# Analysis and Design of Algorithms



CS3230 CS3230 Week 11(Part 2)

+

Week 12 (Part 1)

**Approximation Algorithms** 

Diptarka Chakraborty
Ken Sung

# NP versus P (Recap)



If any NP-complete problem is solved in polynomial time

$$\rightarrow$$
 P = NP

# Problems in NP but <u>believed</u> not to be NP-complete

- Graph isomorphism: Given two graphs G and G', is G isomorphic to G'?
- Integer factoring: Given an integer, compute all its prime factors.

**Decision version**: Given an integer n and two integer  $2 \le d_1 < d_2 < n$ ,

is there any prime factor of n in the range  $[d_1, d_2]$ ?

It belongs to NP: Given any integer  $x \le d$ , it is possible in polynomial time to determine if x is prime and to determine if x divides n.

Integer factoring is believed to be more difficult than problems in P, and easier than problems in NP-complete.

But no proof exists till now. Research is going on...

# What to do when a problem is NP-Complete?

• Unless P = NP, NP-Complete problems have no poly time algorithms.

# What to do when a problem is NP-Complete?

Unless P = NP, NP-Complete problems have no poly time algorithms.

- But they come up frequently in real life. What can we do?
  - ☐ Can try to solve smaller instances optimally using exponential time algorithms (brute force or cleverer methods such as branch and bound).
  - ☐ Check if the problem instance has special features that make it more efficiently solvable
    - $\square$  E.g., 1. If it's a knapsack problem with a small capacity T, then we can use the pseudopolynomial DP algorithm; 2. SAT solvers.

#### **Approximate Solutions**

• A third option for optimization problems is to find a solution that is nearly optimal in its cost.

Recall that an optimization problem looks like:

 $\max/\min C(x)$ 

such that x satisfies some constraints

### **Approximation Ratio**

Let  $C^*$  be the optimal cost and C be the cost of the solution given by an approximation algorithm A.

An approximation algorithm A has an **approximation ratio** of  $\rho(n)$  if:

$$\frac{C}{C^*} \le \rho(n) \qquad \text{(for minimization)}$$

$$\frac{C}{C^*} \ge \rho(n) \qquad \text{(for maximization)}$$

#### **Approximation Ratio**

Let  $C^*$  be the optimal cost and C be the cost of the solution given by an approximation algorithm A.

An approximation algorithm A has an **approximation ratio** of  $\rho(n)$  if:

$$\frac{C}{C^*} \le \rho(n)$$
 (for minimization)

$$\geq 1$$

$$\frac{C}{C^*} \ge \rho(n)$$
 (for maximization)

# Plan for Today

- $\square$   $O(\log n)$ -approximation for Set-Cover
- ☐ ½-approximation for Knapsack
- ☐ ½-approximation for Max-Cut
- $\square O(1/\sqrt{m})$ -approximation for Independent-Set

### Two general approaches

 Analyze a heuristic: A "heuristic" is a procedure that does not always produce the optimal answer. Sometimes, we can show that it's not too bad though.

 Solve an LP relaxation: Many problems can be reduced to Integer Programming. Solve the Linear Programming version instead.

# Plan for Today

- $\square$   $O(\log n)$ -approximation for Set-Cover
- ☐ ½-approximation for Knapsack
- ☐ ½-approximation for Max-Cut
- $\square$   $O(\sqrt{m})$ -approximation for Independent-Set

- A set  $A = \{e_1, e_2, ..., e_n\}$
- $S_1, S_2, ..., S_k$ , with  $S_i \subseteq A$

Optimization version: Compute least number of sets that cover A.

**Decision version**: Does there exist *j* subsets that **cover** all the elements?



- a set  $A = \{e_1, e_2, ..., e_n\}$
- $S_1, S_2, ..., S_k$ , with  $S_i \subseteq A$

Optimization version: Compute least number of sets that cover A.

**Decision version**: Does there exist *j* subsets that **cover** all the elements?



- A set  $A = \{e_1, e_2, ..., e_n\}$
- $S_1, S_2, ..., S_k$ , with  $S_i \subseteq A$

Optimization version: Compute least number of sets that cover A.

**Decision version**: Does there exist *j* subsets that **cover** all the elements?



```
• A set A = \{e_1, e_2, ..., e_n\}
   • S_1, S_2, ..., S_k, with S_i \subseteq A
Optimization version: Compute least number of sets that cover A.
Decision version: NP-complete
Approximation algorithm for the optimization version:
R \leftarrow A;
While R<> empty do
   Pick a set S_i such that |R \cap S_i| is maximum;
    Remove all elements R \cap S_i from R;
```

Return all subsets <u>picked</u> in the while loop.

- A set A = {e<sub>1</sub>, e<sub>2</sub>,...,e<sub>n</sub>}
  S<sub>1</sub>, S<sub>2</sub>,..., S<sub>k</sub>, with S<sub>i</sub> ⊆ A
  Set S<sub>i</sub> has cost C<sub>i</sub>

  Optimization version: Compute sets of least cost that cover A.
  Decision version: NP-complete
- Approximation algorithm for the optimization version:

```
R \leftarrow A;
```

```
While R <> \text{empty do} { Pick a set S_i such that \frac{C_i}{|R \cap S_i|} is minimum; Remove all elements R \cap S_i from R; }
```

Return all subsets picked in the while loop.

### How to analyze the greedy algorithm

#### The challenge:

No knowledge of the optimal solution.

• Aim to get a worst case guarantee for all possible instances.

#### **Conquering the challenge:**

• Pick any **arbitrary** instance.

• "Compare" greedy solution with its optimal solution.

#### How to analyze the greedy algorithm



**Question**: How to account for the sets  $s_2$ ,  $s_6$ ,  $s_{11}$  in the greedy algorithm? (the sets belonging to "Optimal" but absent in "Greedy")

## How to analyze the greedy algorithm

#### The key to analysis:



# Cost of <u>each set</u> $\rightarrow$ cost of <u>each element</u>



# Cost of each set $\rightarrow$ cost of each element Viewing any algorithm



Sum of cost of sets selected = sum of cost paid for each element.

**Greedy algorithm:** Select the set with **least cost per element** 

## Any set $s_i$ : present in Optimal but not in Greedy



Cost of these elements in optimal algorithm =  $C_i$ 

Cost of all the elements of  $s_i$  in greedy algorithm  $\leq C_i \log m_i$ 

## Any sequence of selecting the Optimal set cover



# The core of the analysis



#### But what forced our greedy algorithm to not include $s_i$ ?



Cost of first  $j_1$  elements covered by greedy  $\leq \frac{C_i}{m} j_1$ 

$$\leq \frac{C_i}{m_i} j_1$$

Cost of next  $j_2$  elements covered by greedy  $\leq \frac{C_i}{m_i - j_1} j_2$ 

Cost of last  $j_{\ell}$  elements covered by greedy  $\leq \frac{c_i}{m_{\ell}}$ 

$$\leq \frac{C_i}{m_i - j_1} j_2$$

$$\leq \frac{C_i}{m_i - j_1 - j_2 - \dots - j_{\ell-1}} j_{\ell}$$



Cost of covering all elements of 
$$s_i$$
 by greedy =

$$\leq \frac{C_{i}}{m_{i}} j_{1} + \frac{C_{i}}{m_{i} - j_{1}} j_{2} + \frac{C_{i}}{m_{i} - j_{1} - j_{2}} j_{3} + \dots + \frac{C_{i}}{m_{i} - j_{1} - j_{2} - \dots - j_{\ell-1}} j_{\ell}$$

$$\leq C_{i} \left( \frac{j_{1}}{m_{i}} + \frac{j_{2}}{m_{i} - j_{1}} + \frac{j_{3}}{m_{i} - j_{1} - j_{2}} + \dots + \frac{j_{\ell}}{m_{i} - j_{1} - j_{2} - \dots - j_{\ell-1}} \right)$$

$$\leq C_{i} \log m_{i}$$

#### Recap

**Theorem**: The greedy algorithm achieves an **approximation ratio** of  $O(\log n)$  for <u>every</u> instance of set cover problem.

Running time of greedy algorithm: O(nk)

Question: Any polynomial algorithm for set cover with approx. ratio  $< \log n$ ?

**Answer**: It is impossible unless "P = NP".

The next slide is for the visual proof for the discrete math problem of last slide

Let  $j_1, j_2, ..., j_\ell$  be any arbitrary  $\ell$  positive integers such that  $\sum_{t=1}^{t=\ell} j_t < m$ 

Show that  $\frac{j_1}{m} + \frac{j_2}{m-j_1} + \frac{j_3}{m-j_1-j_2} + \dots + \frac{j_\ell}{m-j_1-j_2-\dots-j_{\ell-1}} \le \log m$ 



Relate the pink rectangles with the terms in the expression

# Plan for Today

- $\square$  O(log n)-approximation for Set-Cover
- ☐ ½-approximation for Knapsack
- ☐ ½-approximation for Max-Cut
- $\square O(1/\sqrt{m})$ -approximation for Independent-Set

# **Knapsack Problem**



What is the maximum value you can get?

\$15

#### Formal Definition

#### KNAPSACK

#### **Input:**

$$(w_1, v_1), (w_2, v_2), \dots, (w_n, v_n), \text{ and } W$$

Output: A subset  $S \subseteq \{1, 2, ..., n\}$  that maximizes

$$\sum_{i \in S} v_i$$
 such that  $\sum_{i \in S} w_i \leq W$ 

# Fractional Knapsack?

- Recall the greedy algorithm for FRACTIONAL KNAPSACK. Can be described as:
  - $\square$  Assume  $\frac{v_1}{w_1}$ , ...,  $\frac{v_n}{w_n}$  are in decreasing order.
  - $\square$  Add items in this order while the total weight is at most W.
  - $\Box$  For the first item that cannot fit fully, put in the largest fraction possible so that the sum of weights is exactly W.
- Can we modify this algorithm for the integral knapsack problem?

#### Question 1

Show that the greedy algorithm which puts in items in order of decreasing value/kg until the weight is at most W has a very small approximation ratio.

#### Question 1: Solution

Suppose the input has two items: one of value 2 and weight 1, and the other of value T (= W) and weight W.

Greedy algorithm would only put the first item in. Optimal solution puts the second item in. The approximation ratio is: 2/W. This goes to zero as W becomes large.

#### **Our Heuristic**

Consider another step of comparing

- ☐ The greedy solution
- $\Box$  The item with the largest value and weight at most W and selecting the better of the two choices.

Call this the modified greedy knapsack algorithm. Surprisingly, approximation ratio for this algorithm is 0.5!

# When is greedy much smaller than fractional knapsack?

Order the items in decreasing value/kg.

• Suppose the fractional knapsack solution picks items 1 through k and some fraction of item k+1. Then, the greedy solution also picks items 1 through k but **not** item k+1.

• So, if the fractional knapsack solution is much larger than greedy, then it must contain a lot of item k+1's weight.

# Analysis of modified greedy

Assume that there's no item of weight > W. Let  $i_m$  be the item of maximum value. Let  $V_g, V_g', V_{\mathrm{f-opt}}, V_{\mathrm{opt}}$  be the values of greedy, modified greedy, optimal fractional knapsack, and optimal knapsack solutions respectively.

Then:

$$V_{\mathrm{f-opt}} \geq V_{\mathrm{opt}}$$

So:  $V_g' \ge \frac{1}{2} \cdot V_{\text{opt}}$ , and so approx ratio is ½.

# Analysis of modified greedy

Assume that there's no item of weight > W. Let  $i_m$  be the item of maximum value. Let  $V_g$ ,  $V_g'$ ,  $V_{\rm f-opt}$ ,  $V_{\rm opt}$  be the values of greedy, modified greedy, optimal fractional knapsack, and optimal knapsack solutions respectively.

Then:

$$2V_g' = V_g' + V_g' \ge V_g + v_{i_m} \ge V_g + v_{k+1} \ge V_{f-opt} \ge V_{opt}$$

So:  $V_g' \ge \frac{1}{2} \cdot V_{\text{opt}}$ , and so approx ratio is ½.

We are actually showing something stronger here!

### Recap

 We showed a simple algorithm that returns a solution with value at least half of the fractional knapsack optimum, hence at least half of the knapsack optimum.

- One can even get a fully polynomial time approximation scheme (FPTAS) for knapsack!
  - For any  $0 < \epsilon < 1$ , there is an algorithm that has approx ratio  $1 \epsilon$  and running time poly  $\left(\frac{n}{\epsilon}\right)$ .

### Question 2

Consider an optimization problem where the objective is to maximize  $C_1(x) + C_2(x)$ , where  $C_1$  and  $C_2$  are non-negative cost functions.

Suppose  $C_1(x)$  and  $C_2(x)$  can individually be maximized in polynomial time. Let  $x_1$  maximize  $C_1(x)$  and let  $x_2$  maximize  $C_2(x)$ .

What is the approx. ratio of the algorithm that outputs  $x_1$  if  $C_1(x_1) > C_2(x_2)$  and  $x_2$  otherwise?

A)0

B) 1/3

C) 1/2

D) 1

### **Question 2: Solution**

C) ½

Let  $x^*$  be an optimal solution that maximizes  $C_1(x) + C_2(x)$ .

Suppose  $C_1(x^*) \ge C_2(x^*)$ . Then:  $C_1(x_1) \ge C_1(x^*) \ge (C_1(x^*) + C_2(x^*))/2$ 

Similarly, if  $C_2(x^*) > C_1(x^*)$ , then:  $C_2(x_2) \ge C_2(x^*) \ge (C_1(x^*) + C_2(x^*))/2$ 

Since we return the maximum of  $C_1(x_1)$  and  $C_2(x_2)$ , the approx. ratio is  $\frac{1}{2}$ .

# Plan for Today

- $\square$   $O(\log n)$ -approximation for Set-Cover
- ☐ ½-approximation for Knapsack
- ☐ ½-approximation for Max-Cut
- $\square O(1/\sqrt{m})$ -approximation for Independent-Set

### Max-Cut

Input: A weighted graph G = (V, E) with each edge e having a non-negative weight w(e)

**Output**: Find a subset  $S \subseteq V$  that maximizes

$$\sum_{u \in S, v \notin S} w((u, v))$$

$$(u, v) \in E$$

### Max-Cut

Arises commonly in graph partitioning problems

One of Karp's original 21 NP-complete problems



### Randomized Approximation

Let  $C^*$  be the optimal cost and C be the **expected** cost of the solution given by a **randomized** approximation algorithm A.

A randomized approximation algorithm A has an **approximation ratio** of  $\rho(n)$  if:

$$\frac{C}{C^*} \le \rho(n) \qquad \text{(for minimization)}$$

$$\frac{C}{C^*} \ge \rho(n) \qquad \text{(for maximization)}$$

# **Approximating Max-Cut**

Here is a simple algorithm for Max-Cut:

```
S \leftarrow \emptyset for each v \in V S \leftarrow S \cup \{v\} \text{ with probability } \frac{1}{2} return S
```

# Analysis

#### Claim:

$$\mathbb{E}\left[\sum_{u\in S,v\notin S}w((u,v))\right] = \frac{1}{2}\sum_{e\in E}w(e)$$

# **Analysis**

#### Claim:

$$\mathbb{E}\left[\sum_{u\in S,v\notin S}w((u,v))\right] = \frac{1}{2}\sum_{e\in E}w(e)$$

**Proof**: For an edge  $e \in E$ , let  $X_e$  be the indicator variable that one endpoint of e is in S and the other isn't. Note:

$$\Pr[X_e = 1] = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}.$$

The LHS is  $\mathbb{E}[\sum_e X_e \cdot w(e)] = \sum_e w(e) \mathbb{E}[X_e] = \frac{1}{2} \cdot \sum_e w(e)$ .

## Finishing up

 We found a cut whose expected weight is at least half of the total weight. But clearly, the max cut weight opt is at most the total weight.

$$\mathbb{E}\left[\sum_{u\in S,v\notin S}w((u,v))\right] = \frac{1}{2}\cdot\sum_{e}w(e) \ge \frac{1}{2}\cdot opt$$

• Getting a better than ½ approximation seems to require significantly new ideas. Best known approx. factor is ≈0.87 and conjectured that this is tight!

### Question 3

Consider the MAX-2-SAT problem. Here we are given a list of clauses  $C_1, \ldots, C_m$  on n Boolean variables  $x_1, \ldots, x_n$  where each clause is the OR of two literals. The goal is to find an assignment that satisfies the maximum number of clauses. The problem is NP-complete.

**Example**:  $C_1 = x_1 \vee x_2$ ,  $C_2 = \overline{x_1} \vee x_2$ . Here,  $x_1 = 1$ ,  $x_2 = 1$  satisfies both of the 2 clauses.

What is the approximation factor of the algorithm that just outputs a random assignment?

- A) 1/4
- B)  $\frac{1}{2}$
- C)  $\frac{3}{4}$
- D) 1

### Question 4: Solution

C) ¾

A random assignment satisfied each clause with probability  $\frac{3}{4}$  (only with probability  $\frac{3}{4}$ , both literals in the clause are false). So, the expected number of clauses satisfied is  $\frac{3}{4}m \geq \frac{3}{4} \cdot opt$ .

# Plan for Today

- $\square$   $O(\log n)$ -approximation for Set-Cover
- ☐ ½-approximation for Knapsack
- ☐ ½-approximation for Max-Cut
- $\square$   $O(1/\sqrt{m})$ -approximation for Independent-Set

### LP Relaxation

Extremely powerful technique!

### • 4 stages:

- 1. Reduce problem to integer programming
- 2. Relax integral constraints, so that we get a linear program
- 3. Solve linear program in polynomial time
- 4. Round fractional solution to integral solution.

### Some Comment

• We know an  $O\left(\frac{1}{\sqrt{m}}\right)$ -approximation for Independent-Set. If  $m=\Omega(n^2)$ , then this becomes an  $O\left(\frac{1}{n}\right)$ -approximation which is trivial. (Why?)

• It is known that it's NP-hard to get an  $1/n^{1-\alpha}$ -approximation for any constant  $\alpha > 0$ .

# Acknowledgement

- The slides are modified from
  - The slides from Prof. Kevin Wayne
  - The slides from Prof. Surender Baswana
  - The slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
  - The slides from Prof. Arnab Bhattacharya and Prof. Wing-Kin Sung