## matateiker PONTE A ENTRENAR

## Emmanuel Buenrostro

27 June 2024

## §1 Problemas

**Problem 1.1** (733773583946080). AB and AC are tangents to a circle  $\omega$  with center O at B, C respectively. Point P is a variable point on minor arc BC. The tangent at P to  $\omega$  meets AB, AC at D, E respectively. AO meets BP, CP at U, V respectively. The line through P perpendicular to AB intersects DV at M, and the line through P perpendicular to AC intersects EU at N. Prove that as P varies, MN passes through a fixed point.

**Problem 1.2** (651308339506337942). Given a convex pentagon ABCDE. Let  $A_1$  be the intersection of BD with CE and define  $B_1, C_1, D_1, E_1$  similarly,  $A_2$  be the second intersection of  $\odot(ABD_1), \odot(AEC_1)$  and define  $B_2, C_2, D_2, E_2$  similarly. Prove that  $AA_2, BB_2, CC_2, DD_2, EE_2$  are concurrent.

**Problem 1.3** (5299971832672937326). Let ABCD be a cyclic quadrilateral. Points K, L, M, N are chosen on AB, BC, CD, DA such that KLMN is a rhombus with  $KL \parallel AC$  and  $LM \parallel BD$ . Let  $\omega_A, \omega_B, \omega_C, \omega_D$  be the incircles of  $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$ .

Prove that the common internal tangents to  $\omega_A$ , and  $\omega_C$  and the common internal tangents to  $\omega_B$  and  $\omega_D$  are concurrent.

**Problem 1.4** (3838489129977355762). Two triangles ABC and A'B'C' are on the plane. It is known that each side length of triangle ABC is not less than a, and each side length of triangle A'B'C' is not less than a'. Prove that we can always choose two points in the two triangles respectively such that the distance between them is not less than  $\sqrt{\frac{a^2+a'^2}{3}}$ .

**Problem 1.5** (5441518070935718077). Let ABC be an acute-angled triangle. The line through C perpendicular to AC meets the external angle bisector of  $\angle ABC$  at D. Let H be the foot of the perpendicular from D onto BC. The point K is chosen on AB so that  $KH \parallel AC$ . Let M be the midpoint of AK. Prove that MC = MB + BH.

**Problem 1.6** (8053761138620448460). Let ABC be a scalene triangle, and points O and H be its circumcenter and orthocenter, respectively. Point P lies inside triangle AHO and satisfies  $\angle AHP = \angle POA$ . Let M be the midpoint of segment  $\overline{OP}$ . Suppose that BM and CM intersect with the circumcircle of triangle ABC again at X and Y, respectively.

Prove that line XY passes through the circumcenter of triangle APO.

**Problem 1.7** (836909183133087). Given a triangle  $\triangle ABC$  with circumcircle  $\Omega$ . Denote its incenter and A-excenter by I, J, respectively. Let T be the reflection of J w.r.t BC and P is the intersection of BC and AT. If the circumcircle of  $\triangle AIP$  intersects BC at  $X \neq P$  and there is a point  $Y \neq A$  on  $\Omega$  such that IA = IY. Show that  $\odot (IXY)$  tangents to the line AI.

**Problem 1.8** (6116877365036470315). Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions: (i)  $f(n) \neq 0$  for at least one n; (ii) f(xy) = f(x) + f(y) for every positive integers x and y; (iii) there are infinitely many positive integers n such that f(k) = f(n - k) for all k < n.

**Problem 1.9** (5867489266334805897). Let ABCDE be a pentagon inscribed in a circle  $\Omega$ . A line parallel to the segment BC intersects AB and AC at points S and T, respectively. Let X be the intersection of the line BE and DS, and Y be the intersection of the line CE and DT.

Prove that, if the line AD is tangent to the circle  $\odot(DXY)$ , then the line AE is tangent to the circle  $\odot(EXY)$ .

**Problem 1.10** (952584318797289). Show that the inequality

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{|x_i - x_j|} \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{|x_i + x_j|}$$

holds for all real numbers  $x_1, \ldots x_n$ .

**Problem 1.11** (8639636622304457736). Let  $\triangle ABC$  be a triangle, and let S and T be the midpoints of the sides BC and CA, respectively. Suppose M is the midpoint of the segment ST and the circle  $\omega$  through A, M and T meets the line AB again at N. The tangents of  $\omega$  at M and N meet at P. Prove that P lies on BC if and only if the triangle ABC is isosceles with apex at A.

**Problem 1.12** (7017112574129036660). Let ABC be a triangle with AB < AC, and let  $I_a$  be its A-excenter. Let D be the projection of  $I_a$  to BC. Let X be the intersection of  $AI_a$  and BC, and let Y, Z be the points on AC, AB, respectively, such that X, Y, Z are on a line perpendicular to  $AI_a$ . Let the circumcircle of AYZ intersect  $AI_a$  again at U. Suppose that the tangent of the circumcircle of ABC at A intersects BC at A, and the segment ABC intersects the circumcircle of ABC at ABC intersects ABC inte

**Problem 1.13** (855628849330783). Let m and n be positive integers. The cells of a  $2m \times 2n$  grid are colored black and white. Suppose that for any cell c, a rook placed on c attacks more cells of the opposite color (not including c itself). Prove that every row and column contains an equal number of black and white cells.

**Problem 1.14** (9153191064326230951). Let scalene triangle ABC have altitudes AD, BE, CF and circumcenter O. The circumcircles of  $\triangle ABC$  and  $\triangle ADO$  meet at  $P \neq A$ . The circumcircle of  $\triangle ABC$  meets lines PE at  $X \neq P$  and PF at  $Y \neq P$ . Prove that  $XY \parallel BC$ .

**Problem 1.15** (3470579368412517052). A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge).

The hunter wins if after some finite time either: the rabbit cannot move; or the hunter can determine the cell in which the rabbit started. Decide whether there exists a winning strategy for the hunter.

**Problem 1.16** (275429739915708). Consider a  $100 \times 100$  square unit lattice **L** (hence **L** has 10000 points). Suppose  $\mathcal{F}$  is a set of polygons such that all vertices of polygons in  $\mathcal{F}$  lie in **L** and every point in **L** is the vertex of exactly one polygon in  $\mathcal{F}$ . Find the maximum possible sum of the areas of the polygons in  $\mathcal{F}$ .

**Problem 1.17** (6136318250466883786). Each of the 41 dashed unit segments below is independently colored either black or white, each randomly with probability  $\frac{1}{2}$ . The black segments thus form the walls of a maze (but the white segments are passable).

What is the probability that there will exist a path from side A to side B that does not cross any of the black lines?

**Problem 1.18** (639126468624733). Let ABCDEF be a hexagon inscribed in a circle  $\Omega$  such that triangles ACE and BDF have the same orthocenter. Suppose that segments BD and DF intersect CE at X and Y, respectively. Show that there is a point common to  $\Omega$ , the circumcircle of DXY, and the line through A perpendicular to CE.

**Problem 1.19** (3353450172272500341). Let ABCD be a cyclic quadrilateral. Let DA and BC intersect at E and let AB and CD intersect at E. Assume that A, E, F all lie on the same side of BD. Let P be on segment DA such that  $\angle CPD = \angle CBP$ , and let Q be on segment CD such that  $\angle DQA = \angle QBA$ . Let AC and PQ meet at X. Prove that, if EX = EP, then EF is perpendicular to AC.

**Problem 1.20** (8690567757444826166). A social network has 2019 users, some pairs of whom are friends. Whenever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time: Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged. Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

**Problem 1.21** (781756252908608). Let  $n \ge 2$  be a positive integer and  $a_1, a_2, \ldots, a_n$  be real numbers such that

$$a_1 + a_2 + \dots + a_n = 0.$$

Define the set A by

$$A = \{(i, j) \mid 1 \le i < j \le n, |a_i - a_j| \ge 1\}$$

Prove that, if A is not empty, then

$$\sum_{(i,j)\in A} a_i a_j < 0.$$

**Problem 1.22** (1580707630770476037). Two triangles intersect to form seven finite disjoint regions, six of which are triangles with area 1. The last region is a hexagon with area A. Compute the minimum possible value of A.

**Problem 1.23** (6193947856984766386). Let ABCD be a cyclic quadrilateral. Assume that the points Q, A, B, P are collinear in this order, in such a way that the line AC is tangent to the circle ADQ, and the line BD is tangent to the circle BCP. Let M and N be the midpoints of segments BC and AD, respectively. Prove that the following three lines are concurrent: line CD, the tangent of circle ANQ at point A, and the tangent to circle BMP at point B.

**Problem 1.24** (5664985199661230516). In every row of a grid  $100 \times n$  is written a permutation of the numbers  $1, 2, \dots, 100$ . In one move you can choose a row and swap two non-adjacent numbers with difference 1. Find the largest possible n, such that at any moment, no matter the operations made, no two rows may have the same permutations.

**Problem 1.25** (607556370102952). Let  $\Omega$  be the circumcircle of an acute triangle ABC. Points D, E, F are the midpoints of the inferior arcs BC, CA, AB, respectively, on  $\Omega$ . Let G be the antipode of D in  $\Omega$ . Let X be the intersection of lines GE and AB, while Y the intersection of lines FG and CA. Let the circumcenters of triangles BEX and CFY be points S and T, respectively. Prove that D, S, T are collinear.

**Problem 1.26** (215375559035207). ABC is an isosceles triangle, with AB = AC. D is a moving point such that  $AD \parallel BC$ , BD > CD. Moving point E is on the arc of BC in circumcircle of ABC not containing A, such that EB < EC. Ray BC contains point F with  $\angle ADE = \angle DFE$ . If ray FD intersects ray BA at X, and intersects ray CA at Y, prove that  $\angle XEY$  is a fixed angle.

**Problem 1.27** (6302540840099076878). Let ABC be an isosceles triangle with BC = CA, and let D be a point inside side AB such that AD < DB. Let P and Q be two points inside sides BC and CA, respectively, such that  $\angle DPB = \angle DQA = 90^{\circ}$ . Let the perpendicular bisector of PQ meet line segment CQ at E, and let the circumcircles of triangles ABC and CPQ meet again at point F, different from C. Suppose that P, E, F are collinear. Prove that  $\angle ACB = 90^{\circ}$ .

Problem 1.28 (2212576839999739806). One hundred sages play the following game. They are waiting in some fixed order in front of a room. The sages enter the room one after another. When a sage enters the room, the following happens - the guard in the room chooses two arbitrary distinct numbers from the set 1, 2, 3, and announces them to the sage in the room. Then the sage chooses one of those numbers, tells it to the guard, and leaves the room, and the next enters, and so on. During the game, before a sage chooses a number, he can ask the guard what were the chosen numbers of the previous two sages. During the game, the sages cannot talk to each other. At the end, when everyone has finished, the game is considered as a failure if the sum of the 100 chosen numbers is exactly 200; else it is successful. Prove that the sages can create a strategy, by which they can win the game.

**Problem 1.29** (727078403801409). Let ABC be a triangle with incenter I and circumcircle  $\Omega$ . A point X on  $\Omega$  which is different from A satisfies AI = XI. The incircle touches AC and AB at E, F, respectively. Let  $M_a, M_b, M_c$  be the midpoints of sides BC, CA, AB, respectively. Let T be the intersection of the lines  $M_bF$  and  $M_cE$ . Suppose that AT intersects  $\Omega$  again at a point S.

Prove that  $X, M_a, S, T$  are concyclic.

**Problem 1.30** (8330669807899443473). Let ABC be an acute scalene triangle, and let  $A_1, B_1, C_1$  be the feet of the altitudes from A, B, C. Let  $A_2$  be the intersection of the tangents to the circle ABC at B, C and define  $B_2, C_2$  similarly. Let  $A_2A_1$ 

intersect the circle  $A_2B_2C_2$  again at  $A_3$  and define  $B_3$ ,  $C_3$  similarly. Show that the circles  $AA_1A_3$ ,  $BB_1B_3$ , and  $CC_1C_3$  all have two common points,  $X_1$  and  $X_2$  which both lie on the Euler line of the triangle ABC.

**Problem 1.31** (528504335909385). Given a triangle  $\triangle ABC$  whose incenter is I and A-excenter is J. A' is point so that AA' is a diameter of  $\bigcirc (\triangle ABC)$ . Define  $H_1, H_2$  to be the orthocenters of  $\triangle BIA'$  and  $\triangle CJA'$ . Show that  $H_1H_2 \parallel BC$ 

**Problem 1.32** (549441013338848). What is the minimal number of operations needed to repaint a entirely white grid  $100 \times 100$  to be entirely black, if on one move we can choose 99 cells from any row or column and change their color?

**Problem 1.33** (15595788767204175). Let ABC be an acute scalene triangle with orthocenter H. Line BH intersects  $\overline{AC}$  at E and line CH intersects  $\overline{AB}$  at F. Let X be the foot of the perpendicular from H to the line through A parallel to  $\overline{EF}$ . Point  $B_1$  lies on line XF such that  $\overline{BB_1}$  is parallel to  $\overline{AC}$ , and point  $C_1$  lies on line XE such that  $\overline{CC_1}$  is parallel to  $\overline{AB}$ . Prove that points B, C,  $B_1$ ,  $C_1$  are concyclic.

**Problem 1.34** (702587891849077). Given an integer  $n \ge 2$ . Suppose there is a point P inside a convex cyclic 2n-gon  $A_1 \dots A_{2n}$  satisfying

$$\angle PA_1A_2 = \angle PA_2A_3 = \ldots = \angle PA_{2n}A_1$$

prove that

$$\prod_{i=1}^{n} |A_{2i-1}A_{2i}| = \prod_{i=1}^{n} |A_{2i}A_{2i+1}|,$$

where  $A_{2n+1} = A_1$ .

**Problem 1.35** (6734490609685717062). Let I, G, O be the incenter, centroid and the circumcenter of triangle ABC, respectively. Let X, Y, Z be on the rays BC, CA, AB respectively so that BX = CY = AZ. Let F be the centroid of XYZ.

Show that FG is perpendicular to IO.

**Problem 1.36** (183354438240037). Let I, O, H, and  $\Omega$  be the incenter, circumcenter, orthocenter, and the circumcircle of the triangle ABC, respectively. Assume that line AI intersects with  $\Omega$  again at point  $M \neq A$ , line IH and BC meets at point D, and line MD intersects with  $\Omega$  again at point  $E \neq M$ . Prove that line OI is tangent to the circumcircle of triangle IHE.

**Problem 1.37** (669395675904242). Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the k-th move, Jumpy swaps the positions of the two walnuts adjacent to walnut k.

Prove that there exists a value of k such that, on the k-th move, Jumpy swaps some walnuts a and b such that a < k < b.

**Problem 1.38** (423911944927735). In acute  $\triangle ABC$ , O is the circumcenter, I is the incenter. The incircle touches BC, CA, AB at D, E, F. And the points K, M, N are the midpoints of BC, CA, AB respectively.

a) Prove that the lines passing through D, E, F in parallel with IK, IM, IN respectively are concurrent.

b) Points T, P, Q are the middle points of the major arc BC, CA, AB on  $\odot ABC$ . Prove that the lines passing through D, E, F in parallel with IT, IP, IQ respectively are concurrent.

**Problem 1.39** (303061622555285). A teacher and her 30 students play a game on an infinite cell grid. The teacher starts first, then each of the 30 students makes a move, then the teacher and so on. On one move the person can color one unit segment on the grid. A segment cannot be colored twice. The teacher wins if, after the move of one of the 31 players, there is a  $1 \times 2$  or  $2 \times 1$  rectangle, such that each segment from it's border is colored, but the segment between the two adjacent squares isn't colored. Prove that the teacher can win.

