EXAMEN STATISTIQUE - 1SN

Mardi 27 Novembre 2019 (14h-15h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1: Estimation (10 points)

On considère n observations $x_1,...,x_n$ issues d'un échantillon $(X_1,...,X_n)$ distribué suivant la même loi de densité

 $f(x_i; \boldsymbol{\theta}) = \frac{\beta}{\alpha} \exp\left(\beta x_i - \frac{1}{\alpha} e^{\beta x_i}\right), \quad x_i \in \mathbb{R}$

avec $\alpha > 0$, $\beta > 0$ et $\theta = (\alpha, \beta)^T$. On cherche tout d'abord à estimer le paramètre α à partir des observations $x_1, ..., x_n$ (β est connu dans les 5 premières questions de cet exercice), puis on s'intéresse à l'estimation du vecteur $\theta = (\alpha, \beta)^T$ dans la dernière question de cet exercice.

- 1. Déterminer l'estimateur du maximum de vraisemblance du paramètre α noté $\widehat{\alpha}_{MV}$.
- 2. Montrer que $Y_i = e^{\beta X_i}$ suit une loi gamma dont on déterminera les paramètres. En s'aidant des tables, déterminer la moyenne et la variance de la variable aléatoire Y_i .
- 3. L'estimateur $\widehat{\alpha}_{MV}$ est-il un estimateur sans biais et convergent du paramètre α ?
- 4. Déterminer la borne de Cramer-Rao pour un estimateur non biaisé du paramètre α . L'estimateur $\widehat{\alpha}_{MV}$ est-il l'estimateur efficace du paramètre α ?
- 5. On suppose que α est muni d'une loi a priori inverse gamma IG(b, a) définie par

$$p(\alpha) \propto \frac{1}{\alpha^{a+1}} \exp\left(-\frac{b}{\alpha}\right) \mathbb{I}_{\mathbb{R}^+}(\alpha)$$

où a et b sont deux paramètres connus et $\mathbb{I}_{\mathbb{R}^+}$ est la fonction indicatrice sur \mathbb{R}^+ (telle que $\mathbb{I}_{\mathbb{R}^+}(\alpha) = 1$ si $\alpha > 0$ et $\mathbb{I}_{\mathbb{R}^+}(\alpha) = 0$ sinon).

• Montrer que l'estimateur du maximum a posteriori du paramètre α s'écrit

$$\widehat{\alpha}_{\text{MAP}} = c_1(n)\widehat{\alpha}_{\text{MV}} + c_2(n)$$

où $c_1(n)$ et $c_2(n)$ sont deux fonctions de n, a, b que l'on déterminera. Déterminer les limites de $c_1(n)$ et de $c_2(n)$ lorsque $n \to \infty$ et commenter le résultat obtenu.

• Montrer que la loi de $\alpha | x_1, ..., x_n$ est une loi inverse gamma dont on déterminera les paramètres. En déduire l'estimateur MMSE de α .

On suppose désormais que α et β sont deux paramètres inconnus que l'on cherche à estimer à partir de l'échantillon $(X_1, ..., X_n)$ et on pose $\theta = (\alpha, \beta)^T$.

6. Montrer que l'estimateur du maximum de vraisemblance de $\theta = (\alpha, \beta)^T$ construit à partir de l'observation des variables aléatoires X_i s'obtient comme la solution du système suivant

$$\alpha = \frac{1}{n} \sum_{i=1}^{n} \exp(\beta x_i), \quad g(\beta; x_1, ..., x_n) = \frac{1}{\beta} + \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{\sum_{i=1}^{n} x_i \exp(\beta x_i)}{\sum_{i=1}^{n} \exp(\beta x_i)} = 0.$$

Expliquer succinctement comment on peut trouver la solution de ce système.

Exercice 2: Tests Statistiques (10 points)

On considère n observations $x_1, ..., x_n$ issues d'un échantillon $(X_1, ..., X_n)$ distribué suivant la même loi de Weibull de densité

$$f(x_i; oldsymbol{ heta}) = rac{eta x_i^{eta-1}}{lpha} \exp\left(-rac{x_i^{eta}}{lpha}
ight) \mathbb{I}_{\mathbb{R}^+}\left(x_i
ight),$$

où $\beta > 0$ est un paramètre connu, $\alpha > 0$, et où $\mathbb{I}_{\mathbb{R}^+}(x)$ est la fonction indicatrice sur \mathbb{R}^+ . L'objectif de cet exercice est d'étudier un test statistique basé sur les observations $x_1, ..., x_n$ qui permet de déterminer si $\alpha = \alpha_0$ ou si $\alpha = \alpha_1 < \alpha_0$. On considère donc le test d'hypothèses

$$H_0: \alpha = \alpha_0, \quad H_1: \alpha = \alpha_1 \quad \text{avec } \alpha_1 < \alpha_0.$$

1. Montrer que la statistique de test du théorème de Neyman-Pearson est

$$T_n = \sum_{i=1}^n X_i^{\beta}$$

et indiquer la région critique de ce test. Représenter cette région critique pour $\beta=2$ et n=2.

