Module 1

DWH Fundamentals

What is Data Warehouse?

- A data warehouse is a large collection of business data used to help an organization make decisions.
- A system used for reporting and data analysis ---a core component of business intelligence.
- DWs are central repositories of integrated data from one or more disparate sources. They store current and historical data in one single place.
- According to William H. Inmon, a leading architect in the construction of data warehouse systems, "A data warehouse is a subject-oriented, integrated, timevariant, and nonvolatile collection of data in support of management's decision making process"

DWH Characteristics

- Subject-oriented: A data warehouse is organized around major subjects.
 - A data warehouse focuses on the modeling and analysis of data for decision makers.

Hence, data warehouses typically provide a simple and concise view of particular subject issues .

- Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as relational databases, flat files, and online transaction records.
 - Data cleaning and data integration techniques are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on.

DWH Characteristics

- **Time-variant:** Data are stored to provide information from an historic perspective (e.g., the past 5–10 years). Every key structure in the data warehouse contains, either implicitly or explicitly, a time element.
 - -Data in the DWH is mainly meant for data mining and forecasting.
- Nonvolatile: The data in the data warehouse is read-only.

Operational DBS Vs. DWH

Data Contents:

Operational DB Systems: Current and detailed data and is subject to modifications. Data Warehouse: Historical data, course granularity, generally not modified.

Users:

<u>Operational DB Systems:</u> Customer – Oriented, thus used by customers/clerks/IT professionals.

Data Warehouse: Market - Oriented, thus used by Managers/Executives/Analysts.

Database Design:

<u>Operational DB Systems:</u> Usually E-R model.

Data Warehouse: Usually Multidimensional model. (Star, Snowflake...)

Nature of Queries:

<u>Operational DB Systems:</u> Short, atomic queries desiring high performance (less latency) and accuracy.

<u>Data Warehouse:</u> Mostly read only queries, operate on HUGE volumes of data, queries are quite complex.

OLTP Vs OLAP

OLTP	OLAP
OLTP is an online transactional system.	OLAP is an online analysis and data retrieving process.
It is characterized by large numbers of short online transactions.	It is characterized by a large volume of data.
OLTP is an online database modifying system.	OLAP is an online database query management system.
OLTP uses traditional DBMS.	OLAP uses the data warehouse.
Insert, Update, and Delete information from the database.	Mostly select operations
OLTP and its transactions are the sources of data.	Different OLTP databases become the source of data for OLAP.
OLTP database must maintain data integrity constraints.	OLAP database does not get frequently modified. Hence, data integrity is not an issue.
It's response time is in a millisecond.	Response time in seconds to minutes.
The data in the OLTP database is always detailed and organized.	The data in the OLAP process might not be organized.
Allow read/write operations.	Only read and rarely write.
It is a customer-oriented process.	It is a market oriented process.
Queries in this process are standardized and simple.	Complex queries involving aggregations.
Complete backup of the data combined with incremental backups.	OLAP only need a backup from time to time. Backup is not important compared to OLTP
DB design is an application-oriented example: Database design changes with the industry like retail, airline, banking, etc.	DB design is subject-oriented. Example: Database design changes with subjects like sales, marketing, purchasing, etc.

OLTP	OLAP
It is used by Data critical users like clerk, DBA & Data Base professionals.	It is used by Data knowledge users like workers, managers, and CEO.
It is designed for real time business operations.	It is designed for analysis of business measures by category and attributes.
Transaction throughput is the performance metric	Query throughput is the performance metric.
This kind of Database allows thousands of users.	This kind of Database allows only hundreds of users.
It helps to Increase user's self-service and productivity	Help to Increase the productivity of business analysts.
It provides a fast result for daily used data.	It ensures that response to the query is quicker consistently.
It is easy to create and maintain.	It lets the user create a view with the help of a spreadsheet.

Why to have a separate Warehouse?

3 Main reasons:

- OLTP systems require high concurrency, reliability, locking which provide good performance for short and simple OLTP queries. An OLAP query is very complex and does not require these properties. Use of OLAP query on OLTP system degrades its performance.
- An OLAP query reads HUGE amount of data and generates the required result. The query is very complex too. Thus special primitives have to provided to support this kind of data access.
- OLAP systems access historical data and not current volatile data while OLTP systems access current up-to-date data and do not need historical data.

