AD	

Award Number: DAMD-17-03-1-0414

TITLE: Susceptibility to radiation induced apoptosis and senescence in p53 wild type and p53 mutant breast tumor cells.

PRINCIPAL INVESTIGATOR: Gerald DeMasters

CONTRACTING ORGANIZATION: Virginia Commonwealth University Richmond VA 23298

REPORT DATE: July 2006

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 2. REPORT TYPE 1. REPORT DATE (DD-MM-YYYY) 3. DATES COVERED (From - To) 01/07/06 **Annual Summary** 1 Jul 2003 – 30 Jun 2006 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE **5b. GRANT NUMBER** Susceptibility to radiation induced apoptosis and senescence in p53 wild type and DAMD17-03-1-0414 p53 mutant breast tumor cells. **5c. PROGRAM ELEMENT NUMBER** 6. AUTHOR(S) 5d. PROJECT NUMBER **Gerald DeMasters** 5e. TASK NUMBER 5f. WORK UNIT NUMBER E-Mail: gewirtz@hsc.vcu.edu 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Virginia Commonwealth University Richmond VA 23298 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT: 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and vitamin D3 analogs such as EB 1089 potentiate the response to ionizing radiation in breast tumor cells. The current studies address the basis for this interaction by evaluating DNA damage and repair, the impact of interference with reactive oxygen generation, the involvement of p53 and caspase 3, signaling through c-myc, as well as the induction of senescence and multiple modes of cell death. EB 1089 failed to increase the extent of radiation-induced DNA damage or to attenuate the rate of DNA repair. The reactive oxygen scavengers N-acetyl cysteine and reduced glutathione failed to protect the cells from the promotion of cell death by EB 1089 and radiation. While MCF-7 cells expressing caspase 3 demonstrated significant apoptosis with radiation alone as well as with EB 1089 followed by radiation, EB1089 maintained its ability to confer susceptibility to radiation-induced cell killing, in large part by interference with proliferative recovery. In contrast, in breast tumor cells lacking p53, where radiation promoted extensive apoptosis and the cells failed to recover after radiation treatment, EB 1089 failed to influence the impact of radiation. EB 1089 treatment interfered with radiation-induced suppression of c-myc; however, induction of c-myc did not prevent senescence by radiation alone or radiation-induced cell death promoted by EB 1089. EB 1089 did not increase the extent of micronucleation, indicative of mitotic catastrophe, induced by radiation alone. However, EB 1089 did promote extensive autophagic cell death in the irradiated cells. Taken together, these studies suggest that the impact of EB 1089 treatment on the radiation response is related, in part, to enhanced promotion of autophagic cell death and in part to interference with the proliferative recovery that occurs with radiation alone in p53 wild-type breast tumor cells.

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

23

OF PAGES

15. SUBJECT TERMS

U

a. REPORT

16. SECURITY CLASSIFICATION OF:

Breast cancer, radiation, senescence, apoptosis, autophagy

c. THIS PAGE

b. ABSTRACT

U

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

USAMRMC

code)

Table of Contents

Introduction	4
Body	.4
Key Research Accomplishments	.4
Reportable Outcomes	4
Conclusions	4
Appended Page Proofs	5

Introduction

1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) and vitamin D₃ analogs such as EB 1089 potentiate the response to ionizing radiation in breast tumor cells. The current studies address the basis for this interaction by evaluating DNA damage and repair, the impact of interference with reactive oxygen generation, the involvement of p53 and caspase 3, signaling through c-myc, as well as the induction of senescence and multiple modes of cell death.

Body

The outcomes of the studies supported under this training grant are presented in the accompanying paper. The paper is in the form of PDF page proofs and therefore there are some additional extraneous pages that could not be removed.

Key Research Accomplishments

The key observations of our studies supported by Army Award DAMD17-03-1-0414 relating to vitamin D analogs and ionizing radiation are the following:

- 1. The vitamin D analog, EB 1089 (and by extension, vitamin D3), converts an accelerated senescence response to fractionated radiation to cell death.
- 2. The promotion of cell death by EB 1089 in irradiated cells attenuates and limits the extent of proliferative recovery, which could prove to have an impact on disease recurrence after irradiation.
- 3. The cell death response to EB 1089 followed by fractionated radiation is primarily one of autophagy, a mode of cell death that has only recently been recognized as a potentially important cell death pathway in solid tumors.

Reportable Outcomes

This work has been presented at the 2006 American Association for Cancer Research meeting in Washington, DC.

The current findings have also been accepted for publication in Molecular Cancer Therapeutics as a manuscript entitiled: Potentiation of radiation sensitivity in breast tumor cells by the vitamin D3 analog, EB 1089 through promotion of autophagy and interference with proliferative recovery.

This research will continue in Dr. Gewirtz's laboratory through the support of the American Institute for Cancer Research. The data generated by Gerald DeMasters provided the foundation for this grant application.

Dr. DeMasters has been accepted to the Eastern Virginia Medical School.

Conclusions From these studies we conclude that vitamin D and vitamin D analogs have the potential to improve the response to radiation therapy in breast cancer by promoting autophagic cell death and interfering with proliferative recovery of the tumor cell.

Subject: Proofs for your article (# MCT-06-0316) from Molecular Cancer Therapeutics are available for download

Dear Author:

You may access proofs of your article in Molecular Cancer Therapeutics, published by the American Association for Cancer Research, at the following URL:

http://www.sps-spitech.com/aacr/mct/06-0316/

Login: gewirtz@hsc.vcu.edu

Password: 97f114f7

The site contains 1 file. You will need Adobe Acrobat Reader software to read any PDF files. This free software is available at:

http://www.adobe.com/products/acrobat/readstep.html.

This file contains the following:

- -- Instructions for return
- -- Reprint Order form
- -- Proofreaders' Marks
- -- Page proofs for your article. The proof, including any gueries, consists of 13 pages.

After printing the PDF file, please read the page proofs carefully and

- 1) indicate changes or corrections in red ink in the margin of the page proofs and reiterate those corrections on a separate sheet;
- 2) answer all queries (Q1, Q2, Q3, etc.), which are called out in the margins and appear on the last page of the PDF proof;
- 3) proofread any tables and equations carefully;
- 4) check that any Greek characters, especially "gamma" and "mu", have translated correctly.
- 5) If you have color figures, you will receive hard-copy proofs of those figures 2-3 days via express delivery. Please check the hard-copy proofs for color match. The color on the printed page will closely match these proofs, not the PDF you see on your computer screen. Please *do not return these proofs* unless you have corrections and/or comments. If you do need to return them, please initial each proof where indicated before you return them. It is not necessary to retain your proof pages until you receive your color proofs. We ask that you please fax your page proofs to our office while you are waiting for your color proofs to arrive.

Within two business days, please send off original PDF print-out of page proofs to the editor whose address is given below. We account for weekends, holidays, and international mail in our schedule, but greatly appreciate it if international authors also fax pages to the number below.

If you make figure changes, electronic or print-quality hard copy figures are required. The Reprint Order form can be returned with your proof package or sent separately to the PO Box on the form.

If you have any problems or questions, please contact us. Always include your article no. (MCT-06-0316) on all correspondence.

Sincerely,

Ms. Michelle K. Lenker Fax: (215) 599-5646 Email: lenker@aacr.org

Alternate Contact: Robert Duggan
MCT Journal Manager
American Association for Cancer Research
615 Chestnut St., 17th Floor
Philadelphia, PA 19106-4404

Phone: (215) 440-9300 x208 Fax: (215) 599-5646 Email: <u>duggan@aacr.org</u>

NOTE: Failure to return proofs within two business days may cause publication of your article to be moved to a later issue at the discretion of the Editors.

Molecular Cancer Therapeutics Proofreader's Marks

Correction	Mark in Margin	Mark in Text	Corrected Text
Delete/Remove	٩	expression regulate the the expression	expression regulate the expression
Insert missing letter	Ç	carinoma	carcinoma
Insert space	*	lungcancer	lung cancer
Equalize spacing	✓	DNA damage and repair	DNA damage and repair
Close up		carcinoma	carcinoma
Transpose letters	(+)	caoner	cancer
Period	•	cell lines As a result, the	cell lines. As a result, the
Comma	^	As a result the expression	As a result, the expression
Colon	9	two cell lines LNCaP and	two cell lines: LNCaP and
Semicolon	Ŷ	Panel A, 85% panel B,	Panel A, 85%; panel B,
Apostrophe	v	Burkitts lymphoma	Burkitt's lymphoma
Quotation marks	4 4	a high-risk deletion	a "high-risk" deletion
Hyphen	=	a high risk deletion	a high-risk deletion
Short dash	7	45 weeks	4–5 weeks
Long dash	Ħ	in most cases except for	in most cases—except for
New paragraph	R	in most cell lines. One exception was the HCT	in most cell lines. One exception was the HCT
No new paragraph	(run in	in most cell lines. One exception was the HCT	in most cell lines. One exception was the HCT
Superscript	6	de-methylguanine	O ⁶ -methylguanine
Subscript	જે	н ∕2 0	H ₂ O
Capital letters	Caps	dna erbb1	DNA erbB1
Small caps	Sm. caps	d-cystathionine	D-cystathionine
Lowercase letters	le	LNC	LNCaP
Italics	(ital)	in vitro expression	in vitro expression
Roman (no italics)	Fom	in vitro expression	in vitro expression
Boldface	(F)	Results	Results

Molecular Cancer Therapeutics 2006

This is your pro forma invoice for publication fees and reprints
Please keep a copy for your records

THIS FORM MUST BE COMPLETED AND RETURNED WITHIN 48 HOURS, EVEN IF REPRINTS ARE NOT DESIRED. PAYMENT INFORMATION FOR PUBLICATION FEES IS REQUIRED. FAILURE TO COMPLY WILL DELAY PUBLICATION OF YOUR ARTICLE.

Title of Article:	2		
Y CI 1		M : // MCT	
Issue of Journal: No. of pages: Holor in Article: Yes/No (Please Circle)	Reprint #:	Manuscript #:MCT	
	INVOICE INFORM		
		wed. Only one invoice will be issued for	
	the total amount due.		
1. Page Charges: \$55 per page for pages 1-6: \$ 2. \$75 per each add'l page: \$	Invesion Address		
2. \$75 per each add'l page: \$	Invoice Address		
3. Color Reproduction (\$500 per figure): \$ 4. Total Publication Fees (Add lines 1- 3): \$	Institution		
4. Total Fublication Fees (Add lines 1- 3).			
Descript Conta (Defends about an array)	Department		
Reprint Costs (Refer to chart on reverse)	Street	State Zip	
6. Color in Reprints (\$1.00 per reprint): \$	Country	Fax	
Note: There is an additional fee to create black and white reprints from color articles. Please contact CJS at 800-407-9190 for more information.	Pnone	Fax	
7. Add't Chimping Addresses (\$24.00 coch).	E-IIIaII		
7. Add'l Shipping Addresses (\$34.00 each): \$	CIMPONIC INFORM	T. T. C. V.	
8. Subtotal (Add lines 5-7): \$	SHIPPING INFORM	IATION	
9. Taxes (see below)* 10. Total Reprint Costs (Add lines 8 and 9): \$	~		
	Shipping Address		
TEOTER A MOUNTE DATE (A 111) A 110) A	Name		
TOTAL AMOUNT DUE (Add lines 4 and 10):	Street		
*Add 6% Pennsylvania Sales Tax or 7% Canadian GST to line 7	City	State Zip	
if your order is to be shipped to Pennsylvania or Canada.	Country	Fax	
	Quantity Shipped	Fax	
PAYMENT INFORMATION			
supply requested information.	-	Evening	
		Address (\$34.00 for each add'l address)	
Charles must be neid in U.S. dollars and drawn on a U.S. hank	Name		
Checks must be part in 0.5. donars and drawn on a 0.5. bank.	Street		
True of Cond. VICA Mestagond Amer. Fra	City	State Zip	
-Type of Card: VISA Mastercard Amer. Exp. Card Number: Exp. Date:	Country	Fax	
-Card NumberExp. Date	Quantity Shipped	Fax	
-Signature:	Phone: Day	Evening	
-Cardholder name:Address (as it appears on monthly statement):			
-Address (as it appears on monthly statement).	Send your pro form	a invoice and payment made payable to:	
	American .	Association for Cancer Research	
		P.O. Box 631060	
Purchase Order	Bai	ltimore, MD 21263-1060	
- P.O. Number			
Note: Credit cards will be charged by Cadmus Professional Communications. PC will appear on your statement. Or fax this completed form to 1-410-820-9765.			
C:	Deter		
Signature:	Date:		

Signature is required. By signing this form, the author agrees to accept responsibility for the payment of reprint costs and/or all charges described in this document.

Molecular Cancer Therapeutics

2006 PUBLICATION FEES/ REPRINT ORDER FORM

THIS FORM MUST BE COMPLETED AND RETURNED WITHIN 48 HOURS, EVEN IF REPRINTS ARE NOT DESIRED. PAYMENT INFORMATION FOR PUBLICATION FEES IS REQUIRED. FAILURE TO COMPLY WILL DELAY PUBLICATION OF YOUR ARTICLE.

A. PUBLICATION FEES

Page Charges

Add \$55.00 per journal page for the first six pages in the article. Add \$75.00 for each additional page in the article.

Articles Published with Color Figures

If your article contains color, add \$500.00 for each color figure. Please state the exact color figure charge on the reverse side of this form and add to your payment accordingly.

B. REPRINT ORDER INFORMATION

Minimum order: 100 copies.

Black-and-white Reprint Prices

2006 Domestic Prices					
# of Pages	100	200	300	400	500
1-4	\$380	\$430	\$465	\$530	\$580
5-8	\$575	\$680	\$780	\$880	\$975
9-12	\$850	\$980	\$1100	\$1225	\$1350
13-16*	\$1095	\$1250	\$1400	\$1570	\$1715

2006 International Prices					
# of Pages	100	200	300	400	500
1-4	\$390	\$440	\$500	\$570	\$635
5-8	\$605	\$735	\$825	\$965	\$1080
9-12	\$875	\$1020	\$1180	\$1375	\$1480
13-16*	\$1135	\$1325	\$1515	\$1720	\$1910

^{*}For articles longer than 16 pages or for orders in excess of 500 copies, consult the CPC Reprint Department at 1-800-407-9190.

Color in Reprints

Add \$100 per 100 copies (i.e., \$1.00 per copy) to the cost of reprints if the article contains any color in addition to black.

Please note: A conversion fee will be added to orders for black and white reprints of articles published in color. Please contact Cadmus Professional Communications at 800-407-9190 for more information.

Shipping

The domestic reprint prices include delivery via UPS ground within the continental United States (1-5 days delivery). The international reprint prices include delivery via an expedited air service. All prices apply to orders of up to 500 copies. For orders in excess of 500 copies, contact the CPC Reprint Department at 1-800-407-9190.

Multiple Shipments

You may request that your order be shipped to more than one location. Please be aware that it will cost \$34.00 for each additional location.

Delivery

Your order will be shipped within 2 weeks of the journal print date. Allow extra time for delivery.

Tax Due

If your order is being shipped to Pennsylvania or Canada, add 6% Pennsylvania Sales Tax or 7% Canadian GST to the sum of the reprint, color in reprints, and additional shipping costs (see lines 7 and 8 under "Itemization of Costs" on reverse side of this form).

Ordering

Prepayment in the form of a check or credit card information must accompany the pro forma invoice provided on the reverse side of this form. Please return your pro forma invoice and payment made payable to:

American Association for Cancer Research P.O. Box 631060 Baltimore, MD 21263-1060

Or fax this completed form to 1-410-820-9765.

Potentiation of radiation sensitivity in breast tumor cells by the vitamin D_3 analogue, EB 1089, through promotion of autophagy and interference with proliferative recovery

Gerald DeMasters,¹ Xu Di,¹ Irene Newsham,² Robert Shiu,³ and David A. Gewirtz¹

¹Departments of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; ²Brain Tumor Center, Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas; and ³Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

1,25-Dihydroxyvitamin D₃ and vitamin D₃ analogues, such as EB 1089, potentiate the response to ionizing radiation in breast tumor cells. The current studies address the basis for this interaction by evaluating DNA damage and repair, the effect of interference with reactive oxygen generation, the involvement of p53 and caspase-3, signaling through c-myc, as well as the induction of senescence and multiple modes of cell death. EB 1089 failed to increase the extent of radiation-induced DNA damage or to attenuate the rate of DNA repair. The reactive oxygen scavengers N-acetyl-L-cysteine and reduced glutathione failed to protect the cells from the promotion of cell death by EB 1089 and radiation. Whereas MCF-7 cells expressing caspase-3 showed significant apoptosis with radiation alone as well as with EB 1089 followed by radiation, EB 1089 maintained its ability to confer susceptibility to radiation-induced cell killing, in large part by interference with proliferative recovery. In contrast, in breast tumor cells lacking p53, where radiation promoted extensive apoptosis and the cells failed to recover after radiation treatment, EB 1089 failed to influence the effect of radiation. EB 1089 treatment interfered with radiationinduced suppression of c-myc; however, induction of c-myc did not prevent senescence by radiation alone or radiation-induced cell death promoted by EB 1089. EB 1089 did not increase the extent of micronucleation, indicative of mitotic catastrophe, induced by radiation alone. However, EB 1089 did promote extensive autophagic cell death in the irradiated cells. Taken together, these studies suggest that the effect of EB 1089 treatment on the radiation response is related in part to enhanced promotion of autophagic cell death and in part to interference with the proliferative recovery that occurs with radiation alone in p53 wild-type breast tumor cells. [Mol Cancer Ther 2006;5(11):1–12]

Introduction

Apart from the established role of vitamin D_3 in the regulation of calcium homeostasis, numerous studies have shown the metabolically active form of vitamin D_3 , 1,25-dihydroxyvitamin D_3 [1,25(OH)₂ D_3], to have strong growth-inhibitory effects on a variety of tumor cell lines (1). Because hypercalcemia limits the concentrations of vitamin D_3 achievable in the clinic, several vitamin D_3 analogues, such as EB 1089 (seocalcitol), have been synthesized with reduced hypercalcemic activity. Although it is uncertain whether EB 1089 will itself be used in the clinic, the current studies use this compound as a prototype of vitamin D_3 analogues that could ultimately contribute to the effectiveness of conventional drug therapies.

Previous work from this laboratory has shown that vitamin D_3 [1,25(OH)₂ D_3 ; cholecalciferol] and vitamin D_3 analogues, such as EB 1089 and ILX23-7553, enhance the response to both ionizing radiation (IR) and the antitumor drug, Adriamycin, in breast tumor cells (2–5); for IR, the effects of EB 1089 were also shown to occur in tumor cell xenografts (6). These findings are consistent with previous work by several research groups showing that vitamin D_3 and/or its analogues can potentiate the sensitivity to chemotherapeutic drugs in various experimental tumor systems (7–12).

Exposure of MCF-7 breast tumor cells to IR (either a single dose of 10 Gy or five fractionated doses of 2 Gy each) results in a prolonged state of growth arrest that has characteristics of premature or accelerated senescence (5, 13); this state of senescence arrest is followed by proliferative recovery in at least a subset of the cell population (5, 13). Exposure of the cells to EB 1089 before radiation promotes extensive cell death and markedly delays (but does not fully abrogate) the promotion of senescence, which is evident in residual surviving cells; furthermore, prior exposure to EB 1089 attenuates and delays the extent of proliferative recovery (5).

Received 5/26/06; revised 7/27/06; accepted 9/11/06.

Grant support: American Institute for Cancer Research grant 02-A068-REN, Department of Defense Predoctoral Fellowship grant DAMD 17-03-1-0414 (G. DeMasters), and NIH grant P30 CA16059 (flow cytometry).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: David A. Gewirtz, Department of Medicine, Virginia Commonwealth University, P.O. Box 980230, Richmond, VA 23298. Phone: 804-828-9523; Fax: 804-828-8079.

E-mail: gewirtz@hsc.vcu.edu

Copyright © 2006 American Association for Cancer Research. doi:10.1158/1535-7163.MCT-06-0316

Multiple mechanisms have been shown to mediate the genomic, receptor-mediated based actions of vitamin D₃ and its analogues in the tumor cell (1, 14). The current studies were done in an effort to identify the specific signaling pathways responsible for the observed interactions of vitamin D₃ and its analogues with radiation.

In view of the fact that EB 1089 converts a senescence response, which is essentially growth arrest, to one of cell death, the present studies were designed to focus on elements that are thought to be involved in the regulation of both growth arrest and cell death pathways. These include DNA damage and repair, the generation of reactive oxygen species (ROS), expression of the oncogene c-myc, and the tumor suppressor p53. In addition, this work was designed to address the multiple modes of cell death that could mediate the actions of EB 1089 in irradiated cells, specifically mitotic catastrophe and autophagy as well as apoptosis.

Materials and Methods

Materials

RPMI 1640 with L-glutamine, trypsin-EDTA (1×; 0.05% trypsin, 0.53 mmol/L EDTA-4 Na), penicillin/streptomycin (10,000 units/mL penicillin and 10 mg/mL streptomycin), and fetal bovine serum were obtained from Life Technologies (Gaithersburg, MD). Defined bovine calf serum was obtained from Hyclone Laboratories (Logan, UT). EB 1089 was provided by Dr. Lise Binderup of Leo Pharmaceuticals (Denmark). Reagents used for the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay (terminal transferase, reaction buffer, and fluoresceindUTP) were purchased from Boehringer Mannheim (Indianapolis, IN). X-gal was obtained from Gold Biotechnology (St. Louis, MO). The following materials were obtained from Sigma Chemical (St. Louis, MO): trypan blue solution, formaldehyde, acetic acid, albumin bovine (bovine serum albumin), N-acetyl-L-cysteine, reduced glutathione (GSH), Q2 4',6-diamidino-2-phenylindole (DAPI), DMSO, propidium iodide, and bisbenzimide (Hoescht no. 33258). Acridine orange was purchased from Invitrogen (Eugene, OR). Z-VAD-fmk was purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell Lines

The p53 wild-type (WT) MCF-7 human breast tumor cell line was obtained from National Cancer Institute (Frederick, MD). MCF-7/E6 cells were a gift from Dr. Lynne Elmore of the Department of Pathology at Virginia Commonwealth University (Richmond, VA). MCF-7 cells engineered to express caspase-3 and MCF-7/35im cells with doxycycline-inducible myc have been described previously (refs. 13 and 15, respectively).

Cell Culture and Treatment

All cell lines were grown from frozen stocks in basal RPMI 1640 supplemented with 5% FCS, 5% bovine calf serum, 2 mmol/L L-glutamine, and penicillin/streptomycin (0.5 mL/100 mL medium) at 37°C under a humidified, 5% CO2 atmosphere. Cells were exposed to various doses of γ -IR using a ¹³⁷Ce irradiator. In the indicated studies,

cells were exposed to 100 nmol/L EB 1089 for 72 hours before irradiation. This sequence of exposure was based on the studies by Wang et al. (16) and our own previous work (2-5), which have shown a requirement for prolonged incubation with vitamin D₃ or its analogues to promote sensitivity to Adriamycin and irradiation.

In the cases where the radiation doses were fractionated, five fractions of 2 Gy radiation were administered on three consecutive days (two fractions separated by 6 hours on the first 2 days followed by a fifth dose on the 3rd day). Cells were routinely subcultured by trypsinization (0.25% trypsin, 0.03% EDTA, Life Technologies) on reaching confluence. All experiments were done using cells during logarithmic growth and examined by microscope for bacterial or fungal contamination before experimental analysis. In addition, all cell lines were determined to be free of Mycoplasma.

Determination of Viable Cell Number

Cell viability was determined by trypan blue exclusion at various time points beginning 24 hours after the last dose of radiation. Cells were harvested by trypsinization, stained with 0.4% trypan blue dye, and counted using phasecontrast microscopy.

Terminal Deoxynucleotidyl Transferase – Mediated dUTP Nick End Labeling Assay for Apoptosis

The method of Gavrielli et al. (17) was used as an independent assessment of apoptotic cell death in combined cytospins containing both adherent and nonadherent cells. Cells were fixed and the fragmented DNA in cells undergoing apoptosis was detected using the In situ Cell Death Detection kit (Boehringer Mannheim), where strand breaks are end labeled with fluorescein-dUTP by the enzyme terminal transferase. Cells were then washed, mounted in Vectashield, and photographed using a Nikon Q4 fluorescent microscope.

