FAQ

Module-5	
Question 1.	What is the fundamental difference between
	HashTables and HashMaps?
Answer	HashTables are known for their synchronisation and
	thread-safety properties, which contribute to their
	somewhat slower performance compared to
	HashMaps. In contrast, HashMaps lack
	synchronisation and thread safety, hence providing
	enhanced efficiency in single-threaded contexts.
Question 2.	In what ways do Binary Trees exhibit distinctions
	from Binary SearchTrees (BSTs)?
Answer	Binary trees are a kind of hierarchical data structure
	that consist of nodes, each of which may have a
	maximum of two offspring. These trees do notimpose
	any restrictions on the values of the nodes. Binary
	Search Trees (BSTs) are a kind of binary tree that
	exhibit an ordered or sorted structure. In a BST, the
	left child node is assigned a value that is less than its
	parent node, while the right child node is assigned a

	value that is higher than its parent node.
Question 3.	What are the advantages of using an AVL Tree over a
	standard BinarySearch Tree (BST)?
Answer	AVL Trees, a variant of Binary Search Trees designed for
	self-balancing, guarantee the preservation of balance in
	the tree after each insertion or deletion operation. The
	presence of balance in trees ensures that all tree
	operations have logarithmic limitations, hence
	preventing the occurrence of worst-case situations seen
	in binary search trees, where they may deteriorateinto
	linked lists.
Question 4.	What is the underlying objective of using Priority
	Queues?
Answer	Priority queues are a kind of data structure that
	organises components according to their respective
	priority. These data structures enable the retrieval
	of the highest (or lowest) priority element in
	constant time, irrespective of the sequence in
	which elements were inserted.

Question 5.	In which situations would Heaps be considered an optimal choice for adata structure?
Answer	Heaps are well-suited for use in applications that need
	regular management of an item with the greatest or
	lowest priority. Common applications of this include the
	implementation of algorithms like Dijkstra's shortest
	route algorithm, Prim's Minimum Spanning Tree method,
	or any situation that necessitates the efficient retrieval of
	the highest or lowest value, such as inPriority Queues.