

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE/SENIOR SERTIFIKAAT

NATIONAL SENIOR CERTIFICATE/
NASIONALE SENIOR SERTIFIKAAT

TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1

NOVEMBER 2020

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

	MARKING CODES/NASIENKODES		
A	Accuracy/Akkuraatheid		
AO	Answer only/Slegs antwoord		
CA	Consistent accuracy/Volgehoue akkuraatheid		
M	Method/ <i>Metode</i>		
R	Rounding/Afronding		
NPR	No penalty for rounding/Geen penalisering vir afronding nie		
NPU	No penalty for omitting unit/Geen penalisering vir eenhede weggelaat nie		
S	Simplification/Vereenvoudiging		
F	Correct formula/Korrekte formule		
SF	Substitution in correct formula/Vervanging in korrekte formule		

These marking guidelines consist of 26 pages./ Hierdie nasienriglyne bestaan uit 26 bladsye.

NOTE:

- If a candidate answers a question **TWICE**, only mark the **FIRST** attempt.
- Consistent accuracy to be applied as indicated on the marking guidelines.
- # Shows questions where a Tolerance Range will be applied are Q3.1; Q3.3.2; Q4.1.2 &Q5.3.2

LET WEL:

- Indien 'n kandidaat 'n vraag **TWEE** keer beantwoord, sien slegs die **EERSTE** poging na.
- Volgehoue akkuraatheid sal toegepas word soos op die nasienriglyne aangedui.
- # Toon vrae waar Toleransie Wydte (Verdraagsaamheids omvang) toegepas word is Q3.1; Q3.3.2; Q4.1.2 &Q5.3.2

1.1.1(a)	(12 + 2x) OR/OF $(12 + x + x)$	\checkmark length/lengte A (1)
1.1.1(b)	(3+2x) OR/OF $(3+x+x)$	✓ breadth/ <i>breedte</i> A (1)
1.1.2	Area = length × breadth/lengte ×breedte = $(12 + 2x)(3 + 2x)$ = $36 + 24x + 6x + 4x^2$ = $4x^2 + 30x + 36$	✓✓ SF CA (2)
1.1.3	$4x^{2} + 30x + 36 = 52$ $4x^{2} + 30x - 16 = 0$ $2(2x-1)(x+8) = 0$ OR/OF $x = \frac{1}{2} \text{ or/of } x \neq -8$ Outside length / buite lengte = 12 m + 2 $\left(\frac{1}{2}\right)$ m = 13 m	 ✓ equation/vergelyking CA ✓ factors/formula faktore/formule CA ✓ both x values/beide x-waardes CA ✓ length/lengte CA NPU (4)

 $\frac{3}{-} = 7x - 5$ 1.2.1 ✓ standard form/ $7x^2 - 5x - 3 = 0$ standaardvorm A $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(7)(-3)}}{2(7)}$ ✓ SF CA $x = \frac{5 \pm \sqrt{109}}{1 \, \text{A}}$ $x \approx 1.10$ or/of $x \approx -0.39$ √both values of *x/beide* CA *x-waardes* **NPR** (3) 1.2.2 $\checkmark x \in \text{Real Numbers}$ $\therefore x \in \left\{ \text{Real numbers} / \text{Re \"ele getalle} \right\}$ Reële getalle A OR/OF $x \in \left(-\infty; \infty\right)$ OR/OF $x \in \square$ $y-x=3 \text{ and } /en \ 3x^2 + xy - y^2 = -3$ (1) 1.3 y = x + 3✓ subject/onderwerp \mathbf{A} $3x^2 + x(x+3) - (x+3)^2 = -3$ ✓ substitution/vervanging CA $3x^2 + x^2 + 3x - (x^2 + 6x + 9) + 3 = 0$ $3x^2 - 3x - 6 = 0$ **OR/OF** $x^2 - x - 2 = 0$ \checkmark S CA 3(x-2)(x+1) = 0 **OR/OF** $x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$ ✓ factors/faktore or/of formula CA ✓ both *x*-values/ beide $\therefore x = 2 \text{ or } /of \quad x = -1$ CA *x-waardes* ✓ both y-values/ beide CA y = 2 + 3 = 5 or $\sqrt{o}f$ y = -1 + 3 = 2y-waardes OR/OF OR/OF y-x = 3 and/en $3x^2 + xy - y^2 = -3$ ✓ subject/onderwerp A x = v - 3✓ substitution/vervanging CA $3(y-3)^2 + y(y-3) - y^2 = -3$ \sqrt{S} CA $3y^2 - 18y + 27 + y^2 - 3y - y^2 + 3 = 0$ $3y^{2} - 21y + 30 = 0 OR/OF y^{2} - 7y + 10 = 0$ $3(y-2)(y-5) = 0 OR/OF y = \frac{-(-7) \pm \sqrt{(-7)^{2} - 4(1)(10)}}{2(1)}$ ✓ factors/faktore or/of formula CA √both y-values/beide ywaardes CA ✓ both x-values/beide x- \therefore y = 2 or /of y = 5 waardes CA

x = 2 - 3 = -1 or \sqrt{of} x = 5 - 3 = 2

(6)

1.4.1	$X_{c} = \frac{1}{2\pi f C}$ $f = \frac{1}{2\pi X_{c} C}$ $OR/OF \qquad f = (2\pi X_{c} C)^{-1}$	✓ making f the subject/maak f die onderwerp A (1)
1.4.2	$f = \frac{1}{2\pi X_{c} C}$ $= \frac{1}{2\pi \times 63,66 \times 50 \times 10^{-6}} \text{OR/OF} (2\pi \times 63,66 \times 50 \times 10^{-6})^{-1}$ $\approx 50 \text{ hertz}$ OR/OF $X_{c} = \frac{1}{2\pi f C}$ $63,66 = \frac{1}{2\pi f \times 50 \times 10^{-6}}$ $f = \frac{1}{2\pi \times 63,66 \times 50 \times 10^{-6}}$ $\approx 50 \text{ hertz}$	✓ value of/waarde van f CA OR/OF ✓ substitution/vervanging CA ✓ value of/waarde van f CA NPR NPU
1.5.1	$\mathbf{OR/OF}$ $32 + 16 + 2 + 1 + 32 + 16 + 8 + 1 = 112 = 1110000_{2}$	(2) ✓ correct sum/korrekte som A (1)
1.5.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓M CA ✓decimal/desimaal CA
	OR/OF	OR/OF
	$\begin{array}{ c cccccccccccccccccccccccccccccccccc$	✓M CA
	51 + 61=112	✓ decimal/desimaal CA AO: Full marks/ Volpunte
		(2) [24]

2.1.1	$3x^2 + 2x + 2 = 0$	
	$\Delta = b^2 - 4ac$	✓ substitution/vervanging A
	$= (2)^2 - 4 \times 3 \times 2$	
	=-20	✓ value of/waarde van \triangle CA
		AO: Full marks/ Volpunte
2.1.2	non-real/ nie-reël	(2) ✓ description/beskrywing CA
2.1.2	non-real/ne-reel	· description/besk/ywing CA
		Accept imaginary/ aanvaar imaginêr)
		(1)
2.2.1	$x^2 - 2px = 3p^2$	
		✓ standard form/ standaard <i>vorm</i>
	$x^2 - 2px - 3p^2 = 0$ OR/OF	A
	$-x^2 + 2px + 3p^2 = 0$	
	-x + 2px + 3p = 0	(1)
2.2.2	• • • • • • • • • • • • • • • • • • • •	✓ subst. in discriminant/
2.2.2	$\Delta = (-2p)^2 - 4(1)(-3p^2)$	vervanging in dikriminant CA
	$\Delta = 4p^2 + 12p^2$	✓ S CA
	$=16p^2$	✓ perfect square/ Volkome vierkant CA
	Δ is a perfect square \therefore roots will be rational/	
	∆is volkome vierkant ∴ die wortels is rasionaal	(3)
	213 volume vierani ine worters is rustonum	
		[7]

3.1.1	$\frac{\log 3 + \log 27}{\log 81 - \log 9}$	
	$= \frac{\log 3 + \log 3^3}{\log 3^4 - \log 3^2}$	✓ prime bases/ Priem grondtalle A
	$= \frac{\log 3 + 3\log 3}{4\log 3 - 2\log 3}$	√log property/eienskap CA
	$=\frac{4\log 3}{2\log 3}$	√S CA
	= 2	✓S CA
	OR/OF	OR/OF
	$\frac{\log 3 + \log 27}{\log 81 - \log 9}$ $= \frac{\log (3 \times 27)}{\log \left(\frac{81}{9}\right)}$ $= \frac{\log 81}{\log 9}$	√log property/eienskap A
	$= \frac{\log 3^4}{\log 3^2} \mathbf{OR} / \mathbf{OF} \qquad \frac{\log 9^2}{\log 9} \mathbf{OR} / \mathbf{OF} \qquad \log_9 81$	✓ prime bases or log prop/ Priemgrondtalle of log eienskap CA
	$= \frac{4\log 3}{2\log 3} \mathbf{OR}/\mathbf{OF} \frac{2\log 9}{\log 9} \mathbf{OR}/\mathbf{OF} \log_9 9^2 = 2\log_9 9$	✓S CA CA
	= 2	AO: 1 mark/ punt (4)

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

 $3.1.\overline{2}$ #

$$\frac{2^{n}\sqrt{32} + 2^{n}\sqrt{2}}{2^{n}\sqrt{50}} = \frac{2^{n}\sqrt{2\times16} + 2^{n}\sqrt{2}}{2^{n}\sqrt{2\times25}}$$
$$= \frac{2^{n}4\sqrt{2} + 2^{n}\sqrt{2}}{2^{n}\cdot5\sqrt{2}}$$
$$= \frac{2^{n}\sqrt{2}(4+1)}{2^{n}\cdot5\sqrt{2}}$$
$$= 1$$

OR/OF

$$\frac{2^{n}\sqrt{32} + 2^{n}\sqrt{2}}{2^{n}\sqrt{50}} = \frac{2^{n}\sqrt{32}}{2^{n}\sqrt{50}} + \frac{2^{n}\sqrt{2}}{2^{n}\sqrt{50}}$$
$$= \frac{4\sqrt{2}}{5\sqrt{2}} + \frac{\sqrt{2}}{5\sqrt{2}}$$
$$= \frac{4}{5} + \frac{1}{5}$$
$$= 1$$

$$\frac{2^{n}\sqrt{32}+2^{n}\sqrt{2}}{2^{n}\sqrt{50}} = \frac{2^{n}\left(2^{5}\right)^{\frac{1}{2}}+2^{n}2^{\frac{1}{2}}}{2^{n}\left(5^{2}\cdot2\right)^{\frac{1}{2}}}$$

$$=\frac{2^{n}2^{\frac{5}{2}}+2^{n}2^{\frac{1}{2}}}{2^{n}5\cdot2^{\frac{1}{2}}}$$

$$=\frac{2^{n}2^{\frac{1}{2}}\left(2^{2}+1\right)}{2^{n}5\cdot2^{\frac{1}{2}}}$$

$$=1$$

OR/OF

$$\frac{2^{n}\sqrt{32} + 2^{n}\sqrt{2}}{2^{n}\sqrt{50}} = \frac{2^{n}\left(\sqrt{32} + \sqrt{2}\right)}{2^{n}\left(\sqrt{50}\right)}$$
$$= \frac{4\sqrt{2} + \sqrt{2}}{5\sqrt{2}}$$
$$= \frac{5\sqrt{2}}{5\sqrt{2}}$$
$$= 1$$

✓ simplified surds/vereenv. wortelvorm A

 \sqrt{S} CA

✓ common factor or like terms /gemene faktor of gelyke terme CA $\checkmark S$ CA

OR/OF

✓ Separating terms/ skei terme

 \sqrt{S} CA

 $\checkmark S$ CA CA

OR/OF

✓ exponent form/eksponent vorm

CA

✓ common factor/gemene faktor CA

✓ S CA

OR/OF

✓ Common factor/gemene faktor

 \sqrt{S} CA

✓ common factor/gemene CA faktor

 $\checkmark S$ CA

AO: 1 mark/ Punt

(4)

A

3.2 $\log_{x} 32 + \log_{x} 4 - \log_{x} 16 = \log_{5} 125$ √log property/eienskap A $\log_{x} \frac{32 \times 4}{16} = \log_{5} 5^{3}$ ✓ power form/*magte vorm* A \sqrt{S} CA $\log_{10} 8 = 3$ $x^3 = 8 = 2^3$ √exp form/eksp. vorm $\mathbf{C}\mathbf{A}$ $\therefore x = 2$ ✓ value of/waarde van xCA OR/OF OR/OF $\log_{x} 32 + \log_{x} 4 - \log_{x} 16 = \log_{5} 125$ √log property/eienskap A $5\log_{x} 2 + 2\log_{x} 2 - 4\log_{x} 2 = 3\log_{5} 5$ √log identity/*identiteit* A √S A $3\log_{x} 2 = 3$ \sqrt{S} CA $\log_{x} 2 = 1$ ✓ value of/waarde van xCA $\therefore x=2$ OR/OF OR/OF $\log_x 32 + \log_x 4 - \log_x 16 = \log_5 125$ $\log_{x} \frac{32 \times 4}{16} = \log_{5} 5^{3}$ √log property/eienskap ✓ power form/magte vorm A $\log_{r} 8 = 3$ CA $x^3 = 2^3$ **OR/OF** $\log_x 2^3 = \log_x x^3$ √exp form/eksp. vorm $\therefore x=2$ ✓ value of/*waarde van x* CA (5)

0.0.1	T	1	
3.3.1	$Z_{\mathrm{T}} = 4 + 5i - 4 - 4i$ $= i$	✓ total impedance/totale impedansie	A (1)
3.3.2	$z_{T} = i$ $r = 1$ $\tan \theta = \frac{1}{0}$ $\theta = 90^{\circ} \text{OR/OF} \theta = \frac{1}{2}\pi$ $z_{T} = 1(\cos 90^{\circ} + i \sin 90^{\circ}) \text{OR/OF} z_{T} = 1\left(\cos \frac{1}{2}\pi + i \sin \frac{1}{2}\pi\right)$	 ✓ value of modulus/ waarde van modulus ✓ tan ratio/verhouding ✓ correct angle/korrekte hoek ✓ z in polar vorm/polêre vorm AO: 1 mark/punt 	CA CA CA CA
3.4	k = 6 + 4(i - 9) + 2mi		
	k - 2mi = 6 + 4i - 36	✓ product/produk	A
	k - 2mi = -30 + 4i	√S	CA
	$\therefore k = -30 \text{and} / en - 2m = 4$		
	$\therefore k = -30 \text{ and } / en \qquad m = -2$	✓ value of/waarde van k ✓ value of/waarde van m	CA CA
	OR/OF	OR/OF	
	k = 6 + 4(i - 9) + 2mi k - 6 = 4i - 36 + 2mi		
	k - 6 = 4i - 36 + 2mi $k = -30 + (2m + 4)i$	✓ product/produk	A
	$\therefore k = -30 + (2m+4)t$ $\therefore k = -30 \text{and} / en - 2m = 4$	√S	CA
	$\therefore k = -30 \text{ and } / en \qquad m = -2$	✓ value of/waarde van k ✓ value of/waarde van m	CA CA
	OR/OF	OR/OF	
	k = 6 + 4(i - 9) + 2mi		
	k - 6 - 2mi = 4i - 36	✓ product/produk	A
	k - 6 - 2mi = -36 + 4i	√S	CA
	k-6=-36 and $len -2mi = 4i$		
	$\therefore k = -30 \text{ and } /en \qquad m = -2$	✓ value of/waarde van k	
		✓ value of/waarde van m	CA
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CA
			(4) [22]

4.3.1(a)	T (0; 16)	✓ coordinates of/ koördinate	
		van T A	
4.3.1(b)	P(-4;0)	$\begin{array}{ c c c c c }\hline & & & & (1)\\\hline & \checkmark - 4 & & & \mathbf{A}\\\hline \end{array}$	
(0)		✓ 0 A	
		(2)	
4.3.2	$g(x) = a(x - x_1)(x - x_2)$	(aubatitution in intercent	
	g(x) = a(x+4)(x-2)	✓ substitution in intercept form/ <i>vervanging in</i>	
	16=a(0+4)(0-2)	afsnitvorm CA	
	$\therefore a = -2$	√value of/waarde van a CA	
	$g(x) = -2(x+4)(x-2)$ OR/OF $-\frac{b}{2a} = -1$	✓ substitution/ vervanging CA	
	$g(x) = -2x^2 - 4x + 16$ $-\frac{b}{2(-2)} = -1$		
	$\therefore g'(x) = 2ax + b = 0$ OR/OF $2(-2)(-1) + b = 0$		
	2(2)(1)+0		
	b = -4	✓ value of/waarde van b CA	
		OR/OF	
	OR/OF		
	subst./ verv. U (2; 0):		
	$0=a(2)^2+b(2)+16$	✓ substitution/vervanging A	
	4a + 2b = -16(1) subst./ verv. S (1; 10):		
	$10 = a(1)^2 + b(1) + 16$	✓ substitution/vervanging A	
	$a+b=-6 \implies 2a+2b=-12 (2)$		
	(1)-(2):2a = -4		
	$\therefore a = -2$	✓ value of/waarde van a CA	
	2(-2)+2b=-12		
	$\therefore b = -4$	✓ value of/waarde van b	
	OR/OF	OR/OF	

	$y = a(x+p)^2 + q$	
	$y = a(x+1)^2 + q$	✓ substitution/vervanging A
	Subst./verv. (2;0): $0 = a(2+1)^2 + q$ 0 = 9a + q(1)	
	Subst./verv. $(1;10): 10 = a(1+1)^2 + q$	✓ substitution/vervanging A
	10 = 4a + q(2) $(1) - (2) -10 = 5a$	✓ value of/waarde van a CA
	$\therefore a = -2$	
	10 = 4 a + q 10 = 4(-2) + q	
	$\therefore q = 18$	
	$y = -2(x+1)^2 + 18$	
	$=-2x^2-4x-16$	✓ value of/waarde van b
	$\therefore b = -4$	(4)
		(.)
4.3.3	$g(x) = -2x^2 - 4x + 16$	
	subst. $/ verv. x = -1$ $g(-1) = -2(-1)^2 - 4(-1) + 16$	✓ substitution/vervanging CA (Q4.3.2)
	y = 18	✓ y-coordinate of/ koördinate van R CA
	OR/OF	OR/OF
	(R(-1;18)	√√ y-coordinate of/ koördinate van R CA (2)
4.3.4	$h(x) = k^x + 8$	√value of/waarde van q
	$10 = k^1 + 8$	A ✓ substitution/ vervanging
	$\therefore k = 2$ $k(x) = 2^{x} + 8$	\mathbf{A} \checkmark value of/waarde van k
	$h(x) = 2^x + 8$	A (3)
4.3.5	$y > 8$ OR/OF $y \in (8, \infty)$	✓range/waarde-versameling
		A (1)

4.3.6 subst./verv. x=-1✓ value of/waarde van y At W: $y = 2^{-1} + 8 = \frac{17}{2} = 8,5$ at/by W $VW = \frac{17}{2} - 8$ **OR/OF** VW = 8, 5 - 8**✓** M CA = 0,5 units / eenhede ✓length of/lengte van VW CA OR/OF OR/OF ✓ value of/waarde van y At W: $y = 2^{-1} + 8 = \frac{17}{2} = 8,5$ at/by W A $VW = \sqrt{(1-1)^2 + (8,5-8)^2}$ **✓ M** CA $=\sqrt{0,25}$ √length of/lengte van VW =0.5units/eenhede CA OR/OF OR/OF ✓value of/waarde van y $h(x) = 2^x + 8$ eq. of the asympt. y = 8at/by W A $VW = 2^x + 8 - 8 = 2^x$ $\checkmark M$ CA x = -1✓length of/lengte van VW \therefore VW = 2^{-1} = 0,5 units/eenhede CA AO: Full marks/

Volpunte

(3) [**27**]

5.1.1	90% of /van R 250 000 = R 225 000 OR/OF	✓Loan value/waarde van lening A	•
	10 % of /van R 250 000 = R 25 000	OR/OF	
	Loan value/ <i>leningswaarde</i> : R 250 000 – R25 000 = R 225 000	✓Loan value/waarde van lening A	
5.1.2	$i_{e\!f\!f\!f} = \left(1 + rac{i_{nom}}{m} ight)^m - 1$	✓ F A	L
	$i_{eff.} = \left(1 + \frac{6.3\%}{12}\right)^{12} - 1$ $\therefore i_{eff.} \approx 6.5\%$	✓ SF A	L
	$\therefore i_{eff.} \approx 6.5\%$	✓ value of i_{eff} greater than. / waarde van i_{eff}	
		groter as 6,3% CA	1
	OR/OF	OR/OF	
	$\mathbf{A} = \mathbf{P}(1+i)^n$	✓ F A	k.
	Let/ Laat $P = R100$		
	$A = 100 \left(1 + \frac{6,3\%}{12} \right)^{12}$	✓ SF A	L
	= R106, 49 int <i>erest / rente</i> = $R106, 49 - R100$		
	= 6,49		
	$\therefore i \approx 6,49 \approx 6,5$	✓ value of i_{eff} greater	
		than. / waarde van i _{eff}	
		groter as 6,3% CA	1
		AO: Full marks	
		/Volpunte	$\rfloor \mid$
		NPR	
		(3	3)

5.2	A = P(1 - i) ⁿ $60 = P(1 - 5, 43\%)^{4}$ $\frac{60}{(1 - 5, 43\%)^{4}} = P$ ∴ P≈75,01 ∴ There were 75 unskilled workers during April 2019 Daar was 75 ongeskoolde werkers gedurende April 2019	✓F ✓ n = 4 ✓ SF ✓ Number of unskilled Workers/ aantal ongeskoolde werkers CA Accept/ aanvaar 76	A
	Incorrect formula: one mark for value of n/ verkeerde formule: een punt vir die waarde van n	NPR	(4)
5.3.1	Value of the investment at the end of the first 2 years /waarde van belegging einde van eerste 2 jare : $A = P(1+i)^{n}$ $= R85000 \left(1 + \frac{5,4\%}{2}\right)^{2\times 2}$ $\approx R94558,53$	✓SF A ✓R 94558,53 CA NPR Incorrect formula: no marks / verkeerde formule: geen punte	2)

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

5.3.2 Value of the investment after change in interest rate for 2 # years/ waarde van belegging na rentekoersverandering vir 2 iaar:

$$A = R94558,53 \left(1 + \frac{6\%}{12}\right)^{2 \times 12}$$

 $\approx R106582,57$

Value of the investment after withdrawing/waarde van belegging na onttrekking:

P=R106582,57-R20 000=R86582,57

YES it will be more./JA dit sal meer wees.

OR/OF

A = R94558,53
$$\left(1 + \frac{6\%}{12}\right)^{4 \times 12} - 20000\left(1 + \frac{6\%}{12}\right)^{2 \times 12}$$

≈R 97592.39

YES, it will be more./*JA dit sal meer wees*.

OR/OF

$$A = \left[R94558,53 \left(1 + \frac{6\%}{12} \right)^{2 \times 12} - 20000 \right] \times \left(1 + \frac{6\%}{12} \right)^{2 \times 12}$$

≈R 97592,39

YES. it will be more./JA dit sal meer wees.

CA from/vanaf Q/V 5.3.1

✓✓SF CA

✓ R106582,57 CA

✓M subtracting/ aftrek 20000

A

✓ difFerence/ Verskil

CA CA

CA

✓ conclusion/ gevolgtrekking

OR/OF

✓M

A CA

$$\checkmark \quad \left(1 + \frac{6\%}{12}\right)^{4 \times 12}$$

A

$$\checkmark \left(1 + \frac{6\%}{12}\right)^{2 \times 12}$$

A

✓ value of/ waarde van A_{final}

✓ conclusion/ gevolgtrekking

CA

OR/OF

√M

A

✓SF

CA

✓✓ value of/waarde van i and n

A

✓ value of/waarde van

 A_{final}

CA

✓ conclusion/ gevolgtrekking

CA (6)

NPR

[16]

No Penalty for incorrect notation used/geen		ON VRAAU 0	T
$=\lim_{h\to 0} \frac{\left(\frac{1}{2}(x+h)\right) - \left(\frac{1}{2}x\right)}{h}$ $=\lim_{h\to 0} \frac{\frac{1}{2}x + \frac{1}{2}h - \frac{1}{2}x}{h}$ $\lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ $\lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ $\lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ $\lim_{h\to 0} \frac{1}{2} = \frac{1}{2}$ $\lim_{h\to 0} \frac{1}{2} = \frac$	6.1	$f(x) = \frac{1}{2}x$	
$=\lim_{h\to 0} \frac{\frac{1}{2}x + \frac{1}{2}h - \frac{1}{2}x}{h} OR/OF = \lim_{h\to 0} \frac{\frac{x}{2} + \frac{h}{2} - \frac{x}{2}}{h}$ $=\lim_{h\to 0} \frac{\frac{1}{2}h}{h} OR/OF = \lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ $\therefore f'(x) = \lim_{h\to 0} \frac{1}{2} = \frac{1}{2}$ $= \lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ $\frac{1}{2} CA$ Penalty of 1 mark if incorrect notation used/ 1 punt penaliseering vir verkeerde notasie AO: 0 marks/ punte $AO: 0 \text{ marks/ punte}$ $AO: 0 marks/$		$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ definition/definisie A
$=\lim_{h\to 0} \frac{\frac{1}{2}h}{h} \qquad OR/OF \qquad =\lim_{h\to 0} \frac{1}{h}$ $\therefore f'(x) = \lim_{h\to 0} \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \qquad CA$ Penalty of 1 mark if incorrect notation used/ I punt penaliseering vir verkeerde notasie $AO: 0 \text{ marks/ punte} \qquad (4)$ $6.2.1 \qquad \frac{dA}{dr} = 2\pi r \qquad \text{derivative/afgeleide} \qquad A$ $6.2.2 \qquad D_x \left[(x - \sqrt{x})^2 \right]$ $= D_x \left[(x - x^{\frac{1}{2}})(x - x^{\frac{1}{2}}) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x - 3x + 1$ $= 2x $		$= \lim_{h \to 0} \frac{\left(\frac{1}{2}(x+h)\right) - \left(\frac{1}{2}x\right)}{h}$	✓SF A
$\therefore f'(x) = \lim_{h \to 0} \frac{1}{2} = \frac{1}{2}$ $\frac{1}{2} \qquad \text{CA}$ Penalty of 1 mark if incorrect notation used/ I punt penaliseering vir verkeerde notasie A0: 0 marks/ punte (4) $\frac{dA}{dr} = 2\pi r$ $6.2.2 \qquad D_x \left[\left(x - \sqrt{x} \right)^2 \right]$ $= D_x \left[\left(x - \sqrt{x^2} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x - 3x + 1$ $= 2x - 3x + 1$		$= \lim_{h \to 0} \frac{\frac{1}{2}x + \frac{1}{2}h - \frac{1}{2}x}{h} \qquad \mathbf{OR/OF} \qquad = \lim_{h \to 0} \frac{\frac{x}{2} + \frac{h}{2} - \frac{x}{2}}{h}$	✓S CA
Penalty of 1 mark if incorrect notation used/ I punt penaliseering vir verkeerde notasie AO: 0 marks/punte (4) $ \frac{dA}{dr} = 2\pi r $ (1) 6.2.2 $ D_x \left[\left(x - \sqrt{x} \right)^2 \right] \\ = D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right] $ $ = D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right] $ $ = 2x - 3x^{\frac{1}{2}} + 1 $ (2) Yexponent vorm/ eksp vorm A Yexponent vorm/ eksp vorm		$=\lim_{h\to 0} \frac{\frac{1}{2}h}{h} \qquad \qquad =\lim_{h\to 0} \frac{\frac{1}{2}h}{h}$ OR/OF	
Penalty of 1 mark if incorrect notation used/ I punt penaliseering vir verkeerde notasie AO: 0 marks/punte (4) $ \frac{dA}{dr} = 2\pi r $ (1) 6.2.2 $ D_x \left[\left(x - \sqrt{x} \right)^2 \right] \\ = D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right] $ $ = D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right] $ $ = 2x - 3x^{\frac{1}{2}} + 1 $ (2) Yexponent vorm/ eksp vorm A YS CA $ \sqrt{2x} $ CA $ \sqrt{3x^2} $ CA $ \sqrt{3x^2} $ CA No Penalty for incorrect notation used/ geen penaliseering vir (5)		$f'(x) = \lim_{h \to 0} \frac{1}{2} = \frac{1}{2}$	$\left \frac{1}{2} \right $
incorrect notation used/ 1 punt penaliseering vir verkeerde notasie AO: 0 marks/punte AO: 0 marks/punte AO: 0 marks/punte (4) *derivative/afgeleide A (1) *exponent vorm/ eksp vorm A *S CA *J *CA *J *CA *No Penalty for incorrect notation used/ geen penaliseering vir *[S] *[S] *[S] *[S] *[AO: 0 marks/punte *[AO: 0 marks/pun		" 70	
6.2.1 $\frac{d\mathbf{A}}{dr} = 2\pi r$ 6.2.2 $D_x \left[\left(x - \sqrt{x} \right)^2 \right]$ $= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $\sqrt{2}x$ $\sqrt{2}$			
6.2.1 $\frac{dA}{dr} = 2\pi r$ $0.2.2 D_x \left[\left(x - \sqrt{x} \right)^2 \right]$ $= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $0.2.2 CA$ $0.2.2 CA$ $0.2.2 CA$ $0.2.2 CA$ $0.2.3 CA$ $0.3 CA$ $0.$			
6.2.1 $\frac{dA}{dr} = 2\pi r$ $0.2.2 D_x \left[\left(x - \sqrt{x} \right)^2 \right]$ $= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $0.2.2 CA$ $0.2.2 CA$ $0.2.2 CA$ $0.2.2 CA$ $0.2.3 CA$ $0.3 CA$ $0.$			AO: 0 marks/ punte (4)
6.2.2 $D_{x}\left[\left(x-\sqrt{x}\right)^{2}\right]$ $=D_{x}\left[\left(x-x^{\frac{1}{2}}\right)\left(x-x^{\frac{1}{2}}\right)\right]$ $=D_{x}\left[x^{2}-2x^{\frac{3}{2}}+x\right]$ $=2x-3x^{\frac{1}{2}}+1$ CA $\sqrt{1}$ $\sqrt{2}x$ $\sqrt{2}x$ $\sqrt{1}$ $\sqrt{2}x$ $\sqrt{2}$	6.2.1	$\frac{d\mathbf{A}}{d\mathbf{A}} = 2\pi r$	✓ derivative/afgeleide A
$= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x - 3x + 1$ $= 2x - 3x + 1$ $= 2x$	6.2.2		(1)
$= D_x \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$ $= D_x \left[x^2 - 2x^{\frac{3}{2}} + x \right]$ $= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x + 1$			✓ exponent vorm/
$= D_x \begin{bmatrix} x^2 - 2x^{\frac{3}{2}} + x \end{bmatrix}$ $= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x + 1$ $= 2x - $		$= \mathbf{D}_{x} \left[\left(x - x^{\frac{1}{2}} \right) \left(x - x^{\frac{1}{2}} \right) \right]$	
$= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x + $			✓S CA
$= 2x - 3x^{\frac{1}{2}} + 1$ $= 2x - 3x^{\frac{1}{2}}$ 1 CA No Penalty for incorrect notation used/geen penaliseering vir (5)		$= D_x \left x^2 - 2x^{\frac{1}{2}} + x \right $	√2x CA
No Penalty for incorrect notation used/ geen penaliseering vir (5)		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
No Penalty for incorrect notation used/ geen penaliseering vir		$1-2x-3x^{-}+1$	
			No Penalty for incorrect notation used/ geen penaliseering vir (5)

6.3 $g(x) = ax^2 - x \quad \text{sub}(-1; -1)$ ✓✓ subst/ verv A $-1 = a(-1)^2 - (-1)$ -1 = a + 1**√** S CA a = -2✓✓ value of/ waarde van \boldsymbol{A} OR/OF OR/OF 3x - y + 2 = 0y = 3x + 2 $\therefore m_{tan/raakl.} = 3$ ✓ gradient of tan./grad van $g(x) = ax^2 - x$ rklyn g'(x) = 2ax - 1✓ derivative/afgeleide **A** $\checkmark g'(x) = 3$ CA 2a(-1) - 1 = 3✓ substitution/*vervanging* -2a = 3 + 1✓ value of/ waarde van a a = -2CA OR/OF OR/OF $ax^2 - x = 3x + 2$ ✓ equating/vergelyk A $ax^2 - 4x - 2 = 0$ ✓ std form/ *vorm* ✓ equal roots/ *gelyke* $b^2 - 4ac = 0$ (equal roots) tangent touches) CA wortels $(-4)^2 - 4(a)(-2) = 0$ CA 16 + 8a = 0✓ value of/ waarde van a a = -2CA (5) [15]

7.1	$y = f(0) = -(0-1)^{2}(0+3) = -3$	(::::::::::::::::::::::::::::::::::::	
	OR/OF	✓ y-intercept / Afsnit	A
	(0; -3)		(1)
7.2	$f(x) = -(x-1)^2(x+3)$		
	x = 1 or/of x = -3	$\checkmark x = 1$ $\checkmark x = -3$	A
	OR/OF	$\checkmark x = -3$	A
	(1;0) or/of (-3;0)		
			(2)
7.3	$f(x) = -x^3 - x^2 + 5x - 3$		
	$f'(x) = -3x^2 - 2x + 5$	✓ derivative/afgeleid	e
	$-3x^2 - 2x + 5 = 0$		A
	$3x^2 + 2x - 5 = 0$	$\checkmark f'(x) = 0$	A
	$(3x+5)(x-1) = 0 OR/OF x = \frac{-(2) \pm \sqrt{(2)^2 - 4(3)(-5)}}{2(3)}$		
	$x = -\frac{5}{3} \text{ or/} of x = 1$	✓ factors/formula faktore/formule	CA
	3	✓both values of/beia	
	$y = -\frac{256}{27} \approx -9.5$ or $/ of y = 0$	waardes van x	CA
	OR/OF	✓both values of y/ beide y-warrdes	CA
		If derivative is first degree then Max 2 marks/ Indien afgeleide eer order dan Mak. 2 pu	ste

	TON/VRAAG 8	T .	
8.1.1	$D(10) = -0.5(10)^2 + 20(10)$	✓ distance/afstand	A
	= 150 m	NPU	(1)
8.1.2	velocity = D'(t) = -t + 20	✓ derivative/afgeleide	A
	D'(12) = -(12) + 20	✓ substitution in derivati Vervangingin afgeleid	
	= 8 m/s	✓ velocity/snelheid	CA
		NPU	(2)
8.2.1(a)	TSA/TBO = (4x)(3x) + (5x)(y) + (4x)(y) + (3x)(y)		(3)
	$= 12x^{2} + 5xy + 4xy + 3xy$	✓ area/oppervlakte	A
	$3600 = 12x^2 + 12xy$	✓ equat. area to/stel oppe	ervl
	$300 = x^2 + xy$	gelyk 3 600 A	
	$xy = 300 - x^2$		
		✓S	CA
	$\therefore y = \frac{300 - x^2}{x}$		
	X OR/OF	OD/OF	
		OR/OF	
	TSA / TBO = $(3x + 4x + 5x) y + 2\left(\frac{1}{2} \cdot 3x \cdot 4x\right)$		
	$12xy + 12x^2 = 3600$	✓ area/oppervlakte ✓ equat. area to 3 600/sto oppervl gelyk	A el A
	$300 = x^2 + xy$ OR/OF $xy = 300 - x^2$	✓S	CA
	$\therefore y = \frac{300 - x^2}{}$		(3)
0.2.1/1-)	x		
8.2.1(b)	$V = \frac{1}{2} (3x) (4x) \left(\frac{300 - x^2}{x} \right)$ $= 6x (300 - x^2)$	✓SF	CA
	$=6x(300-x^2)$	✓S	CA
	$=1800x - 6x^3$	' 5	CA
			(2)
8.2.2	$V = 1800x - 6x^3$		
	$\frac{dV}{dx} = 1800 - 18x^2$	✓ derivative/afgeleide	CA
		✓ equating derivative	
	$1800 - 18x^2 = 0 \mathbf{OR/OF} 18(100 - x^2) = 0$	to 0/gelykstel van	
	$x^2 = 100$	afgeleide aan 0	A
	$\therefore x = 10$		
		✓ value of/waarde van x	
			CA (3)
			[12]

	Penalize for constant C in either Q 9.1.1 or Q 9.1.2 / Penaliseer vir konstante C in of V9.1.1 of V9.1.2				
9.1.1	$\int 2^x dx$ $= \frac{2^x}{\ln 2} + C$	$ \begin{array}{ccc} \checkmark & \frac{2^x}{\ln 2} & \mathbf{A} \\ \checkmark & \mathbf{C} & \mathbf{A} \\ \end{aligned} $ (2)			
	$\int \left(\sqrt{x} + \frac{7}{x} + 4x^{-5}\right) dx$ $= \int \left(x^{\frac{1}{2}} + \frac{7}{x} + 4x^{-5}\right) dx$ $= \frac{2}{3}x^{\frac{3}{2}} + 7\ln x - x^{-4} + C$ OR/OF $= \frac{2}{3}x^{\frac{3}{2}} + 7\ln x - \frac{1}{x^4} + C$ OR/OF $= \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 7\ln x - \frac{1}{x^4} + C$	✓ power vorm/magte vorm A $ \frac{2}{\sqrt{3}} x^{\frac{3}{2}} \text{ OR/OF } \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \text{CA} $ ✓ $7 \ln x$ ✓ $-x^{-4}$ OR / OF $-\frac{1}{x^4}$ A (4)			

A

CA

SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

9.2

Area above the x - axis/ oppervlakte bo die x - as: = $\int_{-3}^{2} (-x^2 - x + 6) dx$

$$= \left[-\frac{x^3}{3} - \frac{x^2}{2} + 6x \right]_{-3}^2$$

$$= \left(-\frac{(2)^3}{3} - \frac{(2)^2}{2} + 6(2)\right) - \left(-\frac{(-3)^3}{3} - \frac{(-3)^2}{2} + 6(-3)\right)$$

$$= \frac{125}{6} \text{ square units/} vk.eenhede$$

Unshaded area / ongearseerde oppvl $k = \frac{125}{6} - \frac{34}{3}$ = $\frac{19}{2}$ square units /

vk.eenhede

: the unshaded area **is LESS** than the shaded area/Die ongearseerde oppvlk **is MINDER** as die gearseerde oppervlakte.

OR/OF

✓ area notation using integrals/oppervl notasie deur integrale A

✓integration/integrasie

✓ subst./verv. CA

√S CA

✓M unshaded area/ ongearseerde oppvlk CA

✓ conclusion/gevolgtrkng

OR/OF

SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

Unshaded area above the x - axis/ongearseerde oppvlk bo die x - as:

$$= \left[\int_{-3}^{-1} \left(-x^2 - x + 6 \right) dx \right] + \left[\int_{1}^{2} \left(-x^2 - x + 6 \right) dx \right]$$

Unshaded area/ongearseerde oppvlk 1:

$$= \left[-\frac{x^3}{3} - \frac{x^2}{2} + 6x \right]_{-3}^{-1}$$

$$= \left[\left(-\frac{(-1)^3}{3} + -\frac{(-1)^2}{2} + 6(-1) \right) - \left(-\frac{(-3)^3}{3} - \frac{(-3)^2}{2} + 6(-3) \right) \right]$$

$$= \frac{22}{3} \text{ square units/} vk.eenheede$$

Unshaded area/ongearseerde oppvlk 2:

$$= \left[-\frac{x^3}{3} - \frac{x^2}{2} + 6x \right]_1^2$$

$$= \left[\left(-\frac{(2)^3}{3} - \frac{(2)^2}{2} + 6(2) \right) - \left(-\frac{(1)^3}{3} - \frac{(1)^2}{2} + 6(1) \right) \right]$$

 $= \frac{13}{6} \text{ square units/} vk.eenhede$

∴ Totalunshaded area $=\frac{22}{3} + \frac{13}{6} = \frac{19}{2}$ square units

: The unshaded area is **LESS** than the shaded area/ Die ongearseerde oppervlakte is **MINDER** as die gearseerde oppervlakte. ✓ area notation using
Integrals/oppervl notasie
deur integrale

✓integration/integrasie A

/ subst./verv. CA

✓ subst./verv CA

✓ S CA

✓M unshaded area/ ongearseerde opperv

CA

✓ conclusion/gevolgtrkng CA

AO (conclusion gevolgtrekking): 1 mark/ punt

(7) [**13**]

TOTAL/TOTAAL: 150

ADDENDUM

TECHNICAL MATHEMATICS/ TEGNIESE WISKUNDE Paper 1/ Vraestel 1 November 2020

FINAL MARKING GUIDELINES (ADDITIONAL NOTES) FINALE NASIEN RIGLYNE (ADDISIONELE NOTAS)

ITEM	DESCRIPTION/ VERKLARING		
1.1.2	Factors must have a variable x and product should lead to a quadratic equation.		
	Faktore moet 'n onbekende x en die produk moet lei na 'n kwadratiese vergelyking		
1.1.3	If $4x^2 + 30x - 16 = 0$ is used and leading to negative x-values with not valid		
	conclusion, maximum 2 marks		
	Indien $4x^2 + 30x - 16 = 0$ gebruik word en lei na negatiewe x-waardes met nie		
	geldige gevolgtrekking, maksimum 2 punte		
1.2.1	Linear equation, no marks / liniêre vergelyking: geen punt		
1.3	If simplification leads to linear equation,maximum 3 marks		
	Indien vereenvoudiging lei na 'n liniêre vergelyking; maksimum 3 punte		
1.5.1	If base 2 is omitted, no penalty / indien grondtal 2 uitgelaat is; geen penalisering		
2.2.1	Order of terms not necessary/ orde van terme nie belangrik		
2.2.2.	• If p is omitted, accept $\Delta = 16$, maximum 2 marks/ indien p uitegelaat is aanvaar		
	$\Delta = 16$ maksimum 2 punte		
	• If Δ is irrational based on CA from Q2.2.1 , maximum 3 marks/ <i>Indien</i> Δ		
	irrasionaal is gebaseer op CA vanaf Q2.2.1, maksimum 3 punte		
3.3.2	• $\tan \theta = \frac{1}{0}$ can be implied/ kan geïmpliseer word		
	• If 1 is omitted, no penalty/ indien 1 uitgelaat is, geen penaliseering		
	• Accept/ aanvaar $Z_T = 1 cis 90^\circ$		
	1		

korrek geplot is, gee 'n punt

ITEM	DESCRIPTION/ VERKLARING		
5.2	 If: Year 1: 60 ÷ (1-5,3%) = 63,45 Year 2: 63,45 ÷ (1-5,3%) = 67,09 Year 3: 67,09 ÷ (1-5,3%) = 70,94 Year 4: 70,94 ÷ (1-5,3%) = 75,01 ∴ 75 workers/werkers 	✓ F ✓ SF ✓ n = 4 ✓ Number of skilled workers/ aantaal geskoolde werkers Maximum 4 marks/ maksimum 4 punte morks/Enkelwoodige rents; maksimum 3	
	 Simple interest used, maximum 3 marks/Enkelvoudige rente; punte Depreciation Compound used,maximum 4 marks/ Waardevern gebruik dan maksimum 4 punte 		
7.3	If derivative is first degree,maximum 2 marks/ <i>Indien afgeleide 'n</i> eerstegraadsvergelyking is maksimum 2 punte		
7.4	 If point by point plotted and Turning Point not shown maximum 3 marks/ indien punt-vir-punt geplot en draaipunt nie getoon maksimum 3 punte If 2 Turning points are correctly plotted, award a mark./ As twee draaipunte 		