Importing Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Loading the dataset

In [20]: data = pd.read_csv(r"C:\Users\ykuma\Downloads\Zomato data .csv")
 data

Out	[20]	١:
ouc	L 20.	١.

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
143	Melting Melodies	No	No	3.3/5	0	100	Dining
144	New Indraprasta	No	No	3.3/5	0	150	Dining
145	Anna Kuteera	Yes	No	4.0/5	771	450	Dining
146	Darbar	No	No	3.0/5	98	800	Dining
147	Vijayalakshmi	Yes	No	3.9/5	47	200	Dining

148 rows × 7 columns

Data Cleaning

```
In [24]: # Converting the data type of the column 'Rate'

def rating(value):
    value = str(value).split('/')
    value = value[0];
    return float(value)

data['rate'] = data['rate'].apply(rating)
data.head()
```

Out[24]:

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

In [25]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148 entries, 0 to 147
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	name	148 non-null	object
1	online_order	148 non-null	object
2	book_table	148 non-null	object
3	rate	148 non-null	float64
4	votes	148 non-null	int64
5	<pre>approx_cost(for two people)</pre>	148 non-null	int64
6	<pre>listed_in(type)</pre>	148 non-null	object

dtypes: float64(1), int64(2), object(4)

memory usage: 8.2+ KB

Business Problem

```
In [27]: # 1. What type of restaurant do the majority of customers order from ?
    sns.countplot(data= data, x='listed_in(type)')
    plt.xlabel('Type of Restaurant')
```

Out[27]: <Axes: xlabel='listed_in(type)', ylabel='count'>

Conclusion:- Dining Restaurants are preferred by a larger number of individuals.

```
In [84]: # 2. How many votes has each type of restaurant received from customers ?
    grouped_data = data.groupby('listed_in(type)')['votes'].sum().reset_index()
    #plotting graph
    plt.bar(grouped_data['listed_in(type)'], grouped_data['votes'], color='green plt.xlabel('Type of restaurant', color='red', size=20)
    plt.ylabel('Votes', color='red', size=20)
    plt.title('Total Votes by Restaurant Type', size=22)
    plt.xticks(rotation=45)
    plt.show()
```


Conclusion: Dining Restaurants has received maximum votes.

```
In [49]: # 3. what are the ratings that the majority of restaurants have received ?
    plt.hist(data['rate'],bins=5)
    plt.title('Rating Distribution')
    plt.xlabel('Ratings')
    plt.ylabel('Count')
    plt.show()
```


Conclusion:- The majority restaurants received ratings from 3.5 to 4.0

```
In [69]: # 4. Zomato has observed that most of couples order most of their food only
couple_data= data['approx_cost(for two people)']
plt.title('Average Orders Spending ')
plt.xlabel('Cost')
sns.countplot(x=couple_data, width=0.5)
plt.show()
```


Conclusion:- The majority of couples prefer restaurants with an approximate cost of 300 rupees.

```
In [70]: # 5. Which mode has received the maximum rating ?
sns.boxplot(data=data, x='online_order', y= 'rate')
plt.show()
```


Conclusion = Offline orders receive lower rating as compare to onine orders.

```
In [66]: # 6. Which type of restaurant received more offline orders, so that Zomato
    pivot_table= data.pivot_table(index= 'listed_in(type)', columns= 'online_or
    sns.heatmap(pivot_table, annot=True, cmap='YlGnBu', fmt='d')
    plt.title('Heatmap')
    plt.xlabel('Online Order')
    plt.ylabel('Listed In(type)')
    plt.show()
```


Conclusion:- Dining Restaurants primarily accept offline orders, whereas cafes primarilty receive online orders. This suggests that clients prefer to place orders in person at restaurants, but prefer online ordering at cafes.

In [1]:	
In []:	