# Computer Vision

# **Ch.3 Color Space**

Prof. Po-Yueh Chen (陳伯岳)

E-mail: pychen@cc.ncue.edu.tw

Ext: 8440

# The computer vision (1/7)



How does the computer see this world?

# The computer vision (2/7)



In your eyes. . .

How beautiful she is.

# The computer vision (3/7)

```
62 189 107 108 234
207 165 180 217 203 190 185 171 135
     10 248 178 208 161 59 128 191 166
                        83 100 122
                       179 199 155 123 195 153 162
                                88 36 206 148
                        94 145 174 209 143
                            57 200 133 158 111
                    16 134
                            40 130 226 152 213 221
     29 147 237 156 249
                        68
                                         5 244
                                46 225
```

In computer...

She is like this...

# The computer vision (4/7)





**✓** By analyzing an image, how does the computer know what the object is.

# The computer vision (5/7)

```
207 165 180 217 203 190 185 171 135
    10 248 178 208 161 59 128 191 166
            92 172 56 83 100 122 177
                          199 155 123 195 153 162
                           86 88 36 206 148
    29 147 237 156 249 68 18 46 225
```

✓ An image is a big grid of numbers between  $0 \sim 255$ 

# The computer vision (6/7)



**Features Open mouth Objects** Close eye **Videos** Motion **Process Trajectories** 

Numbers between  $0 \sim 255$ 

Many algorithms are proposed to transform these numbers into features for further analysis.

# The computer vision (7/7)

#### **Features**





- Colors / Intensity of information.
- Shape
- Size



• **Motion** In video frames.

... etc.

# Color Space (1/20)

# > Image and Matrix



An image is a long series of numbers saved in a matrix format, where each number representing the intensity of light at a particular wavelength.



In an image, every pixel has its own position, which is identified by column and row indexes. Therefore, OpenCV defines the Mat category for representing an image and its pixels.

# Color Space (2/20)

# > Image and Matrix

| 159 | 165 | 185 | 187 | 185 | 190 | 189 | 198 | 193 | 197 | 184 | 162 | 123 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 174 | 167 | 186 | 194 | 185 | 196 | 204 | 191 | 200 | 178 | 149 | 129 | 125 |
| 168 | 184 | 185 | 188 | 195 | 192 | 191 | 195 | 169 | 141 | 116 | 115 | 129 |
| 178 | 188 | 190 | 195 | 196 | 199 | 195 | 164 | 128 | 120 | 118 | 126 | 135 |
| 188 | 194 | 189 | 195 | 201 | 196 | 166 | 114 | 113 | 120 | 128 | 131 | 129 |
| 187 | 200 | 197 | 198 | 190 | 144 | 107 | 106 | 113 | 120 | 125 | 125 | 125 |
| 198 | 195 | 202 | 183 | 134 | 98  | 97  | 112 | 114 | 115 | 116 | 116 | 118 |
| 194 | 206 | 178 | 111 | 87  | 99  | 97  | 101 | 107 | 105 | 101 | 97  | 95  |
| 206 | 168 | 107 | 82  | 80  | 100 | 102 | 91  | 98  | 102 | 104 | 99  | 72  |
| 160 | 97  | 80  | 86  | 80  | 92  | 80  | 79  | 71  | 74  | 81  | 81  | 64  |
| 98  | 66  | 76  | 86  | 76  | 83  | 72  | 71  | 55  | 53  | 61  | 61  | 56  |
| 60  | 76  | 74  | 70  | 67  | 84  | 63  | 60  | 55  | 49  | 54  | 52  | 54  |



# Color Space (3/20)

### > Image and Matrix





> OpenCV sets colors order by BGR.
(Not always presented as RGB)

# Color Space (4/20)

> Image and Matrix

| Pixel <sub>0,0</sub> (B G R) | Pixel <sub>0,1</sub> (B G R) | Pixel <sub>0,2</sub> (B G R) | • • • |
|------------------------------|------------------------------|------------------------------|-------|
|                              | •                            |                              |       |

NCUE CSIE Computer Vision

# Color Space (5/20)

**NCUE CSIE** 

# > Color in human's eyes



# Color Space (6/20)

Commonly used color spaces



Note: 

\*\*Brightness\* comes mainly from red and yellow.



✓ Shape detection is determined by the boundary

Using different colors and different brightness to highlight the boundary



# Color Space (7/20)

✓ In a streaming digital video, color represents in 3 different channels, i.e., Red, Green, and Blue.



