•00

Project Progress Pronouncement

Joshua N. Pritikin

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

Feb 2021

Progress Plunge

Variance decomposition of ordinal indicators from ABCD

Genome-wide structural equation modeling

Progress Plunge

Variance decomposition of ordinal indicators from ABCD

Genome-wide structural equation modeling

Mentors and collaborators

- ► Mike Neale
- ► Hermine Maes
- ▶ Daniel Bustamante

Adolescent Brain Cognitive Development (ABCD)

A unique data resource:

- ▶ 21 research sites
- ► About 12k children recruited at ages 9-10
- Assessments of neurocognition, physical and mental health, social and emotional functions, and culture and environment
- ► Multimodal structural and functional brain imaging and bioassays

A unique data resource:

- ▶ 21 research sites
- ► About 12k children recruited at ages 9-10
- Assessments of neurocognition, physical and mental health, social and emotional functions, and culture and environment
- ► Multimodal structural and functional brain imaging and bioassays

Under way since 2018

Data snapshot from 26 Mar 2019 (Wave 2)

ACE model

ABCD Covariates

Adjust each person for

- ► Age
- ► Sex
- ► Race (white, black, hispanic, asian, other)
- \triangleright Income (< 50k, >= 50k, >= 100k)
- ▶ Parents' education (< HS, HS, some, bachelor, post)
- ► Parents currently married (yes, no)

Adjust each person for

- ► Age
- ► Sex
- ► Race (white, black, hispanic, asian, other)
- \triangleright Income (< 50k, >= 50k, >= 100k)
- ▶ Parents' education (< HS, HS, some, bachelor, post)
- ► Parents currently married (yes, no)

Site - How much variance due to site?

A multilevel conceptualization

Each site could have a different mean T

When T is continuous

OpenMx's uses the Rampart optimization¹

```
Site 1
Twin pair 1
             Twin pair 2 Twin pair 3
```


¹Pritikin, Hunter, von Oertzen, Brick, and Boker (2017)

When T is ordinal

Cannot use Rampart optimization

Maximum likelihood

- ► Slow (quadrature integration over site variance)
- Custom software development
- ▶ Point estimates and standard errors

Full Bayes

- ► Slow (MCMC sampler)
- ► Custom software development
- ► Full posterior

Cannot use Rampart optimization

Maximum likelihood

- ► Slow (quadrature integration over site variance)
- Custom software development
- ▶ Point estimates and standard errors

Full Bayes

- ► Slow (MCMC sampler)
- ► Custom software development
- ► Full posterior

Cannot use Rampart optimization

Maximum likelihood

- ► Slow (quadrature integration over site variance)
- ► Custom software development
- ▶ Point estimates and standard errors

Full Bayes

- ► Slow (MCMC sampler)
- Custom software development
- ► Full posterior

Stan

State-of-the-art Hamiltonian Monte Carlo sampler²

Model definition

- ► Probabilistic programming language
- ightharpoonup C/C++-like syntax
- ► Automatic derivatives

Generally more efficient than BUGS/JAGS³

²https://chi-feng.github.io/mcmc-demo/app.html

³Plummer (2013)

Probit ordinal likelihood (1/4)

Let

- \blacktriangleright H > 2 be the number of response options
- $\triangleright y_i \in \{1, \dots, H\}$ be observed data for person i

Probability is assigned to less-than inequalities and a difference is used to obtain the probability of an observation.⁴

$$\pi(y_i = h) = \begin{cases} \pi(y_i \le h) - 0 & \text{if } 1 = h \\ \pi(y_i \le h) - \pi(y_i \le h - 1) & \text{if } 1 < h < H \\ 1 - \pi(y_i \le h - 1) & \text{if } h = H. \end{cases}$$

⁴Samejima (1969)

Let

- $ightharpoonup \Delta_h$ for $h \in \{1, \ldots, H-1\}$ be thresholds
- cumulative sum $\delta_h \equiv \sum_{a=1}^h \Delta_q$ for $h \in \{1, \dots, H-1\}$
- \triangleright θ_i be the latent continuous trait for person i

We define our response inequality as

$$\pi(y_i \le h \mid \theta_i, \delta_h) = \Phi(\theta_i - \delta_h) \quad \text{for } h \in \{1, \dots, H - 1\}$$

where Φ is the cumulative standard normal distribution.

