Teoria das Filas

LABORATÓRIO DE SIMULAÇÃO DE SISTEMAS PROF. GUILHERME FRÓES SILVA

https://guilhermefroes.github.io/laboratorioSim

Exemplo

Sistemas de Fila Simples

Posto de lavagem de automóveis

Exemplo

Sistemas de Fila Simples

Posto de lavagem de automóveis

Informações:

- Dependendo do dia da semana e da hora escolhida, é possível que, ao chegar ao posto, um cliente encontre o mesmo ocupado.
- Prevento tal situação, o proprietário criou uma área de espera na qual os clientes podem aguardar pelo momento de serem atendidos.

Dúvidas

- •Será que a área de espera disponível (4 automóveis) é suficiente para acomodar a clientela do sábado de manhã?
- •Será que os serviços estão sendo prestados em tempo aceitável, de forma que os clientes não fiquem muito tempo no sistema?
- •Será que é necessário contratar um operador auxiliar para este período de alta demanda?

Para gerar um modelo mínimo, duas informações básicas são necessárias:

- Com que frequência ocorrem chegadas de carros para serem atendidos?
- ·Qual o tempo necessário para completar o serviço?

Informações do proprietário sobre as manhãs de sábado:

- o"Os carros chegam mais ou menos a cada 10 minutos."
- o"Acho que o tempo de atendimento é de uns 15 minutos."
- •"Mas as vezes é o contrário. Meu funcionário leva cerca de 10 minutos pra lavar e os carros demoram mais pra chegar."

Considerando as duas primeiras afirmações do proprietário:

•A frequência com que se observam chegadas de automóveis no sistema é maior do que a frequência de observações de saídas de automóveis, uma vez que o tempo de atendimento (± 15 min) é maior que o intervalo entre chegadas de carros (± 10 min).

Considerando as duas primeiras afirmações do proprietário:

Observando-se um sistema com este comportamento por um período razoável (duas horas), com certeza a área de espera disponível não seria suficiente para a fila que seria formada.

A ultima observação do proprietário ("as vezes é o contrário"), levaria a uma situação totalmente diferente.

Neste caso, o sistema apresentaria folgas, isto é, a área de espera não seria necessária.

Em um **sistema de fila simples**, temos três alternativas de tratamento:

- •Tratamento por emprego de bom senso (e um pouco de adivinhação e **intuição**.
- Tratamento analítico, empregando-se Teoria das Filas (Queueing Models)
- •Tratamento por modelagem e simulação.

Emprego da Intuição

Bom senso + imaginação para "adivinhar" o futuro.

Embora desaconselhável, é uma das técnicas de apoio a decisão mais utilizadas.

Dados:

- Frequência de chegada dos automóveis no posto (TEC)
- Tempo necessário para efetuar os serviços (TS)

Emprego da Intuição

Situação	TEC – Tempo entre Chegadas	TS – Tempo de Serviço
A	~10 min	~15 min
В	$\geq 10 \ min$	~10 min

Situação A

Os automóveis chegam mais rápido do que podem ser atendidos

Alta possibilidade de ocorrerem congestionamentos Considerando este possível cenário, as decisões

poderiam ser, por exemplo:

- Aumentar a área de espera
- Contratar mais um empregado e comprar mais um elevador hidráulico
- Ambas as medidas acima

Situação B

O sistema apresenta certa folga (tempo de atendimento é menor do que os tempos decorridos entre as chegadas)

Raramente ocorrerão filas de espera

Neste caso, a decisão do proprietário seria não tomar nenhuma medida.

Emprego da Intuição

Este processo poderá conduzir a resultados nada compensadores

A verdade, neste caso, deve se encontrar entre estes dois extremos

O problema é a falta de elementos para o exercício da previsão e de avaliação.

Técnicas mais apuradas permitem a análise de desempenho do sistema e de suas possíveis alternativas, diante de diversos cenários.

01/04/2018

Teoria das Filas

Emprega-se um conjunto de fórmulas matemáticas, as quais permitem calcular a maioria das respostas desejadas pelo proprietário, tais como:

- Tempo médio dos serviços
- Tamanho médio da fila na área de espera
- Tempo médio de espera
- Proporção de ocupação do operador

Comportamento e Instrução

Comportamento

- ·Refere-se às ações dos clientes enquanto aguardam
 - Sair da fila se for muito longa
 - Desistir quando a fila se move muito devagar
 - Trocar de fila se outra fila se move mais rápido

Comportamento e Instrução

Instrução (ordenamento lógico)

- •FIFO
 - First-in-first-out
- *oLIFO*
- Last-in-first-out
- ·SIRO
 - Service in random order

- •SPT
 - Shortest processing time first
- •PR
 - Service according to priority

É preciso estimar valores para o tempo médio entre duas chegadas de automóveis no sistema e para o tempo médio de uma lavagem.

Tais informações podem ser obtidas de duas possíveis fontes:

- Estimativas do proprietário
- Amostragem realizada no sistema

Um elemento importante na Teoria das Filas é o reconhecimento do tipo de sistema com o qual se esta lidando, de forma que as fórmulas corretas sejam adotados.

Existem inúmeras variações, as quais exigem o emprego de diferentes fórmulas.

Neste exemplo, podemos considerar o sistema de fila simples com um único servidor (M/M/1).

Este sistema pressupõe que os tempos decorridos no sistema sejam independentes e ocorram de acordo com um processo **Markoviano** (distribuição exponencial).

Finalmente, temos apenas um servidor.

01/04/2018

Tipos de Sistemas A/B/c/N/K:

- A Distribuição de Tempo Entre Chegadas
- B Distribuição de Tempo de Serviço

Distribuições				
M	Exponencial ou Markoviana			
D	Constante ou Determinística			
E_k	Erlang de ordem k			
PH	Tipo fase			
Н	Hiperexponencial			
G	Arbitrária ou Geral			
GI	Geral Independentes			

Definimos então:

- •λ É a taxa de chegadas (unidades / período de tempo)
- $^{\circ}\mu$ É a taxa de serviço (unidades / período de tempo)
- •As fórmulas a seguir só serão válidas para quando $\lambda < \mu$ e longas observações.

Fórmulas:

- °Número médio de unidades no sistema $L=rac{\lambda}{\mu-\lambda}$
- •Tempo médio despendido no sistema $W=\frac{1}{\mu-\lambda}$
- °Taxa média de ocupação do servidor $\rho = \frac{\lambda}{\mu}$

Considerando-se a situação A:

- °Os dados informam que em média chegam 6 carros/hora, $\lambda = 6\frac{un}{h}$
- •Quanto à taxa μ de atendimento, o valor adotado é de 4 a cada hora, $\mu=4\frac{un}{h}$
- •A tendência neste caso é de uma instabilidade no sistema, com a fila de carros crescendo sem parar.

Já considerando-se a situação B:

- °O Tempo Entre Chegadas é $\geq 10 \ min$ e o Tempo de Serviço é de $\sim \! 10 \ min$
- •Para diferentes valores do TEC (10, 12 e 15 min) n pode assumir diferentes valores: $\lambda = 6$, $5 ou 4 \frac{un}{h}$

$$^{\circ}\mu = 6\frac{un}{h}$$

W

Emprego da Teoria das Filas

$\lambda ightarrow$	6	5	4
L	∞	5	2
W	∞	1	0,5
ρ	1	0,833	0,666

L Número médio de carros no sistema

Tempo médio despendido no sistema

ho Taxa média de ocupação do servidor

Para observar diferenças "grosseiras" entre sistemas.

Características:

- Emprego de valores médios (conclusões imprecisas)
- Uso de distribuições erradas
- Apropriado somente quando se considera um grande período de observações
- Difícil de analisar a variabilidade do sistema (comportamento dinâmico)

Simulação sem Computadores

Tabelas de Simulação

- Depende do tipo de modelo e tipo de resposta buscada
- São um registro do comportamento dinâmico do sistema ao longo do tempo
- Podemos usar valores não determinísticos para os Tempos de Chegada (TEC) e Tempos de Serviço (TS)

O modelo reflete melhor o sistema (maior realidade de simulação)

$$TEC = 10, 12, ou\ 15min$$

Modelamos o TEC com probabilidade uniforme de ocorrência de qualquer um destes valores (1/3 de chances)

$$TS = 9, 10, ou \ 11min$$

ambém com distribuição uniforme.

Modelagem e Simulação

Emprego da Simulação – Situação B do Exemplo

Resumo

	TEC			TS		
Tempos (min)	10	12	15	9	10	11
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3

Cliente	Tempo desde a última chegada (minutos)	Tempo de chegada no relógio	Tempo do Serviço (minutos)	Tempo de início do serviço no relógio	Tempo do cliente na fila (minutos)	Tempo finat do serviço no relógio	Tempo do cliente no sistema (minutos)	Tempo livre do operador (minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37	0	46	8	0
4	10	47	10	47	0	57	10	1
5	12	59	9	59	0	68	9	2
6	15	74	10	74	0	84	10	6
7	10	84	11	84	0	95	1 1	0
8	12	96	9	96	0	105	9	1
9	10	106	11	106	0	117	11	1
10	10	116	10	117 Ŋ	1	127	11	0
11	10	126	11	127	1	138	12	0
12	12	138	9	138	0	147	9	0
. 13	15	153	10	153	0	163	10	6
14	12	165	9	165	0	174	9	2
15	12	177	11	177	D)	188	11	3
			150	-	2	-	152	38

Tabela 2.5: Simulação manual dos primeiros 15 clientes

$$\overline{T_e} = \frac{\sum T_e}{C_T} = \frac{2}{5}min$$

$$p_e = \frac{C_e}{C_T} = \frac{2}{15}$$

$$p_a = \frac{\sum T_l}{T_T} = \frac{38}{188}$$

$\overline{T_e}$	Tempo médio de espera na fila
p_e	Probabilidade de um cliente esperar na fila
p_a	Probabilidade do operador estar livre (atendimento)
C_T	Total de Clientes
C_e	Total de Clientes que esperaram
T_l	Tempo livre do operador
T_T	Tempo Total

Como o operador pode estar apenas "livre" ou "ocupado" (simplificação), calculamos as seguintes probabilidades:

•Livre: 20,2%

Ocupado: 79,8%

01/04/2018

No final, devemos estar mais aptos a responder as questões do proprietário do posto

- O tamanho da área de espera é o suficiente?
- •Como são os tempos de realização de serviços?
- •Há necessidade de contratar outro operador?

$$\overline{T}_{S} = \frac{\sum T_{S}}{C_{T}} = \frac{150}{15}$$

$$= 10min$$

$$\overline{T}_{d} = \frac{\sum T_{d}}{C_{T}} = \frac{152}{15}$$

= 10,13min

$\overline{T_S}$	Tempo médio de serviço
$\overline{T_d}$	Tempo médio dispendido no
	sistema

Respostas

- Em média, um cliente permanece em torno de 10 min no posto
- Em média, o operador está ocupado cerca de 80% do teu tempo
- O tempo médio na fila é de 0,13 min e o tempo médio de serviço é de 10,0 min

Conclusão

- Possibilidade de observar a dinâmica do sistema, a formação de filas, a variabilidade associada, diferenças entre tempos máximos e mínimos
- •Permite que possamos testar novas estratégias, incorporando detalhes importantes ao modelo, antes de implementar mudanças.

Próxima Aula

VARIABILIDADE DOS SISTEMAS

