Bagging e Floresta Aleatória

Tiago Mendonça dos Santos

tiagoms.comtiagomendoncatiagoms1@insper.edu.br

Introdução

Árvores

Aspectos Positivos

- Fácil de explicar (muito mais que regressão linear)
- Podem ser apresentadas graficamente e facilmente interpretadas por pessoas que não são especialistas no assunto
- Tratam facilmente preditores qualitativos, sem a necessidade da criação de variáveis indicadoras / dummies
- Não é sensível a escala como outros métodos

Aspectos Negativos

- Uma pequena alteração nos dados pode causar uma grande alteração na árvore estimada (variância alta)
- Previsões baseadas em regiões retangulares
- Não apresentam desempenho preditivo tão bom quanto outros métodos

Árvores

Aspectos Positivos

- Fácil de explicar (muito mais que regressão linear)
- Podem ser apresentadas graficamente e facilmente interpretadas por pessoas que não são especialistas no assunto
- Tratam facilmente preditores qualitativos, sem a necessidade da criação de variáveis indicadoras / dummies
- Não é sensível a escala como outros métodos

Aspectos Negativos

- Uma pequena alteração nos dados pode causar uma grande alteração na árvore estimada (variância alta)
- Previsões baseadas em regiões retangulares
- Não apresentam desempenho preditivo tão bom quanto outros métodos

Árvores

Árvores

Utilizar muitos conjuntos de dados e treinar o regressor com cada conjunto poderia reduzir a variância do método. As respostas seriam tomadas em média como sendo a resposta resultante do conjunto (*ensemble*) de regressores (daí o termo "método de *ensemble*").

Resultado de 1.000 simulações com $X \sim N(45,3^2)$ e n=100.

Árvores

Qual seria o problema para aplicar esse método em uma situação típica?

Em geral não temos acesso a múltiplos conjuntos de dados de treinamento. A forma de contornar esse problema é trabalhar com amostras *bootstrap*.

Agregando-se muitas árvores de decisão com métodos como o *bagging* (agregação *bootstrap*), a performance preditiva das árvores pode ser melhorada substancialmente (método proposto por Leo Breiman em 1996).

Leo Breiman, 1973

obs: *bagging* é um procedimento geral, não restrito apenas a árvores de classificação e regressão, cujo propósito é reduzir a variância de um método de aprendizagem.

Bagging

A partir de B amostras bootstrap, temos que

$$\hat{g}_{ ext{bag}}(x) = rac{1}{B} \sum_{i=1}^B \hat{g}_i(x).$$

Crescemos árvores bem altas, que, individualmente, terão grande variância e viés baixo. O processo de *bagging* cuida da redução da variância.

Para classificação, $\hat{g}_{\text{bag}}(x)$ seria dado pelo "voto da maioria" dos $\hat{g}_{i}(x)$.

Out-of-Bag

A seguir são apresentadas as frequências com que cada observação foi sorteada para criar as respectivas árvores.

Erro Out-of-Bag

Forma simples de estimar o erro de teste sem precisarmos recorrer a procedimentos de validação cruzada.

Cada árvore crescida durante o procedimento do *bagging*, em média, utiliza aproximadamente dois terços¹ dos dados originais de treinamento.

Os dados do um terço remanescente de uma determinada árvore do *ensemble* são denominados observações *out-of-bag* (fora-dasacola) da árvore em questão.

Erro Out-of-Bag

```
library(tidyverse)
dados <- tibble(B = 1:5000, out = NA)
pop <- 1:500
indicadora <- function(x, populacao){</pre>
  amostra <- sample(populacao, length(populacao), replace = TRUE)</pre>
  return(!any(amostra == x))
for(i in 1:nrow(dados)) dados$out[i] <- indicadora(15, pop)</pre>
dados %>%
  mutate(prop_out = cumsum(out)/B) %>%
  ggplot(aes(B, prop_out)) +
    geom_hline(yintercept = 1/exp(1), linetype = "dashed", color = "red", size = 1.2) +
    geom line(size = 1.2, color = "#5B5FFF") +
    labs(x = "B", y = "Proporção Out of Bag") +
    theme bw()
```

Erro Out-of-Bag (outra forma)

```
pop <- 1:500

dados <- tibble(B = 1:5000, out = NA) %>%
  mutate(out = map_lgl(B, ~ !(15 %in% sample(pop, 500, replace = TRUE))))

dados %>%
  mutate(prop_out = cumsum(out)/B) %>%
  ggplot(aes(B, prop_out)) +
    geom_hline(yintercept = 1/exp(1), linetype = "dashed", color = "red", size = 1.2) +
    geom_line(size = 1.2, color = "#5B5FFF") +
    labs(x = "B", y = "Proporção Out of Bag") +
    theme_bw()
```

Erro Out-of-Bag

Erro Out-of-Bag

Podemos prever a resposta do *i*-ésimo dado de treinamento utilizando todas as árvores do *ensemble* nas quais este dado pertence às observações *out-of-bag*.

