FORMULES DE DÉRIVATION

Dans le premier tableau, on note I l'intervalle de définition de la fonction.

Dans le second, *u* et *v* désignent des fonctions dérivables sur un même intervalle *I*, sauf pour la formule de dérivation composée (en grisé).

Le troisième tableau rassemble quelques cas particuliers, d'usage courant, de la formule de dérivation composée.

C()	CL ()	D. C. C.
f(x)	f'(x)	Précisions
x^{α}	$\alpha x^{\alpha-1}$	$\alpha \in [1, +\infty[$ et $I = [0, +\infty[$ ou bien $\alpha \in]-\infty, 1[$ et $I =]0, +\infty[$ ou bien $\alpha \in \mathbb{N}$ et $I = \mathbb{R}$ ou bien $-\alpha \in \mathbb{N}^*$ et $I \subset \mathbb{R}^*$
e^{x}	e^x	
$\ln\left(x\right)$	$\frac{1}{x}$	$I =]0, +\infty[$
$\sin(x)$	$\cos\left(x\right)$	
$\cos(x)$	$-\sin(x)$	
tan (x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$I \subset \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$

f(x)	f'(x)	Précisions
$u\left(x\right)+v\left(x\right)$	u'(x) + v'(x)	
$\lambda u(x)$	$\lambda u'(x)$	$\lambda \in \mathbb{R}$
u(x) v(x)	u'(x) v(x) + u(x) v'(x)	
$\frac{u\left(x\right)}{v\left(x\right)}$	$\frac{u'(x) v(x) - u(x) v'(x)}{v(x)^2}$	$\forall x \in I, v\left(x\right) \neq 0$
$v\left(u\left(x\right)\right)$	v'(u(x))u'(x)	$u: I \to \mathbb{R} \text{ et } v: J \to \mathbb{R} \text{ avec } \forall x \in I, \ u(x) \in J$

f(x)	f'(x)	Précisions
$u\left(x\right)^{n}$	$n u (x)^{n-1} u'(x)$	$n \in \mathbb{N}$
$e^{u(x)}$	$u'(x) e^{u(x)}$	
$\ln\left(u\left(x\right)\right)$	$\frac{u'(x)}{u(x)}$	$\forall x \in I, u\left(x\right) > 0$