${\color{red}\mathbf{Appendix}}\,B$

Physical Property Tables

TAB	BLE	PAGES
B.1	Selected Physical Property Data	628–634
B.2	Heat Capacities	635–637
B.3	Vapor Pressure of Water	638–639
B.4	Antoine Equation Constants	640–641
B.5	Properties of Saturated Steam: Temperature Table	642-643
B.6	Properties of Saturated Steam: Pressure Table	644–649
B.7	Properties of Superheated Steam	650–651
B.8	Specific Enthalpies of Selected Gases: SI Units	652
B.9	Specific Enthalpies of Selected Gases: American Engineering Units	652
B.10	Atomic Heat Capacities for Kopp's Rule	653
B.11	Integral Heats of Solution and Mixing at 25°C	653

Table B.1 Selected Physical Property Data^a

	•	,									
			SG		$\Delta \hat{H}_{ m m}(T_{ m m})^{c,j}$		$\Delta\hat{H}_{ m v}(T_{ m b})^{e,j}$			$(\Delta \hat{H}_{\mathrm{f}}{}^{\circ})^{h,j}$	$(\Delta \hat{H}_{\mathrm{c}}^{\circ})^{i,j}$
Compound	Formula	Mol. Wt.	(20°/4°)	$T_{\mathrm{m}}(^{\circ}\mathrm{C})^{b}$	kJ/mol	$T_{\mathrm{b}}(^{\circ}\mathrm{C})^{d}$	kJ/mol	$T_{\rm c}({ m K})^f$	$P_{\rm c}({ m atm})^g$	kJ/mol	kJ/mol
Acetaldehyde	CH_3CHO	44.05	$0.783^{18^{\circ}}$	-123.7	l	20.2	25.1	461.0		-166.2(g)	-1192.4(g)
Acetic acid	CH_3COOH	60.05	1.049	16.6	12.09	118.2	24.39	594.8	57.1	-486.18(1)	-871.69(1)
Acetone	$\mathrm{C}_3\mathrm{H}_6\mathrm{O}$	58.08	0.791	-95.0	5.69	56.0	30.2	508.0	47.0	-438.15(g) -248.2(1)	-919./3(g) -1785.7(1)
Acetylene	C_2H_2	26.04	I			-81.5	17.6	309.5	61.6	-216.7(g) +226.75(g)	-1821.4(g) -1299.6(g)
Ammonia	NH_3	17.03	l	-77.8	5.653	-33.43	23.351	405.5	111.3	-67.20(I) -46.19(g)	-382.58(g)
Ammonium hydroxide	NH_4OH	35.03				1				-366.48(aq)	<u>}</u>
Ammonium nitrate	$\mathrm{NH_4NO_3}$	80.05	$1.725^{25^{\circ}}$	169.6	5.4	, ,	Decomposes at 210°C	s at 210°C		-365.14(c) -399.36(aq)	1
Ammonium sulfate	$(\mathrm{NH_4})_2\mathrm{SO_4}$	132.14	1.769	513	l	. ,	Decomposes at 513°C after melting	s at 513°C		-1179.3(c) -1173.1(aq)	
Aniline	C_6H_7N	93.12	1.022	-6.3	1	184.2	j	669	52.4		
Benzaldehyde	C_6H_5CHO	106.12	1.046	-26.0	1	179.0	38.40	1	I	-88.83(1) -40.04(g)	-3520.0(1)
Benzene	$\mathrm{C_6H_6}$	78.11	0.879	5.53	9.837	80.10	30.765	562.6	48.6	+48.66(I) +82.93(g)	-3267.6(1) -3301.5(g)
Benzoic acid	$\mathrm{C_7H_6O_2}$	122.12	$1.266^{15^{\circ}}$	122.2		249.8					-3226.7(g)
Benzyl alcohol	$\mathrm{C_7H_8O}$	108.13	1.045	-15.4		205.2	1	1		1	-3741.8(1)
Bromine	Br_2	159.83	3.119	-7.4	10.8	58.6	31.0	584	102	0(1)	1
1,2-Butadiene	$\mathrm{C}_4\mathrm{H}_6$	54.09		-136.5	1	10.1		446			
1,3-Butadiene	$\mathrm{C}_4\mathrm{H}_6$	54.09		-109.1	1	-4.6		425	42.7	1	
<i>n</i> -Butane	$\mathrm{C}_4\mathrm{H}_{10}$	58.12		-138.3	4.661	9.0-	22.305	425.17	37.47	-147.0(1) -124.7(a)	-2855.6(1) -2878.5(a)
Isobutane	$\mathrm{C}_4\mathrm{H}_{10}$	58.12	1	-159.6	4.540	-11.73	21.292	408.1	36.0	-158.4(1)	-2849.0(1)
1 Butene	C.H.	56 10		-1853	3 8480	309-	21 016	1106	30.7	-134.5(g)	-2868.8(g) -77186(g)
1-Dutene Calcium carbide	CaC_2	50.10 64.10	2.22 ^{18°}	- 185.3 2300	0.0400	C7:0		419.0	1.60	+1.17(g) -62.76(c)	-2/10.0(g)
Calcium carbonate	$CaCO_3$	100.09	2.93		О	Decomposes at 825°C	at 825°C			-1206.9(c)	I
Calcium chloride	$CaCl_2$	110.99	2.152 ^{15°}	782	28.37	>1600	1	I	1	-794.96(c)	1

	1 1		1	1	-393.51(c)	1 1	-1075.2(1) 1102.6(g)	-282.99(g)	-352.2(1) -385.0(g)		I
-986.59(c)	-635.6(c) -4138(c)	-1584(c)	-1432.7(c) -1450.4(ag)	-2021(c)	0(c)	-412.9(1) -393.5(g)	+87.9(1) +115.3(g)	-110.52(g)	-139.5(1) -106.7(g)	0(g)	
	1 1		1		1	72.9	78.0	34.5	45.0	76.1	44.6
	1 1		1			304.2	552.0	133.0	556.4	417.0	632.4
0°C)			1			–78°C)	26.8	6.042	30.0	20.4	36.5
$(-\mathrm{H}_2\mathrm{O}\ \mathrm{at}\ 580^\circ\mathrm{C})$	2850	I		$(-1.5 \text{ H}_2\text{O} \text{ at } 128^{\circ}\text{C})$	4200	(Sublimes at -78°C)	46.25	-191.5	76.7	-34.06	132.10
	50	48.62	1	$(-1.5\mathrm{H}_2$	46.0	8.33	4.39	0.837	2.51	6.406	I
	2570 1670	1530			3600	-56.6 at 5.2 atm	-112.1	-205.1	-22.9	-101.00	-45
2.24	3.32 3.14	2.915	2.96	2.32	2.26	1	$1.261^{22^\circ/20^\circ}$		1.595	l	112.56 1.107 See ethyl chloride
74.10 2.24	56.08 310.19	116.17	136.15	172.18	12.010	44.01	76.14	28.01	153.84	70.91	112.56 See ethy
$Ca(OH)_2$	CaO $Ca_3(PO_4)_2$	$CaSiO_3$	$CaSO_4$	$CaSO_4 \cdot 2H_2O$ 172.18	O	CO ₂	CS_2	00	CCl4	Cl_2	C_6H_5CI C_2H_5CI
Calcium hydroxide	Calcium oxide	phospnate Calcium silicate	Calcium Sulfate	Calcium Sulfate	(gypsum) Carbon	(graphite) Carbon dioxide	Carbon disulfide	Carbon	Carbon tetrachloride	Chlorine	Chlorobenzene Chloroethane

^aAdapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, ©1974, Tables D.1 and F.1. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

^{&#}x27;Melting point at 1 atm.

^cHeat of fusion at T_m and 1 atm.

^dBoiling point at 1 atm.

 $[^]e$ Heat of vaporization at $T_{\rm b}$ and 1 atm.

f Critical temperature.

⁹Critical pressure.

^hHeat of formation at 25°C and 1 atm.

^{&#}x27;Heat of combustion at 25°C and 1 atm. Standard states of products are $CO_2(g)$, $H_2O(l)$, $SO_2(g)$, HCl(aq), and $N_2(g)$. To calculate $\Delta \hat{H}_c^{\circ}$ with $H_2O(g)$ as a product, add $44.01n_w$ to the tabulated value, where $n_w = \text{moles } H_2O$ formed/mole fuel burned.

[']To convert $\Delta \hat{H}$ to kcal/mol, divide given value by 4.184; to convert to Btu/lb-mole, multiply by 430.28.

Table B.1 (Continued)

Compound	Formula	Mol. Wt.	SG (20°/4°)	$T_{ m m}(^{\circ}{ m C})^b$	$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	$T_{ m b}(^{\circ}{ m C})^d$	$\Delta \hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{ m c}({ m K})^f$	$P_{\rm c}({ m atm})^g$	$(\Delta \hat{H}_{ m f}^{\circ})^{h,j}$ kJ/mol	$(\Delta \hat{H}_c^{\circ})^{i,j}$ kJ/mol
Chloroform Copper Cupric	CHCl ₃ Cu CuSO ₄	119.39 63.54 159.61	1.489 8.92 3.606 ^{15°}	-63.7 1083	 13.01 D	61.0 2595 304.6 Decomposes > 600°C	304.6 > 600°C	536.0	54.0	-131.8(1) 0(c) -769.9(c)	-373(1)
Sunate Cyclohexane	$\mathrm{C}_6\mathrm{H}_{12}$	84.16	0.779	6.7	2.677	80.7	30.1	553.7	40.4	-043.1(aq) -156.2(l)	-3919.9(1)
Cyclopentane	$\mathrm{C}_5\mathrm{H}_{10}$	70.13	0.745	-93.4	0.609	49.3	27.30	511.8	44.55	-123.1(g) -105.9(1)	-3955.0(g) -3290.9(1)
n-Decane	$\mathrm{C}_{10}\mathrm{H}_{22}$	142.28	0.730	-29.9	I	173.8	I	619.0	20.8	-7.7(g) -249.7(1)	-3319.3(g) -6778.3(1) -6829.7(g)
Diethyl ether	$(C_2H_5)_2O$	74.12	$0.708^{25^{\circ}}$	-116.3	7.30	34.6	26.05	467	35.6	-272.8(1)	-2726.7(3)
Ethane Ethyl acetate	$\mathrm{C_2H_6} \ \mathrm{C_4H_8O_2}$	$30.07 \\ 88.10$	0.901	-183.3 -83.8	2.859	-88.6 77.0	14.72	305.4 523.1	48.2 37.8	-84.67(g) -463.2(1)	-1559.9(g) -2246.4(1)
Ethyl alcohol	C_2H_5OH	46.07	0.789	-114.6	5.021	78.5	38.58	516.3	63.0	-426.8(g) -277.63(l)	-1366.91(I)
(Ethanol) Ethyl benzene	C_8H_{10}	106.16	0.867	-94.67	9.163	136.2	35.98	619.7	37.0	-235.31(g) $-12.46(1)$	-1409.25(g) -4564.9(1)
Ethyl bromide	C_2H_5Br	108.98	1.460	-119.1		38.2	5	504	61.5	+29.79(g) -54.4(g)	-4007.1(g)
Ethyl chloride 3-Ethyl	C_8H_{18}	04.32 114.22	0.717	-138.3	4.422	118.5	24.7 34.27	400.4 567.0	32.0 26.4	-103.0(g) -250.5(1)	_ -5407.1(1)
hexane Ethylene	$\mathrm{C}_{3}\mathrm{H}_{4}$	28.05	j	-169.2	3.350	-103.7	13.54	283.1	50.5	-210.9(g) + 52.28(g)	-5509.8(g) -1410.99(g)
Ethylene	$C_2H_6O_2$	62.07	$1.113^{19^{\circ}}$	-13	11.23	197.2	56.9			-451.5(1)	-1179.5(1)
gaycor Ferric oxide	$\mathrm{Fe}_2\mathrm{O}_3$	159.70	5.12		D	Decomposes at 1560°C	at 1560°C			-367.1(g) -822.2(c)	ļ
Ferrous oxide Ferrous	FeO FeS	71.85 87.92	5.7 4.84	_ 1193	1 1					-266.5(c) -95.1(c)	
sulhde Formaldehyde Formic acid	$ m H_2CO$ $ m CH_2O_2$	30.03	0.815^{-20} 1.220	-92 8.30	 12.68	-19.3 100.5	24.48			-115.90(g) -409.2(l) -362.6(g)	-563.46(g) -262.8(1)
Glycerol Helium	$\mathrm{C}_3\mathrm{H}_8\mathrm{O}_3$ He	92.09	1.260 ⁵⁰	18.20 -269.7	18.30 0.02	290.0 -268.9	0.084	5.26	2.26	902.0(g) -665.9(1) 0(g)	

