```
In [36]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           %matplotlib inline
           import seaborn as sns
           import warnings
           warnings.filterwarnings('ignore')
 In [2]: df=pd.read_excel('F:\DS assignment\DS-Assignment Dataset and instructions\P3-
 In [3]: df.head(10)
 Out[3]:
               RowNumber
                           CustomerId
                                       Surname CreditScore Geography
                                                                         Gender Age Tenure
                                                                                                Balance
            0
                             15634602
                                                                                                    0.00
                        1
                                       Hargrave
                                                         619
                                                                  France
                                                                         Female
                                                                                   42
                                                                                            2
            1
                        2
                                                         608
                              15647311
                                             Hill
                                                                   Spain
                                                                         Female
                                                                                   41
                                                                                            1
                                                                                                83807.86
            2
                        3
                                                         502
                             15619304
                                           Onio
                                                                  France
                                                                         Female
                                                                                   42
                                                                                            8
                                                                                               159660.80
            3
                        4
                             15701354
                                            Boni
                                                         699
                                                                  France
                                                                         Female
                                                                                   39
                                                                                            1
                                                                                                    0.00
                        5
                             15737888
                                         Mitchell
                                                         850
                                                                   Spain
                                                                         Female
                                                                                   43
                                                                                            2
                                                                                               125510.82
                        6
                                                         645
                                                                                   44
            5
                             15574012
                                            Chu
                                                                   Spain
                                                                            Male
                                                                                            8
                                                                                               113755.78
            6
                        7
                             15592531
                                         Bartlett
                                                         822
                                                                                   50
                                                                                            7
                                                                                                    0.00
                                                                  France
                                                                            Male
            7
                                                         376
                                                                                   29
                        8
                             15656148
                                         Obinna
                                                                Germany
                                                                         Female
                                                                                               115046.74
            8
                        9
                             15792365
                                             He
                                                         501
                                                                  France
                                                                            Male
                                                                                   44
                                                                                               142051.07
            9
                       10
                             15592389
                                             H?
                                                         684
                                                                  France
                                                                            Male
                                                                                   27
                                                                                              134603.88
 In [4]:
          df.tail()
 Out[4]:
                  RowNumber CustomerId
                                           Surname CreditScore Geography Gender
                                                                                     Age Tenure
                                                                                                    Bala
            9995
                        9996
                                 15606229
                                            Obijiaku
                                                            771
                                                                     France
                                                                               Male
                                                                                       39
                                                                                               5
            9996
                        9997
                                 15569892
                                          Johnstone
                                                            516
                                                                     France
                                                                               Male
                                                                                       35
                                                                                               10
                                                                                                   57369
                        9998
            9997
                                 15584532
                                                Liu
                                                            709
                                                                     France Female
                                                                                       36
                                                                                               7
                                                                                                        (
                        9999
                                                            772
                                                                                       42
                                                                                                   7507
            9998
                                 15682355
                                           Sabbatini
                                                                               Male
                                                                                                3
                                                                   Germany
            9999
                       10000
                                 15628319
                                             Walker
                                                            792
                                                                     France
                                                                             Female
                                                                                       28
                                                                                                  130142
          df.shape
 In [5]:
```

Out[5]: (10000, 14)

```
In [6]: |df.isnull().sum()
Out[6]: RowNumber
                             0
                             0
         CustomerId
                             0
         Surname
                             0
         CreditScore
                             0
         Geography
                             0
         Gender
         Age
                             0
         Tenure
                             0
         Balance
                             0
         NumOfProducts
                             0
         HasCrCard
                             0
         IsActiveMember
                             0
         EstimatedSalary
                             0
         churned
         dtype: int64
In [7]:
        df.describe()
Out[7]:
                RowNumber
                             CustomerId
                                         CreditScore
                                                                     Tenure
                                                                                 Balance
                                                                                         Nur
                                                           Age
         count 10000.00000
                           1.000000e+04
                                        10000.000000
                                                    10000.000000
                                                                10000.000000
                                                                             10000.000000
                 5000.50000
                           1.569094e+07
                                         650.528800
                                                      38.921800
                                                                    5.012800
                                                                             76485.889288
          mean
                 2886.89568
                          7.193619e+04
                                          96.653299
                                                       10.487806
                                                                    2.892174
                                                                             62397.405202
           std
           min
                          1.556570e+07
                                         350.000000
                                                      18.000000
                                                                    0.000000
                                                                                 0.000000
                   1.00000
           25%
                 2500.75000
                          1.562853e+07
                                         584.000000
                                                      32.000000
                                                                    3.000000
                                                                                 0.000000
           50%
                 5000.50000
                          1.569074e+07
                                         652.000000
                                                      37.000000
                                                                    5.000000
                                                                             97198.540000
           75%
                 7500.25000
                           1.575323e+07
                                         718.000000
                                                      44.000000
                                                                    7.000000
                                                                            127644.240000
                10000.00000
                          1.581569e+07
                                         850.000000
                                                      92.000000
                                                                   10.000000
                                                                            250898.090000
In [8]:
        df.columns
'IsActiveMember', 'EstimatedSalary', 'churned'],
```

1. Customer Demographics:

dtype='object')

Q. What is the distribution of customers across different age groups?

```
In [11]: | age_distribution = df['Age'].value_counts().sort_index()
         print("Distribution of Customers Across Different Age Groups:")
         print(age_distribution)
         Distribution of Customers Across Different Age Groups:
         18
               22
         19
               27
         20
               40
         21
               53
         22
               84
               . .
         83
         84
         85
                1
         88
                1
         92
         Name: count, Length: 70, dtype: int64
```

Q. Analyze the gender distribution of customers?

2. CHURN ANALYSIS

Q. What percentage of customers have churned?

```
In [13]: churn_percentage = (df['churned'].sum() / len(df)) * 100
print(f"Percentage of Customers who have churned: {churn_percentage:.2f}%")
```

Percentage of Customers who have churned: 20.37%

Q. What are the main reasons for customer churn?

Data Types of Columns: RowNumber int64 CustomerId int64 Surname object CreditScore int64 Geography object Gender object int64 Age Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 churned int64

dtype: object

Top Factors Correlated with Churn:

churned 1.000000 Age 0.285323 IsActiveMember 0.156128 Balance 0.118533 NumOfProducts 0.047820 CreditScore 0.027094 RowNumber 0.016571 0.014001 Tenure EstimatedSalary 0.012097 HasCrCard 0.007138 CustomerId 0.006248

dtype: float64

Geography Distribution:

Geography

France 5014 Germany 2509 Spain 2477

Name: count, dtype: int64

Gender Distribution:

Gender

Male 5457 Female 4543

Name: count, dtype: int64

Q. Identify any patterns or trends among customers who have churned.

```
In [16]: import seaborn as sns
sns.set_theme() # Reset Seaborn defaults
```

```
In [17]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         df = pd.read_excel('F:/DS assignment/DS-Assignment Dataset and instructions/P3-
         # Filter churned customers
         churned_df = df[df['churned'] == 1]
In [20]: churned_df['CreditScore'].value_counts()
Out[20]: CreditScore
         850
                43
         651
                17
         705
                16
         637
                14
         727
                13
                 . .
         821
                 1
         733
                 1
         804
                 1
         407
                 1
         486
                  1
         Name: count, Length: 420, dtype: int64
In [23]: |churned_df['CreditScore']
Out[23]: 0
                  619
         2
                  502
         5
                  645
         7
                  376
         16
                 653
         9981
                 498
         9982
                  655
         9991
                  597
         9997
                 709
         9998
                  772
         Name: CreditScore, Length: 2037, dtype: int64
```


Q. Plotting the distribution of different features for churned customers

```
In [24]: # Plotting the distribution of different features for churned customers
plt.figure(figsize=(15, 10))

# Credit Score distribution
plt.subplot(3, 3, 1)
sns.histplot(churned_df['CreditScore'], bins=10, kde=True)
plt.title('Credit Score Distribution for Churned Customers')
```

