

TANZANIA WATER WELLS CLASSIFICATION PROJECT PHASE 3

Presented by: Lydia Mangoa 8th March 2025

INTRODUCTION

The Problem:

- •38% of Tanzania's water wells are non-functional.
- •Maintenance inefficiencies lead to wasted resources.
- Lack of predictive insights makes sustainable water access difficult.

Goal:

- •Develop a machine learning model to classify wells as functional, non-functional, or in need of repair.
- Provide actionable insights to optimize well maintenance and resource allocation.

STAKEHOLDERS & BENEFICIARIES

- •Government & Policymakers: Prioritize funding and infrastructure improvements.
- •NGOs & Aid Organizations: Identify high-risk areas for water investment.
- •Community Water Management Committees: Plan preventive maintenance strategies.
- •Local Engineers & Planners: Optimize well construction and repair decisions.

DATA OVERVIEW

Data Source: DrivenData (Pump It Up: Data Mining the Water Table)

- •59,400 water points analyzed.
- •40+ features including location, management type, payment system, and water source.
- •Target variable: Well status (Functional, Non-functional, Needs Repair).

METHODOLOGY

1. Data Preprocessing:

•Handled missing values, categorical encoding, and feature scaling.

2. Feature Engineering:

- •Created new variables like well age.
- Analyzed geographic distribution of non-functional wells.

3. Model Selection:

- •Tested multiple classification models.
- •Evaluated based on accuracy, precision, and recall.

KEY INSIGHTS FROM DATA ANALYSIS

Older wells (>20 years) are more likely to fail.

- *Certain management types maintain more functional wells.
- •Wells in specific regions show higher failure rates.
- •Payment systems influence functionality (prepaid wells perform better).

MODEL PERFORMANCE COMPARISON

Tuned Random Forest	0.80	0.81 / 0.77	0.88 / 0.67	0.84 / 0.72
Naïve Bayes	0.61	0.79 / 0.49	0.50 / 0.79	0.61 / 0.61
Gradient Boosting	0.72	0.72 / 0.70	0.88 / 0.46	0.79 / 0.56
Support Vector Machine (SVM)	0.76	0.76 / 0.76	0.89 / 0.56	0.82 / 0.65
K-Nearest Neighbors (KNN)	0.76	0.79 / 0.71	0.84 / 0.64	0.81 / 0.68
Decision Tree	0.75	0.80 / 0.67	0.80 / 0.67	0.80 / 0.67
Logistic Regression	0.72	0.74 / 0.67	0.84 / 0.53	0.79 / 0.60
Model	Accuracy	Precision	Recall	F1-Score

Tuned Random Forest - The Best Performing Model

- •Highest accuracy: 80%
- Best balance of precision & recall
- Strong generalization on test data
- Can be fine-tuned for further improvements

Why Random Forest?

- •Handles class imbalance well.
- •Robust against overfitting.
- •Provides feature importance insights for better decision-making.

BUSINESS IMPACT & RECOMMENDATIONS

Actionable Insights for Stakeholders:

- Preventive Maintenance: Focus on older wells & high-risk areas.
- Policy Adjustments: Encourage prepaid water systems.
- Targeted Funding: Prioritize NGOs' & government investments in high-failure zones.

Future Enhancements:

- Deploy predictive dashboards for real-time monitoring.
- Incorporate additional data sources (weather, soil conditions).
- Explore deep learning for improved accuracy.

CONCLUSION & NEXT STEPS

- Machine learning enhances decision-making for sustainable water access.
- Predictive analytics enables smarter well maintenance.
- Implementation of insights can reduce well failures and improve water access across Tanzania.

Next Steps:

- Deploy the best model in a pilot program.
- Monitor real-world impact & refine recommendations.
- Scale solutions across broader regions.

THANK YOU.

ANY QUESTIONS?

Name: Lydia Mangoa

LinkedIn: http://www.linkedin.com/in/lydia-mangoa-2b5b68a8