

FCC TEST REPORT

Prepared For :	More Star Industrial Group Limited		
Product Name:	Tablet PC		
Model :	M9706, LPQ-497W, M9718, M9708, M9731, M9732, M9733, M9735, M9736, M9738, M9739		
Prepared By:	Shenzhen BATT Testing Technology Co., Ltd.		
	11F, Bldg.B, Xinbaoyuan, Xinanhu Commercial city, Bao'an District, Shenzhen, Guangdong, China. Tel: 86-755-27753991 Fax: 86-755-27754182		
Test Date:	Dec 27, 2013 to Jan 09, 2014		
Date of Report :	t : Jan 11, 2014		
Report No.:	BATT201401010-03		

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen BATT Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen BATT Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Shenzhen BATT Testing Technology Co., Ltd. Report No.: BATT201401010-03 TABLE OF CONTENTS

1.0	TEST CERTIFICATION	3
2.0	Test Equipment	5
3.0	Technical Details	7
4.0	Test Lab Details	7
5.0	Power Line Conducted Emission Test	8
5.1	Schematics of the Test	8
5.2	Test Method and Test Procedure	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition	9
5.5	Conducted Emission Limit	9
5.6	Test Result	9
6.0	Undesirable Emission and Restrict band	12
7.0	26dB bandwidth Measurement	33
8.0	Peak Transmit Power Measurement	41
9.0	Peak Power Spectral Density Measurement	43
10.0	Peak Power Excursion Measurement	51
11.0	Frequency Stability	59
12.0	Antenna Requirement	66
13.0	FCC ID Label	67
14.0	Photo of Test Setup and EUT View	68

1 TEST CERTIFICATION

Product: Tablet PC

M9706, LPQ-497W, M9718, M9708, M9731, M9732, M9733, M9735, M9736, Model:

M9738, M9739

Applicant: More Star Industrial Group Limited

3&4 F, Block D, ZhuangBian Industrial Park, Gushu, Hangchen Rord, Xi'xiang,

Bao'an District, Shenzhen, P.R.C

Factory: Shen Zhen Banana Technology Co.LTD

3,4,6thF,D Building, Gushu Industrial Park, Zhuangbian Social Park, Xi'xiang Street,

Baoyuan Road, Xi'xiang Town, Bao'an District, Shenzhen, P.R.C

Trade Mark: N/A

Tested: Dec 27, 2013 to Jan 09, 2014

Test Voltage: 7.4V by Li-polymer battery

Operational 5180MHz, 5200MHz, 5220MHz, 5240MHz; Frequency: 5745MHz, 5765MHz, 5785MHz, 5805MHz

Modulation IEEE 802.11a : OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11a: 54, 48, 36, 24, 18, 12, 9, 6 Mbps Air Data Rate

(Note: 6Mbps was selected to test, It was the worst case)

Frequency By software

Selection

Antenna: Integral Antenna used, the antenna gain is 1.3dBi for 5G band

Model No.: FJ-SW1202000N

Power Supply: Input: 100-240V, 50/60Hz, 0.6A Max; Output: DC12V, 2000mA

FCC ID: 2AAQL-M9706

Applicable FCC Part 15.407

Standards:

The test report was prepared by Shenzhen BATT Testing Technology Co., Ltd.and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Prepared by:	Hellenxiao	
Reviewer:	Hellen XiaoAssistant Mike Yong	
	Mike Yong/Supervisor	
Approved & Authorized Signer:	Jones Song	
	Jones Song/ Manager	

