CSCI 3230

Fundamentals of Artificial Intelligence

Chapter 3 (Sects 3.1–3.4)

Problem Solving by Searching

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents

Intelligent agents act to make the environment go through a sequence of states that maximizes the performance measure:

- ▶1 st step: Goal formation, based on the current situation.
 - A set of world states that satisfy the goal. Actions cause transitions between world states, so the agent has to search for appropriate actions. (within constraints) e.g. goto Shatin
- 2nd step: Problem formulation is to decide what actions and states to consider. i.e. modeling -> problem (search) space
- 3rd step: Search An agent with several immediate options chooses the best one by examining different possible sequences of actions. A search algorithm takes a problem as input and returns a solution (e.g. an action sequence or an optimal state).
- 4th step: Execution The actions recommended are carried out.

Problem-solving agents 2

A simple problem-solving agent:

```
function Simple-Problem-Solving-Agent (percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ← Update-State (state, percept) //e.g. at Eng Bldg...at University Station....

if seq is empty then do

goal ← Formulate-Goal (state)

problem ← Formulate-Problem (state, goal)

seq ← Search (problem)

action ← First (seq)

seq ← Rest (seq)

return action
```

Note: this is offline problem solving: solution executed "eyes closed". Online problem solving involves acting interactively without complete knowledge.

Example: Romania

On holiday in Romania; currently in <u>Arad</u>. Flight leaves tomorrow from Bucharest.

Formulate goal:

be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution:

sequence of cities, e.g. Arad, Sibiu, Fagaras, Bucharest

Example: Romania

Sequences: Arad → Sibiu → Fagaras → Bucharest ?optimal

Back to Slide 9

4 Problem types (1)

- Single-state problems:
 - Deterministic, fully observable:
 - Consider a single state at a time
 - E.g. at State 5, [Right, suck] → goal state

8-possible states in a simple vacuum world

4 Problem types (2, 3)

- Multiple-state (conformant) problems:
 - Non-observable
 - The agent must reason about sets of states that it might get to. E.g. Without sensor, [Right] \rightarrow {2, 4, 6, 8}
 - Sometimes there is no fixed action sequence that guarantees a solution to this problem.
- Contingency problems:
 - Nondeterministic and/or partially observable
 - The agent calculates a whole tree of actions rather than a single action sequence. In general, each branch of the tree deals with a possible contingency that might arise. Many real-world are contingency problems, because exact prediction is impossible

4 Problem types (4)

Exploration problems:

- Unknown state space
 - The agent must experiment, gradually discovering what its actions do and what sorts of states exist. ?"door"?

State space:

 The set of all states reachable from the initial state by any sequence of actions. A path in the state space is any sequence of actions leading from one state to another. (e.g. all cities in p.6)

? Is the path important

Example: vacuum world

What is the solution of the following state?

- Single-state, start in 5
 - [Right, Suck]
- Conformant, start in {1,2,3,4,5,6,7,8}e.g. *Right* goes to {2,4,6,8}
 - [Right, Suck, Left, Suck]
- Contingency, start in 5 Murphy's Law: Suck can dirty a clean carpet

Local Sensing: dirt, location only.

[Right, if dirt then Suck]

Single-state problem formulation

A (well-defined) problem is defined by four items:

```
Initial state – e.g. "at Arad" and other states
```

```
Successor function – S(x) = set of \underline{action} - state pairs

e.g. S(Arad) = \{[\underline{Arad} \rightarrow Zerind, Zerind], ...[action, state]...\}

Initial state + Actions => state space
```

Goal test:

- Explicit, e.g. x = "at Bucharest"
- Implicit, e.g. NoDirt(x), need evaluation

Path cost (additive)

```
e.g. \Sigmac: sum of distances, number of actions executed, etc. c(x, a, y) is the step cost, assumed to be \geq 0 (?)
```

A solution is a sequence of actions leading from the initial state to goal state.

Selecting a state space (modeling)

Real world is absurdly complex

⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions e.g. "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad" must get to some real states "in Zerind"

(Abstract) solution =

set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original problem!

