Barème.

- Calculs : chaque question sur 2 point, total sur 34 points, ramené sur 5.
- Problèmes et exercice de TD : chaque question sur 4 points (sauf le I de la V1 : 8 points), total sur 104 points (V1) ou 84 points (V2), ramené sur 15 points, +40% pour la V2.

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right)$$
.

	Calculs	Pb V1	Pb V2	Note finale
Transformation	c	p_1	p_2	$\varphi\left(\frac{5c}{30} + \frac{15p_1}{102} + 1, 4\frac{15p_2}{64}\right)$
Note maximale	32	87	77	20+
Note minimale	2	41	24	7,4
Moyenne	$\approx 14,59$	$\approx 62,67$	$\approx 43,79$	$\approx 11,78$
Écart-type	$\approx 5,86$	$\approx 13,02$	$\approx 13,52$	$\approx 2,64$
Premier quartile	11	54, 5	36,75	10
Médiane	14	60	42	11,6
Troisième quartile	18	72, 5	46	13, 5

Remarques générales.

- Toute question demande une réponse argumentée, même les plus simples. Pas d'argument, pas de points.
- Lorsque l'on vous demande d'établir plusieurs points dans une question, encadrez CHAQUE conclusion. Sinon, le correcteur risque de rater les réponses intermédiaires et de ne pas vous donner les points.
- Dans les deux versions, beaucoup oublient l'hypothèse de continuité d'une fonction positive non nulle pour justifier que son intégrale est strictement positive.
- Dans les deux versions, j'ai trouvé des erreurs dans l'établissement de la linéarité d'une application. Je vous rappelle que f(0) = 0 est une propriété et ne fait pas partie de la définition.

V1 - I - Un exercice non vu en TD.

Très proche d'un exercice fait en TD et d'un exercice donné en DM.

La difficulté est d'arriver à répondre rigoureusement mais de manière non technique (sans exhiber de bijection). Vous pouviez dire par exemple «prendre une partie $X \subset E$ tq. $A \subset X$ revient à prendre une partie $E \setminus A$ ».

V1 – II – Une suite d'intégrales.

Une remarque : φ_n n'est pas strictement positive sur [0, 1].

- 1) Quelques erreurs de calcul pour I_1 . Pourtant, on vous donnait la relation de récurrence, vous pouviez vérifier le résultat!
- 2) Vous revenez souvent à l'argument de positivité de l'intégrale (parfois sans le nommer), alors que l'argument de croissance s'applique directement.
- 4) Répondre «la suite (I_n) est décroissante et positive» n'a aucun intérêt (et me chagrine un peu).
- 5) La majoration de e-2x vous est explicitement demandée, il faut donc l'encadrer.
- 7) Vu que l'on vous dit d'intégrer par parties, vous devez expliciter les fonctions en jeu et justifier l'utilisation de la formule.
- **9)** Il convenait de détailler le calcul de la limite de nI_{n+1} .
- **10)** Peu ont vu que pour parler de LA valeur de a,b,c, il fallait établir une propriété d'unicité. Je n'ai pas pénalisé les rédactions du type «[...] donc $I_n = a + \frac{b}{n} + \frac{c}{n^2} + o\left(\frac{1}{n^2}\right)$ avec a = 0, b = 1 et c = -3».

V1 - III - Étude d'un endomorphisme.

- $\mathbf{2}$) Certains ont oublié d'exhiber une base de $\mathrm{Ker}(f)$. Une base est une famille de vecteurs, pas un ensemble de vecteurs.
- **3b)** Même si c'est très simple, il fallait donner un argument. Par exemple : «on vient de trouver un élément de $\mathbb{R}^3 \setminus \Im(f)$, donc [...]».
- 3d) C'est une question extrêmement élémentaire. Certains en tartinent une page!

V2 - I - Un exercice d'intégration.

Même si f est continue sur [a, b], $x \mapsto \mathbf{1}_{f(x) \geqslant 0}$ peut ne pas être en escalier! Considérez $x \mapsto x^2 \sin\left(\frac{1}{x}\right)$ sur [0, 1].

V2 - II - Un petit problème de dénombrement.

- 1) Il convenait de justifier les réponses données.
- 2) Il était délicat de répondre clairement et concisément à cette question. Vous deviez traduire l'idée d'une bijection pour dénombrer les surjections. Par exemple, vous pouviez fixer $a \in E$ et $b \in F$, puis compter les surjections de E sur F vérifiant f(a) = b. Répartissez-les entre celles pour lesquelle b n'a qu'un antécédent et les autres.
- 4) La démonstration par récurrence était la plus naturelle, sauf si vous connaissez l'existence de la formule d'inversion de Pascal...

V2 - III - Dualité en dimension finie.

- 1) J'appréciais quand vous expliquiez au moins une fois la simplification à l'œuvre dans les sommes du type $\sum_{i=1}^{n} x_i e_k^*(e_i)$.
- **3b)** Beaucoup n'ont pas vu qu'il fallait démontrer la linéarité de ev.
- 4) C'était sans doute la question la plus difficile du devoir. Il fallait construire la famille $\mathscr G$ et surtout montrer que cette famille est une base!
- **5b)** Beaucoup ont montré que $F^{\perp} \subset \text{Vect}(e_{p+1}, e_n)$, mais peu ont pensé à montré l'inclusion réciproque.
- **6a)** Certains ont pensé à utiliser la construction de base de la question **5b)**. C'était très bien. Toutefois, les bases de F, G sont rarement bien introduites. Comme $F \subset G$, il convenait de partir d'une base de F, de la compléter en une base de G, puis de compléter cette dernière en une base de E^* .

Et vu qu'il me reste un peu de place, une once de culture...

