Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK FOR WESTERN UNITED STATES

Including Columbia River Drainage in Canada

and
FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

UNITED STATES DEPARTMENT of AGRICULTURE...SOIL CONSERVATION SERVICE Collaborating with

CALIFORNIA DEPARTMENT of WATER RESOURCES

and

BRITISH COLUMBIA DEPARTMENT of LANDS, FORESTS and WATER RESOURCES

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Most of the usable water in western states originates as mountain snowfall. This snowfall accumulates during the winter and spring, several months before the snow melts and appears as streomflow. Since the runoff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season will interact with a resultant average effect on runoff. Early season forecosts are therefore subject to a greater change than those made on later dates.

The snow course measurement is obtained by sampling snow depth ond water equivalent at surveyed and marked locations in mountain oreas. A total of about ten samples ore taken at each location. The average of these are reported as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1400 snow courses in Western United States and in the Columbia Basin in British Columbia. In the neor future, it is anticipated that automotic snow water equivalent sensing devices along with radio telemetry will provide a continuous record of snow water equivalent at key locations.

Detailed data on snow course and soil moisture measurements are presented in state and local reports. Other data on reservoir storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a broad picture of water supply outlook conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Soil Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

PUBLISHED BY SOIL CONSERVATION SERVICE

The Soil Conservation Service publishes reports following the principal snow survey dates from January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained from Soil Conservation Service, Western Regional Technical Service Center, Room 209, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state offices of the Soil Conservation Service in the following states:

STATE	ADDRESS
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85205
Colorado (N. Mex.)	12417 Federal Building, Denver, Colorado 80521
Idoho	P. O. Box 38, Boise, Idaho 83707
Montana	P. O. Box 98, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4012 Federal Building, Salt Lake City, Utah 84111
Washington	360 U.S. Court House, Spokane, Washington 99201
Wyoming	P. O. Box 340, Casper, Wyoming 82602

PUBLISHED BY OTHER AGENCIES

Water Supply Outlook reports prepared by other agencies include a report for California by the Water Supply Forecast and Snow Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramento, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources Service, Parliament Building, Victoria, British Columbia

CONSERVATION OF WATE

WATER SUPPLY OUTLOOK FOR WESTERN UNITED STATES

Including Columbia River Drainage in Canada

ISSUED

MAY 1, 1969

The Soil Conservation Service coordinates snow surveys conducted by its staff and many cooperators, including the Bureau of Reclamation, Corps of Engineers, Forest Service, National Park Service, Weather Bureau, Geological Survey, and other Federal Agencies, Departments of State Government, Irrigation Districts, Power Companies, and others.

The Department of Water Resources coordinates snow surveys in California.

The Water Resources Service, Department of Lands, Forests, and Water Resources directs snow surveys in British Columbia.

This report was prepared by the Water Supply Forecasting Branch, Engineering Division, Soil Conservation Service, from data supplied by Snow Survey Supervisors of the Soil Conservation Service in the States of Alaska, Arizona, Colorado and New Mexico, Idaho, Montana, Nevada, Oregon, Utah, Washington, and Wyoming.

Data from California was supplied by the Chief, Water Supply Forecast and Snow Survey Unit, Department of Water Resources.

Data from British Columbia was supplied by the Chief, Hydrology Division, Water Investigations Branch, Department of Lands, Forests and Water Resources.

WATER SUPPLY OUTLOOK

969 SNOWMELT SEASON AS OF MAY 1, 1969

IRRIGATION WATER SUPPLY FOR 1969 REMAINS GOOD TO EXCELLENT FOR MOST WESTERN AREAS. MINOR LATE SUMMER DEFICIENCIES ARE EXPECTED IN EASTERN COLORADO, NORTH-WESTERN AND SOUTHEASTERN MONTANA, WITH SEVERE SHORT-AGES ANTICIPATED ALONG THE EASTERN SLOPE OF WYOMING'S BIG HORN MOUNTAINS. EXTRA PUMPING TO OFFSET LOW STREAM SUPPLIES STILL REQUIRED ALONG ARIZONA'S GILA RIVER. POTENTIAL HIGH WATER PROBLEMS IN LOCALIZED AREAS STILL POSSIBLE IN AREAS OF CALIFORNIA, NEVADA, UTAH AND SOUTHERN IDAHO.

Very light April snowfall over much of the west eased high water potentials in southern Idaho, eastern Nevada, Utah and southwestern Colorado. It increased the probability of late season shortages in eastern Colorado, north central Wyoming, southeastern and northwestern Montana. Above normal April precipitation in central California, parts of Washington and most of British Columbia raised forecasts of snowmelt runoff this season.