2.0 Test Equipments						
Instrument Ty	уре	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver TWO Line-V-NETW		ROHDE&SCHWARZ	ESPI 3	100379	2013-08-27	2014-08-26
		ROHDE&SCHWARZ	EZH3-Z5	100294	2013-08-27	2014-08-26
TWO Line-V-NET	W	ROHDE&SCHWARZ	EZH3-Z5	100253	2013-08-27	2014-08-26
Ultra Broadba ANT	and	ROHDE&SCHWARZ	HL562	100157	2013-08-27	2014-08-26
ESDV Tes	t	ROHDE&SCHWARZ	ESDV	100008	2013-08-27	2014-08-26
Impuls-Begrer	nzer	ROHDE&SCHWARZ	ESH3-Z2	100281	2013-08-27	2014-08-26
System Contr	oller	СТ	SC100	-		
Printer		EPSON	PHOTO EX3	CFNH234850		
Computer		IBM	8434	1S8434KCE99BL XLO*	-	-
Loop Anten	na	EMCO	6502	00042960	2013-08-27	2014-08-26
Test Receiv	er	ROHDE&SCHWARZ	ESI26	838786/013	2013-08-27	2014-08-26
3m OATS	3			N/A	2013-08-27	2014-08-26
Horn Anteni	na	SCHWARZBECK	BBHA 9170	BBHA9170265	2013-08-27	2014-08-26
Horn Anteni	na	SCHWARZBECK	BBHA 9120D	9120D-631	2013-08-27	2014-08-26
Power met	er	Anritsu	ML2487A	6K00003613	2013-08-27	2014-08-26
Power sens	or	Anritsu	MA2491A	32263	2013-08-27	2014-08-26
Bilog Anteni	na	Schwarebeck	VULB9163	9163/340	2013-08-27	2014-08-26
LISN		AFJ	LS16C	10010947251	2013-08-27	2014-08-26
LISN (Thre	e	Schwarebeck	NSLK 8126	8126453	2013-08-27	2014-08-26
9*6*6 Anech	oic			N/A	2013-08-27	2014-08-26
EMI Test Rec	eiver	RS	ESCS30	100139	2013-08-27	2014-08-26
LISN		AFJ	LS16C	10010947251	2013-08-27	2014-08-26
						L

LISN (Three		NSLK	8126453	2013-08-27	2014-08-26
Phase)	Schwarebeck	8126	6120433	2013-06-21	2014-00-20
Pre-Amplifier	A.H.	PAM-0126	1415261	2013-08-27	2014-08-26

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:

Test mode: Keeping WIFI TX ,dutycycle =100%

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107	Conducted Emission	PASS	Complies
& 15.407	Test		
FCC Part 15 Subpart E	Undesirable Emission		Complies
Paragraph 15.407 (b1/4/5/6/7),	and Restrict band	PASS	
Part 15.205 and Part 15.209	and Restrict Danu		
FCC Part 15, Paragraph 15.407			
(a1/2/3)	Peak Transmit Power	PASS	Complies
FCC Part 15, Paragraph 15.407	Peak Power Excursion	PASS	Complies
(a)(6)			
FCC Part 15, Paragraph 15.407	Peak Power Spectral	PASS	Complies
(a/1/2/3)	Density		
FCC Part 15, Paragraph	Frequency Stability	PASS	Complies
15.407(g)			

4.0 Test LAB Details

All Tests Performed at

Name: Shenzhen Emtek Co., Ltd.

Address: Bldg. 69, Majialong Industry Zone,, Nanshan District, Shenzhen, Guangdong, 518052China

FCC Registration Number: 406365

5. **Power Line Conducted Emission Test**

5.1 Schematics of the test

EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2003. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4 - 2003.

Test Voltage: 120V~, 60Hz Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2003. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

EUT A.

Device	Manufacturer	Model	FCC
	Shen Zhen Banana Technology	M9706, LPQ-497W, M9718,	2AAQL-M9796
Tablet PC	Co.LTD	M9708, M9731, M9732, M9733,	
		M9735, M9736, M9738, M9739	

B. Internal Device

Device	Manufacturer	Model	Rating

C. Peripherals

Device	Manufacturer	Model	Rating

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2003.

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207 and 15.107

Frequency	Class A Lin	nits (dBµV)	Class B Lin	nits (dBµV)
(MHz)	Quasi-peak Level Average Level		Quasi-peak Level	Average Level
$0.15 \sim 0.50$	79.0	66.0	66.0~56.0*	56.0~46.0*
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0
5.00 ~ 30.00	73.0	60.0	60.0	50.0

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

5.6 Test Results

The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

A: Conducted Emission on Live Terminal (150kHz to 30MHz)

EUT Operating Environment

Temperature: 26° C Humidity: 65%RH Atmospheric Pressure: 101 KPa

EUT set Condition: Charging and WIFI Keeping TX mode

Equipment Level: Class B

Results: PASS

Please refer to following diagram for individual

Frequency	Line	Reading(dBμV)		Limit(dBµV)	
(MHz)	Line	Quasi-peak	Average	Quasi-peak	Average
0.1517	Live	43.18	24.18	65.91	55.91
0.1850	Live	37.13	19.12	64.26	54.26
0.4220	Live	45.30	18.30	57.41	47.41
2.4350	Live	30.45	6.49	56.00	46.00
10.7500	Live	24.13	1.65	60.00	50.00

B:

Shenzhen BATT Testing Technology Co., Ltd. Report No.: BATT201401010-03

Conducted Emission on Neutral Terminal (150kHz to 30MHz)

EUT Operating Environment

Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 KPa

EUT set Condition: Charging and WIFI Keeping TX mode

Equipment Level: Class B

Results: Pass

Please refer to following diagram for individual

()					
Frequency	Line	Reading(dBµV)		Limit(dBµV)	
(MHz)	Line	Quasi-peak	Average	Quasi-peak	Average
0.1517	Neutral	41.68	23.68	65.91	55.91
0.1850	Neutral	45.63	21.73	64.26	54.26
0.4334	Neutral	27.39	12.39	56.00	46.00
2.4350	Neutral	27.15	8.49	56.00	46.00
10.3750	Neutral	23.07	9.71	60.00	50.00

6 Undesirable Emission and Restrict band

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.4 –2003. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.899988
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.4-2003.
- (3) The frequency spectrum from 30 MHz to 40 GHz was investigated. All readings from 30 MHz to 1 GHz are Quasi-peak values with a resolution bandwidth of 120 kHz. For measurement above 1GHz, peak values with RBW=1MHz, VBW=3MHz and PK detector.
 - Detector. Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- (6) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

6.2 Configuration of The EUT

Same as section 5.3 of this report

6.3 EUT Operating Condition

Same as section 5.4 of this report.

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Frequencies in restricted band are complied to limit on Paragraph 15.209 and 15.109

Frequency Range (MHz)	Distance (m)	Field strength (dBμV/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz
- (2) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27dBm/MHz.

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the higher limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

Test result

General Radiated Emission Data and Harmonics Radiated Emission Data

Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Charging and WIFI Keeping TX mode

Condition:

Results: Pass

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
158.525	32.48	Н	43.50
240.975	41.84	Н	46.00
313.726	36.89	Н	46.00
459.224	37.61	Н	46.00
313.725	43.50	V	46.00
337.975	43.64	V	46.00
624.125	42.76	V	46.00
905.425	44.29	V	46.00

Test Figure:

Horizontal

Vertical

Page 15 of 81

Operation Mode: WIFI Keeping TX mode under CH36 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5180.00	79.32 (PK)	Н	Eundamental Eraguenay
5180.00	83.19 (PK)	V	Fundamental Frequency
10360		Н	74(Peak)/ 54(AV)
15540	-	V	74(Peak)/ 54(AV)
20720		H/V	74(Peak)/ 54(AV)
25900		H/V	74(Peak)/ 54(AV)
31080		H/V	74(Peak)/ 54(AV)
36260	-	H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Operation Mode: WIFI Keeping TX mode under CH40 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5200.00	79.33 (PK)	Н	Fundamental Frequency
5200.00	83.28 (PK)	V	rundamentai Frequency
10400		Н	74(Peak)/ 54(AV)
15600	-1	V	74(Peak)/ 54(AV)
20800	1	H/V	74(Peak)/ 54(AV)
26000	1	H/V	74(Peak)/ 54(AV)
31200		H/V	74(Peak)/ 54(AV)
36400		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

- 2. Remark "---" means that the emissions level is too low to be measured
- 3. For 802.11a mode 6Mbps

Operation Mode: WIFI Keeping TX mode under CH48 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5240.00	79.58 (PK)	Н	Eundemental Eraguenev
5240.00	83.50 (PK)	V	Fundamental Frequency
10480		Н	74(Peak)/ 54(AV)
15720	-	V	74(Peak)/ 54(AV)
20960	1	H/V	74(Peak)/ 54(AV)
26200		H/V	74(Peak)/ 54(AV)
31440		H/V	74(Peak)/ 54(AV)
36680		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Operation Mode: WIFI MIMO Keeping TX mode under CH149 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5745.00	78.62 (PK)	Н	Even dominated Engagement
5745.00	85.17 (PK)	V	Fundamental Frequency
11490		Н	74(Peak)/ 54(AV)
17235		V	74(Peak)/ 54(AV)
22980		H/V	74(Peak)/ 54(AV)
28725		H/V	74(Peak)/ 54(AV)
34470		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

- 2. Remark "---" means that the emissions level is too low to be measured
- 3. For 802.11a mode 6Mbps

Operation Mode: WIFI MIMO Keeping TX mode under CH153 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5765.00	78.46 (PK)	Н	Eundamental Eraguenay
5765.00	86.17 (PK)	V	Fundamental Frequency
11530		Н	74(Peak)/ 54(AV)
17295		V	74(Peak)/ 54(AV)
23060		H/V	74(Peak)/ 54(AV)
28825		H/V	74(Peak)/ 54(AV)
34590		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Operation Mode: WIFI MIMO Keeping TX mode under CH161 for 11g at 6Mbps

Frequency (MHz)	Level@3m (dBµV/m)	Antenna Polarity	Limit@3m (dBµV/m)
5805.00	78.31 (PK)	Н	Fundamental Fraguency
5805.00	87.22 (PK)	V	Fundamental Frequency
11610	1	Н	74(Peak)/ 54(AV)
17415		V	74(Peak)/ 54(AV)
23220	-	H/V	74(Peak)/ 54(AV)
29025	1	H/V	74(Peak)/ 54(AV)
34830		H/V	74(Peak)/ 54(AV)

Note: 1. Level = Reading + AF + Cable - Preamp + Filter - Dist, Margin = Level - Limit

2. Remark "---" means that the emissions level is too low to be measured

3. For 802.11a mode 6Mbps

Please refer to the following test plots for details:

CH36 for 11g at 6Mbps: Horizontal

CH36 for 11g at 6Mbps: Vertical

107.0 dBuV/m

CH40 for 11g at 6Mbps: Vertical

CH40 for 11g at 6Mbps: Horizontal

CH48 for 11g at 6Mbps: Vertical

CH48 for 11g at 6Mbps: Horizontal

Please refer to the following test plots for details:

CH149 for 11g at 6Mbps: Horizontal

CH149 for 11g at 6Mbps: Vertical

CH153 for 11g at 6Mbps: Vertical

CH153 for 11g at 6Mbps: Horizontal

CH161 for 11g at 6Mbps: Vertical

CH161 for 11g at 6Mbps: Horizontal

Note: For radiated Emissions from 18-40GHz, it is only the floor noise.

Restricted band Measurement				
EUT	Tablet PC		Test Mode:	Channel 36 (5180MHz)
Mode	WIFI Ke	WIFI Keeping TX mode		DC7.4V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
5150	PK (dBµV/m)	49.91 (PK)	Limit	-27dBm/MHz
	EIRP (dBm)	-45.29	Lillit	-2/QDIII/IVITZ

Test figure: Vertical

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=49.91 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=49.91-95.2=-45.29dBm$

Restricted band Measurement				
EUT	Tablet PC		Test Mode:	Channel 36 (5180MHz)
Mode	WIFI Ke	WIFI Keeping TX mode		DC7.4V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
5150	PK (dBµV/m)	50.95 (PK)	Limit	-27dBm/MHz
	EIRP (dBm)	-44.25	Limit	-2/QDIII/IVITZ

Remark: 1.According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=50.95 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=50.95-95.2=-44.25dBm$

Restricted band Measurement				
EUT	Tablet PC		Test Mode:	Channel 48 (5240MHz)
Mode	WIFI Ke	WIFI Keeping TX mode		DC7.4V
Temperature	24 deg. C,		Humidity	56% RH
Test Result:	Pass		Detector	PK
5250	PK (dBµV/m)	59.84 (PK)	Limit	-27dBm/MHz
	EIRP (dBm)	-35.36	Lillit	-2 / QDHI/IVITIZ

