LABORATOR#5

EX#1 Scrieţi o funcţie în Python care are ca dată de intrare matricea $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ şi ca dată de ieşire inversa matricei \mathbf{A} , obţinută prin metoda~Gauss-Jordan împreună cu MEGFP. Aplicaţi metoda Gauss-Jordan folosind funcţia de mai sus pentru

(a)
$$\mathbf{A} = \begin{bmatrix} 2 & 6 & 6 \\ 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix}$$
;

(b)
$$\mathbf{A} = \begin{bmatrix} 2 & 6 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$
;

(c)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 6 \\ 1 & 6 & 10 \end{bmatrix}$$
.

Indicații: În prealabil, trebuie verificate următoarele condiții:

- (i) A este o matrice pătratică;
- (ii) \mathbf{A} este o matrice inversabilă (folosiți funcția predefinită Python det pentru verificarea inversabilității matricei \mathbf{A}).
- **EX#2** Scrieți o funcție în Python (LU1) care are ca dată de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ și ca date de ieșire matricea inferior triunghiulară $\mathbf{L} = (\ell_{ij})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R})$ cu $\ell_{ii} = 1$, $1 \leq i \leq n$, și matricea superior triunghiulară $\mathbf{U} = (u_{ij})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R})$ corespunzătoare factorizării LU fără pivotare a matricei \mathbf{A} .

Rezolvați sistemul de ecuații liniare

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

folosind funcția LU1 și metoda substituției ascendente, respectiv descendente, pentru

(a)
$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 3 \\ 2 & 2 & 3 \\ -1 & -3 & 0 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$;

(b)
$$\mathbf{A} = \begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 1+\epsilon \\ 2 \end{bmatrix}$, unde $\epsilon = 10^{-2k}$ cu $k \in \{1, 2, \dots, 10\}$;

(c)
$$\mathbf{A} = \begin{bmatrix} 10^{-12} & 1 & -1 \\ 40 & -60 & 0 \\ 3 & -4 & 5 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 17 + 10^{-12} \\ -1160 \\ -62 \end{bmatrix}$;

(d)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 3 \\ -1 & -3 & 1 \end{bmatrix}$$
 şi $\mathbf{b} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$.

 $\underline{Indicație}$: În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea \overline{LU} fără pivotare a matricei A.

EX#3 Scrieţi o funcţie în Python (LU2) care are ca dată de intrare matricea $\mathbf{A} \in \mathscr{M}_n(\mathbb{R})$ şi ca date de ieşire matricea inferior triunghiulară $\mathbf{L} = (\ell_{ij})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R})$ şi matricea superior triunghiulară $\mathbf{U} = (u_{ij})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R})$ cu $u_{ii} = 1, 1 \leq i \leq n$ corespunzătoare factorizării LU fără pivotare (versiunea a II-a) a matricei \mathbf{A} .

Rezolvați sistemul de ecuații liniare (1), folosind funcția LU2 și metoda substituției ascendente, respectiv descendente, pentru cazurile (a)–(d) de la EX#2.

 $\underline{Indicație}$: În prealabil, trebuie verificate condițiile necesare și suficiente pentru factorizarea LU fără pivotare a matricei \mathbf{A} .