- 1 Surprising minimisation of CO₂ emissions from a sandy loam soil over a rye growing
- 2 period achieved by liming (CaCO₃)

- 4 Rousset Camille^{A,B}, Brefort Henri^A, Fonseca, Rafael Frederico^A, Guyerdet Guillaume^A,
- 5 Bizouard Florian^A, Mustapha Arkoun^C, Hénault Catherine^A

6

- ⁷ Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-
- 8 21000 Dijon, France
- 9 BIntegrative Agroecology, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- 10 CLaboratoire de Nutrition Végétale, Agroinnovation International TIMAC AGRO, Saint-
- 11 Malo, France

12

- 13 Corresponding authors:
- catherine.henault@inrae.fr ORCID number: 0000-0002-1210-2499
- 15 UMR AgroEcologie
- 16 17 rue Sully
- 17 BP 86510
- 18 21065 Dijon Cedex
- 19 France

20

21

22

23

24

25

26

27

28

Abstract

Agricultural liming is a common practice for improving acidic soils production, and is also considered as a lever for mitigating nitrous oxide emissions from soils. However, the benefit of liming in reducing soil greenhouse gas emissions (GHG) is conditioned by: (i) the evolution of the carbon of the calcium carbonates (CaCO₃) supplied, and (ii) the effect of CaCO₃ on the evolution of soil organic carbon (SOC). The literature presents contrasting effects of liming on inorganic- and SOC-derived CO₂ emissions. Current understanding of the

impact of liming on GHG emissions is limited by the lack of field data, and therefore requires further study.

In situ, we monitored the effect of two liming products (SC = synthetic CaCO₃ and MC = marine CaCO₃) on soil CO₂ emissions compared to control plots, during the growing season of a winter rye, using the static chamber method. Soil pH, N₂O emissions, mineral nitrogen content, soil moisture and temperature were measured during the experiment, as well as plant biomass and SOC (stock and composition) on the day of harvest.

Lime addition increased soil pH and kernel yield and significantly decreased soil CO₂ emission with on average a reduction of 3.74 and 3.94 mg C kg⁻¹ d⁻¹, for the MC and SC addition respectively. SOC at harvest was not affected but its composition was modified by the limed treatments. Liming was also associated with a decrease in dissolved organic carbon losses in the soil. Further investigations must be carried out to better understand the mechanisms explaining these observations and to define conditions in which liming application could act as a potential lever for carbon storage. Finally, our results suggest that the IPCC principles, estimating an increase of CO₂ emissions linked to the C added by lime materials, may need to be re-examined in the future.

Keywords: CO₂ emissions, pH, Agricultural liming, C stabilisation

Introduction

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

have been known for centuries (Blum et al., 2017). However, the focus of agriculture now lies not solely on production but also on maintaining a healthy environment. Direct emissions from the agriculture, forestry and land-use sector comprise roughly 18% of global greenhouse gas (GHG) emissions (Ritchie et al., 2020) which contribute to global warming and climate change. The main GHGs involved in the agriculture sector include nitrous oxide (N₂O), carbon dioxide (CO₂) and methane (CH₄). Recently, research attention has focused on the effect of liming on soil gas fluxes (Wang et al., 2021). Soil liming has numerous far-reaching impacts on soil processes and function (Holland et al., 2018). One is linked to the denitrification process, considered as the major source of N₂O emissions and often associated with the so-called soil N₂O emission hotspots in agriculture (Kravchenko et al., 2017). Complete denitrification is also the only known terrestrial mechanism allowing the elimination of this gas (Jones et al., 2013). The liming of acidic soils has been proposed as a potential lever for promoting N₂O reduction and consequently mitigating soil N2O emissions (Shaaban et al., 2015). Hénault et al. (2019) suggested a specific pH of 6.8 below which the N₂O reduction pathway is progressively inhibited. Nevertheless, the diverse impacts of liming on plant and soil processes may also cause CO₂ emissions. Therefore, the influence of liming products on the GHG balance of soils (N₂O and CO₂) is controversial (Wang et al., 2021). Calcium carbonate (CaCO₃) has the potential to dissolve into CO₂ and be released into the atmosphere (Bertrand et al., 2007; Biasi et al., 2008; Dumale Jr et al., 2011). The dissolution of CaCO₃ can act as either a source or sink for CO₂, depending on whether the reaction occurs with strong acids such as nitric acid (HNO₃⁻) or weak acids such as carbonic acids (H₂CO₃) (Hamilton et al., 2007). In a strong acidic environment, CO₂ is released when CaCO₃ reacts with protons which can be derived from nitrification processes (Equation 1).

The benefits of liming in mitigating soil acidification and increasing crop productivity

72
$$CaCO_3 + 2HNO_3 \rightarrow Ca^{2+} + 2NO_3^- + CO_2 + H_2O \# (1)$$

However, when every mole of CaCO₃ reacts with carbonic acid (H₂CO₃) in soils, it yields two

moles of carbonate materials (HCO₃-), thus serving as a sink of CO₂ in soil (Equation 2 & 3).

75
$$CO_2 + H_2O \leftrightarrow H_2CO_3 \# (2)$$

76
$$CaCO_3 + H_2CO_3 \rightarrow Ca^{2+} + 2HCO_3^{-}\#(3)$$

The principle of the Intergovernmental Panel on Climate Change, basically states that one mole of CO₂ is generated for each mole of carbonate dissolved (IPCC, 2006). Nevertheless, this position which tends to overestimate CO₂ emissions is challenged by several authors (West and McBride, 2005; Hamilton et al., 2007).

Soil pH is also known as a key abiotic factor that regulates soil microbiological activity and structure (Dumale Jr et al., 2011; Grover et al., 2017). The increase of pH induced by liming is also expected to stimulate microbial activities, which in turn can increase the transformation of soil organic matter (SOM) (decomposition/mineralisation, turnover, Paradelo et al., 2015), with the production of more CO₂ (Fuentes et al., 2006). A recent laboratory study from Lochon et al. (2018) showed that the liming response of CO₂ production mirrored those of carbon (C) mineralization namely: an increase, associated with a concurrent increase in soil pH. Adding lime could therefore contribute to soil organic-derived CO₂ emissions by inducing a positive priming effect on SOC decomposition (Grover et al., 2021). While positive priming effects have been more generally demonstrated in the literature (Kunhikrishnan et al., 2016), liming may also have no influence on SOC (Bertrand et al., 2007; Fornara et al., 2011; Lochon et al., 2019) or a negative priming effect on SOC decomposition by strengthening the clay-organic matter bonds with the calcium (Ca²⁺) of the liming material (Oades, 1984; Wuddivira and Camps-Roach, 2007).

While laboratory studies show mixed responses of CO₂ emissions and SOC pools to liming application, fewer studies have been conducted to quantify these liming effects in the field (Holland et al., 2018). Nonetheless, studies suggest that CO₂ emissions derived from liming application may be much lower under field conditions compared to laboratory conditions (Cho et al., 2019; Lochon et al., 2019). It is also reasonable to assume that the direction (increase or decrease) and magnitude of the effect of liming on CO₂ emissions depend on site-specific abiotic conditions such as initial soil C content (Dumale Jr et al., 2011) or temperature. Therefore, the effects of surface liming on the SOC pool and its consequences on CO₂ emissions are not clear and require further study to predict the net outcome of liming on the soil C balance and climate regulation service. The objectives of our one-year-field study were: (i) on a weekly basis, simultaneously monitor the evolution of CO₂ and N₂O emission rates after the application of two CaCO₃ products (marine and synthetic) using the closedchamber method to determine whether the change in CO₂ emissions offsets the benefits of liming products in reducing N2O; (ii) to collect information on SOC on the harvesting day, obtained through its chemical characterisation, in order to identify a potential explanation for the evolution of CO₂; and (iii) to observe the interaction of liming with the site-specific abiotic conditions of soil respiration, namely temperature and soil humidity.

113

114

115

116

117

118

119

112

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Materials and methods

Site description and treatment

The experiment was conducted on a farm plot (< 2 ha) located in Fourches Village, Morvan region in France (47°15'38.369" N; 4°11'18.952" E) at an altitude of 558 m. The Morvan region is an old mountain massif with an average temperature of 9°C, an average rainfall of 1016 mm and a late spring.

Soil of the experimental field is classified as a Brunisol according to the NGI (National Geographic Institute). Based on a composite soil sample taken before liming application and made up with 10 soil cores randomly distributed in the farm plot, this soil has a sandy loam texture (60.8 % sand, 14.7 % clay, 24.5 % silt), a low initial pH (5.7), an initial soil TOC and SOM contents of 24.7 g kg⁻¹ and 42.8 g kg⁻¹, respectively. Its gravimetric water content at field capacity (-33 kPa) was measured to be 0.23 g g⁻¹ (ISO/NF 11274).

In the farm plot, fall seeded rye and triticale have been grown in rotation since 2005 and have replaced a conifer forest. Local practices are as follows: soil tillage is conducted before sowing each crop, a field roller is used after sowing to ensure light soil compaction for germination.

The field (30 m × 63 m) experiment, performed over a rye growth season (October 2021 – July 2022), was set up in a randomized block design with three treatments: control (no liming product amendment), marine CaCO₃ and synthetic CaCO₃ application both at the neutralizing rate of 2939 neutralising value per ha as defined with the Rémy and Marin-Laflèche (1974) formula to reach a soil pH of 6.8 (Hénault et al., 2019). There were three replicate plots per treatment with each subplot measuring 12 m × 6 m (Figure 1). The liming products were applied in October 2021 just after sowing the rye. Nitrogen fertiliser (50 kg N ha⁻¹), composed with 33.5 % of ammonium nitrate, was applied on soil surface in March 2022 for all treatments.

A weather station (ET 106 model, Campbell) was installed on the farm plot in November 2021 (one month after liming amendments), equipped with a rain gauge and a temperature probe. The soil bulk density (BD) was determined from field measurements on the harvesting day using the cylinder method, (Hao et al., 2008). It ranged between 1.1 g cm⁻³ and 1.2 g cm⁻³ among subplots.

Gas flux measurement

Carbon dioxide and N₂O fluxes were determined using static closed chambers. All data are expressed both in their classical specific units (kg C ha⁻¹ d⁻¹ or g N ha⁻¹ d⁻¹ respectively) and specified in CO₂ equivalent, considering the global warming potential with a time horizon of 100 years of each gas (1 for CO₂, 265 for N₂O, Masson-Delmotte et al., 2021), for the purpose of comparison. Three steel frames (0.5 m long \times 0.5 m wide \times 0.15 m high) were permanently half-inserted into the soil for each subplot (Figure 1) for a total of 27 chambers, 9 per treatment. For the gas measurements, an airtight foamed PVC cover was placed on each of these frames and closed hermetically using 4 spring clamps. The observation period began in October 2021, and the gas samples were taken once weekly (with the exception of few dates during the winter period due to poor weather or lack of human resources). Four gas samples were collected from the chamber headspace using 12 mL syringes at fixed intervals of 45 min after the chamber was closed (T₀ being taken just after closure). Daily CO₂ and N₂O fluxes were determined according to the measurement slope of the linear increase or decrease in gas concentration during the period when the chamber was closed (Zheng et al., 2008). A gas chromatograph (GC) with a thermal conductivity detector (Agilent 990 microGC) coupled with an autosampler (SRA Instruments) and a GC with an electron capture detector (Trace 1310 series GC, Thermo Fisher Scientific) coupled with a TriPlusTM autosampler were used to determine the CO₂ and N₂O concentration, respectively. The minimum detection limits were defined at 0.2 g N-N₂O ha⁻¹ d⁻¹ and 1000 g C-CO₂ ha⁻¹ d⁻¹ for the N₂O and CO₂ fluxes, respectively.

As long as the height of the vegetation remained below 5cm, the measurements were carried out in its presence. The vegetation was then cut at the root collar and removed from the chamber before each gas sampling, allowing us to not consider the plant respiration in our gas measurements.

168

169

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Weekly soil sampling and analyses

Soil samples (0–20 cm soil depth) were collected from each subplot (in the dedicated area as shown in Figure 1) when the flux measurements were performed. They were sieved at 5 mm and placed in Ziploc® plastic bags before almost immediate laboratory analysis. One part was used to determine the soil gravimetric water content (GWC) by drying at 105 °C (24 h). The mineral N (NH₄⁺-N and NO₃⁻-N) contents of soil were extracted in a 10 g subsample with 0.5 M K₂SO₄ and analysed by using the spectrophotometric method (Baethgen and Alley, 1989; Cataldo et al., 1975). The detection limit was 0.01 mg N kg⁻¹ soil. Another 10 g subsample of soil was shaken for 1h with 50 ml of DI water to measure the soil pH (NF ISO 10390 Mai 2005 / X31-117).

179 GWC was used to calculate water-filled pore space (WFPS) with equation 4 (Linn and Doran 1984), with PD; the mineral particle density was estimated at 2.65 g cm⁻³

$$WFPS = \frac{GWC \times BD}{1 - \frac{BD}{PD}} \#(4)$$

Soil and plant sampling and analyses on harvesting day (22 July 2022)

In addition to the above soil analyses, the SOC pool was assessed on the harvesting day. Three soil sample replicates per subplot were sent to the SADEF laboratory to identify, with an elementary analyser, the TOC content (TOC_{EA}, g kg⁻¹) and the SOM content (g kg⁻¹). Three other soil sample replicates per subplot were dried at 45°C for 72h and ground (20 min at 30 hertz) before being sent to the ISTO laboratory for Rock-Eval® (RE) thermal analyses. The objectives of this RE pyrolysis were to provide insights into SOC bulk chemistry using RE pyrolysis parameters linked to SOC elemental composition (i.e. hydrogen index, HI and oxygen indices OI_{RE6}, Baudin et al., 2015). Finally, dissolved organic and inorganic carbon (DOC and DIC) were measured by an Elemental TOC analyser after distilled water extraction (WEOC method, Guigue et al., 2014).

A 1 m² rye biomass was harvested from each subplot (Figure 1) using an electric pruner cutting at 15 cm above the soil. The rye ears were separated from the stalks manually and placed in craft paper bags to be weighed after being placed for 48 hours in an oven at 85°C. The ears were threshed and the weight of the kernels was measured. Finally, the following yield components were measured: total biomass (g m⁻²), kernel yield (g m⁻²), thousand-kernel-weight (TKW, g) and specific weight (SW, kg hl⁻¹).

The yield-scaled GHG_x emissions (kg $GHGx\ Mg^{-1}$) were determined (Equation 5), x being either N_2O , CO_2 or both.

Yield – scaled
$$GHGx$$
 emissions =
$$\frac{\text{cumulative annual GHGx emissions}}{\text{annual dry rye production}} \#(5)$$

Statistical analyses

The statistical analyses were conducted using R software version 4.1.2 (R core team, 2018). The normality of data distribution was ascertained visually with a QQ plot and the data were log-transformed when needed. If this transformation proved insufficient, appropriate non-parametric tests were then applied on the response variables, depending on the number of factors involved (e.g., Kruskal-Wallis test or a two-way repeated measures ANOVA with a rank transformation on the variable; Higgins et al., 1990). Factorial mixed ANOVA analyses was conducted for the CO₂, N₂O and CO₂ + N₂O emissions with "liming treatment", "block" as between-group variables and "time" as repeated-measures variables (Field et al., 2012). Factorial independent ANOVA analyses were used for the WFPS, pH and soil N concentrations with "liming treatment", "block" and "time" as between-group variables. One-way independent ANOVA analyses were used to compare rye yield, yield-scaled GHG emissions, soil base saturation percentage, and the inorganic and organic soil carbon indices of the different liming treatments (Control, MC and SC). If a significant difference was found at a *p* value < 0.05, a Tukey's HSD test was performed to determine the significance of differences

between treatments. In the case of a difference in the confidence intervals of the means between groups, despite undetected differences by ANOVA, t-tests were used for pairwise comparisons (Hsu, 1996; Midway et al., 2020).

Results

Evolution of environmental and soil factors over time

Average air temperature was 8.7°C with a maximum of 27°C observed on 18th of June 2022 (Figure 2a). Temperatures under 10°C were observed until the end of April 2022. A total of 508 mm of rainfall was recorded on the farm plot with precipitations every month, except in July 2022 (Figure 2a).

WFPS ranged from 18.8% to 73% over the experimental period (Figure 2b). This equates with a gravimetric water content ranging from 0.11 g water g⁻¹ soil to 0.34 g water g⁻¹ soil and which remained over field capacity (0.23 g water g⁻¹ soil) until May 2022 for all the treatments. The average WFPSs were 43.4%, 45.8% and 48% for the control, SC and MC, respectively. Limed treatment significantly increased WFPS compared to the control while no significant difference was observed between the MC and SC treatments (Supplementary Table 2).

The soil pH responded very quickly to the application of liming products (MC and SC) and reached the targeted pH of 6.8 during the first month following the application (Figure 2c). Although soil pH exhibited periodic increases and decreases, soil pHs for both liming treatments were significantly higher (Supplementary Table 2) than the soil pH of the control throughout the entire experimental period (Figure 2c). For the control, soil pH fluctuated between 5.48 and 6.36, between 6.64 and 7.88 for the SC treatment, and between 6.45 and 7.78 for the MC treatment.

In general, soil mineral N contents were low in the soil over time. Ammonium-N contents varied from 0.1 to 29.2 mg N kg⁻¹ soil (Figure 2d), with significant difference detected between treatments (Supplementary Table 2). Over the entire experimental period, the mean soil NH₄⁺-N concentrations were 7.1, 6.4, and 6.1 mg N kg⁻¹ soil for the control, SC, and MC treatments, respectively. Nitrate-N contents varied from 0.1 to 19.4 mg N kg⁻¹ soil through time (Figure 2e). The average NO₃⁻-N contents across the rye growth season in the control, SC, and MC treatments were 3.8, 3.0 and 3.0 mg N kg⁻¹ soil, respectively and significant differences were temporarily detected between the treatments (Supplementary Table 2), i.e., following N mineral fertilisation.

The percentage of soil base saturation for cations at the end of the experimental period can be found in the Table 1. Liming treatments significantly increased the Ca^{2+} concentration and decreased the H^+ concentration compared to the control. The concentration of K^+ and Mg^{2+} in the soil remained unchanged by the liming treatment.

Evolution of greenhouse gas (CO₂ and N₂O) emissions

Daily N_2O emission fluxes ranged from 0.2 to 18.0 g N- N_2O ha⁻¹ d⁻¹, i.e. 0.1 to 7.4 kg CO_2 eq and daily CO_2 emissions fluxes ranged from 10 to 184 kg CO_2 eq ha⁻¹ d⁻¹ (Figure 3). Taking account of the specific gas global warming potential, N_2O represented less than 5% of $(N_2O + CO_2)$ emission for 75% of the data, with a median value of this ratio being 1.6%.

The highest N₂O fluxes occurred in autumn, at the beginning of the experimental period, and during summer with peaks between 10 and 20 g N-N₂O emission, while N₂O fluxes were lower than 5 g N-N₂O ha⁻¹ d⁻¹ from January 2022 to mid-May 2022. No N₂O emission peaks were observed following the application of fertiliser for all three treatments, but 3 peaks were observed following the highest WFPS from Mid-May until August 2022 (Figure 3a). Time significantly affected daily N₂O emissions (Supplementary Table 2). Over the experimental

period, the total N_2O emissions were observed in the order MC>SC>control with a significant difference between treatments. On average, cumulative N_2O emissions were 0.74, 0.92 and 0.89 kg N ha⁻¹ for the control, MC and SC treatments, respectively (Table 2). N_2O emissions presented no correlation with temperature or soil moisture for any of the treatments (Figure 4 & 5).

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

CO₂ fluxes were lower during the winter period and started to increase in March 2022 to reach their maximum during the summer period for all the treatments (Figure 3b). Four peaks can be observed on the 28th April, 24th May, 9th and 23rd June 2022. Time significantly affected daily CO₂ fluxes (Supplementary Table 2). Temperature had a significant positive effect on daily soil CO₂ emissions throughout the experimental period, irrespective of liming treatments. Mean daily CO₂ emissions was negatively correlated to soil WFPS during the study (Figure 4 & 5). Liming did not affect the relationship between daily CO₂ emissions and abiotic factors across flux measurement dates. Liming treatment influenced daily CO2 fluxes over the rye growing season (Figure 3b), with significantly lower CO₂ fluxes for both liming treatments compared to the control (Supplementary Table 2). There was no significant difference in CO₂ emission between either liming treatment. For the control treatment, the average daily CO₂ flux was 19.7 kg C ha⁻¹ d⁻¹ while it was 12.2 and 11.6 kg C ha⁻¹ d⁻¹, respectively for the MC and SC treatments. The CO₂ abatement caused by liming applications could be estimated at 3.74 and 3.94 mg C kg⁻¹ soil d⁻¹ for the MC and SC treatments, respectively. Between liming application and harvesting, 273 days had passed, thus losses of 1.02 and 1.08 g C kg⁻¹ soil were avoided by MC and SC, respectively.

This treatment effect was passed on to the overall fluxes ($CO_2 + N_2O$, Figure 3c), with significantly lower CO_2 equivalent emissions for both liming treatments compared to the control with on average, over time, 73.6, 46.4 and 44.1 kg CO_2 eq ha⁻¹ d⁻¹ for the control, MC and SC, respectively, representing abatements of 37% and 40%.

Rye yield and yield-scaled emissions

Rye yields for the treatments are shown in Table 2. There was a trend of increase in rye yield with higher yields for both liming treatments compared to the yield of the control. However, only the total kernel yield for the MC treatment was proved to be significantly higher than the control. Also not significant, total kernel yield and specific weight were also observed to be higher for both liming treatments compared to the control (Table 2).

There was no significant difference between treatments for the yield-scaled N_2O emissions but significant difference after liming application for the yield-scaled CO_2 emissions and yield-scaled GHG balance ($CO_2 + N_2O$) (Table 2). Totals of $8.9e10^{-2}$, $9.4e10^{-2}$ and $9.3e10^{-2}$ kg N Mg⁻¹ were emitted from the control, MC and SC treatments, respectively.

The C pool remaining in the soil after harvesting

Due to the very high difference in CO₂ fluxes observed between the control and the limed treatments, we investigated the remaining C pool at harvest.

Total organic carbon (TOC_{RE} than TOC_{EA}) was higher, but not significantly, for the control treatment compared to both liming treatments (Table 3). Likewise, SOM was higher, but not significantly, for the control treatment with 46.2 g kg⁻¹, compared to both liming treatments, i.e., 42.2 and 42.3 g kg⁻¹ for MC and SC, respectively (Table 3).

The quantities of DOC and DIC remaining in the soil after harvesting were significantly higher for both liming treatments (Table 3) compared to the control.

Results for the two parameters associated with SOC bulk chemistry (HI and OI_{RE6}) suggested an increasing liming effect (Table 3) on both parameters. The MC treatment was characterised by a significantly higher HI whereas the HI value of the SC treatment (198.4 mg HC g^{-1} TOC_{RE}) did not show a significant difference with the control treatment (184 mg HC

g-1 TOC_{RE}). Likewise, for the OI_{RE6} parameters, the relatively large standard errors did not lead to a significant difference between treatments despite increased average values for the MC and SC treatments compared to the control (Table 3). Placed in the pseudo-van Krevelen diagram (Figure 6), these indicators suggest a slight change in the composition of the SOC after the application of liming products.

Discussion

Studying the liming impact on acid soil respiration in the field is critical for predicting the benefits of this agricultural practice on climate regulation, the carbon source-sink relationships, and has practical implications for farmers (Wang et al., 2021). After just one year of experimental data, the results already showed a clear mitigation of CO_2 emissions by liming treatments with an average reduction in greenhouse gas emissions ($CO_2 + N_2O$) of more than 35%, thereby reasserting the agronomic value of liming products.

The application of liming tends to increase plant productivity

The liming of acid soil and the associated increase in soil pH (on average 1.3 pH units for MC and 1.1 pH unit for SC, Figure 2c) stimulated both rye and kernel yields, without however being significant. The yield obtained after liming (Table 2) was identical to the national average despite the application of a lower amount of fertilizer (Agreste Conjuncture, 2022). These increases in yields are probably linked to liming-induced increases in the availability and mobility of plant nutrients (Holland et al., 2019). In this study, the CaCO₃ products used led, unsurprisingly, to a higher Ca²⁺ saturation rate of the clay-silt complex for the MC and SC.

The application of liming decreases soil CO₂ emissions and changes SOC bulk chemistry

Rates of soil CO₂ emissions recorded in the present study in control plots were within the range of soil CO₂ emissions reported elsewhere in the field, e.g., Cho et al. (2019) measured CO₂ fluxes between 5 and 70 kg C ha⁻¹ d⁻¹ from a loamy soil in a South Korean plot over two years (2015 and 2016) after liming treatments. From the results obtained by meta-analysis (Wang et al., 2021), an increase in CO₂ emissions after liming application was expected via CaCO₃ dissolution with an increase in soil pH and hence soil biological activities and SOC mineralisation (Biasi et al., 2008). However, this hypothesis was not supported by our results. Despite a significant increase in soil pH in both liming plots during the experiment, a reduction of 3.74 and 3.94 mg C kg⁻¹ d⁻¹ was observed for the MC and SC treatments, respectively. This result suggests that liming had a negative priming effect on SOC mineralisation despite a decreasing trend of SOC in the liming treatments compared to the control (Table 3).

Many of the mechanisms controlling SOC stability, making it inaccessible to decomposers and hence preventing mineralisation, have been identified in the past. The stabilisation and maintenance of SOC in mineral soil horizons, has predominantly been thought to be driven by specific ecosystem properties including, among others, interactions between SOC and cations or minerals (Rowley et al., 2018). Previous research in Ca-rich field environments has highlighted a positive correlation between exchangeable Ca²⁺ and SOC concentrations (Clough and Skjemstad, 2000; Bertrand et al., 2007). An increase of the soil concentration in exchangeable Ca²⁺ after liming application will lead to a potential increase of SOC stabilisation (Paradelo et al., 2015) and hence lower CO₂ emissions. Moreover, changes in soil pH initially increase SOC solubility via either deprotonation or desorption reactions (Andersson and Nilsson, 2001) and may stabilise SOC via Ca²⁺ bridging, leading to less leaching and C mineralisation (Rowley et al., 2018). The higher DOC concentrations in the liming treatments supported this hypothesis. Despite a majority of articles showing positive liming effects on CO₂ emissions (Kunhikrishnan et al., 2016), Grover et al. (2017) also

observed a decrease in CO_2 emissions after liming and also hypothesised a stabilising effect of Ca^{2+} , emphasising the importance of the initial soil clay concentration.

In addition, previous studies using Rock-Eval® analysis have established that the HI and OI_{RE6} indices correlate well with atomic H/C and O/C ratios, respectively, and that the HI:OI_{RE6} plot can be comparable to a classic van Krevelen diagram (Vandenbroucke and Largeau, 2007). Using the example given in Saenger et al. (2013), such HI and OI_{RE6} values (Figure 6) would correspond preferentially to fulvic acids. These soil organic molecules constitute, with humic acid and humic substances, a complex mixture of many different acids extremely resistant to biodegradation (Collado et al., 2018). It is therefore possible that the chemical composition of our SOC was affected by the addition of the liming product, as shown in Figure 6, and tended towards a more stable form, which would also lead to a reduction in CO₂ emissions.

Temporal variation in CO₂ emissions and linkages with soil temperature

The rate of soil CO₂ emissions was not only dependent on the liming treatments but also showed considerable temporal variation in all three treatments. Soil respiration is known to vary temporally and spatially, often in parallel with abiotic factors such as temperature and water availability (Raich et al., 2002). The temperature was a stronger predictor of soil CO₂ emissions than soil moisture on our 29 dates of flux measurements. Due to the temperature dependence of the biochemical processes and enzyme activities associated with soil respiration, this outcome was expected (Chen et al., 2014; Lochon et al., 2019).

However, the temperature sensitivity of soil respiration is known to be affected by microbial communities (Karhu et al., 2014) and plant biomass via changes in assimilate supply (Bahn et al., 2008). Contrary to expectations, liming did not change the relationship between CO₂ emissions and soil temperature or moisture despite the liming effect on plant biomass

observed in the present study. The present study diverges from prior research conducted on the topic of grazing and grassland restoration practices which indicated that management practices altered the susceptibility of soil CO₂ emissions to abiotic drivers (Xue and Tang, 2018) but are similar to the observations of Lochon et al. (2019).

Global GHG avoidance obtained by liming application

As N_2O emissions are also known to be affected by liming products, we also measured them in the field. Soil N_2O flux averages measured for all the treatments remained low throughout the experiment (< 18 g N ha⁻¹ d⁻¹; Figure 3a) and in this context the application of liming products did not reduce them. On the contrary, significantly higher fluxes for the liming treatments were observed in December 2021 and for the summer peaks (Figure 3a). For these dates, we assume that the N_2O reductase was fully functional as the pH was above 6.8 for the limed treatments (Ouerghi et al., 2023). Different hypotheses can therefore be formulated to explain these results: (i) although N_2O reductase was functional in the limed soil, it was not active due to the aerobiosis conditions in the soil (WFPS < 0.62, Grundmann & Rolston, 1987); (ii) the N_2O emissions were caused not by the denitrification process but by another process enhanced by liming, probably nitrification (Nadeem et al. 2020).

Holtan-Hartwig et al. (2002) showed that the temperature response of N₂O reduction could be fitted to an Arrhenius function in the range 5–20 °C and that a very low temperature (<5°C) may have a particularly severe effect on the N₂O reduction process. At the beginning of December 2021, temperatures in the field were below 5°C and were potentially unfavourable for N₂O reduction. Wu et al. (2022) also found that the mitigation effect of liming on N₂O emissions can mainly be seen when labile C is highly available in soils. However, the C in our soil was considered extremely resistant to biodegradation. Therefore, these abiotic conditions

(C availability and temperature) could reflect a blockage of N₂O reductase functionality despite a favourable pH.

In addition, during the summer period, NO₃ content was low and the WFPS under 60%, known to be the threshold for the diffusion of O₂ in the soil atmosphere and consequently the limit between aerobic and anaerobic processes (Davidson, 1993). These conditions were not suitable for the denitrification process. The hypothesis that the N₂O emitting process was nitrification was then suggested. The liming products could stimulate nitrification-driven N₂O production (Nadeem et al., 2020), which would explain our observations. However, it is noteworthy that despite higher N2O emissions, the GHG balance in our system was reduced in both liming treatments compared to the control. Additional work is now needed to determine whether the findings obtained here for a rye cropping system and the specific initial soil condition can be generalised for different soil types and N land-use intensities as a growing number of studies have suggested that N fertilization and liming may interact (Poozesh et al., 2010; Lochon et al., 2018). The results relating to the GHG balance showed that future studies should also take into consideration not only soil CO₂ and N₂O emissions but also those of CH₄ to more accurately assess the net effect of liming on the global warming balance in the field. Soil pH is one of several factors controlling CH₄ production in soils and increases CH₄ oxidation rates have been observed after increasing soil pH of acid soils (Abushammala et al., 2014).

436

437

438

439

440

441

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

Conclusion

In the current context of climate emergency, we observed during a one-site and oneyear *in situ* experiment, that liming can strongly decrease CO₂ and GHG emissions from soil, with slightly improving grain yield. Probably liming helps SOC stabilisation, through Ca²⁺ effect. More research is still needed to quantify the loss of CO₂ resulting from liming application through isotope labelling and to precise mechanisms involved in soil CO₂ emission mitigation. Our study should also be extended over time and to different soil types and different N land-use intensities. Nevertheless, these results strongly suggest that liming need to be consider as a potential lever for carbon storage and that IPCC principles estimating an increase of CO₂ emissions linked to the C added by lime materials would need to be re-examined in the future.

\boldsymbol{C}	nf	licte	Λf	Interest
٠.		11015	() I	interest

The authors declare no conflicts of interest.

450

451

452

453

454

455

456

457

458

448

449

Acknowledgements

The authors gratefully acknowledge funding for the *NatAdGES* project from the "Investissement d'Avenir" program, ISITE-BFC project (contract ANR-15-IDEX-0003), the European Regional Development Fund (FEDER), the public investment bank (BPI France) and CMI-Roullier. They sincerely thank the steering committee of *NatAdGES* for the useful discussions. The authors also wish to express their gratitude to the farmer that has welcome them, to the staff of the GISMO platform (Biogéosciences, UMR 6282 CNRS Université de Bourgogne) and of the ISTO Institute for the technical assistance.

459

460

References

- Abushammala, M., Basri, N., Irwan, D., Younes, M., 2014. Methane Oxidation in Landfill
- 462 Cover Soils: A Review. Asian Journal of Atmospheric Environment 8.
- doi:10.5572/ajae.2014.8.1.001
- Andersson, S., Nilsson, S.I., 2001. Influence of pH and temperature on microbial activity,
- substrate availability of soil-solution bacteria and leaching of dissolved organic
- carbon in a mor humus. Soil Biology and Biochemistry 33, 1181–1191.
- 467 doi:10.1016/S0038-0717(01)00022-0
- Bahn, M., Rodeghiero, M., Anderson-Dunn, M., Dore, S., Gimeno, C., Drösler, M.,
- Williams, M., Ammann, C., Berninger, F., Flechard, C., Jones, S., Balzarolo, M.,
- Kumar, S., Newesely, C., Priwitzer, T., Raschi, A., Siegwolf, R., Susiluoto, S.,
- Tenhunen, J., Wohlfahrt, G., Cernusca, A., 2008. Soil Respiration in European

172	Grasslands in Relation to Climate and Assimilate Supply. Ecosystems (New York,
173	N.Y.) 11, 1352–67. doi:10.1007/s10021-008-9198-0
174	Baudin, F., Disnar, JR., Aboussou, A., Savignac, F., 2015. Guidelines for Rock-Eval
175	analysis of recent marine sediments. Organic Geochemistry 86, 71–80.
176	doi:10.1016/j.orggeochem.2015.06.009
177	Bertrand, I., Delfosse, O., Mary, B., 2007. Carbon and nitrogen mineralization in acidic,
178	limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and
179	Biochemistry 39, 276–288. doi:10.1016/j.soilbio.2006.07.016
180	Biasi, C., Lind, S.E., Pekkarinen, N.M., Huttunen, J.T., Shurpali, N.J., Hyvönen, N.P., Repo,
181	M.E., Martikainen, P.J., 2008. Direct experimental evidence for the contribution of
482	lime to CO ₂ release from managed peat soil. Soil Biology and Biochemistry 40,
483	2660–2669. doi:10.1016/j.soilbio.2008.07.011
184	Blum, Winfried.E.H., Schad, P., Nortcliff, S., 2017. Essentials of Soil Science. CSIRO
485	Publishing.
186	Chen, S., Zou, J., Hu, Z., Chen, H., Lu, Y., 2014. Global annual soil respiration in relation to
187	climate, soil properties and vegetation characteristics: Summary of available data.
188	Agricultural and Forest Meteorology 198-199, 335-346.
189	doi:10.1016/j.agrformet.2014.08.020
190	Cho, S.R., Jeong, S.T., Kim, G.Y., Lee, J.G., Kim, P.J., Kim, G.W., 2019. Evaluation of the
191	carbon dioxide (CO ₂) emission factor from lime applied in temperate upland soil.
192	Geoderma 337, 742–748. doi:10.1016/j.geoderma.2018.10.007
193	Clough, A., Skjemstad, J.O., 2000. Physical and chemical protection of soil organic carbon in
194	three agricultural soils with different contents of calcium carbonate. Soil Research 38,
195	1005–1016. doi:10.1071/sr99102

496	Collado, S., Oulego, P., Suárez-Iglesias, O., Díaz, M., 2018. Biodegradation of dissolved
497	humic substances by fungi. Applied Microbiology and Biotechnology 102, 3497-
498	3511. doi:10.1007/s00253-018-8851-6
499	Davidson, E.A., 1993. Soil Water Content and the Ratio of Nitrous Oxide to Nitric Oxide
500	Emitted from Soil, in: Oremland, R.S. (Ed.), Biogeochemistry of Global Change:
501	Radiatively Active Trace Gases Selected Papers from the Tenth International
502	Symposium on Environmental Biogeochemistry, San Francisco, August 19-24, 1991
503	Springer US, Boston, MA, pp. 369-386. doi:10.1007/978-1-4615-2812-8_20
504	Dumale Jr., W.A., Miyazaki, T., Hirai, K., Nishimura, T., 2011. SOC Turnover and Lime-
505	CO ₂ Evolution during Liming of an Acid Andisol and Ultisol. Open Journal of Soil
506	Science 01, 49–53. doi:10.4236/ojss.2011.12007
507	Field, A., Miles, J., Field, Z., 2012. Discovering statistics using R, SAGE Publications Ltd.
508	ed. SAGE Publications Ltd.
509	Fornara, D.A., Steinbeiss, S., Mcnamara, N.P., Gleixner, G., Oakley, S., Poulton, P.R.,
510	Macdonald, A.J., Bardgett, R.D., 2011. Increases in soil organic carbon sequestration
511	can reduce the global warming potential of long-term liming to permanent grassland.
512	Global Change Biology 17, 1925–1934. doi:10.1111/j.1365-2486.2010.02328.x
513	Fuentes, J.P., Bezdicek, D.F., Flury, M., Albrecht, S., Smith, J.L., 2006. Microbial activity
514	affected by lime in a long-term no-till soil. Soil and Tillage Research 88, 123-131.
515	doi:10.1016/j.still.2005.05.001
516	Grover, S.P., Butterly, C.R., Wang, X., Gleeson, D.B., Macdonald, L.M., Tang, C., 2021.
517	Liming and priming: the long-term impact of pH amelioration on mineralisation may
518	negate carbon sequestration gains. Soil security 3. doi:10.1016/j.soisec.2021.100007
519 520	Grover, S.P., Butterly, C.R., Wang, X., Tang, C., 2017. The short-term effects of liming on
521	organic carbon mineralisation in two acidic soils as affected by different rates and

522	application depths of lime. Biology and Fertility of Soils 53, 431–443.
523	doi:10.1007/s00374-017-1196-y
524	Grundmann, G.L., Rolston D.E., 1987 A water function approximation to degree of
525	anaerobiosis associated with denitrification. Soil Science 144, 437–441. doi:
526	10.1097/00010694-198712000-00008
527	Guigue, J., Mathieu, O., Lévêque, J., Mounier, S., Laffont, R., Maron, P.A., Navarro, N.,
528	Chateau, C., Amiotte-Suchet, P., Lucas, Y., 2014. A comparison of extraction
529	procedures for water-extractable organic matter in soils. European Journal of Soil
530	Science 65, 520–530. doi:10.1111/ejss.12156
531	Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L., Robertson, G.P., 2007. Evidence for
532	carbon sequestration by agricultural liming. Global Biogeochemical Cycles 21.
533	doi:10.1029/2006GB002738
534	Hao, X., Bal, B.C., Culley, J.L.B., Carter, M.R., Parkin, G.W., 2008. Soil density and porosity
535	Soil Sampling and Methods of Analysis. 743–760
536	Hénault, C., Bourennane, H., Ayzac, A., Ratié, C., Saby, N.P.A., Cohan, JP., Eglin, T., Gall,
537	C.L., 2019. Management of soil pH promotes nitrous oxide reduction and thus
538	mitigates soil emissions of this greenhouse gas. Scientific Reports 9, 20182.
539	doi:10.1038/s41598-019-56694-3
540	Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S.,
541	Pakeman, R.J., Bailey, J.S., Fornara, D.A., Hayes, R.C., 2018. Liming impacts on
542	soils, crops and biodiversity in the UK: A review. Science of The Total Environment
543	610-611, 316-332. doi:10.1016/j.scitotenv.2017.08.020
544	Holland, J.E., White, P.J., Glendining, M.J., Goulding, K.W.T., McGrath, S.P., 2019. Yield
545	responses of arable crops to liming – An evaluation of relationships between yields

546	and soil pH from a long-term liming experiment. European Journal of Agronomy 105,
547	176–188. doi:10.1016/j.eja.2019.02.016
548	Holtan-Hartwig, L., Dörsch, P., Bakken, L.R., 2002. Low temperature control of soil
549	denitrifying communities: kinetics of N2O production and reduction. Soil Biology and
550	Biochemistry 34, 1797–1806. doi:10.1016/S0038-0717(02)00169-4
551	Hsu, J., 1996. Multiple Comparisons: Theory and Methods. Chapman and Hall/CRC, New
552	York. doi:10.1201/b15074
553	Jones, C.M., Graf, D.R., Bru, D., Philippot, L., Hallin, S., 2013. The unaccounted yet
554	abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink.
555	The ISME Journal 7, 417–426. doi:10.1038/ismej.2012.125
556	Karhu, K., Auffret, M.D., Dungait, J.A.J., Hopkins, D.W., Prosser, J.I., Singh, B.K., Subke,
557	JA., Wookey, P.A., Ågren, G.I., Sebastià, MT., Gouriveau, F., Bergkvist, G., Meir,
558	P., Nottingham, A.T., Salinas, N., Hartley, I.P., 2014. Temperature sensitivity of soil
559	respiration rates enhanced by microbial community response. Nature 513, 81-84.
560	doi:10.1038/nature13604
561	Kravchenko, A.N., Toosi, E.R., Guber, A.K., Ostrom, N.E., Yu, J., Azeem, K., Rivers, M.L.,
562	Robertson, G.P., 2017. Hotspots of soil N ₂ O emission enhanced through water
563	absorption by plant residue. Nature Geoscience 10, 496-500. doi:10.1038/ngeo2963
564	Kunhikrishnan, A., Thangarajan, R., Bolan, N.S., Xu, Y., Mandal, S., Gleeson, D.B.,
565	Seshadri, B., Zaman, M., Barton, L., Tang, C., Luo, J., Dalal, R., Ding, W., Kirkham,
566	M.B., Naidu, R., 2016. Functional Relationships of Soil Acidification, Liming, and
567	Greenhouse Gas Flux, in: Advances in Agronomy. Elsevier, pp. 1–71.
568	doi:10.1016/bs.agron.2016.05.001

569	Lochon, I., Carrère, P., Revaillot, S., Bloor, J.M.G., 2018. Interactive effects of liming and
570	nitrogen management on carbon mineralization in grassland soils. Applied Soil
571	Ecology 130, 143–148. doi:10.1016/j.apsoil.2018.06.010
572	Lochon, I., Carrère, P., Yvin, JC., Houdusse-Lemenager, D., Bloor, J.M.G., 2019. Impacts
573	of low-level liming on soil respiration and forage production in a fertilized upland
574	grassland in Central France. Science of The Total Environment 697, 134098.
575	doi:10.1016/j.scitotenv.2019.134098
576	Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N.,
577	Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
578	J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou B., 2021 Climate
579	Change 2021: The Physical Science Basis. Contribution of Working Group I to the
580	Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
581	Cambridge University Press, doi: 10.1017/9781009157896
582	Midway, S., Robertson, M., Flinn, S., Kaller, M., 2020. Comparing multiple comparisons:
583	practical guidance for choosing the best multiple comparisons test. PeerJ 8, e10387.
584	doi:10.7717/peerj.10387
585 586	Nadeem, S., Bakken, L.R., Frostegård, Å., Gaby, J.C., Dörsch, P., 2020. Contingent effects of
587	liming on N ₂ O-emissions driven by autotrophic nitrification. Frontiers in
588	Environmental Science 8. doi:10.3389/fenvs.2020.598513
589	Oades, J.M., 1984. Soil organic matter and structural stability: mechanisms and implications
590	for management. Plant and Soil 76, 319-337. doi:10.1007/BF02205590
591	Ouerghi, I., Rousset, C., Bizouard, F., Brefort, H., Ubertosi, M., Arkoun, M., Hénault, C.,
592	2023. Hysteretic response of N ₂ O reductase activity to soil pH variations after
593	application of lime to an acidic agricultural soil. Biol Fertil Soils 59, 473–479.
594	doi.org/10.1007/s00374-023-01717-5

595	Paradelo, R., Virto, I., Chenu, C., 2015. Net effect of liming on soil organic carbon stocks: A
596	review. Agriculture, Ecosystems & Environment 202, 98–107.
597	doi:10.1016/j.agee.2015.01.005
598	R Core Team 2018. R: A language and environment for statistical computing. R Foundation
599	for Statistical Computing, Vienna, Austria.URL: https://www.R-project.org/
600	Raich, J.W., Potter, C.S., Bhagawati, D., 2002. Interannual variability in global soil
601	respiration, 1980–94. Global Change Biology 8, 800–812. doi:10.1046/j.1365-
602	2486.2002.00511.x
603	Remy, J.C., Marin-Laflèche, A., 1974 L'analyse de terre : réalisation d'un programme
604	d'interprétation automatique. Annales Agronomiques 25, 607-632.
605	Ritchie, H., Roser, M., Rosado, P., 2020. "CO2 and Greenhouse Gas Emissions". Published
606	online at OurWorldInData.org. URL: 'https://ourworldindata.org/co2-and-greenhouse-
607	gas-emissions'
608	Rowley, M.C., Grand, S., Verrecchia, É.P., 2018. Calcium-mediated stabilisation of soil
609	organic carbon. Biogeochemistry 137, 27-49. doi:10.1007/s10533-017-0410-1
610	Saenger, A., Cécillon, L., Sebag, D., Brun, JJ., 2013. Soil organic carbon quantity,
611	chemistry and thermal stability in a mountainous landscape: A Rock-Eval pyrolysis
612	survey. Organic Geochemistry 54, 101-114. doi:10.1016/j.orggeochem.2012.10.008
613	Shaaban, M., Peng, Q., Hu, R., Wu, Y., Lin, S., Zhao, J., 2015. Dolomite application to acidic
614	soils: a promising option for mitigating N ₂ O emissions. Environmental Science and
615	Pollution Research 22, 19961–19970. doi:10.1007/s11356-015-5238-4
616	Vandenbroucke, M., Largeau, C., 2007. Kerogen origin, evolution and structure. Organic
617	Geochemistry 38, 719–833. doi:10.1016/j.orggeochem.2007.01.001
618	Wang, Y., Yao, Z., Zhan, Y., Zheng, X., Zhou, M., Yan, G., Wang, L., Werner, C.,
619	Butterbach-Bahl, K., 2021. Potential benefits of liming to acid soils on climate change

620	mitigation and food security. Global Change Biology 27, 2807–2821.
621	doi:10.1111/gcb.15607
622	West, T.O., McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide
623	emissions in the United States: dissolution, transport, and net emissions. Agriculture,
624	Ecosystems & Environment 108, 145-154. doi:10.1016/j.agee.2005.01.002
625	Wu, L., Xiao, Q., Wang, J., Huang, Y., Wu, D., Liu, J., Wang, B., Zhang, H., Xu, M., Zhang,
626	$W.$, 2022. Liming decreases the emission and temperature sensitivity of $N_2\mathrm{O}$
627	following labile carbon addition. Geoderma 425, 116032.
628	doi:10.1016/j.geoderma.2022.116032
629	Wuddivira, M.N., Camps-Roach, G., 2007. Effects of organic matter and calcium on soil
630	structural stability. European Journal of Soil Science 58, 722-727.
631	doi:10.1111/j.1365-2389.2006.00861.x
632	Xue, H., Tang, H., 2018. Responses of soil respiration to soil management changes in an
633	agropastoral ecotone in Inner Mongolia, China. Ecology and Evolution 8, 220-230.
634	doi:10.1002/ece3.3659
635	Zheng, X., Mei, B., Wang, Yinghong, Xie, B., Wang, Yuesi, Dong, H., Xu, H., Chen, G.,
636	Cai, Z., Yue, J., Gu, J., Su, F., Zou, J., Zhu, J., 2008. Quantification of N ₂ O fluxes
637	from soil-plant systems may be biased by the applied gas chromatograph
638	methodology. Plant and Soil 311, 211-234. doi:10.1007/s11104-008-9673-6

References

List of figures and tables:

FIGURE 1: Schematic representation of the experimental site.

FIGURE 2: Experimental climatic conditions (average daily temperature and daily precipitation) from the 17^{th} of November 2021 until 22^{th} July 2022 (graphic a). Soil dynamics: b) water filled pore space (WFPS), c) pH, d) ammonium-N (NH₄+-N) and e) nitrate-N (NO₃-N) of the three treatments (control, MC and SC) in the rye field from 28^{th} October 2021 to 22^{th} July 2022. Liming products were applied on 19^{th} October 2021, as shown by the horizontal dashed line. Mineral N was applied on 24^{th} March 2022, represented by the arrow. Error bars = s.e.m. n=3.