Propidium Iodide Staining and Flow Cytometry

After treatment with EB 1089 and/or fractionated radiation, cells were harvested by trypsinization, pelleted by centrifugation, and washed twice with PBS. Cellular DNA was labeled by resuspending 1×10^6 cells in 1 mL propidium iodide staining solution (3.8 mmol/L sodium citrate, 0.05 mg/mL propidium iodide, 0.1% Triton X-100, and 9K units/mL RNase B). Cells were analyzed for DNA content with a Beckman Coulter XL-MCL flow cytometer. Q5 A minimum of 25,000 events was collected for each sample.

Alkaline Unwinding Assay

Bulk damage to DNA was assessed by alkaline unwinding following drug and radiation exposure as described in detail previously (3). Before radiation exposure, cells were harvested by trypsinization and washed in ice-cold PBS. Approximately 7×10^6 cells per condition were then resuspended in cold PBS and irradiated on ice. Cells were maintained on ice until assessment for DNA damage following the procedure described by Kantor and Schwartz (18). In studies assessing DNA repair, the cells were resuspended in fresh medium and irradiated at room temperature. The cells were then incubated at 37° C for 4 hours before evaluation of DNA damage.

β-Galactosidase Histochemical Staining

pH (6.0)-dependent β-galactosidase expression was used as a marker for senescence (19). At the appropriate times after treatment, cells were washed twice with PBS and fixed with 2% formaldehyde and 0.2% glutaradehyde for 5 minutes. The cells were then washed again with PBS and stained with a solution of 1 mg/mL 5-bromo-4-chloro-3inolyl-β-galactosidase in dimethylformamide (20 mg/mL stock), 5 mmol/L potassium ferrocyanide, 5 mmol/L potassium ferricyanide, 150 mmol/L NaCl, 40 mmol/L citric acid/sodium phosphate (pH 6.0), and 2 mmol/L MgCl₂. Following overnight incubation at 37°C, the cells were washed twice with PBS and photographed with a light microscope.

Western Blot Analysis

After the indicated treatments, cells were washed in PBS and lysed using 100 to 200 µL lysis buffer containing protease inhibitors for 30 minutes on ice. Protein concentrations were determined by the Lowry method and equal aliquots of protein (10 or 20 µg) were separated using 15% SDS-PAGE. Proteins were transferred onto a nitrocellulose membrane and blocked in TBS-Tween 20 buffer containing 5% nonfat dry milk. Membranes were immunoblotted with respective antibodies and then incubated with horseradish peroxidase-conjugated secondary antibody. Proteins were visualized using an enhanced chemiluminescence kit from Q6 Pierce.

Detection of 53BP1 Foci by Immunohistochemistry

MCF-7 cells were seeded in eight-well chamber slides $\mathbf{Q}7$ 24 hours before drug or radiation exposure (20). At the appropriate times after irradiation, cells were rinsed twice with PBS and then fixed with 3.7% paraformaldehyde in PBS for 10 minutes at room temperature. Cells were washed twice more with PBS and permeabilized in 0.5% NP40 in PBS for 10 minutes at room temperature. After two more washings with PBS, cells were blocked for 30 minutes in PBS with gelatin. The chamber slide basket was then removed before incubation with primary antibody.

53BP1 primary antibody was added onto cells, and slides were covered with parafilm. After overnight incubation at 4° C, slides were washed 3 \times 5 minutes with PBS. The slides were then incubated with fluorescein-conjugated secondary antibody in PBS with gelatin for 1 hour. Following this 1 hour of incubation, slides were washed 3×5 minutes with PBS. Vectashield with DAPI was added to slides and coverslips were placed over cells. 53BP1 foci were visualized using an inverted fluorescent microscope. The average number of foci per cell was determined by dividing the total number of cells by the total number of foci for three representative fields per treatment condition.

Detection of Reactive Oxygen Generation

Dichlorofluorescein diacetate was used to detect ROS following exposure to EB 1089 and radiation (21). MCF-7 cells were seeded in T-25 flasks and treated as described in the cell viability study above. At the appropriate times after treatment, growth medium was removed and cells were incubated for 30 minutes with medium containing 5 µmol/L dichlorofluorescein diacetate. After 30 minutes, medium containing dichlorofluorescein diacetate was removed, and fresh medium was added to the flasks. Fluorescence was immediately visualized with an inverted fluorescent microscope.

Detection of Autophagic Cells by Staining with Acridine Orange

As a marker of autophagy, the volume of the cellular acidic compartment was visualized by acridine orange staining (22). Cells were seeded in T-25 flasks and treated as described above for the cell viability study. At the appropriate time points following treatment, cells were incubated with medium containing 1 µg/mL acridine orange (Molecular Probes, Eugene, OR) for 15 minutes. After 15 minutes, the acridine orange was removed and fluorescent micrographs were taken using an inverted fluorescent microscope. The number of cells with increased acidic vesicular organelle was determined by counting at Q8least three representative fields per treatment condition.

Scoring of Micronuclei as an Indication of Mitotic Catastrophe

The induction of mitotic catastrophe was assessed by the formation of micronuclei (23). MCF-7 cells were seeded on glass coverslips and treated with EB 1089, 5×2 Gy IR, or EB 1089 followed by 5×2 Gy IR. At the appropriate times after irradiation, the cells on the coverslips were fixed with 3.7% paraformaldehyde in PBS for 10 minutes at room temperature. Cells were then fixed to glass slides using DAPIcontaining Vectashield mounting medium. Pictures were taken using a Zeiss laser scanning microscope. Micronuclei were scored by first counting the percentage of binucleated cells. Micronuclei formation was then expressed as the fraction of binucleated cells, which contained micronuclei.

Statistical Analysis

Statistical differences were determined using StatView statistical software. Comparisons were made using a oneway ANOVA followed by Fisher's protected least significance difference post-hoc test. $Ps \le 0.05$ were taken as statistically significant.

Results

I. Influence of EB 1089 on radiation-induced DNA damage and DNA repair

We have reported previously that EB 1089 fails to increase DNA damage induced by IR in MCF-7 cells (3). However, although no difference was evident in the extent of initial DNA damage by radiation alone and radiation preceded by EB 1089, the possibility remained that EB 1089 might influence the rate of DNA repair. Furthermore, the alkaline unwinding assay used to generate the previous data does not discriminate between single-strand breaks and double-strand breaks in DNA, where double-strand breaks are thought to be the lesion responsible for the cytotoxic effects of IR (24). We therefore examined whether the induction of DNA double-strand breaks by IR might be enhanced by EB 1089. Both alkaline unwinding (18) and 53BP1 foci formation (20) were used for assessment of DNA damage and repair.

Figure 1 shows the results of alkaline unwinding studies to assess the extent of bulk DNA damage and repair after radiation alone or EB 1089 followed by radiation. A single 10 Gy dose of radiation was used to increase the sensitivity of the assay, as the influence of EB 1089 on the radiation response is evident either with a single 10 Gy dose or with five fractionated doses of 2 Gy each (3, 5). The F value is an indicator of DNA damage, where an F value of 1 reflects intact (undamaged) DNA (18). Figure 1 indicates that the initial DNA damage induced by IR is not altered by prior exposure of the cells to EB 1089, consistent with our previous findings (3). In addition, the DNA damage is fully repaired within 4 hours with either radiation alone or with EB 1089 preceding the irradiation, indicating that EB 1089 does not influence the apparent rate or extent of DNA repair.

Figure 2 presents the results of studies assessing 53BP1 foci formation in MCF-7 cells exposed to either 2 Gy radiation alone or radiation preceded by treatment with 100 nmol/L EB 1089. A lower dose of radiation was used in these studies to allow for detection of a possible increase in damage with EB 1089. (In other studies, not shown, we have shown potentiation of the response to radiation by EB 1089 at a dose of 2 Gy). The initial induction of foci was assessed at 6 hours after irradiation. Figure 2A and B indicates that there was approximately one focus point in each control cell and that EB 1089 alone did not affect the number of foci formed. EB 1089 followed by radiation increased 53BP1 formation to an average of 4.5 foci per cell, a value that was not significantly different from that induced by radiation alone. These findings indicate that EB 1089 does not increase the extent of dsDNA damage induced by radiation, which is consistent with the data presented in Fig. 1.

