

Business Forecasting

Multiple Regression Models

Estimation

Basic Functional Form (**population** model)

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + ... + \beta_k X_{kt} + \varepsilon_t$$

A **joint** sample on Y_t and $X_{1t, 2t, kt}$ is collected.

Estimation of regression model coefficients (b_0, b_1, b_2, b_k) typically via <u>Ordinary Least Squares (OLS)</u> in EXCEL or Minitab. This generates the <u>sample regression model</u>

$$E(Y_t) = b_0 + b_1 X_{1t} + b_2 X_{2t} + ... + b_k X_{kt}$$

Why Use OLS?

OLS estimates have good forecast properties

Under the conditions the model is correctly specified and the random error at any observation is independently derived with zero mean and constant variance the OLS estimates and forecasts will be

- 1. <u>Unbiased</u> <u>on average</u> the OLS estimates and forecasts will be equal to the true values
- 2. Efficient the OLS estimators and forecasts will be the most precise of any <u>linear unbiased</u> <u>estimators or forecasts</u>.

Estimation (cont)

Before the model can be used for forecasts it needs to be checked for <u>adequacy</u> and <u>violations of assumptions</u> <u>underpinning OLS</u>

Assumptions of OLS include <u>correctly specified</u> <u>functional form</u> and <u>error term (ϵ_t) behaviour</u>

Residuals, other diagnostics and associated relevant statistical tests used to determine the adequacy of model

Only after examination of the above diagnostics and determination of adequacy should the estimated model be used for forecasts

Statistical Testing

- Test for <u>overall model significance</u> F test
- Test for <u>individual variable significance</u> t tests

Testing Overall Model Significance

Overall Significance test (F Test):

One joint test in particular is useful; we test the <u>null</u> hypothesis <u>all of the slope coefficients</u> in the population are jointly zero which is a test of the <u>explanatory power of the model</u>

Non-rejection of the null (all coefficients jointly zero) indicates that as a **group** the variables selected and the precise model chosen has **no significant explanatory power**

Rejection of the null indicates **some explanatory power of the model** and importantly potentially some predictive ability

F test - check p-value (<0.05 then Reject H₀)

Is the Model Significant?

F Test for Overall Significance of the Model

Shows if there is a relationship between all the X variables considered together and Y

Use F-test statistic

Hypotheses:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_k = 0$ (no relationship)

H₁: at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

F Test for Overall Significance

Test statistic: Given in **ANOVA** table in output

$$F = \frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

where F has (numerator) = k & (denominator) = (n - k - 1) degrees of freedom

k =(number of variables in model)
n = (number of observations)

Testing Individual Variables

Testing Individual coefficients:

Separate tests of population slope coefficients (β_j) being zero (null hypothesis)

If the slope coefficient is zero it suggests the <u>independent</u> <u>variable being examined</u> does <u>not influence the</u> <u>dependent variable</u>

Further, the independent variable being examined may be an irrelevant variable and could possibly be dropped from the model specification

t test - check p-value (<0.05 then Reject H₀)

Individual Coefficient Tests

Single Co-efficient Tests:

Hypothesis tests can be applied to the co-efficients of all variables separately. For a model given by

$$Y = \beta_0 + \beta_1^* X_1 + \beta_2^* X_2 + + \beta_k^* X_k + \epsilon$$

The relevant test (each co-efficient separately)

$$\mathbf{H_0}: \beta_j = \mathbf{o} \ \mathbf{vs} \ \mathbf{H_1}: \beta_j \neq \mathbf{o}$$

The test statistic has a **t distribution** with p-values indicating support for H_0 or H_1 .

Are Individual Variables Significant?

Use t tests of individual variable slopes

Shows if there is a relationship between the variable X_j and Y

Hypotheses:

 H_o : $\beta_i = o$ (no linear relationship exists between

H₁: $\beta_j \neq 0$ (linear relationship does exist between X_i and Y)

Are Individual Variables Significant? - (2)

 H_0 : $\beta_j = 0$ (no relationship)

H₁: $\beta_j \neq 0$ (relationship does exist between X_i and Y)

Test Statistic:

$$t = \frac{b_j - 0}{S_{b_j}}$$

$$(df = n - k - 1)$$

Check p-value in output (<0.05 Reject H_o)

Excel: Example 1 – F test from Regression Output

SUMMARY OUTPUT

Regression St	atistics			Sig	natod \			
Multiple R	0.891			_	-value (α			
R Square	0.795			_	bability of			
Adjusted R					ore extre	-		
Square	0.769			<u> </u>	value giv		H	
Standard Error	2.448				hypothe	sis is tru	e 📙	
Observations	10							
ANOVA								
	df	SS	MS	F	Sig F			
Regression	1	185.658	185.658	30.980	0.001			
Residual	8	47.942	5.993					
Total	9	233.6						
		Standard			Lower	Upper	Lower	Upper
	Coefficients	Error	t Stat	P-value	95%	95%	95.0%	95.0%
Intercept	0.784	2.025	0.387	0.709	-3.886	5.454	-3.886	5.454
Advertising	0.914	0.164	5.566	0.001	0.535	1.292	0.535	1.292

Excel: Example 1 - t tests from Regression Output

SUMMARY OUTPUT

Domesoi en Gi				<u> </u>				
Regression St							$e(\alpha)$ is the	
Multiple R	0.891				– pro	bability	of a simi	lar or
R Square	0.795				l m	ore extre	eme sam	ple t
Adjusted R							en β is ze	
Square	0.769					aruc grv		
Standard Error	2.448							
Observations	10							
ANOVA								
	df	SS	MS	F	<u> </u>			
Regression	1	185.658	185.658	30.980	/ /1			
Residual	8	47.942	5.993					
Total	9	233.6						
		Standard			Lower	Upper	Lower	Upper
	Coefficients		t Stat	P-y lue	95%	95%	95.0%	95.0%
Intercept	0.784	2.025	0.387	.709	-3.886	5.454	-3.886	5.454
Advertising	0.914	0.164	5.566	0.001	0.535	1.292	0.535	1.292

Forecasting with Regression

The diagnostic tests are used as a tool to check specified models and to suggest **potential improvements to model specifications**

Models may be modified (according to diagnostic information) and the process of estimation and diagnostic testing is repeated

Once a <u>final</u> model is determined (with acceptable diagnostics) it is used for <u>forecasts</u>

Forecasts will use the **estimated equation** and **estimates of** $\frac{\mathbf{future} \ \mathbf{X_i}}{\mathbf{Y_i}}$ values to forecast $\mathbf{Y_f}$

Example 2: 2 Independent Variables

A distributor of frozen desert
pies wants to evaluate factors
thought to influence demand
(Y)

Dependent variable: Y-

Pie sales (units per week)

Independent variables:

Price (X_1) (in \$),

Advertising(X_2) (\$100's)

Sales =
$$\beta_0 + \beta_1$$
 (Price)
+ β_2 (Advertising) + ϵ_t

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0

8.00

6.80

4.5

3.0

3.7

3.5

3.2

2.7

4.0 6 380 7.50 7 430 4.50 3.0

430

350

490

300

300

4

5

12

15

5.00

7.90

7.00

Multiple Regression Output

Regression St	atistics					
Multiple R	0.72213					
R Square	0.52148					Januari II.
Adjusted R					33	
Square	0.44172					NW -
Standard Error	47.46341					
Observations	15	Sales = 306	5.526 - 24.9	975(Pri ce	e) + 74.131(Ac	v ertising)
					Significance	
ANOVA	df	SS	MS	F	F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficient	Standard				Upper
	S	Error	t Stat	P-value	Lower 95%	95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

The Multiple Regression Equation

MACQUARIE University

Sales = 306.526 - 24.975*(Price) + 74.131*(Advertising)

where

Sales is in number of pies per week

Price is in \$

Advertising is in \$100's.

b₁ = -24.975: sales
 will decrease, on
 average, by 24.975
 pies per week for each
 \$1 increase in selling
 price, net of the
 effects of changes due
 to advertising

 $b_2 = 74.131$: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Using The Equation to Make Predictions/Forecasts

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

```
Sales = 306.526 - 24.975(Pri ce) + 74.131(Adv ertising)
      = 306.526 - 24.975 (5.50) + 74.131 (3.5)
      = 428.62
                                          Note that Advertising is
    Predicted sales
                                          in $100's, so $350
                                          means that X_2 = 3.5
    is 428.62 (429)
```

Coefficient of Determination R²

COCITICIO					144	
Regression S	Statistics				and the second	
Multiple R	0.72213	\mathbf{S}^2 \mathbf{S}^2	R _ 29460	0.0		
R Square	0.52148	$R^2 = \frac{SS}{SS}$		=.J2	2148	
Adjusted R Square Standard Error Observations	0.44172 47.46341 15	٥٥	52.1% is expl	of the v lained b	rariation in by the varia ertising	-
ANOVA	df	ss	MS	F	Significance F	
Regression Residual	2 12	29460.027 27033.306	14730.013 2252.776	6.53861	0.01201	
Total	14	56493.333				-
	Coefficient	Standard				

	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Adjusted R²

Multiple R

Intercept

Advertising

Price

Regression Statistics

R Square	0.52148	$I_{adj} = .44$	+1/2	33		
Adjusted R Square	0.44172				pie sales is	a.
Standard Error	47.46341	_			n in price an	
Observations	15		0,	•	ccount the sa	-
		Size and	number (or mae _k	endent varia	ibles
4316374				_	Significance	
ANOVA	df	SS	MS	F	<i>F</i>	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficient	Standard				

t Stat

2.68285

-2.30565

2.85478

P-value

0.01993

0.03979

0.01449

Lower 95%

57.58835

-48.57626

17.55303

Upper 95%

555.46404

-1.37392

130.70888

11179

r2

Error

114.25389

10.83213

25.96732

0.72213

S

306.52619

-24.97509

74.13096

F Test for Overall Significance

Regression St	tatistics					
Multiple R	0.72213				(C	continu ed)
R Square	0.52148				<u> </u>	January II.
Adjusted R Square Standard Error	0.44172 47.46341		=	730.0 252.8	= 6.5386	
Observations	15	With 2 a		.02.0	1	P-value
			of freedom		<u>/</u>	for the F Test
ANOVA	df	SS	MS	F /	Significance F	1 Test
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
						· ·
	Coefficient	Standard				

	Coefficient s	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

F Test for Overall Significance (2)

$$H_0$$
: $\beta_1 = \beta_2 = 0$

 H_1 : β_1 and β_2 not both zero

$$\alpha = .05$$

$$df_1 = 2$$
 $df_2 = 12$

Critical Value: $F_{\alpha} = 3.885$ $\alpha = .05$ $O \xrightarrow{\text{Do not reject H}_{0}} F$ $F_{.05} = 3.885$

Test Statistic:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F test statistic is in the rejection region (pvalue < .05), reject H_o

Conclusion:

There is evidence that at least one independent variable affects Y

Are Individual Variables Significant?

Regression St	tatistics					
Multiple R	0.72213				(co	ntinued)
R Square	0.52148	t-value fo	or Price is	$\mathbf{s} \mathbf{t} = -2$.306, with	
Adjusted R		p-value.	0398 (Si	gnificai	nt)	
Square	0.44172					
Standard Error	47.46341	t-value fo	or Advert	ising is	t = 2.855,	
Observations	15		alue .0145	_	• • • • • • • • • • • • • • • • • • • •	
				<u> </u>	Significance	_
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
				<u> </u>		
	Coefficient	Standard	1			
	S	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Inferences about the Slope: t test

H _o :	$\beta_i = o$

$$H_1$$
: $\beta_i \neq 0$

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

$$\alpha = .05$$

$$t_{\alpha/2} = 2.1788$$

The test statistic for each variable falls in the rejection region (p-values < .05)

Decision:

Reject H_o for each variable

Conclusion:

There is evidence that both Price and Advertising affect Pie sales at $\alpha = .05$

