

DISCIPLINA: Teoria de Eletrônica Digital I SEMESTRE/ANO 1º/2024

CÓDIGO: FGA0073

CRÉDITOS: 4

PROFESSOR: Renato Vilela Lopes

PLANO DE AULA

1. OBJETIVOS DA DISCIPLINA

Proporcionar conhecimentos introdutórios e essenciais de teoria de sistemas digitais e dispositivos lógicos visando desenvolver no aluno as habilidades para a análise, projeto e desenvolvimento de circuitos e sistemas digitais combinacionais e sequenciais. Essa disciplina estabelece base para disciplinas posteriores do curso de Engenharia Eletrônica (Exemplo: microprocessadores, sistemas embarcados, instrumentação eletrônica e outras).

2. PRÉ - REQUISITOS

MAT0031 - Introdução a Álgebra Linear.

3. EMENTA DO PROGRAMA

1. Sistemas de Numeração e Códigos;

2. Portas Lógicas e Álgebra Booleana;

3. Circuitos Lógicos Combinacionais;

4. Aritmética Digital: Operações e

5. VHDL;

6. Circuitos Lógicos MSI;

7. Princípios de Sistemas Sequenciais;

Circuitos

4. HORÁRIO DE AULAS E ATENDIMENTO

Aulas teóricas: Quartas e sextas, das 8:00 às 10:00hs (Turma 01) e 14:00 às 15:50hs

(Turma 02);

Sala: Turma 01 – S1

Turma 02 – S2 (quartas) e S4 (sextas)

Atendimento: Segundas – 16hs às 17:50hs

Local: Sala 12 (Prédio UED)

e-mail de contato: rvlopes@unb.br

Monitoria: Os horários de atendimento dos monitores serão divulgados em momento

posterior, se houver monitores selecionados para a disciplina.

5. METODOLOGIA

O método básico aplicado é o de aulas expositivas, com o auxílio do quadro branco e/ou projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com atividades de exercícios e demandas extraclasse. Estas atividades serão desenvolvidas com acompanhamento do professor, bem como através da Plataforma Moodle. Desta forma, a inscrição na página da disciplina na plataforma Moodle é obrigatória, visto que, todos os recursos (slides, textos, exercícios e trabalhos) serão ali disponibilizados ou coletados. Além disso, toda comunicação (divulgação de notas, avisos, etc...) será feita por esse canal.

Senha no moodle: TED1 1 2024

(https://aprender3.unb.br/course/view.php?id=22248)

6. CRITÉRIOS DE AVALIAÇÃO

As provas terão uma hora e cinquenta minutos de duração e serão feitas de forma individual. As provas conterão questões abordando todo o conteúdo da disciplina até a aula anterior à prova. Cada aluno poderá levar para a prova uma folha A4 com anotações pessoais, frente e verso. As anotações contidas na folha trazida pelo aluno deverão ter sido escritas à mão e conter o seu nome. Não serão aceitas cópias ou impressões.

A avaliação dos alunos na disciplina será feita de forma contínua através de duas Provas Teóricas (Pi, i = 1, 2). A nota final da disciplina (NF) será calculada por meio da equação seguinte:

$$NF = 0.4 * P_1 + 0.6 * P_2$$

Para ser aprovado na disciplina, o aluno precisa:

- Ter 75% de presença nas aulas;
- Atingir Nota Final (NF) maior ou igual a 5,0.

<u>Prova Substitutiva:</u> Esta avaliação abrangerá todo o conteúdo programático abordado durante o semestre e poderá ser realizada pelo aluno que perder alguma avaliação ou que estiver insatisfeito com a sua média final. A nota obtida nesta avaliação irá substituir obrigatoriamente a menor nota obtida pelo aluno entre as avaliações P₁ e P₂.

Datas das Provas:

• 1ª Prova: 03 de maio de 2024 – sexta-feira

• 2ª Prova: 28 de junho de 2024 – sexta-feira

• Prova Substitutiva: 03 de julho de 2024 – quarta-feira

• OBSERVAÇÃO: É proibido que alunos não matriculados na respectiva turma assistam às aulas. As provas destes alunos não serão corrigidas.