To evaluate the effect of EB 1089 on repair of doublestrand breaks in DNA, the decline in 53BP1 foci was monitored over a period of 48 hours. Figure 2A and B shows that the rate of decline in foci was essentially identical in cells treated with radiation alone and in cells exposed to EB 1089 before irradiation, indicating that the

Figure 1. Assessment of DNA damage and repair by alkaline unwinding. MCF-7 cells were exposed to 10 Gy irradiation with and without EB 1089 (EB) pretreatment. Cells were assessed for irradiation-induced DNA fragmentation immediately after irradiation as well as 4 h after irradiation. Columns, average of three independent experiments; bars, SE. *, significantly different from control, P < 0.05.

rate of DNA repair (presumptively the repair of doublestrand breaks) was unaltered by EB 1089. Again, these data are consistent with the findings relating to the overall repair of DNA damage monitored by alkaline unwinding as shown in Fig. 1.

II. ROS Generation in Potentiation of the Response to Radiation by EB 1089 in the Breast Tumor Cell

Several studies have implicated the generation of ROS in the enhancement of the response to the antitumor drug, doxorubicin, and tumor necrosis factor by 1,25(OH)₂D₃ as well as by vitamin D₃ analogues (25, 26). To determine whether EB 1089 might influence reactive oxygen generation in cells exposed to IR, MCF-7 cells were treated with 10 Gy radiation alone or radiation preceded by EB 1089; dichlorofluorescein diacetate was used as a fluorescent probe to measure overall oxidative stress, which would reflect ROS generation in the cells. Figure 3 indicates that minimal ROS was detected after radiation alone; in contrast, when the cells were first treated with EB 1089, a significant degree of ROS was detected 72 hours after irradiation. Figure 3 further shows that GSH blocks the generation of ROS by EB 1089 plus radiation. (It should be emphasized that these experiments are not measuring direct ROS generation by irradiation but ROS that could be the consequence of, for example, delayed DNA damage effects on mitochondrial function).

To determine whether ROS generation might contribute to the radiation-induced cell death promoted by EB 1089, cell viability was determined after either radiation alone or EB 1089 followed by radiation in the presence of GSH. As shown in Fig. 3B, the cell death that occurred in the cells exposed to EB 1089 followed by radiation was not attenuated by the GSH treatment. Similarly, the free radical scavenger, N-acetyl-L-cysteine, blocked free radical generation but failed to alter the promotion of cell death in cells treated with EB 1089 before irradiation (data not shown). As a positive control, both GSH and N-acetyl-L-cysteine were shown to interfere with the cytotoxicity of H₂O₂ (data not shown).

III. Influence of Caspase-3 Expression on the Differential Response to Radiation and EB 1089 followed by Radiation in the MCF-7 Breast Tumor Cells

We have reported previously that exposure to the vitamin D₃ analogue EB 1089, before either radiation or Adriamycin, promotes apoptosis in MCF-7 breast tumor cells in culture (2-5); the combination of EB 1089 with radiation also promotes apoptosis in breast tumor xenografts (6). However, apoptotic cell death is unlikely to play a significant role in the response to this sequence of treatment given that the maximal extent of apoptosis observed at any given time point represents no >6% of the cell population (5). This low level of apoptosis may relate, in part, to the fact that MCF-7 cells do not express the executioner caspase, caspase-3 (27). Although we have shown previously that EB 1089 potentiates the response to radiation in ZR-75 breast tumor cells that express caspase-3 (3), we deemed it important to assess the nature of the temporal response in MCF-7 cells engineered to express caspase-3.

O10

Figure 2. Assessment of DNA damage and repair by 53BP1 foci formation. MCF-7 cells were exposed to 2 Gy IR with and without pretreatment with EB 1089. At 6, 24, and 48 h after irradiation, cells were fixed and 53BP1 foci were visualized with immunohistochemistry as described in Materials and Methods. A, pictures were taken with the blue (488 nmol/L) excitation light. Magnification, $\times 20$. \boldsymbol{B} , average number of foci per cell. Columns, average of three representative fields per treatment condition; bars, SE. *, significantly different from untreated control, P < 0.05. Similar results were obtained in a replicate experiment.

Figure 4A shows that the response to radiation alone in MCF-7/caspase-3 cells was quite similar to that observed in the WT MCF-7 cells (5), albeit with increased cell killing by radiation alone. Initially, cell proliferation was only slightly perturbed as the cells continued to divide, albeit at a slightly reduced rate compared with controls (data not shown); subsequently, a significant degree of cell death was detected, with substantial apoptosis evident 3 days after the last radiation dose (~20% apoptosis based on cell cycle analysis; data not shown). In addition, similar to our observations in WT MCF-7 cells, radiation promoted senescence in the MCF-7/caspase-3 cells (Fig. 4B). Finally, and again as with the WT MCF-7 cells, proliferative recovery was evident between 12 to 15 days after irradiation.

Figure 4A indicates that treatment of the cells with EB 1089 before radiation eliminated the early proliferative phase and furthermore resulted in an immediate decline in cell number, similar to our previous observations in WT MCF-7 cells (5). Senescence was detected in the residual cell population (Fig. 4B and C), again consistent with our findings in WT MCF-7 cells (5). It should be noted that no senescent cells were observed in untreated cell cultures or cells treated with EB 1089 alone (data not shown). The extent of radiation-induced apoptosis was slightly increased by EB 1089 at both 24 (2.7–6.4%) and 72 (21.8–27.9%) hours after radiation (data not shown); more importantly, EB 1089 seemed to entirely eliminate the capacity of the cells to recover proliferative capacity. As a consequence, there was a pronounced reduction in viable cell number under the conditions of EB 1089 preceding irradiation compared with radiation alone.

IV. Response to IR and EB 1089 followed by IR in MCF-7 Cells Lacking p53

In previous studies, we reported that potentiation of the response to IR by EB 1089 is dependent on the cells expressing functional p53 (3, 4); however, the basis for the lack of effect of EB 1089 on sensitivity to radiation in cells that are either mutant or null for p53 was not understood. To more definitely characterize the nature of the response in cells lacking functional p53, we evaluated the temporal response to both IR and EB 1089 followed by IR in MCF-7/ E6 cells with attenuated p53 function. The absence of radiation-induced increases of both p53 and its transactivational target, p21, was confirmed by Western blotting (data

Figure 5 shows that the MCF-7/E6 cells exposed to radiation alone initially respond similarly to the WT MCF-7 cells and continuing to proliferative; however, subsequently, cell death occurs but without evidence for proliferative recovery. In response to EB 1089 followed by radiation, the MCF-7/E6 cells undergo extensive cell death. Consequently, after 7 days, there is no detectable difference in cell number with radiation alone and with EB 1089 preceded by radiation. IR alone promotes apoptosis in MCF-7/E6 cells, but EB 1089 does not increase the extent of radiation-induced apoptosis (data not shown). Taken together with our findings in both the WT MCF-7

Figure 3. Effects of GSH on the response to EB 1089 plus 10 Gy IR. MCF-7 cells were exposed to 10 Gy IR with or without prior treatment with 100 nmol/L EB 1089 for 72 h. Where indicated, cells were also exposed to GSH (5 mmol/L) for 3 h before irradiation. A, ROS generation was determined by dichlorofluorescein diacetate fluorescence. B, cell viability was determined at the indicated times after IR. Viability is expressed as a percentage of initial cell number. Points, average of two independent experiments; bars, range.

and the MCF-7/caspase-3 cells, these studies suggest that the sensitizing effects of EB 1089 on the response to IR seem to be related primarily to interference with the proliferative recovery that is evident in cells expressing functional p53.

V. The Potential Involvement of c-myc in Senescence by Radiation and Cell Death by EB 1089 Plus Radiation

MCF-7 cells treated with IR or the antitumor drug, Adriamycin, undergo a senescent-like growth arrest (5, 13, 28). In previous work, we determined that both Adriamycin and IR suppress the expression of the c-myc oncogene (29-31). Furthermore, the extent of c-myc suppression was found to correlate quite closely with growth arrest (30, 31). Consequently, it seemed possible that drugand radiation-induced down-regulation of c-myc might promote senescence; furthermore, we postulated that pretreatment with the vitamin D₃ analogue EB 1089 might interfere with the down-regulation of c-myc, thereby preventing senescence and promoting cell death (5).

