# ECOMMERCE RECOMMENDATION USING K-MEANS CLUSTERING

Danylo Sovgut, Ke Wang, Shane Kim, Chris Korabik, Dean Q, Nathan Bywood, Vicki Yuan

# **About Us**



Danylo Sovgut



K Wang



**Shane Kim** 



**Chris Korabik** 



Dean Q



Nathan Bywood



Vicki Yuan

# A Smarter, Data-Driven Recommendation Engine

#### **Problem:**

Our website currently recommends "most popular" items to all visitors, which lacks personalization and loses potential revenue.

#### **Solution:**

Our goal is to replace this one-size-fits-all approach with a smarter, data-driven recommendation engine that boosts revenue by **categorizing customers based on their behaviors**.

# We Chose K-Means to Categorize Customers

- An unsupervised clustering model
- Allows us to effectively identify distinct segments by grouping customers based on their buying frequencies & monetary values



# We Chose K-Means Based on Model Features

| Models                     | Pros                                                          | Cons                                           |  |  |
|----------------------------|---------------------------------------------------------------|------------------------------------------------|--|--|
| K-Means                    | Simple and efficient for large datasets                       | Sensitive to outliers                          |  |  |
| DBSCAN                     | Automatically detects outliers as noise points                | Does not perform well on high-dimensional data |  |  |
| GMM                        | Each point has a probability of belonging to a cluster        | Computationally expensive                      |  |  |
| Hierarchical<br>Clustering | Provides a dendrogram that helps understand how clusters form | Computationally expensive, sensitive to noise  |  |  |

# We Chose K-Means Based on Model Performances

| Models  | Silhouette Score      | DBI                  | Variance Ratio Criterion |  |
|---------|-----------------------|----------------------|--------------------------|--|
|         | The higher the better | The lower the better | The higher the better    |  |
| K-Means | 0.30                  | 1.34                 | 5100.74                  |  |
| DBSCAN  | 0.03                  | 1.40                 | 78.14                    |  |
| GMM     | 0.006                 | 3.95                 | 739.24                   |  |

# Our Key Metrics Provide Insight into Clustering Quality

#### • Silhouette Score (0.30)

 Measures how similar a data point is to its own cluster compared to other clusters.

#### • Davies-Bouldin Index (1.34)

- Evaluates cluster separation and compactness.
- Lower values indicate better performance.
- Values range from 0 to ∞

#### • Variance Ratio Criterion (5100.74)

- Compares the ratio of intra-cluster dispersion to inter-cluster dispersion.
- Higher values indicate better-defined clusters.
- Values range from 0 to ∞



# We Optimized Our Model Using A Variety of Techniques

#### Feature Extraction

- Selected "m" and all "F" columns
- Divided all "F" columns by "f" (frequency)

#### Outlier Removal

Removed using z-score method (z > 3)

#### MinMax Scaler

- K-Means and PCA require scale-sensitive data
- Retains the relative distance between data points

#### • Principal Component Analysis (PCA)

- Reduces dimensions into components
- 5 components capture ~76% variance



## Our Exhaustive Search Method Left Us With A Model We Are Confident In

| Cols   | Num Components | k | Inertia      | Variance Ratio | Silhouette Score |
|--------|----------------|---|--------------|----------------|------------------|
| [r]    | 5              | 2 | 16204.837706 | 0.742451       | 0.318002         |
| [m, r] | 5              | 2 | 16200.665454 | 0.742407       | 0.317944         |
|        | 5              | 4 | 10435.758951 | 0.760873       | 0.309701         |
| [m]    | 5              | 4 | 10433.912867 | 0.760833       | 0.309683         |
| [m]    | 5              | 5 | 8517.901164  | 0.760833       | 0.301239         |
| 0      | 6              | 2 | 17432.055222 | 0.801473       | 0.300878         |
| [m]    | 6              | 2 | 17427.803346 | 0.801439       | 0.300869         |

We iterated through 220
 combinations of k values,
 # of PCA components, and
 inclusion of extra columns.
 We ultimately chose model
 params that left us with
 relatively low Inertia and
 high Silhouette Score.

## Our Model Provides Rankings of Most Frequently Purchased Categories in Each Cluster

History Cont History Music Health Travel

Cont History Travel Guides **History** Music Religion Music History Health Learning Travel

History Music Cont Hist Health Travel History Music Travel Health Non-Books

## Our Clustering Model Provides Us with Recommendations Tailored to Each User

Test Set of 5 Real Users all assigned their own clusters/recommendations:

|       | r    | f  | m          | tof  | cluster | recs                                           |
|-------|------|----|------------|------|---------|------------------------------------------------|
| 27120 | 1272 | 2  | 164.559204 | 2210 | 2       | Fhealth35, Fmusic14, Fhistory19, Flearning37,  |
| 4714  | 227  | 14 | 597.795898 | 2390 | 1       | Fhistory19, Fconthist20, Ftravelguides31, Fmus |
| 16123 | 187  | 3  | 49.749969  | 634  | 4       | Ftravelguides31, Fhistory19, Fmusic14, Fhealth |
| 27444 | 12   | 14 | 585.036133 | 2162 | 4       | Ftravelguides31, Fhistory19, Fmusic14, Fhealth |
| 22196 | 110  | 1  | 33.739960  | 110  | 0       | Fmusic14, Fhistory19, Fconthist20, Fhealth35,  |

