Esercitazioni di Matematica

2° Volume parte prima

edizione riveduta

Pubblicato da Liguori Editore Via Mezzocannone 19, 80134 Napoli

© Ligueri Editore, S.r.l., 1989, 1995

I diritti di traduzione, riproduzione e adattamento, totale o parziale, sono riservati per tutti i Paesi. Nessuna parte di questo volume può essere riprodotta, registrata o trasmessa con qualsiasi mezzo: elettronico, elettrostatico, meccanico, fotografico, ottico o magnetico (comprese copie fotostatiche, microfilm e microfiches).

Seconda edizione italiana Gennaio 1995

9 8 7 6 5 4 3 2.1 0

2001 2000 1999 1998 1997 1996 1995

Le cifre sulla destra indicano il numero e l'anno dell'ultima ristampa effettuata

Printed in Italy, Officine Grafiche Liguori, Napoli

....

ISBN 88-207-1864-2

INDICE

Capitolo 1 SUCCESSIONI E SERIE DI FUNZIONI	!	
1A. Successioni di funzioni: convergenza		
puntuale ed uniforme	pag	;. <u>9</u>
1B. Serie di funzioni	111	3 7
1C. Serie di potenze	*1	4 6
1D. Serie di Taylor	U	5 4
Capitolo 2	•	
SPAZI METRICI E SPAZI NORMATI		
2A. Spazi metrici	17	76
2B. Condizione di Cauchy. Completezza	**	86
2C. Spazi metrici compatti	11	93
2D. Spazi normati	11	97
Capitolo 3		
FUNZIONI DI PIU' VARIABILI		
3A. Rappresentazione grafica	11.	107
3B. Insiemi di definizione		115
3C. Limiti e continuità	rr '	123
3D. Derivate parziali		138
3E. Differenziabilità	2.0	154
3F. Derivate delle funzioni composte	11	166
3G. Gradiente: Derivaté direzionali	, U .	174
3H. Funzioni di tre o più variabili reali	હું ⊹ છ	186

Capitolo 4 EQUAZIONI DIFFERENZIALI LINEARI		
4A. Equazioni differenziali lineari del primo ordine4B. Equazioni differenziali lineari omoge-	pag	. 197
nee a coefficienti costanti 4C. Equazioni lineari non omogenee a	11	211
coefficienti costanti 4D. Il metodo della variazione delle co-	11	222
stanti	**	232
4E. Problemi ai limiti	f1	236
4F. Equazioni lineari di Eulero	. "	242
4G. Integrazione per serie 4H. Sistemi di equazioni differenziali	**	250
lineari	It	255
Capitolo 5 EQUAZIONI DIFFERENZIALI NON LINEARI DEL PRIMO ORDINE		
5A. Equazioni a variabili separabili	* *	265
5B. Equazioni di Bernoulli	11	279
5C. Equazioni della forma $y'=g(y/x)$	11	289
5D. Equazioni della forma y'=g(ax+by)	f1	297
5E. Equazioni della forma $y'=g(\frac{ax + by + c}{a'x+b'y+c'})$	††	302
5F. Equazioni non normali della forma		
x = g(y')	11	305
5G. Equazioni non normali della forma		
y=g(y')	17	308
5H. Equazioni di Clairaut	†I	311
51. Il teorema di Cauchy		319
5L. Integrazione grafica		329
5M. Esercizi di riepilogo	11	339

Capitolo 6		
EQUAZIONI DIFFERENZIALI NON LINEARI DI		
ORDINE SUPERIORE AL PRIMO		
A. Generalità B. Equazioni della forma g(x,y',y")=0	pag.	344 346
SC. Equazioni della forma g(y,y',y")=0 SD. Equazioni di ordine superiore al	11,	357
secondo	R	367

Capitolo 1

SUCCESSIONI E SERIE DI FUNZIONI

1A. Successioni di funzioni: convergenza puntuale ed uniforme

Sia (f_n) una successione di funzioni reali definite nell'intervallo I di R.

Si dice che (f_n) converge puntualmente in I verso la funzione $f:I\to R$, se risulta

$$\lim_{n\to\infty} f_n(x) = f(x) , \qquad \forall x \in I,$$

cioè se: $\forall \epsilon > 0$ e $\forall x \in I$, esiste $v_{\epsilon,x} \in N$ tale che per $n > v_{\epsilon,x}$ si ha $|f_n(x) - f(x)| < \epsilon$.

In generale, il numero $v_{\epsilon,x}$ dipende anche da x; se invece, $\forall \epsilon > 0$, tale numero è indipendente da x, si parla di convergenza uniforme.

Precisamente, si dice che (f_n) converge uniformemente in I verso f, se $\forall \epsilon > 0$ esiste $\nu_\epsilon \epsilon N$ tale che

11

 $\forall n > \nu_{\epsilon} \text{ si ha}$

$$|f_n(x)-f(x)| < \varepsilon$$
 $\forall x \in I$.

Dunque la convergenza uniforme implica quella pun tuale.

Se le funzioni f_n , f sono limitate in I, allora (f_n) converge uniformemente verso f in I se e solo se, posto $M_n = \sup \{|f_n(x)-f(x)|: x \in I\}$, risulta $\lim_{n \to \infty} M_n = 0$.

La successione (f_n) si dice equilimitata in I,se esiste una costante M > 0 tale che

$$|f_n(x)| \le M \quad \forall n \in N, \forall x \in I;$$

si dice equicontinua in I, se, per ogni $\epsilon > 0$ — esiste $\delta_\epsilon > 0$ tale che

$$|x-y| < \delta_{\varepsilon} \implies |f_n(x)-f_n(y)| < \varepsilon, \quad \forall n \in \mathbb{N}.$$

Sussistono i seguenti notevoli teoremi.

TEOREMA 1 (di Ascoli-Arzelà). Se (f_n) è una successione di funzioni equilimitate ed equicontinue nell'intervallo chiu-so e limitato I = [a,b], allora essa ammette un'estratta con vergente uniformemente in I.

TEOREMA 2 (Condizione di Cauchy uniforme). Condizione

necessaria e sufficiente affinchè la successione (f_n) converga uniformemente verso una funzione definita in I è che: $\forall \epsilon > o$ esista $\forall \epsilon$ tale che $\forall p,q > \forall_{\epsilon}$ sia $|f_p(x) - f_q(x)| < \epsilon$, $\forall x \epsilon I$.

TEOREMA 3 (Continuità del limite uniforme di funzioni continue). Se (f_n) converge uniformemente verso f e tutte le f_n sono continue in x_o , allora anche f lo è.

TEOREMA 4 (Passaggio al limite sotto il segno di derivata). Sia (f_n) una successione di funzioni derivabili in I=(a,b) ed ivi convergente puntualmente verso f. Se la successione (f'_n) converge uniformemente in I, allora f è derivabile in I e si ha:

$$\lim_{n\to\infty} f_n^*(x) = f^*(x) \qquad \forall x \in I.$$

TEOREMA 5 (Passaggio al limite sotto il segno di integrale). Sia (f_n) una successione di funzioni continue in I = [a,b] ed ivi convergente uniformemente verso f. Allora si ha

$$\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx.$$

1.1 Siano α, β due numeri reali e sia (f_n) la succes-

sione definita in (0,1) da

$$f_n(x) = \begin{cases} \alpha & \text{se } x \in (0, 1/n] \\ \beta & \text{se } x \in (1/n, 1) \end{cases}$$

Determinare il limite puntuale di (f_n) e stabilire sotto quali condizioni la convergenza è an che uniforme.

[Il limite puntuale è la funzione identicamente uguale a β . Inoltre, essendo

$$\sup_{x \in (0,1)} |f_n(x) - \beta| = |\alpha - \beta|$$

si ha convergenza uniforme se e solo se è α = β

1.2 Studiare la convergenza delle successioni di funzioni (f_n) , (g_n) definite per $x \in R$ da

$$f_n(x) = sen nx$$
, $g_n(x) = cos nx$.

[Si ha $\lim_{n\to\infty} f_n(x) = 0$ solo per x=k \Pi, con k \in Z e $\lim_{n\to\infty} g_n(x) = 1$ solo per x=2k \Pi, con k \in Z (si veda il paragrafo 12D del vol. I, parte prima)]

1.3 Verificare che la successione (f_n) definita da $f_n(x) = x^n$ per $x \in (-1,1)$ converge verso la funzione f(x) = 0 puntualmente, ma non uniformemen

te.

[Si ha
$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n = 0$$
, $\forall x \in (-1,1)$.

Essendo poi

$$\sup_{x \in (-1,1)} |x^n - 0| = \sup_{x \in (-1,1)} |x^n| = 1,$$

la successione non converge uniformemente

- 1.4 Verificare che la successione (f_n) definita da $f_n(x) = x^n$ per $x \in (-1,1)$ converge uniformemente in ogni intervallo del tipo (-a,a) con 0 < a < 1.
 - [Si ha sup $\{ \lfloor x 0 \rfloor : x \in (-a,a) \} = a^n$. Essendo $\lim_{n \to \infty} a^n = 0$, si ha l'asserto]
- 1.5 Studiare la convergenza della successione di funzioni $f_n(x) = x^{-n}$ negli intervalli

(a)
$$I = (1, +\infty)$$
 (b) $J = (2, +\infty)$

[La successione (f_n) converge puntualmente verso zero per $x \ge 1$.(a) Es sendo $M_n = \sup \{x^{-n} : x \in I\} = 1$, la successione (M_n) non converge a zero e dunque (f_n) non converge uniformemente in I. (b) Essendo $M_n' = \sup \{x^{-n} : x \in J\} = 2^{-n}$ si ha $\lim_{n \to \infty} M_n' = 0$ e perciò la successione (f_n) converge uniformemente a zero in J

1.6 Il teorema 5 stabilisce che la convergenza unifor

me è una condizione sufficiente per passare al <u>li</u> mite sotto il segno di integrale. Non è però con dizione necessaria. Per mostrare ciò si consideri la successione di funzioni (un altro esempio è proposto nell'esercizio 1.25):

$$f_n(x) = nxe^{-n^2x^2}$$
, $\forall x \in \mathbb{R}$,

e si verifichi che

- (a) $f_n(x)$ converge a f(x)=0 per ogni $x \in \mathbb{R}$.
- (b) (f_n) non converge uniformemente in [0,1].
- (c) L'integrale definito di $f_n(x)$ nell'intervallo [0,1] converge a zero.
- (d) Si determinino tutti e soli i numeri reali a,b (a<b) con la proprietà che (f_n) converga uniformemente in [a,b].

(b) Consideriamo

 \mathbb{M}_n = sup $\{|f_n(x)-f(x)|: x \in [0,1]\} = \max \{f_n(x): x \in [0,1]\}$. Fissato n, il massimo assoluto di $f_n(x)$ nell'intervallo [0,1] si determina scegliendo il valore più grande tra $f_n(0)$, $f_n(1)$ e $f_n(x)$ per x tale che $f_n^*(x) = 0$. La derivata prima vale

$$f_n^{\dagger}(x) = n e^{-n^2 x^2} (1-2n^2 x^2)$$

e si annulla in [0,1] per $x = \sqrt{1/(2n^2)}$. Essendo $f_n(0) = 0$, $f_n(1) = n$ e $\xrightarrow{-n^2}$ \rightarrow 0, per n sufficientemente grande risulta

$$M_n = f_n \left(\sqrt{\frac{1}{2n^2}} \right) = \frac{\sqrt{2}}{2e} \quad .$$

La successione $(M_{\rm p})$ è definitivamente costante (> 0) e non converge a

zero. Perciò ($\mathbf{f}_{\mathbf{n}}$) non converge uniformemente in [0,1] .

(c) Per $n \to +\infty$ l'integrale definito di $f_n(x)$ in [0,1] converge a zero (e zero è il valore dell'integrale definito di f(x) in [0,1]); in fatti:

$$\int_0^1 f_n(x) dx = n \int_0^1 x e^{-n^2 x^2} dx = n \left[\frac{-1}{2n^2} e^{-n^2 x^2} \right]_0^1 = \frac{1}{2n} (1 - e^{-n^2}) \to 0.$$

(d) La successione converge uniformemente in [a,b] se a,b hanno lo stesso segno, mentre non converge uniformemente se a,b hanno segni di scordi o se uno di essi è nullo. Infatti, ad esempio se 0 < a < b, definitivamente si ha $\sqrt{1/(2n^2)}$ < a e quindi

$$M_n = \max \{ f_n(x) : x \in [a, b] \} = f_n(a) \to 0$$

1.7 Sia (f_n) una successione di funzioni continue nell'intervallo I di R, convergente uniformemente in I verso f. Verificare che, se $x_n, x \in I$ e $x_n \rightarrow x$, allora si ha

$$\lim_{n\to\infty} f_n(x_n) = f(x).$$

[Sia $\epsilon>0$ e sia $\mbox{$V_{\epsilon}$ tale che V_{n}} > \mbox{V_{ϵ}, $$ $|f_{n}(x)-f(x)|$ < $\epsilon/2$, $$ $\forall x \in I$. Allora per $n > \mbox{$V_{\epsilon}$ si ha}$

$$\left| f_{n}(x_{n}) - f(x) \right| \leq \left| f_{n}(x_{n}) - f(x_{n}) \right| + \left| f(x_{n}) - f(x) \right| <$$

$$< \epsilon / 2 + \left| f(x_{n}) - f(x) \right|.$$

Poichè f è continua e $x_n \to x \in I$, si ha anche $f(x_n) \to f(x)$, per cui $\exists V_{\hat{E}}^t > V_{\hat{E}}$ tale che $|f(x_n) - f(x)| < \epsilon/2$, $\forall n > V_{\hat{E}}^t$. Ne segue facilmente l'asserto]

1.8 Sia α un parametro reale e sia (f_p) la successio

ne di funzioni definita da

$$f_n(x) = n^{\alpha} x e^{-n^2 x^2}, \quad \forall x \in \mathbb{R}.$$

- (a) Verificare che, per ogni $\alpha \in \mathbb{R}$, $f_n(x)$ converge a f(x)=0 puntualmente su \mathbb{R} .
- (b) Utilizzando la proprietà enunciata nell'eser cizio precedente con $x_n = 1/n$, verificare che (f_n) non converge uniformemente su R se $\alpha \ge 1$.
- (c) Verificare che (f_n) converge uniformemente su R se $\alpha < 1$.
- (d) Mostrare che, se α < 0, la successione delle derivate (f'_n) converge a zero uniformemente su R.
- (e) Verificare che, per α =0, la successione (f'_n) converge puntualmente per ogni $x \in R$ ad una fum zione $g(x) \neq f'(x)$ (questo esempio mostra che il teorema 4, di passaggio al limite sotto il segno di derivata, non vale in generale supponendo che la successione delle derivate (f'_n) converga soltanto puntualmente, invece che u niformemente).
- [(b) Essendo f(x) = 0 per ogni $x \in R$, in base alla proprietà enunciata nell'esercizio 1.7, se (f_n) convergesse a f(x) uniformemente su R, do vrebbe risultare

$$\lim_{n\to+\infty} f_n(x_n) = f(x) = 0 ,$$

per ogni successione (x_n) convergente ad x. Invece, se $\alpha \geq 1$, posto x_n = 1/n si ottiene

$$\lim_{n \to +\infty} f_n(x_n) = \lim_{n \to +\infty} n^{\alpha-1} e^{-1} = \begin{cases} +\infty & \text{se } \alpha > 1 \\ e^{-1} & \text{se } \alpha = 1 \end{cases}$$

(c) Come nell'esercizio 1.6 (b), si verifica che

$$M_n = \max \{ | f_n(x) | : x \in \mathbb{R} \} = \frac{\sqrt{2n}^{\alpha-1}}{2e}, \quad \forall n \in \mathbb{N}.$$

Se ne deduce che (f_n) converge uniformemente su R se e solo se $\alpha < 1$. (d) La successione delle derivate vale $f_n'(x) = n^{\alpha} e^{-n^2 x^2}$ $(1-2n^2 x^2)$ e, se $\alpha < 0$, converge a zero per ogni x \in R. Inoltre si verifica che il massimo assoluto di $|f_n'(x)|$ su R è raggiunto per x=0 $(|f_n'(x)|)$ pre senta massimi relativi anche se $x^2 = 3/(2n^2)$ ed il valore di massimo vale

$$\max \{ |f_{n}'(x)| : x \in \mathbb{R} \} = \max \{ |f_{n}'(0)| ; |f_{n}'(\sqrt{3/(2n^{2})})| \}$$
$$= n^{\alpha} \max \{ 1; \frac{2}{e^{3/2}} \} = n^{\alpha} ;$$

se $\alpha \le 0$ tale valore converge a zero per $n \to +\infty$.

(e) Se α =0 La successione $f_n^*(x) = e^{-n^2 x^2} (1-2n^2 x^2)$ converge a

$$\lim_{n\to+\infty} f_n^1(x) = g(x) = \begin{cases} 0 & \text{se } x\neq 0 \\ 1 & \text{se } x=0. \end{cases}$$

Essendo f(x) = 0 per ogni $x \in \mathbb{R}$, risulta $f'(x) = 0 \neq g(x)$ nei punto x = 0

1.9 Studiare la convergenza in I=[0,1] delle succes sioni di funzioni

(a)
$$f_n(x)=x/(1+nx)$$
 (b) $g_n(x)=nx/(1+nx)$

[(a) Si ha $\lim_{n\to\infty} f_n(x) = 0$ per ogni $x \in I$. La convergenza è uniforme; infatti, fissato $\varepsilon \ge 0$ per $n \ge 1/\varepsilon$ si ha $f_n(0) = 0 \le \varepsilon$ e, per $x \in (0,1]$ risulta $0 \le f_n(x) = 1/[(1/x)+n] \le 1/n \le \varepsilon$.

(b) Posto $g(x) = \lim_{n \to \infty} g_1(x)$, si ha g(0) = 0 e g(x) = 1 per ogni $x \in \{0,1\}$. Poichè le g_n sono continue e g è discontinua, la convergenza non è uniforme, grazie il teorema 3. Il grafico della funzione g_n è rappresentato in fig. l 1 per n = 1,2,10,30

figura 1.1

1.10 Studiare la convergenza in (0,1) delle succes - sioni di funzioni

(a)
$$f_n(x)=n/(1+nx)^2$$

(b)
$$g_n(x) = 1/(n \cdot x)$$

[Le due successioni convergono puntualmente verso la funzione identica mente nulla, ma la convergenza non è uniforme, perchè le \mathbf{f}_n e le \mathbf{g}_n

non some funzioni equilimitate in (0,1)]

1.11 Studiare la convergenza in I=[-1,1] delle successioni di funzioni

(a)
$$f_n(x) = x/(1+n^2x^2)$$
 (b) $g_n(x)=nx/(1+n^2x^2)$

[(a) Si ha $\lim_{n\to\infty} f_n(x) = 0$ per ogni $x \in I$. Essendo $f_n(x) = (1/n)nx/[1+ +(nx)^2]$, la convergenza è uniforme in quanto $t/(1+t^2) \le 1/2$ per ogni $t \ge 0$.

(b) Si ha lim $g_n(x) = 0$ per ogni $x \in I$. Essendo $g_n(1/n) = I/2$ (x = 1/n è punto di massimo per g_n), la convergenza non è uniforme, grazie al l'esercizio 1.7. Il grafico di g_n è rappresentato in figura 1.2 per n = 1,2,10

figura 1.2

1.12 Studiare la convergenza in I = (0,1] della successione di funzioni $f_n(x) = n^2/(1+n^2x^2)$.

[Si ha $\lim_{n\to\infty} f_n(x) = 1/x^2 = f(x)$ per ogni $x\in I$. Essendo $\left| f_n(x) - f(x) \right| = 1/x^2 (1+nx^2)$, la convergenza non è uniforme, perchè nessuna delle funzioni f_n f è limitata in I].

1.13 Studiare la convergenza in I = [0,1] della successione di funzioni $f_n(x) = n^2x^2/(1+n^2x^2)$.

[Si ha $\lim_{n\to\infty} f_n(x) = 1$ per ogni $x \in I$. Essendo $f_n(1/n)=1/2$, la convergenza non è uniforme, grazie all'esercizio 1.7]

- 1.14 Sia (f_n) una successione di funzioni derivabili in un intervallo chiuso e limitato [a,b] con derivata continua. Dimostrare che:
 - (a) Se (f_n) converge per qualche $x_o \in [a,b]e$ se la successione delle derivate (f_n) converge uniformemente in [a,b], allora anche (f_n) converge uniformemente in [a,b].
 - (b) Se (f_n) converge puntualmente e se esiste una costante M tale che $|f_n(x)| \le M$ per ogni $n \in \mathbb{N}$ e per ogni $x \in [a,b]$, allora (f_n) converge uniformemente in [a,b].

[(a) In base alla formula fondamentale del calcolo integrale possiamo scrivere

$$f_n(x) = f_n(x_o) + \int_{x_o}^x f_n^1(t)dt$$
, $\forall x \in [a,b]$, $\forall n \in \mathbb{N}$.

Indichiamo con g(x) il limite per n $\to +\infty$ di f_n' e con k il limite della successione di numeri reali $f_n(x_o)$. Definiamo poi

$$f(x) = \ell + \int_{X_0}^{X} g(t)dt , \qquad \forall x \in [a,b]$$

Con lo scopo di provare che (f_n) converge ad f uniformemente in [a,b], consideriamo:

$$\begin{split} & \left| f_{n}(x) - f(x) \right| \leq \left| f_{n}(x_{o}) - \ell \right| + \left| \int_{a}^{b} \left| f_{n}'(t) - g(t) \right| dt \leq \\ & \leq \left| f_{n}(x_{o}) - \ell \right| + (b-a) \max \left\{ \left| f_{n}'(x) - g(x) \right| : x \in [a,b] \right\} . \end{split}$$

- Si giunge facilmente alla conclusione utilizzando le ipotesi di convergenza fatte su $f_n(x_o)$ e $f_n^{\dagger}(x)$.
- (b) Basta dimostrare che vale la condizione di Cauchy uniforme (teorema 2). Per ipotesi e per il teorema di Lagrange si ha, Vn:

$$|f_n(x)-f_n(y)| \le M |x-y|,$$
 $\forall x,y \in [a,b].$

Sia $\varepsilon > 0$ e sia $\delta = \varepsilon / 3M$. Sia $\{I_1, \ldots, I_r\}$ una partizione di [a,b] costituita da intervalli di ampiezza minore di δ , e siano $y_i \in I_i$. Per ogni $p,q \in N$ e per ogni $i \in \{1,\ldots,r\}$ si ha, per $x \in \varepsilon$ [a,b]:

$$\left| f_{p}(x) - f_{q}(x) \right| \leq \left| f_{p}(x) - f_{p}(y_{i}) \right| + \left| f_{p}(y_{i}) - f_{q}(y_{i}) \right| +$$

$$+ \left| f_{q}(y_{i}) - f_{q}(x) \right| \leq M \left| x - y_{i} \right| + \left| f_{p}(y_{i}) - f_{q}(y_{i}) \right| + M \left| x - y_{i} \right|$$

Sia V tale che Vp,q > V e $Vi \in \{1,...,r\}$ risulti

$$|f_p(y_i) - f_q(y_i)| < \epsilon/3.$$

Allora, poichè $\forall x \in [a,b]$, $\exists i \in \{1,...,r\}$ tale che $|x-y_i| < \delta = \epsilon/3M$, si ha

$$\left[\,f_{p}(x)\,-\,f_{q}(x)\,\,\right| \,\,\leq\,\, \epsilon \quad , \qquad \forall\,p,q\,\,>\,\, \upsilon \quad e \quad \forall\,x\,\in\left[\,\,a,b\,\,\right]\,\right]$$

1.15 Verificare che la successione (f_n) definita da

$$f_n(x) = \frac{\sin nx}{n} \qquad \forall x \in [0, 2\pi]$$

converge uniformemente verso la funzione identicamente nulla.

[La successione (f_n) converge puntualmente verso zero. Essendo $|f_n(x)|^2$ $= |\cos nx| \leq 1, \text{ basta invocare il risultato dell'esercizio preceden}$ te.Si conclude anche osservando che $|f_n(x)| \leq 1/n$]

1.16 Dimostrare che, se (g_n) è una successione di funzioni continue ed equilimitate in [a,b], allora la successione (f_n) definita da

$$f_n(x) = \int_a^x g_n(t) dt$$

ha un'estratta convergente uniformemente. $[\ Sia\ M>0\ \ tale\ che\ \ \left|\ g_n(t)\ \right|\le M\ \ per\ ogni\ n\ e\ per\ \ ogni\ t. \ \ Essendo$

$$\begin{split} f_n^{\tau}(x) &= g_n(x), \text{ si ha } \left| f_n^{\tau}(x) \right| \leq M & e \\ & \left| f_n(x) \right| \leq \int_{-\infty}^{\infty} \left| g_n(t) \right| dt \leq \int_{-\infty}^{\infty} M \ dt \leq M \ (b-a) \end{split}$$

per ogni n e per ogni x. Dal teorema di Ascoli-Arzelà segue la tesi

1.17 Si dimostri il seguente teorema del Dini. Sia (f_n) una successione di funzioni continue convergente puntualmente verso una funzione continua in un intervallo chiuso e limitato [a,b]. Se (f_n) è monotòna rispetto ad n, allora converge uniformemente in [a,b].

[Pur di cambiare f_n con f_n , possiamo limitarci a considerare il caso in cui $f_n(x)$ è decrescente rispetto ad n. Indichiamo con f(x) il limite puntuale di (f_n) . Posto $g_n(x) = f_n(x) - f(x)$, si ha $g_n(x) \geq 2$ $g_{n+1}(x)$ e (g_n) converge a zero puntualmente. Dimostriamo che g_n converge uniformemente. Fissato E > 0, per ogni $x \in [a,b]$ esiste $V_x \in \mathbb{N}$ tale che $0 \leq g_{V_x}(x) < E/2$. Grazie alla continuità delle finzioni g_n e per la decrescenza della successione (g_n) esiste un'aperto A_x contenente x tale che $0 \leq g_n(y) < E$, $V_y \in A_x$ e $\forall n \geq V_x$. Siano x_1, \ldots, x_r tali che $[a,b] \subseteq A_{x_1} \cup \ldots \cup A_{x_r}$ e poniamo $V = \max\{V_{x_1}, \ldots, V_{x_r}\}$. Allora si ha $0 \leq g_n(y) < E$ per ogni $y \in P$ per ogni $x \in P$ per ogni $y \in P$ per ogni $x \in P$ per ogni $y \in P$ per ogni $x \in P$ per ogni

Proponiamo anche una seconda dimostrazione, per assurdo: se la successione (f_n) non converge uniformemente ad f in [a,b], esiste $\epsilon > 0$ tale che, per ogni $\nu \in \mathbb{N}$, esiste $n > \nu$ per cui la relazione $|f_n(x) - f(x)| \geq \epsilon \quad \text{è verificata da qualche } x \in [a,b] \text{. Consideriamo}$

il caso in cui (f_n) è decrescente rispetto ad n. Essendo $f_n(x) \geq f(x)$, risulta quindi $f_n(x)$ - $f(x) \geq E$ per qualche $x \in [a,b]$. Ponendo V = k, con k arbitrario in N, si ottiene:

 $\label{eq:continuous_problem} \begin{array}{ll} \mathtt{Y} \ \mathtt{k} \ \mathtt{e} \ \mathtt{n} \\ \mathtt{n}_{k} > \mathtt{k}, & \mathtt{J} \ \mathtt{x}_{k} \ \mathtt{\tilde{e}} \left[\mathtt{a}, \mathtt{b}\right]; & \mathtt{f}_{n_{k}} (\mathtt{x}_{k}) \text{-} \mathtt{f} (\mathtt{x}_{k}) \geq \ \mathtt{\epsilon}. \end{array}$

Per l'ipotesi di monotonia, se $m \le k$, si ha

$$f_m(x) \ge f_k(x) \ge f_{n_k}(x)$$
, $\forall x \in [a,b]$, $k \ge m$.

Perciò risulta anche

$$f_{\mathfrak{m}}(x_{k}) - f(x_{k}) \geq \varepsilon$$
, $\forall \mathfrak{m}, k \in \mathbb{N}, \text{ con } k \geq \mathfrak{m}$.

La successione (x_k) è limitata in [a,b]. E' perciò possibile estrarre da essa una sottosuccessione x_{k_h} convergente ad un numero reale $x_o \in [a,b]$. Per la continuità di $f_m(x)$ e di f(x), al limite per $h \to +\infty$ otteniamo

$$f_m(x_o) - f(x_o) \ge \varepsilon$$
, $\forall m \in N$.

Ancora al limite, stavolta per $m \to +\infty$, troviamo l'assurdo 0 2 E

- 1.18 Dimostrare con un esempio che il risultato dell'esercizio precedente non sussiste se si sost<u>i</u> tuisce l'intervallo chiuso e limitato [a,b] rispettivamente con:
 - (a) l'intervallo aperto (a,b).
 - (b) un intervallo chiuso, ma illimitato.
 - [(a) La successione $f_n(x) = x^n$ converge decrescendo alla funzione continua f(x) = 0 per ogni $x \in (0,1)$, ma la convergenza non è uniforme in (0,1) (si veda l'esercizio 1.3); la stessa successione converge decre-

scendo anche nell'intervallo chiuso e limitato [0,1], ma in tal caso la funzione limite non è continua.

Anche le successioni (f_n) , (g_n) dell'esercizio 1.10 sono continue rispetto ad $x \in (0,1)$, sono decrescenti rispetto ad n e convergono puntualmente in (0,1) alla funzione identicamente nulla, ma la convergenza non è uniforme.

(b) In successione (f_n) , definite da $f_n(x) = x/n$, converge decrescendo a f(x) = 0 nell'intervallo $[0,+\infty)$, ma non uniformemente.

Le successioni $f_n(x) = e^{X-n}$, $g_n(x) = e^{(x+1/n)}$ convergono decrescendo rispettivamente a f(x) = 0 e $g(x) = e^X$, ma la convergenza non è uniforme su R]

1.19 Sia $f_n(x)$ una successione di funzioni convesse in [a,b] che converga puntualmente, per $n\to +\infty$, ad una funzione f(x). Dimostrare che f(x) è conves sa in [a,b].

[Per ipotesi, per ogni n $\in \mathbb{N}$, $f_n(x)$ verifica la relazione

$$f_n(\lambda x_1 + (1-\lambda)x_2) \le \lambda f_n(x_1) + (1-\lambda)f_n(x_2), \quad \forall \lambda \in [0,1], \quad \forall x_1, x_2 \in [a,b].$$

Al limite per $n \! \to \! + \! \infty$ si ottiene la disuguaglianza di convessità per f(x)]

1.20 Sia $f_n(x)$ una successione di funzioni convesse in [a,b] che converga puntualmente, per $n++\infty$, ad una funzione f(x). Sia $x_o \in (a,b)$. Se $f_n(x)$ e f(x) sono derivabili in x_o e se $f'_n(x_o)$ converge ad ℓ , allora $\ell = f'(x_o)$.

[Dato che per ogni $n \in N$, $f_n(x)$ è derivabile in x_o e convessa in [a,b], risulta

$$f_n(x) \ge f_n(x_o) + f'_n(x_o)(x-x_o),$$
 $\forall x \in [a,b].$

Al limite per $n \to +\infty$ otteniamo

$$f(x) \ge f(x_o) + \ell(x-x_o)$$
, $\forall x \in [a,b]$.

Dividiamo entrambi i membri per $(x-x_o)$, distinguendo se $(x-x_o)$ è pos<u>t</u> tivo o negativo:

$$\frac{f(x)-f(x_o)}{x-x_o} \geq \ell \quad \text{se} \quad x > x_o \ ; \quad \frac{f(x)-f(x_o)}{x-x_o} \leq \ell \quad \text{se} \quad x < x_o.$$

Al limite per $x \to x_o$ si ottiene la tesi $f'(x_o) = \ell$

1.21 La proprietà di convergenza delle derivate, proposta nell'esercizio precedente, vale in ogni punto x_o interno all'intervallo [a,b], ma in generale non vale agli estremi dell'intervallo. Mostrare ciò discutendo il caso in cui $f_n(x)$ sia definita nell'intervallo [0,1] da:

$$f_n(x) = \frac{x^n}{n}$$
, $\forall x \in [0,1]$.

- [$f_n(x)$ è una successione di funzioni convesse che, per $n \to +\infty$, converge a f(x) = 0 per ogni $x \in [0,1]$. La successione delle derivate $f_n'(x) = x^{n-1}$, per x = 1 è costante ($f_n'(1) = 1$) e quindi converge al valore $\ell = 1$, che è diverso dalla derivata $\ell = 0$
- 1.22 Dimostrare il teorema 5 sul passaggio al limite sotto il segno di integrale.

[Sia $\varepsilon > 0$; allora $\exists v \in \mathbb{N}$ tale the per ogni $n \geq v$ si ha

$$|f_n(x) - f(x)| < \varepsilon/(b-a), \quad \forall x \in [a,b].$$

Ne segue che per $n \ge V$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx < \int_{a}^{b} \epsilon /(b-a) dx = \epsilon$$

1.23 Sia (f_n) una successione di funzioni continue in [a,b], convergente uniformemente verso $f.D\underline{i}$ mostrare che, per ogni $p \ge 1$, risulta

$$\lim_{n\to\infty} \int_a^b |f_n - f|^p dx = 0.$$

[Dal teorema della media segue che

$$\frac{1}{b-a} \int_{a}^{b} \left| f_{n} - f \right|^{p} dx \le \sup_{x \in [a,b]} \left| f_{n} - f \right|^{p}$$

da cui la tesi]

1.24 Data la successione (f_n) definita in R da (fig. 1.3):

$$f_n(x) = \begin{cases} 1 & \text{se } n \le x < n + 1 \\ 0 & \text{altrimenti} \end{cases}$$

verificare che $f_n(x) \rightarrow f(x) = 0$ per ogni $x \in \mathbb{R}$. Verificare inoltre che essa converge uniforme mente in ogni intervallo limitato, ma non converge uniformemente in tutto R.

[Per ogni intervallo [a,b], se n > b si ha sup $\{f_n(x):a\leq x\leq b\}=0$.

Da ciò segue in particolare che $f_n(x)\to f(x)=0$, $\forall x\in R$. Invece si ha sup $\{f_n(x):x\in R\}=1$ per ogni $n\in N$]

figura 1.3

figura 1.4

1.25 Per ogni $n \in \mathbb{N}$ si consideri la funzione $f_n(x)$ rap presentata in figura 1.4 e definita in [0,1] da

$$f_n(x) = \begin{cases} \sqrt{n} & \text{se} & 1/(2n) < x \le 1/n \\ 0 & \text{altrimenti.} \end{cases}$$

Mostrare che:

- (a) La successione (f_n) converge verso la fun zione f(x) = 0 puntualmente, ma non uniformemente in [0,1].
- (b) Per $n\rightarrow +\infty$ l'integrale definito di $f_n(x)$ nell'intervallo [0,1] converge a zero.
- [(a) Si ha $f_n(0) = 0$ per ogni n. Se poi $x \in (0,1]$, per ogni $n \ge 1/x$ si ha x > 1/n e perciò $f_n(x) = 0$. Ne segue la convergenza puntuale di f_n verso f. La convergenza non è uniforme, in quanto sup $\{f_n(x) : x \in [0,1]\} = \sqrt{n}$ non converge a zero.

(b)
$$\int_0^1 f_n(x) dx = \int_{1/(2n)}^{1/n} \sqrt{n} dx = \sqrt{n} \left(\frac{1}{n} - \frac{1}{2n}\right) \to 0.$$

Si noti che 0 è il valore dell'integrale definito di f(x) nell'inter - vallo [0,1]

1.26 Siano a > 0, b > 1. Studiare la convergenza in I = [0,b] della successione di funzioni (f_n) de finita da

$$f_{n}(x) = \begin{cases} an^{2}x & 0 \leq x < 1/n \\ \frac{a}{1-b} n^{2}x + \frac{ab}{b-1} n & 1/n \leq x < b/n \\ 0 & b/n \leq x \leq b \end{cases}$$

In particulare, studiare la convergenza per $n\!\to\!\infty$ dell'integrale di f_n su I.

[Se vede subito the (f_n) converge puntualmente alla funzione f(x) = 0,

 $\forall x \in I. \text{ Essendo } \int_0^b f_n(x) dx = ab/2, \quad \int_0^b f(x) dx = 0, \text{ non può esservi con}$ vergenza uniforme, grazie al teorema 5]

1.27. Data la successione di funzioni $f_n(x)=n(x^{(n+1)/n}-x)$, calcolare, per x>0, le funzioni g_0 , g_1 , g_2 ,... tali che

$$g_o(x)=\lim_{n\to\infty} f_n(x), \quad g_1(x)=\lim_{n\to\infty} f'_n(x),$$

$$g_2(x)=\lim_{n\to\infty} f_n^n(x),...$$

Trovare inoltre il legame tra go, go, go, ...

[Si trova in particolare $g_o(x) = x \log x$. Si verifica anche che g_n è la derivata n-sima di g_o]

1.28 Verificare che la successione di funzioni $f_n(x) = (x^2-x)^n$ converge a zero uniformemente nell'intervallo [0,1].

[Se verifica facilmente che -1 < x^2 - $x \le 0$ per ogni $x \in [0,1]$. Perciò $f_n(x)$ converge a zero per ogni $x \in [0,1]$. Calcoliamo

$$M_{n}=\max\{|(x^{2}-x)|^{n}: x \in [0,1]\} = \max\{(x-x^{2})^{n}: x \in [0,1]\},\$$

la funzione $g_n(x) = (x-x^2)^n$ è non negativa in [0,1] e si annulla agli estremi dell'intervallo. Perciò assume massimo in un punto interne allo intervallo [0,1], che si può determinare annullando la derivata prima. Risulta $g_n'(x) = n(x-x^2)^{n-1}$ (1-2x) = 0 per x = 0, x = 1 e x=1/2. Il punto x = 1/2 è di massimo per $g_n(x)$ ed il valore massimo vale M_n

= $g_n(1/2) = (1/4)^n$. Dato che per $n \to +\infty$, M_n converge a zero, la successione $f_n(x)$ converge uniformemente in [0,1]. In figura 1.5 abbiamodi segnato il grafico di $f_n(x)$ per alcuni valori di n (con due diverse unità di misura sugli assi)]

figura 1.5

33

1.29 Verificare che la successione di funzioni $f_n(x) = (x-1)x^{-n}$ converge a zero uniformemente nell'intervallo $[1,+\infty)$.

[Poniamo $M_n = \sup \{(x-1)x^{-n}: x \ge 1\}$. Per determinare M_n consideriamo la derivata

$$f_n^{\tau}(x) = x^{-n-1} [n - (n-1)x].$$

Per n=1 risulta $f_{\Pi}^+(x) > 0$ per ogni $x \ge 1$; mentre per $n \ge 2$, $f_{\Pi}^+(x)$ si annulla per x = n/(n-1), che è un punto di massimo (assoluto) per f(x) nel l'intervallo $\{1,+\infty\}$. In corrispondenza otteniamo $M_1 = 1$ e

$$M_n = f_n \left(\frac{n}{n-1} \right) = \left(\frac{n}{n-1} - 1 \right) \left(\frac{n}{n-1} \right)^{-n} = \frac{1}{n-1} \left(1 - \frac{1}{n} \right)^n$$

Per $n\to +\infty$, M_n converge a zero. Perciò $f_n(x)$ converge uniformemente in $[1,+\infty)$. In figura 1.6 abbiamo disegnato il grafico di $f_n(x)$ per alcuni valori di n

figura 1.6

- 1.30 Posto $f_n(x) = n(x-1)x^{-n}$, verificare che:
 - (a) $f_n(x)$ converge a zero per ogni $x \ge 1$.
 - (b) $f_n(x)$ non converge uniformemente nell'intervallo $[1,+\infty)$.
 - (c) $f_n(x)$ non converge uniformemente nell'intervallo [1,2].
 - (d) $f_n(x)$ converge uniformemente nell'intervallo $[2,+\infty)$.

[Si può procedere come nell'esercizio precedente. In particolare in (b) e (c) per ogni $n \ge 2$ risulta

$$M_n = f_n \left(\frac{n}{n-1} \right) = \frac{n}{n-1} \left(1 - \frac{1}{n} \right)^n \rightarrow e^{-1}$$
;

perciò M_n non tende a zero e quindi la convergenza non è uniforme. Invece, nel caso (d), per ogni $n \ge 2$, si ha:

$$M_n = f_n(2) = n2^{-n} \rightarrow 0$$

1.31 Stabilire per quali $x \in \mathbb{R}$ risulta convergente la successione $f_n(x) = n \ (\sqrt[n]{x} - 1)$ e determinare il limite. Determinare inoltre un intervallo in cui la successione converge uniformemente.

[Per ogni n pari $f_n(x)$ è definita per $x \ge 0$. La successione diverge a $-\infty$ per x = 0 e converge per x > 0 a $f(x) = \log x$ in base al limite

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{x^{1/n} - 1}{1/n} = \lim_{t \to 0^+} \frac{x^{t-1}}{t} = \lim_{t \to 0^+} x^{t} \log x = \log x.$$

Per determinare un intervallo in cui la convergenza è uniforme studia-

mo per x > 0 e $n \in \mathbb{N}$ la funzione $g_n(x) = f_n(x) - f(x) = n (\sqrt[n]{x-1}) - \log x$. La derivata

$$g_n^i(x) = x^{\frac{1}{n}-1} - \frac{1}{x} = \frac{1}{x} (x^{\frac{1}{n}} - 1)$$

si annulla per x = 1, è positiva per x > 1 ed è negativa in (0,1).I1 punto x=1 è di minimo per $g_{\Pi}(x)$ ed il valore minimo è $g_{\Pi}(1)=0$.

Perciò $g_n(x) \ge 0$ per ogni $x \in (0, +\infty)$. Se ne deduce inoltre che $f_n(x)$ converge a f(x) uniformemente in ogni intervallo [a,b], con $0 \le a \le b$; infatti, ad esempio, se a = 1 risulta:

$$M_{n} = \max \{ |f_{n}(x)-f(x)| : x \in [1,b] \} = \max \{ |g_{n}(x)| : x \in [1,b] \}$$

$$= \max \{ g_{n}(x) : x \in [1,b] \} = g_{n}(b) \to 0]$$

1.32 Date le successioni di funzioni

(a)
$$f_n(x) = (e^{-1/n^2x^2})/nx$$
 (b) $g_n(x) = e^{-1/(x^2+n)}$

stabilire per quali $x \in \mathbb{R}$ convergono e calcolarne il limite. Determinare almeno un intervallo non degenere in cui la convergenza sia uniforme.

[(a) Si ha $f_n(x) \to f(x) = 0$ per ogni $x \neq 0$. La convergenza è uniforme in ogni intervallo che non contenga un interno di zero. (b) Si ha $g_n(x) \to g(x) = 0$ uniformemente in R]

1.33 Date le successioni di funzioni

(a)
$$f_n(x) = \frac{(n^2-x^2)^2}{(n^2-x^2)^2+1}$$

(b)
$$g_n(x) = \log \frac{3(x+n)^2+2}{(x+n)^2+1}$$

stabilire per quali $x \in \mathbb{R}$ convergono e calcolarne il limite. Determinare almeno un intervallo non degenere in cui la convergenza sia uniforme.

- [(a) Si ha $f_n(x) \to f(x)=1$, per ogni $x \in \mathbb{R}$. La convergenza è uniforme in ogni intervallo limitato.
- (b) Si ha $g_n(x) \rightarrow g(x) = \log 3$ per ogni $x \in \mathbb{R}$. La convergenza è uniforme in ogni intervallo $[a, +\infty)$ con $a \in \mathbb{R}$
- 1.34 Verificare che nell'intervallo $[1,+\infty)$ $f_n(x) = (x^{n-1} + \log x^n)/x^n \rightarrow 1/x \text{ non uniformemente}$ $g_n(x) = (\log x x^{n+2})/x^n \rightarrow -x^2 \quad \text{uniformemente}$
- 1.35 Verificare che nell'intervallo $[0,+\infty)$ $f_n(x) = (x + e^{(n+1)x})/e^{nx} \rightarrow e^x \qquad \text{uniformemente}$ $g_n(x) = (e^{(n-1)x} + nx)/e^{nx} \rightarrow e^{-x} \qquad \text{non uniformemente}$
- 1.36 Verificare che nell'insieme R

$$f_n(x) = \frac{n \operatorname{sen}(x^2+1)+n^2x}{n^2(x^2+1)} \rightarrow \frac{x}{x^2+1}$$
 uniformemente

$$g_n(x) = \frac{nx^3 + (n+1)^2 \text{ sen} x}{n^2 + 1} \rightarrow \text{ sen } x \text{ non uniformemente}$$

1,37 Verificare che

$$f_n(x) = sen(x^2/n) + (1-\sqrt{1-x^2})/n \rightarrow 0$$

in [-1,1] uniformemente.

1.38 Verificare che

$$f_n(x) = (\cos x)/n - \cos(x/n) \rightarrow f(x) = -1$$

in R non uniformemente. [Si ha $f_n(n)-f(n) \rightarrow 1-\cos 1$]

1.39 Sia (x_n) la successione dei numeri razionali de<u>l</u> l'intervallo [0,1]. Studiare la convergenza della successione f_n definita in [0,1] da

$$f_{n}(x) = \begin{cases} 1 & x \in \{x_{1}, \dots, x_{n}\} \\ 0 & x \in [0, 1] - \{x_{1}, \dots, x_{n}\} \end{cases}$$

[La successione (f_n) converge puntualmente verso la funzione f definita da f(x) = 1 se x è razionale, f(x) = 0 se x è irrazionale. Infatti se x è razionale, allora esiste V tale che $x \in \{x_1, \dots, x_n\}$ per ogni n > V e perciò risulta $f_n(x) = 1$ per ogni n > V. Se x è irrazionale si ha $f_n(x) = 0$ per ogni n. Poichè per ogni $n \in N$ risulta $f_n(x_{n+1}) = 0$ of $f(x_{n+1}) = 1$ allora sup $\{|f_n(x) - f(x)| : x \in [0,1]\} = 1$ e perciò non vi può essere convergenza uniforme f(x) = 0

1B. Serie di funzioni

Sia (f_n) una successione di funzioni reali definite nell'intervallo I di R. Se per ogni $x \in I$ la serie

$$f_1(x) + f_2(x) + ... + f_n(x) + ... = \sum_{n=1}^{\infty} f_n(x)$$

è convergente, cioè, se la successione (s_n) delle so \underline{m} me parziali

$$s_n(x) = f_1(x) + f_2(x) + ... + f_n(x)$$

converge puntualmente in I, allora si dice che la se rie di funzioni

$$(1) f_1 + f_2 + \ldots + f_n + \ldots = \sum_{n=1}^{\infty} f_n$$

è convergente in I. .

Se la successione (s_n) converge uniformemente in I verso f, allora si dice che la serie (1) converge uniformemente in I verso f.

Se esistono dei numeri reali $M_n \ge 0$ tali che $|f_n(x)| \le M_n$ per $x \in I$ e per $n \in N$ e se la serie numerica $M_1 + M_2 + \ldots + M_n + \ldots$ è convergente, allora si di ce che la serie (1) è totalmente convergente in I.

Si verifica facilmente che una serie totalmente convergente è anche uniformemente convergente.

I teoremi di passaggio al limite sotto il segno

di integrale o di derivata per le successioni di funzioni (ved.paragrafo 1A) implicano i seguenti, relativi all'integrazione o alla derivazione per serie, rispettivamente.

TEOREMA (di integrazione per serie). Se la serie (1) di fun zioni continue in I = [a,b] converge uniformemente verso f,allora

$$\int_{a}^{b} f(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx$$

TEOREMA (di derivazione per serie). Se la serie (1) di funzio ni derivabili in I = (a,b) converge in I verso f e se la serie derivata

$$f_1^{\dagger} + f_2^{\dagger} + \ldots + f_n^{\dagger} + \ldots = \sum_{n=1}^{\infty} f_n^{\dagger}$$

converge uniformemente in I, allora f è derivabile in I e risul

$$f'(x) = \sum_{n=1}^{\infty} f_n'(x)$$
 $\forall x \in I$.

1.40 Dire se la serie geometrica

$$1 + x + x^{2} + \dots + x^{n-1} + \dots$$

è convergente uniformemente per $x \in I=[-a,a]$, con 0 < a < 1.

Essendo

$$\left| x^{n-1} \right| \leq a^{n-1}$$
 $\forall x \in I$

ed essendo 0 < a < 1, la serie data è maggiorata da una serie numerica

convergente e perciò essa converge totalmente in I

1.41 Dire se la serie

$$senx - sen 2x + sen 3x - sen 4x + ...$$

è convergente per $x \in (0,\pi)$.

[La serie non converge in alcun punto x € (0, 11), perchè il suo termine generale (-1)ⁿ⁺¹sen n x non converge]

1.42 Studiare per xeR la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{\cos n x}{n^2}$$

[La serie è totalmente convergente in R. Infatti si ha $|(\cos nx)/n^2| \le$ \leq 1/n² e la serie numerica $\sum_{n=1}^{\infty}$ 1/n² è convergente (ved. es. 6.21 del vol. I, parte seconda)

1.43 Stabilire per quali x > 0 convergono le serie

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n x^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{nx^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^2x^n}$

[(a)
$$x > 1$$
; (b) $x \ge 1$]

1.44 Verificare che la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^4 x^n}$$

converge totalmente in $[1, +\infty)$.

41

[Per ogni x \geq 1, risulta $1/(n^4 x^n) \leq 1/n^4$]

- 1.45 Studiare la convergenza puntuale in R delle serie
 - (a) $\sum_{n=1}^{\infty} \frac{X}{n} e^{-nx}$ (b) $\sum_{n=1}^{\infty} \frac{1}{ne^{nx}}$
 - [(a) La serie converge puntualmente se e solo se $x \ge 0$. Infatti, se x<0 il termine generale $f_n(x) = e^{-\pi x} x/n$ non è infinitesimo per $n \to \infty$. Se x = 0 risulta $f_n(0) = 0$ e la serie ha somma zero. Se infine è x > 0, essendo $0 < e^{-x} < 1$, la serie

$$x \sum_{n=1}^{\infty} \frac{(e^{-x})^n}{n}$$

converge in base al criterio della radice o del rapporto; (b) la serie converge puntualmente se e solo se x > 0

- 1.46 Si consideri la serie $\sum_{n=1}^{\infty} \frac{x}{n^p(1+nx^2)}$ essendo p un parametro reale. Verificare che essa:
 - (a) converge puntualmente su R se p > 0;
 - (b) converge uniformemente su R se p > 1/2.
 - [(a) Se x = 0 la serie ha somma zero. Se $x \neq 0$, per il criterio degli infinitesimi (paragrafo 6B del volume 1°, parte seconda) la serie data ha lo stesso carattere della serie armonica generalizzata

$$\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$$

ed è quindi convergente se (e solo se) p + I > 1, cioè se p > 0.

(b) Poichè la funzione dispari $f_n(x)=x/(1+nx^2)$ assume il valore mass<u>i</u> mo su R per x = $1/\sqrt{n}$, risulta

$$\left| \frac{x}{n^{p}(1+nx^{2})} \right| = \frac{1}{n^{p}} \left| f_{n}(x) \right| \le \frac{1}{n^{p}} f_{n} \left(\frac{1}{\sqrt{n}} \right) = \frac{1}{2n(p+1/2)}.$$

La serie numerica di termine generale $1/n^{(p+1/2)}$ è convergente se p+1/2>1. Dunque la serie data è totalmente e perciò uniformemente (e assolutamente) convergente se p>1/2

1.47 Verificare che la serie

$$x-(x^2/2)+(x^3/3)-(x^4/4)+...$$

è uniformemente convergente in [0,1], ma non è ivi totalmente convergente.

[Si ha sup $|x^n/n| = 1/n$ ed essendo divergente la serie di termine ge $0 \le x \le 1$

nerale I/n, allora la serie data non è totalmente convergente.

Per ogni $x \in [0,1]$ la serie data è una serie numerica alternata con termine generale infinitesimo e decrescente in valore assoluto.

Per il teorema sulle serie alternate (ved. paragrafo 6C del vol.I, parte seconda) la serie è convergente puntualmente in [0,1] verso una funzione f(x); inoltre, detta $(s_n(x))$ la successione delle ridotte, risulta

$$|f(x) - s_n(x)| \le x^{n+1}/(n+1) \le 1/(n+1)$$

e perciò la convergenza di \boldsymbol{s}_{n} a f è uniforme]

1.48 Utilizzando il teorema di derivazione per serie calcolare la somma della serie

$$1+2x+3x^2+4x^3+...+nx^{n-1}+...$$

nell'intervallo I = [-a,a], con 0 < a < 1.

· [Osservíamo in primo luogo che per x \in I la serie data è convergente. In fatti si ha

$$\lim_{n\to\infty} \sqrt[n]{n \left| x \right|^{n-1}} = \lim_{n\to\infty} \sqrt[n]{n} \cdot \lim_{n\to\infty} \sqrt[n]{\left| x \right|^{n-1}} = \lim_{n\to\infty} \sqrt[n]{\left$$

$$= |x| \le a < 1$$

(si veda la (4) del paragrafo 7D del vol. I, parte prima) ed allora la serie converge assolutamente grazie al criterio della radice (ved. il cap. 6 del vol. I parte seconda). Essendo n $|x|^{n-1} \le na^{n-1}$ per $x \in I$, la serie è totalmente e perciò uniformemente convergente.

La serie data si ottiene derivando termine a termine la serie geome trica

$$1 + x + x^2 + ... + x^n + ...$$

che converge totalmente e perciò uniformemente in I verso la funzione f(x) = 1/(1-x). Pertanto, dal teorema di derivazione per serie, segue che

$$1+2x+3x^{2}+...+nx^{n-1}+...=0 \left(\sum_{n=0}^{\infty}x^{n}\right)=0 \frac{1}{1-x}=\left(\frac{1}{1-x}\right)^{2}$$

1.49 Verificare che la serie di funzioni

$$\sum_{n=1}^{\infty} \frac{x}{n} e^{-nx}$$

converge totalmente in $I = [0, \infty)$.

[La serie converge puntualmente in I (ved. l'esercizio 1.45). Per stabilire se essa converge totalmente in I, calcoliamo l'estremo superiore:

$$M_n = \sup \left\{ -\frac{x}{n} e^{-nx} : x \ge 0 \right\}.$$

Per ogni n \in N la funzione $f_n(x) = xe^{-nx}/n$ è derivabile e risulta $f_n^*(x) = e^{-nx}(1-nx)/n$. La derivata f_n^* si annulla per x = 1/n, che è punto di massimo per f_n . Si verifica facilmente che $M_n = f_n(1/n) = 1/(en^2)$. Po<u>i</u> chè la serie numerica

$$\sum_{n=1}^{\infty} M_n = \frac{1}{e} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

è convergente (ved. es. 6.21 del vol. I, parte seconda) allora la serie di funzioni considerata è totalmente convergente in I e quindi an che uniformemente ed assolutamente convergente in tale insieme]

1.50 Stabilire se la serie di funzioni $\sum_{n=1}^{\infty} xe^{-nx} con$ verge totalmente in $I = [0, +\infty)$.

[Posto $M_n = \sup \{xe^{-nx}: x \ge 0\}$, si vede che $M_n = 1/(en)$. Perciò la serie data non converge totalmente]

- 1.51 Stabilire se la serie considerata nell'esercizio precedente converge totalmente in $I=\{1,+\infty\}$. [Posto $M_n = \sup \{xe^{-nx} : x \ge 1\}$, si vede che $M_n = e^{-n}$. Perciò la serie converge totalmente per $x \ge 1$]
- 1.52 Stabilire per quali $x \ge 0$ converge la serie $\sum_{n=1}^{\infty} (\sqrt{n^3 + (x^2 + 2)n^2 + 4} \sqrt{n^3 + 3xn^2 + 1})$

[La serie converge solo per x = 1 e x = 2; essa è invece divergente in ogni altro $x \ge 0$. Infatti si ha

$$\sqrt{n^3 + (x^2 + 2)n^2 + 4} - \sqrt{n^3 + 3xn^2 + 1} =$$

$$= \frac{(x^2 - 3x + 2) n^2 + 3}{\sqrt{n^3 + (x^2 + 2)n^2 + 4} + \sqrt{n^3 + 3xn^2 + 1}}$$

Ne segue che : se $x^2 - 3x + 2 = 0$ (cioè se x = 1 oppure x = 2), allora il termine generale della serie è infinitesimo dello stesso ordine di $n^{-3/2}$ e quindi la serie è convergente (ved. il paragrafo 6B del vol. I, parte seconda). Altrimenti il termine generale non è infinitesimo per $n \to +\infty$

1.53 Determinare l'insieme dei numeri reali x in cui la serie

$$\sum_{n=1}^{\infty} \frac{\log(1+nx)}{n^3x+n^2}$$

converge e stabilire se in tale insieme la convergenza è totale.

[La serie converge puntualmente e totalmente per $x \ge 0$. Si osservi che dalla disuguaglianza log $(1+y) \le y$, $\forall y > -1$ (ved. l'eserc. 1.50 del vol. I, parte seconda) segue che il termine generale della serie data si può maggiorare con $1/n^2$]

1.54 Studiare la convergenza puntuale della serie

$$\sum_{n=1}^{\infty} \frac{n \log (1+x/n)}{(x+n)^2}$$

[La serie converge puntualmente per x > -1]

1.55 Verificare che la serie dell'esercizio preceden te converge totalmente nell'insieme $[0,+\infty)$.

1.56 Stabilire per quali $x \in \mathbb{R}$ risulta convergente la serie $\sum_{n=1}^{\infty} f_n(x)$ con

(a)
$$f_n(x) = \begin{cases} (nx)^n/n! & \text{se } x \ge 0 \\ \sqrt{(nx)^4+1} - n^2 & \text{se } x < 0 \end{cases}$$

(b)
$$f_n(x) = \begin{cases} 3^{x/n} - 2^{1/n} & \text{se } x \ge 0 \\ \\ n!/(nx)^n & \text{se } x < 0 \end{cases}$$

[(a) $0 \le x < 1/e$, x=-1; (b) $x=\log 2 / \log 3$, x < -1/e]

1.57 Studiare per x > 0 la convergenza puntuale della serie

$$\sum_{n=1}^{\infty} X^{-\log n}$$

[La serie si può rappresentare sotto la forma

$$\begin{array}{ccc} \overset{\infty}{\Sigma} & e^{-(\log n)(\log x)} = \overset{\infty}{\Sigma} & \overset{-1 \text{ og } x}{n=1} \\ & & & \\ n=1 \end{array}$$

ed è quindi convergente se $\log x > 1$, cioè se x > e (ved. es.6.21 del vol. I, parte seconda)

1.58 Studiare la convergenza puntuale della serie di funzioni

$$\sum_{n=1}^{\infty} [(x/2)^n + 1/x^n].$$

[E' opportuno eseguire la scomposizione

$$\sum_{n=1}^{\infty} \left[(x/2)^n + 1/x^n \right] = \sum_{n=1}^{\infty} (x/2)^n + \sum_{n=1}^{\infty} 1/x^n.$$

La serie risulta convergente per ogni x tale che 1 < | x | < 2

10. Serie di potenze

Sia $a_0, a_1, \ldots, a_n, \ldots$ una successione di numeri reali. La serie di funzioni

(1)
$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + \ldots + a_n x^n + \ldots$$

si chiama serie di potenze (di punto iniziale zero), di coefficienti $a_o, a_1, \ldots, a_n, \ldots$

Si chiama raggio di convergenza della serie di potenze (1) l'estremo superiore $r \in [0, +\infty]$ dell'insieme degli $x \in \mathbb{R}$ nei quali essa converge.

Si possono verificare tre casi:

- 1) r=0. Allora la serie (1) converge solo per x=0.
- 2) $0 < r < + \infty$. Allora la serie (1) converge assolutamente per $x \in (-r,r)$ e totalmente in ogni intervallo chiuso contenuto in (-r,r), mentre non converge in alcun punto x tale che |x| > r.
- 3) $r = + \infty$. Allora la serie (1) converge assolutamente in ogni $x \in R$ e totalmente in ogni intervallo chiuso e limitato di R.

Osserviamo che, nel caso 2), nulla si può dire in generale sulla convergenza della serie di potenze nei punti -r, r.

Per il calcolo del raggio di convergenza di una serie di potenze, sussistono i seguenti teoremi.

TEOREMA DI CAUCHY. Se esiste il limite

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \ell \in \overline{R},$$

allora il raggio di convergenza r della serie di potenze (1) è dato da

$$r = 1/\ell$$
,

pur di porre $1/0 = + \infty$.

TEOREMA DI D'ALEMBERT. Se risulta $e_n \neq 0$ per ogni n ed esiste il limite

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \ell \in \overline{R} ,$$

allora il raggio di convergenza r della (1) è dato da

$$r = 1/2$$

pur di porre $1/0 = + \infty$.

Più in generale, una serie di funzioni del tipo

(2)
$$\sum_{n=0}^{\infty} a_n (x-x_o)^{n} = a_o + a_1 (x-x_o) + \dots + a_n (x-x_o)^{n} + \dots,$$

ove $x_o \in \mathbb{R}$, si chiama serie di potenze di punto iniziale x_o . Si dimostra che l'insieme X dei numeri reali per cui essa converge è sempre un intervallo, detto intervallo di convergenza. Precisamente, se r è il raggio di con vergenza della serie (1) avente gli stessi coefficienti e punto iniziale 0, allora l'intervallo di convergenza X è:

- i) $[x_o, x_o] = \{x_o\}$, se r = 0;
- ii) uno degli intervalli di estremi x_o-r , x_o+r , se $0 < r < +\infty$;
- iii) R, se $r = + \infty$.

Il numero r si chiama raggio di convergenza anche del la serie (2).

Si dimostra che se la serie di potenze (2) ha rag gio di convergenza r>0, la sua somma f(x) definita per $x \in (x_o-r, x_o+r)$ da

(3)
$$f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$$

è continua e derivabile in (x_o-r, x_o+r) . Inoltre risulta

(4)
$$f'(x) = \sum_{n=1}^{\infty} na_n (x-x_0)^{n-1}$$

(5)
$$\int_{x_{a}}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} (x-x_{o})^{n+1} ,$$

le serie a secondo membro delle (4) e (5) avendo anch'esse raggio di convergenza uguale a r.

Si dimostra inoltre che, se la serie (3) ha raggio di convergenza r > 0, allora f è dotata di deriva te di ogni ordine in (x_o-r, x_o+r) e risulta

$$a_n = \frac{f^{(n)}(x_n)}{n!}$$
 $\forall n \in \mathbb{N}.$

per cui la (3) può esser riscritta sotto la forma

(6)
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} (x-x_o)^n$$

Enunciano infine il seguente

TEOREMA DI ABEL. Se la serie di potenze (2) ha raggio di convergenza $r \in (0, +\infty)$ e converge in $x_o + r$ (rispettivamente in $x_o - r$), allora essa converge uniformemente in $[s, x_o + r]$ (rispettivamente in $[x_o - r, s]$) per ogni $s \in (x_o - r, x_o + r)$. In particolare la somma f(x) è continua in $[s, x_o + r]$ (risp. in $[x_o - r, s]$).

1.59 Verificare che le seguenti serie di potenze han no raggio di convergenza r=1

(a)
$$\sum_{n=0}^{\infty} x^n$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

Studiarne il comportamento agli estremi dell'i $\underline{\mathbf{n}}$ tervallo di convergenza.

[(a) Si tratta della serie geometrica di ragione x che converge solo se |x| < 1. (b) Si ha $a_{n+1}/a_n = n/n+1$ e perciò r = 1, grazie al teorema di D'Alembert. La serie converge per x = -1 (ved. l'esercizio 6.38 del vol. I, parte seconda), non converge per x = 1 (ved. l'esercizio 6.5 del vol. I, parte seconda). (c) Si ha $a_{n+1}/a_n = n^2/(n+1)^2$ e perciò r = 1, grazie al teorema di D'Alembert. La serie converge per x = -1 (ved. l'esercizio 6.39 del vol. I, parte seconda), e per x = 1 (ved. l'esercizio 6.21 del vol. I, parte seconda)

1.60 Verificare che la serie di potenze $\sum\limits_{n \approx 0} n \mid x^n - ha$

51

raggio di convergenza r = 0.

[Si ha $c_{n+1}/a_n = (n+1)!/n! = n+1$ ed allora basta invocare il teorema di D'Alembert]

- 1.61 Determinare il raggio di convergenza r delle serie di potenze

 - (a) $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ (b) $\sum_{n=1}^{\infty} \frac{x^n}{(3+1/n)^n}$
 - (a) Essendo

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)/(n+2)}{n/(n+1)} = \frac{(n+1)^2}{n(n+2)}$$

si ha lim $a_{n+1}/a_n = 1$ e perciò r = 1, a norma del teorema di D'Alem

bert. (b) Si ha $\lim_{n \to \infty} \sqrt[n]{1/[3+(1/n)]^n} = \lim_{n \to \infty} 1/[3+(1/n)] = 1/3 = per$

ciò r = 3, a norma del teorema di Cauchy]

- 1.62 Determinare il raggio di convergenza r delle seguenti serie di potenze

- (b) $\sum_{n=0}^{\infty} n! (x/2)^n$
- (c) $\sum_{n=1}^{\infty} \frac{x^n}{5^n}$
- (d) $\sum_{n=1}^{\infty} \frac{x^n}{n^n}$
- (e) $\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$ (f) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$
- [(a) Essendo $a_n/a_{n+1} = (n+1)!/n! = n+1$, si ha $r=+\infty$, a norma del teorema

di D'Alembert. (b) r=0. (c) Essendo $\sqrt{a_n} = .1/5$, si ha r = 5, a norma del teorema di Cauchy. (d) Essendo $\sqrt[n]{a_n} = 1/n$, si ha r=+ ∞ . (e) Es sendo $\sqrt[n]{a_n} = \sqrt[n]{\sqrt[n]{n!}}$, risulta $\lim_{n \to \infty} \sqrt[n]{a_n} = e$ (ved. 1' esercizio 7.58 del vol. I parte prima) e perciò si ha r=1/e. (f) r=e

- 1.63 Determinare l'intervallo I di convergenza delle serie

 - (a) $\sum_{n=1}^{\infty} \frac{x^{n^2}}{\sqrt{n}}$ (b) $\sum_{n=1}^{\infty} \frac{2^n x^n}{\sqrt{n}}$

[(a) Per $|x| \le 1$ si ha $|x|^{n^2}/n! \le 1/n!$ e perciò la serie converge. Per $|x| \ge 1$ si ha $\lim_{n \to \infty} (|x|^{n^2}/n!) \ge \lim_{n \to \infty} (|x|^{n^2}/n^n) =$ = $\lim_{n \to \infty} \left(\left| x \right|^n / n \right)^n = + \infty$, perciò la serie non converge. Pertanto I = = [-1,1]. (b) Posto t = 2x, studiamo la convergenza della serie $\sum_{n=1}^{\infty} t^{n} / \sqrt{n}$. Essendo $(1/\sqrt{n+1})/(1/\sqrt{n}) = \sqrt{n/(n+1)} \rightarrow 1$, per il tecrema di D'Alembert questa serie converge per |t|<1 e diverge per |t|> > 1. Per t = 1 essa si riduce alla serie divergente $\sum_{n=1}^{\infty} 1 / \sqrt{n}$ e per t = -1 alla serie alternata $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ che converge. In definitiva la serie data converge per $x \in I = [-1/2, 1/2)$

1.64 Determinare l'intervallo di convergenza I della serie $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)2^n}$.

[Essendo $a_{n+1}/a_n = (n+1)2^n/[(n+2)2^{n+1}] = (n+1)/2(n+2), dal teorema di$ D'Alembert segue che il raggio di convergenza della serie data vale r= =2. Pertanto la serie converge per |x| < 2. Per x = -2 essa si

riduce alla serie armonica alternata che converge, mentre, per x=2 essa si riduce alla serie armonica che diverge. Dunque è I = [-2,2)

1.65 Determinare l'intervallo di convergenza I della

serie
$$\sum_{n=1}^{\infty} \frac{\log n}{n \cdot 2^n} x^n$$
.

Essendo ·

$$\frac{a_{n+1}}{a_n} = \frac{\log(n+1)}{(n+1)2^{n+1}} \cdot \frac{n2^n}{\log n} = \frac{1}{2} \cdot \frac{n}{n+1} \cdot \frac{\log(n+1)}{\log n} ,$$

dal teorema di D'Alembert segue che il raggio di convergenza della serie data vale r = 2. Pertanto la serie converge per |x| < 2. x = - 2 essa si riduce alla serie alternata

$$\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$$

che converge, mentre per x = 2 essa si riduce alla serie

$$\sum_{n=1}^{\infty} \frac{\log n}{n}$$

che diverge in quanto maggiorante della serie armonica]

1.66 Calcolare, per ogni valore del parametro reale α , il raggio di convergenza della serie di potenze

$$\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \dots (\alpha-n)}{n!} x^{n}$$

[Essendo $\left| \frac{a_{n+1}}{a_n} \right| = \frac{\left| \alpha - n - 1 \right|}{n+1}$, per il teorema di D'Alembert si ha

r=1 se $\alpha \neq 0,1,2,3,...$ Altrimenti il termine generico della serie data è definitivamente nullo e perciò essa ha raggio di convergenza $r=+\infty$

1.67 Studiare la convergenza delle serie di potenze

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{\sqrt{n+3}} x^n$$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{3^n+9^n}$

- [(a) Essendo a_{n+1}/a_n = 2 $\sqrt{n+3}$ / $\sqrt{n+4}$, per il teorema di D'Alem bert il raggio di convergenza è r = 1/2. Per x = - 1/2 si ottiene .una serie alternata convergente, mentre per x = 1/2 la serie diverge (ved. es. 6.21 del vol. I, parte seconda). (b) Si verifica facilmente che $\lim_{n\to\infty} a_{n+1}/a_n = 1/9$. Perciò il raggio di convergenza vale r=9. La se rie non converge per x = ± 9, perchè il suo termine generale non è in finitesimo]
- 1.68 Calcolare il raggio di convergenza r di ciascuna delle seguenti serie di potenze

(a)
$$\sum_{n=1}^{\infty} \frac{5n}{2^n} \times n$$

(a)
$$\sum_{n=1}^{\infty} \frac{5n}{2^n} x^n$$
 (b) $\sum_{n=0}^{\infty} \frac{n^7}{(n+1)!} x^n$

(c)
$$\sum_{n=0}^{\infty} \frac{(n+1)^n}{n!} x^n$$

(c)
$$\sum_{n=0}^{\infty} \frac{(n+1)^n}{n!} x^n$$
 (d) $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{x}{5}\right)^n$

(e)
$$\sum_{n=1}^{\infty} \frac{x^n}{(n+1)^{5^{n+1}} \log(n+1)}$$
 (f) $\sum_{n=1}^{\infty} \frac{n^3 + n^2}{(1+n)^5} x^n$

[(a)
$$r = 2$$
; (b) $r = +\infty$; (c) $r = 1$; (d) $r = 5$; (e) $r = 5$; (f) $r = 1$]

1.69 Determinare l'intervallo di convergenza di ciascuna delle seguenti serie di potenze

(a)
$$\sum_{n=1}^{\infty} \frac{n(x+3)^n}{2^n}$$
 (b)
$$\sum_{n=0}^{\infty} \frac{(x+4)^n}{2^n \sqrt{n+1}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(x+z)^n}{n^2}$$
 (d)
$$\sum_{n=1}^{\infty} n^n (x+7)^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{2^n n^3}$$
 (f) $\sum_{n=2}^{\infty} \frac{(x+9)^{n-1}}{(n-1)^2}$

1D. Serie di Taylor

Sia f(x) una funzione reale dotata di derivate di ogni ordine nell'intervallo (a,b) e sia $x_0 \in (a,b)$. La serie di funzioni

(1)
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_n)}{n!} (x-x_0)^n$$

prende il nome di serie di Taylor di f(x), di punto iniziale x_{\circ} .

Se la serie (1) è convergente in (a,b) verso f(x), cioè se risulta, $\forall x \in (a,b)$:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} (x-x_o)^n,$$

allora si dice che f(x) è sviluppabile in serie di Taylor di punto iniziale x_{\circ} , nell'intervallo (a,b).

Dalla definizione del resto n-simo R_n (x) della formula di Taylor

$$R_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$

si ricava che: condizione necessaria e sufficiente affinchè f(x) sia sviluppabile in serie di Taylor di punto iniziale x_o , in (a,b) è che

(2)
$$\lim_{n\to\infty} R_n(x) = 0 \qquad \forall x \in (a,b).$$

Da tale condizione, ricordando l'espressione di Lagrange per il resto $R_n\left(x\right)$:

(3)
$$R_{n}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_{o})^{n+1}$$

(con ξ opportuno valore compreso fra x_o e x)e la conseguente stima del resto

(4)
$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |x-x_o|^{n+1}$$

nell'ipotesi $M_{n+1} = \sup \{|f^{(n+1)}(x)| : x \in (a,b)\} < \infty$, si deduce il seguente

TEOREMA 1. Se f(x) è dotata di derivate di ogni ordine in (a, b) ed esistono $M,L \ge 0$ tali che

$$|f^{(n)}(x)| \leq ML^n$$
 $\forall x \in (a,b)$

(in particolare se le derivate di f sono equilimitate in (a,b)) allora, $\forall x \in (a,b)$, f(x) è sviluppabile in serie di Taylor di punto iniziale x, nell'intervallo (a,b) e si ha:

(5)
$$|R_n(x)| \leq \frac{[L(b-a)]^{n+1}}{(n+1)!} M, \quad \forall x \in (a,b).$$

Le stime del resto (4) e (5) hanno notevoli applica - zioni al calcolo numerico dei valori delle funzioni.

Utile è inoltre il seguente

TEOREMA 2. Sia f(x) dotata di derivate di ogni ordine in (a, b) e sia $x_o \in (a,b)$. Se risulta

$$f'(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_o)}{(n-1)!} (x-x_o)^{n-1} \forall x \in (a,b),$$

cioè, se la serie derivata della serie di Taylor di f ha per somma f', allora f è sviluppabile in serie di Taylor di punto \underline{i} niziale x_o nell'intervallo (a,b).

Nel caso $x_o = 0$, la serie (1) prende anche il nome di serie di Mac Laurin di f(x).

Sussiste infine il seguente

TEOREMA 3 Se f(x) è sviluppabile in serie di Taylor di punto iniziale x_o nell'intervallo $I = (x_o - r, x_o + r)$ e se $g: X \to I$ è una funzione definita nell'insieme $X \subseteq R$ tale che g(X) è chi \underline{u} so, allora si ha, uniformemente in X

$$f(g(x)) = f(x_o) + f'(x_o)(g(x) - x_o) + \dots + \frac{f^{(n)}(x_o)}{n!} (g(x) - x_o)^{n} + \dots$$

1.70 Sia
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 per $|x| < r$ e sia $g(x) =$

$$= \sum_{n=0}^{\infty} b_n x^n \text{ per } [x] < \text{s. Posto t=min } \{r,s\}, \text{ verifi-}$$

care che

$$f(x)+g(x)=\sum_{n=0}^{\infty} (a_n+b_n)x^n$$
 per $|x|< t$.