Unseasonably warm temperatures which caused heavy melting of low and intermediate elevation snowpacks was common throughout much of the West. This heavy melting showed up in the rivers, as reported by the U. S. Geological Survey. April flows of 150 to 250 percent of average were common in the Columbia, Missouri, Colorado and Great Basins. In parts of southeastern Oregon, southern Idaho and western Nevada streamflow was in excess of four and five times average amounts, causing localized flooding in places. The Owyhee river furnishes an example of the heavy depletion of snow from low elevation watersheds. Its April 1st snowpack was 203 percent average, but fell to 66 percent average on May 1. Flow of the river was reported at 426 percent average.

Density of the snow on April 1 was considerably higher than normal, generally near May 1st averages. This high density, combined with the above normal temperatures, caused snowmelt to proceed more rapidly than usual. Fortunately, cool spells occurred at appropriate times to keep low elevation streams from reaching their full high water potential.

The California Department of Water Resources reports that April's near and above normal precipitation in the major snow accumulation regions of the State makes certain that Cal-

ifornia's snowmelt streams will experience the heaviest April-July runoff of recent time. High snowmelt flows will continue well into June in the Central Valley area and major conservation reservoirs on snow-fed streams are expected to fill.

Local, State and Federal agencies are continuing their efforts to keep lowland flooding to a minimum in California's Tulare Lake Basin. In spite of all that could be accomplished, some 79,000 acres of the finest agricultural lands in California (the drained Tulare Lake area) were flooded by the surplus water from watersheds feeding this basin. Considerably more water will still have to be accommodated before the snowmelt runoff is over. The agricultural interests and the economy of the entire area have suffered a severe blow, the full effect of which will not be realized until the inundated area is fully reclaimed—an accomplishment that may be three years away.

The British Columbia Water Resources Service reports that flow of the Columbia and Kootenai rivers is expected to be near but slightly below average. Streams in Oregon, Washington, northern Idaho and western Montana (Columbia Basin drainages) should yield near or above average flows. Streams in Idaho from the Salmon river and southward are expected to yield above average to much above average flows during the remainder of the snowmelt season.

East of the Continental Divide in Montana water supplies will be above average in the Missouri river headwaters. Late season supplies should be adequate in most of the state, with a possibility of minor shortages on streams originating in the Castle, Little Belt, Big Belt and Snowy mountains.

SUMMARY OF SNOW WATER EQUIVALENT MEASUREMENTS MAY 1, 1969

MAJOR BASIN AND SUB — WATERSHED	WATER EQ IN PERC LAST YEAR	UIVALENT ENT OF : AVERAGE	MAJOR BASIN WATER EQUIV AND IN PERCEN SUB — WATERSHED LAST YEAR		
MISSOURI BASIN			SNAKE BASIN		
Jefferson Madison Gallatin Missouri Main Stem Yellowstone Shoshone	92 83 62 64 65	98 95 84 67 76	Snake above Jackson, Wyo. Snake above Hiese, Idaho Snake abv.American Falls Res Henry's Fork Southern Idaho Tributaries Big and Little Wood	123 110 193	87 85 88 94 89 1 33
Wind North Platte South Platte	90 76 61	88 89 66	Boise Owyhee Payette Malheur Weiser	180 154 128	110 66 109 57 75
ARKANSAS BASIN Arkansas Canadian	52 	75 	Burnt Powder Salmon Grande Ronde Clearwater	107 132 243 105	37 80 110 100 86
RIO GRANDE BASIN			Oleal waver	10)	
Rio Grande (Colo.) Rio Grande abv.Otowi Bridge Pecos	70 82 	104 127 	LOWER COLUMBIA BASIN Yakima Umatilla	568 1270	137 80 66
COLORADO BASIN Green (Wyo.) Yampa - White Duchesne Price Upper Colorado	78 58 80 67 58	74 78 134 128 73 89	John Day Deschutes - Crooked Hood Willamette Lewis Cowlitz	840 236 360 310 402 233	110 135 126 145 119
Gunnison San Juan Dolores Virgin Gila Salt	91 73 132 	119 146 472 	PACIFIC COASTAL BASIN Puget Sound Olympic Peninsula Umpqua - Rogue Klamath Trinity	172 187 302 344 340	104 112 127 134 205
GREAT BASIN Bear Logan Ogden Weber Provo - Utah Lake Jordan Sevier Walker - Carson Tahoe - Truckee Humboldt Lake Co. (Oregon) Harney Basin (Oregon)	76 65 119 74 66 68 83 352 384 	101 78 159 117 123 118 214 219 210 107 161 42	CALIFORNIA CENTRAL VALLEY Upper Sacramento Feather Yuba American Mokelumne Stanislaus Tuolumne Merced San Joaquin Kings Kaweah	315 430 360 540 540 640 820 900 920 780 890	190 215 215 215 215 225 245 270 275 310 355
UPPER COLUMBIA BASIN Columbia (Canada) Kootenai Clark Fork Bitterroot Flathead Spokane Okanogan Methow Chelan Wenatchee	80 90 94 88 93 138 97 154 104 231	90 85 85 83 80 104 93 111 97	Tule Kern Data for California Watershe of Water Resources, and for Watersheds by Dept. of Lands Resources. Average is for 1953-67 period ages are for the period Based on Selected Snow Course tribution within the Basin, Repetitive Monthly Measurement.	or British s, Forests of d. Califor 1931-65. es determined Length of Re	Columbia und Water nia aver- d by Dis- ecord and

Severe water shortages are expected by users without reservoir storage along Wyoming's streams heading on the east slope of the Big Horn mountains. Some shortages are anticipated on the upper Wind river and along the west slope of the Big Horns. Average or greater flows will come from other Wyoming streams, including the Yellowstone, Snake, Green, Laramie and North Platte rivers.

