
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: [year=2008; month=9; day=16; hr=8; min=29; sec=11; ms=981;]

Reviewer Comments:

<110> Center for Genetic Engineering and Biotechnology

<120> Antiangiogenic active immunotherapies

<130> 976-19 PCT/US/RCE

<140> 10/511,384

<141> 2004-10-15

<150> CU 2002/0076

<151> 2002-04-15

<160> 229

Numeric identifier <160> must reflect the total number of sequences in the sequence listing. There are only 226 sequences in this sequence listing but, <160> states there are 229. Please make all necessary changes

<210> 129

<212> PRT

<213> Artificial Sequence

<220>

<223> VEGFR-1 derived peptides

<400> 129

Lys Leu Leu Arg Gly His Thr Leu Val

1 5

Numeric identifier "<211> Length" is mandatory for each SEQ ID number.

Validated By CRFValidator v 1.0.3

Application No: 10511384 Version No: 3.0

Input Set:

Output Set:

Started: 2008-08-12 14:55:48.277

Finished: 2008-08-12 14:55:50.653

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 376 ms

Total Warnings: 218

Total Errors: 3

No. of SeqIDs Defined: 229

Actual SeqID Count: 226

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(27)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(28)

Input Set:

Output Set:

Started: 2008-08-12 14:55:48.277 **Finished:** 2008-08-12 14:55:50.653

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 376 ms

Total Warnings: 218
Total Errors: 3

No. of SeqIDs Defined: 229

Actual SeqID Count: 226

Error code		Error Description									
		This error has occured more than 20 times, will not be displayed									
E	249	Order Sequence Error <210> -> <212>; Expected Mandatory Tag: <211> in SEQID (129)									
E	252	Calc# of Seq. differs from actual; 229 seqIds defined; count=226									
E	250	Structural Validation Error; Sequence listing may not be indexable									

SEQUENCE LISTING

<110>	Center for Genetic Engineering and Biotechnology	
<120>	Antiangiogenic active immunotherapies	
<130>	976-19 PCT/US/RCE	
<140>	10/511,384	
<141>		
<150>	CU 2002/0076	
	2002-04-15	
\131 >	2002-04-13	
<160>	229	
<170>	PatentIn version 3.4	
<210>	1	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
\ 223>	primer	
<400>	1	
tggatco	catg aactttctgc t	21
<210>	2	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	2	
gaattca	accg cctcggcttg tc	22
<210>	3	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	3	
tggatco	catg aactttctgc t	21
<210>	4	
<211>	30	
<212>	DNA	

<213>	Artificial Sequence	
<220>		
	primer	
	F	
<400>	4	
ctggcc	ttgt gcaggtgcga ttgccataat	30
<210>	5	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	primer	
\223/	bitmei	
<400>	5	
attatg	gcaa tcgcacctgc acaaggccag	30
<210>	6	
	22	
<212>		
<213>	Artificial Sequence	
<220>		
	primer	
12201	plinel	
<400>	6	
gaattc	accg cctcggcttg tc	22
<210>		
<211>	21	
<212>	Artificial Sequence	
\Z13/	Artificial Sequence	
<220>		
<223>	primer	
<400>	7	
tggatc	catg aactttctgc t	21
<210>	8	
<211>		
<211>	DNA	
	Artificial Sequence	
<220>		
<223>	primer	
	8	o -
gaattc	accg cctcggcttg tc	22

```
<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 9
tggatccatg gagagcaagg tgctg
                                                                    25
<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 10
                                                                    25
gaattcacat cagcccactg gatgc
<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 11
                                                                    21
cctctagatg tgcaaaagtg g
<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 12
tgagatette gggagettee
                                                                    20
<210> 13
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 13
```

<210>	14
<211>	19
	DNA
	Artificial Sequence
12137	merriorar bequence
<220>	
<223>	primer
<400>	14
tagcgg	jccgc ttaaacagg
	15
	22
<212>	
\Z13>	Artificial Sequence
<220>	
	primer
/	PT TWO I
<400>	15
	ctac acctgccagg ca
<210>	16
<211>	20
<212>	
<213>	Artificial Sequence
<220>	
<223>	primer
<400>	1.6
	10 gttaa acaggaggag
Julyy	,
<210>	17
<211>	21
<212>	DNA
<213>	Artificial Sequence
<220>	
<223>	primer
<400>	17
cccggg	gatat ttataaagat c
Z010:	1.0
<210>	18
<211>	19
<212>	DNA Artificial Sequence
ヘスエ イン	Artiticial Seguence

21

gaagatctgt ataaggactt c

<400> 18

tagcggccgc ttaaacagg 19

<210> 19

<211> 147

<212> PRT

<213> Homo Sapiens

<400> 147

Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu Leu 1 5 10 15

Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
20 25 30

Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln 35 40 45

Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu 50 55 60

Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu 65 70 75 80

Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro
85 90 95

Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Glu Ile Glu Pro Glu
100 105 110

Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys 115 120 125

Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Cys Asp Lys
130 135 140

Pro Arg Arg

145

<210> 20

<211> 444

<212> DNA

<213> Homo Sapiens

<400> 20

atgaactttc tgctgtcttg ggtgcattgg agccttgcct tgctgctcta cctccaccat

120

gccaagtggt cccaggctgc acccatggca gaaggaggag ggcagaatca tcacgaagtg

gtgaagttca tggatgtcta tcagcgcagc tactgccatc caatcgagac cctggtggac

180

atcttccagg agtaccctga tgagatcgag tacatcttca agccatcctg tgtgcccctg 240
atgcgatgcg ggggctgctg caatgacgag ggcctggagt gtgtgcccac tgaggagtcc 300
aacatcacca tgcagattat gcggatcaaa cctcaccaag gccagcacat aggagagatg 360
agcttcctac agcacaacaa atgtgaatgc agaccaaaga aagatagagc aagacaagaa 420
aaatgtgaca agccgaggcg gtga 444

<210> 21

<211> 147

<212> PRT

<213> Homo Sapiens

<400> 147

Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu Ala Leu Leu 1 5 10 15

Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro Met Ala Glu Gly
20 25 30

Gly Gly Gln Asn His His Glu Val Val Lys Phe Met Asp Val Tyr Gln 35 40 45

Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp Ile Phe Gln Glu 50 60

Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser Cys Val Pro Leu 65 70 75 80

Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu Glu Cys Val Pro 85 90 95

Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Ala Ile Ala Pro Ala 100 105 110

Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln His Asn Lys Cys 115 120 125

Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu Lys Cys Asp Lys 130 135 140

Pro Arg Arg 145

<210> 22

<211> 444

<212> DNA

<213> Homo Sapiens

<400> 22

atgaactttc tgctgtcttg ggtgcattgg agccttgcct tgctgctcta cctccaccat

gccaagtggt	cccaggctgc	acccatggca	gaaggaggag	ggcagaatca	tcacgaagtg	120
gtgaagttca	tggatgtcta	tcagcgcagc	tactgccatc	caatcgagac	cctggtggac	180
atcttccagg	agtaccctga	tgagatcgag	tacatcttca	agccatcctg	tgtgcccctg	240
atgcgatgcg	ggggctgctg	caatgacgag	ggcctggagt	gtgtgcccac	tgaggagtcc	300
aacatcacca	tgcagattat	ggcaatcgca	cctgcacaag	gccagcacat	aggagagatg	360
agcttcctac	agcacaacaa	atgtgaatgc	agaccaaaga	aagatagagc	aagacaagaa	420
aaatgtgaca	agccgaggcg	gtaa				444
<210× 22						

<210> 23

<211> 314

<212> PRT

<213> Homo Sapiens

<400> 314

Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu
1 5 10 15

Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro
20 25 30

Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr
35 40 45

Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 50 55 60

Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser 65 70 75 80

Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn 85 90 95

Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser 100 105 110

Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser 115 120 125

Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys 130 135 140

Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser 145 150 155 160

Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg 165 170 175

Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile

180 185 190

 Ser
 Tyr
 Ala Gly Met
 Val
 Phe
 Cys
 Glu Ala Lys
 Ile Asn Asp Glu Ser
 Ser

 195
 200
 200
 Val
 Val
 Val
 Val
 Val
 Gly Tyr
 Arg Ile Tyr
 Tyr

 210
 210
 215
 215
 220
 220
 220
 220
 220

Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu 225 230 235 240

Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile 245 250 255

Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu 260 265 270

Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe 275 280 285

Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu 290 295 300

Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met 305

<210> 24

<211> 943

<212> DNA

<213> Homo Sapiens

<400> 24

atggagagea aggtgetget ggeegtegee etgtggetet gegtggagae eegggeegee 60 tctgtgggtt tgcctagtgt ttctcttgat ctgcccaggc tcagcataca aaaagacata 120 cttacaatta aggctaatac aactetteaa attacttgea ggggacagag ggaettggae 180 tggctttggc ccaataatca gagtggcagt gagcaaaggg tggaggtgac tgagtgcagc 300 gatggcctct tctgtaagac actcacaatt ccaaaagtga tcggaaatga cactggagcc tacaagtgct tctaccggga aactgacttg gcctcggtca tttatgtcta tgttcaagat 360 tacagatete catttattge ttetgttagt gaccaacatg gagtegtgta cattactgag 420 aacaaaaaca aaactgtggt gattccatgt ctcgggtcca tttcaaatct caacgtgtca 480 ctttgtgcaa gatacccaga aaagagattt gttcctgatg gtaacagaat ttcctgggac 540 agcaagaagg gctttactat tcccagctac atgatcagct atgctggcat ggtcttctgt 600 660 gaagcaaaaa ttaatgatga aagttaccag tctattatgt acatagttgt cgttgtaggg 720 tataggattt atgatgtggt tctgagtccg tctcatggaa ttgaactatc tgttggagaa

aago	cttgt	tct 1	taaat	tgta	ac a	gcaaq	gaact	gaa	actaa	aatg	tgg	ggati	cga (cttca	aactgg	780
gaat	acco	ctt (cttc	gaag	ca to	cagca	ataaq	g aaa	actt	gtaa	acco	gaga	cct a	aaaa	acccag	840
tct	ggga	gtg a	agato	gaaga	aa at	tttt	gago	c aco	cttaa	acta	taga	atggi	igt a	aacco	cggagt	900
gaco	caag	gat 1	tgtad	cacct	tg to	gcago	catco	c agt	ggg	ctga	tga					943
<210 <211 <212 <213	L> (2> I 3> I	25 611 PRT Homo	sap:	iens												
Ala 1	Lys	Val	Glu	Ala 5	Phe	Phe	Ile	Ile	Glu 10	Gly	Ala	Gln	Glu	Lys 15	Thr	
_				3					10					13		
Asn	Leu	Glu	Ile 20	Ile	Ile	Leu	Val	Gly 25	Thr	Ala	Val	Ile	Ala 30	Met	Phe	
Phe	Trp	Leu 35	Leu	Leu	Val	Ile	Ile 40	Leu	Arg	Thr	Val	Lys 45	Arg	Ala	Asn	
Gly	Gly 50	Glu	Leu	Lys	Thr	Gly 55	Tyr	Leu	Ser	Ile	Val 60	Met	Asp	Pro	Asp	
Glu 65	Leu	Pro	Leu	Asp	Glu 70	His	Cys	Glu	Arg	Leu 75	Pro	Tyr	Asp	Ala	Ser 80	
Lys	Trp	Glu	Phe	Pro 85	Arg	Asp	Arg	Leu	Lys 90	Leu	Gly	Lys	Pro	Leu 95	Gly	
Arg	Gly	Ala	Phe 100	Gly	Gln	Val	Ile	Glu 105	Ala	Asp	Ala	Phe	Gly 110	Ile	Asp	
Lys	Thr	Ala 115	Thr	Суз	Arg	Thr	Val 120	Ala	Val	Lys	Met	Leu 125	Lys	Glu	Gly	
Ala	Thr 130	His	Ser	Glu	His	Arg 135	Ala	Leu	Met	Ser	Glu 140	Leu	Lys	Ile	Leu	
Ile	His	Ile	Gly	His	His	Leu	Asn	Val	Val	Asn	Leu	Leu	Gly	Ala	Cys	

