

卫星导航与PNT体系

Satellite navigation and PNT system

第八组: 屈香君 冀 冉 凌云飞 陈明霞

目录

CONTENTS

- 1 卫星导航发展历史及现状
- 2 PNT体系的介绍及研究进展
- 3 卫星导航与PNT体系的关系探讨
- 4 战略地位与发展前景
- 5 讨论

卫星导航发展历史及现状

The history and current situation of satellite navigation development

1.1 导航技术概述

导航是一种通过确定位置、规划路线并引导目标对象按指定路径前进的过程。核心是利用定 位信息、环境数据和目标位置之间的关系,帮助目标对象安全、有效地到达预定目的地。 现代导航通常依赖卫星定位系统、地图数据和传感器等技术,涵盖了定位、路径规划和实时 引导等功能。

PNT体系介绍及研究进展

电磁波探测

陀螺仪与加速度计

PNT体系介绍及研究进展

卫星导航与PNT体系 关系探讨

战略地位及发展前景

讨论

卫星导航发展历史

背景 冷战开始,美苏开始探索 探索在多种 使用卫星进行导航的可能性 领域的潜力

探索在多种应用

对精确导航和定位服务的 需求增加

各国不断加强自己的卫星 导航系统建设,以满足增长 的定位需求。

向高精度、低延迟、抗干扰等方向 发展,满足多样化的应用需求。

1957年: 斯普特尼克1号

| 1966年:发射了Tiros 1号 | 1978年: Block | GPS卫星,

2000年: 北斗一号试验卫星

2020年: 北斗全球导航系 统完成

1958年: 探索者1号

| 1972年: 资源卫星ERTS-1后更名为Landsat 1

1983年: 开放GPS系统民用

2005年: 伽利略系统发射首 颗试验卫星Giove-A

2020年: 完成GPS Ⅲ系统 的部署

1958年: NASA正式成立

1974年:日本发射了 Himawari 1号

1993年:俄罗斯完成了 GLONASS的基本构建

2012年: 北斗系统完成覆盖 亚太区域的建设

2021年起: 多个家的卫星 互联网计划,Starlink计划、 Project Kuiper计划

1960年、1962年TRANSIT-

1B和Telstar 1号

1995年:美国完成GPS系统 24颗卫星的全星座部署

2016年: 伽利略卫星导航系 统实现初始运行能力

1950s

1960s

1980s

2000s

2010s

早期探索阶段

GPS系统诞生

其他全球卫星导航 系统的兴起

现代卫星导航系统

高精度与新技术应用

卫星导航发展 历史及现状

PNT体系介绍及研究进展

卫星导航与PNT体系 关系探讨

战略地位及发展前景

讨论

美国GPS (Global Positioning System)

由美国国防部开发和管理,是全球最早、最广泛使用的导航系统。 GPS卫星系统通过24颗卫星提供 全球定位服务,现已升级到GPS II代,提高了精度和抗干扰能力。

俄罗斯GLONASS (Global Navigation Satellite System

由俄罗斯航天局负责管理,最早用于军用,后向民用开放。GLONASS系统由24颗卫星组成,提供全球覆盖的导航和定位服务,特别在高纬度地区精度较高。

欧洲伽利略 (Galileo)

由欧盟开发和管理的民用全球卫星导航系统,伽利略系统设计之初就是为了提供高精度定位,服务全球。系统计划部署30颗卫星,目前已具备基本全球服务能力,精度可达亚米级。

中国北斗 (BeiDou Navigation Satellite System, BDS)

由中国开发并运营,北斗系统经 历了三代发展,现已形成全球覆 盖的北斗三号系统。北斗系统采 用GEO、IGSO和MEO多轨道卫 星星座,可提供全球定位、短报 文通信等多功能服务。

南美洲的系统(SIS)

印度卫星导航系统(IRNSS / NavIC)

日本的准天顶卫星系统(QZSS)

利用飞行的卫星不断向地面发送某种频率,并加载某些特殊的定位信息的无线电信号,来实现实时定位、导航和授时服务的全球无线电系统。

空间卫星星座

地面控制中心

用户终端

干扰问题

问题与挑战

干扰器

电磁干扰与信号削弱

卫星导航与PNT体系

关系探讨

兼容性

随着卫星数量的增加,尤其是 低地轨道(LEO)卫星的部署, 频谱资源变得愈加紧张。这导 致不同卫星系统之间的信号干 扰风险增加。

表1 GPS信号频段的发展

与空间碎片战斗

时间	GPS 卫星	信号种类	信号频点/MHz	应用领域
1978-2004	Block $I / I I / I A / I R$	L1(C/A);L1(P)	1 575.42	军民两用
	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	L2(P)	1 227.6	军用
2005 - 2009	Block II R-M	L2(C)	1 227.6	民用
2010 - 2013	Block ∏ F	L5	1 176.45	民用
2014 - 2024	Block Ⅲ	L1C	1 176.45	民用

互操作性

讨论

互操作性可以让用户使用简单的 接收机接收多个导航系统的信号, 大大提升了便利性。然而,由于 系统之间的噪声水平差异和接收 器要求, 互操作性在实现过程中 仍存在瓶颈。系统和接收设备的 进一步数字化可能有助于减轻这 一问题,使得各导航系统能更好 地协同工作,以提供安全、可靠 和多样化的导航服务。

发展

低轨卫星导航增强(LEO-NA)技术

卫星导航发展

历史及现状

人造卫星分为距地面高度300 千米~2000千米的低轨卫星、 2000千米~36000千米的中轨 道卫星以及36000千米的高轨 道地球同步卫星。"相比于中 高轨卫星, 低轨卫星具有轨道 高度低、信号功率衰减小,几 何图形变化快等突出优点,可 与GNSS中高轨星座形成优势 互补,实现对导航定位的精度、 完好性、可用性的全面增强。

PNT体系介绍及研究进展

5G无线网络和GNSS应用

卫星导航与PNT体系

关系探讨

- 1 GNSS为5G提供时间同步
- 2 人口稀少地区的GNSS
- 3 面向大型公司和产业的专用5G网络
- 4 GNSS与城市5G融合

PNT体系的介绍及研究进展

Introduction and research progress of PNT system

2.1 PNT体系介绍

卫星导航与PNT体系

关系探讨

PNT体系是综合 以及其他各类导航资 形成了陆、空、 天、水下、室内外-体全域覆盖的高精度 时空统一服务体系

在90 年代末,<mark>欧盟 GALILEO</mark> │ 计划的初期设计已经包含了 PNT 体 │ 系的主要基本特征

俄罗斯在研发部署新一代 GLONASS 卫星的同时,对其地基 l 无线电导航系统进行升级改造, □ 开展利用陆基雷达信号实现导航功 Ⅰ能的研究与协调工作,积极发展Ⅰ I PNT 体系

英国提出"弹性 PNT 体系"概念』 Ⅰ主要包括"守卫"计划和"哨兵"计划,Ⅰ 均在成体系考虑多手段 PNT 技术和 | 能力的建设

卫星导航与PNT体系

关系探讨

讨论

2.2 国外情况---美国

卫星导航发展

历史及现状

从历史来看,美国是 PNT 基础设施最完 \ 善、技术最先进的国家。除已经建成并正在 实施现代化改造的 GPS 系统外, 还具备多种 导航、定位和授时系统, 能够通过多种手段 提供定位、速度和时间信息服务。但是,美 国各种 PNT 系统的发展以及互用技术的研究 一直缺乏统筹规划。

为了摆脱对 GPS 卫星导航系统的过度依 赖以及统筹各种 PNT 技术的发展,美国开始 意识到对 PNT 系统进行一体化规划与建设的 必要性。

2.2 国外情况---美国

National PNT Architecture

战略地位及发展前景

PNT体系介绍及研究进展

2.2 国外情况---美国

美国NSSO主持的一项国 家安全航天计划评估项目, 提出要开发一种全面的 → PNT体系结构,以解决定 位和时间标准、GPS系统 依赖性等这些核心问题, 注重在PNT技术和研发上

首次提出了PNT体系的 概念,发起了美国国家 PNT 体系研究,构建 能够满足空间、空中、 地面、地下和水下等所 有用户的全方位 PNT 服务

发布《PNT体系实施规 划》,提出要改进天基 PNT和地基PNT功能, 计划2025年构建一个弹 性、可靠、互补和稳健 的国家PNT新体系作为 美国经济和国家安全的 基础;

