# # [ Clustering Algorithms ] ( cheatSheet )

### **Data Preparation**

- Load Dataset: data = pd.read\_csv('data.csv')
- Standardize Features: scaled\_data = StandardScaler().fit\_transform(data)
- Principal Component Analysis (PCA) for Dimensionality Reduction: pca\_data = PCA(n\_components=2).fit\_transform(scaled\_data)
- Visualize Data Distribution: plt.scatter(data[:, 0], data[:, 1])
- Compute Pairwise Distance Matrix for Clustering: dist\_matrix = pairwise\_distances(data, metric='euclidean')
- Handle Missing Values: data\_filled = SimpleImputer(strategy='mean').fit\_transform(data)
- Create Dendrogram for Hierarchical Clustering: dendrogram = sch.dendrogram(sch.linkage(data, method='ward'))
- Identify Optimal Number of Clusters via Elbow Method: inertia = [KMeans(n\_clusters=i).fit(data).inertia\_ for i in range(1, 11)]; plt.plot(range(1, 11), inertia)
- Normalize Features for Clustering: normalized\_data = normalize(data)
- Use TSNE for Visualization of High-dimensional Data: tsne\_data = TSNE(n\_components=2).fit\_transform(data)

## K-means Clustering

- **Perform K-means Clustering**: kmeans = KMeans(n\_clusters=3).fit(data)
- Predict Cluster Labels: labels = kmeans.predict(data)
- Visualize Clusters: plt.scatter(data[:, 0], data[:, 1], c=labels)
- Determine Centroids: centroids = kmeans.cluster centers
- Silhouette Score for Model Evaluation: silhouette\_score(data, labels)
- Initializing K-means with Smart Start (k-means++): kmeans = KMeans(n\_clusters=3, init='k-means++').fit(data)
- Mini-Batch K-means for Large Datasets: minibatch\_kmeans = MiniBatchKMeans(n\_clusters=3).fit(data)
- Find Optimal K Using the Silhouette Method: silhouette\_optimal\_k(data)
- Elbow Method Visualization for Optimal K: plot\_elbow\_method(data)
- Assign New Data Points to Existing Clusters:new\_labels = kmeans.predict(new\_data)
- Iterative Training to Refine Centroids: kmeans.fit(data); kmeans.partial\_fit(more\_data)



- Visualize Cluster Centers on 2D Plot: plt.scatter(kmeans.cluster\_centers\_[:, 0], kmeans.cluster\_centers\_[:, 1], s=300, c='red')
- Calculate Within-cluster Sum of Squares (WSS): wss = kmeans.inertia\_
- K-means Clustering with Specific Random State for Reproducibility: kmeans = KMeans(n\_clusters=3, random\_state=42).fit(data)
- Use K-means for Color Quantization in Images: quantized\_img = quantize\_colors(image\_data, n\_colors=8)

## Hierarchical Clustering

- Perform Agglomerative Hierarchical Clustering: model =
  AgglomerativeClustering(n\_clusters=3).fit(data)
- Extract Cluster Labels: labels = model.labels\_
- Plot Dendrogram Function: plot\_dendrogram(model, truncate\_mode='level', p=3)
- Cophenetic Correlation Coefficient: c, coph\_dists = cophenet(sch.linkage(data, 'ward'), pdist(data))
- Agglomerative Hierarchical Clustering with Different Linkage Criteria: model = AgglomerativeClustering(n\_clusters=3, linkage='average').fit(data)
- Scikit-learn's Convenience Function for Ward's Method: ward = AgglomerativeClustering(n\_clusters=3, linkage='ward').fit(data)
- Generate Dendrogram from Linkage Matrix: linkage\_matrix = ward(children=model.children\_); dendrogram(linkage\_matrix)
- Cutting the Dendrogram to Form Clusters: labels = fcluster(linkage\_matrix, t=3, criterion='maxclust')
- Creating Custom Distance Matrix for Agglomerative Clustering: model = AgglomerativeClustering(n\_clusters=3, affinity='precomputed', linkage='complete').fit(custom\_distance\_matrix)
- Interactive Dendrogram Plotting with Plotly: plot\_dendrogram\_plotly(linkage\_matrix)
- Evaluate Model Using Davies-Bouldin Index: db\_index = davies\_bouldin\_score(data, model.labels\_)
- Use SciPy for More Detailed Dendrogram Customization: dendrogram(sch.linkage(data, method='ward'), color\_threshold=1)
- Dynamic Thresholding for Cluster Formation in Hierarchical Clustering: dynamic\_labels = dynamic\_threshold\_clustering(linkage\_matrix)