•	α	
	ō	
	Ž	
	\bar{z}	
•	3	
ľ	11	
	7	
	C	
	Ü	

-4816.9(1) -4853.5(0)	$-4163.1(1) \\ -4194.8(a)$	-285.84(g)	1	l	1 1	-562.59(g)	1	ļ	1	1	l	I	l		1	-890.36(g)	-1595(1)	726.6(1)	-1071.5(1)	I
-224.4(1) -187.8(9)	-198.8(1) $-167.7(a)$	0(g) $0(g)$ $-36.23(g)$	-92.31(g)	+130.54(g)	-268.6(g) -316.9(aq,	-19.96(g)	0(c)	0(c)	0(c)	-219.2(c)	0(c)	-641.8(c)		-601.8(c)	0(c)	-74.85(g)	-409.4(1)	-238.6(1)	_28.0(g)	-81.92(g)
27.0	29.9	12.8	81.5			88.9	l									45.8	46.30	78.50	73.60	65.80
540.2	507.9	33.3	324.6		503.2	373.6	826.0	I	I							190.70	206.7	513.20	429.9	416.1
31.69	28.85	0.904	16.1	l	I	18.67	I	354.0	179.9	213	131.8	136.8				8.179	İ	35.27	I	ı
98.43	68.74	-252.76 -67	-85.0	26	20	-60.3	184.2	2800	1750	1472	1120	1418	s at 350°C	3600	-356.9	-161.5	57.1	64.7	6.9	-24
14.03	13.03	0.12	1.99		I	2.38	I	15.1	5.10	11.7	9.2	43.1	Decomposes at 350°C	77.4	I	0.94	ļ	3.167	I	I
-90.59	-95.32	-259.19 -86	-114.2	-14	-83	-85.5	113.3	1535	327.4	988	650	714		2900	-38.87	-182.5	6.86-	6.79—	-92.7	-97.9
0.684	0.659	1 1	1		I	1	4.93	7.7	$11.337^{20^{\circ}/20^{\circ}}$	9.5	1.74	2.325 ^{25°}	2.4	3.65	13.546	ļ	0.933	0.792	0.699^{-11}°	ı
100.20	86.17	2.016 80.92	36.47	27.03	20.0	34.08	253.8	55.85	207.21	223.21	24.32	95.23	58.34	40.32	200.61	16.04	74.08	32.04	31.06	50.49
$\mathrm{C_7H_{16}}$	$\mathrm{C}_6\mathrm{H}_{14}$	$ m H_2$ HBr	HCI	HCN	HF	H_2S	\mathbf{I}_2	Fe	Pb	PbO	Mg	${ m MgCl}_2$	${ m Mg}({ m OH})_2$	MgO	Hg	$\widetilde{\mathrm{CH}_4}$	$\mathrm{C_3H_6O_2}$	СН3ОН	CH_5N	CH3CI
n-Heptane	n-Hexane	Hydrogen Hydrogen bromide	Hydrogen chloride	Hydrogen cvanide	Hydrogen fluoride	Hydrogen sulfide	Iodine	Iron	Lead	Lead oxide	Magnesium	Magnesium chloride	Magnesium	nydroxide Magnesium oxide	Mercury	Methane	Methyl acetate	Methyl alcohol	Methyl amine	Methyl chloride

Table B.1 (Continued)

$(\Delta \hat{H}_{\rm f}^{\circ})^{h,j}$ $(\Delta \hat{H}_{\rm c}^{\circ})^{i,j}$ kJ/mol kJ/mol	— — — — — — — — — — — — — — — — — — —	5157(g) 0(c) - -173.23(l) -	-2002.3(1at) -2092.8(1) 0(g) +33.8(g)	+90.37(g) —	+9.3(g) —	+81.5(g) —	-229.0(1) $-6124.5(1)$	-249.9(1) -5470.7(1) -268.4(2) -5512.2(3)	l I I			- 90.8(g) -1281.1(c) -1278.6(aq,	$\frac{1\Pi_2^2O)}{-176(c)}$ —
		-17.	+33.	6+	+		-22	-24 000	-82 -82 -17.	-17	-15	-128 -127 -127	
$P_{\rm c}({ m atm})^g$	l		33.5 100.0	65.0	99.0	71.70	23.0	24.5	49.7 33.3	32.9	39.9 60.5		
$T_{\mathrm{c}}(\mathrm{K})^f$	I		 126.20 431.0	179.20	431.0	309.5	595	568.8	 154.4 469.80	461.00	474 692.1		
$\Delta\hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	32.0	30.30	5.577 14.73	13.78	j	l	l		6.82		l I	at 213°C)	air, 725°C
$T_{ m b}(^{\circ}{ m C})^d$	78.2	217.8 2900 86	210.7 -195.8 21.3	-151.8 47	21.1	-88.8	150.6	125.5	Decomposes at 186°C 0.444 -182.97 8.393 36.07	27.7	29.97 181.4	$(-\frac{1}{2}H_2O$ at 213°C)	Ignites in air, 725°C
$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	l	 10.47	0.720 7.335	2.301	İ	l	l		Decompos 0.444 8.393		4.94	10.54	81.17
$T_{ m m}(^{\circ}{ m C})^b$	-87.1	80.0 1452 -41.6	5.5 -210.0 -9.3	-163.6 30	-9.5	-91.1	-53.8	-57.0	-218.75 -129.6	-160.1	-165.2 42.5	42.3	590 ⁴³ atm
SG (20°/4°)	0.805	1.145 8.90 1.502	1.203	$\overline{}$	1.448	$1.226^{-89^{\circ}}$	0.718	0.703	1.90 — 0.63 ¹⁸ °	$0.62^{19^{\circ}}$	0.641 $1.071^{25^{\circ}}$	1.834^{18°	2.20
Mol. Wt.	72.10	128.16 58.69 63.02	123.11 28.02 46.01	30.01	92.0	44.02	128.25	114.22	90.04 32.00 72.15	72.15	70.13	98.00	123.90
Formula	$\mathrm{C}_4\mathrm{H}_8\mathrm{O}$	${ m C_{10}H_8}$ Ni HNO $_3$	$C_6H_5O_2N$ N_2 NO_2	$\frac{NO}{N_2O_5}$	N_2O_4	N_2O	$\mathrm{C}_9\mathrm{H}_{20}$	$\mathrm{C_8H_{18}}$	$C_2H_2O_4$ O_2 C_5H_{12}	$\mathrm{C}_5\mathrm{H}_{12}$	$\substack{\text{C}_5\text{H}_{10}\\\text{C}_6\text{H}_5\text{OH}}$	$\mathrm{H}_{3}\mathrm{PO}_{4}$	\mathbf{P}_4
Compound	Methyl ethyl	ketone Naphthalene Nickel Nitric acid	Nitrobenzene Nitrogen Nitrogen	Nitric oxide Nitrogen	pentoxide Nitrogen	Nitrous	oxide n-Nonane	n-Octane	Oxalic acid Oxygen <i>n</i> -Pentane	Isopentane	1-Pentene Phenol	Phosphoric acid	Phosphorus

123.90	0 1.82 5 2.387	44.2	2.51 Sublimes	2.51 280 Sublimes at 250°C	49.71	1 1	1 1	-1506.2(c)	
	-187.69	_	3.52	-42.07	18.77	369.9	42.0	-119.8(1) $-103.8(9)$	-2204.0(1) $-2220.0(9)$
42.08 — -185.2 60.09 0.804 -127	-185 -127	7	3.00	-47.70 97.04	18.42	365.1 536.7	45.4 49.95	+20.41(g) -300.70(1) -255.2(g)	-2058.4(g) $-2010.4(1)$ $-2068.6(g)$
60.09 0.785 -89.7	-89	7:	İ	82.24	1	508.8	53.0	-310.9(1)	-1986.6(I)
120.19 0.86299.50	66-	.50	8.54	159.2	38.24	638.7	31.3	-38.40(1) + 7.82(g)	-5218.2(1) -5264.48(g)
60.09 2.25 1710	1710		14.2	2230	I			-851.0(c)	
84.01 2.20			Decombos	Decomposes at 270°C		1	1	-945.6(c)	
120.07 2.742 —	1		1		1	1	1	-1126.3(c)	I
105.99 2.533			Decompose	Decomposes at 854°C				-1130.9(c)	1
58.45 2.163 808	808		28.5	1465	170.7			-411.0(c)	l
49.01 — 562	562		16.7	1497	155			-89.79(c)	
40.00 2.130 319	319		8.34	1390		1		-426.6(c) -469.4(aq)	1 1
85.00 2.257 310	310		15.9	Decom	Decomposes at 380°C	0°C	ļ	-466.7(c)	I
69.00 2.168°° 271	271		1	Decom	Decomposes at 320°C	0°C		-359.4(c)	1
142.05 2.698 890	890		24.3	1				-1384.5(c)	
78.05 1.856 950	950		6.7					-373.2(c)	1
126.05 2.633 ¹⁵ °			Decon	Decomposes			1	-1090.3(c)	

Table B.1 (Continued)

Compound	Formula Mol. Wt.	Mol. Wt.	SG (20°/4°)	$T_{ m m}(^{\circ}{ m C})^b$	$\Delta \hat{H}_{\mathrm{m}}(T_{\mathrm{m}})^{c,j}$ kJ/mol	$T_{ m b}(^{\circ}{ m C})^d$	$\Delta \hat{H}_{ m v}(T_{ m b})^{e,j}$ kJ/mol	$T_{\rm c}({ m K})^f$	$P_{ m c}({ m atm})^g$	$(\Delta \hat{H}_{ m f}^{\circ})^{h,j}$ kJ/mol	$(\Delta \hat{H}_c^{\circ})^{i,j}$ kJ/mol
Sodium	$Na_2S_2O_3$	158.11	1.667							-1117.1(c)	I
Sulfur (arkembie)	s «	256.53	2.07	113	10.04	444.6	83.7			0(c)	I
Sulfur (monocolinio)	$^{\infty}_{\infty}$	256.53	1.96	119	14.17	444.6	83.7			+0.30(c)	I
Sulfur dioxide	SO_2	64.07	1	-75.48	7.402	-10.02	24.91	430.7	77.8	-296.90(g)	l
Sulfur	SO_3	80.07	1	16.84	25.48	43.3	41.80	491.4	83.8	-395.18(g)	l
uroxide Sulfuric	H_2SO_4	98.08	$1.834^{18^{\circ}}$	10.35	9.87	Decombo	Decomposes at 340°C			-811.32(l)	I
Toluene	$\mathrm{C_7H_8}$	92.13	998.0	-94.99	6.619	110.62	33.47	593.9	40.3	+12.00(1)	-3909.9(1)
Water	H_2O	18.016	1.00^{4°	0.00	6.0095	100.00	40.656	647.4	218.3	+50.00(g) -285.84(l)	–3947.9(g) –
m-Xylene	C_8H_{10}	106.16	0.864	-47.87	11.569	139.10	36.40	619	34.6	-241.63(g) -25.42(1)	-4551.9(1)
o-Xylene	C_8H_{10}	106.16	0.880	-25.18	13.598	144.42	36.82	631.5	35.7	+17.24(g) $-24.44(1)$	-4594.3(g) -4552.9(l)
p-Xylene	$\mathrm{C_8H_{10}}$	106.16	0.861	13.26	17.11	138.35	36.07	618	33.9	+18.99(g) $-24.43(1)$	-4590.3(g) -4552.91(1)
Zinc	Zn	65.38	7.140	419.5	6.674	206	114.77			17.93(g) 0(c)	-4393.2(g)

Table B.2 Heat Capacities^a

Physical Property database database Ouickly integrates tabulated heat capacities

	For For	Form 1: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)]$ Form 2: $C_p[kJ/(mol \cdot {}^{\circ}C)]$ or $[kJ/(mol \cdot K)]$	J/(mol·' J/(mol·'	C)] or []	kJ/(mol· kJ/(mol·	(\mathbf{K}) = $a + (\mathbf{K})$ = $a + (\mathbf{K})$ = $a + (\mathbf{K})$	Form 1: $C_p[\mathrm{kJ/(mol \cdot ^{\circ}C)}]$ or $[\mathrm{kJ/(mol \cdot K)}] = a + bT + cT^2 + dT^3$ Form 2: $C_p[\mathrm{kJ/(mol \cdot ^{\circ}C)}]$ or $[\mathrm{kJ/(mol \cdot K)}] = a + bT + cT^{-2}$	$+ dT^3$		
Example: ($(C_p)_{\text{acetone(g)}} = 0$.07196 +	(20.10 ×	$(10^{-5})T$	' — (12.7,	8×10^{-8}	$^{-2}$ + (34.76	Example: $(C_p)_{\text{acctone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in ${}^{\circ}$ C.	T is in °C.	
Note: The formulas		re strictly	applica	ble at pr	essures.	low enough	h for the ide	for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.	state to app	oly.
Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Acetone	CH ₃ COCH ₃	58.08			°C	123.0	18.6			-30-60
			80	\vdash	ပ္	71.96	20.10	-12.78	34.76	0-1200
Acetylene	$\mathrm{C}_2\mathrm{H}_2$	26.04	οũ	_	ပွ	42.43	6.053	-5.033	18.20	0-1200
Air		29.0	ವಾ	1	သ	28.94	0.4147	0.3191	-1.965	0-1500
			50	1	K	28.09	0.1965	0.4799	-1.965	273–1800
Ammonia	NH_3	17.03	50	1	ွင	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	$(\mathrm{NH_4})_2\mathrm{SO_4}$	132.15	၁	1	X	215.9				275–328
Benzene	C_6H_6	78.11	_	1	ွ	126.5	23.4			<i>L</i> 9 - 9
			80	\vdash	ွ	74.06	32.95	-25.20	77.57	0-1200
Isobutane	$\mathrm{C}_4\mathrm{H}_{10}$	58.12	50		ွ	89.46	30.13	-18.91	49.87	0-1200
<i>n</i> -Butane	$\mathrm{C}_4\mathrm{H}_{10}$	58.12	50	1	သ	92.30	27.88	-15.47	34.98	0-1200
Isobutene	$\mathrm{C}_4\mathrm{H}_8$	56.10	50		ွ	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC_2	64.10	၁	2	K	68.62	1.19	$-8.66 imes 10^{10}$	1	298–720
Calcium carbonate	$CaCO_3$	100.09	၁	2	X	82.34	4.975	-12.87×10^{10}	1	273-1033
Calcium hydroxide	$Ca(OH)_2$	74.10	၁	1	X	89.5				276–373
Calcium oxide	CaO	56.08	၁	2	X	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	၁	2	X	11.18	1.095	-4.891×10^{10}		273–1373
Carbon dioxide	CO_2	44.01	50	1	ွ	36.11	4.233	-2.887	7.464	0-1500
Carbon monoxide	00	28.01	50	1	ွ	28.95	0.4110	0.3548	-2.220	0-1500
Carbon tetrachloride	CCI4	153.84	_		×	93.39	12.98			273–343
Chlorine	Cl_2	70.91	oo	1	ွ	33.60	1.367	-1.607	6.473	0-1200
Copper	Cu	63.54	၁	\vdash	K	22.76	0.6117			273–1357

"Adapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.1. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

Table B.2 (Continued)

punodwo∑	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Cumene (Isopropyl benzene)	$\mathrm{C}_{9}\mathrm{H}_{12}$	120.19	ಹ	_	ွ	139.2	53.76	-39.79	120.5	0-1200
Ovclohexane	C_6H_{17}	84.16	ы	Т	ပ္	94.140	49.62	-31.90	80.63	0-1200
Syclopentane	$ m C_5H_{10}$	70.13	o on	П	ွ	73.39	39.28	-25.54	99:89	0-1200
Ethane	$\mathbf{C_2H_6}$	30.07	oc	П	ွ	49.37	13.92	-5.816	7.280	0-1200
Ethyl alcohol	C_2H_5OH	46.07	. — -	₩,	ပ္စ	103.1				0
(Ethanol)			_		ې ز	158.8	1	(1	0	100
			æ	—	ပ	61.34	15.72	-8.749	19.83	0–1200
Ethylene	$\mathbf{C}_2\mathbf{H}_4$	28.05	æ	1	သ	+40.75	11.47	-6.891	17.66	0–1200
Ferric oxide	Fe_2O_3	159.70	၁	2	K	103.4	6.711	-17.72×10^{10}		273–1097
Formaldehyde	$\mathrm{CH}_2\mathrm{O}$	30.03	50	1	သ	34.28	4.268	0.0000	-8.694	0-1200
Helium	He	4.00	50	_	သ	20.8				0-1200
n-Hexane	$\mathrm{C}_6\mathrm{H}_{14}$	86.17	· –	$\overline{}$	သွ	216.3				20–100
			50	\leftarrow	သ	137.44	40.85	-23.92	57.66	0-1200
Hydrogen	H_2	2.016	ac	\vdash	သ	28.84	0.00765	0.3288	-0.8698	0-1500
Hydrogen bromide	HBr	80.92	ac	\vdash	သ	29.10	-0.0227	0.9887	-4.858	0-1200
Hydrogen chloride	HCl	36.47	æ	1	သ	29.13	-0.1341	0.9715	-4.335	0-1200
Hydrogen cyanide	HCN	27.03	æ	1	သ	35.3	2.908	1.092		0-1200
Hydrogen sulfide	H_2S	34.08	æ	1	သ	33.51	1.547	0.3012	-3.292	0-1500
Magnesium chloride	${ m MgCl}_2$	95.23	၁	_	X	72.4	1.58			273–991
Magnesium oxide	MgO	40.32	၁	2	K	45.44	0.5008	-8.732×10^{10}		273–2073
Methane	CH_4	16.04	50		သ	34.31	5.469	0.3661	-11.00	0–1200
			ã	Τ	K	19.87	5.021	1.268	-11.00	273–1500
Methyl alcohol	CH_3OH	32.04	_	Т	သ	75.86	16.83			0–65
(Methanol)			50	\vdash	သ	42.93	8.301	-1.87	-8.03	0-700
Methyl cyclohexane	$\mathrm{C}_7\mathrm{H}_{14}$	98.18	æ	\vdash	သ	121.3	56.53	-37.72	100.8	0-1200
Methyl cyclopentane	$\mathrm{C}_6\mathrm{H}_{12}$	84.16	æ	\vdash	သ	98.83	45.857	-30.44	83.81	0-1200
Nitric acid	NHO_3	63.02	_		ပ္ပ	110.0				25
Nitric oxide	NO	30.01	æ	П	္လ	29.50	0.8188	-0.2925	0.3652	0-3500

\mathbf{Z}_{2}^{2}		28.02	æ	₩,	ွ လ	29.00	0.2199	0.5723	-2.871	0-1500
NO_2 46.01	46.01		ъо ·	. .	ပ္ ပူ	36.07	3.97	-2.88	7.87	0-1200
	92.02		οo	- ,	<u>ن</u> و	/2./	12.5	-11.3	i G	0-300
	44.02		50	<u>.</u>	ပ္	37.66	4.151	-2.694	10.57	0-1200
32.00			50		ပ	29.10	1.158	-0.6076	1.311	0-1500
	72.15		_	_	ွ	155.4	43.68			0–36
			50	_	ပွ	114.8	34.09	-18.99	42.26	0-1200
	44.09		50	1	ွ	68.032	22.59	-13.11	31.71	0-1200
	42.08		50	_	ွ	59.580	17.71	-10.17	24.60	0-1200
	105.99		၁	1	K	121				288–371
(1	286.15	_	ပ	_	X	535.6				298
$\cdot 10 \text{H}_2 \text{O}$										
	32.07 c	၁		1	K	15.2	2.68			273–368
(Rhomb	(Rhomb	mc	ic)							
၁	၁	၁		_	×	18.3	1.84			368–392
	(Monocli	ocli	nic)							
	98.08			\vdash	ွ	139.1	15.59			10–45
SO_2 64.07 ξ	64.07	CII)	5 0	_	ွ	38.91	3.904	-3.104	909.8	0-1500
	80.07		ρn	_	ွ	48.50	9.188	-8.540	32.40	0-1000
	92.13			_	ပ္	148.8	32.4			0-110
	31)	οn	- 0	1	ပ္	94.18	38.00	-27.86	80.33	0-1200
H_2O 18.016	18.016		_	_	ပ္	75.4				0-100
33,		3 1)	20		ွ	33.46	0.6880	0.7604	-3.593	0-1500
			ĺ							

 Table B.3 Vapor Pressure of Water^a

		Exam	ple: The v	$p_{ m v}$		versus <i>T</i> quid wate		is 6.230	mm Hg		
	T(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	-14	1.361	1.348	1.336	1.324	1.312	1.300	1.288	1.276	1.264	1.253
\	-13	1.490	1.477	1.464	1.450	1.437	1.424	1.411	1.399	1.386	1.373
Ice	-12	1.632	1.617	1.602	1.588	1.574	1.559	1.546	1.532	1.518	1.504
	-11	1.785	1.769	1.753	1.737	1.722	1.707	1.691	1.676	1.661	1.646
	-10	1.950	1.934	1.916	1.899	1.883	1.866	1.849	1.833	1.817	1.800
	-9	2.131	2.122	2.093	2.075	2.057	2.039	2.021	2.003	1.985	1.968
	-8	2.326	2.306	2.285	2.266	2.246	2.226	2.207	2.187	2.168	2.149
	-7	2.537	2.515	2.493	2.472	2.450	2.429	2.408	2.387	2.367	2.346
	-6	2.765	2.742	2.718	2.695	2.672	2.649	2.626	2.603	2.581	2.559
	-5	3.013	2.987	2.962	2.937	2.912	2.887	2.862	2.838	2.813	2.790
	-4	3.280	3.252	3.225	3.198	3.171	3.144	3.117	3.091	3.065	3.039
	-3	3.568	3.539	3.509	3.480	3.451	3.422	3.393	3.364	3.336	3.308
	-2	3.880	3.848	3.816	3.785	3.753	3.722	3.691	3.660	3.630	3.599
	-1	4.217	4.182	4.147	4.113	4.079	4.045	4.012	3.979	3.946	3.913
	-0	4.579	4.542	4.504	4.467	4.431	4.395	4.359	4.323	4.287	4.252
	0	4.579	4.613	4.647	4.681	4.715	4.750	4.785	4.820	4.855	4.890
\	1	4.926	4.962	4.998	5.034	5.070	5.107	5.144	5.181	5.219	5.256
Liquid	2	5.294	5.332	5.370	5.408	5.447	5.486	5.525	5.565	5.605	5.645
water	3	5.685	5.725	5.766	5.807	5.848	5.889	5.931	5.973	6.015	6.058
	4	6.101	6.144	6.187	6.230	6.274	6.318	6.363	6.408	6.453	6.498
	5	6.543	6.589	6.635	6.681	6.728	6.775	6.822	6.869	6.917	6.965
	6	7.013	7.062	7.111	7.160	7.209	7.259	7.309	7.360	7.411	7.462
	7	7.513	7.565	7.617	7.669	7.722	7.775	7.828	7.882	7.936	7.990
	8	8.045	8.100	8.155	8.211	8.267	8.323	8.380	8.437	8.494	8.551
	9	8.609	8.668	8.727	8.786	8.845	8.905	8.965	9.025	9.086	9.147
	10	9.209	9.271	9.333	9.395	9.458	9.521	9.585	9.649	9.714	9.779
	11	9.844	9.910	9.976	10.042	10.109	10.176	10.244	10.312	10.380	10.449
	12	10.518	10.588	10.658	10.728	10.799	10.870	10.941	11.013	11.085	11.158
	13	11.231	11.305	11.379	11.453	11.528	11.604	11.680	11.756	11.833	11.910
	14	11.987	12.065	12.144	12.223	12.302	12.382	12.462	12.543	12.624	12.706
	15	12.788	12.870	12.953	13.037	13.121	13.205	13.290	13.375	13.461	13.547
	16	13.634	13.721	13.809	13.898	13.987	14.076	14.166	14.256	14.347	14.438
	17	14.530	14.622	14.715	14.809	14.903	14.997	15.092	15.188	15.284	15.380
	18	15.477	15.575	15.673	15.772	15.871	15.971	16.771	16.171	16.272	16.374
	19	16.477	16.581	16.685	16.789	16.894	16.999	17.105	17.212	17.319	17.427
	20	17.535	17.644	17.753	17.863	17.974	18.085	18.197	18.309	18.422	18.536
	21	18.650	18.765	18.880	18.996	19.113	19.231	19.349	19.468	19.587	19.707
	22	19.827	19.948	20.070	20.193	20.316	20.440	20.565	20.690	20.815	20.941
	23	21.068	21.196	21.324	21.453	21.583	21.714	21.845	21.977	22.110	22.243
	24	22.377	22.512	22.648	22.785	22.922	23.060	23.198	23.337	23.476	23.616

^aFrom R. H. Perry and C. H. Chilton, Eds., *Chemical Engineers' Handbook*, 5th Edition, McGraw-Hill, New York, 1973, Tables 3-3 and 3-5. Reprinted by permission of McGraw-Hill Book Co.

Table B.3 (Continued)

