Physics 212

Exam 2 Study Guide

1 Capacitors

1.1 Main Concepts

- Capacitors in series have the same current.
- The formula for total capacitance in series is $\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2}$ i
- Capacitors in parallel have the same voltage.
- The formula for total capacitance in parallel is $C_{12} = C_1 + C_2$

2 Electric Current

2.1 Main Concepts

- The resistance of a resistor is calculated by $R = \frac{L}{\sigma A}$
- R = Resistance, L = length, A = Cross-sectional Area, σ = Resistivity.
- Resistors in series have the same current.
- The formula for total resistance in series is $R_{12}=R_1+R_2$
- Resistors in parallel have the same voltage/
- The formula for total resistance in parallel is $\frac{1}{R_{12}} = \frac{1}{R_1} + \frac{1}{R_2}$
- Ohm's Law is V=IR
- $J = \sigma E$
- \bullet J is current density at a location, σ is conductivity, E is electric field at that location
- Electric Current is $I = \frac{dq}{dt}$
- \bullet P = IV
- P = Power, I = Current, V = Voltage

3 Kirchoff's Rules

3.1 Main Concepts

- Kirchoff's Current Law, at any node $\Sigma I_{in} = \Sigma I_{out}$

4 RC Circuits

4.1 Main Concepts

- Resistors will cause capacitance to slowly gain voltage and slowly lose voltage once unplugged.
- Discharging Charge: $Q_0 e^{-\frac{t}{RC}}$
- Charging Charge: $Q_{/infty}1 e^{-\frac{t}{RC}}$
- Discharging Current: $I_0 e^{-\frac{t}{RC}}$
- Charging Current: $I_0 e^{\frac{-t}{RC}}$
- Discharging Voltage: $V_0 e^{-\frac{t}{RC}}$
- Charging Voltage: $V_{\infty}(1 e^{-\frac{t}{RC}})$

4.2 Proof of Charge relationship

$$\begin{split} \Sigma V &= 0 \\ V_r + V_c &= 0 \\ \frac{dQ}{dt}R &= -\frac{Q}{C} \\ \frac{1}{Q}RdQR &= -\frac{1}{C}dt \\ \int_0^{final} \frac{R}{Q}dQ &= -\int \frac{1}{c}dt \\ R \ln \frac{Q_{final}}{Q_0} &= -\frac{t}{c} \\ \ln \frac{Q_{final}}{Q_0} &= -\frac{t}{RC} \\ \frac{Q_{final}}{Q_0} &= e^{-\frac{t}{RC}} \\ Q_{final} &= Q_0 e^{-\frac{t}{RC}} \end{split}$$

5 Magnetism

5.1 Main Concepts

- Magnetic fields create electric Currents
- Magnetic Fields exert forces on electric currents (the charges in motion)
- $\vec{F} = q\vec{v}x\vec{B}$
- Force on a particle = the charge of particle multiplied by the cross product of its velocity and the magnetic field
- Right hand rule! Index finger is v, other is B, thumb is F!

6 Forces and Torques on Currents

6.1 Main Concepts

- $\vec{F} = I\vec{L}x\vec{B}$
- F = Force, I = current, L = length, B = Magnetic field
- $\vec{\mu} = NI\vec{A}$
- μ = Dipole moment N = num of coils, I = current A = Area
- $\bullet \ \vec{\tau} = \vec{\mu} x \vec{B}$
- $\tau = \text{Torque}, \, \mu = \text{Magnetic Dipole Moment}, \, B = \text{Magnetic Field}$

7 Biot-Savart Law

7.1 Main Concepts

- $\vec{dB} = \frac{\mu_0 I}{4\pi} \frac{\vec{dsxr}}{r^2}$
- nfinite Line : $B = \frac{\mu_0 I}{2\pi r}$
- Current Loop: $B = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + z^2)^{\frac{3}{2}}}$

•

8 Ampere's Law

8.1 Main Concepts

- $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$
- For a solenoid: $B = \frac{\mu_0 nI}{2}$

9 Motional EMF

9.1 Main Concepts

$$\bullet \ \vec{F} = q\vec{v} = \vec{B}$$

10 Faraday's Law

10.1 Main Concepts

- $\Phi = \int \vec{B} \cdot \vec{dA}$
- $\varepsilon = -\frac{d\Phi}{dt} = \int \vec{E} \cdot d\vec{l}$