

OPTIMISTIC POLICY OPTIMIZATION VIA MULTIPLE IMPORTANCE SAMPLING

Matteo Papini, Alberto M. Metelli, Lorenzo Lupo and Marcello Restelli

{matteo.papini, albertomaria.metelli, marcello.restelli}@polimi.it, lorenzo.lupo@mail.polimi.it

MOTIVATION AND IDEA

Problem:

- Policy Optimization (PO) methods neglect exploration
- Existing exploration strategies are undirected
- Lack of provably efficient solutions

Idea:

- Frame PO as a continuous Multi-Armed Bandit (MAB)
- Use Multiple Importance Sampling (MIS) to exploit natural arm correlation
- Apply Optimism in Face of Uncertainty (OFU)

POLICY OPTIMIZATION

Vanilla action-based PO (Peters and Schaal, 2008)

- Continuous MDP $\langle S, A, P, R, \gamma, \mu \rangle$
- Trajectories $\tau = s_0, a_0, r_1, s_1, \dots r_H \in \mathcal{T}$

• Return
$$\mathcal{R}(\tau) = \sum_{h=0}^{H-1} \gamma^h r_{h+1}$$

- Parametric policy $\pi_{\theta}: \mathcal{S} \to \mathcal{A}$ with $\theta \in \Theta$
- Induced trajectory distribution $p_{\theta}(\tau)$

• Find
$$\theta^* = \arg \max_{\theta \in \Theta} J(\theta) := \mathbb{E}_{\tau \sim p_{\theta}} [\mathcal{R}(\tau)]$$

Parameter-based PO (Sehnke et al., 2008):

- Hyperpolicy $\nu_{\xi}(\theta)$ with $\xi \in \Xi$ (e.g., Gaussian)
- Find $\boldsymbol{\xi}^* = \arg \max_{\boldsymbol{\xi} \in \Xi} J(\boldsymbol{\xi}) := \mathbb{E}_{\boldsymbol{\theta} \sim \nu_{\boldsymbol{\xi}}} [J(\boldsymbol{\theta})]$

POLICY OPTIMIZATION AS CORRELATED MAB

- (Hyper)parameters as arms ⇒ continuous MAB
- Arms correlate through common outcome space

	Correlated MAB	PO	PB-PO
Arm	$\boldsymbol{x}\in\mathcal{X}$	$oldsymbol{ heta} \in \Theta$	$\boldsymbol{\xi}\in\Xi$
Outcome	$z \in \mathcal{Z}$	$ au \in \mathcal{T}$	$oldsymbol{ heta} \in \Theta$
Induced distribution	$p_{m{x}}(z)$	$p_{\boldsymbol{\theta}}(au)$	$ u_{oldsymbol{\xi}}(oldsymbol{ heta})$
Payoff	f(z)	$\mathcal{R}(au)$	$J(oldsymbol{ heta})$
Objective	$\mu(\boldsymbol{x}) = E_{z \sim p_{\boldsymbol{x}}}[f(z)]$	$J(oldsymbol{ heta})$	$J(oldsymbol{\xi})$

 $\mu(oldsymbol{x}_A) \qquad \mu(oldsymbol{x}_B)$

MAB jargon:

- $x^* \in \arg\max_{x \in \mathcal{X}} \mu(x)$
- Gap $\Delta_t = \mu(\boldsymbol{x}^*) \mu(\boldsymbol{x}_t)$
- $Regret(T) = \sum \Delta_t$

MULTIPLE IMPORTANCE SAMPLING (MIS)

- Samples from several **behavioral** distributions: $z_0 \sim q_0, z_1 \sim q_1, \dots, z_K \sim q_K$
- Estimate $\mu := \mathbb{E}_{z \sim p} [f(z)]$ under **target** distribution p
- Balance Heuristic (BH) (Veach and Guibas, 1995):

$$\widehat{\mu}_{\mathrm{BH}} \coloneqq \frac{1}{K} \sum_{k=1}^{K} \frac{p(z_k)}{\Phi(z_k)} f(z_k), \qquad \Phi(z) = \frac{1}{K} \sum_{k=1}^{K} q_k(z)$$
Importance Weight (IW)

Unbiased, but possibly high-variance:

$$\operatorname{Var}\left[\widehat{\mu}_{\mathrm{BH}}\right] \leqslant \|f\|_{\infty}^{2} \frac{d_{2}(P\|\Phi)}{K} \leqslant \|f\|_{\infty}^{2} \frac{1}{\sum_{k=1}^{K} \frac{1}{d_{2}(p\|q_{k})}}$$
$$d_{2}(p\|q) \coloneqq \int_{\mathcal{Z}} \left(\frac{p(z)}{q(z)}\right)^{2} \mathrm{d}z \qquad \text{(Rényi divergence)}$$

