Project 6 Deep learning by PyTorch

Due date: 23:59 Saturday 4/11th (2020)

My id in Kaggle is sepide sarajian.

Layer no	Layer type	Kernel size	Input output Dimension	Input output channels
1	conv2d	5	32 28	3 64
2	Batch normalization	-	28 28	-
3	relu	-	28 28	-
4	conv2d	5	28 24	64 256
5	Batch normalization	-	24 24	-
6	relu	-	24 24	-
7	Max pooling	2	24 12	-
8	conv2d	5	12 8	256 512
9	Batch normalization	-	8 8	-
10	relu	-	8 8	-
11	conv2d	5	8 4	512 1024
12	Batch normalization	-	4 4	-
13	relu	-	4 4	-

14 Average pooling	4	4 1	-
--------------------	---	-------	---

First I try running the network without the normalization which got the following result:

T HOCT try Turnin	<u> </u>	with loat the i	ioimanzation wi	111011
[1] loss: 3.	:426			
Accuracy of	the network	on the va	al images: 2	7 %
[2] loss: 2.	654			
Accuracy of	the network	on the va	al images: 35	5 %
[3] loss: 2.	.292			
Accuracy of	the network	on the va	al images: 42	2 왕
[4] loss: 2.	051			
Accuracy of	the network	on the va	al images: 45	5 %
[5] loss: 1.	857			
Accuracy of	the network	on the va	al images: 4	7 %
[6] loss: 1.	699			
Accuracy of	the network	on the va	al images: 4	9 %
[7] loss: 1.	571			
Accuracy of	the network	on the va	al images: 50	O %
[8] loss: 1.	442			
Accuracy of	the network	on the va	al images: 52	2 %
[9] loss: 1.	323			
Accuracy of	the network	on the va	al images: 52	2 용
[10] loss: 1	L.205			
Accuracy of	the network	on the va	al images: 5	4 %
[11] loss: 1	1.105			
Accuracy of	the network	on the va	al images: 5	4 %
[12] loss: 1	1.003			
Accuracy of	the network	on the va	al images: 5	5 %
[13] loss: 0).910			
		on the va	al images: 5	5 %
[14] loss: 0	.819			
Accuracy of	the network	on the va	al images: 5	5 %
[15] loss: 0	.729			
Accuracy of	the network	on the va	al images: 5	6 %
[16] loss: 0				
Accuracy of	the network	on the va	al images: 5	6 %
[17] loss: 0).576			
		on the va	al images: 5	6 %
[18] loss: 0				
		on the va	al images: 5	7 %
[19] loss: 0				
		on the va	al images: 5	6 %
[20] loss: 0				
		on the va	al images: 5	6 %
Finished Tra	aining			

And I got 0.54300 accuracy in the test set from Kaggle.

Then I added the normalization and got the following:

Result of training for 20 batches which gave 58% accuracy on the validation set:

[1] loss: 3.441					
Accuracy of the	network	on the	val :	images:	28 %
[2] loss: 2.665				-	
Accuracy of the	network	on the	val :	images:	36 %
[3] loss: 2.293					
Accuracy of the	network	on the	val :	images:	41 %
[4] loss: 2.048					
Accuracy of the	network	on the	val :	images:	45 %
[5] loss: 1.864					
Accuracy of the	network	on the	val :	images:	48 %
[6] loss: 1.701			-		400
Accuracy of the [7] loss: 1.562	network	on the	val :	ımages:	49 %
Accuracy of the	notwork	on the	772]	imagag:	52 °
[8] loss: 1.438	HECMOLK	on the	val .	ımayes.	JZ 6
Accuracy of the	network	on the	val ·	images:	51 %
[9] loss: 1.320	nooworn	011 0110	V 04.12 .	ımages.	0 1 0
Accuracy of the	network	on the	val :	images:	53 %
[10] loss: 1.21					
Accuracy of the	network	on the	val :	images:	54 %
[11] loss: 1.10	7				
Accuracy of the	_	on the	val :	images:	54 %
[12] loss: 1.00					
Accuracy of the		on the	val :	images:	54 %
[13] loss: 0.912					
Accuracy of the		on the	val :	images:	55 %
[14] loss: 0.81			1	:	EC 0
Accuracy of the [15] loss: 0.735		on the	val :	ımages:	D0 6
Accuracy of the	_	on the	wal ·	imades:	56 %
[16] loss: 0.662		On the	var .	Images.	J 0 0
Accuracy of the		on the	val :	images:	56 %
[17] loss: 0.585				-	
Accuracy of the	network	on the	val :	images:	56 %
[18] loss: 0.513	3				
Accuracy of the		on the	val :	images:	56 %
[19] loss: 0.44	4				
Accuracy of the		on the	val	images:	56 %
[20] loss: 0.38					
Accuracy of the		on the	val	images:	58 %
Finished Training	ng				

I got 0.56799 accuracy on the test database from my submission in Kaggle.

Part 2:

I tried adding L2 normalization and adam optimizer but got lower accuracy:

```
Test Loss: 0.1628 Test Accuracy 0.2967
```

For the final result I made the following changes to the code:

1. Setting the gradients to True

```
#Set gradients to false
if feature_extracting:
   for param in self.resnet18.parameters():
     param.requires_grad = True
```

2. Setting the hyperparameters:

```
NUM_EPOCHS = 40

LEARNING_RATE = 0.001

BATCH_SIZE = 10
```

3. Data augmentation:

```
data_transforms = {
    'train': transforms.Compose([
```

```
transforms.Resize(256),
    # transforms.CenterCrop(224),
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    #TODO: Transforms.RandomResizedCrop() instead of CenterCrop(),
RandomRoate() and Horizontal Flip()
    transforms.ToTensor(),
    #TODO: Transforms.Normalize()
]),
    'test': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
    #TODO: Transforms.Normalize()
]),
}
```

```
RESNET_LAST_ONLY = False #Fine tunes only the last layer. Set to False to fine tune entire network
```

These are the result I got with fine tuning the whole resNet: (staring from epoch 21)

```
TRAINING Epoch 21/40 Loss 0.0179 Accuracy 0.9830
TRAINING Epoch 22/40 Loss 0.0169 Accuracy 0.9850
TRAINING Epoch 23/40 Loss 0.0159 Accuracy 0.9850
TRAINING Epoch 24/40 Loss 0.0135 Accuracy 0.9890
TRAINING Epoch 25/40 Loss 0.0135 Accuracy 0.9890
TRAINING Epoch 26/40 Loss 0.0123 Accuracy 0.9903
TRAINING Epoch 27/40 Loss 0.0108 Accuracy 0.9907
TRAINING Epoch 28/40 Loss 0.0108 Accuracy 0.9907
TRAINING Epoch 28/40 Loss 0.0099 Accuracy 0.9933
TRAINING Epoch 29/40 Loss 0.0095 Accuracy 0.9923
TRAINING Epoch 30/40 Loss 0.0087 Accuracy 0.9927
Test Loss: 0.1424 Test Accuracy 0.6337
TRAINING Epoch 31/40 Loss 0.0084 Accuracy 0.9950
TRAINING Epoch 32/40 Loss 0.0084 Accuracy 0.9950
TRAINING Epoch 32/40 Loss 0.0083 Accuracy 0.9947
TRAINING Epoch 33/40 Loss 0.0083 Accuracy 0.9927
TRAINING Epoch 34/40 Loss 0.0071 Accuracy 0.9947
```

TRAINING Epoch 35/40 Loss 0.0074 Accuracy 0.9933
TRAINING Epoch 36/40 Loss 0.0065 Accuracy 0.9940
TRAINING Epoch 37/40 Loss 0.0061 Accuracy 0.9963
TRAINING Epoch 38/40 Loss 0.0064 Accuracy 0.9937
TRAINING Epoch 39/40 Loss 0.0059 Accuracy 0.9957
TRAINING Epoch 40/40 Loss 0.0050 Accuracy 0.9973
Finished Training

Test Loss: 0.1405 Test Accuracy 0.6456

Visualisation:

RESNET_LAST_ONLY = True #Fine tunes only the last layer. Set to False to fine tune entire network

Then I tried only training on the final layer: (staring from epoch 21)

Test Loss: 0.1423 Test Accuracy 0.6268
TRAINING Epoch 21/40 Loss 0.0167 Accuracy 0.9873

```
TRAINING Epoch 22/40 Loss 0.0160 Accuracy 0.9887
TRAINING Epoch 23/40 Loss 0.0142 Accuracy 0.9880
TRAINING Epoch 24/40 Loss 0.0141 Accuracy 0.9883
TRAINING Epoch 25/40 Loss 0.0133 Accuracy 0.9913
TRAINING Epoch 26/40 Loss 0.0115 Accuracy 0.9897
TRAINING Epoch 27/40 Loss 0.0115 Accuracy 0.9897
TRAINING Epoch 28/40 Loss 0.0108 Accuracy 0.9920
TRAINING Epoch 29/40 Loss 0.0098 Accuracy 0.9933
TRAINING Epoch 30/40 Loss 0.0083 Accuracy 0.9963
Test Loss: 0.1433 Test Accuracy 0.6337
TRAINING Epoch 31/40 Loss 0.0084 Accuracy 0.9940
TRAINING Epoch 32/40 Loss 0.0072 Accuracy 0.9967
TRAINING Epoch 33/40 Loss 0.0079 Accuracy 0.9947
TRAINING Epoch 34/40 Loss 0.0077 Accuracy 0.9933
TRAINING Epoch 35/40 Loss 0.0071 Accuracy 0.9937
TRAINING Epoch 36/40 Loss 0.0068 Accuracy 0.9930
TRAINING Epoch 37/40 Loss 0.0067 Accuracy 0.9950
TRAINING Epoch 38/40 Loss 0.0066 Accuracy 0.9937
TRAINING Epoch 39/40 Loss 0.0055 Accuracy 0.9970
TRAINING Epoch 40/40 Loss 0.0054 Accuracy 0.9960
Finished Training
```

Test Loss: 0.1433 Test Accuracy 0.6403

Visualisation:

