CONTROLLING DEVICE OF ROLLING MILL

Patent number:

JP59101216

Publication date:

1984-06-11

Inventor:

TANABE NOBUO

Applicant:

TOKYO SHIBAURA ELECTRIC CO

Classification:

- international:

B21B37/08

- european:

B21B37/24

Application number:

JP19820209564 19821130

Priority number(s):

JP19820209564 19821130

Abstract of **JP59101216**

PURPOSE:To obtain a titled device which is simple and free from response delay and can cope with a small quantity production of many items by controlling plate thickness using the prediction controlling of an open loop basing on a reference value of plate thickness and feed back controlling by gauge meter plate thickness. CONSTITUTION:In a rolling mill that rolls a rolling material 2 by an rolling roll 1, a plate thickness reference value of exit side (href(I)) corresponding to a rolling position (I) detected by the speed detector of a driving electric motor 20 of the rolling roll 1 is outputted by a function generator 10. Conversion constant K1 is multiplied to the difference between this output and the stored initial value of exit side plate thickness reference value of the tip of rolling material, and the product is outputted to an adder 27. On the other hand, gauge meter plate thickness (hg) is calculated from a rolling load P detected by a load detector and a roll gap S0 detected by a rolling position detector 24 by a plate thickness arithmetic unit 25. The difference from above-mentioned (href(I)) is calculated by an integrator 13 and the roll gap correction is calculate. This correction is multiplied by a conversion constant K2 and outputted to an adder 27, and the rolling reduction is controlled basing on this added value.

Data supplied from the esp@cenet database - Worldwide

(9) 日本国特許庁 (JP)

①特許出願公開

⑩ 公開特許公報 (A)

昭59—101216

 ⑤ Int. Cl.³
 B 21 B 37/14 37/08 識別記号

BBH

1 0 3

庁内整理番号 8015-4E 8015-4E

8015-4E

④公開 昭和59年(1984)6月11日

発明の数 1 審査請求 未請求

(全 6 頁)

匈圧延機の制御装置

②特

願 昭57-209564

22出

頁 昭57(1982)11月30日

⑫発 明

者 田辺信夫

東京都千代田区内幸町1丁目1

番 6 号東京芝浦電気株式会社東京事務所内

⑪出 願 人 東京芝浦電気株式会社

川崎市幸区堀川町72番地

仰代 理 人 弁理士 猪股清

外3名

明 細 舊

1.発明の名称

圧延機の制御装置

2.特許請求の範囲

圧延材を目標板厚に制御するための圧下制御装置(14)を備えた圧延機の制御装置において、圧延材の圧延方向の出側板厚目標値 href(ℓ)を出力する板厚基準発生器(10)と、この出側板厚目標値 href(ℓ)の変化量 dhref(ℓ) を演算する板厚基準変化量 (11,28)と、前記圧延機の圧延荷重Pとロールギャップ 80 とを検出し、ゲージメーメ式に基づいて前記圧延材の出側板 厚hg をでいて前記圧延材の出側板 厚hg を前記出側板 厚目標値 href(ℓ)との差を積分して出力するロールギャップ修正量に変換して出力するロールギャップ修正量で(26,13,31,32)と、前記変化量 dhref(ℓ) に所認の係数を乗じてロールギャップ基準量とし、このロールギャップ基準量に前記ロールギャップ修正量を

加算して前記圧下制御装置の制御入力とする手段 (12,29,27)とを設けたことを特徴とする圧延機 の制御装置。

3.発明の詳細な説明

[発明の技術分野]

この発明は、1本の圧延材から2種類以上板厚の異なる鋼板等の製品を連続的に圧延する板厚変厚圧延に用いられる圧延機の制御装置に関する。 〔発明の技術的背景〕

近年多品種少量生産の製造ラインでの生産効率の飛躍的向上を計るために、 蛭板等を圧延する圧延 燃燃において、 板厚を自動的に変更し、 1 本の圧延材から板厚が異る 2 種類以上の製品を連続的に 圧延する自動板厚変更圧延をおこなり場合が多くなつてきた。

特に液化天然ガス(LNG)を貯蔵する球形のタンク等に使用される絹板は、板厚が一様ではなく、タンクの下部と上部とでは内部圧力の相違から下部の板圧を厚くした鍋板を用いることが多い。

特開昭59~101216(2)

板厚変更圧延の一例として、シングルスタンド 熱間圧延機において、フラントな板厚のスラブか ら、第1図に示すようなテーパ状の板厚形状を持 つた圧延材を得る場合について考える。

第2図および第3図はこのような場合に用いられる従来の圧延方法の概略を示した構成図である。第2図に示す方法は、圧延材2の板厚変更前後のロールギャップ設定値を、数式モデルを用いて予測計算し、圧延中に圧延材2の変更位盤が圧延ロール1の直下を通過する際に、圧下位置制御装置3のロールギャップ基準値Sorefをテーパ状に変更し、圧下位置制御装置3により圧延ロール1のロールギャップを操作することにより、板厚変更をおこなうものである。

また第3図に示す方法は、板厚計からのフィードバック信号を用いた自動板厚制御計を利用するものである。この方法は、圧延材2が圧延機に搬送されて圧延ロール1に噛み込み、圧延機出側に設置された板厚計6に到達するまでは自動板厚制御をオフにして、板厚変更前のロールギャップ設

の冷却状態が異なり、板温が一様とならないため、 材料の変形抵抗の大きさを決定する材料の温度の 予測が重要となる。この予測精度をあげるために は複雑な数式モデルの作成や温度計により材料温 度の正確な測定等が必要となるため、多大な経費 と労力を要する。

また第3図に示した方法では板厚計6が圧延機から離れた位置にあるため、板厚計6の検出応答遅れが生ずる。したがつて第3の方法で板厚変更圧延をおこなり場合には、板厚計6の検出応答遅れを考慮して圧延をおこなわないと板厚制御の良い製品を圧延することはできない。

〔発明の目的〕

この発明の目的は圧延材の材質、硬度およびパススケッユールおよび圧延機の潤滑状態等を考慮しなくても板厚変更精度の良い圧延材を得ることのできる圧延機の板厚制御装置を提供するにある。 (発明の概要)

この発明では上記目的を選成するために、圧延 材を目標板厚に制御するための圧下制御装的(14) 定値で圧延をおとない、圧延材2が板厚計6に到遠した後に自動板厚制御をオンにして板厚変更圧延が開始されると圧延材2の変更位置の追跡をおこなりよりにする。との追跡によつて変更位度が圧延ロール1を通過をからで変更が関連に板厚変更前の目標板厚が低度をでする。と判断した時は、板厚変更前の目標板厚か変更が、板厚基準horefをテーパ状に変更を出て自動板厚制御装準horefを対したよりにより、板厚基準horefと板厚計6により検出された実際の板厚hとの偏差が被算器4で0になるよりに圧延ロール1のギャップを操作する。

〔背景技術の問題点〕

しかし第2図および第3図に示した従来の板厚 変更圧延の方法にはいずれも次のような欠点があ る。

第2図に示す方法では、板厚変更する場合、数式モデルによつて計算される圧延荷重やロールギャップの予測精度が板厚精度に直接影響を与える ことになる。

将に熱間圧延では板厚が一様でないために板温

を備えた圧延機の制御装置において、圧延材の圧 延方向の出側板厚目標値 href(ℓ)を出力する板厚 基準発生器(10)と、この出側板/厚目標値 href(ℓ) の変化量 Ahrei(l) を演算する板厚基準変化量派 算装置(11,28)と、前記圧延機の圧延荷重Pとロ -ルギヤップ So とを検出しゲージメータ式に基 づいて前記圧延材の出側板厚 hg を演算する板厚 演算装置(23,24,25)と、この出側板厚hg と前 記出側板厚目標値 href(ℓ)との差を積分して前記 圧延磁のロールギャップ修正量に変換して出力す るロールギャップ修正量演算装置(26,13,31,32) と、前記変化量 Ahref(l) に所望の係数を乗じて ロールギャツブ瑟準盤とし、このロールギャップ 語準量に前記ロールギャップ修正量を加算して前 記出下側御装置の制御入力とする手段(12,29,27) とを設けたととを特徴とする。

[治明の実施例]

第4図はとの発明の一実施例を示す榕成図である。 関数発生器10は圧延材の材料投さびを入力し、 出側板厚塞準 href を出力する。 記憶回路11内に

特開昭59-101216(3)

ただし、

So: 無負荷時のギャップ設定値

4S0: ギャップ変化量

P: 咬み込み直後の圧延荷重 AP: Pからの圧延荷重変化量

である。

(1)式から明らかなよりにロールギャップおよび 圧延荷重の検出とシル定数Mの予測とを正確にお こなりことにより、出側板厚を精度よく検出する ことができる。

いま第4図に示した関数発生器10に図示されるように、出側板厚をテーパ状に変化する場合、関数発生器10は圧延材の圧延方向すなわち長手方向位置に応じて出側板厚基準 href(ℓ)を出力する。

記憶回路11は圧延材先端部の板厚基準 href(0)を記憶し、関数発生器10から出力される出側板厚基準 href(ℓ)との差が変換定数設定器12に入力される。そしてこの差信号 Δhref(ℓ) には変換定数設定器12により変換定数 k₁ が乗ぜられて、油圧圧下制御装置14のロールギャップ基準量として出

は圧延先端すなわち $\ell=0$ における板摩基準href(0)が記憶されている。

変更係数設定器 12 および 31 内にはそれぞれ変更定数 K_1 , K_2 が格納されているが、この変更定数 K_1 , K_2 については後で詳述する。13 は積分器である。油圧圧下制御装置 14 はサーボ増幅器 ブロック 15 とシリンダーブロック 16 とにより 構成されて おり、それぞれ K_3 / 1 + TvS , K_4 / / 8 で表わされる伝達関数を有している。

なおととで K3 は アイン、 Tv は 時定数をそれぞれ表わしている。また K4 に シリング 新面 稲の 逆数を表わす。 S は プラス変 決子である。 17 は ロールギャンプから圧延荷重までの伝達 関数で、 N は シル定数を、 m は 圧延材の 塑性係数を示す。

また18は圧延荷重によるシルの伸びを演算する プロックであり、33はMMC 定数を示す。なお図 中に示した hg はゲージメータ板厚であり、次式 で算出される。

$$hg = S0 + \Delta S0 + \frac{P + \Delta P}{M} \qquad \cdots \cdots (1)$$

力される。

圧延機のロールギャップが ASO だけ変つた時の 出側板厚の変化 Ah は(2)式で表わされる。

$$dh = \frac{M}{M+m} dS0 \qquad \cdots \cdots (2)$$

したがつて、出倒板厚に Ah ref(l) の板厚変化を与えるために必要なロールギャップ変更最は(2) 式から

$$\Delta So = \frac{M+m}{M} \cdot \Delta b \operatorname{ref}(\ell) \qquad \cdots \cdots (3)$$

で得られ、変換定数 K1 を

$$K_1 = \frac{M+m}{M} \qquad \cdots \cdots (4$$

と設定すればよいことになる。

しかし、特に無間圧延においては圧延後長手方向の温度変化や入側板厚の変化があり、(4)式における圧延機の塑性係数mを正確に求めることはむづかしい。

さらに板厚変更量が大きい場合には板厚変更各 点における塑性保紋mが変化することも充分考え られる。

この発明ではこのようなオープンループによる 板厚変更方法に加えて、ゲージメータ板厚 hg を フィードバック信号とするフィードバックループ を併設し、上記問題を解決している。

すなわち、出側板厚基準 h ref(ℓ)とゲージメータ板厚 hg との差を積分器 13 に入力し、積分器 13 の圧力に変更定数 K2 を乗じてロールギャップ修正量を算出し、変換定数設定器 12 から出力されたロールギャップ基準量に加算して油圧圧下制御装置14 に与えるようにしている。

ここで変換定数 K₂ は板摩制御計の周波数応答 νως とすれば、

$$\omega c = K_2 \frac{M + m}{M + (1 - C) \cdot m} \cdot \frac{M}{M + m}$$

$$= K_2 \frac{M}{M + (1 - C) m} \cdots (5$$

$$\therefore K_2 = \omega c \cdot \frac{M + (1 - C) \cdot m}{M} \cdots (6$$

と設定すればよいことになる。

積分器13は出側板厚基準 bref(ℓ)とゲージメー

Best Available Copy

特開昭59-101216 (4)

タ板厚 hg との差が無くなるようにロールギャップを修正するため、出側板厚が目標とする板厚に 材度よく圧延される。

第5図は第4図によつて示されたとの発明による制御装成の機能構成図を、さらに具体化した制御装置の一例を示す図である。

第5 図に示す接触は、板厚基準発生器Aと、この板厚基準発生器の出力の変化量を演算する板厚基準変化量演算装置 Bと、ゲージメータ式によつて圧延材の出側板厚を演算する板厚演算装置 Cと、圧延機のロールギャンプ修正量を算出するロールギャンプ演算装置 Dとを具備する。

圧延ロール1は電動機20により駆動され、電動機20は速度制御装備21により所定の回転速度に設定されている。また1対の上下圧延ロール1のロールギャンプは油圧圧下制御装置14により所定の値に設定されている。

圧延材2が圧延ロール1に嚙み込むと、圧延機に設置した荷重検出器23が圧延荷重Pを、圧下位 置検出器24がロールギャンプSO をそれぞれ検出 し板厚演算装置25に入力する。板厚演算装置25は ゲージメータ式を用いてゲージメータ板厚 hg , すなわち実際の板厚を演算するものであり、演算 されたゲージメータ板厚 hg は板厚制御に対する フィードバック信号として滅算器26に出力される。

電勤機20には速度検出器22が取り付けられ、速度検出器12の出力は関数発生器10に送られる。関数発生器10は速度検出器22の出力信号を用いて、 圧延材2の先端から圧延方向である長手方向位置 &を演算し、あらかじめ設定された圧延材位置と 出側板厚基準との関数から現在の圧延材の位置に 対応した出側板厚基準 href(&)を複算器26に出力 する。

される。

一方、圧延材2が圧延ロール1に噛み込んだ直後に瞬時ゲート30が閉路し、圧延材先端部の出側板厚基準 href(0)が記憶装置11に記憶される。すなわち先端部板厚を初期値とするわけである。 関数発生器10の出力は経路10,を介して波算器28に入力され、記憶装置11の出力との差、すなわち出側板厚基準変更量が演算され掛算器29に送られる。

掛算器29には設定器12にあらかじめ設定された変換定数 K1 が入力されており、海算器29との積を加算器27に送る。加算器27は海算器29の出力と掛算器32の出力とを加算して油圧圧下制御装置14のギャップ基準として出力し、これにより圧延ロール1のロールギャップが変更制御されて出例板厚は所望の板厚に圧延される。

[発明の効果]

以上突施例に基づいて詳細に説明したように、 との発明ではオープンループの予測制御とゲージ メータ板厚をフィードバック信号とするフィード バック制御とを併設した板厚制御装置により板厚 基準を変更するように構成したので、圧延材の材質、硬度あるいは圧延スケジュール、潤滑状態等を考慮しなくても板厚精度の良い圧延材を得ることができる。

またこの発明の板摩制御装盤は(1)式にあらわす ミル定数 M、塑性係数mを正確に予測する必要が ないために簡単な回路構成にすることができ、し かも実際の板摩を検出するために圧延機に設置し た検出器により検出した圧延荷重かよびロールギャップから板摩演算装置を用いて板摩を演算する ので、圧延機に対しての検出遅ればなく、早い応 答のフィードバック制御が行なえる。

したがつて、変更圧延時に板摩勘準と実際の板 厚との間に顕差が生じても、板厚制御装置が速や かに動作してロールギャップ修正をおこなうこと ができるために、板厚精度の良い製品を圧延する ことができる。このため多品種少量生産の製造ラ インでの生産能率を大きく向上させることができる。

なお、との発明は板厚をテーパ状に圧延する場

合に特に有効である。

特開昭59-101216 (5)

4.図面の簡単な説明

第1図は圧延材の板厚パターンの一例を示す図、 第2図および第3図は従来の制御方法による制御 装置の構成図、第4図はとの発明の一実施例によ る制御装置の役能構成図、第5図はとの発明の一 実施例を示す構成図である。

2 ··· 庄延材、3 ··· E下制御装置、10 ··· 関数発生器、11 ··· 記憶装置、12 ··· 変換定数設定器、13 ··· 積分器、23 ··· 荷重検出器、24 ··· E下位億検出器、25 ··· 板厚價算装置、26 ··· 及資器、27 ··· 加算器、29 ··· 掛算器、31 ··· 変换定数设定器、32 ··· 掛算器。

出顧人代理人 猪 股

消

笹 1 図

特開昭59-101216 (6)

第 4 · 図

