The Weak Law of Large Numbers

Tong Zhou *JHU*

1. L^2 WEAK LAW OF LARGE NUMBERS

This section presents a stronger version of weak law of large numbers where a finite second moment condition is imposed. The following theorem summarizes this conclusion.

THEOREM 1 (L^2 Weak Law of Large Numbers). Consider $S_n = \sum_{i=1}^n X_i$ for uncorrelated random variables X_1, \dots, X_n, \dots . Suppose that $Var(X_i) \leq C$ and $\mathbb{E}[X_i] = \bar{x}$ for some finite constants C, \bar{x} , and all $i = 1, 2, \dots$. Then, $n^{-1}S_n \xrightarrow{L^2} \bar{x}$ as $n \to \infty$, and hence also $n^{-1}S_n \xrightarrow{P} \bar{x}$.

EXERCISE 1 (Amir Exercise 2.1.5). Show that the conclusion of the L^2 weak law of large numbers holds even for correlated X_i , provided $\mathbb{E}[X_i] = \bar{x}$ and $Cov(X_i, X_j) \leq r(|i-j|)$ for all i, j, and some bounded sequence $r(k) \to 0$ as $k \to \infty$.

PROOF. It suffices to show $Var\left(\frac{S_n}{n}\right) \to 0$.

$$\operatorname{Var}(n^{-1}S_n) = \frac{1}{n^2} \left\{ \sum_{i=1}^n \operatorname{Var}(X_i) + 2 \sum_{i>j} \operatorname{Cov}(X_i, X_j) \right\}
= \frac{1}{n^2} \left[nr(0) + 2(r(n-1) + 2r(n-2) + \dots + (n-1)r(1)) \right]
= \frac{r(0)}{n} + 2 \left(\frac{r(n-1)}{n^2} + \frac{2r(n-2)}{n^2} + \dots + \frac{(n-1)r(1)}{n^2} \right) \to 0 \text{ as } n \to \infty.$$

2. TRUNCATION METHOD

Weak Law for Triangular Arrays; identical dist. NOT required

THEOREM 2 (Weak Law for Triangular Arrays). Suppose that for each n, the random variables $X_{n,k}$, $k=1,\cdots,n$ are pairwise independent. Let $\bar{X}_{n,k}=X_{n,k},\mathbb{1}_{|X_{n,k}\leqslant b_n|}$ for non-random $b_n>0$ such that as $n\to\infty$ both

$$\begin{array}{c} (1) \ \sum_{k=1}^n \mathbb{P}(\left|X_{n,k}\right| > b_n) \to 0, \\ and \end{array}$$

(2)

$$\frac{\sum_{k=1}^{n} Var(\bar{X}_{n,k})}{b_n^2} \to 0.$$

Then, $b_n^{-1}(S_n-a_n) \stackrel{P}{\longrightarrow} 0$ as $n \to \infty$, where $S_n = \sum_{k=1}^n X_{n,k}$ and $a_n = \sum_{k=1}^n \mathbb{E}[\bar{X}_{n,k}]$.

Proof. Define

$$\bar{S}_n = \sum_{k=1}^n \bar{X}_{n,k}.$$

Observe that for any $\varepsilon > 0$,

$$\left\{\frac{S_n - a_n}{b_n} > \varepsilon\right\} \subseteq \left\{S_n \neq \bar{S}_n\right\} \cup \left\{\frac{\bar{S}_n - a_n}{b_n} > \varepsilon\right\}.$$

Then

$$\mathbb{P}\left(\frac{S_n - a_n}{b_n} > \varepsilon\right) \leq \mathbb{P}(S_n \neq \bar{S}_n) + \mathbb{P}\left(\frac{\bar{S}_n - a_n}{b_n} > \varepsilon\right).$$

Now it suffices to show the RHS is $o_P(1)$.

For the first term:

$$\mathbb{P}(S_n \neq \bar{S}_n) \leq \sum_{k=1}^n \mathbb{P}(|X_{n,k}| > b_n) \to 0 \text{ (by condition (1))}.$$

So $\mathbb{P}(S_n \neq \bar{S}_n) \to 0$ as $n \to \infty$.

For the second term:

$$\mathbb{P}\left(\frac{\bar{S}_n - a_n}{b_n} > \varepsilon\right) \leqslant \frac{\mathsf{Var}(\bar{S}_n)}{\varepsilon^2 b_n^2}$$

$$= \frac{\sum_{k=1}^n \mathsf{Var}(\bar{X}_{n,k})}{\varepsilon^2 b_n^2} \to 0 \text{ (by condition (2))}.$$

So $\mathbb{P}\left(\frac{\bar{S}_n - a_n}{b_n} > \varepsilon\right) \to 0 \text{ as } n \to \infty.$

Therefore, we have

$$\mathbb{P}\left(\frac{S_n - a_n}{b_n} > \varepsilon\right) \to 0$$
, as $n \to \infty$.

A special case of Theorem 2 for a single sequence yields the following.

