Introduction to Network Awareness

Mestrado Integrado em Engenharia de Computadores e Telemática DETI-UA

Awareness

- Direct Awareness
 - By direct observation.
- Indirect Awareness
 - By analysis of reactions to events.

- Joint analysis of multiple sources of data to detect hidden patterns and relations.
- Big Data Problem.
- Awareness by Prediction
 - Detection of patterns over time.
 - Black Swan Problem!
- Its all an Inference, Validation, Correction loop.

Network Awareness (1)

- Ability to effectively Acquire Data by Monitoring networks and systems to:
 - Optimize services,
 - Detect and counter-act anomalous activity/events.
- Analyze/Process data to know and characterize
 - Network entities,
 - An entity should be understood as a person, a group, a terminal, a server, an application, etc...
 - Data flows,
 - Services and users perception of service.

Network Awareness (2)

- All data sources are acceptable.
 - Never assume data irrelevance!
- Data may be:
 - Quantitative.
 - Allows for statistical analysis and may serve as machine learning training input.
 - e.g., number of packets, number of flows, number of contacted machines, etc...
 - Qualitative.
 - Can be transformed to quantitative data by counting techniques and statistical characterization
 - e.g., error message X, address Y contacted, packet of type Z, etc...

Network Awareness (3)

- Time is relevant.
 - Relative and absolute.
 - An event occurs in a specific time instant, and it is part of a sequence of events.
- Timescale(s) of analysis must:
 - Include the target characteristics,
 - Allow the perception of the event in time for a response.
- Data may be re-scaled for multiple analysis purposes.

Network Awareness Steps

- Data acquisition.
- Data processing.
 - Creation of time sequences with different counting intervals (minimum timescales).
 - Creation of time sequences with different statistical metrics (larger timescales).
- Creation of entities' behavior profiles.
 - Usually time dependent.
- Classification of entities' behaviors.
 - Identification/classification.
 - Anomaly detection.

Network Atack Vectors

Type of Attacks (1)

- Objectives:
 - Fun and/or hacking reputation
 - Political purposes
 - Military purposes
 - Economical purposes
 - Other?
- Technical objectives:
 - Operation disruption
 - For data interception
 - Both
 - Disruption to intercept!
 - Intercept to disrupt!

Type of Attacks (2)

- Technical objectives:
 - Operation disruption.
 - → (Distributed) Denial-of-Service.
 - Resources hijack.
 - → Spam,
 - Crypt-currency mining/masternodes,
 - Platform to other attacks!
 - Data interception/stealing.
 - Personal data
 - As final goal,
 - Or as tool to achieve more value information!
 - Technical data,
 - Usually used to achieve more value information!
 - Commercial data
 - $\,-\,$ Digital objects, financial and/or engineering plans, \dots
- Disruption may be used to achieve intercetpion!
- Interception may me used to achieve disruption (operational or commercial)!

Attack Phases

by Physical Interaction

- Ethernet ports at public/unprotected locations
 - With VLAN separation
 - Without VLAN separation
 - Protected by 802.1X
- Network taps at public/unprotected locations
- Network devices access
 - Unprotected serial/console ports, USB ports, etc...
- USB ports (short time access)
 - Long time objectives
 - Trojan/root kits injection.
 - Short time objectives
 - Device data acquisition (contacts, messages, sms, etc...)
- Sitting down at a terminal or with a device!
- Other?

Illicit usage of Ethernet ports

- Common protection:
 - VLAN separation/isolation.
 - ♦ 802.1X.
- Unused ports
 - VLAN separation/isolation and/or 802.1x may be enough to mitigate more dangerous attacks (L2 or L3 access to internal machines).
 - Switches MAC flooding attacks and Network overload (Local DoS) are possible.
- In use ports
 - Using an inline device it is possible to break 802.1X using terminal/user authentication.
 - Traffic pass-through.
 - After 802.1X authentication performs inline MAC spoofing.
 - Allows for traffic snooping, injection, and MITM attacks.

Network Tapping

- Switch rogue mirror ports.
 - Allows for traffic snooping and injection, no MITM attacks.
 - Solution: Constant monitoring of configuration changes on network devices.

- Allows for traffic snooping and injection, no MITM attacks.
- Solution: Electrical variations. Maybe...?
- Optical cable tap
 - Allows for traffic snooping and injection, no MITM attacks.
 - Solution: Quantum cryptography

Wireless

- Rogue APs
 - WPA PSK and WPA2 PSK are not compromised.
 - Unless device associates to networks with (fake) SSID of known networks with different credentials and/or secure protocols.
 - Decision to connect based only on stored SSID and not other parameters.
 - WPA Enterprise and WPA2 Enterprise security may be compromised on 2nd phase authentication.
 - →Credentials not recoverable (maybe with MSCHAPv2).
 - →Permits "accept everyone" strategy for MITM attacks.
 - Open+Web-based authentication are very vulnerable.
 - →Fake entry portals.
 - Allows DoS.
 - → Force user to search other networks. Make user choose insecure/fake network.
- Wireless Interception (possible injection).
- Electromagnetic effects
 - Wireless mouses, keyboards, ...
 - -Solution: additional information to scramble data.
- By Sound
 - Keystrokes sounds.
- Jamming
 - Pure disruption, or
 - Disruption to activate secondary channels (more easily compromised).

Remote Software Installation or Service Activation

- Attacks to routing (MP-BGP)
- E-mail
 - Office macros
 - Executables
- Social Networking
- Software downloadable
 - Sources:
 - Cracks
 - Non-certified software stores
 - **→** . . .
- Attacks:
 - Ramsomware
 - Trojan Horse

Distributed DoS

- Multiple slow/small devices generating traffic to a target
 - TCP vs. UDP
- Purpose of disruption
 - By political/economical/"reputation"
 - Redirection to other service/location?
- Solution at target
 - Load-balancers
 - For TCP, maybe its possible to survive making active (with licit client validation) session resets (server/firewalls)
 - →White list solution, for completed session negotiation
 - For UDP/DNS, block requests for known external relay/redirection DNS servers (blocks attack amplification, IP target spoofing)
 - →Doesn't work with large botnets and direct requests to target
- Solution at source
 - Anomalous behaviors detection
 - Low traffic variations hard to detect
 - →Time and periodicity changes are easier to detect
 - →Destinations of traffic changes
 - →With "really low" data rates is impossible to detect

Data Acquisition

Core and End-to-End Monitoring

Node Monitoring

Core

OS version
CPU load
Memory usage
OS processes
Configuration
Dynamic operation
- Routing tables
- Forwarding tables
- QoS and BW reservations

Interface/link

Link Bandwidth Throughput Packet drop

- Queue drop
- Packet corruption
- Link failure
- TTL expiration Queue delay

End-User/Host/App Monitoring

Server/Service/Cloud Monitoring

Overtime Monitoring

Data Sources

SNMP

- Used to acquire knowledge about current states of nodes/links/servers.
- Local information. May be used to extrapolate to global information.
- (Often) Requires the usage of vendor specific MIBs.

Flow exporting

- Used to characterize users/services in terms of amount of traffic and traffic destinations.
- Medium and large time-scale information.
- Protocols: Cisco NetFlow, IPFIX Standard, Juniper jFlow, and sFlow
- Packet Captures / RAW statistics / DPI vs. SPI
 - Used to characterize users/services in small time-scales.
 - Requires distributed dedicated probes.
- Access Server/Device logs and/or CLI access.
 - Used to acquire knowledge about past and current state.
- Active measurements
 - Introduces entropy on network and requires (for many measurements) precise clock synchronization
 - E.g., one-way delay/jitter, round-trip delay/jitter.

