Want more content like this? Subscribe here to be notified of new releases!

Unsupervised Learning

Blog

•

English

Tips and tricks

Dimension reduction

PCA

ICA

Clustering

CS 229 - Machine Learning

Supervised Learning

Deep Learning

Unsupervised Learning cheatsheet

☆ Star 17,275

By Afshine Amidi and Shervine Amidi

Introduction to Unsupervised Learning

 \Box **Motivation** — The goal of unsupervised learning is to find hidden patterns in unlabeled data $\{x^{(1)},...,x^{(m)}\}$.

 $E[f(X)] \geqslant f(E[X])$

 \square Jensen's inequality — Let f be a convex function and X a random variable. We have the following inequality:

Expectation-Maximization

Clustering

□ Latent variables — Latent variables are hidden/unobserved variables that make estimation problems difficult, and are often denoted z. Here are the most common settings where there are latent variables:

Latent variable zx|zSetting **Comments**

	Mixture of k Gaussians	$\operatorname{Multinomial}(\phi)$	$\mathcal{N}(\mu_j, \Sigma_j)$	$\mu_j \in \mathbb{R}^n, \phi \in \mathbb{R}^k$		
	Factor analysis	$\mathcal{N}(0,I)$	$\mathcal{N}(\mu+\Lambda z,\psi)$	$\mu_j \in \mathbb{R}^n$		
\Box Algorithm — The Expectation-Maximization (EM) algorithm gives an efficient method at estimating the parameter $ heta$						
through maximu	m likelihood estimation by i	repeatedly constructir	ng a lower-bound or	the likelihood (E-step) and optimizing	

- that lower bound (M-step) as follows: • E-step: Evaluate the posterior probability $Q_i(z^{(i)})$ that each data point $x^{(i)}$ came from a particular cluster $z^{(i)}$ as follows:
 - $ig|\, Q_i(z^{(i)}) = P(z^{(i)}|x^{(i)}; heta)\,,$

• M-step: Use the posterior probabilities $Q_i(z^{(i)})$ as cluster specific weights on data points $x^{(i)}$ to separately re-

 $igg| heta_i = rgmax_{ heta} \sum_i \int_{z^{(i)}} Q_i(z^{(i)}) \log\left(rac{P(x^{(i)},z^{(i)}; heta)}{Q_i(z^{(i)})}
ight) dz^{(i)}$

We note $c^{(i)}$ the cluster of data point i and μ_j the center of cluster j.

k-means clustering

 \Box Algorithm — After randomly initializing the cluster centroids $\mu_1,\mu_2,...,\mu_k\in\mathbb{R}^n$, the k-means algorithm repeats the

following step until convergence:

 $J(c,\mu) = \sum_{i=1}^m ||x^{(i)} - \mu_{c^{(i)}}||^2$

successive manner.

Hierarchical clustering

□ **Types** — There are different sorts of hierarchical clustering algorithms that aims at optimizing different objective functions, which is summed up in the table below:

□ Algorithm — It is a clustering algorithm with an agglomerative hierarchical approach that build nested clusters in a

Minimize average distance between Minimize maximum distance of Minimize within cluster distance between cluster pairs cluster pairs

Clustering assessment metrics
In an unsupervised learning setting, it is often hard to assess the performance of a model since we don't have the ground

Average linkage

Complete linkage

\Box Silhouette coefficient — By noting a and b the mean distance between a sample and all other points in the same class, and between a sample and all other points in the next nearest cluster, the silhouette coefficient s for a single sample is

dispersion matrices respectively defined as

truth labels as was the case in the supervised learning setting.

