НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

з лабораторної роботи № 4 із дисципліни «Криптографічні методи захисту інформації» на тему

Шифрування з відкритим ключем на основі алгоритму RSA

Виконав: Керівник:

студент групи КМ-ХХ ст. викладач Бай Ю. П.

Іваненко І. І.

3MICT

Постановка задачі	2
Основні теоретичні відомості з асиметричних криптосистем	3
Математичне підгрунтя алгоритму RSA	3
Опис алгоритму RSA	3
Контрольний приклад 1	4
Шифрування і розшифрування за алгоритмом RSA	5
Контрольні питання	6
Список літератури	7
Додаток 1	8
Полаток 2	Q

Mema роботи: розробити асиметричну криптосистему на основі алгоритму шифрування RSA.

Постановка задачі

- 1. Скласти програму, яка дозволяє виконувати шифрування та розшифрування за алгоритмом RSA. Перевірити роботу програми на контрольних прикладах. Навести скріншоти детального покрокового виконання алгоритму.
 - 1. Контрольний приклад 1 (RSA-encryption)

$$p = 11, \quad q = 17, \quad e = 3$$

public key $\{e, n\} = \{3, 187\}$

private key $\{d, n\} = \{107, 187\}$
 $M = 72$
 $C = 183$
 $M' = 72, \quad text = chr(72) = \{H\}$

Контрольний приклад 2 (RSA uk.wiki)

$$p = 3557$$
, $q = 2579$, $e = 3$
 $public key \{e, n\} = \{3, 9173503\}$
 $private key \{d, n\} = \{6111579, 9173503\}$
 $M = 1111111$
 $C = 4051753$
 $M' = 1111111$

2. Виконати дії ОДЕРЖУВАЧА і розшифрувати задане повідомлення, користуючись алгоритмом RSA. Необхідні результати занести до Таблиця RSA.

УВАГА! Числа n в стовпчику D мають бути унікальними.

Основні теоретичні відомості з асиметричних криптосистем							
•••••							
	Математичне підґрунтя алгоритму RSA						

Опис алгоритму RSA

Контрольний приклад 1

RSA-encryption

Виконати приклад. Додати скріншот, що містить усі проміжні результати.

Шифрування і розшифрування за алгоритмом RSA

Таблиця 1.

Крок	Опис кроку	Результат				
1	Обрати два довільних простих числа p і q $p \neq q; \ 1 < p, \ q < 200$					
2	Обчислити добуток $n = p \cdot q$. Увага! $n > 90$ та має бути унікальним в стовпчику D в Таблиця RSA					
3	Обчислити функцію Ейлера $\varphi(n) = (p-1)\cdot (q-1)$					
4	Обрати відкриту експоненту $e:\ 1 < e < \varphi(n)$, $e-$ взаємно просте з $\varphi(n)$					
5	Обчислити секретну експоненту d таку, що $(e\cdot d) \ mod \ \varphi(n) = 1$					
6	Зберегти закритий ключ $\{d, n\}$					
7	Опублікувати відкритий ключ $\{e,n\}$					
8	Одержати від відправника / викладача зашифроване повідомлення C . \mathcal{L} ії відправника: 1) обрати текст для шифрування M ; 2) символи тексту замінити цілими числами m_i згідно з таблицею ASCII; 3) виконати шифрування за формулою $c_i = (m_i)^e \mod n$.					
9	Розшифрувати задане повідомлення C : 1) обчислити $m_i = (c_i)^d \mod n$; 2) поставити у відповідність знайденим цілим числам m_i літери англійського алфавіту, записати одержане слово					

В процесі шифрування використовується наступне перетворення літер англійської абетки в коди ASCII: ord(`A') = 65, chr(65) = `A'.

A	В	C	D	 Z
\downarrow	→	→	→	
65	66	67	68	 90

Контрольні питання

- 1. В чому полягає принципова відмінність асиметричних криптосистем від симетричних?
- 2. Що таке одностороння (однонаправлена) функція з секретом? Наведіть приклади односторонніх функцій.
- 3. Складність якої математичної задачі полягає в основі алгоритму RSA?
- 4. Як визначається і обчислюється функція Ейлера?
- 5. Як пов'язані між собою відкритий і закритий ключі в алгоритмі RSA?

Список літератури

- 1. Тарнавський Ю.А. Технології захисту інформації [Електронний ресурс] / Ю. А. Тарнавський. Київ: КПІ ім. Ігоря Сікорського, 2018. 162 с.
- 2. Шнайер Б. Прикладная криптография: Протоколы, алгоритмы, исходные тексты на языке Си / Б. Шнайер. М.: Диалектика, 2003. 610 с.
- 3. Гулак Г.М. Основи криптографічного захисту інформації: підручник / Г.М. Гулак, В.А. Мухачов, В.О. Хорошко, Ю.Є. Яремчук / Вінниця: ВНТУ, 2011.-199 с.
- 4. Столлингс В. Криптография и защита сетей: принципы и практика, 2-е изд.: Пер. с англ. М.: «Вильямс», 2001. 672 с.
- 5. Саймон Сингх. Книга шифров. Пер. с англ. А. Галыгина. М.: ACT: Астрель, 2007. 448 с.

Додаток 1

Текст програми, що реалізує шифрування/розшифрування за алгоритмом RSA

Додаток 2

Скріншоти виконання кроків 1-9 Таблиці 1.