**Problem 1.40** (8670333331361701457). Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of n+1 squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of these stones and moves it to the right by at most k squares (the stone should say within the board). Sisyphus' aim is to move all n stones to square n. Prove that Sisyphus cannot reach the aim in less than

$$\left\lceil \frac{n}{1} \right\rceil + \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{3} \right\rceil + \dots + \left\lceil \frac{n}{n} \right\rceil$$

turns. (As usual, [x] stands for the least integer not smaller than x.)

**Problem 1.41** (290912955085727393). Let  $n \ge 3$  be a positive integer and let  $(a_1, a_2, \ldots, a_n)$  be a strictly increasing sequence of n positive real numbers with sum equal to 2. Let X be a subset of  $\{1, 2, \ldots, n\}$  such that the value of

$$\left| 1 - \sum_{i \in X} a_i \right|$$

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers  $(b_1, b_2, \ldots, b_n)$  with sum equal to 2 such that

$$\sum_{i \in X} b_i = 1.$$

**Problem 1.42** (300334293164389). Kid and Karlsson play a game. Initially they have a square piece of chocolate  $2019 \times 2019$  grid with  $1 \times 1$  cells. On every turn Kid divides an arbitrary piece of chololate into three rectanglular pieces by cells, and then Karlsson chooses one of them and eats it. The game finishes when it's impossible to make a legal move. Kid wins if there was made an even number of moves, Karlsson wins if there was made an odd number of moves. Who has the winning strategy?

**Problem 1.43** (456772085666528). Let  $\triangle ABC$  be an acute triangle with incenter I and circumcenter O. The incircle touches sides BC, CA, and AB at D, E, and F respectively, and A' is the reflection of A over O. The circumcircles of ABC and A'EF meet at G, and the circumcircles of AMG and A'EF meet at a point  $H \neq G$ , where M is the midpoint of EF. Prove that if GH and EF meet at T, then  $DT \perp EF$ .

**Problem 1.44** (596902679696332). Find all positive integers  $n \ge 2$  for which there exist n real numbers  $a_1 < \cdots < a_n$  and a real number r > 0 such that the  $\frac{1}{2}n(n-1)$  differences  $a_j - a_i$  for  $1 \le i < j \le n$  are equal, in some order, to the numbers  $r^1, r^2, \ldots, r^{\frac{1}{2}n(n-1)}$ .

**Problem 1.45** (2201137214247796233). A neighborhood consists of  $10 \times 10$  squares. On New Year's Eve it snowed for the first time and since then exactly 10 cm of snow fell on each square every night (and snow fell only at night). Every morning, the janitor selects one row or column and shovels all the snow from there onto one of the adjacent rows or columns (from each cell to the adjacent side). For example, he can select the seventh column and from each of its cells shovel all the snow into the cell of the left of it. You cannot shovel snow outside the neighborhood. On the evening of the 100th day of the year, an inspector will come to the city and find the cell with the snowdrift of maximal height. The goal of the janitor is to ensure that this height is minimal. What height of snowdrift will the inspector find?

**Problem 1.46** (3417358984411200361). Let ABC be a triangle with circumcircle  $\Omega$ , circumcenter O and orthocenter H. Let S lie on  $\Omega$  and P lie on BC such that  $\angle ASP = 90^{\circ}$ , line SH intersects the circumcircle of  $\triangle APS$  at  $X \neq S$ . Suppose OP intersects CA, AB at Q, R, respectively, QY, RZ are the altitude of  $\triangle AQR$ . Prove that X, Y, Z are collinear.

**Problem 1.47** (457324036151847). Let O and H be the circumcenter and the orthocenter, respectively, of an acute triangle ABC. Points D and E are chosen from sides AB and AC, respectively, such that A, D, O, E are concyclic. Let P be a point on the circumcircle of triangle ABC. The line passing P and parallel to OD intersects AB at point X, while the line passing P and parallel to OE intersects AC at Y. Suppose that the perpendicular bisector of  $\overline{HP}$  does not coincide with XY, but intersect XY at Q, and that points A, Q lies on the different sides of DE. Prove that  $\angle EQD = \angle BAC$ .

**Problem 1.48** (6246999615324043054). A site is any point (x, y) in the plane such that x and y are both positive integers less than or equal to 20.

Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance between any two sites occupied by red stones is not equal to  $\sqrt{5}$ . On his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from any other occupied site.) They stop as soon as a player cannot place a stone.

Find the greatest K such that Amy can ensure that she places at least K red stones, no matter how Ben places his blue stones.

**Problem 1.49** (969197144236847). Each girl among 100 girls has 100 balls; there are in total 10000 balls in 100 colors, from each color there are 100 balls. On a move, two girls can exchange a ball (the first gives the second one of her balls, and vice versa). The operations can be made in such a way, that in the end, each girl has 100 balls, colored in the 100 distinct colors. Prove that there is a sequence of operations, in which each ball is exchanged no more than 1 time, and at the end, each girl has 100 balls, colored in the 100 colors.

**Problem 1.50** (6566259136811987209). Let  $\Omega$  be the A-excircle of triangle ABC, and suppose that  $\Omega$  is tangent to lines BC, CA, and AB at points D, E, and F, respectively. Let M be the midpoint of segment EF. Two more points P and Q are on  $\Omega$  such that EP and FQ are both parallel to DM. Let BP meet CQ at point X. Prove that the line AM is the angle bisector of  $\angle XAD$ .

**Problem 1.51** (6029540617185205962). On a social network, no user has more than ten friends (the state "friendship" is symmetrical). The network is connected: if, upon learning interesting news a user starts sending it to its friends, and these friends to their own friends and so on, then at the end, all users hear about the news. Prove that the

network administration can divide users into groups so that the following conditions are met: each user is in exactly one group each group is connected in the above sense one of the groups contains from 1 to 100 members and the remaining from 100 to 900.

**Problem 1.52** (3159161448000677570). Let a > 1 be a positive integer and d > 1 be a positive integer coprime to a. Let  $x_1 = 1$ , and for  $k \ge 1$ , define

$$x_{k+1} = \begin{cases} x_k + d & \text{if } a \text{ does not divide } x_k \\ x_k/a & \text{if } a \text{ divides } x_k \end{cases}$$

Find, in terms of a and d, the greatest positive integer n for which there exists an index k such that  $x_k$  is divisible by  $a^n$ .

**Problem 1.53** (119129720704350). Let H be the orthocenter of a given triangle ABC. Let BH and AC meet at a point E, and E and E meet at E. Suppose that E is a point on the line E and E are the line E and the line E a

**Problem 1.54** (493735785757154). Given is a graph G of n+1 vertices, which is constructed as follows: initially there is only one vertex v, and one a move we can add a vertex and connect it to exactly one among the previous vertices. The vertices have non-negative real weights such that v has weight 0 and each other vertex has a weight not exceeding the avarage weight of its neighbors, increased by 1. Prove that no weight can exceed  $n^2$ .

**Problem 1.55** (1613309914397651478). Let ABCD be a convex quadrilateral with  $\angle B < \angle A < 90^{\circ}$ . Let I be the midpoint of AB and S the intersection of AD and BC. Let R be a variable point inside the triangle SAB such that  $\angle ASR = \angle BSR$ . On the straight lines AR, BR, take the points E, F, respectively so that BE, AF are parallel to RS. Suppose that EF intersects the circumcircle of triangle SAB at points H, K. On the segment AB, take points M, N such that  $\angle AHM = \angle BHI$ ,  $\angle BKN = \angle AKI$ .

- a) Prove that the center J of the circumcircle of triangle SMN lies on a fixed line.
- b) On BE, AF, take the points P, Q respectively so that CP is parallel to SE and DQ is parallel to SF. The lines SE, SF intersect the circle (SAB), respectively, at U, V. Let G be the intersection of AU and BV. Prove that the median of vertex G of the triangle GPQ always passes through a fixed point.

**Problem 1.56** (259897104343709). There is a queue of n girls on one side of a tennis table, and a queue of n boys on the other side. Both the girls and the boys are numbered from 1 to n in the order they stand. The first game is played by the girl and the boy with the number 1 and then, after each game, the loser goes to the end of their queue, and the winner remains at the table. After a while, it turned out that each girl played exactly one game with each boy. Prove that if n is odd, then a girl and a boy with odd numbers played in the last game.

**Problem 1.57** (522990139281725). For any odd prime p and any integer n, let  $d_p(n) \in \{0,1,\ldots,p-1\}$  denote the remainder when n is divided by p. We say that  $(a_0,a_1,a_2,\ldots)$  is a p-sequence, if  $a_0$  is a positive integer coprime to p, and  $a_{n+1}=a_n+d_p(a_n)$  for  $n \ge 0$ . (a) Do there exist infinitely many primes p for which there exist p-sequences  $(a_0,a_1,a_2,\ldots)$  and  $(b_0,b_1,b_2,\ldots)$  such that  $a_n > b_n$  for infinitely many p, and p for which there exist p-sequences p for which there exist p-sequences p for p for which there exist p-sequences p for p for all p for p for p for all p for p for p for p for all p for p for p for p for p for all p for p for p for p for p for all p for p for p for p for p for all p for p for p for p for p for p for all p for all p for p for

**Problem 1.58** (8059760967121829853). Let  $n \ge 3$  be an integer. Prove that there exists a set S of 2n positive integers satisfying the following property: For every m = 2, 3, ..., n the set S can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality m.

**Problem 1.59** (6837149463099766937). Let  $n \ge 3$  be an odd integer. In a  $2n \times 2n$  board, we colour  $2(n-1)^2$  cells. What is the largest number of three-square corners that can surely be cut out of the uncoloured figure?

**Problem 1.60** (8569243655022492300). Given a  $\triangle ABC$  and a point P. Let O, D, E, F be the circumcenter of  $\triangle ABC, \triangle BPC, \triangle CPA, \triangle APB$ , respectively and let T be the intersection of BC with EF. Prove that the reflection of O in EF lies on the perpendicular from D to PT.

**Problem 1.61** (9187468721920084868). Each lattice point of  $\mathbb{Z}^2$  is colored with one of three colors, with every color used at least once. Show that one can find a right triangle with pairwise distinct colored vertices.

**Problem 1.62** (4892352754475215646). We say that a set S of integers is rootiful if, for any positive integer n and any  $a_0, a_1, \dots, a_n \in S$ , all integer roots of the polynomial  $a_0 + a_1x + \dots + a_nx^n$  are also in S. Find all rootiful sets of integers that contain all numbers of the form  $2^a - 2^b$  for positive integers a and b.

**Problem 1.63** (4308913658510445082). Let ABCD be a convex quadrilateral, the incenters of  $\triangle ABC$  and  $\triangle ADC$  are I, J, respectively. It is known that AC, BD, IJ concurrent at a point P. The line perpendicular to BD through P intersects with the outer angle bisector of  $\angle BAD$  and the outer angle bisector  $\angle BCD$  at E, F, respectively. Show that PE = PF.

**Problem 1.64** (4738483219849723703). On a circle there're 1000 marked points, each colored in one of k colors. It's known that among any 5 pairwise intersecting segments, endpoints of which are 10 distinct marked points, there're at least 3 segments, each of which has its endpoints colored in different colors. Determine the smallest possible value of k for which it's possible.

**Problem 1.65** (931951248564234). Let n > 3 be a positive integer. Suppose that n children are arranged in a circle, and n coins are distributed between them (some children may have no coins). At every step, a child with at least 2 coins may give 1 coin to each of their immediate neighbors on the right and left. Determine all initial distributions of the coins from which it is possible that, after a finite number of steps, each child has exactly one coin.

**Problem 1.66** (3245291910836201005). Let P be a point inside triangle ABC. Let AP meet BC at  $A_1$ , let BP meet CA at  $B_1$ , and let CP meet AB at  $C_1$ . Let  $A_2$  be the point such that  $A_1$  is the midpoint of  $PA_2$ , let  $B_2$  be the point such that  $B_1$  is the midpoint of  $PB_2$ , and let  $C_2$  be the point such that  $C_1$  is the midpoint of  $PC_2$ . Prove that points  $A_2, B_2$ , and  $C_2$  cannot all lie strictly inside the circumcircle of triangle ABC.

**Problem 1.67** (6975633259976638169). On the round necklace there are n > 3 beads, each painted in red or blue. If a bead has adjacent beads painted the same color, it can be repainted (from red to blue or from blue to red). For what n for any initial coloring of beads it is possible to make a necklace in which all beads are painted equally?

**Problem 1.68** (852531542088551). Given a triangle ABC for which  $\angle BAC \neq 90^{\circ}$ , let

 $B_1, C_1$  be variable points on AB, AC, respectively. Let  $B_2, C_2$  be the points on line BC such that a spiral similarity centered at A maps  $B_1C_1$  to  $C_2B_2$ . Denote the circumcircle of  $AB_1C_1$  by  $\omega$ . Show that if  $B_1B_2$  and  $C_1C_2$  concur on  $\omega$  at a point distinct from  $B_1$  and  $C_1$ , then  $\omega$  passes through a fixed point other than A.

**Problem 1.69** (3192129869376364982). Let  $u_1, u_2, \ldots, u_{2019}$  be real numbers satisfying

$$u_1 + u_2 + \dots + u_{2019} = 0$$
 and  $u_1^2 + u_2^2 + \dots + u_{2019}^2 = 1$ .

Let  $a = \min(u_1, u_2, \dots, u_{2019})$  and  $b = \max(u_1, u_2, \dots, u_{2019})$ . Prove that

$$ab \leqslant -\frac{1}{2019}.$$

**Problem 1.70** (825542457780626). Yuri is looking at the great Mayan table. The table has 200 columns and 2<sup>200</sup> rows. Yuri knows that each cell of the table depicts the sun or the moon, and any two rows are different (i.e. differ in at least one column). Each cell of the table is covered with a sheet. The wind has blown aways exactly two sheets from each row. Could it happen that now Yuri can find out for at least 10000 rows what is depicted in each of them (in each of the columns)?

**Problem 1.71** (1810915585111530473). Given a scalene triangle  $\triangle ABC$ . B', C' are points lie on the rays  $\overrightarrow{AB}, \overrightarrow{AC}$  such that  $\overrightarrow{AB'} = \overrightarrow{AC}, \overrightarrow{AC'} = \overrightarrow{AB}$ . Now, for an arbitrary point P in the plane. Let Q be the reflection point of P w.r.t  $\overrightarrow{BC}$ . The intersections of  $\bigcirc (BB'P)$  and  $\bigcirc (CC'P)$  is P' and the intersections of  $\bigcirc (BB'Q)$  and  $\bigcirc (CC'Q)$  is Q'. Suppose that O, O' are circumcenters of  $\triangle ABC, \triangle AB'C'$  Show that

- 1. O', P', Q' are colinear
- 2.  $\overline{O'P'} \cdot \overline{O'Q'} = \overline{OA}^2$

**Problem 1.72** (2252133047011954512). On a flat plane in Camelot, King Arthur builds a labyrinth  $\mathfrak{L}$  consisting of n walls, each of which is an infinite straight line. No two walls are parallel, and no three walls have a common point. Merlin then paints one side of each wall entirely red and the other side entirely blue.

At the intersection of two walls there are four corners: two diagonally opposite corners where a red side and a blue side meet, one corner where two red sides meet, and one corner where two blue sides meet. At each such intersection, there is a two-way door connecting the two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The knights can walk through doors, but cannot walk through walls.

Let  $k(\mathfrak{L})$  be the largest number k such that, no matter how Merlin paints the labyrinth  $\mathfrak{L}$ , Morgana can always place at least k knights such that no two of them can ever meet. For each n, what are all possible values for  $k(\mathfrak{L})$ , where  $\mathfrak{L}$  is a labyrinth with n walls?

**Problem 1.73** (4451072691230235426). A convex quadrilateral ABCD has an inscribed circle with center I. Let  $I_a$ ,  $I_b$ ,  $I_c$  and  $I_d$  be the incenters of the triangles DAB, ABC, BCD and CDA, respectively. Suppose that the common external tangents of the circles  $AI_bI_d$  and  $CI_bI_d$  meet at X, and the common external tangents of the circles  $BI_aI_c$  and  $DI_aI_c$  meet at Y. Prove that  $\angle XIY = 90^\circ$ .

**Problem 1.74** (457934969594281). A positive integer n is given. A cube  $3 \times 3 \times 3$  is built from 26 white and 1 black cubes  $1 \times 1 \times 1$  such that the black cube is in the center of  $3 \times 3 \times 3$ -cube. A cube  $3n \times 3n \times 3n$  is formed by  $n^3$  such  $3 \times 3 \times 3$ -cubes. What is the smallest number of white cubes which should be colored in red in such a way that every white cube will have at least one common vertex with a red one.

**Problem 1.75** (8528437132500966626). Let ABC be an acute triangle with orthocenter H and circumcircle  $\Gamma$ . Let BH intersect AC at E, and let CH intersect AB at F. Let AH intersect  $\Gamma$  again at  $P \neq A$ . Let PE intersect  $\Gamma$  again at  $Q \neq P$ . Prove that BQ bisects segment  $\overline{EF}$ .

**Problem 1.76** (122001240071629). Vasya has 100 cards of 3 colors, and there are not more than 50 cards of same color. Prove that he can create  $10 \times 10$  square, such that every cards of same color have not common side.

**Problem 1.77** (117986541208663). Given a triangle ABC. D is a moving point on the edge BC. Point E and Point F are on the edge AB and AC, respectively, such that BE = CD and CF = BD. The circumcircle of  $\triangle BDE$  and  $\triangle CDF$  intersects at another point P other than D. Prove that there exists a fixed point Q, such that the length of QP is constant.

**Problem 1.78** (326164407850848). Two boys are given a bag of potatoes, each bag containing 150 tubers. They take turns transferring the potatoes, where in each turn they transfer a non-zero tubers from their bag to the other boy's bag. Their moves must satisfy the following condition: In each move, a boy must move more tubers than he had in his bag before any of his previous moves (if there were such moves). So, with his first move, a boy can move any non-zero quantity, and with his fifth move, a boy can move 200 tubers, if before his first, second, third and fourth move, the numbers of tubers in his bag was less than 200. What is the maximal total number of moves the two boys can do?

**Problem 1.79** (8916142707013964275). Let k be a positive integer. The organising committee of a tennis tournament is to schedule the matches for 2k players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay 1 coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.

**Problem 1.80** (723258861624579). Let  $n \geq 2$  be an integer and let  $a_1, a_2, \ldots, a_n$  be positive real numbers with sum 1. Prove that

$$\sum_{k=1}^{n} \frac{a_k}{1 - a_k} (a_1 + a_2 + \dots + a_{k-1})^2 < \frac{1}{3}.$$

**Problem 1.81** (80567267310692). Let n be a positive integer. Given is a subset A of  $\{0, 1, ..., 5^n\}$  with 4n + 2 elements. Prove that there exist three elements a < b < c from A such that c + 2a > 3b.

**Problem 1.82** (8895719454292056765). Given a non-right triangle ABC with BC > AC > AB. Two points  $P_1 \neq P_2$  on the plane satisfy that, for i = 1, 2, if  $AP_i, BP_i$  and  $CP_i$  intersect the circumcircle of the triangle ABC at  $D_i, E_i$ , and  $F_i$ , respectively, then  $D_iE_i \perp D_iF_i$  and  $D_iE_i = D_iF_i \neq 0$ . Let the line  $P_1P_2$  intersects the circumcircle of ABC at  $Q_1$  and  $Q_2$ . The Simson lines of  $Q_1, Q_2$  with respect to ABC intersect at W. Prove that W lies on the nine-point circle of ABC.

**Problem 1.83** (2003233604438068678). Given a triangle ABC and a point O on a plane. Let  $\Gamma$  be the circumcircle of ABC. Suppose that CO intersects with AB at D, and BO and CA intersect at E. Moreover, suppose that AO intersects with  $\Gamma$  at A, F. Let I be the other intersection of  $\Gamma$  and the circumcircle of ADE, and Y be the other

intersection of BE and the circumcircle of CEI, and Z be the other intersection of CD and the circumcircle of BDI. Let T be the intersection of the two tangents of  $\Gamma$  at B, C, respectively. Lastly, suppose that TF intersects with  $\Gamma$  again at U, and the reflection of U w.r.t. BC is G.

Show that F, I, G, O, Y, Z are concyclic.

**Problem 1.84** (4742951979457606021). There are 2021 points on a circle. Kostya marks a point, then marks the adjacent point to the right, then he marks the point two to its right, then three to the next point's right, and so on. Which move will be the first time a point is marked twice?

**Problem 1.85** (5897111412933990257). Let ABC be a triangle with circumcircle  $\Gamma$ , and points E and F are chosen from sides CA, AB, respectively. Let the circumcircle of triangle AEF and  $\Gamma$  intersect again at point X. Let the circumcircles of triangle ABE and ACF intersect again at point K. Line AK intersect with  $\Gamma$  again at point M other than A, and N be the reflection point of M with respect to line BC. Let XN intersect with  $\Gamma$  again at point S other that X.

Prove that SM is parallel to BC.

**Problem 1.86** (4429559846138102630). An interstellar hotel has 100 rooms with capacities  $101, 102, \ldots, 200$  people. These rooms are occupied by n people in total. Now a VIP guest is about to arrive and the owner wants to provide him with a personal room. On that purpose, the owner wants to choose two rooms A and B and move all guests from A to B without exceeding its capacity. Determine the largest n for which the owner can be sure that he can achieve his goal no matter what the initial distribution of the guests is.

**Problem 1.87** (5835156231907738776). Given triangle ABC with A-excenter  $I_A$ , the foot of the perpendicular from  $I_A$  to BC is D. Let the midpoint of segment  $I_AD$  be M, T lies on arc BC(not containing A) satisfying  $\angle BAT = \angle DAC$ ,  $I_AT$  intersects the circumcircle of ABC at  $S \neq T$ . If SM and BC intersect at X, the perpendicular bisector of AD intersects AC, AB at Y, Z respectively, prove that AX, BY, CZ are concurrent.

**Problem 1.88** (4059278924956282558). In a card game, each card is associated with a numerical value from 1 to 100, with each card beating less, with one exception: 1 beats 100. The player knows that 100 cards with different values lie in front of him. The dealer who knows the order of these cards can tell the player which card beats the other for any pair of cards he draws. Prove that the dealer can make one hundred such messages, so that after that the player can accurately determine the value of each card.

**Problem 1.89** (829271701496996). Pasha and Vova play the following game, making moves in turn; Pasha moves first. Initially, they have a large piece of plasticine. By a move, Pasha cuts one of the existing pieces into three(of arbitrary sizes), and Vova merges two existing pieces into one. Pasha wins if at some point there appear to be 100 pieces of equal weights. Can Vova prevent Pasha's win?

**Problem 1.90** (208441124738479). Let  $f: \{1, 2, 3, ...\} \rightarrow \{2, 3, ...\}$  be a function such that f(m+n)|f(m)+f(n) for all pairs m, n of positive integers. Prove that there exists a positive integer c > 1 which divides all values of f.

**Problem 1.91** (6025085618534905645). Let ABCD be a cyclic quadrilateral whose sides have pairwise different lengths. Let O be the circumcenter of ABCD. The internal angle bisectors of  $\angle ABC$  and  $\angle ADC$  meet AC at  $B_1$  and  $D_1$ , respectively. Let  $O_B$  be the center of the circle which passes through B and is tangent to  $\overline{AC}$  at  $D_1$ . Similarly, let

 $O_D$  be the center of the circle which passes through D and is tangent to  $\overline{AC}$  at  $B_1$ . Assume that  $\overline{BD_1} \parallel \overline{DB_1}$ . Prove that O lies on the line  $\overline{O_BO_D}$ .

**Problem 1.92** (5261846980754565299). Let A, B, C be the midpoints of the three sides B'C', C'A', A'B' of the triangle A'B'C' respectively. Let P be a point inside  $\triangle ABC$ , and AP, BP, CP intersect with BC, CA, AB at  $P_a, P_b, P_c$ , respectively. Lines  $P_aP_b, P_aP_c$  intersect with B'C' at  $R_b, R_c$  respectively, lines  $P_bP_c, P_bP_a$  intersect with C'A' at  $S_c, S_a$  respectively. and lines  $P_cP_a, P_cP_b$  intersect with A'B' at  $T_a, T_b$ , respectively. Given that  $S_c, S_a, T_a, T_b$  are all on a circle centered at O.

Show that  $OR_b = OR_c$ .

**Problem 1.93** (181463134716189). In kindergarten, nurse took n > 1 identical cardboard rectangles and distributed them to n children; every child got one rectangle. Every child cut his (her) rectangle into several identical squares (squares of different children could be different). Finally, the total number of squares was prime. Prove that initial rectangles was squares.

**Problem 1.94** (4375421764909014892). Find all positive integers  $n \ge 1$  such that there exists a pair (a, b) of positive integers, such that  $a^2 + b + 3$  is not divisible by the cube of any prime, and

$$n = \frac{ab + 3b + 8}{a^2 + b + 3}.$$

**Problem 1.95** (528087142744727). Let ABC be a scalene triangle with orthocenter H and circumcenter O. Let P be the midpoint of  $\overline{AH}$  and let T be on line BC with  $\angle TAO = 90^{\circ}$ . Let X be the foot of the altitude from O onto line PT. Prove that the midpoint of  $\overline{PX}$  lies on the nine-point circle\* of  $\triangle ABC$ .

\*The nine-point circle of  $\triangle ABC$  is the unique circle passing through the following nine points: the midpoint of the sides, the feet of the altitudes, and the midpoints of  $\overline{AH}$ ,  $\overline{BH}$ , and  $\overline{CH}$ .

**Problem 1.96** (6558910862034852540). Let  $\mathbb{R}^+$  denote the set of positive real numbers. Find all functions  $f: \mathbb{R}^+ \to \mathbb{R}^+$  such that for each  $x \in \mathbb{R}^+$ , there is exactly one  $y \in \mathbb{R}^+$  satisfying

$$xf(y) + yf(x) \le 2$$

**Problem 1.97** (8609709793627283757). Define the sequence  $a_0, a_1, a_2, ...$  by  $a_n = 2^n + 2^{\lfloor n/2 \rfloor}$ . Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.

**Problem 1.98** (7948249970111159954). A  $\pm 1$ -sequence is a sequence of 2022 numbers  $a_1, \ldots, a_{2022}$ , each equal to either +1 or -1. Determine the largest C so that, for any  $\pm 1$ -sequence, there exists an integer k and indices  $1 \leq t_1 < \ldots < t_k \leq 2022$  so that  $t_{i+1} - t_i \leq 2$  for all i, and

$$\left| \sum_{i=1}^k a_{t_i} \right| \ge C.$$

**Problem 1.99** (645068477920006). There are several gentlemen in the meeting of the Diogenes Club, some of which are friends with each other (friendship is mutual). Let's name a participant unsociable if he has exactly one friend among those present at the meeting. By the club rules, the only friend of any unsociable member can leave the meeting (gentlemen leave the meeting one at a time). The purpose of the meeting is to

achieve a situation in which that there are no friends left among the participants. Prove that if the goal is achievable, then the number of participants remaining at the meeting does not depend on who left and in what order.

**Problem 1.100** (221552874820768). The incircle of a scalene triangle ABC touches the sides BC, CA, and AB at points D, E, and F, respectively. Triangles APE and AQF are constructed outside the triangle so that

$$AP = PE, AQ = QF, \angle APE = \angle ACB, \text{ and } \angle AQF = \angle ABC.$$

Let M be the midpoint of BC. Find  $\angle QMP$  in terms of the angles of the triangle ABC.

**Problem 1.101** (9055967412808709037). Baron Munchhausen has a collection of stones, such that they are of 1000 distinct whole weights,  $2^{1000}$  stones of every weight. Baron states that if one takes exactly one stone of every weight, then the weight of all these 1000 stones chosen will be less than  $2^{1010}$ , and there is no other way to obtain this weight by picking another set of stones of the collection. Can this statement happen to be true?

**Problem 1.102** (8152181601565653036). Let D be a point on segment PQ. Let  $\omega$  be a fixed circle passing through D, and let A be a variable point on  $\omega$ . Let X be the intersection of the tangent to the circumcircle of  $\triangle ADP$  at P and the tangent to the circumcircle of  $\triangle ADQ$  at Q. Show that as A varies, X lies on a fixed line.

**Problem 1.103** (1736102587052874498). Some language has only three letters - A, B and C. A sequence of letters is called a word iff it contains exactly 100 letters such that exactly 40 of them are consonants and other 60 letters are all A. What is the maximum numbers of words one can pick such that any two picked words have at least one position where they both have consonants, but different consonants?

**Problem 1.104** (627600286851318227). Find all triples (a, b, p) of positive integers with p prime and

$$a^p = b! + p.$$

**Problem 1.105** (428632191392819). Initially, 10 ones are written on a blackboard. Grisha and Gleb are playing game, by taking turns; Grisha goes first. On one move Grisha squares some 5 numbers on the board. On his move, Gleb picks a few (perhaps none) numbers on the board and increases each of them by 1. If in 10,000 moves on the board a number divisible by 2023 appears, Gleb wins, otherwise Grisha wins. Which of the players has a winning strategy?

**Problem 1.106** (712971117639738). Let  $\mathcal{A}$  denote the set of all polynomials in three variables x, y, z with integer coefficients. Let  $\mathcal{B}$  denote the subset of  $\mathcal{A}$  formed by all polynomials which can be expressed as

$$(x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z)$$

with  $P, Q, R \in \mathcal{A}$ . Find the smallest non-negative integer n such that  $x^i y^j z^k \in \mathcal{B}$  for all non-negative integers i, j, k satisfying  $i + j + k \ge n$ .

**Problem 1.107** (591652153716935). Let M be the midpoint of BC of triangle ABC. The circle with diameter BC,  $\omega$ , meets AB, AC at D, E respectively. P lies inside  $\triangle ABC$  such that  $\angle PBA = \angle PAC$ ,  $\angle PCA = \angle PAB$ , and  $2PM \cdot DE = BC^2$ . Point X lies outside  $\omega$  such that  $XM \parallel AP$ , and  $\frac{XB}{XC} = \frac{AB}{AC}$ . Prove that  $\angle BXC + \angle BAC = 90^{\circ}$ .

**Problem 1.108** (5066939379306191291). Let ABC be an acute triangle with circumcenter O and circumcircle  $\Omega$ . Choose points D, E from sides AB, AC, respectively, and let  $\ell$  be the line passing through A and perpendicular to DE. Let  $\ell$  intersect the circumcircle of triangle ADE and  $\Omega$  again at points P, Q, respectively. Let N be the intersection of OQ and BC, S be the intersection of OP and DE, and W be the orthocenter of triangle SAO.

Prove that the points S, N, O, W are concyclic.

**Problem 1.109** (8782897210450267045). Let  $\mathbb{Q}_{>0}$  denote the set of all positive rational numbers. Determine all functions  $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$  satisfying

$$f(x^2 f(y)^2) = f(x)^2 f(y)$$

for all  $x, y \in \mathbb{Q}_{>0}$ 

**Problem 1.110** (241697479443718). A convex polyhedron is floating in the Aegean sea. Can 90% of its volume be below the water level while more than half of its surface area is above the water level?

