1. Derive a dual problem for

minimize
$$\sum_{i=1}^{N} ||A_i x - b_i||_2 + \frac{1}{2} ||x - x_0||_2^2$$

The problem data are $A_i \in \mathbb{R}^{m_i \times n}$, $b_i \in \mathbb{R}^{m_i}$, and $x_0 \in \mathbb{R}^n$. First introduce new variables $y_i \in \mathbb{R}^{m_i}$ and equality constraints $y_i = A_i x - b_i$. (20%)

2. (A convex problem in which strong duality fails.) Consider the optimization problem

minimize
$$e^{-x}$$

subject to $x^2/y \le 0$

with variables x and y, and domain $\mathcal{D} = \{(x, y) : y > 0\}.$

- (a) Verify that this is a convex optimization problem. Find the optimal value. (5%)
- (b) Give the Lagrange dual problem, and find the optimal solution λ^* and optimal value d^* of the dual problem. (10%)
- (c) What is the optimal duality gap? Does Slater's condition hold for this problem? (5%)
- 3. Prove (without using any linear programming code) that the optimal solution of the LP

minimize
$$47x_1 + 93x_2 + 17x_3 - 93x_4$$
subject to
$$\begin{bmatrix} -1 & -6 & 1 & 3 \\ -1 & -2 & 7 & 1 \\ 0 & 3 & -10 & -1 \\ -6 & -11 & -2 & 12 \\ 1 & 6 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \le \begin{bmatrix} -3 \\ 5 \\ -8 \\ -7 \\ 4 \end{bmatrix}$$

is unique, and given by $x^* = (1, 1, 1, 1)$. (20%)

4. (SDP relaxations of two-way partitioning problem). We consider the two-way partitioning problem (5.7), described on page 219,

minimize
$$x^T W x$$

subject to $x_i^2 = 1, i = 1, ..., n$ (1)

with variable $x \in \mathbb{R}^n$. The Lagrange dual of this (nonconvex) problem is given by the SDP

maximize
$$-\sum_{j=1}^{n} \nu_{j}$$
 subject to
$$W + \operatorname{diag}(\nu) \geq 0$$
 (2)

with variable $\nu \in \mathbb{R}^n$. The optimal value of this SDP gives a lower bound on the optimal value of the partitioning problem Eq. (1). In this exercise we derive another SDP that gives a lower bound on the optimal value of the two-way partitioning problem, and explore the connection between the two SDPs.

(a) Two-way partitioning problem in matrix form. Show that the two-way partitioning problem can be cast as

minimize
$$\operatorname{tr}(WX)$$

subject to $X \ge 0$, $\operatorname{rank}(X) = 1$
 $X_{ii} = 1, i = 1, \dots, n.$

with variable $X \in S^n$. Hint. Show that if X is feasible, then it has the form $X = xx^T$, where $x \in \mathbb{R}^n$ satisfies $x_i \in \{+1, -1\}$ (and vice versa). (5%)

(b) (SDP relaxation of two-way partitioning problem.) Using the formulation in part (a), we can form the relaxation

minimize
$$\operatorname{tr}(WX)$$

subject to $X \ge 0$, $X_{ii} = 1, i = 1, \dots, n$.

with variable $X \in S^n$. This problem is an SDP, and therefore can be solved efficiently. Explain why its optimal value gives a lower bound on the optimal value of the two-way partitioning problem (1). What can you say if an optimal point X^* for this SDP has rank one? (5%)

- (c) We now have two SDPs that give a lower bound on the optimal value of the two-way partitioning problem (1): the SDP relaxation (3) found in part (b), and the Lagrange dual of the two-way partitioning problem, given in (2). What is the relation between the two SDPs? What can you say about the lower bounds found by them? Hint: Relate the two SDPs via duality. (10%)
- 5. The pure Newton method. Newton's method with fixed step size t = 1 can diverge if the initial point is not close to x^* . Consider

minimize
$$f(x) = \log(e^x + e^{-x})$$

f(x) has a unique minimizer $x^* = 0$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 1$ and at $x^{(0)} = 1.2$. Show the errors of the first four iterates. (You can do it by hand or using MATLAB.)

(20%)