Thr	Lys	Pro	Gly	Gly 165	Pro	Leu	Met	Val	Ile 170	Val	Glu	Phe	Cys	Lys 175	Phe
Gly	Asn	Leu	Ser 180	Thr	Tyr	Leu	Arg	Ser 185	Lys	Arg	Asn	Glu	Phe 190	Val	Pro
Tyr	Lys	Thr 195	Lys	Gly	Ala	Arg	Phe 200	Arg	Gln	Gly	Lys	Asp 205	Tyr	Val	Gly
Ala	Ile 210	Pro	Val	Asp	Leu	Lys 215	Arg	Arg	Leu	Asp	Ser 220	Ile	Thr	Ser	Ser
Gln 225	Ser	Ser	Ala	Ser	Ser 230	Gly	Phe	Val	Glu	Glu 235	Lys	Ser	Leu	Ser	Asp 240
Val	Glu	Glu	Glu	Glu 245	Ala	Pro	Glu	Asp	Leu 250	Tyr	Lys	Asp	Phe	Leu 255	Thr
			Leu 260		_	_		265					270		
Phe	Leu	Ala 275	Ser	Arg	Lys	Cys	Ile 280	His	Arg	Asp	Leu	Ala 285	Ala	Arg	Asn
	290		Ser		_	295					300				
305			Ile		310					315					320
			Leu	325					330					335	
_			Gln 340					345					350		
		355	Leu				360					365			
Glu	9he 370	Cys	Arg	Arg	Leu	Lys 375	Glu	Gly	Thr	Arg	Met 380	Arg	Ala	Pro	Asp

Tyr Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His Gly

385 390 395 400

Glu Pro Ser Gln Arg Pro Thr Phe Ser Glu Leu Val Glu His Leu Gly
405 410 415

Asn Leu Leu Gln Ala Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val 420 425 430

Leu Pro Ile Ser Glu Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser
435 440 445

Leu Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Val Cys Asp 450 455 460

Pro Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser Gln Tyr Leu Gln 465 470 475 488

Asn Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp
485 490 495

Ile Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Asn Gln
500 505 510

Thr Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu 515 520 525

Asp Arg Thr Lys Leu Ser Pro Ser Phe Gly Gly Met Val Pro Ser Lys 530 535 540

Ser Arg Glu Ser Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr 545 550 555 560

Gln Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser 565 570 575

Glu Glu Ala Glu Leu Leu Lys Leu Ile Glu Ile Gly Val Gln Thr Gly 580 585 590

Ser Thr Ala Gln Ile Leu Gln Pro Asp Ser Gly Thr Thr Leu Ser Ser 595 600 605

Pro Pro Val

<210> 26 <211> 1836 <212> DNA <213> Homo Sapiens

<400> 1836

gcaaaagtgg aggcattttt cataatagaa ggtgcccagg aaaagacgaa cttggaaatc 60 attattctag taggcacggc ggtgattgcc atgttcttct ggctacttct tgtcatcatc 120 ctacggaccg ttaagcgggc caatggaggg gaactgaaga caggctactt gtccatcgtc 180 atggatccag atgaactccc attggatgaa cattgtgaac gactgcctta tgatgccagc 240 300 aaatgggaat teeccagaga eeggetgaag etaggtaage etettggeeg tggtgeettt 360 ggccaagtga ttgaagcaga tgcctttgga attgacaaga cagcaacttg caggacagta 420 gcagtcaaaa tgttgaaaga aggagcaaca cacagtgagc atcgagctct catgtctgaa 480 ctcaagatcc tcattcatat tggtcaccat ctcaatgtgg tcaaccttct aggtgcctgt accaagccag gagggccact catggtgatt gtggaattct gcaaatttgg aaacctgtcc 540 600 acttacctga ggagcaagag aaatgaattt gtcccctaca agaccaaagg ggcacgattc cgtcaaggga aagactacgt tggagcaatc cctgtggatc tgaaacggcg cttggacagc 660 atcaccagta gccagagctc agccagctct ggatttgtgg aggagaagtc cctcagtgat 720 gtagaagaag aggaagctcc tgaagatctg tataaggact tcctgacctt ggagcatctc 780 atctgttaca gcttccaagt ggctaagggc atggagttct tggcatcgcg aaagtgtatc 840 900 cacagggacc tggcggcacg aaatatcctc ttatcggaga agaacgtggt taaaatctgt gactttggct tggcccggga tatttataaa gatccagatt atgtcagaaa aggagatgct 960 cgcctccctt tgaaatggat ggccccagaa acaatttttg acagagtgta cacaatccag 1020 agtgacgtct ggtcttttgg tgttttgctg tgggaaatat tttccttagg tgcttctcca 1080 tatcctgggg taaagattga tgaagaattt tgtaggcgat tgaaagaagg aactagaatg 1140 agggcccctg attatactac accaga