WRITTEN HW #5 SOLUTIONS

- (1) (10 points) Solve the following systems of congruences (5 each):
 - (a) $x \equiv 3 \mod 4, x \equiv 5 \mod 7, x \equiv 1 \mod 9.$
 - (b) $2x \equiv 3 \mod 5, 3x \equiv 4 \mod 7.$

Solution. For the first set of congruences, 4,7,9 are mutually coprime, so the CRT guarantees a unique solution mod $4 \cdot 7 \cdot 9 = 252$. A solution to $x \equiv 5 \mod 7$ satisfies $x \equiv 5,12,19,26 \mod 28$, and only $19 \equiv 3 \mod 4$, so $x \equiv 19 \mod 28$ is the unique solution to $x \equiv 3 \mod 4$, $x \equiv 5 \mod 7$. Notice that $19 \equiv 1 \mod 9$ as well, so $x \equiv 19 \mod 252$ is the solution to the first system.

For the second system, first notice $2x \equiv 3 \mod 5$ has solution $x \equiv 4 \mod 5$, and $3x \equiv 4 \mod 7$ has solution $x \equiv 6 \mod 7$. The CRT guarantees that simultaneous solutions are unique mod 35, and the above procedure (or inspection; notice that $x \equiv -1 \mod 5$, $x \equiv -1 \mod 7$) shows that $x \equiv -1 \equiv 34 \mod 35$ is the unique solution to this system. \square

- (2) (10 points) Solve the following systems of congruences (5 each):
 - (a) $x \equiv 4 \mod 6, x \equiv 7 \mod 15$.
 - (b) $3x \equiv 4 \mod 10, x \equiv 12 \mod 14$.

Solution. $x \equiv 4 \mod 6, x \equiv 7 \mod 15$ need to satisfy the compatibility relation $4 \equiv 7 \mod \gcd(6,15) = 3$, which it does, so there will be a unique solution $\mod \operatorname{lcm}(15,6) = 30$. Since $x \equiv 7 \mod 15$ implies $x \equiv 7,22 \mod 30$, we see by inspection that $x \equiv 22 \mod 30$ is the unique solution.

For the second system, first notice that $3x \equiv 4 \mod 10$ has the unique solution $x \equiv 8 \mod 10$. Again, this is compatible with $x \equiv 12 \mod 14$, because $12 \equiv 8 \mod gcd(14, 10) = 2$, and the solution will be unique mod lcm(14, 10) = 70. Inspection (notice $x \equiv -2 \mod 10$, $x \equiv -2 \mod 14$) shows that $x \equiv -2 \equiv 68 \mod 70$ solves both equations. \square

(3) (10 points) Suppose you are given a system of linear congruences

$$x \equiv a_1 \bmod n_1, \dots, x \equiv a_k \bmod n_k,$$

where the a_i are arbitrary integers and the n_i are positive integers. Show that there are either no solutions to this system, or all the solutions can be described by $x \equiv a \mod \text{lcm}(n_1, \ldots, n_k)$, for some integer a.

Solution. Factor n_i as $p_1^{e_{i1}}p_2^{e_{i2}}\dots p_r^{e_{ir}}$, where we let some of the exponents be equal to 0. (The p_i s are the set of primes which appear in the factorization of some n_i .) Then our original system is equivalent to the system consisting of $x \equiv a_i \mod p_j^{e_{ij}}$, where the indexing runs over both i, j. Fix attention on the congruences consisting of moduli to powers of p_j , for fixed j. Then either this

system has a solution which is unique mod $p_j^{\max_i(e_{ij})}$, or has no solutions at all. (The exponent is the maximum of the exponents of p_j that appear in the factorizations of all the n_i .) If any of these systems have no solutions, then our original system have no solutions, and we are done.

Suppose all of these systems have solutions. Since the $p_j^{\max_i(e_{ij})}$ are all mutually coprime, the CRT implies that the original system has unique solution mod their product. But their product is just the lcm of n_1, \ldots, n_k . \square

(4) (10 points) Show, using basic methods (in particular, without citing Lemma 4.8 of the text), that 1105 and 1729 are Carmichael numbers.

Solution. First, we factor each of these numbers. For example, $1105 = 5 \cdot 13 \cdot 17$. Then Fermat's Little Theorem tells us that $a^5 \equiv a \mod 5$, and if $5 \nmid a$, then $a^4 \equiv 1 \mod 5$. Furthermore, notice that $4 \mid 1104$. Therefore, if $5 \nmid a$, then $a^{1104} \equiv 1 \mod 5$, or $a^{1105} \equiv a \mod 5$. However, notice this last congruence is also true if $5 \mid a$, so $a^{1105} \equiv a \mod 5$ is true for all integers a. Similarly, we show that $a^{1105} \equiv a \mod 13$, $a^{1105} \equiv a \mod 17$ is true for all integers a, because $(13-1)=12 \mid 1104$, $(17-1)=16 \mid 1104$. These three congruences imply that $a^{1105} \equiv a \mod 1105$, so 1105 is Carmichael.

The same procedure works for $1729 = 7 \cdot 13 \cdot 19$. In particular, $6 \mid 1728, 12 \mid 1728, 18 \mid 1728$. \square

- (5) (10 points) In this problem, we will check that 703 is a strong pseudoprime to base 3.
 - (a) (5 points) Carry out the fast-exponentiation method by hand to compute 3^{351} and 3^{702} mod 703. You should show work when you calculate the binary expansion of 351 and also the results of computing successive squares of 3 mod 703.
 - (b) (5 points) Based on your answers to the previous part, explain why 703 is a strong psuedoprime to base 3. Is 703 a strong psuedoprime to base 2? (You should carry out the same calculations as in the previous part, except this time you can just use your computer to calculate 2^{351} , 2^{702} mod 703.)

Solution. 351 has binary expansion 256+64+16+8+4+2+1. We compute:

 $3^1 \equiv 3 \mod 703, 3^2 \equiv 9 \mod 703, 3^4 \equiv 81 \mod 703, 3^8 \equiv 234 \mod 703, 3^{16} \equiv 625 \mod 703, 3^{32} \equiv 460 \mod 703, 3^{64} \equiv 700 \mod 703, 3^{128} \equiv 9 \mod 703, 3^{256} \equiv 81 \mod 703.$

We now multiply the appropriate powers of 3 together:

$$3^{351} \equiv 8 \cdot 700 \cdot 625 \cdot 234 \cdot 81 \cdot 9 \cdot 3 \equiv 702 \bmod 703.$$

Computing 3^{702} involves squaring this answer, which is just 1 mod 703.

703 is a strong pseudoprime to base 3, because $3^{351} \equiv -1 \mod 703$, so the Miller-Rabin test is inconclusive, but 703 is composite, because $703 = 19 \cdot 37$.

On the other hand, $2^{351} \equiv 265 \mod 703$, so 703 fails the Miller-Rabin test to base 2, and hence is composite. (Alternately, notice $2^{702} \equiv 628 \mod 703$, so fails the simpler Fermat compositeness test.) \square