Numerical Analysis

Lecture1: Introduction

Instructor: Prof. Qiwei Zhan Zhejiang University

Outline

- Introduction
 - Motivation
 - Objective
- 2 Computer Arithmetic
- Algorithms and Convergence

• Q1: Find x?

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

• Q1: Find x?

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

• Q2: Find x?

$$x = (x+1)^{\frac{1}{2}} + x^{\frac{1}{3}}$$

• Q1: Find x?

$$Ax = b$$

• Q2: Find x?

$$x = (x+1)^{\frac{1}{2}} + x^{\frac{1}{3}}$$

• Q3: Wireless Channel Capacity

$$C = \int_0^\infty \log(1+x) \exp(-x) dx$$

• Q1: Find x?

$$Ax = b$$

• Q2: Find x?

$$x = (x+1)^{\frac{1}{2}} + x^{\frac{1}{3}}$$

• Q3: Wireless Channel Capacity

$$C = \int_0^\infty \log(1+x) \exp(-x) dx$$

• Q4:Guided depth upsampling

$$\frac{\partial D(\mathbf{p};t)}{\partial t} = \operatorname{div}\left(\mathbf{W}(\mathbf{p};t)\nabla D(\mathbf{p};t)\right) \quad s.t. \ D(\mathbf{p};0) = D_0(\mathbf{p})$$

Objective

Introduce the applied numerical methods, including

- Numerical approaches for
 - linear equations
 - nonlinear equations
 - differentiation and integration
 - partial differential equations

Objective

Introduce the applied numerical methods, including

- Numerical approaches for
 - linear equations
 - nonlinear equations
 - differentiation and integration
 - partial differential equations
- Error analysis

Outline

- Introduction
- 2 Computer Arithmetic
 - Floating point numbers
 - Error Analysis
 - Floating Point Operations
- Algorithms and Convergence

- short real format (single precision, 4 Bytes, 1 Byte = 8 Bits)
- Long real format (double precision, 8 Bytes)
 - Default data type in MATLAB, 'double' in C
 - Base: 2

1 bit	11 bits	52 bits	
S	С	f	
$(-1)^s 2^{c-1023} (1+f)$			

• Ex: 0 10000000011 101110...0

- short real format (single precision, 4 Bytes, 1 Byte = 8 Bits)
- Long real format (double precision, 8 Bytes)
 - Default data type in MATLAB, 'double' in C
 - Base: 2

1 bit	11 bits	52 bits	
S	С	f	
$(-1)^s 2^{c-1023} (1+f)$			

- Ex: 0 10000000011 101110...0
- Maximum / $2^{1023} \cdot (2 2^{-52}) \approx 0.17977 \times 10^{309}$

- short real format (single precision, 4 Bytes, 1 Byte = 8 Bits)
- Long real format (double precision, 8 Bytes)
 - Default data type in MATLAB, 'double' in C
 - Base: 2

1 bit	11 bits	52 bits	
S	С	f	
$(-1)^s 2^{c-1023} (1+f)$			

- Ex: 0 10000000011 101110...0
- Maximum / $2^{1023} \cdot (2 2^{-52}) \approx 0.17977 \times 10^{309}$
- Minimum / $2^{-1022} \cdot (1+0) \approx 0.22251 \times 10^{-307}$

- short real format (single precision, 4 Bytes, 1 Byte = 8 Bits)
- Long real format (double precision, 8 Bytes)
 - Default data type in MATLAB, 'double' in C
 - Base: 2

1 bit	11 bits	52 bits	
S	С	f	
$(-1)^s 2^{c-1023} (1+f)$			

- Ex: 0 10000000011 101110...0
- Maximum / $2^{1023} \cdot (2 2^{-52}) \approx 0.17977 \times 10^{309}$
- Minimum / $2^{-1022} \cdot (1+0) \approx 0.22251 \times 10^{-307}$
- Overflow / underflow

- short real format (single precision, 4 Bytes, 1 Byte = 8 Bits)
- Long real format (double precision, 8 Bytes)
 - Default data type in MATLAB, 'double' in C
 - Base: 2

1 bit	11 bits	52 bits	
S	С	f	
$(-1)^s 2^{c-1023} (1+f)$			

- Ex: 0 10000000011 101110...0
- Maximum / $2^{1023} \cdot (2 2^{-52}) \approx 0.17977 \times 10^{309}$
- Minimum / $2^{-1022} \cdot (1+0) \approx 0.22251 \times 10^{-307}$
- Overflow / underflow
- http://en.wikipedia.org/wiki/IEEE_floating_point

Decimal Floating Point Numbers

- Base: 10
- *k*-digit decimal machine number:

$$\pm 0.d_1d_2...d_k \times 10^n$$
, $1 \le d_1 \le 9$, $0 \le d_i \le 9$

• Any positive number within the numerical range can be written:

$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}... \times 10^n$$

- Two ways to represent y with k digits:
 - Chopping:

$$fl(y) = 0.d_1d_2\dots d_k \times 10^n$$

2 Roundoff: Add $5 \times 10^{n-(k+1)}$ and chop:

$$f(y) = 0.\delta_1 \delta_2 \dots \delta_k \times 10^n$$

Roundoff error

Errors and Significant Digits

Errors:

If p^* is an approximation to p, the absolute error is $|p - p^*|$, and the relative error is $|p - p^*|/|p|$, provided that $p \neq 0$.

Ex 2 Determine the absolute and relative errors when approximating p by p^* when

- (a) $p = 0.3000 \times 10^1$ and $p^* = 0.3100 \times 10^1$;
- (b) $p = 0.3000 \times 10^{-3}$ and $p^* = 0.3100 \times 10^{-3}$;
- (c) $p = 0.3000 \times 10^4$ and $p^* = 0.3100 \times 10^4$.

