

52nd I.M. O. Amsterdam (Netherlands)

16 - 24 July 2011

Contest day two Problem 6

+

Jean - Louis AYME 1

Language: French

Day: 2

Mardi 19 juillet 2011

Problème 6. Soit ABC un triangle dont les angles sont aigus et soit Γ son cercle circonscrit. Soit ℓ une droite tangente à Γ . Soit ℓ_a , ℓ_b , ℓ_c les droites symétriques de ℓ par rapport respectivement aux droites (BC), (CA), (AB).

Montrer que le cercle circonscrit au triangle déterminé par les droites ℓ_a , ℓ_b , ℓ_c est tangent à Γ .

Pays-Bas (Europe)

St-Denis, Île de la Réunion (Océan Indien, France), le 23/07/2011 ; jeanlouisayme@yahoo.fr

The contest hall

Sommaire

- **A.** Problem **6**; Tuesday 19 July Contest day two (9:00 13:30h)

3 16

- Annexe
 Symétrique de l'orthocentre par rapport à un côté
 Un triangle de Möbius
 Une monienne brisée
 Le point de Miquel-Wallace
 Le théorème des trois cercles concourants

- 6. Le théorème faible

Guides and deputies waiting for their team

A. PROBLEM 6

Tuesday 19 July Contest day two (9:00 - 13:30h)

VISION

Figure:

Traits:ABCun triangle acutangle,
0le cercle circonscrit à ABC,
T
une droite,
les symétriques de Tm resp. par rapport à (BC), (CA), (AB)
A*, B*, C*les points d'intersection de Lb et Lc, Lc et La, La et Lb,
le cercle circonscrit au triangle A*B*C*.

Donné: [T est tangente à 0] si, et seulement si, [0* est tangent à 0]. ²

IMO 2011 Problem 6; http://www.artofproblemsolving.com/Forum/viewtopic.php?f=729&t=418983

VISUALISATION NÉCESSAIRE

STEINER * CARNOT * MÖBIUS * MONIENNE BRISÉE

*

MIQUEL-WALLACE * MANNHEIM * REIM * PIVOT * DESARGUES * REIM

• **Hypothèse :** [T est tangente à 0].

• Commentaire : cette hypothèse est celle du problème de l'Olympiade.

• Notons M le point de contact de T avec 0,

Tm la tangente à 0 en M (pour plus de précision et de compréhension),

H l'orthocentre de ABC

et Ma, Mb, Mc les symétriques de M resp. par rapport à (BC), (CA), (AB).

• D'après "La droite de Steiner" ³, Ma, Mb, Mc et H sont alignés.

Ayme J.-L., La droite de Gauss et la droite de Steiner, G.G.G. vol. 4, p. 4-6; http://perso.orange.fr/jl.ayme

- Notons 0a, 0b, 0c les trois cercles de Carnot 4 de ABC.
- Scolies: (1) 0a est tangent à La en Ma
 - (2) 0b est tangent à Lb en Mb
 - (3) 0c est tangent à Lc en Mc.
- D'après Carnot "Symétrique de l'orthocentre par rapport à un côté" (Cf. Annexe 1), 0a, 0b, 0c passent par H.

-

⁴ 0a, 0b, 0c sont les symétriques de 0 resp. par rapport à (BC), (CA), (AB).

- Scolie: 0a, 0b, 0c sont égaux entre eux.
- D'après "Un triangle de Möbius" (Cf. Annexe 2), appliqué à *0a* et *0b*,

le triangle AMbMc est A-isocèle.

- Notons Oa* le cercle circonscrit à AMbMc.
- D'après "Une monienne brisée" (Cf. Annexe 3), appliquée à 0b et 0c avec la monienne (MbHMc)

la monienne brisée (MbAMc), A^* est sur $0a^*$.

• Conclusion partielle : (A*A) est A*-bissectrice intérieur de A*B*C*.

- 0b*, 0c* Notons les cercles circonscrits resp. aux triangles BMcMa, CMaMb.
- Mutatis mutandis, nous montrerions que **(1)**
- (B*B) est B*-bissectrice intérieur de A*B*C* (C*C) est C*-bissectrice intérieur de A*B*C*. **(2)**
- le centre du cercle inscrit à A*B*C*. Notons
- Conclusion partielle: (A*A), (B*B) et (C*C) sont concourantes en I*.

- Commentaire : le triangle A*B*C*, la ménélienne (MaMbMc), les cercles 0^* , $0a^*$, $0b^*$ et $0c^*$ conduisent à la situation de Miquel-Wallace.
- D'après "Le point de Miquel-Wallace" ⁵ (Cf. Annexe 4), 0a, 0b et 0c sont concourants sur 0*.
- Notons M* ce point de concours.

.

Ayme J.-L., La droite de Kantor-Hervey, G.G.G. vol. 6, p. 4; http://perso.orange.fr/jl.ayme

• D'après "Le cercle de Mannheim" ⁶ appliqué au point I* et à la situation de Miquel-Wallace,

0 passe par I* et M*.

Ayme J.-L., Les cercles de Morley, Euler, Mannheim..., G.G.G. vol. 2, p. 6-9; http://perso.orange.fr/jl.ayme

- Notons Ta^*, Tc^* les tangentes à $0a^*, 0b^*$ resp. en A*, B* et X le points d'intersection de Ta^* et Tb^* .
- D'après "Une monienne brisée" (Cf. Annexe 2)
 appliquée à $0a^*$ et $0b^*$ avec la monienne (A*McB*)
 et la monienne brisée (A*M*B*), X est sur 0^* .

- Notons A', B' les seconds points d'intersection de (M*A*), (M*B*) avec 0.
- Les cercles 0 et $0a^*$, les points de base A et M*, les moniennes (I*AA*) et (A'M*A*), conduisent au théorème 1 de Reim ; il s'en suit que (I*A) // Ta^* .
- Les cercles 0 et $0b^*$, les points de base B et M*, les moniennes (I*BB*) et (B'M*B*), conduisent au théorème 1 de Reim ; il s'en suit que (I*B') // Tb^* .

- D'après "Le théorème des trois cercles concourants" (Cf. Annexe 5)
 appliqué
 au triangle B'McB*
 et aux cercles 0, 0c, 0b* concourants en B,
 B', A et Mc sont alignés.
- Les cercles θ et θ et θ , les points de base M* et A, les moniennes (A'M*A*) et (B'AMc), conduisent au théorème θ de Reim; il s'en suit que (A'B') // (A*Mc) ou encore (A'B') // (A*B*).
- D'après Desargues "Le théorème faible" (Cf. Annexe 6)
 appliqué aux triangles homothétiques I*A'B' et XA*B*,
 M*, I* et X sont alignés.

• Conclusion: le cercle 0, le point de base M*, les moniennes (I*M*X) et (B'M*B*), les parallèles (I*B') et (XB*), conduisent au théorème 7 de Reim; en conséquence, 0* est tangent à 0.

Scolie: le résultat reste inchangé si le triangle ABC est obtusangle.

Note historique : ce problème **6** en général le plus difficile a été proposé par le Japon.

Malheureusement, le Comité japonais des OMI a pour habitude de ne jamais relater

des informations concernant les auteurs des problèmes proposés.

Le score de l'équipe de France pour cet exercice de géométrie a été nul sur les 42 points possibles. Seuls 6 élèves sur les 564 participants ont totalement résolu cet exercice (2 filles : une allemande et une iranienne, et 4 garçons venant resp. de Chine,

Singapour, Hong Kong, Grèce).

Notons que le seul candidat à avoir résolu les six problèmes des O.I.M. de 2011 est l'allemande Lisa Sauermann⁷ qui vient d'obtenir sa quatrième médaille d'or en plus de

celle d'argent qu'elle a remporté à l'âge de 14 ans...

[0

[official.imo2011.nl]

VISUALISATION SUFFISANTE 8

- Un peu de logique:
 - * nous désirons montrer que $[0^* \text{ est tangent à } 0] \rightarrow [T \text{ est tangente à } 0]$
 - * par contraposition, non [T est tangente à 0] \rightarrow non [0* est tangent à 0].
- **Hypothèse**: [T n'est pas tangente à 0].

