NBS PUBLICATIONS

Alllo2 350574

NBS MONOGRAPH 25—SECTION 21

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

- QC 100 •U556 No• 25 Sect•21 1985 he National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers:

- Basic Standards²
- Radiation Research
- Chemical Physics
- Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics
- Electronics and Electrical Engineering²
- Manufacturing Engineering
- Building Technology
- Fire Research
- Chemical Engineering²

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers:

- Programming Science and Technology
- Computer Systems Engineering

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-country scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions:

- Inorganic Materials
- Fracture and Deformation³
- Polymers
- Metallurgy
- Reactor Radiation

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899.

²Some divisions within the center are located at Boulder, CO 80303

³Located at Boulder, CO, with some elements at Gaithersburg, MD.

Standard X-ray Diffraction Powder Patterns Section 21 — Data for 92 Substances

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, Winnie Wong-Ng, and Donna M. Gladhill

International Centre for Diffraction Data 1601 Park Lane Swarthmore, PA 19081

and

Camden R. Hubbard

National Measurement Laboratory National Bureau of Standards Gaithersburg, MD 20899

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued September 1985

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25
Section 21 — Data for 92 Substances
Natl. Bur. Stand. (U.S.), Monogr. 25—Sec. 21, 142 pages (Sept. 1985)
CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1985

CONTENTS

	Page		Page
Introduction	1	Mgnesium hydrogen phosphate hydrate	
		(newberyite), MgHPO4.3H20	83
Experimental patterns:		Magnesium nitride, Mg2N2	85
	-	Magnesium silicide, Mg2Si	86
Aluminum carbide, Al ₄ C ₃	7	Magnesium titanium oxide, MgTi ₂ 0 ₅	
Aluminum fluoride hydrate, β-AlF ₃ ·3H ₂ O	8 9	(form A)	87
Ammonium fluoride, NH ₄ F	9	Magnesium titanium oxide, MgTi ₂ O ₅	0.0
Ammonium iron sulfate hydrate (mohrite),	10	(form B)	89
(NH ₄) ₂ Fe(SO ₄) ₂ ·6H ₂ O	10	Manganese boride, MnB ₂	91 92
(NH ₄) ₂ Mg(SeO ₄) ₂ ·6H ₂ O	12	Manganese silicate (tephroite), Mn ₂ SiO ₄	94
Ammonium magnesium sulfate hydrate	12	Manganese sulfate, MnSO ₄ Molybdenum carbide, α-Mo ₂ C	95
(boussingaultite), (NH ₄) ₂ Mg(SO ₄) ₂ ·6H ₂ O	14	Molybdenum silicide, MoSi ₂	96
Ammonium nickel selenate hydrate,		Niobium boride, ε-NbB ₂	97
(NH _{II}) ₂ N1(SeO _{II}) ₂ ·6H ₂ O	16	Potassium calcium hydrogen phosphate,	
Ammonium zinc selenate hydrate,		K ₃ CaH(PO _Ц) ₂	98
$(NH_4)_2$ Zn $(SeO_4)_2 \cdot 6H_2O \cdot \cdot \cdot \cdot$	18	Potassium copper sulfate hydrate	
Ammonium zinc sulfate hydrate,		(cyanochroite), K ₂ Cu(SO ₄) ₂ ·6H ₂ O	99
$(NH_4)_2 Zn(SO_4)_2 \cdot 6H_2O$	20	Potassium hydrogen phosphate	
Antimony phosphate, SbPO4	22	(archerite), KH ₂ PO ₄	101
Barium bismuth titanium oxide,	24	Potassium magnesium phosphate hydrate,	100
BaBi ₄ Ti ₄ O ₁₅	25	KMgPO4 •6H2O	102
Barium copper phosphate, Ba ₂ Cu(PO ₃) ₆ Barium silicate, Ba ₅ Si ₈ O ₂₁	27	Potassium nickel selenate hydrate,	104
Barium titanium borate, BaTi(BO ₃) ₂	29	K ₂ Ni(SeO ₄) ₂ ·6H ₂ O Potassium nickel sulfate hydrate,	104
Barium titanium oxide, BaTi ₅ O ₁₁	30	K ₂ Ni(SO ₄) ₂ ·6H ₂ O	106
Barlum titanium oxide. Barlio	32	Potassium phosphate, KPO3	108
Barium titanium oxide, BallTito	34	Potassium sodium phosphate, KNa2(PO3)3	109
Barium titanium oxide, Ba ₆ Ti ₁ 7040,	36	Potassium titanium oxide phosphate,	
Beryllium oxide (bromellite), Beo	38	KT1OPO _{JI}	110
Bismuth dysprosium titanium oxide,		Potassium zirconium phosphate,	
Bi3,6Dy0,4Ti3O12	39	$KZr_2(PO_{\downarrow})_3$	112
Bismuth titanium oxide, Bigliquia	41	Silver titanium phosphate, AgTi2(PO4)3	114
Boron carbide, BuC	43	Sodium germanium fluoride, Na ₂ GeF ₆	115
Boron silicide, BuSi	44	Sodium magnesium hydrogen phosphate,	117
Boron silicide, B ₆ Si	45 47	Na ₃ MgH(PO ₄) ₂ MaRaO	117
Cadmium silicate, CdSiO3	48	Sodium rhenium oxide, NaReO ₄	119 120
Cadmium titanium phosphate, CdTi ₄ (PO ₄)6 Calcium aluminum silicate (gehlenite),	40	Strontium chromium oxide, SrCrO ₄ Strontium titanium phosphate,	120
Ca ₂ Al ₂ SiO ₇	50	SrTi ₄ (PO ₄) ₆	122
Calcium fluoride (fluorite), CaF2	52	Tantalum boride, TaB	123
Calcium germanium phosphate, CaGe4(PO4)6.	53	Tantalum carbide, TaC	124
Calcium titanium phosphate, CaTi4(PO4)6	54	Titanium boride, TiB2	125
Calcium zinc silicate (hardystonite),		Titanium silicide, TISi2	126
Ca ₂ ZnSi ₂ O ₇	55	Tungsten boride, δ-WB	127
Calcium zirconium oxide, CaZrO3	57	Tungsten carbide, α-W ₂ C	128
Cesium hydrogen phosphate, CsH ₂ PO ₄	58	Vanadium carbide, V ₈ C ₇	129 130
Chromium carbide, Cr ₃ C ₂	60 62	Vanadium nitride, VN	131
Chromium nitride, β-Cr ₂ N	63	Yttrium nitride, YN	132
Chromium silicide, Y-CrSi2	64	Zinc molybdenum oxide, α-ZnMoO _ų Zinc nitride, Zn ₃ N ₂	134
Chromium tungsten oxide, Cr ₂ WO ₆	65	Zirconium carbide, ZrC	135
Cobalt titanium oxide, CoTi ₂ O ₅	66	Zirconium nitride, ZrN	136
Copper arsenic sulfide, enargite,			
Cu ₂ AsS ₄	68	Cumulative indices will be published every	
Copper iron sulfide, chalcopyrite,		second year beginning in 1986.	
CuFeS ₂	69		
Hydroxylamine hydrochloride, NH ₂ OH·HCl	70	Mineral name index, this issue	137
Iron carbide (cohenite), Fe ₃ C	72		
Iron silicide (ferdisilicité), FeSi2	73 74		
Lead zirconium oxide, PbZrO3	74 75		
Lithium aluminum silicate, B-LiAlSi ₂ 0 ₆	75 76		
Lithium aluminum silicate, LiAlSi308	77		
Lithium manganese oxide, LiMn ₂ 0 ₄	78		
Lithium titanium phosphate, LiTi ₂ (PO ₄) ₃	79		
Lithium tungsten oxide hydrate,			
	80		
7Li ₂ WO ₄ ·4H ₂ O	82		

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Publications Available.

Previous work has been published as a book entitled <u>Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976) (obtainable from the publisher: JCPDS-International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081, price furnished on request). The volume is sold with an accompanying search manual, and contains 949 card images of patterns of experimental data, published originally as Circular 539 (vols. 1-10) and Monograph 25, Sections 1-12, and most of Section 13.</u>

Individual copies of the Circular and Monograph are still available and may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. If a publication listed below is identified with a number, use this number in ordering. All are available in photocopy or microfiche; the price is not fixed and will be furnished on request.

NBS Publication	Orde	r Number	NBS Publication	Order Number
V (V (V (V (V (V (V (V (V (V (me 1	178 903 178 904 178 905 178 906 178 907 178 908 178 909 178 910	Sect Sect Sect Sect Sect Sect Sect Sect	ion 1PB 178 429 ion 2PB 178 430 ion 3PB 178 431 ion 4 (order by section #) ion 5

Also, until the present supply is exhausted, the following issues are for sale from the Superintendent of Documents, U. S. Government Printing Office, Washington, D.C. 20402. Order by given catalog number, and add 25% to the price, for other than U.S. mailing.

<u>Ca</u>	talog Number	Price
Section 12SN		\$1.50
Section 14:SN	003-003-01842-2	2.75
Section 15SN		4.00
Section 16SN	003-003-02128-8	5.00
Section 17SN	003-003-02253-5	4.50
Section 18SN	003-003-02370-1	5.50
Section 19SN	003-003-02462-7	5.50
Section 20SN	003-003-02548-8	5.00

ERRATA

Monograph 25

Section 17, p. 23: At d=1.4115M, change $hk1=\overline{224}$ to $\overline{171}$. p. 23: At d=2.816, hk1 should be $\overline{131}$.

Section 19, p. 99: At entry "Niobium," delete the word "(monoclinic)."

Section 20, p. 58: Change formulas Fe²Nb₂O₆ to Fe⁺²Nb₂O₆.

Section 20, p. 130: At entry "Niobium," delete the word "(monoclinic)."

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 21 Data for 92 Substances

by

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, Winnie Wong-Ng, and Donna M. Gladhill JCPDS--International Centre for Diffraction Data

and

Camden R. Hubbard National Bureau of Standards

Standard x-ray powder diffraction patterns are presented for 92 substances. These patterns, useful for identification, were obtained by automated diffractometer methods. The lattice constants from the experimental work were refined by least-squares methods, and reflections were assigned hkl indices consistent with space group extinctions. Relative intensities, calculated densities, literature references, and other relevant data are included.

Key words: Crystal structure; densities; lattice constants; powder patterns; Pearson symbol; standard; x-ray powder diffraction.

INTRODUCTION

The Powder Diffraction File (PDF) is a continuing compilation of diffraction patterns gathered from many sources, produced, and published by the JCPDS-International Centre for Diffraction Data (JCPDS-ICDD). The PDF is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the JCPDS, the program at the National Bureau of Standards contributes new or improved data to the PDF, and also aids in the development of diffraction techniques. This report presents information for 92 experimental patterns, and is the thirty-first of the series Standard X-ray Diffraction Powder Patterns².

EXPERIMENTAL POWDER PATTERNS

The nomenclature follows the current practice of the PDF. Common names are given when appropriate. In accord with the assignments of the JCPDS-ICDD mineral subcomittee, the mineral name, mineral group, and subgroup are given.

CAS registry number. The Chemical Abstracts Service Registry Number is included, when available, to help identify the sample. This number forms the basis for computer aided searching of Chemical Abstracts [Chemical Abstracts Service Registry Handbook-Number Section, 1974].

JCPDS--International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PA 19081. This Pennsylvania non-profit corporation functions in co-operation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, the Clay Minerals Society, the Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, the Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the samples improved the quality of many of the patterns. A check of phase purity was provided by indexing the x-ray pattern.

<u>Color</u>. The names of the sample colors are selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. All spacing determinations were made using one or more internal standards mixed with the sample, packed in a shallow holder. Choice of the standard was determined by the need for low angle and unobstructed reflections. The amount of standard was estimated so that the intensity of its strongest peak would be about equal to the intensity of the strongest peak of the sample. The internal standards used were of high purity (99.99%). The calculated 20 values used for them at 25°C are given in Tables 1 and 2; the 20 angles were computed using cell dimensions uncorrected for index of refraction.

Standard Reference Material 640a [1982], Si powder (a=5.430825A), was used for many patterns. The SRM 640a lattice constant for Si was refined from multiple powder data measurements made with tungsten and silver as internal standards. Single crystal cell parameter data were also collected. The lattice parameters from the two methods agreed within three parts in 10⁵ [Hubbard, 1982]. D-values obtained using SRM 640a are in agreement with patterns recorded in this series of Monographs since 1966.

Another internal standard, fluorophlogopite (FP), is available as Standard Reference Material 675 [1982]. The d(001) spacing was refined from multiple powder data measurements using SRM 640a (Si) and tungsten as internal standards [Hubbard, 1983]. The calculated 20 values of the 00£ lines are given in Table 2. Typically, only the low 20 values (001-003) are used for calibration purposes.

Table 1. Calculated 20 angles for internal standards. CuK α , λ = 1.5405981Å

hkl	Tungsten a=3.16524Å ±.00004	Silver a=4.08651A ±.00002	Silicon a=5.430825A ±.000011 (SRM 640a)
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.304
310	100.632		
311		77.390	56.124
222	114.923	81.533	300121
321	131,171	010333	
400	153.535	97.875	69.132
100	100.000	71.013	074132
331		110.499	76.378
420		114.914	10.510
422		134.871	88.033
511/33	22	156.737	94.955
440))	150.131	106.712
440			100./12
531			114.096
620			127.550
533			136.900
444			158.644
444			150,044

Table 2. Calculated 20 angles for OOL's. Internal standard fluorophlogopite, SRM 675.

CuKα ₁ , λ = 1.5405981Å,	d ₀₀₁ = 9.98104A (±0.00007)
<u>00l</u>	<u>26</u> 8.853
1	
2	17.759
3	26.774
4	35.962
5	45.397
6	55.169
7	65.399
8	76.255
10	101.025
11	116.193
12	135.674

All data were collected at room temperature on a diffractometer equipped with a focusing graphite crystal monochromator located betwen the sample and the scintillation counter. Pulse height discrimination was used as well. The data were collected using copper radiation: $\lambda(\text{CuK}\alpha_1, \text{peak}) = 1.5405981\text{\AA}$ [Deslattes and Henins, 1973].

All of the patterns reported in this monograph were measured with a computer controlled diffractometer. Digital data were measured on one of two diffractometers controlled by the AUTO program [Snyder et al., 1981]. The patterns were measured in step-scan mode with a step width of 0.01 degrees and counting times at each point greater than or equal to 3 seconds except when reactivity required more rapid data collection.

The data were processed with the JCPDS-NBS POWDER-PATTERN system of programs [Pyrros and Hubbard, 1983]. First the raw data were processed by the program POWDER.PATTERN that locates peaks with the second derivative algorithm of Savitzky and Golay [1964]. A three point Newton-Gregory interpolation [Daniels, 1978] was used to locate the derivative minimum. Peaks hidden by lines of the internal standard were read from strip chart recordings. For some patterns, weak peaks were located with the interactive graphics program PLOT.PATTERN/INT. This program displays the spectrum on a Tektronix graphic terminal. The user can locate peaks by positioning a cursor at the peak. The peak position is defined either as the position of the cursor or as the minimum of the second derivative nearest to the cursor. The Ka2 peaks were occasionally read to assist in establishing a Ka, peak position, but Ka2 peaks are not reported.

All patterns were plotted on paper with the program PLOT.PATTERN/HRD on a scale of one degree per inch and were visually inspected. The program POWDER.CALIBR was used to calculate a polynomial correction curve. This was done in two stages: first an external calibration (instrument 20 correction) was obtained to correct the observed internal standard positions; second, from those positions and their theoretical positions the polynomial curve was derived and applied to all peaks of the pattern. At low angles, $K\alpha_1$ and $K\alpha_2$ peaks were unresolved for both the sample and the internal standard. Internal standard corrections were established from the theoretical values for $K\alpha_1$ and were applied to the unresolved low angle peaks, as well as to the resolved Ka, peaks in the higher angle regions. The program POWDER. EDTPKS was used to flag reflections to be used in the least-squares cell parameter refinement. Reflections due to CuKa, radiation were excluded from the refinement.

Structure, lattice constants. The space group symbols are given in the short Hermann-Mauguin notation. Also given are the space group numbers listed in the International Tables for X-ray Crystallography, Vol. I [1965]. When the space group symbol is not known, the lattice centering symbol or the diffraction aspect for the Laue class may be given [Donnay and Kennard, 1964; Mighell et al., 1981].

The given Pearson symbol is generated by computer [Hubbard and Calvert, 1981].

Orthorhombic cell dimensions are arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants are transformed, if necessary, in order to follow the convention of Crystal Data [1973]. The lattice constant ratios, a/b, c/b, and c/a, also follow the conventions used for the determinative ratios in Crystal Data [1973].

In most cases, preliminary lattice constants were available in the literature, and were used for the initial indexing and refinement. In cases where such data were not available, other methods were tried. If suitable single crystals were available, the lattice constants were obtained by use of a four-circle diffractometer. Axial ratios and densities from Groth [1908] were sometimes useful. Cell constants were also found in some instances by use of Visser's computer program, Ito 9 [Visser, 1969].

A least squares program, JCPDS-NBS*LSQ82, derived from the program of Evans, Appleman, and Handwerker [1963], assigned hkl's and refined the lattice constants. The cell refinement was based only upon corrected 20 values $(2\theta_{\rm corr})$ which could be indexed without ambiguity. The program minimized the value $\sum_{i=0}^{\infty} (\theta_{\rm corr} - \theta_{\rm calc})^2$. Generally, when two or more calculated 20's were within 0.03 degrees of the corrected 20, the index giving the best fit was reported. An editorial flag ,+, indicates that 2 or more indices were possible. Multiple hkl's were not utilized or reported in indexing cubic patterns. Instead, a single appropriate index was used.

The estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations. The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants published in this series of NBS publications prior to 1973. The e.s.d.'s in the least significant figures are given in parentheses following the lattice constants.

For each d-value, the number of significant figures was derived from the average error in $2\theta_{\rm corr}$ $-2\theta_{\rm calc}$ and the equation $\Delta d/d = -(\cot\theta)\Delta\theta$. With these conditions, the rounded value of d agrees with its appropriate 2θ within the average error in 2θ . The value of $\Delta\theta$ varies with the symmetry and crystallinity of each sample.

<u>Densities</u>. These were calculated from the specified lattice constants, the Avogadro number 6.0220943 x 10²³ [Deslattes et al., 1974] and the 1977 atomic weights published by the International Union of Pure and Applied Chemistry [1979].

Figures of merit. Several figures of merit ratings are available for assessing indexed powder data. M_{20} [ds wolff, 1968] is a criterion for the reliability of the unit cell and indexing. M_{20} is defined by:

$$M_{20} = \frac{Q_{20}}{2\overline{\epsilon} N_{20}}$$

where $\rm Q_{20}$ is the value of $\rm 1/d^2$ for the 20th observed line (not counting unexplained lines), $\rm N_{20}$ is the number of different calculated Q values up to $\rm Q_{20}$, and $\tilde{\rm e}$ is the average magnitude of the discrepancy in Q for these 20 lines. A value of $\rm M_{20} > 10$ will guarantee the essential correctness of the indexing provided there are not more than 2 spurious lines

($\rm X_{20} \le 2$) [de Wolff, 1968]. The number of unindexable lines occurring up to the 20th observed and indexed line is $\rm X_{20}$. In general, patterns reported in this publication had $\rm M_{20} > 20$ and $\rm X_{20} = 0$.

The accuracy and completeness of the measured interplanar spacings is conveniently reported using the format:

$$F_N$$
 = overall value ($\Lambda 2\theta$, Λ_{poss}).

The "overall" value is the figure of merit of Smith and Snyder [1979] defined by:

N, the number of observed reflections, was chosen as 30 or as the maximum number of lines of the pattern if the pattern had fewer than 30 lines. $\overline{\Delta 20}$ is the average absolute magnitude of the discrepancy between observed and calculated 20 values for each reported hkl. N_{poss} is the number of diffraction lines allowed in the space group, up to the Nth observed and indexed line. Co-positional lines such as the cubic 221 and 300 are counted as one possible line.

Intensity measurements. The intensities of the diffraction lines were measured as peak heights above background and were expressed relative to the strongest line. It has been found that samples which give satisfactory intensity patterns usually have an average particle size smaller than 10 µm, as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see fig. 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical position.

Figure 1. Loading an intensity sample.

With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (see fig. 2).

Figure 2. Cover slide removed from intensity sample.

As a general practice, approximately 50 volume percent of finely ground silica gel was added as a diluent. Occasionally, a rotating sample holder was used.

As a check on reproducibility, each sample was loaded at least 3 times. The intensity values were determined for each of the mountings. The reported I^{rel} value for each observed spacing is the average of 3 or more observations and is rounded to the nearest integer. For patterns with high angle lines, the intensities of lines with 20 above 70° were measured only once. Theta-compensating (variable divergence) slits were sometimes used to gather the intensity data. In that case, the average I(comp) for each spacing was converted to an equivalent fixed slit value, using the approximate equation:

$$I(fixed) = \frac{I(comp)}{\sin \theta}$$

The estimated standard deviation, σ , in the relative intensity values was calculated from the values of the five strongest lines, excluding the line with I^{rel} = 100.

$$o_i^2 = \frac{1}{n-1} \sum_{k=1}^n (I_i^{rel}(k) - \langle I \rangle_i)^2$$

and

$$\sigma = \left(\begin{array}{cc} \frac{1}{m} & \frac{m}{\sum_{i=1}^{m} \sigma_i^2} \end{array}\right)^{\frac{1}{2}}$$

where

i is one of the strong linesm is the number of strong lines(usually 5), andn is the number of independent observations, per line.

Where conversion of intensities for effects of theta-compensating slits was required, each σ_i was multiplied by the conversion factor

$$f = \frac{I(comp)}{I(fixed)}$$

UNITS

In this publication the Angström unit (1Å=100pm) was selected for presentation of the d-value and lattice parameters. This maintained consistency with (a) the series of earlier publications of Standard X-ray Diffraction Powder Patterns (see pg. iv); (b) the publications of the International Union of Crystallography; and (c) the continuing publication of cards and search manuals of the PDF (now consisting of over 42,000 entries). The PDF search manuals are based on the d-values in A of the 3 strongest lines. Consistent with the choice of the A unit for length, the volume of the unit cell is expressed in ${\rm A}^3(1,{\rm A}^3=1\times 10^{-30}\,{\rm m}^3)$. Densities are reported in g/cm³ (1 gm/cm³ = 10³ kg/m³).

COMPUTER ASSISTED PUBLICATION

In Sections 16 through 20 the d/I/hkl tables were prepared by computer transfer of the data. Beginning with Section 21, the entire report was generated from the NBS*AIDS83 database. This change resulted in a few changes in the layout as well as the addition of a few supplemental data items such as Pearson Symbol, the figure of merit (M₂₀)for all patterns, and largest d-value examined in data collection. In addition, in order to transfer the database elements to the JCPDS without major revision the references are now indicated by number (e.g., #1) instead of by author and year.

ACKNOWLEDGMENTS

We would like to thank Carolyn Wingo, Tracy Olert, Jean Dillon, and Della Kromer of the JCPDS Associateship as well as Lillian Ware and Kay Wade of the NBS Inorganic Materials Division and CaRole Lamb and Susan Roth of the NBS Center for Materials Science for their assistance in keyboarding the data, preparation of this manuscript, measuring intensities, or preparing compounds.

REFERENCES

Alexander, L., Klug, H. P., and Kummer, E. (1948).
J. Appl. Phys., 19, No. 8, 742.

Chemical Abstracts Service Registry Handbook-Number Section (1974), (The American Chemical Society, Chemical Abstracts Service, The Ohio State Univ., Columbus, OH 43210).

Crystal Data (1973). (3rd Ed. Published jointly by the U.S. Dept. of Commerce, Natl. Bur. Stand., Gaithersburg, MD 20899, and the JCPDS--International Centre for Diffracton Data, 1601 Park Lane, Swarthmore, PA 19081).

- Daniels, R.W. (1978). An Introduction to Numerical Methods and Optimization Techniques, (Elsevier North-Holland Inc., New York), 78.
- Deslattes, R. D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R. M., Carroll, C. L., Barnes, I. L., Machlan, L. A., Moore, L. J., and Shields, W. R. (1974). Phys. Rev. Lett. 33, 463

(1974). Phys. Rev. Lett. <u>33</u>, 463. Donnay, J. D. H. and Kennard, O. (1964). Acta Crystallogr. <u>17</u>, 1337.

Evans, H. T., Jr., Appleman, D. E., and Handwerker, D. S. (1963). Report #PB216188, U.S. Dept. of Commerce, National Technical Information Center, 5285 Port Royal Rd., Springfield, VA 22151.

Groth, P. (1908). Chemische Kristallographie II, (Engelmann, Leipzig, Germany).

Hubbard, C. R. (1982). J. Appl. Cryst. 16, 285. Hubbard, C. R. (1983). Private Communication.

- Hubbard, C. R. and Calvert, L. D. (1981). Bull.
 Alloy Dia. 2, 153.
- International Tables for X-ray Crystallography, I (1965), (The Kynoch Press, Birmingham, Eng.). International Union of Pure and Applied Chemistry
- (1979). Pure Appl. Chem. 51, No. 2, 407.
 ISCC-NBS Centroid Color Charts, SRM 2106 (1965), or Color Kit, SRM 2107 (1977) which contains both SRM 2106 and Color, an NBS Special Publication #SP 440. These can be obtained from the Natl. Bur. of Stand., Office of Standard Reference Materials, Gaithersburg, MD 20899.
 Current prices will be quoted on request.
- Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS Technical Note 1141, U. S. Dept. of Commerce, Natl. Bur. Stand., Gaithersburg, MD 20899.
- Palache, C., Berman, H., and Frondel, C. (1944).

 Dana's System of Mineralogy I, (John Wiley and Sons, New York, 7th Ed.), 6.
- Pyrros, N. P. and Hubbard, C. R. (1983).

 Advances in X-ray Analysis (Plenum Publishing Corporation, New York, NY 10013), 26, 63.

Savitzky, A. and Golay, M. J. E. (1964). Anal. Chem. <u>36</u>, 1627.

- Smith, G. S. and Snyder, R. L. (1979). J. Appl. Crystallogr. 12, 60.
- Snyder, R. L., Hubbard, C. R., and Panagiotopoulos,
 N. C. (1981). Auto: A Real Time Diffractometer
 Control System Report, NBSIR 81-2229, U. S.
 Dept. of Commerce, Natl. Bur. Stand., Gaithers-burg, MD 20899.
- Standard Reference Material 640a (1982), Silicon Powder X-ray Diffraction Standard, obtainable from the Natl. Bur. of Stand., Office of Standard Reference Materials, Gaithersburg, MD 20899. Current price will be quoted on request.
- Standard Reference Material 675 (1982), Fluorophlogopite Powder X-ray Diffraction Standard. To obtain, see procedure above for SRM 640.
- Visser, J. W. (1969). J. Appl. Crystallogr. 2, 89.
- Wolff, de, P. M. (1968). J. Appl. Crystallogr. 1, 108.

Aluminum Carbide, Al₄C₃

CAS registry no. 1299-86-1

Sample

The sample was obtained from Materials Research Corp., Orangeburg, NY.

Color

Dark greenish yellow brown

Symmetry classifications

Crystal System Rhombohedral Space Group R3m (166) Pearson Symbol hR7

Data collection and analysis parameters

Crystallographic constants of this sample

(Hexagonal axes)

a = 3.3388 (3) Ac = 24.996 (3)

c/a = 7.4865

 $V = 241.31 A^3$

Z = 3

Density (calc.) = 2.972 g/cm^3

Figures of merit $F_{29} = 61.4(.0121, 39)$ $M_{20} = 83.4$

Comments

The structure was determined by Jeffrey and Wu (#1). The mean temperature of data collection was 23.9°C.

Additional patterns

PDF card 11-629

Reference

#1. Jeffrey, G.A. and Wu, V.Y. Acta Crystallogr.(1966) 20,538.

d(A)	I ^{rel}	hkl	20(°)
8.34	2	0 0 3	10.604
4.167	10	0 0 6	21.305
2.872	54	1 0 1	31.113
2.817	100	0 1 2	31.740
2.775	13	0 0 9	32.233
2.503	54	0 1 5	35.850
2.248	83	1 0 7	40.085
2.122	10	0 1 8	42.575
2.082	49	0 0 12	43.431
1.8911	23	1 0 10	48.075
1.7874	13	0 1 11	51.057
1.6670	86	0 0 15	55.043
1.6007	1L	1 0 13	57.532
1.5494	1L	1 1 6	59.624
1.5195	18	0 1 14	60.921
1.4430	4	0 2 1	64.525
1.4361	10	2 0 2	64.875
1.4304	6	1 1 9	65.166
1.3890	9	2 0 5+	67.362
1.3746	1L	1 0 16	68.163
1.3402	11	0 2 7	70.164
1.3108	10	0 1 17	71.979
1.3031	28	1 1 12	72.477
1.2515	3	0 2 10	75.980
1.2195	2	2 0 11	78.342
1.1972	5	1 0 19	80.091
1.1236	5	2 0 14	86.555
1.0918	3	2 1 1	89.745
1.0889	7	1 2 2	90.047

Aluminum Fluoride Hydrate, β-AlF₃·3H₂O

Synonym

Aluminum trifluoride trihydrate

CAS registry no. 15098-87-0

Sample

The sample was obtained from the Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Colorless

Symmetry classifications
Crystal System Tetragonal Space Group P4/ncc (130)

Pearson Symbol tP52

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength W FP 20 Standards Scanned to $\sigma(I^{\text{rel}})$ 5.0° 20 ±2

Crystallographic constants of this sample

a = 7.7207 (4) A c = 7.2979 (7)

c/a = 0.9452

 $V = 435.02 A^3$

Z = 4

Density (calc.) = 2.107 g/cm^3

 $\frac{\text{Figures of merit}}{\text{F}_{30} = 90.1 \text{ (.0067, 50)}}$ $M_{20} = 100.8$

Comments

The unit cell and space group were determined by

Freeman (#1).

A hexagonal alpha-form has also been described by Ehret and Frere (#2).

The temperature of data collection was approximately 25.0°C.

Additional patterns

PDF card 9-108

References

#1. Freeman, R.D.

J. Phys. Chem. (1956) 60,1152.

#2. Ehret, W.F. and Frere, F.J.

J. Am. Chem. Soc. (1945) 67,64.

d(A)	Irel	hkl	20(°)
5.460	100	1 1 0	16.221
3.860	47	2 0 0	23.021
3.648	16	0 0 2	24.378
3.299	41	1 0 2	27.006
3.033	27	1 1 2	29.421
2.729	21	2 2 0	32.793
2.651	16	2 0 2	33.781
2.5075	19	2 1 2	35.781
2.4412	39	3 1 0	36.787
2.1855	7	2 2 2	41.275
2.1034	2	3 0 2	42.964
2.0292	16	3 1 2	44.619
1.9296	11	4 0 0	47.057
1.8466	8	3 2 2	49.308
1.8194	4	3 3 0	50.097
1.7752	25	1 0 4	51.434
1.7263	32	4 2 0	53.001
1.6656	6	4 1 2	55.094
1.6283	3	3 3 2	56.469
1.6131	7	2 1 4	57.048
1.5600	3	4 2 2	59.179
1.5141	6	5 1 0	61.162
1.4883	2	3 0 4	62.337
1.4615	2	3 1 4	63.613
1.4220	2	4 3 2	65.601
1.3984	4	5 1 2	66.848
1.3889	10	3 2 4	67.366
1.3646	1L	4 4 0	68.732
1.3346	4	5 2 2	70.507
1.3242	3	5 3 0	71.143
1.3070	8	4 1 4	72.224
1.2786	1	4 4 2	74.092
1.2446	3	5 3 2	76.476
1.2209	6	6 2 0	78.236
1.2136	2	6 0 2	78.799
1.2016	1	1 0 6	79.745
1.1989	2	6 1 2	79.961
1.1785	6	4 3 4	81.628
1.1651	1L	5 1 4	82.773
1.1576	1L	6 2 2	83.428
1.1452	1L	5 4 2	84.545
1.1274	5	5 2 4	86.197

Ammonium Fluoride, NH_HF

CAS registry no. 12125-01-8

Sample

The sample was obtained from British Drug Houses, Ltd., Poole, England. There was a small amount of ammonium hydrogen fluoride present.

Color

Colorless

Symmetry classifications

Crystal System Hexagonal P63mc (186) Space Group Pearson Symbol hP12

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 2θ Standard Ag Scanned to 17.7° 20 o(Irel) ±6

Crystallographic constants of this sample

a = 4.4408 (2) Ac = 7.1726 (6)

c/a = 1.6152

 $V = 122.50 A^3$

Z = 2

Density (calc.) = 1.004 g/cm^3

Figures of merit

 $F_{30} = 69.7(.0110, 39)$ $M_{20} = 126.6$

Comments

The structure was determined by Zachariasen (#1). There is a cubic form at 4 kbar and 177°C (#2) and various other unindexed high pressure - low temperature forms (#3).

The mean temperature of data collection was 24.2°C.

Additional patterns

PDF card 8-32

References

#1. Zachariasen, W.H.

Z. Phys.(1927) 127,218.

#2. Calvert, L.D. and Whalley, E. J. Chem. Phys. (1970) 53,2151.

#3. Nabar, M.A. et al.

J. Chem. Phys. (1969) 51,1353.

d(A)	Irel	hkl	20(°)
3.847 3.588 3.391 2.623 2.222	100 44 53 22 42	1 0 0 0 0 2 1 0 1 1 0 2 1 1 0	23.103 24.796 26.262 34.155 40.572
2.0298 1.9234 1.8874 1.8570 1.7937	30 4 17 5 1L	1 0 3 2 0 0 1 1 2 2 0 1 0 0 4	44.605 47.218 48.173 49.015 50.865
1.6954 1.6251 1.4986 1.4538	2 1L 7 3 3	2 0 2 1 0 4 2 0 3 2 1 0 2 1 1	54.046 56.587 61.862 63.991 65.474
1.3947 1.3441 1.2821 1.2419	1 L 3 3 3 1	1 1 4 1 0 5 3 0 0 2 1 3 3 0 2	67.050 69.935 73.858 76.668 79.303
1.1952 1.1499 1.1104 1.0666 1.0606	1 L 1 1 L 1 L 1 L	0 0 6 2 0 5 2 2 0 3 1 0 2 2 2	80.253 84.117 87.851 92.477 93.148
1.0549 1.0528 1.0210 1.0152 0.9741	1 L 1 L 1 L 1 L	3 1 1 1 1 6 2 1 5 2 0 6 3 1 3	93.809 94.049 97.954 98.704 104.512
0.9617 0.9528 0.9232 0.9043 0.89196	1L 1L 1L 1L	4 0 0 4 0 1 2 1 6 2 0 7 4 0 3	106.454 107.886 113.102 116.815 119.448

Ammonium Iron Sulfate Hydrate, $(NH_{4})_{2}Fe(SO_{4})_{2} \cdot 6H_{2}O$

Mineral name Mohrite, syn				
Picromerite Group	d(A)	Irel	hkl	2θ(°)
	7.28	2	1 1 0	12.154
CAS registry no.	6.310	9	0 2 0	14.023
7783-85-9	5.990	ý	0 0 1	14.776
1103 03 7	5.408	35	0 1 1	16.379
	5.277	6	-1 1 1	16.788
Sample				
The sample was made by slow evaporation of an	5.148	15	1 2 0	17.211
aqueous solution of FeSO $_{ m H}$ and (NH $_{ m H}$) $_{ m 2}$ SO $_{ m H}$.	4.452	16	2 0 0	19.927
	4.337 4.265	20	0 2 1	20.461
Color	4.196	35 100	-1 2 1 -2 0 1+	20.813
Very light bluish green	1.190	100	2 0 1.	210100
13. j 12g 02413 g. 03	4.163	42	1 1 1	21.328
	3.982	6	-2 1 1	22.308
Symmetry classifications	3.801	75	1 3 0	23.384
Crystal System Monoclinic	3.635	9	2 2 0	24.469
Space Group P2 ₁ /a (14)	3.612	9	1 2 1	24.625
Pearson Symbol mP78	2 1101	i.	-2 2 1	25 101
Structure Type A Tutton salt	3.491 3.438	4 13	-2 2 1 0 3 1	25.494 25.894
	3.403	17	-1 3 1	26.162
Data collection and analysis parameters	3.161	18	2 0 1	28.209
Radiation CuKa ₁	3.150	21	0 4 0	28.306
Wavelength 1.5405981 A				_
20 Standards FP Ag	3.066	22	2 1 1	29.101
Scanned to 5.0° 20	3.029	47	-1 1 2	29.470
$\sigma(I^{rel})$ ±3	2.969	3	-2 3 1+	30.079
	2.945	2 10	-3 1 1 -2 0 2	30.323
Crystallographic constants of this sample	2.902	10	-2 0 2	30.790
a = 9.2924 (17) A	2.887	10	3 1 0	30.952
b = 12.601 (3)	2.826	25	-2 1 2	31.638
c = 6.2491 (13)	2.797	24	- 1 2 2	31.972
β = 106.792 (16)°	2.769	4	-1 4 1	32.300
	2.729	10	-3 2 1	32.789
a/b = 0.7374	2.686	1L	3 2 0	22 221
c/b = 0.4959	2.635	2	3 2 0 -2 2 2	33.331 33.992
$V = 700.53 \text{ A}^3$	2.571	9	2 4 0	34.868
Z = 2	2.562	ģ	1 1 2+	34.993
Density (calc.) = 1.859 g/cm ³	2.526	8	2 3 1	35.513
	1			
	2.456	32	-3 3 1	36.557
Figures of merit	2.436	5	0 3 2	36.875
$F_{30} = 74.6(.0106, 38)$	2.424	2 8	1 5 0+	37.054
$M_{20}^{30} = 42.5$	2.386	2	-2 3 2 0 5 1+	37.674 38.743
	5	2	V J V	ا د، ۱۰۰
Comments	2.230	1	2 4 1	40.414
The structure of a Tutton salt, $(NH_{4})_{2}Mg(SO_{4})_{2} \cdot 6H_{2}O$,	2.190	6	4 1 0	41.189
was determined by Margulis and Templeton (#1).	2.185	7	-3 4 1	41.284
The mean temperature of data collection was 23.8°C.	2.169	16	0 4 2	41.597
	2.158	8	3 4 0	41.816
Additional patterns	2.133	6	-2 4 2	42.336
PDF card 17-481	2.0974	1 4	4 2 0+	43.093
,	2.0523	3	-1 1 3	44.090
	2.0282	8	-2 1 3.	44.641
References	1.9910	7	-4 2 2	45.523
#1. Margulis, T.N. and Templeton, D.H.	1 0001	11	0 6 4	115 700
Z. Kristallogr., Kristallgeom., Kristallphys.,	1.9824	4	0 6 1	45.730
Kristallchem.(1962) <u>117</u> ,334.	1.9697	3 3	0 1 3+ -3 5 1	46.042 46.852
	1.9204	3 7	3 5 0	47.296
	1.9125	10	4 0 1	47.504

Ammonium Iron Sulfate Hydrate, $(NH_{ij})_2Fe(SO_{ij})_2 \cdot 6H_2O$ (continued)

d(A)	_I rel		hk	1	20(°)
1.8982 1.8776 1.8648 1.8457	4 3 4 3	2 -4 -4 -2	6 3 4 3	0 2+ 1 3	47.882 48.442 48.797 49.334
1.8378	4 2	-5 4	1 2	1	49.560
1.8166 1.8057 1.8013 1.7742	6 5 3 3	1 2 0 -3	1 4 3 5	3+ 2 3 2	50.180 50.502 50.636 51.464
1.7622 1.7404	3 6 6	1 4 3	2 3 5	3+ 1	51.840 52.540 52.675
1.7362	O	3	כ	ı	52.075

Ammonium Magnesium Selenate Hydrate, $(NH_{4})_{2}Mg(SeO_{4})_{2} \cdot 6H_{2}O$

Sample				
The sample was prepared by slow evaporation of an aqueous 1:1 molar solution of $(NH_{ij})_2SeO_{ij}$ and $MgSeO_{ij}$ at room temperature.	d(A)	Irel	hkl	20(°)
Color Colorless	7.410	18	1 1 0	11.934
	6.383	2	0 2 0	13.862
	6.081	2	0 0 1	14.555
	5.494	60	0 1 1	16.121
	5.346	16	-1 1 1	16.569
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP78 Structure Type A Tutton salt	5.225	28	1 2 0	16.957
	4.543	15	2 0 0	19.525
	4.401	17	0 2 1	20.159
	4.326	74	-1 2 1	20.512
	4.266	100	-2 0 1 .	20.804
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 20 Standards FP Ag Scanned to 5.0° 20	4.044	10	-2 1 1	21.961
	3.854	64	1 3 0	23.059
	3.676	24	1 2 1	24.194
	3.487	20	0 3 1	25.528
	3.448	11	-1 3 1	25.820
Scanned to 5.0° 28 $\sigma(I^{rel})$ ± 4 Crystallographic constants of this sample $a = 9.471 (1) A$ $b = 12.7657 (18)$	3.226	20	2 0 1	27.632
	3.193	26	0 4 0	27.921
	3.127	17	2 1 1	28.520
	3.089	18	1 3 1	28.878
	3.071	33	-1 1 2	29.055
$c = 6.3374 (7)$ $\beta = 106.476 (11)^{\circ}$ $a/b = 0.7419$ $c/b = 0.4964$	3.038	9	0 0 2	29.378
	3.012	10	-2 3 1+	29.639
	2.995	16	-3 1 1	29.806
	2.957	6	0 1 2	30.195
	2.940	11	-2 0 2	30.376
$V = 734.75 \text{ A}^3$ Z = 2 Density (calc.) = 2.054 g/cm ³	2.879 2.835 2.776 2.736 2.602	8 22 6 9 6	2 2 1 -1 2 2 -3 2 1 3 2 0 1 4 1	31.041 31.529 32.224 32.703 34.438
Figures of merit $F_{30} = 98.2(.0069, 44)$ $M_{20} = 57.0$ Comments	2.5706	9	2 3 1	34.874
	2.5549	9	-2 4 1	35.095
	2.5385	3	-1 3 2	35.329
	2.4962	23	-3 3 1	35.948
	2.4176	4	-2 3 2	37.159
The structure of a Tutton salt, $(NH_{\parallel})_2Mg(SO_{\parallel})_2 \cdot 6H_2O$, was determined by Margulis and Templeton (#1). The mean temperature of data collection was 23.9°C.	2.4026	1	3 1 1	37.400
	2.3571	3	-4 0 1	38.149
	2.2852	15	3 2 1	39.399
	2.2690	18	2 4 1+	39.692
	2.2479	1L	2 0 2+	40.080
PDF card 28-74 Reference #1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.	2.2355 2.2252 2.2190 2.2006 2.1964	7 6 6 17	4 1 0 2 5 0 1 5 1 0 4 2 3 4 0	40.312 40.506 40.624 40.980 41.061
и тэваттонеш. (1902) <u>111</u> ,334.	2.1623	4	-2 4 2	41.740
	2.1390	5	4 2 0	42.215
	2.1213	5	3 3 1	42.585
	2.1024	2	-4 1 2	42.986
	2.0559	3	-2 1 3	44.008
	2.0254	2	0 0 3	44.708
	2.0032	11	4 3 0	45.230
	1.9657	5	-3 5 1	46.142
	1.9518	5	3 5 0	46.490
	1.9371	10	-3 1 3	46.863

Ammonium Magnesium Selenate Hydrate, $(NH_{ij})_2Mg(SeO_{ij})_2 \cdot 6H_2O$ (continued)

d(A)	_I rel		hk	1	20(°)
1.9237 1.9053 1.8706 1.8496 1.8374	7 3 4 5	1 -4 -2 4 2	6 3 4 4	1 2 3 0 2	47.210 47.694 48.636 49.224 49.572
1.8294 1.8153	4 5	0 -5	3 2	3 1+	49.804 50.217

Ammonium Magnesium Sulfate Hydrate, $(NH_{ij})_2Mg(SO_{ij})_2 \cdot 6H_2O$

Mineral name				
Boussingaultite, syn Picromerite Group	d(A)	I ^{rel}	hkl	20(°)
CAS registry no. 7785-18-4	7.289	2	1 1 0	12.132
	6.312	5	0 2 0	14.019
	5.942	4	0 0 1	14.896
	5.375	55	0 1 1	16.479
	5.151	30	1 2 0	17.201
Sample The sample was made by evaporation at room temperature of an aqueous solution of $(NH_{4})_{2}SO_{4}$ and $MgSO_{4}$.	4.456	11	2 0 0	19.909
	4.323	26	0 2 1	20.526
	4.263	58	-1 2 1	20.819
	4.205	100	-2 0 1+	21.109
	4.139	31	1 1 1	21.451
Color Colorless Symmetry classifications Crystal System Monoclinic	3.990	6	-2 1 1	22.263
	3.802	85	1 3 0	23.377
	3.639	1	2 2 0	24.443
	3.597	14	1 2 1	24.728
	3.430	18	0 3 1	25.957
Space Group P2 ₁ /a (14) Pearson Symbol mP78 Structure Type A Tutton salt Data collection and analysis parameters	3.401	12	-1 3 1	26.184
	3.151	54	0 4 0	28.300
	3.053	23	2 1 1	29.229
	3.012	34	-1 1 2	29.632
	2.974	11	-2 3 1+	30.018
Radiation CuK α_1 Wavelength 1.5405981 A 20 Standards FP Ag Scanned to 5.0° 20 $_{\sigma}(I^{\rm rel})$ ± 2	2.954	11	-3 1 1	30.233
	2.892	17	3 1 0+	30.891
	2.816	16	2 2 1	31.756
	2.783	34	0 4 1+	32.133
	2.738	15	-3 2 1	32.682
Crystallographic constants of this sample a = 9.3254 (16) A b = 12.605 (2) c = 6.2084 (9) β = 107.106 (14)°	2.685	2	0 2 2+	33.339
	2.573	7	2 4 0	34.843
	2.558	7	1 4 1	35.053
	2.519	13	2 3 1	35.618
	2.462	22	-3 3 1	36.460
a/b = 0.7398 c/b = 0.4925 $V = 697.49 \text{ A}^3$ Z = 2 Density (calc.) = 1.717 g/cm ³	2.4253 2.3824 2.3482 2.3226 2.2266	4 3 1 9	3 3 0+ -2 3 2 3 1 1 -3 2 2+ 2 4 1	37.037 37.728 38.300 38.738 40.479
Figures of merit F30 = 78.7(.0079, 48) M20 = 44.0	2.2100	3	-1 4 2	40.797
	2.1937	4	4 1 0+	41.114
	2.1873	4	-3 4 1	41.240
	2.1788	5	-4 2 1	41.408
	2.1614	22	3 4 0	41.758
Comments The structure of $(NH_{4})_{2}Mg(SO_{4})_{2} \cdot 6H_{2}O$ was determined by Margulis and Templeton (#1). The mean temperature of data collection was 22.6°C.	2.1308	4	-2 4 2	42.385
	2.1004	12	4 2 0+	43.030
	2.0768	2	3 3 1	43.543
	2.0435	2	-2 0 3+	44.289
	2.0335	3	-4 3 1	44.520
Additional patterns PDF card 17-135	2.0182	3	-2 1 3	44.874
	1.9953	1	-4 2 2	45.420
	1.9773	6	0 0 3	45.856
	1.9747	6	-1 6 1	45.920
	1.9673	4	2 5 1	46.102
#1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.	1.9570	4	-1 5 2	46.359
	1.9408	4	-3 5 1	46.768
	1.9219	7	3 5 0	47.256
	1.9065	7	-3 1 3	47.663
	1.9043	7	3 4 1	47.720
		con	tinued	

Ammonium Magnesium Sulfate Hydrate, $(NH_{ij})_2Mg(SO_{ij})_2 \cdot 6H_2O$ (continued)

d(A)	Irel		hk	20(°)	
1.9012	6	-2	5	2+	47.804
1.8796	3	-2	6	1	48.387
1.8695	2	-4	4	1	48.665
1.8528	2	-1	3	3	49.133
1.8386	6	-2	3	3	49.537
1.8264 1.8195 1.7983 1.7888 1.7642	1 4 3	3 4 2 -5 5	1 4 2 1	2 0 2 1 0+	49.890 50.093 50.727 51.015 51.779
1.7392 1.7345 1.7148 1.6992	4 6 4 1	-1 3 0 -2	6 5 6 6	2 1 2+ 2	52.579 52.731 53.386 53.914

Ammonium Nickel Selenate Hydrate, (NH₄)2Ni(SeO₄)2·6H2O

Sample

The sample was made by slow evaporation at room temperature of an aqueous solution of $({\rm NH_4})_2{\rm SeO}_4$ and ${\rm NiSeO}_1$.

Color

Strong bluish green

Symmetry classifications

Crystal System Monoclinic Space Group P2₁/a (14) Pearson Symbol mP78

Structure Type A Tutton salt

Data collection and analysis parameters

Radiation $CuK\alpha_1$ Wavelength 1.5405981 Å
20 Standards FP Ag
Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 2

Crystallographic constants of this sample

a = 9.3283 (14) A b = 12.6210 (15)

c = 6.3665(6)

 $\beta = 106.23 (1)^{\circ}$

a/b = 0.7391

c/b = 0.5044

 $V = 719.67 A^3$

Z = 2

Density (calc.) = 2.256 g/cm^3

Figures of merit

 $F_{30} = 90.4(.0079, 42)$

 $M_{20} = 46.2$

Comments

The structure of a Tutton salt, $(NH_{ij})_2Mg(SO_{ij})_2 \cdot 6H_2O$, was determined by Margulis and Templeton (#1). The mean temperature of data collection was 23.4°C.

References

#1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.

d(A)	Irel		hk	20(°)	
7.312	3	1	1	0	12.095
6.318	7	0	2	0	14.007
6.116	5	0	0	1	14.472
5.503	40	0	1	1	16.092
5.316	6	-1	1	1	16.664
5.158	29	1	2	0	17.177
4.480	18	2	0	0	19.801
4.393	15	0	2	1	20.199
4.298	57	-1	2	1	20.648
4.222	100	-2	1	0+	21.026

d(A)	I ^{rel}	hkl	20(°)
4.002	9	-2 1 1	22.197
3.809	68	1 3 0	23.335
3.664	22	1 2 1	24.273
3.466	19	0 3 1	25.679
3.420	16	-1 3 1	26.031
3.211	12	2 0 1	27.761
3.156	15	0 4 0	28.258
3.112	19	2 1 1	28.663
3.080	40	-1 1 2	28.970
2.980	6	-2 3 1+	29.965
2.972	7	0 1 2	30.042
2.954	7	-3 1 1	30.231
2.936	7	-2 0 2	30.425
2.906	3	3 1 0	30.742
2.862	14	2 2 1+	31.232
2.838	13	-1 2 2	31.501
2.781	1	-1 4 1	32.162
2.738	3	-3 2 1	32.680
2.699	8	3 2 0	33.160
2.616	1	1 1 2	34.256
2.582	4	1 4 1	34.709
2.552	5	2 3 1	35.141
2.527	3	-2 4 1	35.496
2.464	28	-3 3 1+	36.440
2.436	2	3 3 0	36.876
2.4066	2	-2 3 2	37.335
2.3853	2	3 1 1	37.682
2.3363	2	-3 2 2	38.502
2.3221	2	-4 0 1	38.747
2.2505	18	2 4 1+	40.031
2.2055	1 4	4 1 0	40.884
2.1950	20	0 4 2	41.088
2.1686	5	3 4 0	41.613
2.1492	5	-2 4 2	42.006
2.1090	6	-4 0 2+	42.846
2.1036	1 L	0 6 0+	42.961
2.0800	1	-4 1 2	43.472
2.0594	3	-2 1 3	43.930
2.0376	3	0 0 3	44.424
2.0089	3	-1 2 3	45.093
1.9796 1.9411 1.9338 1.9275	6 9 11 9 3	-1 6 1 -3 5 1 -3 1 3 3 5 0 4 1 1+	45.800 46.761 46.948 47.110 47.499
1.9051	4	1 6 1	47.699
1.8829	4	-2 6 1	48.297
1.8702	4	-2 3 3+	48.647
1.8492	1	4 2 1	49.236
1.8332	7	0 3 3	49.693
1.8260	8	4 4 0	49.904
1.8089	3	3 2 2	50.409
1.7988	2	1 2 3	50.711
1.7886	1	-5 2 1	51.019
1.7734	7	5 1 0+	51.491
	con	tinued	

Ammonium Nickel Selenate Hydrate, (NH₄)2Ni(SeO₄)2.6H2O (continued)

d(A)	Irel	hkl	20(°)
1.7540	2	-1 6 2+	52.101
1.7412	5	-2 4 3	52.514
1.7197	6	3 6 0	53.223
1.7145	6	1 3 3	53.395
1.7099	6	-2 6 2+	53.550
1.6853	3	2 0 3	54.395
1.6748	6	4 5 0	54.767
1.6492	5	4 4 1	55.690
1.6372	3	-5 3 2	56.132
1.6190	2	-4 5 2	56.821
1.6147	2	-3 6 2	56.988
1.5923	2	4 1 2	57.863
1.5850	3	0 5 3	58.154
1.5680	3	-1 7 2	58.846
1.5531	4	5 2 1+	59.466
1.5470	3	~3 5 3+	59.725

Ammonium Zinc Selenate Hydrate, (NH4)2Zn(SeO4)2.6H2O

Sample

The sample was made by slow evaporation of a 1:1 molar aqueous solution of (NH_{II})₂SeO_{II} and ZnSeO_{II}.

Color

Colorless

Symmetry classifications

Crystal System Monoclinic Space Group P2₁/a (14) Pearson Symbol mP78

Structure Type Tutton salt

Data collection and analysis parameters

Radiation CuK α_1

1.5405981 A

Wavelength 2θ Standards

Scanned to

Ag FP 5.0° 20

o(Irel)

±2

Crystallographic constants of this sample

a = 9.3806 (13) A

b = 12.674(2)

c = 6.3796 (9)

 $\beta = 106.226 (12)^{\circ}$

a/b = 0.7401

c/b = 0.5034

 $V = 728.26 \text{ A}^3$

Z = 2

Density (calc.) = 2.259 g/cm^3

Figures of merit

 $F_{30} = 73.4(.0100, 41)$ $M_{20} = 38.8$

Comments

The structure of a Tutton salt, $(NH_4)_2Mg(SO_4) \cdot 6H_2O$, was determined by Margulis and Templeton (#1). The mean temperature of data collection was 24.5°C.

Reference

#1. Margulis, T.N., and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.

- 1						
	d(Å)	I^{rel}		hk	1	20(°)
1	7.34	1	1	1	0	12.040
	6.334	8	0	2	0	13.971
	6.132	8	0	0	1	14.433
	5.517	43	0	1	1	16.053
	5.180	20	1	2	0	17.104
	4.508	19	2	0	0	19.679
	4.405	17	0	2	1	20.140
	4.312	54	-1	2	1	20.580
	4.242	100	2	1	0+	20.923
	4.023	9	-2	1	1	22.080
	1					
	5.180 4.508 4.405 4.312 4.242	20 19 17 54 100	1 2 0 -1 2	0 2 2 1	0 1 1	17.104 19.679 20.140 20.580 20.923

d(A)	I ^{rel}	hkl	20(°)
3.826	60	1 3 0	23.230
3.676	23	1 2 1	24.190
3.523	4	-2 2 1	25.260
3.479	18	0 3 1	25.587
3.430	17	-1 3 1	25.956
3.226	8	2 0 1	27.630
3.168	10	0 4 0	28.145
3.123	16	2 1 1	28.561
3.084	43	1 3 1+	28.929
3.064	3	0 0 2	29.120
2.991	5	-2 3 1+	29.853
2.968	5	-3 1 1	30.084
2.944	5	-2 0 2	30.334
2.922	4	3 1 0	30.574
2.874	14	2 2 1	31.098
2.847	15	-1 2 2	31.401
2.791	1	-1 4 1	32.040
2.753	5	-3 2 1	32.497
2.714	7	3 2 0	32.973
2.671	1	-2 2 2	33.530
2.623	3	1 1 2	34.160
2.593	4	1 4 1+	34.560
2.562	6	2 3 1	34.998
2.538	3	-2 4 1	35.332
2.476	27	-3 3 1+	36.259
2.448	2	3 3 0	36.676
2.414	2	-2 3 2	37.218
2.395	2	3 1 1	37.518
2.345	1	-3 2 2	38.347
2.329	1	-1 5 1	38.630
2.259	18	2	39.873
2.217	9		40.660
2.209	12		40.816
2.202	16		40.951
2.178	4		41.420
2.1573 2.1217 2.0892 2.0644 2.0408	5 6 2 3	-2 4 2 4 2 0 -4 1 2 -2 1 3 0 0 3	41.840 42.577 43.272 43.818 44.351
2.0140	4	-1 2 3	44.974
2.0086	4	-4 2 2	45.102
1.9919	4	2 5 1	45.500
1.9902	4	2 3 2	45.541
1.9504	7	-3 5 1	46.525
1.9446	8	4 0 1+ -3 1 3 3 4 1 -2 5 2 2 6 0	46.673
1.9391	11		46.813
1.9328	7		46.974
1.9210	3		47.279
1.9112	3		47.538
1.8901	4	-2 6 1	48.100
1.8748	4	-3 2 3+	48.518
1.8590	2	4 2 1	48.958
1.8354	10	4 4 0	49.630
1.8163	2	3 2 2	50.187
	con	tinued	

Ammonium Zinc Selenate Hydrate, $(NH_{ij})_2Zn(SeO_{ij})_2\cdot 6H_2O$ (continued)

d(A)	I ^{rel}		hk	1	20(°)
1.8034	3	1	2	3	50.573
1.7988	2	- 5	2	1	50.711
1.7836	6	5	1	0	51.174
1.7598	2	-1	6	2	51.917
1.7460	4	-2	4	3	52.358
1.7366	2	0	7	1+	52.663
1.7324	2	5	2	0	52.801
1.7190	4	-5	2	2+	53.244
1.7141	5	-4	2	3+	•53.409
1.6904	2	2	0	3	54.220
1.6841	4	4	5	0	54.439
1.6791	2	2	7	0	54.614
1.6564	2	5	3	0	55.426

Ammonium Zinc Sulfate Hydrate, $(NH_{ij})_2Zn(SO_{ij})_2 \cdot 6H_2O$

CAS registry no. 7783-24-6	d(A)	_I rel	hkl	20(°)
Sample The sample was made by slow evaporation at room temperature of an aqueous solution of $({\rm NH}_4)_2{\rm S0}_4$ and ${\rm ZnS0}_4$.	7.228	3	1 1 0	12.235
	6.258	14	0 2 0	14.142
	5.983	15	0 0 1	14.795
	5.400	31	0 1 1	16.401
	5.262	9	-1 1 1	16.837
Color Colorless Symmetry classifications	5.111	12	1 2 0	17.338
	4.421	21	2 0 0	20.067
	4.325	23	0 2 1	20.520
	4.254	36	-1 2 1	20.864
	4.182	100	-2 0 1	21.230
Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP78 Structure Type A Tutton salt	4.148	61	1 1 1	21.404
	3.967	6	-2 1 1	22.396
	3.774	77	1 3 0	23.553
	3.611	12	2 2 0	24.637
	3.599	16	1 2 1	24.720
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.476	5	-2 2 1	25.608
	3.423	16	0 3 1	26.010
	3.386	20	-1 3 1	26.296
	3.146	12	2 0 1	28.344
	3.126	12	0 4 0	28.527
Crystallographic constants of this sample a = 9.2388 (12) A b = 12.5173 (16) c = 6.2516 (8)	3.051	34	2 1 1	29.245
	3.037	48	2 3 0	29.390
	3.030	50	-1 1 2	29.453
	2.954	4	-2 3 1	30.236
	2.928	5	-3 1 1	30.511
$\beta = 106.852 (11)^{\circ}$ $a/b = 0.7381$ $c/b = 0.4994$ $V = 691.92 A^3$	2.910	7	0 1 2	30.701
	2.898	7	-2 0 2	30.828
	2.870	7	3 1 0	31.143
	2.811	30	2 2 1	31.804
	2.793	25	-1 2 2	32.018
Z = 2 Density (calc.) = 1.928 g/cm ³ Figures of merit $F_{30} = 142.9(.0060, 35)$	2.7541 2.7147 2.6664 2.6288 2.5555	1 9 1 2 12	-1 4 1 -3 2 1 3 2 0 -2 2 2 2 4 0	32.484 32.968 33.583 34.078 35.087
$M_{20}^{SO} = 82.9$ Comments The structure of a Tutton salt, $(NH_{\mu})_2Mg(SO_{\mu})_2 \cdot 6H_2O$, was determined by Margulis and Templeton (#1).	2.5116	7	2 3 1	35.721
	2.4430	29	-3 3 1+	36.759
	2.4085	4	1 5 0+	37.304
	2.3802	2	-2 3 2	37.765
	2.3420	5	3 1 1	38.405
The mean temperature of data collection was 23.4°C. Additional patterns PDF card 18-138	2.3084	2	0 5 1	38.986
	2.3014	1	-4 0 1	39.109
	2.2644	1	-4 1 1	39.776
	2.2177	17	2 4 1	40.649
	2.1765	8	4 1 0+	41.455
References #1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.	2.1702 2.1623 2.1470 2.1394 2.1260	11 12 8 8	-3 4 1 0 4 2 -2 5 1 -3 3 2 -2 4 2	41.579 41.740 42.051 42.207 42.487
	2.0838	12	4 2 0	43.390
	2.0545	1	-2 0 3	44.040
	2.0273	14	-2 1 3	44.662
	1.9949	5	0 0 3	45.429
	1.9837	4	-4 2 2	45.700

Ammonium Zinc Sulfate Hydrate, $(NH_{4})_2Zn(SO_{4})_2 \cdot 6H_2O$ (continued)

d(A)	Irel	I miranostroit milem	hk	1	20(°)
1.9699	4 3	0 2	6 5	1+	46.038 46.299
1.9535	2	4	3	0+	46.447
1.9260	6	-3	5	1	47.151
1.9206	6	0	5	2	47.290
1.9091	13	-3	1	3+	47.594
1.8868	2 6	2 -2	6 6	0 1	48.190 48.748
1.8611	6	-1	3	3	48.900
1.8436	4	-2	3	3	49.393
1.8281	4	- 5	1	1	49.841
1.8198	4	4	2	1	50.085
1.8151	5	1	1	3	50.223
1.8078	6	1	5	2	50.440
1.7993	7	2	4	2+	50.696

Antimony Phosphate, SbPO4

Synonym Antimony orthophosphate	d(A)	I ^{rel}	hkl	20(°)
CAS nogistry no	4.734	8	0 0 1	18.731
CAS registry no. 14713-43-0	4.066	60	1 1 0	21.840
י פר כווף ו	3.876	33	0 1 1	22.925
	3.611	100	-1 0 1	24.637
Sample	3.386	92	0 2 0	26.299
The sample was made by stirring Sb ₂ O ₃ in an excess				
of 6 M H ₃ PO ₄ for 5 days.	3.334	36	1 0 1	26.719
	3.189	5	-1 1 1	27.956
	2.992	51	1 1 1	29.834
Color	2.545	14	2 0 0	35.236
Colorless	2.471	35	-1 2 1	36.332
	2.3832	44	2 1 0	37.716
Symmetry classifications	2.3756	36	1 2 1	37.840
Crystal System Monoclinic	2.3650	30	0 0 2	38.017
Space Group P2 ₁ /m (11)	2.3205	1	-2 0 1	38.775
Pearson Symbol mP12	2.2329	2	0 1 2	40.360
	2.2137	2	-1 0 2	40.727
Data collection and analysis parameters	2.1949	6	-2 1 1	41.091
Radiation CuKo ₁	2.1700	15	2 0 1	41.584
Wavelength 1.5405981 A	2.1046	21	- 1 1 2	42.940
20 Standard Si	2.0816	7	1 0 2	43.438
Scanned to 5.0° 20				
o(I ^{rel}) ±2	2.0638	30	1 3 0	43.831
	2.0374	22	0 3 1	44.429
C	1.9903	2	1 1 2	45.538
Crystallographic constants of this sample	1.9390	17	0 2 2 -1 3 1	46.815
a = 5.1057 (7) A b = 6.7724 (7)	1.9151	3	-1 3 1	47.434
c = 4.7454 (4)	1.8694	19	1 3 1	48.667
$\beta = 94.613 (9)^{\circ}$	1.8266	9	2 2 1	49.885
, -)4.013 (3)	1.8061	12	-2 0 2	50.492
a/b = 0.7539	1.7731	1	1 2 2	51.500
c/b = 0.7007	1.7447	2	-2 1 2	52.400
$V = 163.55 \text{ A}^3$	1 6021	20	0 11 0	Eli 13li
$V = 103.000 \text{ A}^3$ Z = 2	1.6931	20 18	0 4 0 2 3 0	54.124 54.278
Density (calc.) = 4.401 g/cm ³	1.6456	3	3 1 0	55.820
Density (care.) - 4.401 g/cm	1.6333	4	0 3 2	56.280
	1.6179	16	-2 3 1+	56.864
Figures of merit			-	*
$F_{30} = 104.7(.0077, 37)$	1.5938	22	-2 2 2+	57.804
$M_{20}^{30} = 89.1$	1.5806	11	- 1 3 2	58.332
	1.5766	7	0 0 3	58.494
0	1.5645	4 6	2 3 1	58.990
The structure of ShPO was determined by Vinhanger	1.5415	0	-1 0 3	59.960
The structure of SbPO ₄ was determined by Kinberger (#1).	1.5331	10	-1 4 1	60.323
The mean temperature of data collection was 24.4°C.	1.5177	10	3 1 1	61.001
The mean composition of dava correction and a is i of	1.5093	·ŭ	1 4 1	61.379
	1.4732	1 L	1 0 3	63.050
Additional patterns	1.4390	8	1 1 3	64.731
PDF card 23-793				
Majling et al. (#2)	1.4297	2	0 2 3	65.200
,	1.4099	2	2 4 0+	66.235
Daganana	1.4026	10	-1 2 3+	66.624
References P	1.3913	1 L	-2 0 3 0 4 2	67.236 68.067
#1. Kinberger, B. Acta Chem. Scand.(1970) 24,320.	1.3763	5	0 4 2	00.007
#2. Majling, J. et al.; (1979)	1.3625	3	-2 1 3	68.857
Calculated Powder Diffraction Patterns for	1.3406	5 5	2 3 2	70.140
Anhydrous Phosphates (VEDA, Bratislava,	1.3344	3	2 4 1	70.517
Czechoslovakia).	1.3264	5	-3 3 1	71.007
	1.3092	1	1 5 0	72.086

Antimony Phosphate, $SbPO_{ij}$ (continued)

d(A)	Irel		hk	1	20(°)
1.2945	1 L	2	0	3	73.036
1.2817	5	3	3	1	73.885
1.2545	4	1	5	1+	75.761
1.2353	4	-2	4	2	77.156
1.2334	6	-4	1	1+	77.297
1.2108	1	-3	3	2	79.016

Barium Bismuth Titanium Oxide, BaBiuTiuO15

Synonym

Barium bismuth titanate

Sample

The sample was prepared in the early 1960's by W.S. Brower at NBS. The starting materials BaCO3, Bi2O3, and TiO (anatase) were heated in a platinum crucible to about 700°C, then calcined at about 1000°C.

Color

Colorless

Symmetry classifications

Crystal System Tetragonal Space Group I4/mmm (139) Pearson Symbol tI48

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 2θ Standards W FP Scanned to 5.0° 20 o(Irel) ±1

Crystallographic constants of this sample

a = 3.8624 (3) A c = 41.851 (4)

c/a = 10.8355

 $V = 624.34 A^3$

Z = 2

Density (calc.) = 7.473 g/cm^3

Figures of merit

 $F_{30} = 86.1(.0077, 45)$ $M_{20} = 81.2$

Comments

The structure was determined by Aurivillius (#1). The mean temperature of data collection was 24.7°C.

Additional patterns .

PDF card 8-261

Reference

#1. Aurivillius, B.

Ark. Kemi(1951) 2,519.

d(A)	Irel	hkl	20(°)
10.47	2	0 0 4	8.439
6.977	3	0 0 6	12.677
5.233	9	0 0 8	16.930
4.186	7	0 0 10	21.210
3.846	18	1 0 1	23.107
3.722	2	1 0 3	23.886
3.504	2	1 0 5	25.395
3.243	6	1 0 7	27.479
2.970	100	1 0 9	30.061
2.730	36	1 1 0	32.775
2.643 2.615 2.543 2.473 2.4202	1 2 1 1	1 1 4 0 0 16 1 1 6 1 0 13 1 1 8	33.896 34.258 35.267 36.297 37.118
2.3244	8	0 0 18	38.707
2.2869	20	1 1 10	39.368
2.2621	2	1 0 15	39.817
2.0921	2	0 0 20	43.209
2.0752	4	1 0 17	43.579
2.0155	1	1 1 14	44.939
1.9315	22	2 0 0	47.008
1.9135	6	1 0 19	47.478
1.8887	4	1 1 16	48.138
1.8119	2	2 0 8	50.318
1.7706 1.7538 1.7260 1.6893	16 2 4 1 2	1 1 18+ 2 0 10 2 1 1 2 0 12 2 1 7	51.577 52.107 53.011 54.257 55.295
1.6463	1L	1 0 23	55.796
1.6194	21	2 1 9	56.806
1.5537	2	2 0 16	59.441
1.5365	2	1 0 25	60.176
1.4949	1	0 0 28	62.034
1.4854 1.4694 1.4387 1.4192 1.4139	5 1 5 1	2 0 18 1 1 24 1 0 27 2 0 20 2 1 17	62.472 63.234 64.742 65.744 66.024

Barium Copper Phosphate, $Ba_2Cu(PO_3)_6$

Synonym				
Barium copper metaphosphate	d(A)	Irel	hkl	20(°)
Sample A 1:4:12 molar mixture of CuCo ₃ ·Cu(OH) ₂ , BaCo ₃ , and NH ₄ H ₂ PO ₄ was heated up to 500°C, reground and heated at 800°C for 40 hours.	10.61	3	2 0 0	8.329
	7.583	5	-2 0 1	11.660
	6.602	4	2 0 1	13.400
	5.994	3	2 1 0	14.768
	5.678	3	-1 1 1	15.595
Color Very pale green Symmetry classifications	5.299	3	4 0 0	16.716
	5.249	4	-2 1 1	16.876
	5.069	9	3 1 0	17.480
	4.919	9	-4 0 1	18.017
	4.892	7	2 1 1	18.120
Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP108 Data collection and analysis parameters	4.714	2	0 0 2	18.810
	4.665	3	-3 1 1	19.009
	4.368	5	4 0 1	20.315
	4.296	3	3 1 1	20.660
	4.284	5	4 1 0	20.719
Radiation $CuK\alpha_1$ Wavelength 1.5405981 Å 20 Standard Si Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 2	4.101	33	2 0 2	21.650
	4.073	25	-4 1 1	21.801
	3.976	7	-1 1 2	22.344
	3.957	9	0 1 2	22.448
	3.856	5	-2 1 2	23.049
Crystallographic constants of this sample $a = 21.410 (2) \ A$ $b = 7.2792 (9)$ $c = 9.5221 (12)$ $\beta = 97.945 (12)^{\circ}$	3.793	35	-4 0 2	23.437
	3.746	9	4 1 1	23.734
	3.663	20	5 1 0	24.276
	3.637	25	-3 1 2+	24.454
	3.574	15	2 1 2	24.895
a/b = 2.9413 c/b = 1.3081 $V = 1469.75 A^3$ Z = 4	3.533 3.395 3.364 3.327 3.303	12 6 23 100 29	6 0 0 0 2 1 -4 1 2 1 2 1 4 0 2	25.190 26.230 26.471 26.777 26.973
Density (calc.) = 3.670 g/cm ³ Figures of merit F ₃₀ = 91.9(.0076, 43) M ₂₀ = 34.1	3.282	13	-2 2 1	27.150
	3.236	9	3 2 0	27.540
	3.189	8	2 2 1	27.960
	3.178	11	6 1 0	28.054
	3.133	7	-6 1 1+	28.470
Comments The structure was determined by Laugt and Guitel (#1). The mean temperature of data collection was 24.5°C.	3.077	1	-5 1 2	29.000
	3.037	29	-6 0 2	29.387
	3.002	15	3 2 1+	29.736
	2.927	4	-4 2 1	30.518
	2.909	10	-1 1 3+	30.715
Additional patterns PDF card 25-65 Majling et al. (#2)	2.884	20	-4 0 3+	30.984
	2.841	4	-2 2 2	31.460
	2.823	5	1 2 2	31.664
	2.813	8	1 1 3	31.788
	2.799	11	-3 1 3+	31.949
References #1. Laugt, M. and Guitel, JC. Acta Crystallogr.(1975) B31,1148. #2. Majling, J. et al.; (1979) Calculated Powder Diffraction Patterns for	2.779 2.740 2.717 2.682 2.650	4 11 5 1 21	-7 1 1 5 1 2 -5 2 1 -4 1 3 8 0 0+	32.183 32.661 32.939 33.385 33.795
Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia).	2.593 2.561 2.553 2.483 2.4608	17 8 6 11 7	7 1 1+ 3 1 3 4 0 3+ -5 2 2 -8 0 2	34.569 35.005 35.116 36.147 36.483

d(A)	Irel	hk	(1	20(°)
2.4113 2.3726 2.3655 2.3367 2.3304	2 9 4 6	1 3 -2 0 2 3 1 2 -8 1	0+ 4 0 3 2+	37.260 37.891 38.008 38.496 38.604
2.3192	20	-7 2	1	38.798
2.3124	13	-2 3	1	38.917
2.2949	8	3 3	0+	39.225
2.2814	8	7 1	2	39.467
2.2747	8	-4 0	4	39.588
2.2558 2.2496 2.2434 2.2365 2.2014	3 2 3 3	-2 1 -9 1 0 1 2 0 1 1	4+ 1 4+ 4+ 4+	39.933 40.048 40.163 40.293 40.965
2.1865	5	3 2	3+	41.255
2.1757	12	-4 3	1+	41.471
2.1605	7	-1 3	2	41.775
2.1328	13	-10 0	1+	42.343
2.1199	4	10 0	0+	42.615
2.1068	8	5 3	0+	42.892
2.1009	11	-3 3	2+	43.019
2.0940	8	8 1	2	43.168
2.0879	8	2 3	2+	43.299
2.0408	5	8 2	1	44.352
2.0274	3	3 3	2	44.661
1.9877	6	5 2	3+	45.602
1.9822	5	~9 2	1	45.736
1.9741	11	~5 3	2+	45.935
1.9658	9	~3 2	4+	46.138
1.9275 1.9202 1.9032 1.8984 1.8920	5 6 6 5 7	-1 3 0 3 -2 0 1 3 9 2	3+ 3 5 3	47.111 47.301 47.750 47.878 48.049
1.8469	2	6 0	4	49.301
1.8410	2	-2 1	5+	49.469
1.8264	6	7 3	1+	49.890
1.8178	10	-11 1	2+	50.142
1.8137	5	1 4	0+	50.266
1.7847	4	10 1	2+	51.139
1.7428	2	-9 1	4+	52.463
1.7304	2	-12 1	1	52.867
1.7181	3	5 2	4+	53.276
1.7134	3	-11 2	1+	53.433
1.7032	7	11 2	0+	53.780
1.6984	5	7 1	4+	53.941
1.6949	4	12 0	1	54.063
1.6907	3	0 3	4+	54.209
1.6758	3	-3 2	5	54.729
1.6719	3	-10 2	3+	54.869
1.6637	1	2 4	2	55.162

Barium Silicate, Ba₅Si₈O₂₁

Synonym				
Barium silicon oxide	d(A)	Irel	hkl	20(°)
CAS registry no. 11092-02-7	16.27 8.10	1L 1L	2 0 0 4 0 0	5.426 10.911
Sample	6.881	13	0 0 2	12.855
	6.684	1	-2 0 2	13.236
	6.031	10	2 0 2	14.677
Stoichiometric amounts of BaCO ₃ and SiO ₂ were ground together and heated to 900°C for 20 hours, 1300°C for	5.657	1	-4 0 2	15.651
22.5 hours, and 1375°C for 21.5 hours with intermittent grinding. Silicon oxide, SiO ₂ (0.4 mol. %) was added for a final heating at 1375°C for 22.5 hours.	5.396	1	6 0 0	16.413
	4.911	1L	4 0 2	18.048
	4.344	2	-2 1 1	20.427
	4.307	8	3 1 0	20.607
Color Colorless	4.241	2	2 1 1	20.928
	4.046	1	8 0 0	21.949
	3.890	10	-1 1 2	22.841
Symmetry classifications Crystal System Monoclinic	3.801	100	5 1 0	23.387
	3.726	74	-8 0 2	23.861
Space Group I*/a Pearson Symbol mC136 Data collection and analysis parameters	3.560	4	3 1 2	24.989
	3.509	1	-6 1 1	25.362
	3.467	3	-2 0 4	25.675
	3.439	3	0 0 4	25.884
	3.341	7	-4 0 4	26.661
Radiation $CuK\alpha_1$ Wavelength 1.5405981 A 20 Standards Si FP Scanned to 5.0° 20 $\sigma(I^{\text{rel}})$ ± 6	3.289	51	8 0 2	27.087
	3.272	82	2 0 4	27.231
	3.237	42	10 0 0	27.533
	3.218	62	5 1 2	27.703
	3.107	31	-6 0 4	28.706
Crystallographic constants of this sample a = 32.697 (4) A b = 4.6977 (9) c = 13.901 (2) β = 98.144 (10)°	3.015	1L	4 0 4	29.605
	2.939	2	-6 1 3+	30.388
	2.860	11	7 1 2	31.250
	2.854	9	9 1 0	31.316
	2.826	20	-8 0 4	31.635
a/b = 6.9602	2.781	61	10 0 2	32.159
c/b = 2.9591	2.765	42	-3 1 4	32.355
V = 2113.67 A ³	2.740	3	1 1 4	32.659
Z = 4	2.697	2	12 0 0	33.191
Density (calc.) = 3.920 g/cm ³	2.677	5	-10 1 1	33.440
Figures of merit F ₃₀ = 72.1(.0083, 50) M ₂₀ = 38.5	2.665	6	-5 1 4	33.597
	2.617	2	3 1 4	34.237
	2.543	3	-10 0 4	35.258
	2.537	3	9 1 2	35.354
	2.509	3	-7 1 4	35.761
Comments The unit cell was determined by Roth (#1). The mean temperature of data collection was 24.0°C.	2.440	3	-11 1 2	36.802
	2.399	1	12 0 2	37.465
	2.392	1L	-2 1 5	37.579
	2.374	3	0 1 5	37.869
	2.3486	39	0 2 0	38.292
Additional patterns PDF card 12-548 Reference #1. Roth, R.S.	2.3298	2	-9 1 4	38.613
	2.3117	2	14 0 0+	38.929
	2.3052	2	1 2 1	39.042
	2.2926	5	-14 0 2+	39.266
	2.2858	6	-12 0 4	39.387
Priv. Commun.(1966)	2.2677	40	7 1 4	39.716
	2.2272	26	-6 0 6+	40.469
	2.2003	21	13 1 0	40.985
	2.1947	15	-12 1 3+	41.095
	2.1761	49	-13 1 2	41.462
		coı	ntinued	

Barium Silicate, Ba₅Si₈O₂₁ (continued)

d(A)	I ^{rel}	hkl	20(°)
2.1461	18	-11 1 4	42.069
2.1286	4	-8 0 6+	42.431
2.0850	5	9 1 4	43.362
2.0736	17	-3 1 6+	43.613
2.0407	4	1 1 6+	44.353
2.0281	4	-5 2 3+	44.643
2.0200	4	-16 0 2	44.834
2.0102	1	-10 0 6+	45.064
1.9909	23	12 0 4	45.524
1.9680	2	-9 2 1+	46.084
1.9607	5	15 1 0	46.267
1.9542	6	-15 1 2+	46.429
1.9083	15	2 2 4	47.613
1.9005	7	10 2 0+	47.821
1.8957	3	5 1 6+	47.951
1.8840	2	8 0 6+	48.266
1.8739	10	-16 1 1+	48.543
1.8628	5	-16 0 4	48.853
1.8248	16	15 1 2	49.939
1.8061	14	14 1 3+	50.492
1.7985	52	18 0 0+	50.719
1.7773	2	2 1 7	51.368
1.7677	2	-14 1 5	51.669
1.7651	2	17 1 0+	51.749
1.7572	8	-14 0 6+	51.999
1.7333	7	-4 0 8	52.770
1.7104	2	-6 0 8	53.535
1.6975	2	9 1 6+	53.972
1.6576	2	17 1 2	55.382
1.6380	2	-12 2 4	56.103
1.6237	11	-1 1 8	56.642
1.6160	20	-6 2 6+	56.937
1.6077	2	-19 1 2+	57.259
1.6030	2	1 1 8	57.440
1.5950	1	-15 1 6+	57.755
1.5771	1	-8 2 6+	58.475
1.5671	1L	14 2 2+	58.886
1.5527	10	-9 1 8+	59.486

Barium Titanium Borate, BaTi(BO3)2

Synonym Barium titanium bis(borate)					
Sample The sample was prepared by J.M. Millet by heating stoichiometric amounts of BaTiO ₃ and H ₃ BO ₃ at 700°C for 2 hours. Then it was ground and heated for 2 successive periods at 950°C for 24 hours.					
Color Colorless					
Symmetry classifications Crystal System Rhombohed Space Group R3(148) Pearson Symbol hR10 Structure Type Dolomite	ral				
Data collection and analysi Radiation CuKa ₁	s parameters				
Wavelength 1.5405981 20 Standard Ag	A				
Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 2					
0(1) 12					
Crystallographic constants Hexagonal axes) a = 5.02331 (16) A c = 16.3939 (7)	of this sample				
c/a = 3.2636					
$V = 358.26 \text{ A}^3$					
Z = 3 Density (calc.) = 4.211 g	/cm ³				
• • • • • • • • • • • • • • • • • • • •					
Figures of merit F30 = 151.5(.0060, 33) M ₂₀ = 245.4					
Comments The structure was studied by Vicat and Aléonard (#1). The temperature of data collection was approximately 25.0°C.					
Additional patterns PDF card 22=96					
Reference #1. Vicat, J. and Aléonar C. R. Seances Acad. S 266,1046.					

d(A)	_I rel	hkl	20(°)
5.465 4.204 3.843 2.984 2.7316	7 19 73 100	0 0 3 1 0 1 0 1 2 1 0 4 0 0 6	16.206 21.114 23.126 29.925 32.759
2.6193	22	0 1 5	34.205
2.5118	35	1 1 0	35.718
2.2825	15	1 1 3	39.447
2.1565	19	0 2 1	41.856
2.1025	29	2 0 2	42.985
2.0624	5	1 0 7	43.862
1.9214	9	0 2 4	47.270
1.8542	36	0 1 8	49.092
1.8493	45	1 1 6	49.233
1.8217	5	0 0 9	50.030
1.6359	2	2 1 1	56.183
1.6122	16	1 2 2	57.084
1.5341	7	1 0 10	60.280
1.5260	17	2 1 4	60.634
1.4915	7	2 0 8	62.190
1.4742	5	1 1 9	63.001
1.4701	6	1 2 5	63.198
1.4502	6	3 0 0	64.167
1.4100	1L	0 1 11	66.229
1.4015	3	3 0 3	66.680
1.3661	2	0 0 12	68.647
1.3455	2	2 1 7	69.852
1.3089	8	0 2 10	72.102
1.2827	9	1 2 8	73.816
1.2809	10	3 0 6	73.939
1.2558	6	2 2 0	75.669
1.2293	1L	2 0 11	77.601
1.2238	1L	2 2 3	78.015
1.2113	1L	1 0 13	78.980
1.2034	3	1 3 1	79.600
1.2001 1.1935 1.1609 1.1577 1.1410	7 5 4 9	1 1 12 3 1 2 2 1 10 1 3 4 2 2 6	79.863 80.391 83.137 83.424 84.928
1.1346	2	3 0 9	85.519
1.1324	8	3 1 5	85.728
1.1306	2	0 1 14	85.894
1.1044	1L	1 2 11	88.449
1.0909	1L	0 2 13	89:840
1.0852	1L	4 0 1	90.440
1.0781	1L	0 4 2	91.201
1.0726	1L	1 3 7	91.808
1.0511	2	4 0 4	94.251
1.03976	5	3 1 8	95.607
1.03382	1L	2 2 9	96.335
1.03119	1L	2 0 14	96.662
1.00220	1L	1 1 15	100.458

Barium Titanium Oxide, BaTi₅0₁₁

Synonym				
Barium titanate	d(A)	I ^{rel}	hkl	2θ(°)
Sample The sample was prepared at NBS by J. J. Ritter by hydrolysis of a nonaqueous solution containing barium and titanium ethoxides in a 1:5 molar ratio. The precipitate was recovered and dried at 110°C. The sample was then heated at 110°C for 22 hours.	6.683	4	1 1 0	13.238
	5.757	6	-1 0 1	15.380
	5.159	9	1 2 0	17.174
	4.970	4	1 0 1	17.834
	4.684	2	1 1 1	18.932
Color Colorless	3.966	24	0 3 1	22.398
	3.796	38	2 0 0	23.415
	3.729	31	0 0 2	23.843
	3.511	15	0 4 0	25.346
	3.447	31	-1 1 2	25.823
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /n (14) Pearson Symbol mP68	3.408	3	1 3 1	26.126
	3.338	29	2 2 0	26.685
	3.292	26	0 2 2	27.062
	3.203	27	-2 2 1	27.831
	3.187	74	1 4 0	27.974
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 20 Standard W Scanned to 5.0° 20 o(I ^{rel}) ±3	3.176	100	0 4 1	28.076
	3.119	11	2 1 1	28.600
	3.090	13	1 1 2	28.870
	2.997	18	-1 4 1	29.790
	2.911	80	2 2 1	30.693
Crystallographic constants of this sample a = 7.6691 (4) A b = 14.0410 (8) c = 7.5335 (5)	2.888	28	1 2 2	30.943
	2.876	29	-2 0 2	31.068
	2.867	28	1 4 1	31.169
	2.832	30	-1 3 2	31.571
	2.661	12	-2 2 2	33.651
$\beta = 98.359 (5)^{\circ}$ a/b = 0.5462 c/b = 0.5365 $V = 802.64 A^{3}$	2.640 2.628 2.5136 2.5081 2.4893	9 9 35 34 1	2 3 1 0 5 1 -2 4 1 -3 0 1 3 1 0	33.929 34.090 35.691 35.772 36.052
Z = 4 Density (calc.) = 4.575 g/cm ³ Figures of merit	2.4847	3	2 0 2	36.121
	2.4696	7	-3 1 1+	36.349
	2.4465	13	0 1 3+	36.705
	2.4326	4	-1 1 3	36.921
	2.3795	5	3 2 0	37.776
F ₃₀ = 92.6(.0061, 53) M ₂₀ = 45.2 Comments The structure was determined by Tillmanns (#1).	2.3625	5	-3 2 1+	38.058
	2.3420	9	0 2 3+	38.404
	2.3294	6	-1 2 3	38.621
	2.2657	3	1 0 3+	39.751
	2.2429	6	0 5 2	40.173
The mean temperature of data collection was 23.4°C. Additional patterns PDF card 29-205	2.2370	8	1 1 3+	40.283
	2.2320	6	0 6 1	40.378
	2.2112	17	-3 3 1	40.774
	2.2050	17	-2 1 3+	40.894
	2.1942	33	2 3 2+	41.104
Reference #1. Tillmanns, E. Acta Crystallogr., Sect. B(1969) 25, 1444.	2.1840	23	-1 3 3	41.306
	2.1677	18	-1 6 1	41.630
	2.1429	6	-3 2 2	42.134
	2.1276	7	-2 2 3	42.452
	2.1171	14	1 6 1	42.673
	2.0613	2	3 3 1	43.888
	2.0521	27	3 4 0	44.094
	2.0410	37	-3 4 1	44.347
	2.0279	27	0 4 3+	44.649
	2.0200	25	-1 4 3	44.834

Barium Titanium Oxide, BaTi₅0₁₁ (continued)

d(A)	Irel	hkl	20(°)
2.0146	10	-2 3 3	44.960
1.9918	4	2 6 0	45.502
1.9820	4	0 6 2	45.740
1.9545	5	-1 6 2	46.421
1.9453	6	3 1 2	46.654
1.9339	8	2 1 3	46.946
1.9213	5	3 4 1	47.273
1.9165	4	-3 0 3	47.397
1.9034	6	1 4 3	47.743
1.8939	8	-1 7 1+	47.999
1.8838	8	-2 4 3	48.272
1.8709	8	-3 5 1	48.627
1.8608	25	0 5 3+	48.909
1.8548	28	-1 5 3	49.075
1.8499	9	-3 2 3	49.214
1.8390 1.8312 1.8154 1.7998	3 4 3 7 3	-4 2 1 4 2 0 -2 6 2 -4 0 2 -2 0 4+	49.526 49.751 50.215 50.679 51.356
1.7741	3	-3 3 3+	51.467
1.7645	5	-4 3 1+	51.769
1.7557	8	-3 5 2+	52.046
1.7429	5	-4 2 2	52.460
1.7386	2	1 1 4	52.598
1.7309	4	0 3 4	52.851
1.7231	6	4 2 1+	53.108
1.7098	14	1 8 0	53.553
1.7032	14	2 6 2+	53.777
1.6989	11	-1 6 3+	53.925
1.6825	4	-3 4 3	54.494
1.6786	4	-1 8 1	54.632
1.6746	4	-4 4 1	54.774
1.6620	3	-2 3 4+	55.223
1.6547	3	1 8 1	55.490
1.6391	14	3 6 1	56.061
1.6278	4	1 6 3	56.488
1.6151	5	-4 1 3+	56.970
1.6060	3	-3 1 4	57.322
1.6032	3	2 5 3	57.432
1.5989	2	4 0 2	57.600
1.5886	3	4 1 2	58.010
1.5853	3	4 4 1+	58.142
1.5779	5	-2 8 1+	58.443
1.5736	5	-1 8 2+	58.616
1.5667	5	-3 7 1+	58.899
1.5607	17	0 7 3+	59.150
1.5569	17	-1 7 3	59.307
1.5359	5	-4 3 3+	60.204
1.5281	4	-3 3 4+	60.544
1.5131	2	4 3 2	61.205
1.5058	2	-1 9 1	61.535
1.5001	5	2 3 4	61.792
1.4973	5	-3 7 2+	61.923
1.4862	9	1 5 4	62.436

d(A)	Irel		hk	1	20(°)
1.4830	15	-3	6	3+	62.588
1.4753	4	-4	4	3	62.951
1.4684	2	-3	4	4	63.282
1.4538	4	-2	1	5	63.989
1.4508	6	- 5	2	2	64.137
1.4466	8	5	0	1	64.349
1.4422	10	3	8	0	64.569
1.4380	20	-3	8	1+	64.777
1.4308	6	-2	2	5+	65.143
1.4284	2	-1	9	2	65.267
1.4240	5	1	0	5	65.494
1.4167	4	5	2	1+	65.875

Barium Titanium Oxide, Ba2TiO4

Synonym				
Barium orthotitanate	d(Å)	Irel	hkl	20(°)
CAS registry no. 12009-63-1 Sample	5.418 5.158 4.423 4.345 4.282	7 1 8 5	-1 0 1 1 0 1 -1 1 1 2 1 0 1 1 1	16.347 17.179 20.061 20.425 20.727
Ba ₂ TiO ₄ was prepared by grinding BaTiO ₃ and BaCO ₃ together and heating the mixture to 800°C for 19 hours, 1000°C for 140 hours, 1525°C for 37 hours, and 1480°C for 24 hours (#1).	3.619 3.465 3.249 3.193 3.132	24 33 33 25 29	-2 1 1 2 1 1 0 2 1 3 1 0 -1 2 1	24.582 25.688 27.432 27.924 28.473
Color Yellowish gray Symmetry classifications Crystal System Monoclinic	3.121	100	-3 0 1	28.576
	3.101	52	2 2 0	28.765
	3.079	50	1 2 1	28.974
	3.052	69	0 0 2	29.242
	2.975	50	3 0 1	30.015
Space Group P2 ₁ /n (14) Pearson Symbol mP28 Data collection and analysis parameters Radiation CuKa ₁	2.836 2.801 2.774 2.729 2.706	8 8 5 9	0 1 2 -2 2 1 -1 1 2+ 2 2 1 -2 0 2+	31.516 31.926 32.240 32.786 33.072
Wavelength 1.5405981 A 20 Standards W FP Scanned to 5.0° 20 σ(I ^{rel}) ±5	2.633	7	4 0 0	34.028
	2.591	26	3 2 0	34.590
	2.553	5	-2 1 2	35.124
	2.492	36	4 1 0	36.010
	2.445	12	2 1 2	36.720
Crystallographic constants of this sample a = 10.5496 (7) A b = 7.6735 (6) c = 6.1147 (5) β = 93.182 (6)°	2.390	6	0 2 2	37.607
	2.3514	10	-1 2 2+	38.246
	2.3085	12	1 2 2	38.985
	2.3020	11	2 3 0	39.100
	2.2642	21	-3 1 2+	39.779
a/b = 1.3748	2.2113	25	-2 2 2	40.772
c/b = 0.7969	2.1705	7	-2 3 1+	41.574
$V = 494.24 \text{ A}^3$	2.1526	16	3 1 2	41.937
Z = 4	2.1409	15	2 2 2	42.175
Density (calc.) = 5.195 g/cm ³	2.0676	8	3 3 0	43.746
Figures of merit F30 = 77.5(.0082, 47) M20 = 49.4	2.0313	26	5 1 0	44.569
	2.0261	21	-5 0 1	44.690
	2.0160	16	-3 2 2+	44.926
	1.9671	3	0 1 3	46.106
	1.9580	6	5 0 1+	46.334
Comments The structure was determined by Bland (#1). The mean temperature of data collection was 24.8°C.	1.9527	5	-1 1 3	46.467
	1.9400	20	-1 3 2+	46.789
	1.9357	19	3 2 2	46.898
	1.9152	13	1 1 3+	47.432
	1.8820	3	4 1 2	48.322
Additional patterns PDF card 8-277 Reference #1. Bland, J.A.	1.8466	6	5 2 0	49.309
	1.8306	8	0 4 1	49.770
	1.8116	23	2 1 3	50.328
	1.8046	27	-3 0 3	50.537
	1.7979	22	0 2 3+	50.739
Acta Crystallogr.(1961) <u>14</u> ,875.	1.7871	14	-1 2 3	51.065
	1.7761	19	-4 3 1	51.407
	1.7557	11	6 0 0	52.046
	1.7391	22	4 3 1+	52.582
	1.7348	19	-5 1 2	52.724
		con	tinued	

Barium Titanium Oxide, Ba2TiO4 (continued)

d(A)	Irel	hkl	20(°)
1.7199	11	2 4 1+	53.214
1.6864	11	3 3 2	54.358
1.6835	10	3 4 0	54.458
1.6712	8	-6 1 1	54.893
1.6510	12	5 1 2	55.624
1.6249	8	6 1 1+	56.595
1.6152	5	-5 2 2	56.968
1.5966	8	6 2 0	57.693
1.5925	4	0 3 3	57.854
1.5652	10	-2 4 2+	58.964
1.5598	10	-6 0 2	59.186
1.5468	3	5 2 2+	59.735
1.5369	5	4 1 3	60.159
1.5263	16	0 0 4+	60.619
1.4911	2	-3 4 2+	62.209
1.4866 1.4765 1.4734 1.4716	5 2 2 3 7	6 0 2 -1 5 1+ 2 5 0 1 5 1+ 3 4 2	62.416 62.893 63.041 63.129 63.809
1.4451	3	-6 2 2+	64.422
1.4423	7	7 0 1	64.561
1.4276	1L	2 5 1+	65.311
1.4060	2	3 5 0	66.442
1.4012	3	-4 4 2+	66.701
1.3963	6	1 2 4+ -4 3 3 6 2 2 1 4 3+ -2 4 3	66.964
1.3899	6		67.311
1.3861	7		67.522
1.3769	4		68.034
1.3620	1		68.884
1.3553	2	1 5 2	69.274
1.3519	2	2 2 4	69.472
1.3507	4	3 1 4+	69.544
1.3460	6	-6 1 3	69.819
1.3392	5	-3 2 4	70.225
1.3371 1.3261 1.3166 1.3049 1.2971	8 4 2 6	4 3 3+ 4 5 0 8 0 0 -5 4 2 7 3 0	70.351 71.027 71.617 72.357 72.862

Barium Titanium Oxide, BaaTi13030

Synonym				
Barium titanate Tetrabarium 13-titanate	d(A)	I ^{rel}	hkl	20(°)
Sample The sample was prepared from stoichiometric amounts of BaTiO ₃ and TiO ₂ . The mixture was heated at 1000°C for one day, then ground and heated further at 1280°C for about 43 hours.	8.54	7	0 2 0	10.351
	5.429	9	2 1 1+	16.314
	4.933	3	0 0 2	17.967
	4.651	21	1 3 1+	19.068
	4.268	48	0 4 0+	20.794
Color Colorless	4.089	8	1 2 2	21.717
	4.036	42	2 3 1+	22.004
	3.647	4	2 4 0+	24.387
	3.516	12	4 0 0	25.309
	3.399	21	3 0 2+	26.200
Symmetry classifications Crystal System Orthorhombic Space Group Abma (64) Pearson Symbol oC188	3.251	45	4 1 1+	27.411
	3.148	100	1 1 3+	28.332
	2.931	31	2 5 1+	30.469
	2.861	61	4 3 1+	31.240
	2.843	17	0 6 0	31.442
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 20 Standard Ag Scanned to 4.0° 20 σ(I ^{rel}) ±4	2.791	50	1 3 3	32.047
	2.714	13	4 2 2+	32.975
	2.6706	33	5 1 1	33.529
	2.6568	63	3 5 1+	33.708
	2.6377	7	2 6 0+	33.959
Crystallographic constants of this sample a = 14.059 (2) A b = 17.065 (2) c = 9.8679 (12)	2.4638	9	0 6 2	36.438
	2.4422	12	5 3 1+	36.771
	2.3763	3	4 5 1+	37.829
	2.3690	3	0 2 4	37.951
	2.3429	11	6 0 0	38.390
a/b = 0.8238 c/b = 0.5783 V = 2367.48 A ³	2.3343 2.3282 2.2597 2.2436 2.2134	13 9 4 18 6	1 7 1+ 2 0 4 6 1 1+ 2 7 1+ 4 3 3	38.536 38.642 39.861 40.159 40.732
Z = 4 Density (calc.) = 4.635 g/cm ³ Figures of merit F ₃₀ = 71.0(.0064, 66)	2.1824	61	3 0 4+	41.337
	2.1325	3	0 8 0	42.350
	2.1205	17	5 1 3+	42.602
	2.1155	19	3 2 4+	42.708
	2.0532	9	6 4 0+	44.069
M ₂₀ = 45.9 Comments The structure was determined by Tillmanns (#1) and Negas et al. (#2). The cell reported here is	2.0181	48	4 6 2+	44.877
	2.0011	12	5 3 3	45.279
	1.9642	16	4 5 3+	46.180
	1.9431	24	3 4 4	46.709
	1.9397	27	1 7 3+	46.798
pseudo-hexagonal with "a"=~9.858 and "c"=~14.060. The mean temperature of data collection was 24.5°C. Additional patterns PDF card 26-762	1.8955	6	6 5 1+	47.956
	1.8884	5	2 1 5	48.148
	1.8603	14	7 0 2+	48.923
	1.8540	30	5 0 4+	49.100
	1.8248	18	4 4 4	49.938
Rase and Roy (#3) reported as BaTi ₃ 0 ₇ References #1. Tillmanns, E. Inorg. Nucl. Chem. Lett.(1971) 7,1169.	1.8176	5	7 2 2	50.149
	1.8114	10	5 5 3+	50.332
	1.8065	10	3 8 2+	50.478
	1.8026	13	2 3 5+	50.597
	1.7317	5	3 6 4+	52.825
#2. Negas, T. et al. J. Solid State Chem.(1974) 9,297. #3. Rase, D.E. and Roy, R. J. Am. Chem. Soc.(1955) 38,102.	1.7209	7	8 2 0+	53.181
	1.7069	4	0 10 0+	53.654
	1.7048	5	7 5 1+	53.724
	1.7007	6	5 4 4	53.862
	1.6600	9	2 5 5	55.295

Barium Titanium Oxide, $Ba_{h}Ti_{13}O_{30}$ (continued)

d(A)	Irel	hkl	20(°)
1.6552	14	8 3 1+	55.469
1.6477	9	4 3 5+	55.743
1.6445	16	0 0 6+	55.863
1.6406	9	7 3 3	56.005
1.6247	3	8 4 0+	56.603
1.6127	5	0 10 2	57.063
1.6071	12	5 7 3+	57.282
1.6041	11	1 2 6	57.397
1.5776	5	6 8 0	58.455
1.5718	5	2 10 2	58.690
1.5572	21	7 6 2+	59.298
1.5535	15	5 6 4+	59.450
1.5365	6	4 5 5+	60.177
1.5321	10	7 2 4+	60.366
1.5256	15	1 4 6+	60.653
1.4996	6	2 4 6+	61.816
1.4975	15	2 11 1	61.912
1.4944	9	8 6 0+	62.056
1.4894	7	9 0 2+	62.287
1.4632	6	7 4 4	63.530
1.4594	5	6 3 5+	63.719
1.4313	18	8 0 4+	65.119
1.4242	23	0 6 6	65.484
1.4111	9	8 7 1+	66.171
1.4061	16	9 4 2+	66.437
1.3991	7	5 10 2+	66.814

Barium Titanium Oxide, Ba₆Ti₁₇O₄₀

Synonym				
Hexabarium 17-titanate	d(A)	I ^{rel}	hkl	2 0(°)
Sample The sample was prepared from stoichiometric amounts of BaTiO ₃ and TiO ₂ . The mixture was heated at 1000°C for one day, then ground, and heated further at 1280°C for about 43 hours.	8.54	8	0 2 0	10.351
	7.785	10	1 2 0	11.357
	6.315	8	2 2 0	14.012
	5.913	5	2 1 1	14.971
	4.733	9	3 1 1	18.733
Color Colorless	4.674	19	1 3 1+	18.970
	4.632	3	-2 0 2	19.144
	4.273	3	0 4 0	20.772
	4.226	4	2 3 1	21.007
	4.168	48	1 4 0	21.301
Symmetry classifications Crystal System Monoclinic Space Group A2/a (15) Pearson Symbol mC252	4.075	2	-2 2 2	21.793
	4.028	3	1 2 2	22.049
	3.888	5	2 4 0+	22.852
	3.749	15	-3 2 2	23.716
	3.729	38	3 3 1	23.843
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.688	4	2 2 2	24.111
	3.671	3	-4 0 2	24.227
	3.604	7	-5 1 1	24.684
	3.524	3	3 4 0+	25.253
	3.429	3	5 2 0	25.966
Crystallographic constants of this sample a = 18.930 (2) A b = 17.103 (2) c = 9.8913 (11)	3.268	28	5 1 1+	27.263
	3.229	31	0 5 1+	27.604
	3.201	38	0 1 3	27.851
	3.178	56	-2 1 3	28.058
	3.149	59	4 0 2	28.321
β = 98.74 (1)° a/b = 1.1068 c/b = 0.5783 V = 3165.22 A ³	3.118	31	6 0 0+	28.604
	3.096	80	-5 3 1	28.809
	3.080	58	1 1 3	28.971
	3.061	76	-6 1 1	29.155
	3.037	10	-3 1 3	29.386
Z = 4 Density (calc.) = 4.781 g/cm ³ Figures of merit F ₃₀ = 67.4(.0072, 62)	2.984 2.957 2.931 2.853 2.831	67 3 3 100 24	-3 4 2 4 2 2+ 6 2 0+ -1 3 3 -6 0 2+	29.917 30.203 30.472 31.326 31.575
Comments The structure was determined by Tillmanns and Baur (#1).	2.811	39	3 5 1+	31.810
	2.750	9	3 4 2	32.537
	2.730	6	-6 3 1	32.776
	2.723	7	-4 5 1	32.866
	2.714	7	-3 3 3	32.983
The mean temperature of data collection was 24.5°C. Additional patterns PDF card 26-321	2.688	6	-6 2 2+	33.300
	2.652	10	-7 1 1	33.776
	2.639	16	5 2 2	33.947
	2.597	19	4 5 1	34.515
	2.571	4	-5 4 2	34.867
Reference #1. Tillmanns, E. and Baur, W.H. Acta Crystallogr., Sect. B(1970) B26,1645.	2.551	7	7 2 0	35.150
	2.5200	3	6 4 0	35.598
	2.5077	4	-5 5 1	35.778
	2.4749	3	4 1 3	36.268
	2.4638	12	6 0 2+	36.437
	2.4577	13	-2 0 4	36.532
	2.4280	11	-7 3 1+	36.994
	2.3603	3	-6 4 2+	38.095
	2.3492	16	-2 5 3	38.282
	2.3389	23	8 0 0+	38.458

Barium Titanium Oxide, Ba6Ti17040 (continued)

d(A)	Irel	hkl	20(°)
2.3278	16	5 4 2	38.649
2.3020	6	-6 5 1	39.100
2.2910	13	4 3 3+	39.295
2.2823	42	2 0 4	39.451
2.2778	37	2 7 1+	39.531
2.2662	20	7 4 0+	39.743
2.2508	36	-4 6 2	40.025
2.2314	12	2 5 3+	40.389
2.1891	5	3 7 1+	41.204
2.1465	4	-4 7 1	42.061
2.1400	15	-1	42.194
2.1132	54		42.756
2.0831	42		43.405
2.0777	39		43.523
2.0423	8		44.317
2.0366	15	-5 7 1+	44.447
2.0195	6	4 5 3+	44.844
2.0088	15	-6 6 2+	45.096
1.9887	11	-8 4 2+	45.577
1.9701	6	-9 3 1+	46.032
1.9607 1.9552 1.9495 1.9442 1.9216	14 19 16 9	-1 8 2+ 0 7 3 -2 7 3+ 4 8 0 -6 7 1	46.265 46.405 46.547 46.681 47.264
1.9086	6	-7 2 4	47.606
1.9035	7	5 5 3+	47.742
1.8982	6	-4 1 5	47.882
1.8709	20	10 0 0+	48.626
1.8648	30	9 3 1+	48.797
1.8475	10	2 1 5+	49.283
1.8431	14	4 4 4+	49.410
1.8347	22	-8 0 4	49.650
1.8069	3	-7 7 1+	50.467
1.7959	8	6 0 4	50.798
1.7919	9	-9 3 3	50.919
1.7798	16	3 1 5+	51.291
1.7645	15	-8 6 2	51.767
1.7605	13	-8 5 3	51.896
1.7288	3	-6 7 3	52.919
1.7078	17	3 3 5	53.623
1.7034	15	1 10 0	53.771
1.6818	9	-6 6 4+	54.519
1.6685	5	11 2 0+	54.990
1.6601	6	4 6 4	55.291
1.6477	12	-2 0 6+	55.744
1.6346	9	8 6 2+	56.231
1.6282	7	-7 8 2	56.473

Mineral name

Bromellite, syn Wurtzite Group Zincite Subgroup

CAS registry no.

1304-56-9

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA.

Color

Colorless

Symmetry classifications

Crystal System Hexagonal Space Group P63mc (186) Pearson Symbol hP4

Data collection and analysis parameters

CuKa₁ 1.5405981 A Radiation Wavelength 20 Standard Si Scanned to 5.0° 20 o(Irel) ±1

Crystallographic constants of this sample

a = 2.69808 (8) Ac = 4.3785(2)

c/a = 1.6228

 $V = 27.60 A^3$

Z = 2

Density (calc.) = 3.009 g/cm^3

Figures of merit

 $F_{18} = 137.0(.0073, 18)$ $M_{18} = 437.4$

The structure was determined by Zachariasen (#1). The temperature of data collection was approximately 25.0°C.

Additional patterns

PDF card 4-843, Swanson, H.E. and Tatge, E. (1953). Natl. Bur. Stand. Circ. 539,1, 36.

Zachariasen (#1)

Hanawalt et al. (#2)

Claassen (#3)

References

#1. Zachariasen, W.H.

Z. Phys. Chem. (Leipzig)(1926) 119,201.

#2. Hanawalt, et al.

Ind. Eng. Chem., Anal. Ed.(1938) 10,457.

#3. Claassen, A.

Z. Phys. Chem. (Leipzig)(1926) 124,139.

d(A)	I ^{rel}		hk	1	20(°)
2.3370	85	1	0	0	38.491
2.1888	56	0	0	2	41.210
2.0615	100	1	0	1	43.884
1.5975	19	1	0	2	57.658
1.3493	28	1	1	0	69.625
1.2378	22	1	0	3	76.972
1.1683	4	2	0	0	82.501
1.1486	14	1	1	2	84.232
1.1288	4	2	0	1	86.061
1.0948	1	0	0	4	89.438
1.0309	2	2	0	2	96 .7 04
0.9913	1L	1	0	4	101.989
0.91200	5	2	0	3	115.263
0.88318	2	2	1	0	121.428
0.86569	2	2	1	1	125.699
0.85000	1	1	1	4	129.981
0.81999	5	1	0	5	139.902
0.81901	2	2	1	2	140.280

Bismuth Dysprosium Titanium Oxide, Bi3.6Dy0.4Ti3012

Sample

The sample was made by combining Bi₄Ti₃O₁₂ with TiO₂ and Dy₂O₃. The mixture was heated at 900°C for 18 hours, then at 1050°C for 22 hours.

Color

Grayish greenish yellow

Symmetry classifications

Crystal System Orthorhombic

C*** Space Group Pearson Symbol oC76

Data collection and analysis parameters

Radiation CuKa, 1.5405981 A Wavelength 20 Standards FP W Scanned to $\sigma(I^{rel})$ 5.0° 20 ±2

Crystallographic constants of this sample

a = 5.4256 (5) Ab = 32.783(2)c = 5.3923 (6)

a/b = 0.1655c/b = 0.1645

 $V = 959.29 A^3$

Z = 4

Density (calc.) = 7.984 g/cm^3

Figures of merit

 $F_{30} = 56.2(.0086, 62)$ $M_{20} = 37.4$

Comments

In 1950, Aurivillius (#1) proposed a face-centered structure for the phase Bi4Ti3012. Wolfe and Newnham (#2) reported the existence of comparable solid solution phases in which rare earths substitute for small amounts of the bismuth. Those phases appear to have orthorhombic symmetry, point group mm2, but could possibly be monoclinic. Our data could not be indexed using an F-centered cell and is shown here indexed on a C-centered cell. The mean temperature of data collection was 25.1°C.

References

#1. Aurivillius, B.

' Ark. Kemi(1950) 1,499.

#2. Wolfe, R.W. and Newnham, R.E.

J. Electrochem. Soc. (1969) 116,832.

d(A)	I ^{rel}	hkl	20(°)
16.47	4	0 2 0	5.361
8.20	6	0 4 0	10.781
5.463	16	0 6 0	16.212
4.507	1L	0 4 1	19.683
4.096	12	0 8 0	21.679
3.799	19	1 1 1	23.398
3.610	3	1 3 1	24.640
3.302	6	1 5 1	26.980
3.277	2	0 10 0	27.190
2.962	100	1 7 1	30.145
2.731	8	0 12 0	32.766
2.711	21	2 0 0	33.010
2.695	19	0 0 2	33.220
2.637	1L	1 9 1	33.974
2.574	1	2 4 0	34.828
2.560	1	0 4 2	35.026
2.430	3	2 6 0	36.969
2.417	3	0 6 2	37.162
2.351	7	1 11 1	38.251
2.342	14	0 14 0	38.410
2.262	10	2 8 0	39.818
2.252	12	0 8 2	39.995
2.1054	4	1 13 1	42.923
2.0831	1L	0 10 2	43.404
2.0491	2	0 16 0	44.163
1.9253	3	2 12 0	47.167
1.9194	.8	0 12 2	47.321
1.9123	16	2 0 2	47.507
1.8976	9	1 15 1	47.900
1.8616	1L	2 4 2	48.885
1.8215 1.8050 1.7727 1.7681	1 2 13 16 1L	0 18 0 2 6 2+ 2 14 0 0 14 2 1 13 2+	50.035 50.525 51.510 51.654 52.420
1.7336 1.7220 1.7127 1.7043 1.6593	3 2 3 2	2 8 2 1 17 1 3 1 1 1 1 3 3 5 1	52.761 53.146 53.456 53.741 55.321
1.6512	1	1 5 3+	55.616
1.6347	1L	2 16 0	56.228
1.6307	1L	0 16 2	56:377
1.6102	12	3 7 1	57.159
1.6032	16	1 7 3	57.434
1.5728	4	1 19 1	58.652
1.5687	2	0 20 1	58.817
1.5123	1L	2 18 0	61.241
1.5090	1L	0 18 2	61.390
1.4902	2	0 22 0	62.250
1.4864	3	3 11 1	62.428
1.4813	8	2 14 2+	62.666
1.4454	7	1 21 1+	64.407
1.4181	1L	3 13 1	65.802
1.4131	1L	1 13 3	66.067
	cont	inued	

Bismuth Dysprosium Titanium Oxide, Bi3.6Dy0.4Ti3012 (continued)

d(A)	Irel	hkl	20(°)
1.4035 1.3983 1.3658 1.3559	1L 1 1L 1	1 19 2 2 16 2 0 24 0 4 0 0	66.575 66.855 68.664 69.234
1.3486 1.3448 1.3357 1.3192 1.3158	4 1 1L 1L	3 15 1 1 15 3 1 23 1 3 17 0+ 4 0 1 2 22 0	69.664 69.889 70.438 71.452 71.667 72.286
1.3060 1.3043 1.2807 1.2778 1.2743 1.2608	2 1L 1L 1 1	0 22 2 0 8 4 1 17 3 1 25 0+ 0 26 0	72.396 73.951 74.145 74.381 75.315
1.2404	1L	1 25 1	76.779

Bismuth Titanium Oxide, Bi4Ti3O12

Synonym

Tetrabismuth trititanium dodecaoxide

CAS registry no. 12010-77-4

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI, and contained about 2% (by volume) of ${\rm Bi}_{12}{\rm TiO}_{20}$. The impurity did not interfere with our data measurements.

Spectrographic analysis (wt.%, CERAC, Inc.)

0.001	Сa,	Fe,	Mg	
0.005	Al.	Cu,	Sn	
0 000	-			

0.008 Si

Color

Yellowish gray

Symmetry classifications

Crystal System Orthorhombic Space Group C*** Pearson Symbol oC76

Data collection and analysis parameters

Radiation	CuKa ₁	
Wavelength	1.5405981	A
20 Standards	FP W	
Scanned to	5.0° 28	
Scanned to $\sigma(I^{rel})$	+1	

Crystallographic constants of this sample

a = 5.4489 (5) A

b = 32.815(2)

c = 5.4100 (5)

a/b = 0.1660

c/b = 0.1649

 $V = 967.34 A^3$

Z = 4

Density (calc.) = 8.045 g/cm^3

Figures of merit

 $F_{30} = 61.2(.0078, 63)$ $M_{20} = 52.7$

Comments

Aurivillius (#1) proposed the space group Fmmm. Our data is inconsistent with Fmmm and is presented here using C***. By a detailed study of the optical properties of a single crystal, Cummins and Cross (#2) concluded that the true symmetry is monoclinic, point group m; however, we found no problem when indexing the powder data with the orthorhombic cell given here.

A phase change takes place at 676° C (#2). The mean temperature of data collection was 23.4° C.

References

#1. Aurivillius, B.

Ark. Kemi(1950) 1,499.

#2. Cummins, S.E. and Cross, L.E. J. Appl. Phys. (1968) 39,2268.

d(Å)	I ^{rel}	hkl	20(°)			
16.48	1L	0 2 0	5.359			
8.21	4	0 4 0	10.773			
5.469	14	0 6 0	16.195			
4.519	1L	0 4 1	19.627			
4.101	8	0 8 0	21.651			
3.813	20	1 1 1	23.307			
3.623	2	1 3 1	24.553			
3.311	5	1 5 1	26.903			
3.281	2	0 10 0	27.156			
2.971	100	1 7 1	30.058			
2.734	14	0 12 0	32.725			
2.725	24	2 0 0	32.843			
2.705	19	0 0 2	33.095			
2.645	1L	1 9 1	33.867			
2.585	1	2 4 0	34.668			
2.570	1 L	0 4 2	34.885			
2.4383	4	2 6 0+	36.832			
2.4247	4	0 6 2	37.046			
2.3566	6	1 11 1	38.158			
2.3436	1 3	0 14 0	38.378			
2.2697	12	2 8 0	39.679			
2.2581	12	0 8 2	39.891			
2.1090	4	1 13 1	42.846			
2.0504	2	0 16 0	44.132			
1.9307	6	2 12 0	47.028			
1.9193	17	2 0 2	47.325			
1.9007	9	1 15 1	47.816			
1.8815	1L	1 11 2	48.334			
1.8684	1	2 4 2	48.696			
1.8229	2	0 18 0	49.993			
1.8112	2	2 6 2	50.339			
1.7771	12	2 14 0	51.375			
1.7716	15	0 14 2	51.546			
1.7479	2	1 13 2	52.298			
1.7386	4	2 8 2	52.598			
1.7246	3	1 17 1	53.058			
1.7197	4	3 1 1	53.222			
1.7094	2	1 1 3	53.569			
1.7012	1	3 3 1	53.848			
1.6647	1L	3 5 1	55.125			
1.6564	1	1 5 3+	55.425			
1.6504	1L	0 8 3	55.647			
1.6404	1	0 20 0	56.015			
1.6161	14	3 7 1	56.933			
1.6080	15	1 7 3	57.245			
continued						

Bismuth Titanium Oxide, $Bi_4Ti_3O_{12}$ (continued)

/			
d(A)	$_{ m I}$ rel	hkl	2 0(°)
1.5749	4	1 19 1	58.564
1.5709	4	2 12 2	58.729
1.5150	1	2 18 0	61.119
1.5118	1L	0 18 2	61.265
1.4914	2	3 11 1+	62.196
1.4849 1.4474 1.4228 1.4168 1.4023	8 6 1 1	1 11 3+ 1 21 1 3 13 1 1 13 3 0 20 2	62.500 64.307 65.557 65.871 66.637
1.3671	1	2 10 3+	68.590
1.3619	1	4 0 0	68.887
1.3530	5	3 15 1+	69.408
1.3484	4	1 15 3+	69.679
1.3374	1L	1 23 1	70.333
1.3218	1	4 6 0+	71.292
1.3125	1L	0 6 4	71.871
1.3084	2	2 22 0	72.136
1.3065	2	0 22 2	72.255
1.2929	1L	4 8 0	73.139
1.2848	1L	3 17 1+	73.673
1.2788	1L	3 1 3	74.082
1.2619	1L	0 26 0	75.239
1.2474	1L	2 20 2	76.269
1.2421	1L	1 25 1	76.658
1.2347	3	3 7 3+	77.199
1.2195	2	3 19 1+	78.344
1.2159	3	1 19 3	78.621
1.2115	2	2 0 4	78.959
1.1877	1L	4 6 2	80.865
1.1845	1	3 21 0	81.129
1.1828	1	2 6 4	81.270
1.1777	3	4 14 0+	81.699
1.1717	3	0 28 0+	82.204
1.1618	1	2 8 4	83.058

Boron Carbide, BaC

Synonym

Carbon tetraboride

CAS registry no. 12069-32-8

Sample

The compound was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Olive black

Symmetry classifications

Crystal System Rhombohedral R3m (166) Space Group Pearson Symbol hR15

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 20 Standard Si Scanned to o(I^{rel}) 5.0° 20 ±3

Crystallographic constants of this sample

(Hexagonal axes)

a = 5.6003 (5) A c = 12.086 (2)

c/a = 2.1581

 $V = 328.27 A^3$

Z = 9

Density (calc.) = 2.515 g/cm^3

Figures of merit

 $F_{25} = 57.6(.0128, 34)$ $M_{20} = 84.6$

Comments

The structure was qualitatively determined by Clark and Hoard (#1).

The mean temperature of data collection was 23.5°C.

Additional patterns PDF card 6-0555

Reference

#1. Clark, H.K. and Hoard, J.L.

J. Am. Chem. Soc. (1943) 65,2115.

d(A)	I ^{rel}	hkl	20(°)
4.499	14	1 0 1	19.715
4.033	21	0 0 3	22.022
3.783	49	0 1 2	23.499
2.803	11	1 1 0	31.900
2.565	64	1 0 4	34.957
2.377	100	0 2 1	37.819
2.300	4	1 1 3	39.133
1.8906	1L	0 2 4	48.087
1.8127	4	2 1 1	50.293
1.7120	11	2 0 5	53.480
1.6261 1.5674 1.5004 1.4605 1.4423	2 1L 9 13	1 0 7 2 1 4 3 0 3 1 2 5 0 1 8	56.551 58.872 61.782 63.663 64.563
1.3995	12	2 2 0	66.790
1.3369	8	1 3 1	70.363
1.3228	7	2 2 3	71.231
1.3128	8	3 1 2	71.854
1.2820	2	2 0 8	73.863
1.2605	3	3 0 6	75.338
1.2571	6	2 1 7	75.578
1.2112	1L	1 1 9	78.987
1.2065	1	4 0 1	79.351
1.1887	4	0 4 2	80.782

Boron Silicide, BuSi

Synonym Silicon tetraboride CAS registry no. 12007-81-7 Sample The sample was obtained from CERAC, Inc., Milwaukee, WI. It contains a small amount of other B-Si phases. Spectorgraphic analysis (wt.%, CERAC, Inc.)
0.1-1.0 Fe 0.1 Cr 0.01 Co, Mo 0.005 Mg, Ni, Sn 0.001 Al, Ca, Cu, Mn, Ti Color Black Symmetry classifications Crystal System Rhombohedral R3m (166) Space Group Pearson Symbol hR15 Data collection and analysis parameters CuKa₁ Radiation Wavelength 1.5405981 A 20 Standard Si Scanned to o(I^{rel}) 5.0° 20 Crystallographic constants of this sample (Hexagonal axes) a = 6.3367 (4) Ac = 12.7447 (16)c/a = 2.0113 $V = 443.19 A^3$ Z = 9Density (calc.) = 2.405 g/cm^3

d(A)	Irel	hkl	20(°)
5.039	4	1 0 1	17.585
4.158	30	0 1 2	21.353
3.167	22	1 1 0	28.150
2.754	64	1 0 4	32.488
2.681	100	0 2 1 2 0 2	33.391
2.520	6		35.596
2.3116	6	0 1 5	38.930
2.1242	3	0 0 6	42.524
2.0792	3	0 2 4	43.491
2.0469	14	2 1 1	44.212
1.9724	1	1 2 2	45.976
1.7643	12	1 1 6	51.774
1.7384	3	2 1 4	52.606
1.7282	4	1 0 7	52.940
1.6798	8	3 0 3	54.589
1.6087	26	1 2 5	57.218
1.5843	12	2 2 0	58.185
1.5302	4	0 1 8	60.452
1.5178	9	0 2 7	60.995
1.5111	15	1 3 1	61.295
1.4844 1.4807 1.3858 1.3735 1.3412	11 12 9 3	2 2 3 3 1 2 3 0 6 1 3 4 0 4 2	62.522 62.695 67.539 68.228 70.105
1.3072 1.2929 1.2695 1.2351 1.2080	3 1 1 1	3 1 5 1 1 9 2 2 6 2 3 2 0 4 5	72.211 73.138 74.710 77.169 79.233
1.1978	1	4 1 0	80.046
1.1706	1	3 2 4	82.298
1.1679	1	1 3 7	82.537

Figures of merit $F_{30} = 90.4(.0079, 42)$ $M_{20} = 124.8$

Comments

Isostructural with C_4Si (#1).

 $B_{\mu}C$ has a wide range of composition (#2).

The mean temperature of data collection was 23.0°C.

Additional patterns PDF card 13-210 Matkovich (#1)

References

#1. Matkovich, V.I.

Acta Crystallogr.(1960) 13,679.

#2. Rizzo, H.F. and Bidwell, L.R.

J. Am. Ceram. Soc. (1960) 43,550.

Synonym				
Silicon hexaboride	d(A)	Irel	nkl	20(°)
CAS registry no. 12008-29-6 Sample	11.41	9	1 1 0	7.745
	7.74	5	1 2 0	11.422
	7.51	6	1 1 1	11.782
	5.683	8	2 2 0	15.579
	5.573	7	2 1 1	15.889
The sample was obtained from CERAC, Inc., Milwaukee, WI. It contained a small amount of silicon. Owing to the poor diffraction characteristics of the sample, the intensities were run on a flat pressed holder and thus may show orientation.	5.214	8	0 3 1	16.991
	4.975	75	0 0 2	17.813
	4.676	38	2 3 0+	18.965
	4.589	2	0 4 0	19.325
	4.374	78	1 4 0+	20.285
Symmetry classifications Crystal System Orthorhombic	4.227	84	2 3 1+	20.999
	4.186	75	1 2 2	21.208
	4.098	65	2 0 2	21.667
	4.006	33	1 4 1+	22.175
	3.927	13	3 2 1	22.626
Space Group Pnnm (58) Pearson Symbol oP280 Data collection and analysis parameters	3.875	31	2 4 0	22.933
	3.742	27	2 2 2	23.757
	3.552	13	4 1 0	25.049
	3.443	32	0 5 1	25.854
	3.405	52	2 3 2+	26.151
Radiation $CuK\alpha_1$ Wavelength 1.5405981 A 20 Standards W FP Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 6	3.366	54	4 2 0	26.461
	3.342	58	4 1 1	26.652
	3.275	43	2 5 0	27.204
	3.240	23	3 2 2	27.503
	3.188	52	4 2 1	27.969
Crystallographic constants of this sample a = 14.470 (2) A b = 18.350 (3) c = 9.946 (2) a/b = 0.7886	3.058	24	0 6 0+	29.175
	2.972	38	4 3 1+	30.048
	2.923	40	4 0 2+	30.555
	2.889	47	4 1 2	30.926
	2.862	92	2 2 3+	31.230
$c/b = 0.5420$ $V = 2640.91 \text{ A}^3$ $Z = 40$ Density (calc.) = 2.338 g/cm ³	2.817	52	2 6 0	31.738
	2.803	64	3 5 1	31.905
	2.777	61	5 0 1	32.207
	2.763	71	3 4 2	32.381
	2.731	61	4 4 1+	32.767
Figures of merit $F_{30} = \frac{41.0(.0099, 74)}{M_{20}}$ Market 22.4	2.703	100	3 1 3+	33.121
	2.659	41	5 2 1	33.680
	2.640	64	4 3 2+	33.933
	2.619	45	3 2 3	34.211
	2.606	44	0 6 2	34.391
Comments The structure was done by Adamsky (#1). A cubic form was reported by Zhuravlev (#2). The mean temperature of data collection was 23.6°C.	2.576	30	4 5 0	34.801
	2.563	26	1 6 2	34.981
	2.534	27	0 7 1	35.391
	2.495	27	3 3 3+	35.970
	2.466	19	4 4 2+	36.403
Additional patterns PDF card 11-292 PDF card 14-92	2.448	11	5 4 0	36.683
	2.423	30	4 1 3	37.069
	2.393	11	2 7 1+	37.554
	2.368	33	1 2 4	37.962
	2.362	25	4 2 3	38.074
#1. Adamsky, R.F. Acta Crystallogr.(1958) 11,744. #2. Zhuravlev, N.N. Kristallografiya(1956) 1,66.	2.351	28	2 0 4	38.244
	2.336	6	4 6 0	38.514
	2.295	12	0 8 0	39.225
	2.288	11	4 5 2	39.355
	2.274	25	4 6 1+	39.599

Boron Silicide, B₆Si (continued)

d(A)	I ^{rel}	hkl	20(°)
2.215	5	5 5 1	40.696
2.189	18	6 3 1	41.216
2.1809	14	5 0 3 2 6 3+	41.366
2.1472	14		42.046
2.0917	8	2 4 4	43.217
2.0667	12	5 5 2	43.767
2.0485	20	4 0 4	44.177
2.0362	20	4 1 4+	44.458
2.0168	20	7 2 0	44.908
2.0113	7	7 1 1	45.038
1.9903	9	3 4 4	45.538
1.9788	13	1 9 1+	45.818
1.9253	14	2 9 1	47.169
1.9218	22	7 3 1	47.259
1.9066	14	5 7 1+	47.659
1.8579	24	6 3 3	48.989
1.8255	17	2 9 2+	49.919
1.7752	18	5 6 3+	51:434
1.7709	15	8 1 1	51.569
1.7572	7	3 9 2+	51.999
1.7475	8	6 7 1+	52.309
1.7355	8	4 1 5+	52.699
1.7227	48	7 2 3+	53.120
1.6892	25	2 9 3+	54.259
1.6864	19	7 3 3+	54:358
1.6593	27	8 4 1	55 .32 2
1.6382	56	7 4 3+	56.094
1.6332	50	5 1 5	56.283
1.6226	28	8 5 0+	56.685

Cadmium Silicate, CdSiO3

Synonym Cadmium metasilicate CAS registry no. 13477-19-5 Sample The sample was made by heating a 1:1 molar mixture of cadmium oxalate and SiO2 up to 900°C for 3 days followed by heating up to 1175°C for about 6 hours. Color Colorless Symmetry classifications Crystal System Monoclinic P2₁/a (14) Space Group Pearson Symbol mP30 Structure Type Similar to pseudo-wollastonite CaSiO3 Data collection and analysis parameters CuKa₁ 1.5405981 A Radiation Wavelength FP Ag 20 Standards Scanned to o(I^{rel}) 5.0° 20 ±1 Crystallographic constants of this sample a = 15.095 (3) Å b = 3.630 (5) c = 6.953 (1) $\beta = 94.799$ (14)° a/b = 4.1584c/b = 1.9154 $V = 379.65 A^3$ Z = 6Density (calc.) = 4.947 g/cm^3 Figures of merit $F_{30} = 84.9(.0065, 54)$ $M_{20} = 57.9$ Comments The cell was obtained from the Visser program and is similar to one reported by Glasser and Glasser (#1) with bx2.

<u> </u>	_rel		
d(A)	Irel	hkl	
7.520	3	2 0	0 11.759
6.935	7	0 0	1 12.754
5.323	3	~2 0	1 16.641
4.898	39	2 0	1 18.097
3.759	8	4 0	0 23.651
3.464	18	0 0	2 25.699
3.426	17	-4 0	1 25.986
3.252	23	-2 0	2 27.408
3.170	15	-1 1	1 28.123
3.119	2	1 1	1 28.600
3.051	26	2 0	2 29.251
2.940	100	3 1	0 30.381
2.756	13	-3 1	1 32.462
2.6596	17	3 1	1+ 33.671
2.6123	1L	4 1	0 34.300
2.5063	26	0 1	2+ 35.799
2.4951	24	-1 1	2 35.964
2.4478	35	4 0	2+ 36.684
2.4220	3	-2 1	2+ 37.090
2.3173	10	5 1	0 38.830
2.3093	10	0 0	3 38.970
2.2981	4	-3 1	2 39.168
2.2620	21	-2 0	3 39.820
2.2407	3	-5 1	1 40.215
2.1899	3	3 1	2 41.189
2.1551	32	5 1	1 41.885
2.1163	2	~6 0	2 42.690
1.9857	3	~5 1	2 45.650
1.9550	2	6 0	2 46.410
1.9150	9	1 1	3 47.437
1.8986 1.8788 1.8699 1.8497	3 2 4 4 16	4 0 8 0 5 1 7 1 -7 1	3 47.873 0 48.408 2 48.653 0 49.220 1 50.106
1.8147	17	0 2	0 50.234
1.7772	10	8 0	1 51.370
1.7562	1	0 2	1 52.033
1.7314	11	0 0	4 52.833
1.7014	7	2 2	1 53.840
1.6910	16	-5 1	3 54.197
1.6818	14	4 1	3 54.520
1.6322	2	6 0	3 56.320
1.6261	1L	-4 0	4 56.552
1.6072	3	0 2	2 57.276
1.6042	2	-4 2	1 57.395
1.5846	15	7 1	2 58.170
1.5604	3	2 2	2 59.162
1.5252	7	-3 1	4+ 60.671

Additional patterns PDF card 16-299

Reference

The mean temperature of data collection was 23.9°C.

^{#1.} Glasser, L.S.D. and Glasser, F.P. Inorg. Chem.(1964) 3,1228.

Cadmium Titanium Phosphate, CdTi4(PO4)6

Sample

The sample was prepared from CdCO $_3$, (NH $_4$) $_2$ HPO $_4$, and TiO $_2$ in stoichiometric ratios of 1:6:4. The mixture was ground and heated slowly to 500°C, then reground and heated at 1250°C for 15 hours.

Color Colorless

Symmetry classifications

Crystal System Rhombohedral Space Group R** Pearson Symbol hR35

Data collection and analysis parameters

CuK α_1 Radiation 1.5405981 A Wavelength 20 Standards Ag FP Scanned to $o(I^{rel})$ 5.0° 20 ±3

Crystallographic constants of this sample

(Hexagonal axes) a = 8.4511 (3) Åc = 21.5457 (13)

c/a = 2.5495

 $V = 1332.65 A^3$ Z = 3

Density (calc.) = 3.266 g/cm^3

Figures of merit

 $F_{30} = 149.9(.0059, 34)$ $M_{20} = 108.2$

Comments

Apparently rhombohedral, from analogy with the

powder pattern of $\text{SrZr}_4(\text{PO}_4)_6.$ The structure appears to be very similar to that of ${\rm NaZr}_2({\rm PO}_4)_3$. The mean temperature of data collection was 25.5°C.

d(A)	I ^{rel}		hk	1	20(°)
7.197	16	0	0	3	12.289
6.933	29	1	0	1	12.758
4.339	8	1	0	4	20.453
4.226	53	1	1	0	21.003
3.713	16	0	1	5	23.944
3.641	100	1	1	3	24.426
3.608	8	0	2	1	24.658
3.465	13	2	0	2	25.693
3.027	10	0	2	4	29.490
2.838	4	1	0	7	31.500
2.7895	6	2	0	5	32.060
2.7448	25	2	1	1	32.597
2.7360	67	1	1	6	32.704
2.6793	8	1	2	2	33.417
2.5279	3	0	1	8	35.483

d(A)	I ^{rel}	hkl	20(°)			
2.4600	1	2 1 4	36.496			
2.4397	20	3 0 0	36.810			
2.3565	1	0 2 7	38.160			
2.3280	8	1 2 5	38.645			
2.3099	6	3 0 3	38.959			
2.1689	5	2 0 8	41.605			
2.1119	1	2 2 0	42.784			
2.0828	7	1 1 9	43.411			
2.0669	2	1 0 10	43.762			
2.0573	7	2 1 7	43.977			
2.0266 2.0214 2.0176 1.9299 1.8994	7 8 6 18	2 2 3 1 3 1 3 0 6 1 2 8 1 3 4	44.680 44.801 44.890 47.049 47.850			
1.8919	2	0 1 11	48.052			
1.8362	4	3 1 5	49.607			
1.8212	18	2 2 6	50.044			
1.8040	1	0 4 2	50.553			
1.7952	4	0 0 12	50.818			
1.7323	1	4 0 4	52.803			
1.7271	2	2 0 11	52.975			
1.7081	1L	3 0 9	53.610			
1.7004	3	2 1 10	53.873			
1.6949	6	1 3 7	54.063			
1.6838 1.6738 1.6590 1.6208	1 1 2 9 6	0 4 5 3 2 1 2 3 2 3 1 8 1 0 13	54.448 54.800 55.332 56.753 56.917			
1.6030	3	3 2 4	57.442			
1.5970	13	4 1 0	57.675			
1.5839	2	2 2 9	58.200			
1.5727	1	4 0 7	58.656			
1.5643	3	2 3 5	59.000			
1.5596	4	4 1 3	59.197			
1.5132	5	0 4 8	61.203			
1.5096	4	0 2 13	61.362			
1.5057	3	0 1 14	61.540			
1.4772	3	1 3 10	62.859			
1.4741	3	3 2 7	63.009			
1.4592	8	4 1 6	63.726			
1.4461	2	3 0 12	64.373			
1.4249	2	2 3 8	65.450			
1.4221	2	2 1 13	65.593			
1.4185	6	2 0 14	65.781			
1.4094	6	3 1 11	66.261			
1.3951	1L	4 0 10	67.031			
1.3859	1	5 0 5	67.531			
1.3823	2	3 3 3	67.735			
1.3602 1.3449 1.3370 1.3286 1.3170	2 4 1L 1	1 1 15 1 2 14 0 4 11 4 1 9 4 2 5	68.986 69.886 70.362 70.870 71.588			
continued						

Cadmium Titanium Phosphate, $\text{CdTi}_{ij}(\text{PO}_{ij})_{6}$ (continued)

d(A)	I ^{rel}	hkl	20(°)
1.3120	4	5 1 1	71.908
1.3051	1	1 5 2	72.349
1.2837	2	1 3 13	73.748
1.2770	2	5 1 4	74.203
1.2616	1	2 4 7	75.263
1.2573	2	1 5 5	75.563
1.2302	1	4 2 8	77.536
1.2264	3	3 1 14	77.823
1.2201	3	6 0 0	78.299
1.2088	2	5 1 7	79.172

${\tt Calcium\ Aluminum\ Silicate,\ Ca_2Al_2SiO_7}$

W				
Mineral name Gehlenite, syn				
Melilite Group	d(A)	$_{ m I}^{ m rel}$	hk1	20 (°)
	5.433	4	1 1 0	16.302
Sample	5.069	3	0 0 1	17.483
The sample was prepared by blending CaCO ₃ , Al ₂ O ₃ , and	4.231	2	1 0 1	20.979
SiO ₂ in the appropriate molar ratio. After an	3.842	1	2 0 0	23.132
initial calcine at a low temperature to remove CO ₂ , the sample was heated for an extended period in the	3.707	15	1 1 1	23.987
1200-1400°C range with periodic grinding.	3.4365	2	2, 1 0	25.906
	3.0629	21	2 0 1	29.132
	2.8446	100	2 1 1	31.423
Color	2.7175	5	2 2 0	32.933
Colorless	2.5339	4	0 0 2	35.396
Commentant alongifications	2.4306 2.4070	17 11	3 1 0 1 0 2	36.954
Symmetry classifications Crystal System Tetragonal	2.4070	12	2 2 1	37.329 37.533
Space Group $P42_1m$ (113)	2.2968	7	1 1 2	39.191
Pearson Symbol tP24	2.2869	1 i	3 0 1	39.368
Structure Type Ca ₂ MgSi ₂ 0 ₇ , akermanite				
-	2.1917	2	3 1 1	41.153
Note callection and analysis nanameters	2.1155 2.0398	1	2 0 2 2 1 2	42.708 44.374
Data collection and analysis parameters Radiation CuKα₁	1.9651	9 2	3 2 1	46.156
Wavelength 1.5405981 A	1.9213	8	4 0 0	47.271
20 Standards W FP				
Scanned to 5.0° 20	1.8641	4	4 1 0	48.816
o(I ^{rel}) ±3	1.8535	2 8	2 2 2 3 3 0	49.114
	1.8115	8 1L	3 3 0 4 0 1	50.329 50.783
Crystallographic constants of this sample	1.7542	25	3 1 2	52.095
a = 7.6858 (2) A	1			
c = 5.0683 (2)	1.7495	17	4 1 1	52.247
(CEA)	1.7186	6	4 2 0 3 3 1	53.258
c/a = 0.6594	1.7059	3 1L	3 3 1 0 0 3	53.686 54.264
V ≈ 299.39 A ³	1.6498	11	1 0 3	55.666
Z = 2				
Density (calc.) = 3.042 g/cm^3	1.6314	2	3 2 2	56.352
	1.6271	2 2	4 2 1 1 3	56.513 57.054
Figures of merit	1.5463	1L	2 0 3	59.758
$F_{20} = 248.2(.0038, 32)$	1.5309	1 L	4 0 2	60.418
$M_{20}^{30} = 215.2$				
	1.5162	9	2 1 3	61.067
Commonto	1.5074	1 L 1 L	5 1 0 4 1 2	61.462
Comments The structure was determined by Raaz (#1) and by	1.5013	2	4 1 2 3 3 2	61.739 63.035
Louisnathan (#2).	1.4710	2	4 3 1	63.155
The mean temperature of data collection was 24.3°C.				
	1.4448	2	5 1 1	64.439
Additional nottonno	1.4349 1.4276	3 1L	2 2 3 5 2 0	64.936 65.308
Additional patterns ,PDF card 20-199	1.4224	2	4 2 2	65.576
PDF card 25-123	1.4101	1	3 0 3	66.224
Negro and Regourd (#3)				
	1.3874	2	3 1 3	67.450
References	1.3738 1.3586	9 3	5 2 1 4 4 0	68.209 69.079
#1. Raaz, F.	1.3239	3 1	3 2 3	71.163
Sitzungsber. Akad. Wiss. Wien, MathNaturwiss.	1.3179	1L	5 3 0	71.532
Kl., Abt. 1(1930) <u>139</u> ,645.				
#2. Louisnathan, S.J.	1.3143	2	4 3 2 4 4 1	71.757
Can. Mineral.(1971) <u>10</u> ,822. #3. Negro, M.A. and Regourd, M.	1.3123	1 3	4 4 1 6 0 0	71.889 73.931
Silic. Ind.(1968) 33,137.	1.2670	2	0 0 4	74.887
	1.2636	2	6 1 0	75.124
	l l		•	

d(A)	I ^{rel}	hkl	20(°)
1.2517	5	4 1 3	75.962
1.2435	1	5 2 2	76.555
1.2355	1L	3 3 3	77.138
1.2260	1	6 1 1	77.850
1.20459	1	4 2 3	79.505
1.20023	1L	5 4 0	79.851
1.19748	1L	4 4 2	80.072
1.18916	1L	2 1 4	80.747
1.18178	1	6 2 1	81.357
1.16801	2	5 4 1	82.523
1.14857 1.14581 1.14325 1.13581 1.13063	1L 2 1 1	2 2 4 6 3 0 6 0 2 3 0 4 6 1 2	84.236 84.486 84.719 85.405 85.891
1.12472	3	5 1 3	86.452
1.09596	1L	6 2 2	89.313
1.09032	2	5 2 3	89.900

Calcium Fluoride, CaF2

Mineral name

Fluorite, syn Fluorite Group Fluorite Subgroup

CAS registry no. 7789-75-5

Sample

The sample was obtained from the U.S. Geological Survey.

Color

Colorless

Symmetry classifications

Crystal System Cubic Space Group Fm3m (225) Pearson Symbol cF12 Structure Type CaF2

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength 20 Standard Scanned to 5.0° 2θ o(I^{rel}) ±2

Crystallographic constants of this sample

a = 5.46305 (8) A

 $V = 163.04 A^3$ Z = 4Density (calc.) = 3.181 g/cm^3

Figures of merit

 $F_{16} = 213.5(.0047, 16)$ $M_{16} = 796.2$

Comments

The structure was determined by Bragg (#1). These data were recollected to add weak peaks missing in the earlier pattern. The mean temperature of data collection was 24.5°C.

Additional patterns

PDF card 4-864, Swanson, H.E. and Tatge, E (1953). Natl. Bur. Stand. Circ. 539, 1,69. Hanawalt et al. (#2)

References

#1. Bragg, W.L.

Proc. R. Soc. London, Ser. A(1914) 89,468.

#2. Hanawalt, J.D. et al.

Ind. Eng. Chem., Anal. Ed.(1938) 10,457.

d(A)	Irel	hkl	20(°)
3.155	92	1 1 1	28.267
2.7314	1L	2 0 0	32.761
1.9316	100	2 2 0	47.005
1.6471	33	3 1 1	55.765
1.5771	1	2 2 2	58.476
1.3656	10	4 0 0	68.674
1.2533	9	3 3 1	75.850
1.2216	1	4 2 0	78.184
1.11523	17	4 2 2	87.372
1.05140	7	3 3 3	94.217
0.96576	4	4 4 0	105.804
0.92340	6	5 3 1	113.064
0.91046	1	6 0 0	115.570
0.86375	8	6 2 0	126.202
0.83314	3	5 3 3	135.208
0.82358	2	6 2 2	138.555

Synonym

Calcium germanium orthophosphate

Sample

The sample was made by heating a 1:4:6 molar mixture of CaCO $_{2},~{\rm GeO}_{2},~{\rm and}~({\rm NH}_{1}){\rm H}_{2}{\rm PO}_{1}~{\rm up}$ to 500°C. It was then reground and heated at 1000°C overnight.

Color

Colorless

Symmetry classifications

Crystal System Rhombohedral R** Space Group Pearson Symbol hR35 Structure Type NaZr2(PO4)3

Data collection and analysis parameters

Radiation CuK α_1 1.5405981 A Wavelength 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 20 ±3

Crystallographic constants of this sample

(Hexagonal axes)

a = 8.0125 (5) Ac = 21.710(2)

c/a = 2.7095

 $V = 1207.05 A^3$

Density (calc.) = 3.715 g/cm^3

Figures of merit

 $F_{30} = 99.3(.0082, 37)$ $M_{20} = 77.3$

Comments

The structure of ${\rm NaZr_2(PO_4)}_3$ has been determined by Hagman and Kierkegaard (#1) and confirmed by Hong

The mean temperature of data collection was 24.4°C.

References

#1. Hagman, L-O. and Kierkegaard, P.

Acta Chem. Scand. (1968) 22,1822.

#2. Hong, H. Y-P.

Mater. Res. Bull. (1976) 11,173.

d(A)	Irel	hkl	20(°)
7.244	4	0 0 3	12.208
6.606	6	1 0 1	13.392
5.846	30	0 1 2	15.143
4.276	60	1 0 4	20.758
4.006	64	1 1 0	22.170
3.684	1	0 1 5	24.137
3.619	4	0 0 6	24.580
3.506	94	1 1 3	25.385
3.427	11	0 2 1	25.977
2.922	61	0 2 4	30.567
2.832	3	1 0 7	31.561
2.685	100	1 1 6	33.340
2.604	16	2 1 1	34.408
2.550	1	1 2 2	35.159
2.528	4	0 1 8	35.482
2.413 2.3609 2.3124 2.2443 2.2030	1L 15 30 1	0 0 9 2 1 4 0 2 7+ 1 2 5 3 0 3	37.229 38.085 38.916 40.146 40.932
2.1369	5	2 0 8	42.259
2.0666	7	1 1 9	43.769
2.0026	16	2 1 7+	45.245
1.9482	13	3 0 6	46.581
1.9302	2	2 2 3	47.041
1.8944	4	3 1 2	47.984
1.8856	16	1 2 8	48.224
1.8405	12	0 2 10	49.482
1.8143	13	1 3 4	50.248
1.8092	9	0 0 12	50.398
1.7524	27	2 2 6	52.154
1.7297	1L	4 0 1	52.890
1.7132	5	0 4 2	53.440
1.6722	21	2 1 10	54.858
1.6346	4	1 3 7	56.230
1.5880	1	3 2 1	58.033
1.5701	12	3 1 8	58.760
1.5411	2	2 2 9	59.978
1.5279	10	3 2 4	60.553
1.5142	20	4 1 0+	61.155
1.4947 1.4821 1.4618 1.4403	2 2 4 16 3	2 3 5 4 1 3 0 4 8 1 3 10 3 0 12	62.041 62.627 63.599 64.662 65.446
1.4160 1.3968 1.3849 1.3778 1.3728	11 14 1 1	2 0 14+ 4 1 6 0 5 1 3 1 11 2 3 8	65.912 66.935 67.588 67.982 68.268
1.3612	4	1 1 15	68.929
1.3552	6	4 0 10	69.276
1.3446	3	0 5 4	69.905
1.3355	10	3 3 0	70.451

Calcium Titanium Phosphate, CaTi4(PO4)6

Synonym

Calcium titanium orthophosphate

Sample

The sample was prepared by heating $Ca_3(PO_{ij})_2$, $(NH_{ij})_2HPO_{ij}$, and TiO_2 (anatase) up to 500°C. It was then reground and heated to 1200°C for 3 days.

Color

Colorless

Symmetry classifications

Crystal System Rhombohedral R** Space Group Pearson Symbol hR35

Data collection and analysis parameters

Radiation CuKa₁ Wavelength 1.5405981 A 20 Standard Si Scanned to $o(I^{rel})$ 4.0° 20 ±1

Crystallographic constants of this sample

(Hexagonal axes)

a = 8.3613 (5) A

c = 21.997(2)

c/a = 2.6308

 $V = 1331.81 A^3$

Z = 3

Density (calc.) = 2.998 g/cm^3

Figures of merit

 $F_{30} = 97.0(.0081, 38)$ $M_{20} = 69.4$

Comments

Rhombohedral, R** by analogy with other similar titanium phosphates. The structure is similar to

NaZr₂(PO₄)₃.

The temperature of data collection was approximately

25.0°C.

	d(A)	Irel		hk	1	20(°)
	7.332	4	0	0	3	12.061
	6.884	6	1	0	1	12.850
	6.051	15	0	1	2	14.627
	4.382	22	1	0	4	20.250
	4.183	28	1	1	0	21.221
	3.762	4	0	1	5	23.630
	3.634	100	1	1	3	24.479
	3.575	2	0	2	1	24.883
	3.441	4	2	0	2	25.873
	3.025	28	0	2	4	29.510
- 1						

d(A)	I ^{rel}	hkl	20(°)
2.881	1	1 0 7	31.014
2.796	3	2 0 5	31.989
2.757	53	1 1 6	32.446
2.717	16	2 1 1	32.941
2.657	2	1 2 2	33.706
2.451	4	2 1 4	36.638
2.414	13	3 0 0	37.210
2.3239	2	1 2 5	38.716
2.2929	6	3 0 3	39.260
2.1896	2	2 0 8	41.194
2.1102	6	1 1 9	42.820
2.0638	5	2 1 7	43.831
2.0160	5	3 0 6	44.927
2.0105	5	2 2 3	45.057
1.9749	1	3 1 2	45.915
1.9395	12	1 2 8	46.803
1.8865	3	1 3 4	48.199
1.8801	3	0 2 10	48.373
1.8327	3	0 0 12	49.708
1.8270	3	3 1 5	49.874
1.8155	16	2 2 6	50.210
1.8036	7	4 0 1	50.565
1.7862	2	0 4 2	51.095
1.7143	8	2 1 10	53.403
1.6922	5	1 3 7	54.157
1.6555 1.6215 1.5899 1.5799	1 7 6 10 2	3 2 1 3 1 8 3 2 4 4 1 0 2 3 5	55.458 56.724 57.957 58.362 59.409
1.5447	2	4 1 3	59.825
1.5355	2	0 1 14	60.221
1.5330	2	0 2 13	60.328
1.5118	3	0 4 8	61.263
1.4828	7	1 3 10	62.597
1.4683	2	3 2 7	63.286
1.4597	5	3 0 12	63.703
1.4506	4	4 1 6	64.147
1.4414	3	2 0 14	64.607
1.4215	1	2 3 8	65.627
1.4169	2	3 1 11	65.866
1.3980	4	4 0 10	66.871
1.3940	4	3 3 0	67.088
1.3844	3	1 1 15	67.619
1.3690	2	3 3 3	68.481
1.3629	5	1 2 14	68.829
1.3578	1	4 2 2	69.124
1.3274	2	4 1 9	70.942
1.3030	1	3 3 6	72.478
1.2983	2	5 1 1	72.787
1.2776	1	2 3 11	74.156
1.2654	5	5 1 4	74.995

Calcium Zinc Silicate, $Ca_2ZnSi_2O_7$

Mineral name				
Hardystonite, syn Melilite Group	d(A)	I ^{rel}	hkl	20(°)
Sample The sample prepared from a 2:1:2 molar mixture of CaCO ₃ , ZnO, and SiO ₂ was heated and ground periodically at successively higher temperatures in the	5.533	1L	1 1 0	16.005
	5.016	15	0 0 1	17.668
	4.222	7	1 0 1	21.026
	3.911	1L	2 0 0	22.718
	3.716	38	1 1 1	23.928
range 1150°C to 1325°C. Color Colorless	3.500	4	2 1 0	25.431
	3.086	63	2 0 1	28.910
	2.871	100	2 1 1	31.130
	2.767	13	2 2 0	32.332
	2.508	8	0 0 2	35.770
Symmetry classifications Crystal System Tetragonal Space Group P42 ₁ m (113) Pearson Symbol tP24	2.475	36	3 1 0	36.274
	2.423	13	2 2 1	37.080
	2.388	7	1 0 2	37.638
	2.3143	8	3 0 1	38.883
	2.2843	5	1 1 2	39.414
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2195	8	3 1 1	40.615
	2.1711	1L	3 2 0	41.563
	2.1113	1	2 0 2	42.797
	2.0389	14	2 1 2	44.396
	1.9564	2	4 0 0	46.375
Crystallographic constants of this sample a = 7.8250 (3) A c = 5.0153 (3)	1.8985	6	4 1 0	47.874
	1.8585	11	2 2 2	48.973
	1.8447	5	3 3 0	49.362
	1.8231	3	4 0 1	49.987
	1.8079	1L	3 0 2	50.437
$c/a = 0.6409$ $V = 307.09 \text{ A}^3$ $Z = 2$ Density (calc.) = 3.393 g/cm ³	1.7757	12	4 1 1	51.417
	1.7620	38	3 1 2	51.849
	1.7503	19	4 2 0	52.221
	1.7316	9	3 3 1	52.827
	1.6723	1L	0 0 3	54.855
Figures of merit F ₃₀ = 110.8(.0087, 31) M ₂₀ = 151.0	1.6524	6	4 2 1	55.572
	1.6413	3	3 2 2	55.980
	1.6351	1L	1 0 3	56.211
	1.6006	5	1 1 3	57.536
	1.5369	6	2 0 3	60.159
The structure of Ca ₂ ZnSi ₂ 0 ₇ was determined by Warren and Trautz (#1). The temperature of data collection was approximately 25.0°C.	1.5343	5	5 1 0	60.271
	1.5133	3	4 1 2	61.199
	1.5082	5	2 1 3	61.427
	1.4943	1L	4 3 1	62.062
	1.4671	8	5 1 1	63.342
Additional patterns PDF card 12-453 Reference	1.4526	1L	5 2 0	64.050
	1.4346	7	4 2 2	64.952
	1.4306	7	2 2 3	65.154
	1.4073	3	3 0 3	66.373
	1.3954	7	5 2 1	67.012
#1. Warren, B.E. and Trautz, O.R. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1930) 75,525.	1.3849	7	3 1 3	67.586
	1.3419	1L	5 3 0	70.067
	1.3333	4	4 4 1	70.583
	1.3274	1L	4 3 2	70.944
	1.3243	1L	3 2 3	71.136
·	1.3088	5	5 1 2	72.111
	1.3040	3	6 0 0	72.417
	1.2967	1L	5 3 1	72.892
	1.2863	1L	6 1 0	73.575
	1.2708	2	4 0 3	74.622

Calcium Zinc Silicate, Ca2ZnSi2O7 (continued)

d(A)	Irel	hkl	20(°)
1.2621	1L	6 0 1	75.230
1.2571	6	5 2 2	75.575
1.2542	6	4 1 3+	75.783
1.2464	2	6 1 1	76.340
1.2387	4 1 L	3 3 3 1 1 4	76.904 78.074
1.2111	2	4 4 2	78.994
1.2084	1 L	4 2 3	79.203
1.2012	4	6 2 1	79.776
1.1874	3	5 4 1	80.892
1.1832	4	5 3 2	81.238
1.1803	1L	2 1 4	81.484
1.1664	1L	6 3 0	82.661
1.1572	3	6 0 2	83.463
1.1445	3	6 1 2	84.600
1.1422 1.1305 1.1185 1.0986 1.0968	3 5 3 1	2 2 4+ 5 1 3 3 1 4 5 4 2 5 2 3	84.816 85.902 87.058 89.037 89.230

Calcium Zirconium Oxide, CaZrO2

Synonym

Calcium zirconate

CAS registry no. 12013-47-7

Sample

The sample was from Aesar Division of Johnson Matthey Inc., Seabrook, NH.

Color

Colorless

Symmetry classifications

Crystal System Orthorhombic Pnma (62) Space Group Pearson Symbol oP20

Structure Type Distorted perovskite (#1)

Data collection and analysis parameters

CuKa₁ Radiation Wavelength 1.5405981 A 20 Standard St Scanned to $\sigma(I^{rel})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 5.7558 (3) A

b = 8.0101 (14)c = 5.5929(6)

a/b = 0.7186

c/b = 0.6982

 $V = 257.86 A^3$

Z = 4

Density (calc.) = 4.619 g/cm^3

Figures of merit

F₃₀ = 97.8(.0088, 35) M₂₀ = 88.8

There is a cubic form of CaZrO₃ stable at 2000°C (#2). The mean temperature of data collection was 23.2°C.

Additional patterns

PDF card 9-364

Coughanour et al. (#3)

References

#1. Megaw, H.D.

Proc. Phys.-Math. Soc. Jpn. (1946) 58,133.

#2. Foex, M. et al.

C. R. Seances Acad. Sci., Ser. C(1967)

264,1837.

#3. Coughanour, L.W. et al.

J. Res. Natl. Bur. Stand. (U.S.)(1955)

<u>54</u>,191.

d(A)	_I rel	hkl	20(°)
4.009	36	1 0 1+	22.155
3.587	2	1 1 1	24.799
2.876	26	2 0 0	31.068
2.834	100	1 2 1	31.540
2.797	23	0 0 2	31.975
2.708	1L	2 1 0	33.050
2.559	1L	2 0 1	35.040
2.515	2	1 0 2	35.674
2.438	2	2 1 1	36.841
2.409	5	0 3 1	37.295
2.400	5	1 1 2	37.437
2.336	4	2 2 0	38.510
2.2927	2	0 2 2	39.265
2.2228	3	1 3 1	40.552
2.1561	2	2 2 1	41.865
2.1294	1L	1 2 2	42.414
2.0051	48	2 0 2	45.184
1.9577	2	2 3 0	46.341
1.9459	2	2 1 2	46.640
1.8480	1L	2 3 1	49.270
1.8306	1	1 3 2	49.770
1.8149	7	3 0 1+	50.228
1.7928	16	2 2 2	50.891
1.7740	4	1 0 3	51.470
1.7702	3	3 1 1	51.591
1.7316 1.6532 1.6446 1.6282 1.6214	1L 17 15 16	1 1 3 3 2 1 2 4 0 0 4 2 1 2 3	52.826 55.541 55.858 56.471 56.731
1.5007	1	3 3 1	61.765
1.4392	5	4 0 0	64.721
1.4172	11	2 4 2	65.849
1.3986	2	0 0 4	66.840
1.3542	2	4 2 0	69.336
1.3451	3	3 4 1	69.875
1.3275	1L	1 4 3	70.935
1.2680	8	3 2 3	74.816

Cesium Hydrogen Phosphate, CsH_2PO_{ij}

Synonym				
Cesium dihydrogen orthophosphate	d(A)	I ^{rel}	hkl	20(°)
CAS registry no. 18649-05-3 Sample	4.868	16	1 1 0	18.209
	4.644	8	0 0 1	19.095
	3.760	100	0 1 1	23.641
	3.509	7	1 0 1	25.365
	3.489	14	-2 0 1	25.507
CSH ₂ PO ₄ was precipitated by adding ethanol to stoichiometric amounts of Cs ₂ CO ₃ and H ₃ PO ₄ in water solution.	3.194	21	0 2 0	27.911
	3.074	43	1 1 1	29.029
	2.939	6	1 2 0	30.394
	2.632	12	0 2 1+	34.038
	2.569	9	2 0 1	34.890
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /m (11) Pearson Symbol mP16	2.510	2	3 0 0	35.747
	2.436	26	2 2 0	36.866
	2.376	22	-3 1 1	37.829
	2.357	15	-2 2 1	38.158
	2.337	18	3 1 0	38.490
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 2θ Standard W	2.324	1 4	0 0 2	38.712
	2.278	8	-1 1 2	39.519
	2.1841	5	0 1 2	41.304
	2.0479	5	1 3 0	44.189
	2.0011	5	2 2 1	45.279
Scanned to 4.0° 20 $_{0}(I^{rel})$ ± 4 Crystallographic constants of this sample $a = 7.9072$ (9) A	1.9727 1.9660 1.9544 1.9462	5 6 3 8 8	3 0 1+ -4 0 1 1 1 2 -3 1 2 -1 3 1+	45.970 46.134 46.425 46.631 46.928
b = 6.3869 (9) c = 4.8792 (7) $\beta = 107.712 (11)^{\circ}$ a/b = 1.2380	1.8844 1.8786 1.8201 1.8055 1.7537	14 14 7 2 4	3 1 1 -4 1 1+ 1 3 1 4 1 0 2 0 2	48.257 48.415 50.077 50.509 52.111
$c/b = 0.7639$ $V = 234.73 \text{ A}^3$ $Z = 2$ Density (calc.) = 3.253 g/cm ³	1.7453	3	-4 0 2	52.380
	1.7265	2	1 2 2	52.994
	1.6908	3	2 1 2	54.206
	1.6788	1	3 2 1	54.625
	1.6746	2	-4 2 1	54.773
Figures of merit F30 = 58.5(.0095, 54) M20 = 44.9	1.6364	7	-3 3 1	56.165
	1.6227	8	4 2 0	56.680
	1.6039	4	-1 3 2	57.405
	1.5962	3	0 4 0	57.710
	1.5806	2	-5 0 1	58.333
Comments The structure was qualitatively determined by Uesu and Kobayashi (#1). A tetragonal form (#2) and an orthorhombic form (#3) have also been reported. The temperature of data collection was approximately 25.0°C.	1.5680	5	-2 3 2+	58.849
	1.5495	2	0 0 3	59.619
	1.5382	12	4 1 1	60.103
	1.5348	11	-5 1 1	60.251
	1.5107	2	0 4 1	61.315
References #1. Uesu, Y. and Kobayashi, J. Phys. Status Solidi A(1976) 34,475. #2. Rez, I.S. et al.	1.5060 1.5019 1.4938 1.4772 1.4743	3 5 2 4 5	0 1 3+ -3 1 3 3 0 2 1 3 2 -3 3 2	61.526 61.711 62.086 62.862 62.999
Izv. Akad. Nauk SSSR, Ser. Fiz.(1967) 31,1082. #3. Fellner-Feldeff, H. Tschermaks Mineral. Petrogr. Mitt. (1952) 3, 37.	1.4705	6	2 4 0	63.178
	1.4666	5	5 1 0	63.367
	1.4542	2	3 1 2	63.973
	1.4484	6	-5 1 2	64.260
	1.4446	5	-4 3 1	64.445
		con	tinued	

Cesium Hydrogen Phosphate, CsH₂PO₄ (continued)

d(A)	Irel		hk	1	20(°)
1.4338	2	1	0	3	64.995
1.4205	2	4	2	1	65.678
1.4170	1	-5	2	1	65.860
1.3992	1	1	1	3	66.805
1.3945	4	-4	1	3+	67.063
1.3559	2	2	4	1	69.235
1.3531	2	3	2	2+	69.403

Chromium Carbide, Cr₃C₂

Synonym				
Trichromium dicarbide	d(A)	I ^{rel}	hkl	20(°)
CAS registry no. 12012-05-0 Sample	4.978 3.983 3.146 2.7460 2.5478	1L 1L 2 18 23	1 1 0 1 2 0 1 3 0 0 1 1 1 4 0	17.804 22.302 28.343 32.582 35.196
The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH. Color Dark gray	2.4897 2.4596 2.3063 2.2751 2.2409	13 9 100 10 60	2 2 0 1 1 1 1 2 1 0 3 1 2 3 0	36.045 36.502 39.023 39.580 40.210
Symmetry classifications Crystal System Orthorhombic Space Group Pnam (62) Pearson Symbol oP20 Structure Type Cr ₃ C ₂	2.1215 2.1036 1.9912 1.9481 1.9151	21 10 25 45 29	1 5 0 1 3 1 2 4 0 2 1 1 0 6 0	42.580 42.961 45.518 46.582 47.434
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 Å 2θ Standard Si	1.8934 1.8691 1.8190 1.7833	34 49 27 26 1	1 4 1 2 2 1 3 1 0 0 5 1 2 5 0	48.011 48.676 50.107 51.182 51.691
Scanned to 5.0° 20 $_{\sigma(I^{rel})}$ ±3	1.7567 1.6975 1.6602 1.6285 1.5734	8 25 3 6 5	2 3 1 1 5 1 3 3 0 2 4 1 1 7 0+	52.016 53.972 55.289 56.458 58.625
a = 5.5273 (2) A b = 11.4883 (5) c = 2.8286 (2) a/b = 0.4811 c/b = 0.2462	1.5302 1.4987 1.4375 1.4192 1.4143	9 7 3 3 19	3 1 1 2 5 1 3 5 0 0 7 1 0 0 2	60.450 61.858 64.803 65.742 66.004
$V = 179.61 \text{ A}^3$ Z = 4 Density (calc.) = 6.657 g/cm ³	1.3902 1.3720 1.3273 1.2998 1.2812	1 5 4 1 2	1 8 0 4 1 0 3 6 0 4 3 0 3 5 1	67.298 68.313 70.951 72.691 73.916
Figures of merit $F_{30} = 122.2(.0057, 43)$ $M_{20} = 138.8$	1.2626 1.2474 1.2367 1.2342 1.2296	5 13 5 6 3	2 7 1 1 8 1 1 4 2 4 1 1 2 2 2	75.192 76.268 77.054 77.234 77.581
The structure was determined by Hellbom and Westgren (#1). It was refined by Rundquist and Runnsjo (#2). The mean temperature of data collection was 24.0°C. Additional patterns	1.2254 1.2135 1.2017 1.1961 1.1810	8 6 11 12 10	3 7 0 4 2 1 3 6 1 2 3 2 4 3 1	77.896 78.806 79.731 80.184 81.421
PDF card 14-406 Hellbom and Westgren (#1) References #1. Hellbom, K. and Westgren, A.	1.1768 1.1619 1.1590 1.1531 1.1397	6 6 8 4	1 5 2 2 8 1 2 9 0 2 4 2 4 4 1	81.778 83.056 83.303 83.832 85.042
Sven. Kem. Tidskr.(1933) <u>45</u> ,141. #2. Rundquist, S. and Runnsjo, G. Acta Chem. Scand.(1969) <u>1191</u> ,23.	1.1377 1.1247 1.1167 1.1005 1.0923	11 8 9 4 4	0 6 2 1 10 0+ 3 1 2 5 1 0 4 5 1	85.225 86.451 87.226 88.851 89.693

$\textbf{Chromium Carbide, } \textbf{Cr}_{3}\textbf{C}_{2} \text{ (continued)}$

d(A)	_I rel	hkl	2θ(°)
1.0856	1	5 2 0	90.395
1.0767	2	3 3 2	91.354
1.0722	1	2 9 1	91.845
1.06085	3	2 10 0	93.123
1.05708	3	470	93.556
1.05190 1.04926 1.03173 1.02616 1.01339	3 3 3 2 2	2 6 2+ 3 9 0 5 4 0 1 11 0 5 2 1	94.158 94.468 96.595 97.295 98.950

Chromium Carbide, Cr₂₃C₆

CAS registry no. 12105-81-6

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI.

Spectrographic analysis (wt.%, CERAC, Inc.)

0.1 Al, Fe, Si 0.08 Mo 0.07 Mg 0.01 V 0.008 Ti 0.003 Ni 0.002 Ca, Cu

Color Gray

Symmetry classifications

Crystal System Cubic Space Group Fm3m (225) Pearson Symbol cF116

Data collection and analysis parameters

Radiation $CuK\alpha_1$ Wavelength 1.5405981 Å 20 Standard Si Scanned to 5.0° 20 $\sigma(I^{rel})$ ±1

Crystallographic constants of this sample

a = 10.6599 (5) A

 $V = 1211.32 \text{ A}^3$ Z = 4Density (calc.) = 6.953 g/cm³

Figures of merit

 $F_{28} = 69.6(.0106, 38)$ $M_{20} = 114.2$

Comments

The structure was determined by Westgren (#1).
The mean temperature of data collection was 24.0°C.

Additional patterns

PDF card 14-407

Reference

#1. Westgren, A.

Jernkontorets Ann. (1933) 17,501.

d(A)	I ^{rel}	hkl	20(°)
6.148	1	1 1 1	14.395
3.214	1	3 1 1	27.737
3.077	1	2 2 2	28.993
2.666	4	4 0 0	33.591
2.445	1	3 3 1	36.724
2.383	23	4 2 0	37.718
2.176	24	4 2 2	41.461
2.0520	100	5 1 1	44.097
1.8840	20	4 4 0	48.266
1.8016	22	5 3 1	50.625
1.7767	12	6 0 0	51.388
1.6857	2	6 2 0	54.382
1.6261	2	5 3 3	56.552
1.6067	6	6 2 2	57.298
1.4930	1L	5 5 1	62.120
1.4788	1L	6 4 0	62.786
1.3327	2	8 0 0	70.622
1.2928	2	8 2 0	73.146
1.2560	12	8 2 2	75.654
1.2308	6	7 5 1	77.490
1.2227	15	6 6 2	78.096
1.1920	2	8 4 0	80.516
1.1698	4	9 1 1	82.367
1.1174	1	9 3 1	87.160
1.0879	6	8 4 4	90.157
1.0712	3	7 7 1	91.959
1.0452	1L	10 2 0	94.945
1.0259	1	10 2 2	97.322

Chromium Nitride, 6-Cr2N

CAS registry no. 24094-93-7

Sample

The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Dark gray

Symmetry classifications

Crystal System Hexagonal Space Group P31m (162) Pearson Symbol hP9 Structure Type Fe2N

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 20

Crystallographic constants of this sample

a = 4.8113 (2) Ac = 4.4841 (2)

c/a = 0.9320

 $V = 89.89 A^3$

Z = 3

Density (calc.) = 6.539 g/cm^3

Figures of merit

F₂₃ = 61.0(.0075, 50) M₂₀ = 139.1

Comments

The structure was determined by Ericksson (#1). An earlier report had given a close-packed hexagonal cell having one-third the volume of the cell given here.

The mean temperature of data collection was 23.9°C.

Additional patterns PDF card 27-127

Reference

#1. Ericksson, S.

Jernkontorets Ann. (1934) 118,530.

d(A)	I ^{rel}	hkl	20(°)
3.052	4	1 0 1	29.238
2.4057	15	1 1 0	37.350
2.2419	21	0 0 2	40.191
2.1201	100	1 1 1	42.611
2.0832	1	2 0 0	43.402
1.8888	1	2 0 1	48.137
1.6405	19	1 1 2	56.012
1.4861	1L	2 1 1	62.439
1.3892	15	3 0 0	67.349
1.2696	13	1 1 3	74.704
1.2030	1L	2 2 0	79.632
1.1808	10	3 0 2	81.441
1.1619	10	2 2 1	83.050
1.1209	2	0 0 4	86.817
1.0600	3	2 2 2	93.222
1.0162	2	1 1 4	98.582
0.93710	4	2 2 3	110.572
0.91424	1L	3 1 3	114.822
0.90922	1L	4 1 0	115.818
0.89104	8	4 1 1	119.650
0.87230	6	3 0 4	124.029
0.84258	4	4 1 2	132.190
0.84032	5	1 1 5	132.889

Chromium Silicide, Y-CrSi2

Synonym Chromium disilicide CAS registry no. 12018-09-6 Sample The sample was obtained from TRG Co., Yonkers, NY. It contained a small amount of an unknown admixture, possibly CraSi. Color Dark gray Symmetry classifications Crystal System Hexagonal Space Group P6₂22 (180) Pearson Symbol hP9 Data collection and analysis parameters CuKa₁ Radiation 1.5405981 A Wavelength 20 Standard Ag Scanned to $\sigma(I^{rel})$ 5.0° 20 ±2 Crystallographic constants of this sample a = 4.4281 (2) A c = 6.3691 (4)c/a = 1.4383 $V = 108.15 A^3$ Z = 3Density (calc.) = 4.982 g/cm^3 Figures of merit $F_{30} = 60.1(.0135, 37)$ $M_{20} = 103.1$ Comments The structure was determined by Boren (#1). The mean temperature of data collection was 21.7°C. Additional patterns

d(A)	Irel	hkl	20(°)
3.838	5	1 0 0	23.155
3.289	19	1 0 1	27.093
2.450	11	1 0 2	36.649
2.214	19	1 1 0	40.720
2.123	34	0 0 3	42.555
2.090	100	1 1 1	43.247
1.917	7	2 0 0	47.394
1.8572	1	1 0 3	49.010
1.8363	1L	2 0 1	49.605
1.8174	65	1 1 2	50.155
1.5319	11	1 1 3	60.375
1.4710	2	1 0 4	63.157
1.4224	4	2 0 3	65.578
1.4133	3	2 1 1	66.053
1.3190	2	2 1 2	71.464
1.2928	20	1 1 4	73.145
1.2782	5	3 0 0	74.120
1.2537	21	3 0 1	75.821
1.2088	1L	1 0 5	79.169
1.1972	1L	2 1 3	80.098
1.1866	7	3 0 2	80.960
1.1068	6	2 2 0	88.204
1.1040	8	1 1 5	88.495
1.0953	2	3 0 3	89.382
1.0718	1L	2 1 4	91.899
1.0639	1L	3 1 0	92.783
1.0611	1	2 0 5	93.093
1.0490	1L	3 1 1	94.494
1.0089	1L	3 1 2	99.551
0.9968	2	3 0 4	101.201
0.9817	5	2 2 3	103.371
0.9586	1L	4 0 0	106.943
0.9570	1	2 1 5	107.208
0.9286	1L	2 0 6	112.092
0.9023	3	3 0 5	117.227
0.8844	1L	3 1 4	121.143
0.8738	1L	4 0 3	123.655
0.8715	1L	3 2 1	124.232
0.85637	1L	2 1 6	128.182
0.84798	1L	3 2 2	130.570
0.84157	2	1 1 7	132.500
0.83687	1L	4 1 0	133.983
0.82966	4	4 1 1	136.388

#1. Boren, B.

PDF card 12-596

Ark. Kemi Mineral. Geol.(1933) 11A, No.10.

Chromium Tungsten Oxide, Cr2WO6

Synonym

Chromium tungstate

CAS registry no.

13765-57-6

Sample

The sample was made by heating a 1:1 molar mixture of $\mathrm{Cr}_2\mathrm{O}_3$ and WO_3 at up to 975°C for 3 days with intermittent grinding.

Color

Reddish black

Symmetry classifications

Crystal System Tetragonal Space Group $P4_{2}/mnm (136)$ Pearson Symbol tP18

Structure Type Trirutile (#1)

Data collection and analysis parameters

CuKα₁ 1.5405981 A Radiation Wavelength 20 Standard Si Scanned to o(I^{rel}) 5.0° 20 ±1

Crystallographic constants of this sample

a = 4.57960 (19) Ac = 8.8668 (6)

c/a = 1.9362

 $V = 185.96 A^3$

Z = 2

Density (calc.) = 6.855 g/cm^3

Figures of merit

 $F_{30} = 101.9(.0074, 40)$ $M_{20} = 156.6$

The structure of Cr₂WO₆ was studied by Trunov and Kovba (#2).

The mean temperature of data collection was 23.6°C.

Additional patterns

PDF card 13-110

References

#1. Kunnmann, W. et al.

J. Phys. Chem. Solids(1968) 29,1359.

#2. Trunov, V.K. and Kovba, L.M.

Inorg. Mater. (Engl. Transl.)(1966) 2,151.

d(A)	I ^{rel}	hkl	20(°)
4.434	12	0 0 2	20.008
4.069	35	1 0 1	21.827
3.239	100	1 1 0	27.513
2.615	14	1 1 2	34.258
2.4836	70	1 0 3	36.137
2.2902	16	2 0 0	39.308
2.2174	2	0 0 4	40.656
2.1834	7	1 1 3	41.317
2.0487	3	2 1 0	44.172
2.0349	6	2 0 2	44.488
1.9956	11	2 1 1	45.411
1.8289	4	1 1 4	49.818
1.6834	54	2 1 3	54.461
1.6538	3	1 0 5	55.522
1.6192	14	2 2 0	56.813
1.5925 1.5211 1.5044 1.4778	3 3 2 6 10	2 0 4+ 2 2 2 3 0 1+ 0 0 6 3 1 0	57.856 60.852 61.600 62.834 64.260
1.3763 1.3562 1.3443 1.3409 1.3073	3 13 10 8	3 1 2 3 0 3 1 1 6 2 1 5 2 2 4	68.071 69.222 69.922 70.125 72.202
1.2572	2	3 2 1	75.570
1.2415	4	2 0 6	76.699
1.2209	2	1 0 7+	78.240
1.2123	3	3 1 4	78.901
1.1985	1L	2 1 6	79.987
1.1669	7	3 2 3	82.617
1.1569	1	3 0 5	83.496
1.1449	3	4 0 0	84.572
1.1086	1	4 0 2+	88.032
1.1020	2	3 2 4+	88.699
1.0915	5	2 2 6	89.777
1.0793	3	3 3 0	91.070
1.0488	2	3 3 2+	94.520
1.0398	6	4 1 3	95.600
1.0343	6	3 1 6	96.270
1.0241	3	4 2 0	97.560

Cobalt Titanium Oxide, $CoTi_2O_5$

Synonym				
Cobalt titanate Cobalt dititanate	d(A)	I ^{rel}	hkl	2⊕(°)
CAS registry no. 12017-04-8	5.037 4.865 3.499 3.481 3.292	7 31 76 100	0 2 0 2 0 0 2 2 0 1 0 1 1 1 1	17.592 18.221 25.435 25.566 27.064
Sample The sample was prepared using CoO _X (x = 1.39) and TiO ₂ . After an initial calcine at 800°C for 20 hours, the sample was heated at 1430°C for one hour. During the 1430°C heat treatment, the sample was removed from the furnace and ground at 15 minute	2.866	4	1 2 1	31.177
	2.763	82	2 3 0	32.375
	2.518	3	0 4 0	35.628
	2.447	27	3 0 1	36.695
	2.431	18	4 0 0	36.953
Color Very dark olive black	2.418	34	1 3 1	37.145
	2.377	4	3 1 1	37.812
	2.237	23	2 4 0	40.289
	2.202	10	3 2 1	40.954
	2.190	20	4 2 0	41.193
Symmetry classifications Crystal System Orthorhombic Space Group Bbmm (63) Pearson Symbol oC32 Structure Type pseudobrookite	2.0417	1	1 4 1	44.332
	1.9777	10	3 3 1	45.846
	1.9692	28	4 3 0	46.055
	1.8644	47	0 0 2	48.806
	1.8612	24	2 5 0	48.896
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 Å 2θ Standard Si Scanned to 5.0° 2θ	1.7546	14	3 4 1	52.083
	1.7416	5	2 0 2	52.501
	1.6997	2	5 1 1	53.897
	1.6789	18	0 6 0	54.622
	1.6454	4	2 2 2	55.827
Crystallographic constants of this sample a = 9.7275 (8) A b = 10.0750 (9)	1.6317	29	5 2 1	56.338
	1.6206	5	6 0 0	56.758
	1.6006	7	6 1 0	57.535
	1.5869	5	2 6 0	58.080
	1.5558	13	3 5 1	59.354
c = 3.7304 (3) a/b = 0.9655 c/b = 0.3703	1.5519 1.5459 1.5343 1.5123 1.4987	9 28 23 11 3	4 5 0 2 3 2 5 3 1 1 6 1 0 4 2	59.520 59.775 60.271 61.241 61.857
$V = 365.60 \text{ A}^3$ $Z = 4$ Density (calc.) = 4.265 g/cm ³ Figures of merit	1.4798	5	4 0 2	62.738
	1.4602	4	6 3 0	63.677
	1.4321	8	2 4 2	65.077
	1.4233	7	5 4 1	65.530
	1.4196	11	4 2 2	65.722
$F_{30} = 77.7(.0104, 37)$ $M_{20} = 78.1$ Comments The structure was studied by Yamaguchi (#1).	1.3850 1.3814 1.3542 1.3301 1.3176	11 10 13 3	3 6 1 4 6 0 4 3 2 1 7 1 2 5 2	67.583 67.784 69.337 70.776 71.550
The mean temperature of data collection was 23.1°C. Additional patterns PDF card 20-1297	1.3106	1	5 5 1	71.996
	1.3020	1	7 0 1	72.546
	1.2917	6	7 1 1	73.216
	1.2633	4	6 5 0	75.142
	1.2607	10	7 2 1	75.326
Reference #1. Yamaguchi, G. Bull. Chem. Soc. Jpn.(1953) 26,204.	1.2479	10	0 6 2	76.237
	1.2335	3	1 0 3	77.286
	1.2237	3	6 0 2	78.026
	1.2149	4	6 1 2	78.695
	1.2086	3	2 6 2	79.187

Cobalt Titanium Oxide, CoTi₂0₅ (continued)

d(A)	I ^{rel}	hkl	20(°)
1.1821	3	8 2 0	81.334
1.1665	2	6 6 0	82.655
1.1610	2	3 0 3	83.135
1.1581	5	1 3 3	83.385
1.1498	2	6 3 2	84.128
1.1185	4	4 8 0	87.053
1.1095	5	2 7 2	87.940
1.0975	5	3 3 3	89.158
1.0939	5	7 5 1	89.526

Copper Arsenic Sulfide, Cu2AsSI

Mineral name

Enargite, syn

Wurtzite Group

Related structures Subgroup

Synonym

Copper thioarsenate

CAS registry no.

12336-85-5

Sample

The specimen (NMNH #C849) from Montana was obtained from the National Museum of Natural History, Washington, DC.

Color

Metallic gray

Symmetry classifications

Crystal System Orthorhombic Pnm2₁ (31) Space Group

Pearson Symbol oP16

Data collection and analysis parameters

±2

Radiation CuKa₁ 1.5405981 A Wavelength Si FP 2θ Standards 5.0° 20 Scanned to o(Irel)

Crystallographic constants of this sample

a = 6.4367 (5) A

b = 7.4039(6)

c = 6.1529 (5)

a/b = 0.8694c/b = 0.8310

 $V = 293.23 A^3$ Z = 2

Density (calc.) = 4.460 g/cm^3

Figures of merit

 $F_{30} = 42.1(.0099, 72)$ $M_{20} = 44.6$

The structure was determined by Pauling and Weinbaum (#1) and later confirmed by Kogu and Takane (#2). The structure is closely related to Wurtzite, the

hexagonal form of ZnS.

Two other forms of Ca_3AsS $_4$ have been reported, a tetragonal form (luzonite) by Gaines (#3), and a cubic form by Sclar and Drovenik (#4).

The temperature of data collection was approximately 25.0°C.

Additional patterns

PDF card 10-437

Wernick and Benson (#5)

References

#1. Pauling, L. and Weinbaum, S. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1934) 88,48.

#2. Kogu, S. and Takane, K.

Proc. Imp. Acad. (Tokyo)(1935) 11,421.

#3. Gaines, R.V.

Am. Mineral.(1957) 42,766.

#4. Sclar, C.B. and Drovenik, M.

Geol. Soc. Am. Bull. (1960) 71,1970.

#5. Wernick, J.H. and Benson, K.E. J. Phys. Chem. Solids(1957) 3,157.

d(A)	I ^{rel}		hk	1	20(°)
6.434 4.859 4.734 3.219 3.208	2L 3 2 100 100	1 1 0 2 1	0 1 1 0 2	0 0 1 0	 13.752 18.242 18.729 27.689 27.785
3.076	41	0	0	2	29.006
2.952	4	2	1	0	30.247
2.846	83	1	2	1	31.412
2.660	2	2	1	1	33.662
2.430	2L	2	2	0	36.968
2.258	2L	2	2	1	39.890
2.222	26	1	2	2	40.577
2.0604	2	3	1	0	43.908
1.9541	2	3	1	1+	46.432
1.8567	72	3	2	0	49.022
1.8514	62	0	4	0	49.173
1.7295	25	2	0	3	52.898
1.7285	48	1	2	3	52.928
1.7084	2L	1	4	1	53.602
1.6187	2	3	3	0	56.832
1.6096	6	4	0	0	57.185
1.6045	11	2	4	0	57.383
1.5894	33	3	2	2	57.978
1.5856	33	0	4	2	58.129
1.5666	2	2	2	3+	58.905
1.5569 1.5528 1.5386 1.4258 1.4230	7 11 2L 6 6	4 2 0 4 2	0 4 0 0 4	1 1 4 2 2	59.310 59.479 60.088 65.404
1.3478	2L	4	3	0	69.712
1.2661	11	4	0	3	74.950
1.2636	12	2	4	3	75.125
1.2190	2L	3	5	0	78.383
1.2158	6	5	2	0	78.632
1.2139	6	0	1	5	78.775
1.1926	8	5	2	1+	80.467
1.1888	7	1	6	1	80.775
1.1846	2L	3	2	4	81.121
1.1489	7	1	2	5	84.210
1.1296	2	4	4	2	85.987

Copper Iron Sulfide, CuFeS2

Mineral name

Chalcopyrite

Chalcopyrite Group

Chalcopyrite Subgroup

CAS registry no. 1308-56-1

Sample

The specimen (NMNH #3009) from Merkur Mines, Germany, was obtained from the National Museum of Natural History, Washington, DC.

Color

Metallic yellow

Symmetry classifications

Crystal System Tetragonal Space Group $1\overline{4}2d$ (122)

Pearson Symbol tI16

Data collection and analysis parameters

Radiation Wavelength CuK α_1 1.5405981 A

20 Standard

Si

Scanned to $\sigma(I^{rel})$

4.0° 20 ±4

Crystallographic constants of this sample

a = 5.2893 (4) Ac = 10.423(2)

c/a = 1.9706

 $V = 291.60 A^3$

Z = 4

Density (calc.) = 4.180 g/cm^3

Figures of merit

 $F_{21} = 31.1(.011, 61)$ $M_{20} = 72.3$

Comments

The structure of chalcopyrite was determined by Burdick and Ellis (#1) and refined by Pauling and

Brockway (#2). The mean temperature of data collection was 24.1°C.

Additional patterns

PDF card 9-423

PDF card 25-288

References

#1. Burdick, C.L. and Ellis, J.H.

J. Am. Chem. Soc. (1917) 39,2518.

#2. Pauling, L. and Brockway, L.O.

Z. Kristallogr.(1932) 82,188.

d(A)	Irel	hkl	20(°)
4.715	1	1 0	1 18.806
3.038	100	1 1	2 29.372
2.644	5	2 0	0 33.874
2.606	2	0 0	4 34.385
2.308	1L	2 1	1 38.991
1.8697	22	2 2	0 48.660
1.8570	37	2 0	4 49.015
1.5927	27	3 1	2 57.848
1.5753	14	1 1	6 58.547
1.5193	1	2 2	4 60.929
1.3219 1.3027 1.2125 1.2052 1.1998	3 1L 3 5	4 0 0 0 3 3 3 1 3 2	0 71.283 8 72.501 2 78.881 6 79.457 5 79.889
1.1789	1L	4 0	4 81.597
1.0770	5	4 2	4 91.327
1.0452	1L	3 2	7 94.951
1.0173	4	5 1	2 98.433
1.0128	5	3 3	6 99.027
0.9351	2	4 4	0 110.923

${\tt Hydroxylamine\ Hydrochloride,\ NH_2OH \cdot HC1}$

Synonym				
Amine hydroxide hydrogen chloride Oxammonium hydrochloride Hydroxylammonium chloride	d(A)	Irel	hkl	20(°)
CAS registry no. 5470-11-1	5.98	1	-1 0 1	14.811
	4.435	3	1 1 0	20.005
	4.340	4	0 1 1	20.446
	4.215	4	-1 1 1	21.059
	3.870	7	1 0 1	22.963
Sample The sample was obtained from the City Chemical Co., New York City, NY. It was recrystallized from ethanol.	3.240	22	1 1 1	27.505
	3.170	3	0 0 2	28.125
	3.086	3	-2 1 1	28.906
	2.986	100	-2 0 2	29.895
	2.904	70	2 1 0	30.761
Color Colorless Symmetry classifications	2.801	62	0 1 2	31.924
	2.717	10	1 2 0	32.943
	2.694	20	0 2 1	33.224
	2.668	3	-2 1 2	33.557
	2.423	5	-3 0 1	37.066
Crystal System Monoclinic Space Group P2 ₁ /n (14) Pearson Symbol mP28 Data collection and analysis parameters	2.357	9	1 2 1	38.146
	2.342	15	2 1 1	38.406
	2.299	13	1 1 2	39.147
	2.258	4	-1 2 2	39.888
	2.244	5	-3 1 1	40.147
Radiation $CuK\alpha_1$ Wavelength 1.5405981 A 20 Standard Si Scanned to 4.0° 20 $\sigma(I^{rel})$ ± 4	2.152	5	-1 1 3	41.957
	2.106	11	-2 2 2	42.907
	1.993	6	0 1 3	45.467
	1.935	7	2 2 1+	46.920
	1.900	2	1 3 0	47.831
Crystallographic constants of this sample $a = 7.2883$ (10) A $b = 5.9473$ (10) $c = 6.9546$ (10) $\beta = 114.143$ (10)°	1.888	3	-3 1 3	48.155
	1.880	6	-1 3 1	48.366
	1.869	4	3 0 1	48.690
	1.840	4	2 1 2	49.487
	1.826	2	-3 2 2	49.900
a/b = 1.2255 c/b = 1.1694 $V = 275.08 A^3$ Z = 4	1.814 1.7938 1.7827 1.7344 1.7298	3 3 5 1L 14	1 0 3 -2 2 3 3 1 1 1 1 3 -4 1 2	50.268 50.862 51.200 52.734 52.886
Density (calc.) = 1.678 g/cm ³ Figures of merit F ₃₀ = 43.1(.0151, 46) M ₂₀ = 34.3	1.7211	8	-1 3 2+	53.174
	1.6628	15	4 0 0	55.194
	1.6208	1	-4 1 3+	56.754
	1.6015	1	4 1 0	57.498
	1.5863	2	0 0 4	58.105
Comments The structure was determined by Jerslev (#1). The temperature of data collection was approximately 25.0°C.	1.5825	2	3 2 1	58.258
	1.5646	8	2 3 1	58.988
	1.5479	1L	1 2 3	59.686
	1.5326	2	0 1 4	60.346
	1.4926	4	-4 0 4	62.139
Additional patterns PDF card 26-488	1.4767	1L	2 1 3	62.885
	1.4651	1	-4 2 3	63.438
	1.4508	3	1 4 0+	64.141
	1.4466	7	0 3 3	64.345
	1.4238	3	-5 0 1	65.504
Reference #1. Jerslev, B. Acta Crystallogr.(1948) 1,21.	1.4160 1.4049 1.3997 1.3850 1.3789	1L 1L 1L 2	-5 1 2 -3 3 3 0 2 4 -5 1 1+ -5 1 3+	65.914 66.502 66.781 67.585 67.925

 ${\tt continued}$

Hydroxylamine Hydrochloride, NH₂OH·HCl (continued)

d(A)	Irel	hkl	20(°)
1.3752	2	-2 4 1	68.131
1.3688	1L	-3 0 5	68.495
1.3662	1	-1 4 2	68.642
1.3603	1	3 3 1	68.982
1.3571	3	2 4 0+	69.166
1.3532	2	-1 0 5	69.396
1.3378	1L	1 3 3	70.313
1.3320	3	-4 3 1	70.663
1.3158	2	4 2 1	71.664

$\frac{\text{Mineral name}}{\text{Cohenite, syn}}$

Synonym Cementite
CAS registry no. 12011-66-4
Sample The sample was obtained from CERAC, Inc., Milwaukee, WI.
Spectrographic analysis (wt.%, CERAC, Inc.) 0.03 Al
Color Dark grayish brown
Symmetry classifications Crystal System Orthorhombic Space Group Pnma (62) Pearson Symbol oP16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Crystallographic constants of this sample $a = 5.0910$ (3) A $b = 6.7434$ (4) $c = 4.5260$ (2)
a/b = 0.7550 c/b = 0.6712
$V = 155.38 \text{ A}^3$ Z = 4 Density (calc.) = 7.675 g/cm ³
Figures of merit $F_{30} = 154.4(.0053, 37)$ $M_{20} = 233.3$
Comments The structure was determined by Hendricks (#1) and confirmed by Meinhardt and Krisement (#2). The mean temperature of data collection was 22.7°C.
Additional patterns PDF card 23-1113 PDF card 34-1
References #1. Hendricks, S.B. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1930) 74,534. #2. Meinhardt, D. and Krisement Arch. Eisenhuettenwes.(1962) 33,493.
·

d(A)	I ^{rel}	hkl	20(°)
3.372	4	0 2 0	26.411
3.024	3	1 1 1	29.514
2.5452	4	2 0 0	35.234
2.3882	43	1 2 1	37.634
2.3815	41	2 1 0	37.744
2.2631	22	0 0 2	39.799
2.2186	22	2 0 1	40.633
2.1074	57	2 1 1	42.880
2.0678	67	1 0 2	43.743
2.0313	56	2 2 0	44.570
2.0132	100	0 3 1	44.993
1.9770	53	1 1 2	45.862
1.8792	5	0 2 2	48.399
1.8723	32	1 3 1	48.589
1.8534	43	2 2 1	49.116
1.7631	19	1 2 2	51.814
1.6914	5	2 0 2	54.185
1.6852	15	2 3 0+	54.399
1.6406	8	2 1 2	56.006
1.5890	19	3 0 1	57.994
1.5789	2	2 3 1	58.400
1.5466	5	3 1 1	59.745
1.5216	2	1 3 2	60.826
1.5118	8	2 2 2	61.262
1.5082	6	1 4 1	61.425
1.4372	1	3 2 1	64.818
1.4143	3	1 1 3	66.003
1.4057	6	2 4 0	66.459
1.3514	4	2 3 2	69.503
1.3426	2	2 4 1	70.022
1.3293	17	1 2 3	70.826
1.2978	2	2 0 3+	72.815
1.2927	3	0 5 1	73.149
1.2593	5	3 2 2	75.423
1.2527	3	0 3 3+	75.891
1.2253 1.2162 1.2054 1.1940 1.1918	14 16 2 3	4 0 1 1 3 3 4 1 1 2 4 2 2 5 0	77.903 78.595 79.438 80.351 80.535
1.1622	20	3 3 2	83.026
1.1563	1	3 4 1	83.550
1.1524	15	2 5 1	83.895
1.1315	6	0 0 4	85.809
1.1296	12	1 5 2	85.984
1.1276	12	3 0 3	86.181
1.1238	9	0 6 0+	86.540
1.1121	2	3 1 3	87.685
1.1076	11	4 3 0	88.132

Iron Silicide, FeSi,

Mineral name

Ferdisilicite, syn

Synonym

Iron disilicide

CAS registry no.

12022-99-0

Sample

The sample was obtained from CERAC, Inc. Milwaukee, WI. It contained some FeSi.

Color

Dark gray

Symmetry classifications

Crystal System Tetragonal P4/mmm (123) Space Group

Pearson Symbol tP3

Data collection and analysis parameters

Radiation CuKa₁

1.5405981 A Wavelength

20 Standard W

Scanned to $\sigma(I^{rel})$ 5.0° 20

±4

Crystallographic constants of this sample

a = 2.69392 (2) A

c = 5.1361 (3)

c/a = 1.9066

 $V = 37.27 A^3$

Z = 1

Density (calc.) = 4.990 g/cm^3

Figures of merit

 $F_{27} = 59.1(.0117, 39)$ $M_{20} = 158.5$

Comments

The structure was determined by Aronsson (#1).

An orthorhombic low temperature phase, stable below

915°C, was observed by Bucksch (#2).

The mean temperature of data collection was 24.8°C.

Additional Patterns

PDF card 22-1113

References

#1. Aronsson, B.

Acta Chem. Scand. (1960) 14, 1414.

#2.Bucksch, R.

Z. Naturforsch., A (1967), 22, 2124.

d(A)	Irel		hk	1	20(°)
5.136 2.694 2.386 1.9046 1.8586	39 2 59 51 100	0 1 1 1 1	0 0 0 1	1 0 1 0 2	17.252 33.229 37.668 47.712 48.969
1.7852 1.7123 1.5302 1.4446 1.3469	12 11 1L 3 12	1 0 1 1 2	1 0 1 0	1 3 2 3 0	51.124 53.471 60.448 64.446 69.764
1.3032 1.2843 1.2731 1.1730 1.0909	3 6 10 6 1	2 0 1 2 2	0 0 1 1	1 4 3 1 2	72.468 73.707 74.466 82.095 89.835
1.0648 1.0586 0.9854 0.9598 0.9524	6 4 2 2 2	1 2 2 1 2	1 0 1 0 2	4 3 3 5 0	92.678 93.379 102.836 106.747 107.959
0.9293 0.8845 0.87863 0.85182 0.84764	4 1L 1L 2 3	2 3 2 3 3	0 0 1 1 0	1 1 4 0 2	111.974 121.124 122.495 129.459 130.669
0.83239 0.81579	3 1L	2	2	3 6	135.458 141.551

Lead Zirconium Oxide, PbZrO2

Synonym

Lead zirconate

CAS registry no. 12060-01-4

Sample

The sample was made by heating PbO and ZrO₂ together at 900°C overnight.

Color

Gray yellow

Symmetry classifications

Crystal System Orthorhombic Space Group P2cb (32) Pearson Symbol oP40

Data collection and analysis parameters

 $\begin{array}{lll} \text{Radiation} & \text{CuK}\alpha_1 \\ \text{Wavelength} & 1.5405981 \text{ Å} \\ \text{20 Standard} & \text{Si} \\ \text{Scanned to} & 4.0^{\circ} \text{ 20} \\ \text{o(I}^{\text{rel}}) & \pm 1 \end{array}$

Crystallographic constants of this sample

a = 8.2318 (13) A b = 11.7764 (13) c = 5.8816 (7)

a/b = 0.6990c/b = 0.4994

 $V = 570.17 A^3$

Z = 8Density (calc.) = 8.071 g/cm³

Figures of merit

 $F_{30} = 44.0(.0093, 73)$ $M_{20} = 30.5$

Comments

Distorted perovskite type (#1,#2). Earlier this phase was considered tetragonal (#3).

Above about 150°C PbZrO₃ is cubic, perovskite type (#4).

The temperature of data collection was approximately 25.0°C.

References

#1. Sawaguchi, E. et al.

Phys. Rev.(1951) 83,1078.

#2. Jona, F. et al. Phys. Rev.(1957) 105,849.

#3. Megaw, H.D.

Proc. Phys. Soc., London(1946) 58,133.

#4. Shirane, G. and Hoshino, S. Acta Crystallogr.(1954) 7,203.

d(A)	I ^{rel}	hkl	20(°)
5.265	2	0 1 1	16.825
4.163	8	0 2 1	21.325
4.119	5	2 0 0	21.559
3.269	3	0 3 1	27.261
3.241	4	2 1 1	27.498
2.944	66	0 4 0	30.337
2.927	100	2 2 1	30.519
2.852	4	0 1 2	31.335
2.630	1L	0 2 2	34.059
2.559	1L	2 3 1	35.041
2.510	1L	1 4 1	35.751
2.395	14	2 4 0	37.523
2.354	2	0 3 2	38.201
2.346	3	2 1 2	38.338
2.2162	1L	2 2 2	40.678
2.0807	24	0 4 2	43.458
2.0580	14	4 0 0	43.962
2.0431	2	2 3 2	44.298
1.9342	2	0 1 3	46.937
1.9006	1L	3 4 1	47.820
1.8617 1.8573 1.8444 1.8142 1.7861	2 2 2 1 1 1 1	0 6 1 2 4 2 4 2 1 1 2 3 3 3 2	48.883 49.005 49.372 50.249 51.098
1.7715	1L	2 6 0	51.548
1.7537	3	0 3 3	52.111
1.7502	4	2 1 3	52.224
1.6963	30	2 6 1	54.016
1.6863	18	4 0 2+	54.362
1.6682 1.6137 1.6016 1.5488 1.5067	1 2 1L 1L	4 1 2 2 3 3 1 6 2 4 3 2 0 5 3	55.001 57.026 57.496 59.650 61.496
1.4721	5	0 8 0	63.101
1.4631	9	4 4 2	63.536
1.4149	1	2 5 3	65.968
1.4086	1	4 1 3	66.301
1.3870	1L	0 6 3	67.475
1.3802	1	4 2 3	67.853
1.3760	2	2 7 2	68.084
1.3714	2	4 5 2	68.348
1.3680	1L	1 6 3	68.541

Lithium Aluminum Silicate, LiAlSi206

Synonym β-spodumene
CAS registry no. 1302-37-0
Sample The sample was made by heating a 1:1:4 molar mixture of Li ₂ CO ₃ , Y-Al ₂ O ₃ , and SiO ₂ up to 1350°C for a total of 78 hours.
Colorless
Symmetry classifications Crystal System Tetragonal Space Group P43212 (96) Pearson Symbol tP40
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 20 Standards FP Ag Scanned to 5.0° 20 σ(I ^{rel}) ±2
Crystallographic constants of this sample $a = 7.5392$ (6) A $c = 9.1489$ (10)
c/a = 1.2135
$V = 520.02 \text{ A}^3$ Z = 4 Density (calc.) = 2.377 g/cm ³
Figures of merit $F_{30} = 63.8(.0087, 54)$ $M_{20} = 57.1$
Comments The structure of β -spodumene was determined by Li and Peacor (#1). There is a complete solid solution between this phase and LiAlSi $_30_8$ (#2). The mean temperature of data collection was 23.6°C.
Additional patterns PDF card 22-408

$_{ m I}$ rel	hkl	20(°)
2	1 0 1	15.199
1	1 1 0	16.600
7	1 1 1	19.243
32	1 0 2	22.704
100	2 0 1	25.528
9	2 1 1	28.180
1L	2 1 2	32.980
2	1 1 3	33.832
1L	3 1 0	37.700
3	2 2 2	39.074
1	0 0 4	39.356
3	2 1 3	39.824
1	1 0 4	41.195
3	3 1 2	42.738
2	1 1 4	42.997
1	3 2 0	43.251
5	3 0 3	46.814
4	3 2 2	47.804
6	2 1 4	48.020
10	4 0 0	48.259
9	3 1 3	48.413
1L	4 1 0	49.820
1	4 0 2	52.452
1L	1 1 5	52.851
1L	3 2 3	53.056
1	4 1 2	53.969
2	4 2 1	55.370
3	2 0 5	55.801
1L	2 1 5	57.244
1L	4 0 3	57.413
2 1 1L 1	3 2 4 3 3 3 1 0 6 3 0 5 4 2 3	59.902 60.241 62.055 62.753 62.959
1 2 1 2	5 1 1 4 0 4 3 1 5 4 3 2 4 1 4	63.689 63.974 64.113 65.074 65.261
2	5 1 2	66.381
2	3 3 4	66.595
1	5 2 1	67.646
1	3 2 5	68.042
	2 1 7 32 100 9 1L 2 1L 3 1 3 1 5 4 6 10 9 1L 1 1L 1 1L 1 1L 1 1 2 1 1L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2

#1. Li, C-T. and Peacor, D.R.
Z. Kristallogr., Kristallgeom., Kristallphys.,
Kristallchem.(1968) 126,46.

#2. Skinner, B.J. and Evans, H.T.
Am. J. Sci.(1960) 258A,312.

Lithium Aluminum Silicate, LiAlSi308

Sample

The sample was made by heating a 1:1:6 molar mixture of Li₂CO₂, $\alpha\text{-Al}_2\text{O}_3,$ and SiO₂ up to 1350°C for a total of 85 hours with intermittent grinding.

Color

Colorless

Symmetry classifications

Crystal System Tetragonal Space Group P4₃2₁2 (96) Pearson Symbol tP52 Structure Type ß Spodumene type

Data collection and analysis parameters

Radiation CuK_{a1} 1.5405981 A Wavelength 20 Standards Ag FP Scanned to $\sigma(I^{rel})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 7.5053 (9) Å c = 9.0701 (14)

c/a = 1.2085

 $V = 510.91 \text{ A}^3$

Z = 4

Density (calc.) = 3.200 g/cm^3

Figures of merit

 $F_{30} = 40.0(.0119, 63)$ $M_{20} = 46.1$

Comments

The structure of this phase was determined by Skinner and Evans (#1).

There is a complete solid solution between LiAlSi308 and LiAlSi $_2$ 0 $_6$ (#1). The mean temperature of data collection was 23.3°C.

Additional patterns

PDF card 15-27

Reference

#1. Skinner, B.J. and Evans, H.T. Am. J. Sci.(1960) 258A,312.

d(A)	I ^{rel}	hkl	20(°)
5.782	2	1 0 1	15.311
5.311	1L	1 1 0	16.680
4.583	9	1 1 1	19.353
3.885	25	1 0 2	22.873
3.467	100	2 0 1	25.671
3.357	1L	2 1 0	26.530
3.148	10	2 1 1	28.324
2.698	1L	2 1 2	33.180
2.628	2	1 1 3	34.093
2.411	1	3 0 1	37.270
2.290	5	2 2 2	39.305
2.268	2	0 0 4	39.717
2.247	3	2 1 3	40.100
2.169	1	1 0 4	41.603
2.102	5	3 1 2	42.991
2.084	2	1 1 4	43.377
2.080	2	3 2 0	43.466
1.9277	5	3 0 3	47.105
1.8920	7	3 2 2	48.050
1.8768	13	4 0 0	48.463
1.8665	8	3 1 3	48.749
1.7346	1	4 0 2	52.730
1.6886	1	4 1 2	54.280
1.6497	3	4 2 1	55.672
1.6402	4	3 1 4	56.022
1.6337	4	2 0 5	56.266
1.5334	1 L	3 2 4	60.310
1.5269	1 L	3 3 3	60.594
1.4817	1 L	1 0 6	62.646
1.4723	1 L	5 1 0	63.095
1.4683	1L	3 0 5 1 1 6	63.285
1.4537	2		63.995

Lithium Manganese Oxide, LiMnO2

Synonym

Lithium manganate

CAS registry no. 12162-79-7

Sample

The sample was made by heating a 1:2 molar mixture of Li_2CO_3 and MnCO_3 at 900 - 1100°C for 3 days with several intermediate grindings.

Color

Black

Symmetry classifications

Crystal System Orthorhombic Space Group Pmnm (59) Pearson Symbol oP8

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength 20 Standard Si 4.0° 20 Scanned to o(I^{rel}) ±2

Crystallographic constants of this sample

a = 4.5756 (4) Ab = 5.7510(4)

c = 2.8062(2)

a/b = 0.7956c/b = 0.4879

 $V = 73.84 A^3$

Z = 2

Density (calc.) = 4.222 g/cm^3

Figures of merit

 $F_{30} = 105.2(.0073, 39)$ $M_{20} = 174.8$

Comments

The structure was determined by Hoppe et al. (#1). The mean temperature of data collection was 24.4°C.

Additional patterns

PDF card 9-109

PDF card 23-361

Schmier and Sterr (#2)

References

#1. Hoppe, R. et al.

Z. Anorg. Allg. Chem. (1975) 417,1.

#2. Schmier, A. and Sterr, G.

Naturwissenschaften(1965) 52,392.

d(A)	I ^{rel}	hkl	20(°)
5.747	80	0 1 0	15.405
3.581	55	1 1 0	24.843
2.522	29	0 1 1	35.570
2.4344	16	1 2 0	36.893
2.3923	15	1 0 1	37.566
2.2880	81	2 0 0	39.349
2.2089	20	1 1 1	40.819
2.1253	10	2 1 0	42.500
2.0086	100	0 2 1	45.102
1.9164	6	0 3 0	47.400
1.8380 1.7679 1.6947 1.5829	1L 3 9 6 55	1 2 1 1 3 0 2 1 1 0 3 1 2 2 1	49.556 51.660 54.070 58.241 61.368
1.4960	16	1 3 1	61.984
1.4743	4	3 1 0	62.998
1.4692	5	2 3 0	63.241
1.4377	12	0 4 0	64.795
1.4031	15	0 0 2	66.598
1.3720	1L	1 4 0	68.311
1.3630	3	0 1 2	68.825
1.3474	2	3 2 0	69.737
1.3399	2	3 0 1	70.183
1.3063	9	1 1 2	72.270
1.2323	4	1 4 1	77.376
1.2173	12	2 4 0	78.516
1.1962	11	2 0 2	80.173
1.1711	2	2 1 2	82.259
1.1499	1L	0 5 0	84.116
1.1439	4	4 0 0	84.661
1.1322	2	0 3 2	85.740
1.1156	3	1 5 0	87.335
1.0983	2	3 3 1	89.073

Lithium Manganese Oxide, LiMn₂O_h

Sample

The sample was prepared from $\rm Li_2CO_3$ and MnCO_3. The mixture was calcined in air at 700 °C for 21 hours, then in air at 825°C for 21 hours.

Color

Blackish blue

Symmetry classifications

Crystal System Cubic Space Group Fd3m (227)

Pearson Symbol cF56 Structure Type MgAl204 (spinel) (#1)

Data collection and analysis parameters

CuKα₁ 1.5405981 A Radiation Wavelength FP Ag 20 Standards Scanned to $\sigma(I^{\text{rel}})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 8.24762 (16) A

 $V = 561.03 A^3$ Z = 8

Density (calc.) = 4.281 g/cm^3

Figures of merit $F_{25} = 78.1(.0094, 34)$ $M_{20} = 197.9$

Comments

The mean temperature of data collection was 23.7°C.

Additional patterns

PDF card 18-736

Reference

#1. Wickham, D.J. and Croft, W.J. Phys. Chem. Solids(1958) 7,351.

d(A)	I ^{rel}	hk	1	20(°)
4.764	100	1 1	1	18.611
2.914	1L	2 2	0	30.651
2.487	38	3 1	1	36.086
2.381	10	2 2	2	37.748
2.0621	33	4 0	0	43.870
1.8921	7	3 3	1	48.048
1.5874	10	5 1	1	58.058
1.4581	16	4 4	0	63.782
1.3941	7	5 3	1	67.081
1.2578	3	5 3	3	75.528
1.2436	3	6 2	2	76.549
1.1905	4	4 4	4	80.637
1.1551	2	5 5	1	83.653
1.0739	2	7 3	1	91.661
1.0310	1	8 0	0	96.680
1.0078	1L	7 3	3	99.695
0.9523	1	75	1	107.972
0.9461	1L	6 6	2	109.017
0.92206	1 L	8 4	0	113.318
0.90520	1L	9 1	1	116.635
0.86451	1L	9 3	1	126.005
0.84171	1L	8 4	4	132.458
0.82891	1L	7 7	1	136.648
0.79733	1L	95	1	150.074
0.79364	1L	10 2	2	152.142

Lithium Titanium Phosphate, LiTi₂(PO₄)₃

Lithium titanium orthophosphate	d(A)	Irel	hkl	20(°)
Sample	6.027	13	0 1 2	14.685
The sample was made by heating a 1:4:6 molar mixture	4.258	50	1 0 4+	20.844
of Li ₂ CO ₃ , TiO ₂ (anatase), and (NH ₄)H ₂ PO ₄ at 800°C for	3.632	100	1 1 3	24.492
3 days. It contained a small amount of TiP ₂ O ₇ .	3.477 3.011	8 28	2 0 2+ 0 2 4	25.600 29.642
Color	2.761	20	2 1 1	32.395
Colorless	2.694	26	1 1 6+	33.224
	2.4569 2.3180	25 1	3 0 0+ 1 2 5	36.544 38.818
Symmetry classifications	2.1290	3	2 2 0+	42.422
Crystal System Rhombohedral	2011250	J		120124
Space Group R3c (167)	2.0351	12	2 2 3+	44.482
Pearson Symbol hR36	2.0065	2	3 1 2+	45.152
	1.9043	17	1 3 4+	47.720
Data and and and analysis assessed	1.8360	5	3 1 5 0 4 2+	49.613
Data collection and analysis parameters Radiation CuKα,	1.8147	16	0 4 2+	50.234
Wavelength 1.5405981 A	1.7397	2	0 0 12	52.562
20 Standard Si	1.6862	6	1 3 7+	54.365
Scanned to 4.0° 20	1.6706	7	2 1 10	54.915
o(I ^{rel}) ±1	1.6087	22	4 1 0+	57.220
	1.5674	7	= 4 1 3+	58.873
Crystallographic constants of this sample	1.5052	3	0 4 8	61.562
(Hexagonal axes)	1.4710	2 8	3 2 7 4 1 6+	63.155
a = 8.5129 (8) A c = 20.878 (4)	1.4602 1.4188	5	3 3 0+	63:676 65.766
	1.3900	3	2 4 1+	67.309
c/a = 2.4525	1.3811	4	4 2 2	67.801
$V = 1310.31 \text{ A}^3$	1.3461	4	2 4 4	69.812
Z = 6	1.3212	6	5 1 1+	71.326
Density (calc.) = 2.948 g/cm^3	1.3145	2	1 2 14+	71.746
	1.2835	5	5 1 4+	73.760
Figures of merit	1.2620	3	1 5 5+	75.233
$F_{30} = 54.3(.0076, 73)$	1.2286	5	6 0 0+	77.658
$M_{20} = 71.1$	1.2106	1	3 3 9	79.029
•)	1.2039	1	3 4 2 5 2 0+	79.562 81.470
Comments	1.1004	'	5 2 0+	01.470
Isostructural with other similar double phosphates.	1.1652	1	2 2 15+	82.770
The mean temperature of data collection was 24.2°C (#1).	1.1639	1L	5 2 3+	82.881
	1.1592	1L	0 4 14+	83.289
A44141	1.1226	1	1 6 1+ 6 1 2+	86:655
Additional patterns PDF card 24-660	1.1176	1L	6 1 2+	87.145
FDF Gard 24-000	1.0988	1	1 6 4	89.015
References	1.0862	2	1 5 11	90.336
#1. Masse, P. Bull. Soc. Fr. Mineral Crystallogr.				

Lithium Tungsten Oxide Hydrate, 7Li2WO4.4H2O

Sample

The sample was from City Chemical Co. New York, NY.

Color

Colorless

Symmetry classifications

Crystal System Cubic

Space Group P43m (215)

Pearson Symbol cP61

Data collection and analysis parameters

Radiation

CuKa₁

Wavelength

1.5405981 A

2θ Standard

Si

Scanned to $\sigma(I^{rel})$

5.0° 20

±2

 $\frac{\text{Crystallographic constants of this sample}}{\text{a = 8.32312 (15) A}}$

 $V = 576.58 \text{ A}^3$

Z = 1

Density (calc.) = 5.484 g/cm^3

Figures of merit

 $F_{30} = 178.4(.0054, 31)$ $M_{20} = 236.0$

Comments

The structure of 7Li₂WO₄·4H₂O was determined by

Hullen (#1).

The temperature of data collection was approximately 25.0°C.

Additional patterns

PDF card 13-424 (reported as Li2W04.1/2H2O)

Swanson, H.E., Morris, M.C.; Stinchfield, R.P. and

Evans, E.H. (1963). National Bureau of Standards

(U.S.) Monogr. 25, 2, 20.

PDF card 22-693 (reported as Li2WO4)

Reference

#1. Hullen, A.

Ber. Bunsenges. Phys. Chem.(1966) <u>70</u>, 598.

	d(A)	I ^{rel}		hk	1	20(°)
	8.338	47	1	0	0	10.602
	5.887	8	1	1	0	15.036
	4.807	100	1	1	1	18.442
	4.163	15	2	0	0	21.327
1	3.723	30	2	1	0	23.884
	3.398 2.942 2.7738 2.6318 2.5094	81 30 82 38 9	2 2 3 3 3	1 2 0 1	1 0 0 0	26.205 30.358 32.247 34.038 35.753

d(A)	I ^{rel}	hk	 (l	20(°)
2.4025	13	2 2	2	37.402
2.2245	11	3 2	1	40.520
2.0810	11	4 0	0	43.451
2.0184	33	3 2	2	44.870
1.9616	16	3 3	0	46.244
1.9093	37	3 3	1	47.587
1.8611	21	4 2	0	48.900
1.8162	6	4 2	1	50.192
1.7742	4	3 3	2	51.464
1.6990	12	4 2	2	53.922
1.6646 1.6317 1.6021 1.5454 1.5197	10 5 10 7 20	4 3 5 1 5 1 5 2 5 2	0 0 1 0	55.128 56.340 57.476 59.793 60.912
1.4713	24	4 4	0	63.143
1.4489	14	4 4	1	64.233
1.4275	10	5 3	0	65.317
1.4069	13	5 3	1	66.395
1.3874	7	6 0	0	67.451
1.3503 1.3161 1.3000 1.2842 1.2692	8 3 13 2 2	6 1 6 2 5 4 5 3	1 0 0 1 3	69.565 71.649 72.677 73.716 74.737
1.2549	5	6 2	2	75.734
1.2407	7	6 3	0	76.756
1.2275	5	6 3	1	77.739
1.2011	1L	4 4	4	79.780
1.1893	2	7 0	0	80.738
1.1770	3	5 5	0	81.761
1.1654	9	5 5	1	82.749
1.1432	4	7 2	0	84.720
1.1326	7	7 2	1	85.710
1.1120	6	6 4	2	87.686
1.1025 1.0929 1.0837 1.06572 1.05693	2 5 2 2 4	7 2 7 3 7 3 6 5 6 5	2 0 1 0	88.639 89.628 90.600 92.572 93.573
1.04064	3	8 0	0	95.500
1.03226	10	6 5	2	96.529
1.02469	6	7 4	1	97.482
1.01677	7	7 3	3	98.505
1.00930	6	6 4	4	99.494
1.00219	3	8 2	1	100.460
0.99477	2	6 5	3	101.492
0.98076	6	6 6	0	103.517
0.97421	2	6 6	1	104.500
0.96765	4	7 5	0	105.509
0.96100	3	7 5	1	106.559
0.95456	2	6 6	2	107.601
0.94850	2	8 3	2	108.608
0.92477	4	9 0	0	112.808
0.91359	6	9 1	1	114.950
	cont	inued		

Lithium Tungsten Oxide Hydrate, 7Li₂WO₄·4H₂O (continued)

d(A)	I ^{rel}	hkl	20(°)
0.90812	4	8 4 2	116.041
0.90288	1	7 6 0	117.113
0.89754	6	7 6 1	118.238
0.88724	1	6 6 4	120.500
0.88228	Ħ	7 6 2	121.637
0.87738	2	9 3 0	122.792
0.87243	3	9 3 1	123.996
0.86300	3	8 5 2	126.400

Magnesium, Mg

CAS registry no. 7439-95-4

Sample

The sample was obtained from Fisher Scientific Co. Fair Lawn, NJ. It contained a small amount of $Mg(OH)_2$.

Color

Dark gray

Symmetry classifications Crystal System Hexagonal Space Group P6₃/mmc (194) Pearson Symbol hP2

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 20 Standard W Scanned to $\sigma(I^{rel})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 3.20936 (11) A c = 5.2112(3)

c/a = 1.6238

 $V = 46.48 A^3$

Density (calc.) = 1.736 g/cm^3

Figures of merit

 $F_{27} = 75.6(.0123, 29)$ $M_{20} = 195.3$

Comments

The structure was determined by Jevins et al. (#1). The temperature of data collection was approximately 25.0°C.

Additional patterns
PDF card 4-770, Swanson, H.E. and Tatge, E. (1953). Natl. Bur. Stand. Circ. 539, 1, 10.

Reference

#1. Jevins, A. et al.

Z. Phys. Chem. (1938) 40B,347.

d(A)	Irel	hkl	20(°)
2.778	25	1 0 0	32.194
2.605	36	0 0 2	34.399
2.452	100	1 0 1	36.620
1.9002	15	1 0 2	47.829
1.6047	12	1 1 0	57.375
1.4730	16	1 0 3	63.058
1.3899	2	2 0 0	67.314
1.3663	13	1 1 2	68.633
1.3430	8	2 0 1	69.998
1.3028	2	0 0 4	72:495
1.2264	2	2 0 2	77.823
1.1797	2 2	1 0 4	81.528
1.0854	3	2 0 3	90:415
1.0506	1	2 0 3 2 1 0 2 1 1	94.315
1.0299	4	2 1 1	96:820
1.0116	3	1 1 4	99.187
0.9760	3 2	1 0 5	104.236
0.9742	2	2 1 2	104:501
0.9505	1 L	2 1 2 2 0 4 3 0 0	108.267
0.9266	1	3 0 0	112.477
0.8988	2	2 1 3	117.964
0.87288	2		123.886
0.83381	1		134:986
0.82892	1L	1 0 6	136.646
0.81783	1 L	2 1 4	140.739
0.81745	1L	3 0 3	140.890
0.80230	1L	3 0 3 2 2 0	147.525

Magnesium Hydrogen Phosphate Hydrate, MgHPO $_{ij}$ · 3H $_2$ O

Mineral name				
Newberyite, syn	d(A)	Irel	hkl	20(°)
Synonym Magnesium acid orthophosphate CAS registry no. 14654-11-6	5.945	52	1 1 1	14.889
	5.344	22	0 2 0	16.574
	5.109	4	2 0 0	17.345
	4.714	47	0 2 1	18.809
	4.610	16	2 1 0	19.237
Sample Precipitated by adding an aqueous solution of MgSO ₁₄ to one of Na ₂ HPO ₄₄ and letting the material stand for 10 days.	4.498	41	1 0 2	19.721
	4.146	33	1 1 2	21.414
	3.692	9	2 2 0	24.084
	3.652	12	0 2 2	24.350
	3.574	11	2 0 2	24.890
Color Colorless	3.462	66	2 2 1	25.715
	3.437	33	1 2 2	25.900
	3.394	2	2 1 2	26.240
	3.187	10	1 3 1	27.978
	3.086	54	3 1 1	28.911
Symmetry classifications Crystal System Orthorhombic Space Group Pbca (61) Pearson Symbol oP128	3.041	100	1 1 3	29.349
	2.970	3	2 2 2	30.061
	2.815	24	3 0 2	31.765
	2.791	22	1 3 2	32.042
	2.721	32	3 1 2	32.885
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.704	13	2 1 3	33.100
	2.673	3	0 4 0	33.503
	2.582	34	0 4 1	34.715
	2.553	3	4 0 0	35.120
	2.523	11	2 3 2	35.548
Crystallographic constants of this sample a = 10.2083 (14) A b = 10.6845 (15) c = 10.0129 (15)	2.505	6	0 0 4	35.821
	2.501	5	1 4 1	35.881
	2.483	4	4 1 0	36.150
	2.431	22	1 0 4	36.939
	2.409	12	4 1 1	37.295
a/b = 0.9554 c/b = 0.9371 $V = 1092.11 \text{ A}^3$ Z = 8	2.390 2.371 2.325 2.304 2.297	13 22 1L 2 2	3 3 1 1 1 4+ 3 1 3 2 4 1+ 1 4 2	37.605 37.920 38.691 39.065 39.180
Density (calc.) = 2.121 g/cm ³ Figures of merit $F_{30} = 66.8(.0112, 40)$	2.275	2	4 0 2	39.577
	2.248	1	2 0 4	40.080
	2.207	10	3 3 2	40.854
	2.199	17	2 1 4+	41.005
	2.176	10	3 2 3	41.458
Comments The structure was determined by Sutor (#1). The mean temperature of data collection was 23.5°C.	2.139	6	2 4 2	42.212
	2.092	8	4 2 2	43.214
	2.071	12	2 2 4	43.670
	2.0570	5	3 4 1	43.984
	2.0433	13	1 4 3	44.294
Additional patterns PDF card 19-762 PDF card 20-153 (calculated pattern), Swanson, H. E., McMurdie, H. F., Morris, M. C., and Evans, E. H. (1969).	2.0309	3	4 3 1	44.580
	1.9812	9	3 1 4+	45.761
	1.9706	3	2 5 0	46.020
	1.9295	17	1 5 2+	47.060
	1.8958	6	4 2 3	47.947
Natl. Bur. Stand. (U. S.) Monogr. 25, 7, 139. Lonsdale and Sutor (#2) References #1. Sutor, D. J. Acta Crystallogr. (1967) 23, 418.	1.8874 1.8746 1.8351 1.7981	12 10 ; 12 6	3 2 4 0 2 5 2 5 2 1 4 4 4 0 4	48.175 48.525 49.640 50.733 51.064
#2. Lonsdale, K. and Sutor, D. J. Science (Washington, D. C.) (1966) 154, 1353.			continued	

Magnesium Hydrogen Phosphate Hydrate, MgHPO4 • 3H20 (continued)

d(A)	Irel	hk1	20(°)
1.7626	11	4 1 4+	51.829
1.7542	13	3 3 4	52.095
1.7201	8	2 4 4+	53.207
1.7026	3	3 5 2+	53.800
1.6801	10	6 1 0	54.578
1.6697	9	5 3 2	54.949
1.6588	7	2 6 1	55.339
1.6380	5	4 5 0	56.105
1.6170	1	4 5 1	56.899
1.6053	4	1 5 4	57.351
1.6002	6	6 2 1	57.550
1.5931	10	6 1 2+	57.830
1.5867	12	2 0 6	58.087
1.5655	8	5 1 4+	58.950
1.5566	1	4 5 2	59.322
1.5200	3	2 2 6	60.897
1.5004	2	6 1 3	61.780
1.4922	7	1 7 1	62.156
1.4674	3	6 3 2	63.330
1.4493	4	3 4 5+	64.212
1.4452	8	4 6 1+	64.419
1.4364	1	1 6 4	64.859
1.4152	10	0 4 6	65.957

CAS registry no.

