In [1]:

#problem statement

#a real state agents want help to predict the house price for regions in the usa. #he gave you the dataset to work on and you decided to use the linear regression. #create a model that will help himto eliminate of what the house would sell her.

In [33]:

```
#import librariesimport numpy as np
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

df=pd.read_csv(r"C:\Users\Svijayalakshmi\Downloads\USA_Housing.csv")
df

Out[3]:

	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michae 674\nLau	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johr Suite Kath	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
912 Stravenue\nE \	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnet	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raym	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
USNS Willi AP 3	1.060194e+06	22837.361035	3.46	6.137356	7.830362	60567.944140	4995
PSC 8489\nAPO	1.482618e+06	25616.115489	4.02	6.576763	6.999135	78491.275435	4996
4215 Tra Suite 076\nJ	1.030730e+06	33266.145490	2.13	4.805081	7.250591	63390.686886	4997
USS Wallace	1.198657e+06	42625.620156	5.44	7.130144	5.534388	68001.331235	4998
37778 Geo Apt. 509\n	1.298950e+06	46501.283803	4.07	6.792336	5.992305	65510.581804	4999

5000 rows × 7 columns

In [4]:

df.head()

Out[4]:

Aı	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fe 674\nLaurabı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnsor Suite 079 Kathleer	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli Stravenue∖nDani WI 0	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nF	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymonc AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

In [5]:

df.describe()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [6]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [7]:

df.columns

Out[7]:

In [8]:

sns.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x14fd7da1190>

In [9]:

sns.displot(df['Price'])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x14fdb553010>

In [10]:

sns.displot(df['Area Population'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x14fdb7af7d0>

In [11]:

In [12]:

```
sns.heatmap(Housedf.corr())
```

Out[12]:

<Axes: >

In [13]:

In [14]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
```

```
In [15]:
```

```
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(x_train,y_train)
```

Out[15]:

```
LinearRegression
LinearRegression()
```

In [16]:

```
print(lm.intercept_)
```

-2641372.6673006266

In [17]:

```
coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
```

In [18]:

coeff_df

Out[18]:

coefficient

Avg. Area Income	21.617635
Avg. Area House Age	165221.119872
Avg. Area Number of Rooms	121405.376596
Avg. Area Number of Bedrooms	1318.718783
Area Population	15.225196

In [19]:

```
predictions=lm.predict(x_test)
```

In [20]:

plt.scatter(y_test,predictions)

Out[20]:

<matplotlib.collections.PathCollection at 0x14fe00dd690>

In [37]:

```
sns.displot((y_test,predictions),bins=50)
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.5579585557 MSE: 10169125565.89724 RMSE: 100842.08231634866

In []: