Problem Section 2

Diego Rodrigues

September 20, 2023

Definition Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

$$|f(x)| \le C|g(x)|$$
 whenever $x > k$

Also, C and k are referred as the witnesses of the Big-O notation, and are those possible non unique pair of constants that satisfy the definition above. This also applies to Ω and Θ notations.

Definition Big- Ω **Notation**

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$ if there are constants C and k such that

$$|f(x)| \ge C|g(x)|$$
 whenever $x > k$

Definition Big- Θ **Notation**

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Theta(g(x))$ if there are constants C_1, C_2 and k such that

$$C_1|g(x)| \le |f(x)| \le C_2|g(x)|$$
 whenever $x > k$

Problem 1

Describe the shaded area in terms of sets A, B, C.

Problem 2

For sets A, B, and C, is (A - B) - C - > A - (B - C)?

Problem 3

in a group of 30 children, 10 like apples, 10 like oranges, 10 like bananas and 6 like all three (nobody likes just two). How many children do not like any of the three fruits?

Apply inclusion-exclusion principle

Problem 4

Give examples of functions from integers to integers that (a) one-to-one but not onto, (b) onto but not one-to-one, (c) one-to-one and onto.

a)
$$f(x) = 2x$$
 b) $f(x) = |x/2|$ c) $f(x) = x$

Problem 5

If possible, give exaples of functions from A to A where A

Problem 6

Define "countable set"; show that $\frac{a}{2}, \frac{a}{4}, \dots$ where a is in 1, 2, 3, 4, 5, 6, 7, 8, 9 is countable.

Problem 7

Consider set of all strings over alphabet 0,1,2,...,9, prove or disprove claim that set is countable.