T(°C)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
25	23.756	23.897	24.039	24.182	24.326	24.471	24.617	24.764	24.912	25.060
26	25.209	25.359	25.509	25.660	25.812	25.964	26.117	26.271	26.426	26.582
27	26.739	26.897	27.055	27.214	27.374	27.535	27.696	27.858	28.021	28.185
28	28.349	28.514	28.680	28.847	29.015	29.184	29.354	29.525	29.697	29.870
29	30.043	30.217	30.392	30.568	30.745	30.923	31.102	31.281	31.461	31.642
30	31.824	32.007	32.191	32.376	32.561	32.747	32.934	33.122	33.312	33.503
31	33.695	33.888	34.082	34.276	34.471	34.667	34.864	35.062	35.261	35.462
32	35.663	35.865	36.068	36.272	36.477	36.683	36.891	37.099	37.308	37.518
33	37.729	37.942	38.155	38.369	33.584	38.801	38.018	39.237	39.457	39.677
34	39.898	40.121	40.344	40.569	40.796	41.023	41.251	41.480	41.710	41.942
35	42.175	42.409	42.644	42.880	43.117	43.355	43.595	43.836	44.078	44.320
36	44.563	44.808	45.054	45.301	45.549	45.799	46.050	46.302	46.556	46.811
37	47.067	47.324	47.582	47.841	48.102	48.364	48.627	48.891	49.157	49.424
38	49.692	49.961	50.231	50.502	50.774	51.048	51.323	51.600	51.879	52.160
39	52.442	52.725	53.009	53.294	53.580	53.867	54.156	54.446	54.737	55.030
40	55.324	55.61	55.91	56.21	56.51	56.81	57.11	57.41	57.72	58.03
41	58.34	58.65	58.96	59.27	59.58	59.90	60.22	60.54	60.86	61.18
42	61.50	61.82	62.14	62.47	62.80	63.13	63.46	63.79	64.12	64.46
43	64.80	65.14	65.48	65.82	66.16	66.51	66.86	67.21	67.56	67.91
44	68.26	68.61	68.97	69.33	69.69	70.05	70.41	70.77	71.14	71.51
45	71.88	72.25	72.62	72.99	73.36	73.74	74.12	74.50	74.88	75.26
46	75.65	76.04	76.43	76.82	77.21	77.60	78.00	78.40	78.80	79.20
47 48	79.60	80.00	80.41	80.82 84.99	81.23 85.42	81.64 85.85	82.05	82.46	82.87	83.29
48 49	83.71 88.02	84.13 88.46	84.56 88.90	84.99 89.34	83.42 89.79	83.83 90.24	86.28 90.69	86.71 91.14	87.14 91.59	87.58 92.05
-										
$T(^{\circ}C)$	0	1	2	3	4	5	6	7	8	9
50	92.51	97.20	102.09	107.20	112.51	118.04	123.80	129.82	136.08	142.60
60	149.38	156.43	163.77	171.38	179.31	187.54	196.09	204.96	214.17	223.73
70	233.7	243.9	254.6	265.7	277.2	289.1	301.4	314.1	327.3	341.0
80	355.1	369.7	384.9	400.6	416.8	433.6	450.9	468.7	487.1	506.1
$T(^{\circ}C)$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
90	525.76	527.76	529.77	531.78	533.80	535.82	537.86	539.90	541.95	544.00
91	546.05	548.11	550.18	552.26	554.35	556.44	558.53	560.64	562.75	564.87
92	566.99	569.12	571.26	573.40	575.55	577.71	579.87	582.04	584.22	586.41
93	588.60	590.80	593.00	595.21	597.43	599.66	601.89	604.13	606.38	608.64
94	610.90	613.17	615.44	617.72	620.01	622.31	624.61	626.92	629.24	631.57
95	633.90	636.24	938.59	640.94	643.30	645.67	648.05	650.43	652.82	655.22
96	657.62	660.03	662.45	664.88	667.31	669.75	672.20	674.66	677.12	679.69
97	682.07	684.55	687.04	689.54	692.05	694.57	697.10	699.63	702.17	704.71
98	707.27	709.83	712.40	714.98	717.56	720.15	722.75	725.36	727.98	730.61
99	733.24	735.88	738.53	741.18	743.85	746.52	749.20	751.89	754.58	757.29
100	760.00	762.72	765.45	768.19	770.93	773.68	776.44	779.22	782.00	784.78
101	787.57	790.37	793.18	796.00	798.82	801.66	804.50	807.35	810.21	813.08

Table B.4 Antoine Equation Constants^a

$$\log_{10} p^* = A - \frac{B}{T+C} \qquad p^* \text{ in mm Hg,} \quad T \text{ in } {}^{\circ}\text{C}$$

Example: The vapor pressure of acetaldehyde at 25°C is determined as follows:

$$\log_{10} p_{\text{C}_2\text{H}_4\text{O}}^*(25^{\circ}\text{C}) = 8.00552 - \frac{1600.017}{25 + 291.809} = 2.9551$$

$$\implies p_{\text{C}_2\text{H}_4\text{O}}^*(25^{\circ}\text{C}) = 10^{2.9551} = 902 \text{ mm Hg}$$

Compound	Formula	Range (°C)	A	В	<i>C</i>
Acetaldehyde	C_2H_4O	-0.2 to 34.4	8.00552	1600.017	291.809
Acetic acid	$C_2H_4O_2$	29.8 to 126.5	7.38782	1533.313	222.309
Acetic acid*	$C_2H_4O_2$	0 to 36	7.18807	1416.7	225
Acetic anhydride	$C_4H_6O_3$	62.8 to 139.4	7.14948	1444.718	199.817
Acetone	C_3H_6O	-12.9 to 55.3	7.11714	1210.595	229.664
Acrylic acid	$C_3H_4O_2$	20.0 to 70.0	5.65204	648.629	154.683
Ammonia*	NH_3	-83 to 60	7.55466	1002.711	247.885
Aniline	C_6H_7N	102.6 to 185.2	7.32010	1731.515	206.049
Benzene	C_6H_6	14.5 to 80.9	6.89272	1203.531	219.888
<i>n</i> -Butane	n-C ₄ H ₁₀	-78.0 to -0.3	6.82485	943.453	239.711
<i>i</i> -Butane	$i - C_4 H_{10}$	-85.1 to -11.6	6.78866	899.617	241.942
1-Butanol	$C_4H_{10}O$	89.2 to 125.7	7.36366	1305.198	173.427
2-Butanol	$C_4H_{10}O$	72.4 to 107.1	7.20131	1157.000	168.279
1-Butene	C_4H_8	-77.5 to -3.7	6.53101	810.261	228.066
Butyric acid	$C_4H_8O_2$	20.0 to 150.0	8.71019	2433.014	255.189
Carbon disulfide	CS_2	3.6 to 79.9	6.94279	1169.110	241.593
Carbon tetrachloride	CCl_4	14.1 to 76.0	6.87926	1212.021	226.409
Chlorobenzene	C_6H_5Cl	62.0 to 131.7	6.97808	1431.053	217.550
Chlorobenzene*	C_6H_5Cl	0 to 42	7.10690	1500.0	224.0
Chlorobenzene*	C_6H_5Cl	42 to 230	6.94504	1413.12	216.0
Chloroform	$CHCl_3$	-10.4 to 60.3	6.95465	1170.966	226.232
Chloroform*	$CHCl_3$	-30 to 150	6.90328	1163.03	227.4
Cyclohexane	C_6H_{12}	19.9 to 81.6	6.84941	1206.001	223.148
Cyclohexanol	$C_6H_{12}O$	93.7 to 160.7	6.25530	912.866	109.126
<i>n</i> -Decane	n-C ₁₀ H ₂₂	94.5 to 175.1	6.95707	1503.568	194.738
1-Decene	$C_{10}H_{20}$	86.8 to 171.6	6.95433	1497.527	197.056
1,1-Dichloroethane	$C_2H_4Cl_2$	-38.8 to 17.6	6.97702	1174.022	229.060
1,2-Dichloroethane	C_2H_4Cl	-30.8 to 99.4	7.02530	1271.254	222.927
Dichloromethane	CH_2Cl_2	-40.0 to 40	7.40916	1325.938	252.616
Diethyl ether	$C_4H_{10}O$	-60.8 to 19.9	6.92032	1064.066	228.799
Diethyl ketone	$C_5H_{10}O$	56.5 to 111.3	7.02529	1310.281	214.192
Diethylene glycol	$C_4H_{10}O_2$	130.0 to 243.0	7.63666	1939.359	162.714
Dimethyl ether	C_2H_6O	-78.2 to -24.9	6.97603	889.264	241.957
Dimethylamine	C_2H_7N	-71.8 to 6.9	7.08212	960.242	221.667
<i>N</i> , <i>N</i> -Dimethylformamide	C_3H_7NO	30.0 to 90.0	6.92796	1400.869	196.434
1,4-Dioxane	$C_4H_8O_2$	20.0 to 105.0	7.43155	1554.679	240.337
Ethanol	C_2H_6O	19.6 to 93.4	8.11220	1592.864	226.184
Ethanolamine	C_2H_7NO	65.4 to 170.9	7.45680	1577.670	173.368
Ethyl acetate	$C_4H_8O_2$	15.6 to 75.8	7.10179	1244.951	217.881
Ethyl acetate*	$C_4H_8O_2$	-20 to 150	7.09808	1238.710	217.0
Ethyl chloride	C_2H_5Cl	-55.9 to 12.5	6.98647	1030.007	238.612
Ethylbenzene	C_8H_{10}	56.5 to 137.1	6.95650	1423.543	213.091

[&]quot;Adapted from T. Boublik, V. Fried, and E. Hala, The Vapour Pressures of Pure Substances, Elsevier, Amsterdam, 1973. If marked with an asterisk (*), constants are from Lange's Handbook of Chemistry, 9th Edition, Handbook Publishers, Inc., Sandusky, OH, 1956.

Table B.4 (Continued)

Compound	Formula	Range (°C)	A	В	<i>C</i>
Ethylene glycol	$C_2H_6O_2$	50.0 to 200.0	8.09083	2088.936	203.454
Ethylene oxide	C_2H_4O	0.3 to 31.8	8.69016	2005.779	334.765
1,2-Ethylenediamine	$C_2H_8N_2$	26.5 to 117.4	7.16871	1336.235	194.366
Formaldehyde	HCHO	-109.4 to -22.3	7.19578	970.595	244.124
Formic acid	CH_2O_2	37.4 to 100.7	7.58178	1699.173	260.714
Glycerol	$C_3H_8O_3$	183.3 to 260.4	6.16501	1036.056	28.097
<i>n</i> -Heptane	n-C ₇ H ₁₆	25.9 to 99.3	6.90253	1267.828	216.823
<i>i</i> -Heptane	i - C_7H_{16}	18.5 to 90.9	6.87689	1238.122	219.783
1-Heptene	C_7H_{14}	21.6 to 94.5	6.91381	1265.120	220.051
<i>n</i> -Hexane	n-C ₆ H ₁₄	13.0 to 69.5	6.88555	1175.817	224.867
i-Hexane	$i - C_6 H_{14}$	12.8 to 61.1	6.86839	1151.401	228.477
1-Hexene	C_6H_{12}	15.9 to 64.3	6.86880	1154.646	226.046
Hydrogen Cyanide	HCN	-16.4 to 46.2	7.52823	1329.49	260.418
Methanol	CH_3OH	14.9 to 83.7	8.08097	1582.271	239.726
Methanol*	CH_3OH	-20 to 140	7.87863	1473.11	230.0
Methyl acetate	$C_3H_6O_2$	1.8 to 55.8	7.06524	1157.630	219.726
Methyl bromide	CH ₃ Br	-70.0 to 3.6	7.09084	1046.066	244.914
Methyl chloride	CH ₃ Cl	-75.0 to 5.0	7.09349	948.582	249.336
Methyl ethyl ketone	C_4H_8O	42.8 to 88.4	7.06356	1261.339	221.969
Methyl isobutyl ketone	$C_6H_{12}O$	21.7 to 116.2	6.67272	1168.408	191.944
Methyl methacrylate	$C_5H_8O_2$	39.2 to 89.2	8.40919	2050.467	274.369
Methylamine	CH_5N	-83.1 to -6.2	7.33690	1011.532	233.286
Methylcyclohexane	C_7H_{14}	25.6 to 101.8	6.82827	1273.673	221.723
Naphthalene	$C_{10}H_{8}$	80.3 to 179.5	7.03358	1756.328	204.842
Nitrobenzene	$C_6H_5NO_2$	134.1 to 210.6	7.11562	1746.586	201.783
Nitromethane	CH_3NO_2	55.7 to 136.4	7.28166	1446.937	227.600
<i>n</i> -Nonane	$n-C_9H_{20}$	70.3 to 151.8	6.93764	1430.459	201.808
1-Nonene	C_9H_{18}	66.6 to 147.9	6.95777	1437.862	205.814
<i>n</i> -Octane	n-C ₈ H ₁₈	52.9 to 126.6	6.91874	1351.756	209.100
<i>i</i> -Octane	$i - C_8 H_{18}$	41.7 to 118.5	6.88814	1319.529	211.625
1-Octene	C_8H_{16}	44.9 to 122.2	6.93637	1355.779	213.022
<i>n</i> -Pentane	$n-C_5H_{12}$	13.3 to 36.8	6.84471	1060.793	231.541
<i>i</i> -Pentane	$i - C_5 H_{12}$	16.3 to 28.6	6.73457	992.019	229.564
1-Pentanol	$C_5H_{12}O$	74.7 to 156.0	7.18246	1287.625	161.330
1-Pentene	C_5H_{10}	12.8 to 30.7	6.84268	1043.206	233.344
Phenol	C_6H_6O	107.2 to 181.8	7.13301	1516.790	174.954
1-Propanol	C_0H_0O C_3H_8O	60.2 to 104.6	7.74416	1437.686	198.463
2-Propanol	C_3H_8O C_3H_8O	52.3 to 89.3	7.74021	1359.517	197.527
Propionic acid	C_3H_8O $C_3H_6O_2$	72.4 to 128.3	7.71423	1733.418	217.724
Propylene oxide	$C_3H_6O_2$ C_3H_6O	-24.2 to 34.8	7.01443	1086.369	228.594
Pyridine Pyridine	C_3H_6O C_5H_5N	67.3 to 152.9	7.04115	1373.799	214.979
Styrene	C_8H_8	29.9 to 144.8	7.04113	1507.434	214.985
Toluene	$C_{8}H_{8}$ $C_{7}H_{8}$	35.3 to 111.5	6.95805	1346.773	219.693
1,1,1-Trichloroethane	C_7H_8 $C_2H_3Cl_3$	-5.4 to 16.9	8.64344	2136.621	302.769
1,1,2-Trichloroethane	$C_2H_3Cl_3$ $C_2H_3Cl_3$	50.0 to 113.7	6.95185	1314.410	209.197
Trichloroethylene	C_2HCl_3 C_2HCl_3	17.8 to 86.5	6.51827	1018.603	192.731
Vinyl acetate	C_2HC_{13} $C_4H_6O_2$	21.8 to 72.0	7.21010	1296.130	226.655
Water*		0 to 60	8.10765	1750.286	235.000
Water*	H ₂ O	60 to 150	7.96681	1668.210	233.000
	H_2O				
<i>m</i> -Xylene	m-C ₈ H ₁₀	59.2 to 140.0	7.00646	1460.183	214.827
o-Xylene	o-C ₈ H ₁₀	63.5 to 145.4	7.00154	1476.393	213.872
<i>p</i> -Xylene	p-C ₈ H ₁₀	58.3 to 139.3	6.98820	1451.792	215.111

