Criptografia Homomorfica em Smart Meters

Pedro Barbosa 2015

Problema

•Como calcular M?

- •Seja L(u) = (u 1) / n
- •Selecione p e q números primos grandes
- $\cdot n = p \cdot q$
- $\bullet \lambda = mmc((p-1)\cdot(q-1))$
- •Selecione g um inteiro de 1 a n^2 de forma que
- • $b = L(g^{\lambda} \pmod{n^2})$ seja coprimo a n, ou seja, mdc(b, n) = 1
- •Por fim, μ é o inverso multiplicativo de b módulo n, ou seja, $\mu = b^{-1} \pmod{n}$
- • $P_k = (n, g) \in S_k = (n, \lambda, \mu)$

- •Criptografia (de *m*):
 - -r = rand[1, n-1]
 - $-c = g^m \cdot r^n \pmod{n^2}$
- •Descriptografia (de *c*):
 - $-m = (L(c^{\lambda} \pmod{n^2})) \cdot \mu) \pmod{n}$
- •Homomorfismo:
 - -Considerando duas mensagens, temos $E(m_1 + m_2) = E(m_1) \cdot E(m_2)$. Logo, o sistema de Paillier apresenta homomorfismo aditivo ao multiplicar blocos cifrados.

•Exemplo:

-p = 7, q=11
-n = p•q = 7•11
$$\Rightarrow$$
 n = 77
- λ = mmc ((p-1),(q-1)) = mmc (6, 10) \Rightarrow λ =30
-g = rand [1, n²], tal que, mdc(b, n) = 1, onde
b= L(g $^{\lambda}$ (mod n²)) \Rightarrow g = 23 e b = 40
- μ = b-1 (mod n) \Rightarrow μ •40 (mod 77) = 1 \Rightarrow μ = 52
- P_k = (n, g) \Rightarrow P_k = (77, 23)
- S_k = (n, λ , μ) \Rightarrow S_k = (77, 30, 52)

- •Criptografia:
 - -m=14
 - -r=rand [1, n−1] \Rightarrow r=69
 - $-c \equiv g^m \cdot r^n \pmod{n^2} \Rightarrow 2314 \cdot 6977 \pmod{772} \Rightarrow c = 3265$
- •Descriptografia:
 - -c = 3265
 - $-m \equiv (L(c^{\lambda} \pmod{n^2}) \cdot \mu) \pmod{n} \Rightarrow m = (L(1618) \cdot 52) \pmod{77} \Rightarrow m=14$

•Homomorfismo:

- -Criptografia:
 - $m_1 = 14$, $m_2 = 3$, $m_3 = m_1 + m_2 = 17$
 - $c_1 \equiv g^{m1}$ $r^n \pmod{n^2} \Rightarrow c_1 \equiv 2314 \cdot 6977 \pmod{77^2} \Rightarrow c_1 \equiv 3265$
 - $c_2 \equiv g^{m2}$ $r^n \pmod{n^2} \Rightarrow c_2 \equiv 233 \cdot 26 \ 77 \pmod{77^2} \Rightarrow c_2 \equiv 3503$
 - $c_3 = c_1 c_2 \Rightarrow c_3 = 11437295$
- -Descriptografia:
 - $m_3 \equiv (L(c_3^{\lambda} \pmod{n^2})) \cdot \mu) \pmod{n} \Rightarrow m_3 = (L(4929) \cdot 52)$ $\pmod{77} \Rightarrow m_3 = 17$

- 1- Cada medidor possui uma chave pública P_{ki} e uma privada S_{ki} de Pailier
- 2- A concessionária obtém as chaves públicas de todos os medidores e compartilha este grupo de chaves públicas com todos os medidores.
 - -Cada medidor fica com a sua chave privada S_{ki} , e todas as chaves públicas $\{P_{k1}, ..., P_{kN}\}$.

3- Cada medidor SM_i calcula para a sua medição m_i , N segredos compartilhados, de forma que

$$m_i = \sum_j s_{ij}$$
 para um **n** grande.

- **4-** *SM_i* armazena *s_{ii}* para si mesmo e envia para a concessionária os outros segredos compartilhados criptografados com as chaves públicas dos outros *N-* **1** medidores
 - -Ou seja, envia $E_{Pkj}(s_{ij})$ para j = 1, ..., i-1, i+1, ..., N.

