Minor in AI – Batch 04 03 March 2025

Title: Mastering Data Visualization with Matplotlib: From Basics to Stunning Plots

Topics:

- Customize axes, titles, and labels to enhance readability
- Work with Different Plot Types
- Create bar charts (plt.bar()), scatter plots (plt.scatter()), and histograms (plt.hist()).
- Differentiate between various chart types and their appropriate use cases.

Note:

Below are codes that we types together. For others, refer to the collab link.

Why that is for daily steps CSV file, a line plot not a good idea?

```
import pandas as pd
import matplotlib.pyplot as plt

# Read CSV file
df = pd.read_csv("daily_steps.csv")

# Create the line plot
plt.plot(df['Person_ID'], df['Daily_Steps'])

# Add labels and title
plt.xlabel("Person ID")
plt.ylabel("Daily Steps")
plt.title("Daily Steps of Person")

# Display the plot
plt.show()
```

Instead we can go for a histogram.

```
import pandas as pd
import matplotlib.pyplot as plt

# Read CSV file
df = pd.read_csv("daily_steps.csv")
```

```
# Plot histogram
plt.hist(df["Daily_Steps"], bins=10, edgecolor="black")
plt.xlabel("Daily Steps")
plt.ylabel("Frequency")
plt.title("Distribution of Daily Steps Among People")
plt.show()
```

Understanding the customizations

```
import matplotlib.pyplot as plt
# Sample data
x = [1, 2, 3, 4, 5]
y1 = [2, 4, 6, 8, 10] # Line 1
y2 = [1, 3, 5, 7, 9] # Line 2
# Set figure size
plt.figure(figsize=(8, 5))
# Plot with different styles
plt.plot(x, y1, color="blue", marker="o", markersize=8,
linestyle="--", linewidth=2, label="Dashed Blue")
plt.plot(x, y2, color="red", marker="s", markersize=10,
linestyle="-.", linewidth=2, label="Dash-dot Red")
# Labels and title
plt.xlabel("X-axis Label", fontsize=12, color="darkblue")
plt.ylabel("Y-axis Label", fontsize=12, color="darkred")
plt.title("Matplotlib Customization Demo", fontsize=14,
fontweight="bold")
# Grid and legend
plt.grid(True, linestyle="--", alpha=0.5)
plt.legend()
# Show plot
plt.show()
```

Scatter Plots:

```
import pandas as pd
import matplotlib.pyplot as plt

# Sample Data
df = pd.read csv("daily steps.csv")
```

```
df["Calories_Burned"] = df["Daily_Steps"] * 0.04 # Assuming
0.04 calories per step

# Scatter Plot
plt.scatter(df["Daily_Steps"], df["Calories_Burned"])
plt.xlabel("Daily Steps")
plt.ylabel("Calories Burned")
plt.title("Daily Steps vs. Calories Burned")
plt.show()
```

Difference Table: (Source: ChatGPT)

Difference Between Line Plot, Histogram, and Scatter Plot

Chart Type	Purpose	When to Use?	Example Use Cases
Line Plot	Shows trends over time	When tracking changes over continuous data (usually time)	Stock prices, temperature changes, heart rate monitoring
Histogram	Shows the distribution of data	When analyzing the frequency of values within a dataset	Exam score distribution, age distribution, website traffic per hour
Scatter Plot	Shows relationships between two variables	When analyzing correlations or patterns between two numerical variables	Study time vs. exam score, height vs. weight, advertising spend vs. sales

Other Case Study used: (Interpreting the Mumbai local train lines)

