www.gunadarma.ac.id

eBook

PRINSIP & PERANCANGAN LOGIKA

Penyusun:

- 1. Imam Purwanto, S.Kom, MMSI
- 2. Ega Hegarini, S.Kom., MM
- 3. Rifki Amalia, S.Kom., MMSI
- 4. Arie Kusumawati, S.Kom

Fakultas Teknologi Industri Universitas Gunadarma 2013

PRINSIP & PERANCANGAN LOGIKA

Minggu 4 & 5

Aljabar Boolean

Ekspresi Boolean

- Misalkan $(B, +, \cdot, ')$ adalah sebuah aljabar Boolean. Suatu ekspresi Boolean dalam $(B, +, \cdot, ')$ adalah:
 - (i) setiap elemen di dalam B,
 - (ii) setiap peubah,
 - (iii) jika e_1 dan e_2 adalah ekspresi Boolean, maka $e_1 + e_2$, $e_1 \cdot e_2$, e_1 ' adalah ekspresi Boolean

```
Contoh: 0
1
a
b
a+b
a \cdot b
a' \cdot (b+c)
a \cdot b' + a \cdot b \cdot c' + b', dan sebagainya
```

Mengevaluasi Ekspresi Boolean

• Contoh: $a' \cdot (b+c)$

jika a = 0, b = 1, dan c = 0, maka hasil evaluasi ekspresi:

$$0' \cdot (1+0) = 1 \cdot 1 = 1$$

• Dua ekspresi Boolean dikatakan **ekivalen** (dilambangkan dengan '=') jika keduanya mempunyai nilai yang sama untuk setiap pemberian nilai-nilai kepada *n* peubah.

Contoh:
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Contoh. Perlihatkan bahwa a + a'b = a + b.

Penyelesaian:

a	b	a'	a'b	a + a'b	a+b
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

• Perjanjian: tanda titik (·) dapat dihilangkan dari penulisan ekspresi Boolean, kecuali jika ada penekanan:

$$(i) a(b+c) = ab + ac$$

(ii)
$$a + bc = (a + b) (a + c)$$

(iii)
$$a \cdot 0$$
, bukan a0

Prinsip Dualitas

- Misalkan S adalah kesamaan (*identity*) di dalam aljabar Boolean yang melibatkan operator +, \cdot , dan komplemen, maka jika pernyataan S^* diperoleh dengan cara mengganti
 - · dengan +
 - + dengan ·
 - 0 dengan 1
 - 1 dengan 0

dan membiarkan operator komplemen tetap apa adanya, maka kesamaan S^* juga benar. S^* disebut sebagai *dual* dari S.

Contoh.

- (i) $(a \cdot 1)(0 + a') = 0$ dualnya $(a + 0) + (1 \cdot a') = 1$
- (ii) a(a'+b) = ab dualnya a + a'b = a + b

Hukum-hukum Aljabar Boolean

1. Hukum identitas:	2. Hukum idempoten:
(i) $a + 0 = a$	(i) $a + a = a$
(ii) $a \cdot 1 = a$	(ii) $a \cdot a = a$
3. Hukum komplemen:	4. Hukum dominansi:
(i) $a + a' = 1$	(i) $a \cdot 0 = 0$
(ii) $aa' = 0$	(ii) $a + 1 = 1$
C II 1 . 1 .	< H 1
5. Hukum involusi:	6. Hukum penyerapan:
(i) $(a')' = a$	(i) $a + ab = a$
	(ii) $a(a+b)=a$
7. Hukum komutatif:	8. Hukum asosiatif:
(i) $a + b = b + a$	(i) $a + (b + c) = (a + b) + c$
(ii) $ab = ba$	(ii) $a(b c) = (a b) c$
9. Hukum distributif:	10. Hukum De Morgan:
(i) $a + (b c) = (a + b) (a + c)$	(i) $(a + b)' = a'b'$
(ii) $a(b+c) = ab + ac$	(ii) $(ab)' = a' + b'$
11. Hukum 0/1	
(i) $0' = 1$	
(ii) 1' = 0	
() 1	

Contoh 7.3. Buktikan (i) a + a'b = a + b dan (ii) a(a' + b) = ab Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Penyerapan)
 $= a + (ab + a'b)$ (Asosiatif)
 $= a + (a + a')b$ (Distributif)
 $= a + 1 \cdot b$ (Komplemen)
 $= a + b$ (Identitas)
(ii) adalah dual dari (i)

Fungsi Boolean

• **Fungsi Boolean** (disebut juga fungsi biner) adalah pemetaan dari B^n ke B melalui ekspresi Boolean, kita menuliskannya sebagai

$$f: B^n \to B$$

yang dalam hal ini B^n adalah himpunan yang beranggotakan pasangan terurut ganda-n (ordered n-tuple) di dalam daerah asal B.

- Setiap ekspresi Boolean tidak lain merupakan fungsi Boolean.
- Misalkan sebuah fungsi Boolean adalah

$$f(x, y, z) = xyz + x'y + y'z$$

Fungsi f memetakan nilai-nilai pasangan terurut ganda-3 (x, y, z) ke himpunan $\{0, 1\}$.

Contohnya, (1, 0, 1) yang berarti x = 1, y = 0, dan z = 1 sehingga $f(1, 0, 1) = 1 \cdot 0 \cdot 1 + 1' \cdot 0 + 0' \cdot 1 = 0 + 0 + 1 = 1$.

Contoh. Contoh-contoh fungsi Boolean yang lain:

- 1. f(x) = x
- 2. f(x, y) = x'y + xy' + y'
- 3. f(x, y) = x' y'
- 4. f(x, y) = (x + y)
- 5. f(x, y, z) = xyz'
 - Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut **literal**.

Contoh: Fungsi h(x, y, z) = xyz' pada contoh di atas terdiri dari 3 buah literal, yaitu x, y, dan z'.

Contoh. Diketahui fungsi Booelan f(x, y, z) = xy z', nyatakan h dalam tabel kebenaran.

Penyelesaian:

X	y	\mathcal{Z}	f(x, y, z) = xy z'
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Komplemen Fungsi

1. Cara pertama: menggunakan hukum De Morgan Hukum De Morgan untuk dua buah peubah, x_1 dan x_2 , adalah

Contoh. Misalkan f(x, y, z) = x(y'z' + yz), maka

$$f'(x, y, z) = (x(y'z' + yz))'$$

$$= x' + (y'z' + yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y + z) (y' + z')$$

 Cara kedua: menggunakan prinsip dualitas.
 Tentukan dual dari ekspresi Boolean yang merepresentasikan f, lalu komplemenkan setiap literal di dalam dual tersebut.

Contoh. Misalkan
$$f(x, y, z) = x(y'z' + yz)$$
, maka dual dari f : $x + (y' + z')(y + z)$

komplemenkan tiap literalnya: x' + (y + z)(y' + z') = f'

Jadi,
$$f'(x, y, z) = x' + (y + z)(y' + z')$$

Bentuk Kanonik

- Ada dua macam bentuk kanonik:
 - 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2. Perkalian dari hasil jumlah (*product-of-sum* atau POS)

Contoh: 1.
$$f(x, y, z) = x'y'z + xy'z' + xyz \rightarrow SOP$$

Setiap suku (term) disebut minterm

2.
$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$

 $(x' + y + z')(x' + y' + z) \rightarrow POS$

Setiap suku (term) disebut maxterm

• Setiap *minterm/maxterm* mengandung literal lengkap

		Minterm		Maxterm		
\boldsymbol{x}	y	Suku	Lambang	Suku	Lambang	
0	0	<i>x</i> ' <i>y</i> '	m_0	x + y	M_0	
0	1	x' y	m_1	x+y	M_1	
1	0	xy'	m_2	x' + y	M_2	
1	1	xy	m_3	x' + y'	M_3	

			Minterm		Maxterm	
\boldsymbol{x}	у	z	Suku	Lambang	Suku	Lambang
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x+y+z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'y z	m_3	x + y' + z'	M_3
1	0	0	x y'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	xyz	m_7	x'+y'+z'	M_7

Contoh 7.10. Nyatakan tabel kebenaran di bawah ini dalam bentuk kanonik SOP dan POS.

Tabel 7.10

x	у	\mathcal{Z}	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

(a) SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

(b) POS

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')$$
$$(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Contoh 7.11. Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

$$x = x(y + y')$$

= $xy + xy'$
= $xy (z + z') + xy'(z + z')$
= $xyz + xyz' + xy'z + xy'z'$

$$y'z = y'z (x + x')$$
$$= xy'z + x'y'z$$

Jadi
$$f(x, y, z) = x + y'z$$

= $xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$
= $x'y'z + xy'z' + xy'z + xyz' + xyz$

atau
$$f(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \sum (1,4,5,6,7)$$

(b) POS

$$f(x, y, z) = x + y'z$$

= $(x + y')(x + z)$

$$x + y' = x + y' + zz'$$

= $(x + y' + z)(x + y' + z')$

$$x + z = x + z + yy'$$

= $(x + y + z)(x + y' + z)$

Jadi,
$$f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z)$$

= $(x + y + z)(x + y' + z)(x + y' + z')$

atau
$$f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Konversi Antar Bentuk Kanonik

Misalkan

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f 'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:

$$f'(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)'$$

$$= m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3$$

$$= \Pi (0.2.3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \prod (0,2,3)$.

Kesimpulan: $m_i' = M_i$

Contoh. Nyatakan

$$f(x, y, z) = \prod (0, 2, 4, 5) \text{ dan}$$

 $g(w, x, y, z) = \Sigma(1, 2, 5, 6, 10, 15)$

dalam bentuk SOP.

Penyelesaian:

$$f(x, y, z) = \Sigma (1, 3, 6, 7)$$

$$g(w, x, y, z) = \prod (0, 3, 4, 7, 8, 9, 11, 12, 13, 14)$$

Contoh. Carilah bentuk kanonik SOP dan POS dari f(x, y, z) = y' + xy + x'yz'

Penyelesaian:

(a) SOP

$$f(x, y, z) = y' + xy + x'yz'$$

$$= y' (x + x') (z + z') + xy (z + z') + x'yz'$$

$$= (xy' + x'y') (z + z') + xyz + xyz' + x'yz'$$

$$= xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'$$

atau
$$f(x, y, z) = m_0 + m_1 + m_2 + m_4 + m_5 + m_6 + m_7$$

(b) POS

$$f(x, y, z) = M_3 = x + y' + z'$$

Bentuk Baku

- Tidak harus mengandung literal yang lengkap.
- Contohnya,

$$f(x, y, z) = y' + xy + x'yz$$
 (bentuk baku SOP

$$f(x, y, z) = x(y' + z)(x' + y + z')$$
 (bentuk baku POS)

Aplikasi Aljabar Boolean

1. Jaringan Pensaklaran (Switching Network)

Saklar: objek yang mempunyai dua buah keadaan: buka dan tutup.

Tiga bentuk gerbang paling sederhana:

- 1. a x bOutput b hanya ada jika dan hanya jika x dibuka $\Rightarrow x$
- 2. a x y bOutput b hanya ada jika dan hanya jika x dan y dibuka $\Rightarrow xy$
- 3. a x $b \qquad y$

Output c hanya ada jika dan hanya jika x atau y dibuka $\Rightarrow x + y$

Contoh rangkaian pensaklaran pada rangkaian listrik:

1. Saklar dalam hubungan SERI: logika AND

2. Saklar dalam hubungan PARALEL: logika OR

2. Rangkaian Logika

Contoh. Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

<u>Jawab</u>: (a) Cara pertama

(b) Cara kedua

(c) Cara ketiga

Gerbang turunan

Gerbang NAND

Gerbang XOR

Gerbang NOR

Gerbang XNOR

$$(x + y)'$$
 ekivalen dengan $(x + y)'$ $(x + y)'$

$$x'$$
 y' ekivalen dengan y' y' y' y'

Penyederhanaan Fungsi Boolean

Contoh.
$$f(x, y) = x'y + xy' + y'$$

disederhanakan menjadi

$$f(x, y) = x' + y'$$

Penyederhanaan fungsi Boolean dapat dilakukan dengan 3 cara:

- 1. Secara aljabar
- 2. Menggunakan Peta Karnaugh
- 3. Menggunakan metode Quine Mc Cluskey (metode Tabulasi)

1. Penyederhanaan Secara Aljabar

Contoh:

1.
$$f(x, y) = x + x'y$$

= $(x + x')(x + y)$
= $1 \cdot (x + y)$
= $x + y$

2.
$$f(x, y, z) = x'y'z + x'yz + xy'$$

= $x'z(y' + y) + xy'$
= $x'z + xz'$

3.
$$f(x, y, z) = xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y) = xy + x'z$

2. Peta Karnaugh

a. Peta Karnaugh dengan dua peubah

$$\begin{array}{c|cccc}
 & y \\
 & 0 & 1 \\
x & 0 & x'y' & x'y \\
\hline
 & 1 & xy' & xy
\end{array}$$

b. Peta dengan tiga peubah

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

X	y	z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	yz 00	01	11	10
<i>x</i> 0	0	0	0	1
1	0	0	1	1

b. Peta dengan empat peubah

					yz 00	01	11	10
m_0	m_1	m_3	m_2	wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
m_4	m_5	m_7	m_6	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
m_{12}	m_{13}	m_{15}	m_{14}	11	wxy'z'	wxy'z	wxyz	wxyz'
m_8	<i>m</i> ₉	m_{11}	m_{10}	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Contoh. Diberikan tabel kebenaran, gambarkan Peta Karnaugh.

W	х	у	z	f(w, x, y, z)
0	0	0	0	0
0 0 0 0 0 0 0	0	0	1	1
0	0 0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0 0 0	1	0	0
1		1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

		yz 00	01	11	10
wx	00	0	1	0	1
	01	0	0	1	1
	11	0	0	0	1
	10	0	0	0	0

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

1. Pasangan: dua buah 1 yang bertetangga

		yz 00	01	1 1	1 0
wx	00	0	0	0	0
	01	0	0	0	0
	11	0	0	1	1
	10	0	0	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz' Hasil Penyederhanaan: f(w, x, y, z) = wxy

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$

$$= wxy$$

2. *Kuad*: empat buah 1 yang bertetangga

		yz 00	01	11	10	
wx	00	0	0	0	0	
	01	0	0	0	0	
	11		1	1	1	
	10	0	0	0	0	

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxy'z + wxyz + wxyz'Hasil penyederhanaan: f(w, x, y, z) = wx

Bukti secara aljabar:

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11 9	1			
	10	0	0	0	0

Contoh lain:

		yz 0 0	0 1	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	1 1	1	1	0	0
	1 0	1	1	0	0

Sebelum disederhanakan: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z'*Hasil penyederhanaan*: f(w, x, y, z) = wy'

3. *Oktet*: delapan buah 1 yang bertetangga

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	1 1	1	1	1	1
	1 0	1	11	11	1

Sebelum disederhanakan:
$$f(a, b, c, d) = wxy'z' + wxy'z + wxyz + wxyz' + wx'y'z' + wx'y'z + wx'yz + wx'yz'$$

Hasil penyederhanaan: f(w, x, y, z) = w

Bukti secara aljabar:

$$f(w, x, y, z) = wy' + wy$$
$$= w(y' + y)$$
$$= w$$

		00	01	11	10
wx	00	0	0	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	1	1	1	1

Contoh 5.12. Andaikan suatu tabel kebenaran telah diterjemahkan ke dalam Peta Karnaugh. Sederhanakan fungsi Boolean yang bersesuaian sesederhana mungkin.

		yz 00	01	11	10	
wx	00	0			1	
	01	0	0	0	1	
	11	1	1	0	1	
	10	1	1	0	1	

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = wy' + yz' + w'x'z

Contoh 5.13. Minimisasi fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		9z 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	1	1	1	1
	10	1	11	1	1

<u>Jawab</u>: (lihat Peta Karnaugh) f(w, x, y, z) = w + xy'z

Jika penyelesaian Contoh 5.13 adalah seperti di bawah ini:

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	1	1	1	1
	10	1	1	1	1

maka fungsi Boolean hasil penyederhanaan adalah

$$f(w, x, y, z) = w + w'xy'z$$
 (jumlah literal = 5)

yang ternyata masih belum sederhana dibandingkan f(w, x, y, z) = w + xy'z (jumlah literal = 4).

Contoh 5.14. (Penggulungan/*rolling*) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		yz 00	01	11	10
wx	00	0	0	0	0
	01		0	0	1
	11	1	0	0	1
	10	0	0	0	0

<u>Jawab</u>: f(w, x, y, z) = xy'z' + xyz' ==> belum sederhana

Penyelesaian yang lebih minimal:

		yz 0 0	01	11	10	_
wx	00	0	0	0	0	
	01	1	0	0	1	
	1 1 _	1	0	0	1	
	10	0	0	0	0	_

f(w, x, y, z) = xz' ===> lebih sederhana

Contoh 5.11. Sederhanakan fungsi Boolean f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

Jawab:

Peta Karnaugh untuk fungsi tersebut adalah:

		yz 00	01	11	10
X	0			\bigcap	
	1_	1		1	1

Hasil penyederhanaan: f(x, y, z) = yz + xz

Contoh 5.15: (Kelompok berlebihan) Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		9z 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	0		4	0
	10	0	0	4	0

<u>Jawab</u>: $f(w, x, y, z) = xy'z + wxz + wyz \rightarrow \text{masih belum sederhana}.$

Penyelesaian yang lebih minimal:

		yz 00	01	11	10
wx	00	0	0	0	0
	01	0		0	0
	11	0			0
	10	0	0	4	0

f(w, x, y, z) = xy'z + wyz = ==>lebih sederhana

Contoh 5.16. Sederhanakan fungsi Boolean yang bersesuaian dengan Peta Karnaugh di bawah ini.

		cd 00	01	11	10
ab	00	0	0	0	0
	01	0	0	1	0
	11		1	1	
	10	0	7		_1/

<u>Jawab</u>: (lihat Peta Karnaugh di atas) f(a, b, c, d) = ab + ad + ac + bcd

Contoh 5.17. Minimisasi fungsi Boolean f(x, y, z) = x'z + x'y + xy'z + yz

Jawab:

$$x'z = x'z(y + y') = x'yz + x'y'z$$

 $x'y = x'y(z + z') = x'yz + x'yz'$
 $yz = yz(x + x') = xyz + x'yz$

$$f(x, y, z) = x'z + x'y + xy'z + yz$$

= x'yz + x'y'z + x'yz + x'yz' + xy'z + xyz + x'yz
= x'yz + x'y'z + x'yz' + xyz + xy'z

Peta Karnaugh untuk fungsi tersebut adalah:

Hasil penyederhanaan: f(x, y, z) = z + x'yz'

Peta Karnaugh untuk lima peubah

	000	001	011	010	110	111	101	100
00	m_0	m_1	m_3	m_2	m_6	m_7	m_5	m_4
01	m_8	<i>m</i> ₉	m_{11}	m_{10}	m_{14}	m_{15}	m_{13}	m_{12}
11	m_{24}	m_{25}	m_{27}	m_{26}	m_{30}	m_{31}	m_{29}	m_{28}
10	m_{16}	m_{17}	m_{19}	m_{18}	m_{22}	m_{23}	m_{21}	m_{20}
			Gar	ric nanca	rminan			

Garis pencerminan

Contoh 5.21. (Contoh penggunaan Peta 5 peubah) Carilah fungsi sederhana dari $f(v, w, x, y, z) = \Sigma$ (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31) <u>Jawab</u>:

Peta Karnaugh dari fungsi tersebut adalah:

Jadi f(v, w, x, y, z) = wz + v'w'z' + vy'z

Kondisi Don't care

Tabel 5.16

W	X	y	z	desimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	don't care
1	0	1	1	don't care
1	1	0	0	don't care
1	1	0	1	don't care
1	1	1	0	don't care
1	1	1	1	don't care

Contoh 5.25. Diberikan Tabel 5.17. Minimisasi fungsi f sesederhana mungkin.

