourier 変換についての結果とも読める.

3.2 Hilbert 空間上の作用素

B(H) は作用素ノルムと随伴について,単位的な C^* -環となる.実は H は Euclid 空間の自然な一般化であまり面白くない.自己準同型の空間 B(H) が主な対象であり,H の幾何学について多くのことを教えてくれる.

記法 ${f 3.2.1.}\,\,H$ を ${f Hilbert}\,\,$ 空間,(-|-) をその内積,B(H) をその上の有界な自己準同型, $I\in B(H)$ を恒等写像 ${f id}_H$ とする.

歴史 3.2.2. この一般化に際して,Hilbert は二次形式 / 双線型形式の不変式論を 04-10 に研究していて $,^{5}$ その時にスペクトル理論を構築したが,基底の選択と無限次元行列としての表現,そして積は畳み込みとして成分ごとに計算するというのはあまりにも煩雑であった.von Neumann の成功は,補題の同型を渡って,作用素の概念の方に注目したことが大きい.これが作用素の研究の第一歩となる.

3.2.1 随伴

Hilbert 空間では,内積を通じて作用素の間に対応がつく.これを随伴と呼ぶ.これは行列の共役転置の一般化に他ならない.またこうして自己共役性の概念が内積から作用素へ流入する.

補題 3.2.3 (有界作用素の内積による特徴付け).Hilbert 空間 H 上の有界線形作用素と,これが内積 (-|-) を通じて定める有界な

^{†5} 不変式論のテーマは , Boole から Cayley に引き継がれてから , 大陸を渡って Hilbert に届いた . 2 人とも logic に入る前は不変式論の研究をしていた .

半双線型形式との次の対応は等長同型である:

$$B(H)$$
 \longrightarrow $\{\langle -|-\rangle \in \operatorname{Map}(H \times H, \mathbb{F}) \mid \langle -|-\rangle$ は半双線型 $\}$ \cup $T \longmapsto B_T(x,y) := (x|Ty)$

ただし,終域となっている空間のノルムは作用素ノルム $\|B_T\| := \sup \{|B_T(x,y)| \in \mathbb{R}_+ \mid \|x\| \le 1, \|y\| \le 1\}$ とする.

[証明].

o が well-defined な等長写像 $T\in B(H)$ ならば , $B_T:=(-,T-)$ は明らかに半双線型形式である.あとは B_T が有界であり , $\|T\|=\|B_T\|$ であることを示せば良い.

まず, Cauchy-Schwarz の不等式より,

$$||B_T|| = \sup \{ |B_T(x, y)| \in \mathbb{R} \mid ||x|| \le 1, ||y|| \le 1 \}$$

= \sup \{ |(x|Ty)| \in \mathbb{R} \cdot ||x|| \le 1, ||y|| \le 1 \} \le ||T||

よって B_T は有界である.次に,任意の $x \in H$ について,

$$||Tx||^{2} = (Tx|Tx) = B_{T}(Tx,x) = B_{T}\left(||Tx||\frac{Tx}{||Tx||}, ||x||\frac{x}{||x||}\right)$$

$$\leq ||B_{T}||||Tx|||x|| \leq (||B_{T}|||T||)||x||^{2}$$

と評価できるから, $\|T\|^2 \leq \|B_T\|\|T\|$ より, $\|T\| \leq \|B_T\|$.

 \leftarrow が well-defined な切断 B を H 上の有界な半双線型形式とする.任意の $y\in H$ に対して, $B(-,y)\in H^*$ だから,Riesz の表現定理より, $\exists!_{Ty\in H}\ B(-,y)=(-|Ty)$.こうして写像 $T:H\to H;y\mapsto Ty$ が定まる.これが有界な線形作用素であることと, $\to\circ\leftarrow=$ id であることを示せば良い.

線形性は明らか: $B(-,\alpha y)=\overline{\alpha}B(-,y)=\overline{\alpha}(-|Ty)=(-|\alpha\cdot Ty)$.有界性は,既に行った評価 $\forall_{y\in H}\|Ty\|^2\leq\|B\|\|T\|\|y\|^2$ より, $\|T\|\leq\|B\|$ で抑えられる.よって, $T\in B(H)$.また,この有界作用素 T が定める半双線型形式は $B_T=B$ に他ならない.

定理 3.2.4 (随伴作用素の存在).

- (1) 任意の $T \in B(H)$ に対して, $\forall_{x,y \in H} (Tx|y) = (x|T^*y)$ を満たす $T^* \in B(H)$ が唯一つ存在する.
- (2) これが定める全単射な対応*: $B(H) \rightarrow B(H)$ について,
 - (a) 対合的(周期2)である: $T^{**} = T$.
 - (b) 共役線型である: $(aT)^* = \overline{a}T^*$.
 - (c) 乗法について反変的である: $(ST)^* = T^*S^*$. †6
 - (d) 等長写像である: $||T|| = ||T^*||$.
 - (e) $||T^*T|| = ||T||^2$ を満たす.

[証明].

- (1) 任意の $T\in B(H)$ に対して, $(T-|-):H^2 o\mathbb{F}$ は有界な半双線型形式であるから,ただ一つの $T^*\in B(H)$ が存在して $(T-|-)=(-|T^*-)$ を満たす.
- (2) (a) 内積は自己共役であるから,任意の $x,y \in H$ について,

$$(x|T^{**}y) = (T^*x|y) = \overline{(y|T^*x)}$$
$$= \overline{(Ty|x)} = (x|Ty).$$

より,T, T^{**} は同一の半双線型形式を定める.よって, $T=T^{**}$.

^{†6} antimultiplicative と表現されている.homomorphism が積を保つのに対し,antihomomorphism とは積を逆にする.

(b) 同様にして,

$$\forall_{x,y\in H} \quad (x|(aT)^*y) = (aTx|y) = a(Tx|y) = (x|\overline{a}T^*y)$$

より, $(aT)^* = \overline{a}T^*$.

(c)

$$\forall_{x,y \in H} (x|(ST)^*y) = (STx|y) = (Tx|S^*y) = (x|T^*(S^*(y)))$$

(d) 作用素 Jルムの劣乗法性より , $\|T^*T\| \le \|T\|\|T^*\|$ である . また ,

$$\forall_{x \in H} \quad ||Tx||^2 = (Tx|T^{**}x) = (T^*Tx|x) \le ||T^*T|| ||x||^2$$

より, $\|T\|^2 \le \|T^*T\| (\le \|T\| \|T^*\|)$ でもある.よって2つ併せて, $\|T\| \le \|T^*\| (\le \|T^{**}\| = \|T\|)$ を得るから, $\|T\| = \|T^*\|$.

(e) $\|T^*T\|=\|T\|^2$ は,B を H の閉単位球として K=T(B) とおくと, $\sup_{y\in K}|T^*y|=\sup_{y\in K}|Ty|$ と見ると明らか.

3.2.2 自己共役作用素

自己共役作用素はノルムに対して特殊な振る舞いをする.まず B(H) を調べる方法として,距離構造に注目する.すると正規作用素などの性質は純粋に距離の言葉のみでも捉えられる.

定義 3.2.5 (self-adjoint / hermitian).

- (1) 乗法についての反準同型 $*:B(H)\to B(H)$ が対合な共役線型写像で,等長同型でもあるとき,(B(H),*) を B^* -代数という. C^* -性 $\|T^*T\|=\|T\|^2$ も満たすとき, C^* -代数という. $^{\uparrow 7}$
- (2) $T \in B(H)$ が $T = T^*$ を満たすとき,これを自己共役作用素という.これを $B_{\mathrm{sa}}(H)$ と表すと,B(H) の閉な実部分空間となる.

系 3.2.6 (自己共役作用素の特徴付け). $\mathbb{F} = \mathbb{C}$ のとき,次の 2 条件は同値.

- (1) $T = T^*$.
- (2) $\forall_{x \in H} (Tx|x) \in \mathbb{R}$.

注 3.2.7. 極化恒等式による証明 3.1.2 参照 . H が実 Hilbert 空間という仮定のみでは , その上の任意の作用素 $A\in B(H)$ に対して $\langle Ah,g\rangle\in\mathbb{R}$ が常に成り立つので , 特徴付けにならないことに注意 .

命題 3.2.8. A を自己共役作用素とする.このとき,作用素ノルムは

$$||A|| = \sup \{ |(Ax|x)| \in \mathbb{R} \mid ||x|| = 1 \}$$

とも表せる.

系 3.2.9. A を自己共役作用素とする.このとき, $\forall_{x\in H}\ (Ax|x)=0 \Rightarrow A=0$.なお,H が複素 Hilbert 空間ならば,一般の A について成り立つ.

3.2.3 Hilb の同型

 $*: B(H) \rightarrow B(H)$ というのはある種 op のように使える.

 $^{^{\}dagger7}$ 最初に定義した I. E. Segal in 1947 で , C は"Closed"から取られた . https://en.wikipedia.org/wiki/C*-algebra

命題 3.2.10. 任意の $T \in B(H)$ に対して, $\operatorname{Ker} T^* = (\operatorname{Im} T)^{\perp}$.

[証明]、 $\forall_{x,y\in H} (x|T^*y) = (Tx|y)$ の下で, $y\in \operatorname{Ker} T^*\Rightarrow (T(H)|y)=0$ より, $y\in (T(H))^{\perp}$.逆に $y\in (T(H))^{\perp}\Rightarrow (H|T^*y)=0$ $T^*y\in H^{\perp}=\{0\}$.

命題 3.2.11. $T \in B(H)$ について,次の6条件は同値.

- (1) T は可逆: $T^{-1} \in B(H)$.
- (2) T* は可逆.
- (3) $T, T^* \mid \exists$ bounded away from zero : $\exists_{\epsilon>0} \forall_{x \in H} ||Tx|| \ge \epsilon ||x||$.
- (4) T, T* は単射で, Im T はノルム閉.
- (5) T は全単射.
- (6) T, T* は全射.

[証明].

- (1) \Leftrightarrow (2) $(T^{-1}T)=(TT^{-1})=I$ であるとき, $^*:B(H)\to B(H)$ の劣乗法性より $(T^{-1})^*$ が T^* の逆射である.また $T^*T^{*-1}=T^{*-1}$ のときも同様に * を作用させれば良い.
- (1) \Rightarrow (3) 任意の $x \in H$ について $||x|| = ||T^{-1}Tx|| \le ||T^{-1}|||Tx||$ より , $\epsilon := ||T^{-1}||^{-1}$ と取れば良い .
- (3)⇒(4) $\exists_{\epsilon>0}\ \forall_{x\in H}\ \|Tx\|\geq \epsilon\|x\|$ は特に $\|Tx-Ty\|\geq \epsilon\|x-y\|$ より,単射性 $Tx=Ty\Rightarrow x=y$ を含意する.またこれより,T(H) の任意の Cauchy 列 $(Tx_i)_{i\in\mathbb{N}}$ は H 上の Cauchy 列 $(x_i)_{i\in H}$ を定めることより,Tx に T(H) は完備で,特に閉集合.
- (4)⇒(5) ノルム閉包の直交補空間による特徴付け 3.1.17 より, $T(H)=\overline{\overline{T(H)}}=(T(H)^{\perp})^{\perp}$.命題より, $(T(H)^{\perp})^{\perp}=(\mathrm{Ker}\ T^{*})^{\perp}=0^{\perp}=H$.
- (5)⇒(1) 開写像定理の系 2.2.8 より.
- (6) \Rightarrow (5) Ker $T = (T^*(H))^{\perp} = 0$ より.
- (1)⇒(6) 明らか.

3.2.4 正規作用素

正規であるという可換性条件は、距離的な翻訳がある、スペクトル定理は、正規作用素は対角化可能であることを主張する、

定義 3.2.12 (normal). 作用素 $T \in B(H)$ について,次の2条件は同値.

- (1) $T^*T = TT^*$.
- (2) (metrically identical) $||Tx|| = ||T^*x||$.
- (3) Tの実部と虚部は可換である.

この同値な条件を満たすとき, T を正規作用素という.

[証明].

- $(1) \Rightarrow (2) \quad ||Tx|| = (T^*Tx|x)^{1/2} = (TT^*x|x)^{1/2} = ||T^*x||.$
- (2) \Rightarrow (1) 極化恒等式から $\forall_{x,y\in H} (T^*Tx|y) = (TT^*x|y)$ を得る.具体的には ,

$$||Tx||^2 - ||T^*x||^2 = (Tx|Tx) - (T^*x|T^*x) = ((TT^* - T^*T)x|x)$$

であるが ,交換子作用素 TT^*-T^*T は自己共役であるから ,任意の $x\in H$ について ,この式が常に 0 になるのは $TT^*=T^*T$ と等価 .

補題 3.2.13. 正規作用素 $T \in B(H)$ について,次の2条件は同値.

_

- (1) T は可逆.
- (2) T is bounded away from zero.

3.2.5 半正定値作用素

定義 **3.2.14** (positive (semi-definite)). $T \in B(H)$ が半正定値であるとは, $T = T^*$ かつ $\forall_{x \in H} (Tx|x) \ge 0$ を満たすことをいう.これを「作用素 T は正である」と省略して良い, $T \ge 0$ と表す.正定値であることは T > 0 で表す.

補題 3.2.15. $T_1, T_2 \in B(H)$ を半正定値とする.

- (1) $T_1 + T_2$ も半正定値:半正定値は作用素は凸錐をなす.
- (2) T_1T_2 は一般には半正定値とも自己共役とも限らない.

命題 3.2.16.

- (1) 自己共役な作用素は , B(H) の閉な実部分空間をなす . これを $B(H)_{sa}$ と表す .
- (2) この部分空間内の半正定値作用素のなす凸錐は、順序 $S \le T : \Leftrightarrow T S \ge 0$ をなす.

3.2.6 二乗根補題

正作用素は正規作用素の代表例だが,その正規たる所以を解明する.

命題 3.2.17. $S, T \in B(H)_{sa}$ について,

- (1) $S \leq T$ ならば, $\forall_{A \in B(H)} A^*SA \leq A^*TA$.
- (2) さらに $0 \le S$ であるとき , $||S|| \le ||T||$. 特に , $S \le I$ ならば $||S|| \le 1$.
- (3) $-I \le T \le I \ge ||T|| \le 1$ は同値.

補題 **3.2.18.** 正係数を持つ多項式の列 $\{p_n\}\subset\mathbb{R}_{>0}[x]$ であって , 和 $\sum_{n\in\mathbb{N}}p_n$ が [0,1] 上 $t\mapsto 1-(1-t)^{1/2}$ に一様収束するものが存在する .

命題 3.2.19 (square root lemma). 半正定値な作用素 $T \in B(H)$ について,

- (1) ただ一つの半正定値な作用素 $T^{1/2}$ が存在して , $(T^{1/2})^2 = T$ を満たす .
- (2) $A \in B(H)$ が T と可換ならば , $T^{1/2}$ と可換である .

命題 3.2.20. 半正定値な作用素 $T \in B(H)$ について,

- (1) T が可逆であることと , $\exists_{\epsilon>0}\ T \geq \epsilon I$ は同値 .
- (2) $T^{-1} \geq 0$ ならば , $T^{1/2}$ は可逆で , $(T^{-1})^{1/2} = (T^{1/2})^{-1}$.
- (3) T < S ab (3) ab (3)

3.2.7 射影

定義 3.2.21 ((orthogonal) projection).

- (1) 閉部分空間 $X \le H$ について , 直交分解 $H = X + X^\perp$ が導く作用素 $P: H \to H; y \mapsto x$ は $\|P\| \le 1$ かつ $P^2 = P$ を満たす , 半正定値作用素である.これを直交射影という.
- (2) 逆に,任意の自己共役な冪等作用素 $P:H\to H$ に対して, $X:=\operatorname{Im}P$ とおくとこれは閉部分空間で,任意の $x^\perp\in X^\perp$ に対して $\|Px^\perp\|^2=(x^\perp|P^2x\perp)=0$ より,P は直交射影である.I-P は $\operatorname{Im}(I-P)=X^\perp$ を満たす直交射影である.

要諦 3.2.22 (diagonalizable).

- (1) 射影は実解析における特性関数にあたる.
- (2) 単関数は $T = \sum_{i \in [n]} \lambda_i P_i$ にあたる .
- (3) ある正規直交基底 $(e_j)_{j\in J}$ と有界集合 $\{\lambda_j\}_{j\in J}\subset \mathbb{F}$ が存在して, $\forall_{x\in H}$ $Tx=\sum_{j\in J}\lambda_j(x|e_j)e_j=\sum_{j\in J}\lambda_jP_j$ $(P_j:H\to\mathbb{F}e_j)$ と表せるとき,T は対角化可能という.このとき, (e_j) を固有ベクトル, (λ_j) を固有値という. $(x|e_j)$ は x の j-座標である.なお,この無限和は強位相については収束する(各点収束)が,そのほかは保証されない.

補題 3.2.23. T が対角化可能であるとする.

- (1) T^* の固有ベクトルも (e_i) , 固有値は $(\overline{\lambda_i})$ である.
- (2) $TT^* = T^*T$ である. すなわち, T は正規.
- (3) T が自己共役であることと,固有値が全て実数であることは同値.
- (4) T が半正定値であることと,固有値が全て非負実数であることは同値.

命題 3.2.24. H が有限次元であるとき,任意の正規な作用素は対角化可能である.

3.2.8 ユニタリ作用素

全ての座標変換はユニタリ作用素で記述される、よって、この分だけ条件を緩めることに価値がある、部分群の系列

$$U(H) \hookrightarrow GL(H) \hookrightarrow B(H)$$

が考えられる.

定義 3.2.25 (unitary operator / orthogonal operator). *H* の自己等長同型をユニタリ作用素という. 実線型空間については,直交作用素ともいう.

補題 3.2.26. ユニタリ作用素 $U \in B(H)$ について,

- U は内積を保つ.
- (2) $U^*U = I$.
- (3) 正規である: $UU^* = U^*U = I$.
- (4) 一般の作用素 $V \in B(H)$ が可逆で $V^{-1} = V^*$ を満たすなら, V はユニタリである.

「証明1.

- (1) 極化恒等式 3.1.4 より,等長写像ならば内積を保つことに注意.
- (2) $(Ux|Uy) = (x|U^*Uy) = (x|y)$ より , 補題 3.2.3 から , $U^*U = I$.