Carryover storage on the South Platte river in Colorado is good and will help to offset the effect of low streamflow forecasts. Some shortages are in prospect along the Arkansas river where 10 to 15 percent less than average flow is forecast. Principal problem here is the 36 percent of average storage in John Martin reservoir. In New Mexico the Canadian river will furnish normal supplies, while the Pecos and Rio Grande rivers will yield above average to much above average runoff.

In the Colorado river basin the upper Green in Wyoming, along with the Yampa, White and upper Colorado rivers in Colorado should all yield near or a little above average snowmelt water. Forecasts for the southwest Colorado and Utah tributary streams range from 119 percent on the Gunnison river to 340 percent average on Utah's Virgin river. With over 90 percent of Arizona's snowmelt runoff having already occurred and reservoir storage at 180 percent average, the water supply outlook remains very good except along the upper Gila river where considerable pumping will be required.

In the Great Basin, Utah's Logan river is the only stream forecast to yield average water supplies. Heavy runoff occurred during April from northern tributaries to Nevada's Humboldt river, causing localized flooding on several small streams. Here, as elsewhere in the west, warm spells were interspersed with cool periods which kept runoff from low elevation watersheds from getting too far out of control. Flow of western Nevada streams coming from the Sierra's will be in excess of twice normal amounts. Forecasts of most northern Utah streams range from about 130 percent to near 200 percent, while in central and southern sections near one and a half well over twice normal is anticipated.

MISSOURI BASIN

Light April snowfall, combined with unseasonably warm temperatures caused heavy melting of the low and intermediate elevation snowpack. In general, the high elevation snow remained about the same as last month, failing to get normal increases. Reflecting the heavy melting conditions, streamflow was high for the month, as typified by Montana streams which were reported as flowing at 150 to 250 percent average.

In Montana water supplies will be above average in the Missouri river headwaters, but below average in the Smith, Dearborn, Sun, Teton and Marias river drainages. Late season supplies should be adequate, with possible minor shortages on streams originating in the Castle, Little Belt, Big Belt and Snowy mountains.

Flow of the Yellowstone river in Wyoming and Montana should be near average. Some shortages are expected along Wyoming's upper Wind river and on most streams heading in the Big Horn mountains. Water users without storage facilities along the east side of the Big Horns can expect severe shortages during mid and late summer months. The Laramie and North Platte rivers will supply average to near 15 percent above average water.

Based on May 1st snow surveys, forecasts on the South Platte and its northern tributaries range from a low of 66 percent normal on the St. Vrain to a high of 80 percent on the Big Thompson. Carryover reservoir storage on the South Platte is good and will buffer the effect of the low streamflow. Also, heavy rains in the valley and snow in the mountains during early May have improved streamflow prospects and provided a good irrigation for farm lands. This will save more reservoir water for use later in the summer.

ARKANSAS BASIN

Dry April weather reduced streamflow prospects for the Arkansas river and its tributaries. Present outlook is for about 10 to 15 percent less than average flow on the main river in Colorado, with near average flows coming from southern tributaries such as the Purgatoire. Since storage in John Martin reservoir is only 36 percent of average, some water shortages are anticipated this summer.

In New Mexico the Canadian river is expected to produce average supplies. However, since storage in Conchas reservoir is 74 percent average, a wetter than normal summer would be welcome.

RIO GRANDE BASIN

April snowfall in headwater areas of both Colorado and New Mexico was only about one-half normal for April, dropping forecasts about 10 percent. The Rio Grande and its tributaries are still expected to flow at well above average amounts, ranging from 112 percent for the Rio Grande near Del Norte to 160 percent for inflow to El Vado reservoir. April storms were better on the Pecos river and it is still expected to produce above average supplies this summer.

