Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea semanal 04:

Análisis de Argumentos

 $\begin{array}{c} Pablo~A.~Trinidad~Paz\\ 419004279\end{array}$

- 1. Sea Γ un conjunto de fórmulas y τ una tautología. Si Γ es insatisfacible, ¿como es $\Gamma \cup \{\tau\}$?
 - El nuevo conjunto de fórmulas $\varphi = \Gamma \cup \{\tau\}$ sigue siendo insatisfacible porque para que sea satisfacible debe existir una interpretación \mathcal{I} tal que $\mathcal{I}(P) = 1$ para toda $P \in \varphi$ y aunque todos los estados de τ son modelos, sabemos que no existe ningún estado de que satisfaga todas las fórmulas de Γ .
- 2. Decide si los siguientes conjuntos de fórmulas son satisfacibles. Justifica.
 - $\Gamma_1 = \{ p \lor q \lor r, \neg p, \neg q, \neg r \}$

Para probar si el conjunto de fórmulas Γ_1 es satisfacible podemos asumirlo y tratar de encontrar los estados de cada variable proposicional.

- 1) $\mathcal{I}(\Gamma_1) = 1$
- 2) $\mathcal{I}(p \vee q \vee r) = 1$
- 3) $\mathcal{I}(\neg p) = 1$
- 4) $\mathcal{I}(\neg q) = 1$
- 5) $\mathcal{I}(\neg r) = 1$
- 6) I(p) = 0 (por 3)
- 7) I(q) = 0 (por 4)
- 8) I(r) = 0 (por 5)

Hemos llegado a una contradicción ya que $\mathcal{I}(p \vee q \vee r) \text{ no puede evaluarse a 1}$ porque p,q y r son 0

 $\therefore \nexists I \mid I(P) = 1 \forall P \in \Gamma_1$

 Γ_1 es Insatisfacible

$$\Gamma_2 = \{p, \neg p \lor q, \neg p \lor r\}$$

Para probar si el conjunto de fórmulas Γ_2 es satisfacible podemos asumirlo y tratar de encontrar los estados de cada variable proposicional.

1)
$$\mathcal{I}(\Gamma_2) = 1$$

$$2) \, \mathcal{I}(p) = 1$$

3)
$$\mathcal{I}(\neg p \lor q) = 1$$

4)
$$\mathcal{I}(\neg p \lor r) = 1$$

5)
$$I(q) = 1 \text{ (por 2)}$$

6)
$$I(r) = 1 \text{ (por 2)}$$

$$\therefore \exists I \,|\, I(P) = 1 \forall P \in \Gamma_2$$

 $\therefore \, \Gamma_2$ es **Satisfacible** (En el estado anterior)