

CVEN30008 ENGINEERING RISK ANALYSIS

Quantitative Risk Analysis Using Correlation and Simple Linear Regression

COORDINATOR:
Dr Lihai Zhang
Infrastructure Engineering
Department (Room B307)
Iihzhang@unimelb.edu.au

An environmental engineer is studying the rate of absorption of a certain chemical into skin. She obtains a series of experimental results as follows

Volume (mL)	Time (h)	Percent Absorbed
0.05	2	48.3
0.05	2	51.0
0.05	2	54.7
2.00	10	63.2
2.00	10	67.8
2.00	10	66.2
5.00	24	83.6
5.00	24	85.1
5.00	24	87.8

Is any correlation between time and absorption?

Is any correlation between volume and absorption?

CVEN30008 Engineering Risk Analysis

Scatter Plots

Scatter Plots are used to show the relationship between two variables.

Correlation

X

X

Correlation analysis is used to measure strength of the association (linear relationship) between two variables

Correlation

Correlation coefficient – A numerical measure of the strength of the linear relationship between two variables.

- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Sample correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right] \left[\sum_{i=1}^{n} (y_i - \overline{y})^2\right]}}$$

where: r =Sample correlation coefficient

n = Sample size

 x_i = Value of the independent variable

 y_i = Value of the dependent variable

An environmental engineer is studying the rate of absorption of a certain chemical into skin. She obtains a series of experimental results as follows

Volume (mL)	Time (h)	Percent Absorbed
0.05	2	48.3
0.05	2	51.0
0.05	2	54.7
2.00	10	63.2
2.00	10	67.8
2.00	10	66.2
5.00	24	83.6
5.00	24	85.1
5.00	24	87.8

- (a) Is any correlation between time and absorption?
- (b) Is any correlation between volume and absorption?

Solution:

Solution:

(a) Is any correlation between time and absorption?

Time (h) x	Percent Absorbed y
2	48.3
2	51.0
2	54.7
10	63.2
10	67.8
10	66.2
24	83.6
24	85.1
24	87.8
X = 12	y = 67.5

$$\overline{x} = \frac{1}{n_x = 9} \sum_{i=1}^{n} x_i = 12$$

$$\overline{y} = \frac{1}{n_y = 9} \sum_{i=1}^{n} y_i = 67.5$$

Solution (continued):

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^{2}\right]\left[\sum (y - \overline{y})^{2}\right]}}$$

$$= \frac{(2 - 12)(48.3 - 67.5) + (2 - 12)(51.0 - 67.5) + ...(24 - 12)(87.8 - 67.5)}{\sqrt{\left[(2 - 12)^{2} + ...(24 - 12)^{2}\right]\left[\left(48.3 - 67.5\right)^{2} + ...(87.8 - 67.5)^{2}\right]}}$$

$$= \frac{1143.6}{1159.2} = 0.987$$

As r is close to 1, there is a stronger positive correlation between time and absorption.

```
% Environmental Risk
1
2
      clear all;
      close all;
      clc;
      time = [2 \ 2 \ 2 \ 10 \ 10 \ 10 \ 24 \ 24 \ 24];
      absorbtion = [48.3 51.0 54.7 63.2 67.8 66.2 83.6 85.1 87.8];
9 –
10
      % correlation between time and absorbtion
11
12
      r tmp=corrcoef(time,absorbtion);
13 -
      r = r tmp(1,2);
14 -
15
      display('Correlation coefficient for Absorbtion vs Time:');
16 -
      display(r);
17 -
      display('suggests a strong positive correlation relationship between time and absorption.');
18 -
      fprintf('\n')
19 –
20
```

Command Window

```
Correlation coefficient for Absorbtion vs Time:

r =

0.9866

suggests a strong positive correlation relationship between time and absorption.
```

Solution (continued):

(b) Is any correlation between volume and absorption?

Volume (mL) x	Percent Absorbed y
0.05	48.3
0.05	51.0
0.05	54.7
2.00	63.2
2.00	67.8
2.00	66.2
5.00	83.6
5.00	85.1
5.00	87.8
$\overline{X} = 2.35$	y = 67.5

$$\overline{x} = \frac{1}{n_x = 9} \sum_{i=1}^{n} x_i = 2.35$$

$$\overline{y} = \frac{1}{n_y = 9} \sum_{i=1}^{n} y_i = 67.5$$

Solution (continued):

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^{2}\right]\left[\sum (y - \overline{y})^{2}\right]}}$$

$$= \frac{(0.05 - 2.35)(48.3 - 67.5) + (0.05 - 2.35)(51.0 - 67.5) + ...(5 - 2.35)(87.8 - 67.5)}{\sqrt{\left[(0.05 - 2.35)^{2} + ...(5 - 2.35)^{2}\right]\left[(48.3 - 67.5)^{2} + ...(87.8 - 67.5)^{2}\right]}}$$

$$= \frac{256.5}{259.6} = 0.988$$

As r is close to 1, there is also a stronger positive correlation between volume and absorption.

```
% Environmental Risk
 2
       clear all;
       close all;
       clc;
       volume = [0.05 0.05 0.05 2.00 2.00 5.00 5.00 5.00];
       time = [2 \ 2 \ 2 \ 10 \ 10 \ 10 \ 24 \ 24 \ 24];
       absorbtion = [48.3 51.0 54.7 63.2 67.8 66.2 83.6 85.1 87.8];
 9 –
10
       % correlation between time and absorbtion
11
12
       r tmp=corrcoef(volume,absorbtion);
13 -
14 -
       r = r tmp(1,2);
15
       display('Correlation coefficient for Volume vs Absorption:');
16 -
       display(r);
17 -
       display('suggests a strong positive correlation relationship between volume and absorption.');
18 -
       fprintf('\n')
19 –
```

Command Window


```
Correlation coefficient for Volume vs Absorption:

r =

0.9882

suggests a strong positive correlation relationship between volume and absorption.
```

Example (Earthquakes)

In a study of ground motion caused by earthquakes, the peak velocity (in m/s) were recorded for five earthquakes. The results are presented in the following table.

Velocity	1.54	1.60	0.95	1.30	2.92
Acceleration	7.64	8.04	8.04	6.37	5.00

Compute the correlation coefficient between peak velocity and peak How Tsunamis Work: Tsunamigenesis

acceleration. Is any correlation between them?

Solution:

Solution:

$$\overline{x} = \frac{1}{n_x = 5} \sum_{i=1}^{n} x_i = 1.66$$
 $\overline{y} = \frac{1}{n_y = 5} \sum_{i=1}^{n} y_i = 7.00$

Velocity	1.54	1.60	0.95	1.30	2.92	X = 1.66
Acceleration	7.64	8.04	8.04	6.37	5.00	y = 7.0

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^{2}\right] \left[\sum (y - \overline{y})^{2}\right]}} = \frac{-3.17}{3.95} = -0.80$$

There is reasonably stronger negative correlation between peak velocity and peak acceleration.

```
% Earthquakes
2
       clear all;
       close all;
       clc;
       velocity = [1.54 1.60 0.95 1.30 2.92];
       acceleration = [7.64 8.04 8.04 6.37 5.00];
       % correlation
10
11
12 -
       r tmp=corrcoef(velocity,acceleration);
       r = r_tmp(1,2);
13 -
14
       display('Correlation coefficient for Peak Acceleration vs Peak Velocity:');
15 -
       display(r);
16 -
       display('suggests a strong negative correlation between peak velocity and peak acceleration.');
17 -
       fprintf('\n')
18 -
```

Command Window

Correlation coefficient for Peak Acceleration vs Peak Velocity:

r =

-0.8028

suggests a strong negative correlation between peak velocity and peak acceleration.

Significance Test for Correlation

Hypotheses

$$H_0$$
: $\rho = 0$ (no correlation)
 H_1 : $\rho \neq 0$ (correlation exists)

Test statistic

$$- t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

(with n-2 degrees of freedom)

With consideration of sample size and standard deviation

Is any correlation between temperature and number of bushfires?

Temperature	Number of bushfires
У	X
35°C	8
49°C	9
27°C	7
33°C	6
60°C	13
21°C	7
45°C	11
51°C	12
Σ =321 °C	Σ=73

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right] \left[\sum (y - \overline{y})^2\right]}} = 0.886$$

Is there evidence of a linear relationship between temperature and number of bushfires at the 0.05 level of significance?

 H_0 : $\rho = 0$ (No correlation) H_1 : $\rho \neq 0$ (correlation exists)

$$\alpha = .05$$
, df = 8 - 2 = 6

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.886}{\sqrt{\frac{1 - .886^2}{8 - 2}}} = 4.68$$

Decision: Reject H₀

Conclusion:

There is evidence of a linear relationship at the 5% level of significance

```
1
       % Temperature vs Bushfires
 2
       % HO: rho = 0 (no correlation)
       % HA: rho ~= 0 (correlation exits)
 3
       % p < alpha, reject H0
 6 -
       clear all;
 7 –
       close all;
 8 -
       clc;
10 -
       bushfires = [8 9 7 6 13 7 11 12];
                                                     %x values
11 -
       temperature = [35 49 27 33 60 21 45 51];
                                                     %v values
12
13 -
       alpha = 0.05;
14
15
       % correlation
16 -
       r tmp=corrcoef(bushfires,temperature);
17 -
       r = r tmp(1,2);
18
19 -
       display(r);
20
21
       % Significance test
22 -
       len = length(bushfires);
23 -
       df = len-2:
24 -
       display(df);
25
26 -
       t = r/sqrt((1-r^2)/df);
27 -
       display(t);
28
       display('Two tailed test');
30 -
       p = 2*tcdf(-abs(t),df);
31
32 -
       if p > alpha
33 -
           display(p);
34 -
           display(alpha);
35 -
           display('Since p > alpha, we do not rejectH 0.');
           display('There is no evidence of a linear relationship at the 5% level of significance.');
36 -
37 -
       else
           display(p);
38 -
39 -
           display(alpha);
40 -
           display('Since p < alpha, we reject H 0.');
           display('There is evidence of a linear relationship at the 5% level of significance');
41 -
42 -
       end
```

Command Window

```
r =
    0.8862
df =
     6
t =
    4.6861
Two tailed test
p =
    0.0034
alpha =
    0.0500
Since p < alpha, we reject H 0.
There is evidence of a linear relationship at the 5% level of significance
```


 When two variables have a linear relationship, the scatterplot tends to be clustered around a line known as the least-squares line

Example:

An accelerated test, steel structures are operated under extreme conditions

until failure

Temperature (°C)	Lifetime (hours)
40	851
45	635
50	764
55	708
60	469
65	661
70	586
75	371
80	337
85	245
90	129
95	158

Two variables:
Lifetime vs Temperature

420

Dependent variable: the variable we wish to explain Independent variable: the variable used to explain the dependent variable

$$y = \beta_0 + \beta_1 x$$

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

Example:

An accelerated test, steel structures are operated under extreme conditions until failure

- (a) Compute the least-squares line for predicting life-time from temperature.
- (b) Predict the lifetime for a temperature of 73°C.

50	764
55	708
60	469
65	661
70	586
75	371
80	337
85	245
90	129
95	158

Temperature (°C)

40

45

Lifetime (hours)

851

635

Solution:

Solution (a):

Temperature (°C)	Lifetime (hours)
40	851
45	635
50	764
55	708
60	469
65	661
70	586
75	371
80	337
85	245
90	129
95	158
X = 70	$\overline{y} = 460.3$

$$\overline{x} = \frac{1}{n_x = 12} \sum_{i=1}^{n} x_i = 70$$
 $\overline{y} = \frac{1}{n_y = 12} \sum_{i=1}^{n} y_i = 460.3$

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = -12.6$$

$$\beta_0 = \overline{y} - \beta_1 \overline{x} = 460.3 - (-12.6) \times 70 = 1343.7$$

Solution (a) continued:

The least-squares line is:

$$y = \beta_0 + \beta_1 x = -12.6x + 1343.7$$

Solution (b):

$$x = 73$$

$$y = -12.6x73 + 1343.7 = 422.4$$

The lifetime for a temperature of 73°C is 422.4 hours

Using cftool:

```
% The lease squares line
       % Lifetime vs Temperature
 2
 3
       clear all;
       close all;
       clc;
       temperature = [40 45 50 55 60 65 70 75 80 85 90 95];
 8
       lifetime = [851 635 764 708 469 661 586 371 337 245 129 158];
10
       % Least squares line
11
12
       cftool;
13 -
```

Using cftool:

CVEN30008 Engineering Risk Analysis

Example (Fuel economy)

Inertial weight (in tons) and fuel economy (in mi/gal) were measured for a sample of seven diesel trucks. The results are presented in the following table

(a) Compute the least-squares line for predicting mileage from weight.

(b) Predict the mileage for trucks with a weight of 15 tons.

Weight	Mileage
8.00	7.69
24.50	4.97
27.00	4.56
14.50	6.49
28.50	4.34
12.75	6.24
21.25	4.45

Solution:

Solution (a):

Weight	Mileage
8.00	7.69
24.50	4.97
27.00	4.56
14.50	6.49
28.50	4.34
12.75	6.24
21.25	4.45
\overline{X} = 19.5	y = 5.53

$$\overline{x} = \frac{1}{n_x = 7} \sum_{i=1}^{n} x_i = 19.5$$

$$\overline{y} = \frac{1}{n_y = 7} \sum_{i=1}^{n} y_i = 5.53$$

$$\beta_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2} = -0.155$$

$$\beta_0 = 5.53 - (-0.155)(19.5) = 8.559$$

The least-squares line is:

$$y = \beta_0 + \beta_1 x = -0.155x + 8.559$$

Solution (b):

$$x = 15$$

$$y = -0.155x15 + 8.559 = 6.23$$

the mileage for trucks with a weight of 15 tons is 6.23 mi/gal

Using cftool:

Using cftool:

