OPERAÇÕES LÓGICAS SOBRE PROPOSIÇÕES

Agora que já conhecemos o que são proposições e os conectivos que podem ser utilizados para formarmos proposições compostas, vamos estudar quais tipos de operações podem ser realizadas.

Em Lógica Simbólica, a ação de combinar proposições é chamada "operação", os conectivos são chamados "operadores", que são representados por símbolos específicos. Apresentamos no Quadro 1 as cinco operações lógicas sobre proposições, com seus respectivos conectivos e símbolos (PINHO, 1999):

Operação	Conectivo	Símbolo
Conjunção	e	^
Disjunção	ou	V
Negação	não	~ou ¬
Condicional	se então	→
Bicondicional	se e somente se	↔

Quadro 1 - Operações lógicas sobre proposições.

Como podemos determinar o valor lógico de uma proposição composta, em função dos valores lógicos das proposições que a compõe?

Para responder a essa pergunta, temos que definir as operações, isto é, dar o resultado da operação para cada possível conjunto de valores dos operandos.

2.1 Negação (~)

Negação – de uma proposição **p** é a proposição representada por "**não p**" ou por "~ **p**", cujo valor lógico é verdade (V) quando **p** é falso e falsidade (F) quando **p** é verdadeiro. Ou seja, "**não p**" tem o valor lógico oposto de **p** (ALENCAR FILHO, 2003).

A seguir é mostrada a tabela verdade com os valores lógicos da negação e as igualdades válidas nesse caso:

Igualdades:

$$\sim V = F e \sim F = V$$

$$V (\sim p) = \sim V(p)$$

p	~ p
V	F
F	V

Como vemos, negação é o fato de negar, opor-se ou se colocar de forma contrária a algo. Isso em nossa linguagem é feita utilizando-se o advérbio "não" ou expressões como "não é verdade que", "é falso que" etc.

Exemplos:

p : Maria é jornalista.

~p : Maria **não** é jornalista.

~p : **é falso que** Maria é jornalista.

~p : **não é verdade que** Maria é jornalista.

2.2 Conjunção (^)

Conceitos

Conjunção – de duas proposições \mathbf{p} e \mathbf{q} é a proposição representada por " \mathbf{p} e \mathbf{q} " ou " \mathbf{p} \wedge \mathbf{q} ", cujo valor lógico é a verdade (\mathbf{V}) quando as proposições \mathbf{p} e \mathbf{q} são verdadeiras e a falsidade (\mathbf{F}) nos demais casos (ALENCAR FILHO, 2003).

A seguir é mostrada a tabela verdade com os valores lógicos da conjunção e as igualdades válidas neste caso:

Igualdades:

$$V \wedge V = V$$

$$V \wedge F = F$$

$$F \wedge V = F$$

$$F \wedge F = F$$

$$V(p \wedge q) = V(p) \wedge V(q)$$

p	q	p ^ q
V	V	V
V	F	F
F	V	F
F	F	F

Exemplos:

 $p \wedge q = o \text{ mar \'e azul e 1 \'e \'impar (V)}$

$$V(p \land q) = V(p) \land V(q) = V \land V = V$$

Operações Lógicas sobre Proposições

2) p: a lua é quadrada (F)

 $p \wedge q = a lua \acute{e} quadrada e 1 \acute{e} \acute{l} mpar (F)$

$$V(p \land q) = V(p) \land V(q) = F \land V = F$$

Marcos é alto, mas não é elegante.

O mas neste caso tem sentido de e (conjunção). É equivalente a dizer: Marcos é alto e não é elegante.

2.3 Disjunção (∨)

Disjunção – de duas proposições p e q é a proposição representada por " \mathbf{p} ou \mathbf{q} " ou " $\mathbf{p} \vee \mathbf{q}$ ", cujo o valor lógico é a verdade (\mathbf{V}) quando ao menos uma das proposições p e q é verdadeira e a falsidade (F) quando as proposições p e q são ambas falsas (ALEN-CAR FILHO, 2003).

