TutorialsDSAData ScienceWeb TechCourses

Python for Machine Learning Machine Learning with R Machine Learning Algorithms EDA Math for Machine L

Implementing Apriori algorithm in Python

Last Updated: 11 Jan, 2023

Prerequisites: Apriori Algorithm

Apriori Algorithm is a Machine Learning algorithm which is used to gain insight into the structured relationships between different items involved. The most prominent practical application of the algorithm is to recommend products based on the products already present in the user's cart. **Walmart** especially has made great use of the algorithm in suggesting products to it's users.

Dataset: Groceries data

Implementation of algorithm in Python:

Step 1: Importing the required libraries

Python3

```
import numpy as np
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules
```

Step 2: Loading and exploring the data

Create a Perfect Portfolio as a Content ...

5 5

02:39 / 06:31

Python3

```
# Changing the working location to the location of the file
cd C:\Users\Dev\Desktop\Kaggle\Apriori Algorithm

# Loading the Data
data = pd.read_excel('Online_Retail.xlsx')
data.head()
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Python3

```
# Exploring the columns of the data
data.columns
```

Python3

Step 3: Cleaning the Data

Python3

```
# Stripping extra spaces in the description
data['Description'] = data['Description'].str.strip()

# Dropping the rows without any invoice number
data.dropna(axis = 0, subset =['InvoiceNo'], inplace = True)
data['InvoiceNo'] = data['InvoiceNo'].astype('str')

# Dropping all transactions which were done on credit
data = data[~data['InvoiceNo'].str.contains('C')]
```

Step 4: Splitting the data according to the region of transaction

Python3

```
.groupby(['InvoiceNo', 'Description'])['Quantity']
.sum().unstack().reset_index().fillna(0)
.set_index('InvoiceNo'))

# Transactions done in Portugal
basket_Por = (data[data['Country'] =="Portugal"]
.groupby(['InvoiceNo', 'Description'])['Quantity']
.sum().unstack().reset_index().fillna(0)
.set_index('InvoiceNo'))

basket_Sweden = (data[data['Country'] =="Sweden"]
.groupby(['InvoiceNo', 'Description'])['Quantity']
.sum().unstack().reset_index().fillna(0)
.set_index('InvoiceNo'))
```

Step 5: Hot encoding the Data

Python3

```
# Defining the hot encoding function to make the data suitable
# for the concerned libraries
def hot_encode(x):
    if(x<= 0):
        return 0
    if(x>= 1):
        return 1
# Encoding the datasets
basket_encoded = basket_France.applymap(hot_encode)
basket_France = basket_encoded
basket_encoded = basket_UK.applymap(hot_encode)
basket_UK = basket_encoded
basket_encoded = basket_Por.applymap(hot_encode)
basket_Por = basket_encoded
basket_encoded = basket_Sweden.applymap(hot_encode)
basket_Sweden = basket_encoded
```

Step 6: Building the models and analyzing the results

a) France:

Python3

```
# Building the model
frq_items = apriori(basket_France, min_support = 0.05, use_colnames = True)
# Collecting the inferred rules in a dataframe
rules = association_rules(frq_items, metric ="lift", min_threshold = 1)
rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False])
print(rules.head())
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
44	(JUMBO BAG WOODLAND ANIMALS)	(POSTAGE)	0.076531	0.765306	0.076531	1.000	1.306667	0.017961	inf
258	(PLASTERS IN TIN CIRCUS PARADE, RED TOADSTOOL	(POSTAGE)	0.051020	0.765306	0.051020	1.000	1.306667	0.011974	inf
270	(PLASTERS IN TIN WOODLAND ANIMALS, RED TOADSTO	(POSTAGE)	0.053571	0.765306	0.053571	1.000	1.306667	0.012573	inf
301	(SET/6 RED SPOTTY PAPER CUPS, SET/20 RED RETRO	(SET/6 RED SPOTTY PAPER PLATES)	0.102041	0.127551	0.099490	0.975	7.644000	0.086474	34.897959
302	(SET/6 RED SPOTTY PAPER PLATES, SET/20 RED RET	(SET/6 RED SPOTTY PAPER CUPS)	0.102041	0.137755	0.099490	0.975	7.077778	0.085433	34.489796

From the above output, it can be seen that paper cups and paper and plates are bought together in France. This is because the French have a culture of having a get-together with their friends and family atleast once a week. Also, since the French government has banned the use of plastic in the country, the people have to purchase the paper-based alternatives.

