2. Topological Space and Continuous functions

We will introduce some basic topological space. e.g. Order topology, Product topology, Subspace topology, Metric topology, (Quotient topology)

§ 12 Topological Spaces.

<u>Definition</u>. Let X be a nonempty set $\mathscr{P}(X) = 2^X$ power set of X. We say that $\mathscr{T} \subseteq \mathscr{P}(X)$ is a topology on X if

- (1) $\emptyset, X \in \mathscr{T}$
- (2) $U_{\alpha} \in \mathcal{T}, \ \alpha \in I \implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$
- (3) $U_1, \dots, U_n \in \mathscr{T} \implies U_1 \cap \dots \cap U_n \in \mathscr{T}$

If \mathscr{T} is a topology on X, then the pair (X,\mathscr{T}) or simply X is called a topological space and members in \mathscr{T} are called open sets in X

Example.

- (1) $X = \{a, b, c\}$
 - (a) The following are topological space on X, $\mathcal{T}_1 = \{\emptyset, X\}$, $\mathcal{T}_2 = \{\emptyset, \{a\}, \{a,b\}, X\}, \mathcal{T}_3 = \mathcal{P}(X)$
 - (b) The following are not topology on X $\mathscr{A} = \{\emptyset, \{a\}, \{b\}, X\} \ (\because \{a\} \cup \{b\} = \{a, b\} \notin \mathscr{A})$ $\mathscr{B} = \{\emptyset, \{a, b\}, \{b, c\}, X\} \ (\because \{a, b\} \cap \{b, c\} = \{b\} \notin \mathscr{B})$
- (2) Any set with more than 1 element has at least two topology $\{\emptyset, X\}$ (in discrete topology) and $\mathscr{P}(X)$ (discrete) and former is smallest one, another is the largest one.

<u>Definition</u>. $\mathscr{T}_{op} = \{ \mathscr{T} \mid \mathscr{T} \text{ is a topology on } X \} \mathscr{T}_1 \leq \mathscr{T}_2 \Leftrightarrow \mathscr{T}_1 \subseteq \mathscr{T}_2$ Claim " \leq " is a partial ordering on \mathscr{T}_{op}

- * Reflexive: $\forall \mathcal{T} \in \mathcal{T}_{op}, \ \mathcal{T} \leq \mathcal{T}$
- * Anti-symmetry: $\forall \mathcal{T}_1, \mathcal{T}_2 \in \mathcal{T}_{op}, \ \mathcal{T}_1 \leq \mathcal{T}_2 \ and \ \mathcal{T}_2 \leq \mathcal{T}_1 \implies \mathcal{T}_1 = \mathcal{T}_2$
- * Transitive: $\forall \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3 \in \mathcal{T}_{op}, \mathcal{T}_1 \leq \mathcal{T}_2 \text{ and } \mathcal{T}_2 \leq \mathcal{T}_3 \implies \mathcal{T}_1 \leq \mathcal{T}_3$

Example. Let X be a set, $\mathscr{T}_f = \{U \subseteq X, U = \emptyset \text{ or } X - U \text{ is finite } \}$ Then \mathscr{T}_f is a topology on X, called the "finite complement topology" on X Proof.

- (1) $\emptyset, X \in \mathscr{T}_f \ (:: X X = \emptyset)$
- (2) $U_{\alpha} \in \mathscr{T}_f$, $\alpha \in I$ If $\bigcup_{\alpha \in I} U_{\alpha} = \emptyset$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$. If $U_{\alpha \in I} U_{\alpha} \neq \emptyset$, then $\exists \alpha_0 \in I \ni U_{\alpha_0} \neq \emptyset$ and $X - U_{\alpha}$ is finite $X - \bigcup_{\alpha \in I} U_{\alpha} = \bigcap_{\alpha \in I} (X - U_{\alpha}) \subseteq X - U_{\alpha_0} \implies X - (\bigcup_{\alpha \in I} U_{\alpha})$ is finte $\implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}_f$
- (3) $U_1, \dots, U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n = \emptyset$, then $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$ If $U_1 \cap \dots \cap U_n \neq \emptyset$, then $X - (U_1 \cap \dots \cap U_n) = (X - U_1) \cap \dots \cup (X - U_n)$ is finite since each $X - U_i$ is finite. Thus $U_1 \cap \dots \cap U_n \in \mathscr{T}_f$

From (1)(2)(3), \mathscr{T}_f is a topology on X.

Remark. If X is a finite set, then \mathcal{T}_f is the discrete topology on X

Example. Let X be a set and $\mathscr{T}_c = \{U \subseteq X \mid U = \emptyset \text{ or } X - U \text{ is countable } \}$. Then as in example above, \mathscr{T}_c is a topology on X, called the countable complement topology on X. Moreover, if X is countable, then \mathscr{T}_c is just a discrete topology on X

Definition. Let \mathscr{T} and \mathscr{T}' be two topologies on X. We say that \mathscr{T}' is (strictly) finer then \mathscr{T} or \mathscr{T} is (strictly) coaser that \mathscr{T}' if $\mathscr{T} \leq \mathscr{T}'(\mathscr{T} \leq \mathscr{T}')$, i.e. $\mathscr{T} \subseteq \mathscr{T}'(\mathscr{T} \subsetneq \mathscr{T}')$

Remark.

