Assignment 2

MA06 Complex Analysis

Deadline 11:59 AM, 20181211

- 1. Evaluate the given complex function $f(z) = z^2 \bar{z} 2i$ at the indicated points.
 - (a) 2i
 - (b) 1+i
 - (c) 3 2i
- 2. Find the real and imaginary parts u and v of the given complex function f(z) = 6z 5 + 9i as functions of x and y. (Hint: Example 2.1.2)
- 3. Proceed as in Example 2.2.1 in Lecture 2 to find the image S' of the set S under the given complex mapping $w = f(z) = \bar{z}$, where S is the line x = y.
- 4. Use Theorem 2.2 and the basic limits (2.6.15) and (2.6.16) to compute the given complex limit $\lim_{z\to e^{i\pi/4}}(z+\frac{1}{z})$.
- 5. Show that the function f is continuous at the given point.

$$f(z) = z^2 - iz + 3 - 2i$$
; $z_0 = 2 - i$
(Hint: Example 2.6.5)

Notice: Please write Your Name and Student ID when you submit.