Statistics 630 – Final Exam Monday, 13 December 2021

Printed Name:	Email:	

INSTRUCTIONS FOR THE STUDENT:

- 1. You have 2 hours to complete the exam.
- 2. There are 10 pages including this cover sheet and the formula sheets.
- 3. Questions 1–8 are multiple choice and worth 5 points each.
- 4. Questions 9 (3 parts), 10 and 11 require solutions to be worked out, and are 10 points per part. (90 total points for the exam.)
- 5. Please write out your answers in *the spaces provided*, explaining your steps. You may refer to theorems by name/description rather than by its number in the book.
- 6. If you *cannot* print out the exam, please write your answers on blank sheet of paper in order.
- 7. You may use the *attached formula sheets*. No other resources are allowed. Do not use the textbook, the class notes, homework or formula sheets that were posted online.
- 8. You may use but mostly do not need a calculator. You may leave answers in forms that can easily be put into a calculator such as $\frac{12}{19}$, $\binom{40}{5}$, e^{-3} , $\Phi(1.5)$, etc.
- 9. Do not discuss or provide any information to anyone concerning any of the questions on this exam until your solutions are returned or I post my solutions.

Questions 1-8 are multiple choice: circle the single correct answer. No partial credit!

- 1. (5 points) Suppose X_1, \ldots, X_n is a random sample from a distribution such that $\mathsf{E}(X_i^2) = \theta^2$. Based on this, one example of a method of moments estimator for θ is
 - (a) \overline{X} .
 - (b) \overline{X}^2 .
 - (c) $\frac{1}{n} \sum_{i=1}^{n} X_i^2$.
 - (d) $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)^{1/2}$.
 - (e) $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)^{2}$.
- 2. (5 points) Consider a hypothesis test for $H_0: \gamma = \gamma_0$ versus $H_a: \gamma > \gamma_0$. Everything else being equal, if the size α of the test is increased then the power function for the test will
 - (a) stay the same as before.
 - (b) increase.
 - (c) decrease.
 - (d) increase only for values of $\gamma < \gamma_0$.
 - (e) decrease only for values of $\gamma > \gamma_0$.
- 3. (5 points) 10,000 rubber ducks are floated down a stream. 200 of the ducks are gold colored; the rest are yellow. Assuming they get thoroughly mixed during their passage, the number of gold ducks among the first 100 to cross the finish line has approximately
 - (a) Bernoulli(0.02) distribution.
 - (b) binomial(10000, 0.02) distribution.
 - (c) normal(2, 1.96) distribution.
 - (d) Poisson(2) distribution.
 - (e) geometric (0.02) distribution.
- 4. (5 points) A simple random sample V_1, \ldots, V_{80} of 80 exponential(λ) data has mean 4.35 and variance 15.89. As we have seen, the MLE for the distribution mean, $\mu = \frac{1}{\lambda}$, is $\hat{\mu} = \overline{V}$. The value of the Wald 95% confidence interval for μ is
 - (a) $4.35 \pm 1.960 \sqrt{\frac{4.35}{80}}$.
 - (b) $4.35 \pm 1.960 \sqrt{\frac{15.89}{80}}$.
 - (c) $4.35 \pm 1.960 \frac{4.35}{\sqrt{80}}$.
 - (d) $\frac{1}{4.35} \pm 1.960 \frac{4.35}{\sqrt{80 \times 15.89}}$
 - (e) $\frac{1}{4.35} \pm 1.960 \frac{1}{4.35\sqrt{80}}$.

- 5. (5 points) Estimator $\tilde{\theta}_1$ has bias $\frac{2}{n}$ and estimator $\tilde{\theta}_2$ has bias $-\frac{1}{n}$. We create a new, unbiased, estimator $\tilde{\theta}_3 = \frac{1}{3}\tilde{\theta}_1 + \frac{2}{3}\tilde{\theta}_2$. This estimator has MSE (mean squared error)
 - (a) $\frac{1}{3} \operatorname{Var}(\widetilde{\theta}_1) + \frac{2}{3} \operatorname{Var}(\widetilde{\theta}_2)$.
 - (b) $\frac{1}{9} \operatorname{Var}(\widetilde{\theta}_1) + \frac{4}{9} \operatorname{Var}(\widetilde{\theta}_2)$.
 - $\text{(c)}\ \ \tfrac{1}{3}\operatorname{Var}(\widetilde{\theta}_1) + \tfrac{2}{3}\operatorname{Var}(\widetilde{\theta}_2) + \tfrac{2}{3}\operatorname{Cov}(\widetilde{\theta}_1,\widetilde{\theta}_2).$
 - (d) $\frac{1}{9} \operatorname{Var}(\widetilde{\theta}_1) + \frac{4}{9} \operatorname{Var}(\widetilde{\theta}_2) + \frac{2}{9} \operatorname{Cov}(\widetilde{\theta}_1, \widetilde{\theta}_2)$.
 - (e) $\frac{1}{9}\operatorname{Var}(\widetilde{\theta}_1) + \frac{4}{9}\operatorname{Var}(\widetilde{\theta}_2) + \frac{4}{9}\operatorname{Cov}(\widetilde{\theta}_1,\widetilde{\theta}_2).$
- 6. (5 points) T_1, \ldots, T_n is a random sample from a distribution with pdf $f(t) = \frac{\beta}{t^2} e^{-\beta/t}$, t > 0, $\beta > 0$.
 - (a) $\sum_{i=1}^{n} T_i^{-1}$ is sufficient and $\beta \sum_{i=1}^{n} T_i^{-1}$ is a pivot.
 - (b) $\sum_{i=1}^{n} T_i^{-1}$ is a pivot and $\beta \sum_{i=1}^{n} T_i^{-1}$ is sufficient.
 - (c) $1/\sum_{i=1}^{n} T_i$ is sufficient and $\beta/\sum_{i=1}^{n} T_i$ is a pivot.
 - (d) $\sum_{i=1}^{n} T_i$ is a pivot and $\frac{1}{\beta} \sum_{i=1}^{n} T_i$ is sufficient.
 - (e) $\sum_{i=1}^{n} T_i$ is sufficient and $\beta \sum_{i=1}^{n} T_i^{-1}$ is a pivot.
- 7. (5 points) V_1, \ldots, V_n is a random sample from a distribution with mean $1/(5\theta)$, and has score function $S(\theta) = n\theta 5n\theta^2\overline{V}$ and Fisher information $I_n(\theta) = n$. The size 0.01 score test for $H_0: \theta = 2$ versus $H_2: \theta \neq 2$ has rejection criterion
 - (a) $\sqrt{n}(20\overline{V} 2) > z_{0.99}$.
 - (b) $\sqrt{n}(20\overline{V} 2) > z_{0.98}$.
 - (c) $n(20\overline{V} 2)^2 > \chi_{0.99}^2(1)$.
 - (d) $n(5\theta^2\overline{V} \theta)^2 > \chi_{0.99}^2(n)$.
 - (e) $\sqrt{n}(5\theta^2\overline{V} \theta)^2 > \chi^2_{0.99}(n)$.
- 8. (5 points) The conditional distribution of X, given Y = y, is $Poisson(y + y^2)$ and Y has some distribution F_Y . Suppose one only observes a random sample Y_1, \ldots, Y_n from F_Y . Then an unbiased estimator for $\mathsf{E}(X)$ (not $\mathsf{E}(Y)$) is
 - (a) \overline{X} .
 - (b) \overline{Y} .
 - (c) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$.
 - (d) $\overline{Y} + \overline{Y}^2$.
 - (e) $\frac{1}{n} \sum_{i=1}^{n} (Y_i + Y_i^2)$.

Provide solutions to Questions 9-11, to the point of a calculable expression.

- 9. Suppose W_1, \ldots, W_n are a random sample from distribution with pdf $f(w) = \frac{4}{\sqrt{\pi}} \beta^{-3} w^2 e^{-(w/\beta)^2}$, $w > 0, \beta > 0$. Note: $2W_i^2/\beta^2 \sim \text{chi-square}(3)$.
 - (a) (10 points) The MLE for β is $\widehat{\beta} = \left(\frac{2}{3n} \sum_{i=1}^{n} W_i^2\right)^{1/2}$. Is $\widehat{\beta}^2$ unbiased for β^2 ? Is $\widehat{\beta}$ unbiased for β ? Explain fully. (Use the note above.)

(b) (10 points) The log-likelihood function is

$$\ell(\beta) = \sum_{i=1}^{n} \log(4W_i^2/\sqrt{\pi}) - 3n\log\beta - \frac{1}{\beta^2} \sum_{i=1}^{n} W_i^2.$$

Find the Fisher information $I_n(\beta)$ for the sample.

(9.	continued)
(0.	COmmunica

(c) (10 points) Now determine the form of the size α generalized likelihood ratio test for $H_0: \beta = \beta_0$ versus $H_a: \beta \neq \beta_0$. (Express in terms of $\widehat{\beta}$ and β_0 , simplified.)

10. (10 points) X_1, \ldots, X_n are iid $\operatorname{Poisson}(\lambda)$ random variables. Recall that $Y = \sum_{i=1}^n X_i$ is sufficient for λ . Assume λ has an exponential(1) *prior* distribution. Show that λ has a gamma *posterior* distribution. What are the posterior parameters and the posterior mean?

(One more problem next page)

11. (10 points) Let (S,T) be a random pair with joint pdf $f(s,t) = \frac{s+t}{2}e^{-s-t}$, s > 0, t > 0. Find $\mathsf{E}(S+T)$.

Formulas for Final Exam

Bayes' rule $P(B_j \mid A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$ if B_1, \dots, B_n are disjoint and $\bigcup_{k=1}^n B_k = S$.

quantile function $Q_X(p)$ satisfies $F_X(x) \le p \le F(Q_X(p))$ for all $x < Q_X(p)$. $F(Q_X(p)) = p$ if X is a continuous rv.

distribution of a function of X $F_Y(y) = P(h(X) \le y)$ for Y = h(X).

If X is a discrete rv or h(x) takes only countably many values then Y has pmf $p_Y(y) = P(h(X) = y)$.

If X is a continuous rv and h(x) is a continuous function then Y has pdf $f_Y(y) = \frac{\mathrm{d}x}{\mathrm{d}y} \, \mathsf{P}(h(X) \leq y)$.

binomial theorem $\sum_{k=0}^{n} {n \choose k} a^k b^{n-k} = (a+b)^n$.

geometric sum $\sum_{k=n}^{\infty} a^k = \frac{a^n}{1-a}$ if -1 < a < 1.

exponential expansion $\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$.

gamma integral $\int_0^\infty x^a e^{-x} dx = \Gamma(a+1) = a!$ for a > -1.

Bernoulli pmf $p(x) = (1 - \theta)^{1-x} \theta^x I_{\{0,1\}}(x)$ for $0 < \theta < 1$, same as binomial $(1, \theta)$.

$$\begin{aligned} \mathbf{beta}(a,b) \ \mathbf{pdf} \ f(x) &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \, x^{a-1} (1-x)^{b-1} I_{(0,1)}(x) \ \text{for} \ a > 0, \ b > 0; \ \mathsf{E}(X) = \frac{a}{a+b} \ \mathsf{Var}(X) = \\ \frac{ab}{(a+b)^2(a+b+1)} \, . \end{aligned}$$

- **binomial** (n, θ) **pmf** $p(x) = \binom{n}{x} \theta^x (1 \theta)^{n-x} I_{\{0,1,\dots,n\}}(x)$ for $0 < \theta < 1$. $\mathsf{E}(X) = n\theta$, $\mathsf{Var}(X) = n\theta(1 \theta)$, $m(s) = (1 \theta + \theta e^s)^n$.
- **chi-square**(n) same as gamma($\frac{n}{2}, \frac{1}{2}$), the distribution of $X = Z_1^2 + \cdots + Z_n^2$ for iid standard normal Z_1, \ldots, Z_n . $\mathsf{E}(X) = n$, $\mathsf{Var}(X) = 2n$.
 - In particular, if $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \operatorname{normal}(\mu, \sigma^2)$ then $\frac{(n-1)S^2}{\sigma^2} \sim \operatorname{chi-square}(n-1)$.
- **discrete uniform(**N**) pmf** $p(x) = \frac{1}{N} I_{\{1,2,\dots,N\}}(x)$. $\mathsf{E}(X) = \frac{N+1}{2}$, $\mathsf{Var}(X) = \frac{N^2-1}{12}$.
- **exponential(** λ **) pdf** $f(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$ for $\lambda > 0$, same as gamma $(1,\lambda)$. $E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
- $\mathbf{F}(m,n)$ the distribution of $W=\frac{X/m}{Y/n}$ where $X\sim \mathrm{chi}\text{-square}(m),\ Y\sim \mathrm{chi}\text{-square}(n),$ independent. $\mathsf{E}(W)=\frac{n}{n-2}$ if n>2.
- $\mathbf{gamma}(\alpha,\lambda) \ \mathbf{pdf} \ f(x) = \tfrac{\lambda^\alpha}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\lambda x} I_{(0,\infty)}(x) \ \text{for} \ \lambda > 0, \ \alpha > 0; \ \mathsf{E}(X) = \tfrac{\alpha}{\lambda} \,, \ \mathsf{Var}(X) = \tfrac{\alpha}{\lambda^2} \,, \\ m(s) = \left(\tfrac{\lambda}{\lambda s} \right)^\alpha \ \text{if} \ s < \lambda.$
- **geometric**(θ) **pmf** $p(x) = \theta(1-\theta)^x I_{\{0,1,2,\ldots\}}(x)$ for $0 < \theta < 1$, same as negative binomial $(1,\theta)$. $\mathsf{E}(X) = \frac{1-\theta}{\theta}$, $\mathsf{Var}(X) = \frac{1-\theta}{\theta^2}$.
- **hypergeometric**(N, M, n) **pmf** $p(x) = \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} I_{\{0,1,...,n\}}(x)$ for M < N. E(X) = np where $p = \frac{M}{N}$, $Var(X) = \frac{N-n}{N-1} np(1-p)$.
- $\begin{aligned} & \mathbf{negative \ binomial}(r, \theta) \ \mathbf{pmf} \ \ p(x) = \binom{r+x-1}{r-1} \theta^r (1-\theta)^x I_{\{0,1,2,\ldots\}}(x) \ \text{for} \ 0 < \theta < 1. \ \mathsf{E}(X) = \frac{r(1-\theta)}{\theta}, \\ & \mathsf{Var}(X) = \frac{r(1-\theta)}{\theta^2} \,, \ m(s) = \left(\frac{\theta}{1-(1-\theta)\mathrm{e}^s}\right)^r \ \text{if} \ s < -\log(1-\theta). \end{aligned}$
- $\mathbf{normal}(\mu, \sigma^2) \ \mathbf{pdf} \ f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} I_{(-\infty,\infty)}(x) \ \text{for} \ \sigma^2 > 0; \ \mathsf{E}(X) = \mu, \ \mathsf{Var}(X) = \sigma^2,$ $m(s) = e^{\mu s + \sigma^2 s^2/2}.$
- $\mathbf{Poisson}(\lambda) \ \mathbf{pmf} \ p(x) = \tfrac{\lambda^x}{x!} \, \mathrm{e}^{-\lambda} I_{\{0,1,2,\ldots\}}(x) \ \text{for} \ \lambda > 0. \ \mathsf{E}(X) = \lambda, \ \mathsf{Var}(X) = \lambda, \ m(s) = \mathrm{e}^{\lambda(\mathrm{e}^s 1)}.$
- $\mathbf{t}(n)$ the distribution of $T=\frac{Z}{\sqrt{Y/n}}$ where $Z\sim \mathrm{normal}(0,1),\ Y\sim \mathrm{chi\text{-}square}(n),\ \mathrm{independent}.$ $\mathsf{E}(T)=0,\ \mathsf{Var}(T)=\frac{n}{n-2}\ \mathrm{if}\ n>2.$ In particular, if $X_1,\ldots,X_n\stackrel{\mathsf{iid}}{\sim} \mathrm{normal}(\mu,\sigma^2)$ then $\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim$
- **uniform**(a,b) **pdf** $f(x) = \frac{1}{b-a} I_{(a,b)}(x)$ for a < b. $E(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- Weibull (α, β) pdf $f(x) = \frac{\alpha}{\beta} (x/\beta)^{\alpha-1} e^{-(x/\beta)^{\alpha}} I_{(0,\infty)}(x)$ for $\alpha > 0$, $\beta > 0$. $E(X^k) = \beta^k \Gamma(1 + \frac{k}{\alpha})$.
- marginal pmf/pdf $p_X(x) = \sum_y p(x,y); f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy.$
- conditional pmf/pdf $p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$; $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

t(n-1).

independent random variables $p(x,y) = p_X(x)p_Y(y)$ if (X,Y) is discrete; $f(x,y) = f_X(x)f_Y(y)$ if (X,Y) is continuous.

discrete convolution $p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x)$ for independent X, Y.

continuous convolution $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$ for independent X, Y.

covariance and correlation $Cov(X,Y) = E((X-\mu_X)(Y-\mu_Y)) = E(XY) - \mu_X \mu_Y$; $Corr(X,Y) = E(XY) - \mu_X$; Corr(X,Y) = E(XY) $\frac{\mathsf{Cov}(X,Y)}{\sigma_X\sigma_Y}$. For independent X and Y, $\mathsf{Cov}(X,Y) = \mathsf{Corr}(X,Y) = 0$.

expectation of a sum $E(a_1X_1 + \cdots + a_nX_n) = a_1E(X_1) + \cdots + a_nE(X_n)$.

expectation of a product If X_1, \ldots, X_n are independent, $\mathsf{E}\left(\prod_{i=1}^n h_i(X_i)\right) = \prod_{i=1}^n \mathsf{E}(h_i(X_i))$.

variance of a sum $Var(aX + bY) = a^2 Var(X) + 2ab Cov(X, Y) + b^2 Var(Y)$.

variance of a sum of independent rvs $Var(a_1X_1 + \cdots + a_nX_n) = a_1^2 Var(X_1) + \cdots + a_n^2 Var(X_n)$.

moments k-th moment is $\mu_k = \mathsf{E}(X^k), k = 1, 2, \dots$

moment generating function $m_X(s) = \mathsf{E}(\mathrm{e}^{sX}); \; \mathsf{E}(X^k) = \frac{\mathrm{d}x^k}{\mathrm{d}s^k} \, m_X(s) \, \Big|_{s=0}.$

mgf of a sum If X and Y are independent, $m_{aX+bY}(s) = \mathsf{E}(\mathrm{e}^{(aX+bY)s}) = m_X(as)m_Y(bs)$.

conditional expectation $E(h(Y)|X=x) = \sum_{y} h(y) p_{Y|X}(y|x)$ or $\mathsf{E}(h(Y)\mid X=x)=\textstyle\int_{-\infty}^{\infty}h(y)f_{Y\mid X}(y\mid x)\,dy.$

iterated expectation $\mathsf{E}(h(Y)) = \mathsf{E}(\mathsf{E}(h(Y) \mid X)), \, \mathsf{E}(g(X)h(Y)) = \mathsf{E}(g(X)\mathsf{E}(h(Y) \mid X)).$

conditional variance $Var(Y \mid X) = E(Y^2 \mid X) - (E(Y \mid X))^2$.

 $\mathbf{variance} \ \mathbf{partition} \ \mathbf{formula} \ \ \mathsf{Var}(Y) = \mathsf{E}(\mathsf{Var}(Y\mid X)) + \mathsf{Var}(\mathsf{E}(Y\mid X)).$

Markov's inequality $P(|X| \ge x) \le \frac{E(|X|)}{x}$ for x > 0.

Chebyshev's inequality $P(|X - \mu_X| \ge x) \le \frac{Var(X)}{r^2}$ for x > 0.

sample mean, variance, k-th moment $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$; $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$; $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

unbiased sample variance $S^2 = \frac{n}{n-1} \, \widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

law of large numbers For iid X_1, X_2, \ldots with mean $\mu, \bar{X}_n \to \mu$ as $n \to \infty$.

central limit theorem For iid X_1, X_2, \ldots with mean μ and variance σ^2 , $P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \leq z\right) = P\left(\frac{X_1 + \cdots + X_n - n\mu}{\sqrt{n}\sigma} \leq z\right) \to \Phi(z) \text{ (normal(0,1) cdf), as } n \to \infty.$

bias and standard error $\mathsf{Bias}(\widehat{\theta}) = \mathsf{E}(\widehat{\theta}) - \theta$; $\mathsf{SE}(\widehat{\theta}) = \sqrt{\mathsf{Var}(\widehat{\theta})}$.

mean squared error $MSE(\widehat{\theta}) = E((\widehat{\theta} - \theta)^2) = Var(\widehat{\theta}) + (Bias(\widehat{\theta}))^2$.

consistency $\widehat{\theta}$ is consistent if $MSE(\widehat{\theta}) \to 0$ as $n \to \infty$.

method of moments for iid sample match the k-th population moment $E(X^k)$ with the k-th sample moment m_k , and solve for the desired parameter estimates.

likelihood function $L(\theta|X_1,\ldots,X_n)=\prod_{i=1}^n f_{\theta}(X_i)$ for iid sample $\underline{X}=(X_1,\ldots,X_n)$.

- maximum likelihood for iid sample maximize the likelihood function $L(\theta|X_1,\ldots,X_n) = \prod_{i=1}^n f_{\theta}(X_i)$ or the log-likelihood $\ell(\theta|X_1,\ldots,X_n) = \log L(\theta|X_1,\ldots,X_n) = \sum_{i=1}^n \log f_{\theta}(X_i)$.
 - If $\log L(\theta)$ is differentiable and concave at θ , the MLE is a solution to $S(\theta) = \frac{d}{d\theta} \log L(\theta) = 0$. (For a multidimensional parameter θ this is a system of equations.)
- score function $S(\theta|X_1,\ldots,X_n) = \frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta)$.
- **Fisher information** $I_n(\theta) = \mathsf{Var}(\frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta)) = -\mathsf{E}(\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \ell(\theta))$, if ℓ has two derivatives.
 - For an iid sample, $I_n(\theta) = nI_1(\theta)$ and $I_1(\theta) = \mathsf{Var}(\frac{\mathrm{d}}{\mathrm{d}\theta}\log f_\theta(X_1)) = -\mathsf{E}(\frac{\mathrm{d}^2}{\mathrm{d}\theta^2}\log f_\theta(X_1))$.
- sufficient statistic $T = T(\underline{X})$ is sufficient if $L(\theta|\underline{X}) = h(\underline{X})g(T(\underline{X}), \theta)$ for some functions $h(\underline{x})$ and $g(t, \theta)$.
- **exponential family** The pdf/pmf has the form $f_X(x|\theta) = d(\theta)h(x)e^{c(\theta)t(x)}$ for all x, θ . In this case, with an iid random sample, $T(\underline{X}) = \sum_{i=1}^n t(X_i)$ is a sufficient statistic and $I_n(\theta) = n(c'(\theta))^2 \operatorname{Var}(t(X_1))$.
- **asymptotics for MLE** Assuming Fisher information exists and $\hat{\theta}$ is the MLE, $\hat{\theta} \to \theta$ in probability and $\sqrt{I_n(\theta)}(\hat{\theta} \theta) \to \text{normal}(0, 1)$ in distribution as $n \to \infty$.
- **asymptotic normality** $\widehat{\theta}$ is asymptotic normal (θ, V_n) if $\frac{\widehat{\theta} \theta}{\sqrt{V_n}} \to \text{normal}(0, 1)$ in distribution as $n \to \infty$. V_n may depend on θ or other parameters. If \widehat{V}_n is an estimator such that $\widehat{V}_n/V_n \to 1$ then $\frac{\widehat{\theta} \theta}{\sqrt{\widehat{V}_n}} \to \text{normal}(0, 1)$ in distribution.
- **delta method** If $g(\theta)$ is continuously differentiable and estimator $\hat{\theta}$ is asymptotic normal (θ, V_n) , then $g(\hat{\theta})$ is asymptotic normal $(g(\theta), (g'(\theta))^2 V_n)$.
- level γ confidence interval $(L(\underline{X}), U(\underline{X}))$ such that $P_{\theta}(L(\underline{X}) \leq \theta \leq U(\underline{X})) = \gamma$.
- **confidence interval from pivot** If $h(\underline{X}, \theta)$ has a distribution that does not depend on θ , a level γ confidence interval is defined by $\{\theta : h(\underline{X}, \theta) \in A\}$ where $P_{\theta}(h(\underline{X}, \theta) \in A) = \gamma$.
- Wald confidence interval If $\hat{\theta}$ is asymptotic normal (θ, V_n) and \hat{V}_n is an estimator for V_n , an approximate level γ confidence interval for θ has endpoints $\hat{\theta} \pm z_{(1+\gamma)/2} \sqrt{\hat{V}_n}$, where $z_{(1+\gamma)/2}$ is the $(1+\gamma)/2$ quantile of the normal(0,1) distribution.
- score confidence interval For MLE $\widehat{\theta}$, an approximate level γ confidence interval defined by $\{\theta: -z_{(1+\gamma)/2} \leq (\frac{\mathrm{d}}{\mathrm{d}\theta} \, \ell(\theta))/\sqrt{I_n(\theta)} \leq z_{(1+\gamma)/2}\}$, where $z_{(1+\gamma)/2}$ is the $(1+\gamma)/2$ quantile of the normal(0,1) distribution.
 - A related method is the interval given by $\{\theta: -z_{(1+\gamma)/2} \leq \sqrt{I_n(\theta)}(\widehat{\theta} \theta) \leq z_{(1+\gamma)/2}\}.$
- **Type I and II errors, level and power** A Type I error is rejecting H_0 when it is true. The level of a test is $\alpha = \max_{\theta \in H_0} \mathsf{P}_{\theta}(H_0 \text{ is rejected})$ computed with values of θ such that H_0 true.
 - A Type II error is not rejecting H_0 when H_a is true. The power of a test is $\beta = \beta(\theta) = P_{\theta}(H_0 \text{ is rejected})$ computed with parameter value θ (satisfying H_a).
- *P*-value The smallest level α for which H_0 will still be rejected it is a statistic (function of the data).

- **Neyman-Pearson likelihood ratio test** For simple hypotheses $H_0: \theta = \theta_0$ vs. $H_a: \theta = \theta_1$, reject H_0 if $LR = \frac{L(\theta_1)}{L(\theta_0)} \ge c_\alpha$ where $\mathsf{P}(LR \ge c_\alpha) = \alpha$ when H_0 is true. If, for each $c, LR \ge c \iff T \ge k$ (or $R \ge c \iff T \le k$) for some statistic T and some value k then it suffices to find k_α such that $\mathsf{P}(T \ge k_\alpha) = \alpha$ (resp., $\mathsf{P}(T \le k_\alpha) = \alpha$) when H_0 is true.
- generalized likelihood ratio test For hypotheses H_0 and H_a about parameter θ and MLE $\widehat{\theta}$, reject H_0 if $LR = \frac{L(\widehat{\theta})}{\max_{\theta \in H_0} L(\theta)} \ge c_{\alpha}$ where $\max_{\theta \in H_0} \mathsf{P}(LR \ge c_{\alpha}) = \alpha$.
 - If $H_0: \theta = \theta_0$ and $H_a: \theta \neq \theta_0$ then $LR = \frac{L(\widehat{\theta})}{L(\theta_0)}$.
- uniformly most powerful test A test is UMP if it has maximum possible power for every parameter value θ that satisfies H_a .

 In particular, if the test is the same as the Neyman-Pearson test for each θ satisfying H_a then
- it is UMP.

 Wald test If $\hat{\theta}$ is asymptotic normal (θ, V_n) and \hat{V}_n is an estimator for V_n , reject $H_0: \theta = \theta_0$ when
 - $\frac{|\widehat{\theta}-\theta_0|}{\sqrt{\widehat{V}_n}} \geq z_{1-\alpha/2}, \text{ where } z_{1-\alpha/2} \text{ is the } (1-\alpha/2) \text{ quantile of the normal}(0,1) \text{ dist. Equivalently,}$ reject H_0 if $\frac{(\widehat{\theta}-\theta_0)^2}{\widehat{V}_n} \geq \chi_{1,1-\alpha}^2$.

Important case: $\hat{\theta}$ is the MLE and $\hat{V}_n = 1/I_n(\hat{\theta})$.

(asymptotic) score test For MLE $\widehat{\theta}$, reject $H_0: \theta = \theta_0$ when $\frac{\left|\frac{\mathrm{d}}{\mathrm{d}\theta}\ell(\theta_0)\right|}{\sqrt{I_n(\theta_0)}} \geq z_{1-\alpha/2}$, where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ quantile of the normal(0,1) dist. Equivalently, reject H_0 if $\frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\ell(\theta_0)\right)^2}{I_n(\theta_0)} \geq \chi_{1,1-\alpha}^2$.

A related test is to reject $H_0: \theta = \theta_0$ when $\sqrt{I_n(\theta_0)} |\hat{\theta} - \theta_0| \ge z_{1-\alpha/2}$, and $\hat{\theta}$ is the MLE.

- asymptotic likelihood ratio test Using the generalized LR statistic, reject $H_0: \theta = \theta_0$ when $2\log(LR) \ge z_{1-\alpha/2}^2 = \chi_{1,1-\alpha}^2$.
- test equivalent to interval Define a test from an interval (or an interval from a test) by: reject $H_0: \theta = \theta_0$ at level $\alpha \iff \theta_0$ is not in the 1α confidence interval.
- **prior and posterior distributions** If the prior density (or pmf) for θ is $f_{\Theta}(\theta)$ then the posterior density (or pmf) is $f_{\Theta}(\theta|\underline{X}) = c(\underline{X})f_{\underline{X}}(\underline{X}|\theta)f_{\Theta}(\theta)$, with $c(\underline{X})$ chosen so that $f_{\Theta}(\theta|\underline{X})$ is a proper pdf (pmf) in θ .

Bayes estimator Either the mean or the mode of the posterior distribution.

Bayes γ credible interval An interval $(L(\underline{X}), U(\underline{X}))$ such that, under the posterior distribution, $P(L(\underline{X}) \leq \theta \leq U(\underline{X}) \mid \underline{X}) = \gamma$.

The interval is HPD (highest posterior density) if it equals the set $\{\theta: f_{\Theta}(\theta|\underline{X}) \geq c\}$ for some constant c.

Bayes Hypothesis test Choose H_1 if and only if $\frac{\mathsf{P}(H_1 \mid \underline{X})}{\mathsf{P}(H_0 \mid \underline{X})} > 1$.