- (1) Two topologies on X need not be comparable
- (2) Other terminology, if $\mathcal{T}' \supset T$, \mathcal{T}' is larger(stronger) than \mathcal{T} and \mathcal{T} is smaller(weaker) than \mathcal{T}

§ 13 Bases for a topology.

<u>Definition.</u> Let X be a set. A base for a topology on X is a collection $\mathscr{B} \subseteq \mathscr{P}(X)$ satisfying

- (1) $U\mathscr{B} = X \left(\bigcup \mathscr{B} = \bigcup_{B \in \mathscr{B}} B \right)$
- (2) Given $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2 \exists B_3 \in \mathcal{B} \ni x \in B_3 \subseteq B_1 \cap B_2$

Members in \mathcal{B} are called basic open sets in X

Given a base \mathcal{B} for a topology on X, we can define the smallest topology \mathcal{T} on X containing \mathcal{B} called the topology on X generated by \mathcal{B} .

Usually, there are two ways to describe it

- (I) $\mathscr{T} = \{U \subset X, \forall x \in U \exists B \in \mathscr{B} \ni x \in B \subset U\}$. Clearly, $\mathscr{B} \subset \mathscr{T}$
- (a) $\emptyset, X \in \mathcal{T}$ (by the definition of bases (1))
- (b) $U_{\alpha} \in \mathcal{T}, \ \alpha \in I \implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}. \text{ Given } x \in \bigcup_{\alpha \in I} U_{\alpha}, x \in U_{\alpha_0}$ for some $\alpha_0 \in I, \ \exists B \in \mathcal{B} \ni x \in B \subseteq U_{\alpha_0} \subseteq \bigcup_{\alpha \in I} U_{\alpha}$
- (c) $U_1, \dots, U_n \in \mathscr{T} \implies U_1 \cap \dots \cap U_n \in \mathscr{T}$. By induction on n, we only prove n = 2. Given $x \in U_1 \cap U_2$, $x \in U_1$ and $x \in U_2$ $\implies \exists B_1, B_2 \in \mathscr{B} \ni x \in B_1 \subseteq U_1$ and X in $\mathscr{B}_2 \subseteq U_2 \implies x \in B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies \exists B_3 \in \mathscr{B} \ni x \in B_3 \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2 \implies U_1 \cap U_2 \in \mathscr{T}$
- (II) $\mathscr{T}' = \{ \bigcup \mathscr{A} \mid \mathscr{A} \subseteq \mathscr{B} \} = \{ \bigcup_{\alpha \in I} A_\alpha \mid A_\alpha \in \mathscr{B} \}$

Clearly, $\mathscr{B} \subseteq \mathscr{T}'$ (only choose one element in \mathscr{B})

- (a) $\emptyset, X \in \mathcal{T}'(\text{trivial})$
- (b) $U_{\alpha} \in \mathcal{T}'$, $\alpha \in I \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$ $\forall \alpha \in I, U_{\alpha} = \bigcup_{\beta \in I_{\alpha}} A_{\beta}$. Then $\bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} \bigcup_{\beta \in I_{\alpha}} A_{\beta} \Longrightarrow \bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}'$
- (c) $U_1, \dots, U_n \in \mathcal{T}' \implies U_1 \cap \dots \cap U_n \in \mathcal{T}'$. By induction on n, we only to prove that n = 2. For $i = 1, 2, \dots, U_i = \bigcup_{\alpha \in I_j} A_{\alpha}$. $U_1 \cap U_2 = \bigcup_{\alpha \in I_2} (A_{\beta}^1 \cap A_{\alpha}^2)$. $\forall x \in U_1 \cap U_2, \ x \in A_{\beta}' \cap A_{\alpha}^2 \implies U_1 \cap U_2 = \bigcup_{x \in U_1 \cap U_2} B_X \in \mathcal{T}'$
- (III) $\mathscr{T} = \mathscr{T}'$
- (\subseteq) Given $U \in \mathcal{T}$, $\forall x \in U$, $\exists B_x \in \mathcal{B} \ni x \in B_x \subseteq U \implies U = \bigcup_{x \in U} B_x \in \mathcal{T}'$
- (2) Given $U \in \mathcal{T}'$ $U = \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \in \mathcal{B}$ $\forall x \in U, x \in A_{\alpha} \text{ for some } \alpha \in I \text{ and } A_{\alpha} \in \mathcal{B}, \text{ i.e. } X \in A_{\alpha} \in U \text{ and } A_{\alpha} \in \mathcal{B} \implies U \in \mathcal{T}. \text{ Hence } \mathcal{T} = \mathcal{T}'$

Example.

(1) Let \mathscr{B} be the collection of all open balls in \mathbb{R}^n . Then \mathscr{B} is a base for a topology on \mathbb{R}^n , namely, then Euclidean topology on \mathbb{R}^n

(2) Let \mathscr{B}' be the collection of all n-dimentional open intervals in \mathbb{R} . Then \mathscr{B}' is a base for a topology on \mathbb{R}^n . In fact, β and β' generate the same topology on \mathbb{R}^n

Lemma. Let X be a set, let \mathscr{B} be a basis for a topology \mathscr{T} on X. \mathscr{T} equals the collection if all unions of elements of \mathscr{B} .

Lemma. Let X be a topological space and \mathscr{C} be a collection of open sets of $X \ni \forall$ open set U in X and $\forall x \in U \exists C \in \mathscr{C} \ni x \in C \subseteq U$. Then \mathscr{C} is a base for the topology of X.

- Proof. (1) $\bigcup \mathscr{C} = X$ Since X is open $\forall x \in X$, $\exists C_x \in \mathscr{C} \ni x \in C_x \subseteq X \implies x \in \bigcup \mathscr{C} \implies X = \bigcup \mathscr{C}$
 - (2) Given $C_1, C_2 \in \mathscr{C}$ and $x \in C_1 \cap C_2$. Since $C_1 \cap C_2$ is open, $\exists C \in \mathscr{C} \ni x \in C \subseteq C_1 \cap C_2, \therefore \mathscr{C}$ is a base for a topology of X

Remark. Let \mathscr{T} be the original topology on X and \mathscr{T}' be the topology generated by \mathscr{C} . Then $\mathscr{T} = \mathscr{T}'$

Proof.

- $(\subseteq) \text{ Given } U \in \mathscr{T}, \, \forall x \in U \exists C \in \mathscr{C} \ni x \in C \subseteq U \implies U \in \mathscr{T}'$
- (\supseteq) Given $v \in \mathcal{T}'$, by lemma, $V = \bigcup \mathscr{A}$ for some $A \subseteq \mathscr{C}$. Since $\mathscr{C} \subset \mathscr{T}$, $\mathscr{A} \subset \mathscr{T}$, $\therefore V = \bigcup \mathscr{A} \in \mathscr{T}$

Lemma. Let \mathscr{B} and \mathscr{B}' be bases for the topology \mathscr{T} and \mathscr{T}' on X respective TFAE

- (1) \mathcal{T} is finer that \mathcal{T} i.e. $\mathcal{T} \subseteq \mathcal{T}'$
- (2) $\forall x \in X \text{ and } B \in \mathcal{B} \text{ with } x \in B, \exists B' \in \mathcal{B} \ni x \in B' \subseteq B$

Proof.

- $(a) \Rightarrow (b)$ Suppose $\mathscr{T} \subseteq \mathscr{T}'$. Given $x \in X$ and $B \in \mathscr{B}$ with $x \in B$. Since $\mathscr{T} \subseteq \mathscr{T}'$, $B \in \mathscr{T}, \exists B' \in \mathscr{B} \ni x \in B' \subseteq B$
- $(b) \Rightarrow (a)$ Suppose (b) holds. Given $U \in \mathscr{T}, \ \forall x \in U, \ \exists B_x \in \mathscr{B} \ni x \in B_x \subseteq U$. By $(b), \ \exists B_x' \in \mathscr{B} \ni x \in B_x' \subseteq B_x \subseteq U \implies U \in \mathscr{T}'$

4

Example. In $\S13$, example 1,2

 \mathscr{B} : all open balls in \mathbb{R}^n for a topology on \mathbb{R}^n

 \mathscr{B}' : all open intervals in \mathbb{R}^n for a topology on \mathbb{R}^n

By lemma above, they generate the same Euclidean topology on \mathbb{R}^n We now define 3 topologies on the real line \mathbb{R}

Definition.

- (1) $\mathscr{B} = \{(a,b) \mid -\infty < a < b < \infty\}$: the collection of all open intervals in \mathbb{R} which is the base for the usual topology on \mathbb{R}
- (2) $\mathscr{B}' = \{[a,b) \mid -\infty < a < b < \infty\}$ the collection of all closed-open interval in \mathbb{R} , which is also a base for a topology of \mathbb{R} called the lower limit topology on \mathbb{R} . We denote it by \mathbb{R}_l
- (3) Let $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and $\mathscr{B}'' = \{B \subseteq \mathbb{R} \mid B = (a, b) \text{ or } B = (a, b) K \text{ for } -\infty < a < b < \infty\}$. Claim: \mathscr{B}' is a base for a topology on \mathscr{T}
 - $\star Clearly, U\mathscr{B}'' = \mathbb{R}$
 - * Given $B_1, B_2 \in \mathscr{B}''$ and $x \in B_1 \cap B_2$. We have 4 cases:
 - (i) B_1 and B_2 are open intervals which is clearly.
 - (ii) $B_1 = (a, b)$ and $B_2 = (c, d) K$. Let $\alpha = \max\{a, c\}$ and $\beta = \min\{b, c\}$. $x \in (\alpha, \beta) - K \subseteq B_1 \cap B_2$ and $(\alpha, \beta) - K \in \mathcal{B}''$
 - (iii) (3)(4) similarly

The topology on \mathbb{R} generated by B' is called the K-topology on \mathbb{R} and denoted \mathbb{R}_k

Lemma. The topologies of \mathbb{R}_l and \mathbb{R}_k are strictly finer than the Euclidean topology of \mathbb{R} but are not comparable with one another

Proof. Let $\mathcal{T}, \mathcal{T}'$ and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_l, \mathbb{R}_k$ generated by $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ respectly. We use lemma above to prove it.