- 2. Montrer que $Y_i = \frac{2}{\alpha} X_i^{\beta}$ suit une loi du χ^2 à deux degrés de liberté, i.e., $Y_i \sim \chi_2^2$. En déduire la loi de $U_n = \frac{2}{\alpha} T_n$ sous les deux hypothèses H_0 et H_1 .
- 3. On note $F_{2n}(x)$ la fonction de répartition d'une loi du χ^2_{2n} . Exprimer les risques de première et seconde espèce α et β en fonction du seuil du test de Neyman-Pearson noté S, de F_{2n} et de α_0 et α_1 . En déduire les caractéristiques opérationnelles du récepteur (courbes COR) pour ce test et analyser les performances en fonction des valeurs de α_0 et α_1 . Donner l'allure de ces courbes pour plusieurs valeurs du couple (α_0, α_1) .
- 4. On désire vérifier que l'hypothèse d'une loi de Weibull pour les variables aléatoires $X_1,...,X_n$ est correcte. Pour cela, on construit les variables $Y_i = \frac{2}{\alpha}X_i^\beta$ et on cherche à vérifier si ces variables suivent une loi du χ_2^2 à l'aide d'un test de Kolmogorov. Expliquer le principe de ce test (on précisera notamment comment on calcule la statistique de ce test et comment le seuil est calculé à partir d'un risque α donné).

LOIS DE PROBABILITÉ CONTINUES $m: moyenne \qquad \sigma^2: variance \qquad F. C.: fonction caractéristique$

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$rac{ u}{ heta}$	$\frac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\operatorname{IG}(heta, u)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$\frac{\theta}{\nu-1}$ si $\nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ $\chi^2_{ u}$ $\Gamma\left(\frac{1}{2},\frac{ u}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2 u	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i lpha t - \lambda t }$
Beta	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0, \ x \in]0,1[$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
LOI		m	0	
Uniforme	$p_k = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
	$k \in \{1,, n\}$	_	12	$n\left(1-e^{i\iota}\right)$
Bernoulli	$p_1 = P\left[X = 1\right] = p$	p	pq	$pe^{it} + q$
	$p_0 = P\left[X = 0\right] = q$			
	$p \in [0,1] q = 1 - p$			
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$	np	npq	$\left(pe^{it}+q\right)^n$
	$p \in [0,1] q = 1 - p$			
	$k \in \{0, 1,, n\}$			
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1-qe^{it}}\right)^n$
	$p \in [0,1] q = 1 - p$			
	$k \in \mathbb{N}$			
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1}p_m^{k_m}$	np_j	Variance :	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
	$p_j \in [0,1] q_j = 1 - p_j$		np_jq_j	
	$k_j \in \{0, 1, \dots, n\}$		Covariance :	
	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$		$-np_jp_k$	
Poisson	$p_k = e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
$P(\lambda)$	$\lambda > 0 k \in \mathbb{N}$			
Géométrique	$p_k = pq^{k-1}$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$
	$p \in [0,1] q = 1 - p$			
	$k \in \mathbb{N}^*$			1

EXI

1)
$$f(x_1,...,x_i;\alpha) = \prod_{i=1}^{n} \left[\frac{\beta}{\alpha} e^{\beta x_i} \exp\left(-\frac{d}{\alpha} e^{\beta x_i}\right)\right]$$

$$= \frac{\beta}{\beta} \sqrt{\frac{\beta}{\beta}} e^{\beta x_i} \exp\left(-\frac{d}{\alpha} e^{\beta x_i}\right)$$

$$= \frac{\beta}{\beta} \sqrt{\frac{\beta}{\beta}} e^{\beta} e^{\beta x_i} \exp\left(-\frac{d}{\alpha} e^{\beta x_i}\right)$$

$$= \frac{\beta}{\beta} \sqrt{\frac{\beta}{\beta}} e^{\beta} e^{\beta x_i} \exp\left(-\frac{d}{\alpha} e^{\beta x_i}\right)$$

$$= \frac{\beta}{\beta} \sqrt{\frac{\beta}{\beta}} e^{\beta} e^{\beta x_i} \exp\left(-\frac{d}{\alpha} e^{\beta x_i}\right)$$