Fazendo isto para cada um dos dados de treinamento obtemos uma estimativa válida do erro de teste esperado.

Housing Values in Suburbs of Boston¹

- **crim**: per capita crime rate by town.
- zn: proportion of residential land zoned for lots over 25,000 sq.ft.
- indus: proportion of non-retail business acres per town.
- **chas**: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- nox: nitrogen oxides concentration (parts per 10 million).
- rm: average number of rooms per dwelling.
- age: proportion of owner-occupied units built prior to 1940.
- dis: weighted mean of distances to five Boston employment centres.
- rad: index of accessibility to radial highways.
- tax: full-value property-tax rate per \$10,000.
- ptratio: pupil-teacher ratio by town.
- black: 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town.
- **Istat**: lower status of the population (percent).
- medv: median value of owner-occupied homes in \$1000s.

Bagging

```
library(MASS)
library(rpart.plot)
data(Boston)
set.seed(123)
par(mfrow = c(2, 4))
for(i in 1:8){
  amostra <- sample(nrow(Boston), size = nrow(Boston), replace = TRUE)</pre>
  arvore <- rpart(medv ~ ., data = Boston[amostra, ], control = rpart.control(cp = 0))</pre>
  rpart.plot(arvore)
```

Bagging

Floresta Aleatória

Bagging

Split 1	Split 2	 Split S	
crim	crim	 crim	
ZO	ZO	 zo	
indus	indus	 indus	
chas	chas	 chas	
nox	nox	 nox	
rm	rm	 rm	
age	age	 age	
Dis	Dis	 Dis	
rad	rad	 rad	
tax	tax	 tax	
pratio	pratio	 pratio	
black	black	 black	
Istat	Istat	 Istat	

Floresta Aleatória

Split 1	Split 2	•••	Split S
crim	crim		crim
ZO	ZO		ZO
indus	indus	indu	
chas	chas		chas
nox	nox		nox
rm	rm		rm
age	age		age
Dis	Dis		Dis
rad	rad		rad
tax	tax		tax
pratio	pratio		pratio
black	black		black

Floresta Aleatória¹

- 1. Para b = 1, ..., B:
 - 1. Retire uma amostra bootstrap \mathbf{Z}^* de tamanho N do conjunto de treinamento.
 - 2. Cresça uma árvore T_b a partir da amostra *bootstrap*, repetindo recursivamente os seguintes passos para cada nó terminal da árvore até alcançar o número mínimo de observações n_{\min} de cada nó.
 - 1. Selecione m variáveis aleatoriamente entre as p variáveis.
 - 2. Escolha a melhor variável para a divisão/split entre as m.
 - 3. Divida o nó em dois nós descendentes.
- 2. Retorne o comitê de árvores $\{T_b\}_{b=1}^B$

Para fazer uma previsão para uma dada observação x:

Regressão:
$$\hat{f}^B = \frac{1}{B} \sum_{b=1}^B T_b(\mathbf{x})$$

Classificação: Seja $\hat{C}_b(\mathbf{x})$ a classe predita pela b-ésima árvore. Então, $\hat{C}^B(\mathbf{x}) = \text{voto da maioria } \left\{\hat{C}_b(\mathbf{x})\right\}_{b=1}^B$.

Hiperparâmetros

Número de preditoras a ser considerado em cada divisão/split

Para classificação recomenda-se utilizar \sqrt{p} e número mínimo de observações por nó igual a um. Já para regressão recomenda-se utilizar p/3 e número mínimo de observações por nó igual a 5.

Número de árvores da floresta

Tipicamente se utiliza de 500 a 1.000 árvores. É importante notar que, geralmente, aumentar B não causa sobreajuste dos dados.