Thus,

Solution is to have a separate database system which supports primitives and structures suitable to store, access and process OLAP specific data ... in short...have a data warehouse.

What data is stored in a DWH?

In simple words: Subject(s) per Dimension
 Example: If our subject/measure is 'quantity sold' and if the dimensions are: Item Type, Location and Period then,

Data warehouse stores the items sold per type, per geographical location during the particular period.

"How are organizations using the information from data warehouses?"

Many organizations use this information to support business decision-making activities, including:

- (1) increasing customer focus, which includes the analysis of customer buying patterns;
- (2) repositioning products and managing product portfolios (by comparing the performance of sales by quarter, by year, and by geographic regions in order to fine-tune production strategies);
- (3) analyzing operations and looking for sources of profit; and
- (4) managing customer relationships, making environmental corrections, and managing the cost of corporate assets.

Figure 4.1 A three-tier data warehousing architecture.

Extraction, Transformation, and Loading

Data warehouse systems use back-end tools and utilities to populate and refresh their Data. These tools and utilities include the following functions:

- Data extraction, which typically gathers data from multiple, heterogeneous, and external sources.
- Data cleaning, which detects errors in the data and rectifies them when possible.
- Data transformation, which converts data from legacy or host format to warehouse Format.
- Load, which sorts, summarizes, consolidates, computes views, checks integrity, and builds indices and partitions.
 - Refresh, which propagates the updates from the data sources to the warehouse.

Data Warehouse Models: Enterprise Warehouse, Data Mart, and Virtual Warehouse

Enterprise warehouse:

- Collects information about subjects spanning the entire organization.
- It provides corporate-wide data integration
- It typically contains detailed data as well as summarized data.
- An enterprise data warehouse may be implemented on traditional mainframes, computer superservers, or parallel architecture platforms.
- It requires extensive business modeling and may take years to design and build

Data mart:

- A data mart contains a subset of corporate-wide data that is of value to a specific group of users. The scope is confined to specific selected subjects.
- The data contained in data marts tend to be summarized.
- Data marts are usually implemented on low-cost departmental servers that are Unix/Linux or Windows based.
- The implementation cycle of a data mart is more likely to be measured in weeks rather than months or years. However, it may involve complex integration in the long run if its design and planning were not enterprise-wide.
- Depending on the source of data, data marts can be categorized as independent or dependent.
 - —Independent data marts are sourced from data captured from one or more operational systems or external information providers, or from data generated locally within a particular department or geographic area.
 - —Dependent data marts are sourced directly from enterprise data warehouse

Virtual warehouse:

- A virtual warehouse is a set of views over operational databases. For efficient query processing, only some of the possible summary views may be materialized.
- A virtual warehouse is easy to build but requires excess capacity on operational database servers.

How Data warehouse works?

- On a technical level, a <u>data warehouse</u> periodically pulls data from apps and systems;
- Then, the data goes through formatting and import processes to match with the data that is already in the warehouse.
- The data warehouse stores this processed data so that it is ready for decision makers to access.

Who needs Data warehouse?

DWH (Data warehouse) is needed for all types of users like:

- Decision makers who rely on mass amount of data
- Users who use customized, complex processes to obtain information from multiple data sources.
- It is also used by the people who want simple technology to access the data
- It is also essential for those people who want a systematic approach for making decisions.
- If the user wants fast performance on a huge amount of data which is a necessity for reports, grids or charts, then Data warehouse proves useful.
- Data warehouse is a first step If you want to discover 'hidden patterns' of dataflows and groupings.

Advantages of Data Warehouse (DWH):

- Data warehouse allows users to access critical data from the number of sources in a single place. Therefore, it saves user's time of retrieving data from multiple sources.
- Data warehouse provides consistent information on various cross-functional activities. It also supports ad-hoc reporting and query.
- Data Warehouse helps to integrate many sources of data to reduce stress on the production system.
- Data warehouse helps to reduce total turnaround time for analysis and reporting.
- Restructuring and Integration make it easier for the user to use for reporting and analysis.
- Data warehouse stores a large amount of historical data. This helps users to analyze different time periods and trends to make future predictions.

