

- Prelegerea 13 - Scheme de criptare CCA sigure

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Schemă de criptare CCA sigură - construcție

2. Schemă de criptare CCA sigură - demonstrație

▶ In cursul precedent am introdus noţiunile de securitate CPA şi securitate CCA;

- In cursul precedent am introdus noțiunile de securitate CPA și securitate CCA;
- Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB și CTR);

- In cursul precedent am introdus noțiunile de securitate CPA și securitate CCA;
- Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB și CTR);
- Insă nici una din schemele prezentate nu este CCA sigură;

- In cursul precedent am introdus noțiunile de securitate CPA și securitate CCA;
- Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB și CTR);
- Insă nici una din schemele prezentate nu este CCA sigură;
- ► In acest curs vom folosi MAC-uri împreună cu scheme CPA sigure pentru a construi scheme CCA sigure;

- In cursul precedent am introdus noțiunile de securitate CPA și securitate CCA;
- Multe dintre schemele prezentate până acum sunt CPA sigure (sistemele bloc împreună cu modurile de utilizare CBC, OFB și CTR);
- Insă nici una din schemele prezentate nu este CCA sigură;
- ► In acest curs vom folosi MAC-uri împreună cu scheme CPA sigure pentru a construi scheme CCA sigure;
- Incepem prin a reaminti noțiunea de schemă CCA sigură;

Experimentul $Priv_{A,\pi}^{cca}(n)$

▶ Pe toată durata experimentului, \mathcal{A} are acces la oracolul de criptare $Enc_k(\cdot)$ și la oracolul de decriptare $Dec_k(\cdot)$ cu restricția că nu poate decripta c!

Experimentul $Priv^{cca}_{\mathcal{A},\pi}(n)$

Definiție

O schemă de criptare $\pi = (Enc, Dec)$ este CCA-sigură dacă pentru orice adversar PPT $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Priv_{\mathcal{A},\pi}^{cca}(n) = 1] \leq \frac{1}{2} + negl(n).$$

Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură şi încă una pentru un cod de autentificare a mesajelor (MAC).

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj *m*, Alice procedează astfel:

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj m, Alice procedează astfel:
 - criptează m folosind schema CPA sigură, rezultând textul criptat c

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj m, Alice procedează astfel:
 - criptează m folosind schema CPA sigură, rezultând textul criptat c
 - calculează un tag MAC t pe textul criptat c

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj m, Alice procedează astfel:
 - criptează m folosind schema CPA sigură, rezultând textul criptat c
 - calculează un tag MAC t pe textul criptat c
 - lacktriangle rezultatul final al criptării este $\langle c,t
 angle$

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj *m*, Alice procedează astfel:
 - criptează m folosind schema CPA sigură, rezultând textul criptat c
 - calculează un tag MAC t pe textul criptat c
 - lacktriangle rezultatul final al criptării este $\langle c,t
 angle$
- Pentru un text criptat $\langle c, t \rangle$, Bob verifică validitatea tag-ului înainte de a decripta;

- Cele două părți comunicante partajează două chei secrete, una pentru schema de criptare CPA sigură și încă una pentru un cod de autentificare a mesajelor (MAC).
- Pentru criptarea unui mesaj m, Alice procedează astfel:
 - criptează m folosind schema CPA sigură, rezultând textul criptat c
 - calculează un tag MAC t pe textul criptat c
 - lacktriangle rezultatul final al criptării este $\langle c,t
 angle$
- Pentru un text criptat $\langle c, t \rangle$, Bob verifică validitatea tag-ului înainte de a decripta;
- ▶ Un text criptat $\langle c, t \rangle$ este *valid* daca t este un tag valid pentru c.

Construcție

Fie $\Pi_E = (\operatorname{Enc}, \operatorname{Dec})$ o schemă de criptare cu cheie secretă și $\Pi_M = (\operatorname{Mac}, \operatorname{Vrfy})$ un cod de autentificare a mesajelor. Definim schema de criptare $(\operatorname{Enc}', \operatorname{Dec}')$ astfel:

- Enc: pentru o cheie (k_1, k_2) și un mesaj m, calculează $c = \operatorname{Enc}_{k_1}(m)$ și $t = \operatorname{Mac}_{k_2}(c)$ și întoarce textul criptat $\langle c, t \rangle$;
- ▶ Dec: pentru o cheie (k_1, k_2) și un text criptat $\langle c, t \rangle$, verifică dacă $\operatorname{Vrfy}_{k_2}(c, t) = 1$. In caz afirmativ, întoarce $\operatorname{Dec}_{k_1}(c)$, altfel întoarce \bot .
- ▶ Simbolul ⊥ indică eșec;
- ▶ Corectitudinea schemei cere ca $Dec_{k_1,k_2}(Enc_{k_1,k_2}(m)) \neq \bot$.
- ▶ Spunem că (Mac, Vrfy) are *tag-uri unice* dacă $\forall m \ \forall k \ \exists$ un unic tag t a.î. $\operatorname{Vrfy}_k(m,t) = 1$.

Teoremă

Dacă schema de criptare Π_E este CPA-sigură și Π_M este un MAC sigur cu tag-uri unice, atunci construcția precedentă reprezintă o schemă de criptare CCA-sigură.

▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;

- ▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;
- ► Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri:

- ▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;
- ► Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri:
 - ▶ texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos);

- ▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;
- ► Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri:
 - texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos);
 - texte criptate pe care nu le-a primit de la oracolul de criptare;

- ▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;
- ► Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri:
 - texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos);
 - texte criptate pe care nu le-a primit de la oracolul de criptare;
- Insă, cum Π_M este un MAC sigur, cu probabilitate foarte mare textele criptate care nu au fost obținute de la oracolul de criptare sunt invalide, iar oracolul de decriptare va întoarce \bot în acest caz;

- ▶ Un text criptat $\langle c, t \rangle$ este valid (în raport cu o cheie (k_1, k_2)) daca $Vrfy_{k_2}(c, t) = 1$;
- ► Mesajele pe care adversarul A le trimite către oracolul de decriptare sunt de 2 feluri:
 - ▶ texte criptate pe care A le-a primit de la oracolul de criptare (ştie deja textul clar, deci nu îi sunt de folos);
 - texte criptate pe care nu le-a primit de la oracolul de criptare;
- Insă, cum Π_M este un MAC sigur, cu probabilitate foarte mare textele criptate care nu au fost obținute de la oracolul de criptare sunt invalide, iar oracolul de decriptare va întoarce \bot în acest caz;
- ► Cum oracolul de decriptare este inutil, securitatea schemei $(\operatorname{Enc}', \operatorname{Dec}')$ se reduce la securitatea CPA a schemei Π_E .

Important de reținut!

► Schemă de criptare CPA-sigură și MAC sigur aplicat pe textul criptat (*encrypt then MAC*) ⇒ schemă de criptare CCA sigură