PC 6 – Convergence & Loi des grands nombres

1 Différentes notions de convergence

Exercice 1 (CONVERGENCE D'UNE SUITE DE V.A. DE BERNOULLI). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de loi Bernoulli, $X_n \sim \mathcal{B}(p_n)$ avec $p_n \to 0$.

- 1. Montrer que $X_n \stackrel{\mathbb{P}}{\to} 0$ et $X_n \stackrel{\text{L}^1}{\to} 0$.
- 2. On suppose que $\sum_{n} p_n < \infty$. Montrer que $X_n \stackrel{\text{p.s.}}{\to} 0$.
- 3. On suppose que $X_n \stackrel{\text{p.s.}}{\to} 0$. Montrer qu'on n'a pas nécessairement $\sum_n p_n < \infty$. On pourra considérer des variables aléatoires de la forme $X_n = f_n(U)$ avec U uniforme.
- 4. On suppose maintenant que $\sum_n p_n = \infty$ et que les variables $(X_n)_{n\geq 1}$ sont indépendantes. Montrer que p.s. $X_n \not\to 0$ (autrement dit, que $\mathbb{P}(X_n \not\to 0) = 1$).

Exercice 2 (CONVERGENCE D'UNE SUITE DE V.A. EXPONENTIELLES). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de loi exponentielle, $X_n \sim \mathcal{E}(n)$. Montrer que $X_n \stackrel{\text{p.s.}}{\to} 0$. On pourra étudier $\mathbb{P}(X_n > t_n)$ pour une suite t_n tendant vers 0 bien choisie.

Exercice 3 (AUTOUR DES CONVERGENCES \mathbb{P} ET P.S.). Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, et Z et Z' deux variables aléatoires réelles.

1. On suppose que :

$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z$$
 et $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z'$.

Montrer que $Z \stackrel{\text{p.s.}}{=} Z'$. Autrement dit, la limite en probabilité est unique presque surement. On pourra commencer par montrer que $\mathbb{P}(|Z-Z'|>\varepsilon)=0$ pour tout $\varepsilon>0$.

2. On suppose que $Z \stackrel{\text{p.s.}}{=} Z'$. Montrer que

$$X_n \xrightarrow[n \to +\infty]{p.s.} Z \iff X_n \xrightarrow[n \to +\infty]{p.s.} Z'.$$

3. On suppose que $(X_n)_{n\geq 1}$ est une suite croissante. Montrer que :

$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z \implies X_n \xrightarrow[n \to +\infty]{p.s.} Z.$$

On pourra montrer que $(X_n)_n$ est bornée presque surement.

4. On suppose que la suite $(X_n)_{n\geq 1}$ est une suite i.i.d. et on pose

$$m := \sup\{x \in \mathbb{R} \mid F_X(x) < 1\},\$$

avec F_X la fonction de répartition de X_1 . On suppose que $m < +\infty$. On pose pour tout $n \ge 1$,

$$M_n := \max_{1 \le i \le n} X_i.$$

Montrer que

$$M_n \xrightarrow[n \to +\infty]{p.s.} m.$$

Exercice 4 (Modes de Convergence).

- 1. Montrer qu'une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires converge presque sûrement vers une variable aléatoire X si et seulement si $M_n = \sup_{k>n} |X_k X|$ converge vers 0 en probabilité.
- 2. Montrer qu'une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires converge en probabilité vers 0 si et seulement si $\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]\to 0$ lorsque $n\to +\infty$. On pourra commencer par écrire

$$\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] = \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\mathbf{1}_{|X_n|\leq \varepsilon}\right] + \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\mathbf{1}_{|X_n|> \varepsilon}\right].$$

Exercice 5. (LEMME DE SCHEFFÉ) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives, intégrables, convergeant presque sûrement vers une variable aléatoire X intégrable et telle que $\mathbb{E}[X_n] \to \mathbb{E}[X]$. Montrer que $X_n \stackrel{\mathrm{L}^1}{\to} X$.

2 Loi des grands nombres

Exercice 6. Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue bornée et $\lambda > 0$. Déterminer

$$\lim_{n \to \infty} \int_{[0,1]^n} g\left(\frac{x_1 + \dots + x_n}{n}\right) dx_1 \dots dx_n \quad \text{et} \quad \lim_{n \to \infty} \sum_{k=0}^{+\infty} e^{-\lambda n} \frac{(\lambda n)^k}{k!} g\left(\frac{k}{n}\right).$$

On pourra considérer des variables aléatoires $(X_i)_{i\geq 1}$ i.i.d. et de loi bien choisie, et étudier la convergence de g appliquée à la moyenne empirique.

Exercice 7 (BIAIS PAR LA TAILLE). On considère une population comportant un grand nombre n de foyers. On modélise la taille de ces foyers par une suite de v.a. i.i.d. X_1, \ldots, X_n à valeurs dans \mathbb{N}^* , intégrables et de moyenne m. On note $p_k = \mathbb{P}(X_1 = k)$ pour tout $k \in \mathbb{N}^*$. Soit T la taille du foyer d'un individu pris au hasard dans la population. Montrer que $\mathbb{P}(T = k) \xrightarrow[n \to \infty]{k} p_k$, pour tout $k \in \mathbb{N}^*$. On pourra commencer par étudier $\mathbb{P}(T = k|X_1, \ldots, X_n)$ puis utiliser des propriétés de l'espérance conditionnelle vues en cours (on admettra que ces propriétés se généralisent au cas où on conditionne par plus d'une variable).

Exercice 8 (PRODUIT DE VARIABLES ALÉATOIRES). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi à valeurs dans $\{a,b\}$ avec 0 < a < 1 < b et telles que $\mathbb{E}[X_1] = 1$. On pose $Y_n = \prod_{i=1}^n X_i, n \geq 1$. Montrer que $Y_n \stackrel{\text{p.s.}}{\to} 0$. La convergence a-t-elle lieu en moyenne ? La variable $Y = \sup_{n\geq 1} Y_n$ est-elle intégrable ?

Exercice 9 (MARCHE ALÉATOIRE SIMPLE SUR \mathbb{R}). On considère une particule se déplaçant sur l'axe réel, et on note X_n sa position à l'instant $n \in \mathbb{N}$. On suppose que X_0 est une v.a. réelle et que la position de la particule évolue de la manière suivante :

$$X_{n+1} = X_n + \varepsilon_{n+1} \quad \forall n \in \mathbb{N},$$

où $(\varepsilon_n)_{n\geq 1}$ est une suite de v.a.r. i.i.d., intégrables et de moyenne $m\neq 0$. Montrer que $\lim_{n\to\infty}|X_n|=+\infty$ presque sûrement.