

- La norme IEEE802.3
 - Introduction
 - Principes
 - Modèle OSI
 - · Format d'une trame
 - Adresses IEEE802.3 ou Ethernet
 - Couche liaison (MAC)
 - · Couche physique
 - Collision
 - · Différences avec les standards Ethernet
- Conclusion

- Uniquement la norme 85 dans ce chapitre
- O Norme 85 : uniquement 10Base5 : Câble coaxial (épais)
- Ethernet = Réseau local
- O Développé par Digital, Intel et Xerox (DIX)
 - Ethernet 1980 ---> IEEE 802.3
- O Basé sur la méthode d'accès CSMA-CD
 - CSMA: Accès multiples et écoute de la porteuse
 - CD: Détection de collision

urec INTRODUCTION (2)

- Buts énoncés dans le document DIX
 - Simple Faible coût
 - Peu de fonctions optionnelles
 - Pas de priorité
 - On ne peut pas faire taire son voisin
 - Débit : 10 Mb/s
 - Performances peu dépendantes de la charge

urec INTRODUCTION (3)

- "Non Buts"
 - Full duplex
 - · Contrôle d'erreur
 - Sécurité et confidentialité
 - · Vitesse variable
 - Priorité
 - · Protection contre un utilisateur malveillant

urec PRINCIPES (1)

- Support de transmission
 - segment = bus = câble coaxial
 - pas de boucle, pas de sens de circulation
 - diffusion
 - passif
 - · bande de base
- Un équipement informatique est raccordé sur ce câble par un transceiver
 - transmitter + receiver = transceiver
- O Un équipement Ethernet a une adresse unique au monde

urec PRINCIPES (2)

- → Sur le câble circulent des trames :
 - suites d'éléments binaires (trains de bits)
- O A un instant donné, une seule trame circule sur le câble
 - pas de multiplexage en fréquence
 - pas de full duplex
- Une trame émise par un équipement est reçue par tous les transceivers du segment Ethernet
- Une trame contient l'adresse de l'émetteur et l'adresse du destinataire

urec PRINCIPES (3)

- O Un coupleur est à l'écoute des trames qui circulent sur le câble
 - Si une trame lui est destinée, (@_DEST = mon_@)
 il la prend, la traite et la délivre à la couche supérieure
 - · Si non, il n'en fait rien
- Une station qui veut émettre
 - Regarde si le câble est libre
 - · Si oui, elle envoie sa trame
 - Si non elle attend que le câble soit libre
- O Si 2 stations émettent ensemble, il y a collision
 - Les 2 trames sont inexploitables
 - Les 2 stations détectent la collision, elles réémettront leur trame ultérieurement

urec PRINCIPES (4)

- Ethernet est un réseau
 - · probabiliste
 - sans chef d'orchestre
 - égalitaire
- Comparaison avec une réunion sans animateur entre gens polis

urec FORMAT D'UNE TRAME (3)

- Sens de circulation des octets
 - premier: premier octet du préambule
 - dernier : dernier octet de la séquence de contrôle
- Sens de circulation des bits pour un octet
 - premier: bit de poids faible (bit 0)
 - dernier : bit de poids fort (bit 7)
- O Espace inter-trames : 9.6 μs minimum
 - 10 Mbits/s = 10 bits / μs
 - espace inter-trames 9.6 μs --> 9.6 x 10 = 96 bits time (12 octets)

urec DIFFERENTS CHAMPS (1)

- Préambule
 - 7 octets: synchronisation
 - 7 * (10101010)
- SFD (Start Frame Delimiter)
 - 1 octet: 10101011
 - indique le début de trame

urec DIFFERENTS CHAMPS (2)

- Adresse destinataire
 - premier bit (transmis)
 - = 0 adresse d'une station unique
 - = 1 adresse d'un groupe de stations (multicast)
 - second bit (transmis)
 - = 1 adresse administrée localement
 - = 0 adresse administrée globalement (universelle)
 - Tous les bits à 1 : adresse d'e "broadcast" ---> toutes les adresses du réseau sont concernées
- O Adresse source : adresse physique de la station émettrice
 - premier bit (transmis) = 0 (adresse d'une station)

urec ADRESSES IEEE802.3 (ou ETHERNET (1)