- * $\mathscr{T} \subsetneq \mathscr{T}'$ Given $(a,b) \in \mathscr{B}$ and $x \in (a,b)$. We have $[x,b) \in \mathscr{B}'$ with $x \in [x,b) \subseteq (a,b)$. By lemma, $\mathscr{T} \subseteq \mathscr{T}'$, $\forall a < b, [a,b) \in \mathscr{B}'$ so $[a,b) \in \mathscr{T}'$, but $[a,b)' \notin \mathscr{T}$
- * Clearly, $\mathscr{T}\subseteq \mathscr{T}''$ by $\mathscr{B}\subseteq \mathscr{B}''$. Moreover $B''=(-1,1)-K\in \mathscr{B}''$, so $B''\in \mathscr{T}''$ but $B''\notin \mathscr{T}$.

* \mathscr{T}' and \mathscr{T}'' are not comparable $(-1,1)-K\in\mathscr{T}''$, but $(-1,1)-K\notin\mathscr{T}'(\because \text{not } [0,c)\in\mathscr{B}'\ni 0\in [0,c)\subseteq (-1,1)-K). \ [0,1)\in\mathscr{T}$ but no $\mathscr{B}''\in\mathscr{B}''\ni 0\in B''\subseteq [0,1)$

<u>Definition.</u> A subbase $\mathscr S$ for a topology on X is a collection of subsets of X with $\bigcup \mathscr S = X$ and elements in $\mathscr S$ are calle subbasic open sets in X

Given subbase on X

$$\mathscr{B} = \{S_1 \cap \dots \cap S_k, \ k \in \mathbb{N}, S_1, \dots, S_k \in S\}$$

Claim \mathcal{B} is a base for a topology on X

<u>Definition.</u> The topology on X generated by a subbase $\mathscr S$ is defined to be the topology generated by the base $\mathscr B$.

§ 14 The Order Topology. (which provides many counterexample in topology)

<u>Definition</u>. A relation C on a set is called an "order relation" (or a simple order) if it satisfies

- (1) Comparable: $\forall x \neq y \text{ in } X \text{ either } xCy \text{ or } yCx$
- (2) Non-reflexivity: no xCx
- (3) Transitivity: xCy and $yCz \implies xCz$

Given a simple order set (X, <) and $a, b \in X$ with a < b (Note: $a \le b$ means a < b or a = b). We can define:

$$(a,b) = \{x \in X \mid a < x < b\}$$
 open interval

$$(a, b] = \{x \in X \mid a < x \le b\}$$
 open interval

$$[a,b) = \{x \in X \mid a \le x < b\}$$
 open interval

$$[a,b] = \{x \in X \mid a \le x \le b\}$$
 open interval

We assume that $|X| \geq 2$. Let \mathscr{B} be the collection of all subsets of the following types

- (1) All open intervals (a, b) in X
- (2) All intervals of the forms $[a_0, b)$ where a_0 is the smallest elements of X

(3) All intervals of the forms $(a, b_0]$ where b_0 is the largest elements of X

<u>Definition</u>. The topology generated by \mathcal{B} is called the order topology on X

Example.

- (1) If X is an order set and $T \subseteq X$, then so is Y
- (2) In \mathbb{R} we give the usually ordering and the order topology on \mathbb{R} is the usual topology on \mathbb{R}
- (3) In $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}$ with the usual ordering is an order set.
- (4) In $\mathbb{R} \times \mathbb{R}$ with the dictionary order is an order set whose basis for the order topology is of the form
- (5) \mathbb{N} with the usual ordering is an order set with the smallest element 1. What is the order topology?
 - ★ $[1,b): b \in \mathbb{N}$ and (a,b), a < b. In particular, $\{1\} = [1,2)$ and $\{n\} = (n-1,n+1), n > 1$ are basic open sets in \mathbb{N} \therefore the order topology on \mathbb{N} is the discrete topology on \mathbb{N}
- (6) The set $X = \{1, 2\} \times \mathbb{N} = \{1 \times n\}_{n=1}^{\infty} = a_n \cup b_n = \{2 \times n\}_{n=1}^{\infty}$ in the dictionary order with the smallest element 1×1 . The order topology on X is not discrete topology on X

$$X : a_1, a_2, \dots, b_1, b_2, \dots, a_i < a_{i+1}, b_j < b_j + 1, a_i < b_j$$

$$\star \{a_1\} = [a_1, a_2)$$

$$\star \{a\}n\} = (a_{n-1}, a_{n+1}), n \ge 2$$

$$\star \{b_n\} = (b_{n-1}, b_{n+1}), n \ge 2$$

But $\{b_1\}$ is not open, b_1 is not the smallest elements any basic open set in the order topology containing b_1 must of the form (a_l, b_j) for some $l \geq 1$ and j > 1

<u>Definition</u>. Let X be an ordered set and $a \in X$. We define the rays determine by a

$$\star\ (a,\infty) = \{x \in X \mid x > a\}$$

$$\star (-\infty, a) = \{ x \in X \mid x < a \}$$

$$\star \ [a, \infty) = \{ x \in X \mid x \ge a \}$$

$$\star \ (\infty, a] = \{ x \in X \mid x \le a \}$$

Some facts:

- (1) open rays in X are open in the order topology of X. In fact, $(a, \infty) = (a, b_0]$ if X has the largest element which is a basic open set in the order topology of X. If X has no largest element, then $(a, \infty) = \bigcup_{a < x} (a, x)$ which is open in the order topology of X
- (2) closed rays is close
- (3) The order topology of X is contained in the topology on X generated by open rays in X. \therefore $(a,b) = (a,\infty) \cap (-\infty,b)$. If X has the smallest element a_0 , $[a_0,b) = (-\infty,b)$ If X has the largest element b_0 , $(a,b_0] = (a,\infty)$

