2025/5/18

コンピュータビジョンを用いた 歩行解析

東京理科大学大学院 先進工学研究科 電子システム工学専攻 相川研究室 中崎 彰太

OpenPoseのキーポイント

関節	キーポイント	座標
首	1	$\left(N_t^{DoTC}, N_t^{DoHC}\right)$
骨盤	8	$(MH_t^{DoTC}, MH_t^{DoHC})$
股	9 · 12	$(HI_t^{DoTC}, HI_t^{DoHC})$
膝	10 · 13	(K_t^{DoTC}, K_t^{DoHC})
足首	11 · 14	$\left(A_t^{DoTC},A_t^{DoHC} ight)$
爪先	22 · 19	$\left(T_t^{DoTC}, T_t^{DoHC}\right)$
踵	24 · 21	$(HE_t^{DoTC}, HE_t^{DoHC})$

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

二階差分カルマンフィルタの構築

状態方程式

$$\boldsymbol{X}_{t} = \boldsymbol{F}\boldsymbol{X}_{t-1} + \boldsymbol{b}\boldsymbol{u} = \begin{bmatrix} 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{t-1} \\ v_{t-1} \\ v_{t-2} \\ x_{t-1} \\ x_{t-2} \\ x_{t-3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \boldsymbol{u}$$

観測方程式

状態ベクトル: X_t 観測ベクトル: Y_t システム行列:F 観測行列:H 状態ノイズ:u(平均0,分散 σ_u^2) 観測ノイズ:w(平均0,分散 σ_w^2) 時刻:t 加速度: a_t 速度: v_t 位置: x_t

 σ^2_u , σ^2_w の値はニュートン・ラフソン法を用いた反復計算により,拡散対数尤度を最大化するように決定している.

足首のDoTCのシステム概要

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

足首のDoTC

右足首の加速度 a_t

検出エラー有り

この操作を左右の足首に対して同時に行う

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

両足首にエラーがある場合

通常歩行

DoTC: Direction of Travel Coordinate

通常歩行

DoTC: Direction of Travel Coordinate

提案法と3DMCで取得した股関節角度

股関節角度

股関節角度 θ_{hip} →体幹と大腿のなす角

算出時に使用する座標 →首.骨盤.膝

$$MAE = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} rac{y_i : 提案法の股関節角度}{x_i : 3DMC で取得した股関節角度} n : データの総数$$

MAE:平均絶対誤差

 $n: \vec{\tau} -$ タの総数

70

どちらの場合もMAE ≤ 5°であり、臨床試験での応用条件を満たしている□

提案法と3DMCで取得した膝関節角度

膝関節角度

膝関節角度 θ_{knee} →大腿の長軸と 下腿のなす角

算出時に使用する座標 →股,膝,足首

$$MAE = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} rac{y_i : 提案法の膝関節角度}{x_i : 3DMCで取得した膝関節角度} n : データの総数$$

MAE:平均絶対誤差

 $n: \vec{\tau} -$ タの総数

右脚の膝関節角度 $MAE = 3.6^{\circ}$

左脚の膝関節角度

 $MAE = 3.8^{\circ}$

どちらの場合もMAE ≤ 5°であり、臨床試験での応用条件を満たしている□

提案法と3DMCで取得した足関節角度

足関節角度

足関節角度 θ_{ankle} →大腿の長軸と 足部の長軸のなす角 ※下腿と足部のなす角が90度の時に 足関節角度は0度と定義

算出時に使用する座標 →膝,足首,踵,爪先

$$MAE = rac{\sum_{i=1}^{n} |y_i - x_i|}{n} \; egin{array}{ll} y_i : 提案法の足関節角度 \\ x_i : 3DMCで取得した足関節角度 \\ n : 三、丸の総数 \end{array}$$

MAE:平均絶対誤差

 y_i :提案法の足関節角度

 $n: \vec{\tau} -$ タの総数

右脚の足関節角度 $MAE = 2.0^{\circ}$

左脚の足関節角度

 $MAE = 3.0^{\circ}$

どちらの場合もMAE ≤ 5°であり、臨床試験での応用条件を満たしている□

結論

- 低フレームレート条件下でも、臨床試験での応用条件を満たす歩行解析法を提案した
- ・ トレッドミルの上を歩行する動画にも適応できた
- ・ リアルタイム処理が可能
- 安価なカメラでも解析できることが期待できる

今後の展望

- ・検出エラーを判定する閾値を動画ごとに変更が不必要なアルゴリズムの実装
- ・実際に患者の異常歩行動画で検証

10月16日・病院での撮影データについて

*0.5倍速 4.0秒(本動画は8.0秒)に大きな検出エラー

計測条件

フレームレート:30fps

解像度:1920×1080pixel

步行: 通常 速度: 通常

脚:左

股関節角度 MAE=3.2°

膝関節角度 MAE=3.8°

足関節角度 MAE=2.8°

計測条件

フレームレート:30fps

解像度:1920×1080pixel

步行: 通常 速度: 通常

脚:右

股関節角度 MAE=3.5°

膝関節角度 MAE=5.0°

足関節角度 MAE=6.2°

結果 Azure Kinect

膝_DoTC

膝_DoHC

結果 Azure Kinect

爪先_DoTC bigtoe 1250 1200 1150 1100 1050 1000 950 900 850 2 2.5 3.5 4.5 5.5 3 5 Time [s]

爪先_DoHC

結果 Azure Kinect

- 左足首, 右足首 KF前
- 右足首 KF後
- 左足首 KF後

*0.5倍速 約3.8秒(本動画は7.6秒)に大きな検出エラー

計測条件

フレームレート: 30fps

解像度:1920×1080pixel

歩行: 通常

速度:通常

脚:左

iPadでは首が取れていなかったので、

股関節角度は大腿と鉛直線のなす角度で算出した

MC

■提案法

股関節角度 MAE=3.9°

膝関節角度 MAE=3.5°

足関節角度 MAE=4.3°

計測条件

フレームレート:30fps

解像度:1920×1080pixel

步行: 通常 速度: 通常

脚:右

股関節角度 MAE=2.4°

膝関節角度 MAE=3.4°

足関節角度 MAE=9.1°

股関節_DoHC

膝_DoTC

膝_DoHC

爪先_DoTC

爪先_DoHC

かかと_DoHC

- 左足首, 右足首 KF前
- 右足首 KF後
- 左足首 KF後

*0.5倍速 約2.4秒,3.5秒,4.0秒,5.3秒(本動画は約4.8秒,7.0秒,8.0秒,10.6秒)に検出エラー

計測条件

フレームレート:30fps

解像度:1920×1080pixel

歩行:股

速度: 通常

脚:左

股関節角度 MAE=4.1°

膝関節角度 MAE=7.9°

足関節角度 MAE=4.0°

計測条件

フレームレート: 30fps

解像度:1920×1080pixel

歩行: 股

速度: 通常

脚:右

膝関節角度 MAE=8.0°

股関節角度 MAE=3.8°

足関節角度 MAE=15.5°

股関節_DoHC

膝_DoTC

膝_DoHC

爪先_DoTC bigtoe 1400 1200 1000 800 600 400 200 0 2.5 3 3.5 4.5 5 5.5 Time [s]

かかと_DoHC

- 左足首, 右足首 KF前
- 右足首 KF後
- 左足首 KF後