Понятно, что число линейно независимых собственных векторов, принадлежащих некоторому собственному значению (геометрическая кратность), равно алгебраической кратности этого собственного значения (поскольку есть n линейно независимых собственных векторов, а геометрическая кратность не превышает алгебраическую). Тогда, при распределении n+1 вектора по n собственным значениям, некоторому собственному значению λ достанется на 1 вектор больше, чем его геометрическая кратность. Пусть теперь есть собственное значение $\kappa \neq \lambda$. Тогда возьмем n векторов, кроме одного вектора из κ . В таком случае эти вектора будут линейно зависимы — противоречие. Это означает, что все собственные значения оператора равны λ .

Таким образом, любой вектор из собственного подпространства, при действии на него оператора, растягивается в λ раз. Но поскольку из собственных векторов можно составить базис, любой другой вектор пространства, при действии на него оператора, также будет растягиваться в λ раз. Нетрудно понять, что матрица такого оператора должна быть скалярной. В самом деле, при умножении матрицы на вектора вида $(0, \dots 1 \dots, 0)^T$, мы должны получить вектора вида $(0, \dots 1 \dots, 0)^T$. Значит, все элементы на диагонали матрицы равны λ . Если же теперь для некоторых $i \neq j$ $a_{ij} \neq 0$, то легко подобрать вектор, который уже не растянется в λ раз.

В качестве примера для любой скалярной матрицы можно взять все возможные вектора вида $(0, \dots 1 \dots, 0)^T$ и вектор $(1, \dots 1 \dots, 1)^T$.