

Przedmiot: Rozpoznawanie i przetwarzanie obrazów

Temat: Miary oceny klasyfikatorów

dr inż. Andrzej Burda
a.burda@vizja.pl

Statystyki klasyfikacyjne - macierz pomyłek (klasyfikatory binarne)

- ☐ W uczeniu maszynowym najczęściej mamy do czynienia z modelami do klasyfikowania obiektów.
- Aby stworzyć taki model, to zbiór przypadków uczących musi zawierać atrybut decyzyjny, informację o klasie obiektów w zbiorze przypadków uczących.

dokładność klasyfikacji (ang. <i>accuracy ACC</i>) ACC=(TP+TN)/(P+N)		Klasa predykowana		
		Klasyfikacja pozytywna	Klasyfikacja negatywna	
Klasa rzeczywista	Stan Pozytywny P	prawdziwie dodatnia, TP	fałszywie ujemna (<u>błąd drugiego rodzaju</u> , FN)	
	Stan Negatywny N	fałszywie dodatnia (<u>błąd pierwszego rodzaju</u> , FP)	prawdziwie ujemna, TN	

	ć klasyfikacji	Klasa predykowana	
(ang. acc	uracy ACC)	Klasyfikacja	Klasyfikacja
ACC=(TP-	+TN)/(P+N)	pozytywna	negatywna
Klasa	Stan Pozytywny P	prawdziwie dodatnia, TP	fałszywie ujemna (<u>błąd</u> <u>drugiego</u> <u>rodzaju</u> , FN)
rzeczywista	Stan Negatywny N	fałszywie dodatnia (<u>błąd</u> <u>pierwszego</u> <u>rodzaju</u> , FP)	prawdziwie ujemna, TN

Miary oceny klasyfikacji

Czułość (ang. sensitivity, Recall, True Positive Rate TPR) wskazująca w jakim procencie klasa faktycznie pozytywna została pokryta przewidywaniem pozytywnym. Przykład: jaki procent osób z oceną dobrą model zakwalifikował do klasy dobrych kredytobiorców.

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Specyficzność (ang. specificity SPC, True Negative Rate TNR) wskazująca w jakim procencie klasa faktycznie negatywna została pokryta przewidywaniem negatywnym. Przykład: jaki procent osób z oceną złą model zakwalifikował do klasy złych kredytobiorców.

$$TNR = \frac{TN}{N} = \frac{TN}{FP + TN}$$

dokładność klasyfikacji Klasa predykowana (ang. accuracy ACC) Klasyfikacja Klasyfikacja pozytywna negatywna ACC=(TP+TN)/(P+N)fałszywie ujemna Stan prawdziwie (bład drugiego dodatnia, TP Pozytywny **P** Klasa rodzaju, FN) rzeczywista fałszywie dodatnia Stan prawdziwie (bład pierwszego ujemna, **TN** Negatywny **N** rodzaju, **FP**)

Miary oceny klasyfikatora

Precyzja pozytywna (ang. precision, Positive Predictive Value PPV) informuje o stopniu pewności klasyfikacji jeśli wynik klasyfikacji jest pozytywny.

$$PPV = \frac{TP}{TP + FP}$$

□ Precyzja negatywna (ang. Negative Predictive Value NPV) informuje o stopniu pewności klasyfikacji jeśli wynik klasyfikacji jest negatywny.

$$NPV = \frac{TN}{TN + FN}$$

Zależności pomiędzy miarami jakości klasyfikacji

- ☐ Czułość (*Recal*) i Specyficzność (*Specificity*) teoretycznie są niezależne. W praktyce jednak zwiększanie czułości prowadzi często do zmniejszenia specyficzności.
- **Precyzja pozytywna** (*Precision*) i **Precyzja negatywna** (*NPV*) są miarami mocno od siebie zależnymi. Przykładowo, zwiększając frakcję TP zmniejszamy frakcję FN, lub zmniejszając frakcję FP zwiększamy frakcję TN.

dokładność klasyfikacji (ang. accuracy ACC) ACC=(TP+TN)/(P+N)		Klasa predykowana		
		Klasyfikacja pozytywna	Klasyfikacja negatywna	
Stan Pozyt	ywny P	prawdziwie dodatnia, TP	fałszywie ujemna (<u>błąd drugiego rodzaju</u> , FN)	
rzeczywista Stan	zywny N	fałszywie dodatnia (<u>błąd pierwszego rodzaju</u> , FP)	prawdziwie ujemna, TN	

Miary zbalansowane

- Wcześnie rozważane miary były sparowane, tzn. trzeba obie jednocześnie brać pod uwagę przy ocenie testu/klasyfikatora. Poniżej są definicje popularnych miar sprowadzonych do jednej liczby, która w pewnym stopniu opisuje całościowo wyniki klasyfikacji.
- Wspomniana już na samym początku **Dokładność klasyfikacji**: $ACC = \frac{TP + TN}{P + N}$
- Powiązany z nią **Błąd klasyfikacji**: $Err = \frac{FP + FN}{P + N}$, Err = 1 ACC Zależność nie zawsze prawdziwa

Współczynnik korelacji Matthews'a (ang. Matthews Correlation Coefficient):
$$\frac{TP*TN-FP*FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}}$$

Współczynnik ten uwzględnia wyniki zarówno prawdziwie jak i fałszywie pozytywne i negatywne i jest na ogół uważany jako zrównoważona miara, która może być stosowana nawet wtedy, gdy klasy są bardzo różnej liczebności. MCC jest w istocie współczynnikiem korelacji pomiędzy obserwowanymi i przewidywanymi klasyfikacjami binarnymi; zwraca wartość od -1 do +1. Współczynnik +1 odpowiada idealnej klasyfikacji, 0 nie lepiej niż losowe przypisanie wyniku -1 oznacza całkowicie niezgodna klasyfikacja ze stanem faktycznym.

Miejsce na gromadzenie metryk oceny modelu

Precyzja pozytywna (Precision)

Precyzja / czułość (Precision/Recall)

Wpływ na wynik detekcji