定義 3.2.27 (unitary equivalent). 2 つの作用素 $S,T\in B(H)$ について $\exists_{U\in U(H)}\ S=UTU^*$ を満たすとき,これらはユニタリー同値であるという.

補題 3.2.28. ユニタリー同値は,作用素ノルム,自己共役性,正規性,対角化可能性,ユニタリー性を保つ.

3.2.9 部分等長作用素と極分解

定義 3.2.29 (partial isometry, initial subspace, final subspace). 作用素 $U \in B(H)$ が部分等長作用素であるとは,閉部分集合 X が存在して,制限 $U|_X$ は等長写像で, $U|_{X^\perp}=0$ を満たすことをいう.X を初期部分空間, $Im\ U$ を最終部分空間という.

補題 3.2.30.

- (1) このとき, $X^{\perp} = \operatorname{Ker} U, X = \overline{\overline{(\operatorname{Im} U^*)}}$ である.
- (2) $P:=U^*U$ とおくと , $\forall_{x\in X}\ Px=x$, $\forall_{x^\perp\in X^\perp}\ Px^\perp=0$. すなわち , P は射影である .
- (3) (2) は部分等長作用素を特徴付ける.すなわち,作用素 $U \in B(H)$ について U^*U が射影となるとき, U,U^* は部分等長作用素である. U^* を U の部分逆 (partial inverse) という.

例 3.2.31 (unilateral shift operator). S は等長作用素だが,ユニタリーではない(すなわち全射でない)例となっている.

定理 3.2.32 (polar decomposition (von Neumann)).

- (1) 任意の作用素 $T \in B(H)$ に対して,ただ一つの半正定値作用素 $|T| \in B(H)$ が存在して, $\forall_{x \in H} \ \|Tx\| = \||T|x\|$ を満たす.
- (2) $|T| = (T^*T)^{1/2}$ である.
- (3) ただ一つの部分等長写像 U が存在して, $\ker U=\ker T, U|T|=T$ を満たす.特に, $U^*U|T|=U^*T=|T|$, $UU^*T=T$ である.

命題 3.2.33. $T \in B(H)$ が可逆であるとき,部分等長写像 U はユニタリである.

3.2.10 Russo-Dye-Gardner 定理

the norm of an operator can be calculated using only the unitary elements of the algebra. ^a

a https://en.wikipedia.org/wiki/Russo%E2%80%93Dye_theorem

補題 3.2.34. $T=T^*$ かつ $\|T\|\leq 1$ ならば,作用素 $U:=T+i(I-T^2)^{1/2}$ はユニタリであり, $T=rac{1}{2}(U+U^*)$ である.

補題 3.2.35. $S\in B(H)$ かつ $\|S\|<1$ ならば,任意のユニタリ作用素 U に対して,ユニタリ作用素 U_1,V_1 が存在して, $S+U=U_1+V_1$ を満たす.

命題 **3.2.36** (Russo-Dye-Gardner theorem (66)). $T \in B(H)$ かつ $\exists_{n>2} \|T\| < 1 - \frac{2}{n}$ ならば , ユニタリ作用素 U_1, \cdots, U_n が存在して ,

$$T=\frac{1}{n}(U_1+U_2+\cdots+U_n).$$

3.2.11 数域半径

定義 3.2.37 (numerical radius). H を複素 Hilbert 空間 , $T \in B(H)$ とする . T の数域半径とは ,

$$|||T||| = \sup \{ |(Tx|x)| \in \mathbb{R} \mid x \in H, ||x|| \le 1 \}$$

をいう.

記法 **3.2.38.** Re $(T) := \frac{1}{2}(T + T^*)$.

命題 3.2.39. $\|\cdot\|$ は B(H) 上のノルムで, $orall_{T\in B(H)} rac{1}{2} \|T\| \leq \|T\| \leq \|T\|$ を満たす.

命題 **3.2.40.** $\forall_{T \in B(H)} |||T||| = \max\{||\text{Re }(\theta T)|| \in \mathbb{R}_+ \mid \theta \in \mathbb{C}, |\theta| = 1\}$.

命題 3.2.41. 任意の $T \in B(H)$ について,

- $(1) |||T^2||| \leq |||T|||^2.$
- (2) T が正規であるとき,等号成立.

3.2.12 Hilbert 空間上の作用素の例

乗算作用素は対角行列の概念を一般化する.任意の Hilbert 空間上の自己共役作用素は, L^2 空間上のある乗算作用素とユニタリ同値である,という主張がスペクトル定理である.核が超関数になることも許せば,全ての線型作用素は積分作用素として表せる,という主張が Schwartz の核定理である.そのほか,合成作用素と転送作用素の随伴,シフト作用素 = 平行移動作用素(時系列解析ではラグ作用素)などもある.

また,作用素の随伴は,「転置」の要素は隠れて,複素共役を取ることに似る.

定理 **3.2.42** (multiplication operator and its symbol). (X,Ω,μ) を σ -有限な測度空間とし, $H:=L^2(X,\Omega,\mu)=:L^2(\mu)$ とする.任意の $\varphi\in L^\infty(\mu)$ に対して,post-composition の定める写像

は, $M_{\varphi}\in B(L^2(\mu))$ を満たし, $\|M_{\varphi}\|=\|arphi\|_{\infty}$ を満たす.arphi を乗算作用素 M_{arphi} の記号という.

定理 **3.2.43** (integral operator / transform and its kernel). (X,Ω,μ) を測度空間 , $k:X\times X\to \mathbb{F}$ を次を満たす $\Omega\times\Omega$ -可測 関数とする:

$$\int_X |k(x,y)| d\mu(y) \le c_1, \text{a.e. } [\mu], \qquad \qquad \int_X |k(x,y)| d\mu(x) \le c_2, \text{a.e. } [\mu].$$

このとき,写像

は有界線型作用素で , ノルムは $||K|| \le (c_1c_2)^{1/2}$ を満たす .

例 3.2.44 (Volterra operator). $k:[0,1]\times[0,1]\to\mathbb{R}$ を集合 $\{(x,y)\in[0,1]\times[0,1]\mid y< x\}$ の特性関数とする.これを核とする積分作用素 $V:L^2(0,1)\to L^2(0,1)$; $f\mapsto Vf(x)=\int_0^1 k(x,y)f(y)dy=\int_0^x f(y)dy$ を Volterra 作用素という.これは不定積分としての積分作用素である. 18

例 3.2.45 (matrix multiplication). 行列乗算は,離散空間上での積分変換と捉えられる.これが行列という形式の普遍性を説明しているのではなかろうか?線形代数と微分積分の概念はここに交錯する.積分変換はより一般に多項式関手 (polynomial functor)の特別な場合で,多項式関手とは,多項式概念の関手化である.Volterra作用素は,不定積分概念の作用素化であろうか.

例 3.2.46 (unilateral shift).

は全射でない等長作用素となる(すなわち,ノルム1の有界線型写像).これをシフト作用素という.

例 3.2.47 (随伴).

- (1) 乗算作用素については $M_{arphi}^* = M_{\overline{arphi}}$ となる .
- (2) k を核とする積分作用素 K については K^* は $k^*(x,y) = \overline{k(y,x)}$ を核とする積分作用素となる .
- (3) shift 作用素は方向が逆になる: $S^*(\alpha_1,\alpha_2,\cdots)=(\alpha_2,\alpha_3,\cdots)$.これを後方シフト (backward shift) と呼ぶ.

^{†8} ヴォルテラ積分方程式は、人口学や、粘弾性物質の研究、保険数学に現れる再生方程式などへと応用されている。

3.2.13 一般の *-代数

定義 3.2.48 (involution, anti-involution, star algebra, Banach star algebra).

- (1) 二乗が恒等写像となるような準同型を対合という、恒等射自身も対合である、反準同型でもある対合を反対合と呼ぶ、
- (2) 対合を備えた可換環 K について,K-*-代数 A とは,K-双線型写像・: $A \times A \to A$ と K-反線型写像 * : $A \to A$ を備えた K- 加群 A であって,次の 2 条件を満たすものをいう:
 - (a) * は台となる K-加群 A 上に対合を定める: $\forall_{x \in A} x^{**} = x$.
 - (b) * は乗法 * 上に反準同型を定める: $\forall_{x,y \in A} (xy)^* = y^*x^*$.
- (3) $K=\mathbb{C}$ であり,C-*-代数 A が Banach 代数でもあるとき,これを Banach *-代数という.このとき, $*:A\to A$ は等長同型である条件も課す.

例 3.2.49.

(1) Banach *-代数 B について,半対合 * : $B \to B$ が台となる Banach 代数 B 上のノルムと両立するとき,これを特に C^* -代数と呼ぶ.

3.3 コンパクト作用素

(X が局所コンパクトハウスドルフ空間である時 ,) $C_c(X)\subset C_b(X)$ の関係と $B_f(H)\subset B(H)$ の関係は非常に似ている . These classes describe local phenomena on H and on X.[1] そこで , $C_c(X)$ の完備化として得た $C_0(X)$ に対応するクラスを , 作用素論でも構成することを考える .

3.3.1 定義

定義 3.3.1 (finite rank). Hilbert 空間 H 上の作用素 $T: H \to H$ について,

- (1) T が有限ランクであるとは, $Im\ T$ が H の有限次元部分空間であることをいう(したがって特に閉 2.1.24).
- (2) 有限ランクな有界作用素全体 $B_f(H)$ は, B(H) 内の部分空間であり,かつイデアルである.
- (3) $B_f(H)$ はイデアルとして自己共役である: $(B_f(H))^* = B_f(H)$.

[証明].

- (2) 任意の $S,T\in B_f(H),U\in B(H),a\in\mathbb{F}$ について, $aS,S+T,ST\in B_f(H)$ である:Im $aS=\mathrm{Im}\ S,\mathrm{Im}\ (S+T)\subset\mathrm{Im}\ S\oplus\mathrm{Im}\ T,\mathrm{Im}\ (SU)\subset\mathrm{Im}\ S,\dim\mathrm{Im}\ (US)\leq\dim\mathrm{Im}\ (S)$.
- (3) $T \in B_f(H) \Leftrightarrow T^* \in B_f(H)$ を示す.直交分解 $H = \operatorname{Im} T \oplus \operatorname{Im} T^\perp$ を随伴によって表現することより, $H = \operatorname{Im} T \oplus \operatorname{Ker} T^*$ の関係がある.よって, $\operatorname{Im} T^* = T^*(\operatorname{Im} T)$ より, T^* も有限ランクである.

補題 3.3.2. $B_f(H)$ には射影からなるネット $(P_\lambda)_{\lambda \in \Lambda}$ が存在し , $\forall_{x \in H} \|P_\lambda x - x\| \to 0$ を満たす .

[証明].H の正規直交基底 $(\mathbf{e}_j)_{j\in J}$ を取り, $\Lambda:=\{\lambda\in P(J)\mid |\lambda|<\infty\}$ からのネット $(P_\lambda:=\mathrm{pr}\{\langle\mathbf{e}_j\rangle_{j\in J})$ を考える.すると, $\forall_{\lambda\in\Lambda}$ $\dim(\mathrm{Im}\;(P_\lambda))<\infty$ より確かに $B_f(H)$ 上のネットなっている.任意の $x=\sum_{j\in J}\alpha_j\mathbf{e}_j\in H$ について,系 3.1.31 より,任意の

 $0\in[0,\infty)$ の開近傍の基本系の元 $[0,\epsilon)$ に対して,ある有限集合 J が存在して, $\|P_{\lambda}x-x\|^2=\sum_{j\in\Lambda}|\alpha_j|^2<\epsilon$ (Parseval's identity)

が成り立つ.よって,ネットとして, $\|P_{\lambda}x-x\|$ は0に収束する.

定理 3.3.3. $T \in B(H)$ について,次の5条件は同値.

(1) $T \in \overline{B_f(H)}$.

- (2) $T|_B: B \to H$ は弱-ノルム連続な関数である.
- (3) T(B) は H でコンパクトである.
- (4) $\overline{\overline{T(B)}}$ は H でコンパクトである.
- (5) B 上の任意のネットは, T での像が H 上で収束するような部分ネットを持つ.

記法 3.3.4. 無限遠で消えるため,コンパクト作用素の空間は $B_0(H)$ と表すが,K(H),C(H) も一般的である.

補題 3.3.5. コンパクト作用素の空間 $B_0(H) \subset B(H)$ は

- (1) ノルム閉で自己共役なイデアルである.
- (2) (1) の条件を満たすもので最小のものである.特にHが可分である場合は唯一の非自明な閉イデアルである.
- (3) H が無限次元であるとき, $I \notin B_0(H)$.

3.3.2 性質

補題 3.3.6. $T \in B(H)$ が対角化可能であるとき,

- (1) T はコンパクトである.
- (2) 正規直交基底 $(e_i)_{i\in I}$ に属する固有値 $(\lambda_i)_{i\in I}$ は $c_0(J)$ の元である .

3.4 跡

関数論とヒルベルト空間上の作用素論との類比において, C_0 , B_0 と C_c , B_f は対応するが,B(H) は 2 つの役割を持つ. 1 つは C_b であるが,もう一つは $L^\infty(X)$ である.そのためには Lebesgue 測度にあたる概念が必要であるが,これが跡である.このような測度論との交差が特に美しい.いつしか積分もただの線型作用素であったし,級写像も積分作用素の特殊な例なのであった.

第4章

Spectral Theory

解析学の理論であるが,幾何学と代数学の双対性である Isbell 双対性の一つの例・Gelfand duality に到達する.任意の C^* -代数 $\mathcal A$ は,ある Gelfand スペクトル $\operatorname{Sp}(A)$ と呼ばれる位相空間上の連続関数のなす C^* -代数に等しい.群と体の間の 写像を調べる営みが解析学であるとしたら,どこに存在するのか.

Banach 代数 $\mathcal A$ の function calculus とは,あるコンパクトハウスドルフ空間 X 上の連続関数のなす代数 $C\subset C(X)$ との間の同型 $\mathrm{Iso}(C,A)$ の部分集合をいう.C が C(X) の中で大きいほど,よい function calculus だとみなされる.

ある同型 $\Phi: C \rightarrow A$ に対して,

Spectra in algebraic geometry: Grothendieck has defined a prime spectrum of commutative unital ring having in mind Gel'fand's spectrum of a commutative C^* -algebra

4.1 Categorical Settings

Gelfand Duality^a

a https://ncatlab.org/nlab/show/Gelfand+duality

記法 4.1.1.

- (1) C^* Alg で,単位的な C^* -代数のなす圏を表す.
- (2) C^*Alg_{nu} で , 単位的でない C^* -代数のなす圏を表す .
- (3) Top_{cot} で , コンパクトハウスドルフ空間のなす Top_{Haus} の充満部分圏を表す .
- $(4)*/Top_{cpt}$ で , Top_{cpt} の pointed object のなす圏とする .
- (5) Top_{lent inf} で,射を無限遠点で消える連続写像とする局所コンパクトハウスドルフ空間のなす圏とする.
- (6) Top_{lept,proper} で,射を proper map とする局所コンパクトハウスドルフ空間のなす圏とする.

記法 4.1.2 (functors).

- (1) 関手 $C: \mathrm{Top}_{\mathrm{cpt}} \to C^*\mathrm{Alg}_{\mathrm{com}}^{\mathrm{op}}$ を, $C(X) := \{f \in \mathrm{Map}(X,\mathbb{C}) \mid f \text{ continuous}\}$ に写す関手 ,, $C_0: */\mathrm{Top}_{\mathrm{cpt}} \to C^*\mathrm{Alg}_{\mathrm{com,nu}}^{\mathrm{op}}$ を, $x_0 \in X$ で消える連続関数のなす空間に写す関手とする.
- (2) Spec: $C^*\mathrm{Alg^{op}_{com}} \to \mathrm{Top_{cpt}}$ で,可換な C^* -代数 $\mathcal A$ を,スペクトル位相によって位相空間と見た指標の空間に対応させる関手とする.同様に Spec: $C^*\mathrm{Alg^{op}_{com,\nu}} \to \mathrm{Top_{lept}}$ も定まる.

定理 **4.1.3** (unital Gelfand duality theorem). Spec: $C^*\mathrm{Alg}^\mathrm{op}_\mathrm{com} o \mathrm{Top}_\mathrm{cpt}$ は圏の同値であり,C が準逆である.

系 4.1.4. Spec : $C^*\mathrm{Alg^{op}_{com, \nu}} o */\mathrm{Top}_{cpt}$ は圏の同値であり, C_0 が準逆である.

補題 4.1.5. コンパクトハウスドルフ空間の開集合は , 局所コンパクトである .

要諦 4.1.6. これより,一点コンパクト化によって,連続関数は「無限遠点で消える連続関数」に対応するから,圏の反変同値 $\mathrm{Top}_{\mathrm{lept,inf}} \Leftrightarrow C^*\mathrm{Alg}_{\mathrm{com,nu}}$ が引き起こされる.この双対性は,基礎体が $\mathbb C$ でも $\mathbb R$ でも成り立つ.

4.2 Banach 代数

Banach 環は何故か解析学が展開される場として, C の一般化としても扱える.

冪級数を介して定義されるいくつかの初等関数は、任意の単位的バナッハ環において定義されうる。そのような例として、指数関数や三角関数、さらに一般的な任意の整関数が挙げられる(特に、指数写像は抽象指数群(英語版)を定義するために用いられる)。幾何級数の公式は、一般の単位的バナッハ環においても依然として有効である。二項定理もまた、バナッハ環の二つの可換な元に対して成立する。

^a https://ja.wikipedia.org/wiki/バナッハ環

4.2.1 定義と例

Banach 代数は Ban のモノイド対象であるが、定義に単位性は入らない(半群対象). しかし、標準的な単位化が存在するから、ここでは単位性を暗黙に仮定する.

定義 4.2.1 (algebra, normed -, Banach -, unital, essential ideal).

