Лекция 9 по курсу «Цифровая обработка сигналов» 31 марта 2025 г.

6. Многоскоростная обработка сигналов.

6.1. Система однократной интерполяции.

Интерпретация процедуры интерполяции во временной и в частотной области.

6.2. Система однократной децимации.

Эффект наложения при децимации. Интерпретация процедуры децимации в частотной и во временной области.

6.3. Система однократной передискретизации.

Интерполяция с рациональным шагом.

Многоскоростная обработка сигналов

6. Многоскоростная обработка сигналов.

Многоскоростными называют системы ЦОС, в которых различные этапы обработки сигнала выполняются на разных частотах дискретизации — разных скоростях поступления отсчетов. В таких системах необходима "стыковка" соответствующих этапов цифровой обработки, которая сводится к преобразованию частоты дискретизации.

Многоскоростные системы находят применение в связи, при обработке речи, спектральном анализе, в радиолокационных системах и антенных системах, в цифровой аудиотехнике, при сжатии изображений.

Преобразование частоты дискретизации в многоскоростных системах выполняется в одном из следующих вариантов.

1) Повышение частоты дискретизации в целое число раз L, называемое $\it uhmepnonsuue u$ (в англоязычной литературе upsampling, expansion или interpolation) и выполняемое системой интерполяции с коэффициентом интерполяции L, равным:

$$L = \frac{\tilde{f}_{\pi}}{f_{\pi}},\tag{1}$$

где $f_{_{
m I\! I}}$ и $ilde{f}_{_{
m I\! I}}$ — частоты дискретизации сигналов на входе и выходе системы интерполяции соответственно.

На рис. 6.1 приведен пример интерполяции с коэффициентом L=4. Шаг дискретизации исходного сигнала $\Delta t=1/f_{\rm H}$, после интерполяции в L раз меньше:

$$\frac{1}{\tilde{f}_{_{\Pi}}} = \frac{\Delta t}{L} = \frac{1}{Lf_{_{\Pi}}}.$$
 (2)

Новая частота дискретизации в L раз больше: $\tilde{f}_{_{\! I\! J}} = L f_{_{\! I\! J}}.$

Многоскоростная обработка сигналов

2) Понижение частоты дискретизации в целое число раз M, называемое **децимацией или прореживанием** (в англоязычной литературе downsampling, compression или decimation) и выполняемое системой децимации с коэффициентом децимации M, равным:

$$M = \frac{f_{\pi}}{\tilde{f}_{\pi}},\tag{3}$$

где $f_{_{\rm I\!I}}$ и $\tilde{f}_{_{\rm I\!I}}$ — частоты дискретизации сигналов на входе и выходе системы децимации соответственно.

На рис. 6.2 приведен пример прореживания сигнала с коэффициентом M=4. Шаг дискретизации исходного сигнала $\Delta t=1/f_{\scriptscriptstyle \Pi}$, после интерполяции в L раз больше:

$$\frac{1}{\tilde{f}_{\pi}} = M \Delta t = \frac{M}{f_{\pi}}.$$
 (4)

Новая частота дискретизации в M раз меньше: $\tilde{f}_{_{
m I\!\!I}} = f_{_{
m I\!\!I}} \, / \, M \, .$

Рис. 6.2. Прореживание сигнала с коэффициентом M = 4.

Многоскоростная обработка сигналов

3) Повышение или понижение частоты дискретизации на рациональный коэффициент L/M, называемое **передискретизацией** (resampling), реализуется каскадным соединением систем интерполяции с коэффициентом L и децимации с коэффициентом M.

Пример приведен на рис. 6.3.

Системы преобразования частоты называют *однократными*, если увеличение (уменьшение) частоты дискретизации выполняется за один прием — однократно; многократными называют системы, образованные каскадным соединением однократных систем, что оправдано при больших значениях L и M, т. к. требования к однократным системам существенно менее жесткие.

Рис. 6.3. Передискретизация сигнала с коэффициентом L/M = 4/3.

6.1. Система однократной интерполяции.

Система однократной интерполяции с целым коэффициентом L может быть построена так, как показано на рис 6.4.

Рис. 6.4. Система однократной интерполяции

Входной сигнал x[k] с частотой дискретизации f_{π} поступает на блок $\uparrow L$ (экспандер), который формирует сигнал q[k] с частотой дискретизации $\tilde{f}_{\pi} = L f_{\pi}$:

$$q[k] = \begin{cases} x[k/L], k = Lm, m \in \mathbb{Z}; \\ 0, k \neq Lm, m \in \mathbb{Z}. \end{cases}$$
 (5)

Построение последовательности q[k] эквивалентно добавлению L-1 нулевого отсчета между каждой парой отсчетов x[k].

Затем сигнал q[k] поступает на цифровой фильтр нижних частот с передаточной функцией H(z).

Рис. 6.5. Интерпретация процедуры однократной интерполяции с коэффициентом L=4 во временной области

Рис. 6.5. Интерпретация процедуры однократной интерполяции с коэффициентом L=4 во временной области.

Рис. 6.6. Интерпретация процедуры однократной интерполяции с коэффициентом L=4 в частотной области.

Напомним, что по **свойству ДВПФ** если $x[k] \leftrightarrow X(v)$, то

$$\sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} X(\nu L).$$

Последовательность q[k] образуется путем добавления L-1 нулевого отсчета между каждой парой соседних отсчетов последовательности x[k]:

$$q[k] = \sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL], \qquad \mathbf{1}[k-mL] = \begin{cases} 1, k=mL; \\ 0, k \neq mL. \end{cases}$$

Пусть $q[k] \leftrightarrow Q(v)$. Тогда Q(v) = X(vL), т.е. функция Q(v) образуется путем сжатия X(v)вдоль оси частот в L раз. В нашем случае у сигнала на выходе блока $\uparrow L$ частота дискретизации $\tilde{f}_{\pi} = L f_{\pi}$, нормированная частота $\tilde{v} = f / \tilde{f}_{\pi} = f \Delta t / L$.

При сжатии периодической функции X(v) вдоль оси частот в L на отрезке оси частот $\tilde{v} \in [-0,5;0,5]$ помимо основных составляющих спектра (на частотах $\tilde{v} \in [-1/2L;1/2L]$) появляются их копии. Задача цифрового фильтра в системе однократной интерполяции заключается в ослаблении компонент спектра, соответствующих этим копиям.

АЧХ фильтра в идеальном случае на основном периоде определяется как

$$\left| H_{\text{ид}}(\tilde{\mathbf{v}}) \right| = \begin{cases} L, & |\tilde{\mathbf{v}}| \le \frac{1}{2L}; \\ 0, \text{при других } \tilde{\mathbf{v}} \in [-0.5, 0.5]. \end{cases}$$
 (6)

 $\tilde{\mathbf{v}}$ — частота, нормированная на величину $\tilde{f}_{\mathbf{g}} = L/\Delta t$. В результате получается последовательность y[k], которая является результатом интерполяции сигнала x[k]. Усиление фильтра L в полосе пропускания в (6) необходимо для того, чтобы обеспечить соответствие амплитуд в x[k] и q[k], поскольку длина последовательности q[k] больше x[k] L раз.

В силу невозможности физической реализации идеального фильтра нижних частот, используется фильтр нижних частот, частотная характеристика которого с некоторой точностью приближена к идеальной. Отметим, что и фазовая характеристика реального фильтра не будет нулевой на всех частотах. Выход реальной системы однократной системы интерполяции будет следовать с некоторой задержкой, зависящей от используемого фильтра. Для сохранения формы исходного сигнала (исключения влияния фазовых искажений) в качестве ФНЧ выбирают КИХ-фильтр с

линейной ФЧХ, либо с ФЧХ, приближенной к линейной в полосе пропускания.

Рис. 6.7. ДВПФ последовательностей x[k] и y[k] в случае идеального фильтра нижних частот.

Покажем, что коэффициент усиления фильтра (6) в полосе пропускания должен быть равен L. Предположим, что аналоговый сигнал x(t) был дискретизован с шагом дискретизации Δt , в результате чего получается последовательность $x[k] = x(k\Delta t)$. Связь между спектром аналогового сигнала $X_a(f)$ и ДВПФ X(f) последовательности x[k] имеет вид:

$$X(f) = \frac{1}{\Delta t} \sum_{m=-\infty}^{\infty} X_a(f + mf_{\pi}).$$
 (7)

В тоже время, если x(t) дискретизовать с шагом $\Delta t/L$ и получить последовательность $y[k]=x(k\Delta t/L)$, то связь между $X_a(f)$ и её ДВПФ Y(f) имеет вид ($\tilde{f}_\pi=f_\pi L$)

$$Y(f) = \frac{1 c}{\Delta t / L} \sum_{m=-\infty}^{\infty} X_a (f + m\tilde{f}_{\pi}). \tag{8}$$

В идеальной ситуации, когда эффект наложения при дискретизации в обоих случаях отсутствует, связь между X(f) и Y(f) на отрезке $f\in [-f_{\pi}/2;f_{\pi}/2]$ имеет вид $Y_{\pi}(f)=L\,X_{\pi}(f)$. Это означает, что коэффициент усиления идеального фильтра в полосе пропускания равен L.

Описание системы однократной интерполяции в z-плоскости.

Пусть X(z), Q(z) и Y(z) — z- образы последовательностей x[k], q[k] и y[k]. Соотношение вход/выход системы интерполяции в z-плоскости имеет вид:

$$Y(z) = Q(z)H(z) = X(z^{L})H(z).$$
 (9)

Второе равенство в (9) следует из того, что

$$Q(z) = \sum_{k=0}^{\infty} q[k] z^{-k} = \sum_{k=0, L, 2L, \dots}^{\infty} x \left\lfloor \frac{k}{L} \right\rfloor z^{-k} = \sum_{m=0}^{\infty} x[m] z^{-Lm} = X(z^{L}).$$
(10)

Система однократной децимации

6.2. Система однократной децимации.

Система однократной децимации (прореживания) с целым коэффициентом M может быть построена так, как показано на рис 6.8.

Входной сигнал x[k] поступает на цифровой фильтр нижних частот с передаточной функцией с передаточной функцией H(z). Его АЧХ в идеальном случае на основном периоде определяется как

$$\left| H_{\text{ид}}(\mathbf{v}) \right| = \begin{cases} 1, \ |\mathbf{v}| \le \frac{1}{2M}; \\ 0, \text{при других } \mathbf{v} \in [-0.5, 0.5]. \end{cases}$$
 (11)

Здесь v — частота, нормированная на величину $f_{_{\rm I\!I}} = 1 \, / \, \Delta t$.

Рис. 6.9. Интерпретации процедуры однократной децимации с коэффициентом M=2 во временной области и в частотной области.

Система однократной децимации

Цифровой фильтр позволяет ослабить (в идеальном случае — устранить) эффект наложения высокочастотных компонент при изменении частоты дискретизации. Сигнал q[k] с выхода фильтра поступает на блок $\downarrow M$ (компрессор). Компрессор оставляет в сигнале q[k] каждый M-й отсчет:

$$y[k] = \begin{cases} q[m], m = Mk \\ 0, m \neq Mk. \end{cases}$$

Как и в случае системы однократной интерполяции из-за невозможности физической реализации идеального фильтра нижних частот используют некоторую его каузальную аппроксимацию.

Система однократной передискретизации

6.3. Система однократной передискретизации.

Система однократной передискретизации представлена на 6.11. Повышение рис. или частоты понижение дискретизации на коэффициент передискретизации в виде рациональной дроби L/Mреализуется каскадным соединением систем интерполяции с коэффициентом L и децимации с коэффициентом M (рис. 6.11a).

Рис. 6.11. Система однократной децимации.

На рис. 6.11а цифровой фильтр с передаточной функцией $H_i(z)$ относится к блоку однократной интерполяции (AЧХ

(6)). формулой Цифровой фильтр определяется $H_d(z)$ функцией относится передаточной однократной децимации (АЧХ (11)). Оба фильтра работают частоте дискретизации $ilde{f}_{\pi} = L \, / \, \Delta t$. обстоятельство позволяет объединить два фильтра в один с передаточной функцией

$$H(z) = H_i(z)H_d(z).$$
 (12)

АЧХ такого фильтра в идеальном случае на основном периоде определяется как

$$\left|H_{\text{ид}}(\tilde{\mathbf{v}})\right| = \begin{cases} L, & |\tilde{\mathbf{v}}| \leq \min\left\{\frac{1}{2L}; \frac{1}{2M}\right\};\\ 0, & \text{при других } \tilde{\mathbf{v}} \in [-0.5, 0.5]. \end{cases}$$
 (13)

Здесь $ilde{ ilde{v}}$ — частота, нормированная на величину $ilde{f}_{\pi} = L \, / \, \Delta t$.

Частота дискретизации на выходе системы

$$\overline{f}_{\pi} = \frac{L}{M\Delta t}.$$
 (14)

Иногда систему передискретизации в случае L/M>1называют системой интерполяции рациональным

Система однократной передискретизации

коэффициентом L/M , а в случае L/M < 1 — децимации с рациональным коэффициентом M/L.

Рис. 6.12. Интерпретация процедуры однократной передискретизации с коэффициентом L/M=4/3 во временной области.

Система однократной передискретизации

На рис. 6.12 приведена интерпретация процедуры однократной передискретизации с коэффициентом L/M=4/3 во временной и в частотной области. АЧХ фильтра идеального ФНЧ системы однократной передискретизации в данном случае

$$\left| H_{\text{ид}}(\tilde{\mathbf{v}}) \right| = \begin{cases} 4, \ \left| \tilde{\mathbf{v}} \right| \leq 1/8 \\ 0, \text{при других } \tilde{\mathbf{v}} \in [-0.5, 0.5]. \end{cases}$$

Спектральная функция $Q_3(f)$ периодична с периодом $\tilde{f}_{\pi} = L f_{\pi}$, а спектр Y(f) выходного сигнала имеет период $\bar{f}_{\pi} = f_{\pi} L/M$.

Примечание. На практике данный подход не всегда реализуется в системах однократной передискретизации. Например, для перехода от частоты дискретизации $f_{s1} = 44100$ Гц (CD) к $f_{s2} = 48000$ Гц (DVD) шаг передискретизации

$$\frac{L}{M} = \frac{f_{s2}}{f_{s1}} = \frac{48000}{44100} = \frac{160}{147} = \frac{2^5 \times 5}{3 \times 7^2}.$$

Производить дополнение нулями с последующим прореживанием в таком случае не рационально, и используется локальная Лагранжева интерполяция, см. [3]

Задачи с лекции

Задачи для самостоятельного решения

№1. На рисунке приведена блок-схема системы однократной передискретизации с рациональным шагом L/M .

Постройте график для АЧХ идеального фильтра в данной системе однократной передискретизации для следующих случаев:

a)
$$L = 5$$
 и $M = 2$;

б)
$$L = 2$$
 и $M = 5$.

Nº2. На рисунке приведена блок-схема системы однократной интерполяции с целым коэффициентом L=2.

Предположим, что входной сигнал x[k] имеет вид

$$x[k] = w[k]\cos\left(2\pi\frac{1}{8}k\right)$$
, где $w[k]$ — прямоугольное окно

длиной N = 16 отсчетов

$$w[k] = \begin{cases} 1, \text{ при } 0 \le k < 16; \\ 0, \text{ при других } k. \end{cases}$$

Построить графики:

- а) последовательностей x[k] и q[k];
- б) модуля ДВПФ последовательностей x[k] и q[k] в нормированных частотах;
- в) модуля ДВПФ последовательности y[k] в нормированных частотах при условии, что q[k] поступает на вход идеального фильтра нижних частот системы однократной интерполяции.

Задачи с лекции

Nº3. Предположим, что используется система однократной децимации с целым коэффициентом M с идеальным ФНЧ.

Модуль ДВПФ входной последовательности x[k] изображен на рисунке ниже, ее частота дискретизации f_{π} .

Рассмотреть случаи M=2 и M=4.

Построить для частот $f \in [-1,5f_{\pi};-1,5f_{\pi}]$ (в Гц) графики модуля ДВПФ последовательностей q[k] (на выходе фильтра) и y[k] (на выходе системы), а также АЧХ фильтра.

Литература

- 1) Солонина, А. И. Цифровая обработка сигналов и МАТLAB: учеб. пособие / А. И. Солонина, Д. М. Клионский, Т. В. Меркучева, С. Н. Перов. СПб.: БХВ-Петербург, 2013. 512 с.: ил.— (Учебная литература для вузов)
- 2) Айфичер Э., Джервис Б. Цифровая обработка сигналов: пер. с англ. 2008.
- 3) <u>Prandoni P., Vetterli M. Signal processing for communications.</u>
 –Lausanne : EFPL Press, 2008.
- 4) Ричард Л. Цифровая обработка сигналов: пер с англ //М.: ООО «Бином-Пресс. 2006.
- 5) Солонина А.И. Цифровая обработка сигналов в зеркале МАТLAB: учеб. пособие. СПб.: БХВ-Петербург, 2021. 560 с.: ил.

Задачи с лекции

Перечень контрольных вопросов по теме «Многоскоростная обработка сигналов» для подготовки к экзамену.

- 1. Какие системы называют многоскоростными?
- 2. Какие блоки включает в себя система
 - а) однократной интерполяции с целым коэффициентом L;
 - б) однократной децимации с целым коэффициентом M;
 - в) однократной передискретизации с коэффициентом в виде рациональной дроби L/M? Какую задачу выполняет каждый из блоков? Выразите значения частоты дискретизации на выходе каждого из блоков через частоту дискретизации f_{π} исходного сигнала, поступающего на вход системы.
- 3. Какой вид имеет идеальная АЧХ фильтра для системы однократной интерполяции с целым коэффициентом L?
- 4. Какой вид имеет идеальная АЧХ фильтра для системы однократной децимации с целым коэффициентом M ?

- 5. Приведите интерпретацию процедуры однократной интерполяции с целым коэффициентом L во временной и в частотной областях.
- 6. Приведите интерпретацию процедуры однократной децимации с целым коэффициентом M во временной и в частотной областях.