Out[24]: Text(0.5, 1.0, 'Credit Score Distribution for Churned Customers')


```
In [35]: # Geography distribution
         plt.subplot(3, 3, 2)
         sns.countplot(x='Geography', data=churned_df)
         plt.title('Geography Distribution for Churned Customers')
         # Gender distribution
         plt.subplot(3, 3, 3)
         sns.countplot(x='Gender', data=churned df)
         plt.title('Gender Distribution for Churned Customers')
         # Age distribution
         plt.subplot(3, 3, 4)
         sns.histplot(churned_df['Age'], bins=10, kde=True)
         plt.title('Age Distribution for Churned Customers')
         # Tenure distribution
         plt.subplot(3, 3, 5)
         sns.histplot(churned_df['Tenure'], bins=10, kde=True)
         plt.title('Tenure Distribution for Churned Customers')
         # Balance distribution
         plt.subplot(3, 3, 6)
         sns.histplot(churned_df['Balance'], bins=10, kde=True)
         plt.title('Balance Distribution for Churned Customers')
         # Number of Products distribution
         plt.subplot(3, 3, 7)
         sns.countplot(x='NumOfProducts', data=churned_df)
         plt.title('Number of Products Distribution for Churned Customers')
         # Credit Card distribution
         plt.subplot(3, 3, 8)
         sns.countplot(x='HasCrCard', data=churned_df)
         plt.title('Credit Card Distribution for Churned Customers')
         # Active Member distribution
         plt.subplot(3, 3, 9)
         sns.countplot(x='IsActiveMember', data=churned_df)
         plt.title('Active Member Distribution for Churned Customers')
         plt.tight_layout()
         plt.show()
         # Correlation heatmap to identify potential patterns
         plt.figure(figsize=(12, 8))
         sns.heatmap(churned_df[['CreditScore','Age','Tenure','Balance','NumOfProducts'
         plt.title('Correlation Heatmap for Churned Customers')
         plt.show()
```

Geography Distribution for Churned Customers

Age Distribution for Churne de Coust distribution for Chur de Coust distribution for Churned Customers

Number of Products Distribution CoredituCaed Distributions for Activen to the Color of Products Distribution for Churned Customers

In [34]: # Correlation heatmap to identify potential patterns
plt.figure(figsize=(12, 8))
sns.heatmap(churned_df[['CreditScore','Age','Tenure','Balance','NumOfProducts',
plt.title('Correlation Heatmap for Churned Customers')
plt.show()

]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	В
	0	1	15634602	Hargrave	619	France	Female	42	2	
	2	3	15619304	Onio	502	France	Female	42	8	1596
	5	6	15574012	Chu	645	Spain	Male	44	8	1137
	7	8	15656148	Obinna	376	Germany	Female	29	4	1150
	16	17	15737452	Romeo	653	Germany	Male	58	1	1326
99	81	9982	15672754	Burbidge	498	Germany	Male	42	3	1520
99	82	9983	15768163	Griffin	655	Germany	Female	46	7	1371
99	91	9992	15769959	Ajuluchukwu	597	France	Female	53	4	883
99	97	9998	15584532	Liu	709	France	Female	36	7	
99	98	9999	15682355	Sabbatini	772	Germany	Male	42	3	750

3. Product Usage:

To [44]. showned dC

Q.What are the most commonly used products or services?

```
In [52]: product_counts = df['NumOfProducts'].value_counts().sort_index()

# Displaying the most commonly used products or services
most_common_products = product_counts.idxmax()
most_common_count = product_counts.max()

print(f"The most commonly used number of products or services is {most_common_r
print("\nFrequency distribution of products or services:")
print(product_counts)
The most commonly used number of products or services is 1 with 5084 customer s.
```