§ 15 The Product Topology on $X \times Y$. Similarly for X_1, \dots, X_n Let X and Y be topology spaces and

$$\mathscr{B} = \{U \times V \mid U \text{ is open in } X, V \text{ is open in } Y\}$$

Claim \mathcal{B} is a base for a topology on $X \times Y$

- $\bullet \bigcup \mathscr{B} = X \times Y$
- Given $U_i \times V_i \in \mathcal{B}$, i = 1, 2 and $(a, b) \in (U_1 \times V_1) \cap (U_2 \times V_2)$ $(a, b) \in U \times V \subseteq (U_1 \times V_1) \cap (U_2 \times V_2)$ where $U = U_1 \cap U_2$, $V = V_1 \cap V_2$

<u>Definition</u>. The topology on $X \times Y$ generate by \mathcal{B} is called the product topology on $X \times Y$

Remark. If X_1, \dots, X_n are topological space, them

- (1) $\mathscr{B} = \{U_1 \times \cdots \times U_n \mid U_i \text{ is open in } X_i, 1 \leq i \leq n\} \text{ is a base } for the product topology on } X_1 \times \cdots \times X_n$
- (2) The product topology on $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ is the usual topology on \mathbb{R}^n generate b the collection of all n-dimensional open intervals.

$$\{I_1 \times \cdots \times I_n \mid I_j \text{ is an open interval in } \mathbb{R}, \ 1 \leq j \leq n\}$$

Theorem. Let X and Y be topological space with bases \mathscr{B}_X and \mathscr{B}_Y on X and Y respectively. Then

$$\mathscr{D} = \{B \times C \mid B \in \mathscr{B}_X, \ C \in \mathscr{B}_Y\}$$

forms a basis for the product topology on $X \times Y$

Proof. Let $\mathscr{B} = \{U \times V \mid U \text{ is open in } X \text{ and } V \text{ is open in } Y\}$. We know that \mathscr{B} is a base for the product topology on $X \times Y$ Given $U \times V \in \mathscr{B}$ with $(a,b) \in U \times V \implies a \in U, \ b \in V \implies \exists B \in \mathscr{B}_X \text{ and } C \in \mathscr{B}_Y \ni a \in B \subseteq U, \ b \in C \subseteq V$ $\therefore (a,b) \in B \times C \subseteq U \times V \text{ and } B \times C \in \mathscr{D}$

Redefine the product topology on $X_1 \times \cdots \times X_n$ by using subbase The projection onto X_i

$$\pi_i: X_1 \times \dots \times X_n \to X_i$$

$$(x_1, \dots, x_n) \to x_1, \ 1 \le i \le n$$

If $U_i \subseteq X_i \ \pi_i^{-1}(U_i) = X_1 \times \cdots \times X_{i-1} \times U_i \times X_{i+1} \times \cdots \times X_n$ Let $\delta = \{\phi_i^{-1}(U_i) \mid U_i \subseteq X_i \text{ is open and } 1 \le i \le n\}$ Note: $\bigcup_{i=1}^n \pi_i^{-1}(U_i) = X_1 \times \cdots \times X_n$ $\vdots \delta \text{ is a subbase for a topological on } X_i \times \cdots \times X_n \text{ with base}$

 δ is a subbase for a topological on $X_1 \times \cdots \times X_n$ with base

$$\{U_1 \times \cdots \times U_n \mid U_i \text{ is open in } X_i, \ 1 \leq i \leq n\}$$

Hence, the product topology on $X_1 \times \cdots \times X_n$ is generated by δ

§ 16 The subspace topolgoy. Let X be a topology space with topology \mathscr{T} and $Y \subseteq X$. Let $\mathscr{T}_Y = \{U \cap Y \mid U \in \mathscr{T}, \text{ i.e. } U \text{ is open in } X\}$

<u>Definition.</u> The topology \mathcal{T}_Y on Y is called the subspace topology of Y in X. With this topology, Y is called a subspace of X

Lemma. If \mathscr{B} is a base for the topology \mathscr{T} of X, then $\mathscr{B}_Y = \{B \cap Y \mid B \in \mathscr{B}\}$ is a base for the subspace topology on Y.

Proof. Given an open set V in Y and $y \in V$. Then $y \in V = \cap Y$ for some open set in $X \implies y \in U \implies \exists B \in \mathscr{B} \ni y \in B \subseteq U \implies y \in B \cap Y \subseteq U \cap Y = V$

 $\mathcal{L}_{\mathcal{S}_{Y}}$ is a base for the subspace topology of Y.

Lemma. Let Y be a subspace of X. If Y is open in X and V is open in Y, then V is open in X.

Theorem. If A is a subspace of X and B is a subspace of Y. Then the product topology on $A \times B$ is the same as the subspace topology $A \times B$ inherits as a subspace of $X \times Y$

Proof. Let $\mathscr{B} = \{U \times V \mid U \text{ is open in } X, V \text{ is open in } Y\}$. Then \mathscr{B} is a base for the product topology on $X \times Y$. By lemma above, $\mathscr{B}_{A \times B} = \{(U \times V) \cap (A \times B) \mid U \times V \in \mathscr{B}\}$ is a base for the subspace topology on $A \times B$

 $\mathscr{B}_{A\times B} = \{(U\cap A)\times (U\cap B)\mid U\cap A \text{ is open in } A,\ V\cap B \text{ is open in } B\}$ which is a base for the product space $A\times B$. Thus ...