- (1) 代数 $\mathcal A$ とは , ある結合的な双線型写像 $\cdot:\mathcal A imes\mathcal A o\mathcal A$ について環の構造も持つ線型空間 $\mathcal A$ をいう .
- (2) \mathcal{A} がノルム代数であるとは、劣乗法性を満たすノルム $\|xy\| \leq \|x\|\|y\|$ を備えた代数を言う.
- (3) ノルム代数 $\mathcal A$ がそのノルム位相について完備であるとき, $\mathbf B$ anach 代数という.
- (4) ある元 $I \in \mathcal{A}$ が存在して $\forall_{A \in \mathcal{A}} IA = AI = A$ を満たすとき,ノルム代数 \mathcal{A} は単位的であるという.
- (5) イデアル $S \subset A$ が、Aの任意のイデアルに対して零でない共通部分を持つとき、これを本質イデアルという、

補題 4.2.2 (単位元の性質について).

- (1) 単位元 I は一意的であり , $\mathcal A$ が零でないならば $\|I\| \geq 1$ を満たす .
- (2) 単位的なノルム代数 $\mathcal A$ について, $\|I\|=1$ ならば,写像 $\mathbb F\ni \alpha\mapsto \alpha I\in \mathcal A$ は単射な準同型を定め,さらに等長写像である: $\|\alpha I\|=|\alpha|$. $^{\dagger 1}$

[証明].

- (1) ノルムの劣乗法性より, $\forall_{A\in\mathcal{A}} \|A\| \leq \|A\| \|I\|$. \mathcal{A} が零でないとき, $A \neq 0$ に取れるから, $1 \leq \|I\|$.
- (2) 略.

要諦 **4.2.3.** (2) は行列で言えばスカラー行列への埋め込みであるが,これが同型になる場合は限られることが Gelfand-Mazur 定理 **4.2.27** となる.

補題 **4.2.4** (Banach 代数のノルムの劣乗法性の十分条件). 代数 $\mathcal A$ が Banach 空間でもある(ノルムが定まっており,ノルム位相について完備)とする.このとき, $(1) \Rightarrow (2) \Rightarrow (3)$ が成り立つ.

- (1) ノルムが劣乗法性を満たす: $\forall_{A,B\in\mathcal{A}} \|AB\| \leq \|A\| \|B\|$.
- (2) 乗法 $\mathcal{A} \times \mathcal{A} \to \mathcal{A}$ はノルム位相について連続である.
- (3) 劣乗法性を満たすノルムであって元のノルムと同値なものが存在する.

[証明].

(1) \Rightarrow (2) ノルム位相に関して収束する $\mathcal{A} imes\mathcal{A}$ の点列 $((A_n,B_n))_{n\in\mathbb{N}}\stackrel{n o\infty}{\longrightarrow}(A,B)\in\mathcal{A} imes\mathcal{A}$ を取り,積もノルム収束すること:

 $^{^{\}dagger 1}$ これを Banach 代数の指標の自動連続性という . Frechet 代数の基礎体への準同型も自動的に連続であるかは未解決 .

 $||AB - A_n B_n|| \xrightarrow{n \to \infty} 0$ を示せば良い.

(2) \Rightarrow (3) $\mathcal{A}_1 := \mathcal{A} \times \mathbb{F}$ を単位化とする $.a \in \mathcal{A}$ に対して ,

とすると, $L_a \in B(\mathcal{A}_1)$ である: $\|L_a(x,\zeta)\| = \|ax + \zeta a\| \le \|a\| \|(x,\zeta)\|$.これに対して, $\|a\| := \|L_a\|$ と定めると,これは \mathcal{A} の元々のノルムと同値であり, \mathcal{A} はこのノルムについて Banach 代数である(劣乗法性を満たす).実際,劣乗法性は作用素ノルムの劣乗法性から従い,ノルムの同値性も, $\mathcal{A} \to \mathcal{A}; x \mapsto ax$ は連続であるから, $\exists_{C \in \mathbb{R}} \|ax\| \le C \|x\|$ に注意すると,特に $(x,\zeta) = (0,1)$ は $\|(0,1)\| \le 1$ を満たすから,

$$||a|| = ||a \cdot 0 + 1 \cdot a|| \le \sup_{||\langle x, \zeta \rangle|| \le 1} ||ax + \zeta a|| = |||a|||$$

٤,

$$\begin{aligned} \|\|a\| &= \sup_{\|(x,\xi)\| \le 1} \|ax + \xi a\| \\ &\le \sup_{\|(x,\xi)\| \le 1} (\|ax\| + |\xi| \|a\|) \\ &\le \sup_{\|(x,\xi)\| \le 1} (C\|x\| + |\xi| \|a\|) \\ &= \|a\| \sup_{\|x\| + |\xi| \le 1} \underbrace{\left(\frac{C}{\|a\|} \|x\| + |\xi|\right)}_{\in \mathbb{R}} \end{aligned}$$

とより判る.

要諦 4.2.5 (作用素 ノルムの立ち位置). 後に議論する単位化によって $\|I\|=1$ として良いように , ノルムの劣乗法性は作用素 ノルム が模範となっている .

命題 **4.2.6** (Banach 代数の単位化). $\mathcal A$ を単位元のない零でない Banach 代数とする.このとき,基礎体との直和空間 $\mathcal A_I:=\mathcal A\oplus\mathbb F$ に次のように積を定めると,単位元 I:=(0,1) を持つ Banach 代数となり,写像 $i:\mathcal A\to\mathcal A_I:A\mapsto(A,0)$ は余次元 1 を持つ本質 閉イデアルに $\mathcal A$ を等長に埋め込む.

$$(A, \alpha)(B, \beta) := (AB + \alpha B + \beta A, \alpha \beta)$$
.

[証明]. \mathcal{A}_I が代数になること, $i:\mathcal{A}\to\mathcal{A}_I$ が代数の埋め込みであり,等長写像になることは認める.

劣乗法性

$$\begin{aligned} \|(A,\alpha)(B,\beta)\| &= \|(AB + \alpha B + \beta A, \alpha \beta)\| \\ &= \|AB + \alpha B + \beta A\| + |\alpha\beta| \\ &\leq \|A\| \|B\| + |\alpha| \|B\| + |\beta| \|A\| + |\alpha| |\beta| \\ &= (\|A\| + |\alpha|)(\|B\| + |\beta|) = \|(A,\alpha)\| \|(B,\beta)\|. \end{aligned}$$

完備性 命題 2.1.36 より.

像は余次元 1 の本質イデアルである 準同型定理より $\mathcal{A}_I/\mathcal{A}\simeq\mathbb{F}$ だから余次元 1 で,また \mathcal{A} は極大イデアルである. \mathcal{B} を零でないイデアルとする. $\mathcal{A}\cap\mathcal{B}=0$ と仮定して矛盾を導く.このとき $\exists_{\alpha\in\mathbb{F}^\times}(B,\alpha)\in\mathcal{B}$ が成り立つが, $\mathcal{A}_1\mathcal{B}=\mathcal{B}$ より,特に $\alpha=1$ と考えて良い.また, $\forall_{A\in\mathcal{A}}(A,0)(B,1)=(AB+A,0)\in\mathcal{B}$ であるが,このとき $AB+A\neq 0$ である.AB+A=0

ならば, $\forall_{A\in\mathcal{A}}\ AB^2=A$ が従い, \mathcal{A} に単位元がないことに矛盾.よって, $AB+A\neq 0$ であるが,これは $\mathcal{A}\cap\mathcal{G}=0$ に矛盾 \mathbb{R}^2

像はノルム閉である 明らか. また像は極大イデアルだから,極大イデアルは閉であること 4.2.21 からもわかる.

要諦 4.2.7 (一点コンパクト化との対応). 一点コンパクト化に次の図式を可換にするという意味で「対応」する操作である.

$$C^* \text{Alg}_{\text{com,nu}}^{\text{op}} \xrightarrow{\text{Spec}} \text{Top}_{\text{lcpt,inf}}$$

$$\downarrow c \qquad \qquad \downarrow c$$

$$C^* \text{Alg}_{\text{com}}^{\text{op}} \xrightarrow{\text{Spec}|} \text{Top}_{\text{cpt}}$$

ただし, $u:C^*\mathrm{Alg^{op}_{com,nu}} \to C^*\mathrm{Alg^{op}_{com}}$ は C^* -代数の単位化が定める関手, $c:\mathrm{Top_{lcpt,inf}} \to \mathrm{Top_{cpt}}$ は一点コンパクト化が定める関手とした。 $^{\dagger 3}$

注 4.2.8 (極大スペクトルとの関係)。なお,指標 $\mathcal{A} \to \mathbb{C}$ の核も,余次元 1 の閉部分空間で,極大イデアルになる.特に,Gelfand スペクトルは,環や (離散)代数の極大スペクトル Spec $_mA$ の位相的な類比でもある.極大スペクトルの方について,R を体 k 上の有限生成な単位的で可換な Noether 環で冪零元を持たないものとしたとき, $Spec_mA$ は Zariski 位相によって Noether 位相空間となる.こちらでは,より一般の環について素スペクトルを考えていく.

例 **4.2.9.** 局所コンパクトハウスドルフ空間上の代数 $C_0(X)$ は Banach 代数で,単位的であることは X がコンパクトであることに同値.

4.2.2 イデアルと商

4.2.2.1 商

補題 **4.2.10** (quotient). \mathcal{A} を Banach 代数 , $\mathcal{G} \subset \mathcal{A}$ をイデアルとする .

- (1) ${\mathcal G}$ が閉集合であるとき , 商 ${\mathcal A}/{\mathcal G}$ は再び Banach 代数である .
- (2) イデアル 5 について,次の2条件は同値である.
 - (a) 9 は閉集合である.
 - (b) $\mathcal G$ はあるノルム減少的な連続線型作用素 $\Phi:\mathcal A\to\mathcal A/\mathcal G$ の核である.

[証明].

(1) $\mathcal G$ が閉集合であるとき,商 $\mathcal A/\mathcal G$ は商ノルムについて再び Banach 空間である 2.1.19.また,環 $\mathcal A/\mathcal G$ は積 $(A+\mathcal G)(B+\mathcal G)=AB+\mathcal G$ によって再び代数となる.よって,商ノルムの劣乗法性を示せば良い.

$$\begin{split} \|A+\mathcal{G}\|\|B+\mathcal{G}\| &= \inf_{S\in\mathcal{G}}\|A+S\|\inf_{T\in\mathcal{G}}\|B+T\| \\ &\geq \inf_{S\in\mathcal{G}}\inf_{T\in\mathcal{G}}\|AB+(AT+SB+ST)\| \geq \inf_{R\in\mathcal{G}}\|AB+R\| = \|AB+\mathcal{G}\|. \end{split}$$

(2) 明らか.

 $^{^{\}dagger 2}$ \mathcal{G} \subset \mathcal{A} ならば明らかに \mathcal{A} \cap \mathcal{G} \neq 0 だから , \mathcal{G} \setminus \mathcal{A} \neq \emptyset とすると , $\exists_{\alpha \in \mathbb{F}^{\times}, A \in \mathcal{A}}$ $(A, \alpha) \in \mathcal{G}$ であるが , (A, α^{-1}) との積を考えることより , 特に $\alpha = 1$ として良い . すると , $(-A, 0) + (A, 1) = (0, 1) \in \mathcal{A}$ + \mathcal{G} より , \mathcal{A} + \mathcal{G} = \mathcal{A}_I だから , 2 つのイデアル \mathcal{A} の は互いに素である . よって中国剰余定理より , $\mathcal{A}_I/\mathcal{A}$ \cap \mathcal{G} \subseteq $\mathcal{A}_I/\mathcal{A}$ \times $\mathcal{A}_I/\mathcal{G}$ \simeq \mathbb{F} \times $\mathcal{A}_I/\mathcal{G}$ であり , \mathcal{G} \neq 0 より , $\mathcal{A}_I/\mathcal{A}$ \cap \mathcal{G} \subseteq \mathcal{A}_I . 特に \mathcal{A} \cap \mathcal{G} \neq 0 .

 $^{^{\}dagger 3} \ \text{https://math.stackexchange.com/questions/2084557/why-is-adjoining-a-unit-the-algebraic-counterpart-to-the-one-point-compactific the stackexchange.com/questions/2084557/why-is-adjoining-a-unit-the-algebraic-counterpart-to-the-one-point-compactific the stackey the stackey that the stackey the stackey the stackey that the stackey the stackey that the$

4.2.2.2 正則表現

群の Cayley 表現のように,代数の埋め込み $\mathcal{A} \hookrightarrow B(\mathcal{A})$ が標準的に存在する.これは埋め込みで,近似的単位元が存在するときは等長でもある.

代数的存在は他の数学的対称に作用させて研究する指針がある(表現論). 特に代数は加群に作用する.このとき,代数は,加群の特別なクラスだと思える,ちょうど群は台集合をもち,代数は台加群を持つのと同様に.すると,代数に備わる追加構造である積は,自身を忘却して得る加群の上に標準的な作用を定め,これを正則表現という.

 $^a \; \mathtt{http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/regular+representation}$

定義 **4.2.11** ((left) regular representation). Banach 代数 $\mathcal A$ の左正則表現 $\rho:\mathcal A\to B(\mathcal A)$ とは , 左移動 $\forall_{A,B\in\mathcal A}$ $\rho(A)(B)=AB$ をいう .

補題 4.2.12. $ho:\mathcal{A}\hookrightarrow B(\mathcal{A})$ はノルム減少的な代数の準同型である.また, \mathcal{A} が単位的ならば,ho は位相の埋め込みでもある.

[証明]. ρ が単射な代数準同型を定めることは明らか.

ノルム減少性 $\|\rho(A)\| \leq \|A\|$ は,作用素ノルムの定義

 $\|\rho(A)\| = \sup \{\|\rho(A)(B)\| = \|AB\| \in \mathbb{R}_{>0} \mid B \in \mathcal{A}, \|B\| \le 1\}$

と劣乗法性より従う.

劣乗法性の保存 作用素 ノルムの劣乗法性より明らか: $\|\rho(AB)\| = \|\rho(A)\rho(B)\| \le \|\rho(A)\|\|\rho(B)\|$. が, $\mathcal A$ が非単位的であるとき,位相の埋め込みとは限らないから,Banach 代数の埋め込みであるとは言えない.

位相の埋め込み $\|A\| = \|\rho(A)(I)\| \le \|\rho(A)\| \|I\| \le \|A\| \|I\|$ は $\rho: \mathcal{A} \to B(\mathcal{A})$ とその逆 $\operatorname{Im} \rho \to \mathcal{A}$ の Lipschitz 連続性を表していると読めるから , ρ は部分空間への位相同型である .

注 **4.2.13** (adjointing identity from the regular representation). Banach 代数の埋め込み $\rho:\mathcal{A} \hookrightarrow B(\mathcal{A})$ を用いて, \mathcal{A} に $B(\mathcal{A})$ の作用素 ノルムと同値な ノルムを入れることで, \mathcal{A} が零でないとき $\|I\|=1$ と仮定して良い.以降,これを暗黙の仮定とする.

4.2.2.3 近似的単位元

定義 **4.2.14** (approximate unit/ identity). Banach 代数 $\mathcal A$ の近似的単位元とは , 単位球 $B\subset \mathcal A$ 上のネット $(E_\lambda)_{\lambda\in\Lambda}$ で , $\forall_{A\in\mathcal A}$ $\lim E_\lambda A=\lim AE_\lambda=A$ を満たすものを言う .

補題 4.2.15 (近似的単位元の特徴付け). $\mathcal A$ を Banach 代数とする.次の 2 条件は同値である.

- (1) 近似的単位元 (E_{λ}) が存在する.
- (2) ある有界集合 $\mathcal{E} \subset \mathcal{A}$ が存在して, $\forall_{\epsilon>0} \forall_{A\in\mathcal{A}} \exists_{E\in\mathcal{B}} \|AE-A\| + \|EA-A\| < \epsilon$.

補題 4.2.16. Banach 代数に近似的単位元が存在するとき,左正則表現 ho は等長同型である.

[証明].評価 $||AE_{\lambda}|| \leq ||\rho(A)|| ||E_{\lambda}|| \leq ||A|| ||E_{\lambda}|| \leq ||A||$ の極限を考えることより従う.

例 4.2.17. 局所コンパクトハウスドルフ空間上の無限遠点で消失する連続関数全体の空間 $C_0(X)$, Hilbert 空間上のコンパクト作用素の空間 $B_0(H)$, 局所コンパクトな群 G 上の可積分関数全体のなす空間 $L^1(G)$ は近似的単位元を持つ . $P_r:\partial\Delta\to[0,\infty);z\mapsto\sum_{n=-\infty}^\infty r^{|n|}z^n$ $(r\in(0,1))$ を Poisson 核とすると , ネット $(P_r)_{r\in(0,1)}$ は $L^1(\partial\Delta)$ を畳み込みについて Banach 代数とみたときの近似的単位元である .

4.2.2.4 可逆性

定義 **4.2.18** (invertible). 単位的な Banach 代数 $\mathcal A$ において,元 $A\in\mathcal A$ が可逆であるとは,ある $B,C\in\mathcal A$ が存在して BA=AC=I を満たすことを言う.このとき B=C が従うが,これを A^{-1} と表す.可逆元全体の集合を $\mathrm{GL}(\mathcal A)=\mathcal A^{\times}$ で表す.

補題 **4.2.19** (Neumann series). 単位的 Banach 代数 $\mathcal A$ の元 A が $\|A\| < 1$ を満たすとき ,

(1) $I - A \in GL(\mathcal{A})$ で,

(2)
$$(I-A)^{-1} = \sum_{n=0}^{\infty} A^n$$
 と表せる.

[証明].ノルムの劣乗法性より $\|A^n\|\leq \|A\|^n$ より, $\sum_{n=0}^\infty \|A^n\|<\infty$.よって,Banach 代数 $\mathcal A$ の完備性より, $\sum_{n=0}^\infty A^n$ も,あ

る元 $B\in\mathcal{A}$ に収束する. $B_n:=\sum_{i=0}^nA^i$ とおくと, $AB_n=B_{n+1}-I$ より, $AB=\lim_{n\to\infty}AB_n=\lim_{n\to\infty}B_{n+1}-I=B-I$.同様にBA=B-I.よって,I-A は可逆で, $(I-A)^{-1}=B$.

