See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7504370

Synthesis of New Hexahydro- and Octahydropyrido[1,2-c]pyrimidine Derivatives with an Arylpiperazine Moiety as Ligands for 5-HT1A and 5-HT2A Receptors. Part 4.

ARTICLE in EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY · FEBRUARY 2006

Impact Factor: 3.45 · DOI: 10.1016/j.ejmech.2005.09.003 · Source: PubMed

CITATIONS READS 10

4 AUTHORS, INCLUDING:

Franciszek Herold

Medical University of Warsaw

65 PUBLICATIONS 349 CITATIONS

SEE PROFILE

Gabriel Nowak

Polish Academy of Sciences

281 PUBLICATIONS 5,734 CITATIONS

SEE PROFILE

Marek Król

Medical University of Warsaw

12 PUBLICATIONS 79 CITATIONS

SEE PROFILE

SYNTHESIS OF NEW HEXAHYDRO- AND OCTAHYDROPYRIDO[1,2-c]PYRIMIDINE DERIVATIVES WITH AN ARYLPIPERAZINE MOIETY AS LIGANDS FOR 5-HT_{1A} AND 5-HT_{2A} RECEPTORS. PART III

FRACISZEK HEROLD, MAREK KRÓL and JERZY KLEPS

Department of Drug Technology, Faculty of Pharmacy, The Medical University of Warsaw, 1 Banacha Str., 02–970 Warsaw, Poland

Abstract: The preparation of new 4-aryl-hexahydropyrido[1,2-c]pyrimidine derivatives **III-XXVI** with an arylpiperazinylbutyl moiety in N-2 position has been described. Multi-stage synthesis techniques were used to obtain 4-arylhexahydro-1H,3H-pyrido[1,2-c]pyrimidine-1,3-dione **Ia-f** derivatives, being the starting compounds for further modification. N-alkylation of the imide group in compounds **Ia-f** followed, using 1,4-dibromobutane to yield bromobutyl derivatives **IIa-f**. The final products **III-XXVI** were obtained by condensation of aryl- or heteroaryl- piperazine with the bromobutyl derivatives **IIa-f**. Compounds **XII, XIV, XIX, XX, XXIV-XXVI** will be submitted to a pharmacological investigation for their affinity towards 5-HT_{1A}, 5-HT_{2A} and α_1 adrenergic receptor, using radioligand binding assay.

Keywords: Hexahydropyrido[1,2-c]pyrimidine derivatives; arylpiperazine moiety; ligands for 5-HT_{1A} and 5-HT_{2A} receptors

The neurotransmitter serotonin (5-HT, 5-hydroxytryptamin) is involved in various physiological and pathophysiological processes (1-4). Particular attention, over the last decade, has been focused on 5-HT_{IA} because this receptor plays an important role in the central nervous system modulating a number of behaviours such as impulsivity, sexual behaviour and food intake (1, 3). Moreover, several agonists for this receptor have been shown to exhibit anxiolytic and antidepressant properties in human (3-7). The development of non-benzodiazepine anxiolytics, such as buspirone, a partial agonist at 5-HT_{IA} receptors, has substantiated the correlation between serotonin and anxiety. Buspirone, an arylpiperazine derivative with high affinity for the 5-HT_{1A} receptor, was the first agent to be approved for clinical use (3, 4, 7, 9). The arylpiperazines are a relatively new class of psychotherapeutic drugs which possess high affinity for the 5-HT_{IA} receptor site, however with low selectivity (Figure 1) (3, 4, 8-19). Most of the ligands with affinity for the 5-HT_{IA} receptor exhibit a high level of undesired affinity for the α_1 -adrenergic receptor, because these receptors have a high degree of similarity (~45%) in their amino acid sequence (20). The aim of the present study was to synthesize the new analogues of buspirone with hypothetically higher affinity and selectivity to 5-HT_{1A} receptors. In this study buspirone was the key structure to which certain

modifications were made in the non-pharmacophoric part, namely by introducing the 4-aryl-hexahydropyrido[1,2-c]pyrimidine-1,3-dione residue (see Scheme 1 and Figure 2). Other modifications were made by introducing different substituents at the piperazine ring nitrogen N-4 (pharmacophoric part) (see Scheme 1).

Thus, we designed and synthesized a number of new arylpiperazinylalkyl derivatives **III–XXVI**. These derivatives contain a fragment of 4–a-ryl–hexahydropyrido[1,2–c]pyrimidine–1,3–dione ring system in which the imide group is incorporated (Figure 2).

EXPERIMENTAL

The IR spectra (KBr pellets) were recorded on a Perkin–Elmer FT–IR spectrometer Spectrum 1000, PE Auto IMAGE System. The NMR spectra were recorded on a Unity Plus Varian 500 MHz and Avance DMX 400 WB Bruker 400 MHz (500 MHz for ¹H, 125 MHz for ¹³C, and 400 MHz for ¹H and 1000 MHz for ¹³C, respectively). Two–dimensional NMR ¹H–¹H COSY and ¹H–¹³C HETCOR experiments were performed on a Bruker DMX 400 MHz and Varian Unity plus 500 MHz spectrometers. For the two dimensional experiments the pulse sequences, acquisition and processing parameters were taken from standard Bruker and Varian software library.

R,R'=H,H-a; Cl,H-b; F,H-c; MeO,H-d; CH₃,H-e; H,CH₃-f

R,R¹,Ar=III-H, H, phenyl; IV-H, H, 2-fluorophenyl; V-H, H, 2-chlorophenyl; VI-H, H, 4-fluorophenyl; VII-H, H, 4-tolyl; VIII-H, H, 2-(2-trifluoromethylphenyl) ethyl; IX-Cl, H, 2-chlorophenyl; X-Cl, H, 2-(2-trifluoromethylphenyl)ethyl; XII-F, H, 2-tolyl; XII-F, H, 2,3-xylyl; XIII-F, H, 2-chlorophenyl; XIV-F, H, 2-pyridyl; XV-MeO, H, 2-chlorophenyl; XVI-MeO, H, 2-fluorophenyl; XVII-MeO, H, 2-fluorophenyl; XVIII-MeO, H, 2-tolyl; XIX-MeO, H, 2,3-xylyl; XX-MeO, H, 3-trifluoromethylphenyl; XXII-H, CH₃, 2-fluorophenyl; XXII-H, CH₃, 2-c2-trifluoromethylphenyl; XXIV-H, CH₃, 2-pyridyl; XXV-CH₃, H, 2-pyrimidynyl; XXVI-CH₃, H, 3-trifluoromethylphenyl; XXIV-H, CH₃, 3-trifluoromethylphenyl; XXIV-H, CH₃, 3-trifluoromethylphenyl; XXVI-CH₃, H, 3-trifluoromethylphenyl;

Ar=
$$R^2 = H, F, Cl, CH_3, CF_3$$

$$R^2 = H, F, Cl, CH_3, CF_3$$

$$R^3 = H, F, Cl, CH_3, CF_3$$

Reagents: (i) 1,4-dibromobutane, K₂CO₃, acetone, Δ; (II) 1-aryl or heteroarylpiperazine K₂CO₃, acetonitrile, Δ.

Scheme 1.

The flash column chromatography was carried out on Merck Kieselgel 60 (230–400 mesh). TLC was performed on the plates Kieselgel 60 F_{254} Multiformat of Merck, using a mobile phase toluene, dioxan, ethanol, 25% NH₄OH (6:3.2:0.5:0.2 v/v) and visualized using a UV lamp or dyed with benzene solution of p-chloranil.

Melting points were determined on Mel-Temp® 3.0 (Barnstead/Thermolyne; USA) instrument without corrections.

Microanalytical data were obtained on a Perkin Elmer Analyser CHN 2400 in the Department of Chemistry, Technical University of Warsaw and are within ± 0.4 of the theoretical values.

The starting materials 4–aryl–hexahydro–1H,3H–pyrido[1,2–c]pyrimidin–1,3–diones **Ia–f** and 2–(4–bromobutyl)–4–aryl–hexahydro–1H,3H–pyrido[1, 2–c]pyrimidine–1,3–diones **IIa–d** and **f** were prepared according to the reported procedure (21, 22).

