Propensity Score Weighting using machine learning

Young Geun Kim ygeunkim.github.io

2019711358, Department of Statistics

04 Dec, 2020

Propensity Score Weighting

Introduction

Simulation and Evaluation

Related Contents

Introduction

Introduction

Reviewed Paper

Estimation

Reviewed and apply Lee et al. (2010): estimate propensity score using

- ► Logistic regression: glm()
- Random forests: randomForest::randomForest()
- SVM (Pirracchio et al., 2014): e1071::svm()

Evaluation

- Average standardized absolute mean distance
- Emprical distribution of IPTW
- ► IPW and SIPW

My Own Package

```
# remotes::install_github("ygeunkim/propensityml")
library(propensityml)
```


Simulation Study

Simulation setting by Setoguchi et al. (2008):

- ▶ 10 covariates: confounders, exposure predictors, outcome predictors
- Treatment (exposure), true propensity score
- Continuous outcome

Figure 1: Simulation Data - Each W and A can be as X and Z in the course, respectively

Correlation Matrix

of covariates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0.2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0.9 & 0 \\ 0.2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.9 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0.9 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Scenarios

True propensity score

Define $e(X_i)$ for each scenario (A, B, F, G):

A Additivity and linearity:

$$P(Z = 1 \mid X_i) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X_1 + \dots + \beta_7 X_7))}$$

B Moderate non-linearity: 3 quadratic term

$$P(Z = 1 \mid X_i) = \frac{1}{1 + \exp(-(\beta_0 + \beta_1 X_1 + \dots + \beta_7 X_7 + \beta_2 X_2^2))}$$

- F Moderate non-linearity: 10 two-way interaction terms
- **G** Moderate non-additivity and non-linearity: 10 two-way interaction terms and 3 quadratic terms

True Parameters

$$(\beta_0, \beta_1, \dots, \beta_7)^T = (0, 0.8, -0.25, 0.6, -0.4, -0.8, -0.5, 0.7)^T$$

Outcome

$$Y = \alpha_0 + \alpha_1 X_1 + \dots + \alpha_4 X_4 + \alpha_5 X_8 + \dots + \alpha_7 X_{10} + \gamma Z$$

where

- $(\alpha_0, \alpha_1, \dots, \alpha_7)^T = (-3.85, 0.3, -0.36, -73, -0.2, 0.71, -0.19, 0.26)^T$
- $ightharpoonup \gamma = -0.4$: True effect

Function to reproduce Setoguchi et al. (2008)

```
sim outcome(n = 1000, covmat = build covariate()) %>%
 glimpse(width = 50)
#> Rows: 1.000
#> Columns: 13
#> $ w1
                  <fct> 0, 1, 1, 1, 0, 1, 1, 1, ...
#> $ w2
                  <dbl> -0.2801, 0.3065, 0.6329...
#> $ w3
                  <fct> 0, 0, 0, 1, 1, 1, 1, 1, ...
#> $ w4
                  <dbl> 1.6575, -1.4404, -1.939...
#> $ w5
                  <fct> 1, 1, 1, 0, 0, 1, 0, 0, ...
#> $ w6
                  <fct> 0, 1, 1, 0, 0, 1, 1, 0,...
#> $ w7
                  <dbl> 0.4874, -0.0162, -0.155...
#> $ w8
                  <fct> 1, 1, 0, 0, 1, 0, 1, 1,...
#> $ w9
                  <fct> 1, 0, 0, 1, 1, 0, 1, 0,...
#> $ w10
                 <dbl> -0.3054, 0.5939, 0.4179...
#> $ exposure <fct> 1, 1, 1, 1, 1, 0, 1, 1,...
#> $ u
           <dbl> -120.253, 0.942, -51.95...
#> $ exposure_prob <dbl> 0.5000, 0.9072, 0.3465,...
```