SELECTED STREAMFLOW FORECASTS MAY - SEPTEMBER 1969 as of MAY 1, 1969

STREAM AND STATION	1000 AC	RE-FEET	PERCENT OF	
STREAM AND STATION	FLOW	FORECAST	AVERAGE	
UPPER MISSOURI Jefferson at Sappington, Montana Madison near Grayling, Montana 1/ Gallatin near Gateway, Montana 2/ Sun at Gibson Dam, Montana 3/ Marias near Shelby, Montana 4/ Milk near Eastern Crossing, Montana Yellowstone at Yellowstone Lake Outlet, Wyo. (Apr- Yellowstone at Corwin Springs, Montana Clark Fork at Chance, Montana Shoshone, Inflow to Buffalo Bill Res., Wyo* Wind at Dubois, Wyoming * Bull Lake near Lenore, Wyoming* Tensleep near Tensleep, Wyoming* Yellowstone at Miles City, Montana 5/ Missouri near Williston, N. Dakota 6/	1968 879 469 615 4051 409 345 248 Oct.) 2037 555	1969 1095 520 520 4120 475 380 212 920 1810 540 810 79 169 62 5060 9200	135 138 118 104 83 72 97 110 100 96 100 80 95 84 93	
PLATTE North Platte at Saratoga, Wyoming* Laramie near Jelm, Wyoming 7/* Clear at Golden, Colorado* St. Vrain at Lyons, Colorado* Cache LaPoudre near Fort Collins, Colorado 8/*		615 104 92 46 165	111 100 77 66 77	
ARKANSAS Arkansas at Salida, Colorado <u>9</u> /* Purgatoire at Trinidad, Colorado*		275 45	89 98	
RIO GRANDE Rio Grande near Del Norte, Colorado 10/* Conejos near Mogote, Colorado 11/* El Vado Res. Inflow, New Mex. (Mar-July) Rio Grande at Otowi Bridge, New Mexico 12/(Mar-July) Pecos at Pecos, New Mexico (Mar-July)	7)	490 230 300 700 55	112 126 160 136 134	
UPPER COLORADO Granby Reservoir Inflow, Colorado 13/* Colorado at Dotsero, Colorado 14/* Roaring Fork at Glenwood Springs, Colorado 15/* Gunnison at Grand Junction, Colorado 16/* Dolores at Dolores, Colorado* Colorado near Cisco, Utah 16/** Flaming Gorge Res , Utah, Net Inflow 17/** Yampa at Steamboat Springs, Colorado* White at Meeker, Colorado * Duchesne near Tabiona, Utah 18/*** Whiterocks near Whiterocks, Utah *** Scofield Reservoir, Utah, Net Inflow 19/*** Green at Green River, Utah 17/** Navajo Reservoir Inflow, New Mexico ** Animas at Durango, Colorado* San Juan near Bluff, Utah 20/** Colorado, Inflow to Lake Powell, Arizona 21/** LOWER COLORADO Gila near Solomon, Arizona (May) Salt at Intake, Arizona (May) Verde above Horseshoe Dam, Arizona (May)	3653 1061 108 73 40 1796 591 923 7247 44 83	210 1470 750 1350 335 3412 1185 250 280 137 64 555 3084 940 545 1349 8315	96 107 108 119 145 122 112 96 96 161 133 204 120 152 133 152 127	

SELECTED STREAMFLOW FORECASTS MAY - SEPTEMBER 1969 as of MAY 1, 1969

SELECTED STREAMFLOW FUREGASTS MAI - SEPTEMBER 1909	1000 ACRE-FEET		PERCENT	
STREAM AND STATION	FLOW	FORECAST	O F AVERAGE	
GREAT BASIN Bear at Harer, Idaho *** Logan near Logan, Utah 22/ *** Ogden, Inflow to Pine View Res., Utah 23/ *** Weber near Oakley, Utah *** Utah Lake, Utah, Net Inflow *** Big Cottonwood near Salt Lake City, Utah *** Beaver near Beaver, Utah *** Sevier near Hatch, Utah *** Humboldt at Palisades, Nevada *** Truckee at Farad, California 26/*** East Carson near Gardnerville, Nevada *** West Walker near Coleville, California ***	1968 172 89 68 130 187 35 28 49 69 103 92	1969 260 85 114 137 235 37 30 61 150 420 300 275	167 99 181 137 179 123 181 226 123 222 210	
UPPER COLUMBIA Columbia at Revelstoke, British Columbia Kootenai at Wardner, British Columbia Kootenai at Leonia, Idaho Flathead near Columbia Falls, Montana 27/ Flathead near Polson, Montana 27/ Clark Fork above Missoula, Montana Bitterroot near Darby, Montana Clark Fork at Plains, Montana 27/ Columbia at Birchbank, British Columbia 27/ Spokane at Post Falls, Idaho 28/ Columbia at Grand Coulee, Washington 27/ Okanogan near Tonasket, Washington Chelan at Chelan, Washington 29/ Wenatchee at Peshastin, Washington	19390 4275 7481 5168 6041 1277 502 9665 44610 1318 58640 1486	16200 4400 8400 5750 7030 1620 505 11570 41400 2500 64000 1720 1230 1700	92 94 100 98 101 104 100 104 95 118 102 107 107 106	
SNAKE Snake above Palisades Res., Wyoming 30/* Snake near Heise, Idaho 30/ Henry's Fork near Rexburg, Idaho 31/ Big Lost near Mackay, Idaho 32/ Big Wood, Inflow to Magic Res., Idaho 33/*** Bruneau near Hot Springs, Idaho Owyhee Res., Net Inflow, Oregon Boise near Boise, Idaho 34/ Malheur near Drewsey, Oregon Payette near Horseshoe Bend, Idaho 35/ Snake at Weiser, Idaho Salmon at Whitebird, Idaho Clearwater at Spalding, Idaho	3454 1251 145 91 74 998 3516 5026 5678	2640 3500 1280 290 290 165 200 1650 25 2000 5800 7500 7200	103 103 116 182 180 116 112 134 74 132 116 121	
LOWER COLUMBIA Grande Ronde at LaGrande, Oregon Yakima at Cle Elum, Washington 36/ Deschutes at Benham Falls, Oregon 37/ Columbia at The Dalles, Oregon 27/ Hood near Hood River, Oregon 37/ Willamette at Salem, Oregon 37/ Lewis at Ariel, Washington 38/ Cowlitz at Castle Rock, Washington	32 80470	108 790 4 2 5 100000 319 5199 1100 2110	103 100 83 109 131 100 115	

