SEQUENCE LISTING

<110> The Scripps Research Institute Deiters, Alexander Cropp, T Ashton Chin, Jason W Anderson, J Christopher Schultz, Peter G <120> UNNATURAL REACTIVE AMINO ACID GENETIC CODE ADDITIONS <130> 54-000250US/PC <160> 104 <170> PatentIn version 3.3 <210> 1 <211> 1275 <212> DNA <213> Escherichia coli <400> 1 atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg 60 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcgctcta ttgcggcttc 120 gatcctaccg ctgacagctt gcatttgggg catcttgttc cattgttatg cctgaaacgc 180 ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc 240 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg 300 gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct 360 gctatcgcgg cgaacaacta tgactggttc ggcaatatga atgtgctgac cttcctgcgc 420 gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt 480 ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gttgcagggt 540 tatgacttcg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac 600 cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg 660 tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa 720 ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg 780 atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt 840 gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag 900 tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca 960 aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc 1020 gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg 1080 caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc 1140 tccaatgcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa 1200 gaagategte tgtttggteg ttttacetta etgegtegeg gtaaaaagaa ttaetgtetg 1260

atttgctgga aataa 1275

<210> 2

<211> 424

<212> PRT

<213> Escherichia coli

<400> 2

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Tyr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Asp Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val 225	Pro	Leu	lle	Thr	230	Ala	Asp	Gly	Thi	235	Phe	e Gly	' Lys	3 Thi	Glu 240	
Gly	Gly	' Ala	Val	Trp 245	Leu	Asp	Pro	Lys	Lys 250	Thr	Ser	Pro	туг	Lys 255	Phe	
Tyr	Gln	Phe	Trp 260	Ile	Asn	Thr	Ala	Asp 265	Ala	Asp	Val	Туг	Arg 270		Leu	
Lys	Phe	Phe 275	Thr	Phe	Met	Ser	Ile 280	Glu	Glu	Ile	Asn	Ala 285	Leu	Glu	Glu	
Glu	Asp 290	Lys	Asn	Ser	Gly	Lys 295	Ala	Pro	Arg	Ala	Gln 300	Tyr	Val	Leu	Ala [.]	
Glu 305	Gln	Val	Thr	Arg	Leu 310	Val	His	Gly	Glu	Glu 315	Gly	Leu	Gln	Ala	Ala 320	
Lys	Arg	Ile	Thr	Glu 325	Cys	Leu	Phe	Ser	Gly 330	Ser	Leu	Ser	Ala	Leu 335	Ser	
Glu	Ala	Asp	Phe 340	Glu	Gln	Leu	Ala	Gln 345	Asp	Gly	Val	Pro	Met 350	Val	Glu	
Met	Glu	Lys 355	Gly	Ala	Asp	Leu	Met 360	Gln	Ala	Leu	Val	Asp 365	Ser	Glu	Leu	
Gln	Pro 370	Ser	Arg	Gly	Gln	Ala 375	Arg	Lys	Thr	Ile	Ala 380	Ser	Asn	Ala	Ile	
Thr :	Ile	Asn	Gly (Glu	Lys 390	Gln	Ser	Asp	Pro	Glu 395	Tyr	Phe	Phe		Glu 400	
Glu Z	Asp .	Arg :	Leu i	Phe 405	Gly .	Arg	Phe	Thr	Leu 410	Leu	Arg .	Arg	Gly	Lys 415	Lys	
Asn 7	Tyr (Cys 1	Leu : 420	Ile (Cys '	Trp :	Ĺys									
<210>	_	775														
<212> <213>	Dì		cial													
<220>		- ~ 1	.c.a.	•												
<223>		tifi	.cial	. вуг	thet	ase										
<400> atggc		a gt	aact	tgat	: taa	acaa	ıttg	caag	gagco	igg g	gcto	gtac	ic co	cag o l	:gacc	60
gacga	ggaa	g cg	ttag	caga	geg	ractg	ıgcg	caag	gccc Pag	ga t	.cgca	ctc	rt gt	gtgg	cttc	120
									- ag	د ی						

gatectaceg etgacagett geatttgggg catettgtte cattgttatg eetgaaaege	180
ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	240
gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg	300
gtggacaaaa teegtaagea ggttgeeeeg tteetegatt tegaetgtgg agaaaaetet	360
gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc	420
gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt	540
tatagtatgg cctgtttgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa	720
ggcggcgcag tetggttgga teegaagaaa accageeegt acaaatteta eeagttetgg	780
atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt	
gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag	840
tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca	900
aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc	960
gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg	1020
caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	1080
tccaatgcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa	1140
gaagategte tgtttggteg ttttacetta etgegtegeg gtaaaaagaa ttaetgtetg	1200
atttgctgga aataa	1260
	1275
<210> 4 <211> 1275	
<212> DNA	
<213> artificial	
<220> ; <223> artificial synthetase	
<400> 4	
atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcac ttgtggcttc	120
gatectaceg etgacagett geatttgggg catettgtte cattgttatg eetgaaaege	180
ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	
gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg	240
gtggacaaaa teegtaagea ggttgeeeeg tteetegatt tegaetgtgg agaaaaetet	300
gctatcgcgg ccaataatta tgactggttc agcaatatga atgtgctgac cttcctgcgc	360
	420

gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagc	gt 480
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcaggg	gt 540
tatacgtatg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctga	ac 600
cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggt	g 660
tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactga	a. 720
ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctg	rg 780
atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcat	t 840
gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgccca	g 900
tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggo	a 960
aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggactt	c 1020
gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgat	g 1080
caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgc	c 1140
tecaatgeca teaceattaa eggtgaaaaa eagteegate etgaataett etttaaaga	a 1200
gaagategte tgtttggteg ttttacetta etgegtegeg gtaaaaagaa ttaetgtet	g 1260
atttgctgga aataa	1275
<pre><210> 5 <211> 1275 <212> DNA <213> artificial <220> <223> artificial synthetase <400> 5</pre>	
atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcgt gtgtggctto	120
gatectaceg etgacagett geatttgggg catettgtte cattgttatg eetgaaaege	180
ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	240
gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg	300
gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct	360
gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc	420
gatattggca aacacttete egttaaceag atgateaaca aagaageggt taageagegt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt	540
tatagtatgg cctgtttgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa	720
ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg Page 5	780

atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt	840
gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag	900
tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca	960
aaacgtatta ccgaatgcct gttcagcggt tetttgagtg cgctgagtga agcggacttc	1020
gaacagctgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg	1020
caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	
tccaatgcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa	1140
gaagatcgtc tgtttggtcg ttttacctta ctgcgtcgcg gtaaaaagaa ttactgtctg	1200
atttgctgga aataa	1260
<pre><210> 6 <211> 1275 <212> DNA <213> artificial <220> <223> artificial synthetase <400> 6</pre>	1275
atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcgt gtgtggcttc	120
gatectaceg etgacagett geatttgggg catettgtte cattgttatg cetgaaaege	180
ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	240
gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg	300
gtggacaaaa teegtaagea ggttgeeeeg tteetegatt tegaetgtgg agaaaaetet	360
gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc	420
gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt	540
tatagtatgg cctgtttgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa	720
ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg	780
atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt	
gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag	840
tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca	900
aaacgtatta ccgaatgeet gttcageggt tetttgagtg cgctgarts	960
gaacagetgg egeaggaegg egtacegatg gttgagatgg association	1020
Danie C	1080

caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	1140
tccaatgcca tcaccattaa cggtgaaaaa cagtccgatc ctgaatactt ctttaaagaa	1200
gaagatcgtc tgtttggtcg ttttacctta ctgcgtcgcg gtaaaaagaa ttactgtctg	1260
atttgctgga aataa	1275
<210> 7 <211> 1275 <212> DNA <213> artificial	22/3
<220> <223> artificial synthetase	
<400> 7	
atggcaagca gtaacttgat taaacaattg caagagcggg ggctggtagc ccaggtgacg	60
gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcac gtgtggcttc	120
gatectaceg ctgacagett geatttgggg catettgtte cattgttatg eetgaaaege	180
ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc	240
gacccgaget tcaaagetge cgagegtaag etgaacaceg aagaaactgt tcaggagtgg	300
gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct	360
gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgċtgac cttcctgcgc	420
gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt	480
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacagcct gctgcagggt	540
tatacgatgg cctgtctgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac	600
cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg	660
tttggcctga ccgttccgct gatcactaaa gcagatggca ccaaatttgg taaaactgaa	720
ggcggcgcag tctggttgga tccgaagaaa accagcccgt acaaattcta ccagttctgg	780
atcaacactg cggatgccga cgtttaccgc ttcctgaagt tcttcacctt tatgagcatt	840
gaagagatca acgccctgga agaagaagat aaaaacagcg gtaaagcacc gcgcgcccag	900
tatgtactgg cggagcaggt gactcgtctg gttcacggtg aagaaggttt acaggcggca	960
aaacgtatta ccgaatgcct gttcagcggt tctttgagtg cgctgagtga agcggacttc	1020
gaacagetgg cgcaggacgg cgtaccgatg gttgagatgg aaaagggcgc agacctgatg	1080
caggcactgg tcgattctga actgcaacct tcccgtggtc aggcacgtaa aactatcgcc	1140
tecaatgeca teaceattaa eggtgaaaaa eagteegate etgaataett etttaaagaa	1200
gaagategte tgtttggteg ttttaeetta etgegtegeg gtaaaaagaa ttaetgtetg	1260
atttgctgga aataa	1275
<210- 0	

<210> 8 <211> 540

```
<212> DNA
 <213> artificial
 <220>
 <223> artificial synthetase
 <400>
 cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
 ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                       180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat
                                                                      360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                      420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                      480
ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                      540
<210> 9
<211> 540
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<400> · 9
cgggggctgg taccccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                       60
ccgatcgcac tcacttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                      120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                      180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                      240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                      300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcagcaat
                                                                      360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                      420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                      480
ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                      540
<210>
      10
<211>
      540
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<400> 10
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                      60
```

ccgatcgcad	tcacttgtg	g cttcgatcc	t accgctgac	a gcttgcatt	t ggggcatctt	120
gttccattgt	tatgcctga	a acgcttcca	g caggcgggc	c acaagccgg	t tgcgctggta	180
ggcggcgcga	a cgggtctga	t tggcgaccc	g agcttcaaa	g ctgccgagc	g taagctgaac	240
accgaagaaa	ctgttcagga	a gtgggtgga	c aaaatccgta	a agcaggttg	cccgttcctc	300
gatttcgact	: gtggagaaaa	a ctctgctate	c gcggccaata	a attatgact	g gttcagcaat	360
atgaatgtgc	: tgaccttcc	gcgcgatati	ggcaaacact	tctccgttaa	a ccagatgatc	420
aacaaagaag	cggttaagca	gcgtctcaad	cgtgaagato	aggggattt	gttcactgag	480
ttttcctaca	acctgctgca	gggttatac	tatgcctgto	tgaacaaaca	gtacggtgtg	540
<220>		thetase				
<400> 11	50000					
					ggcgcaaggc	60
					ggggcatctt	120
					tgcgctggta	180
					taagctgaac	240
					cccgttcctc	300
					gttcggcaat	360
					ccagatgatc	420
aacaaagaag	cggttaagca	gcgtctcaac	cgtgaagatc	aggggatttc	gttcactgag	480
LECCCEACA	acctgctgca	gggttattcg	tatgcctgtg	cgaacaaaca	gtacggtgtg	540
<220>	ficial ficial synt	Chetase	·			
cgggggctgg	tagcccaggt	gacggacgag	gaagcgttag	cagagcgact	ggcqcaaggc	60
ccgatcgcac						120
gttccattgt	tatgcctgaa	acgcttccag	caggcgggcc	acaagccggt	tgcgctaata	180
ggcggcgcga	cgggtctgat	tggcgacccg	agcttcaaag	ctgccgagcg	taagctgaac	240
accgaagaaa	ctgttcagga	gtgggtggac	aaaatccgta	agcaggttgc	cccattente	300
gatttcgact	gtggagaaaa	ctctgctatc	gcggccaata Page 9	attatgactg	gttcagcaat	360
			_		t	

```
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                        420
  aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                        480
  ttttcctaca acctgctgca gggttatacg tatgcctgtc tgaacaaaca gtacggtgtg
                                                                        540
  <210>
         13
  <211> 540
  <212> DNA
  <213> artificial
  <220>
 <223> artificial synthetase
  <400> 13
  cgggggctgg taccccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
 ccgatcgcac tcctttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                       180
 ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                       360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                       420
 aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
 ttttcctaca acctgctgca gggttattct attgcctgtt cgaacaaaca gtacggtgtg
                                                                      540
 <210> 14
 <211>
       540
 <212> DNA
 <213> artificial
 <220>
<223> artificial synthetase
<400>
       14
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                       60
ccgatcgcac tcgtgtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                      120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                     180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                     240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                     300
gatttegact gtggagaaaa ctetgetate geggeeaata attatgactg gtteggeaat
                                                                     360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                     420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                     480
ttttcctaca acctgctgca gggttatagt attgcctgtt tgaacaaaca gtacggtgtg
                                                                     540
```

