FULL NAME (Printed):
Program:
You have the entire period to complete this examination. You are allowed your Sharp EL-516 calculator and the DC Formula Sheet from the text (provided). All of the questions are equally weighted
M/C Questions
 Circle the correct answer NO partial credit will be awarded
Work the Problem Questions
 SHOW ALL your work in the space provided BOX-IN your final answer Partial credit may be awarded

EEET-111 DC Circuits Lecture

Exam #2 (2181)

Figure 1- Schematic for Problems 1 through 3

- 1. See Figure 1. How much power is dissipated by R₅?
 - a. 146.7 mW
 - b. 132.2 mW
 - c. 36.4 mW
 - d. 6.67 mW
- 2. See Figure 1. If R_3 is open circuited, how much power is dissipated by R_5 ?
 - a. 36.4 mW
 - b. 6.76 mW
 - c. 1.76 mW
 - d. 0 W
- 3. See Figure 1. Which *one* of the following statements is true *if the 120V source is replaced by a 60V source?*
 - a. The voltage across R3 will decrease by 25%
 - b. The power dissipated by R5 will decrease by 25%
 - c. The current in the circuit will reduce to half its original value
 - d. The power dissipated by R5 will decrease to half of its original value

Figure 2- Schematic for Problems 4 - 6

- 4. See Figure 2. The total resistance in this circuit is (as seen by the source):
 - a. $12 k\Omega$
 - b. $10 \text{ k}\Omega$
 - c. 1 k Ω
 - d. $0.624 k\Omega$
- 5. See Figure 2. The total current flowing from the battery is
 - a. 12 mA
 - b. 1.8 mA
 - c. 1.2 mA
 - d. 1.0 mA
- 6. See Figure 2. The total power dissipated by the 2.2 $k\Omega$ resistor is
 - a. 144 mW
 - b. 23.2 mW
 - c. 14.4 mW
 - d. 3.17 mW

- 7. The total *resistance* of a 10 Ω resistor and a 100 Ω resistor in parallel is
 - a. 1010 Ω
 - b. 9.09 Ω
 - c. 7.07 Ω
 - d. 0.110Ω
- 8. A 10 Ω resistor and an 8 Ω resistor are connected in parallel across a 15 V battery. What is the total current drawn from the battery?
 - a. 3.38 A
 - b. 1.88 A
 - c. 1.50 A
 - d. 0.830 A
- 9. What is the total conductance of a parallel circuit with three resistors with values of 80, 120 and 220 Ω ?
 - a. 39.4 S
 - b. 53.8 mS
 - c. 39.4 mS
 - d. 25.4 mS
- 10. As additional resistors are added (in parallel) to a parallel circuit, what will happen to the total conductance of the circuit?
 - a. It depends on the number of resistors added whether the conductance will increase or decrease
 - b. The total conductance will remain the same
 - c. The total conductance will increase
 - d. The total conductance will decrease

Figure 3 - Schematic for Questions 11, 12 and 13

- 11. See Figure 3. What is the open circuit output voltage Vload?
 - a. 60 V
 - b. 21.2 V
 - c. 15.7 V
 - d. 0 V
- 12. See Figure 3. What is the new voltage Vload if R4 is shorted?
 - a. 60 V
 - b. 21.2 V
 - c. 14.9 V
 - d. 0 V
- 13. See Figure 3. What is the new voltage V_{load} if R4 is open-circuited?
 - a. 60 V
 - b. 21.2 V
 - c. 14.9 V
 - d. 0 V

Figure 7.6

- 14. See Figure 7.6. What is the current I2?
 - a. 5.0 A
 - b. 1.5 A
 - c. -1.5 A
 - d. -2.0 A
- 15. See Figure 7.6. What is the power dissipated by the 50 Ω resistor?
 - a. 22.5 W
 - b. 4.5 W
 - c. 2.0 W
 - d. 1.5 W

Figure 7.5

- 16. See Figure 7.5. What is R_T if the 5 Ω resistor on the far right is short-circuited?
 - a. 110 Ω
 - b. 99.6 Ω
 - c. 90.0 Ω
 - d. $18.7~\Omega$

Figure 5.6

17. See Figure 5.6. Use voltage divider to choose R_2 such that $V_{R3} = 30 \text{ V}$ (polarity as shown)

18. See Figure 6.6. Compute the voltage reading if a digital multimeter with 1 $M\Omega$ of internal resistance is used.

Figure 4 - Schematic for Questions 19 and 20

19. See Figure 4. What is the total resistance seen by the source?

20. See Figure 4. If R6 is replaced by an open-circuit, what is the total resistance seen by the source?

INTRODUCTORY CIRCUIT ANALYSIS, Thirteenth Edition, by Robert L. Boylestad

© Copyright 2016 by Pearson Education. All Rights Reserved.

dc

Introduction

Voltage and Current

Coulomb's law $F = kQ_1Q_2/r^2$, $k = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$, Q = coulombs (C), r = meters (m) **Current** I = Q/t (amperes), t = seconds (s), $Q_e = 1.6 \times 10^{-19} \text{ C}$ **Voltage** V = W/Q (volts), W = joules (J)

Resistance

Circular wire $R = \rho l / A$ (ohms), $\rho = {\rm resistivity}, l = {\rm feet},$ $A_{\rm CM} = (d_{\rm mils})^2, \rho({\rm Cu}) = 10.37$ **Metric units** $l = {\rm cm}, A = {\rm cm}^2,$ $\rho({\rm Cu}) = 1.724 \times 10^{-6}$ ohm-cm **Temperature** ($|T_i| + T_1 / R_1 = (|T_i| + T_2 / R_2, R_1 = R_{20}[1 + \alpha_{20}(T_1 - 20^{\circ}{\rm C})], \alpha_{20}({\rm Cu}) = 0.00393$ **Color code** Bands 1–3: 0 = black, 1 = brown, 2 = red, 3 = orange, 4 = yellow, 5 = green, 6 = blue, 7 = violet, 8 = gray, 9 = white, Band 3: 0.1 = gold, 0.01 = silver, Band 4: 5% = gold, 10% = silver, 20% = no band, Band 5: 1% = brown, 0.1% = red, 0.01% = orange, 0.001% = yellow **Conductance** G = 1 / R siemens (S)

Ohm's Law, Power, and Energy

Ohm's law I = E/R, E = IR, R = E/I Power $P = W/t = VI = I^2R = V^2/R$ (watts), 1 hp = 746 W Efficiency $\eta\% = (P_o/P_i) \times 100\%$, $\eta_T = \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \cdots \cdot \eta_n$ Energy W = Pt, W (kWh) = $[P(W) \cdot t(h)]/1000$

Series Circuits

 $R_T = R_1 + R_2 + R_3 + \cdots + R_N, R_T = NR, I = E/R_T, V = IR$ Kirchhoff's voltage law $\Sigma_{\mathbb{C}}V = 0, \ \Sigma_{\mathbb{C}}V_{\mathrm{rises}} = \Sigma_{\mathbb{C}}V_{\mathrm{drops}}$ Voltage divider rule $V_X = R_X E/R_T$

Parallel dc Circuits

 $R_T = 1/(1/R_1 + 1/R_2 + 1/R_3 + \cdots + 1/R_N), R_T = R/N,$ $R_T = R_1R_2/(R_1 + R_2), I = EG_T = E/R_T$ Kirchhoff's current law $\Sigma I_{\text{entering}} = \Sigma I_{\text{leaving}}$ Current divider rule $I_x = (R_T/R_x)I$, (Two parallel elements): $I_1 = R_2I/(R_1 + R_2), I_2 = R_1I/(R_1 + R_2)$

Series-Parallel Circuits

 $\begin{array}{lll} \textbf{Potentiometer loading} & R_L >> R_T \\ \textbf{Ammeter} & R_{\text{shunt}} = R_m I_{CS} / (I_{\text{max}} - I_{CS}) \\ \textbf{Voltmeter} & R_{\text{series}} = (V_{\text{max}} - V_{VS}) / I_{CS} \\ \textbf{Ohmmeter} & R_s = (E/I_{CS}) - R_m - \text{zero-adjust/2} \\ \end{array}$

Methods of Analysis and Selected Topics (dc)

Source conversions $E = IR_p, R_s = R_p, I = E/R_s$

Determinants $D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$ **Bridge networks** $R_1/R_2 = R_2/R_4$ Δ -Y conv.

Bridge networks $R_1/R_3 = R_2/R_4$ Δ-Y conversions $R' = R_A + R_B + R_C$, $R_3 = R_AR_B/R'$, $R_2 = R_AR_C/R'$, $R_1 = R_BR_C/R'$, $R_Y = R_\Delta/3$ Υ-Δ conversions $R'' = R_1R_2 + R_1R_3 + R_2R_3$, $R_C = R''/R_3$, $R_B = R''/R_2$, $R_A = R''/R_1$, $R_\Delta = 3R_Y$

Network Theorems

Superposition Voltage sources (short-circuit equivalent), current sources (open-circuit equivalent)

Thévenin's Theorem R_{Th} : (all sources to zero), E_{Th} : (open-circuit terminal voltage)

Maximum power transfer theorem $R_L = R_{Th} = R_N$, $P_{\text{max}} = E^2_{Th}/4R_{Th} = I^2_N R_N/4$

Capacitors

Capacitance $C = Q/V = \epsilon A/d = 8.85 \times 10^{-12} \epsilon_r A/d$ farads (F), $C = \epsilon_r C_o$ Electric field strength $\mathscr{E} = V/d = Q/\epsilon A$ (volts/meter) Transients (charging) $i_C = (E/R)e^{-t/\tau}$, $\tau = RC$, $v_C = E(1 - e^{-t/\tau})$, (discharge) $v_C = Ee^{-t/\tau}$, $i_C = (E/R)e^{-t/RC}$ i_C $i_{Cav} = C(\Delta v_C/\Delta t)$ Series $Q_T = Q_1 = Q_2 = Q_3$, $1/C_T = (1/C_1) + (1/C_2) + (1/C_3) + \cdots + (1/C_N)$, $C_T = C_1 C_2 / (C_1 + C_2)$ Parallel $Q_T = Q_1 + Q_2 + Q_3$, $C_T = C_1 + C_2 + C_3$ Energy $W_C = (1/2)CV^2$

Inductors

 $\begin{array}{lll} \textbf{Self-inductance} & L = N^2 \mu A/l \ (\text{henries}), L = \mu_r L_o \\ \textbf{Induced voltage} & e_{Lav} = L(\Delta i/\Delta t) & \textbf{Transients} \ \ (\text{storage}) \ i_L = \\ I_m (1 - e^{-t/\tau}), \ I_m = E/R, \ \tau = L/R, \ v_L = Ee^{-t/\tau} \ (\text{decay}), \ v_L = \\ [1 + (R_2/R_1)] Ee^{-t/\tau'}, \ \tau' = L/(R_1 + R_2), \ i_L = I_m e^{-t/\tau'}, \ I_m = E/R_1 \\ \textbf{Series} \ L_T = L_1 + L_2 + L_3 + \cdots + L_N & \textbf{Parallel} \ 1/L_T = (1/L_1) + \\ (1/L_2) + (1/L_3) + \cdots + (1/L_N), \ L_T = L_1 L_2/(L_1 + L_2) \\ \textbf{Energy} \ \ W_L = 1/2(LI^2) \\ \end{array}$

Magnetic Circuits

Flux density $B = \Phi/A$ (webers/m²) Permeability $\mu = \mu_r \mu_o$ (Wb/A·m) Reluctance $\mathcal{R} = l/\mu A$ (rels) Ohm's law $\Phi = \mathcal{F}/\mathcal{R}$ (webers) Magnetomotive force $\mathcal{F} = NI$ (ampere-turns) Magnetizing force $H = \mathcal{F}/l = NI/l$ Ampère's circuital law $\Sigma_{\mathbb{C}} \mathcal{F} = 0$ Flux $^*\Sigma \Phi_{\text{entering}} = \Sigma \Phi_{\text{leaving}}$ Air gap $H_g = 7.96 \times 10^5 \, B_g$

Greek Alphabet

Letter	Capital	Lowercase	Letter	Capital	Lowercase
Alpha	A	α	Nu	N	υ
Beta	В	β	Xi	Ξ	ξ
Gamma	Γ	γ	Omicron	O	o
Delta	Δ	δ	Pi	Π	π
Epsilon	E	ϵ	Rho	P	ρ
Zeta	Z	ζ	Sigma	Σ	σ
Eta	Н	η	Tau	T	au
Theta	Θ	θ	Upsilon	γ	v
Iota	I	ι	Phi	Φ	ϕ
Kappa	K	к	Chi	X	X
Lambda	Λ	λ	Psi	Ψ	$\widehat{\psi}$
Mu	M	μ	Omega	Ω	ω

Prefixes

Multiplication	SI	SI
Factors	Prefix	Symbol
$\begin{array}{c} 1\ 000\ 000\ 000\ 000\ 000\ 000\ 000\ $	exa peta tera giga mega kilo milli micro nano pico femto atto	E P T G M k m μ n p f