## Fractales et dimension de Hausdorff

Mechineau Alexandre

29 avril 2016

| Résumé                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Je vais définir ce qu'est un ensemble auto-similaire puis chercher à caractériser sa dimension pace. De plus, je ferrais le liens entre fractale et ensemble auto-similaire. Pour terminer, je définirai quelque fractale. |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                            |  |

# Table des matières

| 1 | 1 Introduction                                    | :  | 2 |
|---|---------------------------------------------------|----|---|
| 2 | 2 Ensemble auto-similaire et fractales 2.1 Rappel |    | 5 |
| 3 | 3 Dimension des ensembles auto-similaires         |    | 8 |
|   | 3.1 Dimension de Hausdorff                        |    | 8 |
| 4 | 4 IFS et informatique                             | !  | 9 |
| 5 | 5 Exemple de fractale                             | 10 | C |
|   | 5.1 Notation                                      | 10 | 0 |
|   | 5.2 Cantor                                        | 1  | 1 |
|   | 5.3 Courbe de Koch                                | 15 | 2 |
|   | 5.4 Flocon de Koch                                | 13 | 3 |
|   | 5.5 Triangle de Sierpiński                        | 1  | 4 |
|   | 5.6 Tapis de Sierpiński                           | 1  | 5 |
|   | 5.7 Hata's tree-like set                          | 10 | 6 |
|   | 5.8 Courbe de Lévy                                | 1' | 7 |
|   | 5.9 PentaKun                                      | 18 | 8 |

### Introduction

Le mot fractale a été introduit par Benoît Mandelbrot, en 1974, pour décrire des objet brisés mais invariants aux changement d'échelle. C'est a dire que lorsque l'on zoome sur une partie d'une fractale on voit le même motif qu'avant.

Cependant, ces objets avaient déjà été remarqué, dés l'antiquité par Apollonius de Perge avec la figure en son nom "la baderne d'Apollonius".



Dürer, en 1520, dessine une fractale que l'on nommera "Pentagone de Dürer". On l'étudiera sous le nom de Pentakun.

De plus, ces figures ce retrouvent souvent dans la nature, c'est le cas du chou Romanesco. On peut aussi citer le cas des poumons, le fait d'avoir une géométrie fractale permet d'avoir une surface importante avec un volume très petit.

Il existe trois type de fractale. La première étudie la convergence d'une suite en fonction des point du plan, la seconde, est un système d'itération de fonction et la dernière utilise le hasard.

Nous allons étudier la seconde nommé IFS. Pour cela, nous commencerons par un petit rappel sur les ensembles (compact,....), puis nous introduirons la notion d'ensemble auto-similaire. Dans un second temps, nous chercherons à caractériser la dimension des ensembles auto-similaire. Enfin, nous découvrirons quelque fractale.

### Ensemble auto-similaire et fractales

### 2.1 Rappel

Dans un premier temps je vais définir ce qu'est un espace métrique. Puis, je rappellerais ce qu'est les notions d'espaces complets et d'espace compact. Enfin, je rappellerai la notion d'application contractante et énoncerai le Théorème du points fixe de Banach(Picard).

**Définition 1.** On appelle (E, d) un **espace métrique** si E est un ensemble et d une distance sur E.

On appelle distance sur un ensemble E une application :

$$d: E^2 \longrightarrow \mathbb{R}$$

Tel que pour tout  $x,y,z \in E$ :

- 1. d(x,y) = d(y,x)
- 2.  $d(x,y) = 0 \Longrightarrow x = y$
- 3.  $d(x,z) \le d(x,y) + d(y,z)$

**Définition 2.** Un espace métrique (E,d) est dit **complet** si toute suite de Cauchy de E admette une limite dans E.

**Définition 3.** Un espace métrique (E,d) est dit **pré-compact** si pour tout  $\varepsilon > 0$ , on peut peut recouvrir E par un nombre fini de boule ouverte de rayon  $\varepsilon$ .

**Définition 4.** Un espace métrique (E, d) est dit **compact** 

Proposition 1. Un espace métrique est compact si et seulement si il est complet et pré-compact.

