Deep Generative Models Lecture 11

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

Standard GAN

$$\min_{G} \max_{D} V(G, D) = \min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}))) \right]$$

Main problems

- Vanishing gradients (non-saturating GAN does not suffer of it);
- Mode collapse (caused by behaviour of Jensen-Shannon divergence).

Informal theoretical results

Distribution of real images $\pi(\mathbf{x})$ and distribution of generated images $p(\mathbf{x}|\theta)$ are low-dimensional and have disjoint supports. In this case

$$KL(\pi||p) = KL(p||\pi) = \infty$$
, $JSD(\pi||p) = \log 2$

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks, 2017

Recap of previous lecture

Wasserstein distance

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

- ► $\Gamma(\pi, p)$ the set of all joint distributions $\Gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p ($\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y})$, $\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x})$)
- $\gamma(\mathbf{x}, \mathbf{y})$ transportation plan (the amount of "dirt" that should be transported from point \mathbf{x} to point \mathbf{y}).
- $ightharpoonup \gamma(\mathbf{x}, \mathbf{y})$ the amount, $\|\mathbf{x} \mathbf{y}\|$ the distance.

Theorem (Kantorovich-Rubinstein duality)

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{L} \leq K} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right],$$

where $||f||_L \leq K$ are K-Lipschitz continuous functions $(f: \mathcal{X} \to \mathbb{R})$.

Recap of previous lecture

WGAN objective

$$\min_{G} W(\pi||p) = \min_{G} \max_{\phi \in \Phi} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}, \phi) - \mathbb{E}_{p(\mathbf{z})} f(G(\mathbf{z}), \phi) \right].$$

- Function f in WGAN is usually called critic.
- If parameters ϕ lie in a compact set $\Phi \in [-0.01, 0.01]^d$ then $f(\mathbf{x}, \phi)$ will be K-Lipschitz continuous function.

Gradient penalty

$$W(\pi||p) = \underbrace{\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x})}_{\text{original critic loss}} + \lambda \underbrace{\mathbb{E}_{U[0,1]} \left[(\|\nabla_{\hat{\mathbf{x}}} f(\hat{\mathbf{x}})\|_2 - 1)^2 \right]}_{\text{gradient penalty}}.$$

Samples $\hat{\mathbf{x}}_t = t\mathbf{x} + (1-t)\mathbf{y}$ with $t \in [0,1]$ are uniformly sampled along straight lines between pairs of points: \mathbf{x} from the data distribution $\pi(\mathbf{x})$ and \mathbf{y} from the generator distribution $p(\mathbf{x}|\theta)$.

Arjovsky M., Chintala S., Bottou L. Wasserstein GAN, 2017 Gulrajani I. et al. Improved Training of Wasserstein GANs, 2017

Definition

 $\|\mathbf{A}\|_2$ is a *spectral norm* of matrix **A**:

$$\|\mathbf{A}\|_2 = \max_{\mathbf{h} \neq 0} \frac{\|\mathbf{A}\mathbf{h}\|_2}{\|\mathbf{h}\|_2} = \max_{\|\mathbf{h}\|_2 \leq 1} \|\mathbf{A}\mathbf{h}\|_2 = \lambda_{\max}(\mathbf{A}^T\mathbf{A}),$$

where $\lambda_{\max}(\mathbf{A}^T\mathbf{A})$ is the largest eigenvalue value of $\mathbf{A}^T\mathbf{A}$.

Statement 1

if g is a K-Lipschitz function then

$$\|\mathbf{g}\|_{L} \leq K = \sup_{\mathbf{x}} \|\nabla \mathbf{g}(\mathbf{x})\|_{2}.$$

Statement 2

Lipschitz norm of superposition is bounded above by product of Lipschitz norms

$$\|\mathbf{g}_1 \circ \mathbf{g}_2\|_L \le \|\mathbf{g}_1\|_L \cdot \|\mathbf{g}_2\|_L$$

Let consider the critic $f(\mathbf{x}, \phi)$ of the following form:

$$f(\mathbf{x}, \phi) = \mathbf{W}_{K+1} \sigma_K(\mathbf{W}_K \sigma_{K-1}(\dots \sigma_1(\mathbf{W}_1 \mathbf{x}) \dots)).$$

This feedforward network is a superposition of simple functions.

