MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome:Beatriz Viana Costa Número USP: 13673214

Assinatura

Beatriz Viana Costa

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E59 Data: 03/11/2022

SOLUÇÃO

i)

Temos pelo enunciado a matriz $A \in \mathbb{F}^{nxn}$, ou seja, $f: \mathbb{F}^n \longrightarrow \mathbb{F}^n$, f(x) = Ax. Além disso, temos também que posto(A)=n, ou seja, $\dim(\operatorname{Col}(A))=n=\dim(\operatorname{Row}(A))$. Temos então:

$$f(x) = Ax \in Col(A)$$

 $Im(f) = Col(A) = \mathbb{F}^n$

Ou seja, temos que Col(A) é subespaço de \mathbb{F}^n , e assim $\{a_1,...,a_n\} \in Col(A)$ é uma base de \mathbb{F}^n , dessa forma f é sobrejetora.

E tendo o que foi dito anteriormente, que $A = [a_1, ..., a_n]$ e tendo dois vetores, u e v, diferentes entre si, temos:

$$f(u) = Au = u_1a_1 + \dots + u_na_n$$

$$f(v) = Av = v_1a_1 + \dots + v_na_n$$

$$f(u) - f(v) = (u_1 - v_1)a_1 + \dots + (u_n - v_n)a_n \neq 0$$

$$f(u) \neq f(v)$$

Dessa forma, encontramos que f é injetora e, consequentemente, inversível. Logo:

$$\exists g \ f(g(x)) = x$$
$$g(x) = Qx$$
$$AQx = I_n$$

E, portanto:

$$AQ = I_n$$

ii)

Da mesma maneira que o item anterior, temos que $f(x) = Bx \in Row(B)$, ou seja:

$$f(x) = Bx \in Row(B)$$

 $Im(f) = Row(B) = \mathbb{F}^n$

Ou seja, Row(B) é subespaço de \mathbb{F}^n , e dessa forma, $\{b_1,...,b_n\} \in Row(B)$, é uma base de \mathbb{F}^n , e com isso, sabemos que ela é sobrejetora.

E da mesma forma que no item i), temos que tal f também é injetora, e portanto, inversível. Logo:

$$\exists g \ f(g(x)) = x$$
$$g(x) = Px$$
$$PBx = I_n$$
$$PB = I_n$$

iii)

Temos pelos dois itens anteriores que $f(g(x)) = MN = g(f(x)) = NM = I_n$.