命題 **4.2.20.** 単位的 Banach 代数 $\mathcal A$ において,乗法群 $\mathrm{GL}(\mathcal A)$ は開集合で,写像 $A\mapsto A^{-1}$ は $\mathrm{GL}(\mathcal A)$ の位相同型を定める(よって $\mathrm{GL}(\mathcal A)$ は位相群をなす).

[証明].

(1) 任意に $A \in GL(A)$ を取る.

$$\forall_{B \in \mathcal{A}}$$
 $B = A - (A - B) = A(I - A^{-1}(A - B))$

より,補題から, $\|A^{-1}(A-B)\|<1$ ならば, $B\in \mathrm{GL}(\mathcal{A})$ である.特に, $\epsilon<\|A^{-1}\|^{-1}(>0)$ を満たす $\epsilon>0$ を取れば, $B(A,\epsilon)\subset \mathrm{GL}(\mathcal{A})$ を満たす.

(2) 任意の $A, B \in GL(\mathcal{A})$ について,

$$B^{-1} = (A(I - A^{-1}(A - B)))^{-1} = \left(\sum_{n=0}^{\infty} (A^{-1}(A - B))^n\right) A^{-1}$$

が成り立つ.よって, $B\to A$ のとき, $B^{-1}\to A^{-1}$.よって, $^{-1}:\mathrm{GL}(\mathcal{A})\to\mathrm{GL}(\mathcal{A})$ は連続写像.これが対合であることより,同相写像でもある.

系 4.2.21. A を単位的な Banach 代数とする.

- (1) 真のイデアルの閉包は再び真のイデアルである.
- (2) 極大イデアルは閉である.

[証明].

- (1) 真のイデアル $\mathcal{G} \subset \mathcal{A}$ を取ると, $\mathcal{G} \cap \operatorname{GL}(\mathcal{A}) = \emptyset$ である.すなわち, $\mathcal{G} \subset \mathcal{A} \setminus \operatorname{GL}(\mathcal{A})$ であるが, $\operatorname{GL}(\mathcal{A})$ は閉であるから $\overline{\mathcal{G}} \subset \mathcal{A} \setminus \operatorname{GL}(\mathcal{A})$.よって, $\overline{\mathcal{G}}$ も真のイデアルである.
- (2) 極大イデアル $\mathcal M$ については極大性より $\mathcal M=\overline{\mathcal M}$ が成り立つため .

4.2.3 スペクトル

いままで代数っぽかったが , ここでいきなり幾何的な空間 $\mathbb C$ に落とす . このときの $\mathbb C o X$ への帰還 .

任意の Banach 代数の元のスペクトルが空でないことを示すにあたって,以降,体を $\mathbb{F}=\mathbb{C}$ とする.すると,レゾルベントを通じて複素解析学の道具が流入する (Fredholm 1903).というよりむしろ,複素解析学が, \mathbb{C} の領域上の Banach 空間値関数に一般化される.

定義 4.2.22 (spectrum, spectral radius, resolvent set, resolvent). $\mathcal A$ を単位的 Banach 代数とする .

- (1) 元 $A \in \mathcal{A}$ のスペクトルとは , 複素数の部分集合 $\operatorname{Sp}(A) := \{\lambda \in \mathbb{C} \mid \lambda I A \notin \operatorname{GL}(\mathcal{A})\}$ をいう .
- (2) 元 $A \in \mathcal{A}$ のスペクトル半径とは,実数 $r(A) := \sup \{|\lambda| \in \mathbb{R}_{\geq 0} \mid \lambda \in \operatorname{Sp}(A)\} = \min \{r \in \mathbb{R}_{\geq 0} \mid \operatorname{Sp}(A) \subset B(0,r)\}$ を指す.
- (3) 補集合 $\rho(A) := \mathbb{C} \setminus \operatorname{Sp}(A)$ を解核集合という.
- (4) 解核集合上の関数 $R(A,\lambda) := (\lambda I A)^{-1} : \mathbb{C} \setminus \operatorname{Sp}(A) \to \mathcal{A}$ を解核という.

補題 **4.2.23** (spectral mapping theorem). 元 $A\in\mathcal{A}$ と $\|A\|\leq r$ を満たす半径 r を持つ閉円板 B(0,r) を含む領域上で定義された正則関数 $f(z)=\sum_{n=0}^{\infty}\alpha_nz^n$ について, $f(A)=\sum_{n=0}^{\infty}\alpha_nA^n$ によって定まる写像 $\mathcal{A}\to\mathcal{A}$ は, $\lambda\in B(0,r)$ を満たす $\lambda\in Sp(A)$ に関して, $f(\lambda)\in Sp(f(A))$ を満たす: $f(Sp(A)\cap\Delta(0,r))\subset Sp(f(A))$.

「証明].

- (1) $\sum_{n=0}^{\infty} |lpha_n| \|A^n\| < \infty$ と ${\mathcal A}$ の完備性より , 写像 f は well-defined である .
- (2) 対偶を示す.任意の $\lambda\in\mathbb{C}$ について, $P_{n-1}\in\mathbb{C}[A]$ を $P_{n-1}(\lambda,A):=\sum_{k=0}^{n-1}\lambda^kA^{n-k-1}$ と定めると,

$$||P_{n-1}(\lambda, A)|| \le \sum_{k=0}^{n-1} |\lambda|^k ||A||^{n-k-1} \le nr^{n-1}$$

より,列 $(P_{n-1}(\lambda,A))$ は,あるAと可換な元 $B\in \mathcal{A}$ に収束する.また,

$$f(\lambda)I - f(A) = \sum_{n=1}^{\infty} \alpha_n (\lambda^n I - A^n) = (\lambda I - A) \sum_{n=1}^{\infty} \alpha_n P_{n-1}(\lambda, A) = (\lambda I - A)B.$$

よって , $f(\lambda)I - f(A) \in GL(A)$ で逆元 C を持つならば , BC は $\lambda I - A$ の逆元となる .

補題 4.2.24. 任意の $A\in\mathcal{A}$ に関して, $r(A)\leq\inf_{n\in\mathbb{N}}\|A^n\|^{1/n}$.特に, $\operatorname{Sp}(A)$ は有界である.

[証明].

(a) 補題 4.2.19 より,

$$\forall_{\lambda \in \mathbb{C}} \quad |\lambda| > \|A\| \Rightarrow (\lambda I - A)^{-1} = \lambda^{-1} (I - \lambda^{-1} A)^{-1} = \sum_{n=0}^{\infty} \lambda^{-n-1} A^n$$

だから, $|\lambda| > \|A\| \Rightarrow \lambda I - A \in \mathrm{GL}(\mathcal{A})$,すなわち, $\mathrm{Sp}(A) \subset \Delta(0,r)$,r(A) < r.よって, $r(A) \leq \|A\|$.

(b) 任意の $\lambda \in \operatorname{Sp}(A)$ を取る. $x \mapsto x^n$ は整関数だから ,補題より , $\lambda^n \in \operatorname{Sp}(A^n)$.(a) での議論より , $|\lambda|^n \leq \|A^n\| \Leftrightarrow |\lambda| \leq \|A^n\|^{1/n}$.実際 , $|\lambda^n| > \|A^n\|$ ならば , $\lambda^n I - A^n \notin \operatorname{GL}(\mathcal{A})$ に矛盾.

定理 **4.2.25.** 単位的 Banach 代数の任意の元 $A \in \mathcal{A}$ に関して ,

(1) スペクトル $\operatorname{Sp}(A) \subset \mathbb{C}$ は非空なコンパクト集合である.

(2) A のスペクトル半径は $r(A) = \lim_{n \to \infty} \|A^n\|^{1/n}$ と表せる .

「証明].

(1) コンパクト性 任意の $A\in\mathcal{A}$ を取り, $R:\mathbb{C}\setminus\operatorname{Sp}(A)\to\mathbb{C}$ をそのレゾルベントとする.任意の $\lambda\notin\operatorname{Sp}(A)$ について, $|\mathcal{E}|<\|R(\lambda)\|^{-1}$ を満たすように取れば,補題 4.2.19 より, $\lambda-\mathcal{E}\notin\operatorname{Sp}(A)$ で,その逆元は

$$R(\lambda - \zeta) = (\lambda I - A - \zeta I)^{-1}$$
$$= ((\lambda I - A)(I - R(\lambda)\zeta))^{-1} = \sum_{n=0}^{\infty} R(\lambda)^{n+1} \zeta^n$$

と表せる.特に, $\rho(A)=\mathbb{C}\setminus \mathrm{Sp}(A)$ は開集合であるから, $\mathrm{Sp}(A)$ は閉集合である.補題と併せて, $\mathrm{Sp}(A)$ はコンパクトである.

非空(a) 任意に有界連続汎関数 $\varphi\in\mathcal{A}^*$ を取り , $f(\lambda):=\varphi(R(\lambda))$ と定めると , 各点 $\lambda\in\rho(A)$ において , r>0 が存在して ,

$$f(\lambda - \zeta) = \sum_{n=0}^{\infty} \varphi(R(\lambda)^{n+1}) \zeta^n \quad (\zeta \in \Delta(\lambda, r))$$

と冪級数表示できるから, $f:\mathbb{C}\setminus \operatorname{Sp}(A) \to \mathbb{C}$ は正則関数である.

 $|\lambda|>\|A\|$ とする.補題の $({
m a})$ での議論の通り, $f(\lambda)=\sum_{n=0}^\infty \lambda^{-n-1} arphi(A^n)$ だから,

$$|f(\lambda)| \le \sum_{n=0}^{\infty} |\lambda|^{-n-1} ||A||^n ||\varphi||$$

= $|\lambda|^{-1} ||\varphi|| (1 - |\lambda|^{-1} ||A||)^{-1} = ||\varphi|| (|\lambda| - ||A||)^{-1}.$

これより , $|f(\lambda)| \xrightarrow{|\lambda| \to \infty} 0$.

- (b) $\operatorname{Sp}(A)=\emptyset$ と仮定して矛盾を導く.このとき f は $C_0(\mathbb C)$ に属する整関数であるが,Liouville の定理より,これは定数関数であることが必要だから,f=0 である.したがって, $\forall_{\varphi\in\mathcal A^*}$ $\varphi((\lambda I-A)^{-1})=0$.よって系 2.3.5 より, $(\lambda I-A)^{-1}=0$ が必要であるが,これは矛盾.
- (2) (a) (1) で定義した正則関数 $f:\mathbb{C}\setminus\operatorname{Sp}(A)\to\mathbb{C}$ は, $|\lambda|>\|A\|$ の範囲で局所的な冪級数展開 $f(\lambda)=\sum_{n=0}^\infty\lambda^{-n-1}\varphi(A^n)$ を持つ.正則関数 $f(\lambda^{-1})$ は少なくとも $\Delta(0,r(A)^{-1})$ 上で定義されており,対応する冪級数展開は Cauchy の積分表示より,この領域内で広義一様収束する.したがって,任意の r>r(A) について,f の冪級数表示も $\{\lambda\in\mathbb{C}\mid |\lambda|>r\}$ 上で一様収束する(Laurent 展開の議論と並行).
 - (b) よって , $\lambda:=re^{i\theta}$ とおくと , 正則関数 $\lambda^{n+1}f(\lambda)$ は $\partial\Delta(0,r)$ 上で次のように項別積分出来る:

$$\int_{0}^{2\pi} r^{n+1} e^{i(n+1)\theta} f(re^{i\theta}) d\theta = \sum_{m=0}^{\infty} \int_{0}^{2\pi} r^{n-m} e^{i(n-m)\theta} \varphi(A^{m}) d\theta$$
$$= 2\pi \varphi(A^{n}).$$

m=n の時を除いて積分は 0

また最左辺の積分は $M(r) := \sup_{\theta \in [0,2\pi]} \|R(r \mathrm{e}^{\mathrm{i} \theta})\|$ とおくことで

$$\begin{split} \int_0^{2\pi} r^{n+1} \mathrm{e}^{i(n+1)\theta} f(r \mathrm{e}^{i\theta}) d\theta &\leq r^{n+1} \sup_{\theta \in [0,2\pi]} |\varphi(R(r \mathrm{e}^{i\theta}))| 2\pi \\ &\leq r^{n+1} \|\varphi\| M(r) 2\pi \end{split}$$

と評価できるから, $\varphi(A^n) \leq r^{n+1}M(r)\|\varphi\|$ を得る.

(c) (b) の議論は $\varphi \in \mathcal{A}^*$ を任意としたから , 特に $\|\varphi\| = 1$, $\|\varphi(A^n)\| = \|A^n\|$ をみたすものについて (系 2.3.5 より存在する) , $\|A^n\| \le r^{n+1}M(r)\Leftrightarrow \|A^n\|^{1/n} \le r(rM(r))^{1/n}$. よって , $\limsup_{n\to\infty} \|A^n\|^{1/n} \le r$. r>r(A) は任意に取ったから , $\limsup_{n\to\infty} \|A^n\|^{1/n} \le r(A)$. 補題より $r(A) \le \liminf_{n\to\infty} \|A^n\|^{1/n}$ と併せると , $\|A^n\|^{1/n}$ は収束して , $\lim_{n\to\infty} \|A^n\|^{1/n} = r(A)$.

要諦 4.2.26. 乗法群 $\mathrm{GL}(\mathcal{A})$ が開集合となるような単位的位相代数 \mathcal{A} を Q-代数といい , 一般に Q-代数の任意の元のスペクトルは非空でコンパクトになる .

系 **4.2.27** (Gelfand-Mazur theorem (41)). $\mathcal A$ が斜体であるとき , すなわち , $\operatorname{GL}(\mathcal A)=\mathcal A\setminus\{0\}$ を満たすとき , $\mathcal A=\mathbb C$ である .

[証明]. 定理より,任意の $A\in\mathcal{A}$ について, $\lambda\in\mathrm{Sp}(A)\neq\emptyset$.すなわち, $\lambda I-A\notin\mathrm{GL}(\mathcal{A})$ であるが, \mathcal{A} が可除環であるとき,これは $A=\lambda I$ を意味する.

4.3 Gelfand 变换

ここでは, Banach 代数は複素係数で単位的で可換であるとする.

4.3.1 Gelfand 变换

どうして C(X) と書いたときは体への写像であるかといえば , これは指標という概念で群にまで遡る .

定義 **4.3.1** (character, spectral topology). $\mathcal A$ を単位的 C^* -代数とする .

- (1) $\mathcal A$ の指標とは,全射(即ち零でない)連続線型準同型 $\mathcal A \twoheadrightarrow \mathbb C$ のことをいう $^{!4}$ Banach 代数については,任意の準同型は連続であることに注意.
- (2) \mathcal{A} 指標全体の空間 $\hat{\mathcal{A}}:=\{\gamma\in \operatorname{Hom}_{\operatorname{BanAlg}}(\mathcal{A},\mathbb{C})\mid \dim\operatorname{Im}\gamma=1\}$ に定義される位相をスペクトル位相といい,この位相は コンパクトハウスドルフである. \mathcal{A} が単位的でないとき,これは局所コンパクトとなる.

記法 4.3.2. Banach 代数 $\mathcal A$ の極大イデアル全体のなす空間を $M(\mathcal A)$ で表す.

命題 4.3.3. 升 を可換で単位的な Banach 代数とする.

(1) 次の対応は集合の同型を定める:

$$\begin{array}{ccc} \hat{\mathcal{A}} & \longrightarrow M(\mathcal{A}) \\ & & & & & \\ & & & & \\ \gamma & \longmapsto & \operatorname{Ker} \gamma \end{array}$$

(2) 任意の $A \in \mathcal{A}$ について , $\operatorname{Sp}(A) = \left\{ \langle A, \gamma \rangle \in \mathbb{C} \mid \gamma \in \hat{\mathcal{A}} \right\}$.

定理 4.3.4. 升 を可換な単位的 Banach 代数とする.

- (1) 指標のなす集合 $\hat{\mathcal{A}}$ はコンパクトハウスドルフ位相を備える.
- (2) 写像

を $\hat{A}(\gamma) := \langle A, \gamma \rangle$ で定めると,これはノルム減少的な代数の準同型である.

- (3) 像 $\operatorname{Im} \Gamma < C(\hat{\mathcal{A}})$ は $\hat{\mathcal{A}}$ の点を分離する.
- (4) 任意の $A \in \mathcal{A}$ について, $\hat{A}(\hat{\mathcal{A}}) = \operatorname{Sp}(A)$ かつ $\|\hat{A}\|_{\infty}$,r(A) .

命題 **4.3.5.** Gelfand 変換の核は, $\mathcal A$ の根基である: $\operatorname{Ker} \Gamma = R(\mathcal A) = \bigcap_{g \in M(\mathcal A)} \mathcal G = \{A \in \mathcal A \mid r(A) = 0\}$.

注 4.3.6. ほとんどの古典的な Banach 代数は半単純である($R(\mathcal{A})=\{0\}$). さらには , $\operatorname{Im} \Gamma < C(\hat{\mathcal{A}})$ を決定する問題は極めて難しい場合が多い . 使える知識といえば , (3) の $\hat{\mathcal{A}}$ の点を分離するということくらいである .

 $^{^{\}dagger 4}$ 一般の群と体について定義される.

4.3.2 例

4.4 関数代数

C*-代数は, Banach 代数のうち特に振る舞いのよいもので, Hilbert 空間上の作用素の理論を流入させることが出来る.

4.4.1 Stone-Weierstrass の定理

 $\Gamma(\mathcal{A})$ は \mathcal{A} の点を分離するくらいには大きい . Stone-Weierstrass の定理は , さらに $C(\hat{\mathcal{A}})$ の中で稠密であるための必要条件を調べるための道具となる .

定義 **4.4.1** (self-adjoint). 複素関数の集合 $\mathcal{A} \subset \operatorname{Map}(X,\mathbb{C})$ が自己共役であるとは , $\forall_{f \in \mathcal{A}} \overline{f} \in \mathcal{A}$ を満たすことをいう .

要諦 **4.4.2.** $f=rac{1}{2}(f+ar{f})+irac{f-ar{f}}{2i}$ より , $\mathcal{A}_{\mathrm{sa}}:=\{f\in\mathcal{A}\mid \mathrm{Im}\,f\subset\mathbb{R}\}$ を \mathcal{A} の実数値関数がなす部分集合とすると , $\mathcal{A}=\mathcal{A}_{\mathrm{sa}}+i\mathcal{A}_{\mathrm{sa}}$ と表せる .

補題 ${f 4.4.3.}$ $\mathcal A\subset C(X,\mathbb R)$ を,コンパクトハウスドルフ空間 X 上の実数値連続関数のなす線型空間とする. $\forall_{f,g\in\mathcal A}$ $f\vee g\in\mathcal A\wedge f\wedge g\in\mathcal A$ を満たすとき,任意の X 上の連続関数で X の任意の 2 点において $\mathcal A$ によって近似できるものは, $\mathcal A$ によって一様に近似できる.

補題 **4.4.4.** $\mathcal{A}\subset C_b(X,\mathbb{R})$ を,位相空間 X 上の実数値有界連続関数のなす一様に閉じた代数とする. \mathcal{A} は C(X) の束演算 $f\vee g,f\wedge g$ について閉じている.

定理 4.4.5 (Stone (1948)). X をコンパクトハウスドルフ空間 , $\mathcal A$ を自己共役な C(X) の部分代数で定数を含み , X の点を分離するとする.このとき , $\mathcal A$ は C(X) の中で一様に稠密である.

注 4.4.6. Weierstrass の 1895 年の仕事「有界閉区間上の実数値連続関数は,多項式によって一様に近似できる」は系として導出される.

例 **4.4.7.** $[0,2\pi]$ 上の任意の連続な周期関数は,三角多項式によって一様に近似できる(Fourier 級数は必ずしも一様収束しないにも拘らず).

例 4.4.8 (Runge の近似定理). 単位閉円板 $[\Delta]$ 上の開円板 $[\Delta]$ 上で正則な関数全体のなす集合 $H(\Delta)$ は, $C(\Delta)$ の真の閉部分代数であって,点を分離し,定数を含む.

系 **4.4.9.** X を局所コンパクトハウスドルフ空間 , $\mathcal A$ を $C_0(X)$ の自己共役な部分代数で , X の点を分離し , X のどの点でも同時には消えないとする : $\forall_{x \in X} \exists_{f \in \mathcal A} f(x) \neq 0$. このとき , $\mathcal A$ は $C_0(X)$ 上で一様に稠密である .

4.4.2 *C**-代数

対合と両立する Banach 代数が C^* -代数である. 対合と両立する Heyting 代数が Boole 代数であるのと同じように.

定義 **4.4.10** (involution, C^* -algebra, symmetric).

- (1) 代数 $\mathcal A$ の対合とは , 周期 2 の写像 $*:\mathcal A\to\mathcal A$ であって , 共役線型で乗法について反変的なものをいう . 対合を備えた代数 を *-代数という .
- (2) ノルムについて $\forall_{A\in\mathcal{A}} \|A^*A\| = \|A\|^2$ を満たす対合を備えた Banach 代数を , C^* -代数という .
- (3) 対合*が $\forall_{A\in\mathcal{A}} A=A^*\Rightarrow \operatorname{Sp}(A)\subset\mathbb{R}$ を満たすとき,これを対称的であるという.
- (4) 対合*が $\forall_{A\in\mathcal{A}}$ $\operatorname{Sp}(A^*A)\subset\mathbb{R}_+$ を満たすとき,これを正であるという.

要諦 **4.4.11.** $\|A^*A\|=\|A\|^2$ は , 劣乗法性より $\|A\|^2\leq\|A^*\|\|A\|$ から $\|A\|\leq\|A^*\|$. 対合であることより $\|A\|=\|A^*\|$ を結局は含意する .

例 4.4.12 (involution). C(X) 上の複素関数の共役や , $B(\mathfrak{R})$ 上の共役作用素 .

例 4.4.13.

- (1) 任意の局所コンパクトハウスドルフ空間について, $C_0(X)$ は複素共役について C^* -代数となる.
- (2) B(H) は随伴について C^* -代数となる.
- (3) (Gelfand and Naimark 43) B(H) の任意の閉な自己共役な部分代数は C^* -代数で,任意の C^* -代数は,なんらかのこの部分代数に *-等長同型になる.

補題 **4.4.14.** 任意の単位的でない C^* -代数 $\mathcal A$ に対して,単位的 C^* -代数 $\overset{\sim}{\mathcal A}=\mathcal A+\mathbb CI$ が存在して, $\mathcal A\hookrightarrow\overset{\sim}{\mathcal A}$ は余次元 1 の極大イデアルとなる.

補題 4.4.15. $A\in\mathcal{A}$ が C^* -代数の正規な元であるならば , $r(A)=\|A\|$.

補題 4.4.16.

- (1) $A\in\mathcal{A}$ が C^* -代数の自己共役な元であるならば , $\operatorname{Sp}(A)\subset\mathbb{R}$ (すなわち , 対合は対称的である) .
- (2) $\mathcal A$ が単位的で U がユニタリであるならば , $\operatorname{Sp}(U)\subset\mathbb T$.

4.4.3 Gelfand の定理

定理 **4.4.17.** 任意の可換な単位的 C^* -代数 $\mathcal A$ は, $\hat{\mathcal A}$ を指標のなすコンパクトハウスドルフ空間として, $C(\hat{\mathcal A})$ と等長 *-同型である.

系 4.4.18.

- 4.4.4 Gelfand スペクトルの対応
- 4.4.5 Stone-Cech コンパクト化
- 4.4.6 Tychonoff 空間
- 4.5 スペクトル理論 |
- 4.6 スペクトル理論 ||
- 4.7 作用素代数
- 4.8 極大可換代数

第5章

Unbounded Operators

- 5.1 始域・延長・グラフ
- 5.2 Cayley **変換**
- 5.3 無制限スペクトル理論

第6章

Integration Theory

積分とは,コンパクト台を持つ連続関数の空間上の,正な線型汎関数である.主役は表現定理である.積分とは表現である.

Functinal analyst's dream: ideal short course in measure theory. 積分を先に定義することで,測度はその特別な場合になる. 積分と測度の双対性も明らかになる.

この局所コンパクト空間上の Radon 測度の Percy Daniell-style^{†1}の定義 6.1.10 は Bourbaki の Integration. Chapter IX でも探求されている .^{†2} 積分の公理化の試みのうち , これを Daniell 積分という^{†3} .

定理 6.0.1 (Riesz representation theorem). 局所コンパクトハウスドルフ空間 X に関して, $(C_c(X))_+^*$ は,X 上の正則 Borel 測度全体の集合と,集合として同型である.

いままでのが局所凸位相線型空間論だとしたら,ここからは Riesz 空間 = 束線型空間を対称にした順序線型空間論とも見れる.

6.1 Radon 積分

積分自体を作用素として定義し、その定義域を十分広げることで、特殊な場合として測度を定義することを目指す、

6.1.1 導入

 $C_c(\mathbb{R}^n)\subsetneq \mathcal{L}^1(\mathbb{R}^n)$ は全て Lebesgue 積分可能である.しかし \mathbb{R}^n 全域では Lebesgue 積分は有界でないから(Lebesgue 積分の作用素 ノルムは定義域の体積となるから,有界集合に限れば良い),定義域を局所コンパクトハウスドルフ空間 X に限り,まずは $C_c(X)$ から,どれ程までに積分の定義域を延長できるかを考える.X 上では,積分は線形性と正性の 2 つで特徴付けられる.この公理的な積分を \mathbf{Radon} 積分とする.実は, $C_c(X)$ が可積分関数 $\mathcal{L}^1(\mathbb{R}^n)$ の構造を支配する.

記法 6.1.1.

- (1) X を局所コンパクトハウスドルフ空間とし,その上のコンパクト台を持つ実数値連続関数のなすノルム代数 $C_c(X)$ を考える.この完備化が Lebesgue 空間であることに注意.
- (2) $C_c(X)^m := \{f: X \to \mathbb{R} \cup \{\infty\} \mid C_c(X) \perp \mathcal{O}$ 当調増加ネット $(f_\lambda)_{\lambda \in \Lambda}$ が存在して $\forall_{x \in X} f(x) = \sup f_\lambda(x)$ を満たす とする . また , $C_c(X)_m := \{f: X \to \mathbb{R} \cup \{-\infty\} \mid \exists_{\{f_\lambda\} \subset C_c(X)} f_\lambda \searrow f\}$ とする . $C_c(X)_m = -C_c(X)^m$ である .
- (3) $M(X)_+$ とは,非負関数のなす部分空間 $M(X) \cap \operatorname{Map}(X,\mathbb{R}_{>0})$ を表す.

補題 6.1.2 (Riesz 空間).

^{†1} Daniell, P. J. (1918), "A General Form of Integral", Annals of Mathematics, Second Series (Annals of Mathematics) 19 (4): 279 294

 $^{^{\}dagger 2}$ http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/Radon+measure

^{†3} https://ja.wikipedia.org/wiki/ダニエル積分

- (1) $C_c(X)$ は束線型空間である: $C_c(X)$ は束の演算 \lor , \land について閉じており, $C_c(X)$ は任意の部分集合の上限を取る操作につい て閉じている.
- (2) $C_c(X)^m$ は additive cone (和と $\mathbb{R}_{\geq 0}$ 倍について閉じている)で,任意の2つの正な元の積について閉じている: $C_c(X)^m$ ・ $C_c(X)_+^m \subset C_c(X)_+^m$.
- (3) $C_c(X)^m$ の元は全て下半連続で,非負な下半連続関数について $C^{1/2}(X)_+ \subset C_c(X)^m$.
- (4) X がコンパクトであることと, $-1 \in C_c(X)^m$ は同値.
- (5) X が σ -コンパクトであることと , $1 \in C_c(X)^m$ は同値 .
- (6) $C_c(X)^m \cap C_c(X)_m = C_c(X)$.
- (7) 任意の $f\in C_{\mathrm{c}}(X)^m$ について, $\overline{\{f<0\}}$ はコンパクト.任意の $f\in C_{\mathrm{c}}(X)_m$ について, $\overline{\{f>0\}}$ はコンパクト.
- (8) X が局所コンパクトな距離空間であるとき , 任意のコンパクト集合 $K\subset X$ について , $\chi_K\in C_c(X)_m$.

「証明].

- (1) a
- (2) a
- (3) 1.5.16 より.

定義 6.1.3 (Borel meaesure, inner regular, Radon measure).

- (1) Borel 測度とは, Borel σ -代数を含む σ -代数上に定まる測度をいう.
- (2) Borel 測度が $\mu(A) = \sup \left\{ \mu(K) \in [0,\infty] \mid K \overset{\text{cpt}}{\subset} A \right\}$ を満たすとき , 内部正則であるという .
- (3) 内部正則な Borel 測度で , $\forall_{K^{\mathrm{cpt}}V} \mu(K) < \infty$ を満たすものを , Radon 測度という .

例 6.1.4. \mathbb{R}^n 上の Lebesgue 測度は, Radon 測度である.

単調極限上への Radon 積分の延長 6.1.2

まず,ネットの極限としての閉包上に対する $C_c(X)$ 上の正定値線型汎関数 \int の延長を議論する.

定義 6.1.5 (Radon integral, monotone limits).

(1) Radon 積分とは,線型汎函数 $\int: C_c(X) \to \mathbb{R}$ であって,正であるものをいう: $f \ge 0 \Rightarrow \int f \ge 0$.
(2) 上積分 $\int^*: C_c(X)^m \to \mathbb{R} \cup \{\infty\}$ を, $\int^* f := \sup \left\{ \int g \in \mathbb{R} \cup \{\infty\} \ \middle| \ g \in C_c(X), g \le f \right\}$ と定めると,これは線型汎函数である。

(3)下積分 $\int_{s}:C_{c}(X)_{m} o\mathbb{R}\cup\{-\infty\}$ を, $\int_{s}f:=\inf\left\{\int g\in\mathbb{R}\cup\{-\infty\}\ \bigg|\ g\in C_{c}(X),g\geq f\right\}$ と定めると,これは線型汎函数 である.

要諦 $\,$ f 6.1.6. 局所コンパクトハウスドルフ空間 $\, X \,$ を第 $\, 2 \,$ 可算とすれば $\, , \, (f_n) \,$ は単調列とすれば十分 $\, . \,$ この $\, C_{
m c}(X) \,$ の単調極限 なるクラスが大事である理由は, $X=\mathbb{R}$ であるとき,区間の定義関数が入るためである: $\chi_{(a,b)}\in C_c(X)^m$, $\chi_{[a,b]}\in C_c(X)_m$. $C_c(X)^m$, $C_c(X)_m$ は錐であったから,上積分と下積分は加法と $\mathbb{R}_{>0}$ 倍に限っては明らかに「線型」であるが,実際に線型であるこ とは非自明である.

補題 6.1.7.

(1)
$$\forall_{f \in C_c(X)_m} \int_* f = -\int^* (-f) .$$

(2) $\forall_{f \in C_c(X)} \int_* f = \int^* f = \int f .$

補題 6.1.8.

- (1) コンパクト台を持つ上半連続な正関数の単調減少ネット (f_λ) について , $\forall_{x \in X} f_\lambda(x) \searrow 0$ ならば , $\|f_\lambda\|_\infty \searrow 0$.
- (2) $C_c(X)_m$ の単調減少ネット (f_λ) について, $f_\lambda \searrow 0$ ならば $\int f_\lambda \searrow 0$ である.
- (3) $C_{\mathrm{c}}(\mathrm{X})$ の単調増加ネット (f_{λ}) について, $\exists_{f \in C_{\mathrm{c}}(\mathrm{X})^m} f_{\lambda} \nearrow f$ ならば $\int f_{\lambda} \nearrow \int^* f$ である.
- (4) $f,g \in C_c(X)^m$ について , $\forall_{t>0}$ $\int^* (tf+g) = t \int^* f + \int^* g$.
- (5) $C_c(X)^m$ の単調増加ネット (f_λ) について,ある関数 f について $f_\lambda \nearrow f$ ならば $\int^* f_\lambda \nearrow \int^* f$ である.
- (6) $f\in C_c(X)^m$, $g\in C_c(X)_m$ に対して, $g\leq f$ ならば, $\int_* g\leq \int^* f$ である.

[証明].

(1) f_{λ} は上半連続だから, $\forall_{\epsilon>0}$ $\{f_{\lambda}\geq\epsilon\}$ は閉.仮定より台 $\overline{\{f_{\lambda}>0\}}$ はコンパクトだから, $\{f_{\lambda}\geq\epsilon\}$ はコンパクトでもある. (f_{λ}) は 0 に各点収束するから, $\cap_{\lambda\in\Lambda}\{f_{\lambda}\geq\epsilon\}=\emptyset$.コンパクト性の特徴付け 1.6.1 より,ある有限個を選び出せばやはり共通部分は空である.

6.1.3 可積分関数上への延長

セミパラ理論の外積分の定義は、一般の局所コンパクトハウスドルフ空間上の Radon 積分について展開できる.

定義 6.1.9. 任意の実数値関数 $f \in \operatorname{Map}(X,\mathbb{R})$ について,

(1) 上積分を
$$\int_{-\infty}^{**} f := \inf \left\{ \int_{-\infty}^{*} g \in \mathbb{R} \cup \{\infty\} \mid g \in C_{c}(X)^{m}, g \geq f \right\}$$
 と定める . (2) 下積分を $\int_{\mathbb{R}^{d}} f := \sup \left\{ \int_{-\infty}^{*} g \in \mathbb{R} \cup \{-\infty\} \mid g \in C_{c}(X)_{m}, g \leq f \right\}$ と定める .

以降, \int_*^* , \int_* と略記する.すると,可積分関数 $f\in\mathcal{L}^1(X)$ は, $\int_*^*f=\int_*f\in\mathbb{R}$ によって特徴付けられる.次の特徴付けはよく用いる:

$$\forall_{\epsilon>0} \exists_{g \in C_c(X)^m, h \in C_c(X)_m} h \leq f \leq g \wedge \int_{\mathbb{R}}^* g - \int_{\mathbb{R}} h < \epsilon.$$

特に , $f \in C_c(X)^m$ について , 可積分条件は $\int^* f < \infty$ となる .

定理 $\mathbf{6.1.10}$ (Daniell's extension theorem). $\int: C_c(X) \to \mathbb{R}$ を局所コンパクトハウスドルフ空間 X 上の Radon 積分とする .

- (1) 可積分関数の空間 $\mathcal{L}^1(X)$ は $C_{\mathrm{c}}(X)$ を部分空間にもつ線型空間である .
- (2) 東演算 ∧,∨ について閉じている.
- (3) $\int:\mathcal{L}^1(X) o\mathbb{R}$ は正な線型汎函数で, $C_c(X)$ 上の Radon 積分の延長となっている.

系 6.1.11 (三角不等式). $f\in\mathcal{L}^1(X)$ ならば, $|f|\in\mathcal{L}^1(X)$ でえ, $\left|\int f\right|\leq\int |f|$.

6.1.4 Lebesgue の優収束定理

今回の定義では,積分の極限に対する保存性が極めて明瞭に,普遍的に議論できる.

定理 6.1.12 (monotone convergence theorem). 関数 $f:X\to\mathbb{R}$ はある $\mathcal{L}^1(X)$ の単調増加列 (f_n) の各点収束極限であり ,

 $\sup_{n\in\mathbb{N}}\int f_n<\infty$ を満たすとする.このとき, $f\in\mathcal{L}^1(X)$ で, $\int f=\lim_{n o\infty}\int f_n$ である.

補題 **6.1.13** (Fatou's lemma). $\mathcal{L}^1(X)_+$ の列 (f_n) は $\forall_{x \in X} \liminf_{n \to \infty} f_n(x) < \infty$ かつ $\liminf_{n \to \infty} \int f_n < \infty$ を満たすとする.このとき, $\liminf_{n \to \infty} f_n \in \mathcal{L}^1(X)$ で, $\int \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int f_n$.

定理 $\mathbf{6.1.14}$ (Lebesgue convergence theorem). $\mathcal{L}^1(X)$ の列 (f_n) がある $g\in\mathcal{L}^1(X)_+$ に関して $\forall_{n\in\mathbb{N}}|f_n|\leq g$ を満たしながら $f:X\to\mathbb{R}$ に各点収束するとする.このとき, $f\in\mathcal{L}^1(X)$ で, $\int f=\lim_{n\to\infty}\int f_n$ である.

