PROBLEMA M2NPP

MULTIDIMENSIONAL 2-WAY NUMBER PARTITION PROBLEM

PRÁCTICA FINAL

JUAN JOSÉ MÉNDEZ ADRIAN LOPEZ JOSE JESÚS TORRONTERAS

¿DE QUÉ VAMOS A HABLAR?

- PROBLEMA AL QUE NOS ENFRENTAMOS
- INSTANCIAS CREADAS
- CODIFICACIÓN
- METAHEURÍSTICAS USADAS
- RESULTADOS OBTENIDOS

¿A QUÉ NOS ENFRENTAMOS?

DADOS **N** VECTORES DE DIMENSIÓN **D**

DISTRIBUIR LOS VECTORES EN 2 CONJUNTOS

LA MÁXIMA DIFERENCIA ENTRE ELLOS SEA **MÍNIMA**

EJEMPLO

2	3	8	4	8	3	7	9	1	8
5	7	4	3	7	9	5	2	1	5
8	9	6	4	3	6	2	5	7	9
5	5	3	2	2	4	6	7	9	0
8	8	4	2	2	3	2	9	8	7
6	5	4	3	7	6	4	3	2	2

SET 1	2	3	8	4	8	3	7	9	1	8	
	5	7	4	3	7	9	5	2	1	5	
	8	9	6	4	3	6	2	5	7	9	
	5	5	3	2	2	4	6	7	9	0	
	•										
SUM 1 -	20	24	21	13	20	22	20	23	18	22	
SET 2	8	8	4	2	2	3	2	9	8	7	
JL12	6	5	4	3	7	6	4	3	2	2	
_					1	ļ					
SUM 2	14	13	8	5	9	9	6	12	10	9	

PUESTA EN PRÁCTICA

CREACIÓN DE LAS INSTANCIAS

CREACIÓN DE **3** INSTANCIAS

VALORES **ALEATORIOS**COMPRENDIDOS ENTRE 0 Y
100

CODIFICACIÓN

CLASES UTILIZADAS:

Particiones.h: CLASE QUE REPRESENTA UNA PARTICIÓN DEL CONJUNTO DE DATOS.

Sets.h: CLASE QUE ALMACENA LAS PARTICIONES EXTRAÍDAS DEL CONJUNTO

Metaheurísticas.h: CLASE QUE CONTIENE LAS METAHEURÍSTICAS USADAS.

Funciones.h: MÉTODOS PARA EJECUTAR LAS METAHEURÍSTICAS.

1. BÚSQUEDA ALEATORIA

- LEEMOS LAS PARTICIONES ALEATORIAMENTE
- INTRODUCIMOS LAS PARTICIONES DE MANERA ALEATORIA EN LOS SETS
- CALCULAMOS EL FITNESS

2. BÚSQUEDA LOCAL SIMPLE

- LEEMOS LAS PARTICIONES ALEATORIAMENTE
- CALCULAMOS EL FITNESS DE LA SOLUCIÓN ACTUAL
- CALCULAMOS EL FITNESS DE UNA SOLUCIÓN VECINA A LA ACTUAL
- SI MEJORA, CAMBIAMOS LA SOLUCIÓN ACTUAL POR LA NUEVA
- DEVOLVEMOS MEJOR SOLUCIÓN

3. BÚSQUEDA LOCAL POR MÁXIMA PENDIENTE

- LEEMOS LAS PARTICIONES ALEATORIAMENTE
- CALCULAMOS EL FITNESS DE LA SOLUCIÓN ACTUAL
- CALCULAMOS EL FITNESS DE TODAS LAS SOLUCIONES DEL VECINDARIO Y NOS QUEDAMOS CON LA MEJOR
- SI MEJORA, CAMBIAMOS LA SOLUCIÓN ACTUAL POR LA NUEVA
- DEVOLVEMOS MEJOR SOLUCIÓN

4. GRASP

- CALCULAMOS UNA SOLUCIÓN A TRAVÉS DEL MÉTODO GREEDY
- APLICAMOS BÚSQUEDA LOCAL POR MÁXIMA PENDIENTE SOBRE ESA SOLUCIÓN
- DEVOLVEMOS MEJOR SOLUCIÓN

5. ENFRIAMIENTO SIMULADO

- CALCULAMOS TEMPERATURA INICIAL
- APLICAMOS UNA BÚSQUEDA LOCAL
- CALCULAMOS EL FITNESS DE LA NUEVA SOLUCIÓN
- SI ÉSTA EMPEORA, CALCULAMOS UNA PROBABILIDAD ALEATORIA Y COMPARAMOS CON LA PROBABILIDAD ACTUAL
- SI ESTA PROBABILIDAD ALEATORIA ES MENOR, SE ACEPTA LA SOLUCIÓN
- VOLVEMOS A CALCULAR LA TEMPERATURA

RESULTADOS OBTENIDOS

INSTANCIA PEQUEÑA

INSTANCIA MEDIANA

INSTANCIA GRANDE

FIN