#### **DBSCAN**

 Apply DBSCAN Clustering: dbscan = DBSCAN(eps=0.3, min\_samples=10).fit(data)

- Cluster Labels from DBSCAN: labels = dbscan.labels\_
- Identify Core Samples: core\_samples\_mask = np.zeros\_like(dbscan.labels\_, dtype=bool); core\_samples\_mask[dbscan.core\_sample\_indices\_] = True
- Visualize DBSCAN Clusters: plt.scatter(data[:, 0], data[:, 1], c=labels)
- Adjusting eps and min\_samples for Density Variation: dbscan = DBSCAN(eps=0.5, min\_samples=15).fit(data)
- Handling Noise Points Identified by DBSCAN: noise = data[dbscan.labels\_ == -1]
- Cluster Core Samples Extraction and Visualization: core\_samples = data[dbscan.core\_sample\_indices\_]
- Evaluate Clustering with Silhouette Score: silhouette\_score(data, dbscan.labels\_)
- Visualize DBSCAN Clusters with Matplotlib: plot\_dbscan\_clusters(data, dbscan.labels\_, dbscan.core\_sample\_indices\_)
- Optimize DBSCAN Parameters with Grid Search: optimal\_params = optimize\_dbscan(data)
- Use DBSCAN for Anomaly Detection: anomalies = data[dbscan.labels\_ == -1]
- Scaling Features for Improved DBSCAN Performance: scaled\_data = StandardScaler().fit\_transform(data); dbscan.fit(scaled\_data)
- Calculate Number of Clusters in DBSCAN: n\_clusters\_ = len(set(dbscan.labels\_)) - (1 if -1 in dbscan.labels\_ else 0)
- Visualize Spatial Clusters with Folium for Geospatial Data: plot\_folium\_map\_geospatial(data, dbscan.labels\_)

## Advanced Clustering Algorithms

- Spectral Clustering: spectral\_labels = SpectralClustering(n\_clusters=3).fit\_predict(data)
- Mean Shift Clustering: meanShift = MeanShift().fit(data); labels = meanShift.labels\_
- Affinity Propagation: affinity = AffinityPropagation().fit(data); cluster\_centers\_indices = affinity.cluster\_centers\_indices\_
- Hierarchical Density-Based Spatial Clustering (HDBSCAN): hdbscan\_model = hdbscan.HDBSCAN(min\_cluster\_size=10).fit(data); labels = hdbscan\_model.labels\_
- Gaussian Mixture Models for Soft Clustering: gmm = GaussianMixture(n\_components=3).fit(data); labels = gmm.predict(data)
- OPTICS Clustering: optics = OPTICS(min\_samples=10, xi=.05, min\_cluster\_size=.05).fit(data); labels = optics.labels\_
- Evaluate Clustering with Adjusted Rand Index: adjusted\_rand\_score(true\_labels, predicted\_labels)

- Clustering Based on Graph Connectivity (Agglomerative): connectivity = kneighbors\_graph(data, n\_neighbors=10, include\_self=False); ward = AgglomerativeClustering(connectivity=connectivity); labels = ward.fit\_predict(data)
- BIRCH for Large Datasets: birch = BIRCH(n\_clusters=3).fit(data); labels = birch.predict(data)
- CURE Clustering Implementation with PyCaret: from pycaret.clustering import \*; cure\_model = create\_model('cure', num\_clusters=3, data=data)
- Using Silhouette Plots to Evaluate Clustering Quality: plot\_silhouette(data, labels)
- Cluster Validation Using the Davies-Bouldin Index: davies\_bouldin\_score(data, labels)

