

Getting started with MCC and Soteria-G3

User guide

Rev 1.0 May 18, 2022

TABLE OF CONTENTS

1	INT	TRODUCTION	3
	1.1 1.2 1.3 1.4 1.5 1.6	Purpose Scope References Pre-requisites Assumptions and Dependencies. Glossary of Terms and Acronyms.	3 3 3
2	WH	HAT IS SOTERIA?	4
3	SE	ETTING UP AN MCC PROJECT WITH SOTERIA LIBRARY	5
4	so	OTERIA-G3 SAMPLE LIBRARY PROJECT	14
	4.1 4.2	OPENING SG3 SAMPLE LIBRARY PROJECT	
5	SO	OTERIA-G3 LIBRARY PROJECT STRUCTURE	16
6	SO	OTERIA-G3 LIBRARY APIS	17
	6. 1 6. 1	1.1 UART debugging	18 19
7	so	OTERIA USER INTERACTION AND FEEDBACK	20
	7.1 7.2	DEBUGGINGOn BOARD LEDs.	
8	AP	PPLICATION TASKS FOR DEBUGGING	23
9	RE	EVISION HISTORY	24

1 Introduction

1.1 Purpose

This document provides details on how to use MCC with CEC173x part and use Soteria secure-boot solution.

1.2 Scope

The scope of this document is limited to providing the user with a high-level overview of MCC, Soteria-G3 and getting started with using Soteria-G3 in CEC173x part.

1.3 References

MPLAB MCC getting started: https://microchipdeveloper.com/mcc:start

1.4 Pre-requisites

IDE	MPLABX IDE v6.00 or higher
DFP	v1.5.142 or higher
Debugger (only in case of debugging)	ICD4 or PICKit4
Compiler	XC32 v4.00
Board	CEC1736 development board with, 1. CEC1736 internal flash pre-programmed binary
	2. External flash modules with pre-programmed AP_FW binaries

1.5 Assumptions and Dependencies

The user is expected to have a fair idea of using MCC with any other Microchip microcontrollers.

1.6 Glossary of Terms and Acronyms

Term/Acronym	Meaning/Expansion
OEM	Original Equipment Manufacturer
AP	Application Processor
SG3	Soteria Generation 3
MCC	Microchip Code Configurator
EC_FW	Embedded Controller Firmware
SPI	Serial Peripheral Interface
СоТ	Chain Of Trust
HAL	Hardware Abstraction Layer
PLIB	Peripheral LIBrary
API	Application Programming Interface
GPIO	General Purpose Input Output
ECIA	Embedded Controller Interrupt Aggregator
IRQ	Interrupt ReQuest
BSP	Board Support Package
UART	Universal Asynchronous Receiver and Transmitter
Hex	Hexadecimal

2 What is Soteria?

Soteria-G3 is a firmware design executed on the CEC173x family of devices. It can be used in conjunction with any application processor (AP) that boots out of an external SPI flash device to extend the Root of Trust and enforce a secure boot process in the system.

Soteria-G3 uses the CEC173x immutable secure bootloader, implemented in ROM, as the system Root-of-Trust (RoT). The CEC173x secure bootloader loads, decrypts and authenticates the embedded controller firmware (EC_FW) from the external (or) internal SPI Flash. The validated EC_FW that runs on the CEC173x is designed to subsequently authenticate the application processor firmware (AP_FW) located in the same SPI Flash component and up to three additional SPI Flash components.

Soteria-G3 prevents the system from booting unless the AP_FW stored in the external SPI Flash is authentic code signed by the OEM. It offers security features to authenticate the SPI Flash image in the external SPI flash device.

The validated AP_FW that runs on the application processor can utilize crypto resources in the CEC173x to authenticate other code in the system, thereby extending the Chain-of-Trust (CoT) to ensure that all code running in the system is authorized.

Soteria-G3 also supports secure firmware updates. EC_FW can authenticate updates to both AP_FW and EC_FW in the system.

