Examples of \mathcal{NP} -Complete Problems AC32008: Theory of Computation

Vladimir Janjic

University of Dundee QMB 1.22 vjanjic001@dundee.ac.uk

Overview

- \bullet 3SAT is $\mathcal{NP}\text{-}\mathsf{Complete}$
- \bullet VERTEX-COVER is $\mathcal{NP}\text{-}\mathsf{Complete}$

$\mathcal{NP}\text{-}\mathsf{Completeness}$

- $\mathcal{NP} ext{-}\mathsf{Complete}$ problems have a feature that every \mathcal{NP} problem is polynomial-time reducible to them.
- We have seen what impact the existence of \mathcal{NP} -Complete problems has on the $\mathcal{P}=\mathcal{NP}$ problem.
- \bullet We have also discussed practical impact of knowing that some problem is $\mathcal{NP}\textsc{-}\mathsf{Complete}.$
- ullet We have proven that SAT is $\mathcal{NP} ext{-}\mathsf{Complete}$ problem.

How to Prove that a Problem is \mathcal{NP} -Complete

To prove that some problem/language L is \mathcal{NP} -Complete we need to show that

and either

② For some language A that is \mathcal{NP} -Complete, $A \propto L$.

or

3 For every language $A \in \mathcal{NP}$, $A \propto L$.

3SAT Problem

- 3SAT problem is similar to SAT problem, except that the Boolean formula has to be in a specific format.
- A literal is a Boolean variable or a negated boolean variable (as in x or \overline{x}).
- A clause comprises of literals connected with \vee 's, e.g. $(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$.
- A Boolean formula is in conjuctive normal form, also called a cnf-formula, if it comprises clauses connected by \(\Lambda' \)s, e.g.

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_5 \vee x_6) \wedge (\overline{x_1} \vee x_5 \vee \overline{x_6}).$$

A cnf-formula is a 3cnf-formula if all the clauses have exactly 3 literals, e.g.

$$(x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee x_4 \vee x_5) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_5}).$$

3SAT Problem

3SAT problem is to test whether a 3cnf-formula is satisfiable. Formally, language 3SAT is defined as

$$3SAT = {\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula}}.$$

Theorem

3SAT is \mathcal{NP} -Complete.

Proof

- ullet We need to prove that 3SAT $\in \mathcal{NP}$ and that for some problem A that is \mathcal{NP} -Complete, $A \propto$ 3SAT.
- ullet To prove that 3SAT is in \mathcal{NP} , we observe that SAT is in \mathcal{NP} and instances of 3SAT are just special instances of SAT.
- Therefore, if there is polynomial-time NDTM that solves SAT, the same NDTM can be used to solve 3SAT too.
- ullet Because of this, 3SAT is in \mathcal{NP} .

Theorem

3SAT is NP-Complete.

Proof

- ullet We will prove that that SAT \propto 3SAT
- We have to prove that every instance ϕ_1 of SAT is reducible in polynomial-time (with respect to the size of ϕ_1) to an instance ϕ_2 of 3SAT, such that ϕ_1 is satisfiable if and only if ϕ_2 is satisfiable.
- An instance ϕ_1 of SAT is a formula where we have some combination of \wedge, \vee and \neg operators on variables.
- We need to transform (in polynomial time with respect to the number of variables) this formula into a formula ϕ_2 that is a 3cnf-formula.
- Using the $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$ identity, we can easily transform any formula (in polynomial time) into a formula of the type $c_1 \wedge c_2 \wedge c_3 \wedge \cdots \wedge c_n$, where c_i are clauses.

Let

$$\phi_1 = ((x_1 \wedge x_2) \vee (\overline{x_2} \vee x_3 \vee x_4)) \wedge (x_3 \vee \overline{x_1}).$$

Transform ϕ_1 into 3cnf-formula ϕ_2 such that ϕ_1 is satisfiable if and only if ϕ_2 is satisfiable

Remembering that $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$, we have

$$\phi_1 = ((x_1 \wedge x_2) \vee (\overline{x_2} \vee x_3 \vee x_4)) \wedge (x_3 \vee \overline{x_1})
= (x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (x_2 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (x_3 \vee \overline{x_1})
= (x_1 \vee \overline{x_2} \vee x_3 \vee x_4) \wedge (x_3 \vee \overline{x_1})$$

Theorem

3SAT is \mathcal{NP} -Complete.

