Advanced Logic

2022年4月3日

目录

第一章	逻辑与代数	2
1.1	布尔代数	2
1.2	滤与理想	10
1.3	完全性与紧致性	16
	1.3.1 紧致性定理的布尔代数证明	17
	1.3.2 紧致性定理的超积证明	17
	1.3.3 布尔代数与一阶逻辑的完全性	18
	1.3.4 超积与一阶逻辑的紧致性	20
1.4	习题	22

第一章 逻辑与代数

1.1 布尔代数

给定任意集合 X, X 的幂集 $\mathcal{P}(X)$ 在 \cap , \cup , - 运算下,形成一个代数结构,这个结构是所谓"布尔代数"的最直观最典型的代表。

定义 1.1.1. 令 $\mathcal{B} = (B, +, \cdot, -, 0, 1)$ 为一个结构,其中 B 是非空集合, $+, \cdot$ 是二元函数,- 是一元函数,0, 1 为常量。如果 \mathcal{B} 满足以下公理:

- (1) 结合律: a + (b + c) = (a + b) + c, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- (2) 交換律: a + b = b + a, $a \cdot b = b \cdot a$;
- (3) 吸收律: $a + (a \cdot b) = a$, $a \cdot (a + b) = a$;
- (4) 分配律: $a \cdot (b+c) = (a \cdot b) + (a \cdot c), \ a + (b \cdot c) = (a+b) \cdot (a+c);$
- (5) x + (-x) = 1, $x \cdot (-x) = \emptyset$.

则称 3 为布尔代数。

练习 1.1.2. $(\mathcal{P}(X), \cup, \cap, -, X, \emptyset)$ 是一个布尔代数。

注记 1.1.3. 在定义中我们没有要求 $0 \neq 1$,所以可以有一个元素的布尔代数。例如,如果 $X = \emptyset$,则 $\mathcal{P}(X)$ 只有一个元素 \emptyset ,它也是一个布尔代数。只有一个元素的布尔代数是平凡的。

一个非平凡的布尔代数至少有两个元素 $\{0,1\}$,例如对任意非空集合 X, $\{X,\emptyset\}$ 是一个布尔代数。

练习 1.1.4. 令 $B = \{T, F\}$ 为命题真值的集合,则 B 在命题逻辑联结词 \lor 、 \land 和 ¬ 下是一个布尔代数。

练习 1.1.5. 令 \mathcal{B} 为任意布尔代数, $a,b \in B$, 证明:

- (1) a + a = a;
- (2) $a \cdot a = a$;
- (3) a + b = b 当且仅当 $a \cdot b = a$;
- (3) $a \cdot 0 = 0$, $a \cdot 1 = a$;
- (4) a + 0 = a, a + 1 = 1;
- (5) $a = -b \oplus \exists \exists \exists \exists a \cdot b = 1 \oplus \exists a \cdot b = 0$;
- (6) --a = a;
- (7) $-(a+b) = -a \cdot (-b)$;
- $(8) -(a \cdot b) = -a + (-b)_{\circ}$

例 1.1.6. 令 \mathcal{L} 为命题逻辑的语言, T 为 \mathcal{L} 中的理论。

• 对任意公式 α , β , 定义一个二元关系:

$$\alpha \sim \beta \Leftrightarrow T \vdash \alpha \leftrightarrow \beta$$
.

- 对任意公式 α ,我们令 $[\alpha]_T$ 表示 α 在这一等价关系下的等价类,即集合 $\{\beta \mid \beta \sim \alpha\}$ 。在不致引起混淆的情形下,我们通常省略掉下标 T。
- 令 $B = \{ [\alpha]_T \mid \alpha$ 是一个公式 $\}$, 定义 B 上的运算:

$$[\alpha] + [\beta] = [\alpha \vee \beta]$$

$$[\alpha] \cdot [\beta] = [\alpha \wedge \beta]$$

$$-[\alpha] = [\neg \alpha]$$

$$0 = [\alpha \wedge \neg \alpha]$$

$$1 = [\alpha \vee \neg \alpha].$$

在这里,我们需要验证以上定义是合理的: 即定义中的 +,· 的确是二元函数; - 的确是一元函数; 0,1 的确是常量,或者说是零元函数。所以,以 + 为例,我们需要验证对任意 α , β , δ , γ , 如果 [α] = [β], [δ] = [γ], 则 [α \vee δ] = [β \vee γ]。具体的验证请读者完成。

• $\mathcal{B}(T) = (B, +, \cdot, -, 0, 1)$ 是一个布尔代数,称为(命题逻辑的)Lindenbaum 代数。

练习 1.1.7. $\Diamond T$ 为命题逻辑中的理论,

- 1. 请验证 $\mathcal{B}(T) = (B, +, \cdot, -, 0, 1)$ 是一个布尔代数。
- 2. T 是一致的当且仅当 $\mathcal{B}(T)$ 是非平凡的。

定义 1.1.8. 如果 A, B 是布尔代数, $f: A \to B$ 映射, 如果 f 满足:

- (1) $f(0_A) = 0_B$, $f(1_A) = 1_B$;
- (2) $f(a_1+a_2) = f(a_1) + f(a_2)$, $f(a_1 \cdot a_2) = f(a_1) \cdot f(a_2)$, f(-a) = -f(a)。 就称 $f \neq A$ 到 \mathcal{B} 的同态。

如果同态 f 是单射,就称 f 是 A 到 B 的嵌入。

如果 f 还是双射, 就称 f 是 A 到 B 的同构。

如果 \mathcal{B} 是一个布尔代数, $A \subseteq B$,并且等同映射 $\mathrm{id}: A \to B$ 是一个嵌入 (注意,这要求 $0,1 \in A$ 并且 A 在 \mathcal{B} 的运算下也是一个布尔代数),就称 \mathcal{A} 是 \mathcal{B} 的子代数。

例 1.1.9. 对任意集合 X, $\{X,\emptyset\}$ 是 $\mathcal{P}(X)$ 的子代数。

令 $B = \{T, F\}$,则 f(T) = X,f(F) = 0 是到 $\mathcal{P}(X)$ 的嵌入,其中 $X \neq \emptyset$ 为任意非空集合。它同时也是 $\{T, F\}$ 和 $\{X, \emptyset\}$ 之间的同构。事实上,任何有只两个元素的布尔代数都是同构的,我们今后用 $\mathcal{B} = \{0, 1\}$ 表示。

今后,我们称 $\mathcal{P}(X)$ 的子代数为**集合代数**,并且,我们会证明,任何布尔代数都同构于一个集合代数。

练习 1.1.10. 令 X 为任意集合, $Y \subseteq X$ 称为在 X 中是余有穷的,如果 X - Y 是有穷集合。对任意集合 X,令 $B = \{Y \subseteq X \mid Y$ 是有穷的或余有穷的},则 $X,\emptyset \in B$ 。证明 B 对 $\cap, \cup, -$ 封闭,所以 \mathcal{B} 是一个布尔代数,是一个集合代数。

练习 1.1.11. 证明不存在基数为 3 的布尔代数。思考一下,一个有穷的布尔代数,其基数需要满足什么条件?

引理 1.1.12. 如果 A, B 是布尔代数, $f: A \to B$ 映射, 则以下命题等价:

- (1) f 是 A 到 B 的同态;
- (2) 对任意 $a, b \in A$, f(-a) = -f(a), f(a+b) = f(a) + f(b);
- (3) 对任意 $a, b \in A$, f(-a) = -f(a), $f(a \cdot b) = f(a) \cdot f(b)$;
- (4) f(0) = 0, f(1) = 1, 并且 f(a+b) = f(a) + f(b), 并且如果 $a \cdot b = 0$, 则 $f(a) \cdot f(b) = 0$ 。

证明.

作为简单的推论,请证明以下命题:

练习 1.1.13. 如果 B 是布尔代数, $A \subseteq B$ 为非空子集,则以下命题等价:

- (1) A 是 B 的子代数;
- (2) A 对 +, 封闭;
- (3) A对·,一封闭。

练习 1.1.14. 如果 $f: A \to \mathcal{B}$ 是同态,并且对任意 $a \in A$,如果 $a \neq 0$,则 $f(a) \neq 0$,那么 f 是一个嵌入。

引理 1.1.15. 如果 \mathcal{B} 是布尔代数, Γ 是一族 \mathcal{B} 的子代数, $\bigcap \Gamma$ 是 \mathcal{B} 的子代数。

定义 1.1.16. 假设 \mathcal{B} 是布尔代数, $X \subseteq B$ 。

$$A = \bigcap \{C \mid X \subseteq C \land \mathcal{C} \not \in \mathcal{B} \text{ 的子代数}\} \tag{1.1}$$

是一个布尔代数, 称为由X生成的代数。

引理 1.1.17. 令 \mathcal{B} 是布尔代数, $X \subset B$, 以下命题等价

- (1) A 是 X 生成的布尔代数;
- (2) $A = \bigcup_{n \in \omega} X_n$, $\sharp + X_0 = X$,

 $X_{n+1} = X \cup \{a+b \mid a, b \in X_n\} \cup \{a \cdot b \mid a, b \in X_n\} \cup \{-a \mid a \in X\}.$

定义 1.1.18. 令 \mathcal{B} 为任意布尔代数,对任意 $a,b \in B$,我们定义二元关系 $a \leq b$ 为 $\exists c(a+c=b)$ 。a < b 当且仅当 $a \leq b$ 并且 $a \neq b$ 。

例 1.1.19. 对任意布尔代数 \mathcal{B} , 我们显然有以下事实: 对任意 $a,b \in \mathcal{B}$,

- a < a + b, b < a + b;
- $a \cdot b \le a$, $a \cdot b \le b$;
- 对任意 $a \in B$, $0 \le a \le 1$ 。

练习 1.1.20. 令 T 为命题逻辑中的理论,对任意公式 α , β , $[\alpha] \leq [\beta]$ 当且仅当 $T \vdash \alpha \rightarrow \beta$ 。

练习 1.1.21. 令 \mathcal{B} 为任意布尔代数, $a,b,c \in B$, 证明:

- (1) $a \le b$ 当且仅当 a + b = b 当且仅当 $a \cdot b = a$;
- (2) 如果 $a \le c$ 并且 $b \le c$, 则 $a + b \le c$;
- (3) 如果 $a \le b$ 并且 $a \le c$,则 $a \le b \cdot c$ 。

练习 1.1.22. 令 *3* 为任意布尔代数,

- (1) 证明任意布尔代数 \mathcal{B} 在关系 \leq 下是一个偏序集。
- (2) 证明如果 𝔞 是一个集合代数,则 ≤ 就是集合上的子集关系 ⊆。
- (3) 对任意 $a, b \in B$, $a \le b$ 当且仅当 $-b \le -a$,
- (4) 对任意 $a, b \in \mathcal{B}$, $a \le b$ 当且仅当 $a \cdot (-b) = 0$, (当且仅当 -a + b = 1),
- (5) 对任意 $a, b, c \in \mathcal{B}$, $a \cdot b < c$ 当且仅当 b < -a + c。
- **定义 1.1.23.** 对任意布尔代数 \mathcal{B} , 如果一个非零元素 $a \in B$ 满足: 不存在 $b \in B$ 使得 0 < b < a, 就称 $a \in \mathcal{B}$ 的原子。
 - 一个布尔代数 \mathcal{S} 如果没有原子,就称 \mathcal{S} 是无原子的。

如果对任意 $b \in \mathcal{B}$,都存在一个原子 $a \in \mathcal{B}$ 使得 $a \leq b$,就称 \mathcal{B} 是原子 化的。

例 1.1.24. 对任意集合 X, X 的有穷子集和余有穷子集构成的布尔代数是原子化的,每个单点集 $\{x\}$ 都是一个原子。

练习1.1.25. 任何有穷的布尔代数都是原子化的。

引理 1.1.26. 令 \mathcal{B} 为布尔代数, $a \in B$, 则以下命题等价:

- (1) a 是原子。
- (2) 对任意 $b \in B$, $b \neq 0$, $a \leq b$ 或 $a \leq -b$, 但不能同时成立。
- (3) 0 < a, 并且如果 $a \le b + c$, 则 $a \le b$ 或 $a \le c$ 。

证明. (1)⇒(2). 如果 $a \cdot b = c \neq 0$,则 $a = c \leq b$,否则 c < a,与 a 是原子矛盾。如果 $a \cdot b = 0$,则 $a \cdot (-b) \neq 0$,同理 $a \leq -b$ 。如果 $a \leq b$ 且 $a \leq (-b)$,令 $c_1, c_2 \in B$ 为见证 \leq 的元素。我们有 $a + c_1 = -(a + c_2)$,所以 $a \cdot (a + c_1) = 0$,这蕴涵着 a = 0,矛盾。

(2)⇒(3). 0 < a 是显然的。假设 $a \le b + c$ 并且 $a \not\le b$,则根据(2), $a \le -b$,所以 $a \le (-b) \cdot (b + c) \le (-b) \cdot c \le c$,所以 $a \le c$ 。

(3)⇒(1). 反设 a 不是原子,令 0 < b < a,并且令 $c \neq 0$ 为见证这一点的元素,则 a = b + c。由于 b 也不为 0,所以 c < a。这样, $a \not\leq b$ 并且 $a \not\leq c$,与(3)矛盾。

定理 1.1.27. 令 \mathcal{B} 为布尔代数, 令 $A \subseteq B$ 为 \mathcal{B} 中全体原子的集合。定义 $f: B \to \mathcal{P}(A)$ 为: 对任意 $b \in B$,

$$f(b) = \{ a \in A \mid a \le b \}, \tag{1.2}$$

则 f 是一个同态映射。如果 B 是原子化的,则 f 是一个嵌入。

证明. 检查 f 是一个同态映射并不困难, 我们留作练习。

练习 1.1.28. 证明 f 是同态映射。

下面我们证明:如果 \mathcal{B} 是原子化的,则 f 是一一映射。注意到,如果 \mathcal{B} 是原子化的,则对任意 $b \in \mathcal{B}$,如果 $b \neq 0$,则 $f(b) \neq \emptyset$ 。现在假设 $b_1 \neq b_2$,则 $b_1 \cdot (-b_2) \neq 0$ 或者 $(-b_1) \cdot b_2 \neq 0$ 。不妨设前者为 $c \neq 0$,则 $f(c) = f(b_1) \cap f(-b_2) = f(b_1) \cap (A - f(b_2)) \neq \emptyset$,所以 $f(b_1) \neq f(b_2)$ 。 \square

推论 1.1.29. 任何原子化的布尔代数都同构于一个集合代数。特别地,如果 \mathcal{B} 是一个有穷的布尔代数,并且有 m 个原子,则 \mathcal{B} 同构于集合代数 $\mathcal{P}(m)$ 。

注记 1.1.30. 这是斯通表示定理的一个特殊版本。

推论 1.1.31. 对任意自然数 n, 以下命题等价:

- (1) 存在一个布尔代数 \mathcal{B} , |B| = n;
- (2) n 是一个平方数。

推论 1.1.32. 如果 A, B 是有穷的布尔代数,则 $A \cong B$ 当且仅当 |A| = |B|。

定义 1.1.33. 对任意的布尔代数 \mathcal{B} , \Leftrightarrow \leq 为 \mathcal{B} 上的标准偏序, $X \subseteq \mathcal{B}$ 是 \mathcal{B} 的非空子集。

(1) 如果存在 $u \in \mathcal{B}$ 满足:

- (a) 对任意 $x \in X$, $x \le u$,
- (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有 $x \le b$,则 $u \le b$ 。

就称 $u \in X$ 的上确界,一般记作 $\sum X$ 。

- (2) 如果存在 $l \in \mathcal{B}$ 满足:
 - (a) 对任意 $x \in X$, $l \leq x$,
 - (b) 如果有 $b \in B$ 满足对任意 $x \in X$ 都有 $b \le x$,则 $b \le l$ 。

就称 $l \in X$ 的下确界,一般记作 $\prod X$ 。

如果对布尔代数 \mathcal{B} 的任意非空子集 X, 都有 $\sum X \in \mathcal{B}$ 并且 $\prod X \in \mathcal{B}$, 就称 \mathcal{B} 是完全的。

引理 1.1.34. 假设 \mathcal{B} 是布尔代数, $X \subseteq \mathcal{B}$, 则

- (1) 如果 $\sum X$ 存在,则 $\prod (-X)$ 也存在,并且等于 $-\sum X$;
- (2) 如果 $\sum X$ 存在, $a \in B$, 则 $\sum \{a \cdot b \mid b \in X\}$ 存在并且等于 $a \cdot \sum X$ 。

证明. (2) 对任意 $b \in X$, $b \leq \sum X$, 所以 $a \cdot b \leq a \cdot \sum X$,即 $\sum X$ 是上界。现在假设 u 也是上界,即对任意 $b \in X$, $a \cdot b \leq u$ 。注意到这蕴含 $b = a \cdot b + (-a) \cdot b \leq u + (-a) \cdot b \leq u + (-a)$,所以 $\sum X \leq u + (-a)$,而这又蕴含 $a \cdot \sum X \leq a \cdot u \leq u$ 。

引理 1.1.35. 对任意一阶逻辑中的理论 T, 令 $\mathcal{B}(T)$ 为相应的 Lindenbaum 代数,则

$$[\exists x \phi] = \sum \{ [\phi_y^x] \mid y$$
 是变元
$$[\forall x \phi] = \prod \{ [\phi_y^x] \mid y$$
 是变元
$$\}$$

证明. 显然,我们只需证明其中一个等式。因为对任意变元 y,旨 $\forall x\phi \to \phi_y^x$,所以 $[\forall x\phi] \leq \prod \{ [\phi_y^x] \mid y$ 是变元},即,它是这个集合的下界。另一个方向,令 $[\psi]$ 是一个下界,则对任意变元 y, $T \vdash \psi \to \phi_y^x$ 。特别地,这对一个不在 $T \cup \{\psi,\phi\}$ 中出现的变元 y 仍然成立。利用全称量词引入规则,我们有 $T \vdash \psi \to \forall x\phi$ 。所以, $[\forall x\phi]$ 是下确界。

练习 1.1.36. 如果 $B = \mathcal{P}(X)$,则对任意 $Y \subseteq B$, $\sum Y = \bigcup Y$, $\prod Y = \bigcap Y$ 。 $\mathcal{P}(X)$ 是完全的布尔代数。

练习 1.1.37. 如果 \mathcal{B} 是一个集合代数并且是完全的,则存在 X , $\mathcal{B} \cong \mathcal{P}(X)$ 。

例 1.1.38. 令 $B = \{x \subseteq \mathbb{N} \mid x$ 是有穷的或余有穷的 $\}$,参见练习 1.1.10, \mathcal{B} 在集合运算下是一个布尔代数。对任意 $n \in \mathbb{N}$,令 $x_n = \{p < n \mid p$ 是素数 $\}$,同时令 $X = \{x_n \mid n \in \mathbb{N}\}$,则 $\sum X$ 在 \mathcal{B} 中不存在。它是全体素数的集合,是无穷的,但不是余有穷的。

练习 1.1.39. 在定理1.1.27中,如果 $\mathcal B$ 还是完全的,则 f 是一个同构。所以,如果 $\mathcal B$ 是一个完全的原子化的布尔代数,则存在集合 X , $\mathcal B\cong \mathcal P(X)$ 。【证明:如果 A 是全体原子的集合, $Y\subseteq A$,则 $f(\sum Y)=Y$,所以 f 是一个满射。】

引理 1.1.40. 假设 B 是布尔代数,以下命题等价:

- (1) B 是原子化的;
- (2) 对任意 $b \in B$,

$$\sum \{a \mid a \leq b \wedge a \ \mathbb{A} \}$$

存在并且等于 b。

推论 1.1.41. 如果 B 是原子化的并且只有有穷多个原子,则 B 是有穷的。

1.2 滤与理想

定义 1.2.1. 令 \mathcal{B} 为布尔代数, $F \subseteq B$, 如果 F 满足以下条件:

- 1. $0 \notin F$, $F \neq \emptyset$;
- 2. 如果 $a,b \in F$, 则 $a \cdot b \in F$;
- 3. 如果 $a \in F$ 并且 $a \leq b$, $b \in F$ 。

就称 $F \in \mathcal{B}$ 上的滤。

例 1.2.2. 对任意集合 X, $(\mathcal{P}(X), X, \emptyset, \cap, \cup, -)$ 是布尔代数。

- $\{X\}$ 是 $\mathcal{P}(X)$ 上的滤, 称为平凡的。
- 如果 X 是无穷的,令 $F = \{Y \subseteq X \mid Y$ 是余有穷的},则 F 是一个滤。条件(1)和(3)是显然的;关于(2),如果 Y_1, Y_2 是余有穷的,则 $X Y_1 \cap Y_2 = (X Y_1) \cup (X Y_2)$ 也是有穷的,所以 $Y_1 \cap Y_2 \in F$ 。

习惯上,如果 $F \subseteq \mathcal{P}(X)$ 是滤,我们更经常地称其为"X 上的滤"。

练习 1.2.3. 令 \mathcal{B} 为布尔代数, $F \subseteq B$, 以下命题等价:

- (1) *F* 是滤;
- (2) $0 \notin F$, $1 \in F$ 并且对任意 $a, b \in B$, $a \cdot b \in F$ 当且仅当 $a \in F$ 且 $b \in F$ 。

定义 1.2.4. 对任意布尔代数 \mathcal{B} ,它的子集 $G \subseteq B$ 如果满足:对任意 $n \in \omega$,任意 $g_1, \dots, g_n \in G$,它们的积不为 0,即, $g_1 \cdot g_2 \cdots g_{n-1} \cdot g_n > 0$,就称 G有**穷交**性质。

练习 1.2.5. 如果 $G \subseteq B$ 有有穷交性质, $a \in B$,则 $G \cup \{a\}$ 或 $G \cup \{-a\}$ 有有穷交性质。

引理 1.2.6. 令 \mathcal{B} 是布尔代数, $G \subseteq B$ 有有穷交性质, 则

$$F = \{b \in B \mid \exists g_1, \cdots, g_n \in G(g_1 \cdots g_n \le b)\}$$

$$\tag{1.3}$$

是B上的滤,称为G生成的滤。

练习 1.2.7. 如果 F 是由 G 生成的滤,则 F 是包含 G 的最小的滤,即, $G \subseteq F$ 并且如果 $F' \supseteq G$ 也是滤,则 $F \subseteq F'$ 。

注记 1.2.8. 对任意 $a \neq 0$,由于 $\{a\}$ 总是有有穷交性质,所以,任意非 0 的 $a \in B$, $\{a\}$ 生成 \mathcal{B} 上的一个滤。由单点集生成的滤称为主滤。

定义 1.2.9. 令 \mathcal{B} 为布尔代数, $F \subseteq B$ 是滤。如果对任意的 $b \in B$,b 和 -b 有且只有一个属于 F,就称 F 是 \mathcal{B} 上的超滤。

由单点集 $\{a\}$ 生成的主滤是超滤的等价条件是 a 是原子,请尝试以下练习:

练习 1.2.10. 假设 $G = \{g\} \subseteq B$, F 是由 G 生成的滤,则以下命题等价:

- (1) g 是原子;
- (2) F 是超滤;
- (3) *F* 是主超滤。

在偏序集的意义上,超滤也是极大滤。

引理 1.2.11. 令 \mathcal{B} 是布尔代数, F 是 \mathcal{B} 上的滤。以下命题等价:

- (1) F 是超滤;
- (2) F 是极大滤: 不存在滤 F' 使得 $F \subsetneq F'$ 。
- (3) F 是素的: 对任意 $a,b \in B$, 如果 $a+b \in F$, 则 $a \in F$ 或者 $b \in F$ 。

证明. (1) \Rightarrow (2). 反设 F 不是极大滤,F' 是 F 的真扩张。令 $b \in F' - F$ 。由于 $b \notin F$ 而 F 是超滤,所以 $-b \in F \subseteq F'$,这样 $b \cap (-b) = 0 \in F'$,矛盾。

(2) ⇒(3). 首先,我们验证,如果 F 是极大滤,而 $a \notin F$,则至少存在一个 $c \in F$, $c \cdot a = 0$: 否则, $F \cup \{a\}$ 有有穷交性质,因而生成一个滤 F',它是 F 的真扩张。

现在假设 a,b 都不属于 F, 令 $c_1,c_2 \in F$ 见证这一点,即 $c_1 \cdot a = c_2 \cdot b = 0$ 。 所以 $c_1 \cdot c_2 \cdot (a+b) = 0$ 。由于 $c_1 \cdot c_2 \in F$,所以 $a+b \notin F$ 。

(3)⇒(1). 对任意 $b \in B$,如果 $b \notin F$,因为 $b + (-b) = 1 \in F$,所以由 (3), $-b \in F$ 。

与滤对偶的概念是理想。

定义 1.2.12. 令 \mathcal{B} 为布尔代数, $I \subseteq B$, 如果 I 满足以下条件:

- 1. $1 \notin I$, $I \neq \emptyset$;
- 2. 如果 $a, b \in I$,则 $a + b \in I$;
- 3. 如果 $a \in I$ 并且 $b \leq a$, $b \in I$ 。

就称 $I \in \mathcal{B}$ 上的理想。

所谓"对偶"的意思由以下练习表达。

练习 **1.2.13.** $F \in \mathcal{B}$ 上的滤当且仅当 $I = \{-a \mid a \in F\}$ 是 \mathcal{B} 上的理想。

练习 1.2.14. 令 F 是布尔代数 \mathcal{B} 上的滤, 令 ($\{0,1\},+,\cdot,-,0,1$) 为两个元素的布尔代数。定义 $f: \mathcal{B} \to \{0,1\}$ 为

$$f(b) = \begin{cases} 1, & b \in F; \\ 0, & b \notin F. \end{cases}$$
 (1.4)

即,f 是 F 的特征函数。证明: F 是超滤当且仅当 f 是布尔代数 \mathcal{B} 到 $\{0,1\}$ 的同态映射。

以上练习提示了滤与同态的联系,这值得进一步探讨。

引理 **1.2.15.** 如果 $h: \mathcal{B} \to \mathcal{C}$ 是一个同态,则 $F = \{b \in B \mid f(b) = 1\}$ 是 \mathcal{B} 上的一个滤,称为 f 的 shell; $I = \{b \in B \mid f(b) = 0\}$ 是 \mathcal{B} 上的一个理想,称为 f 的 kernel

定义 1.2.16. 令 \mathcal{B} 是布尔代数, 任意 $a,b \in B$;

- (1) 令 a ∇b 表示以下运算: $(a + (-b)) \cdot (b + (-a))$, 称为 a, b 对称和;
- (2) 令 $a \triangle b$ 表示以下运算: $(a \cdot (-b)) + (b \cdot (-a))$, 称为 a, b 对称差。

练习 1.2.17. 令 B 是布尔代数, $a,b \in B$, 证明:

- (1) $a \triangle a = 0$;
- (2) $a \triangle b = b \triangle a$;

(3)
$$a \nabla b = -(-a \Delta - b)_{\circ}$$

引理 1.2.18. 令 \mathcal{B} 是布尔代数, $I \subseteq B$ 是理想,定义 $a \sim_I b$ 为 $a \triangle b \in I$,则 \sim_I 是一个等价关系。对称地,如果 $F \subseteq B$ 是滤,定义 $a \sim_F b$ 为 $a \nabla b \in F$, \sim_F 也是等价关系。

证明. 我们只证明传递性。假设 $a \triangle b \in I$, $b \triangle c \in I$ 。我们计算 $a \cdot (-c)$ 。

$$a \cdot (-c) = a \cdot (b + (-b)) \cdot (-c)$$
$$= a \cdot b \cdot (-c) + a \cdot (-b) \cdot (-c)$$

首先, $a \cdot b \cdot (-c) \leq b \cdot (-c) \leq b \triangle c \in I$,所以 $a \cdot b \cdot (-c) \in I$ 。其次, $a \cdot (-b) \cdot (-c) \leq a \triangle b \in I$ 。所以 $a \cdot (-c) \in I$ 。类似地论证, $(-a) \cdot b \in I$,所以 $a \triangle c \in I$ 。

引理 1.2.19. 令 \sim_I 是滤 I 确定的等价关系,如果 $a \sim_I b, c \sim_I d$,则

- (1) $-a \sim_I -b$;
- (2) $a + c \sim_I b + d$;
- (3) $a \cdot c \sim_I b \cdot d$.

证明.
$$(1) - (-a) \cdot (-b) + (-a) \cdot (-(-b)) = a \cdot (-b) + (-a) \cdot b = a \triangle b \in I$$
。

(2) 先计算 $(a+c)\cdot (-(b+d))$,

$$(a+c) \cdot (-(b+d)) = a \cdot (-b) \cdot (-d) + c \cdot (-b) \cdot (-d)$$

$$\leq a \cdot (-b) + c \cdot (-d) \in I.$$

类似地, $-(a+c)\cdot(b+d)\in I$ 。

由于滤和理想是完全对偶的,所以选择用哪一个表述接下来的结果是一个纯语言问题。我们选择滤。

练习 1.2.20. 证明: $a \sim_F b$ 当且仅当存在 $c \in F$, $c \cdot a = c \cdot b$ 。

引理 1.2.21. 令 \mathcal{B} 是布尔代数, $F \subseteq \mathcal{B}$ 是滤,令 \mathcal{B}/F 为等价关系 \sim_F 确定的商集,定义 [a] + [b] = [a+b], $[a] \cdot [b] = [a \cdot b]$,-[a] = [-a],0 = [0],1 = [1],则 \mathcal{B}/F 是一个布尔代数,称为 F 确定的商代数。

引理 1.2.22. 对任意布尔代数 \mathcal{B} ,函数 h(a) = [a] 是 \mathcal{B} 到 \mathcal{B}/F 的同态映射。引理 1.2.23. F 是 \mathcal{B} 上的超滤当且仅当 $\mathcal{B}/F \cong \{0,1\}$ 。

定理 1.2.24 (超滤存在定理). 布尔代数 \mathcal{B} 上的任意滤 F , 都存在 \mathcal{B} 上的超滤 U 使得 $F\subseteq U$ 。

证明. 令 $\mathcal{F} = \{U \mid U \neq \mathcal{B} \perp \text{的滤并且} F \subseteq U\}$ 。 \mathcal{F} 在关系 \subseteq 下是一个偏序集,并且它的每个链都有上界。根据佐恩引理, \mathcal{F} 有极大元 U。显然,U 是极大滤,因而是超滤,而且 $F \subseteq U$ 。

推论 1.2.25. 如果 G 有有穷交性质,则存在超滤 $U \supseteq G$ 。

练习 1.2.26. 如果 $a \neq b$,则存在超滤 U, $a \in U$ 但 $b \notin U$,或者 $b \in U$ 但是 $a \notin U$ 。

定义 1.2.27. 今后我们用 $Ult(\mathcal{B})$ 表示布尔代数 \mathcal{B} 上所有超滤的集合,以下定义的函数 $f: \mathcal{B} \to \mathcal{P}(Ult(\mathcal{B}))$ 称为斯通映射:

$$f(b) = \{ U \in \text{Ult}(\mathcal{B}) \mid b \in U \}. \tag{1.5}$$

定理 1.2.28 (斯通表示定理). 对任意布尔代数 \mathcal{B} , 存在集合 X , \mathcal{B} 同构于 $\mathcal{P}(X)$ 的一个子代数。

证明. 令 $X = \text{Ult}(\mathcal{B})$, $f : B \to \mathcal{P}(X)$ 为斯通映射。我们证明 f 是嵌入,这样 f[B] 就是 $\mathcal{P}(X)$ 的子代数,并且与 \mathcal{B} 同构。

由于 0 不属于任何滤而 1 属于任何滤,所以 $f(0) = \emptyset$, $f(1) = \mathcal{P}(X)$ 。如果 $a \cdot b \in U$,则一定有 $a \in U$ 并且 $b \in U$,反之亦然,所以 $f(a \cdot b) = f(a) \cap f(b)$ 。 另外,任意超滤 U 都是素的,所以 $a + b \in U$ 当且仅当 $a \in U$ 或者 $b \in U$,所以 $f(a + b) = f(a) \cup f(b)$ 。 这就验证了 f 是同态。

最后,假设 $a \neq b$,不妨设 $a \cdot (-b) = c \neq 0$,则 $c \cdot b = 0$ 。令 U_c 和 U_b 分别为 c 和 b 生成的超滤,则 $c \notin U_b$ 且 $b \notin U_c$ 。但是 $a \in U_c$,所以 $f(a) \neq f(b)$ 。所以 f 是一个嵌入。

1.3 完全性与紧致性

回到命题逻辑的 Lindenbaum 代数 $\mathcal{B}(T)$,以下命题表明每个命题赋值函数都对应着到 $\{0,1\}$ 这个代数上一个同态。

引理 **1.3.1.** 假设 $h: \mathcal{B}(T) \to \{0,1\}$ 是从 Lindenbaum 代数到 $\{0,1\}$ 的同态,定义 $V: P \to \{0,1\}$ 为:对任意命题符号 $p \in P$,

$$V(p) = 1$$
 当且仅当 $h([p]) = 1$,

则 V 是一个赋值, 并且对任意 α , $\bar{V}(\alpha) = h([\alpha])$ 。

再由引理1.2.23,每个超滤都对应着一个命题逻辑的赋值。

引理 1.3.2. 对任意 Lindenbaum 代数 $\mathcal{B}(T)$ 上的超滤 U,存在一个命题逻辑的 赋值 V_U 使得对任意 α , $\bar{V}_U(\alpha)=1$ 当且仅当 $[\alpha]\in U$; 反之,如果 V 是一个赋值并且 $V\models T$,则 $U=\{[\alpha]\mid \bar{V}(\alpha)=1\}$ 是一个超滤。

证明.

引理 **1.3.3.** 令 $\mathcal{B}(T)$ 为 Lindenbaum 代数, $F = \{ [\alpha] \mid T \vdash \alpha \}$ 是 $\mathcal{B}(T)$ 上的滤。证明. 显然 F 不为空,并且由于 T 是一致的,所以 $[0] \not\in F$ 。如果 $T \vdash \alpha$ 并且 $T \vdash \beta$,则 $T \vdash \alpha \land \beta$,所以 $[\alpha], [\beta] \in F$ 蕴含 $[\alpha] \cdot [\beta] \in F$ 。最后,如果 $T \vdash \alpha$ 并且 $\alpha \to \beta$,则 $T \vdash \beta$ 。所以 $[\alpha] \in F$ 且 $[\alpha] \leq [\beta]$ 蕴含 $[\beta] \in F$ 。

定理 1.3.4 (命题逻辑完全性定理). $\Diamond \alpha$ 为任意命题逻辑的公式, Σ 为公式集,

- (1) 如果 $\Sigma \models \alpha$,则 $\Sigma \vdash \alpha$ 。
- (2) 如果 Σ 一致,则存在赋值 V, $V \models \Sigma$ 。

证明. (1) 与 (2) 是等价的,我们证明 (2)。假设 Σ 是一致的,令 $F = \{ [\alpha] \mid \Sigma \vdash \alpha \}$ 为 $\mathcal{B}(\Sigma)$ 上的滤。根据超滤存在定理,令 $U \supseteq F$ 为超滤,则 U 确定了一个命题逻辑上的赋值 V_U ,并且满足,对任意 $[\alpha] \in U$, $\bar{V}_U(\alpha) = 1$ 。所以 $V_U \models \Sigma$ 。

在通常的逻辑教材中,紧致性定理是完全性定理的推论。但以上代数证明没有给出更多信息。另一方面,从代数的角度看,紧致性定理更为深刻。接下来我们尝试给出这个定理的不同证明。

1.3.1 紧致性定理的布尔代数证明

任给命题逻辑的语句集 Σ , 我们定义一个新的等价关系 \equiv 为:

 $\alpha \equiv \beta$ 当且仅当 $\Sigma \vdash_f \alpha \leftrightarrow \beta$,

其中 $\Sigma \vdash_f \alpha$ 表示: 存在一个有穷的 $\Sigma_0 \subseteq \Sigma$, $\Sigma \vdash \alpha$ 。

引理 1.3.5. 如果 Σ 是有穷可满足的,则 $\mathcal{B}(\Sigma/\equiv)$ 是一个非平凡的布尔代数。

定理 1.3.6 (紧致性定理). $\Diamond \Sigma$ 是命题逻辑的公式集, 如果 Σ 是有穷可满足的,则 Σ 是可满足的。

证明. 令 Σ 是有穷可满足的, $\mathcal{B}(\Sigma/\equiv)$ 是布尔代数。 $F=\{[\alpha]\mid \Sigma\vdash_f\alpha\}$ 是一个滤。根据超滤存在定理,令 $U\supseteq F$ 为超滤, V_U 为 U 确定的赋值,则 $V_U\models\Sigma$ 。

1.3.2 紧致性定理的超积证明

证明. 令 $I \neq \Sigma$ 的所有有穷子集的集合。对每一 $i \in I$,存在一个赋值 V_i 使 得 $V_i \models i$,即,对任意 $\alpha \in i$, $V_i \models \alpha$ 。

接下来我们要定义一个超滤 U 使得对任意 $\alpha \in \Sigma$, $X_{\alpha} \in U$ 。

对任意 α ,我们定义 $Y_{\alpha} = \{i \in I \mid \alpha \in i\}$ 。令 $G = \{Y_{\alpha} \mid \alpha \in \Sigma\}$ 。G 有有穷交性质:对任意 $\alpha_1, \dots, \alpha_n$,显然 $\{\alpha_1, \dots, \alpha_n\} \in Y_{\alpha_1} \cap \dots \cap Y_{\alpha_n}$ 。所以 G 生成 $\mathcal{P}(I)$ 上的超滤 U。

如果 $\alpha \in \Sigma$, 则必有 $Y_{\alpha} \subseteq X_{\alpha}$, 所以 $X_{\alpha} \in U$ 。

显然,U 可以确定一个命题逻辑的赋值 V_U : 对任意命题符号 p, $V_U(p)=1$ 当且仅当 $X_p\in U$ 。这个赋值满足对任意 α , $\bar{V}_U(\alpha)=1$ 当且仅当 $X_\alpha\in U$ 。所以 $V_U\models \Sigma$ 。

1.3.3 布尔代数与一阶逻辑的完全性

定义 1.3.7. 令 \mathcal{B} 是布尔代数, U 是 \mathcal{B} 上的超滤:

- (1) 令 $D \subseteq B$ 并且 $\sum D$ 存在。我们称 U 是D-完全的 ,或者称 U 保持 $\sum D$,如果 $\sum D \in U$ 蕴涵存在 $d \in D$, $d \in U$ 。
- (2) 如果 \mathcal{D} 是 \mathcal{B} 的子集的族,对任意 $\mathcal{D} \in \mathcal{D}$, $\sum \mathcal{D}$ 都存在。我们称 \mathcal{U} 是 \mathcal{D} -完全的,如果对任意 $\mathcal{D} \in \mathcal{D}$, \mathcal{U} 都是 \mathcal{D} -完全的。

练习 1.3.8. 定义1.3.7中的(1)可以替换为以下条件: $D \subseteq U$ 蕴涵 $\prod D \in U$ 。 **引理 1.3.9** (Rasiowa-Sikorski 引理). 令 \mathcal{B} 为布尔代数, \mathcal{D} 是 \mathcal{B} 的子集的族,并且 \mathcal{D} 是可数的,则存在 \mathcal{B} 上的滤 U,U 是 \mathcal{D} -完全的。

证明. 令 $\{D_0, D_1, \dots\}$ 为 \mathcal{D} 的一个枚举。我们如下递归定义 $G = \{g_0, g_1, \dots\} \subseteq B - \{0\}$:

- (1) $g_0 = 1$;
- (2) 假设 g_n 已定义,如果 $g_n \cdot \sum D_n = 0$,则令 $g_{n+1} = g_n$;否则,一定存在 $d \in D_n$, $g_n \cdot d > 0$,任取这样的一个 $d_n \in D$,令 $g_{n+1} = g_n \cdot d_n$ 。对任意 $g_i \in G$,都有 $g_{i+1} \leq g_i$,所以 G 有有穷交性质。最后,令 U 为 G 生成的超滤。我们以下证明 U 是 \mathcal{D} -完全的。

对任意 $D_n \in \mathcal{D}$,如果 $\sum D_n \in U$,则 $g_n \cdot \sum D_n > 0$,所以存在 $d_n \in D$, $g_{n+1} = g_n \cdot d_n$ 。由于 $g_{n+1} \in U$ 并且 $g_{n+1} \leq d_n$,所以 $d_n \in U$ 。

练习 1.3.10. 对于任意偏序集 (P, \leq) ,我们也可以定义相应的概念:

- (1) 如果 $D \subseteq P$ 满足:对任意 $p \in P$,总存在 $d \in D$ 使得 $0 < d \le p$,就 称 $D \neq P$ 的稠密子集。(注意,P 可能不包含 0,但这时我们的定义不 影响。)
- (2) 如果 $\mathcal{D} \in P$ 的稠密子集的族, $U \notin P$ 上的超滤, 如果对任意 $D \in \mathcal{D}$, $U \cap D \neq \emptyset$, 就称 $U \notin \mathcal{D}$ -脱殊的。

证明: 令 \mathcal{B} 为布尔代数,它也是一个偏续集。 \mathcal{D} 为 (\mathcal{B} , \leq) 可数的稠密子集的族,对任意 $p \in P$,存在一个脱殊的超滤 U, $p \in U$ 。

注记 1.3.11. 引理1.3.9中,要求 \mathcal{D} 是可数的这一点是必须的。如果 \mathcal{D} 不可数,相应的命题在 ZFC 中不可证明,虽然它与 ZFC 是一致的。

为了证明一阶逻辑的完全性,我们给出以下定义,它是 \mathcal{D} -完全的逻辑版本。

定义 1.3.12. $\mathcal{B}(T)$ 上的超滤 U 是 Henkin 的,如果对任意存在公式 $\exists x \psi$, $[\exists x \psi] \in U$ 蕴含存在变元 y, $[\psi_y^x] \in U$ 。

引理 1.3.13. 如果 T 是一阶逻辑的一致的理论, $\mathcal{B}(T)$ 是 Lindenbaum 代数。 如果 U 是 $\mathcal{B}(T)$ 上的 Henken 超滤,则存在一个模型 \mathfrak{A}_U ,和赋值函数 s, $(\mathfrak{A}_U,s) \models T$ 。

证明. 首先,定义所有项上的等价关系: $t_1 \sim t_2$ 当且仅当 $[t_1 = t_2] \in U$ 。令 $|\mathfrak{A}_U| = \{[t] \mid t$ 是项 $\}$ 。接下来定义非逻辑符号的解释:

- 对任意 n-元谓词符号 P,任意项 t_1, \dots, t_n ,($[t_1], \dots, [t_n]$) $\in P^{\mathfrak{A}_U}$ 当且 仅当 $[Pt_1, \dots t_n] \in U$ 。
- 对任意函数符号 f , 任意项 t_1, \dots, t_n , $f^{\mathfrak{A}_U}([t_1], \dots, [t_n]) = [t]$ 当且仅 当 $[ft_1, \dots, t_n = t] \in U$ 。
- 对任意常量符号 c, $c^{\mathfrak{A}_U} = [c]$ 。

最后,我们还需定义赋值函数 $s:V \to |\mathfrak{A}_U|$ 为: s(x) = [x]。

断言 1.3.14. 对任意公式 ϕ , $(\mathfrak{A}_U, s) \models \phi$ 当且仅当 $[\phi] \in U$ 。所以, $(\mathfrak{A}_U, s) \models T$.

断言的证明. 首先,验证对任意项 t , $\bar{s}(t) = [t]$ 。这需要对项做归纳,我们留给读者作为练习。

然后我们对公式做归纳证明断言。

如果 ϕ 是原子公式 $t_1 = t_2$,则 $(\mathfrak{A}_U, s) \models t_1 = t_2$ 当且仅当 $\bar{s}(t_1) = \bar{s}(t_2)$,当且仅当 $[t_1] = [t_2]$,当且仅当 $[t_1 = t_2] \in U$ 。

如果 ϕ 是 $Pt_1 \cdots t_n$, $(\mathfrak{A}_U, s) \models Pt_1 \cdots t_n$ 当且仅当 $([t_1], \cdots, [t_n]) \in P^{\mathfrak{A}_U}$ 当且仅当 $[Pt_1, \cdots t_n] \in U$ 。

关于命题连接词 ¬,→ 的验证留给读者。

如果 ϕ 是存在公式 $\exists x\psi$ 。 $(\mathfrak{A}_U,s) \models \phi$ 当且仅当存在[t], $(\mathfrak{A}_U,s_{[t]}^x) \models \psi$,当且仅当存在[t], $(\mathfrak{A}_U,s) \models \psi_t^x$,当且仅当存在[t], $[\psi_t^x] \in U$ 。由于 $[\psi_t^x] \leq [\exists x\psi]$,所以 $[\exists x\psi] \in U$ 。另一方面,由于U是 Henkin 的,所以 $[\exists x\psi] \in U$ 蕴含存在[t], $[\psi_y^x] \in U$,后者蕴含 $(\mathfrak{A}_U,s) \models \psi_y^x$,这又蕴含 $(\mathfrak{A}_U,s_{[y]}^x) \models \psi$,所以 $(\mathfrak{A}_U,s) \models \exists x\psi$ 。

定理 1.3.15 (一阶逻辑完全性定理). 如果一阶逻辑的公式集 Σ 是一致的,则 Σ 是可满足的。

1.3.4 超积与一阶逻辑的紧致性

令 S 为一集合,考虑语言 \mathcal{L} 的模型族 $\{\mathfrak{A}_x \mid x \in S\}$ 。如果 U 是 S 上的超滤,则可以定义 $\prod_{x \in S} A_x$ 上的等价关系:

$$f =_{U} g \{x \in S \mid f(x) = g(x)\} \in U.$$

令 $A = \prod_{x \in S} A_x / =_U$ 为相应的等价类,我们可以定义语言 $\mathcal L$ 的模型 $\mathfrak A$ 如下:

1. 如果 $P(x_1,...,x_n)$ 为谓词,则对任意 $[f_1],...,[f_n] \in A$,

$$P^{\mathfrak{A}}([f_1],...,[f_n])$$
 当且仅当 $\{x \in S \mid P^{\mathfrak{A}_x}(f_1(x),...,f_n(x))\} \in U$.

2. 如果 $F(x_1,...,x_n)$ 是函数, $[f_1],...,[f_n] \in A$, 则令:

$$F^{\mathfrak{A}}([f_1],\ldots,[f_n])=[f],$$

其中 f 是如下定义的函数:对任意 $x \in S$, $f(x) = F^{\mathfrak{A}_x}(f_1(x), \ldots, f_n(x))$ 。

3. 如果 c 是常量,则令

$$c^{\mathfrak{A}} = [f],$$

而 f 则是如下定义的函数: 对任意 $x \in S$, $f(x) = c^{\mathfrak{A}_x}$ 。

 \Box

如上定义的模型 \mathfrak{A} 称为U 生成的 $\{\mathfrak{A}_x \mid x \in S\}$ 的超积,记为 $\mathrm{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 。以下重要定理表明,对任意公式 φ ,超积 $\mathrm{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 满足 φ 当且 仅当"几乎所有的 \mathfrak{A}_x "满足 φ 。

定理 1.3.16 (Łoś). 令 U 为集合 S 上的超滤, 并且 $\mathfrak{A} = \text{Ult}_U\{\mathfrak{A}_x \mid x \in S\}$ 为超积,则

(1) 对任意公式 $\varphi(x_1,\ldots,x_n)$, 任意 $f_1,\ldots,f_n\in\prod_{x\in S}A_x$,

 $\mathfrak{A} \models \varphi[[f_1], \dots, [f_n]]$ 当且仅当 $\{x \in S \mid \mathfrak{A}_x \models \varphi[f_1(x), \dots, f_n(x)]\} \in U$.

(2) 如果σ是句子,则

 $\mathfrak{A} \models \sigma$ 当且仅当 $\{x \in S \mid \mathfrak{A}_x \models \sigma\} = S \in U$.

定理 1.3.17 (一阶逻辑紧致性). 对任意语句集 Σ , 如果 Σ 是有穷可满足的,则 Σ 可满足。

证明. 令 I 为 Σ 的所有有有穷子集的族。对任意 $i \in I$,令 \mathfrak{A}_i 为 i 的一个模型。对任意公式 $\sigma \in \Sigma$,令 $Y_{\sigma} = \{i \in I \mid \sigma \in i\}$,则 $\{Y_{\sigma} \mid \sigma \in \Sigma\}$ 有有穷交性质。令 U 为由它生成的超滤,UltU 为超积。对任意 $\sigma \in \Sigma$, $X_{\sigma} = \{i \mid \mathfrak{A}_i \models \sigma\} \subseteq Y_{\sigma}$,所以 $X_{\sigma} \in U$,由 Łoś 定理,Ult $U \models \Sigma$ 。

如果对任意 $x \in S$, $\mathfrak{A}_x = \mathfrak{A}$ 都相等,则超积称为 \mathfrak{A} 的超幂,记为 Ult $_U$ \mathfrak{A} 。根据 Łoś 定理,模型 \mathfrak{A} 和它的超幂是初等等价的。不仅如此,我们还有以下结果:

推论 1.3.18. 对任意模型 \mathfrak{A} , 存在 \mathfrak{A} 到其超幂上的初等嵌入 $j:\mathfrak{A}\to \mathrm{Ult}_U\,\mathfrak{A}$ 。证明. 对任意 $a\in A$,定义 $c_a:S\to A$ 为常值函数:

$$\forall x \in S(c_a(x) = a).$$

由此,定义 $j: \mathfrak{A} \to Ult_U(\mathfrak{A})$ 为:

$$j(a) = [c_a].$$

以下证明 j 是初等嵌入。如果 $a \in A$,则根据 Łoś 定理,Ult $_U$ 郑 $\models \varphi[j(a)]$ 当且仅当 Ult $_U$ 郑 $\models \varphi[c_a]$,当且仅当 $\{x \in S \mid \mathfrak{A} \models \varphi[a]\} \in U$,由于集合 $\{x \in S \mid \mathfrak{A} \models \varphi[a]\}$ 或者为空集或者为 S,而空集不属于 U,所以它等于 S,即 $\mathfrak{A} \models \varphi[a]$ 。

推论1.3.18中所定义的嵌入又称为标准嵌入。

1.4 习题

1.4.1. 令 \mathcal{B} 为任意布尔代数, $a,b,c \in \mathcal{B}$, 证明:

$$-(-a + (-b) + c) + (-(-a + b)) + (-a) + c = 1.$$

- **1.4.2.** 在 Lingdenbaum 代数中 $\mathcal{B}(\emptyset)$ 中,如果 $[\alpha]$ 是原子,则对任意公式 β , $\vdash \alpha \to \beta$ 或者 $\vdash \alpha \to \neg \beta$ 。
- **1.4.3.** 对任意布尔代数 A, D, 定义它们的积 C 为:
 - 1. $C = A \times B$;
 - 2. $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$
 - 3. $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2);$
 - 4. -(a,b) = (-a,-b);
 - 5. $0 = (0,0), 1 = (1,1)_{\circ}$

证明 8 是一个布尔代数。

- **1.4.4.** 对任意布尔代数 \mathcal{B} ,任意 $a \in B$ 且 a > 0,令 $B \upharpoonright a = \{b \in B \mid b \leq a\}$ 。 令 $\mathcal{B} \upharpoonright a$ 中的运算 $+,\cdot,0$ 保持与 \mathcal{B} 中一致,而 1 和 -b 分别为 a 和 $a \cdot (-b)$ 。
 - 1. 证明 $\mathcal{B} \upharpoonright a$ 是一个布尔代数;
 - 2. 对任意 $a \in B$, $\mathcal{B} \cong (\mathcal{B} \upharpoonright a) \times (\mathcal{B} \upharpoonright -a)$ 。

- **1.4.5.** 令 $h: A \to \mathcal{B}$ 为同态, $D \subseteq B$ 且 $\sum D$ 存在,称 h 保持 $\sum D$,如果 $\sum f[D]$ (在 \mathcal{B} 中) 存在,并且 $f(\sum D) = \sum f[D]$ 。类似地可以定义保持 $\prod D$ 。证明: \mathcal{B} 上的超滤 U 保持 $\sum D$ 当且仅当 U 所确定的同态 $f: \mathcal{B} \to \{0,1\}$ 保持 $\sum D$ 。
- **1.4.6.** 令 \mathcal{B} 为布尔代数, $h: \mathcal{B} \to \mathcal{P}(\mathrm{Ult}(\mathcal{B}))$ 为 Stone 映射。对任意 $b \in \mathcal{B}$,称 h(b) 为 $S(\mathcal{B})$ 的基本开集,如果集合 $X \subseteq \mathrm{Ult}(\mathcal{B})$ 能表示成基本开集的并集,就称 X 为开集,开集的补集称为闭集。
 - 1. 证明 h(d) 既是开集也是闭集, 称为开闭集。
 - 2. 对任意 $U, V \in \text{Ult}(\mathcal{B})$,如果 $U \neq V$,则存在一个开闭集包含 U,但不包含 V。(或者相反,包含 U,不包含 V。)
- **1.4.7.** 如果 $C \subseteq \mathcal{P}(\text{Ult}(\mathcal{B}))$ 是开集的族,且 $\bigcup C = \text{Ult}(\mathcal{B})$,就称 X 是开覆盖。证明:如果 C 是开覆盖,则存在有穷的 $C_0 \subseteq C$, $\bigcup C_0 = \text{Ult}(\mathcal{B})$ 。
- **1.4.8.** 对任意布尔代数 \mathcal{B} , $D \subseteq B$ 并且 $\sum D$ 存在。证明: Stone 映射保持 $\sum D$ 当且仅当存在有穷的 $D_0 \subseteq D$, $\sum D = \sum D_0$ 。
- **1.4.9.** 存在布尔代数 \mathcal{B} , $X \subseteq B$, $0,1 \in X$, 并且 X 关于 +, 封闭,但 X 不是 \mathcal{B} 的子代数。
- **1.4.10.** 令 $\mathcal{B} = (B, 0, 1, +, \cdot)$ 为一个结构, $B \neq \emptyset$,并且满足:对任意 a, b, c,
 - (1) $a \cdot 1 = a$, a + 0 = a;
 - (2) a + b = b + a, $a \cdot b = b \cdot a$;
 - (3) $a \cdot (b+c) = (a \cdot b) + (a \cdot c), \ a + (b \cdot c) = (a+b) \cdot (a+c);$
 - (4) x + (-x) = 1, $x \cdot (-x) = \emptyset$

证明: 3 是一个布尔代数。

1.4.11. 令 $\mathcal{B} = (B, 0, 1, +, \cdot)$ 为一个结构, $B \neq \emptyset$,并且满足:对任意 a, b,

(1) +满足结合律和交换律;

$$(2)$$
 $-(-a + (-b)) + (-(-a + b)) = a;$

(3)
$$a \cdot b = -(-a + (-b))$$
;

(4)
$$1 = -a + a$$
, $0 = -(-a + a)$

证明: \mathcal{B} 是一个布尔代数。【证明它等价于习题1.4.10中的条件。】

1.4.12. 令 $\mathcal{B} = (B, 0, 1, +, \cdot)$ 为一个结构, $B \neq \emptyset$,并且满足:对任意 a, b,

- (1) +满足结合律和交换律;
- (2) -(-a) = a;
- (3) a + (-(-b + b)) = a;

(4)
$$a + -(b + c) = -(-(-b + a) + (-(-c + a)));$$

(5)
$$a \cdot b = -(-a + (-b));$$

(6)
$$1 = -a + a$$
, $0 = -(-a + a)$

证明: 28 是一个布尔代数。【证明它等价于习题1.4.10中的条件。】

1.4.13. 令 $\mathcal{B} = (B, 0, 1, +, \cdot)$ 为一个结构, $B \neq \emptyset$,并且满足:

- 1. +满足结合律;
- 2. 对任意 a, b, c, a + (-b) = c + (-c) 当且仅当 a + b = b。

证明: 8 是一个布尔代数。【证明它等价于习题1.4.10中的条件。】

1.4.14. 令 \mathbb{Z} 表示整数集合,E,O 分别表示偶数和奇数集, $X \subseteq_f Y$ 表示 X 是 Y 的有穷子集。如果 $B = \{X \subseteq \mathbb{Z} \mid X \subseteq_f E \lor O \subseteq \mathbb{Z} - X\}$,证明 $\mathcal{B} = (B,\emptyset,\mathbb{Z},\cap,\cup,-)$ 是布尔代数。

- **1.4.15.** 令 \mathbb{Z} 表示整数集合, $X \subseteq \mathbb{Z}$ 称为周期的,如果存在 $m \in \mathbb{Z}$, $X = \{x + m \mid x \in X\}$,并称 $m \in X$ 的周期。我们用 $m\mathbb{Z}$ 表示 \mathbb{Z} 的所有周期为 m 的子集组成的集合族。证明:
 - 1. $0\mathbb{Z} = \mathcal{P}(\mathbb{Z});$
 - 2. $1\mathbb{Z} = \{\emptyset, \mathbb{Z}\};$
 - 3. 2 Z, 3 Z都(在通常的集合运算下)是布尔代数。它们各有几个元素?
 - 4. 对任意 m, m 都(在通常的集合运算下)是布尔代数,它有几个元素?你能写出这些元素吗?
- **1.4.16.** 令 ℝ 是实数集,引进两个符号 $-\infty$, ∞ , 用 $-\infty$ < x < ∞ 表示 x ∈ \mathbb{R} 。 我们用 $[p,q) = \{x \in \mathbb{R} \mid p \le x < q\}$,其中 $p,q \in \mathbb{R} \cup \{-\infty,\infty\}$,表示实数的半开半闭区间。其中, $[-\infty,\infty) = \mathbb{R}$,对任意实数 p, $[-\infty,p) = \{x \in \mathbb{R} \mid x < p\}$, $[p,\infty) = \{x \in \mathbb{R} \mid p \le x\}$ 。另外,如果 q < p,则规定 $[p,q) = \emptyset$ 。
 - 1. 对任意 r_1, r_2, s_1, s_2 , $[r_1, r_2) \cap [s_1, s_2) = [p, q)$, 其中 $p = \max\{r_1, s_1\}$, $q = \min\{r_2, s_2\}$;
 - 2. $[p,q) \neq \emptyset$ 当且仅当 $r_1, s_1 < r_2, s_2$ 。
 - 3. 对任意 $X \subseteq \mathbb{R}$,如果存在 $p_1 < q_1 < \cdots p_n < q_n$ 使得

$$X = [p_1, q_1) \cup \cdots \cup [p_n, q_n),$$

则

$$\mathbb{R} - X = [-\infty, p_1) \cup [q_1, p_2) \cup \cdots \cup [q_{n-1}, p_n) \cup [q_n, \infty).$$

4. 证明 $I = \{X \subseteq \mathbb{R} \mid X$ 可以表示成有穷多个半开半闭区间的并 $\}$ 在通常的集合运算下是布尔代数。