• RGB represent by cube

NCUE CSIE Computer Vision

# Color Space (7/20)



Source: https://medium.com/hipster-color-science/a-beginners-guide-to-colorimetry-401f1830b65a

**16** 



# **★** Color Space (8/20)

- A color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation.
- The usual reference standard is the CIELAB or CIEXYZ color spaces, which were specifically designed to encompass all colors the average human can see.
- There are various color models used in digital video. Ex: YCbCr, HSV, HLS, XYZ, Lab, etc.
- Digital video mostly uses a matrix transform called *YCbCr*, that is closely related to *YUV*.  $(RGB \rightarrow YCbCr)$



Comparison of some RGB and CMYK color gamuts on a CIE 1931xy chromaticity diagram.

# Color Space (9/20)

> YUV Model

✓ Since the eye is more sensitive to black-and-white variations, luminance is separated from color information.

Y: Brightness Component (Luminance, Luma)
U and V: Color Components (Chrominance, Chroma)



# **Color Space (10/20)**

#### > YUV Model

For *U* and *V*, zero is not the minimum value.

- U is approximately from blue (U > 0) to yellow (U < 0).
- V is approximately from red (V > 0) to cyan (V < 0).

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix},$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}.$$



NCUE CSIE Computer Vision

P.Y. Chen

# **Color Space (11/20)**

# > Example of YUV Model



**Baboon** 



NCUE CSIE Computer Vision

# **Color Space (12/20)**

> Example of YUV Model



Origin



Y



IJ



U: Blue > Yellow

V: Red > Cyan



V

Generally, brighter pixels represent higher Y, U, V values.

# **Color Space (13/20)**

# > Example of YUV Model





IJ

Y: Luma

U: Blue ~ yellow

V: Red ~ cyan

# **Color Space (14/20)**

> YCbCr Model

✓ Y CbCr is the color space used by the "Rec. 601" standard for digital video.

Used in JPEG image compression and MPEG video compression.

# **Color Space (15/20)**

#### > YCbCr Model

#### RGB to YCbCr

$$Y = 0.299 * R + 0.587 * G + 0.114 * B$$
  
 $Cr = (R - Y) * 0.713 + 128$   
 $Cb = (B - Y) * 0.564 + 128$ 

$$R = Y + 1.403 * (Cr - 128)$$
  
 $G = Y - 0.344 * (Cr - 128) - 0.714 * (Cb - 128)$   
 $B = Y + 1.773 * (Cb - 128)$ 

# **Color Space (16/20)**

### > YCbCr Color Model





Source: https://en.wikipedia.org/wiki/File:YUV\_UV\_plane.svg

Source: https://en.wikipedia.org/wiki/File:YCbCr-CbCr\_Scaled\_Y50.png

NCUE CSIE Computer Vision

P.Y. Chen

# **Color Space (17/20)**

> Example of YCbCr Model



Cb

Cr



# **Color Space (18/20)**

> YCbCr Color Model

#### CbCr Color Planes at different Y values



# **Color Space (19/20)**

HSV color model

• HSV (Hue Saturation Value)

- HSL (Hue Saturation Lightness)
- HSI (Hue Saturation Intensity)

# **Color Space (20/20)**

### > HSV color model









# Color Space in OpenCV (1/4)

> Header

#include "opencv2/imgproc.hpp"

#include "opencv2/imgcodecs.hpp"

#include "opency2/opency.hpp" #include "opency2/core.hpp"

# Colors in OpenCV (2/4)

> Code

### **Syntax:**

# cvtColor(src, dst, Convert Type);

**src** – Input image: 8-bit unsigned, 16-bit unsigned, or single-precision floating-point.

**dst** – Output image of the same size and depth as src.

Convert Type – Color space conversion code. Ex: COLOR\_BGR2GRAY

NCUE CSIE Computer Vision

# Colors in OpenCV (3/4)

# Note:

Ex: COLOR\_BGR2GRAY

✓ Note that, in OpenCV, the order of colors is usually BGR, not RGB.

# Colors in OpenCV (4/4)

#### > Code

#### **Example:**

```
int main()
                                              Mat Lady_YUV;
                                              cvtColor(Lady, Lady_YUV,COLOR_BGR2YUV);
Mat Lady = imread("D:/lena.jpg");
                                              imshow("YUV Image", Lady_YUV);
imshow("Original Image", Lady);
                                              Mat Lady_YCrCb;
Mat Lady_Gray;
                                              cvtColor(Lady, Lady_YCrCb,COLOR_BGR2YCrCb);
cvtColor(Lady,Lady_Gray, COLOR_BGR2GRAY);
                                              imshow("YCrCb Image", Lady_YCrCb);
imshow("Gray Image",Lady_Gray);
                                              waitKey(0);
                                              destroyAllWindows();
Mat Lady HSV;
cvtColor(Lady, Lady_HSV, COLOR_BGR2HSV);
imshow("HSV Image", Lady_HSV);
                                              return(0);
```

# Any questions?