Proof

- Using the $(a \wedge b) \vee c = (a \vee c) \wedge (b \vee c)$ identity, we can easily transform any formula (in polynomial time) into a formula of the type $c_1 \wedge c_2 \wedge c_3 \wedge \cdots \wedge c_n$, where c_i are clauses.
- However, c_i does not necessarily have exactly 3 literals.
- Let $c_i = (a_1 \vee a_2 \vee a_3 \vee \cdots \vee a_k)$, where k > 3.
- Let us introduce new variables $b_1, b_2, \ldots, b_{k-3}$ and let us consider

$$c'_{i} = (a_{1} \vee a_{2} \vee b_{1}) \wedge (a_{3} \vee \overline{b_{1}} \vee b_{2}) \wedge (a_{4} \vee \overline{b_{2}} \vee b_{3}) \wedge \cdots \wedge (a_{k-2} \vee \overline{b_{k-4}} \vee b_{k-3}) \wedge (a_{k-1} \vee a_{k} \vee \overline{b_{k-3}}).$$

$$\frac{c_i}{c_i'} = \frac{(a_1 \vee a_2 \vee a_3 \vee \dots \vee a_k)}{(a_1 \vee a_2 \vee b_1) \wedge} \\
(a_3 \vee \overline{b_1} \vee b_2) \wedge \\
(a_4 \vee \overline{b_2} \vee b_3) \wedge \\
\dots \wedge \\
(a_{k-2} \vee \overline{b_{k-4}} \vee b_{k-3}) \wedge \\
(a_{k-1} \vee a_k \vee \overline{b_{k-3}}).$$

- Let us prove that c_i is satisfied if and only if c_i' is satisfiable for some assignment of $b_1, b_2, \ldots, b_{k-3}$.
- If c_i is satisfied for some assignment of $a_1, a_2, \ldots a_k$, then at least one a_j is assigned 1.
- Let us take assignment of $b_1, b_2, \ldots, b_{k-3}$ where $b_1 = 1, b_2 = 1, \ldots, b_{j-2} = 1$ and $b_{j-1} = 0, b_j = 0, \ldots, b_{k-3} = 0$.
- In c'_i , all clauses evaluate to 1 because
 - $(a_1 \lor a_2 \lor b_1), (a_3 \lor \overline{b_1} \lor b_2), \ldots, (a_{j-1} \lor \overline{b_{j-3}} \lor b_{j-2})$ evaluate to 1 because b_1, \ldots, b_{j-2} are all 1.
 - $(a_j \vee \overline{b_{j-2}} \vee b_{j-1})$ evaluate to 1 because a_j is 1.
 - $(a_{j+1} \lor \overline{b_{j-1}} \lor b_j), \ldots, (a_{k-2} \lor \overline{b_{k-4}} \lor b_{k-3}), (a_{k-1} \lor a_k \lor \overline{b_{k-3}})$ evaluate to 1 because $\overline{b_{j-1}}, \ldots, \overline{b_{k-3}}, \overline{b_{k-3}}$ are all 1.
- Therefore, c'_i is satisfiable.

$$\frac{c_i \qquad (a_1 \vee a_2 \vee a_3 \vee \cdots \vee a_k)}{c_i' = \qquad (a_1 \vee a_2 \vee b_1) \wedge (a_3 \vee \overline{b_1} \vee b_2) \wedge (a_4 \vee \overline{b_2} \vee b_3) \wedge \cdots \wedge (a_{k-2} \vee \overline{b_{k-4}} \vee b_{k-3}) \wedge (a_{k-1} \vee a_k \vee \overline{b_{k-3}}).$$

- If c_i is not satisfied, then all a_1, a_2, \ldots, a_k are assigned 0.
- In order for c_i' to be satisfied, b_1 has to be 1 (for $(a_1 \lor a_2 \lor b_1)$ to be satisfied)
- b_2 has to be 1 (for $(a_3 \vee \overline{b_1} \vee b_2)$ to be satisfied)...
- b_3 has to be 1 (for $(a_4 \vee \overline{b_2} \vee b_3)$ to be satisfied)...
- ...
- b_{k-3} has to be 1 (for $(a_4 \vee \overline{b_2} \vee b_3)$ to be satisfied)
- But then $(a_{k-1} \vee a_k \vee \overline{b_{k-3}})$ is not satisfied!
- Therefore, there is no way for c_i' to be satisfied if c_i is not satisfied, so c_i' is not satisfiable.
- This shows that c_i is satisfied if and only if c'_i is satisfiable.

Theorem

3SAT is \mathcal{NP} -Complete.