Conceitos

A seguir é mostrada a tabela verdade com os valores lógicos da disjunção e as igualdades válidas neste caso:

Igualdades:

$$V \lor V = V$$

 $V \lor F = V$
 $F \lor V = V$
 $F \lor F = F$
 $V(p \lor q) = V(p) \lor V(q)$

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Exemplos:

1) p: Rio de Janeiro é a capital do Brasil (F)

$$q: 1 + 3 = 4 (V)$$

p \vee q = Rio de Janeiro é a capital do Brasil **ou** 1 + 3 = 4 (V)

$$V(p \lor q) = V(p) \lor V(q) = F \lor V = V$$

2) p: Aparecida do Norte é padroeira do ES (F)

q: Vasco da Gama descobriu o Brasil (F)

p v q = Aparecida do Norte é padroeira do ES **ou** Vasco da Gama descobriu o Brasil (F)

$$V(p \lor q) = V(p) \lor V(q) = F \lor F = F$$

2.4 Disjunção Exclusiva (⊻)

Ocorre quando no cotidiano encontramos situações onde dadas duas sentenças não faz sentido dizermos que a "disjunção" das duas possa ser verdadeira quando ambas são verdadeiras.

Conceitos

Disjunção exclusiva – de duas proposições \mathbf{p} e \mathbf{q} é a proposição representada por "**ou p ou q**" ou " $\mathbf{p} \veebar \mathbf{q}$ ", cujo valor lógico é a verdade (\mathbf{V}) somente quando \mathbf{p} é verdadeira ou \mathbf{q} é verdadeira, mas não quando \mathbf{p} e \mathbf{q} são ambas verdadeiras, e a falsidade (\mathbf{F}) quando \mathbf{p} e \mathbf{q} são ambas verdadeiras ou falsas. (ALENCAR FILHO, 2003).

Na literatura é possível encontrar outro símbolo para disjunção exclusiva: p \oplus q.

A seguir é mostrada a tabela verdade com os valores lógicos da disjunção exclusiva e as igualdades válidas neste caso:

Igualdades:

$$V \stackrel{\smile}{\smile} V = F$$

$$V \stackrel{\smile}{\smile} F = V$$

$$F \stackrel{\smile}{\smile} V = V$$

$$F \stackrel{\smile}{\smile} F = F$$

$$V(p \stackrel{\smile}{\smile} q) = V(p) \stackrel{\smile}{\smile} V(q)$$

p	q	$p \vee q$
V	V	F
V	F	V
F	V	V
F	F	F

Exemplos:

p: João é Argentino (V) q: João torce pro Brasil (V)

 $\mathbf{p} \veebar \mathbf{q} = \mathbf{ou}$ João é Argentino \mathbf{ou} João torce pro Brasil (F)

 $V(p \vee q) = V(p) \vee V(q) = V \vee V = F$

Exemplo 2: Não faz sentido, tratando-se de uma única pessoa, que ambas sentenças p e q p: Carlos é gaúcho. sejam verdadeiras. Por isso utiliza-se a disjunção exclusiva. p ⊕ q: Ou Carlos é gaúcho ou Carlos é mineiro.

2.5 Condicional (\rightarrow)

Conceitos

Condicional – é uma proposição representada por "se p então q" ou " $p \rightarrow q$ ", cujo valor lógico é a falsidade (F) no caso em que p é verdadeira e q é falsa e a verdade (V) nos demais casos (ALENCAR FILHO, 2003).

i) p é condição suficiente para q.

ii) q é condição necessária para p

Se temos $p \rightarrow q$, dizemos que p é o antecedente e q é o conseqüente.

A seguir é mostrada a tabela verdade com os valores lógicos da condicional e as igualdades válidas neste caso:

Igualdades:

$$V \rightarrow V = V$$

 $V \rightarrow F = F$
 $F \rightarrow V = V$
 $F \rightarrow F = V$
 $V(p \rightarrow q) = V(p) \rightarrow V(q)$

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Uma condicional é verdadeira todas as vezes que o seu antecedente é uma proposição falsa.