<210> 15

```
<211>
        540
  <212>
        DNA
  <213>
        artificial
  <220>
  <223> artificial synthetase
 <400> 15 ·
 cgggggctgg taccccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
 ccgatcgcac tcgtgtgtgg cttcgatcct accgctgada gcttgcattt ggggcatctt
                                                                       120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                       180
 ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       300
 gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                       360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                       420
 aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
 ttttcctaca acctgctgca gggttatagt attgcctgtt tgaacaaaca gtacggtgtg
                                                                       540
 <210>
       16
 <211> 540
<212> DNA
 <213> artificial
 <220>
 <223> artificial synthetase
<400> 16
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                       60
ccgatcgcac tctggtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                      120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                      180
ggcggcgcga cgggtctgat tggcgacccg agcttcaagg ctgccgagcg taagctgaac
                                                                      240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                      300
gatttcgact gtggagaaaa ctctgctatc gcggccaatt gttatgactg gttcggcaat
                                                                      360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                      420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                      480
ttttcctaca acctgctgca gggttatatg cgtgcctgtg agaacaaaca gtacggtgtg
                                                                      540
<210>
      17
<211>
       624
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<400> 17
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                      60
                                     Page 11
```

ccgatcgcac tcatttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta	180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	420
aacaaagaag cggttaagca gcgtctcaac cgtgaaggtc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggttatggt atggcctgtg ctaacaaaca gtacggtgtg	540
gtgctgcaaa ttggtggttc tgaccaatgg ggtaacatca cttctggtat cgacctgacc	600
cgtcgtctgc atcagaatca ggtg	624
<210> 18 <211> 609 <212> DNA <213> artificial <220> <223> artificial synthetase <400> 18	
caggtgacgg acgaggaagc gttagcagag cgactggcgc aaggcccgat cgcactcggt	60
tgtggcttcg atcctaccgc tgacagcttg catttggggc atcttgttcc attgttatgc	120
ctgaaacgct tccagcaggc gggccacaag ccggttgcgc tggtaggcgg cgcgacgggt	180
ctgattggcg acccgagett caaagetgce gagegtaage tgaacacega agaaactgtt	240
caggagtggg tggacaaaat ccgtaagcag gttgccccgt tcctcgattt cgactgtgga	300
gaaaactctg ctatcgcggc caataattat gactggttcg gcaatatgaa tgtgctgacc	360
ttcctgcgcg atattggcaa acacttctcc gttaaccaga tgatcaacaa agaagcggtt	420
aagcagcgtc tcaaccgtga agatcagggg atttcgttca ctgagttttc ctacaacctg	480
ctgcagggtt atggttttgc ctgtttgaac aaacagtacg gtgtggtgct gcaaattggt	540
ggttctgacc agtggggtaa catcacttct ggtatcgacc tgacccgtcg tctgcatcag	600
aatcaggtg	609
<pre><210> 19 <211> 591 <212> DNA <213> artificial <220> <223> artificial synthetase <400> 19</pre>	
<400> 19 gcgttagcag agcgactggc gcaaggcccg atcgcactcg ggtgtggctt cgatcctacc	60

```
gctgacagct tgcatttggg gcatcttgtt ccattgttat gcctgaaacg cttccagcag
                                                                      120
gcgggccaca agccggttgc gctggtaggc ggcgcgacgg gtctgattgg cgacccgagc
                                                                      180
ttcaaagctg ccgagcgtaa gctgaacacc gaagaaactg ttcaggagtg ggtggacaaa
                                                                      240
atccgtaagc aggttgcccc gttcctcgat ttcgactgtg gagaaaactc tgctatcgcg
                                                                      300
gccaataatt atgactggtt cggcaatatg aatgtgctga ccttcctgcg cgatattggc
                                                                      360
aaacacttct ccgttaacca gatgatcaac aaagaagcgg ttaagcagcg tctcaaccgt
                                                                      420
gaagatcagg ggatttcgtt cactgagttt tcctacaacc tgctgcaggg ttatggttat
                                                                      480
gcctgtatga acaaacagta cggtgtggtg ctgcaaattg gtggttctga ccagtggggt
                                                                      540
aacatcactt ctggtatcga cctgacccgt cgtctgcatc agaatcaggt g
                                                                      591
<210> 20
<211> 621
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<220>
<221> misc_feature
<222> (26)..(26)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (612)..(612)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (618)..(618)
<223> n is a, c, g, or t
<400> 20
gggctggtag cccaggtgac ggacgnagaa gcgttagcag agcgactggc gcaaggcccg
                                                                      60
atcgcactcc tttgtggctt cgatcctacc gctgacagct tgcatttggg gcatcttgtt
                                                                     120
ccattgttat gcctgaaacg cttccagcag gcgggccaca agccggttgc gctggtaggc
                                                                     180
ggcgcgacgg gtctgattgg cgacccgagc ttcaaagctg ccgagcgtaa gctgaacacc
                                                                     240
gaagaaactg ttcaggagtg ggtggacaaa atccgtaagc aggttgcccc gttcctcgat
                                                                     300
ttcgactgtg gagaaaactc tgctatcgcg gccaataatt atgactggtt cggcaatatg
                                                                     360
aatgtgctga ccttcctgcg cgatattggc aaacacttct ccgttaacca gatgatcaac
                                                                     420
aaagaagcgg ttaagcagcg tctcaaccgt gaagatcagg ggatttcgtt cactgagttt
                                                                     480
tcctacaacc tgctgcaggg ttattctatg gcctgtgcga acaaacagta cggtgtggtg
                                                                     540
ctgcaaattg gtggttctga ccagtggggt aacatcactt ctggtatcga cctgacccgt
                                                                     600
cgtctgcatc anaatcangt g
                                                                     621
```

```
<210>
        21
 <211>
        588
 <212>
        DNA
 <213>
        artificial
 <220>
 <223> artificial synthetase
 <400> 21
 ttagcagage gactggcgca aggcccgate gcactcgttt gtggcttcga tcctaccgct
                                                                         60
 gacagettge atttggggea tettgtteca ttgttatgee tgaaaegett ecageaggeg
                                                                        120
 ggccacaagc cggttgcgct ggtaggcggc gcgacgggtc tgattggcga cccgagcttc
                                                                        180
 aaagctgccg agcgtaagct gaacaccgaa gaaactgttc aggagtgggt ggacaaaatc
                                                                        240
 cgtaagcagg ttgccccgtt cctcgatttc gactgtggag aaaactctgc tatcgcggcc
                                                                        300
 aataattatg actggttcgg caatatgaat gtgctgacct tcctgcgcga tattggcaaa
                                                                        360
 cacttctccg ttaaccagat gatcaacaaa gaagcggtta agcagcgtct caaccgtgaa
                                                                        420
gatcagggga tttcgttcac tgagttttcc tacaacctgc tgcagggtta ttctgcggcc
                                                                        480
tgtgcgaaca aacagtacgg tgtggtgctg caaattggtg gttctgacca gtggggtaac
                                                                        540
atcacttctg gtatcgacct gacccgtcgt ctgcatcaga atcaggtg
                                                                        588
<210> 22
<211> 600
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<220>
<221> misc_feature
<222> (403)..(403)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (513)..(513)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (515)..(515)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (518)..(518)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222>
      (531)..(531)
<223> n is a, c, g, or t
```

```
<400> 22
 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcct gtgtggcttc
                                                                        60
 gatcctaccg ctgacagctt gcatttgggg catcttgttc cattgttatg cctgaaacgc
                                                                       120
 ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc
                                                                       180
 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg
                                                                       240
 gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct
                                                                       300
gctatcgcgg ccaataatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc
                                                                       360
gatattggca aacacttctc cgttaaccag atgatcaaca aanaagcggt taagcagcgt
                                                                       420
ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt
                                                                       480
tattcggctg cctgtgcgaa caaacagtac ggngnggngc tgcaaattgg nggttctgac
                                                                       540
caggggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca aaatcaggtg
                                                                       600
 <210>
       23
<211> 591
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<220>
<221> misc_feature
<222> (588)..(588)
<223> n is a, c, g, or t
<400> 23
gcgttagcag agcgactggc gcaaggcccg atcgcactcg tttgtggctt cgatcctacc
                                                                       60
gctgacagct tgcatttggg gcatcttgtt ccattgttgt gcctgaaacg cttccagcag
                                                                      120
gcgggccaca agccggttgc gctggtaggc ggcgcgacgg gtctgattgg cgacccgagc
                                                                      180
ttcaaagctg ccgagcgtaa gctgaacacc gaagaaactg ttcaggagtg ggtggacaaa
                                                                      240
atccgtaagc aggttgcccc gttcctcgat ttcgactgtg gagaaaactc tgctatcgcg
                                                                      300
gccaataatt atgactggtt cggcaatatg aatgtgctga ccttcctgcg cgatattggc
                                                                      360
aaacacttct ccgttaacca gatgatcaac aaagaagcgg ttaagcagcg tctcaaccgt
                                                                      420
gaagatcagg ggatttcgtt cactgagttt tcctacaacc tgctgcaggg ttatagtgcg
                                                                      480
gcctgtgtta acaaacagta cggtgtggtg ctgcaaattg gtggttctga ccagtggggt
                                                                      540
aacatcactt ctggtatcga cctgacccgt cgtctgcatc agaatcangt g
                                                                      591
<210>
      24
<211>
      600
<212> DNA
<213> artificial
<220>
```