- $ightharpoonup \sigma_k$ is a pointwise nonlinearities. We assume that $\|\sigma_k\|_L=1$ (it holds for ReLU).
- ▶ $\mathbf{g}(\mathbf{x}) = \mathbf{W}\mathbf{x}$ is a linear transformation $(\nabla \mathbf{g}(\mathbf{x}) = \mathbf{W})$.

$$\|\mathbf{g}\|_{L} \leq \sup_{\mathbf{x}} \|\nabla \mathbf{g}(\mathbf{x})\|_{2} = \|\mathbf{W}\|_{2}.$$

Critic spectral norm

$$||f||_{L} \le ||\mathbf{W}_{K+1}|| \cdot \prod_{k=1}^{K} ||\sigma_{k}||_{L} \cdot ||\mathbf{W}_{k}||_{2} = \prod_{k=1}^{K+1} ||\mathbf{W}_{k}||_{2}.$$

If we replace the weights in the critic $f(\mathbf{x}, \phi)$ by $\mathbf{W}_k^{SN} = \mathbf{W}_k / \|\mathbf{W}_k\|_2$, we will get $\|f\|_L \leq 1$.

How to compute $\|\mathbf{W}\|_2 = \lambda_{\max}(\mathbf{W}^T\mathbf{W})$? If we apply SVD to compute the $\|\mathbf{W}\|_2$ at each iteration, the algorithm becomes intractable.

Power iteration method

- \triangleright **u**₀ random vector.
- ▶ for k = 0, ..., n 1: (n is a large enough number of steps)

$$\mathbf{v}_{k+1} = \frac{\mathbf{W}^T \mathbf{u}_k}{\|\mathbf{W}^T \mathbf{u}_k\|}, \quad \mathbf{u}_{k+1} = \frac{\mathbf{W} \mathbf{v}_{k+1}}{\|\mathbf{W} \mathbf{v}_{k+1}\|}.$$

approximate the spectral norm

$$\|\mathbf{W}\|_2 = \lambda_{\mathsf{max}}(\mathbf{W}^T\mathbf{W}) \approx \mathbf{u}_n^T \mathbf{W} \mathbf{v}_n.$$

Algorithm 1 SGD with spectral normalization

- Initialize $\tilde{u}_l \in \mathcal{R}^{d_l}$ for $l=1,\ldots,L$ with a random vector (sampled from isotropic distribution).
- For each update and each layer l:
 - 1. Apply power iteration method to a unnormalized weight W^l :

$$\tilde{\boldsymbol{v}}_l \leftarrow (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l / \| (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l \|_2 \tag{20}$$

$$\tilde{\boldsymbol{u}}_l \leftarrow W^l \tilde{\boldsymbol{v}}_l / \|W^l \tilde{\boldsymbol{v}}_l\|_2 \tag{21}$$

2. Calculate $\bar{W}_{\rm SN}$ with the spectral norm:

$$\bar{W}_{\mathrm{SN}}^{l}(W^{l}) = W^{l}/\sigma(W^{l}), \text{ where } \sigma(W^{l}) = \tilde{\boldsymbol{u}}_{l}^{\mathrm{T}}W^{l}\tilde{\boldsymbol{v}}_{l}$$
 (22)

3. Update W^l with SGD on mini-batch dataset \mathcal{D}_M with a learning rate α :

$$W^{l} \leftarrow W^{l} - \alpha \nabla_{W^{l}} \ell(\bar{W}_{SN}^{l}(W^{l}), \mathcal{D}_{M})$$
 (23)

Divergences

- Forward KL divergence in maximum likelihood estimation.
- Reverse KL in variational inference.
- JS divergence in standard GAN.
- Wasserstein distance in WGAN.

What is a divergence?

Let S be the set of all possible probability distributions. Then $D: S \times S \to \mathbb{R}$ is a divergence if

- ▶ $D(\pi||p) \ge 0$ for all $\pi, p \in \mathcal{S}$;
- ▶ $D(\pi||p) = 0$ if and only if $\pi \equiv p$.

