

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization

pursuant to

Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7 FCC Part 15 Subpart C

on the

Summit Data Communications

Transmitter

Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

6616A-SDCCF10AG UPN: FCC ID: TWG-SDCCF10AG

GRANTEE: **Summit Data Communications**

526 South Market Suite 407

Akron, OH 44311

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: March 5, 2008

FINAL TEST DATE: November 19, Novembeer 27, December 14

> and December 19, 2007 and January 14, January 15, January 25 and January 28, and

March 4, 2008

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

Testing Cert #2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Test Report Report Date: March 5, 2008

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	3/6/08	Initial Release	DG

File: R70599 Rev 1 Page 2 of 23

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ) DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHZ) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	7
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	9
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	
TEST SITE	11
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	12
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLEINSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	14
EUT AND CABLE PLACEMENT	14
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors pursuant to the following rules:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors and therefore apply only to the tested sample. The sample was selected and prepared by Ron Seide of Summit Data Communications.

File: R70599 Rev 1 Page 5 of 23

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R70599 Rev 1 Page 6 of 23

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	-	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.5 MHz - 802.11g 9.1 MHz - 802.11b	>500kHz	Complies
	RSP100	99% Bandwidth	17.2 MHz – 802.11g 12.8 MHz – 802.11b	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	24.1 dBm (0.258 Watts) EIRP = 0.619 W Note	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	7.5 dBm / MHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions < -20dBc	<-20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.8dBμV/m (489.8μV/m) @ 4924.0MHz	15.207 in restricted bands, all others < -20dBc	Complies (-0.2dB)

Note 1: EIRP calculated using antenna gain of 3.8 dBi for the highest EIRP multi-point system.

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.4 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.5 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	15.6 dBm (0.036 Watts) EIRP = 0.115 W Note	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-8.3 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	52.1dBμV/m (402.7μV/m) @ 11489.9MHz	15.207 in restricted bands, all others < -20dBc	Complies (-1.9 dB)

Note 1: EIRP calculated using antenna gain of 5 dBi for the highest EIRP multi-point system.

File: R70599 Rev 1 Page 7 of 23

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	The radio module uses a unique connector type		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	41.4dBμV/m (117.5μV/m) @ 2187.3MHz		Complies (- 12.6 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	55.6dBμV @ 0.167MHz	Refer to standard	Complies (-9.5dB)
15.247 (b) (5)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0
Radiated Emissions Radiated Emissions	0.015 to 30 30 to 1000	± 3.0 ± 3.6

File: R70599 Rev 1 Page 8 of 23

Report Date: March 5, 2008

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Summit Data Communications model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% With typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

The sample was received on November 19, 2007 and tested on November 19, November 27, December 14 and December 19, 2007 and January 14, January 15, January 25, January 28, February 28, and March 4, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG	Compact Flash	-	TWG-
Communications		Module		SDCCF10AG

Note: The EUT was tested using an extender card that allowed for the card to be outside of the host system.

ANTENNA SYSTEM

There were three antennas included in the testing:

Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz

Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host system.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

File: R70599 Rev 1 Page 9 of 23

Test Report

Report Date: March 5, 2008

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	iPAQ	Handheld Computer	-	-

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
roit		Description	Shielded or Unshielded	Length(m)
iPAQ Power	AC Mains	2wire	Unshielded	1.5
Flash Module	iPAQ Module Port	-	-	-

EUT OPERATION

During emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel. Note, the radio was unable to transmit continuously due to limitations of the host device.

File: R70599 Rev 1 Page 10 of 23

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on November 19, Novembeer 27, December 14 and December 19, 2007 and January 14, January 15, January 25 and January 28, 2008 at the Elliott Laboratories Open Area Test Site OATS located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R70599 Rev 1 Page 11 of 23

Report Date: March 5, 2008

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R70599 Rev 1 Page 12 of 23

Report Date: March 5, 2008

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R70599 Rev 1 Page 13 of 23

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R70599 Rev 1 Page 14 of 23

Report Date: March 5, 2008

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R70599 Rev 1 Page 15 of 23

Typical Test Configuration for Radiated Field Strength Measurements

File: R70599 Rev 1 Page 16 of 23

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R70599 Rev 1 Page 17 of 23

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R70599 Rev 1 Page 18 of 23

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

File: R70599 Rev 1 Page 19 of 23

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R70599 Rev 1 Page 20 of 23

_

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

Report Date: March 5, 2008

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

File: R70599 Rev 1 Page 21 of 23

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R70599 Rev 1 Page 22 of 23

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R70599 Rev 1 Page 23 of 23

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

File: R70599 Rev 1 Appendix Page 1 of 10

Radiated Emissions, 30 - 26,500 MHz, 11-Oct-07

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08

Radiated Emissions, 30 - 26,500 MHz, 12-Oct-07

Engineer: jcaizzi

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08

Radiated Emissions, 30 - 18,000 MHz, 31-Oct-07

Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	18-May-08
Hewlett Packard	High Pass filter, 3.5 GHz (Blu System)	P/N 84300-80038 (84125C)	1391	29-May-08

Radiated Emissions, 30 - 12,000 MHz, 19-Nov-07

Engineer: Joseph Cadigal

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08
Hewlett Packard	Microwave Preamplifier 1-26 5GHz	8449B	1780	06-Nov-08

Radio Antenna Port (Power and Spurious Emissions), 26-Nov-07

Engineer: skhushzad

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08

Radio Spurious Emissions, 27-Nov-07

Engineer: Suhaila Khushzad

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332 21-Dec-07
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404 30-Mar-08
EMCO	Biconical Antenna, 30-300 MHz	3110B	1497 03-Jul-08

Radio Spurious Emissions, 11-Dec-07

Engineer: Suhaila Khushzad

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	17-Jan-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	06-Nov-08

Radiated Emissions, 30 - 40,000 MHz, 12-Dec-07

Engineer: Mehran Birgani

<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Aug-08
EMCO	Antenna, Horn, 18-26.5 GHz (SA40-Red)	3160-09 (84125C)	1150	05-Nov-08
EMCO	Antenna, Horn, 26.5-40 GHz (SA40-Red)	3160-10 (84125C)	1151	05-Nov-08
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	15-Oct-08