Test figure: Vertical

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=59.84 \ dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=59.84-95.2=-35.36dBm$

Restricted band Measurement							
EUT	T	ablet PC	Test Mode:	Channel 48 (5240MHz)			
Mode	WIFI Ke	eping TX mode	Input Voltage	DC7.4V			
Temperature	24	4 deg. C,	Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5250	PK (dBµV/m)	55.38 (PK)	Limit	-27dBm/MHz			
	EIRP (dBm)	-39.82	Lillit	-2 / QDHI/IVITIZ			

Test figure: Horizontal

Remark: 1.According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=55.38 \ dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=55.38-95.2= -39.82dBm$

Restricted band Measurement						
EUT	Ta	ablet PC	Test Mode:	Channel 149 (5745MHz)		
Mode	WIFI Ke	eping TX mode	Input Voltage	DC7.4V		
Temperature	24	4 deg. C,	Humidity	56% RH		
Test Result:	Pass		Detector	PK		
5725	PK (dBμV/m)	52.72 (PK)	Limit	-27dBm/MHz		
	EIRP (dBm)	-42.48	Lillit	-2/QDIII/IVITZ		

Test figure: Vertical

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=52.72 \ dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=52.72-95.2=-42.48dBm$

Restricted band Measurement							
EUT	Ta	ablet PC	Test Mode:	Channel 149 (5745MHz)			
Mode	WIFI Ke	eping TX mode	Input Voltage	DC7.4V			
Temperature	24	4 deg. C,	Humidity	56% RH			
Test Result:		Pass	Detector	PK			
5725	PK (dBµV/m)	50.59 (PK)	Limit	-27dBm/MHz			
	EIRP (dBm)	-44.61	Liiiit	-2/QDIII/IVITZ			

Test figure: Horizontal

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=50.59 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 50.59 - 95.2 = -44.61dBm$

Restricted band Measurement						
EUT	Ta	ablet PC	Test Mode:	Channel 161 (5745MHz)		
Mode	WIFI Ke	eping TX mode	Input Voltage	DC7.4V		
Temperature	24	deg. C,	Humidity	56% RH		
Test Result:		Pass	Detector	PK		
5825	PK (dBµV/m)	PK (dBμV/m) 51.60 (PK)		-27dBm/MHz		
	EIRP (dBm)	-43.60	Limit	-2/QDIII/IVITIZ		

Test figure: Vertical

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=51.60 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=51.60-95.2=-43.60dBm$

Restricted band Measurement						
EUT	Ta	ablet PC	Test Mode:	Channel 161 (5745MHz)		
Mode	WIFI Ke	eping TX mode	Input Voltage	DC7.4V		
Temperature	24	l deg. C,	Humidity	56% RH		
Test Result:		Pass	Detector	PK		
5825	PK (dBµV/m)	49.59 (PK)	Limit	-27dBm/MHz		
	EIRP (dBm)	-45.61	Lillit	-2/QDHI/IVITIZ		

Test figure: Horizontal

Remark: 1. According to KDB 789033 v01r03 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

For Example, if $E[dB\mu V/m]=49.59 dB\mu V/m$,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=49.59-95.2=-45.61dBm$

7.0 26 dB OCCUPIED BANDWIDTH

7.1 Test Setup

7.3 Test Procedure

- 1. Set resolution bandwidth (RBW) = 300 kHz
- 2. Set the video bandwidth (VBW) = 1MHz
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

7.4 Test Result

26dB Occupied Bandwidth

EUT Tablet PC		ablet PC	Model		M9706					
Mode	Mode 802		02.11a Input		Input Vol	oltage		DC7.4V		
Temperature 24		24	deg. C, Hu		Humidity	dity		56% RH		
Channel		el Frequency (MHz)	Data Transfer Rate (Mbps)		dB Bandwidth Min		mum Limit MHz)	Pass/ Fail		
36		5180	6	19.	19.962		19.962			Pass
40		5200	6	22.496				Pass		
48		5240	6	20.	20.171			Pass		
149		5745	6	19.037		19.037				Pass
153		5765	6	19.118				Pass		
161		5805	6	18.927				Pass		

