1

IN-2023

EE23BTECH1153-R.Rahul*

QUESTION:

61. In the diagram shown, the frequency of the sinusoidal source voltage V_s is 50 Hz.The load voltage is 230 V (RMS), and the load impedance is $\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}} \Omega$. The value of attenuator $A_1 = \frac{1}{50\sqrt{2}}$. The multiplier output voltage $V_o = \frac{V_x V_y}{1V}$, where V_x and V_y are the inputs. The magnitude of the average value of the multiplier output V_0 is

V_s \bigcirc	Load
= 1Ω	
V_o V_x V_y	
+90° phase shifter A_1	

Solution:

1) Let the curret in load be I

$$I = \frac{V_s(peak)}{Z}$$
 (1)
= $\frac{230\sqrt{2}}{\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}}}$ (2)

$$=\sqrt{2}(1-j)\tag{3}$$

Parameter	Description	Value
V_s	sinusoidal Source voltage	230 V(RMS)
V_1	voltage across attenuator	
V_x and V_y	inputs voltages	
A_1	attenuator	$\frac{1}{50\sqrt{2}}$
Z	Load Impedance	$\frac{230}{\sqrt{2}} + j\frac{230}{\sqrt{2}} \Omega$
V_0	output voltage	$V_0 = \frac{V_x V_y}{1V}$

TABLE I VARIABLES

2) voltage at attenuator

$$V_1 = V_s A_1 \tag{4}$$

$$=230\frac{1}{50\sqrt{2}}V\tag{5}$$

$$=\frac{4.6}{\sqrt{2}}V\tag{6}$$

$$V_{v} = 4.6\sin(\omega t + 90^{\circ}) \tag{7}$$

$$V_x = I \times 1\Omega \tag{8}$$

$$=2\sqrt{2}\sin(\omega t - 45^{\circ})\tag{9}$$

$$V_0 = 9.2\sqrt{2}(\frac{\cos(135) - \cos(2\omega t)}{2}) \tag{10}$$

$$= 4.6 - 4.6\sqrt{2}\cos(2\omega t) \tag{11}$$

(12)

3) Let
$$f(t) = 4.6 - 4.6 \sqrt{2} \cos(2\omega t)$$

$$V_{o} < avg > = \frac{1}{T} \int_{0}^{T} (4.6 - 4.6\sqrt{2}\cos(2\omega t)) dt$$

$$= \frac{\omega}{\pi} \left[\int_{0}^{\frac{\pi}{\omega}} 4.6 dt - 4.6\sqrt{2} \int_{0}^{\frac{\pi}{\omega}} \cos(2\omega t) dt \right]$$

$$= \frac{\omega}{\pi} \left[4.6 \frac{\pi}{\omega} - 4.6\sqrt{2} \left[\frac{\sin(2\pi)}{2\omega} \right] \right]$$

$$\pi \begin{bmatrix} \omega & \omega & \omega \\ \omega & \omega \end{bmatrix}$$
 (15)

$$=4.6\tag{16}$$

Fig. 1. $plotofV_x$

Fig. 2. $plotofV_y$

Fig. 3. $plotofV_o$