6.1.5 古典的構成

ℝ 上の Radon 積分の古典的構成法を議論する. Riemann の方法を一般化した Stieltjes 積分を, Lebesgue 積分の方法で一般化させた Lebesgue-Stieltjes 積分のことを, 歴史的には主な貢献者の名前をとって Radon 積分と呼んだ.

定義 6.1.15 (Stieltjes integral). $m:\mathbb{R}\to\mathbb{R}$ を単調増加な関数とすると,m の不連続点は高々可算個である.このとき, $m(x):=\sup\{n(y)\in\mathbb{R}\mid y< x\}$ と定め直すことで,m は左半連続であると仮定しても一般性を失わない.

任意の $f \in C_c(X)$ について , 区間 $\operatorname{supp} f \subset [\alpha,b]$ の分割 $\lambda = (x_i)_{i \in n+1}$ をとり ,

$$(Sf)_k := \sup \{ f(x) \in \mathbb{R} \mid x_{k-1} \le x < x_k \},$$
 $(If)_k := \inf \{ f(x) \in \mathbb{R} \mid x_{k-1} \le x < x_k \},$

と定め,これを用いて

$$\sum_{k=0}^{\infty} f = \sum_{k=0}^{n} (Sf)_{k}(m(x_{k}) - m(x_{k-1})), \qquad \sum_{k=0}^{\infty} f = \sum_{k=0}^{n} (If)_{k}(m(x_{k}) - m(x_{k-1})),$$

と定める.[a,b] の有限な分割全体のなす有向集合 Λ について,2つのネット $\left(\sum_{\lambda}^* f\right)_{\lambda\in\Lambda}$, $\left(\sum_{\lambda}^* f\right)_{\lambda\in\Lambda}$ が定まる.それぞれ単調増加,単調減少で, $\forall_{\lambda\in\Lambda}\sum_{\lambda}^* f\leq\sum_{\lambda}^* f$ を満たす.f は特に一様連続であるから, $\forall_{\epsilon>0}\exists_{\delta>0}\,x_k-x_{k-1}<\delta\Rightarrow (Sf)_k-(If)_k<\epsilon$.よって, λ_0 を長さ $(b-a)\delta^{-1}< n$ の等分割とすると, $\forall_{\lambda\geq\lambda_0}\sum_{\lambda}^* f-\sum_{\lambda}^* f<\epsilon(m(b)-m(a))$.よって,2つのネットは同一の実数に収束する.こうして定まる積分 $\int:C_c(\mathbb{R})\to\mathbb{R}$ を Stieltjes 積分といい, $\int fdm$ と表す.

要諦 6.1.16. Riemann-Stieltjes 積分はこの $\int: C_c(\mathbb{R}) \to \mathbb{R}$ の延長であり,Lebesgue-Stieltjes 積分はその $\mathcal{L}^1(\mathbb{R})$ への更なる延長である(多分).しかし,Riemann 可積分関数のクラスは,測度の言葉で簡明な特徴付けはあるが,単調列の極限に関して安定でない.また,Riemann-Stieltjes 積分は, \mathbb{R} の全順序性により過ぎているため,高次元に一般化できない.

補題 6.1.17. Stieltjes 積分 $\int:C_{\mathrm{c}}(\mathbb{R}) o\mathbb{R}$ は Radon 積分である .

定理 6.1.18. \mathbb{R} 上の Radon 積分 $\int: C_c(\mathbb{R}) \to \mathbb{R}$ について,ある単調増加関数 $m: \mathbb{R} \to \mathbb{R}$ が存在して,これについての Stieltjes 積分と一致する.

6.2 可測性

記法 6.2.1 (characteristic function). 特性関数を $[A] = \chi_A$ で表す.

6.2.1 点列完備性

定義 6.2.2 ((monotone) sequentially complete). クラス $\mathcal{F} \subset \operatorname{Map}(X,\mathbb{R})$ が(単調)点列完備とは, \mathcal{F} の(単調)列の各点収束極限が \mathcal{F} に属していることをいう.

補題 6.2.3. 代数 $\mathcal{A}\subset \mathrm{Map}(X,\mathbb{R})$ を \wedge,\vee について閉じている Boole 代数とする.このとき,単調列完備化 $\mathfrak{B}(\mathcal{A})$ は再び \wedge,\vee について閉じている Boole 代数である.

6.2.2 集合代数

定義 6.2.4. 集合 $M \subset P(X)$ について,

- (1) 次の2条件を満たすとき,Mを σ -環という:
 - (a) 任意の可算族 (A_n) について $, \cup_n A_n \in M$. これは $\emptyset \in M$ を含意する .
 - (b) 任意の $A, B \in M$ について , $A \setminus B \in M$.
 - σ -環は δ -環である.有限合併についてのみ閉じているとき,M を Boole 環という.これは,加法を対称差 $A+B=(A\cup B)\setminus (A\cap B)=(A\setminus B)\cup (B\setminus A)$,積を共通部分として環をなすためである.
- (2) $X \in M$ を満たす Boole 環を Boole 代数といい , $X \in M$ を満たす σ -環を σ -代数という.これは , σ -環が定める環 $(M,+,\cap)$ が単位的であることに同値.

要諦 6.2.5. σ -環 M の演算 + ,・は,対称差 $A+B=(A\setminus B)\cup (B\setminus A)$ と共通部分 $A\cdot B=A\cap B$ である.環が代数になる条件は,積の単位元 X を含むかどうかである.「環」の用語は Boole 環の略であり,歴史的には環と言っても単位的であることを必要としなかった. したがって,単に Boole 環 P(X) の部分環を指す. σ はドイツ語の Summe, δ はドイツ語の Durchschnitt から来ている.

補題 6.2.6. $S \subset P(X)$ を集合系とする.

- (1) $\mathcal{F} \subset \operatorname{Map}(X,\mathbb{R})$ を単調点列完備な代数とする.これが定める集合系 $S := \{A \in P(X) \mid [A] \in \mathcal{F}\}$ は σ -環である.
- (2) $S \subset P(X)$ を σ -代数とする. $\mathcal{F} := \{f \in \operatorname{Map}(X,\mathbb{R}) \mid \forall_{t \in \mathbb{R}} \{f > t\} \in S\}$ と定めると, \mathcal{F} は点列完備な, \land , \lor について閉じている単位的代数であり, $\forall_{f \in \mathcal{F}} \forall_{p > 0} |f|^p \in \mathcal{F}$ を満たす.

6.2.3 Borel 関数論

単関数各点近似が出来るクラスが可測関数である

Baire と Lebesgue による Borel 集合論 . Borel 関数の空間は $C_{\mathrm{c}}(X)$ の各点完備化として得られる . これが単関数の理論である .

例 6.2.7 (Euclid 空間の Borel 集合). \mathbb{R}^n の開集合は,開矩形の可算積で表せる.開矩形は 2n 個の開半空間の共通部分として表せる.したがって, \mathbb{R}^n の Borel 集合系は,すべての開半空間 $\{x\in\mathbb{R}^n\mid x_k>t\}_{t\in\mathbb{R},k\in[n]}$ が生成する σ -環である.

定義 **6.2.8** (Borel map). 位相空間 X,Y の間の写像 $f:X\to Y$ が Borel 写像であるとは , $\forall_{B\in\mathfrak{G}_Y} f^{-1}(B)\in\mathfrak{G}_X$ を満たすことをいう . 連続写像は Borel 写像である . Borel 写像の合成は Borel である .

系 6.2.9. 位相空間 X 上の Borel 関数のクラス $\mathfrak{B}(X)$ は,点列完備な単位的代数で,束演算 \land , \lor について閉じている.また, $\forall_{f \in \mathfrak{B}(X)} \ \forall_{p>0} \ |f|^p \in \mathfrak{B}(X)$.

補題 6.2.10 (コンパクト集合の定義関数の近似). 局所コンパクトハウスドルフ空間 X について,任意のコンパクト集合 $C \subset X$ について, $C_c(X)$ 上の単調減少ネット (f_λ) が存在して, $f_\lambda \setminus [C]$ が成り立つ.X が第 2 可算であるとき,数列についての議論で十分.

命題 6.2.11. X を第2可算な局所コンパクトハウスドルフ空間とする.

- (1) X 上の Borel 関数の空間 $\mathfrak{D}(X)$ は, $C_{\mathrm{c}}(X)$ の単調点列完備化である.
- (2) X 上の有界 Borel 関数の空間 $\mathfrak{G}_{\mathsf{b}}(X)$ は, $C_{\mathsf{c}}(X)$ の $\mathfrak{l}^{\infty}(X)$ 上での単調点列完備化である.

注 6.2.12 (Baire function). 第二可算とは限らない局所コンパクトハウスドルフ空間 X については , 一般に , 単調点列完備化について $\mathfrak{G}(C_{\mathbf{c}}(X))\subset \mathfrak{G}(X)$ が成り立つ . この真に小さいかもしれないクラスを \mathbf{Baire} 関数という . またこのクラスは \land , \lor について

閉じている (補題 6.2.3). 1 が Baire 関数であることは , X が σ -コンパクトであることに同値.定義関数 [B] が Baire 関数であるとき , B を **Baire** 集合という.Baire 集合は Borel σ -代数 \mathfrak{G}_X の中の δ -環をなす.この δ -環は X 内のコンパクト G_δ -集合によって生成される.

定義 6.2.13. 部分集合 $C\subset X$ がコンパクト G_δ -集合であるとは , $\exists_{f\in C_c(X)}\ \exists_{\epsilon>0}\ C=\{f\geq \epsilon\}$ が成り立つことをいう .

注 $\mathbf{6.2.14}$ (Borel 関数の空間の得方)。一般の X について, $\mathfrak{G}(X)$ を完備化として得たいときは, $C_b^{1/2}(X)$ を有界な下半連続関数の空間として,クラス

$$\mathcal{F} := C_b^{1/2}(X) - C_b^{1/2}(X)$$

を考える.これは線型空間で,代数でもある.任意の開集合 A について定義関数 [A] を含むから, $\mathcal F$ は $\mathfrak B(X)$ 上で稠密である.

6.2.4 可測集合

定義 6.2.15. X を局所コンパクトハウスドルフ空間とする.

- (1) 6 で X のコンパクト部分集合系とする.
- (2) $\int:C_{\mathrm{c}}(X) o\mathbb{R}$ を Radon 積分(= 非負性を保存する線型汎関数)とし, $\mathcal{L}^1(X)$ をこれについての可積分関数とする 6.1.10 .

$$\mathcal{M}^1 := \left\{ B \in P(X) \mid [B] \in \mathcal{L}^1(X) \right\}, \qquad \mathcal{M} := \left\{ A \in P(X) \mid \forall_{C \in \mathcal{G}} \ A \cap C \in \mathcal{M}^1 \right\}$$

と定め, Mの元を可測集合という.

命題 ${\bf 6.2.16.}$ 局所コンパクトハウスドルフ空間 X 上の Radon 積分 \int が定める可測集合系 ${\mathcal M}$ は,Borel 集合系 ${\mathfrak G}$ を含む σ -代数 で, ${\mathcal G}\subset {\mathcal M}^1$ を満たす.

6.2.5 可測関数

定義 6.2.17. Radon 積分 $\int: C_c(X) \to \mathbb{R}$ について ,

- (1) 関数 $f:X \to \mathbb{R}$ が可測であるとは , $\forall_{t \in \mathbb{R}} \ \{f > t\} \in \mathcal{M}$ を満たすことを言う.これは $\forall_{B \in \mathfrak{R}_{\mathbb{R}}} \ f^{-1}(B) \in \mathcal{M}$ と $\forall_{g \in \mathfrak{R}(\mathbb{R})} \ f \circ g \in \mathcal{L}(X)$ を含意する.
- (2) X 上の可測関数の空間を $\mathcal{L}(X)$ で表す. $\mathfrak{G}\subset \mathcal{M}$ より, $\mathfrak{G}(X)\subset \mathcal{L}(X)$ である.

命題 6.2.18. 局所コンパクトハウスドルフ空間 X 上の Radon 積分に関する可測関数の空間 $\mathcal{L}(X)$ は ,

- (1) 点列完備な単位的代数で,
- (2) ∨,∧について閉じており,
- (3) $\forall_{f \in \mathcal{L}(X)} |f|^p \in \mathcal{L}(X)$ を満たす.

[証明]. 補題 6.2.6(2) の具体例である.

補題 6.2.19. 任意の部分集合 $B \subset X$ について,

$$\int_{*} [B] = \sup \left\{ \int [C] \in \mathbb{R}_{\geq 0} \mid C \subset B, C \in \mathbb{C} \right\},$$

$$\int_{*} [B] = \inf \left\{ \int_{*} [A] \in \mathbb{R}_{\geq 0} \mid B \subset A, A : \text{open} \right\}.$$

また, $B\in \mathcal{M}^1$ は, $B\in \mathcal{M}$ かつ $\int^*[B]<\infty$ に同値.

定理 $\mathbf{6.2.20.}$ $\int:C_{\mathrm{c}}(X)\to\mathbb{R}$ を局所コンパクトハウスドルフ空間 X 上の Radon 積分とする .

- (1) 任意の可積分関数は可測である: $\mathcal{L}^1(X)\subset\mathcal{L}(X)$.
- (2) 任意の可測関数について,可積分であることと, $\int_{0}^{*} |f| < \infty$ は同値.

6.3 測度

Riesz の表現定理より、測度と積分は数学的には等価であることがわかる.

6.3.1 Radon 測度

測度は積分の特別な場合である.

定義 6.3.1.

- (1) σ -環 $S \subset P(X)$ 上の測度とは,関数 $\mu: S \to [0,\infty]$ であって, σ -加法的であるものをいう: $\mu(\cup A_n) = \sum \mu(A_n)$.
- (2) X が局所コンパクトハウスドルフ空間 , $\mathcal{Q}_X \subset S$ を満たす (X,S) について , 次の 2 条件を満たす測度を \mathbf{Radon} 測度という :
 - (i) (locally finite) $\forall_{C \in \mathcal{G}} \ \mu(C) < \infty$.
 - (ii) (inner regularity) $\forall_{A \in S} \mu(A) = \sup \{ \mu(C) \in \mathbb{R}_{>0} \mid C \subset A, C \in \mathcal{C} \}$.

注 $\mathbf{6.3.2.}$ $\mathfrak{G}_{\mathrm{X}} \subset S$ であるから, Radon 測度は Borel 測度である. 幾何学的に興味のあるほとんどの測度は Radon である.

命題 **6.3.3.** 局所コンパクトハウスドルフ空間 X 上の Radon 積分 $\int: C_c(X) \to \mathbb{R}$ に,次の Radon 積分が定める可測集合 \mathcal{M} 上の 2 つの測度 $\mu^*, \mu_*: \mathcal{M} \to [0, \infty]$ が対応する:

(1)
$$\mu^*(A) := \int_{-1}^{1} [A]$$
.
(2) $\mu_*(A) := \int_{-1}^{1} [A]$.

このとき, μ_* は Radon 測度で, μ^* は外正則:

$$\mu(A) = \inf \{ \mu(B) \in [0, \infty] \mid A \subset B, B : \text{open} \}$$

で $\mu_* \leq \mu^*$ を満たす.また,A が \mathcal{M}^1 の可算合併として表せるとき, $\mu_*(A) = \mu^*(A)$.

6.3.2 Riesz の表現定理

Radon 積分から Radon 測度を構成する手順を示したが、きれいに対応が付く、

補題 $6.3.4.~\mu$ を σ -代数 $S \subset P(X)$ 上の測度 , \mathcal{F} を S-可測関数全体からなる集合とする: $\forall_{t \in \mathbb{R}} \{f > t\} \in S6.2.3$. このとき , 非負性を保存する斉次な加法的関数 $\Phi: \mathcal{F}_+ \to [0,\infty]$ であって . 次の 2 条件を満たすものが一意的に存在する:

- (1) $\forall_{A \in S} \Phi([A]) = \mu(A)$.
- (2) $\forall_{f_n, f \in \mathcal{F}_+} f_n \nearrow f \Rightarrow \Phi(f) = \lim \Phi(f_n)$.

定理 ${\bf 6.3.5}$ (Riesz' representation theorem 09). 局所コンパクトハウスドルフ空間 X 上の Radon 積分と , X の Borel 集合 ${\mathfrak G}_X$ 上の Radon 測度との間に ,

$$\mu(A) = \int_{*} [A]$$

によって定まる全単射が存在する.

注 6.3.6. Riesz の表現定理によると, Daniell の延長定理 6.1.10 はまだ最大の延長ではないことがわかる.

定義 6.3.7 (essential integral).

(1)
$$\mathcal{L}_{\mathrm{ess}}^1(X) := \left\{ f \in \mathcal{L}(X) \mid \int_* |f| < \infty \right\}.$$

(2)
$$\mathcal{L}_{\mathrm{ess}}^{1}(X)$$
 上の積分 \int_{ess} が,

$$\int_{\partial S} f := \int_{*} f \vee 0 + \int_{*} f \wedge 0$$

によって定まり,これは Lebesgue の優収束定理を満たすような Radon 積分 $\int:C_c(X) o\mathbb{R}$ の延長であるような非負性 を保存する線型汎関数である . $\mu_* \neq \mu^*$ のとき , $\mathcal{L}^1(X) \subseteq \mathcal{L}^1_{ess}(X)$ である . $^{\dagger 4}$

命題 6.3.8. X を σ -コンパクトな局所コンパクトハウスドルフ空間とする.

- (1) 任意の Radon 測度は外正則である.
- (2) $\int:C_c(X) o\mathbb{R}$ を Radon 積分とすると , これについての可測関数 f が可積分であることは $\int_C|f|<\infty$ に同値 .

6.3.3 拡張積分

定義 6.3.9. X を局所コンパクトハウスドルフ空間 , $\int:C_c(X) \to \mathbb{R}$ を Radon 積分とする .

