Optum

"Help people live healthier lives and help make the health system work better for everyone"

Team 6 Case Analysis on Preventable Hospitalizations

Why?

Roughly 15%-21% of admitted hospitalizations per year are a preventable visit

Maximize usage of outpatient facilities

Consistent with organizational goals

Data Cleaning

- Converting metrics from object type to numeric
- Removed columns that didn't contain raw values (associated with main variables such as numerator, cihigh, etc.)
- Got rid of columns that had over 33% data missing
- Removed counties (rows) that had over 5 missing columns
- Removed rows where the target class was NaN (Preventable Hospitalization)

- Original data set 3195x725
- Final data set 2780x57

Data imputation - Looking at distributions for imputing values

Post Imputation

Dropping columns based on low correlation(0.1)

```
#filtering the columns where absolute value of correlation with the target variable is greater than 0.1
#as that is almost no correlation and would not contribute to preventable hospitalization
data corr = data.corr()
data corr filtered = data corr[abs(data corr['v005 rawvalue'])>0.1]
col names = list(data corr_filtered['v005_rawvalue'].to_frame().index)
data = data[[ 'statecode', 'countycode', 'fipscode', 'state', 'county', 'year', 'county ranked' ]+ col names]
    Excessive drinking raw value
                          Sexually transmitted infections raw value
                                                                                                  Primary care physicians raw value
                                                                                                                       Ratio of population to primary care physicians
```

Modeling

OVERVIEW OF MODELING

- Fit Regression models to select the best model
- Utilize the best model to find feature coefficients
- The coefficients determine which features of the model contribute most to the target class
- Utilized Boruta algorithm for feature selection
- Comparing Boruta features with coefficient based feature selection

Regression Models trained

Best Model as per results - ElasticNet

Model performance of Elasticnet on test

Test R2: 0.485

Test RMSE: 1076.801

Model performance of Lasso on test

Test R2: 0.484

Test RMSE: 1078.023

Model performance of Ridge on test

Test R2: 0.485

Test RMSE: 1076.801

Feature importance from the best model

	feature	coefficient
35	Premature age-adjusted mortality raw value	579.868537
1	Poor or fair health raw value	579.561185
38	Diabetes prevalence raw value	363.262998
2	Poor physical health days raw value	342.585874
0	Premature death raw value	285.480733
8	Physical inactivity raw value	280.160172

Features correlation

Boruta variables for features selection vs

coefficient analysis from regression model

	0
0	Poor or fair health raw value
1	Poor physical health days raw value
2	Poor mental health days raw value
3	Adult smoking raw value
4	Adult obesity raw value
5	Physical inactivity raw value
6	Sexually transmitted infections raw value
7	Teen births raw value
8	Ratio of population to mental health providers.
9	Unemployment raw value
10	Air pollution - particulate matter raw value
11	Driving alone to work raw value
12	Life expectancy raw value
13	Premature age-adjusted mortality raw value
14	Frequent physical distress raw value

feature coefficient

579.868537

579.561185

363.262998

342.585874

285.480733

280.160172

Top 3 Categories

<u>Premature Age Adjusted Mortality-</u> Death that occurs before the average age of death for a certain population. In the United States its widely known at 75 years.

Overall Poor or Fair Health- Poor state of conditional health ailments.

<u>Diabetes Prevalence-</u> Related cases of hospitalizations that have to do with diabetes.

Exploratory Data Analysis

Correlation Coefficient = 0.53

Changes directly with Preventable Hospital stays

Relationship between Preventable Hospital Stays and Premature Age-Adjusted Mortality

Correlation Coefficient = 0.53

Changes directly with Preventable Hospital stays

Correlation Coefficient = 0.5

Changes directly with Preventable Hospital stays

Solutions

Most Effective = Blanket Solution

Integrative Prevention Plans:

<u>Implement preventative consultation between cross-sectional groups:</u>

- Come together to establish high-risk patients and priority base them for treatment.
- Alleviate the pressure on hospitals because patients at most risk for hospitalizations are already being taken care of.

Create incentive plans for outpatient facilities and general practitioners:

- Financial or commending them, have outpatient facilities and general practitioners develop a more intimate relationship among patients.
- Address their concerns and problems in a preventive manner before something happens.

Thank you