

Preliminary

②

TFT LCD Preliminary Specification

MODEL NO.: N156B6-P06

Customer:	
Approved by:	
Note: To Be Approved by System.	

核准時間	部門	審核	角色	投票
2009-11-20 08:22:42	NB 產品管理處	楊 2009.11.20 竣 傑	Director	Accept

Preliminary

②

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASED ON 0) 2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL) 2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD OPEN CELL	7
4. BLOCK DIAGRAM 4.1 TFT LCD OPEN CELL	10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD OPEN CELL 5.2 LED CONVERTER PIN ASSIGNMENT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT	11
6. CONVERTER SPECIFICATION 6.1 ABSOLUTE MAXIMUM RATINGS 6.2 POWER ON/OFF SEQUENCE 6.3 LED CONVERTER OUTPUT RATINGS	 15
7. INTERFACE TIMING 7.1 INPUT SIGNAL TIMING SPECIFICATIONS 7.2 POWER ON/OFF SEQUENCE	 17
8. OPTICAL CHARACTERISTICS 8.1 TEST CONDITIONS 8.2 OPTICAL SPECIFICATIONS 8.3 FLICKER ADJUSTMENT	 20
9. PACKAGING 9.1 PACKING SPECIFICATIONS 9.2 PACKING METHOD	 24
10. DEFINITION OF LABELS 10.1 CMO OPEN CELL LABEL 10.2 CMO CARTON LABEL	 26
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 28
12. MECHANICAL DRAWING	 29

②

REVISION HISTORY

Version	Date	Section	Description
Ver. 1.0	Nov, 11 '09	All	N156B6-P06 Preliminary Specifications 1.0 was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The N156B6-P06 is a 15.6-inch TFT LCD cell with driver ICs and a 40-pin-and-1ch-LVDS circuit board.

The product supports 1366 x 768 HD mode and can display up to 262,144 colors. The backlight unit is not built in.

1.2 FEATURES

- HD (1366 x 768 pixels) resolution
- 3.3V LVDS (Low Voltage Differential Signaling) interface
- LED converter embedded

1.3 APPLICATION

- -TFT LCD Notebook
- -TFT LCD Monitor
- -TFT LCD TV

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	344.232(H) x 193.536(V) (15.547" diagonal)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 (H) x 3 (R.G.B.) x 768 (V)	pixel	-
Pixel Pitch	0.252 (H) x 0.252 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	Glare, N2T (Reflection rate< 0.5%), 3H	-	-

1.5 MECHANICAL SPECIFICATIONS

item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H) with PCB	353.532	353.632	353.732	mm	
Horizontal (H) w/o PCB		353.532	353.632	353.732	mm	
Size	Vertical (V) with PCB	248.536	249.536	250.536	mm	
Size	Vertical (V) w/o PCB	202.086	203.086	204.086	mm	
	Thickness (T) with PCB	-		1.8	mm	(1)(2)
	Thickness (T) w/o PCB	1.12	1.27	1.42	mm	
	Weight	-	215	220	g	
I/F c	onnector mounting position	The mounting in the screen center	clination of the co within ±0.5mm a			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Symbol	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	°C	(1)
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C Min. and 60 °C Max.

Issued Date: Nov. 11, 2009 Model No.: N156B6-P06 **Preliminary**

2.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing. Storage temperature range: 25±5 °C. Storage humidity range: 50±10%RH.

Shelf life: 30days

2.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

Item	Svmbol	Value	9	Unit	Note	
item	Symbol	Min	Max	Offic	Note	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(4)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD OPEN CELL

Ta = 25 ± 2 °C

Parameter	Cumbal		Value		l loit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		VCCS	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RP}	-	50	-	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Initial Stage Current		I _{IS}	-	-	1.0	Α	(2)
Davies Commission	White	loo	240	260	280	mA	(3)a
Power Supply Current	Black	lcc	350	380	400	mA	(3)b
LVDS Differential Input High	Threshold	V _{TH(LVDS)}	-	-	+100	mV	(5), V _{CM} =1.2V
LVDS Differential Input Low	V _{TL(LVDS)}	-100	-	-	mV	(5) V _{CM} =1.2V	
LVDS Common Mode Voltage	$V_{\sf CM}$	1.125	-	1.375	V	(5)	
LVDS Differential Input Volta	V _{ID}	100	-	600	mV	(5)	
Terminating Resistor		R⊤	-	100	1-	Ohm	-

Note (1) The module should be always operated within above ranges.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

Model No.: N156B6-P06 **Preliminary**

Issued Date: Nov. 11, 2009

VCCS rising time is 0.5ms

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The parameters of LVDS signals are defined as the following figures.

Preliminary

- Note (5) The specified power are the sum of LCD panel electronics input power and the converter input power. Test conditions are as follows.
 - (a) VCCS = 3.3 V, Ta = $25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,^{\circ}\text{Hz}$,
 - (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
 - (c) Luminance: 60 nits.

Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD OPEN CELL

Model No.: N156B6-P06

Issued Date: Nov. 11, 2009

Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD OPEN CELL

Global LCD Panel Exchange Center

Pin	Symbol	Description	Polarity	Remark
1	Reserve	Non-Connection use by CMO	Polarity	Remark
2	Vcc	Power Supply +3.3 V (typical)		
3	Vcc	Power Supply +3.3 V (typical)		
4	VEC	DDC 3.3V Power		DDC 3.3V Power
5	Reserve	Non-Connection use by CMO		DDC 3.3V 1 0Wel
6	CLK _{EDID}	DDC Clock		DDC Clock
7	DATA _{EDID}	DDC Data		DDC Data
8	Rxin0-	LVDS Differential Data Input	Negative	R0~R5,G0
9	Rxin0+	LVDS Differential Data Input	Positive	110 110,00
10	Vss	Ground	1 OSITIVE	
11	Rxin1-	LVDS Differential Data Input	Negative	G1~G5, B0, B1
12	Rxin1+	LVDS Differential Data Input	Positive	G1~G3, B0, B1
		·	rositive	
13	Vss	Ground		
14	Rxin2-	LVDS Differential Data Input		B2~B5, DE, Hsync, Vsync
15	Rxin2+	LVDS Differential Data Input	Positive	
16	Vss	Ground		
17	CLK-	LVDS Clock Data Input	Negative	LVDS Level Clock
18	CLK+	LVDS Clock Data Input	Positive	
19	Vss	Ground		
20	NC	Non-Connection		
21	NC	Non-Connection		
22	Vss	Ground		
23	NC	Non-Connection		
24	NC	Non-Connection		
25	Vss	Ground		
26	NC	Non-Connection		
27	NC	Non-Connection		
28	Vss	Ground		
29	NC	Non-Connection		
30	NC	Non-Connection		
31	LED_GND	Ground_LED		
32	LED_GND	Ground_LED		
33	LED_GND	Ground_LED		
34	Reserve	Non-Connection use by CMO		
35	LED_PWM	System PWM Signal Input		
36	LED_EN	LED enable pin		
37	Reserve	Non-Connection use by CMO		
38	LED_VCCS	LED Power		
39		LED Power		
40	LED_VCCS	LED Power		

Note (1) Connector Part No.: IPEX 20455-040E-12 or equivalent

Note (2) User's connector Part No: IPEX 20453-040T or equivalent

Note (3) The first pixel is odd as shown in the following figure.

Preliminary

Model No.: N156B6-P06

Issued Date: Nov. 11, 2009

Preliminary

5.2 LED CONVERTER OUTPUT PIN ASSIGNMENT

Pin	Symbol	Description
1	V_L	LED converter output voltage
2	V _L	LED converter output voltage
3	CH1	LED converter feedback channel 1
4	CH2	LED converter feedback channel 2
5	CH3	LED converter feedback channel 3
6	CH4	LED converter feedback channel 4
7	CH5	LED converter feedback channel 5
8	CH6	LED converter feedback channel 6

Note (1) Connector Part No.: ???? or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

Preliminary

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Todo data input.		Data Signal																
	Color	Red				Green					Blue								
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:		!	:	•	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	·			:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:)):	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0 <	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		: \	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Issued Date: Nov. 11, 2009

Model No.: N156B6-P06

Preliminary

6. CONVERTER SPECIFICATION

6.1 ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings
LED_VCCS	-0.3V~25V
LED_PWM	-0.3~5.0V
LED_EN	-0.3V~5.0V

6.2 RECOMMENDED OPERATING RATINGS

Parame	tor	Cumbal		Value		Unit	Note
Parame	lei	Symbol	Min.	Тур.	Max.	Offic	Note
Converter Input power su	oply voltage	LED_Vccs	6.0	12.0	21.0	V	-
Converter Rush Current		ILED _{RUSH}	-	-	1.5	Α	(1)
Converter Initial Stage Cu	rrent	ILED _{IS}	-	-	1.5	Α	(1)
EN Control Level	Backlight On		2.3		5.0	V	-
EN Control Level	Backlight Off		0.0		0.5	V	-
PWM Control Level	PWM High Level		2.3		5.0	V	-
P VVIVI CONTION Level	PWM Low Level		0.0		0.5	V	-
DWM Control Duty Potio		10	-	100	%	1	
PWM Control Duty Ratio		5	-	100	%	(2)	
PWM Control Permissive	Ripple Voltage	VPWM_pp	-	-	100	mV	-
PWM Control Frequency		f_{PWM}	190	210	2k	Hz	(3)

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Model No.: N156B6-P06 **Preliminary**

Issued Date: Nov. 11, 2009

VLED rising time is 0.5ms

- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- Note (3) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range $(N \dashv 0.33) * f : f_{\text{PWM}} : (N \dashv 0.66) * f$
 $N : \text{Integer} \quad (N \geq 3)$
 $f : \text{Frame rate}$

6.3 LED CONVERTER OUTPUT RATINGS

Parameter	Symbol		Value		Unit	Note
Faranielei	Syllibol	Min.	Тур.	Max.	Offic	Note
Converter output voltage	V_L	22.4	25.6	28	V	
Converter output current	Iμ	114	120	126	mA	
Converter feedback channel current	I _{CH}	19	20	21	mA	

Issued Date: Nov. 11, 2009 Model No.: N156B6-P06 **Preliminary**

7. INTERFACE TIMING

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	67.9	75.5	80	MHz	(2)
	Vertical Total Time	TV	778	806	888	TH	-
	Vertical Active Display Period	TVD	768	768	768	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	38	TV-TVD	TH	-
DE	Horizontal Total Time	TH	1446	1560	1950	Tc	(2)
	Horizontal Active Display Period	THD	1366	1366	1366	Tc	(2)
	Horizontal Active Blanking Period	THB	TH-THD	194	TH-THD	Tc	(2)

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM

Model No.: N156B6-P06

Issued Date: Nov. 11, 2009

Preliminary

7.2 POWER ON/OFF SEQUENCE

Timing Specifications:

 $0.5 {\le} t1 {\le}~10~ms$

 $0 \le t2 \le 50 \text{ ms}$

 $0\ \le t3 \le \,50\;ms$

 $t4 \ge 500 \text{ ms}$

 $t5 \ge 200 \text{ ms}$

 $t6 \ge 200 \text{ ms}$

 $0.5 \le t7 \le 10 \text{ ms}$

 $0.5 {\le} t_{A} {\le}~10~ms$

 $0 < t_B \leq 10 \text{ ms}$

 $t_{C}\,\geq\,$ 10 ms

 $t_D \, \geqq \, 10 \; ms$

 $t_{E}\,\geq\,10\;ms$

 $t_F\,\geq\,10\;ms$

18 / 29

Preliminary

- Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be damaged.
- Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be sure to pull down the power supply of LCD VCCS to 0 V.
- Note (3) The backlight must be turned on after the power supply for the logic and the interface signal is valid. The backlight must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Please follow the LED converter power sequence as above. If the customer could not follow, it might cause backlight flash issue during display ON/OFF or damage the LED backlight controller

Preliminary

8. OPTICAL CHARACTERISTICS

8.1 TEST CONDITIONS

Item	Symbol	Value	Unit						
Ambient Temperature	Та	25±2	°C						
Ambient Humidity	На	50±10	%RH						
Supply Voltage	V _{CC}	3.3	V						
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"								

8.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Tion	Dod	Rcx			0.630		-	
	Red	Rcy			0.329		-	
	Green	Gcx	0 00 0		0.284		-	
Color	Green	Gcy	$\theta_x = 0^\circ$, $\theta_Y = 0^\circ$	Тур -	0.564	Typ +	-	(0) (6)
Chromaticity	Blue	Всх	CS-1000T Standard light source "C"	0.03	0.156	0.03	-	(0),(6)
	Diue	Всу	Standard light source C		0.122		-	
	White	Wcx			0.314		-	
	vviiite	Wcy			0.347		-	
Center Transmit	tance	T%	$\theta_{x}=0^{\circ}$, $\theta_{Y}=0^{\circ}$	5.5	6.5			(1), (8)
Contrast Ratio		CR	CS-1000T, CMO BLU	500	650		-	(1), (3)
Response Time	T _R		$\theta_x=0^\circ$, $\theta_Y=0^\circ$		3	8	ms	(4)
response fille		T_F	0 _x -0 , 0 _Y -0		7	12	ms	(+)
Transmittance uniformity		δΤ%	θ_x =0°, θ_Y =0° BM-5A			1.25	-	(1), (7)
Viewing Angle	l lawi-austal	θ_x +		40	45			
	Horizontal	θ _x -	CR≥10	40	45		Dog	(1), (3)
	\/ti1	θ _Y +	BM-5A	15	20		Deg.	(6)
	Vertical	θ _Y -		40	45]	

- Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
 - 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMO.
 - Calculate cell's spectrum.
 - Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (1) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. SPEC is judged by CMO's golden sample.

Note (2) Definition of Viewing Angle (θx , θy):

Issued Date: Nov. 11, 2009

Note (3) Definition of Contrast Ratio (CR):

$$CR_{AVE}$$
= [CR(1)+ CR(2)+ CR(3)+ CR(4)+ CR(5)] / 5

CR_{max}=Max value of CR at whole Viewing Angle

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Gmax: Luminance of gray max at the center point of panel.

Gmin: Luminance of gray min at the center point of panel.

Model No.: N156B6-P06

Issued Date: Nov. 11, 2009

Preliminary

Note (5) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_C = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (7) Definition of Transmittance Variation ($\delta T\%$):

Measure the transmittance at 5 points

Preliminary

Note (8) Definition of Transmittance (T%):

Module is without signal input.

BLU is supplied by CMO.

8.3 Flicker Adjustment

(1) Adjustment Pattern: 2H1V checker pattern as follows.

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В	R	G	В
R	G	в	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В
R	G	В	R	G	В	R	G	в	R	G	В	R	G	в	R	G	В	R	G	В	R	G	В

(2) Adjustment Method:

Flicker should be adjusted by turning the volume for flicker adjustment by the ceramic driver. It is adjusted to the point with least flickering of the whole screen. After making it surely overrun at once, it should be adjusted to the optimum point.

Model No.: N156B6-P06

Issued Date: Nov. 11, 2009

Preliminary

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 27 open cells / 1 Box
- (2) Box dimensions: 475mm(L) X 390mm(W) X 320mm(H)
- (3) Weight: approximately 16.5Kg (27 open cells per box)

9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items

Test Item	Test Conditions	Note
	ISTA STANDARD	
Dooking	Random, Frequency Range: 1 – 200 Hz	
Packing Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
Vibration	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	

(2) Packing method.

- (1) 27 LCD Cells+PCB/1 box
- (2) Carton dimensions : 475(L)x390(W)x320(H)mm
- (3) Weight : approximately 16.5kg(27 Cells per Carton).

Preliminary

Model No.: N156B6-P06 **Preliminary**

Issued Date: Nov. 11, 2009

10. DEFINITION OF LABELS

10.1 CMO OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMO internal control.

Made in XXXX

XXXXXXXYMDLNNNN

Rev. XX

(a) Model Name: N156B6-P06

(b) Revision: Rev. XX, for example: C1, C2 ...etc.

(c) Serial ID: X X X X X X X Y M D L N N N N

(d) Production Location: MADE IN XXXX. XXXX stands for production location.

Issued Date: Nov. 11, 2009

Model No.: N156B6-P06 **Preliminary**

10.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation

- (a) Model Name: N156B6 -P06
- (b) Carton ID: CMO internal control
- (c) Quantities: 27

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the product during assembly.
- (2) To assemble backlight or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel will be damaged.
- (4) Always follow the correct power sequence when the product is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (7) It is dangerous that moisture come into or contacted the product, because moisture may damage the product when it is operating.
- (8) High temperature or humidity may reduce the performance of module. Please store this product within the specified storage conditions.
- (9) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

11.2 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the product's end of life, it is not harmful in case of normal operation and storage.

