Computable Functions

Turing-Computable Functions

• A **total** function $f: \Sigma^* \to \Sigma^*$ is Turing-computable if there exists a DTM M such that for every x in Σ^* , $(s, Bx\underline{B}) \models^* (h, Bf(x)\underline{B})$.

• A **partial** $f: \Omega \to \Sigma^*$ is Turing-computable if there exists a DTM M such that $L(M)=\Omega$ and for every x in Ω ,

 $(s, Bx\underline{B}) \vdash^* (h, Bf(x)\underline{B}).$

Construct a TM for successive function?

$$f: N \to N$$
, $f(x) = x+1$.

Assume that the input is encoded in UNARY form.

Let
$$M = (Q, \Sigma, \Gamma, \delta, qo, B, F)$$

 $Q = \{qo,q1\}$ qo=start state q1=final state

$$\Sigma = \{o\}$$

$$\Gamma = \{o,B\}$$

$$F = \{q1\}$$

States	Tape Symbols			
States	0	В		
$q_{_0}$	$(q_0, 0, R)$	$(q_1, 0, R)$		
$q_{_1}$	_	_		

Let us consider the input x=3, This is encoded as 000.

$$(q_0, \underline{0}00B) \mid -(q_0, 0\underline{0}0B) \mid -(q_0, 00\underline{0}B)$$

 $\mid -(q_0, 000\underline{B}) \mid -(q_1, 000\underline{0}B)$

The machine halts in an accepting state q_1

by computing the successive of x

PROGRAMMING TECHNIQUES OF TURING MACHINES

- Storage in the Finite Control
- Multiple Tracks
- Checking off Symbols
- Subroutines

Storage in the Finite Control

- The finite control can be used to hold the finite amount of information.
- It is considered as a pair of elements, like (q_0,a) , where one exercising control and second component stores a symbol in the finite control.
- Consider a turing machine M which accepts the language 01* + 10*
- Let $M = (Q, \{0,1\}, \{0,1,B\}, \delta, \{q_0,B\},B,F)$
- $Q = \{q_0,q_1\} \times \{0,1,B\}$ = $([q_0,0], [q_0,1], [q_0,B], [q_1,0], [q_1,1], [q_1,B])$
- $F = \{[q_1,B]\}$

$$\delta([q_0, B], 0) = ([q_1, 0], 0, R)$$

$$\delta([q_0, B], 1) = ([q_1, 1], 1, R)$$

$$\delta([q_1,0],1) = ([q_1,0], 1, R)$$

$$\delta([q_1, 1], 0) = ([q_1, 1], 0, R)$$

$$\delta([q_1,0],B) = ([q_1,B],0,L)$$

$$\delta([q_1,1], B) = ([q_1,B], 1, L)$$

Multiple Tracks

В	1	0	1	1	\$		•
В	В	В	1	0	В	• • •	• •
1	0	1	0	1	В		-
			1				•

Finite Control

Checking off Symbols

```
\{ww^R | w \text{ in } \Sigma^*\}
\{a^ib^i : i \ge 1\}
```

В	В	В	В	✓	✓	 extra Track
а	а	b	С	а	b	

Consider a turing machine $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$ for the language $L = \{wcw | w \in \{a, b\}^+\}$

- a) $Q = \{[q,d] \mid q = q_1 \ q_2 \dots \ q_9 \ and \ d = a, b \ or \ B\}$
- b) $\Sigma = \{ [B, d] \mid d = a, b \text{ or } c \}$
- c) $\Gamma = \{[x, d] \mid x = B \text{ or and } d = a, b, c \text{ or } B\}$
- d) $q0 = [q_1, B]$
- e) $F = \{[q_9, B]\}$
- f) B = [B, B]
- g) δ is defined for d = a or b and e = a or b.

$$\delta([q_1, B], [B, d]) = ([q_2, d], [\checkmark, d], R)$$

 $\delta([q_2, d], [B, e]) = ([q_2, d], [B, e], R)$
 $\delta([q_1, d], [B, c]) = ([q_2, d], [B, c], R)$