**Définition 5.** Soit (E, d) un espace métrique et K un sous-espace de E.

— Un ensemble fini A est appelé **r-recouvrement** de K si et seulement si :

$$\bigcup_{x \in A} \mathcal{B}_r(x) \supseteq K$$

— K est dit **pré-compact** si et seulement si il existe un r-recouvrement de K pour tout r > 0.

On a donc rappelé l'ensemble des notions de topologie nécessaire pour introduire les ensembles auto-similaire. Mais avant, on va rappeler la notion d'application contractante et le Théorème du point fixe de Picard.

**Définition 6.** Une application f d'un espace métrique (E, d) est dite **contractante** si :

$$\exists k \in \mathbb{R}^+, k < 1 \mid \forall x, y \in E, d(f(x), f(y)) \leqslant k \times d(x, y) \tag{2.1}$$

Remarque. Une application est contractante par rapport à une distance donnée!

Comme nous le verrons plus tard, cette propriété de contraction est la clé pour pouvoir définir ce que sont les fractales définies par IFS et avoir un ensemble limite. On va d'abord montrer qu'une application contractante admet un point fixe.

Théorème 1 (Théorème du points fixe de Banach(Picard)). Soit (E,d), un espace métrique complet et f une application k-contractante de E dans E. Alors, il existe un unique points fixe  $x^*$  de f:

$$x^* \in E \mid x^* = f(x^*)$$

De plus, pour toute suite d'éléments  $(x_n)_{n\in\mathbb{N}}$  de E vérifiant la récurrence :

$$x_{n+1} = f(x_n)$$

 $On \ a,$ 

$$d(x_n, x^*) \le \frac{k^n}{1 - k} d(x_0, x_1) \tag{2.2}$$

Donc, la suite  $(x_n)$  converge vers  $x^*$ . On note aussi,  $\forall a \in E, (f^n(a))_{n \geq 0} \longrightarrow x^*$  si  $x^*$  est un points fixe.

Démonstration. Soit (X, d) un espace complet.

Soit f une application k-contractante de E dans E.

On pose  $m, n \in \mathbb{N} \mid m > n, a \in E$ 

$$\begin{split} d(f^n(a),f^m(a)) &\leq d(f^n(a),f^{n+1}(a)) + \ldots + d(f^{m-1}(a),f^m(a)) & \qquad \text{(In\'egalit\'e triangulaire)} \\ &\leq (k^n+\ldots+k^{m-1})d(a,f(a)) & \qquad \text{(2.1)} \\ &\leq \frac{k^n}{1-k}d(a,f(a)) & \qquad \text{(2.1)} \end{split}$$

La série  $(f^n(a))_{n\geq 0}$  est de Cauchy. En effet, elle converge vers  $x^*$  quand  $n \to \infty$ . Or (E,d) est un espace complet donc  $x^* \in E$  (Définition 2). On a alors  $x^* = f(x^*)$ 

#### Unicité du point fixe :

$$f(x)=x$$
 et  $f(y)=y$  
$$d(x,y)=d(f(x),f(y))\leq k\times d(x,y)$$
 
$$d(x,y)\leq k\times d(x,y)$$
  $\Rightarrow d(x,y)=0 \Rightarrow x=y$  (Unicité)

Le théorème du point fixe de Picard est défini pour une application contractante de  $\mathbb{R}^n$ . On veut donc essayer de le généraliser pour un ensemble d'application contractante.

#### 2.2 Ensemble auto-similaire

Comme indiqué précédemment, On cherche a généraliser le théorème du point fixe de Picard.

**Théorème 2** (Unicité et existence des ensembles auto-similaires). Soit (E, d) un espace complet.  $\forall i \in [\![1, N]\!], f_i : E \longrightarrow E$  est une application contractante, par rapport à la distance d. Il existe, alors un compact  $K \subset E$ , tel que :

$$K = \bigcup_{i=1}^{N} f_i(K)$$

K est appelé un **ensemble auto-similaire** défini par :

$$\{f_1,\ldots f_N\}$$

Remarque. Le Théorème du point fixe de Banach est un cas particulier de ce théorème avec N=1.

