Ans.to Q. no. 1

We construct the need matrix

Need = Max - Allocation

0 0 0	Max			Allocation			Need
	A	B	C	A	В	C	ABC
P.	7	5	3	0	1	0	7 4 3
Pi	3	2	2	2	0	0	1 2 2
Pz	9	0	2	3	0	2	600
P ₃	2	2	2	2	1	1	0,
Pa	4	3	3	0	0	2	
							431

let, us consider the first safe sequence.

< P,, P3, P0, P2, P4) >

Step-1

For Kntitially the auditable vector is (3, 3, 2) equals work.

We check the finish of Pa. Finish [1] == false]

and, Need = work soutisfied

Because $(1,2,2) \leq (3,3,2)$

Then, we update the matrices

Finish

Folge

P, True

P2

Folge

P3

Folge

P3 False

Py False

Need Work

(3,3,2) - Allocation_1

Work + Allocations

= (3,3,2) + (2,0,0)= (5,3,2)

Step-2

Work is (5,3,2)

We check conditions for Ps

Finish [3] == false

and Need3 \leq work

because $(0,1,1) \leq (5,3,2)$ satisfied

We update the matrices

	Fraish	
Po	F	Work = Work + Albertions
Ρ,	Т	1
Pz	F	=(5,3,2)+(2,1,1)
P3	T	= (7, 4, 3)
Pa	F	

Step-3: We pick Po.

We check condition, finish
$$[0] = = false$$

and Need, $e \le work$ Satisfied
 $(7,4,3) \le (7,43)$
We update matrices

Skp-4

For Pz, we check conditions,

Finish [2] == false
Need
$$\geq \leq Wark$$

 $\leq (6,0,0) \leq (7,5,3)$
Satisfied

We update

Finish

Po

T

Work=Work+Allocation₂

P,

T

=
$$(7,5,3)+(3,0,2)$$

P,

T

= $(0,5,5)$

P4

Step-5

For P4, we check,

Finish [4] == false
Need
$$_{4} \leq \omega_{ork}$$

. $(4,3,1) \leq (10,5,5)$

We update
$$\begin{array}{ccc}
P_0 & \overline{T} \\
P_1 & T \\
P_2 & T
\end{array}$$

$$\begin{array}{ccc}
& Work = Clock + Allocation u \\
P_3 & T
\end{array}$$

$$\begin{array}{cccc}
& = (10, 5, 5) + (0, 0, 2) \\
P_4 & T
\end{array}$$

$$\begin{array}{cccc}
& = (10, 5, 5) \\
& = (10, 5, 7)
\end{array}$$

As, all the processes have finished, system is in a sock state (Aw)

Ans. to Q.m. 2

We check, request, < available.

The request can be granted as the condition is fulfilled. The new snapshot is given below:

Available = Available - Request 1

=
$$(3, 3, 2) - (1, 0, 2)$$

= $(2, 3, 0)$

Then, we chook if the system is in a safe state or not. It it is in a safe state, then resource can be granted.

(Ans)

Ans. to Qno.36

We 350 check, request & available

 \Rightarrow (3,3,0) \leq (2,3,0)

But, this is false.

So, req will not be granted (Ans.)

 $\frac{(b)}{}$ Req₃ = (0,3,0)

We check, request₃ \leq available $(0,3,0) \leq (2,3,0)$

This is true.

So, reag will be greanted if the after greanting the resources, the system is in a safe state. (Ans.)

$$\frac{(0)}{2}$$
 req = $(0,0,2)$

We check, request, & available.

This is false and hence, the request won't be granted. (Ans.)