Weak Law for a Single Sequence; i.i.d. required

PROPOSITION 1. Consider i.i.d. random variables $\{X_i\}$, such that $x\mathbb{P}(|X_1| > x) \to 0$ as $x \to \infty$. Then, $n^{-1}S_n - \mu_n \stackrel{P}{\longrightarrow} 0$, where $S_n = \sum_{i=1}^n X_i$ and $\mu_n = \mathbb{E}[X_1\mathbb{1}_{\{|X_1| \le n\}}]$.

PROOF. $\{X_i\}$ is a special case where n=1, and $i=1,\dots,n$.

Define $\bar{X}_i = X_i \mathbb{1}_{|X_i| \leq n}$. Check the two conditions:

For the first condition: $\sum_{i=1}^{n} \mathbb{P}(X_i \neq \bar{X}_i) = \sum_{i=1}^{n} \mathbb{P}(|X_i| > n) = n\mathbb{P}(|X_1| > n) \to 0 \text{ as } n \to \infty.$ For the second condition, $n^{-2} \sum_{i=1}^{n} \mathsf{Var}(\bar{X}_i) = n^{-1} \mathsf{Var}(\bar{X}_1) = n^{-1} \left(\mathbb{E}[\bar{X}_1^2] - (\mathbb{E}[\bar{X}_1])^2 \right) \leqslant n^{-1} \mathbb{E}[\bar{X}_1^2].$ Observe that $\mathbb{P}\left(|\bar{X}_1| > y\right) = \mathbb{P}(|X_1| > y) - \mathbb{P}(|X_1| > n) \leqslant \mathbb{P}(|X_1| > y), \text{ where } y \in (0, n).$ Therefore,

$$n^{-1}\mathbb{E}[\bar{X}_1^2] = n^{-1} \int_0^n 2y \mathbb{P}\left(\left|\bar{X}_1\right| > y\right) \, \mathrm{d}y$$

$$\leq n^{-1} \int_0^n 2y \mathbb{P}(\left|X_1\right| > y) \, \mathrm{d}y$$

Then we want to show $n^{-1} \int_0^n 2y \mathbb{P}(|X_1| > y) \, \mathrm{d}y \to 0$ as $n \to \infty$. Since by assumption $2y \mathbb{P}(|X_1| > y) \to 0$ as $y \to \infty$, for any $\varepsilon > 0$, $\exists \bar{y} \in \mathbb{R}$ such that $2y \mathbb{P}(|X_1| > y) < \varepsilon$ whenever $y > \bar{y}$. Since n will go to ∞ eventually, we assume $\bar{y} < n$. Hence,

$$n^{-1} \int_{0}^{n} 2y \mathbb{P}(|X_{1}| > y) \, \mathrm{d}y = n^{-1} \int_{0}^{\bar{y}} 2y \mathbb{P}(|X_{1}| > y) \, \mathrm{d}y + n^{-1} \int_{\bar{y}}^{n} 2y \mathbb{P}(|X_{1}| > y) \, \mathrm{d}y$$

$$\leq n^{-1} \int_{0}^{\bar{y}} 2y \mathbb{P}(|X_{1}| > y) \, \mathrm{d}y + \varepsilon \left(\frac{n - \bar{y}}{n}\right)$$

$$\xrightarrow{\to 0, \text{as } n \to 0}$$

$$\leq \frac{\bar{y}^{2}}{n} + \varepsilon \left(\frac{n - \bar{y}}{n}\right)$$

$$\to \varepsilon, \quad \text{as } n \to \infty.$$

Thus,

$$\limsup_{n\to\infty}\frac{1}{n}\int_{0}^{n}2y\mathbb{P}(|X_{1}|>y)\,\mathrm{d}y\leqslant\varepsilon.$$

Let $\varepsilon \downarrow 0$, then we have

$$n^{-1} \int_{0}^{n} 2y \mathbb{P}(|X_1| > y) \, dy \to 0$$
, as $n \to 0$.

Thus, the second condition holds:

$$n^{-2} \sum_{i=1}^{n} \operatorname{Var}(\bar{X}_1) \to 0 \text{ as } n \to \infty.$$

Remark 1. The two conditions are quite weak. Finite expectation is actually not assumed. See ?? 2.

• why

$$\mathbb{E}[Z^2] = \int_0^\infty 2y \mathbb{P}(|Z| > y) \, \mathrm{d}y$$

Lemma 1.4.31 of Amir Dembo).

1. For any r > p > 0 and any random variable $Y \ge 0$,

$$\mathbb{E}[Y^p] = \int_0^\infty p y^{p-1} \mathbb{P}(Y > y) \, \mathrm{d}y = \int_0^\infty p y^{p-1} \mathbb{P}(Y \ge y) \, \mathrm{d}y$$
$$= (1 - \frac{p}{r}) \int_0^\infty p y^{p-1} \mathbb{E}[\min(Y/y, 1)^r] \, \mathrm{d}y.$$

Proof.