[Basta osservare che per ogni k € N

$$\begin{split} \Big| \sum_{n=0}^{k} (a_n + b_n) x^n - (f(x) + g(x)) \Big| &\leq \\ &\leq \Big| \sum_{n=0}^{k} a_n x^n - f(x) \Big| + \Big| \sum_{n=0}^{k} b_n x^n - g(x) \Big| \Big] \end{split}$$

1.71 Calcolare i primi quattro coefficienti della serie di Taylor di punto iniziale $x_0=1$ di $f(x)=1/(1+x^2)$.

 $\left[a_0 = f(1) = 1/2; \text{ essendo } f'(x) = -\frac{2x}{(1+x^2)^2}, \text{ si ha } a_1 = f'(1) = -1/2; \text{ essendo } f''(x) = \frac{(6x^2-2)}{(1+x^2)^3}, \text{ si ha } a_2 = f''(1)/2! = 1/4; \text{ essendo } f'''(x) = \frac{24(x-x^3)}{(1+x^2)^4}, \text{ si ha } a_3 = f^{(3)}(1)/3! = 0 \right]$

1.72 Scrivere la serie di Mac Laurin della funzione $f(x) = \cos hx = (e^x + e^{-x})/2$.

[Si ha $f^{(n)}(x) = \cos hx$ se n è pari, $f^{(n)}(x) = \sin hx$ se n è dispari. Pertanto è $f^{(n)}(0) = 1$ se n è pari, $f^{(n)}(0) = 0$ se n è dispari. La se rie di Mac Laurin di cos hx è perciò $1+(x^2/2!)+(x^4/4!)+\dots+$ $+ \left[x^{2n}/(2n)!\right]+\dots$

1.73 Scrivere la serie di Mac Laurin della funzione $f(x) = e^{-2x}$ [Si ha $f'(x) = -2e^{-2x}$; $f''(x) = 2^2 e^{-2x}$; $f^{(3)}(x) = -2^3 e^{-2x}$; ... $f^{(n)}(x) = -2(-1)^n 2^n e^{-2x}$. Ne segue che la serie cercata è $1-2x+\frac{2^2}{2!} = x^2 - \frac{2^3}{3!} = x^3 + \dots + (-1)^n \frac{2^n}{n!} = x^n + \dots$]

1.74 Scrivere la serie di Mac Laurin della funzione $f(x)=(1+x)^{\alpha}$ per x > -1, $\alpha \in \mathbb{R}$.

[Si ha f'(x) = α (1+x) α^{-1} ; $f''(x) = \alpha$ (α -1)(1+x) α^{-2} ; ... $f^{(n)}(x) = \alpha$ (α -1)... $(\alpha$ -n+1)(1+x) α^{-n} . Perciò $f^{(n)}(0) = \alpha$ (α -1)... ... (α -n+1), e la serie cercata è

$$1 + \sum_{n=1}^{\infty} \frac{\alpha (\alpha - 1) \dots (\alpha - n + 1)}{n!} x^{n}$$

1.75 Scrivere la serie di Mac Laurin della funzione y = arcsenx.

[Si ha $y' = 1/\sqrt{1-x^2}$, $y'' = x/\sqrt{(1-x^2)^3} = xy^1/(1-x^2)$,... define

(6)
$$(1 - x^2)y'' - xy' = 0.$$

Dalla (6) si deduce una formula per ricorrenza assai utile per il calcolo delle derivate successive di y=arcsen x. Calcolando la derivata n-sima del primo membro della (6) si ha

$$(1-x^2)y^{(n+2)} - 2nxy^{(n+1)} - n(n-1)y^{(n)} -xy^{(n+1)} -ny^{(n)} = 0$$

da cui, semplificando

$$(1-x^2) y^{(n+2)} - (2n+1) xy^{(n+1)} - n^2 y^{(n)} = 0$$

ed ancora

$$y^{(n+2)} = [(2n+1)xy^{(n+1)} + n^2y^{(n)}]/(1-x^2).$$

Ponendo x = 0 si ha y (n+2) (0) = n^2 y (n) (0), da cui, essendo y (0) = y(0) = 0 segue

$$y^{(2k)}(0)=0$$
; $y^{(2k+1)}(0)=1^2 \cdot 3^2 \cdot 5^2 \cdot \dots \cdot (2k-1)^2$.

Se ora indichiamo, $\forall m \in \mathbb{N}$, con m!! il prodotto di tutti i numeri naturali non maggiori di m ed aventi la stessa parità di m (ad esempio 6!!=

= 2.4.6; 7!! = 1.3.5.7), dalle precedenti relazioni segue

$$y^{(2k+1)}(0) = [(2k-1)!!]^2$$

Perciò la serie di Mac Laurin di y = arcsenx è

$$x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}$$

1.76 Scrivere la serie di Mac Laurin della funzione f(x) = log (1+x).

[Si verifica per induzione che $f^{(n)}(x) = (-1)^{n-1}(n-1)!/(1+x)^n$ e perciò la serie cercata è

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

1.77 Verificare che sussistono i seguenti sviluppi in serie di Taylor

(a)
$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \ldots + \frac{x^{n}}{n!} + \ldots$$
 $x \in \mathbb{R}$

(b)
$$1/x = 1 - (x-1) + (x-1)^{2} - \dots + (-1)^{n+1} (x-1)^{n-1} + \dots + \dots + x \in (0,2)$$

(c)
$$\log x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots +$$

 $+(-1)^{n+1} - \frac{(x-1)^n}{n} + \dots \qquad x \in (0,2)$

[(a) Le derivate di $f(x) = e^x$ essendo equilimitate in ogni intervallo \underline{i} mitato di R, basta applicare il teorema 1. (b) Per $x \in (0,2)$ si ha $1 - x \in (-1,1)$, perciò la serie geometrica di primo termine 1 e ragione 1-x è convergente e si ha

$$\frac{1}{x} = \frac{1}{1 - (1 - x)} = 1 + (1 - x) + (1 - x)^{2} + \dots + (1 - x)^{n-1} + \dots$$

- (c) La serie derivata della serie a secondo membro di (c), coincide con quella considerata in (b) che converge verso D logx = 1/x. Si può perciò applicare il teorema 2]
- 1.78 Verificare che sussistono i seguenti sviluppi in serie di Mac Laurin.

(a)
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \dots + (-1)^n \frac{x^n}{n!} + \dots$$
 (x \in R)

(b) senx =
$$x - \frac{x^3}{3!} + ... + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + ... (x \in \mathbb{R})$$

(c)
$$\cos x=1-\frac{x^2}{2!}+\ldots+(-1)^n\frac{x^{2n}}{(2n)!}+\ldots$$
 (xeR)

(d)
$$arctgx=x-\frac{x^3}{3}+...+(-1)^n \frac{x^{2n+1}}{2n+1}+... (x \in [-1,1])$$

(e)
$$\operatorname{senh}_{X} = x + \frac{x^{3}}{3!} + \ldots + \frac{x^{2n+1}}{(2n+1)!} + \ldots \quad (x \in \mathbb{R})$$

(f)
$$\cosh x = 1 + \frac{x^2}{2!} + \ldots + \frac{x^{2n}}{(2n)!} + \ldots$$
 (x \in R)

[(a) Segue dall'esercizio precedente. (b) Le derivate di f(x) = senx essendo equilimitate in R, basta invocare il teorema 1. (c) Le derivate di f(x) = cosx essendo equilimitate in R, basta invocare il teorema 1. (d) La serie derivata della serie a secondo membro è $1-x^2+\ldots+(-1)^{n-1}x^2(n-1)+\ldots$ cioè è la serie geometrica di primo termine 1 e di ragione $-x^2$, che nell'intervallo (-1,1) ha per somma $1/(x^2+1)$; allora, invocando il teorema (2) si ha lo sviluppo indicato per $x \in (-1,1)$. Che lo sviluppo sus sista anche per $x = \pm 1$ segue dal teorema di Abel. (e) Essendo senh $x = (e^X - e^{-X})/2$, si può invocare il risultato dell'esercizio 1.70 e gli

sviluppi (a) del presente esercizio e di quello precedente. (f) Si sfrutti come in (e) l'uguaglianza coshx = $(e^X + e^{-X})/2$

1.79 Verificare che per $x \in (-1,1)$ sussistono i seguenti sviluppi in serie di Mac Laurin

(a)
$$\log (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

(b)
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

(c)
$$\frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n}$$

(d)
$$\log \sqrt{\frac{1+x}{1-x}} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$

[(a) Ved. la (c) dell'esercizio 1.77. (b) E' la serie geometrica di primo termine 1 e ragione $-x^2$. (c) E' la serie geometrica di primo termine 1 e ragione x^2 . (d) La serie derivata della serie a secondo membro di (d) coincide con quella considerata in (c) che converge verso $1/(1-x^2) = D \log \sqrt{(1+x)/(1-x)}$. Si può perciò applicare il teorema 2. Si può procedere anche per altra via. Precisamente, osservando che log $\sqrt{(1+x)/(1-x)} = \left[\log(1+x) - \log(1-x)\right]/2$ ed allora dalla (a) e dalla (a) stessa, nella quale si cambi x in -x, si ottiene per sottrazione lo sviluppo desiderato]

1.80 Dimostrare la relazione

$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots$$

[Poichè la serie a secondo membro converge (ved. l'esercizio 6.38 del vol. I, parte seconda), possiamo applicare alla serie (a) dell'esercizio precedente il teorema di Abel. Pertanto la (a) sussiste anche per

x = 1]

1.81 Calcolare la derivata sesta $f^{(6)}(0)$ della funzione $f(x) = 1/(1+x^2)$, utilizzando il suo sviluppo in serie di Mac Laurin.

[Dalla (b) dell'esercizio 1.79 segue che $f^{(6)}(0)/6!$, cioè il coefficien te di x^6 , è uguale a -1. Pertanto $f^{(6)}(0)=-6!$]

1.82 Senza effettuare il calcolo delle derivate successive della funzione f(x) = log(1+x), verif<u>i</u> care che $f^{(7)}(0) = 6!$

[Dalla (a) dell'esercizio 1.79 segue che f $^{(7)}(0)/7!$, cioè il coefficien te di x^7 , è uguale a 1/7]

1.83 Dare un esempio di funzione indefinitamente derivabile in tutto R, la cui serie di Mac Laurin non converge in tutto R.

[Ad esempio $f(x) = 1/(1+x^2)$ la cui serie di Mac Laurin, indicata nell'esercizio 1.79 (b), converge nell'intervallo [-1,1]]

1.84 Sia f(x) una funzione derivabile n+1 volte in [a,b] con derivata $f^{(n+1)}(x)$ continua.

(a) Dimostrare per induzione la formula

$$R_n(x) = \int_{x_n}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
, $\forall x \in [a,b]$,

che esprime, in forma integrale, il resto della formula di Taylor di f di punto iniziale $x_o \in [a, b]$.

(b) Dedurre dalla rappresentazione del resto in

forma integrale la sua espressione secondo Lagrange: esiste un punto ξ nell'intervallo di estremi x ed x_o per cui

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$$

[Ricordiamo che, per definizione, è

$$R_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_o)}{k!} (x-x_o)^k$$

(a) Per n=0, dalla formula fondamentale del calcolo integrale otte niamo

$$\int_{X_{o}}^{X} f'(t)dt = [f(t)]_{X_{o}}^{X} = f(x) - f(x_{o}) = R_{o}(x).$$

Supponiamo per induzione che per qualche n risulti

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_o)}{k!} (x-x_o)^k + \int_{x_o}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Supponiamo anche che f(x) ammetta derivata (n+2)-esima continua in [a,b] . Integrando per parti otteniamo

$$f(x) = \frac{\sum_{k=0}^{n} \frac{f^{(k)}(x_o)}{k!} (x-x_o)^k}{\sum_{k=0}^{n} \frac{1}{n!} \left\{ \left[-\frac{(x-t)^{n+1}}{n+1} f^{(n+1)}(t) \right]_{t=x_o}^{t=y} + \int_{x_o}^{x} \frac{(x-t)^{n+1}}{n+1} f^{(n+2)}(t) dt \right\} = \frac{f^{(n+1)}(x_o)}{(n+1)!} (x-x_o)^{n+1} + \int_{x_o}^{x} \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

che è quanto si voleva dimostrare.

(b) Supponiamo x > x_o (le differenze con il caso x < x_o sono soltanto formali). Indichiamo con m,M rispettivamente il minimo ed il massimo di f⁽ⁿ⁺¹⁾(t) nell'intervallo $[x_o,x]$, certo esistenti essendo f⁽ⁿ⁺¹⁾continua. Dalle disuguaglianze m \leq f⁽ⁿ⁺¹⁾(t) \leq M, \forall t \in $[x_o,x]$, e dall'espressione integrale del resto $R_n(x)$ ne deduciamo che

$$m \int_{X_o}^{X} \frac{(x-t)^n}{n!} dt \le R_n(x) \le M \int_{X_o}^{X} \frac{(x-t)^n}{n!} dt.$$

L'integrale è calcolabile elementarmente e vale

$$\frac{1}{n!} \int_{X_0}^{X} (x - t)^n dt = \frac{1}{n!} \left[-\frac{(x - t)^{n+1}}{n+1} \right]_{t=X_0}^{t=X} = \frac{(x - x_0)^{n+1}}{(n+1)!}$$

Perciò

$$m \le k_n(x) \cdot \frac{(n+1)!}{(x-x_o)^{n+1}} \le M$$
.

Per il teorema deil'esistenza dei valori intermedi applicato alla funzione $f^{(n+1)}(t)$ (tale funzione assume tutti i valori compresi tra il minimo m ed il massimo M), esiste $\xi \in [x_o,x]$ tale che $f^{(n+1)}(\xi) = R_n(x) \cdot (n+1)!/(x-x_o)^{n+1}$

1.85 Dimostrare che $\forall \alpha \in \mathbb{R}$ la funzione $f(x) = (1+x)^{\alpha}$ è sviluppabile in serie di Mac Laurin nell'inter - vallo (-1,1) e risulta

(8)
$$(1+\chi)^{\alpha} = \sum_{n=0}^{\infty} {n \choose n} \chi^{n}$$

ove $\binom{\alpha}{n}$ = $\alpha(\alpha-1)...(\alpha-n+1)/n!$ La serie a secondo membro della (8) si chiama serie binomiale(ved esercizio 1.74).

[Essendo f $^{(n+1)}(t) = \alpha (\alpha -1)...(\alpha -n)(l+t)$ $^{\alpha -n-1}$ (ved. l'esercizio 1.74), il resto $R_n(x)$ della formula di Mac Laurin è

$$R_{n}(x) = \frac{\alpha (\alpha - 1) \dots (\alpha - n)}{n!} \int_{0}^{x} \left(\frac{x - t}{1 + t}\right)^{n} (1 + t)^{\alpha - 1} dt$$

(ved. l'esercizio 1.84 (a)). Essendo, per 0 < |t| < |x| < 1, |x-t| / |1+t| < |x|, si ha

$$|R_n(x)| \le \frac{|\alpha(\alpha-1)...(\alpha-n)|}{n!} |x|^n \int_0^x (1+t)^{\alpha-1} dt$$

e perciò $R_n(x) \rightarrow 0$ grazie al risultato dell'esercizio 1.66]

1.86 Sviluppare in serie di Mac Laurin la funzione $f(x) = \sqrt{1+x^2} .$

[Ponendo nella serie binomiale (ved. l'esercizio 1.85) α = 1/2 e x 2 al posto di x, si ha per x < 1

$$\sqrt{1+x^2} = 1 + \frac{x^2}{2} + \frac{(\frac{1}{2})(\frac{1}{2}-1)}{2} \times x^4 + \frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!} \times x^6 + \dots$$

$$= 1 + x^2/2 - x^4/8 + x^6/16 + \dots$$

1.87 Dimostrare la relazione

(9)
$$\frac{1}{\sqrt{2}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot (2n)}$$

[Ponendo nella serie binomiale (ved. l'esercizio 1.85) α =-1/2, si ha per $\{x \mid \le 1$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2} \times + \frac{1}{2} \cdot \frac{3}{4} \times ^{2} - \ldots + (-1)^{n} \frac{1 \cdot 3 \cdot \ldots (2n-1)}{2 \cdot 4 \cdot \ldots 2n} \times ^{n} + \ldots$$

Poichè la serie a secondo membro della (9) converge in quanto essa è una serie alternata e la successione ([1:3 ·.... (2n - 1)]/[2:4··...2n]) è decrescente e infinitesima, allora possiamo applicare il teorema di Abel allo sviluppo di $1/\sqrt{1+x}$]

1.88 Sviluppare in serie di Mac Laurin nell'intervallo (-1,1) la funzione $f(x) = (1-x^2)^{-1/2}$

[Lo svîluppo in serie di $g(x) = (1+x)^{-1/2}$ per $x \in (-1,1)$ ê dato da (ved . l'esercizio 1.85)

$$(1+x)^{-1/2} = 1 - \frac{1}{2}x + \frac{1\cdot 3}{2\cdot 4}x^2 - \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^3 + \dots$$

Sostituendo -x 2 al posto di x si ha

$$(1-x^2)^{-1/2} = 1 + \frac{1}{2} x^2 + \frac{1 \cdot 3}{2 \cdot 4} x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} x^6 + \dots$$

1.89 Verificare che lo sviluppo in serie di Mac Lau rin in (-1,1) della funzione f(x) = arcsenx è da to da (ved. l'esercizio 1.75):

$$arcsenx = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot \cancel{3}}{2 \cdot \cancel{4}} \frac{x^5}{5} + \frac{1 \cdot \cancel{3} \cdot \cancel{5}}{2 \cdot \cancel{4} \cdot \cancel{6}} \frac{x^7}{7} + \dots$$

[Poichè la serie derivata della serie al secondo membro converge per $x \in (-1,1)$ verso f'(x), allora a norma del teorema 2, si ha lo sviluppo in dicato]

1.90 Sviluppare in serie di Mac Laurin la funzione

$$f(x) = \frac{4}{(1-x)(1+3x)},$$

dopo averla rappresentata come somma di due frazioni aventi a denominatore un polinomio di pr \underline{i} mo grado.

[Vale la scomposizione

$$f(x) = \frac{1}{1-x} + \frac{3}{1+3x} .$$

La formula per la somma della serie geometrica fornisce gli sviluppi

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, \quad \frac{1}{1+3x} = \sum_{n=0}^{\infty} (-1)^{n} 3^{n} x^{n},$$

validi rispettivamente per $\begin{bmatrix} x \end{bmatrix} \le 1$ e per $\begin{bmatrix} x \end{bmatrix} \le 1/3$. Pertanto risulta $f(x) = \sum_{n=0}^{\infty} \begin{bmatrix} 1+(-1)^n & 3^{n+1} \end{bmatrix} x^n$ per $\begin{bmatrix} x \end{bmatrix} \le 1/3$

1.91 Verificare che sussistono i seguenti sviluppi in serie

(a)
$$sen 3x = 3x - \frac{9}{2}x^3 + \frac{81}{80}x^5 - ... + \frac{(-1)^n 3^{2n+1}}{(2n+1)!}x^{2n+1} + ...$$

(b)
$$\cos \frac{x}{2} = 1 - \frac{x^2}{2^2 \cdot 2!} + \frac{x^4}{2^4 \cdot 4!} - \dots + (-1)^n \frac{x^{2n}}{2^{2n}} (2n)! + \dots$$

(c)
$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} + \dots + (-1)^n \frac{x^{2n}}{n!} + \dots$$

(d)
$$e^{1+x} = e + ex + \frac{ex^2}{2!} + \frac{ex^3}{3!} + \dots + \frac{ex^n}{n!} + \dots$$

uniformemente in ogni intervallo limitato di R.

[Basta applicare il teorema 3]

Sia f(x) una funzione sviluppabile in serie di Taylor di punto iniziale x_o nell'intervallo $(x_o-r,\ x_o+r)$. La ridotta n-sima della serie di Taylor

$$\sum_{k=0}^{n} \frac{\mathbf{f}^{(k)}(x_o)}{k!} (x-x_o)^{k}$$

è un polinomio di grado n che si chiama polinomio di Taylor (di Mac Laurin se $x_o = 0$), di ordine n e centro x_o , della funzione f(x).

1.92 Rappresentare graficamente la funzione y = sen x ed i suoi polinomi di Mac Laurin di ordine 1 e 3.

figura 1.7

[I polinomi di Mac Laurin di y = senx di ordine 1 e 3 sono rispettivamente $p_1(x) = x$ e $p_3(x)=x-x^3/6$ (fig. 1.7). In fig. 1.8 sono poi rappresentati i polinomi di Mac Laurin fino all'ordine 19. La figura è stata eseguita con l'ausilio di un computer]

figura 1.8

1.93 Per quali valori di x possiamo sostituire sen x con x, commettendo un errore non maggiore di ϵ = = 0.0005?

[Essendo senx = $x-x^3/3! + ...$ una serie alternata, l'errore | sen x - x | si maggiora con | x^3 | /3! (vedi il paragrafo 6C del vol. I, parte seconda). Allora risulta | x^3 | /3! $\leq \varepsilon$ se | x^3 | ≤ 0.003 , cioè se | x | $\leq \frac{3}{0.003}$]

1.94 Nel 1706 il matematico J. Machin scoprì un meto

do per calcolare le prime 100 cifre decimali di π , basandosi sull'identità

(10) $\pi=16 \text{ arctg } (1/5)-4 \text{ arctg } (1/239)$

e sullo sviluppo in serie di Mac Laurin per l'ar cotangente. Dimostrare tale identità.

[Per dimostrare la (10), poniamo α = arctg (1/5); allora tg2 α =2tg α /(1-tg² α) = 5/12 e tg 4 α = 2tg 2 α /(1-tg² α) = 120/119. Posto β = =4 α - π /4, dalle formule di addizione per la tangente si ricava tg β = (tg4 α -1)/(1+tg4 α) = 1/239. Essendo 0 < β < π /2, si ha β = arctg (1/239) = 4 α - π /4 e cioè la (10). Nel 1973 J. Guilloud e M. Bouyer arrivarono a calcolare un milione di cifre di π , basandosi sull'analoga identità:

T = 48 arctg (1/18)+ 32 arctg (1/57)-20 arctg (1/239).

Nel 1983 sono state calcolate oltre 16 milioni di cifre di π , con un metodo un pó diverso. L'uso della (10) per il calcolo approssimato di π è assai più vantaggioso di quello dell'identità π = 4 arctg 1, che fornisce l'espressione

(11) $\pi = 4 \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots + (-1)^n \frac{1}{2n+1} + \ldots\right)$, in quanto questa ultima serie converge "lentamente". Applicando i noti risultati sulle serie alternate (ved. il paragrafo 6C del vol. I, parte seconda) si deduce la disuguaglianza

$$\left| \pi - \left(4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \ldots + (-1)^{n+1} \frac{4}{2n-1} \right) \right| < \frac{4}{2n+1}.$$

Per n = 500, questa stima implica che l'errore che si commette approssimando π con la somma dei primi 500 termini della serie (11) è minore di 4/1001 < 0.004 < 0.005. Invece, lo sviluppo di arctgx applicato alla (10) fornisce l'espressione

$$\pi = \frac{16}{5} \left(1 - \frac{1}{3 \cdot 25} + \frac{1}{5 \cdot 25^2} - \frac{1}{7 \cdot 25^3} + \ldots \right) - \frac{4}{239} \left(1 - \frac{1}{3 \cdot 57121} + \frac{1}{5 \cdot 57121^2} - \ldots \right)$$

Si noti che, ad esempio, risulta

$$\frac{16}{5} \left(1 - \frac{1}{3 \cdot 25} + \frac{1}{5 \cdot 25^2}\right) - \frac{4}{239} = 3.1415...$$

e cioè, prendendo la somma di tre termini della prima serie e solo il primo termine della seconda, si ottengono già quattro cifre decimali esatte di T. La convergenza in questo caso è molto veloce. Consideran do un numero maggiore di addendi si trovano ad esempio le prime trenta cifre decimali:

 $\pi = 3.141592653589793238462643383279...$

Negli esercizi che seguono vogliamo mostrare co me si possa ricorrere all'integrazione per serie, al lo scopo di calcolare gli integrali definiti di funzioni non integrabili elementarmente.

1.95 Calcolare l'integrale $\int_0^1 e^{x^2} dx$.

[Lo sviluppo $e^X = 1+x+(x^2/2!)+...+(x^n/n!) + ...$ sussiste uniformemente in ogni intervallo limitato di R. Sostituendovi x^2 al posto di x si ha

$$e^{x^2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$$

uniformemente per $x \in [0,1]$. Perciò si ha

$$\int_0^1 e^{x^2} dx = \sum_{n=0}^{\infty} \int_0^1 \frac{x^{2n}}{n!} dx = \sum_{n=0}^{\infty} \frac{1}{(2n+1)n!}$$

1.96 Calcolare l'integrale $\int_0^1 e^{-x^2} dx \text{ con errore inferiore a 0.001.}$

[Sostituendo $-x^2$ al posto di x nello sviluppo di Mac Laurin di e^X si ha

$$e^{-x^2} = 1 - x^2 + (x^4/2!) - (x^6/3!) + (x^8/4!) - \dots$$

uniformemente per $x \in [0,1]$. Perciò si ha

$$\int_0^1 e^{-x^2} dx = \int_0^1 dx - \int_0^1 x^2 dx + \int_0^1 \frac{x^4}{2!} dx - \int_0^1 \frac{x^6}{3!} + \dots =$$

$$= \left[x \right]_0^1 - \left[\frac{x^3}{3} \right]_0^1 + \left[\frac{x^5}{10} \right]_0^1 - \left[\frac{x^7}{42} \right]_0^1 + \dots =$$

$$= 1 - (1/3) + (1/10) - (1/42) + (1/216) - (1/1320) + \dots$$

All'ultimo membro abbiamo una serie alternata e perciò (ved. il paragra fo 6C del vol. I, parte seconda) l'errore si maggiora con il valore assoluto del primo termine trascurato. Per avere un errore inferiore a 0.001 dovremo sommare fino al termine 1/216 incluso. Perciò, a meno di 0.001 si ha

$$\int_0^1 e^{-x^2} dx \approx 1 - (1/3) + (1/10) - (1/42) + (1/216) \approx 0.747$$

1.97 Calcolare, con sei cifre decimali esatte, il valore dell'integrale

$$\int_0^1 \frac{\sin x}{x} dx.$$

[Si ha sen $x = \sum_{n=0}^{\infty} (-1)^n x^{2n+1}/(2n+1)!$ per $x \in \mathbb{R}$ e perció

$$\frac{\text{sen } x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^5}{7!} + \ldots + (-1)^n \frac{x}{(2n+1)!} + \ldots$$

uniformemente nell'intervallo (0,1). Infatti la serie a secondo membro è maggiorata dalla serie numerica di termine generale 1/(2n+1)! nell'in tervallo (0,1). Quest'ultima converge, come si verifica facilmente mediante il criterio del rapporto. Integrando per serie si ha perciò

$$\int_0^1 \frac{\sin x}{x} dx = \int_0^1 (1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots) dx =$$

$$= 1 - \frac{1}{3 \cdot 3!} + \frac{1}{5 \cdot 5!} - \frac{1}{7 \cdot 7!} + \frac{1}{9 \cdot 9!} - \dots$$

Per un teorema sulle serie alternate (ved. il paragrafo 60 del vol. I, parte seconda) l'errore che si commette arrestando lo sviluppo si mag - giora con il valore assoluto del primo termine trascurato. Sommando, per ciò, solo i primi quattro termini, l'errore sarà minore di 1/9.9! = 0.0000003. Il valore approssimato richiesto è dunque

$$1 - \frac{1}{3 \cdot 3!} + \frac{1}{5 \cdot 5!} - \frac{1}{7 \cdot 7!} = 0.946083$$

1.98 Calcolare per serie gli integrali

(a)
$$\int_0^1 \frac{\log(1+x)}{x} dx$$
 (b) $\int_0^1 \frac{\log x}{x+1} dx$

[(a) $\sum_{n=1}^{\infty} (-1)^{n-1}/n^2$; (b) Integrando per parti si è ricondotti all'integrale in (a)]

1.99 Calcolare per serie gli integrali (x∈R):

(a)
$$\int_0^x \sin(t^2) dt$$
 (b)
$$\int_0^x \cos(t^2) dt$$

$$[(a) \sum_{n=0}^{\infty} (-1)^n \times \frac{4n+3}{(2n+1)!(4n+3)};$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \times \frac{4n+1}{n} \left[(2n)!(4n+1) \right]$$

Riepilogo di sviluppi in serie notevoli

1.
$$e^{x} = 1+x+\frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + ...$$
 $(x \in \mathbb{R})$

2.
$$\operatorname{senx} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 $(x \in \mathbb{R})$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n - \frac{x^n}{(2n)!} + \dots$$
 (x \in R)

4.
$$(b+x)^{\alpha} = b^{\alpha} + \alpha b^{\alpha-1} x + ... + \frac{\alpha (\alpha-1)...(\alpha-n+1)}{n!} b^{\alpha-n} x^{n} + ...$$

5.
$$a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \ldots + \frac{(x \log a)^{n}}{n!} + \ldots$$
 (x \in \mathbb{R})

6.
$$\operatorname{arcsenx} = x + \frac{1 \cdot x^3}{2 \cdot 3} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots$$

$$+ \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)x^{2n+1}}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n(2n+1)} + \dots$$
 ($|x| < 1$)

7.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + \ldots$$
 $(|x| \le 1)$

8.
$$\operatorname{senh} x = x + \frac{x^3}{3!} + \ldots + \frac{x^{2n+1}}{(2n+1)!} + \ldots$$
 $(x \in \mathbb{R})$

9.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^n}{(2n)!} + \dots$$
 $(x \in \mathbb{R})$

10. sett sen hx = x-
$$\frac{x^3}{2\cdot 3}$$
+ $\frac{1\cdot 3x^5}{2\cdot 4\cdot 5}$ - $\frac{1\cdot 3\cdot 5x^7}{2\cdot 4\cdot 6\cdot 7}$ +...

$$+(-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)x}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n(2n+1)}$$
 ($|x| \le 1$)

11. sett tghx =
$$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$$
 (| x | < 1)

12.
$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$
 (-1< x \le 1)

13.
$$\log \frac{1+x}{1-x} = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots + \frac{x^{2n+1}}{2n+1} + \ldots\right)$$
 (|x| < 1)

14.
$$\log x = 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \ldots + \frac{1}{2n+1} \left(\frac{x-1}{x+1} \right)^{2n+1} + \ldots \right] \quad (x > 0)$$

15. sen hx + senx = 2
$$(x + \frac{x^5}{5!} + \frac{x^9}{9!} + ...)$$
 $(x \in \mathbb{R})$

16. cos hx + cos x = 2 (1+
$$\frac{x^4}{4!}$$
 + $\frac{x^8}{8!}$ +...) (x \in R)

Capitolo 2

SPAZI METRICI E SPAZI NORMATI

26 Spazi metrici

ŗ

Sia X un insieme e d : $X \times X \rightarrow [0, +\infty)$ una funzione. Si dice che d è una distanza o metrica su X, se scho verificate le condizioni:

-1 d(x,y) = 0 se e solo se x = y

iijd(x,y) = d(y,x) per ogni $x,y \in X$

iii) $d(x,y) \le d(x,z) + d(z,y)$ per ogni $x,y,z \in X$.

(disugnaglianza triangolare)

Se d è una distanza su X si dice che (X,d) è uno spazio metrico, o anche che X è uno spazio metrico, quan do non vi sarà possibilità di equivoco.

Per ogni r > 0, $x_o \in X$, si chiama cerchio aperto (o intorno sferico o sfera aperta) di centro x_o e raggio r, l'insieme

 $B(x_o,r) = \{x \in X : d(x,x_o) < r \};$

si chiama cerchio chiuso di centro xo e raggio r l'in -

sieme

$$C(x_o,r) = \{x \in X : d(x,x_o) \leq r\}.$$

Un insieme $A\subseteq X$ si dice aperto, se $\forall x\in A$ esiste un cerchio aperto B(x,r) contenuto in A. Un insieme $C\subseteq X$ si dice chiuso, se X-C è aperto.

Se $x \in X$, $I \subseteq X$, si dice che I è un *intorno* di x, se esiste un cerchio aperto B(x,r) contenuto in I.

Sia Y \subseteq X. Un punto $x \in X$ di dice di accumulazione per Y se, per ogni intorno I di x, si ha I $\cap (Y - \{x\}) \neq \emptyset$.

L'insieme (eventualmente vuoto) dei punti di accumulazione di Y si indica con D(Y).

La chiusura dell'insieme $Y \subseteq X$ è l'insieme $\overline{Y} \subseteq X$ definito da $\overline{Y} = Y \cup D(Y)$. Un insieme C è chiuso se e solo se $C = \overline{C}$, cioè se e solo se $C \supseteq D(C)$.

Se $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ sono punti di R^n , posto

(1)
$$d_n(x,y) = \sqrt{(x_1-y_1)^2 + ... + (x_n-y_n)^2}$$

la coppia (R^n, d_n) è uno spazio metrico (ved.es.2.3) che si chiama spazio euclideo a n dimensioni e che indichere mo semplicemente con R^n .

Per n = 1 la (1) si riduce a

$$d_1(x,y) = |x-y| . \qquad (x,y \in \mathbb{R})$$

Se (X,d) è uno spazio metrico e Y è un sottoin - sieme di X, allora, la restrizione della funzione d a Y x Y è una metrica su Y, che si chiama metrica in-

dotta da d su Y.

Un sottoinsieme Y dello spazio metrico (X,d) si dice limitato, se esiste un cerchio (chiuso) C che con tiene Y, ovvero se esiste r>0 tale che $d(x,y)\leq r$, per ogni $x,y\in Y$.

2.1 Sia X un insieme e sia, per $x, y \in X$

$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$

Verificare che (X,d) è uno spazio metrico nel quale ogni insieme è aperto e chiuso.

2.2 Siano a = (a_1, \ldots, a_n) e b = (b_1, \ldots, b_n) punti di Rⁿ. Verificare che sussiste la disuguaglianza di Cauchy-Schwarz

$$\left| \begin{array}{cc} \underset{i=1}{\overset{n}{\sum}} & a_i b_i \end{array} \right| \leq \left(\begin{array}{cc} \underset{i=1}{\overset{n}{\sum}} & a_i^2 \end{array} \right)^{1/2} \left(\begin{array}{cc} \underset{i=1}{\overset{n}{\sum}} & b_i^2 \end{array} \right)^{1/2}$$

[Si ha, per ogni t & R

$$0 \le \sum_{i=1}^{n} (a_i + tb_i)^2 =$$

$$= (\sum_{i=1}^{n} b_i^2) t^2 + 2 (\sum_{i=1}^{n} a_i b_i) t + \sum_{i=1}^{n} a_i^2 =$$

$$= \alpha t^2 + 2\beta t + \gamma.$$

Si noti che α , $\gamma \geq 0$; inoltre se $\alpha = 0$ (ed analogamente γ) i b_1 sono tutti nulli ed in tal caso la disuguaglianza di Cauchy-Schwarz è ovviamente verificata. Supponiamo quindi $\alpha > 0$; il pelinomio di secondo grado in t: $\alpha t^2 + 2 \beta t + \gamma$ è non negativo per ogni $t \in \mathbb{R}$. Quindi l'e-

quazione di secondo grado ad esso associata non ha due radici reali(al trimenti il polinomio sarebbe negativo all'interno dell'intervallo del le radici). Ciò equivale a dire che $\Delta/4=\beta^2-\alpha\gamma\leq 0$, cioè $\beta^2\leq\alpha\gamma$ che, ricordando il significato dei simboli α , β , γ , corrisponde alla tesi l

2.3 Tenendo presente l'esercizio precedente, dimostra re che la funzione d_n definita dalla (1) è una metrica (detta metrica euclidea).

[La (i) e la (ii) valgono banalmente. Dimostriamo che $d_n(x,y) \le d_n(x,z) + d_n(z,y)$ con $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n)$, $z=(z_1,\ldots,z_n)$, cioe' che si ha

$$(\sum_{i=1}^{n} \|x_{i} - y_{i}\|^{2})^{1/2} \le (\sum_{i=1}^{n} \|x_{i} - z_{i}\|^{2})^{1/2} + (\sum_{i=1}^{n} \|z_{i} - y_{i}\|^{2})^{1/2}$$

Posto $a_i = x_i - z_i$ e $b_i = z_i - y_i$, basta dimostrare che

$$\sum_{i=1}^{n} (a_{i} + b_{i})^{2} \leq \left[\left(\sum_{i=1}^{n} a_{i}^{2} \right)^{1/2} + \left(\sum_{i=1}^{n} b_{i}^{2} \right)^{1/2} \right]^{2}$$

o, ciò che è lo stesso, che

$$\sum_{i=1}^{n} a_{i} b_{i} \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1/2}$$

relazione vera, grazie all'es. precedente]

2.4 Per x = (x_1, x_2) , y = $(x_1, y_2) \in \mathbb{R}^2$, poniamo

$$d'(x,y) = |x_1-y_1| + |x_2-y_2|$$

$$d''(x,y) = \max \{|x_1-y_1|, |x_2-y_2|\}.$$

Verificare che d' e d" sono metriche in R2. Rap-

presentare graficamente in un riferimento carte siano il cerchio di centro 0 = (0,0) e raggio 1, relativo ai tre spazi metrici (R^2,d_2) , (R^2,d') , (R^2,d'') (ove d_2 è la metrica euclidea).

[Ved. fig. 2.1 ove somo rappresentati i cerchi

figura 2.1

di centro 0 e raggio 1, rispettivamente C_{d_2} (nella metrica d_2) $C_{d'}$ (nella metrica d') e $C_{d''}$ (nella metrica d'')]

2.5 Verificare che tra la metrica euclidea d_n in R^n e le metriche

$$d_{n}'(x,y) = \sum_{i=1}^{n} |x_{i}-y_{i}|$$

$$d_n''(x,y) = \max \{|x_i-y_i| : i=1,...,n\}$$

sussistono le relazioni

$$d_{n}^{"}(x,y) \le d_{n}(x,y) \le d_{n}^{"}(x,y) \le nd_{n}^{"}(x,y),$$

che sì esprimono anche dicendo che esse sono metriche equivalenti.

[Basta osservare che, se a_1, a_2, \dots, a_n sono numeri reali non negativi, si

$$\max \{a_1, \dots, a_n\} \leq \sqrt{a_1^2 + \dots + a_n^2} \leq \sum_{i=1}^{n} a_i \leq n \max \{a_1, \dots, a_n\}$$

la seconda disuguaglianza essendo equivalente all'altra: $a_1^2 + ... + a_n^2 \le \frac{n}{(\sum_{i=1}^n a_i)^2}$, di semplice verifica]

2.6 Sia $(x^{(k)})$ una successione di punti di R^n . Se Sé $x^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)})$, verificare che per $x = (x_1, \dots, x_n)$, si ha $d_n(x^{(k)}, x) \rightarrow 0$ per $k \rightarrow \infty$ se e solo se risulta $x_i^{(k)} \rightarrow x_i$ (per $k \rightarrow \infty$) per ogni i=1, ..., n.

[Dall'esercizio precedente segue che per ogni i = 1,2,...,n, si ha

$$\left|x_{\mathbf{i}}^{(k)} - x_{\mathbf{i}}\right| \le d_{\mathbf{n}}(\mathbf{x}^{(k)}, \mathbf{x}) \le n \max_{1 \le \mathbf{j} \le n} \left[x_{\mathbf{j}}^{(k)} - x_{\mathbf{j}}\right]$$

2.7 Posto per x,y∈R

$$d(x,y) = \frac{|x-y|}{1 + |x-y|}$$
,

verificare che d è una metrica (limitata) su R.

[Dimostriamo che d soddisfa alla disuguaglianza triangolare (iii). Se x,y,z ER, tenendo conto dell'esercizio 1.58 del vol. I, parte seconda , si ha

$$d(x,y) = \frac{|x-y|}{1+|x-y|} = \frac{|(x-z)+(z-y)|}{1+|(x-z)+(z-y)|} \le$$

$$\leq \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|} = d(x,z) + d(z,y).$$

Evidentemente, risulta d(x,y) \leq l per ogni x,y \in R e perció d è una fun zione limitata]

- 2.8 Sia (S,d) uno spazio metrico e siano $B_1=B(x_1,r_1)$ e $B_2=B(x_2,r_2)$ due cerchi aperti. Verificare che, se $y\in B_1\cap B_2$, allora esiste r>0 tale che $B(y,r)\subseteq B_1\cap B_2$.
 - [Posto $r = \min\{ r_1 d(x_1, y), r_2 d(x_2, y) \}$ sia $x \in B(y, r)$. Allora si ha $d(x, x_i) \le d(x', y) + d(y, x_i) < r + d(y, x_i) < r_i$ per i = 1, 2. Ne segue $x \in B_1 \cap B_1$]
- 2.9 Verificare che ogni intervallo aperto I di Rⁿ contiene un cerchio aperto concentrico, e che ogni cerchio aperto B di Rⁿ contiene un intervallo aperto concentrico.

[Sia I = $(c_1 - \delta_1, c_1 + \delta_1) \times ... \times (c_n - \delta_n, c_n + \delta_n)$ un intervallo aperto di R di centro c = $(c_1, c_2, ..., c_n)$ e sia $\delta = \min \{\delta_1, ..., \delta_n\}$. Det to B il cerchio aperto di centro c e raggio δ , se x = $(x_1, ..., x_n) \in B$, si ha, $\forall j = 1, ..., n$

$$|x_{j}-c_{j}| \le \left(\sum_{i=1}^{n} |x_{i}-c_{i}|^{2}\right)^{1/2} < \delta \le \delta_{j}$$

e dunque x∈ I.

Siano c = (c_1, \dots, c_n) e r il centro ed il raggio del cerchio aperto B e sia

$$I=(c_1-r/\sqrt{n}, c_1+r/\sqrt{n})x...x(c_n-r/\sqrt{n}, c_n+r/\sqrt{n}).$$

Se x = $(x_1, \ldots, x_n) \in I$ si ha, Yi, $|x_i - c_i| < r/\sqrt{n}$ ed anche, som - mando membro a membro, $d_n(x,c) < r$, cioè $x \in B$].

2.10 Indichiamo con ℓ_{∞} l'insieme di tutte le successioni limitate (x_n) di numeri reali. Posto, per $\underline{x} = (x_n)$, $\underline{y} = (y_n)$ ϵ ℓ_{∞} :

$$d(\underline{x},\underline{y}) = \sup_{n} |x_{n} - y_{n}|$$

verificare che (l_{∞},d) è uno spazio metrico.

[Limitiamoci a dimostrare la disuguaglianza triangolare. Siano $\underline{x}=(x_n)$ $\underline{y}=(y_n), \ \underline{z}=(z_n)$ elementi di λ_{∞} . Si ha

$$\begin{aligned} \left| \begin{array}{ccc} \mathbf{x}_{n} - \mathbf{y}_{n} \right| & \leq & \left| \mathbf{x}_{n} - \mathbf{z}_{n} \right| + \left| \begin{array}{ccc} \mathbf{z}_{n} - \mathbf{y}_{n} \end{array} \right| & \leq \\ & \leq \sup_{n} & \left| \mathbf{x}_{n} - \mathbf{z}_{n} \right| + \sup_{n} & \left| \mathbf{z}_{n} - \mathbf{y}_{n} \right| \\ & = & d(\underline{\mathbf{x}}, \underline{\mathbf{z}}) + d(\underline{\mathbf{z}}, \underline{\mathbf{y}}) \end{aligned}$$

Prendendo l'estremo superiore su n del primo membro, si ha l'asserto $\ \]$

2.11 Sia $X = L^{\infty}([0,1])$ l'insieme delle funzioni reali limitate in [0,1] e poniamo per $u, v \in X$

$$d(u,v) = \sup\{|u(x)-v(x)|:x\in[0,1]\}.$$

Verificare che d è una metrica su X (ved la fig. 2.2).

[La (i) e la (ii) sono ovvie. Per dimostrare la disuguaglianza triango-

lare, siano u,v,w ∈ X.

Allora

$$\begin{split} d(u,v) &= \sup \left\{ \left| (u(x)-w(x))+(w(x)-v(x)) \right| : x \in [0,1] \right\} \le \\ &\le \sup \left\{ \left| u(x)-w(x) \right| + \left| w(x) - v(x) \right| : x \in [0,1] \right\} \le \\ &\le \sup \left\{ \left| u(x) - w(x) \right| : x \in [0,1] \right\} + \\ &+ \sup \left\{ \left| w(x)-v(x) \right| : x \in [0,1] \right\} = \\ &= d(u,w) + d(w,v) \, \end{split}$$

figura 2.2

2.12 Sia X = C([0,1]) l'insieme delle funzioni reali continue su [0,1]. Per $u,v\in X$ poniamo

$$d(u,v) = \int_0^1 |u(x)-v(x)| dx$$

Verificare che d è una metrica su X (la distanza d(u,v) è rappresentata dall'area della regione tratteggiata in figura 2.3).

figura 2.3

[La disuguaglianza triangolare si ottiene integrando su [0,1] membro a membro la relazione

$$|u(x)-v(x)| \leq |u(x)-w(x)| + |w(x)-v(x)|, \qquad \forall x \in [0,1]$$

E' ovvio che d(u,v)=d(v,u). Infine, in base alla continuità di u, v, come nell'esercizio 5.4 del volume I, parte seconda, si prova che, se d(u,v)=0 allora risulta $\left|u(x)-v(x)\right|=0$ per ogni $x\in \left[0,1\right]$ e quindi u=v

2.13 Dimostrare che l'unione di due sottoinsiemi Y_1 , Y_2 limitati dello spazio metrico (X,d) è un insieme limitato.

[Sia $C_i = C_i(x_i, r_i)$ un cerchio chiuso contenente Y_i , per i = 1, 2. Allo ra il cerchio chiuso $C = C(x_1, r)$ di centro x_1 e raggio $r = max \{ r_i \}$

 $\{x_2\}$ + d(x_1, x_2) contiene C $_1$ U C $_2$ e perciò $\{y_1, y_2\}$. Infatti C contiene ovviamente C $_1$ ed inoltre risulta

$$d(x,x_1) \le d(x,x_2) + d(x_2,x_1) \le r$$

per ogni x e C 2]

2B. Condizione di Cauchy. Completezza.

Sia (X,d) uno spazio metrico e sia x_n una successione di punti di X. Si dice che x_n converge verso un punto $x \in X$ se, per ogni $\epsilon > 0$, esiste $v \in N$ tale che $d(x_n x) < \epsilon$ per ogni n > v, cioè, se risulta $d(x_n x) \to 0$ per $n \to \infty$.

Sia C un sottoinsieme di X, allora si verifica che C è chiuso se e solo se C contiene il limite di ogni successione convergente x_n con $x_n \in C$, $\forall n \in N$.

Si dice che x_n è una successione di Cauchy se, per \underline{o} gni $\epsilon>0$, esiste ν ϵ N tale che $d(x_p^-,\,x_q^-)<\epsilon$, per ogni $p,q>\nu$.

Una successione convergente è anche di Cauchy, ma, in un generico spazio metrico, una successione di Cauchy non sempre è convergente (ved. l'eserc. 2.15).

Lo spazio metrico (X,d) si dice completo se ogni successione di Cauchy è convergente.

Poichè ogni successione di Cauchy di numeri reali è convergente, lo spazio euclideo R è completo (ved. l'eserc. 2.20).

Relativamente agli spazi metrici completi è impor

tante il seguente:

TEOREMA DELLE CONTRAZIONI. - Sia (X,d) uno spazio metrico completo e f una contrazione su X con costante L, cioè una funzione definita su X a valori in X tale che

$$d(f(x), f(y)) \leq Ld(x,y)$$

per ogni x,y \in X, con L numero reale positivo e minore di 1. In tali ipotesi esiste uno ed un solo $x_o \in$ X tale che $f(x_o) = x_o$ (x_o si dice punto unito o punto fisso per f(x)).

Rimandiamo al paragrafo 12C del volume I (parte prima) per una discussione e per la dimostrazione del teorema delle contrazioni nel caso in cui X sia un intervallo chiuso di R e d la usuale distanza euclidea $d(x,y) = \lfloor x-y \rfloor$.

- 2.14 Sia f:R \rightarrow R definita da f(x) = mx+q, con m,q \in R.Ve rificare che:
 - (a) f(x) è una contrazione su R se e solo se |m| < 1.
 - (b) Se m=1 la funzione f(x) o non ha punti fissi, oppure, se esiste un punto fisso su R, esso non è unico.

[(a) Vale l'identità

$$|f(x)-f(y)| = |m(x-y)| = |m| \cdot |x-y|$$
. $\forall x,y \in \mathbb{R}$.

Perciò f(x) è una contrazione con costante L = |m| se e solo se |m| < 1; (b) se m = 1 risulta f(x) = x + q. L'equazione $x_0 + q = x_0$ o non ha soluzioni(se $q \neq 0$), oppure ogni $x \in \mathbb{R}$ è soluzione (se q = 0)

2.15 Verificare che l'insieme Q dei numeri razionali, munito della metrica usuale d(x,y) = |x-y| non

89

è completo.

[La successione di numeri razionali $x_n = (1+1/n)^n$ è di Cauchy (in quanto convergente in R) ma non è convergente in Q, în quanto $\lim_{n\to\infty} x_n = e \notin Q$]

2.16 Sia X un insieme e sia d la metrica definita da

$$d(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y. \end{cases}$$

Verificare che una successione x_n di punti di x è convergente verso x, se e solo se essa è definitivamente costante, cioè se e solo se esiste $v \in N$, tale che $x_n = x$, per ogni n > v.

[Poichè la relazione lim $d(x_n,x)=0$ implica che esiste $v \in N$ tale che $d(x_n,x) < 1/2$ per n > v, si ha l'asserto]

2.17 Verificare che lo spazio metrico (X,d) definito nell'esercizio precedente è uno spazio metrico completo.

[Se x_n è una successione di Cauchy, allora esiste $\forall \in \mathbb{N}$ tale che $d(x_p, x_q) < 1/2$ per $p,q > \forall$. Ne segue $d(x_p, x_q) = 0$ e perciò $x_p = x_q$ per ogni $p,q > \forall$. Dunque x_n è una successione definitivamente costante e perciò convergente]

2.18 Verificare che una successione x_n di Cauchy nello spazio metrico (X,d) è limitata. [Poichè x_n è di Cauchy, esiste $v \in N$ tale che $d(x_p,x_q) \le 1$ per ogni p,q > 1

- > V. Perciò l'insieme degli elementi della successione aventi indice maggiore di V è limitato. Poichè l'insieme degli elementi della successione aventi indice minore o uguale a V, essendo finito, è lìmitato, l'asserto segue dall'esercizio 2.13]
- 2.19 Sia (X,d) uno spazio metrico e sia \mathbf{x}_n una suc cessione di Cauchy dotata di un'estratta \mathbf{x}_{n_k} convergente verso \mathbf{x}_o . Allora anche \mathbf{x}_n è convergente verso \mathbf{x}_o .

[Fissato ε > 0, sia \vee tale che

$$\begin{aligned} d(x_p, x_q) &< \epsilon/2 & \text{per. p,q} &> \nu \\ \\ d(x_{n_k}, x_o) &< \epsilon/2 & \text{per. k} &> \nu \end{aligned}$$

Allora, per k > \vee risulta

$$\begin{array}{l} d(x_k,x_o) \leq d(x_k,x_{n_k}) + d \ (x_{n_k},x_o) < -\epsilon \\ \\ \text{in quanto } n_k \geq k > \nu \,] \end{array}$$

- 2.20 Dimostrare che una successione di Cauchy di numeri reali è convergente.
 - [Se x_n è di Cauchy, essa è limitata (ved. l'eserc. 2.18) ed allora; a norma del teorema di Bolzano-Weierstrass (ved. il paragrafo 7H del vol I, parte prima) essa ammette un'estratta x_{n_k} convergente. Dall'esercizio 2.19 segue l'asserto]
- 2.21 Dimostrare che \textbf{R}^{n} , con la metrica euclidea \textbf{d}_{n} è uno spazio metrico completo.

[Sia $x_k = (x_{1k}, x_{2k}, ..., x_{nk})$ una successione di Cauchy in (R^n, d_n) . Es-

sendo per i = 1, ..., n

$$|x_{ip} - x_{iq}| \le d_n(x_p, x_q)$$
,

le successioni x_{ik} sono di Cauchy in R e perciò convergenti. Posto $x_i = \lim_{k \to \infty} x_{ik}$ e $x = (x_1, ..., x_n)$ si ha (ved. 1'eserc. 2.5)

$$d_n(x_k,x) \leq \sum_{i=1}^n |x_{ik} - x_i|$$
,

per cui risulta $d_n(x_k,x) \to 0$, cioè x_k converge verso x in \mathbb{R}^n

2.22 Sia I un intervallo di R e sia L(I) lo spazio del le funzioni reali limitate su I. Posto per u,v ϵ

$$d(u,v) = \sup : \{|u(x)-v(x)|: x \in I\};$$

verificare che la successione $u_n \in L(I)$ converge verso $u \in L(I)$ nella metrica d, se e solo se $u_n \rightarrow u$ uniformemente in I.

[Ved. il paragrafo lA]

2.23 Verificare che lo spazio L([0,1]) delle funzioni limitate in [0,1], munito della distanza

(*)
$$d(u,v) = \sup \{|u(x)-v(x)|: x \in [0,1]\}$$

è uno spazio metrico completo.

[Sia (u_n) una successione di Cauchy in L([0,1]); allora (u_n) verifica la condizione di Cauchy uniforme e perciò, per il teorema 2 del par. lA, essa converge uniformemente verso una funzione $u \in L([0,1])$]

2.24 Verificare che lo spazio C([0,1]) munito della metrica (*) è uno spazio metrico completo.

[Basta tener presente l'esercizio precedente e ricordare che il limite uniforme di funzioni continue è continua (teorema 3 del par. lA)]

2.25 Sia C¹([a,b]) l'insieme delle funzioni continue, con derivata prima continua in [a,b]. Posto

$$d'(u,v) = \sup_{x \in [a,b]} |u(x) - v(x)| + \sup_{x \in [a,b]} |u'(x) - v'(x)|$$

verificare che $(C^1([a,b]), d')$ è uno spazio metrico completo.

[Che d' sia una metrica, si prova come nell'esercizio 2.11. Sia u_n una successione di Cauchy rispetto a d': allora u_n e u_n^* sono entrambe di Cauchy in (C°([a,b]),d) ove d è l'usuale metrica su C° ([a,b]) considerata nell'esercizio 2.24. Poiché C°([a,b]) è completo, esisto no due funzioni continue u e v tali che d(u_n ,u) \rightarrow 0 e d(u_n^* ,v) \rightarrow 0. Dimostriamo che $v(x) = u^*(x)$ per egni $x \in [a,b]$. Essendo

$$u_n(x) - u_n(a) = \int_a^x u_n(t) dt$$

e $u_n(x) \to u(x)$, $u_n(a) \to u(a)$, applicando il teorema di passaggio al limite sotto il segno di integrale (ved. il paragrafo lA del cap. 1), come è lecito in quanto $u_n^i \to v$ uniformemente, si ha

$$u(x) - u(a) = \int_{a}^{x} v(t)dt.$$

Da quest'ultima uguaglianza segue u' = v].

2.26 Sia (X,d) uno spazio metrico completo, e sia Y⊂X. Dimostrare che Y, munito della metrica indotta da d, è uno spazio metrico completo se e solo se Y è un sottoinsieme chiuso di X.

[Se Y è completo rispetto a d, sia y_n una successione di punti di Y con vergente verso $x \in X$. Poichè y_n è una successione di Cauchy in Y, essa converge verso un punto $y \in Y$. Dunque risulta $x = y \in Y$ e perciò Y è chiu so, in quanto contiene il limite di una sua qualunque successione convergente.

Viceversa, sia Y chiuso in X e sia $\mathbf{x}_n \in \mathbf{Y}$ una successione di Cauchy. Poichè (X,d) è completo, esiste $\mathbf{x} \in \mathbf{X}$ tale che $\mathbf{x}_n \to \mathbf{x}$. Poichè Y è chiuso e $\mathbf{x}_n \in \mathbf{Y}$, allora anche $\mathbf{x} \in \mathbf{Y}$. Pertanto Y è uno spazio metrico completo]

2.27 Considerata la successione $u_n(x) = \sqrt{1+n^2x^2}/n$, per $x \in [-1,1]$, verificare che $u_n(x) \to |x|$ uniformemen te. Dedurne che lo spazio $C^1([-1,1])$ delle fun zioni continue con la loro derivata prima in [-1,1], munito della metrica della convergenza uni forme

$$d(u,v) = \sup \{ |u(x)-v(x)| : x \in [a,b] \},$$

non è completo.

[Si ha

$$\left| u_{n}(x) - |x| \right| = \left| \frac{\sqrt{1+n^{2}x^{2}} - n|x|}{n} \right| = \frac{1}{n \left[\sqrt{1+n^{2}x^{2}} + n|x| \right]} \le \frac{1}{n}$$

per cui $u_n(x) \to |x|$ uniformemente. Allora il sottoinsieme $C^1([-1,1])$ di $C^o([-1,1])$ non è chiuso rispetto alla metrica d. Tenendo conto del l'esercizio 2.26, si ha l'asserto]

2C. Spazi metrici compatti

Uno spazio metrico (X,d) si dice *compatto* se da \underline{o} gni successione di punti di X se ne può estrarre una convergente verso un punto di X.

Poichè da ogni successione limitata di numeri reali se ne può estrarre una convergente, allora un sottoinsieme chiuso e limitato Y di R, munito della metrica indotta da quella euclidea, è uno spazio metrico compatto.

Sia (X,d) uno spazio metrico e sia $f: X \rightarrow R \cdot$ una funzione reale definita in X.

Si dice che f è continua in $x_o \in X$ se per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che per ogni $x \in X$ con $d(x, x_o) < \delta$, risulti $|f(x) - f(x_o)| < \epsilon$.

Si dice che f è continua in X se f è continua in ogni punto $x_o \, \epsilon \, X.$

Si dice che f è uniformemente continua in X se, per ogni $\epsilon > 0$ esiste $\delta > 0$ tale che $d(x,y) < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

Sussistono i seguenti notevoli teoremi.

TEOREMA 1. Se (X,d) è uno spazio metrico compatto, allora es so è completo.

TEOREMA 2 (di Weierstrass). Se (X,d) è uno spazio metrico compatto e $f: X \to R$ è continua, allora f ha massimo e mi nimo in X.

TEOREMA 3 (di Cantor). Se (X,d) è uno spazio metrico compatto e $f:X\to R$ è continua, allora f è uniformemente continua.

Uno spazio metrico (X,d) risulta separato (o di Haus-dorff), cioè due punti distinti di X ammettono sempre almeno due intorni disgiunti.

Sia (X,d) uno spazio metrico. Un sottoinsieme Y di X si dice $\emph{compatto}$ se, munito della metrica indotta da d, esso risulta uno spazio metrico compatto.

Un sottoinsieme chiuso di uno spazio compatto è è

Si dimostra, infine, che un sottoinsieme Y dello spazio euclideo \mathbb{R}^n è compatto se e solo se Y è chiuso e limitato.

- 2.28 Verificare che, se (X,d) è uno spazio metrico e f : $X \to R$ è una funzione reale, allora f è continua in X se e solo se $x_n \to x \Longrightarrow f(x_n) \to f(x)$.
- 2.29 Verificare che, se (X,d) è uno spazio metrico e $f: X \to R$ è una funzione reale, allora f è uniformemente continua se e solo se, per ogni coppia x_n , y_n di successioni di punti di X tali che lim $d(x_n,y_n) = 0$, si ha $\lim_n |f(x_n)-f(y_n)| = 0$. [Ved. l'esercizio 9.31 del vol. I. parte prima]

2.30 Sia (X,d) uno spazio metrico. Fissato $x_o \in X$, verificare che la funzione $x \in X \to d(x,x_o)$ è uniformemente continua su X.

Proviamo preliminarmente la disuguaglianza

$$|d(x,x_o)-d(y,x_o)| \le d(x,y)$$
, $\forall x,y \in X$.

Dalla disuguaglianza triangolare deduciamo che

$$d(x,x_o) \le d(x,y) + d(y,x_o) \implies d(x,x_o) - d(y,x_o) \le d(x,y);$$

$$d(y,x_o) \leq d(y,x) + d(x,x_o) \implies d(y,x_o) - d(x,x_o) \leq d(y,x).$$

La disuguaglianza iniziale segue dalla definizione di valore assoluto e dalla proprietà della distanza d(x,y)=d(y,x). La verifica della cont<u>i</u> nuità uniforme la si fà con $\delta = \epsilon$

2.31 Dimostrare che uno spazio metrico compatto (\dot{X}, d) è anche completo (teorema 1).

[Sia x_n una successione di Cauchy. Poichè X è compatto, esiste un'estrat ta da x_n convergente verso un punto di X. L'asserto segue allora dallo esercizio 2.19]

2.32 Dimostrare che un sottoinsieme Y compatto di uno spazio metrico (X,d) è limitato.

[Se Y non fosse limitato, esisterebbero due successioni x_n , y_n di punti di Y tali che lim $d(x_n,y_n)=+\infty$. Poichè Y è compatto, da tali successioni se ne potrebbero estrarre due x_{n_k} e y_{n_k} , convergenti rispettivamente verso i punti $x,y\in Y$. Essendo, come si verifica facilemente,

$$\begin{split} & \left| d(\mathbf{x},\mathbf{y}) - d(\mathbf{x}_{n_k},\mathbf{y}_{n_k}) \right| \leq d(\mathbf{x},\mathbf{x}_{n_k}) + d(\mathbf{y},\mathbf{y}_{n_k}), \\ & \text{si avrebbe } \lim_{k} d(\mathbf{x}_{n_k},\mathbf{y}_{n_k}) = d(\mathbf{x},\mathbf{y}), \text{ il che è assurdo } \right] \end{split}$$

2.33 Sia Y il sottoinsieme dello spazio ℓ_{∞} definito da Y = $\{x \in \ell_{\infty} : d(x,0) \leq 1\}$ ove d(x,y) è definita come nell'eserc. 2.10 e 0 = $\{0,0,0,\ldots\}$. Verificare che Y non è compatto.

La successione di punti di Y

$$x_1 = (1,0,0,\ldots), x_2 = (0,1,0,\ldots), x_3 = (0,0,1,\ldots),$$

cioè la successione $x_k = (x_{k1}, x_{k2}, \dots)$ definita da $x_{ki} = \delta_{ki}$, non ammette estratte convergenti, in quanto per $k \neq h$ si ha

$$d(x_h, x_k) = \sup_{n} |x_{hn} - x_{kn}| = 1]$$

2.34 Dimostrare che lo spazio C([0,1]) non è compatto rispetto alla convergenza uniforme. [La successione $u_n(x) = x^n$ per $x \in [0,1]$ non ammette alcuna estratta convergente uniformemente, in quanto una qualsiasi estratta puntualmente convergente, converge necessariamente verso la funzione discontinua u(x) = 0 per $x \in [0,1)$, u(1) = 1]

2.35 Una famiglia Y di funzioni appartenenti a C°([a, b]) si dice equicontinua se $\forall \epsilon > 0$, $\exists \delta > 0$ tale che per x,y ϵ [a,b]

$$|x-y| < \delta \implies |u(x)-u(y)| < \epsilon$$
 $u \in Y$.

Dimostrare che una famiglia $Y \subset C^{\circ}([a,b])$ equicontinua ed equilimitata è compatta in $C^{\circ}([a,b])$.

[Basta invocare il teorema di Ascoli-Arzelà]

2.36 Sia (X,d) uno spazio metrico compatto, sia $x_o \in X$ e sia x_n una successione di punti di X. Se ogni estratta da x_n convergente, converge verso x_o , all lora $x_n \to x_o$.

[Se x_n non convergesse verso x_o , esisterebbe E > 0 ed un'estratta x_{n_k} da x_n tale che $d(x_o, x_{n_k}) \ge E$ per ogni $k \in N$. Poichè X è compatto, x_{n_k} ha un'estratta x_{n_k} convergente verso un punto x. Dall'ipotesi, segue che necessariamente $x_o = x$ e cioè $x_{n_k} \to x_o$. Il che è assurdo, in quanto $d(x_o, x_{n_k}) \ge E$, per ogni $h \in N$]

2.37 Sia (X,d) uno spazio metrico e sia $f: X \rightarrow R$ uni formemente continua. Verificare che se x_n è una successione di Cauchy di punti di X, allora $f(x_n)$ è una successione di Cauchy di numeri reali.

[Fissato $\epsilon > 0$, esiste $\delta > 0$ tale che $d(x,y) < \delta \implies |f(x)-f(y)| < \epsilon$. Poiché x_n è di Cauchy, in corrispondenza di δ , esiste $\forall \epsilon N$ tale che, per $p,q > \forall$, si ha $d(x_p,x_q) < \delta$ ed anche $|f(x_p)-f(x_q)| < \epsilon$]

2D. Spazi normati

Sia X uno spazio vettoriale. Una funzione che ad ogni $x \in X$ associa il numero reale $\|x\|$ si chiama norma su X se ha le seguenti proprietà:

- (j) $\|x\| \ge 0$; $\|x\| = 0$ se e solo se x = 0
- $(jj) \|\lambda x\| = |\lambda| \cdot \|x\|$, $\forall x \in X \in \mathbb{R}$
- $(jjj)\|x+y\| \le \|x\| + \|y\|$.

Se $\| \|$ è una norma su X, si dice che $(X, \| \|)$ è uno spazio normato, o anche che X è uno spazio normato, quan do non vi sarà possibilità di equivoco. Bato uno spazio normato $(X, \| \|)$, ponendo $d(x,y) = \|x - y\|$ si ha una distanza su X, per cui ogni spazio normato è anche metrico. Se (X,d) è completo, si dice che X è uno spazio di Banach.

Due norme $\| \ \|_1$ e $\| \ \|_2$ sullo spazio vettoriale X si dicono *equivalenti* se esistono due costanti c₁,c₂>>0 tali che

$$c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|_1$$
 $\forall x \in X.$

Per indicare che la successione x_n di punti dello spazio normato $(X, \| \|)$ converge verso il punto $x \in X$, cioè per indicare che $\|x_n - x\| \to 0$, scriveremo $x_n \to x$.

Evidentemente, se due norme sono equivalenti, esse determinano le stesse successioni convergenti. Nello spazio Rⁿ la norma

(1)
$$|x| = (\sum_{i=1}^{n} x_i^2)^{1/2}$$

prende il nome di norma euclidea.

Se X è uno spazio normato, una funzione $f: X \rightarrow R$ verificante le proprietà

$$f(x+y) = f(x) + f(y)$$
 $\forall x, y \in X$
 $f(\alpha x) = \alpha f(x)$ $\forall x \in X, \forall \alpha \in R$

prende il nome di funzionale lineare su X.

2.38 Sia X uno spazio normato e siano $\lambda_n, \lambda \in \mathbb{R}$; x_n, y_n , $x, y \in X$. Dimostrare che se $\lambda_n \rightarrow \lambda$, $x_n \rightarrow x$, $y_n \rightarrow y$, all lora si ha: $x_n + y_n \rightarrow x + y$, $\lambda x_n \rightarrow \lambda x$, $\lambda_n x \rightarrow \lambda x$.

[Dagli assiomi della norma, segue $\| (x+y)-(x_n+y_n)\| \le \|x-x_n\| + \|y-y_n\|$; $\|\lambda x-\lambda x_n\| = \|\lambda\| \|x-x_n\|$; $\|\lambda x-\lambda x\| = \|\lambda_n-\lambda\| + \|x-x_n\|$; $\|\lambda x-\lambda x\| = \|\lambda_n-\lambda\| + \|x-x_n\|$

- 2.39 Sia X uno spazio normato. Dimostrare che, per x
 y∈X, risulta ||x|| ||y|| | ≤ ||x-y||. Dedurne che,
 se x_n → x, allora ||x_n|| → ||x||.
 [Dalla disuguaglianza (jjj) segue ||x|| = ||(x-y)+y|| ≤ ||x-y|| + ||y||;
 scambiando x con y si ottiene la disuguaglianza richlesta]
- 2.40 Sia C°([a,b]) l'insieme delle funzioni reali continue nell'intervallo chiuso e limitato [a,b].

Posto, per u∈C°([a,b])

$$\|u\|_{\infty} = \sup \{|u(x)| : x \in [a,b]\}$$

verificare che $\| \|_{\infty}$ è una norma, rispetto alla quale $C^{\circ}([a,b])$ è uno spazio di Banach.

[La (jj) è evidente. Si veda l'esercizio 2.11 per la (j) e la (jjj). Che lo spazio sia di Banach segue dal teorema 2 del paragrafo 1A e dell'eser.2.22]

2.41 Sia X uno spazio normato e sia f : X → R un fun zionale lineare su X. Dimostrare che f è continuo se e solo se ∃k ≥ 0 tale che

$$|f(x)| \le k ||x|| \qquad \forall x \in X.$$

[Se vale la (*), allora per la linearità di f, si ha $|f(x_n)-f(x)| = |f(x_n - x)| \le k ||x_n - x||$, per cui, se $x_n \to x$, allora è $f(x_n) \to f(x)$.

Viceversa sia f continua e supponiamo per assurdo che non valga la (*). Allora per ogni n $\in \mathbb{N}$ esiste $\mathbf{x}_n \in \mathbb{X}$ - $\{0\}$ tale che $\|\mathbf{f}(\mathbf{x}_n)\| \ge n \|\mathbf{x}_n\|$. Posto $\mathbf{y}_n = \mathbf{x}_n/(n \cdot \|\mathbf{x}_n\|)$, si ha $\|\mathbf{y}_n\| = 1/n \to 0$ e per ciò $\mathbf{y}_n \to 0$. Poichè f è continua, dovrebbe essere $\mathbf{f}(\mathbf{y}_n) \to \mathbf{f}(0) = 0$, il che contrasta con la disuguaglianza

$$f(y_n) = f\left(\frac{x_n}{n \|x_n\|}\right) = \frac{1}{n \|x_n\|} f(x_n) \ge 1, \qquad \forall n \in \mathbb{N}$$

2.42 Sia $a \in \mathbb{R}^n$ e consideriamo il funzionale $f(x) = \sum_{i=1}^n a_i x_i$ ove $a = (a_1, \dots, a_n)$ e $x = (x_1, \dots, x_n)$.

Verificare che esso è un funzionale lineare con

tinuo sullo spazio euclideo R^n .

[Tenendo presente la definizione (1) della norma euclidea su R^n e l'eser cizio 2.2 si ha

$$|f(x)| \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} |x|$$
 $\forall x \in \mathbb{R}^n$

Applicando l'esercízio precedente, si ha l'asserto

2.43 Per u∈C°([a,b]) poniamo

$$I(u) = \int_a^b u(x) dx;$$

verificare che I è un funzionale lineare conti - nuo su C°([a,b]) munito della norma $\|u\|=\max\{|u(x)|: a \le x \le b\}$

[Tenendo presente l'esercizio 2.41, basta osservare che, per il teorema della media, $\forall u \in C^o([a,b])$ si ha $|I(u)| = |\int_a^b u(x) dx| \le (b-a) \cdot ||u||$]

2.44 Consideriamo l'insieme $C^{\circ}([a,b])$ delle funzioni continue nell'intervallo chiuso e limitato [a,b]. Posto per $p \ge 1$, $u \in C^{\circ}([a,b])$

$$\|u\|_{p} = \left(\int_{a}^{b} |u(x)|^{p} dx\right)^{1/p}$$
,

verificare che | | e una norma.

[Per verificare che $\|u\|_p = 0 \Rightarrow u=0$, si tenga presente l'esercizio 5.4 del vol. I, parte seconda. La condizione (jj) è evidente. La condizione (jjj) diviene

$$\left(\int_{a}^{b} \left| u(x) + v(x) \right|^{p} dx \right)^{1/p} \le \left(\int_{a}^{b} \left| u(x) \right|^{p} dx \right)^{1/p} + \left(\int_{a}^{b} \left| v(x) \right|^{p} dx \right)^{1/p}$$

e prende il nome di disuguaglianza di Minkowski. Dimostriamola. Si ha

$$\int_{a}^{b} |u(x) + v(x)|^{p} dx = \int_{a}^{b} |u(x) + v(x)|^{p-1} |u(x) + v(x)| dx \le$$

$$\le \int_{a}^{b} |u(x) + v(x)|^{p-1} |u(x)| dx +$$

$$+ \int_{a}^{b} |u(x) + v(x)|^{p-1} |v(x)| dx.$$

Dalla disuguaglianza di Holder (ved. l'eserc. 5.97 del vol. I, parte seconda, con $g(x) = \left| u(x) + v(x) \right|^{p-1}$ e f(x) = u(x), oppure f(x) = v(x), (1/p) + (1/q) = 1) si déduce

$$\int_{a}^{b} |u(x) + v(x)|^{p-1} |u(x)| dx \le$$

$$\le \left[\int_{a}^{b} (|u(x) + v(x)|^{p-1})^{q} dx \right]^{\frac{1}{q}} \left[\int_{a}^{b} |u(x)|^{p} dx \right]^{\frac{1}{p}}$$

ed anche

$$\int_{a}^{b} \left\{ u(x) + v(x) \mid^{p-1} \left[v(x) \mid dx \le \right] \right\}$$

$$\leq \left[\int_{a}^{b} (|u(x) + v(x)|^{p-1})^{q} dx \right]^{\frac{1}{q}} \left[\int_{a}^{b} |v(x)|^{p} dx \right]^{\frac{1}{p}}$$

Dalle precedenti disuguaglianze, osservando che (p-1)q = p, segue

$$\int_{a}^{b} |u(x) + v(x)|^{p} dx \le$$

$$\le \left[\int_{a}^{b} |u(x) + v(x)|^{p} dx \right]^{\frac{1}{q}} \left[\left(\int_{a}^{b} |u(x)|^{p} dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} |v(x)|^{p} dx \right)^{\frac{1}{p}} \right]$$

Dividendo ambo i membri per il primo fattore a secondo membro ed osservando che 1 ~ (1/q) = 1/p, segue l'asserto]

2.45 Lo spazio C°([a,b]), munito della norma $\| \|_p$ definita nell'esercizio precedente, non è uno spazio di Banach. Verificare ciò per p=1, facendo ve dere che la successione $u_k(x) = x^{1/(2k-1)}$ è di Cauchy in C°([-1,1]), ma non converge, rispetto alla norma $\| \|_1$, verso una funzione di C°([-1,1]). [Per h,k \in N, si ha

$$\| u_h - u_k \|_{1} = \int_{-1}^{1} |u_h(x) - u_k(x)| dx =$$

$$= \int_{-1}^{0} |u_h(x) - u_k(x)| dx + \int_{0}^{1} |u_h(x) - u_k(x)| dx$$

Con la sostituzione x = -y si ha

$$\int_{-1}^{0} |u_{h}(x) - u_{k}(x)| dx = \int_{0}^{1} |u_{h}(y) - u_{k}(y)| dy$$

e perciò

$$\| u_{h} - u_{k} \| = 2 \int_{0}^{1} |u_{h} - u_{k}| dx = 2 \int_{0}^{1} |(u_{h} - 1) + (1 - u_{k})| dx \le 2 \left[\int_{0}^{1} |u_{h} - 1| dx + \int_{0}^{1} |u_{k} - 1| dx \right].$$

Essendo per ogni m∈ N

$$\int_0^1 |u_m(x)-1| dx = \int_0^1 [1-x^{1/(2m-1)}] dx = \frac{1}{2m}$$

dalle precedenti disuguaglianze segue

$$\|\mathbf{u}_{h} - \mathbf{u}_{k}\|_{1} \le 2 \left(\frac{1}{2h} + \frac{1}{2k}\right) = \frac{1}{h} + \frac{1}{k}$$

e perciò la successione u_k è di Cauchy. Supponiamo ora, per assurdo , che u_k converga ad una funzione $u\in C^o$ ([-1,1]) rispetto alla norma $\|\cdot\|_1$. Tenendo presente il risultato dell'integrale precedente abbiamo

$$\int_{0}^{1} |u(x)^{-1}| dx \le \int_{0}^{1} (|u^{-u}_{k}| + |u_{k}^{-1}|) dx$$

$$\le \frac{1}{2k} + ||u_{k}^{-u}||_{1}.$$

Per k $\rightarrow +\infty$ otteniamo $\int_0^1 |u(x)-1| dx = 0$; per l'ipotesi di continuità di u, risulta u(x) = 1 per ogni $x \in [0,1]$ (si veda l'esercizio 5.4 del volume I, parte seconda). Per motivi analoghi si vede che deve essere u(x) = -1 per ogni x < 0. Ciò contrasta con la ipotesi di continuità di u(x) in [-1,1]

2.46 Sia II II p la norma definita su C°([a,b]) nell'esercizio 2.44. Posto

$$\|\mathbf{u}\| = \lim_{\mathbf{p} \to +\infty} \|\mathbf{u}\|$$

verificare che $\|u\| = \max \{|u(x)| : x \in [a,b]\}$ [Si tenga presente l'es. 5.99 del vol. I, parte seconda]

2.47 Posto per uéC°([0,2])

$$\|u\| = \sup_{0 \le x \le 1} |u(x)| + \int_{1}^{2} |u(x)| dx$$

dire se $\|$ $\|$ è una norma in $C^{\circ}([0,2])$ [se $\|$ u $\|$ = 0, allora sup $\{|u(x)|:0\leq x\leq 1\}=0$ e $\int_{1}^{2}|u(x)|dx=0$, perciò risulta u(x)=0 per $x\in[0,2]$. La condizione (jj) è di facile verifica. Per dimostrare la (jij) si asservi che

$$\sup_{0 \le x \le 1} |u(x) + v(x)| \le \sup_{0 \le x \le 1} |u(x)| + \sup_{0 \le x \le 1} |v(x)|$$

(ved. l'eserc. 1.46 del vol. I, parte prima) e che

$$\int_{1}^{2} \left| u(x) + v(x) \right| dx \leq \int_{1}^{2} \left[\left| u(x) \right| + \left| v(x) \right| \right] dx$$

2.48 Si consideri su $C^{\circ}([0,1])$ la norma $\|u\|_{p}$ definita per ogni $p \ge 1$ nell'esercizio 2.44. Si cons<u>i</u> deri anche la successione di $C^{\circ}([0,1])$:

$$u_n(x) = \sqrt{n} x^n$$
, $\forall x \in [0,1], \forall n \in \mathbb{N}$.

