全国青少年信息学奥林匹克联赛 CQBZ

时间: 2024 **年** 11 **月** 5 **日** 08:00 ~ 12:00

题目名称	序列	道路	长者	牛仔
题目类型	传统型	传统型	传统型	传统型
目录	sequence	road	young	nz
可执行文件名	sequence	road	young	nz
输入文件名	sequence.in	road.in	young.in	nz.in
输出文件名	sequence.out	road.out	young.out	nz.in
每个测试点时限	3.0 秒	1.0 秒	1.0 秒	2.0 秒
内存限制	512 MB	512 MB	128 MB	512 MB
测试点数目	25	20	10	5
测试点是否等分	是	是	是	否

提交源程序文件名

编译选项

对于 C++ 语言	-lm -02 -std=c++14
-----------	--------------------

注意事项与提醒(请选手务必仔细阅读)

- 1. 选手请直接提交源程序至 becoder.com.cn 上的对应比赛。
- 2. 输入输出文件名必须使用英文小写。
- 3. 选手提交的源程序必须存放在**已建立**好的,且**带有样例文件和下发文件**的文件 夹中,文件夹名称与对应试题英文名一致。
 - 4. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
 - 5. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
 - 6. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
 - 7. 程序可使用的栈空间大小与该题内存空间限制一致。
- 8. 在终端中执行命令 ulimit -s unlimited 可将当前终端下的栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
 - 9. 每道题目所提交的代码文件大小限制为 100KB。
- 10. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。

- 11. 输入文件中可能存在行末空格,请选手使用更完善的读入方式 (例如 scanf 函数)避免出错。
- 12. 直接复制 PDF 题面中的多行样例,数据将带有行号,建议选手直接使用对应目录下的样例文件进行测试。
 - 13. 使用 std::deque 等 STL 容器时,请注意其内存空间消耗。
- 14. 请务必使用题面中规定的的编译参数,保证你的程序在本机能够通过编译。此外**不允许在程序中手动开启其他编译选项**,一经发现,本题成绩以 0 分处理。
 - 15. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。

序列 (sequence)

【题目描述】

你有一个长度为 n 的序列 A。

你喜欢 MEX, 定义 MEX(S) 为最小的没有在 S 集合中出现的且大于 0 的自然数。 定义区间 [l,r] 的美丽度为 $f(l,r) = MEX(A_l, gcd(A_l, A_{l+1}), ..., gcd(A_l, A_{l+1}, ..., A_r))$ 。 你想要知道序列 A 中 $\frac{n \times (n+1)}{2}$ 个子区间的美丽度之和。

【输入格式】

从文件 sequence.in 中读入数据。

第一行一个整数 n,表示序列的长度。

第二行包含 n 个整数, 第 i 个整数表示 A_i 。

【输出格式】

输出到文件 sequence.out 中。

一行一个整数,表示答案。

【样例1输入】

1 5

2 3 2 1 2 3

【样例1输出】

1 30

见选手目录下的 *sequence/sequence1.in* 与 *sequence/sequence1.ans*。

【样例1解释】

下面仅举几个区间解释其 f 值的计算。

对于区间 [1,2], f(1,2) = MEX(3,gcd(3,2)) = MEX(3,1) = 2。

对于区间 [3,3], f(3,3) = MEX(1) = 2。

对于区间 [4,4], f(4,4) = MEX(2) = 1。

【样例 2】

见选手目录下的 sequence/sequence2.in 与 sequence/sequence2.ans。该样例约束与测试点 $1 \sim 3$ 一致。

【样例 3】

见选手目录下的 sequence/sequence3.in 与 sequence/sequence3.ans。 该样例约束与测试点 $4 \sim 7$ 一致。

【样例 4】

见选手目录下的 sequence/sequence4.in 与 sequence/sequence4.ans。 该样例约束与测试点 $8 \sim 11$ 一致。

【样例 5】

见选手目录下的 sequence/sequence5.in 与 sequence/sequence5.ans。 该样例约束与测试点 $12 \sim 14$ 一致。

【样例 6】

见选手目录下的 sequence/sequence6.in 与 sequence/sequence6.ans。 该样例约束与测试点 $18 \sim 20$ 一致。

【样例 7】

见选手目录下的 sequence/sequence7.in 与 sequence/sequence7.ans。 该样例约束与测试点 $21 \sim 25$ 一致。

【数据范围】

对于 1000% 的数据, $1 \le n \le 5 \times 10^6, 1 \le A_i \le 5 \times 10^6, 1 \le l \le r \le n$ 。

测试点编号	$n \leq$	$\max A_i \leq$	特殊性质
$1 \sim 3$	2000	5×10^{6}	无
$4 \sim 7$	10^{5}	5×10^{6}	无
8 ~ 11	5×10^5	200	无
$12 \sim 14$	5×10^{6}	5×10^{6}	A
$15 \sim 17$	10^{6}	5×10^{6}	В
$18 \sim 20$	5×10^6	5×10^{6}	С
$21 \sim 25$	5×10^6	5×10^{6}	无

特殊性质 A: 保证 $\forall 1 \leq i \leq n, A_i \in \{1, 2, 3\}$ 。

特殊性质 B: 保证 A_i 在区间 $[1,5 \times 10^6]$ 内均匀随机生成。

特殊性质 C: 保证 $\forall 1 \leq i \leq n, A_i \mod 2 = 1$.

