Darstellung von Differentialgleichungen als lineare Gleichungssysteme

Marisa Breßler und Anne Jeschke

29.11.2019

Inhaltsverzeichnis

1	Einleitung	2
2	Theorie	3
3	Experimente und Beobachtungen	4
4	Auswertung	5
5	Zusammenfassung und Ausblick	6

1 Einleitung

2 Theorie

Im Allgemeinen betrachtet man bei der Lösung des Poisson-Problems ein Gebiet $\Omega \subset \mathbb{R}^d$ und dessen Rand $\partial\Omega$. Auf diesem Gebiet sind die zwei Funktionen $f \in C(\Omega; \mathbb{R})$ und $g \in C(\partial\Omega; \mathbb{R})$ gegeben. Das Poisson-Problem beschreibt die Suche nach der Lösung u einer elliptischen partiellen Differentialgleichung (PDE) der Form

$$-\Delta u = f \text{ in } \Omega$$
$$u = g \text{ in } \partial \Omega$$

Hierbei beschreibt Δu den Laplace-Operator, der für eine Funktion $u \in C^2(\mathbb{R}^d; \mathbb{R})$ definiert ist durch

$$\Delta u := \sum_{l=1}^{d} \frac{\partial^2 u}{\partial x_l^2}$$

Das heißt für d=1 gilt $\Delta u=u''$ und für d>1 ist der Laplace-Operator die Summe aller partiellen Ableitungen von u zweiter Ordnung, die zweimal nach der selben Variable ableiten.

Im Rahmen dieses Praktikums werden wir uns konzentrieren auf den Fall $\Omega = (0,1)^d$, $g \equiv 0$ und $d \in \{1,2,3\}$, wobei sich unsere Ergebnisse auch verallgemeinern lassen auf d > 3.

Um das Problem mit den Mitteln der Numerik lösen zu können, diskretisieren wir sowohl das Gebiet Ω , als auch den Laplace-Operator.

3 Experimente und Beobachtungen

4 Auswertung

5 Zusammenfassung und Ausblick