ESc201: Introduction to Electronics

Amplifiers

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

RECAP Ideal Transistor Characteristics

How do we use elements such as X, Y etc to make amplifiers?

Amplifier Schematic for Device Y

Economising on power supplies

Can we implement an amplifying circuit using one dc voltage source only?

A single supply V_{CC} can be used to provide bias to both input and output

High response device Z

For
$$V_o < 0.2 \text{ V} \Rightarrow I_o = 0$$
 Output characteristics

For $V_o \ge 0.2 \text{ V}$
 $I_o = 0 \text{ for } V_i \le 1 \text{ V}$

Transfer characteristics

 $I_o = 10^3 \cdot (V_i - 1 \text{ V}) \text{ mA for } V_i > 1 \text{ V}$

- •The voltage gain circuit we designed will be **very sensitive** to:
 - variations in resistor values, power supply, device parameters such as V_{α} , etc.

Highly sensitive to resistor value

Assume $V_o \ge 0.2 \text{ V}$ by choosing proper bias

$$I_o = 0$$
 for $V_i \le 1$ V

$$I_o = 10^3 \cdot (V_i - 1 \text{ V}) \text{ mA for } V_i > 1 \text{ V}$$

Target Quiescent Current:

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 1 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_1 = 1.01 \text{ V} \Rightarrow I_{OO} = 10 \text{ mA}$

What if R₂ varies?

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 0.99 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_i = 1.002 \text{ V} \Rightarrow I_{OQ} = 1.9 \text{ mA}$

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 0.98 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_i = 0.994 \text{ V} \Rightarrow I_{OQ} = 0 \text{ mA}$

A 2% drop in R₂ value causes the circuit to become non-operational!

A solution

Original Circuit

Modified Circuit

DC analysis of modified circuit (1)

DC analysis of modified circuit (2)

Incremental (ac) Circuit Analysis

Incremental circuit analysis attempts to find the relationships between incremental voltages and currents v_{s1} , i_1 , v_0

Incremental (ac) Circuit Analysis

Method: Incremental equivalent circuit

Analyze incremental equivalent circuit obtained by replacing each circuit element by its increment circuit model (sometimes called ac model).

Incremental (ac) Models: Resistor

$$V = I \times R$$

$$V + v = (I + i) \times R$$

$$\Rightarrow v = i \times R$$

Incremental model of a resistor is a resistor of the same magnitude

Incremental (ac) Models: Capacitor

$$I = C \frac{dV}{dt}$$

$$I + i = C \frac{d(V + v)}{dt}$$

$$i = C \times \frac{dv}{dt}$$

Incremental model of a capacitor is a capacitor of the same magnitude. The same holds for an inductor as well.

Incremental (ac) Models

$$V = cons \tan t$$
$$\Rightarrow v = 0$$

$$I = cons \tan t$$
$$\Rightarrow i = 0$$

Incremental model of a constant Voltage Source is a short circuit

Incremental model of a constant current Source is an open circuit

AC analysis of modified circuit (1)

AC analysis of modified circuit (2)

$$v_S = v_i + g_m v_i R_E$$

$$v_O = -g_m \times R_C \| R_L ^{\text{vi}}$$

$$A_V = \frac{v_O}{v_S} = -\frac{g_m R_C \| R_L}{1 + g_m R_E}$$

Comparsion of circuits

Circuit very sensitive to variations in resistor values, power supply, device parameters such as $V\alpha$

AC signal gain:
$$A_V = \frac{v_O}{v_S} = -g_m R_C \| R_L$$

Circuit is much less sensitive to variations in circuit parameters

AC signal gain:
$$A_V = \frac{v_O}{v_S} = -\frac{g_m R_C \| R_L}{1 + g_m R_E}$$

AC gain is smaller

We solved one problem, but have another problem Is there a way out?

Restoring AC gain

AC signal gain restored to :
$$A_V = \frac{v_O}{v_S} = -g_m R_C \| R_L$$

- Attach a capacitor parallel to R_E
- For dc Capacitor C_E acts as open allowing R_E to reduce variations in current
- For ac Capacitor C_E acts as a short circuit (1/jωC ~0)
 - Restores high voltage gain to be obtained for AC signals

A non-linear response device

$$I_o = K \times (V_{in} - V_{\alpha})^2 \text{ for } V_{in} \ge V_{\alpha}$$

$$V_{\alpha} = 1.0 \text{ V}; K = 0.01 \text{ A} \cdot \text{V}^{-2}$$

 $V_B = 1.5 \text{ V (bias for input)}$

 $v_s = 0.3 \cdot \sin \omega t \, V$

Intermediate signals

Distorted output

Because of non-linearity in transfer characteristics, the output waveform is distorted!

Output for smaller signals

Suppose input is reduced to $v_s = 0.1 \cdot \sin \omega t \, V$

Distortion is much smaller in output

if we restrict input voltage to a small value!

Building amplifiers with non-linear devices

Amplifier will work properly (with small distortion only if we restrict the amplitude of input signal to small values.

How small depends on the nature of nonlinearity. The stronger the non-linearity the lesser the signal amplitude.

Bipolar Junction Transistor: BJT

$$I_C = \beta_F I_B$$

Metal Oxide Semiconductor Field Effect Transistor MOSFET

Mid-Sem Exam

- Sept. 20, 08.00am-10am
- Syllabus: Lecture 1- Lecture 21
- Detailed seating arrangement would be pasted on doors
- Two part exam (55 mins each)
- Closed notes, closed book. Calculators allowed
- No separate rough sheets allowed
- Write Name and Roll No. clearly in assigned space

Room	Roll No. Range
L01	170032-210104
L07	210105-210314
L16	210315-210447
–	
L17	210448-210592
L18	210594-210769
L19	210770-210951
L20	210952-211208