REMARKS/ARGUMENTS

Applicant has filed this continuation-in-part ("CIP") application to cover a swiveling pivotal joystick base for use on a motorized wheelchair.

As the claims in the CIP are substantially similar to the claims of the parent application, Applicant believes the examiner will now find this patent application in a position for allowance and its expeditious passage to same is requested.

Should the examiner disagree or have any questions, comments or suggestions that will render this application allowable, a call to the undersigned attorney of record is invited.

Respectfully submitted, John R. Cowen, Applicant

By:

Edward M. Livingston, Esq. 963 Trail Terrace Drive Naples, FL 34103

(239) 262-8502

Attorney for Applicant(s) Reg. No. 28,523

CERTIFICATE OF MAILING by "EXPRESS MAIL" UNDER 37 CFR 1.10

I HEREBY CERTIFY that the above Preliminary Amendment Accompanying CIP Application is being deposited with the United States Postal Service by "Express Mail Post Office to Addressee" service, U.S. Express Mail No. EU610717450US, on the 2003, addressed to U.S. Patent and Trademark Office, Mail Stop CIP, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Legal Assistant

Enclosures- Version with Markings to Show Changes Made for Specification

Clean Version of Specification as amended

VERSION WITH MARKINGS TO SHOW CHANGES MADE TO SPECIFICATION

Continuation-in-Part Application

Applicant:

John R. Cowen

Atty. Doc. No.:

02-5007/CIP

Serial No.:

10/162,104 filed on June 3, 2002 PIVOTAL JOYSTICK BASE

For:

Examiner:

Examiner: Art Unit:

PIVOTAL JOYSTICK BASE

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application filed October 24, 2002 and is a continuation in part of application number 10/162,104, filed June 3, 2002.

BACKGROUND OF THE INVENTION

This invention relates to pivotal positioning of joystick bases for powered wheelchairs and other mechanisms.

Joysticks for controlling powered wheelchairs generally extend forwardly from armrests where the joysticks and joystick assemblies often obstruct desirable closeness of the wheelchairs and occupants thereof to tables, desks, workstations and other structures. There are no known adjusters of distance and lateral positioning of joystick bases from the armrests to allow closeness of the powered wheelchairs to desired objects conveniently, reliably and inexpensively in a manner taught by this invention.

5

10

The present invention provides a swivelling pivotal joystick base which has two plates, one attached to an extension on an arm of a wheelchair which allows the joystick to be swivelled to a 90 degree position and a second plate pivotally attached at the distal end of the first plate which allows the joystick attached there to swivel

Page 1 of 16- Marked Copy of Specification

into a position in line with the arm of the wheelchair. The addition of this second plate is important as it enables the joystick to be placed in a position in line with the normal forward orientation of the joystick so that a user does not incorrectly direct the wheelchair in an undesired direction.

Examples of most-closely related known but different devices are described in the following patent documents:

	U.S. Patent No.	<u>Inventor</u>	Filing Date
	(U.S. unless stated otherwise)	·	
	5,326,063	Stevens	07-05-1994
10	5,893,607	Trimnell	04-13-1999
	6,086,156	Breen, et al.	07-11-2000
	5,169,210	Fricano	12-08-1992
	6,352,302	Piretti, Jr.	03-05-2002
	5,026,114	Miller	06-25-1991
15	5,954,393	Perrin	09-21-1999
	5,947,501	Osborn	09-07-1999

SUMMARY OF THE INVENTION

Objects of patentable novelty and utility taught by this invention are to provide a pivotal joystick base which:

allows a forwardly obstructive joystick assembly to be moved conveniently to a non-obstructive position laterally to a side of a chair member to which the joystick base is attached pivotally;

Page 2 of 16- Marked Copy of Specification

provides locking of the joystick base in the non-obstructive position for operation of the joystick in a non-obstructive position;

provides linear positioning of the joystick base from the chair member;

5

10

15

with the arm of a wheelchair in order to maintain the original orientation of the joystick controls so as to prevent inadvertent and an incorrect movement of the wheelchair;

provides directional positioning of a joystick assembly on the joystick base selectively; and

is inexpensive.

