

GRAPHS

Dr. Isaac Griffith

IDAHO STATE UNIVERSITY

Outline

The lecture is structured as follows:

- Connectivity
- Euler and Hamilton Paths
- Shortest-Path Problems
- Planar Graphs
- Graph Coloring

Paths

- Paths in undirected graphs
 - In an undirected graph, a path of length n from u to v is a sequence of adjacent edges going from vertex u to vertex v
 - A path is a circuit if u = v
 - A path traverses the vertices along it.
 - A path is simple if it contains no edge more than once.
- Paths in directed graphs
 - Same as in undirected graphs, but the path must go in the direction of the arrows

Connectedness

- An undirected graph is *connected* iff there is a path between every pair of distinct vertices in the graph.
- Connected Component: connected subgraph
- A cut vertex or cut edge separates 1 connected component into 2 if removed
- Theorem: There is a *simple path* between any pair of vertices in a connected *undirected graph*

Directed Connectedness

- A directed graph is **strongly connected** iff there is a directed path from *a* to *b* for any two vertices *a* and *b*
- It is weakly connected iff the underlying undirected graph (i.e., with edge directions removed) is connected.
- · Note strongly implies weakly but not vice-versa
- Note that connectedness, and the existence of a circuit or simple circuit of length *k* are graph invariants with respect to isomorphism.

Counting Paths Using Adjacency Matrices

ty Computer

- Let A be the adjacency matrix of graph G
- The number of paths of length k from v_i to v_j is equal to $(\mathbf{A}^k)_{i,j}$.

CS 1187

Euler Paths and Circuits

- An Euler path in G is a simple path containing every edge of G
- An Euler circuit in a graph G is a simple circuit containing every edge of G

Examples

Examples

Euler Circuits and Paths

- Theorem: A connected multigraph has an Euler circuit iff each vertex has even degree
- Theorem: A connected multigraph has an Euler path (but not an Euler circuit) iff it has exactly 2 vertices of odd degree

Constructing Euler Circuits


```
procedure EULER(G: connected multigraph with all vertices of even degree)

circuit := a circuit in G

H := G with edges of this circuit removed

while H has edges do

subcircuit := a circuit in H

H := H with the edges of subcircuit removed

circuit := circuit with subcircuit inserted at the appropriate vertex
```

⊳ circuit is an Euler circuit

Hamilton Paths and Circuits

- A Hamilton path is a path that traverses each vertex in G exactly once
- A Hamilton circuit is a circuit that traverses each vertex in G exactly once

ROAF

Some Useful Theorems

- Dirac's Theorem: If (but not only if) G is connected, simple, has $n \ge 3$ vertices, and $\forall v : \deg(v) \ge n/2$, then G has a Hamilton circuit
- Ore's Theorem: If G is a simple graph with n vertices with $n \ge 3$ such that $\deg(u) + \deg(v) \ge n$ for every pair of nonadjacent vertices u and v in G, then G has a Hamilton circuit

CS 1187

Shortest-Path Problems

- Weighted Graphs G(V, E, w)
 - V: a vertex set
 - E: an edge set
 - w: a weighting function on E
 - The length of a path, e.g.,

$$w(\{a,b\},\{b,d\},\{d,f\}) = w(\{a,b\}) + w(\{b,d\}) + w(\{d,f\}) = 1 + 3 + 5 = 9$$

· The shortest path

Examples

Idaho State Computer University

- Some paths between a and f
 - Path ({a, b}, {b, d}, {d, f}):
 length of ({a, b}, {b, d}, {d, f}) =
 w({a, b}) + w({b, d}) + w({d, f}) =
 1 + 2 + 5 = 9
 - Path ({a, b}, {b, e}, {e, f}):
 length of ({a, b}, {b, e}, {e, f}) =
 w({a, b}) + w({b, e}) + w({e, f}) =
 1 + 3 + 1 = 5
 - Path ({a, c}, {c, e}, {e, f}):
 length of ({a, c}, {c, e}, {e, f}) =
 w({a, c}) + w({c, e}) + w({e, f}) =
 4 + 3 + 1 = 8

Dijkstra's Algorithm

procedure DIJKSTRA(*G*: a weighted connected simple graph with all weights positive, *a* is the source. *z* is the destination)

 \triangleright there exists a path from a to z

```
for i := 1 to n do
     L(v_i) := \infty
L(a) := 0
S := \emptyset
while z \notin S do
     u := a vertex not in S with L(u) minimal
    S := S \cup \{u\}
     for all vertices v not in S do
         if L(u) + w(u, v) < L(V) then
              L(\mathbf{v}) := L(\mathbf{u}) + \mathbf{w}(\mathbf{u}, \mathbf{v})
```

 $\triangleright L(z) = \text{length of a shortest path from } a \text{ to } z$

Example of Dijkstra's Algorithm

Idaho State Comput University Science

- Find the shortest path between a and f
- Find the shortest path between d and c

Traveling Salesman Problem

- The traveling salesman problem asks for the circuit of minimum total weight in a weighted, complete, undirected graph that visits each vertex exactly once and returns to its starting point.
- No algorithm with polynomial worst-case time complexity is known.
- c-approximation algorithms: $W \le W' \le cW$
 - W: total length of an exact solution
 - W': total weight of a Hamilton circuit
 - c: a constant

Planar Graphs

• A graph is called **planar** if it can be drawn in the plane without any edges crossing. Such a drawing is called a *planar representation* of the graph.

• Example:

More Examples

Graphs | Dr. Isaac Griffith,

ROAI

Euler's Formula

- Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation fo G. Then r = e v + 2
- Corollary: If G is a connected planar simple graph with e edges and v vertices, where $v \ge 3$, then $e \le 3v 6$

• Proof:

- 1. $2e \ge 3r$
- 2. r = e v + 2

Euler's Formula

- Corollary: If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.
- Show that K_5 is nonplanar using above corollary.
- Exercise: If a connected planar simple graph has e edges and v vertices with $v \ge 3$ and no circuits of length three, then e < 2v 4

Kuratowski's Theorem

- If a graph is planar, any graph is obtained by removing an edge $\{u,v\}$ and adding a new vertex w together with edges $\{u,w\}$ and $\{w,v\}$. Such an operation is called an elementary subdivision.
- The graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are called **homeomorphic** if they can be obtained from the same graph by a sequence of elementary subdivision.
- Kuratowski's Theorem: A graph is nonplanar iff it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Graph Coloring

- A coloring of a simple graph is the assignment of a color to each vertex of the graph so that no two adjacent vertices are assigned the same color.
- The **chromatic number** of a graph G, denoted by $\chi(G)$ is the least number of colors needed for a coloring of this graph.

Coloring of Maps

- Color a map such that two adjacent regions don't have the same color
- · Each map in the plane can be represented by a dual planar graph

• The Four Color Theorem: The chromatic number of a planar graph is no greater than four.

Example

• What is the chromatic number of the graphs?

- What is the chromatic number of K_n ?
- What is the chromatic number of $K_{m,n}$?

Are there any questions?