Table B.5 Properties of Saturated Steam: Temperature Table^a

		$\hat{V}(m^3)$	/kg)	Û(k	J/kg)		$\hat{H}(\mathrm{kJ/kg})$	
$T(^{\circ}C)$	P(bar)	Water	Steam	Water	Steam	Water	Evaporation	Steam
0.01	0.00611	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6
2	0.00705	0.001000	179.9	8.4	2378.3	8.4	2496.8	2505.2
4	0.00813	0.001000	157.3	16.8	2381.1	16.8	2492.1	2508.9
6	0.00935	0.001000	137.8	25.2	2383.8	25.2	2487.4	2512.6
8	0.01072	0.001000	121.0	33.6	2386.6	33.6	2482.6	2516.2
10	0.01227	0.001000	106.4	42.0	2389.3	42.0	2477.9	2519.9
12	0.01401	0.001000	93.8	50.4	2392.1	50.4	2473.2	2523.6
14	0.01597	0.001001	82.9	58.8	2394.8	58.8	2468.5	2527.2
16	0.01817	0.001001	73.4	67.1	2397.6	67.1	2463.8	2530.9
18	0.02062	0.001001	65.1	75.5	2400.3	75.5	2459.0	2534.5
20	0.0234	0.001002	57.8	83.9	2403.0	83.9	2454.3	2538.2
22	0.0264	0.001002	51.5	92.2	2405.8	92.2	2449.6	2541.8
24	0.0298	0.001003	45.9	100.6	2408.5	100.6	2444.9	2545.5
25	0.0317	0.001003	43.4	104.8	2409.9	104.8	2442.5	2547.3
26	0.0336	0.001003	41.0	108.9	2411.2	108.9	2440.2	2549.1
28	0.0378	0.001004	36.7	117.3	2414.0	117.3	2435.4	2552.7
30	0.0424	0.001004	32.9	125.7	2416.7	125.7	2430.7	2556.4
32	0.0475	0.001005	29.6	134.0	2419.4	134.0	2425.9	2560.0
34	0.0532	0.001006	26.6	142.4	2422.1	142.4	2421.2	2563.6
36	0.0594	0.001006	24.0	150.7	2424.8	150.7	2416.4	2567.2
38	0.0662	0.001007	21.6	159.1	2427.5	159.1	2411.7	2570.8
40	0.0738	0.001008	19.55	167.4	2430.2	167.5	2406.9	2574.4
42	0.0820	0.001009	17.69	175.8	2432.9	175.8	2402.1	2577.9
44	0.0910	0.001009	16.04	184.2	2435.6	184.2	2397.3	2581.5
46	0.1009	0.001010	14.56	192.5	2438.3	192.5	2392.5	2585.1
48	0.1116	0.001011	13.23	200.9	2440.9	200.9	2387.7	2588.6
50	0.1234	0.001012	12.05	209.2	2443.6	209.3	2382.9	2592.2
52	0.1361	0.001013	10.98	217.7	2446	217.7	2377	2595
54	0.1500	0.001014	10.02	226.0	2449	226.0	2373	2599
56	0.1651	0.001015	9.158	234.4	2451	234.4	2368	2602
58	0.1815	0.001016	8.380	242.8	2454	242.8	2363	2606
60	0.1992	0.001017	7.678	251.1	2456	251.1	2358	2609
62	0.1332	0.001017	7.043	259.5	2459	259.5	2353	2613
64	0.2391	0.001019	6.468	267.9	2461	267.9	2348	2616
66	0.2615	0.001019	5.947	276.2	2464	276.2	2343	2619
68	0.2856	0.001023	5.475	284.6	2467	284.6	2338	2623
			20					

^aFrom R. W. Haywood, *Thermodynamic Tables in SI (Metric) Units*, Cambridge University Press, London, 1968. $\hat{V} = \text{specific volume}, \hat{U} = \text{specific internal energy}, \text{ and } \hat{H} = \text{specific enthalpy}. Note:$ $kJ/kg \times 0.4303 = Btu/lb_m$.

Table B.5 (Continued)

		$\hat{V}(\mathrm{m}^3)$	/kg)	$\hat{U}(\mathbf{k}.$	J/kg)		$\hat{H}(kJ/kg)$	
T(°C)	P(bar)	Water	Steam	Water	Steam	Water	Evaporation	Steam
70	0.3117	0.001023	5.045	293.0	2469	293.0	2333	2626
72	0.3396	0.001024	4.655	301.4	2472	301.4	2329	2630
74	0.3696	0.001025	4.299	309.8	2474	309.8	2323	2633
76	0.4019	0.001026	3.975	318.2	2476	318.2	2318	2636
78	0.4365	0.001028	3.679	326.4	2479	326.4	2313	2639
80	0.4736	0.001029	3.408	334.8	2482	334.9	2308	2643
82	0.5133	0.001030	3.161	343.2	2484	343.3	2303	2646
84	0.5558	0.001032	2.934	351.6	2487	351.7	2298	2650
86	0.6011	0.001033	2.727	360.0	2489	360.1	2293	2653
88	0.6495	0.001034	2.536	368.4	2491	368.5	2288	2656
90	0.7011	0.001036	2.361	376.9	2493	377.0	2282	2659
92	0.7560	0.001037	2.200	385.3	2496	385.4	2277	2662
94	0.8145	0.001039	2.052	393.7	2499	393.8	2272	2666
96	0.8767	0.001040	1.915	402.1	2501	402.2	2267	2669
98	0.9429	0.001042	1.789	410.6	2504	410.7	2262	2673
100	1.0131	0.001044	1.673	419.0	2507	419.1	2257	2676
102	1.0876	0.001045	1.566	427.1	2509	427.5	2251	2679

 Table B.6
 Properties of Saturated Steam: Pressure Table^a

		$\hat{V}(\mathrm{m}^3/\mathrm{kg})$	/kg)	$\hat{U}(\mathbf{k})$	$\hat{U}(\mathrm{kJ/kg})$		$\hat{H}(\mathrm{kJ/kg})$	
P(bar)	$T(^{\circ}\mathrm{C})$	Water	Steam	Water	Steam	Water	Evaporation	Steam
0.00611	0.01	0.001000	206.2	zero	2375.6	+0.0	2501.6	2501.6
0.008	3.8	0.001000	159.7	15.8	2380.7	15.8	2492.6	2508.5
0.010	7.0	0.001000	129.2	29.3	2385.2	29.3	2485.0	2514.4
0.012	9.7	0.001000	108.7	40.6	2388.9	40.6	2478.7	2519.3
0.014	12.0	0.001000	93.9	50.3	2392.0	50.3	2473.2	2523.5
0.016	14.0	0.001001	82.8	58.9	2394.8	58.9	2468.4	2527.3
0.018	15.9	0.001001	74.0	66.5	2397.4	66.5	2464.1	2530.6
0.020	17.5	0.001001	67.0	73.5	2399.6	73.5	2460.2	2533.6
0.022	19.0	0.001002	61.2	79.8	2401.7	79.8	2456.6	2536.4
0.024	20.4	0.001002	56.4	85.7	2403.6	85.7	2453.3	2539.0
0.026	21.7	0.001002	52.3	91.1	2405.4	91.1	2450.2	2541.3
0.028	23.0	0.001002	48.7	96.2	2407.1	96.2	2447.3	2543.6
0.030	24.1	0.001003	45.7	101.0	2408.6	101.0	2444.6	2545.6
0.035	26.7	0.001003	39.5	111.8	2412.2	111.8	2438.5	2550.4
0.040	29.0	0.001004	34.8	121.4	2415.3	121.4	2433.1	2554.5
0.045	31.0	0.001005	31.1	130.0	2418.1	130.0	2428.2	2558.2
0.050	32.9	0.001005	28.2	137.8	2420.6	137.8	2423.8	2561.6
0.060	36.2	0.001006	23.74	151.5	2425.1	151.5	2416.0	2567.5
0.070	39.0	0.001007	20.53	163.4	2428.9	163.4	2409.2	2572.6
0.080	41.5	0.001008	18.10	173.9	2432.3	173.9	2403.2	2577.1
0.090	43.8	0.001009	16.20	183.3	2435.3	183.3	2397.9	2581.1
0.10	45.8	0.001010	14.67	191.8	2438.0	191.8	2392.9	2584.8
0.11	47.7	0.001011	13.42	199.7	2440.5	199.7	2388.4	2588.1
0.12	49.4	0.001012	12.36	206.9	2442.8	206.9	2384.3	2591.2
0.13	51.1	0.001013	11.47	213.7	2445.0	213.7	2380.4	2594.0
0.14	52.6	0.001013	10.69	220.0	2447.0	220.0	2376.7	2596.7

2599.2	2601.6	2603.8	2605.9	2607.9	2609.9	2613.5	2616.8	2619.9	2622.7	2625.4	2631.5	2636.9	2641.7	2646.0	2649.9	2653.6	2656.9	2660.1	2663.0	2665.8	2668.4	2670.9	2673.2	2675.4	2676.0	
2373.2	2370.0	2366.9	2363.9	2361.1	2358.4	2353.3	2348.6	2344.2	2340.0	2336.1	2327.2	2319.2	2312.0	2305.4	2299.3	2293.6	2288.3	2283.3	2278.6	2274.1	2269.8	2265.6	2261.7	2257.9	2256.9	
226.0	231.6	236.9	242.0	246.8	251.5	260.1	268.2	275.7	282.7	289.3	304.3	317.7	329.6	340.6	350.6	359.9	368.6	376.8	384.5	391.7	398.6	405.2	411.5	417.5	419.1	
2448.9	2450.6	2452.3	2453.9	2455.4	2456.9	2459.6	2462.1	2464.4	2466.5	2468.6	2473.1	2477.1	2480.7	2484.0	2486.9	2489.7	2492.2	2494.5	2496.7	2498.8	2500.8	2502.6	2504.4	2506.1	2506.5	
226.0	231.6	236.9	242.0	246.8	251.5	260.1	268.2	275.6	282.7	289.3	304.3	317.6	329.6	340.5	350.6	359.9	368.5	376.7	384.4	391.6	398.5	405.1	411.4	417.4	419.0	
10.02	9.43	8.91	8.45	8.03	7.65	7.00	6.45	5.98	5.58	5.23	4.53	3.99	3.58	3.24	2.96	2.73	2.53	2.36	2.22	2.087	1.972	1.869	1.777	1.694	1.673	
0.001014	0.001015	0.001015	0.001016	0.001017	0.001017	0.001018	0.001019	0.001020	0.001021	0.001022	0.001025	0.001027	0.001028	0.001030	0.001032	0.001033	0.001035	0.001036	0.001037	0.001039	0.001040	0.001041	0.001042	0.001043	0.001044	
54.0	55.3	56.6	57.8	59.0	60.1	62.2	64.1	65.9	67.5	69.1	72.7	75.9	78.7	81.3	83.7	86.0	88.0	0.06	91.8	93.5	95.2	2.96	98.2	9.66	100.0	
0.15	0.16	0.17	0.18	0.19	0.20	0.22	0.24	0.26	0.28	0.30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.01325	(1 atm)

^aFrom R. W. Haywood, *Thermodynamic Tables in SI (Metric) Units*, Cambridge University Press, London, 1968. $\hat{V} = \text{specific volume}, \hat{U} = \text{specific internal energy},$ and $\hat{H} = \text{specific enthalpy}$. *Note:* kJ/kg \times 0.4303 = Btu/lb_m. (continued)

Table B.6 (Continued)