STREAM AND STATION	1000 ACRE-FEET		PERCENT
STREAM AND STATION	FLOW	FORECAST	0 F AVERAGE
NORTH PACIFIC COASTAL	1968	1969	
Dungeness near Sequim, Washington Rogue at Raygold, Oregon Klamath Lake, Net Inflow, Oregon CALIFORNIA CENTRAL VALLEY 39/**	191	153 719 420	100 105 109
Sacramento, Inflow to Shasta, California Feather near Oroville, California Yuba at Smartville, California American, Inflow to Folsom Res., Calif. Cosumnes at Michigan Bar, California Mokelumne, Inflow to Pardee Res., Calif. Stanislaus, Inflow to Melones Res., Calif. Tuolumne, Inflow to Don Pedro Res., Calif. Merced, Inflow to Excheque Res., Calif. San Joaquin, Inflow to Millerton Lake, Calif. Kings, Inflow to Pine Flat Res., California Kaweah, Inflow to Terminus Res., California Tule, Inflow to Success Res., California Kern, Inflow to Isabella Res., California	1277 1141 568 610 45 241 389 648 274 552 548 131 21	2400 3800 1860 2400 270 900 1450 2500 1340 3180 3000 800 220 1800	137 204 171 181 211 194 204 212 224 271 262 307 393 439

Forecasts in California provided by Department of Water Resources.

Average is for 1953-67 period except California. California is computed for 1916-65 period.

Forecasts assume average Effective Climate Conditions from Date Through Snow Melt Season.

Explanatory Notes on Forecasts listed on Inside Back Cover.

*April - September Period **April - July Period ***May - July Period.

Although total reservoir storage is below normal, the above normal streamflow will more than offset this. The entire basin should have good water supplies this summer.

COLORADO BASIN

Very light snowfall and unseasonably warm temperatures which caused heavy melting of low and intermediate elevation snowpack was characteristic throughout most of the Colorado river basin. This heavy melting showed up in the rivers, as illustrated by the U. S. Geological Survey's adjusted April discharge figures for the three main tributaries, as follows: Colorado near Cisco - 184 percent; Green near Green River, Utah - 156 percent and San Juan near Bluff - 150 percent.

Adequate to excellent water supplies are still expected in all sections of the upper Colorado Basin. The Green river and its Wyoming tributaries, along with the Yampa, White and upper Colorado rivers in Colorado should all yield near or a little above average snowmelt flows. Forecast flow of the Gunnison, Dolores and San Juan rivers in central and southern Colorado and all Utah tributaries of the upper basin ranges from

119 percent for the Gunnison to over twice normal on Utah's Price river.

In the lower Colorado Basin, Utah's Virgin river still carries an exceptionally heavy snowpack and is forecast at 340 percent average. In Arizona the water supply outlook remains very good except along the upper Gila river. With over ninety percent of the spring runoff having already occurred, remaining snowmelt runoff will have little significance in changing the water picture. Reservoir storage is 180 percent of average. Only heavy summer rains could improve the outlook for the Gila river. Considerable pumping will be required to offset the low streamflow outlook.

GREAT BASIN

The water outlook for the entire Great Basin remains good to excellent, in spite of very dry, warm April weather experienced in most areas except along the eastern slopes of the Sierra's and southern Cascades. In this latter area precipitation was near or above average.

The warm temperatures produced heavy runoff from low elevation snowpacks, extending to intermediate elevations on south facing watersheds. The warm spells were interspersed with cool periods which produced favorable melting rates for managing the flows in most areas of Utah and western Nevada. However, conditions were not so favorable in northeastern Nevada where localized flooding occurred on several small streams, with over 500 percent average flows on the major streams. The snowpack in the Harney Basin in Oregon has sustained heavy melting and is presently only 42 percent average. Runoff here has also been heavy. Lake County, Oregon still has a heavy snow cover (161 percent).

