

Special Topics in Machine Learning Spring 2024

Course code: BME i9400 - 3 credits

Course Description This course provides a broad overview of modern-day machine learning with an emphasis of techniques that are commonly used in practice to classify biomedical data sets. The course begins with a review of probability theory and linear algebra, which are the foundation for statistical learning. We will then survey a variety of supervised and unsupervised architectures, beginning with logistic regression and including state-of-the-art techniques such as the transformers that power large language models. Throughout the course, students acquire hands-on experience with the presented concepts via application to real-world data sets from a variety of domains. For the Spring 2024 iteration, we will work primarily in the iPython (Jupyter Notebook) environment.

An effort will be made to make this year's course "hands-on", taking the form of Python code snippets that demonstrate the concepts wherever possible. All students should bring a laptop with a working Python environment (instructions will be provided) to class.

Course Objectives

- 1. To be able to formulate problems in the framework of regression/classification.
- 2. To become comfortable working in the iPython environment.
- 3. To be able to apply state-of-the-art machine learning techniques to your data with an understanding of how to optimize performance.

Lectures Monday 02:00 PM-4:30 PM

Steinman Hall 560

Online TBA

Instructor Jacek Dmochowski (jdmochowski@ccny.cuny.edu)

Office: ST 460

Office Hours By email appointment

Helpful Textbooks (all optional):

Deep Learning with Python (Francois Chollet) <u>Publisher</u>
Deep Learning (Ian Goodfellow, Yoshua Bengio, Aaron Courville) <u>HTML version</u>
Pattern Classification (Richard O. Duda, Peter E. Hart, David G. Stork) <u>Amazon</u>

Special Topics in Machine Learning Spring 2024

Topics Covered

Dates and topics subject to change

Week	Date	Topic
1	09.09.24	Probability theory and Bayes' Rule
2	09.16.24	Linear algebra primer
3	09.23.24	Optimization, maximum likelihood, gradient descent
4	09.30.24	Independent Components Analysis
5	10.07.24	Logistic regression
6	10.15.24	Multilayer perceptrons (deep learning)
7	10.21.24	Convolutional networks
8	10.28.24	Sequence models
9	11.04.24	Transformers and language models
10	11.11.24	Midterm exam
11	11.18.24	Autoencoders
12	11.25.24	Self-supervised learning
13	12.02.24	Biomedical ML applications
14	12.09.24	Final project presentations

Assessment Tools Performance Criterion 1: Evaluation of homework assignments.

Performance Criterion 2: Grading of midterm exam Performance Criterion 3: Evaluation of course project.

Final Grade Homework Assignments 30%

Midterm Exam 30% Course Project 40%

Lecture Policy Students are expected to attend all lectures.

Academic integrity Students may discuss homework but the turned-in workmust be that of the

individual student only. Submission of plagiarized homework solutions will

result in referral to the Department Chair.