Logic and Set Theory

January 19, 2018

C	ONTENTS	2
C	Contents	
0	Miscellaneous	3
1	Propositional logic	4

3

0 Miscellaneous

Some introductory speech

1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, $P = \{p_1, p_2, \ldots\}.$

The language or set of propositions L = L(P) is defined inductively by:

- 1) $p \in L \ \forall p \in P$;
- 2) $\perp inL$, where \perp is read as 'false';
- 3) If $p, q \in L$, then $(p \implies q) \in L$. For example, $(p_1 \implies L)$, $((p_1 \implies p_2) \implies (p_1 \implies p_3))$.

Note that at this point, each proposition is only a finite string of symbols from the alphabet $(,), \Longrightarrow, \bot, p_1, p_2, ...$ and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set $L_1 = P \cup \{\bot\}$, and $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$, and then put $L = L_1 \cup L_2 \cup ...$

Each proposition is built up *uniquely* from 1) and 2) using 3). For example, $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$ came from $(p_1 \Longrightarrow p_2)$ and $(p_1 \Longrightarrow p_3)$. We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p(\text{not } p)$, as an abbreviation for $p \implies L$;
- $p \lor q$ (p or q, as an abbreviation for $(\neg p) \implies q$;
- $p \wedge q$ (p and q, as an abbreviation for $(p \implies (\neg q))$.