Proof

- We can transform any Boolean formula ϕ_1 into formula of the form $c_1 \wedge c_2 \wedge c_3 \wedge \cdots \wedge c_n$, where c_i are all clauses.
- We can also transform every close $c_i=(a_1\vee a_2\vee a_3\vee\cdots\vee a_k)$ (where k>3) into $c_i'=c_{i_1}'\wedge c_{i_2}'\wedge\cdots\wedge c_{i_{k-1}}'$, such that each c_{i_i}' is a clause that has exactly 3 literals.
- Let ϕ_1' be a formula obtained after transforming ϕ_1 into $c_1 \wedge c_2 \wedge c_3 \wedge \cdots \wedge c_n$ and each c_i into c_i' (if c_i has more than 3 literals).
- It is easy to see that ϕ'_1 is satisfiable if and only if ϕ is satisfiable.

Theorem

3SAT is \mathcal{NP} -Complete.

Proof

- The only thing left to do is to transform all the clauses c_i that have less than three literals into conjugations of clauses that have exactly three literals.
- For $c_i = (a_1 \vee a_2)$, we take $c_i' = (a_1 \vee a_2 \vee b_1) \wedge (a_1 \vee a_2 \vee \overline{b_1})$.
- ullet For $c_i=a_1$, we take $c_i'=(a_1\vee a_1\vee a_1)$, or we can take

$$(a_1 \vee b_1 \vee b_2) \wedge (a_1 \vee \overline{b_1} \vee b_2) \wedge (a_1 \vee b_1 \vee \overline{b_2}) \wedge (a_1 \vee \overline{b_1} \vee \overline{b_2}).$$

- It is easy to see that in these cases too c_i is satisfied if and only if c'_i is satisfiable (for some assignment of b_1 and b_2).
- Let ϕ_2 be ϕ_1' where all the clauses c_i with less than three literals have been replaced with c_i' in this way.

Therefore, we can transform any Boolean formula ϕ_1 into a 3cnf-formula ϕ_2 such that ϕ_1 is satisfiable if and only if ϕ_2 is satisfiable.

Let

$$\phi_1 = ((x_1 \wedge x_2) \vee (\overline{x_2} \vee x_3 \vee x_4)) \wedge (x_3 \vee \overline{x_1}).$$

Transform ϕ_1 into 3cnf-formula ϕ_2 such that ϕ_1 is satisfiable if and only if ϕ_2 is satisfiable

$$\phi_{1} = ((x_{1} \wedge x_{2}) \vee (\overline{x_{2}} \vee x_{3} \vee x_{4})) \wedge (x_{3} \vee \overline{x_{1}})
= (x_{1} \vee \overline{x_{2}} \vee x_{3} \vee x_{4}) \wedge (x_{2} \vee \overline{x_{2}} \vee x_{3} \vee x_{4}) \wedge (x_{3} \vee \overline{x_{1}})
= (x_{1} \vee \overline{x_{2}} \vee x_{3} \vee x_{4}) \wedge (x_{3} \vee \overline{x_{1}})
(x_{3} \vee \overline{x_{1}})
\phi_{2} = (x_{1} \vee \overline{x_{2}} \vee b_{1}) \wedge (x_{3} \vee x_{4} \vee \overline{b_{1}}) \wedge (x_{3} \vee \overline{x_{1}} \vee b_{2}) \wedge (x_{3} \vee \overline{x_{1}} \vee \overline{b_{2}})$$

Theorem

3SAT is NP-Complete.

Proof

- We have shown that 3SAT is in \mathcal{NP} .
- We have shown how we can reduce each instance of SAT into an instance of 3SAT.
- ullet This is clearly done in polynomial time, because for each clause of c_i , we generate at most k+3 new clauses, where k is the number of literals in c_i .
- Therefore, the number of new clauses will be at most k+3 times the number n of literals in ϕ_1 (the size of ϕ_1 instance).
- Since $k \le n$, there will be $O(n^2)$ clauses, where each one can clearly be generated in polynomial time.
- \bullet Therefore, SAT \propto 3SAT and, hence, 3SAT is $\mathcal{NP}\text{-}\mathsf{Complete}$

CLIQUE is \mathcal{NP} -Complete

- \bullet We have seen that 3SAT \propto CLIQUE.
- ullet CLIQUE is cleary in \mathcal{NP} , therefore the following theorem holds

Theorem

CLIQUE is \mathcal{NP} -Complete.

VERTEX-COVER Problem

- ullet If G is an undirected graph, a vertex cover of G is a subset of the nodes of G where every edge of G touches one of these nodes.
- The vertex cover is k-node cover if it contains exactly k nodes.

VERTEX-COVER Problem

The VERTEX-COVER problem is to determine, for a given graph G and integer number k, whether G contains a k-node cover:

VERTEX-COVER = $\{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}.$

Vertex cover of size 8

Vertex cover of size 5

There is no vertex cover of size 4!