7. CRONOGRAMA DE ATIVIDADES

Aula	Data
Apresentação Curso	20/03/2024
Aula 01 - Conceitos Introdutórios	22/03/2024
Aula 02 - Sistemas de Numeração	27/03/2024
Feriado	29/03/2024
Aula 03 - Códigos	03/04/2024
Aula 04 - Aritmética Digital - Parte 1	05/04/2024
Aula 05 - Aritmética Digital - Parte 2	10/04/2024
Aula 06 - Portas Lógicas - Parte 1	12/04/2024
Aula 07 - Portas Lógicas - Parte 2	17/04/2024
Aula 08 - Simplificação de Expressões - Parte 1	19/04/2024
Aula 09 - Simplificação de Expressões - Parte 2	24/04/2024
Aula 10 - Projeto de Circuitos Lógicos	26/04/2024
FERIADO	01/05/2024
PROVA 1	03/05/2024
Aula 11 - PLDs	08/05/2024
Aula 12 - Elementos Básicos VHDL + Familiarização	
Vivado, Aula 13 - Operadores Padrão e Aula 14 -	10/05/2024
Comandos Concorrentes	
Aula 15- Circuitos Somadores	15/05/2024
Aula 16 - Circuitos Lógicos MSI	17/05/2024
Aula 17 - Circuitos Multiplexadores	22/05/2024
Aula 18 - Circuitos DeMultiplexadores	24/05/2024
Aula 19 - Flip-Flops - Parte 1	29/05/2024
FERIADO	31/05/2024
Aula 20 - Flip-Flops - Parte 2	05/06/2024
Aula 21 - Circuitos Contadores Assincronos - Parte 1	07/06/2024
Aula 22 - Circuitos Contadores Assincronos - Parte 2	12/06/2024
Aula 23 - Circuitos Contadores Síncronos - Parte 1	14/06/2024
Aula 24 - Circuitos Contadores Síncronos - Parte 2	19/06/2024
SIMULADO	21/06/2024
SEM AULA	26/06/2024
PROVA 2	28/06/2024
PROVA SUBSTITUTIVA	03/07/2024
ULTIMO DIA LETIVO	15/07/2024

Observação: Na busca de uma melhor abordagem pedagógica, a distribuição dos conteúdos e da aplicação das avaliações podem sofrer modificações.

8. BIBLIOGRAFIA

	Bibliografia Básica								
	Autor(es)	Título	Edição	Editora	Local	Ano	ISBN	Número de Chamada	
1	Floyd, T.	Sistemas Digitais: Fundamentos e Aplicações	9ª	Bookman	Porto Alegre	2007	9788577801077		
2	Pedroni, V. A.	Eletrônica Digital Moderna e VHDL		Campus- Elsevier	Rio de Janeiro	2010	9788535234657	621.38.04 P372d =690	
	Tocci, R. J e Widmer, N. S., Moss, G. L.	Sistemas Digitais - Princípios e Aplicações	11ª	Pearson	São Paulo	2011	9788576050957	004.2 T631d =690 11. ed.	
4	Bignell, J. W.; Donovan, R.	Eletrônica Digital	5ª	Cengage Learning	São Paulo	2010	9788522128242		

	Bibliografia Complementar								
	Autor(es)	Título	Edição	Editora	Local	Ano	ISBN	Número de Chamada	
1	Kleitz. W.	Digital Electronics: A Practical Approach with VHDL	9a	Pearson	USA	2012			
2	,	Digital Design With an Introduction to the Verilog HDL	5ª	Pearson	USA	2013			
3	Katz, R. H.; Borriello, G.	Contemporary Logic Design	2 ^a	Pearson	USA	2005	201308576	004.312:621.38 K19c 2. ed.	
4	Roberto d'Amore	VHDL: Descrição e Síntese de Circuitos Digitais	2ª	LTC	Rio de Janeiro	2012	9788521620549	004.436.2 D164v 2. ed.	