

AUDIO AMPLIFIER

Supervisor by: Dr. Eman Sawires

references From: [1] Floyd, "Electronic Devices", 9th-edition.

Team Members:

- 1- Mahmoud Abd ELmoneam Ramadan Mohamed
- 2- Mahmoud Khaled Ramadan Ibrahim
- 3- Mosab Mohamed Sayed
- 4- Mostafa Salah Mahdy
- 5- Abd El Rahman Yahia Sayed

Content →

- 1- Proteus for DC Analysis and AC Analysis page (3-4)
- 2- DC Analysis page (5-7)
- 3- AC Analysis From (8-9)
- 4- Frequency Analysis FL, FH (10-11)
- 5- Power Amplifier Analysis (12)

Steps →

- 1- We do DC Analysis to make Q point in mid-point.
- 2- We do DC Analysis on proteus.
- 3- We calculate Gain and Frequency response and AC Analysis
- 4- And we apply them in proteus.
- 5- We calculate DC analysis for power amplifier.
- 6- We apply the circuit on testboard and it works.
- 7- Finally, we apply it on PCP.

DC Analysis

8P loop

9 +9 - IE (R3+R4)+VCE - ICR5=0

-VCE = 18 - IE(34×103) - IC(22×103)

-VCE = 4.673

VEC = 4.673

VEB = 0.7

VCB = VEB - VEB = 0.7-4.67 = -3-97V

AC Analysis

FH2=1/FP1+FP2 = 38.33 KHZ

- FH6H = 1 = 1974.9 HZ

FH12+ FH2

FH2=1/FP1+FP2 = 38.33 KHZ VB3=3#-0.7=-7.1V VE3 = VEB + VB VE3 = 0.7 - 2.1 = -1.40 VEI= VBI-VBEI MENT = 7. \$ - 0.7 = 1.4 t Vo = VE of Q, and Q3 = 1.45 curren of Rz IRZ= 9-1.4 = 7.6 mA = IC1 = 7.6 mA IR3 = 1.4+9 = 47.7 mA : IC3 = 47.7 mA Assuming B = 100 : IBZ = ICZ = 76 MA IDY = ICY = Y77HA

IC1 = 7.6 mA , IB1 = 38 MA

IE1 = 7.6 4 mA

IB2 = IE1 = 7.64 mA , IC2 1.52 A

IE2=1.63 A

IC3 = 47.2 mA , IB3 = 236 MA

IE3 = 47.4 mA

IB4 = IC3 = 47.7 mA , IC4 = 9.44 A

IE4 = 9.5 A

IC5 = IB3 = 236 MA , IB5 = 1.18 MA

IE5 = 1.24 A

Comparison between DC, AC in proteus and Analysis :

DC, AC values	Proteus	Analysis
I _{b1}	1.06 micro	1.16 micro
I _{e1}	.245 m	.237 m
I _{C1}	.243 m	.238 m
I _{b2}	3.61 micro	2.44 micro
l _{e2}	.50 m	.489 m
I _{C2}	.49 m	.49 m
V_{ec1}	4.58 v	4.67 v
V _{bc1}	3.92 v	3.97 v
V_{eb1}	.66 v	.7 v
V_{ce2}	9.66 v	9.56 v
V_{cb2}	9.01 v	8.81 v
V_{be2}	.64 v	.7 v
G_v	154	200