- → Adresses = 6 octets (48 bits)
- O Notation hexadécimal (0B hexa = 11 décimal) :
 - 8:00:20:06:D4:E8
 - 8:0:20:6:d4:e8
 - 08-00-20-06-D4-E8
 - 08002006D4E8
- O Broadcast = diffusion = FF:FF:FF:FF:FF
 - Toutes les stations d'un réseau (de tous les segments)

urec ADRESSES IEEE802.3 (ou ETHERNET (2)

- Station :
 - 1er bit (transmis) = 0
 - --> 1er octet d'@ est pair :
 - 08:00:20:06:D4:E8
 - 0:0:C:0:5B:37
 - 2nd bit (transmis) = 0

désigne une adresse dite universelle (attribuée par IEEE)

- 1er octet = 00, 01, 04, 05, 08, 09,0C,0D ...
- O Multicast:
 - 1er bit (transmis) à 1 ---> 1er octet d'@ est impair
 - Désigne un groupe de stations :
 - 09-00-2B-00-00-0F protocole LAT de DEC
 - 09-00-2B-01-00-00 LANbridge (pont) de DEC

urec ADRESSES IEEE802.3 (ou ETHERNET (3)

- IÉEE a attribué des tranches d'adresses aux constructeurs:
 - · Les 3 premiers octets indiquent ainsi l'origine du matériel

- 00:00:0C:XX:XX:XX : Cisco

- 08:00:20:XX:XX:XX : Sun

- **08:00:09:**XX:XX:XX : **HP**

- 08:00:14:XX:XX:XX : Excelan

- Mais il y a des adresses "non IEEE" :

AA:00:04:XX:XX:XX: DEC

- O Les adresses Ethernet et IEEE802.3 sont donc uniques
 - Elles ne sont pas programmables (sauf certains coupleurs pour PC)
 - attention à DECNET

urec DIFFERENTS CHAMPS (3)

- Taille de la zone données
 - entre 1 et 1500 octets
 - la norme dit : "si la valeur du champ taille est supérieur à 1500 alors la trame peut être ignorée, détruite ou utilisée à d'autres fins que IEEE802.3" ---> permet la compatibilité avec Ethernet
- Données + padding
 - taille Š 1500 octets
 - taille 46 octets
 - padding (octets sans signification)
 - pour envoyer moins de 46 octets de données

viec DIFFERENTS CHAMPS (4)

- → FCS : Frame Control Sequence
 - 4 octets de contrôle : CRC (Cyclic Redundancy Check)
 - Polynôme de degré 32, s'applique aux champs :
 - adresses (destination et source)
 - taille de la zone de données
 - données + padding

urec COUCHE MAC (1)

- MAC: Media Access Control
- Interface entre MAC et LLC : services qu'offrent la couche MAC à la couche LLC : modélisés par des fonctions
- Transmet-trame : requête LLC ----> MAC
 - paramètres d'appel
 - @ destinataire
 - @ origine
 - taille des données
 - données
 - · paramètre de retour
 - status transmission = OK ou trop de collision (>16 essais)

urec COUCHE MAC (2)

- → Reçoit-trame : requête LLC ----> MAC
 - · paramètres de retour
 - @ destinataire (= propre adresse physique ou adresse multi-destinations)
 - @ source
 - taille des données
 - données
 - status:
 - OK
 - Erreur de FCS
 - Erreur d'alignement (pas nb entier d'octets)
 - Erreur de longueur (champ taille inconsistant)

VIEC FONCTION DE LA COUCHE MAC

- D'après la norme, la couche MAC est indépendante du media de communication, il suffit que ce dernier supporte l'accès CSMA / CD
- 2 fonctions:
 - gestion des données
 - mise en forme de la trame : champs, gestion FCS,
 - "conversion" octets ---> éléments binaires
 - gestion de la liaison
 - allocation du canal et gestion des collisions en écoutant les signaux "carrier sense" et "collision detection" générés par la couche physique.

ec TRANSMISSION D'UNE TRAME

- La sous-couche LLC a fait un appel "transmet-trame".
- La couche MAC :
 - · Ajoute préambule et SFD à la trame
 - Ajoute le padding si nécessaire
 - Assemble les champs: @ origine, @ destinataire, taille, données et padding
 - Calcule le FCS et l'ajoute à la trame
 - · Transmet la trame à la couche physique :
 - Si "carrier sense" faux depuis 9,6 µs au moins, la transmission s'effectue (suite de bits).
 - Sinon, elle attend que "carrier sense" devienne faux, elle attend 9,6 µs et commence la transmission (suite de bits).

viec RECEPTION D'UNE TRAME (1)

- La sous-couche LLC a fait un appel " reçoit-trame".
- La couche MAC est à l'écoute du signal "carrier sense", elle reçoit tous les trains de bits qui circulent sur le câble :
 - Les limites des trames sont indiquées par le signal "carrier sense"
 - · Ote le préambule, le SFD et l'éventuel padding
 - · Analyse l'adresse du destinataire dans la trame
 - Si l'adresse destination de la trame est différente de l'adresse de la station ----> poubelle

urec RECEPTION D'UNE TRAME (1)

- Si l'adresse inclut la station :
 - Elle découpe la suite de bits reçus en octet, puis en champs
 - Transmet à la sous-couche LLC les champs :
 - @ destination, @ source, taille, données
 - Calcule le FCS et indique une erreur à la couche LLC si :
 - FCS incorrect
 - trame trop grande: >1526 octets (avec préambule)
 - longueur de la trame n'est pas un nombre entier d'octets (erreur d'alignement)
 - trame trop petite: < 64 octets (trame avec collision)

urec COUCHE PHYSIQUE

- Fonctions de la couche physique
 - Permet de recevoir et d'émettre des suites d'éléments binaires
 - Détecte la transmission par une autre station,
 - pendant que la station n'émet pas: carrier sense
 - pendant que la station émet: collision detection
- Interface entre la couche MAC et la couche physique : services qu'offrent la couche physique à la couche MAC :
 - 3 requêtes et 3 booléens

rec Requêtes

- Transmettre un bit :
 - requête MAC ---> couche physique paramètre d'appel : 1 bit
- O Recevoir un bit:
 - requête MAC ---> couche physique paramètre de retour : le bit
- Attendre :
 - requête MAC ---> couche physique paramètre d'appel : nombre de bits à attendre

urec Booléens

Carrier sense :

• MAC <--- couche physique : Il y a du trafic sur le câble.

Transmitting:

• MAC ---> couche physique. Il y a des bits à transmettre.

Occilision detection :

 MAC <--- couche physique. Il y a une collision sur le câble (uniquement générée quand la station transmet une trame)

urec COLLISIONS: Problème

- Une station regarde si le câble est libre avant d'émettre (carrier sense)
- Mais le délai de propagation d'une trame sur le réseau n'est pas nul : une station peut émettre alors qu'une autre a déjà commencé à émettre
- Quand ces 2 trames émises presque simultanément se "rencontrent", il y a collision
- Avec un réseau très grand (et donc un temps de propagation d'une trame très long), ceci est inefficace

urec COLLISIONS : Solution

- Minimiser le temps pendant lequel une collision peut se produire :
 - le temps maximum de propagation d'une trame, temps aller et retour de la trame : le round trip delay = 50 μs
 - 50 μs # 63 octets ---> une collision ne peut se produire qu'en début d'émission d'une trame (collision window).
 - On fixe un Slot time = 51.2 µs (-> 64 octets): le temps d'acquisition du canal: une collision ne peut se produire que durant ce temps
 - la station émettrice ne peut se déconnecter avant la fin du slot time (pour avoir la certitude que la transmission se soit passée sans collision)
- Pour tenir ce temps maximum (RTD), on impose des limitations :
 - Longueur et nombre de segments, nombre de boîtiers traversés par une trame, ...

