CDA 4930 002 Digital Circuit Synthesis Summer 2014

Instructor: Dr. Srinivas Katkoori Programming Assignment 2 Report VHDL Behavioral Modeling

Today's Date:	06/11/14
Your Name:	Mark Little
Your U Number:	84134627
No. of Hours Spent:	20
Exercise Difficulty: (Easy, Average, Hard)	Hard
Any Other Feedback:	

```
Question 1:
         -----
-- Company:
-- Engineer:
-- Create Date: 18:26:35 06/11/2014
-- Design Name:
-- Module Name: alu - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity alu is
port(ain : in bit;
       bin: in bit;
       cin_add: in bit;
       cin_sub: in bit;
       sel: in bit_vector(1 downto 0);
       cout add: out bit;
       cout_sub : out bit;
       aout: out bit
            );
end alu;
```

architecture Behavioral of alu is

```
begin
process(sel, ain, bin, cin_add, cin_sub)
begin
       case sel is
       when "00" =>
       aout <= ain xor bin xor cin_add;--adding two integers</pre>
       cout_add <= ((bin and cin_add) or (ain and cin_add) or (ain and bin));
       when "01" =>
       aout <= ain xor bin xor cin_sub;--subtracting two integers</pre>
       cout_sub <= (((not ain) and bin) or ((not ain) and cin_sub) or (bin and cin_sub));
       when "10" =>
       aout <= ain and bin;--two inputs anded together
       when "11" =>
       aout <= not ain;--inverting input a
       when others =>
       aout <= '0';
       end case;
end process;
end Behavioral;
-- Company:
-- Engineer:
-- Create Date: 18:49:07 06/11/2014
-- Design Name:
-- Module Name: alu8 - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
```

-- Additional Comments:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity alu8 is
port(ain : in bit_vector(7 downto 0);
        bin: in bit_vector (7 downto 0);
        sel: in bit vector (1 downto 0);
        aout : out bit_vector (7 downto 0)
        );
end alu8;
architecture struct of alu8 is
signal c0: bit := '0';
signal carout_add, carout_sub, c1, c2, c3, c4, c5, c6, c7, c8, c9,
c10, c11, c12, c13, c14: bit;
begin
bit0 : entity work.alu(Behavioral)
       port map (ain(0), bin(0), c0, c0, sel, carout add,
       carout_sub, aout(0));
bit1: entity work.alu(Behavioral)
       port map (ain(1), bin(1), carout_add,
       carout_sub, sel, c1, c2, aout(1));
bit2 : entity work.alu(Behavioral)
       port map (ain(2), bin(2), c1, c2, sel, c3, c4, aout(2));
bit3 : entity work.alu(Behavioral)
       port map (ain(3), bin(3), c3, c4, sel, c5, c6, aout(3));
bit4: entity work.alu(Behavioral)
       port map (ain(4), bin(4), c5, c6, sel, c7, c8, aout(4));
```

Question 1: VHDL Testbench

Where possible test the model exhaustively. If this is not possible, then test with at least 8 different input vectors.

-- Company: -- Engineer: -- Create Date: 19:28:08 06/11/2014 - Design Name: -- Module Name: E:/Desktop/School Docs/5/SummerC/CIS 4930-002 Digital Circuit Synthesis/ass2/redo/alu8 tb.vhd - Project Name: redo - Target Device: -- Tool versions: - Description: - VHDL Test Bench Created by ISE for module: alu8 - Dependencies: -- Revision: -- Revision 0.01 - File Created - Additional Comments: - Notes: - This testbench has been automatically generated using types std logic and - std logic vector for the ports of the unit under test. Xilinx recommends - that these types always be used for the top-level I/O of a design in order - to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. LIBRARY ieee; USE ieee.std_logic_1164.ALL; - Uncomment the following library declaration if using - arithmetic functions with Signed or Unsigned values -USE ieee.numeric_std.ALL; ENTITY alu8 tb IS END alu8_tb;

ARCHITECTURE behavior OF alu8_tb IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT alu8

```
PORT(
     ain: IN bit_vector(7 downto 0);
     bin: IN bit_vector(7 downto 0);
     sel: IN bit_vector(1 downto 0);
     aout : OUT bit_vector(7 downto 0)
  END COMPONENT;
 -Inputs
 signal ain: bit_vector(7 downto 0) := (others => '0');
 signal bin : bit_vector(7 downto 0) := (others => '0');
 signal sel: bit_vector(1 downto 0) := (others => '0');
       --Outputs
 signal aout : bit_vector(7 downto 0);
 -- No clocks detected in port list. Replace <clock> below with
 - appropriate port name
- constant <clock>_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
 uut: alu8 PORT MAP (
      ain => ain,
      bin => bin,
      sel \Rightarrow sel,
      aout => aout
    );
- - Clock process definitions
  <clock>_process :process
   begin
               <clock> <= '()';
               wait for <clock>_period/2;
               <clock> <= '1';
               wait for <clock>_period/2;
  end process;
 -- Stimulus process
 stim_proc: process
 begin
   - hold reset state for 100 ns.
   -wait for 100 ns;
```

