Модел на Мичър на левкемна популация

Людмил Владимиров Йовков 9 февруари 2014 г.

1 Увод

Левкемията е страшна диагноза за всеки, на когото бъде поставена. Тя не означава непременно фатален край, защото всяка болест, хваната в своите ранни стадии, може да бъде успешно лекувана. Когато даден пациент се диагностицира с рак на кръвта, веднага се обръща внимание на стадия на заболяването и възможните начини на лечение. Лъчелечението е традиционна медицинска процедура, която се прилага при болни от рак на кръвта. С напредването на науката се откриват още методи за превенция.

Настоящата разработка има за цел да покаже растежа и развитието на левкемната популация с помощта на математическия апарат, а също и това, как може да бъде лекувана хроничната миелобластна левкемия с помощта на лекарството *ИМАТИНИБ*. Моделът на развитието на левкемната популация е описан чисто математически от Франциска Мичър (Michor, F., [1], 2005). Ние ще използваме този модел с данни по наблюдения, за да покажем, че действително математиката намира приложение в биологията и медицината и с нейна помощ могат да се правят далечни прогнози за здравето на пациентите. Нашият принос ще се състои в следното:

- събиране на необходимите числови данни;
- намиране чрез аналитични методи на явния вид на системата от диференциални уравнения на Мичър;
- съставяне на компютърна програма, която намира числено решение на системата диференциални уравнения на Мичър при зададени начални условия;
- изчертаване на съответни графики;
- анализ по стойностите на получените решения и графиките;
- прогнози и изводи.

2 Левкемия и начини на лечение

2.1 Хронична миелобластна левкемия

Хроничната миелобластна левкемия (ХМЛ) е резултат от неконтролирания растеж на бели кръвни клетки. Този растеж се дължи на увеличеното и нерегулирано количество на миелоидни клетки в костния мозък и попадането им в кръвта. Традиционното лечение на ХМЛ е с инхибитора *ИМАТИНИБ*. Въпреки че *ИМАТИНИБ* е ефективен за третиране на ХМЛ и повечето пациенти достигат известна степен на ремисия на болестта, той не премахва напълно левкемните клетки и ако употребата му бъде спряна, болните рецидивират (Michor, 2005, р. 2).

• Клинична картина

Началото на заболяването е постепенно и с нехарактерни първоначални оплаквания — обща слабост, отпадналост и безапетитие, намалена трудоспособност, повишена температура. Болните често имат главоболие, неврологични и костни болки, понякога обилно кървене от носа, венците и различни органи, което се наблюдава в по-напредналите стадии на болестта. Оплакват се от тежест и тъпа болка в лявото подребрие. Постепенно стават бледи и лесно се изморяват, със задух при сравнително лесни физически упражнения. При обективно изследване прави впечатление бледостта на кожата и лигавиците, което съответства на намаления брой на еритроцитите и хемоглобина в кръвта. Слезката е увеличена, като в течение на еволюцията на болестта нерядко достига до нивото на пъпната хоризонтала или даже до малкия таз. Тя е с умерена плътност и заоблен ръб. При част от болните е налице и умерена хепатомегалия — черният дроб е увеличен с 3 до 5 см под ребрената дъга, с плътна консистенция, заоблен ръб и гладка повърхност. Лимфните възли най-често не са увеличени. При ХМЛ могат да се развият левкемни инфилтрати във всички паренхимни органи (черен дроб, бъбреци, кожа, главен и гръбначен мозък). Това дава симптоми на органно поражение — бронхопневмония, плеврални изливи, парализи, инфаркт на слезката, стомашно-чревни изменения и кръвоизливи и др.

• Лабораторни изследвания

Най-често се установява силно увеличен брой на левкоцитите, които могат да достигнат до твърде високи стойности — $100-400\cdot10^9/L$. В периферната кръв се установяват гранулоцити от всички стадии на съзряване — най-младите клетки (миелобласти, промиелоцити), изобилие на миелоцити и следващи фази на развитие гранулоцитите. Намален е и броят на тромбоцитите, което обяснява в значителна степен проявата на хеморагична диатеза от устната кухина, носа и други органи при тези болни. Костният мозък е променен, като преобладават младите клетки от гранулоцитарния ред. Протичането на болестта е

бавно, с периоди на влошаване и клинични ремисии. Поради намалената имунна защита болните от ХМЛ боледуват често, и то с тежко протичане, от бактериални инфекции и микозни суперинфекции.

• Прогноза

Прогнозата на заболяването е неблагоприятна. Въпреки съвременното цитостатично лечение половината от лекуваните болни не доживяват 3-5 години.

Видовете ремисия са три — хематологична, цитогенетична и молекулярна (Michor, 2005, р. 2-3). На всеки нов слой съответства друг, сто пъти по-различен от предходния. У пациента обикновено се наблюдават около 10^{12} левкемни клетки преди лечението с $\mathit{UMATUHUB}$. Следователно на хематологичната ремисия съответстват 10^{10} левкемни клетки, на цитогенетичната — 10^8 , и на молекулярната — 10^6 . Предполагайки, че средностатистическият човек има приблизително 6 литра кръв, тези равнища на ремисия съответстват на следните стойности от таблицата.

Равнище на ремисия	Хематологична	Цитогенетична	Молекулярна
Концентрация $k/\mu L$	1.67	$1.67 \cdot 10^{-2}$	$1.67 \cdot 10^{-4}$

С ИМАТИНИБ почти всички пациенти достигат хематологична ремисия и приблизително 75% от тях достигат цитогенетична ремисия.

Няколко неотдавнашни математически модела са били разработени, за да опишат динамиката на ХМЛ под действие на лекарството *ИМАТИНИБ*. Във всички тези научни трудове авторите заключават, че *ИМАТИНИБ* не унищощава напълно раковите клетки, и предлагат възможността терапията с *ИМАТИНИБ* да се съчетае с други форми на лечение. В своя модел Ф. Мичър използва система от четири обикновени диференциални уравнения. Авторката се базира на познатия от биологията модел за динамика на ХМЛ под действие на *ИМАТИНИБ* и счита, че победата над левкемията може да бъде пълна, ако

концентрацията на ракови клетки в кръвта $< 10^{-10} \, k/\mu L$.

2.2 Място на рака сред другите видове рак

Левкемията [2] заема 2.9% от всички ракови случаи в САЩ.

2.3 Кой се разболява от този рак?

Да разгледаме данните от таблицата.

Забелязваме, че най-уязвими към левкемията са хората на възраст между 75 и 84 години — 21.7%. Почти толкова е и вероятността за разболяване при хората на възраст между 65 и 74 години. Какво идва да покаже това — при най-малкото съмнение рисковите групи трябва да посетят специалист хематолог, за да се избегнат по-нататъшни усложнения.