3 Setting up an MCC project with Soteria library

- Create a new "32-bit MCC Harmony Project" and select "CEC1736_S0_2ZW" as the target device
- 2. Select and download "cec173x_soteria_lib" component from MCC content manager
- 3. To add Soteria as a library into the created application project, "double click" on "CEC173x Soteria" component which can be found under "Libraries → Harmony → Libraries → CEC173x Soteria" under "Device Resources" window as shown below

4. The Soteria library component should get added in the "Project Graph" and "Project Resources" as shown below

To add UART peripheral into the created application project, "double click" on "UARTO" component which can be found under "Peripherals → UART → UARTO" under "Device Resources" window as shown below

6. The UART peripheral component should get added in the "Project Graph" and "Project Resources" as shown below

7. Change the UART0 configuration as shown in the below image

8. Select the project configurations as shown in the below image

9. Goto "Plugins -> Pin Configuration" located in the project graph as shown in the below image

10. Change the pin configurations as shown in the below image

Pin Number	Pin ID	Custom Name	Function	Direction	Latch	Output Buffer	Polarity	PU/PD	Interrupt	Drive Strength	Slew Rate
A1	GPIO063	GPIO_GPIO063	GPIO ~	In	n/a	Push Pull V	Non-Inverted V	None v	FALLING_EDGE ~	Level0 ∨	Slow ~
A2	GPIO113	GPIO_GPIO113	GPIO V	In	n/a	Push Pull v	Non-Inverted ~	None v	FALLING_EDGE ~	Level0 ~	Slow ~
A6	GPIO107	GPIO_GPIO107	GPIO ~	In	n/a	Push Pull ∨	Non-Inverted ∨	None v	FALLING_EDGE V	Level0 ∨	Slow ~
. A7	GPIO046	GPIO_GPIO046	GPIO ~	In	n/a	Push Pull ∨	Non-Inverted V	None v	FALLING_EDGE V	Level0 ~	Slow ~
B2	GPIO050	GPIO_GPIO050	GPIO ~	In	n/a	Push Pull ∨	Non-Inverted ~	None v	FALLING_EDGE V	Level0 ∨	Slow ~
B3	GPIO015	GPIO_GPIO015	GPIO V	In	n/a	Push Pull ∨	Non-Inverted ∨	None v	FALLING_EDGE V	Level0 ∨	Slow ~
B7	GPIO 140	GPIO_GPIO140	GPIO ~	In	n/a	Push Pull v	Non-Inverted V	None v	FALLING_EDGE V	Level0 v	Slow v
C2	GPIO047	GPIO_GPIO047	GPIO V	In	n/a	Push Pull v	Non-Inverted V	None v	FALLING_EDGE ~	Level0 ∨	Slow ~
F2	GPIO013	GPIO_GPIO013	GPIO ~	In	n/a	Push Pull ~	Non-Inverted ~	None v	FALLING_EDGE ~	Level0 ~	Slow ~
F3	GPIO127	GPIO_GPIO127	GPIO ~	In	n/a	Push Pull V	Non-Inverted V	None v	FALLING_EDGE V	Level0 ~	Slow ~
G2	GPIO201	GPIO_GPIO201	GPIO ~	In	n/a	Push Pull v	Non-Inverted V	None v	FALLING_EDGE V	Level0 ~	Slow ~

11. Goto "Plugins -> NVIC Configuration" located in the project graph as shown in the below image

12. Change the interrupt configurations as shown in the below image

13. Change the core clock settings as shown in the image below

Microchip Technology Ltd.

14. Click on the "Generate" button located under "Project Resources" window and wait for the code generation to complete

15. Once the code generation is complete, the Soteria can be located under the "Libraries" logical folder of the current project as shown below

- 16. Use the "hal" folder provided in "cec173x_soteria_lib/apps/sg3_h3_port" application project (refer <u>Section 4.1</u>) in this new project (Make sure to add this folder into the XC32 compiler include path in your project settings)
- 17. Use the "startup" folder provided in "cec173x_soteria_lib/apps/sg3_h3_port" application project (refer Section 4.1) in this new project (include only "startup_CEC173x.S" in the project)
- 18. Use the "common" folder provided in "cec173x_soteria_lib/apps/sg3_h3_port" application project (refer <u>Section 4.1</u>) in this new project (Make sure to add this folder into the XC32 compiler include path in your project settings)
- 19. Use the linker script "secureboot_app.ld" provided in #17 above (refer Section 4.1) in this new project (Can be found under "common/include/")

