Théorie des graphes

Chapitre 4 : Parcours de graphes, algorithme de Dijkstra

5 janvier 2021

On considère dans cette partie des graphes pondérés, i.e. à chaque arête/arc est associé un coût positif ou nul. On suppose toujours que le graphe est simple (pas de boucle, pas d'arêtes/arcs multiples).

L'algorithme de Dijkstra détermine pour un graphe connexe le plus court chemin d'un sommet choisi à n'importe quel autre sommet du graphe.

- Cet algorithme peut s'exécuter sur des graphes orientés ou non.
- Il construit un arbre couvrant du graphe, admettant le sommet d'origine comme racine.
- C'est un algorithme en temps polynomial.

- On suppose que le sommet de départ est le sommet 0.
- On prend un vecteur C de taille n, C(i) contient la distance courante entre le sommet 0 et le sommet i.
- Un ensemble S contient les sommets déjà visités, un autre R contient les sommets restants.

```
Initialisation
si l'arête \{v_0, v_i\} existe alors
    C(i) = c_{0i}
sinon
    C(i) = +\infty
fin si
S = \{v_0\}
R = \{v_1, \ldots, v_n\}
i = 0
Corps
tant que R \neq \emptyset faire
    Choisir i tel que i = \operatorname{argmin}_{i \in R} C(i)
    {Mise à jour de C}
    pour Tous les sommets v<sub>i</sub> voisins de v<sub>i</sub> faire
        C(j) = \min(C(j), C(i) + c_{ii})
    fin pour
    Ajouter v; à S
    Retirer v; à R
fin tant que
```


- Argument de terminaison : on visite les sommets un à un, donc #R est strictement décroissant.
- C'est un algorithme de type glouton qui mène à une solution globale optimale.
- Pour la complexité, on parcourt les sommets (passage d'un sommet de R à S et les arêtes sont toutes parcourues –les arcs 1 fois ; les arêtes 2 fois–). A chaque passage sur un sommet, on chercher le minimum dans R. Au pire, la recherche du minimum est linéaire, donc $O(m+n+n^2)=O(m+n^2)$, on peut aussi faire mieux en gardant R trié, mais du coup, il faut pour chaque visite d'arête, insérer dans la liste triée O((m+n)ln(n)).

Exercice 4.1.1. Trouver le plus court chemin de 0 à T

> Solution

0	Α	В	С	D	E	F	Т	S	Vi
0	<u>2</u> o	50	40	$+\infty$	$+\infty$	$+\infty$	$+\infty$	S = {O}	$v_1 = A$
		$\underline{4}_{A}$	40	9_A	14_A	$+\infty$	$+\infty$	$S = \{O, A\}$	$v_2 = B$
			$\underline{4}_{O}$	8_B	14_A	7_B	$+\infty$	$S = \{O, A, B\}$	$v_3 = C$
				8_B	14_A	<u>7</u> _B	$+\infty$	$S = \{O, A, B, C\}$	$v_4 = F$
				<u>8</u> _B	14_A			$S = \{O, A, B, C, F\}$	$v_5 = D$
					14_A		$\underline{13}_D$	$S = \{O, A, B, C, F, D\}$	$v_6 = T$
					$\underline{14}_A$				

Exercice 4.1.2. Trouver les plus courts chemins partant de $1\ \text{aux}$ autres sommets du graphe

> Solution

 $2:12\,;\,3:11\,;\,4:9\,;\,5:4.$

1	2	3	4	5	S	Vi
0	150	$+\infty$	$+\infty$	<u>4</u> ₀	$S = \{1\}$	$v_1 = 5$
	15_{0}	11_{5}	<u>9</u> 5		$S = \{0, 4\}$	$v_2 = 9$
	12_{4}	11_{5}			$S = \{0, 4, 9\}$	$v_3 = 3$
	<u>12</u> ₄					

Cas de poids négatifs

Remarque 4.1.1. si les poids peuvent être négatifs, il faut utiliser l'algorithme de Bellman-Ford, capable d'identifier un cycle absorbant (cycle tel que $d(v_i, v_i) < 0$).