Pour simplifier, on pose:

$$F(A) = \bigcup_{i=1}^{N} f_i(A)$$

Avant de faire la preuve de ce théorème clé, on introduit quelque notion qui nous faciliterons la tache. Le théorème du point fixe de Picard travaille avec un élément de (E,d), on peut alors utiliser la distance d sur cet élément. Cependant, le théorème 2 utilise des compacts, on va donc chercher à définir une distance pour les compacts.

On introduit, donc, l'ensemble suivant pour tout (E, d) espace complet :

$$C(E): \{A|A \subseteq E, A \text{ est un compacte non vide de } E\}$$

On va maintenant définir une distance  $\delta$  sur  $\mathcal{C}(E)$  nommée distance de Hausdorff sur  $\mathcal{C}(E)$ .

**Proposition 2.** Pour  $A, B \in \mathcal{C}(E)$ , et (E, d) un espace métrique On définit  $\delta(A, B) = \inf\{r > 0 \mid U_r(A) \supseteq B, U_r(B) \supseteq A\}$ On pose, pour r > 0 fixé,  $U_r(A) = \{x \in E \mid d(x, y) \le r, y \in A\}$  $\delta$  est alors une distance sur  $\mathcal{C}(E)$ .

(E,d) De plus, si (E,d) est complet alors  $(\mathcal{C}(E),\delta)$  est complet.

Remarque. La distance  $\delta$  dépends de la distance d de l'ensemble E comme nous pouvons le voir dans la définition.

Nous pouvons alors montré que  $\delta$  est une distance. Pour ce faire nous allons

Démonstration. Soit un compact  $A \subseteq X$ ,

On va montrer que F admet un point fixe.

Pour cela, on pose

Preuve que la distance de HAUSDORFF est bien une distance!!!!!!!!!!

**Théorème 3.** Soit (E, d) un espace métrique complet. Soit

$$F: \mathcal{C}(E) \longrightarrow \mathcal{C}(E)$$
$$A \longmapsto F(A) = \bigcup_{i=1}^{N} f_i(A)$$

$$et f_i: X \longrightarrow X, i \in [1, N]$$

Alors F admet un unique points fixe K. De plus,  $\forall A \in \mathcal{C}(E), F^n(A) \longrightarrow K$  quand  $n \to \infty$  par rapport à la distance de Hausdorff.

**Lemme 1.**  $\forall A_1, A_2, B_1, B_2 \in C(E)$ , on a :

$$\delta(A_1 \cup A_2, B_1 \cup B_2) \le \max(\delta(A_1, B_1), \delta(A_2, B_2)) \tag{2.3}$$

Démonstration. Si r>max( $\delta(A_1, B_1)$ ,  $\delta(A_2, B_2)$ ), alors  $U_r(A_1) \supseteq B_1$  et  $U_r(A_2) \supseteq B_2$ . Par conséquent,  $U_r(A_1 \cup A_2) \supseteq B_1 \cup B_2$ .

De même, 
$$U_r(B_1) \supseteq A_1$$
 et  $U_r(B_2) \supseteq A_2 \Longrightarrow U_r(B_1 \cup B_2) \supseteq A_1 \cup A_2$ .  
On a donc  $r \ge \max(\delta(A_1, B_1), \delta(A_2, B_2))$  (2.3)

**Lemme 2.** Si f est une application k-contractante défini de C(E) dans C(E), alors :

$$\delta(f(A), f(B)) \le k \times \delta(A, B), \forall A, B \in \mathcal{C}(E)$$
(2.4)

Démonstration. On sait qu'il existe  $s \geq \delta(A, B)$  tel que :

$$U_s(A) \supseteq B \text{ et } U_s(B) \supseteq A, U_{sk}(f(A)) \supseteq f(U_s(A)) \supseteq f(B)$$

$$U_s(B) \supseteq A \text{ et } U_s(A) \supseteq B, U_{sk}(f(B)) \supseteq f(U_s(B)) \supseteq f(A)$$

