Prova 3 Exemplo de Solução

Valor total: 23 pontos

ID: 0 (favor copiar esse valor no cabeçalho da resolução)

Questão 1

5

Um laboratório de pesquisas possui 26 computadores que devem ser usados para executar 22 simulações. Os computadores não são todos iguais, sendo 8 máquinas do tipo I, 12 do tipo II e 6 do tipo III. De modo semelhante, as simulações são divididas em cinco algoritmos diferentes, sendo 4 instâncias da simulação S1, 3 da simulação S2, 6 da S3, 6 da S4 e 3 de S5. Os gastos em energia para que cada tipo de computador execute cada tipo de simulação são dados na tabela abaixo.

		Tipo de Simulação						
		S1	S2	S3	S4	S5		
Tipo de Máquina	I	650	650	600	450	500		
	II	360	300	350	370	320		
	III	440	420	490	440	470		

Deseja-se executar todas as 22 simulações gastando a menor quantidade total de energia possível. Resolva o problema e marque a opção abaixo que representa corretamente o resultado ótimo.

a) 8340

b) 8350

c) 8360

d) 8370

e) 8380

f) 8390

g) 8400

h) 8410

```
min 650x11 + 650x12 + 600x13 + 450x14 + 500x15 + 360x21 + 300x22 + 350x23 + 370x24 + 320x25 + 440x31 + 420x32 + 490x33 + 440x34 + 470x35

st

x11 + x12 + x13 + x14 + x15 <= 8

x21 + x22 + x23 + x24 + x25 <= 12

x31 + x32 + x33 + x34 + x35 <= 6

x11 + x21 + x31 = 4

x12 + x22 + x32 = 3

x13 + x23 + x34 = 6

x14 + x24 + x34 = 6

x15 + x25 + x35 = 3
```

Questão 2

O grafo abaixo representa uma rede de computadores, onde os valores nas arestas mostram o tempo em ms (milissegundos) que uma mensagem leva para trafegar entre os computadores. Determine a árvore de distâncias mostrando o caminho mais curto do computador 1 até todos os outros computadores. Marque abaixo a opção que contêm a soma de todas menores distâncias (veja exemplo abaixo).

Matriz de Adiacência:

Matriz de Adjacencia:														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1		7						2			7	6		
2	7		2					2		6				
3		2		4										4
4			4		5						4	5		
5				5		3							7	
6					3		2		3					2
7						2		5		5			5	
8	2	2					5		6					
9						3		6		4				
10		6					5		4		4			
11	7			4						4		2		
12	6			5							2		7	
13					7		5					7		4
14			4			2							4	

- a) 102
- **b)** 103
- c) 104
- d) 105
- e) 106
- f) 107

i	D_i	P_i
1	0	-
2	4	8
3	6	2
4	10	3
5	12	6
6	9	7
7	7	8
8	2	1
9	8	8
10	10	2
11	7	1
12	6	1
13	12	7
14	10	3
	103	

Considere a mesma rede mostrada na Questão 2, mas desta vez considere que os valores nas arestas representam os comprimentos dos cabos que interligam os computadores. Determine a Árvore Geradora de Custo Mínimo (AGM) para essa rede e marque abaixo o item que corresponde ao valor total da AGM (soma dos custos das arestas).

- a) 34
- b) 35
- c) 36
- d) 37
- e) 38
- f) 39
- g) 40
- h) 41

Questão 4

Uma empresa dispõe de cinco técnicos, que trabalham em *home office*, para cobrir quatro pedidos de conserto de geladeira. A tabela a seguir mostra o custo de transporte de cada técnico para cada local de serviço. Determine a atribuição de técnicos que minimiza a soma dos custos necessária para cobrir todos os pedidos, e marque abaixo a opção que corresponde ao valor ótimo.

		Pedido							
		1 2 3 4							
Técnico	1	23	30	10	11				
	2	22	21	25	10				
	3	16	15	19	11				
	4	9	11	10	12				
	5	5	7	4	7				

- a) 31
- b) 32
- c) 33
- d) 34
- e) 35
- f) 36
- g) 37
- h) 38

23	30	10	11	0
22	21	25	10	0
16	15	19	11	0
9	11	10	12	0
5	7	4	7	0
				1
18	23	6	4	ø
17	14	21	3	φ
11	8	15	4	φ
4	4	6	5	ø
0	0	0	0	0
15	20	3	1	0
14	11	18	0	0
8	5	12	1	0
1	1	3	2	0
0	0	0	0	0
				1
14	19	2	0	0
14	11	18	0	1
7	4	11	o	0
-0	0	2	1	0
-0	0	0	0	1
12	17	0	0	0
12	9	16	0	1
5	2	9	0	0
0	0	2	3	2
0	0	0	2	3

Questão 5

4

Resolva o Problema de Fluxo Máximo da rede de transporte de gás natural representada pelo grafo abaixo. Marque a opção abaixo que corresponde ao valor ótimo da Função Objetivo.

- a) 119
- b) 121
- c) 123
- d) 125
- e) 127
- f) 129
- g) 131
- h) 133

```
Max = x12 + x13;
x12 + x13 = x69 + x79 + x89;
x35 = x13;
x24 + x25 = x12;
x56 + x58 = x25 + x35;
x46 + x47 + x48 = x24;
x89 = x48 + x58;
x69 = x46 + x56;
x79 = x47;
x12 <= 108;
x13 <= 117;
x24 <= 69;
x25 <= 36;
x35 \le 96;
x46 <= 26;
x47 <= 39;
x48 <= 46;
x56 \le 22;
x58 <= 36;
x69 <= 75;
x79 <= 78;
x89 <= 87;
```