Northern tributaries of the Humboldt river have already yielded most of their snowmelt water, while southern tributaries still hold the major part of their potential contribution. Remaining flow of the Humboldt during the May-July period is expected to be 123 percent average. In western Nevada the Truckee, Walker and Carson rivers are all forecast to yield in excess of twice normal flows.

In Utah the lowest streamflow forecast is 99 percent average on the Logan river with other forecasts ranging upward from here to 248 percent for the Spanish Fork river and about four times average on the Sevier river below Piute Dam. Forecasts for most northerm Utah streams range from about 130 percent to near 200 percent, while in central and southern sections the forecast range is generally from about 150 percent to 225 percent.

Storage water in reservoirs is well above average except in those reservoirs which are holding space for heavy flows yet to come. Utah Lake is above Compromise and should receive a May-July inflow near 180 percent average.

COLUMBIA BASIN

Water supply outlook for the 1969 summer season continues good to excellent for all parts of the Columbia Basin and adjacent Pacific Northwest watersheds.

The British Columbia Water Resources Service reports that flow of the Columbia and Kootenai rivers is expected to be near but slightly below average. Above normal melting conditions in British Columbia during April were largely offset by considerably greater than average monthly snowfall, leaving the total snowpack only a few percentage points lower than on April 1st. However, here as elsewhere throughout the Columbia Basin, abnormally heavy depletion of the low elevation snowpack occurred. April snowfall was generally near or above normal in northern Idaho, in northeastern Oregon, and in Washington except as noted below. Snowfall was very light in central and southern Idaho, central and

southwestern Oregon. It was below average in Wyoming and in Washington on the Yakima, Wenatchee and Chelan watersheds as well as the southwest slopes of the Cascades.

The abnormally heavy snowpack depletion was particularly noticeable in southeastern Oregon and southern Idaho where it extended well into intermediate elevations. Examples illustrating the changes which have occurred include the Owyhee river where last month's snowcover was 203 percent average compared to the present 66 percent average, and the Burnt river at 128 percent on April 1st with only 37 percent now.

Density of the snow on April 1st was considerably higher than normal, generally near May 1st averages. April temperatures were generally above normal through much of the Columbia Basin. These two factors combined to make melting proceed more rapidly than usual.

The snow cover on the Big and Little Lost, Big and Little Wood rivers and on the Camas-Beaver Creek drainage in Idaho is still extremely heavy. The low elevation snow cour on these drainages melted during April and produced extremely high flows, but a cool spell retarded snowmelt. This highly desirable weather change lowered the flood hazard, but has not completely eliminated it. Some low elevation streams yielded well over four times average amounts.

In Montana's portion of the Columbia Basin the April runoff was generally 150 to 200 percent average. Runoff for the remainder of the summer is expected to be near average on the Kootenai, Blackfoot, Bitterroot, Flathead rivers and their tributary streams. Above average flows are expected in the headwaters of the Clark Fork and on tributary streams to the lower Clark Fork.

Flow of Oregon, Washington and northern Idaho streams during the remainder of the season is expected to be near or above average. From the Salmon river and southward in Idaho, streams are expected to yield above average to much above average flows.

Reservoir storage is generally above average. Power reservoirs on the main stem Columbia and tributaries have above normal amounts of water in storage as a result of early filling to maintain the low water elevation in FDR Lake. Construction at the third power house should permit the reservoir to start filling about the middle of May.

ALASKA

Low elevation snow cover has melted in most areas of Alaska. In the interior portions of

STORAGE IN LARGE RESERVOIRS MAY 1, 1969

BASIN AND NAME OF RESERVOIR	CAPACITY (IOOOA.F)	STORAGE (1000A.F.)	BASIN AND NAME OF RESERVOIR	(1000 A.F.)	STORAGE (1000A.F)
UPPER MISSOURI Belle Fourche Boysen Buffalo Bill Canyon Ferry Fort Peck Garrison Hebgen Keyhole Lake Francis Case Lake Sharp Oahe Tiber Yellowtail	185 550 373 2043 19410 24500 377 340 5816 1900 23630 1347 1356	161 262 162 1603 16950 20220 294 130 4362 1735 21986 546 779	UPPER COLUMBIA Chelan Coeur d'Alene Duncan Flathead Hungry Horse Kootenay Lower Arrow Pend Oreille Roosevelt Upper Arrow LOWER COLUMBIA	676 225 1347 1219 2982 673 3083 1155 5232 4061	229 142 105 1266 2044 787 643 737 -1864 574
PLATTE City of Denver (5) Colo-Big Thompson (3) Glendo Pathfinder Seminoe	507 718 784 1016 1011	418 349 473 378 Կ47	Cougar Detroit Hills Creek Lookout Point Yakima Res. (5) SNAKE	155 299 200 337 1066	129 242 141 227 798
ARKANSAS Conchas John Martin RIO GRANDE Elephant Butte El Vado	273 354 2195 195	111 25 344 4	American Falls Anderson Ranch Arrowrock Brownlee Cascade Jackson Lucky Peak Owyhee Palisades	1700 423 287 980 653 847 278 715 1202	1707 281 271 376 314 591 51 701 782
UPPER COLORADO Blue Mesa Flaming Gorge Navajo Powell LOWER COLORADO	830 3749 1696 25002	362 1712 733 8049	PACIFIC COASTAL Clair Engle Clear Lake Nacimiento Ross Upper Klamath	2500 440 350 1052 584	2057 330 202 546 556
Havusu Mead Mohave Salt River Res. (4) San Carlos Verde River Res. (2)	619 27207 1810 1755 1206 318	595 15476 1710 1634 412 241	CALIFORNIA CENTRAL VALLEY Almanor Berryessa Folsom Isabella McClure	1036 1602 1010 570 1026	742 1612 581 173 696
GREAT BASIN Bear Lahontan Rye Patch Sevier Bridge Strawberry Tahoe Utah Willard Bay	1421 287 172 236 265 732 884 198	1166 176 120 166 176 732 922 144	Millerton Oroville Pine Flat Shasta	521 3484 1013 4500	137 3014 581 4394

