HW5

22.211 Nuclear Reactor Physics I

Due date 4/10/2023

Question 1

Write a 1D MOC transport code to solve the problems listed in Figure 1 using the 2 group data provided in Figure 2. Use 2 polar angles:

w1 = 0.5 mu1 = +0.57735027

w2 = 0.5 mu2 = -0.57735027

- Plot k as a function of mesh spacing to determine mesh convergence

Problem												
1												
BC Left = Reflective	Width	1	1	2	1	2	1	2	1	2	1	1
BC Right = Reflective	Material	2	1	2	1	2	1	2	1	2	1	2
2												
BC Left = Reflective	Width	1	1	2	1	2	1	2	1	2	1	1
BC Right = Reflective	Material	2	1	2	1	2	3	2	1	2	1	2
3												
BC Left = Reflective	Width	1	1	2	1	2	1	2	1	2	1	1
BC Right = Reflective	Material	2	3	2	1	2	3	2	1	2	3	2

Figure 1: Problem layout

Material		Sigma_t1	Sigma_t2	Sigma_a1	Sigma_a2	nuSigma_f1	nuSigma_f2	Chi1	Chi2	Sigma_s11	Sigma_s12	Sigma_s21	Sigma_s22
1	Fuel 4%	0.416	0.821	0.032	0.421	0.028	0.795	1.000	0.000	0.383	0.001	0.000	0.400
2	Moderator	0.886	2.762	0.000	0.026					0.844	0.042	0.000	2.736
3	Fuel + Gd	0.432	3.473	0.041	3.059	0.028	0.392	1.000	0.000	0.390	0.001	0.000	0.414

Figure 2: 2 group cross-sections for Q1

Question 2

A bare critical spherical reactor with an **infinite absorber inner cavity** (in both groups) has an outer layer made of a homogeneous material that can be represented with the following two group data:

Table 1: 2 group data for Q2

$v\Sigma_{f1} = 0.04 \text{ cm}^{-1}$	$v\Sigma_{f2} = 0.4 \text{ cm}^{-1}$
$\Sigma_{a1} = 0.03 \text{ cm}^{-1}$	$\Sigma_{a2} = 0.3 \text{ cm}^{-1}$
$\Sigma_{s1->2} = 0.02 \text{ cm}^{-1}$	$\Sigma_{s2->1} = 0.0 \text{ cm}^{-1}$
$D_1 = 1.5 \text{ cm}$	D ₂ = 1.2 cm
$\chi_1 = 1.0$	$\chi_2 = 0.0$

Figure 3: Bare spherical reactor with inner cavity

- a) Find the geometrical buckling relation
- b) Determine the critical radius (R) of this reactor
- c) Compute the dominance ratio

Neglect extrapolated distances.

Question 3

You are in charge of designing a homogeneous solution critical reactor that operates at an average temperature of 600K as illustrated below in Figure 4. The core has a radius of 1m. Using 2 group diffusion theory with data provided in Table 2, answer the following questions:

Figure 4: Core

Table 2: 2 Group data for Q3

Quantity	<u>U</u> nits	Fuel 1				
D_1	cm	1.300				
D_2	cm	0.400				
Σ _{a1}	1/cm	0.006				
Σ_{a2}	1/cm	???				
Σ_{f1}	1/cm	0.004				
Σ_{f2}	1/cm	???				
Σ _{s1->2}	1/cm	0.020				
Σ _{s2->1}	1/cm	0.002				
X 1	None	1.000				
X 2	None	0.000				
V	n / fission	2.5				

Assume that thermal group fission and absorption vary linearly with enrichment according to the following relation (and that all other properties remain unchanged):

$$\Sigma_{a,2}=0.01+e\times0.02$$

$$\Sigma_{f,2}=e\times0.02$$
 where e is the U-235 enrichment

a) Calculate the U-235 enrichment needed to make the reactor exactly critical if the tank is filled to a height of 2m (you can neglect extrapolation distances).

Assume that the nuclide density of the fuel varies linearly with *T* from its equilibrium temperature according to the following relation:

$$N = 5 \times 10^{22} - 1 \times 10^{20} (T - 600)$$
 where T in in Kelvins

- **b)** Calculate the solution height associated with a 50K increase in solution temperature (assuming that core radius remains unchanged).
- c) Using 1 group diffusion theory, **approximate** the thermal expansion reactivity coefficient (pcm/K).