Example.

(1) Consider Y = [0, 1] in \mathbb{R} . The subspace topology of Y in \mathbb{R} has a base of the form

$$\{(a,b) \cap Y \mid -\infty < a < b < \infty\}$$

Note that

$$(a,b) \cap Y = \begin{cases} (a,b) & \text{if } a,b \in Y \\ [0,b) & \text{if only} b \in Y \\ (0,1] & \text{if only} a \in Y \\ \emptyset \text{ or } Y & \text{if } a,b \notin Y \end{cases}$$

The order topology on Y has a base of the form $[0,b)b \in Y$, $(a,1]a \in Y$, (a,b) $a,b \in Y$

(2) Let $Y = [0,1) \cup \{2\} \subseteq \mathbb{R}$. In the subspace topology of Y in \mathbb{R} . $\{2\} = (\frac{3}{2}, \frac{5}{2}) \cap Y$ is open in Y. In the order topology of Y, $\{2\}$ is not open in Y

Proof. : any basic open set in the order of Y containing 2 is of the form

$$(a, 2] = \{ y \in Y \mid a < y \le 2 \} \text{ where } a \in Y$$

must contain points not equal 2, \therefore The two topologies are different

(3) I = [0, 1]. The dictionary order on $I \times I$ is just the restriction to $I \times I$ of the dictionary order on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

The set $V = \{\frac{1}{2}\} \times (\frac{1}{2}, 1]$ is open in the subspace topology of

V is not open in the order topology $I \times I$

 \therefore any basic open set in the order topology of $I \times I$ containing $\frac{1}{2} \times 1$ is of the form $(a \times b, c \times d)$ There is no basic open set B in the order topology of $I \times I$

such that $\frac{1}{2} \times 1 \in B \subseteq \{\frac{1}{2}\} \times (\frac{1}{2}, 1]$.: The two topologies on $I \times I$ are distinct.

<u>Definition.</u> Given an order set X. A subset $Y \subseteq X$ is convex if $\forall a < b$ in Y, $(a,b) \subseteq Y$ In fact, $[a,b] \subseteq Y$

Theorem. Let X be an order set with order topology and $Y \subseteq X$ be a convex set of X. Then the order topology on Y and the subspace topology on Y concise.

Proof. Let \mathscr{T}_O and \mathscr{T}_Y be the order topology and subspace topology on Y, respectively.

$$\mathscr{T}_O\supseteq\mathscr{T}_Y$$

Note that the order topology on Y is generate by the subbasic open sets of all rays in Y of the forms

$$(a, \infty) \cap Y$$
 and $(-\infty, b) \cap Y$, $a, b \in Y$

the order topology on X is generated by subbasic open sets

$$(a, \infty)$$
 and $(-\infty, b)$ $a, b \in X$

The subbasic open sets in the subspace topology \mathcal{T}_Y

$$(a, \infty) \cap Y, \ (-\infty, b) \cap Y, \ a, b \in X$$

If $a \in Y$, then $(a, \infty) \cap Y$ is an open ray in Y which is a subbasic open set in the order topology \mathscr{T}_O of Y, thus, $(a, \infty) \cap Y \in \mathscr{T}_O$

If $a \notin Y$, then since Y is convex, a is either a lower bound for Y or an upper bound for Y. Therefore,

$$(a, \infty) \cap Y = \begin{cases} Y & \text{if } a \text{ is a lower bound of } Y \\ X & \text{if } a \text{ is a upper bound of } Y \end{cases}$$

In any case, $(a, \infty) \cap Y \in \mathscr{T}_O \forall a \in X$. Similarly $(-\infty, b) \cap Y \in \mathscr{T}_O \forall b \in X$, $\therefore \mathscr{T}_Y \subseteq \mathscr{T}_O$

and the other way don't need convex.

§17 Closed Sets and Limit Points.

§17.1. Closed Sets

<u>Definition</u>. Let X be a topological space and $A \subseteq X$, A is closed if $A^c = X - A = A$ is open in X

Example:

- (1) $\forall -\infty < a \leq b < \infty$, $[a,b], [a,\infty), (-\infty,a)$ are closed in \mathbb{R}
- (2) $A = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0\}$ is closed in \mathbb{R}^2
- (3) In the finite complement topology on a set X, the closed set in X are X and all finite subsets of X
- (4) In a discrete topological space X every subset of X is closed
- (5) Consider the subspace $Y = [0,1] \cup (2,3)$ of \mathbb{R} , [0,1] is open in Y, (2,3) is open in Y and \mathbb{R} . Since Y [0,1] = (2,3) and Y (2,3) = [0,1], [0,1] and (2,3) are both open and closed in Y.

Theorem (17.1). Let X be a topological space. Then

- (1) \emptyset , X are closed
- (2) A_{α} is closed in X, $\alpha \in I \implies \bigcap_{\alpha \in I} A_{\alpha}$ is closed
- (3) A_1, \dots, A_n are closed $\implies A_1 \cup \dots \cup A_n$ is closed.

Remark.

