

3.1 可降阶的高阶微分方程

$$(-)$$
 $y'' = f(x)$ 型

常数的通解.

解法 逐次积分.
$$\diamondsuit u=y', \, \textbf{则} \, \frac{du}{dx}=y''=f(x), \, \textbf{因此} \, u=\int f(x)dx+C_1 \, \textbf{即} \\ y'=\int f(x)dx+C_1 \,$$

$$y' = \int f(x) dx + C_1$$
 积分得
$$y = \int [\int f(x) dx + C_1] dx + C_2$$

若原式为 n 阶微分方程, 则依次诵讨 n 次积分, 可得含 n 个任意

第八章・常微分方程

■山东财经大学 ■田宽厚

例1 求
$$y''' = e^{2x} - \cos x$$
 的通解.

则 1 米
$$y''' = e^{2x} - \cos x$$
 的理期

$$y'' = \int (e^{2x} - \cos x) dx + C_1'$$

= $\frac{1}{2}e^{2x} - \sin x + C_1'$

 $y' = \frac{1}{4}e^{2x} + \cos x + C_1'x + C_2$

 $y = \frac{1}{9}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$

此处 $C_1 = \frac{1}{2}C_1'$.

第三节・高阶微分方程 ▶

利用
$$y'|_{x=0}=3$$
 \Rightarrow 两端再积分得 $y=x^3$ - 利用 $y|_{x=0}=1$ \Rightarrow 因此所求特解为

第三节·高阶微分方程 ▷ 可降阶的高阶微分方程

(二) y'' = f(x, y') 型

利用
$$y|_{x=0}=3$$
 \Rightarrow $C_1=3$, 有 $y'=3\left(1+x^2\right)$.
两端再积分得 $y=x^3+3x+C_2$.
利用 $y|_{x=0}=1$ \Rightarrow $C_2=1$.
因此所求特解为 $y=x^3+3x+1$.

解法 今 p = y'. 则 y'' = y'. 原方程化为一阶微分方程

求得 √ 的解, 通过逐次积分得原方程的通解.

p' = f(x, p)

积分得 $\ln u = \ln \left(1 + x^2\right) + \ln C_1$ 即 $u = C_1 (1 + x^2)$ (三) y'' = f(y, y') 型 解法 令 y' = u, 则,则 $y'' = \frac{du}{dx} = \frac{du}{dx} \cdot \frac{dy}{dx} = u \frac{du}{dx}$ 于是. 原方程化为 $u \frac{du}{du} = f(y, u)$ 这是一阶微分方程, 设其通解为 $u = \sigma(y, C_1)$, 即得

 $(1 + x^2)u' = 2xu.$

 $\frac{du}{u} = \frac{2xdx}{(1 + x^2)}$

 $y' = \varphi(y, C_1)$

 $\int \frac{\mathrm{d}y}{c_2(y,C_1)} = x + C_2$

例 2 求解 $\left\{ \begin{array}{ll} \left(1+x^2\right)y''=2xy' \\ y|_{x=0}=1,\,y'|_{x=0}=3 \end{array} \right.$ 解 设 y' = u, 则 y'' = u', 代入方程得

分离变量

分离变量后积分, 得原方程的诵解

例3 求解
$$yy'' = (y')^2$$

解 设
$$y'=u$$
, 则 $y''=\dfrac{du}{dx}=\dfrac{du}{dy}\cdot\dfrac{dy}{dx}=u\dfrac{du}{dy}.$
代入方程得 $yu\dfrac{du}{dy}=u^2$, 即 $\dfrac{du}{dy}=\dfrac{dy}{dy}$.

两端积分得 $\ln |u| = \ln |y| + \ln C_1$, 即 $u = C_1 y$

$$\therefore$$
 $y'=C_1y$ (一阶线性齐次方程)
故所求诵解为 $y=C_2e^{C_1x}$.

第三节·高阶微分方程 ▷ 可降阶的高阶微分方程 二阶常系数齐次线性方程

研究二阶常系数齐次线性方程: y'' + py' + qy = 0

例 4 求微分方程 y'' + 4y' + 3y = 0 的诵解.

1 恒等变形: 得 (y'' + y') + 3(y' + y) = 0

② 变量代换: 今 z = y' + y, 则 z' + 3z = 0

3 求解方程: 得 $z = Ce^{-3x}$. 即 $y' + y = Ce^{-3x}$

3.2 二阶线性齐次微分方程

第三节·高阶微分方程 > 二阶线性齐次微分方程

二阶常系数齐次线性方程

研究二阶常系数齐次线性方程: y'' + m' + ay = 0

例 5 求微分方程 y'' + 4y' + 4y = 0 的通解.