<223> artificial synthetase <400> 24 gacgaggaag cgttagcaga gcgactggcg caaggcccga tcgcactcat ttgtggcttc 60 gatcctaccg ctgacagctt gcatttgggg catcttgttc cattgttatg cctgaaacgc 120 ttccagcagg cgggccacaa gccggttgcg ctggtaggcg gcgcgacggg tctgattggc 180 gacccgagct tcaaagctgc cgagcgtaag ctgaacaccg aagaaactgt tcaggagtgg 240 gtggacaaaa tccgtaagca ggttgccccg ttcctcgatt tcgactgtgg agaaaactct 300 gctatcgcgg ccaatgatta tgactggttc ggcaatatga atgtgctgac cttcctgcgc 360 gatattggca aacacttctc cgttaaccag atgatcaaca aagaagcggt taagcagcgt 420 ctcaaccgtg aagatcaggg gatttcgttc actgagtttt cctacaacct gctgcagggt 480 tataattttg cctgtgtgaa caaacagtac ggtgtggtgc tgcaaattgg tggttctgac 540 cagtggggta acatcacttc tggtatcgac ctgacccgtc gtctgcatca gaatcaggtg 600 <210> 25 <211> 579 <212> DNA <213> artificial <220> <223> artificial synthetase <400> 25 cgactggcgc aaggcccgat cgcactcacg tgtggcttcg atcctaccgc tgacagcttg 60 catttggggc atcttgttcc attgttatgc ctgaaacgct tccagcaggc gggccacaag 120 ccggttgcgc tggtaggcgg cgcgacgggt ctgattggcg acccgagctt caaagctgcc 180 gagcgtaagc tgaacaccga agaaactgtt caggagtggg tggacaaaat ccgtaagcag 240 gttgccccgt tcctcgattt cgactgtgga gaaaactctg ctatcgcggc caataattat 300 gactggttcg gcaatatgaa tgtgctgacc ttcctgcgcg atattggcaa acacttctcc 360 gttaaccaga tgatcaacaa agaagcggtt aagcagcgtc tcaaccgtga agatcagggg 420 atttcgttca ctgagttttc ctacaatctg ctgcagggtt attcggctgc ctgtcttaac 480 aaacagtacg gtgtggtgct gcaaattggt ggttctgacc agtggggtaa catcacttct 540 ggtatcgacc tgacccgtcg tctgcatcag aatcaggtg 579 (<210> 26 <211> 624 <212> DNA <213> artificial <220> <223> artificial synthetase <220> <221> misc_feature

```
<222> (13)..(13)
 <223> n is a, c, g, or t
 <220>
 <221>
       misc_feature
 <222>
       (599)..(599)
 <223> n is a, c, g, or t
 <400> 26
 cgggggctgg tancccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                       60
 ccgatcgcac tcgggtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                      120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                      180
 ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                      240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                      300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                      360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                      420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                      480
ttttcctaca acctgctgca gggttattct atggcctgtt tgaacaaaca gtacggtgtg
                                                                      540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctganc
                                                                      600
cgtcgtctgc atcagaatca ggtg
                                                                      624
<210> 27
<211> 625
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<220>
<221> misc_feature
<222> (600)..(600)
<223> n is a, c, g, or t
<400> 27
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                      60
ccgatcgcac tcacgtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                     120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                     180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                     240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                     300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                     360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                     420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                     480
ttttcctaca atctgctgca gggttattcg gctgcctgtc ttaacaaaca gtacggtgtg
                                                                     540
```

WO 2005/003294				
· ·	PCT/US2004/011833			
gtgctgcaaa ttggtggttc tgaggacta				

gtgctgcaaa ttggtggttc tgaccagtgg gg	taacatca cttctggtat cgaacctgan 600
ccgtcgtctg catcaaaatc aagtg	625
<210> 28 <211> 624 <212> DNA <213> artificial	
<220> <223> artificial synthetase	
<400> 28	
cgggggctgg taccccaagt gacggacgag gaa	aacgttag cagagcgact ggcgcaaggc 60
ccgatcgcac tctcttgtgg cttcgatcct acc	getgaca gettgeattt ggggeatett 120
gttccattgt tatgcctgaa acgcttccag cag	gcaggcc acaagccggt tgcgctggta 180
ggcggcgcga cgggtctgat tggcgacccg ago	ttcaaag ctgccgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaa	atccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcg	gccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggc	aaacact tctccgttaa ccagatgatc 420
aacaaagaag cggttaagca gcgtctcaac cgt	gaagatc aggggatttc gttcactgag 480
ttttcctaca acctgctgca gggttatacg atg	gcctgtg tgaacaaaca gtacggtgtg 540
gtgctgcaaa ttggtggttc tgaccagtgg ggt	aacatca cttctggtat cgacctgacc 600
cgtcgtctgc atcagaatca ggtg	: 624
<210> 29 <211> 624 <212> DNA <213> artificial	
<220> <223> artificial synthetase	
<400> 29	
cgggggctgg tagcccaggt gacggacgag gaa	gegttag cagagegact ggegeaagge 60
ccgatcgcac tcgcgtgcgg cttcgatcct accg	getgaca gettgeattt ggggeatett 120
gttccattgt tatgcctgaa acgcttccag cagg	rcgggcc acaagccggt tgcgctggta 180
ggcggcgcga cgggtctgat tggcgacccg agct	tcaagg ctgccgagcg taagctgaac 240
accgaagaaa ctgttcagga gtgggtggac aaaa	tccgta agcaggttgc cccgttcctc 300
gatttcgact gtggagaaaa ctctgctatc gcgg	ccaata attatgactg gttcggcaat 360
atgaatgtgc tgaccttcct gcgcgatatt ggca	aacact tctccgttaa ccagatgatc 420
aacaaagaag cggttaagca gcgtctcaac cgtg	aagatc aggggatttc gttcactgag 480
ttttcctaca acctgctgca gggttattct tatg	cctgtc ttaacaaaca gtacggtgtg 540
gtgctgcaaa ttggtggttc tgaccagtgg ggta	acatca cttctggtat cgacctgacc 600

cgtcgtctgc atcagaatca ggtg	624
<210> 30 <211> 624 <212> DNA <213> artificial	
<220> <223> artificial synthetase	
<400> 30	
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc	60
ccgatcgcac tcgcgtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt	120
gttecattgt tatgeetgaa aegetteeag eaggegggee aeaageeggt tgegetggta	180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggttatacg atggcctgtt gtaacaaaca gtacggtgtg	
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc	540. 600
cgtcgtctgc atcagaatca ggtg	624
<pre><210> 31 <211> 624 <212> DNA <213> artificial <220> <223> artificial synthetase</pre>	
<400> 31 cgggggctgg taccccaagt gacggacgag gaagcgttag cagagcgact ggcgcaaggc	
ccgatcgcac tcacgtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt	60
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta	120
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac	180
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	240
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	300
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	360
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcgctgag	420
ttttcctaca acctgctgca gggttatace thereal t	480
ttttcctaca acctgctgca gggttatacg tttgcctgta tgaacaaaca gtacggtgtg	540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc	600

cgtcgtctgc atcagaatca ggtg	624
<210> 32 <211> 606 <212> DNA <213> artificial	
<220> <223> artificial synthetase	
<400> 32	
gtgacggacg aggaagcgtt agcagagcga ctggcgcaag gcccgatcgc actcacgtgt	60
ggcttcgatc ctaccgctga cagcttgcat ttgggggcatc ttgttccatt gttatgcctg	120
aaacgettee ageaggeggg ceacaageeg gttgegetgg taggeggege gaegggtetg	180
attggcgacc cgagcttcaa agctgccgag cgtaagctga acaccgaaga aactgttcag	240
gagtgggtgg acaaaatccg taagcaggtt gccccgttcc tcgatttcga ctgtggagaa	300
aactctgcta tcgcggccaa taattatgac tggttcggca atatgaatgt gctgaccttc	360
ctgcgcgata ttggcaaaca cttctccgtt aaccagatga tcaacaaaga agcggttaag	420
cagcgtctca accgtgaaga tcaggggatt tcgttcactg agttttccta caatctgctg	480
cagggttatt cggctgcctg tettaacaaa cagtacggtg tggtgctgca aattggtggt	540
tetgaceagt ggggtaacat cacttetggt ategacetga ecegtegtet geateagaat	
caggtg	600
<210> 33 <211> 624 <212> DNA <213> artificial	606
<220> <223> artificial synthetase	
<400> 33	
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc	. 60
ccgatcgcac tcgtttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt	120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta	180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac	240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc	300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat	360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc	420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag	480
ttttcctaca acctgctgca gggttattcg atggcctgta cgaacaaaca gtacggtgtg	540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc	
cgtcgtctgc atcagaatca ggtg	600
Page 00	624

Page 20

```
<210>
         34
 <211>
        624
 <212> DNA
 <213> artificial
 <220>
 <223> artificial synthetase
 <220>
 <221> misc_feature
<222> (13)..(13)
 <223> n is a, c, g, or t
 <400> 34
 cgggggctgg tancccaagt gacggacggg gaagcgttag cagagcgact ggcgcaaggc
                                                                        60
 ccgatcgcac tcagttgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                       120
 gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                       180
 ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                       240
 accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                       300
 gatctcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                       360
 atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                       420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                       480
ttttcctaca acctgctgca gggttatagt tttgcctgtc tgaacaaaca gtacggtgtg
                                                                       540
gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc
                                                                       600
cgtcgtctgc atcagaatca ggtg
                                                                       624
<210> 35
<211> 624
<212> DNA
<213> artificial
<220>
<223> artificial synthetase
<400> 35
cgggggctgg tagcccaggt gacggacgag gaagcgttag cagagcgact ggcgcaaggc
                                                                       60
ccgatcgcac tcacgtgtgg cttcgatcct accgctgaca gcttgcattt ggggcatctt
                                                                      120
gttccattgt tatgcctgaa acgcttccag caggcgggcc acaagccggt tgcgctggta
                                                                      180
ggcggcgcga cgggtctgat tggcgacccg agcttcaaag ctgccgagcg taagctgaac
                                                                      240
accgaagaaa ctgttcagga gtgggtggac aaaatccgta agcaggttgc cccgttcctc
                                                                      300
gatttcgact gtggagaaaa ctctgctatc gcggccaata attatgactg gttcggcaat
                                                                      360
atgaatgtgc tgaccttcct gcgcgatatt ggcaaacact tctccgttaa ccagatgatc
                                                                      420
aacaaagaag cggttaagca gcgtctcaac cgtgaagatc aggggatttc gttcactgag
                                                                      480
```

ttttcctaca acctgctgca gggttatacg tttgcctgta ctaacaaaca gtacggtgtg 540 gtgctgcaaa ttggtggttc tgaccagtgg ggtaacatca cttctggtat cgacctgacc 600 cgtcgtctgc atcagaatca ggtg 624

