AIR QUALITY ANALYSIS AND PREDICTION IN TAMIL NADU

PROJECT REPORT PHASE -4

SUBMITTED BY,

JAYAKRISHNA S R

REG NO:961721106306

INTRODUCTION

Air pollution is one of the greatest environmental risk to health. By reducing air pollution levels, countriescan reduce the burden of disease from stroke, heart disease, lung cancer, and both chronic and acute respiratory diseases, including asthma. Here we are studied about the air quality analysis methods in Tamil Nadu

Content for Project Phase 5:

For analyzing data, we need some libraries. In this section, we are importing all the required libraries like pandas NumPy, matplotlib, plotly, seaborn, and word cloud that are required for data analysis. Check the below code to import all the required libraries Data Source: A good data source for credit card fraud detection should be accurate, complete, Covering the geographic area of interest, Accessible.

EXPLORATORY DATA ANALYSIS

Exploratory data analysis is performed on the raw data. The insights gained from the analysis helps to identify the preprocessing tasks that need to be performed to form the dataset for building the air quality prediction model.

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV
file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
plt.rcParams['figure.figsize'] = (10, 7)
# Warnings
import warnings
warnings.filterwarnings('ignore')
# Input data files are available in the
"../input/" directory.
# For example, running this (by clicking
run or pressing Shift+Enter) will list the
files in the input directory
import os
print(os.listdir("../input"))
# Any results you write to the current
directory are saved as output.
```

```
['lat-lon-indianstates', 'india-air-quality-data', 'indian-states-lat-lon']
```

data=pd.read_csv('../input/india-airquality-data/data.csv',encoding="ISO-88591")
data.fillna(0, inplace=True)
data.head()

Out[2]:

	stn_c ode	samp ling_ date	state	locati on	agen cy	type	so2	no2	rspm	spm	locati on_m onito ring_ statio n	pm2_ 5	date
0	150	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	0	Resid ential , Rural and other Areas	4.8	17.4	0.0	0.0	0	0.0	1990- 02-01
1	151	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	0	Indus trial Area	3.1	7.0	0.0	0.0	0	0.0	1990- 02-01
2	152	Febru ary - M021 990	Andh ra Prade sh	Hyde rabad	0	Resid ential , Rural and other Areas	6.2	28.5	0.0	0.0	0	0.0	1990- 02-01
3	150	Marc h - M031 990	Andh ra Prade sh	Hyde rabad	0	Resid ential , Rural and other Areas	6.3	14.7	0.0	0.0	0	0.0	1990- 03-01

4	151	Marc h - M031 990	Andh ra Prade sh	Hyde rabad	0	Indus trial Area	4.7	7.5	0.0	0.0	0	0.0	1990- 03-01	
---	-----	----------------------------	---------------------------	---------------	---	------------------------	-----	-----	-----	-----	---	-----	----------------	--

In [3]:

```
#Function to calculate so2 individual
pollutant index(si)
def calculate_si(so2):
    si=0
    if (so2<=40):
     si = so2*(50/40)
    if (so2>40 \text{ and } so2<=80):
     si = 50 + (so2 - 40) * (50/40)
    if (so2>80 \text{ and } so2<=380):
      si = 100 + (so2 - 80) * (100/300)
    if (so2>380 \text{ and } so2<=800):
     si = 200 + (so2 - 380) * (100/800)
    if (so2>800 and so2<=1600):
     si = 300 + (so2 - 800) * (100/800)
    if (so2>1600):
      si = 400 + (so2 - 1600) * (100/800)
    return si
data['si']=data['so2'].apply(calculate_si)
df= data[['so2','si']]
df.head()
```

Out[3]:

so2 si

0	4.8	6.000
1	3.1	3.875
2	6.2	7.750
3	6.3	7.875
4	4.7	5.875

In [4]:

```
#Function to calculate no2 individual
pollutant index(ni)
def calculate_ni(no2):
    ni=0
    if(no2<=40):
     ni = no2*50/40
    elif(no2>40 and no2<=80):
     ni = 50 + (no2 - 14) * (50/40)
    elif(no2>80 and no2<=180):
     ni= 100+(no2-80)*(100/100)
    elif(no2>180 and no2<=280):
     ni= 200+(no2-180)*(100/100)
    elif(no2>280 and no2<=400):
     ni= 300+(no2-280)*(100/120)
    else:
     ni = 400 + (no2 - 400) * (100/120)
    return ni
data['ni']=data['no2'].apply(calculate_ni)
df= data[['no2','ni']]
```

df.head()

		Out[4].
	no2	ni
0	17.4	21.750
1	7.0	8.750
2	28.5	35.625
3	14.7	18.375
4	7.5	9.375

In [5]:

011+[4]