	Radio Spurious Emissio Engineer: Suhaila Khush			
EMICO	_		Model #	Asset # Cal Due
Hewlett Packard Microwave Preamplifier, 1-25.5GHz 8449B 1780 05-Nov-0				
Hewlett Packard SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue 8564E (84125C) 1393 17-Jan-00				
Radio Spurious Emissions, 19-Dec-07		• • •		
Engineer: Suhalia Khushzad	newiell Fackard	Specari 9 kmz - 40 Gmz, Fivi (SA40) blue	0304E (04123C)	1393 17-Jan-00
Manufacturer Description Model # Asset # Call Due	•	· ·		
EMCO	•		Madal #	Accest # Col Duc
Hewlett Packard				
Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0				•
Radiated Emissions, 30 - 16,000 MHz, 20-Dec-07 Engineer: Mehran Birgani Manufacturer				
Engineer: Mehran Birgani Model # Asset # Cal Due Manufacturer EMCO Antenna, Horn, 1-18GHz 3115 868 26-Apr-01 EMCO Antenna, Horn, 1-18GHz 3115 868 26-Apr-01 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Conducted Emissions - AC Power Ports, 21-Dec-07 Engineer: Rafael Varelas Manufacturer Description Model # Asset # Cal Due	Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Manufacturer Description				
EMCO	•		NA1 - 1 - 4	A 1 # 0 - 1 D
Hewlett Packard				
Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0				•
Conducted Emissions - AC Power Ports, 21-Dec-07		• • •		
Engineer: Rafael Varelas Manufacturer Description LISN, FCC / CISPR LISN-4, OATS Sac2 18-Jul-08 Rohde& Schwarz Pulse Limiter ESH3 Z2 812 S-Feeb-O Rohde& Schwarz Pulse Limiter ESH3 Z2 812 S-Feeb-O Rohde & Schwarz Pulse Limiter ESH3 Z2 812 S-Feeb-O Rohde & Schwarz Pulse Limiter ESH3 Z2 812 S-Feeb-O Rohde & Schwarz Test Receiver, 9 kHz-2750 MHz ESCS 30 1337 Z1-Sep-0 Radio Antenna Port (Power and Spurious Emissions), 07-Jan-08 Engineer: Suhaila Khushzad Manufacturer EMCO Antenna, Horn, 1-18 GHz Asset # Cal Due Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer EMCO Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer EMCO Radio Antenna, Horn, 1-18 GHz Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer EMCO Antenna, Horn, 1-18 GHz Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz BMC Speckny Speckn 30 Hz -40 GHz, SV (SA40) Red BENGCO Antenna, Horn, 1-18 GHz BMC Speckny Speckn 30 Hz -6.5 GHz BMC Speckny Speckn 30 Hz -40 GHz, SV (SA40) Red BENGCO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description EMC Speckny Antenna, Horn, 1-18 GHz BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description EMC Speckny Antenna, Horn, 1-18 GHz BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description EMC Speckny Antenna, Horn, 1-18 GHz BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description BRADIO Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description BRADIO Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Description Description Description Description Description Description Des	Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Manufacturer Description				
Elliott Laboratories	•			
Robde& Schwarz	<u>Manufacturer</u>			Asset # Cal Due
Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red Rohde & Schwarz Test Receiver, 9 kHz-2750 MHz ESCS 30 1337 21-Sep-0	Elliott Laboratories	LISN, FCC / CISPR	LISN-4, OATS	362 18-Jul-08
Rohde & Schwarz Test Receiver, 9 kHz-2750 MHz ESCS 30 1337 21-Sep-0	Rohde& Schwarz		ESH3 Z2	812 05-Feb-08
Radio Antenna Port (Power and Spurious Emissions), 07-Jan-08	Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Engineer: Suhaila Khushzad Manufacturer EMCO Antenna, Horn, 1-18 GHz Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red Hewlett Packard Microwave Preamplifier, 1-26.5GHz Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer Description EMCO Antenna, Horn, 1-18 GHz Asset # Cal Due Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer Description Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Radio Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Manufacturer Description Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Manufacturer Manufacturer Description Antenna, Horn, 1-18 GHz Antenna, H	Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337 21-Sep-08
Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-O Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-May-O Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 1780 06-Nov-O Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad 8449B 8586E 8449B 8586E 8449B 8586E 8489 96-Nov-O 96-Nov-O <td>Radio Antenna Port (Pov</td> <td>wer and Spurious Emissions), 07-Jan-08</td> <td></td> <td></td>	Radio Antenna Port (Pov	wer and Spurious Emissions), 07-Jan-08		
EMCO	Engineer: Suhaila Khush	hzad		
Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0	<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Radio Spurious Emissions, 10-Jan-08	EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Radio Spurious Emissions, 10-Jan-08 Engineer: Suhaila Khushzad Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz 8595EM 780 09-Oct-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Radio Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Model # Asset # Cal Due Radiated Lemissions, 30 - 26,500 MHz, 18-Jan-08 Emgreer: jcaizzi Model # Asset # Cal Due Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156	Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Engineer: Suhaila Khushzad Manufacturer Description Model # Asset # Cal Due	Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780 06-Nov-08
Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz 8595EM 780 09-Oct-0t Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Radio Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description Model # Asset # Cal Due Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious	Radio Spurious Emission	ons, 10-Jan-08		
### EMCO	Engineer: Suhaila Khush	hzad		
Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz 8595EM 780 09-Oct-04 24-Aug-0 SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 24-Aug-0 SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 24-Aug-0 SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 SpecAn 30 Hz -40 GHz, SV (SA40) Red 8595EM 787 21-Feb-0 SpecTrum Analyzer, 9 kHz - 6.5 GHz 8595EM	<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Radio Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Description Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz 8595EM 787 21-Feb-0 Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Radio Antenna Port (Power and Spurious Emissions), 14-Jan-08 Engineer: jcaizzi Manufacturer Hewlett Packard EMC Spectrum Analyzer, 9 kHz - 6.5 GHz Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Description Manufacturer EMCO Antenna, Horn, 1-18 GHz Hewlett Packard Microwave Preamplifier, 1-26.5GHz Hewlett Packard Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red Hewlett Packard High Pass filter, 8.2 GHz Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780 09-Oct-08
Engineer: jcaizzi Manufacturer	Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
Manufacturer Description Model # Asset # Cal Due 21-Feb-0 Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Description Model # Asset # Cal Due 21-Feb-0 EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Model # Asset # Cal Due Manufacturer Description Model # Asset # Cal Due	Radio Antenna Port (Pov	wer and Spurious Emissions), 14-Jan-08		
Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Manufacturer Description Description Microwave Preamplifier, 1-26.5GHz May-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0	Engineer: jcaizzi			
Radiated Emissions, 30 - 26,500 MHz, 18-Jan-08 Engineer: jcaizzi Model # Asset # Cal Due Manufacturer Description 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Engineer: jcaizzi Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Model # Asset # Cal Due	Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787 21-Feb-08
Manufacturer Description Model # Asset # Cal Due EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Model # Asset # Cal Due Manufacturer Description Model # Asset # Cal Due	•	- 26,500 MHz, 18-Jan-08		
EMCO Antenna, Horn, 1-18 GHz 3115 487 24-May-0 Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Model # Asset # Cal Due	Engineer: jcaizzi			
Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-0 Hewlett Packard SpecAn 30 Hz -40 GHz, SV (SA40) Red 8564E (84125C) 1148 24-Aug-0 Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	Hewlett Packard		8449B	870 08-Nov-08
Hewlett Packard High Pass filter, 8.2 GHz P/N 84300-80039 1156 29-May-0 Radio Antenna Port (Power and Spurious Emissions), 24-Jan-08 Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due		SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	
Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due		,	, ,	O .
Engineer: Mehran Birgani Manufacturer Description Model # Asset # Cal Due	Radio Antenna Port (Pov	wer and Spurious Emissions), 24-Jan-08		
<u>Manufacturer</u> <u>Description</u> <u>Model #</u> <u>Asset #</u> <u>Cal Due</u>	•	•		
	-		Model #	Asset # Cal Due
		EMI Test Receiver, 20 Hz-7 GHz	·	

Conducted Emissions -	AC Power Ports, 28-Jan-08		
Engineer: Peter Sales	70 1 0 101 1 0 10, 20 0 0 11 0 0		
Manufacturer	Description	Model #	Asset # Cal Due
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215 29-Mar-08
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304 18-Jul-08
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz-26.5 GHz	8593EM	1141 29-Nov-08
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398 05-Feb-08
•	00 - 40000 MHz, 04-Mar-08		
Engineer: Pete Sales			
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487 24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Hewlett Packard	Head (Inc W1-W4, 1143, 1144) Red	84125C	1145 16-Nov-08
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148 24-Aug-08
EMCO	Antenna, Horn, 18-26.5 GHz (SA40-Red)	3160-09 (84125C)	1150 05-Nov-08
EMCO	Antenna, Horn, 26.5-40 GHz (SA40-Red)	3160-10 (84125C)	1151 05-Nov-08

EXHIBIT 2: Test Measurement Data

79 Pages

File: R70599 Rev 1 Appendix Page 2 of 10

Elli	ott	El	MC Test Data
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with	T-Log Number:	T69413
	Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Emissions Standard(s):	15.247 / 15.E / RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Summit Data Communications

Model

SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

Date of Last Test: 3/27/2008

Client	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with	T-Log Number:	T69413
	Antenna Connectors	Account Manger:	Dean Eriksen
Contact	Ron Seide		
Emissions Standard(s):	15.247 / 15.E / RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

EUT INFORMATION

The following information was collected during the test session(s).

General Description

The EUT is an 802.11a/g compliant wireless LAN radio module which is designed to provide wireless local area networking connectivity. Normally, the EUT would be embedded in various types of mobile and stationary computing devices such as handheld and vehicle mounted data terminals during operation. The EUT was, therefore, placed on a tabletop during emissions testing to simulate the end user environment. The electrical rating of the EUT is 3.3 VDC +/- 5% With typical power consumption of 400 mA (1320mW) while in transmit mode, 180 mA (594mW) while in receive mode and 10 mA (33 mW) while in standby mode.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Summit Data	SDC-CF10AG 802.11a/g	Compact Flash Module	TBP	TWG-SDCCF10AG
Communications	Compact Flash Module			
	with Antenna Connectors			

EUT Antenna (Intentional Radiators Only)

There were three antennas included in the testing:
Laird Centurion, m/n NanoBlade, pcb antenna, 3.8dBi @ 2.45GHz, 5.1dBi @ 5.25GHz, 4.5dBi @ 5.8GHz
Volex, p/n VLX-51004-A, Omni, 2.3dBi @ 2.4GHz, 1.9dBi @ 5GHz
Larson, p/n R380.500.314, Omni, 1.6dBi @ 2.4GHz, 5dBi @ 5GHz

Note: The Volex Omni was used in the 2.4GHz band and the Larson Omni was used in the 5GHz bands. The Laird pcb antenna was also tested for both 2.4GHz and 5GHz.