		$\hat{V}(\mathrm{m}^3/\mathrm{kg})$	kg)	$\hat{U}(kJ/kg)$	/kg)		$\hat{H}(\mathrm{kJ/kg})$	
P(bar)	$T(^{\circ}\mathrm{C})$	Water	Steam	Water	Steam	Water	Evaporation	Steam
1.1	102.3	0.001046	1.549	428.7	2509.2	428.8	2250.8	2679.6
1.2	104.8	0.001048	1.428	439.2	2512.1	439.4	2244.1	2683.4
1.3	107.1	0.001049	1.325	449.1	2514.7	449.2	2237.8	2687.0
1.4	109.3	0.001051	1.236	458.3	2517.2	458.4	2231.9	2690.3
1.5	111.4	0.001053	1.159	467.0	2519.5	467.1	2226.2	2693.4
1.6	113.3	0.001055	1.091	475.2	2521.7	475.4	2220.9	2696.2
1.7	115.2	0.001056	1.031	483.0	2523.7	483.2	2215.7	2699.0
1.8	116.9	0.001058	0.977	490.5	2525.6	490.7	2210.8	2701.5
1.9	118.6	0.001059	0.929	497.6	2527.5	497.8	2206.1	2704.0
2.0	120.2	0.001061	0.885	504.5	2529.2	504.7	2201.6	2706.3
2.2	123.3	0.001064	0.810	517.4	2532.4	517.6	2193.0	2710.6
2.4	126.1	0.001066	0.746	529.4	2535.4	529.6	2184.9	2714.5
2.6	128.7	0.001069	0.693	540.6	2538.1	540.9	2177.3	2718.2
2.8	131.2	0.001071	0.646	551.1	2540.6	551.4	2170.1	2721.5
3.0	133.5	0.001074	909.0	561.1	2543.0	561.4	2163.2	2724.7
3.2	135.8	0.001076	0.570	570.6	2545.2	570.9	2156.7	2727.6
3.4	137.9	0.001078	0.538	579.6	2547.2	579.9	2150.4	2730.3
3.6	139.9	0.001080	0.510	588.1	2549.2	588.5	2144.4	2732.9
3.8	141.8	0.001082	0.485	596.4	2551.0	596.8	2138.6	2735.3
4.0	143.6	0.001084	0.462	604.2	2552.7	604.7	2133.0	2737.6
4.2	145.4	0.001086	0.442	611.8	2554.4	612.3	2127.5	2739.8
4.4	147.1	0.001088	0.423	619.1	2555.9	619.6	2122.3	2741.9
4.6	148.7	0.001089	0.405	626.2	2557.4	626.7	2117.2	2743.9
4.8	150.3	0.001091	0.389	633.0	2558.8	633.5	2112.2	2745.7
5.0	151.8	0.001093	0.375	639.6	2560.2	640.1	2107.4	2747.5
5.5	155.5	0.001097	0.342	655.2	2563.3	655.8	2095.9	2751.7
0.9	158.8	0.001101	0.315	8.699	2566.2	670.4	2085.0	2755.5
6.5	162.0	0.001105	0.292	683.4	2568.7	684.1	2074.7	2758.9
7.0	165.0	0.001108	0.273	696.3	2571.1	697.1	2064.9	2762.0

	$\overline{}$
- 1	_
	S
	Ø.
	~
	7
	ti.
	+
	Z
	~
	0
	ਹ
	. ~

2764.8 2767.5 2769.9 2772.1 2774.2 2776.2 2779.7 2781.3 2782.7 2784.1 2782.7 2784.1 2782.7 2784.1 2782.7 2784.1 2782.8 2784.1 2784.1 2787.8 2793.4 2797.2	2798.2 2799.8 2800.4 2800.9 2801.7 2802.0 2802.3 2802.3 2802.3 2802.3 2802.3 2802.3
2055.5 2046.5 2037.9 2029.5 2021.4 2013.6 2005.9 1998.5 1991.3 1977.4 1977.4 1977.7 1945.2 1933.2 1910.3 1888.6	1878.2 1868.1 1858.2 1848.5 1839.0 1820.5 1811.5 1802.6 1776.9 1776.9 1776.3
709.3 720.9 732.0 742.6 752.8 762.6 772.0 781.1 789.9 798.4 806.7 830.1 830.1 838.6 838.6 838.6 836.8	920.0 931.0 941.6 951.9 962.0 971.7 981.2 990.5 1008.4 1025.4 1041.8 1057.6
2573.3 2575.5 2577.1 2577.1 2580.4 2581.9 2581.9 2584.5 2588.0 2588.0 2588.0 2588.0 2592.4 2592.4 2593.8 2593.8 2597.3 2597.3	2598.9 2599.6 2600.2 2600.7 2601.2 2601.8 2602.1 2602.1 2602.4 2602.5 2602.5 2602.5 2602.5
708.5 720.0 731.1 741.6 751.8 761.5 770.8 779.9 779.9 788.6 797.1 805.3 813.2 813.2 842.9 869.9 882.5 894.6	917.5 928.3 938.9 949.1 959.0 978.0 987.1 996.0 1004.7 1021.5 1037.6 1053.1
0.2554 0.2403 0.2268 0.2148 0.2040 0.1943 0.1774 0.1774 0.1569 0.1569 0.1511 0.1407 0.1337 0.1337 0.1103 0.1103	0.0949 0.0907 0.0868 0.0832 0.0769 0.0740 0.0714 0.0666 0.0689 0.0666 0.0587 0.0587
0.001112 0.001115 0.001118 0.001121 0.001127 0.001133 0.001133 0.001134 0.001144 0.001154 0.001154 0.001153 0.001154	0.001181 0.001185 0.001189 0.001197 0.001201 0.001209 0.001216 0.001216 0.001224 0.001238 0.001238
167.8 170.4 172.9 175.4 177.7 179.9 182.0 184.1 186.0 188.0 198.0 198.3 201.4 204.3 204.3	214.9 217.2 219.6 221.8 223.9 228.1 230.0 233.8 244.2 244.2 244.2
7.5 8.0 8.5 9.0 9.5 10.0 11.5 12.0 12.5 13.0 14 17 16 17	22 23 24 33 34 36 37 38 38 38

Table B.6 (Continued)

,								
		$\hat{V}(\mathrm{m}^3/\mathrm{kg})$	/kg)	$\hat{O}(\mathrm{kJ/kg})$	/kg)		$\hat{H}(\mathrm{kJ/kg})$	
P(bar)	$T(^{\circ}C)$	Water	Steam	Water	Steam	Water	Evaporation	Steam
40	250.3	0.001252	0.0497	1082.4	2601.3	1087.4	1712.9	2800.3
42	253.2	0.001259	0.0473	1096.3	2600.7	1101.6	1697.8	2799.4
44	256.0	0.001266	0.0451	1109.8	2599.9	1115.4	1682.9	2798.3
46	258.8	0.001272	0.0430	1122.9	2599.1	1128.8	1668.3	2797.1
48	261.4	0.001279	0.0412	1135.6	2598.1	1141.8	1653.9	2795.7
50	263.9	0.001286	0.0394	1148.0	2597.0	1154.5	1639.7	2794.2
52	266.4	0.001292	0.0378	1160.1	2595.9	1166.8	1625.7	2792.6
54	268.8	0.001299	0.0363	1171.9	2594.6	1178.9	1611.9	2790.8
56	271.1	0.001306	0.0349	1183.5	2593.3	1190.8	1598.2	2789.0
58	273.3	0.001312	0.0337	1194.7	2591.9	1202.3	1584.7	2787.0
09	275.6	0.001319	0.0324	1205.8	2590.4	1213.7	1571.3	2785.0
62	<i>LTT.7</i>	0.001325	0.0313	1216.6	2588.8	1224.8	1558.0	2782.9
64	279.8	0.001332	0.0302	1227.2	2587.2	1235.7	1544.9	2780.6
99	281.8	0.001338	0.0292	1237.6	2585.5	1246.5	1531.9	2778.3
89	283.8	0.001345	0.0283	1247.9	2583.7	1257.0	1518.9	2775.9
70	285.8	0.001351	0.0274	1258.0	2581.8	1267.4	1506.0	2773.5
72	287.7	0.001358	0.0265	1267.9	2579.9	1277.6	1493.3	2770.9
74	289.6	0.001364	0.0257	1277.6	2578.0	1287.7	1480.5	2768.3
92	291.4	0.001371	0.0249	1287.2	2575.9	1297.6	1467.9	2765.5
78	293.2	0.001378	0.0242	1296.7	2573.8	1307.4	1455.3	2762.8
80	295.0	0.001384	0.0235	1306.0	2571.7	1317.1	1442.8	2759.9
82	296.7	0.001391	0.0229	1315.2	2569.5	1326.6	1430.3	2757.0
84	298.4	0.001398	0.0222	1324.3	2567.2	1336.1	1417.9	2754.0
98	300.1	0.001404	0.0216	1333.3	2564.9	1345.4	1405.5	2750.9
88	301.7	0.001411	0.0210	1342.2	2562.6	1354.6	1393.2	2747.8
06	303.3	0.001418	0.02050	1351.0	2560.1	1363.7	1380.9	2744.6
92	304.9	0.001425	0.01996	1359.7	2557.7	1372.8	1368.6	2741.4
94	306.4	0.001432	0.01945	1368.2	2555.2	1381.7	1356.3	2738.0