```
wait for <clock>_period*10;
-- insert stimulus here
           --test1
           ain <= "00000001";
           bin <= "00000001";
           sel <= "00";
           wait for 60 ns;
           sel \le "01";
           wait for 60 ns;
           sel <= "10";
           wait for 60 ns;
           sel <= "11";
           --test2
           wait for 60 ns;
           ain <= "11111111";
           bin <= "00000000";
           sel <= "00";
           wait for 60 ns;
           sel <= "01";
           wait for 60 ns;
           sel <= "10";
           wait for 60 ns;
           sel <= "11";
           --test3
           wait for 60 ns;
           ain <= "00000001";
           bin <= "11111111";
           sel <= "00";
           wait for 60 ns;
           sel <= "01";
```

```
wait for 60 ns;
              sel <= "10";
              wait for 60 ns;
              sel <= "11";
              --test4
              wait for 60 ns;
              ain <= "00010001";
              bin \le "00010001";
              sel <= "00";
              wait for 60 ns;
              sel <= "01";
              wait for 60 ns;
              sel <= "10";
              wait for 60 ns;
              sel <= "11";
end process;
```

wait;

END;

Question 1: Simulation Waveforms (add as many pages as you need).

Question 1. Sinii	uiuiioii ** a	V CIOII	110 (auc	ı us	man	y pag	ses as	, yo	uII	ccu,	<i>)</i> •										
																						1,000.000 n
Name	Value	10 ns		100 ns		200 ns		300 ns		400 ns		50	00 ns		600 ns		700	ns	8	300 ns		900 ns
▶ 😽 ain[7:0]	00010001		C	000000	1		Х	1111	1111		X	\Box		0000	0001		\Box			00	0010001	
▶ 3 bin[7:0]	00010001		0	000000	1		Х	0000	0000		=X	▭		1111	1111		\Box			00	0010001	
▶ 3 sel[1:0]	11	00	01	$\supset \subset$	10	11	X 00	01	10	$\supset \subset$	11 X		00 X	01	10	11	\Box	X	9)1 X	10	11
▶ 😽 aout[7:0]	11101110	00000010	000000	00 (000	000001	11111110	1111	1111		0000000	X	0000	00000 💢	0000010	00000001	(111111	10	00100010	00ф0	00000 X	00010001	11101110

```
Question 2:
-- Company:
-- Engineer:
-- Create Date: 20:04:23 06/11/2014
-- Design Name:
-- Module Name:
                flipflop - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
______
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity flipflop is
port (Clk : in std_logic;
             d: in std_logic;
             d_out : out std_logic
             );
end flipflop;
architecture struct of flipflop is
begin
process(Clk)
      begin
```

```
if(rising_edge (Clk))then
              d_out <= d;
              end if;
end process;
end struct;
-- Company:
-- Engineer:
-- Create Date: 20:10:54 06/11/2014
-- Design Name:
-- Module Name: nbit_reg - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
-- Dependencies:
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity nbit_reg is
generic (n : integer);
port (Clk : in std_logic;
              d_out : out std_logic_vector (0 to n-1);
              ind: in std_logic
              );
end nbit_reg;
```

Ouestion 2: VHDL Testbench

Where possible test the model exhaustively. If this is not possible, then test with at least 8 different input vectors.

-- Company: -- Engineer: -- Create Date: 20:43:10 06/11/2014 -- Design Name: -- Module Name: E:/Desktop/School Docs/5/SummerC/CIS 4930-002 Digital Circuit Synthesis/ass2/redo/nbit reg tb.vhd - Project Name: redo -- Target Device: -- Tool versions: - Description: -- VHDL Test Bench Created by ISE for module: nbit_reg - Dependencies: -- Revision: -- Revision 0.01 - File Created -- Additional Comments: - Notes: - This testbench has been automatically generated using types std logic and - std logic vector for the ports of the unit under test. Xilinx recommends - that these types always be used for the top-level I/O of a design in order - to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. LIBRARY ieee; USE ieee.std_logic_1164.ALL; - Uncomment the following library declaration if using - arithmetic functions with Signed or Unsigned values -USE ieee.numeric_std.ALL; ENTITY nbit reg th IS END nbit_reg_tb;

ARCHITECTURE behavior OF nbit_reg_tb IS

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT nbit_reg

```
generic (n : integer := 8);
  PORT(
     Clk: IN std_logic;
     d_out : OUT std_logic_vector(0 to n-1);
     ind: IN std logic
  END COMPONENT;
 --Inputs
 signal Clk : std_logic := '0';
 signal ind : std_logic := '0';
       --Outputs
 signal d_out : std_logic_vector(0 to 7);
 - Clock period definitions
 constant Clk_period : time := 10 ns;
BEGIN
       - Instantiate the Unit Under Test (UUT)
 uut: nbit_reg PORT MAP (
      Clk \Rightarrow Clk,
      d_out => d_out,
      ind \Rightarrow ind
     );
 -- Clock process definitions
 Clk_process :process
 begin
               Clk <= '0';
               wait for Clk_period/2;
               Clk <= '1';
               wait for Clk_period/2;
 end process;
 -- Stimulus process
 stim_proc: process
 begin
   - hold reset state for 100 ns.
   wait for 100 ns;
   wait for Clk_period*10;
   -- insert stimulus here
```

```
ind <= '1';
wait for 10 ns;
ind <= '0';
wait for 10 ns;
ind <= '1';
wait for 10 ns;
ind <= '0';
wait for 10 ns;
ind <= '1';
wait for 10 ns;
ind <= '0';
wait for 10 ns;
ind <= '1';
```

wait; end process;

END;

Question 2: Simulation Waveforms (add as many pages as you need).