This invention accomplishes these and other objectives with a pivotal joystick base having a pivot end and a base end. The pivot end is pivotal horizontally on a base pivot that is affixed to a chair attachment. The base end is adapted to support a joystick assembly. The base pivot includes a pivot lock with which the joystick base is lockable in a pivoted position selectively. The base end can include an assembly pivot with which the joystick assembly is rotative to a forward position in compensation for rotational positioning of the joystick assembly by lateral pivoting

of the joystick base. The joystick base can include a linear mount for linear distancing of the joystick assembly from the base pivot selectively.

5

10

15

This invention accomplishes this and other objectives with a swivelling pivotal joystick base having two plates, a first plate attached to a wheelchair arm extension and a second plate which is pivotally attached at a distal end of the first plate on which the joystick control is attached. The arm extension has a spring-loaded locking ball at its end forward of the pivoting point of the first plate. The locking ball which trunnions into a divot in the bottom of the first plate in order to maintain the joystick in a forward position during normal use. A stop bar on the arm extension prevents the first plate from pivoting inward of a normal position. In addition, a stop piece mounted on the first plate extends upward sufficiently to stop the second plate on which the joystick is mounted from pivoting beyond the forward position when in use. Further, a spring-loaded locking ball in the first plate also trunnions into the bottom of the second plate when the second plate is in a forward use position to keep the joystick in the second plate from inadvertently rotating from the forward position.

The above and other objects, features and advantages of the present invention should become even more readily apparent to those skilled in the art upon a reading

of the following detailed description in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.

BRIEF DESCRIPTION OF DRAWINGS

This invention is described by appended claims in relation to description of

a preferred embodiment with reference to the following drawings which are
explained briefly as follows:

- FIG. 1 is a side elevation view of a pivotal joystick base having a pivot lock with a spring-pressured member and mounted on a dashed-line representation of a motorized wheel chair;
- FIG. 2 is a partially cutaway and expanded view of the pivotal joystick base shown in FIG. 1;
 - FIG. 3 is a front elevation view of the dashed-line representation of the motorized wheelchair on which the FIG. 1 pivotal joystick base is positioned with a dashed-line representation of a joystick base pivoted laterally to a side;
- FIG. 4 is an expanded fragmentary top view of the FIG. 1 pivotal joystick base pivoted laterally;
 - FIG. 5 is a bottom view of the FIG. 4 illustration;

FIG. 7 is an expanded fragmentary top view of the FIG. 6 pivotal joystick base with a dashed-line representation of the base bar pivoted laterally from an armrest of the motorized wheelchair;

FIG. 8 is a partially cutaway and expanded fragmentary side view of the pivot lock of the FIG. 6 illustration;

FIG. 9 is a partially cutaway and expanded fragmentary top view of the pivot end of the base rod of the FIG. 6 embodiment;

FIG. 10 is a partially cutaway and expanded fragmentary side view of the chair attachment of the FIG. 6 embodiment;

FIG. 11 is a partially cutaway and expanded fragmentary top view of the chair attachment of the FIG. 10 illustration;

FIG. 12 is a partially cutaway top view of the FIG. 6 embodiment showing selectively lateral positioning and forward rotating of the joystick assembly;

15

FIG. 13 is a partially cutaway and expanded fragmentary top view of the FIG. 6 embodiment showing selectively linear and rotational positioning of the joystick assembly on the base rod;

Page 6 of 16- Marked Copy of Specification

- FIG. 14 is a partially cutaway side elevation view of the FIG. 6 embodiment with a flush knob and having an attachment plate on the chair attachment;
- FIG. 15 is a partially cutaway and expanded fragmentary top view of the FIG. 6 embodiment showing the attachment plate on the chair attachment;
- FIG. 16 is a partially cutaway and expanded fragmentary side view of the FIG. 1 embodiment showing the attachment plate on the chair attachment;
 - FIG. 17 is a partially cutaway side view of the FIG. 6 embodiment having a resilient section in the latch;
- FIG. 18 is an inner side elevational view of the swivelling pivotal joystick

 10 holder with an extension mounted on a right arm of a wheelchair;
 - FIG. 19 is a top view of the swivelling pivotal joystick holder in a fully-swivelled and pivoted position in line with the arm of a wheelchair;
 - FIG. 20 is a top view of the swivelling pivotal joystick holder in a linearly extended position by itself; and
- FIG. 21 is a bottom view of the swivelling pivotal joystick holder in a fully swivelling pivoted position of FIG. 19.

DESCRIPTION OF PREFERRED EMBODIMENT

Listed numerically below with reference to the drawings are terms used to describe features of this invention. These terms and numbers assigned to them designate the same features throughout this description.

	1. Base bar		30. Fastener aperture
			-
	2. Base pivot		31. Assembly fastener
	3. Chair attachment		32. Slot
	4. Motorized chair		33. Assembly knob
	5. Joystick assembly		34. Resilient section
	6. Pivot axle		35. First plate
	7. Spring-pressured member		36. Second plate
	8. Positional recess		37. Wheelchair arm
	9. Spring		38. Arm extension
	10. Adjustment bolt		39. First plate pivot
	11. Lock cylinder		40. First plate inner stop
	12. Attachment bar		41. Lock cylinder
	13. Attachment plate		42. First plate locking ball
	14. Fasteners		43. Second plate inner stop
	15. Fastener orifices		44. Second plate locking ball
	16. Armrest		45. Second plate pivot
	17. Approachable object		46. Joystick control
	18. Stop		47. Joystick
	19. Lock-notch surface		48. Electric Cable
	20. Pivot base		49. Vibration prevention donut
	21. Lock notch		50. Joystick control attachment
	22. Latch	holes	
			51. Locking recess for 42
•	23. Latch aperture		52. Locking recess for 44
	24. Latch tip		53. Holding bar for attachment
•	25. Bar knob	arm	
	26. Actuator portion		54. Bottom channel in wheelchair
	27. Latch knob	arm	
	28. Flush knob	<u> </u>	
	20. I Iush Khou		

Page 8 of 16- Marked Copy of Specification

29. Knob bay

Referring to FIGS. 1-5, a pivotal joystick base has a base bar 1 with a pivot end and a base end. The pivot end is pivotal horizontally on a base pivot 2 that is affixed to a chair attachment 3 that is articulated for attachment to a motorized chair 4 predeterminedly. The base end is adapted to support a joystick assembly5. The base pivot 2 has a pivot lock for locking the base bar 1 in a pivoted position selectively.

In a first preferred embodiment, the base pivot 2 includes a pivot axle 6 that is oriented vertically on the chair attachment 3 for horizontal pivoting of the base bar 1. The pivot lock includes a spring-pressured member 7 that is preferably a sphere or a ball which is spring-pressured upwards vertically into contact with an underside of the base bar 1 and into at least one positional recess 8 in the underside of the base bar 1 for soft-locking the spring-pressured member 7 in the positional recess 8 at a pivotal position of the base bar 1 predeterminedly.

The spring-pressured member 7 is spring-pressured upwards vertically with a spring 9 having spring pressure variable with an adjustment bolt 10 having an axis that is collinear to an axis of the spring-pressured member 7 for entrance into the positional recess 8. The spring-pressured member 7, which is preferably a sphere or ball as shown, is positioned in a top portion of a lock cylinder 11 in which a preferably helical spring 9 is positioned below the spring-pressured member. The Page 9 of 16- Marked Copy of Specification

adjustment bolt 10, preferably a recessed set-screw, is threaded into a bottom portion of the lock cylinder 11 for adjusting tension of the helical spring 9 against the spring-pressured member 7.

The chair attachment can include an attachment bar 12 as shown in FIGS. 1-2, 4-7, and 10-13, or an attachment plate 13 with fasteners 14 in fastener orifices 15 as shown in FIGS. 14-16. The attachment bar 12 or the attachment plate 13 are articulated for being fastened to particular structures of the motorized chair 4 preferably and usually proximate an armrest 16 on either a left or a right side of the motorized chair 4.

The pivotal joystick base allows the armrests 16 of the motorized chair 4 to be positioned closer to and quite often under an approachable object 17 which is shown in dashed lines in FIGS. 1-2, and 4-7 to represent a table, desk, workstation, wall, door or other approachable object 17. Usually, the joystick assembly 5 on a motorized chair 4 protrudes approximately six inches in front of the armrest 16. This prevents a user of the motorized chair 4 from getting close enough to the table, desk, workstation, wall, door or other approachable object 17 to use it effectively. With the pivotal joystick base, the joystick assembly 5 can be swung, pushed or pivoted to a side or backwards where it is out of the way.

In the embodiments shown in FIGS. 1-5, the base bar 1 is soft-locked in a forward position from which there can be an easy breakaway laterally to a side or slightly backwards if desired. Preferably for most users, however, there is also a stop 18 on a bottom side of the base bar 1 as shown in FIG. 5 for contacting the chair attachment 3 to prevent inward pivoting of the base bar 1 to a position of contact of the base end with a front portion of a user.

Referring to FIGS. 6-15 and 17, a second preferred embodiment has the pivot axle 6 extended upwards vertically from a lock-notch surface 19 on the chair attachment 3 for horizontal pivoting of the base bar 1 on the pivot axle 6 vertically above the lock-notch surface 19 which can be on a pivot base 20 on the chair attachment 3. The lock-notch surface19 includes a predetermined plurality of lock notches 21 positioned predeterminedly circumferential at a design notch distance radially from the pivot axle 6. The pivot lock includes a latch 22 that is movable upwardly and downwardly in a latch aperture 23 in the base rod 1 at the notch distance from the pivot axle 6. The latch22 includes a latch tip 24 that is positioned in a select one of the lock notches 21 for locking the base bar1 in a selected pivotal direction from the pivot axle 6. The latch tip 24 is removed from any of the lock notches 21 for pivoting the base bar 1 to a selected pivotal direction from the pivot

axle 6. The lock notches 21 are articulated to receive the latch tip 24 predeterminedly.

The latch 22 can include a latch actuator in a bar knob 25 that is affixable to a topside of the pivot end of the base bar 1. The latch actuator can include internal fastener threads in the bar knob 25 and matching external threads in an actuator portion 26 of the latch 22. The latch 22 can have a latch handle which can include a latch knob 27 for rotating the latch 22 in an upward-rotational direction to unscrew the latch tip 24 from any one of the lock notches 21 and for rotating the latch 22 in a downward-rotational direction to screw the latch tip 24 into a select one of the lock notches 21.

As shown in FIGS. 14-15, the latch 22 can include a recessed flush knob 28 that is recessed in a knob bay 29 in the bar knob 25.

The latch tip 24 is preferably conical and the lock notches 21 are matched conically for receiving the latch tip 24.

As shown in **FIGS. 1-2**, the base bar 1 includes a fastener aperture 30 through which an assembly fastener 31 is inserted and tightened to position the joystick assembly 5 in a desired rotational direction for joystick control of the motorized chair 4.

As shown in FIGS. 7 and 12-14, the base bar 1 can include a fastener aperture that is a slot 32 predeterminedly intermediate the latch end and the pivot end of the base bar 1 for positioning the joystick assembly 5 linearly along the base bar 1 selectively.

As shown in **FIG. 14**, the assembly fastener **31** can include an assembly knob **33** for hand-rotating the assembly fastener **31**.

Shown in **FIGS. 12-13** is forward rotational positioning of the joystick assembly **5** for control in any direction of rotation to compensate for rotation of the joystick assembly **5** resulting from pivotal positioning of the base bar **1** in combination with linear positioning of the joystick assembly **5** along the base bar **1** selectively.