- (1) 可測関数 $f\geq 0$ が拡張積分可能であるとは, $\int_* f=\int^* f\in\mathbb{R}\cup\{\infty\}$ を満たすことをいう. (2) 一般の可測関数 f が拡張積分可能であるとは, $f\vee 0$ と $-(f\wedge 0)$ のいずれかが可積分で,もう一方が拡張積分可能であるこ
- (3) $\int_{\mathrm{ext}} f = \int f \lor 0 \int (-f \land 0) \in \mathbb{R} \cup \{\pm \infty\}$ と表す. $\infty \infty$ の場合は定義できないので,拡張積分可能な関数全体の集合は

補題 6.3.10. 正な拡張積分可能な関数は正錐をなし、Radon 積分はその上に非負性を保存する斉次な σ -加法的関数として作用

補題 6.3.11.~X が σ -コンパクトであるとき,任意の正な可測関数は拡張可積分であり(命題 6.3.8),任意の可測関数は $\int f \vee 0 =$ ∞ , $\int f \wedge 0 = -\infty$ である場合を除いて拡張可積分である.

6.4 L^p -空間

局所コンパクトハウスドルフ空間 X とその上の Radon 積分 $\int:C_c(X) o\mathbb{R}$ を 1 つ固定し,可測関数のなす線型束 $\mathcal{L}(X)$ の各種部分空間を調べる。

6.4.1 零集合

定義 6.4.1.

- (1) $\mathcal{N}(X) := \left\{ f \in \mathcal{L}(X) \mid \int |f| = 0 \right\}$ の元を零関数という.

補題 6.4.2.

- (1) $\mathcal{N}(X)$ は $\mathcal{L}(X)$ 内の点列完備なイデアルであり,束でもある.
- (2) \mathcal{N} は Boole 環 \mathcal{M} 内のイデアルであり, σ -環でもある.

定義 6.4.3. 今後 , X 上の関数とは , $X \to \mathbb{R} \cup \{\pm \infty\}$ を指すとし , $f \in \mathcal{L}(X) \Leftrightarrow \exists_{N \in \mathcal{N}} \ \forall_{x \notin N} \ f(x) \in \mathbb{R} \land [X \setminus N] f \in \mathcal{L}(X)$ であると する.

 $^{^{\}dagger 4}$ X がパラコンパクトであるとき,すなわちコンパクト集合の可算合併であるとき, $\mu_*=\mu^*$ であることに注意.

要諦 6.4.4. 代数としての ,そして束としての構造が「殆ど至る所」しか成り立たなくなり ,その構造を回復するには $\mathcal{L}(X)/\mathcal{N}(X)=$: L(X) なる空間を考える必要があり , この空間はもはや直接の関数空間ではなくなる . これは一見不便であるが , 次の Beppo-Levi の定理という名の単調収束定理の変種のように , 関数の極限はこのように拡張実数値関数を自然に生んでしまう . その際には , 個別に議論するよりかは , 各積分に応じて「殆ど至る所」という言及の仕方が明瞭になりえる .

定理 **6.4.5** (Beppo-Levi's theorem). $\mathcal{L}^1(X)$ の列 (f_n) は, $\forall_{n\in\mathbb{N}}$ $f_n(x) \leq f_{n+1}(x)$ a.e. を満たし, $\lim_{n \to \infty} \int_{\mathbb{R}^n} f_n(x) \leq f_{n+1}(x)$ a.e. を満たす.

6.4.2 Radon 積分の Lebesgue 分解

定義 6.4.6 (continuous / diffuse, atomic).

- (1) Radon 積分 \int が連続であるとは , $\forall_{x \in X} \int [\{x\}] = 0$ を満たすことをいう .
- J (2) Radon 積分が原子的であるとは,ある集合 $S\subset X$ が存在して, $X\setminus S\in \mathcal{N}$ かつ $\forall_{C\in G}$ $S\cap C$ が可算であることをいう.

要諦 6.4.7. 連続な積分については,可算個の点で成り立たない命題も,殆ど至る所成り立ち得る.「連続」なる用語の由来は, $X=\mathbb{R}$ の場合においては Radon 積分は Stieltjes 積分とも呼ばれるが,increment 関数 m が連続であることと Radon 積分が連続であることが同値になることから来ている.

例 6.4.8. Dirac 積分 $\delta_x(f) = f(x)$ は原子的な Radon 積分である.

補題
$$6.4.9$$
. 任意の Radon 積分 \int について,連続部分 \int_c と原子的部分 \int_a とが存在して, $\int = \int_c + \int_a$ と表せる.

6.4.3 Lebesgue 空間

定義 6.4.10 (Lebesgue space). 実数 $p \in [1,\infty)$ について, 位数 p の Lebesgue 空間とは,

$$\mathcal{L}^p(X) := \left\{ f \in \mathcal{L}(X) \mid |f|^p \in \mathcal{L}^1(X) \right\}.$$

また, $\mathcal{L}^p(X)$ 上の関数を $\|f\|_p := \left(\int |f|^p\right)^{1/p}$ と定める.

補題 6.4.11.

- (1) $\mathcal{L}^p(X)$ は線型空間である.
- (2) $f \mapsto ||f||_p$ は非負性を保存し, 斉次である.
- (3) $f \mapsto ||f||_p$ はセミノルムである.

定義 6.4.12 (essential supremum).

(1) 可測関数 $f \in \mathcal{L}(X)$ について,

$$\operatorname{ess.sup} f := \inf \left\{ t \in \mathbb{R} \mid \int_{-\infty}^{\infty} [\{f > t\}] = 0 \right\} = \inf \left\{ t \in \mathbb{R} \mid \int_{-\infty}^{\infty} (f - f \wedge t) = 0 \right\}.$$

(2) Lebesgue 空間 $\mathcal{L}^{\infty}(X)$ で,X 上の本質的に有界な可測関数のなす線型空間を表す. $\|f\|_{\infty}:=\mathrm{ess.sup}|f|$ はその上にセミノルムを定める.

補題 **6.4.13** (Hölder's inequality). 共役指数 p,q について $f\in\mathcal{L}^p(X),g\in\mathcal{L}^q(X)$ とする: $p^{-1}+q^{-1}=1$. このとき $fg\in\mathcal{L}^1(X)$ で, $\|fg\|_1\leq \|f\|_p\|g\|_q$.

補題 **6.4.14** (Minkowski's inequality). $f,g \in \mathcal{L}^p(X)$ について $f+g \in \mathcal{L}^p(X)$ で , $\|f+g\|_p \leq \|f\|_p + \|g\|_p$.

6.4.4 完備化

補題 6.4.15. 任意の $p \in [1,\infty]$ について,

- (1) $\mathcal{N}(X) \subset \mathcal{L}^p(X)$.
- (2) $\mathcal{N}(X) = \{ f \in \mathcal{L}^p(X) \mid ||f||_p = 0 \}$.
- (3) 商空間 $L^p(X) := \mathcal{L}^p(X)/\mathcal{N}(X)$ は $\|-\|_p$ についてノルム空間をなす.

命題 **6.4.16** (Egoroff's theorem). $p \in [1,\infty)$ とする.任意の $\mathcal{L}^p(X)$ の Cauchy 列と任意の $\epsilon > 0$ について,部分列 (f_n) と開集合 A であって $\int [A] < \epsilon$ を満たすものと零集合 N が存在して, (f_n) は $X \setminus A$ 上一様に収束し, $X \setminus N$ 上各点収束する.

定理 **6.4.17.** $L^p(X)$ は Banach 空間である.

6.4.5 稠密部分集合

命題 ${f 6.4.18.}$ 任意の $p<\infty$ について , $C_c(X)$ (の商写像についての像) は $L^p(X)$ 上稠密である .

要諦 6.4.19. $p=\infty$ の場合は,双対 6.5.17 により, $(L^1(X))^*$ の w^* -位相について, $C_c(X) \hookrightarrow L^\infty(X)$ は w^* -稠密である.従う.

系 6.4.20. $p\in [1,\infty)$ とする.任意の $f\in \mathcal{L}^p(X)$ と $\epsilon>0$ について,開集合 A であって $\int [A]<\epsilon$ を満たすものが存在し, $f|_{X\backslash A}\in C_0(X\setminus A)$ を満たす.

6.4.6 Borel 関数近似

命題 6.4.21. $p \in [1,\infty)$ とする.

- (1) 任意の可測関数 $f \in \mathcal{L}^p(X)$ について, Borel 関数 $g \in \mathfrak{G}(X)$ が存在して, $f g \in \mathcal{N}(X)$ を満たす.
- (2) 同様のことが, X の σ -コンパクト部分集合 S について $X\setminus S$ 上殆ど至る所 0 な可測関数 $f\in\mathcal{L}(X)$ についても成り立つ.

6.4.7 複素関数について

基本はスムーズに証明されるが,次の命題だけ特別な証明が必要になる.

命題 6.4.22. 可測関数 $f:X\to\mathbb{C}$ が可積分であることと $\int_{-1}^{8}|f|<\infty$ を満たすことは同値.またこの条件下で $\left|\int_{-1}^{8}f\right|\leq\int_{-1}^{8}|f|$ 要諦 6.4.23. 証明抽出により $f:X\to\mathbb{C}$ について $f\in\mathcal{L}^p(X)\Leftrightarrow |f|\in\mathcal{L}^p(X)$ もわかる .

6.4.8 Lebesgue 空間の相互関係

この結果は $\mathbb{F} = \mathbb{R}, \mathbb{C}$ のいずれについても同様の証明によって成り立つ.

命題 6.4.24. $1 \leq p < r < q \leq \infty$ のとき ,

- (1) $\mathcal{L}^p(X) \cap \mathcal{L}^q(X) \subset \mathcal{L}^r(X)$.
- (2) $\forall_{f \in \mathcal{L}^p(X) \cap \mathcal{L}^q(X)} ||f||_r \leq ||f||_p \vee ||f||_q$.

系 6.4.25.

- (1) $\limsup ||f||_r \le ||f||_{\infty}$.
- (2) $\forall_{f \in \mathcal{L}^p(X) \cap \mathcal{L}^\infty(X)} ||f||_r \to ||f||_\infty$.

6.4.9 包含関係

議論 6.4.26. 一般に(特に $X=\mathbb{R}^n$ で Lebesgue 積分を考えているとき) $\mathcal{L}^p(X) \not\subset \mathcal{L}^q(X)$ $(p \neq q)$ である.しかし,次の2つの場合に限って包含関係は成り立つ.

(1)
$$\int_{\mathbb{R}}$$
 が有限である: $\int 1 < \infty$.

$$(2)$$
 \int はある最小アトムに関して原子的である: $\exists_{\epsilon>0}\ orall_{A\in\mathcal{M}}\ \int [A] = 0 \lor \int [A] \geq \epsilon$.

(1) の場合は,議論を確率分布の場合 $\int 1=1$ に限っても一般性は失われない.(2) の場合は,X が σ -コンパクトならば,積分が X のある可算部分集合上に集中しており,各アトムの重さが ϵ 以上であることをいう.このとき, L^p 空間は数列空間 l^p に同型となる.

系 6.4.27.
$$\int 1 = 1$$
 かつ $1 \le p < q \le \infty$ のとき , $\mathcal{L}^q(X) \subset \mathcal{L}^p(X)$ かつ $\| - \|_p \le \| - \|_q$ である .

要諦 6.4.28 (確率空間上の Lebesgue 空間)。確率測度については , $p\in [1,\infty]$ が小さいほど空間 $\mathcal{L}^p(X)$ は大きく , ノルム $\|f\|_p$ は小さい .

系 6.4.29. 任意の $1 \leq p < q \leq \infty$ について, $l^p \subset l^q$ かつ $\|-\|_q \leq \|-\|_p$ が成り立つ.

6.5 双対理論

Radon-Nikodym の定理を考えるにあたって,位相的測度論では,Radon 測度の内部正則性と本質的積分を用いて, σ -有限性の条件を取り除くことが可能だが,特にこれはしないこととする.すなわち,X を σ -コンパクトな局所コンパクトハウスドルフ空間とする.このとき,Radon 測度は相対コンパクト集合に有限な測度を与えるから,X は σ -有限である(パラコンパクト性の特徴付け 1.7.8).

注 6.5.1. 一般の局所コンパクトハウスドルフ空間 X 上の σ -有限な Radon 積分を考えれば十分である.実際, $\{A_n\}\subset \mathcal{M}^1$ かつ $\cup A_n=X$ を満たすならば,補題 6.2.19 により,少し大きくして A_n はすべて開であると仮定して良い.次に,再び補題 6.2.19 より,各 A_n に対して,相対コンパクトな開集合の列 (B_{nm}) であって $\forall_{m\in\mathbb{N}}$ $\overline{B_{nm}}\subset B_{nm+1}$ を満たし, $A_n\setminus \cup B_{nm}\in \mathcal{N}$ を満たすものが取れる.すると, $Y:=\cup_{n,m\in\mathbb{N}}B_{nm}$ は σ -コンパクトな開集合であり, $X\setminus Y\in \mathcal{N}$ を満たす.こうして Y について考えれば, σ -コンパクト性を仮定して議論していることと等価である.

6.5.1 絶対連続性

定義 6.5.2 (absolutely continuous, equivalent).

- (1) $\int_0^{\cdot},\int:C_c(X) o\mathbb{R}$ が次の命題の同値な条件を満たすとき, \int_0^{\cdot} は \int について絶対連続であるといい, $\int_0^{\cdot}\ll\int$ と表す.
- (2) $\int_0^\infty \ll \int \wedge \int \ll \int_0^\infty$ が成り立つとき ,同値であるといい, $\int_0^\infty \sim \int^\infty$ で表す.これは $\mathcal{N}(X) = \mathcal{N}_0(X)$ と同値で, $L_0^\infty(X) = L^\infty(X)$ と同値.

命題 **6.5.3.** \int_0^{∞} , $\int_0^{\infty}: C_c(X) \to \mathbb{R}$ を局所コンパクトハウスドルフ空間 X 上の Radon 積分とする.次の 3 条件は同値である.

- (1) 任意の単調減少列 $\{f_n\}\subset C_c(X)_+$ について, $\lim\int f_n=0\Rightarrow \lim\int_0 f_n=0$ が成り立つ.
- (2) 任意の Borel 集合 $N\in \mathfrak{B}(X)$ について , $\int [N]=0\Rightarrow \int_0 [N]=0$.
- (3) 任意の非負 Borel 関数 $f \in \mathfrak{B}(X)_+$ について , $\int f = 0 \Rightarrow \int_0^{\infty} f = 0$.

6.5.2 Radon-Nikodym の定理

定義 6.5.4 (locally integrable). 関数 f が $\forall_{C \in \mathcal{G}}$ $[C]f \in \mathcal{L}^1(X)$ を満たすとき , 局所可積分であるという . このとき f は可測である . 要諦 6.5.5. これは可測集合 \mathcal{M} と \mathcal{M}^1 の別に一致する . 集合の可測性には局所性が暗黙のうちに入っていたのである .

補題 $\mathbf{6.5.6.}$ X 上の局所可積分関数の空間 $\mathcal{L}^1_{\mathrm{loc}}(X)$ は Riesz 空間である .

定理 **6.5.7** (Radon-Nikodym). X を σ -コンパクトな局所コンパクトハウスドルフ空間 , \int_0^{τ} $\int_0^{\tau} : C_{\rm c}(X) \to \mathbb{R}$ をその上の Radon 積分とする.このとき,次の 2 条件は同値.

(1)
$$\int_0 \ll \int$$
.

(2) Borel 関数 $m \geq 0$ が存在して , \int について局所可積分で , $\forall_{f \in \mathfrak{B}(X)} \int_{0}^{\infty} f = \int f m$ を満たす .

なお, m は存在すれば零集合の差を除いて一意である.

6.5.3 Jordan 分解

X 上の Radon 積分の生成する複素線型空間を考えたN . これは Radon 電荷 $(C_c(X))^*$ となる . これは Hilbert 空間上の作用素の分解(極表示)と同じ働きを持つ .

定義 6.5.8 (Radon charge). Radon 電荷とは , 線型汎関数 $\Phi: C_c(X) \to \mathbb{R}$ であって ,

$$\forall_{f \in C_c(X)_+} \sup \{ |\Phi(g)| \ge 0 \mid g \in C_c(X), |g| \le f \} < \infty$$

を満たすものとする.

補題 6.5.9. au を弱位相,すなわちセミノルム $f\mapsto \left|\int f\right|$ の誘導する位相として,位相線型空間 $(C_c(X), au)$ の双対空間が,Radon 電荷全体のなす空間である.

[証明]. 命題 2.4.8 より.

定理 6.5.10.~X を σ -コンパクトな局所コンパクトハウスドルフ空間, $\Phi:C_{\mathrm{c}}(X)\to\mathbb{R}$ を Radon 電荷とする.このとき,Radon 積分 \int と Borel 関数 $u\in\mathfrak{G}(X)$ が存在して,|u|=1 と $\Phi=\int\cdot u$ $\left(\int$ -a.e. $\right)$ を満たす.

系 6.5.11 (Jordan decomposition). 任意の Radon 電荷 $\Phi: C_c(X) \to \mathbb{R}$ について,2 つの Radon 積分 \int_+ , \int_- が存在して,互いに素な Borel 集合内に台を持ち, $\Phi = \int_+$ し表せる.

要諦 6.5.12 (Hahn decomposition). 証明中の分解 $X = A_+ \cup A_- \cup N$ を Hahn 分解という.

6.5.4 Radon 電荷の空間

定義 6.5.13 (total variation).

- (1) 定理から得られる積分 \int を全変動といい , $|\Phi|$ で表す .u は「符号」にあたり , これは零関数の差を除いて一意である .u
- (2) Radon 電荷 Φ が有限であるとは,全変動 $|\Phi|$ が有限な Radon 積分を定めることをいう.有限な Radon 電荷全体の空間をM(X) で表し, $\|\Phi\| = |\Phi|(1)$ をノルムとする.

注 6.5.14. 全変動 |Φ| は,

$$\forall_{f \in C_c(X)} |\Phi(f)| \leq \int |f|$$

を満たす Radon 積分 \int の中で最小のものとして特徴付けられる.実電荷 Φ について,全変動とは $|\Phi|=\Phi_++\Phi_-$ に他ならない.

命題 **6.5.15** (Riesz Markov representation theorem). X 上の有限 Radon 電荷の空間 M(X) にノルム $\|\Phi\| = |\Phi|(1)$ を考えたものは , Banach 空間 $(C_0(X))^*$ に等長同型である .