On a donc montré que  $\delta(f(A), f(B)) \le k * s \le k * \delta(A, B)$ 

Preuve du théorème. On applique le Lemme 1, on obtient alors :

$$\delta(F(A), F(B)) = \delta(\bigcup_{i=1}^{N} f_i(A), \bigcup_{i=1}^{N} f_i(B))$$

$$\leq \max_{1 \leq i \leq N} \{\delta(f_i(A), f_i(B))\}$$

D'après le lemme 2 on a :

$$\delta(f_i(A), f_i(B)) < r_i \times \delta(A, B)$$

On a alors,

$$\delta(F(A), F(B)) \le \max_{1 \le i \le N} \{r_i \times \delta(A, B)\}$$
$$\le \left(\max_{1 \le i \le N} \{r_i\}\right) \times \delta(A, B)$$

F est donc une application contractante par rapport à la distance de Hausdorff. D'après la proposition 2, on sait que  $\mathcal{C}(E)$  est complet donc d'après Le Théorème du point fixe, F admet un point fixe.  $\square$ 

### 2.3 Ensemble auto-similaire et fractale

Un ensemble auto-similaire est la traduction du mot anglais "self-similarity". Ce mot représente le fait qu'un objet présente des similarités peu importe l'échelle à laquelle il est regardée. On va étudier les fractales définies par un système de fonction contractante, on sera donc dans le cas des ensembles auto-similaires. On choisit  $E = \mathbb{R}^2$  et on lui associe la distance usuelle. L'espace métrique défini est complet. On pourra donc utiliser l'ensemble des théorèmes et propositions précédente. Les fonctions qui définirons notre fractale seront des similitudes contractante. Nous munirons notre fractale d'un sous-compact de  $E = \mathbb{R}^2$  qui sera le plus adapté à la fractale même si comme nous pourrons le voir cela n'a pas d'importance sur le papier.

**Définition 7.** Une similitude est une application de E dans E qui multiplie les distances par un rapport k constant.

Remarque. On peut représenter une similitude comme la composée d'une homothétie, d'une rotation(ou symétrie) et d'une translation.

**Proposition 3.** Soit S une similitude, soit k son rapport, $\theta$  son angle de rotation et T un vecteur de translation. On peut écrire S sous la forme suivante :

$$S(X) = k \times M(\theta) \times X + T$$

On pose M étant une rotation directe ou indirecte :

$$M(\theta) \in \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \right\}$$

**Proposition 4.** Si S est une similitude de rapport k < 1, alors elle est contractante.

Démonstration. Soit  $x, y \in E$ , soit  $\theta \in \mathbb{R}$  fixé et soit  $T \in \mathbb{E}$  fixé :

On a que d(x, y) = d(x + T, y + T).

De plus, M est une matrice de rotation donc ne modifie pas la distance entre deux éléments. On a alors :

$$d(kM(\theta)x + T, kM(\theta)y + T) = d(kM(\theta)x, kM(\theta)y)$$
$$= kd(x, y)$$
$$\leq kd(x, y)$$

Une similitude de rapport k < 1 est donc contractante.

**Définition 8.** Une fractale F défini par N similitude  $S_i$  contractante est appelé IFS (Iterated function system).

Soit C un compact, on a alors

$$F(C) = \bigcup_{i=1}^{N} S_i(C)$$

On remarque qu'une fractale défini par IFS est un ensemble auto-similaire. On sait alors grâce au théorème 2 qu'il existe un unique points fixe(Compact). De plus, on sait grâce au théorème 3 que pour tout compact de E le système converge vers un compact K unique. On sait alors qu'en calculant, pour un compact C donné,  $F^n(C)$  tends vers K, ( $F^n$  répresente la composée n-ème de F). En calculant quelque itérations, nous pouvons alors obtenir un résultat ressemblant visuellement à K.

