Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	${f R}^2$

integers	7
positive integers	=
1	$\mathbf{Z}_{>0}$
positive reals	$ \mathbf{R}_{>0} $

Set symbols

Meaning	Symbol
is a member	\in
subset	\subset
intersection	\cap

Meaning	Symbol
union	U
complement	$superscript^{C}$
set minus	\

Intervals

For numbers a and b, we define the intervals:

$$(a, b) = \{x \in \mathbf{R} \mid a < x < b\}$$

$$[a, b) = \{x \in \mathbf{R} \mid a \le x < b\}$$

$$(a, b] = \{x \in \mathbf{R} \mid a < x \le b\}$$

$$[a,b] = \{x \in \mathbf{R} \mid a \le x \le b\}$$

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Tautologies

$$\begin{split} \neg(P \land Q) &\equiv \neg P \lor \neg Q \\ P &\implies Q \equiv P \land \neg Q \\ (P &\iff Q) \equiv ((P \implies Q) \land (Q \implies P)) \\ \neg(\forall x \in A)(P(x)) &\equiv (\exists x \in A)(\neg P(x)) \\ \neg(\exists x \in A)(P(x)) &\equiv (\forall x \in A)(\neg P(x)) \end{split}$$

Function notation

ns on set A
ions on set A
B

Generalized set operators

Each member of a set C is a set:

$$\bigcup_{A \in \mathcal{C}} A = \{ z \mid (\exists B \in \mathcal{C})(z \in B) \}$$

$$\bigcap_{A \in \mathcal{C}} A = \{ z \mid (\forall \, B \in \mathcal{C}) (z \in B) \}$$

Theorem:
$$\bigcup_{A \in \mathcal{C}} A^{\mathcal{C}} = \left(\bigcap_{A \in \mathcal{C}} A\right)^{\mathcal{C}}$$

Functions applied to sets

Let $A \subset \text{dom}(F)$ and $B \subset \text{range}(F)$:

$$F(A) = \{ F(x) \mid x \in A \}$$
$$F^{-1}(B) = \{ x \in \text{dom}(F) \mid F(x) \in B \}$$

Triangle inequalities

For all $x, y \in \mathbf{R}$, we have

$$|x+y| \le |x| + |y|$$
$$||x| - |y|| \le |x-y|$$

Floor and ceiling

Definitions:

Properties:

$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(x < n \iff \lfloor x \rfloor < n)$$
$$(\forall x \in \mathbf{R}, n \in \mathbf{Z})(n < x \iff n < \lceil x \rceil)$$

Bounded sets

Bounded below A set *A* is *bounded below* provided $(\exists M \in \mathbf{R})(\forall x \in A)(M \leq x)$.

Bounded above The set *A* is *bounded above* provided $(\exists M \in \mathbf{R})(\forall x \in A)(x \leq M)$.

Bounded A set is *bounded* if it is bounded below and bounded above.

Elementary function properties

Increasing $(\forall x, y \in A)(x < y \implies F(x) \le F(y))$. For strictly increasing, replace $F(x) \le F(y)$ with F(x) < F(y).

Decreasing $(\forall x, y \in A)(x < y \implies F(x) \ge F(y))$ For strictly decreasing, replace $F(x) \ge F(y)$ with F(x) > F(y).

One-to-one

$$(\forall x, y \in dom(F))(F(x) = F(y) \implies x = y)$$

Subadditive

$$(\forall x, y \in \text{dom}(F))(F(x+y) \le F(x) + F(y))$$

Bounded above $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(F(x) \leq M)$

Bounded below $(\exists M \in \mathbf{R})(\forall x \in \text{dom}(F))(M \leq F(x))$

Topology

Open ball $ball(a, r) = \{x \in \mathbf{R} \mid -r + a < x < r + a\}$

Punctured ball $ball'(a, r) = ball(a, r) \setminus \{a\}$

Open set A subset A of \mathbf{R} is *open* provided $(\forall x \in A) (\exists r \in \mathbf{R}_{>0}) (\operatorname{ball}(x, r) \subset A)$

- Closed set A subset A of R is closed provided $\mathbf{R} \setminus A$ is open.
- **Limit point** A number a is a *limit point* of a set A provided $(\forall r \in \mathbf{R}_{>0})(\text{ball}'(a,r) \cap A \neq \emptyset)$.
- Set closure $\overline{A} = A \cup LP(A)$, were LP(A) is the set of limit points of A.
- **Open cover** A set C is a cover of a set A provided
 - (a) every member of C is a set
 - (b) $A \subset \bigcup_{B \in \mathcal{C}} B$
- **Compact** A set A is compact provided for every open cover C of A, there is a finite subset C' of C such that C' is an open cover of A.

Least and greatest bounds

For any subset A of \mathbf{R} :

- **glb** z = glb(A) provided
 - (a) z is an lower bound for A
 - (b) x is a lower bound for A implies $x \leq z$
- **lub** z = lub(A) provided
 - (a) z is an upper bound for A
 - (b) x is a upper bound for A implies $z \leq x$

Sequences

- **Bounded** A sequence F is bounded if range(F) bounded.
- **Monotone** A sequence is monotone if it either increases or decreases.
- Cauchy A sequence F is Cauchy provided
 - (a) for every $\varepsilon \in \mathbf{R}_{>0}$
 - (b) there is $n \in \mathbf{Z}$
 - (c) such that for all $k, \ell \in \mathbf{Z}_{>n}$
 - (d) $|F_k F_\ell| < \varepsilon$
- **Converges** A sequence F converges provided
 - (a) there is $L \in \mathbf{R}$
 - (b) and $n \in \mathbf{Z}$
 - (c) such that for all $k \in \mathbb{Z}_{>n}$
 - (d) $|F_k L| < \varepsilon$.

Functions

- Continuous A function F is continuous at a provided
 - (a) $a \in dom(F)$ and
 - (b) for every $\varepsilon \in \mathbf{R}_{>0}$
 - (c) there is $\delta \in \mathbf{R}_{>0}$
 - (d) such that for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$
 - (e) we have $F(x) \in \text{ball}(F(a), \epsilon)$.
- Uniformly continuous A function F is uniformly continuous on a set A provided
 - (a) $A \subset dom(F)$; and
 - (b) for every $\varepsilon \in \mathbf{R}_{>0}$
 - (c) there is $\delta \in \mathbf{R}_{>0}$
 - (d) such that for all $x, y \in A$ and $|x y| < \delta$
 - (e) we have $|F(x) F(y)| < \epsilon$.
- **Limit** A function F has a limit toward a provided
 - (a) a is a limit point of dom(F); and
 - (b) there is $L \in \mathbf{R}$
 - (c) such that for every $\varepsilon \in \mathbf{R}_{>0}$
 - (d) there is $\delta \in \mathbf{R}_{>0}$
 - (e) such that for all $x \in \text{ball}'(a, \delta)$
 - (f) we have $F(x) \in \text{ball}(L, \epsilon)$.
- **Differentiable** A function F is differentiable at a provided
 - (a) $a \in dom(F)$; and
 - (b) there is $\phi \in \text{dom}(F) \to \mathbf{R}$
 - (c) such that ϕ is continuous at a and
 - (d) $(\forall x \in \text{dom}(F))(F(x) = F(a) + (x a)\phi(x)).$

Riemann sums

- **Partition** A set \mathcal{P} is a partition of an interval [a, b] provided
 - (a) the set \mathcal{P} is finite
 - (b) every member of \mathcal{P} is an open interval
 - (c) the members of \mathcal{P} are pairwise disjoint
 - (d) $\bigcup_{I \in \mathcal{P}} \overline{I} = [a, b]$
- Let F be a bounded function on an interval [a, b] and let \mathcal{P} be a partition of [a, b].

- $\mathbf{Lower\ sum}\ \underline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{glb}\big(F\big(\overline{I}\big)\big) \times \mathrm{length}(I)$
- $\mathbf{Upper\ sum}\quad \overline{S}(\mathcal{P}) = \sum_{I \in \mathcal{P}} \mathrm{lub}\big(F\big(\overline{I}\big)\big) \times \mathrm{length}(I)$
- Riemann sum $\sum_{I \in \mathcal{P}, x^{\star} \in \overline{I}} F(x^{\star}) \times \operatorname{length}(I)$

Axioms

- Completeness Every nonempty subset A of \mathbf{R} that is bounded above has a least upper bound.
- Well-ordering Every nonempty set of positive integers contains a least element.
- **Induction** $(\forall n \in \mathbf{Z}_{\geq 0})(P(n))$ if and only if $P(0) \wedge (\forall n \in \mathbf{Z}_{\geq 0})(P(n) \Longrightarrow P(n+1)).$

Named theorems

- **Archimedean** $(\forall x \in \mathbf{R})(\exists n \in \mathbf{Z})(n > x) \equiv \text{true}.$
- **Bolzano–Weirstrass** Every bounded real valued sequence has a convergent subsequence.
- $\begin{tabular}{ll} \bf Heine-Borel & A subset of $\bf R$ is compact iff it is closed and bounded. \end{tabular}$
- $\begin{array}{ccc} \textbf{Cauchy completeness} & \textbf{Every Cauchy sequence in } \mathbf{R} \\ & \textbf{converges.} \end{array}$
- Monotone convergence Every bounded monotone sequence converges.
- Intermediate value theorem If $F \in C_{[a,b]}$, then for all $y \in [\min(F(a), F(b)), \max(F(a), F(b))]$ there is $x \in [a, b]$ such that F(x) = y.
- Mean Value If $F \in C_{[a,b]} \cap C^1_{(a,b)}$, there is $\xi \in (a,b)$ such that $(b-a)F'(\xi) = F(b) F(a)$.

Revised August 10, 2022. Barton Willis is the author of this work. This work is licensed under Attribution 4.0 International (CC BY 4.0) . For the current version of this document, visit