The antenna connects to the EUT via a non-standard antenna connector, thereby meeting the requirements of FCC 15.203.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer or system.

Elli	ott	EM	IC Test Data
	: Summit Data Communications	Job Number: J	58959
Model	: SDC-CF10AG 802.11a/g Compact Flash Module with	T-Log Number: To	69413
	Antenna Connectors	Account Manger: D	ean Eriksen
Contact	Ron Seide	-	
Emissions Standard(s)	: 15.247 / 15.E / RSS-210	Class: -	
Immunity Standard(s)		Environment: -	
Immunity Standard(s)	Test Configuration The following information was collected during to	#1	
ininunity Standard(s)	Test Configuration The following information was collected during to	#1 the test session(s).	
Manufacturer	Test Configuration	#1 the test session(s).	FCC ID
,	Test Configuration The following information was collected during to Local Support Equipmen	#1 the test session(s).	FCC ID
,	Test Configuration The following information was collected during to Local Support Equipmen	#1 the test session(s). t Serial Number -	FCC ID
,	Test Configuration The following information was collected during to Local Support Equipmen Model Description -	#1 the test session(s). t Serial Number -	FCC ID

Cabling and Ports

Description

2wire

Cable(s)

Shielded or Unshielded

Unshielded

Length(m)

1.5

EUT Operation During Emissions TestsDuring emissions testing the EUT was configured to transmit at the Low, Middle, and High Channel

Connected To

AC Mains

iPAQ Module Port

Port

iPAQ Power

Flash Module

Client:	Summit Data Communications	Job Number:	J68959
Madali	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
Model.	3DC-CF TOAG 602. I Tary Compact Flash Module With Africanna Compectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/5/2008 Config. Used: 1 Test Engineer: Peter Sales Config Change: None Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 7°C

> Rel. Humidity: 78 %

Summary of Results

Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
1a	a	149	Full	Pass	51.1dBμV/m (358.9μV/m) @ 11491.5MHz (-2.9dB)
1b	a	157	Full	Pass	48.8dBμV/m (275.4μV/m) @ 11569.7MHz (-5.2dB)
1c	a	161	Full	Pass	48.4dBμV/m (263.0μV/m) @ 17415.3MHz (-5.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

All tests will be performed in data rate of 54Mbps. Average band edge plots are for reference only, final measurements Note: made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 6.6dB.

~			
Client:	Summit Data Communications	Job Number:	J68959
Madal	SDC CE10AC 902 11a/a Compact Flach Madula with Antonna Connectors	T-Log Number:	T69413
wouei.	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Tx Radiated Spurious Emissions, 30 - 40000 MHz. 5725-5850 MHz Band

Run #1a: Tx Radiated Spurious Emissions, Low Channel @ 5745 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

	1 1	Б.	15 000	1155	I	A ' 11	11 1 1 1	
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11491.470	51.1	V	54.0	-2.9	AVG	88	1.5	
11488.750	49.5	Н	54.0	-4.5	AVG	105	1.5	
17234.600	48.9	V	54.0	-5.1	AVG	164	1.8	
11491.470	58.6	V	74.0	-15.4	PK	88	1.5	
11488.750	56.4	Н	74.0	-17.6	PK	105	1.5	
17234.600	54.3	V	74.0	-19.7	PK	164	1.8	

Run #1b: Tx Radiated Spurious Emissions, Middle Channel @ 5785 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.670	48.8	V	54.0	-5.2	AVG	66	1.0	
17354.140	48.2	V	54.0	-5.8	AVG	149	1.0	
11569.640	46.8	Н	54.0	-7.2	AVG	110	1.6	
11569.670	55.8	V	74.0	-18.2	PK	66	1.0	
17354.140	54.6	V	74.0	-19.4	PK	149	1.0	
11569.640	53.8	Н	74.0	-20.2	PK	110	1.6	

Run #1c: Tx Radiated Spurious Emissions, High Channel @ 5805 MHz, Full Power settting,Laird PCB Antenna with 5.1dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
17415.310	48.4	Н	54.0	-5.6	AVG	25	1.0	
11609.510	44.6	Н	54.0	-9.4	AVG	67	1.0	
11608.750	44.5	V	54.0	-9.5	AVG	49	1.0	
17415.310	53.4	Н	74.0	-20.6	PK	25	1.0	
11608.750	49.4	V	74.0	-24.6	PK	49	1.0	
11609.510	49.1	Н	74.0	-24.9	PK	67	1.0	

Client:	Summit Data Communications	Job Number:	J68959
Madal	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
Model.	3DC-CF TOAG 602. I Tary Compact Flash Module With Africanna Compectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 3/5/2008 Config. Used: 1
Test Engineer: Peter Sales Config Change: None
Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 7 °C

Rel. Humidity: 78 %

Summary of Results

Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
1a	a	149	Full	Pass	52.1dBμV/m (402.7μV/m) @ 11489.9MHz (-1.9dB)
1b	a	157	Full	Pass	48.7dBμV/m (272.3μV/m) @ 11569.8MHz (-5.3dB)
1c	a	161	Full	Pass	48.3dBμV/m (260.0μV/m) @ 17415.0MHz (-5.7dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Note: All tests will be performed in data rate of 54Mbps. Average band edge plots are for reference only, final measurements made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 6.6dB.

·			
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC CE10AC 902 11a/a Compact Flach Modulo with Antonna Connectors	T-Log Number:	T69413
	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Tx Radiated Spurious Emissions, 30 - 40000 MHz. 5725-5850 MHz Band

Run #1a: Tx Radiated Spurious Emissions, Low Channel @ 5745 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11489.890	52.1	V	54.0	-1.9	AVG	97	1.6	
17234.660	48.9	V	54.0	-5.1	AVG	165	1.0	
11489.500	45.7	Н	54.0	-8.3	AVG	112	1.0	
11489.890	59.7	V	74.0	-14.3	PK	97	1.6	
17234.660	55.2	V	74.0	-18.8	PK	165	1.0	
11489.500	52.2	Н	74.0	-21.8	PK	112	1.0	

Run #1b: Tx Radiated Spurious Emissions, Middle Channel @ 5785 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.750	48.7	V	54.0	-5.3	AVG	59	1.1	
17354.460	48.1	V	54.0	-5.9	AVG	17	1.0	
11568.780	44.6	Н	54.0	-9.4	AVG	100	1.0	
11569.750	55.3	V	74.0	-18.7	PK	59	1.1	
17354.460	53.6	V	74.0	-20.4	PK	17	1.0	
11568.780	50.4	Н	74.0	-23.6	PK	100	1.0	

Run #1c: Tx Radiated Spurious Emissions, High Channel @ 5805 MHz, Full Power settting, Flat Omni Antenna with 5.0dBi, Rate = 54Mbps

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
17414.950	48.3	Н	54.0	-5.7	AVG	155	1.0	
11609.670	44.6	Н	54.0	-9.4	AVG	281	1.0	
11611.230	44.5	V	54.0	-9.5	AVG	255	1.0	
17414.950	53.9	Н	74.0	-20.1	PK	155	1.0	
11611.230	50.0	V	74.0	-24.0	PK	255	1.0	
11609.670	48.9	Н	74.0	-25.1	PK	281	1.0	

	EIIIOTT	EI//IC	C Test Data
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
Model.	3DC-CF TOAG 602. Frank Compact Frash Module With Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		

Conducted Emissions - Power Ports

Class:

Test Specific Details

Standard: 15.247 / 15.E / RSS-210

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 1/28/2008 22:01 Config. Used: 1
Test Engineer: Peter Sales Config Change: None

Test Location: SVOATS #2 EUT Voltage: 120V/60Hz, 230V/50Hz

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions: Temperature: 4 °C

Rel. Humidity: 76 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN 55022 B	Pass	43.1dBµV @ 0.215MHz
				(-19.9dB)
2	CE, AC Power,120V/60Hz	EN 55022 B	Pass	55.6dBµV @ 0.167MHz
				(-9.5dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz Continued Next Page...

		iot	τ				<i>EIVI</i>	C Test Da
		a Communica					Job Number:	J68959
Madal	CDC CE10	NC 000 110/a	Compact Fl	Connectors	T-Log Number:	T69413		
woder:	SDC-CF 10A	4G 802.11a/g	Compact Fi	a Connectors —	Account Manager:	Dean Eriksen		
Contact:	Ron Seide							
Standard:	15.247 / 15.	E / RSS-210					Class	-
	ı					<u> </u>		I.
Frequency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.215	43.1	Line 1	63.0	-19.9	QP			
0.153	44.9	Neutral	65.8	-20.9	QP			
0.157	44.5	Neutral	65.6	-21.1	QP			
0.162	43.9	Neutral	65.4	-21.5	QP			
0.159	44.0	Line 1	65.5	-21.5	QP			
0.173	42.5	Line 1	64.8	-22.3	QP			
0.215	21.0	Line 1	53.0	-32.0	AVG			
0.157	17.6	Neutral	55.6	-38.0	AVG			
0.153	17.7	Neutral	55.8	-38.1	AVG			
0.159	17.2	Line 1	55.5	-38.3	AVG			
0.162	17.0	Neutral	55.4	-38.4	AVG			
0.173	16.2	Line 1	54.8	-38.6	AVG			

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Coninued Next Page...

C	EII	iot	t				EM	C Test Dat
		a Communica			Job Number:	J68959		
Madal	CDC CE10	NC 000 11a/a	Compost Fl	Campastara	T-Log Number:	T69413		
woder:	SDC-CF 10#	AG 802.11a/g	Compact Fi	a Connectors —	Account Manager:	Dean Eriksen		
Contact:	Ron Seide							
		.E / RSS-210					Class:	-
Frequency	Level	AC	EN55	022 B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.167	55.6	Line 1	65.1	-9.5	QP			
0.165	55.7	Neutral	65.2	-9.5	QP			
0.169	54.1	Neutral	65.0	-10.9	QP			
0.180	53.4	Line 1	64.5	-11.1	QP			
0.184	52.6	Neutral	64.3	-11.7	QP			
0.172	53.1	Line 1	64.9	-11.8	QP			
0.169	28.7	Neutral	55.0	-26.3	AVG			
0.165	28.7	Neutral	55.2	-26.5	AVG			
0.167	28.1	Line 1	55.1	-27.0	AVG			
0.184	27.1	Neutral	54.3	-27.2	AVG			
0.172	27.6	Line 1	54.9	-27.3	AVG			
0.180	27.0	Line 1	54.5	-27.5	AVG			

	Elliott	EMC Test Data		
Client:	Summit Data Communications	Job Number:	J68959	
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413	
Model.	Connectors	Account Manager:	Dean Eriksen	
Contact:	Ron Seide			
Standard:	15.247 / 15.E / RSS-210	Class:	N/A	

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/14/2007 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None

Test Location: SVOATS # 2 EUT Voltage: Powered from Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 11.7 °C

Rel. Humidity: 56 %

Summary of Results

Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
1a	b	1	Full	Pass	52.9dBμV/m (441.6μV/m) @
Id	D	I	Full	Pa55	4824.3MHz (-1.1dB)
1b	b	4	Full	Pass	52.4dBµV/m (416.9µV/m) @
TD	D	6	Full	Pa55	4874.0MHz (-1.6dB)
1c	b	b 11 Full Pass		Pass	53.2dBμV/m (457.1μV/m) @
IC.	D	11	Full	Pa55	7385.3MHz (-0.8dB)
2a	a	1	Full	Pass	52.4dBµV/m (416.9µV/m) @
Zd	g	I	Full	Pa55	2390.0MHz (-1.6dB)
2h	a	4	Full	Pass	44.6dBμV/m (169.8μV/m) @
2b	g 6 Full		Pass	12172.7MHz (-9.4dB)	
20	a	11	Full	Dace	51.2dBµV/m (363.1µV/m) @
2c	g	11	Full	Pass	2483.6MHz (-2.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	EI	lic	ott	J				EM	IC Test Da
			munications				J	lob Number:	J68959
11- dol.	SDC-CF10	0AG 802		pact Flash i	Module with A		T-L	og Number:	T69413
Model:	Connector		J	Γ.					Dean Eriksen
Contact:	Ron Seide	ر 							
	15.247 / 1		S-210					Class:	N/A
		6, Larsor				Data Rate 1	·	- (
Note:		•			•	•	• .		ice only, final level by 5.6dB.
Note:	Horizontal	measure	ements wer	e not taken	due to previo	ous test that s	showed vert	tical measur	ements were higher.
Fundamen	tal Signal	Field Str	renath:						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
		- ·		-	AVG	92	1.7		
2413.250	99.0	V			A) (C		4.4		
	99.0 97.3	V H	-	-	AVG	210	1.1		
2413.250 2408.420	97.3	Н	- @ 3m in 100	- 7kHz RBW:			<u> 1.1</u> 	<u> </u>	
2413.250 2408.420 Fundame	97.3 ntal emission	H on level (OkHz RBW:	99.0	dBμV/m]	dBc (Peak p	lower measurement)
2413.250 2408.420 Fundame	97.3 ntal emission	H on level (- @ 3m in 100 ide of restric		99.0]	dBc (Peak p	oower measurement)
2413.250 2408.420 Fundame Limit	97.3 ntal emission of the for emission of the second of t	H on level (ions outsi	ide of restric	cted bands:	99.0 (79 (dBμV/m dBμV/m	Limit is -20		nower measurement)
2413.250 2408.420 Fundamed Limit Band Edge Frequency	97.3 ntal emission to for emission e Signal Field Level	on level of ions outsine eld Stren	ide of restrices of the strice	cted bands: / 15.247	99.0 (79 (dBμV/m dBμV/m	Limit is -20 Height	dBc (Peak p	oower measurement)
2413.250 2408.420 Fundamer Limit Band Edge Frequency MHz	97.3 ntal emissi t for emissi e Signal Fie Level dΒμV/m	on level of ons outsing the one of the outsing the out	ide of restrice ngth 15.209 i Limit	/ 15.247 Margin	99.0 o 79 o Detector Pk/QP/Avg	dBμV/m dBμV/m Azimuth degrees	Limit is -20 Height meters		oower measurement)
2413.250 2408.420 Fundame Limit Band Edge Frequency MHz 2389.330	97.3 ntal emissic tor emissic Signal Field Level dBµV/m 45.8	H on level of ons outsi eld Stren Pol v/h V	ngth 15.209 Limit 54.0	/ 15.247 Margin -8.2	99.0 (79 c) Detector Pk/QP/Avg AVG	dBμV/m dBμV/m Azimuth degrees 92	Limit is -20 Height meters 1.0		oower measurement)
2413.250 2408.420 Fundamer Limit Band Edge Frequency MHz 2389.330 2342.430	97.3 ntal emission to for emission e Signal Field Level dBμV/m 45.8 43.8	H on level of ons outsi eld Stren Pol V/h V H	ngth 15.209 Limit 54.0 54.0	/ 15.247 Margin -8.2 -10.2	99.0 (79 (79 (79 (79 (79 (79 (79 (79 (79 (79	dBμV/m dBμV/m Azimuth degrees 92 210	Limit is -20 Height meters 1.0 1.0		oower measurement)
2413.250 2408.420 Fundamer Limit Band Edge Frequency MHz 2389.330 2342.430 2389.260	97.3 ntal emission to remission the signal Figure 1 dB \(\text{WV/m} \) 45.8 43.8 40.8	on level of ons outside on soutside on soutside on soutside of street on soutside on souts	ngth 15.209 / Limit 54.0 54.0	/ 15.247 Margin -8.2 -10.2 -13.2	99.0 o 79 o Detector Pk/QP/Avg AVG AVG AVG	dBμV/m dBμV/m Azimuth degrees 92 210 210	Height meters 1.0 1.0		oower measurement)
Eundamer Limit Band Edge Frequency MHz 2389.330 2342.430 2389.260 2389.330	97.3 ntal emissic tor emissic Signal Field Level dBμV/m 45.8 43.8 40.8 58.0	on level of tons outside on soutside of the strength of the st	ngth 15.209 / Limit 54.0 54.0 54.0 74.0	/ 15.247 Margin -8.2 -10.2 -13.2 -16.0	Detector Pk/QP/Avg AVG AVG AVG PK	dBμV/m dBμV/m Azimuth degrees 92 210 210 92	Height meters 1.0 1.0 1.0 1.0		oower measurement)
2413.250 2408.420 Fundamer Limit Band Edge Frequency MHz 2389.330 2342.430 2389.260	97.3 ntal emission to remission the signal Figure 1 dB \(\text{WV/m} \) 45.8 43.8 40.8	on level of ons outside on soutside on soutside on soutside of street on soutside on souts	ngth 15.209 / Limit 54.0 54.0	/ 15.247 Margin -8.2 -10.2 -13.2	99.0 o 79 o Detector Pk/QP/Avg AVG AVG AVG	dBμV/m dBμV/m Azimuth degrees 92 210 210	Height meters 1.0 1.0		nower measurement)

