Definition

A subarray is a contiguous part of an array, defined by a starting index and an ending index. It represents a subset of elements within the array.

Note:

- · Single element is also considered as subarray.
- Complete array is also considered as subarray.
- · Subarray is considered from left to right.

Queston:	Givin	Start s	end	inder	g	۵ د	n bayray
print	the	Subarray					
	Vord	point Subo	mray (Crint []	A, iv	ut s,	int c){
				e; i++			
print (Alij);							
		y					
	Ч	return;					
	,	T.C: 0	CN)	S· C '·	0(1)		
Can	We	ever print					
		than					
Ourston!	Givan	Start	Index	and	Jeno	ith of	
the		ay, print				•	
A z	C 4 1	2 3 2 3	-1 4	6 9	8 6 7	12	<u></u>
			1				
Stast	ادبع	th					(2+4,-1)
=) 2	9	=)		2,3,-1,		=) (2,	(4+3-1)
y	3			-1, 6, 9	<u>ን</u> - ጌ	-) { · ()	
<u> </u>	<u>6</u> 3	(ع		1,2,3,-1,6,0	1 ツ	=) (1, =) (4,	(1+6-1) 6) (4+3-1)
						- 61)	U /

S

L

(S, S+1-1)

$$[s,c] = b-a+1$$
 = $[e-s+1] = b-a+1$

Void point Subarray Cint() A, int s, int L){

int e = s+l-1;

for (i=s; i=e; i++);

print (Ali);

return;

y

Question. Find total no. of subarrays

Ex. N=3

A = [1, 2, 3]

 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1, 2 \\ 1, 2, 3 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1, 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1, 2, 3 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1, 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1, 2, 3 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 1, 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1, 2, 3 \end{bmatrix}$

A = [1,2] [1] [1/2] [1] [1/2]

[2]


```
# subarrays starting at index i)
    S = 1 ; e: [1°, i+2, i+2....N-1]
                     £i, N-1] => N-1-i+1= [N-i]
                    [a,b] - b-a+)
                       i; N-i
# 17 Subarrays = # Subarrays Starting of index 0= N
                  # subarrays starting of index 1 = N-1
                 Hsubarrays starting at index 2 = N-2
                  # Subarrays Starting of index 3= N-3
                           +
                # subarrays starting of index N-1 = 1
# Subarran = N + (N-1) + (N-2) + - - - 3+2+1
           = N(N+1)
= 2
```

