

Project Documentation DemoApplication

Contents

Ĺ	X2C Model	2
1	Version Information 1.1 X2C 1.2 Operating System 1.3 Scilab	2 2 2 2
2	Model Structure2.1 Xcos Model2.2 Subsystems	2 2 3
3	Model Parameter 3.1 Sample Time	4 4
4	Mask Parameter	5
II	Used X2C-Blocks	8
5	Project Specific Blocks	8
6	Constant Delay Gain I Negation Not Sin3Gen	26 30 33 35
	SinGen	4(

Part I

X2C Model

1 Version Information

1.1 X2C

• X2Cfull: Version 1037

1.2 Operating System

• OS: Windows 7 6.1

1.3 Scilab

• Scilab: Version 5.5.1.1412169962

• Java: Version 1.6.0_41

2 Model Structure

2.1 Xcos Model

Figure 1: DemoApplication

2.2 Subsystems

Figure 2: DemoApplication_Oscillator

3 Model Parameter

3.1 Sample Time

Sample Time	
T_S	$100\mu s$

4 Mask Parameter

AdaptivePT1: AdaptivePT1	
V	1.0
fmax	200.0
ts_fact	1.0
method	zoh
Used Implementation	FiP16

Constant: Amplitude	
Value	0.8
Used Implementation	FiP16

AutoSwitch: AutoSwitch	
Thresh_up	0.5
Thresh_down	0.5
Used Implementation	FiP16

AutoSwitch: AutoSwitch1	
Thresh_up	0.6
Thresh_down	0.4
Used Implementation	FiP16

AutoSwitch: AutoSwitch2	
Thresh_up	0.0
Thresh_down	0.0
Used Implementation	FiP16

Constant: Frequency	
Value	0.02
Used Implementation	FiP16

Gain: Gain	
Gain	2.0
Used Implementation	FiP16

Constant: LED off	
Value	0.0
Used Implementation	FiP16

Constant: LED on	
Value	1.0
Used Implementation	FiP16

Not: Not	
Used Implementation	FiP16

AutoSwitch: OscillatorAutoSwitch	
Thresh_up	0.5
Thresh_down	-0.5
Used Implementation	FiP16

Constant: OscillatorC_1	
Value	1.0
Used Implementation	FiP16

Constant: OscillatorC_enable	
Value	1.0
Used Implementation	FiP8

Constant: OscillatorC_init	
Value	0.0
Used Implementation	FiP16

Delay: OscillatorDelay	
ts_fact	1.0
Used Implementation	FiP16

I: Oscillator_I	
Ki	6.05
ts_fact	1.0
Used Implementation	FiP16

Negation: OscillatorN	legation
Used Implementation	FiP16

Sin3Gen: Sin3Gen	
fmax	100.0
Offset	0.0
ts_fact	1.0
Used Implementation	FiP16

SinGen: SinGen	
fmax	100.0
Offset	0.0
Phase	0.0
ts_fact	1.0
Used Implementation	FiP16

Constant: fc	
Value	0.0041
Used Implementation	FiP16

Part II

Used X2C-Blocks

- 5 Project Specific Blocks
- 6 Internal Library Blocks

Block: AdaptivePT1

Inports	
In	Input In(k)
fc	Cutoff frequency

Outports	
Out	Output Out(k)

Mask Parameters	
V	Gain
fmax	Maximum frequency [Hz] (not used in floating point implementations)
ts_fact	Multiplication factor of base sampling time (in integer format)
method	Discretization method

Description:

First order low pass with adaptive cut off frequency: G(s) = V/(s/(2*pi*fc) + 1)

Transfer function (zero-order hold discretization method):

$$G(z) = V \frac{1 - e^{-2\pi f_c T_s}}{z - e^{-2\pi f_c T_s}}$$

8

Implementations:

FiP8 8 Bit Fixed Point Implementation
 FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP8

 Name
 FiP8

 ID
 3408

 Revision
 0.1

C filename AdaptivePT1_FiP8.c H filename AdaptivePT1_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
w_scale	Calculation base for wc: -2*pi*Ts*fmax
gain	Gain
sfr	Shift factor for gain
in_old	In(k-1)

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int8
                    *In;
     int8
                    *fc;
     int8
                    Out;
     int8
                    w_scale;
     int8
                    gain;
     uint8
                    sfr;
     int8
                    in_old;
} ADAPTIVEPT1_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 3409

 Revision
 1

C filename AdaptivePT1_FiP16.c H filename AdaptivePT1_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
w_scale	Calculation base for wc: -2*pi*Ts*fmax
gain	Gain
sfr	Shift factor for gain
in_old	In(k-1)

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int16
                    *In;
     int16
                    *fc;
     int16
                    Out;
     int16
                    w_scale;
     int16
                    gain;
     uint8
                    sfr;
     int16
                    in_old;
} ADAPTIVEPT1_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 3410

 Revision
 0.1

C filename AdaptivePT1_FiP32.c H filename AdaptivePT1_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
w_scale	Calculation base for wc: -2*pi*Ts*fmax
gain	Gain
sfr	Shift factor forgain
in_old	In(k-1)

```
typedef struct {
                    ID;
     uint16
     int32
                    *In;
     int32
                    *fc;
     int32
                    Out;
     int32
                    w_scale;
     int32
                    gain;
     uint8
                    sfr;
     int32
                    in_old;
} ADAPTIVEPT1_FIP32;
```

Implementation: Float32

Name Float32 ID 3411 Revision 0.1

C filename AdaptivePT1_Float32.c H filename AdaptivePT1_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
w_scale	Calculation base for wc: -2*pi*Ts*fmax
gain	Gain
in_old	In(k-1)

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In;
     float32
                    *fc;
     float32
                    Out;
     float32
                    w_scale;
     float32
                    gain;
                    in_old;
     float32
} ADAPTIVEPT1_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 3412

 Revision
 0.1

C filename AdaptivePT1_Float64.c H filename AdaptivePT1_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
w_scale	Calculation base for wc: -2*pi*Ts*fmax
gain	Gain
in_old	In(k-1)

```
float64 gain;
float64 in_old;
ADAPTIVEPT1_FLOAT64;
```

Block: AutoSwitch

Inports	
ln1	Input #1
Switch	Input #2: Threshold signal
ln3	Input #3

Outports	
Out	Either value of input #1 or input #3 dependent on value of input #2

Mask Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal

Description:

Switch between In1 and In3 dependent on Switch signal: Switch signal rising: Switch >= Threshold up -> Out = In1 Switch signal falling: Switch < Threshold down -> Out = In3

Implementations:

FiP8 8 Bit Fixed Point Implementation
 FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 128 Revision 0.1

C filename AutoSwitch_FiP8.c
H filename AutoSwitch_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
                     ID;
     uint16
     int8
                     *In1;
     int8
                     *Switch;
     int8
                     *In3;
     int8
                     Out;
                     Thresh_up;
     int8
     int8
                     Thresh\_down\,;
     int8
                     Status;
} AUTOSWITCH_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 129

 Revision
 0.1

C filename AutoSwitch_FiP16.c
H filename AutoSwitch_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int16
                    *In1;
     int16
                    *Switch;
     int16
                    *In3;
     int16
                    Out;
                    Thresh_up;
     int16
                    Thresh_down;
     int16
     int8
                    Status;
} AUTOSWITCH_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 130

 Revision
 0.1

C filename AutoSwitch_FiP32.c H filename AutoSwitch_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int32
                    *In1;
     int32
                    *Switch;
     int32
                    *In3;
     int32
                    Out;
                    Thresh_up;
     int32
     int32
                    Thresh_down;
     int8
                    Status;
} AUTOSWITCH_FIP32;
```

Implementation: Float32

Name Float32 ID 131 Revision 0.1

C filename AutoSwitch_Float32.c H filename AutoSwitch_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
float32 Thresh_down;
int8 Status;
} AUTOSWITCH_FLOAT32;
```

Implementation: Float64

Name Float64 ID 132 Revision 0.1

C filename AutoSwitch_Float64.c
H filename AutoSwitch_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
Thresh_up	Threshold level for rising switch signal
Thresh_down	Threshold level for falling switch signal
Status	Current hysteresis state

```
typedef struct {
     uint16
                    ID;
                    *In1;
     float64
     float64
                    *Switch;
     float64
                    *In3;
     float64
                    Out;
     float64
                    Thresh_up;
                    Thresh_down;
     float64
     int8
                    Status;
} AUTOSWITCH_FLOAT64;
```