<210> 36

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 36

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 37

<211> 424

<212> PRT

<213> artificial

1

<220>

<223> artificial synthetase

<400> 37

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405
410
415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 38

<211> 424 ·

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 38

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 295

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 345

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 375

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 395

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 39

<211> 424 <212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 39

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 40

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 75

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405
410
415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 40

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 40

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125 Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Thr Met Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195. 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 : 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350
- Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 , 365
- Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405
410
415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 41

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 41

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Thr Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190

- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350
- Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365
- Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380
- Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395
- Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 42

<211> 424 <212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 42

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe.Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ser Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220

Page 33

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 235 Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 250 Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 295 Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 330 Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 360 Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 375 380 Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 395 Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 410 Asn Tyr Cys Leu Ile Cys Trp Lys 420 <210> 43 <211> 424 <212> PRT <213> artificial <220> <223> artificial synthetase <400> 43 Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val

10

Page 34

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly, Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 44

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 44

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60 Page 36

- Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80
- Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95
- Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110
- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Arg Met Ala Cys Leu Asn Lys Gln Tyr Gly Val
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- .Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 390 395

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 45 <211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 45

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr · 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105

120 125

- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Gly Met Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350
- Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 395

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 46

<211> 424 <212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 46

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 55

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 150 155 160 Page 40

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn Leu Leu Gln Gly Tyr Gly Phe Ala Cys Ala Asn Lys Gln Tyr Gly Val 190 Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 215 Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 230 Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 315 Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335 Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 47

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 47

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 40

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 150

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 170

Leu Leu Gln Gly Tyr Gly Tyr Ala Cys Met Asn Lys Gln Tyr Gly Val 180 185

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 200

Page 42

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 215 Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 250 Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 265 Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 280 Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 410 Asn Tyr Cys Leu Ile Cys Trp Lys 420 <210> 48

<223> artificial synthetase

<211>

<220>

<212> PRT

424

<213> artificial

<400> 48

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 25 30

Pro Ile Ala Leu Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Met Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255 Page 44

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 49

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 49

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His Page 45

35 40 45	40	45
----------	----	----

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Ala Asn Lys Gln Tyr Gly Val

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300 Page 46

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 50

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 50

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr Page 47

90 95

/Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350 Page 48

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 410

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 51 <211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys Page 49

130	135	140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Val Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295. 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 52

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 52

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asp Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Asn Phe Ala Cys Val Asn Lys Gln Tyr Gly Val Page 51

180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 53 <211> 424

:

<212> PRT <213> artificial

<220>

<223> artificial synthetase

<400> 53

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 120

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 150

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 175

Leu Leu Gln Gly Tyr Ser Ala Ala Cys Leu Asn Lys Gln Tyr Gly Val

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu Page 53

															PC"	Γ/
225	5				230)				235	i				240	
Gly	/ Gl	y Ala	a Val	1 Trp 245	Leu	Asp	Pro) Lys	5 Lys 250	Thr	Ser	Pro	тух	Lys 255	Phe	
Туг	Glı	n Phe	e Trp 260) Ile	Asn	Thr	· Ala	Asp 265	Ala	Asp	Val	Туг	Arg 270	Phe	e Leu	
Lys	Phe	Phe 275	Thr	Phe	Met	Ser	lle 280	Glu	Glu	Ile	Asn	Ala 285	Leu	Glu	Glu	
Glu	Asr 290) Lys	Asn	Ser	Gly	Lys 295	Ala	Pro	Arg	Ala	Gln 300	Tyr	Val	Leu	Ala	
Glu 305	Gln	Val	Thr	Arg	Leu 310	Val	His	Gly	Glu	Glu 315	Gly	Leu	Gln	Ala	Ala 320	
Lys	Arg	Ile	Thr	Glu 325	Суз	Leu	Phe	Ser	Gly 330	Ser	Leu	Ser	Ala	Leu 335	Ser	
Glu	Ala	Asp	Phe 340	Glu	Gln	Leu	Ala	Gln 345	Asp	Gly	Val	Pro	Met 350	Val	Glu	
Met	Glu	Lys 355	Gly	Ala	Asp	Leu	Met 360	Gln	Ala	Leu	Val	Asp 365	Ser	Glu	Leu	
Gln	Pro 370	Ser	Arg	Gly	Gln	Ala 375	Arg	Lys	Thr	Ile	Ala 380	Ser	Asn	Ala	Ile	
Thr 385	Ile	Asn	Gly	Glu	Lys 390	Gln	Ser	Asp	Pro	Glu 395	Tyr	Phe	Phe	Lys	Glu 400	
Glu	Asp	Arg	Leu	Phe 405	Gly .	Arg	Phe	Thr	Leu 410	Leu	Arg	Arg	Gly	Lys 415	Lys	
Asn	Tyr	Cys	Leu 420	Ile	Cys '	Trp	ГЛЗ									
<210 <211	_	24														

<210> 54 <211> 424 <212> PRT <213> artificial

<220> <223> artificial synthetase

<400> 54

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

- Pro Ile Ala Leu Gly Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45
- Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60
- Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80
- Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95
- Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110
- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Ser Met Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu Page 55

275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 55

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 55

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

- Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95
- Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110
- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Ser Ala Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser Page 57

1

> 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 390 395

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 56 <211> 424 <212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 56

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly

Pro Ile Ala Leu Ser Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 120 Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys 140 His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 160 Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn Leu Leu Gln Gly Tyr Thr Met Ala Cys Val Asn Lys Gln Tyr Gly Val Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 265 Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 280 285 Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile Page 59

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu

370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 57

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 57

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ala Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

- Leu Leu Gln Gly Tyr Ser Tyr Ala Cys Leu Asn Lys Gln Tyr Gly Val
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350
- Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365
- Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380
- Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400
- Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
 405 410 415

•

Asn Tyr Cys Leu Ile Cys Trp Lys

420

<210> 58

<211> 424 <212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 58

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ala Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Thr Met Ala Cys Cys Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 59

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 59

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

- Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30
- Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45
- Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60
- Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly .

 70 75 80
- Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95
- Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110
- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Thr Phe Ala Cys Met Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys

<210> 60

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 60

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

- Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80
- Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95
- Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110
- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Ser Val Ala Cys Leu Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly
 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 225 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300 .

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 345

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys
405
410
415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 61

<211> 424

<212> PRT

<213> artificial-

<220>

<223> artificial synthetase

<400> 61

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 . 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Val Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

- Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125
- Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
 130 135 140
- His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160
- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Ser Met Ala Cys Thr Asn Lys Gln Tyr Gly Val 180 185 190
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285 .
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 62

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 62

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ser Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

Page 69

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

- Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175
- Leu Leu Gln Gly Tyr Ser Phe Ala Cys Leu Asn Lys Gln Tyr Gly Val
- Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205
- Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 210 215 220
- Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240
- Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255
- Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270
- Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285
- Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300
- Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320
- Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335
- Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350
- Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365
- Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380
- Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 63

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 63

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 25 30

Pro Ile Ala Leu Thr Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Gln Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg 145 150 155 160

Leu Asn Arg Glu Asp Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Thr Phe Ala Cys Thr Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 235

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 250

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 345

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 64

<211> 129

<212> DNA <213> Escherichia coli

<400> 64	
agcttcccga taagggagca ggccagtaaa aagcattacc ccgtggtggg gttcccgag	gc 60
ggccaaaggg agcagactct aaatctgccg tcatcgacct cgaaggttcg aatccttco	c 120
ccaccacca	
	129
<210> 65	
<211> 129 <212> RNA	
<213> Escherichia coli	
<400> 65	
agcuucccga uaagggagca ggccaguaaa aagcauuacc ccgugguggg guucccgag	c 60
ggccaaaggg agcagacucu aaaucugccg ucaucgaccu cgaagguucg aauccuucc	c 120
ccaccacca	
	129
<210> 66	
<211> 34	
<212> DNA <213> artificial	
<220> <223> oligonucleotide primos	
aougoreocide biimet	
<400> 66	
atgaagtagc tgtcttctat cgaacaagca tgcg	34
<210> 67	
<210> 67 <211> 34	
<212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
<400> 67	
cgaacaagca tgcgattagt gccgacttaa aaag	. 34
	34
<210> 68	
<211> 33 <212> DNA	
<213> artificial	
<220>	
<223> oligonucleotide primer	
·	
.<400> 68 Cgctactctc ccaaatagaa aaggtctccg ctg	
	33
<210> 69	
<211> 32	
<212> DNA <213> artificial	
<213> artificial	
<220>	
<223> oligonucleotide primer	

<400> ctggaa	69 cagc tatagctact gatttttcct cg	32
<210><211><212><212><213>	70 34 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> gccgtc	70 acag attagttggc ttcagtggag actg	34
<210><211><211><212><213>	71 . 33 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> gattgg	71 cttc ataggagact gatatgctct aac	33
<210> <211> <212> <213>	72 33 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> gcctcta	72 atag ttgagacagc atagaataat gcg	33
<210> <211> <212> <213>	73 35 DNA artificial	
<220> <223>	oligonucleotide primer	
	73 gcat agatagagtg cgacatcatc atcgg	35
<211> <212>	74 37 DNA artificial	
<220> <223>	oligonucleotide primer	
	74 rtgc gacatagtca tcggaagaga gtagtag	37

PCT/US2004/011833 <210> 75 <211> 35 <212> DNA <213> artificial <220> <223> oligonucleotide primer <400> 75 ggtcaaagac agttgtaggt atcgattgac tcggc 35 <210> 76 <211> 34 <212> DNA <213> artificial <220> <223> oligonucleotide primer <400> 76 cgctactctc cccaaattta aaaggtctcc gctg 34 <210> 77 <211> 34 <212> DNA <213> artificial <220> <223> oligonucleotide primer <400> 77 cgctactctc cccaaatata aaaggtctcc gctg 34 <210> 78 <211> 34 <212> DNA <213> artificial <220> <223> oligonucleotide primer <400> 78 cgctactctc cccaaatgga aaaggtctcc gctg 34 <210> 79 <211> 34 <212> DNA <213> artificial 1. <220> <223> oligonucleotide primer <400> 79 cgctactctc cccaaagata aaaggtctcc gctg 34 <210> 80 <211> 34 <212> DNA <213> artificial

WO 2005/003294

Ċ	WO 2005/003294	PCT/US2004/011833
	••• •	- 01/052004/011055
<220>		
<223>	oligonucleotide primer	
<400>	80	
cgctac	tctc cccaaaaaa aaaggtctcc gctg	34
<210>		
<211> <212>		
<213>		
<220>		
	oligonucleotide primer	
<400>	81	
	acag attttttggc ttcagtggag actg	34
		34
<210>		
<211> <212>		
	artificial	
<220>		
<223>	oligonucleotide primer	
<400>	82	
	acag attatttggc ttcagtggag actg	2.4
		. 34
<210>	83	
<211> <212>	34	
<213>	DNA artificial	
<220>		
<223>	oligonucleotide primer	
<400>	83	
	acag attggttggc ttcagtggag actg	2.4
		34
<210>	84	
<211> <212>	- -	
<213>	DNA artificial	
4220-		
<220> <223>	oligonucleotide primer	
<400>		
	84 acag atgatttggc ttcagtggag actg	
	- Janes Sar Tooks basing wood	34
<210>	85	
<211>	34	
<212> <213>	DNA artificial	
<220> <223>	oligonucleotide primer	
<400>	85	
accarco	acag ataaattggc ttcagtggag actg	34

Page 76

34

<210> 86

<211> 424

<212> PRT

<213> artificial

<220>

<223> artificial synthetase

<400> 86

Met Ala Ser Ser Asn Leu Ile Lys Gln Leu Gln Glu Arg Gly Leu Val 1 5 10 15

Ala Gln Val Thr Asp Glu Glu Ala Leu Ala Glu Arg Leu Ala Gln Gly 20 25 30

Pro Ile Ala Leu Ile Cys Gly Phe Asp Pro Thr Ala Asp Ser Leu His 35 40 45

Leu Gly His Leu Val Pro Leu Leu Cys Leu Lys Arg Phe Gln Gln Ala 50 55 60

Gly His Lys Pro Val Ala Leu Val Gly Gly Ala Thr Gly Leu Ile Gly 65 70 75 80

Asp Pro Ser Phe Lys Ala Ala Glu Arg Lys Leu Asn Thr Glu Glu Thr 85 90 95

Val Glu Trp Val Asp Lys Ile Arg Lys Gln Val Ala Pro Phe Leu 100 105 110

Asp Phe Asp Cys Gly Glu Asn Ser Ala Ile Ala Ala Asn Asn Tyr Asp 115 120 125

Trp Phe Gly Asn Met Asn Val Leu Thr Phe Leu Arg Asp Ile Gly Lys
130 135 140

His Phe Ser Val Asn Gln Met Ile Asn Lys Glu Ala Val Lys Gln Arg
145 150 155 160

Leu Asn Arg Glu Gly Gln Gly Ile Ser Phe Thr Glu Phe Ser Tyr Asn 165 170 175

Leu Leu Gln Gly Tyr Gly Met Ala Cys Ala Asn Lys Gln Tyr Gly Val 180 185 190

Val Leu Gln Ile Gly Gly Ser Asp Gln Trp Gly Asn Ile Thr Ser Gly 195 200 205

Ile Asp Leu Thr Arg Arg Leu His Gln Asn Gln Val Phe Gly Leu Thr Page 77

210 215 220

Val Pro Leu Ile Thr Lys Ala Asp Gly Thr Lys Phe Gly Lys Thr Glu 225 230 235 240

Gly Gly Ala Val Trp Leu Asp Pro Lys Lys Thr Ser Pro Tyr Lys Phe 245 250 255

Tyr Gln Phe Trp Ile Asn Thr Ala Asp Ala Asp Val Tyr Arg Phe Leu 260 265 270

Lys Phe Phe Thr Phe Met Ser Ile Glu Glu Ile Asn Ala Leu Glu Glu 275 280 285

Glu Asp Lys Asn Ser Gly Lys Ala Pro Arg Ala Gln Tyr Val Leu Ala 290 295 300

Glu Gln Val Thr Arg Leu Val His Gly Glu Glu Gly Leu Gln Ala Ala 305 310 315 320

Lys Arg Ile Thr Glu Cys Leu Phe Ser Gly Ser Leu Ser Ala Leu Ser 325 330 335

Glu Ala Asp Phe Glu Gln Leu Ala Gln Asp Gly Val Pro Met Val Glu 340 345 350

Met Glu Lys Gly Ala Asp Leu Met Gln Ala Leu Val Asp Ser Glu Leu 355 360 365

Gln Pro Ser Arg Gly Gln Ala Arg Lys Thr Ile Ala Ser Asn Ala Ile 370 375 380

Thr Ile Asn Gly Glu Lys Gln Ser Asp Pro Glu Tyr Phe Phe Lys Glu 385 390 395 400

Glu Asp Arg Leu Phe Gly Arg Phe Thr Leu Leu Arg Arg Gly Lys Lys 405 410 415

Asn Tyr Cys Leu Ile Cys Trp Lys 420

<210> 87

<211> 6

<212> PRT

<213> artificial

<220>

<223> tryptic peptide including unnatural amino acids

<220>

```
<221> MISC_FEATURE
<222> (2)..(2)
<223> X is an unnatural amino acid (p-acetyl-L-phenylalanine,
       p-benzoyl-L-phenylalanine, p-azido-L-phenylalanine,
       O-methyl-L-tyrosine, or p-iodo-L-phenylalanine) or trypotophan,
       tyrosine, or leucine
<400> 87
Val Xaa Gly Ser Ile Lys
<210> 88
<211> 11
<212> DNA
<213> artificial
<220>
<223> B box
<220>
<221> misc_feature
<222>
      (8)..(8)
<223> n is a, c, g, or t
<400> 88
ggttcgantc c
                                                                       11
<210> 89
<211> 82
<212> DNA
<213> artificial
<220>
<223> oligonucleotide primer
<400> 89
ggggggaccg gtggggggac cggtaagctt cccgataagg gagcaggcca gtaaaaagca
                                                                       60
ttaccccgtg gtgggttccc ga
                                                                       82
<210> 90
<211> 90
<212> DNA
<213> artificial
<220>
<223> oligonucleotide primer
<400> 90
ggcggcgcta gcaagcttcc cgataaggga gcaggccagt aaaaagggaa gttcagggac
                                                                       60
ttttgaaaaa aatggtggtg ggggaaggat
                                                                      90
<210> 91
<211> 68
<212> DNA
<213> artificial
<220>
```

<223>	oligonucleotide primer	
<220><221><222><222><223>	<pre>misc_feature (1)(1) n=I</pre>	
<220> <221> <222> <223>	misc_feature (14)(14) n=I	
<400>	91	
nggggg	gacc ggtngggggg accggtcggg atcgaagaaa tgatggtaaa tgaaatagga	60
aatcaa		
		68
<210> <211> <212> <213>	92 62 DNA artificial	
<220>		
<223>	oligonucleotide primer	
<400> ggggggg	92 gaat tcagttgatt gtatgcttgg tatagcttga aatattgtgc agaaaaagaa	60
ac	_	62
		ŲŽ.
<210><211><211><212><213>	93 86 DNA artificial	•
	arcificial	
<220> <223>	oligonucleotide primer	
<400>	93	
tcataac	gag aattccggga tcgaagaaat gatggtaaat gaaataggaa atctcataac	60
gagaatt	cat ggcaagcagt aacttg	86
010	*	
<210> <211>	94 72 ·	
<212>	DNA	
<213>	artificial	
<220> <223>	oligonucleotide primer	
<400>	-	
	94 gtg cggccgcatg gcaagcagta acttgttact acgtgcggcc gcttatttcc	
		60
agcaaat	cag ac	72 ,
<210>	95	
<211>	28	
	DŅA artificial	

<220> <223>	oligonucleotide primer	
<400> ccgatc	95 gege tegettgegg ettegate	28
<210><211><211><212><213>	96 27 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> atcgcg	96 gcga acgcctatga ctggttc	27
<210><211><211><212><213>	97 40 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> gttgca	97 gggt tatgeegeeg eetgtgegaa caaacagtae	40
<210><211><211><212><213>	98 26 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> gccgct	98 ttgc tatcaagtat aaatag	26
<210><211><211><212><213>	99 21 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> caagcc	99 gaca accttgattg g	21
<210> <211> <212> <213>	100 60 DNA artificial	
<220> <223>	oligonucleotide primer	
<400>	100	

ggggac	caagt ttgtacaaaa aagcaggcta cgccaatttt aatcaaagtg ggaat	cattgc 60
<210><211><211><212><213>	60 DNA	
<220> <223>	•	
<400> ggggac	101 caagt ttgtacaaaa aagcaggcta ggccaatttt aatcaaagtg ggaat	attgc 60
<210> <211> <212> <213>	58 DNA	•
<220> <223>		
<400> ggggac	102 ccact ttgtacaaga aagctgggtt actcttttt tgggtttggt ggggt	atc 58
<210> <211> <212> <213>	22	
<220> <223>	oligonucleotide primer	
<400> aagctat	103 atacc aagcatacaa tc	22
<210> <211> <212> <213>	104 49 DNA artificial	
<220> <223>	oligonucleotide primer	
<400> acaaggo	104 geett getagettae tetttttttg ggtttggtgg ggtatette	49