5- Ao receber todos os segredos compartilhados criptografados, a concessionária multiplica os que foram criptografados com a mesma chave pública. Devido a propriedade homomórfica, tem-se para cada *i*:

$$E_{P_{ki}}(m_{i}') = \prod_{j \neq i} E_{P_{ki}}(s_{ji}) = E_{P_{ki}}(\sum_{j \neq i} s_{ji})$$

6- A concessionária envia $E_{Pki}(m_i')$ para o medidor SM_i , que pode descriptografar com a sua chave privada S_{ki} e adicionar o segredo s_{ii} . Assim, o medidor obtém:

$$\sum_{i} s_{ji}$$

7- O medidor SM_i então envia $\sum_{j}^{S_{ji}}$ para a concessionária, que ao somar os resultados recebidos de todos os medidores obterá o consumo total M da região

$$M = \sum_{i} \sum_{j} s_{ji} \mod n$$

•Problemas:

- -Muita troca de mensagens entre um medidor e a concessionária (5 mensagens)
- -Não é escalável:
 - Se um único medidor falhar durante dos passos, não se obtém nem mesmo uma aproximação
- Considerando geração de chaves, criptografia, descriptografia e geração de segredos como O(1), temos:
 - O(N) para cada medidor (passos 3 e 4)
 - O(N2) para a concessionária (passo 5)

- 1- Um único par de chaves do esquema de Paillier é compartilhado entre todos os N medidores (i.e, todos os medidires possuem P_k e S_k)
- **2-** Para uma medição m_i , o medidor SM_i gera N
- 1 números aleatórios, um para cada outro medidor, e os distribui utilizando canais seguros (ex, criptografia assimétrica RSA na comunicação entre medidores).

3- Após receber todos os números aleatórios gerados pelos outros medidores, SM_i computa:

$$R_i = n + \sum_{j=1, i \neq j}^{N} r_{(i \rightarrow j)} - \sum_{j=1, i \neq j}^{N} r_{(j \rightarrow i)}$$

- -Onde n é o módulo usado em Paillier e $r_{i \rightarrow j}$ é o número aleatório gerado de SM_i para SM_i
- **4-** Em seguida computa-se um hash h_t utilizando o timestamp da medição atual (m_i) . Este hash precisa ser coprimo a n, ou seja, $mdc(h_t,n)=1$.
 - Como o timestamp é sincronizado para todos os medidores, espera-se que o hash obtido seja o mesmo para todos.

5- Após o medidor computar R_i e h_t , criptografase a medição m_i utilizando o seguinte esquema modificado de Paillier:

$$E_{P_k}(m_i) = g^{m_i} \cdot h_t^{R_i}$$

 Em seguida esta mensagem criptografada é disseminada para todos os outros *N-1* medidores.

MDM

 (S_k,P_k)

6- Quando um medidor receber todas as medições criptogradas dos outros medidores, ele poderá calcular o consumo total na região devido a propriedade homomórfica:

$$E_{P_k}(M) = \prod_{i=1}^{N} E_{P_k}(m_i) = E_{P_k}(\sum_{i=1}^{N} m_i)$$

-Ao descriptografar $E_{Pk}(M)$, o medidor poderá enviar o valor M para a concessionária.

- •Por que funciona?
 - Um medidor não consegue descriptografar medições individuais dos outros
 - Ele só possui os números aleatórios gerados por ele e os gerados para ele

$$E_{P_k}(m_i) = g^{m_i} \cdot h_t^{R_i} \qquad R_i = n + \sum_{j=1, i \neq j}^{N} r_{(i \to j)} - \sum_{j=1, i \neq j}^{N} r_{(j \to i)}$$

- A descriptografia do agregado funciona, pois:

$$E_{P_k}(M) = g^{m_1 + m_2 + \ldots + m_N} \cdot h_t^{\sum\limits_{i=1}^N n} + \sum\limits_{i=1}^N \sum\limits_{j=1, i \neq j}^N r_{(i \rightarrow j)} - \sum\limits_{i=1}^N \sum\limits_{j=1, i \neq j}^N r_{(j \rightarrow i)}$$

$$E_{P_{\iota}}(M) = g^{M} \cdot h_{t}^{N \cdot n}$$

•Ora, sendo $r = h_t^N$ como um número aleatório, temos a configuração de Paillier original

•Problemas:

- Muita troca de mensagens entre medidores (2N 2 mensagens) e duas com a concessionária
- -Não é escalável:
 - Se um único medidor falhar durante dos passos, não se obtém nem mesmo uma aproximação
- Considerando geração de chaves, criptografia,
 descriptografia e geração de segredos como O(1), temos:
 - O(N) para cada medidor (passos 2, 3 e 6)
 - O(N) para a concessionária (passo 1)
 - Mas poderia ser O(1) (cada medidor salvaria o par de chaves)

