N-CHANNEL SILICON POWER MOS-FET

F-II SERIES

■ Features

- High speed switching
- Low on-resistance
- No secondary breakdown
- Low driving power
- High voltage
- $\bullet V_{\text{GSS}} = \pm 30V$ Guarantee
- Avalanche-proof

Applications

- Switching regulators
- UPS
- DC-DC converters
- General purpose power amplifier

■Outline Drawings

■Max. Ratings and Characteristics

● Absolute Maximum Ratings(Tc=25°C)

Items	Symbols	Ratings	Units	
Drain-source voltage	VDSS	900	V	
Continuous drain current	Ι _D	6	A	
Pulsed drain current	In(puls)	18	A	
Continuous reverse drain current	IDR	6	A	
Gate-source peak voltage	V _{GSS}	±30	V	
Max. power dissipation	Pp	125	W	
Operating and storage	Tch	150	°C	
temperature range	Tstg	$-55 \sim +150$	°C	

■ Equivalent Circuit Schematic

● Electrical Characteristics(Tc=25°C)

Items	Symbols	Test Conditions	Min.	Тур.	Max.	Units
Drain-source breakdown voltage	V _{(BR)DSS}	$I_D = 1 \text{mA}$ $V_{GS} = 0 \text{V}$	900			V
Gate threshold voltage	$V_{\rm GS(1h)}$	$I_D = 1 \text{mA}$ $V_{DS} = V_{GS}$	2.5	3.5	5.0	V
Zero gate voltage drain current	I_{DSS}	$V_{DS} = 900V$ $T_{ch} = 25^{\circ}C$		10	500	μА
		$V_{GS} = 0V$ $T_{Ch} = 125^{\circ}C$		0.2	1.0	mA
Gate-source leakage current	I_{GSS}	$V_{GS} = \pm 30V$ $V_{DS} = 0V$		10	100	nA
Drain-source on-state resistance	R _{DS(on)}	$I_D = 3A$ $V_{GS} = 10V$		2.1	2.8	Ω
Forward transconductance	grs	$I_D = 3A$ $V_{DS} = 25V$	2.0	4.5		S
Input capacitance	Ciss	$V_{DS} = 25V$		1200	1800	
Output capacitance	C_{oss}	$V_{GS} = 0V$		140	210	PΓ
Reverse transfer capacitance	C_{rss}	f = 1MHz		50	75	•
Turn-on time t _{on}	to(on)	$V_{cc} = 600V$ $I_D = 6A$		35	55	
$(t_{on} + t_{d(on)} + t_{r})$	tr	$V_{GS} = 10V$		110	170	
Turn-off time toff	ta(off)	$R_G = 25\Omega$		150	230	ns
$(t_{d(orr)} + t_f)$	tr	N _G = 2311		100	150	
Diode forward on-voltage	V_{SD}	$I_F = 2 \times I_{DR}$ $V_{GS} = 0V$ $T_{ch} = 25^{\circ}C$	-	1.0	1.5	V
Reverse recovery time	tri	$I_F = I_{DR} d_i/d_t = 100 \text{ A}/\mu \text{s} T_{ch} = 25^{\circ}\text{C}$		800		ns

Thermal Characteristics

Items	Symbols	Test Conditions	Min.	Тур.	Max.	Units
I nermai Resistance	R _{th(ch-a)}	channel to air			35.0	°C/W
	R _{th(ch-c)}	channel to case			1.0	°C/W

■Characteristics:

Typical Output Characteristics

On State Resistance vs. Tch

Typical Transfer Characteristics

Typical Drain-Source on State Resistance vs. In

Typical Forward Transconductance vs. lo

Gate Threshold Voltage vs. T_{ch}

Typical Capacitance vs. VDS

Typical Input Charge

Forward Characteristics of Reverse Diode

Allowable Power Dissipation vs. Tc

Transient Thermal Impedance

Safe Operating Area

ご注意

- 1. このカタログの内容(製品の仕様、特性、データ、材料、構造など)は製品の仕様変更のため、または他の理由により事前の予告なく 変更されることがあります。このカタログに記載されている製品を使用される場合には、その製品の最新版の仕様書を入手して、デー グを確認してください。
- 2. 本カタログに記載してある応用例は、富士電機製品を使用した代表的な応用例を説明するものであり、本カタログによって工業所有 植、その他権利の実施に対する保証または実施権の許諾を行うものではありません。
- 3. 富士電機は絶えず製品の品質と信頼性の向上に努めています。しかし、半導体製品はある確率で故障する可能性があります。 富士電機製半導体製品の故障が、結果として人身事故、火災等による財産に対する損害や、社会的な損害を起こさぬように冗長設計、 **延焼防止設計、誤動作防止設計など安全確保のための手段を講じてください。**
- 4. オカタログに記載している製品は、普通の信頼度が要求される下記のような電子機器や電気機器に使用されることを意図して造られ ています。

・コンピュータ

O A 機器

・通信機器(端末)

・計測機器

・工作機械

・オーディオビジュアル機器

・家庭用電気製品

・パーソナル機器

・産業用ロボット など

5. オカタログに記載の製品を、下記のような特に高い信頼度を持つ必要がある機器に使用をご予定のお客様は、事前に富士電機へ必ず 決!絡の上、了解を得てください。このカタログの製品をこれらの機器に使用するには、そこに組み込まれた富士電機製半導体製品が 武障しても、機器が誤動作しないように、バックアップ・システムなど、安全維持のための適切な手段を講じることが必要です。

・輸送機器(車載、舶用など)

・幹線用通信機器

・交通信号機器

・ガス漏れ検知及び遮断機

· 防災/防犯装置

・安全確保のための各種装置

6. 柱めて高い信頼性を要求される下記のような機器には、本カタログに記載の製品を使用しないでください。

·航空機搭載用機器

・原子力制御機器

海底中継機器

・医療機器

- 7. オカタログの一部または全部の転載複製については、文書による当社の承諾が必要です。
- 8. このカタログの内容にご不明の点がありましたら、製品を使用する前に富士電機または、その販売代理店へ質問してください。 水注意書きの指示に従わないために生じたいかなる損害も富士電機とその販売代理店は責任を負うものではありません。

宮士電機株式会社

電子事業本部・パワー半導体事業部

〒151 東京都渋谷区代々木四丁目30番3号 (新宿コヤマビル)

☎ (03) 5388-7651

半導体営業統括部 🕿 (03) 5388-7657

関西支社半導体営業部 ☎ (06) 455-6467

1 (03) 5388-7681 東日本営業課 25 (03) 5388-7680 北陸営業課 四国営業課

5 (0764) 41-1231 **2** (0878) 51-0185

長野営業課

☎ (0263) 36-6740

中部支社半導体営業部 🗖 (052) 204-0295

海外営業部

5 (03) 5388-7685

九州支社半導体営業部 ☎ (092) 731-7132