Таблица 1: Ракът на кръвта и другите видове рак

Вид рак	Регистрирани случаи през 2013 г.	Регистрирани смърти през 2013
Рак на простатата	238,590	29,720
Рак на гърдата	232,340	39,620
Рак на белите дробове	228,190	159,480
Рак на дебелото черво	142,820	50,830
Рак на кожата	76,690	9,480
Рак на пикочния мехур	72,570	15,210
Лимфома	69,740	19,020
Рак на бъбреците	65,150	13,680
Рак на щитовидната жлеза	60,220	1,850
Рак на маточната шийка	49,560	8,190
Рак на кръвта	48,610	23,720

Фигура 1: Място сред другите видове рак

2.4 Какъв е процентът на смъртността при този рак?

Графиката показва, че най-много хора умират от левкемия във възрастовата група 75-84 години.

2.5 Статистика през годините

Процентният дял на откриване на левкемия у хората се увеличава средно с 0.1% на година през последните 10 години. Процентът на смъртността спада с около 1% годишно за същия период. Преживяемостта до 5 години е представена с таблица и чертеж.

2.6 Лъчелечение

Съществуват и други начини за контролиране растежа на левкемните клетки. Един от тях е лъчелечението, т. е. облъчване с големи дози радиоактивност, която убива болните клетки, но убива и здравите. Изборът на лечение

Таблица 2: Кой се разболява от този рак?

1
Дял в проценти
10.3%
4.7%
5.2%
10.4%
16.7%
20%
21.7%
11.1%

Фигура 2: Разпределение на левкемията по възрастови групи

се прави адекватно, съобразно нуждите и общото физическо състояние на болния. Например за един пациент облъчването би било по-поносимо, отколкото третирането с *ИМАТИНИБ*, но за друг би било обратното.

Лъчетерапията използва енергийни лъчи за убиване на левкемни клетки. Някои болни получават радиация от голяма машина, насочена към части от тялото, където са събрани левкемните клетки — далака, мозъка и т. н. Този вид терапия се провежда пет дена в седмицата в продължение на няколко седмици. Други болни могат да получат радиация, която е насочена към цялото тяло. Облъчвания се дават веднъж или два пъти на ден в продължение на няколко дена обикновено преди трансплантация на стволови клетки. Страничните ефекти на лъчевата терапия зависят главно от дозата радиация и частта от тялото, която се третира. Радиация в стомашната област предизвиква гадене, повръщане и диария. Кожата около лекуваната област се зачервява, понякога изсъхва и става по-нежна. Налице е умора, особено след няколкоседмично облъчване. Тези странични ефекти се облекчават с приемане на други лекарствени средства.

Окончателните методи за борба с болестта са резултат на консенсус между болния и лекуващите го лекари и от следните фактори:

Таблица 3: Процент на смъртност при левкемията

1 1
Процент на смъртност
2.7%
3.1%
3%
6.3%
13.1%
21.6%
30.8%
19.4%

Фигура 3: Процентно разпределение на смъртността при левкемията

- вид левкемия (остра или хронична);
- възрастта на пациента;
- дали левкемни клетки са открити в цереброспиналната течност.

Левкемията е изключително коварна болест, която бавно изпива силите на заболелите. Тя рядко се поддава на пълно излекуване. Затова трябва да се обръща внимание на болните, да се полагат навременни и правилни грижи за тях, понеже не се знае докога ще действат лекарствата и колко точно ракови клетки ще останат да живеят скрити в организма.

2.7 ИМАТИНИБ

ИМАТИНИБ [3] е тирозинкиназен инхибитор, който се използва за лечение на много видове рак, най-често хронична миелобластна левкемия. Както всички тирозинкиназни инхибитори, *ИМАТИНИБ* функционира чрез ограничаващия разпространението на ракови клетки тирозинкиназен ензим ВСR-Abl. Тъй като тирозинкиназните ензими от групата ВСR-Abl живеят

Таблица 4: Преживяемост до 5 години

Година	1975	1980	1985	1989	1993	1997	2001	2005
Преживяемост	33.2%	37.4%	41.2%	43.1%	47.2%	48%	53.3%	59.2%

Фигура 4: Преживяемост на болестта до 5 години

само в раковите клетки и никога в здравите, то $\mathit{ИMATUHUB}$ убива единствено раковите клетки по време на терапията.

Въпреки силното си антираково действие лекарството предизвиква редица нежелани реакции от страна на пациента:

- отоци;
- температура;
- кръвотечения;
- пожълтяване на кожата или склерите на очите;
- болки в очите;
- задух;
- затруднена походка;
- главоболие;
- гадене;
- повръщане;
- диария;
- лошо храносмилане;
- болки в мускулите и костите;

- замайване;
- безсъние;
- загуба на апетит;
- конюнктивит;
- сърбеж;
- изпотяване.

 $\mathit{UMATUHUB}$ е в действителност едно от скъпоструващите онкологични лекарства — \$92,000 годишно.

Фигура 5: Структурна формула на ИМАТИНИБ

3 Математически модел на развитие на левкемната популация

Мичър използва данни от 169 пациенти, за да създаде и анализира математически модел на ХМЛ (Michor, 2005, р. 3-4). В този модел левкемните клетки се предполага, че се развиват в четири обособени стадия. Различните видове клетки за време t са означени, както следва:

• $y_0(t)$ — левкемни стволови клетки;

- $y_1(t)$ прогениторни клетки;
- $y_2(t)$ различими клетки;
- $y_3(t)$ терминално различими клетки.

Левкемните клетки се развиват в стадиите по следния начин.

- Стволовите клетки се възпроизвеждат със скорост r_{v} .
- Стволовите клетки се разширяват, развиват се до прогениторни клетки със скорост a_y и умират със скорост r_0 .
- Прогениторните клетки се превръщат в различими клетки със скорост b_y и умират със скорост d_1 .
- Различимите клетки се разширяват, трансформират се в терминални клетки със скорост c_u и умират със скорост d_2 .
- Терминалните клетки умират със скорост d_3 .

С ИМАТИНИБ процентът на левкемните клетки, които преминават от едно състояние в друго, е силно снижен, така че левкемната популация лека-полека загива. По-специално лечението с ИМАТИНИБ намалява параметрите a_v и b_v съответно 100 и 750 пъти.

Системата от диференциални уравнения, която описва модела на Мичър, е дадена по-долу (Michor, 2005, р. 17). Включваме и система от диференциални уравнения, която описва динамиката на левкемните клетки, устойчиви на $\mathit{UMATUHUB}$. Тези популации са означени със z_0, z_1, z_2, z_3 (съответно устойчиви стволови, прогениторни, различими и терминално различими клетки).

$$\begin{aligned} \frac{\mathrm{d}\,y_0}{\mathrm{d}\,t} &= \left[r_y (1-u) - d_0 \right] y_0, \\ \frac{\mathrm{d}\,y_1}{\mathrm{d}\,t} &= a_y y_0 - d_1 y_1, \\ \frac{\mathrm{d}\,y_2}{\mathrm{d}\,t} &= b_y y_1 - d_2 y_2, \\ \frac{\mathrm{d}\,y_3}{\mathrm{d}\,t} &= c_y y_2 - d_3 y_3, \\ \frac{\mathrm{d}\,z_0}{\mathrm{d}\,t} &= (r_z - d_0) z_0 + r_y u y_0, \\ \frac{\mathrm{d}\,z_1}{\mathrm{d}\,t} &= a_z z_0 - d_1 z_1, \\ \frac{\mathrm{d}\,z_2}{\mathrm{d}\,t} &= b_z z_1 - d_2 z_2, \\ \frac{\mathrm{d}\,z_3}{\mathrm{d}\,t} &= c_z z_2 - d_3 z_3. \end{aligned}$$

С u означаваме броя на възможните мутации при устойчиви на $\mathit{UMA-TUHUB}$ клетки. Ние ще приведем числено решение на горната система при конкретни стойности на всички параметри, ще начертаем графики и ще направим изводи по чертежите 1 .

Параметър	Описание
$\lambda = 0.75$	Дробна константа
$d_0 = 0.00\lambda$	Процент на загиналите стволови клетки
$d_1 = 0.008\lambda$	Процент на загиналите прогениторни клетки
$d_2 = 0.05\lambda$	Процент на загиналите различими клетки
$d_3 = \lambda$	Процент на загиналите терминални клетки
$r_y = 0.008$	Процент на възпроизвелите се стволови клетки
$a_y = 1.6$	Темп на растеж на стволови клетки
$b_y = 10$	Темп на растеж на прогениторни клетки
$c_y = 100$	Темп на растеж на различими клетки
$r_z = 0.023$	Процент на регенериращите се мутационни ство-
	лови клетки, устойчиви на лекарството
$a_z = 1.6$	Темп на растеж на мутационни стволови клетки,
	устойчиви на лекарството
$b_z = 10$	Процент на регенериращите се мутационни про-
	гениторни клетки, устойчиви на лекарството
$c_z = 100$	Процент на регенериращите се мутационни раз-
	личими клетки, устойчиви на лекарството

3.1 Аналитично решение на системата на Мичър

Една част от нашия принос ще се състои в това, да решим явно системата от диференциални уравнения, описваща левкемната популация. Всяко от уравненията за $y_0(t)$, $y_1(t)$, $y_2(t)$, $y_3(t)$, $z_0(t)$, $z_1(t)$, $z_2(t)$, $z_3(t)$ е от първи ред и е или с разделящи се променливи, или е линейно.

• намиране на $y_0(t)$

$$\begin{split} \frac{dy_0}{dt} &= [r_y(1-u) - d_0] \, y_0 \Rightarrow \frac{dy_0}{y_0} = [r_y(1-u) - d_0] \, dt \Rightarrow \\ \Rightarrow \int \frac{dy_0}{y_0} &= \int \left[r_y(1-u) - d_0 \right] dt + C_0 \Rightarrow \ln y_0 = \left[r_y(1-u) - d_0 \right] t + C_0 \Rightarrow \\ \Rightarrow y_0(t) &= C_0 e^{[r_y(1-u) - d_0] t} \end{split}$$

• намиране на $y_1(t)$

Заместваме току-що намереното $y_0(t)$ във второто уравнение на системата и получаваме уравнение, което е линейно за $y_1(t)$.

 $^{^{1}}$ За пълното решение на системата при фиксирани стойности погледнете приложението.

Фигура 6: Брой ракови клетки с отсъствие на лекарството ИМАТИНИБ

$$\begin{split} \frac{dy_1}{dt} &= a_y C_0 e^{[r_y(1-u)-d_0]t} - d_1 y_1 \Leftrightarrow y' = -d_1 y_1 + a_y C_0 e^{[r_y(1-u)-d_0]t} \Rightarrow \\ &\Rightarrow y_1(t) = e^{\int -d_1 dt} \cdot \left[C_1 + \int C_0 e^{[r_y(1-u)-d_0]t} \cdot e^{-\int -d_1 dt} dt \right] = \\ &= e^{-d_1 t} \left[C_1 + \int C_0 e^{[r_y(1-u)-d_0]t} \cdot e^{d_1 t} dt \right] = \\ &= e^{-d_1 t} \left[C_1 + \int C_0 e^{[r_y(1-u)-d_0]t} \cdot e^{d_1 t} dt \right] \Rightarrow \\ &\Rightarrow y_1(t) = C_1 e^{-d_1 t} + \frac{C_0}{r_y(1-u)-d_0+d_1} \cdot e^{[r_y(1-u)-d_0]t} \end{split}$$

• намиране на $y_2(t)$

$$\begin{split} y_2' &= b_y \left[C_1 e^{-d_1 t} + \frac{C_0}{r_y (1-u) - d_0 + d_1} \cdot e^{[r_y (1-u) - d_0] t} \right] - d_2 y_2 \Rightarrow \\ \Rightarrow y_2 &= e^{\int -d_2 dt} \cdot \left\{ C_2 + \int b_y \left[C_1 e^{-d_1 t} + \frac{C_0}{r_y (1-u) - d_0 + d_1} \cdot e^{[r_y (1-u) - d_0] t} \right] \cdot e^{-\int -d_2 dt} dt \right\} \Rightarrow \end{split}$$

$$\Rightarrow y_2(t) = e^{-d_2 t} \cdot \left\{ C_2 + \frac{b_y C_1}{d_2 - d_1} \cdot e^{(d_2 - d_1)t} + \frac{b_y C_0}{[r(1 - u) - d_0 + d_1][r_y(1 - u) - d_0 + d_2]} \cdot e^{[r_y(1 - u) - d_0 + d_2]t} \right\}$$

• намиране на $y_3(t)$

За удобство при сметките означаваме

$$A = \frac{b_y C_1}{d_2 - d_1}, B = \frac{b_y C_0}{[r_y (1 - u) - d_0 + d_1] [r_y (1 - u) - d_0 + d_2]}.$$

Тогава

$$y_3(t) = e^{\int -d_3 dt} \cdot \left\{ C_3 + \int y_2 \cdot e^{-\int -d_3 dt} dt \right\} =$$

$$= e^{-d_3 t} \cdot \left\{ C_3 + \int e^{(d_3 - d_2)t} \cdot \left[C_2 + A e^{(d_2 - d_1)t} + B e^{[r_y(1 - u) - d_0 + d_2]t} \right] dt \right\} =$$

$$= e^{-d_3 t} \cdot \left\{ C_3 + \int \left(C_2 e^{(d_3 - d_2)t} + A e^{(d_3 - d_1)t} + B e^{[r_y(1 - u) - d_0 + d_3]t} \right) dt \right\} =$$

$$= C_3 e^{-d_3 t} + \frac{C_2}{d_3 - d_2} e^{-d_2 t} + \frac{A}{d_3 - d_1} e^{-d_1 t} + \frac{B}{r_y(1 - u) - d_0 + d_3} e^{[r_y(1 - u) - d_0]t}$$

• намиране на $z_0(t)$

Използваме, че вече сме намерили явния вид на $y_0(t)$, а именно

$$y_0(t) = C_0 e^{[r_y(1-u)-d_0]t}$$

$$\frac{dz_0}{dt} = z_0' = \underbrace{(r_z - d_0)}_{a(t)} z_0 + \underbrace{r_y u C_0 e^{[r_y(1 - u) - d_0]t}}_{b(t)}$$

Това е линейно уравнение за $z_0(t)$, защото е от вида $z_0' = a(t)z_0 + b(t)$. То се решава, както казахме, с формула. Пресмятаме

$$e^{\int a(t)dt} = e^{\int (r_z - d_0)dt} = e^{(r_z - d_0)t}$$
.

Следователно изразът, с който ще се дава $z_0(t)$, е

$$\begin{split} z_0 &= e^{(r_z - d_0)t} \left[D_0 + \int r_y u C_0 e^{[r_y (1 - u) - d_0]t} \cdot e^{-(r_z - d_0)t} dt \right] = \\ &= e^{(r_z - d_0)t} \left[D_0 + \int r_y u C_0 e^{(r_z - r_y u - d_0 - r_z + d_0)t} dt \right] = \\ &= e^{(r_z - d_0)t} \left[D_0 + \int r_y u C_0 e^{-r_y u t} dt \right] = e^{(r_z - d_0)t} \left[D_0 + r_y u C_0 \cdot \frac{e^{-r_y u t}}{-r_y u} \right] = \\ &= e^{(r_z - d_0)t} \left[D_0 - C_0 e^{-r_y u t} \right] \end{split}$$

• намиране на $z_1(t)$ По същия начин, използвайки току-що намереното $z_0(t)$, получаваме

$$z_1(t) = e^{-d_1 t} \cdot \left[D_1 + a_z D_0 \frac{e^{(r_z - d_0 + d_1)t}}{r_z - d_0 + d_1} - a_z C_0 \frac{e^{(r_z - d_0 - r_y u + d_1)t}}{r_z - d_0 - r_y u + d_1} \right].$$

• намиране на $z_2(t)$

$$\begin{split} P(t) &= \frac{e^{(r_z - d_0 + d_2)t}}{(r_z - d_0 + d_1)(r_z - d_0 + d_2)}, \\ Q(t) &= \frac{e^{(r_z - d_0 - r_y u + d_2)t}}{(r_z - d_0 - r_y u + d_1)(r_z - d_0 - r_y u + d_2)} \Rightarrow \\ \Rightarrow z_2(t) &= e^{-d_2 t} \left[D_2 + b_z D_1 \frac{e^{(d_2 - d_1)t}}{d_2 - d_1} + a_z b_z D_0 P(t) - a_z b_z C_0 Q(t) \right] \end{split}$$

• намиране на $z_3(t)$ Полагаме

$$\begin{split} L(t) &= \frac{e^{(d_3-d_1)t}}{(d_2-d_1)(d_3-d_1)}, \\ M(t) &= \frac{e^{(r_z-d_0+d_3)t}}{(r_z-d_0+d_1)(r_z-d_0+d_2)(r_z-d_0+d_3)}, \\ N(t) &= \frac{e^{(r_z-d_0-r_yu+d_3)t}}{(r_z-d_0-r_yu+d_1)(r_z-d_0-r_yu+d_2)(r_z-d_0-r_yu+d_3)}. \end{split}$$

Тогава

$$z_3(t) = e^{-d_3t} \left[D_3 + c_z D_2 e^{(d_3 - d_2)t} + D_1 b_z c_z L(t) + D_0 a_z b_z c_z M(t) - C_0 a_z b_z c_z N(t) \right].$$

3.2 Числено решаване на системата на Мичър

За численото решаване на системата на Мичър използваме четириетапния метод на Рунге-Кута, вграден в Matlab. Първо създаваме файл-функция, която пресмята дясната част на системата диференциални уравнения (нейният код може да бъде намерен в приложението). След това построяваме скрипт, в който сме избрали подходящи начални условия. Използваме за инициализираща стойност t=0, а векторът от съответните начални стойности е

```
(y_0; y_1; y_2; y_3; z_0; z_1; z_2; z_3) = (4; 2.5; 1; 0.5; 0.25; 0.1; 0.01; 0).
```

След стартиране на програмата е получена таблицата от числени стойности на решението. Ние прилагаме получените чрез числен метод стойности на решението за време през 10 дена, т. е.

$$t = 0 : 10 : 1200 = \{0; 10; 20; \dots; 1200\}.$$

(1)	(4)	(4)	(4)	(4)	(4)	(1)	(1)
$y_0(t)$	$y_1(t) = 2.50$	$y_2(t)$	$y_3(t)$	$z_0(t)$	$z_1(t)$	$z_2(t)$	$z_3(t)$
4.00001	$\frac{2.50}{2.5157}$	1.0616	$0.5 \\ 0.7526$	$0.25 \\ 0.2500$	0.1	$0.01 \\ 0.0125$	0.0028
4.00001	3.3016	4.6289	33.5300	0.2500 0.2507			1.0108
4.0029	10.0690	74.1598	$2.8137 \cdot 10^3$	0.2567 0.2562	0.1502	0.1666 3.9514	1.0108
	27.4772	557.5706	$4.2155 \cdot 10^4$		0.5777	33.3697	$2.4783 \cdot 10^3$
4.0910	69.0427	$3.2750 \cdot 10^{3}$	$3.4637 \cdot 10^{5}$	0.2711 0.3104	1.7096 4.6132	210.8558	$2.4783 \cdot 10^{4}$ $2.2107 \cdot 10^{4}$
4.2472	157.6324	$1.4604 \cdot 10^4$	$1.7706 \cdot 10^6$	0.3104	11.9104	$1.0371 \cdot 10^3$	$1.2470 \cdot 10^{5}$
4.5994	233.6470	$2.8299 \cdot 10^4$	$3.5523 \cdot 10^6$	0.4138 0.5286	19.6556	$2.1856 \cdot 10^3$	$\frac{1.2470 \cdot 10^{5}}{2.7186 \cdot 10^{5}}$
$\frac{4.9223}{5.2552}$	307.7967	$4.3783 \cdot 10^4$	$5.5848 \cdot 10^6$	0.6694	28.8669	$3.6892 \cdot 10^3$	$4.6591 \cdot 10^{5}$
5.5986	380.6129	$6.0233 \cdot 10^4$	$7.7607 \cdot 10^6$	0.8412	39.8540	$5.0692 \cdot 10$ $5.5570 \cdot 10^3$	$7.0822 \cdot 10^{5}$
5.9906	460.0303	$7.9001 \cdot 10^4$	$1.0243 \cdot 10^{7}$	1.0739	54.4867	$8.0875 \cdot 10^3$	$1.0322 \cdot 10^{6}$ $1.0364 \cdot 10^{6}$
6.3615	532.1483	$9.6465 \cdot 10^4$	$1.0243 \cdot 10^{7}$ $1.2563 \cdot 10^{7}$	1.3338	70.6274	$1.0895 \cdot 10^4$	$1.4012 \cdot 10^6$
6.8213	618.2085	$1.1757 \cdot 10^{5}$	$1.5359 \cdot 10^{7}$	1.7157	94.1133	$1.4982 \cdot 10^4$	$1.9318 \cdot 10^6$
7.2297	692.1254	$1.3579 \cdot 10^{5}$	$1.7783 \cdot 10^{7}$	2.1164	118.5808	$1.9235 \cdot 10^4$	$2.4843 \cdot 10^6$
7.7579	784.7853	$1.5864 \cdot 10^{5}$	$2.0811 \cdot 10^{7}$	2.7287	155.8289	$2.5696 \cdot 10^4$	$3.3228 \cdot 10^6$
8.2224	864.0281	$1.7815 \cdot 10^{5}$	$2.3407 \cdot 10^{7}$	3.3670	194.3890	$3.2370 \cdot 10^4$	$4.1897 \cdot 10^6$
8.8118	962.1016	$2.0221 \cdot 10^{5}$	$2.6595 \cdot 10^{7}$	4.3226	252.0330	$4.2330 \cdot 10^4$	$5.4821 \cdot 10^6$
9.3592	$1.0511 \cdot 10^3$	$2.2396 \cdot 10^{5}$	$2.9486 \cdot 10^{7}$	5.3727	315.2405	$5.3235 \cdot 10^4$	$6.8979 \cdot 10^{6}$
9.9978	$1.1530 \cdot 10^3$	$2.4872 \cdot 10^{5}$	$3.2768 \cdot 10^{7}$	6.8178	402.0805	$6.8200 \cdot 10^4$	$8.8397 \cdot 10^{6}$
10.6590	$1.2565 \cdot 10^3$	$2.7377 \cdot 10^{5}$	$3.6092 \cdot 10^{7}$	8.5904	508.4742	$8.6517 \cdot 10^4$	$1.1217 \cdot 10^{7}$
11.3374	$1.3610 \cdot 10^3$	$2.9897 \cdot 10^{5}$	$3.9435 \cdot 10^{7}$	10.7326	636.9423	$1.0862 \cdot 10^{5}$	$1.4085 \cdot 10^7$
12.1393	$1.4828 \cdot 10^3$	$3.2819 \cdot 10^{5}$	$4.3304 \cdot 10^{7}$	13.7345	816.8418	$1.3955 \cdot 10^{5}$	$1.8098 \cdot 10^{7}$
12.8607	$1.5910 \cdot 10^3$	$3.5405 \cdot 10^{5}$	$4.6739 \cdot 10^{7}$	16.9155	$1.0074 \cdot 10^3$	$1.7230 \cdot 10^5$	$2.2348 \cdot 10^{7}$
13.7372	$1.7210 \cdot 10^3$	$3.8502 \cdot 10^{5}$	$5.0845 \cdot 10^{7}$	21.4593	$1.2794 \cdot 10^3$	$2.1905 \cdot 10^{5}$	$2.8414 \cdot 10^{7}$
14.6811	$1.8595 \cdot 10^3$	$4.1792 \cdot 10^5$	$5.5197 \cdot 10^{7}$	27.2750	$1.6276 \cdot 10^3$	$2.7886 \cdot 10^{5}$	$3.6174 \cdot 10^{7}$
15.6375	$1.9986 \cdot 10^3$	$4.5085 \cdot 10^5$	$5.9563 \cdot 10^{7}$	34.2511	$2.0451 \cdot 10^3$	$3.5057 \cdot 10^5$	$4.5478 \cdot 10^{7}$
16.6482	$2.1446 \cdot 10^3$	$4.8530 \cdot 10^5$	$6.4127 \cdot 10^{7}$	42.9373	$2.5649 \cdot 10^3$	$4.3983 \cdot 10^5$	$5.7060 \cdot 10^7$
17.8042	$2.3103 \cdot 10^3$	$5.2432 \cdot 10^5$	$6.9289 \cdot 10^{7}$	54.7076	$3.2691 \cdot 10^3$	$5.6076 \cdot 10^5$	$7.2750 \cdot 10^7$
18.8814	$2.4637 \cdot 10^3$	$5.6039 \cdot 10^5$	$7.4075 \cdot 10^7$	67.6257	$4.0420 \cdot 10^3$	$6.9347 \cdot 10^5$	$8.9969 \cdot 10^7$
20.2630	$2.6595 \cdot 10^3$	$6.0131 \cdot 10^5$	$8.0151 \cdot 10^{7}$	87.2539	$5.2162 \cdot 10^3$	$8.9509 \cdot 10^5$	$1.1613 \cdot 10^8$
21.4335	$2.8245 \cdot 10^3$	$6.4496 \cdot 10^5$	$8.5275 \cdot 10^7$	106.8566	$6.3888 \cdot 10^3$	$1.0964 \cdot 10^6$	$1.4225 \cdot 10^8$
23.0369	$3.0497 \cdot 10^3$	$6.9761 \cdot 10^5$	$9.2271 \cdot 10^7$	138.6318	$8.2896 \cdot 10^3$	$1.4229 \cdot 10^6$	$1.8459 \cdot 10^8$
24.3621	$3.2351 \cdot 10^3$	$7.4090 \cdot 10^5$	$9.7977 \cdot 10^7$	169.6376	$1.0144 \cdot 10^4$	$1.7412 \cdot 10^6$	$2.2590 \cdot 10^8$
26.1169	$3.4798 \cdot 10^3$	$7.9798 \cdot 10^5$	$1.0553 \cdot 10^8$	218.0346	$1.3039 \cdot 10^4$	$2.2382 \cdot 10^6$	$2.9039 \cdot 10^8$
27.7009	$3.7001 \cdot 10^3$	$8.4930 \cdot 10^5$	$1.1233 \cdot 10^8$	269.6561	$1.6127 \cdot 10^4$	$2.7683 \cdot 10^6$	$3.6917 \cdot 10^8$
29.7426	$3.9832 \cdot 10^3$	$9.1521 \cdot 10^5$	$1.2104 \cdot 10^8$	348.5496	$2.0846 \cdot 10^4$	$3.5784 \cdot 10^6$	$4.6428 \cdot 10^8$
31.4487	$4.2193 \cdot 10^3$	$9.7013 \cdot 10^5$	$1.2832 \cdot 10^8$	426.2658	$2.5495 \cdot 10^4$	$4.3765 \cdot 10^6$	$5.6782 \cdot 10^8$
33.8083	$4.5452 \cdot 10^3$	$1.0459 \cdot 10^6$	$1.3839 \cdot 10^{8}$	553.4366	$3.3101 \cdot 10^4$	$5.6824 \cdot 10^6$	$7.3725 \cdot 10^{8}$
35.7520	$4.8132 \cdot 10^3$	$1.1081 \cdot 10^{6}$	$1.4658 \cdot 10^{8}$	677.1361	$4.0500 \cdot 10^4$	$6.9526 \cdot 10^6$	$9.0205 \cdot 10^{8}$
38.3181	$5.1665 \cdot 10^3$	$1.1901 \cdot 10^6$	$1.5743 \cdot 10^{8}$	869.5820	$5.2011 \cdot 10^4$	$8.9287 \cdot 10^6$	$1.1584 \cdot 10^9$
40.6555	$5.4878 \cdot 10^3$	$1.2647 \cdot 10^6$	$1.6730 \cdot 10^{8}$	$1.0767 \cdot 10^3$	$6.4402 \cdot 10^4$	$1.1056 \cdot 10^{7}$	$1.4344 \cdot 10^9$
43.6354	$5.8970 \cdot 10^3$	$1.3596 \cdot 10^{6}$	$1.7986 \cdot 10^{8}$	$1.3898 \cdot 10^3$	$8.3130 \cdot 10^4$	$1.4271 \cdot 10^{7}$	$1.8516 \cdot 10^9$
46.1528	$6.2424 \cdot 10^3$	$1.4397 \cdot 10^{6}$	$1.9046 \cdot 10^{8}$	$1.7017 \cdot 10^3$	$1.0178 \cdot 10^{5}$	$1.7473 \cdot 10^7$	$2.2670 \cdot 10^9$
49.6014	$6.7150 \cdot 10^3$	$1.5492 \cdot 10^{6}$	$2.0502 \cdot 10^{8}$	$2.2070 \cdot 10^3$	$1.3201 \cdot 10^{5}$	$2.2662 \cdot 10^{7}$	$2.9403 \cdot 10^9$
52.4616	$7.1067 \cdot 10^3$	$1.6400 \cdot 10^6$	$13.1697 \cdot 10^{8}$	$2.7019 \cdot 10^3$	$1.6161 \cdot 10^{5}$	$2.7744 \cdot 10^{7}$	$3.5996 \cdot 10^9$
56.2254	$7.6218 \cdot 10^3$	$1.7593 \cdot 10^{6}$	$2.3275 \cdot 10^{8}$	$3.4695 \cdot 10^3$	$2.0752 \cdot 10^{5}$	$3.5625 \cdot 10^{7}$	$4.6222 \cdot 10^9$
59.6519	$8.0905 \cdot 10^3$	$1.8678 \cdot 10^{6}$	$2.4712 \cdot 10^{8}$	$4.2951 \cdot 10^3$	$2.5690 \cdot 10^{5}$	$4.4104 \cdot 10^{7}$	$5.7222 \cdot 10^9$
64.0251	$8.6883 \cdot 10^3$	$2.0063 \cdot 10^{6}$	$2.6542 \cdot 10^{8}$	$5.5444 \cdot 10^3$	$3.3163 \cdot 10^5$	$5.6932 \cdot 10^{7}$	$7.3886 \cdot 10^9$
67.7182	$9.1929 \cdot 10^3$	$2.1231 \cdot 10^{6}$	$2.8089 \cdot 10^{8}$	$6.7881 \cdot 10^3$	$4.0602 \cdot 10^{5}$	$6.9702 \cdot 10^{7}$	$9.0434 \cdot 10^9$
72.7775	$9.8839 \cdot 10^3$	$2.2830 \cdot 10^{6}$	$3.0215 \cdot 10^{8}$	$8.8038 \cdot 10^3$	$5.2658 \cdot 10^{5}$	$9.0400 \cdot 10^{7}$	$1.1729 \cdot 10^{10}$
76.9754	$1.0457 \cdot 10^4$	$2.4157 \cdot 10^6$	$3.1961 \cdot 10^8$	$1.0779 \cdot 10^4$	$6.4470 \cdot 10^5$	$1.1068 \cdot 10^8$	$1.4360 \cdot 10^{10}$

82.4950	$1.1210 \cdot 10^4$	$2.5900 \cdot 10^{6}$	$3.4266 \cdot 10^{8}$	$1.3839 \cdot 10^4$	$8.2773 \cdot 10^5$	$1.4210 \cdot 10^{8}$	1.8437 ·
87.5258	$1.1897 \cdot 10^4$	$2.7488 \cdot 10^{6}$	$3.6369 \cdot 10^{8}$	$1.7134 \cdot 10^4$	$1.0249 \cdot 10^{6}$	$1.7594 \cdot 10^{8}$	2.2827 ·
93.9377	$1.2771 \cdot 10^4$	$2.9412 \cdot 10^{6}$	$3.9045 \cdot 10^{8}$	$2.2114 \cdot 10^4$	$1.3227 \cdot 10^6$	$2.2707 \cdot 10^{8}$	2.9461 ·
99.3604	$1.3511 \cdot 10^4$	$3.1223 \cdot 10^{6}$	$4.1311 \cdot 10^{8}$	$2.7078 \cdot 10^4$	$1.6196 \cdot 10^6$	$2.7805 \cdot 10^{8}$	$3.6075 \cdot$
106.7792	$1.452 \cdot 10^4$	$3.3563 \cdot 10^{6}$	$4.4421 \cdot 10^{8}$	$3.5114 \cdot 10^4$	$2.1003 \cdot 10^{6}$	$3.6056 \cdot 10^{8}$	4.6781 ·
112.9413	$1.5363 \cdot 10^4$	$3.5506 \cdot 10^6$	$4.6978 \cdot 10^{8}$	$4.2994 \cdot 10^4$	$2.5716 \cdot 10^{6}$	$4.4148 \cdot 10^8$	5.7279 ·
121.0386	$1.6466 \cdot 10^4$	$3.8059 \cdot 10^6$	$5.0355 \cdot 10^{8}$	$5.5198 \cdot 10^4$	$3.3016 \cdot 10^6$	$5.6680 \cdot 10^8$	7.3538 ·
128.4197	$1.7472 \cdot 10^4$	$4.0386 \cdot 10^6$	$5.3435 \cdot 10^{8}$	$6.8344 \cdot 10^4$	$4.0878 \cdot 10^6$	$7.0178 \cdot 10^8$	9.1051 ·
137.8265	$1.8754 \cdot 10^4$	$4.3351 \cdot 10^{6}$	$5.7356 \cdot 10^{8}$	$8.8204 \cdot 10^4$	$5.2758 \cdot 10^6$	$9.0571 \cdot 10^{8}$	1.1751 ·
145.7836	$1.9839 \cdot 10^4$	$4.5859 \cdot 10^6$	$6.0677 \cdot 10^8$	$1.0801 \cdot 10^{5}$	$6.4603 \cdot 10^6$	$1.1091 \cdot 10^9$	1.4389 ·
156.6673	$2.1322 \cdot 10^4$	$4.9288 \cdot 10^6$	$6.5235 \cdot 10^{8}$	$1.4005 \cdot 10^5$	$8.3771 \cdot 10^{6}$	$1.4381 \cdot 10^9$	$1.8659 \cdot$
165.7096	$2.2554 \cdot 10^4$	$5.2137 \cdot 10^6$	$6.8984 \cdot 10^{8}$	$1.7149 \cdot 10^{5}$	$1.0257 \cdot 10^7$	$1.7609 \cdot 10^9$	2.2847 ·
177.5888	$2.4172 \cdot 10^4$	$5.5880 \cdot 10^{6}$	$7.3933 \cdot 10^{8}$	$2.2016 \cdot 10^{5}$	$1.3169 \cdot 10^{7}$	$2.2607 \cdot 10^9$	2.9331 ·
188.4194	$2.5647 \cdot 10^4$	$5.9292 \cdot 10^6$	$7.8450 \cdot 10^{8}$	$2.7260 \cdot 10^{5}$	$1.6305 \cdot 10^{7}$	$2.7991 \cdot 10^9$	3.6317 ·
202.2194	$2.7527 \cdot 10^4$	$6.3639 \cdot 10^6$	$8.4198 \cdot 10^8$	$3.5180 \cdot 10^{5}$	$2.1043 \cdot 10^{7}$	$3.6125 \cdot 10^9$	4.6869 ·
213.8958	$2.9118 \cdot 10^4$	$6.7317 \cdot 10^6$	$8.9069 \cdot 10^{8}$	$4.3080 \cdot 10^5$	$2.5768 \cdot 10^{7}$	$4.4236 \cdot 10^9$	5.7394 ·
229.8626	$3.1293 \cdot 10^4$	$7.2346 \cdot 10^{6}$	$9.5753 \cdot 10^{8}$	$5.5861 \cdot 10^{5}$	$3.3412 \cdot 10^{7}$	$5.7360 \cdot 10^9$	7.4421 ·
243.1307	$3.3100 \cdot 10^4$	$7.6525 \cdot 10^{6}$	$1.0125 \cdot 10^9$	$6.8400 \cdot 10^{5}$	$4.0912 \cdot 10^{7}$	$7.0236 \cdot 10^9$	9.1127 ·
260.5593	$3.5473 \cdot 10^4$	$8.2014 \cdot 10^{6}$	$1.0851 \cdot 10^9$	$8.7813 \cdot 10^5$	$5.2524 \cdot 10^{7}$	$9.0170 \cdot 10^9$	1.1699 ·
276.4503	$3.7638 \cdot 10^4$	$8.7018 \cdot 10^{6}$	$1.1514 \cdot 10^9$	$1.0873 \cdot 10^6$	$6.5034 \cdot 10^{7}$	$1.1165 \cdot 10^{10}$	1.4485 ·
296.6970	$4.0395 \cdot 10^4$	$9.3394 \cdot 10^{6}$	$1.2357 \cdot 10^9$	$1.4032 \cdot 10^{6}$	$8.3929 \cdot 10^{7}$	$1.4408 \cdot 10^{10}$	1.8694 ·
313.8294	$4.2728 \cdot 10^4$	$9.8789 \cdot 10^{6}$	$1.3071 \cdot 10^9$	$1.7183 \cdot 10^{6}$	$1.0278 \cdot 10^8$	$1.7644 \cdot 10^{10}$	2.2892 ·
337.2550	$4.5919 \cdot 10^4$	$1.0617 \cdot 10^7$	$1/4052 \cdot 10^9$	$2.2280 \cdot 10^{6}$	$1.3327 \cdot 10^{8}$	$2.2878 \cdot 10^{10}$	2.9683 ·
356.7228	$4.8570 \cdot 10^4$	$1.1230 \cdot 10^{7}$	$1.4858 \cdot 10^9$	$2.7282 \cdot 10^{6}$	$1.6318 \cdot 10^8$	$2.8014 \cdot 10^{10}$	3.6346 ·
382.2936	$5.2052 \cdot 10^4$	$1.2035 \cdot 10^{7}$	$1.5923 \cdot 10^9$	$3.5025 \cdot 10^6$	$2.0949 \cdot 10^{8}$	$3.5964 \cdot 10^{10}$	$4.6662 \cdot$
405.6093	$5.5228 \cdot 10^4$	$1.2769 \cdot 10^{7}$	$1.6895 \cdot 10^9$	$4.3367 \cdot 10^{6}$	$2.5939 \cdot 10^{8}$	$4.4530 \cdot 10^{10}$	5.7775 ·
435.3146	$5.9273 \cdot 10^4$	$1.3704 \cdot 10^{7}$	$1.8132 \cdot 10^9$	$5.5966 \cdot 10^6$	$3.3475 \cdot 10^8$	$5.7468 \cdot 10^{10}$	$7.4561 \cdot$
460.4519	$6.2696 \cdot 10$	$1.4496 \cdot 10^7$	$1.9180 \cdot 10^9$	$6.8535 \cdot 10^6$	$4.0993 \cdot 10^8$	$7.0374 \cdot 10^{10}$	9.1305 ·
494.8213	$6.7376 \cdot 10^4$	$1.5578 \cdot 10^{7}$	$2.0618 \cdot 10^9$	$8.8865 \cdot 10^{6}$	$5.3153 \cdot 10^8$	$9.1250 \cdot 10^{10}$	1.1839 ·