1. Define $h_p(y) := py^{p-1}\mathbb{1}_{y>0}$, then $H_p(x) := \int_{-\infty}^x h_p(y) \,\mathrm{d}y = \int_0^x py^{p-1} \,\mathrm{d}y$. By the change of variables formula,

$$\mathbb{E}[X^p] = \mathbb{E}[H_p(X)] = \int_{\Omega} H_p(X) \, d\mathbb{P} = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} p y^{p-1} \mathbb{1}_{(0,x)} \, d\lambda(y) \right) d\mathbb{P}_X(x)$$

$$= \int_{\mathbb{R}} p y^{p-1} \mathbb{1}_{y>0} \left(\int_{\mathbb{R}} \mathbb{1}_{y < x} \, d\mathbb{P}_X(x) \right) d\lambda(y)$$

$$= \int_{0}^{\infty} p y^{p-1} \mathbb{P}(X > y) \, d\lambda(y)$$

$$= \int_{0}^{\infty} p y^{p-1} \mathbb{P}(X \ge y) \, d\lambda(y)$$

$Var(X_1)$ not exist; $\mathbb{E}(|X_1|) \equiv \infty \ (X_1 \notin L^1)$; i.i.d. required

EXERCISE 2 (Amir: Exercise 2.1.13). Let $\{X_i\}$ be i.i.d. with $\mathbb{P}(X_1 = (-1)^k k) = 1/(ck^2 \log k)$ for integers $k \ge 2$ and a normalization constant $c = \sum_k 1/(k^2 \log k)$. Show that $\mathbb{E}[X_1] = \infty$, but there is a non-random $\mu < \infty$ such that $\frac{S_n}{n} \xrightarrow{P} \mu$.

Proof.

$$\mathbb{E}[|X_1|] = \sum_{k=2}^{\infty} k \frac{1}{ck^2 \log k}$$
$$= \frac{1}{c} \sum_{k=2}^{\infty} \frac{1}{k \log k}$$

By the integral test, consider the function $f(x) = \frac{1}{x \log x}$ for $x \ge 2$. Then

$$\int_{2}^{\infty} \frac{1}{x \log x} \, \mathrm{d}x = \log(\log x) \bigg|_{2}^{\infty} = \infty.$$

Thus the log-series $\mathbb{E}[|X_1|] = \frac{1}{c} \sum_{k=2}^{\infty} \frac{1}{k \log k} = \infty$.

Also notice that $\mathbb{E}[X_1] < \infty$ and $\mathsf{Var}(X_1) = \infty$. So the L^2 -Weak Law of Large Numbers is not applicable.

To apply Proposition 1, we first check

$$n\mathbb{P}(|X_1| > n) \le n \sum_{k \ge n} \frac{1}{ck^2 \log k}$$

$$= \frac{1}{cn \log n} + \sum_{k \ge n} \frac{1}{ck^2 \log k} \to 0.$$

Therefore, by Proposition 1, we have

$$\frac{S_n}{n} - \mu_n \stackrel{\mathsf{P}}{\longrightarrow} 0, n \to \infty.$$

where $\mu_n = \mathbb{E}[X_1 \mathbbm{1}_{|X_1| \leq n}].$

Let $\mu=\mathbb{E}[X_1].$ We next show that $\mu_n-\mu\to 0$:

$$\mu - \mu_n = \mathbb{E}[X_1 \mathbb{1}_{|X_1| > n}]$$
$$= \sum_{k > n} (-1)^k \frac{1}{ck \log k}$$
$$\to 0.$$

since the series $\sum_{k\geqslant 2}(-1)^k\frac{1}{ck\log k}$ is an alternating series with $\sum_{k\geqslant 2}\frac{1}{ck\log k}<\infty$. By the Slutsky theorem, then

$$\left(\frac{S_n}{n} - \mu\right) + (\mu - \mu_n) \stackrel{\mathsf{P}}{\longrightarrow} 0$$
, as $n \to \infty$,

or equivalently,

$$\frac{S_n}{n} \xrightarrow{\mathsf{P}} \mu,$$

where $\mu = \mathbb{E}[X_1]$ is non-random.

i.i.d. $X_i \in L^1$

COROLLARY 1. Consider $S_n = \sum_{k=1}^n X_k$ for i.i.d. random variables $\{X_i\}$ such that $\mathbb{E}[|X_1|] < \infty$. Then, $\frac{S_n}{n} \stackrel{P}{\longrightarrow} \mathbb{E}[X_1]$ as $n \to \infty$.

PROOF. It is easy to show $n\mathbb{P}(|X_1| > n) \to 0$. Thus, apply Proposition 1

$$\frac{S_n}{n} - \mu_n \stackrel{\mathsf{P}}{\longrightarrow} 0.$$

Also, it is easy to show

$$\mu - \mu_n \to 0$$

where $\mu = \mathbb{E}[X_1]$ and $\mu = \mathbb{E}[X_1\mathbbm{1}_{|X_1| \leq n}]$.