## We Also Provide Discount Offers Based on Quartiles in Recency, Frequency



## We Calculated Expected Monetary Values for the Clustering and Base Model

Step 1

Calculate the **probability** for each book category:

$$\frac{\text{Category Mean Frequency}}{\text{Total Mean}}$$

Step 2

Multiply it by the average price to get the **expected category value**: Expected Category Value = Average Price x Probability

Step 3

Sum all the monetary values across all categories to get **total monetary index** 

Total Monetary Index = Category 1 + Category 2 + ... Category 10

### Our Model Is 272% Better than the Base Model



## **Appendix** i



# Appendix ii



## Appendix iii

$$T = \sum_{i=1}^{10} \frac{M(f_i) \cdot \text{Mean}(f_i)}{\text{Total Mean}}, Total Monetary Value of the Base Model}$$

$$CV = \sum_{i=1}^{10} \frac{M(f_i) \cdot \text{Mean}(f_i | C)}{\sum_{j=1}^{32} \text{Mean}(f_j | C)}, Monetray Value for a Specific Cluster}$$

$$ACM = \sum_{C=1}^{5} (P_C \cdot CV_C), Adjusted Monetary Value for the Cluster Model}$$

## **Appendix iv**

#### **Explanation of Each Formula and Variable:**

- Base Model Formula: [ T = \sum\_{i=1}^{10} \frac{M(f\_i) \cdot \text{Mean}(f\_i)}{\text{Total Mean}}} ]
- . T: Total monetary value of the base model.
- M(f\_i): Monetary value assigned to feature (f\_i).
- Mean(f\_i): Average frequency of feature (f\_i) across all users.
- . Total Mean: The sum of the mean values for the top 10 features.
- 2. Cluster Model Formula: [  $CV = \sum_{i=1}^{10} \down{i=1}^{10} \down{i=1}^{10$
- . CV: Monetary value for a specific cluster ( C ).
- M(f\_i): Monetary value of feature (f\_i).
- Mean(f\_i \mid C): Average frequency of feature (f\_i) within cluster (C).
- \sum\_{j=1}^{32} \text{Mean}(f\_j \mid C): Sum of average frequencies of all 32 features in cluster ( C ).
- Adjusted Cluster Model Formula: [ ACM = \frac{\sum\_{C=1}^{5} CV}{5} ]
- · ACM: Adjusted monetary value, averaged across all 5 clusters.
- CV: Monetary value for each cluster (C).
- 4. Percent Difference Formula: [\text{Percent Difference} = \frac{100 \cdot (ACM T)}{T}]
- Percent Difference: The relative improvement of the cluster model over the base model, expressed as a percentage.
- ACM: Adjusted cluster model value.
- · T: Base model total value.

## **Appendix v**

Step 1

Extract the top 10 categories based on total frequencies

 $T = \sum_{i=1}^{10} \frac{M(f_i) \text{Mean}(f_i)}{Total \text{ Mean}}$ 



Step 2

Calculate the **Weighted Mean** for each Feature

Step 3

Multiply the mean by the monetary value for each category and Sum them up

## Appendix vi

| Monetary<br>Index       | The Base Model total (T) is assumed to be an <b>aggregated monetary index</b> , not an actual revenue figure.   | Each feature's monetary value is assumed to reflect its <b>financial contribution accurately</b> .                                  | Feature<br>Value      |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Equal<br>Influence      | All users are assumed to be <b>equally influenced</b> by the most popular features.                             | The monetary index (T and ACM) is <b>valid as a relative measure</b> , even if it doesn't represent real revenue or customer value. | Index<br>Validity     |  |  |  |  |
| User<br>Interaction     | Assumes users will interact with or purchase based on recommendations, without accounting for conversion rates. |                                                                                                                                     |                       |  |  |  |  |
| Behavior<br>Consistency | User behavior within each cluster is assumed to be <b>consistent and reflective of preferences</b> .            | Monetary values and user preferences are <b>static</b> and do not change over time or external factors.                             | Static<br>Preferences |  |  |  |  |

# An Analogy for Our Clustering Model

- Have you ever been pressured into watching a movie you didn't want to?
- Our solution: a personalized movie night, where attendees are divided into five genre groups based on their movie preferences.
- We conduct a survey to analyze each attendee's favorite genres and past viewing habits.
- Each group gets its own movie screening of their preferred genre.
- Using this information, we group attendees into five distinct movie-watching groups: Music, History, Health, Contemporary History, and Travel/Adventure.

