Haskell Cheat Sheet

This cheat sheet lays out the fundamental elements of the Haskell language: syntax, keywords and other elements. It is presented as both an executable Haskell file and a printable document. Load the source into your favorite interpreter to play with code samples shown.

Basic Syntax

Comments

A single line comment starts with '--' and extends to the end of the line. Multi-line comments start with '{-' and extend to '-}'. Comments can be nested.

Comments above function definitions should start with '{- | ' and those next to parameter types with '-- ^' for compatibility with Haddock, a system for documenting Haskell code.

Reserved Words

The following words are reserved in Haskell. It is a syntax error to give a variable or a function one of these names.

```
• case
• class
• data
deriving

    do

• else
```

- import
- of
- in • infix
- module • newtype
- infixl
- then • type
- infixr • instance
- where

- if
- let

Strings

- "abc" Unicode string, sugar for ['a','b','c'].
- 'a' Single character.

Multi-line Strings Normally, it is a syntax error if a string has any newline characters. That is, this is a syntax error:

```
string1 = "My long
string."
```

Backslashes ('\') can "escape" a newline:

```
string1 = "My long \
\string."
```

The area between the backslashes is ignored. Newlines in the string must be represented explicitly:

```
string2 = "My long \n\
\string."
```

That is, string1 evaluates to:

```
My long string.
```

While string2 evaluates to:

```
My long
string.
```

Escape Codes The following escape codes can be used in characters or strings:

- \n, \r, \f, etc. The standard codes for newline, carriage return, form feed, etc. are supported.
- \72, \x48, \o110 A character with the value 72 in decimal, hex and octal, respectively.

• \& - A "null" escape character which allows numeric escape codes next to numeric literals. For example, $\xspace \xspace \x$ while \x2C\&4 is ,4. This sequence cannot be used in character literals.

Numbers

- 1 Integer or floating point value.
- 1.0, 1e10 Floating point value.
- 001, 001 Octal value.
- 0x1, 0X1 Hexadecimal value.
- -1 Negative number; the minus sign ("-") cannot be separated from the number.

Enumerations

- [1..10] List of numbers 1, 2, ..., 10.
- [100..] Infinite list of numbers 100, 101, 102,
- [110..100] _ Empty list. but [110, 109 .. 100] will give a list from 110 to 100.
- [0, -1 ...] Negative integers.
- [-110..-100] Syntax error; need [-110.. -100] for negatives.
- [1,3..99], [-1,3..99] List from 1 to 99 by 2, -1 to 99 by 4.

In fact, any value which is in the Enum class can be used:

- ['a' .. 'z'] List of characters a, b, ..., Z.
- ['z', 'y' ... 'a'] z, y, x, ..., a.
- [1.0, 1.5 .. 2] [1.0,1.5,2.0].
- [UppercaseLetter ..] List GeneralCategory values (from Data.Char).