命題 ${\bf 6.5.16}$ (絶対連続測度の表現)。ある Radon 積分 $\int:C_{\rm c}(X)\to\mathbb{R}$ について , $|\Phi|\ll f$ を満たす有限な Radon 電荷 Φ 全体のなす空間は , 次の写像によって $L^1(X)$ に等長同型である:

$$L^{1}(X) \xrightarrow{\qquad} M(X)$$

$$\psi \qquad \qquad \psi$$

$$f \longmapsto \Phi_{f}(g) := \int gf \ (f \in \mathcal{L}^{1}(X), g \in C_{c}(X))$$

定理 **6.5.17** (双対). X を σ -コンパクトな局所コンパクトハウスドルフ空間 , $\int:C_{\rm c}(X)\to\mathbb{R}$ をその上の Radon 積分とする . $p\in[1,\infty], q\in[1,\infty), p^{-1}+q^{-1}=1$ について , 双線型形式

$$\langle f,g\rangle = \int fg \ (f\in\mathcal{L}^p(X),g\in\mathcal{L}^q(X))$$

は等長同型 $L^p(X) \simeq (L^q(X))^*$ を引き起こす.

注 6.5.18. $p \in (1,\infty)$ の場合は X が σ -コンパクトでない場合にも一般化出来る.

6.6 積分の積

体 $\mathbb R$ 上の各点積を,関数空間上に持ち上げることが出来るのは周知の事実で,これがどのような構造を引き起こすかを考える.

6.6.1 関数の積の定義と基本性質

定義 6.6.1 (product). 2 つの関数 $f:X\to\mathbb{R},g:Y\to\mathbb{R}$ について,積 $f\otimes g:X\times Y\to\mathbb{R}$ を $(f\otimes g)(x,y)=f(x)g(y)$ で定める.補題 6.6.2.

- (1) X,Y を局所コンパクトハウスドルフ空間とする.積空間 $X \times Y$ も局所コンパクトハウスドルフである.
- (2) $X \succeq Y$ がいずれも σ -コンパクトであることと , $X \times Y$ が σ -コンパクトであることは同値 .
- (3) $f \in C_c(X), g \in C_c(Y) \Rightarrow f \otimes g \in C_c(X \times Y)$.
- (4) 同様に, $C_0(X)\otimes C_0(Y)\subset C_0(X\times Y)$ かつ $C_b(X)\otimes C_b(Y)\subset C_b(X\times Y)$.

補題 6.6.3. 関数 $f: X \times Y \to \mathbb{R}$ と点 $y \in Y$ について,

- (1) $f \in C_c(X \times Y) \Rightarrow f(-,y) \in C_c(X)$.
- (2) $f \in C_c(X \times Y)^m \Rightarrow f(-,y) \in C_c(X)^m$.
- (3) $f \in \mathfrak{B}(X \times Y) \Rightarrow f(-,y) \in \mathfrak{B}(X)$.

6.6.2 積分の積と Fubini の定理

Fubiniの定理は,積分の積を先に定義すると極めて見通しが良い.しかし,逐次積分が計算可能かどうかの判断の前に,積積分についての可積分性の判定が必要であるのが実用性にかけるが,σ-コンパクトの場合は抜け道がある.

命題 **6.6.4** (product integral). \int_{x} , \int_{y} をそれぞれ局所コンパクトハウスドルフ空間 X,Y 上の Radon 積分とする.このとき,次

の条件を満たす Radon 積分 $\int_x \otimes \int_y : X \times Y \to \mathbb{R}$ がただ一つ存在する:

$$\forall_{f \in C_c(X), g \in C_c(Y)} \quad \int_{\mathfrak{X}} \otimes \int_{\mathfrak{Y}} f \otimes g = \left(\int_{\mathfrak{X}} f\right) \left(\int_{\mathfrak{Y}} g\right).$$

補題 6.6.5. $h \in C_c(X \times Y)$ ならば, $x \mapsto \int_y h(x,-) \in C_c(X)$ で, $\int_x \int_y h(-,-) = \int_x \otimes \int_y h$.

補題 6.6.6. $h\in C_c(X imes Y)^m$ ならば, $x\mapsto \int_y^*h(x,-)\in C_c(X)^m$ である.また, $h\in\mathcal{L}^1(X imes Y)$ ならば, $f\in\mathcal{L}^1(X)$ かつ

$$\int_{x} f = \int_{x} \int_{y}^{*} h(-,-) = \int_{x} \otimes \int_{y} h.$$

定理 6.6.7 (Fubini). $\int_x \int_y$ をそれぞれ局所コンパクトハウスドルフ空間 X,Y 上の Radon 積分とする . $h \in \mathfrak{B}(X \times Y)$ で,積 $\int_x \otimes \int_y$ に関して可積分ならば,Borel 関数について $y \mapsto h(x,y) \in \mathcal{L}^1(Y)$ x-a.e. かつ殆ど至る所定義された関数について $x \mapsto \int_y h(x,-) \in \mathcal{L}^1(X)$ かつ

$$\int_{x}\int_{y}h(-,-)=\int_{x}\otimes\int_{y}h.$$

要諦 6.6.8. 特に , $h \in \mathcal{L}^1(X \times Y)$ ならば , 次の逐次積分は存在しかつ等しい:

$$\int_{x}\int_{y}h(-,-)=\int_{x}\otimes\int_{y}h=\int_{y}\int_{x}h(-,-).$$

系 6.6.9 (Tonelli). Borel 関数 $h \in \mathfrak{B}(X \times Y)$ はある σ -コンパクト集合の外では消えているとする.Borel 関数が $y \mapsto |h(x,y)| \in \mathcal{L}^1(Y)$ x-a.e. で,殆ど至る所定義された関数が $x \mapsto \int_{\mathbb{R}^2} |h(x,-)| \in \mathcal{L}^1(X)$ を満たすならば, $h \in \mathcal{L}^1(X \times Y)$ で,

$$\int_{\mathfrak{X}}\int_{\mathfrak{Y}}h(-,-)=\int_{\mathfrak{X}}\otimes\int_{\mathfrak{Y}}h=\int_{\mathfrak{Y}}\int_{\mathfrak{X}}h(-,-).$$

6.6.3 位相群上の積分

G の 2 つの演算を連続にするような局所コンパクトハウスドルフ位相を備えた群 G を考える.

定義 6.6.10 (translated function, Haar integarl). 位相群 G 上の関数 $f:G \to \mathbb{F}(=\mathbb{R},\mathbb{C})$ について,

- (1) 左移動 $G \times \mathrm{Map}(G,\mathbb{F}) \to \mathrm{Map}(G,\mathbb{F})$ を $_xf(y) := f(x^{-1}y)$, 右移動を $^xf = f(yx)$ で定める.このとき, $_{xy}f = _x(_yf)$ かつ $^{xy}f = ^x(^yf)$ が成り立つ.
- (2) G 上の左 \mathbf{Haar} 積分とは,零でない \mathbf{Radon} 積分であって,左移動不変であるものをいう: $\forall_{x \in G} \ \forall_{f \in C_c(G)} \ \int {}_x f = \int f$.
- (3) このとき,移動不変性は実際は任意の $\mathcal{L}^1(G)$ について成り立つ.特に,任意の $x\in G$ と Borel 集合 $A\in \mathfrak{G}_G$ について, $\int [xA]=\int [A]$.
- (4) 任意の非空な開集合 A について , $\int [A] > 0$ である .

補題 6.6.11. $f \in C_0(G)$ ならば , $x \mapsto_x f$ と $x \mapsto^x f$ によって定まる 2 つの写像 $G \to C_0(G)$ はいずれも一様連続である .

補題 **6.6.12.** G の任意の Radon 積分 $\int: C_c(G) \to \mathbb{R}$ と実数 $p \in [1,\infty)$ について,任意の $f \in C_c(G)$ について, $x \mapsto_x f, x \mapsto^x f$ によって定まる写像 $G \to \mathcal{L}^p(G)$ は一様連続である.

定理 6.6.13 (Haar). 局所コンパクトな位相群 G において, 左 Haar 積分は正のスカラー因数の別を除いて一意に定まる.

注 6.6.14. 全く対称的な議論により, 右 Haar 積分も一意的に存在するが, 左 Haar 積分と一致するとは限らない.

$$G \coloneqq \left\{ egin{pmatrix} a & b \ 0 & 1 \end{pmatrix} \in M_2(\mathbb{R}) \;\middle|\; a > 0, b \in \mathbb{R}
ight\}$$

と定めると , これは $\mathbb R$ の affine 同型群で , それぞれの行列は変換 $x(t)=\alpha t+b$ に対応する .

$$\int_{I} f = \iint f(a,b)a^{-2}dadb, \quad \int_{r} f = \iint f(a,b)a^{-1}dadb$$

と定める. ただし, 右辺は $\mathbb{R}_+ \times \mathbb{R}$ 上の Lebesgue 積分で, $f \in C_c(G)$ とした.

6.6.4 調和解析

記法 ${\bf 6.6.15.}$ 位相群 G 上の Haar 積分を一つ固定し,これを $\int f(x)dx$ で表す.これは,調和解析特有の頻繁な変数変換を視覚的に表すためである.

定義 6.6.16 (modular function, unimodular). 任意の $x \in G$ について,Radon 積分 $C_c(G) \to \mathbb{R}$; $f \mapsto \int f(yx)dy$ は左不変だから,一意な実数 $\Delta(x) > 0$ であって次を満たすものが定まる: $\forall_{f \in \mathcal{L}^1(G)} \Delta(x) \int f(yx)dy = \int f(y)dy$.

- (1) 関数 $\Delta: G \to (0, \infty)$ をモジュラー関数または母数という.
- (2) $\Delta=1$ であるとき,群 G をユニモジュラーまたは単模という.これは左右の Haar 積分が一致することに同値.したがってモジュラー関数は左右のズレを測っているとも考えられる.
- (3) $d(yx) = \Delta(x)dy$ が成り立つ.

注 6.6.17. 有限次元の場合, 行列式が単元になるものをユニモジュラー行列という.

命題 6.6.18. モジュラー関数 $\Delta:G\to (0,\infty)$ は, $(0,\infty)=\exp(\mathbb{R})$ を乗法群とみると,連続な群順同型を定める.G が Abel である,または離散である,またはコンパクトであるならば,G は単模である.

6.6.5 対合代数

補題 6.6.19.

$$\forall_{f \in C_c(G)} \int f(x^{-1})\Delta(x)^{-1}dx = \int f(x)dx.$$

議論 $\mathbf{6.6.20.}\ \check{f}(x) := f(x^{-1})$ とすると , $f\mapsto \int \check{f}(x)dx$ は右不変である . この間の関係は

$$\int \check{f}(x)dx = \int f(x^{-1})\Delta(x)\Delta(x)^{-1}dx = \int f(x)\Delta(x)^{-1}dx.$$

さらに , $f^*(x) := \overline{f(x^{-1})}\Delta(x)^{-1}$ と定めると ,

$$\forall_{f \in C_{c}(G)} \|f^{*}\|_{1} = \int |f(x^{-1})|\Delta(x)^{-1}dx = \int |f(x)|dx = \|f\|$$

で , 結局 * は Banach 空間 $L^1(G)$ 上に等長な対合を定める .

命題 6.6.21. $\forall_{1\leq p<\infty}$ について , $f\in\mathcal{L}^p(G)$ ならば , $x\mapsto {}_xf$, $x\mapsto {}^xf$ は一様連続写像 $G\to L^p(G)$ を定める .

命題 6.6.22. $\forall_{1\leq p<\infty}$ について, $f\in\mathcal{L}^1(G)$, $g\in\mathcal{L}^p(G)$ をそれぞれ Borel 関数とすると, $y\mapsto f(y)g(y^{-1}x)\in\mathcal{L}^1(G)$ x-a.e. で,殆ど至る所定義された関数について $x\mapsto\int f(y)g(y^{-1}x)dy\in\mathcal{L}^p(G)$ で,

$$\left\| \int f(y)g(y^{-1}\cdot)dy \right\|_{p} \leq \|f\|_{1} \|g\|_{p}.$$

定理 ${\bf 6.6.23.}$ 局所コンパクト群 G とその ${\bf Haar}$ 積分 \int について,空間 $L^1(G)$ は等長対合を備えた ${\bf Banach}$ 代数である.ただし積と対合は次のように定める:

$$(f \times g)(x) = \int f(y)g(y^{-1}x)dy, \quad f^*(x) = \overline{f(x^{-1})}\Delta(x)^{-1}.$$

6.6.6 対合代数の表現

命題 $\mathbf{6.6.24.}$ 等長同型 $\Phi:L^1(X)\hookrightarrow M(X)$ は, $L^1(G)$ をある M(G) の *-不変な閉イデアル上に移す対合代数の *-同型である.

第7章

非線形関数解析

関数解析の主な対象は線型写像であったが,非線形な関数解析に必要な線型化の理論,すなわち微分理論を考える.非線型汎函数の最適化理論である変分法は,遥か昔からの基本的問題であった.Specifically, it studies the critical points,i.e. the points where the first variational derivative of a functional vanishes, for functionals on spaces of sections of jet bundles. The kinds of equations specifying these critical points are Euler-Lagrange equations.^{†1}

7.1 Fréchet 空間

完備なノルム空間を Banach 空間といい , 完備なセミノルム空間を Fréchet 空間という . Banach 空間についての基本的な結果は Fréchet 空間に拡張できる .

定義 7.1.1 (Fréchet space).

- (1) 局所凸空間 E の位相が距離 d によって距離化可能で、この距離について完備であるとき、これを $\operatorname{Fr\acute{e}chet}$ 空間という .
- (2) 射を連続線型写像とすると, Fréchet 空間は圏 TVS の充満部分圏をなす.

例 7.1.2.

- (1) コンパクトな可微分多様体上の可微分写像の空間 $C^{\infty}(X)$ は $\operatorname{Fr\'echet}$ 空間である.
- (2) コンパクトでない可微分多様体でも , $C^\infty(\mathbb{R})$ などは $\operatorname{Fr\'echet}$ 空間となる .
- (3) Lebesgue 空間 $L^p(X)$ は , p<1 のとき Fréchet 空間でない局所凸線型空間となる .
- (4) 射影極限 $\mathbb{R}^{\infty} := \varprojlim_{n} \mathbb{R}^{n}$ (位相線型空間としての直積として得られる空間)は Fréchet 空間となる.

命題 7.1.3. Fréchet 空間 X について,次の2条件は同値.

- (1) X^* は Fréchet 空間である.
- (2) X は Banach 空間である.

7.2 微分論

It is possible to generalize some aspects of analysis (differential calculus) to Fréchet spaces. 全微分に対応する概念を Fréchet 微分, 方向微分に対応する概念を Gâteaux 微分という. 強微分については,連鎖律も基本定理も成り立つ.

a https://ncatlab.org/nlab/show/Fr%C3%A9chet+space

 $^{^{\}dagger 1}$ https://ncatlab.org/nlab/show/variational+calculus

7.2.1 Path smoothness

定義 7.2.1. Fréchet 空間 V 上の線型汎関数 $\mu \in V^*$ が path smooth であるとは,任意の可微分写像 $f: \mathbb{R} \to V$ に対して,合成 $\mu \circ f: \mathbb{R} \to \mathbb{R}$ が可微分であることをいう.

命題 **7.2.2.** Fréchet 空間 V 上の path smooth な線型汎関数 $\mu \in V^*$ は連続である .

7.2.2 微分

有限次元の場合と全く同様に微分を定義でき, $C^n(V)$ の概念がある.すると,滑らかな関数という概念もあり, $\operatorname{Fr\'echet}$ 多様体も同様に考えられる.

定義 7.2.3. Fréchet 空間 V 上の道 $f:I \rightarrow V$ について, 導関数

$$f'(t) := \lim_{h \to 0} \frac{1}{h} (f(t+h) - f(t))$$

が存在して連続であるとき, C^1 級であるという.この導関数を強導関数または $\operatorname{Fr\'echet}$ 導関数という.

定義 **7.2.4** (directional derivative). F,G を Fréchet 空間 , P を $U \subset F$ 上の連続な非線型写像 $P:U \to G$ とする . 写像

が存在して連続であるとき,P は C^1 級であるという.これを弱導関数または Gâteaux 導関数という.

7.3 積分論

第8章

学習理論

ニューラルネットワークをはじめ,統計モデルとは,関数のクラスに他ならない.位相解析の知見が使えないはずがない.

8.1 関数機械

A function machine is a generalization of neural networks to potentially infinite dimensional layers, motivated by the study of universal approximation of operators and functionals over abstract Banach spaces.^a

 a https://ncatlab.org/nlab/show/function+machine

定義 **8.1.1** (function machine, operator layer, functional layer, basis layer, fully-connected layer). $K \subset \mathbb{R}^d$, $K' \subset \mathbb{R}^{d'}$ をコンパクト集合, T を affine 写像とする.

(1) 作用素層とは,affine 写像 $T^o:\mathcal{L}^1(K,\mu)\to\mathcal{L}^1(K',\mu)$ であって,測度の連続族 $(W_t\ll\mu)_{t\in K'}$ と関数 $b\in\mathcal{L}^1(K,\mu)$ が存在して, $T^0:f\mapsto\left(t\mapsto\int_K fdW_t+b(t)\right)$ と表せるものをいう.

8.2 ニューラルネットワーク

A neural network is **a class of functions** used in both supervised and unsupervised machine learning to approximate a correspondence between samples in a dataset and their associated labels.^a

 $^a\; \verb|https://ncatlab.org/nlab/show/neural+network|$

8.3 テンソルネットワーク

モノイド圏論におけるストリング図式と等価な概念 (with an attitude) で,はじめは量子物理学で台頭した.

8.3.1 カーネル法

関数族ではなく,距離関数 $d:D \times D \to \mathbb{R}$ の指定によってデータ集合 D を解析することをいう.d が定める積分核 $\exp(-\lambda \cdot d(-,-))$ を適切なクラスから選ぶことを考える.

参考文献

- [1] Gert K. Pederson "Analysis Now"
- [2] 生西明夫,中神祥臣『作用素環入門 [』
- [3] John B. Conway "A Course in Functional Analysis"
- [4] Haïm Brezis 『関数解析』
- [5] 增田久弥『非線型数学』
- [6] Kolmogorov, Fomin 『関数解析の基礎』
- [7] 藤田宏,黒田成俊,伊藤清三『関数解析』