Mixed-Criticality Real-Time Systems

Lecture #19

Anand Bhat

Carnegie Mellon

18-648: Embedded Real-Time Systems

Outline

- Mixed-criticality real-time systems
- Zero-slack scheduling for uniprocessors
 - Zero-slack properties
- Generalizing resource allocation to distributed mixed-criticality tasks
 - Metric: Ductility matrix
- Compress-on-Overload Packing (COP)
 - COP Performance
- Radar surveillance case study
- Conclusions

Carnegie Mellon

18-648: Embedded Real-Time Systems

Mixed-Criticality Real-Time Systems

- In traditional real-time systems, critical tasks were assigned to dedicated processors with non-critical tasks running on physically separate processors
 - Leads to inefficient use of resources
 - Requires additional processors, resulting in higher weight, volume and cooling requirements
- In "mixed-criticality real-time systems", tasks of different importance ("criticality") are co-located on the same resources
 - Goal: More efficient use of resources (i.e. higher utilization)
- Question: How to schedule these mixed-criticality tasks?
 - In dynamic environments where the execution-times can vary perhaps significantly

Carnegie Mellon

18-648: Embedded Real-Time Systems

Rate-Monotonic Priority

- Shorter Period → Higher Priority
 - Ideal priority assignment
- BUT: Criticality Inversion
 - If criticality order is opposite to rate-monotonic priority order

Criticality As Priority Assignment (CAPA)

- Higher Criticality → Higher Priority
 - Ideal criticality protection:
 - lower criticality cannot interfere with higher criticality
- BUT: Poor Utilization Due to (RM) Priority Inversion
 - If criticality order is opposite to rate-monotonic priority order

Remember Period Transformation?

- How can we ensure the deadline of a critical task with a long period, resulting in a low priority?
 - "Period Transformation".
- For example, transform a task with period T and a worst-case execution time of C into a period-transformed task with a period of T/k and execution time C/k (where k = 2, 3,). Since the task period is now shorter, it can be assigned a higher priority.
 - importance and rate-monotonic priority assignment can be made consistent
- Optimal period transformation requires that each transformed (virtual) period have the same transformed value of "C"
 - This can be rather pessimistic in mixed-criticality systems where the worst-case value of C can vary very widely.

Carnegie Mellon

18-648: Embedded Real-Time Systems

Carnegie Mellon

18-648: Embedded Real-Time Systems

Overload Situation

- Critical tasks may fail due to lack of resources
 - i.e. Important deadlines may be missed under overloads
- Desirable behavior
 - Under non-overloaded conditions, every task meets its deadlines
 - Under overloaded conditions, more critical tasks are favored over less critical tasks

Carnegie Mellon

Illustration of Overload Behavior

- A and B are two resource allocation methods
- Consider an overload scenario O
 - Both high and low criticality tasks face an overload
- Under scheme A
 - Low criticality tasks meet their deadlines
 - High criticality tasks potentially miss deadlines
- Under scheme B
 - Low criticality tasks potentially miss deadlines
 - High criticality tasks meet their deadlines
- In mixed-criticality systems, "B is better than A"

Carnegie Mellon

18-648: Embedded Real-Time Systems

Task Model

$$\tau_i = \left(C_i, C_i^o, T_i, D_{i,} \zeta_i\right)$$

 C_i "Normal" Execution Budget of task au_i

 C_i^o "Overload" Execution Budget of task au_i

 T_i Period of task τ_i

 D_i Deadline of task τ_i ($D_i \leq T_i$)

 ζ_i Criticality of task *i* (zeta-i)

Zero-Slack Scheduling

- Start with RMS
- Calculate the last instant before τ_{HC} misses its deadline
 - this is called the **zero-slack** instant
- Switch to criticality-as-priority assignment at zero-slack instant
 - Splits the execution window into
 - Normal mode (RM)
 - Critical mode (CAPA)

Carnegie Mellon

18-648: Embedded Real-Time Systems

Electrical & Computer ENGINEERING

Interference in Zero-Slack Scheduling

- Task set divided into
 - H^{lc}: Higher priority, lower criticality
 - Hhc: Higher priority, higher criticality
 - L^{lc}: Lower priority, lower criticality
 - Lhc: Lower priority, higher criticality
- Interfering tasks in normal mode (Normal mode)
 - $-H^{lc}+H^{hc}+L^{hc}$
- Interfering tasks in critical mode (Critical mode)
 - Hhc + Lhc

Interference → preemption from a task due to its *higher priority in* normal mode or higher criticality in critical mode

Carnegie Mellon

18-648: Embedded Real-Time Systems

Generic Scheduling Algorithm

Slack calculation depends on

priority-based

Schedulability

 $\begin{array}{l} \forall i \ Z_i^1 \Leftarrow 0 \\ \textbf{repeat} \\ \forall i \ Z_i^0 \Leftarrow Z_i^1 \\ \textbf{for all } i \ \textbf{in taskset do} \\ V_i^n \Leftarrow GetSlackVector(i, \Gamma_i^n) \\ V_i^c \Leftarrow GetSlackVector(i, \Gamma_i^c) \\ Z_i^1 \Leftarrow GetSlackZeroInstant(i, V_i^c, V_i^n, t) \\ \textbf{end for} \\ \textbf{until} \ \forall i \ Z_i^0 = Z_i^1 \\ \textbf{return } Z_i^1 \end{array}$

