

Scalar-valued Functions (Linear and Affine)

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

What are Functions?

Think of a function as a machine f into which one may feed a real number. For each input x this machine outputs a f(x).

(A) What number x satisfies 10x = 3?

(B) What 3-vector
$$v$$
 satisfies $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \times v = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$?

What vector X satisfies f(X) = B?

- (C) What polynomial p satisfies $\int_{-1}^{1} p(y) dy = 0$ and $\int_{-1}^{1} y p(y) dy = 1$?
- (D) What power series f(x) satisfies $x \frac{d}{dx} f(x) 2f(x) = 0$?
- (E) What number x satisfies $4x^2 = 1$?

What are Functions?

Note

☐ Linear and affine functions in this session are scalar-valued. We focus on the linear function machine of the previous slide, which outputs are scalar values. Remains will discuss later.

What are Linear Functions?

- $\square f: \mathbb{R}^n \to \mathbb{R}$ means that f is a function that maps real n-vectors to real numbers
- $\Box f(x)$ is the value of function f at x (x is referred to as the argument of the function).
- $\Box f(x) = (x_1, x_2, ..., x_n)$: argument

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if it satisfies the following two properties:

- □Additivity: For any *n*-vector *x* and *y*, f(x + y) = f(x) + f(y)
- □Homogeneity: For any *n*-vector *x* and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

Superposition property:

Definition

Superposition property:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Note

☐ A function that satisfies the superposition property is called linear

Homogeneity and Additivity

Definition

□Additivity:

For any *n*-vector *x* and *y*, f(x + y) = f(x) + f(y)

☐Homogeneity:

For any *n*-vector *x* and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

Counterexample:

$$f(x) = f\left(a + \sqrt{5}b\right) \to a + b + \sqrt{5}b$$

What are Linear Functions?

☐ If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots + \alpha_k f(x_k)$$

Inner product is Linear Function?

Theorem

A function defined as the inner product of its argument with some fixed vector is linear.

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

What are Linear Functions?

Theorem

If a function is linear, then it can be expressed as the inner product of its argument with some fixed vector.

□Proof?

What are Linear Functions?

Theorem

The representation of a linear function f as $f(x) = a^T x$ is unique, which means that there is only one vector a for which $f(x) = a^T x$ holds for all x.

Affine Function

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if it can expressed as $f(x) = a^T x + b$ (linear function plus a constant (**offset**))

□ Superposition property for affine function which is called <u>restricted superposition</u>

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
, $\alpha + \beta = 1$

Affine Function

Theorem

Any scalar-valued function that satisfies the restricted superposition property is affine.

Conclusion

Every affine function can be written as $f(x) = a^T x + b$ with:

$$a^{T} = [f(e_1) - f(0), f(e_2) - f(0), ..., f(e_n) - f(0)]$$

 $b = f(0)$

Conclusion

Conclusion

We can write linear and affine functions in two methods:

☐ Method 1:

☐Linear:

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n), \forall \alpha_1, \dots, \alpha_n$$

☐Affine:

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1 f(x_1) + \dots + \alpha_n f(x_n), \alpha_1 + \dots + \alpha_n = 1$$

☐ Method 2:

□Linear:

$$f(x) = a^T x$$

☐Affine:

$$f(x) = a^T x + b$$

Conclusion

Definition

In many applications, scalar-valued functions of n variables, or relations between n variables and a scalar one, can be approximated as linear or affine functions, which is called "Model".

Scalar-valued function of a scalar

 \square Derivative of function $f: R \to R$ at the point (z, f(z)):

$$\lim_{t\to 0}\frac{f(z+t)-f(z)}{t}$$

- \square It gives the slope of the graph of f at the point (z, f(z)).
- $\Box f'(z)$ is a scalar-valued function of a scalar variable

Review: Scalar-valued function of a vector

□ The partial derivative of function $f: \mathbb{R}^n \to \mathbb{R}$ at the point z, with respect to its ith argument

$$\frac{\partial f}{\partial x_i}(z) = \lim_{t \to 0} \frac{f(z_1, \dots, z_{i-1}, z_i + t, z_{i+1}, \dots, z_n) - f(z)}{t} = \lim_{t \to 0} \frac{f(z + te_i) - f(z)}{t}$$

 \Box The partial derivative is the derivative with respect to the i —th argument, with all other arguments fixed.

Review: Gradient

□ Gradient: The partial derivatives of f(x) with respect to its n arguments can be collected into an n vector called the gradient of f(x)

(at point z):

$$\nabla f(z) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(z) \\ \vdots \\ \frac{\partial f}{\partial x_n}(z) \end{bmatrix}$$

Theorem

Gradient of a combination of functions:

$$f(z) = ag(z) + bh(z)$$

$$\nabla f(z) = a\nabla g(z) + b\nabla h(z)$$

How to find an approximate affine model

 $\Box f: \mathbb{R}^n \to \mathbb{R}$ is differentiable: its partial derivatives exist

Definition

The (first-order) Taylor approximation of f near (or at) the point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(x_1 - z) + \dots + \frac{\partial f}{\partial x_n}(x_n - z)$$

How to find an approximate affine model

Example

 \Box $\hat{f}(x)$ is a linear function or a affine function?

$$\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$$

Constant- value of function at z Deviation or Perturbation of x from z

$$\hat{f}(x) = \nabla f(z)^T x + (f(z) - \nabla f(z)^T z)$$
Linear function Constant

Taylor approximation

 \Box The Taylor approximation is sometimes called the linear approximation or linearized approximation of f (at z)

A function f of one variable, and the first order Taylor approximation $\hat{f}(x) = f(z) + f'(z)(x - z)$ at z

Taylor approximation

Example

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ give by $f(x) = x_1 + \exp(x_2 - x_1)$, the Taylor approximation \hat{f} near the point z = (1,2)

x	f(x)	$\hat{f}(x)$	$ \hat{f}(x) - f(x) $
(1.00,2.00)	3.7183	3.7183	0.0000
(0.96,1.98)	3.7332	3.7326	0.0005
(1.10,2.11)	3.8456	3.8455	0.0001
(0.85,2.05)	4.1701	4.1119	0.0582
(1.25,2.41)	4.4399	4.4032	0.0367

$$e^{-1} \sim 0.367$$

Definition

 \square Regression model is (the affine function of x):

$$\hat{y} = x^T w + w_0$$

$$\hat{y} = x^T w$$

Example

- \square *y* is selling price of house in \$1000 (in some location, over some period)
- ☐ regressor is:

x = (house area, # bedrooms) (house area in 1000 sq.ft.)

□Regression model weight vector and offset are:

$$\beta = (148.73, -18.85), \quad v = 54.40$$

 \square We'll see later how to guess β and v from sales data

House	x_1 (area)	x_2 (beds)	y (prince)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

Example

Example

- ☐ What happened when feature is zero vector?
- ☐ Find the age based on following features:
 - ☐ What are the constraints?

Gender		Diabetes		Smoking		Age
Female	Male	Yes	No	Yes	No	

Reference

- Chapter 2: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
- Part of chapter 1 and chapter 6: Linear Algebra by David Cherney, etc.
- http://vmls-book.Stanford.edu/vmls-slides.pdf