中国石油大学(北京) 2020-2021 学年春季学期

《高等数学 A (II)》本科期末考试试卷 (A 卷) 考试方式(闭卷考试)

班级:	
姓名:	7
学号:	

题号	_	11	111	四	五.	六	七	八	九	总分
得分										

(试卷不得拆开,所有答案均写在题后相应位置)

一、填空题(在下列各题的横线处填写正确答案,共5小题,每小题3分,共15分)

1、设
$$2\sin(x+2y-3z) = x+2y-3z$$
,则 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

$$2. \lim_{\substack{x \to 0 \\ y \to 0}} \frac{3 - \sqrt{9 + xy}}{xy} = \underline{\qquad}_{\circ}$$

3、设
$$I = \int_0^2 dx \int_x^{2x} f(x, y) dy$$
,交换积分次序后, $I =$ ______。

4、设
$$f(u)$$
 为可微函数,且 $f(0) = 0$,则 $\lim_{t \to 0^+} \frac{1}{\pi t^3} \iint_{x^2 + y^2 \le t^2} f(\sqrt{x^2 + y^2}) d\sigma = ______$ 。

5、设 L 为取正向的圆周 $x^2 + y^2 = 4$,则曲线积分

$$\oint_L y(ye^x + 1)dx + (2ye^x - x)dy = \underline{\qquad} \circ$$

$$-1, 1; \quad 2, -1/6; \quad 3, \int_0^2 dy \int_{y/2}^y f(x, y) dx + \int_2^4 dy \int_{y/2}^2 f(x, y) dx \; ; \quad 4, \frac{2}{3} f'(0) \; ;$$

$$5, -8\pi \; ;$$

二、选择题(请将下列各题的正确答案填在题后的括号内,共5题,每小题3分,共15分)

- 1、二元函数 z = f(x, y) 在 (x_0, y_0) 处可微的充分条件是 ()
 - (A) f(x,y)在 (x_0,y_0) 处连续;
- (B) $f'_x(x,y)$, $f'_y(x,y)$ 在 (x_0,y_0) 的某邻域内存在;

(C)
$$\Delta z - f_x'(x_0, y_0) \Delta x - f_y'(x_0, y_0) \Delta y$$
 当 $\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$ 时,是无穷小;

(D)
$$\lim_{\Delta x \to 0} \frac{\Delta z - f_x'(x_0, y_0) \Delta x - f_y'(x_0, y_0) \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

2、设
$$u = yf(\frac{x}{y}) + xf(\frac{y}{x})$$
,其中 f 具有二阶连续导数,则 $x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial y^2}$ 等于(
(A) $x + y$; (B) x ; (C) y ; (D)0。

3、设
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1, z \ge 0$,则三重积分 $I = \iiint_{\Omega} z dV$ 等于()

(A)
$$4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{1} r^{3} \sin\varphi \cos\varphi dr$$
; (B) $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\pi} d\varphi \int_{0}^{1} r^{2} \sin\varphi dr$;

(C)
$$\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r^3 \sin\varphi \cos\varphi dr; \quad (D) \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^3 \sin\varphi \cos\varphi dr.$$

4、球面
$$x^2 + y^2 + z^2 = 4a^2$$
 与柱面 $x^2 + y^2 = 2ax$ 所围成的立体体积 V= ()

(A)
$$4\int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \sqrt{4a^2 - r^2} dr$$

(A)
$$4\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} \sqrt{4a^2 - r^2} dr;$$
 (B) $4\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} r\sqrt{4a^2 - r^2} dr;$

(C)
$$8 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} r \sqrt{4a^2 - r^2} dr$$

(C)
$$8\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} r \sqrt{4a^2 - r^2} dr;$$
 (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta} r \sqrt{4a^2 - r^2} dr$

5、设有界闭区域 D 由分段光滑曲线 L 所围成,L 取正向,函数 P(x,y), Q(x,y) 在 D 上具有一阶连续偏导数,

则
$$\oint_{\mathcal{L}} Pdx + Qdy = ($$
)

(A)
$$\iint_{\Omega} (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) dx dy;$$
 (B) $\iint_{\Omega} (\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}) dx dy;$

(B)
$$\iint_{D} (\frac{\partial Q}{\partial y} - \frac{\partial P}{\partial x}) dx dy$$

(C)
$$\iint_{\Omega} (\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}) dx dy;$$
 (D)
$$\iint_{\Omega} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy.$$

(D)
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$$

 \equiv , 1, D; 2, D; 3, C; 4, B; 5, D;

三、(本题满分10分)

计算 $\iint \cos(x+y)dxdy$, 其中D是由x=0, y=x, $y=\pi$ 所围成的区域.

解:
$$\iint_{D} \cos(x+y) dx dy = \int_{0}^{\pi} dy \int_{0}^{y} \cos(x+y) dx$$

$$= \int_0^{\pi} \sin(x+y) \Big|_0^y dy = \int_0^{\pi} (\sin 2y - \sin y) dy = -2.$$

四、(本题满分10分)

设方程
$$z^3 - 3xyz = 1$$
确定了隐函数 $z = z(x, y)$,求 $\frac{\partial z}{\partial x}$.

解: 设
$$F(x,y,z) = z^3 - 3xyz - 1$$
, 则

$$F_x = -3yz$$
, $F_z = 3z^2 - 3yz$, ix $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{z^2 - xy}$.

五、(本题满分12分)

计算 $\iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$, 其中 Σ 为曲面 $z = 1 - x^2 - y^2$ ($z \ge 0$) 部分的上侧.

解: Σ 在 xoy 面上的投影为 D_{xy} : $x^2 + y^2 \le 1$,

补充平面 $\Sigma_1: z=0$ $(x^2+y^2 \le 1)$ 取下侧,由高斯公式

$$\iint\limits_{\Sigma} = \iint\limits_{\Sigma + \Sigma_1} - \iint\limits_{\Sigma_1} = \iiint\limits_{\Omega} (6x^2 + 6y^2 + 6z) dv + 3 \iint\limits_{D_{xy}} (0 - 1) dx dy$$

$$=6\int_0^{2\pi}d\theta\int_0^1d\rho\int_0^{1-\rho^2}(\rho^2+z)\rho dz-3\iint_{D_{xy}}dxdy=2\pi-3\pi=-\pi.$$

六、(本题满分12分)

求圆柱面 $x^2 + y^2 = 2y$ 被锥面 $z = \sqrt{x^2 + y^2}$ 和平面 z = 0割下部分的面积 A。

曲线
$$\begin{cases} z = \sqrt{x^2 + y^2} \\ x^2 + y^2 = 2y \end{cases}$$
 在 yoz 面上的

投影为
$$\begin{cases} z^2 = 2y & (0 \le y \le z) \\ x = 0 \end{cases}$$

于是所割下部分在 yoz 面上的投影域为:

$$D_{yz}: \begin{cases} 0 \leq y \leq 2 \\ 0 \leq z \leq \sqrt{2y} \end{cases},$$

由图形的对称性, 所求面积为第一卦限部分的两倍。

$$A = 2 \iint_{D_{yz}} \sqrt{1 + (\frac{\partial x}{\partial y})^2 + (\frac{\partial x}{\partial z})^2} \, d\sigma$$

$$=2\iint_{D_{yz}} \frac{dydz}{\sqrt{2y-y^2}} = 2\int_{1}^{2} dy \int_{0}^{\sqrt{2y}} \frac{dz}{\sqrt{2y-y^2}} = 8$$

七、(本题满分11分)

计算 $\int_L e^x (1-2\cos y) dx + 2e^x \sin y dy$,其中 L 为曲线 $y = \sin x$ 上由点 $A(\pi,0)$ 到点 O(0,0) 的一段弧.

解:添加直线段: \overline{OA} :y=0, $(0 \le x \le \pi)$,

由格林公式:

$$\int_{L} = \oint_{L+\overline{AB}} - \int_{\overline{AB}} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy + \int_{0}^{\pi} e^{x} dx = 0 + e^{x} \Big|_{0}^{\pi} = e^{\pi} - 1.$$

八、(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$ 的收敛域,并求出其在收敛域内的和函数.

解:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 2\lim_{n \to \infty} \frac{n+1}{n} = 2$$
, 当 $x = -2$ 时, 级数收敛; 当 $x = 2$ 时级数发散,

故级数收敛域为[-2,2). 设
$$s(x) = \sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$
, 两边求导, 得

$$s'(x) = \left(\sum_{n=1}^{\infty} \frac{x^n}{n2^n}\right)' = \sum_{n=1}^{\infty} \frac{x^{n-1}}{2^n} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{x}{2}\right)^{n-1} = \frac{1}{2-x}, \quad \overline{m} \, S(0) = 0,$$
于是两边积分,得
$$S(x) = \int_0^x \frac{1}{2-x} dx = -\ln(2-x) \Big|_0^x = -\ln(2-x) + \ln 2 = -\ln(1-\frac{x}{2})$$

$$\mathbb{E} = \sum_{n=1}^{\infty} \frac{x^n}{n2^n} = -\ln(1 - \frac{x}{2}).$$

九、(本题满分5分)

简要说明多元函数可导、可微、连续的关系。 提示:

多元函数连续、可导、可微的关系

言之有理即可