Simulation and Evaluation

Simulation and Evaluation

Monte Carlo simulation

- ► For simulation, 1000 replicates
- ► Sample size: 1000

```
doMC::registerDoMC(cores = 4)
mc_list <- mc_setoguchi(
  N = 1000, n_dat = 1000,
  scenario = scen,
  parallel = TRUE
)</pre>
```

Columns that indicate MC and Scenario: mcname, scenario

```
mc_list[, .N, .(mcname, scenario)]
       mename scenario
                  A 1000
  2: 2 A 1000
  3: 3 A 1000
    4:
       4 A 1000
                  A 1000
    5:
          996 G 1000
#> 3996:
          997
                 G 1000
#> 3997.
#> 3998:
         998
                  G 1000
#> 3999:
          999
                   G 1000
#\\ /000 · 1000
                  C 1000
```

Average standardized absolute mean distance (ASAM)

- Covariate balancing: standardized mean differece, which is standardized by pooled sd
- Average the abs(covariate balancing) across all the covariates
- ► Lower: treatment and control groups are more similar w.r.t. the given covariates.

```
doMC::registerDoMC(cores = 8)
logit_asam <-
mc_list %>%
compute_asam(
   treatment = "exposure", outcome = "y", exclude = "exposure_prob",
   formula = exposure ~ . - y - exposure_prob, method = "logit",
   mc_col = "mcname", sc_col = "scenario", parallel = TRUE
)
```

ASAM for each model

 Table 1: ASAM performance

Scenarios	Logistic regression	Random forests	SVM
A	0.012	0.012	0.010
В	0.031	0.028	0.041
F	0.036	0.034	0.043
G	0.077	0.074	0.081

- ▶ Under 0.2 is acceptable (Lee et al., 2010)
- ► All are OK.

Effect estimator

Estimation of ATE

Inverse probability of treatment weighing (IPTW):

$$IPTW_i = rac{Z_i}{\hat{\mathbf{e}}_i} + rac{1 - Z_i}{1 - \hat{\mathbf{e}}_i}$$

- Inverse probability weighting (IPW): weighted regression of outcome on treatment $\hat{\Delta}_{IPW}$
- ▶ Stabilized inverse probability weighting (SIPW): $\hat{\Delta}_{SIPW}$

Evaluation

- Empirical distribution
 - Histogram
 - ▶ Bias: difference between true effect ($\gamma = -0.4$)
 - Standard deviation
 - Confidence interval

Inverse Probability of Treatment Weighing

```
doMC::registerDoMC(cores = 8)
iptw_logit <-
    mc_list %>%
    add_iptw(
    treatment = "exposure",
    formula = exposure ~ . - y - exposure_prob, method
    mc_col = "mcname", sc_col = "scenario", parallel = TRUI
)
```

Empirical Distribution of IPTW

Figure 2: Empirical Distribution of IPTW

IPW and SIPW

```
doMC::registerDoMC(cores = 8)
ipw_logit <-
mc_list %>%
compute_ipw(
    treatment = "exposure", outcome = "y",
    formula = exposure - - y - exposure_prob,
    method = "logit",
    mc_col = "mcname", sc_col = "scenario",
    parallel = TRUE
)
```

- weight of treatment: 1
- weight of control: $\frac{p_i}{1-p_i}$
- ▶ If ê is proper
 - then two weights are similar
 - ► ATE estimate: difference of weighted means