Reservoir Storage Data Provided by Bureau of Reclamation, Corps of Engineers, Geological Survey, and water using organizations. Data from California and British Columbia provided by Department of Water Resources and Department of Lands, Forests and Water Resources, respectively.

RESERVOIR STORAGE as of MAY 1, 1969

the state the snowpack is also considerably reduced at higher elevations. Many snow courses which normally have a good cover on May 1st are bare this year.

Soils were very dry in most of interior Alaska. Consequently water from the low elevation snowpack has been almost completely absorbed by the soil, with very little runoff resulting. Major runoff from snowmelt will come from the higher portions of the mountains and will not show up in the streams until late May or June.

Watersheds of the Chena, Tanana, Susitna, Copper and 40 Mile rivers are particularly dry this year. Spring and early summer streamflow in these areas is expected to be substantially below normal. Mid April storms brought heavy snowfall to the mountains of the Kenai peninsula and southeast Alaska. These areas have had greater than average snow throughout most of the winter and will produce good streamflow.

CALIFORNIA

The California Department of Water Resources, coordinating agency for snow surveys and water supply forecasting in California, reports that heavy precipitation during April through the central portion of the State brought additional contributions to California's already abundant water supplies. Extensive May 1 surveys of snow courses in the central and southern Sierras and the key snow courses throughout the State indicated that this areas's exceptional snowpack still had 185 percent of its

April 1 average water content. Runoff forecasts for snow-fed streams during the April-July period are all much above average and indicate streamflows this year will range among the highest of record.

High snowmelt flows will persist well into the summer; however, unusual seepage is not expected to occur in the Sacramento Valley but there will be continued flooding in some low lying land in the San Joaquin Valley. Local. State and Federal agencies are continuing their efforts to keep lowland flooding to a minimum in the Tulare Lake Basin. This will be accomplished by diversion, increased ground water recharge, maximum water use and by pumping water back through the California Aqueduct to other areas needing water for irrigation. Still, some 79,000 acres of the finest agricultural lands in California (the drained Tulare Lake area) were flooded by the surplus water from watersheds feeding this basin. Tulare Lake on April 1 contained 750,000 acre-feet of water and the current estimate, based on the latest April-July water forecasts, is that approximately onehalf million acre-feet more inflow primarily from the Kern River will have to be accommodated in the Tulare Lake and Buena Vista Lake system. The agricultural interests and the economy of the entire area have suffered a severe blow, the full effect of which will not be realized until the inundated area is fully reclaimed -- an accomplishment that may be three years away.

Precipitation during April was generally above normal across the central portions, normal in the north, and below normal in the Lahontan area and that of the Tehachapi

mountains. Two major storms moved across California in April with one, in the first week, being state-wide in scope, the second in the latter half of the month was limited to areas north of the Tehachapi mountains. Precipitation for the entire State was about 75 percent of average for the month and 155 percent of average for the period October 1 to April 30.

The Sierra snowpack was at record and near record water content on April 1 and is now 245 percent of average for this time. This is the greatest snowpack water content ever recorded on May 1. With near normal temperature and the absence of any prolonged hot periods, the melting of the low elevation snowpack has been steady rather than spectacular. It is being rapidly depleted, however, below the 6,000 foot elevation while at higher elevations little melt had occurred prior to May 1 surveys.

Runoff of California streams during April was above normal in all areas except for the San Francisco Bay area which was 80 percent of normal. Once again, for the fourth consecutive month, the major runoff flow with respect to normal occurred in the southern

coastal area where key streams averaged 230 percent of normal for the month. Runoff from Sacramento and San Joaquin Valley tributaries remained high, averaging 150 to 200 percent of normal, respectively. During April runoff from all California watersheds was about 150 percent of normal, making the season to date total equal to 170 percent of normal.

