Prof. Maiquel de Brito¹

 1 CAC - UFSC Blumenau - SC - Brazil

Lógica e imprecisão

Lógica de primeira ordem

```
velocidade(hamilton, 313.6)

velocidade(verstappen, 304.6)

velocidade(vettel, 310.9)

\forall_{x,y} velocidade(x, v_x) \land velocidade(x, v_x) \land v_x > v_y \rightarrow mais\_rapido(x, y)

\forall_{x,y} mais\_rapido(x, y) \rightarrow mais\_lento(y, x)
```

Prolog

```
velocidade(hamilton,313.6).
velocidade(verstappen,304.6).
velocidade(vettel,310.9).
mais_rapido(X,Y) :- velocidade(X,Vx), velocidade(Y,Vy), Vx>Vy.
mais_lento(X,Y) :- mais_rapido(Y,X).
```

→ Quais pilotos estavam andando muito rápido?

Variáveis linguísticas

Variáveis algébricas: possuem valores numéricos e.g. altura *a* de um indivíduo:

$$a \in \{x | x \in \mathbb{R} \land x > 0\}$$

Variáveis linguísticas: os valores são palavras e.g. altura *a* de um indivíduo :

 $a \in \{$ muito baixo, altura media, muito alto $\}$

Variáveis e conjuntos fuzzy

Variáveis fuzzy: possíveis valores de uma variável linguística

Cada variável fuzzy é um label de um conjunto fuzzy

No caso da V.L. $a \in \{$ muito baixo, altura media, muito alto $\}$ "muito baixo", "altura media" e "muito alto" são conjuntos fuzzy.

Conjuntos Crisp

Contém elementos que satisfazem propriedades de pertinência de forma precisa.

e.g.

Função que mapeia as alturas dos indivíduos:

$$h: X \longrightarrow \mathbb{R}$$

Conjunto dos indivíduos com altura normal:

$$N = \{x | h(x) = 1.8\}$$

 $h(bob) = 1.7999 \rightsquigarrow bob \notin N$ (i.e. bob não tem altura normal)

Conjuntos Crisp

Pertinência $x \in X$ a um conjunto crisp $A: \omega_A : X \to \{0, 1\}$:

$$\omega_A(x) = \begin{cases} 1 \text{ se } x \in A \\ 0 \text{ se } x \notin A \end{cases}$$

→ não há pertinência parcial

Conjuntos Fuzzy

Pertinência $x \in X$ a um conjunto fuzzy $A: \mu_A: X \to [0,1]$

Há pertinência parcial:

indivíduo pertence em certo grau (grau de pertinência) a um conjunto fuzzy. um indivíduo pode pertencer a mais de um conjunto fuzzy.

Exemplo:

Se "altura normal" é 1.8m, então um indivíduo com 1.7999m tem um certo grau de pertinência ao conjunto dos indivíduos de altura normal, enquanto então um indivíduo com 1.78m tem um grau de pertinência menor.

Função de pertinência

Define o grau de pertinência de um indivíduo a um conjunto fuzzy

Depende do domínio do problema

$$\mu_{\underline{l}}(x) = 1 - \left(\frac{1}{1 + e^{-10(x - 1.8)}}\right)$$

$$\mu_{j}(x) = \frac{1}{1 + 10(h(x) - 1, 8)^{2}}$$

$$\mu_{\tilde{K}}(x) = \frac{1}{1 + e^{-10(x - 1.8)}}$$

Função de pertinência

X	h(x)	$\mu_{\underline{l}}(x)$	$\mu_{K}(x)$				
bob	1,78	0,5498	0,9960	0,4502			
tom	1,98	0,1419	0,7553	0,8581			
alice	1,79	0,5250	0,9990	0,4750			
carol	1,55	0,9241	0,6154	0,0759			
ana	1,68	0,9241	0,6154	0,0759			

Notação para conjuntos fuzzy

$$\tilde{A} = \{(x_1, \mu_{\tilde{A}}(x_1)), \cdots, (x_n, \mu_{\tilde{A}}(x_n))\}$$

Exemplo:

$$\begin{split} & \mathcal{J} = \{ (bob, 0.996), (tom, 0.755), (alice, 0.999), (carol, 0.615), (ana, 0.674) \} \\ & \mathcal{J} = \{ (bob, 0.55), (tom, 0.142), (alice, 0.525), (carol, 0.924), (ana, 0.9) \} \\ & \mathcal{K} = \{ (bob, 0.45), (tom, 0.858), (alice, 0.475), (carol, 0.076), (ana, 0.1) \} \end{split}$$

$$A = \left\{ \frac{\mu_{\underline{A}}(x_1)}{x_1} + \frac{\mu_{\underline{A}}(x_2)}{x_2} + \dots + \frac{\mu_{\underline{A}}(x_n)}{x_n} \right\} = \left\{ \sum_i \frac{\mu_{\underline{A}}(x_i)}{x_i} \right\}$$
ou
$$\left\{ \int_X \frac{\mu_{\underline{A}}(x_n)}{x_n} \right\}$$

Operações com conjuntos fuzzy

União:

$$A \cup B = \{(x, \max(\mu_{A(x)}, \mu_{B(x)})\}, \forall_{x \in X}\}$$

$x \mid h(x) \mid \mu_{\underline{J}}(x) \mid \mu_{\underline{J}}(x)$				_
bob tom alice carol ana	1,79 1,55	1 '	0,996 0,755 0,999 0,615 0,674	$J \cup J = \{ (bob, 0.996), (tom, 0.755), $ $(alice, 0.999), (carol, 0.924), (ana, 0.9) \}$

Operações com conjuntos fuzzy

Intersecção:

$$A \cap B = \{(x, min(\mu_{A(x)}, \mu_{B(x)})\}, \forall_{x \in X}$$

$x \mid h(x) \mid \mu_{\underline{J}}(x) \mid \mu_{\underline{J}}(x)$				_
		0,55		
tom	1,98	0,142	0,755	$J \cap J = \{ (bob, 0.55), (tom, 0.142), (alice, 0.525), \}$
alice	1,79	0,525	0,999	(carol, 0.615), (ana, 0.674)}
carol	1,55	0,924	0,615	(caror, 0.013), (ana, 0.014)}
ana	1,68	0,9	0,674	

Operações com conjuntos fuzzy

Complemento:

$$\overline{A} = \{(x, 1 - \mu_{\underline{A}}(x))\}, \forall_{x \in X}$$

X	h(x)	$\mu_{j}(x)$
bob	1,78	0,996
tom	1,98	0,755
alice	1,79	0,999
carol	1,55	0,615
ana	1,68	0,674

$$\overline{J} = \{ (bob, 0.004), (tom, 0.245), (alice, 0.001), (carol, 0.385), (ana, 0.326) \}$$

Relações fuzzy

$$A \times B = \int_{X \times Y} \frac{\mu_{\underline{A}}(x) \wedge \mu_{\underline{B}}(y)}{(x, y)} = \int_{X \times Y} \frac{\min(\mu_{\underline{A}}(x), \mu_{\underline{B}}(y))}{(x, y)}$$

Exemplo:

$$\tilde{A} = \left\{ \frac{0,2}{x_1} + \frac{0,5}{x_2} + \frac{1}{x_3} \right\}$$
 e $\tilde{B} = \left\{ \frac{0,3}{y_1} + \frac{0,9}{y_2} \right\}$

$$\mathcal{A} \times \mathcal{B} = \left\{ \frac{0.2}{(x_1, y_1)} + \frac{0.2}{(x_1, y_2)} + \frac{0.3}{(x_2, y_1)} + \frac{0.5}{(x_2, y_2)} + \frac{0.3}{(x_3, y_1)} + \frac{0.9}{(x_3, y_2)} \right\}$$

$$\underline{A} \times \underline{B} = \begin{bmatrix} y_1 & y_2 \\ 0, 2 & 0, 2 \\ 0, 3 & 0, 5 \\ 0, 3 & 0, 9 \end{bmatrix} \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}$$

