1.

Hamiltonian

$$H = \frac{1}{2m} \left(\vec{p} - \frac{q\vec{A}}{c} \right)^2$$

Interaction term

$$\begin{split} V = & \frac{q}{2mc} \left(-\vec{p} \cdot \vec{A} - \vec{A} \cdot \vec{p} + \frac{qA^2}{c} \right) \\ = & \frac{q}{2mc} \left(i\hbar \nabla \cdot \vec{A} - 2\vec{A} \cdot \vec{p} + \frac{qA^2}{c} \right) \end{split}$$

Scattering wavefunction given by Born approximation

$$\begin{split} \langle x|\psi^{(+)}\rangle = &\langle x|\vec{k}\rangle - \frac{2m}{\hbar^2} \int \mathrm{d}^3x' \frac{\mathrm{e}^{\mathrm{i}\vec{k}(\vec{x}-\vec{x}')}}{4\pi|\vec{x}-\vec{x}'|} \langle x'|V|\vec{k}\rangle \\ = &\langle x|\vec{k}\rangle - \frac{q}{\hbar^2c} \int \mathrm{d}^3x' \frac{\mathrm{e}^{\mathrm{i}\vec{k}(\vec{x}-\vec{x}')}}{4\pi|\vec{x}-\vec{x}'|} \langle x'| \left(\mathrm{i}\hbar\nabla \cdot \vec{A} - 2\vec{A} \cdot \vec{p} + \frac{qA^2}{c}\right) |\vec{k}\rangle \\ = &\langle x|\vec{k}\rangle - \frac{q}{\hbar^2c} \int \mathrm{d}^3x' \frac{\mathrm{e}^{\mathrm{i}\vec{k}(\vec{x}-\vec{x}')}}{4\pi|\vec{x}-\vec{x}'|} \langle x'| \left(\mathrm{i}\hbar\nabla \cdot \vec{A}' - 2\hbar\vec{A}' \cdot \vec{k} + \frac{qA'^2}{c}\right) |\vec{k}\rangle \\ \approx &\langle x|\vec{k}\rangle - \frac{q}{\hbar c} \frac{\mathrm{e}^{\mathrm{i}kr}}{4\pi r} \int \mathrm{d}^3x' \mathrm{e}^{-\mathrm{i}\vec{k}' \cdot \vec{x}'} \left(\mathrm{i}\nabla \cdot \vec{A}' - 2\vec{A}' \cdot \vec{k} + \frac{qA'^2}{\hbar c}\right) \langle x'|\vec{k}\rangle \\ = &\langle x|\vec{k}\rangle - \frac{q}{(2\pi)^{3/2}\hbar c} \frac{\mathrm{e}^{\mathrm{i}kr}}{4\pi r} \int \mathrm{d}^3x' \mathrm{e}^{\mathrm{i}(\vec{k}-\vec{k}') \cdot \vec{x}'} \left(\mathrm{i}\nabla \cdot \vec{A}' - 2\vec{A}' \cdot \vec{k} + \frac{qA'^2}{\hbar c}\right) \end{split}$$

2.

3.

4.

(a)

Since there's only two plain wave solutions.

$$\psi^{(+)} = \frac{1}{\sqrt{2\pi}} \left(e^{ikx} + f(sign(x))e^{ik|x|} \right)$$

(b)

From the conservation of probability density, the in-coming and out-going wave must have the same amplitude. Therefore, there can only be a phase shift between them. Using the boundary condition, the wavefunction for 0 < x < a is,

$$\psi = A \left(e^{ik'x} - e^{-ik'x} \right)$$

where
$$k'=\sqrt{k^2+2mV_0}$$
 and for $x\geqslant a$ is
$$\psi={\rm e}^{{\rm i}(kx+\delta)}-{\rm e}^{-{\rm i}(kx+\delta)}$$

To satisfy the continuity condition at x = a

$$\begin{split} A\mathrm{e}^{\mathrm{i}k'a} - A\mathrm{e}^{-\mathrm{i}k'a} &= \mathrm{e}^{\mathrm{i}(ka+\delta)} - \mathrm{e}^{-\mathrm{i}(ka+\delta)} \\ Ak'\mathrm{e}^{\mathrm{i}k'a} + Ak'\mathrm{e}^{-\mathrm{i}k'a} &= k\mathrm{e}^{\mathrm{i}(ka+\delta)} + k\mathrm{e}^{-\mathrm{i}(ka+\delta)} \\ A\sin k'a &= \sin \left(ka+\delta\right) \\ Ak'\cos k'a &= k\cos \left(ka+\delta\right) \\ \delta &= \arctan \left(\frac{k}{k'}\tan k'a\right) - ka \end{split}$$

- **5.**
- 6.