Exemplos:

p: Marisa Monte é uma cantora brasileira (V)
 q: Marisa Monte nasceu no Chile (F)

 $p \rightarrow q = \mathbf{se}$ Marisa Monte é uma cantora brasileira **então** Marisa Monte nasceu no Chile (F)

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow F = F$$

2) p: Fevereiro tem 30 dias (F) q: Todo ano temos ano bissexto (F)

 $p \rightarrow q = se$ Fevereiro tem 30 dias **então** Todo ano temos ano bissexto (V) $V(p \rightarrow q) = V(p) \rightarrow V(q) = F \rightarrow F = V$

2.6 Bicondicional (\leftrightarrow)

Bicondicional – é uma proposição representada por "**p se e somente se q**" ou " $\mathbf{p} \leftrightarrow \mathbf{q}$ ", cujo valor lógico é a verdade(V) quando p e q são ambas verdadeiras ou ambas falsas, e a falsidade (F) nos demais casos. (ALENCAR FILHO, 2003).

Se temos p ↔q, dizemos que p é uma condição suficiente e necessária a q.

A seguir é mostrada a tabela verdade com os valores lógicos da bicondicional e as igualdades válidas neste caso:

Igualdades:

$$V \leftrightarrow V = V$$

$$V \longleftrightarrow F = F$$

$$F \leftrightarrow V = F$$

$$F \leftrightarrow F = V$$

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$$

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Exemplos:

1) p:
$$6/3 = 3$$
 (F)

q: Ronaldinho é jogador de futebol (V)

 $p \leftrightarrow q = 6/3 = 3$ se e somente se Ronaldinho é jogador de futebol (F) $V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow V = F$

Atividades

ATIVIDADE 3:

1. Dadas as proposições p: João é cantor e q: Maria é professora, traduza as seguintes proposições para o português:

(b)
$$p \vee q$$

$$(c)p \wedge q$$

$$(d) p \rightarrow q$$

(e)
$$q \leftrightarrow p$$

$$(f) p \vee q \rightarrow q$$

$$(g) p \wedge \sim q$$

(h)
$$\sim p \vee \sim q$$

$$(i) \sim \sim p$$

$$(i) \sim p \wedge q \rightarrow 1$$

$$(j) \sim p \land q \longrightarrow p$$
 $(k) \sim (\sim p \land \sim q)$ $(l) \sim p \longleftrightarrow \sim q$

(1)
$$\sim p \leftrightarrow \sim q$$

- 2. Dadas as proposições **p: Pedro é elegante** e **q: Pedro é bonito**, traduza as seguintes proposições para a linguagem simbólica:
- (a) Pedro é elegante e bonito
- (b) Pedro é elegante, mas não é bonito
- (c) Não é verdade que Pedro seja bonito e elegante
- (d) Pedro não é elegante nem bonito
- (e) Pedro é bonito ou feio, mas é elegante
- (f) Ou Pedro é bonito ou não é elegante
- 3. Traduzir para linguagem simbólica as seguintes expressões matemáticas:

(a) Se
$$x > 0$$
 então $y = 7$

(b) Se
$$x = 1$$
 então $y > 1$ e $z < 4$

(c)
$$x = 0$$
 ou $x > 0$

(d)
$$x \neq 0$$
 ou $(x = 0 e y = 1)$

4. Determine o valor lógico (V ou F) das expressões abaixo:

(a)
$$3 + 2 = 7 e 5 + 5 = 10$$

(b)
$$1 > 0 \land 2 + 2 = 4$$

$$(c) \sim (1+1=2 \leftrightarrow 3+4=5)$$

$$(d)2+2=4 \rightarrow (3+3=7 \leftrightarrow 1+1=4)$$

Atividades

5. Determinar V(p) em cada caso:

(a)
$$V(q) = F e V(p \wedge q) = F$$

(b)
$$V(q) = F e V(p \rightarrow q) = F$$

(c)
$$V(q) = V e V(q \leftrightarrow p) = F$$

(d)
$$V(q) = F e V(q \rightarrow p) = V$$

Para maior compreensão, ler o capítulo 2 – Operações Lógicas sobre Proposições do livro Alencar Filho, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2003.