b) United Kingdom:

Python3

```
frq_items = apriori(basket_UK, min_support = 0.01, use_colnames = True)
rules = association_rules(frq_items, metric ="lift", min_threshold = 1)
rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False])
print(rules.head())
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
116	(BEADED CRYSTAL HEART PINK ON STICK)	(DOTCOM POSTAGE)	0.011036	0.037928	0.010768	0.975728	25.725872	0.010349	39.637371
2019	(SUKI SHOULDER BAG, JAM MAKING SET PRINTED)	(DOTCOM POSTAGE)	0.011625	0.037928	0.011196	0.963134	25.393807	0.010755	26.096206
2296	(HERB MARKER THYME, HERB MARKER MINT)	(HERB MARKER ROSEMARY)	0.010714	0.012375	0.010232	0.955000	77.173095	0.010099	21.947227
2302	(HERB MARKER PARSLEY, HERB MARKER ROSEMARY)	(HERB MARKER THYME)	0.011089	0.012321	0.010553	0.951691	77.240055	0.010417	20.444951
2300	(HERB MARKER THYME, HERB MARKER PARSLEY)	(HERB MARKER ROSEMARY)	0.011089	0.012375	0.010553	0.951691	76.905682	0.010416	20.443842

If the rules for British transactions are analyzed a little deeper, it is seen that the British people buy different colored tea-plates together. A reason behind this may be because typically the British enjoy tea very much and often collect different colored tea-plates for different occasions.

c) Portugal:

Python3

```
frq_items = apriori(basket_Por, min_support = 0.05, use_colnames = True)
rules = association_rules(frq_items, metric ="lift", min_threshold = 1)
rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False])
print(rules.head())
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
1170	(SET 12 COLOUR PENCILS DOLLY GIRL)	(SET 12 COLOUR PENCILS SPACEBOY)	0.051724	0.051724	0.051724	1.0	19.333333	0.049049	inf
1171	(SET 12 COLOUR PENCILS SPACEBOY)	(SET 12 COLOUR PENCILS DOLLY GIRL)	0.051724	0.051724	0.051724	1.0	19.333333	0.049049	inf
1172	(SET 12 COLOUR PENCILS DOLLY GIRL)	(SET OF 4 KNICK KNACK TINS LONDON)	0.051724	0.051724	0.051724	1.0	19.333333	0.049049	inf
1173	(SET OF 4 KNICK KNACK TINS LONDON)	(SET 12 COLOUR PENCILS DOLLY GIRL)	0.051724	0.051724	0.051724	1.0	19.333333	0.049049	inf
1174	(SET 12 COLOUR PENCILS DOLLY GIRL)	(SET OF 4 KNICK KNACK TINS POPPIES)	0.051724	0.051724	0.051724	1.0	19.333333	0.049049	inf

On analyzing the association rules for Portuguese transactions, it is observed that Tiffin sets (Knick Knack Tins) and color pencils. These two products

typically belong to a primary school going kid. These two products are required by children in school to carry their lunch and for creative work respectively and hence are logically make sense to be paired together.

