BSM Interpretation of MET+jet ratio cross section measurement

Hugo Beauchemin, Valentinos Christodoulou, Monica Dunford, Manuel Geisler, Zara Grout, Emily Nurse, <u>Rebecca Pickles</u>, Andy Pilkington, Darren Price, Hyungsuk Son, Terry Wyatt

Exotics Jet plus Dark Matter Meeting

June 3, 2016

Introduction

- This analysis is measuring the production cross section ratio: $\frac{\sigma(\text{MET}+j(j))}{\sigma(Z\to l^+l^-+j(j))}$ as a function of various kinematic variables.
 - Effectively a measurement of: $\frac{\sigma(Z \to \nu \bar{\nu} + j(j)) + \sigma(\chi \bar{\chi} + j(j))}{\sigma(Z \to l^+ l^- + i(j))}$
 - Many theoretical and experimental uncertainties will cancel in the ratio.
- The final state of MET+j(j) studied in two different phase spaces:
 - $\bullet \geqslant 1$ jet : Similar to a standard monojet analysis selection.
 - VBF : MET+jj selection with high dijet invariant mass and central jet veto.
- Differences to existing MET+j(j) analyses (In addition to the ratio):
 - This result will be corrected for detector effects and so can be easily compared to any future models.
 - Corrected distributions of various variables in various phase spaces will be published, with correlation information.

Fiducial cuts

Cuts on both (MET+j(j)) and (Z $\rightarrow I^+I^-$ +j(j)):

Phase Space	Jet 1 p _T	Jet 2 p _T	η	mjj	$\Delta\Phi(dilepton, jet)$	$\not\not\models_T$ / Dilepton p _T
VBF	>80GeV	>50GeV	<4.4	>200	>0.4	>200GeV
\geqslant 1 jet	>120GeV	n/a	<2.4	n/a	>0.4	>200GeV

Cuts on denominator $(Z \rightarrow I^+I^-+j(j))$ only:

Lead lepton p_T	Sublead lepton p_T	$ \eta $	M _{II}	$\Delta R(\text{jet, lepton})$
>80GeV	>7GeV	< 2.5	>66GeV + <116GeV	< 0.2

Reco level and particle level cuts are identical, but the dilepton p_T cut is a MET cut for all three channels $(Z \to \nu \nu, Z \to \mu \mu, Z \to ee)$ with leptons marked invisible.

Dark matter interactions and sensitivity

This measurement is sensitive to two DM interactions

Quark/Gluon - DM interactions ($\geqslant 1$ jet Topologies)

Electroweak Boson - DM interactions (VBF Topologies)

Planned Models

Monojet Models:

- Plan to run any existing monojet models through our analysis and limit setting code.
- Are there any suggestions any other Monojet MCs or simplified models that should be looked at?

VBF Models:

- Again, plan to run over any existing MC models through our analysis and limit setting code.
- Happy to run over simplified models for VBF, if they exist?
 - Currently only aware of EFT implementation [PRD 88 116009 (2013)].
 - Using this EFT model to validate our analysis and limit setting framework, but will be straight forward to replace with any other model.
- Any other thoughts/models?

Idea of this measurement

- EFT models mentioned in the previous slide are only providing a benchmark, and any model will be comparable to our published data using our rivet analysis code after publication.
- Difference from existing VBF and monojet searches:
 - Measure corrected differential ratio as a function of various observables (Mjj, jet1pt, deltaphijj,)
 - Publish alongside paper:
 - Cross section ratio in each bin
 - Statistical and systematic correlations between bins
 - Rivet routine for post-publication model analysis
- This analysis approach is not optimised for specific searches (like H→invisible) so have tradeoff of reduced sensitivity to these specific models for improved sensitivity to other general production modes.
- Next slides show details of DM in the EFT models.

