

Clear as Night

- Challenges Going to Bed:
 - Restricted View
 - Fast Perception
 - Limitations in Computation and Power
- Challenges in Mobile Robotics:
 - Restricted View
 - Fast Perception
 - Limitations in Computation and Power

[1,2]

ETH zürich

What is Currently Done?

Object Detection with CNN

Sensor Fusion

• Low Resolution ToF [8, 10]

Flexx2 3D Camera

- ToF Image Sensor
- 224 x 172 Pixel
- IR Image & 3D Point Cloud
- **USB** Interface
- Depth from 0.1 4 m
- Up to 60 FPS with 9 Predefined Modes

Center for Project-Based Learning

- 13 g
- Average 300 mW

Infrared Image

3D Point Cloud

Object Detection for Challenging Conditions

Ultra-Small, Ultra-Fast Network

Impact of Sensor Fusion

Deployment Ready Model

Dataset

1486 Image Pairs

• 3 Classes (Apple, Cup, Person)

Center for Project-Based Learning

Bounding Box Labels

Fast Object Detection Models

- YOLO-based Networks
- Smallest Network ~ 400K Parameters
- FOMO
- 20K Parameters in Demo
- 30x Faster than YOLOv5 [17]

Center for Project-Based Learning

Model	Input Size	#Params
YOLOv8n [12]	640 x 640	3.2M
YOLO-X Nano [13]	416 x 416	0.91M
Tiny YOLO-Lite [14]	416 x 416	0.6 M
TinyissimoYOLO [15]	88 x 88	0.42 M
FOMO [17]	192 x 192 [16]	0.02M [16]

Faster Objects, More Objects (FOMO)

Background

Cup

- MobileNetV2 Backbone
- Outputs Class Heatmaps
- Centroid Predictions

Input

Fusion Experiments

- Three Fusion Strategies
- Early Fusion

- 80 / 20 Train-Test Split
- Data Augmentation
- F1 Score Evaluation

Quantitative Results

Infrared

F1-Score: 0.86

Params: 17'916

Infrared

ETH zürich

F1-Score: 0.84

Params: 18'204

Infrared Depth **Depth**

F1-Score: 0.82

Params: 18'204

F1-Score: 0.86

Params: 18'204

Qualitative Results

References shown on slide 17

Performance Measurements on GAP9

- Quantized Model with GAPFlow
- 10 Core RISC-V
- 370 MHz Internal Clock

- Average Power: 60 mW
- ~ 5 ms Processing
- 18 Total MOps
- 2 Total MCycles

12

Clear as Day!

- 60 FPS
- Detection in the Dark
- Distance to Object

IPhone Camera

Conclusion + Future Work

- Dataset for Detection with Infrared and Depth
- Sensor Fusion for Object Detection
- Fast Detection in the Dark

- Deploy and Test Network on GAP9
- Use Depth for Obstacle Avoidance or Tracking
- Improve FOMO for More Stable Predictions

Watch Out!

Center for Project-Based Learning References shown on slide 17 11.01.2024 15

Flexx2 3D Camera Bonus Information

Time-of-Flight principle and block diagram

2. flexx2 Specifications

	Parameter	flexx2	
	Dimensions	71.9 mm x 19.2 mm x 10.6 mm	
	Time of Flight (ToF) Sensor	IRS2381 Infineon® REAL3™ 3D Image Sensor IC based on pmd technology	
	Resolution	224 x 172 Depth Pixels 38,000 Depth Points	
	Weight, without USB Cable	13g	
	Measurement range	0.1 – 4 m	
	Framerate	Up to 60fps (3D frames); 9 pre-defined operation modes	
	Power consumption	USB3.0 compliant, average 300mW for full system	
	Illumination	940 nm, VCSEL, Laser Class 1	
	Software	Royale SDK (C/C++ based, supports Matlab, OpenCV, ROS 1/2)	
١	Viewing angle (H x V)	56° x 44°	
	Interface	USB3.0 (data & power)	
	Depth resolution	<= 1% of distance, all modes	
	Sunlight Tolerance	At 100K Lumens (Full Sunlight), Loses ~10% max range vs. Indoors	
	Operating System	Windows 10, Linux/ARM	

References

- [1] LEGO Brick, https://www.lego.com/en-ch/product/8-stud-storage-brick-red-5006867
- [2] Adobe Stock Image, https://stock.adobe.com/de/search/images?k=bedroom+night
- [3] IStock Image, https://www.istockphoto.com/de/fotos/street-lights-foggy-misty-night-lamp-post-lanterns-deserted-road
- [4] Wall-E. Directed by Andrew Stanton,, Pixar, 2008.
- [5] BusinessWire, Velodyne LiDAR
- [6] Reichelt, ZED 2 Stereo Kamera
- [7] Terabee, TOF sensor
- [8] Yijin Li et al., DELTAR: Depth Estimation from a Light-weight ToF Sensor And RGB Imag, ECCV 2022
- [9] M. Bijelic. Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather, 2020.
- [10] C. Brander et al., Improving Data-Scarce Image Classification Through Multimodal Synthetic Data Pretraining, IEEE Sensors, 2023.
- [11] pmdtechnologies, flexx2 camera, https://3d.pmdtec.com/en/3d-cameras/flexx2/, 2024.
- [12] Ultralytics, YOLOv8, https://github.com/ultralytics/ultralytics, 2024
- [13] Zheng Ge et al., "YOLOX: Exceeding YOLO Series 2021", 2021
- [14] Shiqi Chen et al., "Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation", 2021
- [15] J. Moosmann, M. Giordano, C. Vogt, M. Magno, "TinyissimoYOLO: A Quantized, Low-Memory Footprint, TinyML Object Detection Network for Low Power Microcontrollers", 2023
- [16] L. Boyle, N. Baumann, S. Heo and M. Magno, "Enhancing Lightweight Neural Networks for Small Object Detection in IoT Applications," 2023
- [17] EdgeImpulse, FOMO: Object detection for constrained devices, 2023

Center for Project-Based Learning 11.01.2024 17

Jonas Bohn Semester Thesis bohnj@student.ethz.ch

ETH Zürich Center for Project-Based Learning ETF F109 Sternwartstrasse 7 8092 Zürich

www.pbl.ee.ethz.ch