Frequency distribution of products or services: NumOfProducts

1 5084

2 4590

3 266

4 60

Name: count, dtype: int64

Q.Analyze the usage patterns of different customer segments.

```
In [53]: # Function to analyze customer segments by geography
         def analyze by geography(df):
             geography_analysis = df.groupby('Geography').agg({
                  'CustomerId': 'count',
                 'NumOfProducts': 'mean',
                  'Balance': 'mean',
                  'EstimatedSalary': 'mean'
             }).rename(columns={'CustomerId': 'CustomerCount'})
             return geography_analysis
         # Function to analyze customer segments by gender
         def analyze_by_gender(df):
             gender_analysis = df.groupby('Gender').agg({
                  'CustomerId': 'count',
                  'NumOfProducts': 'mean',
                 'Balance': 'mean',
                 'EstimatedSalary': 'mean'
             }).rename(columns={'CustomerId': 'CustomerCount'})
             return gender_analysis
         # Function to analyze customer segments by age group
         def analyze_by_age_group(df, bins, labels):
             df['AgeGroup'] = pd.cut(df['Age'], bins=bins, labels=labels, right=False)
             age_group_analysis = df.groupby('AgeGroup').agg({
                  'CustomerId': 'count',
                  'NumOfProducts': 'mean',
                  'Balance': 'mean',
                  'EstimatedSalary': 'mean'
             }).rename(columns={'CustomerId': 'CustomerCount'})
             return age_group_analysis
         # Defining age bins and labels
         age_bins = [0, 30, 40, 50, 60]
         age labels = ['<30', '30-39', '40-49', '50-59']
         # Perform analysis
         geography_analysis = analyze_by_geography(df)
         gender_analysis = analyze_by_gender(df)
         age_group_analysis = analyze_by_age_group(df, age_bins, age_labels)
         # Display the analysis
         print("Geography Analysis:\n", geography_analysis)
         print("\nGender Analysis:\n", gender_analysis)
         print("\nAge Group Analysis:\n", age_group_analysis)
```

Geography	Analysis: CustomerCount	NumOfProducts	s Balar	nce EstimatedSalary
Coognanhy	cus comer court	Numorriouucus	о ратаг	ice Estimatedsarary
Geography	F014	4 520042	62002 62654	6 00000 100014
France	5014	1.530913	62092.63651	
Germany	2509	1.519729	119730.11613	34 101113.435102
Spain	2477	1.539362	61818.14776	99440.572281
Gender Ana C Gender	•	ımOfProducts	Balance	EstimatedSalary
	4542	1 544124 75	CEO 200120	100601 541303
Female	4543		659.369139	100601.541382
Male	5457	1.518600 77	173.974506	99664.576931
Age Group	Analysis:			
	CustomerCount	NumOfProducts	Balance	e EstimatedSalary
AgeGroup				
<30	1641	1.556977	73698.718635	100855.247818
30-39	4346	1.539347	75071.796781	98616.317653
40-49	2618	1.518717	78479.240768	103543.082063
50-59	869	1.481013	83632.942486	97144.930759

4. Financial Analysis:

Q. What is the average account balance of customers?

```
In [54]: average_balance = df['Balance'].mean()
print(f"The average account balance of customers is {average_balance:.2f}")
```

The average account balance of customers is 76485.89

Q. Compare the financial characteristics of churned vs. non-churned customers.

```
In [55]: def analyze_by_churn_status(df):
    churn_analysis = df.groupby('churned').agg({
        'Balance': 'mean',
        'EstimatedSalary': 'mean',
        'NumOfProducts': 'mean'
    }).rename(index={0: 'Non-Churned', 1: 'Churned'})
    return churn_analysis

churn_analysis = analyze_by_churn_status(df)

print("Financial Characteristics of Churned vs. Non-Churned Customers:\n")
print(churn_analysis)
```

Financial Characteristics of Churned vs. Non-Churned Customers:

```
Balance EstimatedSalary NumOfProducts churned
Non-Churned 72745.296779 99738.391772 1.544267
Churned 91108.539337 101465.677531 1.475209
```

