

Credentials:

- Data Scientist with 20 + years of IT consulting experience.
- Holds an Engineering degree and and MBA.
- Experience in handling data analysis for multi-billion dollar capital development projects
 - O Burj Khalifa tower in Dubai
 - Pentagon Renovation project,
 Arlington Virginia.

- Problem Statement
- Bird's eye view
- Market overview
- Findings
 - Data overview EDA
 - Feature Engineering
 - Model evaluation
- Conclusions and recommendations

Problem Statement

Business Objective

To help Property
Managers run their
business effectively by
predicting whether a
Tenant is Churned or a
Non-Churned tenant.

Challenges

With the thin margins and lots of pro-tenant regulations in place Property Management companies need to have a clear insights on the expected vacancy (tenant churn) to plan their cash flow

Desired Outcome

- Use date from Property
 Management System to
 engineer data
- Train the models to predict Churned
 Tenant.
- Evaluate the model using <u>Accuracy</u> as the criteria

The property management industry is extremely lucrative and is becoming more and more popular with the rise of renters. Let's take a look at some of the top statistics from 2018 below.

280K+

total property management companies in US

\$76B+

property management industry revenue

13%

percentage of US GDP made up by real estate

percentage of US renters aged 35 and under

Birds eye view

Qualitative data 1

Real Estate Data sets

Resident history from Property Management System

Qualitative data 2

• Time scale

Five years of Resident data

Qualitative data 3

Baseline Score

0.67

Qualitative data 4

Models / Classifiers Explored

Logistic Reg, Random Frst, Extra trees.

EDA - Rent fields

EDA - Move-Out Monthwise

Monthwise Moveout Traffic Graph Interpretation

Traffic Graph shows that most of the traffic happens during Summer months (May, Jul, Aug, Oct). I have also noticed noticed that the traffic is more just after the beginning of School Holidays and picks up just before School start month.

EDA - Move-Out Day-wise

Daywise Moveout Traffic Graph Interpretation

The above graph of Daywise Moveout Traffic Graph shows that most of the traffic happens mostly during Sunday & Mondays.

Model Evaluation Criteria:

- Main Metric Testing Accuracy
 - Confusion Matrix
 - ROC with AUC curve
 - Model coefficients

Model Performance - overview

Model	Train Score	Test Score
Base Line	0.78	
Logistic Regression	0.78	0.77
Decision Tree	1.0	0.90
Random Frst.	1.0	0.90
Extra trees	1.0	0.90
Voting clsfr.	0.99	0.87

Model Evaluation - Confusion Matrix

ar predictions

Model Evaluation - ROC AUC Curve

- ROC AUC of close to 1
- Positive and Negative classes are perfectly separated

Model Evaluation - Feature Importance (Extra trees)

Extra Trees Model

- Tenants signing up for Auto debit of their rent is the most important feature of the model
- Late fee calculation percentage is the second most important feature.

Model Evaluation - Model Coefficients

- We can infer from this findings that Low rent paying tenant tends to stay longer in a Unit that is he is less likely to churn / move-out.
- Another interesting findings is that the tenants who signed up for electronic payments tend to stay longer.

Conclusion

- Extra trees model performed the best (at 100% accuracy).
- Our model will help to differentiate the Churned and Non Churned tenants for the Property Managers.
- Would like to get more data from Social Media, Work Order Review to aid the predictive models.
- Time based predictions to be done using Generalized Linear Models.
- Develop an API between Machine Learning Models and the Property Management Application.

Thanks - Questions? The Team