Test Figure:

Channel 36

Channel 40

Channel 149

Channel 153

Channel 161

8.0 Peak Transmit Power Measurement

8.1 Test Setup

8.2 Limits of Peak Transmit Power Measurement

Frequency Band	Limit
5.15 – 5.25GHz	The lesser of 50mW (17dBm) or 4dBm + 10logB
5.25 – 5.35GHz	The lesser of 250mW (24dBm) or 11dBm + 10logB
and 5.470-5.725GHz	
5.725 – 5.825GHz	The lesser of 1W (30dBm) or 17dBm + 10logB

Note: Where B is the 26dB emission bandwidth in MHz.

8.3 Test Procedure

The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate centre frequency.

Note: the average power was measured

8.4Test Results

EU	JT	Tablet PC		Model	M9706	
Mo	de	802.11a		802.11a Input Voltage DC7.4		
Tempe	rature		24 deg. C,	Humidity	56% RH	
Channel	Frequen	су	Average Power		Limit	Pass/ Fail
	(MHz))	Output (dBm)		(dBm)	
36	5180		5	5.75	17	Pass
40	5200	5		5.71	17	Pass
48	5240		5	5.37	17	Pass
149	5745		4.22		30	Pass
153	5765		4	1.36	30	Pass
161	5805	·	4	1.67	30	Pass

Note: 1. At finial test to get the worst-case emission at 6Mbps for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow: Average Power Output = Peak Power Reading + Cable loss + Attenuator

3. The worse case was recorded

9. Peak Power Spectral Density Measurement

9.1 Test Setup

9.2 Limits of Power Spectral Density Measurement

Frequency Band	Limit
5.15 – 5.25GHz	4dBm
5.25 – 5.35GHz	11dBm
and 5.470-5.725GHz	
5.725 – 5.825GHz	17dBm

9.3 Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer
- 2. Set the RBW = 1MHz.
- 3. Set the VBW = 3MHz.
- 4. Set the span to encompass the entire emissions bandwidth (EBW) of the signal
- 5. Detector = RMS
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

REMARK:Duty cycle is 100% then 10log(1/dutycycle)=0

9.4Test Result

EUT		Tab	le PC	Model		M9706	
Mode		802.11a 6Mbps		Input Voltage		DC7.4V	
Temperat	ure	24 d	eg. C,	Humidity		56% RH	
Channel	Fre	quency	F	inal Power Spectral I	Density	Limit	Pass/ Fail
	(1	MHz)		(dBm)		(dBm)	
36	4	5180		-5.04		4	Pass
40	4	5200		-4.92		4	Pass
48	4	5240	-5.00			4	Pass
149	5745		-4.61			17	Pass
153	4	5765	-4.33			17	Pass
161	4	5805	-5.69			17	Pass

9.5 Photo of Power Spectral Density Measurement

10. Peak Excursion Measurement

10.2 Test Setup

10.2 Limits of Peak Power Excursion Measurement

Frequency Band	Limit
5.15 – 5.25GHz	13
5.25 – 5.35GHz	13
and 5.470-5.725GHz	
5.725 – 5.825GHz	13

10.3 Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna
- 2. Set the RBW = 1MHz (Peak and Average Trace)
- 3. Set the VBW = 3MHz (Peak and Average Trace)
- 4. Set the span to encompass the entire emissions bandwidth (EBW) of the signal
- 5. Detector = Peak (Peak Trace) / RMS (Average Trace)
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

10.4 Test Result

EUT		Tablet PC		Model		M9706			
Mode		802.11a 6Mbps		Input Voltage		DC7.4V			
Temperat	ure	24 d	eg. C,	Humidity		56% RH			
Channel	Fre	quency	Peak		PSD		Peak	Limit (dB)	Pass/ Fail
	(1	MHz)	Level (dBm)		(dBm)	Ex	cursion (dB)		
36	4	5180	-1.70		-5.04		3.34	13	Pass
40	4	5200	-1.88		-4.92		3.04	13	Pass
48	4	5240	-2.04		-5.00		2.96	13	Pass
149	4	5745	-1.01		-4.61		3.60	13	Pass
153	4	5765	-0.84		-4.33		3.49	13	Pass
161	4	5805	-2.34		-5.69		3.35	13	Pass

