Homework #1

Suruchi Ahuja, Abbas Rizvi, Hoi Lam Tai, Jingchen Zhang February 15, 2016

Problem 1

The dataset from Lec04.R was loaded. The following code was provided to us by Dr. Gaile.

```
require(knitr)
require(GEOquery)
load("gse19439.RData")
#so I am just going to load it now
load(file="gse19439.RData")
gse19439
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 48791 features, 42 samples
     element names: exprs
## protocolData: none
## phenoData
##
     sampleNames: GSM484448 GSM484449 ... GSM484489 (42 total)
##
     varLabels: title geo_accession ... data_row_count (46 total)
     varMetadata: labelDescription
##
## featureData
     featureNames: ILMN 1343291 ILMN 1343295 ... ILMN 2416019 (48791
##
##
       total)
     fvarLabels: ID nuID ... GB_ACC (30 total)
##
     fvarMetadata: Column Description labelDescription
##
## experimentData: use 'experimentData(object)'
## Annotation: GPL6947
```

Dr. Gaile creates a factor object FTB for the groups (control, latent TB, and positive TB) that corresponds to the samples (in the same order).

The p-values that were calculated from the Kruskal-Wallis test were recorded into myPvals.RData. The best 4 p-values (myPvals) were subsequently sorted in ascending order (the lowest value at the beginning of the vector). This order was assigned to groups in STA 525.

```
load("myPvals.RData")
GroupLabels <- c("Group I", "Group II", "Group III", "Group IV")</pre>
\# pick the best 4 p-values and assign them to the students.
best4 <- order(myPvals)[1:4]</pre>
# print out list of best 4
print(best4)
## [1] 6874 10685 26058 47526
for(i in 1:length(GroupLabels)){
        cat("Group Label:", GroupLabels[i], "\t\t row assignment:", best4[i], fill=T)
}
## Group Label: Group I
                                  row assignment: 6874
## Group Label: Group II
                                  row assignment: 10685
## Group Label: Group III
                                  row assignment: 26058
## Group Label: Group IV
                                  row assignment: 47526
myrow <- gse19439[10685,]
dim(myrow)
## Features
             Samples
##
          1
```

Since we are group II, our row assignment was determined to be 10685 (as shown above). We were asked whether or not the assigned row corresponded to a specific gene and if so, what is known about the gene. Since each row does correspond to a gene, we subsetted ExpressionSet just to our assigned row and pulled out the featureData.

```
featureNames (myrow)
## [1] "ILMN_1703335"
gene.info <- pData(featureData(myrow))</pre>
gene.info
##
                        TD
                                        nuID
                                                 Species Source
## ILMN_1703335 ILMN_1703335 iMeiqS6uUsu15619eA Homo sapiens RefSeq
               Search_Key Transcript ILMN_Gene Source_Reference_ID
##
## ILMN_1703335 ILMN_24565 ILMN_24565
                                       LACTB
                                                    NM_032857.2
##
                RefSeq_ID Unigene_ID Entrez_Gene_ID
                                                        GI
                                                            Accession
## ILMN_1703335 NM_032857.2
                                            114294 26051230 NM_032857.2
              Symbol Protein_Product Array_Address_Id Probe_Type
## ILMN_1703335 LACTB
                         NP_116246.2
                                             1570669
               Probe_Start
## ILMN_1703335
                     1493
                                                      SEQUENCE Chromosome
##
15
              Probe Chr Orientation Probe Coordinates Cytoband
## ILMN_1703335
                                 + 40256913-40256962 15q22.2b
```

Problem 2

2.1 Boxplot

The data was log2 transformed for scability.

Boxplot of Row Data as Function of TB Phenotype

#boxplots disguise multimodal data

2.2 Violin Plot

Violin Plot of Row Data as Function of TB Phenotype

2.3 Bean Plot

Bean Plot of Row Data as Function of TB Phenotype

Problem 3

3.1 Heatmaps

The best 20 student features were clustered and plotted in a heatmap using heatmap.2. The clustering method worked reasonably well in determined what group the samples belonged to (see column labels of heatmap).

Problem 4

4.1 Pre-processing

We removed NAs and zeroes.

```
spikeDF <- read.table(file="AffyProbeSpikeValues.csv",sep="\t")
levels(spikeDF[,2])</pre>
```

```
## [7] "1"
                            "1.5"
                                                "1.7"
                            "3"
## [10] "2"
                                                "3.5"
                            "MF"
## [13] "MC"
summary(spikeDF[,2])
                                  0.25 0.285714285714286
                                                                       0.4
##
                   0
##
               13337
                                                     174
                                                                       163
1.5
                                                       1
##
                 189
                                   166
                                                    3426
                                                                       167
                                                                       3.5
##
                 1.7
                                    2
                                                      3
                                                                       445
##
                 166
                                   184
                                                      98
##
                 MC
                                    MF
##
                 231
                                    14
#grab Spike fold changes for all entries as numeric ...
#...so anything that was not a number is now an NA
SpikeFC <- as.numeric(levels(spikeDF[,2])[spikeDF[,2]])</pre>
## Warning: NAs introduced by coercion
#grab IDs
names(SpikeFC) <- spikeDF$V1</pre>
#remove NAs
nonZeroDX <- which(!is.na(SpikeFC) & (SpikeFC != 0))</pre>
spikeFC.clean <- SpikeFC[nonZeroDX]</pre>
#check how many genes are left in dataset
```

[1] 5370

length(spikeFC.clean)

4.2 Normalization of 8 routes with expresso() and subset into ExpressionSet

4.3 Multiple hypothesis testing

```
#create labels for multitesting class labels -- 18 samples, 9 control, 9 experimental
labels <- factor(c(rep(0, 9), rep(1, 9))) #0 is control, 1 is experimental
#source("http://bioconductor.org/biocLite.R")
#biocLite("multtest")
library(multtest)
stats <- list()</pre>
for (i in 1:length(route.expsets)){
        #conduct multiple t test for 10000 permutations
        testing.routes <- mt.maxT(route.expsets[[i]],</pre>
                                   classlabel = labels, B = 10000)
        stats[[i]] <- testing.routes$teststat[order(testing.routes$index)]</pre>
}
nrow <- nrow(route.expsets[[1]])</pre>
myresponse <- rep(NA, nrow)
#if the spike value is 1 ... assign as 0s in matrix ... 1s are the control
myresponse[which(spikeFC.clean == 1)] = 1
#if spike value is not 1 \dots assign as 1s in the matrix \dots 0s are exp.
myresponse[which(spikeFC.clean != 1)] = 0
```

4.4 ROC Curves

ROC curves for different normalization routes using expresso()