- (a) Verificare che u_n converge verso la funzione identicamente nulla $u=0 \in C^{\circ}([0,1])$ rispet to alla norma $\|u\|_1$.
- (b) Verificare che u_n non converge verso u=0 rispetto alla norma $\|u\|_2$.

$$\{(a) \| \|u_n - u\|_1 = \int_0^1 |\sqrt{n} |x^n| dx = \sqrt{n} \int_0^1 |x^n dx| = \frac{\sqrt{n}}{n+1} ; \text{ perció}$$

$$\lim_{n \to +\infty} \|u_n - u\|_1 = \lim_{n \to +\infty} \frac{\sqrt{n}}{n+1} = 0;$$
 (b) invece si ha:

$$\|\mathbf{u}_{n} - \mathbf{u}\|_{2} = \left\{ \int_{0}^{1} |\sqrt{n} |x^{n}|^{2} dx \right\}^{\frac{1}{2}} = \left\{ n \int_{0}^{1} x^{2n} dx \right\}^{\frac{1}{2}} = \frac{n}{2n+1}$$

e tale quantità non converge a zero per $n \to +\infty$

2.49 Generalizzando l'esercizio precedente, verifica re che la successione u_n in $C^{\circ}([0,1])$ definita da

$$u_n(x) = n^{1/q} x^n$$

(con q > 1) converge per $n\to +\infty$ verso la funzione u=0 rispetto alla norma $\|u\|_p$ se e solo se p < q. $\left[\|u_n\|_p = \left\{ \int_0^1 \left| n^{1/q} x^n \right|^p dx \right\}^{1/p} = n^{1/q} \left\{ \int_0^1 x^{np} dx \right\}^{1/q} = n^{1/q} \left\{ \int_0^1 x^{np} dx \right\}^{1/q} = n^{1/q} \left\{ \int_0^1 x^{$

$$= n^{(1/q)-(1/p)} \left\{ \frac{1}{p+(1/n)} \right\}^{1/p}$$

e tale quantità converge verso zero se e solo se risulta (1/q)-(1/p)<0 cioè, se e solo se p < q]

Capitolo 3

FUNZIONI DI PIU' VARIABILI

3A. Rappresentazione grafica

In questo capitolo prendiamo in considerazione funzioni reali di n variabili reali, che denotiamo con il simbolo

$$f(x_1, x_2, \ldots, x_n)$$
,

In particolare consideriamo n = 2; in tal caso diremo che f è una funzione reale di due variabili reali e useremo indifferentemente le notazioni

$$f(x_1,x_2)$$
 oppure $f(x,y)$;

naturalmente nel primo caso le due variabili indipendenti sono x_1 , x_2 , mentre nel secondo caso sono x,y.

Rimandiamo invece la trattazione delle funzioni di tre o più variabili all'ultimo paragrafo di questo capitolo.

Per rappresentare graficamente una funzione di due variabili si può procedere in due modi. Un primo

metodo consiste nel rappresentare i punti di coordina te (x,y, f(x,y)) in un riferimento cartesiano ortogonale di assi x,y,z, ottenendo una superficie in R³ det ta grafico della funzione f(x,y).

Un secondo metodo consiste nel disegnare nel piano x,y le linee di livello della funzione f(x,y), cioè il luogo dei punti di coordinate (x,y) tali che

$$f(x,y) = z = costante$$

per diversi valori della costante. Questo metodo si $\underline{\mathbf{u}}$ tilizza usualmente per rappresentare una zona geografica su di una carta topografica; in tal caso la linea di livello z = 0 (livello del mare) rappresenta la costa, le linee di livello z = costante > 0 rapprese \underline{n} tano i punti al di sopra del livello del mare ad altezza fissata, mentre le linee di livello z = costante < 0 danno una rappresentazione del fondo del mare.

Di seguito proponiamo alcuni esempi.

figura 3.1

3.1 Si consideri la funzione $f(x,y) = x^2+y^2$. Verificare che il grafico di f è un paraboloide come in figura 3.1 e che le linee di livello di f si rappresentano in un riferimento cartesiano ortogonale di assi x,y come nelle figure 3.2(a) 3.2(b).

figura 3.2 (a)

figura 3.2 (b)

3.2 Disegnare il grafico e le linee di livello della funzione di due variabili $f(x,y) = y^2-x^2$.

[Il grafico è in figura 3.3. Le linee di livello $y^2 - x^2 = z = costante$ sono iperboli equilatere, se z # 0. Mentre, se z = 0, il luogo dei punti di coordinate (x,y) tali che $y^2 - x^2 = 0$ è costituito dalle due re \underline{t} te di equazione y = '± x. Si veda la figura 3.4]

figura 3.3

figura 3.4

3.3 Disegnare approssimativamente e, limitatamente al le coppie (x,y) per cui $f(x,y) \ge 0$, il grafico $de\overline{\underline{l}}$ le funzioni

(a)
$$f(x,y)=y^2-x^2$$

(b)
$$f(x,y)=x^2-y^2$$

[(a) Il grafico di f(x,y) in un interno dell'origine è disegnate in figura 3.3 e, limitatamente alle coppie (x,y) per cui $f(x,y) \ge 0$, in figura 3.5; (b) figura 3.6]

3.4 Disegnare approssimativamente e limitatamente al le coppie (x,y) per cui $f(x,y) \ge 0$ il grafico del la funzione f(x,y) = sen x. Determinare inoltre le linee di livello.

figura 3.5

[La funzione f(x,y) dipende esplicitamente dalla sola variabile x.] Come tutte le funzioni costanti rispetto ad y (e definite per ogni x $\in \mathbb{R}$),le linee di livello sono rette parallele all'asse y. Il grafico della par te positiva di f(x,y) è disegnato in figura 3.7]

3.5 Disegnare il grafico della funzione $f(x,y)=x^2+x^3$. [Figura 3.8]

3.6 Disegnare il grafico della funzione $f(x,y) = \sqrt{x^2 + y^2}$. [Per y = 0 risulta $f(x,0) = \sqrt{x^2} = |x|$. Analogamente, per x = 0 risulta f(0,y) = |y|. Il grafico di f(x,y) si ottiene facendo ruotare in torno all'asse z il grafico della funzione di una variabile reale $x \to |x|$. Si ottiene un cono circolare retto (con $z \ge 0$), come in figura 3.9]

3.7 Determinare le linee di livello e disegnare per $x \ge 0$, $y \ge 0$ i grafici delle funzioni

(a)
$$z = \frac{y^2}{\chi^2 + y^2}$$
 (b) $z = \frac{xy}{\chi^2 + y^2}$

[Le funzioni date non sono definite nell'origine degli assi. Le linee di livello sono costituite dalle semirette passanti per l'origine. La funzione in (a) è maggiore od uguale a zero per ogni $(x,y) \neq (0,0)$. Il minimo di f(x,y) si ottiene per y=0 e vale 0; il massimo si ottiene per

x = 0 e vale 1. Il grafico della funzione in (a) è in figura 3.10; in particulare per x = y la funzione vale 1/2. La funzione in (b) assume il valore 0 in corrispondenza dei punti (x,y) tali che x = 0 (e $y \neq 0$), oppure tali che y = 0 (e x \neq 0). Il massimo di f(x,y) si ottiene in cor rispondenza della retta di equazione y = x e vale z = 1/2 (il minimodi f(x,y) vale -1/2 ed è assunto sulla retta di equazione y=-x). Il grafico è in figura 3.11]

figura 3.10

figura 3.11

3.8 Disegnare il grafico della funzione $z=e^{-(x^2+y^2)}$. La funzione è definita e positiva per ogni $(x,y) \in \mathbb{R}^2$. Il massimo su \mathbb{R}^2 è assunto per (x,y) = (0,0) e vale 2=1. Il grafico è in figura 3.12

figura 3.12

3B. Insiemi di definizione

Di seguito proponiamo la determinazione dell'insieme di definizione , o campo di esistenza , o dominio, di una assegnata funzione di due variabili reali.

3.9 Determinare l'insieme di definizione delle guenti funzioni

(a)
$$z = log (1-x^2-y^2)$$
 (b) $z = \sqrt{2-x^2-y^2}$

(b)
$$z = \sqrt{2-x^2-y^2}$$

(c)
$$z = log (x^2+y^2-1)$$

(c)
$$z = \log (x^2+y^2-1)$$
 (d) $z = \sqrt{-|x^2+y^2-2|}$

(e)
$$z = log (x^2+y^2)$$
 (f) $z = (x^2+y^2)^{-1}$

(f)
$$z = (x^2+y^2)^T$$

[(a) La funzione è definita se $1-x^2-y^2>0$, cioè se $x^2+y^2<1$, che è il luogo geometrico dei punti del piano x,y interni al cerchio di centro (0,0) e raggio 1 (circonferenza esclusa); (b) la funzione è definita nei punti del cerchio di centro (0,0) e raggio $\sqrt{2}$ (circonferenza inclusa); (c) la funzione è definita all'esterno del cerchio di centro (0,0) e raggio 1 (circonferenza esclusa). (d) la funzione è definita so lo se $x^2+y^2-2=0$, cioè sulla circonferenza di centro (0,0) e raggio $\sqrt{2}$; (e), (f) definite se $(x,y)\neq (0,0)$]

3.10 Rappresentare graficamente in un piano cartesiano x,y gli insiemi di definizione delle funzioni

(a)
$$f(x,y) = \sqrt{y^2 - x^4}$$
 (b) $f(x,y) = \sqrt{x^4 - y^2}$

[(a) La funzione è definita per ogni coppia $(x,y) \in \mathbb{R}^2$ per cui $y^2 - x^4 \ge 0$, cioè $y^2 \ge x^4$, cioè ancora $y \ge x^2$ oppure $y \le -x^2$. Si ottiene lo insieme dei punti del piano x,y al di sopra della parabola di equazione $y = x^2$ e al di sotto della parabola di equazione $y = x^2$, tratteggia to in figura 3.13. Ad esempio, si verifichi come riprova, ponendo x = 0, che la funzione è definita su tutti i punti dell'asse y. (b) Il dominio è costituito dall'insieme

$$\{(x,y) \in \mathbb{R}^2 : -x^2 \le y \le x^2\}$$
,

rappresentate con tratteggio in figura 3.14]

figura 3.13

figura 3.14

3.11 Rappresentare graficamente l'insieme di definizione delle funzioni

(a)
$$z = log(1-x^2) + log(1-y^2)$$
 (b) $z = log \frac{1-x^2}{1-y^2}$

(c)
$$z = \log(x^2 - 1) + \log(1 - y^2)$$
 (d) $z = \log \frac{x^2 - 1}{1 - y^2}$

[(a) Ia funzione è definita nel quadrato (lati esclusi) definito da $\big\{ \; (x,y) \in \mathbb{R}^2 \; : \; -1 < x < 1; \; -1 < y < 1 \; \big\}$

tratteggiato in figura 3.15; (b) figura 3.16; (c) figura 3.17; (d) figura 3.18]

figura 3.15

figura 3.17

figura 3.16

figura 3.18

- 3.12 Determinare l'insieme di definizione delle fun zioni
 - (a) $z = \sqrt{\sin \sqrt{x^2 + y^2}}$ (b) $z = \sqrt{x} \sin \sqrt{x^2 + y^2}$
 - [(a) La funzione è definita quando sen $\sqrt{x^2+y^2} \ge 0$, cioè per $2k \pi \le \sqrt{x^2+y^2} \le (2k+1) \pi$, per $k=0,1,2,\ldots$ L'insieme di definizione è tratteggiato in figura 3.19; (b) l'insieme di definizione è tratteggiato in figura 3.20]

figura 3.19

figura 3.20

- 3.13 Determinare l'insieme di definizione delle fun zioni
 - (a) $z = \arcsin \frac{x+y-1}{x-y+1}$ (b) $z = \arctan \frac{x^2-y^2+1}{x^2+y^2+1}$
 - [(a) la funzione è definita sotto le condizioni

$$-1 \le \frac{x+y-1}{x-y+1} \le 1$$
, $x - y + 1 \ne 0$.

Si è così ricondotti a risolvere i due sistemi di disequazioni

$$\begin{cases} x-y+1 > 0 & ; \\ -(x-y+1) \le x+y-1 \le x-y+1 & ; \end{cases} \begin{cases} x-y+1 < 0 \\ x-y+1 \le x+y-1 \le -(x-y+1) \end{cases}$$

Il primo sistema ha per soluzioni le coppie $(x,y) \in \mathbb{R}^2$ tali che $x \ge 0$ $y \le 1$ (la condizione x-y+1 > 0 è soddisfatta di conseguenza purche sia $(x,y) \ne (0,1)$). Il secondo sistema ha per soluzioni le coppie $(x,y) \in \mathbb{R}^2$ tali che $x \le 0$, $y \ge 1$, purche sia $(x,y) \ne (0,1)$. L'insieme di tali punti costituisce il campo di esistenza della funzione ed è rappresentato con tratteggio in figura 3.21; (b) la funzione è definita per ogni $(x,y) \in \mathbb{R}^2$

figura 3.21

figura 3.22

3.14 Determinare l'insieme di definizione della fun - zione

$$f(x,y) = \sqrt{y^2-x^2} + \log (1-x^2-y^2)$$

[La funzione è definita per le coppie (x,y) verificanti le condizioni

$$\begin{cases} y^2 - x^2 \ge 0 \\ 1 - x^2 - y^2 > 0 \end{cases}$$

Le soluzioni del sistema sono rappresentate graficamente in figura 3.22

3.15 Determinare l'insieme di definizione delle funzioni di due variabili

(a)
$$z = \log \log \frac{(x-1)^2 + y^2}{x^2 + y^2}$$
 (b) $z = \log (x \log \frac{1}{x+y})$

[(a) La funzione è definita per tutte le coppie $(x,y) \in \mathbb{R}^2$ tali che x < 1/2 con l'esclusione del punto (0,0); (b) l'insieme di definizione è tratteg giato in figura 3.23]

figura 3.23

figura 3.24

3.16 Rappresentare graficamente in un piano cartesia no x,y l'insieme di definizione della funzione

$$f(x,y) = \sqrt{\frac{2x-(x^2+y^2)}{x^2+y^2-x}}$$

[La funzione è definita per tutte le coppie $(x,y) \in \mathbb{R}^2$ soddisfacenti le limitazioni $x < x^2 + y^2 \le 2x$. Geometricamente (si veda il paragrafo 6D del volume 1°, parte prima) tale insieme è costituito dai punti del cerchio di centro (1,0) e raggio 1, privato dei punti del cerchio di centro (1/2,0) e raggio 1/2, tratteggiato in figura 3.24]

3.17 Determinare l'insieme di definizione delle funzioni di due variabili

(a)
$$f(x,y) = \sqrt{\frac{4-x^2-y^2}{x-y}}$$

(b)
$$f(x,y) = \sqrt{\frac{(|x|-1)(|y|-1)}{|x|+|y|-1}}$$

(c)
$$f(x,y) = \log \frac{\arcsin (x^2+y^2-1)}{xy}$$

(d)
$$f(x,y) = \frac{arcsen (x+y-2) + arcsen (x-y)}{(x^2-4x+y+3)^{11}}$$

[(a) L'insieme di definizione, rappresentato in figura 3.25, è dato dal l'unione:

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4; x > y \} \cup \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 4; x \le y \}.$$

(b) Si noti in particolare che l'insieme $\{(x,y) \in \mathbb{R}^2 : |x| + |y| < 1\}$ è il quadrato (lati esclusi) di vertici ($\pm 1,0$) e (0, ± 1). La funzione data è definita nell'insieme tratteggiato in figura 3.26; (c) figura 3.27; (d) figura 3.28]

figura 3.25

figura 3.26

figura 3.27

figura 3.28

3.18 Determinare l'insieme di definizione della funzione

$$f(x,y) = \arccos (\frac{x^2}{4} + y^2 - 2)$$

[La funzione è definita nell'insieme tratteggiato in figura 3.29, cost<u>i</u> tuito dall'ellisse di equazione $(x^2/4) + y^2 \le 3$, privato dei punti interni all'ellisse di equazione $(x^2/4) + y^2 \le 1$]

figura 3.29

30. Limiti e continuita'

Ricordiamo la definizione di limite per una funzione di n variabili reali. Se indichiamo con x un generico punto di R^n e con (x_1, x_2, \ldots, x_n) le sue componenti, useremo la notazione

$$f(x) = f(x_1, x_2, \dots, x_n)$$

	·	
		•

per indicare una funzione di n variabili reali. Ino $\underline{1}$ tre, denoteremo con [x] il modulo (o norma) di x, d \underline{a} to da

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2} .$$

Sia D l'insieme di definizione della funzione f(x) e sia x_o un punto di accumulazione per D; f(x) converge ad ℓ ϵ R per x che tende ad x_o se, per ogni $\epsilon > 0$ esiste un numero $\delta > 0$ tale che $|f(x)-\ell| < \epsilon$ per ogni $x \in D$ tale che $0 \neq |x-x_o| < \delta$. In simboli ciò si scrive:

$$\lim_{x \to x_{o}} f(x) = \ell \iff \begin{cases} \forall \epsilon > 0 \quad \exists \delta > 0 \colon \quad \forall x \in D - \{x_{o}\} \\ |x - x_{o}| < \delta \implies |f(x) - \ell| < \epsilon \end{cases}$$

Il lettore noti l'analogia con la definizione di limite (finito) per le funzioni di una variabile reale. Faccia però attenzione che in questo caso il simbolo $|x-x_o|$ denota il modulo della differenza $x-x_o$, cioè la distanza (euclidea) di x da x_o ; invece $|f(x)-\ell|$ è il valore assoluto di f(x) - ℓ . Si ricordi anche che $x-x_o$ è un vettore di \mathbb{R}^n mentre $f(x)-\ell$ è una quantità reale (scalare).

Se f(x) è definita in x_o e se il limite per $x \rightarrow x_o$ di f(x) è uguale a $f(x_o)$, si dice che f(x) è continua in x_o .

Anche in questo paragrafo prenderemo in considerazione le funzioni di due variabili e rimandiamo i limiti e lo studio della continuità di funzioni di tre o più variabili alla fine del capitolo. Per n=2, ponendo come d'uso $(x_1,x_2)=(x,y)$, abbiamo la se guente definizione di limite:

$$\lim_{(x,y)\to(x_o,y_o)} f(x,y) = \ell \iff \begin{cases} \forall \varepsilon > 0 & \exists \delta > 0 : \forall (x,y) \in \mathbb{D} - \{(x_o,y_o)\} \\ \\ \sqrt{(x-x_o)^2 + (y-y_o)^2} < \delta = > \\ = > |f(x,y) - \ell| < \varepsilon \end{cases}$$

3.19 Utilizzando la definizione di limite, verificare che

$$\lim_{(x,y)\to(0,0)} \frac{x^4}{x^2+y^2} = 0 .$$

Per mezzo della disuguaglianza $x^4 = x^2 \cdot x^2 \le x^2 (x^2 + y^2)$ otteniamo

$$\left| \frac{x^4}{x^2 + y^2} \right| = \frac{x^6}{x^2 + y^2} \le \frac{x^2 (x^2 + y^2)}{(x^2 + y^2)} = x^2 \le x^2 + y^2.$$

Perciò, per ogni ε > 0, posto δ = $\sqrt{\varepsilon}$, si ha

$$\sqrt{x^2 + y^2} < \delta \implies \left| \frac{x^4}{x^2 + y^2} - 0 \right| < \epsilon]$$

3.20 Utilizzando la definizione di limite, verificare che

$$\lim_{(x,y)\to(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}} = 0.$$

[Essendo $\left| \frac{x^4 - y^4}{x^2 + y^2} \right| \le \frac{x^4}{x^2 + y^2} + \frac{y^4}{x^2 + y^2}$, si può procedere come nell'e sercizio precedente]

3.21 Verificare che $\lim_{(x,y)\to(0,0)} y^2 \cos \frac{1}{xy} = 0$.

[La funzione è definita al di fuori degli assi coordinati. Dalla relazi \underline{o} ne

$$\left| y^2 \cos \frac{1}{xy} \right| = y^2 \left| \cos \frac{1}{xy} \right| \le y^2$$

si deduce che nella definizione di limite si può scegliere δ = $\sqrt{\epsilon}$

- 3.22 Utilizzando la definizione di limite, verificare che
 - (a) $\lim_{(x,y)\to(0,0)} \frac{3x^3+2x^2+2y^2}{x^2+y^2} = 2$
 - (b) $\lim_{(x,y)\to(1,1)} \frac{(y-1)^4}{x^2+y^2+2(1-x-y)} = 0$
 - [(a) In base alla relazione $|x^3| = |x| \cdot |x|^2 \le |x| (|x|^2 + |y|^2)$ si ottiene

$$\left| \frac{3x^3 + 2x^2 + 2y^2}{x^2 + y^2} - 2 \right| = \left| \frac{3x^3}{x^2 + y^2} \right| = \frac{3 \left| x^3 \right|}{x^2 + y^2} \le \frac{3 \left| x \left| (x^2 + y^2) \right|}{x^2 + y^2} = 3 \left| x \right|.$$

Dato che $|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2}$, per ogni $\varepsilon > 0$, posto $\delta = \varepsilon/3$, si ottiene

$$\sqrt{x^2 + y^2} < \delta \implies \left| \frac{3x^3 + 2x^2 + 2y^2}{x^2 + y^2} - 2 \right| < \epsilon$$
;

(b) il denominatore si può rappresentare nella forma $x^2 + y^2 + 2(1-x-y) = (x-1)^2 + (y-1)^2$. Si verifica la definizione di limite con la relazione

$$\left| \frac{(y-1)^4}{x^2 + y^2 + 2(1-x-y)} \right| = \frac{(y-1)^4}{(x-1)^2 + (y-1)^2} \le \frac{(y-1)^2 \left[(x-1)^2 + (y-1)^2 \right]}{(x-1)^2 + (y-1)^2} =$$

$$= (y-1)^2 \left[$$

- 3.23 Utilizzando la definizione di limite, verificare che
 - (a) $\lim_{(x,y)\to(1,1)} \frac{(x-1)^5-(x-1)^2-3(y-1)^2}{x^2+3y^2-2(x+3y-2)} = -1$
 - (b) $\lim_{(x,y)\to(4,-1)} \frac{xy + y^2 + x + y}{y + 1} = 3$
 - [(a) Il denominatore si può rappresentare nella forma

$$x^{2} +3y^{2} -2(x+3y-2) = (x-1)^{2} + 3(y-1)^{2}$$
.

Si può procedere come nella parte (b) dell'esercizio precedente; (b) la funzione data è definita nell'insieme $\{(x,y) \in \mathbb{R}^2 : y \neq -1\}$. In tale insieme vale la scomposizione

$$\frac{xy+y^2+x+y}{y+1} = \frac{y(x+y)+(x+y)}{y+1} = \frac{(x+y)(y+1)}{y+1} = x+y .$$

Occorre perciò stimare | (x+y)-3 | . Risulta

$$|(x+y)-3| = |(x-4)+(y+1)| \le |x-4| + |y+1| = \sqrt{(x-4)^2 + \sqrt{(y+1)^2}};$$

dato the $\sqrt{(x-4)^2} \le \sqrt{(x-4)^2 + (y+1)^2}$ (ed analogamente per $\sqrt{(y+1)^2}$) si conclude ponendo $\delta = \varepsilon/2$].

3.24 Utilizzando la definizione, verificare che la funzione f(x,y) = xy è continua nel punto (0,0).

[Occorre verificare che lim xy = 0. A tale scopo è utile la disu (x,y) + (0,0) guaglianza $|xy| \le \frac{1}{2} (x^2 + y^2)$ che, come facilmente si verifica, si riconduce a $x^2 + y^2 \pm 2xy \ge 0$, $\forall (x,y) \in \mathbb{R}^2$. In base a tale disuguaglian za, per ogni $\varepsilon > 0$ risulta $|xy| < \varepsilon$ se $x^2 + y^2 < 2\varepsilon$. Perciò nella definizione di limite si può scegliere $\delta = \sqrt{2\varepsilon}$

3.25 Verificare che la funzione f(x,y) = sen(xy) è continua nel punto (0,0).

[Si può procedere come nell'esercizio precedente utilizzando la disugua - glianza | sent | \leq |t| (valida per ogni t \in R) con t = xy]

3.26 Le seguenti funzioni

(a)
$$f(x,y) = \frac{sen(x^2+y^2/3)}{x^2+y^2/3}$$

(b)
$$g(x,y) = \frac{1-\cos(xy)}{x^2y^2}$$

non some continue in (0,0), non essendo ivi $def\underline{i}$ nite. Estenderle a (0,0) in modo da renderle, se possibile, continue in tale punto.

[(a) La funzione f(x,y) può essere definita in (0,0) con il valore f(0,0) = =1 ed in tal modo l'estensione risulta continua in (0,0) (e su tutto \mathbb{R}^2) dato che

$$\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2/3)}{x^2+y^2/3}=1;$$

ciò segue dal limite di funzione di una variabile $\lim_{t\to 0} \frac{\text{sent}}{t}$ =1. Infa \underline{t}

ti, per ogni E > 0 esiste un numero $\delta > 0$ per cui $\left| (\text{sent})/\text{t-1} \right| < \langle E \text{ se } 0 \neq \left| t \right| < \delta$. Perciò, posto $t = x^2 + y^2/3$, risulta

$$0 \neq \sqrt{x^2 + y^2} \leq \sqrt{3} \sqrt{x^2 + y^2/3} < \sqrt{36} \Rightarrow \left| \frac{\sin(x^2 + y^2/3)}{x^2 + y^2/3} - 1 \right| <$$

(b) Si può procedere come nella parte (a) ponendo g(0,0) = 1/2 e uti - lizzando il limite di funzioni di una variabile

$$\lim_{t\to 0} \frac{1-\cos t}{t^2} = \frac{1}{2}$$

<ε.

3.27 Estendere con continuità a tutto R², se possib<u>i</u> le, le seguenti funzioni di due variabili reali

(a)
$$f(x,y) = \frac{\text{sen } (2x-2y)}{x-y}$$
 (b) $f(x,y) = \frac{xy}{|xy|}$

(c)
$$f(x,y) = xy \log|xy|$$

(d)
$$f(x,y) = xy \log (x^2+y^2)$$

(e)
$$f(x,y) = \frac{e^{x+y}-1}{3x+3y}$$

(f)
$$f(x,y) = \left(\frac{1+y+x^2}{y}\right)^y$$

[(a) La funzione è definita nell'insieme $\{(x,y) \in \mathbb{R}^2 : x \neq y \}$. In base al limite di funzione di una variabile t(=x-y)

$$\lim_{t\to 0} \frac{\text{sen } 2t}{t} = 2$$

è possibile estendere con continuità f(x,y) a tutto R^2 ponendo f(x,y)=

= 2 se x=y. (b) La funzione non è definita in corrispondenza degli assi coordinati. Dato che non esiste il limite per t \rightarrow 0 della funzione t \rightarrow \rightarrow t/ |t|, non è possibile estendere con continuità f(x,y) a tutto R^2 . Si noti che la funzione data vale I se xy > 0 (cioè nel primo e nel ter zo quadrante) e vale -1 se xy < 0. (c) La funzione converge a zero se il prodotto xy tende a zero, in base al limite

$$\lim_{t\to 0^+} t \log t = 0 ;$$

perciò è possibile estendere con continuità, con il valore 0, la funzio ne f(x,y) anche in corrispondenza degli assi coordinati. (d) La funzione non è definita nell'origine. Dato che $|xy| \le (x^2 + y^2)/2$ per ogni $(x,y) \in \mathbb{R}^2$ (infatti ciò corrisponde a $x^2 + y^2 \pm 2xy \ge 0$), risulta anche

$$|f(x,y)| = |xy| |\log (x^2 + y^2)| \le \frac{1}{2} (x^2 + y^2) \log (x^2 + y^2);$$

ponendo t = $x^2 + y^2$, si verifica come in (c) che $f(x,y) \to 0$ per $(x,y) \to (0,0)$; perció la funzione si estende con continuità all'origine degli assi ponendo f(0,0) = 0. (e) La funzione si estende con continuità allo insieme $\{(x,y) \in \mathbb{R}^2 : x + y = 0\}$ con il valore 1/3. (f) La funzione si estende con continuità all' insieme $\{(x,y) \in \mathbb{R}^2 : y = 0\}$ con il valore e^{1+x^2}

Ricordiamo che una condizione necessaria affinchè una funzione f(x,y) abbia limite ℓ per $(x,y) \rightarrow (x_o,y_o)$ è che, per ogni curva regolare di equazioni parametriche x=x(t), y=y(t) passanti per (x_o,y_o) in corrispondenza ad un valore t_o (cioè tali che $x(t_o)=x_o$, $y(t_o)=y_o$), risulti

$$\lim_{t \to t_0} f(x(t), y(t)) = \ell.$$

Notiamo esplicitamente che, per l'esistenza del limite della funzione di due variabili, il valore ℓ deve essere indipendente dalla curva (x(t), y(t)) scelta.

In pratica spesso si prende in considerazione il fascio di rette passanti per (x_o, y_o) , di equazioni parametriche

$$x(t) = x_0 + \ell t$$
, $y(t) = y_0 + mt$,

con £, m parametri direttori della generica retta (in questo caso è to = 0). Oppure, escludendo le rette parallele all'asse y, si considera la famiglia di rette di equazione cartesiana

$$y(x) = y_o + m (x-x_o),$$

dove il parametro m è il coefficiente angolare della retta. In questo secondo caso la variabile indipendente è t=x e risulta $t_o=x_o$.

Ricordiamo che l'applicazione del criterio so pra esposto con una particolare scelta delle cur ve passanti per (x_o, y_o) (ad esempio con una fami glia di rette) fornisce una condizione solo necessaria, ma non sufficiente, per l'esistenza del limite. Di seguito diamo alcuni esempi.

3.28 Verificare che non esiste il limite per $(x,y) \rightarrow (0,0)$ della funzione

$$f(x,y) = \frac{xy}{x^2 + y^2} .$$

[Consideriamo una generica retta passante per l'origine, di equazioni parametriche $x(t)=\ell t$, y(t)=mt, con ℓ , $m\in R$ ($\ell^2+m^2\neq 0$). La funzione composta (di una variabile reale) vale

$$f(x(t), y(t)) = f(\ell t, mt) = \frac{\ell t \cdot mt}{(\ell t)^2 + (mt)^2} = \frac{\ell m}{\ell^2 + m^2}, \quad \forall t \neq 0.$$

Perció, fissati ℓ,m ∈ R, la funzione composta é costante rispetto a t

e quindi, per t o 0, converge al valore $\ell m/(\ell^2 + m^2)$. Tale valore dipende, evidentemente, dalla particolare retta scelta; perciò la funzione di due variabili non ammette.limite per (x,y) o (0,0).

Si giunge allo stesso risultato considerando la famiglia di rette di equazione cartesiana y(x) = mx. In tal caso la funzione composta (della variabile x) vale

$$f(x,y(x))=f(x,mx)=\frac{mx^2}{x^2+(mx)^2}=\frac{m}{1+m^2}$$
, $\forall x \neq 0$.

Anche in questo caso il valore limite (per $x \to 0$) dipende dal parametro m che individua la retta]

3.29 Verificare che non esiste il limite per $(x,y) \rightarrow (0,0)$ della funzione

$$f(x,y) = \frac{x^3 - 2xy + y^3}{x^2 + y^2}$$

[Come nell'esercizio precedente si verifica ad esempio che

$$\lim_{t\to 0} f(\ell t, mt) = \frac{-2\ell m}{\ell^{2+m}}$$

3.30 Si consideri la funzione f definita per ogni $(x, y) \in \mathbb{R}^2$ da:

$$f(x,y) = \frac{xy}{x^2+y^2}$$
 se $(x,y) \neq (0,0)$; $f(0,0)=0$.

Si verifichi che f(x,y) è continua separatamente rispetto alle variabili x e y, ma che essa non è continua in (0,0) come funzione di due variabili.

[Per y=0 la funzione vale identicamente zero. Perciò

$$\lim_{x \to x_0} f(x,0) = \lim_{x \to x_0} 0 = 0 = f(x_0,0).$$

La funzione f(x,0) della variabile x è quindi continua su R. Se $y=y_0\neq 0$ la funzione $f(x,y_0)$ è continua perchè rapporto tra due polinomi con de nominatore che non si annulla. Analogamente la funzione della variabile $y, f(x_0,y)$ è continua su R per ogni $x_0 \in R$. Però la funzione di due variabili non è continua in (0,0) perchè, come mostrato nell'esercizio 3.28, non esiste il limite per $(x,y) \rightarrow (0,0)$ di f(x,y).

Il grafico di f(x,y) è rappresentato in figura 3.11; si noti in particolare che la funzione z=f(x,y) è nulla in corrispondenza agli assi x,y. La discontinuità in (0,0) è evidenziata in figura 3.11 dal fatto che, avvicinandosi al punto (0,0) percorrendo una generica retta per l'origine, si rimane ad una quota (valore di z) dipendente dalla retta stessa; in particolare, per x=y, si ottiene la quota z=1/2, men tre per y=0 (asse x) si ottiene la quota z=0

3.31 Utilizzando le rette per l'origine, verificare che le seguenti funzioni non ammettono limite per $(x,y) \rightarrow (0,0)$.

(a)
$$z=arctg \frac{y}{x}$$
 (b) $z = \frac{sen(x-2y)}{x-y}$

[(a) La funzione è costante sulle rette di equazione y=mx e la costante (=arctg m) dipende dalla retta; (b) ponendo y=mx risulta

$$\lim_{x\to 0} \ \frac{\text{sen}(x-2mx)}{x-mx} = \lim_{x\to 0} \ \frac{\text{sen}\left[(1-2m)x \right]}{(1-2m)x} \cdot \frac{1-2m}{1-m} = \frac{1-2m}{1-m} \ .$$

Dato che il risultato del limite per $x \to 0$ dipende dal parametro m, la funzione di due variabili non ammette limite per $(x,y) \to (0.0)$

- 3.32 Si confrontino gli esercizi 3.31(b) e 3.27(a). Si verifichi in particolare che il metodo proposto per lo studio del primo limite non si adatta per l'altro.
- 3.33 Si consideri la funzione $f(x,y) = \frac{y^4}{x^2+y^4}$.

Verificare che:

- (a) Esiste il limite per x→0 della funzione com posta f(x,mx) su ogni retta per l'origine di equazione cartesiana y=mx ed il valore limite è indipendente da m.
- (b) Non esiste il limite di f(x,y) per $(x,y) \rightarrow (0,0)$, dato che il limite per t+0 della funzione composta $f(\ell t,mt)$ sulle rette di equazione parametrica x= ℓt , y=mt dipende dalla retta scelta.

[(a) Per ogni x
$$\neq$$
 0 risulta f(x,mx) = $\frac{m^4 x^4}{x^2 + m^4 x^4} = \frac{m^4 x^2}{1 + m^4 x^2}$.

Perciò lim f(x,mx)=0. Si ricordi che la famiglia di rette di equazio $x \to 0$ ne y=mx non costituisce l'insieme di tutte le rette per l'origine, ma rimane escluso l'asse y, di equazione x=0. Per x=0 risulta f(0,y)=1 per ogni y $\neq 0$. Quindì la funzione f(x,y) ristretta agli assi x,y converge a valori fra loro distinti (lim f(x,0)=0; lim f(0,y)=1). Ciò è $x\to 0$ $y\to 0$ sufficiente ad affermare che la funzione di due variabili non ammette limite per $(x,y)\to (0,0)$.

(b) Per ogni t $\neq 0$ risulta $f(\ \ \& t,mt) = \frac{m^4 t^4}{\ \&^2 t^2 + m^4 t^4} = \frac{m^4 t^2}{\ \&^2 + m^4 t^4}$. Si verifica facilmente che

$$\lim_{t\to 0} f(\ell t, mt) = \begin{cases} 0 & \text{se } \ell \neq 0 \\ 1 & \text{se } \ell = 0 \text{ (ed } m \neq 0) \end{cases}$$

3.34 Si consideri la funzione $f(x,y) = \frac{x^2y}{x^4+y^2}$.

Verificare che:

- (a) Esìste il limite per $t \rightarrow 0$ della funzione com posta $f(\ell t, mt)$ su ogni retta per l'origine di e quazione parametrica $x=\ell t$, y=mt ed il valore l mite è indipendente dai parametri ℓ , m.
- (b) E' possibile determinare due curve regolari passanti per l'origine sulle quali la funzione

assume limiti distinti; perciò la funzione f(x, y) non assume limite per $(x, y) \rightarrow (0, 0)$.

[(a) Per egni t # 0 risulta f(lt,mt) =
$$\frac{l^2 mt^3}{(lt)^4 + (mt)^2} = \frac{l^2 mt}{l^4 t^2 + m^2}$$
.

Tale quantità converge a zero per t $\rightarrow 0$ qualunque siano ℓ , $m \in \mathbb{R}$ (con $\ell^2 + m^2 \neq 0$) (in particolare $f(\ell t, mt)$ è identicamente nulla se m=0). (b) Si considerino le parabole di equazione cartesiana $y=mx^2$, con m parametro reale (tale scelta è suggerita dalla struttura del denominatore, quadratico rispetto ad y e di quarto grado rispetto ad x; la scelta è suggerita anche dal fatto che tali parabole sono linee di livello della funzione). Risulta

$$f(x,mx) = \frac{mx^4}{(1+m^2)x^4} = \frac{m}{1+m^2}$$
, $\forall x \neq 0$.

Perciò la funzione è costante sulle parabole scelte ed il valore della costante dipende da m. Ad esempio, per $y = \pm x^2$ risulta $f(x, \pm x^2) = \pm \frac{1}{2}$ e tale è anche il limite per $x \to 0$ di $f(x, \pm x^2)$

3.35 Siano α, β parametri reali non negativi. Verificare che la funzione

$$f(x,y) = \frac{|x|^{\alpha}|y|^{\beta}}{x^{2}+y^{2}}$$

ammette limite finito (uguale a zero) per(x,y) \rightarrow (0,0) se e soltanto se $\alpha+\beta > 2$.

[Lungo le rette y=mx per l'origine la funzione vale

$$f(x,mx) = \frac{\left| m \right|^{\beta} \left| x \right|^{\alpha+\beta}}{\left(1+m^2\right) \left| x \right|^{\alpha}} = \frac{\left| m \right|^{\beta}}{1+m^2} \left| x \right|^{\alpha+\beta-2}.$$

Se $\alpha+\beta-2<0$ allora $f(x,mx)\to +\infty$ per $x\to 0$. Se $\alpha+\beta-2=0$ la funzione è costante sulle rette per l'origine (che risultano quindi lines di livello) e la costante (= $\left|m\right|^{\beta}/(1+m^2)$) dipende da m. Perciò, se $\alpha+\beta\leq 2$, la funzione f(x,y) non ammette limite finito per $(x,y)\to (0,0)$.

Viceversa verifichiamo che, se $\alpha+\beta>2$, allora f(x,y) converge a zero per $(x,y) \rightarrow (0,0)$. A tale scopo osserviamo che

 $|x|^{\alpha} = (\sqrt{x^2})^{\alpha} \le (\sqrt{x^2 + y^2})^{\alpha} = (x^2 + y^2)^{\alpha/2}$

ed analogamente $\left| y \right|^{\beta} \le (x^2 + y^2)^{\beta/2}$. Perciò

$$0 \le \frac{\left| x \right|^{\alpha} \left| y \right|^{\beta}}{x^2 + y^2} \le \frac{\left(x^2 + y^2 \right)^{\frac{\alpha}{2} + \frac{\beta}{2}}}{x^2 + y^2} = \left(x^2 + y^2 \right)^{\frac{\alpha}{2} + \frac{\beta}{2} - 1}$$

Se $\alpha+\beta>2$ allora $\alpha/2+\beta/2-1>0$. Perciò (x^2+y^2) $\xrightarrow{\alpha}$ $+\frac{\beta}{2}$ -1 $\rightarrow 0$

per $(x,y) \rightarrow (0,0)$. In base all teorema di confronto dei carabinieri la funzione data converge a zero]

3.36 Siano α, β, γ parametri reali non negativi. Determinare i valori dei parametri in modo che le seguenti funzioni ammettano limite finito per (x, y) + (0,0).

(a)
$$f(x,y) = \frac{|x|^{\alpha}|y|^{\beta}}{(3x^2+5y^2)^{\gamma}}$$
 (b) $f(x,y) = \frac{|x|^{\alpha}|y|^{\beta}}{(x^4+y^2)^{\gamma}}$

[(a) Come nell'esercizio precedente, la funzione converge a zero se e soltanto se $\alpha+\beta>2\gamma$; (b) utilizzando le parabole di equazione $y=mx^2$, si verifica che la funzione non ha limite finito se $\alpha+2\beta-4\gamma\leq0$. Vicever sa, se tale condizione non vale, la funzione f(x,y) converge a zero per $(x,y)\to(0,0)$; ciò si dimostra con il teorema di confronto (come nell'e sercizio precedente), utilizzando le disuguaglianze

$$\left| x \right|^{\alpha} = \left(x^{4} \right)^{\frac{\alpha}{4}} \leq \left(x^{4} + y^{2} \right)^{\frac{\alpha}{4}}; \quad \left| y \right|^{\beta} \leq \left(x^{4} + y^{2} \right)^{\frac{\beta}{2}}.$$

In definitiva la funzione risulta convergente in (0,0) se e soltanto se $\alpha+2\beta-4\gamma>0$. Si noti che la funzione dell'esercizio 3.34 è un caso particolare (a parte i valori assoluti a numeratore) con $\alpha=2$, $\beta=1$ e $\gamma=1$; risultando in tal caso $\alpha+2\beta-4\gamma=0$, la funzione non ammette limite (finito), in accordo con quanto stabilito nell'esercizio 3.34]

3.37 Calcolare i seguenti limiti

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^6}$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{x^4+y^4}$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{x^2+y^6}$$
 (d) $\lim_{(x,y)\to(0,0)} \frac{\log(1+xy)}{x^2+y^2}$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{\log(1+x^3y^2)}{x^6+y^2}$$
 (f) $\lim_{(x,y)\to(0,0)} \frac{1-e^{x^3y^2}}{x^6+y^4}$

[(a) Essendo $x^2 \le x^2 + y^6$, risulta anche $0 \le \frac{x^2 y^2}{x^2 + y^6} \le y^2 \le x^2 + y^2$. Ne segue che il limite per $(x,y) \to (0,0)$ vale 0; (b) sulle rette di equazione y = mx la funzione vale

$$\frac{1-\cos(mx^2)}{x^4+m^4x^4} = \frac{1-\cos(mx^2)}{(mx^2)^2} + \frac{m^2}{1+m^4}, \quad \forall x \neq 0,$$

e per x \rightarrow 0 converge al limite $\frac{m^2}{2(1+m^4)}$. Dato che tale valore dipende dal parametro m, il limite in (b) non esiste; (c) il limite vale zero e si può ottenere come prodotto dei limiti 3.37(a) e 3.26(b); (d) considerando la Funzione sulle rette per l'origine, si verifica che il limite non esiste; (e) si può calcolare il limite con il prodotto

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{\log (1+x^3 y^2)}{x^3 y^2} \cdot \lim_{\substack{(x,y)\to(0,0)}} \frac{x^3 y^2}{x^6 + y^2} .$$

Il primo fattore vale uno in base al limite di funzione di una variabile reale lim $\log(1+t)/t = 1$; il secondo limite vale zero e lo si $t \to 0$ può verificare in modo simile a come indicato nella parte (a) del presente esercizio; (f) lungo le curve di equazione $y = mx^{3/2}$, con x > 0,

139

la funzione vale

$$\frac{1-e^{m^2x^6}}{x^6+m^4x^6} = \frac{1-e^{m^2x^6}}{m^2x^6} \cdot \frac{m^2}{1+m^4}$$

In base al limite di funzione di una variabile lim $(1-e^{t})/t=-1$, per $t\to 0$

 $x \to 0^+$ l'espressione precedente converge a -m²/(l+m⁴). Dato che tale valore dipende da m, cioè dalla curva scelta, il limite in (f) non esiste]

3.38 Quali delle funzioni considerate nell' esercizio precedente si possono estendere con continuità nel punto (0,0)?

[E' possibile estendere con continuità le funzioni in (a), (c), (e) definendole zero per (x,y) = (0,0). Non è invece possibile estendere in(0,0) le funzioni in (b), (d), (f)]

3D. Derivate parziali

Una funzione f definita in un intorno del punto di coordinate (x,y) ammette derivate parziali in tale punto se esistono finiti i limiti (di una variabile reale):

$$\lim_{h\to 0} \frac{f(x+h,y)-f(x,y)}{h} ; \quad \lim_{k\to 0} \frac{f(x,y+k)-f(x,y)}{k} .$$

Il primo dei due limiti si chiama derivata parziale di f rispetto ad x e si denota con uno dei simboli, fra loro equivalenti,

$$f_x$$
 ; $f_x(x,y)$; $\frac{\partial f}{\partial x}$; $D_x f$.

Analogamente, il secondo limite si chiama derivata par-

ziale di f rispetto ad y e si denota con uno dei simb<u>o</u> li

$$f_y$$
; $f_y(\dot{x},y)$; $\frac{\partial f}{\partial y}$; $D_y f$.

Se f ammette derivate parziali in un punto (x,y) si dice anche che f è derivabile in tale punto (il let tore faccia attenzione a non confondere il concetto di derivabilità con quello di differenziabilità, che prenderemo in considerazione nel paragrafo successivo).

Diretta conseguenza della definizione è che le derivate parziali f_x , f_y di una assegnata funzione di due variabili f(x,y) si calcolano con le usuali re gole di derivazione delle funzioni di una sola varia bile reale, considerando l'altra variabile costante con il ruolo di parametro.

3.39 Calcolare, nel punto (x,y) = (4,7), le derivate parziali della funzione

$$f(x,y) = x^3 + y^2 - xy$$

[Per determinare la derivata parziale di f rispetto ad x nel punto(4,7) si fissa y = 7 e si calcola la derivata della funzione della sola va riabile x:

$$f(x,7) = x^3 + (7)^2 - 7x$$
;

si ottiene $3x^2 - 7$; ponendo x = 4 si determina il valore di f_X nel punto (4,7): $f_X(4,7) = 3 \cdot (4)^2 - 7 = 41$. Per determinare la derivata par ziale di f rispetto ad y nel punto (4,7) si fissa x = 4 e si calcola la derivata della funzione di una variabile $(4)^3 + y^2 - 4y$, che vale 2y - 4; ponendo y = 7 si ottiene il valore di f_Y nel punto (4,7): $f_Y(4,7) = 2 \cdot 7 - 4 = 10$. In un punto (x,y) generico di R^2 le derivate

parziali valgono

$$f_x(x,y) = 3x^2 - y$$
; $f_y(x,y) = 2y - x$

3.40 Calcolare le derivate parziali f_x , f_y delle seguenti funzioni nei punti interni ai rispettivi insiemi di definizione.

$$f = x^{2} + 2y \qquad \left[f_{x} = 2x; \quad f_{y} = 2 \right]$$

$$f = xy \qquad \left[f_{x} = y; \quad f_{y} = x \right]$$

$$f = (x+y)(x-y) \qquad \left[f_{x} = 2x; \quad f_{y} = -2y. \right]$$

$$f = \frac{x}{y} \qquad \left[f_{x} = \frac{1}{y}; \quad f_{y} = -\frac{x}{y^{2}} \right]$$

$$f = \frac{x-y}{x+y} \qquad \left[f_{x} = \frac{2y}{(x+y)^{2}}; \quad f_{y} = \frac{-2x}{(x+y)^{2}} \right]$$

$$f = \frac{x+y}{1-xy} \qquad \left[f_{x} = \frac{1+y^{2}}{(1-xy)^{2}}; \quad f_{y} = \frac{1+x^{2}}{(1-xy)^{2}} \right]$$

$$f = \frac{x}{x^{2}+y^{2}} \qquad \left[f_{x} = \frac{y^{2}-x^{2}}{(x^{2}+y^{2})^{2}}; \quad f_{y} = \frac{-2xy}{(x^{2}+y^{2})^{2}} \right]$$

$$f = \frac{x^{2}}{x^{2}+y^{2}} \qquad \left[f_{x} = \frac{2xy^{2}}{(x^{2}+y^{2})^{2}}; \quad f_{y} = \frac{-2x^{2}y}{(x^{2}+y^{2})^{2}} \right]$$

$$f = \frac{x^{2}}{x^{2}+y^{2}} \qquad \left[f_{x} = \frac{4xy^{2}}{(x^{2}+y^{2})^{2}}; \quad f_{y} = \frac{-4x^{2}y}{(x^{2}+y^{2})^{2}} \right]$$

$$f = \frac{xy}{(x^{2}+y^{2})^{2}} \qquad \left[f_{x} = \frac{-x^{2}y+y^{3}}{(x^{2}+y^{2})^{3}}; \quad f_{y} = \frac{x^{3}-xy^{2}}{(x^{2}+y^{2})^{3}} \right]$$

$$f = [x-y] \qquad \left[f_{x} = \frac{x-y}{(x^{2}+y^{2})}; \quad f_{y} = \frac{y-x}{(x^{2}+y^{2})} \right]$$

$$f = \sqrt{x+2y} \qquad \left[f_{x} = \frac{1}{2\sqrt{x+2y}}; \quad f_{y} = \frac{1}{\sqrt{x+2y}} \right]$$

$$f = \sqrt{x^{2} + y^{2}} \qquad \left[f_{x} = \frac{x}{\sqrt{x^{2} + y^{2}}}; f_{y} = \frac{y}{\sqrt{x^{2} + y^{2}}} \right]$$

$$f = \sqrt{1 + x^{2}} \qquad \left[f_{x} = \frac{x}{\sqrt{1 + x^{2}}}; f_{y} = 0 \right]$$

$$f = 2\sqrt{xy} \qquad \left[f_{x} = \sqrt{\frac{y}{x}}; f_{y} = \sqrt{\frac{x}{y}} \right]$$

$$f = \sqrt[3]{x^{3} + y^{3}} \qquad \left[f_{x} = \frac{x^{2}}{(x^{3} + y^{3})^{2/3}}; f_{y} = \frac{y^{2}}{(x^{3} + y^{3})^{2/3}} \right]$$

$$f = \sin(xy) \qquad \left[f_{x} = \cos(xy); f_{y} = x\cos(xy) \right]$$

$$f = \sin(xy) \qquad \left[f_{x} = \cos(xy); f_{y} = x\cos(xy) \right]$$

$$f = \sin(xy) \qquad \left[f_{x} = \cos(xy); f_{y} = x\cos(xy) \right]$$

$$f = \frac{1}{3} \sin^{2}x + \frac{1}{2}\cos^{2}y \qquad \left[f_{x} = \frac{2}{3} \operatorname{senx} \cos x; f_{y} - \operatorname{seny} \cos y \right]$$

$$f = xy - \sin(xy)\cos(xy) \qquad \left[f_{x} = 2y \sin^{2}(xy); f_{y} = x\cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \sin(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \cos(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \cos(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

$$f = xy - \cos(xy) + \cos(xy) \qquad \left[f_{x} = xy - \cos(xy) \right]$$

 $f_{y}=2y \cos 2(x^2 + y^2)$

$$f = \frac{y}{\sin x}$$
 $\left[f_x = \frac{y \cos x}{\sin^2 x}; f_y = \frac{1}{\sin x}\right]$

$$f = tgx \cdot tg3y$$
 $[f_x = \frac{tg \cdot 3y}{\cos^2 x} ; f_y = \frac{3tgx}{\cos^2 3y}]$

$$f = \frac{1 - tg(xy)}{1 + tg(xy)}$$
 $[f_x = \frac{-2y}{[sen(xy) + cos(xy)]^2}];$

$$f_y = \frac{-2x}{\left[sen(xy) + cos(xy)\right]^2}$$

$$f = arctg(xy)$$
 $[f_x = \frac{y}{1+x^2y^2}; f_y = \frac{x}{1+x^2y^2}]$

f= arctg(5x-7y)
$$[f_{x} = \frac{5}{1+(5x-7y)^2}; f_{y} = \frac{-7}{1+(5x-7y)^2}]$$

$$f = arctg \frac{X}{y}$$
 $[f_x = \frac{y}{x^2 + y^2}; f_y = -\frac{x}{x^2 + y^2}]$

$$f = 1 + arctg \frac{y}{x}$$
 $[f_x = \frac{y}{x^2 + y^2}; f_y = \frac{x}{x^2 + y^2}]$

$$f = (arctg \frac{x}{y})^2$$
 $[f_x = \frac{2y \ arctg(x/y)}{x^2 + y^2};$

$$f_y = \frac{-2x \arctan(x/y)}{x^2 + y^2}$$

f= arctg
$$\frac{x+y}{x-y}$$
 [$f_x = \frac{-y}{x^2+y^2}$; $f_y = \frac{x}{x^2+y^2}$]

$$f = arctg \frac{x-y}{x+y}$$
 [$f_x = \frac{y}{x^2 + y^2}$; $f_y = \frac{-x}{x^2 + y^2}$]

$$f = arctg \frac{x-y}{1+xy}$$
 [$f_x = \frac{1}{1+x^2}$; $f_y = \frac{-1}{1+y^2}$]

$$f = arctg \frac{x+y}{1-xy}$$
 [$f_x = \frac{1}{1+x^2}$; $f_y = \frac{1}{1+y^2}$]

$$f = \arcsin \frac{y}{x}$$
 [$f_x = \frac{-y}{|x|\sqrt{x^2-y^2}}$;

$$f_y = \frac{\left[x\right]}{x\sqrt{x^2-y^2}}$$

$$f = arcsen \frac{x-y}{x+y}$$
 [$f_x = \frac{y}{|x+y|\sqrt{xy}}$;

$$f_y = \frac{-x}{|x+y|\sqrt{xy}}$$

$$f = log(2x+2y)$$
 [$f_x = f_y = \frac{1}{x+y}$]

$$f = log |x-y|$$
 $[f_{x} = \frac{1}{x-y}; f_{y} = \frac{1}{y-x}].$

$$f = log (xy)$$
 [$f_x = \frac{1}{x}$; $f_y = \frac{1}{y}$]

$$f = log \frac{x}{y}$$
 [$f_x = \frac{1}{x}$; $f_y = -\frac{1}{y}$]

$$f = log \frac{x-y}{x+y}$$
 [$f_x = \frac{2y}{x^2-y^2}$; $f_y = \frac{2x}{y^2-x^2}$]

$$f = log(x^2-y^2)$$
 $[f_{x} = \frac{2x}{x^2-y^2}; f_{y} = \frac{2y}{y^2-x^2}]$

$$f = log \sqrt{x^2 + y^2}$$
 $\left[f_x = \frac{x}{x^2 + y^2} ; f_y = \frac{y}{x^2 + y^2} \right]$

f=log sen(x²+y²) [
$$f_x = \frac{2x \cos(x^2+y^2)}{\sin(x^2+y^2)}$$
;

$$f_y = \frac{2y \cos(x^2 + y^2)}{\sin(x^2 + y^2)}$$

$$f=xy [1-log(xy)] [f_x = -y log(xy);$$

$$f_y = -x \log(xy)$$

$$f = log \frac{x + \sqrt{1 + x^2}}{y + \sqrt{1 + y^2}}$$
 [$f_x = \frac{1}{\sqrt{1 + x^2}}$; $f_y = \frac{-1}{\sqrt{1 + y^2}}$]

f=log
$$\frac{1+\sqrt{x^2+y^2}}{1-\sqrt{x^2+y^2}}$$
 [$f_x = \frac{2x}{(1-x^2-y^2)\sqrt{x^2+y^2}}$;

$$f_{y^{\pm}} \frac{2y}{(1-x^2-y^2)\sqrt{x^2+y^2}}$$

$$f=e^{x/y}$$
 [$f_x=\frac{e^{x/y}}{y}$; $f_y=\frac{-x e^{x/y}}{y^2}$]

$$f = e^{x}/e^{y}$$
 [$f_{x} = e^{x-y}$; $f_{v} = -e^{x-y}$]

$$f = 2^{y/x}$$
 [$f_x = \frac{-y \ 2^{y/x} \log 2}{x^2}$; $f_y = \frac{2^{y/x} \log 2}{x}$]

$$f = \pi^{xy}$$
 [$f_x = \pi^{xy}y \log \pi$; $f_y = \pi^{xy}x \log \pi$]

$$f = xe^{x+3y}$$
 [$f_x=(1+x)e^{x+3y}$; $f_y=3xe^{x+3y}$]

$$f = (x - \frac{1}{y}) e^{xy}$$
 [$f_{x} = xye^{xy}$; $f_{y} = (\frac{1}{y^{2}} + x^{2} - \frac{x}{y}) e^{xy}$]

$$f = e^{x} (seny+cosy)$$
 [$f_{x}=f$; $f_{y}=e^{x} (cosy-seny)$]

$$f=e^{x}(sen^{2}y+cos^{2}y)$$
 [$f_{x}=e^{x}$; $f_{y}=0$]

$$f = x^y$$
 [$f_x = yx^{y-1}$; $f_y = x^y \log x$]

$$f = x^x$$
 [$f_x = x^x(1 + \log x); f_y = 0$]

$$f = \sqrt{y^x}$$
 [Si noti che $f(x,y)=y^{x/2}$]

$$f = \left(\frac{xy}{e}\right)^{xy} \qquad \left[f_x = y \log(xy) \left(\frac{xy}{e}\right)^{xy} ; \right]$$

$$f_y = x \log(xy) \left(\frac{xy}{e}\right)^{xy} \right]$$

$$f = y^{\log x} \qquad \left[f_x = y^{\log x} \frac{\log y}{x} ; \right]$$

$$f_y = y^{\log x} \frac{\log x}{y}$$

$$f = (s e n x)^{cosy} \qquad [f_x = cos x cos y (s e n x)^{cos y - 1};$$

$$f_y = -(s e n x)^{cos y} s e n y \log s e n x]$$

$$f = (1 + \frac{1}{x})^y \qquad [f_x = \frac{-y}{x^2} (1 + \frac{1}{x})^{y - 1};$$

$$f_y = (1 + \frac{1}{x})^y \log(1 + \frac{1}{x})]$$

$$f_x = y^x x^{y^x} (logy log x + \frac{1}{x});$$

$$f_y = x^{y^x - 1} x^{y^x} log x]$$

$$f = x^{x^y} \qquad [f_x = x^{x^y} x^{y - 1} (l + y log x);$$

$$f_y = x^{x^y} x^y (log x)^2]$$

$$f_x = x^{(y^y - 1)};$$

$$f_y = x^{y^y} y^y log x (l + log y)]$$

3.41 Verificare che la funzione $f(x,y)=\sqrt{x^2+y^2}$ non a mette derivate parziali nel punto (0,0).

[Per y=0 risulta $f(x,0) = \sqrt{x^2} = |x|$ e, come ben noto, tale funzione (di una variabile resle) non è derivabile per x=0; perciò non esiste $f_X(0,0)$. Si può anche procedere in base alla definizione, mostrando che sono diversi i limiti destro e sinistro:

$$\lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{|h|}{h} = \pm 1.$$

In mode analogo si verifica che non esiste $f_y(0,0)$

3.42 In quali punti (x,y)∈R² esistono le derivate par ziali della funzione f(x,y) = [xy]?
[Fissato y₀∈R, la funzione f(x,y₀) = |x|·|y₀| è derivabile (rispetto ad x) per ogni x ≠ 0 se y₀ ≠ 0; mentre, se y₀ = 0, la funzione f(x,y₀) è identicamente nulla e quindi è derivabile per ogni x∈R. Ne segue che la funzione f(x,y) ammette derivata parziale rispetto ad x in tutti i punti dell'insieme

$$\{(x,y) \in \mathbb{R}^2 : x \neq 0\} \cup \{(0,0)\},$$

cioè in tutti i punti del piano xy, escluso l'asse y ma inclusa l'origine degli assi. Analogamente f_v esiste nell'insieme

$$\{(x,y) \in \mathbb{R}^2 : y \neq 0\} \cup \{(0,0)\}$$

3.43 Stabilire se la funzione f(x,y)=|x-y|(x+y) ammet te derivate parziali nei punti di coordinate(1,1), (0,0), (3,2) e (2,3).

[La funzione non ammétte derivate parziali nel punto (1,1); infatti ad \underline{e} sempio, per il limite del rapporto incrementale relativo ad $f_X(1,1)$, ri-

$$\lim_{h \to 0^{\pm}} \frac{f(1+h,1) - f(1,1)}{h} = \lim_{h \to 0^{\pm}} \frac{\left| h \right| (2+h)}{h} = \pm 2.$$

Viceversa la funzione ammette derivate parziali nel punto (0,0) ed esse valgono zero; infatti ad esempio per $f_{\rm X}$

$$f_{X}(0,0) = \lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h} = \lim_{h \to 0} \frac{|h|h}{h} = \lim_{h \to 0} |h| = 0.$$

La funzione è derivabile in (3,2) e (2,3) e con le usuali regole di de-

rivazione si trova $f_x(3,2) = 6$, $f_y(3,2)=-4$; $f_x(2,3)=-4$, $f_y(2,3)=6$

Supponiamo che una funzione f(x,y) ammetta deriva te parziali $f_x(x,y)$, $f_y(x,y)$ in un insieme aperto. Se le funzioni f_x , f_y ammettono a loro volta derivate parziali

$$\frac{\partial}{\partial x} f_x, \quad \frac{\partial}{\partial y} f_x, \quad \frac{\partial}{\partial x} f_y, \quad \frac{\partial}{\partial y} f_y \quad ,$$

esse vengono chiamate derivate parziali seconde della fu \underline{n} zione f e si indicano anche con i simboli

$$f_{xx}$$
, f_{xy} , f_{yx} , f_{yy}

oppure con i simboli

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$.

Le derivate f_{xy} , f_{yx} si chiamano derivate seconde miste. Per esse sussiste il seguente importante teore ma di Schwarz: Le derivate seconde miste f_{xy} , f_{yx} sono uguali in tutti i punti in cui sono continue.

- 3.44 Calcolare le derivate seconde delle seguenti fun zioni all'interno dei rispettivi insiemi di definizione e verificare che le derivate seconde miste sono uguali fra loro.
 - (a) $f(x,y) = \sqrt{x^2+3y^2}$
- (b) $f(x,y)=e^x \cos y$
- (c) $f(x,y) = y^x$
- (d) $f(x,y) = arctg \frac{x-y}{1+xy}$

- (e) $f(x,y)=arctg \frac{x+y}{x-y}$ (f) $f(x,y)=log \sqrt{x^2+y^2}$
- (g) $f(x,y) = \frac{x^2y^2}{2(x^2+y^2)}$ (h) $f(x,y) = \frac{x^3y}{x^2+y^2}$
- [(a) $f_{xx} = \frac{3y^2}{(x^2+3y^2)^{3/2}}$; $f_{xy} = f_{yx} = \frac{-3xy}{(x^2+3y^2)^{3/2}}$; $f_{yy} = \frac{3x^2}{(x^2+3y^2)^{3/2}}$.
- (b) $f_{xx} = e^{x}\cos y$; $f_{xy} = f_{yx} = -e^{x}\sin y$; $f_{yy} = -e^{x}\cos y$.
- (c) $f_{xx} = y^{x} (\log y)^{2}$; $f_{xy} = f_{yx} = y^{x-1} (1 + x \log y)$; $f_{yy} = x(x-1)y^{x-2}$.
- (d) $f_{xx} = \frac{-2x}{(1+x^2)^2}$; $f_{xy} = f_{yx} = 0$; $f_{yy} = \frac{2y}{(1+y^2)^2}$.
- (e) $f_{xx} = \frac{2xy}{(x^2+y^2)^2}$; $f_{xy} = \frac{y^2-x^2}{(x^2+y^2)^2}$; $f_{yy} = \frac{-2xy}{(x^2+y^2)^2}$.
- (f) $f_{xx} = \frac{y^2 x^2}{(x^2 + y^2)^2}$; $f_{xy} = f_{yx} = \frac{-2xy}{(x^2 + y^2)^2}$; $f_{yy} = \frac{x^2 y^2}{(x^2 + y^2)^2}$.
- (g) $f_{xx} = \frac{y^3 2x^2y^6 3x^4y^4}{(x^2 + y^2)^4}$; $f_{xy} = f_{yx} = \frac{4x^3y^3}{(x^2 + y^2)^3}$;

$$f_{yy} = \frac{x^8 - 2x^6 y^2 - 3x^4 y^4}{(x^2 + y^2)^4} .$$

- (h) $f_{xx} = \frac{-2xy^3(x^4 + 2x^2y^2 + 3y^4)}{(x^2 + y^2)^4}$; $f_{xy} = \frac{x^2(x^6 + 7x^4y^2 + 3x^2y^4 3y^6)}{(x^2 + y^2)^4}$; $f_{yy} = \frac{-2x^3y(3x^4 + 2x^2y^2 y^4)}{(x^2 + y^2)^4}$
- 3.45 Verificare che la funzione f(x,y) definita da $f(0,0)=0 \quad e \quad f(x,y)=\frac{x^3y}{x^2+y^2} \text{ se } (x,y)\neq (0,0),$

ammette derivate seconde miste f_{xy} , f_{yx} fra loro distinte nel punto (x,y)=(0,0). Verificare innoltre che le derivate seconde miste non sono continue in (0,0), in accordo con il teorema di Schwarz.

[Si noti che, essendo $\lim_{(x,y)\to(0,0)} f(x,y)=0$ (esercizio 3.35) ed essendo $(x,y)\to(0,0)$ anche f(0,0)=0, la funzione è continua in (0,0) (ed anche in tutto \mathbb{R}^2).

Le derivate parziali prime, per ogni $(x,y) \neq (0,0)$, valgono

$$f_x(x,y) = \frac{x^4y + 3x^2y^3}{(x^2+y^2)^2}$$
; $f_y(x,y) = \frac{x^5 - x^3y^2}{(x^2+y^2)^2}$.

Come nell'esercizio 3.36 (a) si verifica che sia $f_X(x,y)$ che $f_y(x,y)$ con vergono a zero per $(x,y) \rightarrow (0,0)$. Ciò implica che f_X , f_Y sono — continue (anche) in (0,0), essendo $f_X(0,0) = f_Y(0,0) = 0$; in atti, ad esempio per $f_X(0,0)$:

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h} = \lim_{h \to 0} 0 = 0.$$

Calcoliamo le derivate seconde miste in (0,0):

$$f_{xy}(0,0) = \lim_{k \to 0} \frac{f_x(0,k) - f_x(0,0)}{k} = \lim_{k \to 0} 0 = 0;$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h^5/h^4}{h} = 1.$$

Perciò le derivate seconde miste sono fra loro distinte in (0,0).Al contrario, in base al teorema di Schwarz, esse sono tra loro uguali per ogni $(x,y) \neq (0,0)$. Con le usuali regole di derivazione si trova

$$f_{xy}(x,y) = f_{yx}(x,y) = \frac{x^{-8} + 7x^{-6}y^{-2} + 3x^{-4}y^{-4} - 3x^{-2}y^{-6}}{(x^{-2} + y^{-2})^{-4}}, \forall (x,y) \neq (0,0).$$

Essendo $f_{xy} = f_{yx}$ per $(x,y) \neq (0,0)$ e $f_{xy}(0,0) \neq f_{yx}(0,0)$ ne segue che almeno una delle due derivate seconde miste non è continua in (0,0). Co

munque, con verifica diretta, si prova che $f_{xy}(x,y)$ e $f_{yx}(x,y)$ non ammettono limite per (x,y) \rightarrow (0,0); infatti, sulle rette y=0 e x=0 si ottengono i limiti fra loro distinti

$$\lim_{x\to 0} f_{xy}(x,0) = \lim_{x\to 0} f_{yx}(x,0) = \lim_{x\to 0} \frac{x^8}{x^8} = 1 ;$$

$$\lim_{y \to 0} f_{xy}(0,y) = \lim_{y \to 0} f_{yx}(0,y) = \lim_{y \to 0} 0 = 0$$

3.46 Siano a,b parametri reali e sia f(x,y) la funzione definità in R^2 da

$$f(0,0)=0$$
 e $f(x,y)=\frac{ax^3y+bxy^3}{x^2+y^2}$ se $(x,y)\neq(0,0)$.

Verificare che $f_{xy}(0,0)=b$ e che $f_{yx}(0,0)=a$.

[Si può procedere come nell'esercizio precedente oppure, più rapidamente, nel modo seguente: si pone f(x,y) = ag(x,y) + bh(x,y), dove g,h so no definite da

$$g(0,0)=h(0,0)=0 e g(x,y)=\frac{x^3y}{x^2+y^2}$$
, $h(x,y)=\frac{xy^3}{x^2+y^2}$ se $(x,y)\neq(0,0)$.

Per la linearità delle derivate risulta

$$f_{xy} = ag_{xy} + bh_{xy}$$
; $f_{yx} = ag_{yx} + bh_{yx}$

Le derivate seconde miste in (0,0) della funzione g, calcolate nell'esercizio precedente, valgone g_{xy} (0,0) = 0, g_{yx} (0,0) = 1. Per simmetria, scambiando il ruolo di x,y, risulta anche h_{xy} (0,0) = 1, h_{yx} (0,0) = 0. Perciò f_{xy} (0,0) = b e f_{yx} (0,0) = a]

3.47 Si considerino le funzioni definite per x=0 da f(0,y) = 0 e per $x \neq 0$ rispettivamente da

(a) $f(x,y)=x^2 \operatorname{sen} \frac{y}{x}$ (b) $f(x,y)=x^2 \operatorname{arctg} \frac{y}{x}$

Verificare che $f_{xy}(0,0)=0$ e che $f_{yx}(0,0)=1$.

(a) Essendo f(0,y) = 0 risulta

$$f_X(0,y) = \lim_{h \to 0} \frac{f(h,y)-f(0,y)}{h} = \lim_{h \to 0} h \operatorname{sen} \frac{y}{h} = 0$$
;

perciò
$$f_{xy}(0,0) = \lim_{k\to 0} \frac{f_x(0,k)-f_x(0,0)}{k} = \lim_{k\to 0} 0 = 0.$$

Con le usuali regole di derivazione si ottiene $f_y(x,y)=x \cos(y/x)$ per ϱ gni $x\neq 0$; incltre, dato che f(0,y) è costante (=0), risulta $f_y(0,0)=0$. Quindi

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1;$$

- (b) si verifica in modo analogo]
- 3.48 Generalizzando l'esercizio precedente, sia g(t) una funzione di una variabile reale, limitata su R e derivabile per t = 0, e sia f(x,y) la funzio ne di due variabili definita da

$$f(x,y)=0$$
 se $x=0$ e $f(x,y)=x^2g(\frac{y}{x})$ se $x \neq 0$.

Verificare che $f_{xy}(0,0)=0$ e che $f_{yx}(0,0)=g'(0)$.

[Si giunge alla conclusione con lo stesso metodo dell'esercizio precedente. Si noti che anche la funzione dell'esercizio 3.45 è del tipo qui con siderato, con $g(t) = t/(1+t^2)$]

3.49 Mostrare con un esempio che la tesi dell'esercizio precedente non vale se g(t) non è una funzio ne limitata su R.

[Ad esempio la tesi non vale se g(t)=t, $\forall t \in R$]

3.50 Una funzione di due variabili u(x,y) si dice armonica in un insieme aperto A⊂R² se essa ammet te derivate seconde u_{xx}, u_{yy} per ogni (x,y)∈A e se esse soddisfano l'equazione differenziale(alle derivate parziali, detta equazione di Laplace)

$$u_{.xx} + u_{yy} = 0.$$

Verificare che le seguenti funzioni sono armoni che nel loro insieme di definizione

(a) u=3x+2y

(b) u=e *seny

(c) $u=x^2-y^2$

- $(d) u=x^4-6x^2v^2+v^4$
- (e) $u=log(x^2+y^2)$
- (f) u=arctg (y/x)
- (g) u=arctg $\frac{x-y}{x+y}$
- (h) $u=x^6-15x^4y^2+15x^2y^4-y^6$

(i)
$$u = \frac{x}{x^2 + y^2}$$

(1)
$$u = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

(m)
$$u = \frac{xy}{(x^2 + y^2)^2}$$

(n)
$$u = \frac{y^3 - yx^2}{(x^2 + y^2)^3}$$

[(d)
$$u_{xx} = -u_{yy} = 12(x^2 - y^2)$$
; (e) $u_{xx} = -u_{yy} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}$;

(f), (g)
$$u_{xx}^2 - u_{yy} = \frac{-2xy}{(x^2 + y^2)^2}$$
; (h) $u_{xx}^2 = u_{yy}^2 = 30x^4 - 180x^2y^2 + 30y^4$

(i)
$$u_{xx} = -u_{yy} = \frac{2x(x^2 - y^2)}{(x^2 + y^2)^3}$$
; (1) $u_{xx} = -u_{yy} = \frac{6(x^4 - 6x^2y^2 + y^4)}{(x^2 + y^2)^4}$]

3E. Differenziabilità

Al contrario di quanto accade per le funzioni di una variabile reale, per le funzioni di due o più variabili l'esistenza delle derivate parziali in un punto non implica la continuità nel punto stesso. Un esempio in tal senso è proposto nell'esercizio 3.52(si veda anche l'esercizio 3.82). La nozione naturale per le funzioni di più variabili, che estende il concetto di derivabilità per le funzioni di una variabile reale, è quella di differenziabilità.

Siano x,h \in Rⁿ e sia f(x) una funzione della variabile (vettoriale) x. Si dice che la funzione f è differenziabile in x se esiste una funzione lineare L:Rⁿ \rightarrow R tale che

$$\lim_{h\to 0} \frac{f(x+h)-f(x)-L(h)}{|h|} = 0 ;$$

in tal caso L si chiama differenziale della funzione f nel punto x e si verifica che

$$L(h) = \sum_{i=1}^{n} f_{x_i}(x)h_i,$$

dove h_i (i=1,2,...,n) sono le componenti del vettore h e f_{x_i} sono le derivate parziali della funzione f.Si dice anche che f è differenziabile in un insieme A se essa è differenziabile in ogni punto $x \in A$.

In particolare si osservi che se f è differenziabile in x allora f è anche derivabile in x, cioè ammet te derivate parziali $\partial f/\partial x_i$ per i=1,2,...,n. Viceversa, un importante teorema (detto teorema del differen ziale) afferma che se f ammette derivate parziali in un intorno di x e se tali derivate sono continue in x, allora f è differenziabile in x.

Diretta conseguenza della definizione è che, se f

è differenziabile in x, allora f è anche continua in tale punto.

