DATA STRUCTURES AND NUMERICAL METHODS

Subject Code: UCE04B03

3rd Semester B. Tech. In Civil Engineering Instructor: Dr. Surajit Das

NATIONAL INSTITUTE OF TECHNOLOGY AGARTALA

13/01/2021 Note No. 01

SOURCES OF ERROR:

1. Error in data

Example: Let radius of a circle= 4.126 unit and that $\pi = \frac{22}{7}$

Now if we calculate area of the circle as, $3.14 \times (4.13)^2$, then error occurs.

2. Inherent Error

Error in the formula itself.

Approximation in the formulae used in numerical analysis.

Example: Approximation in the slope of a function- $\frac{d\hat{f}}{dx} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$

3. Residual Error

While finding the values of an infinite series, we often take up to some finite number of terms and leave the remaining terms.

Example: $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$

In the above series if we take only first four terms and neglect the rest a residual error is generated.

4. Rounding-off Error

A decimal number having large number of terms or an infinite number of terms are rounded to some terms after the decimal.

Example: 4.3256 is rounded as 4.33 causing an error 4.33-4.3256=0.0044.

5. Truncation Error

In case, the terms of a number are truncated after some terms without rounding-off, the error is called truncation error.

Example: If 4.3256 is truncated after two places of decimal then we get error 4.3256-4.32=0.0056. This is called truncation error.

SIGNIFICANT DIGITS

A significant digit of an approximate number is

- 1) Any non-zero digit.
- 2) In decimal representation, zero can be a significant digit if
 - a) it lies between two significant digits as in 0.4302.
 - b) it is used as place holder or to indicate retained place as in 0.432200. Last 00 are significant.
 - c) It has not served as to fix the position of the decimal point. In 0.0023, 00 are not significant digits as these are used to fix decimal.
- 3) In an integer, zero is significant if it lies between two significant digits. If it lies at the end of an integer then zero may or may not be a significant digit and may depend on expressing the number in exponent form.

Example: Let the number be 784000

Then in $7.84\times10^5-$ there are 3 significant digits. In $7.8400\times10^5-$ there are 5 significant digits. In 7.84000- there are 6 significant digits.

Number	Significant digits/figures
0.2500	4
0.0025	2
4.8032	5
4.8000	5
4.8X10 ⁻³	2
4.2500	5
4.023	3
4.203	4

ROUNDING OF NUMBERS

A number x is often required to be presented by a number x_1 with smaller number of significant digits. The number x_1 is chosen to keep the rounding-off error $|x_1-x|$ minimum.

Rules of rounding-off

To round-off a number up to **n** significant digits, drop all digits on the right of n significant digits with the following rules:

- i. If the discarded digit is less than 5, leave the remaining digits unchanged.
- ii. If the discarded digit is more than 5, then add '1' to the last retained digit.
- iii. If the discarded digit is exactly 5, then add '1' to the last retained digit if 5 is in odd position after the decimal. Do not add '1' if 5 is in even position.

Example: Round-off the number $\pi = 3.1415926536$ to five, four and three significant digits.

Solution: $\pi = 3.1415926536$

=3.141592654

=3.14159265

=3.1415926

=3.141593

=3.14159

=3.1416 (rounded to '5' significant digits)

=3.142 (rounded to '4' significant digits)

=3.14 (rounded to '3' significant digits)