Osprey: Pixel Understanding with Visual Instruction Tuning

https://arxiv.org/pdf/2312.10032

O. Introduction

- 기존 시각 언어 모델(MLLM)은 이미지 수준이나 박스 수준에서의 이해에 집중함. 그러나 세밀한 영역 수준의 이해에는 한계가 있음.
- 현재의 모델들은 마스크 기반의 지시문 데이터를 활용하지 않아 발전이 제한적임.
- Osprey는 마스크-텍스트 지시 튜닝 접근 방식을 제안하여, 마스크 영역을 언어 지시문에 통합함으로써 픽셀 수준의 시각 이해를 목표로 함.
- 이를 위해 724K 샘플로 구성된 마스크 기반 영역-텍스트 데이터셋인 Osprey-724K를 구축함.
- Osprey는 고해상도 입력을 처리할 수 있는 컨볼루션 기반 CLIP 백본을 사용하며, 마스크 인식 기능을 갖춘 시각 추출기를 채택함.
- 이러한 설계를 통해 Osprey는 객체 수준 및 부분 수준의 세밀한 의미 이해를 달성함.
- 또한, Segment Anything Model(SAM)과의 통합을 통해 다중 해상도의 의미를 추출할 수 있음.
- Osprey는 개체 분류, 개방형 어휘 인식, 지역 수준 캡셔닝 및 세부 지역 설명 작업에서 뛰어난 성능을 보임

1. Overview

- Osprey는 시각 언어 모델(MLLM)의 한계를 극복하기 위해 마스크-텍스트 지시 튜닝 방식을 도입함.
- 기존 MLLM은 이미지 수준이나 박스 수준의 이해에 집중하여 픽셀 수준의 세밀한 이해 에는 한계가 있었음.
- Osprey는 724K 샘플로 구성된 Osprey-724K 데이터셋을 활용하여 마스크 기반의 영역-텍스트 지시를 학습함.

- 이 모델은 고해상도 입력을 처리할 수 있는 컨볼루션 기반 CLIP 비전 인코더와 마스크 인식 기능을 갖춘 시각 추출기를 채택함.
- Osprey는 Segment Anything Model(SAM)과 통합되어 다중 해상도의 의미를 추출할 수 있음.
- 이러한 설계를 통해 Osprey는 객체 수준 및 부분 수준의 세밀한 의미 이해를 달성함.

2. Challenges

- Osprey는 시각 언어 모델(MLLM)의 한계를 극복하기 위해 마스크-텍스트 지시 튜닝 방식을 도입함.
- 기존 MLLM은 이미지 수준이나 박스 수준의 이해에 집중하여 픽셀 수준의 세밀한 이해 에는 한계가 있었음.
- Osprey는 724K 샘플로 구성된 Osprey-724K 데이터셋을 활용하여 마스크 기반의 영역-텍스트 지시를 학습함.
- 이 모델은 고해상도 입력을 처리할 수 있는 컨볼루션 기반 CLIP 비전 인코더와 마스크 인식 기능을 갖춘 시각 추출기를 채택함.
- Osprey는 Segment Anything Model(SAM)과 통합되어 다중 해상도의 의미를 추출할 수 있음.
- 이러한 설계를 통해 Osprey는 객체 수준 및 부분 수준의 세밀한 의미 이해를 달성함.

3. Method

- Osprey는 시각-언어 모델에 픽셀 수준의 이해를 추가하기 위해 마스크-텍스트 지시 튜 닝 방식을 도입함
- 724K 샘플로 구성된 마스크 기반 영역-텍스트 데이터셋인 Osprey-724K를 구축하여 학습에 활용함
- 고해상도 입력을 처리할 수 있는 컨볼루션 기반 CLIP 비전 인코더를 사용함
- 마스크 인식 기능을 갖춘 시각 추출기를 채택하여 정확한 시각 마스크 피처를 추출함
- *Segment Anything Model(SAM)**과 통합하여 다중 해상도의 의미를 추출할 수 있음
- 언어 지시문과 시각 마스크 피처를 결합하여 모델 입력 시퀀스를 생성함
- 이러한 설계를 통해 객체 수준 및 부분 수준의 세밀한 의미 이해를 달성함

4. Experiments

Type	Form	Raw Data	GPT-4	#Samples
Object Jessel	Descriptions	COCO/RefCOCO/RefCOCO+/	/	70K
Object-level	Conversations	RefCOCOg/LLaVA-115K	/	127K
Part-level	Categories	PACO-LVIS	/	99K
Part-level	Attributes	PACO-LVIS	/	207K
Robustness	Positive/Negative	COCO/RefCOCO/RefCOCO+/	X	64K/64K
&Flexibility	Short-Form	RefCOCOg/LLaVA-115K/LVIS	/	99k

- Osprey를 여러 시각-언어 태스크에서 평가함
- 데이터셋은 개체 분류, 지역 수준 캡셔닝, 개방형 어휘 인식, 세부 지역 설명 등 포함
- Ablation study 진행. 마스크-텍스트 지시 제거, SAM 통합 제거, 데이터셋 샘플링 변화 시 성능 확인
- 다양한 해상도와 마스크 피처 활용이 성능에 미치는 영향 분석
- 결과, 마스크 기반 영역-텍스트 지시 튜닝과 SAM 통합이 세밀한 픽셀 이해 성능 향상에 크게 기여함
- 실험을 통해 Osprey의 픽셀 수준 의미 이해 능력과 일반화 가능성 확인

5. Results

Method	Type	Cityscapes			ADE20K-150		
Method		PQ	AP	mIoU	PQ	AP	mIoU
CLIP-ConvNeXt-L [43]	Mask	22.53	12.07	23.06	36.86	39.38	28.74
CLIP-Surgery-ViT-L [30]	Mask	27.24	28.35	21.92	26.55	29.70	21.42
Kosmos-2 [40]	Box	12.09	9.81	13.71	6.53	4.33	5.40
Shikra-7B [5]	Box	17.80	11.53	17.77	27.52	20.35	18.24
GPT4RoI-7B [58]	Box	34.70	21.93	36.73	36.32	26.08	25.82
Ferret-7B [54]	Mask	35.57	26.94	38.40	39.46	29.93	31.77
Osprey-7B (Ours)	Mask	50.64	29.17	49.78	41.89	41.24	29.63

Method	L	VIS .	PACO		
Method	SS	S-IoU	SS	S-IoU	
LLaVA-1.5 [32]	48.95	19.81	42.20	14.56	
Kosmos-2 [40]	38.95	8.67	32.09	4.79	
Shikra-7B [5]	49.65	19.82	43.64	11.42	
GPT4RoI-7B [58]	51.32	11.99	48.04	12.08	
Ferret-7B [54]	63.78	36.57	58.68	25.96	
Osprey-7B (Ours)	65.24	38.19	73.06	52.72	

Method	Detailed Description		
LLaVA-1.5 [32]	71.11		
Kosmos-2 [40]	40.89		
Shikra-7B [5]	40.97		
GPT4RoI-7B [58]	49.97		
Osprey-7B (Ours)	77.54		
Osprey-7B* (Ours)	83.78		

Sampling	Metrics	Osprey-7B*	Ferret-7B	Shikra-7B	LLaVA-1.5	InstructBLIP	MiniGPT4	MM-GPT	mPLUG-Owl
Random	Accuracy	89.47	90.24	86.90	88.73	88.57	79.67	50.10	53.97
	Precision	93.40	97.72	94.40	88.89	84.09	78.24	50.05	52.07
	Recall	84.93	83.00	79.26	88.53	95.13	82.20	100.00	99.60
	F1 Score	88.97	89.76	86.19	88.71	89.27	80.17	66.71	68.39
	Yes (%)	45.47	43.78	43.26	49.80	56.57	52.53	99.90	95.63
Popular	Accuracy	87.83	84.90	83.97	85.83	82.77	69.73	50.00	50.90
	Precision	89.94	88.24	87.55	83.91	76.27	65.86	50.00	50.46
	Recall	85.20	80.53	79.20	88.67	95.13	81.93	100.00	99.40
	F1 Score	87.50	84.21	83.16	86.22	84.66	73.02	66.67	66.94
	Yes (%)	47.37	45.63	45.23	52.83	62.37	62.20	100.00	98.57
Adversarial	Accuracy	85.33	82.36	83.10	72.10	65.17	79.20	50.00	50.67
	Precision	85.43	83.60	85.60	74.69	65.13	61.19	50.00	50.34
	Recall	85.20	80.53	79.60	88.34	95.13	82.93	100.00	99.33
	F1 Score	85.31	82.00	82.49	80.94	77.32	70.42	66.67	66.82
	Yes (%)	49.87	48.18	46.50	59.14	73.03	67.77	100.00	98.67

Method	Type	METEOR	CIDEr
GRIT [50]	Box	15.2	71.6
Kosmos-2 [40]	Box	14.1	62.3
GLaMM [45]	Box	16.2	105.0
Osprey-7B (Ours)	Mask	16.6	108.3

Input	#Image Tokens	Speed	SS	S-IoU
224	196	6.0	53.20	26.12
336	441	5.8	56.70	28.90
512	1024	3.5	65.24	38.19
800	2500	1.9	68.29	42.66

- Osprey는 개체 분류, 지역 수준 캡셔닝, 개방형 어휘 인식, 세부 지역 설명 등 다양한 태 스크에서 우수한 성능을 보임
- 마스크 기반 영역-텍스트 지시 튜닝과 SAM 통합이 성능 향상에 크게 기여함
- Ablation study에서 마스크 지시 제거 시 정확도와 세밀도 모두 하락, 마스크 기반 학습 중요성 확인
- 다양한 해상도 입력 처리와 마스크 피처 활용으로 픽셀 수준 이해 능력이 향상됨

• 결과적으로 Osprey는 기존 시각-언어 모델 대비 세밀한 영역 이해와 일반화 성능이 개 선됨

6. Insight

- Osprey는 마스크-텍스트 지시 튜닝과 SAM 통합 덕분에 픽셀 수준 세밀한 의미 이해 능력이 뛰어남
- 다양한 해상도와 영역 단위를 동시에 처리할 수 있는 구조가 일반화 성능 향상에 기여함
- 마스크 기반 데이터셋 구축과 instruction 포맷 학습이 unseen 태스크에서도 성능 안 정성을 높임
- 발전 가능성으로는 영상, 3D, 다중 모달 환경 등으로 확장, 더 다양한 픽셀 수준 태스크 적용 가능
- 학습 효율화, 모델 경량화, 실시간 응용 가능성 확보, 다양한 LLM과 결합해 범용 모델 개발이 향후 과제임