

Logical Database Design and the Relational Model - II

Lecture 11 - 12

CSE 303: Database Management
System

Basic Definitions

- Normalization The process of decomposing relations with anomalies to produce smaller, well-structured relations.
 - > During logical database design You should use normalization concepts as a quality check for the relations that are obtained from mapping E-R diagrams.
 - > When reverse-engineering older systems Many of the tables and user views for older systems are redundant and subject to the anomalies
- Normal form A state of a relation that requires that certain rules regarding relationships between attributes (or functional dependencies) are satisfied.

Basic Definitions

- ❖ Functional dependency A constraint between two attributes in which the value of one attribute is determined by the value of another attribute.
- Determinant The attribute on the left side of the arrow in a functional dependency.
 - For any relation \mathbf{R} , attribute \mathbf{B} is functionally dependent $(\mathbf{A} \rightarrow \mathbf{B})$ on attribute \mathbf{A} if, for every valid instance of \mathbf{A} , that value of \mathbf{A} uniquely determines the value of \mathbf{B} .
 - ➤ A functional dependency is not a mathematical dependency: B cannot be computed from A. Rather, if you know the value of A, there can be only one value for B.
 - > An attribute may be functionally dependent on a combination of two (or more) attributes rather than on a single attribute.

(a) Functional dependencies in EMPLOYEE1

(b) Functional dependencies in EMPLOYEE2

Basic Definitions

- Candidate key An attribute, or combination of attributes, that uniquely identifies a row in a relation.
 - ➤ *Unique identification* For every row, the value of the key must uniquely identify that row. This property implies that each nonkey attribute is functionally dependent on that key.
 - > Nonredundancy No attribute in the key can be deleted without destroying the property of unique identification.
- A candidate key is always a determinant, whereas a determinant may or may not be a candidate key. For example, in EMPLOYEE2, EmpID is a determinant but not a candidate key.

Steps in normalization

Step 0: Represent the View in **Tabular Form**

OrderID

1006

1007

Order

Date

10/24/2010

10/25/2010

ID

2

6

Step 1: Convert to First Normal Form

- First normal form (1NF) A relation that has a primary key and in which there are no repeating groups.
 - > There are no repeating groups in the relation (thus, there is a single fact at the intersection of each row and column of the table).
 - > A primary key has been defined, which uniquely identifies each row in the relation.

Normalization Steps

- Repeating groups can be removed by filling relevant data values into previously vacant cells. Primary key can be formed using the functional dependencies of the case study.

Step 1.1: Removing repeating groups

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
				V	4	Entertainment Center	Natural Maple	650.00	3
OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

Step 1.2: Selection of primary key

- Primary key should determine all the attributes. Below we have the functional dependencies.
 - ➤ OrderID → OrderDate, CustomerID, CustomerName, CustomerAddress
 - ➤ CustomerID → CustomerName, CustomerAddress
 - ➤ ProductID → ProductDescription, ProductFinish, ProductStandardPrice
 - ➤ OrderID, ProductID → OrderedQuantity
- Thus OrderID and ProductID would be the primary key.

Step 1.2: Selection of primary key

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4–Dr Dresser	Oak	500.00	4
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

Anomalies in 1NF

- Insertion can't enter a new product without having the order from a customer
- Deletion if we remove a order then some product detail would be lost.
- Modification changing price of a single product forces to update multiple records.
- Why do these anomalies exist?
 - ➤ Because we've combined two themes (entity types) into one relation. This results in duplication, and an unnecessary dependency between the entities

Step 2: Convert to Second Normal Form

- Second normal form (2NF) A relation in first normal form in which every nonkey attribute is fully functionally dependent on the primary key.
 - > Partial functional dependency A functional dependency in which one or more nonkey attributes are functionally dependent on part (but not all) of the primary key.

Normalization steps

- ➤ Create a new relation for each primary key attribute (or combination of attributes) that is a determinant in a partial dependency. That attribute is the primary key in the new relation.
- ➤ Move the nonkey attributes that are dependent on this primary key attribute (or attributes) from the old relation to the new relation.

Step 2: Convert to Second Normal Form

Step 2: Convert to Second Normal Form

- A relation that is in first normal form will be in second normal form if any one of the following conditions applies:
 - The primary key consists of only one attribute. By definition, there cannot be a partial dependency in such a relation.
 - No nonkey attributes exist in the relation (thus all of the attributes in the relation are components of the primary key). There are no functional dependencies in such a relation.
 - Every nonkey attribute is functionally dependent on the full set of primary key attributes (e.g., the attribute OrderedQuantity in the ORDER LINE relation).

Step 3: Convert to Third Normal Form

- IUB
- ❖ Third normal form (3NF) A relation that is in second normal form and has no transitive dependencies.
 - ➤ Transitive dependency A functional dependency between the primary key and one or more nonkey attributes that are dependent on the primary key via another non-key attribute.
- Steps of removing Transitive dependencies.
 - 1. For each nonkey attribute (or set of attributes) that is a determinant in a relation, create a new relation. That attribute (or set of attributes) becomes the primary key of the new relation.
 - 2. Move all of the attributes that are functionally dependent on the primary key of the new relation from the old to the new relation.
 - 3. Leave the attribute that serves as a primary key in the new relation in the old relation to serve as a foreign key that allows you to associate the two relations.

Step 3: Convert to Third Normal Form

Example (non-normalized relation)

ID	Name	Add	Dept	Dept_Head	Advisor	C_No	C_Name	C_Credit	GPA
1	Ihtesham	Baridhara	CSE	M. A. Amin	Mr. ABC	C401	DB Mgt	3	3.0
						C203	Data struct	3	2.0
						C212	Micro Proc.	3	3.3
2	Muntaser	Uttara	CSE	M. A. Amin	Mr. DEF	C401	DB Mgt	3	3.0
						C203	Data struct	3	2.0
						C212	Micro Proc.	3	3.3
3	Karim	Malibag	CSE	M. A. Amin	Mr. XYZ	C203	Data struct	3	2.0
						C212	Micro Proc.	3	3.3

Functional Dependencies:

ID \rightarrow Name, Add, Dept, Dept_Head, Advisor Dept \rightarrow Dept_Head C_No \rightarrow C_Name, C_Credit ID, C_No \rightarrow GPA

1NF

ID	Nine	Add	D₩t	Dep X Head	A isor	C_No	C_N in e	C_CXdit	GM
1	Ihtesham	Baridhara	CSE	M. A. Amin	Mr. ABC	C401	DB Mgt	3	3.0
1	Ihtesham	Baridhara	CSE	M. A. Amin	Mr. ABC	C203	Data struct	3	2.0
1	Ihtesham	Baridhara	CSE	M. A. Amin	Mr. ABC	C212	Micro Proc.	3	3.3
2	Muntaser	Uttara	CSE	M. A. Amin	Mr. DEF	C401	DB Mgt	3	3.0
2	Muntaser	Uttara	CSE	M. A. Amin	Mr. DEF	C203	Data struct	3	2.0
2	Muntaser	Uttara	CSE	M. A. Amin	Mr. DEF	C212	Micro Proc.	3	3.3
3	Karim	Malibag	CSE	M. A. Amin	Mr. XYZ	C203	Data struct	3	2.0
3	Karim	Malibag	CSE	M. A. Amin	Mr. XYZ	C212	Micro Proc.	3	3.3

ID → Name, Add, Dept, Dept_Head, Advisor

 $C_No \rightarrow C_Name$, C_Credit

ID, $C_No \rightarrow GPA$

2NF

- STUDENT(<u>ID</u>, Name, Address, Dept, Dept_Head, Advisor, <u>C_No</u>, C_Name, C_Credit, GPA)
- STUDENT(<u>ID</u>, Name, Address, Dept, Dept_Head, Advisor)
- COURSE(C No, C Name, C Credit)
- ❖ GRADE(ID, C No, GPA)

3NF

- STUDENT(<u>ID</u>, Name, Address, Dept, Dept_Head, Advisor)
- STUDENT(<u>ID</u>, Name, Address, Dept, Advisor)
- DEPT(<u>Dept</u>, Dept_Head)

Dept → Dept_Head

Thank You

