Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

18 Lecture 18 Jun 13th 2018

18.1 Finite Abelian Groups

18.1.1 Primary Decomposition

Note (Notation)

Let G be an abelian group and $m \in \mathbb{Z}$. We define

$$G^{(m)} := \{ g \in G : g^m = 1 \}$$

Proposition 50 (Group of Elements of the Same Order is a Subgroup)

Let G be an abelian group. Then $G^{(m)} \leq G$.

Proof

Note that $1^m = 1 \in G^{(m)}$. $\forall g, h \in G^{(m)}$, since G is abelian, we have that $1^m = 1 \in G^{(m)}$.

$$(gh)^m = g^m h^m = 1 \cdot 1 = 1.$$

Therefore $gh \in G^{(m)}$. Also, for $g \in G^{(m)}$, we have

$$(g^{-1})^m = (g^m)^{-1} = 1.$$

Thus $g^{-1} \in G^{(m)}$. By the Subgroup Test, we have that $G^{(m)} \leq G$.

¹ Pay attention that this is only true if *G* is abelian.

Proposition 51 (Decomposition of a Finite Abelian Group)

Let G be a finite abelian group with |G| = mk such that gcd(m,k) = 1. Then

1.
$$G \cong G^{(m)} \times G^{(k)}$$
; and

2.
$$|G^{(m)}| = m$$
 and $|G^{(k)}| = k$.

Proof

1. Since G is abelian, $G^{(m)} \triangleleft G$ and $G^{(k)} \triangleleft G$.

Claim 1:
$$G^{(m)} \cap G^{(k)} = \{1\}$$

Proof of Claim 1: $\forall g \in G^{(m)} \cap G^{(k)}, g^m = 1 = g^k$
 $\therefore \gcd(m,k) = 1$, by Bezout's Lemma, $\exists x,y \in \mathbb{Z} \quad 1 = mx + ky$
 $\implies g = g^1 = g^{mx+ky} = (g^m)^x (g^k)^y = 1 \cdot 1 = 1$
 $\implies G^{(m)} \cap G^{(k)} = \{1\}$ as claimed.

Claim 2: $G = G^{(m)}G^{(k)}$ 2 $\forall g \in G :: o(g) = mk \quad 1 = g^{mk} = (g^k)^m = (g^m)^k$ It follows that $g^k \in G^{(m)}$ and $g^m \in G^{(k)}$. From Claim 1 and by abelianness, we have that

$$g = g^{mx+ky} = (g^k)^y (g^m)^x \in G^{(m)}G^{(k)}$$

Thus $G \subseteq G^{(m)}G^{(k)}$. On the other hand, since $G^{(m)} \triangleleft G$ and $G^{(k)} \triangleleft G$, by Lemma 29, we have that $G^{(m)}G^{(k)} \leq G$ and hence $G^{(m)}G^{(k)} \subseteq G$. Thus $G = G^{(m)}G^{(k)}$ as claimed.

From Claims 1 and 2, we can conclude by Corollary 33³, that $G \cong G^{(m)} \times G^{(k)}$ as required.

2. Write $|G^{(m)}| = m'$ and $|G^{(k)}| = k'$. By part (1), we have that mk = |G| = m'k'.

 $\underline{Claim\ 3} \colon \gcd(m,k') = 1$

Suppose not

$$\implies \exists p \ prime \quad p \mid m \ and \ p \mid k'$$

$$\implies \exists g \in G^{(k)} \quad o(g) = p \qquad \because Cauchy's Theorem$$

Now $p \mid m \implies \exists q \in \mathbb{Z} \quad m = pq$

$$\implies g^m = g^{pq} = 1 :: o(g) = p$$

$$\implies g \in G^{(m)}.$$

By part (1), we have that $g \in G^{(m)} \cap G^{(k)} = \{1\} \implies g = 1$, which

² Recall that this is the Product

³ Should this not be Theorem 32?

Notice that $mk = m'k' \implies m \mid m'k'$ $\implies m \mid m' \quad :: \gcd(m, k') = 1 \text{ and similarly } k \mid k'. \text{ But then } mk = m'k' \text{ would imply that } m' = m \text{ and } k' = k.$

As a direct consequence of Proposition 51, we have the following:

Theorem 52 (Primary Decomposition)

Let G be a finite abelian group with $|G| = p_1^{n_1} \dots p_k^{n_k}$, where p_1, \dots, p_k are distinct primes, and $n_1, \dots, n_k \in \mathbb{N}$. Then

1.
$$G \cong G^{\left(p_1^{n_1}\right)} \times \ldots \times G^{\left(p_k^{n_k}\right)}$$
; and

2.
$$\forall i \ 1 \leq i \leq k \quad \left| G^{\left(p_i^{n_i}\right)} \right| = p_i^{n_i}.$$

18.1.2 *p-Groups*

On a related note of the groups $G^{\left(p_i^{n_i}\right)}$, we define the following:

Definition 30 (p-Group)

Let p be a prime. A p-group is a group in which every element has an order that is a non-negative power of p.

Proposition 53 (p-Groups are Finite)

A finite group G is a p-group \iff |G| is a power of p (including p^0).

Proof

 (\Leftarrow) If $|G| = p^{\alpha}$ for some $\alpha \in \mathbb{N} \cup \{0\}$ and $g \in G$, by Corollary 24, $o(g) \mid p^{\alpha}$

 \implies G is a p-group.

 (\Longrightarrow) Consider the contrapositive and let $|G|=p^np_2^{n_2}\dots p_k^{n_k}$ where $p,p_2,...,p_k$ are distinct primes, $n\in\mathbb{N}\cup\{0\}$, and $n_2,...,n_k\in\mathbb{N}$. For $k\geq 2$, by Cauchy's Theorem, $p_2\mid |G|$

$$\implies \exists g_1 \in G \quad o(g_1) = p_2$$

$$\implies$$
 G is not a p-group.

Therefore, our desired result follows.

OUR END GOAL here is to prove to ourselves that all finite abelian groups can be written as cross products of cyclic groups, i.e. if *G* is an abelian group, then

$$G \cong C_1 \times C_2 \times \ldots \times C_n$$
.

With Theorem 52, we have that

$$G \cong G_1 \times G_2 \times \ldots \times G_n$$
.

The following proposition will enable us to get to our goal from our current position:

Proposition (Finite Abelian p-Groups of order p are Cyclic)

If G is a finite abelian p-group that contains only one subgroup of order p, where p is prime, then G is cyclic. In other words, if a finite abelian p-group is not cyclic, then it must have at least 2 subgroups of order p.