Research project meeting summary: Trajectory Module for Launcher MDAO

Jorge L. Valderrama ¹
Dr. Annafederica Urbano ² Dr. Mathieu Balesdent ³

¹ISAE-SUPAERO, MSc. in Aerospace Engineering ²ISAE-SUPAERO, DECAS ³ONERA, DTIS

March 27, 2020

Plan:

Review of previous work

- 2 Key points discussed
- Future actions

Review of previous work

S2 Progress Report: I have not finished yet. 80% progress

contents:

- Introduction
- aim
- objectives
- Literature review: EoM, Forces, Control laws, Optimal control and MDAO
- Plan and description of tasks

Key points discussed

Shooting method: Two point Boundary Value problem with initial and final conditions.

- Propagate numerically the states from initial guess
- Calculate error
- Input error and analytic derivatives into NLP solver

Key points discussed

Integration of Optimal control and Open MDAO is possible in two ways:

- Trajectory optimization as a discipline (The one we are going to be focused on)
- Trajectory simulation but optimization is performed by the global optimizer of OpenMDAO

Order of events in Dymos must be predetermined, how can we use it in such a way that events can alternate order to provide optimal solution? Example of Fairing and stage separation

We can look at the numerical methods used in Dymos to propagate equations.

Future actions

- Finish S2 progress report
- Identify the Runge method used in dymos to propagate the solution of EoM in the shooting methods.