

PRODUCTION OF ETHYLENE-TETRAFLUOROETHYLENE COPOLYMER

Patent Number: JP6157609

Publication date: 1994-06-07

Inventor(s): FUNAKI ATSUSHI; others: 02

Applicant(s): ASAHI GLASS CO LTD

Requested Patent: JP6157609

Application Number: JP19920332342 19921118

Priority Number(s):

IPC Classification: C08F2/06; C08F214/26

EC Classification:

Equivalents:

Abstract

PURPOSE: To produce an ethylene-tetrafluoroethylene copolymer excellent in resistances to heat, solvents, and chemicals while using a polymn. medium hardly polluting the environment.

CONSTITUTION: Perfluorohexane is used as the polymn. medium in the process for producing an ethylene-tetrafluoroethylene copolymer.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-157609

(43)公開日 平成6年(1994)6月7日

(51)Int.Cl.
C 0 8 F 2/06
214/26

識別記号
MBA
ZAB
MKQ

府内整理番号
7442-4 J
7442-4 J
9166-4 J

F I

技術表示箇所

審査請求 未請求 請求項の数1(全4頁)

(21)出願番号 特願平4-332342

(22)出願日 平成4年(1992)11月18日

(71)出願人 00000044
旭硝子株式会社
東京都千代田区丸の内2丁目1番2号

(72)発明者 船木 篤
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内

(72)発明者 加藤 一雄
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内

(72)発明者 高倉 雄
神奈川県横浜市神奈川区羽沢町1150番地
旭硝子株式会社中央研究所内

(74)代理人 弁理士 泉名 謙治

(54)【発明の名称】 エチレンーテトラフルオロエチレン共重合体の製造方法

(57)【要約】

【構成】エチレンーテトラフルオロエチレン共重合体を
製造するにあたり、重合媒体としてバーフルオロヘキサ
ンを用いるエチレンーテトラフルオロエチレン共重合体
の製造方法。

【効果】環境破壊をもたらすことの少ない重合媒体を用
い、耐熱性、耐溶剤性、耐薬品性などの良好なエチレン
ーテトラフルオロエチレン共重合体が得られる。

【特許請求の範囲】

【請求項1】重合媒体中における重合によってエチレン-テトラフルオロエチレン共重合体を製造するにあたり、前記重合媒体としてバーフルオロヘキサンを用いることを特徴とするエチレン-テトラフルオロエチレン共重合体の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明はエチレン-テトラフルオロエチレン共重合体（以下、ETFEと略す）の新規な製造方法に関し、詳しくは、環境破壊をもたらすことの少ない重合媒体を用いて耐熱性、耐溶剤性、耐薬品性などの良好な ETFE を効率よく製造する方法に関する。

【0002】

【従来の技術】ETFEは耐熱性、耐溶剤性、耐薬品性などに優れた高分子材料であることから、その特徴を生かして種々の用途に利用されている。

【0003】ETFEの製造方法としては、溶液重合法や懸濁重合法、乳化重合法が知られており、溶液重合法や懸濁重合法の重合媒体としては、クロロフルオロカーボンなどの不活性溶媒が、高分子量の共重合体を与えることや重合速度などの点から、通常用いられている。該クロロフルオロカーボンの具体例としては、トリクロロフルオロメタン、ジクロロジフルオロメタン、トリクロロトリフルオロエタン、ジクロロテトラフルオロエタンなどが例示できるが、取扱いの点からトリクロロトリフルオロエタンが主に用いられている。

【0004】ところで、近年、オゾン層破壊が地球規模の環境破壊問題として国際的に取りあげられ、その原因物質としてクロロフルオロカーボンが指摘され、世界的に全廃の方向に向かっている。このため ETFE を製造する際に用いるクロロフルオロカーボンの使用を停止する必要が生じてきている。

【0005】このクロロフルオロカーボンの代替品としては、水素原子を含むハイドロフルオロカーボンが、小さなオゾン破壊係数を有するため提案されている。しかし、従来、C-H結合を有する物質は、テトラフルオロエチレンなどのフルオロオレフィンに対して連鎖移動性を示すことが知られており、水素原子を含むハイドロクロロフルオロカーボンを、高分子量の ETFEなどの重合体の製造の際の重合媒体として使用することは困難であると考えられていた。その他の重合媒体としての代替品として、t-ブタノール（特公昭52-24073号公報）などが知られているが、充分に高い分子量のものを得るために、高圧で重合する必要がある。