Block: Constant

Outports	
Out	Constant output

Mask Parameters	
Value	Constant factor

Description:

Constant value.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 48 Revision 0.3

C filename Constant_FiP8.c H filename Constant_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

```
typedef struct {
    uint16     ID;
    int8     Out;
    int8     K;
} CONSTANT_FIP8;
```

Implementation: FiP16

Name FiP16 ID 49 Revision 0.3

C filename Constant_FiP16.c
H filename Constant_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 50

 Revision
 0.3

C filename Constant_FiP32.c H filename Constant_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

```
typedef struct {
    uint16     ID;
    int32     Out;
    int32     K;
} CONSTANT_FIP32;
```

Implementation: Float32

Name Float32 ID 51 Revision 0.1

C filename Constant_Float32.c
H filename Constant_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

Data Structure:

Implementation: Float64

 Name
 Float64

 ID
 52

 Revision
 0.1

C filename Constant_Float64.c
H filename Constant_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
K	Constant factor

```
typedef struct {
    uint16     ID;
    float64     Out;
    float64     K;
} CONSTANT_FLOAT64;
```

Block: Delay

Inports	
In	Input In(k)

Outports	
Out	Output Out(k)=In(k-1)

Mask Parameters	
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Output delay by one sample time interval.

This block can be used to enable feedback loops in the model.

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 3425

 Revision
 0.1

C filename Delay_FiP16.c
H filename Delay_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

```
typedef struct {
    uint16     ID;
```

```
int16 *In;
int16 Out;
int16 In_old;
} DELAY_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 3426

 Revision
 0.1

C filename Delay_FiP32.c H filename Delay_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

Data Structure:

Implementation: Float32

 Name
 Float32

 ID
 3427

 Revision
 0.1

C filename Delay_Float32.c H filename Delay_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

Implementation: Float64

Name Float64 ID 3428 Revision 0.1

C filename Delay_Float64.c H filename Delay_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
In_old	Input value from previous cycle

Block: Gain

Inports	
In	Input

Outports	
Out	Amplified input

Mask Parameters	
Gain	Gain factor in floating point format

Description:

Amplification of input by gain factor.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 16 Revision 1.0

C filename Gain_FiP8.c H filename Gain_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
V	Gain factor
sfr	Shift factor

```
int8     Out;
int8     V;
int8     sfr;
} GAIN_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 17

 Revision
 1.0

C filename Gain_FiP16.c
H filename Gain_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters		
	V	Gain factor
Ī	sfr	Shift factor

Data Structure:

Implementation: FiP32

Name FiP32 ID 18 Revision 1.0

C filename Gain_FiP32.c H filename Gain_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
V	Gain factor
sfr	Shift factor

```
int32 Out;
int32 V;
int8 sfr;
} GAIN_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 19

 Revision
 0.1

C filename Gain_Float32.c
H filename Gain_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
V	Gain factor

Data Structure:

Implementation: Float64

 Name
 Float64

 ID
 20

 Revision
 0.1

C filename Gain_Float64.c
H filename Gain_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
V	Gain factor

Block: I

Inports	
In	Control error input
Init	Value which is loaded at initialization function call
Enable	Enable == 0: Deactivation of block; Out set to 0 Enable 0->1: Preload of integral part Enable == 1: Activation of block

Outports	
Out	Control value

Mask Parameters	
Ki	Integral Factor
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

I controller:

$$G(s) = Ki/s = 1/(Ti*s)$$

Each fixed point implementation uses the next higher integer datatype for the integrational value storage variable.

A rising flank at the *Enable* inport will preload the integrational part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_I T_s \frac{1}{z-1}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8
ID 3200
Revision 1.0
C filename I_FiP8.c
H filename I_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                     ID;
     int8
                     *In;
     int8
                     *Init;
                     *Enable;
     int8
     int8
                     Out;
     int8
                     b0;
     int8
                     sfr;
     int16
                     i_old;
     int8
                     enable_old;
} I_FIP8;
```

Implementation: FiP16

Name FiP16
ID 3201
Revision 1.0
C filename I_FiP16.c
H filename I_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
```

