

Elektrik-Elektronik Mühendisliği Analog Haberleşme Genlik Modülasyonları

Yakup Demiryürek 180711049

(Güz 2021)

Amaç

Benzetim programında tek tonlu genlik modülasyonu, demodülasyonu (Zarf Dedektörü), ÇYB-TB ve TYB-TB oluşturulması amaçlanmıştır.

Ekipmanlar

LabVIEW kurulu bilgisayar

Deney Çalışması – Genlik Modülasyonu

Şekil 1'de 1.kutucukta taşıyıcı ve mesaj sinyallerinin genlik ve frekansları değişken olarak tanımlanmıştır.

Şekil 1 2.kutucukta ise $c(t) = A_C.cos(2\pi f_c t)$ ve $s(t) = A_C.[1+k_a.m(t)].cos(2\pi f_c t)$ denklemleri kullanılarak devre tasarlanmıştır.

Şekil 1.Blok Diyagram

Şekil 2 ve Şekil 3'de farklı ka, sabit genlik ve frekans değerleri ile çıkış sinyalleri incelenmiştir.

Şekil 2.ka=0,1

Şekil 3.ka=0,7

 k_a değerlerine göre sinyallerin değişimi görülmüştür. Sonuç olarak modüle edilmiş sinyal iç içe yapıdan daha belirgin bir yapıya geçmiştir.

Şekil 4 ve Şekil 5'de sabit $k_a = 0.81$ farklı genlik ve frekans değerleri ile çıkış sinyalleri incelenmiştir.

Şekil 4. $F_M = 775Hz$ $F_C = 7750Hz$ $A_M = A_C = 5$

Şekil 5. F_M =346Hz F_C =5816Hz A_M =2,55 A_C =4

Önceki aşamadaki ka, Fc, FM, Ac, AM değerleri için Şekil 6 ve Şekil 7'de Spektrumlar incelenmiştir.

Şekil 6. $F_M = 775Hz$ $F_C = 7750Hz$ $A_M = A_C = 5$

Şekil 7. F_M =346Hz F_C =5816Hz A_M =2,55 A_C =4

Grafiklere bakıldığında girilen frekans değerlerine göre spektrumlar uyuşmaktadır.

Deney Çalışması – Genlik Demodülasyonu (Zarf Dedektörü)

Şekil 1'de yapmış olduğumuz çalışmanın yalnızca s(t) çıkışını alarak Zarf dedektörü oluşturukmaktadır.

Şekil 8.Zarf Dedektörü Devresi

s(t) çıkışını Genlik Modülasyonun aldıktan sonra **Şekil 8**'de verilmiş olan devreyi LabVİEW üzerinde tasarlıyoruz (**Şekil 9**) ve demodülasyon (m(t)) çıkışını elde ediyoruz.

Şekil 9.Genlik Demodülasyonu

Ara düğümlerdeki sinyaller zaman ve frekans düzleminde çizdirilmiştir (**Şekil 10**). m(t), c(t) ve s(t) sinyali **Şekil 3**'deki gibidir. (k_a =0,7 F_M =500 F_C =5000 A_M = A_C =1)

Şekil 10.ka=0.7

Şekil 11'de k_a = 0,4 indeks değeri için demodülasyon sinyali çizdirilmiştir. (F_M =500, F_C =5000, A_M = A_C =1)

Şekil 11.Demodülasyon Sinyali

Şekil 12'de $k_a = 1$ indeks değeri için demodülasyon sinyali çizdirilmiştir. ($F_M=500$, $F_C=5000$, $A_M=A_C=1$)

Şekil 12.Demodülasyon Sinyali

Şekil 10'a bakıldığında Mutlak değerden hemen sonraki alınan sinyalde DC sinyali olduğu görülmektedir bu sorunu Filter yardımı ile Bandpass özelliğini kullanarak frekans değeri 0 olan DC sinyalini geçirmemiştir. **Şekil 10**'da DC+m(t) sinyalinin ve demodülasyon sinyalininin spektrumuna bakıldığında görülmektedir.

Deney Çalışması - ÇYB-TB

Şekil 13. ÇYB-TB modülasyon

Şekil 13'de çift yan bant taşıyıcı bastırılmış modülasyon benzetimi gerçekleştirilmiştir. s(t)=m(t).c(t) formülü kullanılarak devre tasarlanmıştır.

Şekil 14.ÇYB-TB demodülasyon

Şekil 14'de çift yan bant taşıyıcı bastırılmış modülasyon benzetimi gerçekleştirilmiştir. s(t) ve c(t) sinyalleri çarpılarak alçak kesim filtresinden geçirilip demodülasyon sinyali elde edilmiştir.

Şekil 15. ÇYB-TB modülasyon-demodülasyon

Şekil 15'deki devrenin giriş-çıkış ve ara düğümlerdeki sinyalleri zaman (**Şekil 16**) ve frekans (**Şekil 17**) düzleminde çizdirilmiştir. (F_M=500, F_C=5000, A_M=A_C=5)

Şekil 16.Zaman Düzleminde

Taşıyıcı sinyalin faz açısı sol altında belirtilmiştir.

Şekil 17.Frekans Düzleminde

Taşıyıcı sinyalinin farklı faz açıları için modülasyon sinyalleri çizdirilmiştir (**Şekil 18-19-20**). Faz = $\pi/2$ değeri **Şekil 16'**da gösterilmiştir.

Şekil 18. Faz = 0

Şekil 19.Faz = $\pi/10$

Şekil 20. Faz = $3\pi/2$

Faz açılarının değişimi ile modülasyon sinyalinin peak noktasının sağ ve sol noktalarında değişim gözlemlenmiştir.

Deney Çalışması – TYB-TB

Şekil 21.TYB-TB modülasyon-demodülasyon

Şekil 21'de tek yan bant taşıyıcı bastırılmış modülasyon ve demodülasyon benzetimi gerçekleştirilmiştir.

$$s(t) = [m(t).c(t) \pm \widehat{m}(t) \cdot \widehat{c}(t)]$$

formülü kullanılarak devre tasarlanmıştır.

Şekil 22'de Üst ve Alt yan bant çizdirilmiştir.

Şekil 22.Alt-Üst yan bant

Şekil 21'deki devrenin giriş-çıkış ve ara düğümlerdeki sinyalleri zaman (**Şekil 23**) ve frekans (**Şekil 25**) düzleminde çizdirilmiştir. (F_M=500, F_C=5000, A_M=A_C=5)

Şekil 23.Zaman Düzleminde

Şekil 24. Frekans Düzleminde

Sonuç

Elde edilen grafiklerin kontrolü girilen değerler ile çıkan sinyallerin karşılaştırılmasıyla yapılmıştır ve doğru oldukları tespit edilmiştir. Tek tonlu genlik modülasyonu, zarf dedektörü, ÇYB-TB ve TYB-TB, teorik ve labview uygulamasında nasıl yapılacağı öğrenilmiştir. Deney boyunca ka değeri 1'in üzerinde çıkarılmamıştır bunun sebebi ise sinyallerin bozulmasından kaynaklanmaktadır.