Measuring problem-solving performance

- ▶ (1) Does it find a solution at all? -complete
- (2) Is it a good solution (one with a low path cost)?-optimal, effective
- ▶ (3) What is the search cost associated with the time and memory required to find a solution? -efficient, complexity

The total cost of the search is the sum of the path cost and the search cost. (Trade off between them)

- The real art of problem solving is in deciding what goes into the description of the states and actions and what is left out.
- The process of removing detail from a representation is called abstraction.
- The choice of a good abstraction thus involves removing as much detail as possible while retaining validity and ensuring that the abstract actions are easy to carry out.

Example: vacuum world state space graph

States: Integer dirt and robot locations (ignore dirt amounts)

Actions: Left, Right, Suck, NoOp (branch factor b)

Goal test: No dirt

Path cost: 1 per action (0 for NoOp)

Example: The 8-puzzle

States: Integer location of tiles (ignore intermediate positions)

Actions: Move blank left, right, up, down (ignore un-jamming etc.)

Goal test: Goal state (given)

Path cost: 1 per move

[Note: optimal solution of n-puzzle family is NP-hard, n=x*y-1]

B=?

Example: robotic assembly

States: Real-valued coordinates of robot join angles &

parts of the object to be assembled

Actions: Continuous motions of robot joints

Goal test: Complete assembly with no robot included!

Path cost: Time to execute

Example: The 8-queens problem

Rules: The 8 Queens cannot attack each other This is one of the states of this problem

▶ Solution

How would you find the solutions??

Example: 8-queens problem

- 2 main kinds of formulation (F): (1) The incremental formulation (F1, F2) places queens one by one. (2) The complete-state formulation (F3, F4) starts with all 8 queens on the board and moves them around.
- •Goal test: 8 queens on board, none attacked.
- Path cost: zero.

They have different possible states and actions. Consider the following simple-minded formulation.

(F1) enumeration

- States: any arrangement of 0 to 8 queens on board
- Action: add a queen to any square.

In this formulation, we have 648 possible sequences to investigate. More sensible:

Example: 8-queens problem

(F2) DEMO

- States: arrangements of 0 to 8 queens with none attacked.
- Actions: place a queen in the left-most empty column such that it is not attacked by any other queen. (2057)

The right formulation makes a big difference to the size of the search space.

(F3)

- States: arrangements of 8 queens, one in each column.
- Actions: move any attacked queen to another square in the same column
 Goto board

(F4)

 This formulation would allow the algorithm to find a solution eventually, but it would be better to move to an un-attacked square if possible

Example: Cryptarithmetic

States:	A cryptarithmetic puzzle with some letters replaced by digits
Actions:	Replace all occurrences of a letter with a digit not already appearing in the puzzle. (Unique substitution). ?other operators
Goal test:	Puzzle contains only digits, and represents a correct sum
Path cost:	Zero. All solution equally valid.

Example: Missionaries (M) and cannibals (c)

- > States: a state consists of an ordered sequence of 3 numbers representing the numbers of missionaries, cannibals, and boat on the bank of the river from which they started. Thus, the start state is (3,3,1).
- ▶ Constraints: $(\#M) \ge (\#c)$ in any place
- Actions: from each state the possible Actions are to take either 1 missionary, 1 cannibal, 2 missionaries, 2 cannibals, or 1 of each across in the boat. Thus, there are at most 5 actions. Most states have fewer to avoid illegal state. If we were to distinguish between individual people then there would be 21 actions instead of just 5. (b=5)
- Goal test: reached state(0,0,0).
- Path cost: number of crossing

Example: Real-world problems

- Route finding
 - e.g. airline travel planning (complex path cost: money, quality of service, safety etc.)
- Touring and traveling salesperson problems (TSP).
 - NP-hard.
- VLSI layout: cell layout, channel routing
- Robot navigation
 - many dimension
- Assembly sequencing
- Protein design:
 - amino acid sequence folding into 3D protein with properties to cure disease; drug discovery
- Internet searching
- Big Data Analytics

TREE SEARCH ALGORITHMS

Basic idea:

Current state → generate a new set of states (expanding the state) → choose one (expanding state) by a search strategy to expand

