	1	2	3	4	5	6
98						
99						
00						
01						
02						
03						
04						
05						
06						
07						
08						
09						
_10						
_11						
_12						
_13						
_14						
15						
16						
17						
18						

Dia I

Problema 1 Let a, b, c be positive real numbers such that $a + b + c = 4\sqrt[3]{abc}$. Prove that

$$2(ab + bc + ca) + 4\min(a^2, b^2, c^2) \ge a^2 + b^2 + c^2.$$

Problema 2 Find all functions $f:(0,\infty)\to(0,\infty)$ such that

$$f\left(x+\frac{1}{y}\right)+f\left(y+\frac{1}{z}\right)+f\left(z+\frac{1}{x}\right)=1$$

for all x, y, z > 0 with xyz = 1.

Problema 3 For a given integer $n \geq 2$, let $\{a_1, a_2, \ldots, a_m\}$ be the set of positive integers less than n that are relatively prime to n. Prove that if every prime that divides m also divides n, then $a_1^k + a_2^k + \cdots + a_m^k$ is divisible by m for every positive integer k.

Dia II

Problema 4 Let p be a prime, and let a_1, \ldots, a_p be integers. Show that there exists an integer k such that the numbers

$$a_1+k, a_2+2k, \ldots, a_p+pk$$

produce at least $\frac{1}{2}p$ distinct remainders upon division by p.

Problema 5 In convex cyclic quadrilateral ABCD, we know that lines AC and BD intersect at E, lines AB and CD intersect at E, and lines BC and DA intersect at E. Suppose that the circumcircle of $\triangle ABE$ intersects line CB at E and E, and the circumcircle of E intersects line E at E and E, where E and E and E and E intersects line E and E are collinear in that order. Prove that if lines E and E and E intersect at E, then E and E are collinear in that order.

Problema 6 Let a_n be the number of permutations (x_1, x_2, \ldots, x_n) of the numbers $(1, 2, \ldots, n)$ such that the n ratios $\frac{x_k}{k}$ for $1 \le k \le n$ are all distinct. Prove that a_n is odd for all $n \ge 1$.

Dia I

Problema 1 Prove that there are infinitely many distinct pairs (a, b) of relatively prime integers a > 1 and b > 1 such that $a^b + b^a$ is divisible by a + b.

Problema 2 Let m_1, m_2, \ldots, m_n be a collection of n positive integers, not necessarily distinct. For any sequence of integers $A = (a_1, \ldots, a_n)$ and any permutation $w = w_1, \ldots, w_n$ of m_1, \ldots, m_n , define an A-inversion of w to be a pair of entries w_i, w_j with i < j for which one of the following conditions holds:

- $a_i \geq w_i > w_i$
- $w_j > a_i \ge w_i$, or
- $w_i > w_j > a_i$.

Show that, for any two sequences of integers $A = (a_1, \ldots, a_n)$ and $B = (b_1, \ldots, b_n)$, and for any positive integer k, the number of permutations of m_1, \ldots, m_n having exactly k A-inversions is equal to the number of permutations of m_1, \ldots, m_n having exactly k B-inversions.

Problema 3 Let ABC be a scalene triangle with circumcircle Ω and incenter I. Ray AI meets \overline{BC} at D and meets Ω again at M; the circle with diameter \overline{DM} cuts Ω again at K. Lines MK and BC meet at S, and N is the midpoint of \overline{IS} . The circumcircles of ΔKID and ΔMAN intersect at points L_1 and L_2 . Prove that Ω passes through the midpoint of either $\overline{IL_1}$ or $\overline{IL_2}$.

Dia II

Problema 4 Let P_1, P_2, \ldots, P_{2n} be 2n distinct points on the unit circle $x^2 + y^2 = 1$, other than (1,0). Each point is colored either red or blue, with exactly n red points and n blue points. Let R_1, R_2, \ldots, R_n be any ordering of the red points. Let B_1 be the nearest blue point to R_1 traveling counterclockwise around the circle starting from R_1 . Then let B_2 be the nearest of the remaining blue points to R_2 travelling counterclockwise around the circle from R_2 , and so on, until we have labeled all of the blue points B_1, \ldots, B_n . Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point (1,0) is independent of the way we chose the ordering R_1, \ldots, R_n of the red points.

Problema 5 Let \mathbb{Z} denote the set of all integers. Find all real numbers c > 0 such that there exists a labeling of the lattice points $(x, y) \in \mathbb{Z}^2$ with positive integers for which:

- only finitely many distinct labels occur, and
- for each label i, the distance between any two points labeled i is at least c^i .

Problema 6 Find the minimum possible value of

$$\frac{a}{b^3+4} + \frac{b}{c^3+4} + \frac{c}{d^3+4} + \frac{d}{a^3+4}$$

given that a, b, c, d are nonnegative real numbers such that a + b + c + d = 4.

Dia I

Problema 1	Problema math/usa/mo/2016/1 não encontrado!
Problema 2	Problema math/usa/mo/2016/2 não encontrado!
Problema 3	Problema math/usa/mo/2016/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2016/4 não encontrado!

Problema 6 Problema math/usa/mo/2016/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2015/1 não encontrado!
Problema 2	Problema math/usa/mo/2015/2 não encontrado!
Problema 3	Problema math/usa/mo/2015/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2015/4 não encontrado!

Problema 6 Problema math/usa/mo/2015/6 não encontrado!

Dia I

Problema 1 Problema math/usa/mo/2014/1 não encontrado!

Problema 2 Let \mathbb{Z} be the set of integers. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$xf(2f(y) - x) + y^{2}f(2x - f(y)) = \frac{f(x)^{2}}{x} + f(yf(y))$$

for all $x, y \in \mathbb{Z}$ with $x \neq 0$.

Problema 3 Problema math/usa/mo/2014/3 não encontrado!

Dia II

Problema 4 Let k be a positive integer. Two players A and B play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with A moving first. In his move, A may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, B may choose any counter on the board and remove it. If at any time there are k consecutive grid cells in a line all of which contain a counter, A wins. Find the minimum value of k for which A cannot win in a finite number of moves, or prove that no such minimum value exists.

Problema 5 Problema math/usa/mo/2014/5 não encontrado!

Problema 6 Problema math/usa/mo/2014/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2013/1 não encontrado!
Problema 2	Problema math/usa/mo/2013/2 não encontrado!
Problema 3	Problema math/usa/mo/2013/3 não encontrado!
	Dia II
Problema 4	Problema math/usa/mo/2013/4 não encontrado!
Problema 5	Problema math/usa/mo/2013/5 não encontrado!
Problema 6	Problema math/usa/mo/2013/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2012/1 não encontrado!
Problema 2	Problema math/usa/mo/2012/2 não encontrado!
Problema 3	Problema math/usa/mo/2012/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2012/4 não encontrado!

Problema 6 Problema math/usa/mo/2012/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2011/1 não encontrado!
Problema 2	Problema math/usa/mo/2011/2 não encontrado!
Problema 3	Problema math/usa/mo/2011/3 não encontrado!
	Dia II
Problema 4	Problema math/usa/mo/2011/4 não encontrado!
Problema 5	Problema math/usa/mo/2011/5 não encontrado!
Problema 6	Problema math/usa/mo/2011/6 não encontrado!

Dia I

Problema 1 Problema math/usa/mo/2010/1 não encontrado!

Problema 2 Problema math/usa/mo/2010/2 não encontrado!

Problema 3 Problema math/usa/mo/2010/3 não encontrado!

Dia II

Problema 4 Problema math/usa/mo/2010/4 não encontrado!

Problema 5 Let $q = \frac{3p-5}{2}$ where p is an odd prime, and let

$$S_q = \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{5 \cdot 6 \cdot 7} + \dots + \frac{1}{q(q+1)(q+2)}.$$

Prove that if $\frac{1}{p} - 2S_q = \frac{m}{n}$ for integers m and n, then m - n is divisible by p.

Problema 6 Problema math/usa/mo/2010/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2009/1 não encontrado!
Problema 2	Problema math/usa/mo/2009/2 não encontrado!
Problema 3	Problema math/usa/mo/2009/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2009/4 não encontrado!

Problema 6 Problema math/usa/mo/2009/6 não encontrado!

Dia I

Problema 1 Prove that for each positive integer n, there are pairwise relatively prime integers k_0, k_1, \ldots, k_n , all strictly greater than 1, such that $k_0 k_1 \ldots k_n - 1$ is the product of two consecutive integers.

Problema 2 Problema math/usa/mo/2008/2 não encontrado!

Problema 3 Problema math/usa/mo/2008/3 não encontrado!

Dia II

Problema 4 Problema math/usa/mo/2008/4 não encontrado!
 Problema 5 Problema math/usa/mo/2008/5 não encontrado!
 Problema 6 Problema math/usa/mo/2008/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2007/1 não encontrado!
Problema 2	Problema math/usa/mo/2007/2 não encontrado!
Problema 3	Problema math/usa/mo/2007/3 não encontrado!
	Dia II
Problema 4	Problema math/usa/mo/2007/4 não encontrado!
Problema 5	Problema math/usa/mo/2007/5 não encontrado!
Problema 6	Problema math/usa/mo/2007/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2006/1 não encontrado!
Problema 2	Problema math/usa/mo/2006/2 não encontrado!
Problema 3	Problema math/usa/mo/2006/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2006/4 não encontrado!

Problema 6 Problema math/usa/mo/2006/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2005/1 não encontrado!
Problema 2	Problema math/usa/mo/2005/2 não encontrado!
Problema 3	Problema math/usa/mo/2005/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2005/4 não encontrado!

Problema 6 Problema math/usa/mo/2005/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2004/1 não encontrado!
Problema 2	Problema math/usa/mo/2004/2 não encontrado!
Problema 3	Problema math/usa/mo/2004/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2004/4 não encontrado!

Problema 6 Problema math/usa/mo/2004/6 não encontrado!

Dia I

Problema 1 Prove that for every positive integer n there exists an n-digit number divisible by 5^n all of whose digits are odd.

Problema 2 Problema math/usa/mo/2003/2 não encontrado!

Problema 3 Problema math/usa/mo/2003/3 não encontrado!

Dia II

Problema 4 Let ABC be a triangle. A circle passing through A and B intersects segments AC and BC at D and E, respectively. Lines AB and DE intersect at F, while lines BD and CF intersect at M. Prove that MF = MC if and only if $MB \cdot MD = MC^2$.

Problema 5 Problema math/usa/mo/2003/5 não encontrado!

Problema 6 Problema math/usa/mo/2003/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2002/1 não encontrado
Problema 2	Problema math/usa/mo/2002/2 não encontrado
Problema 3	Problema math/usa/mo/2002/3 não encontrado

Dia II

Problema 4 Problema math/usa/mo/2002/4 não encontrado!

Problema 5 Let a, b be integers greater than 2. Prove that there exists a positive integer k and a finite sequence n_1, n_2, \ldots, n_k of positive integers such that $n_1 = a, n_k = b$, and $n_i n_{i+1}$ is divisible by $n_i + n_{i+1}$ for each i $(1 \le i < k)$.

Problema 6 Problema math/usa/mo/2002/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2001/1 não encontrado!
Problema 2	Problema math/usa/mo/2001/2 não encontrado!
Problema 3	Problema math/usa/mo/2001/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2001/4 não encontrado!

Problema 6 Problema math/usa/mo/2001/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/2000/1 não encontrado!
Problema 2	Problema math/usa/mo/2000/2 não encontrado!
Problema 3	Problema math/usa/mo/2000/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/2000/4 não encontrado!

Problema 6 Problema math/usa/mo/2000/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/1999/1 não encontrado!
Problema 2	Problema math/usa/mo/1999/2 não encontrado!
Problema 3	Problema math/usa/mo/1999/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/1999/4 não encontrado!

Problema 6 Problema math/usa/mo/1999/6 não encontrado!

Dia I

Problema 1	Problema math/usa/mo/1998/1 não encontrado!
Problema 2	Problema math/usa/mo/1998/2 não encontrado!
Problema 3	Problema math/usa/mo/1998/3 não encontrado!
	Dia II
Problema 4	Dia II Problema math/usa/mo/1998/4 não encontrado!

Problema 6 Problema math/usa/mo/1998/6 não encontrado!