Marc Kegel

Kirby-Kalkül

Übungsblatt 4

Aufgabe 1.

Sei K ein Knoten in einer geschlossenen, orientierbaren 3-Mannigfaltigkeit M.

- (a) Es existiert eine Heegaard-Zerlegung von M, so dass K auf der Heegaard-Fläche liegt.
- (b) Berechnen Sie die Homologieklasse von K in $H_1(M; \mathbb{Z})$ ausgehend von einer Heegaard-Zerlegung $(\Sigma_g; \beta_1, \dots, \beta_g)$ von M mit $K \subset \Sigma_g$.
- (c) Beschreiben Sie nicht-nullhomologe Knoten in planaren Heegaard-Diagrammen der Linsenräume L(p,1) und $S^1 \times S^2$. Welche Ordnung haben diese Knoten aufgefasst als Elemente der ersten Homologiegruppe? Zeigen Sie, dass diese Knoten keine Seifert-Flächen besitzen.

Bemerkung: Später werden wir zeigen, dass ein Knoten eine Seifert-Fläche besitzt genau dann, wenn er nullhomolog ist.

Aufgabe 2.

In Abbildung 1 sind gerahmte Knoten in $S^1 \times S^2$ dargestellt.

- (a) Welche dieser gerahmten Knoten sind (als gerahmte) Knoten isotop?
- (b) Wie viele Isotopieklassen von gerahmten Knoten in $S^1 \times S^2$, die jeden S^2 -Faktor in $S^1 \times S^2$ genau einmal schneiden, gibt es? Hinweis: Was gilt für solche Knoten ohne Rahmungen?
- (c) Welche Mannigfaltigkeiten werden durch die Kirby-Diagramme in Abbildung 1 beschrieben?

Abbildung 1: Vier Diagramme von gerahmten Knoten in $S^1 \times S^2$.

Aufgabe 3.

Der komplex projektive Raum $\mathbb{C}P^n$ ist (analog zur komplex projektiven Ebene) definiert als der Quotient von $S^{2n+1} \subset \mathbb{C}^{n+1}$ unter der diagonalen Gruppenwirkung von $S^1 \subset \mathbb{C}$, d.h.

$$\mathbb{C}P^n := \{ [z_0 : \ldots : z_n] \mid (z_0, \ldots, z_n) \in S^{2n+1} \subset \mathbb{C}^{n+1} \},$$

wobei $[z_0:\ldots:z_n]=[w_0:\ldots:w_n]$ genau dann gilt, wenn es ein $\lambda\in S^1\subset\mathbb{C}$ mit

$$(z_0, \cdots, z_n) = \lambda(w_0, \cdots, w_n)$$

gibt. Man kann (analog zu Aufgabe 1(b) von Blatt 1) zeigen, dass $\mathbb{C}P^n$ eine zusammenhängende, glatte, orientierte, geschlossene Mannigfaltigkeit von reller Dimension 2n ist. (Dies ist hier nicht gefordert.)

- (a) Beschreiben Sie eine Morse-Funktion auf $\mathbb{C}P^n$ mit genau n+1 kritischen Punkten. Gehen Sie dazu analog zu Aufgabe 4(a) von Blatt 1 vor. Welche Indizes haben die kritischen Punkte dieser Morse-Funktion?
- (b) Berechnen Sie die Fundamentalgruppe, die Eulercharakteristik und die Homologiegruppen von $\mathbb{C}P^n$. Bonusaufgabe: Was ist der Kohomologiering von $\mathbb{C}P^n$?
- (c) Beschreiben Sie explizit eine Henkelzerlegung von $\mathbb{C}P^2$. Beschreiben Sie dabei insbesondere auch die Anklebeabbildungen der Henkel.

Aufgabe 4.

- (a) Zeigen Sie, dass das S^1 -Bündel über S^2 mit Eulerzahl $e \in \mathbb{Z}$ diffeomorph zu dem Linsenraum L(-e,1) = -L(e,1) ist. Betrachten Sie, dazu die Kirby-Diagramme der D^2 -Bündel über S^2 mit Eulerzahl $e \in \mathbb{Z}$ aus der Vorlesung.
- (b) Beschreiben Sie explizit die Abbildungen $S^1 \to L(e,1) \to S^2$ der S^1 -Bündelstruktur über S^2 für einem Linsenraum der Form L(e,1).
- (c) Skizzieren Sie ein Kirby-Diagramm der komplex projektiven Ebene $\mathbb{C}P^2$.

Bonusaufgabe.

Was kann man über die Struktur der Homologiegruppen von geschlossenen, orientierbaren 4-Mannigfaltigkeiten W aussagen? Was gilt wenn W zusätzlich einfach zusammenhängend ist? Hinweis: Benutzen Sie die Poincaré-Dualität und das universelle Koeffiziententheorem.