- Notons Tm l'une des deux tangentes à 0, parallèles à T,
 M le point de contact de Tm avec 0,
 L'a, L'b, L'c les symétriques de T resp. par rapport à (BC), (CA), (AB)
 A', B', C' les points d'intersection de L'b et L'c, L'c et L'a, L'a et L'b,
 I' le centre de A'B'C'
 et 0' le cercle circonscrit au triangle A'B'C'.
- Commentaire : les hypothèses et notations sont les mêmes que dans la visualisation nécessaire et la preuve ci-après serait la même avec la seconde tangente.
- Scolies: (1) les triangles A'B'C' et A*B*C* sont homothétiques et non égaux

Ayme J.-L., Two circles, AoPS du 16/09/2014; http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=606505

(2) (A'I') // (A*I*).

• D'après "Le théorème de Collings-Lalesco" 9, A', A et I' **(1)** sont alignés

(2) A*, A et I* sont alignés.

• D'après "Le théorème de Collings-Lalesco" 10, **(1)** I' est sur 0

I* est sur 0. **(2)**

• Conclusion partielle : (A'I') étant parallèle à (A*I*), I' et I* sont confondus.

• A'B'C' et A*B*C* étant non égaux, 0* étant tangent à 0, 0' ne peut être tangent à 0.

• Conclusion : [0' n'est pas tangent à 0].

 $Ayme\ J.-L.\ Une\ droite\ et\ un\ triangle,\ G.G.G.\ vol.\ \textbf{17},\ p.\ 7-9\ ;\ http://jl.ayme.pagesperso-orange.fr/$ $Ayme\ J.-L.\ Une\ droite\ et\ un\ triangle,\ G.G.G.\ vol.\ \textbf{17},\ p.\ 11-12\ ;\ http://jl.ayme.pagesperso-orange.fr/$

B. ANNEXE

1. Symétrique de l'orthocentre par rapport à un côté 11

Traits: ABC un triangle acutangle,

H l'orthocentre du triangle,

A' le pied de la hauteur de ABC en A,

0 le cercle circonscrit à ABC

et H' le pied de la hauteur de ABC en A sur 0.

Donné : A' est le milieu de [HH'].

2. Un triangle de Möbius 12

Traits: 1, 2 deux cercles sécants,

O, O' les centres resp. de 1, 2,

A, B les points d'intersection de 1 et 2,

et (IBJ) une monienne brisée.

Carnot, n° **142**, De la corrélation des figures géométriques (1801) 101.

Baltzer R. dans son livre *Statik* attribue ce résultat à Möbius.

3. Une monienne brisée

Traits: 1, 2 deux cercles sécants,

A, B les points d'intersection de 1 et 2, Mb une monienne passant par B,

M, N les points d'intersection de *Mb* resp. avec 1, 2,

I, J deux points resp. de 1, 2

et K le point d'intersection de (IM) et (JN)

Donné: I, A, J et K sont cocycliques.

Scolie: (IAJ) est la monienne brisée en A.

4. Le point de Miquel-Wallace 13

Traits: ABC un triangle,

I, J, K trois points d'intersection de (BC), (CA), (AB),

0 le cercle circonscrit à ABC,

et 1, 2, 3 les cercles circonscrits à AKJ, BIK, CJI.

Wallace W., Leybourn's *Mathematical Repository*, vol. 1, part I (1804) 170.

Donné: si, I, J et K sont alignés alors, 0, 1, 2 et 3 sont concourants.

5. Le théorème des trois cercles concourants 14

Traits: 1, 2, 3 trois cercles sécants deux à deux,

K, P les points d'intersection de 1 et 2, I l'un des points d'intersection de 2 et 3, J l'un des points d'intersection de 3 et 1, A un point de 1,

B le second point d'intersection de la monienne (AK) avec 2 C le second point d'intersection de la monienne (BI) avec 3.

Donné : (CJA) est une monienne de 3 et 1 si, et seulement si, 3 passe par P.

Commentaire : ce résultat est une réciproque du pivot de Miquel.

Il reste vrai dans les cas de tangence des droites ou de deux cercles

6. Le théorème faible

et

Traits: ABC un triangle,

et A'B'C' un triangle tel que (1) (AA') et (BB') soient concourantes en O

(2) (AB) soit parallèle à (A'B')

(3) (BC) soit parallèle à (B'C').

Donné : (CC') passe par O si, et seulement si, (AC) est parallèle à (A'C').

Miquel, Théorèmes de Géométrie, *Journal de mathématiques pures et appliquées* de Liouville vol. 1, 3 (1838) 485-487.