Линейная алгебра 1 курс

Теория для экзамена 4 модуля

1. Дайте определение линейного функционала.

Отображение $f: V \to \mathbb{F}$ (где V – линейной пространство, \mathbb{F} – поле, над которым рассматривается V) называется линейной формой (линейным функционалом), если $\forall x, y \in V, \forall \alpha \in \mathbb{F}$:

- 1) f(x + y) = f(x) + f(y);
- 2) $f(\alpha x) = \alpha f(x)$.

2. Дайте определение сопряжённого пространства.

Пространством, сопряжённым (двойственным) к линейному пространству L, называется множество всех линейных функционалов на L с операциями сложения и умножения на число: $\forall x \in L, \forall \lambda \in \mathbb{F}$:

- 1) $(f_1 + f_2)(x) = f_1(x) + f_2(x)$;
- 2) $(\lambda f)(x) = \lambda \cdot f(x)$.

Обозначение: L^* .

3. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

Если координаты ковектора записаны в столбец:

$$[f]_{\mathbf{g}} = T_{\mathbf{e} \to \mathbf{g}}^T \cdot [f]_{\mathbf{e}}$$

4. Дайте определение взаимных базисов.

Базис $\mathbf{e} = (e_1, \dots, e_n)$ в линейном пространстве L и базис $f = (f^1, \dots, f^n)$ в сопряжённом пространстве L^* называются взаимными, если $f^i(e_j) = \delta^i_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$

5. Дайте определение биортогонального базиса.

Если отождествить евклидово пространство \mathcal{E} и \mathcal{E}^* , то базис, взаимный к данному, называется биортогональным.

6. Дайте определение сопряжённого оператора в произвольном (не обязательно евклидовом) пространстве.

Любому линейному отображению $A: V_1 \to V_2$ (V_1, V_2 — линейные пространства) можно сопоставить сопряжённый оператор $A^*: V_2^* \to V_1^*$ по правилу $\forall v_1 \in V_1, \forall f_2 \in V_2^*$:

$$(A^*f_2)(v_1) = f_2(Av_1)$$

7. Сформулируйте определение алгебры над полем. Приведите два примера.

Пусть A – это векторное пространство над полем \mathbb{F} , снабжённое дополнительной операцией умножения $A \times A \to A$. Тогда A называется алгеброй над полем \mathbb{F} , если $\forall x,y,z \in A, \forall \alpha,\beta \in \mathbb{F}$ выполнены следующие условия:

- 1) $(x+y) \cdot z = x \cdot z + y \cdot z$;
- $2) x \cdot (y+z) = x \cdot y + x \cdot z;$
- 3) $(\alpha \cdot x) \cdot (\beta \cdot y) = (\alpha \cdot \beta) \cdot (x \cdot y)$.

Примеры: \mathbb{C} – двумерная алгебра над \mathbb{R} ; алгебра многочленов $\mathbb{F}[x]$.

8. Сформулируйте определение тензора. Приведите два примера.

Пусть есть поле $\mathbb F$ и векторное пространство V над этим полем, а так же V^* , сопряженное к V и

числа
$$p, q \in \mathbb{N} \cup \{0\}$$

$$f: \underbrace{V \times, \dots, \times V}_{p} \times \underbrace{V^* \times, \dots, \times V^*}_{q} \to F$$

Называется тензором на V типа (p,q) и валентности p+q.

Примеры: тензор типа (1, 0) - линейные функции на V, то есть элементы V^* ; тензор типа (2, 0)- билинецная форма; тензор типа (1, 1) можно интерпретировать как линейный оператор.

9. Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек, называемых фокусами, постоянна.

Каноническое уравнение: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ Эксцентриситет: $\varepsilon=\frac{\sqrt{a^2-b^2}}{a}=\sqrt{1-\frac{b^2}{a^2}},\,a$ - большая полуось, а b - малая. Служит мерой "сплюснутости"эллипса.

Причём $\varepsilon \in [0,1)$. При $\varepsilon = 0$ эллипс превращается в окружность.

10. Дайте определение гиперболы как геометрического места точек. Выпишите её каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен.

Каноническое уравнение: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Эксцентриситет: $\varepsilon = \sqrt{1 + \frac{b^2}{a^2}};$ характеризует угол между асимптотами.

Причём $\varepsilon \in (1, +\infty)$. При $\varepsilon \to 1$ гипербола вырождается в 2 луча.

11. Дайте определение параболы как геометрического места точек. Выпишите её каноническое уравнение.

Параболой называют геометрическое место точек плоскости, равноудаленных от данной точки (фокуса) и от данной прямой (директрисы).

Каноническое уравнение: $y^2 = 2px$

12. Сформулируйте теорему о классификации кривых второго порядка.

 \forall кривой второго порядка \exists прямоугольная декартова система координат Oxy, в которой уравнение этой кривой имеет один из следующих видов:

Эллиптический тип:						
1	2	3				
эллипс	пустое множество	точка				
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \ge b > 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$				
Гиперболический тип:						
4 5						

4	5	
гипербола	пара пересекающихся прямых	
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, b > 0 \qquad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$		

Параболический тип:

6	7	8	9
парабола	пара прямых	пустое множество	прямая
$y^2 = 2px$	$y^2 = d, d > 0$	$y^2 = -d, d > 0$	$y^2 = 0$

13. Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P.

Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ .

14. Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии.

Любой цилиндр является линейчатой поверхностью.

Примеры: эллиптический цилиндр, гиперболический цилиндр, параболический цилиндр.

15. Запишите канонические уравнения эллиптического, гиперболического и параболического цилиндров.

Эллиптический цилиндр: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Гиперболический цилиндр: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Параболический цилиндр: $y^2 = 2px$

16. Запишите канонические уравнения эллипсоида, однополостного гиперболоида, двуполостного гиперболоида.

Эллипсоид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Однополостный гиперболоид: $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ Двуполостный гиперболоид: $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$

17. Запишите канонические уравнения эллиптического параболоида, гиперболического параболоида.

Эллиптический параболоид: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=2z$ Гиперболический параболоид: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=2z$