# Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

#### Факультет безопасности информационных технологий

#### Дисциплина:

«Электротехника»

#### ЛАБОРАТОРНАЯ РАБОТА №1

Исследование характеристик источника электрической энергии постоянного тока

#### Выполнил:

студент Суханкулиев М.,

группа N3246, поток ЭЛТЕХ. N23 1.4.1

Преподаватель:

Кононова Мария Евгеньевна

Контрольный срок сдачи: 24.03.2025

Количество баллов:

Санкт-Петербург 2025 г.

# СОДЕРЖАНИЕ

| Введен | ие                                                                           | .4  |
|--------|------------------------------------------------------------------------------|-----|
| 1      | Исследование характеристик источника электрической энергии постоянного тока. | .5  |
| 1.1    | Схема эксперимента                                                           | 5   |
| 1.2    | Заполнение таблицы                                                           | 5   |
|        | 1.2.1 Пример расчёта для одной произвольной строки таблицы                   | .6  |
| 1.3    | Расчётная внешняя характеристика источника                                   | .7  |
| 1.4    | Графики зависимости $Pn(In)$ и $\eta(In)$                                    | .7  |
| 1.5    | Выводы по работе                                                             | .8  |
| Заключ | иение                                                                        | .9  |
| Список | с использованных источников                                                  | 1 C |

## **ВВЕДЕНИЕ**

Цель работы – исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.

## План работы:

- Исследование внешней характеристики источника электрической энергии.
- Определение параметров схемы замещения источника по экспериментальным данным.

## 1 ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ИСТОЧНИКА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПОСТОЯННОГО ТОКА

#### 1.1 Схема эксперимента

Соберём электрическую цепь в приложении «LTspice» и установим значения, соответствующие варианту 28 из файла (3).



Рисунок 1 -Схема эксперимента (1t - 1 тераОм)

#### 1.2 Заполнение таблицы

Заполняя таблицу, определим значение, при котором напряжение в нагрузке будет равно  $U_0/2$ .

$$U_0 = 25 \text{ [B]}, \qquad \frac{U_0}{2} = \frac{25 \text{ [B]}}{2} = 12.5 \text{ [B]}$$



Рисунок 2 — Значение параметров при  $R_6 = 12500$  [B]

Таблица 1 – Таблица измерений и расчётов

| k  | Измерения    |            | $egin{aligned} \mathbf{P}$ асчёт $oldsymbol{r} = 12500 \ 	ext{[OM]}, oldsymbol{E} = 25 \ 	ext{[B]}, oldsymbol{I}_{sc} = 2 \ 	ext{[MA]} \end{aligned}$ |       |        |           |
|----|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------|
|    |              |            |                                                                                                                                                       |       |        |           |
| 1  | $r = \infty$ | $U_0 = 25$ | 0                                                                                                                                                     | 0     | 1      |           |
| 2  | 112 500      | 22.5       | 0.2                                                                                                                                                   | 0.45  | 0.9    | 12 500    |
| 3  | 50 000       | 20         | 0.4                                                                                                                                                   | 0.8   | 0.8    | 12 500.43 |
| 4  | 29 167       | 17.5       | 0.6                                                                                                                                                   | 1.05  | 0.7    | 12 499.57 |
| 5  | 18 750       | 15         | 0.8                                                                                                                                                   | 1.2   | 0.6    | 12 500    |
| 6  | 12 500       | 12.5       | 1                                                                                                                                                     | 1.25  | 0.5    | 12 497    |
| 7  | 8 333        | 10         | 1.2                                                                                                                                                   | 1.2   | 0.4    | 12 502.16 |
| 8  | 3 571        | 5.555      | 1.5556                                                                                                                                                | 0.864 | 0.2222 | 12 496.25 |
| 9  | 3 125        | 5          | 1.6                                                                                                                                                   | 0.8   | 0.2    | 12 509.01 |
| 10 | 1 389        | 2.5        | 1.8                                                                                                                                                   | 0.45  | 0.1    | 12 491.01 |
| 11 | 0            | 0          | 2                                                                                                                                                     | 0     | 0      |           |

#### 1.2.1 Пример расчёта для одной произвольной строки таблицы

Для k=2:

При  $R_n = 112500$  [Ом]  $U_n = 22.5$  [В].

Ток в нагрузке:

$$I_{n_k} = \frac{U_{n_k}}{R_{n_k}}$$
 [A],  $I_{n_2} = \frac{22.5 \text{ [B]}}{112500 \text{ [OM]}} = 0.0002 \text{ [A]} = 0.2 \text{ [mA]}$ 

Мощность, рассеиваемая в нагрузке:

$$P_{n_k} = \frac{U_{n_k}^2}{R_{n_k}}$$
 [BT],  $P_{n_2} = \frac{22.5^2 \text{ [B}^2]}{112500 \text{ [OM]}} = 0.0045 \text{ [BT]} = 0.45 \text{ [rBT]}$ 

Для каждой пары значений токов и напряжений строк  $k=2\dots 9$  рассчитаем внутреннее сопротивление источника:

$$r_k = \frac{U_{n_k} - U_{n_{k+1}}}{I_{n_{k+1}} - I_{n_k}} \; [\text{Om}], \qquad r_2 = \frac{22.5 \; [\text{B}] - 20 \; [\text{B}]}{0.0004 \; [\text{A}] - 0.0002 \; [\text{A}]} = 12500 \; [\text{Om}]$$

Затем найдём оценку внутреннего сопротивления источника r в виде среднего квадратического значения:

$$r = \sqrt{\frac{\sum_{k=2}^{9} r_k^2}{8}} \; [\text{Ом}] \approx 12500.55 \; [\text{Ом}]$$

Коэффициент полезного действия:

$$\eta_k = \frac{R_{n_k}}{r + R_{n_k}}, \qquad \eta_2 = \frac{112500 \text{ [OM]}}{12500.55 \text{ [OM]} + 112500 \text{ [OM]}} \approx 0.9$$

Ток короткого замыкания источника:

$$I_{sc} = \frac{U_0}{r} [A] = \frac{25 [B]}{12500.55 [OM]} \approx 0.002 [A] = 2 [MA]$$

#### 1.3 Расчётная внешняя характеристика источника

Через точки  $[0, E = U_0]$  и  $[I_{sc}, 0]$  построим линию расчётной внешней характеристики  $U_n = E - rI_n$  и на этой же плоскости отметим точки экспериментальной характеристики в соответствии с таблицей (Таблица 1 –).



Рисунок 3 — Линия расчётной внешней характеристики и точки экспериментальной характеристики

#### 1.4 Графики зависимости $P_n(I_n)$ и $\eta(I_n)$

По данным таблицы (Таблица 1 –) построим зависимости мощности в нагрузке  $P_n(I_n)$  и КПД  $\eta(I_n)$ .



Рисунок 4 — Графики зависимости  $P_n(I_n)$  и  $\eta(I_n)$ 

#### 1.5 Выводы по работе

Внешняя характеристика источника показала линейную зависимость напряжения на нагрузке от протекающего тока, что соответствует уравнению  $U_n = E - r I_n$ . При уменьшении сопротивления нагрузки  $R_n$ , напряжение  $U_n$  снижалось, а ток  $I_n$  увеличивался.

Определение внутреннего сопротивления источника проводилось с использованием метода среднеквадратичной оценки.

Максимальная мощность выделяется в нагрузке при  $R_n = r$ .

Коэффициент полезного действия увеличивается с ростом сопротивления нагрузки и стремится к 100% в режиме холостого хода.

#### ЗАКЛЮЧЕНИЕ

В ходе работы была исследована внешняя характеристика источника электрической энергии и определены его параметры. Экспериментальные данные, полученные в LTspice, подтвердили теоретические закономерности.

Проведённый эксперимент продемонстрировал основные характеристики источника питания постоянного тока, подтвердил линейную зависимость напряжения от тока и позволил определить внутреннее сопротивление.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Усольцев А.А. Общая электротехника: Учебное пособие. СПб: НИУИТМО, 2013. 305с. URL: ОБЩАЯ ЭЛЕКТРОТЕХНИКА Учебные издания НИУ ИТМО.
- Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А., ). Никитина М.В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно методическое пособие. Санкт-Петербург: Университет ИТМО, 2019. 52 с. URL: Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. Учебные издания НИУ ИТМО
- 3. ЛР1
   варианты
   параметров
   исследуемой
   цепи
   — URL:

   https://isu.ifmo.ru/pls/apex/f?p=2422:0:112755909572470:DWNLD\_F\_GEN:NO::FILE:26

   DF4BFCB26866E6136E6FD89CA16448