Solution

- (a) For $p = 0.3000 \times 10^1$ and $p^* = 0.3100 \times 10^1$ the absolute error is 0.1, and the relative error is 0.3333×10^{-1} .
- (b) For $p = 0.3000 \times 10^{-3}$ and $p^* = 0.3100 \times 10^{-3}$ the absolute error is 0.1×10^{-4} , and the relative error is 0.3333×10^{-1} .
- (c) For $p=0.3000\times 10^4$ and $p^*=0.3100\times 10^4$, the absolute error is 0.1×10^3 , and the relative error is again $0.333\overline{3}\times 10^{-1}$.

Errors and Significant Digits

Significant digits:

The number p^* is said to approximate p to t significant digits if t is the largest nonnegative integer for which

$$\frac{|p-p^*|}{|p|} \le 5 \times 10^{-t}$$

$$\left| \frac{y - fl(y)}{y} \right| = \left| \frac{0.d_1 d_2 \dots d_k d_{k+1} \dots \times 10^n - 0.d_1 d_2 \dots d_k \times 10^n}{0.d_1 d_2 \dots \times 10^n} \right|$$

$$= \left| \frac{0.d_{k+1} d_{k+2} \dots \times 10^{n-k}}{0.d_1 d_2 \dots \times 10^n} \right| = \left| \frac{0.d_{k+1} d_{k+2} \dots}{0.d_1 d_2 \dots} \right| \times 10^{-k}$$

$$\leq \frac{1}{0.1} \times 10^{-k} = 10^{-k+1}$$

Floating Point Operations

- Floating Point Operations
 - Machine addition: $x \oplus y = f(f(x) + f(y))$
 - Subtraction: $x \ominus y = f(f(x) f(y))$
 - Multiplication: $x \otimes y = f(f(x) \times f(y))$
 - division: $x \oslash y = f(f(x) \div f(y))$
- Cancelation
 - Common problem: Subtraction of nearly equal numbers:

$$f(x) = 0.d_1d_2...d_p\alpha_{p+1}\alpha_{p+2}...\alpha_k \times 10^n$$

$$fl(y) = 0.d_1d_2 \dots d_p\beta_{p+1}\beta_{p+2} \dots \beta_k \times 10^n$$

gives fewer digits for significance:

$$f(f(x) - f(y)) = 0.\sigma_{p+1}\sigma_{p+2}...\sigma_k \times 10^{n-p}$$

Floating Point Operations - Errors

Given x = 5/7, u = 0.714251, v = 98765.9, and $w = 0.111111 \times 10^{-4}$. Determine the five-digit chopping values of

Operation	Result	Actual value	Absolute error	Relative error
$x \ominus u$	0.30000×10^{-4}	0.34714×10^{-4}	0.471×10^{-5}	0.136
$(x \ominus u) \oplus w$	0.27000×10^{1}	0.31242×10^{1}	0.424	0.136
$(x \ominus u) \otimes v$	0.29629×10^{1}	0.34285×10^{1}	0.465	0.136
$u \oplus v$	0.98765×10^{5}	0.98766×10^{5}	0.161×10^{1}	0.163×10^{-4}

Floating Point Operations - Errors

Consider a quadratic equation $x^2 + 62.10x + 1 = 0$, whose roots are approximately

$$x_1 = -0.01610723$$
 $x_2 = -62.08390$.

We use four digital rounding arithmetic to find the root.

$$\sqrt{b^2 - 4ac} = 62.06.$$

$$f(x_1) = \frac{-62.10 + 62.06}{2.000} = -0.02000$$

with the large relative error

$$\frac{|-0.01611 + 0.02000|}{|-0.01611|} \approx 2.4 \times 10^{-1}$$

Floating Point Operations - Errors

To obtain a more accurate four-digit rounding approximation for x_1 , we change the quadratic formula into

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}$$

Then

$$f(x_1) = \frac{-2.000}{62.10 + 62.06} = -0.01610$$

which has the small relative error 6.2×10^{-4} .

The lesson: Think before you compute!

Outline

- Introduction
- 2 Computer Arithmetic
- 3 Algorithms and Convergence
 - Algorithms
 - Convergence

Algorithms

Definition

An algorithm is a set of operations to sovle a problem or approximate a solution to the problem.

- Growth of error Suppose $E_0 > 0$ is an initial error, and E_n is the error after n operations.
 - $E_n \approx CnE_0$: linear growth of error
 - $E_n \approx C^n E_0$: exponential growth of error

Stability

- Stability properties of algorithms
 - Stable: small changes in the initial data produce small changes in the final result
 - Unstable or conditionally stable: large errors in final results for all or some initial data with small errors

Rate of convergence (sequences)

Definition

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence converging to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K|\beta_n|$$
, for large n ,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with rate of convergence $O(\beta_n)$, indicated by $\alpha_n = \alpha + O(\beta_n)$.

Polynomial rate of convergence

Normally we will use

$$|\beta_n| = \frac{1}{n^p}$$

and look for the largest value p > 0 such that $\alpha_n = \alpha + O(\frac{1}{n^p})$

Rate of convergence (functions)

Definition

Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If a positive constant K exists with

$$|F(h) - L| \le K|G(h)|$$
, for sufficiently small h ,

then we write F(h) = L + O(G(h)).

Polynomial rate of convergence

Normally we will use

$$G(h) = h^p$$
,

and look for the largest value p > 0 such that $F(h) = L + O(h^p)$.

→ Take a 'log' operator..., very helpful for finite element method, finite difference method...

Reading Assignment

• Numerical Analysis, Ch.1, Ch.2.1