Cliont	Summit Data Communications	Job Number:	140050
		Job Number.	700939
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouei.	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run # 1c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11b

High Channel @ 2462 MHz,

Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 11 Mbps

Fundamental Signal Field Strength:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2465.670	97.9	V	-	-	AVG	90	1.0	
2460.330	94.8	Н	-	-	AVG	203	1.0	

Fundamental emission level @ 3m in 100kHz RBW:	97.9 dBμV/m	
Limit for emissions outside of restricted bands:	77.9 dB _µ V/m	Limit is -20dBc (Peak power measurement)

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2484.780	42.8	V	54.0	-11.2	AVG	90	1.0	
2484.760	37.9	Н	54.0	-16.1	AVG	203	1.0	
2484.780	52.6	V	74.0	-21.4	PK	90	1.0	
2484.760	44.2	Н	74.0	-29.8	PK	203	1.0	

\sim			
Client:	Summit Data Communications	Job Number:	J68959
Madal	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wodei.	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #2c: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11g

High Channel @ 2462 MHz,

Power Setting: 100%, Larson PCB Antenna with 3.8 dBi Gain, Data Rate 54 Mbps

Fundamental Signal Field Strength:

. anaamon	ar Orginar		ongun					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2460.770	89.4	V	-	-	PK	92	1.8	
2460.760	90.2	Н	-	-	PK	17	1.0	

Fundamental emission level @ 3m in 100kHz RBW:	90.2 dBμV/m	
Limit for emissions outside of restricted bands:	70.2 dBμV/m	Limit is -20dBc (Peak power measurement)

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.570	51.2	V	54.0	-2.8	AVG	103	1.0	
2483.500	49.5	Н	54.0	-4.5	AVG	9	1.0	
2483.570	64.5	V	74.0	-9.5	PK	103	1.0	
2483.500	62.1	Н	74.0	-11.9	PK	9	1.0	

	Elliott	EM	C Test Data
Client:	Summit Data Communications	Job Number:	J68959
Madali	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
Model:	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Standard: 15.247 / 15.E / RSS-210

The objective of this test session is to perform final qualification testing of the EUT with respect to the

Class: N/A

specification listed above.

Date of Test: 11/19/2007 Config. Used: 1 Test Engineer: Joseph Cadigal/Rafael Varelas Config Change: None

Test Location: SVOATS #1 EUT Voltage: Powered from Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 17.2 °C

Rel. Humidity: 70 %

Summary of Results

Run #1	TX Mode	Channel	Power Setting	Pass/Fail	Margin
1a	b	1	Full	Pass	52.2dBµV/m (407.4µV/m) @
Id	D	I	ruii Pass		2387.5MHz (-1.8dB)
1b	b	6	Full	Pass	52.3dBµV/m (412.1µV/m) @
TD	D	6	Full	Pa55	4874.0MHz (-1.7dB)
1c	b	11	Full	Pass	53.8dBµV/m (489.8µV/m) @
TC	D II Full Pass	Pass	4924.0MHz (-0.2dB)		
2a	a	1	Full	Pass	51.9dBµV/m (393.6µV/m) @
Zd	g	I	ı uli	Pass	2389.4MHz (-2.1dB)
2b	a	4	Full	Pass	44.0dBµV/m (158.5µV/m) @
20	g	6	i uli	Pass	7310.7MHz (-10.0dB)
2c	a	11	Full	Docc	52.0dBµV/m (398.1µV/m) @
20	g	11	i uli	Pass	2483.5MHz (-2.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Ambient Conditions: Temperature: 17 °C

Rel. Humidity: 50 %

Note: All tests will be performed in data rate of 11Mbps. Average band edge plots are for reference only, final measurements made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 5.6dB.

Note: Horizontal measurements were not taken due to previous test that showed vertical measurements were higher.

Run #1a: Low Channel @ 2412 MHz

Power Setting: 100%

Fundamental Signal Field Strength:

	and an analysis of the state of									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2410.300	110.0	V	-	-	AVG	5	1.3	11Mbs		
2410.300	112.4	V	-	-	PK	5	1.3	11Mbs		

Fundamental emission level @ 3m in 100kHz RBW: 113.3 dBμV/m
Limit for emissions outside of restricted bands: 93.3 dBμV/m Limit is -20dBc (Peak power measurement)

			ott						IC Test Da
			munications			lob Number:	J68959		
Model:	SDC-CF1	0AG 802	.11a/g Com	pact Flash I	T-L	og Number:	T69413		
	Connector				Accou	nt Manager:	Dean Eriksen		
Contact: Ron Seide									
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
	Center Cha ting: 100%		2437 MHz						
Fundame	ntal emissi	on level	@ 3m in 100)kHz RBW:	104	dBμV/m]		
Limi	t for emissi	ons outs	ide of restric	ted bands:		dBμV/m	Limit is -20)dBc (Peak p	oower measurement)
	Linual	Dal	15 200	115047	l Datastas I	٨ نام	l llaimht	C	
requency MHz	Level dBµV/m	Pol V/H	15.209 / Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
874.020	52.3	V/H	54.0	-1.7	AVG	uegrees 9	1.3		
309.770	49.5	V	54.0	-4.5	AVG	347	1.3		
874.020	58.8	V	74.0	-15.2	PK	9	1.3		
309.770	54.4	V	74.0	-19.6	PK	347	1.3		

~			
Client:	Summit Data Communications	Job Number:	J68959
Madal	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wouei.	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1c: High Channel @ 2462 MHz

Power Setting: 100%

Fundamental Signal Field Strength:

	antamornal orginal riola out origin									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2464.500	103.7	V	-	-	AVG	78	1.3			
2464.500	112.3	V	-	-	PK	78	1.3			

Fundamental emission level @ 3m in 100kHz RBW:	107 dBμV/m
Limit for emissions outside of restricted bands:	87 dBuV/m

Limit is -20dBc (Peak power measurement)

Vertical - Average

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

V			
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna	T-Log Number:	T69413
Model.	Connectors Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 30 - 25000 MHz. Operating Mode: 802.11g

Ambient Conditions: Temperature: 8 °C

Rel. Humidity: 71 %

Note:	All tests will be performed in data rate of 54Mbps. Average band edge plots are for reference only, final
note.	measurements made with VB=1khz to avoid desensitization at 10Hz which reduced signal level by 6.6dB.
Note:	Horizontal measurements were not taken due to previous test that showed vertical measurements were higher.

Run #2a: Low Channel @ 2412 MHz

Power Setting: 100%

Fundamental Signal Field Strength:

i unuamen	didamental signal i leid strength.										
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
2410.070	101.7	V	-	•	AVG	79	1.3	54Mbs			
2410.070	110.6	V	-	-	PK	79	1.3	54Mbs			

Fundamental emission level @ 3m in 100kHz RBW:	101.3 dBμV/m	
Limit for emissions outside of restricted bands:	81.3 dB _µ V/m	Limit is -20dBc (Peak power measurement)

Danu Luge	Signairi	ciu Sii ci	igui					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2389.430	51.9	V	54.0	-2.1	Avg	79	1.3	
2389.580	64.5	V	74.0	-9.5	PK	79	1.3	

Other Spurious Emissions

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7235.870	43.4	V	54.0	-10.6	AVG	286	1.3	
4822.750	41.3	V	54.0	-12.7	AVG	176	1.0	
7235.870	50.1	V	74.0	-23.9	PK	286	1.3	
4822.750	48.8	V	74.0	-25.2	PK	176	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the level of the fundamental and measured in 100kHz.

SDO			tt				J	ob Number:	J68959
				pact Flash I		og Number:			
MUUUDI	nnectors		J				Dean Eriksen		
Contact: Ror									
Standard: 15.2	andard: 15.247 / 15.E / RSS-210								N/A
un #2b: Cent ower Setting:	100%			Nata DDW.	101.1	ID Mar	1		
Fundamental (<i>a</i> e of restrice			dBμV/m dBμV/m	l imit is -20	dBc (Peak r	oower measurement)
Limit 101	CITIISSIO	no outo	de or resure	nea banas.	01.1	ασμνητί	Limit is 20	abe (i cak p	ower measurementy
	evel	Pol	15.209		Detector	Azimuth	Height	Comments	
	μV/m 14.0	V/H V	Limit 54.0	Margin -10.0	Pk/QP/Avg AVG	degrees 331	meters 1.0		
	12.6	V	54.0	-10.0	AVG	185	1.0		
7310.670 5	8.0	V	74.0	-23.2	PK	331	1.0		
873.960 4	19.7	V	74.0	-24.3	PK	185	1.1		

~			
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #2c: High Channel @ 2462 MHz

Power Setting: 100%

Fundamental Signal Field Strength:

i undamental Signal Field Strength.								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2460.400	93.2	V	-	-	AVG	185	1.0	
2460.400	108.7	V	-	-	PK	185	1.0	

Fundamental emission level @ 3m in 100kHz RBW:	99.7 dBμV/m
Limit for emissions outside of restricted bands:	79.7 dBuV/m

Limit is -20dBc (Peak power measurement)

Vertical - Average

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

	Elliott	EMC Test Data				
Client:	Summit Data Communications	Job Number:	J68959			
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna	T-Log Number:	T69413			
Model.	Connectors Connectors	Account Manager:	Dean Eriksen			
Contact:	Ron Seide					
Standard:	15.247 / 15.E / RSS-210	Class:	N/A			

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 11/27/2007 & 12/19/07 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None

Test Location: SVOATS #2 EUT Voltage: Powered from Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 11.7 °C

Rel. Humidity: 63 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 10000 MHz	RSS-GEN	Doce	41.4dBμV/m (117.5μV/m) @
i (ouz. i ib ivioue)	Spurious Emissions	KSS-GEN	Pass	2187.3MHz (-12.6dB)
2 (002 11a Mada)	RE, 30 - 10000 MHz	RSS-GEN	Pass	38.1dBμV/m (80.4μV/m) @
2 (802.11g Mode)	Spurious Emissions	KSS-GEN	Pa55	9724.3MHz (-15.9dB)
3 (802.11a - 5785	RE, 30 - 16000 MHz -	RSS-GEN	Doce	38.2dBµV/m (81.3µV/m) @
MHz)	Spurious Emissions	KSS-GEN	Pass	11569.3MHz (-15.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	EI	lic	ott	1				EM	IC Test
			munications		Job Number: J68959				
	SDC-CF10	OAG 802	.11a/g Com	T-L	og Number:	T69413			
Model:	Connector	S	Ü	Accou	nt Manager:	Dean Eriksen			
Contact:	Ron Seide	!							
			S-210		Class:	N/A			
	Standard: 15.247 / 15.E / RSS-210 un # 1: Rx Mode Radiated Spurious Emissions, 30 - 10000 MHz. Operatir								1
			.3dBi Gain			iz. Operatiii	g wode. ot	72.110	
	annel @ 24			Data Nato	11 Mbps				
	ious Emis		-						
requency	Level	Pol	RSS	-GEN	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2187.330	41.4	Н	54.0	-12.6	AVG	325	1.5		
1287.500	38.0	V	54.0	-16.0	AVG	317	1.0		
9676.500	36.9	Н	54.0	-17.1	AVG	101	1.0		
3937.330	36.7	Н	54.0	-17.3	AVG	114	1.0		
9643.000	36.5	V	54.0	-17.5	AVG	29	1.0		
7187.000	34.4	V	54.0	-19.6	AVG	251	1.0		
7163.500	34.0	<u>H</u>	54.0	-20.0	AVG	146	1.0		
2187.500	34.0	V	54.0	-20.0	AVG	26	1.0		
3497.000	32.5	V	54.0	-21.5	AVG	150	1.0		
1970.000	30.5	H	54.0	-23.5	AVG	150	2.0		
1863.500	30.5 48.3	V H	54.0 74.0	-23.5 -25.7	AVG PK	217 101	1.0		
9676.500 3937.330	48.1	<u>п</u> Н	74.0	-25.7 -25.9	PK PK	114	1.0 1.0		
9643.000	48.1	V	74.0	-25.9	PK	29	1.0		
1013.917	28.0	H	54.0	-26.0	AVG	306	1.0		
7187.000	46.2	V	74.0	-27.8	PK	251	1.0		
7163.500	45.5	H	74.0	-28.5	PK	146	1.0		
2187.330	43.4	Н	74.0	-30.6	PK	325	1.5		
1970.000	42.8	Н	74.0	-31.2	PK	150	2.0		
3497.000	42.2	V	74.0	-31.8	PK	0	1.0		
1863.500	41.8	V	74.0	-32.2	PK	217	1.0		
2187.500	40.3	V	74.0	-33.7	PK	26	1.0		
1013.917	33.5	Н	74.0	-40.5	PK	306	1.0		
1287.500	33.0	V	74.0	-41.0	PK	317	1.0		
30.000	25.3	Н	40.0	-14.7	QP	0	1.0		
30.000		V	40.0	-15.0	QP	360	1.0		
150.000		V	43.5	-17.5	QP	360	1.0		
290.000		H V	46.0	-19.0	QP QP	330	1.0	1	
320.000 250.000		V H	46.0 46.0	-19.0 20.0	QP QP	360 360	1.0 1.0		
150.000		<u>н</u> Н	46.0	-20.0 -20.1	QP QP	0	1.0		
708.000		V	46.0	-20.1	QP	360	1.0		
250.000	21.0	V	46.0	-21.3	QP	0	1.0		

the level of the fundamental and measured in 100kHz.

	Summit Da	ata Com	t		,	Job Number:	J68959		
Model:			.11a/g Com	npact Flash	Module with A	Antenna		og Number:	
	Connector				Accou	ınt Manager:	Dean Eriksen		
	: Ron Seide								
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
Round Om Center Cha Other Spur	nni Antenn annel @ 24 ious Emis	a with 2 437 MHz sions	.3dBi Gain	, Data Rate					
requency		Pol		-GEN	Detector	Azimuth	Height	Comments	
MHz 9724.33	dBμV/m 38.1	v/h V	Limit 54.0	Margin -15.9	Pk/QP/Avg AVG	degrees 46	meters 1.0		
12152.33	38.0	H	54.0	-16.0	AVG	0	1.0		
12144.16	37.9	V	54.0	-16.1	AVG	0	1.0		
9724.25	36.7	Н	54.0	-17.3	AVG	130	1.0		
4851.58	35.3	Н	54.0	-18.7	AVG	131	1.0		
7322.17	33.8	Н	54.0	-20.2	AVG	2	1.0		
7308.33	33.4	V	54.0	-20.6	AVG	229	1.0		
4851.58	51.5	Н	74.0	-22.5	PK	131	1.0		
4845.33	31.4	V	54.0	-22.6	AVG	356	2.4		
12144.16	49.4	V	74.0	-24.6	PK	0	1.0		
12152.33	49.4	Н	74.0	-24.6	PK	0	1.0		
9724.33 9724.25	48.5 48.3	V H	74.0 74.0	-25.5 -25.7	PK PK	46	1.0 1.0		
4845.33	48.2	V	74.0	-25.7	PK	130 356	2.4		
7322.17	45.3	H	74.0	-28.7	PK	2	1.0		
7308.33	44.1	V	74.0	-29.9	PK	229	1.0		

