# Øving 11, teori: Alle til alle

- **←** (/inginious/course/TDT4120/10p)
- → (/inginious/course/TDT4120/11p)

Your answer passed the tests! Your score is 100.0%. [Submission #5c0052967f80cc0beb1f1f7c]

×

Question 1: Alle-til-alle vha. Dijkstra

Hvordan kan du løse alle til alle korteste veiproblemet i en rettet graf med ikke-negative kantvekter, ved hjelp av Dijkstras algoritme?

- Kjør algoritmen mellom alle par med noder, totalt  $\Theta(V^2)$  ganger.
- Ingen av de andre alternativene er korrekte.
- $igcup \mathsf{K}$ jør algoritmen en gang fra hver node, totalt  $\Theta(V)$  ganger.
  - Kjør algoritmen en gang.

Question 2: Alle-til-alle vha. SSSP

\_\_\_\_\_×

Hvordan kan du raskest finne korteste vei mellom alle par med noder i en rettet graf uten negative sykler, ved å kjøre en av algoritmene nedenfor fra hver node? Hva blir kjøretiden?

## Kommentar til løsning:

Vi har en en graf uten negative sykler, men oppgaven sier ingenting om negative kanter.

| Dermed kan det være negative kanter, og Dijkstra<br>vil ikke fungere. |
|-----------------------------------------------------------------------|
| Dijkstra m/min-heap, $O(VE\lg V)$ Bellman-Ford, $O(V^2E)$             |
| Dijkstra m/min-heap $O(V^2 \lg V + VE)$<br>Bellman-Ford, $O(V^3)$     |
|                                                                       |

| Question 3: Forgjengermatriser                                                                            |   |
|-----------------------------------------------------------------------------------------------------------|---|
| >                                                                                                         | < |
| $\pi_{ij}$ i en forgjengermatrise, forteller oss                                                          |   |
| Kommentar til løsning: $\pi_{ij}$ er forgjengeren til $j$ , når man går fra $i$ .                         |   |
| Hvor man kom fra, på korteste vei fra $j$ til $i$                                                         |   |
| Hvor man må gå for å ta korteste vei fra $i$ til $j$ Hvor man må gå for å ta korteste vei fra $j$ til $i$ |   |
| Hvor man kom fra, på korteste vei fra $i$ til $j$                                                         |   |
| _                                                                                                         |   |

| Question 4: Forgjengermatriser                                              |
|-----------------------------------------------------------------------------|
| ×                                                                           |
| $\pi_{ij}=nil$ betyr at                                                     |
| Ingen av de andre alternativene er korrekte.                                |
| Det er aldri mulig å komme seg fra $i$ til $j$                              |
| Enten er $i=j$ eller så er det ingen sti fra $j$ til $i$                    |
| $lue{lue{lue{c}}}$ Enten er $i=j$ eller så er det ingen sti fra $i$ til $j$ |
|                                                                             |

Question 5: Floyd-Warshall

|                                       | × |
|---------------------------------------|---|
| Hva er kjøretiden til Floyd-Warshall? |   |
| $\bigcirc O(V^3)$                     |   |
| $O(V^2 \lg V)$                        |   |
| $O(V^4)$                              |   |
| O(VE)                                 |   |
|                                       |   |





| $\Theta(E+V)$          |  |  |
|------------------------|--|--|
| $igotimes \Theta(V^2)$ |  |  |
| $\Theta(E)$            |  |  |
| $\Theta(V^3)$          |  |  |
|                        |  |  |

| Question 8: Floyd-Warshall                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ×                                                                                                                                                                                                                                                                          |
| Ta stilling til følgende utsagn:                                                                                                                                                                                                                                           |
| 1. Etter at Floyd-Warshall har kjørt, kan diagonalen avstandsmatrisen $D$ (dvs. $d_{1,1}$ , $d_{2,2}$ osv.) inneholde positive tall.  2. Etter at Floyd-Warshall har kjørt, kan diagonalen avstandsmatrisen $D$ (dvs. $d_{1,1}$ , $d_{2,2}$ osv.) inneholde negative tall. |
| Kommentar til løsning:<br>Dersom vi har negative sykler få diagonalen<br>negative verdier i nodene som er en del av en<br>negativ sykel.                                                                                                                                   |
| Begge utsagnene er sanne.                                                                                                                                                                                                                                                  |
| Begge utsagnene er usanne.                                                                                                                                                                                                                                                 |
| Kun utsagn 2 er sant.                                                                                                                                                                                                                                                      |
| Kun utsagn 1 er sant.                                                                                                                                                                                                                                                      |

| Question 9: Transitive-closure                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|
| X                                                                                                                           |
| Oppgave fra en tidligere eksamen:                                                                                           |
| l Transitive-Closure brukes den binære variabelen $t_{ij}^{(k)}$ til å indikere om det går en sti fra $i$ til $j$ hvis alle |

noder på veien mellom dem må ligge i mengden  $1,2,\ldots,k$ . For eksempel er  $t_{ij}^{(0)}=1$  hvis og bare hvis  $(i,j) \in E$ . Hva er utrykket for  $t_{ij}^{(k)}$  , når k>0?

$$igcup_{ij}^{(k)} = t_{ij}^{(k-1)} ee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \wedge (t_{ik}^{(k-1)} ee t_{kj}^{(k-1)})$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \wedge (t_{jk}^{(k-1)} ee t_{ki}^{(k-1)})$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \wedge (t_{jk}^{(k-1)} ee t_{ki}^{(k-1)}) \ t_{ij}^{(k)} = t_{ij}^{(k-1)} ee (t_{jk}^{(k-1)} \wedge t_{ki}^{(k-1)})$$

Question 10: Transitive-closure

Dersom  $t_{ij}^{(k)}=0$  betyr det at

#### Kommentar til løsning:

Dersom  $t_{ii}^{(k)}=0$  vet vi at det ikke finnes en kant fra i til j, og at det ikke går en sti mellom nodene gjennom nodene  $1, \ldots, k$ .

- Det eksisterer en sti fra i til j med lengde mindre eller lik k.
- Det eksisterer en sti fra i til j med lengde nøyaktig lik k.
- 📆 Ingen av de andre alternativene.
- Det ikke eksisterer en sti fra i til j med lengde mindre eller lik
- Det ikke eksisterer en sti fra i til j med lengde større eller lik
- Det eksisterer en sti fra i til j med lengde større eller lik k.

Question 11: Johnsons algoritme

Johnsons bruker andre algoritmer som subrutiner.

12/4/18, 2:20 PM 5 of 8

| Hvilke?  Dijkstra og BFS  BFS og Floyd-Warshall  Bellman-Ford og Floyd-Warshall  Dijkstra og Bellman-Ford |  |
|-----------------------------------------------------------------------------------------------------------|--|
| Question 12: Johnsons algoritme                                                                           |  |

Anta at vi bruker en binær min-heap. Da har Johnsons algoritme har kjøretid

#### Kommentar til løsning:

Definisjon fra Cormen.

$$O(VE \lg V)$$

$$O(V^2 \lg V + VE)$$

$$O(E \lg V + VE)$$

$$O(V^2 \lg V + V^3)$$

| Question 13: Johnsons algoritme                                      |
|----------------------------------------------------------------------|
| ×                                                                    |
| Johnsons algoritme finner korteste vei i grafer med negative sykler. |
| Sant.                                                                |
| Usant.                                                               |

Question 14: Johnsons algoritme

×

Hvilken teknikk er det som gjør Johnsons algoritme spesiell?

- Grådighet
- Revekting av kantvekter
  - Bruk av nabolister
  - Relaksering av kantvekter

Question 15: Johnsons algoritme

\_

Hva blir kjøretiden til Johnsons algoritme i en rettet graf der alle par med noder har en kant hver vei mellom seg (en komplett digraf), dersom vi antar at vi bruker en Fibonacci-heap?

## Kommentar til løsning:

Fra oppgaveteksten vet vi at vi har  $E=O(V^2)$  kanter. Kjøretiden for Johnson's algoritme med Fibonacci-heap blir da

$$O(V^2 \lg V + VE) = O(V^2 \lg V + V^3) = O(V^3).$$

- $\bigcirc O(V^3)$
- O(VE)
- $O(V^4)$
- $O(V^2 \lg V + VE)$

Submit

>\_

https://algdat.idi.ntnu.no/inginious/course/TDT41...