MadGraph simulation using VBF EFT models

MadGraph implemenation discussed in [PRD 88 116009 (2013)]

Name	Operator
D5a	$\mathcal{L} = \frac{1}{\Lambda} \bar{\chi} \chi \left[\frac{Z_{\mu} Z^{\mu}}{2} + W_{\mu}^{+} W^{-\mu} \right]$
D5b	$\mathcal{L} = \frac{1}{\Lambda} ar{\chi} \gamma^5 \chi \left[\frac{Z_\mu Z^\mu}{2} + W_\mu^+ W^{-\mu} \right]$
D5c	$\mathcal{L} = \frac{g}{2\cos\theta_W \Lambda} \bar{\chi} \sigma^{\mu\nu} \chi \left[\delta_\mu Z_\nu - \delta_\nu Z_\mu \right]$
D5d	$\mathcal{L} = \frac{g}{2\cos\theta_W \Lambda} \bar{\chi} \sigma^{\mu\nu} \chi \epsilon^{\mu\nu\sigma\rho} \left[\delta_\rho Z_\sigma - \delta_\sigma Z_\rho \right]$
D6a	$\mathcal{L} = \frac{g}{2\cos\theta_W \Lambda^2} \bar{\chi} \gamma^\mu \delta^\nu \chi \left[\delta_\mu Z_\nu - \delta_\nu Z_\mu \right]$
D6b	$\mathcal{L} = \frac{g}{2\cos\theta_W \hbar^2} \bar{\chi} \gamma_\mu \delta_\nu \chi \epsilon^{\mu\nu\sigma\rho} \left[\delta_\rho Z_\sigma - \delta_\sigma Z_\rho \right]$
D7a	$\mathcal{L} = \frac{1}{\Lambda^3} \bar{\chi} \chi W^{i,\mu\nu} \bar{W}^i_{\mu\nu}$
D7b	$\mathcal{L} = \frac{1}{3} \bar{\chi} \gamma^5 \chi W^{i,\mu\nu} W^i_{\mu\nu}$
D7c	$\mathcal{L} = \frac{1}{\sqrt{3}} \bar{\chi} \chi \epsilon^{\mu\nu\sigma\rho} W^{i,\mu\nu} W^{i}_{\rho\sigma}$
D7d	$\mathcal{L} = \frac{1}{\sqrt{3}} \bar{\chi} \chi \epsilon^{\mu\nu\sigma\rho} W^{i,\mu\nu} W^{\mu\nu}_{\rho\sigma}$ $\mathcal{L} = \frac{1}{\sqrt{3}} \bar{\chi} \gamma^5 \chi \epsilon^{\mu\nu\sigma\rho} W^{i,\mu\nu} W^{i}_{\rho\sigma}$

Original publication tested unitarity validity in VBF processes for mass-EFT scale probed in this analysis.

MadGraph simulation using EFT models

- Currently only generating exclusively two jets $(\chi \bar{\chi} jj)$, but are in the process of interfacing these to a parton shower, so results very preliminary.
 - Also generating other minor contributing processes: $(\chi \bar{\chi} l \nu, \chi \bar{\chi} l l, \chi \bar{\chi} l l j j)$

EFT scale constraints from SM measurements

 The different dimensions that have the higher EFT scale constraints result in some dimensions with vastly reduced rates due to the Z invisible width.

$$\Gamma(Z \to \chi \bar{\chi}) \; = \; \frac{2\alpha m_Z^3}{3\Lambda^2 \cos^2\theta_W \sin^2\theta_W} \left(1 + \frac{8m_\chi^2}{m_Z^2}\right) \sqrt{1 - \frac{4m_\chi^2}{m_Z^2}}$$