$$= \frac{\beta}{\beta} \sqrt{\frac{\beta}{\beta}} e^{\beta$$

6- L'estimateur du maximum de vroisemblance de 8-(%) veiifie Dluf(m,..., 1/2) = 0 u dluf(m,..., xn; 0) = 0 avec Lnf (My, Mn; 0) = n Ln B = n Ln x + \(\frac{1}{2} \) \\ \ \ i=1 $\frac{\partial n!}{\partial \alpha} = 0 \quad 4 \Rightarrow 0 \quad \frac{n}{\alpha} + \frac{1}{\alpha^2} \sum_{i=1}^{n} e^{\beta 2n^i} = 0$ $\frac{\partial n!}{\partial \alpha} = 0 \quad 4 \Rightarrow 0 \quad \frac{1}{\alpha} + \frac{1}{\alpha^2} \sum_{i=1}^{n} e^{\beta 2n^i} = 0$ $\frac{\partial n!}{\partial \alpha} = 0 \quad 4 \Rightarrow 0 \quad \frac{1}{\alpha} + \frac{1}{\alpha^2} \sum_{i=1}^{n} e^{\beta 2n^i} = 0$ dut = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 0 En divisant par n et en remplaçant \times par son expression (A)

on obtient $\frac{1}{\beta} + \frac{1}{12}\pi = \frac{1}{12}$ $\frac{1}{\beta} = \frac{1}{12}$ $\frac{1}{\beta} = \frac{1}{12}$ $\frac{1}{\beta} = \frac{1}{12}$ $\frac{1}{\beta} = \frac{1}{12}$ 2pts

Pour résondre ce système, on peut cheretre une solution de l'écopation 9(3', 7/4, ..., 2n) =0 à l'aide d'un algorithme l'écopation 9(3', 7/4, ..., 2n) =0 à l'aide d'un algorithme de New-ton-Raphson de recherche de 3ère comme l'algorithme de New-ton-Raphson cequi conduit à 3 mv - On remplace alors cette expression de 3 mv dans (x) pour obtenir sur Bmv 20'

[pt]

2mv = 1 2 e

Dapris le théorème de Neyman-Pearson, on regette 110 ri

Prinque dico, on a 20-3, 20 d'où

La statistique de test or donc $T_n = \sum_{i=1}^n x_i l^n$ et la région niteque 1 (m, m) / 5 xip 2 5}

Pour n=2 et p=2, cette région critique est définic por 1 (May 2 / 2/2 + 2/2 < 5)

qui et l'intérieur d'un disque de royon Js

Drègion critique du ter

Coryi = 2 xip 4 >> xi = (\frac{1}{2}yi) 1/18 for m changement de variables

Enfectel de pt dans pt de Jacobien | \frac{1}{2}yi| = \frac{1}{2} \frac{1}{2}yi | \frac{1}{2} - 1 On en déduit

$$T(x) = \frac{1}{2} \exp(-\frac{x^2}{2})$$
 $x \ge 0$ $y \le 0$

qui et la deninté d'une la du 22.

```
La fonction caractéristique de 2 in s'érit
       don (u) = E[e iunu] = E[e = iun]
                   ind de variables to
                           = IT of (n)
La fonction caractuistique d'une loi du x2 v dye(u) = 1-2it
         Pun (a) = 1 - 21 + 1
qui sor la fonction caracteristique d'une loi du X2
             Lone Un ~ X2n | such les 2 heppothèses tro et ti,
      d= P[Tn < S | d = do] (= P[Rejeter Ho | Ho state)
         = P[ Un = 2 in < 25 | x = do]
sir x = F_{2n} \left[ \frac{2s}{20} \right]
                                               (IPY)
              B= P[ Penter Hil Hi rrote]
-P[ Th> SI d= d]
                 - P[2T1725| X=K]
  flour
                 B=1- F2n [25]
                                             (lpr)
les Courbs CO2 exprinent T=1-B en Inction de 2 - Prinque
     x-F2n [25], ma |S= = = [x]
             T= 1-R= F2n [ do F2n (d)] (Ipt
```


On rejette l'hypothèx Ho si Dn > Sa vi Sa vi determine comme suit

7

Z= P[Rystor Ho | Ho waie]

= P[Dn > Sa | L = Lo]

= P[Un = \text{Vn Dn > \text{Vn Swirle loi de Kolnog.nov}}

de finition de ripartition

K]

 $= 1 - K \left(\sqrt{n} s \alpha \right)$

>D

Sx = 1 x (1-x)