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI. It was run in a dry atmosphere because of its sensitivity to humidity.

Color

Moderate olive brown

Symmetry classifications

Crystal System Cubic Space Group Ia3 (206) Pearson Symbol cI80

Data collection and analysis parameters

Radiation $CuK\alpha_1$ Wavelength 1.5405981 A 20 Standard Si Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 3

Crystallographic constants of this sample

a = 9.9657 (2) A

 $V = 989.75 A^3$

Z = 16Density (calc.) = 2.709 g/cm³

Figures of merit

 $F_{30} = 64.6(.0129, 36)$ $M_{20} = 68.5$

Comments

The structure was determined by von Stackelberg and Paulus (#1).

The mean temperature of data collection was 23.6°C.

Additional patterns PDF card 1-1289

Reference

#1. von Stackelberg, M. and Paulus, R.

Z. Phys. Chem. (Leipzig)(1933) B22,305.

d(A)	Irel	hkl	20(°)
4.987	1	2 0 0	17.771
4.066	25	2 1 1	21.842
3.523	1L	2 2 0	25.259
2.875	44	2 2 2	31.078
2.662	62	3 2 1	33.637
2.490	46	4 0 0	36.036
2.349	1L	4 1 1	38.281
2.228	1	4 2 0	40.452
2.124	60	3 3 2	42.530
2.033	1	4 2 2	44.523
1.954	8	4 3 1	46.429
1.8190	6	5 2 1	50.107
1.7613	100	4 4 0	51.869
1.6165	5	5 3 2	56.917
1.5748	1	6 2 0	58.568
1.5373	7	5 4 1	60.143
1.5018	5	6 2 2	61.717
1.4691	8	6 3 1	63.248
1.4379	7	4 4 4	64.783
1.4094	1	5 4 3	66.259
1.3824	1L	6 4 0	67.728
1.3562	27	7 2 1	69.219
1.3320	1L	6 4 2	70.660
1.2655	18	7 3 2	74.990
1.2456	7	8 0 0	76.401
1.2266	2	5 5 4	77.803
1.1743	1	6 6 0	81.989
1.1431	2	6 6 2	84.736
1.1284	3	7 5 2	86.098
1.1143	3	8 4 0	87.468
1.1006	1L	8 3 3	88.838
1.0746	6	6 5 5	91.586
1.0623	1	6 6 4	92.961
1.0504	2	8 5 1	94.335
1.0279	7	9 3 2	97.074
1.0171	8	8 4 4	98.461
1.0067	3	9 4 1	99.845
0.9966	1L	8 6 0	101.232
0.9868	3	10 1 1	102.631
0.9773	1L	10 2 0	104.027
0.9680	1	9 4 3	105.450
0.9501	4	10 3 1	108.339
0.9333	1	8 7 1	111.248
0.9254	1L	10 4 0	112.687
0.9173	2	10 3 3	114.221
0.9097	1L	10 4 2	115.713
0.9023	1L	9 5 4	117.234
0.8878	5	10 5 1	120.378
0.8809	1	8 8 0	121.958
0.86092	5	9 7 2	126.950
0.85464	1	10 6 0	128.662
0.84829	1L	11 4 1	130.478
0.83631	1	9 6 5	134.166
0.83049	1L	12 0 0	136.105
0.82480	2	9 8 1	138.111

Magnesium Silicide, Mg_Si

CAS registry no. 22831-39-6

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI. It contained a small amount of MgO.

Spectrographic analysis (wt.%, CERAC, Inc.)

0.12 Fe 0.05 Al 0.01 Mn 0.001 Ag, Ca, Cr, Cu, Ti

Color

Dark blue

Symmetry classifications

Crystal System Cubic
Space Group Fm3m (225)
Pearson Symbol cF12
Structure Type CaF₂ (#1)

Data collection and analysis parameters

Radiation $CuK\alpha_1$ Wavelength 1.5405981 Å 20 Standard Si Scanned to 5.0° 20 $\sigma(I^{rel})$ ± 2

Crystallographic constants of this sample

a = 6.35119 (16) A

 $V = 256.19 \text{ A}^3$ Z = 4

Density (calc.) = 1.988 g/cm^3

Figures of merit

 $F_{19} = 140.0(.0071, 19)$ $M_{19} = 386.5$

Comments

There is a high pressure form (#2). The mean temperature of data collection was 23.7°C.

Additional patterns

PDF card 1-1192

References

#1. Klemm, W. and Westlinning, H.

Z. Anorg. Allg. Chem. (1940) 245,365.

#2. Cannon, P. and Conlin, C.T.

Science (Washington, D.C.)(1964) 145,487.

d(A)	I ^{rel}	hkl	20(°)
3.668	41	1 1 1	24.242
3.176	12	2 0 0	28:071
2.2456	100	2 2 0	40.122
1.9151	15	3 1 1	47.434
1.8338	2	2 2 2	49:677
1.5881	13	4 0 0	58.030
1.4570	. 6	3 3 1	63.835
1:4201	3	4 2 0	65.700
1.2965	21	4 2 2	72.903
1.2224	4	5 1 1	78.120
1.1228	4	4 4 0	86.636
1.0736	2	5 3 1	91.698
1.0586	1 L	6 0 0	93.380
1.0042	3	6 2 0	100.182
0.96854	1	5 3 3	105.371
0.95754	1L	6 2 2	107.116
0.91669	1	4 4 4	114.345
0.88932	1	5 5 1	120:033
0.88066	1 L	6 4 0	122.015

Synonyms

Magnesium titanate Magnesium dititanate

CAS registry no. 12032-35-8

Sample

The sample was prepared from basic magnesium carbonate and TiO2 by repeated heatings with periodic grinding. Final reaction temperature was 1500°C and the sample was quenched in water.

Color

Gray

Symmetry classifications

Crystal System Orthorhombic Space Group Bbmm (63) Pearson Symbol oC32 Structure Type Pseudobrookite

Data collection and analysis parameters

CuK a₁ Radiation Wavelength 1.5405981 A 20 Standards Si FP 5.0° 20 Scanned to o(Irel) ±4

Crystallographic constants of this sample

a = 9.7501 (6) Ab = 9.9802(6)c = 3.7483(3)

a/b = 0.9769c/b = 0.3756

 $V = 364.74 A^3$

Z = 4

Density (calc.) = 3.644 g/cm^3

Figures of merit

 $F_{30} = 113.3(.0078, 34)$ $M_{20} = 117.4$

The structure was studied by Yamaguchi (#1). The lattice parameters change depending upon quenching temperature, with "a", "c", and "V" increasing, and "b" decreasing, with increasing quench temperature (#2). Note a similar pattern for form B, in this publication. A tetragonal phase has been reported (#3). The mean temperature of data collection was 23.9°C.

Additional patterns

PDF card 20-694 Yamaguchi (#1, #4) Zhdanov and Rusakov (#5)

References

#1. Yamaguchi, G. Dainippon Yogyo Kyokai Zasshi (J. Jpn. Ceram. Assoc.)(1947) 55,94.

#2. Wechsler, B.A. and Navrotsky, A. Geol. Soc. Am. Program Annu. Meeting(1982)

#3. Tanaka, Y.

Bull. Chem. Soc. Jpn.(1941) 16,428.

#4. Yamaguchi, G.

Bull. Chem. Soc. Jpn. (1955) 26,204.

#5. Zhdanov, G.S. and Rusakov, A.A. Dokl. Akad. Nauk SSSR(1952) 82,901.

d(A)	Irel	hkl	20(°)
4.989 4.878 4.380 3.499 3.302	20 32 4 100 5	0 2 0 2 0 0 2 1 0 1 0 1 1 1 1	18.173 20.256 25.437
2.864 2.748 2.494 2.456 2.4374	9 80 1 20 9	1 2 1 2 3 0 0 4 0 3 0 1 4 0 0	32.560 35.975 36.559
2.4108 2.3846 2.3690 2.2213 2.1889	18 2 2 21 22	1 3 1 3 1 1 4 1 0 2 4 0 4 2 0	37.693 37.950 40.580
2.0311 1.9753 1.9662 1.8737 1.8471	2 12 31 38 18	1 4 1 3 3 1 4 3 0 0 0 2 2 5 0	45.904 46.130 48.549
1.7547 1.7495 1.7337 1.7295 1.7226	4 20 3 3 1	0 2 2 2 0 2 1 5 1 5 0 1 2 1 2	52.244 52.759 52.895
1.7044 1.6638 1.6503 1.6342 1.6252	4 16 3 18 3	5 1 1 0 6 0 2 2 2 5 2 1 6 0 0	55.157 55.648 56.247
1.6042 1.5741 1.5482 1.5443 1.5349	6 5 37 20 25	6 1 0 2 6 0 2 3 2 4 5 0 5 3 1	58.598 2+ 59.674 59.842
1.5025 1.4986 1.4853 1.4598 1.4321	8 3 3 5 7	1 6 1 0 4 2 4 0 2 6 3 0 2 4 2	61.862 62.480 63.698
1.4240 1.3773 1.3739 1.3686 1.3569	11 7 3 4 13	4 2 2 3 6 1 4 6 0 2 7 0 4 3 2	68.015 68.202 68.503
	(continued	

 $\label{eq:magnesium Titanium Oxide, MgTi} {\tt MgTi}_2 {\tt O}_5, \ \mbox{form A} \ \mbox{(continued)}$

d(A)	Irel	hkl	20(°)
1.3202	5	1 7 1	71.392
1.3152	10	2 5 2	71.701
1.3072	3	5 5 1	72.212
1.3053	3	7 0 1	72.334
1.2947	6	7 1 1	73.019
1.2633	9	7 2 1	75.142
1.2604	5	6 5 0	75.349
1.2474	2	0 8 0	76.273
1.2439	8	0 6 2	76.526
1.2331	2L	3 7 1	77.322
1.2306 1.2279 1.2186 1.2153 1.2053	2L 2L 3 3	4 7 0 6 0 2 6 1 2+ 7 3 1 2 6 2	77.508 77.709 78.416 78.665 79.445
1.1839	2	8 2 0	81.178
1.1663	3	3 0 3	82.674
1.1615	3	1 3 3	83.086
1.1586	2	3 1 3	83.346
1.1569	2	7 4 1	83.491
1.1519	3	6 3 2	83.933
1.1123	3	3 8 1	87.660
1.1107	2	4 8 0	87.824
1.1005	3	3 3 3+	88.848

Synonym

Magnesium titanate Magnesium dititanate

CAS registry no.

Sample

The sample was prepared from basic magnesium carbonate and TiO₂ by repeated heatings with periodic grinding. Final reaction temperature was 1500°C and the sample was quenched in water. To determine whether cell constants change with sample preparation, this sample was then annealed at 700°C for 162 hours, and quenched.

Color White

Symmetry classifications

Crystal System Orthorhombic
Space Group Bbmm (63)
Pearson Symbol oC32
Structure Type pseudobrookite

Data collection and analysis parameters

Radiation	CuKa₁
Wavelength	1.5405981
2θ Standards	Si FP
Scanned to $\sigma(I^{rel})$	5.0° 20
o(I ^{rel})	±1

Crystallographic constants of this sample

a = 9.7274 (7) A b = 10.0040 (8) c = 3.7428 (3)

a/b = 0.9724c/b = 0.3741

 $V = 364.22 A^3$

Z = 4

Density (calc.) = 3.649 g/cm^3

Figures of merit

 $F_{30} = 71.5(.0120, 35)$ $M_{20} = 74.0$

Comments

The structure was studied by Yamaguchi (#1). The lattice parameters change depending upon quenching temperature, with "a", "c", and "V" increasing, and "b" decreasing, with increasing quench temperature (#2). A tetragonal phase is reported (#3). Note a similar pattern for form A, in this publication. A tetragonal phase has been reported (#3). The mean temperature of data collection was 23.7°C.

Additional patterns

PDF card 20-694
Yamaguchi (#1,#4)
Zhdanov and Rusakov (#5)

References

#1. Yamaguchi, G. Dainippon Yogyo Kyokai Zasshi (J. Jpn. Ceram.) Assoc.)(1947) 55,94.

#2. Wechsler, B.A. and Navrotsky, A. Geol. Soc. Am. Program Annu. Meeting(1982) 14.

#3. Tanaka, Y.

Bull. Chem. Soc. Jpn.(1941) 16,428.

#4. Yamaguchi, G.

Bull. Chem. Soc. Jpn. (1955) 26,204.

#5. Zhdanov, G.S. and Rusakov, A.A. Dokl. Akad. Nauk SSSR(1952) 82,901.

d(A)	I ^{rel}	hkl	20(°)
4.998	23	0 2 0	17.730
4.868	24	2 0 0	18.210
4.373	8	2 1 0	20.293
3.493	100	1 0 1	25.479
2.864	9	1 2 1	31.210
2.748	72	2 3 0	32.552
2.450	15	3 0 1	36.652
2.433	10	4 0 0	36.923
2.413	16	1 3 1	37.238
2.380	1L	3 1 1	37.765
2.361	3	4 1 0	38.077
2.224	17	2 4 0	40.536
2.201	1L	3 2 1	40.974
2.187	21	4 2 0	41.237
2.033	2	1 4 1	44.524
1.9748	10	3 3 1	45.918
1.9640	24	4 3 0	46.184
1.8715	29	0 0 2	48.611
1.8510	20	2 5 0	49.183
1.7499	11	3 4 1	52.233
1.7457	10	2 0 2	52.368
1.7358	1	1 5 1	52.690
1.7258	2	5 0 1	53.020
1.7210	2	2 1 2	53.177
1.7008	3	5 1 1	53.860
1.6670	14	0 6 0	55.045
1.6494	1	2 2 2	55.682
1.6323	21	5 2 1	56.318
1.6211	2	6 0 0	56.741
1.6000	5	6 1 0	57.560
1.5774	4	2 6 0	58.461
1.5497	18	3 5 1	59.611
1.5470	28	2 3 2	59.728
1.5330	25	5 3 1	60.330
1.5047	7	1 6 1	61.583
1.4826	5	4 0 2	62.607
1.4672	1L	4 1 2	63.338
1.4583	5	6 3 0	63.770
1.4324	5	2 4 2	65.065
1.4222	12	4 2 2	65.587
1.3785 1.3752 1.3713 1.3550 1.3228	5 3 3 11	3 6 1 4 6 0 2 7 0 4 3 2 1 7 1	67.946 68.132 68.349 69.289 71.231

Magnesium Titanium Oxide, ${\rm MgTi}_2{\rm O}_5$, form B (continued)

d(A)	_I rel	hkl	20(°)
1.3157	8	2 5 2	71.674
1.3073	1	5 5 1	72.202
1.3029	1	7 0 1	72.484
1.2919	5	7 1 1	73.204
1.2606	9	7 2 1	75:331
1.2505	1	0 8 0	76.047
1.2446	9	0 6 2	76.473
1.2376	4	1 0 3	76.987
1.2344	3	3 7 1	77.218
1.2254	յ 1L	3 7 1 6 0 2	77.895
1.2254	16	0 0 2	77.095
1.2160	3	8 0 0+	78.610
1.2133	3 3 2	7 3 1	78.822
1.2062	2	262	79:380
1.2013	1 L	1 2 3	79.765
1.1815	1	8 2 0	81.376
1.1643	1	3 0 3	82.845
1.1626	i	3 0 3 6 6 0	82.995
1.1602	2	1 3 3	83.202
1.1554	1	1 3 3 7 4 1	83.628
1.1504	4	6 3 2	84.076
	7	0 5 2	04.070

Manganese Boride, MrB2

Synonym

Manganese diboride

CAS registry no.

12228-50-1

Sample

The sample was obtained from CERAC, Inc., Milwaukee,

Color

Dark olive

Symmetry classifications

Crystal System Hexagonal P6/mmm (191) Space Group

Pearson Symbol hP3

Data collection and analysis parameters

CuKa₁ Radiation

1.5405981 A Wavelength

20 Standard

W 5.0° 20

Scanned to $\sigma(I^{rel})$

±2

Crystallographic constants of this sample

a = 3.00907 (12) A

c = 3.0367(2)

c/a = 1.0092

 $V = 23.81 A^3$

Z = 1

Density (calc.) = 5.339 g/cm^3

Figures of merit

 $F_{19} = 86.5(.011, 20)$ $M_{19} = 298.6$

Comments

The structure was determined by Aronsson and

Engstrom (#1).

It contained unidentified impurities with lines at 2.954, 2.435 2.139, 2.013, 1.960, 1.769, 1.285, 1.279, of which 2.435 and 2.139 were the strongest

and had relative intensities of 14.

The mean temperature of data collection was 23.4°C.

Additional patterns

PDF card 12-415

Reference

#1. Aronsson, B. and Engstrom, I. Acta Chem. Scand. (1960) 14,1403.

d(A)	I ^{rel}		hk	1	20(°)
3.038	25	0	0	1	29.380
2.606	76	1	0	0	34.392
1.9782	100	1	0	1	45.834
1.5186	10	0	0	2	60.959
1.5048	22	1	1	0	61.579
1.3482	9	1	1	1	69.691
1.3119	11	1	0	2	71.909
1.3031	6	2	0	0	72.472
1.1975	13	2	0	1	80.066
1.0688	11	1	1	2	92.227
0.9887	4	2	0	2	102.354
0.9851	6	2	1	0	102.886
0.9435	7	1	0	3	102.000
0.9370	12	2	1	1	110.592
0.86860	5	3	0	0	124.955
0.00000	9	2	U	U	124.900
0.83979	3	1	1	3	133.055
0.83513	3	3	0	1	134.549
0.82626	6	2	1	2	137.585
0.79939	3	2	0	3	148.991

Manganese Silicate, Mn₂SiO₄

Mineral name Tephroite, syn Olivine Group Olivine Subgroup #3. Santoro, R.P. et al. J. Phys. Chem. Solids(1966) 27,655.

CAS registry no. 13568-32-6
Sample The sample was prepared by blending MnCO ₃ and SiO ₂ in a 2:1 molar ratio and heating at 1050°C and 1200°C in a controlled atmosphere with partial pressure of oxygen less than or equal to 10 ⁻¹⁸ atm.
Color Light gray
Symmetry classifications Crystal System Orthorhombic Space Group Pmnb (62) Pearson Symbol oP28
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Crystallographic constants of this sample $a = 6.2585$ (3) A $b = 10.6039$ (6) $c = 4.9030$ (2)
a/b = 0.5902 c/b = 0.4624 V = 325.39 Å ³ Z = 4 Density (calc.) = 4.123 g/cm ³
Figures of merit $F_{30} = 162.3(.0044, 42)$ $M_{20} = 154.3$
$\label{eq:comments} \frac{\text{Comments}}{\text{Isostructural with the olivine group of compounds,}} \\ \text{such as, } \text{Y-Ca}_2\text{SiO}_{\text{\sharp}} \text{ and } \text{Fe}_2\text{SiO}_{\text{\sharp}} \text{ (\sharp1).} \\ \text{A refined structure of Fe}_2\text{SiO}_{\text{\sharp}}, \text{ fayalite, has been reported by Hanke (\sharp2).} \\ \text{The mean temperature of data collection was 22.6°C.}$
Additional patterns PDF card 19-788 O'Daniel and Tscheischwili (#1) Santoro et al. (#3)
References #1. O'Daniel, H. and Tscheischwili, L. Z. Kristallogr.(1944) 105,273. #2. Hanke, K.

Neues Jahrb. Mineral., Monatsh.(1963) 8,192.

d(A)	I ^{rel}	hkl	20(°)
5.305	9	0 2 0	16.698
4.453	8	0 1 1	19.924
4.047	12	1 2 0	21.946
3.860	9	1 0 1	23.020
3.627	50	1 1 1	24.523
3.599	10	0 2 1	24.714
3.1298	12	2 0 0	28.496
2.8668	92	0 3 1	31.173
2.6946	30	2 2 0	33.221
2.6510	11	0 4 0	33.784
2.6066	69	1 3 1	34.377
2.5597	100	2 1 1	35.027
2.4516	19	0 0 2	36.626
2.4410	17	1 4 0	36.790
2.3890	8	0 1 2	37.621
2.3622	17	2 2 1	38.064
2.3321	16	0 4 1	38.574
2.2314	10	1 1 2	40.390
2.1138	8	2 3 1	42.743
2.0962	4	1 2 2	43.120
2.0226	4	2 4 0	44.772
1.9463	5	0 5 1	46.628
1.9191	1	3 0 1	47.330
1.8890	12	3 1 1	48.131
1.8587	8	1 5 1	48.967
1.8135	72	2 2 2	50.270
1.7999	27	0 4 2	50.678
1.7300	14	1 4 2	52.881
1.7009	16	1 6 0	53.856
1.6871	20	3 3 1	54.334
1.6530	17	2 5 1	55.551
1.6395	9	3 4 0	56.047
1.6155	6	0 1 3	56.955
1.5718	6	3 1 2	58.693
1.5650	33	4 0 0	58.973
1.5540	6	1 5 2	59.431
1.5390	27	2 6 0	60.067
1.5153	2	1 2 3	61.106
1.5007	1	4 2 0	61.767
1.4836	6	0 3 3	62.560
1.4756	1	4 1 1	62.937
1.4476	15	0 7 1	64.299
1.4437	15	1 3 3	64.493
1.4355	12	2 1 3+	64.908
1.4229	1	3 5 1	65.550
1.3976	11	2 2 3+	66.895
1.3910	4	0 4 3	67.250
1.3736	14	4 3 1	68.222
1.3629	3	3 4 2	68.833
1.3583	4	1 4 3	69.100
	con	ntinued	

Manganese Silicate, Mn2SiO4 (continued)

d(A)	Irel	hkl	20(°)
1.3485	7	3 6 0	69.674
1.3408	2	2 3 3	70.129
1.3190	7	4 0 2	71.463
1.3089	1	4 1 2	72.104
1.3034	6	2 6 2	72.454
1.3001	5	3 6 1	72.671
1.2966	1 L	1 8 0	72.893
1.2770	4	3 1 3	74.201
1.2715	4	3 5 2+	74.577
1.2257	6	0 0 4	77.870
1.2197	2	4 5 1	78.330
1.2182	2	5 2 0	78.445
1.2127	1	5 0 1	78.870
1.2091	6	3 3 3	79.149
1.2048	3	5 1 1	79.491
1.1962	9	2 5 3	80.173
1.1914	1	2 7 2	80.563
1.1843	1L	2 8 1	81.146
1.1809	10	4 4 2	81.431
1.1660	3	0 8 2	82.698
1.15750	3	3 4 3	83.439
1.14701	7	5 3 1	84.377
1.13457	1	2 1 4	85.521
1.13214	1	5 4 0	85.749
1.12371	3	4 1 3	86.549
1.11574 1.11264 1.11083 1.10294 1.09530	8 8 7 1 1 1 1	2 2 4 0 4 4 0 7 3 5 4 1 1 4 4	87.322 87.628 87.807 88.598 89.381
1.09251	1	2 8 2	89.671
L			

Manganese Sulfate, MnSO₄

Synonym Manganous sulfate
CAS registry no. 7785-87-7
Sample The sample was obtained from the J. T. Baker Chemical Co., Phillipsburg, NJ. It was heated to 400°C overnight.
Color Pale pink
Symmetry classifications Crystal System Orthorhombic Space Group Amam (63) Pearson Symbol oC24
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 A 20 Standard W Scanned to 4.0° 20 σ(I ^{rel}) ±1
Crystallographic constants of this sample $a = 6.8447 (5) \text{ A}$ $b = 8.0414 (5)$ $c = 5.2649 (3)$
a/b = 0.8512 c/b = 0.6547 $V = 289.79 \text{ A}^3$
Z = 4 Density (calc.) = 3.461 g/cm ³
Figures of merit $F_{30} = 114.1(.0069, 38)$ $M_{20} = 125.2$
Comments The structure was determined by Will et al. (#1). An orthorhombic $\beta\text{-MnSO}_4$ has been reported. The $\alpha\text{-}\beta$ transformation is reported to occur at 438°C on heating and at 328°C on cooling (#2). The mean temperature of data collection was 24.9°C.
Additional patterns PDF card 11-88
References #1. Will, G. et al. Acta Crystallogr.(1965) 19,854. #2. Kirfel, A. and Will, G. High Temp. High Pressures(1974) 6,525.

ſ			
d(A)	I ^{rel}	hkl	20(°)
4.404	20	0 1 1	20.149
4.020	18	0 2 0	22.092
3.704	72	1 1 1	24.005
3.467	36	1 2 0	25.673
2.703	100	2 1 1	33.115
2.633	29	0 0 2	34.026
2.3885	38	0 3 1	37.629
2.2025	2	0 2 2	40.943
2.0961	6	1 2 2	43.122
2.0869	18	2 0 2	43.322
2.0103	9	0 4 0	45.062
1.9842	6	3 2 0	45.687
1.9592	5	2 3 1	46.303
1.8521	20	2 2 2	49.154
1.7330	11	2 4 0	52.782
1.7112 1.6633 1.6495 1.5976	10 4 4 3 3	4 0 0 1 1 3 3 3 1 0 4 2 4 1 1	53.507 55.176 55.679 57.654 57.771
1.5748	5	4 2 0	58.570
1.5557	3	1 4 2	59.357
1.5382	5	0 5 1	60.101
1.5328	7	2 1 3	60.337
1.5009	1	1 5 1	61.758
1.4684	7	0 3 3	63.279
1.4478	15	2 4 2	64.286
1.4360	3	1 3 3	64.879
1.4345	3	4 0 2	64.955
1.4031	2	2 5 1	66.596
1.3911	7	4 3 1	67.246
1.3510	1	4 2 2	69.526
1.3400	1 L	0 6 0	70.176
1.3160	3	0 0 4	71.653
1.3084	3	3 4 2	72.134
1.2754 1.2509 1.2478 1.2349 1.2305	2 1L 1L 1L	3 5 1 0 2 4 2 6 0 3 3 3 1 2 4	74.311 76.023 76.243 77.185 77.515
1.2112	1 L	4 1 3	78.986
1.1944	1 L	0 6 2	80.317
1.1859	1 L	0 5 3	81.015
1.1766	1 L	1 6 2	81.794
1.1679	1 L	4 4 2	82.537
1.1628	1 L	5 2 2	82.977
1.1439	1	4 5 1	84.661
1.1143	2	4 3 3	87.466
1.1045	1	6 1 1	88.446
1.1012	1	0 4 4	88.777
1.0968	1	3 2 4	89.221

Molybdenum Carbide, a-Mo₂C

CAS registry no. 12069-89-5

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI. It contained a small percent of MoC.

Spectrographic analysis (wt.%, CERAC, Inc.)

0.1-0.2 Fe, Ni, Si

0.05-0.1 Al, As, Cr, Cu, Mg, Mn, Ti

0.01-0.1 V

0.001 Sn

0.0005-0.005 Ag, Cd

Color

Black

Symmetry classifications

Crystal System Hexagonal

Space Group P63/mmc (194)

Pearson Symbol hP3

Structure Type Isostructural with W2C (#1)

Data collection and analysis parameters

Radiation

CuKa,

Wavelength

1.5405981 A

20 Standard

Si

Scanned to o(I^{rel})

5.0° 2θ

<u>±</u>2

Crystallographic constants of this sample

a = 3.0124 (4) A

c = 4.7352(7)

c/a = 1.5719

 $V = 37.21 A^3$

Density (calc.) = 9.098 g/cm^3

Figures of merit

 $F_{13} = 78.5(.0127, 13)$ $M_{13} = 222.3$

Comments

An orthorhombic distortion of this form was reported by Christensen (#2).

A cubic form of Mo₂C was formed at high CO partial

pressure by Lander and Germer (#3).

The mean temperature of data collection was 23.6°C.

References

#1. Lux, H. and Ignatowiez, A. Chem. Ber. (1968) 101,809.

#2. Christensen, A.

J. Cryst. Growth(1976) 33,58.

#3. Lander, J.J. and Germer, L.H.

Trans. Am. Inst. Min. Metall. Pet. Eng. (1948) 175,648.

d(A)	Irel		hk	1	20(°)
2.608 2.367 2.285 1.7533 1.5059	20 25 100 20 17	1 0 1 1	0 0 0 0	0 2 1 2	34.355 37.979 39.393 52.124 61.529
1.3503 1.3045 1.2705 1.2580 1.1840	17 2 15 10 3	1 2 1 2 0	0 0 1 0 0	3 0 2 1 4	69.567 72.386 74.647 75.515 81.172
1.1423 1.0779 1.0056	3 2 3	2 1 2	0 0	2 4 3	84.804 91.222 99.992

Synonym

Molybdenum disilicide

Sample

The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Gray

Symmetry classifications
Crystal System Tetragonal Space Group 14/mmm (139) Pearson Symbol t16

Structure Type C11

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength 20 Standard Si Scanned to $\sigma(I^{\text{rel}})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 3.2047 (2) Ac = 7.8449 (8)

c/a = 2.4479

 $V = 80.57 A^3$

Z = 2

Density (calc.) = 6.270 g/cm^3

Figures of merit

 $F_{18} = 85.9(.0075, 28)$ $M_{18} = 223.3$

Comments

The structure was determined by Zachariasen (#1). A hexagonal, CrSi2-type is reported to exist below 800°C (#2).

The temperature of data collection was approximately 25.0°C.

Additional patterns PDF card 6-681

Kieffer and Cerivenka (#3)

Nowotny et al. (#4)

References

#1. Zachariasen, W.H.

Z. Phys. Chem. (1927) 128,39.

#2. Aubry, J. et al.

C. R. Hebd. Seances Acad. Sci.(1965)

261,2665.

#3. Kieffer, R. and Cerivenka, E.

Z. Metallkd.(1952) 43,101.

#4. Nowotny, H. et al.

Monatsh. Chem. (1952) 83,1243.

d(A)	I ^{rel}		hl	<1	20(°)
3.923	31	(0	2	22.647
2.967	60	1	0	1	30.097
2.2661	73	1	1	0	39.745
2.0264	100	1	0	3	44.684
1.9620	23	1	1	2+	46.234
1.6028	21	2	2 0	0	57.448
1.4832	13	2	. 0		62.578
1.4098	18	2			66.241
1.3074	5	,		6	72.195
1.2570	33	ž		3	75.587
	33	-		,	15.501
1.2411	3	2	2 0	4	76.730
1.1324	17	1		6	85.728
1.0885	2	2	2	2	90.095
1.0584	8	3		1	93.399
1.0131	14	2	9 0	6	98.989
0.9889	6		3 0	3	102.329
0.9813	5	3	1	2+	103.441
0.90025	3	-	1	4	117.663
	,				1 . 0 0 3

Synonym

Niobium diboride

CAS registry no. 12207-29-3

Sample

The sample was obtained from Apache Chemicals, Inc., Seward, IL. It contained a trace of NbB.

Color

Olive gray

Symmetry classifications

Crystal System Hexagonal Space Group P6/mmm (191)

Pearson Symbol hP3

Data collection and analysis parameters

CuKa₁ Radiation Wavelength 1.5405981 A 20 Standard Ag Scanned to $o(I^{rel})$ 4.0° 20

±4

Crystallographic constants of this sample

a = 3.11133 (13) Ac = 3.2743(2)

c/a = 1.0524

 $V = 27.45 A^3$

Density (calc.) = 6.928 g/cm^3

Figures of merit

 $F_{19} = 120.2(.0079, 20)$ $M_{19} = 341.1$

Comments

The structure was determined by Norton et al. (#1). The temperature of data collection was approximately

25.0°C.

Additional patterns

PDF card 8-120

Reference

#1. Norton, J.T. et al.

Trans. Am. Inst. Min. Metall. Pet. Eng. (1949)

185,749.

d(A)	I ^{rel}	hkl	20(°)
3.274 2.694 2.0808 1.6366 1.5553	33 79 100 8 23	0 0 1 1 0 0 1 0 1 0 0 2 1 1 0	43.455 56.155
1.4052 1.3994 1.3472 1.2459 1.1279	20 18 10 17 12	1 1 1 1 0 2 2 0 0 2 0 1 1 1 2	69.750 76.380
1.0404 1.0185 1.0117 0.9724 0.89816	5 5 3 16 3	2 0 2 2 1 0 1 0 3 2 1 1 3 0 0	98.285 99.174 104.770
0.89341 0.86617 0.86478 0.84804	2 7 10 3	1 1 3 3 0 1 2 1 2 2 0 3	125.576

Potassium Calcium Hydrogen Phosphate, K_3 CaH(PO $_4$) $_2$

Synonym Potassium calcium hydrogen orthophosphate				
Sample The sample was made by adding 25 ml of a .3 molar solution of calcium acetate to a solution containing 57 grams of $\rm K_2HPO_4$ and 5 grams of KOH in 72 ml of $\rm H_2O$.				
Color Colorless				
Symmetry classifications Crystal System Monoclinic Space Group C2/m (12) Pearson Symbol mC30				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Crystallographic constants of this sample a = 9.8826 (17) Å b = 5.7352 (8) c = 7.4307 (7) β = 94.142 (12)°				
a/b = 1.7231 c/b = 1.2956 $V = 420.07 A^3$ Z = 2 Density (calc.) = 2.754 g/cm ³				
Figures of merit F ₃₀ = 60.5(.0095, 52) M ₂₀ = 47.5				
$\frac{\text{Comments}}{\text{The structure of K}_3\text{Ca(PO}_4)_2} \text{ was determined by Grenier et al. (#1).}$ The mean temperature of data collection was 24.4°C.				
Additional patterns PDF card 22-1218 Majling et al. (#2)				
References #1. Grenier, JC., et al. Bull. Soc. Fr. Mineral. Cristallogr.(1969) 92,30. #2. Majling, J. et al.; (1979) Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia).				

d(A)	Irel	hkl	20(°)
7.42	9	0 0 1	11.921
4.960	1	1 1 0	17.870
4.249	7	-2 0 1	20.889
4.193	10	-1 1 1	21.170
3.978	1L	2 0 1	22.333
3.707	12	0 0 2	23.989
3.070	33	-2 0 2	29.063
3.021	13	-1 1 2	29.549
2.917	45	1 1 2	30.621
2.867	99	0 2 0+	31.174
2.850	100	3 1 0	31.362
2.470	24	0 0 3	36.336
2.390	5	-4 0 1	37.599
2.375	3	-2 2 1	37.843
2.326	10	2 2 1	38.686
2.289	3	4 0 1	39.338
2.244	1L	-1 1 3	40.161
2.1801	6	1 1 3	41.382
2.1482	1	2 0 3	42.026
2.0949	56	-2 2 2	43.147
2.0258	12	2 2 2	44.697
1.9862	13	4 0 2	45.639
1.9277	1	-3 1 3	47.107
1.8712	3	0 2 3	48.618
1.8526	7	0 0 4	49.139
1.8116 1.7894 1.7832 1.7772	5 2 1 1	3 1 3+ 4 2 1 -2 2 3 -2 0 4 -1 1 4	50.326 50.997 51.187 51.371 52.027
1.7133	9	-5 1 2	53.437
1.6837	2	-1 3 2	54.452
1.6654	7	1 3 2	55.102
1.6523	11	3 3 0	55.574
1.6332	5	4 2 2	56.281
1.5998	3	-3 1 4+	57.567
1.5562	7	0 2 4	59.337
1.5353	3	-4 0 4	60.227
1.5312	1	-4 2 3	60.405
1.5106	5	-2 2 4+	61.318
1.4823	2	0 0 5	62.618
1.4586	3	2 2 4	63.756
1.4487	1	-2 0 5	64.241
1.4344	8	-1 1 5	64.961
1.4254	9	6 2 0	65.422
1.4157 1.4061 1.3583 1.3538 1.3514	1 1 2 1	-6 0 3 1 1 5 -2 4 1 -4 2 4 3 3 3	65.926 66.436 69.096 69.362 69.499
1.3499	1	7 3 1 5	69.590

Potassium Copper Sulfate Hydrate, $K_2Cu(SO_4)_2 \cdot 6H_2O$

Mineral name				
Cyanochroite, syn Picromerite Group	d(A)	Irel	hkl	20(°)
CAS registry no. 13587-29-6	7.120 6.063 5.971 5.361 5.113	1L 11 4 11 7	1 1 0 0 2 0 0 0 1 0 1 1 -1 1 1	12.422 14.598 14.825 16.523 17.329
Sample The sample was made by evaporation at room temperature of a 1:1 molar aqueous solution of K_2SO_4 and $CuSO_4$.	4.991 4.398 4.254 4.179 4.132	5 18 31 90 22	1 2 0 2 0 0 0 2 1 1 1 1 2 1 0+	17.758 20.176 20.867 21.245 21.488
Symmetry classifications Crystal System Monoclinic	4.057 3.848 3.673 3.589 3.559	79 3 100 10	-2 0 1 -2 1 1 1 3 0 1 2 1 2 2 0	21.889 23.093 24.215 24.785 24.999
Space Group P2 ₁ /a (14) Pearson Symbol mP62 Structure Type A Tutton salt Data collection and analysis parameters	3.348 3.281 .3.182 3.075 3.029	8 21 22 19 18	0 3 1 -1 3 1 2 0 1 2 1 1 0 4 0	26.607 27.156 28.022 29.015 29.461
Radiation $CuK\alpha_1$ Wavelength 1.5405981 A 20 Standards FP Ag Scanned to 5.0° 20 $\sigma(I^{\rm rel})$ ± 3	2.993 2.975 2.899 2.864 2.849	39 65 1L 13	1 3 1 -1 1 2+ 0 1 2 1 4 0 3 1 0	29.830 30.013 30.821 31.202 31.378
Crystallographic constants of this sample a = 9.0800 (14) A b = 12.123 (2) c = 6.164 (1) β = 104.441 (17)°	2.816 2.738 2.669 2.644 2.555	42 18 6 13	2 2 1+ -1 2 2 -1 4 1 -3 2 1 -2 2 2	31.751 32.685 33.544 33.882 35.093
a/b = 0.7490 c/b = 0.5085 $V = 657.08 A^3$ Z = 2	2.505 2.497 2.445 2.3769 2.3377	8 17 2 45 2	1 4 1 2 4 0 -1 3 2 -3 3 1 1 5 0	35.816 35.936 36.720 37.820 38.479
Density (calc.) = 2.234 g/cm ³ Figures of merit F ₃₀ = 89.0(.0080, 42) M ₂₀ = 49.5	2.2533 2.2463 2.2150 2.1934 2.1626	7 12 5 31 1	-4 0 1 0 5 1 -4 1 1 2 4 1 4 1 0	39.980 40.109 40.701 41.120 41.732
$\frac{\text{Comments}}{\text{The structure of a Tutton salt, } (\text{NH}_{\text{μ}})_2\text{Mg}(\text{SO}_{\text{μ}})_2\text{*}6\text{H}_2\text{O},}\\ \text{was determined by Margulis and Templeton } (\#1).\\ \text{The mean temperature of data collection was 23.3°C.}$	2.1264 2.1060 2.0809 2.0667 2.0109	15 4 7 28 3	0 4 2 3 4 0 -2 5 1 4 2 0+ -2 0 3	42.478 42.910 43.454 43.768 45.048
References #1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.	1.9842 1.9680 1.9639 1.9228 1.9133	15 2 1 5 4	-2 1 3 -4 3 1+ 0 1 3 -4 2 2 0 6 1+	45.688 46.084 46.186 47.234 47.483
	1.8884 1.8832 1.8676 1.8556 1.8301	5 6 8 9	-3 4 2 3 4 1 3 5 0 -3 1 3 -1 3 3	48.148 48.288 48.717 49.053 49.782
		000	tinued	

continued

Potassium Copper Sulfate Hydrate, K2Cu(SO₄)2.6H2O (continued)

d(A)	Irel	hkl	20(°)
1.8090 1.8001 1.7941 1.7791 1.7633	7 6 7 9	-2 6 1 -2 3 3 -3 2 3+ 4 4 0 1 2 3	50.406 50.672 50.852 51.312 51.805
1.7411 1.7102 1.7063 1.6973	2 2 2 2	5 1 0 -3 5 2 2 6 1 -5 1 2+	52.518 53.540 53.674 53.981

Mineral name Archerite, syn

#5. Hendricks, S. B. Am. J. Sci. (1927) 14, 269.

Synonym		
Potassium	dihydrogen	phosphate
	potassium ;	

Sam	-1-	

The sample was obtained from Allied Chemical Corp., Morristown, NJ.

Color

Colorless

Symmetry classifications

Crystal System Tetragonal I42d (122) Space Group Pearson Symbol t132 Structure Type Biphosphammite

Data collection and analysis parameters

Radiation CuKa Wavelength 1.5405981 A 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 28 ±2

Crystallographic constants of this sample

a = 7.4532(3) Ac = 6.9742(5)

c/a = 0.9357

 $V = 387.42 A^3$

Z = 4

Density (calc.) = 2.333 g/cm^3

Figures of merit

 $F_{30} = 96.0(.0098, 32)$ $M_{20} = 110.8$

Comments

The structure was determined by West (#1). An orthorhombic phase is reported by Frazer and Pepinsky (#2) and Ubbelohde and Woodward (#3). The mean temperature of data collection was 24.3°C.

Additional patterns
PDF card 31-1030, Swanson, H. E. Fuyat, R., and Ugrinic, G. (1954). Natl. Bur. Stand. (U. S.) Circ. 539, 3, 69. Hanawalt et al. (#4), Hendricks (#5)

References

- #1. West, J. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1930) 74, 306.
- #2. Frazer, B. and Pepinsky, R.
- Acta Crystallogr., Sect. A(1953) 6, 273. #3. Ubbelohde, A. R. and Woodward, I. Proc. R. Soc. London, Ser. A(1947) A188, 358.
- #4. Hanawalt, J. D. et al. Ind. Eng. Chem., Anal. Ed.(1938) 10, 457.

d(A)	Irel	hkl	. 20(°)
5.086	14	1 0	1 17.422
3.724	100	2 0	0 23.874
3.008	14	2 1	1 29.674
2.908	83	1 1	2 30.721
2.635	23	2 2	0 33.995
2.547	8	2 0	2 35.214
2.357	5	3 1	0 38.143
2.340	15	3 0	1 38.439
2.218	5	1 0	3 40.636
1.9821	14	3 2	1 45.739
1.9532 1.9064 1.8630 1.7498 1.6981	51 4 2 1	3 1 2 1 4 0 4 1 3 0	2 46.454 3 47.664 0 48.845 1 52.237 3 53.954
1.6671	10	4 2	0 55.041
1.5795	8	2 0	4 58.377
1.5686	9	3 3	2 58.821
1.5449	5	3 2	3 59.816
1.5037	1L	4 2	2 61.628
1.4614	2	5 1	0 63.620
1.4579	3	4 3	1 63.791
1.4542	7	2 2	4 63.972
1.4267	1L	4 1	3 65.354
1.4014	1	3 1	4 66.689
1.3707 1.3578 1.3480 1.3177 1.2868	2 1L 7 3	1 0 5 2 5 1 4 4 2 1	5 68.385 1 69.128 2 69.700 0 71.548 5 73.544
1.2779	2	5 3	0 74.137
1.2734	9	4 0	4 74.449
1.2546	1	4 3	3 75.756
1.2421	2	6 0	0 76.655
1.2047	6	4 2	4 79.493
1.2002	8	5 3	2 79.855
1.1783	5	6 2	0 81.648
1.1703	1	6 0	2 82.329
1.1562	1L	3 2	5 83.557
1.1349	2	1 1	6 85.485
1.1202	1	5 1	4 86.892
1.0973	1L	6 3	1 89.175
1.0513	1	4 4	4 94.222
1.0425	4	3 1	6 95.275
1.0336	2	6 4	0 96.358
1.0118	4	6 0	99.157
1.0090	7	7 1	2 99.536
1.0023	1L	6 3	3 100.449
0.9909	1L	6 4	2 102.045
0.9765	2	6 2	4 104.156
0.9694	1	3 3	6 105.234
0.9422	2	7 3	2 109.680
0.9317	1	8 0	0 111.541
0.90977	2	5 1	6 115.708
0.90382	2	8 2	0 116.918

Synonym

Potassium magnesium orthophosphate hydrate

Sample

The sample was prepared by the method of Bassett and Bedwell (#1): 3 grams of MgCl₂ in about 50 ml of $\rm H_2O$ were added to a solution of 50 grams of $\rm K_2HPO_4$ in $\rm H_2O$. The total volume was diluted to 150 ml. The resultant precipitate crystallized after 3 hours standing at 55°C.