Python3

d) **Sweden**:

```
frq_items = apriori(basket_Sweden, min_support = 0.05, use_colnames = True)
rules = association_rules(frq_items, metric ="lift", min_threshold = 1)
rules = rules.sort_values(['confidence', 'lift'], ascending =[False, False])
print(rules.head())
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(12 PENCILS SMALL TUBE SKULL)	(PACK OF 72 SKULL CAKE CASES)	0.055556	0.055556	0.055556	1.0	18.0	0.052469	inf
1	(PACK OF 72 SKULL CAKE CASES)	(12 PENCILS SMALL TUBE SKULL)	0.055556	0.055556	0.055556	1.0	18.0	0.052469	inf
4	(36 DOILIES DOLLY GIRL)	(ASSORTED BOTTLE TOP MAGNETS)	0.055556	0.055556	0.055556	1.0	18.0	0.052469	inf
5	(ASSORTED BOTTLE TOP MAGNETS)	(36 DOILIES DOLLY GIRL)	0.055556	0.055556	0.055556	1.0	18.0	0.052469	inf
180	(CHILDRENS CUTLERY DOLLY GIRL)	(CHILDRENS CUTLERY CIRCUS PARADE)	0.055556	0.055556	0.055556	1.0	18.0	0.052469	inf

On analyzing the above rules, it is found that boys' and girls' cutlery are paired together. This makes practical sense because when a parent goes shopping for cutlery for his/her children, he/she would want the product to be a little customized according to the kid's wishes.

"This course is very well structured and easy to learn. Anyone with zero experience of data science, python or ML can learn from this. This course makes things so easy that anybody can learn on their own. It's helping me a lot. Thanks for creating such a great course."- Ayushi Jain | Placed at Microsoft

Now's your chance to unlock high-earning job opportunities as a <u>Data</u> <u>Scientist!</u> Join our <u>Complete Machine Learning & Data Science Program</u> and get a 360-degree learning experience mentored by industry experts.

Get hands on practice with **40+ Industry Projects, regular doubt solving sessions**, and much more. Register for the Program today!

A Alind... 20

Next Article

Python | Decision tree implementation

Similar Reads

Apriori Algorithm

Prerequisite - Frequent Item set in Data set (Association Rule Mining) Apriori algorithm is given by R. Agrawal and R. Srikant in 1994 for finding frequent...

5 min read

Implementing the AdaBoost Algorithm From Scratch

In this article, we will learn about the AdaBoost classifier and its practical implementation over a dataset. AdaBoost algorithm falls under ensemble...

6 min read

Implementing DBSCAN algorithm using Sklearn

Prerequisites: DBSCAN Algorithm Density Based Spatial Clustering of Applications with Noise(DBCSAN) is a clustering algorithm which was...

3 min read

Implementing PCA in Python with scikit-learn

In this article, we will learn about PCA (Principal Component Analysis) in Python with scikit-learn. Let's start our learning step by step. WHY PCA? Wh...

4 min read

Implementing Rich getting Richer phenomenon using Barabasi Albert...

Prerequisite- Introduction to Social Networks, Barabasi Albert Graph In social networks, there is a phenomenon called Rich getting Richer also known as...

4 min read

View More Articles

Article Tags: python Machine Learning

Practice Tags: Machine Learning python

Company

About Us

Legal

Careers

In Media

Contact Us

Explore

Hack-A-Thons
GfG Weekly Contest
DSA in JAVA/C++
Master System Design
Master CP

Advertise with us

GFG Corporate Solution

Placement Training Program

GeeksforGeeks Videos Geeks Community

Languages

Python

Java

C++

PHP

GoLang

SQL

R Language

Android Tutorial

Tutorials Archive

Data Science & ML

Data Science With Python

Data Science For Beginner

Machine Learning Tutorial

ML Maths

Data Visualisation Tutorial

Pandas Tutorial

NumPy Tutorial

NLP Tutorial

Deep Learning Tutorial

Python Tutorial

Python Programming Examples

Python Projects

Python Tkinter

Web Scraping

OpenCV Tutorial

Python Interview Question

Django

DevOps

Git

AWS

Docker

Kubernetes

Azure

GCP

DevOps Roadmap

System Design

High Level Design

Low Level Design

UML Diagrams

DSA

Data Structures

Algorithms

DSA for Beginners

Basic DSA Problems

DSA Roadmap

Top 100 DSA Interview Problems

DSA Roadmap by Sandeep Jain

All Cheat Sheets

HTML & CSS

HTML

CSS

Web Templates

CSS Frameworks

Bootstrap

Tailwind CSS

SASS

LESS

Web Design

Computer Science

Operating Systems

Computer Network

Database Management System

Software Engineering

Digital Logic Design

Engineering Maths

Competitive Programming

Top DS or Algo for CP

Top 50 Tree

Top 50 Graph

Top 50 Array

Top 50 String

Top 50 DP

Top 15 Websites for CP

JavaScript

JavaScript Examples

TypeScript

ReactJS

Interview Guide NextJS
Design Patterns AngularJS
OOAD NodeJS
System Design Bootcamp Lodash
Interview Questions Web Browser

Preparation Corner

Company-Wise Recruitment ProcessMathematicsResume TemplatesPhysicsAptitude PreparationChemistryPuzzlesBiologyCompany-Wise PreparationSocial Science

English Grammar World GK

Free Online Tools

Random Password Generator

GeeksforGeeks Videos

School Subjects

Management & Finance

ManagementTyping TestHR ManagementImage EditorFinanceCode FormattersOrganisational BehaviourCode ConvertersMarketingCurrency ConverterRandom Number Generator

More Tutorials

Software Development DSA
Software Testing Python
Product Management Java
SEO - Search Engine Optimization C++

Linux Web Development
Excel Data Science
All Cheatsheets CS Subjects

@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved