Surname (COGNOME)	
Name	
POLIMI Personal Code	
Signature	

Politecnico di Milano, 15 July, 2024

Course on Advanced Computer Architectures

Prof. C. Silvano

EX1	(5 points)	
EX2	(5 points)	
EX3	(5 points)	
Q1	(5 points)	
Q2	(5 points)	
QUIZZES	(8 points)	
TOTAL	(33 points)	

EXERCISE 1 – DEPENDENCY ANALYSIS + TOMASULO (5 points)

1. Let's consider the following assembly code containing multiple types of intra-loop dependences. Complete the following table by inserting all types of true-data-dependences, anti-dependences and output dependences for each instruction:

I#	TYPE OF INSTRUCTION	ANALYSIS OF DEPENDECES: 1. True data dependence with I# for \$Fx 2. Anti-dependence with I# for \$Fy 3. Output-dependence with I# for \$Fz
10	FOR:LD \$F2, A(\$R1)	None
11	FADD \$F2, \$F2, \$F2	True data dependence with I0 for \$F2 Output-dependence with I0 for \$F2
12	FADD \$F2, \$F2, \$F4	True data dependence with I1 for \$F2 Output-dependence with I1 for \$F2 Anti-dependence with I1 for \$F2
13	SD \$F2, A(\$R1)	True data dependence with I2 for \$F2
14	ADDUI \$R1, \$R1, 8	Anti-dependence with I0, I3 for \$R1
15	BNE \$R1, \$R2, FOR	True data dependence with I4 for \$R1

Let's consider the previous assembly code to be executed on a CPU with dynamic scheduling based on **TOMASULO algorithm** with all cache HITS, a single Common Data Bus and:

- 2 RESERV. STATIONS (RS1, RS2) with 2 LOAD/STORE units (LDU1, LDU2) with latency 4
- 2 RESERVATION STATION (RS3, RS4) with 1 FP unit1 (FPU1) with latency 3
- 2 RESERVATION STATION (RS5, RS6) with 1 INT ALU/BR unit (ALU1) with latency 2

Please complete the following table:

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
FOR:LD \$F2, A(\$R1)	1	2	6	None	RS1	LDU1
I1: FADD \$F2, \$F2, \$F2	2	7	10	RAW \$F2 WAW \$F2 solved	RS3	FPU1
I2: FADD \$F2, \$F2, \$F4	3	11	14	Structuure ALU1 RAW \$F2 WAW \$F2 solved, WAR \$F2 solved	RS4	FPU2
I3: SD \$F2, A(\$R1)	4	15	19	RAW \$F2	RS2	LDU2
I4: ADDUI \$R1, \$R1, 8	5	6	8	WAR \$R1 solved	RS5	ALU1
I5: BNE \$R1, \$R2, FOR	6	9	11	Structure ALU1	RS6	ALU1

Calculate the CPI =	
	 _

EXERCISE 2 – VLIW SCHEDULING (5 points)

Let's consider the following LOOP code, where \$Ri are integer registers and Fi are floating-point registers.

LOOP: LD \$F2, 0 (\$R1)

LD \$F4, 0 (\$R2)

FADD \$F4, \$F4, \$F4

FADD \$F6, \$F2, \$F2

FADD \$F8, \$F0, \$F0

SD \$F6, 0 (\$R1)

SD \$F8, 0 (\$R2)

ADDDUI \$R1, \$R1, 4

ADDDUI \$R2, \$R2, 4

BNE \$R1, \$R3, LOOP

Given a 3-issue VLIW machine with fully pipelined functional units:

- 1 Memory Units with 3 cycles latency
- 1 FP ALUs with 3 cycles latency
- 1 Integer ALU with 1 cycle latency to next Int/FP/L/S & 2 cycle latency to next Branch The branch is completed with 1 cycle delay slot (branch solved in ID stage). No branch prediction. In the Register File, it is possible to read and write at the same address at the same clock cycle. Considering one iteration of the loop, complete the following table by using the list-based scheduling (do NOT introduce any software pipelining, loop unrolling and modifications to loop indexes) on the 4-issue VLIW machine including the BRANCH DELAY SLOT. Please do not write in NOPs.

	Memory Unit	Floating Point Unit	Integer Unit
C1	LD \$F2, 0 (\$R1)	_	_
C2			
C3			
C4			
C5			
C6			
C7			
C8			
C9			
C10			
C11			
C12			
C13			
C14			_
C15			

How long is the critical path for a single iteration?	
How much is the code efficiency for a single iteration?	

EXERCISE 3 – CACHE MEMORIES (5 points)

Let's consider a 32-block main memory with a **4-way set associative** 8-block cache based on a **write allocate** with **write-back** protocol with **LRU**.

The addresses are expressed as: Memory Addresses: $[0, 1, 2, \dots, 31]_{10}$

Cache Addresses: [a, b, c, d, e, f, g, h]

and Cache Tags are expressed as binary numbers.

How many sets?

Answer 1: 2

Answer 2: 4

Answer 3: 8

Answer 3: 16

At cold start the cache is empty, then there is the following sequence of memory accesses. Please complete the following table:

	Type of memory access	Memory Address	Hit/ Miss Type	Cache Tag	Set	Cache Address	Dirty bit	Write in memory
1	Write	[16] 10	Cold-start Miss	[1000] ₂	[0] 10	а	1	No
2	Write	[14] 10	Cold-start Miss	0111	0	b	1	No
3	Write	[07] 10	Cold-start Miss	0011	1	е	1	No
4	Read	[14] 10	Hit	0111	0	b	1	No
5	Write	[16] 10	Hit	1000	0	а	1	No
6	Read	[12] 10	Cold-start Miss	0110	0	С	0	No
7	Write	[18] 10	Cold-start Miss	1001	0	d	1	No
8	Read	[06] 10	Conflict	0011	0	b	0	14
9	Write	[04] 10	Confict	0010	0	а	1	Write 16
10	Write	[30] 10	Conflict	1111	0	С	1	No

How much is the miss rate?	

QUESTION 1: DIRECTORY-BASED PROTOCOL (5 points)

Consider a directory-based protocol for a distributed shared memory system with 4 nodes (N0, N1, N2, N3):

Please answer to the following questions:

What is the definition of home node ?	
What is the definition of local node ?	
What is the definition of remote node ?	
What are the possible messages sent from the local node to the home node ?	
What are the possible messages sent from the home node to the local node?	

What are the possible messages sent from the home node to the remote node?	
What are the possible messages sent from the remote node to the home node?	
What are the possible coherence states of a block in the local cache?	1)
What are the possible coherence states of a block in the home directory?	1)
What is the meaning of the sharer bits of a block in the home directory?	

QUESTION 2: MULTITHREADING (5 points)

Let's consider the fine-grained and simultaneous multithreading techniques used to manage thread-level parallelism by hardware processors. *Answer to the following questions:*

	Fine-grained Multithreading	Simultaneous Multithreading
Explain the main concepts for each technique.		
For each technique, make an example with up to 4 threads (T1, T2, T3, T4) on a quad-issue processor		
Let's consider a quad-issue SMT processor that can manage up to 4 threads		How much is the ideal CPI? How much is the ideal per-thread CPI?

What are		
the main		
benefits for		
venejus jor		
each		
technique?		
iechnique!	 	
What are		
the main		
drawbacks	 	
c 1		
for each		
technique?		
reconsique.		

QUIZZES

Question 1 (format Multiple Choice – Single answer)

Let's consider the following loop:

```
for (i=1; i<=100, i++) {
     X[i] = X[i] + X[i-1];     /*S1*/
     Z[i] = X[i] + Y[i-1]     /*S2*/
}</pre>
```

How many loop-carried dependencies are in the code?

(SINGLE ANSWER)

1 point

Answer 1: Only one in S2 because Z[i] depends on Y[i-1];

Answer 2: Only one in S1 because X[i] depends on X[i-1];

Answer 3: Both of them

Question 2 (format Multiple Choice – Single answer)

Let's consider the following memory hierarchy addressed at word-level (32-bit):

- main memory size = 4 Giga word
- 4-way set-associative cache with cache size = 1 Mega word and block size = 256 word *Please indicate the structure of the 32-bit memory address:*

(SINGLE ANSWER)

<mark>1 point</mark>

Answer 1: |12-bit tag | 12-bit index | 8-bit offset |

Answer 2: | 24-bit tag | 8-bit offset |

Answer 3: |14-bit tag | 10-bit index | 8-bit offset |

Answer 4: |13-bit tag | 11-bit index | 8-bit offset |

Question 3 (format Multiple Choice – Single answer)

Let's consider a dual-issue SMT processor that can manage up to 4 simultaneous threads. What are the values of the ideal CPI and the ideal per-thread CPI?

(SINGLE ANSWER)

1 point

Answer 1: Ideal CPI = 1 & Ideal per-thread CPI = 0.25

Answer 2: Ideal CPI = 0.25 & Ideal per-thread CPI = 0.25

Answer 3: Ideal CPI = 0.5 & Ideal per-thread CPI = 2

Answer 4: Ideal CPI = 0.5 & Ideal per-thread CPI = 1

Answer 5: Ideal CPI = 0.25 & Ideal per-thread CPI = 4

Question 4 (format Multiple Choice – Single answer)

Let's consider a directory-based protocol for a distributed shared memory system with 4 Nodes

(N0, N1, N2, N3) where: Directory N1 Block B1 | State: Shared | Sharer Bits: 1001

Which is the state of the block B1 in N1 after this sequence:

Read Miss B1 from local cache N1; Read Miss B1 from local cache N2; Write Hit B1 from local cache N1;

(SINGLE ANSWER)

1 point

Answer 1: Directory N1 Block B1 | State: Shared | Sharer Bits: 1111

Answer 2: Directory N1 Block B1 | State: Modified | Sharer Bits: 0100

Answer 3: Directory N1 Block B1 | State: Shared | Sharer Bits: 0110

Answer 4: Directory N1 Block B1 | State: Modified | Sharer Bits: 0110

Question 5 (format Multiple Choice – Single answer)

Let's consider the following code:

```
for (i=0; i<260; i++)
Y[i] = X[i] + Y[i];
```

Which code transformation can be applied to be executed by the VMIPS processor with a Vector Register File composed of 8 registers of 64 elements and 64 bits/element?

(SINGLE ANSWER)

1 point

Answer 1: Trace scheduling

Answer 2: Software pipeling

Answer 3: Strip mining

Answer 4: Apply a mask register

Motivate your answers:

1 point

Question 6 (format Multiple Choice – Single answer)

Let's consider the following code executed by a Vector Processor with:

- Vector Register File composed of 32 vectors of 16 elements per 64 bits/element;
- Scalar FP Register File composed of 32 registers of 64 bits;
- One Load/Store Vector Unit with operation chaining and memory bandwidth 64 bits;
- One ADD/SUB Vector Unit with operation chaining.
- One MUL/DIV Vector Unit with operation chaining.

How many convoys? How many clock cycles to execute the code?

(SINGLE ANSWER) 1 point

Answer 1: 3 convoys; 48 clock cycles Answer 2: 2 convoys; 32 clock cycles Answer 3: 4 convoys; 64 clock cycles

Motivate your answer by completing the following figure:

1 point

0	1	L.V V1, R1	15
---	---	------------	----