卫星导航与PNT体系

关系探讨

发布《航天政策7号令》 旨在保持美国在天基PNT 领域的核心领导地位,内 容中新增加了 "PNT服 务"、"主要PNT服务" "备份PNT服务"和"导 航战"四条术语

2008 2021 2002 2004 2006 2020 2010

公布《美国天基定位、 导航和定时政策》 确提出天基 PNT 的范 畴中除了GPS,还包括 利用天基技术提供更好 PNT服务的所有系统

完成第一阶段研究报告 《国家 PNT 体系结构 → 研究》终稿,提出了维 持实时有效的 "PNT能 力"19条建议

发布《通过负责任地使用定 位导航与授时服务以增强国 家弹性》行政令,让依赖 PNT信号的关键基础设施免 受干扰和操纵,提升PNT服 务的安全性和弹性

讨论

2.3 国内情况

PNT体系介绍及研究进展

基于不同原理的多种 PNT 信息源, 经过 云平台控制、多传感器的高度集成和多源数 据融合,生成时空基准统一的,且具有抗干 扰、防欺骗、稳健、可用、连续、可靠的 PNT服务信息。

卫星导航与PNT体系

关系探讨

综合 PNT 信息流程图

多源 PNT 信息融合

2.3 国内情况

以综合PNT信息为基础, 以多源PNT传感器优化集成 为平台,以函数模型弹性调整 和随机模型弹性优化为手段, 融合生成适应多种复杂环境 的PNT信息,使其具备高可用 性、高连续性和高可靠性。

多种导航手段

卫星导航与PNT体系的关系探讨

Discussion on the relationship between satellite navigation and PNT system

卫星导航发展 历史及现状

卫星导航与PNT体系 关系探讨

3.1 卫星导航视角

- 1.GNSS的发展推动PNT体系的演进
- 2.GNSS提供PNT体系的核心需求

3.1 卫星导航视角

3.GNSS已成为国际PNT领域竞争与合作的标志性系统

论证卫星导航系统能力的升级换代,部署新技术、新卫星、新服务成为全球潮流。随着各国对精确定位技术的需求不断增加,GNSS不仅在民用和商业应用中发挥了重要作用,还在军事和安全领域展现出其战略价值。各国在GNSS技术的研发和应用上展开了激烈的竞争,同时也通过国际合作促进了技术的共享与标准的制定。这种竞争与合作的交织,使得GNSS在全球PNT体系中扮演着不可或缺的角色,推动了全球经济的数字化转型与智能化发展。

卫星导航与PNT体系

3.1 卫星导航视角

4.GNSS兼具高精度、低成本、全球性,是应用最广泛的PNT技术

GNSS是当前唯一兼具全球性、高精度、低成本特征的PNT技术,覆盖地表至数万干米高度的广阔空间,适应人、物、车和各类平台的应用需求,不受季节、天气、地理空间、载体动态变化的约束:在军事应用方面几乎渗透至所有的武器装备、作战单元、信息系统,在民用方面则拓展至几乎所有的关键基础设施、移动载体、手机,成为最大共性需求满足者。GNSS也是仅有的统一地理空间和惯性空间的时空基础设施,其他基于PNT技术的时空基准溯源主要手段。

卫星导航发展 历史及现状

卫星导航与PNT体系 关系探讨

3.2 新一代综合PNT视角

1.国民经济发展高度依赖卫星导航

PNT体系介绍及研究进展

天基PNT已成为国民经济领域高精度 位置和时间服务不可或缺的基础设施,为 通信高速信息交互、电力设施运行、实时 金融服务、个人出行与智能交通、公共安 全和灾害监测、精准农业、港口物流、地 球物理与气象科学研究等提供了精确的时 空信息,已成为国民经济发展的基础。 旦天基PNT服务中断或受到操控,国民经 济将遭受重创。

卫星导航与PNT体系 关系探讨

3.2 新一代综合PNT视角

2.打赢现代高科技战争高度依赖卫星导航

PNT体系介绍及研究进展

武器精确打击

体系化协同作战

3.2 新一代综合PNT视角

3.大国博弈背景下卫星导航的脆弱性逐渐凸显

GNSS服务范围受限

信号易受干扰

导航星座和地面控制系 统存在受攻击风险

3.3 如何理解二者关系

增强卫星导航技术的同时,推动PNT技术的最大限度协同增效

创新发展不依赖卫星导航 的PNT技术

实现卫星导航和其他PNT 技术的融合发展

战略地位与发展前景

Strategic position and development prospects

讨论

4.1 GNSS的军事用途

卫星导航发展

历史及现状

授时

全球导航定位系统可提供准 确的时间和频率,从而广泛应用 于授时校频。对于通信、网络的 时间同步,以及部队机动、作战 中统一时间标准均具有重要的意 义。

导航

当前GINSS与惯性制导相结合是 军用飞机上普遍采用的一种导航方式, 这种导航方式可由GNSS提供精准的位 置和速度信息,而惯性制导因不易受 到干扰,可在无GNSS信号时提供导航 信号并使系统迅速更新。美军目前的 军用飞机大量采用此种导航方式。

救援

美国飞行员广泛应用的一种 HooK-112救生无线电装置,在飞 机上被击落时,能够利用GPS为 营救人员指引方向。

4.2 应用

卫星导航发展

历史及现状

PNT技术是综合国力的战略标志, 在国民经济、国家安全、军事领域等 方面都有很强的服务作用。例如我们 日常生活中经常使用的微信的照片定 位拍照地点功能、打车软件的定位导 航功能、共享单车的定位导航功能等。

4.1 国家战略地位

我国正在加快推进以北斗系统为核心的 国家综合PNT体系,争取到2030年前,建 成基准统一、覆盖无缝、安全可信、高 效便捷的国家综合PNT体系。

受科技与经济实力限制,目前世界上仅有 极个别发达国家将构建PNT体系上升为国 家战略。目前,我国已成功组网发射五颗 新一代北斗导航卫星,进一步增强了北斗 系统的稳定性和可靠性,为系统服务向全 球拓展奠定了坚实基础。

"到2035年,我们要构建一个以北 斗系统为核心的国家综合PNT体系, 这个综合PNT体系就是国家综合定位 导航、授时的一个时空信息领域 的体系化构建。"全国两会期间, 全国政协委员、北斗卫星导航系统 总设计师杨长风在接受记者采访时 这样讲到。

4.1 其他PNT技术

卫星导航发展

历史及现状

PNT体系介绍及研究进展

低轨卫星增强技术

导航增强技术不是新兴概念,发展历程较长,泛指用 于提升卫星导航系统服务能力的各种技术方案。卫星导航增 强系统主要有信息型增强系统和信号型增强系统两大类。

信息型增强系统通过地面监测站计算误差改正数或完 好性信息,将这些数据播发给用户,由用户接收后辅助提升 定位精度或服务完好性。这类服务的特点在于,导航定位仍 然使用现有的卫星导航信号,而增强信息通过天基或地基通 信链路来传输。

信号型增强系统中,导航增强源能够产生测距信号并 与现有 GNSS 信号进行联合定位,能够解决城市峡谷、 天矿、树林、室内、地下空间甚至水下的定位问题,有效扩 展了卫星导航系统的服务范围和应用场景。

4.1 其他PNT技术

PNT体系介绍及研究进展

室内定位技术 02

Wi-Fi定位:系统会扫描周围的Wi-Fi信号,获取到附近 可用的Wi-Fi网络信息,然后将采集到的Wi-Fi信息与预先构 建的Wi-Fi数据库进行匹配。这个数据库中保存了已知Wi-Fi 网络的位置信息,通过比对采集到的信号特征,找到与之匹 配的Wi-Fi网络。一旦找到匹配的Wi-Fi网络,定位系统会使 用三角测量、指纹定位或机器学习等算法,计算出设备的位 置坐标。

红外技术:红外线是一种波长在无线电波和可见光波之 间的电磁波。红外定位主要有两种具体实现方法,一种是将 定位对象附上一个会发射红外线的电子标签,通过室内安放 的多个红外传感器测量信号源的距离或角度,从而计算出对 ****象所在的位置。

汇报结束 感谢观看 敬请各位老师同学批评指正