ÉPREUVE DU 02/10/2019 AVEC CORRIGÉ

Les notes de cours, calculatrices et téléphones portables ne sont pas autorisés.

Durée de l'épreuve : 1 heure.

Question de cours (2 points)

Soit X une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, et soit $a \in \mathbb{R}$.

- 1. Justifier que l'ensemble $\{X = a\}$ est bien dans \mathcal{F} .
- 2. Exprimer $\mathbb{P}(X=a)$ à l'aide de la fonction de répartition F_X (sans justifier).
- 3. Que donne cette formule dans le cas où X admet une densité?

Exercice 1 (4 points)

On lance trois fois de suite un dé. Proposer un espace probabilisé pour décrire cette expérience, puis déterminer lequel des événements suivants est le plus probable.

- 1. Les trois chiffres obtenus sont identiques.
- 2. La somme des trois chiffres obtenus vaut cinq.
- 3. Le chiffre six est obtenu exactement deux fois.

Exercice 2 (4 points)

Sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, on considère les ensembles suivants :

$$\mathcal{E} := \{ A \in \mathcal{F} \colon \mathbb{P}(A) = 0 \text{ ou } \mathbb{P}(A) = 1 \} .$$

$$\mathcal{C} := \{ A \in \mathcal{F} \colon \mathbb{P}(A) = 0 \} .$$

- 1. Montrer que \mathcal{E} est une tribu sur Ω .
- 2. Montrer que C n'est pas une tribu sur Ω , puis déterminer $\sigma(C)$.

CORRIGÉ DE L'ÉPREUVE DU 02/10/2019

Question de cours (2 points)

- 1. On a $\{X = t\} = X^{-1}(B)$, avec $B = \{t\}$. Comme B est un intervalle (ou un fermé), il est dans $\mathcal{B}(\mathbb{R})$. Comme X est une v.a.r., on conclut que $X^{-1}(B) \in \mathcal{F}$.
- 2. En notant $F_X(t-)$ la limite à gauche de F_X au point t, on a

$$\mathbb{P}(X=t) = F_X(t) - F_X(t-).$$

3. Si *X* admet une densité *f*, alors on a pour tout $t \in \mathbb{R}$,

$$F_X(t) = \int_{-\infty}^t f(x) \, \mathrm{d}x.$$

En particulier, F_X est continue, et donc $\mathbb{P}(X=t)=0$.

Exercice 1 (4 points)

On se place sur $\Omega=\{1,2,3,4,5,6\}^3$, muni de la tribu $\mathcal{F}=\mathcal{P}(\Omega)$ et de la loi uniforme :

$$\mathbb{P}(A) = \frac{\operatorname{card}(A)}{\operatorname{card}(\Omega)}.$$

1. L'événement correspondant à l'obtention de 3 chiffres identiques est

$$A = \{(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5,5,5), (6,6,6)\}.$$

On en déduit aussitôt que $\mathbb{P}(A) = 6/(6 \times 6 \times 6) = 1/36$.

2. L'événement correspondant à l'obtention d'une somme égale à 5 est

$$B = \{(1,1,3), (1,3,1), (3,1,1), (1,2,2), (2,1,2), (2,2,1)\}.$$

On en déduit aussitôt que $\mathbb{P}(B) = 6/(6 \times 6 \times 6) = 1/36$.

3. L'événement correspondant à l'obtention d'exactement deux six s'écrit

$$C = \bigcup_{i=1}^{5} \{(6,6,i), (6,i,6), (i,6,6)\}.$$

On en déduit que $\mathbb{P}(C) = (5 \times 3)/(6 \times 6 \times 6) = 5/72$.

C'est donc le dernier événement qui est le plus probable.

Exercice 2 (4 points)

- 1. Montrons que ${\mathcal E}$ vérifie les trois axiomes d'une tribu :
 - (a) (Vide) On a bien $\emptyset \in \mathcal{E}$, puisque $\mathbb{P}(\emptyset) = 0$.
 - (b) (Stabilité par complémentaire) Si $A \in \mathcal{E}$, alors par définition, $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$. Par passage au complémentaire, on en déduit que $\mathbb{P}(A^c) = 1$ ou $\mathbb{P}(A^c) = 0$. Dans les deux cas, $A^c \in \mathcal{E}$.
 - (c) (Stabilité par union dénombrable) Soit $(A_n)_{n\geq 0}\in \mathcal{E}^{\mathbb{N}}$. Si $\mathbb{P}(A_n)=0$ pour tout $n\in\mathbb{N}$, alors on peut invoquer la sous-additivité dénombrable de \mathbb{P} pour écrire

$$\mathbb{P}\left(\bigcup_{n=0}^{\infty} A_n\right) \leq \sum_{n=0}^{\infty} \mathbb{P}(A_n) = 0.$$

Comme une probabilité est toujours positive, on conclut que $\mathbb{P}\left(\bigcup_{n=0}^{\infty}A_{n}\right)=0$. Si au contraire il existe $n_{0}\in\mathbb{N}$ tel que $\mathbb{P}\left(A_{n_{0}}\right)\neq0$, alors on a $\mathbb{P}(A_{n_{0}})=1$ par définition de \mathcal{E} , et comme $\bigcup_{n=0}^{\infty}A_{n}\supseteq A_{n_{0}}$, la monotonie de \mathbb{P} implique

$$\mathbb{P}\left(\bigcup_{n=0}^{\infty} A_n\right) \geq \mathbb{P}(A_{n_0}) = 1.$$

Comme une probabilité est toujours au plus 1, on conclut que $\mathbb{P}\left(\bigcup_{n=0}^{\infty}A_{n}\right)=1$. Dans les deux cas, on a bien $\bigcup_{n=0}^{\infty}A_{n}\in\mathcal{E}$.

- 2. $\mathcal C$ n'est pas une tribu, puisque $\Omega \notin \mathcal C$ ($\mathbb P(\Omega)=1$). Montrons que $\sigma(\mathcal C)=\mathcal E$ par double inclusion.
 - (a) On a déjà vu que \mathcal{E} est une tribu, et il est clair qu'elle contient \mathcal{C} . Comme $\sigma(\mathcal{C})$ est la plus petite tribu qui contient \mathcal{C} , on conclut que $\sigma(\mathcal{C}) \subseteq \mathcal{E}$.
 - (b) Réciproquement, considérons $A \in \mathcal{E}$, et montrons que $A \in \sigma(\mathcal{C})$. Si $\mathbb{P}(A) = 0$, alors $A \in \mathcal{C}$, et comme $\mathcal{C} \subseteq \sigma(\mathcal{C})$, on a bien $A \in \sigma(\mathcal{C})$. Si au contraire $\mathbb{P}(A) = 1$, alors $\mathbb{P}(A^c) = 1 \mathbb{P}(A) = 0$, donc $A^c \in \mathcal{C}$, et donc $A^c \in \sigma(\mathcal{C})$. La stabilité d'une tribu par passage au complémentaire nous permet de conclure que $A \in \sigma(\mathcal{C})$.