Examen JUIN - Mathématiques 6GTB

- À partir d'une situation concrète, établir une équation exponentielle ou logarithmique et la résoudre.
- 📏 Calculer la dérivée d'une fonction donnée.
- Traduire un énoncé en arbre pondéré et calculer une probabilité associée, notamment avec la formule de Bayes.
- **Résoudre un problème de dénombrement** (produit cartésien, arrangement, permutation, combinaison).
- Associer une loi de probabilité (binomiale ou de Poisson) à une variable aléatoire afin de calculer une probabilité ou une espérance.
- Tracer la fonction de répartition ou la fonction de masse d'une variable aléatoire obéissant à une loi binomiale.
- Approximer une aire sous une courbe ou entre deux courbes à l'aide des sommes de Riemann, ou la calculer exactement à l'aide du théorème fondamental du calcul intégral (si la primitive est connue).

EXAM - Riemann Sum and Integral - 2

Exercice 3

Estimez l'aire sous la fonction suivante avec 4 rectangles : Estimate the area under the following function using 4 rectangles:

$$f(x)=x^2$$
 sur $[0,2]$ (utilisez les extrémités droites) $f(x)=x^2$ on $[0,2]$ (use right endpoints)

- $\Delta x = 0.5$
- Comparez avec le résultat exact :

$$\int_0^2 x^2 \, dx$$

• Primitive : $\frac{1}{3}x^3$

Exercice 4

Estimez l'aire sous la fonction suivante avec 6 rectangles : Estimate the area under the following function using 6 rectangles:

$$f(x)=\cos x \quad ext{sur} \quad [0,rac{\pi}{2}] \quad ext{(utilisez les extrémités gauches)}$$
 $f(x)=\cos x \quad ext{on} \quad [0,rac{\pi}{2}] \quad ext{(use left endpoints)}$

- $\Delta x = \frac{\pi}{12}$
- Comparez avec le résultat exact :

$$\int_0^{\frac{\pi}{2}} \cos x \, dx$$

• Primitive : $\sin x$

Exercice 5

Estimez l'aire sous la fonction suivante avec 3 rectangles : Estimate the area under the following function using 3 rectangles:

$$f(x)=e^x \quad {
m sur} \quad [0,3] \quad {
m (utilisez\ les} \qquad {
m extr\'emit\'es\ droites})$$
 $f(x)=e^x \quad {
m on} \quad [0,3] \quad {
m (use\ right} \qquad {
m endpoints})$

- $\Delta x = 1$
- Comparez avec le résultat exact :

$$\int_0^3 e^x \, dx$$

• Primitive : e^x

Bonus - Aire entre deux courbes

Estimez l'aire entre les deux courbes ci-dessous à l'aide de 4 rectangles, puis comparez avec l'aire exacte obtenue par une intégrale : Estimate the area between the two curves below using 4 rectangles, then compare with the exact value using integration.

$$f(x)=\sqrt{x},\quad g(x)=x^2\quad ext{sur}\quad [0,1]$$

$$f(x)=\sqrt{x},\quad g(x)=x^2\quad ext{on}\quad [0,1]$$

- Utilisez les extrémités droites
- $\Delta x = 0.25$
- Aire approximative = somme des hauteurs $f(x_i) g(x_i)$ multipliées par Δx
- Aire exacte = $\int_0^1 \left(\sqrt{x} x^2\right) dx$
- ullet Primitives : $\int \sqrt{x} dx = rac{2}{3} x^{3/2}, \quad \int x^2 dx = rac{1}{3} x^3$

EXAM - Calcul de dérivées

Dérivée 1

Soit $f(x)=5x^4$

<u>႓</u> Étapes :

otin f'(x) =

Dérivée 2

Soit $f(x)=3x^2+2x-1$

🔬 Étapes :

f'(x) =

Dérivée 3

Soit $f(x)=(x^2+1)(x-3)$

<u> É</u>tapes :

otin f'(x) =

Dérivée 4

Soit
$$f(x)=rac{x^2-4}{x+1}$$

<u>႓</u> Étapes :

abla f'(x) =

Dérivée 5

Soit
$$f(x) = \sqrt{x^2 + 1}$$

<u>႓</u> Étapes :

otin f'(x) =

Dérivée 6

Soit
$$f(x) = \ln(x^3+1)$$

<u>႓</u> Étapes :

Dérivée	7
DCITYCC	,

Soit
$$f(x)=e^{2x}$$

<u>႓</u> Étapes :

Dérivée 8

Soit $f(x) = \ln(\sin x)$

<u>႓</u> Étapes :

otin f'(x) =

Dérivée 9

Soit $f(x) = x^2 \cdot e^x$

<u> É</u>tapes :