Una applicazione geometrica del concetto di differenziabilità è la seguente: se la funzione f(x) è differenziabile in x_o , allora esiste il piano tangente in $(x_o, f(x_o)) \in \mathbb{R}^{n+1}$ al grafico della funzione f(x) ed ha equazione

$$z = f(x_o) + L(x-x_o)$$

= $f(x_o) + \sum_{i=1}^{n} f_{x_i}(x_o)(x-x_o)_i$,

dove $(x-x_o)_i$ indica la componente i-esima del vettore $x-x_o$.

Spesso si utilizzano le seguenti notazioni. Sia A un insieme aperto di Rⁿ. Se f è una funzione cont<u>i</u> nua in A si dice che f è *di classe* C° in A e si scrive $f \in C^{\circ}(A)$. Se f ammette derivate parziali prime e se queste sono continue nell'aperto A, si dice che f è *di classe* C¹ in A e si scrive: $f \in C^{1}(A)$. Più general mente $f \in C^{k}(A)$, $k \in N$, significa che f ammette derivate parziali in A fino all'ordine k e che queste sono fimzioni continue. Sé $f \in C^{k}(A)$ per ogni $k \in N$ si dice che $f \in C^{\infty}(A)$.

Con i simboli introdotti valgono le implicazioni

$$f \in C^1(A) \implies f \in differenziabile in $A \implies f \in C^{\circ}(A)$.$$

Nella pratica, per decidere se una data funzione è differenziabile, si studia la continuità delle derivate parziali prime e si applica, se possibile, il criterio enunciato nel teorema del differenziale. Co sì, in base a tale criterio, le funzioni elementari (composizioni razionali di polinomi, esponenziali, lo garitmi, funzioni trigonometriche, ecc.) risultano differenziabili all'interno del rispettivo insieme

di definizione.

Megli esercizi che seguono proponiamo lo studio, fra l'altro, della differenziabilità di funzioni in situazioni tali da non poter applicare il criterio enunciato nel teorema del differenziale. Ricordiamo che, per verificare direttamente con la definizione se una data funzione f è differenziabile in un punto x, è opportuno calcolare preliminarmente le derivate parziali e successivamente verificare che è nullo il limite de un vettore di componenti (h_i))

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - \sum_{i=1}^{n} f_{x_i}(x)h_i}{|h|}$$

In particulare, per n=2, una funzione di due va - tiabili f(x,y) è differenziabile in un punto (x,y) se sasa anmette derivate parziali f_x , f_y in tale punto e

$$\lim_{(h,k)\to(0,0)}\frac{f(x+h,y+k)-f(x,y)-f_x(x,y)h-f_y(x,y)k}{\sqrt{h^2+k^2}}=0.$$

Se f(x,y) è differenziabile in (x_o,y_o) , il piano tangente al grafico della funzione in corrispondenza ad (x_o,y_o) , cioè tangente nel punto $(x_o,y_o,f(x_o,y_o))$, ha equazione

$$x=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$
.

3.51 Mostrare che la funzione f(x,y) = |xy| è differenziabile nel punto (x,y)=(0,0), ma non è differenziabile nel punto (x,y)=(1,0).

[La funzione è identicamente nulla in corrispondenza degli assi coordinati. Perciò le derivate parziali in (0,0) valgono zero; risulta quindi

$$\frac{\lim_{(h,k)\to(0,0)} \frac{f(h,k)-f(0,0)-f_{x}(0,0)h-f_{y}(0,0)k}{\sqrt{h^{2}+k^{2}}} = \lim_{(h,k)\to(0,0)} \frac{\left|hk\right|}{\sqrt{h^{2}+k^{2}}} = 0;$$

il limite vale zero perchè, essendo $\left|hk\right| \leq \frac{1}{2} \left(h^2 + k^2\right)$, risulta $0 \leq \frac{\left|hk\right|}{\sqrt{h^2 + k^2}} \leq \frac{1}{2} \sqrt{h^2 + k^2}$. In base alla definizione, la funzione è differenziabile in (0,0). Ponendo x=1, la funzione $f(1,y) = \left|y\right|$ non è derivabile per y=0; perciò la funzione f(x,y), non ammettendo derivata parziale $f_v(1,0)$, non è differenziabile in (1,0)

3.52 Si consideri la funzione definita da

$$f(0,0)=0$$
 e $f(x,y)=\frac{xy}{x^2+y^2}$ se $(x,y) \neq (0,0)$.

Verificare che:

- (a) f(x,y) non è continua in (0,0).
- (b) f(x,y) è derivabile in (0,0).
- (c) f(x,y) non è differenziabile in (0,0).
- [(a) Si vedano gli esercizi 3.28 e 3.30; (b) la funzione è costante(=0) sugli assi coordinati; perciò $f_X(0,0) = f_y(0,0)=0$; (c) essendo f discontinua in (0,0) ne segue che essa non è differenziabile in tale punto. In ogni caso la verifica diretta, in base alla definizione, è molto semplice: essendo $f(0,0) = f_X(0,0) = f_y(0,0)$, f è differenziabile in (0,0) se e solo se è nullo il limite seguente

$$\lim_{(h,k)\to(0,0)}\frac{f(h,k)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)}\frac{hk}{(h^2+k^2)^{3/2}}$$

Si verifica invece, con le rette per l'origine, che il limite non esiste]

3.53 La continuità di una funzione f(x,y) in un punto non implica la sua differenziabilità in tale

punto. Dimostrare l'affermazione fatta studiando, nel punto (0,0), le funzioni

- (a) $f(x,y) = \sqrt{x^2+y^2}$
- (b) $f(x,y) = \sqrt{|xy|}$
- (c) f(0,0)=0 e $f(x,y)=\frac{xy}{\sqrt{x^2+y^2}}$ se $(x,y)\neq(0,0)$
- [(a) La funzione è continua in (0,0) ma, non essendo derivabile in tale punto (esercizio 3.41), non è nemmeno differenziabile in (0,0); (b) la funzione è continua in (0,0) (si può procedere come nell'esercizio 3.24) ed è derivabile con derivate $f_{\chi}(0,0) = f_{\chi}(0,0) = 0$. Non è però differenziabile in (0,0) perchè non esiste il limite

$$\lim_{\substack{(h,k)\to(0,0)}} \frac{f(h,k)}{\sqrt{h^2+k^2}} = \lim_{\substack{(h,k)\to(0,0)}} \sqrt{\frac{|hk|}{h^2+k^2}} \quad ;$$

(c) utilizzando la disuguaglianza $\left| xy \right| \leq \frac{1}{2} \left(x^2 + y^2 \right)$ si verifica che la funzione è continua in (0,0). E' anche derivabile nell'origine e le derivate parziali valgono zero. Però non è differenziabile in (0,0) per chè non esiste il limite

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{hk}{h^2+k^2}$$

3.54 La continuità delle derivate parziali prime im plica la differenziabilità. Mostrare che non vale il viceversa studiando, nel punto (0,0), la funzione definita da

$$f(x,0)=0$$
 e $f(x,y)=y^2\cos\frac{1}{y}$ se $y \neq 0$.

[La funzione f(x,y) è costante rispetto ad x; perciò $f_x(x,y)=0$ per ogni $(x,y) \in \mathbb{R}^2$. La funzione è derivabile anche rispetto ad y e risulta

$$f_y(x,0) = \lim_{k \to 0} \frac{f(x,k) - f(x,0)}{k} = \lim_{k \to 0} k \cos \frac{1}{k} = 0$$
;

$$f_{y}(x,y) = 2y \cos \frac{1}{y} + \sin \frac{1}{y}$$
, se $y \neq 0$

La derivata parziale $f_y(x,y)$ non è continua in (x,0) perché non esiste il limite per $y \to 0$ di $f_y(x,y)$. Però la funzione risulta differenziabile in (x,0) perchè

$$\lim_{(h,k)\to(0,0)} \frac{f(x+h,k)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{k^2\cos(1/k)}{\sqrt{h^2+k^2}} = 0$$

essendo
$$|\mathbf{k}^2 \cos(1/\mathbf{k})/\sqrt{\mathbf{h}^2 + \mathbf{k}^2}| \le \mathbf{k}^2/\sqrt{\mathbf{h}^2 + \mathbf{k}^2} \le |\mathbf{k}|$$

3.55 Traendo spunto dall'esercizio precedente, si con sideri una funzione costante rispetto ad x, del la forma f(x,y) = g(y). Mostrare che f è differenziabile in (x,y) se e solo se g è derivabile in y.

[Se f & differenziabile in (x,y), esistono le derivate parziali f_x , f_y .

Essendo $f_y(x,y) = \lim_{k \to 0} [g(y+k)-g(y)]/k$, la funzione g è derivabile

in y e g'(y) = $f_{v}(x,y)$. Viceversa, se g è derivabile in y, risulta

$$g(y + k) = g(y) + g'(y)k + o(k)$$

$$\lim_{(h,k)\to(0,0)} \frac{f(x+h,y+k)-f(x,y)-f_{\chi}h-f_{\chi}k}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{o(k)}{k} \cdot \frac{k}{\sqrt{h^2+k^2}} = 0 \right]$$

3.56 Sia α un parametro positivo. Mostrare che la funzione

$$f(x,y) = |xy|^{\alpha}$$

ê differenziabile in (0,0) se e soltanto se $\alpha>1/2$. [La funzione è identicamente nulla sugli assi coordinati. Perciò $f_{\chi}(0,0)=f_{\chi}(0,0)=0$.La funzione risulta differenziabile in (0,0)se e solo se

$$\lim_{(h,k)\to(0,0)} \frac{|hk|^{\alpha}}{\sqrt{h^2+k^2}} = 0.$$

Con il metodo dell'esercizio 3.35 si verifica che il limite vale zero se e solo se $\alpha > 1/2$

3.57 Stabilire per quali valori dei parametri $\alpha, \beta \geq 0$ risulta differenziabile in (0,0) la funzione definita da

$$f(0,0)=0$$
 e $f(x,y)=\frac{|x|^{\alpha}|y|^{\beta}}{x^2+y^2}$ se $(x,y)\neq(0,0)$.

[Con il metodo dell'esercizio 3.35 si verifica che la funzione è differenziabile in (0,0) se e solo se $\alpha+\beta>3$]

3.58 Sia p un parametro reale positivo ed f la potenza p-esima del modulo di (x,y), cioè la funzione definita da

$$f(x,y) = (x^2+y^2)^{p/2}$$

Se p è un numero naturale pari, allora $f \in C^{\infty}(R^2)$. Se invece p è un numero naturale dispari, allora $f \in C^{p-1}(R^2) - C^p(R^2)$. Se infine p non è un numero naturale, allora $f \in C^{\left[p\right]}(R^2) - C^{\left[p\right]+1}(R^2)$, dove il simbolo [p] indica, come al solito, la parte intera di p.

Si verifichi la proprietà enunciata per alcuni valori di p; ad esempio per p=2,4, per p=1 e per p=1/2, 3/2.

[Per p=2,4, o in generale se p è un naturale pari, la funzione f(x,y) è un polinomio di grado 2p e perciò è di classe $C^{\infty}(\mathbb{R}^2)$. Se p=1 .(ed anche se p=1/2) la funzione è continua, ma non derivabile in (0,0); perciò in tal caso $f\in C^{\infty}(\mathbb{R}^2)$, ma $f\notin C^1(\mathbb{R}^2)$. Se p=3/2 le parziali in (0,0) sono nulle e per $(x,y)\neq (0,0)$ esse valgono

$$f_X(x,y) = \frac{3}{4} \frac{x}{\sqrt{x^2+y^2}}$$
; $f_y(x,y) = \frac{3}{4} \frac{y}{\sqrt{x^2+y^2}}$.

Con il metodo dell'esercizio 3.35 si verifica che $f_x(x,y)$, $f_y(x,y)$ sono continue (anche)in (0,0). Inoltre la funzione non ammette derivate seconde $f_{xx}(0,0)$, $f_{yy}(0,0)$ (mentre le derivate seconde miste in (0,0)sono nulle). Perciò, se p = 3/2, $f \in C^1(\mathbb{R}^2)$ ma $f \notin C^2(\mathbb{R}^2)$

3.59 Si consideri la funzione definita da f(0,0)=0 e

$$f(x,y) = \frac{x^3+x^2y(y-1)+xy^2-y^3}{x^2+y^2}$$
, $\forall (x,y) \neq (0,0)$.

Stabilire se è differenziabile in (0,0) ed in caso affermativo calcolarne il differenziale.

(Risulta $f(h,k)-f(0,0)-f_X(0,0)h-f_Y(0,0)k=\frac{h^2k^2}{h^2+k^2}$ e per $(h,k)\to(0,0)$ tale espressione, divisa per $\sqrt{h^2+k^2}$, converge a zero. Perciò la funzione è differenziabile in (0,0) ed il differenziale vale $L(h,k)=f_X(0,0)h+f_Y(0,0)k=h-k$

- 3.60 Nel caso siano differenziabili in (0,0), determinare il differenziale delle seguenti funzioni:
 - (a) $f=x^2+x(|y|-1)+2y$ (b) f=(|x|-x)|y|-3y+1
 - (c) $f=x (1+\sqrt{|sen y|})$ (d) $f=(\sqrt{|x|}-x)\sqrt{|sen y|} + 4y$

[(a) Risulta $f(h,k) = [f(0,0) - f_x(0,0)h - f_y(0,0)k] = h^2 + h |k|$. Si verifica (con il metodo dell'esercizio 3.35) che

$$\lim_{(h,k)\to(0,0)} \frac{h^2 + h |k|}{\sqrt{h^2 + k^2}} = 0.$$

Perció la funzione è differenziabile ed il differenziale vale L(h,k) = -h + 2k; (b) la funzione è differenziabile in (0,0) ed il differenziale vale L(h,k)=-3k; (c) la funzione è differenziabile in (0,0) ed il differenziale vale L(h,k)=h; (d) la funzione, pur ammettendo derivate parziali $f_X(0,0)=0$, $f_Y(0,0)=4$, non è differenziabile in (0,0) perché non esiste il limite (si considerino le rette per l'origine h=mk):

$$\lim_{(h,k)\to(0,0)} \frac{(\sqrt{|h|-h)\sqrt{|\operatorname{senk}|}}}{\sqrt{|h|^2+k^2}} \quad]$$

3.61 Stabilire se è differenziabile in (0,0) la fun - zione definita da

$$f(0,0)=1$$
 e $f(x,y)=\frac{\sin\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}$ se $(x,y)\neq(0,0)$.

[La funzione ammette derivate parziali in (0,0) e queste valgono zero.In fatti, ad esempio per $f_{\chi}(0,0)$:

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sin(|h|) - |h|}{h|h|} = \lim_{h \to 0} \frac{o(h^{2})}{h|h|} = 0.$$

La funzione è anche differenziabile in (0,0). Infatti, ponendo $t = \sqrt{h^2 + k^2}$, si ottiene

$$\lim_{(h,k)\to(0,0)} \frac{f(h,k)-f(0,0)}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{\sin -\sqrt{h^2+k^2} - \sqrt{h^2+k^2}}{h^2+k^2} =$$

$$= \lim_{t \to 0^+} \frac{\text{sent } - t}{t^2} = 0]$$

3.62 Stabilire se in (0,0) risulta continua, derivabile o differenziabile la funzione f definita da f(0,0) = 0 e, se $(x,y) \neq (0,0)$, rispettivamente da

(a)
$$f = \frac{1-\cos xy}{x^4 + y^4}$$
 (b) $f = \frac{1-\cos xy}{x^2 + y^2}$

(c)
$$f = \frac{\sin xy}{x^2+y^2}$$
 (d) $f=x^2 \log \frac{x^4+3y^4}{x^4+y^4}$

(e)
$$f = x \log \frac{x^2 + 3y^2}{x^2 + y^2}$$
 (f) $f = \frac{\sin^2 x + \sin^2 y}{\sqrt{x^2 + y^2}}$

[(a) Con le rette per l'origine (si veda anche l'esercizio 3.37(b)) si verifica che f non è continua in (0,0) e quindi neanche differenziabile. E' però derivabile e le derivate parziali in (0,0) sono nulle; (b) è continua, derivabile e differenziabile in (0,0); (c) non è continua, nè differenziabile, ma è derivabile in (0,0); (d) utilizzando le disuguaglianze, valide per ogni $(x,y) \neq (0,0)$

$$0=\log\frac{x^{\frac{4}{4}}+y^{\frac{4}{4}}}{x^{\frac{4}{4}}+y^{\frac{4}{4}}}\leq\log\frac{x^{\frac{4}{4}}+3y^{\frac{4}{4}}}{x^{\frac{4}{4}}+y^{\frac{4}{4}}}\leq\log\frac{3x^{\frac{4}{4}}+3y^{\frac{4}{4}}}{x^{\frac{4}{4}}+y^{\frac{4}{4}}}=\log 3,$$

si verifica che la funzione è differenziabile in (0,0); (e) funzione continua e derivabile, ma non differenziabile in (0,0); (f) continua, ma non derivabile né differenziabile in (0,0)

3.63 Determinare l'equazione del piano tangente al grafico delle seguenti funzioni, in corrispon denza del punto indicato.

(a)
$$f(x,y)=x^3-2x^2y+5xy^2+y^3$$
 $(x,y)=(0,1)$

(b)
$$f(x,y)=x^3-2x^2y+5xy^2+y^3$$
 $(x,y)=(1,0)$

(c)
$$f(x,y) = arctg(x+2y)$$
 (x,y)=(1,0)

(d)
$$f(x,y)=arctg(x+2y)$$
 $(x,y)=(0,0)$

(e)
$$f(x,y)=(x^2+y^2)^{-2}$$
 $(x,y)=(1,1)$

(f)
$$f(x,y)=(x^2+y^2)^{-2}$$
 $(x,y)=(\sqrt{2},0)$

- [(a) z=5x+3y-2; (b) z=3x-2y-2; (c) $z=x/2+y+\pi/4-1$; (d) z=x+2y; (e) z=5/4-(x+y)/2; (f) $z=5/4-x/\sqrt{2}$]
- 3.64 Determinare l'equazione del piano tangente al grange fico della funzione dell'esercizio 3.59 per(x,y)==(0,0).

$$[z = x - y]$$

3.65 Determinare, in un punto generico di coordinate (x_0, y_0) , l'equazione del piano tangente al grafico della funzione $f(x,y) = x^2+y^2$.

$$[z = 2(x_0x + y_0y) - (x_0^2 + y_0^2)]$$

3.66 Determinare l'equazione del piano tangente al grafico della funzione

$$f(x,y) = \sqrt{x^2 + y^2}$$

in un punto generico di coordinate $(x_o, y_o) \neq (0, 0)$. $[z = (x_o x + y_o y) / \sqrt{x_o^2 + y_o^2}]$

- 3.67 Due funzioni differenziabili in un aperto connesso, con derivate parziali fra loro uguali, differiscono per una costante. Utilizzare tale proprietà per discutere le identità (cioè per determinare re se e in quale insieme esse valgano):
 - (a) $\arctan \frac{y}{x} + \arctan \frac{x}{y} = \frac{\pi}{2}$
 - (b) $\arctan \frac{y}{x} + \arctan \frac{x}{y} = -\frac{\pi}{2}$

[La funzione f(x,y) = arctg (y/x) + arctg (x/y) è derivabile al di fuori degli assi coordinati e le derivate parziali sono nulle (perciò la fun -

zione è differenziabile al di fuori degli assi, perchè le derivate parziali sono costanti e quindi continue). La funzione f(x,y) è costante in ogni componente connessa del suo insieme di definizione, cioè in ognuno dei quattro quadranti. Le costanti si determinano scegliendo (x,y) ad \underline{e} sempio uguale a (1,1), (-1,1), (-1,-1), (1,-1). Risulta che l'identita' (a) vale nel primo e nel terzo quadrante (cioè per xy > 0), mentre l'identità (b) vale nel secondo e nel quarto quadrante]

figura 3.30

figura 3.31

3,68 Discutere le identità

(a)
$$arctgx + arctgy = arctg \frac{x+y}{1-xy}$$

(b)
$$arctgx - arctgy = arctg \frac{x-y}{1+xy}$$

(c)
$$\arctan \frac{x}{y} = \frac{\pi}{4} + \arctan \frac{x-y}{x+y}$$

[(a) Calcolando le derivate parziali prime, si verifica che la funzione

$$f(x,y) = arctgx + arctgy - arctg \frac{x+y}{1-xy}$$

è costante in ognuno dei tre insiemi connessi A,B,C rappresentati in figura 3.30 e definiti da

A= {
$$(x,y) \in \mathbb{R}^2 : xy < 1$$
}; B= { $(x,y) \in \mathbb{R}^2 : x > 0, y > \frac{1}{x}$ };
C= { $(x,y) \in \mathbb{R}^2 : x < 0, y < \frac{1}{x}$ }.

Ponendo (x,y) = (0,0) si verifica che f(x,y) è nulla in A. Ponendo y=x e calcolando il limite

$$\lim_{x \to 1^{+}} f(x,x) = \frac{\pi}{4} + \frac{\pi}{4} + \frac{\pi}{2},$$

si verifica che f(x,y) vale Π in B. Analogamente f(x,y) vale $-\Pi$ in C. Perciò l'identità (a) vale nell'insieme A, cioè per xy < 1; (b) l'identità vale nell'insieme $\{(x,y) \in \mathbb{R}^2 : xy > 1\}$. Si noti che l'identità (b) si ottiene dall'identità (a) scambiando y con -y; (c) l'identità vale nell'insieme tratteggiato in figura 3.31]

3F. Derivate delle funzioni composte

Siano x(t), y(t) due funzioni reali definite nell'intorno di un punto t e sia f(x,y) una funzione di due variabili definita in un intorno del punto (x(t), y(t)). Se le funzioni di una variabile x(t), y(t) sono derivabili in t e se la funzione di due variabili f(x,y) è differenziabile in (x(t), y(t)), allora risulta derivabile rispetto a t la funzione composta (di una variabile reale) $t \rightarrow f(x(t), y(t))$ e la derivata vale

$$\frac{d}{dt}f(x(t),y(t))=f_{x}(x(t),y(t))x'(t)+f_{y}(x(t),y(t))y'(t).$$

Geometricamente x=x(t), y=y(t) sono le equazioni parametriche di una curva in R^2 (nel piano x,y), men tre

$$x=x(t)$$
, $y=y(t)$, $z=f(x(t), y(t))$

sono le equazioni parametriche di una curva in \mathbb{R}^3 (nel lo spazio di assi x,y,z) che giace sulla superficie di equazione cartesiana z=f(x,y), come nelle figure 3.32, 3.33, 3.34, 3.35. In particolare, in figura 3.32 abbiamo scelto x(t)=x_o, y(t)=t, che sono le e-

figura 3.33

quazioni parametriche di una retta passante per $(x_o, 0)$ e parallela all'asse y; in fig. 3.33 consideriamo una retta parallela all'asse x, di equazioni x(t)=t, $y(t)=y_o$.

figura 3.34

figura 3.35

La derivata della funzione di una variabile reale t
ightharpoonup f(x(t),y(t)) fornisce una misura della pendenza del cammino scelto, quando si pensi al grafico della funzione z=f(x,y) come alla superficie di una zona geografica, ad esempio una collina, e alla curva (x(t), y(t), f(x(t),y(t))) come ad un sentiero tracciato su tale superficie. Con questa analogia di tipo geografico, la curva di equazioni parametriche x=x(t), y=y(t) è la rappresentazione topografica bidimensionale (nel piano x,y, che costituisce la carta topografica) del sentiero sulla superficie della collina.

- 3.69 Determinare la derivata, rispetto alla variabile reale t, delle funzioni composte come indica to di seguito
 - (a) $f(x,y)=x^2+y^2$ con x(t)=1+t, y(t)=1-t
 - (b) $f(x,y)=x^2+y^2$ con $x(t)=\cos t, y(t)=\sin t$
 - (c) $f(x,y) = \frac{xy^2}{x^2+y^4}$ con x(t)=y(t)=t $(t \neq 0)$
 - (d) $f(x,y) = \frac{xy^2}{x^2+y^4}$ con $x(t)=3t^2$, y(t)=2t $(t\neq 0)$
 - (e) $f(x,y)=log(x^2-y^2)$ con x(t)=cost, $y(t) = sent (0 < t < <math>\frac{\pi}{4}$)
 - (f) $f(x,y) = \log(x^2 y^2)$ con $x(t) = \sqrt{1+t^2}$, $\dot{y}(t) = t$
 - $[(a) \frac{d}{dt} f(x(t),y(t))=f_{x}(x(t),y(t))x'(t)+f_{y}(x(t),y(t))y'(t)=2(1+t) 2(1+t) = 4t.$
 - (b) $f_X(x(t),y(t))x^i(t)+f_Y(x(t),y(t))y^i(t)=-2$ sent cost + 2 sent cost = 0. La derivata rispetto a t è identicamente nulla. Ciò significa che la funzione f(x,y) è costante lungo la curva di equazioni parametriche $x(t) = \cos t$, $y(t) = \sin t$. Infatti tale curva è la circonferenza di centro (0,0) e raggio 1 ed è una delle linee di livello di f(x,y) (si ve-

da l'esercizio 3.1 e la figura 3.2. Infine osserviamo che, con una semplice verifica per sostituzione, risulta $f(\cos t, \operatorname{sent})$ costante, uguale ad uno. (c) Le derivate parziali di f(x,y), per $(x,y) \neq (0,0)$, valgono

$$f_x = \frac{y^2(y^4 - x^2)}{(x^2 + y^4)^2}$$
, $f_y = \frac{2xy(x^2 - y^4)}{(x^2 + y^4)^2}$

e la derivata della funzione composta è uguale a $(1-t^2)/(1+t^2)^2$. (d)La derivata rispetto a t della funzione composta $f(3t^2,2t)$ è nulla; infatti la parabola di equazioni parametriche $x(t)=3t^2$, y(t)=2t (e di equazione cartesiana $x=(3/4)y^2$) per $t\neq 0$ è una linea di livello di f(x,y). (e) La derivata della funzione composta vale -2 sen $(2t)/\cos(2t)$. (f) La derivata della funzione composta è nulla; la funzione è costante lun go il ramo di iperbole di equazioni parametriche $x(t)=\sqrt{1+t^2}$, y(t)=t (e di equazione cartesiana $x^2-y^2=1$, x>0)

3.70 Sia A un insieme aperto di R² con la proprietà che, se (x,y)εA, allora (tx,ty)εA per ogni t > 0 (un insieme siffatto si dice un cono di R²). Una funzione di due variabili f(x,y) si dice omogenea di grado αεR in A se, per ogni (x,y)εA, risulta

(*)
$$f(tx,ty) = t^{\alpha}f(x,y) , \qquad \forall t>0$$

Ad esempio le funzioni dell'esercizio 3.3 sono omogenee di grado 2 in R^2 ; quella dell'esercizio 3.6 è omogenea di grado 1 in R^2 ; quelle dell' esercizio 3.7 sono omogenee di grado zero in R^2 --{(0,0)}.

Sia f(x,y) una funzione differenziabile e omogenea di grado α . Verificare che:

- (a) le derivate parziali sono omogenee di grado α -1;
- (b) vale l'identità di Eulero $xf_x + yf_y = \alpha f$.

[Si înizi derivando la relazione di omogeneità (*),

(a) Derivando rispetto ad x la (*) membro a membro, si ha

$$tf_v(tx,ty) = t^{\alpha} f_v(x,y).$$

Dividendo entrambi i membri per t,sì vede che f_x è omogenea di grado lpha -1. Analogamente per f_y

(b) Derivando membro a membro rispetto a.t la relazione di omogeneita¹
 (*), in base alla formula di derivazione delle funzioni composte si ottiene

$$xf_x(tx,ty) + yf_y(tx,ty) = \alpha t^{\alpha-1}f(x,y)$$

Si ottiene la conclusione per t * 1]

Dato che una derivata parziale si calcola rispet to ad una variabile reale considerando l'altra variabile costante (o le altre variabili costanti) con il ruolo di parametro, vale la formula di derivazione della funzione composta f(x,y) anche quando x,y sono a loro volta funzioni di due (o più) variabili reali Così, se $x=x(\xi,\eta)$, $y=y(\xi,\eta)$ sono funzioni derivabili e se f(x,y) è differenziabile, risulta

$$\frac{\partial}{\partial \xi} f(x(\xi, \eta), y(\xi, \eta)) = f_x x_{\xi} + f_y y_{\xi}$$

$$\frac{\partial}{\partial \eta} f(x(\xi, \eta), y(\xi, \eta)) = f_x x_{\eta} + f_y y_{\eta}.$$

3.71 Il legame tra le coordinate cartesiane (x,y) e le coordinate polari (ρ, θ) si esprime con le relazioni

$$x = \rho \cos \theta$$
, $y=\rho \sin \theta$.

Assegnata una funzione differenziabile f(x,y), verificare che le derivate parziali della funzione composta $f(\rho\cos\vartheta,\ \rho\sec\vartheta)$ rispetto alle $v\underline{a}$ riabili ρ,ϑ sono date da

$$f_{\rho} = f_{x} \cos \theta + f_{y} \sin \theta$$

$$f_{\vartheta} = f_x \rho sen\vartheta + f_y \rho cos\vartheta$$
.

3.72 Verificare la seguente identità, che esprime in coordinate polari il quadrato del modulo del gra diente di una funzione differenziabile f(x,y)(per il gradiente si veda anche il paragrafo che segue):

$$f_x^2 + f_y^2 = f_p^2 + \frac{1}{\rho^2} f_{\vartheta}^2$$
.

[Utilizzando le espressioni $f_{
ho}$, $f_{
ho}$ dell'esercizio precedente,si ottiene

$$\begin{split} f_{\rho}^{2} + \frac{1}{\rho^{2}} & f_{\vartheta}^{2} = f_{x}^{2} \cos^{2}\vartheta + 2f_{x}f_{y} \sin\vartheta\cos\vartheta + f_{y}^{2} \sin^{2}\vartheta + \\ & + f_{x}^{2} \sin^{2}\vartheta - 2f_{x}f_{y} \sin\vartheta\cos\vartheta + f_{y}^{2} \cos^{2}\vartheta - f_{x}^{2} + f_{y}^{2} \end{bmatrix} \end{split}$$

3.73 Sia f(x,y) una funzione di classe C^2 . Calcolare le derivate parziali seconde $f_{\rho\rho}$, $f_{\rho\vartheta}$, $f_{\vartheta\vartheta}$ della funzione composta $f(\rho\cos\vartheta, \rho\sin\vartheta)$.

[Utilizzando le formule dell'esercizio 3.71 si na:

$$f_{\rho\rho} = \frac{\partial}{\partial \rho} \left[f_x(\rho \cos \theta, \rho \sin \theta) \cos \theta + f_y(\rho \cos \theta, \rho \sin \theta) \sin \theta \right]$$

$$=f_{xx} \cos^2 \vartheta + 2f_{xy} \sin \vartheta \cos \vartheta + f_{yy} \sin^2 \vartheta$$
;

$$f_{\rho \vartheta} = \frac{\partial}{\partial \vartheta} \left[f_{x}(\rho \cos \vartheta, \rho \sin \vartheta) \cos \vartheta + f_{y}(\rho \cos \vartheta, \rho \sin \vartheta) \sin \vartheta \right]$$

$$= f_{xx} \rho \sin \theta \cos \theta + f_{xy} \rho \cos^2 \theta - f_x \sin \theta$$

$$-f_{vx} \rho sen^2 \vartheta + f_{vv} \rho sen \vartheta cos \vartheta + f_{vcos} \vartheta$$

=
$$\rho$$
[(f_{yy}-f_{xx})sen ϑ cos ϑ +f_{xy}(cos $^{2}\vartheta$ -sen $^{2}\vartheta$)+f_ycos ϑ -f_xsen ϑ];

$$\begin{split} &f_{\vartheta\vartheta} = \frac{\partial}{\partial\vartheta} \left[-f_{x}(\rho\cos\vartheta, \rho sen\vartheta) \rho sen\vartheta + f_{y}(\rho\cos\vartheta, \rho sen\vartheta) \rho cos\vartheta \right] \\ &= f_{xx}\rho^{2} sen^{2}\vartheta - f_{xy}\rho^{2} sen^{3}cos\vartheta - f_{x}\rho cos\vartheta \\ &- f_{xy}\rho^{2} sen\vartheta\cos\vartheta + f_{yy}\rho^{2}\cos^{2}\vartheta - f_{y}\rho sen\vartheta \\ &= \rho^{2} \left(f_{xx} sen^{2}\vartheta - 2f_{xy} sen\vartheta cos\vartheta + f_{yy}\cos^{2}\vartheta \right) - \rho \left(f_{x} cos\vartheta + f_{y} sen\vartheta \right) \right] \end{split}$$

3.74 Verificare la seguente identità differenziale, che è utile nello studio di alcune proprietà del le funzioni armoniche (esercizio 3.50):

$$f_{xx} + f_{yy} = f_{\rho\rho} + \frac{1}{\rho} f_{\rho} + \frac{1}{\rho^2} f_{\theta\theta}$$

[Utilizzando le espressioni di f $_{\rho\rho}$, f $_{\vartheta\vartheta}$ dell'esercizio precedente e l'espressione di f $_{\rho}$ data nell'esercizio 3.71, otteniamo

$$f_{\rho\rho} + \frac{1}{\rho^2} f_{\vartheta\vartheta} + \frac{1}{\rho} f_{\rho} =$$

= $f_{xx}\cos^2\vartheta + 2f_{xy} \sin\vartheta\cos\vartheta + f_{yy}\sin^2\vartheta$

+ f_{xx} sen² ϑ - $2f_{xy}$ sen ϑ cos ϑ + f_{yy} cos $^2\vartheta$

$$-\frac{1}{\rho} \left(f_{x} \cos \vartheta + f_{y} \sin \vartheta \right) + \frac{1}{\rho} \left(f_{x} \cos \vartheta + f_{y} \sin \vartheta \right) = f_{xx} + f_{yy} \right]$$

- 3.75 Verificare che le seguenti funzioni, espresse in coordinate polari ρ, θ , sono armoniche per $\rho \neq 0$ (qualunque sia il valore del parametro reale α)
 - (a) $f(\rho, \theta) = \rho^{\alpha} \cos(\alpha \theta)$ (b) $f(\rho, \theta) = \rho^{\alpha} \sin(\alpha \theta)$
 - [(a) Essendo $f_0 = \alpha \rho^{\alpha-1} \cos \alpha \vartheta$, $f_{00} = \alpha (\alpha 1) \rho^{\alpha-2} \cos \alpha \vartheta$,

 $f_{\vartheta\vartheta} = -\alpha^2 \rho^{\alpha} \cos \alpha \vartheta$, si ha

$$f_{\rho\rho} + \frac{1}{\rho} f_{\rho} + \frac{1}{\rho^2} f_{\vartheta\vartheta} = \alpha \rho^{\alpha-2} \cos \alpha \vartheta [(\alpha-1) + 1 - \alpha] = 0.$$

In base all'identità differenziale dell'esercizio precedente, la funzione f è armonica. In (b) si procede analogamente

3.76 Si consideri la trasformazione di coordinate

$$x = \xi + \eta$$
, $y = \xi - \eta$.

Verificare che, per ogni funzione f(x,y) di classe C^2 , vale l'identità differenziale

$$f_{xx} - f_{yy} = f_{\xi\eta}$$
.

$$[f_{\xi} = \frac{\partial}{\partial \xi} (f(\xi + \eta, \xi - \eta)) = f_{x} + f_{y}, \text{ da cui}$$

$$f_{\xi\eta} = \frac{\partial}{\partial \eta} (f_x(\xi + \eta, \xi - \eta) + f_y(\xi + \eta, \xi - \eta)) = f_{xx} - f_{xy} + f_{yx} - f_{yy}]$$

36. Gradiente. Derivate direzionali

Se f(x,y) è una funzione derivabile in un punto (x,y), in tale punto è possibile definire il gradiente di f, indicato con DF o ∇f oppure con grad f, che per definizione è il vettore di \mathbb{R}^2 avente per componenti le derivate parziali di f; quindi

$$Df(x,y) = (f_x(x,y), f_y(x,y))$$

o, più concisamente, $Df = (f_x, f_y)$.

Per capire il significato geometrico del gradiente è opportuno considerare anche le derivate direzionali di f. A tale scopo consideriamo un vet tore di modulo unitario $\lambda=(\lambda_1,\lambda_2)$, cioè tale che $\lambda_1^2+\lambda_2^2=1$. Un tale vettore si chiama anche una

direzione in R^2 . La derivata direzionale di f(x,y) in un punto (x,y) nella direzione (λ_1,λ_2) è il limite (se esiste ed è finito)

$$\lim_{t\to 0} \frac{f(x+t\lambda_1,y+t\lambda_2)-f(x,y)}{t}$$

e si indica con il simbolo $\frac{\partial f}{\partial \lambda}$, con $\lambda = (\lambda_1, \lambda_2) \in \mathbb{R}^2$.

In particolare, se $\lambda=(1,0)$, la direzione con siderata è quella parallela all'asse x (ed il verso è quello delle x positive) e la derivata direzionale coincide con la derivata parziale rispetto ad x; mentre, se $\lambda=(0,1)$, si ottiene la derivata parziale rispetto ad y.

3.77 Si calcoli in base alla definizione la derivata direzionale della funzione $f(x,y)=(x+y)^2$ nel punto (x,y)=(1,2) nelle direzioni di seguito indicate:

(a)
$$\lambda = (1,0)$$
 (b) $\lambda = (0,-1)$ (c) $\lambda = (\frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2})$

[In generale, se $\lambda = (\lambda_1, \lambda_2)$, si ha

$$\frac{\partial f}{\partial \lambda} (1,2) = \lim_{t \to 0} \frac{\left[3 + t(\lambda_1 + \lambda_2)\right]^2 - 9}{t}$$

$$= \lim_{t\to 0} \frac{6t(\lambda_1 + \lambda_2) + t^2 (\lambda_1 + \lambda_2)^2}{t} = 6(\lambda_1 + \lambda_2).$$

Quindi nel caso (a), se $\lambda = (\lambda_1, \lambda_2) = (1,0)$, si ha $\partial f / \partial \lambda = 6$; (b) $\partial f / \partial \lambda = -6$; (c) se $\lambda = (\sqrt{2}/2, \sqrt{2}/2)$ allora $\partial f / \partial \lambda = 6\sqrt{2}$; se invece $\lambda = (\sqrt{2}/2, -\sqrt{2}/2)$ allora $\partial f / \partial \lambda = 0$]

Seguendo la definizione, la derivata dire zionale $\partial f/\partial \lambda$, con $\lambda=(\lambda_1,\lambda_2)$, è la derivata de<u>l</u> la funzione di una variabile reale $t \rightarrow f(x+t\lambda_1,y+t\lambda_2)$

 $\pm t\lambda_2$), calcolata per t=0. Se f(x,y) è differen - ziabile in (x,y), per la regola di derivazione delle funzioni composte, la derivata direzionale è data da

$$\frac{\partial f}{\partial \lambda} = f_{x}(x,y)\lambda_{1} + f_{y}(x,y)\lambda_{2}$$
.

Con i simboli vettoriali $\lambda = (\lambda_1, \lambda_2)$ e Df = $= (f_x, f_y)$, in ogni punto dove f è differenziabile la derivata direzionale risulta uguale al prodotto scalare tra il gradiente Df e la direzione λ (si ricordi che il prodotto scalare tra due vettori $v = (v_1, v_2)$ e $w = (w_1, w_2)$ è uguale a $v_1 w_1 + v_2 w_2$). Utilizzando il simbolo (,) per il prodotto scalare, si ha

$$\frac{\partial f}{\partial \lambda} = (Df, \lambda)$$
.

Il prodotto scalare tra due vettori non nulli di modulo fissato è massimo quando i due vettori sono fra loro paralleli e orientati nello stesso verso (il prodotto scalare è minimo se i due vettori sono paralleli e con versi discordi, mentre il prodotto scalare vale zero se i due vettori sono ortogonali). Quindi nel nostro caso la derivata direzionale risulta massima se λ è la direzione del gradiente.

Dato che la derivata è una misura della pendenza della funzione considerata, ne risulta che il vettore gradiente, se non è nullo, indica la direzione di massima pendenza.

In altre parole, fissato un punto (x,y), la funzione di una variabile reale

$$t \longrightarrow f(x+t\lambda_1,y+t\lambda_2)$$

(che, come già detto nel paragrafo precedente, geometricamente corrisponde ad un cammino sulla superficie z = f(x,y)) ha derivata massima per t=0 (il sentiero ha la massima pendenza) se λ ha la stessa direzione e lo stesso verso del gradiente Df.

3.78 Si consideri la funzione $f(x,y) = x^2 + y^2$.

- (a) Calcolare il gradiente di f in un punto generico di coordinate (x,y).
- (b) Calcolare la derivata direzionale di f nel punto (1,1), nella direzione della retta y=x nel verso delle x crescenti.
- (c) Si verifichi che, in ogni punto (x,y)≠(0,0), il gradiente è ortogonale alle linee di livello (rappresentate nelle figure 3.2(a) e 3.2(b)) della funzione f.
- [(a) Df = (2x,2y); (b) Si richiede di calcolare la derivata nel punto (1,1) nella direzione $\lambda = (\sqrt{2}/2, \sqrt{2}/2)$ (si ricordi che la direzione λ ha modulo unitario). La derivata direzionale vale

$$\frac{\partial f}{\partial \lambda} = 2x \frac{\sqrt{2}}{2} + 2y \frac{\sqrt{2}}{2} = \sqrt{2} (x+y)$$

e nel punto (1.1) essa risulta uguele a $2\sqrt{2}$. (c) Le linee di livello di equazione f(x,y)=z, con z costante positiva, sono le circonferenze rappresentate nelle figure 3.2(a) e 3.2(b) di centro (0,0) e raggio \sqrt{z} . Consideriamo un punto di coordinate (x,y) sulla linea di livello $x^2+y^2=z$; il vettore r di componenti (x,y), applicato all'origine, è un raggio del cerchie in figura 3.36 e, naturalmente, è ortogonale alla cir conferenza $x^2+y^2=z$; il gradiente Df = (2x,2y) è uguale a 2r ed è quindi anch'esso ortogonale in (x,y) alla circonferenza.

Si può anche procedere analiticamente nel modo seguente: consideriamo \underline{u} na generica circonferenza di equazione $x^2 + y^2 = z$, con z > 0. In forma parametrica tale circonferenza può essere rappresentata con le equazioni

$$x(t)=\sqrt{z} \cos t$$
, $y(t)=\sqrt{z} \sin t$, $0 \le t \le 2 \pi$.

figura 3.36

La retta tangente alla circonferenza in (x(t), y(t)) ha coseni direttori proporzionali alle derivate $x^{\dagger}(t)$, $y^{i}(t)$, cioè ha la direzione vettore $v = (x^1(t), y^1(t)) = (-\sqrt{z} \text{ sent}, \sqrt{z} \text{ cost})$. If gradiente vale Of = (2x,2y) e, per (x,y) = (x(t), y(t)), risulta nullo il prodotto sca lare tra i due vettori v e Df: infatti

$$(v,Df)=x'(t)x(t) + y'(t)y(t)=-\sqrt{z}$$
 sent cost + \sqrt{z} cost sent = 0

3.79 Si verifichi che il gradiente, quando non è nullo, è ortogonale alle rispettive linee di livello nei casi in cui la funzione f(x,y) sia defini ta da

(a)
$$f(x,y) = y-x$$

(b)
$$f(x,y)=y^2-x^2$$

(c)
$$f(x,y) = e^{x}$$

(c)
$$f(x,y) = e^{x}$$
 (d) $f(x,y) = \frac{xy}{x^2 + y^2}$

[(a) L'insieme delle linee di livello è costituito dalle rette parallele alla bisettrice del primo e terzo quadrante. Il gradiente è costante e vale Df=(-1.1);il vettore di componenti (-1.1) ha la direzione della bi settrice del secondo quadrante ed è quindi ortogonale alla famiglia di rette parallele anzidette. (b) Le linee di livello, di equazione y2 - $-x^2 = z$, sono iperboli per ogni z $\neq 0$, mentre sono le due rette di equa zione y = $\pm x$ se z=0 (si veda la figura 3.4). Se z $\neq 0$ tali iperboli si rappresentano in forma parametrica per mezzo delle funzioni iperboli che (il lettore segua, in dettaglio, anche questa strada) oppure, z > 0 e y > 0, ad esempio con le equazioni

$$x(t)=t$$
, $y(t) = \sqrt{z+t^2}$, $y(t) = \sqrt{z+t^2}$

La direzione del vettore tangente è data da

$$(x'(t), y'(t)) = (1, t/\sqrt{z+t^2})$$

e si vede immediatamente (verificando che $x^{\dagger} f_{X}^{\cdot} + y^{\dagger} f_{V}^{\cdot} = 0$) che tale vettore è ortogonale a

Df =
$$(-2x,2y) = (-2t, 2\sqrt{z+t^2})$$
.

Se z = 0 e se consideriamo ad esempio la linea di livello $y=x(\neq 0)$, essa ha la direzione del vettore (1,1); il gradiente Df=(-2x,2y), se non è nullo, per x=y ha la direzione del vettore (-1,1) ed i due vettori sono tra loro ortogonali.

- (c) Le linee di livello hanno equazione eX= z con z costante positiva, cioè x = logz = costante. Perció le linee di livello sono rette paralle le all'asse y. La direzione del gradiente Df = (eX,0) è costante ed è la stessa del vettore (1:0), che è ortogonale allé linee di livello.
- (d) La funzione è rappresentata in figura 3.11. Le linea di livello sono semirette per l'origine di equazioni parametriche x(t)= lt, y(t)-mt, con t > 0 ed $\ell^2 + m^2 = 1$ (il vettore (ℓ, m) è la direzione della semiretta). Il gradiente vale

Df =
$$(\frac{y(y^2-x^2)}{(x^2+y^2)^2}, \frac{x(x^2-y^2)}{(x^2+y^2)^2})$$

$$\ell_x + mf_y = \ell \frac{m(m^2 - \ell^2)}{t(\ell^2 + m^2)^2} + m \frac{\ell(\ell^2 - m^2)}{t(\ell^2 + m^2)^2} = 0$$

3.80 Si consideri la funzione dell'esercizio 3.79(d):

$$f(x,y) = \frac{xy}{x^2 + y^2} .$$

Calcolare ove possibile:

- (a) il modulo del gradiente |Df|;
- (b) il vettore (di modulo unitario) Df/|Df| e rappresentare graficamente il corrispondente campo vettoriale (cioè disegnare la direzione ed il verso di Df/|Df| (o equivalentemente di Df) in corrispondenza ad ogni punto (x, y)).

[(a)
$$|Df| = \frac{|x^2 - y^2|}{(x^2 + y^2)^{3/2}}$$
, $(x,y) \neq (0,0)$.

(b) Df non è definito in (0,0) e, altrimenti, è nullo se y = \pm x. Tolti questi casi, il vettore Df/| Df | è uguale a

$$\frac{Df}{|Df|} = \left(\begin{array}{cc} y^2 - x^2 \\ x^2 - y^2 \end{array} \right) + \frac{y}{(x^2 + y^2)^{1/2}} , \quad \frac{x^2 - y^2}{|x^2 - y|^2} + \frac{x}{(x^2 + y^2)^{1/2}} \right) .$$

Distinguendo i casi $y^2 \stackrel{>}{\ \stackrel{>}{\ }} x^2$, si ottiene

$$\frac{Df}{|Df|} = \pm \left(\frac{y}{(x^2 + y^2)^{1/2}}, \frac{-x}{(x^2 + y^2)^{1/2}} \right), \text{ se } |y| \gtrsim |x|.$$

Df/ Df | ê il vettore unitario tangente alla circonferenza di centro la origine e passante per il punto (x,y), orientato in verso orario se |y| > |x| (figura 3.37(a)) ed in verso antiorario se |y| < |x| (figura 3.37 (b)).

Sia per |y| > |x| che per |y| < |x| il versore Df/ Df indica la direzione ed il verso da prendere per "avvicinarsi" alla retta di equazione y = x ($x \ne 0$). Dato che il gradiente (e quindi anche Df/ Df) indica la direzione di massima pendenza, ciò significa che, avvicinandosi a tale retta lungo le circonferenze per l'origine, la funzione f cresce. Ciò è visibile anche dal grafico di f in figura 3.11: in corrispon

denza della retta $y=x(x\neq0)$ la funzione assume il suo massimo (z=1/2), mentre assume valori inferiori in corrispondenza alle altre rette per l'origine. In particolare f(x,y) è nulla lungo gli assi coordinati (origine esclusa) ed è minima in corrispondenza alla retta y=-x $(x\neq0)$. Il campo del gradiente è schematizzato in figura 3.38]

3.81 Sia g(t) una funzione derivabile per t > 0 e sia

$$f(x,y) = g(\sqrt{x^2+y^2}).$$

Verificare che |Df| = |g'| per ogni $(x,y)\neq(0,0)$.

[Si osservi che, essendo g(t) derivabile per t > 0, con il metodo dell'esercizio 3.55 si può provare che f(x,y) è differenziabile per ogni $(x,y)\neq$ \neq (0,0). Il metodo più elegante per calcolare il modulo del gradiente di fè quello di scrivere f in coordinate polari, mediante la trasformazione $x = \rho \cos \vartheta$, $y = \rho \sin \vartheta$, e di utilizzare l'espressione del modulo del gradiente (si veda l'esercizio 3.72):

$$\left| \, \text{Df} \, \right| \, = \, \sqrt{\, f_{\, X}^{\, 2} + \, f_{\, y}^{\, 2}} \, = \, \sqrt{\, f_{\, \rho}^{\, 2} + \frac{1}{\rho^{\, 2}} \, f_{\, \vartheta}^{\, 2}} \, \, ,$$

Essendo nel nostro caso $f = g(\rho)$, risulta $f_{s} = 0$ e quindi

$$\left| \mathsf{D} \mathsf{f} \right| = \sqrt{\mathsf{f}_{\rho}^2} = \left| \mathsf{f}_{\rho} \right| = \left| \mathsf{g}^1 \right| \; .$$

Si può anche procedere in base alla formula di derivazione delle funzioni composte:

$$f_x = \frac{\partial}{\partial x} g(\sqrt{x^2 + y^2}) = g'(\sqrt{x^2 + y^2}) - \frac{x}{\sqrt{x^2 + y^2}}; f_y = g'(\sqrt{x^2 + y^2}) - \frac{y}{\sqrt{x^2 + y^2}};$$

da cui
$$\left| Df \right| = \sqrt{f_x^2 + f_y^2} = \left| g' \right| \sqrt{\frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} = \left| g' \right| \right|$$

3.82 Utilizzando la definizione, verificare che la fu \underline{n} zione f(x,y) definita da

$$f(x,y) = \frac{x^2y}{x^4+y^2}$$
 se $(x,y)\neq(0,0)$ e $f(0,0) = 0$

ammette in (0,0) derivata direzionale in ogni di rezione $\lambda = (\lambda_1, \lambda_2)$, pur non essendo ivi continua. Verificare inoltre che in (0,0) non vale la formula $\partial f/\partial \lambda = f_x \lambda_1 + f_v \lambda_2$.

[Sia λ =(λ_1 , λ_2) un vettore di modulo unitario. In base alla definizione, la derivata di f, nel punto (0,0), nella direzione λ è data da

$$\frac{\partial f}{\partial \lambda}(0,0) = \lim_{t \to 0} \frac{f(t\lambda_1, t\lambda_2) - f(0,0)}{t} = \lim_{t \to 0} \frac{\lambda_1^2 \lambda_2}{\lambda_1^4 t^2 + \lambda_2^2} = \begin{cases} \lambda_1^2 / \lambda_2 \sec \lambda_2 \neq 0 \\ 0 \sec \lambda_2 = 0 \end{cases}$$

Perciò la funzione f è derivabile in (0,0) in ogni direzione. Però essa non è continua in tale punto perche non esiste il limite di f(x,y) per $(x,y) \rightarrow (0,0)$; si verifica ciò considerando le parabole per l'origine di equazione $y=mx^2$, con m $\in \mathbb{R}$, come indicato nell'esercizio 3,34(b).

Da verifica diretta in base alla definizione, oppure dal limite precedente ponendo rispettivamente λ =(1,0) e λ =(0,1), si vede che in (0,0)le derivate parziali valgono $f_{\chi}(0,0)=f_{\chi}(0,0)=0$. Se invece λ =(λ_1,λ_2) rappresenta una direzione diversa dalle direzioni degli assi coordinati (ciò corrisponde al caso in cui sia λ_1 che λ_2 sono non nulli) al lora $\partial f/\partial \lambda = \lambda_1^2/\lambda_2 \neq 0$. Perciò in (0,0) la derivata direzionale non è combinazione lineare delle due derivate parziali

3.83 Sia f(x,y) la funzione dell'esercizio precedente e sia $g(x,y)=[f(x,y)]^2$. Verificare che g(x,y) non è continua in (0,0) nonostante che la derivata direzionale esista e valga zero, qualunque sia la direzione.

[Come nell'esercizio precedente (si veda anche 3.34(b)) si verifica che g(x,y) non ammette limite per $(x,y) \rightarrow (0,0)$. Circa la derivata direzio nale, risulta

$$\frac{\partial g}{\partial \lambda} = \frac{\partial}{\partial \lambda} \left[f(x,y)^{\frac{1}{2}} \right]^{2} = 2f(x,y) \frac{\partial f}{\partial \lambda} .$$

Essendo f(0,0) = 0, risulta $\partial g/\partial \lambda$ = 0 nel punto (0,0) qualunque sia λ

3.84 Si consideri la funzione $f(x,y) = x^2+2xy+2y^2$ in un intorno del punto (2,1). Determinare in quale direzione λ la derivata $\partial f/\partial \lambda$, calcolata per (x,y) = (2,1), è massima ed in quale direzione

è minima.

[II gradiente indica la direzione di massima pendenza. Perciò il massimo della derivata direzionale si ottiene per λ = Df/ |Df| ed il valore massimo è

$$\frac{\partial \mathbf{f}}{\partial \lambda} = \mathbf{f}_{\mathbf{x}} \lambda_{1} + \mathbf{f}_{\mathbf{y}} \lambda_{2} = \mathbf{f}_{\mathbf{x}} \frac{\mathbf{f}_{\mathbf{x}}}{|D\mathbf{f}|} + \mathbf{f}_{\mathbf{y}} \frac{\mathbf{f}_{\mathbf{y}}}{|D\mathbf{f}|} = \frac{\mathbf{f}_{\mathbf{x}}^{2} + \mathbf{f}_{\mathbf{y}}^{2}}{|D\mathbf{f}|} = |D\mathbf{f}|.$$

Analogamente, la derivata direzionale è minima nella direzione e nel verso opposto al gradiente, cioè per $\lambda=-$ Df/|Df|ed in tal caso la derivata vale $\partial f/\partial \lambda=-$ |Df|.

Per la funzione presa in considerazione otteniamo i valori Df=(2x+2y, 2x+4y) ed in particolare Df(2,1)=(6,8). In (2,1) risulta quindi $|Df(2,1)|=\sqrt{6^2+8^2}=10$ e Df/|Df|=(3/5,4/5). Perciò, nel punto (2,1), la derivata direzionale $\partial f/\partial \lambda$ è massima se $\lambda=(3/5,4/5)$ ed in tal caso $\partial f/\partial \lambda=10$. La derivata direzionale è minima (e vale -10) nella direzione $\lambda=(-3/5,-4/5)$

3.85 Come nell'esercizio precedente, si consideri la funzione $f(x,y)=x^2+2xy+2y^2$ in un intorno del punto (2,1). Determinare una direzione λ in cui la derivata direzionale $\partial f/\partial \lambda$ nel punto (2,1) sia nulla.

[La direzione λ deve essere ortogonale al gradiente. Essendo in (2,1) Df/ |Df| = (3/5,4/5), si può scegliere $\lambda = (4/5,-3/5)$ oppure $\lambda = (-4/5,3/5)$]

3.86 Sia f(x,y) una funzione con derivate seconde con tinue. Verificare che la derivata seconda di f nella direzione $\lambda = (\lambda_1, \lambda_2)$ vale

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} f(x+t\lambda_1, y+t\lambda_2) = f_{xx}\lambda_1^2 + 2f_{xy}\lambda_1\lambda_2 + f_{yy}\lambda_2^2.$$

[Nell'ipotesi che la funzione sia di classe C², si può applicare due vo<u>l</u> te la formula di derivazione delle funzioni composte, ottenendo

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\,\mathrm{f}(\mathrm{x+t}\lambda_1\,,\mathrm{y+t}\,\lambda_2\,)=\frac{\mathrm{d}}{\mathrm{d}t}\,\left[\mathrm{f}_{\mathrm{x}}(\mathrm{x+t}\,\lambda_1,\mathrm{y+t}\,\lambda_2)\,\lambda_1\!+\!\mathrm{f}_{\mathrm{y}}(\mathrm{x+t}\,\lambda_1,\mathrm{y+t}\,\lambda_2)\lambda_2\,\right]$$

$$= f_{xx} \lambda_1^2 + f_{xy} \lambda_1 \lambda_2 + f_{yx} \lambda_2 \lambda_1 + f_{yy} \lambda_2^2$$

3.87 Dimostrare la seguente formula di Taylor con il resto di Lagrange del secondo ordine : nell'ipotesi che f(x,y) sia una funzione di classe C² in un insieme aperto A, se (x,y) e (x+h,y+k) sono punti di A con la proprietà che il segmento di estremi (x,y) e (x+h,y+k) è contenuto in A, allora e siste un numero reale θε(0,1) tale che

$$f(x+h,y+k) = f(x,y) + f_{x}(x,y)h + f_{y}(x,y)k +$$

$$+ \frac{1}{2} [f_{xx}(x+\vartheta h,y+\vartheta k)h^{2} + 2f_{xy}(x+\vartheta h,y+\vartheta k)hk +$$

$$+ f_{yy}(x+\vartheta h,y+\vartheta k)k^{2}]$$

[La funzione di una variabile reale g(t)=f(x+th,y+tk) à derivabile due volte, con derivata seconda continua. Possiamo perciò scrivere la formula di Taylor di g(t), con centro $t_o=0$, con t=1 e con il resto di La grange al secondo ordine: esiste un numero $\vartheta \in (0,1)$ tale che

$$g(1) = g(0) + g'(0) + \frac{1}{2} g''(\theta).$$

La tesi segue ponendo rispettivamente t=0 e t= ϑ nelle due relazioni

$$g'(t) = f_{\chi}(x+th,y+tk)h + f_{\chi}(x+th,y+tk)k$$

$$g^{\prime\prime}(t) = f_{\chi\chi}(x+th,y+tk)h^2 + 2f_{\chi\chi}(x+th,y+tk)hk+f_{\chi\chi}(x+th,y+tk)k^2$$

3H. Funzioni di tre o più variabili reali

Proponiamo in questo paragrafo esercizi relativi a funzioni di tre variabili reali

$$f = f(x,y,z)$$
, con $(x,y,z) \in \mathbb{R}^3$,

ed anche, soprattutto, relativi a funzioni di n varia bili reali (n \geq 1)

$$f=f(x)=f(x_1,x_2,...,x_n)$$
, con $x=(x_1) \in R^n$.

Nei paragrafi precedenti abbiamo già enunciato, nel caso generale delle funzioni di n variabili, le principali definizioni e proprietà, come ad esempio la definizione di limite ed i concetti di continuità, deri vabilità e differenziabilità. Ricordiamo qui che usia mo la notazione

$$|x| = (\sum_{i=1}^{n} x_{i}^{2})^{1/2}$$
 , con $x = (x_{i}) \in \mathbb{R}^{n}$,

per indicare il modulo (o norma) del vettore x. Denotiamo inoltre con

$$(x,y) = \sum_{i=1}^{n} x_i y_i$$
 $(x=(x_i), y=(y_i) \in \mathbb{R}^n)$

- il prodotto scalare tra i vettori x e y.
- 3.88 Verificare che il prodotto scalare fra vettori di \mathbb{R}^n verifica le seguenti proprietà $(x,y,z\in\mathbb{R}^n$, $\lambda\in\mathbb{R})$:
 - (a) (x,y) = (y,x)
 - (b) (x+y,z) = (x,z) + (y,z)
 - (c) $(\lambda x, y) = \lambda(x, y)$

- (d) $(x,x) \ge 0$ e (x,x)=0 se e solo se x=0
- (e) $|(x,y)| \le |x| \cdot |y|$ (disuguaglianza di Cauchy-Schwarz)
- [(a),(b),(c),(d) sono diretta conseguenza della definizione (x,y)=
- = $\sum_{i=1}^{n} x_i y_i$. La disuguaglianza di Cauchy-Schwarz (e) è conseguenza del-

le proprietà precedenti ed è provata nell'esercizio 2.2]

3.89 Dedurre dalla disuguaglianza di Cauchy-Schwarz e dalla relazione $(x,x) = |x|^2$ la disuguaglianza trian golare:

$$|x+y| \le |x|+|y|$$
, $\forall x, y \in \mathbb{R}^n$.

- 3.90 Verificare che le seguenti funzioni sono continue su Rⁿ:
 - (a) f(x) = |x| (norma di x)
 - (b) g(x)=(x,y) (prodotto scalare con y fissato)
 - [(a) Procediamo come nell'esercizio 2.39. Dalla disuguaglianza triangola re si deduce che

$$|x| = |(x-y)+y| \le |x-y| + |y|$$

da cui $|x| - |y| \le |x-y|$. Scambiando il ruolo di x,y otteniamo $||x| - |y| | \le |x-y|$. Quindi

$$|f(x)-f(x_{\alpha})| = ||x|-|x_{\alpha}|| \le |x-x_{\alpha}|;$$

ciò implica che $\lim_{x \to \infty} f(x) = f(x_0)$.

(b) La tesi segue dalla disuguaglianza seguente, conseguenza delle pro -

prietà (b), (c) con $\lambda = 1$, (e) dell'esercizio 3.88:

$$|g(x)-g(x_0)| = |(x,y)-(x_0,y)| = |(x-x_0,y)| \le |x-x_0| |y|$$

3.91 Verificare che la funzione f(x) = |x|, con $x \in \mathbb{R}^n$, non è derivabile per x=0, mentre se $x \neq 0$ le derivate parziali valgono $f_{x_i} = x_i/|x|$ per ogni $i=1,2,\ldots,n$.

[Ad esempio f non ammette per x=0 derivata parziale rispetto ad x_1 ; infatti

$$f_{x_1}(0) = \lim_{h \to 0^{\pm}} \frac{f(h,0,\ldots,0) - f(0,0,\ldots,0)}{h} = \lim_{h \to 0^{\pm}} \frac{\sqrt{h^2}}{h} = \pm 1.$$

Se $x \neq 0$, le derivate parziali, per i=1,2,...,n, valgono

$$\mathbf{f}_{x_{1}} = \frac{\partial}{\partial x_{1}} \cdot \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}} = \frac{x_{1}}{\sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}} = \frac{x_{1}}{|x|}$$

3.92 Sia λ una direzione di \mathbb{R}^n (cioè $\lambda \in \mathbb{R}^n$ con $|\lambda|=1$) e sia f(x) = |x|. Verificare che, per ogni $x \neq 0$, f(x) è differenziabile e che il gradiente Df e la derivata direzionale $\partial f/\partial \lambda$ valgono

$$Df = \frac{x}{|x|}$$
, $\frac{\partial f}{\partial \lambda} = \frac{(x,\lambda)}{|x|}$, $\forall x \neq 0$.

[Per x \neq 0 le derivate parziali di f valgono $f_{X_{\hat{1}}} = x_{\hat{1}} / |x|$, per ogni i=1,2,...,n. Tali derivate, come rapporto tra funzioni continue (con de nominatore non nullo), sono continue. Perciò f è di classe C^1 in R^n -{0} e quindi è anche differenziabile. Il gradiente vale

Df =
$$(f_{x_1}, f_{x_2}, ..., f_{x_n}) = (\frac{x_1}{|x|}, \frac{x_2}{|x|}, ..., \frac{x_n}{|x|}) = \frac{x^r}{|x|}$$

La derivata direzionale, per x ≠ 0, vale

$$\frac{\partial \mathbf{f}}{\partial \lambda} = \sum_{i=1}^{n} \mathbf{f}_{\mathbf{x}_{i}} \lambda_{i} = \sum_{i=1}^{n} \frac{\mathbf{x}_{i}}{|\mathbf{x}|} \lambda_{i} = \frac{1}{|\mathbf{x}|} \sum_{i=1}^{n} \mathbf{x}_{i} \lambda_{i} = \frac{1}{|\mathbf{x}|} (\mathbf{x}, \lambda)$$

3.93 Verificare che l'equazione del piano tangente al grafico della funzione f(x)=|x| in corrispon denza di un punto generico $x_o \neq 0$ è

$$y = \frac{(x_0 + x_0)}{|x_0|}, \qquad \forall x \in \mathbb{R}^n.$$

$$[y = f(x_0) + (Df(x_0), x - x_0) = |x_0| + (\frac{x_0}{|x_0|}, x - x_0) =$$

$$= |x_0| + \frac{1}{|x_0|} [(x_0, x) - |x_0|^2] = \frac{(x_0, x)}{|x_0|}]$$

3.94 Verificare che l'equazione del piano tangente al grafico della funzione $f(x) = |x|^2$ in un punto generico $x_0 \in \mathbb{R}^n$ è data da

$$y=2(x,x_o) - |x_o|^2$$
, $\forall x \in \mathbb{R}^n$.

- 3.95 Sia g(t) una funzione derivabile per $t \ge 0$ e sia f(x) = g(|x|).
 - (a) Calcolare le derivate parziali di f per $x\neq 0$
 - (b) Verificare che f è derivabile per x=0 se e solo se g'(0) = 0.
 - (c) Verificare che f è differenziabile per x = 0 se e solo se g'(0) = 0.

[(a)
$$f_{x_{\underline{i}}} = g'([x]) \cdot \frac{\partial}{\partial x_{\underline{i}}} |x| = g'([x]) \cdot \frac{x_{\underline{i}}}{|x|}$$
, $\forall x \neq 0$, $\forall i = 1, 2, ...n$.

(b) Per i = 1,2,...,n e per h \in R risulta

$$\lim_{h\to 0^{\pm}} \frac{g(|h|)-g(0)}{h} = \lim_{h\to 0^{\pm}} \frac{g(|h|)-g(0)}{|h|} \cdot \frac{|h|}{h} = \pm g'(0)$$

e quindi esiste il limite per $h \to 0$ (=0= $f_{X_i}(0)$) se e solo se g'(0)=0.

(c) Se f è differenziabile in 0, deve essere anche derivabile in tale punto e perciò è necessario che g'(0)=0. Viceversa, se g'(0)=0, risul-

ta $f_{x_i}(0) = 0$ per ogni i=1,2,...,n; quindi,se h=(h_i) $\in \mathbb{R}^n$,

$$\lim_{h \to 0} \frac{f(0+h)-f(0) - \sum_{i=1}^{n} f_{X_{i}}(0)h_{i}}{|h|} = \lim_{h \to 0} \frac{g(|h|)-g(0)}{|h|} = g'(0)=0$$

- e quindí f è differenziabile in 0]
- 3.96 Sia $f(x)=|x|^p$ con p parametro positivo. Verifica re che f è differenziabile per x=0 se e solo se p>1. Si verifichi inoltre che se p è un intero pari allora f è di classe $C^{\infty}(\mathbb{R}^n)$, mentre se, ad esempio, p=3/2 allora f è di classe $C^1(\mathbb{R}^n)$ ma non di classe $C^2(\mathbb{R}^n)$.

[Per quanto riguarda la differenziabilità in x=0, si può applicare il cri terio dell'esercizio precedente con g(t)=t^p. Per il resto si proceda come nell'esercizio 3.58]

3.97 Sia f(x,y,z) la funzione di tre variabili reali definita da

$$f(x,y,z) = |xyz|^{\alpha}$$
, $\forall (x,y,z) \in \mathbb{R}^3$.

con α parametro positivo. Verificare che nel punto (0,0,0) la funzione f è:

- (a) derivabile per ogni $\alpha > 0$;
- (b) differenziabile se e solo se $\alpha > 1/3$.
- [(a) Essendo f=0 lungo gli assi coordinati, in (0,0,0) le derivate f_{χ}, f_{y}, f_{y} sono nulle.
- (b) La funzione è differenziabile in (0,0,0) se e solo se è nullo il limite

(*)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{\left|xyz\right|^{\alpha}}{\sqrt{x^2+y^2+z^2}}$$

Utilizzando la disuguaglianza

$$|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2 + z^2}$$

e le analoghe disuguaglianze per |y|, |z|, otteniamo $|xyz| \le (x^2+y^2+z^2)^{3/2}$, da cui, se $(x,y,z) \ne (0,0,0)$

$$0 \le \frac{\left| xyz \right|^{\alpha}}{\sqrt{x^2 + y^2 + z^2}} \le (x^2 + y^2 + z^2)^{\frac{3\alpha - 1}{2}}.$$

Perciò, se $\alpha > 1/3$, il limite ($^{\pm}$) vale zero. Se invece $\alpha \le 1/3$, lungo le rette per l'origine di equazioni parametriche

$$x(t)=\ell t$$
, $y(t)=mt$, $z(t)=nt$

($\ell^2 + m^2 + n^2 = 1$), il rapporto in (*) vale

$$\frac{\left|xyz\right|^{\alpha}}{\sqrt{x^2+y^2+z^2}} = \frac{\left|\ell m\pi\right|^{\alpha} \left|t\right|^{3\alpha}}{\sqrt{\ell^2+m^2+n^2} \left|t\right|} = \left|\ell m\pi\right|^{\alpha} \left|t\right|^{3\alpha-1}$$

e, se $\alpha < 1/3$, diverge all'infinito (per ℓ mm $\neq 0$) mentre, se $\alpha = 1/3$, d<u>i</u> pende dalla retta scelta; ciò prova che, se $\alpha \leq 1/3$, non esiste il limite (n)

3.98 Generalizzando l'esercizio precedente (ed anche l'esercizio 3.56), verificare che la funzione

$$f(x_1, x_2, \dots, x_n) = |x_1 \cdot x_2 \cdot \dots \cdot x_n|^{\alpha}$$

è differenziabile nell'origine degli assi se e solo se $\alpha > 1/n$.

[Utilizzare la disuguaglianza $|x_i| \le |x|$, valida per ogni i=1,2,...n e per ogni $x = (x_i) \in \mathbb{R}^n$ (si faccia attenzione che a primo membro della disuguaglianza c'è un valore assoluto, mentre a secondo membro c'è un modulo)]

3.99 Calcolare, all'interno dei rispettivi insiemi di definizione, le derivate parziali delle seguenti funzioni di tre variabili reali

- (a) f = xyz (b) f = log(xyz)
- (c) $f = x^{yz}$ (d) $f = x^{yz}$
- [(a) $f_x = yz$, $f_y = xz$, $f_z = xy$; (b) $f_y = 1/x$, $f_y = 1/y$, $f_z = 1/z$;
- (c) $f_y = yzx^{yz-1}$, $f_y = x^{yz}z \log x$, $f_y = x^{yz}y \log x$;
- (d) $f_y = y^2 x^{y^2-1}$, $f_y = x^{y^2} y^{z-1} z \log x$, $f_z = x^{y^2} y^z \log x \log y$
- 3.100 Verificare che le seguenti funzioni di tre variabili reali

 - (a) $f = \log \frac{xy}{x}$ (b) $f = x \operatorname{arctg}(yz)$

soddisfano la tesi del teorema di Schwarz relativa alle derivate seconde miste:

$$f_{xy} = f_{yx}$$
, $f_{xz} = f_{zx}$, $f_{yz} = f_{zy}$.

- 3.101 Calcolare le derivate parziali f_{x_i} ($i=1,2,\ldots,n$) delle seguenti funzioni di n variabili reali $(x_1, x_2, \dots, x_n) = x$:
 - (a) $f = \log(x_1 \cdot x_2 \cdot ... \cdot x_n)$ (b) $f = \sum_{i=1}^{n} x_i x_j$
 - (c) f=arcsen $\frac{|x|}{\sqrt{|x|^2+1}}$ (d) f=log $\sqrt{\frac{1-|x|}{1+|x|}}$
 - [(a) $f_{x_i} = 1/x_i$; (b) $f_{x_i} = 2x_i$ (il lettore in difficoltà provi a conside rare preliminarmente il caso n=2);
 - (c) $f_{x_i} = \frac{x_i}{|x|(|x|^2+1)}$; (d) $f_{x_i} = \frac{x_i}{|x|(|x|^2-1)}$
- 3.102 Calcolare la derivata direzionale delle funzioni considerate nell'esercizio precedente, nella

direzione della retta di equazione $x_1=x_2=...=$ $=x_n$, nel verso delle x_i crescenti.

[Si chiede di calcolare la derivata direzionale $\partial f/\partial \lambda$, dove λ è il. vettore unitario

$$\lambda = (\lambda_i) = (\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}})$$
.

Nei punti in cui f è differenziabile, la derivata direzionale vale

$$\frac{\partial f}{\partial \lambda} = \sum_{i=1}^{n} f_{x_i} \lambda_i = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} f_{x_i}.$$

Ad esempio, nel caso (a), nell'insieme di definizione di f risulta $\partial f/\partial \lambda = (1/\sqrt{n})\sum_{i=1}^{n} 1/x_{i}$

3.103 Sia f(t) una funzione definita in $[0,+\infty)$ e derivabile due volte per t > 0. Poniamo

$$u(x)=f(|x|), \quad \forall_{x \in \mathbb{R}^n}$$

Verificare che, per ogni $x \neq 0$, le derivate se conde $u_{x_ix_i}$ soddisfano la relazione

$$\sum_{i=1}^{n} u_{x_{i}x_{i}}(x) = f''(|x|) + (n-1) \frac{f'(|x|)}{|x|}$$

$$\left[u_{X_{\underline{i}}} = f'(|x|) \frac{x_{\underline{i}}}{|x|}; u_{X_{\underline{i}}X_{\underline{i}}} = f''(|x|) \frac{x_{\underline{i}}^2}{|x|^2} + f'(|x|) \left(\frac{1}{|x|} - \frac{x_{\underline{i}}^2}{|x|^3} \right) \right].$$

Nel sommare rispetto ad i=1,2,...,n occorre tener presente che

$$\sum_{i=1}^{n} \frac{x_{i}^{2}}{|x|^{2}} = \frac{1}{|x|^{2}} \sum_{i=1}^{n} x_{i}^{2} = 1; \sum_{i=1}^{n} \frac{1}{|x|} = \frac{n}{|x|} ; \sum_{i=1}^{n} \frac{x_{i}^{2}}{|x|^{3}} = \frac{1}{|x|}$$

3.104 Sia g(t) una funzione derivabile due volte per $t \ge 0$ e sia

$$u(x) = g(|x|^2), \quad \forall x \in \mathbb{R}^n$$

Verificare che, per ogni xeRⁿ, si ha

$$\sum_{i=1}^{n} u_{x_{i}x_{i}}(x) = 4[g''(|x|^{2})|x|^{2} + \frac{n}{2} g'(|x|^{2})].$$

3.105 Sia u(x)=f(|x|), con f(t) derivabile due volte per t>0. Verificare che, per ogni $x \neq 0$, risulta

$$\frac{1}{1+1} \frac{\partial}{\partial x_i} \left(\frac{u_{x_i}}{\sqrt{1+|Du|^2}} \right) = \frac{f''}{(1+f'^2)^{3/2}} + \frac{n-1}{|x|} \cdot \frac{f'}{(1+f'^2)^{1/2}}.$$

3.106 Una funzione di n variabili reali $u(x_1, x_2, \ldots, x_n)$ si dice armonica in un insieme aperto A se essa ammette in A derivate seconde $u_{x_ix_i}$ e se es se soddisfano l'equazione differenziale (equazione di Laplace)

$$\sum_{i=1}^{n} u_{x_{i}x_{i}} = 0 , \qquad \forall x = (x_{1}, x_{2}, \dots, x_{n}) \in A.$$

Verificare che, se $n \ge 3$, la funzione $u(x) = |x|^{2-n}$ è armonica in \mathbb{R}^n - $\{0\}$.

