A is a stable matrix
$$\Rightarrow$$
 A^TP+PA $\stackrel{?}{=}$ - I has a positive solution P
Since $\frac{||g(x)||}{||x||} \Rightarrow o$ as $||x|| \Rightarrow o$
 $\forall \xi, \exists \xi \text{ such that if } ||x|| ||c \xi(x)|| ||g(x)|| \in \xi$
Thus $||g(x)|| \in \xi ||x|| \text{ when } ||x|| ||c \xi(\xi)||$
 $V = x^TPx$
 $V = x^TPx + x^TPx$
 $= (Ax + g(x))^TPx + x^TP(Ax + g(x))$
 $= x^T(A^TP + PA) \times + 2x^TP g(x)$
 $= -x^Tx + 2x^TP g(x)$
 $\xi - (||x|| + 2\xi ||P|| ||x||^T)$
When $\xi \in \frac{1}{4||P||} \text{ and } ||x|| \in \xi(\xi)$
 $V \in -\frac{1}{2} ||x||^T$
 $= -\frac{V}{2N_{PA}(P)}$

$$= -\mu V$$
Therefore $\dot{V}(t) \in e^{-\mu t} V(0) \Longrightarrow \lim_{t \to 0} V(t) = 0$