GetSlackZeroInstant(i, Vc,Vn,t)

```
\begin{array}{l} C_i^c \Leftarrow C_i^o \ ; \ C_i^n \Leftarrow 0 \\ \textbf{repeat} \\ t_1 \Leftarrow StartOfTrailingSlack(i, C_i^c, V^c) \\ \textbf{if} \quad t_1 \geq 0 \ \text{and} \ t_1 \leq t \ \textbf{then} \\ k_u \Leftarrow SlackUpToInstant(V^n, t_1) - C_i^n \\ k_u = \max(\min(k_u, C_i^c), 0) \\ C_i^c \Leftarrow C_i^c - k_u \\ C_i^n \Leftarrow C_i^n + k_u \\ \textbf{else} \\ k_u \Leftarrow 0 \\ \textbf{end} \ \textbf{if} \\ \textbf{until} \ k_u = 0 \\ \textbf{return} \ t_1 \end{array}
```

Carnegie Mellon

18-648: Embedded Real-Time Systems

Zero-Slack RM (ZSRM) Properties

- Subsumes RM
 - If criticalities are aligned with priorities
 - No critical mode
- Subsumes CAPA
 - If not enough slack, only critical mode
- Graceful Degradation
 - In overloads, deadlines are missed in inverse criticality order

Carnegie Mellon

Scheduling Guarantee

A task \mathcal{T}_i is guaranteed C_i^o before D_i if no au_j with higher criticality than au_i executes beyond its C_j

Carnegie Mellon

MULTIPROCESSOR OR DISTRIBUTED SYSTEMS

Carnegie Mellon

18-648: Embedded Real-Time Systems

Example Packing

Task	C_i (ms)	C_i^o (ms)	$Period$ T_i (ms)	$\kappa(\tau_i)$
τ_{h1}	4	6	10	1
τ_{h2}	4	6	10	1
$ au_l$	2	3	5	2

High Criticality Task (T_{h2}) High Criticality Task (T_{h1}) P1 P2 Packing that incurs criticality inversion

Low
Criticality
Task (T_1) High
Criticality
Task (T_{h1}) P1 T_{h1} T_{h2} T_{h2}

Packing that avoids criticality inversion

In Packing that avoids critical & Computer ENGINEERING

Carnegie Mellon 18-

Let $d_{i,j}$ indicate whether tasks in criticality level-i meet their deadlines under overload W_j $d_{i,j}=1$, indicates that tasks in criticality level-i meet their deadlines under overload W_j $d_{i,i}=0$, indicates that tasks in criticality level-i **do not** meet their deadlines under overload W_j

i corresponds to column, j corresponds to row

Carnegie Mellon

Quantification of Ductility

$$P_{d}(D) = \sum_{c=1}^{k} \left\{ \frac{1}{2^{c}} \frac{\sum_{r=1}^{2^{k}} d_{r,c}}{2^{k}} \right\}$$

For
$$S$$
, P_d (D) = 0.375

For T,
$$P_d$$
 (D) = 0.5625

 $\label{eq:Shows that T is better than S } \\ Other Projection functions can be used $P_d(D)$ favors the more critical tasks$ **exponentially**over the lower criticality tasks

Carnegie Mellon

Radar Surveillance Simulation Case Study

HP: High Priority

NP: Normal Priority

Platform: Intel Core 2 Extreme 2.526GHz 32KB I-Cache, 32KB D-Cache,6MB L2 Cache

Task	C_i	C_i^o	Period	Criticality
	(ms)	(ms)	T_i (ms)	$\kappa(au_i)$
HP Hostile	40	58	100	1
NP Hostile	83	106	200	1
HP Friendly	40	58	100	2
NP Friendly	83	106	200	2

Carnegie Mellon

18-648: Embedded Real-Time Systems

Radar Surveillance Deadline Misses

Packer	Deadline misses (%) / Task missing deadlines				
	2300 Tracks	2400 Tracks	2500 Tracks		
WFD	0	24.32/NP Hostile	69.56 / NP Hostile		
COP	0	10.34/HP Friendly	59.18/ HP Friendly		

$$Ductility(WFD) = \begin{cases} w = 3 = < 1, 1 > 00 \\ w = 2 = < 1, 0 > 01 \\ w = 1 = < 0, 1 > 10 \\ w = 0 = < 0, 0 > 11 \end{cases} = \left(\frac{1}{2} \frac{2}{4} + \frac{1}{4} \frac{2}{4}\right) = 0.375 \quad normalized = \frac{0.375}{0.750} = 0.5$$

$$Ductility(COP) = \begin{cases} w = 3 = < 1,1 > 10 \\ w = 2 = < 1,0 > 11 \\ w = 1 = < 0,1 > 11 \\ w = 0 = < 0,0 > (11) \end{cases} = \left(\frac{1}{2} \frac{4}{4} + \frac{1}{4} \frac{3}{4}\right) = 0.675 \quad normalized = \frac{0.6875}{0.750} = 0.9167$$

Carnegie Mellon

18-648: Embedded Real-Time Systems

Conclusions

- Mixed-Criticality tasksets require temporal protection
 - Criticality Inversion with RM priority assignments
- Zero-Slack scheduler (meta-Scheduler) for Priority-Based Schedulers
 - Ensures criticality inversion does not lead to deadline misses
- New scheduling guarantee
 - $\ \tau_i$ is guaranteed $C_i{}^o$ if all higher-criticality tasks τ_j consume C_i or less
- Compress-on-Overload Packing algorithm
 - Gives more overload room to critical tasks
- Ductility metric to measure effectiveness of allocation
- Radar case study demonstrates utility

Carnegie Mellon