1 恒等变形: 得 (y'' + 2y') + 2(y' + 2y) = 0② 变量代换: 今 z = y' + 2y. 则 z' + 2z = 0

3 求解方程: 得 $z = Ce^{-2x}$, 即 $y' + 2y = Ce^{-2x}$ 4 求解方程: 得 $y = (C_1 + C_2x)e^{-2x}$

一阶堂系数齐次线性方程

研究二阶常系数齐次线性方程: y'' + py' + qy = 0

1 恒等变形: 得 (y'' - ay') - b(y' - ay) = 0② 变量代换: 今 z = y' - ay. 则 z' - bz = 0

3 求解方程: 得 $z = Ce^{bx}$. 即 $y' - ay = Ce^{bx}$

4 求解方程: 得 $y = e^{ax} \left(\int Ce^{(b-a)x} dx + C' \right)$

■ 当 a = b 时, $y = (C_1 + C_2x)e^{ax}$

问题 常数 a 和 b 是否一定存在? 如何求出它?

 α 和 b 是方程 $\lambda^2 + n\lambda + a = 0$ 的两个根.

第三节·高阶微分方程 > 二阶线性齐次微分方程

第三节・高阶微分方程

研究二阶常系数线性齐次方程: $\eta'' + ml' + ml = 0$.

设其特征方程 $\lambda^2 + p\lambda + q = 0$ 的两个根为 λ_1 和 λ_2 .

■ 若 $\lambda_1 \neq \lambda_2$ 为相异实根,则方程的通解为

 $y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$ 2 若 $\lambda_1 = \lambda_2 = \lambda$ 为相同实根,则方程的通解为

 $y = (C_1 + C_2 x)e^{\lambda x}$

图 若 $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$ 为共轭复根,则方程的通解为 $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

假如方程

有形如 $y = e^{\lambda x}$ 的解, 则代入方程后, 得

即

此方程称为原方程的特征方程。

 $a\frac{d^2y}{dx^2} + b\frac{dy}{dx^2} + cy = 0$ (a, b, c, 常数)

 $a\lambda^2 e^{\lambda x} + b\lambda e^{\lambda x} + ce^{\lambda x} = (a\lambda^2 + b\lambda + c)e^{\lambda x} = 0$

 $a\lambda^2 + b\lambda + c = 0$

 $\lambda^2 = 2\lambda = 3 = 0$

 $\lambda_1 = -1$, $\lambda_2 = 3$

 $y = C_1e^{-x} + C_2e^{3x}$.

(1)

(2)

∆ 16/37 ♥

例 6 求方程 y'' - 2y' - 3y = 0 的通解

特征方程

特征根

所求诵解为

第三节・高阶微分方程

二阶线性齐次微分方程

▶ 二阶线性齐次微分方程

例7 求方程 y'' + 2y' + y = 0 的通解

特征方程

特征根

所求通解为

第三节・高阶微分方程

 $\lambda^2 + 2\lambda + 1 = 0$

$$\lambda_1 = \lambda_2 = -1$$

▶ 二阶线性齐次微分方程

▶ 非齐次微分方程的通解

 $y = C_1e^{-x} + C_2xe^{-x}$.

3.3 非齐次微分方程的通解

特征方程

 $\lambda^2 - 2\lambda + 5 = 0$

 $\lambda_1 = 1 + 2i$, $\lambda_2 = 1 - 2i$

 $y = e^x (C_1 \cos 2x + C_2 \sin 2x).$

ay'' + by' + cy = G(x)

其中 a, b, c 为常数, G(x) 为连续函数. 当 G(x) = 0 时, ay'' + by' + cy = 0

非齐次微分方程的通解

(3)

(4)

例 8 求方程 y'' - 2y' + 5y = 0 的通解

特征根

所求通解为

第三节·高阶微分方程 > 二阶线性齐次微分方程

我们将学习如何求解二阶线性非齐次方程

称方程为二阶线性齐次方程。

第三节・高阶微分方程

△ 19/37 ▽

非齐次微分方程的特解

的诵解为

由第二节的结论。一阶线性非齐次微分方程

$$y = e^{-\int p(x) dx} \left(\int q(x) e^{\int p(x) dx} dx + C \right)$$

y' + p(x)y = q(x)

 $y = Ce^{-\int p(x)dx} + e^{-\int p(x)dx} \int q(x)e^{\int p(x)dx}dx$

引例 设 $y=e^{2x}$. 则有

第三节·高阶微分方程 > 非齐次微分方程的通解

问题 如何求二阶非齐次方程特解?