【0006】

【発明が解決しようとする課題】本発明は、このような事情のもとで、重合速度が速くて、ETFEの分子量を充分に高めることができ、かつオゾン破壊係数の大きなクロロフルオロカーボンを使用することなく耐熱性、耐

溶剤性、耐薬品性に優れる ETFE を効率よく製造する方法を提供することを目的としてなされたものである。

【0007】

【課題を解決するための手段】本発明者らは、前記目的を達成するために銳意研究を重ねた結果、バーフルオロヘキサンは連鎖移動性が少なく、これを重合媒体として用いることにより、その目的を達成しうることを見出した。

【0008】すなわち、本発明は、重合媒体中における重合によって ETFE を製造するにあたり、前記重合媒体としてバーフルオロヘキサンを用いることを特徴とする ETFE の製造方法を提供するものである。

【0009】本発明においては、通常テトラフルオロエチレン/エチレンの仕込みモル比30/70~95/5、特に40/60~90/10でバーフルオロヘキサン中でテトラフルオロエチレンとエチレンを共重合させ、ETFE を製造できる。

【0010】テトラフルオロエチレン、エチレンの他に少量の共单量体をさらに共重合させてもよい。これらの共单量体としてはCF₂=CFC1、CF₂=CH₂などのフルオロエチレン類、CF₂=CFCF₃、CF₂=CHCF₃などのフルオロプロピレン類、CF₂CF₃、CF₂CH=CH₂やCF₂CF₃CF₂CF₃、CF₂CF₃CH=CH₂などのバーフルオロアルキル基の炭素数が4~12のバーフルオロアルキルエチレン類、R₁(OCFXCF₃)_nOCF₂=CF₂（式中R₁は炭素数1~6のバーフルオロアルキル基、Xはフッ素原子又はトリフルオロメチル基、nは1~5の整数を表す。）などのバーフルオロビニルエーテル類、CH₂OC(=O)CF₂、CF₂OCF₂、OCF₂(CF₃)CF₂、OCF₂=CF₂などの容易にカルボン酸基やスルホン酸基に変換可能な基を有するビニルエーテル類などが単独で又は2種以上組み合わせて用いることもできる。また、プロピレン、イソブチレンなどのオレフィン系单量体と組み合わせてもよい。これらの共单量体の共重合割合は、通常 ETFE に対して30モル%以下、特に0.1~1.5モル%程度の使用量にて採用されるのが望ましい。

【0011】本発明においては、重合媒体としてバーフルオロヘキサンに水などの不活性溶媒を含有させて用いることもできる。重合媒体の使用量は、重合させるべき单量体の種類により変化し得るものであるが、单量体全体の重量に対して、3~100倍量、好ましくは5~50倍量である。

【0012】本発明においては、重合形式として溶液重合法および懸濁重合法のいずれの形式も採用できるし、また使用する重合開始剤は重合形式に応じて従来慣用されているもののうちから適宜選ぶことができる。例えば、ジー（クロロフルオロアシル）-バーオキサイド、ジー（バーフルオロアシル）-バーオキサイド、ジー

(ω-ハイドロバーフルオロアシル) -バーオキサイド、t-ブチルバーオキシソブチレート、ジイソプロピルバーオキシジカーボネートなどの有機過酸化物、アゾビスイソブチロニトリルなどのアゾ化合物が挙げられる。重合開始剤の使用量は、種類、共重合反応条件などに応じて、適宜変更可能であるが、通常は重合させるべき単量体全体に対して、0.005～5重量%、特に0.05～0.5重量%程度が採用される。

【0013】本発明の重合反応に際しては、広い範囲の反応条件が特に限定されることなく採用し得る。例えば、重合反応温度は、重合開始源の種類などにより最適値が選定され得るが、通常は0～100°C程度、特に30～90°C程度が採用され得る。また、反応圧力も適宜選定可能であるが、通常は2～100kg/cm²、特に5～20kg/cm²程度を採用するのが望ましい。本発明においては、過大の反応圧力を要することなく重合を有利に行い得るのであるが、更に高い圧力を採用することも可能であると共に、減圧条件でも可能である。また、本発明は、回分式、連続式など適宜操作によって行い得る。