(1) In definition (3) of topology is false for infinitely many open set, e.g. $\bigcap_{n=1}^{\infty} \left(\frac{1}{-n}, 1 + \frac{1}{n}\right) = [0, 1]$ is not open in \mathbb{R}

(2) In (3) of Thm 17.1 is false for infinitely many closed set. e.g. $\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 1 - \frac{1}{n} \right] = (0,1) \text{ is not closed in } \mathbb{R}$

Theorem (17.2). Let Y be a subspace of a topological space X and $A \subseteq X$. Then A is closed in Y iff $A - B \cap Y$ for some closed set B in X.

Proof.

A is closed in
$$Y \Leftrightarrow Y-A$$
 is open in Y
$$\Leftrightarrow Y-A=U\cap Y,\ U \text{ is open in } X$$

$$\Leftrightarrow A=Y-(U\cap Y)=(X-U)\cap Y \text{ is closed in } X$$

Theorem. Let Y be a subspace of a topological space X. If A is closed in Y and Y is closed in X, then A is closed in X.

Proof. By Thm 17.2, trivial

§ 17.2. Closure and Interior of a set

<u>Definition</u>. Let X be a topological space and $A \subseteq X$

- (1) The interior of A, $A^{\circ} = int(A) = \bigcup_{\substack{U \text{ is closed} \\ F \text{ is closed}}} U$ (2) The closure of A, $\overline{A} = cl(A) = \bigcap_{\substack{A \subseteq F \\ F \text{ is closed}}} F$

Remark.

- (1) A° is the largest open set in X contained in $A(w.r.t \subseteq)$
- (2) $A^{\circ} \subseteq A \subseteq \overline{A}$, A° is open in X and \overline{A} is closed in X.
- (3) A is open iff $A^{\circ} = A$. In particular, $A^{\circ \circ} = A^{\circ}$, A is closed iff $\overline{A} = A$. In particular $\overline{A} = \overline{A}$
- (4) Let X be a topological space and $Y \subseteq X$ be a subspace $\forall A \subseteq X$, we have the closure of A in $X : \overline{A}$, and the closure of A in $Y: \overline{A}^Y$, in general, $\overline{A} \neq \overline{A}^Y$

e.g.
$$X = \mathbb{R}, Y = [0, 1), A = (\frac{1}{2}, 1)$$

 $\Longrightarrow \overline{A} = [\frac{1}{2}, 1), \overline{A}^Y = [\frac{1}{2}, 1)$

Theorem. Let Y be a subspace of X and $A \subseteq Y$. Then $\overline{A}^Y = \overline{A} \cap Y$

Proof. By Thm 17.2 and \overline{A} is closed in X. $\overline{A} \cap Y$ is closed in Y. Since $A\subseteq Y$ is closed subset in Y containing $A,\,\overline{A}^Y\subseteq\overline{A}\subseteq\overline{A}\cap Y$ Conversely, \overline{A}^Y is closed in $Y \implies \overline{A}^Y = F \cap Y$ for some closed set F in X. Clearly, $A \subseteq F \implies \overline{A} \subseteq \overline{F} \implies \overline{A} \subseteq F \implies \overline{A} \cap Y \subseteq \overline{A}$ $F \cap Y = \overline{A}^Y : \overline{A}^Y = \overline{A} \cap Y$

Definition.

- (1) A set A intersects a set B if $A \cap B \neq \emptyset$
- (2) A neighborhood of a point x is an open set containing x

<u>Definition.</u> Let X be a topological space and $A \subseteq X$. A point $x \in X$ is an adherent point of A if \forall nhd U of x, $U \cap A \neq \emptyset$

Theorem (17.5). Let X be a topological space and $A \subseteq X$

- (1) $x \in \overline{A}$ iff x is an adherent point of A
- (2) Suppose the topological of X is given by a base \mathscr{B} . Then $x \in \overline{A}$ iff \forall basic nhd B of x, $B \cap A \neq \emptyset$

Proof.

- (a) (\Rightarrow) Suppose $x \in \overline{A}$. If x is not an adherent point of A, then \exists nhd U of $x \ni U \cap A = \emptyset$. Thus, $A \subseteq X - U$ which is closed $\Longrightarrow \overline{A} \subseteq X - U \implies x \notin \overline{A}(\to \leftarrow)$
 - (\Leftarrow) Suppose x is an adherent point of A. If $x \notin \overline{A}$, then $x \in$ $X - \overline{A} \equiv U$ is a nhd of x with $U \cap A = \emptyset(\rightarrow \leftarrow)$ to x is an adherent point
- (b) H.W.

Example. In \mathbb{R} by Thm 17.5, we have

- (0,1] = [0,1]• $\{\frac{1}{n} \ n \in \mathbb{N}\} = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$
- $\overline{\mathbb{Q}} = \mathbb{R}$, i.e. \mathbb{Q} is dense in \mathbb{R}
- $\overline{\mathbb{N}} = \mathbb{N}$, $\overline{\mathbb{Z}} = \mathbb{Z}$
- $\bullet \ \overline{\mathbb{R}^+} = \mathbb{R} + \cup \{0\}$

Example.
$$Y = (0, 1] \subseteq \mathbb{R}, \ A = (0, \frac{1}{2}) \subseteq Y$$

$$\overline{A}^{Y} = \overline{A} \cap Y = [0, \frac{1}{2}] \cap (0, 1] = (0, \frac{1}{2}]$$

§ 17.3. Limit Points(Accumulation or cluster)