[Si può utilizzare la formula dell'esercizio 3.103 con $f(t)=t^{2-n}$, oppure quella dell'esercizio 3.104 con $g(t)=t^{(2-n)/2}$. Ad esempio, per f(t) risulta

$$f^{n}(t)+(n-1)\frac{f^{n}(t)}{t}=t^{-n}[(2-n)(1-n)+(n-1)(2-n)]=0, \quad \forall t \neq 0]$$

3.107 Verificare che la funzione $u(x) = \sqrt{1-|x|^2}$ (che ha per grafico una semisfera in R^n) verifica l'equazione differenziale alle derivate parziali (detta equazione delle superfici con curvatura media costante)

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\frac{u_{x_{i}}}{\sqrt{1+|Du|^{2}}} \right) = -n, \quad \forall x \in \mathbb{R}^{n} : |x| < 1.$$

[Si utilizzi la formula dell'esercizio 3.105 con $f(t) = \sqrt{1-t^2}$]

3.108 Una funzione f definita in R^n -{0} si dice omogenea di grado α se

$$f(tx)=t^{\alpha}f(x)$$
, $\forall t>0$, $\forall x \in \mathbb{R}^n - \{0\}$.

Sotto tale ipotesi, verificare che:

(a) se f(x) è differenziabile in R^n - $\{0\}$, le derivate parziali sono omogenee di grado α -1 e vale *l'identità di Eulero*

$$\sum_{i=1}^{n} x_{i} f_{x_{i}} = \alpha f ;$$

- (b) se α < 0, non è finito il limite per $x \to 0$ di f(x), a meno che f non sia identicamente nulla;
- (c) se $\alpha=0$, non esiste il limite per $x\to 0$ di f(x) a meno che f non sia costante;
- (d) se $\alpha > 0$ e se f(x) è continua in $R^n \{0\}$, essa può essere estesa per continuità in x=0 (con il valore f(0) = 0).
- [(a) Si veda l'esercizio 3.70; (b) consideriamo la semiretta per l'origine di direzione λ e di equazioni parametriche $x(t)=\lambda t$ ($t\geq 0$). Lungo tale retta la funzione vale $f(x)=f(t\lambda)=t^{\alpha}f(\lambda)$; se $f(\lambda)\neq 0$, per $t\to +\infty$ tale espressione diverge all'infinito; (c) se $\alpha=0$, con le notazioni precedenti si ha $f(x)=t^{0}$ $f(\lambda)=f(\lambda)$. Perciò, se f non è costante, su ogni semiretta per l'origine di direzione λ , f(x) as sume valore costante rispetto a x, ma dipendente da λ . Ciò implica che non esiste il limite di f(x) per $x\to 0$; (d) per il teorema di Weierstrass, la funzione f(x) assume massimo e minimo (ed è quindi limitata) nell'insieme chiuso e limitato $\{x\in \mathbb{R}^{n}: |x|=1\}$. Sia MER tale che $|f(x)|\leq M$ per ogni $x\in \mathbb{R}^{n}$, con |x|=1. Essendo x/|x| un vettore di modulo l, per ogni $x\in \mathbb{R}^{n}-\{0\}$, otteniamo

$$|f(x)| = |f(|x| \cdot \frac{x}{|x|}) = |x|^{\alpha} |f(\frac{x}{|x|}) | \le M |x|^{\alpha}, \quad \forall x \neq 0.$$

Dall'ipotesi $\alpha > 0$ segue che $f(x) \rightarrow 0$ per $x \rightarrow 0$

3.109 Dimostrare la formula di Taylor con il resto di Lagrange al secondo ordine : se f(x) è una funzione di classe C^2 in un insieme convesso A, se x, x + h sono punti di A, allora esiste un numero reale $\vartheta \varepsilon (0,1)$ tale che

$$f(x+h) = f(x) + \sum_{i=1}^{n} f_{x_i}(x)h_i + \frac{1}{2} \sum_{i,j=1}^{n} f_{x_i x_j}(x+\vartheta h)h_i h_j$$

In simboli più compatti, si può scrivere tale for mula in modo equivalente (dove (Df,h) è il prodotto scalare tra il gradiente Df ed il vettore h, D^2f è la matrice nxn delle derivate seconde, $D^2f \cdot h$ è un prodotto tra matrici con h pensato matrice riga o colonna, infine ($D^2f \cdot h$,h) è un prodotto scalare tra vettori di R^n):

$$f(x+h)=f(x)+(Df(x),h)+\frac{1}{2}(D^2f(x+\vartheta h)\cdot h,h)$$
.

[Applichiamo il metodo proposto neil'esercizio 3.87 per il caso n=2. Posto g(t)=f(x+th) per $t\in[0,1]$, in base alla formula di Taylor (per le funzioni di una variabile) con il resto di Lagrange al secondo ordine, con centro $t_0=0$ e con t=1, esiste $\vartheta\in(t_0,t_1)=(0,1)$ per cui

$$g(t) = g(0) + g'(0) + \frac{1}{2} g''(\vartheta)$$
.

Si ottiene la tesi esplicitando le derivate g^t , $g^{\prime\prime}$ con la regola di de rivazione delle funzioni composte:

$$g'(t) = \sum_{i=1}^{n} f_{X_{i}}(x+th)h_{i};$$

$$g''(t) = \sum_{i=1}^{n} \left[\sum_{j=1}^{n} f_{X_{i}X_{j}}(x+th)h_{j} \right] h_{i} = \sum_{i,j=1}^{n} f_{X_{i}X_{j}}(x+th)h_{i}h_{j}]$$

Capitolo 4

EQUAZIONI DIFFERENZIALI LINEARI

4A. Equazioni differenziali lineari del primo ordine

Un'equazione del tipo

(1)
$$g(x,y,y') = 0.$$

ove y=y(x) è una funzione incognita e y' la sua derivata prima ed ove g è un'assegnata funzione reale di tre variabili reali, prende il nome di equazione differenziale (ordinaria) del primo ordine. Per soluzione (o integrale particolare) della (1), si intende una funzione y=y(x) definita in un intervallo I di R ed ivi derivabile, che soddisfi la (1), cioè tale che risulti

$$g(x,y(x), y'(x)) = 0, \quad \forall x \in I.$$

Un'equazione differenziale del primo ordine si di ce di forma normale se è del tipo

$$(2) y' = f(x,y).$$

Un'equazione del primo ordine del tipo

(3)
$$y' = a(x)y + b(x),$$

ove a(x) e b(x) sono funzioni continue nell'interval lo I, si dice lineare. Se è b(x) = 0, l'equazione (3) si dice omogenea. Le funzioni a(x), b(x) si chiamano, rispettivamente, coefficiente e termine noto dell'equazione (3).

Esempi di equazioni lineari del primo ordine sono le equazioni

$$(4) y' = b(x)$$

$$(5) y' = y.$$

Com'è noto dal calcolo integrale, le soluzioni della (4) sono date dalla formula

$$y = B(x) + c$$

ove B(x) è una primitiva di b(x) e $c \in \mathbb{R}$. Per quanto \underline{n} guarda la (5), osserviamo che le funzioni

$$y = ce^x$$
 (ceR)

sono sue soluzioni. Viceversa, se y(x) è una soluzione della (5), cioè se risulta

$$y'(x)-y(x)=0$$
, $\forall x \in I$,

moltiplicando ambo i membri per ex, si ha

$$e^{-x} y'(x) - e^{-x} y(x) = 0$$

e cioè

$$\frac{d}{dx} [e^{-x} y(x)] = 0, \qquad \forall x \in I.$$

Ne segue

$$e^{-x} y(x) = c$$

con c costante opportuna e perciò

(7)
$$y(x) = c e^{x}$$
.

Abbiamo così verificato che tutte le soluzioni dell'equazione differenziale (5) sono date dalla (7). Le equazioni differenziali (4) e (5), che sono casi particolari della (3), ammettono infinite soluzioni, dipendenti da una costante arbitraria c. E' perciò naturale aspettarsi che, anche in generale, la equazione differenziale (3) ammetta infinite soluzioni, dipendenti da una costante scelta arbitrariamen-

Sussiste in proposito il seguente

TEOREMA. Tutte le soluzioni dell'equazione differenziale (3) sono espresse da

(8)
$$y(x) = e^{A(x)} \left(\int e^{-A(x)} b(x) dx \right)$$

ove A(x) è una primitiva di a(x).

te.

Si noti che l'integrale indefinito che figura nel la (8), dipende, al solito, da una costante arbitraria. Volendo mettere bene in evidenza la dipendenza dalla costante, possiamo riscrivere la (8) nel modo seguente:

(8')
$$y(x) = e^{A(x)} \left(\int e^{-A(x)} b(x) dx + c \right).$$

La dimostrazione del teorema fornisce anche il procedimento che conviene seguire nella pratica per risolvere equazioni particolari e perciò la richiamia mo. Moltiplichiamo ambo i membri della (3) per $e^{-A(x)}$, detto fattore integrante, ottenendo

(9)
$$e^{-A(x)}y^{T}(x)=e^{-A(x)}a(x)y(x)+e^{-A(x)}b(x);$$

cioè, essendo A'(x) = a(x):

$$e^{-A(x)}y'(x)-e^{-A(x)}A'(x)y(x)=e^{-A(x)}b(x)$$

relazione che può esser riscritta nel modo seguente:

$$\frac{d}{dx} \left[e^{-A(x)} y(x) \right] = e^{-A(x)} b(x).$$

Integrando ambo i membri, si ha

$$e^{-A(x)} y(x) = \int e^{-A(x)} b(x) dx,$$

cioè la (8). Viceversa, se y(x) è data dalla (8), si verifica facilmente che essa soddisfa l'equazione(3).

La (8) prende il nome di integrale generale dell'e quazione differenziale (3).

In particolare, le soluzioni dell'equazione omogenea

$$(10) y' = a(x)y$$

sono espresse da

(11)
$$y(x) = c e^{A(x)} \qquad (c \in \mathbb{R})$$

con A(x) primitiva di a(x).

Sussiste inoltre il

TEOREMA DI CAUCHY (PER LE EQUAZIONI LINEARI DEL PRI-MO ORDINE). Siano a(x) e b(x) funzioni continue nell'inter-vallo chiuso e limitato I, e sia $x_0 \in I$. Per ogni $y_0 \in R$ esiste una ed una sola funzione y(x), derivabile in I, soluzione del problema di Cauchy

(12)
$$\begin{cases} y' = a(x)y + b(x) \\ y(x_o) = y_o \end{cases}$$

Dalla formula (8) si ricava l'espressione della soluzione y(x) di (12):

(13)
$$y(x) = e^{\int_{x_o}^{x} a(t)dt} (y_o + \int_{x_o}^{x} e^{-\int_{x_o}^{t} a(s)ds} b(t)dt)$$

che, per b(x) = 0 si riduce a

(14)
$$y(x) = y_o e^{\int_{x_o}^{x} a(t)dt}$$

4.1 Dimostrare che la funzione identicamente nulla è l'unica soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)y \\ y(x_0) = 0 \end{cases}$$

ove a(x) è continua in $I e x_0 \in I$.

[Che la funzione $y(x) \equiv 0$ sia soluzione del dato problema di Cauchy è evidente. Che sia l'unica segue dal teorema di esistenza ed unicità]

4.2 Dimostrare che la soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)y \\ y(x_0) = 1 \end{cases}$$

con a(x) continua in [a,b] e $x_o \in [a,b]$, non si an

nulla in alcun punto di [a,b].

[Se esistesse $\bar{x} \in [a,b]$ tale the $y(\bar{x})=0$, la funzione y(x) sarebbe anche soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)y \\ y(\bar{x}) = 0 \end{cases}$$

c cioè, per l'esercizio precedente, dovrebbe essere y(x) identicamente nulla, contro il fatto che $y(x_o)=1$

4.3 Sia yo(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)y \\ y(x_0) = 1 \end{cases}$$

con a(x) funzione continua in [a,b] e $x_o \in [a,b]$. Dimostrare che l'integrale generale dell'equazione y'=a(x)y è dato da

$$y = cy_o(x)$$
.

[Si deve dimostrare che la generica soluzione y dell'equazione y'=a(x)y, è data da y(x) = $cy_o(x)$, con c costante opportuna. Posto $c=y(x_o)$, le funzioni y(x) e $cy_o(x)$ sono entrambe soluzioni del problema di Cauchy

$$\begin{cases} y' = \mathbf{a}(x)y \\ y(x_0) = c \end{cases}$$

e perciò, per il teorema di unicità di Cauchy, risulta $y(x)=cy_o(x)$ per ogni $x \in [a,b]$

4.4 Risolvere l'equazione differenziale lineare omogenea y'=8xy.

[Una primitiva di a(x)=8x è $A(x)=4x^2$. Moltiplicando ambo i membri della

equazione data per $e^{-A(x)}=e^{-4x^2}$, si ha $y^ie^{-4x^2}=8xe^{-4x^2}$ y, cioè $y^ie^{-4x^2}-8x$ $e^{-4x^2}y=0$, da cui

$$\frac{d}{dx} \left(e^{-4x^2} y \right) = 0.$$

Ne segue e^{-4x^2} y = c, cioè y = c e^{4x^2}

4.5 Risolvere l'equazione differenziale lineare omogenea

$$y^{1} = \frac{x}{x^{2}+1} y$$

[Una primitiva di a(x) = x/(x²+1) è A(x)=log $\sqrt{x²+1}$. Moltiplicando ambo i membri dell'equazione data per $e^{-A(x)} = 1/\sqrt{x²+1}$, si ha [y'/ $\sqrt{x²+1}$]-[yx/(x²+1)³/²]= 0 da cui

$$\frac{d}{dx} \left(y / \sqrt{x^2 + 1} \right) = 0.$$

Ne segue $y/\sqrt{x^2+1} = c$, cioè $y = c\sqrt{x^2+1}$

4.6 Risolvere nell'intervallo $(0,\pi)$ l'equazione differenziale omogenea

$$y' = (\cot x)y$$
.

[Una primitiva della funzione $a(x)=\cot x$ è $A(x)=\log |\sin x|$. Neil'intervallo $(0, \pi)$, la funzione senx è positiva; quindi in tale intervallo , $A(x) = \log \sin x$. Dalla formula risolutiva (11), si ricava

$$v(x) = c e^{A(x)} = c e^{\log senx} = c senx.$$

Si poteva procedere anche tenendo conto dell'esercizio 4.3. Infatti, de \underline{t} ta y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = (\cot g x) y \\ y(x_g) = 1 \end{cases}$$

si ha y(x) > 0 per $x \in (0, \pi)$, grazie all'esercizio 4.2, e perciò,

$$y'/y = \cot x$$
.

Integrando ambo i membri fra x_o e x, si ha

$$\int_{X_o}^{X} \frac{y'(t)}{y(t)} dt = \int_{X_o}^{X} \cot t dt$$

da cui, essendo log $y(x_0) = \log t = 0$

$$\log y(x) = \log \sin x - \log \sin x$$

Scegliendo $x_0 = \pi/2$ si ha log $y(x) = \log \sin x$ e infine $y(x) = \sin x$. Dallesercizio 4.3 segue che la generica soluzione dell'equazione data è $y = c \sin x$. In generale, per $x \neq k\pi$, si trova la soluzione $y = c' |\sin x|$ che è equivalente a $y = c \sin x$ pur di cambiare il segno alla costante

4.7 Determinare l'integrale generale delle seguenti equazioni differenziali lineari omogenee

$$y' = 3y$$
 [$y = ce^{3x}$]
 $y' = 2xy$ [$y = ce^{x^2}$]
 $y' = (x-1)y/x$ [$y = ce^{x/x}$]
 $y' = (cosx)y$ [$y = ce^{x/x}$]
 $y' = -e^{x}y$ [$y = ce^{x/x}$]
 $y' = 2xe^{x/2}y$ [$y = ce^{x/x}$]
 $y' = (tgx)y$ [$y = c/cosx$]
 $y' = -y/2x$ [$y = c/\sqrt{x}$]

y'=2y/x	$[y = cx^2]$
y'=-(cotgx)y	[y = c/senx]
$y^{\dagger} = (\sqrt{\chi}) y$	$[y = ce^{2/(3\sqrt{x^3})}]$
$y' = y/\sqrt{x+5}$	$[y = ce^{2\sqrt{x+5}}]$
$\dot{y}' = (\log x) y/x$	$[y = ce^{(\log^2 x)/2}]$
$y'=xy/(x^2-1)$	$[y = c x^2 - 1 ^{1/2}]$
$y' = (1 + \log x)y$	$[y = cx^{x}]$
y'=y/(x logx)	[y = c logx]
y'=y/sen(x+1)	[y=c tg [(x+1)/2]]
y'=xy sen x	[y=ce (senx-xcosx)]
y'=-(sen2x)y	$[y = c e^{\cos^2 x}]$
y'=(arctgx)y	$[y=c e^{xarctgx}/\sqrt{1+x^2}]$
y'=(arcsenx)y	[y=c e $(x \operatorname{arcsenx} + \sqrt{1-x^2})$]
y'=g'(x)y	$[y = c e^{g(x)}]$

4.8 Risolvere l'equazione differenziale non omogenea

$$y' = -\frac{2}{x}y + \frac{\sin 4x}{x^2}$$

[Una primitiva A(x) di a(x)=-2/x è $A(x)=-2\log \left| x \right| = -\log x^2$, per cui il fattore integrante è $e^{-A(x)}=x^2$. Si ha, moltiplicando per x^2 ambo i membri dell'equazione, $x^2y'=-2xy+\sin 4x$, cioè $x^2y'+2xy=\sin 4x$ e ancora $D(x^2y)=\sin 4x$. Integrando ambo i membri di quest'ultima relazione, si ha $x^2y=\int \sin 4x dx = -(\cos 4x)/4+c$ e perciò $y=(-\cos 4x/4+c)/x^2$]

4.9 Determinare l'integrale generale delle seguenti equazioni differenziali lineari non omogenee

$$y'=3y+1$$
 [$y=ce^{3x}-(1/3)$]
 $y'=ay+b$, $(a,b\in R, a\neq 0)$ [$y=ce^{ax}-(b/a)$]

y'=y+x	$[y = c e^{X} - x - 1]$
$y^{\dagger} = -y + e^{-x}$	$[y=e^{-x}(x+c)]$
y'+y/x = 1/x	[y=1+c/x]
$y' = (y/x) + xe^x$	[y=xex+cx]
y'=y+e ^x	$[y=(c+x)e^{x}]$
$y'=4y-e^{2x}$	$[y=ce^{4x}+e^{2x}/2]$
$y'=ay+e^{bx}$ (a\neq b)	$[y=[e^{bx}/(b-a)]+c]$
$y' = -2xy + xe^{-x^2}$	$[y=e^{-x^2}(c + x^2/2)]$
y' = (2y/x) + (x+1)/x	$[y=cx^2 - x - (1/2)]$
y'=y+x²-1	$[y=ce^{X}-(x+1)^{2}]$
$y' = e^{x} - (y/x)$	$[y=[c+(x-1)e^{x}]/x]$
$y' = 2xy + e^{x^2}\cos x$	[y=e ^{x²} (senx + c)]
y'=-y+e ^{-x} cosx	$[y=e^{-x}(senx + c)]$
$y' = -(y + e^{-x}/x^2)$	$[y=e^{-x}(c+1/x)]$
$y'+y=2xe^{-x}$	$[y=e^{-x}(x^2+c)]$
$y' + y = 3x^{2}e^{-x}$	$[y=e^{-x}(x^3+c)]$
$y' + y = e^{-x} / 2\sqrt{x}$	$[y=e^{-x}(\sqrt{x}+c)]$
$y' = (\cos x) y + e^{-\sin x} \log x$	[y=e senx (xlogx-x+c)]
$y' = (3y/x) + x^3 e^x$	$[y=x^3(e^X+c)]$
y'=(tgx)y+cosx	[y=[(x/2)+(sen2x)/4+c]/cosx]
$y' = (y+1)/\sqrt{x}$	[y=c e ^{2√x} + 1]
y'=(y+1)cosx	[y=c e senx - 1]

$$\begin{cases} y' = 3x e^{x^2} y \\ y(0) = 1 \end{cases}$$

[Una primitiva di $a(x)=3xe^{x^2}$ è $A(x)=3e^{x^2}/2$, perciò l'integrale generale dell'equazione data è y(x)=c $e^{3e^{X^2}/2}$. Imponendo la condizione y(0)=1, si trova y(0)=c $e^{3/2}=1$, da cui $c=e^{-3/2}$. Pertanto la soluzione del problema di Cauchy è $y(x)=e^{3(e^{X^2}-1)/2}$]

4.11 Risolvere i seguenti problemi di Cauchy

$$\begin{cases} y' = (1-y)/x \\ y(1) = 0 \end{cases} \qquad [y = (x-1)/x] \end{cases}$$

$$\begin{cases} y' = 2y+1 \\ y(0) = 1 \end{cases} \qquad [y = (3e^{2x}-1)/2] \end{cases}$$

$$\begin{cases} y' = ay+b \quad (a,b \in \mathbb{R}, a \neq 0) \\ y(0) = 0 \end{cases} \qquad [y = (e^{ax}-1)b/a] \end{cases}$$

$$\begin{cases} y' + \frac{1}{x}y = x^3 \\ y(1) = 1/5 \end{cases}$$

$$\begin{cases} y' = (tgx)y+1 \\ y(\pi) = 1 \end{cases} \qquad [y = tgx - (1/\cos x)] \end{cases}$$

$$\begin{cases} y'' = [(x+1)y/x] + x(1-x) \end{cases} \qquad [y = (e^{-1})xe^{x-1} + x^2]$$

^{4.10} Risolvere il problema di Cauchy

$$y' = [-y/(\operatorname{sen}^2 x \operatorname{cotg} x)] + \frac{1}{2}$$

$$+ \cot g^2 x \qquad [y = (\operatorname{cotg} x)(\log \operatorname{sen} x)]$$

$$y(\pi/4) = \log(\sqrt{2}/2)$$

$$\begin{cases} y' = 2y/x + 3x^2 \cos x & [y = 3x^2 (\sin x + \pi)] \\ y(\pi) = 3\pi^3 & \end{cases}$$

$$\begin{cases} y' = -(\cos x)y + \sin x \cos x \\ y(0) = 0 \end{cases} \quad [y = \sin x + e^{-\sin x} - 1]$$

$$\begin{cases} y' = (\cot gx)y + x^5 senx \\ y(0) = 0 \end{cases} [y = senx (c + x^6/6)]$$

$$\begin{cases} y' = 2xy/(1+x^2) + (x+x^3) \sin x [y=(1+x^2)(\sin x - x \cos x)] \\ y(0) = 0 \end{cases}$$

4.12 Siano a(x) e b(x) funzioni continue nell'intervallo chiuso e limitato $[\alpha,\beta]$ e siano $x_o \in [\alpha,\beta]$, $y_o \in R$. Detta y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = a(x)y + b(x) \\ y(x_o) = y_o \end{cases}$$

ed indicata con $\|\ \|$ la norma del sup in C°([α , β]), dimostrare che esiste una costante c > 0 , dipendente da α,β e $\|a\|$, ma indipendente da y(x), tale che

$$\|y\| + \|y'\| \le c(|y_0| + \|b\|).$$

[Dalla formula risolutiva (13), tenendo presente che ($x_o \le x$)

$$\int_{x_{o}}^{x} a(t)dt \qquad \int_{x_{o}}^{x} |a(t)| dt \qquad \int_{\alpha}^{\beta} |a(t)| dt$$

$$e \qquad \leq e \qquad \leq \leq$$

$$< e^{(\beta - \alpha) \|a\|} = K$$

e che

$$-\int_{X_{o}}^{t} a(s) ds \qquad \left| \int_{X_{o}}^{t} a(s) ds \right|$$

e ricordando le proprietà degli integrali definiti, si ha

$$|y(x)| \le K (|y_o| + |\int_{X_o}^{X} K b(t) dt|) \le$$

$$\le K(|y_o| + K \int_{\alpha}^{\beta} |b(t)| |dt) \le$$

$$\le K(|y_o| + K(\beta - \alpha) ||b||) \le$$

$$\le K'(|y_o| + ||b||)$$

ove si é posto $K' = \max \{K, K^2 (\beta - \alpha)\}$. Passando al sup per $x \in [\alpha, \beta]$, ne segue

(*)
$$\|y\| \le K'(\|y_0\| + \|b\|)$$

con K' costante dipendente solo da α , β , a(x) e non da y(x). Essendo per ipotesi y' = ay + b, si ha

$$\| \mathbf{y}^{\mathsf{t}} \| < \| \mathbf{a} \| \cdot \| \mathbf{y} \| + \| \mathbf{b} \| ;$$

dalla (%) segue allora

ove si è posto c = $(\|a\|+1) K' + 1]$

4.13 Siano a(x) e $b_n(x)$ funzioni continue nell'intervallo $[\alpha,\beta]$ e sia $y_{o,n}$ una successione di numeri reali. Supposto che $b_n(x) \rightarrow b(x)$ uniformemente in $[\alpha,\beta]$ e che $y_{o,n} \rightarrow y_o$, dimostrare che la successione $y_n(x)$ delle soluzioni dei problemi di Cauchy

$$\begin{cases} y_n' = a(x)y_n + b_n(x) \\ y_n(x_0) = y_{0,n} \end{cases}$$

converge in $C^1([\alpha,\beta])$ verso la soluzione y(x) del problema di Cauchy

$$\begin{cases} y' = a(x)y + b(x) \\ y(x_0) = y_0 \end{cases}$$

[Sottraendo membro a membro, si ottiene

$$(y_n - y)^* = a(x)(y_n - y) + b_n(x) - b(x)$$

 $(y_n - y)(x_o) = y_{o,n} - y_o$.

Applicando il risultato dell'esercizio precedente, si ha

$$\|y_n - y\| + \|y_n - y^*\| \le c (\|y_{o,n} - y_o\| + \|b_n - b\|)$$

da cui segue l'asserto, ricordando la definizione della norma su C 1 (ved. esercizio 2.25)]

4B. Equazioni differenziali lineari omogenee a coefficienti costanti

Un'equazione differenziale del tipo

(1)
$$y'' + ay' + by = f(x)$$

con a,b \in R e f(x) funzione continua in un intervallo I di R, prende il nome di equazione differenziale lineare del secondo ordine a coefficienti costanti, di termine noto f(x). L'equazione (1) si dice omogenea se f(x) \equiv 0, altrimenti si dice non omogenea.

Per soluzione (o integrale particolare) dell'equazione (1), si intende una funzione y = y(x), derivabile due volte in I, che soddisfi la (1), cioè tale che

$$y''(x)+ay'(x)+by(x)=f(x)$$
 $\forall x \in I.$

L'equazione differenziale omogenea

(2)
$$y'' + ay' + by = 0$$

prende il nome di equazione omogenea associata all'equazione (1).

Nel presente paragrafo ci limitiamo a studiare l'equazione omogenea (2), rimandando al paragrafo successivo lo studio della (1).

Per determinare l'integrale generale dell'equa zione (2) e cioè l'insieme di tutte le sue soluzioni particolari y(x), assai utili sono i seguenti teoremi.

TEOREMA 1. Se y₁ e y₂ sono due soluzioni particolari

della (2), allora anche la funzione

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

con C_1 , C_2 \in \mathbb{R} , è una soluzione particolare della (2).

TEOREMA 2. Se y_i e y_2 sono due soluzioni particolari della (2), tali che

(3)
$$y_1(0)y_2(0)-y_2(0)y_1(0) \neq 0$$
,

allora tutte le soluzioni della (2) sono del tipo $c_1y_1(x) + c_2y_2(x)$, al variare dei parametri c_1 , c_2 .

Si dimostra che la condizione (3) equivale a dire che le funzioni $y_1(x)$, $y_2(x)$ sono linearmente indipendenti, cioè che le uniche costanti c_1 , c_2 per cui si ha

$$c_1 y_1(x) + c_2 y_2(x) = 0 \qquad \forall x \in \mathbb{R}$$

sono le costanti $c_1 = c_2 = 0$.

Dal teorema 2 segue, perciò, che: per determinare l'integrale generale dell'equazione omogenea

(4)
$$L(y) = y'' + ay' + by = 0$$

basta conoscere due suoi integrali particolari linearmente indipendenti \mathbf{y}_1 e \mathbf{y}_2 .

Per determinare esplicitamente due integrali par ticolari y_1 e y_2 della (4), si considera la sua equazione caratteristica

$$\lambda^2 + a\lambda + b = 0,$$

che è un'equazione algebrica di secondo grado, le cui

radici (complesse) sono

(6)
$$\lambda_1 = (-a - \sqrt{\Delta})/2$$
; $\lambda_2 = (-a + \sqrt{\Delta})/2$.

ove $\Delta = a^2 - 4b$.

Se $\Delta < 0$, allora porremo

(7)
$$\alpha = -a/2$$
, $\beta = \sqrt{-\Delta}/2$

in modo che α e $\pm \beta$ saranno, rispettivamente, la parte reale ed il coefficiente della parte immaginaria dei numeri complessi λ_1 e λ_2 .

Si dimostra il seguente

TEOREMA 3 (SOLUZIONI DELL'EQUAZIONE OMOGENEA) .
Tutte le soluzioni dell'equazione (4) sono date da

(i)
$$y(x)=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}$$
, se $\Delta>0$

(ii)
$$y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}$$
, se $\Lambda = 0$

(iii)
$$y(x) = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$$
, se $\Delta < 0$,

ove C_1 e C_2 sono costanti arbitrarie, ed ove λ_1 , λ_2 , α,β sono definite dalle (6), (7).

4.14 Risolvere le equazioni differenziali omogenee

(a)
$$y'' - 6y' + 5y = 0$$
 (b) $y'' - 2y' + 2y = 0$

- [(a) L'equazione caratteristica λ^2 -6 λ +5=0 ha discriminante Δ =16 > 0 e perciò ammette due radici reali e distinte: λ_1 =1, λ_2 =5. Perciò lo integrale generale è y(x)=c₁ e^x+c₂ e^{5x}.
- (b) L'equazione caratteristica $\lambda^{\frac{1}{2}}$ -2 λ +2=0 ha discriminante Δ =-4 < 0 ed ammette come radici i numeri complessi coniugati λ_1 =1-i, λ_2 =1+i

Perciò l'integrale generale è $y(x)=c_1 e^x cos x + c_2 e^x sen x$

4.15 Risolvere l'equazione differenziale y"-2y'+y=0.

[L'equazione caratteristica è λ^2 -2 λ +1=0, ossia $(\lambda$ -1) 2 =0 ed ammet te λ_1 =1 come radice doppia. Perciò l'integrale generale è y(x)=c $_1$ e x ++ c $_2$ xe x]

- 4.16 Risolvere le equazioni differenziali lineari omogenee
 - (a) y'' 2y' = 0

- (b) y''+4y=0
- [(a) L'equazione caratteristica è λ^2 -2 λ =0, cioè λ (λ -2)=0, ed ammette le due radici reali 0 e 2. Perciò, l'integrale generale è $y=c_1+c_2e^{2x}$. (b) L'equazione caratteristica è $\lambda^2+4=0$, ed ammette le due radici complesse conjugate \pm 2ì. Perciò l'integrale generale è $y=c_1\cos 2x+c_2\sin 2x$]
- 4.17 Risolvere l'equazione y''+2y'+y=0.

[L'equazione caratterística è $\lambda^2+2\lambda+1=0$, cioè $(\lambda+1)^2=0$. Perciò -1 è radice doppia e l'integrale generale è $y=(c_1+c_2,x)e^{-x}$]

4.18 Determinare l'integrale generale delle seguenti equazioni lineari omogenee

$$y''-y=0 \qquad \qquad [y=c_1 e^{-x} + c_2 e^{x}]$$

$$y''-4y'+4y=0 \qquad [y=(c_1+c_2x)e^{2x}]$$

$$y''-2y'+5y=0 \qquad [y=e^{x}(c_1\cos 2x+c_2\sin 2x)]$$

$$y''+y'+y=0 \qquad [y=e^{-x/2}[c_1\cos(\sqrt{3}x/2)+c_2\sin(\sqrt{3}x/2)]]$$

$$y''-4y'+20y=0 \qquad [y=e^{2x}(c_1\cos 4x+c_2\sin 4x)]$$

$$y''+9y=0 \qquad [y=c_1\cos 3x+c_2\sin 3x]$$

$$y'''-6y'+10y=0 \qquad [y=c_1\cos x+c_2\sin x]$$

$$y'''-6y'+10y=0 \qquad [y=c_1\cos x+c_2\sin x]$$

$$y'''-8y'+16y=0 \qquad [y=c_1+c_2e^{x}]$$

$$y'''-8y'+16y=0 \qquad [y=(c_1+c_2x)e^{4x}]$$

$$y'''-8y'+16y=0 \qquad [y=(c_1+c_2x)e^{x/4}]$$

Passiamo ora a studiare l'equazione differenzia le lineare omogenea di ordine n:

(8)
$$y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y' + a_n y = 0$$
.

a coefficienti costanti $a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$.

La (8) è un caso particolare della più generale equazione differenziale lineare di ordine n

(9)
$$y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y^{n-1} + ... + a_n(x)y^{n-1}$$

Per l'equazione (9) si dimostra il seguente teorema di Cauchy:

TEOREMA 4 (DI ESISTENZA ED UNICITA'). Se i coefficienti $a_i(x)$ ed il termine noto f(x) dell'equazione (9) sono continui nell'intervallo limitato [a,b], allora, per ogni $x_0 \in [a,b]$ e per ogni $(y_0,y_0^{(1)},\ldots,y_0^{(n-1)}) \in \mathbb{R}^n$, esiste una ed una sola soluzione y in [a,b] della (9), tale che

(10)
$$y(x_o) = y_o$$
, $y'(x_o) = y_o^{(1)}$, ..., $y^{(n-1)}(x_o) = y_o^{(n-1)}$.

La soluzione y, di cui al teorema di Cauchy, si chiama soluzione del problema di Cauchy relativo alla equazione (9) ed alle condizioni iniziali (10). L'equazione (9) si dice omogenea se risulta $f(x) \equiv 0$, altrimenti si dice non omogenea.

Analogamente a quanto già visto nel caso n=2, si dimostra che se $y_1(x)$, $y_2(x)$,..., $y_k(x)$ sono k integrali particolari dell'equazione (8), allora anche una loro combinazione lineare del tipo

$$c_1 y_1(x) + c_2 y_2(x) + ... + c_k y_k(x)$$

è un integrale particolare della (8).

Se ora $y_1(x)$, $y_2(x)$,... $y_n(x)$ sono n integrali particolari dell'equazione (8) il loro Wronskiano è, per definizione, il seguente determinante

$$W(x) = \begin{cases} y_{1}(x) & y_{2}(x) & \dots & y_{n}(x) \\ y_{1}^{t}(x) & y_{2}^{t}(x) & \dots & y_{n}^{t}(x) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \dots & y_{n}^{(n-1)}(x) \end{cases}$$

che si dimostra essere o identicamente nullo o sem - pre diverso da zero nell'intervallo [a,b]. .Si ha $W(x) \neq 0$ per ogni $x \in [a,b]$ se e solo se le funzioni , $y_1(x), \ldots, y_n(x)$ sono linearmente indipendenti, cioè se

$$c_1 y_1(x) + ... + c_n y_n(x) = 0$$
, $\forall x \implies c_1 = ... = c_n = 0$.

Sussiste il seguente

TEOREMA 5. Se $y_1(x), \dots, y_n(x)$ sono n soluzioni part<u>i</u>

colari linearmente indipendenti dell'equazione (8), allora una qualsiasi soluzione della (8) è del tipo

(11)
$$y(x) = c_1 y_1(x) + ... + c_n y_n(x)$$
,

cioè, la (11) è l'integrale generale dell'equazione (8).

Per determinare n integrali linearmente indipendenti dell'equazione (8), basta conoscere le radici dell'equazione algebrica di grado n

$$\lambda^{n} + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$
,

che prende il nome di equazione caratteristica della (8) in modo analogo a come abbiamo già visto nel caso n=2.

Si dimostra infatti che

1) Se le n radici (reali o complesse) $\lambda_1, \lambda_2, \dots, \lambda_n$ dell'equazione caratterística sono tutte distinte, allora le funzioni (rispett. reali o complesse)

$$e^{\lambda_1 x}$$
, $e^{\lambda_2 x}$, ..., $e^{\lambda_n x}$

sono n soluzioni linearmente indipendenti della (8).

2) Se λ é una radice (reale o complessa) multipla di ordine r dell'equazione caratteristica, allora le funzioni (rispett. reali o complesse)

$$e^{\lambda x}$$
, $xe^{\lambda x}$, ..., x^{r-1} $e^{\lambda x}$

sono r soluzioni linearmente indipendenti della (8).

Poichè per ogni radice λ si trova un numero di soluzioni linearmente indipendenti della (8) pari alla molteplicità di λ , in tal modo si determinano n soluzioni linearmente indipendenti della (8).

OSSERVAZIONE 1. Se l'equazione caratteristica ha

una radice complessa $\lambda=\alpha+i\beta$, essa avrà anche la radice coniugata $\overline{\lambda}$ = $\alpha-i\beta$ ed alle due soluzioni complesse

$$e^{\lambda x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$
$$e^{\lambda x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

si potranno sostituire le due soluzioni reali

$$e^{\alpha x}\cos\beta x = (e^{\lambda x} + e^{\overline{\lambda}x})/2$$

 $e^{\alpha x}\sin\beta x = (e^{\lambda x} - e^{\overline{\lambda}x})/2i$,

risultando, il nuovo sistema di integrali particolari che si ottiene, ancora di n integrali linearmente indipendenti.

4.19 Risolvere l'equazione y''' + y = 0.

[L'equazione caratteristica λ^3 +1=0 ammette le radici -1,(1/2) $\pm i \sqrt{3/2}$ e perciò l'integrale generale è dato da $y(x)=c_1e^{-x}+c_2e^{\left[(1/2)+i\sqrt{3/2}x\right]_+}+c_3e^{\left[(1/2)-i\sqrt{3/2}x\right]_-}$, ovvero, tenendo conto dell'osservazione 1, da $y(x)=c_1e^{-x}+c_2e^{x/2}\cos\sqrt{3/2}x+c_3e^{x/2}\sin\sqrt{3/2}x$]

4.20 Risolvere l'equazione y''' - 3y'' + 3y' - y = 0.

[L'equazione caratteristica $(\lambda-1)^3=0$ ammette la radice tripla $\lambda=1$. Perciò l'integrale generale è dato da $y(x)=e^X(c_1+c_2x+c_3x^2)$]

4.21 Risolvere l'equazione y'''-5y''=0.

[L'equazione caratteristica è λ^3 -5 λ^2 = λ^2 (λ -5)=0 ed ammette la radice λ = =5 e la radice doppia λ =0.Perciò l'integrale generale è dato da y(x)= c_1 + $+c_2x+c_3e^{5x}$. Si poteva procedere anche diversamente: posto u=y', l'equazione data diviene u"-5u'=0.L'integrale generale di quest'ultima equazione e' u(x)= c_1 + c_2 e^{5x}. Risolvendo l'equazione y=u(x)= c_1 + c_2 e^{5x}, si trova

 $y(x)=c_1 x+5c_2 e^{-x}+c_3$, integrale generale che coincide con quello già determinato, per l'arbitrarietà delle costanti]

4.22 Determinare l'integrale generale delle seguenti equazioni omogenee del terzo ordine

$$y''' = 0 \qquad [y=c_1+c_2x+c_3x^2]$$

$$y''' - 4y'' = 0 \qquad [y=c_1+c_2e^{-2x}+c_3e^{2x}]$$

$$y''' - 4y'' + 4y' = 0 \qquad [y=c_1+c_2x+c_3e^x]$$

$$y''' - 2y'' + 5y' = 0 \qquad [y=c_1+e^x(c_2+c_3x)e^{2x}]$$

$$y''' - 2y'' + 5y' = 0 \qquad [y=c_1+e^x(c_2+c_3x)e^x]$$

$$y''' - y'' - y' + y = 0 \qquad [y=c_1e^{-x}+(c_2+c_3x)e^x]$$

$$y''' + y'' - y' - y = 0 \qquad [y=c_1e^x+(c_2+c_3x)e^x]$$

$$y''' + 2y'' - 12y' + 8y = 0 \qquad [y=(c_1+c_2x+c_3x^2)e^{-2x}]$$

$$y''' + 2y'' - 11y' - 12y = 0 \qquad [y=c_1e^{-x}+c_2e^{3x}+c_3e^{-4x}]$$

$$y''' - 4y'' + 5y' - 2y = 0 \qquad [y=(c_1+c_2x)e^x + c_3e^{2x}]$$

- 4.23 Risolvere l'equazione $y^{(4)} y^{(3)} 6y'' = 0$. [L'equazione caratteristica è $\lambda^4 \lambda^3 6\lambda^2 = \lambda^2 (\lambda 3)(\lambda + 2) = 0$, quin di -2 e 3 sono radici semplici e 0 è radice doppia. L'integrale genera le è dato da $y(x) = c_1 + c_2 x + c_3 e^{-2x} + c_4 e^{3x}$]
- 4.24 Risolvere l'equazione $y^{(4)} + 3y'' 4y = 0$.

 [L'equazione caratteristica $\lambda^4 + 3\lambda^2 4' = 0$ è biquadratica e le sue ra dici sono ± 1 e $\pm 2i$. Perciò l'integrale generale è dato da $y(x) = c_1 e^{-x} + c_2 e^x + c_3 e^{-2ix} + c_4 e^{2ix}$, ovvero, tenendo conto dell'osservazione 1, da $y(x) = c_1 e^{-x} + c_2 e^x + c_3 \cos 2x + c_4 \sin 2x$]
- 4.25 Risolvere l'equazione $y^{(4)} + 2y^{(3)} + 3y'' + 2y' + y = 0$.

[L'equazione caratteristica può essere scritta sotto la forma ($\lambda^2 + \lambda + 1$)² = 0. Perciò l'integrale generale è $y(x) = e^{-x/2}$ [($c_1 + c_2 x$) cos ($\sqrt{3}/2$)x + ($c_3 + c_4 x$)sen($\sqrt{3}/2$)x]]

4.26 Risolvere l'equazione $y^{(4)} + y'' = 0$.

[L'equazione caratteristica è $\lambda^4 + \lambda^2 = \lambda^2(\lambda^2 + 1) = 0$; essa ammette la radice doppia $\lambda = 0$ e le radici \pm i. Perciò l'integrale generale è dato da $y(x) = c_1 + c_2 x + c_3 \cos x + c_4 \sin x$]

4.27 Risolvere l'equazione $y^{(4)} + y = 0$.

[L'equazione caratteristica è $\lambda^4+1=0$; le sue soluzioni sono le radici complesse quarte di -1, cioè e $\pi i/4 = (1+i)/\sqrt{2}$, $e^{3\pi i/4} = (i-1)/\sqrt{2}$, $e^{5\pi i/4} = -(i+1)/\sqrt{2}$, $e^{7\pi i/4} = (1-i)/\sqrt{2}$. Perciò, l'integrale generale è $y(x) = c_1 e^{x/\sqrt{2}} \cos(x/\sqrt{2}) + c_2 e^{x/\sqrt{2}} \sin(x/\sqrt{2}) + c_3 e^{-x/\sqrt{2}} \cos(x/\sqrt{2}) + c_4 e^{-x/\sqrt{2}} \sin(x/\sqrt{2})$

4.28 Risolvere l'equazione $y^{(4)} + y' = 0$.

[L'equazione caratterística è $\lambda^4 + \lambda = \lambda (\lambda^3 + 1) = 0$; le sue soluzioni sono 0 e le radici complesse terze di ~1, cioè -1, e $\frac{\pi i/3}{=(1+i\sqrt{3})/2}$, e $\frac{2\pi i/3}{=(1-i\sqrt{3})/2}$. Perciò l'integrale generale è $y(x)=c_1+c_2e^{-x}+c_3e^{x/2}\cos(\sqrt{3}x/2)+c_4e^{x/2}\sin(\sqrt{3}x/2)$]

4.29 Determinare l'integrale generale delle seguenti equazioni omogenee del quarto ordine

$$y^{(4)} = 0 \qquad [y=c_1+c_2x+c_3x^2+c_4x^3]$$

$$y^{(4)} + 3y^{(1)} - 4y^{(1)} = 0 \qquad [y=c_1+c_2x+c_3e^{-4x}+c_4e^{x}]$$

$$y^{(4)} - 3y^{(1)} + 2y^{(1)} = 0 \qquad [y=c_1+c_2x+c_3e^{x}+c_4e^{x}]$$

$$y^{(4)} - 2y^{(1)} + 2y^{(1)} = 0 \qquad [y=c_1+c_2x+c_3e^{x}+c_4e^{x}]$$

$$y^{(4)} - 6y^{1!} + 8y = 0 \qquad [y = c_1 e^{-2x} + c_2 e^{2x} + c_3 e^{-\sqrt{2}x}]$$

$$y^{(4)} - 3y^{1!} - 4y = 0 \qquad [y = c_1 e^{-2x} + c_2 e^{2x} + c_3 \cos x + c_4 \sin x]$$

$$y^{(4)} - y^{11!} - y^{1!} + y^{1!} = 0 \qquad [y = c_1 + (c_2 + c_3 x) e^{x} + c_4 e^{-x}]$$

$$y^{(4)} - 4y^{1!} = 0 \qquad [y = c_1 + c_2 x + c_3 e^{2x} + c_4 e^{-2x}]$$

$$y^{(4)} - 2y^{1!!} + y^{1!} = 0 \qquad [y = c_1 + c_2 x + (c_3 + c_4 x) e^{x}]$$

$$y^{(4)} + 2y^{1!} + y = 0 \qquad [y = (c_1 + c_2 x) \cos x + (c_3 + c_4 x) \sin x]$$

$$y^{(4)} - a^4 y = 0 \qquad [y = c_1 + c_2 e^{x} + c_3 \cos x + c_4 \sin x]$$

$$y^{(4)} + a^2 y^{1!} = 0 \qquad [y = c_1 + c_2 x + c_3 \cos x + c_4 \sin x]$$

4.30 Determinare l'integrale generale delle seguenti equazioni omogenee di ordine superiore al quarto.

$$y^{(5)} = 0 \qquad \left[y = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + c_5 x^4 \right]$$

$$y^{(6)} - y'' = 0 \qquad \left[y = c_1 + c_2 x + c_3 e^{-x} + c_4 e^{x} + c_5 \cos x + c_6 \sin x \right]$$

$$y^{(6)} - 16y'' = 0 \qquad \left[y = c_1 + c_2 x + c_3 e^{-2x} + c_4 e^{x} + c_5 \cos x + c_6 \sin 2x \right]$$

$$y^{(6)} - y^{(4)} = 0 \qquad \left[y = c_1 + c_2 x + c_3 x^2 + c_4 e^{x} + c_5 e^{x} \right]$$

$$y^{(5)} - 4y^{(1)} = 0 \qquad \left[y = c_1 + c_2 x + c_3 x^2 + c_4 e^{-2x} + c_5 e^{x} \right]$$

4.31 Determinare la soluzione del problema di Cauchy

$$\begin{cases} y'' - 2y' - y = 0 \\ y(0) = 0 \\ y'(0) = 2\sqrt{2} \end{cases}$$

[L'equazione caratteristica λ^2 -2 λ -1 = 0 ammette le due radici reali $1\pm\sqrt{2}$. Perciò l'integrale generale dell'equazione data è y(x) = $c_1 e^{(1+\sqrt{2})x} + c_2 e^{(1-\sqrt{2})x}$. La condizione y(0)=0 implica c_2 =- c_1 . Essendo y'(x)= $c_1 (1+\sqrt{2})e^{(1+\sqrt{2})x} - c_1 (1-\sqrt{2})e^{(1-\sqrt{2})x}$, si ha

y'(0)=2c₁ $\sqrt{2}$. La condizione y'(0) = $2\sqrt{2}$ implica perciò c₁ = 1 e c₂ = -1. La soluzione è y = $e^{\left(1+\sqrt{2}\right)x}$ - $e^{\left(1-\sqrt{2}\right)x}$]

4.32 Determinare la soluzione di ciascuno dei seguen ti problemi di Cauchy

(a)
$$\begin{cases} y'' - y' - 2y = 0 \\ y(0) = 0 \\ y'(0) = 3 \end{cases}$$
 (b)
$$\begin{cases} y'' - 6y' + 10y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

(c)
$$\begin{cases} y''-10y'+25y=0 \\ y(0)=0 \\ y'(0)=1 \end{cases}$$
 (d)
$$\begin{cases} y''-2y'+5y=0 \\ y(0)=1 \\ y'(0)=1 \end{cases}$$

[(a) $y = e^{-x}$. (b) $y = e^{-x}$ (cosx-3senx); (c) $y = xe^{-x}$; (d) $y = e^{-x}$

4.33 Risolvere il problema di Cauchy

$$\begin{cases} y''' - 2y'' + 5y' = 0 \\ y(0) = 0, \quad y'(0) = 1, \quad y''(0) = 0 \end{cases}$$

$$[y = -2/5 + e^{x} [(2/5) \cos 2x + (3/10) \sin 2x]]$$

40. Equazioni lineari non omogenee a coefficienti costanti

Sia

(1)
$$y^{(n)} + a_1(x) y^{(n-1)} + ... + a_{n-1}(x) y' + a_n(x) y = f(x)$$

un'equazione differenziale lineare di ordine n, a coefficienti $a_i(x)$ e termine noto f(x) continui in un intervallo limitato [a,b]. Per determinare l'integrale generale della (1), assai utile è il seguente

TEOREMA 1. Sia v_o un integrale particolare della (1) e siano y₁,...,y_n, n integrali particolari linearmente indi pendenti dell'omogenea associata

$$y^{(n)} + a_1(x)y^{(n-1)} + ... + a_{n-1}(x)y' + a_n(x)y = 0.$$

Allora, l'integrale generale della (1) è dato da

$$y(x) = c_1 y_1(x) + ... + c_n y_n(x) + v_o(x).$$

In questo paragrafo ci limitiamo a studiare le equazioni del tipo (1) a coefficienti costanti, cioè le equazioni

(2)
$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$$
,

in cui f(x) è un termine noto di tipo particolare. Sia

$$P(\lambda) = \lambda^{n} + a_{1}\lambda^{n-1} + \dots + a_{n-1}\lambda + a_{n} = 0$$

l'equazione caratteristica dell'equazione

$$y^{(n)} + a_1 y^{(n-1)} + ... + a_{n-1} y' + a_n y = 0$$

omogenea associata alla (2). Si dimostra che, nel c \underline{a} so

$$f(x) = e^{\lambda x} p_m(x)$$

con p_m(x) polinomio di grado m,

i) se $P(\lambda) \neq 0$, allora la (2) ammette un integrale particol<u>a</u> re del tipo

$$e^{\lambda x} q_{m}(x)$$

con q m(x) polinomio di grado m.

ii) se $P(\lambda)=0$ e λ ha molteplicità h, allora la (2) ammette un integrale particolare del tipo

$$x^h e^{\lambda x} q_m(x)$$
.

Si dimostra inoltre che, nel caso

$$f(x)=e^{\lambda x}[p_m(x)cos\mu x+r_k(x)sen\mu x]$$

con $p_m(x)$ polinomio di grado m e $r_k(x)$ polinomio di grado k:

j) se $P(\lambda \pm i\mu) \neq 0$, allora la (2) ammette un integrale particulare del tipo

$$e^{\lambda x}[q_{\bar{m}}(x)\cos\mu x + s_{\bar{m}}(x)\sin\mu x]$$

con $q_{\overline{m}}(x)$, $s_{\overline{m}}(x)$ polinomi di grado $\overline{m} = \max\{m,k\}$

jj) se $P(\lambda \pm i\mu)=0$ e $\lambda \pm i\mu$ ha molteplicità h, allora la (2) ammette un integrale particolare del tipo

$$x^{h} e^{\lambda x} [q_{\overline{m}}(x) cos \mu x + s_{\overline{m}}(x) sen \mu x]$$

In particolare: se f(x) è un polinomio di grado m e risulta, nell'equazione (2), $a_o \neq 0$, allora la (2)ha per integrale particolare un polinomio dello stesso grado; se invece $a_o = 0$ e perciò $\lambda = 0$ è una radice di

 $P(\lambda)=0$, allora la (2) ha per integrale particolare un polinomio di grado m+h del tipo $x^h(b_1+b_2x+...+b_mx^m)$ ove h è la molteplicità della radice $\lambda=0$.

4.34 Risolvere l'equazione differenziale non omoge - rea $y''-3y' + 2y = 2x^3 - x^2 + 1$.

[L'equazione caratteristica dell'omogenea associata è $\lambda^2-3\lambda+2=0$ ed ammette le radici 1,2; perciò l'integrale generale dell'omogenea associata è $c_1e^X+c_2e^{2X}$. Poichè il termine noto dell'equazione differenziale data è un polinomio di terzo grado, e $\lambda=0$ non è radice dell'equazione caratteristica, allora l'equazione data ammette un integrale particolare del tipo $\mathbf{v}_o(\vec{x}) = \mathbf{b}_o \mathbf{x}^3 + \mathbf{b}_1 \mathbf{x}^2 + \mathbf{b}_2 \mathbf{x} + \mathbf{b}_3$. Sostituendo \mathbf{v}_o nell'equazione, si ricava $\mathbf{v}_o^*(\mathbf{x}) - 3\mathbf{v}_o^*(\mathbf{x}) + 2\mathbf{v}_o(\mathbf{x}) = 2\mathbf{x}^3 - \mathbf{x}^2 + 1$, cioè:

$$(6b_0x + 2b_1)-3(3b_0x^2+2b_1x+b_2)+2b_0x^3+2b_1x^2+2b_2x+2b_3=2x^3-x^2+1$$
,

da cui, per ogni x∈R

$$2b_0x^3+(2b_1-9b_0)x^2+(6b_0-6b_1+2b_2)x+2b_1-3b_2+2b_3=2x^3-x^2+1$$
.

Da tale relazione, per il principio di identità dei polinomi, segue:

$$b_0=1$$
, $2b_1-9b_0=-1$, $6b_0-6b_1+2b_2=0$, $2b_1-3b_2+2b_3=1$

e cioè b₀=1, b₁=4, b₂=9, b₃=10. Pertanto, l'integrale generale è $y(x)=c_1 e^X+c_2 e^{2X}+x^3+4x^2+9x+10$

4.35 Risolver'e l'equazione differenziale non omoge nea $y''' + 4y' = x^2 + 1$.

[L'equazione caratteristica dell'omogenea associata é λ^2 -4 λ = 0 ed ammette le radici 0,4; perciò l'integrale generale dell'omogenea associata è c₁ + c₂e⁴x.

Poichè il termine noto dell'equazione data è un polinomio di secon

do grado e λ =0 è radice semplice dell'equazione caratteristica, allo ra l'equazione data ammette un integrale particolare del tipo $v_{\sigma}(x) = x (b_{\sigma}x^2 + b_1x + b_2)$. Sostituendo $v_{\sigma}(x)$ nell'equazione, si ricava

$$(6b_0x+2b_1)-4(3b_0x^2+2b_1x+b_2) = x^2 + 1$$
,

da cui, per ogni x∈R

$$-12b_{o}x^{2} + (6b_{o}-8b_{1})x + 2b_{1} - 4b_{2} = x^{2} + I.$$

Da tale relazione, per il principio di identità dei polinomi segue

e cioè $b_0=-1/12$, $b_1=-1/16$, $b_2=-9/32$. Pertanto,1'integrale generale è $y(x)=c_1+c_2$ $e^{4x}-x[(x^2/12)+(x/16)+(9/32)]$

4.36 Risolvere 1'equazione differenziale non omoge - nea y" - 2y' - $3y = 8e^{3x}$.

[L'equazione caratteristica dell'omogenea associata è λ^2 - 2λ -3=0 ed ammette come radici -1 e 3; perciò l'integrale generale dell'omogenea associata è c_1 e 3x . Poichè λ =3 è radice dell'equazione caratte ristica (per la ii)) l'equazione data ammette un integrale particolare del tipo $v_o(x)$ = bxe 3x . Sostituendo $v_o(x)$ nell'equazione data, si trova:

$$(6be^{3x} + 9bxe^{3x}) - 2(be^{3x} + 3bx e^{3x}) - 3bxe^{3x} = 8e^{3x}$$

da cui, dividendo ambo i membri per e^{3x} , segue b=2. Pertanto, l'integrale generale è $y(x) = e_1 e^{-x} + e_2 e^{3x} + 2x e^{3x}$

4.37 Dimostrare che se il termine noto dell'equazione

(*)
$$y'' + ay' + by = f(x)$$

è del tipo $f(x) = \sum_{i=1}^{k} f_i(x)$ e se $y_i(x)$ verifica L'equazione

$$y_{i}^{ii} + ay_{i}^{i} + by_{i} = f_{i}(x),$$

allora $y(x) = \sum_{i=1}^{n} y_i(x)$ verifica l'equazione(*)

4.38 Tenendo presente l'esercizio precedente, determinare l'integrale generale dell'equazione y"- $3y'+2y = 2x^3 + 1 - x^2 + e^{3x}$ $[y(x) = x^3 + 4x^2 + 9x + 10 + (e^{3x}/2) + c, e^x + c, e^{2x}]$

4.39 Risolvere l'equazione differenziale non omogenea y" - 2y' - 3y = cos 2x
[L'equazione caratteristica dell'omogenea associata è λ²-2 λ-3 = 0 ed ammette come radici -1 e 3; perciò l'integrale generale dell'omogenea associata è c₁e^{-x} + c₂e^{3x}. Poichè 0 ± 2i non è radice dell'equa - zione caratteristica, allora per la j), l'equazione data ammette un in

tegrale particolare del tipo $v_o(x) = b\cos 2x + \csc 2x$. Si ha $v_o^i(x) = -2b \sec 2x + 2c \cos 2x$, $v_o^{ij}(x) = -4b \cos 2x - 4c \sec 2x$. Sostituendo nel l'equazione data si trova

 $(-7b - 4c)\cos 2x + (4b-7c) \sin 2x = \cos 2x$

da cui segue -7b -4c = 1 e 4b - 7c = 0 e quindi b=-7/65, c=-4/65. Pertanto l'integrale generale è $y(x)=-(7/65)\cos 2x-(4/65) \sec 2x + c_1e^{-x} + c_2e^{3x}$

4.40 Risolvere l'equazione differenziale non omoge -

nea $y^{tt} - 2y^t + y = xe^x$.

[L'equazione caratteristica dell'omogenea associata è λ^2 -2 λ +1=(λ -1) 2 =0 ed ammette la radice doppia λ =1. Perciò l'integrale generale dell'omogenea associata è $c_1e^X+c_2x$ e^X . Poichè λ =1 è radice doppia dell'equazione caratteristica, per la ii) l'equazione data ammette un integrale particolare del tipo $v_o(x)=x^2e^X(bx+c)$. Si ha

$$v_o'(x) = 2xe^{X}(bx+c) + x^2 e^{X} (bx+c) + bx^2 e^{X} = e^{X} [bx^3 + (3b+c)x^2 + 2cx]$$

$$v_o''(x) = e^{X} [bx^3 + (3b+c)x^2 + 2cx] + e^{X} [3bx^2 + 2(3b+c)x + 2c] =$$

$$= e^{X} [bx^3 + (6b+c)x^2 + (6b + 4c) x + 2c]$$

da cui, sostituendo v_o nell'equazione data, si ha

$$e^{x}$$
 [$bx^{3}+(6b+c)x^{2}+(6b+4c)x+2c$] $-2e^{x}$ [$bx^{3}+(3b+c)x^{2}+$
+ $2cx$] + x^{2} $e^{x}(bx+c) = x e^{x}$

ed anche, semplificando

$$e^{X} (6bx + 2c) = xe^{X}$$
.

Dividendo per e^x ed applicando il principio di identità dei polinomi , si ha b = 1/6, c = 0. Pertanto l'integrale generale dell'equazione data è y(x) = c_1e^x + c_2xe^x + $x^3e^x/6$]

4.41 Risolvere le seguenti equazioni differenziali del secondo ordine lineari, non omogenee:

$$y'''-2y'-3y=(2x+1)e^{x} \qquad [y=c_{1}e^{-x}+c_{2}e^{3x}-(2x+1)e^{x}/4]$$

$$y'''-y=xe^{x} \qquad [y=c_{1}e^{-x}+c_{2}e^{3x}-(2x+1)e^{x}/4]$$

$$y'''-2y'+2y=e^{2x} \qquad [y=c_{1}e^{-x}+c_{2}e^{x}+(x^{2}-x)e^{x}/4]$$

$$y'''-2y'-2y=2senx \qquad [y=c_{1}e^{-x}+c_{2}e^{2x}+(cosx-3sen x)/5]$$

$$y'''+y=cosx \qquad [y=c_{1}e^{-x}+c_{2}e^{2x}+(cosx-3sen x)/5]$$

$$y'''+4y=sen2x \qquad [y=c_{1}cosx+c_{2}senx+(xsenx)/2]$$

$$y'''-2y'+y=e^{2x} \qquad [y=c_{1}cosx+c_{2}senx+(xcos2x)/4]$$

$$y'''-4y'+4y=e^{2x} \qquad [y=(c_{1}+c_{2}x)e^{x}+e^{2x}]$$

$$y'''-4y'+4y=e^{2x} \qquad [y=(c_{1}+c_{2}x)e^{2x}+x^{2}e^{2x}/2]$$

$$y'''-y''=cosx \qquad [y=c_{1}+c_{2}e^{x}-cosx+senx)/2]$$

$$y'''+y'=senx+cosx \qquad [y=c_{1}+c_{2}e^{x}-cosx+senx)/2]$$

$$y'''+y'=e^{x} \qquad [3cosx+senx) \qquad [y=c_{1}+c_{2}e^{-x}+e^{3x}]$$

$$y'''+y'=e^{x} \qquad [3cosx+senx) \qquad [y=c_{1}+c_{2}e^{-x}+e^{x}senx]$$

$$y'''+y'=senx+e^{2x} \qquad [y=c_{1}+c_{2}e^{-x}+(5/2)x^{2}-5x+e^{x}]$$

$$y'''+y'=e^{x} \qquad [y=c_{1}+c_{2}e^{-x}+(5/2)x^{2}-5x+e^{x}]$$

$$y'''+y'=c^{x} \qquad [y=c_{1}+c_{2}e^{-x}+(5/2)x^{2}-5x+e^{x}]$$

$$y'''+y'=c^{x} \qquad [y=c_{1}+c_{2}e^{-x}+(5/2)x^{2}-5x+e^{x}]$$

$$y'''+y'=c^{x} \qquad [y=c_{1}+c_{2}e^{-x}+(5/2)x^{2}-5x+e^{x}]$$

$$y'''+y'=c^{x} \qquad [y=c_{1}+c_{2}e$$

[$y = c_1 \operatorname{senx} + c_2 \operatorname{cosx} - x(\operatorname{sen2x})/3 - 4(\operatorname{cos2x})/9$] $y'' + y = x \quad e^x \operatorname{senx}$ [$y = c_1 \operatorname{senx} + c_2 \operatorname{cosx} + e^x$ [$(14 - 10x) \operatorname{cosx} + (5x - 2) \operatorname{senx}$]/25] $y'' + y = x + e^x \operatorname{senx}$ [$y = c_1 \operatorname{senx} + c_2 \operatorname{cosx} + x + (e^x \operatorname{senx} - 2e^x \operatorname{cosx})/5$]

4.42 Risolvere l'equazione y''- y"=senx.

[L'equazione caratteristica dell' omogenea associata è λ^3 - λ^2 = λ^2 (λ - 1) = 0 ed ammette la radice semplice λ = 1 e la radice doppia λ =0. Perciò l'integrale generale dell'omogenea associata è c_1e^X + c_2x + c_3 . Per la j) dell'introduzione, esistono due numeri reali q,s tali che $v_o(x)$ = qcosx + s senx è un'integrale particolare dell'equazione data. Sostituendo v_o nell'equazione, si ricava q=s=1/2, pertanto l'integrale generale della data equazione è y(x) = c_1e^X + c_2x + c_3 +(cosx+ +senx)/2 .]

- 4.43 Risolvere l'equazione differenziale $y^{(4)} y = x^3$. [L'integrale generale dell'omogenea associata è $y = c_1 e^{-x} + c_2 e^x + c_3 \cos x + c_4 \sin x$. Cerchiamo un integrale particolare sotto la forma $v_o(x) = -ax^3 + bx^2 + cx + d$. Imponendo a v_o di risolvere l'equazione data, si trova $v_o(x) = -x^3$. Perciò l'integrale generale è $y = c_1 e^{-x} + c_2 e^x + c_3 \cos x + c_4 \sin x x^3$]
- 4.44 Risolvere l'equazione y (4) + 2y" + y=xex.

 [L'equazione caratteristica dell'omogenea associata è λ 4 + 2λ 2 + 1 = 0 ed ammette le due radici doppie i, -i. Pertanto l'integrale generale dell'omogenea associata è c₁cosx + c₂senx + x (c₃cosx + c₄senx). Poichè λ = 1 non è radice dell'aggrapiant servicia.

ed ammette le due radici doppie i, -i. Pertanto l'integrale generale dell'omogenea associata è $c_1\cos x + c_2 \sec x + x \ (c_3\cos x + c_4 \sec x)$. Poichè $\lambda = 1$ non è radice dell'equazione caratteristica, l'equazione data ammette un integrale particolare del tipo $v_o(x) = e^X(b_1x + b_2)$. So stituendo v_o nell'equazione, si ricava $b_1 = 1/4$, $b_2 = -1/2$; pertanto lo

integrale generale della data equazione è $y(x) = c_1 \cos x + c_2 \sin x + x(c_3 \cos x + c_4 \sin x) + e^x [(1/4)x - (1/2)]]$

4.45 Risolvere le seguenti equazioni lineari non omo genee di ordine superiore al secondo

$$\ddot{y}^{***} - 3y^{**} + 3y^{*} - y = \cos x$$

$$[y = c_{1}e^{x} + c_{2}xe^{x} + c_{3}x^{2}e^{x} + (\sin x + \cos x)/4]$$

$$y^{***} + y^{**} - y^{*} - y = e^{2x}$$

$$[y = c_{1}e^{x} + c_{2}e^{-x} + c_{3}xe^{-x} + e^{2x}/9]$$

$$2y^{***} + 7y^{**} + 7y^{**} + 2y = x^{2}$$

$$[y = c_{1}e^{-2x} + c_{2}e^{-x/2} + c_{3}e^{-x} + (1/2)x^{2} - (7/2)x + 35/4]$$

$$y^{***} - 2y^{**} + 2y^{*} = e^{2x}$$

$$[y = c_{1} + e^{x}(c_{2}\cos x + c_{3}\sin x) + e^{2x}/4]$$

$$y^{***} - 2y^{**} + 2y^{*} = \cos x$$

$$[y = c_{1} + e^{x}(c_{2}\cos x + c_{3}\sin x) + (\sin x + 2\cos x)/5]$$

$$y^{***} - y^{**} = 3x^{2} + x$$

$$[y = c_{1} + c_{2}x + c_{3}e^{x} - (1/4)x^{4} - (7/6)x^{3} - (7/2)x^{2}]$$

$$y^{(4)} + y = 2\sin x \cos x$$

$$[y = c_{1}e^{x}/\sqrt{2}\cos(x/\sqrt{2}) + c_{2}e^{x}/\sqrt{2}\sin(x/\sqrt{2}) + c_{3}e^{-x}/\sqrt{2}\sin(x/\sqrt{2}) + (\sin x/\sqrt{2}) + (\sin x/\sqrt{2}) + (\cos x/\sqrt$$

4D. Il metodo della variazione delle costanti

Consideriamo l'equazione lineare del secondo ordine

(1)
$$y'' + a(x)y' + b(x)y = f(x)$$

a coefficienti e termine noto continui. Nel paragrafo 4C abbiamo visto che, per determinare il suo integrale generale, è sufficiente conoscere due integrali $y_1(x)$, $y_2(x)$ linearmente indipendenti dell'omogenea associata ed un suo integrale particolare $v_o(x)$. In tal modo, l'integrale generale è dato da

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + v_0(x)$$
.

Per determinare $v_{\sigma}(x)$ si può ricorrere al metodo della variazione delle costanti, dovuto a Lagrange, descritto dal seguente

TEOREMA. Siano $y_1(x)$, $y_2(x)$ due integrali linearmente indipendenti dell'omogenea associata alla (1). Siano $\gamma_1(x)$ $\gamma_2(x)$ due funzioni tali che le loro derivate prime risolvano il sistema

$$\begin{cases} \gamma_1^*(x)y_1(x) + \gamma_2^*(x)y_2(x) = 0 \\ \gamma_1^*(x)y_1^*(x) + \gamma_2^*(x)y_2^*(x) = f(x). \end{cases}$$

Allora la funzione $V_{s}(x) = Y_{1}(x)y_{1}(x) + Y_{2}(x)y_{2}(x)$ è un integrale particolare dell'equazione (1).

4.46 Determinare l'integrale generale dell'equazione $y'' + y = 1/\cos x$.

[Le due funzioni $y_1(x)=\cos x$, $y_2(x)=\sin x$ sono integrali particolari linearmente indipendenti dell'omogenea associata. Per determinare un'in-

tegrale particolare dell'equazione data con il metodo della variazione delle costanti, cerchiamo una soluzione della data equazione sotto la forma

$$v_o(x) = \gamma_1(x)y_1(x) + \gamma_2(x)y_2(x)$$

con $\Upsilon_1^1(x)$, $\Upsilon_2^1(x)$ soluzioni del sistema

$$\begin{cases} Y_1'(x)\cos x + Y_2'(x)\sin x = 0 \\ -Y_1'(x)\sin x + Y_2'(x)\cos x = 1/\cos x. \end{cases}$$

Si trova $\gamma_1^+(x)$ =-tgx e $\gamma_2^+(x)$ = 1. Una primitiva di tali funzioni è da ta da

$$\gamma_1(x) = \log |\cos x|, \quad \gamma_2(x) = x.$$

Perciò risulta $v_o(x) = (\log |\cos |) \cos x + x \sin x$. L'integrale genera le dell'equazione data è $y(x) = (\log |\cos |) \cos x + x \sin x + c_1 \cos x + c_2 \sin x$

4.47 Applicando il metodo della variazione delle costanti, risolvere l'equazione

$$y'' - y = 3x^2 - 1$$

[L'integrale generale dell'omogenea associata è $c_1e^X + c_2e^{-x}$. Cerchiamo una soluzione della forma $v_c(x) = \gamma_1(x)e^X + \gamma_2(x)e^{-x}$ con $\gamma_1(x)$, $\gamma_2(x)$ soluzioni del sistema

$$\begin{cases} \gamma_1^{i}(x)e^{X} + \gamma_2^{i}(x)e^{-X} = 0 \\ \gamma_1^{i}(x)e^{X} - \gamma_2^{i}(x)e^{-X} = 3x^2 - 1 \end{cases}$$

Si trova

$$Y_1^t(x) = e^{-X}(3x^2-1)/2$$

 $Y_2^t(x) = -e^{X}(3x^2-1)/2$.

Una primitiva di tali funzioni è data da

$$Y_1(x) = -3e^{-x} [x^2 + 2(x+1) - (1/3)]/2$$

 $Y_2(x) = -3e^{x} [x^2 - 2(x-1) - (1/3)]/2$.

In definitiva, l'integrale generale è y = $c_1e^X + c_2e^{-X} - 3x^2 - 5$

- 4.48 Applicando il metodo della variazione delle costanti, risolvere le equazioni differenziali
 - (a) y'' + y = tgx
- (b) v"+v=cotex
- [(a) $y=c_1\cos x + c_2\sin x + \cos x \log \left| \cot \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$.
- (b) $y=c_1\cos x + c_2\sin x + \sin x + \log | tg(x/2) |$
- 4.49 Applicando il metodo della variazione delle costanti, risolvere le seguenti equazioni diffe renziali
 - (a) $v'' 3v' + 2v = 2e^{2x}$ (b) v'' + 4y = 5 sen2 x
 - (c) $y''+4y = 5 \text{ sen} 3x 7 \cos 3x$

 - (d) $y'' 3y' + 2y = xe^{3x}$ (e) $y'' + 2y' + y = (\log x) / e^{x}$
 - [(a) $y = c_1 e^X + c_2 e^{2X} + 2xe^{2X}$. (b) $y = c_1 \cos 2x + c_2 \sin 2x$
 - $5(x\cos 2x)/4$. (c) $y = c_1 \sin 2x + c_2 \cos 2x \sin 3x + 7(\cos 3x)/5$;
 - (d) $y = c_1 e^{2x} + c_2 e^x + [(x/2) (3/4)] e^{3x};$ (e) $y = (c_1 + c_2 x) e^{-x} \div$ $+ x^2 e^{-x} (2 \log x - 3)/4$
- 4.50 Determinare l'integrale generale dell'equazione differenziale $y'' + k^2y = f(x)$, ove f(x) è una fun zione continua nell'intervallo limitato [a,b] e $k \neq 0$,

[I due integrali dell'omogenea associata $y_1(x) = \text{sen } k x, y_2(x) = \text{cos } k x$ sono linearmente indipendenti, in quanto il loro Wronskiano è uguale a -k. Cerchiamo un integrale particolare dell'equazione data sotto la forma

$$v_{0}(x) = \gamma_{1}(x) \operatorname{senk} x + \gamma_{2}(x) \operatorname{cosk} x$$

con $Y_1(x)$, $Y_2(x)$ soluzioni del sistema

$$\begin{cases} \gamma_1^1(x) \operatorname{senk} x + \gamma_2^1(x) \operatorname{cosk} x = 0 \\ \\ \gamma_1^1(x) \operatorname{kcosk} x - \gamma_2^1(x) \operatorname{ksenk} x = f(x) \end{cases}$$

Si trova $\gamma_1(x) = \frac{1}{k} \int_{-k}^{k} f(t) \cosh t dt$, $\gamma_2(x) = -\frac{1}{k} \int_{-k}^{k} f(t) \sinh t dt =$

pertanto risulta $v_o(x) = \frac{1}{k} \int_0^x f(t) \left[\operatorname{senkx coskt+coskx sen kt} \right] dt =$

$$= \frac{1}{k} \int_{a}^{x} f(t) \operatorname{senk}(x-t) dt. L' \operatorname{integrale generale } \dot{e} y = \frac{1}{k} \int_{a}^{x} f(t) \operatorname{senk}(x-t) dt +$$

c,senkx + c₂coskx]

4.51 Determinare l'integrale generale dell'equazione differenziale y" - $k^2y = f(x)$ ove f(x) è una fun zione continua in [a,b] e $k \neq 0$.

Applicando il metodo della variazione delle costanti, in modo analogo a quanto fatto nell'esercizio precedente, si trova y(x)=c₁e^{kx}+c₂e^{-kx} +

+
$$\left[e^{kx}\int_{a}^{x}f(t)e^{-kt}dt-e^{-kx}\int_{a}^{x}f(t)e^{kt}dt\right]/2k$$

4.52 Risolvere l'equazione lineare del primo ordine y' = a(x)y+b(x), ricorrendo al metodo della variazione delle costanti.

[Sia $y_1(x) \neq 0$ un integrale particolare dell'omogenea associata; allora si ha $y'_1 = a(x)y_1$. Cerchiamo un integrale particolare del tipo $v_o(x) = \gamma(x) \ y_1(x)$. Imponendo che v_o verifichi l'equazione data si trova $\gamma'y_1 + \gamma y'_1 = a(x) \gamma y_1 + b(x)$, da cui, per l'ipotesi su y_1 , $\gamma'y_1 = b(x)$. Ne segue $\gamma(x) = \int_{x_o}^x \frac{b(t)}{y_1(t)} \, dt$, con $y_1(x) = e^{-x_o}$; si ri-

trova così la formula (13) del paragrafo 4A]

4.53 Applicando il metodo della variazione delle costanti, risolvere l'equazione $y''-3y'+2y=e^{x}/(e^{x}+1)$.

$$[y = c_1 e^x + c_2 e^{2x} + (e^x + e^{2x}) \log (1 + e^{-x})]$$

4E. Problemi ai limiti

Come sappiamo dal teorema 1 del paragrafo 4C, lo integrale generale di un'equazione differenziale lineare del secondo ordine è dato da

(1)
$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_0(x)$$

ove y_1, y_2 sono due integrali particolari, linearmente indipendenti, dell'omogenea associata e v_o è un integrale particolare dell'equazione data definiti in un intervallo [a,b].

Dal teorema di Cauchy enunciato nel paragrafo 4B sappiamo che è sempre possibile determinare univocamente le costanti c_1 e c_2 in modo da ottenere un integrale particolare verificante le condizioni iniziali $y(x_0) = y_0$, $y'(x_0) = y_0^{(1)}$.

Se invece si impongono alla y le cosiddette $cond\underline{i}$ zioni ai limiti y(a) = A, y(b) = B, o, più in generale: hy(a) + h'y'(a) = A, ky(b)+k'y'(b) = B con h e h' non entrambe nulle e k,k' non entrambe nulle, si pos sono avere una sola soluzione o nessuna soluzione o infinite soluzioni.

Ad esempio, nel caso più semplice delle condizioni ai limiti y(a) = A, y(b) = B, si ottiene il sistema di due equazioni lineari nelle due incognite c_1 , c_2

(2)
$$\begin{cases} y_1(a)c_1 + y_2(a)c_2 = -v_o(a) + A \\ y_1(b)c_1 + y_2(b)c_2 = -v_o(b) + B \end{cases}$$

il cui determinante dei coefficienti

$$\Delta = \begin{vmatrix} y_1(a) & y_2(a) \\ y_1(b) & y_2(b) \end{vmatrix}$$

può essere diverso da zero o uguale a zero.

Il sistema omogeneo associato al sistema (2) è quello relativo all'equazione differenziale omogenea associata alla data, con le condizioni ai limiti omogenee, cioè nelle quali risulti A=0, B=0. Perciò, se questo problema omogeneo ha come unica soluzione la funzione identicamente nulla, il problema non omogeneo avrà un'unica soluzione. Se il problema omogeneo ha invece una soluzione non nulla, il problema non omogeneo avrà infinite soluzioni, o sarà impossibile a seconda che il termine noto f(x) e le costanti A, B verifichino, o meno, certe condizioni.

Ad esempio, studiamo i problemi ai limiti per la equazione differenziale $y^{\prime\prime}$ + y = 0, con le condizioni

(a)
$$\begin{cases} y(0) = 1 \\ y(\pi/2) = -1 \end{cases}$$
 (b)
$$\begin{cases} y(0) = 1 \\ y(\pi) = 1 \end{cases}$$
 (c)
$$\begin{cases} y(0) = 0 \\ y(\pi) = 0 \end{cases}$$

L'integrale generale è $y(x)=c_1\cos x + c_2\sin x$; imponendo le condizioni (a), si ottiene il sistema lineare nelle incognite c_1 , c_2

$$\begin{cases} c_1 \cos 0 + c_2 \sin 0 = 1 \\ c_1 \cos(\pi/2) + c_2 \sin(\pi/2) = 1 \end{cases}$$

cioè $c_1=1$, $c_2=-1$, per cui il problema ammette l'unica soluzione y = cosx-senx.

Imponendo le condizioni (b), si ottiene il sist \underline{e} ma

$$\begin{cases} c_1 \cos 0 + c_2 \sin 0 = c_1 = 1 \\ c_1 \cos \pi + c_2 \sin \pi = -c_1 = 1 \end{cases}$$

che è impossibile, per cui il problema non ha solu - zione. Infine, nel caso (c) si ottengono le infinite soluzioni $y=c_2senx$, $c_2\in R$.

4.54 Determinare tutti i valori reali del parametro k, per cui esiste un'unica soluzione del probl<u>e</u> ma

$$\begin{cases} y'' + ky = 0 \\ y(0) = y(\pi) = 0 \end{cases}$$

[L'equazione caratteristica è $\lambda^2 + k = 0$. Distinguiamo tre casi:

(a) k > 0, (b) k = 0, (c) k < 0.

(a) Le soluzioni dell'equazione caratteristica sono $\pm i\sqrt{k}$, perciò l'integrale generale è $y(x) \pm c_1 \cos(\sqrt{k} \ x) + c_2 \sin(\sqrt{k} \ x)$. Affinchè risulti $y(0) = y(\pi) = 0$, dovrà essere

$$\begin{cases} c_1 \cos 0 + c_2 \sin 0 = 0 \\ c_1 \cos (\sqrt{k} \pi) + c_2 \sin(\sqrt{k} \pi) = 0 \end{cases}$$

ovvero $c_1 = 0$, $c_2 \operatorname{sen}(\sqrt{k} \pi) = 0$.

Se \sqrt{k} è intero, allora si ha sen $(\sqrt{k} \ \Pi)$ =0 per cui il sistema precedente è soddisfatto da c₁ = 0, c₂ e R. Se \sqrt{k} non è intero, allora sen $(\sqrt{k} \ \Pi) \neq 0$ perció dev'essere c₁ = c₂ = 0.

In definitiva, se k>0, il problema considerato ha una ed una sola soluzione (identicamente nulla) se e solo se \sqrt{k} non è intero.

(b) L'equazione caratterística $\lambda^2=0$ ammette lo zero come radice doppia, per cui l'integrale generale é $y(x)=c_1+c_2$ x. Affinche risulti $y(0)=y(\pi)=0$, dovrà essere $c_1=c_2=0$ e cioé y(x)=0 per ogni x. Pertanto in questo caso il problema ha unica soluzione.

(c) L'equazione caratteristica λ^2 - (-k)=0 ammette le due — soluzioni $\pm\sqrt{-k}$, perciò l'integrale generale è y(x)= c₁ e — + c₂ e — .

Affinchè risulti y(0) = y(T) = 0, dev'essere

$$\begin{cases} c_1 + c_2 = 0 \\ \sqrt{-k} \pi c_1 + e & c_2 = 0 \end{cases}$$

ovvero $c_1 = c_2 = 0$. Pertanto in questo caso il problema ha unica soluzione]

4.55 Determinare i valori del parametro k per cui esiste una ed una sola soluzione del problema ai limiti

$$\begin{cases} y'' + 4y' + ky = xe^{x} \\ y(0) = y(1) = 0 \end{cases}$$

[Per k # - 5 l'equazione differenziale ammette l'integrale particolare

$$v_o(x) = \left[\frac{x}{k+5} - \frac{6}{(k+5)^2}\right] e^x$$

Per k < 4 (k # + 5) l'integrale generale è

$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + v_e(x)$$

con λ_i = -2 $\pm \sqrt{4-k}$. Le condizioni ai limiti implicano

$$\begin{cases} c_1 + c_2 = 6/(k+5)^2 \\ c_1 e^{\lambda_1} + c_2 e^{\lambda_2} = + v_0(1) \end{cases}$$

e perciò il problema ai limiti ha unica soluzione. Per k=4, l'integrale generale è

$$y(x) = c_1 e^{-2x} + c_2 x e^{-2x} + v_a(x).$$

Le condizioni ai limiti implicano

$$\begin{cases} c_1 = 2e/27 \\ c_1 e^{-2} + c_2 e^{-2} = -v_o(1) \end{cases}$$

e perciò il problema ai limiti ha unica soluzione.

Per k > 4, l'integrale generale è

$$y(x)=c_1 e^{-2x} cos(x \sqrt{k-4})+c_2 e^{-2x} sen(x\sqrt{k-4})+v_2(x)$$

e le condizioni ai limiti implicano

$$\begin{cases} c_1 = 6/(k+5)^2 \\ c_1 e^{-2} \cos \sqrt{k-4} + c_2 e^{-2} \sin \sqrt{k-4} = -v_0(1) \end{cases}$$

II determinante di questo sistema nelle incognite c_1 , c_2 è Δ = $\frac{-2}{e}$ sen $\sqrt{k-4}$, perciò il sistema ammette unica soluzione se $k \neq 4+h^2 \pi^2$ con h intero.

Nel caso k=-5, si verifica che il problema ha unica soluzione]

4.56 Determinare i valori del parametro keR per i qua li esiste almeno una soluzione del problema ai limiti

$$\begin{cases} y''+y = \alpha \operatorname{senk} x + \beta \operatorname{cosk} x \\ y(0) = y(\pi) = 0 \end{cases}$$

[L'integrale generale dell'equazione è dato da

$$y(x)=c_1 \cos x + c_2 \sin x + \frac{\alpha \operatorname{senk} x}{1-k^2} + \frac{\beta \operatorname{cosk} x}{1-k^2}$$

se k # ±1; è dato da

$$y(x) = c_1 \cos x + c_2 \sin x + (\beta \sin x - \alpha \cos x) x/2$$

se k = 1; è dato da

$$y(x) = c_1 \cos x + c_2 \sin x + (\beta \sin x + \alpha \cos x)x/2$$

se k=-1. Nel caso k \neq \pm 1, le condizioni ai limiti implicano

$$\begin{cases} y(0) = c_1 + \beta/(1-k^2) = 0 \\ y(\pi) = -c_1 + \beta \cosh \pi/(1-k^2) = 0 \end{cases}$$

e questo sistema è compatibile se e solo se $cosk\pi = -1$, cioè se e solo se $k\pi = (2m\pm 1)\pi$ con π intero. Per $k=\pm 1$, il sistema è compatibile solo se $\alpha=0$

4.57 Determinare i valori del parametro $k \neq 0$ per i quali il problema ai limiti

$$\begin{cases} y'' + k^2y = f(x) \\ y(0) = y(\pi) = 0 \end{cases}$$

con f continua in $[0,\pi]$, ammette una ed una so-

la soluzione.

[Dall'esercizio 4.50 segue che l'integrale generale dell'equazione è da to da

$$y(x) = \frac{1}{k} \int_0^x f(t) \operatorname{senk}(x-t) dt + c_1 \operatorname{senk} x + c_2 \operatorname{cosk} x.$$

Imponendo le condizioni ai limiti, si ricava il sistema nelle incognite $\mathbf{c_1}$, $\mathbf{c_2}$.

$$\begin{cases} c_2 = 0 \\ \frac{1}{k} \int_0^{\pi} f(t) \operatorname{senk}(\pi - t) dt + c_1 \operatorname{senk} \pi = 0 \end{cases}$$

Se sen k π # 0, cioè se k non è intero, la costante c_1 è individuata univocamente, al pari di c_2 , e perciò il problema ai limiti ammette soluzione unica.

Se k è intero, la seconda equazione del sistema è impossibile (e perciò il problema ai limiti non ha soluzione) a meno che non risulti

$$\int_0^{\pi} f(t) \operatorname{senk}(\pi - t) dt = 0,$$

nel qual caso c $_1$ è indeterminata (e perciò il problema ai limiti ha i \underline{n} finite soluzioni)]

4F. Equazioni lineari di Eulero

Si chiama *equazione di Eulero* un'equazione diffe - renziale lineare del tipo

$$y^{(n)} + \frac{a_1}{x} y^{(n-1)} + \ldots + \frac{a_{n-1}}{x^{n-1}} y' + \frac{a_n}{x^n} y = g(x)$$

con a_1 , a_2 ,..., $a_n \in \mathbb{R}$. Per $x \neq 0$ l'equazione può scri-

versi nella forma equivalente.

$$x^{n}y^{(n)}+a_{1}x^{n-1}y^{(n-1)}+...+a_{n-1}xy'+a_{n}y=f(x),$$

dove si è posto $f(x) = x^n g(x)$. Tale equazione, pur es sendo a coefficienti variabili, mediante la sostituzione t = log|x| si riduce ad un'equazione differenziale lineare a coefficienti costanti.

Considereremo nel seguito equazioni di Eulero del secondo ordine:

(1)
$$x^2y'' + pxy' + qy = f(x)$$

ove p,q \in R e x > 0. Effettuando per x > 0 la sostituzione t = logx (cioè x=e^t) si ha

$$\frac{dy}{dx} = \frac{dy}{dt} \quad \frac{dt}{dx} = \frac{1}{x} \frac{dy}{dt}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dt} \right) = -\frac{1}{x^2} \frac{dy}{dt} + \frac{1}{x} \frac{d^2y}{dt^2} \frac{dt}{dx} =$$

$$= \frac{1}{x^2} \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right).$$

Perciò la (1) si trasforma nell'equazione a coefficienti costanti

(2)
$$\frac{d^2y}{dt^2} + (p-1)\frac{dy}{dt} + qy = f(e^t).$$

L'equazione caratteristica dell'omogenea associata alla (2) è

(3)
$$\lambda^2 + (p-1)\lambda + q = 0$$
.

Se λ è una radice semplice della (3) allora l'equazione omogenea

(4)
$$x^2y'' + pxy' + qy = 0$$

ammette l'integrale particolare $e^{\lambda t}$, cui corrisponde, come integrale della (4), la funzione x^{λ} . Se λ è una radice doppia della (3), allora la (4) ammette l'integrale particolare $te^{\lambda t}$, cui corrisponde, come integrale della (4), la funzione $x^{\lambda} \log x$.

Il fatto che la (4) ammetta integrali particolari del tipo

$$x^{\lambda}$$
, $x^{\lambda} \log x$

può essere anche dedotto direttamente dalla (4) stessa. Ad esempio, posto, nella (4), $y = x^{\lambda}$, con λ da determinarsi, si ha

$$y' = \lambda x^{\lambda - 1}$$
 $y'' = \lambda (\lambda - 1) x^{\lambda - 2}$.

Sostituendo nella (4), si ottiene

$$\lambda(\lambda-1)x^{\lambda} + p^{\lambda}x^{\lambda} + qx^{\lambda} = 0,$$

ovvero

$$\lambda(\lambda-1) + p\lambda + q = 0$$

cioè, l'equazione caratteristica (3).

Per determinare l'integrale generale dell'equazione omogenea (4), una volta che sia noto un suo integrale particolare $y_1(x)$, può essere utile applicare il procedimento di abbassamento dell'ordine di una equazione omogenea.

Tale procedimento consiste nell'effettuare nella (4) il cambiamento di funzione incognita .

$$y = v(x) y_1(x)$$
.

In tal modo la (4) diviene, con semplici passaggi

$$x^2y_1y'' + (2x^2y_1'+pxy_1)y' = 0$$

Posto $u = v^*$ si perviene così all'equazione del primo ordine

$$u' + (\frac{2y_1'}{y_1} + \frac{p}{x})u = 0$$

di facile risoluzione.

4.58 Verificare che se l'equazione (3) ammette due radici reali e distinte λ_1 , λ_2 , allora le funzioni x^{λ_1} , x^{λ_2} sono integrali particolari linearmente indipendenti dell'equazione di Eulero omogenea $x^2y'' + pxy' + qy = 0$.

[Si vede subito che il Wronskiano delle funzioni x^{λ_1} , x^{λ_2} è uguale a

[Si vede subito che il Wronskiano delle funzioni x^{λ_1} , x^{λ_2} è uguale a $(\lambda_2 - \lambda_1)x^{\lambda_1 + \lambda_2 - 1} \neq 0$ per x > 0]

4.59 Verificare che se l'equazione (3) ammette una radice doppia λ , allora le funzioni x^{λ} , $x^{\lambda} \log \lambda$ sono integrali particolari linearmente indipendenti dell'equazione (4).

[Supponiamo che risulti $c_1 x + c_2 x$ logx = 0 per x > 0. Scegliendo x= =1, ne segue c_1 = 0, e perciò anche c_2 x logx = 0 per ogni x > 0. Ma allora dev'essere anche c_2 = 0]

4.60 Verificare che se l'equazione (3) ammette due radici reali complesse $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$, all

lora le funzioni $x^{\alpha+i\beta}$, $x^{\alpha-i\beta}$ sono due integrali particolari linearmente indipendenti dell'equazione (4).

[Si vede subito che il Wronskiano è uguale a $-2i\beta x^{2\alpha-1} \neq 0$ perchè $\beta \neq 0$. Due integrali reali linearmente indipendenti sono $x^{\alpha}\cos(\beta\log x)$, $x^{\alpha}\sin(\beta\log x)$ in quanto

$$x^{\alpha \pm i \beta} = x^{\alpha \pm i \beta} = x^{\alpha} = x^{\alpha} = x^{\alpha} = x^{\alpha} [\cos(\beta \log x) \pm i \sin(\beta \log x)]]$$

4.61 Risolvere l'equazione di Eulero omogenea x^2y'' - 4xy' + 4y = 0

[Cerchiamo un integrale particolare della forma $y = x^{\lambda}$. Si ha $y' = \lambda x^{\lambda-1}$ $y'' = \lambda (\lambda - 1)x^{\lambda-2}$. Sostituendo nell'equazione, si ha

$$\lambda (\lambda - 1)x^{\lambda} - 4\lambda x^{\lambda} + 4x^{\lambda} = 0$$

ossia, dividendo per x $^{\lambda}$, λ^2 - 5 λ + 4 = 0. Le radici di questa equa - zione sono λ = 4 e λ = 1. Perciò l'integrale generale è y = c $_1$ x 4 + + c $_2$ x]

4.62 Risolvere l'equazione di Eulero $x^2y''+2xy'-2y=x^2$.

[Ponendo $x=e^t$, si ottiene l'equazione

$$\frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} + 2 \frac{dy}{dt} - 2y = (e^{t})^{2} = e^{2t},$$

cioè

(*)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} - 2y = e^{2t}$$
.

L'equazione caratteristica dell'omogenea associata è $\lambda^2 + \lambda - 2 = 0$ ed ammette le radici $\lambda_1 = -2$, $\lambda_2 = 1$. Perciò l'integrale generale dell'omogenea associata è c_1 e $+ c_2$ e . Un integrale particolare dell'equa-

zione (*) è $v_o(t)$ = be t. Imponendo che $v_o(t)$ risolva (*) si trova b = 1/4. Perciò l'integrale generale di (*) è y(t)= c_1e^{-2t} + c_2e^{+2t} /4. Ponendo nuovamente $x = e^t$, si trova che l'integrale generale dell'equa zione data è $c_1e^{-2\log x}$ + $c_2e^{\log x}$ + $e^{2\log x}$ /4 = c_1 x^{-2} + c_2x + x^2 /4]

4.63 Risolvere l'equazione differenziale di Eulero $x^2y'' + 2xy' - y = x (logx + 2)$.

Ponendo x=e si ottiene l'equazione

$$\frac{d^2y}{dt^2} - \frac{dy}{dt} + 2\frac{dy}{dt} - y = (t+2)e^{t}$$

cioê

(*)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} - y = (t+2)e^{t}$$

L'equazione caratteristica dell'omogenea associata è $\lambda^2+\lambda-1=0$ ed ammette le radici $(-1\pm\sqrt{5})/2$. Perció l'integrale generale dell'omogenea associata alla (*) è c_1 e $(-1+\sqrt{5})/2$ + c_2 e $(-1+\sqrt{5})/2$. Un integrale della (*) è $v_o(t) = (bt+c)e^t$. Imponendo la condizione che $v_o(t)$ risolva (*), si trova b=1, c=-1. Perció 1' integrale generale di (*) è $y(t) = c_1$ e $(-1-\sqrt{5})t/2$ + c_2 e $(-1+\sqrt{5})t/2$ + $(t-1)e^t$. Ponendo nuova mente $x = e^t$, si trova che l'integrale generale dell'equazione data è c_1 $x = e^{(-1-\sqrt{5})/2}$ + c_2 $x = e^{(-1+\sqrt{5})/2}$ + $x = e^{(-1+\sqrt{5})/2}$

4.64 Determinare per x > 0 l'integrale generale delle seguenti equazioni differenziali .

$$x^{2}y'' + 2xy' - 6y = 0$$
 [$y = c_{1}x^{-3} + c_{2}x^{2}$]
 $x^{2}y'' + xy' - 4y = 0$ [$y = c_{1}x^{-2} + c_{2}x^{2}$]

 $x^2y'' - 5xy' + 9y = 0$ $[y=c, x^3+c, x^3 \log x]$ $x^2y''+xy'+4y=0$ [y=c, cos(2logx)+c, sen(2logx)] $x^2y^{11}-4xy^{1}+6y=0$ $[y=c_1 x^2 + c_2 x^3]$ $x^2y^{11}-5xy^1+13y=0$ $[y=c,x^3\cos(2\log x)+c,x^3\sin(2\log x)]$ $x^{2}y^{11}-2xy^{1}+2y=x^{2}+2$ $[y=c_1x+c_2x^2+x^2\log x+1]$ $x^{2}v^{1}-5xv^{1}+9v=x^{3}$ $[y=c, x^3+c, x^3 \log x + (x^3/2) \log^2 x]$ $x^2y^{11}-5xy^{1}+10y=0$ $[y=c_1x^3\cos(\log x)+c_2x^3\sin(\log x)]$ $x^{2}y^{11}+xy^{1}+y=0$ [y=c,sen(logx)+c,cos(logx)] $x^2y^{11} + 3xy^1 + y=0$ $[y = c_1 x^{-1} + c_2 x^{-1} \log x]$ $x^2v''+2xv'+v = 0$ $\left[y=\left[c_{1}\cos(\sqrt{3}/2 \log x)+c_{2}\sin(\sqrt{3}/2 \log x)\right]/\sqrt{x}\right]$ $x^{2}y^{11} - xy^{1} - 3y = x^{2} \log x$ $[y = c_1 x^{-1} + c_2 x^3 - (2/9)x^2 - (x^2 \log x)/3]$ $x^3y^{t} + x^2y^t + xy + 1 = 0$ $[y = c_1 \cos(\log x) + c_2 \sin(\log x) - 1/(2x)]$ $x^3y'' - x^2y' + 5xy - 10 = 0$ $[y = c_1 \times \cos(\log(x^2)) + c_2 \times \sin(\log(x^2)) + 5/(4x)]$ $x^3y^{11} + 2x^2y^{1} - 2xy + 4 = 0$ $[y = c_1x + (c_2/x^2) + 2/x]$ $x^2y^{11} + xy^1 + k^2y = 0$ $[y = c_1 \cos(k \log x) + c_2 \sin(k \log x)]$ $x^2y^{11} + xy^1 - k^2y = 0$ $\{y = c, x^k + (c_0/x^k)\}$

4.65 Determinare le soluzioni dell'equazione differenziale $x^2y^{11}+xy^{12}-4y=x^{-3}-x$ che soddisfano la

condizione
$$\lim_{x \to +\infty} \frac{y(x)}{x} = \frac{1}{3}$$
.

[Posto x = e si ottiene l'equazione

(*)
$$\frac{d^2y}{dt^2} - 4y = e^{-3t} - e^{t}.$$

L'omogenea associata ha come integrale generale $y_o(t)=c_1e^{-2t}+c_2e^{2t}$. Un integrale particolare di $\frac{d^2y}{dt^2}$ - $4y=e^{-3t}$ è $e^{-3t}/5$; un integrale particolare di $\frac{d^2y}{dt^2}$ - $4y=e^{t}$ è $-e^{t}/3$; perciò un integrale particolare di (*) è $v_o=(e^{-3t}/5)+e^{t}/3$. Allora l'integrale generale di (*) è $y(t)=c_1e^{-2t}+c_2e^{2t}+(e^{-3t}/5)+e^{t}/3$. Posto di nuovo $x=e^t$, la equazione data ammette l'integrale generale $y(x)=(c_1/x^2)+c_2x^2+1/(5x^3)+x/3$. Imponendo la condizione $\lim_{x\to +\infty}y(x)/x=1/3$ si ha $c_2=0$. Perciò le soluzioni richieste sono $y(x)=(c/x^2)+(1/(5x^3))+(x/3)$ con $c\in \mathbb{R}$

- 4.66 Determinare le soluzioni dell'equazione differenziale $x^2y''+4xy'+2y=x^3-x^{-1}$ che soddisfano la condizione $\lim_{x\to 0} x^2y(x) = 0$ $[y(x) = (c/x) + (x^3/20) - (\log x)/x, \cos c \in R]$
- 4.67 Considerata l'equazione differenziale

$$(x-a)^2y^{1}+p(x-a)y^1 + qy = 0$$
,

detta anch'essa *equazione di Eulero*, verificare che, se l'equazione caratteristica

$$\lambda(\lambda - 1) + p\lambda + q = 0$$

ha due radici reali distinte λ_1 , λ_2 , il suo in-

tegrale generale è dato da

$$y=c_1(x-a)^{\lambda_1} + c_2(x-a)^{\lambda_2}$$
,

mentre se λ è una radice doppia, l'integrale generale è dato da

$$y = [c_1 + c_2 \log(x-a)](x-a)^{\lambda}$$
.

4.68 Determinare i valori del parametro k ≠ 0 per i quali il problema ai limiti

$$\begin{cases} x^2y'' + xy' + 4k^2y = 0\\ y(1) = y(2) = 0 \end{cases}$$

ammette una soluzione diversa da quella identi camente nulla.

[L'equazione differenziale essendo un'equazione di Eulero omogenea, cerchiamo le sue soluzioni sotto la forma $y=x^\lambda$. Si trova l'equazione $\lambda^2 + 4k^2 = 0$ le cui radici sono date da $\lambda = \pm .2ki$.

Essendo $k \neq 0$, l'integrale generale è $y(x) = c_1 \sin(2k\log x) + c_2 \cos(2k\log x)$. La condizione y(1) = 0 implica $c_2 = 0$. La condizione y(2) = 0 implica $c_1 \sin(2k\log 2) = 0$.

Pertanto, se k \ddagger hT /(2log2) con h intero, allora si ha c₁ = 0 e perciò l'unica soluzione del problema ai limiti è quella identicamen te nulla. Se invece esiste un intero h \ne 0 tale che k = hT/(2log2) , allora la funzione y(x) = c₁ sen [(hT logx)/log2] è soluzione non nulla (se c₁ \ne 0) del problema dato]

4G. Integrazione per serie

Non sempre è possibile integrare un'equazione dif ferenziale mediante funzioni elementari, cioè fun zioni polinomiali, esponenziali, trigonometriche e loro inverse. Talvolta, la soluzione va cercata sot to la forma di una serie di potenze

(1)
$$y = \sum_{n=0}^{\infty} c_n (x-x_o)^n,$$

i cui coefficienti possono essere identificati, imponendo che la (1) sia soluzione della data equazione. Il punto x_o che figura nella (1) potrà essere il punto nel quale sono assegnate le condizioni inizia li $y(x_o) = y_o$, $y'(x_o) = y_o^{(1)}$, ecc.

Ad esempio, si voglia risolvere il problema di Cauchy

$$\begin{cases} y' = xy \\ y(0) = 1 \end{cases}$$

Cerchiamo la soluzione sotto la forma

$$y(x) = \sum_{n=0}^{\infty} a_n x^n .$$

Derivando si ha

$$h'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$$

e, sostituendo nell'equazione differenziale, si ha

$$\sum_{n=0}^{\infty} n a_n x^{n-1} = x \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+1},$$

ovvero

$$a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + \dots = a_0x + a_1x^2 + a_2x^3 + \dots$$

Uguagliando i coefficienti delle stesse potenze di x sì ottengono le seguenti relazioni tra i coefficienti incogniti

 $a_1=0$, $2a_2=a_0$, $3a_3=a_1$, $4a_4=a_2$, $5a_5=a_3$,...

e, in generale $na_n = a_{n-2}$ per $n \ge 2$.

Ne segue $a_{2n+1}=0$ per ogni n, ed inoltre $a_{2n}=a_{2n-2}/2n$. Dalle relazioni

$$a_2 = a_0/2$$
, $a_4 = a_2/4$, $a_6 = a_4/6$,...

segue

$$a_4 = \frac{a_0}{2 \cdot 4}$$
, $a_6 = \frac{a_0}{2 \cdot 4 \cdot 6}$, ..., $a_{2n} = \frac{a_0}{2 \cdot 4 \cdot ... \cdot 2n}$

cioè

$$a_{2n} = a_{0}/(2^{n}n!).$$

Si ottiene così l'espressione di y(x)

$$y(x) = a_0 \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$$
.

Essendo y(0) = 1, si ricava $a_0=1$ e perciò

$$y(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$$
.

La serie di potenze a secondo membro essendo lo svi luppo di MacLaurin della funzione $e^{x^2/2}$, ritroviamo così la soluzione $y(x) = e^{x^2/2}$ che avremmo determina to procedendo direttamente all'integrazione, con i metodi del paragrafo 4A.

Osserviamo che non sempre la soluzione ottenuta mediante integrazione per serie sarà rappresentata da una serie convergente verso una funzione elementare.

4.69 Risolvere il problema di Cauchy

$$\begin{cases} y'' + 2xy' + 2y = 0 \\ y(0)=1, y'(0)=0 \end{cases}$$

[Cerchiamo una soluzione sotto la forma

$$y = \sum_{n=0}^{\infty} a_n x^n.$$

Essendo

$$y' = \sum_{n=1}^{\infty} na_n x^{n-1}$$
, $y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$,

si ha

$$y'' + 2xy' + 2y = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} 2na_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=0}^{\infty} 2na_n x^n + \sum_{n=0}^{\infty} 2a_n x^n$$

Perciò dev'essere, per ogni x

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + 2(n+1)a_{n}]x^{n} = 0$$

e quindi i coefficienti $a_{_{\Pi}}$ devono soddisfare le relazioni di ricor renza

(*)
$$a_{n+2} = -2a_n/(n+2)$$
 $n \ge 0$.

Essendo $y'(0) = a_1 = 0$, dalla (*) segue che $a_{2k+1} = 0$ per ogni k. Se invece n = 2k, la (*) implica

$$a_{2(k+1)} = -a_{2k}/(k+1)$$

Essendo $y(0) = a_0 = 1$, ne segue

$$a_2 = -a_0 = -1$$
, $a_4 = -a_2/2 = 1/2$
 $a_5 = -a_4/3 = -1/(2.3)$, $a_8 = -a_5/4 = 1/(2.3.4)$

e così via. Pertanto risulta $a_{2(k+1)} = (-1)^{k+1}/(k+1)!$

e così si ottiene l'espressione di y(x):

(40k)
$$y(x) = \sum_{k=0}^{\infty} (-1)^k x^{2k}/k!$$

Abbiamo perciò dimostrato che se la soluzione del problema di Cauchy si può rappresentare mediante una serie di potenze, allora la serie è necessariamente quella che figura al secondo membro della (**). Poi chè tutti i passaggi eseguiti sono invertibili, per dimostrare che la serie rappresenta effettivamente la soluzione, basterà dimostrare che essa converge. Ciò segue subito dal criterio del rapporto. Osserviamo che (\Rightarrow) è lo sviluppo di MacLaurin della funzione y(x)= e^{-x^2} e che tale è la soluzione del dato problema di Cauchy]

4.70 Risolvere, mediante integrazione per serie, la equazione differenziale y'' + xy' + y = 0

$$[y(x) = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^n n!} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}$$

4.71 Risolvere, mediante integrazione per serie, la equazione differenziale $(1-x^2)y^{11}-2xy^{1}+2y=0$.

$$[y(x)=a_nx+a_1[1-x^2-(x^4/3)-(x^6/5)-(x^8/7)-....]]$$

4.72 Risolvere, mediante integrazione per serie, le seguenti equazioni

(a)
$$y^{1}+5xy=0$$

(c)
$$y'' + xy' + 7y = 0$$
 (d) $y'' + x^2y' + xy = 0$

(d)
$$y'' + x^2y^1 + xy = 0$$

[Si ha y =
$$\sum_{n=0}^{\infty} a_n x^n \cos a_0 e a_1 \cos \tan i \text{ arbitrarie } e (a) a_2 = 0$$
, $a_{n+2} = -5a_{n-1}/[(n+1)(n+2)]$, per $n \ge 1$; (b) $a_{n+2} = -(n+3)a_n/[(n+1)(n+2)]$, per $n \ge 0$; (c) $a_{n+2} = -(n+7)a_n/[(n+1)(n+2)]$, per $n \ge 0$; (d) $a_2 = 0$, $a_{n+3} = -(n+1)a_n/[(n+3)(n+2)]$ per $n \ge 0$]

4.73 Per ogni c∈R risolvere mediante integrazione per serie l'equazione differenziale di Hermite y'' - 2xy' + 2cy = 0.

$$[y = \sum_{n=0}^{\infty} a_n x^n, con a_{n+2} = -2(c-n)a_n/[(n+1)(n+2)] e a_0, a_1 costan-ti arbitrarie]$$

4H. Sistemi di equazioni differenziali lineari

Un sistema di n equazioni differenziali del ti-

$$\begin{cases} y_1' = a_{11}(x)y_1 + a_{12}(x) y_2 + \dots + a_{1n}(x)y_n + f_1(x) \\ y_2' = a_{21}(x)y_1 + a_{22}(x) y_2 + \dots + a_{2n}(x)y_n + f_2(x) \\ \dots \\ y_n' = a_{n1}(x)y_1 + a_{n2}(x)y_2 + \dots + a_{nn}(x) y_n + f_n(x) \end{cases}$$

Sì Chìama sistema di equazioni differenziali lineari del primo ordine. Per soluzione di tale sistema si intende una n-pla di funzioni derivabili y,=y,(x),...,y,= = $y_n(x)$ che soddisfano simultaneamente le n equazio ni per x appartenente ad un intervallo I di R. Sussiste il seguente teorema di Cauchy

TEOREMA (DI ESISTENZA ED UNICITA'). Se i coefficienti $a_{ij}(x)$ ed i termini noti $f_i(x)$ sono funzioni continue nell'intervallo limitato [a,b], allora, per ogni $x_o \in [a,b]$, e per ogni $(y_1^o,y_2^o,\ldots,y_n^o) \in \mathbb{R}^n$ esiste una ed una sola soluzione del sistema (1) verificante le condizioni iniziali:

$$y_1(x_0) = y_1^0, y_2(x_0) = y_2^0, ..., y_n(x_0) = y_n^0$$

Il sistema (1) si dice omogeneo se tutti i termini noti $f_i(x)$ sono identicamente nulli in [a,b]; altr<u>i</u> menti si dice non omogeneo.

Per risolvere il sistema omogeneo a coefficienti costanti

$$\begin{cases} y_1' = a_{11}y_1 + a_{12}y_2 + \dots + a_{1n}y_n \\ y_2' = a_{21}y_1 + a_{22}y_2 + \dots + a_{2n}y_n \\ \dots \\ y_n' = a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nn}y_n \end{cases}$$

cerchiamo di soddisfarlo ponendo

(3)
$$y_1 = \lambda_1 e^{\alpha x}$$
, $y_2 = \lambda_2 e^{\alpha x}$, ..., $y_n = \lambda_n e^{\alpha x}$

con $\lambda_1, \ldots, \lambda_n, \alpha$ costanti da determinarsi.

Imponendo che le funzioni y_1, \ldots, y_n soddisfino il sistema (2), si perviene al sistema di equazioni lineari nelle incognite $\lambda_1, \ldots, \lambda_n$:

(4)
$$\begin{cases} (a_{11} - \alpha) \lambda_1 + a_{12} \lambda_2 + \dots + a_{1n} \lambda_n = 0 \\ a_{21} \lambda_1 + (a_{22} - \alpha) \lambda_2 + \dots + a_{2n} \lambda_n = 0 \\ \dots \\ a_{n1} \lambda_1 + a_{n2} \lambda_2 + \dots + (a_{nn} - \alpha) \lambda_n = 0 \end{cases}$$

che ammette una soluzione diversa dal vettore $(0, \ldots, 0)$ se e solo se risulta

(5)
$$\begin{vmatrix} a_{11} - \alpha & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \alpha & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \alpha \end{vmatrix} = 0$$

cioè (ved. il paragrafo 5G del vol. I, parte prima) se e solo se α è autovalore della matrice a_{ij} . La (5) è un'equazione algebrica di grado n che prende il nome di equazione caratteristica del sistema (2).

Si dimostra che, se l'equazione caratteristica (5) ha n radici distinte $\alpha_1, \alpha_2, \ldots, \alpha_n$, cioè, se la matrice a_{ij} ha n autovalori distinti, allora, detta $(\lambda_1^{(k)}, \ldots, \lambda_n^{(k)})$ la soluzione del sistema (4) per $\alpha = \alpha_k$, le funzioni

$$y_1^{(k)} = \lambda_1^{(k)} e^{\alpha k^x}, y_2^{(k)} = \lambda_2^{(k)} e^{\alpha k^x}, \dots, y_n^{(k)} = \lambda_n^{(k)} e^{\alpha k^x}$$

costituiscono una soluzione del sistema (2), e che le soluzioni $(y_1^{(k)}, y_2^{(k)}, \ldots, y_n^{(k)})$, al variare di $k=1,\ldots,n$, costituiscono un insieme di soluzioni linearmente indipendenti. Pertanto, l'integrale generale del sistema (2) è dato da (y_1,\ldots,y_n) con

$$\begin{cases} y_1 = c_1 & \lambda_1^{(1)} e^{\alpha_1 x} + c_2 \lambda_1^{(2)} e^{\alpha_2 x} + \dots + c_n \lambda_1^{(n)} e^{\alpha_n x} \\ y_2 = c_1 & \lambda_2^{(1)} e^{\alpha_1 x} + c_2 & \lambda_2^{(2)} e^{\alpha_2 x} + \dots + c_n \lambda_2^{(n)} e^{\alpha_n x} \\ \dots & \dots & \dots & \dots & \dots \\ y_n = c_1 & \lambda_n^{(1)} e^{\alpha_1 x} + c_2 & \lambda_n^{(2)} e^{\alpha_2 x} & + \dots + c_n \lambda_n^{(n)} e^{\alpha_n x} \end{cases}$$

ove c_1, \ldots, c_n sono costanti arbitrarie e $\lambda_1^{(k)}, \ldots, \lambda_n^{(k)}$ sono autovettori della matrice A = (a_{ij}) corrispondenti all'autovalore α_k .

Consideriamo ora il sistema *non omogeneo* a coefficie<u>n</u> ti costanti

(6)
$$\begin{cases} y_1'(x) = ay_1(x) + by_2(x) + f(x) \\ y_2'(x) = cy_1(x) + dy_2(x) + g(x) \end{cases}$$

e supponiamo che i termini noti f(x) e g(x) siano de rivabili nell'intervallo $[\alpha, \beta]$.

Per risolverlo, possiamo procedére nel modo seguente. Deriviamo rispetto a x la prima equazione, ottenendo

$$y_1^{11} = ay_1^1 + by_2^1 + f^1$$
.

Sostituendo il valore di y' ricavato dalla seconda equazione, otteniamo

$$y_1^{i_1} = ay_1^{i_1} + b(cy_1 + dy_2 + g) + f' =$$

$$= ay_1^{i_1} + bcy_1 + dby_2 + bg + f'.$$

Il valore by₂ può essere ricavato dalla prima equazione: by₂ = y_1' - ay_1 - f. Sostituendo, si ot - tiene

$$y_1^{ii} = ay_1^i + bcy_1 + d(y_1^i - ay_1 - f) + bg + f^i$$

ovvero l'equazione del secondo ordine nell'incognita \mathbf{y}_1

$$y_1^{n} - (a+d)y_1^{n} + (ad-bc)y_1 = bg-df+f^{n}$$
.

Dopo aver determinato y_1 , si ricava y_2 dal sistema (6).

4.74 Risolvere il sistema omogeneo

$$\begin{cases} y_1' = 5y_1 + 4y_2 \\ y_2' = y_1 + 2y_2 \end{cases}$$
[La matrice dei coefficienti è $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$.

L'equazione caratteristica è

$$\begin{vmatrix} 5 - \alpha & 4 \\ 1 & 2 - \alpha \end{vmatrix} = (5-\alpha)(2-\alpha)-4+\alpha^2-7\alpha+6=0.$$

Quindi la matrice A ha i due autovalori semplici 6 e 1. Per determinare un autovettore di A corrispondente all'autovalore $\alpha=6$, risolviamo il sistema

$$\begin{cases} -\lambda_1 + 4\lambda_2 = 0 \\ \lambda_1 - 4\lambda_2 = 0 \end{cases}$$

da cui segue $\lambda_1 = 4\lambda_2$; ad esempio (4,1) è un autovettore. Analoga mente si vede che (1,-1) è un autovettore corrispondente all'autovalore α =1. Allora l'integrale generale del sistema dato è

$$\begin{cases} y_1 = 4c_1 e^{6x} + c_2 e^{x} \\ y_2 = c_1 e^{6x} - c_2 e^{x} \end{cases}$$

4.75 Risolvere il sistema omogeneo

$$\begin{cases} y_1' = 2y_1 + y_2 \\ y_2' = y_1 + 2y_2 \end{cases}$$

 $[y_1 = c_1 e^x + c_2 e^{3x}, y_2 = -c_1 e^x + c_2 e^{3x}]$

4.76 Determinare la soluzione del sistema

$$\begin{cases} y_1^t = y_2 \\ y_2^t = y_1 \end{cases}$$

che verifica le condizioni iniziali $y_1(0) = 1$, $y_2(0) = 0$.

$$[y_1 = (e^X + e^{-X})/2, y_2 = (e^X - e^{-X})/2]$$

4.77 Determinare la soluzione del sistema

$$\begin{cases} y_1^t = y_2 \\ y_2^t = -y_1 \end{cases}$$

che verifica le condizioni iniziali $y_1(0) = 0$, $y_2(0) = 1$.

$$[y_1 = senx, y_2 = cosx]$$

4.78 Risolvere i seguenti sistemi omogenei

(a)
$$\begin{cases} y_1^t = 2y_1 + 3y_2 \\ 3y_2^t = y_1 + 6y_2 \end{cases}$$
 (b)
$$\begin{cases} 2y_1^t = y_1 + y_2 \\ 2y_2^t = -3y_1 + 5y_2 \end{cases}$$

(c)
$$\begin{cases} y_1' = y_1 + 2y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$
 (d)
$$\begin{cases} y_1' = y_1 + y_2 \\ y_2' = y_1 - y_2 \end{cases}$$

[(a)
$$y_1 = 3c_1 e^{3x} - 3c_2 e^{x}$$
, $y_2 = c_1 e^{3x} + c_2 e^{x}$; (b) $y_1 = c_1 e^{x} + c_2 e^{x}$, $y_2 = c_1 e^{x} + 3c_2 e^{x}$; (c) $y_1 = c_1 e^{-x} + c_2 e^{3x}$, $y_2 = -c_1 e^{-x} + c_2 e^{3x}$;

(d)
$$y_1 = c_1 e^{\sqrt{2} x} + c_2 e^{-\sqrt{2} x}$$
, $y_2 = c_1 (\sqrt{2} - 1) e^{\sqrt{2} x} - c_2 (\sqrt{2} + 1) e^{-\sqrt{2} x}$

4.79 Risolvere il sistema omogeneo

$$\begin{cases} y_1' = y_3 \\ y_2' = 3y_1 + 7y_2 - 9y_3 \\ y_3' = 2y_2 - 3y_3 \end{cases}$$

[La matrice del sistema è

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 3 & 7 & -9 \\ 0 & 2 & -1 \end{pmatrix}$$

L'equazione caratteristica è

$$\begin{vmatrix} -\alpha & 0 & 1 \\ 3 & 7-\alpha & -9 \\ 0 & 2 & -1-\alpha \end{vmatrix} = -\alpha \begin{vmatrix} 7-\alpha & -9 \\ 2 & -1-\alpha \end{vmatrix} + 6 =$$

$$= -\alpha^3 + 6\alpha^2 - 11\alpha + 6 = 0$$

ossia $(\alpha-1)(\alpha-2)(\alpha-3)=0$. Per determinare un autovettore corrispon dente all'autovalore $\alpha=1$, risolviamo il sistema

$$\begin{cases} -\lambda_{1} + \lambda_{3} = 0 \\ 3\lambda_{1} + 6\lambda_{2} - 9\lambda_{3} = 0 \\ 2\lambda_{2} - 2\lambda_{3} = 0 \end{cases}$$

La soluzione è del tipo (k,k,k) con $k \in \mathbb{R}$ - $\{0\}$ e perciò un auto -

vettore di A è (1,1,1). Per determinare un autovettore della matrice A corrispondente all'autovalore $\alpha=2$, risolviamo il sistema

$$\begin{cases} -2\lambda_1 + \lambda_3 = 0 \\ 3\lambda_1 + 5\lambda_2 - 9\lambda_3 = 0 \\ 2\lambda_2 - 3\lambda_3 = 0 \end{cases}$$

La soluzione è del tipo (k, 3k, 2k) con $k \neq 0$ e perciò un autovettore di A è (1,3,2). Per determinare un autovettore corrispondente all'autovalore $\alpha=3$, risolviamo il sistema

$$\begin{cases} -3\lambda_1 + \lambda_3 = 0 \\ 3\lambda_1 + 4\lambda_2 - 9 \lambda_3 = 0 \\ 2\lambda_2 - 4\lambda_3 = 0 \end{cases}$$

La soluzione è del tipo (k,6k,3k) con $k \neq 0$ e perciò un autovettore di A è (1,6,3). Allora, l'integrale generale del sistema dato è

$$\begin{cases} y_1 = c_1 e^{x} + c_2 e^{2x} + c_3 e^{3x} \\ y_2 = c_1 e^{x} + 3c_2 e^{x} + 6c_3 e^{3x} \\ y_3 = c_1 e^{x} + 2c_2 e^{2x} + 3c_3 e^{3x} \end{cases}$$

con c_1 , c_2 , c_3 costanti arbitrarie]

4.80 Risolvere il sistema omogeneo

$$\begin{cases} y_1' = y_3 \\ y_2' = y_1 \\ y_3' = y_1 - 3y_2 + 3y_3 \end{cases}$$

[Gli autovalori della matrice del sistema sono -1,1,3. Corrispondenti autovettori sono, rispettivamente (1,-1,-1), (1,1,1), (1,3,1/3). Perciò l'integrale generale è $y_1 = c_1 e^{-x} + c_2 e^{x} + c_3 e^{3x}$, $y_2 = -c_1 e^{-x} + c_2 e^{x} + c_3 e^{3x}$

+
$$c_2 e^{x}$$
 + $3c_3 e^{3x}$, $y_3 = -c_1 e^{-x}$ + $c_2 e^{x}$ + $c_3 e^{3x}/3$

4.81 Risolvere il sistema omogeneo

$$\begin{cases} y_1' = 6y_1 - 2y_2 + 2y_3 \\ y_2' = -2y_1 + 5y_2 \\ y_3' = 2y_1 + 7y_3 \end{cases}$$

[
$$y_1 = 2c_1 e^{3x} - c_2 e^{6x} + 2c_3 e^{9x}$$
, $y_2 = 2c_1 e^{3x} + 2c_2 e^{6x} - c_3 e^{9x}$, $y_3 = -c_1 e^{3x} + 2c_2 e^{6x} + 2c_3 e^{9x}$]

4.82 Risolvere il sistema non omogeneo

$$\begin{cases} y_1' = y_1 - y_2 + e^x \\ y_2' = 2y_1 - y_2 + 1 \end{cases}$$

[Derivando la prima equazione, si ha $y_1^n = y_1^n - y_2^n + e^X$. Sostituendo la espressione di y_2^n dedotta dalla seconda equazione si ha $y_1^n = y_1^n - (2y_1 - y_2 + 1) + e^X = y_1^n - 2y_1 + y_2 - 1 + e^X$. Poichè dalla prima equazione segue $y_2 = y_1 - y_1^n + e^X$, sostituendo, si ottiene l'equazione lineare in $y_1 : y_1^n = -y_1 + 2e^X - 1$, cioè $y_1^n + y_1 = 2e^X - 1$. L'integrale generale di tale equazione è $y_1 = c_1 \cos x + c_2 \sin x + e^X - 1$, come si verifica facilmente. Dalla prima equazione segue poi $y_2 = y_1 - y_1^n + e^X = c_1 (\cos x - \sin x) + c_2 (\sin x - \cos x) - 1 + e^X$. La coppia di funzioni $y_1(x)$, $y_2(x)$ così ottenute fornisce l'integrale generale del si stema dato]

4.83 Risolvere il sistema non omogeneo

$$\begin{cases} y_1' = 5y_1 - 2y_2 + \cos x \\ y_2' = 2y_1 - y_2 + \sin x \end{cases}$$

$$[y_1 = c_1 e^{(2-\sqrt{5})x} + c_2 e^{(2+\sqrt{5})x} - (7\cos x - \sin x)/10;$$

$$y_2 = c_1 (3+\sqrt{5})e^{(2-\sqrt{5})x} + c_2 (3-\sqrt{5})e^{(2+\sqrt{5})x} - (26\cos x + 2\sin x)/10$$

4.84 Risolvere il sistema non omogeneo

$$\begin{cases} y_1' = -2y_1 + y_2 \\ y_2' = -4y_1 + 3y_2 + 10 \cos x \end{cases}$$

$$[y_1(x) = c_1 e^{-x} + c_2 e^{2x} - 3\cos x - \sin x; \ y_2(x) = c_1 e^{-x} + 4c_2 e^{2x} - 7\cos x + \sin x \end{cases}$$

4.85 Risolvere il sistema non omogeneo

$$\begin{cases} y_1' = -y_2 + \cos x - \sin x \\ y_2' = -y_1 + \cos x + \sin x \end{cases}$$

$$[y_1(x) = c_1 e^x + c_2 e^{-x} + \cos x + \sin x; y_2(x) = -c_1 e^x + c_2 e^{-x}]$$

Capitolo 5

EQUAZIONI DIFFERENZIALI NON LINEARI DEL PRIMO ORDINE

Preliminarmente esponiamo i metodi di risoluzio ne per alcune equazioni differenziali non lineari del primo ordine. Successivamente, nel paragrafo SI, discutiamo del teorema di Cauchy di esistenza ed unicità.

SA. Equazioni a variabili separabili

Si dice a variabili separabili un'equazione differenziale del primo ordine del tipo

$$y' = f(x) \cdot g(y) ,$$

con f e g funzioni continue. Ad esempio, sono a variabili separabili le equazioni differenziali

$$y' = \frac{x}{y}$$
; $y' = 1 + y^2$.

Nel primo caso è f(x) = x e g(y) = 1/y, mentre, nel secondo caso, si può porre $f(x) = 1 e g(y) = 1 + y^2$.

Per determinare le soluzioni dell'equazione differenziale (*), si scrive la derivata y' come rappor to tra differenziali y' = dy/dx; si ottiene

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(x) \cdot \mathbf{g}(y) \; ;$$

poi si separano le variabili (supponendo g(y) ≠ 0)

$$\frac{1}{g(y)} dy = f(x)dx$$

e si integra membro a membro

$$\int \frac{1}{g(y)} dy = \int f(x) dx .$$

Si ottiene una relazione del tipo G(y) = F(x)+c che esprime il legame (in forma implicita) tra $x \in y$.

5.1 Risolvere le equazioni differenziali a variabili separabili

(a)
$$y' = \frac{x}{y}$$
 (b) $y' = 1 + y^2$

[(a) Si scrive l'equazione differenziale nella forma equivalente

$$\frac{dy}{dx} = \frac{x}{y}$$
 da cui $y dy = x dx$.

Integrando membro a membro, otteniamo

$$\int y \, dy = \int x \, dx = \frac{y^2}{2} = \frac{x^2}{2} + c ,$$

cioè ancora y 2 = x 2 + 2c (si noti che, pur di cambiare la costante, si

può scrivere equivalentemente $y^2 = x^2 + c^4$). L'insieme delle soluzioni è quindi costituito dalla famiglia di iperboli equilatere $y^2 - x^2 = c^4$, se $c^4 \neq 0$, e dalle rette di equazione $y = \pm x$, se $c^4 = 0$.

Si può controllare l'esattezza del risultato ottenuto calcolando la derivata y' e verificando che y' = y/x. A tale scopo ricaviamo la y in funzione di x dalla relazione $y^2 = x^2 + 2c$:

$$y = \pm \sqrt{x^2 + 2c}$$

(sí noti che, globalmente, y non è funzione di x; infatti $y=\sqrt{x^2+2c}$ è una funzione di x e $y=-\sqrt{x^2+2c}$ è un'altra funzione). Derivando otteniamo

$$y' = \pm \frac{x}{\sqrt{x^2 + 2c}}$$
 e quindi $\frac{x}{y} = \frac{x}{\pm \sqrt{x^2 + 2c}} = y'$.

(b) Scriviamo l'equazione differenziale nella forma equivalente

$$\frac{dy}{dx} = 1 + y^2 \qquad \Longrightarrow \qquad \frac{dy}{1+y^2} = dx$$

ed integriamo membro a membro

arctg
$$y = \int \frac{dy}{1+y^2} = \int dx = x + c$$
.

Quindi, in forma implicita, le soluzioni sono rappresentate dalla relazione arctg y = x + c, $\forall c \in R$. Ricavando la y si può scrivere anche y = tg(x + c).

Verifichiamo il risultato controllando che $y' = 1 + y^2$:

$$y' = D tg(x+c) = 1/\cos^2(x+c);$$

 $1 + y^2 = 1 + tg^2(x+c) = 1 + \frac{\sin^2(x+c)}{\cos^2(x+c)} = \frac{1}{\cos^2(x+c)}$

5.2 Risolvere le seguenti equazioni differenziali a variabili separabili

(a) $y' = \cos^2 y$ (b) $y' = 2x \cos^2 y$

'[(a) Dividendo per $\cos^2 y$ (se $\cos^2 y \neq 0$) e integrando, otteniamo

$$\frac{dy}{\cos^2 y} = dx \qquad \Rightarrow tg \ y = \int \frac{dy}{\cos^2 y} = \int dx = x + c,$$

Quindi le soluzioni trovate sono rappresentate analiticamente dalla relazione tg y = x + c, $\forall c \in \mathbb{R}$. Limitatamente alle funzioni y(x) per cui $-\pi/2 < y(x) < \pi/2$ si può scrivere y(x) = arctg(x+c).

Oltre a ciò, occorre verificare che, separando le variabili, non si siano perse alcune soluzioni corrispondenti al caso $\cos^2 y = 0$; infatti, ad esempio, per la funzione costante $y(x) = \pi/2$, per ogni $x \in \mathbb{R}$ risulta y'(x) = 0 e quindi $y' = \cos^2 y = 0$. Analogamente ogni altra funzione costante $y(x) = \pi/2 + k\pi$ ($k \in \mathbb{Z}$) è soluzione. Riassumendo, le soluzioni sono rappresentate da

tg y = x+c,
$$\forall c \in R$$
 e $y = \frac{\pi}{2} \div k \pi$, $\forall k \in Z$

(b) Come in precedenza si determinano le soluzioni

tg y =
$$x^2 + c$$
, Yce? e y = $\frac{\pi}{2} + k \pi$, Vk e Z

5.3 Risolvere le equazioni a variabili separabili

(a)
$$y' = 2xy$$
 (b) $y' = \frac{y}{x}$ (c) $y' = -\frac{x}{y}$

[(a) Oltre che a variabili se arabili, l'equazione differenziale è anche lineare omogenea. Notiamo subito che la funzione identicamente nulla è una soluzione; inoltre, separando le variabili, abbiamo

$$\frac{dy}{dx} = 2xy, \qquad \int \frac{dy}{y} = \int 2xdx, \qquad \log |y| = x^2 + c;$$

da cui $|y| = e^{x^2 + c} = e^{x^2} \cdot e^c$. Al variare di c in R, e^c descrive tutti i numeri reali positivi; perciò e^c rappresenta una generica costante positiva. Si noti che il secondo membro $e^{x^2 + c}$ non si annulla; perciò

- y(x) non si annulla per alcun valore della x. Distinguendo i casi $y \gtrless 0$ si giunge alla rappresentazione $y = \pm e^{x^2} \cdot e^{C}$. Tenendo conto che anche y = 0 è soluzione e ponendo $c^* = \pm e^{C}$ se $y(x) \neq 0$ e $c^* = 0$ se y(x) = 0, si giunge alla rappresentazione di tutte le soluzioni nella forma $y(x) = c^* e^{x^2}$.
- (b) y(x) = 0 per ogni $x \in R$ $(x \neq 0)$ è soluzione. Separando le variabili si ottiene

$$\log |y| = \int \frac{dy}{y} = \int \frac{dx}{x} = \log |x| + c = \log (e^{c} |x|),$$

da cui $|y| = e^{C} |x|$. Come in (a), posto $c' = \pm e^{C}$ se $y(x) \neq 0$ e c' = 0 se y(x) = 0, si trovano le soluzioni nella forma y(x) = c'x, $\forall c' \in \mathbb{R}$.

- (c) Le soluzioni (in forma implicita) sono date dall'equazione $x^2 + y^2 = c$ che, geometricamente, corrisponde alla famiglia di circonferenze con centro l'origine degli assi (per ogni scelta della costante c > 0)
- 5.4 Risolvere le equazioni a variabili separabili

(a)
$$xy' = tg y$$
 (b) $y'tgx = y$

[(a) Per applicare il metodo della separazione delle variabili, occorre dividere entrambi i membri per x tgy. Essendo tg y=0 per y = k π , con k \in Z, tutte le funzioni costanti y(x) = k π sono soluzioni. Inoltre , supponendo tgy \neq 0 (e anche x \neq 0), separando le variabili otteniamo

$$\log |\operatorname{seny}| = \int \frac{\cos y}{\operatorname{seny}} \, dy = \int \frac{dx}{x} = \log |x| + c = \log (e^{c} |x|).$$

Ponendo c' = $\frac{c}{1}$ e, come nell'esercizio 5.3 si ottiene seny = c'x. Notiamo che, per c' = 0, si riottengono le soluzioni costanti y(x) = k π , con k \in Z. Perciò tutte le soluzioni si possono rappresentare nella for

ma serby = $c^{t}x$. (b) $y(x) = c \operatorname{sen}x$. con $c \in \mathbb{R}$

5.5 Disegnare in un riferimento cartesiano ortogonale il grafico delle soluzioni dell'equazione con siderata nell'esercizio 5.3(a).

[Si veda la figura 5.1]

figura 5.2

5.6 Risolvere l'equazione differenziale y'=-2xy e d \underline{i} segnare in un riferimento cartesiano ortogonale il grafico delle soluzioni trovate.

 $[y(x) = c e^{-x^2}, rappresentate in figura 5.2]$

5.7 Determinare tutte le soluzioni dell'equazione dif ferenziale

$$y' = 2x\sqrt{1-y^2}$$

 $[y(x)=sen(x^2+c), con c \in R, oltre alle due funzioni costanti <math>y(x)=\pm 1]$

5.8 Risolvere l'equazione differenziale y'=e^{x-y}cosx.

[Separando le variabili si ottiene

$$\frac{dy}{dx} = \frac{e^{x}\cos x}{e^{y}} \implies \int e^{y}dy = \int e^{x}\cos x dx.$$

Si può calcolare l'integrale a secondo membro utilizzando due volte la formula di integrazione per parti

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x = e^{x} (\sin x + \cos x) - \int e^{x} \cos x \, dx$$

da cui
$$\int_{0}^{x} e^{x} \cos x \, dx = \frac{1}{2} e^{x} (\sin x + \cos x) + c.$$

Perciò l'integrale generale dell'equazione differenziale è dato da e = = $(1/2)e^{x}$ (senx + cosx) + c, cioè e e^{y-x} = (1/2) (senx + cosx) + c, da cui

$$y = x + \log \left(\frac{\text{senx} + \cos x}{2} + c \right)$$

5.9 Siano a,b costanti reali non nulle. Risolvere, con il metodo della separazione delle variabili, l'equazione lineare

$$y' = ay + b$$

Separando le variabili abbiamo

$$\frac{1}{a} \log |ay + b| = \int \frac{dy}{ay+b} = \int dx = x + c$$

da cui $y(x) = \left[e^{a(x+c)} - b\right]/a = c'e^{ax} - b/a$, avendo posto c'ee /a. Il lettore controlli che si ottiene lo stesso risultato utilizzando la formula risolutiva per le equazioni lineari del primo ordine, già considerata nel capitolo 4]

5.10 Risolvere i seguenti problemi di Cauchy

(a)
$$\begin{cases} xy' = 1 + y^2 \\ y(1) = 1 \end{cases}$$
 (b)
$$\begin{cases} xy' = 1 + y^2 \\ y(-1) = 1 \end{cases}$$

- [L'equazione differenziale si risolve separando le variabili ed ha le soluzioni y(x) = tg(c + log |x|).
- (a) Le soluzioni y(x) sono definite per $x \neq 0$ (e per c+log $|x| \neq \pi/2 + k\pi$); è quindi opportuno considerare separatamente gli intervalli $(-\infty,0)$ e $(0,+\infty)$. Dato che cerchiamo la soluzione y(x)che soddisfa la condizione iniziale y=1 per x=1>0, ci poniamo nell'intervallo $(0,+\infty)$. In tal caso risulta y(x)=tg (c + logx) e y(1)=tgc. Perciò la condizione y(1)=1 equivale a tgc=1, cioè $c=\pi/4+k\pi$. Dato che la funzione tangente è periodica di periodo π , basta scegliere ad esempio $c=\pi/4$. La soluzione del problema di Cauchy è quindi y(x)=tg ($\pi/4+logx$). (b) y(x)=tg ($\pi/4+log(-x)$)
- 5.11 Risolvere i seguenti problemi di Cauchy

(a)
$$\begin{cases} y' + 3x^2y^4 = 0 \\ y(1) = 0 \end{cases}$$
 (b)
$$\begin{cases} y' + 3x^2y^4 = 0 \\ y(1) = 1 \end{cases}$$

[(a) La funzione identicamente nulla soddisfa sia l'equazione differenziale che il dato iniziale ed è quindi soluzione (unica) del problema di Cauchy. Si noti che, separando le variabili, si perde proprio la soluzione y(x) = 0, $\forall x \in \mathbb{R}$; (b) dopo aver separato le variabili otteniamo

$$-\frac{1}{3}y^{-3} = \int y^{-4} dy = \int -3x^2 dx = -x^3 + c$$

da cui y²³ = 3x³ - 3c. Imponendo la condizione y(1)=1 si trova 1=3-3c da cui 3c = 2. Perciò la soluzione del problema di Cauchy è data da y(x) = $1/(3x^3 - 2)^{1/3}$

- 5.12 Risolvere le equazioni a variabili separabili
 - (a) y'=y cotg x
- (b) $y' = (y-3) \cot y$
- [(a) $\log |y| = \int \frac{dy}{y} = \int \frac{\cos x}{\sin x} dx = \log |\sin x| + c$,

da cui log $|y| = \log e^{c} | \operatorname{senx} | e | \operatorname{quindi} y = \pm e^{c} | \operatorname{senx} |$.

Cambiando la costante, le soluzioni si possono anche scrivere nella forma y(x) = c'senx (si noti che anche y(x) = 0 è soluzione e si ottiene per c' ≈ 0); (b) y(x) = 3 + c senx

5.13 Risolvere l'equazione $2x^2yy' = 1+y^2$.

Separando le variabili otteniamo

$$\log (1+y^2) = \int \frac{2y}{1+y^2} dy = \int \frac{dx}{x^2} = -x^{-1} + c,$$

da cui
$$y(x) = \pm (e^{c-1/x} - 1)^{1/2}$$

5.14 Risolvere l'equazione xy' = ylogy.

[La funzione costante y=1, che annulla il secondo membro, è soluzione dell'equazione differenziale (mentre y = 0 è da scartare). Separando le variabili, otteniamo $y(x) = e^{cx}$; in particolare, la soluzione costante y = 1 corrisponde a c = 0]

5.15 Risolvere l'equazione $4\sqrt{x^3}$ yy' = 1 - y². $[y(x) = \pm \sqrt{1 + c e^{1/\sqrt{x}}}]$

5.16 Risolvere i problemi di Cauchy

(a)
$$\begin{cases} y' = \frac{y^2 - 1}{x^2 - 1} \\ y(0) = 0 \end{cases}$$
 (b)
$$\begin{cases} y' = \frac{y^2 + 1}{x^2 + 1} \\ y(0) = 0 \end{cases}$$

(c)
$$\begin{cases} y' = \frac{y^2 - 1}{x^2 - 1} \\ y(0) = 1/2 \end{cases}$$
 (d)
$$\begin{cases} y' = \frac{y^2 + 1}{x^2 + 1} \\ y(0) = \sqrt{3} \end{cases}$$

[(a) y(x)=x; (b) y(x)=x; (c) $y(x)=\frac{2x+1}{x+2}$; (d) $y(x)=tg(\frac{\pi}{3}+arctx)$]

5.17 Risolvere l'equazione differenziale

$$\sqrt{x}$$
 y' + \sqrt{y} sen \sqrt{x} = 0

[La funzione costante y=0 è soluzione. Inoltre, se y \neq 0,

$$2\sqrt{y} = \int \frac{dy}{\sqrt{y}} = -\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx ;$$

l'integrale a secondo membro si può calcolare per sostituzione, ponen do \sqrt{x} = t. Si ottiene l'insieme di soluzioni $y(x) = (c + \cos \sqrt{x})^2$ où tre, naturalmente, alla funzione identicamente nulla]

5.18 Determinare l'integrale generale della equazione differenziale

$$4xe^{y}(y')^{2} + (4xe^{x} + ye^{y})y' + ye^{x} = 0.$$

[L'equazione data non è in forma normale. E' possibile ricavare la y'

in funzione di x e y mediante la formula risolutiva delle equazioni algebriche di secondo grado:

$$y' = \frac{1}{8xe^{y}} \left[-(4xe^{x} + ye^{y}) \pm \sqrt{(4xe^{x} + ye^{y})^{2} - 16xy e^{x} e^{y}} \right] =$$

$$= \frac{1}{8xe^{y}} \left[-(4xe^{x} + ye^{y}) \pm \sqrt{(4xe^{x} - ye^{y})^{2}} \right] =$$

$$= \frac{-(4xe^{y} + ye^{y}) \pm (4xe^{x} - ye^{y})}{8xe^{y}} = \begin{cases} -y/4x \\ -e^{x}/e^{y} \end{cases}$$

Perciò l'equazione data è equivalente alle due equazioni differenziali in forma normale

$$y' = -\frac{y}{4x} \quad ; \qquad y' = -\frac{e^x}{e^y} \quad .$$

Entrambe le equazioni sono a variabili separabili e si vede facilmente che l'integrale generale della prima è $y(x) = c |x|^{-1/4}$, mentre l'integrale generale della seconda è $y(x) = \log(c^{-e^{X}})$

5.19 Determinare l'integrale generale dell'equazione differenziale

$$y' = \log \left[\left(x + \sqrt{1 + x^2} \right)^y \right]$$

[La funzione costante y = 0 è una soluzione. Separando le variabili e risolvendo per parti l'integrale in dx, otteniamo

log
$$|y| = x \log (x + \sqrt{1 + x^2}) - \sqrt{1 + x^2} + c$$
,

cioè anche $y(x) = c^{\dagger}(x+\sqrt{1+x^2})^{X} e^{-\sqrt{1+x^2}}$. Si noti che la funzione identicamente nulla rientra in tale rappresentazione, in corrispondenza di $c^{\dagger}=0$

5.20 Determinare le curve y = y(x) la cui retta tan gente nel punto (x,y(x)) incontra l'asse delle x nel punto (-x,0), come in figura 5.3.

figura 5.3

[Le curve incognite, di equazione y = y(x), hanno retta tangente in (x,y) di equazione (nel piano di assi X,Y):

$$Y = y(x) + y'(x)(X - x) .$$

La retta tangente incontra l'asse delle X nel punto (-x,0) se e solo se 0 = y(x) + y'(x)(-x-x), cioè se e solo se

$$y - 2xy' = 0.$$

Si tratta di un'equazione differenziale a variabili separabili che, integrata, fornisce le soluzioni $y(x) = c \sqrt{|x|}$. Si tratta di archi di parabola aventi l'asse coincidente con l'asse delle ascisse e vertice in (0,0)

5.21 Determinare le curve y=y(x) la cui retta norma le nel punto (x,y(x)) incontra l'asse delle ascisse in un punto C = C(x) a distanza uguale ad 1 da (x,y(x)), come in figura 5.4.

figura 5.4

[Mel piano X,Y l'equazione della normale al grafico di una funzione derivabile y = y(x) (con derivata non nulla), passante per (x,y(x)), è data da

$$Y = y(x) - \frac{1}{y^{\tau}(x)} (X-x).$$

Tale retta incontra l'asse delle ascisse nei punto C di coordinate (X,0), con X soddisfacente l'equazione $0 = y(x) - (X-x)/y^+(x)$, cioè yy' = X-x, da cui X = x + yy'. La distanza del punto $P \equiv (x,y(x))$ dal punto $C \equiv (x + yy',0)$ è data da

$$\overline{CP} = \sqrt{[(x+yy')-x]^2 + [-y]^2} = \sqrt{(yy')^2 + y^2}$$
.

Imponendo la condizione $\overline{\text{CP}}$ = 1 si ottiene l'equazione differenziale in forma non normale

$$(yy^{t})^{2} = 1 - y^{2}$$

che, evidentemente, può avere soluzioni solo se $1-y^2 \ge 0$, cioè se $-1 \le y \le 1$. Si riconosce che le funzioni costanti $y = \pm 1$ sono due soluzioni. Inoltre l'equazione data è equivalente alle due equazioni differenziali a variabili separabili

$$yy' = \sqrt{1-y^2}$$
 , $yy' = -\sqrt{1-y^2}$,

che, risolte, danno le soluzioni $(x+c)^2 + y^2 = 1$; si tratta della fa miglia di circonferenza di centro (-c,0) e raggio 1. Come già detto, a questa famiglia di circonferenze vanno aggiunte le due rette di equazione $y=\pm 1$

5.22 Siano A e B i punti di intersezione degli assi coordinati con la retta tangente al grafico del la funzione y = y(x) nel punto generico (x,y(x)) come in figura 5.5. Determinare le curve y(x) ta li che:

figura 5.5

- (a) l'ascissa di A sia uguale a 2x;
- (b) l'ordinata di B sia uguale a 2y;
- (c) l'ascissa di A sia uguale a kx (k>0);
- (d) l'ordinata di B sia uguale a ky (k>0).

[La retta tangente di equazione Y=y(x)+y'(x)(X-x) incontra gli assi X,Y nei punti A e B le cui coordinate si determinano imponendo rispettivamente Y=0 e X=0 e calcolando in corrispondenza l'altra coordinata. Ad esempio, posto Y=0, risulta y+y'(X-x)=0 da cui, se $y'\neq 0$, X=x-y/y'. In modo analogo si determina B. Con riferimento alla figura 5.5 si ha:

Intersezione con l'asse X: $A \equiv (x-y/y^{-},0)$

Intersezione con l'asse Y: B = (0,y-xy')

(a) la condizione richiesta è x-y/y' = 2x che, se y' \neq 0, equivale al l'equazione differenziale a variabili separabili y' =- y/x. Tale equazione ha per soluzioni le iperboli y(x) = c/x, con c \in R (c=0 è da scartare); (b) y(x) = c/x con c \in R; (c) y(x) = c | x | $\frac{1}{(1-k)}$ con c \neq 0 se k \neq 1; altrimenti, se k = 1, non esistono funzioni y = y(x) che soddisfano la condizione posta; (d) y = c | x | $\frac{1-k}{k}$, con c \in R]

5B. Equazioni di Bernoulli

Si dice di Bernoulli un'equazione · differenziale del primo ordine del tipo

$$y' = a(x)y + b(x)y^{\alpha}$$

con a(x), b(x) funzioni continue in un intervallo prefissato c con a parametro reale diverso da 0 e da 1 (altrimenti l'equazione è lineare).

Il metodo di risoluzione è il seguente: prelim<u>i</u> narmente si dividono entrambi i membri dell'equazi<u>o</u> ne per y^{α} (così facendo si trascura la soluzione identicamente nulla, nel caso in cui α è positivo); si ottiene

$$\frac{y'}{y^{\alpha}} = a(x) y^{1-\alpha} + b(x) .$$

Si pone poi $z(x) = (y(x))^{1-\alpha}$. La derivata della nuova funzione incognita z(x), per la regola di derivazione delle funzioni composte, vale

$$z'(x) = \frac{d}{dx} (y(x))^{1-\alpha} = (1-\alpha)y^{-\alpha}y' = (1-\alpha)\frac{y'}{y^{\alpha}}$$
.

L'equazione differenziale, nell'incognita z, diviene

$$z' = (1-\alpha)a(x)z + (1-\alpha)b(x);$$

è lineare del primo ordine e quindi si risolve con i metodi descritti nel capitolo 4. Vediamo alcuni ese \underline{m} pi.

5.23 Risolvere l'equazione differenziale di Bernoulli

$$y' = 2y - e^x y^2$$

[Cominciamo con l'osservare che, essendo $\alpha = 2 > 0$, la funzione costante y = 0 è una soluzione. Per determinare le altre soluzioni dividiamo en trambi i membri per y^2 :

$$y^{1}y^{-2} = 2y^{-2} - e^{X}$$
.

Poniamo $z(x) = (y(x))^{-1}$, da cui $z'=-y^{-2}y'$. Rispetto a z-1 equazione diventa

$$z' = -2z + e^{X}$$

ed è quindi un'equazione lineare del primo ordine, cioè del tipo z' = a(x) z + b(x), con a(x) = -2 e $b(x) = e^{x}$. Scegliendo A(x)=-2x come primitiva di a(x), si trova l'integrale generale

$$z(x) = e^{A(x)} \int e^{-A(x)} \cdot b(x) dx = e^{-2x} \int e^{2x} \cdot e^{x} dx =$$

$$= e^{-2x} \left(\frac{1}{3} e^{3x} + c \right) = \frac{1}{3} e^{x} + c e^{-2x}.$$

Ricordando che $z = y^{-1}$, risulta quindi $y(x) = z^{-1} = (e^{X}/3 + c e^{-2X})^{-1}$. Tali funzioni, unitamente alla funzione identicamente nulla, sono tut te le soluzioni dell'equazione data

5.24 Risolvere le seguenti equazioni di Bernoulli

(a)
$$y' = \frac{y}{x} - \frac{1}{y}$$
 (b) $2y' = \frac{y}{x} - \frac{1}{y}$

[(a) Si tratta di un'equazione differenziale di Bernoulli con esponen te a =-1. Dividendo entrambi i membri per y 1 (cioè moltiplicando per y) otteniamo l'equazione

$$yy' = \frac{1}{x}y^2 - 1$$
.

Nell'incognita $z = y^2$, essendo $z^1 = 2yy^1$, si ha l'equazione lineare

$$z' = \frac{2}{x} z - 2.$$

Una primitiva di $a(x) = 2/x \in A(x) = 2 \log |x| = \log x^2$. Perciò, po sto b(x) = -2, si ha

$$z(x) = e^{A(x)} \int e^{-A(x)} b(x) dx = x^2 \int \frac{-2}{x^2} dx =$$

$$= x^2 \left(\frac{2}{x} + c\right) = 2x + cx^2.$$

In definitiva, essendo $y=\pm \sqrt{z}$, l'equazione data ha come soluzioni le funzioni $y(x)=\pm \sqrt{2x+cx^2}$, con $c\in R$. (b) $y(x)=\pm \sqrt{|x|(c-\log|x|)}$

5.25 Risolvere i seguenti problemi di Cauchy

(a)
$$\begin{cases} 2y' = \frac{y}{x} - \frac{x}{y} \\ y(1) = 1 \end{cases}$$
 (b)
$$\begin{cases} y' = \frac{y}{x} - \frac{y^2}{x} \\ y(1) = 1/2 \end{cases}$$

[(a) L'equazione è di Bernoulli con esponente $\alpha = 1$. Dividendo entrambi i membri per y⁻¹ e ponendo z = y², otteniamo successivamente

$$2yy' = \frac{y^2}{x} - x$$
; $z' = \frac{1}{x} z - x$,

Notiamo che il coefficiente a(x) = 1/x non è definito per x=0. Dato che la condizione iniziale è posta nel punto $x_0 = 1$, ci limitiamo a considerare il caso x > 0 in cui $A(x) = \log x$ (invece che, più general mente, $\log |x|$) è una primitiva di a(x). La funzione z(x) risulta uguale a

$$z(x) = x \int \frac{1}{x} \cdot (-x) dx = x(-x + c) = -x^2 + cx$$

da cui $y(x) = \pm \sqrt{cx - x^2}$. Imponendo la condizione iniziale y(1) = 1 si trova $1 = \pm \sqrt{c-1}$; si deve quindi scegliere il segno + e c = 2. Perciò la soluzione del problema di Cauchy è $y(x) = \sqrt{2x - x^2}$. Si noti che tale funzione, definita per $0 \le x \le 2$, è derivabile solo per $0 \le x \le 2$ e perciò è soluzione solo nell'intervallo aperto (0,2). Per y > 0 si può scrivere nelle forme equivalenti

$$y = \sqrt{2x - x^2}$$
; $x^2 - 2x + y^2 = 0$; $(x-1)^2 + y^2 = 1$;

in particolare, dall'ultima espressione, si riconosce facilmente che y(x) ha per grafico la semicirconferenza di centro (1,0) e raggio 1, con y > 0.

