

Caio Théodore Genovese Huss Oliveira - 247005

Aplicação de Modelo de Vetor Auto-Regressivo em Preço de Ações FAANG

Conteúdo

1	Introdução							
	1.1	Objetivos	2					
2	Ma	eriais e Métodos	2					
	2.1	Dados	2					
	2.2	Métodos	4					
		2.2.1 Modelos de Vetores Auto-Regressivos	4					
		2.2.2 Determinação do lag	4					
		2.2.3 Correlação temporal nos resíduos	4					
		2.2.4 Causalidade de Granger	5					
		2.2.5 Decomposição da Variância de Erro no Forecast	5					
3	Res	ıltados	6					
	3.1	Especificação do Lag	6					
	3.2	Teste de Correlação Temporal	6					
	3.3	Modelo Escolhido	7					
	3.4	Causalidade Granger	7					
	3.5	Decomposição da Variância de Erro no Forecast	7					
	3.6	Tentativas de previsão						
4	Dis	$\mathrm{uss} ilde{ t ao}$	8					

5	Apé	èndice	10
	5.1	$Modelo \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10
	5.2	Teste de Causalidade Granger	13
	5.3	Decomposição da Variância do Erro de Forecast	14
	5.4	Previsão	16

1 Introdução

O termo FAANG foi popularizado por Jim Cramer, apresentador do programa de TV "Mad Money" (dinheiro louco), reunindo 5 empresas de tecnologia americanas proeminentes no mercado. São empresas conhecidas pelo público, de alto crescimento, e entre as maiores do mundo (em valor).[1]

1.1 Objetivos

Este trabalho tem como objetivo implementar um modelo de Vetor Auto-Regressivo (VAR) nas séries temporais do conjunto de ações, com a intenção de entender melhor a dinâmica do grupo, explorar possíveis relações entre as ações, e exemplificar um uso deste tipo de modelo.

2 Materiais e Métodos

2.1 Dados

O conjunto de dados foi obtido através de webscrapping do site yahoo finance.

O banco possui observações do preço de abertura, fechamento, máximo, mínimo, e o volume total para as ações de 5 empresas estadunidenses, nos dias úteis de 2006 a 2017. Para este trabalho, apenas o preço de abertura (momento em que o mercado abre para negociações) será considerado.

As empresas são: Amazon (AMZN), Apple (AAPL), Netflix (NFLX), Google (GOOGL), e Microsoft (MSFT). Inicialmente, desejava-se utilizar a empresa Facebook (atualmente Meta) no lugar da Microsoft, porém seu histórico de preços só está disponível a partir de 2012, e portanto a empresa foi substituída.

O banco de dados criado possui 3020 observações de 5 variáveis: **AAPL**, **AMZN**, **GOOGL**, **MSFT**, **e NFLX**, respectivas ao preço de abertura (em dólares) da ação no dia observado. A data da observação está no nome da linha.

A Figura 1 mostra as séries obtidas para cada ação.

Figura 1: Séries temporais do preço de abertura das ações observadas

2.2 Métodos

2.2.1 Modelos de Vetores Auto-Regressivos

Modelos de Vetores Autoregressivos (VAR) são modelos em que cada variável depende de seu próprio passado e do passado das outras variáveis incluídas. Sua forma, para um modelo com lag máximo p e m variáveis se dá por[2]:

$$Y_{t,1\times m} = c_{1\times m} + \sum_{l=1}^{p} y_{t-l} B_{l,m\times m} + e_{t,1\times m}$$

Onde y é o vetor das variáveis, indexado no tempo t, c é o vetor de interceptos, B_l a matriz de coeficientes para o passado l, e e o vetor de resíduos, que podem estar correlacionados.

2.2.2 Determinação do lag

O lag ideal pode ser determinado tanto por testes de log-verossimilhança quanto por critérios de informação, como o Akaike Information Criterion (AIC). Neste trabalho, a segunda opção será utilizada.

Em uma amostra com tamanho T, e um modelo VAR com lag p, para m variáveis,

$$AIC(p) = T \log |\widehat{\Sigma}| + 2(mp + m)$$

Onde $|\widehat{\Sigma}|$ é o log-determinante da matriz de covariância dos resíduos[2]. Prefere-se o modelo com menor AIC mas, em casos que a diferênça é pequena, outros critérios, como o número de parâmetros, podem ser levados em conta.

2.2.3 Correlação temporal nos resíduos

O modelo VAR assume que não há autocorrelação temporal nos resíduos, ou seja, $\mathbb{E}[e'_t e_{t-i}] = 0, i = 1, 2, \dots$ Uma forma de testar a correlação temporal é com o teste de *Portmanteau*, com as hipóteses:

- $H_0: \mathbb{E}[e_t'e_{t-i}] = 0, i = 1, ..., h > p$
- $H_A: \exists i \in [1, h > p] | \mathbb{E}[e'_t e_{t-i}] \neq 0$

Sua estatística é $Q_h = T \sum_{j=1}^T tr(\widehat{\Gamma}_j' \widehat{\Gamma}_0^{'-1} \widehat{\Gamma}_j \widehat{\Gamma}_0^{-1})$, onde Γ_j é a matriz de covariância entre os resíduos no tempo t e os resíduos no tempo $t-j^1$. Caso haja correlação temporal entre os resíduos, uma solução é aumentar o lag[2].

¹sua estimação pode ser encontrada em [2]

2.2.4 Causalidade de Granger

A causalidade de Granger busca responder uma questão: A variável Y é informativa sobre os futuros valores da variável Z?

Em outras palavras, a variável Y "Granger causa" a variável Z se o passado de Y pode prever o futuro de Z melhor do que o passado de Z sozinho[2].

Para duas variáveis Y_t e Z_t , e um sistema

$$Y_{t} = \alpha_{0} + \sum_{i=1}^{p} \alpha_{i} Y_{t-i} + \sum_{i=1}^{p} \beta_{i} Z_{t-i} + \epsilon_{1t}, \quad Z_{t} = \gamma_{0} + \sum_{i=1}^{p} \gamma_{i} Z_{t-i} + \sum_{i=1}^{p} \delta_{i} Y_{t-i} + \epsilon_{2t}$$

Um teste para a causalidade de Granger de Z_t sobre Y_t se dá por:

$$H_0: \beta_1 = \dots = \beta_p = 0. \quad H_A: \exists i \in [1, p] | \beta_i \neq 0$$

Seu procedimento considera dois modelos, irrestrito e restrito, apresentados respectivamente:

$$Y_t = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i} + \sum_{i=1}^p \beta_i Z_{t-i} + \epsilon_{1t}, \quad Y_t = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{t-i} + u_{1t}$$

A estatística se constrói com a soma quadrática dos resíduos:

$$\frac{\sum_{t=1}^{p} u_{1t} - \sum_{t=1}^{p} \epsilon_{1t}}{\sum_{t=1}^{p} \epsilon_{1t}} \times \frac{T - 2p - 1}{p}$$

Com distribuição F(p, T-2p-1) sob H_0 . Caso a estatística seja maior que o valor crítico definido, rejeita-se a hipótese de que Z_t não tem efeito em Y_t .

Neste trabalho, o valor crítico é sempre definido para um nível de significância $\alpha = 0,05$. A interpretação da causalidade de Granger é controversa, e não deve ser confundida com causalidade em um sentido "filosófico".

2.2.5 Decomposição da Variância de Erro no Forecast

Outra ferramenta para interpretar a relação entre as variáveis analisadas é a decomposição da variância do erro no forecast, ou Innovation Accounting, que busca decompor a variância no erro das previsões do modelo $V(y_{t+s} - \hat{y}_{t+s})$, atribuindo parte dela ao passado da variável prevista, e parte ao passado das outras variáveis do modelo. O resultado é uma tabela com a decomposição do erro nas previsões para k momentos futuros, com a porcentagem do erro que é atribuído à variação de cada variável do modelo.

3 Resultados

As 5 séries estão completas, e uma transformação logarítmica foi aplicada, a fim de obter estacionariedade com diferenças. Todos os modelos avaliados foram ajustados em cima de um banco reduzido, contendo apenas dados até 2016.

3.1 Especificação do Lag

A Figura 2 contém os valores do AIC para modelos com lag p=1,...,10. O ponto mínimo claro é p=2. Lags até p=100 foram avaliados, não mostrados no gráfico para não comprometer a legibilidade do mesmo.

Figura 2: Valores do AIC pra modelos com p de 1 a 10, com destaque para p=2

3.2 Teste de Correlação Temporal

A Tabela 1 contém o resultado do teste de Portmanteau para alguns modelos avaliados. As soluções comuns de aumentar o lag ou usar modelos com diferenças de séries[2] não obtiveram êxito em evitar a correlação temporal nas séries.

Modelo	Estatistica	GL	p-valor	resultado
p=1	1641.00	1225.00	0.00	H_0 rejeitada
p=2	1516.00	1200.00	0.00	H_0 rejeitada
p = 6	1317.00	1100.00	0.00	H_0 rejeitada
p = 34	468.00	400.00	0.01	H_0 rejeitada
diff, p = 1	1606.00	1225.00	0.00	H_0 rejeitada

Tabela 1: resultado do teste de Portmanteau para os modelos avaliados

3.3 Modelo Escolhido

Tendo em vista a falha de se encontrar um modelo sem correlação temporal, optou-se pelo modelo escolhido pelo critério AIC, um modelo VAR com lag p=2. A descrição completa do modelo obtido está na secção 5.1 do Apêndice.

3.4 Causalidade Granger

Foi efetuado um teste de Causalidade Granger para cada par de variáveis. Os resultados completos do teste de causalidade granger se encontram no apêndice, secção 5.2. Com o nível de significância $\alpha=0,05$ adotado, rejeita-se a hipótese de não-causalidade para as seguintes relações, onde $X\Rightarrow Y$ significa que X Granger-causa Y

- $AAPL \Rightarrow AMZN$
- $AAPL \Rightarrow MSFT$
- $AAPL \Rightarrow NFLX$

- $MSFT \Rightarrow AAPL$
- $MSFT \Rightarrow GOOGL$
- $NFLX \Rightarrow AMZN$

3.5 Decomposição da Variância de Erro no Forecast

A decomposição foi feita para 5 momentos no futuro. Suas tabelas completas estão no apêndice, secção 5.3, com os primeiros dois momentos nas Tabelas 2 a 6.

3.6 Tentativas de previsão

O modelo estimado, assim como outros avaliados, não se mostrou satisfatório em sua performance preditiva. Foi avaliada uma predição para 1 mês no futuro (20 dias úteis). Apesar de seguir a tendência geral para algumas das séries, os intervalos de confiança se mostraram largos demais para previsões úteis. Algumas causas possíveis incluem: Correlação temporal dos resíduos, não-normalidade dos resíduos, e a alta volatilidade do mercado financeiro, tornando o preço de ações muito complexo de se prever para um modelo deste tipo. Gráficos dos resultados de previsão para janeiro de 2017 se encontram na secção 5.4 do apêndice.

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	1.000	0.000	0.000	0.000	0.000
2	0.999	0.000	0.000	0.000	0.000

Tabela 2: Tabela para a decomposição de AAPL, para k previsões futuras

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.210	0.790	0.000	0.000	0.000
2	0.186	0.811	0.002	0.000	0.000

Tabela 3: Tabela para a decomposição de AMZN, para k previsões futuras

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.078	0.053	0.869	0.000	0.000
2	0.068	0.054	0.877	0.001	0.000

Tabela 4: Tabela para a decomposição de NFLX, para k previsões futuras

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.282	0.090	0.005	0.623	0.000
2	0.272	0.084	0.007	0.637	0.000

Tabela 5: Tabela para a decomposição de GOOGL, para k previsões futuras

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.201	0.085	0.005	0.049	0.660
2	0.180	0.085	0.005	0.054	0.674

Tabela 6: Tabela para a decomposição de MSFT, para k previsões futuras

4 Discussão

Não é possível dizer que houve um bom ajuste de modelo. As suposições de nãocorrelação temporal e de normalidade não puderam ser satisfeitas para os resíduos, e os intervalos de confiança para as predições, apesar de conterem os valores reais, são amplos demais para serem úteis. Ainda assim há algumas relações interessantes a serem comentadas.

Nota-se um comportamento semelhante entre as séries: Todas tornam-se estacionárias após aplicar a transformação $Z_t = \log Y_t - \log Y_{t-1}^2$.

²Teste de Kwiatkowski-Phillips-Schmidt-Shin (KPSS), todas as séries obtiveram p-valores>0,1.

Pelas relações de causalidade Granger e pelas decomposições da variância de erro no forecast (FEVD), percebe-se a influência de AAPL no conjunto. Isto é reforçado pela significância de pelo menos um coeficiente do passado de AAPL em todos os modelos resultantes, exceto GOOGL.

MSFT é a única ação com relação com AAPL, Granger causando a mesma, fora isto, AAPL aparece como isolada, sem nenhum coeficiente de outras ações significativo no modelo e com quase 100% da FEVD em seus próprios erros. As outras ações apresentam mais relações entre si, com GOOGL e MSFT detendo menos de 70% da FEVD em seus próprios erros. Em ambas, a segunda ação com maior porcentagem da FEVD é AAPL.

NFLX e MSFT possuem menos de 1% da FEVD de outras ações, em todas as previsões observadas. GOOGL e AMZN também detém valores pequenos da FEVD de outras ações, nunca chegando a 10%.

Apesar de haver relações entre todas as variáveis observadas. AAPL parece ser a que mais "influencia" as outras, Granger-causando 3 outras variáveis, e detendo quase a totalidade de sua FEVD em seus próprios erros. GOOGL e MSFT parecem ser as mais "influenciadas" do grupo, detendo as menores porcentagens de suas FEVDs em seus próprios erros. GOOGL também é a variável com menos coeficientes significativos em seu modelo.

Referências

- $[1] \quad https://www.investopedia.com/terms/f/faang-stocks.asp.$
- [2] Patrick T. Brandt e John T. Williams. *Multiple Time Series Models*. SAGE Publications, Inc., 2007.

5 Apêndice

5.1 Modelo

Estimativas dos parâmetros para cada equação do modelo:

```
Estimation results for equation AAPL:
```

```
AAPL = AAPL .11 + AMZN .11 + NFLX .11 + GOOGL .11 + MSFT .11 + AAPL .12 + AMZN .12
```

```
Estimate Std. Error t value Pr(>|t|)
```

```
AAPL .11 8.944e-01 2.360e-02 37.905 < 2e-16 ***
```

Residual standard error: 0.02254 on 2756 degrees of freedom

Multiple R-Squared: 0.9999, Adjusted R-squared: 0.9999

F-statistic: 3.111e+06 on 11 and 2756 DF, p-value: < 2.2e-16

Estimation results for equation AMZN :

```
_____
```

```
AMZN = AAPL .11 + AMZN .11 + NFLX .11 + GOOGL .11 + MSFT .11 + AAPL .12 + AMZN .12
```

Estimate Std. Error t value Pr(>|t|)

```
AAPL .11 -1.006e-01 2.657e-02 -3.787 0.000156 ***
```

AMZN .11 9.624e-01 2.381e-02 40.424 < 2e-16 ***

NFLX .11 4.660e-02 1.424e-02 3.272 0.001080 **

GOOGL .11 6.275e-02 3.332e-02 1.883 0.059747 .

MSFT .11 -4.254e-02 3.613e-02 -1.177 0.239103

```
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 0.02537 on 2756 degrees of freedom
Multiple R-Squared: 0.9999, Adjusted R-squared: 0.9999
F-statistic: 2.058e+06 on 11 and 2756 DF, p-value: < 2.2e-16
Estimation results for equation NFLX :
______
NFLX = AAPL .11 + AMZN .11 + NFLX .11 + GOOGL .11 + MSFT .11 + AAPL .12 + AMZN .12
              Estimate Std. Error t value Pr(>|t|)
AAPL .11 -1.028e-01 3.825e-02 -2.687 0.00726 **
AMZN .11 -1.735e-02 3.427e-02 -0.506 0.61266
NFLX .11 9.586e-01 2.050e-02 46.754 < 2e-16 ***
GOOGL .11 1.169e-01 4.796e-02 2.437 0.01486 *
MSFT .11 -2.698e-02 5.201e-02 -0.519 0.60400
AAPL .12 1.019e-01 3.827e-02 2.662 0.00782 **
AMZN .12 1.264e-02 3.426e-02 0.369 0.71218
NFLX .12 3.789e-02 2.049e-02 1.849 0.06454 .
GOOGL .12 -1.167e-01 4.807e-02 -2.428 0.01523 *
MSFT .12
         2.907e-02 5.188e-02 0.560 0.57524
             1.121e-05 4.582e-06
                                   2.446 0.01450 *
trend
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.03653 on 2756 degrees of freedom
```

AAPL .12 1.032e-01 2.658e-02 3.884 0.000105 ***

7.727e-06 3.183e-06

4.509e-02 3.604e-02 1.251 0.210956

2.428 0.015246 *

AMZN .12 2.825e-02 2.380e-02 1.187 0.235287 NFLX .12 -4.610e-02 1.423e-02 -3.239 0.001216 ** GOOGL .12 -6.502e-02 3.339e-02 -1.947 0.051582 .

MSFT .12

trend

Multiple R-Squared: 0.9999, Adjusted R-squared: 0.9999

F-statistic: 1.767e+06 on 11 and 2756 DF, p-value: < 2.2e-16

Estimation results for equation GOOGL :

GOOGL = AAPL .11 + AMZN .11 + NFLX .11 + GOOGL .11 + MSFT .11 + AAPL .12 + AMZN .1

Estimate Std. Error t value Pr(>|t|)

AAPL .11 -1.204e-02 1.987e-02 -0.606 0.545

AMZN .11 -1.987e-02 1.781e-02 -1.116 0.265

NFLX .11 1.111e-02 1.065e-02 1.043 0.297

GOOGL .11 9.996e-01 2.492e-02 40.112 <2e-16 ***

MSFT .11 -3.868e-02 2.702e-02 -1.431 0.152

AAPL .12 1.082e-02 1.988e-02 0.544 0.586

AMZN .12 2.179e-02 1.780e-02 1.224 0.221

NFLX .12 -1.103e-02 1.065e-02 -1.036 0.300

GDOGL .12 -9.601e-03 2.497e-02 -0.384 0.701

MSFT .12 4.557e-02 2.696e-02 1.690 0.091 .

trend 2.583e-06 2.381e-06 1.085 0.278

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01898 on 2756 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: 1

F-statistic: 5.783e+06 on 11 and 2756 DF, p-value: < 2.2e-16

Estimation results for equation MSFT :

MSFT = AAPL .11 + AMZN .11 + NFLX .11 + GOOGL .11 + MSFT .11 + AAPL .12 + AMZN .12

Estimate Std. Error t value Pr(>|t|)

AAPL .11 -4.709e-02 1.722e-02 -2.734 0.00629 **

AMZN .11 -8.759e-03 1.543e-02 -0.568 0.57037

NFLX .11 1.430e-03 9.231e-03 0.155 0.87694

GOOGL .11 1.942e-02 2.160e-02 0.899 0.36852

MSFT .11 1.014e+00 2.342e-02 43.296 < 2e-16 ***

AAPL .12 4.722e-02 1.723e-02 2.740 0.00617 **

AMZN .12 6.992e-03 1.543e-02 0.453 0.65042

NFLX .12 -1.224e-03 9.227e-03 -0.133 0.89444

GDOGL .12 -1.318e-02 2.164e-02 -0.609 0.54250

MSFT .12 -1.811e-02 2.336e-02 -0.775 0.43828 trend -3.845e-08 2.063e-06 -0.019 0.98513

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01645 on 2756 degrees of freedom

Multiple R-Squared: 1, Adjusted R-squared: 1

F-statistic: 1.122e+07 on 11 and 2756 DF, p-value: < 2.2e-16

5.2 Teste de Causalidade Granger

Resultados do teste de causalidade, onde $Y \Leftarrow X$ testa se X Granger causa Y.