```
#Function to calculate no2 individual
pollutant index(rpi)
def calculate_(rspm):
    rpi=0
    if(rpi<=30):
     rpi=rpi*50/30
    elif(rpi>30 and rpi<=60):
     rpi=50+(rpi-30)*50/30
    elif(rpi>60 and rpi<=90):
     rpi=100+(rpi-60)*100/30
    elif(rpi>90 and rpi<=120):
     rpi=200+(rpi-90)*100/30
    elif(rpi>120 and rpi<=250):
     rpi=300+(rpi-120)*(100/130)
    else:
     rpi=400+(rpi-250)*(100/130)
    return rpi
```

```
data['rpi']=data['rspm'].apply(calculate_si
)
df= data[['rspm','rpi']]
df.tail()
#many data values of rspm values is
unawailable since it was not measure before
```

Out[5]:

	rspm	rpi
435737	143.0	121.000000
435738	171.0	130.333333
435739	0.0	0.000000
435740	0.0	0.000000
435741	0.0	0.000000

In [6]:

```
#Function to calculate no2 individual
pollutant index(spi)

def calculate_spi(spm):
    spi=0
    if(spm<=50):
        spi=spm
    if(spm<50 and spm<=100):
        spi=spm
    elif(spm>100 and spm<=250):
        spi= 100+(spm-100)*(100/150)
    elif(spm>250 and spm<=350):
        spi=200+(spm-250)</pre>
```

```
elif(spm>350 and spm<=450):
    spi=300+(spm-350)*(100/80)
    else:
        spi=400+(spm-430)*(100/80)
    return spi
data['spi']=data['spm'].apply(calculate_spi)

df= data[['spm','spi']]
df.tail()
#many data values of rspm values is
unawailable since it was not measure before</pre>
```

Out[6]:

	spm	spi
435737	0.0	0.0
435738	0.0	0.0
435739	0.0	0.0
435740	0.0	0.0
435741	0.0	0.0

In [7]:

```
#function to calculate the air quality index
(AQI) of every data value
#its is calculated as per indian govt
standards
def calculate_aqi(si,ni,spi,rpi):
    aqi=0
    if(si>ni and si>spi and si>rpi):
```

```
aqi=si
if(spi>si and spi>ni and spi>rpi):
    aqi=spi
if(ni>si and ni>spi and ni>rpi):
    aqi=ni
if(rpi>si and rpi>ni and rpi>spi):
    aqi=rpi
    return aqi
data['AQI']=data.apply(lambda
x:calculate_aqi(x['si'],x['ni'],x['spi'],x['rpi']),axis=1)
df=
data[['sampling_date','state','si','ni','rpi','spi','AQI']]
df.head()
```

Out[7]:

	sampling_da te	state	si	ni	rpi	spi	AQI
0	February - M021990	Andhra Pradesh	6.000	21.750	0.0	0.0	21.750
1	February - M021990	Andhra Pradesh	3.875	8.750	0.0	0.0	8.750
2	February - M021990	Andhra Pradesh	7.750	35.625	0.0	0.0	35.625
3	March - M031990	Andhra Pradesh	7.875	18.375	0.0	0.0	18.375
4	March - M031990	Andhra Pradesh	5.875	9.375	0.0	0.0	9.375

In [8]:

df.state.unique()

```
Out[8]:
array(['Andhra Pradesh', 'Arunachal Pradesh', 'Assam', 'Bihar',
      'Chandigarh', 'Chhattisgarh', 'Dadra & Nagar Haveli',
      'Daman & Diu', 'Delhi', 'Goa', 'Gujarat', 'Haryana',
      'Himachal Pradesh', 'Jammu & Kashmir', 'Jharkhand', 'Karnataka',
      'Kerala', 'Madhya Pradesh', 'Maharashtra', 'Manipur', 'Meghalaya',
      'Mizoram', 'Nagaland', 'Odisha', 'Puducherry', 'Punjab',
      'Rajasthan', 'Sikkim', 'Tamil Nadu', 'Telangana', 'Uttar Pradesh',
      'Uttarakhand', 'Uttaranchal', 'West Bengal',
      'andaman-and-nicobar-islands', 'Lakshadweep', 'Tripura'],
     dtype=object)
                                                                In [9]:
state=pd.read_csv("../input/indian-states-
lat-lon/lat.csv")
state.head()
df.head()
```

Out[9]:

	sampling_da te	state	si	ni	rpi	spi	AQI
0	February - M021990	Andhra Pradesh	6.000	21.750	0.0	0.0	21.750
1	February - M021990	Andhra Pradesh	3.875	8.750	0.0	0.0	8.750
2	February - M021990	Andhra Pradesh	7.750	35.625	0.0	0.0	35.625
3	March - M031990	Andhra Pradesh	7.875	18.375	0.0	0.0	18.375
4	March - M031990	Andhra Pradesh	5.875	9.375	0.0	0.0	9.375

In [10]:

```
dff=pd.merge(state.set_index("state"), df.se
t_index("state"), right_index=True,
```

left_index=True).reset_index() dff.head()

Out[10]:

									out[10].
	state	lat	lon	sampling _date	si	ni	rpi	spi	AQI
0	Andhra Pradesh	14.75042 9	78.57002 6	February - M02199	6.000	21.750	0.0	0.0	21.750
1	Andhra Pradesh	14.75042 9	78.57002 6	February - M02199 0	3.875	8.750	0.0	0.0	8.750
2	Andhra Pradesh	14.75042 9	78.57002 6	February - M02199 0	7.750	35.625	0.0	0.0	35.625
3	Andhra Pradesh	14.75042 9	78.57002 6	March - M03199 0	7.875	18.375	0.0	0.0	18.375
4	Andhra Pradesh	14.75042 9	78.57002 6	March - M03199 0	5.875	9.375	0.0	0.0	9.375

In [11]:

from mpl_toolkits.basemap import Basemap
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
%config InlineBackend.figure_format =
'retina'

In [12]:

m =

Basemap(projection='mill',llcrnrlat=5,urcrn
rlat=40,

```
llcrnrlon=60,urcrnrlon=110,lat_ts=20,resolu
tion='c')
                                          In [13]:
longitudes = dff["lon"].tolist()
latitudes = dff["lat"].tolist()
\#m =
Basemap(width=12000000, height=9000000, proje
ction='lcc',
#resolution=None, lat_1=80., lat_2=55, lat_0=80
,lon_0=-107.)
x, y = m(longitudes, latitudes)
                                          In [14]:
fig = plt.figure(figsize=(12,10))
plt.title("All affected areas")
m.plot(x, y, "o", markersize = 3, color =
'blue')
m.drawcoastlines()
m.fillcontinents(color='coral',lake_color='
aqua')
m.drawmapboundary()
m.drawcountries()
plt.show()
```



```
data['date'] =
pd.to_datetime(data['date'], format='%Y-%m-
%d') # date parse
data['year'] = data['date'].dt.year # year
data['year'] =
data['year'].fillna(0.0).astype(int)
data = data[(data['year']>0)]
df =
```

```
data[['AQI','year','state']].groupby(["year
"]).median().reset_index().sort_values(by='
year',ascending=False)
f,ax=plt.subplots(figsize=(15,10))
sns.pointplot(x='year', y='AQI', data=df)
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f72c28f4cc0>

1970 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 201 year

import warnings
import itertools
import dateutil

```
import statsmodels.api as sm
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
%matplotlib inline
df=data[['AQI','date']]
df["date"] = pd.to_datetime(df['date'])
df.tail(20)
```

Out[16]:

	AQI	date date
435722	118.333333	2015-11-05
435723	118.666667	2015-11-07
435724	140.666667	2015-11-10
435725	133.666667	2015-11-11
435726	105.000000	2015-11-16
435727	112.666667	2015-11-20
435728	121.333333	2015-11-26
435729	120.000000	2015-11-29
435730	120.666667	2015-12-03
435731	125.000000	2015-12-06
435732	121.666667	2015-12-09
435733	127.000000	2015-12-12
435734	122.666667	2015-12-15
435735	117.000000	2015-12-18
435736	120.000000	2015-12-21
435737	121.000000	2015-12-24
435738	130.333333	2015-12-29

435739	0.000000	1970-01-01
435740	0.000000	1970-01-01
435741	0.000000	1970-01-01

In [17]:

```
#Calculating the yearly mean for the data
df=df.set_index('date').resample('M')["AQI"
].mean()
df.head()
```

Out[17]:

Freq: M, Name: AQI, dtype: float64

In [18]:

```
#preprocessing the data values
data=df.reset_index(level=0, inplace=False)
data = data[np.isfinite(data['AQI'])]
data=data[data.date != '1970-01-31']
data = data.reset_index(drop=True)
data.head()
```