Name	Operator	Minimum EFT Scale (GeV)
D5a	$\mathcal{L} = \frac{1}{\Lambda} \bar{\chi} \chi \left[\frac{Z_{\mu} Z^{\mu}}{2} + W_{\mu}^{+} W^{-\mu} \right]$	100
D5b	$\mathcal{L} = \frac{1}{\hbar} \bar{\chi} \gamma^5 \chi \left[\frac{Z_{\mu} Z^{\mu}}{2} + W_{\mu}^+ W^{-\mu} \right]$	100
D5c	$\mathcal{L} = rac{g}{2\cos heta_W \Lambda} ar{\chi} \sigma^{\mu u} \chi \left[\delta_\mu Z_ u - \delta_ u Z_\mu ight]$	3300
D5d	$\mathcal{L} = \frac{g}{2\cos\theta_{W}\Lambda} \bar{\chi} \sigma^{\mu\nu} \chi \epsilon^{\mu\nu\sigma\rho} \left[\delta_{\rho} Z_{\sigma} - \delta_{\sigma} Z_{\rho} \right]$	6600
D6a	$\mathcal{L} = \frac{g}{2\cos\theta_W \Lambda^2} \bar{\chi} \gamma^\mu \delta^\nu \chi \left[\delta_\mu Z_\nu - \delta_\nu Z_\mu \right]$	230
D6b	$\mathcal{L} = \frac{g}{2\cos\theta_W \Lambda^2} \bar{\chi} \gamma_\mu \delta_\nu \chi \epsilon^{\mu\nu\sigma\rho} \left[\delta_\rho Z_\sigma - \delta_\sigma Z_\rho \right]$	330
D7a	$\mathcal{L} = \frac{1}{\sqrt{3}} \bar{\chi} \chi W^{\prime,\mu\nu} W^{\prime}_{\mu\nu}$	100
D7b	$\mathcal{L} = \frac{1}{\Lambda^3} \bar{\chi} \gamma^5 \chi W^{\prime,\mu\nu} W^{\prime}_{\mu\nu}$	100
D7c	$\mathcal{L} = \frac{1}{\sqrt{3}} \bar{\chi} \chi \epsilon^{\mu\nu\sigma\rho} W^{\prime,\mu\nu} W^{\prime}_{\sigma\sigma}$	100
D7d	$\mathcal{L} = \frac{1}{\Lambda^3} \bar{\chi} \gamma^5 \chi \epsilon^{\mu\nu\sigma\rho} W^{i,\mu\nu} W^{i}_{\rho\sigma}$	100

June 3 2016

Model Kinematics: Distinguishing DM operators

Plots show unit normalised DM distributions for DM mass = 100GeV

Discrimination between models varies with observable studied: Motivation to measure multiple observables.

Leading jet p, [GeV]

Model Kinematics: Distinguishing DM Mass

ΔΦ

Plots show unit normalised DM distributions for leading jet p_T and $\Delta \phi$

Jet 1 pT

From DM kinematics to Ratio

- Previous slides show DM production rate kinematics
- We measure the ratio $\frac{\sigma(Z \to \nu \bar{\nu} + j(j))}{\sigma(Z \to l^+ l^- + j(j))}$ in data, so DM presence causes modification to shape and normalisation of this ratio
- SM expectation is flat value of approx. 6 →, modified in measured data due to acceptance differences in numerator and denominator

Next slides will show modification of this ratio with DM present

Example of ratio modification with DM

Effective Operator D5a : $\Delta\eta$: $\Lambda_{Min}=100 \text{GeV}$: 2% statistical uncertainty : P-value of chi2 stat. test.

- Ratio plot shows $\frac{\sigma((Z \to \nu \nu)jj) + \sigma((Z \to DMDM)jj)}{\sigma((Z \to \mu^+ \mu^-)jj)}$ (EWK+QCD)
- p-value from a χ^2 -test comparing the DM model to the SM background ratio of $\frac{\sigma((Z \to \nu \nu)jj)}{\sigma((Z \to \mu^+ \mu^-)jj)}$, for a range of DM masses and EFT scales.

Example of ratio modification with DM

Effective Operator D5a : Mjj : $\Lambda_{Min} = 100 \text{GeV}$: 2% statistical uncertainty : P-value of chi2 stat. test.

Example of ratio modification with DM

Effective Operator D5b : Mjj : $\Lambda_{Min}=100 \text{GeV}$: 2% statistical uncertainty : P-value of chi2 stat. test.

• This is currently a work in progress as we are validating the implementation of the models. PS and CJV also not yet present.

Summary and To Do

- Differential measurement of $\frac{\sigma(\mathrm{MET}+\mathrm{j}(\mathrm{j}))}{\sigma(\mathrm{Z}\to l^+l^-+\mathrm{j}(\mathrm{j}))}$ sensitive to both quark/gluon and electroweak boson couplings to DM
- Set up framework to test presence of DM models against SM expectation in variety of fiducial regions and for various observables
- Currently running on VBF EFT model as a benchmark, plan to now extend to process existing Monojet/VBF DM signal MCs
 - Simplified models for VBF? Who to contact?
- Plan to publish Rivet routine with ratios and correlation information so new models can be easily compared to data also after publication
- Next steps:
 - Continue validation of models and analysis framework
 - Interface parton showering to Madgraph EFT implementation
 - Process existing Monojet/VBF MCs (and any other new models?)
 - Quantify sensitivity gains from correlations between differential ratios