Revisitando 'The Biplot Graphic Display of Matrices with Application to Principal Component Analysis' (Gabriel, 1971).

Luiz Roberto Martins Pinto
Carlos Tadeu dos Santos Dias

Introdução:

Um dos métodos gráficos mais utilizados na análise de dados é o *Gráfico Biplot* (*GB*), especialmente aplicado na análise de componentes principais (**PCA**).

O objetivo básico de uma **PCA** é aproximar qualquer matriz Y retangular n x m de posto r por uma matriz n x m, mas de posto r*<r por meio da sua decomposição em valores singulares (**SVD**) de forma que $Y = \sum_{i=1}^{r} \lambda_{\alpha} p_{\alpha} q_{\alpha}$

Em uma **PCA** espera-se:

- 1) que (r*<r) expresse ambos a tendência e a variabilidade padrões (não aleatória) do fenômeno em estudo;
- 2) que $\sum_{\alpha=1}^{r^* < r} \lambda_{\alpha}^2$ quantifique esta variabilidade padrão.

Gráfico Biplot (GB)

O **GB** é importante na **PCA** para representar a estrutura da matriz Y, notadamente nos casos em que a variabilidade padrão de Y seja evidenciada para r*=2 ou 3.

Para isto, Gabriel propõe a fatoração dos valores singulares por meio dos valores 'per se' dos vetores singulares (linhas e colunas) tomados como pesos, estimados na SVD.

E.g. coordenadas $g_{i|\alpha} = \lambda_{\alpha} p_{i|\alpha}$, $h_{j|\alpha} = \lambda_{\alpha} q_{j|\alpha}$

Proposição inicial

Devido ao tempo restrito vamos discutir, preferencialmente, a questão dos 'pesos' utilizados para a fatoração dos valores singulares λ . Propomos que λ seja fatorado utilizando-se como pesos os quadrados dos vetores singulares.

E.g. coordenadas $g_{i|\alpha} = \lambda_{\alpha} p_{i|\alpha}^2$, $h_{j|\alpha} = \lambda_{\alpha} q_{j|\alpha}^2$

No decorrer da exposição abordaremos outros diferenciais nesta revisitação do artigo de Gabriel, 1971, na medida que o tempo permitir.

Fundamentação para a fatoração

Fatorar se refere a uma decomposição de um objeto matemático em produto de objetos simples.

Para realizar a fatoração dos valores singulares λ os pesos relativos (ω) devem atender aos pressupostos:

a) soma dos pesos = 1, $\Sigma \omega$ =1 ; isto é obrigatório para que

b)
$$\lambda = \sum \lambda . \omega$$

Neste caso ω é representado por p e q (vetores singulares associados às linhas e colunas, respectivamente)

Vamos demonstrar que o método para a fatoração de λ proposto por Gabriel não atende a estes pressupostos. $g_{i|\alpha} = \lambda_{\alpha} p_{i|\alpha}$, $h_{j|\alpha} = \lambda_{\alpha} q_{j|\alpha}$

Isto é, demonstraremos que

$$\sum abs(p_{i|a}) \neq 1$$
 portanto, $\lambda_{\alpha} \neq \sum abs(\lambda_{\alpha}p_{i|a})$

Por outro lado demonstraremos que o peso apropriado para a a fatoração de λ é o quadrado dos vetores singulares. $g_{i|\alpha} = \lambda_{\alpha} p_{i|\alpha}^2$, $h_{j|\alpha} = \lambda_{\alpha} q_{j|\alpha}^2$

Isto é, demonstraremos que

$$\sum p_{i|\alpha}^2 = \sum q_{j|\alpha}^2 = 1$$
 portanto, $\lambda_{\alpha} = \sum abs(\lambda_{\alpha}p_{i|\alpha}^2) = \sum abs(\lambda_{\alpha}q_{j|\alpha}^2)$.

E isto é derivado de importante propriedade dos vetores singulares $\Sigma p^2 = \Sigma q^2 = 1$ para cada λ .

Dados utilizados

Os dados utilizados neste estudo foram apresentados por Gabriel (1971) na "Table 1. Facilities and equipment in East Jerusalem in 1967, by subquarter, from Israel (1968)".

Os efeitos nas Linhas referem-se aos I=8 níveis de 'Facilities and equipment' (F) e os efeitos nas Colunas referem-se aos J=9 níveis de 'subquarter' (Q).

Modelo utilizado

Considere o modelo geral

$$Y = F + Q + FxQ$$

OU

$$Y_{ij} = \mu + f_i + q_j + (fq)_{ij}$$

Vamos demonstrar o que afirmamos avaliando a interação *FxG por meio da PCA*:

$$fq_{ij} = Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{.i}$$

Função R utilizada

Uma função em código R foi criada para a realização da PCA e do Gráfico Biplot, e atende aos modelos:

- a) Interação
- b) AMMI
- c) GGE
- d) EGE
- e) Ajuste média geral
- f) Gráfico Biplot para todos os efeitos da matriz.

A função r 'bcpa.m' é uma ampliação da função 'bpca' criada por Faria et. al. 2013.

Resultados

Destaques, pressupostos:

Gabriel meth: $\sum abs(p_{ia}) \neq 1$ (e.g. PC_1 : $\sum abs(p_{ia=1}) = 2.52$)

Gabriel mod. meth: $\sum abs(p_{i\alpha}^2) = \sum p_{i\alpha}^2 = 1$

As coordenadas GB para ambos os métodos de fatoração são apresentados na Tabela 2.

Tabela 1: $\lambda_{\alpha=1} = 59.69$

Tabela 2:

Gabriel meth: $\sum abs(\lambda_{a=1}p_{j,a=1}) = 150.72 \neq \lambda_{a=1}$ e $\sum abs(\lambda_{a=1}q_{j,a=1}) = 151.86 \neq \lambda_{a=1}$

Gabriel mod. meth: $\sum abs(\lambda_{\alpha=1}p_{j|\alpha=1}^2) = \sum abs(\lambda_{\alpha=1}q_{j|\alpha=1}^2) = 59.69 = \lambda_{\alpha=1}$

Table 1: PCA for interaction matrix FxQ. Weights for factoring singular values for the to estimation of the coordinates Biplot graphic for the F and Q effects described in Table 1 in Gabriel (1971) by 'Gabriel' and 'Gabriel modified' methods. Principal Components 1 to 4 (5 to 7 not shown).

				for factori	ng singular	values				
	:	Gabriel method *				Gabriel modified method **				
F effect	PC1	PC2	PC3	PC4		PC1	PC2	PC3	PC4	
To	-0,49	0,11	-0,35	0,47		-0,24	0,01	-0,12	0,22	
K	-0,17	0,03	-0,35	-0,63		-0,03	0,00	-0,12	-0,40	
В	0,55	0,23	-0,07	0,12		0,31	0,05	-0,01	0,01	
E	-0,28	-0,72	0,10	0,08		-0,08	-0,52	0,01	0,01	
\mathbf{W}	0,49	-0,22	-0,45	0,02		0,24	-0,05	-0,20	0,00	
Ra	-0,15	0,23	0,38	-0,51		-0,02	0,05	0,14	-0,26	
Tv	-0,17	0,53	0,11	0,27		-0,03	0,29	0,01	0,07	
Re	0,22	-0,18	0,63	0,18		0,05	-0,03	0,39	0,03	
sum(abs)	2,52	2,24	2,43	2,28		1,00	1,00	1,00	1,00	
Q effect	PC1	PC2	PC3	PC4		PC1	PC2	PC3	PC4	
01	-0,28	-0,36	0,48	-0,05		-0,08	-0,13	0,23	0,00	
02	-0,25	-0,23	0,35	-0,11		-0,06	-0,05	0,12	-0,01	
O3	-0,29	0,21	-0,33	0,63		-0,08	0,04	-0,11	0,40	
04	-0,32	-0,14	-0,15	0,24		-0,10	-0,02	-0,02	0,06	
M1	0,51	-0,35	-0,01	-0,04		0,26	-0,12	0,00	0,00	
M2	0,62	0,03	0,04	0,34		0,38	0,00	0,00	0,12	
D1	0,12	0,00	-0,24	-0,31		0,01	0,00	-0,06	-0,10	
D2	-0,13	0,05	-0,54	-0,53		-0,02	0,00	-0,30	-0,28	
R	0,03	0,79	0,41	-0,17		0,00	0,63	0,17	-0,03	
sum(abs)	2,54	2,16	2,55	2,43		1,00	1,00	1,00	1,00	
				Singular v	alues (λ)	77				
λ	59,69	37,80	19,51	13,06		59,69	37,80	19,51	13,06	
λ^2	3563,31	1429,03	380,77	170,69		3563,31	1429,03	380,77	170,69	
$\lambda^2/\Sigma\lambda^2$	0,63	0,25	0,07	0,03		0,63	0,25	0,07	0,03	
Acumul.	0,63	0,88	0,95	0,98		0,63	0,88	0,95	0,98	

Table 2: Coordinates and effects for the Biplot graphic for I and J levels for FxQ interaction described in Table 1 in Gabriel (1971). Principal Components (PC) 1 to 4 (5 to 7 not shown) for fatoração de λ_{α} by 'Gabriel' and 'Gabriel modified' methods.

g _{ia} -	Gabriel										
	PC1	PC2	Effect**	PC3	PC4	PC1	PC2	Effect**	PC3	PC4	
To	-29,53	-4,15	29,82	-6,75	6,10	-14,61	-0,46	14,62	-2,34	2,85	
K	-10,06	-0,95	10,11	-6,74	-8,24	-1,70	-0,02	1,70	-2,33	-5,19	
В	33,09	-8,53	34,17	-1,43	1,52	18,34	-1,92	18,44	-0,10	0,18	
E	-16,89	27,25	32,06	1,91	0,99	-4,78	19,65	20,22	0,19	0,07	
W	29,43	8,40	30,60	-8,74	0,31	14,51	1,87	14,63	-3,91	0,01	
Ra	-8,91	-8,52	12,33	7,32	-6,63	-1,33	-1,92	2,34	2,75	-3,36	
Tv	-9,96	-20,19	22,51	2,22	3,55	-1,66	-10,78	10,91	0,25	0,96	
Re	12,85	6,70	14,49	12,21	2,40	2,77	1,19	3,01	7,64	0,44	
Sum(abs)	150,72	84,69	-	47,32	29,73	59,69	37,80	-	19,51	13,06	
$h_{i\alpha}$	PC1	PC2	Effect**	PC3	PC4	PC1	PC2	Effect**	PC3	PC4	
O1	-16,52	13,58	21,38	9,30	-0,71	-4,57	4,88	6,68	4,43	-0,04	
O2	-15,21	8,70	17,52	6,78	-1,40	-3,88	2,00	4,36	2,36	-0,15	
O3	-17,20	-7,81	18,89	-6,48	8,26	-4,96	-1,62	5,21	-2,15	5,23	
O4	-19,27	5,47	20,03	-2,97	3,16	-6,22	0,79	6,27	-0,45	0,76	
M1	30,32	13,11	33,03	-0,19	-0,51	15,40	4,55	16,05	0,00	-0,02	
M 2	36,88	-0,99	36,90	0,84	4,45	22,79	-0,03	22,79	0,04	1,52	
D1	7,08	0,02	7,08	-4,60	-4,10	0,84	0,00	0,84	-1,09	-1,29	
D2	-7,73	-2,06	8,00	-10,62	-6,95	-1,00	-0,11	1,01	-5,78	-3,70	
R	1,65	-30,01	30,06	7,93	-2,20	0,05	-23,83	23,83	3,23	-0,37	
Sum(abs)	151,86	81,76	-	49,71	31,74	59,69	37,80	-	19,51	13,06	
dist**	17,80	9,79	11,15	5,71	3,62	7,02	4,45	5,09	2,30	1,54	

^{*}Effect: e.g. i.effect = $sqrt((g_{i|\alpha=1})^2 + (g_{i|\alpha=2})^2)$; ** $dist = mean(\{i.effect, j.effect\})*0.5$, $\forall i, j, a=1,2$

Uso da função r

Figura 1: Gráficos Biplot. Fatoração de λ : (1a) em função de $p_{i|\alpha}$ e $q_{j|\alpha}$, (1b) em função de $p_{i|\alpha}^2$ e $q_{j|\alpha}^2$.

O Código R para executar a função bpca.m está disponível sob requisição:

Luiz Roberto Martins Pinto

luizroberto.uesc@gmail.com

Agradeço a atenção!