Árvore x Floresta Aleatória

Insper

Árvore x Floresta Aleatória

Insper

Housing Values in Suburbs of Boston

```
library(MASS); library(ranger); data(Boston)
  set.seed(123)
  (rf <- ranger(medv ~ ., data = Boston))</pre>
 ## Ranger result
                                                                                                     Copy Code
 ##
 ## Call:
 ## ranger(medv ~ ., data = Boston)
 ##
                                        Regression
 ## Type:
 ## Number of trees:
                                        500
 ## Sample size:
                                        506
▶ ## Number of independent variables:
                                        13
 ## Mtry:
 ## Target node size:
 ## Variable importance mode:
                                        none
 ## Splitrule:
                                        variance
 ## 00B prediction error (MSE):
                                        10.73947
 ## R squared (00B):
                                        0.873036
```

Mean of squared residuals (baseado em oob): mean((Boston\$medv - rf\$predictions)^2)

```
resultados <- tibble(n arvores = 1:500,
                     mse = NA)
for (i in 1:nrow(resultados)) {
   rf <- ranger(medv ~ ., num.trees = resultados$n_arvores[i], data = Boston)</pre>
   resultados$mse[i] <- rf$prediction.error</pre>
resultados %>%
  ggplot(aes(n_arvores, mse)) +
    geom line(color = "#5B5FFF", size = 1.2) +
    labs(x = "Número de Árvores", y = "MSE (00B)") +
    theme_bw()
```



```
resultados \leftarrow crossing(mtry = c(2, 4, 8, 13),
                        n arvores = c(1:10, seq(10, 500, 10))
ajusta <- function(mtry, n_arvores) {</pre>
   rf <- ranger(medv ~ ., num.trees = n_arvores, mtry = mtry, data = Boston)</pre>
   return(rf$prediction.error)
resultados <- resultados %>%
  mutate(mse = map2 dbl(mtry, n arvores, ajusta))
head(resultados)
```

```
## # A tibble: 6 × 3
    mtry n_arvores
##
                  mse
    <dbl>
         <dbl> <dbl>
##
## 1
               1 33.5
         2 22.3
## 2
         3 23.1
## 3
## 4
            4 27.9
## 5
               5 30.2
```

```
resultados %>%
  mutate(mtry = factor(mtry)) %>%
  ggplot(aes(n_arvores, mse, group = mtry, color = mtry)) +
    geom_line( size = 1.2) +
    labs(x = "Número de Árvores", y = "MSE (OOB)") +
    theme_bw()
```


Variable Importance

Verifica-se a redução total no RSS (*residual sum of squares*) devido a divisão/*split* relativa a uma dada preditora para cada árvore e calcula-se a média dessas reduções de acordo com número de árvores na floresta. Portanto, um valor alto indica que a preditora/variável é importante.

$$\mathrm{RSS}_{\mathrm{pai}} - \mathrm{RSS}_{\mathrm{l}} - \mathrm{RSS}_{\mathrm{r}}$$

$$\sum_{i=1}^{n_p} (y_{ ext{pai, i}} - \overline{y}_{ ext{pai, i}})^2 - \sum_{i=1}^{n_l} (y_{l,i} - \overline{y}_{l,i})^2 - \sum_{i=1}^{n_r} (y_{r,i} - \overline{y}_{r,i})^2$$

```
rf1 <- ranger(medv ~ ., importance = "impurity", data = Boston)
vip::vip(rf1, aesthetics = list(fill = "#FF5757"))

rf2 <- ranger(medv ~ ., importance = "permutation", data = Boston)
vip::vip(rf2, aesthetics = list(fill = "#FF5757"))</pre>
```


Churn¹

Conjunto de 5.000 observações e 19 preditoras para churn.

- state
- account_length
- area code
- international_plan
- voice mail plan
- number_vmail_messages
- total day minutes
- total_day_calls
- total_day_charge
- total eve minutes

- total eve calls
- total_eve_charge
- total night minutes
- total night calls
- total_night_charge
- total intl minutes
- total intl calls
- total_intl_charge
- number_customer_service_calls
- churn

total_day_calls \(total_day_charge \$	total_eve_minutes \$	total_eve_calls †	total_eve_charge \$	total_night_mint
110	45.07	197.4	99	16.78	244.7
123	27.47	195.5	103	16.62	254.4
114	41.38	121.2	110	10.3	162.6
71	50.9	61.9	88	5.26	196.9
113	28.34	148.3	122	12.61	186.9
98	37.98	220.6	101	18.75	203.9
88	37.09	348.5	108	29.62	212.6
79	26.69	103.1	94	8.76	211.8
97	31.37	351.6	80	29.89	215.8
84	43.96	222	111	18.87	326.4
4					>

Churn

Para utilizar floresta aleatória com esses dados, considere o seguinte código

```
library(modeldata)
library(ranger)
library(rsample)
data(mlc_churn)
mlc_churn$churn <- factor(mlc_churn$churn, levels = c("no", "yes"))</pre>
set.seed(15)
splits <- initial_split(mlc_churn, prop = .9, strata = "churn")</pre>
treino <- training(splits)</pre>
teste <- testing(splits)</pre>
(rf <- ranger(churn ~ ., data = treino))</pre>
```

Churn

```
## Ranger result
##
## Call:
   ranger(churn ~ ., data = treino)
##
                                      Classification
## Type:
## Number of trees:
                                      500
## Sample size:
                                      4499
## Number of independent variables:
## Mtry:
                                      4
## Target node size:
                                      1
## Variable importance mode:
                                      none
## Splitrule:
                                      gini
## 00B prediction error:
                                      4.07 %
```

```
rf$confusion.matrix
```

```
## predicted
## true no yes
## no 3838 25
## yes 158 478
```

A matriz de confusão é baseada nos dados OOB. As linhas da matriz indicam a categoria da resposta observada e as colunas indicam as categorias classificadas.


```
resultados \leftarrow crossing(mtry = c(4, 8, 15, 19),
                        n_{arvores} = c(1, 5, 10, seq(25, 500, 25)))
ajusta <- function(mtry, n_arvores) {</pre>
   rf <- ranger(churn ~ ., num.trees = n_arvores, mtry = mtry, data = treino)</pre>
   return(rf$prediction.error)
resultados <- resultados %>%
  mutate(erro = map2 dbl(mtry, n arvores, ajusta))
head(resultados)
```

```
## # A tibble: 6 × 3
     mtry n_arvores erro
##
    <dbl>
          <dbl> <dbl>
##
## 1
                1 0.116
## 2
          5 0.0877
     4 10 0.0665
## 3
             25 0.0520
## 4
## 5
               50 0.0465
```

```
resultados %>%
  mutate(mtry = factor(mtry)) %>%
  ggplot(aes(n_arvores, erro, group = mtry, color = mtry)) +
    geom_line( size = 1.2) +
    labs(x = "Número de Árvores", y = "Erro de Classificação (OOB)") +
    theme_bw()
```


Gini Index

$$\operatorname{Gini}(\operatorname{node}) = \sum_{i=1}^{\operatorname{classes}} p_i (1-p_i)$$

Variable Importance

Verifica-se a redução total no índice de Gini para cada preditora com as observações utilizadas na construção da árvore (*in bag*) e calcula-se a média de acordo com o número de árvores na floresta. A redução é ponderada pelo número de observações no nó ancestral e descendentes.

$$n imes ext{Gini}(ext{Pai}) - n_l imes ext{Gini}(ext{Filho}_l) - n_r imes ext{Gini}(ext{Filho}_r)$$

```
rf1 <- ranger(churn ~ ., importance = "impurity", data = treino)
vip::vip(rf1, aesthetics = list(fill = "#FF5757"))

rf2 <- ranger(churn ~ ., importance = "permutation", data = treino)
vip::vip(rf2, aesthetics = list(fill = "#FF5757"))</pre>
```



```
rf <- ranger(churn ~ ., data = treino)</pre>
 head(predict(rf, teste, type = "response")$predictions)
## [1] no yes no no no no
## Levels: no yes
rf <- ranger(churn ~ ., probability = TRUE, data = treino)</pre>
 head(predict(rf, teste, type = "response")$predictions)
##
               no
                         yes
## [1,] 0.7724500 0.22755000
## [2,] 0.4360992 0.56390079
## [3,] 0.9534175 0.04658254
## [4,] 0.9431460 0.05685397
## [5,] 0.8970754 0.10292460
## [6,] 0.5963706 0.40362937
```

```
library(pROC)
 prob_churn <- predict(rf, teste, type = "response")$predictions[,2]</pre>
 table(observado = teste$churn,
       predito = ifelse(prob churn >= .5, "yes", "no"))
##
            predito
## observado no yes
        no 425 5
##
        yes 16 55
##
 desempenho <- roc(teste$churn, prob_churn)</pre>
 coords(desempenho, .5, ret = c("1-accuracy", "sensitivity", "specificity", "ppv", "npv"))
##
             1-accuracy sensitivity specificity
                                                      ppv
                                                                npv
## threshold 0.04191617  0.7746479  0.9883721 0.9166667 0.9637188
```

Churn

Curva ROC

Código

São Paulo - properties

Código Mapa Moçambique Namibia South Africa

Leaflet | © OpenStreetMap contributors, CC-BY-SA

Obrigado!

- **!** tiagoms.com
- **(7)** tiagomendonca
- **□** tiagoms1@insper.edu.br