

ECE 270: Embedded Logic Design

AXI Interface: Burst

ARBURST[1:0] AWBURST[1:0]	Burst type	Description	Access
b00	FIXED	Fixed-address burst	FIFO-type
b01	INCR	Incrementing-address burst	Normal sequential memory
b10	WRAP	Incrementing-address burst that wraps Cache line to a lower address at the wrap boundary	
b11	Reserved	-	-

AXI Interface: Write

AxSIZE[2:0]	Bytes in transfer
0b000	1
0b001	2
0b010	4
0b011	8
0b100	16
0b101	32
0b110	64
0b111	128

The burst length for AXI4 is defined as,

 $Burst_Length = AxLEN[7:0] + 1$

AXI Lite

- Bursting is not supported
- Subset of the AXI4 interface intended for communication with control registers and have small footprint

The AXI4-Stream protocol defines a single channel for transmission of streaming data (unlimited burst).

- The AXI4-Stream channel is modeled after the Write Data channel of the AXI4.
- Unlike AXI4, AXI4-Stream interfaces can burst an unlimited amount of data.

Signal Processing

Video Processing

AXI Interconnect

AXI Interconnect Clk2

Hierarchical AXI Interconnect

Overview of Upcoming labs

Embedded Logic Design

- What do you mean by word Embedded?
- Why FPGAs are part of Embedded Systems?
- What are other components of Embedded Systems?
- How to build FPGA based accelerators for Embedded Systems?

What is a system?

- A system is a way of working, organizing or doing one or many tasks according to a fixed plan, program or set of rules.
- It is an arrangement in which all its units assemble and work together according to the plan or program.
- Embedded System is a combination of hardware and software which together form a component of a larger machine.
- An embedded system is designed to run on its own without human intervention, and may be required to respond to events in real time.

Anti-lock brakes

Auto-focus cameras

Automatic teller machines

Automatic toll systems

Automatic transmission

Avionic systems

Battery chargers

Camcorders

Cell phones

Cell-phone base stations

Cordless phones

Cruise control

Curbside check-in systems

Digital cameras

Disk drives

Electronic card readers

Electronic instruments

Electronic toys/games

Factory control

Fax machines

Fingerprint identifiers

Home security systems

Life-support systems

Medical testing systems

A "short list" of embedded systems

Modems

MPEG decoders

Network cards

Network switches/routers

On-board navigation

Pagers

Photocopiers

Point-of-sale systems

Portable video games

Printers

Satellite phones

Scanners

Smart ovens/dishwashers

Speech recognizers

Stereo systems

Teleconferencing systems

Televisions

Temperature controllers

Theft tracking systems

TV set-top boxes

VCR's, DVD players

Video game consoles

Video phones

Washers and dryers

And the list goes on and on

Automobiles

Sensors: Stereo-cameras, speedometer, accelerometers, signalling

2002: Opel Vectra has over 40 sensors (25 types)

Digital Camera

Demands of Today's Technology

- ❖ Over the years, industries are facing the same challenges and pressure: Next generation system must improve the performance and should offer higher level of integration.
- Furthermore, the cost and power should be reduced.
- These challenges have been addressed till now efficiently.

Demands of Today's Technology

- However, there is additional requirements of *flexibility* and *scalability* in the upcoming applications in order to tune your design to meet customer requirements efficiently.
- Need of single platform that can be scaled from low-end to high-end

Demands of Today's Technology

Which Technology Should I Choose?

- ASSP: application specific system processor: Fixed function
- ASIC: Application specific integrated circuits: can not changed once build
- FPGA: Completely flexible but expensive (limited size)
- **SASIC:** Between ASIC and FPGA. But mask-programmable instead of field-programmable
- EPP: Extensible Processing Platform

ASIC Vs ASSP

- TCO: Total cost of ownership
- Takes into account all the cost associated with development with such solution
- TCO is high for ASIC and depends on the how many units to be produced

```
+ positive, - negative, - neutral
```

ASIC Vs ASSP

+ positive, - negative, - neutral

What is a System-on-Chip

SoC is a single silicon chip that can be used to implement the functionality of an entire system, rather than using several different physical chips on a board.

System on-a-board and System-on-chip

Bluetooth SoC

ARM Processor

Application Specific Logic

Low-speed I/O and Support Logic

Advantages of SoC

Higher performance benefiting from:

- Less propagation delay since internal wires are shorter.
- Less gate delay as internal transistors have lower electrical impedance.

Power efficiency benefiting from:

- Lower voltage required (typically < 2.0 volts) compared with external chip voltage (typically >3.0 volts).
- Less capacitance.

Lighter footprint:

Device size and weight is reduced.

Higher reliability:

All encapsulated in a single chip package, less interference from the external world.

Low cost:

 The cost per unit is reduced since a single chip design can be fabricated in a large volumes.

Credits: ARM Univ. Prog.

Limitations of SoC

Less flexibility

 Unlike a PC or a laptop, which allows you to upgrade a single component, such as RAM or graphic card, a SoC cannot be easily upgraded after manufacture. Though external components can be added, it is no longer SoC

Application Specific

 Most SoCs are created for particular applications thus they are not easily adapted to other applications.

Complexity

 A SoC design usually requires advanced skills compared with board-level development.

Credits: ARM Univ. Prog.

ASIC Vs ASSP Vs 2 Chip Solution

	ASIC	ASSP	2 Chip Solution
Performance	+	+	•
Power	+	+	-
Unit Cost	+	+	-
тсо	•	+	+
Risk	-	+	+
TTM	-	+	+
Flexibility	-	-	+
Scalability	-	•	+

Zynq EPP

Legacy

Logic BRAM DSP

Glue

MicroBlaze

Soft Multi-Core + Accelerators

Zynq EPP

Logic Legacy **BRAM** Glue **DSP** uB acc1 MicroBlaze Soft Multi-Core + Accelerators acc2 uB Dual acc1 **GPP + Accelerators ZYNQ** A9 acc2 acc1 Next PE MC GPP + Multicore + Gen "Future Zynq" Array Soft Processing Engine + Accelerators

acc2

GPP

CPU
Embedded Software Tools

FPGA +
Memory + IP +
High Speed IO

Logic Design Tools

Logic +
Memory + IP
+ Processors

Logic Design Tools

Programmable systems
usher in a new era of system
design integration
possibilities

Time

Curtsey: Xilinx Inc.

Zynq EPP

