# NRC 290b Introduction to Quantitative Ecology

Week 10 – Regression



Meg Graham MacLean, PhD

Department of Environmental

Conservation

mgmaclean@umass.edu

2019 - Fall

#### This week

#### Monday

- Regression
  - Multiple regression
    - How does this relate to other tests?

#### Wednesday

- Group exercise
  - Voles! Multiple regression

## Statistical testing

When doing a regression – what is the  $H_0$  the p-value is testing?

- a) The slope is no different from 0
- b) The explanatory variable is no different than the response variable
- c) The explanatory variable is significantly correlated with the response variable
- d) There is no significant difference between groups



#### Regression vs. Correlation

Simple linear regression at its core is no different than a simple correlation! y = mx + c

#### **Except:**

- H<sub>0</sub>: slope is no different from 0
  - So, the p-value tells you something about the slope, rather than the strength of the correlation



#### Regression

You have already done a simple linear regression model in R!

lm(Response ~ Explanatory) uses the equation:

$$y = mx + c$$

And calculates the slope, intercept, and if the slope is significantly different from 0



Explanatory variable

```
mod <- lm(Response ~ Explanatory, data = df)</pre>
summary(mod)
Call:
lm(formula = Response ~ Explanatory, data = df)
Residuals:
            1Q Median
                         3Q Max
   Min
-8.1126 -1.6674 0.2598 2.7585 5.9932
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.5011 3.1439 4.612 0.00173 **
Explanatory 2.3353 0.4896 4.770 0.00141 ** } Slope ≠0
        Slope -
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.325 on 8 degrees of freedom
Multiple R-squared: 0.7399, Adjusted R-squared: 0.7073
F-statistic: 22.75 on 1 and 8 DF, p-value: 0.001409
```

6

```
mod <- lm(Response ~ Explanatory, data = df)</pre>
summary(mod)
Call:
lm(formula = Response ~ Explanatory, data = df)
Residuals:
   Min 1Q Median 3Q Max
-8.1126 -1.6674 0.2598 2.7585 5.9932
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.5011 3.1439 4.612 0.00173 **
Explanatory 2.3353 0.4896 4.770 0.00141 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.325 on 8 degrees of freedom
Multiple R-squared: 0.7399, Adjusted R-squared: 0.7073
F-statistic: 22.75 on 1 and 8 DF, p-value: 0.001409
```

7

## Correlation = simple Regression

R-squared  $(R^2)$  = (Pearson's correlation coefficient)<sup>2</sup>

•  $R^2$  = how much of the variation in the response variable is explained by the

explanatory variable



What happens when we have more than one explanatory variable?

$$y = m_1 x_1 + m_2 x_2 + \dots + c$$

- $H_0$ : there is no significant difference between the slopes and 0
- Assumptions:
  - Data are normally distributed
  - Relationship is linear between the explanatory and response factors (in this case)





 $b_{y12}' = \frac{\left(r_{1y} - r_{2y}r_{12}\right)}{\left(1 - r_{12}^2\right)}$  Beta coefficient is a standardized way of comparing the effect of each individual explanatory variable on the response variable

What happens when we have more than one explanatory variable?

$$y = m_1 x_1 + m_2 x_2 + \dots + c$$

- $H_0$ : there is no significant difference between the slopes and 0
- Assumptions:
  - Data are normally distributed
  - Relationship is linear between the explanatory and response factors (in this case)
  - Little to no multicollinearity



What happens when we have more than one explanatory variable?

$$y = m_1 x_1 + m_2 x_2 + \dots + c$$

- $H_0$ : there is no significant difference between the slopes and 0
- Assumptions:
  - Data are normally distributed
  - Relationship is linear between the explanatory and response factors (in this case)
  - Little to no multicollinearity
  - Low heteroscedasticity or "uneven error"



What happens when we have more than one explanatory variable?

$$y = m_1 x_1 + m_2 x_2 + \dots + c$$

- $H_0$ : there is no significant difference between the slopes and 0
- Assumptions:
  - Data are normally distributed
  - Relationship is linear between the explanatory and response factors (in this case)
  - Little to no multicollinearity
  - Low heteroscedasticity or "uneven error"
  - You want the most "parsimonious" model (best fit and *simplest!*)
    - Adjusted R<sup>2</sup> and AIC penalize "fit" with each additional explanatory variable in the model <u>GraphSketch.com</u>