ROBUST MIS ESTIMATOR

- Importance Sampling estimators are heavytailed (Metelli et al., 2018)
- This prevents the formation of *exponential* **Upper Confi**dence Bounds (UCB)
- Robust estimation via adaptive truncation (Bubeck et al., 2013):

$$\widecheck{\mu}_{\mathrm{BH}} \coloneqq \frac{1}{K} \sum_{k=1}^{K} \min \left\{ \underbrace{\sqrt{\frac{Kd_2\left(p \| \Phi\right)}{\log \frac{1}{\delta}}}, \underbrace{\frac{p(z_k)}{\Phi(z_k)}}_{\mathrm{IW}} \right\} f(z_k)$$

• Thanks to truncation, with probability at least $1-2\delta$:

$$|\widecheck{\mu}_{\mathrm{BH}} - \mu| \leqslant \|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \sqrt{\frac{d_2\left(p\|\Phi\right)\log\frac{1}{\delta}}{K}}$$

IMPLEMENTATION

- Trajectory distributions p_{θ} are difficult to compute **⇒** parameter based exploration
 - Analytic hyperpolicy ν_{ξ} (e.g., Gaussian)
 - Closed-form Rényi divergence d_2
- Difficult to optimize the UCB index on a compact space **⇒** adaptive discretization
 - Use finer and finer grid of $\left[t^{1/\kappa}\right]^d$ points
 - Confidence schedule: $\delta_t = 6\delta/(\pi^2 t^2 (1 + t^{d/\kappa}))$
 - Meta-parameter $\kappa \geqslant 2$ allows to trade-off regret $\widetilde{\mathcal{O}}(dT^{1-\frac{1}{\kappa}})$ with time $\mathcal{O}(t^{1+\frac{d}{\kappa}})$ per iteration.
 - k=2 recovers the $\widetilde{\mathcal{O}}(\sqrt{dT})$ regret at the cost of exponential time
 - -k = d yields sublinear regret in polynomial time

OPTIMIST ALGORITHM

A UCB-like algorithm based on the Optimism in Face of Uncertainty principle:

- Select confidence schedule $(\delta_t)_{t=0}^T$
- Select initial arm x_0 at random, draw outcome $z_0 \sim p_{x_0}$ and observe payoff $f(z_0)$
- For each iteration *t* from 1 to *T*:
 - Define Upper Confidence Bound:

$$B_t(\boldsymbol{x}, \delta_t) \qquad \coloneqq \underbrace{\check{\mu}_t(\boldsymbol{x})}_{\text{Robust MIS Estimator}} + \underbrace{\|f\|_{\infty} \left(\sqrt{2} + \frac{4}{3}\right) \sqrt{\frac{d_{1+\epsilon}(p_{\boldsymbol{x}} \|\Phi_t) \log \frac{1}{\delta_t}}{t}}}_{\text{Exploration Bonus}}$$

- Select arm $x_t = \arg \max_{x \in \mathcal{X}} B_t(x, \delta_t)$, draw outcome $z_t \sim p_{x_t}$ and observe payoff $f(z_t)$

REGRET ANALYSIS

- Discrete arm set $\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_K\}$
 - Assumptions: *uniformly* bounded Rényi divergence $d_2(p_x \| \Phi) \leq v$
 - Confidence schedule: $\delta_t = 3\delta/(t^2\pi^2K)$

$$Regret(T) \leq \Delta_0 + \left(4\sqrt{2} + \frac{10}{3}\right) \|f\|_{\infty} \sqrt{Tv\left(2\log T + \log\frac{\pi^2 K}{3\delta}\right)} = \widetilde{\mathcal{O}}(\sqrt{T})$$

- Compact arm space $\mathcal{X} \subseteq [-D, D]^d$
 - Assumptions: *uniformly* bounded Rényi divergence $d_2(p_x \| \Phi) \leq v$, L-Lipschitz objective μ
 - Confidence schedule: $\delta_t = 6\delta/(\pi^2 t^2 (1 + d^d t^{2d}))$

$$Regret(T) \leqslant \Delta_0 + \frac{\pi^2 LD}{6} + \left(4\sqrt{2} + \frac{10}{3}\right) \|f\|_{\infty} \sqrt{Tv\left(2(d+1)\log T + d\log d + \log\frac{\pi^2}{3\delta}\right)} = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

REFERENCES

S. Bubeck, N. Cesa-Bianchi, and G. Lugosi. Bandits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711–7717,

- A. M. Metelli, M. Papini, F. Faccio, and M. Restelli. Policy optimization via importance sampling. In Advances in Neural *Information Processing Systems*, pages 5447–5459, 2018.
- J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. *Neural networks*, 21(4):682–697, 2008. F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber. Policy gradients with parameter-based exploration for control. In International Conference on Artificial Neural Networks, pages 387–396. Springer, 2008.
- Veach and L. J. Guibas. Optimally combining sampling techniques for Monte Carlo rendering. In *Proceedings of the 22nd* annual conference on Computer graphics and interactive techniques - SIGGRAPH '95, pages 419–428. ACM Press, 1995.