**Problem 1.111** (239934686230450). Let triangle ABC(AB < AC) with incenter I circumscribed in  $\odot O$ . Let M, N be midpoint of arc  $\widehat{BAC}$  and  $\widehat{BC}$ , respectively. D lies on  $\odot O$  so that AD//BC, and E is tangency point of A-excircle of  $\triangle ABC$ . Point F is in  $\triangle ABC$  so that FI//BC and  $\angle BAF = \angle EAC$ . Extend NF to meet  $\odot O$  at G, and extend AG to meet line IF at L. Let line AF and DI meet at K. Proof that  $ML \bot NK$ .

**Problem 1.112** (2139114147569608698). Let O be the circumcenter of an acute triangle ABC. Line OA intersects the altitudes of ABC through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle PQH lies on a median of triangle ABC.

**Problem 1.113** (9026100911884959358). Let n be a positive integer, and set  $N = 2^n$ . Determine the smallest real number  $a_n$  such that, for all real x,

$$\sqrt[N]{\frac{x^{2N}+1}{2}} \leqslant a_n(x-1)^2 + x.$$

**Problem 1.114** (409149115429190). On the  $n \times n$  checker board, several cells were marked in such a way that lower left (L) and upper right(R) cells are not marked and that for any knight-tour from L to R, there is at least one marked cell. For which n > 3, is it possible that there always exists three consective cells going through diagonal for which at least two of them are marked?

**Problem 1.115** (8866273454792491736). Let r > 1 be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at 0 and a blue bead at 1. In a move, Alice chooses one of the beads and an integer  $k \in \mathbb{Z}$ . If the chosen bead is at x, and the other bead is at y, then the bead at x is moved to the point x' satisfying  $x' - y = r^k(x - y)$ .

Find all r for which Alice can move the red bead to 1 in at most 2021 moves.

**Problem 1.116** (5101270312905584526). The exam has 25 topics, each of which has 8 questions. On a test, there are 4 questions of different topics. Is it possible to make 50 tests so that each question was asked exactly once, and for any two topics there is a test where are questions of both topics?

**Problem 1.117** (8612979541975584705). Let G be a connected graph and let X, Y be two disjoint subsets of its vertices, such that there are no edges between them. Given that G/X has m connected components and G/Y has n connected components, what is the minimal number of connected components of the graph  $G/(X \cup Y)$ ?

**Problem 1.118** (6209707374283278028). Let ABC be a triangle and D be a point inside triangle ABC.  $\Gamma$  is the circumcircle of triangle ABC, and DB, DC meet  $\Gamma$  again at E, F, respectively.  $\Gamma_1$ ,  $\Gamma_2$  are the circumcircles of triangle ADE and ADF respectively. Assume X is on  $\Gamma_2$  such that BX is tangent to  $\Gamma_2$ . Let BX meets  $\Gamma$  again at Z. Prove that the line CZ is tangent to  $\Gamma_1$ .

**Problem 1.119** (876239022447910). Let  $ABCC_1B_1A_1$  be a convex hexagon such that AB = BC, and suppose that the line segments  $AA_1, BB_1$ , and  $CC_1$  have the same perpendicular bisector. Let the diagonals  $AC_1$  and  $A_1C$  meet at D, and denote by  $\omega$  the circle ABC. Let  $\omega$  intersect the circle  $A_1BC_1$  again at  $E \neq B$ . Prove that the lines  $BB_1$  and DE intersect on  $\omega$ .

**Problem 1.120** (526922799283626). For each  $1 \le i \le 9$  and  $T \in \mathbb{N}$ , define  $d_i(T)$  to be the total number of times the digit i appears when all the multiples of 1829 between 1 and T inclusive are written out in base 10.

Show that there are infinitely many  $T \in \mathbb{N}$  such that there are precisely two distinct values among  $d_1(T), d_2(T), \ldots, d_9(T)$ 

**Problem 1.121** (518384374486289). Let O be the center of the equilateral triangle ABC. Pick two points  $P_1$  and  $P_2$  other than B, O, C on the circle  $\odot(BOC)$  so that on this circle B,  $P_1$ ,  $P_2$ , O, C are placed in this order. Extensions of  $BP_1$  and  $CP_1$  intersects respectively with side CA and AB at points R and S. Line  $AP_1$  and RS intersects at point  $Q_1$ . Analogously point  $Q_2$  is defined. Let  $\odot(OP_1Q_1)$  and  $\odot(OP_2Q_2)$  meet again at point U other than O.

Prove that  $2 \angle Q_2 U Q_1 + \angle Q_2 O Q_1 = 360^{\circ}$ .

Remark.  $\odot(XYZ)$  denotes the circumcircle of triangle XYZ.

**Problem 1.122** (156060759856343521). Let ABC be an acute triangle with  $\angle ACB > 2\angle ABC$ . Let I be the incenter of ABC, K is the reflection of I in line BC. Let line BA and KC intersect at D. The line through B parallel to CI intersects the minor arc BC on the circumcircle of ABC at  $E(E \neq B)$ . The line through A parallel to BC intersects the line BE at F. Prove that if BF = CE, then FK = AD.

**Problem 1.123** (685138775901874). The cells of a  $100 \times 100$  table are colored white. In one move, it is allowed to select some 99 cells from the same row or column and recolor each of them with the opposite color. What is the smallest number of moves needed to get a table with a chessboard coloring?

**Problem 1.124** (4118541811915047639). In a country there are n > 100 cities and initially no roads. The government randomly determined the cost of building a two-way road between any two cities, using all amounts from 1 to  $\frac{n(n-1)}{2}$  thalers once (all options are equally likely). The mayor of each city chooses the cheapest of the n-1 roads emanating from that city and it is built (this may be the mutual desired of the mayors of both cities being connected, or only one of the two). After the construction of these roads, the cities are divided into M connected components (between cities of the same connected component, you can get along the constructed roads, possibly via other cities, but this is not possible for cities of different components). Find the expected value of the random variable M.

**Problem 1.125** (8317584744128058138). One side of a square sheet of paper is colored red, the other - in blue. On both sides, the sheet is divided into  $n^2$  identical square cells. In each of these  $2n^2$  cells is written a number from 1 to k. Find the smallest k,for which the following properties hold simultaneously: (i) on the red side, any two numbers in different rows are distinct; (ii) on the blue side, any two numbers in different columns are different; (iii) for each of the  $n^2$  squares of the partition, the number on the blue side is not equal to the number on the red side.

**Problem 1.126** (302701281403387). Each point of a three-dimensional space is colored with one of two colors such that whenever an isosceles triangle ABC with AB = AC has vertices of the same color c it follows that the midpoint of BC also is colored with c. Prove that there exists a perpendicular square prism with all vertices of equal color.

**Problem 1.127** (616860610609120). A few (at least 5) integers are put on a circle, such that each of them is divisible by the sum of its neighbors. If the sum of all numbers is positive, what is its minimal value?

**Problem 1.128** (599825051147866097). Show that  $n! = a^{n-1} + b^{n-1} + c^{n-1}$  has only finitely many solutions in positive integers.

**Problem 1.129** (4000488814786935591). A group of 100 kids has a deck of 101 cards numbered by  $0, 1, 2, \ldots, 100$ . The first kid takes the deck, shuffles it, and then takes the cards one by one; when he takes a card (not the last one in the deck), he computes the average of the numbers on the cards he took up to that moment, and writes down this average on the blackboard. Thus, he writes down 100 numbers, the first of which is the number on the first taken card. Then he passes the deck to the second kid which shuffles the deck and then performs the same procedure, and so on. This way, each of 100 kids writes down 100 numbers. Prove that there are two equal numbers among the 10000 numbers on the blackboard.

**Problem 1.130** (1168447466971762345). Let  $I, O, \omega, \Omega$  be the incenter, circumcenter, the incircle, and the circumcircle, respectively, of a scalene triangle ABC. The incircle  $\omega$  is tangent to side BC at point D. Let S be the point on the circumcircle  $\Omega$  such that AS, OI, BC are concurrent. Let H be the orthocenter of triangle BIC. Point T lies on  $\Omega$  such that  $\angle ATI$  is a right angle. Prove that the points D, T, H, S are concyclic.

**Problem 1.131** (264456837378391). Let ABC be a triangle such that the angular bisector of  $\angle BAC$ , the B-median and the perpendicular bisector of AB intersect at a single point X. Let H be the orthocenter of ABC. Show that  $\angle BXH = 90^{\circ}$ .

**Problem 1.132** (3923745101517032298). Let  $a_0, a_1, a_2, ...$  be a sequence of real numbers such that  $a_0 = 0, a_1 = 1$ , and for every  $n \ge 2$  there exists  $1 \le k \le n$  satisfying

$$a_n = \frac{a_{n-1} + \dots + a_{n-k}}{k}.$$

Find the maximum possible value of  $a_{2018} - a_{2017}$ .

**Problem 1.133** (8534263250311217423). In acute triangle  $\triangle ABC$ ,  $\angle A > \angle B > \angle C$ .  $\triangle AC_1B$  and  $\triangle CB_1A$  are isosceles triangles such that  $\triangle AC_1B \stackrel{+}{\sim} \triangle CB_1A$ . Let lines  $BB_1, CC_1$  intersects at T. Prove that if all points mentioned above are distinct,  $\angle ATC$  isn't a right angle.

**Problem 1.134** (162618813015033). In  $\triangle ABC$ , tangents of the circumcircle  $\odot O$  at B, C and at A, B intersects at X, Y respectively. AX cuts BC at D and CY cuts AB at

F. Ray DF cuts arc AB of the circumcircle at P. Q, R are on segments AB, AC such that P, Q, R are collinear and  $QR \parallel BO$ . If  $PQ^2 = PR \cdot QR$ , find  $\angle ACB$ .

**Problem 1.135** (6135851041251773220). 200 natural numbers are written in a row. For any two adjacent numbers of the row, the right one is either 9 times greater than the left one, 2 times smaller than the left one. Can the sum of all these 200 numbers be equal to  $24^{2022}$ ?

**Problem 1.136** (231259391294064). Every two of the n cities of Ruritania are connected by a direct flight of one from two airlines. Promonopoly Committee wants at least k flights performed by one company. To do this, he can at least every day to choose any three cities and change the ownership of the three flights connecting these cities each other (that is, to take each of these flights from a company that performs it, and pass the other). What is the largest k committee knowingly will be able to achieve its goal in no time, no matter how the flights are distributed hour?

**Problem 1.137** (318208660266829737). Let ABC be an acute-angled triangle with  $AB \neq AC$ , and let I and O be its incenter and circumcenter, respectively. Let the incircle touch BC, CA and AB at D, E and F, respectively. Assume that the line through I parallel to EF, the line through D parallel to AO, and the altitude from A are concurrent. Prove that the concurrency point is the orthocenter of the triangle ABC.

**Problem 1.138** (16776483958513). Find all pairs (k, n) of positive integers such that

$$k! = (2^n - 1)(2^n - 2)(2^n - 4) \cdots (2^n - 2^{n-1}).$$

**Problem 1.139** (409530198849693). In a cyclic convex hexagon ABCDEF, AB and DC intersect at G, AF and DE intersect at H. Let M, N be the circumcenters of BCG and EFH, respectively. Prove that the BE, CF and MN are concurrent.

**Problem 1.140** (2211812924503059239). We are given n coins of different weights and n balances, n > 2. On each turn one can choose one balance, put one coin on the right pan and one on the left pan, and then delete these coins out of the balance. It's known that one balance is wrong (but it's not known ehich exactly), and it shows an arbitrary result on every turn. What is the smallest number of turns required to find the heaviest coin?

**Problem 1.141** (5347245479409093202). Let G be a graph with 400 vertices. For any edge AB we call a cuttlefish the set of all edges from A and B (including AB). Each edge of the graph is assigned a value of 1 or -1. It is known that the sum of edges at any cuttlefish is greater than or equal to 1. Prove that the sum of the numbers at all edges is at least  $-10^4$ .

**Problem 1.142** (1837105952530316058). Let  $k \geq 2$  be an integer. Find the smallest integer  $n \geq k+1$  with the property that there exists a set of n distinct real numbers such that each of its elements can be written as a sum of k other distinct elements of the set.

**Problem 1.143** (245448917471703). In a  $2 \times n$  array of positive real numbers, the sum of the two real numbers in each of the n columns is 1. Prove that it's possible to select one number from each column such that the sum of the selected numbers in each row is at most  $\frac{n+1}{4}$ .

**Problem 1.144** (6576585943791349484). Regular hexagon is divided to equal rhombuses, with sides, parallels to hexagon sides. On the three sides of the hexagon, among which there are no neighbors, is set directions in order of traversing the hexagon against hour

hand. Then, on each side of the rhombus, an arrow directed just as the side of the hexagon parallel to this side. Prove that there is not a closed path going along the arrows.

**Problem 1.145** (1011347878697645666). On a circle we write 2n real numbers with a positive sum. For each number, there are two sets of n numbers such that this number is on the end. Prove that at least one of the numbers has a positive sum for both these sets.

**Problem 1.146** (682786464566571). Let ABCD be a parallelogram with AC = BC. A point P is chosen on the extension of ray AB past B. The circumcircle of ACD meets the segment PD again at Q. The circumcircle of triangle APQ meets the segment PCat R. Prove that lines CD, AQ, BR are concurrent.

**Problem 1.147** (1620616963605432410). Given an isosceles triangle  $\triangle ABC$ , AB = AC. A line passes through M, the midpoint of BC, and intersects segment AB and ray CAat D and E, respectively. Let F be a point of ME such that EF = DM, and K be a point on MD. Let  $\Gamma_1$  be the circle passes through B, D, K and  $\Gamma_2$  be the circle passes through C, E, K.  $\Gamma_1$  and  $\Gamma_2$  intersect again at  $L \neq K$ . Let  $\omega_1$  and  $\omega_2$  be the circumcircle of  $\triangle LDE$  and  $\triangle LKM$ . Prove that, if  $\omega_1$  and  $\omega_2$  are symmetric wrt L, then BF is perpendicular to BC.

**Problem 1.148** (120381541018683). Given any set S of positive integers, show that at least one of the following two assertions holds:

- (1) There exist distinct finite subsets F and G of S such that  $\sum_{x \in F} 1/x = \sum_{x \in G} 1/x$ ; (2) There exists a positive rational number r < 1 such that  $\sum_{x \in F} 1/x \neq r$  for all finite subsets F of S.

**Problem 1.149** (47893544380608). Let p be an odd prime, and put  $N = \frac{1}{4}(p^3 - p) - 1$ . The numbers  $1, 2, \ldots, N$  are painted arbitrarily in two colors, red and blue. For any positive integer  $n \leq N$ , denote r(n) the fraction of integers  $\{1, 2, \ldots, n\}$  that are red. Prove that there exists a positive integer  $a \in \{1, 2, \dots, p-1\}$  such that  $r(n) \neq a/p$  for all n = 1, 2, ..., N.

**Problem 1.150** (8402748184217471405). In  $\triangle ABC$ ,  $AD \perp BC$  at D. E, F lie on line AB, such that BD = BE = BF. Let I, J be the incenter and A-excenter. Prove that there exist two points P,Q on the circumcircle of  $\triangle ABC$ , such that PB=QC, and  $\Delta PEI \sim \Delta QFJ$ .

