PinPlace: CNN based location image search And its adaptation to social network

CNN Build

Data processing

HONG SEONGJUN

Modify CNN model & improve accuracy
CHE SEUNG YUN

Front end

JEONG CHAEWON, LEE JI SEOP

Back end

Test CNN model in web application

UHM JI YONG

CNN Build

Our CNN model development process

- Collect and process data necessary for learning.
- 2. Train an appropriate artificial intelligence model using the processed learning data.
- 3. Deploy the trained model to utilize it in application.

Data processing

- We collect specific places images.
- We downloaded Instagram images manually.
- We used data augmentation and save the images.

We tried kfold(cross validation), but because of limits of ram capacity, we did learn model in classic way.

Modified CNN model & test it

3x3 conv, 64 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256 3x3 conv, 256 4 3x3 conv, 512 4 6c 4096 4c 4096

We tried VGG16 model

		· · · · · · · · · · · · · · · · · · ·	S
Layer (type)	Output	Shape	Param #
conv2d_39 (Conv2D)	(None,	128, 128, 64)	1792
conv2d_40 (Conv2D)	(None,	128, 128, 64)	36928
max_pooling2d_15 (MaxPooling	(None,	64, 64, 64)	0
conv2d_41 (Conv2D)	(None,	64, 64, 128)	73856
conv2d_42 (Conv2D)	(None,	64, 64, 128)	147584
max_pooling2d_16 (MaxPooling	(None,	32, 32, 128)	0
conv2d_43 (Conv2D)	(None,	32, 32, 256)	295168
conv2d_44 (Conv2D)	(None,	32, 32, 256)	590080
conv2d_45 (Conv2D)	(None,	32, 32, 256)	590080
max_pooling2d_17 (MaxPooling	(None,	16, 16, 256)	0
conv2d_46 (Conv2D)	(None,	16, 16, 512)	1180160
conv2d_47 (Conv2D)	(None,	16, 16, 512)	2359808
conv2d_48 (Conv2D)	(None,	16, 16, 512)	2359808
max_pooling2d_18 (MaxPooling	(None,	8, 8, 512)	0

Size:56		Size:14	Size:7
conv2d_49 (Conv2D)	(None,	8, 8, 512)	2359808
conv2d_50 (Conv2D)	(None,	8, 8, 512)	2359808
conv2d_51 (Conv2D)	(None,	8, 8, 512)	2359808
max_pooling2d_19 (MaxPooling	(None,	4, 4, 512)	0
flatten_3 (Flatten)	(None,	8192)	0
dense_8 (Dense)	(None,	4096)	33558528
dense_9 (Dense)	(None,	4096)	16781312
dense_10 (Dense)	(None,	4096)	16781312
dense_11 (Dense)	(None,	10)	40970

Total params: 81,876,810 Trainable params: 81,876,810 Non-trainable params: 0

But, it has so many parameters to learn. It can not be learned in google colab because of limits of ram capacity

Modified CNN model & test it

So, we tried Resnet50 model

model = ResNet50V2(include_top=True, weights=Normodel.compile(loss='categorical_crossentropy',)

CONVOLDIOCKOLZLCONV (CONVZD)	(Molle, 4, 4, 51)	2) 2003230	CONVOLDTOCKOLZ_PAG[O][O]
conv5_block3_2_bn (BatchNormali	(None, 4, 4, 51	2) 2048	conv5_block3_2_conv[0][0]
conv5_block3_2_relu (Activation	(None, 4, 4, 51	2) 0	conv5_block3_2_bn[0][0]
conv5_block3_3_conv (Conv2D)	(None, 4, 4, 20	48) 1050624	conv5_block3_2_relu[0][0]
conv5_block3_out (Add)	(None, 4, 4, 20	AT-10 0T-6	conv5_block2_out[0][0] conv5_block3_3_conv[0][0]
optimizer=' <mark>Nadam</mark> ', metri		10	conv5_block3_out[0][0]
post_relu (Activation)	(None, 4, 4, 20	48) 0	post_bn[0][0]
avg_pool (GlobalAveragePooling2	(None, 2048)	0	post_relu[0][0]
predictions (Dense)	(None, 10)	20490	avg_pool[0][0]

2359296

conv5 block3 2 mad[0][0]

(None 4 4 512)

Total params: 23,585,290 Trainable params: 23,539,850 Non-trainable params: 45,440

conv5 block3 2 conv (Conv2D)

We set train set, validation set, test set as 6:2:2

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
history = model.fit(X_train, y_train, batch_size=32, epochs=50, validation_split=0.2)
```

Modified CNN model & test it

Accuracy of model is 86.61%

Next week

1. Increasing test set size & Modify another model & Data augmentation

2. Collect more images as possible

3. Select the final model & Check the model works well

Test CNN in web app

Back end

Demo

Web Programming Part > October Plan

• @Collaboration Work

Confirm Concept

• @Collaboration Work

Make Web
Structure

• @Individual Work

Make Specific Web page

Front end

Web Programming Part > Structure Buildup

Guide Page

- Check Reference & Design
- Collect 3D Graphic assets
- Develop page's structure

Reference

Web Programming Part > Structure Buildup

Location Search Page

Web Programming Part > Structure Buildup

List Up Page

Next week

1. Finish the development of Guide Page

Chaewon Jeong

2. Finish the development of Find Location Page

3. Finish the development of List up Page

THANK YOU:)