Reminders for NAPDE

Andrea Bonifacio

June 15, 2023

Reminders on calculus

$$\int_{\Omega} -\Delta u v = \int_{\Omega} \nabla u \cdot \nabla v - \underbrace{\int_{\partial \Omega} \nabla u \cdot \mathbf{n} v}_{=0 \text{ if } v|_{\partial \Omega} = 0}$$

$$\int_{\Omega} \operatorname{div} u = \int_{\partial \Omega} u \cdot \mathbf{n}$$

$$- \int_{\Omega} \mathbf{v} \cdot \nabla p = \int_{\Omega} p \operatorname{div} \mathbf{v} + \int_{\partial \Omega} \mathbf{v} \cdot \mathbf{n} p$$

$$\int_{\Omega} \frac{\partial}{\partial x} u^{2} = \frac{1}{2} \int_{\partial \Omega} u \cdot \mathbf{n}$$

Lifting Operators

If u on $\partial\Omega$ is non-null, we need to solve this problem, otherwise we cannot use test functions that vanish at the boundary. To do so, given u=g on $\partial\Omega$ we use a lifting operator $Rg\in H^1(\Omega):Rg|_{\partial\Omega}=g$, and modify our solution such that $u=\overset{\circ}{u}+Rg$, so the function $\overset{\circ}{u}$ has the properties we need. We then look for bilinear formulation such as $a(\overset{\circ}{u},v)$ and add to the right-hand side -a(Rg,v).

Weak Formulations

Elliptic equations

$$\begin{cases} -\operatorname{div}(\mu\nabla u) + \mathbf{b} \cdot \nabla u + \sigma u = f & \text{in } \Omega \quad g \in L^2(\Gamma_N) \\ u = 0 & \text{on } \Gamma_D \quad \partial\Omega = \Gamma_D \cup \Gamma_N \\ \mu\nabla u \cdot \mathbf{n} = g & \text{on } \Gamma_N \quad \Gamma_D{}^{\mathrm{o}} \cap \Gamma_N{}^{\mathrm{o}} = \varnothing \end{cases}$$

$$\downarrow \bigcup_{\Xi : a(u,v)} \qquad \qquad \downarrow \bigcup_{\Xi : a(u,v)} \downarrow \bigcup_{\Xi : a(u,v)$$

Parabolic equations

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = f & 0 < x < d, t > 0 \\ u(x,0) = u_0(x) & 0 < x < d \\ u(0,t) = u(d,t) = 0 & t > 0 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\int_{\Omega} \frac{\partial u(t)}{\partial t} v \, d\Omega + a(u(t),v) = \int_{\Omega} f(t) v \, d\Omega \quad \forall \ v \in V$$

$$\downarrow \downarrow$$

for each t > 0, we need to find $u_h(t) \in V_h$ s.t.

$$\int_{\Omega} \frac{\partial u_h(t)}{\partial t} v_h \, d\Omega + a(u_h(t), v_h) = \int_{\Omega} f(t) v_h \, d\Omega \quad \forall \ v_h \in V_h$$

Discontinuous Galerkin

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad$$

Numerical formulation

Continuous Galerkin

Space
$$V_h = \{v_h \in \mathcal{C}^0(\overline{\Omega}) : v_h|_{\mathcal{K}} \in \mathbb{P}^r(\mathcal{K}) \ \forall \ \mathcal{K} \in \mathcal{T}_h, v_h|_{\Gamma_D} = 0\}$$

find
$$u_h \in V_h : a(u_h, v_h) = F(v_h) \quad \forall v_h \in V_h$$

Discontinuous Galerkin

Space
$$V_h^p = \{v_h \in L^2(\Omega) : v_h|_{\mathcal{K}} \in \mathbb{P}^{p_{\mathcal{K}}}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_h\} \not\subseteq H_0^1(\Omega)$$