309.5 0.001446 0.01849 1385.2 2550.0 311.0 0.001453 0.01804 1393.5 2547.3 311.0 0.001470 0.01698 1414.1 2540.4 318.0 0.001489 0.01601 1434.2 2533.2 321.4 0.001507 0.01511 1454.0 2525.7 321.4 0.00157 0.0128 1473.4 2517.8 324.6 0.00157 0.0128 1473.4 2517.8 330.8 0.001567 0.01280 1511.6 2500.6 333.8 0.001587 0.0128 1511.6 2500.6 333.8 0.001587 0.01150 1549.1 2491.3 334.8 0.001634 0.01090 1549.1 2481.4 335.4 0.001634 0.01090 1549.1 2481.4 344.8 0.001634 0.00931 1661.6 2499.3 344.8 0.001700 0.0083 1641.8 243.0 355.3 0.001840 0.00793 1681.8 234.6 355.4 0.001840 0.00628	96	308.0	0.001439	0.01897	1376.7	2552.6	1390.6	1344.1	2734.7
0.001453 0.01804 1393.5 2547.3 1408.0 1319.7 0.001470 0.01698 1414.1 2540.4 1429.5 1289.2 0.001489 0.01601 1434.2 2533.2 1450.6 1288.7 0.001577 0.01511 1454.0 2525.7 1471.3 1228.2 0.001547 0.01280 1414.1 2509.4 1512.0 1197.4 0.001567 0.01280 1511.6 2500.6 1532.0 1197.4 0.001588 0.01213 1530.4 2491.3 1521.0 1106.4 0.001589 0.01213 1530.4 2491.3 1551.9 1103.1 0.001589 0.01213 1569.1 2481.4 1571.6 1007.0 0.001634 0.01050 1567.5 2471.0 1591.3 1037.7 0.001683 0.00081 1604.6 2448.2 1650.5 934.3 0.001730 0.00083 1641.8 234.6 1650.5 934.3 0.001730 0.00083<		309.5	0.001446	0.01849	1385.2	2550.0	1399.3	1331.9	2731.2
0.001470 0.01698 1414.1 2540.4 1429.5 1289.2 0.001489 0.01601 1434.2 2533.2 1450.6 1288.7 0.001507 0.01611 1434.2 2533.2 1450.6 1288.7 0.001507 0.01428 1473.4 2517.8 1491.8 1197.4 0.001547 0.01351 1492.7 2509.4 1512.0 1166.4 0.001567 0.01351 1530.4 250.6 1532.0 1135.0 0.001588 0.01213 1530.4 2491.3 1551.9 1166.4 0.001589 0.01150 1549.1 2481.4 1571.6 1070.7 0.001634 0.01090 1567.5 2471.0 1591.3 1037.7 0.001638 0.01034 1586.1 243.4 1571.6 1070.7 0.001639 0.00031 164.6 2448.2 1601.0 1004.0 0.00170 0.00031 1621.8 243.1 1670.5 898.3 0.00170 0.00083		311.0	0.001453	0.01804	1393.5	2547.3	1408.0	1319.7	2727.7
0.001489 0.01601 1434.2 2533.2 1450.6 1258.7 0.001507 0.01511 1454.0 2525.7 1471.3 1228.2 0.001527 0.01428 1473.4 251.78 1491.8 1197.4 0.001567 0.01280 1511.6 2500.4 1512.0 1166.4 0.001588 0.01213 1530.4 2491.3 1551.9 1107.7 0.001638 0.01213 1530.4 2491.3 1551.9 1107.7 0.001634 0.01050 1550.1 2481.4 1571.6 1070.7 0.001658 0.01034 1586.1 2451.9 1611.0 1004.0 0.001683 0.00081 1604.6 2448.2 1630.3 1630.7 963.6 0.00170 0.00831 1661.6 2403.3 1691.7 859.9 0.001770 0.00837 1661.6 2403.3 1691.7 859.9 0.001801 0.00730 1681.8 234.6 1773.4 820.0 0.001802		314.6	0.001470	0.01698	1414.1	2540.4	1429.5	1289.2	2718.7
0.001507 0.01511 1454.0 2525.7 1471.3 1228.2 0.001527 0.01428 1473.4 2517.8 1491.8 1197.4 0.001547 0.01351 1492.7 2509.4 1512.0 1166.4 0.001587 0.01280 1511.6 2500.6 1532.0 1166.4 0.001588 0.01213 1530.4 2491.3 1551.9 1107.0 0.001611 0.01050 1549.1 2491.3 1551.9 1107.0 0.001634 0.01050 1567.5 2471.0 1571.6 1070.7 0.001683 0.01034 1586.1 245.9 1611.0 1004.0 0.001683 0.00981 1661.6 248.2 1630.7 969.6 0.00170 0.00837 1661.6 249.3 1670.5 898.3 0.001739 0.00883 1641.8 243.6 1690.7 899.9 0.001801 0.00750 1701.7 2378.9 1734.8 779.1 0.00181 0.00768		318.0	0.001489	0.01601	1434.2	2533.2	1450.6	1258.7	2709.3
0.001527 0.01428 1473.4 2517.8 1491.8 1197.4 0.001547 0.01351 1492.7 2509.4 1512.0 1166.4 0.001588 0.01213 1530.4 2491.3 1551.9 1103.1 0.001588 0.01213 1530.4 2491.3 1551.9 1103.1 0.001611 0.01150 1549.1 2481.4 1571.6 1070.7 0.001634 0.01030 1567.5 2471.0 1591.3 1037.7 0.001683 0.001034 1586.1 2459.9 1611.0 1004.0 0.001683 0.00931 1663.2 2448.2 1650.5 934.3 0.00170 0.00837 1661.6 2409.3 1670.5 898.3 0.00170 0.00837 1661.6 2409.3 1690.7 859.9 0.001840 0.00750 1701.7 2378.9 1773.8 736.6 0.00197 0.00628 1763.2 2323.6 1801.8 736.5 0.00204 0.00628		321.4	0.001507	0.01511	1454.0	2525.7	1471.3	1228.2	2699.5
0.001547 0.01351 1492.7 2509.4 1512.0 1166.4 0.001567 0.01280 1511.6 2500.6 1532.0 1135.0 0.001588 0.01213 1530.4 2491.3 1551.9 1103.1 0.001611 0.01150 1549.1 2481.4 1571.6 1070.7 0.001634 0.01034 1586.1 2451.9 1611.0 1004.0 0.001683 0.000881 1604.6 2448.2 1630.7 969.6 0.00170 0.00981 1661.6 2496.0 1630.7 969.6 0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001740 0.00883 1641.8 2496.6 1770.5 889.3 0.001770 0.00883 1681.8 2346.6 1773.3 820.0 0.001840 0.00750 1701.7 2378.9 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 591.9 0.00220 0.00628		324.6	0.001527	0.01428	1473.4	2517.8	1491.8	1197.4	2689.2
0.001567 0.01280 1511.6 2500.6 1532.0 1135.0 0.001588 0.01213 1530.4 2491.3 1551.9 1103.1 0.001611 0.01150 1549.1 2491.3 1551.9 1103.1 0.001634 0.01090 1567.5 2471.0 1591.3 1070.7 0.001683 0.01034 1586.1 2459.9 1611.0 1004.0 0.001710 0.00931 1664.6 248.2 1630.7 969.6 0.001710 0.00837 1641.8 243.1 1670.5 898.3 0.001739 0.00837 1641.6 2409.3 1691.7 859.9 0.001740 0.00837 1681.8 2394.6 1713.3 820.0 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001841 0.00768 1742.1 2362.1 178.7 692.0 0.001871 0.00658 1742.1 2343.8 1778.7 692.0 0.00204 0.00524		327.8	0.001547	0.01351	1492.7	2509.4	1512.0	1166.4	2678.4
0.001588 0.01213 1530.4 2491.3 1551.9 1103.1 0.001611 0.01150 1549.1 2481.4 1571.6 1070.7 0.001634 0.01090 1567.5 2471.0 1591.3 1070.7 0.001638 0.01034 1586.1 2459.9 1611.0 1004.0 0.001710 0.00981 1604.6 2448.2 1630.7 969.6 0.001710 0.00981 1661.6 2448.2 1630.7 969.6 0.001770 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00883 1661.6 2409.3 1691.7 859.9 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00768 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1762.7 2343.8 1801.8 591.9 0.00204 0.00628		330.8	0.001567	0.01280	1511.6	2500.6	1532.0	1135.0	2667.0
0.001611 0.01150 1549.1 2481.4 1571.6 1070.7 0.001634 0.01090 1567.5 2471.0 1591.3 1070.7 0.001638 0.01034 1586.1 2459.9 1611.0 1004.0 0.001639 0.00981 1604.6 2448.2 1630.7 969.6 0.001710 0.00983 1641.8 2436.0 1650.5 934.3 0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00883 1681.8 2334.6 1713.3 820.0 0.001803 0.00750 1701.7 2378.9 1734.8 779.1 0.00181 0.00768 1721.7 2362.1 1734.8 779.1 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.00204 0.00658 1778.7 230.8 1826.5 531.9 0.00220 0.00658 1785.7 2242.1 1886.3 461.3 0.00234 0.00677		333.8	0.001588	0.01213	1530.4	2491.3	1551.9	1103.1	2655.0
0.001634 0.01090 1567.5 2471.0 1591.3 1037.7 0.001658 0.01034 1586.1 2459.9 1611.0 1004.0 0.001683 0.00981 1604.6 2448.2 1650.5 934.3 0.001710 0.00931 1623.2 2436.0 1650.5 934.3 0.001739 0.00837 1661.6 2409.3 1670.5 898.3 0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001840 0.00750 1681.8 2394.6 1713.3 820.0 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00778 1721.7 2362.1 1786.5 736.6 0.001926 0.00628 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1785.7 2300.8 1826.5 591.9 0.0021 0.00628 1785.7 2242.1 1886.3 461.3 0.0024 0.00645		336.6	0.001611	0.01150	1549.1	2481.4	1571.6	1070.7	2642.4
0.001658 0.01034 1586.1 2459.9 1611.0 1004.0 0.001683 0.00981 1604.6 2448.2 1630.7 969.6 0.001710 0.00983 1641.8 2436.0 1650.5 934.3 0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001841 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00768 1721.7 2362.1 1756.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00658 1785.7 230.8 1826.5 591.9 0.0021 0.00546 1810.7 2274.4 1853.9 366.2 0.00234 0.00451 1878.6 2198.1 2011 185 0.00377 0.00317		339.4	0.001634	0.01090	1567.5	2471.0	1591.3	1037.7	2629.1
0.001683 0.00981 1604.6 2448.2 1630.7 969.6 0.001710 0.00931 1623.2 2436.0 1650.5 934.3 0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001840 0.00750 1701.7 2378.9 1713.3 820.0 0.001881 0.00778 1721.7 2362.1 1734.8 779.1 0.001881 0.00708 1721.7 2362.1 1736.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.0021 0.00588 1778.7 2300.8 1826.5 591.9 0.00220 0.00546 1810.7 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 2011 185 0.00317 0.00317 0		342.1	0.001658	0.01034	1586.1	2459.9	1611.0	1004.0	2615.0
0.001710 0.00931 1623.2 2436.0 1650.5 934.3 0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001840 0.00750 1701.7 2378.9 1713.3 820.0 0.001881 0.00708 1721.7 2362.1 1734.8 779.1 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00528 1785.7 2300.8 1826.5 591.9 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00373 1952 2114 2011 185 0.00317 0.00317 2038 2038 2108		344.8	0.001683	0.00981	1604.6	2448.2	1630.7	9.696	2600.3
0.001739 0.00883 1641.8 2423.1 1670.5 898.3 0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001803 0.00750 1701.7 2378.9 1713.3 820.0 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00708 1721.7 2362.1 1756.5 736.6 0.001976 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00220 0.00546 1810.7 2274.4 1853.9 532.5 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 0.00317 2038 2038 2108 0		347.3	0.001710	0.00931	1623.2	2436.0	1650.5	934.3	2584.9
0.001770 0.00837 1661.6 2409.3 1691.7 859.9 0.001803 0.00793 1681.8 2394.6 1713.3 820.0 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00708 1721.7 2362.1 1756.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.0021 0.00546 1810.7 2274.4 1853.9 532.5 0.00234 0.00502 1840.0 2242.1 1886.3 461.3 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		349.8	0.001739	0.00883	1641.8	2423.1	1670.5	898.3	2568.8
0.001803 0.00793 1681.8 2394.6 1713.3 820.0 0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00768 1721.7 2362.1 1756.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.0021 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00572 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2108 0 0		352.3	0.001770	0.00837	1661.6	2409.3	1691.7	859.9	2551.6
0.001840 0.00750 1701.7 2378.9 1734.8 779.1 0.001881 0.00708 1721.7 2362.1 1756.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		354.6	0.001803	0.00793	1681.8	2394.6	1713.3	820.0	2533.3
0.001881 0.00708 1721.7 2362.1 1756.5 736.6 0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		357.0	0.001840	0.00750	1701.7	2378.9	1734.8	779.1	2513.9
0.001926 0.00668 1742.1 2343.8 1778.7 692.0 0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		359.2	0.001881	0.00708	1721.7	2362.1	1756.5	736.6	2493.1
0.001977 0.00628 1763.2 2323.6 1801.8 644.2 0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		361.4	0.001926	0.00668	1742.1	2343.8	1778.7	692.0	2470.6
0.00204 0.00588 1785.7 2300.8 1826.5 591.9 0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		363.6	0.001977	0.00628	1763.2	2323.6	1801.8	644.2	2446.0
0.00211 0.00546 1810.7 2274.4 1853.9 532.5 0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		365.7	0.00204	0.00588	1785.7	2300.8	1826.5	591.9	2418.4
0.00220 0.00502 1840.0 2242.1 1886.3 461.3 0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		367.8	0.00211	0.00546	1810.7	2274.4	1853.9	532.5	2386.4
0.00234 0.00451 1878.6 2198.1 1928.9 366.2 0.00267 0.00373 1952 2114 2011 185 0.00317 2038 2038 2108 0		369.8	0.00220	0.00502	1840.0	2242.1	1886.3	461.3	2347.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		371.8	0.00234	0.00451	1878.6	2198.1	1928.9	366.2	2295.2
$0.00317 \qquad 0.00317 \qquad 2038 \qquad 2038 \qquad 2108 \qquad 0 \qquad ;$		373.7	0.00267	0.00373	1952	2114	2011	185	2196
		374.15	0.00317	0.00317	2038	2038	2108	0	2108

$P(\text{bar})$ $(T_{\text{sat.}}^{\circ}\text{C})$		Sat'd Water	Sat'd Steam	Temperatur 50	e (°C)→ 75	100	150	200	250	300	350
0.0	\hat{H} \hat{U}	_	_	2595 2446	2642 2481	2689 2517	2784 2589	2880 2662	2978 2736	3077 2812	3177 2890
0.1 (45.8)	\hat{V} \hat{H} \hat{U} \hat{V}	— 191.8 191.8 0.00101	2584.8 2438.0 14.7	2593 2444 14.8	2640 2480 16.0	2688 2516 17.2	2783 2588 19.5	2880 2661 21.8	2977 2736 24.2	3077 2812 26.5	3177 2890 28.7
0.5 (81.3)	\hat{H} \hat{U} \hat{V}	340.6 340.6 0.00103	2646.0 2484.0 3.24	209.3 209.2 0.00101	313.9 313.9 0.00103	2683 2512 3.41	2780 2586 3.89	2878 2660 4.35	2979 2735 4.83	3076 2811 5.29	3177 2889 5.75
1.0 (99.6)	\hat{H} \hat{U} \hat{V}	417.5 417.5 0.00104	2675.4 2506.1 1.69	209.3 209.2 0.00101	314.0 313.9 0.00103	2676 2507 1.69	2776 2583 1.94	2875 2658 2.17	2975 2734 2.40	3074 2811 2.64	3176 2889 2.87
5.0 (151.8)	\hat{H} \hat{U} \hat{V}	640.1 639.6 0.00109	2747.5 2560.2 0.375	209.7 209.2 0.00101	314.3 313.8 0.00103	419.4 418.8 0.00104	632.2 631.6 0.00109	2855 2643 0.425	2961 2724 0.474	3065 2803 0.522	3168 2883 0.571
10 (179.9)	\hat{H} \hat{U} \hat{V}	762.6 761.5 0.00113	2776.2 2582 0.194	210.1 209.1 0.00101	314.7 313.7 0.00103	419.7 418.7 0.00104	632.5 631.4 0.00109	2827 2621 0.206	2943 2710 0.233	3052 2794 0.258	3159 2876 0.282
20 (212.4)	\hat{H} \hat{U} \hat{V}	908.6 906.2 0.00118	2797.2 2598.2 0.09950	211.0 209.0 0.00101	315.5 313.5 0.00102	420.5 418.4 0.00104	633.1 603.9 0.00109	852.6 850.2 0.00116	2902 2679 0.111	3025 2774 0.125	3139 2862 0.139
40 (250.3)	\hat{H} \hat{U} \hat{V}	1087.4 1082.4 0.00125	2800.3 2601.3 0.04975	212.7 208.6 0.00101	317.1 313.0 0.00102	422.0 417.8 0.00104	634.3 630.0 0.00109	853.4 848.8 0.00115	1085.8 1080.8 0.00125	2962 2727 0.0588	3095 2829 0.0665
60 (275.6)	\hat{H} \hat{U} \hat{V}	1213.7 1205.8 0.00132	2785.0 2590.4 0.0325	214.4 208.3 0.00101	318.7 312.6 0.00103	423.5 417.3 0.00104	635.6 629.1 0.00109	854.2 847.3 0.00115	1085.8 1078.3 0.00125	2885 2668 0.0361	3046 2792 0.0422
80 (295.0)	\hat{H} \hat{U} \hat{V}	1317.1 1306.0 0.00139	2759.9 2571.7 0.0235	216.1 208.1 0.00101	320.3 312.3 0.00102	425.0 416.7 0.00104	636.8 628.2 0.00109	855.1 845.9 0.00115	1085.8 1075.8 0.00124	2787 2593 0.0243	2990 2750 0.0299
100 (311.0)	\hat{H} \hat{U} \hat{V}	1408.0 1393.5 0.00145	2727.7 2547.3 0.0181	217.8 207.8 0.00101	322.9 311.7 0.00102	426.5 416.1 0.00104	638.1 627.3 0.00109	855.9 844.4 0.00115	1085.8 1073.4 0.00124	1343.4 1329.4 0.00140	2926 2702 0.0224
150 (342.1)	\hat{H} \hat{U} \hat{V}	1611.0 1586.1 0.00166	2615.0 2459.9 0.0103	222.1 207.0 0.00101	326.0 310.7 0.00102	430.3 414.7 0.00104	641.3 625.0 0.00108	858.1 841.0 0.00114	1086.2 1067.7 0.00123	1338.2 1317.6 0.00138	2695 2523 0.0115
200 (365.7)	\hat{H} \hat{U} \hat{V}	1826.5 1785.7 0.00204	2418.4 2300.8 0.005875	226.4 206.3 0.00100	330.0 309.7 0.00102	434.0 413.2 0.00103	644.5 622.9 0.00108	860.4 837.7 0.00114	1086.7 1062.2 0.00122	1334.3 1307.1 0.00136	1647.1 1613.7 0.00167
$221.2(P_c) (374.15)(T_c)$	\hat{H} \hat{U} \hat{V}	2108 2037.8 0.00317	2108 2037.8 0.00317	228.2 206.0 0.00100	331.7 309.2 0.00102	435.7 412.8 0.00103	645.8 622.0 0.00108	861.4 836.3 0.00114	1087.0 1060.0 0.00122	1332.8 1302.9 0.00135	1635.5 1600.3 0.00163
250 (—)	\hat{H} \hat{U} \hat{V}	_ _ _	_ _ _	230.7 205.7 0.00100	334.0 308.7 0.00101	437.8 412.1 0.00103	647.7 620.8 0.00108	862.8 834.4 0.00113	1087.5 1057.0 0.00122	1331.1 1297.5 0.00135	1625.0 1585.0 0.00160
300 (—)	\hat{H} \hat{U} \hat{V}	_ _ _	_ _ _	235.0 205.0 0.0009990	338.1 307.7 0.00101	441.6 410.8 0.00103	650.9 618.7 0.00107	865.2 831.3 0.00113	1088.4 1052.1 0.00121	1328.7 1288.7 0.00133	1609.9 1563.3 0.00155
500 (—)	$ \begin{array}{c} \hat{H} \\ \hat{U} \\ \hat{V} \end{array} $	_ _ _	_ _ _	251.9 202.4 0.0009911	354.2 304.0 0.00100	456.8 405.8 0.00102	664.1 611.0 0.00106	875.4 819.7 0.00111	1093.6 1034.3 0.00119	1323.7 1259.3 0.00129	1576.3 1504.1 0.00144
1000	\hat{H} \hat{U} \hat{V}		_ _ _	293.9 196.5 0.0009737	394.3 295.7 0.0009852	495.1 395.1 0.001000	698.0 594.4 0.00104	903.5 795.3 0.00108	1113.0 999.0 0.00114	1328.7 1207.1 0.00122	1550.5 1419.0 0.00131