(b) L'equazione differenziale è di Bernoulli con esponente α≠2,ma an-

che a variabili separabili. La soluzione è y(x) = x/(x+1)

5.26 Risolvere le equazioni differenziali di Bernoulli

(a)
$$y' = \frac{2y}{x} + 2x\sqrt{y}$$
 (b) $y' = \frac{4y}{x} + 2x\sqrt{y}$

[(a) E' un'equazione di Bernoulli con esponente α =1/2. La funzione constante y=0 è una soluzione. Se y \neq 0 dividiamo entrambi i membri per \sqrt{y} e poniamo \sqrt{y} = z, da cui z' = x + z/x. Una primitiva di a(x) = =1/x è A(x) = log |x|. In base alla formula risolutiva per le equazioni differenziali lineari del primo ordine, otteniamo (separatamente per x > 0 e x < 0)

$$z(x) = e^{A(x)} \int e^{-A(x)} x dx = |x| \int \frac{x}{|x|} dx$$

$$= \pm x \int \pm dx = x \int dx = x(x+c) \qquad (\forall x \neq 0).$$

Quindi le soluzioni dell'equazione differenziale iniziale sono $y(x) = (x^2 + cx)^2$, oltre a y=0; (b) $y(x)=x^4$ (c + log |x|)²e y=0]

- 5.28 Risolvere con il metodo di Bernoulli l'equazio ne differenziale proposta nell'esercizio 5.15.
- 5.29 Risolvere il problema di Cauchy:

$$y(1)=1$$
; $2xyy' = y^2-x^2+1$.

L'equazione differenziale è di Bernoulli con esponente α =-1. La so-

luzione, espressa analiticamente dalla funzione $y(x) = \sqrt{1+3x-x^2}$, corrisponde geometricamente alla semicirconferenza di centro (3/2,0) e rag gio $\sqrt{5}/2$, con y > 0

- 5.30 Risolvere le equazioni di Bernoulli
 - (a) $4y' = y \ tgx \frac{senx}{v^3}$ (b) $y' = \frac{xy}{2} xy^2$
- - [(a) $y(x) = \sqrt{\frac{c + \cos^2 x}{\cos x}}$; (b) $y(x) = \frac{1}{2 + c_0 x^2/4}$ e y = 0]
- 5.31 Risolvere i problemi di Cauchy

(a)
$$\begin{cases} y' = xy + xy^3 \\ y(0) = 1/2 \end{cases}$$
 (b)
$$\begin{cases} y' = xy + xy^3 \\ y(1/2) = 0 \end{cases}$$

[L'equazione differenziale, oltre ad essere del tipo di Bernoulli, è an che a variabili separabili. (a) $y(x) = (1+3e^{-x^2})^{-1/2}$; (b) y(x)=0

- 5.32 Determinare l'integrale generale delle seguenti equazioni differenziali
 - (a) $xy' + 2y = 2y^{3/2} \log x$
 - (b) $v' = v \cos x (1 y \sin x)$
 - (c) $y' + 2y = \sqrt{y} \operatorname{sen} x$
 - (d) $y' = \frac{2x}{3} \left(\frac{y}{x^2 1} + \frac{1}{\sqrt{y}} \right)$
 - (e) $2x^3y^1 + x^2y + y^{-5}tgx = 0$
 - (f) $y' = 2x\sqrt{y} (x^2 + \sqrt{y})$
 - $(a) y(x) = 0 e y(x) = (cx + logx + 1)^{-2};$
 - (b) y(x) = 0 e $y(x) = (ce^{-senx} + senx 1)^{-1}$;
 - (c) y(x) = 0 e $y(x) = (senx cosx + ce)^2/16$;

- (d) $y(x) = (x^2 1 + c \sqrt{x^2 1})^{2/3}$:
- (e) $y(x) = x^{-1/2}(c + \log |\cos x|^3)^{1/6}$
- (f) y(x) = 0 e $y(x) = (x^2 + 2 + c)e^{x^2/2}$
- 5.33 Determinare una funzione y(x) che diverge a $+\infty$ per x→1⁺ e che è soluzione nell'intervallo (1, +∞) rispettivamente delle equazioni differen ziali:

(a)
$$y' = xy [\sqrt{y} + 1/(x^2-1)]$$

(b)
$$y' = \frac{3}{2} \left(\frac{xy}{x^2-1} + xy^{3/2} \right)$$

[(a)
$$y(x) = \frac{25}{(1-x^2)^2}$$
; (b) $y(x) = \frac{121}{9(1-x^2)^2}$]

- 5.34 Sia a(x) una funzione derivabile in R con deri vata a'(x) continua. Determinare, per ogni valore del parametro reale $\alpha \neq 1$, l'integrale ge nerale delle equazioni differenziali
 - (a) $(1-\alpha)v' = a'(x)[v+a(x)v^{\alpha}]$
 - (b) $(1-\alpha)y' = a'(x)[y+y^{\alpha}]$
 - [(a) Se α > 0, una soluzione è y(x)=0 per ogni x ϵ R. Dividendo entrambi i membri per y^{α} e ponendo $z(x) = [y(x)]^{1-\alpha}$, otteniamo z'=a'(x)[z++ a(x)]. Si tratta di un'equazione lineare nell'incognita z che ha per soluzioni:

$$z(x) = e^{a(x)} \cdot \begin{cases} e^{-a(x)} \cdot a'(x)a(x)dx. \end{cases}$$

Calcoliamo per parti l'integrale a secondo membro:

$$\int_{e}^{-a(x)} \cdot a'(x)a(x)dx = \int_{e}^{-a(x)} \frac{d}{dx} \left[-e^{-a(x)} \right] a(x) dx =$$

$$=-e^{-a(x)}a(x)+\int e^{-a(x)}a'(x)dx = -e^{-a(x)}a(x) - e^{-a(x)} + c.$$

In definitiva, per ogni $\alpha \neq 1$, si ottiene $y(x) = (ce^{a(x)} - a(x) - 1)^{1/(1-\alpha)}$, oltre naturalmente alla soluzione nulla se $\alpha > 0$. (b) $y(x) = (ce^{a(x)} - 1)^{1/(1-\alpha)}$ e y(x) = 0 se $\alpha > 0$]

- 5.35 Siano a(x), b(x) funzioni derivabili su R con derivata continua e con a(x) non identicamente nulla. Determinare tutte le soluzioni delle equazioni differenziali
 - (a) $a(x)y' = a'(x) (y+y^2)$
 - (b) $a(x)y' = a'(x)y + b'(x)y^2$

[L'equazione in (a) è un caso particolare di quella in (b) e si ottiene ponendo b(x) = a(x). Perciò discutiamo il caso più generale (b). Cominciamo con l'osservare che la funzione costante y=0 è soluzione. Dividen do entrambi i membri per y², otteniamo

$$\frac{a(x)y' - a'(x)y}{y^2} = b'(x).$$

Poi si può procedere oltre con il metodo di Bernoulli, con la sostituzione $y^{-1}=z$. Proponiamo un altro metodo di risoluzione: a primo membro, a meno del segno, compare la derivata rispetto ad x del quoziente a(x)/y; perciò l'equazione si può scrivere nella forma equivalente

$$\frac{d}{dx} \left[\frac{a(x)}{y} + b(x) \right] = 0.$$

Risulta quindi (se y \neq 0) a(x)/y + b(x) = costante = c, da cui y(x) = = a(x)/ [c-b(x)]. Nel caso particolare dell'equazione in (a) l'insigme di tutte le soluzioni è dato da y(x) = $a(x)/[c^2a(x)]$, oltre a y(x) = 0, \forall x \in R]

- 5.36 Sia y=y(x) una funzione definita per x>0 e non negativa. Indichiamo con B il punto di intersezione dell'asse delle ordinate con la reta ta tangente al grafico della funzione in un punto generico (x,y(x)), come in figura 5.5.De terminare:
 - (a) le curve y(x) tali che l'ordinata di B sia proporzionale a y^{α} , con $\alpha > 0$;
 - (b) la curva y(x) soddisfacente la condizione y(2) = 2 e tale che l'ordinata di B sia uguale a y^2 .
 - [(a) Come già mostrato nell'esercizio 5.22, l'ordinata del punto B,in tersezione della retta tangente con l'asse delle ordinate, vale y xy'. Indicando con k il fattore di proporzionalità, la condizione di viene $y xy' = ky^{\alpha}$. Si tratta di un'equazione differenziale di Bernoulli che, oltre a y(x) = 0, ha come soluzioni $y(x) = (k + c x^{1-\alpha})^{1/(1-\alpha)}$ per x > 0.
 - (b) Ponendo k=1 a α = 2 nella espressione determinata in (a), si ottiene

$$y(x) = (1 + \frac{c}{x})^{-1} = \frac{x}{x+c}$$
.

Imponendo la condizione iniziale y(2) = 2, si trova c=-1. Percic la funzione cercata è y(x) = x/(x-1)

- 5.37 Determinare le curve tali che il punto di mezzo del segmento sulla retta normale, con estre mi sulla curva e sull'asse delle x, sia situato sulla parabola $x = y^2$.
 - [Si fa riferimento alla figura 5.6.Se P ha coordinate(x,y(x)), allora, come mostrato nell'esercizio 5.21, C ha coordinate (x + yy',0). Perciò il punto medio M ha coordinate (x + (yy')/2, y/2); tale punto giace sulla parabola di equazione $x = y^2$ se e solo se (per $y \neq 0$)

The state of the s

$$x + \frac{yy^{*}}{2} = (\frac{y}{2})^{2} \iff y^{*} = \frac{y}{2} - \frac{2x}{y}$$
.

Si tratta di un'equazione di Bernoulli che ha per soluzioni $y(x) = \pm (4x + 4 + ce^{x})^{1/2}$. In particolare, per c = 0, si ottiene la parabola di equazione $x = (y^2/4) - 1$. Il lettore disegni in uno stesso si stema di riferimento tale parabola e la parabola iniziale $x=y^2$ e veri fichi dal disegno la proprietà enunciata nel testo]

figura 5.6

50. Equazioni della forma y' = g(y/x)

Si dicono brevemente omogenee le equazioni diff \underline{e} renziali ordinarie che si pongono nella forma

$$y' = g(\frac{y}{x})$$

con g funzione continua. Il metodo di risoluzione consiste nel porre

$$z = \frac{y}{x}$$
, cioè $y(x)=xz(x)$, da cui $y'=z+xz'$.

L'equazione, rispetto all'incognita z, diviene

$$xz' = g(z) - z$$

ed è a variabili separabili. Vediamo alcuni esempi:

5.38 Risolvere l'equazione differenziale di tipo omogeneo

$$y' = 1 + \frac{y}{x}$$

[F' un'equazione del tipo y' = g(y/x), con g(t) = 1+t. Poniamo y/x=z, da cui y = xz e y'=z + xz'. Otteniamo l'equazione equivalente

$$z + xz' = 1 + z$$
, cioè $xz' = 1$,

che si risolve separando le variabili:

$$z = \int dz = \int \frac{1}{x} dx = \log |x| + c = \log (e^{c} |x|) = \log(c^{s}x)$$

dove si è posto $c' = \pm e^{C}$. Ricordando che y = xz, si ottengono le so luzioni $y(x) = x \log(c'x)$

5.39 Le seguenti equazioni sono nello stesso 'tempo

di tipo omogeneo e a variabili separabili (la prima è anche lineare):

(a)
$$y' = \frac{y}{x}$$
 (b) $y' = \frac{x}{y}$ (c) $y' = -\frac{x}{y}$

Risolverle con entrambi i metodi.

[(a) rette per l'origine y(x)=cx; (b) iperboli equilatere di equazione $x^2 - y^2 = c$ ($y \ne 0$); (c) circonferenze concentriche con centro nell'origine di equazione $x^2 + y^2 = c$ ($y \ne 0$)

5.40 Integrare l'equazione differenziale y'=2- $\frac{x}{y}$.

[Posto z = y/x (da cui y'=z + xz') otteniamo l'equazione equivalente xz'= = $(2z - 1 - z^2)/z$; separando le variabili si ha (se $z \neq 1$, cioè se $y \neq x$)

$$-\int \frac{z}{(z-1)^2} dz = \int \frac{dx}{x} = \log (cx) .$$

Inoltre, sommando algebricamente -1 e + 1 a numeratore dell'integrando a primo membro, otteniamo

$$\int \frac{z}{(z-1)^2} dz = \int \frac{z-1}{(z-1)^2} dz + \int \frac{1}{(z-1)^2} dz = \log |z-1| - \frac{1}{z-1} + \cos t;$$

perciò l'equazione differenziale data, oltre a y(x)=x, ha come soluzioni le funzioni definite implicitamente dalla relazione

$$\left(\frac{y}{x}-1\right)^{-1} - \log \left(\frac{y}{x}+1\right) = \log(cx)$$

5.41 Risolvere l'equazione differenziale omogenea

$$y' = \frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2}$$

e verificare che l'integrale generale è costituito dalla famiglia di funzioni

$$u(x) = \frac{c}{2} x^2 - \frac{1}{2c}$$
 (con $cx - \frac{y}{x} \ge 0$)

[Con la sostituzione z = y/x si giunge all'equazione xz' = $\sqrt{1+z^2}$; da cui, separando le variabili

$$\int \frac{dz}{\sqrt{1+z^2}} = \int \frac{dx}{x} = \log (c'x).$$

Come indicato nel paragrafo 4G della parte seconda del 1º volume, l'in tegrale a primo membro si determina con la sostituzione $\sqrt{1+z^2} = t-z$ Si ottiene (si veda anche l'esercizio 4.119, volume 1º, parte seconda):

$$\log \left| 2z + 2\sqrt{z^2 + 1} \right| = \int \frac{dz}{\sqrt{1+z^2}} = \log (c^1x).$$

Pur di cambiare la costante c¹, ciò equivale a $z + \sqrt{z^2 + 1} = cx$. Ricordando che z = y/x, si giunge alla rappresentazione delle soluzioni nella forma

$$\sqrt{\left(\frac{y}{x}\right)^2 + 1} = cx - \frac{y}{x}.$$

Dopo aver posto la condizione cx - $(y/x) \ge 0$ ed elevando entrambi i membri al ouadrato si giunge alla conclusione

5.42 Risolvere per x > 0 il problema di Cauchy:

$$y(1) = 0, \quad y' = \frac{y}{x} + \sqrt{1 - \left(\frac{y}{x}\right)^2}.$$

[L'equazione differenziale ammette come soluzioni y(x)=x sen $\log(cx)$, con $c \neq 0$, oltre a $y(x) = \pm x$. Tra tali soluzioni, quella che soddisfa la condizione iniziale y(1) = 0 è y(x) = x senlogx]

5.43 Risolvere per x > 0 i problemi di Cauchy

(a)
$$\begin{cases} y' = \frac{y}{x} + tg \frac{y}{x} \\ y(2) = \pi/3 \end{cases}$$
 (b)
$$\begin{cases} y' = \frac{y}{x} + tg \frac{y}{x} \\ y(1) = \pi \end{cases}$$

[L'integrale generale dell'equazione differenziale è della forma sen(y/x) = cx, con $c \in R$. (a) La soluzione è sen (y/x) = x/4; esplicitando la y si ottiene y(x) = x arcsen (x/4). Si noti che y(x) è derivabile nell'intorno di x = 2 individuato dalle limitazioni -1 < x/4 < 1, cioè nell'intervallo (-4,4); inoltre, formalmente, il secondo membro dell' equazione differenziale non è definito per x = 0; perciò y(x) è soluzione del problema di Cauchy nell'intervallo (0,4). (b) $y(x) = \pi x$

- 5.44 Risolvere le seguenti equazioni differenziali omogenee
 - (a) $x^2y' = y^2 + xy + 4x^2$
 - (b) $y' = \frac{1}{2} \left(\frac{x}{y} + \frac{y}{x} \right)$
 - (c) $y' = \frac{x}{y} + \frac{y}{x}$
 - (d) $y^{\dagger} + \frac{x}{y} = \frac{y}{x}$
 - (e) $y^{\dagger} = \frac{y-x}{y+x}$
 - (f) $xy' = y (1 \log y + \log x)$
 - [(a) y(x) = 2x tgleg(cx)²; (b) y(x) = $\pm \sqrt{x^2 + cx}$;
 - (c) $y(x) = \pm x \sqrt{\log(cx)^2}$; (d) $y(x) = \pm x \sqrt{\log(c/x)^2}$;
 - (e) $\arctan \frac{y}{x} + \log \sqrt{1 + \left(\frac{y}{x}\right)^2} = \log \left|\frac{c}{x}\right|$ od anche, transferendo i \log

garitmi a secondo membro, arctg $\frac{y}{x} = \log \frac{c}{\sqrt{x^2 + y^2}}$; (f) $y(x) = xe^{c/x}$

5.45 Determinare, per ogni valore reale del parame tro $\alpha \neq 0,1$, le soluzioni dell'equazione differenziale

$$\alpha xyy' = x^2 + y^2$$

$$\left[y(x) = \pm x \left(\frac{\left(\frac{\alpha x}{1 - \alpha}\right) - \alpha}{1 - \alpha}\right)^{1/2}\right]$$

5.46 Verificare che la soluzione del problema di Ca $\underline{\underline{u}}$ chy

$$y^{t} = \frac{x+y}{x-y}$$
 , $y(1) = 0$

è la spirale logaritmica che, in coordinate polari (ρ, θ) , si esprime con l'equazione $\rho = e^{\theta}$.

[Posto z=y/x, ed essendo z(1) = 0, si trova la soluzione arctg z - $\log \sqrt{1+z^2} = \log x$, cioè arctg (y/x) = $\log \sqrt{x^2+y^2}$. Rimane da osservare che $\rho = \sqrt{x^2+y^2}$ e che ϑ =arctg (y/x)]

La sottotangente relativa ad un punto generico di una curva di equazione y=y(x) è per definizione la lunghezza (con il segno) del segmento orientato HA in figura 5.7, cioè del segmento di estremi $H\equiv(x,0)$ e A, punto di incontro dell'asse delle ascisse con la retta tangente al grafico della funzione nel punto (x,y(x)).

Ricordando (si veda l'esercizio 5.22) che A ha coordinate $(x-y/y',\ 0)$, per definizione risulta

sottotangente =
$$HA = -\frac{y}{y'}$$
.

figura 5.7

Analogamente la sottonormale è la lunghezza (con il segno) del segmento orientato HC in figura 5.7,cioè del segmento di estremi H \equiv (x,0) e C, punto di inter sezione dell'asse delle ascisse con la retta normale al grafico della funzione nel punto (x,y(x)).

Ricordando (si veda l'esercizio 5.21) che C ha coordinate (x+yy',0), risulta

5.47 Determinare le curve y=y(x) aventi la sottotan - gente uguale alla media aritmetica delle coordinate del punto di tangenza.

[La condizione è: sottotangente = (x+y)/2, cioè

$$-\frac{y}{y^1} = \frac{x + y}{2}$$
, da cui $y^1 = \frac{-2y}{x+y} = \frac{-2(y/x)}{1+(y/x)}$.

Notiamo che la funzione costante y = 0 non è accettabile come soluzione del problema geometrico proposto, perchè per essa non è definita la sottotangente. Con la sostituzione z = y/x, essendo $y'=z+xz^i$, otteniamo $xz^i = -(3z + z^2)/(1 + z)$. Da cui, separando le variabili, si è ricondotti a calcolare l'integrale indefinito della funzione razionale $(1+z)/(3z + z^2)$; a tale scopo è utile la scomposizione

$$\frac{1+z}{z^2+3z} = \frac{A}{z} + \frac{B}{z+3} = \frac{(A+B)z + 3A}{z(z+3)}$$

con A + B = 1 e 3A = 1. Si trovano i valori A=1/3 e B=2/3; perciò si determinano le soluzioni nella forma:

$$\log \frac{c}{x} = -\int \frac{dx}{x} = \int \frac{1+z}{z^2+3z} dz =$$

$$= \frac{1}{3} \int \frac{dz}{z} + \frac{2}{3} \int \frac{dz}{z+3} = \frac{1}{3} \log |z| + \frac{2}{3} \log |z+3|,$$

che, in base alle proprietà dei logaritmi, si possono anche scrivere nella forma $z(z + 3)^2 = (c/x)^3$, con z = y/x

5.48 Determinare le curve y = y(x) aventi la sotto normale uguale all'ascissa del punto di tangenza.

[Dato che la sottonormale vale yy', le curve y(x) devono soddisfare l'equazione differenziale del primo ordine yy' = x. Si tratta di un'equazione omogenea, ma anche a variabili separabili. Il suo inte grale generale è dato dalla famiglia di iperboli di equazione $y(x) = \pm \sqrt{x^2 + c}$

5.49 Determinare le curve piane tali che l'ordinata del punto di intersezione dell'asse delle ordinate con la resta tangente al grafico in (x,y) sia uguale alla distanza di (x,y)dal l'origine. Service of the servic

figura 5.8

[Con le notazioni della figura 5.8 la condizione da imporre è OB=OP . Dato che OB = y - xy¹ (si veda l'esercizio 5.22), si ottiene l'equazione differenziale y-xy¹ = $\sqrt{x^2+y^2}$, cioè anche y¹ = (y/x) - $\sqrt{1+(y/x)^2}$. Posto z = y/x, con lo stesso metodo dell¹ esercizio 5.41 si trova la soluzione z + $\sqrt{z^2+1}$ = c/x che, per x \gtrless 0, equiva le a y $\pm \sqrt{y^2+x^2}$ = c]

5.50 Determinare le curve piane tali che, indicato con P un punto generico della curva (come in figura 5.8), con A l'intersezione della retta tangente con l'asse delle ascisse e con O l'origine degli assi, il triangolo AOP risulti isoscele di base OP.

[La condizione da împorre è \overline{OA} = \overline{AP} . Ricordando che A Ξ (x-y/y',0)

(si veda l'esercizio 5.22), risulta $|x-y/y^1| = \sqrt{(-y/y^1)^2 + y^2}$, da cui, semplificando, si giunge all'equazione differenziale omogenea $y'=(2xy)/(x^2-y^2)$ che ha per soluzioni le circonferenze $x^2+y^2+cy=0$

5.51 Determinare le curve piane tali che il prodotto del quadrato della distanza dall'origine de gli assi di un punto generico P = (x,y) della curva per l'ordinata del punto di intersezione dell'asse y con la retta normale alla curva in P sia uguale a:

(a)
$$y^3$$
 (b) $-2y^3$

[Per l'equazione cartesiana della retta normale si veda l'esercizio 5.21. (a) L'equazione differenziale è xyy' =-($x^2 + y^2$) che ha per so luzioni le funzioni y(x) = $\pm \sqrt{(c-x^4)/(2x^2)}$; (b) l'equazione differenziale è y' =-($x^3 + xy^2$)/($x^2y + 3y^3$) che ha per soluzioni le cur ve di equazione implicita $x^4 + 2x^2y^2 + 3y^4 = c$]

5D. Equazioni della forma y' = g(ax+by)

Un'equazione differenziale del primo ordine del tipo

$$y' = g(ax + by)$$

con g funzione continua e a,b \in R (con a,b non nulli, altrimenti l'equazione è già a variabili separabili) si riconduce ad un'equazione a variabili separabili con la sostituzione

$$z(x) = ax + by(x)$$
;

infatti, essendo z' = a + by', si ottiene l'equazione equivalente nell'incognita z: z' = a + bg(z).

5.52 Risolvere l'equazione differenziale

$$y^{\dagger} = 1 + x^2 - 2xy + y^2$$
.

[L'equazione si può porre nella forma $y' = 1 + (x-y)^2$. Con la sostituzione z = x - y (il lettore svolga l'esercizio anche con l'altra sostituzione z = y - x), essendo $z' = 1 - \dot{y}'$, si ottiene l'equazione equivalente

$$z' = 1 - y' = 1 - [1+(x-y)^2] = -z^2;$$

da cui, separando le variabili (se $z \neq 0$)

$$\frac{1}{z} = \int -\frac{dz}{z^2} = \int dx = x + c.$$

Perciò z(x) = 1/(x+c) (oltre a $z \equiv 0$), da cui, essendo y(x) = x - z(x), risulta y(x) = x - 1/(x + c) oppure y(x) = x

5.53 Risolvere l'equazione $y' = (x+y)^2$.

[Poste z = x + y si ha $z' = 1 + y' = 1 + (x + y)^2 = 1 + z^2$; da cui, separando le variabili, arctg z = x + c. Perciò z(x) = tg(x + c) e quindi y(x) = z(x)-x = tg(x + c) - x]

5.54 Risolvere l'equazione $y' = e^{x+y}$.

[Posto z=x+y, si trova l'equazione equivalente z'=1+e², cioè

$$\int \frac{dz}{1+e^{z}} = \int dx = x + c.$$

Si risolve l'integrale a primo membro con la sostituzione e^{z} = t:

$$\int \frac{dz}{1+e^z} = \left[e^z = t \right] = \int \frac{dt}{t(1+t)} = \log \left[\frac{t}{t+1} \right] +$$

$$+ c' \begin{bmatrix} t = e^2 \end{bmatrix} = \log \frac{e^2}{e^{2} + 1} + c'.$$

Perciò l'integrale generale si scrive nella forma implicita $e^z/(e^z+1)=e^{x+c}$ e, con semplici passaggi algebrici, nella forma esplicita

$$z(x) = log \frac{e^{x+c}}{1-e^{x+c}} = log \frac{e^x}{e^{-c}-e^x} = x + log (e^{-c} - e^x);$$

da cui $y(x) = z(x) - x = -\log(e^{-C} - e^{X})$. Si osservi che l'equazione <u>i</u> niziale è anche del tipo a variabili separabili e si può risolvere per mezzo degli integrali indefiniti

$$-e^{-y} = \int e^{-y} dy = \int e^{x} dx = e^{x} + c^{n}$$

Risulta $y(x) = -\log(-c^n - e^X)$ come nel caso precedente, pur di porre $-c^n = e^{-c}$

5.55 Risolvere le equazioni differenziali

(a)
$$e^{x}y' = e^{x} + e^{y}$$
 (b) $e^{y}y' = e^{x} + e^{y}$

[(a) Dividendo entrambi i membri per e^x , si ottiene l'equazione differenziale equivalente $y'=1+e^{y-x}$, che si risolve con la sostituzione z=y-x. Rispette a z si ha $z'=e^z$, da cui, separande le variabili, $z(x)=-\log \left[-(x+c)\right]$, cioè $y(x)=x+z(x)=x-\log \left[-(x+c)\right]$. (b) Si può procedere come nella parte (a) ottenendo la soluzione $y(x)=x+\log (x+c)$. Si può anche procedere nel modo seguente: dato che e^yy' è la derivata della funzione $w(x)=e^y(x)$, con tale sostituzione otteniamo l'equazione differenziale lineare $w'=e^x+w$, il cui integrale generale è espres so da

$$w(x)=e^{x}\int e^{-x} \cdot e^{x} dx = e^{x}\int dx = e^{x}(x + c).$$

Perciò $y(x) = \log w(x) = \log [e^{X}(x + c)] = x + \log (x+c)$

5.56 Risolvere le equazioni differenziali

(a)
$$y' = \frac{4y-x+1}{4y-x+4}$$
 (b) $y' = \frac{x+y-1}{2-x-y}$

(b)
$$y' = \frac{x+y-1}{2-x-y}$$

[(a) $4y + \log (4y-x)^4 = c + 2x$;

(b)
$$y(x) = 2-x \pm \sqrt{c-2x}$$

5.57 Determinare le soluzioni dei problemi di Cauchy

(a)
$$\begin{cases} y' = (x+y-5)^2 \\ y(0) = 6 \end{cases}$$
 (b)
$$\begin{cases} y' = \frac{2x+y+4}{(2x+y+3)^2} - 2 \\ y(0) = -2 \end{cases}$$

[(a)
$$y(x) = 5 - x + tg(x + \pi/4)$$
;
(b) $(2x + y + 2)^2/2 + log[2x + y + 4] = x + log[2]$

5.58 Risolvere l'equazione differenziale lineare

$$y' = ax + by$$

con a,b costanti reali non nulle.

[Si può determinare l'integrale generale con la formula risolutiva

$$y(x) = e^{bx} \int ax e^{-bx} dx,$$

oppure mediante la sostituzione z=ax+by, ottenendo l'equazione (linea re) a variabili separabili z'=a+by! = a+bz. Si ottengono le soluzioni $z(x) = (\pm e^{b(x+c)} - a)/b$; perciò, posto $\pm e^{bc}/b^2 = c^1$, si ha

$$y(x) = \frac{z(x)-ax}{b} = e^x e^{bx} - \frac{a}{b^2} - \frac{a}{b} x$$

5.59 Determinare, per ogni valore del parametro rea le λ , tutte le soluzioni dell'equazione differenziale

$$y' = \lambda \cos (\lambda x + y)$$
.

[Posto $z = \lambda x + y$, si ottiene l'equazione equivalente $z' = \lambda(1+\cos z)$. Il secondo membro si annulla per $\lambda = 0$ e per $z = \pi + 2k\pi$; se $\lambda = 0$ y = z = costante è soluzione. Invece, in corrispondenza di z=T+2kTsi trovano le soluzioni y(x) = z - λx = π + $2k\pi$ - λ x, \forall k \in Z.Per $\lambda \neq 0$ e cos z \neq - 1, separando le variabili, otteniamo

$$\frac{1}{\lambda} \int \frac{dz}{1 + \cos z} = \int dx = x + c.$$

In base all'identità $1 + \cos z = 2 \cos^2(z/2)$, si ha

$$\int \frac{dz}{1+\cos z} = \frac{1}{2} \int \frac{dz}{\cos^2(z/2)} = \int \frac{d(z/2)}{\cos^2(z/2)} = tg \frac{z}{2} + c^{\dagger}.$$

Perció, se $\lambda \neq 0$ e z $\neq \pi + 2k\pi$, si trovano le soluzioni nella forma implicita $tg(z/2) = \lambda(x+c)$, cioè $tg[(\lambda x+y)/2] = \lambda(x+c)$. In fine, per $|z| < \pi$, tali soluzioni si possono rappresentare nella forma $y(x) = -\lambda x + 2 \text{ arctg } [\lambda(x+c)].$

Si noti che, per λ =0, si è ritrovata la soluzione identicamente nulla, mentre, come verificato in precedenza, anche ogni altra fun zione costante è soluzione. Infine osserviamo che, per $\lambda \neq 0$, ci si può ricondurre ad un'equazione differenziale indipendente dal parame tro λ con il cambiamento di variabile x'= λx. In tal caso infatti . posto $w(x^{\dagger}) = y(x) = y(x^{\dagger}/\lambda)$, risulta $w^{\dagger}=dw/dx^{\dagger} = y^{\dagger}/\lambda$ e l'equazio ne diventa $w' = \cos(x + w)$

5E. Equazioni della forma $y'=g\left(\frac{ax+by+c}{a'x+b'y+c'}\right)$

Consideriamo un'equazione differenziale del tipo

$$y' = g \left(\frac{ax + by + c}{a'x + b'y + c'}\right) + ,$$

con g funzione continua e a,b,c,a',b',c' \in R. Se le costanti a,b,a',b' sono tutte nulle, il secondo membro dell'equazione differenziale si riduce ad una costante e quindi y(x) è una funzione lineare. Se a,b,a', b' non sono contemporaneamente nulle e se a',b' sono proporzionali rispettivamente ad a,b (a'=ka, b'=kb), allora il secondo membro dell'equazione è funzione solo di ax+by e si ritrova il caso già considerato nel paragrafo precedente, che si risolve con la sostituzione z = ax + by.

Rimane il caso in cui a',b' non sono proporziona li ad a,b,o, più precisamente, il caso in cui ab' - a'b $\neq 0$. Geometricamente, ciò corrisponde a due rette di equazione ax + by + c = 0 e a'x + b'y+c' = 0 che si incontrano in uno ed in un solo punto.

Indichiamo con (x_o,y_o) le coordinate del punto intersezione delle due rette; per risolvere l'equa zione differenziale è utile la trasformazione di coordinate da (x,y) in (ξ,η) definita da

$$\xi = x - x_0, \quad \eta = y - y_0.$$

Essendo $ax_o + by_o + c = 0$, risulta

$$ax+by+c=a(\xi+x_o)+b(\eta+y_o)+c=a\xi+b\eta$$

ed analogamente a'x + b'y + c' = a' ξ + b' η .

Infine, dato the $\eta' = d\eta/d\xi = dy/dx$, si giunge all'equazione differenziale

$$\eta' = g \left(\frac{a\xi + b\eta}{a'\xi + b'\eta} \right) = g \left(\frac{a + b(\eta/\xi)}{a' + b'(\eta/\xi)} \right) ;$$

si tratta di un'equazione differenziale omogenea (di grado 0), del tipo già considerato nel paragrafo 50; che si risolve con la sostituzione $z = \eta/\xi$.

5.60 Risolvere l'equazione
$$y' = \frac{y-x-2}{y+x}$$
.

Occorre determinare preliminarmente il punto di incontro delle due rette di equazione y-x-2=0 e y+x=0. A tal fine risolviamo il sistema

$$\begin{cases} y + x = 0 \\ y - x - 2 = 0 \end{cases} \begin{cases} y = -x \\ -2x - 2 = 0 \end{cases} \Longrightarrow \begin{cases} x = -1 \\ y = 1 \end{cases}.$$

Le rette si incontrano nel punto $(x_o,y_o)=(-1,1)$. E' quindi utile la trasformazione di coordinate $\xi=x+1$, $\eta=y-1$ (cioè $x=\xi-1$, $y=\eta+1$); si ottiene l'equazione differenziale

$$\eta^{-1} = \frac{(\eta^{-1}) \cdot (\xi^{-1}) \cdot 2}{(\eta^{-1}) \cdot (\xi^{-1})} = \frac{\eta^{-1} \cdot \xi^{-1}}{\eta^{-1} \cdot \xi^{-1}} = \frac{(\eta^{-1}/\xi^{-1}) \cdot 1}{(\eta^{-1}/\xi^{-1}) \cdot 1}.$$

Applichiamo il metodo proposto nel paragrafo 5C: con la sostituzione $z=\eta/\xi$ (da cui η ' = $(z\,\xi)$ ' = $z^{i}\xi+z$) otteniamo

$$z'\xi + z = \frac{z-1}{z+1} \implies z'\xi = -\frac{1+z^2}{z+1}$$

e, separando le variabili,

$$\int \frac{z+1}{1+z^2} dz = - \int \frac{1}{\xi} d\xi = - \log(c\xi).$$

Per l'integrale a primo membro si ha

$$\int \frac{z+1}{1+z^2} dz = \frac{1}{2} \int \frac{2z}{1+z^2} dz + \int \frac{dz}{1+z^2} = \frac{1}{2} \log(1+z^2) + \arctan(z+c).$$

Ricordando che z = η/ξ = (y-1)/(x+1) si ottiene infine l' integrale generale nella forma implicita

$$\frac{1}{2} \log \left(1 + \left(\frac{y-1}{x+1}\right)^2\right) + \arctan \left(\frac{y-1}{x+1}\right) = -\log (c(x+1)),$$

che, equivalentemente, si può anche scrivere nella forma

log (c
$$\sqrt{(x+1)^2 + (y-1)^2}$$
) + arctg $\frac{y-1}{x+1} = 0$

5.61 Risolvere l'equazione y' =
$$\frac{y+5}{x+y-16}$$
.

[Le rette di equazione y+5=0, x+y-16=0 si incontrano nel punto (x_o,y_o) = (21,-5). Con la trasformazione di coordinate ξ =x-21, η =y+5 si ottiene l'equazione differenziale

$$\eta' = \frac{\eta}{\xi + \eta} = \frac{\eta/\xi}{1 + \eta/\xi} ,$$

da cui, posto $z = \eta/\xi$,

$$\xi z^{\dagger} = \frac{z}{1+z} - z = \frac{-z^2}{1+z}$$
.

Si noti che z \equiv 0 è una soluzione (ciò corrisponde a η = y +5 = 0, cioè y \equiv -5). Separando le variabili abbiamo 1/z = log(c ξ z)=log(c η).Quin di ξ = η log(c η), cioè x-21 = (y+5) log [c(y+5)]. A tali soluzioni occorre aggiungere la soluzione costante y(x)=-5]

5.62 Risolvere l'equazione y' = $2 + \frac{y}{x} - \frac{1}{x}$.

[Si può scrivere l'equazione nella forma y'=(2x + y - 1)/x, eseguendo la trasformazione di coordinate ξ =x, η =y - 1, da cui η '= 2 + (η / ξ). Posto z = η / ξ , si ottiene ξ z' = 2, le cui soluzioni sono z(ξ) = 2 log (c ξ). Perciò l'integrale generale è y(x)=1+ xlog(cx)². Si noti che l'equazione data è lineare

5.63 Risolvere i problemi di Cauchy

(a)
$$\begin{cases} y' + 2 \left(\frac{y-4}{y-x}\right)^2 = 0 \\ y(3) = 5 \end{cases}$$
 (b)
$$\begin{cases} y' + 2 \left(\frac{y-4}{y-x}\right)^2 = 0 \\ y(3) = 4 \end{cases}$$

[(a) La soluzione è definita implicitamente dall'equazione

2 arctg
$$\frac{y-4}{4-x}$$
 + log cy=0 con c = $\frac{1}{5}$ e $10/2$;

(b) y(x) costante uguale a 4]

5F. Equazioni non normali della forma x = g(y')

Nei paragrafi precedenti abbiamo preso in considerazione equazioni differenziali del primo ordine in forma normale, cioè del tipo y' = f(x,y). Da questo paragrafo consideriamo anche equazioni non in forma normale. Cominciamo con equazioni della forma

$$x = g(y') ,$$

essendo g una funzione derivabile con derivata continua. Come al solito, per le equazioni differenzia li ordinarie del primo ordine, l'insieme delle soluzioni dipende da una costante arbitraria c che, in questo caso, è sempre additiva rispetto alla y; infatti si vede immediatamente dalla struttura dell'equazione che, se y(x) è una soluzione, anche y(x)+cè tale.

Osserviamo anche che, se g è invertibile, allora l'equazione differenziale nella forma equivalen-

te y' = $g^{-1}(x)$ è a variabili separabili ed è risolubile mediante una sola integrazione (y è l'integrale indefinito di $g^{-1}(x)$).

Nel caso generale si cerca una soluzione in forma parametrica x = x(t), y=y(t). Il metodo di risolu zione consiste nell'assumere come parametro t=y'. Dal l'equazione differenziale si ricava subito x=g(t); i noltre risulta anche

$$\frac{dy}{dt} = \frac{dy}{dx} - \frac{dx}{dt} = y' \cdot g'(t) = tg'(t)$$

ed integrando per parti

$$y(t) = \int \frac{dy}{dt} dt = \int tg'(t)dt = tg(t) - \int g(t)dt$$

Indicando con G(t) una primitiva di g(t), le soluzioni sono quindi espresse in forma parametrica $(x(t),\,y(t))$ da

$$x(t)=g(t),$$
 $y(t) = tg(t) - G(t) + c.$

5.64 Risolvere l'equazione $x = y'(1+2 \log y')$.

[L'equazione differenziale è della forma $x=g(y^t)$, con $g(t)=t(1+2\log t)$. Una primitiva G(t) di g(t) si determina con un'integrazione per parti:

$$G(t) = \int g(t)dt = \int (t + 2t \log t) dt =$$

$$= \frac{t^2}{2} + 2 \left(\frac{t^2}{2} \log t - \int \frac{t}{2} dt\right) = t^2 \log t + \text{costante.}$$

Quindi, in forma parametrica, le soluzioni sono date da

$$x(t) = g(t) = t(1 + 2\log t);$$

 $y(t) = tg(t)-G(t)+c = t^{2}(1 + \log t)+c$

5.65 Risolvere l'equazione differenziale $(y')^2=x-2$.

[Si tratta di un'equazione del tipo x = g(y'), con $g(t)=2+t^2$. Una primitiva di g(t) è $G(t)=2t+t^3/3$. Perciò le soluzioni sono espresse in forma parametrica da

$$x(t)=g(t)=2+t^2$$
; $y(t)=tg(t)-G(t)=\frac{2}{3}t^3+c$.

In questo caso è semplice rappresentare in forma cartesiana le soluzioni; a tale scopo si può ricavare t dalla prima equazione e sostituire il valore trovato nella seconda: t = \pm (x-2)^{1/2}, da cui y(x)= \pm (2/3)(x-2)^{3/2} + c. Notiamo che l'equazione data è equivalente alle due equazioni differenziali in forma normale: y' = $\sqrt{x-2}$, y' = $-\sqrt{x-2}$ le quali, risolte per semplice integrazione, ridanno le stesse soluzioni]

S.66 Traendo spunto dall'esercizio precedente, si consideri un'equazione differenziale del tipo x=g(y'), con g invertibile su R, e siano G,F primitive rispettivamente di g e g⁻¹. Verificare che tutte le soluzioni in forma parametrica

$$x(t)=g(t),$$
 $y(t)=tg(t)-G(t)+c$

sono anche esprimibili nella forma cartesiana

$$y(x) = F(x) + c.$$

Dato che g è invertibile, la relazione x=g(t) equivale a $t=g^{-1}(x)$. Perciò nella rappresentazione parametrica delle soluzioni si può assumere x come parametro ottenendo $y(x)=g^{-1}(x)x-G(g^{-1}(x))+c$. Rimane da provare che y(x) è una primitiva di g^{-1} ; infatti (essendo $g(g^{-1}(x))=x$):

$$\frac{d}{dx} \left[g^{-1}(x)x - G(g^{-1}(x)) + c \right] = (g^{-1})^{+} x + g^{-1} - G'(g^{-1})(g^{-1})^{+} =$$

$$= (g^{-1})^{*}x + g^{-1} - g(g^{-1})(g^{-1})^{*} = (g^{-1})^{*}x + g^{-1} - x(g^{-1})^{*} = g^{-1}$$

5.67 Risolvere le seguenti equazioni differenziali

- (a) $x\sqrt{y^{\dagger}} = sen\sqrt{y^{\dagger}}$
- (b) $x(1+sen^2y')=cosy'$
- (c) $8x = (y^{1})^{3}$
- (d) x(1-y') = y'
- (e) $x(y')^2=1-(y')^3$ (f) $x=e^{y'}$ (seny'+cosy')

[(a) x(t) = (sen \sqrt{t})/ \sqrt{t} , y(t)= \sqrt{t} sen \sqrt{t} + 2cos \sqrt{t} + c,che, pur di porre s = \sqrt{t} > 0, si può scrivere più semplicemente x(s)=(sens)/s, y(s) = s sens + 2.coss + c.

(b)
$$x(t) = \frac{\cos t}{1+\sin^2 t}$$
, $y(t) = \frac{t\cos t}{1+\sin^2 t}$ - arctg sent + c.

(c)
$$y(x) = (3/2)x^{4/3} + c$$
. (d) $y(x) = x - \log |x+1| + c$.

- (e) $x(t) = -t + 1/t^2$, $y(t) = -t^2/2 + 2/t + c$.
- (f) $x(t) = e^{t}$ (sent + cost), $y(t) = te^{t}$ (sent + cost)-e sent + c

SG. Equazioni non normali della forma y = g(y')

Consideriamo un'equazione differenziale del primo ordine non normale del tipo

$$y = g(y')$$

con g funzione derivabile con derivata continua.Come nel paragrafo precedente cerchiamo soluzioni in forma parametrica (x(t), y(t)) scegliendo come parame tro t = y'. Si ricava subito y=g(t); inoltre, se y' # ≠ O.

$$\frac{dx}{dt} = \frac{dx}{dy} \cdot \frac{dy}{dt} = \frac{1}{y'} g'(t) = \frac{g'(t)}{t}.$$

Perciò x(t) si ricava integrando g'(t)/t. Indicata con G(t) una primitiva di g'(t)/t, si ha quindi

$$x(t) = G(t) + c, y(t) = g(t).$$

Come verifica notiamo, direttamente dall'equa zione differenziale $y(x) = g(y^*(x))$, cambiando x con x + c, che se (x(t), y(t)) è una soluzione anche (x(t) + c, y(t)) è tale.

Notiamo anche che, avendo posto $y' \neq 0$, potremmo aver perso soluzioni per cui y' = 0 in un intervallo. In tal caso y(x) = costante = c è soluzione dell'equazione differenziale y = g(y') se e solo se c = g(0). Perciò alle soluzioni espresse precedente mente in forma parametrica va (eventualmente, g(t) è definita per t = 0) aggiunta la soluzione par ticolare y(x) = g(0), $\forall x \in \mathbb{R}$.

5.68 Risolvere l'equazione y=y'seny' + cosy'.

[Per y' \equiv 0 si ottiene la soluzione costante y = cos 0 = 1. Posto $g(t) = t \text{ sent} + \cos t$, risulta $g'(t)=t \cos t$. Una primitiva di g'(t)/tè G(t) = sent. Quindi le soluzioni, in forma parametrica, sono spresse da

$$x(t) = c + sent,$$
 $y(t) = t sent + cost,$

oltre, naturalmente, alla funzione costante y = 1]

5.69 Risolvere l'equazione $y = \log \sqrt{1 + (y')^2}$

[L'equazione si può scrivere equivalentemente $y'=\pm \sqrt{e^{2y}-1}$ e si può risolvere separando le variabili. Con il metodo esposto in que sto paragrafo si nota preliminarmente che y Ξ O è una soluzione; inoltre, posto $g(t) = \log \sqrt{1+t^2}$ risulta $g'(t) = t/(1+t^2)$ e una primitiva di g(t)/t è G(t) = arctg t. Si ottengono le soluzioni in forma parametrica: x(t) = c + arctg t, $y(t) = log \sqrt{1+t^2}$. Ricavan-

311

do il parametro t dalla prima equazione si determina la forma carte - siana delle soluzioni:

$$y(x) = \log \sqrt{1 + tg^2(x-c)},$$

oltre alla funzione costante y = 0]

5.70 Risolvere le equazioni differenziali

- (a) $y = (y')^2 (1-2 \log y')$
- (b) $y = [(y'-1)^2 + 1] e^{y'}$
- (c) $y + \sqrt{1-(y^1)^2} = 0$
- [(a) $x(t) = 4 (1-t \log t) + c$, $y(t) = t^2 (1-2 \log t)$.
- (b) $x(t) = (t-1)e^{t} + c$, $y(t) = (t^2 2t + 2) e^{t}$, oltre alla funzione costante y = 2.
- (c) $y(x) = |\cos(x+c)| \text{ per } x + c \neq (\pi/2) + k\pi, k \in \mathbb{Z}, \text{ oltre } a$ $y(x) = -1, \forall x \in \mathbb{R}$
- 5.71 Determinare, con il metodo proposto in questo paragrafo, le soluzioni dell'equazione lineare a coefficienti costanti y' = ay + b, essendo a≠ ≠ 0.

[Scrivendo l'equazione differenziale nella forma y=g(y'), con g(t) = (t-b)/a, si trovano (oltre alla soluzione costante y=-b/a) le soluzioni in forma parametrica

$$x(t) = c + \frac{1}{a} \log |t|$$
, $y(t) = \frac{t-b}{a}$.

Eliminando il parametro (e cambiando opportunamente la costante) si giunge a $y(x) = (c^1e^{ax}-b)/a$]

SH. Equazioni di Clairaut

Si dice di Clairaut un'equazione differenziale del primo ordine non normale del tipo

$$y = xy^1 + g(y^1),$$

con g funzione derivabile. Come nei due paragrafi che precedono, si cercano soluzioni in forma parame trica (x(t), y(t)), scegliendo come parametro t=y'. Però, a differenza delle equazioni non normali considerate nei paragrafi precedenti, in questo caso la relazione y = xt + g(t) non definisce y in funzione della sola t; per eliminare la dipendenza esplicita da x, è opportuno preliminarmente derivare entrambi i membri dell'equazione differenziale:

$$\frac{d}{dx} y(x) = \frac{d}{dx} [xy'(x) + g(y'(x))]$$

ottenendo (nell'ipotesi che y(x) sia derivabile due volte) y'=y'+xy''+g'(y')y'', da cui

$$y''[x + g'(y')] = 0.$$

Si hanno due possibilità: (a) y''=0; (b)x+g'(y')=0. Nel primo caso, se y''=0 in un intervallo, y' è costante (=c) e, dall'equazione differenziale iniziale, si ottengono le soluzioni y(x)=xc+g(c). Tali soluzioni sono polinomi di primo grado (geometricamente corrispondono a rette) per ogni valore della costante c.

Nel secondo caso, se x+g'(y')=0, posto t=y', si hanno le equazioni parametriche x(t)=-g'(t), y(t)=-tg'(t)+g(t). La curva così ottenuta si dice integrale singolare dell'equazione di Clairaut.

Riassumendo, le soluzioni dell'equazione di Clai raut sono date dalla famiglia di rette di equazione

$$y = cx + g(c)$$

e dall' integrale singolare di equazioni parametriche

$$x(t)=-g'(t)$$
, $y(t)=-tg'(t)+g(t)$.

- 5.72 Risolvere l'equazione $y=xy'-\frac{1}{4}(y')^2$.
 - [Si tratta di un'equazione di Clairaut con $g(t)=-t^2/4$. L'insieme delle soluzioni è costituito dalla famiglia di rette $y=cx-(c^2/4)$, al variare di c in R, e dall'integrale singolare di equazioni parametriche

$$x(t)=-g'(t)=\frac{1}{2}t$$
, $y(t)=-tg'(t)+g(t)=\frac{1}{4}t^2$;

essendo t=2x, risulta anche y = $\frac{1}{4}$ (2x)² = x², che è l'equazione carte siana dell'integrale singolare]

5.73 Si rappresentino in uno stesso sistema di riferimento i grafici delle soluzioni dell'equazione di Clairaut dell'esercizio precedente:

$$y = cx - \frac{1}{4} c^2$$
 (ceR), $y = x^{\frac{1}{2}}$.

[Si disegnino le rette y = cx - (c 2 /4) per alcuni valori di c \in R; ad esempio per c = \pm 1, \pm 2, come in figura 5.9. La famiglia di rette completa è rappresentata in figura 5.10]

figura 5.9

figura 5.10

5.74 Si considerino la parabola di equazione y = x² e la famiglia di rette y = cx-c²/4 (figura 5.10) Esse hanno la seguente proprietà: Ogni retta è tangente alla parabola in almeno un punto e viceversa, o gni punto della parabola è di tangenza per una retta del la famiglia. Sotto queste condizioni si dice che la parabola è una curva inviluppo della famiglia di rette.

Verificare analiticamente la proprietà enu $\underline{\mathbf{n}}$ ciata.

[Cominciamo con il determinare le intersezioni della parabola $y=x^2$ con la retta $y = cx + c^2/4$. Deve risultare $x^2 = cx + c^2/4$, cioè $x^2-cx + c^2/4 = 0$, cioè ancora $(x-c/2)^2 = 0$. Ciò significa che, per ogni $c \in \mathbb{R}$, x = c/2 è l'ascissa dell'unico punto di intersezione. La retta tangente alla parabola $y=x^2$ per $x_0 = c/2$ ha equazione $y=f(x_0)+f'(x_0)(x-x_0)$ con $f(x) = x^2$; quindi:

$$y = x_0^2 + 2x_0(x-x_0) = 2x_0x - x_0^2 = ex - c^2/4$$

come si voleva dimostrare]

5.75 Si considerino le soluzioni dell'equazione di Clairaut y = xy' + g(y'), supponendo che g" \u220000. Generalizzando l'esercizio precedente, verifica re che la curva di equazioni parametriche

$$x(t) = -g'(t), y(t) = -tg'(t) + g(t)$$

è inviluppo della famiglia di rette y=cx+g(c).

Le intersezioni della curva con le rette si determinano con la condizione y(t) = cx(t) + g(c), cioè

$$-tg^{t}(t) + g(t) = -cg^{t}(t) + g(c).$$

Si vede che t=c è una soluzione; in corrispondenza il punto di interse zione ha coordinate $(x_a,y_a) = (-g^{\dagger}(c), -cg^{\dagger}(c) + g(c))$. La retta tan -

gente alla curva (x(t), y(t)) ha la direzione del vettore (x'(t), y'(t)) = (-g''(t), -tg''(t)) che, se $g''(t) \neq 0$, è la stessa direzione del vettore (1,c) (per t=c). Perciò l'equazione della retta tangente per t = c, è

$$y = y_0 + c(x-x_0) = -cg' + g + c(x + g') = cx + g$$

5.76 Si consideri l'equazione differenziale y = =(x-1)y', che è allo stesso tempo lineare e di Clairaut con g(t) =-t (con riferimento all' esercizio precedente si noti che g"=0 identicamente). Verificare che l'equazione ha per soluzioni una famiglia di rette, ma non ammette in tegrali singolari.

figura 5.11

L'integrale generale y=c(x-1) è rappresentato in figura 5.11 e si de termina con il metodo delle equazioni di Clairaut, ma anche con il metodo della equazioni lineari. Formalmente l'integrale singolare avrebbe espressione analitica x(t)=1, y(t)=0; però (1,0) è solo un punto di \mathbb{R}^2 e non è una curva regolare. Si noti comunque che (1,0) è proprio $\widehat{\mathfrak{u}}$ centro del fascio di rette y=c(x-1)]

5.77 Risolvere le seguenti equazioni di Clairaut

(a)
$$y = xy' + e^{y'}$$

(b)
$$y=xy'+\sqrt{y'}$$

(c)
$$y=[x(y')^3-1]/(y')^2$$
 (d) $y=xy'-seny'$

(d)
$$y=xy'-seny'$$

[(a) $y(x)=cx + e^{c}$; $y(x)=x-x \log x$. (b) $y(x)=cx+ \sqrt{c}$; y(x)=-1/(4x). (c) $y(x) = cx - (1/c^2)$; $y(x)=-3(x^2/4)^{1/3}$. (d) y(x)=cx-senc; $x(t) = cx - (1/c^2)$ = cost, y(t) = t cost - sent]

5.78 Determinare una soluzione del problema di Cau chy

$$y = xy^{1} - seny^{1}, y(1) = \pi$$

Dato che l'equazione differenziale non è in forma normale, non è possi bile applicare il teorema di Cauchy di esistenza ed unicità. Le solu zioni dell'equazione sono indicate nella risposta dell'esercizio 5.77 (d). L'unica retta della famiglia y(x) = cx-senc che soddisfa la condi zione iniziale y(1)= π (cioè π =c-senc) si ottiene (soltanto) per c= π ed è quindi la rotta $y=\pi x$ (infatti, dal segno della derivata prima si vede che la funzione f(x) = x - senx è strettamente crescente su <math>R; dato che f(π) = π , risulta f(x) $\neq \pi$ per ogni x $\neq \pi$). Per stabilire se la curva singolare (x(t), y(t)) passa per il punto (1, 1), studiamo il sistema

$$\begin{cases} cost = 1 \\ t cost - sent = \pi \end{cases} \iff \begin{cases} cost = 1 \\ t - sent = \pi \end{cases} \iff \begin{cases} t = 2k\pi \\ t = \pi \end{cases}$$
 (k \in Z)

Il sistema non ha soluzioni e l'unica soluzione del problema di Cauchy è $y(x) = \pi x$

5.79 Studiare i problemi di Cauchy

(a)
$$\begin{cases} y = xy' - (y')^{2}/4 \\ y(0) = 1 \end{cases}$$
 (b)
$$\begin{cases} y = xy' - (y')^{2}/4 \\ y(1) = 1 \end{cases}$$

L'equazione differenziale è risolta nell'esercizio 5.72. Come si vede dalle figure 5.9 e 5.10, nessuna soluzione passa per il punto di coordinate (0,1). Quindi il problema di Cauchy (a) non ha soluzioni. Invece per il punto (1,1) passano le due curve $y(x) = x^2$ e y(x) == 2x-1, che sono entrambe soluzioni del problema di Cauchy (b). Il lettore ritrovì per via analitica i risultati indicati]

5.80 Per ogni valore del parametro reale $\alpha \neq 0,1$ de terminare le soluzioni dell'equazione differen ziale di Clairaut

$$y = xy' - (y')^{\alpha}.$$

[L'integrale generale è dato dalla famiglia di rette y = cx - c. Lo integrale singulare in forma parametrica ha equazioni $x(t)=\alpha t$, $y(t) = (\alpha-1)t^{\alpha}$ ed in forma cartesiana $y(x)*(\alpha-1)(x/\alpha)^{\alpha/(\alpha-1)}$

5.81 Determinare la curva piana tale che il prodotto delle lunghezze (con il segno) dei segmenti orientati intercettati sugli assi coordinati dalla retta tangente in un punto generico sia costante uguale a 4.

[Con riferimento alla figura 5.5, la condizione da imporre è OA·OB=4. Ciò equivale a

$$(x - \frac{y}{y^t}) (y - xy^t) = 4$$
.

L'equazione si può scrivere nella forma equivalente (se $y^* \neq 0$):

$$(y-xy')^2 = -4y'$$
, cioè $y = xy' \pm 2\sqrt{-y'}$.

Naturalmente deve essere y' \leq 0 (ciò è evidente anche dal fatto che OA·OB > 0). Abbiamo due equazioni di Clairaut che hanno come soluzioni le famiglie di rette y = cx \pm 2 $\sqrt{-c}$ e gli integrali singolari di equazioni parametriche x(t) = \pm 1/ $\sqrt{-t}$, y(t)= \pm $\sqrt{-t}$; eliminando il parametro si trova l'iperbole equilatera di equazione y=1/x. Il lettore verifichi che le soluzioni trovate soddisfano effettivamente la condizione OA·OB = 4; ad esempio verifichi che la retta tangente all'iperbole y=1/x in un punto generico (x_o, 1/x_o), con x_o \neq 0, ha equazione y=cx \pm 2 $\sqrt{-c}$ con c=y'(x_o)=-1/x_o² e che le intersezioni con gli assi coordinati valgono A \equiv (\pm 2/ $\sqrt{-c}$, 0) e B \equiv (0, \pm 2 $\sqrt{-c}$), per cui OA·OB = 4

5.82 Determinare le curve del piano tali che il segmento della retta tangente in un punto generico delimitato dalle intersezioni con gli assi coor dinati, abbia lunghezza uguale ad 8.

[L'equazione differenziale è

$$y^{2}(1+(y')^{2})-2xy'(1+(y')^{2})y+(x^{2}+x^{2}(y')^{2}-6h)(y')^{2}=0$$

che, esplicitata rispetto ad y, dà le equazioni di Clairaut

$$y = xy' \pm 8 \frac{y'}{\sqrt{1+(y')^2}}$$

che ammettono per soluzioni la famiglia di rette y=cx $\pm (8c)/\sqrt{1+c^2}$ e l' "asteroide" di equazione x + y = 4]

51. Il teorema di Cauchy

Richiamiamo il teorema di Cauchy, di esistenza ed unicità locale per un'equazione differenziale del primo ordine in forma normale. A tale scopo conside riamo una funzione di due variabili f(x,y) definita nell'intorno rettangolare I x J del punto (x_o,y_o) de finito da (a,b>0):

$$IxJ=\{(x,y) \in \mathbb{R}^2 : x_o - a \le x \le x_o + a, y_o - b \le y < y_o + b\}.$$

Supponiamo che:

- (1) f(x,y) è continua nel rettangolo I x J:
- (2) f(x,y) è Lipschitziana rispetto a y, nel senso che esiste una costante L tale che

$$|f(x,y_1)-f(x,y_2)| \le L |y_1-y_2|$$

per ogni (x,y_1) , $(x,y_2) \in I$ x J (alcune proprietà de<u>l</u> le funzioni Lipschitziane sono discusse nei paragr<u>a</u> fi 9C e 12C del 1° volume, parte prima).

Usiamo le notazioni:

$$\texttt{M=max} \ \{ \, \big| \, f(x,y) \, \big| \colon \, (x,y) \, \epsilon \, IxJ \} \, ; \qquad \delta \, = \, \min \{ a \, ; \, \, \frac{b}{M} \, \} \ .$$

TEOREMA DI CAUCHY. - Nelle ipotesi (1) e (2) esiste una ed una sola funzione y=y(x) definita e derivabile nell'intervallo (x_o - δ , x_o + δ) che verifica il problema differenziale, detto di Cauchy

(*)
$$\begin{cases} y'(x) = f(x, y(x)), & \forall x \in (x_o - \delta, x_o + \delta) \\ y(x_o) = y_o \end{cases}$$

Notiamo che, talvolta, nella tesi del teorema di Cauchy si afferma l'esistenza della soluzione y(x) nell'intervallo $(x_o-\delta, x_o+\delta)$, con δ definito, in vece che da δ =min $\{a; b/M\}$, da δ < min $\{a; b/M; 1/L\}$. La formulazione dipende dalla dimostrazione adottata e comunque non cambia la sostanza del teorema, che afferma l'esistenza (e unicità) di una soluzione "in piccolo", cioè definita in un intorno di x_o , intorno contenuto nell'intervallo $I = [x_o-a, x_o+a]$. La ulteriore limitazione δ < 1/L è utile in una dimostrazione di tipo funzionale, basata sul teorema delle contrazioni negli spazi metrici (si veda il paragrafo 2B), e si può evitare con una dimostrazione di analisi reale, basata sulle proprietà degli integrali definiti e sulla convergenza uniforme di successioni di funzioni.

Molto importante è la seguente formulazione del teorema di Cauchy:

COROLLARIO. ~ Sia f(x,y) una funzione definita in un interno rettangelare I x J del punto (x_o,y_o) . Se f(x,y)e la sua derivata parziale $f_y(x,y)$ sono continue in I x J , allora esistone $\delta>0$ ed una (unica) funzione y=y(x) definita e derivabile in $(x_o^-\delta,\,x_o^-+\delta)$ C I, soluzione del problema di Cauchy (*) .

Dimostrazione - La funzioni di due variabili |f(x,y)| $|e|f_y(x,y)|$ so no continue in I x J. Consideriamo un rettangolo chiuso e limitato I' x J', di centro (x_o,y_o) , contenuto in I x J. Per il teorema di Weierstrass $|f|e|f_y|$ assumono massimo su I' x J'. Se indichiamo con M,L i rispettivi valori di massimo, abbiamo

$$|f(x,y)| \le M, |f_y(x,y)| \le L, \quad \forall (x,y) \in I' \times J'.$$

In base all teorema di Lagrange (per le funzioni di una variabile reale), per ogni y $_1$, y $_2$ \in J' esiste ξ \in J' tale che

$$|f(x,y_1)-f(x,y_2)| = |f_y(x,\xi)(y_1-y_2)| \le L |y_1-y_2|$$

Quindi, in I' x J', f(x,y) è Lipschitziana in y uniformemente rispetto a x. Perciò, essendo soddisfatte le ipotesi, vale la tesi del teorema di Cauchy.

Le ipotesi del teorema di Cauchy sono sufficien ti per l'esistenza di una soluzione del problema di Cauchy definita localmente in un intorno di xo, e per l'unicità della soluzione in tale intorno. Nel segui to discutiamo di queste questioni e della necessità delle ipotesi, cominciando dal problema dell'unicità.

5.83 Si consideri il problema di Cauchy

$$\begin{cases} y' = y^{2/3} \\ y(0) = 0 \end{cases}$$

Si verifichi che non sono soddisfatte tutte le ipotesi del teorema di Cauchy. Si verifichi inoltre che il problema ammette più di una soluzione.

L'equazione differenziale è della forma y'=f(x,y), con $f(x,y)=y^{2/3}$ (f è costante rispetto ad x). La funzione f(x,y) è continua su \mathbb{R}^2 (dato che $y^{2/3}$ è continua su \mathbb{R}), ma f_y non è continua in un intorno di (0,0); anzi, $f_y=(2/3)y^{-1/3}$ non è definita per y=0 e diverge a $\pm \infty$ per $y \to 0^{\pm}$. Ciò implica che $y^{2/3}$ non è una funzione Lipschitziana in un intorno di y=0 (si veda il paragrafo 12C del l° volume, parte prima).

Si vede subito che il problema di Cauchy ammette la soluzione identicamente nulla. Per determinare eventuali altre soluzioni usiamo il metodo delle equazioni a variabili separabili. Se y \neq 0 abbiamo

$$3y^{1/3} = \int y^{-2/3} dy = \int dx = x + c,$$

da cui y(x) = (x+c) 3 /27. Deve essere y(0)=0, cioè 0=c 3 /27, cioè an cora c=0. La funzione y(x)=x 3 /27 è un'altra soluzione del problema di Cauchy]

5.84 Si verifichi che il problema di Cauchy dell'e sercizio precedente ha infinite soluzioni. In particolare si verifichi che, per ogni $k \geq 0$, è soluzione su R la funzione $y_k(x)$ definita da

$$y_{k}(x) = \begin{cases} (x-k)^{3}/27 & \text{se } x > k \\ 0 & \text{se } |x| \le k \\ (x+k)^{3}/27 & \text{se } x < -k. \end{cases}$$

[Si noti in particolare che $y_k(x)$ é derivabile anche per $x=\pm k$]

5.85 Verificare che il seguente problema di Cauchy

$$\begin{cases} y'\cos x = 4y \sin x + 4\sqrt[4]{y^3} \\ y(0) = 0 \end{cases}$$

ammette nell'intervallo [0, $\pi/2$) più di una sol \underline{u} zione.

[La funzione identicamente nulla è una soluzione. Con il metodo delle \underline{e} quazioni di Bernoulli (dividendo entrambi i membri per y , sostituen do la funzione incognita y con z=y e ponendo z(0)=0) si trova anche la soluzione $y(x)=(x/\cos x)^4$]

5.86 Verificare che il problema di Cauchy

$$\begin{cases} y' = \frac{y + \sqrt{x^2 - y^2}}{x} \\ y(1) = 1 \end{cases}$$

ammette, in un intorno sinistro di $x_0=1$, più di una soluzione.

[Si tratta di un'equazione differenziale omogenea del tipo y'=g(y/x) . Con la sostituzione z=y/x ci si riconduce all'equazione a variabili se parabili xz' = $\sqrt{1-z^2}$. Per procedere oltre, prima di separare le variabili, è opportuno discutere il caso $\sqrt{1-z^2}=0$. Notiamo che la condizione iniziale y(1)=1 corrisponde a z(1)=y(1)/1=1. Siamo quindi proprio nel caso $\sqrt{1-z^2}(x)=0$, per x=1. Si vede facilmente che la funzione costante z=1 è una soluzione (e ciò corrisponde a y(x)=xz(x)=x). Un'altra soluzione si ottiene separando le variabili e supponendo che $z^2(x)<1$ per $x\neq 1$; per x>0 si ottiene

$$\arcsin z = \int \frac{dz}{\sqrt{1-z^2}} = \int \frac{dx}{x} = c + \log x.$$

Imponendo la condizione z(1)=1 si trova c = arcsen 1 = $\pi/2$. Se $|\pi/2+\log x| \le \pi/2$ (e ciò accade in un intorno sinistro di $x_o=1$) risulta z(x) = $\sin(\pi/2 + \log x) = \cos(\log x)$. In termini di y(x) = xz(x); il problema di Cauchy ha quindi almeno le due soluzioni (in un intorno sinistro di $x_o=1$)

$$y(x) = x$$
; $y(x)=x \cos(\log x)$

Negli esercizi che seguono discutiamo della esistenza locale delle soluzioni (cioè, come talvolta si dice, delle soluzioni "in piccolo", per distinguerle dalle soluzioni "in grande", che risultano definite in un intervallo fissato a priori) ed in particolare della stima fornita dal teorema di Cauchy della semi ampiezza 6 dell'intervallo di definizione della soluzione.

5.87 Si consideri il problema di Cauchy

$$\begin{cases} \lambda(x^{\circ}) = \lambda^{\circ} \\ \lambda(x^{\circ}) = \lambda^{\circ} \end{cases}$$

con $(x_o, y_o) \in \mathbb{R}^2$ e $y_o > 0$. Si noti che la funzione a secondo membro dell'equazione differenzia-

le $f(x,y)=y^2$ è continua su tutto R^2 . Cionono - stante, si verifichi che:

- (a) la soluzione y(x) è definita nell'intervallo $(x_0-\delta, x_0+\delta)$, con $\delta = 1/y_0$;
- (b) il più grande valore di δ , stimato in base all'enunciato del teorema di Cauchy (δ = min {a; b/M}), è δ =1/(4y $_{o}$).
- [(a) Con il metodo delle equazioni a variabili separabili, oltre a $y\equiv 0$ si ottengono le soluzioni dell'equazione differenziale y(x)=-1/(x+c). La condizione iniziale $y(x_o)=y_o$ vale se $c=-x_o-(1/y_o)$. Perciò la soluzione del problema di Cauchy è data da

$$y(x) = \frac{y_o}{1-y_o(x-x_o)}.$$

La funzione y(x) è definita per $x \neq x_o + (1/y_o)$. Limitatamente all'in - tervallo contenente x_o , la funzione è definita in $(-\infty, x_o + (1/y_o))$. Il più grande intervallo del tipo $(x_o - \delta, x_o + \delta)$ in cui la funzione y(x) è definita si ha per $\delta = 1/y_o$.

(b) Le funzioni $f(x,y) = y^2$ e $f_y(x,y)=2y$ sono continue su \mathbb{R}^2 (quindi il problema di Cauchy ammette una ed una sola soluzione y(x) definita in un intorno di x_0). In particolars f(x,y) è continua in ogni rettangolo I x J del tipo

I x J = {
$$(x,y) \in \mathbb{R}^2 : x_o^{-a} \le x \le x_o^{+a}, y_o^{-b} \le y \le y_o^{+b} }$$

con a,b>0.

Il massimo M di f(x,y) in l x J vale

$$\text{M=max } \left\{ \text{ } f(x,y): (x,y) \text{ } \in \text{I } x \text{ } J \right\} = \max \left\{ y^2 : y_0 - b \leq y \leq y_0 + b \right\} = (y_0 + b)^2 \text{ } .$$

Il teorema di Cauchy stabilisce per δ la stima δ =min $\{a;b/M\}$. Po tendo scegliere a,b \in R † ed essendo $b/M=b/(y_o+b)^2$ indipendente da a, è conveniente scegliere a in modo che $a \geq b/M$; in tal caso risulta

$$\delta = \min \{a; b/M\} = b/(y_0 + b)^2$$
.

.Ora scegliamo b in modo da ottenere per δ il massimo possibile; cioè calcoliamo il massimo (assoluto) di δ = δ (b).Risulta δ (0)=0 e δ (b) \rightarrow 0 per b \rightarrow + ∞ ; quindi il massimo assoluto di δ (b) si ottiene in corri -

spondenza ad un valore b > 0 per cui la derivata $\hat{\delta}^{\,\dagger}(b)$ si annulla. Ri sulta

$$\delta^{+}(b) = \frac{(y_o + b)^2 - 2(y_o + b)b}{(y_o + b)^4} = \frac{y_o - b}{(y_o + b)^3},$$

perciò δ '(b) = 0 per b=y e quindi $\max\{\delta(b):b>0\}=\delta(y_o)=1/(4y_o)$. Il teorema di Cauchy, nelle ipotesi ottimali b=y e a>b/M, stabilisce l'esistenza di una ed una sola soluzione del problema differenziale nell'intervallo $(x_o - \delta, x_o + \delta)$, con δ =1/(4y_o); come si vede confrontando con (a), la soluzione è di fatto definita in $(-\infty, x_o + (1/y_o))$ che è un intervallo contenente $(x_o - \delta, x_o + \delta)$.

Infine osserviamo che la funzione $f(x,y)=y^2$ è Lipschitziana rí-spetto ad $y \in [y_o-b, y_o+b]$ con costante L data da (si veda il paragra fo 12C del 1° volume, parte prima):

I.=max {
$$\{f_y | : y \in [y_o - b, y_o + b]\} = 2(y_o + b).$$

In particolare, per il valore ottimale b=y sopra scelto, risulta L=4y perciò δ =1/(4y) è uguale a 1/L e risulta anche δ =min {a; b/M; 1/L}}

5.88 Si consideri il problema di Cauchy

$$\begin{cases} y' = (x+y)^2 \\ y(0) = 0 \end{cases}$$

Si verifichi che:

- (a) la soluzione è definita per $|x| < \pi/2$ e non è definita per $x = \pm \pi/2$;
- (b) il più grande valore di δ , stimato in base all'enunciato del teorema di Cauchy (δ =min {a; b/M}) è δ =1/2.
- [(a) L'equazione differenziale è del tipo y'=g(ax+by) e si risolve con la sostituzione z(x)=x+y. Si trova la soluzione y(x)=tgx-x.
- (b) Sia $f(x,y)=(x+y)^2$; come nell'esercizio precedente, si pone (si noti che $(x_{\alpha},y_{\alpha})=(0,0)$):

M=max {
$$f(x,y)$$
: $|x| \le a$, $|y| \le b$ } = $(a+b)^2$,

essendo a,b > 0. Per determinare il massimo rispetto ad a,b $\in \mathbb{R}^+$ di $\delta = \min \left\{ a; \ b/it \right\} = \min \left\{ a; \ b/(a+b)^2 \right\}$, è opportuno calcolare, per \underline{o} gni a > 0, il massimo assoluto della funzione $b \to b/(a+b)^2$. Tale fun zione vale zero per b=0 e converge a zero per $b \to +\infty$; il massimo assoluto si ottiene quindi quando la derivata

$$\frac{d \cdot}{db} \frac{b}{(a+b)^2} = \frac{a-b}{(a+b)^3}$$

si annulla e ciò accade per b=a. Posto b=a, risulta $\delta=\min\{a;1/(4a)\}$.

figura 5.12

Come si vede dalla figura 5.12, il massimo di $\delta = \delta(a)$ si ottiene quan do $\delta = a = 1/(4a)$ e ciò accade per a = 1/2. Il valore massimo è $\delta_{max} = \delta(1/2) = 1/2$

Il teorema di Cauchy vale per equazioni differenziali in forma normale, cioè del tipo y'=f(x,y), e non

vale in genere per equazioni non normali. Di seguito proponiamo alcuni esercizi relativi ad equazioni di $\underline{\underline{f}}$ ferenziali non in forma normale. In particolare gli esercizi 5.89 e 5.90 sono esempi di non unicità, men tre l'esercizio 5.91 è un esempio di non esistenza.

5.89 Verificare che y= π -x, y=x+ π sono due soluzioni del problema di Cauchy

$$\begin{cases} y' \text{ seny + senx = 0} \\ y(0) = \pi \end{cases}$$

5.90 Il seguente problema differenziale non ha unici tà. Una soluzione è data da $y(x)=x+2\pi$. Trovarne un'altra.

$$\begin{cases} y'seny = senx \\ y(0) = 2\pi \end{cases}$$

[Ad esempio $y(x) = 2\pi - x$]

5.91 Verificare che non esistono, in un intorno destro di $x_o=0$, soluzioni del problema di Cauchy

$$\begin{cases} y'\cos y = \cos x \\ y(0) = \pi/2 \end{cases}$$

[Gia dall'equazione differenziale, ponendo x=0 e y= π /2, si trova l'as surdo 0=1 (purchè y'(0) \in R; si noti che, dall'espressione analitica che determiniamo di seguito, la derivata y'(x) diverge per $x \to 0^-$). Essendo D(sen y(x))=y'cosy(x), dall'equazione differenziale si ottiene

sen
$$y(x) = \int D(seny(x))dx = \int y'cosy dx = \int cosx dx=c + senx.$$

Dovendo risultare $y(0) = \pi / 2$, si ha

$$1=sen(\pi/2)=c+sen 0=c$$
,

da cui seny = 1 + senx. Tale relazione non definisce una funzione y(x) nell'intervallo $(0,\pi)$, perchè in tal caso seny = 1 + senx > 1 è assurdo. Quindi il problema di Cauchy non ha soluzione in un intorno de stro di $x_o=0$. Per $x\in [-\pi,0]$ risulta $y(x)=\arccos\left(1+\mathrm{senx}\right)$. Si noti che tale funzione non è derivabile per x=0 e quindi y(x) non è soluzione del problema di Cauchy (in senso classico) nemmeno in un intorno sinistro di $x_o=0$

5.92 Si consideri un'equazione differenziale del ti-

$$x = g(y')$$

con g funzione di classe $C^1(R)$. Verificare che se g(t) non è invertibile (localmente) in un intorno di un punto t_o , allora in corrispondenza la rappresentazione parametrica delle soluzioni

$$x(t)=g(t)$$
, $y(t)=tg(t)-G(t)+c$,

(con G'(t)=g(t)) ottenuta nel paragrafo 5F, non regolare, nel senso che $x'(t_o)=y'(t_o)=0$.

