Mechanics of Materials (I) Exam III (6/24/2021)

- 1. (15%) (a) Consider a narrow rectangular beam subjected to a shear force V. Determine where the maximum shearing stress will be occurred.
 - (b) Give an example for which plane stress condition can be used
 - (c) Fixed supports only prevent rotation. (True/False)
 - (d) Roller supports only prevent translation in vertical direction. (True/False)
 - (e) EIy''' = -q (True/False)
- 2. (10%) Determine the first moment with respect to the neutral axis of the shaded area A and the shearing stress at any point of the cross section.

3. (18%) Knowing that a $W360\times122$ rolled-steel beam is subjected to a 250-kN vertical shear, determine the shearing stress at the centroid C of the section. (d = 363 mm, $b_F = 257$ mm, $t_F = 21.70$ mm, $t_W = 13.0$ mm, $I = 367\times10^{-6}m^4$)

4. (10%) Suppose an element is subjected to a biaxial stress as shown in the figure. Construct the corresponding Mohr's circle and determine the maximum shear stress ($\sigma_v > \sigma_x > 0$).

5. (20%) A propeller shaft subjected to combined torsion and axial thrust is designed to resist a shear stress of 70 MPa and a compressive stress of 100MPa (see figure). Determine the principal stresses and show them on a sketch of a properly oriented element.

6. (12%) For the cantilever beam and loading shown, determine the slope and deflection at the free end.

7. (15%) For the uniform beam shown, determine the reaction at each of the three supports

Beam and Loading

Equation of Elastic Curve

For
$$x \le \frac{1}{2}L$$
:
 $y = \frac{P}{48EI} (4x^3 - 3L^2x)$

For
$$x < a$$
:
 $y = \frac{Pb}{6EIL} [x^3 - (L^2 - b^2)x]$

For
$$x = a$$
: $y = -\frac{Pa^2b^2}{3EIL}$

$$y = -\frac{w}{24EI}(x^4 - 2Lx^3 + L^3x)$$

$$y = -\frac{M}{6EIL} \left(x^3 - L^2 x \right)$$