May I forecasts for April-July runoff for California snowmelt streams are generally the same as those reported one month ago except for tributaries to the San Joaquin Valley which were revised upward slightly. Based upon the presumption that normal precipitation will occur during the remainder of the season, streams tributary to the Sacramento and San Joaquin valleys are expected to be 175 percent and 235 percent of April-July average, respectively.

Water stored in California's major reservoirs on May 1, 1969 was about 110 percent of average for that date and about 70 percent of capacity. The necessity for maintaining flood control reservation for snowmelt runoff placed a limitation on increases in storage, particularly on eastern tributaries to the Central Valley.

EXPLANATION of STREAMFLOW FORECASTS

- All flows are observed flows except as adjusted for: 1/ Change in storage in Hebgen Lake. 2/ Change in storage in Canyon Ferry and Tiber reservoirs. 2/ Change in storage in Gibson Reservoir and measured diversions. 4/ Change in storage in Two Medicine, Four Horns and Lake Francis reservoirs. 5/ Change in storage in Boysen and Buffalo Bill reservoirs.
- 6/ Change in storage in Boysen, Buffalo Bill, Canyon Ferry, Tiber, and Fort Peck reservoirs. 7/ Plus diversions to Cache la Poudre. 8/ Minus diversions from North Platte, Laramie, and Colorado rivers plus measured diversions above station. 9/ Change in storage in Twin Lakes and Sugar Loaf reservoirs minus diversions from Colorado River. 10/ Change in storage in Rio Grande, Santa Maria, and Continental reservoirs.
- 11/ Change in storage in Platoro Reservoir. 12/ Change in storage in El Vado Reservoir. 13/ Change in storage in Granby Reservoir plus diversions to Cache la Poudre and through Adams Tunnel. 14/ Changes as indicated in (13) plus Moffat Tunnel diversion. 15/ Plus diversions to Arkansas River.
- $\underline{16}/$ Change in storage in Blue Mesa reservoir. $\underline{17}/$ Change in storage in Flaming Gorge, Fontenelle and Big Sandy reservoirs. $\underline{18}/$ Plus diversion through Duchesne Tunnel. $\underline{19}/$ Change in storage in Scofield Reservoir. $\underline{20}/$ Change in storage in Navaho Reservoir.
- 2 21/ (Lee's Ferry) Change in storage in Flaming Gorge, Navajo, Lake Powell and Big Sandy reservoirs. 22/ Plus Utah Power and Light Company tailrace and and Logan, Hyde Park, and Smithfield canals. 23/ (Inflow record computed by U. S. Bureau of Reclamation.) 24/ Plus diversion by Weber-Provo Canal and change in storage in Wanship Reservoir. 25/ Change in storage in Deer Creek Reservoir, minus diversions through Duchesne Tunnel and Weber-Provo Canal, plus diversion through Salt Lake City Aqueduct.
- 26/ Change of storage in Lake Tahoe and Boca Reservoir. (Forecast by Truckee Basin Committee) 27/ Change in storage in any of these reservoirs above the station: Kootenai Lake, Hungry Horse, Flathead Lake, Pend Oreille Lake, F. D. Roosevelt Lake, Lake Chelan, Coeur d'Alene Lake, Brownlee and Noxon; and pumpage at Roosevelt Lake. 28/ Changes in storage in Coeur d'Alene Lake and diversions by Spokane Valley Farms Company and Rathdrum Prairie canals. 29/ Change in storage in Lake Chelan. 30/ Changes in storage for Jackson Lake and Palisades Reservoir above stations. 30/
- 31/ Change in storage in Henry's Lake, Island Park and Grassy Lake reservoirs and diversions between Ashton and Rexburg. 32/ Change in storage in Mackay Reservoir, and diversion in Sharp Ditch. 33/ (Combined flow Big Wood River nr. Bellevue and Camas Creek nr. Blaine.) 34/ Change in storage in Arrowrock, Anderson Ranch, and Lucky Peak. 35/ Change in storage in Cascade and Deadwood reservoirs. 36/ Change in storage in Keechelus, Kachess, and Cle Elum reservoirs plus diversion by Kittitas Canal. 37/ (Corrected to natural flow). 38/ Change in storage in Merwin, Yale, and Swift reservoirs. 39/ (Corrected for upstream impairments).

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE 701 N.W. GLISAN, RM. 209 PORTLAND, OREGON 97209

OFFICIAL BUSINESS

FEDERAL - STATE - PRIVATE

COOPERATIVE SNOW SURVEYS

Furnishes the basic data necessary for forecasting water supply for irrigation, domestic and municipal water supply, hydro-electric power generation, navigation, mining and industry

"The Conservation of Water begins with the Snow Survey"

POSTAGE AND FEES PAID U. S. DEPARTMENT OF AGRICULTURE

###