Topologie - Opdracht 4

Luc Veldhuis - 2538227

Maart 2017

1. Laat $(A_n)_{n\in\mathbb{N}}$ een rij van samenhangende deelverzamelingen van een topologische ruimte X zijn. Stel, dat $A_n \cap A_{n+1} \neq \emptyset$ voor alle $n \in \mathbb{N}$. Toon aan, dat $\bigcup_{n \in \mathbb{N}} A_n$ samenhangend is. Gebruik inductie.

Basis stap: Neem A_1 en A_2 samenhangende deelverzamelingen uit X met $A_1 \cap A_2 \neq \emptyset$. Construeer nu de rij (A_1, A_2) . Uit het lemma van rijen samenhangende verzamelingen volgt dat $A_1 \cup A_2$ weer samenhangend is.

Inductie hypothese: Neem aan dat $\bigcup_{i=1}^{n-1} A_i \cup A_n$ met $A_{n-1} \cap A_n \neq \emptyset$ weer samenhangend is met $\{A_i \subseteq X | 1 \le i \le n\}$ samenhangend.

Bewijs dat voor $A_n \cap A_{n+1} \neq \emptyset$ met $A_{n+1} \subseteq X$ samehangend geldt dat $\bigcup_{i=1}^{n+1} A_i$ samenhangend is:

We weten dat $A_n \subseteq \bigcup_{i=1}^n A_i$ en dat $A_n \cap A_{n+1} \neq \emptyset$ dus $\bigcup_{i=1}^n A_i \cap A_{n+1} \neq \emptyset$. Construeer nu de rij $(\bigcup_{i=1}^n A_i, A_{n+1})$. Omdat we in de inductie hypothese hebben aangenomen dat $\bigcup_{i=1}^n A_i$ samenhangend is, en A_{n+1} samenhangend is, volgt uit het lemma van rijen samenhangende verzamelingen nu dat $\bigcup_{i=1}^{n+1} A_i$ ook samenhangend is. Dit geldt nu voor alle $n \geq 1$. Dus $\bigcup_{n \in \mathbb{N}} A_n$ is samenhangend.

- 2. (a) Vind in elke geval deelversamelingen $A \neq \emptyset$ en $B \neq \emptyset$ van \mathbb{R} of \mathbb{R}^2 (met de standard topologie), zodanig dat A en B voldoen aan de eis:
 - i. A en B samenhangend, maar $A \cap B \neq \emptyset$ onsamenhangend. Neem $A \subset \mathbb{R}^2 = [0,7] \times [0,7] \setminus (2,5) \times (2,5)$ en neem $B \subset \mathbb{R}^2 = [1,6] \times [3,4]$. Dan zijn A en B samenhangend, maar $A \cap B = [1,2] \times [3,4] \cup [5,6] \times [3,4]$ is onsamenhangend.
 - ii. A en B samenhangend, maar $A \setminus B \neq \emptyset$ onsamenhangend. Neem $A \subset \mathbb{R} = [0, 3]$ en $B \subset \mathbb{R} = [1, 2]$. Dan zijn zowel A als B samenhangend, maar $A \setminus B = [0, 1] \cup [2, 3]$ duidelijk onsamenhangend.
 - iii. A en B onsamenhangend, maar $A \cup B$ samenhangend. Neem $A \subset \mathbb{R} = [0,1] \cup [2,3]$ en $B \subset \mathbb{R} = [1,2] \cup [3,4]$. Dan zijn A en B duidelijk onsamenhangend, maar $A \cup B = [0,4]$ duidelijk samenhangend.
 - (b) i. Bestaat er een topologische ruimte X en A, B ⊆ X, zodat A ≠ Ø en B ≠ Ø samenhangend zijn, cl A∩ cl B ≠ Ø en A∪B onsamenhangend is?
 We hoeven alleen aan te tonen dat deze topologische ruimte bestaat.
 We weten dat als A en B samenhangend zijn, en A∩B≠ Ø dan is A∪B weer samenhangend (volgt uit lemma van rijen samenhangende verzamelingen). We weten ook dat de closure van een samenhangende verzameling weer samenhangend is. Nu is gegeven dat cl A∩ cl B≠ Ø. Als A∪B kan alleen onsamenhangend zijn als A∩B = Ø, oftwel, bestaan er samenhangende deelverzamelingen in een topologie, zodat A∩B = Ø maar cl A∩ cl B≠ Ø? Dat kan alleen als cl A∩ cl B = {x ∈ X|x ∈ cl A \ A ∧ x ∈ cl B \ B}. Dit bestaat in (R, T_st): laat A = (0,1) en B = (1,2). Dan is cl A = [0,1], cl B = [1,2] en cl A∩ cl B = {1} ≠ Ø. Maar A∪B = (0,2) \ {1} is onsamenhangend.