Parameter	Database	Data Warehouse				
Purpose	Is designed to record	Is designed to analyze				
Processing Method	The database uses the Online Transactional Processing (OLTP)	Data warehouse uses Online Analytical Processing (OLAP).				
Usage	The database helps to perform fundamental operations for your business	Data warehouse allows you to analyze your business.				
Tables and Joins	Tables and joins of a database are complex as they are normalized.	Table and joins are simple in a data warehouse because they are denormalized.				
Orientation	Is an application-oriented collection of data	It is a subject-oriented collection of data				
Storage limit	Generally limited to a single application	Stores data from any number of applications				
Availability	Data is available real-time	Data is refreshed from source systems as and when needed				
Usage	ER modeling techniques are used for designing.	Data modeling techniques are used for designing.				
Technique	Capture data	Analyze data				
Data Type	Data stored in the Database is up to date.	Current and Historical Data is stored in Data Warehouse. May not be up to date.				
Storage of data	Flat Relational Approach method is used for data storage.	Data Warehouse uses dimensional and normalized approach for the data structure. Example: Star and snowflake schema.				
Query Type	Simple transaction queries are used.	Complex queries are used for analysis purpose.				
Data Summary	Detailed Data is stored in a database.	It stores highly summarized data.				

Applications of Database

Sector	Usage						
Banking	Ised in the banking sector for customer information, accountelated activities, payments, deposits, loans, credit cards, etc.						
Airlines	Used for reservations and schedule information.						
Universities	To store student information, course registrations, colleges, and results.						
Telecommunication	It helps to store call records, monthly bills, balance maintenance, etc.						
Finance	Helps you to store information related stock, sales, and purchases of stocks and bonds.						
Sales & Production	Use for storing customer, product and sales details.						
Manufacturing	It is used for the data management of the supply chain and for tracking production of items, inventories status.						
HR Management	Detail about employee's salaries, deduction, generation of paychecks, etc.						

Applications of Data Warehousing

Sector	Usage
Airline	It is used for airline system management operations like crew assignment, analysis of route, frequent flyer program discount schemes for passenger, etc.
Banking	It is used in the banking sector to manage the resources available on the desk effectively.
Healthcare sector	Data warehouse used to strategize and predict outcomes, create patient's treatment reports, etc. Advanced machine learning, big data enable data warehouse systems to predict illness.
Insurance sector	Data warehouses are widely used to analyze data patterns, customer trends, and to track market movements quickly.
Retain chain	It helps you to track items, identify the buying pattern of the customer, promotions and also used for determining pricing policy.
Telecommunication	In this sector, data warehouse is used for product promotions, sales decisions and to make distribution decisions.

Disadvantages of Database

- Cost of Hardware and Software of an implementing Database system is high which can increase the budget of your organization.
- Many DBMS systems are often complex systems, so the training for users to use the DBMS is required.
- DBMS can't perform sophisticated calculations
- Issues regarding compatibility with systems which is already in place
- Data owners may lose control over their data raising security, ownership, and privacy issues.

Disadvantages of Data Warehouse

- · Creation and Implementation of Data Warehouse is surely time confusing affair.
- · Data Warehouse can be outdated relatively quickly
- · Adding new data sources takes time, and it is associated with high cost.
- · Sometimes problems associated with the data warehouse may be undetected for many years.
- Data warehouses are high maintenance systems. Extracting, loading, and cleaning data could be time-consuming.
- The data warehouse may look simple, but actually, it is too complicated for the average users. You need to provide training to end-users, who end up not using the data mining and warehouse.
- Despite best efforts at project management, the scope of data warehousing will always increase.

Data Warehouse Modeling: Data Cube and OLAP

- Data warehouses and OLAP tools are based on a multidimensional data model.
- This model views data in the form of a data cube.
- A data cube allows data to be modeled and viewed in multiple dimensions. It is defined by dimensions and facts/measures.
- Dimensions are the perspectives or entities with respect to which an organization wants to keep records.
- Each dimension may have a table associated with it, called a dimension table, which further describes the dimension.
- Dimension tables can be specified by users or experts, or automatically generated and adjusted based on data distributions

Data Warehouse Modeling: Data Cube and OLAP

- A multidimensional data model is typically organized around a central theme, such as sales. This theme is represented by a fact table.
- Facts are numeric measures. (quantities by which we want to analyze relationships between dimensions).
- The fact table contains the names of the facts, or measures, as well as keys to each of the related dimension tables.

In data warehousing the data cube is n-dimensional.

Table 4.2 2-D View of Sales Data for AllElectronics According to time and item

	item (type)									
time (quarter)	home entertainment	computer	phone	security						
Q1	605	825	14	400						
Q2	680	952	31	512						
Q3	812	1023	30	501						
Q4	927	1038	38	580						

Note: The sales are from branches located in the city of Vancouver. The measure displayed is dollars_sold (in thousands).

 Now, suppose that we would like to view the sales data according to time and item, as well as location, for the cities Chicago, New York, Toronto, and Vancouver.

Table 4.3 3-D View of Sales Data for AllElectronics According to time, item, and location

	locat	lon =	"Chica	go"	location = "New York"			location = ``Toronto''				location = "Vancouver"					
	item				item					item				ltem			
	home				home	home			home			home					
time	ent.	comp.	phone	sec.	ent.	comp.	phone	sec.	ent	comp.	phone	sec.	ent.	comþ.	phone	sec.	
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400	
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512	
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501	
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580	

Note: The measure displayed is dollars_sold (in thousands).

The 3-D data in the table are represented as a series of 2-D tables.

3-D data cube representation for the previous table data

Figure 4.3 A 3-D data cube representation of the data in Table 4.3, according to time, item, and location. The measure displayed is dollars_sold (in thousands).

 Table 4.3
 3-D View of Sales Data for AllElectronics According to time, item, and location

	locat	ion =	"Chica	go"	locat	location = ``New York''				location = ``Toronto''				location = ``Vancouver''			
	item					Item			item				item				
	home				home	home			home			home					
time	ent.	comþ.	þhone	sec.	ent.	comþ.	phone	sec.	ent	comþ.	phone	sec.	ent.	comþ.	þhone	sec.	
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400	
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512	
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501	
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580	

Note: The measure displayed is dollars_sold (in thousands).

Figure 4.3 A 3-D data cube representation of the data in Table 4.3, according to time, item, and location. The measure displayed is dollars_sold (in thousands).

- Now I want to view same data with additional 4th dimension as supplier
- Here ,we can think of a 4-D cube as being a series of 3-D cubes as below:

Figure 4.4 A 4-D data cube representation of sales data, according to time, item, location, and supplier.
The measure displayed is dollars_sold (in thousands). For improved readability, only some of the cube values are shown.

If we continue in this way, we may display any n-dimensional data as a series of (n-1)-dimensional "cubes."

- The data cube is a metaphor for multidimensional data storage. The actual physical storage of such data may differ from its logical representation.
- The important thing to remember is that data cubes are n-dimensional and do not confine data to 3-D.
- Given a set of dimensions, we can generate a cuboid for each of the possible subsets of the given dimensions. The result would form a lattice of cuboids, each showing the data at a different level of summarization, or group-by.
- The n-D cuboid that holds the lowest level of summarization is called the base cuboid(Least generalized i.e most specific).
- The 0-D cuboid, which holds the highest level of summarization, is called the apex cuboid(Most generalized i.e least specific).

Lattice of Cuboids

Lattice of cuboids, making up a 4-D data cube for time, item, location, and supplier. Each cuboid represents a different degree of summarization.

