

本科生毕业论文

题目:

姓	名:_		
学	号:		
指导	教师:_		
专	业:		
学	院:		

A Dissertation Submitted to Zhejiang University for the Degree of Bachelor of Engineering

TITLE:

Author:	
Supervisor:	
Major:	Computer Science and Technology
College:	
Submitted Date:	

浙江大学本科生毕业论文(设计)诚信承诺书

- 1. 本人郑重地承诺所呈交的毕业论文(设计),是在指导教师的指导下 严格按照学校和学院有关规定完成的。
- 2. 本人在毕业论文(设计)中引用他人的观点和参考资料均加以注释和说明。
- 3. 本人承诺在毕业论文(设计)选题和研究内容过程中没有抄袭他人 研究成果和伪造相关数据等行为。
- 4. 在毕业论文(设计)中对侵犯任何方面知识产权的行为,由本人承担相应的法律责任。

毕业论文(设计)作者签名:

年月日

摘 要

此处填入论文摘要 (字数在 300 字以内)

关键词: 此处填入论文关键词

Abstract

此处填入英文摘要

Keywords: 此处填入英文关键词

目 录

摘要		I
Abstract		II
目录		IV
第1章	绪论	1
1.1	课题背景	1
1.2	本文研究目标和内容	2
1.3	本文结构安排	3
第2章	技术路线	4
2.1	相关工作	4
2.2	关键技术	5
2.3	项目框架	6
2.4	KITTI 数据集	6
2.5	本章小结	7
第3章	研究方案	8
3.1	数据预处理	8
3.2	网络结构	9
3.3	验证方法	11
3.4	本章小结	12
第4章	实验结果与分析	13
4.1	实验平台	13
4.2	结果对比	15
4.3	预测效果	16
4.4	泛化性	16
4.5	本章小结	16

第5章	分析与讨论
5.1	第一节17
5.2	本章小结17
第6章	本文总结18
6.1	工作成果总结 18
6.2	未来工作18
致谢.	
参考文	猷
附录 .	

第1章 绪论

1.1 课题背景

当下机器学习发展迅猛,机器学习渗透进入了许多领域,为很多问题的处理带来了新思路、新方案,是未来计算机领域发展的一个很有前景的趋势。而在机器学习普及的同时,智能驾驶成为一个非常热门的方向。智能驾驶是一个非常复杂的系统,包括对实时数据的收集(如传感器),对当前状况的预测(如行人检测),对之后状态的决策(如轨迹生成),控制车辆操作。近来全球都刮起了一股无人车驾驶的热潮,从最开始的实验室领头,到后来国外的 google、特斯拉、Uber,国内的百度、图森、滴滴,智能驾驶成为一个非常火热的方向。不久前刚在美国加州领到无人车驾驶证的百度,又或者曾经在 KITTI 数据集第一的图森,又或者是已经将无人车商业化的特斯拉都在致力于成为无人驾驶领域的领军企业。而行人检测就是自动驾驶(或辅助驾驶)中相当重要的一环,而保证行人检测的准确性和实时性自然是相当重要的事情,本项目便是基于智能驾驶的背景,探究行人检测的新算法、新模型,实现实时的行人检测。

行人检测是一种典型的物体检测。行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域,在过去几年中引起了广泛的关注。目前传统的行人检测方法大多是使用的滑动窗口,特征提取,然后分类建模,如积分通道特征的方法。对于相关论文的研究[?,?],传统行人检测算法能分为两类:

- 1. 基于背景建模:利用背景建模方法,提取出前景运动的目标,在目标区域内进行特征提取,然后利用分类器进行分类,判断是否包含行人
- 2. 基于统计学习: 这也是目前行人检测最常用的方法, 根据大量的样本构建行人 检测分类器。提取的特征主要有目标的灰度、边缘、纹理、颜色、梯度直方图等 信息。

