Feuille d'exercices nº 15 : analyse asymptotique

Exercice 1. Classer les familles de fonctions suivantes par ordre de négligeabilité au voisinage de $+\infty$:

1.
$$\frac{1}{x}$$
, $\frac{1}{x^2}$, $\frac{\ln x}{x}$, $\frac{1}{x \ln x}$, $\frac{\ln x}{x^2}$

2.
$$x$$
, x^2 , $x \ln x$, $\sqrt{x} \ln x$, $\frac{x^2}{\ln x}$

Exercice 2. Déterminer un équivalent simple des suites suivantes. En déduire le comportement en $+\infty$.

1.
$$u_n = \frac{(n+2)^3}{4n^2+2}$$

9.
$$u_n = \ln\left(\frac{n^2 + 1}{n^2 + 2}\right)$$

16.
$$u_n = \frac{n \ln n}{3 + \cos n e^{-n}}$$

2.
$$u_n = \frac{2n^2 + 1000}{n^3 + 3n + 1}$$

10.
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$

17.
$$u_n = \frac{e^n + n^2}{e^{-n^2} + \frac{1}{n^3}}$$

3.
$$u_n = \frac{2n + (-1)^n}{4n + (-1)^{n+1}}$$

11.
$$u_n = \sum_{k=0}^n k!$$

18.
$$u_n = \frac{\ln(n + \ln n)}{\ln(2n + \ln n)}$$

4.
$$u_n = \frac{1}{n} + (-1)^n$$

12.
$$u_n = \frac{n^{\sqrt{n+1}}}{(n+1)^{\sqrt{n}}}$$

19.
$$u_n = \frac{\ln(n^2 + n)}{\ln(n^2 + 2^n)}$$

5.
$$u_n = n^2 + 2^n + 5 \ln n$$

13.
$$u_n = \frac{2^n + 3^n}{2^n - 3^n}$$

20.
$$u_n = \ln(e^n + n) - \frac{n}{2}$$

6.
$$u_n = \frac{4n^2 + 3^n}{2^n + \frac{n}{2}}$$

14.
$$u_n = \frac{n^2 + n! + 25^n}{(n+2)! + 30^n}$$

21.
$$u_n = \sqrt{n+1+n\ln n} - \sqrt{n}$$

7.
$$u_n = \frac{n^2 + e^{-2n} + \sqrt{n^5}}{\ln(2n) + 2n - 3}$$

8. $u_n = (n+3\ln(n))e^{-(n+1)}$

15.
$$u_n = n \sin \frac{1}{n^2}$$

22.
$$u_n = \frac{\ln(n^2 + 1)}{n^2 + 1}$$

Exercice 3. Déterminer les développements limités suivants.

- 1. À l'ordre 2 en a > 0 de $f: x \mapsto e^x$
- 6. À l'ordre 4 en 0 de $f: x \mapsto \sqrt{1-x} \sqrt{1+x}$
- 2. À l'ordre 2 en a > 0 de $f: x \mapsto x\sqrt{x}$
- 7. À l'ordre 4 en 0 de $f: x \mapsto \ln \frac{1}{\cos x}$
- 3. À l'ordre 2 en 0 de $f: x \mapsto \ln \frac{1+x}{1-x-x^2}$
- 8. À l'ordre 4 en 0 de $f: x \mapsto (\ln(1+x))^2$
- 4. À l'ordre 1 en 0 de $f: x \mapsto \frac{x^2 + x \sin x}{\ln(1+x)}$
- 9. À l'ordre 4 en $+\infty$ de $f: x \mapsto \frac{1}{x+x^2}$
- 5. À l'ordre 2 en 1 de $f: x \mapsto \frac{x \ln x}{x^2 1}$
- 10. À l'ordre 4 en $+\infty$ de $f: x \mapsto \ln(x + \sqrt{1+x^2}) \ln(x)$

Exercice 4. Déterminer les limites suivantes :

1.
$$\lim_{x \to 0} \frac{e^x - x - \cos(x)}{x^2}$$

4.
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$

7.
$$\lim_{x \to +\infty} \left(\operatorname{ch} \left(\frac{1}{x} \right) \right)^{x^2}$$

$$2. \lim_{x \to 0} \frac{\sin x(\tan x - x)}{\ln(1+x)}$$

$$5. \lim_{x \to +\infty} x - x^2 \ln \left(1 + \frac{1}{x} \right)$$

8.
$$\lim_{n \to +\infty} \ln(e^n + n) - n$$

3.
$$\lim_{\substack{x \to 0 \\ \text{avec } a > 0 \text{ et } b > 0}} \frac{a^x - b^x}{x}$$

6.
$$\lim_{x \to +\infty} \sqrt{x^2 + 3x + 2} - x$$

9.
$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan(2x)}$$

Exercice 5. Soit f définie par $f(x) = \frac{\ln(1+x) - x}{x^2}$.

- 1. Déterminer le développement limité de f au voisinage de 0 à l'ordre 2.
- 2. Montrer que f peut être prolongée par continuité en 0 et que ce prolongement est alors dérivable en 0.
- 3. Déterminer alors l'équation de la tangente en 0 et étudier la position de la courbe représentative de fpar rapport à sa tangente en 0.

Exercice 6. Déterminer, si elles existent, les asymptotes au courbes représentatives des fonctions suivantes en $+\infty$ et étudier la position de la courbe par rapport à son asymptote au voisinage de $+\infty$:

1.
$$f(x) = xe^{1/x}$$

4.
$$f(x) = x^3 \ln(1 + 1/x^2)$$

7.
$$f(x) = \ln(e^x + x)$$

2.
$$f(x) = \sqrt{x^2 + x + 1}$$

5.
$$f(x) = x^2(\ln(1+x) - \ln x)$$
 8. $f(x) = x/(e^x - 1)$

8.
$$f(x) = x/(e^x - 1)$$

3.
$$f(x) = (x+1)e^{1/x^2}$$

6.
$$f(x) = x^2 \arctan\left(\frac{1}{1+x}\right)$$

Exercice 7.

1. Montrer l'encadrement :
$$\forall x > 0$$
, $\frac{1}{x+1} \le \ln(1+x) - \ln x \le \frac{1}{x}$.

2. Soit
$$H_n = \sum_{k=1}^n \frac{1}{k}$$
. Montrer que (H_n) tend vers $+\infty$.

- 3. Montrer l'équivalence : $H_n \sim \ln n$.
- 4. Montrer enfin que $(H_n \ln n)$ converge vers un réel γ de]0,1[*i.e.* : $H_n = \ln n + \gamma + o(1)$.

Exercice 8. On considère la suite (u_n) définie par $u_1 \in [0,2]$ et $\forall n \in \mathbb{N}^*$, $u_{n+1} = 1 + \frac{u_n}{1+n}$.

- 1. Montrer que : $\forall n \in \mathbb{N}^*, u_n \in [0, 2].$
- 2. Montrer que (u_n) converge vers 1.
- 3. On veut déterminer deux réels a et b tels que, au voisinage de $+\infty$, $u_n = 1 + \frac{a}{n} + \frac{b}{n^2} + o\left(\frac{1}{n^2}\right)$. En partant de $u_n = 1 + o(1)$, déterminer a et b.

Pour s'entrainer

Exercice 9. Soit $f(t) = \frac{\sin t}{t}$ pour $t \neq 0$ et f(0) = 1.

- 1. Montrer que $\int_0^x f(t) dt$ existe, pour tout $x \in \mathbb{R}$.
- 2. On pose $F(x) = \frac{1}{x} \int_0^x f(t) dt$ pour x > 0. Calcular $\lim_{x \to 0^+} F(x)$.

Exercice 10. Étudier le comportement des fonctions suivantes (existence d'asymptote ou de tangente et position relative) à l'endroit indiqué.

1.
$$f(x) = \ln(1 + x + x^2)$$
 au voisinage de 0.

2.
$$f(x) = \frac{x}{e^x - 1}$$
 au voisinage de 0.

3.
$$f(x) = 2\sqrt{x} - \sqrt{x+1} - \sqrt{x-1}$$
 en $+\infty$.

4.
$$f(x) = \frac{x}{1 + e^{\frac{1}{x}}}$$
 en $+\infty$.

5.
$$f(x) = x^2 \arctan\left(\frac{1}{1+x}\right) \text{ en } +\infty.$$

6.
$$f(x) = \frac{\arctan(x)}{\sin^3(x)} - \frac{1}{x^2}$$
 au voisinage de 0.

7.
$$f(x) = \int_x^{x^2} \frac{1}{\sqrt{1+t^4}} dt$$
 en $+\infty$ (on donnera un développement asymptotique avec trois termes).

Exercice 11.

- 1. Montrer que l'équation $\tan x = x$ admet une unique solution x_n dans l'intervalle $\left] -\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right[$.
- 2. Montrer que $x_n \sim n\pi$.
- 3. Montrer que $x_n n\pi \frac{\pi}{2} \sim -\frac{1}{n\pi}$.
- 4. Chercher un équivalent de $x_n n\pi \frac{\pi}{2} + \frac{1}{n\pi}$.
- 5. Conclure que $x_n = n\pi + \frac{\pi}{2} \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right)$.

Exercice 12. Soit (u_n) une suite décroissante vérifiant $u_n + u_{n+1} \sim \frac{1}{n}$. Montrer que la suite converge nécessairement vers 0 et en donner un équivalent simple. Le résultat reste-t-il vrai si la suite n'est pas supposée décroissante?

Exercice 13. Montrer que les suites (u_n) et (v_n) définies par $u_n = n - \sum_{k=1}^n \cos\left(\frac{1}{k}\right)$ et $v_n = u_n + \sin\left(\frac{1}{n}\right)$ sont adjacentes (au moins à partir d'un certain rang).

Exercice 14. Soit f une fonction de classe C^2 telle que f(0) = f'(0) = 0 et $f''(0) \neq 0$. Déterminer la limite en 0 de la fonction $g: x \mapsto \frac{f(-x)}{f(x)}$.

Exercice 15. On considère les fonctions

$$f: x \mapsto (x-2)e^x$$
 et $g: x \mapsto f(x) + x^4$.

- 1. Donner le développement limité à l'ordre trois des fonctions f et g en 0. En déduire que les courbes de f et g ont la même tangente en 0. On notera, par la suite, T cette tangente commune.
- 2. Étudier la position relative des courbes de f et de g par rapport à T au voisinage de 0.
- 3. Étudier la position relative de la courbe de f par rapport à T (globalement).
- 4. La courbe de g est-elle au-dessous de T sur $]-\infty,0]$?

Exercice 16. On considère la fonction $f: x \mapsto \frac{\ln x}{x}$.

- 1. Calculer f'(x) et f''(x).
- 2. En déduire un développement limité à l'ordre 2 en 1 de f.
- 3. Etudier la position relative de la courbe de f et de sa tangente en 1 au voisinage de 1.
- 4. En étudiant la fonction $g: x \mapsto f(x) x$, montrer que la courbe de f est au-dessous de sa tangente en 1.

Exercice 17. Montrer que $e^{\sqrt{x+1}} - e^{\sqrt{x}} \sim \frac{e^{\sqrt{x}}}{2\sqrt{x}}$ en $+\infty$.

Exercice 18. Comparer (négligeabilité, domination, équivalence) les suites u, v, w et x définies par : $u_n = n^{\ln^2 n}$ $v_n = (n^2)^{\ln n}$ $w_n = (\ln n)^{n \ln n}$ $x_n = (n \ln n)^n$.

Exercice 19. Soit f une fonction de classe C^{∞} définie au voisinage d'un point x_0 en lequel $f''(x_0) = \ldots = f^{(n-1)}(x_0) = 0$ et $f^{(n)}(x_0) \neq 0$.

Donner, en fonction de la parité de n et du signe de $f^{(n)}(x_0)$, la position relative de la courbe de f par rapport à sa tangente en $x = x_0$ au voisinage de x_0

Exercice 20 (Intégrales de Wallis). Pour tout entier n, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.

- 1. Calculer I_0 et I_1 .
- 2. Montrer que, $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.
- 3. À l'aide d'une intégration par partie, déterminer une relation entre I_{n+2} et I_n .
- 4. En déduire les valeurs de I_{2p} et I_{2p+1} (on les exprimera à l'aide de factorielles).
- 5. Déterminer la monotonie de la suite (I_n) puis prouver sa convergence.
- 6. En déduire $\lim_{n\to +\infty} \frac{I_n}{I_{n+1}}$.
- 7. Montrer que, $\forall n \in \mathbb{N}, (n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 8. Déterminer un équivalent simple de I_n .

Exercice 21. À l'aide de l'inégalité de Taylor-Lagrange, déterminer un réel A tel que

$$\forall x \in [0, 1], \forall n \in \mathbb{N}^*, \quad \left| (1 + x^2)^{\frac{1}{n}} - 1 - \frac{1}{n} \ln(1 + x^2) \right| \le \frac{A}{n^2}.$$

En déduire deux réels a et b tels que $\int_0^1 (1+x^2)^{\frac{1}{n}} \ dx \underset{n \to +\infty}{=} a + \frac{b}{n} + o\left(\frac{1}{n}\right)$.

Exercice 22. Soit f définie sur $]0, +\infty[$ par $f(x) = \frac{x^2 - x + 2}{x + 3}e^{-\frac{1}{x}}.$ Déterminer l'allure de la courbe de f au voisinage de $+\infty$.

Exercice 23. On considère la suite (u_n) définie pour $n \ge 1$ par $u_n = \sqrt{n + \sqrt{n - 1 + \sqrt{n - 2 + \dots + \sqrt{2 + \sqrt{1}}}}}$.

- 1. Montrer que (u_n) diverge vers $+\infty$.
- 2. Déterminer une relation simple entre u_{n+1} et u_n .
- 3. Prouver par récurrence que $u_n \leq n$ puis que $u_n = o(n)$.
- 4. Déterminer un équivalent simple de u_n .
- 5. Déterminer $\lim_{n \to +\infty} u_n \sqrt{n}$.