~			
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run # 3: Rx Mode Radiated Spurious Emissions, 30 - 16000 MHz. Operating Mode: 802.11a Omni Antenna with 5dBi Gain, Data Rate 54 Mbps

Center Channel @ 5785 MHz

Date of Test: 1/22/2008
Test Engineer: Rafael varelas
Test Location: SVOATS #1

Config. Used: 1
Config Change: None

EUT Voltage: Powered from Host System

Other Spurious Emissions

Frequency	Level	Pol	RSS-	-GEN	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.27	38.2	Н	54.0	-15.8	AVG	157	1.8	
11571.15	38.1	V	54.0	-15.9	AVG	262	1.0	
5785.63	34.6	V	54.0	-19.4	AVG	28	1.0	
5785.21	33.2	Н	54.0	-20.8	AVG	46	1.0	
11571.15	50.1	V	74.0	-23.9	PK	262	1.0	
11569.27	49.5	Н	74.0	-24.5	PK	157	1.8	
5785.63	46.9	V	74.0	-27.1	PK	28	1.0	
5785.21	44.5	Н	74.0	-29.5	PK	46	1.0	

	Elliott	EM	C Test Data
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
wodei.	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 12/19/2007 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None

Test Location: SVOATS # 2 EUT Voltage: Powered form Host System

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 14.4 °C

Rel. Humidity: 53 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 10000 MHz - Spurious Emissions	RSS-GEN	Pass	37.7dBµV/m @ 12180.5MHz (-16.3dB)
2 (802.11g Mode)	RE, 30 - 10000 MHz - Spurious Emissions	RSS-GEN	Pass	37.9dBµV/m @ 12163.1MHz (-16.1dB)
3 (802.11a - 5785 MHz)	RE, 30 - 16000 MHz - Spurious Emissions	RSS-GEN	Pass	38.2dBµV/m (81.3µV/m) @ 11568.5MHz (-15.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

			t					Job Number:	J68959
Madal	SDC-CF10	0AG 802	.11a/g Com	pact Flash	Antenna	T-Log Number: T69413			
Model:	Connector	S	-			Accou	ınt Manager:	Dean Eriksen	
Contact:	Ron Seide	;							
Standard:	15.247 / 1	5.E / RS	S-210					Class:	N/A
				nissions 3	30 - 10000 MI	Hz. Operatin	a Mode: 8		I .
				Data Rate			J		
	annel @ 2				-1				
ther Spui	rious Emis	sions							
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
12180.50	37.7	V	54.0	-16.3	AVG	0	1.0		
12167.33	37.6	Н	54.0	-16.4	AVG	0	1.0		
9728.83	36.6	V	54.0	-17.4	AVG	184	1.0		
9736.92	36.2	Н	54.0	-17.8	AVG	29	1.0		
4851.50	34.5	Н	54.0	-19.5	AVG	136	1.0		
7320.25	33.7	Н	54.0	-20.3	AVG	151	1.0		
7320.42	33.7	V	54.0	-20.3	AVG	202	1.0		
4851.00	31.2	V	54.0	-22.8	AVG	37	1.0		
12180.50	49.3	V	74.0	-24.7	PK	0	1.0		
12167.33	49.2	Н	74.0	-24.8	PK	0	1.0		
4851.50	48.5	Н	74.0	-25.5	PK	136	1.0		
9728.83	48.5	V	74.0	-25.5	PK	184	1.0		
0724 02	47.4	Н	74.0	-26.6	PK	29	1.0		
9736.92	45.5	Н	74.0	-28.5	PK	151	1.0		
7320.25	1 1 2	V	74.0 74.0	-28.8	PK PK	202	1.0		
	45.2 44.9	V		-29.1		37	1.0	1	

Client:			ott					Job Number:	J68959	
	SDC-CF1	0AG 802	.11a/g Com	pact Flash	Module with A	Antenna	T-Log Number: T69413			
Model:	Model: Connectors								Dean Eriksen	
Contact	Ron Seide	7								
	15.247 / 1		S-210				Class:	N/A		
				niccione ?	30 - 10000 MH	lz Operatin	u Mode. 81		1	
			8 dBi Gain,			оро.а	9	9		
	annel @ 2			Data Mate	o i mopo					
0011101 011	uor = 2	.072	-							
ther Spu	rious Emis	sions								
requency		Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
12163.10	37.9	Н	54.0	-16.1	AVG	128	1.0			
12142.42	37.7	V	54.0	-16.3	AVG	14	1.0			
9727.17	36.5	Н	54.0	-17.5	AVG	58	1.0			
9723.17	36.3	V	54.0	-17.7	AVG	0	1.0			
4851.25	35.3	Н	54.0	-18.7	AVG	130	1.0			
7330.83	33.7	Н	54.0	-20.3	AVG	0	1.0			
7331.00	33.6	V	54.0	-20.4	AVG	237	1.0			
4851.42	33.0	V	54.0	-21.0	AVG	196	1.9			
12163.10	50.2	Н	74.0	-23.8	PK	128	1.0			
4851.42	49.5	V	74.0	-24.5	PK	196	1.9			
4851.25	48.9	Н	74.0	-25.1	PK	130	1.0			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48.7	V	74.0	-25.3	PK	14	1.0			
12142.42	48.2	V	74.0	-25.8	PK	0	1.0			
9723.17	48.1	Н	74.0	-25.9	PK	58	1.0			
9723.17 9727.17		Н	74.0	-28.1	PK	237	1.0 1.0			
9723.17	45.9 45.0	V	74.0	-29.0	PK					

~			
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run # 3: Rx Mode Radiated Spurious Emissions, 30 - 16000 MHz. Operating Mode: 802.11a Laird Antenna with 5dBi Gain, Data Rate 54 Mbps

Center Channel @ 5785 MHz

Date of Test: 1/22/2008 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None

Test Location: SVOATS #1 EUT Voltage: Powered from Host System

Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11568.50	38.2	Н	54.0	-15.8	AVG	255	1.3	
11568.86	38.1	V	54.0	-15.9	AVG	146	1.0	
5786.25	33.2	Н	54.0	-20.8	AVG	167	1.2	
5784.14	32.9	V	54.0	-21.1	AVG	8	1.0	
11568.50	49.9	Н	74.0	-24.1	PK	255	1.3	
11568.86	49.6	V	74.0	-24.4	PK	146	1.0	
5786.25	45.9	Н	74.0	-28.1	PK	167	1.2	
5784.14	43.8	V	74.0	-30.2	PK	8	1.0	

	Elliott	EM	C Test Data
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors -	T-Log Number:	T69413
wouei.	3DC-CF TOAG 602. I Tary Compact Flash Module with Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions

Class: N/A

Test Specific Details

Standard: 15.247 / 15.E / RSS-210

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/28/2008 Config. Used: 1 Config Change: None Test Engineer: Rafael Varelas Host Unit Voltage 120V/60Hz Test Location: Fremont Chamber #4

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18.6 °C

Rel. Humidity: 41 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	15.6 dBm (36.3 mW)
2	6dB Bandwidth	15.247(a)	Pass	16.5 MHz
2	99% Bandwidth	RSS GEN	-	17.5 MHz
3	Power spectral Density (PSD)	15.247(d)	Pass	-8.3 dBm/3kHz
4	Spurious emissions	15.247(b)	Pass	More than 20dB below limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
woder:	3DC-CF 10AG 602.11a/g Compact Flash Module With Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	rrequency (MHZ)	(dBm) 1	mW	Gain (dBi)	Kesuii	dBm	W	(dBm) ³	mW
Max	5745	15.6	36.3	5.0	Pass	20.6	0.115	7.5	5.6
Max	5785	14.6	28.6	5.0	Pass	19.6	0.091	5.3	3.4
Max	5805	15.3	34.0	5.0	Pass	20.3	0.108	6.0	4.0

Output power measured using a spectrum analyzer (see plots below):

RBW=1MHz, VB=3 MHz, sample detector, max hold for at least 60 seconds (transmitted signal was not continuous) and power integration over 50MHz

Note 2: Power setting - the software power setting used during testing, included for reference only.