^aAdapted from R. W. Haywood, *Thermodynamic Tables in SI (Metric) Units*, Cambridge University Press, London, 1968. Water is a liquid in the enclosed region between 50°C and 350°C. $\hat{H} = \text{specific enthalpy (kJ/kg)}$, $\hat{U} = \text{specific internal energy (kJ/kg)}$, $\hat{V} = \text{specific volume (m³/kg)}$. *Note:* kJ/kg × 0.4303 = Btu/lb_m.

Table B.7 (Continued)

P(bar)		Temperatu	, ,	500	550	(00	(50)	700	750
$(T_{\text{sat.}}^{\circ}\text{C})$	^	400	450	500	550	600	650	700	750
0.0	Ĥ	3280	3384	3497	3597	3706	3816	3929	4043
(—)	$\hat{V} \hat{V}$	2969	3050	3132	3217	3303	3390	3480	3591
		_			_		_		_
0.1	\hat{H}	3280	3384	3489	3596	3706	3816	3929	4043
(45.8)	\hat{V}	2969	3050 33.3	3132 35.7	3217 38.0	3303	3390	3480	3571
		21.1				40.3	42.6	44.8	47.2
0.5	\hat{H}	3279	3383	3489	3596	3705	3816	3929	4043
(81.3)	$\hat{V} = \hat{V}$	2969	3049	3132	3216	3302	3390	3480	3571
		6.21	6.67	7.14	7.58	8.06	8.55	9.01	9.43
1.0	\hat{H}	3278	3382	3488	3596	3705	3816	3928	4042
(99.6)	Û	2968	3049	3132	3216	3302	3390	3479	3570
	Ŷ	3.11	3.33	3.57	3.80	4.03	4.26	4.48	4.72
5.0	\hat{H}	3272	3379	3484	3592	3702	3813	3926	4040
(151.8)	Û	2964	3045	3128	3213	3300	3388	3477	3569
	Ŷ	0.617	0.664	0.711	0.758	0.804	0.850	0.897	0.943
10	\hat{H}	3264	3371	3478	3587	3697	3809	3923	4038
(179.9)	Û	2958	3041	3124	3210	3296	3385	3475	3567
	Ŷ	0.307	0.330	0.353	0.377	0.402	0.424	0.448	0.472
20	Ĥ	3249	3358	3467	3578	3689	3802	3916	4032
(212.4)	Û	2946	3031	3115	3202	3290	3379	3470	3562
	Ŷ	0.151	0.163	0.175	0.188	0.200	0.211	0.223	0.235
40	\hat{H}	3216	3331	3445	3559	3673	3788	3904	4021
(250.3)	Û	2922	3011	3100	3188	3278	3368	3460	3554
	Ŷ	0.0734	0.0799	0.0864	0.0926	0.0987	0.105	0.111	0.117
60	Ĥ	3180	3303	3422	3539	3657	3774	3892	4011
(275.6)	Û	2896	2991	3083	3174	3265	3357	3451	3545
	Ŷ	0.0474	0.0521	0.0566	0.0609	0.0652	0.0693	0.0735	0.0776
80	\hat{H}	3142	3274	3399	3520	3640	3759	3879	4000
(295.0)	Û	2867	2969	3065	3159	3252	3346	3441	3537
	Ŷ	0.0344	0.0382	0.0417	0.0450	0.0483	0.0515	0.0547	0.0578
100	Ĥ	3100	3244	3375	3500	3623	3745	3867	3989
(311.0)	Û	2836	2946	3047	3144	3240	3335	3431	3528
	Ŷ	0.0264	0.0298	0.0328	0.0356	0.0383	0.0410	0.0435	0.0461
150	\hat{H}	2975	3160	3311	3448	3580	3708	3835	3962
(342.1)	Û	2744	2883	2999	3105	3207	3307	3407	3507
	\hat{V}	0.0157	0.0185	0.0208	0.0229	0.0249	0.0267	0.0286	0.0304
200	\hat{H}	2820	3064	3241	3394	3536	3671	3804	3935
(365.7)	Û	2622	2810	2946	3063	3172	3278	3382	3485
	Ŵ	0.009950	0.0127	0.0148	0.0166	0.0182	0.197	0.211	0.0225
$221.2(P_c)$	\hat{H}	2733	3020	3210	3370	3516	3655	3790	3923
$(374.15)(T_c)$	Û	2553	2776	2922	3045	3157	3265	3371	3476
	\hat{V}	0.008157	0.0110	0.0130	0.0147	0.0162	0.0176	0.0190	0.0202
250	\hat{H}	2582	2954	3166	3337	3490	3633	3772	3908
(—)	Û	2432	2725	2888	3019	3137	3248	3356	3463
	Ŷ	0.006013	0.009174	0.0111	0.0127	0.0141	0.0143	0.0166	0.0178
300	\hat{H}	2162	2826	3085	3277	3443	3595	3740	3880
(—)	Û	2077	2623	2825	2972	3100	3218	3330	3441
	\hat{V}	0.002830	0.006734	0.008680	0.0102	0.0114	0.0126	0.0136	0.0147
500	\hat{H}	1878	2293	2723	3021	3248	3439	3610	3771
(—)	\hat{U}	1791	2169	2529	2765	2946	3091	3224	3350
	Ŷ	0.001726	0.002491	0.003882	0.005112	0.006112	0.007000	0.007722	0.008418
1000	\hat{H}	1798	2051	2316	2594	2857	3105	3324	3526
(—)	\hat{U}	1653	1888	2127	2369	2591	2795	2971	3131
•	\hat{V}	0.001446	0.001628	0.001893	0.002246	0.002668	0.003106	0.003536	0.003953

Table B.8 Specific Enthalpies of Selected Gases: SI Units

			$\hat{H}(\mathrm{k}.$	/mol)			
	Ref	ference sta	ate: Gas, F	$r_{\rm ref} = 1$ at	$m, T_{ref} =$	25°C	
	Air	O_2	N_2	H_2	CO	CO_2	H ₂ O
0	-0.72	-0.73	-0.73	-0.72	-0.73	-0.92	-0.84
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100	2.19	2.24	2.19	2.16	2.19	2.90	2.54
200	5.15	5.31	5.13	5.06	5.16	7.08	6.01
300	8.17	8.47	8.12	7.96	8.17	11.58	9.57
400	11.24	11.72	11.15	10.89	11.25	16.35	13.23
500	14.37	15.03	14.24	13.83	14.38	21.34	17.01
600	17.55	18.41	17.39	16.81	17.57	26.53	20.91
700	20.80	21.86	20.59	19.81	20.82	31.88	24.92
800	24.10	25.35	23.86	22.85	24.13	37.36	29.05
900	27.46	28.89	27.19	25.93	27.49	42.94	33.32
1000	30.86	32.47	30.56	29.04	30.91	48.60	37.69
1100	34.31	36.07	33.99	32.19	34.37	54.33	42.18
1200	37.81	39.70	37.46	35.39	37.87	60.14	46.78
1300	41.34	43.38	40.97	38.62	41.40	65.98	51.47
1400	44.89	47.07	44.51	41.90	44.95	71.89	56.25
1500	48.45	50.77	48.06	45.22	48.51	77.84	61.09

Table B.9 Specific Enthalpies of Selected Gases: American Engineering Units

	ъ.	•	,	lb-mole)	_	7705	
	Rei	ference sta	ate: Gas, I	$r_{\rm ref} = 1$ at	$Im, I_{ref} =$	//°F	
T	Air	O_2	N_2	H_2	CO	CO_2	H ₂ O
32	-312	-315	-312	-310	-312	-394	-361
77	0	0	0	0	0	0	0
100	160	162	160	159	160	206	185
200	858	875	857	848	859	1132	996
300	1563	1602	1558	1539	1564	2108	1818
400	2275	2342	2265	2231	2276	3129	2652
500	2993	3094	2976	2925	2994	4192	3499
600	3719	3858	3694	3621	3720	5293	4359
700	4451	4633	4418	4319	4454	6429	5233
800	5192	5418	5150	5021	5195	7599	6122
900	5940	6212	5889	5725	5945	8790	7025
1000	6695	7015	6635	6433	6702	10015	7944
1100	7459	7826	7399	7145	7467	11263	8880
1200	8230	8645	8151	7861	8239	12533	9831
1300	9010	9471	8922	8581	9021	13820	10799
1400	9797	10304	9699	9306	9809	15122	11783
1500	10590	11142	10485	10035	10606	16436	12783
1600	11392	11988	11278	10769	11409	17773	13798
1700	12200	12836	12080	11509	12220	19119	14831
1800	13016	13691	12888	12254	13036	20469	15877
1900	13837	14551	13702	13003	13858	21840	16941
2000	14663	15415	14524	13759	14688	23211	18019

Table B.10 Atomic Heat Capacities for Kopp's Rule^a

	$C_{pa}[J/(g-$	$C_{pa}[J/(g-atom \cdot {}^{\circ}C)]$			
Element	Solids	Liquids			
С	7.5	12			
H	9.6	18			
В	11	20			
Si	16	24			
O	17	25			
F	21	29			
P	23	31			
S	26	31			
All Others	26	33			

^aD. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1974, p. 270.

Table B.11 Integral Heats of Solution and Mixing at 25°C

r(mol H ₂ O/mol solute)	$(\Delta\hat{H_{\mathrm{s}}})_{\mathrm{HCl}(\mathrm{g})}$ k $\mathrm{J/mol\ HCl}$	$(\Delta \hat{H_{\mathrm{s}}})_{\mathrm{NaOH(s)}}$ kJ/mol NaOH	$(\Delta\hat{H}_{\mathrm{m}})_{\mathrm{H}_{2}\mathrm{SO}_{4}}$ k $J/\mathrm{mol}\ \mathrm{H}_{2}\mathrm{SO}_{4}$
0.5	_	_	-15.73
1	-26.22	_	-28.07
1.5	_	_	-36.90
2	-48.82	_	-41.92
3	-56.85	-28.87	-48.99
4	-61.20	-34.43	-54.06
5	-64.05	-37.74	-58.03
10	-69.49	-42.51	-67.03
20	-71.78	-42.84	_
25	_	_	-72.30
30	-72.59	-42.72	_
40	-73.00	-42.59	
50	-73.26	-42.51	-73.34
100	-73.85	-42.34	-73.97
200	-74.20	-42.26	
500	-74.52	-42.38	-76.73
1 000	-74.68	-42.47	-78.57
2 000	-74.82	-42.55	
5 000	-74.93	-42.68	-84.43
10 000	-74.99	-42.72	-87.07
50 000	-75.08	-42.80	_
100000	-75.10	_	-93.64
500 000	_	_	-95.31
∞	-75.14	-42.89	-96.19

^aFrom J. C. Whitwell and R. K. Toner, Conservation of Mass and Energy, pp. 344–346. Copyright © 1969 by McGraw-Hill, Inc. Used with permission of McGraw-Hill.