无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

第八章

高性能软件无线电

系统模型

USRP: Universal Software Radio Peripheral

192.168.10.2

Daughter board	Frequency range
SBX	400 - 4400MHz
WBX	50 - 2200MHz
XCVR2450	2400 - 2500MHz
Basic	1 - 250MHz

查找 USRP

Host computer's IP: **192.168.10.1**

 \times

Parameters	Value
Device names	192.168.10.2
Carrier frequency	2.40001GHz
IQ rate (samples/s)	200k
Gain (dB)	0
Waveform size	10000
Data	1+0i
Active antenna	Tx1

USRP Transmitter device names ½ 192.168.10.2 IQ rate coerced IQ rate 200k 200k carrier frequency coerced carrier frequency 2.40001G 2.40001G gain coerced gain waveform size 10000 error out status code active antenna TX1 source Stop

File Edit View Project Operate Tools Winc

Basic Sine TX.vi Front Panel

Actual value

复基带信号

$$s(t) = a(t)cos[2\pi f_c t + \varphi] \qquad \longrightarrow \qquad s_l(t) = s_l(t) + js_Q(t)$$

$$s_l(t) = a(t)cos(\varphi)$$

$$s_l(t) = a(t)cos(\varphi)$$

$$s_l(t) = a(t)sin(\varphi)$$

USRP驱动函数

Close

USRP Transmitter

niUSRP Abort.vi

USRP Receiver

$$s(t) = a(t)cos[2\pi f_c t + \varphi]$$

$$s_I(t) = a(t)cos(\varphi)$$

$$s_Q(t) = a(t) sin(\varphi)$$

$$s_l(t) = s_I(t) + js_O(t)$$

Baseband

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s)dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s)dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s)dt)$$

$$s_l(nT_s) = s_I(nT_s) + js_Q(nT_s)$$

Baseband

 $s_l(nT_s) = s_l(nT_s) + js_O(nT_s)$

$$s(nT_s) = cos[2\pi f_c t + 2\pi \int k_f m(nT_s)dt]$$

$$s_I(nT_s) = A_c cos(2\pi \int k_f m(nT_s)dt)$$

$$s_Q(nT_s) = A_c sin(2\pi \int k_f m(nT_s)dt)$$

$$2\pi \int k_f m(nT_S)dt = atan\left(\frac{s_Q(nT_S)}{s_I(nT_S)}\right)$$

$$m(nT_S) = \frac{1}{2\pi k_f} \frac{d}{dt} \left[atan \left(\frac{s_Q(nT_S)}{s_I(nT_S)} \right) \right]$$

FM Transmitter

FM Receiver

Receiver, Channel 2

Receiver, Channel 3

Summary

Question ?