```
uint16
                    ID;
     int16
                    *In;
     int16
                    *Init;
     int8
                    *Enable;
     int16
                    Out;
     int16
                    b0;
     int8
                    sfr;
                    i_old;
     int32
     int8
                    enable_old;
} I_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 3202

 Revision
 1.0

 C filename
 I_FiP32.c

 H filename
 I_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
b0	Integral coefficient
sfr	Shift factor for I coefficient b0
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *In;
     int32
                    *Init;
     int8
                    *Enable;
     int32
                    Out;
     int32
                    b0;
     int8
                    sfr;
     int64
                    i_old;
                    enable_old;
     int8
} I_FIP32;
```

Implementation: Float32

Name Float32 ID 3203 Revision 0.1

C filename I_Float32.c H filename I_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *In;
     float32
                    *Init;
     int8
                    *Enable;
     float32
                    Out;
     float32
                    b0;
     float32
                    i_old;
     int8
                    enable_old;
} I_FLOAT32;
```

Implementation: Float64

Name Float64 ID 3204 Revision 0.1

C filename I_Float64.c H filename I_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
b0	Integral coefficient
i_old	Integrator value from previous cycle
enable_old	Enable value of previous cycle

```
typedef struct {
     uint16
                    ID;
     float64
                    *In;
     float64
                    *Init;
     int8
                    *Enable;
     float64
                    Out;
     float64
                    b0;
     float64
                    i_old;
     int8
                    enable_old;
} I_FLOAT64;
```

Block: Negation

Inports	
In	Input

Outports	
Out	Negated input value

Description:

Negation of input signal.

Calculation:

$$Out = -In$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

 Name
 FiP8

 ID
 5040

 Revision
 0.1

C filename Negation_FiP8.c
H filename Negation_FiP8.h

8 Bit Fixed Point Implementation

```
typedef struct {
    uint16     ID;
    int8     *In;
    int8     Out;
} NEGATION_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 5041

 Revision
 0.1

C filename Negation_FiP16.c
H filename Negation_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP32

 Name
 FiP32

 ID
 5042

 Revision
 0.1

C filename Negation_FiP32.c H filename Negation_FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

Implementation: Float32

 Name
 Float32

 ID
 5043

 Revision
 0.1

C filename Negation_Float32.c H filename Negation_Float32.h

32 Bit Floating Point Implementation

```
float32 Out;
} NEGATION_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 5044

 Revision
 0.1

C filename Negation_Float64.c
H filename Negation_Float64.h

64 Bit Floating Point Implementation

Block: Not

Inports	
In	

Outports	
Out	

Description:

Logical inverter block.

Implementations:

FiP8 8 Bit Fixed Point ImplementationFiP16 16 Bit Fixed Point ImplementationFiP32 32 Bit Fixed Point Implementation

Implementation: FiP8

Name FiP8 ID 224 Revision 0.1

C filename Not_FiP8.c H filename Not_FiP8.h

8 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP16

Name FiP16 ID 225 Revision 0.1

C filename Not_FiP16.c H filename Not_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

Implementation: FiP32

Name FiP32 ID 226 Revision 0.1

C filename Not_FiP32.c H filename Not_FiP32.h

32 Bit Fixed Point Implementation

Block: Sin3Gen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output phase u
V	Sine wave output phase v
W	Sine wave output phase w

Mask Parameters	
fmax	Maximum Frequency in Hz
Offset	Offset
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a 3 sine waves with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$\begin{array}{rcl} u_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S)} + A_{Offset} \\ \\ v_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S - \frac{2\pi}{3})} + A_{Offset} \\ \\ w_k & = & A_k \cdot \sin{(2f_k \cdot f_{max} \cdot kT_S + \frac{2\pi}{3})} + A_{Offset} \end{array}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter *f_max* is ignored):

$$\begin{array}{rcl} u_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S)} + A_{Offset} \\ \\ v_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S - \frac{2\pi}{3})} + A_{Offset} \\ \\ w_k & = & A_k \cdot \sin{(2\pi f_k \cdot kT_S + \frac{2\pi}{3})} + A_{Offset} \end{array}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