Out[18]:

	date	AQI
0	1987-01-31	242.438652
1	1987-02-28	235.787929
2	1987-03-31	294.558772

3	1987-04-30	202.012681
4	1987-05-31	307.991667

In [19]:

#visualizing the processed data of AQI

```
df=data.set_index('date')
df.sort_values(by='date',ascending=False)
df.plot(figsize=(15, 6))
plt.show()
y=df.AQI
```


In [20]:

#exctracting knowledge about data

```
#spliting dataframes into test and train
n = df.shape[0]
train_size = 0.65
features_dataframe = df.sort_values('date')
```

```
train = df.iloc[:int(n * train_size)]
test = df.iloc[int(n * train_size):]

#plotting the yearly variations of AQI

train.AQI.plot(figsize=(15,8), title=
'YEARLY VARIATIONS', fontsize=14)
test.AQI.plot(figsize=(15,8), title=
'YEARLY VARIATIONS', fontsize=14)
plt.show()
```


#Naive Forecast Approach to find the variations(trend)

```
dd= np.asarray(train.AQI)
y_hat = test.copy()
y_hat['naive'] = dd[len(dd)-1]
plt.figure(figsize=(12,8))
plt.plot(train.index, train['AQI'],
label='Train')
plt.plot(test.index,test['AQI'],
label='Test')
plt.plot(y_hat.index,y_hat['naive'],
label='Naive Forecast')
plt.legend(loc='best')
plt.title("Naive Forecast", fontsize=20)
plt.legend(["actual ","predicted"])
plt.xlabel("YEAR", fontsize=20)
plt.ylabel("AQI", fontsize=20)
plt.tick_params(labelsize=20)
plt.show()
```


#various statmodel to identity huge
variations od data values
import statsmodels.api as sm
train.index=pd.DatetimeIndex(freq="w",
start=0 ,periods=224)

sm.tsa.seasonal_decompose(train.AQI).plot()
result =
sm.tsa.stattools.adfuller(train.AQI)
plt.show()

#resampling the data to predict monthly AQI
of india

```
df=data[['AQI','date']]
```

```
df['date']=pd.to_datetime(df['date'])
date=df.groupby(pd.Grouper(key='date',freq=
'1MS'))["AQI"].mean()
df.count()
```

Out[24]:

In [24]:

AQI 346 date 346 dtype: int64

In [25]:

#splitting the sampling date into month and year accordingly

```
data['month'] = data['date'].dt.month
```

```
data['year'] = data['date'].dt.year
data=data[['AQI','date','month','year']]
data.head()
```

Out[25]:

	AQI	date	month	year
0	242.438652	1987-01-31	1	1987
1	235.787929	1987-02-28	2	1987
2	294.558772	1987-03-31	3	1987
3	202.012681	1987-04-30	4	1987
4	307.991667	1987-05-31	5	1987

In [26]:

```
#predicting JANUARY-AQI across india
data=data[data['month']==1]
data.head()
```

Out[26]:

	AQI	date	month	year
0	242.438652	1987-01-31	1	1987
12	211.076502	1988-01-31	1	1988
24	236.513310	1989-01-31	1	1989
35	239.071032	1990-01-31	1	1990
47	238.060052	1991-01-31	1	1991

In [27]:

```
#Appling BOXPLOT analysis

df =

data[['AQI','year']].groupby(["year"]).mean
().reset_index().sort_values(by='year',asce
```

nding=False)
df=df.dropna()
dd=df
df.describe()

year	AQI	
count	29.000000	29.000000
mean	2001.000000	186.582077
std	8.514693	51.439662
min	1987.000000	65.754613
25%	1994.000000	163.875510
50%	2001.000000	207.546049
75%	2008.000000	221.368166
max	2015.000000	242.438652

In [28]:

import seaborn as sns
sns.boxplot(x=df['AQI'])

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f72c268cd30>

In [29]:

```
#removing Outliers
df = df[np.isfinite(df['AQI'])]
df=df[df.AQI >153]
df=df[df.AQI <221]</pre>
                                                                     In [30]:
#visualizing the filttered data
year=df['year'].values
AQI=df['AQI'].values
df['AQI']=pd.to_numeric(df['AQI'],errors='coerce')
df['year']=pd.to_numeric(df['year'],errors='coerce')
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (20.0, 10.0)
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(year,AQI, color='red')
plt.show()
```


