2D Fourier Series and Image Analysis

Mitchell Wasson - mwasson@comm.utoronto.ca; David Ding - davidy.ding@mail.utoronto.ca

• Name:	Lab Date:	
• Student No.:	Day of the week:	Time:
• Name:	TA Signature:	
• Student No.:	Grade:	
	1. 2D Fourier Basis Vectors	
Have your TA sign here after you hav	ve shown that your basis vector function wo	rks. (/1)
What values for l and k produce the l	owest frequency complex exponentials (ball	park is enough) (/1)?
Which values for l and k produce the	highest (hallnark is enough)? (/1)	
which values for t and k produce the	nighesi (baupark is enough): (11)	
	2. 2D Fourier Transform	
Have your TA sign here after you have	ve demonstrated that your 2D DTFS works of	and is implemented correctly (1)
Tave your 111 sign here after you have	e demonstrated that your 2D D11 5 works t	ma is impiementea correctly. (11
How does the 2D square pulse compo	are to the 1D square pulse with regards to th	heir Fourier coefficients? (/1)
	DE DETERMINE A COMPANY	d to norm implementation? Shor
How many times faster is Matlab's 2	2D DTFS implementation via fft2 compared	a to your implementation? Snov

3. Image Compression		
• Have your TA sign here after you have demonstrated that your image compressor function works and is implemented correctly. (/1)		
• Is there a rate that you cannot get below no matter how high you set cutoff? What is it? (/1)		
• Why is this lower bound on the rate present? (/1)		
• Suggest a way to improve this lower bound. Have your TA sign here after you have suggested something appropriate. (/1		