中 $4e^{2x} - 2e^{2x} + e^{2x} = 3e^{2x}$. 知方程

成立. 因此 $y = e^{2x}$ 为该方程的通解.

即

齐次方程诵解 非齐次方程特解

 $y' = 2e^{2x}$ $y'' = 4e^{2x}$

 $y'' - y' + y = 3e^{2x}$

 $y = y_n(x) + y_c(x)$

定理 非齐次方程 ay'' + by' + cy = G(x) 的通解可写为

其中 $y_n(x)$ 是非齐次方程 (3) 的特解, $y_n(x)$ 齐次方程 (4) 的通解,

II 求齐次方程 (4) 的通解 $y_c(x)$;

非齐次方程通解的步骤:

 求非齐次方程 (3) 的特解 y_n(x); 3 $y_n(x) + y_c(x)$

第三节·高阶微分方程 b 非齐次微分方程的通解 (¬) G(x) 是连续函数型

例 9 求方程 $y'' - y' - 6y = e^{2x}$ 的特解

解 设方程特解为 $y_n = Ae^{2x}$.

则

 $y' = 2Ae^{2x}, y'' = 4Ae^{2x}.$

代入原方程得

得 $A = -\frac{1}{4}$. 因此, $y = -\frac{1}{4}e^{2x}$ 为方程特解.

 $44e^{2x} - 24e^{2x} - 64e^{2x} - e^{2x}$ $-44e^{2x} - e^{2x}$

第三节·高阶微分方程 Þ 非齐次微分方程的通解

第三节·高阶微分方程 Þ 非齐次微分方程的通解

△ 24/37 ♥

当 G(x) 是连续函数时, 求二阶非齐次方程

$$ay'' + by' + cy = G(x)$$

设方程特解 y_p(α, x), α 为常量;

- ② 把 $y_p(\alpha, x)$ 代入方程, 求得 $y_p(\alpha, x)$ 中的系数 α .
- 3 代入原方程验证假设解.

第三节·高阶微分方程 > 非齐次微分方程的通解

特解的步骤:

设非齐次方程特解 $u_{\alpha}(\alpha, r)$ 的方法·

	G(x)	设特解 $y_p(\alpha, x)$
(1)	常数 c	常数k
(2)	$a\cos kx$	$A \cos kx + B \sin kx$
(3)	$a \sin kx$	$A \cos kx + B \sin kx$
(4)	ae^{kx}	Ae^{kx}
(5)	ae^{-kx}	Ae^{-kx}
(6)	多项式, $x^n + \cdots + bx + c$	$Ax^n + \cdots + Bx + C$

例 10 求方程 y'' - 6y' + 8y = x 的特解

解 根据表格, 设方程通解为 $y_n = Ax + B$.

则 $y'_p = Ax$, $y''_p = 0$. 代入原方程,

$$0 - 6A + 8(Ax + B) = x$$

对应上式两边系数:

$$\begin{cases} 8A = 1 \\ -6A + 8A = 0 \end{cases} \Rightarrow A = \frac{1}{8}, B = \frac{3}{32}$$

$$\therefore y_p = \frac{1}{8}x + \frac{3}{32}x$$

注 不能设 $y_p = Ax$, 等式右边虽然是 x, 这是一个一元一次方程. 若根据表格设 y_n 不成立, 则乘以 x 或者 x^2 .

例 11 求方程 $y'' - 6y' + 8y = 3\cos x$ 的特解

第三节·高阶微分方程 b 非齐次微分方程的通解

解 根据表格, 设方程通解为 $y_n = A \cos x + B \sin x$,

 $y_n' = -A \sin x + B \cos x$, $y_n'' = -A \cos x - B \sin x$. 代入原方程.

$$(7A - 6B)\cos x + (7B + 6A)\sin x = 3\cos x$$

对应上式两边系数:

$$\begin{cases} 7A - 6B = 3 \\ 7B + 6A = 0 \end{cases} \Rightarrow A = \frac{21}{85}, B = -\frac{18}{85}$$

 $\therefore y_p = \frac{21}{9\pi} \cos x - \frac{18}{9\pi} \sin x.$

Δ 26/37 ♥

$(\Box) G(x) = e^{\lambda x} P_m(x)$ 型

求二阶非齐次方程 $ay'' + by' + cy = e^{\lambda x} P_m(x)$ 特解的步骤:

II 求特征方程 $ar^2 + br + c = 0$ 根 r_1, r_2

2 若 λ 是特征方程的k 重根, 设 $y_n = x^k e^{\lambda x} Q_m(x)$;

3 把 y_p 代入方程, 求得 $y_p(\alpha, x)$ 中的系数.