**Problem 1.151** (2989958142304279488). Given is a set of 2n cards numbered  $1, 2, \dots, n$ , each number appears twice. The cards are put on a table with the face down. A set of cards is called good if no card appears twice. Baron Munchausen claims that he can specify 80 sets of n cards, of which at least one is sure to be good. What is the maximal n for which the Baron's words could be true?

**Problem 1.152** (308110166188097). Let A, B be two fixed points on the unit circle  $\omega$ , satisfying  $\sqrt{2} < AB < 2$ . Let P be a point that can move on the unit circle, and it can move to anywhere on the unit circle satisfying  $\triangle ABP$  is acute and AP > AB > BP. Let H be the orthocenter of  $\triangle ABP$  and S be a point on the minor arc AP satisfying SH = AH. Let T be a point on the minor arc AB satisfying TB||AP. Let  $ST \cap BP = Q$ . Show that (recall P varies) the circle with diameter HQ passes through a fixed point.

**Problem 1.153** (915997916422887). Let ABC and A'B'C' be two triangles so that the midpoints of  $\overline{AA'}$ ,  $\overline{BB'}$ ,  $\overline{CC'}$  form a triangle as well. Suppose that for any point X on the circumcircle of ABC, there exists exactly one point X' on the circumcircle of A'B'C' so that the midpoints of  $\overline{AA'}$ ,  $\overline{BB'}$ ,  $\overline{CC'}$  and  $\overline{XX'}$  are concyclic. Show that ABC is similar

to A'B'C'.

**Problem 1.154** (1293772592063302344). In non-isosceles acute  $\triangle ABC$ , AP, BQ, CR is the height of the triangle.  $A_1$  is the midpoint of BC,  $AA_1$  intersects QR at K, QR intersects a straight line that crosses A and is parallel to BC at point D, the line connecting the midpoint of AH and K intersects  $DA_1$  at  $A_2$ . Similarly define  $B_2$ ,  $C_2$ .  $\triangle A_2B_2C_2$  is known to be non-degenerate, and its circumscribed circle is  $\omega$ . Prove that: there are circles  $\bigcirc A'$ ,  $\bigcirc B'$ ,  $\bigcirc C'$  tangent to and INSIDE  $\omega$  satisfying: (1)  $\bigcirc A'$  is tangent to AB and AC,  $\bigcirc B'$  is tangent to BC and BA, and  $\bigcirc C'$  is tangent to CA and CB. (2) A', B', C' are different and collinear.

**Problem 1.155** (8700998965901287095). Let ABC be an acute triangle with circumcircle  $\omega$ . Let P be a variable point on the arc BC of  $\omega$  not containing A. Squares BPDE and PCFG are constructed such that A, D, E lie on the same side of line BP and A, F, G lie on the same side of line CP. Let H be the intersection of lines DE and FG. Show that as P varies, H lies on a fixed circle.

**Problem 1.156** (5873161915777778529). In the acute-angled triangle ABC, the point F is the foot of the altitude from A, and P is a point on the segment AF. The lines through P parallel to AC and AB meet BC at D and E, respectively. Points  $X \neq A$  and  $Y \neq A$  lie on the circles ABD and ACE, respectively, such that DA = DX and EA = EY. Prove that B, C, X, and Y are concyclic.

**Problem 1.157** (210358073900610). Let triangle ABC have altitudes BE and CF which meet at H. The reflection of A over BC is A'. Let (ABC) meet (AA'E) at P and (AA'F) at Q. Let BC meet PQ at R. Prove that  $EF \parallel HR$ .

**Problem 1.158** (1790114062253914451). Given a triangle  $\triangle ABC$  and a point O. X is a point on the ray  $\overrightarrow{AC}$ . Let X' be a point on the ray  $\overrightarrow{BA}$  so that  $\overrightarrow{AX} = \overrightarrow{AX_1}$  and A lies in the segment  $\overrightarrow{BX_1}$ . Then, on the ray  $\overrightarrow{BC}$ , choose  $X_2$  with  $\overrightarrow{X_1X_2} \parallel \overrightarrow{OC}$ .

Prove that when X moves on the ray  $\overrightarrow{AC}$ , the locus of circumcenter of  $\triangle BX_1X_2$  is a part of a line.

**Problem 1.159** (796349431725149). An acute, non-isosceles triangle ABC is inscribed in a circle with centre O. A line go through O and midpoint I of BC intersects AB, AC at E, F respectively. Let D, G be reflections to A over O and circumcentre of (AEF), respectively. Let K be the reflection of O over circumcentre of (OBC). a) Prove that D, G, K are collinear. b) Let M, N are points on KB, KC that  $IM \perp AC$ ,  $IN \perp AB$ . The midperpendiculars of IK intersects MN at H. Assume that IH intersects AB, AC at P, Q respectively. Prove that the circumcircle of  $\triangle APQ$  intersects (O) the second time at a point on AI.

**Problem 1.160** (161342796381450). For each integer  $n \geq 1$ , compute the smallest possible value of

$$\sum_{k=1}^{n} \left\lfloor \frac{a_k}{k} \right\rfloor$$

over all permutations  $(a_1, \ldots, a_n)$  of  $\{1, \ldots, n\}$ .

**Problem 1.161** (181878217485192). 1000 children, no two of the same height, lined up. Let us call a pair of different children (a, b) good if between them there is no child whose height is greater than the height of one of a and b, but less than the height of the other. What is the greatest number of good pairs that could be formed? (Here, (a, b) and (b, a)

are considered the same pair.)

**Problem 1.162** (625002281186392279). Let  $\Gamma$  be the circumcircle of acute triangle ABC. Points D and E are on segments AB and AC respectively such that AD = AE. The perpendicular bisectors of BD and CE intersect minor arcs AB and AC of  $\Gamma$  at points F and G respectively. Prove that lines DE and FG are either parallel or they are the same line.

**Problem 1.163** (6978535805224432571). The Fibonacci numbers  $F_0, F_1, F_2, ...$  are defined inductively by  $F_0 = 0, F_1 = 1$ , and  $F_{n+1} = F_n + F_{n-1}$  for  $n \ge 1$ . Given an integer  $n \ge 2$ , determine the smallest size of a set S of integers such that for every k = 2, 3, ..., n there exist some  $x, y \in S$  such that  $x - y = F_k$ .

**Problem 1.164** (105422576188851). A short-sighted rook is a rook that beats all squares in the same column and in the same row for which he can not go more than 60-steps. What is the maximal amount of short-sighted rooks that don't beat each other that can be put on a  $100 \times 100$  chessboard.

**Problem 1.165** (4948608980214807448). Let ABC be a scalene triangle with circumcenter O and orthocenter H. Let AYZ be another triangle sharing the vertex A such that its circumcenter is H and its orthocenter is O. Show that if Z is on BC, then A, H, O, Y are concyclic.

**Problem 1.166** (902621191535073). Given six points A, B, C, D, E, F such that  $\triangle BCD \stackrel{+}{\sim} \triangle ECA \stackrel{+}{\sim} \triangle BFA$  and let I be the incenter of  $\triangle ABC$ . Prove that the circumcenter of  $\triangle AID, \triangle BIE, \triangle CIF$  are collinear.

**Problem 1.167** (684265043263216). Let  $\mathbb{Z}$  be the set of integers. Determine all functions  $f: \mathbb{Z} \to \mathbb{Z}$  such that, for all integers a and b,

$$f(2a) + 2f(b) = f(f(a+b)).$$

**Problem 1.168** (5949258338135822858). In  $10 \times 10$  square we choose n cells. In every chosen cell we draw one arrow from the angle to opposite angle. It is known, that for any two arrows, or the end of one of them coincides with the beginning of the other, or the distance between their ends is at least 2. What is the maximum possible value of n?

**Problem 1.169** (2265193939454652363). A circle  $\omega$  with radius 1 is given. A collection T of triangles is called good, if the following conditions hold: each triangle from T is inscribed in  $\omega$ ; no two triangles from T have a common interior point. Determine all positive real numbers t such that, for each positive integer n, there exists a good collection of n triangles, each of perimeter greater than t.

**Problem 1.170** (3048608408918882691). Is it possible to arrange everything in all cells of an infinite checkered plane all natural numbers (once) so that for each n in each square  $n \times n$  the sum of the numbers is a multiple of n?

**Problem 1.171** (458902414604417). A class has 25 students. The teacher wants to stock N candies, hold the Olympics and give away all N candies for success in it (those who solve equally tasks should get equally, those who solve less get less, including, possibly, zero candies). At what smallest N this will be possible, regardless of the number of tasks on Olympiad and the student successes?

**Problem 1.172** (260804315613681). Suppose a  $a' \times b' \times c'$  rectangular prism fits inside an  $a \times b \times c$  rectangular prism. Is it possible that a' + b' + c' > a + b + c?

**Problem 1.173** (297274918587198). Find all positive integers n with the following property: the k positive divisors of n have a permutation  $(d_1, d_2, \ldots, d_k)$  such that for  $i = 1, 2, \ldots, k$ , the number  $d_1 + d_2 + \cdots + d_i$  is a perfect square.

**Problem 1.174** (132497611943266). Suppose that a, b, c, d are positive real numbers satisfying (a + c)(b + d) = ac + bd. Find the smallest possible value of

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}$$
.

**Problem 1.175** (208479683430579745). There are 18 children in the class. Parents decided to give children from this class a cake. To do this, they first learned from each child the area of the piece he wants to get. After that, they showed a square-shaped cake, the area of which is exactly equal to the sum of 18 named numbers. However, when they saw the cake, the children wanted their pieces to be squares too. The parents cut the cake with lines parallel to the sides of the cake (cuts do not have to start or end on the side of the cake). For what maximum k the parents are guaranteed to cut out k square pieces from the cake, which you can give to k children so that each of them gets what they want?

**Problem 1.176** (2918584823978789760). A point T is chosen inside a triangle ABC. Let  $A_1$ ,  $B_1$ , and  $C_1$  be the reflections of T in BC, CA, and AB, respectively. Let  $\Omega$  be the circumcircle of the triangle  $A_1B_1C_1$ . The lines  $A_1T$ ,  $B_1T$ , and  $C_1T$  meet  $\Omega$  again at  $A_2$ ,  $B_2$ , and  $C_2$ , respectively. Prove that the lines  $AA_2$ ,  $BB_2$ , and  $CC_2$  are concurrent on  $\Omega$ .

**Problem 1.177** (748616641641895). Let ABC be a triangle. Let  $ABC_1$ ,  $BCA_1$ ,  $CAB_1$  be three equilateral triangles that do not overlap with ABC. Let P be the intersection of the circumcircles of triangle  $ABC_1$  and  $CAB_1$ . Let Q be the point on the circumcircle of triangle  $CAB_1$  so that PQ is parallel to  $BA_1$ . Let R be the point on the circumcircle of triangle  $ABC_1$  so that PR is parallel to  $CA_1$ .

Show that the line connecting the centroid of triangle ABC and the centroid of triangle PQR is parallel to BC.

**Problem 1.178** (227919487650283). Let ABC be an acute triangle with orthocenter H and circumcircle  $\Omega$ . Let M be the midpoint of side BC. Point D is chosen from the minor arc BC on  $\Gamma$  such that  $\angle BAD = \angle MAC$ . Let E be a point on  $\Gamma$  such that DE is perpendicular to AM, and F be a point on line BC such that DF is perpendicular to BC. Lines HF and AM intersect at point N, and point R is the reflection point of H with respect to N.

Prove that  $\angle AER + \angle DFR = 180^{\circ}$ .

**Problem 1.179** (571352513856417722). A cyclic quadrilateral ABCD has circumcircle  $\Gamma$ , and AB + BC = AD + DC. Let E be the midpoint of arc BCD, and  $F(\neq C)$  be the antipode of A wrt  $\Gamma$ . Let I, J, K be the incenter of  $\triangle ABC$ , the A-excenter of  $\triangle ABC$ , the incenter of  $\triangle BCD$ , respectively. Suppose that a point P satisfies  $\triangle BIC \stackrel{+}{\sim} \triangle KPJ$ . Prove that EK and PF intersect on  $\Gamma$ .

**Problem 1.180** (86986480818494). Given a scalene triangle ABC inscribed in the circle (O). Let (I) be its incircle and BI,CI cut AC,AB at E,F respectively. A circle passes through E and touches OB at E cuts E cuts E cuts E and touches E and touches E at E cuts E cuts E and E cuts E cuts

**Problem 1.181** (915478364939250). Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hold:

$$\angle PAD : \angle PBA : \angle DPA = 1 : 2 : 3 = \angle CBP : \angle BAP : \angle BPC$$

Prove that the following three lines meet in a point: the internal bisectors of angles  $\angle ADP$  and  $\angle PCB$  and the perpendicular bisector of segment AB.

**Problem 1.182** (4389998719836463980). Let ABCD be a parallelogram with AC = BC. A point P is chosen on the extension of ray AB past B. The circumcircle of ACD meets the segment PD again at Q. The circumcircle of triangle APQ meets the segment PC at R. Prove that lines CD, AQ, BR are concurrent.

**Problem 1.183** (70043882336455). Let A be a point in the plane, and  $\ell$  a line not passing through A. Evan does not have a straightedge, but instead has a special compass which has the ability to draw a circle through three distinct noncollinear points. (The center of the circle is not marked in this process.) Additionally, Evan can mark the intersections between two objects drawn, and can mark an arbitrary point on a given object or on the plane.

- (i) Can Evan construct\* the reflection of A over  $\ell$ ?
- (ii) Can Evan construct the foot of the altitude from A to  $\ell$ ?

\*To construct a point, Evan must have an algorithm which marks the point in finitely many steps.

**Problem 1.184** (537574018594693). Let ABC be a triangle with O as its circumcenter. A circle  $\Gamma$  tangents OB, OC at B, C, respectively. Let D be a point on  $\Gamma$  other than B with CB = CD, E be the second intersection of DO and  $\Gamma$ , and F be the second intersection of EA and  $\Gamma$ . Let E be a point on the line E so that E be the second that one half of E be a point on the line E so that E be the second that one half of E be a point on the line E so that E be the second that one half of E be the second that E be a point on the line E so that E be the second that E be

**Problem 1.185** (8972547734710795566). Let incircle (I) of triangle ABC touch the sides BC, CA, AB at D, E, F respectively. Let (O) be the circumcircle of ABC. Ray EF meets (O) at M. Tangents at M and A of (O) meet at S. Tangents at S and S of S of S meet at S. Line S meets S and S meets S and S meets S me

**Problem 1.186** (796313598765903). There are three boxes of stones. Each hour, Sisyphus moves a stone from one box to another. For each transfer of a stone, he receives from Zeus a number of coins equal to the number of stones in the box from which the stone is drawn minus the number of stones in the recipient box, with the stone Sisyphus just carried not counted. If this number is negative, Sisyphus pays the corresponding amount (and can pay later if he is broke).

After 8760 hours, all the stones lie in their initial boxes. What is the greatest possible earning of Sisyphus at that moment, in terms of the initial quantities in the three boxes?

**Problem 1.187** (409146991986056). For each prime p, construct a graph  $G_p$  on  $\{1, 2, \dots p\}$ , where  $m \neq n$  are adjacent if and only if p divides  $(m^2 + 1 - n)(n^2 + 1 - m)$ . Prove that  $G_p$  is disconnected for infinitely many p

**Problem 1.188** (822921222405372). Let  $n \ge 3$  be a fixed integer. There are  $m \ge n+1$  beads on a circular necklace. You wish to paint the beads using n colors, such that among any n+1 consecutive beads every color appears at least once. Find the largest value of m for which this task is not possible.

**Problem 1.189** (1336030836839904136). Let ABCDE be a convex pentagon with CD = DE and  $\angle EDC \neq 2 \cdot \angle ADB$ . Suppose that a point P is located in the interior of

the pentagon such that AP = AE and BP = BC. Prove that P lies on the diagonal CE if and only if area (BCD) + area (ADE) = area (ABD) + area (ABP).

**Problem 1.190** (7243491713649826569). In the triangle ABC let B' and C' be the midpoints of the sides AC and AB respectively and H the foot of the altitude passing through the vertex A. Prove that the circumcircles of the triangles AB'C', BC'H, and B'CH have a common point I and that the line HI passes through the midpoint of the segment B'C'.

**Problem 1.191** (4992489807901310938). Let ABC be a triangle and  $\ell_1, \ell_2$  be two parallel lines. Let  $\ell_i$  intersects line BC, CA, AB at  $X_i, Y_i, Z_i$ , respectively. Let  $\Delta_i$  be the triangle formed by the line passed through  $X_i$  and perpendicular to BC, the line passed through  $Y_i$  and perpendicular to CA, and the line passed through  $Z_i$  and perpendicular to AB. Prove that the circumcircles of  $\Delta_1$  and  $\Delta_2$  are tangent.

**Problem 1.192** (3859961452154270883). A deck of n > 1 cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which n does it follow that the numbers on the cards are all equal?

**Problem 1.193** (1427062131747349943). Let ABC be a triangle with circumcenter O and orthocenter H such that OH is parallel to BC. Let AH intersects again with the circumcircle of ABC at X, and let XB, XC intersect with OH at Y, Z, respectively. If the projections of Y, Z to AB, AC are P, Q, respectively, show that PQ bisects BC.

**Problem 1.194** (8963205841174892420). Let ABCD be a convex quadrilateral with pairwise distinct side lengths such that  $AC \perp BD$ . Let  $O_1, O_2$  be the circumcenters of  $\Delta ABD, \Delta CBD$ , respectively. Show that  $AO_2, CO_1$ , the Euler line of  $\Delta ABC$  and the Euler line of  $\Delta ADC$  are concurrent.

(Remark: The Euler line of a triangle is the line on which its circumcenter, centroid, and orthocenter lie.)

**Problem 1.195** (633974672407561). Let  $(a_n)_{n\geq 1}$  be a sequence of positive real numbers with the property that

$$(a_{n+1})^2 + a_n a_{n+2} \le a_n + a_{n+2}$$

for all positive integers n. Show that  $a_{2022} \leq 1$ .

**Problem 1.196** (797215984506934). Let ABC be a triangle. Circle  $\Gamma$  passes through A, meets segments AB and AC again at points D and E respectively, and intersects segment BC at F and G such that F lies between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet at point T. Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

**Problem 1.197** (7268978143074030034). Given two circles  $\omega_1$  and  $\omega_2$  where  $\omega_2$  is inside  $\omega_1$ . Show that there exists a point P such that for any line  $\ell$  not passing through P, if  $\ell$  intersects circle  $\omega_1$  at A, B and  $\ell$  intersects circle  $\omega_2$  at C, D, where A, C, D, B lie on  $\ell$  in this order, then  $\angle APC = \angle BPD$ .

**Problem 1.198** (1440964279096111130). Let a be a positive integer. We say that a positive integer b is a-good if  $\binom{an}{b} - 1$  is divisible by an + 1 for all positive integers n with  $an \geq b$ . Suppose b is a positive integer such that b is a-good, but b + 2 is not a-good. Prove that b + 1 is prime.

Problem 1.199 (297728211754501). The board used for playing a game consists of the left and right parts. In each part there are several fields and there're several segments connecting two fields from different parts (all the fields are connected.) Initially, there is a violet counter on a field in the left part, and a purple counter on a field in the right part. Lyosha and Pasha alternatively play their turn, starting from Pasha, by moving their chip (Lyosha-violet, and Pasha-purple) over a segment to other field that has no chip. It's prohibited to repeat a position twice, i.e. can't move to position that already been occupied by some earlier turns in the game. A player losses if he can't make a move. Is there a board and an initial positions of counters that Pasha has a winning strategy?

**Problem 1.200** (844684477828422). Let point H be the orthocenter of a scalene triangle ABC. Line AH intersects with the circumcircle  $\Omega$  of triangle ABC again at point P. Line BH, CH meets with AC, AB at point E and E, respectively. Let E, E, E meet E again at point E, respectively. Point E lies on E so that lines E, E are concurrent. Prove that E bisects E.

**Problem 1.201** (937132258882447). n coins lies in the circle. If two neighbour coins lies both head up or both tail up, then we can flip both. How many variants of coins are available that can not be obtained from each other by applying such operations?

**Problem 1.202** (569685816807741). Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the number of divisors of sn and of sk are equal.

**Problem 1.203** (482459214391384). On a table with 25 columns and 300 rows, Kostya painted all its cells in three colors. Then, Lesha, looking at the table, for each row names one of the three colors and marks in that row all cells of that color (if there are no cells of that color in that row, he does nothing). After that, all columns that have at least a marked square will be deleted. Kostya wants to be left as few as possible columns in the table, and Lesha wants there to be as many as possible columns in the table. What is the largest number of columns Lesha can guarantee to leave?

**Problem 1.204** (574223786384294). Find all integers  $n \ge 3$  for which there exist real numbers  $a_1, a_2, \dots a_{n+2}$  satisfying  $a_{n+1} = a_1, a_{n+2} = a_2$  and

$$a_i a_{i+1} + 1 = a_{i+2},$$

for i = 1, 2, ..., n.

**Problem 1.205** (233559801569582). Let n be a positive integer. Find the number of permutations  $a_1, a_2, \ldots a_n$  of the sequence  $1, 2, \ldots, n$  satisfying

$$a_1 \le 2a_2 \le 3a_3 \le \dots \le na_n$$

**Problem 1.206** (221644122066923). A straight road consists of green and red segments in alternating colours, the first and last segment being green. Suppose that the lengths of all segments are more than a centimeter and less than a meter, and that the length of each subsequent segment is larger than the previous one. A grasshopper wants to jump forward along the road along these segments, stepping on each green segment at least once an without stepping on any red segment (or the border between neighboring segments). Prove that the grasshopper can do this in such a way that among the lengths of his jumps no more than 8 different values occur.

**Problem 1.207** (402654566950359). Let  $a_1, a_2, \ldots$  be an infinite sequence of positive integers. Suppose that there is an integer N > 1 such that, for each  $n \ge N$ , the number

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$

is an integer. Prove that there is a positive integer M such that  $a_m = a_{m+1}$  for all  $m \ge M$ .

**Problem 1.208** (883811987981100). Let ABC be a triangle with AB = AC, and let M be the midpoint of BC. Let P be a point such that PB < PC and PA is parallel to BC. Let X and Y be points on the lines PB and PC, respectively, so that B lies on the segment PX, C lies on the segment PY, and  $\angle PXM = \angle PYM$ . Prove that the quadrilateral APXY is cyclic.

**Problem 1.209** (282712203118607). Let ABC be an acute-angled triangle with AC > AB, let O be its circumcentre, and let D be a point on the segment BC. The line through D perpendicular to BC intersects the lines AO, AC, and AB at W, X, and Y, respectively. The circumcircles of triangles AXY and ABC intersect again at  $Z \neq A$ . Prove that if  $W \neq D$  and OW = OD, then DZ is tangent to the circle AXY.

**Problem 1.210** (4218160072471349910). Given is a natural number n > 4. There are n points marked on the plane, no three of which lie on the same line. Vasily draws one by one all the segments connecting pairs of marked points. At each step, drawing the next segment S, Vasily marks it with the smallest natural number, which hasn't appeared on a drawn segment that has a common end with S. Find the maximal value of k, for which Vasily can act in such a way that he can mark some segment with the number k?

**Problem 1.211** (967014444176640). Let  $m, n \ge 2$  be integers, let X be a set with n elements, and let  $X_1, X_2, \ldots, X_m$  be pairwise distinct non-empty, not necessary disjoint subset of X. A function  $f: X \to \{1, 2, \ldots, n+1\}$  is called nice if there exists an index k such that

$$\sum_{x \in X_k} f(x) > \sum_{x \in X_i} f(x) \quad \text{for all } i \neq k.$$

Prove that the number of nice functions is at least  $n^n$ .

**Problem 1.212** (7500559455615129254). For every positive integer N, determine the smallest real number  $b_N$  such that, for all real x,

$$\sqrt[N]{\frac{x^{2N}+1}{2}} \leqslant b_N(x-1)^2 + x.$$

**Problem 1.213** (8417327567048605288). Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a point T inside ABCDE with TB = TD, TC = TE and  $\angle ABT = \angle TEA$ . Let line AB intersect lines CD and CT at points P and Q, respectively. Assume that the points P, B, A, Q occur on their line in that order. Let line AE intersect CD and DT at points R and S, respectively. Assume that the points R, E, A, S occur on their line in that order. Prove that the points P, S, Q, R lie on a circle.

**Problem 1.214** (571373387028298). Let ABC be a triangle with  $\angle BAC > 90^{\circ}$ , and let O be its circumcenter and  $\omega$  be its circumcircle. The tangent line of  $\omega$  at A intersects the tangent line of  $\omega$  at B and C respectively at point P and Q. Let D, E be the feet of the altitudes from P, Q onto BC, respectively. F, G are two points on  $\overline{PQ}$  different from

A, so that A, F, B, E and A, G, C, D are both concyclic. Let M be the midpoint of  $\overline{DE}$ . Prove that DF, OM, EG are concurrent.

**Problem 1.215** (857598260795435). Let ABCD be a rhombus with center O. P is a point lying on the side AB. Let I, J, and L be the incenters of triangles PCD, PAD, and PBC, respectively. Let H and K be orthocenters of triangles PLB and PJA, respectively.

Prove that  $OI \perp HK$ .

**Problem 1.216** (1527496195334546428). On the table, there're 1000 cards arranged on a circle. On each card, a positive integer was written so that all 1000 numbers are distinct. First, Vasya selects one of the card, remove it from the circle, and do the following operation: If on the last card taken out was written positive integer k, count the  $k^{th}$  clockwise card not removed, from that position, then remove it and repeat the operation. This continues until only one card left on the table. Is it possible that, initially, there's a card A such that, no matter what other card Vasya selects as first card, the one that left is always card A?

**Problem 1.217** (6654677204410680146). In the plane, there are  $n \ge 6$  pairwise disjoint disks  $D_1, D_2, \ldots, D_n$  with radii  $R_1 \ge R_2 \ge \ldots \ge R_n$ . For every  $i = 1, 2, \ldots, n$ , a point  $P_i$  is chosen in disk  $D_i$ . Let O be an arbitrary point in the plane. Prove that

$$OP_1 + OP_2 + \ldots + OP_n \geqslant R_6 + R_7 + \ldots + R_n$$
.

(A disk is assumed to contain its boundary.)

**Problem 1.218** (1222382895728709073). Given a triangle ABC, a circle  $\Omega$  is tangent to AB, AC at B, C, respectively. Point D is the midpoint of AC, O is the circumcenter of triangle ABC. A circle  $\Gamma$  passing through A, C intersects the minor arc BC on  $\Omega$  at P, and intersects AB at Q. It is known that the midpoint R of minor arc PQ satisfies that  $CR \perp AB$ . Ray PQ intersects line AC at L, M is the midpoint of AL, N is the midpoint of DR, and X is the projection of M onto ON. Prove that the circumcircle of triangle DNX passes through the center of  $\Gamma$ .

**Problem 1.219** (4678973565823282552). Four positive integers x, y, z and t satisfy the relations

$$xy - zt = x + y = z + t.$$

Is it possible that both xy and zt are perfect squares?

**Problem 1.220** (4875666253256352039). Supppose that there are roads AB and CD but there are no roads BC and AD between four cities A, B, C, and D. Define restructing to be the changing a pair of roads AB and CD to the pair of roads BC and AD. Initially there were some cities in a country, some of which were connected by roads and for every city there were exactly 100 roads starting in it. The minister drew a new scheme of roads, where for every city there were also exactly 100 roads starting in it. It's known also that in both schemes there were no cities connected by more than one road. Prove that it's possible to obtain the new scheme from the initial after making a finite number of restructings.

**Problem 1.221** (7220404010846068686). Let ABC be a acute, non-isosceles triangle. D, E, F are the midpoints of sides AB, BC, AC, resp. Denote by (O), (O') the circumcircle and Euler circle of ABC. An arbitrary point P lies inside triangle DEF and DP, EP, FP intersect (O') at D', E', F', resp. Point A' is the point such that D' is the

midpoint of AA'. Points B', C' are defined similarly. a. Prove that if PO = PO' then  $O \in (A'B'C')$ ; b. Point A' is mirrored by OD, its image is X. Y, Z are created in the same manner. H is the orthocenter of ABC and XH, YH, ZH intersect BC, AC, AB at M, N, L resp. Prove that M, N, L are collinear.

**Problem 1.222** (1872712387771032593). Let H be the orthocenter of triangle ABC, and AD, BE, CF be the three altitudes of triangle ABC. Let G be the orthogonal projection of D onto EF, and DD' be the diameter of the circumcircle of triangle DEF. Line AG and the circumcircle of triangle ABC intersect again at point X. Let Y be the intersection of GD' and BC, while Z be the intersection of AD' and GH. Prove that X, Y, and Z are collinear.

**Problem 1.223** (8757490679465390171). Color every vertex of 2008-gon with two colors, such that adjacent vertices have different color. If sum of angles of vertices of first color is same as sum of angles of vertices of second color, than we call 2008-gon as interesting. Convex 2009-gon one vertex is marked. It is known, that if remove any unmarked vertex, then we get interesting 2008-gon. Prove, that if we remove marked vertex, then we get interesting 2008-gon too.

**Problem 1.224** (5990443173263547430). Given a fixed circle (O) and two fixed points B, C on that circle, let A be a moving point on (O) such that  $\triangle ABC$  is acute and scalene. Let I be the midpoint of BC and let AD, BE, CF be the three heights of  $\triangle ABC$ . In two rays  $\overrightarrow{FA}, \overrightarrow{EA}$ , we pick respectively M, N such that FM = CE, EN = BF. Let L be the intersection of MN and EF, and let  $G \neq L$  be the second intersection of (LEN) and (LFM).

- a) Show that the circle (MNG) always goes through a fixed point.
- b) Let AD intersects (O) at  $K \neq A$ . In the tangent line through D of (DKI), we pick P, Q such that  $GP \parallel AB, GQ \parallel AC$ . Let T be the center of (GPQ). Show that GT always goes through a fixed point.

**Problem 1.225** (799773800583372). A square grid  $100 \times 100$  is tiled in two ways - only with dominoes and only with squares  $2 \times 2$ . What is the least number of dominoes that are entirely inside some square  $2 \times 2$ ?

**Problem 1.226** (165465510156789). Let  $\Omega$  be the circumcircle of an isosceles trapezoid ABCD, in which AD is parallel to BC. Let X be the reflection point of D with respect to BC. Point Q is on the arc BC of  $\Omega$  that does not contain A. Let P be the intersection of DQ and BC. A point E satisfies that EQ is parallel to PX, and EQ bisects  $\angle BEC$ . Prove that EQ also bisects  $\angle AEP$ .

**Problem 1.227** (15195306726194). There are two piles of stones: 1703 stones in one pile and 2022 in the other. Sasha and Olya play the game, making moves in turn, Sasha starts. Let before the player's move the heaps contain a and b stones, with  $a \ge b$ . Then, on his own move, the player is allowed take from the pile with a stones any number of stones from 1 to b. A player loses if he can't make a move. Who wins?

