Dec, 2015

February 10, 2016

- Review TADA (Transmission And De novo Association) model.
- Test the likelihood values of TADA on grids of parameters on D0.
- Estimate parameters using box-constrained optimization and MCMC on D1 and D2:

DO. De Rubeis, Silvia, et al. "Synaptic, transcriptional and chromatin genes disrupted in autism." Nature 515.7526 (2014): 209-215.

D1. He. Xin. et al. "Integrated model of de novo and inherited genetic variants vields greater power to identify risk genes." PLoS Genet 9.8 (2013): e1003671.

D2. Only the FMRP gene set from the data set D0.

From Darnell: 842 genes.

Let π be the fraction of risk genes in all genes.

Main parameters		Variants (LoF and mis3)
\bigcap Mutation rate (μ)		De novo mutation
$egin{cases} Mutation & rate & (\mu) \ Relative & risk & (\gamma) \ Population & frequency & (q) \end{cases}$	=>	Transmitted variations
Population frequency (q)		Variants in case-control studies

For each i^{th} gene, TADA uses a Bayesian approach to test the hypothesis $H_0: \gamma_i = 1$ against the alternative $H_1: \gamma_i \neq 1$ => A fraction π of risk genes (per total genes) follows the H_1 model.

The model incorporates information across genes, assumming that:

- Relative risk γ : $\gamma \sim \text{Gamma}(\bar{\gamma} * \beta, \beta)$.
- Population frequency of variants q:
 - Risk genes: $q_1 \sim \textit{Gamma}(\rho_1, \nu_1)$
 - Normal genes: $q_0 \sim \textit{Gamma}(\rho_0, \nu_0)$

=> Need to estimate $[\bar{\gamma}, \beta, \rho_1, \nu_1, \rho_0, \nu_0, \pi]$.

With each type of data/variants (x), at each gene:

$$P(x|paramterers) = \pi P(x|H_1) + (1-\pi)P(x|H_0)$$

Two types of mutations are tested: Loss-of-function (LoF) and probably damaging (Mis3).

External product

$$P(x|\textit{paramterers}) = \prod_{i=1}^{m} \left[\pi P(x_{i_{\textit{LoF}}} | \textit{H}_{1}) + (1-\pi) P(x_{i_{\textit{LoF}}} | \textit{H}_{0}) \right] \left[\pi P(x_{i_{\textit{mis3}}} | \textit{H}_{1}) + (1-\pi) P(x_{i_{\textit{mis3}}} | \textit{H}_{0}) \right]$$

Internal product

$$P(x|\textit{paramterers}) = \prod_{i=1}^{m} \left[\pi P(x_{i_{LOF}}|H_1) P(x_{i_{mis3}}|H_1) + (1-\pi) P(x_{i_{LOF}}|H_0) P(x_{i_{mis3}}|H_0) \right]$$

Bayes factor

$$BF = \frac{P(x|H_1)}{P(x|H_0)} = \frac{P(x_{LoF}|H_1)P(x_{mis3}|H_1)}{P(x_{LoF}|H_0)P(x_{mis3}|H_0)}$$

$$p_{dn} = 2 * \mu \gamma$$
 $p_{control} = q$
 $p_{case} = q \gamma$

Estimate parameters Constrained optimization MCMC Relative riks: $\gamma|H_1 \sim Gamma(\bar{\gamma}*\beta,\beta)$ Frequency of variants: $q|H_1 \sim Gamma(\rho,\nu)$ $q|H_0 \sim Gamma(\rho_0,\nu_0)$ The model: $P(x|H_0) = \int p(x|q,\gamma=1)p(q|H_0)dq$ $P(x|H_1) = \int p(x|q,\gamma)p(q|H_1)p(\gamma|H_1)dqd\gamma$

Model for case-control data (cont)

For simplicity, let $q|H_1 = q|H_0 = q \sim Gamma(\rho, \nu)$,

we will calculate the conditional distribution of variants in cases on total variants of cases and controls.

 $X_{case} \ Pois(\lambda_1); \ X_{control} \ Pois(\lambda_0)$ With $\lambda_1 = N_{case} * q * \gamma; \lambda_0 = N_{control} * q$ $X = X_{case} + X_{control}$

$$X \sim Pois(\lambda_1 + \lambda_0)$$

Question:

- 1) should let $q = \epsilon * q_0$.
- 2) Relationship between q and μ .

Estimate parameters
Constrained optimization MCMC

At the
$$i^{th}$$
 gene,
$$P(X_{case} = k | X = n) = \frac{P(X_{case} = k, X = n)}{P(X = n)} = \frac{P(X_{case} = k, X_{contro} = n - k)}{P(X = n)}$$

$$= \frac{\frac{e^{-\lambda_1} \lambda_1^k}{k!} \frac{e^{-\lambda_0} \lambda_0^{n-k}}{(n-k)!}}{\frac{e^{-(\lambda_1 + \lambda_0)(\lambda_1 + \lambda_0)^n}}{n!}}$$

$$= \frac{n!}{(n-k)! k!} \frac{\lambda_1^k \lambda_0^{n-k}}{(\lambda_1 + \lambda_0)^n} = C_n^k p^k (1-p)^{n-k}$$
With
$$p = \frac{\lambda_1}{\lambda_1 + \lambda_0} = \frac{N_{case} q \gamma}{N_{case} q \gamma + N_{control} q} = \frac{N_{case} \gamma}{N_{case} \gamma + N_{control} q}$$

• First way (Poisson distribution)

$$X_{dn}|H_1 \sim Pois(2N_{dn}\mu\gamma)$$

 $X_{dn}|H_0 \sim Pois(2N_{dn}\mu)$

Second way (Binomial distribution)

$$X_{dn}|H_1 \sim Binomial(N_{dn}, 2 * \mu \gamma)$$

 $X_{dn}|H_0 \sim Binomial(N_{dn}, 2 * \mu)$

With

Relative risk:

$$\gamma \sim \textit{Gamma}(\bar{\gamma} * \beta_{\textit{dn}}, \beta_{\textit{dn}})$$

Can we simultaneously estimate all parameters based data + prior information from publications? => it will be easier to incorporate other information.

Some simple steps last month:

- => Re-write likelihood functions with two types of model.
- => Check there are overlapping intervals π between different variants.
- => Test whether we can constrain parameterers to estimate simultaneously.

Constrained optimization MCMC

Some issues we have had:

- Internal OR external models.
- Constrain relative risks (γ) .
 - Some relative risk parameters imply substantial proportions of protective genes.

- Improve the calculation of mutation rates for each genes/annotations.
- Use adjusted counts as data.
- Improve algorithm (eliminate numerical integration).

Grids of parameters

- Denovo LoF.
- Denovo Mis3.
- Case-control LoF.

LoF de novo

Review TADA

CC model

De novo model

Grids of parameters

De novo Case-contr

parameters
Constrained
optimization
MCMC

LoF de novo: top log LLK

LoF de novo: check correlations between hyperparameters

LoF

De novo 000000 00000000 00000000000 gamma.lof 000000000000 000000000000 000000000000 000000000000 00000000000000 beta lof 0000000000000000000

0.02 0.03 0.04 0.05 0.05 0.07 0.00

. 9

logLLK

Mis3 de novo

Grids of

De novo Case-contr

parameters
Constrained
optimization
MCMC

Dec, 2015

Mis3 de novo: top LLK less than 0.6% protective variants.

Review TADA

CC model

De novo model

Grids of parameters

De novo Case-contro

Estimate parameter

Constrained optimization MCMC

beta mean do LoF

LoF case-control

Estimate parameters

CC model

Grids of parameters De novo Case-contro

Estimate parameters

Constrained optimization MCMC

Use intervals of hyperparameters to set uniform priors for hyperparameters.

Constrained optimization

Constrained optimization

- 1 A set of random initial values was used => they can converge to approximately optimal values.
- 2 Some different algorithms (built in R) are used.

Test (external) for de novo data: LoF + mis3 for D1!

Constrained optimization

Test (internal/external) for de novo data: LoF + mis3 for D1!

gamma.mean.lof

25 30

Initial value

a 10 15 20

pi (17576 genes) (17576 genes) (17576 genes) 0.8 25 53 9'0 Estimated value 8 estimated value 10 0.4 9 0.2 ND: 00 Constrained optimization Initial value Initial value Initial value gamma.mean.mis3 beta.mis3 (17576 genes) (17576 genes) 8 ĸ 00 20 Blue: Internal Brown: External 9 4O

2

Initial value

beta.lof

Grid top LLK (internal) for de novo data: LoF + mis3 for D1!

Review TADA

CC model

De novo model

Grids of parameters

De novo

parameters
Constrained optimization

Test (external) for de novo data: LoF + mis3 for D2 (the FMRP gene set)!

Initial value

pi (743 genes-externalProduct) gamma.mean.lof beta.lof (743 genes-externalProduct) (743 genes-externalProduct) 2 90 53 25 8 9.0 Estimated value gamma.mean.lof = 20.2794 ξ. pi = 0.195150 9.4 9 9 LC. ND. 9 0 Constrained optimization Initial value Initial value Initial value beta.mis3 gamma.mean.mis3 (743 genes-externalProduct) (743 genes-externalProduct) 9 53 20 10 0 4O 0 0 10 15 20 25 30

Initial value

Test (internal/external) for de novo data: LoF + mis3 for D2 (the FMRP gene set)!

Review TADA

CC model

De novo model

Grids of

De novo
Case-contro
Estimate

parameters
Constrained
optimization
MCMC

MCMC for D1: external product.

Review TADA

CC model

De novo model

Grids of parameters De novo Case-contro

parameters
Constrained optimization

MCMC for D1: external product.

Review TADA

CC model

De novo model

Grids of parameters

De novo

Case-control

Estimate parameters
Constrained optimization

MCMC for D1: external product.

Review TADA

CC model

De novo model

Grids of parameters De novo Case-control

Estimate parameters
Constrained optimization

MCMC for D2 (the FMRP gene set,)

Review TADA

CC model

De novo model

Grids of parameters De novo Case-control

parameters
Constrained optimization
MCMC

pi for FMRP gene set

pi for FMRP gene set

MCMC for D2 (the FMRP gene set,)

Review TADA

CC model

De novo model

Grids of parameters De novo Case-control

parameters
Constrained optimization
MCMC

LoF.gamma.mean.denovo

LoF.gamma.mean.denovo

MCMC for D2 (the FMRP gene set,)

Review TADA CC model De novo model

Grids of parameters De novo Case-control

parameters
Constrained optimization
MCMC

Mis3.gamma.mean.denovo

Mis3.gamma.mean.denovo