To determine whether c-myc might be differentially regulated after treatment with radiation alone versus radiation preceded by EB 1089, MCF-7 cells were treated with 10 Gy IR, 100 nmol/L EB 1089, or 100 nmol/L EB 1089 followed by 10 Gy IR. Figure 6A (top) indicates that 10 Gy IR causes suppression of the c-myc protein after both 24 and 48 hours, whereas pretreatment with EB 1089 attenuates the capacity of radiation to suppress c-myc expression.

The experiments presented in Fig. 6A raised the possibility that maintenance of c-myc expression could convert the senescence response to one of cell death. To address this question, studies were designed using MCF-7/ 35im cells with a doxycycline-inducible myc transgene (15). Figure 6A (bottom) shows that 1 μg/mL doxycycline induces c-myc in the MCF-7/35im cells and that 10 Gy irradiation fails to suppress the doxycycline-induced myc expression. The resurgence of c-myc levels is most pronounced at 72 hours, an effect that has been reproduced in similar studies using Adriamycin (data not shown).

MCF-7/35im cells were treated with 10 Gy irradiation in the absence or presence of 1 µm/mL doxycycline and cell viability was determined as a function of time by trypan blue exclusion. Figure 6B indicates that the 35im cells, in which c-myc levels were maintained with doxycycline, respond to radiation in an essentially identical manner as the MCF-7 cells where c-myc was suppressed by irradiation, with an initial period of continued proliferation followed by growth arrest. Figure 6C further indicates that $\,\,\mathrm{Q}11\,$ the growth arrest response in the MCF-7/35im cells had characteristics of senescence (β-galactosidase expression, enlarged and flattened cells), both with and without c-myc induction.

To determine whether maintenance of c-myc levels by EB 1089 interferes with the promotion of radiation-induced cell death, the effects of EB 1089 followed by irradiation were evaluated in the c-myc-inducible cells. Figure 6B shows that the temporal response to EB 1089 plus irradiation was identical with and without induction of c-myc by

Figure 4. Influence of EB 1089 on the response to radiation in MCF-7/caspase-3 cells. Cells were exposed to 5 × 2 Gy IR or EB 1089 followed by 5 × 2 Gy IR. A, viable cell number was determined by exclusion of trypan blue at the indicated days following the initiation of radiation exposure. Arrows, days on which cell irradiation was done. Points, average of three experiments; bars, SE. B, at the indicated times after IR, cells were assessed for β-galactosidase expression as described in Materials and Methods. Pictures taken with inverted microscope at ×20. C, percentage of β-galactosidasepositive cells. Columns, average of four representative fields taken from two independent experiments; bars, SE. *, significantly different from untreated control, P < 0.05; #, combination treatment is significantly different from radiation alone, P < 0.05.

doxycycline. Taken together, these studies seem to rule out a central role for c-myc in either the senescence response to radiation or the cell death response in cells exposed to EB 1089 before irradiation.

VI. Assessment of Mitotic Catastrophe in Response to Radiation Alone and EB 1089 Plus Radiation

Our previous studies suggested that apoptosis is likely to play only a small role in the cell death response to EB 1089 plus radiation (5). Other forms of cell death are known to occur after both EB 1089 and radiation treatment, including mitotic catastrophe (32) as well as autophagy (33, 34). To characterize this nonapoptotic cell death, the role of mitotic catastrophe and autophagy were assessed after EB 1089 plus radiation treatment.

Mitotic catastrophe is characterized by the formation of micronuclei (32). These can be visualized as decondensed chromatin in small micronuclei lying outside of the main nucleus in cells that have attempted but failed to divide. To determine the role of mitotic catastrophe in the response to fractionated radiation as well as whether EB 1089 may increase radiation-induced mitotic catastrophe, MCF-7 cells were grown on glass coverslips and exposed to 5×2 Gy IR with and without prior exposure to 100 nmol/L EB 1089 for 72 hours. At 1, 3, 5, and 7 days after irradiation, cells were stained with DAPI to visualize their nuclear content and micrographs were taken using a laser scanning microscope. As shown in the representative experiment presented in Fig. 8A, micronuclei were observed in cells treated with 5×2 Gy as well as EB 1089 plus 5×2 Gy. There are clearly small micronuclei lying outside of the main nuclei in these binucleated cells, which are not visible in the micrographs taken of untreated control cells (Fig. 7A) or when cells were exposed to EB 1089 alone (data not shown). The micronuclei were scored as described in Materials and Methods, and the percentage of micronucleated binucleated cells is presented in Fig. 7B. One day after exposure to radiation, ~75% of the binucleated cells contain micronuclei. This suggests that the cells that have attempted to undergo mitosis at this time have subsequently undergone mitotic catastrophe. The percentage declines to below 50% by day 7 after irradiation, as more cells are able to successfully complete mitosis. EB 1089 does not seem to alter the

Figure 5. The influence of EB 1089 on the temporal response to fractionated radiation in MCF-7/E6 cells. Viable cell number was determined by exclusion of trypan blue at indicated days following the initiation of radiation exposure. Arrows, days on which irradiation was done. Points, average of two to four experiments; bars, SE.

Figure 6. Effects of EB 1089 and 10 Gy on the expression of myc in MCF-7 cells. A, MCF-7/WT and MCF-7/35im cells were treated with 10 Gy IR and the expression of myc was assessed by Western blotting at the indicated time points after irradiation. Where indicated, the MCF-7/35im cells were also coincubated with 1 µg/mL doxycycline (Dox). The expression of actin was used as a loading control. B, cell viability was determined at the indicated time points following irradiation by trypan blue exclusion. Points, average of two independent experiments; bars, range. C, at the indicated times after irradiation, cells were assessed for β-galactosidase expression as described in Materials and Methods. Pictures were taken with an inverted

response to radiation in terms of the induction of mitotic catastrophe. The percentage of micronucleated binucleates for the combination of EB 1089 plus radiation is essentially the same as radiation alone (Fig. 7B).

Although a high percentage of the cells that continue through mitosis subsequently undergo mitotic catastrophe after either radiation or EB 1089 plus radiation, the percentage of mitotic cells (as measured by the percentage of binucleated cells) never exceeds 20% of the total cell population. This indicates that the percentage of cells that undergo mitotic catastrophe is a small fraction of the overall cell population. These data further suggest that mitotic catastrophe likely plays a relatively limited role, if any, in the overall cell death response following either fractionated irradiation alone or the combination of EB 1089 plus radiation.

VII. EB 1089 Increases Radiation-Induced Autophagy

To determine whether autophagy might contribute to the effects of EB 1089 on the response to IR (22, 33), cells were treated with EB 1089, 5×2 Gy IR, or the combination of EB 1089 followed by 5×2 Gy IR, and the lysosomotropic agent acridine orange was used as a marker for detecting the acidic compartments of the cells. When acridine orange encounters an acidic environment, such as a lysosome or autophagosomes, its fluorescence changes from green to red (22, 35). As shown in Fig. 8, vital staining of MCF-7 cells with acridine orange revealed the appearance of acidic vesicular organelle (after exposure to both 5×2 Gy and EB 1089 followed by 5 \times 2 Gy IR. The 4-day exposure to 2.5 µmol/L tamoxifen was used as a positive control, as this agent has been shown previously to induce autophagy in MCF-7 cells (33). Dye in the acidic vesicular organelle fluoresces bright red, whereas the nucleus and cytoplasm stain predominantly green. Fig. 8A and B indicates that the increase in acidic vesicular organelle occurred earlier and to a much greater extent in irradiated cells pretreated with EB 1089 compared with cells treated with radiation alone. Over 50% of the cells treated with the combination of EB 1089 plus radiation had increases in acidic vesicular organelle, similar to that detected with exposure to tamoxifen. Untreated control cells as well as cells treated with EB 1089 alone show minimal red fluorescence. These data indicate that EB 1089 increases radiation-induced autophagy.

Discussion

DNA Damage and Repair

The current studies using alkaline unwinding and 53BP1 foci formation support the conclusion that EB 1089 fails to increase the extent of DNA damage induced by radiation. The current work also indicates that EB 1089 does not interfere with DNA repair. Taken together, these studies strongly suggest that the cell death induced by radiation

under conditions where radiation is preceded by exposure to EB 1089 is likely to be a consequence of alterations in cell signaling pathways downstream of the initial induction of DNA damage.