Probit ordinal likelihood (3/4)

Single item, therefore thresholds Δ are fixed, not estimated

Set Δ_h to the standard normal quantile of the proportion of responses less than or equal to h,

$$\Delta_h = \Phi^{-1} \left(\frac{1}{N} \sum_{i=1}^N 1_{y_i \le h} \right)$$

Single item, therefore thresholds Δ are fixed, not estimated

Set Δ_h to the standard normal quantile of the proportion of responses less than or equal to h,

$$\Delta_h = \Phi^{-1} \left(\frac{1}{N} \sum_{i=1}^N 1_{y_i \le h} \right)$$

Model log likelihood is $\sum_{i=1}^{N} \log \pi(y_i = h \mid \theta_i, \Delta)$

Roughly

$$\theta_{i} = r^{0.5} a_{f} + c_{f} + (1 + (1 - r)^{0.5}) e_{i}$$

$$a \sim \mathcal{N}(0, 1)$$

$$c \sim \mathcal{N}(0, 1)$$

$$e \sim \mathcal{N}(0, 1)$$

where r is the relatedness (1 or .5) and f indexes families.⁵

⁵Kuhnert and Do (2003)

Reconcile

- ► Total variance is fixed at 1.0
- ► MCMC sampler can't deal with boundaries
- → Only consider proportions

Stan offers a built-in log odds transformation

$$a\in (0,1)$$

$$logit(a) = \frac{a}{1 - a}$$

$$v \in (-\infty, \infty)$$

$$logit(a) = \frac{a}{1-a}$$
$$logit^{-1}(v) = \frac{1}{1 + exp(-v)}$$

CE Model

Let i index persons, f index families

$$C \sim \beta(1.2, 1.2)$$
 $c_f \sim \mathcal{N}(0, 1)$ for $f \in \{1 \dots F\}$
 $E \sim \beta(1.2, 1.2)$ $r_i \sim \mathcal{N}(0, 1)$

Person i's family f known

$$R = E$$

$$\theta_i = C^{0.5} c_f + R^{0.5} r_i$$

Person i's family f unknown

$$R = \frac{C}{F-1} \sum_{f=1}^{F} c_f^2 + E$$
$$\theta_i = R^{0.5} r_i$$

variance structure R C E

mean structure

$$C^{0.5} \, c_f + R^{0.5} \, r_i$$

Initial exploration

Ordinal probit regression w/ covariates

- ► Nominally 5988 ordinal indicators
- 3673 excluded due to more than 50% missing or optimization failure
- \blacktriangleright Histogram of 2315 indicators by pseudo- R^2
- ▶ Roughly: proportion of variance accounted for by covariates

Indicators of interest

- Exclude 269 indicators that are 20% or more predicted by covariates
- ▶ 2046 indicators remain
- Histogram of total variance (treating ordinal as continuous)

Out of 2046 indicators:

- ▶ Bayesian sampling succeeded on 1565
- ► Maximum likelihood (ML) succeeded on 1026
- Both succeeded on 812

- optimization failure
- negative proportion estimates

Method Matters

Out of 2046 indicators:

- ▶ Bayesian sampling succeeded on 1565
- ► Maximum likelihood (ML) succeeded on 1026
- ▶ Both succeeded on 812

Many ML fits are hard to interpret due to

- ▶ optimization failure
- negative proportion estimates

Bayesian results generally look sane?

ABCD Parent Diagnostic Interview for DSM-5 Background Items Full

ksads_back_conflict_causes_p__2 "Click the things that cause conflict between you and your child"

Response options

- ► Messy room
- Not endorsed

Variance of 0.1, in top 6% among KSADS items

Approx 1% of variance accounted for by covariates

ML polychorics: MZ
$$\begin{bmatrix} 1.00 & 0.83 \\ 0.83 & 1.00 \end{bmatrix}$$
 DZ $\begin{bmatrix} 1.00 & 0.61 \\ 0.61 & 1.00 \end{bmatrix}$

ksads_back_conflict_causes_p__2

Messy room is about 40% genetic! Why SEs so different?

ABCD Parent Diagnostic Interview for DSM-5

ksads_14_425_p "Symptoms interfere with social academic or occupational functioning Past"

Response options

- Yes
- ► No

Variance of 0.23, in top 5% among KSADS items

Approx 3% of variance accounted for by covariates

ML polychorics: MZ
$$\begin{bmatrix} 1.00 & 0.87 \\ 0.87 & 1.00 \end{bmatrix}$$
 DZ $\begin{bmatrix} 1.00 & 0.22 \\ 0.22 & 1.00 \end{bmatrix}$

ksads_14_425_p

???

Next steps

Dissemination stage

- ▶ Re-run simulations, double check everything
- ► Refresh for wave 3 data (Nov 2020 snapshot)
- ► Write & Submit paper
- ► Re-resubmit paper
- ► Re-re-resubmit paper
- ► Celebrate acceptance
- ► Write grant to support further work

Dissemination stage

- ▶ Re-run simulations, double check everything
- ► Refresh for wave 3 data (Nov 2020 snapshot)
- ► Write & Submit paper
- ► Resubmit paper
- ► Re-resubmit paper

- ► Write grant to support further work

Dissemination stage

- ▶ Re-run simulations, double check everything
- ► Refresh for wave 3 data (Nov 2020 snapshot)
- ► Write & Submit paper
- ► Resubmit paper
- ► Re-resubmit paper

- ► Write grant to support further work

Dissemination stage

- ▶ Re-run simulations, double check everything
- ► Refresh for wave 3 data (Nov 2020 snapshot)
- ► Write & Submit paper
- ► Resubmit paper
- ► Re-resubmit paper
- ► Re-re-resubmit paper
- ► Write grant to support further work

Dissemination stage

- ▶ Re-run simulations, double check everything
- ► Refresh for wave 3 data (Nov 2020 snapshot)
- ► Write & Submit paper
- ► Resubmit paper
- ► Re-resubmit paper
- ► Re-re-resubmit paper
- ► Celebrate acceptance
- ► Write grant to support further work

Progress Plunge

Genome-wide structural equation modeling

GW-SEM Update

History

- ► Initial prototype⁶
- ▶ Rewritten as 2.0, published on CRAN⁷

In preparation

- ► Gene-age interaction⁸
- ► Comparison to summary GWAS analyses (e.g., Genomic SEM⁹)

⁶Verhulst, Maes, and Neale (2017)

 $^{^7\}mathrm{Pritikin},\,\mathrm{Verhulst},\,\mathrm{and}\,\,\mathrm{Neale}$ (in press)

⁸Verhulst, Pritikin, Clifford, and Prom-Wormley (submitted)

⁹Grotzinger et al. (2019)

Single-nucleotide polymorphism

Image by David Eccles (gringer), CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=2355125

amble ABCD ABCD/Method ABCD/Results **GW-SEM** End References

Genome-wide association studies

Ordinary regressions of SNP on microcirculation¹⁰

Case control design

Probit or logit regression¹¹

¹¹Lasse Folkersen CC BY 3.0,

Model construction

- ▶ buildItem regression, but can do multiple items
- buildOneFac single factor model similar to GEMMA & plink MANOVA
- ▶ buildOneFacRes single factor residuals model
- ▶ buildTwoFac two factor model (pleiotropy, comorbidity)

Continuous or ordinal indicators

Recent work

Does it matter whether we treat ordinal data as continuous or ordinal?

Continuous

Ordinal

Recent work

Does it matter whether we treat ordinal data as continuous or ordinal?

Examples of gene-age interactions

Hits by age

rs35189763 on Alcohol by Age

rs115745756 on Alcohol by Age

Compare

- ► GW-SEM w/ factor model
- ► GW-SEM w/ sum-score
- ► GenomicSEM on GWAS summary stats
- ► TATES principle component analysis

Compare

- ► GW-SEM w/ factor model
- ► GW-SEM w/ sum-score
- ► GenomicSEM on GWAS summary stats
- ► TATES principle component analysis

Preliminary results look too good to be true

BCD/Method ABCD/Results GW-SEM End Reference

Entrancing beauty of our backyard

- Grotzinger, A. D., Rhemtulla, M., de Vlaming, R., Ritchie, S. J., Mallard, T. T., Hill, W. D., . . . others (2019). Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. *Nature Human Behaviour*, 3(5), 513–525. doi: 10.1038/s41562-019-0566-x
- Kuhnert, P. M., & Do, K.-A. (2003). Fitting genetic models to twin data with binary and ordered categorical responses: a comparison of structural equation modelling and bayesian hierarchical models. *Behavior Genetics*, 33(4), 441–454.
- Plummer, M. (2013). JAGS version 3.4.0 user manual [Computer software manual]. Retrieved from http://mcmc-jags.sourceforge.net/
- Pritikin, J. N., Hunter, M. D., von Oertzen, T., Brick, T. R., & Boker, S. M. (2017). Many-level multilevel structural equation modeling: An efficient evaluation strategy. *Structural Equation Modeling: A Multidisciplinary Journal*, 24(5), 684-698. doi: 10.1080/10705511.2017.1293542
- Pritikin, J. N., Verhulst, B., & Neale, M. C. (in press). GW-SEM 2.0:

- Efficient, flexible and accessible multivariate GWAS.
- Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. *Psychometrika*, 34(1), 1–97. doi: 10.1007/BF03372160
- Verhulst, B., Maes, H. H., & Neale, M. C. (2017). GW-SEM: A statistical package to conduct genome-wide structural equation modeling. *Behavior Genetics*, 47(3), 345–359. doi: 10.1007/s10519-017-9842-6
- Verhulst, B., Pritikin, J. N., Clifford, J., & Prom-Wormley, E. (submitted). Using genetic marginal effects to study gene-environment interactions with GWAS data.

