공개SW (Open Source SW)를 중심으로 하는

공간정보 빅데이터 분석 및 실습

05. PostGIS 기반 분석

pgAdmin 실행 및 신규 데이터베이스 생성

○ 일반적인 PostgreSQL 사용 방법과 동일

PostGIS 확장 모듈 적용

- 데이터베이스 Query Tool 〉 PostGIS 확장 모듈 적용 (데이터베이스별로 처음 한 번만)
 - Query Editor 화면에 생성 구문을 입력하고, F5 또는 실행 버튼을 클릭
 - 우측 하단의 Message에 성공 결과 확인

PostGIS에 한국 좌표계 적용

- 변환계수 적용이 필요한 예전 한국측지계(Bessel 타원체) 좌표계(EPSG 5174 등)에 대한 좌표계 정보를 수정하여 정상적인 좌표 변환 지원
- o https://www.osgeo.kr/205 에서 제공하는 .sql 파일을 다운로드
- 텍스트 편집기로 열어서 복사하고 pgadmin의 Query Editor에서 실행

QGIS에서의 PostGIS 연결

- PostGIS는 공간데이터 저장 및 분석 위주 툴로서 시각화를 위한 QGIS 등의 별도의 도구가 필요
- QGIS의 Browser 패널에 있는 PostGIS 컨텍스트 메뉴 〉 New Connection (한 번 등록된 데이터베이스는 목록에 나타남)
- 하단 오른쪽과 같이 접속할 데이터베이스의 Host, Port, 데이터베이스명, 계정 정보 입력
- Test Connection 버튼 눌러서 성공 메시지 확인 후, OK

PostGIS에 로딩할 데이터 준비

- 3차시 QGIS 실습시 정제된 보안등(slight), 도서관(library), CCTV(cctv), 강남구 행정구역 데이터를 QGIS에 로딩
 - 4개 데이터 모두 EPSG 5179로 좌표계 통일
 - CCTV만 강남구 외부 데이터를 포함한 버전이고, 나머지는 강남구 내에 있는 정제 데이터

SHP 등의 GIS 공간데이터 로딩/ 조회

- 준비된 레이어를 PostGIS의 해당 데이터베이스에 Drag & Drop하면 로딩됨
- PostGIS의 공간데이터를 QGIS에서 보려면, 반대로 PostGIS상의 레이어(공간데이터)를 더블클릭하거나 Layers 창에 Drag & Drop하면 됨

PostGIS에서 지원하는 공간데이터 Import/ Export

Generate simple geometries instead of MULTI geometries

QGIS에서의 또 다른 PostGIS 공간데이터 로딩 방법

- 다음과 같은 상황에서 유리
 - QGIS 상에 로딩되어 있는 레이어를 PostGIS 상에 로딩
 - 선택된 데이터만 올릴 때
 - 테이블명을 변경
 - PK 지정
 - 공간 인덱싱을 생성
 - 필드명을 소문자로 변환
 - 로딩하면서 좌표계를 변환
 - 인코딩 문제가 있을 때 캐릭터 셋을 지정

QGIS 상에서의 공간쿼리 및 View 조회

- DB Manager 〉 원하는 PostGIS 데이터베이스 연결 (더블클릭)
- SQL Window 🚺 버튼 클릭하고, 공간 SQL을 작성
- Load as a new layer 체크 〉 Excute로 SQL 실행 〉성공하면 Load 버튼 클릭 〉 SQL을 만족하는 공간데이터가 지도창에 로딩됨

공간쿼리 결과 View를 Table로 저장

- 공간SQL 결과 임시 레이어를 선택
- DB Manager의 Import에서 선택 개체 옵션을 체크하고 로딩

다수의 shp을 로딩하려면

- 아래의 명령을 윈도우 명령프롬프트에서 실행
- shp2pgsql -I -s 5179 -W cp949 TL_SCCO_SIG.shp | psql -U postgres -d edu19
 - -1: 인덱스 생성
 - -s: 좌표계 정의
 - -U: DB 계정명
 - -d: 데이터베이스명
- 윈도우 명령프롬프트에서 shp2pgsql을 사용하려면 시스템 환경변수 Path에 postgreSql(psql.exe)의 경로를 추가
 - C:₩Program Files₩PostgreSQL₩11₩bin(11버전 64bit일 때의 기본 설치 경로)

좌표가 포함된 CSV를 PostGIS에서 공간 테이블로 로딩

- 빈 테이블을 생성(csv와 항목 순서, 데이터 타입 등이 일치해야 함)
- 불필요한 컬럼은 텍스트에디터, QGIS, 스프레드시트, PANDAS 등으로 미리 정리

CREATE TABLE

table_a(pnu char(20), x_coord numeric(13, 6), y_coord numeric(13, 6), 기타 속성 컬럼명 numeric(7, 2));

○ CSV 파일을 해당 테이블에 복제, 구분자 및 헤더 등 확인

COPY table_a FROM 'C:₩data₩test.csv' DELIMITERS '|' CSV HEADER;

○ 테이블에 geom이라는 지오메트리(도형) 컬럼을 EPSG 5179 좌표계로 생성

ALTER TABLE table_a

ADD COLUMN geom geometry(POINT, 5179);

○ 좌표 컬럼 2개를 이용하여 포인트 도형정보를 geom에 생성

UPDATE table_a

SET geom = ST_SetSRID(ST_MakePoint(X_COORD, Y_COORD),5179);

※ 저용량일 경우 QGIS에서 공간데이터화 한 후, 로딩해도 동일 효과

PostGIS 공간함수

- o https://postgis.net/docs/reference.html 에서 지원되는 공간함수 목록 및 각 목록 클릭 시 설명/예시 등 제공
- 구글 등에서 PostGIS 와 관련 기능(함수명)을 넣어서 검색하는 방법도 가능
- 공간함수를 적용하는 공간테이블은 좌표계가 정의되어 있고, 모두 동일한 좌표계이어야 함
 - 공간함수를 적용할 때 좌표변환 함수를 같이 써서 좌표계를 맞추는 방법도 가능하나 처리 시간이 더 오래 걸림

8.13. Geometry Processing

- ST_Buffer (T) Returns a geometry covering all points within a given distance from the input geometry.
- ST_BuildArea Creates an areal geometry formed by the constituent linework of given geometry
- ST_Centroid Returns the geometric center of a geometry.
- ST_ClipByBox2D Returns the portion of a geometry falling within a rectangle.
- ST_ConcaveHull The concave hull of a geometry represents a possibly concave geometry that encloses all geometries within the set. You can think of it as shrink wrapping.
- ST_ConvexHull Computes the convex hull of a geometry.
- ${\sf ST_CurveToLine-Converts\ a\ CIRCULARSTRING/CURVEPOLYGON/MULTISURFACE\ to\ a}$

LINESTRING/POLYGON/MULTIPOLYGON

- ST_DelaunayTriangles Return a Delaunay triangulation around the given input points.
- ST_Difference Returns a geometry that represents that part of geometry A that does not intersect with geometry B.
- ST_FlipCoordinates Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.
- ST_GeneratePoints Converts a polygon or multi-polygon into a multi-point composed of randomly location points within the original areas.
- ST GeometricMedian Returns the geometric median of a MultiPoint.
- ST_Intersection (T) Returns a geometry that represents the shared portion of geomA and geomB.
- ST_LineToCurve Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVEPOLYGON
- ST_MakeValid Attempts to make an invalid geometry valid without losing vertices.
- ST_MemUnion Same as ST_Union, only memory-friendly (uses less memory and more processor time).
- ST_MinimumBoundingCircle Returns the smallest circle polygon that can fully contain a geometry. Default uses 48 segments per quarter circle.
- ST_MinimumBoundingRadius Returns the center point and radius of the smallest circle that can fully contain a geometry.
- ST OrientedEnvelope Returns a minimum rotated rectangle enclosing a geometry.

PostGIS 공간함수

- https://postgis.net/docs/reference.html 에서 지원되는 공간함수 목록 및 각 목록 클릭 시 설명/예시 등 제공
- 구글 등에서 PostGIS 와 관련 기능(함수명)을 넣어서 검색하는 방법도 가능
- 공간함수를 적용하는 공간테이블은 좌표계가 정의되어 있고, 모두 동일한 좌표계이어야 함
 - 공간함수를 적용할 때 좌표변환 함수를 같이 써서 좌표계를 맞추는 방법도 가능하나 처리 시간이 더 오래 걸림

Equals: 두 개의 Geometry가 동일한가?

Disjoint: 두 개의 Geometry가 서로 격리되었는가?

Intersects: 두 개의 Geometry가 교차하는가?

Touches:두 개의 Geometry가 접촉하는가?

Crosses:두 개의 Geometry가 횡단하는가?

Within:하나의 Geometry가 다른 하나에 포함되는가?

Contains: 하나의 Geometry가 다른 하나를 포함하는가?

Overlaps: 두 개의 Geometry가 부분적으로 겹치는가?

<PostGIS 공간함수 목록 중 일부 화면>

공간테이블의 좌표계 확인

select * from geometry_columns;

점 : POINT(0 0)

선: LINESTRING(0 0,1 1,1 2)

면: POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

MULTIPOINT((0 0),(1 2))

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

"MULTI"가 붙은 것은 하나의 레코드에 2개 이상의 도형을 담는 방식으로 예를 들어 수백 개의 섬과 육지 영역을 하나의 전라남도 행정구역으로 묶을 수 있는 방식

좌표계 변환 방법

○ 공간테이블의 좌표계를 변환

alter table 테이블명 -변경할 테이블 지정

alter column geom type geometry(POINT, 4326) - 도형(geometry)이 들어있는 geom 컬럼에 변경될 좌표계를 지정 (POINT는 기존 도형타입과 동일해야 함)

using ST_Transform(geom, 4326) --좌표변환 공간함수로 실제 변환이 이뤄짐

○ 좌표계 정보 적용/업데이트

SELECT UpdateGeometrySRID('public', gu_gn ', 'geom', 5179);

o geom 도형을 이용하여 좌표 속성을 생성

- alter table 테이블명 add column x double precision; → x 컬럼 생성
- alter table 테이블명 add column y double precision; → y 컬럼 생성
- update 테이블명 set x = ST_X(geom), y=ST_Y(geom); → x, y 컬럼에 좌표 속성 입력
- 위의 SQL을 응용해서 4326 좌표계로 변환해서 속성으로 넣을 경우 →
 update 테이블명 set x = ST_X(ST_Transform(geom, 4326)), y = ST_Y(ST_Transform(geom, 4326));

▶ 공간 쿼리를 하기 전 좌표계 부여, 대상 테이블들은 동일한 좌표계로 통일

○ 서울시 실폭도로(Z_KAIS_TL_SPRD_RW_11000.shp)를(EPSG:5181로 PostGIS에 로딩하고), EPSG:5179로 변환하면서 강남구 영역만 추출

create table rd_gn as select rd_sl.* from rd_sl, gu_gn where ST_Intersects(ST_Transform(rd_sl.geom, 5179), gu_gn.geom);

alter table rd_gn alter column geom type geometry(MultiPolygon, 5179) using ST_Transform(geom, 5179);

○ 도서관(500m) 버퍼 테이블 생성

create table library_buf as select
library_gn.id, library_gn.name, library_gn.type, ST_Buffer(library_gn.geom, 500) as geom
from
library_gn;

○ CCTV(50m), 보안등(20m) 버퍼 테이블 생성

```
create table cctv_buf as
select
1 as id,
ST_Union( ST_Buffer(cctv_gn.geom, 50)) as geom
from cctv_gn;
```

create table slight_buf as
select
1 as id,
ST_Union(ST_Buffer(slight.geom, 20)) as geom
from slight;

○ 도서관 버퍼에서 실폭도로 부분만 추출

```
create table lib_rd as select lib.id, lib.name, ST_Intersection(rd.geom, lib.geom) AS geom from rd_gn as rd, library_buf as lib where ST_Intersects(lib.geom, rd.geom);
```

○ CCTV 버퍼와 보안등 버퍼 데이터를 병합

```
create table cctv_light as
select
1 as id,
ST_Union(cctv.geom, light.geom) as geom
from
cctv_buf as cctv, slight_buf as light;
```

○ 1영역에서 2 영역을 제외

create table becareful as
select
lib_rd.id, lib_rd.name,
ST_Difference(lib_rd.geom, cctv_light.geom) as geom
from
lib_rd, cctv_light;

create table becareful2 as
select
becareful.id, becareful.name,
ST_Union(becareful.geom) as geom
from
becareful
group by

becareful.id, becareful.name;

○ 도서관별 주의구간 면적 정보를 생성

```
create table becareful3 as
select
becareful2.id, becareful2.name, becareful2.geom,
ST_Area(geom) as area
from
becareful2;
```

• 면적이 큰 순위를 부여

create table becareful4 as
select
becareful3.*,
rank() OVER (order by area desc) AS rank
from becareful3

○ QGIS에서 시각화

주요 공간 SQL

- OSGeo 한국어지부 PostGIS 교육자료
 - https://www.slideshare.net/mapplus/postgis-open-source-gis
- road_link 테이블에서 차선(lanes)이 6차선 이상인 도로 도형의 합계 길이(km 단위)
 - select sum(ST_Length(geom)) / 1000 as sum_len from road_link where lanes >= 6;
- 읍면동 행정구역(admin_emd)에서 면적 상위 10개 순대로의 읍면동 이름과 면적
 - select emd_nm, ST_Area(geom) as area from admin_emd order by ST_Area(geom) desc limit 10;
- 특정 좌표에서 1km 반경 내의 매장 ST_Distance/ ST_Dwithin
 - select * from stores where ST_Distance(geom, ST_GeomFromText('point(197215 447711)', 5174)) < 1000;
- 영등포구 내에 있는 매장
 - select stores.* from stores, admin_sgg where ST_Intersects(stores.geom, admin_sgg.geom) and admin_sgg.sgg_nm = '영등포구'

주요 공간 SQL

○ 중구의 경위도 중심좌표

• select ST_AsText(ST_Transform(ST_Centroid(admin_sgg.geom), 4326)) from admin_sgg where admin_sgg.sgg_nm = '중구';

○ 소방서(firestation)에서 500미터 반경 내의 도로 중 가장 가까운 도로(road_link2)와 거리

SELECT DISTINCT ON(f.nam) f.nam, r.roadname_a, r.lanes, ST_Distance(r.geom, f.geom) As dist FROM firestation AS f LEFT JOIN road_link2 As r ON ST_DWithin(r.geom, f.geom, 500)
 ORDER BY f.nam, ST_Distance(r.geom, f.geom)
 LIMIT 1;

○ PostGIS 워크숍

https://postgis.net/workshops/postgis-intro/

PostGIS와 Geopandas 연동

- http://geopandas.org/reference.html?highlight=from_postgis#GeoDataFrame.from_postgis
- o psycopg 등의 PostgreSQL 연동 라이브러리 필요
 - 아래 소스코드 참조
 - https://github.com/thlee33/geopandas_basic_20191231/blob/master/geopandas_postgis_20191231.ipynb

```
classmethod GeoDataFrame. from_postgis (sql, con, geom_col='geom', crs=None, index_col=None, coerce_float=True, parse_dates=None, params=None)
```

Examples

```
>>> sql = "SELECT geom, highway FROM roads"
SpatiaLite
>>> sql = "SELECT ST_Binary(geom) AS geom, highway FROM roads"
>>> df = geopandas.GeoDataFrame. from_postgis (sql, con)
```