November 12, 2018

Exercise 7

1. Suppose m horses run in a race, where horse i wins with probability p(i), i = 1, ..., m. For every dollar you bet on horse i you get o(i) dollars if that horse wins. You divide your total wealth in the horse race according to b(i), i = 1, ..., m, where b(i) represents the proportion of the money you bet on horse i. Hence $\sum_{i=1}^{m} b(i) = 1$.

For example, if horse 1 wins, your wealth is multiplied by b(1)o(1). Note that the money you bet on any other horse will be lost.

We assume that the horses run in n races, and that outcome of race j, denoted by $X_j \in \{1, \ldots, m\}$, is iid according to $\mathbf{p} = (p(1), \ldots, p(m))$. You use the same betting strategy $\mathbf{b} = (b(1), \ldots, b(m))$ at each race to reinvest your wealth and the return $\mathbf{o} = (o(1), \ldots, o(m))$ remains the same for each race. Then your wealth (relative to your initial investment) after n races is

$$S_n = \prod_{j=1}^n b(X_j)o(X_j).$$

(a) Show that

$$\lim_{n \to \infty} \frac{1}{n} \log(S_n) = W(\mathbf{b}),$$

where

$$W(\mathbf{b}) = \sum_{i=1}^{m} p(i)log(b(i)o(i)),$$

the convergence is in probability and log is base 2. The term $W(\mathbf{b})$ is called the doubling rate. Clearly explain your steps.

Note that the above result suggests that for large n,

$$S_n \approx 2^{nW(\mathbf{b})}.$$
 (1)

- (b) Suppose p(1) > 0, and you set b(1) = 0, while b(i) > 0 for $i = 2, 3, \ldots, m$.
 - i. Let N be the first race after which you lose all your money. Of course for all $j \geq N, S_j = 0$. Find the probability distribution of N assuming you bet indefinitely $(n \to \infty)$.

- ii. Find $P(S_n = 0)$. What happens as $n \to \infty$?
- iii. Compute $W(\mathbf{b})$. Is your answer from part 1(b)ii consistent with equation (1)? Comment.
- (c) For a race with two horses where p(1) = p, find the best betting strategy $\mathbf{b} = (b(1), b(2))$ that maximizes your doubling rate $W(\mathbf{b})$. Show your work.
- 2. Suppose that you send 7-letter tweets. You randomly and independently type one of 26 lowercase letters according to a uniform distribution.
 - (a) What is the probability that you type "covfefe"?
 - (b) Now you send multiple iid 7-letter tweets, each according to the distribution above. Let $Y_i = 1$ if your *i*'th tweet is "covfefe," $Y_i = 0$ otherwise. Find

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} Y_i}{n},$$

where the limit is in probability.

- (c) Using your answer to part (b), find an approximate value for n such that after n tweets you expect to see about one "covfefe" tweet.
- 3. Consider an *n*-dimensional box with random variable X_i representing length of side *i*. We assume X_i are i.i.d, i = 1, ..., n. The volume of the box is

$$V_n = \prod_{i=1}^n X_i.$$

We are interested in

$$L_n = V_n^{1/n}$$

for large n. Note that L_n is the side length of an n-dimensional cube with same volume V_n .

(a) Find A such that

$$\lim_{n \to \infty} \log_2(L_n) = A$$

where the convergence is in probability. Explain your answer.

Hint: Thinking about weak law of large numbers may be useful.

(b) Find an expression for $[E(V_n)]^{1/n}$ and find B where

$$\lim_{n \to \infty} [E(V_n)]^{1/n} = B.$$

(c) Suppose that the X_i 's are Bernoulli(p) with

$$P(X = x) = \begin{cases} (1 - p), & x = 1\\ p, & x = 2 \end{cases}$$

- i. Evaluate A from part (a).
- ii. Evaluate B from part (b).
- iii. Compare 2^A and B. Do you expect them to be equal? Explain.
- 4. Consider a sequence of random variables X_1, X_2, \ldots We say that the sequence X_n converges to the random variable X in the r'th mean if

$$\lim_{n \to \infty} E(|X_n - X|^r) = 0.$$

For r = 1, this is also called *convergence in mean*.

For r = 2, this is also called *convergence in mean square*.

(a) Prove that if a sequence of random variables X_n converges to X in mean square, then X_n converges to X in mean.

Hint: Consider $Y_n = |X_n - X|$. Think about the variance of Y_n , and what it tells you about the relationship between the first and second moments of Y_n .

(b) Suppose X_n has the following probability distribution:

$$X_n = \begin{cases} \sqrt{n}, & \text{with probability } 1/n \\ 0, & \text{with probability } (1 - 1/n) \end{cases}$$

- i. Prove that X_n converges in mean to X=0.
- ii. Does X_n converge in mean square to X=0? Explain your answer.
- (c) Does convergence in mean imply convergence in mean square? Explain.
- 5. Consider two sequences of random variables X_n and Y_n , n = 1, 2, ... and a random variable X. We are given that

$$P(|X_n - X| \le Y_n) = 1,$$

for all n. Also $E(Y_n) \to 0$ as $n \to \infty$.

- (a) Find $\lim_{n\to\infty} E(|X_n-X|)$. Explain your steps.
- (b) Prove that $X_n \to X$ in probability as $n \to \infty$.

6. In this problem, we develop a weak law of large numbers for a correlated sequence $X_1, X_2, ...$ of random variables. In particular, each X_i has expected value $E[X_i] = u$, and the random sequence has covariance function

$$C_X[m, k] = Cov[X_m, X_{m+k}] = \sigma^2 a^{|k|}$$

where a is a constant such that |a| < 1. For this correlated random sequence, we can define the sample mean of n samples as

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

(a) Show that for general X_1, X_2, \dots, X_n , the variance of $W_n = X_1 + \dots + X_n$ is

$$Var[W_n] = \sum_{i=1}^{n} Var[X_i] + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Cov[X_i, X_j].$$

(b) Use part (a) to show that

$$Var[X_1 + ... + X_n] \le n\sigma^2(\frac{1+a}{1-a}).$$

(c) Use the Chebyshev inequality to show that for any c > 0,

$$P[|M_n - u| \ge c] \le \frac{\sigma^2(a+1)}{n(1-a)c^2}.$$

(d) Use part (b) to show that for any c > 0,

$$\lim_{n \to \infty} P[|M_n - u| \ge c] = 0.$$