Entrega Curvas. GDIF

Mario Calvarro Marines

Enunciado

Dadas dos curvas $\alpha, \beta: I \to \mathbb{R}^3$, siendo β regular, decimos que β es una *evoluta* de α si $\alpha(t)$ está sobre la recta afín tangente a β en $\beta(t)$ y, además, $\alpha'(t)$ y $\beta'(t)$ son ortogonales. Se pide:

- 1. Probar que si $\alpha: I \to \mathbb{R}^3$ es una curva regular con $\kappa, \kappa' \neq 0$ en todo punto (aquí κ denota la función curvatura de α), la curva β definida por los centros de curvatura de α es una evoluta suya si y solo si α es una curva plana. En este caso, pruébese además que β es la única evoluta plana de α .
- 2. Si α es una curva plana regular con $\kappa, \kappa' \neq 0$ en todo punto, probar que todas las evolutas de α tienen su traza contenida en un cilindro perpendicular al plano que contiene a α y cuya base es la única evoluta plana de α .
- 3. En las condiciones del ejercicio anterior, probar que todas las evolutas de α son hélices generalizadas.

Apartado 1