Inteligência Artificial

Lista de Exercícios – Algoritmos de Inferência da Lógica de Predicados - Profa. Heloisa

Recomendações

Informe-se e siga as convenções de notação e figuras adotadas:

- Em uma árvore de prova, as substituições realizadas nas unificações de cada cláusula e a regra unificada devem ser indicadas na árvore;
- A árvore de prova acompanha os passos realizados durante o algoritmo de inferência. Todas as alterações devem ser indicadas de forma que fique claro o momento em que elas ocorreram;
- Faça tudo e somente o que foi pedido no enunciado (mostrar passo a passo do algoritmo de inferência, construir árvore de prova, ou ambos).

Para resolver os exercícios desta lista você precisa:

- Saber o que é unificação e substituição e encontrar o unificador para duas sentenças lógicas atômicas;
- Saber eliminar quantificadores universais e existenciais de sentenças na forma de cláusulas definidas de primeira ordem em uma base de conhecimento para poder aplicar os algoritmos de inferência;
- Saber aplicar corretamente os algoritmos de encadeamento para frente e encadeamento para trás com busca em profundidade;
- Saber quando finalizar o algoritmo de inferência e responder a consulta colocada, principalmente no algoritmo de encadeamento para trás com busca em profundidade.
- Lembrar que a árvore de prova é uma árvore AND/OR e saber como representar os nós AND e OR.

1) Descreva a execução do Algoritmo de Encadeamento para trás com busca em profundidade, mostrando o passo a passo do algoritmo, com indicação de pontos em que houve retrocesso (se for o caso), e a construção da árvore de prova AND/OR para encontrar a resposta para a pergunta "Qual o custo da propaganda do programa P1?", para a base de conhecimento dada abaixo. Assuma que as sentenças são utilizadas na ordem em que aparecem e que se sabe que o programa P1 passa no horário nobre e o público gosta.

Base de conhecimento:

 $\forall x \text{ Bom}(x) \rightarrow \text{Assiste}(x)$

 $\forall x \text{ Horario}(x, \text{ Nobre}) \rightarrow \text{Assiste}(x)$

 $\forall x \ Assiste(x) \land Gosta(x) \rightarrow Audiencia(x, Alta)$

 $\forall x \operatorname{Programa}(x) \land \operatorname{Audiencia}(x, \operatorname{Alta}) \rightarrow \operatorname{Propaganda}(x, \operatorname{Cara})$

 $\forall x \text{ Programa}(x) \land \text{Horario}(x, \text{Madrugada}) \rightarrow \text{Propaganda}(x, \text{Barata})$

Sentenças adicionadas à base para representar a situação específica:

Programa(P1) Horario(P1,Nobre)

Gosta(P1)

Base de Conhecimento sem quantificadores:

- 1) $Bom(x) \rightarrow Assiste(x)$
- 2) Horario(x, Nobre) \rightarrow Assiste(x)
- 3) Assiste(x) \land Gosta(x) \rightarrow Audiencia(x, Alta)
- 4) Programa(x) \land Audiencia(x, Alta) \rightarrow Propaganda(x, Cara)
- 5) Programa(x) \land Horario(x, Madrugada) \rightarrow Propaganda(x, Barata)

Fatos:

- 6) Programa(P1)
- 7) Horario(P1, Nobre)
- 8) Gosta(P1)

Consulta: Propaganda(P1,y)

Passo a Passo da execução do algoritmo:

Objetivo	Regra ou fato unificado	Substituição
Propaganda(P1, y)	Regra 4	{y/Cara, x/P1}
Programa(P1)	Fato 6	{ } Provado
Audiência(P1,Alta)	Regra 3	{x/P1}
Assiste(P1)	Regra 1	{x/P1}
Bom(P1) (Retrocesso)	FALHA	
Assiste(P1)	Regra 2	{x/P1}
Horario(P1,Nobre)	Fato 7	{}
Gosta(P1)	Fato 8	{}

Árvore de Prova:

2) Descreva a execução do Algoritmo de **Encadeamento para frente**, mostrando o passo a passo do algoritmo e a construção da **árvore de prova AND/OR**, para encontrar a resposta para a pergunta "Qual o custo da propaganda do programa P1?", para a base de conhecimento do exercício anterior. Assuma que as sentenças são utilizadas na ordem em que aparecem e que se sabe que o programa P1 passa no horário nobre e o público gosta.