find
$$u_h \in V_h^p : \mathcal{A}(u_h, v_h) = \int_{\Omega} f v_h \quad \forall \ v_h \in V_h^p$$

where

$$\begin{split} \mathcal{A}(u,v) &= \sum_{\mathcal{K} \in \mathcal{T}_h} \int_{\mathcal{K}} \nabla u \nabla v - \sum_{F \in \mathcal{F}_h} \int_{F} \left\{\!\!\left\{ \nabla_h u \right\}\!\!\right\} \cdot \left[\!\!\left[v \right]\!\!\right] \\ &- \theta \sum_{F \in \mathcal{F}_h} \int_{F} \left[\!\!\left[u \right]\!\!\right] \cdot \left\{\!\!\left\{ \nabla_h v \right\}\!\!\right\} + \sum_{F \in \mathcal{F}_h} \int_{F} \gamma \left[\!\!\left[u \right]\!\!\right] \cdot \left[\!\!\left[v \right]\!\!\right] \end{split}$$

• $\theta = 1$ Symmetric interior penalty

- $\theta = -1$ Non-symmetric interior penalty
- $\theta = 0$ Incomplete interior penalty
- $\gamma = \alpha \frac{p^2}{h}$

In the case of Dirichlet B.C. u = g on $\partial\Omega$ modify r.h.s. and introduce the set of boundary faces \mathcal{F}_h^B

$$\int_{\Omega} f v - \theta \sum_{F \in \mathcal{F}_h^B} \int_F g \nabla_h v \cdot n + \sum_{F \in \mathcal{F}_h^B} \int_F \gamma g v$$

In case of Neumann B.C. $\nabla u \cdot n = g$ on $\partial \Omega$ we introduce the set of interior faces \mathcal{F}'_h

$$\mathcal{A}(u,v) = \sum_{\mathcal{K} \in \mathcal{T}_h} \int_{\mathcal{K}} \nabla u \nabla v - \sum_{F \in \mathcal{F}_h'} \int_{F} \{\!\!\{ \nabla_h u \}\!\!\} \cdot [\!\![v]\!\!]$$
$$-\theta \sum_{F \in \mathcal{F}_h'} \int_{F} [\!\![u]\!\!] \cdot \{\!\!\{ \nabla_h v \}\!\!\} + \sum_{F \in \mathcal{F}_h'} \int_{F} \gamma [\!\![u]\!\!] \cdot [\!\![v]\!\!]$$

and

$$\int_{\Omega} fv + \sum_{F \in \mathcal{F}_h^B} \int_F gv$$

SEM

Space
$$\mathbb{Q}_N(I) = \left\{ v(x) = \sum_{k=0}^N a_k x^k, \ a_k \in \mathbb{R} \right\}$$

In one dimension $\mathbb{Q}_N = \mathbb{P}_N$

Space $V_N = \{v_N \in \mathbb{Q}_N : v_N|_{\Gamma_D} = g\}$

If the domain is meshed $V_N = \left\{ v_N \in \mathcal{C}^0(\overline{\Omega}) : v_N |_{\mathcal{K}} \circ \varphi_k \in \mathbb{Q}_N(\hat{\mathcal{K}}) \ \forall \ \mathcal{K} \in \mathcal{T}_h \right\}$

find
$$u_N \in V_N : a(u_N, v_N) = (F, v_N)_{L^2(\Omega)} \quad \forall v_N \in V_N$$

Galerkin-NI

Space $V_N = \{v_N \in \mathbb{P}_N(\Omega) : v|_{\Gamma_D} = g\}$

find
$$u_N \in V_N : a_N(u_N, v_N) = f_N(v_N) \quad \forall v_N \in V_N$$

SEM-NI

Space
$$X_{\delta} = \left\{ v_{\delta} \in \mathcal{C}^{0}(\Omega) : v_{\delta}|_{\mathcal{K}} = \hat{v}_{\delta} \text{ o } \mathbf{F}_{\mathcal{K}}^{-1}, \text{ with } \hat{v}_{\delta} \in \mathbb{Q}_{p}(\hat{\mathcal{K}}) \ \forall \ \mathcal{K} \in \mathcal{T}_{h} \right\}$$

find
$$u_{\delta} \in X_{\delta} : a_{\delta}(u_{\delta}, v_{\delta}) = F_{\delta}(v_{\delta}) \quad \forall v_{\delta} \in X_{\delta}$$