5. Predictive Modeling

Q.Which factors are the most significant predictors of customer churn?

```
In [59]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Define the feature matrix X and the target vector y
         X = df.drop(['RowNumber', 'CustomerId', 'Surname', 'churned', 'AgeGroup'], axis
         y = df['churned']
         # Standardize the features
         scaler = StandardScaler()
         X_scaled = scaler.fit_transform(X)
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3)
         # Fit the logistic regression model
         log_reg = LogisticRegression()
         log_reg.fit(X_train, y_train)
         # Make predictions
         y_pred = log_reg.predict(X_test)
         y_prob = log_reg.predict_proba(X_test)[:, 1]
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         roc_auc = roc_auc_score(y_test, y_prob)
         conf_matrix = confusion_matrix(y_test, y_pred)
         # Print evaluation metrics
         print(f"Accuracy: {accuracy:.2f}")
         print(f"Precision: {precision:.2f}")
         print(f"Recall: {recall:.2f}")
         print(f"ROC-AUC Score: {roc_auc:.2f}")
         print("\nConfusion Matrix:")
         print(conf_matrix)
         print("\nClassification Report:")
         print(classification_report(y_test, y_pred))
         # Plot confusion matrix
         sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
         plt.xlabel('Predicted')
         plt.ylabel('Actual')
         plt.title('Confusion Matrix')
         plt.show()
         # Plot ROC curve
         from sklearn.metrics import roc_curve
         fpr, tpr, _ = roc_curve(y_test, y_prob)
         plt.figure()
```

Accuracy: 0.81 Precision: 0.54 Recall: 0.20

ROC-AUC Score: 0.77

Confusion Matrix:

[[2318 98] [468 116]]

Classification Report:

	precision	recall	f1-score	support
0	0.83	0.96	0.89	2416
1	0.54	0.20	0.29	584
accuracy			0.81	3000
macro avg	0.69	0.58	0.59	3000
weighted avg	0.78	0.81	0.77	3000

Q.Develop a predictive model to identify at-risk customers

```
In [60]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Define the feature matrix X and the target vector y
         X = df.drop(['RowNumber', 'CustomerId', 'Surname', 'churned', 'AgeGroup'], axis
         y = df['churned']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random
         # Initialize the Random Forest Classifier
         rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
         # Train the model
         rf_clf.fit(X_train, y_train)
         # Make predictions
         y_pred = rf_clf.predict(X_test)
         y_prob = rf_clf.predict_proba(X_test)[:, 1]
         # Evaluate the model
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         roc_auc = roc_auc_score(y_test, y_prob)
         conf_matrix = confusion_matrix(y_test, y_pred)
         # Print evaluation metrics
         print(f"Accuracy: {accuracy:.2f}")
         print(f"Precision: {precision:.2f}")
         print(f"Recall: {recall:.2f}")
         print(f"ROC-AUC Score: {roc_auc:.2f}")
         print("\nConfusion Matrix:")
         print(conf_matrix)
         print("\nClassification Report:")
         print(classification_report(y_test, y_pred))
         # Plot confusion matrix
         sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
         plt.xlabel('Predicted')
         plt.ylabel('Actual')
         plt.title('Confusion Matrix')
         plt.show()
         # Plot ROC curve
         from sklearn.metrics import roc_curve
         fpr, tpr, _ = roc_curve(y_test, y_prob)
         plt.figure()
         plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
         plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
```

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()

# Feature importance
feature_importances = pd.Series(rf_clf.feature_importances_, index=X.columns)
feature_importances.nlargest(10).plot(kind='barh')
plt.title('Top 10 Most Important Features')
plt.xlabel('Feature Importance Score')
plt.show()
```

Accuracy: 0.87 Precision: 0.75 Recall: 0.47

ROC-AUC Score: 0.85

Confusion Matrix:

[[2326 90] [311 273]]

Classification Report:

	precision	recall	f1-score	support
0	0.88	0.96	0.92	2416
1	0.75	0.47	0.58	584
accuracy			0.87	3000
macro avg	0.82	0.72	0.75	3000
weighted avg	0.86	0.87	0.85	3000

Top 10 Most Important Features

In []: