Lunes 6 de noviembre

Clase didáctica

Redes Neuronales Artificiales

Profesor Carlos Valle Vidal

¿Por qué estudiar redes neuronales ?

Las redes neuronales nos permiten resolver muchos problemas reales.

Permite la detección del punto de ruptura de las olas.

¿Qué son las redes neuronales ?

Las redes neuronales son modelos bioinspirados, y los entenderemos como una red de elementos de cómputo no lineales interconectados.

Predecir las ventas anuales de una empresa (MM\$) teniendo en cuenta:

- Ingreso total de posibles clientes (MM\$)
- Gastos de publicidad de la industria (MM\$)
- Costos de producción (MM\$)

Conjunto de Entrenamiento

Ind	Clientes (MM\$)	Publicidad (MM\$)	Producción (MM\$)	Ventas Anuales (MM\$)
1	3,415	0,512	1,721	8,666
2	2,542	0,491	1,809	3,221
3	3,216	0,487	1,155	11,833
4	3,373	0,538	1,395	11,290
5	3,610	0,513	2,018	7,072

Redes Neuronales Feedforward

...Y ahora computamos la capa de salida

Primera pregunta

¿Cómo ajustamos los pesos y sesgos para disminuir el error?

Gradiente descendiente peso ← peso - η <u>∂Error</u> ∂peso

sesgo - η <u>∂Error</u> ∂sesgo $\eta \in (0,1)$ es la tasa de aprendizaje Segunda pregunta

¿Cómo calculamos esa derivada parcial?

Regla de la cadena

Calculando derivadas de la capa de salida

Calculando derivadas de la capa escondida


```
[1]: import tensorflow as tf
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.callbacks import History
    from keras.optimizers import SGD
[2]: hist = History()
    model = Sequential()
    model.add(Dense(3, input_dim=3, activation='tanh'))
    model.add(Dense(3, activation='tanh'))
    model.add(Dense(1, activation='linear'))
    model.compile(optimizer=SGD(learning_rate=0.001), loss='mse')
    model.summary()
    Model: "sequential"
    Layer (type)
                               Output Shape
                                                       Param #
    _____
     dense (Dense)
                               (None, 3)
     dense_1 (Dense)
                               (None, 3)
                                                       12
     dense_2 (Dense)
                               (None, 1)
    Total params: 28
    Trainable params: 28
    Non-trainable params: 0
[]: history = model.fit(Xm[train], ym[train], validation_data=(Xm[val], ym[val]),
                       epochs= 100, batch_size=1)
```

Repensando las redes neuronales

Redes Neuronales Profundas

Esquema simplificado de red neuronal profunda

Esquema simplificado de red neuronal profunda

Diapositiva 36

este gif puede ser con loop? Carlos Valle Vidal; 13-09-2022 1

Podemos agregar más capas...

Al agregar más capas, podemos aprender una jerarquía de atributos, esto nos permite reciclar los atributos de las capas anteriores y con ello podemos obtener representaciones más compactas.

