UE Image L3

Composantes connexes

8-connexité et 4-connexité

Examen 2019

Exercice 2 (1)

On considère la matrice suivante correspondant à une forme A.

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	1	1	1	0	0	1	1	0	0	0
0	1	1	1	1	0	0	0	1	1	1	0
0	1	1	1	0	0	0	0	0	1	1	0
0	1	1	1	0	0	0	0	1	1	1	0
0	0	1	1	1	0	1	1	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

- Indiquer le nombre de composantes 8-connexes
- > Indiquer le nombre de composantes 4-connexes

Là on est dans du binaire: l'objet est noir et le fond est blanc. Quand je parle d'objet ça veut dire que j'ai la forme et le fond.

Donc, quand j'ai une image, à chaque fois que je prends 1 point, je peux définir la composante connexe, à laquelle il appartient : c'est l'ensemble des points que je peux atteindre en restant dans l'objet.

Contröle-Continu-2020

On effectue une binarisation au niveau 2, on désigne alors par X l'ensemble des pixels de niveau strictement supérieur à 2.

le résultat I' de la binarisation

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

Indiquer le nombre de composantes connexes de X en 4connexité, puis en 8-connexité Si je prends par exemple le pixel 3 qui est allumée en rouge, Il appartiendra à la même composante qu'un des 4 pixels qui sont jaune.

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

Il n'ya pas d'intersections entre X et ces pixels donc le pixel rouge consistue à lui-même une composante connexe : une composante 4 connexes

Ainsi on voit bien que le nombre de composantes 4-connexes est au nombre de 5 qui sont ici présentés avec des bleus de couleurs différentes :

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

En 4 connexité: 5

En ce qui concerne les composantes 8 connexes :

A partir d'un pixels, tous ceux qui ont un voisin parmi les 8 plus proche voisin appartient a la meme composante

On voit bien ici que l'on pourra se propager au sein de deux composantes connexes

3	1	2	1	2	0
2	3	2	0	2	2
1	0	1	3	2	3
1	0	1	3	3	2
1	2	1	2	3	3
0	1	3	3	1	0
1	1	3	3	3	3
1	1	1	1	2	1

En 8 connexité: 2

On effectue une binarisation au niveau 2, on désigne alors par X l'ensemble des pixels de niveau strictement supérieur à 2.

3	2	1	2	1	2
2	2	1	2	2	2
1	1	1	2	2	2
1	1	1	2	3	3
1	1	2	3	3	2
1	1	2	3	3	3
1	1	1	3	2	2
1	1	1	2	2	2

Indiquer le nombre de composantes connexes de X en 4connexité, puis en 8-connexité

Un seul pixel qui constitue une composante connexe à lui seul aussi bien en 4-connexité qu'en 8-connexité

_	_					
	3	2	1	2	1	2
2	2	2	1	2	2	2
	l	1	1	2	2	2
	l	1	1	2	3	3
	1	1	2	3	3	2
	l	1	2	3	3	3
	l	1	1	3	2	2
	1	1	1	2	2	2

On voit que on peut se déplacer entre deux pixels quelconques en suivant des chemins verticaux ou horizontaux ce qui veut dire qu'on a une composante connexes en 4-connexité et donc en 8-connexité

2 composantes 4-connexe

2 composantes 8-connexe

(Le nombre de composantes connexes est pas lié au choix de la connexité)

Controle Continu 2021

5° / Quel est le nombre de composantes 4-connexes Quel est le nombre de composantes 8-connexes

0	0	0	0	0	0
0	0	1	1	0	0
0 0 0 0	1	0	0	1	0
0	0	0	0	1	0
0	0	1	1	0	0
0	1	1	0	0	0
1	0	0	0	0	1
1 *	1	1	1	1	0

En 4 connexité:

0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	0	1	0
0	0	0	0	1	0
0	0	1	1	0	0
0	1	1	0	0	0
1	0	0	0	0	1
1 *	1	1	1	1	0

6 composantes 4-connexe

En 8 connexité:

1 composante 8-connexe