Page 52 of 81

10.5 Photo of Peak Level

11.0 Frequency Stability

11.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within \pm 0.02% of the operating frequency over a temperature variation of \pm 30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees

11.2 Test Procedure

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

11.3 Test Result

Channel 36 (5180MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5179.9765
7.4V	5179.9717
6.3V	5179.9806
Max. Deviation (MHz)	0.0283
Max. Deviation (ppm)	5.5

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5179.9738
-20	5179.9726
-10	5179.9772
0	5179.9715
10	5179.9783
20	5179.9810
30	5179.9829
40	5179.9733
50	5179.9761
Max. Deviation (MHz)	0.0285
Max. Deviation (ppm)	5.5

Channel 40 (5200MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5199.9689
7.4V	5199.9778
6.3V	5199.9708
Max. Deviation (MHz)	0.0311
Max. Deviation (ppm)	6.0

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5199.9758
-20	5199.9792
-10	5199.9727
0	5199.9812
10	5199.9809
20	5199.9822
30	5199.9790
40	5199.9812
50	5199.9751
Max. Deviation (MHz)	0.0273
Max. Deviation (ppm)	5.3

Channel 48 (5240MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5239.9675
7.4V	5239.9737
6.3V	5239.9809
Max. Deviation (MHz)	0.0325
Max. Deviation (ppm)	6.2

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5239.9718
-20	5239.9708
-10	5329.9748
0	5239.9709
10	5239.9812
20	5239.9771
30	5239.9809
40	5239.9819
50	5239.9758
Max. Deviation (MHz)	0.0292
Max. Deviation (ppm)	5.6

Channel 149 (5745MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5744.9671
7.4V	5744.9812
6.3V	5744.9683
Max. Deviation (MHz)	0.0329
Max. Deviation (ppm)	5.7

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5744.9716
-20	5744.9733
-10	5744.9822
0	5744.9752
10	5744.9709
20	5744.9749
30	5744.9816
40	5744.9820
50	5744.9753
Max. Deviation (MHz)	0.0284
Max. Deviation (ppm)	4.9

Channel 153 (5765MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5764.9734
7.4V	5764.9826
6.3V	5764.9792
Max. Deviation (MHz)	0.0266
Max. Deviation (ppm)	4.6

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5764.9724
-20	5764.9691
-10	5764.9834
0	5764.9809
10	5764.9781
20	5764.9803
30	5764.9785
40	5764.9810
50	5764.9786
Max. Deviation (MHz)	0.0309
Max. Deviation (ppm)	5.4

Channel 161 (5805MHz)

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
8.5V	5804.9616
7.4V	5804.9786
6.3V	5804.9663
Max. Deviation (MHz)	0.0384
Max. Deviation (ppm)	6.6

Rated working voltage: DC7.4V

Temperature (°C)	Measurement Frequency (MHz)
-30	5804.9811
-20	5804.9785
-10	5804.9805
0	5804.9783
10	5804.9811
20	5804.9769
30	5804.9788
40	5804.9802
50	5804.9725
Max. Deviation (MHz)	0.0275
Max. Deviation (ppm)	4.7

12.0 Antenna Requirement

12.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected construction

Integral antenna used. The maximum Gain of each antenna is 1.3dBi for 5G band.

FCC ID Label 13.0

FCC ID: 2AAQL-M9706

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

Report No.: BATT201401010-03

Shenzhen BATT Testing Technology Co., Ltd. 14 PHOTOGRAPHS OF THE TEST CONFIGURATION

Conducted Emissions

Radiated Emissions

Shenzhen BATT Testing Technology Co., Ltd. Report No.: BATT201401010-03 PHOTOGRAPHS OF EUT

Photo 1

Photo 2

Photo 3

Photo 4

Shenzhen BATT Testing Technology Co., Ltd.

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

Photo 10

Photo 11

Photo 12

Photo 13

Photo 14

Photo 15

Photo 16

Photo 17

Photo 18

Photo 19

Photo 20

Photo 21

Photo 22

Photo 23

Photo 24

The Report End