Université Cheikh Anta Diop de Dakar

TD2-Corps finis

Thierno Mamoudou SABALY

TD2-Corps finis

Thierno Mamoudou SABALY

Master 1 - Transmission des Données et Sécurité de l'Information Option Mathématiques-Cryptographie

04 janvier 2022

Sommaire

TD2-Corps finis

Exercice 01

Question 1

TD2-Corps finis

Thierno Mamoudou SABALY

Question 1

Montrer que X^2+X+1 est le seul polynôme unitaire irréductible de dégré 2 sur \mathbb{F}_2

Solution

Les autres polynômes unitaires de dégré 2 sur \mathbb{F}_2 sont : X^2+X , X^2+1 et X^2

Montrer que X^2+X+1 est le seul polynôme unitaire irréductible de dégré 2 sur \mathbb{F}_2

Solution

Les autres polynômes unitaires de dégré 2 sur \mathbb{F}_2 sont : X^2+X , X^2+1 et X^2 . Pour chacun d'eux, nous avons bien une factorisation. En effet :

•
$$X^2 + X = X(X+1)$$

•
$$X^2 + 1 = (X + 1)(X + 1)$$

•
$$X^2 = X \times X$$

Montrer que X^2+X+1 est le seul polynôme unitaire irréductible de dégré 2 sur \mathbb{F}_2

Solution

Les autres polynômes unitaires de dégré 2 sur \mathbb{F}_2 sont : X^2+X , X^2+1 et X^2 . Pour chacun d'eux, nous avons bien une factorisation. En effet :

•
$$X^2 + X = X(X+1)$$

•
$$X^2 + 1 = (X + 1)(X + 1)$$

•
$$X^2 = X \times X$$

Alors il ne reste plus qu'à vérifier que $f(X) = X^2 + X + 1$ est irreductible sur \mathbb{F}_2 , pour cela par l'absurde, supposons que f soit réductible.

Exercice 01

Question 01

TD2-Corps finis

Thierno Mamoudou SABALY

Alors f(X) = (X + a)(X + b); $a, b \in \mathbb{F}_2$. Donc 0 ou 1 est solution de f(X) = 0 or on a f(0) = f(1) = 1 ce qui est contradictoire. Donc f est irréductible.

Montrer que le polynôme $X^4 + 1$ est irréductible sur \mathbb{Q} .

Solution

Soit $P(X) = X^4 + 1$. Par l'absurbe supposons que P est réductible sur \mathbb{Q} alors P(X) = Q(X)T(X) avec $Q, T \in \mathbb{Q}[X]$. On a soit deg(Q) = 1 et deg(T) = 3 ou deg(Q) = 2 et deg(T) = 2.

Montrer que le polynôme $X^4 + 1$ est irréductible sur \mathbb{Q} .

Solution

Soit $P(X) = X^4 + 1$. Par l'absurbe supposons que P est réductible sur \mathbb{Q} alors P(X) = Q(X)T(X) avec $Q, T \in \mathbb{Q}[X]$. On a soit deg(Q) = 1 et deg(T) = 3 ou deg(Q) = 2 et deg(T) = 2.

Montrer que le polynôme $X^4 + 1$ est irréductible sur \mathbb{Q} .

Solution

Soit $P(X) = X^4 + 1$. Par l'absurbe supposons que P est réductible sur \mathbb{Q} alors P(X) = Q(X)T(X) avec $Q, T \in \mathbb{Q}[X]$. On a soit deg(Q) = 1 et deg(T) = 3 ou deg(Q) = 2 et deg(T) = 2.

- **②** deg(Q) = 2 alors on peut écrire $Q(X) = X^2 + \alpha X + 1$ et $T(X) = X^2 + \beta X + 1$ avec $\alpha, \beta \in \mathbb{Q}$ $Q(X)T(X) = X^4 + (\alpha + \beta)X^3 + (2 + \alpha\beta)X^2 + (\alpha + \beta)X + 1$. Par identification, on a :

Exercice 01

Question 02

TD2-Corps finis

$$\alpha+\beta=0$$
 et $2+\alpha\beta=0 \implies 2-\alpha^2=0 \implies \alpha^2=2$. Cette dernière équation n'a pas de solution dans \mathbb{Q} .

