UNIT 3: INTEGER ARITHMETIC

Estructura de Computadores (Computer Organization)

Course 2018/2019

ETS Ingeniería Informática

Universitat Politècnica de València

Unit Goals

- To map high-level numeric types (C, Java...) to processor native types
- To translate high-level arithmetic expressions to assembly
- To obtain response times and productivity of both sequential and combinational operators
- To implement arithmetic operations directly and using bitwise operations
- To understand the basic response mechanism of a processor in the presence of arithmetic overflow errors

Unit contents

- 1. Introduction
 - Data types
 - Operations and operators
 - Logical operations and conditional branches
- 2. Integer addition and subtraction
 - Fundamentals
 - Addition and subtraction in MIPS R2000
 - Addition operators
 - Operators for subtraction and comparison
- 3. Integer multiplication and division
 - Fundamentals
 - Multiplication and division in MIPS R2000
 - Shift operators
 - Unsigned multiplication operators
 - Signed multiplication operators

Bibliography

- D. Patterson, J. Hennessy. Computer organization and design. The hardware/software interface. 4th edition. 2009. Elsevier
 - Chapter 3, Appendix C
- W. Stallings. Computer Organization and Architecture.
 Designing for Performance. 7th edition. 2006. Prentice Hall
- D. Goldberg: Computer Arithmetic
 - Appendix H of J. Hennessy, D. Patterson: Computer Architecture: A Quantitative Approach. 4th Edition. Morgan-Kaufmann, 2002
 - (PDF) http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.65.3375&rep=rep1&type=pdf
 - (PDF) http://www.cs.clemson.edu/~mark/464/appH.pdf

1. Introduction

- Data types
- Operations and operators
- Logical operations and conditional branches

High-level types in low-level

	bits	Java	C/C++ (32 bits)	x86 (16)	MIPS32
Character	8	_	char	byte	byte
Character	16	char	wchar_t	word	halfword
Unsigned integer	8	_	unsigned byte	byte	byte
	16		unsigned short	word	halfword
	32	_	unsigned long	dword	word
Signed integer	8	byte	byte	byte	byte
	16	short	short	word	halfword
	32	int	long	dword	word
	64	long	_	qword	—
Floating point	32	float	float	float	float
	64	double	double	double	double

Integer data types

- The N and Z sets are unbounded, but they have to be represented using a bounded number of bits. With n bits, only up to 2ⁿ values can be represented
 - Integer representation is exact, but bounded
- Ranges with n bits
 - N (naturals): Natural Binary Code (NBC) → [0 ... +2ⁿ-1]
 - Z (integers): Two's complement (2'sC) \rightarrow [-2ⁿ⁻¹ ... +2ⁿ⁻¹-1]

n	Unsigned (NBC)	Signed (2'sC)
8	0 255	−128 +127
16	0 65.535	− 32.768 + 32.767
32	0 4.294.967.295	-2.147.483.648 +2.147.483.647
64	0 1.84×10 ¹⁹ (approx)	-9.2×10 ¹⁸ +9.2×10 ¹⁸ (approx)

Integer type conversions in R2000

- The native integer type is 32-bit wide (ALU and registers)
- Load/Store instructions convert to shorter formats if needed
 - 1bu and 1hu add zeroes to the left (valid for NBC)
 - 1b and 1h extend the sign bit (valid for 2'sC)
 - sb and sh simply discard the 24 or 16 bits to the left

Operations and operators

- High-level logical and arithmetic operations are translated by the compiler into assembly code and data
- During the instruction cycle, the CPU uses the proper operators

```
int[] j;
short a;
float x,y;

x = 5*j[a];
if (a>x) {
   y=x*1.3e5;
   j=(int)exp(x);
}
```

```
Ibu $t0,0xFF0($0)

Iw $t1,0x1020($t2)

add $t0,$t0,$t1

mtc1 $t0,$f1

...
```


Arithmetic Logic Unit

- The Arithmetic-Logic Unit (ALU) is the functional unit in the CPU containing digital operators to support the operations provided by the instruction set
- Each operator in the ALU implements one or more operations
- The CPU's Control Unit selects the operation to perform, depending on the instruction, routes the operands to its inputs and the result to the destination register
- The ALU may also activate indicators (flags) that give information about the result (typically, **Z**ero, **N**egative, o**V**erflow, and **C**arry)

Arithmetic Logic Unit

- ALU parameters
 - Functional
 - Implemented operations
 - Type conversion
 - Bitwise operations (and, or, xor...), shifts, rotations
 - Arithmetic operations: add, sub, multiply, divide
 - Comparison (=, ≠, <, ≤, ≥, >)
 - Types of operands
 - Performance (temporal cost)
 - Speed of the ALU
 - Number of operations per time unit
 - Complexity (spatial cost)
 - How many physical resources
 - How much area

Performance and complexity

- Expressing performance
 - Response time
 - Time to execute an operation. The shorter the better
 - Measured in time units (ns, gate time,...)
 - Productivity or throughput
 - Number of operations per time unit. The larger the better
 - Measured as Operations Per Second (OPS, KOPS, MOPS...)
 - In floating point operators, FLOPS, KFLOPS, MFLOPS, ...
- Expressing complexity
 - Number of logical gates
 - Number of transistors
 - Chip area (µm², nm²)

Logical operations

Java and C equivalents to & (and) | (or) ^ (xor) ~ (not)

```
int a = 0xA;
int b = 0x3;
int c;
...

c = a & ~b;

and $t0,$t1,$t1,-1

sw $t0,c

...

System.out.println
  (a + " ^ ~" + b + " = " + c);
```

10 ^ ~3 = 8

Logical operations

- Logical operations:
 - R format: or, and, xor, nor
 - I format: ori, andi, xori
 - We can easily derive not (one's complement):
 - nor rdst, rsrc, \$0
 - xori rdst, rsrc, -1
- Productivity = 1/t_{gate}
 - E.g.: $t_{gate} = 100 \text{ ps} \rightarrow P = 10 \text{ GOPS}$

Conditions and branches

- Conditional branches in MIPS
 - Equality Instructions
 - beq: branch if equal
 - bne: branch if not equal
 - Equality pseudoinstructions
 - begz and bnez derive from beg and bne
 - Tests for inequalities (one operand against zero)
 - bgez \rightarrow condition: $A_{31} = 0$
 - bgtz \rightarrow condition: $A_{31} = 0$ and $A_{30}..A_0 \neq 0$
 - bltz \rightarrow condition: $A_{31} = 1$
 - **blez** \rightarrow condition: $A_{31} = 1$ or $A_{31}..A_0 = 0$

Some condition operators

Condition examples

```
int i;
...
do {
         ...
} while (i>=0);
```



```
int i,j;
...
if ((i==j)&&(j>0))
    ...
else
    ...
```



```
lw $t0,i
    lw $t1,j
    bne $t0,$t1,lbl_else
    blez $t1,lbl_else
    ...
lbl_else:
    ...
```

2. Integer addition and subtraction

- Fundamentals
- Addition and subtraction in MIPS R2000
- Addition operators
- Subtraction and comparison operators

Anatomy of addition

The general addition procedure calculates R = A + B + c₀

Carry bits:

- c_0 (input carry): usually $c_0 = 0$
- c_{n-1}...c₁: part of the calculation
- c_n (output carry): may be useful

Same procedure both for signed (2'sC) and unsigned (NBC) integers

Detecting overflow

- In unsigned NBC, overflow = $(c_n = 1)$
- In signed 2'sC, overflow can only occur when both operands have the same sign. Two ways to detect it:
 - The sign of the result is contrary to the operands':

•
$$a_{n-1} = b_{n-1} \neq r_{n-1}$$
 or $(a_{n-1} \odot b_{n-1}) \cdot (b_{n-1} \oplus r_{n-1}) = 1$

- Or the two last carry bits of the result are different
 - $c_n \neq c_{n-1}$ or $(c_n \oplus c_{n-1}) = 1$
- Examples with n = 4 bits

Subtraction

- Subtraction can be transformed into addition
 - R = A + (-B)
 - To obtain (-B) we calculate the 2's complement of B
 - R = A + 2'sC(B) = A + not(B) + 1 R = A - BR = A + (-B)

- Carry in addition is the complement to borrow in subtraction
- Overflow detection in NBC: $(c_n = 0)$
- Overflow detection in 2'sC: (c_n ≠ c_{n-1})

Subtraction (used for comparison)

- The result of a comparison is a single bit indicating whether the inequality holds or not
- A comparison's result such as A < B follows from subtracting (R=A-B) and analysing carry and sign of R
 - The actual value of R would be irrelevant in this case
- Considering all cases in NBC and 2'sC:

Comparison	NBC	2'sC
A == B	R == 0	R == 0
A >= B	c _n = 1 (R is representable)	R is not negative
A < B	$c_n = 0$ (R is not representable)	R is negative

Additive instructions in MIPS R2000

- 32-bit operands
- Register-register and register-immediate versions

Operation	Format	Signed	Unsigned
Addition	R	add	addu
Addition	I	addi	addiu
Subtraction	R	sub	subu
Comparison	R	slt	sltu
Comparison	1	slti	sltiu

- add/addu: same operation, but different reaction to overflow
- All constants in I format instructions are sign-extended
- No immediate subtraction → use negative constants
 - eg. addi \$t0, \$t0, -1

Semantics of additive instructions

- add rd,rs1,rs2addi rd,rs,imm
 - Cause an exception if (signed) overflow; rd not modified in that case
- addu rd,rs1,rs2addiu rd,rs,imm
 - Don't check overflow; never cause exception (modular addition)
- sub rd,rs1,rs2
 - Cause an exception if (signed) overflow; rd not modified in that case
- subu rd,rs1,rs2
 - Don't check overflow; never cause exception

Overflow detection in high-level

 Integer arithmetic in languages such as C and Java ignores overflow. Java example:

```
int a,b,c;
a = 2000000000; // 0x77359400
b = 1000000000; // 0x3B9ACA00
c = a + b;
System.out.println
   (a + " + " + b + " = " + c);
2000000000 + 1000000000 = -1294967296
```

- The compiler will use addu instead of add for c = a + b;
- Overflow must be detected by user's code

```
if ((a^b)>=0 && ((b^c)<0))
   System.out.println("Overflow!");

if ((a^b)>=0 && ((b^c)<0))
   throw new ArithmeticOverflowException;</pre>
```

Overflow detection in low-level

Detection by sign analysis:

```
int a,b,c;
c = a + b;
```

```
Adda+b
    lw
         $t0,a
         $t1,b
    lw
    addu $t2,$t0,$t1 <
                                                   Compare for equal signs
    xor $t3,$t0,$t1 <</pre>
                                                   of operands
    bltz $t3,0K
    xor $t3,$t0,$t2 <</pre>
                                                   Compare for equal signs
    bltz $t3, Arithmetic Overflow
                                                   of result and one operand
OK: sw $t2,c
              Store result if no overflow
                                              Branch to overflow handler
```

Semantics of comparison instructions

- slt rd,rs1,rs2 (set on less than) slti rd,rs,imm
 - Take two signed 2'sC operands and compare them for strict lowness (rs1<rs2 or rs<imm)
 - If the condition holds, then rd=1; else rd=0
 - Never cause an exception
- sltu rd,rs1,rs2
 sltiu rdst,rs,imm
 - Exactly the same behaviour, but operands are regarded as unsigned NBC values

Addition operators

- Serial addition emulates the human procedure for addition
- Addition proceeds bit by bit, from LSB to MSB
- For each column i, we add a_i , b_i , and c_i , the carry input coming from column i-1; we obtain s_i and c_{i+1}
- Global input carry is c₀

Addition operators

We will first design the Full Adder (FA) circuit for each stage

We will then combine n FAs for building an n-bit serial adder

CPA
Carry Propagation Adder

We will improve performance by means of the Carry Select Adder

Full adder – design

- Calculates one stage of a serial addition
- Takes three one-bit inputs; produces two outputs

a_i	b_i	C_{i}	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S_{i} = \overline{a_{i}} \cdot \overline{b_{i}} \cdot c_{i} + \overline{a_{i}} \cdot b_{i} \cdot \overline{c_{i}} + a_{i} \cdot \overline{b_{i}} \cdot \overline{c_{i}} + a_{i} \cdot b_{i} \cdot c_{i}$$

$$c_{i+1} = a_{i} \cdot b_{i} + a_{i} \cdot c_{i} + b_{i} \cdot c_{i}$$

Full adder – Implementation

Derived from logical functions s_i and c_{i+1}

Full adder – performance

Response time

$$t_{S} = t_{NOT} + t_{AND} + t_{OR}$$

 $t_{C} = t_{AND} + t_{OR}$

Complexity: 12 gates

With 0.5 µm CMOS technology:

Response time: between 1 and 2 ns

Area: 1000 μm²

Carry propagation adder (CPA)

- For m-bit operands, cascade m one-bit FAs
 - Connect i-th output carry to carry input i+1
 - The CPA has one global input carry and one global output carry
 - This enables further cascading of CPAs

Carry propagation adder (CPA)

Overflow detection (signed addition)

CPA – Complexity

Temporal complexity of this design is tied to the CPA size

$$t(n) = (n-1) \cdot t_c + \max\{t_c, t_s\}$$

- Without considering overflow detection. How would you include overflow detection in the above expression?
- Asymptotically, t(n) = O(n)
- Spatial cost is also O(n)
- Serial addition with CPA performs poorly for typical processor nowadays (n=32, n=64 bits)

Subtraction operator

Classical design of an adder/subtracter

Faster adders: CSA (Carry Select Adder)

Accelerates the addition by replicating hardware

Fast adders: CLA (Carry Lookahead Adder)

- Calculates all carry outputs beforehand (3 × gate delay) and then adds them to the operands with parallel, decoupled FAs
- The cost is O(log(n))

3. Integer multiplication and division

- Fundamentals
- Multiplication and division in MIPS R2000
- Shift operators
- Unsigned multiplication operators
- Signed multiplication operators

Arithmetic effects of shifts on integers

- An n-bit left shift is equivalent to multiplication by 2ⁿ
 - The least-significant n bits (bits to the right) are filled with zeros
 - This property holds both for signed and unsigned integers


```
int a = -12;
int b = a << 3;
System.out.println(a + " * 8 = " + b);</pre>
```

Arithmetic effects of shifts on integers

- Conversely, n-bit right shift is equivalent to division by 2ⁿ
 - Unsigned: n leftmost bits are filled with zeros logical shift
 - **Signed**: n leftmost bits replicate the sign bit arithmetic shift

Unsigned, logical	shift	Signed, arithmetic shif	t
0 1 1 0 0 1	25	0 1 1 0 0 1 +2	<u>2</u> 5
>> 2	÷ 2 ²	>> 2 ÷ 2	2 ²
0 0 0 1 1 0	6	0 0 0 1 1 0	6
1 0 1 0 0 0	40	1 0 1 0 0 0 -2	<u>2</u> 4
>> 2	÷2²	>> 2 ÷ 2	2 ²
0 0 1 0 1 0	10	1 1 1 0 1 0	-6

Compiling multiplications

 Due to higher temporal cost of multiplication, compilers tend to avoid mult instructions

Mutiplication by **constants**

```
int a,b,c,d;

a = a*2; // 2=2<sup>1</sup>

b = b*8; // 8=2<sup>3</sup>

c = c*1024; // 1024=2<sup>10</sup>

d = d * 5; // 5=2<sup>2</sup>+1
```



```
lw $s0,a
lw $s1,b
lw $s2,c
lw $s3,d
add $s0,$s0,$s0  # a = a*2
sll $s1,$s1,3  # b = b*8
sll $s2,$s2,10  # c = c*1024
sll $t0,$s3,2
add $s3,$t0,$s3  # d = d * 5;
sw $s0,a
sw $s1,b
sw $s2,c
sw $s3,d
```

Anatomy of unsigned multiplication

- In general, 2×n bits are required for the result of multiplying two n-bit operands
- The usual human procedure uses shifts and addition

				1	1	0	1
			×	1	0	0	1
				1	1	0	1
			0	0	0	0	0
		0	0	0	0	0	0
	1	1	0	1	0	0	0
 0	1	1	1	0	1	0	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

Weights

(13_{10}) Notation

 $M = Multiplicand m_i = i-th bit$ $Q = Multiplier q_i = i-th bit$ $P = Product p_i = i-th bit$

$$P = M \times Q = \sum_{i=0}^{n-1} Mq_i 2^i$$

$$(117_{10}) = 1101_2 \times (1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

Signed multiplication

- The unsigned procedure doesn't work...
- We need to sign-extend partial products and consider that the weight of the sign bit of the multiplier is -2ⁿ⁻¹ (not 2ⁿ⁻¹)
 - Later in this unit, we will study alternative homogeneous encodings for both signed and unsigned integers

	1	1	1	1	1	1	0	1
				×	1	0	0	1
	1	1	1	1	1	1	0	1
				0	0	0	0	0
			0	0	0	0	0	0
	0	0	0	1	1	0	0	0
	0	0	0	1	0	1	0	1
•	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

$$(-3_{10})$$

$$(-7_{10})$$

$$P = M \times Q = \sum_{i=0}^{n-2} Mq_i 2^i - Mq_{n-1} 2^{n-1}$$

$$(+21_{10}) = 111111101_2 \times (-1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

Integer division

- Division of a dividend by a divisor produces two results: quotient and a remainder
- The human procedure uses shifts and subtraction
 - When no fit (\times): quotient_i \leftarrow 0
 - When fit (✓): subtract divisor and set quotient_i ← 1
- Unsigned example

Multiplication & division in high level

Remainder or modulus

```
int x,y,z,t;
x = 13;
y = 5;
z = x/y;
t = x%y;
System.out.println(x + " = " + y + "*" + z + " + " + t);
```

Division by zero

```
int x,y,z; Java,C
x = 0;
y = 1;
z = y/x;
```

```
Exception in thread "main"
java.lang.ArithmeticException: / by zero at ...
```

Multiplication & division in MIPS

Shift instructions

- They have the form *shift* rd,rs,long where *long* can be an immediate constant or a variable value stored in a register
- Maximum shift = 31 positions only the 5 LSbs count

Type of shift	reg-imm form	reg-reg form
Left Right (logical)	sll rt,rs,imm srl rt,rs,imm	sllv rd,rs,rt srlv rd,rs,rt
Right (arithmetic)	sra rt,rs,imm	srav rd,rs,rt

Shift operators: the Barrel Shifter

- A barrel shifter implements variable shifts
- Inputs:
 - Operand to be shifted (n bits)
 - Number of positions to shift (log₂(n) bits)
 - Optionally, direction of shift (1 bit)

A barrel shifter implementation

This barrel shifter implements shift left logical (s11) of one
 4-bit operand

Multiplication & division in MIPS

- Multiplication and division instructions
 - Two special 32-bit registers store the 64-bit result: HI and LO
 - Operations

```
mult $2, $3: HI-LO \leftarrow $2*$3; Signed operands multu $2, $3: HI-LO \leftarrow $2*$3; Unsigned operands div $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Signed divu $2, $3: LO \leftarrow $2/$3; HI \leftarrow $2 mod $3; Unsigned
```

Transferring results

```
mfhi $2: $2 ← HI
mflo $2: $2 ← LO
```

- There are pseudoinstructions that store the result in a generalpurpose register and multiply by constants
- None of these instructions check for overflow or division by zero: those checks need be done by software

Unsigned multiplication operators

- We'll focus on sequential, synchronous operators
 - These operators perform the specified operation within a given number of clock cycles
 - The clock cycle must be large enough for the circuits to operate
 - For an operator of n cycles of t seconds:
 - The circuit delay is T = n × t
 - The productivity is P = f / n, where f = 1 / t

Notation

```
• M = multiplicand; m_i = i-th bit of multiplicand
```

```
• Q = multiplier; q_i = i-th bit of multiplier
```

```
• P = product; p_i = i-th bit of product
```

n = size of M and Q (in bits, from 0 to n-1)

Unsigned multiplication operator

- Operator for the shift-add algorithm
 - M and Q of n bits; P of 2n bits

Unsigned multiplication operator

Operator's algorithm

- The algorithm requieres n cycles
- Up to one add and one shift per cycle

Example

• n = 4; M = 1011_2 ; Q = 0101_2 ; (Base 10: $11 \times 5 = 55$)

Cycle	Action	C-HI-LO
0	Initial values	0 0000 <mark>010<u>1</u></mark>
1	$HI \leftarrow HI + M$	0 1011 0101
	Shift right C-HI-LO 1 bit	0 0101 1 <mark>01<u>0</u></mark>
2	Don't add	0 0101 1010
	Shift right C-HI-LO 1 bit	0 0010 110 <u>1</u>
3	HI ← HI + M	0 1101 1101
	Shift right C-HI-LO 1 bit	0 0110 111 <u>0</u>
4	Don't add	0 0110 1110
	Shift right C-HI-LO 1 bit	0 0011 0111

Exercise

• n = 4; M = 1101_2 ; Q = 1011_2 ; (Base 10: $13 \times 11 = 143$)

Cycle	Action	C-HI-LO
0	Initial values	0 0000 101<u>1</u>
1		
2		
3		
4		

Solution: 1000 1111

Signed multiplication

- Dealing with sign separately (option 1)
 - One option to reuse the previous multiplier is to consider sign separately. Assume Sign(X) is the sign bit of X:

```
Prod_Sign ← Sign(M) XOR Sign(Q);
if M < 0 then M ← -M; end if;
if Q < 0 then Q ← -Q; end if;
P ← M × Q;
if Prod_Sign = 1 then P ← -P; end if;</pre>
```

- Algorithm drawbacks
 - Requires additional hardware for signed numbers
 - Other methods enable symmetric algorithms for signed and unsigned numbers (eg., Booth's algorithm – later)

Signed multiplication

- Sign-extended shift-add algorithm (option 2)
 - The shift/add algorithm works with signed numbers only when Q≥0
 - We only need to sign-extend partial products
 - Example with n = 4; M = -3; Both represented in 2'sC

To adapt to the general case, signs of M and Q can be preprocessed beforehand:

Although simpler than previous algorithm, it also requires separate sign processing and to complement M and Q when Q<0

 (1350_{10})

Booth's algorithm

- The multiplier is recoded as a sum of positive and negative powers of the base
 - Booth's code uses digits 0, 1 and -1
 - Example

0

- 30₁₀ can be represented as 32 2
- $30_{10} = 00111110_2 = 0 + 10000 10_{Booth} = (+1) \times 2^5 + (-1) \times 2^1$

(-9₁₀)

Booth's algorithm

- Works both with signed and unsigned integers:
 - Unsigned: assume an implicit sign bit = 0 for M
 - Signed: assume an implicit one-bit sign extension for M
 - Example: signed and unsigned product 1101₂ × 0+10-1_{Booth}

Unsigned Implicit positive sign (13_{10}) 0 +1 0 -1 (3_{Booth}) 0 0 0 0 0 0 0 1 1 (39_{10})

Implicit sign \bigcirc extension \rightarrow 1 1 1 0 1 (-3₁₀) \times 0 +1 0 -1 (3_{Booth}) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0

0

Signed

Booth's recoding

- Booth's recoding of the multiplier:
 - Always proceed considering two correlative digits, right to left
 - Assume an implicit 0 bit to the right of the LSB
 - Apply the following conversion:

q _i	q _{i-1}	Booth digit
0	0	0
0	1	+1
1	0	-1
1	1	0

Note the rule: Booth digit = $q_{i-1} - q_i$

Example: Recode 1110 0111 0011 (-397₁₀)

• Solution: 0 0 -1 0 +1 0 0 -1 0 +1 0 -1 =
$$-1 \times 2^{0} + 1 \times 2^{2} - 1 \times 2^{4} + 1 \times 2^{7} - 1 \times 2^{9} = -1 + 4 - 16 + 128 - 512 = -397$$

Booth-based operator and algorithm

Modifications to the shift-add operator and algorithm

- Requires n cycles
- One add or sub plus one shift per cycle

Booth operator

Detail for obtaining the sign bit

Booth example

• Signed; n = 4; $M = 0010_2$; $Q = 1001_2$; (Base 10: $2 \times (-7) = -14$)

Cycle	Action	S-HI-LO-X
0	Initial values	0 0000 100 <u>1 0</u>
1	Case 10: HI ← HI – M	1 1110 1001 0
	Shift right S-HI-LO 1 bit	1 1111 010 <u>0 1</u>
2	Case 01: HI ← HI + M	0 0001 0100 1
	Shift right S-HI-LO 1 bit	0 0000 101 <u>0 0</u>
3	Do nothing	0 0000 1010 0
	Shift right S-HI-LO 1 bit	0 0000 010 <u>1 0</u>
4	Case 10: HI ← HI – M	1 1110 0101 0
	Shift right S-HI-LO 1 bit	1 1111 0010 1

Extra bit

Exercise

• n = 4; M = 1101_2 ; Q = 0110_2 ; (Base 10: $-3 \times 6 = -18$)

Cycle	Action	S-HI-LO-X
0	Initial values	0 0000 011 <u>0 0</u>
1		
2		
3		
4		

Solution: 1110 1110

Further improvement: bit-pair recoding

- Bit-pair recoding halves the needed number of cycles
 - A single digit contains the information provided by two bits of Q
 - Digits used: −2, −1, 0, 1, and 2

			Booth		Bit-pair	
q _{i+1}	q _i	q _{i-1}	q' _{i+1}	q' _i	q" _i	Action
0	0	0	0	0	0	Do nothing
0	0	1	0	1	1	Add M
0	1	0	1	-1	1	Add M
0	1	1	1	0	2	Add 2×M
1	0	0	-1	0	-2	Subtract 2×M
1	0	1	-1	1	-1	Subtract M
1	1	0	0	-1	-1	Subtract M
1	1	1	0	0	0	Do nothing

S-HI-LO is shifted right two bits each cycle

Bit-pair recoding applied

• n = 5; M = 01101_2 ; Q = 11010_2 ; (Base 10: $13 \times (-6) = -78$)

Bit-pair recoding operator

Both HI and LO have an even number of bits

- Requires n/2 cycles
- On each cycle, up to one add or sub plus one 2-bit shift

Bit-pair example

• n = 6; M = 001101_2 ; Q = 111010_2 ; (Base 10: $13 \times (-6) = -78$)

Cycle	Action	S-HI-LO-X
0	Initial values	0 000000 1110 <u>10 0</u>
1	Case 100: HI ← HI – 2M	1 100110 111010 0
	Shift right S-HI-LO 2 bits	1 111001 1011 <u>10 1</u>
2	Case 101: HI ← HI – M	1 101100 101110 1
	Shift right S-HI-LO 2 bits	1 111011 0010 <u>11 1</u>
3	Case 111: Do nothing	1 111011 001011 1
	Shift right S-HI-LO 2 bits	1 111110 110010 1

Exercise

• n = 6; M = 101001_2 ; Q = 001001_2 ; (Base 10: $(-23)\times9=-207$)

Cycle	Action	S-HI-LO-X
0	Initial values	0 000000 0010 <u>01 0</u>
1		
2		
3		

Solution: 111100 110001

Signed sequential multiplication: summary

About the operator

- Multiplication can be implemented with adds and shifts. The hardware requires only:
 - Shift registers
 - Adder or adder/subtracter
 - A sequential control circuit

Booth's method

Enables uniform handling of signed and unsigned operations

Bit-pair recoding

- Enables faster multiplications by reducing the number of cycles
- More elaborated recoding techniques enable faster operators
 - Higher radix recoding (eg., bit-quad recoding...)