Dimensional Modelling

- ER models are not suitable for high performance retrieval of data.
- Dimensional Modeling (DM) is a logical design technique optimized for data storage in a Data warehouse.
- The purpose of dimensional modeling is to optimize the database for faster retrieval of data.
- A dimensional model contains same information as ER model but packages the data in a symmetric format whose design goals are easy understandability, query performance, and resilience to change.
- A dimensional model in data warehouse is designed to read, summarize, analyze numeric information (like values, balances, counts, weights, etc.) in a data warehouse.
 In contrast, relation models are optimized for addition, updating and deletion of data in a real-time OLTP.

Elements of Dimensional Modelling

Fact

- Facts are the measurements/metrics from your business process.
 - —For a Sales business process, a measurement would be quarterly sales number

Dimension

- A category of information. For example, the time dimension.
- In simple terms, they give who, what, where of a fact.
 - -E.g.In the Sales business process, for the fact quarterly sales number, dimensions would be

Who - Customer Names

Where - Location

What - Product Name

When - Time Dimension

• In other words, a dimension is a window to view information in the facts.

Attributes The Attributes are the various characteristics of the dimension

- —E.g. In the Location dimension, the attributes can be State, Country, Zipcode etc.
- Attributes are used to search, filter, or classify facts. Dimension Tables contain Attributes.

Elements of Dimensional Modelling

Fact Table

- A fact table is a primary table in dimension modelling.
- Fact table consists of the measurements, metrics or facts of a business process. Eg. Monthly sales volume, Average Customer Balance etc...
- A Fact Table contains
 - 1. Measurements/facts
 - 2. Foreign key to dimension table

Dimension Table

- A dimension table contains dimensions of a fact.
- · They are joined to fact table via a foreign key.
- Dimension tables are denormalized tables.
- The Dimension Attributes are the various columns in a dimension table
- · Dimensions offers descriptive characteristics of the facts with the help of their attributes
- No limit set for number of dimensions
- · The dimension can also contain one or more hierarchical relationships

Steps of Dimensional Modelling

Benefits of Dimensional Modeling

- · Standardization of dimensions allows easy reporting across areas of the business.
- · Dimension tables store the history of the dimensional information.
- · It allows to introduce entirely new dimension without major disruptions to the fact table.
- Dimensional models also store data in such a fashion that it is easier to retrieve the information from the data once the data is stored in the database.
- · Compared to the normalized model dimensional table are easier to understand.
- · Information is grouped into clear and simple business categories.
- The dimensional model is very understandable by the business. This model is based on business terms, so that the business knows what each fact, dimension, or attribute means.
- Dimensional models are deformalized and optimized for fast data querying. Many relational database platforms recognize this model and optimize query execution plans to aid in performance.
- Dimensional modelling in data warehouse creates a schema which is optimized for high performance. It means fewer joins and helps with minimized data redundancy.
- The dimensional model also helps to boost query performance. It is more denormalized therefore it is optimized for querying.
- Dimensional models can comfortably accommodate change. Dimension tables can have more columns added to them without affecting existing business intelligence applications using these tables.

Types of DWH Schema

- Star Schema
- Snowflake Schema

The star schema and snowflake schema are two different ways of organizing data warehouses.

Both schemas use dimension tables that describe the information contained within a fact table

Star Schema

- In the star schema design, the fact table sits in the middle and is connected to dimension lookup tables like a star.
- Each dimension is represented as a single table.
- The primary key in each dimension table is related to a foreign key in the fact table.
- All measures in the fact table are related to all the dimensions that fact table is related to. In other words, they all have the same level of granularity.
- A star schema can be simple or complex. A simple star consists of one fact table;
 a complex star can have more than one fact table

- A star schema for AllElectronics sales is shown in Figure .
- Sales are considered along four dimensions: time, item, branch, and location.
- The schema contains a central fact table for sales that contains keys to each of the four dimensions, along with two measures: dollars sold and units sold.
- To minimize the size of the fact table, dimension identifiers (e.g., time key and item key) are system-generated identifiers.

Star schema of sales data warehouse.

