Généralités

lacktriangle Chaque suite u suivante est définie pour tout entier naturel n. Calculez les 4 premiers termes.

a.
$$u_n=2n+1$$

b.
$$u_n=3n^2-2n+1$$
 d. $u_n=rac{1}{n+1}$

c.
$$u_n=2^n$$

d.
$$u_n=\frac{1}{n+1}$$

E2 Chaque suite u suivante est définie par récurrence pour tout entier naturel n. Calculez les 4 premiers termes.

$$\left\{ egin{array}{ll} u_0=-5 \ u_{n+1}=u_n+2 \end{array}
ight. \qquad \left\{ egin{array}{ll} u_0=0{,}5 \ u_{n+1}=2u_n \end{array}
ight.$$

$$\left\{egin{array}{l} u_0=0{,}5\ u_{n+1}=2u_n \end{array}
ight.$$

с.

$$\left\{egin{array}{l} u_0=-2\ u_{n+1}=u_n^2 \end{array}
ight.$$

$$\left\{egin{array}{ll} u_0=-2 & & & & \ u_{n+1}=u_n^2 & & & \ \end{array}
ight. \quad \left\{egin{array}{ll} u_0=1 & & \ u_{n+1}=4u_n+1 \end{array}
ight.$$

Suites particulières

B Déterminez si chaque suite ci-dessous est arithmétique, géométrique ou ni l'une ni l'autre. Si elle est arithmétique ou géométrique, indiquez sa raison et son premier terme.

a.
$$u_n=5n+2$$

b.
$$u_n=3 imes 2^n$$

c.
$$u_n = (-1)^n$$

d.
$$u_n = n^2 + 1$$

Les suites suivantes sont définies par récurrence. Déterminez si elles sont arithmétiques ou géométriques, puis donnez leur formule explicite.

а.

$$\left\{egin{array}{ll} u_0=10 & & & & & \ u_{0}=2 & & & \ u_{n+1}=u_n-3 & & & \ \end{array}
ight.$$

$$\left\{egin{array}{l} u_0=2 \ \ u_{n+1}=5u_r \end{array}
ight.$$

Considérons les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$u_n=5-n$$

$$\left\{egin{array}{l} v_0=2 \ \ v_{n+1}=5-v_n \end{array}
ight.$$

Déterminez si elles sont arithmétiques ou non.

Sens de variation

E6 Pour chacune des suites ci-dessous, déterminez le sens de variation en étudiant le signe de la différence $u_{n+1}-u_n$.

a.
$$u_n=2n+1$$

b.
$$u_n=3-2n$$

c.
$$u_n=5n-6$$

d.
$$u_n=2n^2-3n$$

Pour chacune des suites de l'exercice précédent, déterminez la fonction f telle que $u_n = f(n)$ et étudiez le sens de variation de la suite en étudiant les variations de la fonction f.

Pour chacune des suites ci-dessous, déterminez le sens de variation en étudiant le $rac{u_{n+1}}{u_{n+1}}$ (on admettra que $u_n>0$).

a.
$$u_n=3^n$$

b.
$$u_n=rac{1}{2^n}$$

a.
$$u_n=3^n$$
 b. $u_n=rac{1}{2^n}$ c. $u_n=rac{1}{n+1}$

Limite d'une suite

E9 On considère la suite (u_n) définie pour tout entier naturel n par $u_n=rac{3n-1}{n}$.

a. À l'aide de la calculatrice, conjecturez une valeur pour la limite de la suite (u_n) lorsque ntend vers l'infini.

b. Simplifiez $\left| \frac{3n-1}{n} - 3 \right|$. En déduire si on peut rendre $\left| \frac{3n-1}{n} - 3 \right|$ aussi petit que l'on veut en prenant n suffisamment grand.

E10 On considère la suite (u_n) définie pour tout entier naturel n par $u_n=2n+5$.

a. À partir de quel rang n_0 peut-on affirmer que $u_n \geqslant 100$? $u_n \geqslant 1000$?

b. Quelle est la limite de la suite (u_n) lorsque n tend vers l'infini ?

Ell Déterminez le seuil n_0 et la limite de la suite (u_n) lorsque n tend vers l'infini pour chacune des suites ci-dessous.

a. $u_n = 3 - 2n$, seuil à partir duquel $u_n \leqslant -101$. Indication: résoudre une inéquation.

b. $u_n = 5n^2 - 6n + 1$, seuil à partir duquel $u_n \geqslant 49 \ 401$.

Indication : résoudre une inéquation du second degré.

c. $u_n = -2^n$, seuil à partir duquel $u_n \leqslant -1000$ Indication : utiliser la calculatrice pour déterminer le seuil.

lacksquare Considérons la suite (u_n) définie par $u_0=1$ et $u_{n+1}=\sqrt{2u_n}$.

a. Conjecturez une limite l quand n tend vers l'infini à l'aide de la calculatrice.

b. Complétez le programme Python suivant pour déterminer le seuil n_0 à partir duquel $|u_n-l|<10^{-3}$.

```
1 | from math import sqrt
3
   n=...
   1= ...
    while abs(u-1) \dots 10^{**}(-3):
6
        u=...
        n=...
```