→ search tree with search nodes

initial state = root

function Tree-Search(problem, strategy) returns a solution, or fail
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return fail
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end

Example: Romania

Sequences: Arad → Sibiu → Fagaras → Bucharest

Tree search example

Implementation: states vs. nodes

A state is a (representation of) a physical configuration of real problem

A node is a data structure constituting part of a search tree includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

The Expand function creates new <u>nodes</u>, filling in the various fields and using the <u>SuccessorFn</u> of the problem to create the corresponding <u>states</u> (action)

Implementation: general tree search

parent

```
function Tree-Search(problem, fringe) returns a solution, or failure
  fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
  loop do
     if fringe is empty then return failure
     node \leftarrow Remove-Front(fringe)
     if Goal-Test[problem] applied to State(node) succeeds return node
    fringe \leftarrow InsertAll(Expand (node, problem), fringe) //according to strategy
   end
function Expand(node, problem) returns a set of node //creates new nodes for each action
  successors \leftarrow the empty set
  for each action, result in Successor-Fn[problem](State[node]) do //compute state
     s \leftarrow a new Node
                                                                         //e.g.L,R,U,D
     Parent-Node[s] \leftarrow node; Action[s] \leftarrow action; State[s] \leftarrow result
     Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost[node, action, s] //g
     Depth[s] \leftarrow Depth[node] + 1
     add s to successors
                                             //newly expanded nodes
  return successors
  end
```

Search strategies

A <u>strategy</u> is defined by picking the *order of node expansion* Strategies are <u>evaluated</u> along the following dimensions:

- Completeness does it always find a solution if one exists?
- Time complexity number of nodes generated/expanded
- Space complexity maximum number of nodes in memory
- Optimality does it always find a least–cost solution?

Time and space complexity are measured in terms of

- b maximum branching factor of the search tree
- d depth of the least-cost solution
- m maximum depth of the state space (may be ∞)??

Search strategies

Complexity Analysis (of problems)

- P: the class of Polynomial problems consider "easy"
 - E.g. O(log n), O(n) but O(n¹⁰⁰⁰).
- NP: the class of Nondeterministic Polynomial problems inherently hard
 - E.g. $O(2^n)$; $\geq P$
- NP-complete: most complex NP problems, e.g. Satisfiability, TSP, bin packing problems; ≥ NP
- NP-hard: more complex (problems harder) than NP problems
 - E.g. the optimization versions of the above NP-complete problems; ≥ NP-complete
- PSPACE-hard problems (problems requiring polynomial amount of space)
 - Worse than NP-complete problems ??

Complexity Analysis diagram from Wikipedia

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

breadth-first search

Expand shallowest unexpanded node Implementation:

fringe is a FIFO queue, i.e. new successors go at end

Properties of breadth-first search

Complete	Yes (if b is finite)		
Time	$1+b+b^2+b^3+\ldots+b(b^d-1)=O(b^{d+1}), i.e.\ exp.\ in\ d$		
Space	O(b ^{d+1}) (keep every node in memory) (?)		
Optimal	Yes(if cost = 1 (same) per step); not optimal in general		

b: branching factor

d: depth of opt soln

Properties of breadth-first search

The memory (space) requirements are a bigger problem for breadth-first search than the execution time.

Depth	Nodes	Time	Memory
2	110	.11 milliseconds	107 kilobytes
4	11,110	11 milliseconds	10.6 megabytes
6	10^{6}	1.1 seconds	1 gigabyte
8	10^{8}	2 minutes	103 gigabytes
10	10^{10}	3 hours	10 terabytes
12	10^{12}	13 days	1 petabyte
14	10^{14}	3.5 years	99 petabytes
16	10^{16}	350 years	10 exabytes

Figure 3.13 Time and memory requirements for breath-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node

Our supercomputer: 6TB; exabytes: 10^{18}

Uniform-cost search 1

- Breadth-first search finds the shallowest goal state, but this may not always be the least-cost solution for a general path cost function. (equal step cost only)
- Uniform cost search modifies the breadth-first strategy by always expanding the lowest-cost node on the fringe (as measured by the path cost g(n)), rather than the lowest-depth node. ⇒ best first
- Uniform cost search finds the cheapest solution provided: the cost of a path must never decrease as we go along the path (i.e. no negative step costs)
 - $g(SUCCESSOR(n)) \ge g(n)$ (?)