urec COLLISIONS: Détection

Emetteur :

- écoute le signal "collision detection" pendant 51.2 μs (64 octets) à partir du début d'émission
- S'arrête d'émettre quand il détecte une collision en comparant le signal émis avec le signal reçu par exemple

○ Récepteur :

si reçoit une trame de taille inférieure à 72 octets
=> collision

urec COLLISIONS: En envoi de trame

- La couche LLC transmet une trame (suite de bits) à la couche physique.
- Pendant le début de la transmission (slot time = 512 bits), elle teste le signal "Collision detection" que lui fournit la couche physique
- S'il y a collision, la station commence par renforcer cette collision en envoyant un flot de 4 octets (jam)

urec COLLISIONS : En réception de trame

- La couche LLC n'a pas besoin de tester le signal "Collision detection"
- O Longueur minimale d'une trame correcte : 72 octets
- O Longueur maximale d'une trame "accidentée" : 64 + 4 octets
- O Donc toute trame reçue de longueur < 72 octets est rejetée

urec COLLISIONS: Réemission

- r entier, au hasard: 0 <= r < (2 ** k)
 k = min (n, 10), n = nb de ré-émissions déjà faites
- O Elle émet à nouveau. Au maximum, 15 réémissions.
- Si la 15 ième ré-émission échoue, la couche physique retourne le status "Trop d'erreurs de collision" à la couche LLC

urec DIFFERENCES IEEE802.3 ETHERNET (1)

- Ethernet Version 1: DIX (Blue Book) 1980
 - 10 Mbps
 - 1024 stations
 - segment coaxial : 500 m
 - câble de transceiver : 3 paires
 - champ "type" dans la trame
 - entre 2 stations : 2 répéteurs max , 1500 mètres max
 - pas de SQE test (Heart Beat), ni de jabber function, ni de mode moniteur
- Ethernet Version 2 : 1982
 - SQE test
 - · câble de transceiver : 4 paires

DIFFERENCES IEEE802.3 ETHERNET (2)

- O IEEE 802.3-1985
 - câbles de transceiver: 4 ou 5 paires
 - champ "longueur de données" à la place de "type"
 - · possibilité de définir des adresses locales
 - entre 2 stations: 4 répéteurs max, 2500 mètres max
 - SQE test, jabber function, mode moniteur
- O Plus de problème pour utiliser IEEE802.3 et Ethernet :
 - · Les stations parlent entre elles.
 - Si problème, regarder le Heart Beat qui peut être enlevé sur certains transceivers.

urec DIFFERENCES IEEE802.3 ETHERNET (3)

- Champ "type" des trames Ethernet
 - 2 octets représentés en héxadécimal sous la forme XX-YY ou XXYY
 - · Champs types connus

- 0800 IP- 0806 ARP

- 6000 à 6009 DEC (6004 LAT) - 8019 DOMAIN (Apollo)

- 8038 DEC LANBridge management

- O Champ "taille" dans la trame IEEE802.3
 - Problème de compatibilité
 - Mais tous les numéros de protocole sont supérieurs à la longueur maximale de la zone de données d'une trame (1500)
 - Une station reconnaît les trames Ethernet et IEEE802.3

rec Conclusion

- Ethernet :
 - fonctionne très bien
 - c'est le réseau local le plus répandu
- Il y a tous les éléments nécessaires (mécano)
- O Les problèmes qui restent sont connus
 - Sécurité et confidentialité
 - Vitesse variable (impossible d'aller plus vite que 10 Mb/s)
 - Priorité
- O Ethernet est un protocole de réseau local

Le travail n'est plus sur Ethernet mais sur les protocoles et les applications des couches supérieures

Ethernet commuté