Name: SADAF M. ANIS

ID: 20101537

sec:11

350

No = 1.5627

Question 01:

Herre, QE =
$$\frac{\Delta Q}{V_{max}-V_{min}}$$

$$V_{max}-V_{min}$$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$
 $V_{max}-V_{min}$

$$\rightarrow \begin{array}{c} OE = \frac{1}{2n+1} \\ \rightarrow \begin{array}{c} 1.562 \times \frac{1}{100} \\ \end{array} \begin{array}{c} = \frac{1}{2n+1} \\ \end{array} \begin{array}{c} = \frac{1$$

$$\Rightarrow 2^{n+1} = \frac{100}{1.562}$$

$$\Rightarrow n + 2 = log_2 \left(\frac{100}{1.562}\right)$$

$$\Rightarrow n+1 = 6.00$$

$$\Rightarrow n+1 = 6.00$$

$$\therefore n=5 \quad (\Delta m:)$$

question 02:

Herre.
$$S_1 S_2 S_3 S_4$$
 $MSO \leftarrow LSB$
 $MSO \leftarrow LSB$
 $V_0 = \left(-\frac{RF}{P4} \times VS_4\right) + \left(-\frac{RF}{P3} \times VS_3\right) + \left(-\frac{RF}{P2} \times VS_2\right) + \left(-\frac{RF}{P4} \times VS_4\right) + \left(-\frac{RF}{P4} \times VS_$

20101537

(b) 1 LSB=
$$\left(-\frac{Pf}{Q_4} \times V_{S4}\right) - \left(-\frac{10}{160} \times (-5)\right)$$

= 0.3125 V

$$1.1 \text{ MSB} = \left(\frac{-Pf}{RI} \times VsI\right) = \left(\frac{-10}{20} \times -5\right) = 2.5 \text{ V}$$

$$S_1$$
 is oin $= 2.5 \pm 0.15625$)
 $\therefore \left(-\frac{10}{21} \times -5\right) = \left(2.5 + 0.15625\right)$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$\therefore \left(-\frac{10}{21} \times : -5\right) = \left(2.5 + 0.13 \times .52\right)$$

$$20 - 18.8235 \times .52$$

TERROR - PLANET - (NOVEL) NO ELEMAN

17-12 / (41.10), . [1. 128 - 10-56

Question 03:

$$\frac{13}{3R+6R+\frac{R}{2}}=\frac{13}{8R}$$

$$V_2 = I \times (\frac{P}{2} + P) = \frac{13}{8P} \times \frac{5P}{2} = \frac{5.0625}{5.000}$$

$$V_3 = I \times (\frac{P}{2} + 2P) = \frac{13}{8P} \times \frac{5P}{2} = 5.6875$$

$$V_3 = I \times (\frac{1}{2} + 2R) = \frac{13}{8R} \times \frac{7R}{2} = 5.6875V$$
 $V_4 = I \times (\frac{1}{2} + 3R) = \frac{13}{8R} \times \frac{9R}{2} = 7.3125V$

$$V_{4} = I \times (\frac{1}{2} + 3R) = \frac{13}{8R} \times \frac{7}{2} = 7.3125V$$

 $V_{5} = I \times (\frac{1}{2} + 4R) = \frac{13}{8R} \times \frac{9R}{2} = 7.3125V$

$$V_5 = I \times (\frac{1}{2} + 4R) = \frac{13}{8R} \times \frac{11R}{2} = 8.9375$$

$$V_6 = I \times (\frac{1}{2} + 5R) = \frac{13}{8R} \times \frac{11R}{2} = 8.9375$$

$$V_6 = I \times (\frac{1}{2} + 5R) = \frac{13}{8R} \times \frac{13R}{2} = |0.5625V|$$

N	0	w	,	

V7	Y6 \	ME	V4	V3	V2	VI	(),,,,,,,
OFF	OFF.	OFF	OFF	OFF	OFF.	OFF	OUTPUT
OFF	OFF	OFF	OFF	OFF	OFF	ON	001
OFF	OFF	OFF	OFF	OFF	PON	QN,	0,10
OFF	OFF.	OFF	OFF	ON	ON	ON	011
OFF	OFF	OFF.	MO	ON	000) (6 0 v -	1.100
DOF	OFF	ION	ON	ON	011	ON	(101)
OFF	low	ON	MO	PHI	1	JON	4110
1.00	1/01	NON	ON	100	JON	- VOYE	111

For output, 110 Up to VS is on.

Up to VS is on.

VA = VS = 7.3/25V

Min valve of VA = VS = 8.9.75V

WA = VB = to Start tequired = 2ⁿ = 2⁶ = 6⁹

Comparators heed = 2ⁿ = 6³

Question 04:

Question 5: (a) upper threshold voltage VTU = + Vsat = x P2

RITEZ 37/10 : $21/1 = 20 \times \frac{172}{372}$ lower threshold Voltage, VTL = -Vsat × PZ RI+PZ $= -20 \times \frac{172}{377}$ SCH DITS 0F -9.2673V (6) T₁ = T ln (+Vsat - VTL) +Vsat - VTU) = Rf Cln (+Vsat - VTL) +Vsat - VTU) $= (0ms \times ln(\frac{20+9.2473}{20-9.2473}) = (0.006ms)$ T2= Tln (-NSat-VTU = Rf Cln (-Vsat - VTL) $= \left[\text{oms} \times \ln \left(\frac{-20 - 9.2473}{-20 + 9.2473} \right) \right]$ =10.000 -:. Total time = t1+t2 = 20.0126 ms

1831015 B

Question 6:

$$V_{UT} = -\left(-\frac{V_{SAT}}{P}\right) = -\left(-\frac{13.8}{P}\right)$$

$$\Rightarrow P = \frac{13.8}{5} = 2.76$$

Ovestion 7:

Duestion 7:-

hysteresis width =
$$V_{TH} - V_{TL}$$
 $= \left(V_H \times \frac{RI}{R_1 + R_2}\right) - \left(V_L \times \frac{RI}{R_1 + R_2}\right)$

$$= 100 \times 10^{-3} (15+5) \times \frac{1}{1+\frac{R1}{R2}}$$

$$\Rightarrow \frac{P2}{P1} = \frac{20}{100 \times 10^{-3}} - 1 = \pm \frac{99}{200 - 1} = 199$$

$$= 1.5 \times 1.0050$$

: [Vref = 1.5075]

NOW

$$Vu = 300 \times 10^{-6} \times 110 = 0.033V$$

$$V_{V} = 300 \times 10^{-1}$$
 $V_{Y} = V_{U} + 0.7 = 0.733$

$$Vu = 300$$

$$Vy = Vu + 0.7 = 0.733$$

$$Vy = VH - Vy - 0.7$$

$$\therefore P = \frac{VH - Vy - 0.7}{300 \times 10^{-6}} = \frac{15 - 0.733 - 0.7}{300 \times 10^{-6}}$$

$$= \boxed{45 - 223 \mid < 52}$$