General divergence minimization task

$$\min_{p} D(\pi||p)$$

Chalenge

We do not know the real distribution $\pi(\mathbf{x})$!

f-divergence

$$D_f(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x}.$$

Here $f: \mathbb{R}_+ \to \mathbb{R}$ is a convex, lower semicontinuous function satisfying f(1) = 0.

Name	$D_f(P\ Q)$	Generator $f(u)$
Kullback-Leibler	$\int p(x) \log rac{p(x)}{q(x)} \mathrm{d}x \ \int q(x) \log rac{q(x)}{p(x)} \mathrm{d}x$	$u \log u$
Reverse KL	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)} ight)^2\mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization, 2016

Fenchel conjugate

$$f^*(t) = \sup_{u \in dom_f} (ut - f(u)), \quad f(u) = \sup_{t \in dom_{f^*}} (ut - f^*(t))$$

Important property: $f^{**} = f$ for convex f.

f-divergence

$$D_{f}(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x} =$$

$$= \int p(\mathbf{x}) \sup_{t \in \text{dom}_{f^{*}}} \left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})} t - f^{*}(t)\right) d\mathbf{x} =$$

$$= \int \sup_{t \in \text{dom}_{G^{*}}} (\pi(\mathbf{x}) t - p(\mathbf{x}) f^{*}(t)) d\mathbf{x}.$$

Here we seek value of t, which gives us maximum value of $\pi(\mathbf{x})t - p(\mathbf{x})f^*(t)$, for each data point \mathbf{x} .

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization, 2016

f-divergence

$$D_f(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x}.$$

Variational f-divergence estimation

$$D_{f}(\pi||p) = \int \sup_{t \in \text{dom}_{f^{*}}} (\pi(\mathbf{x})t - p(\mathbf{x})f^{*}(t)) d\mathbf{x} \ge$$

$$\ge \sup_{T \in \mathcal{T}} \int (\pi(\mathbf{x})T(\mathbf{x}) - p(\mathbf{x})f^{*}(T(\mathbf{x}))) d\mathbf{x} =$$

$$= \sup_{T \in \mathcal{T}} [\mathbb{E}_{\pi}T(\mathbf{x}) - \mathbb{E}_{p}f^{*}(T(\mathbf{x}))]$$

This is a lower bound because of Jensen-Shannon inequality and restricted class of functions $\mathcal{T}: \mathcal{X} \to \mathbb{R}$.

Variational divergence estimation

$$D_f(\pi||p) \geq \sup_{T \in \mathcal{T}} \left[\mathbb{E}_{\pi} T(\mathbf{x}) - \mathbb{E}_{p} f^*(T(\mathbf{x})) \right]$$

The lower bound is tight for $T^*(\mathbf{x}) = f'\left(\frac{\pi(\mathbf{x})}{\rho(\mathbf{x})}\right)$.

Example (JSD)

 \blacktriangleright Let define function f and its conjugate f^*

$$f(u) = u \log u - (u+1) \log(u+1), \quad f^*(t) = -\log(1-e^t).$$

▶ Let reparametrize $T(\mathbf{x}) = \log D(\mathbf{x})$.

$$\min_{G} \max_{D} V(G, D) = \min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}))) \right]$$

13 / 22

Variational divergence estimation

$$D_f(\pi||p) \geq \sup_{T \in \mathcal{T}} \left[\mathbb{E}_{\pi} T(\mathbf{x}) - \mathbb{E}_{p} f^*(T(\mathbf{x})) \right]$$

Note: To evaluate lower bound we only need samples from $\pi(\mathbf{x})$ and $p(\mathbf{x})$. Hence, we could fit implicit generative model.

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization, 2016

How to evaluate generative models?

Likelihood-based models

- ► Split data to train/val/test.
- Fit model on the train part.
- Tune hyperparameters on the validation part.
- Evaluate generalization by reporting likelihoods on the test set.

Not all models have tractable likelihoods

- ▶ VAE: compare ELBO values.
- ► GAN: ???

Let take some pretrained image classification model to get the conditional label distribution $p(y|\mathbf{x})$ (e.g. ImageNet classifier).

What do we want from samples?

Sharpness

The conditional distribution $p(y|\mathbf{x})$ should have low entropy (each image \mathbf{x} should have distinctly recognizable object).

