

Uncertainty

Inference

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Setting up an Inference Problem

• Given a set of related random variables, $\{X_1, \dots, X_n\}$, we often wish to compute

$$P(Q|E) := P(Q_1, \ldots, Q_{\nu}|E_1, \ldots, E_{w}),$$

where
$$Q = \{Q_1, \dots, Q_v\}$$
, $E = \{E_1, \dots, E_w\} \subseteq \{X_1, \dots, X_n\}$, and $Q \cap E = \emptyset$.

Example: Catching a Flight

- We defined a Bayesian network over {F, T, S, M, N}, where:
 - F is whether we catch the flight or not
 - T is when we get to the airport
 - *S* is how long it takes to get through security
 - M is the method of transport we choose
 - N is how many bags we have
- We seek the probability of catching the flight given the method of transport, i.e., P(F|M).

Setting up an Inference Problem

• We can express P(Q|E) in terms of the joint distribution of X_1, \ldots, X_n . We have

$$P(Q|E) = \frac{P(Q_1, \dots, Q_v, E_1, \dots, E_w)}{P(E_1, \dots, E_w)}$$

$$= \frac{P(Q_1, \dots, Q_v, E_1, \dots, E_w)}{\sum_{Q_i} \sum_{\text{dom}(Q_i)} P(Q_1, \dots, Q_v, E_1, \dots, E_w)}$$

$$= \frac{\sum_{X_i \notin Q \cap E} \sum_{\text{dom}(X_i)} P(X_1, \dots, X_n)}{\sum_{X_i \notin E} \sum_{\text{dom}(X_i)} P(X_1, \dots, X_n)}$$

Simplifying the Joint Distribution with Conditional Independence

• In general, the joint distribution can be written as

$$P(X_1,\ldots,X_n) = P(X_1) \prod_{i\neq 1} P(X_i|X_1,\ldots,X_{i-1}).$$

• We saw that if X_1, \ldots, X_n are expressed as a Bayesian network, then X_i is independent of its non-descendants given its parents, i.e.,

$$P(X_i|S \cup pts(X_i)) = P(X_i|pts(X_i)),$$

where $pts(X_i)$ are the parents of X and S is a subset of X_i 's non-descendants.

Simplifying the Joint Distribution with Conditional Independence

- Since a Bayesian network must be acyclic, if we also assume it to be finite:
 - it must contain at least one node without any parents,
 - no node can be an ancestor and descendant of another node
- Thus, we can assume without loss of generality that X_1, \ldots, X_n ordered such that if X_i is a descendant of X_i , then i > i.
- In other words, we can assume that X_1, \ldots, X_{i-1} are not descendants of X_i .
- Therefore, we can write

$$P(X_1,\ldots,X_n)=\prod_i P(X_i|\mathsf{pts}X_i).$$

Modelling Uncertain Situations

- Example: Catching a Flight
 - Suppose $dom(F) = \{yes, no\}, dom(T) = \{early, late\}, dom(S) = \{fast, slow\}, dom(M) = \{train, car\}, and dom(N) = \{0, 1, 2\}.$
 - The probability of catching the flight if we take the train is P(F = yes | M = train).

P(M = train)
0.6

M	N	P(T = early M, N)
train	0	0.95
train	1	0.8
train	2	0.65
car	0	0.7
car	1	0.7
car	2	0.7

P(N=0)	P(N=1)
0.4	0.5

N	P(S = fast N)
0	0.9
1	0.8
2	0.7

T	S	P(F = yes T, S)
early	fast	0.9
early	slow	0.7
late	fast	0.7
late	slow	0.3

Modelling Uncertain Situations

• We first express the probability in terms of the joint distribution, i.e.,

$$P(F = \text{yes}|M = \text{train}) = \frac{P(F = \text{yes}, M = \text{train})}{\sum_{\forall F} P(F, M = \text{train})}$$

where

$$P(F, M = \text{train}) = \sum_{\forall N, T, S} P(M = \text{train}, N, T, S, F)$$

$$= \sum_{\forall N} \sum_{\forall T} \sum_{\forall S} P(M = \text{train}) P(N) P(T|M = \text{train}, N) P(S|N) P(F|T, S)$$

$$= P(M = \text{train}) \sum_{\forall N} P(N) \sum_{\forall T} P(T|M = \text{train}, N) \underbrace{\sum_{\forall S} P(F|T, S) P(S|N)}_{g_1(N, F, T)}$$

 $g_3(F)$

• First, we compute

$$g_1(N, F, T) = P(F|T, S = \text{fast})P(S = \text{fast}|N) + P(F|T, S = \text{slow})P(S = \text{slow}|N)$$

N	F	T	$g_1(N,F,T)$
0	yes	early	$0.9 \times 0.9 + 0.7 \times 0.1 = 0.88$
0	yes	late	$0.7 \times 0.9 + 0.3 \times 0.1 = 0.66$
0	no	early	$0.1 \times 0.9 + 0.3 \times 0.1 = 0.12$
0	no	late	$0.3 \times 0.9 + 0.7 \times 0.1 = 0.34$
1	yes	early	$0.9 \times 0.8 + 0.7 \times 0.2 = 0.86$
1	yes	late	$0.7 \times 0.8 + 0.3 \times 0.2 = 0.62$
1	no	early	$0.1 \times 0.8 + 0.3 \times 0.2 = 0.14$
1	no	late	$0.3 \times 0.8 + 0.7 \times 0.2 = 0.38$
2	yes	early	$0.9 \times 0.7 + 0.7 \times 0.3 = 0.84$
2	yes	late	$0.7 \times 0.7 + 0.3 \times 0.3 = 0.58$
2	no	early	$0.1 \times 0.7 + 0.3 \times 0.3 = 0.16$
2	no	late	$0.3 \times 0.7 + 0.7 \times 0.3 = 0.42$

Next, we compute

$$g_2(N,F) = P(T = \mathsf{early}|M = \mathsf{train}, N)g_1(N,F,T = \mathsf{early}) + P(T = \mathsf{late}|M = \mathsf{train}, N)g_1(N,F,T = \mathsf{late})$$

N	F	$g_2(N,F)$			
0	yes	$0.95 \times 0.88 + 0.05 \times 0.66 = 0.869$			
0	no	$0.95 \times 0.12 + 0.05 \times 0.34 = 0.131$			
1	yes	$0.80 \times 0.86 + 0.20 \times 0.62 = 0.821$			
1	no	$0.80 \times 0.14 + 0.20 \times 0.38 = 0.188$			
2	yes	$0.65 \times 0.84 + 0.35 \times 0.58 = 0.749$			
2	no	$0.65 \times 0.16 + 0.35 \times 0.42 = 0.251$			

• We compute

$$g_3(F) = P(N = 0)g_2(N = 0, F) + P(N = 1)f^{(2)}(N = 1, F) + P(N = 2)g_2(N = 2, F)$$

F	$g_3(F)$
yes	$0.400 \times 0.869 + 0.500 \times 0.821 + 0.100 \times 0.749 = 0.8258$
no	$0.400 \times 0.131 + 0.500 \times 0.188 + 0.100 \times 0.251 = 0.1715$

Finally, we compute

$$P(F, M = \text{train}) = P(M = \text{train})f_3(F)$$

$$= \begin{cases} 0.6 \times 0.8258, F = \text{yes} \\ 0.6 \times 0.1715, F = \text{no} \end{cases}$$

$$= \begin{cases} 0.4971, F = \text{yes} \\ 0.1029, F = \text{no} \end{cases}$$

Marginalizing the joint distribution, we have

$$P(F = \text{yes}|M = \text{train}) = \frac{0.4971}{0.4971 + 0.1029} = \frac{0.4971}{0.6} = 0.8285.$$

• We can similarly compute P(F = yes|M = car) = 0.7958.

Inference via Variable Elimination: Factors

- Let us now formalize the previous procedure into an algorithm.
- We begin by formalizing the concept of factors from earlier.
- A **factor**, f, is a function such that:
 - the scope of the factor, denoted scp(f) is the set of variables it involves.
 - the input any assignment of f's scope, i.e., $\{X_i = x_i, \forall X_i \in \text{scp}(f)\}$.
 - The output is a real number.
- There are three operations on factors of particular interest:
 - restrictions
 - marginalizations
 - g products

Operations on Factors: Restrictions

• For any factor, f, any $K \subseteq \text{scp}(f)$ and $k \in \prod_{K_i \in K} \text{dom}(K_i)$ let $f_{K=k}$ denote the **restriction** of f under K = k, defined so that $\text{scp}(f_{K=k}) = \text{scp}(f) \setminus K$ and

$$f_{K=k}\left(\left\{X_{i}=x_{i},\forall X_{i}\in \mathrm{scp}(f_{K=k})\right\}\right)$$

$$=f\left(\left\{X_{i}=x_{i},\forall X_{i}\in \mathrm{scp}(f_{K=k})\right\}\cup\left\{K_{i}=k_{i},\forall K_{i}\in K\right\}\right)$$

_X	Υ	Z	f(X, Y, Z)			
Т	Т	Т	0.10			
Т	Т	F	0.08	X	Υ	$f_{Z=T}(X,Y)$
Т	F	Т	0.35	Т	Т	0.10
Т	F	F	0.14	Т	F	0.35
F	Т	Т	0.15	F	Т	0.15
F	Т	F	0.12	F	F	0.05
F	F	Т	0.05	,	'	
F	F	F	0.02			

Operations on Factors: Marginalization

• For any factor, f and $Z \in \text{scp}(f)$, let $f_{\sum Z}$ denote the **marginalization** of f under Z, defined so that $\text{scp}(f_{\sum Z}) = \text{scp}(f) \setminus Z$, and

$$f_{\sum Z}\left(\left\{X_{i}=x_{i},\forall X_{i}\in \text{scp}(f_{\sum Z})\right\}\right)$$

$$=\sum_{\forall z\in \text{dom}(Z)}f\left(\left\{X_{i}=x_{i},\forall X_{i}\in \text{scp}(f_{\sum Z})\right\}\cup \left\{Z=z\right\}\right)$$

Χ	Υ	Z	f(X, Y, Z)			
Т	Т	Т	0.10			
Т	Т	F	0.08	X	Y	$f_{\sum Z}(X,Y)$
Т	F	Т	0.35	Т	Т	0.18
Т	F	F	0.14	Т	F	0.49
F	Т	Т	0.15	F	T	0.27
F	Т	F	0.12	F	F	0.07
F	F	Т	0.05		'	'
F	F	F	0.02			

Operations on Factors: Products

• For any pair of factor, $f^{(1)}$ and $f^{(2)}$, let $f^{(1)}f^{(2)}$ denote their **product** of f under K=k, defined so that $\operatorname{scp}(f^{(1)}f^{(2)})=\operatorname{scp}(f^{(1)})\cup\operatorname{scp}(f^{(2)})$ and

$$K=k$$
, defined so that $\mathsf{scp}(f^{(1)}f^{(2)})=\mathsf{scp}(f^{(1)})\cup\mathsf{scp}(f^{(2)})$ and $f^{(1)}f^{(2)}\left(\left\{X_i=x_i, orall X_i\in\mathsf{scp}(f^{(1)}f^{(2)})
ight\}
ight)$

 $= f^{(1)}\left(\left\{X_i = x_i, \forall X_i \in \mathsf{scp}(f^{(1)})\right\}\right) f^{(2)}\left(\left\{X_i = x_i, \forall X_i \in \mathsf{scp}(f^{(2)})\right\}\right)$

