4. TVS + Job Scheduling

Sunday, February 21, 2021 8:32 AM

Greedy

- 1. Knapsack
- 2. Tree vertex splitting
- 3. Job scheduling with deadlines
- 4. Minimum spanning tree

Greedy

TVS

- 1. For every node assign a value
- 2. For node u, d(v) + weight(u, w) >= delta, then split the node w-> parent
 - Value of leaf node is always zero
- 3. All values of d(v) initialized to zero (initially)
- 4. d(T) = max(d(T), d(v)+w(T,v)) [for non-leaf nodes]

Job scheduling with deadlines:

- Profit for each job
- Job number
- Slot of execution

Find which job fits into the right slot

Arrange in order of decreasing profit

Job number	Profit	Slot number
1	20	2
2	15	2
5	10	1
4	5	3
3	1	3

Job 1 can execute in slot 1,2 not 3 Job 3 can execute in slot 1,2,3

Maximal slot: 3 Draw the graph:

Job	Slot allotted
1	1
2	2
5	Reject
4	3
3	Reject

Job	Slot	Job considered	Profit	Slot assigned
[]	-	1	0	0-1
[1]	0-1	2	20	1-2
[1 2]	0-1, 1-2	5	35	Reject
[1 2]	0-1, 1-2	4	35	2-3
[1 2 4]	0-1, 1-2, 2-3	3	40	reject

Job number	Profit	Slot number
1	20	4
2	15	3
5	10	2
4	5	1

Max(w, child nodes) d(4) + w(4,x)0 + max(1, 4) = 4

If in node 4, d(4) + 2 >= 5? Yes split at 4 d(4) = 0 after split (leaf node) d(7) + 1 >= 5?

No, no split at 7 d(8) + 4 > = 5? No, no split at 8

 $\begin{aligned} &d(2) = d(2),\, d(4) + max(w(4,2)) \\ &= 0 + 0 + (max(2)) = 2 \\ &\text{For node 2,} \\ &d(2) + w(2,1) >= 5? \\ &\text{Yes, split at 2} \end{aligned}$

For node 1, d(3) to be calculated POST ORDER

At node 6, d(6) = d(6), max(d(10)+w(10,6),d(9)-w(9,6)) = 6 d(6) + w(6,3) = 3 + 3 >= 5? Split at 6

No splitting at root node

Complexity:

Using arrays : O(v^2)
Using linked/adjacency list (singly): O(v)

no splittly at groot

3	1	4	
Job	Slot		

Job	Slot
1	1
2	2
3	2 (2 pushed to slot 3)
4	1 (1 pushed to 4)