Ward linkage

defined as follows:

 \square Calinski-Harabaz index — By noting k the number of clusters, B_k and W_k the between and within-clustering

$$B_k = \sum_{j=1}^k n_{c^{(i)}} (\mu_{c^{(i)}} - \mu) (\mu_{c^{(i)}} - \mu)^T, \qquad W_k = \sum_{i=1}^m (x^{(i)} - \mu_{c^{(i)}}) (x^{(i)} - \mu_{c^{(i)}})^T$$
 the Calinski-Harabaz index $s(k)$ indicates how well a clustering model defines its clusters, such that the higher the score, the more dense and well separated the clusters are. It is defined as follows:

 $\left|s(k) = rac{ ext{Tr}(B_k)}{ ext{Tr}(W_k)} imes rac{N-k}{k-1}
ight|$

 $Az = \lambda z$

 $\exists \Lambda ext{ diagonal}, \quad A = U \Lambda U^T$

\Box **Eigenvalue, eigenvector** — Given a matrix $A\in\mathbb{R}^{n imes n}$, λ is said to be an eigenvalue of A if there exists a vector $z\in$ $\mathbb{R}^n \setminus \{0\}$, called eigenvector, such that we have:

Dimension reduction

Principal component analysis

 \square Spectral theorem — Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting $\Lambda = \operatorname{diag}(\lambda_1,...,\lambda_n)$, we have:

It is a dimension reduction technique that finds the variance maximizing directions onto which to project the data.

$$\Box$$
 Algorithm — The Principal Component Analysis (PCA) procedure is a dimension reduction technique that projects the data on k dimensions by maximizing the variance of the data as follows:

• Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

• Step 3: Compute $u_1,...,u_k\in\mathbb{R}^n$ the k orthogonal principal eigenvectors of Σ , i.e. the orthogonal eigenvectors of the

 $\left|x_j^{(i)} \leftarrow rac{x_j^{(i)} - \mu_j}{\sigma_j}
ight| \quad ext{where} \quad \left|\mu_j = rac{1}{m}\sum_{i=1}^m x_j^{(i)}
ight| \quad ext{and} \quad \left|\sigma_j^2 = rac{1}{m}\sum_{i=1}^m (x_j^{(i)} - \mu_j)^2
ight|$

• Step 2: Compute $\Sigma=rac{1}{m}\sum_{i=1}^m x^{(i)}x^{(i)}^T\in\mathbb{R}^{n imes n}$, which is symmetric with real eigenvalues.

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of matrix A.

- k largest eigenvalues. • Step 4: Project the data on $\operatorname{span}_{\mathbb{R}}(u_1,...,u_k)$. This procedure maximizes the variance among all k-dimensional spaces.

ullet Write the probability of $x=As=W^{-1}s$ as:

View PDF version on GitHub

 $\rightarrow X_1$

Data in feature space Find principal components Data in principal components space Independent component analysis It is a technique meant to find the underlying generating sources. lacktriangle Assumptions — We assume that our data x has been generated by the n-dimensional source vector $s=(s_1,...,s_n)$, where s_i are independent random variables, via a mixing and non-singular matrix A as follows: x = AsThe goal is to find the unmixing matrix $W = A^{-1}$.

• Write the log likelihood given our training data $\{x^{(i)}, i \in \llbracket 1, m
rbracket\}$ and by noting g the sigmoid function as:

 $l(W) = \sum_{i=1}^m \left(\sum_{j=1}^n \log\left(g'(w_j^T x^{(i)})
ight) + \log|W|
ight)$

 \Box Bell and Sejnowski ICA algorithm — This algorithm finds the unmixing matrix W by following the steps below:

$$W \longleftarrow W + lpha \left(egin{pmatrix} 1 - 2g(w_1^Tx^{(i)}) \ 1 - 2g(w_2^Tx^{(i)}) \ dots \ 1 - 2g(w_n^Tx^{(i)}) \end{pmatrix} x^{(i)^T} + (W^T)^{-1}
ight)$$

Therefore, the stochastic gradient ascent learning rule is such that for each training example $x^{(i)}$, we update W as follows:

 $p(x) = \prod_{i=1}^n p_s(w_i^T x) \cdot |W|$

in G G