Let (Ω, \mathcal{A}, P) be a probability space, $(\mathbb{R}^l, \mathcal{B}(\mathbb{R}^l))$ a measurable space and $\epsilon: \Omega \to \mathbb{R}^l$ a random noise with $\epsilon \sim \mathsf{p}(\epsilon)$ independent of the variational parameter.

Let $g(\cdot\;;\psi):\;\mathbb{R}^l\times\mathbb{R}^m\to\mathbb{R}$ be a Borel measurable function s.t.:

- 1) g is a differentiable bijection
- 2) $g(\boldsymbol{\epsilon}, \mathbf{x}; \psi) = \mathbf{z}$

where ψ is the variational parameter. The image of g depends also on the values of ${\bf x}$ because they are needed to evaluate the reconstruction error.