Remark: For 10.4, the initial numbers are (444, 999)

**Problem 1.228** (8811824418974048155). ABCDE is a cyclic pentagon, with circumcentre O. AB = AE = CD. I midpoint of BC. J midpoint of DE. F is the orthocentre of  $\triangle ABE$ , and G the centroid of  $\triangle AIJ.CE$  intersects BD at H, OG intersects FH at M. Show that  $AM \perp CD$ .

Problem 1.229 (1637184643761804371). Initially, on the lower left and right corner of a

 $2018 \times 2018$  board, there're two horses, red and blue, respectively. A and B alternatively play their turn, A start first. Each turn consist of moving their horse (A-red, and B-blue) by, simultaneously, 20 cells respect to one coordinate, and 17 cells respect to the other; while preserving the rule that the horse can't occupied the cell that ever occupied by any horses in the game. The player who can't make the move loss, who has the winning strategy?

**Problem 1.230** (587866144613888). The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze (denoted B). Marianne has n aluminum coins and n bronze coins arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer  $k \leq 2n$ , Gilberty repeatedly performs the following operation: he identifies the longest chain containing the  $k^{th}$  coin from the left and moves all coins in that chain to the left end of the row. For example, if n = 4 and k = 4, the process starting from the ordering AABBBABA would be  $AABBBABA \rightarrow BBBAAABA \rightarrow AAABBBBAA \rightarrow BBBBAAAAA \rightarrow ...$ 

Find all pairs (n, k) with  $1 \le k \le 2n$  such that for every initial ordering, at some moment during the process, the leftmost n coins will all be of the same type.

**Problem 1.231** (908587245178389). Let I be the incenter of triangle ABC, and  $\ell$  be the perpendicular bisector of AI. Suppose that P is on the circumcircle of triangle ABC, and line AP and  $\ell$  intersect at point Q. Point R is on  $\ell$  such that  $\angle IPR = 90^{\circ}$ . Suppose that line IQ and the midsegment of ABC that is parallel to BC intersect at M. Show that  $\angle AMR = 90^{\circ}$ 

(Note: In a triangle, a line connecting two midpoints is called a midsegment.)

**Problem 1.232** (296367141382799). Given a triangle  $\triangle ABC$  with orthocenter H. On its circumcenter, choose an arbitrary point P (other than A, B, C) and let M be the midpoint of HP. Now, we find three points D, E, F on the line BC, CA, AB, respectively, such that  $AP \parallel HD, BP \parallel HE, CP \parallel HF$ . Show that D, E, F, M are colinear.

**Problem 1.233** (493493847475466779). Let ABC be a triangle and let H be the orthogonal projection of A on the line BC. Let K be a point on the segment AH such that AH = 3KH. Let O be the circumcenter of triangle ABC and let M and N be the midpoints of sides AC and AB respectively. The lines KO and MN meet at a point Z and the perpendicular at Z to OK meets lines AB, AC at X and Y respectively. Show that  $\angle XKY = \angle CKB$ .

**Problem 1.234** (240654526717277). Let  $\Gamma$  be a circle with centre I, and ABCD a convex quadrilateral such that each of the segments AB, BC, CD and DA is tangent to  $\Gamma$ . Let  $\Omega$  be the circumcircle of the triangle AIC. The extension of BA beyond A meets  $\Omega$  at X, and the extension of BC beyond C meets  $\Omega$  at Z. The extensions of AD and CD beyond D meet  $\Omega$  at Y and T, respectively. Prove that

$$AD + DT + TX + XA = CD + DY + YZ + ZC.$$

**Problem 1.235** (521339998508550). There are 998 cities in a country. Some pairs of cities are connected by two-way flights. According to the law, between any pair cities should be no more than one flight. Another law requires that for any group of cities there will be no more than 5k + 10 flights connecting two cities from this group, where k is the number number of cities in the group. Prove that several new flights can be introduced so that laws still hold and the total number of flights in the country is equal to 5000.

**Problem 1.236** (2672133756769464425). Is there a scalene triangle ABC similar to

triangle IHO, where I, H, and O are the incenter, orthocenter, and circumcenter, respectively, of triangle ABC?

**Problem 1.237** (6497483389877629432). Initially, a word of 250 letters with 125 letters A and 125 letters B is written on a blackboard. In each operation, we may choose a contiguous string of any length with equal number of letters A and equal number of letters B, reverse those letters and then swap each B with A and each A with B (Example: ABABBA after the operation becomes BAABAB). Decide if it possible to choose initial word, so that after some operations, it will become the same as the first word, but in reverse order.

**Problem 1.238** (3866807698726339637). Let n and k be two integers with  $n > k \ge 1$ . There are 2n+1 students standing in a circle. Each student S has 2k neighbors - namely, the k students closest to S on the left, and the k students closest to S on the right.

Suppose that n + 1 of the students are girls, and the other n are boys. Prove that there is a girl with at least k girls among her neighbors.

**Problem 1.239** (989812634983805). Let n > 2 be a positive integer. Masha writes down n natural numbers along a circle. Next, Taya performs the following operation: Between any two adjacent numbers a and b, she writes a divisor of the number a + b greater than 1, then Taya erases the original numbers and obtains a new set of n numbers along the circle. Can Taya always perform these operations in such a way that after some number of operations, all the numbers are equal?

**Problem 1.240** (175452544956824). In the city built are 2019 metro stations. Some pairs of stations are connected. tunnels, and from any station through the tunnels you can reach any other. The mayor ordered to organize several metro lines: each line should include several different stations connected in series by tunnels (several lines can pass through the same tunnel), and in each station must lie at least on one line. To save money no more than k lines should be made. It turned out that the order of the mayor is not feasible. What is the largest k it could to happen?

**Problem 1.241** (961350373727093). Given a positive integer k show that there exists a prime p such that one can choose distinct integers  $a_1, a_2 \cdots, a_{k+3} \in \{1, 2, \cdots, p-1\}$  such that p divides  $a_i a_{i+1} a_{i+2} a_{i+3} - i$  for all  $i = 1, 2, \cdots, k$ .

**Problem 1.242** (9103148252094553273). The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from X to Y is a sequence of roads such that one can move from X to Y along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection.

Let A and B be two distinct cities in Anisotropy. Let  $N_{AB}$  denote the maximal number of paths in a diverse collection of paths from A to B. Similarly, let  $N_{BA}$  denote the maximal number of paths in a diverse collection of paths from B to A. Prove that the equality  $N_{AB} = N_{BA}$  holds if and only if the number of roads going out from A is the same as the number of roads going out from B.

**Problem 1.243** (719467452801051). Let ABC be a triangle with circumcircle  $\Omega$  and incentre I. A line  $\ell$  intersects the lines AI, BI, and CI at points D, E, and F, respectively, distinct from the points A, B, C, and I. The perpendicular bisectors x, y, and z of the segments AD, BE, and CF, respectively determine a triangle  $\Theta$ . Show that the circumcircle of the triangle  $\Theta$  is tangent to  $\Omega$ .

**Problem 1.244** (8255863576892581507). Let ABC be an acute triangle with orthocenter H, and let P be a point on the nine-point circle of ABC. Lines BH, CH meet the opposite sides AC, AB at E, F, respectively. Suppose that the circumcircles (EHP), (FHP) intersect lines CH, BH a second time at Q, R, respectively. Show that as P varies along the nine-point circle of ABC, the line QR passes through a fixed point.

**Problem 1.245** (2117883853443241027). On the circle, 99 points are marked, dividing this circle into 99 equal arcs. Petya and Vasya play the game, taking turns. Petya goes first; on his first move, he paints in red or blue any marked point. Then each player can paint on his own turn, in red or blue, any uncolored marked point adjacent to the already painted one. Vasya wins, if after painting all points there is an equilateral triangle, all three vertices of which are colored in the same color. Could Petya prevent him?

**Problem 1.246** (6955756846906975678). If there are several heaps of stones on the table, it is said that there are many stones on the table, if we can find 50 piles and number them with the numbers from 1 to 50 so that the first pile contains at least one stone, the second - at least two stones,..., the 50-th has at least 50 stones. Let the table be initially contain 100 piles of 100 stones each. Find the largest  $n \le 10000$  such that after removing any n stones, there will still be many stones left on the table.

**Problem 1.247** (2749225075653830789). In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals  $Q_1, \ldots, Q_{24}$  whose corners are vertices of the 100-gon, so that the quadrilaterals  $Q_1, \ldots, Q_{24}$  are pairwise disjoint, and every quadrilateral  $Q_i$  has three corners of one color and one corner of the other color.

**Problem 1.248** (651490142085731). Let I be the incenter of triangle ABC, and let  $\omega$  be its incircle. Let E and F be the points of tangency of  $\omega$  with CA and AB, respectively. Let X and Y be the intersections of the circumcircle of BIC and  $\omega$ . Take a point T on BC such that  $\angle AIT$  is a right angle. Let G be the intersection of EF and BC, and let E be the intersection of E and E and E and E be the intersection of E and E and E and E are E and E and E are E and E and E are E and E are E and E and E are E and E

**Problem 1.249** (6783316811528119504). Let S be an infinite set of positive integers, such that there exist four pairwise distinct  $a, b, c, d \in S$  with  $gcd(a, b) \neq gcd(c, d)$ . Prove that there exist three pairwise distinct  $x, y, z \in S$  such that  $gcd(x, y) = gcd(y, z) \neq gcd(z, x)$ .

**Problem 1.250** (677860185151955). The checker moves from the lower left corner of the board  $100 \times 100$  to the right top corner, moving at each step one cell to the right or one cell up. Let a be the number of paths in which exactly 70 steps the checker take under the diagonal going from the lower left corner to the upper right corner, and b is the number of paths in which such steps are exactly 110. What is more: a or b?

**Problem 1.251** (966139221944695). Stierlitz wants to send an encryption to the Center, which is a code containing 100 characters, each a "dot" or a "dash". The instruction he received from the Center the day before about conspiracy reads:

- i) when transmitting encryption over the radio, exactly 49 characters should be replaced with their opposites;
- ii) the location of the "wrong" characters is decided by the transmitting side and the Center is not informed of it.

Prove that Stierlitz can send 10 encryptions, each time choosing some 49 characters to flip, such that when the Center receives these 10 ciphers, it may unambiguously restore the original code.

**Problem 1.252** (2134021625648303394). The infinite sequence  $a_0, a_1, a_2, \ldots$  of (not necessarily distinct) integers has the following properties:  $0 \le a_i \le i$  for all integers  $i \ge 0$ , and

$$\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k$$

for all integers  $k \geq 0$ . Prove that all integers  $N \geq 0$  occur in the sequence (that is, for all  $N \geq 0$ , there exists  $i \geq 0$  with  $a_i = N$ ).

**Problem 1.253** (6919176010062551987). Find all positive integers n > 2 such that

$$n! \mid \prod_{p < q \le n, p, q \text{ primes}} (p+q)$$

**Problem 1.254** (57940096937913). Let ABC be an acute-angled triangle and let D, E, and F be the feet of altitudes from A, B, and C to sides BC, CA, and AB, respectively. Denote by  $\omega_B$  and  $\omega_C$  the incircles of triangles BDF and CDE, and let these circles be tangent to segments DF and DE at M and N, respectively. Let line MN meet circles  $\omega_B$  and  $\omega_C$  again at  $P \neq M$  and  $Q \neq N$ , respectively. Prove that MP = NQ.

**Problem 1.255** (6306108494297192985). Carl is given three distinct non-parallel lines  $\ell_1, \ell_2, \ell_3$  and a circle  $\omega$  in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line  $\ell$  and a point P, constructs a new line passing through P parallel to  $\ell$ . (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle  $\omega$  whose sides are parallel to  $\ell_1, \ell_2, \ell_3$  in some order.

**Problem 1.256** (314213229221479). Given is a natural number n > 5. On a circular strip of paper is written a sequence of zeros and ones. For each sequence w of n zeros and ones we count the number of ways to cut out a fragment from the strip on which is written w. It turned out that the largest number M is achieved for the sequence 1100...0 (n-2 zeros) and the smallest - for the sequence 00...011 (n-2 zeros). Prove that there is another sequence of n zeros and ones that occurs exactly M times.

**Problem 1.257** (8851048763094130212). Let ABCD be a quadrilateral inscribed in a circle  $\Omega$ . Let the tangent to  $\Omega$  at D meet rays BA and BC at E and F, respectively. A point T is chosen inside  $\triangle ABC$  so that  $\overline{TE} \parallel \overline{CD}$  and  $\overline{TF} \parallel \overline{AD}$ . Let  $K \neq D$  be a point on segment DF satisfying TD = TK. Prove that lines AC, DT, and BK are concurrent.

**Problem 1.258** (7553717274310387624). Let ABC be a triangle with incentre I and circumcircle  $\omega$ . The incircle of the triangle ABC touches the sides BC, CA and AB at D, E and F, respectively. The circumcircle of triangle ADI crosses  $\omega$  again at P, and the lines PE and PF cross  $\omega$  again at X and Y, respectively. Prove that the lines AI, BX and CY are concurrent.

**Problem 1.259** (4439711278400170990). N oligarchs built a country with N cities with each one of them owning one city. In addition, each oligarch built some roads such that the maximal amount of roads an oligarch can build between two cities is 1 (note that there can be more than 1 road going through two cities, but they would belong to different oligarchs). A total of d roads were built. Some oligarchs wanted to create a corporation by combining their cities and roads so that from any city of the corporation you can go to any city of the corporation using only corporation roads (roads can go to other cities outside corporation) but it turned out that no group of less than N oligarchs can create a corporation. What is the maximal amount that d can have?

**Problem 1.260** (728988632553727). Let ABCD be a convex quadrilateral with  $\angle ABC > 90$ , CDA > 90 and  $\angle DAB = \angle BCD$ . Denote by E and F the reflections of A in lines BC and CD, respectively. Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that the circumcircles of triangles BEK and DFL are tangent to each other.

**Problem 1.261** (7494618588207758150). An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following is an anti-Pascal triangle with four rows which contains every integer from 1 to 10.

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to  $1 + 2 + 3 + \cdots + 2018$ ?

**Problem 1.262** (6612845742708555351). Cyclic quadrilateral ABCD has circumcircle (O). Points M and N are the midpoints of BC and CD, and E and F lie on AB and AD respectively such that EF passes through O and EO = OF. Let EN meet FM at P. Denote S as the circumcenter of  $\triangle PEF$ . Line PO intersects AD and BA at Q and R respectively. Suppose OSPC is a parallelogram. Prove that AQ = AR.

**Problem 1.263** (437956241529021). In a country, there are N cities and N(N-1) one-way roads: one road from X to Y for each ordered pair of cities  $X \neq Y$ . Every road has a maintenance cost. For each k = 1, ..., N let's consider all the ways to select k cities and N-k roads so that from each city it is possible to get to some selected city, using only selected roads.

We call such a system of cities and roads with the lowest total maintenance cost k-optimal. Prove that cities can be numbered from 1 to N so that for each k = 1, ..., N there is a k-optimal system of roads with the selected cities numbered 1, ..., k.

**Problem 1.264** (1121095467606378762). Let  $\Gamma, \Gamma_1, \Gamma_2$  be mutually tangent circles. The three circles are also tangent to a line l. Let  $\Gamma, \Gamma_1$  be tangent to each other at  $B_1, \Gamma, \Gamma_2$  be tangent to each other at  $B_2, \Gamma_1, \Gamma_2$  be tangent to each other at C.  $\Gamma, \Gamma_1, \Gamma_2$  are tangent to l at  $A, A_1, A_2$  respectively, where A is between  $A_1, A_2$ . Let  $D_1 = A_1C \cap A_2B_2, D_2 = A_2C \cap A_1B_1$ . Prove that  $D_1D_2$  is parallel to l.