Exercice 01

Question 02

TD2-Corps finis

Thierno Mamoudou SABALY

 $\alpha+\beta=0$ et $2+\alpha\beta=0 \implies 2-\alpha^2=0 \implies \alpha^2=2$. Cette dernière équation n'a pas de solution dans \mathbb{Q} .

Alors aucune décomposition de X^4+1 n'est possible dans \mathbb{Q} , d'où X^4+1 est irréductible dans \mathbb{Q} .

exercice 01

Question 03

TD2-Corps finis

Thierno Mamoudou SABALY

Question 03

Montrer que le polynôme $X^4 + 1$ est réductible sur \mathbb{F}_p , p premier.

Solution

Trouvons une factorisation de $X^4 + 1$. On a :

- (i) Soit il existe une racine $\mu \in \mathbb{F}_p$
- (ii) Soit $X^4+1=(X^2+\alpha X+a)(X^2+\beta X+a^{-1})$ avec $\alpha, a\in \mathcal{F}_p$

Montrer que le polynôme $X^4 + 1$ est réductible sur \mathbb{F}_p , p premier.

Solution

Trouvons une factorisation de $X^4 + 1$. On a :

- (i) Soit il existe une racine $\mu \in \mathbb{F}_n$
- (ii) Soit $X^4 + 1 = (X^2 + \alpha X + a)(X^2 + \beta X + a^{-1})$ avec $\alpha, a \in F_n$

(i) Si μ est racine alors $\mu^4 = -1 \implies \mu^8 = 1 \implies ord(\mu)|8$.

Comme $\mu^4 = -1$ alors $ord(\mu) \notin \{1, 2, 4\} \implies ord(\mu) = 8 \implies$ $8|p-1 \implies p = 8k+1.$

Montrer que le polynôme $X^4 + 1$ est réductible sur \mathbb{F}_p , p premier.

Solution

Trouvons une factorisation de $X^4 + 1$. On a :

- (i) Soit il existe une racine $\mu \in \mathbb{F}_p$
- (ii) Soit $X^4+1=(X^2+\alpha X+a)(X^2+\beta X+a^{-1})$ avec $\alpha,a\in \mathcal{F}_p$

.

(i) Si μ est racine alors $\mu^4 = -1 \implies \mu^8 = 1 \implies ord(\mu)|8$. Comme $\mu^4 = -1$ alors $ord(\mu) \notin \{1, 2, 4\} \implies ord(\mu) = 8 \implies 8|p-1 \implies p = 8k+1$.

Si
$$p = 8k + 1$$
 alors $X^4 + 1 = (X - \mu)Q(x)$

Thierno Mamoudou SABALY

Question 03

Montrer que le polynôme $X^4 + 1$ est réductible sur \mathbb{F}_p , p premier.

Solution

Trouvons une factorisation de $X^4 + 1$. On a :

- (i) Soit il existe une racine $\mu \in \mathbb{F}_p$
- (ii) Soit $X^4+1=(X^2+\alpha X+a)(X^2+\beta X+a^{-1})$ avec $\alpha,a\in \mathcal{F}_p$

.

(i) Si μ est racine alors $\mu^4 = -1 \implies \mu^8 = 1 \implies ord(\mu)|8$. Comme $\mu^4 = -1$ alors $ord(\mu) \notin \{1, 2, 4\} \implies ord(\mu) = 8 \implies 8|p-1 \implies p = 8k+1$. Si p = 8k+1 alors $X^4 + 1 = (X - \mu)Q(x)$

Il reste alors à évoluer les cas ou $p \in \{8k+3, 8k+5, 8k+7\}$.

(ii) Si
$$X^4+1=(X^2+\alpha X+a)(X^2+\beta X+a^{-1})$$
 avec $\alpha, a\in F_p$ alors on a $X^4+1=X^4+(\alpha+\beta)X^3+(a+a^{-1}+\alpha\beta)X^2+(a^{-1}\alpha+a\beta)X+1$;

(ii) Si
$$X^4 + 1 = (X^2 + \alpha X + a)(X^2 + \beta X + a^{-1})$$
 avec $\alpha, a \in F_p$ alors on a $X^4 + 1 = X^4 + (\alpha + \beta)X^3 + (a + a^{-1} + \alpha \beta)X^2 + (a^{-1}\alpha + a\beta)X + 1$; Et donc par identification,

$$\begin{cases} \alpha + \beta = 0 \\ a + a^{-1} + \alpha \beta = 0 \\ a^{-1}\alpha + a\beta = 0 \end{cases}$$

Thierno Mamoudou SABALY

On a alors,

$$\begin{cases} \beta &= -\alpha \\ \alpha^2 &= a + a^{-1} \\ \alpha(a^{-1} - a) &= 0 \end{cases}$$

On a alors,

$$\begin{cases} \beta &= -\alpha \\ \alpha^2 &= a + a^{-1} \\ \alpha(a^{-1} - a) &= 0 \end{cases}$$

 $\implies \alpha = 0$ ou $a = a^{-1}$. Traitons séparément ces 2 cas.

Thierno Mamoudou SABALY

On a alors,

$$\begin{cases} \beta &= -\alpha \\ \alpha^2 &= a + a^{-1} \\ \alpha(a^{-1} - a) &= 0 \end{cases}$$

 $\implies \alpha = 0$ ou $a = a^{-1}$. Traitons séparément ces 2 cas.

1. $\alpha=0 \implies a^2=-1 \implies -1$ est un résidu quadratique . Par la formule de Legendre, on a $\left(\frac{-1}{p}\right)=1$ or

$$(\frac{-1}{p}) = (-1)^{\frac{p-1}{2}} = 1 \Leftrightarrow p = 8k + 5.$$

Thierno Mamoudou SABALY

On a alors,

$$\begin{cases} \beta &= -\alpha \\ \alpha^2 &= a + a^{-1} \\ \alpha(a^{-1} - a) &= 0 \end{cases}$$

 $\implies \alpha = 0$ ou $a = a^{-1}$. Traitons séparément ces 2 cas.

1. $\alpha=0 \implies a^2=-1 \implies -1$ est un résidu quadratique . Par la formule de Legendre, on a $(\frac{-1}{p})=1$ or

$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}} = 1 \Leftrightarrow p = 8k + 5.$$

Si
$$p = 8k + 5, X^4 + 1 = (X^2 + a)(X^2 - a)$$
 avec $a^2 = -1$

2.
$$a = a^{-1} \implies \alpha^2 = 2a$$
.

2.
$$a = a^{-1} \implies \alpha^2 = 2a$$
. D'autre part $a = a^{-1} \implies a = 1$ ou $a = p - 1 = -1$

- 2. $a = a^{-1} \implies \alpha^2 = 2a$. D'autre part $a = a^{-1} \implies a = 1$ ou a = p 1 = -1
 - Si p = 8k + 3 alors par la formule de Legendre, $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = -1 \implies 2$ n'est pas résidu quadratique. On choisi a tel que 2a soit un résidu quadratique, donc $\binom{2a}{n} = \binom{2}{n}\binom{a}{n} = -1 \times \binom{a}{n} \implies \binom{a}{n} = -1 \implies a = -1$.

- 2. $a = a^{-1} \implies \alpha^2 = 2a$. D'autre part $a = a^{-1} \implies a = 1$ ou a = p 1 = -1
 - Si p = 8k + 3 alors par la formule de Legendre, $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = -1 \implies 2$ n'est pas résidu quadratique. On choisi a tel que 2a soit un résidu quadratique, donc $\binom{2a}{p} = \binom{2}{p} \binom{a}{p} = -1 \times \binom{a}{p} \implies \binom{a}{p} = -1 \implies a = -1$. Si $p = 8k + 3, X^4 + 1 = (X^2 + \alpha X 1)(X^2 \alpha X 1)$ avec $\alpha^2 = -2$

2.
$$a = a^{-1} \implies \alpha^2 = 2a$$
. D'autre part $a = a^{-1} \implies a = 1$ ou $a = p - 1 = -1$

- Si p = 8k + 3 alors par la formule de Legendre, $\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2-1}{8}} = -1 \implies 2$ n'est pas résidu quadratique. On choisi a tel que 2a soit un résidu quadratique, donc $\left(\frac{2a}{p}\right) = \left(\frac{2}{p}\right)\left(\frac{a}{p}\right) = -1 \times \left(\frac{a}{p}\right) \implies \left(\frac{a}{p}\right) = -1 \implies a = -1$. Si $p = 8k + 3, X^4 + 1 = (X^2 + \alpha X 1)(X^2 \alpha X 1)$ avec $\alpha^2 = -2$
- Si p = 8k + 7 alors par la formule de Legendre, 2 est un résidu quadratique, il suffit alors de prendre a = 1. Et on a

2.
$$a = a^{-1} \implies \alpha^2 = 2a$$
. D'autre part $a = a^{-1} \implies a = 1$ ou $a = p - 1 = -1$

- Si p = 8k + 3 alors par la formule de Legendre, $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = -1 \implies 2$ n'est pas résidu quadratique. On choisi a tel que 2a soit un résidu quadratique, donc $\binom{2a}{p} = \binom{2}{p} \binom{a}{p} = -1 \times \binom{a}{p} \implies \binom{a}{p} = -1 \implies a = -1$. Si $p = 8k + 3, X^4 + 1 = (X^2 + \alpha X 1)(X^2 \alpha X 1)$ avec $\alpha^2 = -2$
- Si p=8k+7 alors par la formule de Legendre, 2 est un résidu quadratique, il suffit alors de prendre a=1. Et on a Si $p=8k+7, X^4+1=(X^2+\alpha X+1)(X^2-\alpha X+1)$ avec $\alpha^2=2$.

Thierno Mamoudou SABALY

2.
$$a = a^{-1} \implies \alpha^2 = 2a$$
. D'autre part $a = a^{-1} \implies a = 1$ ou $a = p - 1 = -1$

- Si p = 8k + 3 alors par la formule de Legendre, $\binom{2}{p} = (-1)^{\frac{p^2-1}{8}} = -1 \implies 2$ n'est pas résidu quadratique. On choisi a tel que 2a soit un résidu quadratique, donc $\binom{2a}{p} = \binom{2}{p} \binom{a}{p} = -1 \times \binom{a}{p} \implies \binom{a}{p} = -1 \implies a = -1$. Si $p = 8k + 3, X^4 + 1 = (X^2 + \alpha X 1)(X^2 \alpha X 1)$ avec $\alpha^2 = -2$
- Si p=8k+7 alors par la formule de Legendre, 2 est un résidu quadratique, il suffit alors de prendre a=1. Et on a Si $p=8k+7, X^4+1=(X^2+\alpha X+1)(X^2-\alpha X+1)$ avec $\alpha^2=2$.

D'où pour tout nombre premier $p, X^4 + 1$ est réductible sur \mathbb{F}_p .

exercice 01

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur $\mathbb{F}_2.$

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur \mathbb{F}_2 .

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

• 0 est racine :
$$X^3$$
, $X(X^2 + X + 1) = X^3 + X^2 + X$

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur \mathbb{F}_2 .

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

- 0 est racine : X^3 , $X(X^2 + X + 1) = X^3 + X^2 + X$
- 0 et 1 sont racines :

$$X(X^2+1) = X^3 + X, X(X^2+X) = X^3 + X^2$$

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur \mathbb{F}_2 .

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

- 0 est racine : X^3 , $X(X^2 + X + 1) = X^3 + X^2 + X$
- 0 et 1 sont racines :

$$X(X^2+1) = X^3 + X, X(X^2+X) = X^3 + X^2$$

• 1 est racine :

$$(X+1)(X^2+1) = X^3+X^2+X+1, (X+1)(X^2+X+1) = X^3+1$$

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur \mathbb{F}_2 .

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

- 0 est racine : X^3 , $X(X^2 + X + 1) = X^3 + X^2 + X$
- 0 et 1 sont racines :

$$X(X^2+1)=X^3+X, X(X^2+X)=X^3+X^2$$

• 1 est racine :

$$(X+1)(X^2+1) = X^3+X^2+X+1, (X+1)(X^2+X+1) = X^3+1$$

Déterminer tous les polynômes irréductibles unitaires de degré 3 sur \mathbb{F}_2 .

Solution

Il est plus aisé de lister les réductibles et ensuite en déduire les irréductibles.

Les réductibles

- 0 est racine : X^3 , $X(X^2 + X + 1) = X^3 + X^2 + X$
- 0 et 1 sont racines :

$$X(X^2+1) = X^3 + X, X(X^2+X) = X^3 + X^2$$

• 1 est racine :

$$(X+1)(X^2+1) = X^3 + X^2 + X + 1, (X+1)(X^2 + X + 1) = X^3 + 1$$

Les irréductibles sont alors : $X^3 + X + 1$ et $X^3 + X^2 + 1$.

Exercice 01

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur $\mathbb{F}_3.$

Solution

Un polynôme réductible de degré 2 et unitaire s'écrit

$$(X + a)(X + b) = X^2 + (a + b)X + ab; a, b \in \mathbb{F}_3$$
 Ce sont alors :

Exercice 01

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

Un polynôme réductible de degré 2 et unitaire s'écrit

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1 \text{ ou } a = 1, b = 0 \implies X^2 + X$$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

•
$$a = 1, b = 1 \implies X^2 + 2X + 1$$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

•
$$a = 1, b = 1 \implies X^2 + 2X + 1$$

•
$$a = 1, b = 2$$
 ou $a = 2, b = 1 \implies X^2 + 2$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

•
$$a = 1, b = 1 \implies X^2 + 2X + 1$$

•
$$a = 1, b = 2$$
 ou $a = 2, b = 1 \implies X^2 + 2$

•
$$a = 2, b = 2 \implies X^2 + X + 1$$

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

•
$$a = 0, b = 0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

•
$$a = 1, b = 1 \implies X^2 + 2X + 1$$

•
$$a = 1, b = 2$$
 ou $a = 2, b = 1 \implies X^2 + 2$

•
$$a = 2, b = 2 \implies X^2 + X + 1$$

Question 05

Déterminer tous les polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_3 .

Solution

Un polynôme réductible de degré 2 et unitaire s'écrit

$$(X+a)(X+b)=X^2+(a+b)X+ab; a,b\in\mathbb{F}_3$$
 Ce sont alors :

$$\bullet \ a=0, b=0 \implies X^2$$

•
$$a = 0, b = 1$$
 ou $a = 1, b = 0 \implies X^2 + X$

•
$$a = 0, b = 2$$
 ou $a = 2, b = 0 \implies X^2 + 2X$

•
$$a = 1, b = 1 \implies X^2 + 2X + 1$$

•
$$a = 1, b = 2$$
 ou $a = 2, b = 1 \implies X^2 + 2$

•
$$a = 2, b = 2 \implies X^2 + X + 1$$

Ainsi les irréductibles sont : $X^2 + 1$, $X^2 + X + 2$ et $X^2 + 2X + 2$.

Question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Les polynômes $A(X) = X^3 + X + 1$ et $B(X) = X^3 + X^2 + 1$, sont-ils irréductibles sur \mathbb{F}_2 .

Solution

A(X) et B(X) sont irréductibles sur \mathbb{F}_2 . cf. Question 04.

Question 07

Lister les éléments de $\mathbb{F}_2[X]/(A)$. En déduire ses tables d'addition et de multiplication correspondantes.

Solution

Soit
$$\alpha = Xmod(A(x))$$
, on a : $\alpha^3 + \alpha + 1 = 0 \implies \alpha^3 = \alpha + 1$;

On a:

Question 07

Lister les éléments de $\mathbb{F}_2[X]/(A)$. En déduire ses tables d'addition et de multiplication correspondantes.

Solution

Soit $\alpha = Xmod(A(x))$, on a : $\alpha^3 + \alpha + 1 = 0 \implies \alpha^3 = \alpha + 1$; Exponentielle | polynomiale | binaire | décimal

)n a : ·	α	α	010	2
	α^2	α^2	100	4
	α^3	$\alpha + 1$	011	3
	α^4	$\alpha^2 + \alpha$	110	6
	α^{5}	$\alpha^2 + \alpha + 1$	111	7
	α^{6}	$\alpha^2 + 1$	101	5
	α^7	1	001	1

TD2-Corps finis

Question 02

TD2-Corps finis

Mamoudou

Question 02

Déterminer le cardinale de F.

Solution

$$\mathbb{F} = \{a_0 + a_1\alpha + ... + a_{m-1}\alpha^{m-1}, a_i \in \mathbb{F}\} \cong \{(a_i)_{0 \le i \le m-1}, a_i \in \mathbb{F}_p\}.$$
 On peut voir cet ensemble comme l'ensemble des m-uplets de \mathbb{F}_p .

Donc son cardinale c'est le nombre d'uplets possibles, c'est-à-dire p^m .

$$card(\mathbb{F})=p^m$$
.

Question 03

TD2-Corps finis

Thierno Mamoudou SABALY

Question 03

Montrer que \mathbb{F} , muni de l'addition + des polynômes et de \cdot multiplication de polynômes modulo g, est un corps.

Solution

• La somme de deux polynômes de degré inférieur ou égale à m-1 à coefficients dans \mathbb{F}_p est un polynôme de degré inférieur ou égale à m-1 et à coefficients dans \mathbb{F}_p (car \mathbb{F}_p est un corps). Stabilité par somme

Question 03

TD2-Corps finis

Thierno Mamoudou SABALY

Question 03

Montrer que \mathbb{F} , muni de l'addition + des polynômes et de \cdot multiplication de polynômes modulo g, est un corps.

Solution

- La somme de deux polynômes de degré inférieur ou égale à m-1 à coefficients dans \mathbb{F}_p est un polynôme de degré inférieur ou égale à m-1 et à coefficients dans \mathbb{F}_p (car \mathbb{F}_p est un corps). Stabilité par somme
- Le produit module g de deux polynômes de degré inférieur ou égale à m-1 est aussi un polynôme de degré inférieur ou égale à m-1 et à coefficients dans \mathbb{F}_p . Stabilité par produit

Question 03

TD2-Corps finis

Thierno Mamoudou SABALY

Question 03

Montrer que \mathbb{F} , muni de l'addition + des polynômes et de \cdot multiplication de polynômes modulo g, est un corps.

Solution

- La somme de deux polynômes de degré inférieur ou égale à m-1 à coefficients dans \mathbb{F}_p est un polynôme de degré inférieur ou égale à m-1 et à coefficients dans \mathbb{F}_p (car \mathbb{F}_p est un corps). Stabilité par somme
- Le produit module g de deux polynômes de degré inférieur ou égale à m-1 est aussi un polynôme de degré inférieur ou égale à m-1 et à coefficients dans \mathbb{F}_p . Stabilité par produit
- Soit $P \in \mathbb{F}_p[X]$, alors comme g irréductible alors soit pgcd(P,g) = g ou $pgcd(P,g) = 1 \implies P = 0$ ou P inversible. Or tout élement P non nul de \mathbb{F} est de degré inférieur ou égale à $deg(g) \implies pgcd(P,g) = 1 \implies P$ inversible.

Question 03

TD2-Corps finis

Thierno Mamoudou SABALY

Example

Donc $(\mathbb{F},+,\cdot)$ est un corps.

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

Soit l'application : $\phi : \mathbb{F}_p[X] \to \mathbb{F}$; $P \mapsto P(\alpha)$.

• Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker \phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g).$

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker\phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g)$. En effet, $\forall P \in (g), P(X) = g(X)Q(x) \implies P(\alpha) = g(\alpha)Q(\alpha) = 0$

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker\phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g)$. En effet, $\forall P \in (g), P(X) = g(X)Q(x) \Longrightarrow P(\alpha) = g(\alpha)Q(\alpha) = 0$ Et $\forall P \in \mathbb{F}_p[X], P(\alpha) = 0$ alors deg(P) > deg(g), on a P(X) = g(X)Q(X) + R(X), deg(R) = 0 ou deg(R) < deg(g).

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker\phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g)$. En effet, $\forall P \in (g), P(X) = g(X)Q(x) \Longrightarrow P(\alpha) = g(\alpha)Q(\alpha) = 0$ Et $\forall P \in \mathbb{F}_p[X], P(\alpha) = 0$ alors deg(P) > deg(g), on a P(X) = g(X)Q(X) + R(X), deg(R) = 0 ou deg(R) < deg(g). Alors $P(\alpha) = R(\alpha) = 0 \Longrightarrow deg(R) = 0$ par minimalité de g.

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker\phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g)$. En effet, $\forall P \in (g), P(X) = g(X)Q(x) \Longrightarrow P(\alpha) = g(\alpha)Q(\alpha) = 0$ Et $\forall P \in \mathbb{F}_p[X], P(\alpha) = 0$ alors deg(P) > deg(g), on a P(X) = g(X)Q(X) + R(X), deg(R) = 0 ou deg(R) < deg(g). Alors $P(\alpha) = R(\alpha) = 0 \Longrightarrow deg(R) = 0$ par minimalité de g. D'où $R(X) = 0 \Longrightarrow P(X) = g(X)Q(X) \in (g)$.

Question 04

TD2-Corps finis

Thierno Mamoudou SABALY

Question 04

Montrer que \mathbb{F} est isomorphe à $\mathbb{F}_p[X]/(g)$.

Solution

Soit l'application : $\phi : \mathbb{F}_p[X] \to \mathbb{F}$; $P \mapsto P(\alpha)$.

- Surjection : soit $Y \in \mathbb{F} \implies Y = \sum_{k=0}^{m-1} a_k \alpha^k = P(\alpha)$ avec $P(X) = \sum_{k=0}^{m-1} a_k X^k \in \mathbb{F}_p[X].$
- $ker\phi = \{P \in \mathbb{F}_p[X]/P(\alpha) = 0\} = (g)$. En effet, $\forall P \in (g), P(X) = g(X)Q(x) \Longrightarrow P(\alpha) = g(\alpha)Q(\alpha) = 0$ Et $\forall P \in \mathbb{F}_p[X], P(\alpha) = 0$ alors deg(P) > deg(g), on a P(X) = g(X)Q(X) + R(X), deg(R) = 0 ou deg(R) < deg(g). Alors $P(\alpha) = R(\alpha) = 0 \Longrightarrow deg(R) = 0$ par minimalité de g. D'où $R(X) = 0 \Longrightarrow P(X) = g(X)Q(X) \in (g)$.

D'après le premier théorème d'isomorphisme, on a : $\mathbb{F}_p[X]/(g) \cong \mathbb{F}$.

Question 05

TD2-Corps finis

Thierno Mamoudou SABALY

Question 05

Donner de manière explicite \mathbb{F}_{256} .

Solution

De ce qui précède, $\mathbb{F}_{256} = \mathbb{F}_{2^8}$ c'est l'ensemble des polynômes de degré inférieur ou égale à 7 et à coefficients dans \mathbb{F}_2 .

Question 05

TD2-Corps finis

Mamoudou

Question 05

Donner de manière explicite \mathbb{F}_{256} .

Solution

De ce qui précède, $\mathbb{F}_{256} = \mathbb{F}_{2^8}$ c'est l'ensemble des polynômes de degré inférieur ou égale à 7 et à coefficients dans \mathbb{F}_2 . D'où $\mathbb{F}_{256} = \{\sum_{k=0}^7 a_k x^k; a_k \in \{0,1\}\}$.