Empirical Distribution of IPW

Figure 3: Empirical Distribution of IPW

Empirical Distribution of SIPW

Figure 4: Empirical Distribution of SIPW

Performance Metric of IPW

		Model			
Metric	Scenarios	Logistic regression	Random forests	SVM (Linear)	SVM (Radial)
bias	Α	8.88	9.57	8.24	8.42
	В	4.21	4.27	5.95	5.99
	F	5.25	5.37	7.31	7.16
	G	9.78	9.62	13.11	13.34
estimate	Α	-8.47	-9.16	-7.83	-8.00
	В	-3.33	-3.15	-5.37	-5.38
	F	-4.69	-4.73	-6.88	-6.71
	G	-9.38	-9.21	-12.71	-12.94
mse	Α	74.18	88.14	66.38	69.79
	В	18.29	19.72	35.49	35.89
	F	27.58	30.11	52.09	50.13
	G	89.72	89.86	161.94	166.77
sd	A	3.00	3.38	3.35	3.47
	В	3.11	3.48	3.28	3.33
	F	3.02	3.38	3.18	3.22
	G	3.02	3.50	3.24	3.08

Performance Metric of SIPW

		Model			
Metric	Scenarios	Logistic regression	Random forests	SVM (Linear)	SVM (Radial)
bias	A	0.402	0.402	0.402	0.402
	В	0.401	0.401	0.401	0.401
	F	0.401	0.401	0.402	0.402
	G	0.402	0.402	0.403	0.403
estimate	A	-0.002	-0.002	-0.002	-0.002
	В	-0.001	-0.001	-0.001	-0.001
	F	-0.001	-0.001	-0.002	-0.002
	G	-0.002	-0.002	-0.003	-0.003
mse	A	0.158	0.158	0.158	0.158
	В	0.159	0.159	0.159	0.159
	F	0.159	0.159	0.159	0.159
	G	0.158	0.158	0.157	0.157
sd	A	0.001	0.001	0.001	0.001
	В	0.001	0.001	0.001	0.001
	F	0.001	0.001	0.001	0.001
	G	0.001	0.001	0.001	0.001

Related Contents

Related Contents

About this project

Project repository

https://github.com/ygeunkim/psweighting-ml

Project package

https://github.com/ygeunkim/propensityml

About the Machine

```
sessionInfo()
#> R version 4.0.3 (2020-10-10)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Catalina 10.15.7
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R. framework/Versions/4.0/Resources/lib/libRblas.dylib
#> LAPACK: /Library/Frameworks/R. framework/Versions/4.0/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
#>
#> attached base packages:
#> [1] parallel stats graphics grDevices utils
                                                        datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] propensityml 0.0.0.9000 kableExtra 1.3.1
                                                        knitr 1.30
#> [4] rmdtool 0.1.0
                               foreach 1.5.1
                                                        data.table 1.13.2
#> [7] forcats 0.5.0
                               stringr_1.4.0
                                                        dplyr_1.0.2
#> [10] purrr 0.3.4
                               readr 1.4.0
                                                        tidyr 1.1.2
#> [13] tibble 3.0.4
                               applot2 3.3.2
                                                        tidyverse 1.3.0
#>
#> loaded via a namespace (and not attached):
#> [1] Rcpp 1.0.5
                           mutnorm 1.1-1
                                               lubridate 1.7.9.2
#> [4] lattice_0.20-41
                           class 7.3-17
                                               utf8_1.1.4
#> [7] assertthat_0.2.1
                            digest_0.6.27
                                               R6 2.5.0
#> [10] cellranger 1.1.0
                            backports 1.2.0
                                               reprex 0.3.0
#> [13] evaluate_0.14
                            e1071_1.7-4
                                               httr_1.4.2
#> [16] pillar_1.4.7
                            rlang_0.4.9
                                               readxl_1.3.1
#> [19] rstudioapi 0.13
                            rpart 4.1-15
                                               Matrix 1.2-18
```

References I

- Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. *Statistics in Medicine*, 29(3):337–346.
- Pirracchio, R., Petersen, M. L., and van der Laan, M. (2014). Improving propensity score estimators' robustness to model misspecification using super learner. *American Journal of Epidemiology*, 181(2):108–119.
- Setoguchi, S., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., and Cook, E. F. (2008). Evaluating uses of data mining techniques in propensity score estimation: a simulation study. *Pharmacoepidemiology and Drug Safety*, 17(6):546–555.