PDF 7.020 Addition and Subtraction of Vectors in \mathbb{R}^2 and \mathbb{R}^3

The unit vectors \vec{i} , \vec{j} and \vec{k}

Any vector in the two-dimensional plane can be expressed in terms of the unit vectors \vec{i} and \vec{j} where $\vec{i} = \overline{(1,0)}$ and $\vec{j} = \overline{(0,1)}$

For example, $\overrightarrow{(-3,4)} = -3\overrightarrow{(1,0)} + 4\overrightarrow{(0,1)} = -3\overrightarrow{\iota} + 4\overrightarrow{\jmath}$

Similarly, any vector in three dimensions can be expressed in terms of the unit vectors \vec{i} , \vec{j} and \vec{k} where $\vec{i} = \overline{(1,0,0)}$, $\vec{j} = \overline{(0,1,0)}$ and $\vec{k} = \overline{(0,0,1)}$

For example, $\overline{(5,-2,-3)} = 5\overline{(1,0,0)} - 2\overline{(0,1,0)} - 3\overline{(0,0,1)}$ $= 5\vec{\imath} - 2\vec{\jmath} - 3\vec{k}$

Distributive Property

As a general rule, if $\vec{v} = \overrightarrow{(a,b)}$, then $k\vec{v} = k\overrightarrow{(a,b)} = \overrightarrow{(ka,kb)}$

For example, 5(2,-3) = (10,-15)

Similarly, if $\vec{v} = \overrightarrow{(a,b,c)}$, then $k\vec{v} = k\overrightarrow{(a,b,c)} = \overrightarrow{(ka,kb,kc)}$

For example, $-4\overrightarrow{(6,-1,2)} = \overrightarrow{(-24,4,-8)}$

Adding and Subtracting Vectors

Given
$$\vec{a} = \overrightarrow{OA} = \overrightarrow{(1,3)}$$
 and $\vec{b} = \overrightarrow{OB} = (4,-2)$,

- a) graph \overrightarrow{OA} and \overrightarrow{OB}
- b) graph $\vec{a} + \vec{b}$ and state the components of that vector
- c) graph $\vec{a} \vec{b}$ and state the components of that vector

In short, if
$$\vec{a} = \overrightarrow{(x_1, y_1)}$$
 and if $\vec{b} = \overrightarrow{(x_2, y_2)}$, then

$$\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)$$

This also works in 3 dimensions. In other words, if

$$\vec{a}=\overrightarrow{(x_1,y_1,z_1)}$$
 and if $\vec{b}=\overrightarrow{(x_2,y_2,z_2)}$, then
$$\vec{a}+\vec{b}=\overrightarrow{(x_1+x_2,y_1+y_2,z_1+z_2)}$$

<u>Subtracting vectors</u>: Notice that if we are to subtract vector \vec{b} from vector \vec{a} , we can do so by the tip-to-tail method as well.

We add the opposite of \vec{b} to \vec{a} . In other words, $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

So, for example,

$$\overrightarrow{(1,3)} - \overrightarrow{(4,-2)} = \overrightarrow{(-3,5)}$$

In short, if
$$\vec{a}=\overrightarrow{(x_1,y_1)}$$
 and if $\vec{b}=\overrightarrow{(x_2,y_2)}$, then
$$\vec{a}-\vec{b}=\overrightarrow{(x_1-x_2,y_1-y_2)}$$

This also works in 3 dimensions. In other words, if

$$\vec{a} = \overrightarrow{(x_1, y_1, z_1)}$$
 and if $\vec{b} = \overrightarrow{(x_2, y_2, z_2)}$, then
$$\vec{a} - \vec{b} = \overrightarrow{(x_1 - x_2, y_1 - y_2, z_1 - z_2)}$$

Magnitudes of Vectors

Given the points $A(x_1, y_1)$ and $B(x_2, y_2)$,

$$\overrightarrow{AB} = \overrightarrow{(x_2 - x_1, y_2 - y_1)} \text{ and } |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Similarly, given the points $A(x_1,y_1,z_1)$ and $B(x_2,y_2,z_2)$,

$$\overrightarrow{AB} = \overrightarrow{(x_2 - x_1, y_2 - y_1, z_2 - z_1)} \text{ and } \\ \left| \overrightarrow{AB} \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example 1

Determine \overrightarrow{AB} and $|\overrightarrow{AB}|$ where the coordinates of A are (3,2,-5) and the coordinates of B are (-4,0,-3).

Example 2

For the vector shown at the right, determine the components of the position vector.

Example 3

Parallelogram OABC is determined by the vectors $\overrightarrow{OA} = \overline{(7,4)}$ and $\overrightarrow{OC} = \overline{(1,-6)}$. Determine \overrightarrow{OB} , \overrightarrow{AB} , and \overrightarrow{BC} .

Example 4

Find the components of the unit vector in the direction opposite to \overrightarrow{CD} where $\overrightarrow{OC} = \overline{(-3,-6)}$ and $\overrightarrow{OD} = \overline{(-11,9)}$.

Then, determine the measure of the angle between \overrightarrow{OC} and \overrightarrow{OD}

Example 5

If $\vec{u} = -2\vec{i} + 9\vec{j} + 6\vec{k}$, and if $\vec{v} = \vec{i} - \vec{j} + \vec{k}$, determine $3\vec{u} - 2\vec{v}$ and $|3\vec{u} - 2\vec{v}|$

Example 6

A parallelepiped is formed by the vectors $\overrightarrow{OA} = \overrightarrow{(3,-1,4)}, \ \overrightarrow{OB} = \overrightarrow{(-1,8,-7)}, \ \text{and} \ \overrightarrow{OC} = \overrightarrow{(4,0,-9)}$.

Determine the coordinates of all the vertices for the parallelepiped.

Example 7

Determine the midpoint of the points A (-4, 3, 9) and B (2, -11, 7)