Tabel 5.17

a	b	С	d	f(a, b, c, d)
0	0	0	0	1
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	1	0
0	0	1	0	0
	0	1	1	1
0 0 0 0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	$egin{array}{c} X \\ X \\ X \\ X \end{array}$
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	$X \\ X$
1	1	1	0	X
1	1	1	1	X

Jawab: Peta Karnaugh dari fungsi tersebut adalah:

	cd			
	00	01	11	10
<i>ab</i> 00	$\sqrt{1}$	0		0
01	1	1	1	0
11	X	X	X	X
10	X	0	X	X

Hasil penyederhanaan: f(a, b, c, d) = bd + c'd' + cd

Contoh 5.26. Minimisasi fungsi Boolean f(x, y, z) = x'yz + x'yz' + xy'z' + xy'z. Gambarkan rangkaian logikanya.

<u>Jawab</u>: Rangkaian logika fungsi f(x, y, z) sebelum diminimisasikan adalah seperti di bawah ini:

Minimisasi dengan Peta Karnaugh adalah sebagai berikut:

		yz 00	01	11	10
х	0	0	0		1
	1	1		0	0

Hasil minimisasi adalah f(x, y, z) = x'y + xy'.

Contoh 5.28. Berbagai sistem digital menggunakan kode *binary coded decimal* (BCD). Diberikan Tabel 5.19 untuk konversi BCD ke kode *Excess*-3 sebagai berikut:

Tabel 5.19

	N	I asuka	an BC	D		Keluaran ko	de Excess-3	
	W	X	y	Z	$f_1(w, x, y, z)$	$f_2(w, x, y, z)$	$f_3(w, x, y, z)$	$f_4(w, x, y, z)$
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

(a)
$$f_1(w, x, y, z)$$

$$f_1(w, x, y, z) = w + xz + xy = w + x(y + z)$$

$$f_2(w, x, y, z) = xy'z' + x'z + x'y = xy'z' + x'(y + z)$$

(c)
$$f_3(w, x, y, z)$$

		yz 00	01	11	10
wx	00	1		1	
	01	1		1	
	11	X	X	X	X
	10	1		X	X

$$f_3(w, x, y, z) = y'z' + yz$$

(d) $f_4(w, x, y, z)$

	yz 00		01	11	10	
wx 00	1	7			1	
01	1				1	
11	X		X	X	X	
10_	1	_		X	X	

$$f_4(w, x, y, z) = z'$$

Contoh 7.43

Minimisasi fungsi Boolean berikut (hasil penyederhanaan dalam bentuk baku SOP dan bentuk baku POS):

$$f(w, x, y, z) = \Sigma (1, 3, 7, 11, 15)$$

dengan kondisi *don't care* adalah $d(w, x, y, z) = \Sigma (0, 2, 5)$

Penyelesaian:

Peta Karnaugh dari fungsi tersebut adalah:

Hasil penyederhanaan dalam bentuk SOP

$$f(w, x, y, z) = yz + w'z$$
 (SOP) (garis penuh)

dan bentuk baku POS adalah

$$f(w, x, y, z) = z (w' + y)$$
 (POS) (garis putus 2)

Metode Quine-McCluskey

- Metode Peat Karnaugh tidak mangkus untuk jumlah peubah > 6 (ukuran peta semakin besar).
- Metode peta Karnaugh lebih sulit diprogram dengan komputer karena diperlukan pengamatan visual untuk mengidentifikasi minterm-minterm yang akan dikelompokkan.
- Metode alternatif adalah metode Quine-McCluskey .
 Metode ini mudah diprogram.

Contoh 7.46

Sederhanakan fungsi Boolean $f(w, x, y, z) = \Sigma (0, 1, 2, 8, 10, 11, 14, 15).$

Penyelesaian:

(i) Langkah 1 sampai 5:

	(a)		(b)	(c)	
term	w x y z	term	wxyz	term	wxyz
0	0000√	0,1	0 0 0 -	0,2,8,10	- 0 - 0
		0,2	00-0√	0,8,2,10	- 0 - 0
1	$0\ 0\ 0\ 1\ $	0,8	- 0 0 0 √		
2	$0\ 0\ 1\ 0\ $			10,11,14,15	1 - 1 -
8	$1\ 0\ 0\ 0\ $	2,10	- 0 1 0 √	10,14,11,15	1 - 1 -
		8,10	10-0√		
10	$1\ 0\ 1\ 0\ $				
		10,11	1 0 1 - √		
11	$1\ 0\ 1\ 1\ $	10,14	1 - 1 0 √		
14	$1 \ 1 \ 1 \ 0 \ $				
		11,15	1 - 1 1 √		
15	$1\ 1\ 1\ 1\ $	14,15	1 1 1 - 1		

(i) Langkah 6 dan 7:

				mii	ntern	ı		
Bentuk prima	0	1	2	8	10	11	14	15
 0,1	×	×						
 0,2,8,10	×		×	×	×			
 10,11,14,15					×	×	×	×
		*	*	*		*	*	*
						$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Bentuk prima yang terpilih adalah:

Semua bentuk prima di atas sudah mencakup semua *minterm* dari fungsi Boolean semula. Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = w'x'y' + x'z' + wy.

Contoh 7.47

Sederhanakan fungsi Boolean $f(w, x, y, z) = \Sigma (1,4,6,7,8,9,10,11,15)$

Penyelesaian:

(i) Langkah 1 sampai 5:

(a)			(b)	(c)		
term	w x y z	term	wxyz	term	w x y z	
1	0 0 0 1 √	1,9	- 0 0 1	8,9,10,11	10	
4	$0\ 1\ 0\ 0\ $	4,6	01-0	8,10,9,11	10	
8	$1\ 0\ 0\ 0\ $	8,9	1 0 0 - √			
		8,10	10-0√			
6	$0\ 1\ 1\ 0\ $					
9	$1\ 0\ 0\ 1\ $	6,7	0 1 1 -			
10	$1\ 0\ 1\ 0\ $	9,11	10-1√			
		10,11	1 0 1 - √			
7	$0\ 1\ 1\ 1\ $					
11	$1\ 0\ 1\ 1\ $	7,15	- 1 1 1			
		11,15	1 - 1 1			
15	$1\ 1\ 1\ 1\ $					

(i) Langkah 6 dan 7

					mi	nterr	n			
	Bentuk prima	1	4	6	7	8	9	10	11	15
$\sqrt{}$	1,9	×					×			
	4,6		X	X						
	6,7			X	X					
	7,15				X					X
	11,15								X	×
	8,9,10,11					X	×	X	×	
		*	*			*		*		
								$\sqrt{}$		

Sampai tahap ini, masih ada dua *minterm* yang belum tercakup dalam bentuk prima terpilih, yaitu 7 dan 15. Bentuk prima yang tersisa (tidak terpilih) adalah (6,7), (7,15), dan (11, 15). Dari ketiga kandidat ini, kita pilih bentuk prima (7,15) karena bentuk prima ini mencakup *minterm* 7 dan 15 sekaligus.

					mi	ntern	n			
	Bentuk prima	1	4	6	7	8	9	10	11	15
V	1,9	×					×			
	4,6		×	×						
	6,7			×	×					
$\sqrt{}$	7,15				×					×
	11,15								×	×
$\sqrt{}$	8,9,10,11					×	×	×	×	
		*	*			*		*		

Sekarang, semua *minterm* sudah tercakup dalam bentuk prima terpilih. Bentuk prima yang terpilih adalah:

1,9	yang bersesuaian dengan term	x' y ' z
4,6	yang bersesuaian dengan term	w'xz'
7,15	yang bersesuaian dengan term	xyz
8,9,10,11	yang bersesuaian dengan term	wx'

Dengan demikian, fungsi Boolean hasil penyederhanaan adalah f(w, x, y, z) = x'y'z + w'xz' + xyz + wx'.

Latihan:

а	b	a+b	a.B	(a+b) '	(a.b)'	(a+b).(a.b)	(a+b)+(a.b)
0	0						
0	1						
1	0						
1	1						

(a+b) ' . (a.b) '	(a+b) ' + (a.b) '	((a+b) ' . (a.b) ') '

Referensi

- 1. Soepono Soeparlan, 1995, Pengantar Organisasi Sistem Komputer, Diktat Gunadarma.
- 2. Roger L Tokheim, Prinsip-prinsip Digital, seri Buku Schaum