Homework 06: Due 10/25 (completion based)

Stat061-F23

Prof Amanda Luby

- 1. Let's explore (through a few examples) the *efficiency* property of large-sample MLEs. Recall that the large-sample normal approximation for the MLE is $\hat{\theta}_{MLE} \sim N(\theta, \frac{1}{nI(\theta)})$.
 - (a) Explain why the normal approximation for $\hat{\theta}_{MLE}$ implies that the MLE for large samples is efficient.
 - (b) Confirm the normal sample approximation for the MLE of the binomial distribution. (There's an example in Notes04 that may be helpful).
 - (c) In Homework01, you showed that the MLE for p in the geometric distribution is $\frac{1}{X}$. Find the normal approximation of \hat{p}_{MLE} . Why is it useful to use the normal approximation instead of finding $V(\hat{p}_{MLE})$ directly in this case?
 - (d) Also in Homework01, you showed that the MLE for β in the Pareto pdf $f_x = \frac{\beta}{x^{\beta+1}}$ is $\hat{\beta}_{MLE} = \frac{n}{\sum \ln x_i}$. Find the approximate variance of $\hat{\beta}_{MLE}$.
- 2. Suppose we have an unbiased estimator $\hat{\theta}$. Explain how the Rao-Blackwell theorem, taken together with the Cramer-Rao Lower Bound, implies that an estimator must be *sufficient* before it can be *efficient*.

Delta Method (again)

A less general, but perhaps more useful, version of the delta method is:

Suppose that $\frac{\sqrt{n}(Y_n-\mu)}{\sigma} \to_d N(0,1)$ and suppose that g is a differentiable function with $g'(\mu) \neq 0$. Then,

$$\frac{\sqrt{n}(g(Y_n)-g(\mu))}{|g'(\mu)|\sigma}\to_d N(0,1).$$

1

Stated in another way, if $Y_n \approx N(\mu, \frac{\sigma^2}{n})$ then $g(Y_n) \approx N(g(\mu), (g'(\mu))^2 \frac{\sigma^2}{n})$.

- 3. Suppose that $X_1,...,X_n \sim N(0,\sigma^2)$.
 - (a) Determine the asymptotic distribution of the statistic $T=\frac{1}{\frac{1}{n}\sum X_i^2}$.
 - (b) Find a variance stabilizing transformation for the statistic $T^{-1} = \frac{1}{n} \sum X_i^2$.