

Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection

GOSIM AI Paris 2025

Email: chicheng@baai.ac.cn

Homepage: chicheng123.github.io

- Researcher at Beijing Academy of Artificial Intelligence (BAAI)
- Focus on Embodiment Al
- Publish 20+ papers on AI top conferences and journals
- Google scholar citation 3700+

Code-as-Monitor Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection

CVPR 2025

zhoues.github.io/Code-as-Monitor

https://arxiv.org/pdf/2412.04455

Embodied Al

Internet AI: learn from web data

Classification Detection

Segmentation Tracking

Captioning Generation

Classification

CAT

Object Detection

CAT, DOG, DUCK

011

Instance

CAT, DOG, DUCK

Embodied AI: learn from interaction with environment

Manipulation Navigation

Mobile Manipulation

• • • • •

Inner monologue

Diffusion Policy

Zhang J, Wang K, Wang S, et al. Uni-NaVid: A Video-based Vision-Language-Action Model for Unifying Embodied Navigation

GOSIMP AIX Parist, 2025er monologue: Embodied reasoning through planning with language models

Chi C, Xu Z, Feng S, et al. Diffusion policy: Visuomotor policy learning via action diffusion

Why do we need failure detection?

 $\pi 0$ RVT-2

- Performing long-term tasks in open world and complex environment, failures are difficult to completely avoid.
- Automatic detection and prevention of failures is critical, especially for closed-loop systems.

IIM

Figure 4: System error breakdown.

Fig. 4: Failure analysis. We break down the failure cases of the variants of our approach using zero-shot prediction, distilled policies, and in-context learning. We break down the failures into reasoning failures (caused by errors in the affordance prediction) and execution failures (caused by low-level motions). We demonstrate how policy distillation and in-context learning reduce failure cases.

execution failures

What should we expect from an ideal failure detection framework?

 Faced with a variety of failures, the framework can accurately identify them after they occur.

This type is called Reactive Failure
 Detection

Q: Do we have to detect and recover after failures occur?

What should we expect from an ideal failure detection framework?

 Detect foreseeable, impending failures and prevent them before they occur.

This type is called Proactive Failure
 Detection

New definition of failure detection

- Unify Reactive and Proactive failure detection into spatio-temporal constraint satisfaction problem
- Reactive: whether the required states of entities (such as robots, objects, etc.) in the environment are reached at the end of the task (or subtask).
- **Proactive:** whether all entities in the environment (such as robots, objects, etc.) maintain the required state during the task (or subtask).

Leverage VLM to pursue real-time and accuracy

- Using reasoning and generalization of **VLMs** to convert the open set failure detection into a set of spatiotemporal constraints.
- Using codes to accurately and real-time evaluate whether the entities maintain the required state during the process or reach the state in the end

Constraint Element

- Propose a new representation constraint element
- Constraint elements abstract constraint-related entities or their parts into geometric
 elements (such as points, lines, and surfaces), which are composed of points in 3D space.

Advantages of Constraint Elements

- 3D points are convenient as code input for calculation.
- Abstract constraint-related entities and remove irrelevant geometric and visual elements.
- Real-time monitoring can be achieved by simply tracking constraint elements and calculating their

spatiotemporal relationships.

Step 1: Constraint Generation

$$l_{\text{next}}, \mathcal{C}_d, \mathcal{C}_u = \mathcal{F}_{\text{VLM}}(\mathcal{O}, \mathcal{L}_{\text{global}}, l_{\text{pre}}, f_{\text{pre}})$$

• Constraint Generator not only decomposes long-term tasks, but also unifies the two types of failure detection.

 Constraint Painter converts text constraints into constraint elements and paints them on multi-view images.

GOSIM

Constraint-based instance-level / part-level segmentation

ConSeg is a reasoning segmentation model that gives both the pixel-level segmentation results and the required text-level constraint types (for example, segmenting the pan surface and giving the "surface" type).

- Point clouds are fused according to the camera internal and external parameters and depth information, and voxelized according to the constraint element type.
- Voxel grid is clustered and the point number is ensured according to the constraint element type
- All points are connected within the object to obtain the constraint element in 3D space.

Painting

Project the constrained elements in 3D space back to the image view

RGB-D camera

UR5 Arm

Simulator / Real-world Setting

Front View

Top View (a) CLIPort

Front View

Top View (b) Omnigibson

Front View

Wrist View

Right Shoulder View

eap Hand

(c) RLBench

THE RESIDENCE PROPERTY OF BUILDING

Generalizability of ConSeg model

Figure 6. Visual comparison between our ConSeg and LISA [29] at instance and part level. The red masks are the segmentation results.

Welcome to our Booth!

Entering right side board)

Visit us a the left p

OPEN PLATFORM

Welcome to our Booth! Have A Nice Talk~

1st Floor, Open Platform Area Entering the main gate, the first booth on the right side (next to the GOSIM main display board)

Visit us at **BAAI Booth** (with a shining Star in the left picture)

follow our X account

visit our GitHub

Q & A

Code-as-Monitor Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection

zhoues.github.io/Code-as-Monitor

https://arxiv.org/pdf/2412.04455

