

PROJECT OVERVIEW

Objective: Automate waste sorting by classifying images into "Recyclable" and "Household Waste."

Key Learning Goals:

- Understand dataset preparation and EDA for CV
- Implement Transfer Learning with MobileNetV2
- Deploy the model using Streamlit

DATASET AND EDA

• Dataset:

- Original dataset was unorganized and required significant restructuring.
- Images divided into two categories: Recyclable and Household Waste.
- Dataset split: **70% Training**, **15% Validation**, **15% Test**.
- Categorization examples:
 - Plastic Shopping Bags, clothing, and tea bags as Household Waste
 - Aluminum cans, glass jars and cardboard as Recyclable
- Custom utility functions to:
 - Assign unique names to images
 - Sort images into respective categories
 - Check for corrupted files and unique image formats
 - Check data distribution across categories

Training Distribution: {'householdwaste': 4900, 'recyclable': 5600} Validation Distribution: {'householdwaste': 1050, 'recyclable': 1200} Test Distribution: {'householdwaste': 1050, 'recyclable': 1200}

IMPLEMENTATION DETAILS

Model Training Pipeline:

- tf prefetch() for efficient data loading
- Early stopping monitoring validation loss
- Learning Rate Scheduling with exponential decay for dynamic learning rate

Model: MobileNetV2:

- Pre-trained on ImageNet
- Base layers frozen
- Custom top layers for binary classification
- Compiled with Adam, Loss: Binary Crossentropy, Metric: accuracy

<u>Model Checkpoint</u>: Saved best-performing model based on validation loss

TRAINING RESULTS

- Training Accuracy: ~98%
- Test accuracy of ~85.5%

Classification Report: recall f1-score precision support Recyclable 0.84 0.85 0.85 1050 Household Waste 0.87 0.86 0.87 1200 0.86 2250 accuracy macro avg 0.86 0.86 0.86 2250 weighted avg 0.86 0.86 0.86 2250

MODEL EVALUATION

True: Household Waste Pred: Household Waste

True: Recyclable Pred: Recyclable

True: Recyclable Pred: Household Waste

True: Recyclable Pred: Household Waste

True: Household Waste Pred: Household Waste

True: Household Waste Pred: Household Waste

True: Recyclable Pred: Recyclable

True: Household Waste Pred: Recyclable

True: Recyclable Pred: Recyclable

FINAL TIPS & TAKEAWAYS

Did we meet the Goals?

Achieved an automated waste classification system

~85% test accuracy

Preprocessing is key!

Transfer learning saves time and improves performance

Next Steps:

- Model Optimization:
 - Dropout layers
 - Augmentation (more?)
 - Fine-tuning
- Data Expansion:
 - Incorporate more waste categories and diverse images
 - Deeper exploration of the initial set of images

Incorporate distinction between product and package!

THANK YOU