There is no vertex cover of size 4!

VERTEX-COVER is \mathcal{NP}

VERTEX-COVER Problem

The VERTEX-COVER problem is to determine, for a given graph G and integer number k, whether G contains a k-node cover:

VERTEX-COVER = $\{\langle G, k \rangle | G \text{ is an undirected graph that has a } k\text{-node vertex cover}\}.$

- VERTEX-COVER is clearly in \mathcal{NP} .
- We can have a NDTM that will, in each path of execution, take a subset of k nodes and easily test in polynomial time whether this is a k-node cover.
- Alternatively, if we guess a solution (a set of k nodes), we can verify in polynomial-time whether that guess is a solution.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

Proof

- ullet We have seen that VERTEX-COVER is in \mathcal{NP} .
- ullet We will show that 3SAT \propto VERTEX-COVER.
- ullet Transformation of the 3cnf-formula ϕ into a graph G and number k such that ϕ is satisfiable if and only if G has a k-node vertex cover is not trivial.
- It, however, demonstrates a commonly-used method of reducing 3SAT to graph problems.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

- Let ϕ be a 3cnf-formula.
- ullet The graph G that we will transform ϕ to will have two kinds of groups of nodes with edges (or gadgets).

Variable gadgets

• For each variable x in ϕ , we will have a variable gadget of two nodes corresponding to x and \overline{x} , with an edge between them.

Clause gadgets

- ullet For each clause in ϕ , we will have a clause gadget of three nodes corresponding to the literals from the clause.
- All the nodes in the clause gadget will be connected by edges.
- Additionally, each literal will be connected by an edge with a corresponding literal from the variable gadget.

3SAT to VERTEX-COVER Example

Let

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2),$$

and let us find a graph G that ϕ is transformed into.

3SAT to VERTEX-COVER Example

Let

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2),$$

and let us find a graph G that ϕ is transformed into.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

- In the graph G constructed in this way, there will be n variable gadgets (where n is the number of variables), each with 2 nodes, totalling 2n nodes.
- Note again that a variable is not the same as literal typically, there will be more literals than variables.
- There will also be m clause gadgets (where m is the number of clauses), each with 3 nodes, totalling 3m nodes.
- Therefore, the total number of nodes is 2n + 3m.

It can be shown that the graph G will have a vertex cover of size n+2m if and only if ϕ is satisfiable.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

If ϕ is satisfiable, then we choose n+2m nodes that constitute vertex cover in graph G in the following way:

- In each of the variable gadgets, we choose a node corresponding to x if x has value 1 in the satisfying assignment of ϕ and \overline{x} otherwise.
- In each of the clause gadgets, we choose two nodes that do not correspond to the literal that evaluates to 1 with respect to the satisfying assignment.
- ullet This gives altogether n+2m nodes (one for each of n variables and two for each of m clauses).

3SAT to VERTEX-COVER Example

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

is satisfied for $x_1 = 0, x_2 = 1$.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

Conversely, let there exist a n + 2m-node cover in G.

- This cover contains at least one node from each variable gadget.
- It also has to contain at least two nodes from each clause gadget.
- This altogether constitutes n+2m nodes, so there cannot be two nodes from the same variable gadget in this cover!
- For each variable x, If we assign 1 to x if the vertex cover comprises node corresponding to x and 0 if the vertex cover comprises node corresponding to \overline{x} , we will get an assignment that satisfies ϕ .

Therefore, ϕ is satisfiable.

VERTEX-COVER is \mathcal{NP} -Complete

Theorem (VERTEX-COVER Is \mathcal{NP} -Complete)

VERTEX-COVER is \mathcal{NP} -Complete.

- We have seen that VERTEX-COVER is NP.
- We have seen that we can reduce every instance of 3SAT to an instance of VERTEX-COVER (in polynomial-time).
- ullet Therefore, VERTEX-COVER is \mathcal{NP} -Complete.

Other \mathcal{NP} -Complete Problems

Many other problems have been proven to be $\mathcal{NP} ext{-}\mathsf{Complete}$

HAMPATH

Does there exist a Hamiltonian path in a given directed graph G between nodes v_i and v_i ?

SUBSET-SUM

Given a collection of integer numbers x_1, x_2, \ldots, x_n and a target number t, does there exist a subcollection that adds up to t?

3-COLOURING

Given a graph G, can we colour the nodes of G using three colours (e.g. red, green and blue) such that no two nodes connected by an edge are coloured in the same colour?