Iteração	Sentenças usadas na inferência	Sentença resultante (adicionada à BC)	Substituição
Iteração 1	Regra 2 + Fato 7	Assiste(P1) (Fato 9)	{x/P1}
	Regra 3 + Fato 9 + Fato 8	Audiencia(P1,Alta) (Fato 10)	{x/P1}
	Regra 4 + Fato 6 + Fato 10	Propaganda(P1,Cara) (Fato 11)	{x/P1}
Iteração 2	Não ocorrem mais inferências		

A árvore de prova é construída das folhas em direção à raiz. Os nós com bordas verdes são os fatos iniciais conhecidos. Os demais, são adicionados à BC quando as inferências são feitas.

Base de Conhecimento após a execução do algoritmo:

- 1) $Bom(x) \rightarrow Assiste(x)$
- 2) Horario(x, Nobre) \rightarrow Assiste(x)
- 3) Assiste(x) \land Gosta(x) \rightarrow Audiencia(x, Alta)
- 4) Programa(x) \land Audiencia(x, Alta) \rightarrow Propaganda(x, Cara)
- 5) Programa(x) \land Horario(x, Madrugada) \rightarrow Propaganda(x, Barata)

Fatos:

- 6) Programa(P1)
- 7) Horario(P1, Nobre)
- 8) Gosta(P1)
- 9) Assiste(P1) (adicionado)
- 10) Audiencia(P1,Alta) (adicionado)
- 11) Propaganda(P1,Alta) (adicionado)
- 3) Descreva a execução do Algoritmo de **Encadeamento para trás com busca em profundidade**, mostrando o passo a passo do algoritmo, com indicação de pontos em que houve retrocesso (se for o caso), e a construção da **árvore de prova AND/OR** para encontrar a resposta para a pergunta "Qual o custo da propaganda do programa P2?", para a base de conhecimento do exercício 1. Assuma que as sentenças são utilizadas na ordem em que aparecem e que se sabe que o programa P2 passa de madrugada e o público gosta.

Base de Conhecimento sem quantificadores:

- 1) $Bom(x) \rightarrow Assiste(x)$
- 2) Horario(x, Nobre) \rightarrow Assiste(x)
- 3) Assiste(x) \land Gosta(x) \rightarrow Audiencia(x, Alta)
- 4) Programa(x) \wedge Audiencia(x, Alta) \rightarrow Propaganda(x, Cara)
- 5) Programa(x) \land Horario(x, Madrugada) \rightarrow Propaganda(x, Barata)

Fatos:

- 6) Programa(P2)
- 7) Horario(P2, Madrugada)
- 8) Gosta(P2)

Consulta: Propaganda(P2,y)

Passo a Passo da execução do algoritmo:

Objetivo	Regra ou fato unificado	Substituição
Propaganda(P2, y)	Regra 4	{y/Cara, x/P2}
Programa(P2)	Fato 6	{ } Provado
Audiência(P2,Alta)	Regra 3	{x/P2}
Assiste(P2)	Regra 1	{x/P2}
Bom(P2) (Retrocesso)	FALHA	
Assite(P2)	Regra 2	{x/P2}
Horario(P2,Nobre) (Retrocesso)	FALHA	
Propaganda(P2,y)	Regra 5	{y/Barata, x/P2}
Programa(P2)	Fato 6	{ } Provado
Horario(P2,Madrugada)	Fato 7	{ } Provado

Árvore de Prova:

- 4) Descreva a execução do Algoritmo de **Encadeamento para trás com busca em profundidade**, para a base de conhecimento representada em sentenças da lógica de primeira ordem (cláusulas definidas de primeira ordem) do sistema Consultor Financeiro, usando a consulta na forma Investimento(X). Construa a árvore **de prova (árvore AND/OR)** para os seguintes casos:
 - a) Dois dependentes, R\$20.000,00 em poupança, renda estável de R\$30.000,00.
 - b) Dois dependentes, R\$30.000,00 em poupança, renda estável de R\$30.000,00.

Para resolver essa questão, é necessário assumir os seguintes significados:

- Os predicados abaixo são considerados verdadeiros de acordo com o significado dos operadores relacionais que eles representam, sem necessidade de existirem fatos na base para todos os possíveis valores das variáveis:
 - Maior(x,y) representa a sentença "x é maior que y".
 - Menor(x,y) representa a sentença "x é menor que y"
 - Entre(x,y,z) representa a sentença "o valor de x está entre y e z" (incluindo y e z)
- O operador de negação (¬) inverte o valor verdade do predicado.

