Rocket Equations

 m_R = rocket mass in kg

 m_E = engine mass (including propellant) in kg

 m_P = propellant mass in kg

 $a = acceleration m/s^2$

 $F = force in kg \cdot m/s^2$

 $g = acceleration of gravity = 9.81 \text{ m/s}^2$

A = rocket cross-sectional area in m²

 $c_d = drag \ coefficient = 0.75 \ for average rocket$

 $\rho = \text{air density} = 1.223 \text{ kg/m}^3$

 τ = motor burn time in seconds

 $T = motor thrust in Newton i.e. in kg m/s^2$

I = motor impulse in Newton · seconds

 v_{τ} = burnout velocity in m/s

h_B= altitude at burnout in m

h_C= coasting distance in m

$$m_B = m_R + m_E - m_P/2$$

$$m_C = m_R + m_E - m_P$$

$$m_B \cdot g$$

$$m_C \cdot g$$

$$k = \frac{1}{2} \cdot \rho \cdot c_d \cdot A$$

$$k \cdot v^2$$

$$\tau = \frac{I}{T}$$

boost mass in kg coast mass in kg

boost gravity force in kg m/s² coast gravity force in kg m/s²

air drag coefficient in kg/m

air resistance in kg · m/s²

burnout time in seconds

Boost Phase: Burnout Time, Velocity and Altitude

$$F = m \cdot a$$

$$= m \cdot \frac{dv}{dt}$$

$$= T - mg - k \cdot v_{\tau}^{2}$$

$$m \cdot \frac{dv}{dt} = T - mg - k \cdot v_{\tau}^{2}$$

$$dt = \frac{m \cdot dv}{T - mg - k \cdot v_{\tau}^{2}}$$

$$= \frac{m \cdot dv}{k \cdot \frac{T - mg}{k} - k \cdot v_{\tau}^{2}}$$

$$= \frac{m \cdot dv}{k \cdot q^{2} - k \cdot v_{\tau}^{2}}$$

$$= \frac{m}{k} \cdot \frac{dv}{a^{2} - v^{2}}$$

$$q^{2} = \frac{T - m_{B} \cdot g}{k}$$
$$q = \sqrt{\frac{T - m_{B} \cdot g}{k}}$$

$$\tau = \frac{m}{k} \cdot \int_{0}^{v_{\tau}} \frac{dv}{q^2 - v_{\tau}^2}$$

$$\tau = \frac{m_B}{k} \cdot \frac{1}{2q} \cdot \ln\left(\frac{q + v_{\tau}}{q - v_{\tau}}\right)$$

$$\frac{2kq}{m_B} \cdot \tau = \ln\left(\frac{q + v_{\tau}}{q - v_{\tau}}\right)$$

$$p \cdot \tau = \ln\left(\frac{q + v_{\tau}}{q - v_{\tau}}\right)$$

$$- p \cdot \tau = \ln\left(\frac{q - v_{\tau}}{q + v_{\tau}}\right)$$

$$e^{-p \cdot \tau} = \frac{q - v_{\tau}}{q + v_{\tau}}$$

$$(q + v_{\tau}) \cdot e^{-p \cdot \tau} = q - v_{\tau}$$

$$q \cdot e^{-p \cdot \tau} + v_{\tau} \cdot e^{-p \cdot \tau} = q - v_{\tau}$$

$$v_{\tau} + v_{\tau} \cdot e^{-p \cdot \tau} = q - q \cdot e^{-p \cdot \tau}$$

$$v_{\tau} \cdot (1 + e^{-p \cdot \tau}) = q \cdot (1 - e^{-p \cdot \tau})$$

$$v_{\tau} = q \cdot \frac{1 - e^{-p \cdot \tau}}{1 + e^{-p \cdot \tau}}$$

$$F = m \cdot a$$

$$= m \cdot \frac{dv}{dt}$$

$$= m \cdot \frac{dv}{dh} \cdot \frac{dh}{dt}$$

$$= m \cdot v \cdot \frac{dv}{dh}$$

$$= T - mg - k \cdot v_{\tau}^{2}$$

$$m \cdot v \cdot \frac{dv}{dh} = T - mg - k \cdot v^2$$

$$dh = \frac{m \cdot v}{k \cdot q^2 - k \cdot v^2} \cdot dv$$

$$dh = \frac{m}{k} \cdot \frac{v}{q^2 - v^2} \cdot dv$$

$$h = \frac{m}{k} \cdot \int_{0}^{v\tau} \frac{v \cdot dv}{q^2 - v^2}$$

$$\frac{2kq}{m_{\scriptscriptstyle B}} = p$$

burnout velocity

$$\frac{dh}{dt} = v$$

$$q^{2} = \frac{T - m_{B} \cdot g}{k}$$
$$q = \sqrt{\frac{T - m_{B} \cdot g}{k}}$$

$$h_B = \frac{m_B}{k} \cdot \frac{1}{2} \cdot \left[\ln(q^2 - v^2) \right]_0^{v\tau}$$

$$h_B = \frac{m_B}{2k} \cdot \left[\ln(q^2) - \ln(q^2 - v_\tau^2) \right]$$

$$h_B = \frac{m_B}{2k} \cdot \ln \left(\frac{q^2}{q^2 - v_\tau^2} \right)$$

$$h_B = \frac{m_B}{2k} \cdot \ln \left(\frac{T - m_B \cdot g}{T - m_B \cdot g - k \cdot v_\tau^2} \right)$$

Coast Phase: Altitude and Time

$$dh = \frac{m_C \cdot v \cdot dv}{-m_C \cdot g - k \cdot v^2}$$

$$dh = m_C \cdot \frac{v \cdot dv}{k \cdot \frac{-m_C \cdot g}{k} - k \cdot v^2}$$

$$dh = \frac{m_C}{k} \cdot \frac{v \cdot dv}{q_C^2 - v^2}$$

$$h_C = \frac{m_C}{k} \cdot \int_{vC}^{0} \frac{v \cdot dv}{q_C^2 - v^2}$$

$$h_C = \frac{m}{2k} \cdot \ln \left(\frac{q_C^2 - v_\tau^2}{q_C^2} \right)$$

$$h_C = \frac{m}{2k} \cdot \ln \left(\frac{m_C \cdot g + k \cdot v_\tau^2}{m_C \cdot g} \right)$$

$$F = m \cdot (-a)$$

$$= m \cdot \left(-\frac{dv}{dt}\right)$$

$$= T - m_C \cdot g - k \cdot v_{\tau}^2$$

$$dt = \frac{-m_C \cdot dv}{-m_C \cdot g - k \cdot v^2}$$

$$dt = m_C \cdot \frac{dv}{m_C \cdot g + k \cdot v^2}$$

$$t_C = \frac{m_C}{k} \cdot \int_{v_C}^0 \frac{dv}{q_a^2 + v^2}$$

$$t_C = \frac{m_C}{k} \cdot \frac{1}{q_a} \cdot \arctan\left(\frac{v_\tau}{q_a}\right)$$

$$t_C = \sqrt{\frac{m_C}{k \cdot g}} \cdot \arctan\left(\frac{v_\tau}{\sqrt{\frac{m_C \cdot g}{k}}}\right)$$

burnout altitude

$$\frac{-m_C \cdot g}{k} = q_C^2$$

coast altitude

$$q_a^2 = \frac{m_C \cdot g}{k}$$

time from v_{τ} to 0

$$q_a = \sqrt{\frac{m_C \cdot g}{k}}$$

ROCKET EQUATIONS								
	gravit accel	g	9.8100	m/s²	thrust	Τ	10.6829	N=kg*m/s²
	air density	rho	1.2230	kg/m^3	impulse	1	2.4960	N*s=kg*m/s
	drag coef	cd	0.7500		boost mass	mb	0.04344	kg
	rocket body	mr	0.0288	kg	coast mass	mc	0.04188	kg
	engine empty	ee	0.0131	kg	burnout time	tau	0.23364	S
	propellant	mp	0.0031	kg	velocity b	vt	53.97011	m/s
	rocket total	mt	0.0450	kg	altitude b	hb	6.37419	m
	engine init	me	0.0162	kg	altitude c	hc	88.73626	m
	propellant	p%	6.9333	%	altitude t	ht	95.11045	m
	mass flow	mü	0.0134	kg/s	coast time	tc	3.92459	S
	exhaust v	vex	0000.008	m/s	max velocity	vkm/h	194.29240	km/h
	diameter	d	0.0250	m	max air drag	Fd	0.65574	N=kg*m/s²
	c-s-area	Α	0.00049	m²	check			
	drag factor	k	0.00023	kg/m	burnout time	tau	0.23364486	S
		q	213.4473	m/s				
		qc²	-1824.93776					
		qa	42.7193	m/s				
		p	2.2124	1/s				

Influence of Exhaust Velocity

Influence of Mass Flow

Influence of Propellant Mass