As shown in **FIG. 17**, the latch **22** can include a resilient section **34** that is affixed to the latch **22** and to the actuator portion **26** at oppositely disposed ends of the resilient section **34** respectively for inserting the latch tip **24** into and removing it from the latch notches **21** selectively by rotation of the latch knob **27**. This allows spring-pressured downward travel of the latch tip **24** for finding a latch notch **21** while the base bar **1** is being pivoted in a desired rotational position for the joystick assembly **5**. It also provides rigid pivotal positioning of the joystick assembly **5** for its control operation wherever desired within a pivotal range.

Page 13 of 16- Marked Copy of Specification

Referring to FIG. 18, the swivelling pivotal joystick base is shown to have two plates 35 and 36 which are pivotally connected at a second plate pivotal 45 at the distal end of the first plate 35. The first plate is attached to a first plate pivo 39 inward of a distal end of an arm extension 38 which extends from and is attached to a wheelchair arm rest 37. The first plate 35 is locked in an normal forward use position as shown by a locking ball 42 which is spring mounted within a lock cylinder 41 and which fits into a locking recess 51 on a bottom of a first plate. The second plate 36 is locked in the normal use position by a locking ball 44, which like the first plate locking ball 42 extends into a recess 52 in the bottom of the respective plates as is illustrated and described hereinafter. The joystick control 46 is attached to the top of the second plate 36 so that the user has access to the joystick 47. The electric cable carrying the instructions from the joystick control 46 is shown in partial view as 48. The two pivoting plates 35 and 36 are prevented from rotating too far inward by a first plate inner stop 40 which is attached by a bolt to a distal end of the attachment plate 38 and a second plate inner stop 43 which is attached under the first plate and extends upward to abut the second plate 36. The device as shown can be attached to either the right arm of the wheelchair or to the left arm of the wheelchair by merely changing the location of the inner stops 40 and 43 to the opposite side of the attachment arm and plate.

Page 14 of 16- Marked Copy of Specification

FIG. 19 shows the joystick base of the present invention when it is fully pivoted and swivelled to a position in alignment with the arm 37 of the wheelchair. In this position the joystick controls 46 and 47 are locked in the same normal use orientation as shown in FIG. 18, which is important in that it helps to prevent the user from inadvertently moving the joystick 47 in the wrong direction, thereby directing the chair into a table against which the user is sitting or in another direction which could result in injury. Thus, in this position the second plat36 lies under the joystick controls 46. Further remaining elements shown in FIG. 19 are previously discussed in relation to FIG. 18.

In FIG. 20 the entire swivelling pivotal joystick base is illustrated from the top position without the joystick. In this view, the arm attachment 38 is shown as having a donut 49 on an inner end which fits in the channel of the wheelchair and dampens lateral movement. This donut would likely be made of rubber 49. The first plate 35 is attached to the extension arm 36 by the first plate pivot 39 and rests against the inner stop 40. The second plate inner stop 43 is shown on the inner side of the first plate 35. A locking ball 44 for the second plate 36 is contained on top of the first plate 35. The second plate 36 is pivotally attached at the pivot 45. Attachment holes 50 for mounting the joystick controls 46 are also shown.

FIG. 21 shows the swivelling pivotal joystick base mounted in a channel 55 under the wheelchair arm 37 as it would appear from the bottom in the fully swivelled and pivotal position shown in the top view of FIG. 19. Other additional features shown in FIG. 21 include the holding bar 54 for movable extension arm 38. Also, the locking recess 51 for the first plate locking ball 42 on the top side of the lock cylinder 41 is shown. Further the locking recess 53 for the second plate locking ball 44 is also shown.

A new and useful pivotal joystick base having been described, all such foreseeable modifications, adaptations, substitutions of equivalents, mathematical possibilities of combinations of parts, pluralities of parts, applications and forms thereof as described by the following claims and not precluded by prior art are included in this invention.