4 代入原方程验证假设解.

- 若 \(\) 不是特征方程的根 (k = 0);
- 设 $y_n = e^{\lambda x}Q_m(x)$;
- 若 > 是特征方程的单根 (k = 1);
 - \mathfrak{P} $u_n = \mathbf{x}e^{\lambda x}O_m(x)$.
- 若 λ 是特征方程的重根 (k = 2):
 - 设 $u_n = x^2 e^{\lambda x} O_m(x)$.

第三节·高阶微分方程 > 非齐次微分方程的通解

例 12 求方程 y'' - 2y' - 3y = 3x + 1 的一个特解.

特征方程为 $r^2 - 2r - 3 = 0$.而 $\lambda = 0$ 不是特征方程的根 所以

设所求特解为 $y_n = b_0 x + b_1$

续函数型的情况。若后者条件不满足,见例14.

$$y_p = o_0 x + o_1$$

代入方程: $-3b_0x - 3b_1 - 2b_0 = 3x + 1$

$$-3b_0 = 3$$

$$\begin{cases}
-3b_0 = 3 \\
2b_0 - 3b_1 = 1
\end{cases} \Rightarrow b_0 = -1, b_1 = \frac{1}{3}$$

因此特解为 $y_n = -x + \frac{1}{2}$ 注 当 λ 不是特征方程的根, 且 $\lambda = 0$ 时, 方程退化为 G(x) 是连

例 13 求方程 $y'' - 5y' + 6y = xe^{2x}$ 的一个特解。 解 本題 $\lambda = 2$ 特征方程为 $r^2 - 5r + 6 = 0$.

其根为 $r_1 = 2$, $r_2 = 3$

由于 $\lambda = r_1$ 设非齐次方程特解为

 $u_n = x (b_0 x + b_1) e^{2x}$

比较系数. 得

 $\begin{cases}
-2b_0 = 1 \\
2b_0 - b_1 = 0
\end{cases} \Rightarrow b_0 = -\frac{1}{2}, b_1 = -1$

因此特解为 $y_p = -\left(\frac{1}{2}x^2 + x\right)e^{2x}$.

第三节·高阶微分方程 ▷ 非齐次微分方程的通解

比较系数. 得

例 14 求方程 y''' + 3y'' + 2y' = 1 的一个特解. 解 本颢 $\lambda = 0$. 特征方程为 $r^3 + 3r^2 + 2r = 0$.

其根为

$$r_1 = 0$$
, $r_2 = -1$, $r_3 = -2$

由于 $\lambda = r_1$, 设非齐次方程特解为

$$y_p = bx$$
.

代入方程得 $2b = 1 \Rightarrow b = \frac{1}{2}$. 因此特解为 $y_p = \frac{1}{2}x$.

第三节·高阶微分方程 ▶ 非齐次微分方程的通解

可降阶微分方程的解法-降阶法

11 $y^{(n)} = f(x)$: 逐次积分

2 y'' = f(x, y'): 令 p = y', 则 y'' = p', 原方程化为一阶微分方程

内容小结

$$p' = f(x, p).$$

3 y'' = f(y, y'): 令 y' = u, 则, 则 $y'' = u \frac{du}{dy}$ 于是。原方程化为

$$u \frac{du}{dy} = f(y, u).$$

3.4 内容小结

第三节・高阶微分方程 ▷ 内容小结

二阶常系数齐次线性方程: $\eta'' + \eta \eta' + q \eta = 0$.

设其特征方程 $\lambda^2 + p\lambda + q = 0$ 的两个根为 λ_1 和 λ_2 .

I 若 $\lambda_1 \neq \lambda_2$ 为相异实根,则方程的通解为

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

② 若 $\lambda_1 = \lambda_2 = \lambda$ 为相同实根,则方程的通解为

$$y = (C_1 + C_2 x)e^{\lambda x}$$

图 若 $\lambda_1=\alpha+i\beta, \lambda_2=\alpha-i\beta$ 为共轭复根,则方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

本节完!

第三节·高阶微分方程 ▷ 内容小结

Δ 37/37 ♥