General Topology

WANG SIBO November 4, 2022

Contents

Chapter 0. Preliminary	1
1. Map	1
Chapter 1. Topology Space	3
1. Topology Space	3
2. Set	3
3. Open Cover	4
4. Sequence	4
5. Metric Space	5
6. Normed Vector Space	6
7. Inner Product Space	7
Chapter 2. Continuous and Homeomorphism	9
Chapter 3. Separation Axiom	11
Chapter 4. Product Space	13
1. Finite Product Space	13
2. Countable Product Space	13
Chapter 5. Quotient Space	15
Bibliography	17

Preliminary

1. Map

Theorem 0.1. There is a bijective map between (0,1] and [0,1].

Topology Space

1. Topology Space

```
Definition 1.1. (open set)
```

Definition 1.2. (closed set) Complement of open set.

Definition 1.3. (topology space)

Definition 1.4 (topological subspace).

Theorem 1.5 (subspace generated by a subset).

Definition 1.6. (basis)

Definition 1.7. (neighborhood)

2. Set

Definition 1.8. (limit point of set)

Definition 1.9. (derived set)

Definition 1.10. (adherent point)

Definition 1.11. (isolation point)

Definition 1.12. (interior point)

Definition 1.13. (boundary point)

Warning 1.14. limit point \implies adherent point, but adherent point \implies limit point.

Example 1.15. to-do

Theorem 1.16. Given topology space (X, \mathcal{T}) and $Y \subseteq X$. Y is closed if and only if Y is derived set.

Proof. Proof by contradiction.

Definition 1.17. (closure)

Theorem 1.18. Given topology space (X, \mathcal{T}) , the following statements are equivalent:

Definition 1.19 (dense set).

Definition 1.20 (separable space).

3. Open Cover

Definition 1.21. (open cover)

Definition 1.22. (compact space)

Definition 1.23. (precompact space)

Theorem 1.24. Given a topology space (X, \mathcal{T}) and $Y, K \subset X$. If Y is closed and K is compact, then $Y \cap K$ is compact.

Theorem 1.25 (Cantor's intersection theorem).

Proof. to do

4. Sequence

Definition 1.26. (sequence)

Definition 1.27. (subsequence)

Definition 1.28. (limit point of sequence)

Warning 1.29. may not be the same.

Example 1.30. to do

Definition 1.31. (limit of sequence)

Warning 1.32. may not be the same.

Example 1.33. to do

Warning 1.34. In some topology space, the limit of a sequence may not be unique.

Example 1.35. to do

Theorem 1.36. In any metric space, the limit of any sequence is unique.

Proof. Proof by contradiction.

Theorem 1.37. Given a topology space (X, \mathcal{T}) and the sequence $\{x_n\} \in X$. If $\{x_n\}$ converges to $x \in X$, then any subsequence $\{y_n\}$ in $\{x_n\}$ converges to x as well.

Corollary 1.38. Given a topology space (X, \mathcal{T}) and the sequence $\{x_n\} \in X$. Let $\{y_n\}$ and $\{z_n\}$ denote two different subsequence in $\{x_n\}$. If $\{y_n\}$ and $\{z_n\}$ converge to $y \in X$ and $z \in X$ respectively with $y \neq z$, then $\{x_n\}$ is not a convergent sequence.

5. Metric Space 5

5. Metric Space

Definition 1.39. (metric)

Definition 1.40. (metric space)

Theorem 1.41. Every metric space (X,d) can generate a topology space (X,\mathcal{T}_d) .

Theorem 1.42. Any compact metric space is separable.

Theorem 1.43. Given a compact metric space (X,d) and $Y \subseteq X$. If Y is closed, then Y is compact.

Definition 1.44. (Cauchy sequence)

Definition 1.45. (convergence of sequence)

Theorem 1.46. Given a Cauchy sequence. If it has a convergent subsequence, then the Cauchy sequence is convergent.

Proof.

Definition 1.47. (complete space)

Theorem 1.48. Given a complete metric space (X, d) and a subset $Y \subset X$, Y is complete if and only if Y is closed.

Warning 1.49. Given a non-complete metric space (X, d) and a subset $Y \subset X$, Y is complete implies Y is closed, but Y is closed cannot imply Y is complete.

Example 1.50. to do

Definition 1.51 (sequential compact).

Definition 1.52. (bounded space)

Definition 1.53. (totally bounded space)

Warning 1.54. Not every bounded space is a totally bounded space.

Example 1.55. to do

Theorem 1.56. totally bounded \implies separable.

Theorem 1.57. Given a metric space (X, d), the following statements are equivalent:

Lemma 1.58. sequential compact \implies totally bounded.

Proof. We prove it by contradiction. Suppose it is not totally bounded, then $\exists \varepsilon$ such that X cannot be covered by finite open balls.

So we can find an infinite sequence $\{x_i\}$ in X such that $d(x_i, x_j) \geq \varepsilon$, $\forall i, j \in \mathbb{N}$ and $i \neq j$. Otherwise, X is totally bounded.

Hence $\{x_i\}$ has no convergent subsequence. So X is not sequential compact, which is a contradiction.

Lemma 1.59. sequential compact \implies complete.

Proof. \Box

Lemma 1.60. Given a metric space (X,d) and $Y \subseteq X$. Y is compact \iff Y is sequential compact.

Proof. \Box

Lemma 1.61. Given a metric space (X,d) and $Y \subseteq X$. Y is compact \iff Y is complete and totally bounded.

Proof. \Box

Theorem 1.62. Given a metric space (X,d) and $Y \subseteq X$. Y compact space \iff Y is sequential compact \iff Y is complete and totally bounded.

Proof. \Box

6. Normed Vector Space

Definition 1.63 (norm).

Definition 1.64 (normed vector space).

Theorem 1.65. Every normed vector space $(X, \|\cdot\|)$ can generate a metric space $(X, \|\cdot\|_d)$.

Definition 1.66 (linear subspace, vector subspace).

Corollary 1.67. Given a normed vector space $(X, \|\cdot\|)$. Every singleton set in X is closed.

Definition 1.68 (equivalent norm).

Corollary 1.69 (equivalent norm is an equivalent relation).

Lemma 1.70 ($\|\cdot\|_1$ is a norm).

Notation 1.71 ($L_1 \text{ norm}$). $\|\cdot\|_1$

Lemma 1.72. In any finite normed vector space, any norm $\|\cdot\|_a$ is continuous under $\|\cdot\|_1$.

Proof. It suffice to prove that $\forall \varepsilon \in \mathbb{R}^+, \exists \delta(\varepsilon) \in \mathbb{R}^+, \text{ such that } ||x_1 - x_2||_1 < \delta \implies |||x_1||_a - ||x_2||_a| < \varepsilon, \forall x_1, x_2 \in X.$

Firstly, it is obvious that $\forall x_1, x_2 \in X$, $|||x_1||_a - ||x_2||_a| < ||x_1 - x_2||_a$.

Then $\forall x_1, x_2 \in X$:

$$||x_1 - x_2||_a \le \sum_{i=1}^n |\alpha_1^i - \alpha_2^i| ||e^i||_a$$

$$\le \max_i \{ ||e^i||_a \} \sum_{i=1}^n |\alpha_1^i - \alpha_2^i|$$

$$\le ||x_1 - x_2||_1 \max_i \{ ||e^i||_a \}$$

Define $\delta \coloneqq \frac{\varepsilon}{\max_i \{\|e^i\|_a\}}$. It is well defined, due to finite normed vector space.

Therefore, $\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \text{ such that } \|x_1 - x_2\|_1 < \delta \implies |\|x_1\|_a - \|x_2\|_a| < \varepsilon, \forall x_1, x_2 \in X.$

Theorem 1.73. In every finite normed vector space, all norms are equivalent.

Proof. Define $S := \{x \in X : ||x||_1 = 1\}$. Because S is closed and bounded in finite normed vector space X, S is compact.

It suffices to prove that $\exists C_{min}, C_{max} \in \mathbb{R}^+$ such that $\forall x \in S, C_{min} \leq ||x||_a \leq C_{max}$.

Due to Lemma 1.72, $\|\cdot\|_a$ is a continuous function. Because of Extreme Value Theorem, it has minimum A_{min} and maximum A_{max} on compact set S. In another word, $A_{min} \leq \|\cdot\|_a \leq A_{max}$.

Definition 1.74. (Banach space)

7. Inner Product Space

Definition 1.75 (inner product space).

Definition 1.76 (Hilbert space).

Continuous and Homeomorphism

```
Definition 2.1. (continuous map)
```

 $\textbf{Definition 2.2.} \ (\text{homeomorphism})$

Definition 2.3. (pointwise continuity)

Definition 2.4. (uniformly continuity)

Theorem 2.5. Uniformly continuity implies pointwise continuity.

Theorem 2.6. (Dini's theorem)

Separation Axiom

Product Space

1. Finite Product Space

Definition 4.1. (product topology)

2. Countable Product Space

Quotient Space

Definition 5.1. (quotient map)

Definition 5.2. (quotient space)

Bibliography