CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

Fifth Semester of B. Tech (CE) Examination March-April 2018

CE315 Design and Analysis of Algorithm

Date: 29.03.2018, Thursday Time: 1.30 p.m. To 4.30 p.m. Maximum Marks: 70

Instructions:

- 1. The question paper comprises two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

Q-1 Answer the questions below.

(i) Derive the running time of linear search in worst case.

[03]

[04]

(ii) Why analysis of algorithm is important? Define: Average case, Best case and Worst case complexity.

Q - 2 (a) Attempt the following: (Any Two)

[10]

- (i) State the Master's theorem with all three cases.
- (ii) Write recurrence relation for Merge sort and solve it using recurrence tree method.
- (iii) Solve the recurrence relation using iteration method: 2T(n-2)+1
- (b) Write and Explain Binary Search algorithm for searching value 45 from the following [04] list: 23,36,45,48,52,58,78,90,95
- (c) Find the optimal solution for the following knapsack problem using fractional approach. [04] Capacity of knapsack is 5.

Item No.	Weights	Values
1	1	6
2	2	10
3	3	12

OR

(c) Schedule the following jobs to get maximum profit using greedy technique. [04]

Job No.	Deadline	Profit
1	3	9
2	2	7
3	3	7
4	1	2

Q-3 Answer the questions below.

- (i) Sort the sequence 8, 1, 4, 1, 5, 9, 2, 6, 5 using Quick sort method.
- [05]
- (ii) Does Kruskal's algorithm always give optimal solution? Justify with an example.

[05]

OR

Q-3 Answer the questions below.

(i) Write and analyze recursive algorithm for finding factorial of a number.

[05]

(ii) Find the minimum spanning tree for the given graph using prim's algorithm. Consider A [05] as starting vertex.

SECTION - II

Q - 4 Answer the questions below.

(i) Explain BFS with example.

[03]

(ii) Compare Backtracking and Branch and Bound technique.

[04]

Q-5 (a) Solve the Assignment Problem with the following cost matrix using Branch & Bound [05] Technique.

	T1	T2	Т3
P1	2	4	5
P2	2	7	10
Р3	5	3	7

Write and Explain Dijkstra's Algorithm for the following graph. Consider 1 as the source Q - 5(b)[05] vertex.

- Q 5(c)Define the following terms:
 - [04]
 - (i) Cross edge
 - (ii) Cycle
 - (iii) Back edge
 - (iv) Tree edge

OR

- Define String Matching Problem. Explain any one String matching algorithm. Q - 5(a)[05]
- Q 5(b)Find the binomial coefficient C(10,8) using dynamic programming. [05]
- Explain exponential algorithm for finding 7^{23} . Q-5(c)[04]

Q-6**Attempt the following: (Any Two)**

- (i) Consider that the capacity of the knapsack W = 10 and the item list is(i1,i2,i3,i4). Weights of the items are (5,4,6,3) and values are (10,40,30,50). Solve the 0-1 knapsack problem using Dynamic programming.
- Find the optimal cost using matrix chain multiplication method for the given matrices: (ii) A=1*2, B=2*3, C=3*4, D=4*3
- (iii) Compare Dynamic and Greedy methods for making change problem for following example: Total amount is 15 and available coins are of 1,7,8,9

[14]