2–(4–BROMOBUTYL)–4–(2–TOLYL)–HEXA-HYDRO–1H,3 H–PYRIDO[1,2–*C*]PYRIMIDINE –1,3–DIONE **Ile**

To the mixture of 0.04 mole of imide Ie, and 70 ml of acetone was added, while stirring 0.06 mole of K₂CO₃ and 0.12 mole of 1,4-dibromobutane. The obtained mixture was stirred under reflux. The time of the reaction was monitored by TLC (~20 h). After cooling the mixture was filtered and the filtrate was evaporated to dryness. The obtained residue was purified by flash chromatography (with CH₂Cl₂-MeOH, 97:2 v/v) to provide compound IIe as a colorless solid. Yield: 79.7%, m.p. 78.5-79°C (from heptane) IR (KBr, cm⁻¹) 1691.2, 1643.8 C=O; ¹H NMR 2.19 (m, 1H, C-5H₂), 2.37 (m, 1H, C-5H₂), 1.61 (m, 2H, C-6H₂), 1.85 (m, 2H, C-7H₂), 3.86 (m, 2H, C-8H₂), 7.18 (m, 1H, C-3'H), 7.18 (m, 1H, C-4'H), 7.14 (m, 1H, C-5'H), 7.96 (d, 1H, C-6'H), ³J=7.2, 3.97 (t, 2H, $C-1^xH_2$), $^3J=6.8$, 1.85 (m, 2H, $C-2^xH_2$), 1.78 (m, 2H, C-3 x H₂), 3.37 (t, 2H, C-4 x H₂), 3 J=6.4, 2.06 (s, 3H, CH₃); ¹³C NMR 152.1 C-1, 161.7 C-3, 112.0 C-4, 149.9 C-4a, 26.8 C-5, 18.9 C-6, 22.2 C-7, 43.2 C-8, 137.9 C-1', 133.1 C-2', 130.6 C-3', 128.5 C-4', 126.5 C-5', 131.0 C-6', 40.8 C-1x, 26.7 C-2x, 30.4 C-3x, 33.5 C-4x, 20.0 CH₃.

Tandospirone

Flesinoxan

Figure 2.

$$R = -CH_2 N N$$

Figure 1.

Anal. Calcd. For **He**: C, 58.31; H, 5.94; N, 7.16. Found: C, 58.32; H, 5.67; N, 7.21.

GENERAL PROCEDURE FOR THE SYNTHE-SIS OF 2–[4–[4–ARYL OR HETEROARYL–1–PI-PERAZINYL]BUTYL]–4–ARYL–HEXAHYD-RO–1H,3H–PYRIDO[1,2–C]PYRIMIDINE–1,3–DI ONES III–XXVI

The 5 mmole of the appropriate bromobutyl derivatives **Ha-f** was added under stirring to a mixturecomposed of 80 ml acetonitrile and 5 mmole of

potassium iodate. The mixture was refluxed under stirring for about 30 h. The time of the reaction was controlled by TLC. The cooled reaction mixture was filtered and the filtrate was evaporated to dryness. The residue was purified by flash chromatography (with CH₂Cl₂-MeOH, 97-3 v/v) to afford the product as a white solid. The purified compounds were crystallized from: III-VII from ethanol, IX, XI-XIV, XX-XXII, XXV, XXVI from heptane, XVI from hexane. The other products were obtained as oil. The oil was dissolved in methanol and then an excess of the solution of methanol saturated with hydrogen chloride was added. A white solid was obtained. The obtained hydrochlorides were crystallized: VII-X from methanol, XV, XVII-XIX, XXIII, XXIV from abs. ethanol. The reaction yields, melting points, results of elemental analysis and IR data are given in Table 1. The results obtained by NMR are collected in Table 2 (¹H NMR) and Table 3 (¹³C NMR).

RESULTS AND DISCUSSION

The new compounds described in this paper III–XXVI were obtained as shown in Scheme 1. The starting substances for the synthesis were 4–aryl–hexahydropyrido[1,2–c]pyrimidine–1,3–di one derivatives Ia–f, obtained as the final products of the several–stage synthesis (21). Next the imide group in compounds Ia–f was N–alkylated by the

Table 1. Physical, analytical and IR spectroscopic data of compounds III-XXVI

No. R R: Ar Yield Bass-Hydrochloride mp. °C) Formula Analysis III H phenyl (%) inperved Formula CashLaNAO2 73.33 Analysis IV H phenyl 72.2 139-141 CashLaNAO2 73.33 747 V H H 2-chlorophenyl 73.1 101.5-102 CashLaNAO2 70.51 6.98 VI H H 2-chlorophenyl 78.2 105.5-102 CashLaNAO2 70.57 6.98 VII H 4-fluorophenyl 78.3 105.5-126 CashLaNAO2 70.57 6.98 VIII H 4-fluorophenyl 78.3 125.5-126 CashLaNAO2 70.57 6.98 VIII H 4-tolyl 89.3 125.5-126 CashLaNAO2 70.61 70.8 X C1 H 2-(2-trifluoromethyl 71.4 71.4 71.4 71.9 XII F H 2-(2-trifluo		,									
H	No.	~	R1	Ar	Yield	Base/Hydrochloride	Formula		Analysis		IR (C=0)
H H Dhenyl 72.2 139–141 C ₂₈ H ₃₆ N ₄ O ₅ 73.33 7.47 H H 2-fluorophenyl 73.1 101.5–102 C ₂₈ H ₃₅ PN ₄ O ₅ 70.51 6.98 H H 4-fluorophenyl 78.6 120.5–121 C ₂₈ H ₃₅ PN ₄ O ₅ 70.51 6.98 H H 4-fluorophenyl 89.3 105.5–126.5 C ₂₈ H ₃₅ PN ₄ O ₅ 70.57 6.98 H H 4-Lolyl 89.3 105.5–126 C ₂₈ H ₃₅ PN ₄ O ₅ 70.57 6.98 H H 4-Lolyl 89.3 105.5–126 C ₂₈ H ₃₅ PN ₄ O ₅ 70.57 6.98 CI H A 2-Ctrifluoromethyl 71.4 oil C ₁₈ H ₃₇ FN ₄ O ₅ 56.74 6.22 CI H 2-Ctrifluoromethyl 70.3 160.1–161.6 C ₂₈ H ₃₅ PN ₄ O ₅ 56.91 6.14 CI H 2-Ctrifluoromethyl 63.9 oil C ₃₈ H ₃₅ FN ₄ O ₅ 56.91 6.14 F H B 2-Ctrifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 55.14 5.70 F H D 2-Ctrifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 71.109 7.19 F H D 2-Ctrifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 71.109 7.19 F H D 2-Ctrifluorophenyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 71.109 7.19 F H D 2-Ctrifluorophenyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 65.81 6.30 F H D 2-Ctrifluorophenyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 65.81 6.30 F H D 2-Ctrifluorophenyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₅ 65.81 6.30					(%)	m.p. (°C)			Calcd./Found		(KBr, cm ⁻¹)
H H 2-fluorophenyl 73.1 101.5-102 C ₂₈ H ₃₈ N ₄ O ₂ 73.33 7.477 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.47 7.65 8.8 7.45 8.25 8.15 8.25 8.15 8.15 8.15 8.15 8.15 8.15 8.15 8.1								C	Н	Z	
H H 2-filotrophenyl 73.1 101.5-102 C ₂₈ H ₃₅ FN ₄ O ₂ 70.57 6.98 H H A-filotrophenyl 78.6 120.5-121 C ₂₈ H ₃₅ CN ₄ O ₂ 68.21 6.75 H H A-filotrophenyl 89.3 105.5-126 C ₂₈ H ₃₅ CN ₄ O ₂ 70.57 6.98 H H A-filotrophenyl 89.3 125.5-126 C ₂₈ H ₃₅ N ₄ O ₂ 70.61 70.8 H H A-filotrophenyl 70.3 125.5-126 C ₂₈ H ₃₅ N ₄ O ₂ 70.61 70.8 CI H 2-(2-trifluoromethyl 70.3 160.1-161.6 C ₂₈ H ₃₅ Cl ₃ N ₄ O ₂ 56.91 6.14 CI H 2-(2-trifluoromethyl 70.3 160.1-161.6 C ₂₈ H ₃₅ Cl ₃ N ₄ O ₂ 56.91 6.14 CI H 2-(2-trifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₅ Cl ₃ N ₄ O ₂ 55.93 F H 2-(2-trifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2-2-chlorophenyl 80.0 117-118.5 C ₂₈ H ₃₅ FN ₄ O ₂ 71.40 7.39 F H 2-2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₅ FN ₄ O ₂ 71.40 7.39 F H 2-2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₅ FN ₄ O ₂ 65.81 6.30	Ш	H	H	phenyl	72.2	139–141	$C_{28}H_{34}N_4O_2$	73.33	7.47	12.21	1695
H H 2-filuorophenyl 73.1 101.5-102 C ₂₈ H ₃₃ FN ₄ O ₂ 70.57 6.98 H H 2-chlorophenyl 78.6 120.5-121 C ₂₈ H ₃₃ CIN ₄ O ₂ 68.15 6.75 H H 4-filuorophenyl 89.3 105.5-106.5 C ₂₈ H ₃₃ CIN ₄ O ₂ 70.57 6.98 H H 4-filuorophenyl 83.3 105.5-106.5 C ₂₈ H ₃₃ CN ₄ O ₂ 70.51 6.78 H H 4-filuoromethyl 83.3 125.5-126 C ₂₈ H ₃₅ N ₄ O ₂ 73.70 7.68 P H 4-filuoromethyl 71.4 oil C ₂₄ H ₃₅ N ₄ O ₂ 56.72 6.48 P H 2-chifluoromethyl 70.3 160.1-161.6 C ₂₈ H ₃₅ N ₄ O ₂ 56.74 6.22 CI H 2-chifluoromethyl 63.9 oil C ₂₈ H ₃₅ FN ₄ O ₂ 56.74 6.24 F H 2-chifluoromethyl 63.9 oil C ₂₈ H ₃₅ FN ₄ O ₂ 56.74 6.74 6.74 F						-		73.27	7.65	12.10	1635
H H A-fluorophenyl 78.6 120.5–121 C ₂₈ H ₃₅ CN ₄ O ₂ 68.21 6.96 H H A-fluorophenyl 89.3 105.5–106.5 C ₂₈ H ₃₅ FN ₄ O ₂ 70.57 6.98 H H A-fluorophenyl 89.3 125.5–126 C ₂₈ H ₃₆ N ₄ O ₂ 70.57 6.98 H H A-fluorophenyl 81.3 125.5–126 C ₂₈ H ₃₆ N ₄ O ₂ 70.57 6.98 CI H A-fluorophenyl 71.4 oil C ₃₁ H ₃₇ FN ₄ O ₂ 56.72 6.48 CI H 2-(2-trifluoromethyl 70.3 160.1–161.6 C ₂₈ H ₃₆ N ₄ O ₂ 56.98 6.05 CI H 2-(2-trifluoromethyl 63.9 oil C ₃₁ H ₃₆ F)N ₄ O ₂ 56.98 6.05 F H H 2-(2-trifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₆ FN ₄ O ₂ 71.100 71.19 F H H 2-chlorophenyl 89.7 114-115.5 C ₂₈ H ₃₆ FN ₄ O ₂ 71.100 71.19 F H H 2-chlorophenyl 80.0 1128.5–130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 65.81 6.31 F H H 2-chlorophenyl 80.0 117-118.5 C ₃₆ H ₃₇ FN ₄ O ₂ 65.81 6.31	IV	H	н	2-fluorophenyl	73.1	101.5–102	C ₂₈ H ₃₃ FN ₄ O ₂	70.57	86.9	11.75	1670
H H A 2-chlorophenyl 78.6 120.5-121 C ₃₂ H ₃₅ ClN ₄ O ₂ 68.21 6.75 6.75 6.79 6.79 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70						ı		70.51	96.9	11.75	1610
H H 4-fluorophenyl 89.3 105.5-106.5 C ₂₈ H ₃₃ FN ₄ O ₂ 70.57 6.98 7.05 H H 4 4-tolyl 83.3 125.5-126 C ₂₉ H ₃₄ N ₄ O ₂ 73.70 7.68 7.05 H H 4 2-(2-trifluoromethyl 70.3 160.1-161.6 C ₂₉ H ₃₄ N ₄ O ₂ 56.72 6.48 7.05 CI H 2-chlorophenyl 70.3 160.1-161.6 C ₂₉ H ₃₅ FN ₄ O ₂ 56.91 6.14 6.22 CI H 2-chlorophenyl 70.3 160.1-161.6 C ₂₉ H ₃₅ FN ₄ O ₂ 56.98 6.05 F H 2-(2-trifluoromethyl 63.9 oil 231-232 2.HCl·1.5H ₂ O 55.14 5.70 7.10 F H 2-10lyl 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 7.10 F H 2-3-xylyl 85.0 117-118.5 C ₂₉ H ₃₇ FN ₄ O ₂ 65.81 6.31 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.31 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.31 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.31 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.30 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.30 C3 H ₃ FSCIN ₄ O ₂ 65.81 6.30	>	Ξ	Н	2-chlorophenyl	9.87	120.5–121	C ₂₈ H ₃₃ CIN ₄ O ₂	68.21	6.75	11.36	1670
H H H 4-fluorophenyl 89.3 105.5-106.5 C ₂₈ H ₃₈ FN ₄ O ₂ 70.57 6.98 H H 4-tolyl 83.3 125.5-126 C ₂₈ H ₃₈ N ₄ O ₂ 73.70 7.68 H H 2-(2-trifluoromethyl 70.3 160.1-161.6 C ₂₈ H ₃₈ Cl ₂ N ₄ O ₂ 86.72 6.48 Cl H 2-chlorophenyl 70.3 160.1-161.6 C ₂₈ H ₃₈ Cl ₂ N ₄ O ₂ 86.91 6.14 Cl H 2-(2-trifluoromethyl 70.3 160.1-161.6 C ₂₈ H ₃₈ Cl ₂ N ₄ O ₂ 86.91 6.14 F H 2-(2-trifluoromethyl 63.9 21-232 2.4Cl ₂ N ₄ O ₂ 85.91 6.14 F H 2-(2-trifluoromethyl 89.7 114-115.5 C ₂₈ H ₃₈ FN ₄ O ₂ 71.00 7.19 F H 2 2-colyl 88.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 3 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₇ FCIN ₄ O ₂ 65.81 6.31 F H 3 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₇ FCIN ₄ O ₂ 65.81 6.31						ı		68.15	6.73	11.09	1630
H H 2-(2-trifluoromethyl- 71.4 oil C ₃ ,H ₃ ,P ₄ O ₂ 73.70 7.68 7.68 H H 2-(2-trifluoromethyl- 71.4 oil C ₃ ,H ₃ ,P ₄ O ₂ 56.72 6.48 CI H 2-(2-trifluoromethyl- 70.3 160.1–161.6 C ₃ ,H ₃ ,C ₁ N ₄ O ₂ 56.74 6.22 CI H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,C ₁ N ₄ O ₂ 56.91 6.14 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,C ₁ N ₄ O ₂ 56.91 6.14 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,C ₁ N ₄ O ₂ 56.91 6.14 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,C ₁ N ₄ O ₂ 55.14 5.93 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,E ₁ ,C ₁ N ₄ O ₂ 71.00 7.19 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,E ₁ ,C ₁ N ₄ O ₂ 71.00 7.19 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,E ₁ ,C ₁ N ₄ O ₂ 71.00 7.19 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,E ₁ ,C ₂ ,H ₃ ,E ₁ ,C ₁ N ₄ O ₂ 71.00 7.19 F H 2-(2-trifluoromethyl- 63.9 oil C ₃ ,H ₃ ,E ₁ ,C ₂ ,H ₃ ,E ₁ ,C ₂ ,O ₃ ,C	VI	Н	Н	4-fluorophenyl	89.3	105.5–106.5	C ₂₈ H ₃₃ FN ₄ O ₂	70.57	86.9	11.75	1670
H H H 4-lolyl 83.3 125.5-126 C ₂₉ H ₃₆ N ₄ O ₂ 73.70 7.68 H A 2-(2-trifluoromethyl 71.4 oil 277-278 2.HCi-1.6H ₂ O 56.72 6.48 6.22 CI H 2-chlorophenyl 70.3 160.1-161.6 C ₃ H ₃₇ F ₃ N ₄ O ₂ 56.91 6.14 CI H 2-chlorophenyl 63.9 oil C ₃ H ₃₆ F ₃ Cl ₃ N ₄ O ₂ 56.98 6.05 CI H 2-(2-trifluoromethyl 63.9 oil C ₃ H ₃₆ F ₃ Cl ₃ N ₄ O ₂ 56.98 6.05 F H 2-1olyl 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2-3-xylyl 85.0 1128.5-130.5 C ₃₉ H ₃₅ FN ₄ O ₂ 71.35 71.35 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₇ FCN ₄ O ₂ 65.81 6.31 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₇ FCN ₄ O ₂ 65.81 6.31								70.61	7.03	11.76	1630
H H 2-(2-trifluoromethyl- 71.4 oil C ₃₁ H ₃ ,F ₃ N ₄ O ₂ 56.72 6.48 6.22 phenyl)ethyl 70.3 160.1-161.6 C ₃₂ H ₃₂ Cl ₃ N ₄ O ₂ 56.74 6.22 6.44 6.22 (2.4 trifluoromethyl- 63.9 oil C ₃₁ H ₃₆ F ₃ ClN ₄ O ₂ 56.91 6.14 6.05 phenyl)ethyl 89.7 114-115.5 C ₃₀ H ₃₅ FN ₄ O ₂ 71.40 71.39 71.22 71.35 71.40 71.35 7	VIII	H	H	4-tolyl	83.3	125.5–126	$C_{29}H_{36}N_4O_2$	73.70	89'.	11.85	1670
H H 2-(2-trifluoromethyl- 71.4 oil C ₃₁ H ₃₇ F ₃ N ₄ O ₂ 56.72 66.48 6.22 phenyl)ethyl 70.3 160.1-161.6 C ₂₈ H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 56.74 6.22 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 71.40 71.9 71.9 71.2 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 71.40 71.35 71.40 71.35 (2.8 H ₃₂ Cl ₂ N ₄ O ₂ 65.81 65.30 65.30						1		73.64	2.68	11.67	1610
CI H 2-chlorophenyl 70.3 160.1-161.6 C ₂₈ H ₃₂ Cl ₂ N ₄ O ₂ 56.91 6.14 CI H 2-chlorophenyl 70.3 160.1-161.6 C ₂₈ H ₃₂ Cl ₂ N ₄ O ₂ 56.91 6.14 CI H 2-(2-trifluoromethyl-phyl) 63.9 oil C ₃₁ H ₃₆ P ₃ Cl ₂ N ₄ O ₂ 54.75 5.93 6.05 F H 2-(2-trifluoromethyl-phyl) 89.7 114-115.5 C ₃ H ₃₆ F ₃ F ₁ N ₄ O ₂ 71.00 7.19 F H 2-(2-trifluoromethyl-phyl) 85.0 114-115.5 C ₃ H ₃₅ F ₁ N ₄ O ₂ 71.00 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃ H ₃₇ F ₁ N ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FClN ₄ O ₂ 65.81 65.31	VIII	H	Ξ	2–(2–trifluoromethyl-	71.4	lio	C ₃₁ H ₃₇ F ₃ N ₄ O ₂	56.72	6.48	8.53	1696
CI H 2-chlorophenyl 70.3 160.1-161.6 C ₂₈ H ₃₂ Cl ₂ N ₄ O ₂ 56.91 6.14 CI H 2-(2-trifluoromethyl-phenyl) ethyl 63.9 oil C ₃ 1H ₃₆ F ₃ Cl ₃ N ₄ O ₂ 56.98 6.05 F H 2-(2-trifluoromethyl-phenyl) ethyl 89.7 114-115.5 C ₃ 1H ₃₆ F ₃ ClN ₄ O ₂ 55.14 5.70 F H 2-tolyl 89.7 114-115.5 C ₃ 0H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃ 0H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FClN ₄ O ₂ 65.81 65.31				phenyl)ethyl		277–278	·2HCl·1.6H ₂ O	56.74	6.22	8.48	1646
Cl H 2-(2-trifluoromethyl-flat) 63.9 oil C ₃ H ₃₆ F ₃ CIN ₄ O ₂ 56.98 6.05 6.05 F H 2-(2-trifluoromethyl-flat) 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 54.75 5.93 57.0 F H 2-tolyl 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃ 0H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FCIN ₄ O ₂ 65.81 65.31	IX	ぴ	Н	2-chlorophenyl	70.3	160.1–161.6	C ₂₈ H ₃₂ Cl ₂ N ₄ O ₂	56.91	6.14	9.48	1692
Cl H 2-(2-trifluoromethyl-floring phenyl)ethyl 63.9 oil C ₃₁ H ₃₆ F ₃ CIN ₄ O ₂ 54.75 5.93 F H 2-tolyl 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FCIN ₄ O ₂ 65.81 65.31						198.5–200.2	·HCl·1.5H ₂ O	56.98	6.05	9.41	1635
F H 2-tolyl 89.7 114-115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FClN ₄ O ₂ 65.81 65.81 65.31	×	ぴ	Н	2-(2-trifluoromethyl-	63.9	oil	C ₃₁ H ₃₆ F ₃ ClN ₄ O ₂	54.75	5.93	8.24	1694
F H 2-tolyl 89.7 114–115.5 C ₂₉ H ₃₅ FN ₄ O ₂ 71.00 7.19 F H 2.3-xylyl 85.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117–118.5 C ₂₈ H ₃₂ FCIN ₄ O ₂ 65.81 65.31				phenyl)ethyl		231–232	·2HCI·H ₂ O	55.14	5.70	8.16	1642
F H 2.3-xylyl 85.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.12 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FClN ₄ O ₂ 65.81 6.31	ΙX	ш	H	2-tolyl	89.7	114–115.5	C ₂₉ H ₃₅ FN ₄ O ₂	71.00	7.19	11.42	1693
F H 2.3-xylyl 85.0 128.5-130.5 C ₃₀ H ₃₇ FN ₄ O ₂ 71.40 7.39 F H 2-chlorophenyl 90.0 117-118.5 C ₂₈ H ₃₂ FClN ₄ O ₂ 65.81 6.31 F H 2-chlorophenyl 90.0 117-118.5 65.8H ₃₂ FClN ₄ O ₂ 65.81 6.31						_		71.09	7.12	11.22	1643
F H 2-chlorophenyl 90.0 117–118.5 C ₂₈ H ₃₂ FCIN ₄ O ₂ 65.81 6.31 - 65.85 6.30	XII	Н	Н	2.3-xylyl	85.0	128.5–130.5	$C_{30}H_{37}FN_4O_2$	71.40	7.39	11.10	1697
F H 2-chlorophenyl 90.0 117–118.5 C ₂₈ H ₃₂ FCIN ₄ O ₂ 65.81 6.31 - 65.85 6.30						1		71.35	7.43	11.10	1645
	XIII	Н	н	2-chlorophenyl	0.06	117-118.5	C ₂₈ H ₃₂ FCIN ₄ O ₂	65.81	6.31	10.96	1693
						ı		65.85	6.30	10.86	1643

(KBr, cm⁻¹) IR (C=0) 1640 1694 1649 1695 1633 1692 1649 1690 1638 1692 1690 1640 1694 1637 1692 1639 1688 1641 1684 1636 1695 1630 1679 1641 11.05 10.98 10.01 8.45 10.07 11.04 10.82 12.60 12.41 9.91 8.42 9.29 8.70 96.6 9.94 9.94 7.75 17.71 Calcd./Found Analysis 6.96 6.32 7.52 7.41 6.34 6.63 96.9 6.91 6.97 6.47 6.85 7.23 6.98 62.25 68.75 68.89 58.05 57.95 59.80 64.73 59.75 57.85 57.80 64.43 69.89 53.18 61.81 61.42 60.54 67.91 68.61 60.58 68.31 66.64 66.59 2HCI-0.25H₂O C₂₉H₃₅ClN₄O₃ C32H39F3N4O3 2HCI-1.5H₂O 2HCI-0.5H₂O 2HCl-4.5H₂O C27H32FIN5O2 $C_{29}H_{35}FN_4O_3$ C₃₀H₃₅F₃N₄O₂ C₂₉H₃₅FN₄O₂ C₂₉H₃₅CIN₄O₂ C32H39F3N4O2 C30H35F3N4O2 C30H38N4O3 $C_{31}H_{40}N_4O_3$ 2HC1-3H₂O $C_{28}H_{35}N_5O_2$ $C_{27}H_{34}N_6O_2$ Formula :2HCl 2HCI Base/Hydrochloride 238.2-238.5 m.p. (°C) 138-139.5 112.7-113 116.4–117 113.7-114 222-224 119-120 105-109 115-118 168-169 156-157 248-249 287-288 88-91 oil oil oil oij oil oil Yield
(%) 92.1 50.6 59.2 33.8 52.0 82.0 55.0 40.7 31.7 84.0 61.0 96.5 79.7 2-(2-trifluoromethyl-2-(2-trifluoromethyl-3-trifluoromethyl-3-trifluoromethyl-2-chlorophenyl 2-fluorophenyl 2-fluorophenyl 2-chlorophenyl 2-pyrimidynyl phenyl)ethyl 2.3-xylyl phenyl)ethyl 2-pyridyl 2-pyridyl 2-tolyl phenyl phenyl Ar CH_3 CH_3 CH_3 CH_3 ~ Η Η Ξ Η Η \mathbb{H} H Ή Η OCH_3 OCH₃ OCH₃ $0CH_3$ OCH₃ OCH₃ 2 CH3 CH_3 įΤί H Η Η Η XIV XVII XVIII XXIII XXIV XXV XXVI XXII Ŋo. XVI XIX XXI X XX

Table 1. (cont.)

Ŀ
2
8
7
≐
_
es
.≥
Ħ
.≥
<u>e</u>
O
a
÷
Œ.
щį
by
-
Ţ
Ċ
\simeq
ŏ
Ē
ď
5
Þ
ť
xa
2
Ξ
0
$\widehat{\mathbf{z}}$
Ξ
$\overline{}$
us
ta
us
ō
50
ũ
듯
3
8
T
pu
-
(E)
Ë
ž
ž
Ħ
당
.2
5
⋾
g
٦,
udd
d
b,
2
9
#
亳
S
æ
٠ĕ
en
Ř
~
NMR
É
$\mathbf{H}_{\mathbf{I}}$
2
ıble
Ιđ