 Name
 FiP8

 ID
 432

 Revision
 1.0

C filename Sin3Gen_FiP8.c H filename Sin3Gen_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                     ID;
     uint16
     int8
                     *A;
     int8
                     *f;
     int8
                     u;
     int8
                     ۷;
     int8
                    w;
     int8
                     delta_phi;
     int8
                     offset;
                     phi;
     int8
} SIN3GEN_FIP8;
```

Implementation: FiP16

Name FiP16 ID 433 Revision 1.0

C filename Sin3Gen_FiP16.c
H filename Sin3Gen_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int16
                    *A;
     int16
                    *f;
     int16
                    u;
     int16
                    ٧;
     int16
                    w;
     int16
                    delta_phi;
     int16
                    offset;
     int16
                    phi;
} SIN3GEN_FIP16;
```

Implementation: FiP32

Name FiP32 ID 434 Revision 1.0

C filename Sin3Gen_FiP32.c H filename Sin3Gen_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
typedef struct {
                    ID;
     uint16
     int32
                    *A;
     int32
                    *f;
     int32
                    u;
     int32
                    ν;
     int32
                    w;
     int32
                    delta_phi;
     int32
                    offset;
     int32
                    phi;
} SIN3GEN_FIP32;
```

Implementation: Float32

Name Float32 ID 435 Revision 0.1

C filename Sin3Gen_Float32.c H filename Sin3Gen_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *A;
     float32
                    *f;
     float32
                   u;
     float32
                    ۷;
     float32
                   w;
     float32
                    delta_phi;
     float32
                    offset;
     float32
                    phi;
} SIN3GEN_FLOAT32;
```

Implementation: Float64

 Name
 Float64

 ID
 436

 Revision
 0.1

C filename Sin3Gen_Float64.c
H filename Sin3Gen_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
offset	Amplitude offset
phi	Current angle

```
float64 u;
float64 v;
float64 w;
float64 delta_phi;
float64 offset;
float64 phi;
} SIN3GEN_FLOAT64;
```

Block: SinGen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output

Mask Parameters	
fmax	Maximum Frequency in Hz
Offset	Offset
Phase	Phase [-PiPi]
ts_fact	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a sine wave with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$u_k = A_k \cdot \sin(2f_k \cdot f_{max} \cdot kT_S + \phi_{Phase}) + A_{Offset}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter *f_max* is ignored):

$$u_k = A_k \cdot \sin(2\pi f_k \cdot kT_S + \phi_{Phase}) + A_{Offset}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Name FiP8 ID 416 Revision 1.0

C filename SinGen_FiP8.c H filename SinGen_FiP8.h

8 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
                    ID;
     uint16
     int8
                    *A;
                    *f;
     int8
     int8
                    u;
     int8
                    delta_phi;
     int8
                    phase;
     int8
                    offset;
     int8
                    phi;
} SINGEN_FIP8;
```

Implementation: FiP16

 Name
 FiP16

 ID
 417

 Revision
 1.0

C filename SinGen_FiP16.c H filename SinGen_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

```
int16 u;
int16 delta_phi;
int16 phase;
int16 offset;
int16 phi;
} SINGEN_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 418

 Revision
 1.0

C filename SinGen_FiP32.c
H filename SinGen_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *A;
     int32
                    *f;
     int32
                    u;
                    delta_phi;
     int32
     int32
                    phase;
     int32
                    offset;
     int32
                    phi;
} SINGEN_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 419

 Revision
 0.1

C filename SinGen_Float32.c
H filename SinGen_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

Data Structure:

```
typedef struct {
     uint16
                    ID;
     float32
                    *A;
     float32
                    *f;
     float32
                    u;
     float32
                    delta_phi;
     float32
                    phase;
     float32
                    offset;
     float32
                    phi;
} SINGEN_FLOAT32;
```

Implementation: Float64

Name Float64 ID 420 Revision 0.1

C filename SinGen_Float64.c
H filename SinGen_Float64.h

64 Bit Floating Point Implementation

Controller Parameters	
delta_phi	Angle increment
phase	Angle offset
offset	Amplitude offset
phi	Current angle

```
typedef struct {
                    ID;
     uint16
                    *A;
     float64
     float64
                    *f;
     float64
                    u;
     float64
                    delta_phi;
     float64
                    phase;
     float64
                    offset;
     float64
                    phi;
} SINGEN_FLOAT64;
```