Tutorat logique: TD1

Université François Rabelais

Département informatique de Blois

Logique pour l'informatique

Problème 1

- 1. On considère le raisonnement R_1 suivant :
 - (1) : "Si la rivière est polluée alors les poissons meurent."
 - (2): "Les poissons meurent."
 - (C): "Donc, la rivière est polluée."

Ce raisonnement est-il correct? Formaliser-le en logique propositionnelle et démontrer sa correction ou son incorrection par le méthode de votre choix.

Le raisonnement est incorrect. On représente par p la proposition "La rivière est polluée." et mla proposition "Les poissons meurent.". Le raisonnement se traduit alors tel que :

(1): $p\Rightarrow m$ (2): m(C): pOn a alors le raisonnement $R_1\equiv ((p\Rightarrow m)\wedge m)\Rightarrow p$. En appliquant la valuation V(p)=0 et V(m)=1, on a $R_1\equiv 0,$ ce qui confirme que le raisonnement est invalide.

- 2. On considère désormais le raisonnement R_2 suivant :
 - (1) : "Si la rivière déborde, alors il y'a des inondations."
 - (C): "Donc, s'il n'y a pas d'inondations, alors la rivière ne déborde pas."

Même question que précédemment.

Le raisonnement est correct. On représente par d la proposition "La rivière est déborde." et par i la proposition "Il y'a des inondations.". Le raisonnement se traduit alors tel que :

 $(1): d \Rightarrow i$ $(C): \neg i \Rightarrow \neg d$ On a alors le raisonnement $R_2 \equiv (d \Rightarrow i) \Rightarrow (\neg i \Rightarrow \neg d)$. Simplifions $R_2: R_2 \equiv (d \Rightarrow i) \Rightarrow (\neg i \Rightarrow \neg d)$

$$R_2 \equiv (d \Rightarrow i) \Rightarrow (\neg i \Rightarrow \neg d)$$

Problème 2

On considère l'ensemble de formules $\Gamma = \{t \lor p \lor \neg r, \neg t \lor q \lor \neg s\}$ et la formule $\varphi \equiv p \lor q \lor \neg r \lor \neg s$. Montrer que $\Gamma \models \varphi$.

Le symbole "\=" est celui de la conséquence sémantique, c'est-à-dire dans notre cas que l'ensemble de formules Γ implique sémantiquement la formule φ . Ainsi, il est question de montrer que pour toute interprétation I rendant vraie Γ alors I rend également vraie φ .

Posons $\Gamma = \{C_1, C_2\}$, on suppose alors $I(C_1 \wedge C_2) = \top$, et on considère les deux cas suivants, étant donné que l'intersection des variables propositionnelles de C_1 et C_2 se réduit à $\{t\}$:

- Si V(t) = ⊥ alors I(C₂) = ⊤, on déduit alors que I(p ∨ ¬r) = ⊤ et donc I(φ) = ⊤.
 Si V(t) = ⊤ alors I(C₁) = ⊤, on déduit alors que I(q ∨ ¬s) = ⊤ et donc I(φ) = ⊤.

Dans les deux cas, on a bien $I(\varphi) = \top$. On a montré que $\Gamma \models \varphi$.

Problème 3

Soient φ_1 et φ_2 , deux formules de la logique propositionnelle. Démontrer la proposition suivante :

$$\varphi_1 \models \varphi_2 \text{ si et seulement si } \models \varphi_1 \Rightarrow \varphi_2$$

On suppose que $\varphi_1 \models \varphi_2$, on souhaite montrer que $\models \varphi_1 \Rightarrow \varphi_2$, c'est-à-dire, montrer que pour toute interprétation I, on a $I(\varphi_1 \Rightarrow \varphi_2) = \top$.

Or
$$I(\varphi_1 \Rightarrow \varphi_2) = I(\neg \varphi_1 \lor \varphi_2)$$

= $I(\neg \varphi_1) \lor (\varphi_2)$
= $\neg I(\varphi_1) \lor (\varphi_2)$

Si $I(\varphi_1) = \bot$, alors on a bien $I(\varphi_1 \Rightarrow \varphi_2) = \top$. Sinon, si $I(\varphi_1) = \top$, par hypothèse que $\varphi_1 \models \varphi_2$, on a forcément $I(\varphi_2) = \top$ et donc on a encore une fois $I(\varphi_1 \Rightarrow \varphi_2) = \top$.

Réciproquement, supposons que $\models \varphi_1 \Rightarrow \varphi_2$ et montrons que $\varphi_1 \models \varphi_2$. Soit I une interprétation telle que $I(\varphi_1) = \top$, puisque par hypothèse on a $\models \varphi_1 \Rightarrow \varphi_2$, il vient obligatoirement par la table de vérité de l'implication que $I(\varphi_2) = \top$.

On a montré les deux implications, la proposition est donc vraie.

Problème 4

Modéliser le principe de raisonnement par l'absurde en logique propositionnelle et démontrer sa validité.

Un raisonnement par l'absurde consiste à supposer le contraire de ce qu'on veut démontrer et à en déduire une contradiction. En logique propositionnelle, si on veut démontrer la validité d'une formule φ , alors on suppose $\neg \varphi$ et on en déduit le faux. C'est un raisonnement valide car on a bien que φ est valide si et seulement si $\neg \varphi \Rightarrow \bot$ est valide. En effet, $\neg \varphi \Rightarrow \bot$ est valide, si et seulement si, $\neg \neg \varphi \lor \bot$ est valide, si et seulement si, $\neg \neg \varphi$ est valide, c'est-à-dire, si et seulement si φ est valide.

Problème 5

Dire si les assertions suivantes sont vraies ou fausses puis démontrer.

- 1. Il existe une formule satisfaisable dont la négation est satisfaisable.
- \parallel Cette assertion est *vraie*. On a bien un modèle pour φ et un modèle pour $\neg \varphi$.
- 2. Il existe une tautologie dont la négation est satisfaisable.

Cette assertion est fausse. Un formule $\tau \in \mathcal{L}$ est une tautologie si et seulement si τ est vraie pour toute interprétation I. Ainsi, supposons que l'on ait $I(\neg \tau) = 1$, alors par définition de la négation on a $I(\tau)=0$. On arrive à une contradiction, l'hypothèse de départ est absurde.

3. L'unique connecteur unaire existant en logique propositionnelle est \neg .

Cette assertion est fausse. On peut définir $2^2 = 4$ connecteurs unaires en logique propositionnelle. La négation, notée classiquement "¬" et les trois autres connecteurs : identité, toujours faux,

- 4. Toute formule admet au moins un modèle.
- \parallel Cette assertion est fausse. Les contradictions n'admettent aucun modèle par définition.
- 5. Le système de connecteurs $\{\neg, \Rightarrow\}$ est complet.

Cette assertion est vraie. On admet que l'ensemble $\{\neg, \lor, \land\}$ forme un système complet de connec-

On cherche à exprimer \vee et \wedge à l'aide de l'ensemble $\{\neg,\Rightarrow\}$. Soient P et Q deux formules propositionnelles. $\bullet \neg (P \Rightarrow \neg Q) \equiv P \land Q$ $\bullet \neg P \Rightarrow Q \equiv P \lor Q$

On a réussi à se ramener à un système complet de connecteur connu.

Problème 6

Traduire les énoncés suivants en logique propositionnelle et dire s'ils sont vrais dans le domaine d'interprétation du monde réel.

- 1. Pour que les souris soient des oiseaux, il faut qu'elles aient des ailes.

 - q: Les souris ont des ailes.

 $p \Rightarrow q$: Comme les souris ne sont pas des oiseaux et n'ont pas d'aile, cet énoncé est vrai.

2. 1 est égale à 4 si et seulement si 1 est égale à 2.

3. Pour qu'un oeuf réussisse le cours de logique, il ne suffit pas qu'il assiste au cours.

p : Un oeuf réussit le cours de logique.

q: Un oeuf assiste au cours. $\neg(q\Rightarrow p): \text{L'énoncé est } \textit{faux}, \text{ mais il est vrai si vous emmenez un oeuf en cours de logique.}$

4. Une porte est ouverte ou fermée.

p: La porte est ouverte.

 \boldsymbol{q} : La porte est fermée.

Problème 7

Démontrer le résultat suivant. On pourra raisonner par récurrence sur le nombre de variables propositionnelles en commun de φ et ψ .

Théorème d'interpolation - Soient φ et ψ , deux formules propositionnelles telles que $\models \varphi \Rightarrow \psi$. Montrer qu'il existe une formule propositionnelle χ , dont les variables propositionnelles apparaissent $dans \ \varphi \ et \ \psi \ et \ telle \ que \models \varphi \Rightarrow \chi \ et \models \chi \Rightarrow \psi.$

On suppose que $\models \varphi \Rightarrow \psi$.

On procède par récurrence sur le nombre de variables propositionnelles des formules. On considère l'ensemble des variables propositionnelles de la formule φ (respectivement ψ) atoms (φ) (atoms (ψ)). Ainsi, on a $atoms(\chi) \subseteq atoms(\varphi) \cap atoms(\psi)$. Avec $|atoms(\varphi) - atoms(\psi)| = n$.

- Initialisation (pour $|atoms(\varphi) atoms(\psi)| = 0$) Dans ce cas alors φ convient. En effet $atoms(\varphi) \subseteq atoms(\varphi)$ et on sait que $\models \varphi \Rightarrow \varphi$.
- Hérédité

On suppose qu'il existe un entier $n \in \mathbb{N}$ et une formule propositionnelle ρ vérifiant $|atoms(\rho)|$ $atoms(\psi) = n$. De plus, on suppose que $|atoms(\varphi) - atoms(\psi)| = n + 1$.

Soit $p \in \text{atoms}(\varphi)$ mais $p \notin \text{atoms}(\psi)$, on définit la formule φ' telle que :

$$\varphi' = \varphi[\top/p] \vee \varphi[\bot/p]$$

Il s'agit de la même formule que φ où chaque p est substituée par la valeur vraie et de même, par la valeur faux.

On remarque plusieurs choses:

- 1. $\models \varphi' \Rightarrow \psi$. En effet car l'on peut se ramener à φ et que la formule $\varphi \Rightarrow \psi$ est vraie pour toute interprétation donc en particulier pour les valuations affectées à p.
- 2. $|atoms(\varphi') atoms(\psi)| = n$. On a remplacé p par une valuation.
- 3. $\models \varphi \Rightarrow \varphi'$. En effet, $\varphi \Rightarrow (\varphi[\top/p] \vee \varphi[\bot/p]) \equiv \neg \varphi \vee \varphi[\top/p] \vee \varphi[\bot/p]$, par le principe du tiers exclu et en appliquant n'importe quelle valuation à p.

En utilisant les points 1. et 2. ainsi que l'hypothèse de récurrence, on a :

- $4. \models \varphi' \Rightarrow \chi.$
- 5. $\models \chi \Rightarrow \psi$.

Mais, de 3. et 4., on déduit que $\models \varphi \Rightarrow \chi$.

Dès lors, χ est une formule valide pour φ et ψ .

• Conclusion

Le propriété d'interpolation est initialisée pour un n=0 et héréditaire, elle est donc vraie par le principe de récurrence c'est bien un théorème.

Problème 8

Soient les trois énoncés suivants :

- p: "Demain il pleut."
- q: "Aujourd'hui il fait beau."
- r: "Un jour, il neigera."

Traduire en langue naturelle le plus adéquatement possibles les énoncés logiques suivants :

- 1. $\neg q \Rightarrow p$
- || S'il ne fait pas beau aujourd'hui, alors demain, il pleut.
- 2. $(\neg p \lor q) \Rightarrow r$
- || Si aujourd'hui il pleut ou que demain il ne pleut pas, alors c'est sûr, un jour il neigera.
- 3. $\neg (q \Rightarrow r)$
- Pour qu'un jour il neige, il ne suffit pas qu'il fasse beau aujourd'hui.
- 4. $r \Rightarrow ((p \lor q) \land \neg (p \land q))$
- Si un jour il neige, alors il fait beau aujourd'hui ou il pleut demain, mais certainement pas les deux.

Problème 9

Démontrer le principe de *contraposition* mathématique.

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

On peut le montrer par la méthode des tables de vérité.

A	B	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

A	B	$\neg A$	$\neg B$	$\neg B \Rightarrow \neg A$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	0
1	1	0	0	1

Le résultat des deux tables est identique. L'équivalence est vérifiée.

Problème 10

Donner des interprétations qui rendent faux les énoncés suivants puis un modèle de ceux-ci.

1.
$$r \land \neg p \Rightarrow (q \lor (r \Rightarrow p))$$

La formule est fausse avec la valuation $V(r) = \bot$.

On rend la formule vraie par l'interprétation affectant la valuation suivante $V(r) = \top, V(p) = \top$.

2.
$$[q \land q \Rightarrow (r \Rightarrow p)] \lor \neg r \lor p$$

La formule est fausse avec la valuation $V(r) = \top, V(p) = \bot, V(q) = \bot.$

On rend la formule vraie par l'interprétation affectant la valuation suivante $V(r) = \bot, V(p) = \top, V(q) = \top.$

3.
$$\neg (p \oplus q) \land (r \Leftrightarrow q) \land (\neg p \lor \neg q)$$

La formule est fausse avec la valuation $V(p) = \top, V(q) = \top.$

On rend la formule vraie par l'interprétation affectant la valuation suivante $V(p) = \bot, V(q) = \bot, V(r) = \bot.$