而实时行人检测也是一个比较复杂的问题。在实验过程中,使用的图片大多都 是光照充足,物体特征明确的情况。而在实际的问题中,我们不得不面对光照改变的 情况,或者天气变化的情况,甚至行人之间也会有重合的情况。实际的复杂情况大大 加大了行人检测预测准确的难度,而车辆驾驶的实时性也对行人检测预测的速度要求更高。

得益于硬件设备的提升,深度学习在近几年发展迅猛,深度学习通过构建一个深层的网络结构,通过监督学习的方法来构建一个物体检测的模型。而卷积神经网络就是其中很重要的一个分支,卷积神经网络与其他神经网络不同之处在于它通过每一层的卷积核去处理图像信息。由于对局部特征处理效果好,参数少训练快,网络结构复杂可塑性强,卷积神经网络成为处理图像信息的一个主流的方向。在物体检测上,基于卷积神经网络的模型[?,?,?,?,?]也是层出不穷,效果越来越好,速度越来越快。

卷积神经网络在目标识别检测上取得了巨大的成功,而目前行人检测领域的主流结果仍采用积分通道特征。本项目将从之前的研究成果出发,参考近来比较火热的物体检测的卷积神经网络,研究面向主动驾驶安全的行人检测算法。本项目将参考 YOLO 的网络模型,在主流的行人数据集上,对比各模型的准确率和速度,探讨实时行人检测的方案与技术。

针对上述问题以及技术背景,在导师的指导下,提出了本项目的设计课题:面向实时行人检测的快速卷积神经网络研究。

1.2 本文研究目标和内容

本项目的全称为面向实时行人检测的快速卷积神经网络研究。该项目是从 KITTI 的数据集中下载训练和测试的图片和标签,将数据集预处理成 darknet 可读入 的形式。再配置 darknet 的环境,修改 darknet 的参数,修改网络结构,训练网络,最后 验证数据集,检验 mAP 值,得到实验结果。总的来说,该项目是基于 darknet 的深度 学习框架下,基于 YOLO 的网络结构基础,使用 KITTI 的数据集来研究实时行人检测的实验。

具体而言,该模型目标如下:

- 1. 实现带有物体检测的卷积神经网络
- 2. 测试不同网络结构的性能与速度

3. 检验网络的泛华性,针对特殊场景、特殊光照、特殊天气条件的检测效率,优化训练数据采样策略

研究的内容:

- 1. 配置 darknet 环境
- 2. 预处理 KITTI 数据集
- 3. 修改网络结构
- 4. 设置评价函数,评估检验结果
- 5. 对比实验性能和速度

1.3 本文结构安排

本论文的组织结构如下:

第一章介绍面向实时行人检测的快速卷积神经网络研究的背景与内容,主要包括本项目所要解决的实际需求,项目意义和难点创新点以及本项目需要完成的工作内容等。

第二章介绍项目的相关文献,概况之前研究的成果。

第三章重点描述研究方案和项目的理论依据,概况项目的流程和算法。

第四章介绍实验参数及环境,对比和分析测试结果。

第五章为项目总结,包括对目前成果总结,对项目不足之处的分析和相关改进 思路以及系统可能发展的讨论。

其中第三章到第五章为本文作者的重点工作。

第2章 技术路线

2.1 相关工作

2.1.1 HOF 特征和 CSS 特征 +HIKSVM 分类器 [?]

该研究以多种方式推动了行人检测的最新技术:我们已经为行人检测引入了强大的自相似特征,当应用于色彩通道时,在单帧设置和附加运动信息方面提供了显着的改进。精心实现的 HOG 特征,HOF 特征图像运动的变体和新的 CSS 特征以及HIKSVM 作为分类器的组合,超过了现有技术发布的现有技术的 5%-20%的广泛范围的精度。

2.1.2 积分通道特征[?]

积分通道特征的大概思路是:通过对输入图像做各种线性和非线性的变换,诸如局部求和、直方图、haar-like 及它们的变种之类的特征便可以通过积分图来快速计算出来。给定一个输入图像 I,其所对应的通道是原始输入图像的某种输出响应。对于灰度图而言,其对应的通道 C=I。而对于彩图而言,其每个颜色通道则对应一个通道。其他类似的通道可以通过各种线性和非线性的方法计算而来。令 Ω 代表图像的某种通道计算函数,则, $C=\Omega(I)$ 。为了能利用滑动窗口快速计算,通道应该具有变换不变性,即,对于原图 I 及其对应的某种变换 I' 而言, $C=\Omega(I)$ 和 $C'=\Omega(I')$ 应该成立,如此一来,便允许 Ω 在整个图像上计算一次,从而避免了变换之后的重复计算。

2.1.3 Faster R-CNN[?]

Faster R-CNN(其中 R 对应于"Region(区域)")是基于深度学习 R-CNN 系列目标检测最好的方法。使用 VOC2007+2012 训练集训练, VOC2007 测试集测试 mAP达到 73.2%, 目标检测的速度可以达到每秒 5 帧。技术上将 RPN 网络和 Fast R-CNN

网络结合到了一起,将 RPN 获取到的 proposal 直接连到 ROI pooling 层,是一个 CNN 网络实现端到端目标检测的框架。

2.1.4 SSD[?]

SSD 也是一种深度学习的神经网络方法。它将原网络后再加入几层特征卷积层,原全联接层提取的特征进入特征提取层,能提取原图各个尺度的特征,通过这些特征计算出检测的物体。

2.1.5 YOLO[?]

YOLO 将对象检测重新映射为单个回归问题,直接从图像像素到边界框坐标和 类概率。YOLO 将预测该物体是什么对象以及它在什么位置。

YOLO 非常简单:单个卷积神经网络同时预测了这些框的各个边界框和类概率。YOLO 通过完整的图片训练,直接优化检测性能。这种统一的模型比传统的对象检测方法有好几个好处。

首先,YOLO 非常快。由于 YOLO 将框检测作为回归问题,YOLO 不需要复杂的流水线。

第二,YOLO 在做出预测时,会全局地推理图片信息。与滑动窗口和基于区域提案的技术不同,YOLO 在训练和测试时间期间处理整个图像,因此它可以编码关于类及其外观的语义信息。

第三,YOLO的泛华性更强。

2.2 关键技术

YOLO 将对象检测的单独组件统一为单个神经网络。YOLO 网络使用整个图像的特征来预测每个边界框。它还同时预测图像的所有边界框。这意味着 YOLO 的网络全局地推断整张图像和所有对象。

YOLO 将整个输入图像分为 S×S 格。如果物体的中心落入网络单元格中,则该网络单元负责检测该对象。

每个网格单元预测 B 边界框和置信度分数。这些置信度分数反映了模型对于框包含对象的概率,以及它认为边界框预测的准确程度。我们将置信度定义为

 $Pr(Obeject)*IOU_{pred}^{truth}$ 。如果该单元格中没有对象,则置信度分数应为零。否则,我们希望置信度分数等于预测框和真值之间的交集(IOU)。

每个边界框包括 5 个预测: x, y, w, h 和置信度。(x, y)坐标表示相对于网格单元 边界的框的中心。从整个图像预测宽度和高度。最后置信度预测表示预测框和任何 真值框之间的 IOU。

每个网格单元还预测了 C 类的条件概率, $Pr(Class_i|Object)$ 。这些概率在包含物体的网格单元格上被约束。我们只预测每个网格单元的一组类概率,而不考虑框的数量 B。

在测试的时候,我们乘以类的条件概率和单独的框置信度, $Pr(Class_i|Object)*$ $Pr(Object)*IOU_{pred}^{truth}=Pr(Class_i)*IOU_{pred}^{truth}(1)$ 这给了我们每个盒子的特定类的置信分数。这些分数对该类出现在框中的概率进行了编码,并且预测框有多符合该物体。

2.3 项目框架

Darknet 是一个基于 C 语言和 CUDA 的开源神经网络框架。它支持 CNN、RNN、YOLO 等各种神经网络。YOLO 作者使用的框架,同时也是 YOLO 效果最好的框架。Darknet 支持 GPU 加速,支持 OpenCV,同时由于它是个轻量级的框架配置较为方便,各个操作系统也都能配置,可移植性强。同时本项目是基于 YOLO 的网络结构的实验,所以选择了 Darknet 作为本项目的实验框架。

2.4 KITTI 数据集

KITTI 利用自主驾驶平台 Annieway 来开发新的具有挑战性的现实世界的计算机视觉基准。KITTI 感兴趣的任务是:立体声,光流,视觉测距,3D 物体检测和 3D 跟踪。为此,KITTI 配备了两台高分辨率彩色和灰度摄像机的标准车厢。Velodyne 激光扫描仪和 GPS 定位系统提供了准确的地面实况。卡尔斯鲁厄市中心的农村地区和高速公路上都是通过驾驶卡车来捕捉的。每张图片最多可显示 15 辆汽车和 30 名行人。除了以原始格式提供所有数据,KITTI 提取每个任务的基准。对于我们的每个基准,KITTI 还提供评估指标和评估网站。初步实验表明,在实验室迁移到现实世界之

前,诸如米德尔伯里等已建立基准的方法排名高于平均水平。我们的目标是通过向社会提供新的困难的现实基准,来减少这种偏差并补充现有的基准。

KITTI 包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达 15 辆车和 30 个行人,还有各种程度的遮挡与截断。整个数据集由 389 对立体图像和光流图,39.2 km 视觉测距序列以及超过 200k 3D 标注物体的图像组成,以 10Hz 的频率采样及同步。总体上看,原始数据集被分类为'Road','City','Residential','Campus'和'Person'。对于 3D 物体检测, label 细分为 car, van, truck, pedestrian, pedestrian(sitting), cyclist, tram 以及 misc 组成。

2.5 本章小结

本章主要介绍了之前的一些研究工作。

基于本项目的需求:效率、速度。本项目将参考 YOLO 的网络结构,在 Darknet 上进行网络的训练和测试,使用 KITTI 数据集作为我们训练和测试的数据集。

第3章 研究方案

本项目分为四块内容: KITTI 数据集的转换以及数据预处理, YOLO 关键技术的实现, 网络结构的调整与优化, 测试结构的评估方法。

3.1 数据预处理

3.1.1 KITTI 数据集详解

KITTI 数据集中共有 7480 张图片可以用来训练和测试。图??展示了 KITTI 数据集的典型样本,分为'Road', 'City', 'Residential', 'Campus'和'Person'五类。原始数据采集于 2011 年的 5 天,共有 180GB 数据。

数据图像如图??,每张图片大小在 1224*370 左右。每张图片最多可显示 15 辆汽车和 30 名行人。

数据标签如图??,标签格式如图??,每行是一个单独的物体。第一列是类名,而 KITTI 总共把所有的物体分了八个类(还有一个类名是 DontCare,表示该区域没有 被标注,防止假阳性);第二列代表物体超出边界多少;第三列表示物体被覆盖的情况;第四列是观察物体的角度;第五列到第八列是物体在图片中的位置(Xmin,Ymin, Xmax,Ymax);第九列到第十一列是三维物体的长宽高;第十二列到第十四列是三维 物体在摄像机中的坐标(x,y,z),第十五列是物体在摄像机的坐标中离 y 轴的弧度。

3.1.2 数据转换和预处理

在实验过程中,我们将前7000张图片作为训练图片,后480张图片作为测试图片。

首先,我们需要把数据集转换为 Darknet 所需要的形式,如图??。Darknet 中:每行第一列是类的序号,第二列是框中心的 x 坐标,第三列是框中心的 y 坐标,第四列是框的宽度,第五列是框的高度。另外这四个数据都需要归一化到 0-1 之间。所以我们需要将 KITTI 标签中的(Xmin, Ymin, Xmax, Ymax)四个坐标进行下面的变换:

$$X = (X_{min} + X_{max})/(2 * Weight)$$

$$Y = (Y_{min} + Y_{max})/(2 * Height \square$$

 $W = (X_{max} - X_{min})/Weight$
 $H = (Y_{max} - Y_{min})/Height$

来变换到归一化后的(X,Y,W,H)。另外由于 KITTI 数据集中的类过多,我们适当调整为仅有三类: Car、Pedestrian、Cyclist,对应到 0、1、2 的标签。将原数据集中的Car、Van、Truck、Tram 转换成 Car; Pedestrian、Person_sitting 转换成 Pedestrian; Cyclist转换成 Cyclist; 同时忽略掉 Misc 和 DontCare 的类。

然后,我们需要生存可以供 Darknet 读入的 train_list 和 test_list,如图??。这里直接将图片的前 7000 张作为训练图片,后 480 张作为测试图片然后生成对应的 list 文件即可。

3.2 网络结构

网络结构参考 YOLO 的网络结构,在前面的章节我们已经讨论过 YOLO 的关键技术,这一节将主要讨论具体实现过程中的网络结构选择。

3.2.1 损失函数

损失函数是使用的平方误差。

我们优化了模型输出中的平方误差。我们使用平方误差,因为它很容易优化,但是它不能完全符合我们的最大化平均精度的目标。我们增加了边界框坐标预测的损失,并减少了对不包含对象的框的置信预测的损失。我们使用两个参数, λ_{coord} 和 λ_{noobj} 来完成这个。我们设置 $\lambda_{coord}=5$ 和 $\lambda_{noobj}=0.5$ 。平方误差也平等地对待大框和小框中的误差。我们的误差度量应该反映出,大框中的小偏差比小框小。为了部分解决这个问题,我们直接预测边界框宽度和高度的平方根,而不是宽度和高度。

在训练期间,我们优化以下多部分损失函数:

$$\lambda_{coord} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} (x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2}$$

$$+ \lambda_{coord} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} (\sqrt{w_{i}} - \sqrt{\hat{w}_{i}})^{2} + (\sqrt{h_{i}} - \sqrt{\hat{h}_{i}})^{2}$$

$$+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} (C_{i} - \hat{C}_{i})^{2}$$

$$+ \lambda_{noobj} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{noobj} (C_{i} - \hat{C}_{i})^{2}$$

$$+ \sum_{i=0}^{S^{2}} 1_{i}^{obj} \sum_{c \in classes} (p_{i}(c) - \hat{p}_{i}(c))^{2}$$

其中 1_i^{obj} 表示如果对象出现在单元 i 中,并且 1_{ij}^{obj} 表示单元 i 中的第 j 个边界框预测器对于该预测是"负责的"。如果对象存在于该网格单元中,损失函数只会惩罚分类错误。如果该预测因子对于真值框是"负责的",则它也只对边界框坐标误差进行估计(即具有该网格单元中的任何预测变量的最高 IOU)。

3.2.2 完整网络结构 YOLO

如图??,我们的网络有 24 个卷积层,其次是 2 个全连接层。部分卷积层后还连接了一些 1*1 的还原层。最后的卷积层使用了 40 个滤波器 (num=5 * (class=3 + coords=4 + bias_match=1))。除开最终层使用了线性激活函数,所有层使用以下 leaky 激活函数??:

该网络比较大,实际训练过程中所需显存较多,训练出来的模型参数更多,理论上效果也会更好,不过速度会偏慢。

3.2.3 缩小网络结构 tiny-YOLO

针对速度的要求,我们又采用了一种 tiny-YOLO 的网络来进行试验。

tiny-YOLO 仅有 9 个卷积层,并且每个卷积层使用了更少的滤波器(输出的特征),其它网络结构和之前的网络结构一样。理论上来说,tiny-YOLO 将实现非常快速度的检测,同时模型大小也将降低不少,不过将造成部分精度的损失。

3.3 验证方法

本项目将采用计算各个类别的 AP(Average Precision)的方法实现对检测结果的评估。

训练好的模型对于每张图片会返回各个框的检测结果(x,y,w,h,class,precision)。而在实际验证中,每个类别会返回所有大于阈值的检测结果,如图??。每种类都有单独的文件存放检测结果,文件形式为(img_id, Xmin, Ymin, Xmax, Ymax, score)。我们就需要用这个检测结果和原标签对比,得到最终的实验结果。

对于每个类,AP的具体算法如下:

- 1. 按照预测结果的 score 将预测结果按降序排序。
- 2. 对于每个预测结果 $(\hat{X}_{min}, \hat{Y}_{min}, \hat{X}_{max}, \hat{Y}_{max})$, 找到所对应的文件中该类的各个真值 $(X_{imin}, Y_{imin}, X_{imax}, Y_{imax})$, 计算覆盖量 IOU

$$intersection = (max(\hat{X}_{min}, X_{imin}) - min(\hat{X}_{max}, X_{imax})) * (max(\hat{Y}_{min}, Y_{imin}) - min(\hat{Y}_{max}, Y_{imax}))$$

$$union = (\hat{X}_{max} - \hat{X}_{min}) * (\hat{Y}_{max} - \hat{Y}_{min}) + (X_{imax} - X_{imin}) * (Y_{imax} - Y_{imin}) - intersection$$

$$IOU = union/intersection$$

- 3. 更新 TP (true positive), FP (false positive): 选取匹配的真值中 IOU 最高的 IOU。如果 IOU 大于阈值(0.5)并且该真值没有被检测到过 TP 就加一, 否则 FP 加一。
- 4. 计算 AP 值: 做出 PR 曲线, 找到 score 降序的数组中, 所有 TP 加一的位置, 然后将这些位置 i 乘以前 i 个预测的准确率, 再求和

$$AP = \sum_{IOU > thresh} 1 * pre(i)/N$$

其中N是真值的数量。

3.4 本章小结

本章主要讲述了本项目的整体研究流程。首先从数据集的处理上分析了 KITTI 数据集的特征,以及转换成 YOLO 所需的格式的数据预处理等;接着,我们讨论了该项目网络的损失函数,分析了所使用的各种网络结构;最后,我们讨论了测试结构的格式以及相对应的验证方法 AP。

第4章 实验结果与分析

本章将对实验进行检验并对比分析:将统计各个类的 AP 值并做出 PR 曲线;预测效果展示,并展现其中效果不佳的结果;探究实验泛化性能力。

4.1 实验平台

基本环境:

- 1. 操作系统: CentOS Linux release 7.1
- 2. 显卡:GTX1080
- 3. CUDA 版本: 8.0
- 4. 实验框架: Darknet
- 5. 数据集:KITTI

YOLO 训练参数:

- 1. batch size: 64
- 2. width: 416
- 3. height: 416
- 4. channels: 3
- 5. momentum: 0.9
- 6. decay: 0.0005
- 7. learing rate: 0.001
- 8. max batches: 50000

tiny-YOLO 训练参数:

1. batch size: 64

2. width: 416

3. height: 416

4. channels: 3

5. momentum: 0.9

6. decay: 0.0005

7. learing rate: 0.001

8. max batches: 50000

	Pedestrian	Car	Cyclist	FPS
Faster R-CNN	4DB5			
YOLO	9FFF			
tiny-YOLO	9FFF			

表 4.1 各模型各类 AP 和 FPS 结果对比

4.2 结果对比

4.2.1 AP 比较

我们首先对比本项目各个模型对于各个类的 AP 值以及 FPS 比较,如表 4.1。

通过图表,我们可以发现虽然 tiny-YOLO 的速度比 YOLO 的速度快上 2-3 倍,但是效率远不如 YOLO。从速度上来看,YOLO 能达到每秒 45 帧的速度,已经基本可以满足实时行人检测的需求,tiny-YOLO 甚至然能够达到每秒近百帧的速度,两个模型均能满足实时行人检测的要求。从效率上来看,不管是哪个类的 AP 值,YOLO都全面领先于 tiny-YOLO,尤其是在行人和自行车的检测上,而 YOLO 不仅在行人和自行车上能达到 0.5 的 AP 值,在车辆检测上更是能达到接近 0.7 的 AP 值,效果较好。