Definition. Let X be a topological space. $A \subseteq X$ and $x \in X$. x is a limit point of A if \forall nhd U of x, $U \cap A - \{x\} \neq \emptyset$ denote by A' the set of all limit points of A called the derived set of A

Remark. $x \in A'$, x may not in A

Example In \mathbb{R} , we have

- [0,1]' = [0,1]
- $\{\frac{1}{n} \mid n \in \mathbb{N}\}' = \{0\}$ $(\{0\} \cup (1,2))' = [1,2]$
- $\mathbb{O}' = \mathbb{R}$
- $\mathbb{N}' = \mathbb{Z}' = \emptyset$
- $\mathbb{R}' + = \mathbb{R} + \cup \{0\} = \overline{\mathbb{R} + 0}$

Theorem (17.6). Let X be a topological space and $A \subseteq X$. $\overline{A} = A \cup A'$

Proof. Clearly $A \subseteq \overline{A}$ and $A' \subseteq \overline{A} \implies A \cup A' \subseteq \overline{A}$. Conversely, given $x \in \overline{A}$. If $x \in A$, then $x \in A \cup A'$. If $x \notin A'$, then \forall nhd U of x, $U \cap A \neq \emptyset \implies U \cap A - \{x\} \neq \emptyset (\because x \notin A) \implies x \in A' \implies x \in A'$ $A \cup A'$

Corollary. A is closed in X iff $A' \subseteq A$

Proof.
$$A = \overline{A} = A \cup A'(\text{trivial})$$

§ 17.4. Hausdorff Spaces (or T_2 -spaces)

Exmpale $X = \{a, b, c\}, \mathcal{T} = \{\emptyset, \{a, b\}, \{b\}, \{b, c\}, X\}$ which is a topology on X, $\{b\}$ is open in X but $\{b\}$ is not closed. Consider the sequence $\{x_n\}$ in X with $x_n = b \forall n \geq 1$. Then $\{x_n\}$ convergences to any point in X.

<u>Definition</u>. A topological space X is called a Hausdorff space (or T_2 space) if every two distinct points in X can be separated by open sets. i.e. $\forall x_1 \neq x_2 \text{ in } X, \exists \text{ nhd } U_i \text{ of } x_i, i = 1, 2 \ni U_1 \cap U_2 = \emptyset$

Theorem. Every finite set in T_2 -space X is closed. In particular, every singleton is closed

Proof. Given a finite set $F = \{x_1, \dots, x_n\}$ Write $F = \bigcup_{i=1}^n \{x_i\}$. It suffices to show that every singleton $\{x\}$ is closed in X

$$\forall y \in X - \{x\} \implies y \neq x$$

$$\implies \exists \text{ nhd } U \text{ of } x \text{ and } V \text{ of } y \ni U \cap V = \emptyset$$

$$\implies y \in V \subseteq X - \{x\}$$

$$\implies X - \{x\} \text{ is open in } X$$

$$\implies \{x\} \text{ is closed in } X$$

Remark. The converse fails, e.g. In a finite complement topological space X, where X is an infinite set, every singleton is closed in X, but X is not T_2

<u>Definition.</u> A topological space X is said to be T_1 if every singleton is closed in X.

Equivalently, $\forall x \neq y \text{ in } X, \exists a \text{ neighborhood } U \text{ of } x \text{ such that } y \notin U$ and $\exists a \text{ neighborhood of } y \text{ such that } a \notin V$

Theorem. Let X be a T_1 space and $A \subseteq X$. Then $x \in A$ iff \forall neighborhood U of x, $U \cap A$ is an infinite set

Proof.

- (\Leftarrow) trivial (By definition)
- (\Rightarrow) Suppose $x \in A$. If \exists a neighborhood U of $x \ni U \cap A$ is a finite set, so is $U \cap A \{x\}$, say, $U \cap A \{x\} = \{x_1, \dots, x_n\}$. Since X is $T_1\{x_1, \dots, x_n\}$ is closed in X $\Longrightarrow X \{x_1, \dots, x_n\}$ is open $\Longrightarrow V \equiv U \cap (X \{x_1, \dots, x_n\})$ is a neighborhood of x with $V \cap A \{x\} = \emptyset(\rightarrow \leftarrow)$ to $x \in A'$

<u>Definition.</u> A topological space X is said to be T_0 if every two distinct points x and y in X one of them has a neighborhood not containing the other one.

Remark. $T_1 \implies T_1 \implies T_0$, but the converse fails, e.g. $T_0 \rightarrow T_1$, X = a, b with topology $\mathcal{T} = \{\emptyset, \{a\}, X\}$ which is T_0 but not T_1

Theorem. If X is Hausdorff space, then a sequence $\{x_n\}$ in X can converge to at most on point in X.

Proof. If $\{x_n\}$ converges to x and x', $x \neq x'$ choose neighborhood U of x and U' of $x' \ni U \cap U' = \emptyset$. Choose $N >> 0 \ni \forall n \geq N, x_n \in U \cap U' (\rightarrow \leftarrow)$ to $U \cap U' = \emptyset$

Theorem.

- (1) Every order set X with order topology is T_2
- (2) If X and Y are T_2 , so is $X \times Y$
- (3) If X is T_2 , then so is it's subspace.

Proof. skip in latex :).

 \S 18 Continuous Mapping.