Base de conhecimento:

- 1) Inadequada (Conta_poupança) →Investimento (Poupança).
- 2) Adequada (Conta poupança) ∧ Adequada (Renda) → Investimento(Ações).
- 3) Adequada (Conta_poupança) ∧ Inadequada (Renda) → Investimento(Combinação).
- 4) \forall x Quantia_poupada(x) \land Maior(x, 20.000) \rightarrow Adequada (Conta_poupança).
- 5) \forall x Quantia_poupada(x) $\land \neg$ Maior(x,20.000) \rightarrow Inadequada (Conta_poupança).
- 6) $\forall x \text{ Ganhos}(x, \text{Estavel}) \land \text{Maior}(x, 50.000) \rightarrow \text{Adequada (Renda)}.$
- 7) $\forall x,y \in A$ Ganhos(x,Estavel) $\land D$ Dependentes(y) $\land E$ Entre(x, 36.000,50.000) $\land M$ Menor(y, 3) $\rightarrow A$ dequada (Renda).
- 8) \forall x,y Ganhos(x,Estavel) \land Dependentes(y) \land Entre(x, 36.000,50.000) \land ¬Menor(y, 3) \rightarrow

Inadequada (Renda).

- 9) $\forall x \text{ Ganhos}(x, \text{Estavel}) \land \neg \text{Maior}(x, 36.000) \rightarrow \text{Inadequada (Renda)}.$
- 10) $\forall x \text{ Ganhos}(x, \text{Instavel}) \rightarrow \text{Inadequada (Renda)}.$

Base de conhecimento para o primeiro item da questão: Dois dependentes, R\$20.000,00 em poupança, renda estável de R\$30.000,00.

- 1) Inadeguada (Conta poupança) →Investimento (Poupança).
- 2) Adequada (Conta_poupança) ∧ Adequada (Renda) → Investimento(Ações).
- 3) Adequada (Conta_poupança) ∧ Inadequada (Renda) → Investimento(Combinação).
- 4) Quantia_poupada(x) \land Maior(x, 20.000) \rightarrow Adequada (Conta_poupança).
- 5) Quantia poupada(x) $\land \neg Maior(x,20.000) \rightarrow Inadequada$ (Conta poupança).
- 6) Ganhos(x,Estavel) \land Maior(x, 50.000) \rightarrow Adequada (Renda).
- 7) Ganhos(x,Estavel) \land Dependentes(y) \land Entre(x, 36.000,50.000) \land Menor(y, 3) \rightarrow Adequada (Renda).
- 8) Ganhos(x,Estavel) \land Dependentes(y) \land Entre(x, 36.000,50.000) \land ¬Menor(y, 3) \rightarrow

Inadequada (Renda).

- 9) Ganhos(x,Estavel) $\land \neg$ Maior(x, 36.000) \rightarrow Inadequada (Renda).
- 10) Ganhos(x,Instavel) → Inadequada (Renda). Fatos:
- 11) Dependentes(2)
- 12) Quantia_poupada(20.000)
- 13) Ganhos(30.000, Estavel)

(Solução incompleta – falta fazer a árvore de prova)

- 5) Uma base de conhecimento foi construída, usando cláusulas definidas de primeira ordem, para identificar problemas em um eletrodoméstico. Construa a árvore de prova (árvore AND/OR) correspondente à execução do Algoritmo de **Encadeamento para trás com busca em profundidade** para a consulta **Problema(x)**, até encontrar uma (apenas uma) resposta para essa consulta. Antes de aplicar o algoritmo, faça a eliminação dos quantificadores universais e existenciais dando o tratamento adequado a cada um deles. Os fatos acrescentados à base correspondem à seguinte situação: tem alguma lâmpada no ambiente e ela não acende, o usuário sentiu cheiro de fumaça. Base de conhecimento:
 - 1) Observou(Ruptura fio) → Problema(Fio rompido)
 - 2) Falha(Alimentação) ∧ Falha(Energia) → Problema(Fuzivel queimado)
 - 3) Falha(Alimentação) ∧ Observou(Estouro) → Problema(Fuzivel queimado)
 - 4) $\forall x \text{ Lampada}(x) \land \text{N}$ ão acende $(x) \rightarrow \text{Falha}(\text{Energia})$
 - 5) Observou(Cheiro_fumaça) → Falha(Alimentação)

Fatos:

- 6) ∃x Lampada(x) ∧ Não acende(x)
- 7) Observou(Cheiro_fumaça)

Base de conhecimento após eliminação dos quantificadores:

- 1) Observou(Ruptura_fio) → Problema(Fio_rompido)
- 2) Falha(Alimentação) ∧ Falha(Energia) → Problema(Fuzivel_queimado)
- 3) Falha(Alimentação) ∧ Observou(Estouro) → Problema(Fuzivel_queimado)
- 4) Lampada(x) ∧ Não_acende(x) → Falha(Energia)
- 5) Observou(Cheiro_fumaça) → Falha(Alimentação)

Fatos:

- 6) Lampada(L)
- 7) Não_acende(L)
- 8) Observou(Cheiro fumaça)

(Solução incompleta – falta fazer a árvore de prova)