Characteristics of Star Schema

- · Every dimension in a star schema is represented with the only one-dimension table.
- · The dimension table should contain the set of attributes.
- · The dimension table is joined to the fact table using a foreign key
- · The dimension tables are not joined to each other
- · Fact table would contain keys and measures
- · The Star schema is easy to understand and provides optimal disk usage.
- · The dimension tables are not normalized.
- · The schema is widely supported by BI Tools

Snowflake Schema

- The snowflake schema is an extension of the star schema which have multiple levels of dimension tables.
- Snowflaking a dimension means normalizing it and making it more manageable by reducing its size.
- Dimension tables are normalized which splits data into additional tables.
 - -Adv: This reduces redundancies. Such a table is easy to maintain and saves storage space.
 - —Disadv: Normalizing creates more dimension tables with multiple joins and reduces data integrity issues. However, querying is more challenging using the snowflake schema, because queries need to dig deeper to access the relevant data.
 - Also the snowflake structure can reduce the effectiveness of browsing, since more joins will be needed to execute a query. Consequently, the system performance may be adversely impacted.
- Hence, although the snowflake schema reduces redundancy, it is not as popular as the star schema in data warehouse design.

Snowflake schema of a sales data warehouse.

Star schema of sales data warehouse.

Characteristics of Snowflake Schema:

- The main benefit of the snowflake schema it uses smaller disk space.
- · Easier to implement when a dimension is added to the Schema
- · Due to multiple tables query performance is reduced
- The primary challenge that you will face while using the snowflake Schema is that you need to perform more maintenance efforts because of the more lookup tables.

Dimension Table Dimension Table Star Schema Date Dim Dealer Date_ID Dealer_ID Location_ID Year Country_ID Month Fact Table Dealer_NM Quarter Dealer_CNTCT Date Revenue Dealer_ID Model_ID **Dimension Table** Branch_ID **Dimension Table** Date_ID Units_Sold Product Branch Dim Revenue Product_ID Branch_ID Product_Name Name Model_ID Address Variant_ID Country

• Country is further normalized into an individual table

Snowflake Schema

The Mumbai university wants you to help design a star schema to record grades for course completed by students. There are four dimensional tables namely course_section, professor, student, period with attributes as follows:

Course_section Attributes: Course_Id, Section_number, Course_name, Units, Room_id, Roomcapacity. During a given semester the college offers an average of 500 course sections

Professor Attributes: Prof_id, Prof_Name, Title, Department_id, department_name

Student Attributes: Student_id, Student_name, Major. Each Course section has an average of 60 students

Period Attributes: Semester_id, Year. The database will contain Data for 30 months periods. The only fact that is to be recorded in the fact table is course Grade

Answer the following Questions

- (a) Design the star schema for this problem
- (b) Estimate the number of rows in the fact table, using the assumptions stated above and also estimate the total size of the fact table (in bytes) assuming that each field has an average of 5 bytes.
- (c) Can you convert this star schema to a snowflake schema? Justify your answer and design a snowflake schema if it is possible.

• Star Schema

• Snowflake Schema

Fact constellation: Sophisticated applications may require multiple fact tables to share dimension tables. This kind of schema can be viewed as a collection of stars, and hence is called a galaxy schema or a fact constellation.

Fact constellation schema of a sales and shipping data warehouse.

Concept Hierarchy

It is a sequence of mappings from a set of low-level concepts to higher-level, more general concepts

Concept Hierarchy

- A Concept Hierarchy may also be a total order or partial order among attributes in a database schema
- It may also be defined by discretizing or grouping values for a given dimension or attribute, resulting in a set-grouping hierarchy
- Concept Hierarchies may be provided manually by
 - System users
 - Domain Experts
 - Knowledge Engineers
 - Automated Statistical Analysis

Set Grouping Hierarchy Example

A concept hierarchy for price.

Basic Analytical Operations of OLAP for multidimensional data

- In the multidimensional model, data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction defined by concept hierarchies.
- Thus organization provides users with the flexibility to view data from different perspectives.
- A number of OLAP data cube operations exist to materialize these different views, allowing interactive querying and analysis of the data at hand.
- Hence, OLAP provides a user-friendly environment for interactive data analysis.
 - 1. Roll-up
 - 2. Drill-down
 - 3. Slice and dice
 - 4. Pivot(rotate)

1. Roll-up:

- Roll-up is also known as "consolidation" or "aggregation." The Roll-up operation can be performed in 2 ways
 - Reducing dimensions
 - Climbing up concept hierarchy.
- In the roll-up process at least one or more dimensions need to be removed.

