Quadratic Formula

Stephen Giang July 13, 2021

$$ax^{2} + bx + c = 0$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2} = 0$$

$$\left(x + \frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2} \left(x + \frac{b}{2a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{-c}{a} + \frac{b^{2}}{4a^{2}}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{-4ac}{4a^{2}} + \frac{b^{2}}{4a^{2}}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$\left(x + \frac{b}{2a}\right) = \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$\left(x + \frac{b}{2a}\right) = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Q.E.D