Variable Elimination Algorithm

- We seek P(Q|E) for some $Q, E \subseteq \{X_1, \dots, X_n\}$, where $Q \cap E = \emptyset$.
- It is sufficient to find P(Q, E). We proceed as follows:
 - ① Define a set of factors, $F = \{f^{(1)}, \dots, f^{(n)}\}$, where $f^{(i)} = P(X_i|pts(X_i))$.
 - ② For each $f \in F_0$ such that $scp(f) \cap E \neq \emptyset$, replace f with a restriction of $scp(f) \cap E$.
 - **3** Eliminate Z_i , for each $Z_i \notin Q \cup E$ as follows:
 - a Define $F(Z_i) := \{f : Z_i \in \operatorname{scp}(f)\}\$
 - **b** Replace F with $F \setminus F(Z_i)$.
 - \bigcirc Compute and add the following factor to F:

$$\sum_{z_i \in \mathsf{dom}(Z_i)} \prod_{f \in F(Z_i)} z_i$$

4 We can now compute $P(Q, E) = \prod_{f \in F} f$.

Variable Elimination: Elimination Orderings

- The order in which we eliminate the variables can have a significant impact on the size of the resulting factors.
- Example: Catching a Flight
 - Using the elimination ordering, S, T, N, we needed to compute the factors:
 - $g_1(N, F, T)$, whose size is $|dom(N)| \times |dom(F)| \times |dom(T)| = 3 \times 2 \times 2 = 12$.
 - $g_2(N, F)$, whose size is $|dom(N)| \times |dom(F)| = 3 \times 2 = 6$
 - $g_3(F)$, whose size is |dom(F)| = 2.
 - If we had instead used the elimination ordering, N, T, S, we would need to compute the factors:
 - $g_1(S, T)$, whose size is $|dom(S)| \times |dom(T)| = 2 \times 2 = 4$.
 - $g_2(S, F)$, whose size is $|dom(S)| \times |dom(F)| = 2 \times 2 = 4$.
 - $g_3(F)$, whose size is |dom(F)| = 2.
 - We would have halved the total entries.

Complexity of Variable Elimination

- Let us formally analyze the complexity of the variable elimination algorithm.
- To do this, we will need to introduce the concept of a hyper-graph.
- A hyper-graph is a generalization of a graph in which the edges, called hyper-edges, can contain more than two vertices.

- Whenever a variable, X, is eliminated, the resulting factor's scope consists of:
 - X's children
 - X's parents
 - the other parents of X's children, not including X itself
- We refer to these variables as X's **Markov blanket**, denoted mbk(X).
- On a hyper-graph, this is equivalent to taking all hyper-edges that include X, replacing them with their union minus X, and then removing X.

Example: Catching a Flight

• The Bayesian network on the left can be represented by the hyper-graph on the right.

• To eliminate S, we first replace the hyper-edges $\{S, N\}, \{F, T, S\}$ with $\{F, T, N\}$ and then remove S from the hyper-graph.

• To eliminate T, we first replace the hyper-edges $\{F, T, N\}$, $\{T, M, N\}$ with $\{F, N, M\}$ and then remove T from the hyper-graph.

• To eliminate N, we first replace the hyper-edges $\{N\}$, $\{F, M, N\}$ with $\{F, M\}$ and then remove N from the hyper-graph.

• The resulting hyper-edges will only include M and F.

Complexity of Variable Elimination

- We see that variable elimination creates a sequence of hyper-edges that depends on the elimination ordering.
- The elimination width, *k* of the sequence is the maximum number of variables over all hyper-edges.
- Thus, variable elimination must create and store a factor whose number of entries is exponential in k, i.e., the time/space complexity is $O(D^k)$, where D is the maximum cardinality over the variables' domains.
- Finding the optimal ordering, i.e., the one that minimizes the elimination width is an NP-Hard problem. Thus, we often use heuristics instead.

Heuristics for Elimination Ordering

- We present some commonly used heuristics:
 - Eliminate the variable with the fewest parents.
 - 2 Eliminate the variable whose parent set has the smallest domain, where

$$|\mathsf{dom}(\mathsf{pnt}(X))| = \prod_{Z \in \mathsf{pnt}(X)} |\mathsf{dom}(Z)|.$$

- Eliminate the variable with the smallest Markov blanket
- 4 Eliminate the variable whose Markov blanket has the smallest domain, where

$$|\operatorname{dom}(\operatorname{mbk}(X))| = \prod_{Z \in \operatorname{mbk}(X)} |\operatorname{dom}(Z)|.$$