FIGURE 3: Dynamics of: a) N_2O emissions, b) CO_2 emissions c) Total $(CO_2 + N_2O)$ emissions expressed in CO_2 equivalent and their equivalents in kg C ha⁻¹ d⁻¹ and g N ha⁻¹ d⁻¹, of the three treatments (control, MC and SC) in the rye field from 28^{th} October 2021 to 22^{th} July 2022. Liming products were applied on 19^{th} October 2021, as shown by the horizontal dashed line. N mineral was applied on 24^{th} March 2022 represented by the arrow. Error bars = s.e.m. n=9.

FIGURE 4: Relationship between air temperature and a) CO_2 emissions, b) N_2O emissions for the three treatments (control, MC and SC).

FIGURE 5: Relationship between WFPS and a) CO_2 emissions, b) N_2O emissions for the three treatments (control, MC and SC).

FIGURE 6: Position of the average soil samples in the pseudo-van Krevelen diagram (HI vs. OI_{RE6}) according to the 3 treatments, , with the hydrogenation index (HI) and the Oxygen Index (OI_{RE6}).

Table 1: Average of the soil base saturation percentage (Ca2+, K+ Mg2+ and H+) computed
for each treatment. Different characters in the same line indicate significance at the 0.05 level
based on one-way ANOVA. MC and SC are liming treatments.

Treatment	Ca ²⁺		K^+		Mg^{2+}		H ⁺	
	%		%		%		%	
Control	41.0	b	4.5	a	4.1	a	50.0	a
MC	78.7	a	3.6	a	4.1	a	13.0	b
SC	68.8	a	4.0	a	3.6	a	23.2	b

TABLE 2: Total Rye Yield, kernel yield, thousand-kernel-weight (TKW), specific weight (SW), area-scaled N_2O emission being the cumulative N_2O emission over the experimental period and the yield-scaled emissions (N_2O ; CO_2 ; $N_2O + CO_2$) of the 3 treatments.

	Treatments		
	Control	MC	SC
Yield (g m ⁻²)	$818.1 \pm 74.3a$	$974.2 \pm 24.9a$	$944.3 \pm 105.1a$
Kernel Yield (g m ⁻²)	$320.1 \pm 32.5b$	$416.8 \pm 5.4a$	$406.1 \pm 56.1 ab$
TKW (g)	$26.8 \pm 0.8a$	$23.7 \pm 0.5a$	$25.9 \pm 2.4a$
SW (kg hl ⁻¹)	$69.8 \pm 0.2a$	$70.7 \pm 0.4a$	$71.1 \pm 0.4a$
Area-scaled N ₂ O emission (kg N ha ⁻¹)	$0.74 \pm 0.1b$	$0.9 \pm 0.1a$	$0.9 \pm 0.1a$
Yield-scaled N ₂ O emission (kg N Mg ⁻¹)	$8.9e10^{-2} \pm 0.01a$	$9.4e10^{-2} \pm 0.01a$	$9.3e10^{-2} \pm 0.01a$
Yield-scaled CO ₂ emission (kg C Mg ⁻¹)	$607.3 \pm 55.8a$	$297.1 \pm 6.6b$	$299.4 \pm 11.1b$
Yield-scaled GHG emission (kg CO ₂ eq Mg ⁻¹)	$2261.5 \pm 203.5a$	$1129.9 \pm 24.94b$	$1129.6 \pm 45.2b$

^{*}Different characters in the same line indicate significance at the 0.05 level based on one-way ANOVA or t-test (Kernel Yield) The numbers after \pm symbol are standard errors of the means (n = 3 or 9). MC and SC are liming treatments (2938,74 VN ha⁻¹).

687

each treatment. All abbreviations are defined in the text.

				Treatment	
Indices	Analisis Type	Units	Control	MC	SC
TOC_{RE}	Rock-Eval®	g/kg	$20.2 \pm 1.5a$	$18.9 \pm 1.8a$	$19.3 \pm 2.4a$
$\mathrm{TOC}_{\mathrm{EA}}$	Dry combustion	g/kg	$26.7 \pm 4.0a$	$24.4 \pm 1.9a$	$24.4 \pm 2.4a$
SOM	Dry combustion	g/kg	$46.2\pm7.0a$	$42.2 \pm 3.4a$	$42.3 \pm 4.3a$
HI	Rock-Eval®	$\rm mg~HC/g~TOC_{RE}$	$184.0 \pm 18.3 b$	$206.2 \pm 9.0a$	$198.4 \pm 19.8ab$
OI_{RE6}	Rock-Eval®	$mg O_2/g TOC_{RE}$	$170.9 \pm 9.1a$	$179.3 \pm 4.8a$	$173.5 \pm 11.7a$
DOC	oxydation	μg C/g dry soil	$35.6\pm11.5b$	$60 \pm 18.8a$	$53.6 \pm 13.5a$
DIC	oxydation	μg C/g dry soil	$0.5\pm1.6b$	$20.23 \pm 14.7a$	$24.52 \pm 16.4a$

^{*}Different characters in the same line indicate significance at the 0.05 level based on one-way ANOVA. The numbers after \pm symbol are standard errors of the means (n = 9). MC and SC are liming treatments (2938,74 VN ha⁻¹).

Treatment	Abbreviation	NV	Particle size (µm)	Marketed by	Quantity/subplot (kg)	Application date
Marine calcium			• •	Timac Agro		
carbonate	MC	52	38	(Calcimer ®)	52.9	19 Oct 2021
Synthetic calcium	SC	40	50	Roth	49.7	19 Oct 2021
carbonate						

694	
-----	--

691

692

	DFn	DFd	F		DFn	DFd	F		DFn	DFd	F
N₂O (log)				CO ₂ (log)				CO ₂ + N ₂ O (log)			
Block	2	18	2.88	Block	2	18	7.26**	Block	2	18	2.87
Treatment	2	18	22.30***	Treatment	2	18	275.40***	Treatment	2	18	218.66***
Time	27	486	153.39***	Time	27	486	516.77***	Time	27	486	316.20***
Treatment x Time	54	486	3.03***	Treatment x Time	54	486	5.17***	Treatment x Time	54	486	4.03***
WFPS				рН				NH ₄ ⁺ - N (log)			
Block	2	504	120.51***	Block	2	504	17.79***	Block	2	504	2.79
Treatment	2	504	155.20***	Treatment	2	504	1359.09***	Treatment	2	504	2.43
Time	27	504	424.35***	Time	27	504	11.79***	Time	27	504	27.95***
Treatment x Time	54	504	4.398***	Treatment x Time	54	504	5.14***	Treatment x Time	54	504	3.72***
NO ₃ - N (log)											
Block	2	504	1.61								
Treatment	2	504	3.47*								
Time	27	504	270.99***								
Treatment x Time	54	504	4.870***								

^{***:} $p \le 0.001$; **: $p \le 0.01$; *: $p \le 0.5$