Tutorial-5, MA 106 (Linear Algebra) Linear Algebra and its Applications by Gilbert Strang

This tutorial sheet consists of the problems based on 3.1,3.2 and 3.3. This includes:

Problem Set 3.1: [1, 2, 4, 5, 7, 12, 15, 16, 18, 19, 21, 25(a), (c), (d), 26, 38, 41, 42, 49]

Problem Set 3.2: [1(a), 4, 10, 14, 17, 22, 24]

Problem Set 3.3: [2, 3, 8, 12, 13, 26]

• Section 3.1

- 1. Find the length of a = (2, 2, 1), and write two independent vectors that are perpendicular to a.
- 2. Give an example in \mathbb{R}^2 of linearly independent vectors that are not orthogonal. Also, give an example of orthogonal vectors that are not independent.
- 3. How do we know that the i^{th} row of an invertible matrix B is orthogonal to the j^{th} column of B^{-1} , if $i \neq j$?
- 4. Which pairs are orthogonal among the vectors v_1, v_2, v_3, v_4 ?

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 4 \\ 0 \\ 4 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

5. Find a vector x orthogonal to the row space of A, and a vector y orthogonal to the column space, and a vector z orthogonal to the nullspace:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}.$$

6. Find a basis for the orthogonal complement of the row space of A:

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 1 & 1 & 4 \end{bmatrix}.$$

Split x = (3,3,3) into a row space component x_r and a nullspace component x_n .

- 7. Find a matrix whose row space contains (1, 2, 1) and whose nullspace contains (1, -2, 1), or prove that there is no such matrix.
- 8. Find all vectors that are perpendicular to (1, 4, 4, 1) and (2, 9, 8, 2).
- 9. If $S = \{0\}$ is the subspace of \mathbb{R}^4 containing only the zero vector, what is S? If S is spanned by (0,0,0,1), what is S^{\perp} ? What is $(S^{\perp})^{\perp}$?
- 10. Why are these statements false?
 - (a) If V is orthogonal to W, then V^{\perp} is orthogonal to W^{\perp} .
 - (b) V orthogonal to W and W orthogonal to Z makes V orthogonal to Z.
- 11. Let P be the plane in \mathbb{R}^2 with equation x + 2y z = 0. Find a vector perpendicular to P. What matrix has the plane P as its nullspace, and what matrix has P as its row space?

- 12. Construct a matrix with the required property or say why that is impossible.
 - (a) Column space contains $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$, null space contains $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (b) Row space contains $\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$, null space contains $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (c) $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has a solution and $A^T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
- 13. If AB = 0 then the columns of B are in ____ of A. The rows of A are in the ____ of B. Why cannot A and B be 3×3 matrices of rank 2?
- 14. If S is the subspace of \mathbb{R}^3 containing only the zero vector, what is S^{\perp} ? If S is spanned by (1,1,1), what is (S^{\perp}) ? If S is spanned by (2,0,0) and (0,0,3), what is S^{\perp} ?
- 15. Suppose V is the whole space \mathbb{R}^4 . Then $V\perp$ contains only the vector _____ . Then $(V^\perp)^\perp$ is . So $(V^\perp)^\perp$ is the same as _____ .
- 16. Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find two vectors that span S^{\perp} . This is the same as solving Ax = 0 for which A?
- 17. Why is each of these statements false?
 - (a) (1,1,1) is perpendicular to (1,1,-2), so the planes x+y+z=0 and x+y-2z=0 are orthogonal subspaces.
 - (b) The subspace spanned by (1, 1, 0, 0, 0) and (0, 0, 0, 1, 1) is the orthogonal complement of the subspace spanned by (1, -1, 0, 0, 0) and (2, -2, 3, 4, -4).
 - (c) Two subspaces that meet only in the zero vector are orthogonal.
 - Section 3.2
- 18. Is the projection matrix P invertible? Why or why not?
- 19. What matrix P projects every point in \mathbb{R}^3 onto the line of intersection of the planes x+y+t=0 and x-t=0?
- 20. Project the vector b onto the line through a. Check that $e = b \text{proj}_a(b)$ is perpendicular to a:

(i)
$$b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
 and $a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (ii) $b = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$ and $a = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$.

- 21. Project $b = (1,0,0)^T$ onto the lines through $a_1 = (-1,2,2)^T$, $a_2 = (2,2,-1)^T$, and $a_3 = (2,-1,2)^T$. Add the three projections $p_1 + p_2 + p_3$.
- 22. Project the vector $b = (1,1)^T$ onto the lines through $a_1 = (1,0)^T$ and $a_2 = (1,2)^T$. Draw the projections p_1 and p_2 and add $p_1 + p_2$. The projections do not add to b because ____.

- Section 3.3
- 23. Suppose the values $b_1 = 1$ and $b_2 = 7$ at times $t_1 = 1$ and $t_2 = 2$ are fitted by a line b = Dt through the origin. Solve D = 1 and 2D = 7 by least squares, and sketch the best line.
- 24. Solve Ax = b by least squares, and find $p = A\hat{x}$ if $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.
- 25. If P is the projection matrix onto a k-dimensional subspace S of the whole space R^n , what is the column space of P and what is its rank?
- 26. If V is the subspace spanned by $(1,1,0,1)^T$ and $(0,0,1,0)^T$, find
 - (a) a basis for the orthogonal complement V^{\perp} .
 - (b) the projection matrix P onto V.
 - (c) the vector in V closest to the vector $b = (0, 1, 0, -1)^T$ in V^{\perp} .
- 27. Find the best straight-line fit (least squares) to the measurements: b=4 at t=-2, b=3 at t=-1, b=1 at t=0 and b=0 at t=2.

Then find the projection of b = (4, 3, 1, 0) onto the column space of $A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}$.

- 28. A middle-aged man was stretched on a rack to lengths L=5, 6, and 7 feet under applied forces of F=1, 2, and 4 tons. Assuming Hookes law L=a+bF, find his normal length a by least squares.
 - Extra Problems
- 29. A certain experiment produces the data (1,7.9), (2,5.4) and (3,-0.9). Describe the model that produces a least squares fit of these points by a function of the form

$$y = A\cos x + B\sin x.$$

*******==******