F test based on VAR(2) model:

F df1 df2 p

AAPL <= AMZN	0.27	2 2756 .767
AAPL <= NFLX	0.88	2 2756 .414
AAPL <= GOOGL	1.58	2 2756 .206
AAPL <= MSFT	3.35	2 2756 .035 *
AMZN <= AAPL	8.07	2 2756 <.001 ***
AMZN <= NFLX	5.39	2 2756 .005 **
AMZN <= GOOGL	1.93	2 2756 .145
AMZN <= MSFT	1.03	2 2756 .356
NFLX <= AAPL	3.63	2 2756 .027 *
NFLX <= AMZN	0.62	2 2756 .540
NFLX <= GOOGL	2.98	2 2756 .051 .
NFLX <= MSFT	0.24	2 2756 .787
GOOGL <= AAPL	0.44	2 2756 .642
GOOGL <= AMZN	1.01	2 2756 .364
GOOGL <= NFLX	0.54	2 2756 .580
GOOGL <= MSFT	4.85	2 2756 .008 **
MSFT <= AAPL	3.76	2 2756 .023 *
MSFT <= AMZN	0.49	2 2756 .612

MSFT <= NFLX 0.04 2 2756 .957 MSFT <= GOOGL 2.13 2 2756 .119

5.3 Decomposição da Variância do Erro de Forecast

AAPL:

1.	AAPL	AMZN	NFLX	GOOGL	MSFT
K	AAPL	AWIZIN	NFLA	GOOGL	MSF I
1	1.000	0.000	0.000	0.000	0.000
2	0.999	0.000	0.000	0.000	0.000
3	0.999	0.000	0.000	0.000	0.000
4	0.999	0.000	0.001	0.000	0.000
5	0.999	0.000	0.001	0.000	0.000

Tabela 7: FEVD para a variável AAPL, com 5 previsões futuras

AMZN:

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.210	0.790	0.000	0.000	0.000
2	0.186	0.811	0.002	0.000	0.000
3	0.180	0.816	0.003	0.001	0.000
4	0.177	0.818	0.003	0.001	0.000
5	0.176	0.819	0.003	0.001	0.000

Tabela 8: FEVD para a variável AMZN, com 5 previsões futuras

NFLX:

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.078	0.053	0.869	0.000	0.000
2	0.068	0.054	0.877	0.001	0.000
3	0.065	0.054	0.879	0.001	0.000
4	0.064	0.054	0.881	0.002	0.000
5	0.062	0.053	0.883	0.002	0.000

Tabela 9: FEVD para a variável NFLX, com 5 previsões futuras

GOOGL:

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.282	0.090	0.005	0.623	0.000
2	0.272	0.084	0.007	0.637	0.000
3	0.270	0.083	0.007	0.640	0.000
4	0.268	0.083	0.008	0.641	0.000
5	0.268	0.083	0.008	0.641	0.000

Tabela 10: FEVD para a variável GOOGL, com 5 previsões futuras

MSFT:

k	AAPL	AMZN	NFLX	GOOGL	MSFT
1	0.201	0.085	0.005	0.049	0.660
2	0.180	0.085	0.005	0.054	0.674
3	0.175	0.085	0.006	0.057	0.677
4	0.173	0.085	0.006	0.059	0.677
5	0.172	0.084	0.006	0.061	0.677

Tabela 11: FEVD para a variável MSFT, com 5 previsões futuras

5.4 Previsão

Gráficos com as previsões e valores observados para os dias úteis de janeiro de 2017:

Figura 3: Série temporal das ações (preto) de 2016 a janeiro de 2017, com previsões para janeiro de 2017 (linha vermelha) e intervalo de confiança de 95% (área vermelha).