#### Multiple Regression - example





#### Multiple Regression - example



```
mod.joint <- lm(Abund ~ Area + Pest, data = fish)
summary(mod.joint)
Call:
lm(formula = Abund ~ Area + Pest, data = fish)
Residuals:
   Min 1Q Median 3Q Max
-3.9362 -1.9270 -0.7162 2.3124 4.3071
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 55.1918 3.7078 14.885 0.00000148 ***
Area
      2.6037 0.3970 6.558 0.000316 ***
      -2.3503 0.3545 -6.630 0.000296 ***
Pest
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.112 on 7 degrees of freedom
Multiple R-squared: 0.9387, Adjusted R-squared: 0.9212
F-statistic: 53.57 on 2 and 7 DF, p-value: 0.00005711
```

## Picking the best explanatory variables

#### Akaike Information Criterion (AIC)

- AIC penalizes when you add too many factors!
- Is a measure of how "bad" your model is
  - So the higher the AIC the worse the model

#### Let's try the bunny data!





#### Picking the best explanatory variables

```
bunnies.glm_weight
Call:
glm(formula = Floppy ~ Weight, family = "binomial", data = bunnies)
Coefficients:
(Intercept)
               Weight
     1.953 -1.915
Degrees of Freedom: 613 Total (i.e. Null); 612 Residual
Null Deviance: 849.9
Residual Deviance: 840 AIC: 844
bunnies.glm_length
call:
glm(formula = Floppy ~ BodyLength, family = "binomial", data = bunnies)
Coefficients:
(Intercept)
                BodyLength
    1.1057
                   -0.5736
Degrees of Freedom: 613 Total (i.e. Null); 612 Residual
Null Deviance: 849.9
Residual Deviance: 846.3 AIC: 850.3
```

## Picking the best explanatory variables

Weight only model: AIC = 844; Length only model: AIC = 850.3

```
summary(bunnies.glm)
call:
glm(formula = Floppy ~ Weight + BodyLength, family = "binomial", data = bunnies)
Deviance Residuals:
   Min
             10 Median
                             3Q
                                     Max
-1.5492 -1.1149 -0.9526 1.2166 1.5181
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.7304
                       0.6753 2.562 0.01039 *
       -3.7348 1.2501 -2.988 0.00281 **
Weight
BodyLength 1.0370 0.6166 1.682 0.09262 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null Deviance: 849.91 on 613 degrees of freedom
Residual Deviance: 837.10 on 611 degrees of freedom
AIC: 843.1
```

ΔAIC < 2 models aren't different

## How is it all regression?

| Statistical test         | Question                                              | Regression version                                                                            |
|--------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| T-test                   | Are these two samples different?                      | Response variable is categorical and explanatory variable is continuous (logistic regression) |
| ANOVA                    | Are these three (or more) samples different?          | response variable is continuous and explanatory variables are categorical                     |
| Correlation (Pearson's)  | Is there a link between these two continuous factors? | Simple 1 factor with only continuous variables                                                |
| Association (Chi-square) | Is there a link between the categorical factors?      | All categorical variables                                                                     |

#### Logistic Regression

```
glm(formula = Floppy ~ Weight, family = "binomial", data =
bunnies)

xweight <- seq(-2, 4, 0.01)
yweight <- predict(bunnies.glm_weight, list(weight =
xweight), type = "response")

plot(bunnies$Weight, bunnies$Floppy, xlab = "Weight", ylab
= "Floppy Ears (1 = yes, 0 = no)", xlim = c(-2,4))
lines(xweight, yweight)</pre>
```



#### Logistic Regression

```
glm(formula = Floppy ~ Weight, family = "binomial", data =
bunnies)

xweight <- seq(-2, 4, 0.01)
yweight <- predict(bunnies.glm_weight, list(weight =
xweight), type = "response")

plot(bunnies$Weight, bunnies$Floppy, xlab = "Weight", ylab
= "Floppy Ears (1 = yes, 0 = no)", xlim = c(0.5,1.5))
lines(xweight, yweight)</pre>
```

Dangerous to extrapolate beyond sampled range!



## Week 10 – Regression

Part II - Wednesday

#### Today's Exercise



New data! Vole population data where we have counts and some landscape information on where they were found. We're trying to answer the question:

1. Does percent vegetation (PercVeg) or distance to road (Dist2Road) influence vole population locations?

To do so – split yourselves into 3 teams and create **one** .**R** script with everything below to turn in *before the end of today*:

- 1. Data exploration team
  - How do each of the explanatory variables influence the response variable
    - Create scatter plots for each explanatory variable vs response variable and guess what you think the relationship is and make notes in your R comments
- 2. Multiple regression team
  - What hypotheses are you testing?
  - Create a model with both explanatory variables
    - Which variable(s) seems to explain some of the variation of the vole population?
- 3. Model choice team
  - Use the add1() function and AIC to pick the best model for explaining vole population
    - Which model is the best? Why?

#### For Monday:



- 1) Review all of your notes
- 2) Send me *at least* one question you would like me to try to review next week!

All before 11:55pm on Sunday