# PeiP 2 8 mars 2013

## Examen Signaux

Il sera tenu compte de la présentation et de la rédaction dans la notation. Aucun document autorisé.

### Questions de cours

- 1. Donner la définition de la fonction de transfert d'un système.
- 2. Donner la définition du gain statique d'un système (quelconque). Est-il possible de déterminer ce gain d'un point de vue expérimental? si oui, on expliquera pourquoi et comment.
- 3. Expliquer comment on peut tracer expérimentalement les diagrammes de Bode d'un système physique.

#### Exercice 1

On considère un circuit RC série dont l'entrée est la tension d'alimentation e(t) aux bornes du circuit et la sortie la charge q(t) du condensateur :



- 1. Déterminer la fonction de transfert et les éléments caractéristiques de ce système lorsque  $R=1k\Omega$  et  $C=100\mu F$ .
- 2. On suppose que le condensateur est initialement déchargé. Déterminer q(t) lorsque l'entrée e(t) est définie par :



On vérifiera le théorème de la valeur initiale et de la valeur finale et on calculera q(T).

#### Exercice 2

On considère le circuit électronique ci-dessous, d'entrée  $i_e(t)$  et de sortie  $v_s(t)$ :



- 1. Calculer la fonction de transfert G(p) de ce système.
- 2. Déterminer les expressions de  $G_1(p)$  et  $G_2(p)$ , telles que  $G(p) = G_1(p) \cdot G_2(p)$  avec  $G_1(p) = p$  et  $G_2(p)$  la fonction de transfert d'un système du deuxième ordre de pulsation propre  $\omega_0$ . Déterminer les éléments caractéristiques de  $G_2(p)$  et faire l'application numérique avec  $R = 10\Omega$ , L = 100mH, et C = 1mF.
- 3. Le système étudié présente-t-il une résonance? Si oui, à quelle pulsation?
- 4. Tracer les diagrammes de Bode asymptotiques en gain et en phase.
- 5. De quel type de filtre s'agit-il?
- 6. Le signal d'entrée est de la forme  $i_e(t) = 0.5 + 0.1 \sin(\omega_0 t)$  [A]. Déterminer la tension de sortie du circuit en régime permanent.

#### Exercice 3

On a obtenu le diagramme asymptotique de Bode en amplitude suivant :



- 1. Proposer une fonction de transfert correspondante.
- 2. Tracer le diagramme de Bode asymptotique de la phase correspondant à la fonction de transfert précédente.