## Dimension des ensembles auto-similaires

On sait exprimer la dimension des objets géométrique classique comme le point, la droite, le plan,... . Pour définir cette dimension, on compte le nombre de variable nécessaire à désigner un de ses points. On a donc  $\dim(points) = 0$ 

### 3.1 Dimension de Hausdorff

## IFS et informatique

Comme on l'a vu dans la partie Ensemble auto-similaire et fractale, on sait que l'on peut décrire une fractale IFS par un ensemble de similitude et un compact. Le choix du compact a seulement de l'importance pour avoir un résultat "correct" le plus rapidement. Pour calculer le premier pas de la fractale on applique chaque similitude sur l'ensemble de départ. On obtient, alors, une liste d'ensemble. Pour la deuxième étape, on utilise la liste d'ensemble précédemment obtenue sur lequel on applique chaque similitude.

On utilise comme compact de base un segment, il nous permet de décrire chaque forme nécessaire aux fractales IFS que l'on représentera. On a alors à chaque étape une liste de segment défini par deux points. Cette liste a une taille qui suit une croissance exponentielle. Mais à chaque itération on se rapproche du points fixe. En pratique, à partir de cinq itérations le résultat est correct à l'échelle normale.

D'un point de vue algorithmique, j'ai crée un objet application qui me permet de représenter l'ensemble des applications nécessaire de  $\mathbb{R}^2$ . Puis j'ai créé des objets représentant des applications plus spécifique, mais dépendant de Application, comme Rotation, Homothétie, ...

J'ai aussi créé un objet Forme décrivant par un ensemble de points un polygone de  $\mathbb{R}^2$ . Cette objet forme représente un compact, c'est en effet l'union de plusieurs segments qui sont compact.

J'ai écrit un dernier objet Fractale me permettant de définir une fractale IFS comme un ensemble d'Applications et un ensemble de Forme.

L'objet Application permet d'appliquer l'application définie sur un ensemble de forme. Ce qui revient à calculer l'image de chaque extrémité des segments définissant l'objet Forme.

En appliquant l'ensemble des Applications n fois sur la Forme initiale on obtient la n-ème étape de la construction de la fractale. Il ne reste plus qu'à afficher chaque étape à l'écran.

## Exemple de fractale

On va, donc dans ce chapitre, découvrir plusieurs fractales. On précisera le compact "optimum" et l'ensemble des applications pour chaque fractale. Ensuite, on calculera la dimension de Hausdorff de chaque ensemble.

On va commencer par introduire plusieurs notations qui nous serons utiles par la suite.

#### 5.1 Notation

On sait qu'il existe deux types de similitude, on va donc les définir. On exprimera, aussi, la similitude représentant une homothétie. On note SD les similitudes directes du plan.

On note SI les similitudes indirectes du plan.

 $M_d(\theta)$  est la matrice de rotation directe du plan d'angle  $\theta$ .

 $M_i(\theta)$  est la matrice de rotation indirecte du plan d'angle  $\theta$ .

H est une homothétie de rapport k. x est un élément d'un compact de  $\mathbb{R}$  ou du plan.

k est le rapport d'une similitude.

 $\theta$  est l'angle d'une similitude.

T est un vecteur représentant une translation.

$$M_D(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

$$M_I(\theta) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

$$SD(x) = k \times M_D(\theta) \times x + T$$

$$SI(x) = k \times M_I(\theta) \times x + T$$

$$H(x) = k \times M_D(0) \times x + T = k \times x + T$$

#### 5.2 Cantor



#### Définition

Pour l'ensemble de Cantor on part du segment [0;1] que l'on contracte de 1/3 à droite et gauche. On a donc deux homothéties de rapport 1/3 de centre 0 et 1. L'ensemble de départ et d'arrivé pour chaque application est  $\mathbb{R}$ .

$$H_1: x \mapsto 1/3 \times x$$
  
$$H_2: x \mapsto 1/3 \times x + 2/3$$

#### Dimension

Pour calculer la dimension de Hausdorff de l'ensemble de Cantor on utilise le théorème (REFE-RENCE). On a alors,

$$\left(\frac{1}{3}\right)^d + \left(\frac{1}{3}\right)^d = 1$$

$$2\left(\frac{1}{3}\right)^d = 1$$

$$\left(\frac{1}{3}\right)^d = \frac{1}{2}$$

$$\exp\left(d \times \ln\left(\frac{1}{3}\right)\right) = \frac{1}{2}$$
(Passage à la forme exponentielle)
$$d \times \ln\left(\frac{1}{3}\right) = \ln\left(\frac{1}{2}\right)$$

$$d = \frac{\ln\left(\frac{1}{2}\right)}{\ln\left(\frac{1}{3}\right)}$$

$$d = \frac{\ln(1) - \ln(2)}{\ln(1) - \ln(2)}$$

$$d = \frac{\ln(2)}{\ln(3)}$$

$$d \approx 0.6309$$
(ln(1)=0)

On a donc calculer la dimension de Hausdorff de l'ensemble de Cantor. On se base sur ce calcule pour le reste des fractales.

### 5.3 Courbe de Koch



### Définition

Pour la courbe de Koch on part aussi du segment [0;1]. On définit quatre similitude directe du plan.

$$SD_1: x \mapsto 1/3 \times x$$

$$SD_2: x \mapsto 1/3 \times M_d(\pi/3) \times x + \begin{pmatrix} 1/3 \\ 0 \end{pmatrix}$$

$$SD_3: x \mapsto 1/3 \times M_d(-\pi/3) \times x + \begin{pmatrix} 1/2 \\ \sqrt{3}/6 \end{pmatrix}$$

$$SD_4: x \mapsto 1/3 \times x + \begin{pmatrix} 2/3 \\ 0 \end{pmatrix}$$

#### Dimension

La courbe de Koch est constitué de quatre similitudes de rapport 1/3. On a alors :

$$4\left(\frac{1}{3}\right)^d = 1$$
$$d = \frac{\ln(4)}{\ln(3)}$$
$$d \approx 1.2618$$

#### 5.4 Flocon de Koch



#### **Définition**

Le flocon de Koch est l'union de trois courbe de Koch. Elle est défini par sept similitudes et la forme de base est un triangle équilatéral de longueur 1.

$$SD_{1}: x \mapsto 1/3 \times M_{d}(-2\pi/3) \times x + \begin{pmatrix} 1/6 \\ \sqrt{3}/6 \end{pmatrix}$$

$$SD_{2}: x \mapsto 1/3 \times M_{d}(\pi/3) \times x + \begin{pmatrix} 1/6 \\ \sqrt{3}/6 \end{pmatrix}$$

$$SD_{3}: x \mapsto 1/3 \times M_{d}(0) \times x + \begin{pmatrix} 1/3 \\ \sqrt{3}/3 \end{pmatrix}$$

$$SD_{4}: x \mapsto 1/3 \times M_{d}(-\pi/3) \times x + \begin{pmatrix} 2/3 \\ \sqrt{3}/3 \end{pmatrix}$$

$$SD_{5}: x \mapsto 1/\sqrt{3} \times M_{d}(\pi/6) \times x + \begin{pmatrix} 1/3 \\ 0 \end{pmatrix}$$

$$SD_{6}: x \mapsto 1/3 \times M_{d}(\pi) \times x + \begin{pmatrix} 2/3 \\ 0 \end{pmatrix}$$

$$SD_{7}: x \mapsto 1/3 \times M_{d}(0) \times x + \begin{pmatrix} 1/3 \\ 0 \end{pmatrix}$$

#### Dimension

Le flocon de Koch est constitué de six similitudes de rapport 1/3 et une similitude de rapport  $1/\sqrt{3}$ . On a alors :

$$6\left(\frac{1}{3}\right)^d + \left(\frac{1}{\sqrt{3}}\right)^d = 1$$
$$d = 2$$

### 5.5 Triangle de Sierpiński



#### Définition

Le triangle de Sierpiński est basé sur un triangle équilatéral de longueur 1. Il est constitué de trois homothétie de centre correspondant aux extrémités du triangle et de rapport 1/2.

$$H_1: x \mapsto 1/2 \times x + \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$H_2: x \mapsto 1/2 \times x + \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$H_3: x \mapsto 1/2 \times x + \frac{1}{2} \begin{pmatrix} 1/2 \\ \sqrt{3/4} \end{pmatrix}$$

