Relatorio 1 Fisica Experimental 3 - Turma E

Grupo 2

Luis Humberto Chaves Senno - 180053922 Marcos Eduardo Monteiro Junqueira - 180023691 Emanuel Couto Brenag - 190057131

27 de Março, 2019

1 Introdução

1.1 Introdução

As Leis de Kirchhoff são aplicadas em circuitos elétricos que apresentam mais de um resistor, estando os outros em série ou em paralelo com o primeiro.

Para entender as leis de Kirchhoff, é essencial o entendimento de outros dois conceitos, os Nós e as Malhas: Nó: é um ponto onde três (ou mais) condutores são ligados.

Malha: é qualquer caminho condutor fechado.

A primeira lei de Kirchhoff também é conhecida como Lei dos Nós. Ela diz que em qualquer nó, a soma de correntes que apontam para fora dele é igual a soma das correntes que chegam. Ela confirma que não há cargas acumuladas nos Nós. (Fórmula do somatório dos i's=0)

A segunda lei de Kirchhoff é conhecida como Lei das Malhas. Ela diz que a soma das forças eletromotrizes de uma malha é igual a soma das quedas de potencial da mesma. (Somatório de E = Somatório de R.i).

1.2 Materiais

- 1 Resistor de $390\Omega(R_1)$
- 1 Resistor de $1k\Omega(R_2)$
- 1 Resistor de $1M\Omega(R_3)$
- 1 Fonte Controlada de Tensão/Corrente
- 2 Multímetros de Bancada digitais modelo EEL-8002

1.3 Objetivo

O experimento tem como objetivo a familiarização dos conceitos básicos de montagem e análise de um circuito elétrico e utilização de um multímetro. Além disso serão utilizados esses conhecimentos para verificação das duas leis de Kirchoff, fundamentais para a análise de circuitos.

2 Dados Experimentais

2.1 Parte I - Uso dos Multímetros e Resistencias Internas

Tabela 1 – Voltagem e Corrente no Resistor $1(390\Omega)$

V_f	V	I
$4,0 \pm 0,1V$	$3,962 \pm 0,001V$	$10,492 \pm 0,001 mA$
$8,0 \pm 0,1V$	$8,090 \pm 0,001V$	$21,44 \pm 0,01 mA$
$12,0 \pm 0,1V$	$12,125 \pm 0,001V$	$32, 10 \pm 0, 01mA$
$16,0 \pm 0,1V$	$16,163 \pm 0,001V$	$42,72 \pm 0,01mA$
$20,0 \pm 0,1V$	$20,12 \pm 0,01V$	$53,23 \pm 0,01mA$

Tabela 2 – Voltagem e Corrente no Resistor $2(1k\Omega)$

V_f	V	I
$4,0 \pm 0,1V$	$4,003 \pm 0,001V$	$3,874 \pm 0,001 mA$
$8,0 \pm 0,1V$	$8,030 \pm 0,001V$	$7,765 \pm 0,001 mA$
$12,0 \pm 0,1V$	$12,053 \pm 0,001V$	$11,665 \pm 0,001mA$
$16,0 \pm 0,1V$	$16,038 \pm 0,001V$	$15,515 \pm 0,001mA$
$20,0 \pm 0,1V$	$19,986 \pm 0,001V$	$19,333 \pm 0,001mA$

Tabela 3 – Voltagem e Corrente no Resistor $3(1M\Omega)$

V_f	V	I
$4,0 \pm 0,1V$	$4,107 \pm 0,001V$	$0,004 \pm 0,001 mA$
$8,0 \pm 0,1V$	$8,085 \pm 0,001V$	$0,009 \pm 0,001 mA$
$12,0 \pm 0,1V$	$12,134 \pm 0,001V$	$0,014 \pm 0,001 mA$
$16,0 \pm 0,1V$	$16,184 \pm 0,001V$	$0,018 \pm 0,001mA$
$20,0 \pm 0,1V$	$20,25 \pm 0,01V$	$0,023 \pm 0,001 mA$