$$\delta([q_2,d], [B, c]) = ([q_3, d], [B, c], R)$$

$$\delta([q_3,d], [\checkmark, e]) = ([q_3,d], [\checkmark, e], R)$$

$$\delta([q_3,d], [B, d]) = ([q_4,B], [\checkmark, d], L)$$

$$\delta([q_4,B], [\checkmark, d]) = ([q_4,B], [\checkmark, d], L)$$

$$\delta([q_4,B], [B, c]) = ([q_5,B], [B, c], L)$$

$$\delta([q_5,B], [B, d]) = ([q_6,B], [B, d], L)$$

$$\delta([q_6,B], [B, d]) = ([q_6,B], [B, d], L)$$

$$\delta([q_6,B], [\checkmark, d]) = ([q_1,B], [\checkmark, d], R)$$

$$\delta([q_5,B], [\checkmark, d]) = ([q_7,B], [\checkmark, d], R)$$

$$\delta([q_7,B], [B, c]) = ([q_8,B], [B, c], R)$$

$$\delta([q_8,B], [\checkmark, d]) = ([q_8,B], [\checkmark, d], R)$$

$$\delta([q_8,B], [B,B]) = ([q_9,B], [,B], L)$$

Subroutines

$$\delta(q0,0) = (q6, B, R)$$

$$\delta(q6, 0) = (q6, 0, R)$$

$$\delta(q6, 1) = (q1, 1, R)$$

δ for subroutine COPY.

States	Inputs				
States	0	1	2	В	
q_1	$(q_2, 2, R)$	$(q_4, 1, L)$			
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$		$(q_3, 0, L)$	
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	$(q_1, 2, R)$		
q_4		$(q_5, 1, R)$	$(q_4, 0, L)$		

States	Inputs			
States	0	1	2	В
$q_{_{5}}$	$(q_{7}, 0, L)$			
$q_{_{7}}$		$(q_8, 1, L)$		
$q_{_8}$	$(q_{9},0,L)$			(q_{10}, B, R) (q_{0}, B, R)
$q_{_{9}}$	$(q_{9},0,L)$			(q_0, B, R)
$q_{_{10}}$		(q_{11},B,R)		
$q_{_{11}}$	(q_{11},B,R)	(q_{12},B,R)		

	AAAAAAAAAAAAAAAAAAAAA
$\delta(q_o, 001001) - Bq_601001B$	- Bg ₈ 0100100
- Bog ₆ 1001B	- q ₉ B0100100 (
$-Boiq_1ooiB$	$-Bq_00100100$
· · · · · · · · · · · · · · · · · · ·	$-BBq_6100100$
$-BoiXq_2oiB$	$-BB1q_100100$
$-Bo_1Xoq_2 B$	$-BB1Xq_20100$
$-$ Bo1Xo1 q_2B	- BB1X0 <i>q</i> ₂ 100
$-BoiXoq_3io$	- BB1X0 <i>q</i> ₂ 100
	- BB1X01 <i>q</i> ₂ 00
$-$ Bo1 Xq_3 010	- BB1X010 <i>q</i> ₂ 0
- B01 <i>q</i> ₃ <i>X</i> 010	$= BB1X0100q_2B$
$- \text{BoiX}q_i$ 010	– BB1X010 <i>q</i> ₃ 00 – BB1X01 <i>q</i> ₃ 000
$-BoiXXq_{3}10$	$=$ BB1X0 q_3 1000
· ·	$-BB1Xq_301000$
$-BoiXXiq_2o$	$-BB1q_3X01000$
$-Bo_1XX_1oq_2B$	– BB1X <i>q</i> ₁ 01000
$-BoiXXiq_3oo$	$-BB1XXq_21000$
$-BoiXXq_3^{13}$ 100	- BB1XX1q ₂ 000
	$-BB1XX10q_200$
$-$ Bo1 Xq_3X100	- BB1XX100 <i>q</i> ₂ 0
$ -BoiXXq_{i}100 $	$-BB1XX1000q_2B$
- Bo1X <i>q₄X100</i>	$-BB1XX100q_300$
$-Boiq_4X0100$	- BB1XX10 <i>q</i> ₃ 000
	- BB1XX1q ₃ 0000
- Boq ₄ 100100	- BB1XXq ₃ 10000
- B01 <i>q</i> 500100	$-BB1Xq_3X10000$ $-BB1XXq_10000$
- Bog_100100	- DD 1774110000

9/9/2015 Beulah A. / CSE 17

- |- BB1X*q₄X1*0000
- |- BB1*q*₄X010000
- |- BBq₄10010000
- BB1 q_5 0010000
- BBq₇10010000
- $-Bq_8B10010000$
- BBq₁₀10010000
- BBBq,,0010000
- $-BBBBq_{11}$ 010000
- $-BBBBBq_{11}10000$
- $-BBBBBBq_{12}$ 0000

9/9/2015