CS528 Task Scheduling

A Sahu

Dept of CSE, IIT Guwahati

Outline

- $P_m | p_i$, pmtn | C_{max} : Linear time solution
- Q_m | p_i pmtn | C_{max} : Poly time solution
- Q_m | ptmn | ΣC_i Optimal Solution
- $P_m | p_j | C_{max}$
 - ILP Solution: Exponential
 - 2 Approx, 2-1/m approx.
 - LPT : 3/2 and 4/3 Approx
- $P_m|p_i=1|\Sigma w_iU_i$ Optimal Solution
- $P_m|p_i|\Sigma U_i$ NPC, Heuristic and Counter example
- $P_m | pmtn, p_i | \Sigma U_i$ in NPC
- P_m | prec, $p_j = 1$ | C_{max} in NPC
 - 2 Approx

Detail of Minimum Makespan Scheduling

Pm | p_j | Cmax

Pm | p_j | Cmax Minimum makespan scheduling

- $P_m|p_j|C_{max}$ in NPC
- Given processing times for n jobs, p₁, p₂,..., p_n, and an integer m
- Find an assignment of the jobs to m identical machines
- So that the completion time, also called the makespan, is minimized.

0-1 Linear Programming Solution to Scheduling Problem

$$x_{ij} = \{0, 1\}$$

whether job j is scheduled in machine i

min T

$$\sum_{i=1}^m x_{ij} = 1$$
 for each job j

Each job is scheduled in one machine.

$$\sum_{i=1}^n x_{ij} \cdot p_{ij} \leq T$$
 for each machine i

Each machine can finish its jobs by time T

$$0 \leq x_{ij}$$

for each job j, machine i

Minimum makespan scheduling: Arbitrary List

- List Scheduling : Approximation
- Algorithm
 - 1. Order the jobs arbitrarily.
 - 2. Schedule jobs on machines in this order, scheduling the next job on the machine that has been assigned the least amount of work so far.
- Above algorithm achieves an approximation guarantee of 2

Minimum Makespan scheduling: Arbitrary List

- List Scheduling : Approximation
- Algorithm
 - 1. Order the jobs arbitrarily.
 - 2. Schedule jobs on machines in this order, scheduling the next job on the machine that has been assigned the least amount of work so far.
- Above algorithm achieves an approximation guarantee of 2

A Sahu

LS is 2 APPRX

LS is 2 APPRX

Algorithm: List scheduling

Basic idea: In a list of jobs,

schedule the next one as soon as a machine is free

machine 1 machine 2 machine 3 machine 4

Good or bad?

List Scheduling is "2-approximation" (Graham, 1966)

Algorithm: List scheduling

Basic idea: In a list of jobs,

schedule the next one as soon as a machine is free

compare to time OPT of best schedule: how?

List Scheduling is "2-approximation"

machine 1

machine 2

machine 3

machine 4

job f finishes last, at time A

compare to time OPT of best schedule: how?

(1) job f must be scheduled in the best schedule at some time:

$$f \le OPT$$
. \rightarrow A - S <= OPT.

- (2) up to time S, all machines were busy all the time, and OPT cannot beat that, and job f was not yet included: S < OPT.
- (3) both together: A = A S + S = (A-S) + S < 2*OPT.

"2-approximation" (Graham, 1966)

LS is (2-1/m) APPRX

LS achieves a perf. ratio 2-1/m.

So all machines are busy from time 0 through $A-t_k$ Consequently,

Let
$$T = \sum_{i} t_{i}$$
, $i=1,2...,n$

$$T-t_k \ge m(A-t_k) \rightarrow T-t_k \ge mA-mt_k$$

$$\leq T^* + (1-1/m) T^*$$

$$A \leq (2-1/m) T^*$$

A Sahu

$$M_1$$
 $A - t_k$
 M_i
 M_m

As
$$m. T^* \ge T.$$
 So, $T^* \ge T/m.$
Also $T^* \ge t_k$ for every $k.$

Example: Worst Case

makespan: m+1

LPT Rule: List with LPT

- List scheduling can do badly if long jobs at the end of the list spoil an even division of processing times.
- We now assume that the jobs are all given ahead of time, i.e. the LPT rule works only in the offline situation. Consider the "Largest Processing Time first" or LPT rule that works as follows.

LPT Rule: List with LPT

LPT Algorithm

- 1 sort the jobs in order of decreasing processing times: $t_1 \ge t_2 \ge ... \ge t_n$
- 2 execute list scheduling on the sorted list
- 3 return the schedule so obtained.
 - The LPT rule achieves 3/2-Approx Sec 11.1 of Eva Tardos Algo Book, Appx Algo Chapter
- The LPT rule achieves a performance ratio
 4/3-1/(3m). Prove out of Syllabus

LPT 3/2-Approx: Jobs are sorted

- Job Time: $t_1 \ge t_2 \ge t_3 \ge ... \ge t_j$
- Suppose j (=m+1) jobs (j>m), in LPT T*≥ 2.t_{m+1}
- Examples: m = 5, j = 610, 9, 8, 7, 5, 4,... $t_{m+1} = 4$ $T^* \ge 2^* 4 = 8$

LPT 3/2-Approx: Jobs are sorted

- Job Time: $t_1 \ge t_2 \ge t_3 \ge ... \ge t_j$
- Suppose j (=m+1) jobs (j>m), in LPT T*≥ 2.t_{m+1}
- Suppose a machine M_i have at least two jobs and t_i be last job (j ≥ m+1) assigned to M_i

$$t_j \le t_{m+1} \le T^*/2$$

- Also we have $t_j \le T^*$ and $T_i t_j \le T^*$, where T_i is sum of ET of task assigned to M_i
- $T_i t_j \le T^* \rightarrow T_i \le T^* + t_j \rightarrow T_i \le T^* + T^* / 2$ $T_i \le (3/2) T^*$

Scheduling of Independent Tasks with Deadline

$P|p_j=1|\Sigma w_jU_j$

- Sorting task based on d_i and $d_1 \le d_2 \le ... \le d_n$
- Approach 1: Simply scheduling and rejecting the unfit task will not minimize w_i
 - Will not work: you need to take care of weight
- Approach 2: Sorting task based on w_i/d_i
 - Gives priority of task with higher weight but
 - Simply may reject a task based on deadline
 - Will not work : for optimality

$P|p_j=1|\Sigma w_jU_j$

- Sort all the jobs with $d_1 \le d_2 \le ... \le d_n$
- Set S=Ф
- For i=1 to n do
 - If (i_{th} task is late when scheduled in the earliest time slot on a machine)
 - Find a task i* with w_i * = min weight of tasks in the already scheduled tasks of the set S
 - If (w_i* < w_i) replace i* with i_{th} task in the schedule and in S.
 - —else add i_{th} task to S and schedule the task in the earliest time slot

$P||\Sigma U_{j}$

- NPC: Sorting based on deadlines is excellent heuristics for most of the case, Experimentally
- But not optimal
- Counter example: $J(p_j, d_j)$: J1(1,1), J2(1,2) and J3(3,3.5) on two processor
- EDF (J3 misses) but the Optimal

P|ptmn|ΣU_j

• In NPC