IN2090 - Databaser og datamodellering

08 – Tapsfri dekomposisjon

Leif Harald Karlsen leifhka@ifi.uio.no

Hvordan oppnå BCNF?

- Hvordan lage et nytt skjema på BCNF som inneholder den samme informasjonen?
- Problemet er, grovt sett, at data som ikke hører sammen er i samme tabell.
- Kan løses ved å dekomponere tabellen til mindre tabeller.
- ◆ Kan ikke dekomponere som vi vil dekomposisjonen må være tapsfri.

Tapsfri dekomponering

La R(X) være en relasjon. En dekomponering av R er en mengde nye relasjoner $\{S_1(Y_1),\ldots,S_n(Y_n)\}$ slik at

- 1. $Y_i \subseteq X$
- $2. \bigcup_{i=1}^{n} Y_i = X$

En dekomponering er tapsfri hvis vi alltid kan ta en instans IR av R, projisere ned til instanser IS_i av S_i , og så rekonstruere IR via naturlig join, altså:

$$\pi_{\mathsf{Y}_1}\left(\mathsf{IR}\right)\bowtie\pi_{\mathsf{Y}_2}\left(\mathsf{IR}\right)\bowtie\ldots\bowtie\pi_{\mathsf{Y}_n}\left(\mathsf{IR}\right)=\mathsf{IR}$$

Ikke tapsfri dekomponering

Opprinnelig tabell: Ansatte(AvdID, AvdNavn, AnsattID, Navn, Etternavn)

Dekomponert til:

- Avdeling(AvdID, AvdNavn)
- Ansatt(AnsattId, Navn, Etternavn)

Alle atttributter er med, men vi har mistet noe viktig, nemlig **forholdet mellom** ansatt og avdeling.

Tapsfri dekomponering, eksempel

Brnavn	Navn	Etternavn	Adresse	Kurskode	Tittel	Beskrivelse	AntSP	Kara
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	EnBeskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	EnBeskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	EnBeskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	EnBeskr2	5	С

Studen

Brnavn	Navn	Etternavn	Adresse
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

Kurskode	Tittel	Beskrivelse	AntSP
IN2090	Databaser	EnBeskr	10
IN2080	Beregn	Descr	10
IN3110	Program	EnBeskr2	5

Karakter

Karakter					
Brnavn	Kurskode	Kara			
evgenit	IN2090	В			
peternl	IN2090	A			
evgenit	IN2080	В			
leifhka	IN2090	В			
leifhka	IN3110	C			

Alle attributter er med, og naturlig join gir opprinnelig tabell.

Hvordan garantere tapsfri dekomponering?

- ♦ Fagins teorem: En dekomponering av R(X, Y, Z) til $S_1(X, Y), S_2(X, Z)$ er tapsfri hvis og bare hvis $X \to Y$
- Med andre ord, vi kan skille ut noen attributter og det de alle er avhengige av
- Dette gir opphav til dekomponeringsalgoritmen for BCNF

Tapsfri dekomponering til BCNF

Tapsfri dekomponering av R(X) **med FDer** F**:**

- 1. Beregn nøklene til R
- 2. For hver FD $Y \rightarrow A \in F$, hvis FDen er et brudd på BCNF:
 - 2.1 beregn Y^+ ,
 - 2.2 og dekomponer R til $S_1(Y^+)$ og $S_2(Y, X/Y^+)$.
- 3. Fortsett rekursivt (over S_1 og S_2) til ingen brudd på BCNF

(Hvis en FD inneholder attributter fra ulike tabeller kan den ignoreres)

Eksempel 1

Tapsfri dekomponering av R(X) med FDer F:

- 1. For hver FD $Y \rightarrow A \in F$, hvis FDen er et brudd på BCNF:
 - 1.1 beregn Y^+ ,
 - 1.2 og dekomponer R til $S_1(Y^+)$ og $S_2(Y, X/Y^+)$.
- 2. Fortsett rekursivt (over S_1 og S_2) til ingen brudd på BCNF

 $\mathsf{La}\, R(\mathsf{A},\mathsf{B},\mathsf{C}) \; \mathsf{ha}\, \mathsf{FDer}\, F = \{\mathsf{AB} \to \mathsf{C},\mathsf{C} \to \mathsf{A}\}.$

- Kanidatnøkkel: B forekomer ikke på høyresider, så B er med i alle nøkler. {A, B} og {B, C} er nøklene
- $AB \rightarrow C$ er ikke brudd på BCNF, siden AB er en supernøkkel
- ullet $C \rightarrow A$ er brudd på BCNF, men ikke på 3NF, siden A er et nøkkelattributt
- Beregner $C^+ = CA$
- Dekomponerer R til $S_1(C, A)$ og $S_2(C, B)$
- Kun én FD som holder for S₁ (C → A) og bryter ikke med BCNF og ingen FDer for S₂, altså begge på BCNF
- R(A, B, C) dekomponeres dermed til S₁(C, A) og S₂(C, B)

Eksempel 2

Tapsfri dekomponering av R(X) med FDer F:

- 1. For hver FD $Y \rightarrow A \in F$, hvis FDen er et brudd på BCNF:
 - 1.1 beregn Y^+ ,
 - 1.2 og dekomponer R til $S_1(Y^+)$ og $S_2(Y, X/Y^+)$.
- 2. Fortsett rekursivt (over S_1 og S_2) til ingen brudd på BCNF

S(Brnavn, Navn, Etternavn, Kurskode, KursTittel, Karakter)
FDer:

- 1. Brnavn, Kurskode \rightarrow Karakter
- 2. Brnavn \rightarrow Navn
- 3. Brnavn \rightarrow Etternavn
- 4. Kurskode \rightarrow KursTittel
- Kandidatnøkkel: {Brnavn, Kurskode}
- Brnavn → Navn bryter med BCNF
- Beregner Brnavn⁺ = {Brnavn, Navn, Etternavn}
- Får da S₁(Brnavn, Navn, Etternavn) og S₂(Brnavn, Kurskode, Kurstittel, Karakter)
- S₁ har FDene 2. og 3., men ingen av disse bryter BCNF
- S₂ har FDene 1. og 4.

Eksempel 2 (forts.)

Tapsfri dekomponering av R(X) med FDer F:

- 1. For hver FD $Y \rightarrow A \in F$, hvis FDen er et brudd på BCNF:
 - 1.1 beregn Y^+ ,
 - 1.2 og dekomponer R til $S_1(Y^+)$ og $S_2(Y, X/Y^+)$.
- 2. Fortsett rekursivt (over S_1 og S_2) til ingen brudd på BCNF

S₂(Brnavn, Kurskode, Kurstittel, Karakter) FDer:

- 1. Kurskode \rightarrow Kurstittel
- 2. Brnavn, Kurskode \rightarrow Karakter
- Kandidatnøkkel: {Brnavn, Kurskode}
- ★ Kurskode → Kurstittel bryter med BCNF
- ◆ Kurskode⁺ = Kurskode, Kurstittel
- Får S₂₁(Kurskode, Kurstittel) og S₂₂(Kurskode, Brnavn, Karakter)
- S₂₁ har kun første FD som ikke bryter med BCNF
- S₂₂ har kun andre FD som ikke bryter med BCNF

Eksempel 2 (forts.)

S(Brnavn, Navn, Etternavn, Kurskode, KursTittel, Karakter)

FDer:

- 1. Brnavn, Kurskode \rightarrow Karakter
- 2. Brnavn \rightarrow Navn
- 3. Brnavn \rightarrow Etternavn
- 4. Kurskode → KursTittel

Dekomponeres altså til:

- ◆ S₁(Brnavn, Navn, Etternavn)
- ◆ S₂₁(Kurskode, Kurstittel)
- ◆ S₂₂(Kurskode, Brnavn, Karakterer)

Dekomponering i praksis

- Algoritmen gir oss den riktige strukturen på tabellene
- Må etterpå gi tabellene meningsfulle navn og sette skranker på kolonner
- Dersom man startet med en skjema som inneholdt data må disse flyttes over
- Gitt en tabell R(X) som dekomponeres til $S_1(Y_1), \ldots, S_n(Y_n)$ kan dette gjøres ved å kjøre følgende for hver S_i :

```
INSERT INTO S_i
SELECT DISTINCT Y_i
FROM R;
```

Takk for nå!

Neste video vil handle om design i praksis.