	-	_	-		
\Box	Á.	riv	/ée	1	Λ
	_	ı ۱ ۱	/		

Soit $f(x)=\sin(3x^2)$

<u>႓</u> Étapes :

otin f'(x) =

Dérivée 11

Soit $f(x) = \frac{\cos x}{x}$

<u>႓</u> Étapes :

Dérivée 12

Soit $f(x) = an(x^2)$

<u>६</u> Étapes :

otin f'(x) =

Dérivée 13

Soit
$$f(x)=rac{1}{x^2+1}$$

<u>႓</u> Étapes :

otin f'(x) =

Dérivée 14

Soit $f(x) = \arctan(2x)$

🔬 Étapes :

otin f'(x) =

Dérivée 15

Soit
$$f(x)=rac{x^2+1}{x^3}$$

<u> É</u>tapes :

EXAM: lois de probabilités : loi binomiale et loi de Poisson

Répondez aux questions ci-dessous. Pour chaque situation, identifiez la loi de probabilité, déterminez les paramètres, calculez les probabilités demandées et interprétez les résultats.

1. Une carte est tirée au hasard dans un jeu contenant 25 % de cartes
rouges. On tire 12 cartes successivement avec remise.
• Modélisez la variable X : nombre de cartes rouges obtenues. • Quelle est la probabilité d'avoir exactement 3 cartes rouges ? • Quelle est l'espérance de X ?

- 2. Une centrale téléphonique reçoit en moyenne 6 appels par minute.
 - Définissez une variable X suivant une loi de Poisson adaptée.
 - Calculez P(X=4) et interprétez le résultat.

- 3. Un QCM comporte 8 questions vrai/faux. Un élève répond totalement au hasard.
 - Déterminez la loi de la variable $X={\sf nombre}$ de bonnes réponses.
 - Calculez P(X=5) et $\mathbb{E}(X)$.

 4. Un site web reçoit en moyenne 2 commentaires par heure. Déterminez la loi suivie par X = nombre de commentaires en une heure. Quelle est la probabilité qu'il n'y ait aucun commentaire? Et au moins 3 commentaires? 	
5. Une machine produit une pièce correcte avec une probabilité de 0.97. On teste 30 pièces. • Modélisez $X=$ nombre de pièces correctes. • Calculez $\mathbb{E}(X)$ et la probabilité d'obtenir 29 pièces correctes.	
 6. Un magasin vend en moyenne 3 parapluies par jour. Calculez la probabilité qu'il vende exactement 5 parapluies aujourd'hui. Quelle est la probabilité d'en vendre au plus 2 ? 	

7. On tire 10 fois un dé équilibré. On note X le nombre de fois où le résultat est un multiple de 3.

- ullet Déterminez la loi de X.
- Calculez $\mathbb{E}(X)$ et P(X=2).

8. Un étudiant commet en moyenne 1 faute d'orthogra	phe par	paragraphe.
---	---------	-------------

- Déterminez la loi de X = nombre de fautes dans un paragraphe.
- Calculez P(X=0), $P(X \ge 2)$.

- 9. Un sac contient 80 % de billes bleues et 20 % de billes rouges. On tire 4 billes au hasard avec remise. On note X= nombre de rouges obtenues. (Graphiques à faire au dos de la feuille)
 - Déterminez la loi de X, puis complétez un tableau de P(X=k) pour $k\in\{0,1,\ldots,4\}$.
 - Représentez graphiquement la loi de X avec un diagramme en bâtons (graphique de de fonction de masse de probabilité $k\mapsto P(X=k)$).
 - Tracez aussi la fonction de répartition $k \mapsto F(k) = P(X \le k)$.

- 10. Une urne contient 40 % de boules blanches. On tire 3 boules avec remise. On note X= nombre de boules blanches obtenues. (Graphiques à faire au dos de la feuille)
 - Établissez la loi de X.
 - Construisez:
 - un tableau des probabilités P(X=k) pour $k\in\{0,1,\ldots,3\}.$
 - le diagramme en bâtons associé $k\mapsto P(X=k)$
 - la fonction de répartition $k\mapsto F(k)=\stackrel{.}{P}(X\leq \stackrel{.}{k})$

EXAM: Situations exponentielles et logarithmiques

consigne : établir une équation logarithmique ou exponentielle pour résoudre les situations

Situation 1 - Épargne bancaire
Julia place 1 000 € sur un compte à intérêts composés, avec un taux annuel de 5% . Elle souhaite savoir au bout de combien d'années son épargne atteindra 2 000 € .
<u> Équation</u> :
≣ Résolution :
✓ Phrase réponse :
Situation 2 - Refroidissement d'un café
Un café est à 90 °C et refroidit dans une pièce à 20 °C . Après 10 minutes , il est à 60 °C . Combien de temps faudra-t-il pour qu'il atteigne 40 °C ?
<u> Équation</u> :
≣ Résolution :
✓ Phrase réponse :