Run #2: Signal Bandwidth

Power	Eroguanov (MUz)	Resolution	Bandwid	lth (MHz)
Setting	Frequency (MHz)	Bandwidth	6dB	99%
Max	5745	1.0MHz	16.5	17.5
Max	5785	1.0MHz	16.4	17.5
Max	5805	1.0MHz	16.4	17.5

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
woder:	3DC-CF 10AG 602.11a/g Compact Flash Module With Africanna Connections	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #3: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	Frequency (MHZ)	(dBm/3kHz) Note 1	dBm/3kHz	
Max	5744.97	-12.3	8.0	Pass
Max	5784.98	-14.5	8.0	Pass
Max	5804.98	-8.3	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

\sim			
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC CE10AC 902 11a/a Compact Flach Madula with Antonna Connectors	T-Log Number:	T69413
woder:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
5745	-20dBc	Pass
5785	-20dBc	Pass
5805	-20dBc	Pass

Plots for low channel, power setting(s) = Max

~			
Client:	Summit Data Communications	Job Number:	J68959
Model	SDC CE10AC 902 11a/a Compact Flach Modulo with Antonna Connectors	T-Log Number:	T69413
woder:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Plots for low channel, power setting(s) = Max

Plots for low channel, power setting(s) = Max

Client:	Summit Data Communications	Job Number:	J68959
Model	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
woder:	3DC-CF TOAG 602. Frank Compact Frash Module With Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11g)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/14/2008 Config. Used: 1 Test Engineer: Mehran Birgani Config Change: None

Test Location: Chamber #2 **EUT Voltage: Power from host**

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 42 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	24.1dBm (258.2mW)
2	6dB Bandwidth	15.247(a)	Pass	16.5 MHz
2	99% Bandwidth	RSS GEN	-	17.2 MHz
3	Power spectral Density (PSD)	15.247(d)	Pass	-10.9 dBm/3kHz
4	Spurious emissions	15.247(b)	Pass	More than 20dB below the limit.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	SDC-CF TOAG 602. Frank Compact Flash Module with Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output	Power	Antenna	Result	EIRP	Note 2	Output	Power
Setting ²	riequency (Mnz)	(dBm) 1	mW	Gain (dBi)	Kesuii	dBm	W	(dBm) ³	mW
Max	2412	24.1	258.2	3.8	Pass	27.9	0.619	10.7	11.7
Max	2437	23.7	234.4	3.8	Pass	27.5	0.562	10.8	12.0
Max	2462	23.2	208.4	3.8	Pass	27.0	0.500	10.9	12.3

	Output power measured using a spectrum analyzer (see plots below):
Note 1:	RBW=1MHz, VB=3 MHz, peak detector, max hold (transmitted signal was not continuous) and power integration over 50
	MHz. The output power limit is 30dBm.
Note 2:	Power setting - the software power setting used during testing, included for reference only.
Note 3:	Power measured using average power sensor and is included for reference only.

Run #2: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwidth (MHz)	
Setting	rrequericy (Miriz)	Bandwidth	6dB	99%
Max	2412	1MHz	16.5	17.1
Max	2437	1MHz	16.6	17.2
Max	2462	1MHz	16.5	17.1

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Elliott

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	SDC-CF TOAG 602. Frank Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #3: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	rrequericy (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
Max	2412	-10.9	8.0	Pass
Max	2437	-10.9	8.0	Pass
Max	2462	-11.4	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

Elliott

EMC Test Data

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC CE10AC 902 11a/a Compact Flack Modulo with Antonna Connectors	T-Log Number:	T69413
	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel, power setting(s) = Max

Plots for center channel, power setting(s) = Max

Client:	Summit Data Communications	Job Number:	J68959
Madalı	SDC CE10AC 902 11a/a Compact Flach Madula with Antonna Connectors	T-Log Number:	T69413
woder:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Plots for high channel, power setting(s) = Max

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	SDC-CF TOAG 602. Frang Compact Frash Module With Africanna Connections	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions (802.11b)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/15/2008 Config. Used: 1 Config Change: None Test Engineer: J. Caizzi & M. Birgani

Test Location: Chamber #2 **EUT Voltage: Power from host**

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 42 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	23.8dBm (241mW)
2	6dB Bandwidth	15.247(a)	Pass	9.1 MHz
2	99% Bandwidth	RSS GEN	-	12.8 MHz
3	Power spectral Density (PSD)	15.247(d)	Pass	7.5 dBm/3kHz
4	Spurious emissions	15.247(b)	Pass	More than 20dB below the limit.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	3DC-CF 10AG 602.11a/g Compact Flash Module With Africanna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #1: Output Power

Power	Frequency (MHz)	Output Power		Antenna	enna Result	EIRP Note 2		Output Power	
Setting ²	Frequency (MHZ)	(dBm) 1	mW	Gain (dBi)	Kesuii	dBm	W	(dBm) ³	mW
Max	2412	23.0	198.6	3.8	Pass	26.8	0.476	14.9	31.2
Max	2437	23.8	241.0	3.8	Pass	27.6	0.578	14.8	30.2
Max	2462	23.4	218.8	3.8	Pass	27.2	0.525	14.4	27.5

	Output power measured using a spectrum analyzer (see plots below):
Note 1:	RBW=1MHz, VB=3 MHz, peak detector, max hold (transmitted signal was not continuous) and power integration over 50
	MHz. The output power limit is 30dBm.
Note 2:	Power setting - the software power setting used during testing, included for reference only.
Note 3:	Power measured using average power sensor and is included for reference only.

Run #2: Signal Bandwidth

Power	Eroguanov (MUz)	Resolution	Bandwidth (MHz)	
Setting	Frequency (MHz)	Bandwidth	6dB	99%
Max	2412	1MHz	10.3	12.8
Max	2437	1MHz	10.3	12.8
Max	2462	1MHz	9.1	12.7

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

V			
Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
	SDC-CF TOAG 602. Frang Compact Frasif Module With Africanna Compectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #3: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	rrequericy (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
Max	2412	7.5	8.0	Pass
Max	2437	4.2	8.0	Pass
Max	2462	5.5	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

Client:	Summit Data Communications	Job Number:	J68959
Model:	SDC CE10AC 902 11a/a Compact Flach Madula with Antonna Connectors	T-Log Number:	T69413
	SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	Account Manager:	Dean Eriksen
Contact:	Ron Seide		
Standard:	15.247 / 15.E / RSS-210	Class:	N/A

Run #4: Out of Band Spurious Emissions

Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel, power setting(s) = Max

Plots for center channel, power setting(s) = Max

Elliott	EMO	C Test Data
Client: Summit Data Communications	Job Number:	J68959
Model: SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors	T-Log Number:	T69413
iviouel. SDC-CFT0AG 602. Tra/y Compact Flash iviouale with Antenna Connectors	Account Manager:	Dean Eriksen
Contact: Ron Seide		

Plots for high channel, power setting(s) = Max

Class: N/A

Standard: 15.247 / 15.E / RSS-210

Report Date: March 5, 2008 EXHIBIT 3: Photographs of Test Configurations

4 Pages

File: R70599 Rev 1 Appendix Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

File: R70599 Rev 1 Appendix Page 4 of 10

Test Report

Report Date: March 5, 2008

EXHIBIT 5: Detailed Photographs of Summit Data Communications Model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors Construction

4 Pages

File: R70599 Rev 1 Appendix Page 5 of 10

Test Report Report Date: March 5, 2008

EXHIBIT 6: Operator's Manual for Summit Data Communications Model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

9 Pages

File: R70599 Rev 1 Appendix Page 6 of 10

Test Report Report Date: March 5, 2008

EXHIBIT 7: Block Diagram of Summit Data Communications Model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

1 Page

File: R70599 Rev 1 Appendix Page 7 of 10

EXHIBIT 8: Schematic Diagrams for Summit Data Communications Model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

6 Pages

File: R70599 Rev 1 Appendix Page 8 of 10

Test Report Report Date: March 5, 2008

EXHIBIT 9: Theory of Operation for Summit Data Communications Model SDC-CF10AG 802.11a/g Compact Flash Module with Antenna Connectors

1 Page

File: R70599 Rev 1 Appendix Page 9 of 10

EXHIBIT 10: RF Exposure Information

4 Pages

File: R70599 Rev 1 Appendix Page 10 of 10