In [31]:

```
#scatter plot of data points
cols =['year']
y = df['AQI']
x=df[cols]
```

```
plt.scatter(x,y)
plt.show()
```

```
220 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 210 - 2
```

```
In [32]: x = (x - x.mean()) / x.std()
```

 $x = np.c_{[np.ones(x.shape[0]), x]}$

Out[32]:

```
array([[ 1.
                       1.40346276],
         1.
                       1.09883519],
         1.
                       0.9465214 ],
         1.
                       0.79420761],
       [ 1.
                       0.64189382],
                       0.48958003],
        [ 1.
                       0.33726625],
       [ 1.
                       0.03263867],
                      -0.11967512],
       [ 1.
                      -0.57661648],
       [ 1.
                      -0.72893027],
       [ 1.
                      -1.03355785],
                      -1.33818543],
       [ 1.
       [ 1.
                      -1.94744058]])
```

In [33]:

```
# Applying GRADIENT DESCENT
alpha = 0.1 \#Step size
iterations = 3000 #No. of iterations
m = y.size #No. of data points
np.random.seed(4) #Setting the seed
theta = np.random.rand(2) #Picking random values to start with
def gradient_descent(x, y, theta, iterations, alpha):
    past_costs = []
    past_thetas = [theta]
    for i in range(iterations):
        prediction = np.dot(x, theta)
        error = prediction - y
        cost = 1/(2*m) * np.dot(error.T, error)
        past_costs.append(cost)
        theta = theta - (alpha * (1/m) * np.dot(x.T, error))
        past_thetas.append(theta)
    return past_thetas, past_costs
past_thetas, past_costs = gradient_descent(x, y, theta, iterations, alpha)
theta = past_thetas[-1]
#Printing the results...
print("Gradient Descent: {:.2f}, {:.2f}".format(theta[0], theta[1]))
Gradient Descent: 200.17, -1.54
                                                                    In [34]:
#Plotting the cost function...
plt.title('Cost Function J')
plt.xlabel('No. of iterations')
plt.ylabel('Cost')
plt.plot(past_costs)
plt.show()
```


In [35]:

```
#Predicted val
newB=[ 200.17, -1.54]
def rmse(y,y_pred):
    rmse=np.sqrt(sum(y-y_pred))
    return rmse

y_pred=x.dot(newB)

dt = pd.DataFrame({'Actual': y, 'Predicted': y_pred})
x=pd.concat([df, dt], axis=1)
x
x
```

Out[35]:

	year	AQI	Actual	Predicted
23	2010	188.283360	188.283360	198.008667
21	2008	214.378174	214.378174	198.477794
20	2007	211.160807	211.160807	198.712357
19	2006	219.623267	219.623267	198.946920
18	2005	207.546049	207.546049	199.181484
17	2004	164.661496	164.661496	199.416047

16	2003	163.875510	163.875510	199.650610
14	2001	205.138247	205.138247	200.119736
13	2000	195.772377	195.772377	200.354300
10	1997	220.903571	220.903571	201.057989
9	1996	216.850189	216.850189	201.292553
7	1994	205.636343	205.636343	201.761679
5	1992	177.485106	177.485106	202.230806
1	1988	211.076502	211.076502	203.169058

In [36]:

#calculating the root mean squared error for the predicted AQi values from sklearn import metrics

print(np.sqrt(metrics.mean_squared_error(y,y_pred)))

18.630885273104628

In [37]:

```
x_axis=x.year
y_axis=x.Actual
y1_axis=x.Predicted
plt.plot(x_axis,y_axis)
plt.plot(x_axis,y1_axis)
plt.title("Actual vs Predicted",fontsize=20)
plt.legend(["actual ","predicted"])
plt.xlabel("YEAR",fontsize=20)
plt.ylabel("AQI",fontsize=20)
plt.tick_params(labelsize=20)
plt.show()
```


#improving the accuracy by splitting the data on heavy variations

df=dd[['year','AQI']]

#huge variations aqi accures on year 2009-2010 (by moving average graph) df=df[df.year<2011] df.describe()

Out[38]:

In [38]:

	year	AQI
count	24.000000	24.000000
mean	1998.500000	203.441075
std	7.071068	38.624462
min	1987.000000	65.754613
25%	1992.750000	193.900123
50%	1998.500000	212.769491
75%	2004.250000	225.854972
max	2010.000000	242.438652

CONCLUTION

In conclusion, ambient air pollution is a health hazard. It is a global challenge, as evidence shows that adverse effects still exist even at relatively low air pollutant concentrations, and so no threshold values for classical air pollutants can be established based on the available data.