Theorem The binomial(n, p) distribution is a special case of the Polya (n, p, β) distribution in which $\beta = 0$.

Proof Let the random variable X have the $\operatorname{Polya}(n, p, \beta)$ distribution with probability mass function

$$f(x) = \frac{\binom{n}{x} \prod_{j=0}^{x-1} (p+j\beta) \prod_{k=0}^{n-x-1} (1-p+k\beta)}{\prod_{i=0}^{n-1} (1+i\beta)} \qquad x = 0, 1, 2, \dots, n.$$

When $\beta = 0$,

$$f(x) = \frac{\binom{n}{x} \prod_{j=0}^{x-1} p \prod_{k=0}^{n-x-1} (1-p)}{\prod_{i=0}^{n-1} 1}$$

$$= \binom{n}{x} p^x (1-p)^{n-x} \qquad x = 0, 1, 2, \dots, n$$

which is the probability mass function of the binomial(n, p) random variable.

APPL verification: The APPL statements

yield the probability mass function of a binomial (n, p) random variable.