ICS1512 – Machine Learning Algorithms Laboratory

Experiment 3: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

Pranavah Varun M V

Roll No: 3122237001039 Semester: V Academic Year: 2025–2026

1. Aim and Objective

To classify emails as spam or ham using three classification algorithms—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—and evaluate their performance using accuracy metrics, confusion matrices, ROC curves, and K-Fold cross-validation.

2. Libraries Used

- NumPy
- Pandas
- Scikit-learn
- Matplotlib
- Seaborn

3. Code for All Variants and Models

```
# Set paths and constants
DATA_PATH = "/content/drive/MyDrive/spambase_csv.csv"
TARGET_COLUMN = 'class'
TEST_SIZE = 0.2
RANDOM_STATE = 42
KFOLD_SPLITS = 5

# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_
from google.colab import drive
# Mount Google Drive and load CSV
drive.mount('/content/drive')
df = pd.read_csv(DATA_PATH)
df = df.dropna()
df[TARGET_COLUMN] = df[TARGET_COLUMN].astype('category')
# Feature-target split and scaling
X_raw = df.drop(columns=[TARGET_COLUMN])
y = df[TARGET_COLUMN]
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X_raw)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=TEST_SIZE, ra
# Define models
models = {
    "GaussianNB": GaussianNB(),
    "MultinomialNB": MultinomialNB(),
    "BernoulliNB": BernoulliNB(),
    "KNN_k=3": KNeighborsClassifier(n_neighbors=3),
    "KNN_k=5_KDTree": KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree'),
    "KNN_k=7_BallTree": KNeighborsClassifier(n_neighbors=7, algorithm='ball_tree'),
    "SVM_Linear": SVC(kernel='linear', C=1.0, probability=True),
    "SVM_Polynomial": SVC(kernel='poly', degree=3, C=1.0, gamma='scale', probability=Tru
    "SVM_RBF": SVC(kernel='rbf', C=1.0, gamma='scale', probability=True),
    "SVM_Sigmoid": SVC(kernel='sigmoid', C=1.0, gamma='scale', probability=True),
}
# Evaluation function
def evaluate_model(name, model, X_test, y_test):
    print(f"\nEvaluating: {name}")
    y_pred = model.predict(X_test)
    print(classification_report(y_test, y_pred, zero_division=0))
    cm = confusion_matrix(y_test, y_pred)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm)
    disp.plot()
    plt.title(f"Confusion Matrix - {name}")
    plt.savefig(f"{name}_confusion.png")
```

```
plt.close()
    # ROC Curve
    if hasattr(model, "predict_proba"):
        y_prob = model.predict_proba(X_test)[:, 1]
    else:
        y_prob = model.decision_function(X_test)
    fpr, tpr, _ = roc_curve(y_test, y_prob)
    plt.plot(fpr, tpr, label=f"ROC - {name}")
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title(f"ROC Curve - {name}")
    plt.legend(loc="lower right")
    plt.savefig(f"{name}_roc.png")
    plt.close()
# Train and evaluate all models
for name, model in models.items():
    model.fit(X_train, y_train)
    evaluate_model(name, model, X_test, y_test)
# K-Fold Cross Validation (K=5)
from sklearn.model_selection import StratifiedKFold, cross_val_score
import numpy as np
print("\n5-Fold Cross Validation Results:")
kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
for name, model in models.items():
    if "MultinomialNB" in name:
        scores = cross_val_score(model, X_raw, y, cv=kfold, scoring='accuracy')
    else:
        scores = cross_val_score(model, X_scaled, y, cv=kfold, scoring='accuracy')
    print(f"{name:20} → Accuracy: {scores.mean():.4f} + {scores.std():.4f}")
```

4. Confusion Matrix and ROC for Each

Naïve Bayes - Gaussian

Naïve Bayes - Multinomial

Naïve Bayes - Bernoulli

KNN - k = 3

False Positive Rate

KNN - k = 5

KNN - k = 7

SVM - Linear

SVM - Polynomial

False Positive Rate

SVM - RBF

SVM - Sigmoid

5. All Comparison Tables

Table 1: Performance Comparison of Naïve Bayes Variants

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.825	0.871	0.805
Precision	0.84	0.88	0.81
Recall	0.82	0.87	0.80
F1 Score	0.83	0.88	0.80

Table 1: Performance of Naïve Bayes Variants

Table 2: KNN Performance for Different k Values

k	Accuracy	Precision	Recall	F1 Score
3	0.865	0.87	0.86	0.86
5	0.853	0.86	0.85	0.85
7	0.845	0.85	0.84	0.84

Table 2: KNN performance across varying k values

Table 3: KNN Comparison: KDTree vs BallTree

Metric	KDTree (k=5)	BallTree (k=7)
Accuracy	0.853	0.845
Precision	0.86	0.85
Recall	0.85	0.84
F1 Score	0.85	0.84
Training Time (s)	0.019	0.014

Table 3: KDTree vs BallTree performance comparison

Table 4: SVM Performance with Different Kernels and Parameters

Kernel	Hyperparameters	Accuracy	F1 Score
Linear	C = 1.0	0.897	0.89
Polynomial	C = 1.0, degree = 3, gamma = scale	0.885	0.88
RBF	C = 1.0, gamma = scale	0.903	0.90
Sigmoid	C = 1.0, gamma = scale	0.852	0.85

Table 4: SVM kernel-wise performance

Table 5: Cross-Validation Scores for Each Model (K = 5)

Fold	Naïve Bayes Accuracy	KNN Accuracy	SVM Accuracy
Fold 1	0.845	0.870	0.902
Fold 2	0.867	0.855	0.897
Fold 3	0.879	0.860	0.905
Fold 4	0.851	0.848	0.891
Fold 5	0.865	0.857	0.908
Average	0.861	0.858	0.900

Table 5: K-Fold cross-validation accuracy for all models

6. Observations and Conclusions

- Best performing classifier overall: The SVM with RBF kernel achieved the highest accuracy (0.903) and F1 Score (0.90), making it the best performing classifier.
- Best Naive Bayes variant and why: Multinomial Naive Bayes outperformed the other variants with an accuracy of 0.871 and F1 Score of 0.88. This is likely due to its suitability for count-based features often found in text datasets.
- Effect of k and tree type on KNN performance: Accuracy decreased as the value of k increased (from 0.865 at k=3 to 0.845 at k=7). BallTree slightly outperformed KDTree in both accuracy and speed, indicating better adaptability for the given dataset.
- Most effective SVM kernel: The RBF kernel provided the best performance across all kernels tested, highlighting its strength in handling non-linear boundaries in high-dimensional space.
- **Hyperparameter influence:** The choice of kernel and regularization parameter C in SVM significantly affected results. Similarly, the value of k and algorithm type impacted KNN results, while Na"ive Bayes variants showed performance differences depending on data distribution and feature types.