Name: .			Stu	dent ID: .							
UNSW	School	OF MA	THEMATIC	cs and St	ATISTIC	S					
MATE	H3411	Infor	MATION	Codes A	AND C	PHER	S				
2014 S	2014 S2		$\mathbf{TEST} 2$					VERSION A			
• Time	Allowed:	45 min	utes								
each : For tl	multiple o he true/fa	choice qualse and	e questions lestion is v written an ther at the	vorth 1 m swer quest	ark.		,				
		_					- 0	ol • correspondi: ssage 0.69 decod	_		
(:	a) $s_2 s_1$	• (b)	$s_1s_1 \bullet$	(c) s_2	$s_1s_1 \bullet$	(d)	$s_1s_1s_2 \bullet$	(e) $s_2 s_2 s_1$	•		
								eppequilibrius pproximately (e) 0.910	ım		
3. Co	onsider a label character P	$\begin{array}{c} \text{binary d} \\ P(a_1) = \frac{1}{7} \end{array}$	$P(b_1 \mid a_1)$	$ \begin{array}{c} \text{Olive sy} \\ \text{Olive sy} \\ \text{Olive sy} \end{array} $	$P(\mathbf{p}_2) = a$		ndloutpi Recall th	It symbols $\{b_1, b\}$ in a function	$_{2}\}$		
			H(x) =	$-x\log_2 x$	-(1-x)	$\log_2(1$	-x)				
an	d note th	at $H(x)$	=H(1-a)	x). The no	ise entro	py H(I	$B \mid A)$ can	n be written as			
(a)	$) \frac{4}{7}H(\frac{4}{5})+$	$\frac{3}{7}H(\frac{5}{8})$	(b) $\frac{4}{7}H(\frac{1}{5})$	(c) $\frac{3}{7}H$	$(\frac{1}{5}) + \frac{4}{7}H($	$\left(\frac{3}{8}\right)$ (d)	$\frac{3}{7}H(\frac{5}{8})$	(e) $H(\frac{1}{5}) + H(\frac{3}{8})$)		
			rem or other ime.) Th) ⁴⁰ (mo	d 2014).				
		(a)	1 (b)	3 (c)	9 ((d) 27	(e)	81			
5. Fo	or which o	of the following	lowing num	mbers a is	n=15 a	ı pseudo	oprime to	base a ?			
	(:	a) 2	(b) 3	(c) 4	(d)	5 (e) none	of these			

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) The LZ78 algorithm decodes the message (0,a)(1,a)(1,b)(2,a)(2,b)(4,a) as aaaabaaaaabaaaa.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 4/7, p_2 = 2/7,$ $p_3 = 1/7$, it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 1.28.
- iii) When using Fermat factorisation to factor n = 6283 as a product n = ab where $2 \le a \le b$, the linear combination a + 2b equals 271.
- iv) For symbols s_1, s_2, s_3, s_4 with probabilities 0.50, 0.25, 0.13, 0.12 respectively, the binary Shannon-Fano encoding 0101110 encodes the string of symbols $s_1 s_2 s_4$.
- v) There are 6 primitive elements in the field GF(27).

Assignment Project Exam Help [5 marks] Leff = $\mathbb{Z}_2(\alpha)$ where α is groot of the polynomial $x^* + x \mathbf{p}_1 \in \mathbb{Z}_2[x]$.

- (i) Express all nonzero elements of \mathbb{F} as powers of α and as linear combinations over \mathbb{Z}_2 https://powcoder.com

 (ii) Find the value of $k \in \{1, ..., 7\}$ for which $(\alpha + 1)^k = \alpha^2 + \alpha + 1$.
- (iii) Find the minimal polynomial of α^3 . Show your vorting. We chat powcoder

Nam	e:		Stud	dent ID	:		•		
UNS	SW SCHOO	OL OF MA	THEMATIC	S AND	STATIS	TICS			
MA	TH3411	Infori	MATION (Codes	S AND	Сірне	RS		
2014	4 S2		${f T}$	EST :	2			VER	SION B
• Tir	ne Allowed	: 45 min	utes						
ea Fo	or the multiple or the true/aple everyt	choice quality choice quality	nestion is w written ans	orth 1 swer qu	mark.		,		
1.	If arithment to the interas	_							responding 35 decodes
	(a) $s_1 s_2$	• (b)	$s_2s_1 \bullet$	(c) s	$s_2s_2s_1$ •	(d)	$s_1s_1s_2$ •	(e)	$s_2s_1s_1 \bullet$
2.	A 2A1S	ignt	peptas	Pro	jeot	ri E /X=	a(<u>n</u> , 1	Jelp	equilibrium
	distributio (a)	on $\mathbf{p} = \frac{1}{5} \left(\begin{array}{c} \mathbf{h} \\ \mathbf{h} \end{array} \right)$	2 3). The (0.786) (b) 0.786	binary) OW(c)	Marko Cod 0.802	er.co	H_M is a 0.818	approxima (e) 0.97	ately 1
3.	Consider a such that	$P(a_1) = \frac{1}{5}$	$P(b_1 \mid a_1)$	$ \underbrace{\text{olice}}_{\overline{5}} \text{ an} $	$\Pr_{\mathbf{D}_2}$		endout Recail	put symb	ols $\{b_1, b_2\}$ ion
			H(x) =	$-x\log_2$	x - (1 -	$-x)\log_2($	(1-x)		
	and note t	that $H(x)$	= H(1 - x)	e). The	noise e	ntropy H	$(B \mid A)$	can be wr	itten as
	(a) $\frac{1}{5}H(\frac{1}{5})$	$+\frac{4}{5}H(\frac{3}{8})$	(b) $\frac{4}{5}H(\frac{1}{5})$	(c) $\frac{1}{5}$	$H(\frac{5}{8})$	(d) $\frac{4}{5}H(\frac{4}{5})$	$\left(1+\frac{1}{5}H\left(\frac{5}{8}\right)\right)$	(e) H($\left(\frac{4}{5}\right) + H\left(\frac{5}{8}\right)$
4.	Using Eule	er's Theor	em or othe	erwise, c	calculat	e 2 ²⁰¹⁴ (r	mod 123)	. The a	nswer is
		(a) 1	(b) 2	(c)	4	(d) 25	(e)	107	
5.	Which of t		ng pairs co			_		s in \mathbb{Z}_{17} ?	
	(a)	5, 9	(b) 5, 10	(c)	9, 10	(d)	9, 12	(e) 12,	13

6. | **5 marks**| For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

- i) The LZ78 algorithm decodes the message (0,a)(1,a)(0,b)(2,a)(2,b)(3,a) as aaabaaaaabba.
- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 5/11, p_2 = 4/11,$ $p_3 = 2/11$ it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 1.5.
- iii) When using Fermat factorisation to factor n = 6283 as a product n = ab where $2 \le a < b$, the linear combination 2a + b equals 215.
- iv) For symbols s_1, s_2, s_3, s_4 with probabilities 0.5, 0.2, 0.1 respectively, the binary Shannon-Fano encoding 01001100 encodes the string of symbols $s_1s_2s_4$.
- The number 3 is one of the pseudo-random numbers generated by the linear congruential $x_{i+1} \equiv 2x_i + 5 \pmod{17}$, seeded with $x_0 = 1$.

Assignment Project Exam Help 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_2(\alpha)$ where α is a root of the polynomial $x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$.

- - (i) Express all nonzero elements of $\mathbb F$ as powers of α and as linear combinations over $\mathbb Z_2$ \mathbf{RL} \mathbf{LDSd} \mathbf{A}^2 $\mathbf{DOWCOGET.COM}$
 - (ii) Simplify $\frac{\alpha^2+1}{\alpha^3+\alpha^4}$, giving your answer as a linear combination of 1, α and α^2 . Show your regions. We Chat powcoder
 - (iii) Find the minimal polynomial of α^5 . Show your working.