Aromatic rings	7.39 (m, 2H, C-2'H, C-6'H), 7.32 (m, 1H, C-4'H), 7.25 (m, 2H, C-3'H, C-5'H), 7.19 (m, 2H, C-3''H, C-5''H), 6.92 (m, 2H, C-2''H, 6.84 (m, 1H, C-4''H).	7.39 (m, 2H, C-2'H, C-6'H), 7.32 (m, 1H, C-4'H), 7.19 (m, 2H, C-3'H, C-5'H), 7.03 (m, 2H, C-3'H, C-5'H), 6.92 (m, 2H, C-4''H, C-6''H).	7.30–7.45 (m, 5H, C–2'H, C–6'H, C–4'H, C–3''H, C–3''H, C–5''H), 7.15–7.23 (m, 2H, C–3''H, C–5''H), 6.90–7.07 (m, 2H, C–4''H, C–6''H).	7.39 (m, 2H, C–2'H, C–6'H), 7.32 (m, 1H, C–4'H), 7.19 (m, 2H, C–3'H, C–5'H), 6.94 (m, 2H, C–3''H, C–5''H), 6.86 (m, 2H, C–2''H, C–6''H).	7.39 (m, 2H, C-2'H, C-6'H), 7.32 (m, 1H, C-4'H), 7.19 (m, 2H, C-3'H, C-5'H), 7.06 (pd, 2H, C-3''H, C-5''H), 6.84 (pd, 2H, C-2''H, C-6''H), 2.26 (s, 3H, CH ₃).	7.59 (d, 1H, C-3"H), ${}^{3}J_{0}$ =7.5, 7.45 (t, 1H, C-5"H), ${}^{3}J_{0}$ =7.0, 7.39 (t, 1H, C-4"H), ${}^{3}J_{0}$ =8.0, 7.26–7.36 (m, 4H, C-6"H, C-3"H, C-5"H, C-4"H), 7.20 (d, 2H, C-5"H, C-3"H, G-5"H, C-5"H, C-5	7.46 (m, 1H, C-3'H), 7.33 (dd, 1H, C-3''H), 3 1 ₀ =8.0, 4 1 _m =1.5, 7.30 (m, 2H, C-4''H, C-5''H), 7.20 (m, 2H, C-6''H, C-5''H), 7.04 (dd, 1H, C-6''H), 3 1 ₀ =8.0, 4 1 _m =1.5, 6.95 (td, 1H, C-4'''H), 3 1 ₀ =7.5, 4 1 _m =1.0.	7.60 (d, 114, C-3"H), ${}^{3}J_{0}$ =7.5, 7.46 (m, 2H, C-4"H, C-5"H), 7.35 (d, 114, C-6"H), ${}^{3}J_{0}$ =7.5, 7.30 (m, 3H, C-3"H, C-4"H, C-5"H, 7.20 (m, 114, C-6"H), 2.98 (t, 2H, C-5"H ₂), 1=7.5, 2.61 (m, 2H, C-6"H ₂), ${}^{3}J$ =8.5.
СВ Н2	3.19 (pt, 4H)	3.10 (pt, 4H)	3.07 (pt, 4H)	3.11 (pt, 4H)	3.13 (pt, 4H)	ı	3.08 (bs, 4H)	ţ
No. C-5H ₂ C-6H ₂ C-7H ₂ C-8H ₂ C-1 ^x H ₂ C-2 ^x H ₂ C-3 ^x H ₂ C-4 ^x H ₂ C α H ₂ C α H ₂ C β H2	2.59 (pt, 4H) ³ J=5.5	2.62 (m, 4H)	2.63 (bs, 4H)	2.59 (pt, 4H)	2.59 (pt, 4H)	2.43–2.76 (m, 8H) +Cβ–H ₂	2.65 (bs, 4H)	2.34–2.74 (m, 8H) +Cβ–H ₂
C-4*H ₂	2.43 (t, 2H) ³J=7.5	2.44 (pt, 2H)	2.45 (m, 2H)	2.43 (pt, 2H)	2.42 (pt, 2H)	2.40 (t, 2H) 3J=7.5	2.48 (t, 2H) ³ J=7.5	l
C-3*H ₂	1.60 (m, 2H)	1.60 (m, 2H)		1.60 (m, 2H)	1.60 (m, 2H)	1.58 (q, 2H) ³ J=7.5	1.61 (q, 2H) ³ J=8.0	1.58 (q, 2H) ³ J=7.0
C-2*H ₂	1.73 (m, 2H)	1.73 (q, 2H)	ı	1.73 (m, 2H)	1.73 (m, 2H)	1.70 (q, 2H) ³ J=7.5	1.73 (q, 2H) ³J=6.5	ı
C-1*H ₂	4.04 (t, 2H) ³ J=7.0	4.04 (t, 2H) ³ J=7.5	4.04 (t, 2H) ³ J=7.0	4.04 (t, 2H) ³ J=7.5	4.04 (t, 2H) ³ J=7.5	4.03 (t, 2H) ³ J=7.5	4.05 (t, 2H) ² J=7.0	4.03 (t, 2H) ³ J=7.5
C-8H ₂	3.93 (t, 2H) ³J=6.5	3.94 (t, 2H) ³ J=6.5	3.94 (t, 2H) ³ J=6.5	3.93 (t, 2H) ³ J=6.5	3.92 (t, 2H) ³ J=6.5	3.93 (t, 2H) ³ J=6.5	3.93 (m, 2H) ² J=14.0 ³ J=7.0	3.93 (m, 2H) ² J=14.0 ³ J=7.5
C-7H ₂	1.92 (q, 2H) ³ J=7.0	1.92 (q, 2H) ³ J=6.5	1.94 (m, 2H) ³J=6.5	1.91 (q, 2H) ³ J=6.5	1.90 (q, 2H)	1.90 (q, 2H) ³ J=7.0	1.92 (q, d, 2H) ³ J=6.0	1.92 (m, 2H) ³ J=6.0
C-6H ₂	1.69 (q, 2H)	1.69 (q, 2H)	1.50-1.82 (m, 6H) C-2 ^x H ₂ , C-3 ^x H ₂	1.68 (q, 2H) ³ J=6.5	1.68 (q, 2H) ³ J=6.5	1.68 (q, 2H) ³ J=7.0	1.70 (q, 2H) ³ J=6.0	1.72 (m, 4H) +C-2 ^x H ₂ ,
C-5H ₂	2.52 (t, 2H) ³ J=6.5	2.53 (t, 2H) ³ J=7.0	2.53 (t, 2H) ³ J=6.5	2.52 (t, 2H) ³ J=6.5	2.51 (t, 2H) ³ J=6.5	2.52 (t, 2H) ³ J=7.0	2.39 .(m, 2H)	2.41 (m, 4H) +C-4 ^x H ₂
No.	B	2	>	IA	VII	М	X	×

	_
	cont
	7
,	able

			1					,
Aromatic rings	7.34 (m, 1H, C-4'H), 7.22 (m, 1H, C-5'H), 7.20 (m, 1H, C-6'H), 7.17 (m, 1H, C-3"H), 7.15 (m, 1H, C-5"H), 7.11 (m, 1H, C-3"H), 7.02 (d, 1H, C-6"H), 31 ₀ =7.6, 6.97 (t, 1H, C-4"H), 31 ₀ =7.6, 3.3H, CH ₃).	7.32 (m, 1H, C-4'H), 7.19 (m, 2H, C-5'H, C-6''H), 7.08 (m, 2H, C-3''H, C-4''H), 6.90 (m, 2H, C-6'H, C-5''H), 2.25 (s, 3H, CH ₃ orto), 2.20 (s, 3H, CH ₃ meta).	7.33 (m, 1H, C-4'H), 7.22 (m, 2H, C-3"H, C-5"H), 7.19 (m, 2H, C-5'H, C-6'H), 7.11 (m, 1H, C-3"H), 7.04 (m, 1H, C-6"H), 6.96 (m, 1H, C-4"H).	8.17 (d, 1H, C-6"H) ³ J=3.2, 7.45 (t, 1H, C-4"H), ³ J ₀ =8.4, 7.33 (m, 1H, C-4"H), 7.19 (m, 2H, C-5"H, C-6"H), 7.10 (t, 1H, C-3"H) J ₀ =8.8, 6.61 (m, 2H, C-3"H, C-5"H).	7.34-7.42 (m, 2H, C-3",H, C-5",H), 7.29 (m, 2H, C-4",H, C-6",H), 7.04-7.12 (m, 3H, C-5",H, C-4",H, C-6",H), 7.00 (m, 1H, C-3",H), 3.77 (s, 3H, OCH ₃).	7.33 (dd, 1H, C-4'H), ³J=7.3, ⁴J=2.0, 7.11 (m, 1-H, C-6'H), 6.88-7.07 (m, 6H, C-3'H, C-5'H, C-3''H, C-4''H, C-5''H, C-6''H), 3.70 (s, 3H, OCH ₃).	7.57 (d. 1H, C-3"H), ³ J ₀ =7.5, 749 (m, 2H, C-5"H, C-6"H), 7.31 (m, 2H, C-4"H, C-4"H), 7.09 (dd, 1H, C 6"H), ³ J ₀ =7.5, ⁴ J ₀ =1.5, 6.97 (m, 2H, C-3"H, C-5"H), 3.19 (m, 4H, C-5"H ₂ , C-6"H ₂), 3.76 (s, 3H, OCH ₃).	7.37 (m, 1H, C-6'H), 7.21 (m, 2H, C-3"H, C-5"H), 7.10 (m, 2H, C-3"H, C-5"H), 7.18 (m, 1H, C-4"H), 6.98–7.07 (m, 2H, C-4"H, C-6"H), 3.79 (s, 3H, CH ₃ O), 2.31 (s, 3H, CH ₃).
СВ Н2	2.95 (bs, 4H)	2.92 (bs, 4H)	3.13 (s, 4H)	3.57 (bs, 4H)	3.03 (m, 4H)	3.11 (t, 4H) ³ J=4.5	ı	ı
Cα H ₂	2.62 (bs, 4H)	2.64 (bs, 4H)	2.72 (bs, 4H)	2.59 (bs, 4H)	. 1	2.62 (m, 4H)	3.51 (m, 8H) +Cβ-H ₂	3.47–3.62 (m, 4H)
C-4xH2	ı	1	2.46 (m, 2H)	ı	3.22 (m, 6H) +CαH ₂	ļ I	3.13 (m, 2H)	3.20–3.35 (m, 6H) +CβH ₂
C-3*H ₂	1.62 (m, 2H)	1.64 (m, 2H)	1.65 (m, 2H)	1.64 (m, 2H)	I	I	1.86 (m, 2H)	1.97 (m, 2H)
C-2*H ₂	ı		1.77 (m, 2H)	ı	1.76 (m,4H) +C-3 ³ H ₂		1.74 (m, 2H)	1.71 (q, 2H) ² J=7.5
$C-1^xH_2$	4.04 (t, 2H) 3 j =7.2	4.04 (t, 2H) ³ J=7.2	4.04 (t, 2H) ³ J=7.2	4.03 (t, 2H) ³ J=6.8	4.04 (m, 2H)	4.03 (t, 2H) ³ J=7.5	3.97 (t, 2H) ³ J=6.0	3.98 (t, 2H) 3 J =7.0
C-8H ₂	3.93 (m, 2H)	3.93 (m, 2H)	3.93 (m, 2H)	3.94 (m, 2H)	3.92 (m, 2H) ² J=13.5 ³ J=6.8	3.92 (m, 2H) ² J=13.5 ³ J+6.8 ³ J=6.0	3.88 (m, 2H) ² J=13.5 ³ J=7.0	3.91 (m, 2H)
C-7H ₂	1.94 (m, 2H)	1.93 (q, 2H) ³ J=6.4	1.94 (q, 2H) ³ J=6.4	1.92 (q, 2H) ³ J=6.8	1.92 (m, 2H) ³ J=6.5	1.91 (m, 2H) ³ J=6.51	1.89 (m, 2H) ³ J=6.5	1.89 (m, 2H)
C-6H ₂	1.74 (m, 4H) +C-2 ^x H ₂ ,	1.73 (m, 4H) +C-2 ^x H ₂ ,	1.70 (m, 2H)	1.72 (m, 4H) +C-2 ^x H ₂ ,	1.69 (m, 2H)	1.55–1.78 (m, 6H) +C–2*H ₂ C–3*H ₂	1.66 (m, 2H)	1.67 (m, 2H)
C-5H ₂	2.51 (m, 4H) +C-4*H ₂	2.50 (m, 4H) +C-4 ^x H ₂	2.49 (m, 2H)	2.48 (m, 4H) +C-4 ^x H ₂	2.44 (m, 2H) ² J=17.0 ³ J=7.0	2.43 (m, 4H) +C-4*H ₂	2.39 (t, 2H) ³ J=6.5	2,42 (m, 2H) ² J=17 ³ J=6.5
No.	X	шх	ШХ	XIX	X	XAI	XVII	ХУШ

