PATENT ABSTRACTS OF JAPAN

(11)Publication number : 03-177562

(43)Date of publication of application: 01.08.1991

(51)Int.Cl. C23C 14/24

C23C 14/32

(21)Application number : 01-315600 (71)Applicant : MATSUSHITA ELECTRIC

IND CO LTD

(22)Date of filing: 04.12.1989 (72)Inventor: NISHIWAKI FUMITOSHI

NAKAGIRI YASUSHI

YAMAMOTO YOSHIAKI

· TANAKA HIROYOSHI

(54) VAPORIZATION SOURCE DEVICE

(57)Abstract:

PURPOSE: To heat the upper part of a crucible with a coil and to prevent the clogging of a small hole for injecting a vaporized material by providing the coil close to the small hole at the upper part of the crucible in a vapor deposition device and connecting the coil and crucible and an

electron-bombardment hot cathode for heating the coil to a power source in series.

CONSTITUTION: A material 3 to be vapor-deposited is placed into the crucible A made of C or W, the electron-bombardment hot cathode 5 provided around the crucible A is energized by the power source 6 to emit a thermoelectron which heats the crucible A, hence the material 3 is vaporized, and the vapor of the material 3 is injected from the small hole 1 of the upper lid 2 of the crucible A and deposited on a substrate. In this case, the small hole 1 and upper lid 2 are cooled by the adiabatic expansion due to the injection of the vapor from the small hole of the upper lid 2, the vapor of the material 3 is solidified, and the

small hole 1 is clogged. Accordingly, a heating filament 4 is arranged close to the small hole 2, connected to the power source 7 in series with the crucible A and heated, and the upper part of the crucible and the small hole 1 are heated by the heat. As a result, the material is not solidified in the small hole, and the vapor deposition is not stopped.

@ 日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A) 平3-177562

@Int. Cl. 5

庁内整理番号 識別記号

@公開 平成3年(1991)8月1日

C 23 C 14/24 14/32

8520-4K 8520-4K

塞杏請求 未請求 請求項の数 3 (全5頁)

60発明の名称 蒸発源装置

②特 蘭 平1-315600

②出 類 平1(1989)12月4日

大阪府門真市大字門真1006番地 松下電器産業株式会社内 西 925 文 俊 70発 明 者 @ 報 報 者 桐 司 大阪府門真市大字門真1006番地 松下電器産業株式会社内 明 大阪府門真市大字門真1006番地 松下電器産業株式会社内 @幹 明 者 ш 本 大阪府門真市大字門真1006番地 松下電器産業株式会社内 @幹明者 田中 博 由 勿出 顋 人 松下電器産業株式会社 大阪府門直市大字門直1008番地 弁理士 石 原 の代 理 人

- 1. 発明の名称 蒸桑源装置
- 2. 特許請求の範囲
 - (1) 蒸発させる物質を収容する坩堝と前記坩堝 の側周面を加熱するための質子ボンパード用 熱陰極とを具備し、前紀坩堝の上蓋に小孔を 有する蒸発源装置において、坩堝と電気的直 列で配列した加熱用フィラメントを上蓋の小 孔を加熱する位置に設けた蒸発液物源。
 - (2) 加熱用フィラメントが、小孔に挿通されて 上蓋にU字状に質扱された小孔部近傍加熱用 フィラメントである請求項1記載の蒸発源装 亚.
- (3) 加熱用フィラメントが、坩堝の小孔上方に 配置した坩堝上面加熱用フィラメントである 請求項1記載の蒸発源装置。 発明の詳細な説明 3、発明の明細な説明

座業上の利用分野

本発明は真空蒸着、クラスタイオンビーム蒸

着等に用いられる蒸発源装置の改良に関する。

従来の技術

従来、常温で簡体状の物質を加熱蒸発させ蒸 着基板上に蒸着して薄膜の形成を行う真空蒸着 、クラスタイオンビーム蒸着等に用いる蒸着液 装置は、第3回に示すような構成を有していた

すなわち、小孔21を上蓋22の中央部に形成し た円筒状の坩堝 (クヌーセンセル) 23と、坩堝 23の外側に坩堝23の側周而と平行に投資してこ の側周面を加熱するための電子ボンパード用熱 **陰極 5 から構成されている。**

坩堝23はカーボン、タングステン等の単層構 治を有するものが一般的である。 電子ボンバー ド用熱陰極5はタングステン、タンタル等の断 面積が一様で均質な線材をコイル状に放形した ものであり、螺旋ビッチは一定である。6は熱 陰極 5 に電圧を印加しこれを加熱するための熱 除極加熱用報源、24は坩堝23と熱除板5の間に 電圧を印加して高温に加熱した熱陰極5から熱

電子を引き出し、その熱電子を坩堝23に衝突させることにより坩堝23を電子ボンバード加熱するための坩埚加熱用電源である。

前記院発揮装置による製菓プロセスは次のようになる。 坩埚23の円的に落密材料3を収容した後、坩埚23を限置した真空情(関係せず)を下方にの英度に設定し、坩堝23を電子ボンバード加熱して源着材料3を高発させる。この高密材料3の高度25は真空槽と坩堝内部の圧力差に 防熱製版 山湾 由力・九21 から 回から かった 2000個の原子が互いに 使く結合した 境状原子独同のビームすなわちクラスタビームでなって表版 (関宗せず)に 衝突し、 第希膜が性製される。

発明が解決しようとする課題

前述のように、坩堝23の外側に坩堝23の側周 面と平行に設置された電子ポンパード用熱陰極 コイル5 は線径が一様で均質な線材を一様な螺 盤ピッチでコイル状に成形したものであり、健 来の霧発源装置は坩堝23の側面を電子ボンバー ド用熱路板5により一様な熱流束で加熱するも のである。

このため坩堝23の上部は中央部と同じ熱入力 である。しかし、円筒状の坩埚23には円形状の 血面部(坩埚蓋22)が存在するため、坩場中央 能と比較して上部からの放放量は大きくなる。 したがって、坩堝23の他方向に沿って温度分布 が生じ、坩堝中央部で温度が漸く、坩埚蓋22を 含む上部で温度が低下することになる。このた

(1) 坩堝上面部の小孔付近の温度が低下し、 業着材料の高気が小孔付近で報信し、その凝集 液が消状で項告出すスピッティング状態を生じ 別い。そのため、流着膜が腱質不良となり、小 孔が開塞する。

(2) 坩堝内に収容した悪奢材料の量すなわち 悪奢材料の充填高さによって悪奢材料の温度が 変化し、悪発速度が一様でなく悪奢速度も変化 する。そのため薫奢の安定性が悪い。

等の問題点があった。

本発明は、上記問題点に選みてなされたもの で、坩堝の触方向に治った温度分布を一様化す ることにより、高品質の悪寒膜が安定して作製 できる悪発弧装置を提供することを目的とする ものである。

課題を解決するための手段

本発明による高発α装置は、原発させる物質 を収容する単端と前記削損の側周面を加熱する ための電子ボンバード用施除極を具備し、前い 対場の上置に小孔を育する高発電装置において 、坩堝と電気的直列で配列した加熱用フィラシ ントを上置の小孔に近接して設けたものである

作用

上紀のような構成によって得られる作用は次 の通りである。

真空中で高温に加熱された熱陰極に対して正 電位にある陽極(坩堝に相当する)を設置した 場合、熱陰極から引き出された熱電子は坩堝に 衝突し、坩堝は電子ボンベード加熱される。坩 場の上重形成した小元に辺接して加熱用フィ ラメントを設け、かつ加熱用た場合、微電子に 場と電気的に直列に配列した場合、微電子に るエミッション電気は加熱用フィラメントを統 れることとなり、加熱用フィラメントを構築と なる。この加熱フィラメントかのの熱部によ り坩堝の上重に形成した小孔は加熱される。

以上のことから、別場内部の高気が結局部扱 しながの現出する小礼部の温度低下は傾され 、財場の急度分布は他分向に一様化する。その 結果、スピッチィング状態が生じにくくなり、 高品質の包護が可能となる。また、小孔が朝露 することもなくなり、安定した製膜が可能とな る。

家施例

以下に本発明の高発源装置を添付図面に基づいて説明する。第1図は本発明の一実施の蒸発 源装置を示す。Aは直径1mm程度の小孔1、1 を上蓋2上の二カ所に形成したカーボン製の単 **展提出を有する坩堝 (クヌーセンセル) であり** . この世場Aの内部に蒸着材料3を収容する。 本実施例では、加熱用フィラメントとして小孔 部近後加熱用フィラメント4を、一方の小孔1 から坩堝Aの内部に採通し、他方の小孔 1 から 坩堝人の外部に引き出している。なお、小孔部 近傍加熱用フィラメント4は上蓋2に接触しな いように保持する。また、小孔部近傍加熱用フ ィラメント4は、線径が0.08mmの均質なタング ステンの線材で製作している。そして、小孔部 近傍加熱用フィラメント 4 を坩堝Aと電気的に 直列に配列し、坩堝Aに衝突する熱電子による エミッション電流が小孔部近傍加熱用フィラメ ント4を流れる構成としている。例えば、約1 Aのエミッション電流が上記の小孔部近傍加熱 用フィラメント4を流れた場合、小孔部近傍加 駄用フィラメント4の温度は約2200℃となる。 5 は前記坩堝 A を加熱するための電子ボンバ

5 は前記坩堝Aを加熱するための電子ボンバード用熱陰極である。電子ボンバード用熱陰極 5 は線径が 0.7~1.0mm 範囲で一様な線径のタ ングステン糖もしくはタンタル機を一様な螺旋 経てコイル状に成形したものであり、コイルの 最もは坩堝人の長さより長くしている。 4種を 一様であるため、熱陰係5の温度はその長さ方 向に一定である。そして、この熱路援5を2本 電気的に直列につなぎ、円筒型の対域人の中心 動と平行にして坩堝人の外側に設置している。 なお、直列につなぐ熱陰低5の数を増加させる ことにより、容易に坩堝人のの熱入力を増加さ せることができる。

6 は熱除極 5 に電圧を印加しこれを加熱する ための熱発極加热用電源、『は坩堝人と熱除極 移動の間に電圧を印加して高速に加熱された熱除 機 5 から熱電子を引き出し、その熱電子を坩州 人に衝突させることにより坩堝人を電子ボンバ ード加熱するための坩堝加熱用電である。ま、この坩堝加熱用電源でより、熱電子によ るエミッション電波が小孔修近傍加熱用では メント 4 を減り入ると、また、料理 フィッメ・4 体画 単んる。また、間近時

現Aを支持する支持台、9は前記支持台8を真空槽(図示せず)に固定する絶縁支持部材である。

前述のように、坩堝人の上変でに形成した小 孔1、1、に搾通する小孔邻近荷加熱用フィラメ ト4が高温になるため、この小孔部近待加熱 用フィラメント4からの熱幅料により、坩堝人 の上載2に形成した小孔1、1の近傍は加熱さ れる。

以上のことから、 州州 内部の高変が可能制 振しながら明出する小礼 1 部の温度を下は補償 され、 州県 の温度分布は権力向に一様化する 。 その結果、スピッティング状態が生じにくく なり、高点質の製度が可能となる。また、小礼 1 が開着することもなくなり、安定した製膜が 可能となる。

さらに、本実施例によれば、坩堝Aの上間近 傍にその面を加熱するためのヒータもしくは熱 陰恆とそのための専用電源を設けた場合と比較 して、別途電波が不要であり、そのため、装置 構成が簡単でありコンパクトな蒸発液装置とす ることが可能となる。

なお、前記実施例では、タングスチン、タン タル等の縁材を一様な振復をでコイル状に成形 した電子ボンパード用熱路癌の場合を奈したが 、タンタル、黒鉛等のリボン状板材を短冊状む しくは螺旋杖に成形した電子ボンバード用熱路 極の場合たら適用できる。

第2 団は本発明の他の実施例の蒸発源装置を 示す。 B は直径 2 == 程度の小孔10を上蓋11の中 央部に形成したカーボン製の単周構造を有する 増場(クヌーセンセル)であり、この増発 B の 内部に顕着材料 3 を収容する。本実施例では、 加熱用フィラメントとして増減上面加熱用フィ ラメント12を、増減日の小孔10の上方に設けて いる。なお、増場上面加熱用フィラメント12は 上置11に接触しないように保持している。また、 増場上面加熱用フィラメント12は線径が0.08 == で均質なングステンの様材をコル状に成 形したものである。そして、地域上面加熱用フ

特閒平3~177562(4)

ィラメント12を坩堝Bと電気的に直列に配列し、坩埚Bに衝突する熱電子によるエミッション 電流が坩堝上面加熱用フィラメント12を流れる 構成としている。

前記のような構成により、増場8の小孔10の 上方に設けた増場上間加熱用フィラメント12は 高温となり、この増場上間加熱用フィラメント 12からの軽割により増帰8の上篦11金間が加熱 される。

以上のことから、坩堝B内部の菱気が断熱 限しながら噴出する小乳部の温度低下は梢ぽさ れる。その結果、スピッティング状態が生じに くくなり、また小乳10が開着することもなくな り、高品質の安定した製膜が可能となる。

発明の効果

以上のように本発明による蒸発調整度は、蒸発させる物質を収容する出場と前記出場の低間 配を加熱するための電子ボンパード用熱陰機を 異備し、前記出場の上重た小孔を有する蒸発薬 整置であって、均陽と電気的電列で配列した加 熱用フィラメントを上蓋の小孔を加熱する位置 に設けたものであるため、別途加熱電源が不要 であり、しかもスピッティング状態が生じにく くなって、高品質の安定した薬布膜の作製が可 糖となる。

4. 図面の簡単な説明

第1図は本発明の一実施例の蒸発級整度の税 明国、第2図は本発明の他の実施例の蒸発線整 変の説明図、第3図は従来の蒸発線装置の説明 図である。

代理人 弁理士 石 原 跡

