Both one support vectors. Let
$$W$$
 be $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$.

Both one support vectors. Let W be $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$.

Unstrants: Y or $\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$. $X^{(1)} = 1$ — (2)
 $Y^{(1)}(\begin{bmatrix} w_1 \\ w_2 \end{pmatrix}) \cdot X^{(1)} = 1$ — (2)
 $Y^{(1)}(\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}) \cdot X^{(1)} = 1$ — (2)
 $Y^{(1)}(\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}) \cdot Y^{(1)}(\begin{bmatrix} w_1 \\ w_1 \end{bmatrix}) \cdot Y^{(1)}(\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}) \cdot Y^{(1$

$$(\beta)$$
 Let (x_1) or. (x_1)

b) Vector addition results into symmetrical Vectors from inputs. Using above definitions, $\begin{array}{lll}
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) &=& \left(\begin{pmatrix} x & 1 & 2 \end{pmatrix} \right) \\
&=& \left(\begin{pmatrix} x & 1 & 2$

c) Vector subtraction results into symmetrical vectors too.

Proving possitive semi-definite: $\frac{1}{7} \times \frac{1}{1} \times \frac{1}{1}$

d) ((y , z) = f(x) f()

 $f(x) \text{ will return } \alpha \text{ scalar.}$ $f(x) = \phi'(x) - \phi^{2}(x) \quad (\text{Similar do } \Theta 1)$ $f(x) = \left[\phi'(x) \cdot \phi^{2}(x) \right] \left[\phi'(x) \cdot \phi^{2}(x) \right]$ $= \left[\phi'(x) \cdot \psi'(x) \right]$ $= \left[\phi$