ont.)	
2. (co	
Fable	

Table 2. (cont.)	(
No.	C-5H ₂	C-6H ₂	C-7H ₂	C-8H ₂	$C-1^xH_2$	$C-2^xH_2$	C-3*H ₂	C-4xH ₂	$C\alpha H_2$	СВ Н2	Aromatic rings
XIX	2.44 (m, 2H) ² J=17.0	1.69 (q, 2H) ³ J=7.5	1.91 (q, 2H) ³ J=7.5	3.92 (m, 2H) ² J=13.5	4.05 (t, 2H) ³ J=6.5	1.76–1.88 (m, 4H) +C3*H ₂	ı	3.30 (m, 2H)	3.30–3.63 (m, 4H)	3.17–3.73 (m, 4H)	7.37 (m, 1H, C-6'H), 7.10 (m, 1H, C-4'H), 7.07 (m, 2H, C-3''H, C-5''H), 6.95-7.03 (m, 4H, C-3'H, C-5'H, C-4''H, C-6''H), 3.77 (e. 3H, C-10'), 3.77 (e. 3H, C
	0./=0			C:0=f	- **	-					CH _{30rto}), 2.25 (s, 3H, CH _{3meth}).
XX	2.43	1.55-1.80	1.91	3.92	4.04				2.59	3.23	7.33(m, 2H,C-4'H, C-5''H), 7.10(dd, 2H,
	(m,4H) +C-	(m, 6H) +C=2*H,	(m, 2H)	(m, 2H) ² I=13.5	(t, 2H) ³ I=7.0	1 .	1	ı	(t, 4H) ³J=5.0	(t, 4H)	C-6'H, C-4''H), 7.05(m, 2H, C-2''H, C-6''H), 6.99(td, 1H, C-5'H), 6.94(d, 1H,
	$4^{x}H_{2}$	+C-3*H ₂		³J=7.0							$C-3'H$), ${}^3J_0=8.0$, ${}^4J_m=1.5$
XXI	2.53	1.68	1.91	3.92	4.03	1.73	1.60	2.45	2.63	3.11	7.20(d, 2H, C-3'H, C-5'H), ${}^{3}I_{m}=7.6$
	(t,2H)	(q, 2H)	(q, 2H)	(t, 2H)	(t, 2H)	(q, 2H)	(q, 2H)	(t, 2H)	(bs, 4H)	(bs, 4H)	7.08(d, 2H, C–2'H, C–6'H), 6.97 –
	°J=6.7	/.0=f _c	°J=6.4	J=6.4	5./=[0./=[J=/.3	5./=[*		6.97(m, 2H, C-5' H, C-0' H), 8.88 – 6.97(m, 2H, C-5''H, C-4''H), 2.36(s, 3H, CH ₃
ПХХ	2.54	1.69	1.92	3.93	4.04	1.74	1.64	2.52	2.69	3.11	7.34(dd, 2H, C-3''H), $3J_0=7.9$, $4J_m=1.5$, 7.21(m,
	(t, 2H)	(q, 2H)	(q, 2H)	(t, 2H)	(t, 2H)	(q, 2H)	(m, 2H)	(bs, 2H)	(bs, 2H)	(bs, 4H)	3H, C-5''H, C-3'H, C-5'H), 7.08(d, 2H, C-2'H,
	.∂=6.7	0.7=£)= 0 .7	J=6.4	0:/=f,	9./=f					$C=0$ H), $J_0=1.9$, $I.04(aa, 1H, C=0$ H), $J_1=8$ 0 41 -1 5 6 96(rd 1H $C=4$ 'H)
											$^{1}_{0}$ $^{-6}$:, $^{1}_{3}$ $^{-1}$:, $^{-7}$:, $^{-7}$:, $^{-7}$:, $^{-1}$:, $^{-7}$:, $^{-1}$:, $^{-3}$:, $^{-6}$:, $^{-7}$:, $^{-8}$:, $^{-1}$:, $^{-7}$:, $^{-8}$:, $^{-1}$:, $^{-7}$:, $^{-8}$:, $^{-1}$:, $^{-7}$:, $^{-8}$:, $^{$
ХХШ		1.58	1.80	3.82	3.86	1.75		3.25		3.59	11.88(bs, 1H, N β ⁺ H), 9.94(s, 1H,
	(t,2H)	(m, 4H)	(q, 2H)	(t, 2H)	(t, 2H)	(d, 2H)		(bm, 2H)		(bs, 8H)	$N\alpha^{+}H$), 7.71(d, 1H, C-3",H), ${}^{3}J_{0}=7.8$,
	³J=6.6	<u></u>	³J=6.6	³J=6.3	³J=6.8		ı			+ Cα H ₂	7.67(t, 1H, C-5"H), 7.62(d, 1H, C-6"H),
		3^xH_2				·					7.49(t, 1H, C-4"H), 7.18)(d, 2H, C-3"H,
											C-5'H), 'Jo=8.1, 1.0/(d, 2H, C-2'H, C-
											6'H), 3.36(bm, 2H, C-5'H ₂), 3.20(bs,
VIV		1 50	1.81	3.87	3 87	1.75		3 11	441	3.48	11.03(s. 1H. NH*). 8.12(dd. 1H. C-6".H).
	(t. 2H)	(m, 4H)	(a, 2H)	(t, 2H)	(t, 2H)	(m, 2H)		(bs, 4H)	(bd, 2H)	(bs, 4H)	$^{3}J_{o}=5.7$, $^{4}J_{m}=1.0$, 7.86(t, 1H, C-4''H), $^{3}J=7.0$, 7.18
	³J=6.0	<u></u>	³J=6.5	³J=6.5	³ J=7 .0		ı	+ C _β -H _{2a}	C_{α} $-H_{2e}$	C_{β} H _{2e}	$(2H,C-3'H,C-5'H)^3J_0=7.5$, 7.06(d, 2H, C-2'H,
		$+C_{\alpha}-H_{2a}$,			9	3XH ₂	C-6 H)6.90(m, 2H, C-4 H, C-3 H), 10=0.3
XX	2.27	1.69	1.93	3.93	4.05	1./4	1.62	2.42	2.49	3.62	7.2.(III, III, C=3 II), 7.2.(III, III,C=4 III), 7.2.(III, III,C=4 II), 7.2.(III,C=4 III), 7.2.(III,C=4 II), 7.2.(III,C=4 III), 7.2.
	(m, 1H)	(m, 2H)	(m, 2H)	(m, 2H)	(t, 2H) 31–7.2	(m, 2H)	(m, 2H)	(III, 2H)	(pt, 4fi)	(pt, 4n)	111, C=3 11), 7.04(u, 111, C0 11), 3=7.2, 6.30(u, 2H C=3"H C=5"H) 3=4 8 6 47(t)
					7: / — S						1H, C-4''H), ³ J=4.8, 2.14(s, 3H, CH ₃)
XXVI	-	1.72	1.95	3.96	4.08	1.75	1.65	2.47	2.63	3.26	7.29(m, 1H, C-3'H), 7.29(m, 1H, C-
	(m, 1H)	(m, 2H)	(m, 2H)	(m, 2H)	(t, 2H)	(m, 2H)	(m, 2H)	(m, 3H)	(pt, 4H)	(pt, 4H)	4'H), 7.24(m, 1H, C-5'H), 7.08(m, 1H,
					$^{3}J=7.2$			+ C-5H			C-6'H), 7.13(ps, 1H, C-2"H), 7.08(m,
								-			2H, C-4"H, C-6"H), 7.36(t, 1H, C-5"H), 31=8.0. 2.17(s. 3H. CH ₃)
a d don't	Llat. nd money	of denisher and meanifoldsublet he broad cinalet in multiplet	mond ofmedat:	multinlat.	t-inlate at a	ondottinlot.	martet. a av	trinlati nt neandatrinlati a amartati a aviali a aquatarial	lo:		

^a d, doublet; pd, pseudodoublet; bs, broad singlet; m, multiplet; t, triplet; pt, pseudotriplet; q, quartet; a, axial; e, equatorial Compounds III-XVI, XX-XXIII, XXV-XXVI were performed as hydrochloride (D₂O).

Table 3. ¹³C NMR spectral data of compounds III-XXVI

	IV	>	IA	VII	VIII	XI	X	IX	XII	XIII	XIV	XX
151.7	.7 151.7	151.7	151.6	151.6	151.5	151.8	151.7	151.7	151.7	151.7	151.7	153.5
162.0		161.9	161.8	161.8	161.7	161.2	161.1	161.7	161.4	161.4	161.4	164.0
112.5		112.5	112.3	112.3	112.1	110.1	110.1	115.9	106.1	106.1	106.1	109.8
151.4	.4 149.6	149.6	149.6	149.6	149.5	150.4	150.4	150.9	150.9	151.0	150.9	153.3
26.7	7 26.7	26.7	26.6	26.6	26.5	26.4	26.4	26.5	26.5	26.5	26.5	27.5
18.6	18.6	18.6	18.5	18.5	18.3	18.4	18.4	18.4	18.4	18.4	18.4	19.4
21.8	3 21.8	21.8	21.7	21.7	21.5	21.8	21.8	21.8	21.8	21.8	21.7	22.7
42.6	42.6	42.6	42.5	42.5	42.4	51.1	42.9	42.9	42.8	42.9	42.9	44.3
133.4	.4 133.4	133.4	133.3	133.3	133.2	132.5	131.7	119.0	120.8	120.5	120.8	123.2
128.5	.5 128.5	128.5	128.4	128.4	128.2	135.1	135.1	159.2	159.2	159.0	159.2	159.0
130.8	.8 130.8	130.7	130.7	130.7	130.5	132.6	129.5	115.9	115.8	115.9	115.7	112.4
127.7	7.721	127.7	127.6	127.6	127.4	129.7	129.7	130.0	130.0	130.0	130.0	. 131.7
130.8	.8 130.8	130.7	130.7	130.7	130.5	127.1	127.1	124.2	124.2	124.2	124.2	121.9
128.5	.5 128.5	128.5	128.4	128.4	128.2	129.5	131.6	133.0	133.0	133.0	133.0	133.4
41.6	41.6	41.6	41.5	41.5	41.3	41.4	41.4	41.6	41.5	41.4	41.4	41.8
25.7	25.7	25.7	25.6	25.6	25.4	25.6	25.6	25.7	25.6	25.6	25.6	26.1
24.4	24.4	24.4	24.3	24.3	24.1	24.1	24.2	24.2	24.1	23.8	23.9	23.1
58.4	58.4	58.3	58.2	58.3	58.1	58.2	58.2	58.4	58.3	58.1	58.2	58.2
53.3	53.3	53.4	53.1	53.2	52.9	53.3	53.1	53.7	53.7	53.2	53.0	53.9
49.1	50.6₽	51.2	50.0	49.6	52.7	42.9	52.8	51.6	51.9	50.8	44.9	50.4
149.6	.6 140.2 ^b	149.4	147.9 ^b	149.2	138.7 ^b	149.3	138.9 ^b	149.2	150.9	149.1	ı	149.3
116.0	.0 155.7 ^b	128.7	117.6°	116.2	128.4 ^b	128.7	128.6ª	132.6	132.9	128.8	159.4	130.0
129.1	.1 116.1 ^b	127.5	115.3 ^b	129.5	125.6ª	127.5	125.9	126.5	132,8	127.6	107.0	131.0
119.6	.6 122.3 ^b	123.5	157.0 ^b	128.9	125.9	123.6	126.1	123.1	137.9	123.8	137.4	126.0
129.1	.1 118.9 ^b	130.6	115.3^{b}	129.5	131.5	130.6	132.6	131.0	131.3	130.6	113.3	129.1
116.0	.0 124.4 ^b	120.3	117.6 ^b	116.2	131.4	120.4	132.5	119.0	120.8	120.4	148.0	121.9
				-								56.1
												CH ₃ O
				20.3	124.3 ^b		124.5 ^a	17.9	13.9;			
				CH3	CF3		CF ₃	CH³	18.4			
	-								CH ₃			
					0.09		60.2					
					29.7		30.0					

Ŧ
⊑
(con
٣
3
0
Ť
d

	IVX	ХУШ	ХУШ	XIX	XX	IXX	IIXX	ТШХХ	VIXX	XXV	XXVI
C-1	152.7	151.8	151.5	153.2	152.0	151.7	151.7	151.0	151.0	151.9	151.8
C-3	161.7	162.0	161.8	164.0	161.7	162.0	162.1	161.2	161.1	161.7	162.1
47	108.6	108.3	108.4	109.6	108.6	112.4	112.4	110.7	110.4	111.8	112.4
C-4a	150.0	150.9	152.1	153.5	150.1	149.4	149.5	149.3	150.6	149.4	149.8
C-5	26.3	26.4	26.7	27.5	26.3	26.7	26.7	26.2	26.2	26.5	26.9
C-6	18.6	18.4	18.8	20.7	18.5	18.6	18.6	17.9	17.8	18.7	19.0
C-7	22.0	21.7	22.1	22.7	21.9	21.8	21.8	20.5	21.0	21.9	22.2
C-8	42.8	43.1	43.1	44.3	42.8	42.5	42.5	42.2	42.5	42.9	43.2
C-1,	122.2	121.9	123.5	123.2	122.1	130.3	130.3	130.7	130.8	137.6	138.0
C-2,	157.4	157.3	158.4	159.0	157.4	130.5	130.6	130.8	130.7	133.0	. 133.3
C-3,	1111.1	111.1	111.9	112.3	111.1	129.2	129.2	128.7	128.7	130.3	130.6
C-4.	129.5	129.7	129.9	130.9	129.5	137.3	137.4	136.4	136.4	128.1	128.6
C-5,	120.8	120.8	121.0	121.9	120.8	129.2	129.2	128.7	128.7	126.2	127.0
C-6,	132.4	132.1	133.1	133.4	132.4	130.5	130.6	130.8	130.7	130.7	131.1
C-1x	41.5	40.4	40.7	41.4	41.5	41.5	41.4	40.4	42.2	41.4	41.7
C-2*	25.7	24.6	25.4	25.8	25.7	25.7	25.6	24.3	24.4	25.7	26.0
C-3*	24.3	21.0	21.2	22.3	24.4	24.3	24.0	21.0	20.6	24.3	25.0
C 4 _x	58.4	56.3	56.2	57.6	58.3	58.3	58.2	55.8	55.1	58.4	59.0
C−α	53.3	49.5	52.3	53.6	53.0	53.2	53.2	47.7	20.0	53.1	53.3
C-B	50.6	48.9	49.0	50.7	48.6	50.5	50.9	40.0	40.1	43.7	49.0
C-1,,	140.3 ^b	135.4	150.7	150.4	151.5	140.2	149.3	150.7	1	ı	153.5
C-2,,	155.8 ^b	128.5ª	133.1	127.6	112.0°	155.7	128.8	127.5ª	154.8	166.0	109.9
C-3,,	116.1 ^b	126.0°	127.4	139.5	131.2ª	115.8	130.6	126.0^{a}	110.7	-	129.8
C-4.,	122.9 ^b	127.2	124.6	127.3	156.6 ^b	122.3	123.7	134.9	141.2	157.7	116.0
C-5.,	118.9 ^b	132.4	131.8	132.5	118.6	118.9	127.6	132.9	114.0	110.0	118.9
C-6,,	124.76	132.3	110.8	118.0	129.5	124.4	120.5	131.9	142.4	157.7	129.8
R, R	55.6	55.6 ⁵	55.9	56.0	55.5 ⁶	21.2	21.2	20.8	20.8	19.7	20.0
	CH ₃ O	CH ₃ O	CH ₃ O	CH ₃ O	CH ₃ O	CH ₃	CH3	CH ₃	CH ₃	CH ₃	CH ₃
\mathbb{R}^{2}	1	124.4ª	17.7	19.4;	124.4ª		-	124.3ª		1	127.3
İ		CF3	CH ₃	14.0 CH ₃	CF_3			CF ₃			CF_3
C-5x	1	57.8		-	ı	1		58.7		1	1
C-63		28.0		_	1		-	26.1	1	-	

a – appear as quartet, b – appear as triplet Coupling constant $^{1}J_{1^{11}-p}=245.8, ^{1}J_{1^{11}-p}=205., ^{1}J_{1^{11}-p}=238.5, ^{2}J_{1^{11}-p}=228.5, ^{2}J_{1^{11}-p}=22.3, ^{4}J_{1^{11}-p}=2.3, ^{4}J_{1^{11}-p$