- Use the "platform" folder provided in "cec173x_soteria_lib/apps/sg3_h3_port" application
 project (refer <u>Section 4.1</u>) in this new project (Make sure to add this folder into the XC32 compiler
 include path in your project settings)
- 21. After steps #15 to #18, the project structure should look like the image below

- 22. Navigate to "Source Files -> config -> default -> interrupts.c" in the project and carry out the following changes as shown in the below image
 - a. Disable "GIRQ13_Handler", "GIRQ14_Handler", "GIRQ18_Handler", "GIRQ24_Handler" functions and add their extern declarations
 - b. Change the name of Supervisor Call handler function from "SVCall_Handler" to "SVC_Handler"

```
Project open x more note x | 180 G | 181 G | 181 G | 182 G | 181 G | 182 G | 184 G | 1
                                                                                                         I2CSMB0_GRP_Handler();
I2CSMB1_GRP_Handler();
I2CSMB2_GRP_Handler();
I2CSMB3_GRP_Handler();
I2CSMB4_GRP_Handler();
                                                                                                                                                                                                                       55
                                                                                                                                                                                                                       56 extern void GIRQ13_Handler( void );
                                                                                                                                                                                                                      57 extern void GIRQ14 Handler ( void );
                                                                                                                                                                                                                      58 extern void GIRQ18 Handler( void );
                                                                                                 59 extern void GIRQ24_Handler( void );
                                                                                                        DNA_CHOO_GRE_Handler())
                                                                                                                                                                                                                                                                              ((section(".vectors")))
                                                                                                                                                                                                                                const H3DeviceVectors exception_table=
                                                                                                                                                                                                                                               /* Configure Initial Stack Pointer, using linker-generate
                                                                                                                                                                                                                                             .pvStack = &_stack,
                                                                                                                                                                                                                                           .pfnNonMaskableInt_Handler = NonMaskableInt_Handler,
                                                                                                                                                                                                                                          .pfnHardFault_Handler = HardFault_Handler,
.pfnBusFault_Handler = BusFault_Handler,
.pfnUsageFault_Handler = UsageFault_Handler,
.pfnUsageFault_Handler = UsageFault_Handler,
                                                                                              static void GIRQ24_Handler( void )
                                                                                                        SPINONO_VLIM_GRP_Handler();
SPINONO_MIMON_GRP_Handler();
SPINONO_LIMON_GRP_Handler();
SPINONO_VLIM_GRP_Handler();
SPINONO_WIM_GRP_Handler();
SPINONO_LIMON_GRP_Handler();
                                                                                                                                                                                                                                          .pfnSVCall_Handler = SVC_Hangler,
.pfnDebugMonitor_Handler = DebugMonitor_Handler,
nfnPendSV Handler = PendSV_Handler,
                                                                                                                                                                                                                                           .pfnSVCall_Handler
                                                                                                                                                                                                                                                                                                                                                          = SVC Handler, 🗲
                                                                                                                                                                                                                 .pfnPendSV_Handler
.pfnSysTick_Handler
.pfnGIRQ08_Handler
                                                                                                                                                                                                                                                                                                                                                           = SysTick Handler.
                                                                                                                                                                                                                                                                                                                                                   = GIRQ08_Handler,
```

23. Add "-u irqhandler_tag" under additional options text box section of XC32 linker options as shown in the below image

- 24. Disable the following in XC32 compiler settings as shown in the below image
 - a. Make warnings into errors
 - b. Additional warnings
 - c. Isolate each function in a section
 - d. Place data into its own section

25. Add the path to the Soteria libraries into XC32 linker options as shown in the below image

26. If you get the below error during the project creation process, then navigate to "Tools -> Options -> Plugins Tab -> MPLAB Code Configurator x.x" as shown in Step #2 under Section 4.1 of this document and re-set the path to the Harmony Framework with the same value again

- 27. Include the file "common.h" in the main.c file of this project
- 28. To run the SG3 application, the application's main function should call the functions described in Section 6.1.2
- 29. Refer to Section 6 and Section 8 to understand the usage of the available API functions and OEM tasks

4 Soteria-G3 sample library project

To ease the process of creating a Soteria-G3 project from scratch, a sample project has already been created, which can be found under

"HarmonyFrameworkPath/cec173x_soteria_lib/apps/sg3_h3_port/"