从整体上看,模型对车辆的检测明显高于对行人和自行车的检测,这是由于 KITTI 数据集中车辆数据较多造成的。而模型的整体表现也部分受限于训练数据过 少。

对比 Faster R-CNN,不管是 YOLO 还是 tiny-YOLO,在速度上都比 Faster R-CNN 要快上很多,而 YOLO 的效率却并没有比 Faster R-CNN 的效率低多少。

总的来说,YOLO 在 AP 上的表现达到预期效果,而 tiny-YOLO 虽然速度很快,但是效率上损失过多。

4.2.2 PR 曲线比较

我们分别对各个模型各个类做出 PR 曲线并进行比较,结果如图??。

4.3 预测效果

- 4.3.1 效果展示
- 4.3.2 错误结果分析

4.4 泛化性

本项目讨论实时行人检测的可行性,针对日常生活驾驶、极端天气、夜晚等各种情形进行实验。

4.5 本章小结

第5章 分析与讨论

- 5.1 第一节
- 5.2 本章小结

第6章 本文总结

6.1 工作成果总结

整个项目完成了面向实时行人检测的卷积神经网络的研究,并分析对比了各个模型的实验结果。描述了使用 YOLO 网络作为实时行人检测的研究方案,分析了 YOLO 最后的表现与性能。

搭建了 Darknet 的深度学习框架,学习了 Darknet 的使用方法,参考了 Darknet 的源码来满足实验的需求。

使用了 KITTI 数据集作为本项目的训练和测试数据集,介绍了 KITTI 数据集的形式,通过预处理数据将 KITTI 数据集转换为 YOLO 所需的形式,并划分为训练、测试数据,供之后 YOLO 网络训练和测试使用。

调整了网络结构,分别参考了 YOLO 和 tiny-YOLO 的网络结构来进行实验。基于 Darknet 框架完成了整个模型的训练和测试过程。

验证了实验结果,通过 AP、PR 曲线等方法对比分析了各模型实验结果,最后的实验结果也基本符合预期效果,而 YOLO 的网络结构更是不仅在速度上达到了令人满意的程度,模型性能也相对较好。

综上所述,本项目基本完成了预期的研究成果,同时也对未来的研究有所启迪。

6.2 未来工作

对于面向实时行人检测的卷积神经网络的研究,还可以继续完善的工作如下:

- 1. 改进模型。测试深度学习模型,如 SSD、Faster R-CNN 在行人检测上的性能和速度。
- 2. 尝试其他数据集。针对其他不同的行人数据集分别进行训练和测试,研究不同数据集下各个模型的表现。

- 3. 增强模型的泛化性。尝试提取图像特征,或优化采样策略以提高模型对不同场景、天气、夜晚的泛华性。
- 4. 采用二值化网络来进行网络的训练和测试。近来深度学习网络二值化是一个火热的话题,使用二值化网络理论上可以大大减少网络的大小,大大加快网络的传递速度,未来可以尝试从这个方向研究实时行人检测。

致 谢

附 录

幸科生毕业论文(设计)任务书

一、题	.目:							
二、指	导教师对毕业论文((设计)的进度安	排及作	任务 要	表求 :			
		起讫日期 200	年	月	日至 200	年	月	日
		指导教	师(签	名)_		职称。		
三、系	或研究所审核意见:	•						
					负责人(签名)		
					2 .2 .,	_	月	

毕业论文(设计)考核

一、指导教师对毕业论文(设计)的评语:

指导教师(签名)	
指导教帅(签名)	

年 月 日

二、答辩小组对毕业论文(设计)的答辩评语及总评成绩:

成绩比例		毕业论文(设计) 质量及答辩 占(60%)	总评成绩
分值			

答辩小组负责人(签名)_____

年 月 日