Report | Coursework 1: Sentiment analysis from tweets

Solution 1)

- Started by implementing parse_data_line() and pre_process() function.
- The parse_data_line() is taking line from the 'sentiment-dataset.tsv' file and returns the tuple with label and text. The line will have three elements but we are just interested in element at '1' index and element at '2' index. I have added a check to see in the data is not empty and has three elements to avoid any IndexError. Moreover, I could also have transformed the label and text to lower case, but I thought pre_process() function would be the best place to do so.
- The pre_process() takes a text and return a list of tokens. This might look a simple function but indeed gives a lot of opportunity to add optimization to our tokens. In second NLP lab has similar function implemented that I am going to refer that as a starting point.

Solution 2)

- Implement to_feature_vector() function for feature extraction.
- Given a list of tokens it will return a python dictionary with tokens as keys and corresponding weights as values. I am keeping weight of each word as 1 using the binary feature approach.
- The **global feature dict** variable represents bag of words though.
- These are the algorithm steps: -
 - Use Counter from collections library to create a frequency count for words.
 - Update global_feature_dict with key count
 - Override the value of the keys to 1 since following binary feature approach.

NOTE: - This method is optimised later in NLP_Assignment_2.ipynb

Solution 3)

Cross-validation on training data: -

- Implemented cross_validate() function to do a 10-fold cross validation on the training data.
- Storing precision, recall, f1 score, and accuracy of your classifier in a global variable cv_results contain average scores for all folds.
- Using precision_recall_fscore_support function from sklearn.metrics to calculate precision, recall, f1 score
- The cross_validate() function returns cv_results as a response.

Solution 4)

- Using the already implemented function **confusion_matrix_heatmap()** for measuring performance of the classes using a confusion matrix.
- The balance of false positives and false negatives are as follows:
 - o Total dataset 2684 | False Positives 228 | False Negative 158
- Carried out the error analysis on first fold data from cross-validation function.
- Writing all the FP and TN into a csv file with column headers being "Expected Values", "Predicted Values", "Text". Note:- Files will be generated automatically in relative path.

FP observation note for 'negative': - The text predicted as 'positive' but were actually 'negative' is termed as false positive.

- The Recall of positive class is high 0.91 as compare to precision value of 0.88, which suggests that the model would be better at capturing a larger proportion of actual positive cases at the expense of precision, ie this could lead to more false positives.
- The training data is also imbalance with positive label values and negative being in ratio 2:1 approx. We can use the parameters like class_weight, or C to tweak the accuracy.
- When analysing the bag of words for the positive world I found that there are words like 'tomorrow', 'may', 'like' etc which have high term-frequency for positive but also present for the negative texts hence confusing model.

FN observation notes for 'positive': - The text predicted as 'negative' but were actually 'positive' is termed as false negative.

• The high term frequency words like 'not', 'nothing' is present due to which model is predicting those text as negative.

Moreover, I see a lot of noise in dataset which might be causing abnormal behaviour. I will be optimizing these tokens to see if I can increase the precision for positive.

Solution 5) - Ref NLP_Assignment_2.ipynb

These are the optimization I did after doing the error analysis: -

Optimisation in pre_process() function: -

Filtered out words which are URL or web link. frequency of these were quite high and were degrading accuracy.

- I am not removing numbers because I think the numbers can also be useful feature for analysing sentiment. Eg- "There market closed at -10 pt." is negative.
- I have removed punctuations because I think they are not useful features for sentiment analysis where the labels are binary. Had it been more labels, I would have kept punctuations.
- Furthermore, added stop word removal to remove words like 'the', 'and', 'is'; normalization to cast into lowercase and lemmatising to transform words in their base form.

Optimisation in to_feature_vector() function: -

- Using bigram along with unigram for extracting combination of words as features.
- Started using 'CountVectorizer' from sklearn.feature_extraction.text
 - CountVectorizer(binary=True, ngram range=(1,2))
 - CountVectorizer(binary=True, ngram_range=(1,2), max_features=200000)
- Implemented to_feature_vector_weighted to return weighted feature dictionary.

NOTE: - The average feature extracted per sentence is 11 after optimizing.

Other optimizations include: -

• I saw that the datasets are imbalance so I shuffled dataset. Below are the values before and after using shuffled dataset.

Before shuffling dataset	After shuffling dataset
{'precision': 0.8539605466539374,	{'precision': 0.8592266422753401,
'recall': 0.8558809999576742, 'f1': 0.8537997900365687,	'recall': 0.8605019726040825, 'f1': 0.8587634679162669,
'accuracy': 0.8558809999576742}	'accuracy': 0.8605019726040825}

- Implemented average number of words per sentence for a dataset. Added those changes as part of split_and_preprocess_data() function.
- Tried playing around with the parameters of SVM. Here is the observation: -
 - Added dual='auto' for classifier to choose dual or primal optimization.
 - There was no major change observed for change is `C`. (Ref: Results Table)
 - o Tried 'class_weights = {0: 10.0, 1: 1.0} ' with C=1.0, the recall of positive decreased a little. (Ref: Results Table). I was trying to balance the recall of positive with weight but looks like there was some convergence warning saying that `ConvergenceWarning: Liblinear failed to converge, increase the number of iterations`.
 - o To resolve the above warning, I used 'max_iter int, default=1000'.
 - o Reducing the value of C now was affecting the precision and recall of the label.
- Tried max_feature=200000 parameter in CountVectorizer to only consider most frequent words out of 300k features.

	Baseline Value – Without Optimization (I)	Intermediate Optimized (II)	Intermediate Optimized (III)	Intermediate Optimized (IV)	Final Optimized (V)
Evaluation Metrics	{'precision': 0.84704, 'recall': 0.84831, 'f1': 0.84730, 'accuracy': 0.84831}	{'precision': 0.85908, 'recall': 0.86024, 'f1': 0.8580755176810435, 'accuracy': 0.86024}	{'precision': 0.85743, 'recall': 0.85871, 'f1': 0.85698, 'accuracy': 0.85871}	{'precision': 0.85877, 'recall': 0.86009, 'f1': 0.85833, 'accuracy': 0.86009}	{'precision': 0.85922, 'recall': 0.86050, 'f1': 0.85876, 'accuracy': 0.86050}
Pre- processing	filtering start and end punctuations	normalisation, lemmatising, stop word, filtering start and end punctuations	normalisation, lemmatising, stop word, filtering start and end punctuations,	normalisation lemmatising stop word filtering start and end punctuations	normalisation, lemmatising, stop word, filtering start and end punctuations,
Feature extraction	unigram, binary weighted	binary=True, ngram_range=(1,2), binary weighted	binary=True, ngram_range=(1,2), max_features=200000, binary weighted	binary=True, ngram_range=(1,2), max_features=200000, binary weighted	binary=True, ngram_range=(1,2), max_features=200000, frequency weighted
SVM parameter	default	C=1.0	C=1.0, class_weights = {0: 10.0, 1: 1.0}	C=1.0, class_weights = {0: 100.0, 1: 1.0},max_iter= 100000	C=1.0, class_weights = {0: 100.0, 1: 1.0},max_iter= 100000

- The **best accuracy** was achieved when using weighted features with cost parameter and class weight. Class weight normalised the sensitivity of the positive label. **Ref- V**
- When using C with class weight, there was a little improvement in overall precision and accuracy. This is because I have given weight to negative label to normalised high sensitivity of positive label. **Ref-III**
- The weighted feature extraction improved the accuracy. Ref V