- In this example, cities New jersey and Los Angels are rolled up into country USA
- The sales figure of New Jersey and Los Angels are 440 and 1560 respectively. They become 2000 after roll-up
- In this aggregation process, data in location hierarchy moves up from city to the country.
- In this example, Cities dimension is removed.

2. Drill-down

- In drill-down, data is fragmented into smaller parts. It is the opposite of the rollup process. It can be done via
 - Moving down the concept hierarchy
 - Increasing a dimension

In this Example,

- Quarter Q1 is drilled down to months
- Here dimension Months is added.

3. Slice

• Here, one dimension is selected, and a new sub-cube is created.

In this Example,

- Dimension Time is sliced with Q1 as the filter.
- A new cube is created altogether.

4. Dice

This operation is similar to a slice. The difference in dice is you select 2 or more dimensions that result in the creati

of a sub-cube

Dice operation in OLAP

5. Pivot

In Pivot, you rotate the data axes to provide a substitute presentation of data.

Pivot operation in OLAP Here the pivot is based on item types Suppose that a data warehouse consists of the three dimensions time, doctor, and patient, and the two measures count and charge, where charge is the fee that a doctor charges a patient for a visit.

- (a) Enumerate three classes of schemas that are popularly used for modeling data warehouses.
- (b) Draw a schema diagram for the above data warehouse using one of the schema classes listed in (a).
- (c) Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2004?

time dimension table

day day_of_week month quarter year patient

dimension table

patient_id
patient_name
phone# sex
description
address

fact table

+	time_key
	doctor id
	patient_id
	charge
ı	count

doctor dimension table

dooctor_id
doctor name
phone#
address
sex

OLAP Operations to list total fees collected by each doctor in 2004

- 1. Roll Up on time from day to year
- 2. Slice on time=2004
- 3. Roll up on patient from individual to all.

Suppose that a data warehouse for *Big-University* consists of the following four dimensions: *student*, *course*, *semester*, and *instructor*, and two measures *count* and *avg_grade*. When at the lowest conceptual level (e.g., for a given student, course, semester, and instructor combination), the *avg_grade* measure stores the actual course grade of the student. At higher conceptual levels, *avg_grade* stores the average grade for the given combination.

- (a) Draw a *snowflake schema* diagram for the data warehouse.
- (b) Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each Big-University student.
- (c) If each dimension has five levels (including all), such as "student < major < status < university < all", how many cuboids will this cube contain (including the base and apex cuboids)?

Starting with the base cuboid [student, course, semester, instructor], what specific OLAP operations (e.g., roll-up from semester to year) should one perform in order to list the average grade of CS courses for each Big-University student.

The specific OLAP operations to be performed are:

- Roll-up on course from course id to department.
- Roll-up on semester from semester id to all.
- Slice for course="CS".

(c) If each dimension has five levels (including all), such as student < major < status < university < all, how many cuboids will this cube contain (including the base and apex cuboids)?

This cube will contain $5^4 = 625$ cuboids.

Suppose that a data warehouse consists of the four dimensions, date, spectator, location, and game, and the two measures, count and charge, where charge is the fare that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate.

- (a) Draw a star schema diagram for the data warehouse.
- (b) Starting with the base cuboid [date, spectator, location, game], what specific OLAP operations should one perform in order to list the total charge paid by student spectators at GM_Place in 2010?

Que: Starting with the base cuboid [date, spectator, location, game], what specific OLAP operations should one perform in order to list the total charge paid by student spectators at GM Place in 2010?

Que: Starting with the base cuboid [date, spectator, location, game], what specific OLAP operations should one perform in order to list the total charge paid by student spectators at GM Place in 2010?

Ans:

The specific OLAP operations to be performed are:

- Roll-up on date from date id to year.
- Roll-up on game from game id to all.
- Roll-up on location from location id to location name.
- Roll-up on spectator from spectator id to status.
- Dice with status="students", location name="GM Place", and year = 2010.