Generation of Free Radicals

In view of several reports indicating a role for reactive oxygen in potentiation of the response to antitumor compounds, such as doxorubicin (25) and tumor necrosis factor (26) by vitamin D₃ and its analogues, we evaluated both the generation of ROS by EB 1089 and radiation as well as the effect of free radical scavengers on the tumor cell response to treatment. We clearly detected ROS generation in cells exposed to EB 1089 before irradiation.

Figure 7. Detection of micronuclei in MCF-7 cells treated with radiation alone and radiation preceded by EB 1089. MCF-7 cells were treated with 100 nmol/L EB 1089, 5 imes 2 Gy IR, or EB 1089 followed by 5 imes 2 Gy IR. Micronuclei formation was assessed by DAPI staining. A, pictures were taken using a Zeiss laser scanning microscope. Arrows, micronuclei. Magnifications, $\times 40$ (control) and $\times 100$ (IR and EB 1089 + IR). **B,** at the indicated days after irradiation, the percentage of binucleated cells (CB) and the percentage of binucleated cells with micronuclei (CB-MN/CB) were determined as described in Materials and Methods. Points, average of two independent experiments; bars, range.

It should be emphasized that this is not ROS generation associated with the initial damage to DNA but subsequent and delayed ROS that is presumably related to mitochondrial dysfunction (36). This suggests that ROS are not a direct consequence of radiation interaction with the tumor cell but are likely to be part of a signaling response pathway. The free radical scavengers, N-acetyl-L-cysteine and GSH, blocked the generation of reactive oxygen but failed to alter the temporal response after EB 1089 followed by radiation. Based on the lack of protection by free radical scavengers as well as the relatively low level of ROS generation, we conclude that the enhanced response to radiation that is promoted by EB 1089 is unlikely to be a consequence of increased reactive oxygen.

Senescence and Apoptosis

We have reported recently that IR (both a single dose of 10 Gy as well as a cumulative dose of 10 Gy from fractionated doses of 2 Gy) promotes an accelerated senescence response in MCF-7 breast tumor cells (5, 13). One possible explanation for this observation is that senescence is a default response in cells that are refractory to apoptosis as a consequence of the lack of caspase-3. However, we as well as others have reported accelerated senescence in response to chemotherapy and radiation in cells expressing functional caspase-3 (37, 38). Furthermore, our current work indicates that senescence is the primary response to radiation alone even in cells expressing caspase-3.

The MCF-7/caspase-3 cells also have a similar response to EB 1089 plus radiation as the parental MCF-7 cells, that of cell death. Again, as with parental MCF-7 cells, senescence is evident in the residual surviving cell population. Perhaps of greatest interest is the fact that EB 1089 essentially obliterates the proliferative recovery observed in cells exposed to radiation alone. This suggests that the effect of EB 1089 treatment on the radiation response is also likely to be evident in cells that are highly "apoptotic competent," such as the MCF-7 cells expressing functional caspase-3.

c-myc

c-myc is an oncogene that is critically important for several signal transduction pathways involved in differentiation, growth arrest, and cell death (39). Under physiologic conditions, c-myc may promote cellular replication by activating positive regulators of cell division, such as cyclin D1 and D2, as well as cyclin-dependent kinase 4 and E2F2 (40). c-myc may also suppress growth-inhibitory genes, such as the cyclin-dependent kinase inhibitors p21, p27, and p19 (41).

c-myc also seems to be an important component of the signal transduction pathways responsible for the DNA damage response. c-myc has been implicated in the cell cycle arrest resulting from exposure to agents that cause DNA damage, such as UV and IR as well as Adriamycin (42). Previous studies from our laboratory have shown that suppression of myc expression in MCF-7 breast tumor cells correlates closely with the extent of growth arrest induced by either Adriamycin or IR (30, 31). Suppression of c-myc

Figure 8. Detection of acidic vesicular organelle (AVO) by vital staining with acridine orange in MCF-7 breast tumor cells. MCF-7 cells were treated with 100 nmol/L EB 1089, 5 \times 2 Gy IR, or EB 1089 followed by 5 \times 2 Gy IR. The induction of acidic vesicular organelle was assessed at the indicated days after irradiation by staining for 15 min with 1 $\mu g/mL$ acridine orange. A, pictures were taken using a fluorescent microscope with a magnification of ×20. B, the percentage of cells with increased acidic vesicular organelle were counted at the indicated days after irradiation. Columns, average of at least four representative fields per treatment condition; bars, SE. Similar results were obtained a replicate experi-

has also been linked to down-regulation of hTERT, the catalytic subunit of telomerase, the enzyme that extends the telomere and thereby prevents the induction of senescence (43). In contrast, maintenance or overexpression of *c-myc* has been associated with the promotion of apoptotic cell death (44).

We found that whereas c-myc protein levels were suppressed by radiation alone, c-myc levels were sustained with prior exposure to EB 1089. This raised the intriguing possibility that maintenance of c-myc expression by EB 1089 might be responsible for the promotion of cell death, possibly through apoptosis, whereas suppression of c-myc could be linked to senescence. However, this does not seem to be the case. When MCF-7 cells with doxycyclineinducible c-myc were exposed to radiation, an identical senescence response was noted as in parental MCF-7 cells. Furthermore, when these cells were exposed to EB 1089 before radiation, we noted cell death and interference with proliferative recovery. An identical senescence response

was seen following Adriamycin treatment with and without doxycycline as well.⁴ Consequently, c-myc does not seem to play a central role in either senescence or cell death in irradiated breast tumor cells.

Autophagic Cell Death and Proliferative Recovery

Our findings relating to the promotion of autophagic cell death in irradiated cells with prior exposure to EB 1089 lead to several tentative conclusions and open the way for additional experiments to elucidate the signaling pathways involved in potentiation of radiation sensitivity. It seems possible that the capacity of EB 1089 to confer sensitivity to radiation is primarily a function of the promotion of autophagy. Consequently, it is likely that EB 1089 may influence signaling molecules associated with regulation of autophagic cell death. Furthermore, there is evidence that autophagy may be dependent on functional p53 (45), which might further explain the lack of sensitization in p53mutant or p53-null breast tumor cells.

It is also necessary to consider the effects of EB 1089 on proliferative recovery. In our hands, we observe proliferative recovery only in cells that express functional p53 (13, 46). This is not a uniform observation, as others have

reported recovery or escape from senescence in p53-null lung cancer cells (47). At this juncture, we do not fully understand the lack of recovery in the cells without functional p53, although this may relate to the ability of these cells to undergo apoptosis (and potentially, an inability to effectively repair the DNA due to apoptosis). However, as both MCF-7/E6 and MCF-7/caspase-3 cells die in part by apoptosis, this again argues in support of the idea that recovery might be related to the presence of p53, where the presence of p53 could possibly be permissive for DNA repair.

Potential Clinical Ramifications

In general, the conventional therapies of breast cancer that involve surgery, radiation, and/or chemotherapy are quite effective in elimination of the primary tumor, particularly in the context of early detection. Unfortunately, although many patients are cured, there is a subset of patients that experience morbidity and mortality as a consequence of disease recurrence or metastatic spread of the disease, often to the brain or bone. The potential clinical significance of the current studies lie in the possibility that the inclusion of vitamin D₃ or vitamin D₃ analogues in association with radiotherapy and chemotherapy may promote cell death through alternative pathways, such as autophagy and thereby prevent (or at least attenuate and delay) the proliferative recovery that could contribute to disease recurrence. In terms of the potential selectivity involved in the use of vitamin D₃ or its analogues, previous work from this laboratory has shown the radiosensitizing effects of vitamin D₃ analogues to be selective for the tumor cell, as radiation sensitivity was not altered in normal breast epithelial cells or BJ fibroblasts (5, 48).