Tabela 4 – Voltagem e Corrente no Resistor $3(1M\Omega)$ com Amperímetro Reposicionado

V_f	V	I
$4,0 \pm 0,1V$	$4,068 \pm 0,001V$	$0,003 \pm 0,001 mA$
$8,0 \pm 0,1V$	$8,100 \pm 0,001V$	$0,007 \pm 0,001 mA$
$12,0 \pm 0,1V$	$12,120 \pm 0,001V$	$0,012 \pm 0,001 mA$
$16,0 \pm 0,1V$	$16,219 \pm 0,001V$	$0,016 \pm 0,001mA$
$20,0 \pm 0,1V$	$20,22 \pm 0,01V$	$0,020 \pm 0,001 mA$

Onde:

 V_f = Valor da Voltagem Marcado na Fonte

V= Valor da Voltagem Marcado pelo Multímetro

I =Valor da Corrente Marcado pelo Multímetro

As tabelas 1,2,3 foram feitos com dados obtidos a partir de medições no circuito a seguir:

Já os dados da tabela 4 foram obtidos do seguinte circuito:

2.2 Parte II - Lei das Malhas

Tabela 5 – Resistores em Serie

V_f	V_{R1}	V_{R2}	V_{ab}	I
$10,0 \pm 0,1V$	$2,618 \pm 0,001V$	$7,380 \pm 0,001V$	$10,071 \pm 0,001V$	$7,134 \pm 0,001mA$
$20,0 \pm 0,1V$	$5,369 \pm 0,001V$	$14,701 \pm 0,001V$	$20,07 \pm 0,01V$	$14,213 \pm 0,001mA$

Onde:

 V_f = Valor da Voltagem Marcado na Fonte

 $V_{R1}=$ Valor da Voltagem Marcado pelo Multímetro em Paralelo com R1

 $V_{R2}=$ Valor da Voltagem Marcado pelo Multímetro em Paralelo com R2

 V_{R2} = Valor da Voltagem Marcado pelo Multímetro em Paralelo com R1 e R2 posicionados em série

 $I={\it Valor}$ da Corrente Marcado pelo Multímetro

As medicçõs para a tabela 5 foram feitas alternando o Voltímetro de posição conforme os circuitos abaixo:

2.3 Parte III - Lei do Nós

Tabela 6 - Resistores em Paralelo

V_f	I_{R1}	I_{R2}	I_{ab}	V_{ab}
$10,0 \pm 0,1V$	$26,67 \pm 0,01 mA$	$9,672 \pm 0,001 mA$	$36,45 \pm 0,01 mA$	$10,073 \pm 0,001V$
$20,0 \pm 0,1V$	$53,28 \pm 0,01 mA$	$19,364 \pm 0,001mA$	$75,58 \pm 0,01mA$	$20, 10 \pm 0, 01V$

Onde:

 V_f = Valor da Voltagem Marcado na Fonte

 I_{R1} = Valor da Corrente Marcado pelo Multímetro em Série com R1

 $I_{R2}=$ Valor da Corrente Marcado pelo Multímetro em Série com R2

 $I_{ab}=$ Valor da Corrente Marcado pelo Multímetro em Série com R1 e R2 posicionados em Paralelo

 $V_{ab}=$ Valor da Voltagem Marcado pelo Multímetro em Paralelo com R1 e R2 posicionados em Paralelo

Ao mudar a posição do Amperímetro de acordo com o circuito abaixo foi possível a obtenção dos dados da tabela acima.

3 Análise dos Dados

3.1 Parte I - Uso dos Multímetros e Resistências Internas

Figura 1 – Tensão por Corrente nos Resistores 1 e 2

O gráfico acima refere-se a corrente elétrica medida no multímetro sendo usado como amperímetro em função da voltagem no terminal dos resistores de 390Ω e 1000Ω , medida pelo voltímetro.

Utilizou-se o ajuste linear y= ax+b, onde os valores de cada um dos parâmetros da função são:

$$390\Omega$$
, A= 0,37926 B= -0,03297 1000Ω , A= 1,0338 B= -0,001192

Associando o gráfico com a lei de Ohm, é perceptível que os valores encontrados para os coeficientes angulares são muito próximos aos valores indicados pelo fabricante dos resistores(ajustando as unidades de medida), levando em consideração que esse desvio é aceitável devido aos erros causados na hora da medição e outros erros da interação dos sensores com o meio.

Figura 2 – Tensão por Corrente no Resistor 3

O gráfico anexado faz uma comparação da corrente elétrica em função da voltagem, onde no primeiro caso ele apresenta a medida com o voltímetro ligado nos terminais do resistor de $1M\Omega$ e no segundo caso, com o voltímetro ligado nos terminais da associação do resistor de $1M\Omega$ com o amperímetro.

Utilizou-se o ajuste linear y= ax+b onde os valores de cada um dos parâmetros da função são:

$$1M\Omega$$
, A= 938,52 B= 1,2585 $1M\Omega$ + Amperimetro, A= 858,02 B= -0,48287

Ao colocar os multímetros de forma distinta no circuito, obtém-se um valor diferente para a resistência, pois no segundo caso, a medição sofreu interferência da resistência interna, o que é possível visualizar no gráfico, que aponta claramente que no primeiro caso a resistência medida foi menor do que a medida na segunda, levando em consideração que a mesma contava com a interferência da resistência interna, contando com mais uma queda de tensão na lei das Malhas. Os dados também podem ser verificados pela operação com o coeficiente angular (A) na função y=Ax+B.

3.2 Parte 2 - Leis de Kirchhoff

Lei das Malhas:

Através da medição das voltagens de cada um dos resistores ligados em série consegue-se verificar a segunda lei de Kirchhoff, pois quando efetuamos a soma dos dois valores observados, pode-se verificar a incrível

aproximação com o valor da força eletromotriz fornecida pela fonte. Fazendo um teste para tensão de 20V fornecida pela fonte, a tensão medida nos terminais dos resistores foi de 5,369V para o resistor de 390 Ω e 14,701V para o resistor de 1,0 $k\Omega$, onde a soma será igual a 20,07V, valor que difere minimamente do fornecido pela eletromotriz devido a erros instrumentais. Sendo assim, conclui-se que a eletromotriz é igual a soma das quedas de tensão ao longo das malhas.

Lei dos Nós:

Para verificar a validade da primeira lei de Kirchhoff, mediu-se o valor da corrente elétrica em cada um dos terminais dos resistores. Somando as correntes, espera-se que i1+i2=i3. Para a Voltagem de 10V fornecida pela fonte, o valor da corrente no ramo do Resistor de 390Ω é de 26,67mA, e para o de $1k\Omega$ é de 9,672mA, sendo que a soma dos dois é de 36,342mA, que é em próximo do valor teórico de 36,45mA, e tem esse desvio devido a erros instrumentais.

É possível concluir que toda corrente que entra no nó é igual a corrente que sai, confirmando que não há acumulação de cargas nos nós.

4 Conclusão

A partir dos valores que foram obtidos experimentalmente, realizando os cálculos da lei dos nós, verifica-se que a soma das correntes que saem e que entram resulta em um número extremamente próximo de 0, numa margem coberta pelo erro experimental. Também verificou-se que a soma das eletromotrizes é igual a soma das quedas de tensão (R.i), podendo assim confirmar e afirmar que as duas leis de Kirchhoff são válidas.

5 Bibliografia

Todas as imagens de circuitos foram retiradas diretamente do roteiro do experimento, localizado no ambiente virtual do Departamento de Fisica da UnB.

https://ifserv.fis.unb.br/moodle/

https://pt.wikipedia.org/wiki/Leis_de_Kirchhoff

Halliday, Resnick, Krane. Física 3, LTC, 5a Ed., 2004