

CSC3001 · Homework 3

Due: evening (11:59pm), Nov 19

Instructions:

• Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.

• You must submit your assignment in Blackboard. Please upload a pdf file with codes. The file name should be in the format last name-first name-hw3.

• The homework must be written in English.

• Late submission will not be graded.

• Each student **must not copy** homework solutions from another student or from any other source.

Problem 1 (10pts). Use mathematical induction to prove that $n^3 - n$ is divisible by 3 whenever n is a positive integer.

Problem 2 (10pts). Use mathematical induction to prove that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer n.

Problem 3 (10pts). Find the coefficient of x^{10} in the power series of each of these functions.

- (a) $1/(1+x)^2$
- (b) $1/(1-x)^3$
- (c) $1/(1+2x)^4$
- (d) $x^4/(1-3x)^3$

.

Problem 4 (10pts). Use generating functions to solve the recurrence relation $a_k = 4a_{k-1} - 4a_{k-2} + k^2$ with initial conditions $a_0 = 2$ and $a_1 = 5$.

Problem 5 (10pts). Use the Euclidean algorithm to find

- (a) gcd(12, 18)
- (b) gcd(111, 201)
- (c) gcd(1001, 1331)
- (d) gcd(12345, 54321)

.

Problem 6 (10pts). Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that

- (a) $c \equiv 9a \pmod{13}$.
- (b) $c \equiv 11b \pmod{13}$.
- (c) $c \equiv a + b \pmod{13}$.
- (d) $c \equiv 2a + 3b \pmod{13}$.

.

Problem 7 (10pts). Find the integer a such that

- (a) $a \equiv -15 \pmod{27}$ and $-26 \le a \le 0$.
- (b) $a \equiv 24 \pmod{31}$ and $-15 \le a \le 15$.
- (c) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$.

.

Problem 8 (10pts). Find an inverse of a modulo m for each of these pairs of relatively prime integers

- (a) a = 4, m = 9.
- (b) a = 19, m = 141.
- (c) a = 55, m = 89.
- (d) a = 89, m = 232.

.

Problem 9 (10pts). Solve each of these congruences using the modular inverses found in parts (b), (c), and (d) of Problem 8.

- (a) $19x \equiv 4 \pmod{141}$.
- (b) $55x \equiv 34 \pmod{89}$.
- (c) $89x \equiv 2 \pmod{232}$.

.

Problem 10 (10pts). Find all solutions, if any, solutions to the system

$$x \equiv 1 \pmod{2}$$

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 4 \pmod{11}$$