Color

Colorless

Symmetry classifications

Crystal System Orthorhombic Pm2₁n (31) Space Group Pearson Symbol oP50 Structure Type Struvite

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 2θ Standards SI FP Scanned to $\sigma(I^{rel})$ 5.0° 20

Crystallographic constants of this sample

a = 6.8791 (10) A b = 11.1001 (12)c = 6.1634(6)

a/b = 0.6197

c/b = 0.5553

 $V = 470.63 A^3$

Z = 2

Density (calc.) = 1.880 g/cm^3

Figures of merit

 $F_{30} = 97.7(.0079, 39)$ $M_{20} = 73.6$

Comments

The structure of KMgPo4.6H20 was determined by Mathew and Schroeder (#2). The mean temperature of data collection was 24.7°C.

Additional patterns

PDF 20~685

Reference

- #1. Bassett, H. and Bedwell, W.L. J. Chem. Soc.(1933) 877.
- #2. Mathew, M. and Schroeder, L.W. Acta Crystallogr. (1979) B35,11.

d(A)	I ^{rel}		hk	1	20(°)
5.846 5.551 5.390 4.588 4.241	10 25 18 17 100	1 0 0 1 1	1 2 1 0	0 0 1 1	15.142 15.952 16.434 19.329 20.932
4.123 3.541 3.436 3.258 3.172	60 6 20 39 6	0 1 2 1 0	2 0 3 3	1 1 0 0	21.538 25.126 25.909 27.353 28.109
3.081 3.004 2.969 2.923 2.899	3 7 18 16 64	0 2 0 2 2	0 0 1 2	2 1 2 0 1	28.959 29.718 30.072 30.554 30.814
2.813 2.774 2.726 2.695 2.642	7 37 10 55 45	1 0 1 0 2	0 4 1 2 2	2 0 2 2	31.791 32.239 32.834 33.222 33.907
2.531 2.509 2.3743 2.3673 2.3318	6 8 8 8	0 1 1 0 2	4 2 4 3 3	1 2 1 2	35.437 35.766 37.862 37.978 38.580
2.2946 2.2471 2.1593 2.1199 2.0540	1 7 2 5 4	2 2 2 2 0	0 1 4 2 0	2 2+ 0 2	39.230 40.094 41.800 42.615 44.051
2.0386 2.0207 1.9987 1.9687 1.9503	6 1 14 8 18	2 0 1 1 2	4 1 5 0 3	1 3 1 3 2+	44.402 44.816 45.338 46.068 46.528
1.9268 1.8561 1.8503 1.8398 1.8151	7 6 2 4 1L	0 1 0 3 3	2 6 0 1	3 3 0 2 2	47.128 49.040 49.205 49.503 50.222
1.8007 1.7960 1.7853 1.7640 1.7382	11 10 8 8	0 0 2 2 1	5 3 5 0 3	2 3 1 3 3	50.652 50.794 51.120 51.784 52.610
1.7197 1.7165 1.6996 1.6815 1.6473	9 5 4 2 2	4 1 3 2 3	0 6 4 2 3	0 1 1 3 2	53.221 53.329 53.900 54.530 55.760
1.5855 1.5756 1.5449 1.4990	6 5 5 2 4	0 2 1 1 1	6 7 7	2 1 0+ 1 4	58.134 58.537 59.814 61.844 62.256
	cont	inued			

Potassium Magnesium Phosphate Hydrate, $KMgPO_{ij} \cdot 6H_2O$ (continued)

d(A)	Irel		hk	1	20(°)
1.4498	3	4	2	2	64.190
1.4222	2	4	4	1+	65.591
1.4136	1L	3	3	3	66.039
1.3930	2	1	3	4	67.145
1.3872	2	0	8	0	67.462
1 2621	2	2	2	4	60 000
1.3631	2	2	_		68.820
1.3485	2	1	6	3	69.674
1.3469	1	0	4	4	69.769

Potassium Nickel Selenate Hydrate, K2Ni(SeO4)2.6H2O

		4,22		
Synonym Dipotassium nickel orthoselenate hexahydrate	d(A)	Irel	hkl	20(°)
$\frac{Sample}{The \ sample \ was \ prepared \ by \ dissolving \ stoichiometric \ amounts \ of \ K_2CO_3, \ NiCO_3, \ and \ H_2SeO_4 \ in \ water \ and \ letting \ the \ water \ evaporate \ at \ room \ temperature.}$	7.219	9	1 1 0	12.250
	6.188	4	0 2 0	14.301
	6.061	1	0 0 1	14.602
	5.443	27	0 1 1	16.272
	5.079	10	1 2 0	17.445
Color Unground: strong green Ground: very pale green	4.446	22	2 0 0	19.955
	4.329	24	0 2 1	20.500
	4.236	87	1 1 1	20.956
	4.197	63	-1 2 1	21.149
	4.106	80	-2 0 1	21.625
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP62 Structure Type A Tutton salt	3.896 3.744 3.645 3.612 3.408	12 100 25 5 21	-2 1 1 1 1 3 0 1 2 1 2 2 0 0 3 1	22.809 23.748 24.404 24.629 26.127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.344	22	-1 3 1	26.636
	3.222	27	2 0 1	27.662
	3.118	31	2 1 1	28.607
	3.093	28	0 4 0	28.844
	3.043	31	1 3 1	29.323
Crystallographic constants of this sample a = 9.1760 (9) A b = 12.3695 (12) c = 6.2545 (7)	3.029	54	0 0 2	29.461
	3.019	75	-1 1 2	29.562
	2.943	3	0 1 2	30.346
	2.908	12	-2 3 1	30.716
	2.885	27	-3 1 1	30.967
$\beta = 104.404 (9)^{\circ}$ $a/b = 0.7418$ $c/b = 0.5056$ $V = 687.59 $	2.880	27	3 1 0	31.028
	2.856	41	2 2 1+	31.293
	2.781	16	-2 1 2+	32.155
	2.721	4	0 2 2+	32.889
	2.672	12	3 2 0	33.516
Z = 2 Density (calc.) = 2.564 g/cm ³ Figures of merit	2.612 2.593 2.550 2.538 2.485	3 8 11 8	1 1 2 -2 2 2 1 4 1 2 4 0+ -1 3 2	34.308 34.570 35.171 35.337 36.119
$F_{30} = 90.0(.0083, 40)$ $M_{20} = 49.3$ $\frac{\text{Comments}}{\text{The structure of a Tutton salt, } (NH_{4})_{2}Mg(SO_{4})_{2} \cdot 6H_{2}O,$	2.468	10	-2 4 1	36.366
	2.441	8	0 3 2	36.796
	2.411	53	-3 3 1	37.270
	2.387	6	3 1 1	37.659
	2.3474	3	-2 3 2	38.313
was determined by Margulis and Templeton (#1). The mean temperature of data collection was 24.0°C. References #1. Margulis, T.N. and Templeton, D.H.	2.2766	3	-4 0 1	39.554
	2.2546	3	2 0 2	39.955
	2.2325	35	2 4 1	40.369
	2.2234	21	4 0 0	40.540
	2.1952	3	-1 4 2	41.085
Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) <u>117</u> ,334.	2.1861	11	4 1 0	41.264
	2.1637	25	0 4 2	41.711
	2.1409	9	-3 4 1	42.177
	2.1183	2	-2 5 1+	42.647
	2.1008	15	-3 3 2	43.020
	2.0958	24	3 3 1	43.128
	2.0910	24	4 2 0	43.232
	2.0618	2	0 6 0	43.877
	2.0515	2	-4 0 2	44.108
	2.0197	14	0 0 3	44.841

continued

Potassium Nickel Selenate Hydrate, $K_2Ni(SeO_{ij})_2 \cdot 6H_2O$ (continued)

d(A)	_I rel	hkl	20(°)
2.0129	7	-2 1 3	44.999
1.9920	2	0 1 3+	45.499
1.9743	1	-1 2 3	45.929
1.9621	4	2 5 1	46.231
1.9467	3	-4 2 2	46.619
1.9392 1.9372 1.9172 1.9129 1.9003	6 5 4 5	-1 6 1 -1 5 2+ -3 4 2+ 4 1 1+ -3 5 1	46.810 46.860 47.380 47.492 47.826
1.8814	16	-3 1 3	48.339
1.8740	5	3 1 2+	48.541
1.8614	3	-1 3 3	48.890
1.8426	9	-2 6 1	49.422
1.8370	7	-4 3 2	49.583
1.8329	6	-4 4 1	49.702
1.8279	8	-2 3 3	49.847
1.8224	7	2 4 2	50.008
1.8134	14	-5 1 1+	50.274
1.8046	12	4 4 0	50.535
1.7905	4	1 2 3	50.962
1.7597	11	5 1 0	51.920
1.7381	3	-3 5 2	52.614
1.7329	3	1 7 0	52.784
1.7292	3	-1 4 3+	52.907
1.7187	7	-1 6 2	53.254
1.7157	5	-5 1 2	53.354
1.7084	8	5 2 0	53.603
1.7040	12	1 3 3+	53.751
1.6922	5	3 6 0	54.157
1.6880	2	-1 7 1	54.302
1.6754	2	-4 5 1+	54.745
1.6684	2	-5 2 2	54.995
1.6600	3	-4 2 3	55.296
1.6526	4	4 5 0	55.565
1.6452	6	1 7 1	55.835
1.6410	5	4 4 1	55.993
1.6315	5	1 6 2+	56.346
1.6233	2	-2 7 1	56.657
1.6108	2	4 0 2	57.137
1.5976	7	-5 3 2+	57.652
1.5882	1	5 1 1	58.028
1.5796	2	-4 5 2	58.374
1.5755	2	-3 6 2	58.540
1.5643	2	0 5 3	58.998
1.5563	5	-2 0 4	59.333
1.5491	4	2 7 1	59.639
1.5462	4	0 8 0+	59.759

Potassium Nickel Sulfate Hydrate, $K_2Ni(SO_{ij})_2 \cdot 6H_2O$

Sample				
The sample was made by slow evaporation of a 1:1 molar aqueous solution of K_2SO_4 and $NiSO_4$.	d(A)	I ^{rel}	hk1	20(°)
Color Strong bluish green	6.095	9	0 2 0	14.522
	5.924	3	0 0 1	14.943
	5.327	10	0 1 1	16.628
	5.105	6	-1 1 1	17.356
	4.344	22	2 0 0	20.426
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP62 Structure Type A Tutton salt	4.245	23	0 2 1	20.909
	4.131	86	1 1 1+	21.493
	4.092	29	2 1 0	21.701
	4.037	85	-2 0 1	22.000
	3.834	5	-2 1 1	23.179
Data collection and analysis parameters Radiation CuKo ₁ Wavelength 1.5405981 A 20 Standards Ag FP Scanned to 5.0° 20 o(I ^{rel}) ±3	3.678	100	1 3 0	24.177
	3.563	9	1 2 1	24.973
	3.536	7	2 2 0	25.162
	3.350	10	0 3 1	26.589
	3.292	18	-1 3 1	27.068
Crystallographic constants of this sample a = 8.9984 (12) A b = 12.182 (2) c = 6.1321 (8)	3.137	17	2 0 1	28.433
	3.038	36	2 1 1	29.374
	2.962	62	0 0 2+	30.152
	2.879	4	0 1 2	31.034
	2.875	4	1 4 0	31.080
$\beta = 105.054 (13)^{\circ}$ $a/b = 0.7387$ $c/b = 0.5034$ $V = 649.12 A^3$	2.866	4	-2 3 1	31.177
	2.839	9	-3 1 1	31.485
	2.820	21	3 1 0	31.705
	2.810	21	-2 0 2	31.821
	2.789	22	2 2 1	32.070
<pre>Z = 2 Density (calc.) = 2.236 g/cm³</pre> Figures of merit	2.739 2.731 2.678 2.632 2.550	19 19 6 5	-2 1 2 -1 2 2 -1 4 1 -3 2 1 -2 2 2	32.668 32.771 33.439 34.030 35.161
$F_{30} = 85.1(.0084, 42)$ $M_{20} = 52.3$ Comments The structure of a Tutton salt $(NH_{4})_{2}Mg(SO_{4})_{2}*6H_{2}O$,	2.495	7	2 4 0	35.961
	2.481	8	2 3 1	36.177
	2.442	1	-1 3 2	36.778
	2.393	6	1 2 2+	37.549
	2.369	44	-3 3 1	37.953
was determined by Margulis and Templeton (#1). The mean temperature of data collection was 24.1°C. Additional patterns PDF card 13-193	2.2528	6	0 5 1	39.988
	2.2362	5	-4 0 1+	40.298
	2.1993	11	-4 1 1	41.005
	2.1861	25	2 4 1	41.263
	2.1718	10	4 0 0	41.549
References #1. Margulis, T.N. and Templeton, D.H. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,334.	2.1611 2.1386 2.1304 2.1232 2.1070	1L 4 8 13	2 1 2 4 1 0 1 5 1 0 4 2 -3 4 1	41.763 42.223 42.394 42.545 42.888
	2.0992	5	-4 2 1+	43.056
	2.0859	6	-2 5 1	43.344
	2.0651	11	-2 4 2+	43.803
	2.0459	13	4 2 0	44.235
	2.0185	1	-4 0 2	44.869
	2.0042	3	-2 0 3	45.206
	1.9734	15	0 0 3	45.951
	1.9587	1	-4 3 1	46.316
	1.9369	1L	-1 2 3	46.868
	1.9241	4	2 5 1	47.200

continued

Potassium Nickel Sulfate Hydrate, $K_2Ni(SO_4)_2 \cdot 6H_2O$ (continued)

d(A)	I ^{rel}		hk	1	20(°)
1.9151	2	4	3	0	47.434
1.9106	6	-1	6	1	47.552
1.8876	6	4	0	1+	48.170
1.8707	6	3	4	1+	48.631
1.8660	7	4	1	1	48.764
1.8516	2 5	-3 2	1	3	49.167 49.539
1.8246	í	-1	3	3+	49.945
1.8085	3	-4	3	2	50.419
1.8044	7	1	1	3	50.541
1.7970	4 6	-2 2	3	3 2	50.764 51.256

Potassium Phosphate, KPO3

Synonym Potassium metaphosphate Potassium polyphosphate
Sample The sample was made by heating KH ₂ PO ₄ overnight at about 300°C.
Colorless
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /a (14) Pearson Symbol mP40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Crystallographic constants of this sample a = 14.067 (2) A b = 4.5464 (13) c = 10.3272 (19) β = 101.093 (16)° a/b = 3.0941 c/b = 2.2715 V = 648.13 A ³ Z = 8 Density (calc.) = 2.420 g/cm ³
$\frac{\text{Figures of merit}}{F_{30} = 61.8(.0077, 63)}$ $M_{20} = 49.7$
Comments The structure of KPO3 was determined by Jost (#1). There are several other forms of KPO3 stable at higher temperatures (#2). The mean temperature of data collection was 24.3°C.
Additional patterns PDF card 25-669
References #1. Jost, K.H. Acta Crystallogr.(1963) 16,623. #2. Jost, K.H., and Schulze, H.J. Acta Crystallogr., Sect. B(1969) B25,1110.

d(A)	Irel	hkl	20(°)
10.15	1	0 0 1	8.704
6.298	39	-2 0 1	14.050
5.249	15	2 0 1	16.878
5.065	27	0 0 2	17.494
4.517	13	-2 0 2	19.639
3.754	17	2 0 2	23.681
3.687	7	-2 1 1	24.121
3.451	73	4 0 0	25.797
3.438	71	2 1 1	25.894
3.384	100	0 1 2+	26.316
3.295	19	-2 0 3	27.040
3.234	3	3 1 0	27.560
3.147	24	-4 0 2	28.338
3.090	13	4 0 1	28.869
2.909	1	-3 1 2	30.710
2.828	16	2 0 3	31.615
2.762	27	-4 1 1	32.384
2.749	28	4 1 0	32.550
2.685	20	-4 0 3	33.347
2.668	14	-2 1 3	33.565
2.588	15	-4 1 2+	34.631
2.513	1L	-3 1 3	35.700
2.4001	4	2 1 3	37.440
2.3866	3	-5 1 1	37.660
2.3009	7	6 0 0	39.119
2.2750	60	4 1 2+	39.583
2.2660	31	-6 0 2	39.746
2.2456	6	-1 1 4	40.122
2.2200	30	5 1 1	40.606
2.2140	22	0 1 4	40.720
2.0995	1	-6 0 3	43.049
2.0532	6	6 1 0+	44.070
2.0270	6	0 0 5+	44.669
1.9574	2	6 0 2	46.350
1.9490	3	-3 2 2+	46.560
1.8976	6	4 2 0	47.899
1.8939	5	-6 0 4	47.999
1.8786	7	-1 1 5	48.415
1.8718	8	-2 1 5+	48.602
1.8521	5	0 1 5	49.152
1.8432	7	-4 2 2 5 1 3 1 1 5 2 2 3 -8 0 1	49.407
1.7995	5		50.690
1.7935	6		50.870
1.7721	4		51.530
1.7585	1		51.959
1.7484	3	-6 1 4	52.282
1.7350	6	4 1 4+	52.714

Potassium Sodium Phosphate, $KNa_2(PO_3)_3$

Potassium disodium metaphosphate						
Sample The sample was made by heating a 1:2 molar mixture of KH ₂ PO ₄ and NaH ₂ PO ₄ at 500°C for 3 hours.						
Color Colorless						
Symmetry classifications Crystal System Triclinic Space Group PT (2) Pearson Symbol aP30						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Crystallographic constants of this sample $a = 6.8696 (15) A$ $b = 9.4671 (17)$ $c = 6.7886 (15)$ $\alpha = 110.086 (13)^{\circ}$ $\beta = 104.659 (16)$ $\gamma = 86.581 (15)$						
a/b = 0.7256 c/b = 0.7171 $V = 400.97 \text{ A}^3$ Z = 2 Density (calc.) = 2.667 g/cm ³						
Figures of merit $F_{30} = 57.9(.0084, 62)$ $M_{20} = 39.4$						
Comments The structure of KNa ₂ (PO ₃) ₃ was determined by Tordjman et al. (#1). The temperature of data collection was approximately 25.0°C.						
Additional patterns PDF card 26-969 Majling et al. (#2)						
References #1. Tordjman, I. et al. Acta Crystallogr., Sect. B(1974) B30,2701. #2. Majling, J. et al.; (1979) Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia).						

Synonym

d(A)	Irel	hkl	20(°)
8.90	15	0 1 0	9.934
6.178	7	0 0 1	14.325
5.401	7	-1 1 0	16.400
5.249	13	1 1 0	16.876
5.126	34	-1 -1 1	17.284
4.444	20	0 2 0	19.964
4.383	4	0 -2 1	20.245
4.054	7	-1 1 1+	21.904
3.434	3	1 -2 1	25.928
3.390	2	1 1 1	26.266
3.287	13	-2 0 1+	27.110
3.243	4	-2 -1 1	27.479
3.141	27	-2 1 0	28.394
3.110	33	-1 0 2	28.680
3.089	22	0 0 2	28.880
3.063	13	-1 -2 2	29.126
3.014	14	-1 2 1	29.617
2.962	100	0 3 0	30.148
2.856	9	-2 -2 1	31.300
2.724	14	1 -3 1	32.847
2.701	31	-2 -1 2+	33.137
2.689	24	1 2 1	33.290
2.680	20	2 -1 1	33.406
2.673	13	-1 1 2+	33.498
2.624	16	2 2 0	34.139
2.576	5	1 -2 2	34.798
2.568	6	1 0 2	34.914
2.478	1L	2 -2 1	36.220
2.438	8	2 1 1	36.830
2.3417	2	-2 1 2	38.410
2.3257	1	-1 3 1	38.684
2.3044	3	1 3 2	39.057
2.2776	3	-2 -3 2	39.536
2.2715	5	-1 -4 1+	39.645
2.2438	3	-2 3 0+	40.157
2.2279 2.2215 2.2091 2.1747 2.1289	4 1 4 1	-1 2 2 0 4 0 0 2 2 0 -1 3+ 2 2 1	40.456 40.577 40.815 41.491 42.425
2.0866	7	2 -1 2	43.329
2.0514	4	-2 3 1	44.110
2.0283	4	-2 2 2+	44.640
1.9957	4	1 -4 2	45.410
1.9589	1	3 2 0	46.310
1.9215	1	-3 1 2+	47.268
1.8954	5	0 4 1	47.959
1.8780	7	2 1 2	48.431
1.8738	5	-1 4 1+	48.548
1.8467	5	0 3 2	49.307
1.8420	3 3	1 0 3+ 2 4 0+	49.444 50.025

Potassium Titanium Oxide Phosphate, KTiOPOh

Sample

The sample was prepared by heating a 1:2:2 molar mixture of $\rm K_2CO_3$, TiO $_2$ (anatase), and $\rm NH_4H_2PO_4$ up to 500°C. It was then reground and heated at 1000°C overnight.

Color

Colorless

Symmetry classifications

Crystal System Orthorhombic Space Group P2₁nb (33) Pearson Symbol oP64

Data collection and analysis parameters

Radiation CuKa₁ 1.5405981 A Wavelength 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 20 ±4

Crystallographic constants of this sample

a = 10.5892 (12) A b = 12.8149 (11)c = 6.4032(5)

a/b = 0.8263c/b = 0.4997

 $V = 868.93 A^3$

Density (calc.) = 3.027 g/cm^3

Figures of merit

 $F_{30} = 114.9(.0061, 43)$ $M_{20} = 70.0$

Comments

The structure was determined by Tordjman et al. (#1). The mean temperature of data collection was 24.7°C.

Additional patterns

PDF card 25-689

Reference

#1. Tordjman, I. et al.

Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1974) 139,103.

d(A)	I ^{rel}	hk1	20(°)
6.404	10	0 2 0	13.818
5.724	18	0 1 1	15.468
5.477	79	1 0 1+	16.169
5.039	1	1 1 1	17.587
4:535	1 L	0 2 1	19.558
4.166	10	1 2 1	21.310
4.083	1	2 2 0	21.747
3.887	1L	2 1 1	22.860
3.554	9	0 3 1	25.037
3.442	31	2 2 1	25.864

d(A)	I^{rel}		hk1	20(°)		
3.368 3.091 3.005 2.980 2.951	20 79 5 8 2	3 3 1	3 1 0 1+ 1 1 1 2 3 1	26.440 28.859 29.710 29.960 30.260		
2.864 2.766 2.741 2.6786 2.6472	5 100 72 4 12	1 2 2	2 2+ 4 1+ 4 0+ 1 2 0 0	31.203 32.344 32.647 33.426 33.834		
2.5604 2.5195 2.5040 2.4899 2.4468	1 10 3 1 1L	2 3 1	3 2 4 1+ 3 1 3 2 2 0	35.018 35.604 35.832 36.042 36.700		
2.4031 2.3794 2.3312 2.3209 2.3065	4 5 3 1 1L	0 3 1	1 1 5 1 1 2 5 1 3 2	37.391 37.779 38.590 38.768 39.020		
2.2641 2.2237 2.1700 2.1362 2.1225	7 6 10 3 1L	3 2 0	4 2 2 2+ 5 1 6 0 3 1	39.780 40.536 41.585 42.273 42.560		
2.1053 2.0927 2.0733 2.0401 2.0103	11 1 3 30 6	1 3 4	1 3 0 3+ 3 2 0 2+ 0 1+	42.924 43.196 43.621 44.368 45.060		
1.9902 1.9804 1.9662 1.9565	4 1 3 4 1	2 1 2	6 1+ 6 0 5 2 1 3 2 2+	45.541 45.780 46.130 46.372 46.685		
1.9095 1.8918 1.8792 1.8272 1.8080	4 5 2 14 1L	2 1 3	3 3 2 3+ 3 3 6 0+ 1 3	47.581 48.056 48.399 49.868 50.434		
1.7954 1.7770 1.7696 1.7568 1.7519	1L 5 6 9 6	0 4 3	3 3 6 2+ 5 1 2 3+ 4 3+	50.812 51.378 51.608 52.013 52.167		
1.7407 1.7364 1.7207 1.7028 1.6868	3 1 19 13 2	1 4 5	5 2 7 1 4 2 2 2+ 1 1	52.531 52.671 53.188 53.791 54.344		
1.6796 1.6477 1.6208 1.6019	4 5 1 17 4	4 1 0	3 3 1 3 5 3 8 0 4 3+	54.596 55.746 56.753 57.483 58.083		
continued						

Potassium Titanium Oxide Phosphate, $KTiOPO_{ij}$ (continued)

d(A)	I ^{rel}		hk	1	20(°)
1.5754	2	3	7	1	58.542
1.5715	3	1	7	2+	58.705
1.5670	3	2	5	3	58.890
1.5532	3	0	2	4	59.462
1.5489	6	4	3	3	59.644
1.5459 1.5371 1.5331 1.5218	10 2 1	6 1 2 2	4 8 8 7	0+ 1+ 0	59.773 60.152 60.322 60.817
		-	•	_	33.011

Potassium Zirconium Phosphate, $KZr_2(PO_{ij})_3$

Synonym				
Potassium zirconium orthophosphate	d(A)	I ^{rel}	hk1	20(°)
CAS registry no. 19527-82-3 Sample	6.393	11	0 1 2	13.840
	4.695	26	1 0 4	18.887
	4.363	65	1 1 0	20.338
	3.828	61	1 1 3	23.220
	3.194	37	0 2 4	27.909
The sample was made by heating a 1:2:3 molar mixture of KH ₂ PO ₄ , ZrO ₂ , and NH ₄ H ₂ PO ₄ up to 1150°C for 2 hrs. Color Colorless	2.944	100	1 1 6	30.331
	2.835	8	2 1 1	31.534
	2.7833	6	0 1 8	32.134
	2.5761	8	2 1 4	34.797
	2.5173	33	3 0 0	35.637
Symmetry classifications Crystal System Rhombohedral Space Group R3c (167) Pearson Symbol hR36	2.4518	1	1 2 5	36.622
	2.3454	5	2 0 8	38.347
	2.2828	3	1 0 10	39.441
	2.2714	7	1 1 9	39.647
	2.1916	2	2 1 7	41.156
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 Å 2θ Standards Si FP Scanned to 5.0° 2θ	2.1799	5	2 2 0	41.387
	2.1291	16	3 0 6	42.421
	2.1031	2	2 2 3	42.972
	2.0866	1	1 3 1	43.329
	2.0655	11	1 2 8	43.793
Crystallographic constants of this sample (Hexagonal axes) a = 8.7191 (3) Å	2.0221	8	0 2 10	44.783
	1.9953	3	0 0 12	45.420
	1.9769	8	1 3 4	45.866
	1.9129	30	2 2 6	47.493
	1.8645	3	0 4 2	48.805
$c = 23.9445 (12)$ $c/a = 2.7462$ $V = 1576.45 A^3$ $Z = 6$	1.8343	19	2 1 10	49.663
	1.8143	1	1 1 12	50.248
	1.7860	4	1 3 7	51.100
	1.7157	5	3 1 8	53.354
	1.6860	1	2 2 9	54.371
Density (calc.) = 3.201 g/cm ³ Figures of merit F ₃₀ = 133.5(.0058, 39) M ₂₀ = 101.4	1.6681	4	0 1 14	55.003
	1.6640	8	3 2 4	55.152
	1.6478	19	4 1 0	55.742
	1.6289	1	2 3 5	56.444
	1.6137	2	4 1 3	57.025
Comments The structure of KZr ₂ (PO ₄) ₃ was determined by Sljukic et al. (#1). The mean temperature of data collection was 23.7°C.	1.5965	3	0 4 8	57.697
	1.5763	10	1 3 10	58.507
	1.5637	7	3 0 12	59.025
	1.5578	9	2 0 14	59.270
	1.5474	1	2 1 13	59.709
Additional patterns PDF card 25-1206 Majling et al. (#2)	1.5230	12	4 1 6	60.765
	1.5093	1	3 1 11	61.376
	1.4990	1	1 1 15	61.846
	1.4824	3	4 0 10	62.613
	1.4673	1	1 2 14	63.332
References #1. Sljukic, M. et al. 2. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1969) 130,148. #2. Majling, J. et al.; (1979)	1.4641	9	0 5 4	63.488
	1.4533	5	3 3 0	64.016
	1.4298	1	3 3 3	65.194
	1.4034	2	3 2 10	66.578
	1.3914	1	0 2 16	67.232
Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia).	1.3882	1	2 4 4	67.404
	1.3655	2	3 3 6	68.683
	1.3541	1	5 1 1	69.339
	1.3302	1	0 0 18	70.775
	1.3248	7	3 1 14	71.103
	1		4.1	

continued

Potassium Zirconium Phosphate, $\mathrm{KZr}_2(\mathrm{PO}_4)_3$ (continued)

d(A)	_I rel	hk1	20(°)
1.3225	8	5 1 4	71.249
1.3048	1 L	1 5 5	72.366
1.2706	1	4 1 12	74.639
1.2673	1	0 4 14	74.865
1.2629	2	1 2 17	75.173
1.2606	4	5 1 7	75.335
1.2585	2	6 0 0	75.483

Silver Titanium Phosphate, AgTi2(PO4)3

2θ(°)

14.488

20.112

20.956

24.235

25:572

29.184

32.147

32.496

33.268

34.625

36.202

36.699

40.844

42.498

42.665

43.374

44.404

45.252

46.334

49.399

49.599

52.534

52.922

53:515 54.243

55.156

56.078

57.156

57.505

58.634

58.981

59.861

60.522

61.898 62.453

63.106 63.258 64.132

64.790 65.174

65.773 66.101

67.198 67:486 68.077 68.281

70.080 71.487

72.355 73.276

75.163

76.232

78.085

hkl 1

1 3 2

0

2 4

1 6

1 1

2 2 8

1

0 0

0 8

1 9

0 0+

0

2 8

0 12

0

3 7 12

3 1 2

2 4

1 0

3 5

1 3

1 14

4 8

3 10 2 7

0 12

4

1 10

4 1

7 6 1

2 1

6 4 2

8

2 4 0

0 1

Synonym Silver titanium orthophosphate	d(A)	I ^{rel}	
CAS moderny no	6.109	8	
CAS registry no.	,		0
30622-40-3	4.412	1	1
	4.236	60	1
	3.670	62	1
<u>Sample</u>	3.481	36	2
The sample was made by heating a 1:2:3 molar mixture			
of AgNO ₃ , TiO ₂ (anatase), and $(NH_{\parallel})_2HPO_{\parallel}$ at 750° C	3.058	2	0
overnight and at 1100°C for 40 hours.	2.782	100	1
over magne and as these a very to meanst	2.753	10	2
	2.691	18	1
0-1			
Color	2.589	9	0
Colorless		_	
	2.479	5	2
	2.447	33	3
Symmetry classifications	2.208	10	2
Crystal System Rhombohedral	2.1254	16	1
Space Group R3c (167)	2.1175	13	1
Pearson Symbol hR36	,	13	
rearson symbol into	0.00115	•	_
	2.0845	2	2
Data collection and analysis parameters	2.0385	13	3
Radiation CuKa ₁	2.0023	2	3
Wavelength 1.5405981 A	1.9580	22	1
20 Standard St	1.8434	2	0
Scanned to 4.0° 20	1	-	
bearing to 410 20	1.8365	27	2
o(I ^{rel}) ±5	1		
o(I ^{rei}) ±5	1.7406	3	4
	1.7287	1	2
	1.7110	3	1
Crystallographic constants of this sample	1.6897	2	1
(Hexagonal axes)			
a = 8.4734 (5) A	1.6639	3	2
		8	2
c = 22.114 (2)	1.6387		3
	1.6103	1	3
c/a = 2.6098	1.6014	2 2	4
•	1.5732	1	2
$V = 1375.03 \text{ A}^3$			
z = 6	1.5648	2	4
Density (calc.) = 3.540 g/cm^3	1.5438	2	0
50115×03 (02101) 31510 B. 0111	1.5285	5	ŏ
		_	
	1.4978	1	1
Figures of merit	1.4859	1	3
$F_{30} = 71.5(.0100, 42)$	i		
$M_{20}^{30} = 62.2$	1.4720	11	3
20	1.4689	12	4
	1.4509	6	2
Comments	1.4378	2	2
Isostructural with other titanium or zirconium	1.4302	2	3
double phosphates with alkalis (#1).			
The temperature of data collection was approximately	1.4187	1	0
25.0°C.	1.4124	2	3
	1.3920	2	1
	1.3868	2	3
Additional patterns	1.3761	1L	4
PDF card 25-768	1 : 37, 31		·
101 Out (1 2) 100	1 2725	E	4
	1.3725	5	1
	1.3416	1	4
Reference	1.3187	1	3
#1. Masse, R.	1.3049	1 L	1
Bull. Soc. Fr. Mineral. Cristallogr.(1970)	1.2908	1 L	2
93,500.			
	1.2630	1	1
	1.2479	4	3
*			

Sodium Germanium Fluoride, Na2GeF6

20(°)

17.334

19.580

20.722

26.267

28.669

30.127

34.271

34.961

38.652

39.789

40.532

41.471

42.191

43.690

45.261

46.907 49.865

50.683

53.488

54.089

55.432

56.666

57.797

59.087

59.361

61.360

61.801

62.603

62.885

64.273

65.336

65.598

68.945

69.115

70.120

72.189

72.699

73.608

74.183

74.919

75.646

76.055

77.043

77.268

77.615

78.314

79.310

82.083

82.894

83.765

84.318

85.732

86.204

87.074

87.652

2

continued

2

11.

4

Synonym Sodium hexafluorogermanate rel d(A) hkl CAS registry no. 5.112 9 0 0 1 21087-90-1 4.530 100 1 1 0 4.283 87 0 1 1 3.390 35 1 Sample 3.111 45 2 n The sample was obtained from STREM Chemicals, Inc. Newburyport, MA. 2.964 3 2 1 0 2.6144 3 0 0 13 2.5644 26 Color 2.3276 37 0 3 - 1 Colorless 2,2637 2 0 4 2.2239 1 1 2 Symmetry classifications 2.1757 1 3 Crystal System Hexagonal 2.1402 2 0 2 2 Space Group P321 (150) 2.0702 3 2 2 1 Pearson Symbol hP27 2.0019 4 3 1 1 Structure Type Na2SiF6 1.9354 3 2 1 2 1.8273 45 3 0 2 Data collection and analysis parameters 1.7997 1 2 0 3 CuKa₁ Radiation 1.7118 7 4 0 1.5405981 A Wavelength 1.6942 2 25 2 2 28 Standard W Scanned to $\sigma(I^{rel})$ 5.0° 28 1.6562 2 3 1 2 4 ±2 1.6231 8 1 1 1.5940 2 1 1.5622 Ш 2 Λ 3 Crystallographic constants of this sample 4 1.5556 0 a = 9.0583 (2) A c = 5.1088(2)1.5097 12 3 0 3 1.5000 5 5 0 c/a = 0.56401.4826 2 n 5 1.4767 8 2 1 3 $V = 363.03 A^3$ 1.4481 1L 3 3 1 Z = 3Density (calc.) = 3.191 g/cm^3 1.4271 13 3 0 3 1.4220 4 Ш 1 2 1.3609 4 2 2 3 Figures of merit 1.3580 3 5 1 $F_{30} = 126.4(.0058, 41)$ $M_{20} = 114.6$ 1.3410 П 3 1 6 0 1.3075 3 n 1.2996 1L 3 3 2 1.2858 1L ы 0 Comments 3 0 4 The structure was originally determined by Cipriani 1.2773 11. n (#1). Zalkin et al. (#2) found that the earlier 1.2665 1L 6 0 space group was incorrect. 1,2562 5 2 0 The mean temperature of data collection was 24.9°C. 1.2504 1 4 3 1 1.2368 3 3 3 Additional patterns 1.2338 5 Cox (#3) 1.2291 1 1 5 1.2199 1L 2 1 1,2071 4 References 1 3 1 1.1732 1L 2 1 4 #1. Cipriani, C. 6 0 2 Rend. Soc. Mineral. Ital. (1955) 11,58. 1.1637 3 5 1.1538 1L 0 3 #2. Zalkin, A. et al. Acta Crystallogr. (1964) 17,1408. 4 1.1477 1 3 0 #3. Cox, B. 1.1323 4 h 0 J. Chem. Soc. (1954) 3251. 1L 5 2 2 1.1273 1.1183 4 2 1L 3

1.1124

Sodium Germanium Fluoride, Na₂GeF₆ (continued)

d(A)	Irel	hkl	20(°)
1.1055	1L	4 4 1	88.339
1.1014	1L	3 1 4	88.758
1.0948	1	5 3 1	89.433
1.0855	1	5 1 3	90.408
1.0834	1	6 1 2	90.637
1.0701	1L	4 0 4	92.082
1.0641	1	6 2 1	92.759
1.04171	1L	3 2 4	95.370
1.03912	1L	7 1 0	95.684
1.03509	1L	4 4 2	96.178
1.02815	1L	4 3 3	97.044
1.02627	1	5 3 2	97.282
1.02375	1L	4 1 4	97.602
1.01836	1L	7 1 1	98.298
1.01328	1	1 0 5	98.964
1.01078	1L	5 2 3	99.296
0.99685	1L	1 1 5	101.200
0.98847	1	6 3 0	102.390
0.98550	1	5 4 1	102.821
0.97897	1	6 1 3	103.784
0.97501	1	3 3 4	104.379
0.97038	1L	6 3 1	105.086
0.96603	1L	2 1 5	105.762
0.96243	2	7 1 2	106.331
0.94205	1	7 2 1	109.708
0.93608	1L	5 3 3	110.753
0.92168	1	6 3 2	113.390
0.91673	1L	6 2 3	114.337
0.91366	1	6 0 4	114.935
0.90589	1L	5 5 0	116.494
0.90362	1L	8 1 1	116.961

Sodium Magnesium Hydrogen Phosphate, Na₃MgH(PO₄)₂

20(0)

13.001

19.098

19.931

22.934 23.421

23.733

23.989

26.110

32.134

32.931

33.196

34.299

34.651

35.343

36.170

36.889

38.812 39.229

39.616

40.539

41.007

41.350

41.931 42.567

42.900

43.333

43.469

43.930

44.509

44.963

45.087

46.839

47.903

48.561

49.120

51.665

51.953

53.238

53.736

54.389

55.030

55.940

56.540

57.084

57.366

57.580

58.097

59.801

59.989

60.430

60.802

60.999

61.469

61.950

62.623

-2 2

continued

0 1

3

3+

Synonym Sodium magnesium hydrogen orthophosphate rel d(A) hk1 Sample 6.80 0 13 The sample was prepared by the method of Bassett and 4.643 3 1 0 0 Bedwell (#1): 3 grams of MgCl $_2$ in about 50 ml of H $_2$ O were added to a solution of 39.64 grams of Na $_2$ HPO $_4$ 4.451 -1 0 1 3 3.875 37 -1 1 0+ in H₂O. The total volume was diluted to 150 ml. 3.795 14 0 1 The resultant precipitate slowly crystallized after standing in a stoppered flask at 55°C for 3 days. 3.746 48 -1 -13.707 16 -1 1 1 3.410 36 0 2 0 Color 2.783 55 0 -2 1 Colorless 2.718 50 1 2 0 2,697 100 1 0 Symmetry classifications 2.612 50 -2 0 1 Crystal System Triclinic 2.587 47 -1 0 2 P1 (1) Space Group 2.538 3 1 -1 1 2.481 Pearson Symbol aP15 1 1L 1 1 4 2.435 -2 -11 Data collection and analysis parameters 2.318 18 2 0 Ω Radiation CuKα₁ 2.295 19 0 0 2 1.5405981 A 2.273 24 0 3 0 Wavelength 20 Standard Si 2.223 3 -2 0 2 5.0° 28 Scanned to $o(I^{rel})$ 2 0 -1 2 ±2 2.199 2.182 2 2 1 0 2.153 3 0 1 2+ Crystallographic constants of this sample 2.1221 -2 -1 2 a = 5.2305 (9) A2,1064 -2 1 2 b = 6.8224 (8)c = 5.1774(7)2.0864 Ш -1 -2 2 $\alpha = 91.563 (11)^{\circ}$ 2.0802 3 -2 2 1 2.0594 4 $\beta = 117.502 (12)$ -1 3 0 Y = 90.439 (12)2.0340 3 -1 -3 1+ 2.0145 15 -1 3 1 a/b = 0.7667c/b = 0.75892.0092 9 0 3 1.9381 28 -2 2 0 $V = 163.77 A^3$ 1.8975 Ц 2 2 0 -2 -2 1.8733 45 2+ Z = 1Density (calc.) = 2.882 g/cm^3 1.8533 -2 2 2 1 1.7678 1 1 -3 1 1.7587 1L 1 0 2 Figures of merit $F_{30} = 60.6(.0105, 47)$ 1.7192 8 -2 3 1 1.7044 18 0 0 $M_{20} = 51.4$ 1.6855 6 -1 3 2 1.6674 1L -1 -1 3 Comments The cell was obtained by the use of Visser's program. 1.6424 8 -2 3 0+ 1.6264 -2 3 1L The mean temperature of data collection was 24.3°C. 1.6122 -1 4 0 2 3 0 1.6049 2 Additional patterns 1.5995 2 -2 -3 2 PDF card 15-124 8 1 -2 1.5864 1.5452 20 -1 -2 3 1.5408 2 2 11 1 Reference 1.5307 12 0 Ω 3 #1. Bassett, H. and Bedwell, W.L. J. Chem. Soc. (1933) 877. 4 -2 -2 1.5222 3 -3 2 2 1.5177 1 3 1.5073 6 2

1.4967

1.4822

3

3

Sodium Magnesium Hydrogen Phosphate, $Na_3MgH(PO_{ij})_2$ (continued)

d(A)	Irel	hkl	20(°)
1.4633	2	1 -4 1	63.525
1.4404	8	-1 -4 2	64.660
1.4315	6	-2 4 1	65.108
1.4232	10	-2 -4 1	65.535
1.4195	7	1 4 1	65.729
1.4066	5	-1 4 2	66.411

Sodium Rhenium Oxide, NaReO4

Synonym Sodium perrhenate							
CAS registry no. 13472-33-8							
Sample The sample was obtained from STREM Chemical, Inc., Newburyport, MA.							
Colorless							
Symmetry classifications Crystal System Tetragonal Space Group I4 ₁ /a (88) Pearson Symbol tI24 Structure Type CaWO ₄							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Crystallographic constants of this sample a = 5.37330 (16) Å c = 11.7428 (5)							
c/a = 2.1854 V = 339.04 A ³ Z = 4 Density (calc.) = 5.352 g/cm ³							
Figures of merit F30 = 131.4(.0067, 34) M20 = 152.6							
Comments The structure was determined by Beintema (#1). The temperature of data collection was approximately 25.0°C.							
Reference #1. Beintema, J. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1937) 97,300.							

d(A)	Irel	hkl	20(°)
4.884	81	1 0 1	18.149
3.188	100	1 1 2	27.963
3.163	36	1 0 3	28.190
2.935	13	0 0 4	30.431
2.686	15	2 0 0	33.329
2.4441	1	2 0 2	36.742
2.3541	2 3	2 1 1	38.199
2.3235	2	1 1 4	38.723
2.1523	6	1 0 5	41.942
2.0469	12	2 1 3	44.213
1.9818 1.8997 1.7705 1.7400 1.6797	25 10 4 10	2 0 4 2 2 0 3 0 1 1 1 6 2 1 5	45.745 47.843 51.581 52.553 54.591
1.6325	24	3 1 2	56.309
1.6285	15	3 0 3	56.459
1.6015	8	1 0 7	57.501
1.5950	12	2 2 4	57.758
1.4783	5	3 2 1	62.806
1.4678	2	0 0 8	63.307
1.4243	3	3 0 5	65.480
1.3926	4	3 2 3	67.166
1.3753	5	2 1 7	68.123
1.3691	1L	1 1 8	68.478
1.3434 1.3096 1.2953 1.2880 1.2831	2 1L 3 5	4 0 0 4 0 2 4 1 1 2 0 8 3 1 6	69.973 72.057 72.982 73.460 73.789
1.2680	1	1 0 9	74.815
1.2582	2	3 2 5	75.502
1.2381	6	3 3 2	76.947
1.2364	3	4 1 3	77.074
1.2245	5	3 0 7	77.965
1.2218 1.2017 1.1771 1.1617	9 3 1L 2 2	4 0 4 4 2 0 4 2 2 2 2 8 2 1 9	78.169 79.735 81.747 83.071 84.403
1.1395	1	4 1 5	85.065
1.1220	2	1 1 10	86.715
1.1142	2	3 2 7	87.477
1.1119	4	4 2 4	87.702
1.0702	2	4 3 1	92.067
1.0634	2	3 3 6	92.836
1.0546	1	3 0 9	93.848
1.0470	1	1 0 11	94.736
1.0372	6	5 1 2	95.917
1.0363	2	4 3 3	96.031
1.0290	1	4 1 7	96.936
0.99413	1	5 2 1	101.583
0.99098	1	4 0 8	102.030
0.98172	1L	3 2 9	103.375
0.97856	1	0 0 12	103.845

Strontium Chromium Oxide, SrCrO4

Synonym				
Strontium chromate	d(A)	Irel	hkl	20(°)
CAS registry no. 7789-06-2 Sample	5.041	3	1 1 0	17.580
	4.909	4	0 1 1	18.055
	3.696	18	0 2 0	24.059
	3.451	62	2 0 0	25.799
	3.259	100	1 2 0	27.346
A sample of strontium chromate was heated at 500°C for 2 days. Color Brilliant yellow	3.127	13	2 1 0	28.523
	3.0049	94	0 1 2	29.707
	2.9940	48	-1 1 2	29.818
	2.8023	2	1 2 1	31.910
	2.7092	21	-2 0 2	33.037
Symmetry classifications Crystal System Monoclinic Space Group P2 ₁ /n (14) Pearson Symbol mP24	2.5658	11	1 1 2	34.941
	2.5440	20	-2 1 2	35.250
	2.5226	7	2 2 0	35.559
	2.4992	2	-2 2 1	35.904
	2.4509	2	-1 2 2	36.636
Data collection and analysis parameters Radiation CuKα ₁ Wavelength 1.5405981 Å 20 Standard Si Scanned to 4.0° 2θ	2.3451	7	-3 0 1	38.353
	2.3215	4	1 3 0	38.758
	2.3081	10	0 3 1	38.991
	2.2432	20	-1 3 1	40.167
	2.2352	16	-3 1 1	40.318
Crystallographic constants of this sample a = 7.0897 (4) A b = 7.3939 (4)	2.1971 2.1383 2.0629 2.0441 2.0318	1 2 38 3 3	3 1 0 1 3 1 2 1 2 3 0 1	41.047 42.230 43.852 44.275 44.559
c = 6.7553 (6) β = 103.197 (5)° a/b = 0.9589 c/b = 0.9136	2.0053 1.9936 1.9688 1.9532 1.8855	2 4 36 17 3	2 3 0 -2 3 1 -1 3 2 3 2 0 0 2 3	45.179 45.459 46.065 46.454 48.225
$V = 344.76 \text{ A}^3$ Z = 4 Density (calc.) = 3.923 g/cm ³	1.8484 1.8435 1.8311 1.8063 1.7855	20 15 24 1 12	0 4 0 -3 2 2 1 3 2 -3 0 3 1 4 0	49.257 49.397 49.753 50.485 51.114
Figures of merit F ₃₀ = 113.2(.0049, 54) M ₂₀ = 87.5 Comments	1.7497	1	-1 4 1	52.240
	1.7255	4	4 0 0	53.027
	1.6954	8	-4 0 2	54.044
	1.6809	8	4 1 0	54.550
	1.6667	2	3 1 2	55.055
The structure was determined by Pistorius and Pistorius (#1). Pistorius and Pistorius (#1) suggest a second form of SrCrO ₄ which is orthorhombic and was formed after heating to 885°C and cooling at 22°C. The mean temperature of data collection was 23.2°C.	1.6527 1.6294 1.6103 1.5977 1.5525	3 2 8 5	-4 1 2 2 4 0 -3 3 2 -2 1 4+ 3 2 2	55.562 56.424 57.158 57.651 59.493
Additional patterns PDF card 15-368	1.5412	2	-4 2 2	59.975
	1.5367	5	-1 2 4+	60.169
	1.5329	2	2 2 3	60.331
	1.5272	1	-2 4 2	60.582
	1.4552	1L	4 2 1	63.924
#1. Pistorius, C.W.F.T. and Pistorius, M.C. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.(1962) 117,259.	1.4516	1L	-3 4 1	64.098
	1.4410	3	3 4 0	64.629
	1.4323	1	3 0 3	65.069
	1.4262	1L	-1 4 3	65.380
	1.4083	8	1 2 4	66.318
		con	tinued	

Strontium Chromium Oxide, $SrCrO_{\mbox{\scriptsize η}}$ (continued)

d(A)	I ^{rel}		hk	1	20(°)
1.4053	10	3	3	2	66.480
1.4018	5	4	0	2	66.666
1.3952	6	-3	4	2	67.024
1.3925	4	- 5	1	1	67.173
1.3775	2	4	1	2	68.004

Strontium Titanium Phosphate, SrTi4(PO4)6

Synonym

Strontium titanium orthophosphate

Sample

The sample was made by heating a 1:4:6 molar mixture of $SrCO_3$, TiO_2 (anatase), and $(NH_4)_2HPO_4$ at $500^{\circ}C$. It was then reground and heated to 1200°C overnight.

