Course	Course Name	L-T-P-	Year of
code		Credits	Introduction
SB202	RESISTANCE AND PROPULSION OF SHIPS	3-1-0-4	2016

Prerequisites: -Nil

Course Objectives:

- 1. To be familiar with the concept of Resistance and Propulsion of ships.
- 2. To be familiar with prediction of Resistance of ships, and to estimate machinery power to attain the specified speed.
- 3. To impart knowledge on various types of marine propellers and to familiarize with design.

Syllabus:

Introduction to Resistance and Propulsion of Ships, Components of Ship Resistance, Laws of Comparison, Viscous Resistance, Wave Making Resistance; Other Resistance Components, Model Testing, Determination of Resistance from Series Test Results; Propeller as a Thrust Producing Mechanism, Screw Propeller, Propeller Theories, Interaction Between Hull and Propeller, Cavitation; Design of Propellers, Open Water Tests, Self-Propulsion Tests, Design Charts, Selection of Engine Power, Propeller Strength, Model Testing of Propellers; Resistance Calculation, Model Ship Correlation, Propeller Design, Ship Standardization Trials, Resistance of Advanced Marine Vehicles, Special Types of Propellers.

Expected Outcome:

Upon successful completion of the course, the student will be able to:

- 1. Understand various components of resistance of ships.
- 2. Predict resistance of ships using statistical / methodical series / model tests and estimate effective power.
- 3. Understand the geometry of screw propeller, various propeller theories and interaction between hull & propeller.
- 4. Understand the phenomena of cavitation and its effects of propellers.
- 5. Design propeller using various methodical series/ design charts/ model experiments.
- 6. Understand the principle of operation of various unconventional propulsive devices, and resistance of high speed marine crafts.

Text Books:

- J.P. Ghose, R.P. Gokarn; Basic Ship Propulsion.
- Eric Tupper; Introduction to Naval Architecture.

Reference Books:

- D.G.M. Watson; Practical Ship Design; Elsevier Ocean Engineering Book Series.
- Lewis, E.U.; Principles of Naval Architecture, SNAME, New Jersey, U.S.A.
- Rawson and Tupper; Basic Ship Theory; Butterworth-Heinemann.
- Lars Larsson & Hoyte C.; Principles of Naval Architecture.
- Raven; Ship Resistance & Flow; The Society of Naval Architects and Marine Engineers.
- Neil Bose; Marine Powering Prediction and Propulsors; The Society of Naval Architects and Marine Engineers.

- Barnaby K.; Basic Naval Architecture.
- H. Schneekluth; V. Bertram; Ship Design for Efficiency and Economy.

α	TO I
('niire	ı Plan

Module	Content	Hours	Sem. Exam Marks	
I	Introduction- Resistance of Ships, Components of Ship Resistance	2		
	Dimensional Analysis - Geometrical, Dynamical and Kinematical Similarity, Laws of Comparison- Model-Ship Correlation.	3		
	Viscous Resistance— Turbulent Plate Friction and Plate Resistance, Viscous Pressure Resistance, Influence of Curvature of Ship's Hull, Form Factor, Hull Roughness and its Influence on Frictional Resistance.	2	15%	
	Wave Making Resistance—Ship Wave System, Interference Effects, Theoretical Calculation of Wave Making Resistance, Wave Breaking Resistance, Bulbous Bow and its Effects.	2		
II	Other Components of Resistance- Air and Wind Resistance, Appendage Resistance, Added Resistance in Waves; Resistance in Restricted Waterways— Resistance in Shallow Water, Resistance in Canals.	3	15%	
	Model Testing— Modern Tank Testing Facilities, Prediction of Resistance from Model Tests, Tank Wall Effect.	3		
	Determination of Resistance from Test Results – Residuary Resistance, Effect of Hull Form on Resistance, Taylor Series, Series 60, B S R A Series, S S P A Series, Etc.; Statistical Analysis of Resistance Data, Holtrop & Mennen's Method, Guldhammer And Harvald's Method.	3		
	FIRST INTERNAL EXAM			
III	Introduction to Powering of Ships- Propeller as a Thrust Producing Mechanism; Screw Propeller- Propeller Geometry, Sections, Propeller Drawing, Construction Details.	3	15%	
	Law Of Similitude Of Propeller, Propeller Theories- Momentum Theory, Blade Element Theory, Circulation Theory.	3		
	Interaction Between Hull and Propeller-Wake and Wake Fraction, Resistance Augment and Thrust Deduction Factor, Propulsive Efficiency in Open Water and Behind Conditions, Hull Efficiency, Quasi Propulsive Coefficient, Transmission Efficiency.	3		
	Cavitation- Introduction, Types, Cavitation Number, Effects of Cavitation, Prevention of Cavitation, Design for Minimum Cavitation, Cavitation Tests.	2		
IV	Design of Propellers- Propeller Families and Series; Kt-Kq Diagrams; Design Charts- Bp-Δ, T-J, P-J Charts, Use of Charts in Propeller Design and Performance Study.		15%	

	Propeller Strength- Materials and their Qualities, Strength	2				
	Calculation.					
	Model Testing Of Propellers- Test Facilities, Laws of					
	Comparison, Open Water Tests, Self- Propulsion Tests, Ship					
	Standardization Trials.					
	SECOND INTERNAL EXAM					
	Special Types of Propellers- Shrouded Propellers- Action of					
	Propeller in a Nozzle, Wake Fraction and Thrust Deduction					
	Fraction in Nozzles, Load Factor of Nozzles, Design of		200/			
V	Propeller Nozzle System, Design Charts.	8				
	Controllable Pitch Propellers- Advantages, Special Features in		20%			
	Geometry, Design Aspects.					
VI	Super Cavitating Propellers, Application.					
	Other Propulsion Devices- Vertical Axis Propellers, Water Jet					
	Propulsion, Sail, Paddle Wheels, Electromagnetic Propulsion.		20%			
	High Speed Craft and Advanced Marine Vehicles-		20%			
	Introduction, Types; Resistance of Planing Crafts, Catamarans,	5				
	SWATH, Hydrofoil Crafts.					
END SEMESTER EXAM						

QUESTION PAPER PATTERN:

Maximum marks: 100 Time: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.