Stability

Continuous Galerkin

$$||u_h|| \leq \frac{||F||_{V'}}{\alpha}$$

Stabilized Galerkin

$$||u_h||_{GLS}^2 \le C||f||_{L^2(\Omega)}^2$$

Also $\tau_{\mathcal{K}}$

$$\tau_{\mathcal{K}}(\mathbf{x}) = \delta \frac{h_{\mathcal{K}}}{|\mathbf{b}(\mathbf{x})|} \quad \tau_{\mathcal{K}}(\mathbf{x}) = \frac{h_{\mathcal{K}}}{2|\mathbf{b}(\mathbf{x})|} \varepsilon(\mathbb{P}e_{\mathcal{K}})$$

Parabolic equations

Stability of θ -method for $\theta < \frac{1}{2}$

$$\exists c > 0 : \Delta t < ch^2 \quad \forall h > 0$$

or even

$$\Delta t \le \frac{2}{(1 - 2\theta)\lambda_h^{N_h}}$$

where $\lambda_h^{N_h}$ is the largest eigenvalue of the bilinear form.

Discontinuous Galerkin

Introduce broken Sobolev space

$$H^s(\mathcal{T}_h) = \{ v \in L^2(\Omega) : v | \mathcal{K} \in H^s(\mathcal{K}) \ \forall \ \mathcal{K} \in \mathcal{T}_h \}$$

and the norms

$$\|v\|_{H^{s}(\mathcal{T}_{h})}^{2} = \sum_{\mathcal{K} \in \mathcal{T}_{h}} \|v\|_{H^{s}(\mathcal{K})}^{2} \qquad \|v\|_{L^{2}(\mathcal{F}_{h})}^{2} = \sum_{F \in \mathcal{F}} \|v\|_{L^{2}(F)}^{2}$$

$$\|v\|_{DG}^{2} = \|\nabla_{h}v\|_{L^{2}(\Omega)}^{2} + \|\sqrt{\gamma} \left[v\right]\|_{L^{2}(\mathcal{F}_{h})}^{2} \qquad \|v\|_{DG}^{2} = \|v\|_{DG}^{2} + \left\|\frac{1}{\sqrt{\gamma}} \left\{\nabla_{h}v\right\}\right\|_{L^{2}(\mathcal{F}_{h})}^{2}$$

And some key properties to stability

• Continuity on $H^2(\mathcal{T}_h) \times V_h^p$

$$|\mathcal{A}(u, v_h)| \lesssim |||u|||_{DG} ||v_h||_{DG} \quad \forall \ u \in H^2(\mathcal{T}_h), \forall \ v_h \in V_h^p$$

• Coercivity on $V_h^p \times V_h^p$

$$\mathcal{A}(v_h, v_h) \gtrsim ||v||_{DG}^2 \quad \forall \ v_h \in V_h^p$$

• Strong-consistency (Galerkin orthogonality):

$$\mathcal{A}(u, v_h) = \int_{\Omega} f v_h \quad \forall \ v_h \in V_h^p \Rightarrow \mathcal{A}(u - u_h, v_h) = 0 \quad \forall \ v_h \in V_h^p$$

• Approximation. Let $\prod_h^p u \in V_h^p$ be a suitable approximation of u, then

$$\left|\left|\left|u-\prod_{h}^{p}u\right|\right|\right|_{DG}\lesssim\frac{h^{\min(p,s)}}{n^{s-\frac{1}{2}}}\|u\|_{H^{s+1}(\mathcal{T}_{h})}$$

