6. Diferencijalni račun funkcija više varijabli - I. dio

Limes i neprekinutost funkcija više varijabli

Primjer 1.

Odrediti postoji li limes funkcije f(x,y) u zadanoj točki $T_0(x_0,y_0)$:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{3x^3 - 2y^3}{x^2 + y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

(e)
$$\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$$

(f)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x+y}$$

(g)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}$$

(h)
$$\lim_{(x,y)\to(0,0)} \frac{2x^2 - y^2}{x^2 + 5y^2}$$

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y^2}$$

(j)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - 3y^2}{2x^2 + 2y^2}$$

(k)
$$\lim_{(x,y)\to(0,0)} \frac{2xy+x^2}{x^2+y^2}$$

(I)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{\sqrt{x^2+y^2}}$$

(m)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3+x^2y}{x^2+y^2}$$

(n)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-2y^2}{\sqrt{x^4+y^4}}$$

(o)
$$\lim_{(x,y)\to(1,2)} \frac{(x-1)^2 + (y-2)^2}{x+y-3}$$

Primjer 2.

Dokazati vrijednost limesa L kad $(x,y) \rightarrow (0,0)$ za sljedeće funkcije:

(a)
$$f(x,y) = x^2 + y^2 + 3$$
, $L = 3$

(b)
$$f(x,y) = \frac{y}{x^4 + 1}$$
, $L = 0$

(c)
$$f(x,y) = \frac{4x^3 - 9y^3}{x^2 + y^2}, L = 0$$

(d)
$$f(x,y) = x + y + 5, L = 5$$

Primjer 3.

Pokazati prekinutost, odnosno neprekinutost funckije z=f(x,y) u točki (0,0), gdje je:

(a)
$$f(x,y) = \begin{cases} \frac{2x^3 - y^3}{3x^2 + 2y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} (4x^2 - 3y^2)\cos\left(\frac{2x - y}{3x^2 + y^2}\right), & (x,y) \neq (0,0) \\ 2, & (x,y) = (0,0) \end{cases}$

Primjer 4.

Odrediti sve realne koeficijente za koje su sljedeće funkcije neprekinute:

(a)
$$f(x,y) = \begin{cases} \frac{x^3 + y^3 + x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ a, & (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} (\alpha + 1) \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ \beta - 3, & (x,y) = (0,0) \end{cases}$

Parcijalne derivacije

Primjer 5.

Naći sve parcijalne derivacije funkcija:

(a)
$$z = \ln\left(\cos\left(\frac{x}{y}\right)\right)$$

(b)
$$u = (xy)^z$$

(c)
$$u = \frac{z}{\sqrt{x^2 + y^2}}$$

(d)
$$z = e^{xyz}$$

(e)
$$u = \sin(x^2y) + \cos z$$

(f)
$$u = x^z \ln y$$

Primjer 6.

Naći jednadžbe tangencijalne ravnine i normale na zadanu plohu z=f(x,y) u zadanoj točki T_0 plohe:

(a)
$$z = x^3 + y$$
, $T_0(1, -1, z_0)$

(b)
$$z = \ln\left(\cos\left(\frac{x}{y}\right)\right)$$
, $T_0\left(\frac{\pi}{4}, 1, z_0\right)$

(c)
$$z = 2 - 3x^3 + 2y^2$$
, $T_0(1, -1, 1)$

(d)
$$z = xy$$
, $T_0(2, 1, 2)$

(e)
$$z = \ln\left(\frac{x}{y}\right) + e^{xy}$$
, $T_0(2, 2, z_0)$

(f)
$$z = x \arcsin(x^2 + \sqrt{y}), T_0(0, \frac{1}{2}, z_0)$$

(g)
$$z = \frac{x^2}{2} - y^3$$
, $T_0(2, 1, -3)$

(h)
$$z = 10 - x^2 - 2x - 2y^2 - y$$
, $T_0(1, 1, 4)$

(i)
$$z = x^y \ln x$$
, $T_0(e, 1, e)$

Primjer 7.

- (a) Odredite jednadžbu tangencijalne ravnine na plohu $z=xy-3x+y^2$ koja je okomita na pravac $\frac{x-1}{0}=\frac{y+2}{-2}=\frac{z+1}{1}$.
- (b) Odredite barem jednu točku na plohi $z=e^{2x}\cos y$ u kojoj je tangencijalna ravnina paralelna s ravninom 2x-z+3=0.
- (c) Na plohu z=xy, u točki $T_0\left(x_0,y_0,z_0\right)$, postavljena je tangencijalna ravnina π koja na koordinatnim osima x i y odscijeca odreske m=2 i n=3. Izračunati koliki odrezak ravnina π odsijeca na osi z.

Diferencijabilnost funkcija više varijabli. Gradijent

Primjer 8.

- (a) Naći jedinični vektor u smjeru kojega iz točke T(1,1,0) funkcija $f(x,y,z)=x^3+x^2y+\sin z$ najbrže raste.
- (b) Naći gradijent funkcije $z = x^3 + y^3 3xy$ u točki T(2,1).
- (c) Naći kut među gradijentima funkcije $z=\sin\left(\frac{x}{y}\right)$ u točkama $A\left(\frac{\pi}{2},2\right)$ i $B\left(0,1\right)$.
- (d) Naći jednadžbu tangencijalne ravnine na plohu $x^2+y^2+z^2-2Rx=0$ u točki $T_0\left(R,R\cos\psi,R\sin\psi\right)$.
- (e) U kojim točkama elipsoida $\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{16}=1$ normala na elipsoid zatvara jednake kuteve sa koordinatnim osima?
- (f) Dokazati da tangencijalne ravnine plohe $xyz=m^3$ tvore s koordinatnim ravninama tetraedar konstantnog volumena.
- (g) Dokažite da sve tangencijalne ravnine na graf funkcije $f\left(x,y,\right)=\frac{1}{xy}$ u točkama iz prvog oktanta zatvaraju s koordinatnim ravninama teatraedre istog volumena.
- (h) Odredite sve točke T na plohi $xyz-e^x+y^2=3$ takve da tangencijalna ravnina na tu plohu u točki T prolazi točkom (2,0,1) i paralelna je sa osi z.
- (i) Nađite točki na plohi $(x+1)^3+z+y^2z^3=2$ u kojima je tangencijalna ravnina paralelna sxOy ravninom.

Primjer 9.

- (a) Dokažite diferencijabilnost funkcije $f(x,y) = x^2 + 2y^2 1$.
- (b) Dokažite diferencijabilnost funkcije $f(x,y) = 3(x+y)^2 3$.

Primjer 10.

- (a) Izračunati $df\left(1,1\right)$ ako je $f\left(x,y\right)=\frac{x}{y^2}.$
- (b) Odredite totalni diferencijal funkcije $f(r,t) = \arctan\left(\frac{r}{t}\right)$ u točki $(x,y) = \frac{1}{x}$
- (1,1)ako je $r=2x^3-y^2$ i $t=e^{\frac{x}{y}}.$

Primjena diferencijala funkcije na izračunavanje približne vrijednosti funkcije

Primjer 11.

- (a) Odredite približnu vrijednost izraza $A=\sqrt{26}$. (b) Odredite približnu vrijednost izraza $B=\frac{1}{1.98^2+\ln 1.15}$. (c) Odredite približnu vrijednost izraza $C=\sin 50^\circ+\cos 70^\circ$.
- (d) Odredite približnu vrijednost izraza $D = \frac{\cot 42^{\circ}}{8.94}$.
- (e) Plašt kabela ima unutarnji promjer 3mm, vanjski promjer 4.5mm te duljinu od 50m. Ako taj kabel omotamo materijalom debljine 0.5mm, za koliko se probližno poveća volumen plašta kabela?
- (f) Stožac je izrađen od čelika gustoće $7800\frac{kg}{m^3}$. Polumjer baze je 15cm, a visina stošca je 20cm. Smanjimo li izvodnicu stošca za 2cm, za koliko se približno smanji masa stošca?
- (g) Mile gradi farmu za nojeve. Prvotno je trebao dobiti 50 nojeva, te je stoga odlučio sagraditi ogradu dimenzija $300m \times 100m$. No, prodavač Božo je netom prije početka gradnje ograde javio da je u mogućnosti prodati samo 40 nojeva. Stoga je Mile odlučio svaku od dimenzija smanjiti za jednu desetinu. Koliko će Mile uštedjeti novaca, ako je cijena jednog metra žice 5.15kn?

Derivacije višeg reda. Schwarzov teorem

Primjer 12.

Provjeri Schwarzov teorem za funkciju $f(x,y) = \sinh\left(\frac{x+y}{1+xy}\right)$.