Proposição: afirmação que pode ser verdadeira ou falsa e.g. *Bob é muito alto*

Lógica clássica: uma proposição p é verdadeira ou falsa i.e. $T(p) \in \{0,1\}$ o agente sabe se uma proposição é verdadeira ou falsa

Lógica fuzzy: uma proposição p tem um grau de verdade i.e. $T(p) \in [0,1]$ o agente sabe o quanto uma proposição é verdadeira ou falsa

Forma canônica de uma proposição fuzzy *p*:

$$p: x \text{ is } A$$

Grau de verdade de uma proposição fuzzy p: x is A

$$T(p) = \mu_A(x)$$

e.g. T(bob is muito alto)= 0,45

Negação de uma proposição fuzzy p: x is \mathcal{A}

$$T(\neg p) = 1 - T(p)$$

Disjunção:

$$T(p \lor q) = max(T(p), T(q)) = max(\mu_{\underline{A}}(x), \mu_{\underline{B}}(y))$$

Conjunção:

$$T(p \land q) = min(T(p), T(q)) = min(\mu_{\underline{A}}(x), \mu_{\underline{B}}(y))$$

X	h(x)	$\mid \mu_{j}(x) \mid$	$\mid \mu_{\underline{L}}(x) \mid$	$p \lor q$	$p \wedge q$	$\neg p$	$\neg p \land q$
bob	1,78	0,996	0,753	0,996	0,753	0,004	0,004
tom	1,98	0,755	0,00	0,755	0,00	0,245	0,000
alice	1,79	0,999	0,669	0,999	0,669	0,001	0,001
carol	1,55	0,615	0,00	0,615	0,615	0,385	0,000
ana	1,68	0,874	0,361	0,874	0,361	0,126	0,126

Lógica fuzzy - Implicação

Lógica clássica: $p \rightarrow q \in \{0, 1\}$

se p é verdade, então q é verdade

Lógica fuzzy: $p \rightarrow q \in [0, 1]$

quanto q está relacionado a p

Lógica fuzzy - Implicação

Implicação de Zadeh:

$$T(p \to q) \equiv T(\neg p \lor q) \equiv \max(T(\neg p), T(q)) \tag{1}$$

$$\equiv \max(1 - T(p), T(q) \tag{2}$$

$$\equiv \max(1 - \mu_{A}(x), \mu_{B}(y)) \tag{3}$$

Implicação de Göedel:

$$T(p \to q) = \begin{cases} 1 \text{ se } \mu_{\underline{A}}(x) \le \mu_{\underline{B}}(y) \\ \mu_{\underline{B}}(y) \text{ otherwise} \end{cases}$$
 (4)

Implicação de Ross:

$$T(p \to q) = \max[\mu_{A}(x) \land \mu_{B}(y), (1 - \mu_{A}(x))] \tag{5}$$

Controle fuzzy

Controle: cálculo de um sinal a ser aplicado a um processo em função de variáveis do próprio processo

Problemas: modelos matemáticos inexistentes ou desconhecidos

Solução: inclusão de regras empíricas

Projeto de controlador fuzzy

Projeto de controlador fuzzy

- Identificar variáveis do processo (entradas e saídas)
 e.g. sistema de frenagem: velocidade, distância e força
- 2. Particionar valores de variáveis em conjuntos fuzzy

```
e.g. velocidade \in \{lento, velocidade\_mediana, rapido\}
distancia \in \{longe, perto, muito\_perto\}
forca \in \{fraco, forte, muito\_forte\}
```

- 3. Definir funções de pertinência para os conjuntos fuzzy
- 4. Criar base de regras
 - e.g. "se velocidade é rápido e distância é muito perto, então força deve ser forte"

Projeto de controlador fuzzy

- Fuzzyficação das variáveis de entrada calcular o grau de pertinência respectivos conjuntos fuzzy
- Inferência (cálculo do sinal de controle)
 diferentes métodos
 e.g. operação e entre as variáveis de entrada:
 o valor obtido é o grau de pertinência da saída
- Defuzzyficação

 calcular o grau de pertinência da saída
- 4. Aplicação de resultados no processo