NONDETERMINISTIC COMPUTATION

PEIFENG WANG*

Abstract. The execution of an algorithm on computing machines is studied. By Cantor's diagonal argument, we show that, the number of executions within a computation on a nondeterministic Turing machine is asymptotically greater than the number of steps within a computation on a deterministic Turing machine. Thus a nondeterministic machine can have more computing power than a deterministic machine, therefore suggesting $P \neq NP$.

Key words. Nondeterministic

AMS subject classifications.

1. Introduction. Turing machines take strings as input for its computation. The complexity of a computation is measured as a function of the size of the input string. In general, a machine has a finite nonempty set of input alphabet Σ . Σ^* is the set of finite string over Σ . For a string $\omega \in \Sigma^*$, $|\omega|$ is the length of string ω . For a set X, |X| is its cardinality, a sequence over X is a sequence whose terms are elements of X. Let $\mathbb N$ be the set of natural numbers.

PROPOSITION 1.1. The length of string ω is a natural number. i.e. $|\omega| \in \mathbb{N}$

Every string $\omega \in \Sigma^*$ can be writen as a sequence of symbols $s_1...s_n$ where $\{s_i \in \Sigma | i \in \mathbb{N} \text{ and } 1 \leq i \leq n = |\omega| \}$. Each of these symbols is an alphabet at a specific position within ω . The same alphabet at different positions represent distinct symbols. To encode the alphabet and position of a symbol of ω , a set $S(\omega) = \{s_i z^i | z \notin \Sigma \land i \in \mathbb{N} \land 1 \leq i \leq |\omega| \land s_i \in \Sigma \text{ is the ith symbol of } \omega \}$ can be constructed.

Proposition 1.2. The cardinality of $S(\omega)$ equals to the length of string ω . i.e. $|S(\omega)| = |\omega|$

Then $S(\omega)$ is a countable set.

For a machine M, a computation over string $\omega \in \Sigma^*$ is equivalent to a computation over the set $S(\omega)$. We study computations associated with sequences over $S(\omega)$.

2. Computation on a deterministic Turing machine (DTM). On a DTM, an algorithm defines an order in which elements of input set $S(\omega)$ are read and computed. In each computation, the algorithm reads the elements of input set $S(\omega)$ in a single sequence. This sequence of operation is called an execution. One computation on a DTM can have a single execution.

Proposition 2.1. Deterministic Turing machine can only compute over a countable input set.

Proof. A deterministic Turing machine executes in a step-by-step manner, it can be shown that each of the steps is associated to a unique natural number.

A deterministic Turing machine is a tuple $(\Sigma, \Gamma, Q, \delta)$, where Q is nonempty finite set of states containing $q_0, q_{accept}, q_{reject}, \Gamma$ is nonempty finite set of tape alphabet, δ is the transition function

$$\delta: (Q - \{q_{accept}, q_{reject}\}) \times \Gamma - > Q \times \Gamma \times \{1, -1\}$$

With the internal state $q \in Q$ and scanned symbol $s \in \Gamma$ as input, δ defines the next state and symbol to be scanned.

We assign natural numbers to the computation states:

1) The initial state q_0 is associated with natural number 0.

^{*}Guanghua Road 1#, 34-1-3-5, Yanta District, Xi'an, Shaanxi, P. R. China 710075 (peifeng_w@yahoo.com)

2) if $q^- \neq q_{accept}$ and $q^- \neq q_{reject}$ is associated with natural number i, then q^+ of $(q^+, s', h) = \delta(q^-, s)$ is associated with number i+1.

Then with mathematical induction, the state of each step in an execution can be associated with a unique natural numbers. Thus an execution can have at most countable steps, and can compute only over countable input set. \Box

Essentially, the deterministic transition function enables the application of mathemetical induction to prove theorem 2.1. Such property is absent on a nondeterministic machine.

3. Computation on a nondeterministic Turing machine (NDTM). On a nondeterministic Turing machine (NDTM) M_N , multiple transitions are allowed at any "moment", and multiple sequences of transitions are executed. Each of the sequences of transitions is called an execution. A computation can have multiple executions.

PROPOSITION 3.1. In a computation on a NDTM, every sequence over the input set $S(\omega)$ has a distinct execution.

Proof. We track all of the executions by recording the sequence of input symbols read by the NDTM.

For each execution e, there is an order in which the machine M_N reads the symbols of input set $S(\omega)$. Initially, execution e sets its record R(e) to an empty string, when execution e scans an input symbol $\alpha \in S(\omega)$, the symbol is appended to the existing R(e). Thus the records R of all executions are sequences over the input set $S(\omega)$, the BNF grammar of the recorded sequence is

```
R ::= R\alpha | \alpha

\alpha ::= elements of S(\omega)
```

Then R includes all strings whose alphabets are elements of $S(\omega)$. Every string $r \in R$ is a record of an execution e, then e is the corresponding execution of r.

For 2 exeuctions e_1 and e_2 , if $e_1=e_2$, then they have the same record string $R(e_1)=R(e_2)$. Equivalently, if $R(e_1)\neq R(e_2)$, $e_1\neq e_2$.

A computation on a NDTM contains the set of all executions.

4. $P \neq NP$. To put it simply, the number of executions within a computation on a NDTM is asymptotically greater than the number of steps within a computation on a DTM.

In general, for fixed $k \in \mathbb{N}$, the kth Cartesian power of a set X is $X^k = \{(x_1, ..., x_k) | x_i \in X \text{ for all } 1 \leq i \leq k\}$, if X is a finite set of cardinality |X|, the cardinality of its Cartesian power is $|X^k| = |X|^k$. If X is a countably infinite set and k is finite, its Cartesian power X^k is still a countable set.

On a computing machine with input ω , an execution within $|\omega|^k = |S(\omega)|^k$ steps can only compute the kth Cartesian power of the input set $S(\omega)$, i.e. $(S(\omega))^k$. Let P(n) be a polynomial of finite degree, there exists finite $k \in \mathbb{N}$ such that $|\omega|^k$ is asymptotically greater than $P(|\omega|)$

$$\lim_{|\omega|\to\infty} |\omega|^k > \lim_{|\omega|\to\infty} P(|\omega|)$$

Let $E(\omega)$ be the set of all executions of a computation on a NDTM with input ω . If the input string ω is infinitely long, we have 1) from proposition 1.2, $S(\omega)$ is countably infinite. 2) from Cantor's diagonal argument, the set of all sequences over $S(\omega)$ is uncountable. 3) from theorem 3.1, the size of $E(\omega)$ is greater than the size of the set of all sequences over $S(\omega)$, thus $E(\omega)$ is uncountable. 4) any finite Cartesian power of $S(\omega)$ is countable. Thus for any finite k,

$$\lim_{|\omega| \to \infty} |E(\omega)| > \lim_{|\omega| \to \infty} |S(\omega)|^k = \lim_{|\omega| \to \infty} |\omega|^k$$

then for any polynomial P(n) of finite degree

 $\lim_{|\omega|\to\infty} |E(\omega)| > \lim_{|\omega|\to\infty} P(|\omega|)$

On the other hand, from theorem 2.1, a computation on a DTM can have only countable steps.

Thus in the case of infinitely long input string, the number of executions on a NDTM is strictly greater than the number of steps on a DTM, thus nondeterministic machine can have more computing power than a deterministic machine.

The above case of infinitely long input string also applies when the input set $S(\omega)$ is enough large. In specific, for any polynomial P(n) of finite degree, there exists m, k, for all $|S(\omega)| > m$, 1) the number of steps that a DTM can compute within polynomial time $P(|\omega|)$ is less than $|\omega|^k$ for some k. 2) the size of kth Cartesian power of $S(\omega)$ is strictly less than the number of all executions of a computation on a NDTM. Thus P < NP

Acknowledgments.

REFERENCES

[1] BARKER-PLUMMER, DAVID, *Turing Machines*, The Stanford Encyclopedia of Philosophy (Summer 2013 Edition), Edward N. Zalta (ed.), URL = http://plato.stanford.edu/archives/sum2013/entries/turing-machine/