Diversity

The marginal distribution $p(y) = \int p(y|\mathbf{x})p(\mathbf{x})d\mathbf{x}$ should have high entropy (there should be as many classes generated as possible).

What do we want from samples?

- **Sharpness.** The conditional distribution $p(y|\mathbf{x})$ should have low entropy (each image \mathbf{x} should have distinctly recognizable object).
- ▶ **Diversity.** The marginal distribution $p(y) = \int p(y|\mathbf{x})p(\mathbf{x})d\mathbf{x}$ should have high entropy (there should be as many classes generated as possible).

image credit: https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

What do we want from samples?

- ► Sharpness \Rightarrow low $H(y|\mathbf{x}) = -\sum_{\mathbf{y}} \int_{\mathbf{x}} p(y,\mathbf{x}) \log p(y|\mathbf{x}) d\mathbf{x}$.
- ▶ Diversity \Rightarrow high $H(y) = -\sum_{y} p(y) \log p(y)$.

Inception Score

$$IS = \exp(H(y) - H(y|\mathbf{x}))$$

$$= \exp\left(-\sum_{y} p(y) \log p(y) + \sum_{y} \int_{\mathbf{x}} p(y, \mathbf{x}) \log p(y|\mathbf{x}) d\mathbf{x}\right)$$

$$= \exp\left(\sum_{y} \int_{\mathbf{x}} p(y, \mathbf{x}) \log \frac{p(y|\mathbf{x})}{p(y)} d\mathbf{x}\right)$$

$$= \exp\left(\mathbb{E}_{\mathbf{x}} \sum_{y} p(y|\mathbf{x}) \log \frac{p(y|\mathbf{x})}{p(y)}\right) = \exp\left(\mathbb{E}_{\mathbf{x}} \mathcal{K} \mathcal{L}(p(y|\mathbf{x})||p(y))\right)$$

Theorem (informal)

If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\theta)$ has moment generation functions then

$$\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}) \Leftrightarrow \mathbb{E}_{\pi}\mathbf{x}^k = \mathbb{E}_{p}\mathbf{x}^k, \quad \forall k \geq 1.$$

This is intractable to calculate all moments.

Frechet Inception Distance

$$FID(\pi, p) = \|\mathbf{m}_{\pi} - \mathbf{m}_{p}\|_{2}^{2} + \text{Tr}\left(\mathbf{\Sigma}_{\pi} + \mathbf{\Sigma}_{p} - 2\sqrt{\mathbf{\Sigma}_{\pi}\mathbf{\Sigma}_{p}}\right)$$

- ▶ Representations are outputs of intermediate layer from pretrained classification model.
- m_π, are mean vector and covariance matrix of feature representations for real samples from (x)
- ▶ \mathbf{m}_p , $\mathbf{\Sigma}_p$ are mean vector and covariance matrix of feature representations for generated samples from $p(\mathbf{x}|\theta)$.

Heusel M. et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Heusel M. et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Limitations

Inception Score

$$IS = \exp\left(\mathbb{E}_{\mathbf{x}} KL(p(y|\mathbf{x})||p(y))\right)$$

- ► If generator produces images with a different set of labels from the classifier training set, IS will be low.
- ▶ If generator produces one image per class, the IS will be perfect (there is no measure of intra-class diversity).

Frechet Inception Distance

$$FID = \|\mathbf{m}_{\pi} - \mathbf{m}_{p}\|_{2}^{2} + \operatorname{Tr}\left(\mathbf{\Sigma}_{\pi} + \mathbf{\Sigma}_{p} - 2\sqrt{\mathbf{\Sigma}_{\pi}\mathbf{\Sigma}_{p}}\right)$$

- Needs a large sample size for evaluation.
- Calculation of FID is slow.
- Estimates only two sample moments.

Both scores depend on the pretrained classifier $p(y|\mathbf{x})$.

Barratt S., Sharma R. A Note on the Inception Score, 2018 Heusel M. et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Summary

 Spectral normalization is a weight normalization technique to enforce Lipshitzness, which is helpful for generator and discriminator.

 f-divergence family is a unified framework for divergence minimization, which uses variational approximation. Standard GAN is a special case of it.

Inception Score and Frechet Inception Distance are the common metrics for GAN evaluation, but both of them have drawbacks.