请注意: 本题输入量过大, 请使用快读进行读人, 避免因为读入超时。

道路 (road)

【题目描述】

很久很久以前,中原地区分成了 N 个国家,编号为 1 到 N,任意两个国家都可互达。每个国家有一个攻击值 A[i] 和防御值 B[i]。

定义一个人从 i 国去 j 国的危险值为: 假如 A[i] > B[j], 则危险值为 $A[i]^2 - B[j]^2$, 否则危险值为 0。

现在, Nan 从国家 1 出发, 经过每一个国家**有且仅有一次**, 最后回到国家 1, 要求 找出一种方案, 使得其中危险值的**最大值最小**。

【输入格式】

从文件 road.in 中读入数据。

第一行正整数 N, 表示有 N 个国家。

第二行正整数 A[1], A[2], x, y, z, 有等式 A[i] = (x * A[i-1] + y * A[i-2] + z) mod 32767。

第三行正整数 B[1], B[2], x, y, z, 有等式 B[i] = (x * B[i-1] + y * B[i-2] + z) mod 32767。

【输出格式】

输出到文件 road.out 中。

输出一个数,表示危险值的最大值最小是多少。

【样例1输入】

- 1 5
- **2** 2 4 1231 4432 123
- **3** 123 45 3245 555 6676

【样例1输出】

1 9171832

见选手目录下的 road/road1.in 与 road/road1.ans。

【样例1解释】

A 数组为 2, 4, 13911, 5151, 3031

B 数组为 123, 45, 24364, 26060, 21765

其中一种最优方案为 1-2-4-3-5-1,危险值分别为 0,0,0,0,9171832

【样例 2】

见选手目录下的 road/road2.in 与 road/road2.ans。

【样例 3】

见选手目录下的 road/road3.in 与 road/road3.ans。

【样例 4】

见选手目录下的 road/road4.in 与 road/road4.ans。

【样例 5】

见选手目录下的 road/road5.in 与 road/road5.ans。

【数据范围】

保证 100% 的数据, A, B 数组和 $x, y, z \in [0, 32767)$ 。

测试点编号	$n \leq$
$1 \sim 4$	10
$5 \sim 10$	10^{3}
$11 \sim 16$	10^{5}
$17 \sim 20$	10^{6}

长者 (young)

【题目描述】

西方有 n 个国家,长者决定向西方的每个国家普及人生经验,但首先要让他们互通火车,第 i 个国家有一个权值 A_i ,修建连接第 i 个国家到第 j 个国家的铁路,需要付出 A_i xor A_j (xor 表示按位异或) 的代价,长者希望**代价总和尽量小**(也就是选择一个最小生成树)。

但是在长者以前,没人去过西方,所以不知道每个国家的权值。但是我们知道每个国家的权值都是一个在 0 到 2^m-1 之间的随机整数,长者希望知道他所需要付出的代价的**期望**。

当然,答案是一个有理分数,为了避免精度误差,长者需要你输出这个分数在模 **258280327** ($2 \times 3^{17} + 1$, 一个质数) 意义下的值(如果不存在则输出 -1)。

【输入格式】

从文件 young.in 中读入数据。

一行两个正整数, 分别表示 n, m。

【输出格式】

输出到文件 young.out 中。

一行一个正整数表示答案。

【样例1输入】

1 2 2

【样例 1 输出】

1 129140165

见选手目录下的 young/young1.in 与 young/young1.ans。

【样例 2 输入】

1 10 3

【样例 2 输出】

1 7008635

见选手目录下的 *young/young2.in* 与 *young/young2.ans*。

【数据范围】

对于 30% 的数据, $n \times m \le 16$;

对于另外 20% 的数据, $m \le 4$;

对于 100% 的数据, $n \le 50, m \le 8$;

牛仔 (nz)

【题目描述】

nk 这次想创造一个长度为 n 的序列, 其中元素均在 [1, K] 中, 如果序列中有连续子序列长度为 K 且元素互不相同, 我们则称其为牛仔序列。

但 nk 觉得这样不好玩,于是有生成了一个长度为 m 的序列 A, 元素均在 [1,K] 中。 定义一个长度为 n 的序列 S 的「牛度」为 A 在其中匹配的次数。

询问所有满足元素均在[1, K]中的牛仔序列「牛度」之和。

【输入格式】

从文件 nz.in 中读入数据。

第一行, 三个整数 N, K 和 M;

第二行,M 个整数,表示题意中的 A

【输出格式】

输出到文件 nz.out 中。

一个整数,表示「牛度」之和。

【样例1输入】

1 3 2 1

2 1

【样例1输出】

1 9

见选手目录下的 nz/nz1.in 与 nz/nz1.ans。

【样例1解释】

有 (1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1) 总共 6 种牛仔序列,它们分别 能产生 2,2,1,2,1,1 的「牛度」,因此答案为 2+2+1+2+1+1=9。

【样例 2 输入】

1 10 3 5

2 1 1 2 3 3

【样例 2 输出】

1 1458

见选手目录下的 nz/nz2.in 与 nz/nz2.ans。

【样例 3】

见选手目录下的 nz/nz3.in 与 nz/nz3.ans。

【数据范围】

对于 100% 的数据,有 $1 \le m \le n \le 25000$, $1 \le A_i \le K \le 400$ 。

子任务编号	特殊性质	分值
1	$n, K \le 20$	10
2	$n \le 20$	10
3	保证 A 是牛仔序列	10
4	保证 A 中元素互不相同	20
5	无	50