1

વનસ્પતિમાં પોષણ (Nutrition in Plants)

ધોરણ VIમાં તમે અભ્યાસ કરી ગયા છો કે બધાં જ સજીવો માટે ખોરાક જરૂરી છે. તમે એ પણ ભણ્યાં છો કે કાર્બોદિત, પ્રોટીન, ચરબી, વિટામિન અને ખનીજતત્ત્વો વગેરે ખોરાકના ઘટકો છે. આ ખોરાકના ઘટકો આપણા શરીર માટે જરૂરી છે જેને **પોષકતત્ત્વો** (nutrients) કહે છે.

બધા જ સજીવો માટે ખોરાક જરૂરી છે. વનસ્પતિ પોતાનો ખોરાક જાતે બનાવી શકે છે પરંતુ પ્રાણીઓ અને મનુષ્ય આમ કરી શકતાં નથી. તેઓ વનસ્પતિ કે પ્રાણીઓનો ખોરાક તરીકે ઉપયોગ કરે છે. આમ, મનુષ્ય અને પ્રાણીઓ² પ્રત્યક્ષ કે પરોક્ષ રીતે વનસ્પતિ પર આધારિત છે.

બૂઝોને જાણવું છે કે વર્નસ્પતિ પોતાનો ખોરાક કેવી રીતે બનાવે છે ?

1.1 વનસ્પતિમાં પોષણના પ્રકાર (Mode of Nutrition in Plants)

વનસ્પતિ એક માત્ર સજીવ છે જે પાણી, કાર્બન ડાયૉક્સાઇડ અને ખનીજતત્ત્વોનો ઉપયોગ કરી પોતાનો ખોરાક બનાવે છે. આ ખોરાક બનાવવા માટેનાં જરૂરી કાર્યા પદાર્થો (raw materials) તેમની આસપાસ હોય છે.

આ પોષકતત્ત્વો એ સજીવોને તેમના શરીરના બંધારણ, વૃદ્ધિ, નુકસાન પામેલા ભાગોની સુધારણા તથા શક્તિની પ્રાપ્તિ માટે અને જૈવક્રિયાઓ માટે જરૂરી છે. સજીવો દ્વારા ખોરાક ગ્રહણ કરવાની અને શરીર દ્વારા તેને ઉપયોગમાં લેવાની પ્રક્રિયાને **પોષણ** કહે છે. સજીવો સરળ પદાર્થોમાંથી પોતાનો ખોરાક જાતે બનાવે છે તેને સ્વાવલંબી પોષણ કહેવામાં આવે છે.

(auto = સ્વ, troph = પોષણ) તેથી વનસ્પતિઓ સ્વાવલંબી (autotrophs) કહેવાય છે. પ્રાણીઓ અને બીજા ઘણા સજીવો પોતાનો ખોરાક વનસ્પતિ પાસેથી મેળવે છે. તેઓને પરાવલંબી (heterotrophs) (hetero = પર) કહેવાય છે.

પહેલીને જાણવું છે કે શા માટે આપણું શરીર વનસ્પતિની જેમ કાર્બન ડાયૉક્સાઇડ, પાણી અને ખનીજતત્ત્વોમાંથી ખોરાક બનાવી શકતું નથી?

હવે, આપણને પ્રશ્ન ઉદ્ભવે કે વનસ્પતિમાં ખોરાક બનાવવા માટેનું કારખાનું ક્યાં હોય છે ? શું ખોરાક વનસ્પતિના બધા જ ભાગોમાં બને છે કે માત્ર અમુક ભાગમાં જ બને છે ? વનસ્પતિ ખોરાક બનાવવા માટે કાચા પદાર્થો ક્યાંથી મેળવે છે ? કેવી રીતે આ પદાર્થો વનસ્પતિમાં ખોરાક બનાવવાનાં કારખાના સુધી વહન (transport) પામે છે.

1.2 પ્રકાશસંશ્લેષણ-વનસ્પતિમાં ખોરાક બનાવવાની પ્રક્રિયા

(Photosynthesis – Food Making Process in Plants)

પર્શો એ વનસ્પતિમાં ખોરાક બનાવવા માટેના કારખાના છે. તેથી બધા જ કાચા પદાર્થોને ત્યાં પહોંચવું જ રહ્યું. જમીનમાં રહેલ પાણી અને ખનીજતત્ત્વોનું મૂળ દ્વારા શોષણ થાય છે અને તેનું પરિવહન પર્શ સુધી થાય છે.

કોષો

તમે જોયું છે કે બહુમાળી મકાન ઈંટોના બનેલ હોય છે. તેવી જ રીતે, સજીવ શરીર પણ ખૂબ જ નાના એકમોનું બનેલું હોય છે, જેને કોષ (cell) કહે છે. કોષો માત્ર સૂક્ષ્મદર્શક યંત્રમાં જ જોઈ શકાય છે. કેટલાક સૂક્ષ્મ જીવો માત્ર એક જ કોષના બનેલા હોય છે. કોષ એક પાતળા આવરણથી આવરિત હોય છે. જેને કોષરસપટલ(cell membrane) કહે છે. દરેક કોષમાં ઘટ્ટ, મધ્યમાં ગોઠવાયેલ રચના આવેલી હોય છે જેને કોષકેન્દ્ર (nucleus) (આકૃતિ 1.1) કહે છે. કોષકેન્દ્રની આસપાસ જેલી જેવું દ્રવ્ય આવેલું હોય છે જેને કોષરસ (cytoplasm) કહે છે.

આકૃતિ 1.1 કોષ

વનસ્પતિ પર્શમાં આવેલ નાના છિદ્રો દ્વારા વાતાવરણમાંનો કાર્બન ડાયૉક્સાઇડ લે છે. આ છિદ્રો રક્ષક કોષો દ્વારા આવરિત હોય છે. જેમને **પર્શરંધ્ર** (Stomata) કહેવાય છે [આકૃતિ 1.2 (c)].

બૂઝોને જાણવું છે કે મૂળ પાણી અને ખનીજતત્ત્વનું શોષણ કરીને પર્ણ સુધી કેવી રીતે પહોંચાડે છે ?

વાહિનીઓ નળીની જેમ મૂળ, પ્રકાંડ, તેની શાખાઓ અને પર્શમાં આવેલી હોય છે કે જેનાં દ્વારા પાણી અને ખનીજતત્ત્વોનું વહન થાય છે. તેઓ એક સળંગ માર્ગ અથવા પથ બનાવે છે, જેથી પોષકતત્ત્વો પર્શ સુધી પહોંચે છે. તેમને વાહિનીઓ કહે છે. તમે પ્રકરણ 11 માં વનસ્પતિમાં પદાર્થોના વહન વિશે વધુ અભ્યાસ કરશો.

પહેલી જાણવા ઇચ્છે છે કે, પર્ણોમાં એવી કઈ ખાસિયત છે કે જેનાથી તે ખોરાકનું સંશ્લેષણ કરી શકે છે અને વનસ્પતિના બીજા ભાગો કરી શકતાં નથી!

પર્શામાં લીલું રંજકદ્રવ્ય આવેલું હોય છે, જેને હરિતદ્રવ્ય (chlorophyll) કહે છે. તે પર્શને સૂર્યઊર્જાનું શોષણ કરવામાં મદદરૂપ થાય છે. આ ઊર્જા કાર્બન ડાયૉક્સાઇડ અને પાણીમાંથી ખોરાક બનાવવામાં વપરાય છે. આમ, સૂર્યપ્રકાશની હાજરીમાં ખોરાકનું સંશ્લેષણ થતું હોવાથી તેને પ્રકાશસંશ્લેષણ કહેવાય છે. (Photo = પ્રકાશ; Synthesis = સંશ્લેષણ). તેથી આપણે કહી શકીએ કે, હરિતદ્રવ્ય, સૂર્યપ્રકાશ, કાર્બન ડાયૉક્સાઇડ અને પાણી એ પ્રકાશસંશ્લેષણની પ્રક્રિયા માટે અગત્યનાં છે. આ પૃથ્વી પરની વિશિષ્ટ ઘટના છે. સૂર્યઊર્જા એ પર્ણ દ્વારા શોષિત થાય છે અને વનસ્પતિમાં ખોરાક સ્વરૂપે સંગ્રહ પામે છે. આથી, સૂર્ય એ બધા સજીવો માટે ઊર્જાનો અદિતીય સ્રોત છે.

શું તમે પ્રકાશસંશ્લેષણ વિના પૃથ્વી પર જીવનની કલ્પના કરી શકો!

પ્રકાશસંશ્લેષણ વિના કોઈ પણ ખોરાક બની શકે નહીં. લગભગ બધાં જ સજીવોનું અસ્તિત્વ એ પરોક્ષ કે પ્રત્યક્ષ રીતે વનસ્પતિ દ્વારા બનાવાયેલ ખોરાક પર જ આધારિત છે. બીજી બાજુએ ઑક્સિજન કે જે બધા જ સજીવોના અસ્તિત્વ માટે જરૂરી છે, તે પ્રકાશસંશ્લેષણ દ્વારા ઉત્પન્ન થાય છે. પ્રકાશસંશ્લેષણની ગેરહાજરીમાં પૃથ્વી પર જીવન અશક્ય છે.

પ્રકાશસંશ્લેષણની ક્રિયા પર્ણ સિવાય વનસ્પતિના બીજા લીલા ભાગોમાં પણ થાય છે - જેમ કે લીલું પ્રકાંડ અને તેની શાખાઓ. રણમાં ઉગતી વનસ્પતિઓ પર ભીંગડા જેવું આવરણ અથવા કાંટા જેવાં પર્ણ જોવા મળે છે. જે બાષ્પોત્સર્જન દ્વારા થતાં પાણીના વ્યયને અટકાવે છે. આ વનસ્પતિઓ પાસે લીલું પ્રકાંડ હોય છે જે પ્રકાશસંશ્લેષણની ક્રિયા કરે છે.

પ્રકાશસંશ્લેષણ દરમિયાન, પર્ણના હરિતદ્રવ્ય ધરાવતા કોષો (આકૃતિ 1.2) સૂર્યપ્રકાશની હાજરીમાં કાર્બન ડાયૉક્સાઇડ અને પાણીનો ઉપયોગ કરી કાર્બોદિતનું સંશ્લેષણ કરે છે (આકૃતિ 1.3). આ પ્રક્રિયા સમીકરણ દ્વારા નીચે મુજબ દર્શાવી શકાય છે.

> કાર્બન ડાયૉક્સાઇડ + પાણી સૂર્યપ્રકાશ હરિતદ્રવ્ય કાર્બોદિત પદાર્થ + ઑક્સિજન

આકૃતિ 1.2

આકૃતિ 1.3 પ્રકાશસંશ્લેષણ દર્શાવતી આકૃતિ

પ્રક્રિયા દરમિયાન, ઑક્સિજન મુક્ત થાય છે. પર્શમાં સ્ટાર્ચનું હોવું એ પ્રકાશસંશ્લેષણની પ્રક્રિયા થવાનું સુચન છે. સ્ટાર્ચ એ કાર્બોદિત પદાર્થ છે.

प्रवृत्ति 1.1

બે એકસરખાં છોડ લો. એક છોડને અંધકારમાં (અથવા કાળાં ખોખામાં) 72 કલાક માટે રાખો અને બીજા છોડને સૂર્યપ્રકાશમાં રાખો. જે પ્રમાણે ધોરણ VIમાં પ્રવૃત્તિ કરેલ

એવી જ રીતે બંને છોડનો આયોડિન દ્વારા પરીક્ષણ કરો. તમારું પરિણામ નોંધો. હવે, જે છોડને અંધકારમાં રાખેલ હતો તેને 3-4 દિવસ માટે સૂર્યપ્રકાશમાં મૂકો અને ફરીથી તેના પર્ણોનું આયોડિન દ્વારા પરીક્ષણ કરો. તમારી નોટબુકમાં અવલોકનની નોંધ કરો.

પર્શમાં જે ભાગ લીલો નથી, તે પણ હરિતદ્રવ્ય ધરાવે છે. લાલ, કથ્થાઈ અને બીજા રંજકદ્રવ્યો લીલા રંગને ઢાંકી દે છે (આકૃતિ 1.4). આ પર્શામાં પણ પ્રકાશસંશ્લેષણ જોવા મળે છે.

આકૃતિ 1.4 જુદા જુદા રંગના પર્ણો

તમે અવારનવાર તળાવ કે જળાશયના સ્થિર પાણીમાં ચીકણા અને લીલા ધબ્બાંને જોતા હશો. સામાન્ય રીતે વૃદ્ધિ પામતા આ સજીવને **લીલ** (algae) કહે છે. શું તમે અનુમાન બાંધી શકો છો કે શા માટે લીલ લીલા રંગની જોવા મળે છે ? તેઓ હરિતદ્રવ્ય ધરાવે છે જે તેમને લીલો રંગ આપે છે. લીલ પણ પ્રકાશસંશ્લેષણની ક્રિયા દ્વારા પોતાનો ખોરાક બનાવે છે.

કાર્બોદિત પદાર્થો સિવાય વનસ્પતિ ખોરાકનું સંશ્લેષણ (Synthesis of plant food other than carbohydrates)

તમે શીખ્યાં કે વનસ્પતિ પ્રકાશસંશ્લેષણની ક્રિયા દ્વારા કાર્બોદિત પદાર્થોનું સંશ્લેષણ કરે છે. કાર્બોદિત પદાર્થો કાર્બન, હાઇડ્રોજન અને ઑક્સિજનના બનેલા હોય છે. જેનો ઉપયોગ બીજા ઘટકો જેવા કે પ્રોટીન અને ચરબીના સંશ્લેષણ માટે થાય છે. પરંતુ પ્રોટીન એ નાઇટ્રોજનયુક્ત પદાર્થ છે, તો વનસ્પતિને નાઇટ્રોજન ક્યાંથી મળે છે ?

યાદ કરો, હવામાં પુષ્કળ પ્રમાણમાં નાઇટ્રોજન વાયુ સ્વરૂપે રહેલો છે, પરંતુ વનસ્પતિ નાઇટ્રોજનનું તેના સ્વરૂપમાં શોષણ કરી શકતી નથી. જમીન કેટલાક બૅક્ટેરિયા ધરાવે છે, જે વાયુરૂપ નાઇટ્રોજનને ઉપયોગમાં લઈ શકાય તેવા સ્વરૂપમાં ફેરવે છે અને જમીનમાં મુક્ત કરે છે. આ નાઇટ્રોજન, પાણી સાથે વનસ્પતિ દ્વારા શોષાય છે. તમે એ પણ જોયું હશે કે ખેડૂતો નાઇટ્રોજનથી ભરપૂર ખાતરો જમીનમાં ભેળવે છે. આવી રીતે વનસ્પતિ તેની નાઇટ્રોજન અને અન્ય ઘટકોની જરૂરિયાત પૂરી કરે છે. ત્યારબાદ વનસ્પતિ પ્રોટીન અને વિટામિનનું સંશ્લેષણ કરી શકે છે.

1.3 વનસ્પતિમાં પોષણના અન્ય પ્રકારો (OTHER MODES OF NUTRITION IN PLANTS)

કેટલીક વનસ્પતિઓ એવી પણ છે કે જે હરિતદ્રવ્ય ધરાવતી નથી. તેઓ પોતાનો ખોરાક જાતે બનાવી શકતી નથી. તેઓ કેવી રીતે જીવી શકે છે ? અને તેઓ ક્યાંથી પોષણ મેળવે છે ? તેઓ મનુષ્ય અને અન્ય પ્રાણીઓની જેમ, બીજી વનસ્પતિઓ દ્વારા બનાવાયેલ ખોરાક પર નભે છે. તેઓ પરાવલંબી પોષણ ધરાવે છે. આકૃતિ 1.5 જુઓ. શું તમને વનસ્પતિના પ્રકાંડ અને ડાળી પર પીળા રંગની વીંટળાયેલી દોરી જેવી રચના જોવા મળે છે ? આ અમરવેલ (Cuscuta) છે. તે હરિતદ્રવ્ય ધરાવતી નથી. તે જે વૃક્ષ પર જોવા મળે છે તે વૃક્ષ દ્વારા બનાવેલા ખોરાકનો ઉપયોગ કરી પોષણ મેળવે છે. જે વૃક્ષ પર તે આરોહણ કરે છે, તેને **'યજમાન'** (host) કહેવાય છે. તે પોતાનું પોષણ યજમાન પાસેથી લે છે, તેથી અમરવેલને 'પરોપજીવી' (parasite) કહે છે. શું આપણે અને બીજા પ્રાણીઓ પણ પરોપજીવી પ્રકારના છીએ ? તેના પર વિચારો અને શિક્ષક સાથે ચર્ચા કરો.

આકૃતિ 1.5 અમરવેલ (Cuscuta) યજમાન વનસ્પતિ સાથે

પહેલીને જાણવું છે કે મચ્છર, માંકડ, જૂ અને જળો જે આપણું રુધિર શોષે છે, તે પણ પરોપજીવી છે.

તમે એવી વનસ્પતિઓ વિશે સાંભળ્યું છે કે જે પ્રાણીઓનો ખોરાક તરીકે ઉપયોગ કરતી હોય ? એવી થોડીક વનસ્પતિઓ છે કે જે કીટકોનો શિકાર કરીને તેનું પાચન કરી શકે છે. શું, તે આશ્ચર્યજનક નથી ? આ વનસ્પતિ લીલો કે અન્ય રંગ ધરાવે છે. આકૃતિ 1.6 માં દર્શાવેલ વનસ્પતિ જુઓ. પર્શ એ કળશ અથવા જગ જેવી રચનામાં ફેરવાઈ જાય છે. પર્શનો અગ્રભાગ ઢાંકણ જેવી રચના બનાવે છે. જે કળશના મુખનો ભાગ ખોલી કે બંધ કરી શકે છે. કળશની અંદર વાળ જેવી રચના આવેલી હોય છે. કીટક અંદર પ્રવેશે છે ત્યારે ઢાંકણ બંધ થાય છે અને કીટક વાળમાં ફસાઈ જાય છે.

કળશ જેવી રચનામાં પાચક ઉત્સેચકોના સ્નાવથી કીટકનું પાચન થાય છે અને તેના પોષકતત્ત્વો શોષાય છે. આવા કીટકોનો આહાર તરીકે ઉપયોગ કરતી વનસ્પતિને કીટાહારી વનસ્પતિ (insectivorous plant) કહેવાય છે.

શું તે શક્ય છે કે આવી વનસ્પતિ જે જમીનમાં ઊગે છે, તેમાંથી જરૂરી પોષકતત્ત્વો નહીં મેળવતી હોય ?

બૂઝો અસમંજસમાં છે. જો કળશપર્ણ એ લીલું છે અને પ્રકાશસંશ્લેષણ કરે છે, તો પછી શા માટે તે કીટકોને ખાય છે ?

કળશમાં ફેરવાયેલ પર્શ

આકૃતિ 1.6 ઢાંકણ અને કળશ દર્શાવતો કળશપર્શ

1.4 મૃતોપજીવીઓ (SAPROTROPHS)

તમે શાકમાર્કેટમાં મશરૂમના પૅકેટ વેચાતાં જોયા હશે. તમે, વર્ષાઋતુમાં સડતા લાકડાં ઉપર અથવા ભેજવાળી જમીનમાં છત્રી કે ડાઘાયુક્ત પોચી રચના પણ જોઈ હશે (આકૃતિ 1.7). ચાલો, આપણે શોધીએ કે તેઓ કયા પ્રકારના પોષકતત્ત્વો લે છે અને ક્યાંથી મેળવે છે?

આકૃતિ 1.7 મશરૂમના પૅકેટ અને સડેલા પદાર્થો પર ઉગેલ મશરૂમ

બૂઝોને જાણવું છે કે આ સજીવો પોષણ કેવી રીતે મેળવે છે ? તેઓ પાસે પ્રાણીઓ જેવું મુખ નથી. તેઓ લીલી વનસ્પતિ જેવા નથી કારણ કે તેઓ હરિતદ્રવ્ય ધરાવતાં નથી કે પ્રકાશસંશ્લેષણ દ્વારા ખોરાક બનાવી શકતાં નથી.

પ્રવૃત્તિ 1.2

બ્રેડનો ટુકડો લો. તેને પાણી વડે ભીનો કરો. તેને હુંફાળી અને ભેજવાળી જગ્યા પર 2-3 દિવસ જ્યાં સુધી રુંવાટી જેવા ધબ્બા ના દેખાય ત્યાં સુધી રાખો (આકૃતિ 1.8). આ ધબ્બાનો રંગ કેવો છે? આ ધબ્બાને સૂક્ષ્મદર્શક યંત્ર અથવા તો બિલોરી કાચ વડે નિહાળો. તમારી નોટબુકમાં અવલોકન નોંધો. તમને બ્રેડના ટુકડા પર રૂ જેવા તાંતણા જોવા મળશે.

આ સજીવોને **ફૂગ** (fungi) કહેવાય છે. તેઓ જુદા

આકૃતિ 1.8 બ્રેડ પર ફૂગ

પ્રકારે પોષણ મેળવે છે. પછી તેઓ બ્રેડમાંથી પોષકતત્ત્વો શોષે છે. આવા પ્રકારનું પોષણ કે જેમાં મૃત અને સડી ગયેલ પદાર્થીના દ્રાવણમાંથી પોષણ મેળવાય તેને મૃતપોષી પોષણ (saprotrophic nutrition) કહેવાય છે. જે સજીવો મૃતોપજીવી પોષણ પદ્ધતિ ધરાવે છે તેને મૃતોપજીવી (saprotrophs) કહે છે.

અથાણાં, ચામડાં, કપડાં કે બીજી ઘણી વસ્તુઓ કે જે ગરમ કે હૂંફાળી જગ્યાઓ પર લાંબા સમયથી પડી હોય તેની ઉપર ફ્રગ ઊગે છે.

પહેલી એ જાણવા આતુર છે, કે વર્ષાઋતુમાં તેણીના સુંદર જૂતા જે તે ખાસ પ્રસંગમાં જ પહેરતી, તે ફૂગના કારણે ખરાબ થઈ ગયાં. તે જાણવા ઇચ્છે છે કે, વર્ષાઋતુમાં અચાનક જ કેમ ફૂગ જોવા મળે છે ?

વર્ષાઋતુ દરમિયાન તે ઘણી વસ્તુઓ ખરાબ કરે છે. તમારા માતાપિતાને ફૂગ દ્વારા ઘરમાં રહેલાં જોખમ વિશે પૂછો.

સામાન્ય રીતે ફૂગના બીજાશુઓ હવામાં જોવા મળે છે. જ્યારે તેઓ ભીની અને હૂંફાળી સપાટી પર આવે છે ત્યારે તેઓ અંકુરિત થાય છે અને વૃદ્ધિ પામે છે. હવે તમે કહી શકો કે આપણે વસ્તુઓને ખરાબ થતી કેવી રીતે રોકી શકીએ છીએ?

કેટલાક સજીવો સાથે જીવે છે તથા વસવાટ અને પોષકતત્ત્વો એમ બંને માટે સહભાગી બને છે. આ પ્રકારના સંબંધને સહજીવન (સહભાગિતા – symbiotic relationship)કહેવાય છે. દા.ત., ફૂગ વનસ્પતિના મૂળ પર જોવા મળે છે. વનસ્પતિ એ ફૂગને પોષકતત્ત્વો પૂરા પાડે છે, બદલામાં ફૂગ તેને પાણી અને પોષકતત્ત્વો પૂરા પાડે છે.

લાઇકેન (lichen) જેવા સજીવોમાં હરિતદ્રવ્ય ધરાવતી લીલ અને ફૂગ સાથે જોવા મળે છે. ફૂગ વસવાટ, પાણી અને ખનીજતત્ત્વો લીલને આપે છે, તેના બદલામાં લીલ ખોરાક બનાવે છે અને ફૂગને પૂરો પાડે છે.

1.5 જમીનમાં પોષકતત્ત્વો ફરી કેવી રીતે આવે છે? (How Nutrients are Replenished in the Soil)

શું તમે ક્યારેય ખેડૂતને ખેતરમાં છાણિયું ખાતર અથવા રાસાયણિક ખાતર નાખતાં જોયાં છે ? અથવા માળીને બગીચામાં ઘાસવાળી ભૂમિ (Lawn) અથવા ફૂંડામાં તેનો ઉપયોગ કરતાં જોયાં છે ? શું તમે જાણો છો કે આવું કેમ કરવામાં આવે છે ?

તમે શીખી ગયાં કે, વનસ્પતિ જમીનમાંથી ખનીજક્ષારો અને પોષકતત્ત્વોનું શોષણ કરે છે. તેથી તેમની માત્રા જમીનમાં ઘટતી જાય છે. છાણિયા ખાતર કે રાસાયણિક ખાતરમાં નાઇટ્રોજન, પૉટેશિયમ અને ફૉસ્ફરસ જેવાં પોષકતત્ત્વો રહેલા હોય છે. જમીનને સમૃદ્ધ બનાવવા માટે આવા પોષકતત્ત્વો સમયાંતરે જમીનમાં ઉમેરાવા જોઈએ. જો આપણે વનસ્પતિની પોષકતત્ત્વોની જરૂરિયાત પૂરી કરીએ તો આપણે તેમને ઉછેરી શકીએ અને તેમની તંદુરસ્તી જાળવી શકીએ.

સામાન્યપશે પાક નાઇટ્રોજનનું પુષ્કળ પ્રમાશમાં શોષશ કરે છે અને તેથી જમીનમાં નાઇટ્રોજનની ઊશપ સર્જાય છે. તમે શીખ્યાં છો કે, વાતાવરશમાં પુષ્કળ માત્રામાં નાઇટ્રોજન હોવા છતાં વનસ્પતિ, જેમ કાર્બન ડાયૉક્સાઇડનો ઉપયોગ કરી શકે છે તેમ, નાઇટ્રોજનનો ઉપયોગ કરી શકતી નથી. તેમને નાઇટ્રોજન દ્રાવ્ય સ્વરૂપમાં જરૂરી છે. રાઇઝોબિયમ (rhizobium) જેવા બૅક્ટેરિયા વાતાવરશમાંનો નાઇટ્રોજન લઈ શકે છે અને તેને જરૂરી દ્રાવ્ય સ્વરૂપમાં ફેરવી શકે છે. પરંતુ રાઇઝોબિયમ પોતાનો ખોરાક બનાવી શકતાં નથી. તેથી તે મોટાભાગે ચણા, વટાણા, મગ, વાલ તથા બીજા કઠોળના મૂળમાં વસવાટ કરે છે અને તેમને નાઇટ્રોજનનો પુરવઠો પૂરો પાડે છે.

બદલામાં વનસ્પતિ બૅક્ટેરિયાને ખોરાક અને વસવાટ આપે છે. આમ, અહીં સહસંબંધ જોવા મળે છે. આ પ્રકારનું જોડાણ એ ખેડૂતો માટે ખૂબ જ અગત્યનું છે. આમ, જે જમીનમાં કઠોળ વર્ગની વનસ્પતિ ઉગાડવામાં આવે તેમાં નાઇટ્રોજનયુક્ત ખાતરનો ઉપયોગ ઓછો કરવો પડે છે.

આ પ્રકરણમાં તમે અભ્યાસ કર્યો કે મોટા ભાગની

વનસ્પતિ સ્વયંપોષી છે. માત્ર અમુક જ વનસ્પતિ પરપોષી કે મૃતપોષી છે. તેઓ પોતાનું પોષણ બીજા સજીવોમાંથી મેળવે છે. બધાં જ પ્રાણીઓ પરપોષી શ્રેણીમાં સમાવિષ્ટ છે કારણ કે તેઓ ખોરાક/પોષણ માટે વનસ્પતિ તથા બીજા પ્રાણીઓ પર નિર્ભર હોય છે. શું આપણે કીટાહારીઓને અાંશિક પરપોષી (partial heterotrophs) કહી શકીએ ?

પારિભાષિક શબ્દો

સ્વયંપોષી	Autotrophic
હરિતદ્રવ્ય	Chlorophyll
પરપોષી	Heterotrophs
યજમાન	Host

કીટાહારી	Insectivorous
પોષકતત્ત્વો	Nutrient
પોષણ	Nutrition
પરોપજીવી	Parasite

પ્રકાશસંશ્લેષણ	Photosynthesis
મૃતોપજીવ <u>ી</u>	Saprotrophs
મૃતપોષી	Saprotrophic
પર્શરંધ્ર	Stomata

તમે શું શીખ્યાં ?

- બધા જ સજીવો ખોરાક લે છે અને તેનો ઉપયોગ શક્તિ મેળવવા, વૃદ્ધિ તથા શરીરને જાળવી રાખવા માટે કરે છે.
- લીલી વનસ્પતિ પ્રકાશસંશ્લેષણની પ્રક્રિયા દ્વારા તેમનો ખોરાક જાતે બનાવે છે. તેઓ સ્વયંપોષી છે.
- વનસ્પતિ સરળ રાસાયણિક પદાર્થો જેવા કે કાર્બન ડાયૉક્સાઇડ, પાણી અને ખનીજતત્ત્વોનો ઉપયોગ ખોરાક બનાવવાની પ્રક્રિયા માટે કરે છે.
- પ્રકાશસંશ્લેષણની પ્રક્રિયા માટે હરિતદ્રવ્ય અને સૂર્યપ્રકાશ જરૂરી છે.
- 🔳 પ્રકાશસંશ્લેષણ દ્વારા જટિલ રાસાયણિક પદાર્થો જેવા કે કાર્બોદિત ઉત્પન્ન થાય છે.
- 🔳 હરિતદ્રવ્ય દ્વારા સૂર્ય-ઊર્જા ખોરાક સ્વરૂપે પર્ણમાં સંગ્રહાય છે.
- પ્રકાશસંશ્લેષણ દરમિયાન ઑક્સિજન ઉત્પન્ન થાય છે.
- સજીવો તેમનું અસ્તિત્વ ટકાવી રાખવા માટે પ્રકાશસંશ્લેષણ દ્વારા મુક્ત થયેલ ઑક્સિજનનો ઉપયોગ કરે છે.
- ફૂગ મૃત અને સડી ગયેલા પદાર્થોમાંથી પોષણ મેળવે છે. તેઓ મૃતોપજીવી છે. અમરવેલ જેવી વનસ્પતિ પરોપજીવી છે. તેઓ યજમાનમાંથી પોતાનો ખોરાક મેળવે છે.
- કેટલીક વનસ્પતિઓ અને પ્રાણીઓ પોતાના પોષણ માટે બીજા પર નભે છે, તેને પરોપજીવી કહે છે.

- 1. સજીવોને ખોરાક લેવાની જરૂર શા માટે હોય છે ?
- 2. પરોપજીવી અને મૃતોપજીવીનો તફાવત આપો.
- 3. પર્ણમાં સ્ટાર્ચની હાજરી કેવી રીતે ચકાસશો ?
- 4. લીલી વનસ્પતિમાં ખોરાક બનવાની ક્રિયાનું ટૂંકમાં વર્ણન કરો.
- 5. રેખાચિત્ર દ્વારા દર્શાવો કે, 'વનસ્પતિ ખોરાક માટેનો અદ્વિતીય સ્રોત છે.'
- 6. ખાલી જગ્યા પૂરો :
 - (a) લીલી વનસ્પતિ ______ કહેવાય છે, કારણ કે તેઓ પોતાનો ખોરાક જાતે બનાવે છે.
 - (b) વનસ્પતિ દ્વારા બનાવાયેલ ખોરાક _____ સ્વરૂપે સંગ્રહ પામે છે.
 - (c) પ્રકાશસંશ્લેષણમાં સૂર્ય-ઊર્જા _____ નામના રંજકદ્રવ્ય દ્વારા શોષણ પામે છે.
 - (d) પ્રકાશસંશ્લેષણ દરમિયાન વનસ્પતિ _____ વાયુ લે છે અને ____ વાયુ લે છે અને
- 7. નીચેનાનાં નામ આપો :
 - (i) પીળી, પાતળી દોરી જેવું પ્રકાંડ ધરાવતી પરોપજીવી વનસ્પતિ.
 - (ii) સ્વયંપોષણ અને પરપોષણ બંને પ્રકારનું પોષણ ધરાવતી વનસ્પતિ.
 - (iii) પર્જામાં વાતવિનિમય જે છિદ્ર દ્વારા થાય છે તે.
- 8. સાચો વિકલ્પ પસંદ કરો :
 - (a) અમરવેલ એ _____નું ઉદાહરણ છે.
 - (i) સ્વયંપોષી (ii) પરપોષી (iii) મૃતોપજીવી (iv) યજમાન
 - (b) આ વનસ્પતિ કીટકોને ફસાવે છે અને આરોગે છે :
 - (i) અમરવેલ (ii) જાસૂદ (iii) કળશપર્શ (iv) ગુલાબ
- 9. કૉલમ-ા અને કૉલમ-ાાના જોડકાં જોડો :

કૉલમ-ા	કૉલમ-II
હરિતદ્રવ્ય	બૅક્ટેરિયા
નાઇટ્રોજન	પરપોષી
અમરવેલ	કળશપર્ણ
પ્રાણીઓ	પર્ણ
કીટકો	પરોપજીવી

- 10. સાચા વિધાન સામે 'T' અને ખોટાં વિધાન સામે 'F' પર નિશાની કરો.
 - (i) પ્રકાશસંશ્લેષણ દરમિયાન કાર્બન ડાયૉક્સાઇડ મુક્ત થાય છે. (T / F)

- (ii) જે વનસ્પતિઓ પોતાનો ખોરાક જાતે બનાવે છે, તેને મૃતોપજીવી કહે છે. (T / F)
- (iii) પ્રોટીન એ પ્રકાશસંશ્લેષણની પેદાશ નથી. (T / F)
- (iv) પ્રકાશસંશ્લેષણ દરમિયાન સૂર્ય-ઊર્જા એ રાસાયણિક ઊર્જામાં રૂપાંતરિત થાય છે. (T / F)
- 11. નીચે આપેલા વિકલ્પોમાંથી ખરો વિકલ્પ પસંદ કરો : પ્રકાશસંશ્લેષણ માટે વનસ્પતિનો કયો ભાગ વાતાવરણમાંથી કાર્બન ડાયૉક્સાઇડ લે છે ?
 - (i) મૂળરોમ (ii) પર્શરંધ્ર (iii) પર્શશિરા (iv) વજપત્ર
- 12. નીચે આપેલા વિકલ્પોમાંથી આપેલ વિધાન માટે ખરો વિકલ્પ પસંદ કરો : વનસ્પતિ વાતાવરણમાંથી કાર્બન ડાયૉક્સાઇડ મુખ્યત્વે _____ દ્વારા લે છે.
 - (i) મૂળ (ii) પ્રકાંડ (iii) પુષ્પો (iv) પર્ણ
- 13. ખેડૂતો મોટા ગ્રીનહાઉસમાં ઘણાં ફળો અને શાકભાજી શા માટે ઊગાડે છે? તેનાથી ખેડૂતોને શા ફાયદા થાય?

વિસ્તૃત અભ્યાસ માટેની પ્રવૃત્તિઓ અને પ્રૉજેક્ટ

1. પ્રૉજેક્ટ

એક કૂંડામાં પહોળા પર્શોવાળો છોડ લો. બે કાળી પટ્ટી લો. તેના મધ્યમાંથી ચોરસ ખાનું કાપો. આ પટ્ટીઓથી બંને પર્શોને ઢાંકો. તેમને કાગળ ક્લિપની મદદથી યોગ્ય રીતે રાખો. છેડાને 2-5 દિવસ માટે સૂર્યપ્રકાશમાં મૂકો. પર્શના આવરિત અને અનઆવરિત ભાગોમાં જોવા મળતા રંગોના તફાવતનું નિરીક્ષણ કરો. આ પર્શનું આયોડિનથી પરીક્ષણ કરો. આ બંને ભાગોમાં તફાવત જોવા મળે છે? હવે બીજું પર્શ લો. તેના પરની પટ્ટી કાઢી નાખો અને આવરિત ભાગને ખુલ્લો કરી 2-3 દિવસ માટે સૂર્યપ્રકાશમાં રાખો. ફરીથી આયોડિનની મદદથી તેનું પરીક્ષણ કરો. મેળવેલ પરિણામનું વર્શન કરો.

આકૃતિ 1.9 પ્રકાશસંશ્લેષણની હાજરી દર્શાવતો પ્રયોગ

- 2. તમારા વિસ્તાર નજીકમાં આવેલ ગ્રીનહાઉસની મુલાકાત લો. તેઓ વનસ્પતિ કે છોડને કેવી રીતે ઉછેરે છે તે જુઓ. તેઓ વનસ્પતિની વૃદ્ધિ માટે પ્રકાશની માત્રા, પાણી અને કાર્બન ડાયૉક્સાઇડની માત્રાનું નિયમન કેવી રીતે કરે છે તે શોધી કાઢો.
- 3. પાણીની અંદર શક્કરિયાંને ઉગાડવાનો પ્રયત્ન કરો. તમારા પ્રયોગ અને પરિણામનું વર્ણન કરો. નીચે આપેલ વેબસાઇટ પર વધારે માહિતી મેળવી શકશો :
 - www.phschool.com/science/biology_place/biocoach/photosynth/overview.htm

શું તમે જાણો છો ?

પ્રકાશ એ વનસ્પતિ માટે ખૂબ જ અગત્યતા ધરાવે છે. પર્જાની વૃદ્ધિ જુદી જુદી રચનાઓ ધરાવે છે, જેથી સૂર્યપ્રકાશનું શોષણ મહત્તમ થાય.