- •Problema do logaritmo discreto:
 - -Seja G um grupo multiplicativo de ordem p e seja g um gerador de G
 - -Dado $g \in y$, como encontrar o inteiro x tal que $g^x = y$?
 - -Tal inteiro x é o logaritmo discreto de y na base g $(log_g y = x)$
- •Problema computacional de Diffie-Hellman:
 - -Seja **G** um grupo multiplicativo.
 - -Dado g^a e g^b com a e b desconhecidos, como computar g^{ab} ?

- •Seja **q** um número primo grande
- •Seja g um gerador do grupo multiplicativo G de ordem q (i.e, \mathbb{Z}^*_q)
- •Obter x = rand(G) e $y = g^x$
- • $S_k = x \in P_k = (G, g, y)$
- •Para criptografar uma mensagem $m \in G$, obtémse r = rand(G) e computa-se $c = g^r$ e $d = m.y^r$. Assim, E(m) = (c,d)
- •Para descriptografar E(m) computa-se m = d.c.x

- Propriedade homomórfica:
 - -Seja $E(m_1) = (c_1, d_1) = (g^{r_1}, m_1.y^{r_1})$ e $E(m_2) = (c_2, d_2) = (g^{r_2}, m_2. y^{r_2})$
 - -Assim, $E(m_1)$. $E(m_2) = (c_1.c_2, d_1.d_2) = (g^{r_1+r_2}, m_1. m_2.y^{r_1+r_2}) = E(m_1. m_2)$
- •Ou seja, ElGamal é um sistema homomórfico multiplicativo

- •Dado $E(g^{m1})$ e $E(g^{m2})$, então $E(g^{m1})$. $E(g^{m2}) = E(g^{m1} \cdot g^{m2}) = E(g^{m1} + m^2)$
- •Assim, também pode-se obter a propriedade homomórfica aditiva se conseguir computar m em $m' = g^m$.
 - -Por exemplo, na espanha o consumo de um consumidor durante 30 min fica em torno de 0 7500 Wh. Para 128 medidores é necessário números de 20-bits. Em um Intel Core 2.5GHz e 4GB RAM, levou-se em média 0.046s.
 - Assim, sabendo-se o range, o cálculo do logaritmo discreto não fica tão custoso.

Privacidade em Smart Metering por Busom et al.

1- Cada medidor possui:

- O número primo grande q e o gerador g
 (já vem em hardware e de fábrica)
- –Uma chave privada x_i
- -Uma chave pública $y_i = g^{xi}$ e um certificado $Cert_i$
- A chave pública da autoridade certificadora que verifica os certificados dos outros medidores.

Privacidade em Smart Metering por Busom et al.

- 2- Quando se tem uma nova configuração (ex, novo medidor na região), a concessionária inicia um procedimento de estabelecimento de chaves:
 - A concessionária envia uma mensagem de key establishment para cada um dos medidores
 - Cada medidor envia y_i e $Cert_i$ para a concessionária
 - A concessionária verifica a validade de cada $Cert_i$ e envia $\{y_1, ..., y_n\}$ e $\{Cert_1, ..., Cert_n\}$ para cada medidor
 - Finalmente, cada um dos medidores verifica a validade de cada *Cert_i* e computa uma chave pública global:

$$y = \prod_{i=1}^{N} y_i$$

Privacidade em Smart Metering nor Busom et al.

Privacidade em Smart Metering por Busom et al.

3- A cada instante, a concessionária envia para os medidores requisições de medição e cada medidor gera um número aleatório $z_i \in \mathbb{Z}^*_q$, computa $C_i = E_y(g^{mi} + z^i) = (c_i, d_i)$ e envia C_i para a concessionária

4- A concessionária agrega todos os C_i recebidos:

$$C = (\prod_{i=1}^{N} c_i, \prod_{i=1}^{N} d_i) = (c, d)$$

e envia **c** para cada medidor.

5- Cada medidor computa $T_i = c^{xi}.g^{zi}$ e envia o resultado para a concessionária

6- A concessionária então computa

$$D = d \cdot \left(\prod_{i=1}^{N} T_{i}\right)^{-1}$$

e finalmente computa $log_g D$, obtendo

$$D = g^{M} \qquad M = \sum_{i=1}^{N} m_{i}$$

- •Por que funciona?
 - -Primeiro cada medidor calcula $C_i = E_y(g^{mi+zi}) = (g^{ri}, g^{mi+zi}, y^{ri})$
 - -Em seguida a concessionária calcula

$$C = (\prod_{i=1}^{N} g^{ri}, \prod_{i=1}^{N} g^{mi+zi} \cdot y^{ri}) = (g^{r}, g^{m+z} \cdot y^{r}) = (c, d)$$

-Depois cada medidor calcula $T_i = c^{xi} \cdot g^{zi} = g^{r \cdot xi} \cdot g^{zi} = g^{xi \cdot r} \cdot g^{zi} = y_i^r \cdot g^{zi}$

$$D = d \cdot \left(\prod_{i=1}^{n} T_i \right)^{-1} = \frac{g^{m+z} \cdot y^r}{\prod_{i=1}^{n} (y_i^r \cdot g^{z_i})} = \frac{g^{m+z} \cdot y^r}{(\prod_{i=1}^{n} y_i^r) \cdot g^z} = \frac{g^{m+z} \cdot y^r}{g^z \cdot y^r} = g^m$$

•Problemas:

- -Muita troca de mensagens entre um medidor e a concessionária (3 mensagens)
- -Não é escalável:
 - Se um único medidor falhar durante dos passos, não se obtém nem mesmo uma aproximação
- Considerando geração de chaves, criptografia, descriptografia e geração de segredos como O(1), temos:
 - O(1) para cada medidor (mas no key establishment é O(N))
 - O(N) para a concessionária (passos 4 e 6)

Privacidade em Smart Metering

Privacidade em Smart Metering

Criptografia de Curva Elíptica

- Criptografia assimétrica
- Mais rápida e usa chaves mais curtas do que os métodos antigos como RSA, proporcionando ao mesmo tempo um nível de segurança equivalente
- Baseada na suposição de que é difícil encontrar um inteiro k, tal que Q = k. P, onde P e Q são dois pontos em uma curva elíptica
- Existem algumas implementações, como o Suite B da NSA. Entretanto, a maioria delas possuem patentes

1- Cada medidor possui:

- –Uma chave simétrica d_i
- –Uma chave privada k_i
- As chaves públicas dos vizinhos (ex., p_{i-1} e p_{i+1})
 - -Uma função hash *H*
- Assume-se que a concessionária possui a lista de chaves simétricas $\{d_1, d_2, ..., d_n\}$

SM₁

d₁, k₁, p₂, H

Medidores formam uma spanning tree

SM₂

d₂, k₂, p₁, p₃, H

. . .

 SM_N

d_N, k_N, p_{N-1}, H

MDM

 $\{d_1, d_2, ..., d_n\}$

- **2-** O medidor SM_1 calcula a sua medição m_1 , e para um instante de tempo t computa: $c_1 = m_1 + H(d_1 || t)$. Em seguida, ele envia c_1 criptografado com p_2 para SM_2
 - SM2 então computa $c_2 = c1 + m_2 + H(d_2 \parallel t)$ = $m_1 + H(d_1 \parallel t) + m_2 + H(d_2 \parallel t)$, criptografa com p_3 e envia para SM_3
 - Este processo continua até SM_N , que por fim, envia c_n para a concessionária

3- A concessionária obtém do último medidor

$$c_N = \sum m_i + H(d_1 || t)$$

– Como ela possui $\{d_1, d_2, ..., d_n\}$ e sabe os timestamps, ela consegue obter $M = \sum m_i$

1- Cada medidor possui:

- As chaves públicas dos vizinhos (ex., p_{i-1} e p_{i+1})
- A chave pública de Paillier da concessionária (P_k)
- A concessionária possui uma chave privada de Paillier (S_k)

SM₁

Medidores formam uma spanning tree

SM₂

Pk

...

SM_N Pk **MDM**

Sk

- **2-** O medidor SM_1 calcula a sua medição m_1 , e para um instante de tempo t computa: $c_1 = Enc_{Pk}(m_1)$. Em seguida, ele envia c_1 para SM_2
 - SM2 então computa $Enc_{Pk}(m_2)$ e $c_2 = c1$. $Enc_{Pk}(m_2)$, e envia para SM_3
 - Este processo continua até SM_N , que por fim, envia c_n para a concessionária

3- Devido a propriedade homomorfica de Paillier concessionária obtém do último medidor

$$c_N = Enc_{Pk}(\Sigma m_i)$$

– Ao descriptografar, ela obtém $M = \sum m_i$

