(ON CONSOLE)

O 01.

1. Create Security Group:

- Create one security group for the web server.
- Configure inbound rules for the web server security group to allow HTTP traffic (port 80) and SSH traffic (port 22) from any source.

SOLUTION:-

- A) In AWS console, go to the EC2 dashboard.
- B) Find 'security groups' and click on 'create security group'.
- C) Then provide the name and description for your security group. As shown below:-

NOTE- the VPC section is chosen i.e. "by default" and description is mandatory.

- D) For configuring inboud rules: go to inbound rules and click on add rules.
- E) to allow HTTP traffic (port 80) and SSH traffic from any source:

F) Now the security group is configured to allow HTTP (80) and SSH (port 22) traffic from any source to your web-server.

Q2. Launch EC2 Instance:

- Launch an EC2 instance for the web server using Amazon Linux 2 AMI.
- Associate the web server security group created earlier with this instance.
- Use an appropriate instance type for a web server.
- Ensure the instance has a public IP address.

SOLUTION:-

Launch an EC2 instance for the web server using Amazon Linux 2 AMI.

- Associate the web server security group created earlier with this instance:

Use an appropriate instance type for a web server.

Ensure the instance has a public IP address:-Auto assign public IP is enabled.

```
■ Network settings Info

Network | Info

vpc-0d7f078357cd79872

Subnet | Info

No preference (Default subnet in any availability zone)

Auto-assign public IP | Info

Enable
```

3. SSH Access:

- Generate an SSH key pair for secure access to the instances.
- Configure the web server instance to accept SSH connections using the generated key pair.
- Attempt to SSH into the web server instance to verify successful access.

SOLUTION:-

- Generate an SSH key pair for secure access to the instances. <ssh-keygen>

And you will find the pub key in < /home/simpal/.ssh> (simpal is root)

root@DESKTOP-NJSOG33:simpal# cd .ssh

root@DESKTOP-NJSOG33:.ssh# ll

total 24

drwx----- 2 simpal simpal 4096 Jan 7 16:20 ./

drwxr-x--- 4 simpal simpal 4096 Jan 10 12:27 ../

-rw----- 1 simpal simpal 2610 Jan 7 16:16 id_rsa

-rw-r--r-- 1 simpal simpal 576 Jan 7 16:16 id_rsa.pub

-rw----- 1 simpal simpal 978 Jan 7 16:20 known_hosts

-rw-r--r-- 1 simpal simpal 142 Jan 7 16:06 known_hosts.old

- Configure the web server instance to accept SSH connections using the generated key pair.

- A) Now, in here click on connect,
- B) After that a page will pop up there click on 'ssh client'.

C) Now copy the command from this pop-up box to SSH.

D)Then go to your terminal locate the key ".pem" file on your terminal.

```
-rwxrwxrwx 1 simpal simpal 99 Jan 12 11:44 rootkey.csv*
-rwxrwxrwx 1 simpal simpal 1674 Jan 15 17:01 sim.pem.aws.pem*
-rwxrwxrwx 1 simpal simpal 125 Jan 11 11:15 'simpal_credentials (1).csv'*
-rwxrwxrwx 1 simpal simpal 162 Dec 21 2022 '~$kesh_Resume.docx'*
-root@DESKTOP-NJSOG33:Downloads# pwd
/mnt/c/Users/kharg/Downloads
```

E) After that paste the entire command and try to access the ec2-user.

OR-----

A) After process no. 'B' we can click on 'EC2-instance connect' and then click on connect and there the below page will appear.

B) And after that we can manually add the local terminals 'pub-key' to the instance's authorized keys and try to access from local terminal.

or

4. Web Application Setup:

- Install a web server (e.g., Apache or Nginx) on the web server instance.
- Create a simple HTML page to confirm the web server is working.
- Test accessing the web server's public IP address in a web browser.

SOLUTION:-

- A) Install a web server (e.g., Apache or Nginx) on the web server instance.
- a) switching to root user run the commands:-

```
<yum update -y>
```

<yum install httpd -y>

<service httpd start>N

- c) After that we will create the simple HTML file, for eg (index.html):and we will create this file under the path </var/www/html/index.html> (in the context of a web server, this is a common location for serving static HTML files and it is also a default document root for apache on many linux distributions. <vim /var/www/html/index.html >

d) And under this file write the below mentioned txt in as it is form.

< echo "<html><head><title>Web server Test</title></head><body><h1>web Server is working!</h1></body></html>"
And save the file.

- Test accessing the web server's public IP address in a web browser
- a) First copy the public IP from instance.
- b) Now go to your web browser and and on URL section write http://your_instance_public.ip

The below output shows that the access to the browser is successful.

Web Server is working!

5. Documentation:

- Provide clear documentation outlining the steps you took to complete each task.

- Include relevant screenshots or command outputs to demonstrate the successful implementation of security groups, instance launches, and SSH access.

(ON CLI)

Q 02.

- 1. Create Security Group for Web Server Using AWS CLI:
 - Use the AWS CLI to create a security group for the web server.
- Configure inbound rules to allow HTTP traffic (port 80) and SSH traffic (port 22) from any source.

SOLUTION:-

Use the AWS CLI to create a security group for the web server.

```
root@DESKTOP-NJSOG33:AWS# aws ec2 create-security-group --group-name SGforServer --description "security group for the web server http://p and ssh traffic"
     "GroupId": "sg-0303c85e6ff9f9a42"
root@DESKTOP-NJSOG33:AWS#
```

- Configure inbound rules to allow HTTP traffic (port 80) and SSH traffic (port 22) from any source.

```
root@DESKTOP-NJSOG33:AWS# aws ec2 authorize-security-group-ingress --group-id "sg-0303c85e6ff9f9a42" --protocol tcp --port 80 --cidr
      "Return": true,
"SecurityGroupRules": [
                   "SecurityGroupRuleId": "sgr-0e46ba738eb7e6790",
"GroupId": "sg-0303c85e6ff9f9a42",
"GroupOwnerId": "043241213129",
"IsEgress": false,
"IpProtocol": "tcp",
"FromPort": 80,
"TOPort": 80,
"CidrIpv4": "0.0.0.0/0"
root@DESKTOP-NJSOG33:AWS#
```

2. Launch EC2 Instance for Web Server Using AWS CLI:

- Use the AWS CLI to launch an EC2 instance for the web server using Amazon Linux 2 AMI.
- Associate the security group created earlier with this instance.
- Use an appropriate instance type for a web server.
- Ensure the instance has a public IP address.

SOLUTION:-

root@DESKTOP-NJSOG33:AWS# aws ec2 run-instances --image-id ami-0d3f444bc76de0a79 --key-name sim.pem.aws --instance-type t2.micro --security-group-ids sg-0fbbf84c417984d45 --associate-public-ip-address --tag-specifications

'ResourceType=instance,Tags=[{Key=Name,Value=Ec2

```
_Instance}]'
{
    "Groups": [],
    "Instances": [
```

```
"AmiLaunchIndex": 0,
"ImageId": "ami-0d3f444bc76de0a79",
"InstanceId": "i-0db322a9016876d5c",
"InstanceType": "t2.micro",
"KeyName": "sim.pem.aws",
"LaunchTime": "2024-01-16T18:24:07.000Z",
"Monitoring": {
  "State": "disabled"
},
"Placement": {
  "AvailabilityZone": "ap-south-1a",
  "GroupName": "",
  "Tenancy": "default"
},
"PrivateDnsName": "ip-172-31-47-217.ap-south-1.compute.internal",
"PrivateIpAddress": "172.31.47.217",
"ProductCodes": [],
"PublicDnsName": "",
"State": {
  "Code": 0,
  "Name": "pending"
},
```

```
"StateTransitionReason": "",
"SubnetId": "subnet-0b62104472025c636",
"VpcId": "vpc-0d7f078357cd79872",
"Architecture": "x86_64",
"BlockDeviceMappings": [],
"ClientToken": "8c7c8d12-2fdb-434b-84ff-2eaa30434bd9",
"EbsOptimized": false,
"EnaSupport": true,
"Hypervisor": "xen",
"NetworkInterfaces": [
  {
    "Attachment": {
      "AttachTime": "2024-01-16T18:24:07.000Z",
      "AttachmentId": "eni-attach-000571f1585794bdf",
      "DeleteOnTermination": true,
      "DeviceIndex": 0,
       "Status": "attaching",
      "NetworkCardIndex": 0
    },
    "Description": "",
    "Groups": [
       {
         "GroupName": "SGforServer",
```

```
"GroupId": "sg-0fbbf84c417984d45"
       }
    ],
     "Ipv6Addresses": [],
     "MacAddress": "02:87:92:7f:68:ff",
    "NetworkInterfaceId": "eni-051e9b474e65f854e",
     "OwnerId": "043241213129",
    "PrivateDnsName": "ip-172-31-47-217.ap-south-1.compute.internal",
    "PrivateIpAddress": "172.31.47.217",
    "PrivateIpAddresses": [
       {
         "Primary": true,
         "PrivateDnsName": "ip-172-31-47-217.ap-south-1.compute.internal",
         "PrivateIpAddress": "172.31.47.217"
       }
    ],
     "SourceDestCheck": true,
    "Status": "in-use",
     "SubnetId": "subnet-0b62104472025c636",
     "VpcId": "vpc-0d7f078357cd79872",
    "InterfaceType": "interface"
  }
],
```

```
"RootDeviceName": "/dev/xvda",
"RootDeviceType": "ebs",
"SecurityGroups": [
  {
    "GroupName": "SGforServer",
    "GroupId": "sg-0fbbf84c417984d45"
  }
],
"SourceDestCheck": true,
"StateReason": {
  "Code": "pending",
  "Message": "pending"
},
"Tags": [
  {
    "Key": "Name",
    "Value": "Ec2\n_Instance"
  }
],
"VirtualizationType": "hvm",
"CpuOptions": {
  "CoreCount": 1,
  "ThreadsPerCore": 1
```

```
},
     "CapacityReservationSpecification": {
       "CapacityReservationPreference": "open"
     },
     "MetadataOptions": {
       "State": "pending",
       "HttpTokens": "required",
       "HttpPutResponseHopLimit": 2,
       "HttpEndpoint": "enabled",
       "HttpProtocolIpv6": "disabled",
       "InstanceMetadataTags": "disabled"
     },
     "EnclaveOptions": {
       "Enabled": false
     },
     "BootMode": "uefi-preferred",
     "PrivateDnsNameOptions": {
       "HostnameType": "ip-name",
       "EnableResourceNameDnsARecord": false,
       "EnableResourceNameDnsAAAARecord": false
     }
  }
],
```

```
"OwnerId": "043241213129",

"ReservationId": "r-05f49d62357faf709"
}
```

root@DESKTOP-NJSOG33:AWS#

3. SSH Access Using AWS CLI:

- Use the AWS CLI to generate an SSH key pair for secure access to the web server instance.
- Configure the web server instance to accept SSH connections using the generated key pair.
- Use the AWS CLI to attempt to SSH into the web server instance to verify successful access.

root@DESKTOP-NJSOG33:AWS# aws ec2 help

root@DESKTOP-NJSOG33:AWS# aws ec2 create-key-pair helo

To see help text, you can run:

```
aws help
aws <command> help
aws <command> <subcommand> help
```

usage: aws [options] <command> <subcommand> [<subcommand> ...] [parameters] aws: error: the following arguments are required: --key-name root@DESKTOP-NJSOG33:AWS# aws ec2 create-key-pair help

An error occurred (InvalidKeyPair.Duplicate) when calling the CreateKeyPair operation: The keypair already exists

```
root@DESKTOP-NJSOG33:AWS# aws ec2 create-key-pair --key-name sim.new.key {
```

"KeyFingerprint": "94:8e:61:1f:d4:8f:cd:61:67:ce:8e:de:5e:37:ad:53:c5:18:f4:88",

"KeyMaterial": "-----BEGIN RSA PRIVATE KEY-----\nMIIEowIBAAKCAQEAi8C1ywiAURen4p3ndjefPGnKllPqTm14R5CHZNzljfploEb+\nXC1j WTBTZxMKoYBgZ3OkeZgHeXEgkkSvOmXee6zE/tLAzf2eDfFOPGvCrSoq9fUj\n5Phb2rau/ P0wUd7DBjAlMu7UDURRjL0jFM9WNj4levzAVR7IwJi/RcEiqy6vxOqR\nItriKAdR9uXfkSB O3WzWoFbEKvlDv02baAl4pmx/owHJN8cPz2aMvbL0s9AdCLc4\n58uWz0zdfgREcu/C/0vpZ NDavwafMMmr6WRqcfjZEvk5vIff9RVCWAFygab1G7rE\ny/sJX0++gTqfP8ozcf+2FVjOfQ33 922/Tu1PIwIDAQABAoIBABaHcYcSjsUD4D+r\nHvYyz0vI7iy/yGTuRtaamQkMh0EVHa7x4 u1vL7XgEYHrUupoLKJgxSII/SN5tjt+\nMRVj+LLNTlCaHxTWDtXGkcsxwAd0ZcqSwz+VPh GLI7iLBHAeTihAOK72S178JX1f\nvDkNl6NU72vdNRBDzy8lMKiJExKvTLFeFROVsMFov GjRc3FEQSJn1BGN/9h5RC5b\nOxQhsCuYXllG0E2LO4Qq5rZTdwru7W0wfMG9uPToDPfX nO+oigKC/l0vgYFOT6ZR\nOD29PSljvVm299lixvXa26vs8r5rnSDwZMZHqTiRJfV3LLiUCK ozfBJUivnpB2uH\nEOZrzFkCgYEA6b9khCoZnHWCncVeWsXq7WiRmkNMfDmyRxzvVEEI CejCEWpFFT52\n5ULun/TShxqcFZ0I/bNmpbO12hePMqwQDPOia9+wWrCed3e5UIyvVhwRl 7anD+GI\n7M9GLpNPwdUoRdSxSiWmVGCROgLvl70esg7HsDwtrWKCS45gV8o0onUCgY EAmQ6X\nadtkiDutiZUANO93Ij8EIEtyZEf/RYe0SYrd837SY4UoWNtZyNDKJLp6rGU6g6A GU6CpTpXTvy5fgwlhV5JuhlkYKP3qPP2eHyDcCgYBzGlxU+KZD9Vmsd1RPPsbA\nwY1xe VJgmcjAW+8+fgeHWaa3DK2YGHpTyvHWsqg4/1F9EycqRv10+1nBW3iYa0I8\nHn0MwcoF 3pMqITqP/7cXoBrJqpf5qgXTFv5oUQIIYOHEAUiMSp3tTuA0wN1ayzYi\nWETc88VKbAfdT O8ES/4/QQKBgCq+z3yp4A7IE/Qrn84o3q26ya03RPBKxzkk6C3t\n0YTSc3GF27nNMOsLnJjb V61T7B6cmbKDcWobULGq35YoTONWUUejitUYKQbwe87a\nU688Jm9zYFMtF/yfUI006La APDtkv8yxp3Obdpbr7JiAhy3fu8VHzb4JO4107hK4\nGEzLAoGBALchVDSJGx99f00YVI0EE XBGfh35BDqoaL26TbJ69fgyFEX7YC6fhRmp\nkP/L3Rick6FquFR57FuKDIuezZz7jtkS81eMk B6W1RPG+GJORT4bQRAZJECbK0eT\nf49SwOJqLoEIqIA8tPYfSob0NNAFwr+fdc+vcTqyj Pt84gGfm/nH\n----END RSA PRIVATE KEY-----",

```
"KeyName": "sim.new.key",

"KeyPairId": "key-018ae4132332581ac"
}
```

root@DESKTOP-NJSOG33:AWS# aws ec2 describe-instances --instance-ids i-0db322a9016876d5c --query 'Reservations[0].Instances[0].[InstanceId,PublicIpAddress]' --output text

i-0db322a9016876d5c 3.110.182.200

root@DESKTOP-NJSOG33:~# cd /mnt/c/kharg/Downloads/

root@DESKTOP-NJSOG33:Downloads# ll

total 12520

drwxrwxrwx 1 simpal simpal 4096 Jan 15 17:14 ./

drwxrwxrwx 1 simpal simpal 4096 Jan 15 13:31 ../

-rwxrwxrwx 1 simpal simpal 10542392 Jan 15 16:09 '12 January 2024 aws session.pdf'*

-rwxrwxrwx 1 simpal simpal 2174868 Jan 10 12:39 DOCKER_NOTES_PDF.pdf*

-rwxrwxrwx 1 simpal simpal 95524 Jan 15 17:14 Invoice_1543754689.pdf*

-rwxrwxrwx 1 simpal simpal 282 Apr 19 2022 desktop.ini*

-rwxrwxrwx 1 simpal simpal 99 Jan 12 11:44 rootkey.csv*

-rwxrwxrwx 1 simpal simpal 1674 Jan 15 17:01 sim.pem.aws.pem*

-rwxrwxrwx 1 simpal simpal 125 Jan 11 11:15 'simpal credentials (1).csv'*

-rwxrwxrwx 1 simpal simpal 162 Dec 21 2022 '~\$kesh_Resume.docx'*

root@DESKTOP-NJSOG33:Downloads# chmod 400 sim.pem.aws.pem

root@DESKTOP-NJSOG33:Downloads# ssh -i sim.pem.aws.pem ec2-user@3.110.182.200

The authenticity of host '3.110.182.200 (3.110.182.200)' can't be established.

ED25519 key fingerprint is

SHA256:rK3n9BkKKzy1t9kg0R6Mk6oCScwrTZSNnVWarWGSiYY.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '3.110.182.200' (ED25519) to the list of known hosts.

```
, #_

~\_ ####_ Amazon Linux 2023

~~ \_####\

~~ \###|

~~ \#/___ https://aws.amazon.com/linux/amazon-linux-2023

~~ V~''->

~~ __/

__/__/
__/m/'

[ec2-user@ip-172-31-47-217 ~]$ pwd

/home/ec2-user

[ec2-user@ip-172-31-47-217 ~]$
```

4. Web Application Setup Using AWS CLI:

- Use the AWS CLI to install a web server (e.g., Apache or Nginx) on the web server instance.
- Create a simple HTML page using the AWS CLI to confirm the web server is working.
- Use the AWS CLI to test accessing the web server's public IP address in a web browser.

SOLUTION:-

As we have already ssh the ec2-instance.

After that,

[root@ip-172-31-47-217 ec2-user]# yum update -y

Last metadata expiration check: 0:30:59 ago on Tue Jan 16 18:24:58 2024.

Dependencies resolved.

Nothing to do.

Complete!

[root@ip-172-31-47-217 ec2-user]# yum install -y nginx

Last metadata expiration check: 0:31:32 ago on Tue Jan 16 18:24:58 2024.

Dependencies resolved.

				===
Package	Architecture	Version	Repository Size	:
			===	
Installing:				
nginx k	x86_64	1:1.24.0-1.amzn2023.0.2	amazonlinux	32
Installing dependenci	es:			
generic-logos-httpd 19 k	noarch	18.0.0-12.amzn2023.0.3	amazonlinux	
gperftools-libs 308 k	x86_64	2.9.1-1.amzn2023.0.3	amazonlinux	
libunwind 66 k	x86_64	1.4.0-5.amzn2023.0.2	amazonlinux	
nginx-core 586 k	x86_64	1:1.24.0-1.amzn2023.0.2	amazonlinux	
nginx-filesystem 9.1 k	noarch	1:1.24.0-1.amzn2023.0.2	amazonlinux	
nginx-mimetypes 21 k	noarch	2.1.49-3.amzn2023.0.3	amazonlinux	

Transaction Summary

Install 7 Packages

Total download size: 1.0 M

Installed size: 3.4 M

Downloading Packages:

(1/7): libunwind-1.4.0-5.amzn2023.0.2.x86_64.rpm 00:00	902 kB/s 66 kB
(2/7): nginx-1.24.0-1.amzn2023.0.2.x86_64.rpm 00:00	349 kB/s 32 kB
(3/7): generic-logos-httpd-18.0.0-12.amzn2023.0.3.noarch.rpm kB 00:00	1.4 MB/s 19
(4/7): nginx-filesystem-1.24.0-1.amzn2023.0.2.noarch.rpm 00:00	520 kB/s 9.1 kB
(5/7): gperftools-libs-2.9.1-1.amzn2023.0.3.x86_64.rpm 00:00	5.2 MB/s 308 kB
(6/7): nginx-mimetypes-2.1.49-3.amzn2023.0.3.noarch.rpm kB 00:00	1.4 MB/s 21
(7/7): nginx-core-1.24.0-1.amzn2023.0.2.x86_64.rpm 00:00	3.7 MB/s 586 kB

Total

4.9 MB/s | 1.0 MB 00:00

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Complete!

[root@ip-172-31-47-217 ec2-user]# service nginx start

Redirecting to /bin/systemctl start nginx.service

[root@ip-172-31-47-217 ec2-user]# chkconfig nginx on

Note: Forwarding request to 'systemctl enable nginx.service'.

Created symlink /etc/systemd/system/multi-user.target.wants/nginx.service → /usr/lib/systemd/system/nginx.service.

[root@ip-172-31-47-217 ec2-user]# systemctl enable nginx.service

[root@ip-172-31-47-217 ec2-user]# vim /usr/share/nginx/html/index.html

Under vim file write:-

And after going to any web server Give the public IP on URL section. The output:-

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and working. Further configuration is required.

For online documentation and support please refer to nginx.org. Commercial support is available at nginx.com.

Thank you for using nginx.

5. Documentation:

- Provide clear documentation in a text file outlining the AWS CLI commands used for each task along with their outputs.
 - Include any relevant information such as IP addresses, instance IDs, etc.