Using Algebraic Graph Theory To Find Equiangular Lines in \mathbb{R}^n

David Snider

UNC Department of Mathematics
Directed Reading Program
Mentored by Alex Foster

November 5, 2021

The Problem

How many equiangular lines can we fit in \mathbb{R}^n ?

What are Equiangular Lines?

Definition

A set of lines in Euclidean space is equiangular if every pair of lines has the same angle.

Example

Example (cont'd)

Non-Example

Non-Example (cont'd)

In \mathbb{R}^3

In \mathbb{R}^3

What does it mean to "fit"?

Definition

We say k equiangular lines "fit" in \mathbb{R}^n if one can construct k distinct, equiangular lines through the origin of \mathbb{R}^n .

What we know (or don't)

▶ For each $n \in \mathbb{N}$, we know an upper bound for the lines that fit in \mathbb{R}^n .

For some but not all $n \in \mathbb{N}$, we know the maximal amount of lines that fit in \mathbb{R}^n .

We know how to translate this problem into linear algebra and graph theory.

The Translation

- Equiangular Lines
- Equiangular Tight Frames
- ▶ Grammian
- Seidel Adjacency Matrix
- Regular Two Graph

Connection 1

There is a relationship between equiangular lines and equiangular tight frames.

Frames

Definition

Let $\mathcal V$ be a vector space and $\{e_i\}_{i=1}^k$ be a set of vectors in $\mathcal V$. $\{e_i\}_{i=1}^k$ is a frame if $\exists A,B>0$ such that $0< A\leq B<\infty$ and for each $v\in \mathcal V$:

$$A||v||^2 \le \sum_{i=1}^k |\langle v, e_i \rangle|^2 \le B||v||^2.$$

Frames

Definition

Let $\mathcal V$ be a vector space and $\{e_i\}_{i=1}^k$ be a set of vectors in $\mathcal V$. $\{e_i\}_{i=1}^k$ is a frame if $\exists A,B>0$ such that $0< A\leq B<\infty$ and for each $v\in \mathcal V$:

$$A||v||^2 \le \sum_{i=1}^k |\langle v, e_i \rangle|^2 \le B||v||^2.$$

Note: A frame is "tight" if A = B (cf. orthonormal bases).

Frames

Additional Property:

 $\{e_i\}_{i=1}^k$ is a frame in \mathbb{R}^n if and only if it is a spanning set for \mathbb{R}^n

Check your understanding: Given a spanning set in \mathbb{R}^n , what must it satisfy to be an equiangular tight frame?

Example Frame

- This is the "Mercedes Benz Frame" in \mathbb{R}^2
- ▶ It is an "equiangular tight frame."

Example Frame

Example Frame

Frame to Grammian

$$\left\{ \sqrt{\frac{2}{3}} \begin{bmatrix} 1\\0 \end{bmatrix}, \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2}\\\frac{\sqrt{3}}{2} \end{bmatrix}, \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2}\\\frac{-\sqrt{3}}{2} \end{bmatrix} \right\}$$

Frame to Grammian

Definition

Let $\{e_i\}_{i=1}^k$ be a frame in \mathbb{R}^n .

Then the Grammian of this frame is given by $\Theta\Theta^T$, where

$$\Theta^{T} = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ e_{1} & e_{2} & \dots & e_{k} \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}, \ \Theta = \begin{bmatrix} \leftarrow & e_{1}^{T} & \rightarrow \\ \leftarrow & e_{2}^{T} & \rightarrow \\ & \dots & \\ \leftarrow & e_{k}^{T} & \rightarrow \end{bmatrix}.$$

Frame to Grammian (Mercedes-Benz Example)

Let
$$e_1 = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$, $e_3 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}$

Frame to Grammian (Mercedes-Benz Example)

Let
$$e_1 = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $e_3 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ \frac{-\sqrt{3}}{2} \end{bmatrix}$

$$\Theta^{T} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}, \ \Theta = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}$$

Frame to Grammian (Mercedes-Benz Example)

Let
$$e_1 = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $e_2 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$, $e_3 = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{-1}{2} \\ \frac{-\sqrt{3}}{2} \end{bmatrix}$

$$\Theta^T = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}, \ \Theta = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix}$$

$$\Theta\Theta^T = \begin{bmatrix} 1 & \frac{-1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & 1 & \frac{-1}{2} \\ \frac{-1}{2} & \frac{-1}{2} & 1 \end{bmatrix}$$

$$\frac{1}{\phi+2} \begin{bmatrix} \phi+2 & \phi & \phi & \phi & \phi & -\phi \\ \phi & \phi+2 & \phi & -\phi & \phi & \phi \\ \phi & \phi & \phi+2 & \phi & -\phi & \phi \\ \phi & -\phi & \phi & \phi+2 & -\phi & -\phi \\ \phi & \phi & -\phi & -\phi & \phi+2 & -\phi \\ -\phi & \phi & \phi & -\phi & -\phi & \phi+2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & -1 \\ 1 & 1 & -1 & -1 & 0 & -1 \\ -1 & 1 & 1 & -1 & -1 & 0 \end{bmatrix}$$

$$\frac{1}{\phi+2} \begin{bmatrix} \phi+2 & \phi & \phi & \phi & \phi & -\phi \\ \phi & \phi+2 & \phi & -\phi & \phi & \phi \\ \phi & \phi & \phi+2 & \phi & -\phi & \phi \\ \phi & -\phi & \phi & \phi+2 & -\phi & -\phi \\ \phi & \phi & -\phi & -\phi & \phi+2 & -\phi \\ -\phi & \phi & \phi & -\phi & -\phi & \phi+2 \end{bmatrix}$$

$$\frac{1}{\phi + 2} \begin{bmatrix} 0 & \phi & \phi & \phi & \phi & -\phi \\ \phi & 0 & \phi & -\phi & \phi & \phi \\ \phi & \phi & 0 & \phi & -\phi & \phi \\ \phi & -\phi & \phi & 0 & -\phi & -\phi \\ \phi & \phi & -\phi & -\phi & 0 & -\phi \\ -\phi & \phi & \phi & -\phi & -\phi & 0 \end{bmatrix}$$

```
\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & -1 \\ 1 & 0 & 1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 & 1 \\ 1 & -1 & 1 & 0 & -1 & -1 \\ 1 & 1 & -1 & -1 & 0 & -1 \\ -1 & 1 & 1 & -1 & -1 & 0 \end{bmatrix}
```


$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 & 1 & -1 \\ 1 & -1 & 0 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 & -1 & 1 \\ 1 & 1 & 1 & -1 & 0 & -1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 & 1 & -1 \\ 1 & -1 & 0 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 & -1 & 1 \\ 1 & 1 & 1 & -1 & 0 & -1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$$

Switching

Switching

Switching

Two Graph

Thank You!

david_snider@unc.edu