T: And - Linear change of avordinances

 \Rightarrow \top : $\mathbb{P}^n \to \mathbb{P}^n$ projective change of coordinates

Fact: 1) $V \subset \mathbb{P}^n$ alg. set $\Rightarrow V^T := T^T(v) \subset \mathbb{P}^n$ alg. set. $f: V^T = V(F_1^T, \dots, F_r^T)$ (where $F_n^T = F_n(T_1, \dots, T_{max})$)

2). V = var, $\Leftrightarrow v^T = var$,

3).
$$\widetilde{T}: \Gamma_h(v) \to \Gamma_h(v^T)$$

$$\widetilde{\tau}: k(v) \rightarrow k(v^T)$$

$$\widetilde{T}: \mathcal{O}_{P}(V) \rightarrow \mathcal{O}_{T(P)}(V^{T})$$

43. affine and presidentiles.

$$\varphi_{n+1}: \mathbb{A}^n \xrightarrow{\cong} \mathcal{U}_{n+1} \subseteq \mathbb{P}^n$$

aim: alg. sees in 1/4" & alg sees in P".

4.3.1 $\forall V = \text{alg sot in } |A^n|$. $I = I(V) \forall k[x_1, ..., x_n]$ $I^* \forall k[x_1, ..., x_{n+1}]$ ideal generated by F^* for all $f \in I$. $V^* := V(I^*) \subseteq P^n$.

In the properties closure of V

m 3: V, W ⊆ /A? alg sees Then

- (1). $V^* = Smallest$ alg. Set in P^n containing $q_{nel}(v)$
- (2) $\varphi_{n+1}(v) = V^* \cap U_{n+1}$
- (3) $V \subseteq W \Rightarrow V^* \subseteq W^*$
- (4) V irr. \Rightarrow V^* irr

(D)

- (5). $V = U V_{\tilde{n}}$ in decomp. $\Rightarrow V^* = U V_{\tilde{n}}^*$ in decomp.
- (6) $V=UV_{\lambda} \in A^{n} (\Rightarrow \phi) \Rightarrow V_{\lambda}^{*} \notin H_{\infty} \gg V_{\lambda}^{*} \Rightarrow H_{\infty}$

 $Pf: [2] \bigvee^{*} \bigcap \bigcup_{n \neq j} := \left\{ \left[\chi_{1}, \dots, \chi_{n+1} \right] \middle| F^{*}(\chi_{1}, \dots, \chi_{n+1}) \right\} = 0 \quad \forall F \in \mathbb{Z} \right\}$ $= \left\{ \left. \varphi_{n \neq j} \left(\chi_{1}, \dots, \chi_{n} \right) \right) \middle| F(\chi_{1}, \dots, \chi_{n}) \right\} = 0 \quad \forall F \in \mathbb{Z} \right\}$ $= \left. \varphi_{n \neq j} \left(V \right) \right\}$

(3) $V \subseteq W \Rightarrow I(v) \supseteq I(w) \Rightarrow I(v)^* \supseteq I(w)^* \Rightarrow V (I(w)^*) \subseteq V(I(w)^*) \Rightarrow V^* \subseteq W^*$

(4)
$$V = Irr \Rightarrow I(V) = prime \Rightarrow I(V)^* = prime \Rightarrow V^* = Irr.$$

(1).
$$Z \subseteq \mathbb{P}^{n}$$
 algorithm denotes $Z \subseteq \mathbb{P}^{n}$ algorithm de

$$\exists I(z) \subseteq I(v)^* \Rightarrow Z \supseteq V^* \Rightarrow V$$

$$(5) \Leftarrow (1), (2), (3), (4)$$

- (b) assume V = i r.
 - · (2) ⇒ V*\$H∞
 - · Suppose V* ≥ H∞.

$$\Rightarrow I(V)^* \subseteq I(V^*) \subseteq I(Ho_0) = (X_{nH})$$

$$\forall F \in I(V) \setminus Fo_1 \Rightarrow F^* \in I(V)^* \& F^* \notin (X_{nH}) \ \lor$$

$$\Rightarrow V^* \not\cong H_{\bullet}.$$

4.).
$$\forall V = alg. \text{ Set in } \mathbb{P}^n.$$
 $I = I(V) \triangleleft k[x_1, ..., x_{n+1}]$

$$I_{\times} \triangleleft k[x_1, ..., x_n] \text{ ideal generated by } F_{\times} \text{ for all } F \in I.$$

$$V_{\times} := V(I_{\times}) \subseteq A^n.$$

Prop 3':
$$V, W \subseteq \mathbb{P}^n$$
 alg. sets. Then

(1) $V \subseteq W \Rightarrow V_* \subseteq W_*$

(2). if
$$V=UV_{i}\subseteq P^{n}$$
 with $V_{i}\nsubseteq H_{\infty}$ & $H_{\omega}\nsubseteq V_{i}$ ($\forall x_{i}$). then
$$V_{*}\nsubseteq A^{n} \quad \& \left(V_{*}\right)^{*}=V.$$
(3). $V(\neq \phi)\subseteq A^{n}$ alg set $\cdot \Rightarrow \left(V^{*}\right)_{*}=V$

$$Pf: (I) \ V \subseteq W \Rightarrow I(V) \supseteq I(W) \Rightarrow I(V)_{*} \supseteq I(W)_{*}$$
$$\Rightarrow V_{*} \subseteq W_{*}$$

(2), WMA : V=Im.

ONTS:
$$I(V_*)^* \subseteq I(V)$$
 $\iff V \subseteq (V_*)^* \iff \varphi_{n+1}(V_*) \subset V$
 $\forall F \in I(V_*) \Rightarrow F^N \in I(V)_*$ for some N
 $\Rightarrow X_{n+1}^k (F^N)^* \in I(V)$ for some π

$$V = 7V \Rightarrow I(v) = princ$$

 $V \Leftrightarrow H_{\infty} \Rightarrow X_{nel} \notin I(v)$
 $V \Leftrightarrow H_{\infty} \Rightarrow X_{nel} \notin I(v)$

(3), dear