Table 4. Binding affinities data for 5-HT_{1A}, 5-HT_{2A} and {al receptors in compounds $1-5^a$

$$\bigcap_{N \in \mathbb{N}} R$$

$$\bigcap_{N \in \mathbb{N}} N - Ar$$

R/Ar=H, 2-pyrimidynyl, 1; 2-F, 2-pyrimidynyl 2; 2-Cl, 2-pyrimidynyl 3; 2-OCH₃, 2-pyrimidynyl 4; 2-F, 3-trifluoromethyl phenyl 5;

	Ki (nM)		Selectivity ve	rsus 5–HT _{IA}
No	5–HT _{1A}	5-HT _{2A}	$\alpha_{\scriptscriptstyle \parallel}$	receptor	Ki ratio
	[³ H] 8–OH–DPTA	[3H] Ketanserin	[3H] Prazosin	5-HT _{2A}	α_1
1	45.6	336	1202	7.4	26.4
2	69.2	374	742	5.4	10.7
3	78.7	607	642	7.7	8.2
4	56.4	871	1597	15.4	28.3
5	72.2	216.9	2300	3.0	31.8

a see ref. (22), data for compounds signed 1-4 and (23) for compound 5.

1,4-dibromobutane, yielding the monobromobutyl derivatives **Ha-f** (22).

The final products in the series of 4-aryl-hexahydropyrido[1,2-c]pyrimidine III-XXIV derivatives were obtained by the condensation of the appropriate 1-aryl- or 1-heteroarylpiperazine with the above described monobromobutyl derivatives IIa-f.

All new compounds **III–XXIV** were identified and proven by the IR and elemental analysis C, H, N (Table 1), ¹H (Table 2) and ¹³C NMR (Table 3).

The ¹H-NMR spectra of the compounds nonsubstituted in *ortho* position of the aromatic ring in 4-aryl-hexahydropyrido[1,2-c]pyrimidine are typical; the shape of proton signals of piperidine ring points to fast dynamic processes of the type: chair ↔ chair. Similar results were obtained for the piperazine ring. Substitution in the ortho position (the aromatic ring in 4-aryl-hexahydropyrido [1,2-c]pyrimidine) hinders inversion of the ring and, as a result, distinct signals of equatorial and axial protons can be observed. For the protons of piperidine ring some multiplets with geminal and vicinal coupling constants were noted. The ¹³C–NMR spectra are typical. After substitution of the aromatic ring by fluorine, the C-F couplings were observed.

In our further study on the synthesis of new ligands with potentially higher affinity and selectivity to 5–HT_{1A} receptors, the investigations have been restrained to the derivatives of 4–aryl–hexahydropyrido[1,2–c]pyrimidine. Formerly, 21 compounds representing a series of 4–aryl–hexahydro–and 4–aryl–octahydropyrido[1,2–c]pyrimidine derivatives were examined and it was shown that the 4–aryl–hexahydropyrido[1,2–c]pyrimidine deriva-

tives were definitely more selective to 5–HT_{1A} receptors regarding to receptors 5–HT_{2A} and α_1 as compared with the derivatives of 4–aryl–octahydropyrido[1,2–c]pyrimidine (22, 23). Within tested group of compounds, 5 display high selectivity to 5–HT_{1A} receptors regarding to receptors 5–HT_{2A} and α_1 (see Table 4).

Moreover, we have noted that the increase of affinity for the receptor 5–HT_{1A} and also higher selectivity of the studied ligands are closely related to the presence of substituents F, OCH₃, Cl and H located in the *ortho*–position in the rest of 4–aryl–hexahydropyrido[1,2–c]pyrimidine (22, 23). It was also observed that the presence of 2–pyrimidynyl(compounds signed 1–4) and 3–trif-luoromethylphenyl(compound 5) radicals bonded to piperazine in the pharmacophoric part has in influence on affinity and selectivity of investigated compounds.

From among the derivatives **III–XXVI** obtained, seven new compounds (**XII**, **XIV**, **XIX**, **XX**, **XXIV–XXVI**) were selected for the study of their affinity to 5–HT $_{1A}$, 5–HT $_{2A}$ and α_1 adrenergic receptors, using radioligand binding assay. The investigations will be carried out in the Institute of Pharmacology of the Polish Academy of Sciences in Cracow and the results will be published elsewhere.

REFERENCES

- Zifa E., Fillion G.: Pharmacol. Rev. 44, 401 (1992).
- Raymond J.R., Mukhin Y.V., Gettys T.W., Garnovskaya M.N.: Br. J. Pharmacol 127, 1751 (1999).

- 3. Hamon M.: In Serotoninergic Neurons and 5–HT Receptors in the CNS, Handbook of Experimental Pharmacology, Baumgarten H.G., Göthert M., Eds.; pp 239–268, Springer, Berlin Ch. 9, (1997).
- 4. Glennon R.A., Dukat M.: Serotonin ID Res. Alert 2, 351 (1997).
- 5. Barness N.M., Sharp T.: Neuropharmacology 38, 1083 (1999).
- 6. Barros M., Mello E.L., Huston J.P., Tomaz C.: Pharmacol. Biochem Behav. 68, 255 (2001).
- 7. Dekeyne A., Brocco M., Adhumeau A., Gobert A., Millan M.J.: Psychopharmacology 152, 55 (2000).
- 8. Orjales A., Alonso-Cires L., Labeaga L., Corcostegui R.: J. Med. Chem. 38, 1273 (1995).
- 9. Kuipers W., Kruse C.G., van Wijngaarden J., Standarr P.J., Tulp M.Th.M., Veldman N., Spek A.L., Ijzerman A.P.: J. Med. Chem. 40, 300 (1997).
- Lopéz–Rodriguez M.L., Morcillo M.J., Rovat T.K., Fernández E., Vicente B., Sanz A.M., Hernandez M., Orensanz L.: J. Med. Chem. 42, 36 (1999).
- 11. Perrone R., Berardi F., Colabufo N.A., Leopoldo M., Tortorella V.: Bioorg. Med. Chem. 8, 873 (2000).
- Abou-Gharbia M.A., Childres W.E. Jr., Fletcher H., McGaughey G., Patel U., Webb M.B., Yardley J., Andree T., Boast C., Kucharik R.J. Jr., Marquis K., Morris H., Scerni R., Moyer I.A.: J. Med. Chem. 42, 5077 (1999).
- 13. Bronowska A., Leś A., Chilmończyk Z., Fili-

- pek S., Edvardsen Ø., Østensen R., Sylte I.: Bioorg. Med. Chem. 9, 881 (2001).
- 14. Caliendo G., Fiorino F., Grieco P., Perissutti E., Santagada V., Severino B., Bruni G., Romeo M.R.: Bioorg. Med. Chem. 8, 533 (2000).
- Lopéz–Rodriguez M.L., Morcillo M.J., Fernández E., Porras E., Orensanz L., Beneytez M.E., Manzanares J., Fuentes J.A.: J. Med. Chem. 44, 186 (2001).
- Paluchowska M.H., Bojarski A.J., Charakchieva–Minol S., Wesołowska A.: Eur. J. Med. Chem. 37, 273 (2002).
- 17. Sabb A.L., Vogel R.L., Kelly M.G., Palmer Y., Smith D.L., Andree T.H., Schechter L.E.: Bioorg. Med. Chem. Lett. 11, 1069 (2001).
- Bojarski A.J., Mokrosz M.J., Charakchieva–Minol S., Kozioł A., Wesołowska A., Tatarczyńska E., Kłodziński A., Chojnacka–Wójcik E.: Bioorg. Med. Chem. 10, 87 (2002).
- Peglion J.L., Goument B., Despaux N., Charlot V., Giraud H., Nisole Ch., Newman–Tancredi A., Dekeyne A., Bertrand M., Genissel P., Millan M.J.: J. Med. Chem. 45, 165 (2002).
- 20. Trumpp–Kallmeyer S., Haflack J., Bruinvels A., Hibert M.: J. Med. Chem. 35, 3448 (1992).
- 21. Herold F., Wolska I., Helbin E., Król M., Kleps J.: J. Heterocycl. Chem. 36, 389 (1999).
- 22. Herold F., Kleps J., Wolska I., Nowak G.: Farmaco 57, 959 (2002).
- 23. Herold F., Kleps J., Maj M., Nowak G.: Pharmazie 59,99 (2004).

Received: 18.04.2003