

TRAFFIC VOLUME PREDICTION USING DEEP LEARNING

INTELLIGENT SYSTEMS

Francisco Carvalho 111000

Faculty: João Sousa

04/02/2025

DATA OVERVIEW

- O1. DATATIME
- - Weather Description

TRAFFIC VOLUME

INDIVIDUAL FEATURE ANALYSIS - NUMERICAL FEATURES

INDIVIDUAL FEATURE ANALYSIS - CATEGORICAL FEATURES

CORRELATION ANALYSIS

TIME SERIES ANALYSIS

The time series plot demonstrates that traffic volume fluctuates significantly, indicating periods of higher and lower traffic.

PREPROCESSING

Handling Missing Values

The analysis confirmed that the dataset did not contain any missing entries

Encoding Categorical Variables

This approach creates binary variables for each unique category

Filtering Data for a Consistent Time Period

This ensured that only continuous and reliable data was used for training and evaluation

Handling Duplicate and Incomplete Timestamps

The dataset was reindexed to enforce an hour frequency, ensuring that all hours within the recorded period were represented

Data Scaling and Splitting

To evaluate model performance effectively, the dataset was divided into training and testing subsets.

MODEL DEVELOPMENT

XGBOOST LSTM GRU TCN Final Training **Feature Importance** Hyperparameter Tuning **Feature Selection Testing**

LONG SHORT-TERM MEMORY (LSTM)

Type of recurrent neural network (RNN) that are well-suited for modeling sequential data, particularly when long-term dependencies need to be captured

HYPERPARAMETER TUNING

- Number of LSTM Units: [32, 64]
- Learning Rates: [0.00001, 0.00005, 0.0001]
- Dropout Rates: [0.2, 0.5]
- Optimizers: Adam, RMSprop
- Activation Functions: 'relu', 'tanh'
- Number of Layers: [1, 2, 3]

The best-performing model configuration was identified and saved with the following hyperparameters:

- Number of Layers: 3
- LSTM Units per layer: [32, 32, 32]
- Optimizer: Adam
- Learning Rate: 0.0001
- Dropout Rate: 0.2
- Activation Function: 'tanh'

MODEL EVALUATION WITH THE BEST CONFIGURATION

Forecasting Evaluation Metrics

FEATURE IMPORTANCE AND SELECTION

FINAL MODEL TRAINING WITH SELECTED FEATURES

The performance did not improve as expected, indicating that feature selection might have removed useful information or that the model struggled to generalize with the reduced feature set

GATED RECURRENT UNIT (GRU)

Simplified variant of LSTMs that use gating mechanisms to capture dependencies in sequential data while reducing computational complexity

HYPERPARAMETER TUNING

- GRU Units: [32, 64, 96, 128, 160, 192, 224, 256]
- Extra Layer: True/False
- GRU Units for Second Layer: [16, 32, 48, 64, 80, 96, 112, 128]
- Learning Rates: [0.01, 0.001, 0.0001]

The **best configuration** identified was:

- GRU Units: 192
- Extra Layer: True
- GRU Units for Second Layer: 16
- Learning Rates: 0.0001

MODEL EVALUATION WITH THE BEST CONFIGURATION

Forecasting Evaluation Metrics

FEATURE IMPORTANCE AND SELECTION

FINAL MODEL TRAINING WITH SELECTED FEATURES

The final results indicated a decline in performance compared to the previous experiments, suggesting that the GRU model struggled to improve predictions despite feature selection efforts

TEMPORAL CONVOLUTIONAL NETWORK (TCN)

Type of deep learning model designed for sequential data processing. TCNs leverage causal convolutions with dilation, allowing them to capture long-range dependencies efficiently without suffering from vanishing gradient issues.

HYPERPARAMETER TUNING

- Number of Layers: [1, 2, 3, 4]
- Filters per Layer: [16, 32, 48, 64, 80, 96, 112, 128]
- Kernel Sizes: [2, 3, 5, 7]
- Dropout Rate: [0.2, 0.3, 0.4, 0.5]
- Activation Functions: ['relu', 'tanh', 'sigmoid', 'swish']
- Learning Rates: [1e-5, 1e-4, 1e-3, 1e-2]

The best configuration identified was:

- Number of Layers: 1
- Filters: 112
- Kernel Size: 2
- Dropout Rate: 0.3
- Activation Function: 'sigmoid'
- Learning Rate: 0.00086

MODEL EVALUATION WITH THE BEST CONFIGURATION

Forecasting Evaluation Metrics

FEATURE IMPORTANCE AND SELECTION

FINAL MODEL TRAINING WITH SELECTED FEATURES

Upon evaluation, the R² value improved slightly, reaching 0.01. While this indicates a small gain in predictive performance, the model still struggles to capture significant variance in traffic volume.

EXTREME GRADIENT BOOSTING (XGBOOST)

Highly efficient and scalable machine learning algorithm based on gradient boosting. It has been widely used in various predictive modeling tasks due to its ability to handle missing values, prevent overfitting, and efficiently process large datasets

HYPERPARAMETER TUNING

- Number of Estimators: [50, 100, 200]
- Max Depth: [3, 6]
- Learning Rate: [0.01, 0.1, 0.3]
- Subsample: [0.7, 1.0]
- Colsample by Tree: [0.7, 1.0]
- Gamma: [0, 0.1]
- Min Child Weight: [1, 3]

The **best configuration** identified was:

- Number of Estimators: 200
- Max Depth: 6
- Learning Rate: 0.1
- Subsample: 0.7
- Colsample by Tree: 1.0
- Gamma: 0.1
- Min Child Weight: 3

MODEL EVALUATION WITH THE BEST CONFIGURATION

Forecasting Evaluation Metrics

FEATURE IMPORTANCE AND SELECTION

FINAL MODEL TRAINING WITH SELECTED FEATURES

The performance metrics, including R², mean absolute error (MAE), and root mean squared error (RMSE), were computed

BEST PERFORMING MODEL SELECTION

Model	RMSE	MAE	MAPE	R ²
Long Short-Term Memory (LSTM)	1077.73	807.17	0.33	0.74
Gated Recurrent Uni (GRU)	1881.67	1340.56	0.50	0.20
Temporal Convolutional Network (TCN)	2091.24	1909.85	>1	0.01
Extreme Gradient Boosting (XGBosst)	1988.19	1729.43	>1	0.05

Based on these results, the LSTM model emerged as the best-performing model, achieving the highest R² value (0.74) and the lowest RMSE and MAE scores

ANALYSIS OF THE MODELS

Poorly Performing Models

Best Performing Model

THE ROLE OF THE DATASET IN POOR MODEL PERFORMANCE

- 1 FEATURE QUALITY AND RELEVANCE
- 02 DATA NOISE AND INCONSISTENCIES
- 13 TEMPORAL RESOLUTION ISSUES
- 1 EXOGENOUS FACTORS NOT CONSIDERED

RESULTS DISCUSSION

Dataset enrichment

More refined feature selection process

Hybrid models

THANKYOU Do you have any question?