4.1 Opening SG3 sample library project

- 1. From the MCC content manger, select the component "cec173x_soteria_lib" and download it
- 2. Locate the "MCC Content Path" by navigating to "Tools -> Options -> Plugins Tab -> MPLAB Code Configurator x.x" tab as shown below

- 3. Navigate to this location to find the folder "cec173x_soteria_lib/apps/sg3_h3_port/firmware/" which contains the SG3 application project for this device
- 4. Open the "sg3_h3_port" sample application project in MPLABX
- 5. Users can get started with developing an application by using the application task functions of this project as mentioned in <u>Section 8</u> of this document

4.2 High level design

5 Soteria-G3 library project structure

common/debug/	APIs for UART debugging
common/include/	APIs for working with GPIO and ECIA
	blocks
	Common file inclusions for use by
	application
	3. Linker script
config/	MCC generated PLIB files
hal/	Hardware Abstraction Layer APIs (not to be
	used unless an API is not present in
	ahb_api_mpu.h)
kernel/	SG3 APIs for application use
oem/	Functions and definitions for adding user code
packs/	MCC generated device specific files (not for
	application use)
platform/	 Application specific configurations
	Interrupt handling routines
startup/	Device startup file

6 Soteria-G3 library APIs

6.1.1 UART debugging

6.1.1.1 Formatted printing to UART

Function prototype:					
void tracex(const char *fmt,);					
Description:					
The function usage is like the <i>printf</i> function of stdio					
Inputs:					
Same as <i>printf</i> function of stdio					
Outputs:					
None					
6.1.1.2 ISR safe formatted printing to UART					
Function prototype:					
void tracex_from_ISR(const char *fmt,);					
Description:					
This function is an ISR safe equivalent of <i>tracex</i>					
Inputs:					
Same as printf function of stdio					
Outputs:					
None					
6.1.1.3 Hex dump to UART					
Function prototype:					
void print_buf(uint8_t *buf, uint32_t len);					
Description:					

Prints hexadecimal values inside a buffer of user defined length

Microchip Technology Ltd.

Inputs:

Input Parameter	Description
buf	Pointer to a user defined allocated buffer which contains
len	Length of the user defined allocated buffer

Outputs:

None

6.1.2 Soteria-G3 specific APIs

6.1.2.1 Soteria-G3 firmware initialization

Function prototype:

int sg3_init(void)

Description:

Initializes the Soteria-G3 firmware application

Inputs:

None

Outputs:

Input Parameter	Description
0	Soteria-G3 initialization succeeded
-1	Soteria-G3 initialization failed

6.1.2.2 Start Soteria-G3 firmware operation

Function prototype:

void sg3_start(void)

Description:

Runs the Soteria-G3 firmware application

Note:

Inputs:

None

Outputs:

None

6.1.3 GPIO and ECIA peripheral access

To configure the GPIO and ECIA peripherals from OEM functions, please refer to the file "ahb_api_mpu.h" present in "cec173x_soteria_lib/apps/sg3_h3_port" sample SG3 project. Accessing these peripherals directly using MCC generated APIs is not allowed because of software design constraints.

6.1.4 Interrupts

The following interrupts are already defined in the Soteria-G3 application library, hence re-defining these interrupt handlers will cause a build error.

- 1. GIRQ13_Handler
- 2. GIRQ14_Handler
- 3. GIRQ18_Handler
- 4. GIRQ24_Handler
- 5. SVC_Handler

For use in your custom Soteria-G3 project, it is enough to declare the prototypes for these handlers as follows.

- 1. extern void GIRQ13_Handler (void);
- 2. extern void GIRQ14 Handler (void);
- 3. extern void GIRQ18_Handler (void);
- 4. extern void GIRQ24 Handler (void);
- 5. extern void SVC_Handler (void);

Make sure that the names of the ISRs above match with those in the vector table generated by MCC (located in *config/default/interrupts.c*).

Soteria user interaction and feedback

7.1 Debugging

- 1. Connect a micro-USB cable to the P2 connector on the development board
- 2. Connect the debugger to the J33 connector on the development board

Power and serial port connector (CEC1736)

- 3. Open the "sg3_h3_port" sample Soteria project using MPLABX IDE (Refer Section 4.1)
- 4. Clean and build the project by selecting "Clean and Build" option from the project context menu
- 5. Start a debug session of this project by selecting the "Debug" option from the project context
- 6. Click on "Run" from the "Debug" context menu
- 7. Open "PuTTY" or any other serial port application with the following settings
 a. Baud rate: 115200

 - b. Stop bits: 1
 - c. Flow control: Off
 - d. Parity: None
- 8. The UART output from SG3 can be observed on the serial port application

7.2 On board LEDs

State	Observation
Authenticating AP images	Blink rate = 2Hz
	Pattern = None
Authentication completed	Blink rate = 0.5 Hz
and no error detected	Pattern = None
Authentication completed	Blink rate = 1Hz
and non-fatal error detected	Pattern = 2

Authentication completed	Blink rate = 1Hz
and fatal error detected	Pattern = 1
Executing recovery	Blink rate = 4Hz
sequence	Pattern = None
Authentication completed	Blink rate = 1Hz
post recovery and no error	Pattern = None
detected	

LED12 behavior

State	AP0 critical image	AP1 critical image	LED5	LED6
Authenticating AP	No failure	No failure	Off	Off
images	Image failure	No failure	Blink rate = 1Hz Pattern = None	Off
	No failure	Image failure	Off	Blink rate = 1Hz Pattern = None
	Image failure	Image failure	Blink rate = 1Hz Pattern = None	Blink rate = 1Hz Pattern = None
Executing recovery sequence	Recover image	No recovery	Blink rate = 4Hz Pattern = None	Off
	No recovery	Recover image	Off	Blink rate = 4Hz Pattern = None
	Recover image	Recover image	Blink rate = 4Hz Pattern = None	Blink rate = 4Hz Pattern = None
Authentication completed and error detected	Non-fatal error	No failure	Blink rate = 1Hz Pattern = None	Off
	No Failure	Non-fatal error	Off	Blink rate = 1Hz Pattern = None
	Non-fatal error	Non-fatal error	Blink rate = 1Hz Pattern = None	Blink rate = 1Hz Pattern = None
	No failure	Fatal error	Off	Blink rate = 1Hz

				Pattern = 2
	Non-fatal error	Fatal error	Blink rate = 1Hz Pattern = None	Blink rate = 1Hz Pattern = 2
	Fatal error	X	Blink rate = 1 Hz Pattern = 1	Blink rate = 1Hz Pattern = 1
Authentication completed and no error detected	Pass	Pass	Off	Off
Authentication completed post recovery	Image recovered	No image recovered	Blink rate = 1Hz Pattern = None	Off
	No image recovered	Image recovered	Off	Blink rate = 1Hz Pattern = None
	Image recovered	Image recovered	Blink rate = 1Hz Pattern = None	Blink rate = 1Hz Pattern = None

LED5 and LED6 behavior

Blink patterns:

- Blink Blink Off Off <repeat>
 Blink Off Off <repeat>

8 Application tasks for debugging

Soteria provides OEM task functions for user to play around with various features of the application project.

There are three functions provided to the user to get started with Soteria.

- oem_task1_function ()
- oem_task2_function()
- oem_task3_function()

The user can add his own code inside these functions to evaluate the capabilities and features of Soteria and CEC173x secure-boot controller.

Please refer to the sample Soteria application project present in

[&]quot;cec173x_soteria_lib/apps/sg3_h3_port" for reference. The OEM task functions can be located under "src/oem/oem_task1", "src/oem/oem_task2" and "src/oem/oem_task3" directories.

9 Revision History

Name	Revision Level	Date	Section	Remarks
Shreyas Kannan	0.1	March 29, 2022	1	Initial draft
Shreyas Kannan	0.2	March 30, 2022	2, 3, 4, 5, 6	Updated
Shreyas Kannan	0.3	April 1, 2022	2, 3, 4, 5, 6	Updated
Shreyas Kannan	0.4	April 5, 2022	1.4, 1.6, 2, 4, 5	Updated
Shreyas Kannan	0.5	April 6, 2022	6.2	Updated
Shreyas Kannan	0.6	April 7, 2022	4, 7	Updated
Shreyas Kannan	1.0	May 18, 2022	3, 4, 6, 8	Updated