⇒ optimal solution without exhaustive search possible ?

Uniform-cost search 2

Example of traveling from Sibiu to Bucharest

Always find a lowest path to expand until no other path can reach the destination with the lowest cost

Therefore the shortest path will be: Sibiu → Rimnicu Vilcea → Pitesti → Bucharest

Uniform-cost search 3

Expand least-cost unexpanded node Implementation:

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete	Yes, if step cost $\geq \epsilon$ (epsilon, small positive real no)
Time	# of nodes with $g \le cost$ of optimal solution, $O(b^{\lceil C^*/\epsilon \rceil})$ where C^* is the cost of the optimal solution
Space	# of nodes with $g \le cost$ of optimal solution, $O(b^{\lceil C^*/\epsilon \rceil})$
Optimal	Yes-nodes expanded in increasing order of g(n)

g: path cost

ε: smallest possible step cost

d – worst case depth of optimal solution = $[C^*/\epsilon]$

Depth-first search

Expand deepest unexpanded node Implementation:

fringe = LIFO queue, i.e., put successors at front Implement ?? ⇔ stack; ⇔ recursive calls

Properties of depth-first search

Complete	No, fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces
Time	O(b ^m): terrible if m is much larger than d But if solutions are dense, may be much faster than breadth-first
Space	O(bm), i.e., linear space! (?)
Optimal	No

b: branching factor

m: max depth of search tree

d: depth of opt soln

Depth-limited search

= depth-first search with depth limit ℓ i.e. nodes at depth ℓ have no successors

Recursive implementation: equivalent to a LIFO implemented by a stack

function DEPTH-LIMITED-SEARCH (*problem*, *limit*) **returns** solution/fail/cutoff **return** RECURSIVE-DLS (MAKE-NODE (Initial-State[*problem*]), *problem*, *limit*)

```
function RECURSIVE-DLS (node, problem, limit) returns solution/fail/cutoff
cutoff-occurred? ← false
if Goal-Test[problem](State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand (node, problem) do
result ← RECURSIVE-DLS (successor, problem, limit)
if result = cutoff then cutoff-occurred? ← true
else if result ≠ failure then return result
if cutoff-occurred? then return cutoff else return failure
```

Depth-limited search

- Difficult for depth-limited search to pick a good limit.
- The diameter (max length from any node to any other nodes) of state space, gives us a better depth limit for a more efficient depth-limited search
- However, for most problems, not know until the problem solved.
- ▶ What if we do not know ℓ

Iterative deepening search

```
function Iterative-Deepening-Search (problem) returns a solution inputs: problem: a problem for depth \leftarrow 0 to \infty do result \leftarrow Depth-Limited-Search (problem, depth) if result \neq cutoff then return result end
```

?repeated visits of nodes?

Iterative deepening search

Iterative deepening search

(l=3)

Properties of iterative deepening search

Complete	Yes
Time	$(d+1)b^0 + db^1 + (d-1)b^2 + + b^d = O(b^d)$ (?cf B First)
Space	O(bd) (?cf D First)
Optimal	Yes, if step cost = 1. Can be modified to explore uniform-cost tree or C^* ?

```
Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

N(BFS) = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,101
```

- In general, preferred for a large search space (?) and unknown depth of the solution.
- Combines the benefits of depth-first and breadth-first search.
 Optimal and complete, like breadth-first search, but with modest memory requirements of depth-first search. Some states are expanded multiple times. ?

Summary of algorithms

Criterion	Breadth- first	Uniform- cost	Depth- first	Depth- limited	Iterative Deepening
Complete?					
Time					
Space					
Optimal?					

b(branching factor), m(max depth), ℓ (depth limit), d(soln depth) C* is the cost of the optimal solution

- *: true for some conditions only:
- 1 b is finite
- 2 ε is the smallest +ve step size
- 3 BF and ID optimal if step costs are all equal

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search engine
- Uniform cost is optimal

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms