CS689: Computational Linguistics for Indian Languages Parts-of-Speech (POS) Tagging

Arnab Bhattacharya arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs689/

 2^{nd} semester, 2023-24 Tue 10:30–11:45, Thu 12:00–13:15 at RM101/KD102

Parts of Speech (POS)

- Parts-of-Speech (POS) are roles/functions that a word takes in a sentence
- POS Tagging is the process of assigning every word in a sentence a POS
- Example of sequence labeling task
- Input is a word sequence $X = \{x_i\}$ of length n
- Output is a POS tag sequence $Y = \{y_i\}$ of length n with a one-to-one correspondence

English POS Tags

Penn Treebank tagset: 45

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

• Penn Treebank corpora has annotations based on this

Universal POS Tags

• Universal Dependencies (UD) tagset: 17

	Tag	Description	Example
Open Class	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
C	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Sen	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
S		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
D .	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
100	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
72	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

- Closed class has a more or less fixed set of members
- Open class gets new words added much more frequently

More Granularity

- Nouns can be proper or common, which can again be count or mass
- Verbs can be more fine-grained such as base form, with tense, continuous, present participle, gerund, past participle, etc.
- Verb forms have tense, aspect and mood
 - Together called TAM
 - Sometimes also called tense-modality-aspect (TMA)

POS Tags in Indian Languages

- Indian languages mostly follow the UD tags called UPOS
- Sanskrit does not have symbols (modern Sanskrit does)
- Language-specific XPOS tags
- Word groups for Indian languages
 - Typographical convention is to introduce whitespaces
 - One semantic unit
- Types of word groups
 - Vibhakti groups: Rama_ko
 - Kriyā groups: khaate_khaate
 - Samāsa groups: Rama_Lakshmana
 - Named entity: Subhas_Chandra_Bose

Verbs in Indian Languages

- TAM tags capture three dimensions of a verb
- Tense to denote time of action
 - past, future, present
- Aspect to denote extension of action
 - simple, perfective, habitual, progressive
- Mood to denote reality of action
 - indicative, conditional, potential, hortative, desiderative, optative, injunctive, presumptive, contrafactual, benedictive, interrogative, necessitive
- A single Indian language may not have all possibilities
- Verbs also have voice to denote the way of speaking
 - active (kartṛvācya), passive (karmavācya, bhāvavācya)

POS Tags for Indian Languages

- Viśesya (noun)
 - Sāmānya (common noun): pustaka
 - Viśeṣa (proper noun): Mahabharata
 - Deśakālasāpekṣa (spatio-temporal noun): upara, aage
- Sarvanāma (pronoun)
 - Sāmānya (common): aapa
 - Praśnvācaka (interrogative): kauna, kaba, kahaa
 - Saṃketavācaka (demonstrative): kisa, kauna
- Kriyā (verb)
 - Samāpikā (complete verb): khaate hain
 - Asamāpikā (incomplete verb)
 - Nimittārthaka (causal): khaane ke liye
 - Samānakāla (continuous): khaate khaate
 - Adjective-like: khaate huye
 - Time relations: khaake
- Viśesana (adjective): sundara
 - Guṇavācaka Viśeṣaṇa: bahut
 - Parimāṇavācaka Viśeṣaṇa: bahut

POS Tags for Indian Languages (contd.)

- Kriyā-Viśeṣaṇa: jaldi, sundara
- Avyaya (indeclineable)
 - Samanvayaka (conjunction): aur, kintu
 - Adhīnastha (subordinate): agaara, to
 - Uktivācaka (quotative): iti
 - Vismayādibodhaka (interjection): are, he
 - Tīvratābodhaka (intensifier): bahuta
 - Nakārātmaka (negative): naa, nehii
- Parimāṇavācī Parimaanavachii (quantifier)
 - Sāmānya (common): thoraa
 - Gaṇanāsūcaka (count): eka
 - Kramasūcaka (order): pahalaa
- Avaśeṣa (others)
 - Foreign word: book
 - Symbol: &
 - Punctuation: .
 - Unknown: < foreign script >

POS Tagging as a Sequence Task

- Given a sequence of word groups (as a sentence), mark the POS tag for every word
- Sequence-to-sequence task
- A sentence W of length n consisting of word groups in order: w_i
- POS tag of word group w_i is t_i
- Find all POS tags t_1, \ldots, t_n
- Several tools

Markov Chains

- Sequential process that moves from state to state
- Markov property: current state depends only on previous state
 - 1st order
- At every state, there is an observation
- Observation is equal to the state
- Markov chain

Example of Markov Chain

- Weather
- Three states: sunny, cloudy, rainy

- A number of states
- A transition matrix of among states
- A start vector for states

$$MC = \langle n; T; \pi \rangle$$

$$n = 3; \quad T = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.1 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.3 \end{bmatrix}; \quad \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix}$$

Training an MC

- Learning an MC is simply finding the count ratios
- Number of states is obvious from the data
- Start state probabilities

$$\pi(t_i) = rac{\# ext{start state is } i}{\# ext{all start states}}$$

$$= rac{C(i)}{\sum_{orall i} C(i)}$$

Transition probabilities

$$\begin{split} P(t_j|t_i) &= \frac{\text{\#observation is } i \text{ immediately followed by } j}{\text{\#observation is } i} \\ &= \frac{C(i \to j)}{\sum_{\forall i} C(i \to j)} \end{split}$$

Hidden Markov Model

- States are hidden
- States are only indicated by the observations
- A person in a closed room watching others enter with umbrellas trying to guess weather
- POS tags are hidden states while words are observations
- Number of states η
- Number/range of observations
 - Number of observations need not be equal to number of states
- States have transition probabilities A among them
- There is an observation probability distribution B from each state
 - Can be discrete or continuous
- ullet Start state probability distribution Π

$$HMM = \langle \eta; A; B; \pi \rangle$$

HMM Example

Weather

$$HMM = \langle \eta; A; B; \pi \rangle$$

$$\eta = 3; A = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.1 & 0.2 & 0.7 \\ 0.5 & 0.2 & 0.3 \end{bmatrix}; B = \begin{bmatrix} 0.80 \\ 0.15 \\ 0.05 \end{bmatrix} \begin{bmatrix} 0.20 \\ 0.65 \\ 0.15 \end{bmatrix} \begin{bmatrix} 0.10 \\ 0.05 \\ 0.85 \end{bmatrix}; \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix}$$

POS Tagging as HMM Decoding

- Given a sequence of words w_i of length n, mark the POS tag t_i for every word
- Choose the tag sequence that is the most probable given the word sequence

$$\hat{t}_{1:n} = \arg \max P(t_1 \dots t_n | w_1 \dots w_n)$$

Using Bayes' rule for conditional probabilities

$$\hat{t}_{1:n} = \arg \max P(t_1 \dots t_n | w_1 \dots w_n)$$

$$= \arg \max \frac{P(w_1 \dots w_n | t_1 \dots t_n) \cdot P(t_1 \dots t_n)}{P(w_1 \dots w_n)}$$

$$= \arg \max P(w_1 \dots w_n | t_1 \dots t_n) \cdot P(t_1 \dots t_n)$$

Simplifications

Markov assumption

$$P(t_1 \dots t_n) = \pi(t_1) \cdot P(t_2|t_1) \cdot P(t_3|t_2, t_1) \dots P(t_n|t_1 \dots t_{n-1})$$

$$\approx P(t_2|t_1) \cdot P(t_3|t_2) \dots P(t_n|t_{n-1}) = \prod_{\forall i} P(t_i|t_{i-1})$$

Independence assumption

$$P(w_1 \dots w_n | t_1 \dots t_n) = \prod_{\forall i} P(w_i | t_i)$$

Combining

$$\hat{t}_{1:n} = \arg \max P(t_1 \dots t_n | w_1 \dots w_n)$$

=
$$\arg \max \Pi_{\forall i} (P(w_i | t_i) \cdot P(t_i | t_{i-1}))$$

Viterbi Algorithm

- Viterbi algorithm is a dynamic programming solution
- a_{ij} denotes transition from state (tag) i to state (tag) j
- $b_j(k)$ denotes observation of word k from state (tag) j
- π_i denotes start from state (tag) i
- Cell $v_t(j)$ denotes maximum probability that state (tag) sequence is at state (tag) j at time t (word w_t)

$$v_t(j) = \max_{i=1}^{N} \left(v_{t-1}(i) \cdot a_{ij} \cdot b_j(t) \right)$$

- Maximum over all possible states (tags) at time t-1
- Back pointers to keep track: arg max
- Finally, maximum of $v_n(\cdot)$

Example

Learning and Using an HMM

- Likelihood problem: Given an observation sequence, find its probability
 - Forward algorithm
- Decoding problem: Given an observation sequence, find its most likely state sequence
 - Viterbi algorithm
- Training problem: Given a set of observation sequences, learn the parameters of HMM
 - Baum-Welch algorithm or forward-backward algorithm

Training an HMM

- Number of hidden states from guess or domain knowledge
- Unlike an MC, simple count ratios cannot be used
- Forward probability $\alpha_t(j)$ is probability of being in state j at time t, i.e., after observing $w_1 \dots w_t$

$$\alpha_t(j) = \sum_{i=1}^{N} (\alpha_{t-1}(i) \cdot a_{ij} \cdot b_j(t))$$

• Backward probability $\beta_t(i)$ is probability of observing $w_{t+1} \dots w_n$ starting from state i

$$\beta_t(i) = \sum_{j=1}^{N} \left(a_{ij} \cdot b_j(t+1) \cdot \beta_{t+1}(j) \right)$$

Dynamic programming

Estimating Probabilities

• Transition from state i to state j for observation sequence W is $\xi(i,j)$

$$\xi(i,j) = \alpha_t(i) \cdot a_{ij} \cdot b_j(t) \cdot \beta_{t+1}(j)$$

- Requires proper normalization to produce probabilities
- Probability of observation W

$$P(W) = \sum_{i=1}^{N} (\alpha_t(i) \cdot \beta_t(i))$$

Utility of Features

- Use of features is indirect in HMM
- If capitalized, then high chance of proper noun
- Tag sequence T from word sequence W
- HMM uses Bayes' rule

$$\begin{split} \widehat{T} &= \arg\max_{T} P(T|W) \\ &= \arg\max_{T} P(W|T) \cdot P(T) = \arg\max_{T} \left(\prod_{\forall i} P(w_i|t_i) \cdot \prod_{\forall i} P(t_i|t_{i-1}) \right) \end{split}$$

• Alternatively, P(T|W) can be directly computed

Linear Regression

- From a feature vector x, predict class y
- Linear regression

$$y = \vec{w} \cdot \vec{x}$$

- Dot product of vectors: $\vec{w} \cdot \vec{x} = \sum_{\forall i} (w_i \cdot x_i)$
- If 2-class, sign of y
- Instead of hard classification, sometimes useful to predict probability of being in a class
- w ⋅ x does not work
 - May be negative
 - Is not constrained between 0 and 1
 - Does not add up to 1

Logistic Regression

- Logistic regression tries to solve these
- Take exponent to convert to positive: $exp(w \cdot x)$
- Take odds: ratio of probability of being in class to probability of not being in class

$$\frac{P(y)}{1 - P(y)} = exp(w \cdot x)$$

$$\ln \frac{P(y)}{1 - P(y)} = w \cdot x$$

This is also called log-odds or the logit function

$$P(y) = \frac{exp(w \cdot x)}{1 + exp(w \cdot x)} = \frac{1}{1 + exp(-w \cdot x)}$$
$$P(\neg y) = 1 - P(y) = \frac{1}{1 + exp(w \cdot x)} = P(-y)$$

Sigmoid or logistic function

Conditional Random Field

• Conditional Random Field (CRF) directly maximizes P(T|W)

$$\begin{split} \widehat{T} &= \arg\max_{T} P(T|W) \\ &= \arg\max_{T} P(T,W)/P(W) = \arg\max_{T} P(T,W) \\ &= \arg\max_{T} \sum_{\forall f_{k}} \left(w_{k} \cdot F_{k}(T,W) \right) \end{split}$$

- $F_k(T, W)$ are global features that depend on entire word and tag sequences
- Assumption: feature at tag position i is dependent only on tag at position i-1
 - Similarity with Markov assumption
- Linear chain CRF
- Global feature is sum of local features

$$F_k(T, W) = \sum_{i=1}^n f_k(t_{i-1}, t_i, W)$$

Linear Chain CRF

• Finding most likely tag sequence for a word sequence

$$\begin{split} \widehat{T} &= \arg\max_{T} \sum_{\forall f_{k}} \left(w_{k} \cdot F_{k}(T, W) \right) \\ &= \arg\max_{T} \sum_{i=1}^{n} \sum_{\forall f_{k}} \left(w_{k} \cdot f_{k}(t_{i-1}, t_{i}, W) \right) \end{split}$$

Because of linear chain assumption, can use Viterbi-like algorithm

$$v_{\tau}(j) = \max_{i=1}^{N} \left(v_{\tau-1}(i) \cdot \sum_{\forall f_k} \left(w_k \cdot f_k(t_{i-1}, t_i, W) \right) \right)$$