References

- 1. Hansen CM, Binderup L, Hamberg KJ, Carlberg C. Vitamin D and cancer: effects of 1,25(OH)2D3 and its analogs on growth control and tumorigenesis. Front Biosci 2001;6:D820 - 48.
- 2. Sundaram S, Chaudhry M, Reardon D, Gupta M, Gewirtz DA. The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of Adriamycin in MCF-7 breast tumor cells. Breast Cancer Res Treat 2000;63:1 - 10.
- 3. Sundaram S, Gewirtz DA. The vitamin D3 analog EB 1089 enhances the response of human breast tumor cells to radiation. Radiat Res 1999;
- 4. Chaudhry M, Sundaram S, Gennings C, Carter H, Gewirtz DA. The vitamin D3 analog, ILX-23-7553, enhances the response to Adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemother Pharmacol 2001:47:429 - 36.
- 5. DeMasters GA, Gupta MS, Jones JR, et al. Potentiation of cell killing by fractionated radiation and suppression of proliferative recovery in MCF-7 breast tumor cells by the Vitamin D3 analog EB 1089. J Steroid Biochem Mol Biol 2004;92:365 - 74.
- 6. Sundaram S, Sea A, Feldman S, et al. The combination of a potent vitamin D3 analog, EB 1089, with ionizing radiation reduces tumor growth and induces apoptosis of MCF-7 breast tumor xenografts in nude mice. Clin Cancer Res 2003;9:2350 - 6.
- 7. Light BW, Yu WD, McElwain MC, Russell DM, Trump DL, Johnson chondroitin sulfate. Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res 1997;57:3759 - 64.
- 8. Hershberger PA, Yu WD, Modzelewski RA, Rueger RM, Johnson chondroitin sulfate, Trump DL. Calcitriol (1,25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin Cancer Res 2001;7:1043 - 51.

- 9. Ahmed S, Johnson CS, Rueger RM, Trump DL. Calcitriol (1,25dihydroxycholecalciferol) potentiates activity of mitoxantrone/dexamethasone in an androgen independent prostate cancer model. J Urol 2002; 168:756 - 61.
- 10. Tanaka H, Yamamuro T, Kotoura Y, et al. 1 α ,25(OH)2D3 exerts cytostatic effects on murine osteosarcoma cells and enhances the cytocidal effects of anticancer drugs. Clin Orthop Relat Res 1989;247:
- 11. Vink-van Wijngaarden T, Pols HA, Buurman CJ, et al. Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogues and tamoxifen. Cancer Res 1994;54:5711 - 7.
- 12. Nolan E, Donepudi M, VanWeelden K, Flanagan L, Welsh J. Dissociation of vitamin D3 and anti-estrogen mediated growth regulation in MCF-7 breast cancer cells. Mol Cell Biochem 1998;188:13 - 20.
- 13. Jones KR, Elmore LW, Jackson-Cook C, et al. p53-Dependent accelerated senescence induced by ionizing radiation in breast tumor cells. Int J Radiat Biol 2005;81:445 - 58.
- 14. Ylikomi T, Laaksi I, Lou YR, et al. Antiproliferative action of vitamin D. Vitam Horm 2002;64:357 - 406.
- 15. Venditti M, Iwasiow B, Orr FW, Shiu RP. C-myc gene expression alone is sufficient to confer resistance to antiestrogen in human breast cancer cells. Int J Cancer 2002;99:35 - 42.
- 16. Wang Q, Yang W, Uytingco MS, Christakos S, Wieder R. 1,25dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res 2000;60:2040 - 8.
- 17. Gayrielli Y. Sherman Y. Ben-Sasson SA, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992:119:493 - 501.
- 18. Kantor PM, Schwartz HS. A fluorescence enhancement assay for cellular DNA damage. Mol Pharmacol 1982;22:145 - 51.
- 19. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995;92:9363 - 7.
- 20. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 2004;3:
- 21. Song YS, Lee BY, Hwang ES. Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis. Mech Ageing Dev 2005;126:580 - 90.
- 22. Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 2001:61:439 - 44.
- 23. Paglin S, Delohery T, Erlandson R, Yahalom J. Radiation-induced micronuclei formation in human breast cancer cells: dependence on serum and cell cycle distribution. Biochem Biophys Res Commun 1997;237: 678 - 84.
- 24. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687 – 96.
- 25. Ravid A, Rocker D, Machlenkin A, et al. 1,25-Dihydroxyvitamin D3 enhances the susceptibility of breast cancer cells to doxorubicin-induced oxidative damage. Cancer Res 1999;59:862 - 7.
- 26. Weitsman GE, Ravid A, Ligerman UA, Koren R. Vitamin D enhances caspase-dependent and -independent TNF-α-induced breast cancer cell death: The role of reactive oxygen species and mitochondria. Int J Cancer 2003;106:178 - 86.
- 27. Kurokawa H. Nishio K. Fukumoto H. Tomonari A. Suzuki T. Saiio N. Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol Rep 1999;6:33 - 7.
- 28. Elmore LW, Rehder CW, Di X, et al. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 2002;277:35509 - 15.
- 29. Fornari FA, Jr., Jarvis WD, Grant S, et al. Induction of differentiation and growth arrest associated with nascent (nonoligosomal): DNA fragmentation and reduced c-myc expression in MCF-7 human breast tumor cells after continuous exposure to a sublethal concentration of doxorubicin. Cell Growth Differ 1994;5:723 - 33.
- 30. Fornari FA, Jr., Jarvis DW, Grant S, et al. Growth arrest and nonapoptotic cell death associated with the suppression of c-mvc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol 1996;51:931 - 40.
- 31. Watson NC, Di YM, Orr MS, et al. Influence of ionizing radiation on

proliferation, c-myc expression and the induction of apoptotic cell death in two breast tumour cell lines differing in p53 status. Int J Radiat Biol 1997; 72:547 - 59.

- 32. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 2001;4:303 - 13.
- 33. Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M. Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ 2005;12:1297 - 309.
- 34. Mains RE, May V. The role of a low pH intracellular compartment in the processing, storage, and secretion of adrenocorticorticotropic hormone and endorphin. J Biol Chem 1988;263:7887 - 94.
- 35. Traganos F, Darzynkiewicz Z. Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol 1994;41:185-94.
- 36. Cai J, Jones DP. Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 1998;273:11401 – 4.
- 37. Hattangadi DK, DeMasters GA, Walker TD, et al. Influence of p53 and caspase 3 activity on cell death and senescence in response to methotrexate in the breast tumor cell. Biochem Pharmacol 2004;68:
- 38. Cukusic A, Ivankovic M, Skrobot N, et al. Spontaneous senescence in the MDA-MB-231 cell line. Cell Prolif 2006;39:205 - 16.
- 39. Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer 2000:7:143 - 64.

- 40. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999;19:1 - 11.
- 41. Coller HA, Grandori C, Tamayo P, et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 2000;97:3260 - 5.
- 42. Gewirtz DA. Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage. Breast Cancer Res Treat 2000;62:223 - 35.
- 43. Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999;21:220 - 4.
- 44. Prendergast GC. Mechanisms of apoptosis by c-Myc. Oncogene 1999;18:2967 - 87.
- 45. Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006;126:121 – 34.
- 46. Elmore LW, Di X, Dumur C, Holt SE, Gewirtz DA. Evasion of a singlestep, chemotherapy-induced senescence in breast cancer cells: implications for treatment response. Clin Cancer Res 2005;11:2637 - 43.
- 47. Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 2005;65:2795 - 803.
- 48. Polar MK, Gennings C, Park M, Gupta MS, Gewirtz DA. Effect of the vitamin D3 analog ILX 23-7553 on apoptosis and sensitivity to fractionated radiation in breast tumor cells and normal human fibroblasts. Cancer Chemother Pharmacol 2003;51:415 - 21.

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

Q1: Running head: Vitamin D₃ Analogue on Radiation-Induced Autophagy. Short title OK?

Q2: OK to use (abbreviation) in succeeding occurrences?

Q3: Provide city of Leo Pharmaceuticals.

Q4: Provide city and state (country, if foreign) of Nikon.

Q5: Provide city and state (country, if foreign) of Beckman Coulter.

Q6: Provide city and state (country, if foreign) of Pierce.

Q7: Verify location for ref. 20.

Q8: Verify the expanded form for AVO.

Q9: Provide city and state (country, if foreign) of Zeiss.

Q10: Verify changes made on the last sentence of the paragraph.

Q11: Verify changes made on sentence 2 of the paragraph.

Q12: Verify changes made on sentence 3 of the paragraph.

Q13: Update status of article.