PHIL 220: Introduction to Logic

Week 10 Discussion (10/31/2025)

Exercise 1: Atomic formulas and Formulas

Which of the expressions below are atomic formulas, or formulas, or neither?

- 1. (*Fa*)
- 2. F(x)
- $3. \neg (Bxyz)$
- 4. Qaxcy
- 5. $\forall x (Gx \rightarrow Hx)$
- 6. $(\forall xGx \rightarrow Hx)$

- 7. FFab
- 8. ¬*Gxy*
- 9. ∃*yGx*
- 10. $\exists x \forall y H y z$
- 11. $\forall x \neg (Fx \land Gb)$
- 12. $\exists z (Hz \land \neg Gz)$

Solutions:

- 1. (Fa) Neither
- 2. F(x) Neither
- 3. $\neg (Bxyz)$ Neither
- 4. *Qaxcy* **Both**
- 5. $\forall x(Gx \rightarrow Hx)$ **Formula**
- 6. $(\forall xGx \rightarrow Hx)$ Formula
- 7. FFab Neither
- 8. $\neg Gxy$ Formula
- 9. $\exists yGx$ Formula
- 10. $\exists x \forall y Hyz$ **Formula**
- 11. $\forall x \neg (Fx \land Gb)$ Formula
- 12. $\exists z (Hz \land \neg Gz)$ Formula

Exercise 2: Free and Bound Variables

For each formula below

- Identify any **free** variable occurrences (state the variable and where it is).
- Identify any **bound** variable occurrences.
- State whether the formula is an **open formula** or a **sentence**.
- 1. Qabcdaxc

6. $\forall x \exists y (Rxy \rightarrow Pz)$

2. $Px \wedge Qay$

7. $\forall x \forall y Rzxy \land \exists z Fz$

3. $\forall x (Px \land Qay)$

8. $\neg \forall x (Px \lor \exists y Gxy)$

4. ∃*z*L*za*

9. $\forall xQx \rightarrow \exists y(Gxy \lor Hy)$

5. $\forall y P y \land Q y$

10. $\forall x \exists y Rabc$

Solutions:

- 1. *Qabcdaxc* **Free**: x. **Bound**: none. **Open formula**.
- 2. $Px \wedge Qay$ Free: x (in Px), y (in Qay). Bound: none. Open formula.
- 3. $\forall x (Px \land Qay)$ Free: y (in Qay). Bound: x (in Px). Open formula.
- 4. $\exists z L z a$ **Free**: none. **Bound**: z (in L z a). **Sentence**.
- 5. $\forall y Py \land Qy$ Free: y (in Qy). Bound: y (in Py). Open formula.
- 6. $\forall x \exists y (Rxy \rightarrow Pz)$ Free: z (in Pz). Bound: x, y (in Rxy). Open formula.
- 7. $\forall x \forall y Rzxy \land \exists z Fz$ Free: y (in Rzxy). Bound: x, y (in Rzxy), z (in Fz). Open formula.
- 8. $\neg \forall x (Px \lor \exists y Gxy)$ **Free**: none. **Bound**: x (in Px and Gxy), y (in Gxy). **Sentence**.
- 9. $\forall xQx \rightarrow \exists y(Gxy \lor Hy)$ Free: x (in Gxy). Bound: x (in Qx), y (in Gxy and Hy). Open formula.
- 10. $\forall x \exists y Rabc$ **Free**: none. **Bound**: x, y (vacuously). **Sentence**.

Exercise 3: Translation

Translation key:

Domain: people

 P_{-} : _ is a philosopher.

 Q_{-} : _ is a logician.

 $R_{-}:$ admires _.

a : Plato

b: Aristotle

1. Not every philosopher is a logician.

Solution:
$$\neg \forall x (Px \rightarrow Qx)$$
 or equivalently $\exists x (Px \land \neg Qx)$

2. Aristotle is a logician, but not every philosopher is.

Solution:
$$Qb \land \neg \forall x (Px \rightarrow Qx) \text{ or } Qb \land \exists x (Px \land \neg Qx)$$

3. Some philosophers are logicians and some philosophers are not logicians.

Solution:
$$\exists x (Px \land Qx) \land \exists y (Py \land \neg Qy)$$

4. Not every philosopher admires some logician.

Solution:
$$\neg \forall x (Px \rightarrow \exists y (Qy \land Rxy)) \text{ or } \exists x (Px \land \neg \exists y (Qy \land Rxy))$$

5. If Plato is a logician, then he is a philosopher only if some logicians are philosophers.

Solution:
$$Qa \rightarrow (Pa \rightarrow \exists x (Qx \land Px))$$

6. Plato is a philosopher, and Aristotle is a philosopher too, but some logicians admire neither of them.

Solution:
$$Pa \wedge Pb \wedge \exists x (Qx \wedge \neg Rxa \wedge \neg Rxb)$$

7. No logicians are philosophers, unless Plato is a logician.

Solution:
$$\neg Qa \rightarrow \neg \exists x (Qx \land Px)$$
 or equivalently $\neg Qa \rightarrow \forall x (Qx \rightarrow \neg Px)$

8. Plato is not a logician, unless every philosopher is a logician.

Solution:
$$\neg \forall x (Px \rightarrow Qx) \rightarrow \neg Qa \text{ or equivalently } Qa \lor \forall x (Px \rightarrow Qx)$$