**Problem 1.265** (4415914581303660291). 24 students attend a mathematical circle. For any team consisting of 6 students, the teacher considers it to be either GOOD or OK. For the tournament of mathematical battles, the teacher wants to partition all the students into 4 teams of 6 students each. May it happen that every such partition contains either 3 GOOD teams or exactly one GOOD team and both options are present?

**Problem 1.266** (6020628633767269011). Let ABCDE be a regular pentagon. Let P be a variable point on the interior of segment AB such that  $PA \neq PB$ . The circumcircles of  $\triangle PAE$  and  $\triangle PBC$  meet again at Q. Let R be the circumcenter of  $\triangle DPQ$ . Show that as P varies, R lies on a fixed line.

**Problem 1.267** (5514383858686655851). Determine all functions  $f:(0,\infty)\to\mathbb{R}$  satisfying

$$\left(x + \frac{1}{x}\right)f(y) = f(xy) + f\left(\frac{y}{x}\right)$$

for all x, y > 0.

**Problem 1.268** (8024569764169071557). 12 schoolchildren are engaged in a circle of patriotic songs, each of them knows a few songs (maybe none). We will say that a group of schoolchildren can sing a song if at least one member of the group knows it. Supervisor the circle noticed that any group of 10 circle members can sing exactly 20 songs, and any group of 8 circle members - exactly 16 songs. Prove that the group of all 12 circle members can sing exactly 24 songs.

**Problem 1.269** (448881061747528). A magician intends to perform the following trick. She announces a positive integer n, along with 2n real numbers  $x_1 < \cdots < x_{2n}$ , to the audience. A member of the audience then secretly chooses a polynomial P(x) of degree n with real coefficients, computes the 2n values  $P(x_1), \ldots, P(x_{2n})$ , and writes down these 2n values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

**Problem 1.270** (1891712635906763103). Let BM be a median in an acute-angled triangle ABC. A point K is chosen on the line through C tangent to the circumcircle of  $\triangle BMC$  so that  $\angle KBC = 90^{\circ}$ . The segments AK and BM meet at J. Prove that the circumcenter of  $\triangle BJK$  lies on the line AC.

**Problem 1.271** (1248852037865425410). Let n > 1 be a positive integer. Each cell of an  $n \times n$  table contains an integer. Suppose that the following conditions are satisfied: Each number in the table is congruent to 1 modulo n. The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to n modulo  $n^2$ . Let  $R_i$  be the product of the numbers in the  $i^{\text{th}}$  row, and  $C_j$  be the product of the number in the  $j^{\text{th}}$  column. Prove that the sums  $R_1 + \ldots R_n$  and  $C_1 + \ldots C_n$  are congruent modulo  $n^4$ .

**Problem 1.272** (302438226120877). Given triangle ABC. Let BPCQ be a parallelogram (P is not on BC). Let U be the intersection of CA and BP, V be the intersection of AB and CP, X be the intersection of CA and the circumcircle of triangle ABQ distinct from A, and Y be the intersection of AB and the circumcircle of triangle ACQ distinct from A. Prove that  $\overline{BU} = \overline{CV}$  if and only if the lines AQ, BX, and CY are concurrent.

**Problem 1.273** (6183425212304704085). A positive integer k is given. Initially, N cells are marked on an infinite checkered plane. We say that the cross of a cell A is the set of all cells lying in the same row or in the same column as A. By a turn, it is allowed to mark an unmarked cell A if the cross of A contains at least k marked cells. It appears that every cell can be marked in a sequence of such turns. Determine the smallest possible value of N.

**Problem 1.274** (660403976209529). A number is called Norwegian if it has three distinct positive divisors whose sum is equal to 2022. Determine the smallest Norwegian number. (Note: The total number of positive divisors of a Norwegian number is allowed to be larger than 3.)

**Problem 1.275** (813804034055493). In a circle there are 2019 plates, on each lies one cake. Petya and Vasya are playing a game. In one move, Petya points at a cake and

calls number from 1 to 16, and Vasya moves the specified cake to the specified number of check clockwise or counterclockwise (Vasya chooses the direction each time). Petya wants at least some k pastries to accumulate on one of the plates and Vasya wants to stop him. What is the largest k Petya can succeed?

**Problem 1.276** (7997372712267182584). Let ABCDE be a convex pentagon such that AB = BC = CD,  $\angle EAB = \angle BCD$ , and  $\angle EDC = \angle CBA$ . Prove that the perpendicular line from E to BC and the line segments AC and BD are concurrent.

**Problem 1.277** (308215997593136). Misha came to country with n cities, and every 2 cities are connected by the road. Misha want visit some cities, but he doesn't visit one city two time. Every time, when Misha goes from city A to city B, president of country destroy k roads from city B(president can't destroy road, where Misha goes). What maximal number of cities Misha can visit, no matter how president does?

**Problem 1.278** (3813623497653179264). The real numbers a, b, c, d are such that  $a \ge b \ge c \ge d > 0$  and a + b + c + d = 1. Prove that

$$(a+2b+3c+4d)a^ab^bc^cd^d < 1$$

**Problem 1.279** (697045850918084). In the country there're N cities and some pairs of cities are connected by two-way airlines (each pair with no more than one). Every airline belongs to one of k companies. It turns out that it's possible to get to any city from any other, but it fails when we delete all airlines belonging to any one of the companies. What is the maximum possible number of airlines in the country?

**Problem 1.280** (5363953658134647103). Let ABC be a triangle with incenter I. The line through I, perpendicular to AI, intersects the circumcircle of ABC at points P and Q. It turns out there exists a point T on the side BC such that AB + BT = AC + CT and  $AT^2 = AB \cdot AC$ . Determine all possible values of the ratio IP/IQ.

**Problem 1.281** (1965233157265405983). Given a triangle  $\triangle ABC$ . Denote its incircle and circumcircle by  $\omega, \Omega$ , respectively. Assume that  $\omega$  tangents the sides AB, AC at F, E, respectively. Then, let the intersections of line EF and  $\Omega$  to be P, Q. Let M to be the mid-point of BC. Take a point R on the circumcircle of  $\triangle MPQ$ , say  $\Gamma$ , such that  $MR \perp EF$ . Prove that the line  $AR, \omega$  and  $\Gamma$  intersect at one point.

**Problem 1.282** (3435532350205377704). Find all functions  $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$  such that a + f(b) divides  $a^2 + bf(a)$  for all positive integers a and b with a + b > 2019.

**Problem 1.283** (561375932085594939). Petya has 10,000 balls, among them there are no two balls of equal weight. He also has a device, which works as follows: if he puts exactly 10 balls on it, it will report the sum of the weights of some two of them (but he doesn't know which ones). Prove that Petya can use the device a few times so that after a while he will be able to choose one of the balls and accurately tell its weight.

**Problem 1.284** (7550072974614174968). Let  $n \ge 3$  be an integer, and let  $x_1, x_2, \ldots, x_n$  be real numbers in the interval [0, 1]. Let  $s = x_1 + x_2 + \ldots + x_n$ , and assume that  $s \ge 3$ . Prove that there exist integers i and j with  $1 \le i < j \le n$  such that

$$2^{j-i}x_ix_i > 2^{s-3}.$$

**Problem 1.285** (623590906176957). The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly k > 0 coins

showing H, then he turns over the kth coin from the left; otherwise, all coins show T and he stops. For example, if n=3 the process starting with the configuration THT would be  $THT \to HHT \to HTT \to TTT$ , which stops after three operations.

- (a) Show that, for each initial configuration, Harry stops after a finite number of operations.
- (b) For each initial configuration C, let L(C) be the number of operations before Harry stops. For example, L(THT) = 3 and L(TTT) = 0. Determine the average value of L(C) over all  $2^n$  possible initial configurations C.

**Problem 1.286** (579228243242060). Let ABCD be a parallelogram. A line through C crosses the side AB at an interior point X, and the line AD at Y. The tangents of the circle AXY at X and Y, respectively, cross at T. Prove that the circumcircles of triangles ABD and TXY intersect at two points, one lying on the line AT and the other one lying on the line CT.

**Problem 1.287** (499788610931519). Andryusha has 100 stones of different weight and he can distinguish the stones by appearance, but does not know their weight. Every evening, Andryusha can put exactly 10 stones on the table and at night the brownie will order them in increasing weight. But, if the drum also lives in the house then surely he will in the morning change the places of some 2 stones. Andryusha knows all about this but does not know if there is a drum in his house. Can he find out?

**Problem 1.288** (709461884323637120). Among 16 coins there are 8 heavy coins with weight of 11 g, and 8 light coins with weight of 10 g, but it's unknown what weight of any coin is. One of the coins is anniversary. How to know, is anniversary coin heavy or light, via three weighings on scales with two cups and without any weight?

**Problem 1.289** (258585206260584). Let  $n \ge 100$  be an integer. Ivan writes the numbers  $n, n+1, \ldots, 2n$  each on different cards. He then shuffles these n+1 cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.

**Problem 1.290** (8608387455131778331). Calvin and Hobbes play a game. First, Hobbes picks a family  $\mathcal{F}$  of subsets of  $\{1, 2, \dots, 2020\}$ , known to both players. Then, Calvin and Hobbes take turns choosing a number from  $\{1, 2, \dots, 2020\}$  which is not already chosen, with Calvin going first, until all numbers are taken (i.e., each player has 1010 numbers). Calvin wins if he has chosen all the elements of some member of  $\mathcal{F}$ , otherwise Hobbes wins. What is the largest possible size of a family  $\mathcal{F}$  that Hobbes could pick while still having a winning strategy?

**Problem 1.291** (436681276656848). For the quadrilateral ABCD, let AC and BD intersect at E, AB and CD intersect at F, and AD and BC intersect at G. Additionally, let W, X, Y, and Z be the points of symmetry to E with respect to AB, BC, CD, and DA respectively. Prove that one of the intersection points of  $\odot(FWY)$  and  $\odot(GXZ)$  lies on the line FG.

**Problem 1.292** (8799177804774743019). In each square of a garden shaped like a  $2022 \times 2022$  board, there is initially a tree of height 0. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn: The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller. The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter. We say that a tree is majestic if its height is at

least  $10^6$ . Determine the largest K such that the gardener can ensure there are eventually K majestic trees on the board, no matter how the lumberjack plays.

**Problem 1.293** (689874125173032). Let  $\omega_1, \omega_2$  be two non-intersecting circles, with circumcenters  $O_1, O_2$  respectively, and radii  $r_1, r_2$  respectively where  $r_1 < r_2$ . Let AB, XY be the two internal common tangents of  $\omega_1, \omega_2$ , where A, X lie on  $\omega_1, B, Y$  lie on  $\omega_2$ . The circle with diameter AB meets  $\omega_1, \omega_2$  at P and Q respectively. If

$$\angle AO_1P + \angle BO_2Q = 180^{\circ},$$

find the value of  $\frac{PX}{QY}$  (in terms of  $r_1, r_2$ ).

Problem 1.294 (4527883777563937913). 10000 children came to a camp; every of them is friend of exactly eleven other children in the camp (friendship is mutual). Every child wears T-shirt of one of seven rainbow's colours; every two friends' colours are different. Leaders demanded that some children (at least one) wear T-shirts of other colours (from those seven colours). Survey pointed that 100 children didn't want to change their colours [translator's comment: it means that any of these 100 children (and only them) can't change his (her) colour such that still every two friends' colours will be different]. Prove that some of other children can change colours of their T-shirts such that as before every two friends' colours will be different.

**Problem 1.295** (3906812380515301028). Given a triangle  $\triangle ABC$ . Denote its incenter and orthocenter by I, H, respectively. If there is a point K with

$$AH + AK = BH + BK = CH + CK$$

Show that H, I, K are collinear.

**Problem 1.296** (695330092247108707). There is an integer n > 1. There are  $n^2$  stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The k cable cars of A have k different starting points and k different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for B. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed). Determine the smallest positive integer k for which one can guarantee that there are two stations that are linked by both companies.

**Problem 1.297** (8005762280394288133). A school has 450 students. Each student has at least 100 friends among the others and among any 200 students, there are always two that are friends. Prove that 302 students can be sent on a kayak trip such that each of the 151 two seater kayaks contain people who are friends.

**Problem 1.298** (5395714337110519657). The vertices of a convex 2550-gon are colored black and white as follows: black, white, two black, two white, three black, three white, ..., 50 black, 50 white. Dania divides the polygon into quadrilaterals with diagonals that have no common points. Prove that there exists a quadrilateral among these, in which two adjacent vertices are black and the other two are white.

**Problem 1.299** (329951351081287). You're given an  $n \times n$  matrix of real numbers. In an operation, you may negate the entries of any row or column. Prove that in a finite number of operations, you can ensure every row and every column of the matrix has nonnegative sum.

**Problem 1.300** (443006607452241). Let  $x_1, x_2, \ldots, x_n$  be different real numbers. Prove that

$$\sum_{1 \le i \le n} \prod_{j \ne i} \frac{1 - x_i x_j}{x_i - x_j} = \begin{cases} 0, & \text{if } n \text{ is even;} \\ 1, & \text{if } n \text{ is odd.} \end{cases}$$

**Problem 1.301** (684771433215596). In triangle ABC, point  $A_1$  lies on side BC and point  $B_1$  lies on side AC. Let P and Q be points on segments  $AA_1$  and  $BB_1$ , respectively, such that PQ is parallel to AB. Let  $P_1$  be a point on line  $PB_1$ , such that  $B_1$  lies strictly between P and  $P_1$ , and  $\angle PP_1C = \angle BAC$ . Similarly, let  $Q_1$  be the point on line  $QA_1$ , such that  $A_1$  lies strictly between Q and  $Q_1$ , and  $\angle CQ_1Q = \angle CBA$ .

Prove that points  $P, Q, P_1$ , and  $Q_1$  are concyclic.

**Problem 1.302** (819328919046836). Which positive integers n make the equation

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \left\lfloor \frac{ij}{n+1} \right\rfloor = \frac{n^{2}(n-1)}{4}$$

true?

**Problem 1.303** (37921131297270). You are given a set of n blocks, each weighing at least 1; their total weight is 2n. Prove that for every real number r with  $0 \le r \le 2n - 2$  you can choose a subset of the blocks whose total weight is at least r but at most r + 2.

**Problem 1.304** (7088779505939683183). Find all triples (a, b, c) of positive integers such that  $a^3 + b^3 + c^3 = (abc)^2$ .

**Problem 1.305** (614247648874042). Misha has a 100x100 chessboard and a bag with 199 rooks. In one move he can either put one rook from the bag on the lower left cell of the grid, or remove two rooks which are on the same cell, put one of them on the adjacent square which is above it or right to it, and put the other in the bag. Misha wants to place exactly 100 rooks on the board, which don't beat each other. Will he be able to achieve such arrangement?

**Problem 1.306** (35724831608408). We will say that a set of real numbers  $A = (a_1, ..., a_{17})$  is stronger than the set of real numbers  $B = (b_1, ..., b_{17})$ , and write A > B if among all inequalities  $a_i > b_j$  the number of true inequalities is at least 3 times greater than the number of false. Prove that there is no chain of sets  $A_1, A_2, ..., A_N$  such that  $A_1 > A_2 > \cdots A_N > A_1$ .

Remark: For 11.4, the constant 3 is changed to 2 and N=3 and 17 is changed to m and n in the definition (the number of elements don't have to be equal).

**Problem 1.307** (193788212098506). In a convex n-gon  $\mathcal{P}$ , we draw several diagonals. A drawn diagonal is good if it intersects exactly one other drawn diagonal in the interior of  $\mathcal{P}$ . Over all choices of diagonals to draw, find the maximum possible number of good diagonals.