SPACE X CAPSTONE PROJECT

EXECUTIVE SUMMARY

- Methodologies
 - Data collection and wrangling
 - EDA with Visualization
 - EDA with SQL
 - Building Dashboards and maps
- Results
 - Exploratory data analysis results
 - Screenshots and predictive analysis results

Introduction

- Background
 - SpaceX
- Problems
- Correlations between each rocket variables and successful landing rate
 - Conditions to get best results

Data Collection with spaceX API

Process includes combination of API requests

Requesting data

```
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
```

Converting response to JSON

```
data = pd.json_normalize(response.json())
```

Using custom functions to clean data

Call getBoosterVersion
getBoosterVersion(data)

Call getCoreData
getCoreData(data)

Call getLaunchSite
getLaunchSite(data)

Creating data frame

```
launch_dict = {'FlightNumber': list(data['flight_number']),
'Date': list(data['date']),
'BoosterVersion':BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome,
'Flights':Flights,
'GridFins':GridFins,
'Reused':Reused,
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount,
'Serial':Serial,
'Longitude': Longitude,
'Latitude': Latitude}
```

Data Collection with Web Scraping

Getting Response from HTML

```
html_data = requests.get(static_url).text
```

Creating Beautiful Soup Object

```
soup = BeautifulSoup(html_data, 'html5lib')
```

Finding tables and assigning results to a list

```
html_tables = soup.find_all('table')
```

Extracting column names

```
for row in first_launch_table.find_all('th'):
    name = extract_column_from_header(row)
    if(name != None and len(name) > 0):
        column_names.append(name)
```

Creating Empty data dictionaries

```
launch dict= dict.fromkeys(column names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
launch dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch dict['Payload mass'] = []
launch dict['Orbit'] = []
launch dict['Customer'] = []
launch dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch dict['Booster landing']=[]
launch dict['Date']=[]
launch dict['Time']=[]
```

Creating a data frame and exporting to csv

```
df=pd.DataFrame(launch_dict)

df.to_csv('spacex_web_scraped.csv', index=False)
```

Data Wrangling

- Converting failed landings into training labels (1s / 0s)
 - Calculating number of launches

```
df['LaunchSite'].value_counts()
```

- Calculating number and occurrence of each orbit df.Orbit.value_counts()
- Number of occurrence in mission outcome per orbit type

```
landing_outcomes = df.Outcome.value_counts()
```

Creating landing outcome label from outcome column

```
landing_class = []
for outcome in df.Outcome:
    if outcome in bad_outcomes:
        landing_class.append(0)
    else:
        landing_class.append(1)
```

Calculating success rate

```
df["Class"].mean()
0.6666666666666666
```

Exporting dataset to CSV

```
df.to_csv("dataset_part_2.csv", index=False)
```

EDA with Data Visualization

- Scatter Chart
 - Flight Number vs Launch Site
 - Payload vs Launch Site
 - Flight Number vs Orbit Type
 - Payload vs Orbit Type
- Bar Chart
 - Orbit Type vs Success Rate
- Line Chart
 - Year vs Success Rate

EDA with SQL

- Loading the dataset into db2 database and execute queries to answer the following requests
- 1. Names of unique launch sites in the space mission
- 2. 5 records where launch sites begin with 'CCA'
- 3. Total payload mass carried by boosters launched by NASA
- 4. Average payload mass carried by booster version F9 v1.1
- 5. Date when first successful landing outcome in ground pad
- 6. Total number of successful and failure mission outcomes

Interactive Map with Folium

- Objects created and added to a folium map
 - markers showing all launch sites on a map
 - markers showing successful and failure launches for each site
- By adding these objects , following patterns about launch sites are found
 - Are launch sites close to highways? Yes
 - Are launch sites close to coastline? Yes
 - Do they keep certain distance from cities? Yes

Dashboard with Plotly Dash

Contains Pie Chart and Scatter Point Chart

Pie Chart

- To show total success launches
- Successful landing distribution across launch sites

Scatter Chart

Showing relationships between outcomes and payload mass

Predictive Analysis

Perform exploratory data analysis and determine training labels

- Find best hyperparameter for SVM, classification trees and logical regression

Results

- Preview of dashboard with Plotly dash

EDA Insights

- Flight Number vs Launch Site
- Blue = unsuccessful launch
 Orange= successful launch
- Success rate increase as the number of flights increase