【0014】本発明における重合において、共重合体の分子量をコントロールする目的で連鎖移動性を有する化合物を通常添加するが、この化合物はバーフルオロヘキサンに可溶である必要がある。しかし、連鎖移動定数の大きな化合物は分子量調節の容易さを考慮するとわずかでもバーフルオロヘキサンに溶解すればよい。また小さいオゾン破壊係数を有することが望ましい。これらの要求に合う化合物は、例えば、ヘキサンなどのハイドロカーボン類、CF₃H₂などのハイドロフルオロカーボン類、CF₃CF₂CHCl₂などのハイドロクロロフルオロカーボン類、アセトンなどのケトン類、メタノール、エタノールなどのアルコール類、あるいはメチルメルカプタンなどのメルカプタン類などである。添加量は用いる化合物の連鎖移動定数の大きさにより変わり得るが、重合媒体に対して0.01重量%程度から50重量%程度が採用され得る。

【0015】

【実施例】

実施例1

内容積1.2リットルのステンレス製反応容器を脱気し、バーフルオロヘキサン1339g、1,1-ジクロ*

*ロ-2, 2, 3, 3, 3-ベンタフルオロプロパン13.5g、(バーフルオロブチル)エチレン1.8g、テトラフルオロエチレン8.5g、エチレン5.9gを仕込んだ。温度を50°Cに保持して、重合開始剤としてジ-(バーフルオロブチリル)-バーオキサイドの1wt%バーフルオロヘキサン溶液を仕込み反応を開始させた。反応中、系内にテトラフルオロエチレンとエチレンの混合ガス(モル比C₂F₄/C₂H₄=53/47)を導入し、反応圧力を9.4kg/cm²に保持した。

10 重合開始剤は重合速度がほぼ一定になるよう断続的に仕込み、合計で13cc仕込んだ。3時間後に60gの白色共重合体がスラリー状態として得られた。該共重合体は融点275°C、熱分解開始点355°Cであり、300°Cの成形温度で良好な圧縮成形品を与えた。成形品についての引張強度は428kg/cm²、引張伸度は40%であった。

【0016】比較例1

内容積1.2リットルのステンレス製反応容器に、脱酸素水500g、t-ブタノール200g、ジコハク酸過酸化物0.65gを仕込む。温度を65°Cに保持して反応を行った。反応中、系内にテトラフルオロエチレンとエチレンの混合ガス(モル比C₂F₄/C₂H₄=53/47)を導入し、反応圧力を9kg/cm²に保持する。4時間後に24.6gの白色共重合体が得られた。該共重合体は、融点269°C、熱分解開始温度361°Cであった。300°Cで圧縮成形した成形品は、分子量が低く脆いものであった。

【0017】参考例1

バーフルオロヘキサン1339gを仕込むかわりに1,30 1,2-トリクロロトリフルオロエタンを1255g(仕込む以外は実施例1と同じ方法)で重合を行い、2時間半後に48gの白色共重合体がスラリー状態として得られた。該共重合体は融点274°C、熱分解開始点352°Cであり、300°Cの成形温度で良好な圧縮成形品を与えた。成形品についての引張強度は431kg/cm²、引張伸度は450%であった。

【0018】

【発明の効果】本発明の方法によれば、オゾン破壊効果がはるかに低く、従来のトリクロロトリフルオロエタン溶媒を用いた場合に匹敵する効率で所望のETFEを製造することができる。

【手続補正書】

【提出日】平成4年11月20日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】参考例1

バーフルオロヘキサン1339gを仕込むかわりに1,1,2-トリクロロトリフルオロエタンを1255g仕込む以外は実施例1と同じ方法で重合を行い、2時間半後に48gの白色共重合体がスラリー状態として得られた。該共重合体は融点274°C、熱分解開始点352°C

であり、300°Cの成形温度で良好な圧縮成形品を与えた。引張伸度は450%であった。
た。成形品についての引張強度は431kg/cm²。