Introdução à Investigação Operacional – Engenharia Informática 2019/2020

Exercícios Suplementares

1 – Numa quinta de criação de porcos pretende-se determinar a quantidade diária de milho, trigo e alfafa que cada animal deve receber de modo a serem satisfeitas certas exigências nutricionais. Na tabela seguinte são indicadas as quantidades de nutrientes presentes em cada quilograma de ração.

Nutrientes:	Kg de milho	Kg de trigo	Kg de alfalfa	
Hidratos de carbono	90	20	40	
Proteínas	30	80	60	
Vitaminas	10	20	60	
Custo por kg (u.m.)	42	36	30	

As quantidades diárias que cada animal necessita de hidratos de carbono, proteínas e vitaminas são pelo menos de 200, 180 e 150, respectivamente.

Sabendo que se pretende minimizar os custos da alimentação de cada animal, formule este problema como um modelo de Programação Linear.

2 – Existem 3 hospitais que devem servir as populações de 8 cidades. Na tabela que se segue é indicado o custo (em unidades monetárias (u.m.)) de servir cada cidade a partir de cada um dos três hospitais existentes.

		Cidades							
Hospital	1	2	3	4	5	6	7	8	
1	13	12	3	8	11	5	7	10	
2	7	9	9	7	10	9	3	12	
3	9	8	11	6	2	4	8	14	

Sabe-se também que:

- a população de cada cidade deve ser servida por um único hospital;
- o custo necessário para servir conjuntamente as populações das cidades 6 e 7 por hospitais não pode exceder o custo necessário para servir a população da cidade 8 por um hospital;
- o hospital 3 n\u00e3o deve servir as popula\u00e7\u00f3es de mais do que 4 cidades, enquanto que o hospital 1 deve servir a popula\u00e7\u00e3o de pelo menos 2 cidades.

Sabendo que se pretende determinar que cidades são servidas por cada um dos hospitais de forma a minimizar os custos totais, formule este problema como um modelo de Programação Linear.

- **3-** Formule o problema 17 da Colecção de Exercícios de Formulação. Que alterações devem ser introduzidas na formulação de modo a serem contempladas as seguintes situações:
- a) O Rato leva 10 taças ou leva pelo menos 30 taças.
- b) O número de pulseiras levadas pelo Rato é 70 ou 96 ou 113.
- c) Sabe-se que o valor de cada colar depende da quantidade de colares que o Rato leva. Assim, se o Rato levar até 30 colares o valor de cada colar é de 1000 plins. Se o Rato levar entre 31 e 40 colares então o valor de cada colar é de 1000 plins para cada um dos primeiros 30 colares sendo de 1100 plins para cada um dos restantes. Finalmente, se o número de colares for superior a 40 então o valor de cada colar é de 1000 plins para os primeiros 30 colares, é de 1100 plins para cada um dos 10 colares seguintes sendo de 1250 plins para cada um dos colares restantes.
- 4 Considere a região admissível S de um problema de Programação Linear definida por

$$2x + 2y \le 14$$

 $x + y \ge 2$
 $-x + y \le 2$
 $3x - 2y \le 6$
 $x \ge 0, y \ge 0$.

Resolva graficamente os seguintes problemas:

- a) Max $z_1 = x + 2 y$
 - s.a (x,y)∈S
- **b)** Max $z_2 = x + y$
 - s.a (x,y)∈S
- c) Min $z_3 = x + 2 y$
 - s.a (x,y)∈S
- **d)** Max $z_4 = -x + y$
 - s.a (x,y)∈S
- e) Min $z_5 = x$
 - s.a $(x,y) \in S$

5 - Considere a região admissível T de um problema de Programação Linear definida por

$$-2x + 2y \le 6$$

 $x + y \ge 7$
 $x \ge 0, y \ge 0.$

Resolva graficamente os seguintes problemas:

- a) Min $g_1 = x + 2 y$
 - s.a $(x,y) \in T$
- **b)** Max $g_2 = 3 x + y$

- c) Max $g_3 = -x + y$
 - s.a (x,y)∈T

6 – Resolva o seguinte problema de Programação Linear pelo Método Revisto do Simplex, considerando (x,z) as variáveis básicas de partida:

Min G =
$$3x + 2y + 4z$$

s.a $x - y + 2z \ge 5$
 $x + 2y + z \ge 5$
 $x, y, z \ge 0$

7 – Considere o seguinte problema de Programação Linear

Max F =
$$3x + Y$$

s.a $x \ge 1$
 $y \ge 2$
 $x + y \le 5$
 $x, y \ge 0$

- a) Sabendo que x, y e f₁ são as variáveis básicas óptimas, construa o quadro óptimo do Simplex.
- b) Admita que o coeficiente da variável y na função objectivo passou a ser β (β∈IR).
 Determine:
 - i) Os valores de β para os quais a solução obtida em a) permanece óptima e única.
 - ii) Para que valores de β a solução apresentada em a) permanece óptima mas existem bases óptimas alternativas? Apresente a solução óptima neste caso.
- c) Admita que ao problema inicial foi adicionada uma variável não negativa w com coeficiente (-2) na função objectivo e coeficientes 1, 2 e 1 na primeira, segunda e terceira restrições respectivamente. Determine se a solução determinada em a) permanece óptima.

d) Se for adicionada a restrição 2x + y ≥ 6 a solução determinada em a) permanece óptima?
 E a região admissível?

8 – Considere o seguinte problema de transportes com 3 origens e 3 destinos, A tabela seguinte contem a procura nos destinos, a oferta nas origens e o custo de enviar uma unidade entre cada origem e cada destino.

					_
		1	2	3	Oferta
	1	3	3	4	6
Origens	2	1	4	2	9
	3	5	2	1	2
	Procura	5	8	4	

Resolva este problema de transportes determinando a solução inicial pelo método do canto NW.

9 – Considere o seguinte problema de transportes:

U	•				
			Clientes		Disponibilidades
		C1	C2	C3	
	F1	2	3	6	10
Fábricas	F2	4	2	5	60
	F3	1	8	9	20
	Necessidade	50	25	25	
	S				

Resolva este problema de transportes determinando a solução inicial pelo método do canto NW.

10 – Resolva o seguinte problema pelo algoritmo *Branch and Bound* estudado:

Min G = 2 x + y

s.t.
$$5x + 6y \ge 20$$

$$-5x + 6y \le 10$$

 $x, y \ge 0$ e inteiros.

11 – Considere um problema de decisão com a seguinte matriz de custos (em unidades monetárias).

Decisão	Estados da natureza						
	?1	?4					
Α	160	100	80	70			
В	90	110	113	140			
С	115	102					

a) Como classifica, em termos do nível de otimismo, um decisor que prefere a decisão A? Como classifica um decisor que prefere a decisão B?

b) Determine a matriz dos custos de oportunidade. Que decisão deve ser recomendada com base nesta matriz?

12 – Considere a seguinte árvore de decisão:

Qual a decisão inicial que recomenda baseada na probabilidade p, sabendo que os valores indicados nos ramos finais representam custos (em unidades monetárias).

13 – Numa clínica médica a vacinação contra a gripe A é feita por uma enfermeira que não presta quaisquer outros cuidados de enfermagem.

Sabe-se que em média a enfermeira demora cerca de 4 minutos a vacinar um doente, considerando-se que este procedimento é exponencialmente distribuído. Os pacientes chegam para serem vacinados segundo um Processo Poissoniano com média de 12 pacientes por hora. Determine:

- a) A taxa de ocupação e desocupação do serviço.
- b) O comprimento médio da fila de espera.
- c) O tempo médio de espera na fila.
- d) A probabilidade de estarem dois pacientes na fila de espera.
- e) A probabilidade de estarem pelo menos 3 pacientes no posto de vacinação.
- f) A probabilidade de um paciente estar mais do que 5 minutos à espera para começar a ser vacinado.

Dada a forte afluência de pacientes para se imunizarem da gripe A, o director do posto médico resolveu deslocar mais um dos enfermeiros para o posto de vacinação. Considera-se que ambos os enfermeiros trabalham ao mesmo ritmo. Neste novo cenário determine:

- g) A taxa de ocupação deste novo sistema.
- h) O tempo médio de permanência de um paciente no posto de vacinação.
- i) A probabilidade de um paciente chegar ao posto de vacinação e ser atendido imediatamente. Compare este resultado com o mesmo parâmetro do sistema anterior.

14 - Exame 2007/2008

Considere um sistema constituído por duas filas em série tal como se esquematiza na figura.

O Sector A só recebe clientes do exterior do sistema e os clientes que saem deste sector movem-se para o Sector B.

Sabe-se que os sectores A e B possuem 2 e 3 servidores respectivamente. Cada servidor passa em média 2 minutos com cada cliente seguindo um processo de Poisson.

Sabe-se também que as chegadas de clientes ao Sector A seguem um processo de Poisson com uma taxa média de 50 clientes por hora e de que a probabilidade de não existirem clientes no sector B é de17.27%.

- a) Determine o número médio de clientes aguardando para serem servidos no Sector A.
- b) Determine o tempo médio em minutos que um cliente gasta no sector B.
- c) Determine o número médio de clientes no sistema.
- d) Calcule a probabilidade de um cliente que chega ao sistema encontrar 4 clientes no sector A e 2 clientes no sector B.
- e) Considere agora que no sector A os clientes são divididos em 2 classes de prioridade e que os clientes da classe mais elevada correspondem a 40% dos clientes. Assuma que quando um cliente da classe de prioridade mais elevada chega e não existe outro cliente da mesma classe, ele é atendido logo que um dos servidores fica livre. Qual é o tempo médio que um cliente da classe de prioridade mais elevada passa no sistema?

15 - Exame época Normal 2009/2010

Considere um sistema de redes de filas de espera representado no esquema abaixo. Admita que todas as filas de espera ou são do tipo M/M/1 ou são do tipo M/M/s.

Os clientes podem entrar do exterior em direcção ao Sector A ou em direcção ao Sector B. Sabe-se que os clientes que entram do exterior em direcção ao Sector A chegam segundo um Processo Poissoniano com taxa média igual a 18 por hora. Os clientes que entram directamente para o Sector B chegam segundo um Processo Poissoniano com taxa média igual a 2 clientes por hora.

Do Sector A, 20% dos clientes transitam para o Sector B, 50% transitam para o Sector C e os restantes deixam o sistema. Do Sector C, 60% dos clientes transitam para o Sector B e os restantes para o sistema. Depois de atendidos no Sector B, todos os clientes deixam o sistema.

A taxa de serviço nos diferentes sectores, por servidor, é dada na tabela seguinte:

Sector	μ (por hora)
Α	12
В	13
С	13

- a) Determine as taxas de chegada aos diferentes sectores.
- b) Proponha, justificando, o número de servidores que deveria estar ao serviço em cada sector.
- c) A partir dos resultados apresentados no Anexo, determine o tempo médio de permanência de um cliente no sistema.

FORMULÁRIO

$$X \sim \text{Exponencial}(\lambda)$$
: $F_X(x) = 1 - e^{-\lambda x}$, $x > 0$

Modelo M/M/1

• L =
$$\frac{\lambda}{\mu - \lambda}$$

Tempo de Espera no sistema M/M/1: ω ~ Exponencial(μ(1-ρ))

Fórmula de Pollaczek-Khintchine: $L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)}$

ANEXO

Modelo:	M/M/1	M/M/1	M/M/1	M/M/1	M/M/1	M/M/1
λ (por hora)	8	9	8	9	10	11
μ (por hora)	10	10	13	13	13	13
L	4	9,000	1,600	2,250	3,333	5,500
W (h)	0,5	1,000	0,200	0,250	0,333	0,500

Modelo:	M/M/2	M/M/2	M/M/2	M/M/2	M/M/2	M/M/2	M/M/3
λ (por hora)	8	9	8	9	11	18	18
μ (por hora)	10	10	13	13	13	12	12
L	0,952381	1,1285	0,6797	0,7866	1,0306	3,4286	1,7368
W (h)	0,119048	0,125392	0,085	0,0874	0,0937	0,1905	0,0965

16 - A Ourivesaria Chique é frequentada por clientes muito exigentes, que "detestam que esteja muita gente dentro da loja", como explica Maria Etelvina Silva, a proprietária e única pessoa que atende os clientes, sempre imperturbável, ao ritmo de 15 por hora.

7

A chegada de clientes é claramente influenciada pelo número de clientes que estejam no interior da Ourivesaria. Assim, quando a Ourivesaria está vazia, pode-se admitir que a taxa de chegadas de clientes é de 12 por hora. No entanto, à medida que o número de clientes na Ourivesaria aumenta, essa taxa diminui claramente.

O Joaquim Silva, sobrinho da proprietária, coligiu o Quadro com as seguintes informações:

n	λ	μ	C_n	P_n
0	12,000			0,056
1	10,477	15	8,382	0,466
2	8,107	15	4,530	0,252
3	7,340	15	2,217	0,123
4	6,974	15	1,031	0,057
5	6,763	15	0,465	0,026
6	6,626	15	0,205	0,011
7	6,530	15	0,089	0,005
8	6,459	15	0,038	0,002
9	6,405	15	0,016	0,001
10	6,362	15	0,007	0,000
11	6,328	15	0,003	0,000
12	6,299	15	0,001	0,000

"Hummm... E agora já não falta muito para conseguir estimar o número médio de clientes na Ourivesaria...", pensou o Joaquim, sem se lembrar bem do que faltava fazer...

Pretende-se que indique como poderia ajudar o Joaquim calcular o número médio de clientes na Ourivesaria, presumindo que são válidos os pressupostos de um Processo de Nascimento e Morte.

17 - A Turisbus é uma empresa de transportes turísticos com uma frota de 25 minibus.

Estima-se que o processo de ocorrência de avarias num minibus se possa considerar Poissoniano com taxa média igual a 0,75 por mês.

A duração da reparação de cada avaria pode considerar-se com distribuição Exponencial de média igual a 4h.

A Turisbus dispõe de 2 mecânicos, cada um trabalhando 40 h/mês.

O Diretor Financeiro da Turisbus considera que cada mecânico corresponde a um custo de 20 u.m. por mês. Por outro lado, considera que, em cada mês, há um custo de 35 u.m. por cada minibus que, em media, se encontre em manutenção.

O Diretor Operacional não considera aceitável que a probabilidade de estarem 5 ou mais minibus avariados seja superior a 10%. Considera, ainda, que a taxa de serviço das oficinas não deve ser superior a 90% nem inferior a 60%.

a) Avalie a situação atual relativa à manutenção dos minibus da Turisbus.

- b) Há 2 mecânicos, com desempenho idêntico aos que trabalham nas oficinas da Turisbus, disponíveis para ingressarem na empresa. Recomendaria a sua contratação? Justifique.
- **18** Um sistema de filas de espera com um único servidor é alimentado por um processo de chegadas Poissoniano com taxa média igual a 12 por hora. Sabe-se que a duração média de um serviço é igual a 4 minutos.

O gestor deste sistema de filas de espera pretende avaliar o impacto no número médio de clientes a aguardar o início do serviço face a eventuais alterações na modelação estatística da duração de um serviço, pressupondo sempre a manutenção do valor médio já referido.

Assim, assuma que a duração de um serviço

- a) se possa considerar com distribuição Exponencial.
- b) se possa considerar resultante da soma de quatro etapas independentes e identicamente distribuídas, cada uma delas com distribuição Exponencial.
- c) se possa considerar Uniforme[3; 5] (min.).
- d) se possa considerar determinística.

Compare os resultados obtidos, comentando devidamente.

19 - Considere o sistema de filas de espera (todas do tipo M/M/s) que se esquematiza abaixo, sendo que a fila de espera A é M/M/1 alimentada por um Processo Poissoniano de chegadas com taxa média igual a 20 por minuto. Admita que o serviço permite processar em média 23 clientes por minuto.

Relativamente a estas filas compilaram-se os seguintes resultados:

Indicador	Α	В	(
μ (min ⁻¹)	23	12	2	2
S	1	2	1 0	u 2
W (min)	?	0,2727	?	0,0573
P0	0,130	0,091	0,091	0,375
P1	0,113	0,152	0,083	0,341
P2	0,099	0,126	0,075	0,155

- a) Comente a afirmação: "O processo de saída de clientes do sistema depende do número de servidores (1 ou 2) utilizados na fila C".
- **b)** Determine, justificando sucintamente, o tempo médio de permanência de um cliente no sistema se se adotar <u>1 servidor</u> na fila C.
- c) Assumindo que há <u>2 servidores</u> na fila C, indique, justificando sucintamente, como poderia calcular a probabilidade de estar, no máximo, <u>1</u> pessoa no sistema. (Note bem: <u>Não</u> efetue o cálculo!)