ii. Bestaat er een topologische ruimte X en $A, B \subseteq X$ zodat $A \neq \emptyset$ en $B \neq \emptyset$ samenhangend zijn, $A \cap \operatorname{cl} B \neq \emptyset$ en $A \cup B$ onsamenhangend is?

 $A \cup B$ is onzamenhangend als voor open verzamelingen $U,\, V \subseteq X$ geldt dat $A \cup B \subseteq U \cup V$

 $(A \cup B) \cap U \neq \emptyset$ en $(A \cup B) \cap V \neq \emptyset$

 $(A \cup B) \cap U \cap V = \emptyset.$

We weten ook dat $A \cup B$ samenhangend is als $A \cup B \neq \emptyset$. Dus we moeten wel hebben dat $A \cup B = \emptyset$. Maar voor gesloten verzamelingen weten we dat een punt $x \in X$ ligt in B dan en slechts dan als elke open omgeving W van x een niet-lege doorsnede heeft met B. We weten nu dat $A \cup$ cl $B \neq \emptyset$, dus er ligt een punt in $a \in A$ die ook in $a \in$ cl B, maar voor dit punt geldt dus ook dat elke open verzameling die a bevat een niet lege doorsede heeft met B. Oftewel $A \cap B \neq \emptyset$. Volgens het lemma voor rijen van samenhangende deelverzamelingen, moet $A \cup B$ weer samenhangend zijn. Dus $A \cup B$ kan in geen enkele topologische ruimte onsamenhangend zijn.

3. Is de topologische ruimte (\mathbb{R}, T_{fin}) (coeindige topologie) samenhangend?

We kijken eerst bij de definitie van de coeindige topologie.

Neem een verzameling X, en noem een deelverzameling $C \subseteq X$ gesloten als C een eindige deelverzameling is, of als C = X. Claim: de coeindige topologie is samenhangend.

Bewijs: Neem aan dat hij onsamenhangend is. Dan zijn er een $U, V \subseteq \mathbb{R}$ open niet-lege deelverzamelingen zodat $U \cap V = \emptyset$ en $U \cup V = X$. In de coeindige topologie is iets open als het complement hiervan eindig is.

Schrijf nu $U \cap V = \emptyset$ als $\mathbb{R} \setminus C_1 \cap \mathbb{R} \setminus C_2 = \emptyset$ met C_1, C_2 eindige verzamelingen in \mathbb{R} .

Dit geeft: $\mathbb{R} \setminus C_1 \cap \mathbb{R} \setminus C_2 = \mathbb{R} \setminus (C_1 \cup C_2) = \emptyset$. Dit kan alleen als $(C_1 \cup C_2) = \mathbb{R}$. Maar \mathbb{R} is een oneindige verzameling, maar C_1 en C_2 zijn eindige verzamelingen. De vereniging van eindig veel eindige verzamelingen is nooit gelijk aan een oneindige verzameling. Dus C_1 en C_2 bestaan niet, dus de coeindige topologie is niet onsamenhangend, dus hij moet wel samenhangend zijn.