Payload vs Launch site

- Blue = unsuccessful launch
Orange = successful launch

- No clear pattern can be found

Success rate vs Orbit type

 SSO, HEO, GEO has ESL-1 have the highest success rates

Flight Number vs Orbit Type

- Blue = unsuccessful launchOrange = successful launch
- Launch outcome seems to correlate with flight number
- In GTO orbit there is no relationship between flight numbers and success rate

Payload vs Orbit type

- Blue = unsuccessful launch
 Orange = successful launch
- With heavy payloads the successful landing rate is more for LEO and ISS

Launch Success Yearly trend

- Success rate has increased from 2013 to 2017
- Decreased slightly in 2018
- Recent success rate is about 80%

EDA with SQL

All Launch Site Names

SELECT DISTINCT LAUNCH_SITE FROM SPACEXTBL

Query

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch site names begin with CCA

SELECT * FROM SPACEXTBL
WHERE LAUNCH_SITE LIKE 'CCA%'
LIMIT 5

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg	_ orbi	customer	mission_outcome	landing_outcome
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit		0 LEC	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0 LEO (ISS	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	52	5 LEO (ISS	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	50	0 LEO (ISS	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	67	7 LEO (ISS	NASA (CRS)	Success	No attempt

Total Payload Mass

```
SELECT SUM(PAYLOAD_MASS__KG_)

AS total_payload_mass_kg
FROM SPACEXTBL
WHERE CUSTOMER = 'NASA (CRS)'
```

Query

Average Payload Mass by F9 V1.1

```
SELECT AVG(PAYLOAD_MASS__KG_)
    AS avg_payload_mass_kg
FROM SPACEXTBL
WHERE BOOSTER_VERSION = 'F9 v1.1'

avg_payload_mass_kg

Result
```

2928

First Successful ground landing date

```
SELECT MIN(DATE)

AS first_successful_landing_date
FROM SPACEXTBL

WHERE LANDING__OUTCOME

= 'Success (ground pad)'
```

first_successful_landing_date

Result

Successful Drone Ship landing with payload between 4000 and 6000

```
SELECT BOOSTER_VERSION
FROM SPACEXTBL
WHERE LANDING__OUTCOME = 'Success (drone ship)' Query
AND (PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000)
```

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

SELECT MISSION_OUTCOME,
COUNT(*) AS total_number
FROM SPACEXTBL
GROUP BY MISSION_OUTCOME

	total_number	mission_outcome
<u> </u>	1	Failure (in flight)
7	99	Success
	1	Success (payload status unclear)

Boosters carried maximum payload

```
SELECT DISTINCT BOOSTER_VERSION,

PAYLOAD_MASS__KG_

FROM SPACEXTBL

WHERE PAYLOAD_MASS__KG_ = (

SELECT MAX(PAYLOAD_MASS__KG_)

FROM SPACEXTBL)
```

Query

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1048.5	15600
F9 B5 B1049.4	15600
F9 B5 B1049.5	15600
F9 B5 B1049.7	15600
F9 B5 B1051.3	15600
F9 B5 B1051.4	15600
F9 B5 B1051.6	15600
F9 B5 B1056.4	15600
F9 B5 B1058.3	15600
F9 B5 B1060.2	15600
F9 B5 B1060.3	15600

2015 launch records

```
SELECT LANDING__OUTCOME,

BOOSTER_VERSION,

LAUNCH_SITE

FROM SPACEXTBL

WHERE LANDING__OUTCOME

= 'Failure (drone ship)'

AND YEAR(DATE) = '2015'
```

Query

landingoutcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010 and 2017

SELECT LANDING__OUTCOME,

COUNT(LANDING__OUTCOME) AS total_number

FROM SPACEXTBL

WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'

GROUP BY LANDING__OUTCOME

ORDER BY total_number DESC

landing_outcome	total_number
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Launch Site proximities analysis

All Launch Sites Location

All launch sites are near coastline in the US

Color labeled launch outcomes

- Successful Landing = Green
- Unsuccessful landing = Red

Launch Site Proximities

Are launch sites in close proximity to railways? **Yes**Are launch sites in close proximity to highways? **Yes**Are launch sites in close proximity to coastline? **Yes**

Dashboard with Plotly Dash

■ Total Success Launches by all sites

KSC LC-39A records most success among launch sites

Launch Site with Highest Launch Success Ratio

Payload with Launch Outcome Scatter Plot for all sites

Predictive Analysis

Accuracy of all models were same

Confusion Matrix

Conclusions

- Number of flights increased → success rate increased
- SSO, HEO, GEO and ES-L1 orbital types have the highest success rate
- Launch site is far from cities but close to railways and coastline
- All models have the same accuracy