D'où
$$\mathbb{F}_{256} = \{\sum_{k=0}^{7} a_k x^k; a_k \in \{0, 1\}\}$$

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_{9}[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X)=X^4+1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \cong \mathbb{F}_3[X]/(g)$.

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_{9}[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X) = X^4 + 1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \cong \mathbb{F}_3[X]/(g)$. Et on a $\tilde{\phi}: \mathbb{F}_3[X]/(g) \to \mathbb{F}_{81}; \tilde{f} \mapsto \tilde{f}(\alpha)$.

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_{9}[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X)=X^4+1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \cong \mathbb{F}_3[X]/(g)$. Et on a

$$\tilde{\phi}: \mathbb{F}_3[X]/(g) \to \mathbb{F}_{81}; \tilde{f} \mapsto \tilde{f}(\alpha).$$

avec
$$\alpha = X \mod(g(X)) \implies g(\alpha) = 0 \implies \alpha^4 = -1.$$

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_{9}[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X)=X^4+1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \cong \mathbb{F}_3[X]/(g)$. Et on a

$$\tilde{\phi}: \mathbb{F}_3[X]/(g) \to \mathbb{F}_{81}; \tilde{f} \mapsto \tilde{f}(\alpha).$$

avec
$$\alpha = X \mod(g(X)) \implies g(\alpha) = 0 \implies \alpha^4 = -1$$
.

Soit $P(X) = X^2 + X + 1$, P est irréductible sur \mathbb{F}_9 donc $\mathbb{F}_9[X]/(P)$ est un corps.

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_{9}[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X) = X^4 + 1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \simeq \mathbb{F}_3[X]/(g)$. Et on a

$$\dot{\tilde{\phi}}: \mathbb{F}_3[X]/(g) \to \mathbb{F}_{81}; \tilde{f} \mapsto \tilde{\tilde{f}}(\alpha).$$

avec
$$\alpha = X \mod(g(X)) \implies g(\alpha) = 0 \implies \alpha^4 = -1$$
.

Soit
$$P(X) = X^2 + X + 1$$
, P est irréductible sur \mathbb{F}_9 donc $\mathbb{F}_9[X]/(P)$ est un corps.

Les éléments de $\mathbb{F}_9[X]/(P)$ sont des polynômes de la forme aX + b avec $a, b \in \mathbb{F}_9$. Cherchons une racine de g dans $\mathbb{F}_9[X]/(P)$

question 06

TD2-Corps finis

Thierno Mamoudou SABALY

Question 06

Expliciter un isomorphisme entre \mathbb{F}_{81} et $\mathbb{F}_9[X]/(P)$, avec P à déterminer.

Solution!!!

Le polynôme $g(X)=X^4+1$ est unitaire et irréductible sur \mathbb{F}_9 . De ce qui précède, $\mathbb{F}_{81} \subseteq \mathbb{F}_3[X]/(g)$. Et on a

$$\tilde{\phi}: \mathbb{F}_3[X]/(g) \to \mathbb{F}_{81}; \tilde{f} \mapsto \tilde{f}(\alpha).$$

avec
$$\alpha = X \mod(g(X)) \implies g(\alpha) = 0 \implies \alpha^4 = -1$$
.

Soit $P(X) = X^2 + X + 1$, P est irréductible sur \mathbb{F}_9 donc $\mathbb{F}_9[X]/(P)$ est un corps.

Les éléments de $\mathbb{F}_9[X]/(P)$ sont des polynômes de la forme aX+b avec $a,b\in\mathbb{F}_9$. Cherchons une racine de g dans $\mathbb{F}_9[X]/(P)$

$$g(aX + b) = (aX + b)^4 + 1 =$$

$$2a^3bX^3 + 6a^2b^2X^2 + 4ab^3X + b^4 - a^4 + 1 = 0 \implies b = 0 \text{ et } a^4 = 1.$$

On peut alors prendre $a = 1 \implies aX + b = Xmod(P(X)) = \beta$.

TD2-Corps finis

Question 01

TD2-Corps finis