#### Dimension

On a pour le triangle de Sierpiński :

$$3\left(\frac{1}{2}\right)^d = 1$$
$$d = \frac{\ln(3)}{\ln(2)}$$
$$d \approx 1.5849$$

### 5.6 Tapis de Sierpiński



#### **Définition**

Le tapis de Sierpiński est basé sur un carré, c'est a dire l'union de quatre segment. Il est constitué de 8 homothéties de rapport 1/3.

$$H_{1}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$H_{2}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$H_{3}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$H_{4}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$H_{5}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$$

$$H_{6}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$H_{7}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$$

$$H_{8}: x \mapsto 1/3 \times x + \frac{1}{2} \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}$$

#### **Dimension**

En appliquant, la formule une fois encore, on obtient :

$$8\left(\frac{1}{3}\right)^d = 1$$
$$d = \frac{\ln(8)}{\ln(3)}$$
$$d \approx 1.8928$$

#### 5.7 Hata's tree-like set



#### Définition

Cette fractale représente de manière simpliste une branche d'arbre. Elle est défini à partir de deux formes le segment classique[0; 1] et un second segment ayant pour extrémité l'origine et un point du plan  $\beta$  servant de paramètre qui respecte les conditions suivantes :

$$\begin{aligned} |\beta| < 1 \\ |\beta - 1| < 1 \\ \text{Im } \beta \neq 0 \end{aligned}$$

On définit deux similitudes indirectes dépendant de  $\beta$ :

$$SI_1: x \mapsto |\beta| \times M_I(\arg(\beta)) \times x$$
  
 $SI_2: x \mapsto (1 - |\beta|^2) \times M_I(0) + \begin{pmatrix} |\beta|^2 \\ 0 \end{pmatrix}$ 

Pour cette fractale, on va l'étudier pour deux paramètres différents :

#### Dimension

On doit donc calculer la dimension de deux fractales car le rapport de chaque similitude dépends de  $\beta$ . J'ai été capable seulement de calculer des valeurs approchées de la dimension de ces deux ensembles. Pour  $\beta_1$ , je trouve une valeur approchée de 1.6355 et pour  $\beta_2$ , j'obtiens 1.50713.

$$|\beta|^r + (1 - |\beta|^2)^r = 1$$

## 5.8 Courbe de Lévy



### Définition

La courbe de Lévy est définit à partir d'un segment. Elle est construite par deux similitudes directe de rapport  $\frac{\sqrt{2}}{2}$ .

### Dimension

$$2\left(\frac{1}{\sqrt{2}}\right)^d = 1$$
$$\left(\frac{1}{\sqrt{2}}\right)^d = \frac{1}{2}$$
$$d = 2$$

### 5.9 PentaKun

#### **Définition**

Le pentakun est basé comme son nom l'indique sur un pentagone. On définit donc cinq point.

$$p_i = \begin{pmatrix} -\sin\left(\frac{2i\pi}{5}\right) \\ \cos\left(\frac{2i\pi}{5}\right) \end{pmatrix}, \forall i \in [1, 5]$$

On définit cinq homothétie qui vont réduire le pentagone dans chaque coins. Le rapport des homothéties est de  $\frac{3-\sqrt{5}}{2}$ .

$$H_i = \frac{3 - \sqrt{5}}{2} \times x + \frac{\sqrt{5} - 1}{2} p_i, \forall i \in [1, 5]$$

#### Dimension

$$5\left(\frac{3-\sqrt{5}}{2}\right)^d = 1$$

$$\left(\frac{3-\sqrt{5}}{2}\right)^d = \frac{1}{5}$$

$$d = \frac{-\ln(5)}{\ln(3-\sqrt{5}) - \ln(2)}$$

$$d \approx 1.6723$$



 $http://ecademy.agnesscott.edu/\ lriddle/ifs/kcurve/kcurve.htm \\ https://www.yumpu.com/es/document/view/14324138/analisis-armonico-en-fractales-universidad-de-colima/5$