Situation 3 - Batterie de téléphone
Une batterie perd 15 % de sa charge chaque heure. Si on commence avec 100 %, au bout de combien d'heures la batterie passera-t-elle sous les 20 % ?
🚣 Équation :
≣ Résolution :
✓ Phrase réponse :
Situation 4 - Propagation d'un virus
Un virus infecte 5 personnes au départ, et le nombre de cas double tous les 3 jours . Combien de temps faudra-t-il pour atteindre 640 personnes infectées ?
<u>≰</u> Équation :
■ Résolution :
INCOGRACION I
✓ Phrase réponse :

Situation 5 - Population scolaire
La population d'un établissement double tous les 6 ans. Il y a actuellement 1 200 élèves. Combien d'années auparavant y avait-il 150 élèves ?
∠ Équation :
≅ Résolution :
✓ Phrase réponse :
Situation 6 - Désintégration radioactive
Un échantillon de matière radioactive a une demi-vie de 8 heures . On commence avec 200 g . Quelle quantité restera après 24 heures ?
<u>≼</u> Équation :
≅ Résolution :
✓ Phrase réponse :

Situation 7 - Résolution directe d'une équation logarithmique
Résous l'équation suivante : $log_2(x-1) = 4$
🚄 Réécriture exponentielle :
Résolution:
▼ Réponse :

Questions:

Exam: Arbre et Bayes

1 : Contrôle de sécurité aéroportuaire

Lors d'un contrôle dans un aéroport, un scanner détecte 90% des objets interdits. Cependant, il signale à tort 2% des bagages sans objet interdit. On sait que seulement 0.3% des bagages contiennent réellement un objet interdit.

Représente la situation sous forme d'un arbre pondéré.
Calcule la probabilité qu'un bagage signalé comme suspect contienne vraiment un objet interdit.
Calcule la probabilité qu'un bagage contenant un objet interdit soit détecté par le scanner.

2 : Recrutement et test d'aptitude

Une entreprise reçoit 30% de candidatures de profils expérimentés et 70% de débutants. Le test d'aptitude est réussi par 85% des candidats expérimentés, mais aussi par 40% des débutants.

	estions : Représente la situation avec un arbre pondéré.
2.	Quelle est la probabilité qu'un candidat ayant réussi le test soit expérimenté ?
3.	Quelle est la probabilité qu'un candidat expérimenté réussisse le test ?

3 : Diagnostic de panne automobile

Une panne moteur est présente chez 4% des voitures d'un garage. Un diagnostic automatisé détecte la panne dans 92% des cas quand elle est bien présente. Il signale aussi à tort une panne sur 7% des voitures qui n'ont aucun problème.

	estions : Fais un arbre de probabilité pour illustrer la situation.
2.	Quelle est la probabilité qu'une voiture signalée en panne le soit réellement ?
3.	Quelle est la probabilité qu'une voiture réellement en panne soit détectée ?

EXAM - counting methods

1.	9). Combien de combinaisons possibles peut-on former?
2.	Un mot de passe est composé de 2 lettres de l'alphabet (26 lettres) (majuscules) suivies de 3 chiffres. Combien de mots de passe différents peut-on créer ? (Sans répétition de lettres ni de chiffres)
3.	Une équipe de foot de 11 joueurs doit choisir un capitaine, un adjoint et un tireur de penalty parmi 11 joueurs. Combien de façons différentes de choisir ces 3 rôles ?
4.	Un professeur souhaite former des binômes d'élèves dans une classe de 28. Combien de binômes distincts peut-il constituer ?
5.	Un restaurant propose 4 entrées, 6 plats et 3 desserts. Combien de menus complets (entrée + plat + dessert) peut-on composer ?
6.	Combien de permutations possibles des lettres du mot CHANCE ?

7.	Parmi 10 candidats, combien de façons de choisir un groupe de 4 personnes pour un projet, sans ordre ?
8.	Dans un jeu de 52 cartes, un joueur tire 4 cartes au hasard, sans remise et sans tenir compte de l'ordre.
	Combien de tirages différents permettent d'obtenir exactement 3 cartes rouges et 1 noire ?
9.	Une boîte contient 4 boules rouges, 5 bleues et 6 vertes. On tire 3 boules au hasard, sans remise et sans tenir compte de l'ordre.
	Combien de tirages possibles contiennent exactement 2 boules vertes et 1 bleue ?
10.	Pour un tournoi de jeux vidéos, on forme des équipes de 5 joueurs à partir d'un total de 12. Combien d'équipes différentes peut-on former ?