# Contents

| 1 | Definition and The First Principle            |                                                     |                |
|---|-----------------------------------------------|-----------------------------------------------------|----------------|
|   | 1.1                                           | Definition                                          | 1              |
|   | 1.2                                           | The derivative at a Point $a$                       | 1              |
|   | 1.3                                           | Geometric Meaning                                   | 1              |
|   | 1.4                                           | Symbols for the Derivative                          | 1              |
| 2 | Rules and Derivatives of Elementary Functions |                                                     |                |
|   | 2.1                                           | Derivative Rules                                    | 2              |
|   | 2.2                                           | Trigonometric Functions                             | 2              |
|   | 2.3                                           | Inverse Trigonometric Functions                     | 2              |
|   | 2.4                                           | Exponential and Logarithhmic Functions              | 2              |
|   | 2.5                                           | Derivative of Inverse Function                      | $\overline{2}$ |
|   | 2.6                                           | Chain Rule                                          | 3              |
| 3 | Advanced Differentiation 3                    |                                                     |                |
|   | 3.1                                           | Implicit Differentiation                            | 3              |
|   | $3.1 \\ 3.2$                                  | Higher-Order Derivatives                            | 3              |
|   | $\frac{3.2}{3.3}$                             | Derivative of Parametric Functions                  | 4              |
|   | 3.4                                           | Derivative of Polar Functions                       | 4              |
|   | $\frac{3.4}{3.5}$                             | Derivative of Vector-valued Function                | 4              |
|   | 5.5                                           | Derivative of vector-varied runction                | 4              |
| 4 | $Th\epsilon$                                  | eorems                                              | 4              |
|   | 4.1                                           | Rolle's Theorem                                     | 4              |
|   | 4.2                                           | Mean Value Theorem                                  | 5              |
|   | 4.3                                           | Cauchy's Mean Value Theorem                         | 5              |
|   | 4.4                                           | Extreme Value Theorem                               | 5              |
| 5 | Beh                                           | navior of Functions                                 | 6              |
|   | 5.1                                           | Critical Points and Extrema                         | 6              |
|   | 5.2                                           | Concavity and Inflection Points                     | 6              |
| 6 | Apr                                           | olications                                          | 7              |
|   | 6.1                                           | Related Rates                                       | 7              |
|   |                                               | 6.1.1 Angle of Elevation Problem                    | 7              |
|   |                                               | 6.1.2 Inverted Cone (Water Tank) Problem            | 7              |
|   | 6.2                                           | Optimization Problems                               | 7              |
|   | ~· <b>-</b>                                   | 6.2.1 Area Problem                                  | 7              |
|   |                                               | 6.2.2 Shortest Distance Problem                     | 8              |
|   | 6.3                                           | Linear Approximation (First-Order Taylor Expantion) | 9              |
|   |                                               |                                                     |                |

# 1 Definition and The First Principle

#### 1.1 Definition

Let f be a function defined on an open interval containing a. The **derivative** of f at the point a, denoted by f'(a), is defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

#### 1.2 The derivative at a Point a

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided the limit exists.

### 1.3 Geometric Meaning

To find the slope of the tangent line to the curve y = f(x) at a point x = a, we consider the slope of the secant line between two points:

$$\frac{f(a+h) - f(a)}{h}$$

As  $h \to 0$ , this secant slope approaches the derivative f'(a), which is the slope of the tangent line at x = a.



# 1.4 Symbols for the Derivative

$$D_x f, \frac{d}{dx} f(x), y', \dot{y}$$

# 2 Rules and Derivatives of Elementary Functions

# 2.1 Derivative Rules

- 1. Constant Rule:  $\frac{d}{dx}c = 0$
- 2. Power Rule:  $\frac{d}{dx}x^n = nx^{n-1}$
- 3. Sum/Difference Rule:  $\frac{d}{dx}[f \pm g] = \frac{d}{dx}f \pm \frac{d}{dx}g$
- 4. Product Rule:  $\frac{d}{dx}[f \cdot g] = \frac{d}{dx}f \cdot g + f \cdot \frac{d}{dx}g$
- 5. Quotient Rule:  $\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}f \cdot g f \cdot \frac{d}{dx}g}{g^2}$

# 2.2 Trigonometric Functions

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

# 2.3 Inverse Trigonometric Functions

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$$
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \qquad \frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$$

# 2.4 Exponential and Logarithhmic Functions

$$\frac{d}{dx}(e^x) = e^x, \frac{d}{dx}(\ln x) = \frac{1}{x}, x > 0$$

$$\frac{d}{dx}(a^x) = a^x \ln a, a > 0 \& \neq 1 \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, a > 0 \& \neq 1$$

#### 2.5 Derivative of Inverse Function

Let f be a one-to-one differentiable function with inverse  $f^{-1}$ , and suppose  $f'(f^{-1}(x)) \neq 0$ . Then,

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

2

# Example:

Let  $f(x) = e^x$ , so  $f^{-1}(x) = \ln x$ . Then,

$$\frac{d}{dx}(\ln x) = \frac{1}{\frac{d}{dx}(e^x)|_{x=\ln x}} = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

#### 2.6 Chain Rule

If h(x) = f(g(x)) where both f and g are differentiable, then

$$h'(x) = \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x).$$

# 3 Advanced Differentiation

### 3.1 Implicit Differentiation

If a function y is given implicitly by an equation involving both x and y, such as

$$F(x,y) = 0.$$

To find the derivative  $\frac{dy}{dx}$ , we differentiate both sides of the equation with respect to x, treating y as a function of x.

# Example:

If

$$x^2 + y^2 = 25,$$

then differentiating both sides gives

$$2x + 2y\frac{dy}{dx} = 0.$$

Solving for  $\frac{dy}{dx}$  gives

$$\frac{dy}{dx} = -\frac{x}{y}.$$

#### 3.2 Higher-Order Derivatives

The second derivative, third derivative, and beyond are called higher-order derivatives. These describe how the rate of change itself changes.

$$\begin{cases} \frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^ny}{dx^n} \\ f'(x), f''(x), f'''(x), f'''(x), f^{(n)}(x) \\ \dot{y}, \ddot{y}, \dddot{y} \end{cases}$$

#### 3.3 Derivative of Parametric Functions

Given a parametric curve:

$$x = x(t)$$
  $y = y(t)$ 

the derivative of y w.r.t x is given by

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$
 (provided  $\frac{dx}{dt} \neq 0$ )

#### 3.4 Derivative of Polar Functions

For polar representations, r = f(x) and that  $x = r \cdot \cos \theta$ ,  $y = r \sin \theta$ .

$$\frac{dx}{d\theta} = \frac{dr}{d\theta} \cdot \cos\theta - r\sin\theta$$

$$\frac{dy}{d\theta} = \frac{dr}{d\theta} \cdot \sin\theta + r\cos\theta$$

Thus,

$$\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{\frac{dr}{d\theta} \cdot \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cdot \cos \theta - r \sin \theta}$$

#### 3.5 Derivative of Vector-valued Function

Assume the position of a particle is given by  $r = \langle x, y \rangle$ , it's velocity vector is given by

$$\frac{dr}{dt} = \left\langle \frac{dx}{dt}, \frac{dy}{dt} \right\rangle$$

and the magnitude speed is thus

$$\left| \left| \frac{dr}{dt} \right| \right| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

Similarly, acceleration vector is

$$\frac{d^2r}{dt^2} = \left\langle \frac{d^2x}{dt^2}, \frac{d^2y}{dt^2} \right\rangle$$

and the magnitude of acceleration is

$$\left| \left| \frac{d^2r}{dt^2} \right| \right| = \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}$$

### 4 Theorems

#### 4.1 Rolle's Theorem

Let f be continuous on [a, b], differentiable on (a, b), and f(a) = f(b). Then there exists  $c \in (a, b)$  such that

$$f'(c) = 0.$$



#### 4.2 Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b), then there exists  $c \in (a, b)$  such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



#### 4.3 Cauchy's Mean Value Theorem

Let f and g be functions continuous on the closed interval [a,b], and differentiable on the open interval (a,b), with  $g'(x) \neq 0$  for all  $x \in (a,b)$ . Then there exists at least one point  $c \in (a,b)$  such that:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

For g(x) = x, Cauchy's Mean Value Theorem reduces to Mean Value Theorem.

#### 4.4 Extreme Value Theorem

If f is continuous on [a, b], then there exist points  $c, d \in [a, b]$  such that

$$f(c) \le f(x) \le f(d), \quad \forall x \in [a, b].$$



#### **Behavior of Functions** 5

#### 5.1 Critical Points and Extrema

• Critical Point: A point c in the domain of f where f'(c) = 0 or f'(c) does not exist.

• Local Maximum: f(c) is a local maximum if  $f(c) \ge f(x)$  for all x near c.

• Local Minimum: f(c) is a local minimum if  $f(c) \le f(x)$  for all x near c.





#### 5.2 Concavity and Inflection Points

• Concave Up: f''(x) > 0 on an interval  $\implies$  graph lies above tangent lines.

• Concave Down: f''(x) < 0 on an interval  $\implies$  graph lies below tangent lines.

• Inflection Point: A point where f''(x) changes sign.







Concave Down f''(x) < 0



Inflection Point f''(x) = 0

# 6 Applications

#### 6.1 Related Rates

#### 6.1.1 Angle of Elevation Problem

A camera on the ground 200 meters away from a hot air balloon, also on the ground, records the balloon rising into the sky at a constant rate of 10 m/sec. How fast is the camera's angle of elevation changing when the balloon is 150m in the air?



#### Solution

Given  $\frac{dx}{dt} = 10$  m/sec and  $\tan \theta = \frac{x}{200}$ , we want  $\frac{d\theta}{dt}$  at x = 150. We differentiate both sides with respect to t.

$$\frac{d}{dt} \left( \tan \theta = \frac{x}{200} \right)$$

$$\Rightarrow \sec^2 \theta \frac{d\theta}{dt} = \frac{1}{200} \frac{dx}{dt}$$

$$\Rightarrow \frac{d\theta}{dt} = \frac{1}{200 \sec^2 \theta} \frac{dx}{dt} \Big|_{\frac{dx}{x} = 10} = \frac{1}{20} \cos^2 \theta$$

We have  $\frac{d\theta}{dt} = \frac{1}{20}\cos^2\theta$ , and at x = 150, y = 250 (by Pythagorean Theorem:  $y^2 = 150^2 + 200^2$ ). Thus,

$$\frac{d\theta}{dt}\Big|_{x=150} = \frac{1}{20}\cos^2\theta$$
$$= \frac{1}{20}\left(\frac{4}{5}\right)^2$$
$$= \frac{4}{125} = .032$$

Thus, the angle of elevation changes at .032 radian/sec when the balloon is 150m in the air.

#### 6.1.2 Inverted Cone (Water Tank) Problem

### 6.2 Optimization Problems

#### 6.2.1 Area Problem

The graph of  $y = -\frac{1}{2}x + 2$  encloses a region with the x-axis and y-axis in the first quadrant. A rectangle in the enclosed region has a vertex at the origin and the opposite vertex on the graph of y. Find the dimensions of the rectangle so that its area is a maximum.



#### 6.2.2 Shortest Distance Problem

Find the shortest distance between the point (19,0) and the parabola  $y = (x-1)^2$ .



# Solution

Let D be the distance between the point and the parabola

$$D = \sqrt{(x-19)^2 + (y-0)^2}$$
$$= \sqrt{(x-19)^2 + ((x-1)^2 - 0)^2}$$

To simplify the calculation, we consider  $L=D^2$ :

$$L = D^2 = (x - 19)^2 + (x - 1)^4$$

Differentiate L:

$$\frac{dL}{dx} = \frac{d}{dx} \left( (x - 19)^2 + (x - 1)^4 \right)$$
$$= 2(x - 19) + 4(x - 1)^3$$

Set L=0:

$$\frac{dL}{dx} = 2(x - 19) + 4(x - 1)^3$$
$$= (x - 3)(2x^2 + 7)$$
$$\Rightarrow x = 3$$

Apply the First Derivative Test:



Since x=3 is the only relative min point, it is the absolute min. Thus, the shortest distance is

$$D|_{x=3} = \sqrt{(3-19)^2 + (3-1)^4} = 4\sqrt{17}$$

# 6.3 Linear Approximation (First-Order Taylor Expantion)

If f is differentiable at x = a, then near a, the function f(x) is approximated by

$$f(x) \approx f(a) + f'(a)(x - a)$$

# Example:

for x near 0,  $\sin x$  can be approximated by  $\sin x \approx \sin(0) + \cos(0) \cdot x = x$ 

