Lec 9

Fermat's Little Theorem

p be a prime

$$x_{p-1} \equiv 1 \pmod{p}$$

用后边的p来拆分前边的指数

proof:

proof we consider two sots
$$A = \{1, 2, ..., p-1\}$$
 ged(x, p)=1

[3 = $\{x, 2x, ..., (p-1)x \text{ mod } p\}$

[3 = $\{x, 2x, ..., (p-1)x \text{ mod } p\}$

[4 we can prove that $A = B$, then

we notify the elements together for each set, then the products should be the same.

[4 1 = (p-1) = $(p-1)x$ (mod p)

= $x^{p-1} + x + (p-1)x$ (mod p)

hote that all these numbers $1, 2, ..., (p-1)x$ are relatively prine to p .

So we can divide both sides by $1, 2, ..., (p-1)x$ $x^{p+1} = 1$ (mod p)

It remains to prove $A = B$ (leady, $D \notin B$)

Any two elements of B care different, $1 \times x = 1x$ and $1 \times 1x = 1x$
 $1 \times$

Euler's Theorem

Euler's totient function

RSA

```
gcd(e, \phi(n)) = 1
ed \equiv 1(mod\phi(n))
```

given e and $\phi(n)$ how to find d?

This is equivalent to finding the modular inverse of modulo $\phi(n)$.

Extended Euclidean algorithm

 $C = M^e mod \ n(RSA \ encryption)$ $M = C^d mod \ n(RSA \ decryption)$

Theorem(Correctness)

Theorem (*Correctness*): Let p and q be two odd primes, and define n = pq. Let e be relatively prime to $\phi(n)$ and let d be the multiplicative inverse of e modulo $\phi(n)$. For each integer x such that $0 \le x < n$,

$$x^{ed} \equiv x \pmod{n}$$

Proof:

The series of theorem
$$x^{d(n)} = 1$$
 and $x = 2$ and

Digital Signature

 $S = M^d \mod n(RSA \ signature)$ $M = S^e \mod n(RSA \ verification)$ Two main applications of public-key crypto

Or digital signature

2) encryption But publishery crypto is usually NoT efficient encrypt the secret key of symmetric crypto efficient

Discrete Logarithm