Foundation Calculus and Mathematical Techniques (CELEN037)

Answers to Worksheet #3

1.

(i)
$$-\frac{b}{a}$$

(ii)
$$-1$$

(iv)
$$-1$$

$$(v) \qquad \frac{v_0 \sin \alpha - gt}{v_0 \cos \alpha}$$

$$(vi) \quad -\frac{2t}{1-t^2}$$

2.

(i)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

(ii)
$$1 + x + x^2 + x^3 + x^4 + \cdots$$

(iii)
$$1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

(iv)
$$1+x-\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots$$

(v)
$$x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \cdots$$

(vi)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

 $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots$

$$\frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \dots = \sum_{1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}$$

(vii)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$\ln\left(\frac{1+x}{1-x}\right) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} - \frac{2x^7}{7} + \dots = 2\sum_{1}^{\infty} \frac{x^{2k-1}}{(2k-1)}$$

3.

(i) Equation of tangent line y + x + 2 = 0 Equation of normal line y = x

(ii) Equation of tangent line y - 2x + 3 = 0 Equation of normal line 2y + x + 1 = 0

(iii) Equation of tangent line 2y + 3x - 6 = 0 Equation of normal line 3y - 2x - 9 = 0

4.

(i)
$$x = 1.93457$$
 (ii) $x = 1.895494$

(iii)
$$x = 1.021690$$
 (iv) $x = -1.272020$

(v)
$$x = 1.1777035$$
 (vi) $x = 2.09455148$

(vii)
$$x = 2.09455148$$
 (viii) $x = 1.25992105$

5.

(i)
$$f'(x) = \sec^2 x > 0$$
 for all $x \in \mathbb{R}$

(ii)
$$f'(x) = -\sin x > 0$$
 for all $x \in (2k\pi - \frac{\pi}{2}, 2k\pi), k \in \mathbb{Z}$

(iii)
$$f'(x) = -2(e^{-2x}) < 0$$
 for all $x \in \mathbb{R}$

(iv)
$$f'(x) = 2x + 2 < 0$$
 for all $x < -1$

(v) In $(-\infty, -1.3)$ and $(1.3, \infty), f$ is increasing. In (-1.3, 1.3), f is decreasing.

(vi) In
$$(-\infty, -\frac{3\sqrt{73}+9}{16})$$
 and $(0, \frac{3\sqrt{73}-9}{16}), f$ is decreasing. In $(-\frac{3\sqrt{73}+9}{16}, 0)$ and $(\frac{3\sqrt{73}-9}{16}, \infty), f$ is increasing.