

Definition of Image Segmentation

An image can be portioned into many regions R₁, R₂, R₃...R_n

Example

	R ₁	R ₂₃	R ₂₄
Ð	R_3	R	24

	10	10	20	20	20	
RI	10	10	20	20	20	
	10	10	20	20	20	R
R	30	30	20	20	20	
12	30	30	20	20	20	

5×5

10	10	20	20	20
10	10	20	20	20
10	10	20	20	20
30	30	20	20	20
30	30	20	20	20

R1 R2

Characteristics of Segmentation Process

Let R represent the entire image region and Segmentation is partitioning R into n subgroups R_i

$$\bigcup_{i=1}^{n} Ri = R \qquad \qquad i=1,2,-n \quad \textcircled{B}$$

- $\sim \square$ Ri should be connected region: i=1,2,3,....,n
- \square $Ri \cap R_1 = \emptyset$ (for all i and j): $i \neq j$
- $P(R_i) = TRUE \ for \ i = 1,2,3,...n$

Here $P(R_i)$ is a predicate that indicates some property over the region