[Se g non è invertibile in un intorno di t_o allora necessariamente $g'(t_o)=0$ (infatti, se fosse $g'(t_o)\neq 0$, g sarebbe strettamente monotòna in un intorno di t_o). Ne segue che x'(t)=g'(t)=y'(t)=tg'(t) si annullano entrambe per $t=t_o$]

Concludiamo il paragrafo con il seguente

TEOREMA DI PEANO - Se f(x,y) è una funzione continua in un intorno di (x_o,y_o) , esiste una funzione y(x), derivabile in un intorno di x_o , che soddisfa il problema di Cauchy

$$y'=f(x,y)$$
 , $y(x_o)=y_o$.

Notiamo che il teorema di Peano è un risultato di

esistenza, ma non di unicità. Ad esempio i problemi di Cauchy degli esercizi 5.83, 5.85 e 5.86 sono del tipo y' = f(x,y), con f continua, ma non Lipschitzia na in y (la funzione $t \rightarrow \sqrt{t}$ è continua in un intorno destro di t=0, ma non è Lipschitziana) e non hanno unicità.

La dimostrazione del teorema di Peano, simile sotto certi aspetti a quella del teorema di Cauchy, è basata sul teorema di Ascoli-Arzelà (paragrafo 1A)

5L. Integrazione grafica

Talvolta è possibile determinare alcune proprie tà del grafico di soluzioni di una equazione differenziale ordinaria

$$y' = f(x,y)$$

a priori, senza risolvere l'equazione analiticamente. In particolare può essere possibile determinare gli intervalli di monotonia delle soluzioni, gli eventuali punti di massimo e di minimo relativo, gli intervalli di convessità e concavità, i punti di flesso egli asintoti orizzontali.

Intervalli di monotonia: Si determinano stabilendo il segno di y'(x). In base all'equazione differen - ziale y' = f(x,y), risulta y' $\gtrless 0$ in corrispondenza ai punti $(x,y) \in \mathbb{R}^2$ per cui $f(x,y) \gtrless 0$.

Intervalli di convessità : Si determinano in base al segno di y''(x). A tale scopo è opportuno derivare entrambi i membri dell'equazione differenziale y'(x)= f(x,y(x)):

$$y''=f_x(x,y)+f_y(x,y)y'=f_x(x,y)+f_y(x,y)f(x,y)$$

(occorre supporre che f sia una funzione differen - ziabile; nell'ultimo passaggio si è tenuto conto del

fatto che y'=f(x,y)). Risulta quindi y'' \gtrless 0 in corr<u>i</u> spondenza ai punti $(x,y) \in \mathbb{R}^2$ per cui $f_x + f_y f \gtrless 0$.

Asintoti orizzontali: Consideriamo per semplicità so lo il caso y'=f(y), con f funzione continua indipendente da x, anche se il metodo che esponiamo si applica talvolta anche al caso generale. Consideriamo gli asintoti orizzontali per $x\to +\infty$; il caso $x\to -\infty$ è analogo.

E' opportuno stabilire innanzi tutto il segno di y'; se esiste $x_o \in R$ per cui y'(x) ha segno costante per $x > x_o$, allora y(x) è monotòna per $x \ge x_o$. Indichiamo con $\ell \in R \cup \{\pm \infty\}$ il limite per $x \to +\infty$ di y(x). In base al teorema di L'Hôpital, se $\ell \in R$ anche y'(x) ha limite per $x \to +\infty$ e tale limite vale zero; infatti:

$$0 = \left(\frac{\ell}{\infty} = \right) = \lim_{x \to +\infty} \frac{y(x)}{x} = \lim_{x \to +\infty} y'(x).$$

Notiamo che, per applicare il teorema di L'Hôpital, è necessario verificare a priori che esiste il limite a secondo membro; ciò si ottiene direttamente dal l'equazione differenziale y'(x) = f(y(x)); infatti, per la continuità di f, y'(x) converge a f(l) per $x\to +\infty$. Ricordiamo anche che il teorema di L'Hôpital si applica alle forme indeterminate $0/0 = \infty/\infty$, ma an che al caso l/∞ , con $l \in \mathbb{R}$.

Al limite per $x\to +\infty$ nell'equazione differenziale y'(x)=f(y(x)), otteniamo $0=f(\ell)$, che è un' equazione (algebrica o trascendente) nell'incognita $\ell \in \mathbb{R}$. Spesso dall'equazione $f(\ell)=0$ e dalle proprietà di monotonia di y(x) è possibile determinare ℓ .

5.93 Determinare gli intervalli di monotonia e di convessità e gli eventuali asintoti orizzontali delle soluzioni dei problemi di Cauchy

(a)
$$\begin{cases} y' = (y^2 - 4y + 3)^3 \\ y(0) = 2 \end{cases}$$
 (b)
$$\begin{cases} y' = (y^2 - 4y + 3)^3 \\ y(0) = 0 \end{cases}$$

[(a) L'equazione differenziale è a variabili separabili, ma non è agevo le risolverla analiticamente e determinare l'espressione cartesiana del la soluzione. Applichiamo il metodo di integrazione grafica descritto precedentemente. La derivata y' è positiva se

$$y'=(y^2-4y+3)^3=(y-1)^3(y-3)^3>0$$
;

ciò si verifica se y è esterno all'intervallo [1,3]. Inoltre y' < 0 se y \in (1,3) e y'=0 se y=1 oppure se y=3. Si noti che le funzioni co stanti y=1 e y=3 sono due soluzioni dell'equazione differenziale.

Dato che la condizione iniziale è y(0)=2, per la continuità di y(x) (notiamo che, in base al teorema di Cauchy, esiste una (unica) funzione derivabile y=y(x) che risolve il problema (a) in un intorno di $x_0=0$ risulta $y(x)\in [1,3]$ in un intorno di $x_0=0$ e quindi y'(x)<0 in tale intorno (y(x)) è perciò strettamente decrescente). E' possibile che y(x) sia illimitata nel suo insieme di definizione? E' possibile che y(x) di venti negativa per qualche valore di x>0? Se ciò accadesse, per il teorema dell'esistenza degli zeri esisterebbe $x_1>0$ per cui $y(x_1)=1$; avrenmo quindi due funzioni (la soluzione y(x) che stiamo studiando e la funzione costante uguale ad 1) che soddisfano entrambe il problema di Cauchy

$$y' = (y^2 - 4y + 3)^3$$
, $y(x_1) = 1$.

Per il teorema di unicità dovrebbe risultare y(x) identicamente uguale ad 1, in contrasto con il fatto che y(0)=2. Perciò y(x) non assume mai il valore 1 e quindi è tale che y(x)>1 per ogni x. Analogamente y(x)<3 per ogni x dell'insieme di definizione. Ne segue, tenendo conto anche della monotonia, che y(x) è definita in (più precisamente, può essere estesa a) tutto R ed è limitata su R (1 < y(x) < 3 per ogni x \in R). Indichiamo con ℓ [1,2] il limite di ℓ (x) per x ℓ + ℓ 0. Dalle condizioni

 $\lim_{x\to +\infty}y(x)= \mbox{ℓ} \ , \qquad \lim_{x\to +\infty}y^{\mbox{\tiny \prime}}(x)=0 \ , \qquad y^{\mbox{\tiny \prime}}=(y^2-4y+3)^3$

otteniamo (ℓ^2 -4 ℓ +3)³=0, cioè ℓ =1 oppure ℓ =3. Dato che y(0)=2 e che y(x) è decrescente, y(x) converge ad 1 per x \rightarrow + ∞ . Analogamente y(x) \rightarrow 3 per x \rightarrow - ∞ .

Per determinare gli intervalli di convessità e concavità, calcolia mo

$$y'' = 3(y^2 - 4y + 3)^2 (2y-4)y'$$
.

Abbiamo già stabilito che la nostra soluzione y(x) è decrescente con y'(x) < 0 per ogni $x \in \mathbb{R}$. E' allora facile verificare che y'' > 0 se e solo se y < 2. La soluzione y(x) è convessa se y(x) < 2 ed è concava se y(x) > 2; dato che y(0) = 2 e che y(x) è decrescente, ciò significa che y(x) è convessa nell'intervallo $\{0, +\infty\}$ ed è concava in $(-\infty, 0]$ il punto $x_0=0$ è di flesso. Il grafico di y(x) è disegnato in figura 5.13.

figura 5.13

(b) La soluzione y(x) è strettamente crescente e concava su R. La retta di equazione y=1 è un asintoto orizzontale per $x\to +\infty$, mentre y(x) diverge $a=\infty$ per $x\to -\infty$ (infatti y(x), essendo monotòna, ha limite per $x\to +\infty$. Se convergesse ad un limite $\ell\in\mathbb{R}$, ℓ dourebbe essere una soluzione dell'equazione ($\ell^2-4\ell+3$) = 0, da cui $\ell=1$ oppure $\ell=3$. Ciò contrasta con il fatto che, essendo y(x) una funzione strettamente crescente con y(0)=0, essa è negativa per x<0)

5.94 Determinare per x > 0 gli intervalli di monotonia e di convessità e gli eventuali asintoti orizzontali delle soluzioni dei problemi di Cauchy

(a)
$$\begin{cases} y' = x - y^{2} \\ y(0) = 0 \end{cases}$$
 (b)
$$\begin{cases} y' = x - y^{2} \\ y(0) = y_{0} > 0 \end{cases}$$

[(a) Risulta $y^4 > 0$ per $x > y^2$, the è l'insieme piano tratteggiato in figura 5.14, delimitato dalla parabola di equazione $x=y^2$.

figura 5.14

figura 5.15

La derivata seconda vale y" = 1 - 2yy' = 1-2y(x-y²) = 1-2xy+2y³. Ri sulta y"=0 se 1-2xy+2y³=0, da cui

$$x = \frac{2y^3 + 1}{2y} = y^2 + \frac{1}{2y}$$
.

Per y > 0 risulta y" < 0 purché x > y² + 1/(2y) (insieme tratteggiato in figura 5.15). La soluzione y(x), esistente in un intorno di x₀ = 0 per il teorema di Cauchy, è strettamente crescente e convessa nelle vicinanze di x₀ = 0; essendo y(0) = 0, dall'equazione differenziale segue che y'(0)=0; quindi y(x) ha tangente orizzontale in corrispondenza di x₀ = 0. Risulta inoltre y(x) < \sqrt{x} per ogni x > 0; infatti, se fosse y(x₁) = $\sqrt{x_1}$ per qualche x₁ > 0 e y(x) < \sqrt{x} per ogni x < 0, dovrebbe risultare (si noti che x-x₁ è negativo):

$$y'(x_1) = \lim_{x \to x_1^-} \frac{y(x) - y(x_1)}{x - x_1} \ge \lim_{x \to x_1^-} \frac{\sqrt{x} - \sqrt{x_1}}{x - x_1}$$

$$= \left[\frac{\mathrm{d}}{\mathrm{d}x} \sqrt{x} \right]_{x=x_1} = \frac{1}{2\sqrt{x_1}} > 0 ,$$

il contrasto con il fatto che y'(x₁) = x₁ - (y(x₁))² = x₁ - ($\sqrt{x_1}$)² = 0. Perciò è provato che 0 < y(x) < \sqrt{x} per ogni x > 0. Per x + ∞ y(x) non ha asintoti obliqui (perchè è limitata superiormente da \sqrt{x}), nè asintoti orizzontali; infatti, se y(x) convergesse per x ++ ∞ ad un numero reale \hat{x} , risulterebbe y'(x) +0 per x ++ ∞ e quindi, dall'equazione differenziale, otterremmo l'assurdo 0=+ ∞ + ℓ ²=+ ∞ . Il grafico della soluzione y(x), per x \geq 0, è schematizzato in figura 5.16. (b) figura 5.17

5.95 In dinamica delle popolazioni, un modello di crescita di una popolazione isolata è descritto me diante l'equazione differenziale

$$y' = qy - my^2$$
,

con q,m costanti positive. La condizione inizia le è $y(x_o)=y_o$, con $0 < y_o < q/m$. Determinare le proprietà grafiche della soluzione.

Notiamo preliminarmente che l'equazione data è a variabili separabili ed anche del tipo di Bernoulli ed è quindi integrabile esplicitamente (oltre a y \equiv 0, l'equazione differenziale ammette le soluzioni y(x)= = $1/[(m/q) + c e^{-qt}]$, con $c \in R$). Comunque, per ottenere rapidamente un grafico approssimativo della soluzione del problema di Cauchy, si può esservare che la derivata y' = y(q-my) è positiva se 0 < y < q/m(column q)me nello schema in figura 5.18). Dato che y Ξ O e y Ξ q/m .sono soluzioni dell'equazione differenziale, per il teorema di unicità ogni altra soluzione non può assumere i valori O e q/m; quindi se, come nel nostro caso, $y(x_a)=y_a$ è interno all'intervallo [0,q/m], y(x) rimane interno per ogni altro $x \in R$. In particolare la nostra soluzione verif<u>i</u> ca le limitazioni 0 < y(x) < q/m per ogni $x \in \mathbb{R}$, ed è strettamente crescente su R. Circa la derivata seconda, abbiamo y'' = (q-2my)y'; ad esempio, nella zona 0 < y < q/m risulta y' > 0 e quindi y'' > 0 per q -- 2my > 0, cioè per y < q/(2m). In figura 5.19 è rappresentato uno sche ma di convessità e concavità delle soluzioni. Circa gli asintoti orizzontali y = ℓ , deve risultare $q\ell$ - $m\ell^2 = 0$, cioè $\ell = 0$ oppure $\ell = q/m$

In base alle proprietà di monotonia, si ottengono i grafici in figura 5.20. Il grafico di una particolare soluzione y(x) tale che $0 < y(x_n) <$ < q/m è rappresentato in figura 5.21]

figura 5.20

figura 5.21

- 5.96 Prescindendo (eventualmente) dallo studio del se gno della derivata seconda, disegnare approssimativamente i grafici delle soluzioni delle equazioni differenziali del tipo y' = f(y):
 - (a) $y' = (y^2 6y + 8) (y 10)^{26}$
- (b) y'=y senv
- (c) $y' = e^y \log(y^2 6y 6)$ (d) $y' = ye^y \log y$
- 5.97 Disegnare approssimativamente i grafici delle so luzioni dell'equazione differenziale y'=-2xy.

[II segno della derivata prima, schematizzato in figura 5.22, è positivo nel secondo e nel quarto quadrante. In particolare la funzione costante y=0 è una soluzione e nessun'altra soluzione tocca l'asse -x . Inoltre y(x) ha un punto di massimo per x=0 se y>0, mentre ha un pun to di minimo se y < 0.

La derivata seconda vale $y^{ij}=-2y-2xy^{i}=-2y-2x(-2xy)=2y(2x^2-1)$. Se y>0risulta y" < 0 all'interno dell'intervallo $\left[-\sqrt{2}/2, \sqrt{2}/2\right]$; in figura 5.23 è rappresentato uno schema di convessità e concavità. Dalle proprietà di monotonia e limitatezza di y(x) si deduce che essa ha cer

tamente asintoto orizzontale per $x \to \pm \infty$ e, dall'equazione differenzia le, si ottiene che l'asintoto ha equazione y=0. Il grafico delle soluzioni è in figura 5.2; come indicato nell'esercizio 5.6, le soluzioni sono y(x) = c e , con c $\in \mathbb{R}$. Il lettore verifichi da tale espressione analitica che, ad esempio, x= $\pm \sqrt{2}/2$ sono punti di flesso per y(x)]

5.98 Disegnare approssimativamente per $x \ge 1$ il grafico della soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{1}{x} + \frac{1}{y} \\ y(1) = 1 \end{cases}$$

[La soluzione è strettamente crescente e concava per $x \ge 1$ e diverge $a + \infty$ per $x \to +\infty$. Il grafico è rappresentato in figura 5.24]

figura 5.24

figura 5.25

5.99 Disegnare approssimativamente per $x \ge 2$ il grafico della soluzione del problema di Cauchy

$$\begin{cases} y' = \frac{1}{x} - \frac{1}{y} \\ y(2) = 1 \end{cases}$$

[In un intorno destro di $x_o=2,y(x)$ è strettamente decrescente e concava. Tali proprietà sono comunque verificate se 0 < y < x. Ne segue che y(x) non è definita su tutto l'intervallo $[2,+\infty)$ perchè, se lo fosse, dovrebbe incontrare l'asse delle x in un punto x_1 dove, essendo $y(x_1)=0$, il secondo membro dell'equazione differenziale non è definito. Quindi, per $x \ge 2$, y(x) è definita in un intervallo massimale $[2,x_1)$ e,per $x \to x_1$, y(x) converge a zero e y'(x) (dall' equazione differenziale) diverge $a - \infty$, cioè la soluzione si avvicina all'asse x con tangente verticale. Il grafico è schematizzato in figura 5.25

SM. Esercizi di riepilogo

In questo paragrafo proponiamo, in ordine sparso, la risoluzione di alcune equazioni differenziali (o problemi di Cauchy) del primo ordine dei tipi considerati nei paragrafi precedenti, ivi comprese le equazioni lineari.

5.100
$$y' = 4x + xy^2$$
 [$y(x) = 2tg(x^2 + c)$]
5.101 $y' = 4x + xy$ [$y(x) = c e^{x^2/2} - 4$]
5.102 $y' = y - xy^2$ [$y(x) = 1/(x - 1 + ce^{-x}); y(x) = 0$]
5.103 $y' = y/(x + y)$ [$y(x) = 0; x = y \log cy$]
5.104 $y' = 2xy - (x^2 + y^2)$ [$y(x) = x - tg(x + c)$]

5.105
$$y = 2 \left(\frac{y+4}{x+y} \right)^{-2}$$
 [2 arctg $\frac{y+4}{x-4} + \log cy = 0$]

5.106
$$y' = \frac{3xy}{x^2-x-2}$$
 $[y(x)=c(x+1)(x-2)^2]$

5.107
$$y' = \frac{x^5+4y}{x}$$
 $[y(x)=x^5+cx^4]$

5.108
$$y' = \frac{2y}{x+y}$$
 $\left[y(x) = 0; (x-y)^2 + cy = 0 \right]$

5.109
$$y' = \frac{y^2}{x^2 + xy}$$
 [y x =0; y + x log cy = 0]

5.110
$$y' = \frac{x+3y-1}{3-x-3y}$$
 [log:3y+x | = x + y + c]

5.111
$$y' = \frac{3(y+1)-2x}{4(y+1)-3x}$$
 $[x^2-2y^2-3xy-3x+4y=c]$

5.112
$$y' = \frac{2(2x-y)^2 + 11(y-2x^2-12)}{(y-2x+3)^2}$$

$$[y-2x-2)^2/2+\log |y-2x+4|=c-x]$$

5.113
$$y' = \frac{y}{x} - \frac{1}{x} - 1$$
 [y r = l-x log(cx)]

$$5.114 ext{ x = sen y' + y' ces y'}$$

If I =sent+t cost,
$$y(t)=t^2 \cos t + c$$

5.115
$$y=2(y^1)^3-3(y^1)^2$$

$$[x(t)=3, 2-1]^{-1}=c, y(t)=2,t^3=3t^2; y(x)=0$$

5.116
$$y=xy^{-1}-y^{-2}$$
 [7 x =cx/(1-cx); y(x)=-1]

5.117
$$y=xy^{-1}-(y^{+})^{2}$$
 [7 r =cx-c²; $y(x)=x^{2}/4$]

5.118
$$x=y+(y^{-1}-1)^2$$
 [$y = x-(x-c)^2/4; y(x)=x$]

5.119
$$y=x^2y^1-y^2$$
 [$y(x)=c/(c-e^{1/x})$; $y(x)=-1$]

5.120
$$y=xy'-\log y'$$
 [$y(x)=1+\log x$; $y(x)=cx-\log c$]

5.121
$$y=(y')^2-\log y'$$
 [$x(t)=2t+(1/t)+c$, $y(t)=t^2-\log t$]

5.122
$$x + yy' = 0$$
 [$y^2 + x^2 = c^2$]

5.123
$$yy' = \sqrt{1-y^2}$$
 [(x+c)² + y² =1,con la condizione yy'>0]

5.124
$$2y+(x^2-1)y'=0$$
 [$y(x)=c(x+1)/(x-1)$]

5.125
$$2y' + (x^2 - 1)y = 0$$
 $[y(x) = c e^{-(x^3/6) + (x/2)}]$

5.126
$$2xyy'-x^2-y^2=0$$
 [$y^2=x^2+cx$]

5.127
$$(x+y+2)y'+x+y+1=0$$
 $[(x+y+2)^2 = 2x + c]$

5.128
$$ye^{y'} = 1-y'$$

$$[y(x)=1; y(x)=(x+c)(1-\log(x+c))]$$
5.129 $y'=0$

5.129
$$y'=e^{y}(1-x)$$
; $y(0) = log 2$

$$[y(x)=-log ((x-1)^{2}/2)]$$

5.130
$$xy'+y=e^{-x}$$
; $y(-1)=0$ [$y(x)=(e-e^{-x})/x$]

5.131
$$y'=y+e^x$$
; $y(0)=0$ [$y(x)=x e^x$]

5.132
$$xy' + y=2 \sqrt{x^3y}$$
; $y(1) = 1$

$$[y(x) = (x^2+1)^2/4x]$$

5.133
$$1-y'=\sqrt{1-(x-y)^2}$$
; $y(0)=0$

$$[y(x) = x - sen x]$$

5.134
$$y' = \sqrt{1 + \frac{1}{y^2}}$$
; $y(0) = -1$

$$[y(x) = \sqrt{x^2 + 2\sqrt{2}x + 1}]$$

5.135
$$y'=x-\frac{2y}{x^2-1}$$
; $y(0)=0$ $[y(x)=\frac{x+1}{x-1}(\frac{x^2}{2}-2x+\log[(x+1)^2])]$

5.136
$$y' = cos(x+y-1); y(0)=1 [y(x)=1-x+2 arctgx]$$

5.137
$$y' = \cos^2 y$$
; $y(0) = \pi$ [$y(x) = \pi + \operatorname{arctg} x$]

5.138
$$y'=y tgx; y(0)=2$$
 [$y(x) = 2/cosx$]

5.139
$$x=\cos^2 y^4$$
 [$x(t)=\cos^2 t$, $y(t)=\frac{1}{2}\cos(2t)-\frac{1}{4}\sin(2t)+c$]

5.140
$$y = y'(x-seny') [y(x)=c(x-senc);x(t)=sent+tcost,y(t)=t^2cost]$$

5.141
$$y'senx+y(cosx-senx)-x=0$$

$$[y(x)=(ce^{X}-1-x)/senx]$$

5.142
$$y'senx-(xy+senx+cosx)y = 0$$

$$[y(x)=0; y(x)=senx/(1-x+ce^{-x})]$$

$$5.143 \quad x^2y^1 = \cos^2 \sqrt{y^1}$$

$$[x(t)=(\cos t)/t, y(t)=t\cos t-2 sent+c, con t=\sqrt{y'}]$$

5.144
$$x = \frac{2(y')^2}{1+(y')^2}$$
 - arctg y'
$$\left[x(t) = \frac{2t^2}{1+t^2} - arctgt, y(t) = \frac{2t^3}{1+t^2} + c\right]$$

$$5.145 \times (y')^{3/2} = 1+y(y')^{1/2}$$

$$[y(x)=cx-1/\sqrt{c}; y(x)=(3/2)(2x)^{1/3}]$$

5.146
$$\left(\frac{1}{y'}\right)^2 + 1 = \left(\frac{x}{y} - \frac{1}{y'}\right)^2 \quad [x^2 + y^2 = cy]$$

5.147
$$x = \frac{y'}{y'+1} + \log(y'+1)$$

$$\left[x(t) = \frac{t}{t+1} + \log(t+1), y(t) = \frac{t^2}{t+1} + c\right]$$

5.148
$$y' + \frac{2x+y}{x+2y+1} = 0$$
 [$x^2 + y^2 + xy + y = c$]

5.149
$$x^2(y'-1)-y(1+2x)=0 [y(x)=x^2(ce^{-1/x}-1)]$$

5.150
$$x^2+4y=(x+2y^1)^2$$
 [y(x)=cx+c²; y(x)=-x²/4]

Capitolo 6

EQUAZIONI DIFFERENZIALI NON LINEARI DI ORDINE SUPERIORE AL PRIMO

6A. Generalità

Una relazione del tipo

$$g(x,y,y',...,y^{(n)}) = 0,$$

con x variabile indipendente, y=y(x) funzione incognita e $y^{(i)}$ (i=1,2,...,n) derivata i-esima di y(x),
prende il nome di equazione differenziale (ordinaria)
di ordine n.

Una soluzione (o integrale particolare) è una fun zione y=y(x) definita in un intervallo I (con interno non vuoto) di R, derivabile n volte in I e tale che $g(x,y(x), y'(x), \ldots, y^{(n)}(x)) = 0$ per ogni $x \in I$.

Un'equazione differenziale di ordine n si dice in forma normale se può essere rappresentata da

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)}),$$

con f funzione reale di n+1 variabili reali. Per le equazioni differenziali di tipo normale vale il seguente teorema di Cauchy di esistenza ed unicità:

TEOREMA DI CAUCHY. - Sia $n \ge 1$, $x_o \in R$ $e = (y_o, y_o^1, \dots, y_o^{(n-1)}) \in R^n$. Sia f una funzione reale di n+1 variabili reali, di classe C^1 in un intorno di $(x_o, y_o, y_o^1, \dots, y_o^{(n-1)})$. Allora esiste una funzione reale di una variabile reale y = y(x), di classe C^n in un intorno di x_o , soddisfacente il problema di Cauchy

$$\begin{cases} y^{(n)} = f(x,y,y',...,y^{(n-1)}) \\ y(x_0) = y_0; y'(x_0) = y_0';...;y^{(n-1)}(x_0) = y_0^{(n-1)} \end{cases}$$

- 6.1 Nelle ipotesi del teorema di Cauchy sopra enunciato, provare che:
 - (a) la soluzione y(x) è di classe C^{n+1} ;
 - (b) se f è di classe C^k , per qualche $k \ge 1$, allora y(x) è di classe C^{n+k} :
 - (c) se f è di classe C^{∞} allora anche y(x) è di classe C^{∞} .
 - [(a) Secondo il teorema di Cauchy y(x) è una funzione di classe C^n che verifica in un intorno di x_o l'equazione differenziale

$$y^{(n)}(x) = f(x,y(x), y'(x),...,y^{(n-1)}(x)).$$

Per ipotesi la funzione di n+1 variabili f è di classe C^1 ; è perciò anche differenziabile. In base alla regola di derivazione delle funzioni composte, il secondo membro dell'equazione differenziale è derivabile. Perciò anche $y^{(n)}(x)$ è derivabile e si ha

$$y^{(n+1)}(x) = \frac{d}{dx} y^{(n)}(x) = \frac{d}{dx} f(x,y(x),y'(x),...,y^{(n-1)}(x)) =$$

$$= f_x + f_y y' + f_{y'} y'' + \dots + f_{y(n-1)} y^{(n)}.$$

Dato che y è di classe C^n , dalla rappresentazione trovata si deduce che $\binom{n+1}{y}$ (x) è una funzione continua; perciò y è di classe C^{n+1} .

- (b) Con k > 1 si può procedere per induzione in modo analogo al caso k==1 già considerato in (a).
- (c) Diretta conseguenza di (b)

Nei paragrafi seguenti prendiamo in considerazio ne equazioni differenziali di ordine superiore al primo, che si risolvono con opportune sostituzioni della funzione incognita, allo scopo di abbassare l'ordine dell'equazione. In particolare prendiamo in considerazione alcuni tipi di equazioni del secondo ordine la cui risoluzione può essere ricondotta a quella di equazioni del primo ordine. Le equazioni possono essere non lineari, ma i metodi di risoluzione si applicano anche alle equazioni differenziali lineari.

6B. Equazioni della forma g(x,y',y'')=0

Se una equazione differenziale del secondo ordine è della forma

$$g(x,y',y'') = 0,$$

cioè se la funzione g non dipende esplicitamente da y, allora si può abbassare l'ordine con la sostitu - zione z(x) = y'(x). Infatti, essendo z'(x)=y''(x), la equazione nell'incognita z diviene

$$g(x,z,z') = 0.$$

Si tratta di un'equazione differenziale del primo ordine che, se possibile, si risolve con uno dei metodi indicati nei capitoli 4 e 5. Dopo aver calcolato z(x), si determinano le soluzioni y(x) come $pr\underline{i}$ mitive di z(x).

Si noti che in generale z, soluzione di una equa zione differenziale del primo ordine, dipende da una costante arbitraria $z=z(x,c_1)$; perciò y, primitiva di z, dipende da due costanti arbitrarie: $y(x)=Z(x,c_1)+c_2$, con Z'=z.

6.2 Risolvere le equazioni differenziali

(a)
$$y'' - (y')^2 = 1$$
 (b) $y'' + (y')^2 = 0$

[(a) Si tratta di un'equazione differenziale del secondo ordine mancante della y (oltre che della x). Con la sostituzione $z(x)=y^+(x)$, essendo $z^+=y^+$, si ottiene l'equazione del primo ordine

$$z^{+} - z^{2} = 1$$

che è del tipo a variabili separabili. Risulta dz/dx = 1 + z² ,da cui

arctg z =
$$\int \frac{dz}{1+z^2} = \int dx = x + c_1.$$

Perciò $z(x) = tg(x+c_1) = quindi$

$$y(x) = \int z(x)dx = \int \frac{\sin(x+c_1)}{\cos(x+c_1)} dx = c_2 - \log \left[\cos(x+c_1)\right].$$

(b) Con la sostituzione $z(x)=y^*(x)$ otteniamo l'equazione $z^*+z^2=0$, che si risolve con il metodo delle equazioni a variabili separabili.Oltre a z=0 (che annulla il denominatore e che corrisponde a y(x)=costante) si ottengono le soluzioni

$$\frac{1}{z} = \int -\frac{dz}{z^2} = \int dx = x + c_1 ,$$

da cui $z(x) = 1/(x + c_1)$ e quindi

 $y(x) = \int z(x)dx = \int \frac{dx}{x+c_1} = \log |x+c_1| + c_2$.

Si noti che, ponendo $c_3 = \pm e^{C_2}$, $c_4 = \pm c_1c_3$, è possibile esprimere le soluzioni nella forma $y(x) = \log(c_3 x + c_4)$. In questo modo si rap presentano anche le soluzioni costanti (per $c_3 = 0$)

6.3 Risolvere l'equazione differenziale

$$2xy^{t}y^{t} - (y^{t})^{2} + 3 = 0$$

[Si tratta di un'equazione differenziale del secondo ordine mancante della y. Con la sostituzione z(x) = y'(x), essendo z' = y'', si giunge a

$$2xzz^{1} - z^{2} + 3 = 0$$
.

Si tratta di un'equazione differenziale del primo ordine del tipo di Bernoulli (paragrafo 5B), che si risolve con la sestituzione $w(x)=z^2$ (x) Dato che $w'=2zz^1$, rispetto all'incognita w si ottiene l'equazione differenziale lineare

$$w' = \frac{1}{x} w - \frac{3}{x}$$

le cui soluzioni sono $w(x) = c_1x + 3$. In corrispondenza risulta $z(x) = \pm \sqrt{c_1x + 3}$, da cui

$$y(x) = \int z(x)dx = \pm \int \sqrt{c_1 x+3} dx = \pm \frac{2}{3c_1} (c_1 x+3)^{3/2} + c_2$$
.

Tali funzioni y(x) sono definite per ogni valore della costante $c_1 \in \mathbb{R}$, con $c_1 \neq 0$; invece, se $c_1 = 0$, risulta

$$y(x) = \int z(x)dx = \pm \int \sqrt{3} dx = \pm \sqrt{3} x + c_2$$

Riassumendo, le soluzioni sono date da $y(x) = c_2 \pm (2/3c_1)(c_1x+3)^{3/2}$, $\forall c_1 \neq 0$, $\forall c_2 \in \mathbb{R}$ e da $y(x) = c_2 \pm \sqrt{3}x$

6.4 Risolvere l'equazione differenziale

$$y' = x(2-y'')$$

[Si tratta di un'equazione differenziale del secondo ordine mancante del la y. Posto z(x) = y'(x) (da cui z' = y'') si ottiene z=x(2-z') che è un'equazione lineare del primo ordine. Le soluzioni sono date da $z(x) = (c_1/x) + x$, da cui

$$y(x) = \int z(x) dx = \int (\frac{c_1}{x} + x) dx = c_1 \log |x| + \frac{x^2}{2} + c_2$$

6.5 Risolvere le equazioni differenziali

(a)
$$y' = xy'' - (y'')^2$$

(b)
$$y' = xy'' - (y'')^{-1/2}$$

[(a) L'incognita z(x)=y'(x) soddisfa l'equazione di Clairaut $z=xz'-(z')^2$. Come indicato nel paragrafo SH, l'equazione ammette come soluzioni la famiglia di rette

$$z(x) = c_1 x - c_1^2 \qquad (c_1 \in \mathbb{R})$$

e l'integrale singolare di equazioni parametriche

$$x(t) = -2t, z(t) = t^2$$

il quale, posto t = -x/2, si può anche scrivere nella forma cartesiana $z=x^2/4$. In corrispondenza si ottengono le soluzioni dell'equazione iniziale

$$y(x) = \int z(x)dx = \int (c_1x-c_1^2)dx = \frac{c_1}{2} x^2 - c_1^2 x + c_2;$$
$$y(x) = \int z(x)dx = \int \frac{x^2}{a}dx = \frac{x^3}{12} + c.$$

(b)
$$y(x) = \frac{c_1}{2} x^2 - \frac{x}{\sqrt{c_1}}$$
; $y(x) = \frac{9}{8} \sqrt[3]{2} x^{4/3} + c$

6.6 Risolvere l'equazione differenziale

$$y' = xy'' - (y')^2$$

[Con la sostituzione z(x) = y'(x) si ottiene l'equazione differenziale del primo ordine a variabili separabili $z'=(z^2+z)/x$, che ammette come soluzioni

$$z(x) = \frac{c_1 x}{1-c_1 x}$$
 $(c_1 \in \mathbb{R});$ $z(x) = -1.$

In corrispondenza alla funzione costante z(x) = -1 si ha y(x) = c - x, mentre le altre soluzioni sono espresse da

$$y(x) = \int z(x) dx = \int \frac{c_1 x}{1 - c_1 x} dx = \int (-1 + \frac{1}{1 - c_1 x}) dx =$$

$$= -x - \frac{1}{c_1} \log \left[1 - c_1 x \right] + c_2$$

se $c_1 \neq 0$, altrimenti y(x) = costante

6.7 Integrare l'equazione differenziale

$$xy'' + y' \log x - y' \log y' = 0$$

[Con la sostituzione z(x) = y'(x) si ottiene l'equazione differenziale equivalente $z' = (z/x)\log(z/x)$, che è del tipo z'=g(z/x) e che si integra (si veda il paragrafo 5C) ponendo w=z/x (da cui z=xw, z'=w+xw'). Ne risulta l'equazione del primo ordine w+xw' = wlogw che si risolve separando le variabili

$$\log \left[\log -1\right] = \int \frac{dw}{w(\log w - 1)} = \int \frac{dx}{x} = \log (c_1 x),$$

oltre alla funzione costante w = e, che annulla il denominatore (w=0 è da scartare). Pur di cambiare il segno di c_1 , risulta logw = $1 = c_1 x$, da cui, ricordando che z(x) = xw(x) e che y'(x) = z(x),

$$y(x) = \int z(x) dx = \int x w(x) dx = \int x e^{1+c_1 x} dx =$$

$$= \frac{x}{c_1} e^{1+c_1 x} - \frac{1}{c_1} \int e^{1+c_1 x} dx = \left(\frac{x}{c_1} - \frac{1}{c_1^2}\right) e^{1+c_1 x} + c_2.$$

A tali soluzioni va aggiunta quella corrispondente a w = e, cioè (z=xw) z=ex, cioè ancora (y'=z) $y(x)=(e/2)x^2+c$

- 6.8 Determinare le soluzioni delle equazioni lineari
 - (a) $y'' + y' = e^{-x} \cos x$
 - (b) xy'' = 2y' + x + 1
 - (c) $xy^{11} = 3y^{1} + x^{4}e^{x}$
 - (d) y'' + y'tgx + senx cosx = 0
 - [(a) Con la sostituzione z(x) = y'(x) si ottiene l'equazione differenzia le lineare del primo ordine $z' + z = e^{-x}\cos x$, che ha per soluzioni

$$z(x) = e^{-x}(senx + c_1).$$

Calcoliamo per parti l'integrale indefinito:

$$\int e^{-x} \operatorname{senx} dx = -e^{-x} \operatorname{senx} + \int e^{-x} \operatorname{cosx} dx$$

$$= -e^{-x} \operatorname{senx} - e^{-x} \operatorname{cosx} - \int e^{-x} \operatorname{senx} dx,$$

$$\operatorname{da cui} \int e^{-x} \operatorname{senx} dx = -e^{-x} (\operatorname{senx} + \operatorname{cosx})/2.$$

Perciò le soluzioni sono espresse da

$$y(x) = \int e^{-x} (\sin x + c_1) dx = -e^{-x} (\frac{\sin x + \cos x}{2} + c_1) + c_2$$

(b)
$$y(x) = c_1 x^3 - (x^2 + x)/2 + c_2$$
.

(c)
$$y(x) = c_1 x^4 + e^{x}(x^3 - 3x^2 + 6x - 6) + c_2$$
.

- (d) $y(x) = (x + senx cosx)/2 + c_1 senx + c_2$
- 6.9 Risolvere le equazioni differenziali lineari

(a)
$$y'' - \frac{4}{x} y' = x^4$$

(b)
$$y'' - \frac{1}{x} y' = 1 - \frac{1}{x}$$

(c)
$$y'' + \frac{2}{x^2-1} y' = 0$$

[(a)
$$y(x) = x^6/6 + c_1 x^5 + c_2$$
; (b) $y(x) = x +$

+
$$(x^2/2) \log (c_1 x) - (x^2/4) + c_2$$
; (c) $y(x)=c_1(x+2 \log |x-1| + c_2)$

6.10 Determinare le soluzioni dell'equazione differenziale

$$y^{11} + (y^{1} - x)^{2} = 0$$

[Con la sostituzione y'(x) = z(x) si perviene a $z'+(z-x)^2=0$, che è un'equazione del tipo z'=g(ax+bz) (si veda il paragrafo 5D) che si risolve con la sostituzione w(x) = z(x) - x. Essendo w' = z' - 1, si ha $w' + 1 + w^2 = 0$, da cui, separando le variabili

$$\operatorname{arctg} w = \int \frac{dw}{1+w^2} = -\int dx = -(x+e_1).$$

Perciò w=tg $[-(x+c_1)]$ =-tg(x+c_1),cioè y'(x)=z(x)=x+w(x)=x-tg(x+c_1). Infine

$$y(x) = \int z(x)dx = \frac{x^2}{2} + \log \left[\cos (x + c_1) + c_2\right]$$

6.11 Determinare tutte le soluzioni dell' equazione differenziale

$$xy'' + y' + (xy')^2 = 0$$

[Con la sostituzione z(x) = y'(x) si perviene ad un'equazione di Bernoulli che ammette le soluzioni $z(x) = 1/(x^2 + c_1 x)$, oltre alla funzione costante z(x) = 0. Quindi, oltre a y(x) = c, l'equazione data ammet te le soluzioni

$$y(x) = \int \frac{dx}{x^2 + c_1 x} = \int \frac{1}{c_1} \left(\frac{1}{x} - \frac{1}{x + c_1} \right) dx =$$

$$= \frac{1}{c_1} \log \left[\frac{x}{x + c_1} \right] + c_2$$

se $c_1 \neq 0$; altrimenti, per $c_1 = 0$, si ottengono le ulteriori soluzioni y(x) = -(1/x) + c

- 6.12 Risolvere le equazioni differenziali
 - (a) $(1-y'')^2 + y' = x$

(b)
$$xy'' - y' + e^{2y''} = 0$$

[(a)
$$y(x) = \frac{x^2}{2} - \frac{1}{12} (x-c_1)^3 + c_2$$
; $y(x) = \frac{x^2}{2}$.

(b)
$$y(x) = \frac{c_1}{2} x^2 + xe^{2c_1} + c_2$$
; $y(x) = \frac{x^2}{4} \log \left(\frac{-x}{2}\right) - \frac{3}{8} x^2 + c$

6.13 Determinare la soluzione del problema di Cauchy

$$\begin{cases} 2y''y'' = (y')^2 - x \\ y(0) = y'(0) = 1 \end{cases}$$

[Con la sostituzione z(x) = y'(x) si giunge all'equazione del primo ordine del tipo di Bernoulli $2zz' = z^2 - x$, che ha come soluzioni $z(x) = \pm \sqrt{c_1} e^{X} + 1 + x$. Dalla condizione iniziale z(0) = y'(0) = 1 si deduce che $c_1 = 0$ e che $z(x) = + \sqrt{1 + x}$. Integrando z(x) si trova $y(x) = c_2 + (2/3)(1 + x)^3$; imponendo la condizione iniziale y(0) = 1 si determina $c_2 = 1/3$. Perciò la soluzione del problema di Cauchy (per x > -1) è $y(x) = \left[1 + 2(1 + x)^{3/2}\right]/3$

file Risolvere i problemi di Cauchy

$$\begin{cases} y'' + (y')^3 = 0 \\ y(2) = 2; y'(2) = 1/2 \end{cases}$$

$$\begin{cases} xy'' + y' = 1 \\ y(1) = 1; y'(1) = 0 \end{cases}$$

$$\begin{cases} (1+x^2) \ y'' + 1 + (y')^2 = 0 \\ y(1) = 1/2; \ y'(1) = -1 \end{cases}$$

: =/
$$y(x) = \sqrt{2x}$$
; (b) $y(x) = x - \log x$; (c) $y(x)=1-(x^2/2)$

Set leterminare, per ogni beR e per ogni $(y_0,y_0^*) \in \mathbb{R}^2$, la soluzione del problema di Cauchy

$$\begin{cases} y''\cos x - y'\sin x + b \cos x = 0 \\ y(0) = y_o; \quad y'(0) = y_o' \end{cases}$$

Con la sostituzione $z(x) = y^*(x)$ si giunge all'equazione lineare del primo ordine $z^* = z$ tgx - b, le cui soluzioni sono espresse da $z(x) = (c_1/\cos x)$ - b tgx. In base alla condizione iniziale $z(0)=y^*(0)=y^*_0$ risulta $c_1=y'_0$; quindi

$$y(x) = \int z(x)dx = y_0^1 \int \frac{dx}{\cos x} - b \int tgx dx$$
$$= c_1 + y_0^1 \log \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + b \log \left| \cos x \right|$$

(per il calcolo delle primitive di l/cosx si vedano gli esercizi 4.21, 4.22 del 1° volume, parte seconda). Infine, imponendo la condizione $y(0) = y_0$ si trova $c_1 = y_0$

6.16 La legge del moto (s = s(t), spazio in funzione del tempo) relativa ad un punto materiale soggetto all'accelerazione di gravità che, partendo da una posizione di equilibrio per t=0, cade at traverso un mezzo resistente, soddisfa il problema di Cauchy

$$\begin{cases} s'' = g - ks' \\ s(0) = 0; \quad s'(0) = 0 \end{cases}$$

dove g è l'accelerazione di gravità e k(> 0)una costante di attrito (che è inversamente proporzionale alla massa del corpo). Determinare la velocità asintotica (circa uguale alla velocità che ha il corpo al momento di toccare il terreno, se cade da una grande altezza), cioè il limite per $t \rightarrow +\infty$ di v(t) = s'(t).

[L'equazione differenziale (lineare) non dipende esplicitamente da s. Con la sostituzione v(t) = s'(t) otteniamo il problema di Cauchy

$$v' = g - kv ; v(0) = G.$$

Si può determinare il limite per $t\to +\infty$ di v(t) con il metodo (di integrazione grafica) proposto nel paragrafo 5L. A tale scopo si osservi preliminarmente che v'(t)>0 nella zona g-kv>0, cioè per v<g/k. Es sende v(0)=0, risulta v(t)<g/k per ogni $t\geq 0$ (infatti, per il teorema di unicità, v(t) non può assumere il valore g/k, essendo tale valore costante soluzione, al pari di v(t), dell'equazione differenziatle). Indicando con $\ell\in (0,g/k]$ il limite per $t\to +\infty$ di v(t), dato che $v'(t)\to 0$, dall'equazione differenziale si ottiene 0=g-k ℓ , cicè $\ell=g/k$. Perciò la velocità asintotica per $t\to +\infty$ ℓ g/k.

Osserviamo che è semplice risolvere il problema di Cauchy e che si trova

$$v(t) = \frac{g}{k} (1 - e^{-kt})$$
;

$$s(t) = \frac{g}{k} \left[t + \frac{1}{k} \left(e^{-kt} - 1 \right) \right].$$

Il modello proposto descrive, ad esempio, il moto di una goccia di pioggia che si origina ne'l'atmosfera, diciamo a 1000 metri di altezza e che cade verso il suolo. La sua accelerazione s" è il risultato della somma algebrica dell'accelerazione di gravità g e dell'accelerazione, contraria al moto, dovuta all'attrito con l'aria e proporzionale alla velocità s'. Con tale modello la velocità asintotica per t \rightarrow + ∞ risulta finita. Viceversa, se assumessimo come modello quello della ca duta libera nel vuoto (quindi senza attrito) avremmo il moto uniformemente accelerato (soluzione del problema di Cauchy s"=g; s(0)=s_ = Q; s'(0) = v_ = 0):

$$v(t) = v_n + gt = gt,$$

$$s(t) = s_0 + v_0 t + \frac{1}{2} g t^2 = \frac{1}{2} g t^2$$
;

in tal caso, se lo spazio percorso per raggiungere il suolo è di 1000 metri, il tempo impiegato sarebbe

$$t = \sqrt{\frac{2s}{g}} \cong \sqrt{\frac{2 \cdot 1000}{9.8}} \cong 14.2 \text{ secondi}$$

e la velocità corrispondente

$$v = gt \approx 9.8.14.2 = 139.16 \text{ m/sec}$$

La velocità di 139 metri al secondo è circa uguale 211a velocità di 500 km all'ora (si moltiplica per 3600 (secondi) e si divide per 1000 (metri)). Se una goccia d'acqua arrivasse al suolo a tale velocità avrebbe un effetto devastante. Invece, nella realtà, ciò non avviene ; significa che il modello matematico descritto all'inizio è più realistico del modello (di caduta nel vuoto) del moto uniformemente accelerato]

60. Equazioni della forma g(y,y',y'')=0

Nel caso in cui un'equazione differenziale del secondo ordine non dipenda esplicitamente dalla variabile indipendente x, cioè sia del tipo

$$g(y,y',y'') = 0$$
,

allora è opportuno, come nel paragrafo precedente, \underline{e} seguire la sostituzione $z=y^{\dagger}$, considerando però, in questo caso, y come variabile indipendente.

Cioè, più precisamente, si pone $z(y) = y^{\dagger} e ri$ sulta

$$y'' = \frac{dy'}{dx} = \frac{dz(y)}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = z'y' = z'z.$$

Si ottiene quindi un'equazione differenziale del primo ordine nella forma g(y,z,z'z) = 0 che, se possibile, si risolve con uno dei metodi indicati nei capitoli 4 e 5, pervenendo ad un insieme di funzioni del la forma $z=z(y,c_1)$, con c_1 costante arbitraria. Ricordando che z=y', si ottiene la nuova equazione differenziale del primo ordine (con c_1 parametro)

$$y' = z(y,c_1)$$

che, non dipendendo esplicitamente da x, è a variab \underline{i} li separabili.

6.17 Risolvere l'equazione $y'' + (y')^2 = 0$.

[Si tratta di un'equazione differenziale del secondo ordine mancante del la x (oltre che della y). Con la sostituzione z(y) = y', essendo y'' = z'z, si ottiene l'equazione del primo ordine

$$z^{\dagger}z + z^2 = 0,$$

cioè $z(z^{+}+z)$ = 0. Si presentano due possibilità: o z=0 (e quindi y =0

da cui y = costante), oppure z' + z = 0, da cui z(y) = c₁ e $^{-y}$. Ricordando che y'=z, abbiamo l'equazione differenziale del primo ordine in y:

che, risolta con il metodo della separazione delle variabili, forni - sce le soluzioni

$$e^{y} = \int e^{y} dy = \int c_{1} dx = c_{1} x + c_{2}$$
.

Tutte le soluzioni sono quindi espresse da $y(x) = \log (c_1x + c_2)$. In particolare le soluzioni costanti si ottengono per $c_1 = 0$. Si confronti il metodo qui proposto con quello dell'esercizio 6.2 (b)

6.18 Risolvere le equazioni del secondo ordine

(a)
$$2yy'' = 1 + (y')^2$$

(b)
$$2yy'' = (y')^2$$

(c)
$$yy'' = (y')^2$$

(d)
$$yy'' + (y')^2 = 0$$

[(a) Poniamo $z(y) = y^1$, da cui $y'' = zz^1$. Si ottiene l'equazione del primo ordine $2yzz^1 = 1 + z^2$. Separando le variabili abbiamo (si noti che $y \equiv 0$ non è soluzione):

$$\log (1+z^2) = \int \frac{2z \, dz}{1+z^2} = \int \frac{dy}{y} = \log c_1 y$$
,

cioè 1 + $z^2 = c_1 y$, cioè ancora $z = \pm \sqrt{c_1 y^{-1}}$.

Ricordando che y' = z, risolviamo le equazioni y'= $\pm \sqrt{c_1 y-1}$ separando le variabili

$$\frac{2}{c_1} \sqrt{c_1 y-1} = \int \frac{dy}{\sqrt{c_1 y-1}} = \pm \int dx = \pm (x + c_2).$$

In forma cartesiana si ha infine

$$y(x) = \frac{c_1}{4} (x + c_2)^2 + \frac{1}{c_1}$$

(b)
$$y(x) = c_1 (x + c_2)^2$$
; $y(x) = c$.

(c)
$$y(x) = c_2 e^{c_1 x}$$
, (d) $y(x) = \pm \sqrt{c_1 x + c_2}$

6.19 Determinare, per ogni valore dei parametri reali a,b, tutte le soluzioni dell'equazione diffe renziale

$$y'' - \frac{b}{y-a} (y')^2 = 0$$

[Poniamo z(y) = y', da cui y'' = zz'. L'equazione diviene

$$z\left(z^1 - \frac{b}{y-a}z\right) = 0$$
.

In corrispondenza a z=0 otteniamo le soluzioni costanti. Altrimenti la equazione z' - bz/(y-a) = 0 si risolve separando le variabili

$$\log |z| = \int \frac{dz}{z} = \int \frac{b dy}{y + a} = \log (c_1 |y-a|^b)$$

da cui, pur di cambiare il segno di c_1 , $z(y) = c_1 | y-a | ^b$. Essendo y' = z(y), risolviamo l'equazione differenziale $y' = c_1 (y-a)^b$ (limitandoci al caso y > a e supponendo $b \ne 1$) separando le variabili

$$\frac{(y-a)^{1-b}}{1-b} = \int \frac{dy}{(y-a)^b} = \int c_1 dx = c_1 x + c_2.$$

Conglobando il fattore 1-b nelle costanti $\mathbf{c_1}$, $\mathbf{c_2}$, otteniamo la rap - presentazione

$$y(x) = a + (c_1 x + c_2)^{1/(1-b)}$$
.

Se invece b=1 risulta $y(x) = a + e^{c_1x + c_2}$

- 6.20 Risolvere le equazioni differenziali del secondo ordine
 - (a) $yy'' + (y')^2 (y')^3 = 0$
 - (b) $yy^{11} (y^{1})^{2} (y^{1})^{3} = 0$
 - (c) $yy''' (y')^2 + (y')^3 = 0$
 - (d) $yy''' (y')^2 y^2y' = 0$
 - (e) $yy'' + (y')^2 + y(y')^3 = 0$
 - [(a) y = c; $c_1 y^2 + y = x + c_2$.
 - (b) y = c; $y-(1/c_1) \log c_1 y = c_2 x$.
 - (c) y = c; $y^{-(1/c_1)} \log c_1 y = x^{-c_2}$.
 - (d) $y = c_1 e^{(x+c_2)/c_1} / [1-e^{(x+c_2)/c_1}]; y(x) = -1/(x+c).$
 - (e) y=c; $c_1 y^2 + (y^2/2) \log y = x + c_2$
- 6.21 Risolvere l'equazione differenziale

$$\frac{y''}{(y')^2} = \frac{y^2-1}{y(1+y^2)}$$

[L'incognita z(y) = y' soddisfa l'equazione differenziale del primo ordine

$$\frac{z'}{z} = \frac{y^2 - 1}{y(1+y^2)}$$

che si risolve separando le variabili

$$\log |z| = \int \left(\frac{2y}{1+y^2} - \frac{1}{y}\right) dy = \log \left(c_1 \frac{1+y^2}{y}\right)$$
,

da cui, pur di cambiare il segno di c_1 , $z=c_1 \left(1+y^2\right)/y$. Ricordando che y'=z, separando di nuovo le variabili, otteniamo

$$\log (1+y^2) = \int \frac{2y}{1+y^2} dy = \int 2c_1 dx = 2c_1 x + c_2,$$

$$\det \operatorname{cui} y(x) = \pm \left(e^{2c_1 x + c_2} - 1 \right)^{1/2} \right]$$

6.22 Risolvere il problema di Cauchy

$$\begin{cases} y'' + 2 \text{ seny } \cos^3 y = 0 \\ y(1) = 0; \quad y'(1) = 1 \end{cases}$$

[Con la sostituzione z(y) = y' (y'' = zz') otteniamo zz' + 2 seny $\cos^3 y = 0$, da cui, separando le variabili,

$$\frac{z^2}{2} = \int z dz = \int -2 \text{ seny cos } ^3y dy = \frac{1}{2} (\cos^4 y + c_1)$$
.

Quindi $z^2 = c_1 + \cos^4 y$. Nel determinare la costante c_1 è opportuno \underline{n} cordare che z è funzione di y; più esplicitamente, z=z(y(x)). Per x=1 risulta y=0 e y' = z = 1. Perciò, sostituendo i valori y=0 e z=1 otteniamo $1^2 = c_1 + 1^4$, da cui $c_1 = 0$. Quindi $z^2 = \cos^4 y$, cioè $z=\pm\cos^2 y$ Affinchè risulti z=1 per y=0 occorre scegliere il segno positivo; perciò $z=\cos^2 y$.

Essendo y' = z, si perviene all'equazione differenziale $y'=\cos^2 y$, che ha come soluzioni

$$tg y = \int \frac{dy}{\cos^2 y} = \int dx = x + c_2.$$

Ricordando che y = 0 per x = 1, si ottiene tg 0 = 1 + c_2 , da cui c_2 = = -1. In definitiva, la soluzione del problema di Cauchy è y(x) = arctg (x-1) $\frac{1}{2}$

6.23 Risolvere i problemi di Cauchy

(a)
$$\begin{cases} y'' + \text{seny cosy} = 0 \\ y(1) = 0; y'(1) = -1 \end{cases}$$

(b)
$$\begin{cases} y''\cos y + (y')^2 \sin y = y' \\ y(0) = -\pi/6; y'(0) = -1/2 \end{cases}$$

[(a)
$$y(x) = 2 \operatorname{arctg} \frac{e^{1-x}}{e^{1-x}+1} = -\frac{\pi}{2} + 2 \operatorname{arctg} e^{1-x}$$

(vale l'identità perché le due funzioni sono uguali per x=1 ed hanno le derivate identicamente uguali fra loro).

(b)
$$y(x) = 2 \arctan (-e^{x} tg(\pi/12))$$

6.24 Risolvere i problemi di Cauchy

(a)
$$\begin{cases} y'' = 3y^5 \\ y(2) = -1; y'(2) = -1 \end{cases}$$

(b)
$$\begin{cases} y'' = y^5 + 1 \\ y(2) = -1; \ y'(2) = 0 \end{cases}$$

[(a) $y(x) = -1/\sqrt{5-2x}$; (b) la soluzione è immediatal E' la funzione costante y=...]

6.25 Risolvere il problema di Cauchy

$$\begin{cases} (1+y^2) & y'' = y(y')^2 \\ y(4) = 0; & y'(4) = 1 \end{cases}$$

[Con la sostituzione z(y)=y', essendo y''=zz', l'equazione differenziale si trasforma in $(1+y^2)zz'=yz^2$. In corrispondenza a z=0 si hanno le funzioni y= costante, che però non verificano la condizione iniziale y'(4)=1 e quindi non sono soluzioni del problema di Cauchy. Per $z\neq 0$ otteniamo $(1+y^2)z'=yz$ cioè, separando le variabili

$$\log |z| = \int \frac{dz}{z} = \int \frac{y}{1+y^2} dy = \frac{1}{2} \log (1+y^2) + c_1$$
.

Per x=4 risulta y=0 e y'=z=1; ponendo y=0 e z=1 si determina c₁ = 0 . Perciò $|z| = \sqrt{1+y^2}$ ed ancora, essendo z=y'= 1>0 in corrispondenza di x=4, abbiamo z = $\sqrt{1+y^2}$. Per separazione delle variabili si ha (z = y' = dy/dx)

$$\int \frac{\mathrm{d}y}{\sqrt{1+y^2}} = \int \mathrm{d}x = x + c_2.$$

L'integrale a primo membro si calcola per sostituzione, ponendo t = y+ + $\sqrt{1+y^2}$ (si veda l'esercizio 4.119 del 1° volume, parte seconda). Una primitiva di $1/\sqrt{1+y^2}$ è log $\left|y+\sqrt{1+y^2}\right|$. L'equazione în forma implicita che definisce y(x) è quindi log $\left|y+\sqrt{1+y^2}\right|$ = $x+c_2$. In base alla condizione iniziale y(4)=0 si ottiene c_2 =-4 e $\log(y+\sqrt{1+y^2})$ = x-4, dato che l'argomento del logaritmo è positivo in un intorno di y=0. Con semplici calcoli si ricava y(x):

$$\sqrt{1+y^2} = e^{x-4} - y \implies 2y e^{x-4} = (e^{x-4})^2 - 1$$

ed infine $y(x)=(e^{x-4}-e^{-(x-4)})/2 = \sinh(x-4)$. Si arriva al risultato $f\underline{i}$ nale più rapidamente ricordando che una primitiva della funzione $y \rightarrow 1/\sqrt{1+y^2}$ è il settore seno iperbolico di y

6.26 Si consideri il problema di Cauchy

$$\begin{cases} y'' = \sqrt{|y|} \\ y(0) = 0; \quad y'(0) = 0 \end{cases}$$

- (a) Verificare che il problema ha più di una so luzione.
- (b) Spiegare perchè non vale il teorema di Cauchy di (esistenza e) unicità.
- [(a) Si vede subito che la funzione y(x)=0 per ogni $x \in \mathbb{R}$ è una soluzione. Con il metodo basato sulla sostituzione z(y)=y' si trova, ad esem-

pio, anche la soluzione $y(x) = x^4/144$. (b) L'equazione differenziale è nella forma normale $y^{\text{tr}} = f(y)$, con f funzione continua, ma non di clas se C^1 (e nemmeno Lipschitziana). Perciò non sono soddisfatte le ipotesi del teorema di Cauchy

6.27 Sia y=y(x) una funzione derivabile due volte in un intervallo di R. La curvatura del grafico di y(x) nel punto x è data del rapporto

$$\frac{y''}{[1+(y')^2]^{3/2}}$$

Determinare le funzioni y(x) il cui grafico ha curvatura costante, uguale a k.

[Si deve risolvere l'equazione differenziale del secondo ordine

$$\frac{y''}{[1+(y')^2]^{3/2}} = k .$$

Se k = 0 risulta yⁿ⁼⁰, da cui y(x) = $c_1 x + c_2$; perciò, secondo la de finizione data, le rette (e soltanto le rette) hanno curvatura identicamente uguale a zero.

Se k#6, posto z(y) = y' ed essendo y''=zz' si ottiene $zz'/[1+z^2]^{3/2}$ = k, da cui, separando le variabili

$$-[1+z^2]^{-1/2} = \int \frac{zdz}{[1+z^2]^{3/2}} = k \int dy = k(y+c_1)$$

ed elevando entrambi i membri al quadrato (tenendo presente che k(y + c $_1$) < 0)

$$\frac{1}{1+z^2} = k^2 (y+c_1)^2 \implies z^2 = \frac{1-k^2 (y+c_1)^2}{k^2 (y+c_1)^2}$$

Ricordando che z = y' abbiamo

$$\pm \frac{1}{k} \sqrt{1-k^2 (y+c_1)^2} = \tilde{+} \int \frac{k(y+c_1)}{\sqrt{1-k^2 (y+c_1)^2}} dy = x+c_2.$$

Risulta infine $1-k^2$ $(y+c_1)^2=k^2$ $(x+c_2)^2$, cioè anche $(x+c_2)^2+(y+c_1)^2=1/k^2$. Si tratta della famiglia di circonferenze di raggio 1/|k| e centro in un generico punto di coordinate $(-c_2, -c_1)$. Notiamo che, anche in generale, la quantità

$$\left(\begin{array}{c|c} 1 \\ \hline |k| \end{array}\right) = \frac{\left[\begin{array}{cc} 1+(y^{\dagger})^2 \end{array}\right]^{3/2}}{\left[\begin{array}{cc} y^{\dagger} \end{array}\right]}$$

è chiamata raggio di curvatura.

Relativamente alla nostra equazione differenziale, ricordando che deve essere $k(y+c_1) < 0$, otteniamo per $k \neq 0$ le soluzioni (si vedano le figure 6.1, 6.2):

$$y(x)=-c_1 - \sqrt{1/k^2 - (x+c_2)^2}$$
 (se k > 0)

$$y(x)=-c_1 + \sqrt{1/k^2 - (x+c_2)^2}$$
 (se k < 0)

figura 6,1

figura 6.2

6.28 Trovare le curve piane il cui raggio di curvatura

$$r = [1 + (y^{\dagger})^{2}]^{3/2}/|y^{\prime\prime}|$$

è uguale alla lunghezza del segmento di normale compreso tra la curva e l'asse delle ascisse.

[Il segmento di normale compreso tra la curva e l'asse delle ascisse è rappresentato in figura 5.4. La sua lunghezza vale (si veda l'esercizio 5.21) $\sqrt{(yy')^2 + y^2}$. Occorre perciò risolvere l'equazione differenziale

$$[1+(y')^2]^{3/2}/[y''] = \sqrt{(yy')^2 + y^2}$$
.

Posto z(y)=y' risulta y''=zz', da cui, elevando al quadrato e semplificando, si ottiene

$$\frac{zz^1}{1+z^2} = \pm \frac{1}{y} .$$

Consideriamo separatamente il segno + ed il segno -. Nel primo caso abbiamo

$$\frac{1}{2} \log(1+z^2) = \begin{cases} \frac{zdz}{1+z^2} = \int \frac{1}{y} dy = \log(c_1 y) \end{cases}$$

con $c_1 \neq 0$, da cui $1+z^2 = c_1^2 y^2$ ed ancora $z = \pm \sqrt{c_1^2 y^2 - 1}$. Ricordando che z=y'=dy/dx, abiamo

$$\int \frac{dy}{\sqrt{c_1^2 y^2 - 1}} = \pm \int dx = \pm (x + c_2).$$

L'integrale a primo membro si risolve tramite la funzione inversa del coseno iperbolico; oppure, ad esempio, con la sostituzione $\sqrt{c_1^2 y^2} - 1 = t - c_1 y$ (si veda il paragrafo 4G del 1° volume, parte seconda), per cui, elevando al quadrato, si ha $y=(t+1/t)/(2c_1)$, da cui

$$dy = \frac{1}{2c_1} \left(1 - \frac{1}{t^2}\right)$$
, $t-c_1 y = \frac{1}{2} \left(t - \frac{1}{t}\right)$.

Perciò l'integrale diviene

$$\int \frac{dy}{\sqrt{c_1^2 y^2 - 1}} = \frac{1}{c_1} \int \frac{dt}{t} = \frac{1}{c_1} \log \left| c_1 y + \sqrt{c_1^2 y^2 - 1} \right| + c.$$

Dalla relazione implicita $\frac{1}{c_1}$ log $\left| c_1 y + \sqrt{c_1^2 y^2 - 1} \right| = f(x+c_2)$ si ricava la y:

$$y(x) = \frac{1}{2c_1} \left[e^{\frac{1}{2}c_1(x+c_2)} + e^{\frac{7}{4}c_1(x+c_2)} \right] = \frac{1}{c_1} \cosh(c_1x+c_1c_2)$$

(si noti che cosh(t) = cosh(-t). Nel caso del segno - abbiamo $\log \sqrt{1+z^2}$ = - log (c₁ y) (c₁ ≠ 0), da cui $\sqrt{1+z^2}$ = 1/(c₁ y) ed ancora z = $\pm \sqrt{(1-c_1^2 y^2)/(c_1^2 y^2)}$. Ponendo z=y'=dy/dx e separando le variabili otteniamo

$$-\frac{1}{c_1} - \sqrt{1-c_1^2 y^2} = \int \frac{c_1 y \, dy}{\sqrt{1-c_1^2 y^2}} = \pm \int dx = \pm (x+c_2).$$

Si tratta della famiglia di circonferenze di equazione y 2 +(x+c $_2$) 2 = = 1/c $_1^2$]

6D. Equazioni di ordine superiore al secondo

Per risolvere un'equazione differenziale di ordine superiore al secondo, ammesso che sia possibile per via analitica, può essere utile sostituire la funzione incognita y(x) con una sua derivata (z=y', on pure z=y", oppure...) in modo da abbassare l'ordine dell'equazione; però è necessario che l'equazione differenziale non dipenda esplicitamente da x, oppure da y, oppure da y, oppure da... Vediamo alcuni essempi.

- 6.29 Risolvere, per x > 0, le equazioni differenziali del terzo ordine
 - (a) $y''' = 2 \frac{y''}{x} \sqrt{\frac{y''}{x}}$
 - (b) $y^{(i)} = 2 \frac{y^{(i)}}{x} + 2x \sqrt{y^{(i)}}$
 - (c) $y''' = \frac{1-y''}{x}$
 - [(a) Dato che nell'equazione differenziale non compaiono esplicitamente $y \in y'$, è opportuno porre z(x) = y''(x). Essendo z' = y''', otteniamo, l'equazione del primo ordine in z:

$$z' = 2\frac{z}{x} - \sqrt{\frac{z}{x}} ,$$

che è del tipo di Bernoulli (ed anche del tipo z' = g(z/x), con g(t) = 2t - \sqrt{t}). In base al metodo di Bernoulli (paragrafo 5B), dividiamo entrambi i membri dell'equazione differenziale per \sqrt{z} (nel caso in cui z(x) > 0; notiamo anche che z \equiv 0 è una soluzione ed in corrispondenza (y"=z=0) y(x) = c₁x + c₂ è soluzione dell'equazione del terzo ordine) e poniamo w = \sqrt{z} . Essendo w' = z'/(2 \sqrt{z}), otteniamo l'equazione differenziale lineare

$$w' = \frac{1}{x} w - \frac{1}{2\sqrt{x}}.$$

Una primitiva di a(x) = 1/x è, per x > 0, $A(x) = \log x$. Perciò, per x > 0:

$$w(x)=e^{A(x)}\int e^{-A(x)}\left(-\frac{1}{2\sqrt{x}}\right) dx =$$

$$= x \int -\frac{1}{2} x^{-3/2} dx = x (x^{-1/2} + c_1).$$

Ne risulta $z=w^2=(\sqrt{x}+c_1x)^2=x+2c_1x^{3/2}+c_1^2x^2$. Ricordando che y"(x)=z(x), integrando due volte, otteniamo infine

$$y'(x) = \int z(x)dx = \frac{x^2}{2} + \frac{4}{5}c_1x^{5/2} + \frac{1}{3}c_1^2x^3 + c_2$$
;

$$y(x) = \int y'(x)dx = \frac{x^3}{6} + \frac{8}{35} c_1 x^{7/2} + \frac{1}{12} c_1^2 x^4 + c_2 x + c_3$$

(b)
$$y(x) = \frac{1}{30} x^5 + \frac{1}{10} c_1 x^5 + \frac{1}{12} c_1^2 x^4 + c_2 x + c_3$$
, oltre a $y(x) = c_1 x + c_2$.

(c)
$$y(x) = \frac{x^2}{2} + c_1 x (1-\log x) + c_2 x + c_3$$

- 6.30 Risolvere le equazioni differenziali del terzo ordine
 - (a) $y'y''' (y'')^2 = 0$
 - (b) $y'y''' + (y'')^2 = 0$
 - [(a) Nell'equazione differenziale non compare esplicitamente la y (ol tre che la x); è perciò opportuno porre $z(x)=y^{*}(x)$; essendo $z^{*}=y^{*}$, $z^{*}=-y^{*}$, otteniamo l'equazione del secondo ordine

$$zz^{11} - (z^{1})^{2} = 0$$

che è del tipo g(z,z',z'')=0 (considerato nel paragrafo precedente) e che si risolve con la sostituzione w(z)=z'. Essendo

$$z'' = \frac{dz'}{dx} = \frac{dw(z)}{dx} = \frac{dw}{dx} \cdot \frac{dz}{dx} = w'z' = w'w,$$

otteniamo l'equazione di primo ordine nella variabile w:

$$zw'w - w^2 = 0$$

che si scompone in w \equiv 0 (cioè z'=0, cioè ancora z=c₁ e quindi y(x) = = c₁ x + c₂) ed in zw' - w = 0. Ricordando che w' = dw/dz, separando le variabili otteniamo

 $\log |w| = \int \frac{dw}{w} = \int \frac{dz}{z} = \log |c_1 z|,$

da cui, pur di cambiare il segno di c_1 , $w = c_1 z$, cioè $z' = c_1 z$. Si tratta di un'equazione lineare del primo ordine che ha per soluzioni

$$z(x) = c_2 e^{c_1 x}.$$

Infine, essendo y'(x) = z(x), abbiamo y(x) = $(c_2/c_1)e^{c_1x} + c_3$, se $c_1 \neq 0$, altrimenti y(x) = $c_2x + c_3$ (soluzioni che avevamo già trovatro in precedenza).

(b) Come in (a) si pone z(x)=y'(x) e w(z)=z'; si trovane le condizioni w=0 oppure zw'+w=0. In corrispondenza risulta $z(x)=c_1$ ($y(x)=c_1x+c_2$) oppure

$$\log \left| w \right| = \int \frac{dw}{w} = -\int \frac{dz}{z} = \log \left| \frac{c_1}{z} \right|,$$

da cui, pur di cambiare il segno di c_1 , $w=c_1/z$. Essendo $z^*=w=c_1/z$, separando le variabili si trova $z(x)=\pm\sqrt{c_1x+c_2}$ (pur di cambiare $2c_1$ con c_1). Infine

$$y(x) = \int z(x) dx = \pm \int \sqrt{c_1 x + c_2} dx = \frac{\pm 2}{3c_1} (c_1 x + c_2)^{3/2} + c_3$$

con $c_1 \neq 0$, oltre a $y(x) = c_1 x + c_2$

6.31 Risolvere il problema di Cauchy

$$\begin{cases} y''' = [(x-1)y'']^2 - y'' \\ y(0) = 3; \quad y'(0) = 2; \quad y''(0) = 1 \end{cases}$$

La funzione z(x) = y''(x) soddisfa l'equazione differenziale del primo ordine

$$z' = [(x-1)z]^2 - z$$
,

che è del tipo di Bernoulli; con la sostituzione w(x)=1/z(x) (si noti che $z \equiv 0$ non soddisfa la condizione iniziale $z(0) = y^{tr}(0) = 1$) si giunge all'equazione lineare del primo ordine

$$w' = w - (x-1)^2$$
,

che ammette l'integrale generale $w(x) = c_1 e^X + x^2 + 1$. La condizione iniziale z(0)=y''(0)=1 permette di determinare c_1 ; infatti, dato che w(0)=1/z(0)=1, è $c_1=0$. Perciò $z(x)=1/(x^2+1)$ e

$$y'(x) = \int z(x)dx = arctg x + c_2.$$

Dovendo essere y'(0) = 2, si trova $c_2 = 2$; infine, tenendo conto della condizione iniziale y(0) = 3, risulta

$$y(x) = 3 + 2x + x \arctan - \log \sqrt{1+x^2}$$

6.32 Determinare tutte le soluzioni dell'equazione differenziale del quarto ordine

$$x^2y^{(1)} + (y^{(1)})^2 = 0$$
.

[La funzione z(x) = y''' soddisfa l'equazione differenziale del primo or dine x^2 $z' + z^2 = 0$ che, risolta per separazione delle variabili, dà il risultato

$$z(x) \equiv 0$$
 e $z(x) = \frac{-x}{1+c_1x}$.

In corrispondenza a $z = y^{m} = 0$ si ha $y(x) = c_1 x^2 + c_2 x + c_3$. Nel caso particolare $z = -x/(1+c_1 x)$ con $c_1 = 0$ risulta $y^{m} = z = -x$, da cui

$$y(x) = -\frac{x^4}{24} + c_1 x^2 + c_2 x + c_3$$
.

Infine, se $z = -x/(1+c_1x)$ con $c_1 \neq 0$, abbiamo

$$y''(x) = \int z(x) dx = \int \frac{-x}{1 + c_1 x} dx = -\frac{x}{c_1} + \frac{1}{c_1^2} \log |1 + c_1 x| + c_2;$$

poi y(x) si ottiene integrando due volte $y^{tt}(x)$

6.33 Sia n \geq 1, f(x) una funzione continua in un intervallo I e sia $x_o \in I$. Vérificare che la soluzione del problema di Cauchy

$$\begin{cases} y^{(n)} = f(x) \\ y(x_o) = y_o^{(0)}; y^{\dagger}(x_o) = y_o^{(1)}; \dots; y^{(n-1)}(x_o) = y_o^{(n-1)}, \end{cases}$$

con $(y_o^{(0)}, y_o^{(1)}, \dots, y_o^{(n-1)}) \in \mathbb{R}^n$, può essere rappre sentata, per $x \in I$, nella forma

$$y(x) = \sum_{k=0}^{n-1} \frac{y_o^{(k)}}{k!} (x-x_o)^k + \int_{x_o}^x f(t) \frac{(x-t)^{n-1}}{(n-1)!} dt.$$

[In base at teorema di Cauchy (per le equazioni lineari) il problema ha una sola soluzione y(x) definita in I. La formula di Taylor, (valida per ogni funzione derivabile n volte con derivata n-sima continua) di y(x), di punto iniziale x_o e con il resto in forma integrale (si veda l'eser cizio 1.84(a)), fornisce la rappresentazione

$$y(x) = \sum_{k=0}^{n-1} \frac{y^{(k)}(x_o)}{k!} (x-x_o)^k + \int_{x_o}^x y^{(n)}(t) \frac{(x-t)^{n-1}}{(n-1)!} dt;$$

si noti che y(x) ha derivata n-sima continua, essendo y⁽ⁿ⁾(x)=f(x) per ogni x \in I. Tenendo anche presente che y^(k)(x_o) = y^(k)_o per ogni k = 0,1,...,n-1, y(x) si rappresenta come indicato nell'enunciato]

La parte seconda del 2° volume di esercizi contiene i seguenti capitoli:

- MASSIMI É MINIMI PER LE FUNZIONI DI PIÙ VARIABILI MISURA ED INTEGRAZIONE IN R° METODI DI CALCOLO PER GLI INTEGRALI MULTIPLI FUNZIONI IMPLICITE INTEGRALI SU CURVE E SUPERFICI FORME DIFFERENZIALI