If $p \geq s$

$$\left\| \left\| u - \prod_h^p u \right\| \right\|_{DG} \lesssim \left(\frac{h}{p} \right)^s p^{\frac{1}{2}} \|u\|_{H^{s+1}(\mathcal{T}_h)}$$

Spectral Methods

Strang Lemma

$$||v_h||_V \le \frac{1}{\alpha^*} \sup_{v_h \in V_h \setminus \{0\}} \frac{F_h(v_h)}{||v_h||_V}$$

Convergence rates

Galerkin

Ceà Lemma

$$||u - u_h|| \le \frac{M}{\alpha} \inf_{v_h \in V_H} ||u - v_h||$$

 $||u - \prod_h^r u|| \le Ch^r ||u||_{H^{r+1}(\Omega)}$

Stabilized Galerkin

If

$$\mathbb{P}e_{\mathcal{K}}(\mathbf{x}) = \frac{|\mathbf{b}(\mathbf{x})|h_{\mathcal{K}}}{2\mu} > 1 \quad \forall \ \mathbf{x} \in \mathcal{K}$$

then

$$||u - u_h||_{GLS} \le Ch^{r + \frac{1}{2}} |u|_{H^{r+1}(\Omega)}$$

Parabolic equations

$$\left\{ \|u(t) - u_h(t)\|_{L^2(\Omega)}^2 + \alpha \int_0^t \|\nabla u(s) - \nabla u_h(s)\|_{L^2(\Omega)}^2 ds \right\}^{\frac{1}{2}}$$

$$\leq Ch^r \left\{ |u_0|_{H^r(\Omega)}^2 + \int_0^t |u(s)|_{H^{r+1}(Omega)}^2 ds + \int_0^t \left| \frac{\partial u(s)}{\partial s} \right|_{H^{r+1}(\Omega)}^2 ds \right\}^{\frac{1}{2}}$$

Galerkin-NI

$$\|u - u_N^{\text{GNI}}\|_{H^1(\Omega)} \le C(s) \left(\frac{1}{N}\right)^s \left(\|u\|_{H^{s+1}(\Omega)} + \|f\|_{H^s(\Omega)}\right)$$

SEM-NI

$$\|u - u_{\delta}\|_{H^{1}(\Omega)} \le C(s) \left(h^{\min(p,s)} \left(\frac{1}{p} \right)^{s} \|u\|_{H^{s+1}} + h^{\min(p,r)} \left(\frac{1}{p} \right)^{r} \|f\|_{H^{r}(\Omega)} \right)$$

Discontinuous Galerkin

Interpolation error

$$\|u - \prod_{h}^{p} u\|_{DG} \lesssim \frac{h^{\min(p,s)}}{p^{s-\frac{1}{2}}} \|u\|_{H^{s+1}(\mathcal{T}_h)}$$

And, since $||u - u_h||_{DG} \lesssim |||u - \prod_h^p u|||_{DG}$: General (if α large enough for SIP and NIP):

$$||u - u_h||_{DG} \lesssim \frac{h^{\min(p,s)}}{p^{s-\frac{1}{2}}} ||u||_{H^{s+1}(\mathcal{T}_h)}$$

 L^2 norm (if Ω is a convex domain):

• SIP $\theta = 1$

$$||u - u_h||_{L^2(\Omega)} \lesssim \frac{h^{\min(p,s)+1}}{p^{s+\frac{1}{2}}} ||u||_{H^{s+1}(\mathcal{T}_h)}$$

• NIP $\theta = -1$ and IIP $\theta = 0$

$$||u - u_h||_{L^2(\Omega)} \lesssim \frac{h^{\min(p,s)}}{p^{s-\frac{1}{2}}} ||u||_{H^{s+1}(\mathcal{T}_h)}$$

