Z Transform Table

Time Signal	Z Transform	
$\delta[n]$	1	
$\delta[n-q], q=1,2,\dots$	$\frac{1}{z^q} = z^{-q}, q = 1, 2, \dots$	
<i>u</i> [<i>n</i>]	$\frac{z}{z-1}$	
u[n]-u[n-q], q=1,2,	$\frac{z^q-1}{z^{q-1}(z-1)}, q=1,2,\dots$	
$a^n u[n]$, a real or complex	$\frac{z}{z-a}$, a real or complex	
nu[n]	$\frac{z}{(z-1)^2}$	
(n+1)u[n]	$\frac{z}{(z-1)^2}$ $\frac{z^2}{(z-1)^2}$ $\frac{z(z+1)}{(z-1)^3}$	
$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$	
$na^n u[n]$, a real or complex	$\frac{az}{(z-a)^2}$	
$n^2 a^n u[n]$, a real or complex	$\frac{az(z+a)}{(z-a)^3}$	
$n(n+1)a^nu[n]$, a real or complex	$\frac{2az^2}{(z-a)^3}$	
$\cos(\Omega_o n)u[n]$	$\frac{z^2 - \cos(\Omega_o)z}{z^2 - 2\cos(\Omega_o)z + 1}$	
$\sin(\Omega_o n)u[n]$	$\frac{\sin(\Omega_o)z}{z^2 - 2\cos(\Omega_o)z + 1}$	
$a^n \cos(\Omega_o n) u[n]$	$\frac{z^2 - a\cos(\Omega_o)z}{z^2 - 2a\cos(\Omega_o)z + a^2}$	
$a^n \sin(\Omega_o n) u[n]$	$\frac{a\sin(\Omega_o)z}{z^2 - 2a\cos(\Omega_o)z + a^2}$	

One-Sided Z Transform Properties

Property Name	Property	
Linearity	ax[n] + bv[n]	aX(z) + bV(z)
Right Time Shift (Causal Signal)	x[n-q], q>0	$z^{-q}X(z)$
Right Time Shift	x[n-1]	$z^{-1}X(z) + x[-1]$
(Non- <u>Causal</u> Signal)	x[n-2]	$z^{-2}X(z) + x[-2] + z^{-1}x[-1]$
	x[n-q], q>0	$z^{-q}X(z) + x[-q] + z^{-1}x[-q+1] + \cdots$
		$\cdots + z^{-q+1}x[-1]$
Multiply by <i>n</i>	nx[n]	$-z\frac{d}{dz}X(z)$
Multiply by <i>n</i> ²	$n^2x[n]$	$-z\frac{d}{dz}X(z)$ $z\frac{d}{dz}X(z) + z^{2}\frac{d^{2}}{dz^{2}}X(z)$ $X(z/a), a \text{ real or complex}$
Multiply by Exponential	$a^n x[n]$, a real or complex	X(z/a), a real or complex
Multiply by Sine	$\sin(\Omega_o n)x[n]$	$\frac{\dot{J}}{2} \Big[X(e^{j\Omega_o} z) - X(e^{-j\Omega_o} z) \Big]$
Multiply by Cosine	$\cos(\Omega_o n)x[n]$	$\frac{1}{2} \left[X(e^{j\Omega_o} z) + X(e^{-j\Omega_o} z) \right]$
Summation (<u>Causal</u> Signal)	$\sum_{i=0}^{n} x[i]$	$\frac{z}{z-1}X(z)$
Convolution in Time	x[n]*h[n]	X(z)H(z)
Initial-Value Theorem	$x[0] = \lim_{z \to \infty} [X(z)]$	
	$x[1] = \lim_{z \to \infty} \left[zX(z) - zx[0] \right]$	
	$x[q] = \lim_{z \to \infty} \left[z^N X(z) - z^q x[0] - z^{q-1} x[1] - \dots - z x[q-1] \right]$	
Final-Value Theorem	If $X(z)$ is rational and the poles of $(z-1)X(z)$ are inside unit circle Then $\lim_{n\to\infty} x[n] = [(z-1)X(z)]_{z=1}$	