Color

Colorless

Symmetry classifications
Crystal System Rhombohedral Space Group R**

Pearson Symbol hR35

Data collection and analysis parameters

CuKα₁ 1.5405981 A Radiation Wavelength 2θ Standard Si 4.0° 20 Scanned to o(Irel) ±3

Crystallographic constants of this sample

(Hexagonal axes) a = 8.2847(3) A

c = 22.6000 (12)

c/a = 2.7279

 $V = 1343.36 A^3$

Z = 3

Density (calc.) = 3.149 g/cm^3

Figures of merit

 $F_{30} = 212.0(.0040, 35)$ $M_{20} = 137.7$

Comments

R** by analogy with other similar titanium phosphates. The structure is similar to ${\rm NaZr}_2({\rm PO}_4)_3$. The temperature of data collection was approximately 25.0°C.

Į		mal				
1	d(A)	$_{ m I}$ rel		hk	1	20(°)
1						
ı	7.531	7	0	0	3	11.742
1	6.840	20	1	0	1	12.932
	6.058	2	0	1	2	14.611
	4.439	11	1	0	4	19.988
	4.144	39	1	1	0	21.424
	3.824	8	0	1	5	23.240
	3.766	2	0	0	6	23.605
	3.630	100	1	1	3	24.505
	3.543	5	0	2	1	25.116
	3.419	6	2	0	2	26.039

d(A)	I ^{rel}	hkl	20(°)
3.0292	20	0 2 4	29.463
2.9446	3	1 0 7	30.330
2.8104	19	2 0 5	31.815
2.7871	79	1 1 6	32.089
2.6928	17	2 1 1	33.244
2.6374	8	1 2 2	33.963
2.6289	8	0 1 8	34.076
2.4441	2	2 1 4	36.742
2.3914	17	3 0 0	37.582
2.3249	6	1 2 5	38.698
2.2789	9	3 0 3	39.511
2.2192	4	2 0 8	40.621
2.1476	11	1 1 9	42.039
2.0766	10	2 1 7	43.547
2.0190	9	3 0 6	44.857
1.9971	4	2 2 3	45.376
1.9823	2	1 3 1	45.734
1.9753	2	0 1 11	45.904
1.9563	13	1 2 8	46.376
1.9119	2	0 2 10	47.520
1.8835	4	0 0 12	48.282
1.8773	4	1 3 4	48.450
1.8216	6	3 1 5	50.033
1.8146	24	2 2 6	50.237
1.7879	1	4 0 1	51.041
1.7825	1	2 0 11	51.207
1.7712	1	0 4 2	51.558
1.7359	6	2 1 10	52.688
1.7095	2	4 0 4	53.566
1.6937	4	1 3 7	54.103
1.6894	4	1 0 13	54.255
1.6668	1	0 4 5	55.051
1.6373	2	1 2 11	56.129
1.6267	9	3 1 8	56.528
1.5978	2	2 2 9	57.645
1.5803	3	3 2 4	58.345
1.5749	3	0 1 14	58.562
1.5654	13	4 1 0	58.955
1.5467	2	2 3 5	59.737
1.5329	2	4 1 3	60.332
1.5143	3	0 4 8	61.152
1.4935	5	1 3 10	62.099
1.4795	5	3 0 12	62.750
1.4721	9	2 0 14	63.102
1.4664	7	3 2 7	63.377
1.4458 1.4321 1.4295 1.4160 1.4053	9 1 1 1	4 1 6 0 5 1 3 1 11 1 1 15 4 0 10	64.386 65.080 65.211 65.913 66.479
1.3911 1.3873 1.3580 1.3512 1.3092	2 4 1L 1	0 5 4 1 2 14 3 3 3 0 4 11 1 3 13	67.245 67.458 69.115 69.514 72.081
1,2989	1	4 2 5	72.748
1,2964	2	3 3 6	72.908
1,2865	2	5 1 1	73.560

CAS registry no. 12007-07-7

Sample

The sample which was obtained from STREM Chemicals, Inc. Newburyport, MA had approximately 7% Ta3B1 and TaB₂ present. Samples from several other sources were examined; they all had extra phases present.

Color

Very dark gray

Symmetry classifications

Crystal System Orthorhombic Space Group Cmcm (63) Pearson Symbol oC8 Structure Type CrB

Data collection and analysis parameters

Radiation CuKa₁ Wavelength 1.5405981 A 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 20 ±2

Crystallographic constants of this sample

a = 3.28013 (12) Ab = 8.6708(4)c = 3.1557(2)

a/b = 0.3783c/b = 0.3639

 $V = 89.75 A^3$ Z = 4

Density (calc.) = 14.191 g/cm^3

Figures of merit

 $F_{30} = 83.7(.0085, 42)$ $M_{20} = 162.5$

Comments

The structure was studied by Kiessling (#1). The mean temperature of data collection was 25.0°C.

Additional patterns

PDF 6-525

Reference

#1. Kiessling, R.

Acta Chem. Scand. (1949) 3,603.

d(A)	Irel	hi	<1	20(°)
4.336	7	0 2	0	20.467
3.066	50	1 1	0	29.100
2.551	91	0 2	1	35.156
2.1989	100	1 1	1	41.013
2.1675	89	0 4	0	41.635
1.7865	30	0 4	1	51.085
1.6397	14	2 0	0	56.040
1.5777	17	0 0	2	58.449
1.5336	2	2 2	0+	60.304
1.4828	2	0 2	2	62.597
1.4451	5	0 6	0	64.421
1.4030	15	1 1	2	66.602
1.3791	68	1 5	1+	67.909
1.3137	9	0 6	1	71.796
1.3079	11	2 4	0	72.167
1.2758 1.2082 1.1587 1.1371 1.0997	32 6 8 8	1 3 2 4 1 7 2 0 1 5	2+ 1 0 2 2+	74.283 79.220 83.331 85.283 88.930
1.0879	1	1 7	1	90.158
1.0846	5	3 1	0	90.501
1.0658	2	0 6	2	92.567
1.0254	14	2 6	1	97.395
1.0227	15	3 3	0	97.736
1.0070	6	2 4	2	99.807
0.9951	7	1 1	3	101.447
0.9728	1	3 3	1	104.722
0.9464	3	1 3	3	108.962
0.93390	8	1 7	2	111.141
0.92446	1	1 9	0	112.867
0.90417	1	2 8	0	116.847
0.89367	5	2 6	2	119.073
0.88709	9	1 9	1	120.534
0.86930	5	2 8	1	124.778
0.86741	14	1 5	3	125.258
0.85818	5	3 3	2	127.688
0.85045	2	0 6	3	129.851
0.82006	5	4 0	0	139.877
0.81969	2	2 4	3+	140.017

Tantalum Carbide, TaC

CAS registry no. 12070-06-3

Sample

The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Dark brownish gray

Symmetry classifications

Crystal System Cubic

Fm3m (225)

Space Group

Pearson Symbol cF8

Structure Type NaCl

Data collection and analysis parameters

Radiation

CuKa₁

Wavelength

1.5405981 A

20 Standard

Ag

Scanned to $\sigma(I^{rel})$

5.0° 20

±1

Crystallographic constants of this sample

a = 4.4547 (2) A

 $V = 88.40 A^3$

Z = 4

Density (calc.) = 14.498 g/cm^3

Figures of merit

 $F_{10} = 97.4(.0103, 10)$ $M_{10} = 480.2$

The structure was studied by van Arkel (#1).

The mean temperature of data collection was 24.0°C.

Additional patterns

PDF card 19-1292

Becker and Ebert (#2)

Schwartz and Summa (#3)

References

#1. van Arkel, A.E.

Physica (The Hague)(1924) 4,286.

#2. Becker, K. and Ebert, F.

Z. Phys.(1925) 31,268. #3. Schwartz, M.V. and Summa, O.

Metallwirtsch., Metallwiss., Metalltech.(1933)

12,298.

2,572 100 1 2,228 70 2 0	1 1 34.856
1.5750 41 2 1 1.3429 41 3	0 0 40.461 2 0 58.561 1 1 70.005 2 2 73.611
1.1139 6 4 0 1.0219 10 3 0.9960 12 4	0 0 87.503 3 1 97.845 2 0 101.314 2 2 115.782 1 1 127.922

Titanium Boride, TiB2

Synonym

Titanium diboride

CAS registry no.

12045-63-5

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI.

Color

Dark gray

Symmetry classifications

Crystal System Hexagonal Space Group P6/mmm (191)

Pearson Symbol hP3

Data collection and analysis parameters

Radiation CuKa₁ Wavelength 1.5405981 A 20 Standard Si Scanned to o(I^{rel}) 4.0° 20 ±4

Crystallographic constants of this sample

a = 3.03034 (8)

c = 3.22955 (8)

c/a = 1.0657

 $V = 25.68 A^3$

Z = 1

Density (calc.) = 4.495 g/cm^3

Figures of merit

 $F_{21} = 172.2(.0057, 21)$ $M_{20} = 487.7$

Comments

The structure was determined by Norton et al. (#1). The temperature of data collection was approximately

25.0°C.

Additional patterns

PDF card 8-121

Reference

#1. Norton, J.T. et al.

Trans. Am. Inst. Min. Metall. Pet. Eng. (1949)

185,749.

d(A)	Irel		h	k1	20(°)
3.230 2.6247 2.0370 1.6145 1.5153	22 55 100 12 27	0 1 1 0	0 0 0 0	1 0 1 2 0	27.598 34.133 44.438 56.992 61.106
1.3751 1.3717 1.3122 1.2156 1.1049	16 18 7 16 14	1 1 2 2	0 1 0 0	2 1 0 1 2	68.134 68.328 71.895 78.642 88.400
1.0766 1.01833 0.99589 0.99193 0.94821	1L 5 8 6 13	0 2 1 2 2	0 0 0 1 1	3 2 3 0 1	91.367 98.302 101.334 101.895 108.656
0.87753 0.87472 0.84523 0.84437 0.83229	3 5 7 3 5	1 3 2 3 2	1 0 1 0	3 0 2 1 3	122.757 123.436 131.386 131.644 135.492
0.80739	1	0	0	4	145.131

Titanium Silicide, TiSi2

Synonym

Titanium disilicide

CAS registry no. 12039-83-7

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI. The sample contained approximately 5% TiSi as a second phase.

Spectrographic analysis (wt. %, CERAC, Inc.)

0.1-0.6 Fe 0.1-0.3 Al

0.01-0.1 V

0.005-0.05 Ca, Co, Ni, Zr 0.001-0.01 Bi, B, Cr, Cu, K, Mn

Color

Very dark gray

Symmetry classifications

Crystal System Orthorhombic Fddd (70) Space Group Pearson Symbol oF24

Data collection and analysis parameters

CuKa₁ Radiation Wavelength 1.5405981 A 20 Standard Ag 5.0° 20 Scanned to o(Irel) ±2

Crystallographic constants of this sample

a = 8.2687 (5) Ab = 8.5534(6)

e = 4.7983(3)

a/b = 0.9667

c/b = 0.5610

 $V = 339.36 A^3$

Z = 8

Density (calc.) = 4.074 g/cm^3

Figures of merit $\overline{F}_{30} = 71.1(.0100, 42)$ $M_{20} = 126.6$

Comments

The structure was determined by Laves and Walbaum (#1). It was later confirmed by Jeitschko (#2). Cotter et al. (#3) reported that TiSi2 is dimorphous. with the resultant structure depending on the method of synthesis.

The mean temperature of data collection was 23.5°C.

Additional patterns

PDF card 31-1405

PDF card 33-1384

Reference

#1. Laves, F. and Walbaum, H.J. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. (1939) 101,78.

#2. Jeitschko, W. Acta Crystallogr., Sect. B(1977) 33, 2347.

#3. Cotter, P.G. et al. J. Am. Ceram. Soc. (1956) 39,11.

I ^{rel}	hkl	20(°)
12	1 1 1	23.814
10	2 2 0	30.048
5	1 3 1	38.276
100	3 1 1	39.106
43	. 0 4 0	42.231
70	0 2 2	43.184
2 L	4 0 0	43.770
45	3 3 1	49.730
2	1 5 1	58.285
2	1 1 3	59.849
3	5 1 1	60.117
3	2 4 2	62.308
2	4 4 0	62.446
2L	4 2 2	63.188
15	3 5 1	67.241
14	3 1 3	68.675
2L	2 6 0	69.730
11	6 2 0	71.930
9	3 3 3	76.465
12	0 6 2	77.870
7	0 0 4	79.889
10	6 0 2	80.262
2L	1 7 1	82.180
2L	2 2 4	87.640
5	3 7 1	90.150
5	3 5 3	91.477
4	0 8 0	92.167
2	5 3 3	92.534
2	4 6 2	93.905
6	0 4 4	94.840
7	6 4 2	95.207
2	4 0 4	95.861
2	8 0 0	96.356
2	6 6 0	102.046
2L	8 2 2	112.432
2	3 7 3+	114.512
2	7 3 3	117.401
3	9 1 1	118.281
3	6 2 4	120.962
3	4 8 2+	121.468
	12 10 5 100 43 70 2L 45 2 2 2 15 14 2L 11 9 12 7 10 2L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3	12

Tungsten Boride, 6-WB

CAS registry no. 12007-09-9

Sample

The sample was obtained from the Materials Research Corp., West Nyack, NY.

Color

Dark gray

Symmetry classifications

Crystal System Tetragonal Space Group I41/amd (141) Pearson Symbol tI16

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 20 Standard W. Scanned to $\sigma(I^{rel})$ 4.0° 20 ±4

Crystallographic constants of this sample

a = 3.11655 (11) A

c = 16.9101 (8)

c/a = 5.4259

 $V = 164.25 \text{ A}^3$

Z = 8

Density (calc.) = 15.744 g/cm^3

Figures of merit

 $F_{30} = 77.4(.011, 35)$ $M_{20} = 168.7$

Comments

The structure was determined by Kiessling (#1). There is an orthorhombic high temperature form (#2). The temperature of data collection was approximately 25.0°C.

Additional patterns

PDF card 6-0635

References

#1. Kiessling, R.

Acta Chem. Scand. (1947) 1,893.

#2. Post, B. and Glasser, F.W.

J. Chem. Phys. (1952) 20,1050.

d(A)	Irel	hkl	20(°)
4.227	11	0 0 4	21.002
3.063	20	1 0 1	29.127
2.727	90	1 0 3	32.813
2.292	87	1 0 5	39.282
2.133	100	1 1 2	42.338
2.114	34	0 0 8	42.741
1.9095	29	1 0 7	47.583
1.7362	18	1 1 6	52.676
1.6095	1	1 0 9	57.189
1.5581	26	2 0 0	59.260
1.4625 1.4094 1.3892 1.3788	2 5 4 5 19	2 0 4 0 0 12 2 1 1 1 0 11 2 1 3	63.567 66.262 67.349 67.930 69.405
1.3416	35	1 1 10	70.080
1.2884	23	2 1 5	73.433
1.2541	20	2 0 8	75.788
1.2073	12	2 1 7	79.291
1.2005	10	1 0 13	79.830
1.1016	7	2 2 0	88.731
1.0659	1	2 2 4	92.548
1.0600	7	1 0 15	93.218
1.0569	5	0 0 16	93.577
1.0451	7	2 0 12	94.958
1.0366 1.0324 1.0217 0.9929 0.9790	1L 3 3 5	3 0 1 2 1 11 3 0 3 3 0 5 3 1 2	95.999 96.510 97.871 101.755 103.778
0.9773	17	2 2 8	104.038
0.9543	2	3 0 7	107.637
0.9511	2	2 1 13	108.178
0.9475	10	1 0 17	108.774
0.9303	5	3 1 6	111.788
0.87637	13	2 1 15	123.036
0.87464	11	2 0 16	123.455
0.86805	5	2 2 12	125.094
0.86421	13	1 1 18	126.082
0.85435	6	3 2 3	128.743
0.85151	21	3 1 10	129.547

Tungsten Carbide, a-W2C

CAS registry no.

12070-13-2

Sample

The sample was obtained from CERAC, Inc., Milwaukee, WI.

Color

Dark gray

Symmetry classifications

Crystal System Hexagonal Space Group P3m1 (164) Pearson Symbol hP3

Data collection and analysis parameters

Radiation $CuK\alpha_1$ Wavelength 1.5405981 Å 2θ Standard W Scanned to 5.0° 2θ $\sigma(I^{rel})$ ± 1

Crystallographic constants of this sample

a = 2.99704 (9) Ac = 4.7279 (3)

c/a = 1.5775

 $V = 36.78 \text{ A}^3$

7 = 1

Density (calc.) = 17.144 g/cm^3

Figures of merit

 $F_{22} = 93.0(.0085, 28)$ $M_{20} = 250.2$

Comments

The structure was determined by Metcalfe (#1). β -W₂C, with an orthorhombic superlattice cell 4 times the volume of the hexagonal cell above, was made by Rudy and Windisch (#2) by quenching . W₂C from above 2000°C. The mean temperature of data collection was 23.5°C.

Additional patterns

PDF card 2-1134 PDF card 20-1315

References

#1. Metcalfe, A.G.

J. Inst. Met.(1947) 73,591.

#2. Rudy, E. and Windisch, S.

J. Am. Ceram. Soc.(1967) 50,272.

d(A)	I ^{rel}	hk1	20(°)
2.596 2.364 2.2757 1.7478 1.4986	25 22 100 17 14 14	1 0 0 0 0 2 1 0 1 1 0 2 1 1 0	34.524 38.029 39.569 52.300 61.861 69.769 72.839
1.2657 1.2514 1.1821	12 10 2	1 1 2 2 0 1 0 0 4 2 0 2	74.979 75.984 81.328
1.0756 1.0018 0.9811 0.9607	3 2 3 1L 5	1 0 4 2 0 3 2 1 0 2 1 1	91.472 100.510 103.472 106.614
0.92812 0.90609 0.88840 0.87384 0.86514	3 1 2 1 1	1 1 4 2 1 2 1 0 5 2 0 4 3 0 0	112.189 116.452 120.239 123.650 125.841
0.83287 0.81244	3 2	2 1 3 3 0 2	135.299 142.932

Vanadium Carbide, V8C7

CAS registry no. 1207-10-9

Sample

The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Very dark gray

Symmetry classifications

Crystal System Cubic Space Group P4, 32 (213) Pearson Symbol cP60

Data collection and analysis parameters

CuKa₁ Radiation 1.5405981 A Wavelength 20 Standards FP Si Scanned to $\sigma(I^{\text{rel}})$ 5.0° 20 ±1

 $\frac{\text{Crystallographic constants of this sample}}{\text{a = 8.33409 (11) Å}}$

 $V = 578.86 \text{ A}^3$ Z = 4

Density (calc.) = 5.641 g/cm^3

Figures of merit

 $F_{30} = 64.9(.0091, 51)$ $M_{20} = .96.0$

Comments

The symmetry classification was given by de Novion et al. (#1). The stronger reflections can be indexed on a subcell, NaCl type, having a=4.167 A. The mean temperature of data collection was 22.2°C.

Additional patterns

PDF card 23-1468 PDF card 25-1002 Kordes (#2)

References

#1. de Novion, C. et al.

C. R. Seances Acad. Sci., Ser. B(1966)

263B,775.

#2. Kordes, D.

Phys. Status Solidi (1969) <u>26</u>,K103

d(A)	Irel		hk.	1	20(°)
5.893 4.814 3.728 3.404 2.514	3 2 4 2 1L	1 1 2 2 3	1 1 1 1	0 1 0 1	15.022 18.414 23.848 26.157 35.690
2.405 2.311 2.2282 2.0829 1.9642	94 3 1L 100 1	2 3 3 4 3	2 2 0 3	2 0 1 0	37.358 38.943 40.450 43.410 46.178
1.8180 1.7766 1.6346 1.6037 1.5475	1 1L 1 1	4 3 5 5 5	2 3 1 1 2	1 2 0 1 0	50.137 51.389 56.230 57.414 59.707
1.5212 1.4733 1.2860 1.2563 1.2425	2 56 1 34 4	5 4 5 6 6	2 4 4 2 3	1 0 1 2 0	60.846 63.045 73.595 75.634 76.627
1.2287 1.2028 1.1785 1.1670 1.1446	1L 17 1L 1 2	6 4 5 5 7	3 4 5 5 2	1 4 0 1 0	77.645 79.649 81.634 82.612 84.593
1.1340 1.0944 1.0851 1.0670 1.0585	1 1L 1L 1 1L	7 7 7 6 6	2 3 5 5	1 0 1 0	85.576 89.469 90.450 92.424 93.395
1.0419 1.0258 1.0183 1.0034 0.9688	9 1L 1L 2	8 7 7 7 7	0 4 3 4 5	0 1 3 2 0	95.351 97.337 98.303 100.299 105.324
0.9624 0.9560 0.9498 0.9317 0.92032	1 15 1 25 1L	7 6 8 8 9	5 6 3 4 1	1 2 2 0 0	106.341 107.369 108.389 111.530 113.648
0.90396 0.89870 0.87841 0.86413 0.85962	3 2 1 2 2	7 7 7 8 9	6 6 5 5 3	0 1 4 2	116.890 117.990 122.547 126.103 127.298
0.85059 0.84188 0.83763 0.82926 0.82517	22 1 1L 5 1L	8 7 7 10 10	4 7 7 1	4 0 1 0 1	129.810 132.406 133.741 136.526 137.975
0.80951 0.80569 0.80196	1L 1 14	9 9 10	5 5 2	0 1 2	144.188 145.910 147.693

Vanadium Nitride, VN

CAS registry no. 24646-85-3

Sample
The sample was obtained from CERAC, Inc., Milwaukee, WI.

Spectrographic analysis (wt.%, CERAC, Inc.)
0.01-0.1 Al, Si, Zr
0.005-0.05 Fe, Mg

0.001-0.01 Bi, Ca, Cr, Cu, Mn, Nb, Ni, Sn, Ti

Color

Brownish black

Symmetry classifications

Crystal System Cubic Space Group Fm3m (225)

Pearson Symbol cF8 Structure Type NaCl

Data collection and analysis parameters

Radiation CuKα₁
Wavelength 1.5405981 A

wavelength 1.540596 20 Standard W Scanned to 5.0° 20 $\sigma(I^{rel})$ ±2

Crystallographic constants of this sample

a = 4.13916 (4) A

 $V = 70.91 \text{ A}^3$ Z = 4Density (calc.) = 6.083 g/cm³

Figures of merit

 $F_9 = 454.0(.0022, 9)$ M_9 is greater than 1000.

Comments

The structure was studied by Becker and Ebert (#1).
The mean temperature of data collection was 23.3°C.

Additional patterns PDF card 25-1252

Reference

#1. Becker, K. and Ebert, F. Z. Phys. (1925) 31,268.

d(A)	I ^{rel}		hk	1	20(°)
2.3896	66	1	1	1	37.611
2.0698	100	2	0	0	43.697
1.46338	40	2	2	0	63.523
1.24804	17	3	1	1	76.225
1.19486	11	2	2	2	80,283
1.03478	3	4	0	0	96.217
0.94959	2	3	3	1	108.425
0.92553	8	4	2	0	112.667
0.84491	7	4	2	2	131.481
-					

Yttrium Nitride, YN

CAS registry no. 25764-13-0

Sample

The sample was obtained from Alfa Products, Thiokol/Ventron Division, Danvers, MA. It was run in a dry atmosphere because of its sensitivity to humidity.

Color Black

Symmetry classifications

Crystal System Cubic Space Group Fm3m (225) Pearson Symbol cF8

Data collection and analysis parameters

Crystallographic constants of this sample

a = 4.8944 (2) A

 $V = 117.25 \text{ A}^3$ Z = 4Density (calc.) = 5.830 g/cm³

Figures of merit

 $F_{12} = 80.9(.0124, 12)$ $M_{12} = 386.6$

Comments

The structure was determined by Kempter et al. (#1). The mean temperature of data collection was 23.5°C.

Additional patterns
Kempter et al. (#1)

Reference

#1. Kempter, C.P., Kirikorian, N.H., and McGuire, J.C. J. Phys. Chem. (1957) 61,1237.

d(A)	I ^{rel}		hk	1	20(°)
2.825	100	1	1	1	31.645
2:447	86	2	0	0	36:704
1.7298	46	2	2	0	52.887
1.4754	28	3	1	1	62.948
1.4126	13	2	2	2	66.093
1.2237	5	4	0	0	78.023
1:1226	8	3	3	1	86:654
1.0946	10	4	2	0	89.456
0:9990	8	4	2	2	100.896
0.9419	5	5	1	1	109.725
0.86528	2	4	4	0	125.804
0.82730	6	5	3	1	137.214
					•

Zinc Molybdenum Oxide, a-ZnMoO4

Synonym Zinc molybdate	controlled on make overthese			
Molybdenum zinc tetraoxide	d(A)	Irel	hkl	20(°)
	9.11	6	0 1 0	9.702
CAS registry no.	6.692	6	-1 1 0	13.219
13767-32-3	6.455	5	0 0 1	13.707
•	5.537	13 4	1 1 0	15.994
Sample	5.270	4	-1 -1 1	16.810
The sample was prepared by heating an equimolar	4.720	4	1 -1 1	18.784
mixture of ZnO and MoO3 at 650°C for 20 hours with	4.611	15	0 1 1	19.235
periodic grinding.	4.580 4.555	14 17	-1 1 1 0 2 0	19.367 19.472
	4.512	6	1 0 1	19.659
Color		_		00 1100
Colorless	4.329	5 7	-1 2 0 2 0 0	20.498
	3.969	12	~2 1 0	22.384
Symmetry classifications	3.923	16	1 -2 1	22.650
Crystal System Triclinic	3.879	34	-2 0 .1+	22.911
Space Group PT (2) Pearson Symbol aP36	3.678	89	1 2 0	24.177
rear son symbol at 50	3.599	12	1 1 1	24.717
	3.551	4	-2 1 1	25.055
Data collection and analysis parameters Radiation CuKα.	3.450	1 4 61	2 1 0 0 -1 2	25.806
Radiation CuKo ₁ Wavelength 1.5405981 A	3.408	01	0 -1 2	26.130
20 Standard Ag	3.381	45	-1 -1 2	26.336
Scanned to 5.0° 20	3.344	100	-2 2 0	26.634
$\sigma(I^{rel})$ ±3	3.293 3.260	18 14	-1 0 2 0 2 1	27.055 27.333
	3.230	29	2 -1 1+	27.598
Crystallographic constants of this sample				
a = 8.3678 (8) A	3.171 3.157	19 18	0 -3 1 0 -2 2	28.122 28.241
b = 9.6916 (8) c = 6.9643 (6)	3.088	8	2 0 1	28.894
$\alpha = 106.872 (8)^{\circ}$	3.061	15	-1 - 2 2	29.152
$\beta = 101.726 (8)$	3.037	6	0 3 0+	29.384
Y = 96.734 (8)	3.005	7	2 -2 1	29.701
a/b = 0.8634	2.971	31	-2 -2 1	30.055
e/b = 0.7186	2.941	4	1 -1 2	30.367
V = 519.75 A ³	2.894	4 5	-2 0 2 -1 1 2	30.871 31.101
Z = 6	2.073	,	1 1 2	31.101
Density (calc.) = 4.319 g/cm^3	2.832	6	1 -2 2	31.562
	2.778	18	1 2 1 0 1 2	32.194 32.254
Figures of merit	2.773 2.766	19 20	0 1 2 1 0 2 +	32.340
$F_{30} = 104.7(.0073, 39)$	2.716	8	-3 1 0	32.957
$M_{20}^{30} = 45.3$	2 (91	25	2 0 0	22 200
	2.681	35 29	3 0 0 -2 1 2	33.389 33.877
Comments	2.634	14	-2 -2 2	34.008
The structure was determined by Abrahams (#1).	2.585	5	2 -3 1	34.677
A monoclinic polymorph of ${\sf ZnMoO}_{\mu}$ is reported by Young and Schwartz (#2).	2.581	6	-1 -3 2	34.734
The mean temperature of data collection was 23.9°C.	2.533	6	-1 3 1	35.413
,	2.5165	14	1 -3 2	35.649
Additional nattorns	2.4579	9 9	0 3 1 3 1 0	36.528 36.641
Additional patterns PDF card 25-1023	2.4259	4	1 1 2	37.028
•				
Pefenonge	2.4050	16 13	0 -4 1+	37.361 37.506
References #1. Abrahams, S.C.	2.3832	5	2 -1 2	37.715
J. Chem. Phys.(1967) 46,2052.	2.3571	6	2 -2 2	38.150
#2. Young, A.P. and Schwartz, C.M.	2.3384	7	- 3 -1 2	38.467
Science (Washington, D.C.)(1963) 141,348.			continued	
	1			

Zinc Molybdenum Oxide, a-ZnMoO₄ (continued)

d(A)	Irel	nkl	20(°)
2.3084	15	-1 4 0	38.986
2.2867	7	-3 -2 1+	39.371
2.2832	10	3 0 1	39.434
2.2766	6	0 4 0+	39.554
2.2631	4	-1 -2 3+	39.800
2.2566	4	2 0 2	39.919
2.2295	1 4	-3 3 0+	40.425
2.2208	11	-1 0 3	40.590
2.2035	2	1 3 1	40.923
2.1924	3	2 -3 2	41.139
2.1671 2.1638 2.1561 2.1505 2.1416	10 10 3 3	2 -4 1 -2 4 0 1 -4 2 0 0 3 3 2 0+	41.643 41.709 41.865 41.979 42.161
2.1316	4	-2 0 3	42.370
2.1260	4	3 -3 1	42.485
2.1054	2	0 -3 3	42.923
2.0958	7	-1 -3 3	43.128
2.0902	10	1 4 0	43.249
2.0872	8	-3 3 1	43.315
2.0744	11	1 -2 3+	43.595
2.0708	9	1 2 2	43.675
2.0477	3	-4 1 0+	44.195
2.0300	19	-1 1 3	44.601
2.0161	2	-1 4 1	44.925
1.9950	2	-1 3 2	45.427
1.9831	7	-4 -1 1+	45.713
1.9748	1	-2 -4 1	45.918
1.9594	21	1 0 3+	46.299
1.9546	20	-4 2 1	46.419
1.9494	8	-3 -1 3+	46.550
1.9409	11	-2 -4 2	46.767
1.9377	11	-4 0 2+	46.847
1.9296	6	-3 0 3	47.057
1.9235	6	-3 4 0+	47.214
1.8989	10	2 3 1+	47.863
1.8927	10	3 -4 1	48.031
1.8841	6	-3 -2 3	48.264
1.8650	1	0 -5 2	48.791
1.8479	7	3 2 1+	49.271
1.8418	7	4 -2 1	49.445
1.8390	5	2 4 0	49.527
1.8315	1	-3 1 3	49.744
1.8259	3	-4 -2 1+	49.905
1.8218	2	0 5 0	50.027
1.8063	6	1 4 1	50.484
1.7983	6	-3 4 1+	50.727
1.7912	10	-2 5 0+	50.941

CAS registry no. 1313-49-1

Sample

The sample was obtained from Alfa Products,
Thiokol/Ventron Division, Danvers, MA. It contained
a small amount of ZnO.

Color Black

Symmetry classifications
Crystal System Cubic
Space Group Ia3 (206)
Pearson Symbol cI80

20 Standard Ag Scanned to $\sigma(I^{rel})$ ± 1

Crystallographic constants of this sample

a = 9.77687 (14) A

 $V = 934.54 A^3$ Z = 16

Density (calc.) = 6.373 g/cm^3

Figures of merit $F_{30} = 84.5(.0108, 33)$ $M_{20} = 128.1$

Comments

The structure was determined qualitatively by Juza and Hahn (#1).

The mean temperature of data collection was 24.3°C.

Additional patterns
PDF card 10-256

Reference

#1. Juza, R. and Hahn, H. Z. Anorg. Allg. Chem.(1940) 244,125.

Irel d(A) hkl 20(°) 3.991 11 2 22.255 3.456 2 2 0 25.754 2.824 12 2 2 2 31.657 2.614 100 2 34.280 3 1 2.445 89 ш 0 O 36.728 2.305 4 1 39.046 4 2.186 2 41.270 1L 0 2.0847 63 3 3 2 43.370 1.9957 1L П 2 2 45.410 1.9176 4 3 3 47.368 1.7853 7 5 2 1 51.122 67 4 1.7286 0 52.925 1.6297 2 6 0 0 56.414 1.5861 4 6 58.112 1 1 1.5458 1L 6 2 0 59.777 1.5088 5 4 61.400 1.4741 2 6 2 2 63.010 1.4411 4 6 3 64.623 1 1.4113 9 4 4 4 66.159 4 5 1.3830 67.695 3 3 6 4 1.3552 0 69.278 1 1.3307 26 7 2 70.745 1 1.3066 1 L 6 4 2 72.252 1.2418 18 6 5 76.680 1.2221 4 8 0 0 78.145 4 1.2032 1 L 7 1 79.616 4 1.1859 1L 6 4 81.017 0 83.908 1.1522 11. 6 6 1.1370 4 85.299 1L 3 6 1.1216 1 L 6 2 86.750 7 2 88.179 1.1071 5 5 1.0932 4 8 L 89.601 0 1.0543 6 9 2 93.881 1.0422 6 6 Ш 95.309 1 8 5 1.0306 96.737 1.0085 3 9 3 2 99.609 8 0.9979 Ц 4 4 101.060 1 9 4 102.536 0.9875 1 0.9812 0 0 0 103.456 1L 105.456 0.9680 10 3 1 0.9496 9 Ц 108.424 11. 3 0.9321 5 10 3 111.455 0.9077 1L 10 ш 0 116.122 0.9000 9 6 1 117.713 1 0.87094 4 10 5 124.367 0.86416 8 8 0 126.096 1L 0.84455 4 9 7 131.590 2 0.83832 1L 10 6 0 133.519 0.83225 1L 11 4 1 135.505 139.707 0.82050 9 6 5 1 9 8 144.329 0.80919 1 1 0.79825 10 149.584 3 7 1 0.79300 12 2 152.512 2

Zirconium Carbide, ZrC

CAS registry no. 12070-14-3

Sample

The sample was obtained from Aesar Division of Johnson Matthey, Inc., Seabrook, NH.

Color

Very dark gray

Symmetry classifications

Crystal System Cubic

Space Group Fm3m (225)

Pearson Symbol cF8

Structure Type Isostructural with NaCl

Data collection and analysis parameters

Radiation

CuK α_1

Wavelength

1.5405981 A

20 Standard

W

5.0° 20

Scanned to $\sigma(I^{rel})$

±2

Crystallographic constants of this sample

a = 4.6930 (2) A

 $V = 103.36 A^3$

Z = 4

Density (calc.) = 6.634 g/cm^3

Figures of merit

 $F_{11} = 115.2(.0087, 11)$ $M_{11} = 577.6$

Comments

The structure was studied by van Arkel (#1).

The mean temperature of data collection was 24.0°C.

Additional patterns

PDF card 19-1487

Sedivy et al. (#2)

References

#1. van Arkel, A.E.

Physica (The Hague)(1924) 4,286.

#2. Sedivy et al.

Freiberg. Forschungsh. B(1968) B,95.

d(A)	I ^{rel}		hk	1	20(°)
2.709 2.346 1.6592 1.4149 1.3547	100 82 62 50 19	1 2 2 3 2	1 0 2 1 2	1 0 0 1 2	33.041 38.338 55.325 65.969 69.306
1.1735 1.0768 1.0494 0.9579 0.90312	10 20 23 17	4 3 4 4 5	0 3 2 2	0 1 0 2	82.051 91.340 94.455 107.061 117.064
0.82961	6	4	4	0	136.405

Zirconium Nitride, ZrN

CAS registry no. 25658-42-8

Sample

The sample was obtained from A. D. Mackay, Inc., New York City. It also contained a small amount of zirconium.

Symmetry classifications

Crystal System Cubic Space Group Fm3m (225) Pearson Symbol cF8

Data collection and analysis parameters

CuKα₁ 1.5405981 A Radiation Wavelength 20 Standard Si Scanned to $\sigma(I^{rel})$ 5.0° 20 ±1

Crystallographic constants of this sample

a = 4.57756 (10) A

 $V = 95.92 A^3$ Z = 4Density (calc.) = 7.287 g/cm^3

Figures of merit

 $F_{11} = 203.7(.0049, 11)$ M₁₁ is greater than 1000.

Comments

The structure was qualitatively determined by Houska The mean temperature of data collection was 23.7°C.

Additional patterns

PDF card 2-956 PDF card 31-1493 Swanson et al. (#2)

Reference

#1. Houska, C. R.

J. Phys. Chem. Solids, 25, 359. #2. Swanson, H. E., McMurdie, H. F., Morris, M. C. and Evans, E. H.

Natl. Bur. Stand. (U. S.) Monogr. 25, 5, 80.

d(A)	I ^{rel}		hk	(1	20(°)
2.6430	100	1	1	1	33.890
2.2891	74	2	0	0	39.329
1.6186	36	2	2	0	56.835
1.3802	24	3	1	1	67.852
1.3214	9	2	2	2	71.314
1.1444	2	4	0	0	84.611
1.05016	5	3	3	1	94.362
1.02369	6	4	2	0	97.610
0.93441	3	4	2	2	111.049
0.88096	3	5	1	1	121.944
0.80918	3	4	4	0	144.333

The multi-volume cumulative indices will be published in 1986 and every other year thereafter.

The mineral name index for this issue follows.

Mineral Name Index, Sec. 21

	Page
Archerite, KH ₂ PO ₄	. 101
Boussingaultite, (NH _H) ₂ Mg (SO _H) ₂ · 6H ₂ O	. 14
Bromellite, BeO	. 38
Boussingaultite, (NH ₄) ₂ Mg (SO ₄) ₂ · 6H ₂ O Bromellite, BeO*Chalcopyrite, CuFeS ₂	. 69
Cohenite, Fe ₂ C	. 72
Cyanochroite, K ₂ Cu (SO ₁₁) ₂ · 6H ₂ O	. 99
Cohenite, Fe ₃ C	. 68
Ferdisilicité, FeSi2	. 73
Fluorite, CaF2	
Gehlenite, Ca2Al2SiO7	
Hardystonite, Ca2ZnSi207	. 55
Mohrite, (NH _μ) ₂ Fe(SO _μ) ₂ · 6H ₂ O	. 10
Newberyite, MgAPO4 • 3A20	. 83
Tephroite, Mn, Si Ou	

^{*}Natural mineral.

185-114A (REV. 2-80)				
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Performing Organ. Report No.	3. Publication Date	
BIBLIOGRAPHIC DATA SHEET (See instructions)	NBS/MN-25/Sec.21	0	September 1985	
4. TITLE AND SUBTITLE				
Standard X-ray Dif Section 21 - Data	fraction Powder Patte for 92 Substances	rns		
5. AUTHOR(S) M. C. Mo C. R. Hubbard, W.	rris, H. F. McMurdie, Wong-Ng, and D. Gladh	E. H. Evans, B. Paretz ill	kin, H. S. Parker,	
6. PERFORMING ORGANIZA	TION (If joint or other than NBS	see instructions)	7. Contract/Grant No.	
NATIONAL BUREAU OF STANDARDS U.S. DEPARTMENT OF COMMERCE GAITHERSBURG, MD 20899		3. Type of Report & Period Covered		
			Final	
9. SPONSORING ORGANIZAT	TON NAME AND COMPLETE A	ADDRESS (Street, City, State, ZIP)		
JCPDS - Internation for Diffra 1601 Park I Swarthmore	action Data Lane			
10. SUPPLEMENTARY NOTE	S			
Library of Congress Catalog Card Number: 53-61386				
Document describes a computer program; SF-185, FIPS Software Summary, is attached.				
patterns, useful for methods. The latt squares methods, an space group extinct	or identification, we ice constants from the nd reflections were as	rns are presented for 9 re obtained by automate e experimental work wer ssigned hkl indices connsities, calculated den included.	d diffractometer e refined by least- sistent with	
T.				
crystal structure;		opitalize only proper names; and so onstants; powder patter n.		
13. AVAILABILITY			14. NO. OF	
X Unlimited			PRINTED PAGES	
For Official Distribution. Do Not Release to NTIS [X] Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.				
			15. Price	
Order From National 1	Technical Information Service (N	ITIS), Springfield, VA. 22161		

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce National Bureau of Standards Gaithersburg, MD 20899

Official Business
Penalty for Private Use \$300