Navier-Stokes

In case of inf-sup (LBB) condition satisfied by V and Q

$$\|\mathbf{u} - \mathbf{u}_h\|_V + \|p - p_h\|_Q \le C(\alpha_h, \beta_h, \gamma, \delta) \left\{ \inf_{\mathbf{v}_h \in V_h} \|\mathbf{u} - \mathbf{v}_h\|_V + \inf_{q_h \in Q_h} \|p - q_h\|_Q \right\}$$

where

 \bullet α_h is the coercivity constant on the subspace V_h of divergence free velocities

- β_h is the LBB constant
- γ is the continuity constant of $a(\cdot, \cdot)$
- δ is the continuity constant of $b(\cdot, \cdot)$

In case of Taylor-Hoods elements

$$\|\mathbf{u} - \mathbf{u}_h\|_V + \|p - p_h\|_Q \le Ch(\|\mathbf{u}\|_{H^{k+1}} + \|p\|_{H^k})$$

Code implementation

CG-FEM

• Matrix A;

$$A_{ij} = \int_{\Omega} \nabla \varphi_j \nabla \varphi_i$$

Loop on all the elements and compute locally (elements with $\hat{\cdot}$ are computed on the reference element):

$$A_{loc_{ij}} = \det(\mathbf{B}_{\mathcal{K}}) \int_{\hat{\mathcal{K}}} \hat{\nabla} \hat{\varphi}_{j}^{T} \mathbf{B}_{\mathcal{K}}^{-1} \mathbf{B}_{\mathcal{K}}^{-1} \hat{\nabla} \hat{\varphi}_{i} = \frac{\det(\mathbf{B})}{2} \hat{\nabla} \hat{\varphi}_{j}^{T} \mathbf{B}_{\mathcal{K}}^{-1} \mathbf{B}_{\mathcal{K}}^{-T} \hat{\nabla} \hat{\varphi}_{i}$$

Can be implemented as

```
function [K_loc]=C_lap_loc(Grad,w_2D,nln,BJ)
        K_loc=zeros(nln,nln);
        for i=1:nln
            for j=1:nln
                for k=1:length(w_2D)
                     Binv = inv(BJ(:,:,k));  % inverse
                     Jdet = det(BJ(:,:,k));  % determinant
                    K_{loc}(i,j) = K_{loc}(i,j) + (Jdet.*w_2D(k)) .* ( (Grad(k,:,i))
                                  * Binv) * (Grad(k,:,j) * Binv )');
                 end
            end
        end
or (use this if P1)
        for i=1:nln
            for j=1:nln
                    Binv = inv(BJ(:,:,1));
                                             % inverse
                     Jdet = det(BJ(:,:,1));
                                              % determinant
                    K_{loc}(i,j) = K_{loc}(i,j) + 0.5 * Jdet
                     * Grad(1,:,i) * Binv * Binv' * Grad(1,:,j)';
            end
        end
```

• Mass matrix M:

$$M_{ij} = \int_{\Omega} \varphi_j, \varphi_i$$

Loop on all the elements and calculate the local mass matrix

$$M_{loc_{ij}} = \det(\mathbf{B}_{\mathcal{K}}) \int_{\hat{\mathcal{K}}} \hat{\varphi}_j \hat{\varphi}_i$$

Can be implemented as

 \bullet Transport matrix T

Can be implemented as

• Right-hand side **b**:

$$b_i = \int_{\Omega} f \varphi_i$$

which is computed

```
function [f]=C_loc_rhs2D(force,dphiq,BJ,w_2D,pphys_2D,nln,mu)
f = zeros(nln,1);
x = pphys_2D(:,1);
y = pphys_2D(:,2);
F = eval(force);
for s = 1:nln
    for k = 1:length(w_2D)
        Jdet = det(BJ(:,:,k)); % determinant
        f(s) = f(s) + w_2D(k)*Jdet*F(k)*dphiq(1,k,s);
    end
end
```