# Optimization Strategies

- Grid Search for Optimal Parameters in K-means: param\_grid = {'n\_clusters': range(1, 11)}; grid\_search = GridSearchCV(KMeans(), param\_grid); grid\_search.fit(data)
- Using the Gap Statistic to Determine the Number of Clusters: gap\_statistic, opt\_k = optimalK(data, nrefs=3, maxClusters=10)
- Auto-Scaling Features Based on Clustering Tendency: scaler = autoscale\_based\_on\_clustering\_tendency(data)
- Parallel Coordinate Plot for Cluster Visualization: pd.plotting.parallel\_coordinates(data.assign(cluster=labels), 'cluster')
- Cluster Stability Evaluation via Bootstrapping: stability = bootstrap\_stability(data, KMeans(n\_clusters=3), n\_bootstraps=10)
- Elbow Method with Inertia and Silhouette Analysis Combined: evaluate\_clustering\_elbow\_silhouette(data, max\_clusters=10)

## Specialized Clustering Applications

- Temporal or Sequential Data Clustering (e.g., Time Series): ts\_cluster\_labels =
  - TimeSeriesKMeans(n\_clusters=3).fit\_predict(time\_series\_data)
- Clustering Geospatial Data: geo\_cluster\_labels = DBSCAN(eps=0.1, min\_samples=5).fit\_predict(geo\_data[['latitude', 'longitude']])
- Image Segmentation Using Clustering: segmented\_image = KMeans(n\_clusters=3).fit\_predict(image\_pixels)
- Text Clustering for Document Categorization: text\_cluster\_labels = MiniBatchKMeans(n\_clusters=5).fit\_predict(tfidf\_matrix)

- Clustering for Anomaly Detection: anomaly\_labels = IsolationForest().fit\_predict(data)
- Clustering in Bioinformatics (e.g., Gene Expression Data): gene\_cluster\_labels = AgglomerativeClustering().fit\_predict(gene\_expression\_data)

# Integrative Approaches and Advanced Techniques

- Consensus Clustering for Stability and Robustness: consensus\_labels = consensus\_cluster(data, KMeans(), n\_clusters\_range=[2,10], bootstrap\_samples=100)
- Feature Learning with Clustering (e.g., Autoencoders): encoded\_features = Autoencoder().fit\_transform(data); ae\_cluster\_labels = KMeans(n\_clusters=3).fit\_predict(encoded\_features)
- Cluster Ensembles for Improved Performance: ensemble\_labels = ClusterEnsembles(hyperparameters, data)
- Use of Clustering for Dimension Reduction: reduced\_data = clustering\_based\_dimension\_reduction(data, n\_clusters=10)
- Integrating Clustering with Classification for Semi-supervised Learning: semi\_labels = semi\_supervised\_learning\_with\_clustering(data, partial\_labels)
- Leveraging Graph-based Clustering for Complex Networks: graph\_cluster\_labels = SpectralClustering(n\_clusters=3).fit\_predict(adjacency\_matrix)
- Multi-view Clustering for Integrating Different Types of Data: multi\_view\_labels = MultiViewClustering().fit\_predict([view1\_data, view2\_data])
- Interactive Clustering for User-guided Analysis: interactive\_clusters = interactive\_clustering(data, initial\_guesses)
- Utilizing Clustering for Data Cleaning and Preprocessing: clean\_data = data\_cleaning\_with\_clustering(data)
- Hierarchical Clustering for Large Datasets via BIRCH:

large\_scale\_cluster\_labels = BIRCH(threshold=0.5, n\_clusters=None).fit\_predict(large\_data)

- Spatial Clustering for Location Data Optimization: location\_clusters = OPTICS(min\_samples=50, xi=0.05, min\_cluster\_size=0.1).fit\_predict(location\_data)
- Integrating Clustering with Reinforcement Learning for Dynamic Environments: dynamic\_cluster\_labels = reinforcement\_learning\_with\_clustering(state\_data)

• Clustering for Recommender Systems (User or Item Clustering):

recommender\_clusters = KMeans(n\_clusters=10).fit\_predict(user\_feature\_matrix)

- Deep Clustering for Unsupervised Feature Learning: deep\_cluster\_labels = DeepClustering().fit\_predict(data)
- Clustering Validation in Multi-dimensional Datasets: validation\_scores = multidimensional\_clustering\_validation(data, cluster\_labels)