523.3850	$7.1266 \cdot 10^4$	$1.6477 \cdot 10^{7}$	$2.1802 \cdot 10^9$	$1.0881 \cdot 10^{7}$	$6.5085 \cdot 10^8$	$1.1173 \cdot 10^{11}$	$1.4497 \cdot$
560.9022	$7.6375 \cdot 10^4$	$1.7659 \cdot 10^{7}$	$2.3364 \cdot 10^9$	$1.3970 \cdot 10^{7}$	$8.3557 \cdot 10^8$	$1.4345 \cdot 10^{11}$	1.8611 ·
595.1112	$8.1033 \cdot 10^4$	$1.8736 \cdot 10^{7}$	$2.4790 \cdot 10^9$	$1.7297 \cdot 10^7$	$1.0346 \cdot 10^9$	$1.7761 \cdot 10^{11}$	2.3044 ·
638.6945	$8.6968 \cdot 10^4$	$2.0108 \cdot 10^{7}$	$2.6604 \cdot 10^9$	$2.2322 \cdot 10^7$	$1.3352 \cdot 10^9$	$2.2921 \cdot 10^{11}$	2.9739 ·
675.5764	$9.1991 \cdot 10^4$	$2.1269 \cdot 10^{7}$	$2.8142 \cdot 10^9$	$2.7335 \cdot 10^7$	$1.6350 \cdot 10^9$	$2.8069 \cdot 10^{11}$	$3.6417 \cdot$
726.0028	$9.8858 \cdot 10^4$	$2.2857 \cdot 10^{7}$	$3.0252 \cdot 10^9$	$3.5444 \cdot 10^7$	$2.1200 \cdot 10^9$	$3.6395 \cdot 10^{11}$	$4.7221 \cdot$
767.9120	$1.0456 \cdot 10^5$	$2.4177 \cdot 10^7$	$3.1989 \cdot 10^9$	$4.3401 \cdot 10^7$	$2.5959 \cdot 10^9$	$4.4566 \cdot 10^{11}$	$5.7821 \cdot$
822.9569	$1.1206 \cdot 10^5$	$2.5910 \cdot 10^{7}$	$3.4281 \cdot 10^9$	$5.5718 \cdot 10^7$	$3.3327 \cdot 10^9$	$5.7213 \cdot 10^{11}$	$7.4231 \cdot$
873.1487	$1.1889 \cdot 10^5$	$2.7490 \cdot 10^7$	$3.6373 \cdot 10^9$	$6.8989 \cdot 10^7$	$4.1265 \cdot 10^9$	$7.0840 \cdot 10^{11}$	9.1911 ·
937.0939	$1.2760 \cdot 10^5$	$2.9503 \cdot 10^7$	$3.9035 \cdot 10^9$	$8.9033 \cdot 10^{7}$	$5.3253 \cdot 10^9$	$9.1422 \cdot 10^{11}$	1.1861 ·
991.2074	$1.3497 \cdot 10^5$	$3.1207 \cdot 10^7$	$4.1291 \cdot 10^9$	$1.0903 \cdot 10^8$	$6.5213 \cdot 10^9$	$1.1195 \cdot 10^{12}$	$1.4525 \cdot$
$1.0652 \cdot 10^3$	$1.4505 \cdot 10^5$	$3.3536 \cdot 10^{7}$	$4.4387 \cdot 10^9$	$1.4137 \cdot 10^8$	$8.4557 \cdot 10^9$	$1.4516 \cdot 10^{12}$	1.8834 ·
$1.1267 \cdot 10^3$	$1.5342 \cdot 10^5$	$3.5472 \cdot 10^7$	$4.6935 \cdot 10^9$	$1.7311 \cdot 10^8$	$1.0354 \cdot 10^{10}$	$1.7775 \cdot 10^{12}$	$2.3062 \cdot$
$1.2074 \cdot 10^3$	$1.6442 \cdot 10^5$	$3.8015 \cdot 10^7$	$5.0297 \cdot 10^9$	$2.2223 \cdot 10^{8}$	$1.3292 \cdot 10^{10}$	$2.2820 \cdot 10^{12}$	$2.9607 \cdot$
$1.2811 \cdot 10^3$	$1.7444 \cdot 10^5$	$4.0334 \cdot 10^7$	$5.3367 \cdot 10^9$	$2.7516 \cdot 10^{8}$	$1.6458 \cdot 10^{10}$	$2.8255 \cdot 10^{12}$	$3.6659 \cdot$
$1.3794 \cdot 10^3$	$1.8722 \cdot 10^5$	$4.3288 \cdot 10^{7}$	$5.7273 \cdot 10^9$	$3.5511 \cdot 10^8$	$2.1240 \cdot 10^{10}$	$3.6464 \cdot 10^{12}$	$4.7309 \cdot$
$1.4543 \cdot 10^3$	$1.9803 \cdot 10^5$	$4.5788 \cdot 10^{7}$	$6.0583 \cdot 10^9$	$4.3486 \cdot 10^8$	$2.6010 \cdot 10^{10}$	$4.4653 \cdot 10^{12}$	$5.7934 \cdot$
$1.5629 \cdot 10^3$	$2.1281 \cdot 10^5$	$4.9205 \cdot 10^{7}$	$6.5126 \cdot 10^9$	$5.6385 \cdot 10^{8}$	$3.3726 \cdot 10^{10}$	$5.7899 \cdot 10^{12}$	7.5120 ·
$1.6531 \cdot 10^3$	$2.2510 \cdot 10^{5}$	$5.2046 \cdot 10^7$	$6.8863 \cdot 10^9$	$6.9044 \cdot 10^{8}$	$4.1297 \cdot 10^{10}$	$7.0896 \cdot 10^{12}$	9.1983 ·
$1.7716 \cdot 10^3$	$2.4123 \cdot 10^5$	$5.5776 \cdot 10^{7}$	$7.3797 \cdot 10^9$	$8.8638 \cdot 10^{8}$	$5.3017 \cdot 10^{10}$	$9.1017 \cdot 10^{12}$	1.1809 ·
$1.8796 \cdot 10^3$	$2.5595 \cdot 10^{5}$	$5.9178 \cdot 10^{7}$	$7.8300 \cdot 10^9$	$1.0975 \cdot 10^9$	$6.5645 \cdot 10^{10}$	$1.1269 \cdot 10^{13}$	$1.4621 \cdot$
$2.0173 \cdot 10^3$	$2.7469 \cdot 10^{5}$	$6.3512 \cdot 10^{7}$	$8.4031 \cdot 10^9$	$1.4164 \cdot 10^9$	$8.4717 \cdot 10^{10}$	$1.4544 \cdot 10^{13}$	1.8869 ·
$2.1338 \cdot 10^3$	$2.9055 \cdot 10^{5}$	$6.7180 \cdot 10^{7}$	$8.8888 \cdot 10^9$	$1.7344 \cdot 10^9$	$1.0374 \cdot 10^{11}$	$1.7810 \cdot 10^{13}$	$2.3107 \cdot$
$2.2930 \cdot 10^3$	$3.1224 \cdot 10^{5}$	$7.2194 \cdot 10^{7}$	$9.5553 \cdot 10^9$	2 2489 . 109	$1.3452 \cdot 10^{11}$	23003.10^{13}	2 9962.

 $2.2489 \cdot 10^9$

 $1.3452 \cdot 10^{11}$

2.9962 ·

 $2.3093 \cdot 10^{13}$

 $2.2930 \cdot 10^3 \quad 3.1224 \cdot 10^5$

 $7.2194 \cdot 10^{7}$

 $9.5553 \cdot 10^9$

	$54 \cdot 10^3$	$3.3027 \cdot 10^5$	$7.6362 \cdot 10^7$	$1.0104 \cdot 10^{10}$	$2.7538 \cdot 10^9$	$1.6471 \cdot 10^{11}$	$2.8277 \cdot 10^{13}$	3.6688
1	$92 \cdot 10^{3}$	$3.5394 \cdot 10^5$	$8.1836 \cdot 10^7$	$1.0828 \cdot 10^{10}$	$3.5353 \cdot 10^9$	$2.1146 \cdot 10^{11}$	$3.6302 \cdot 10^{13}$	4.7100
	$78 \cdot 10^3$	$3.7553 \cdot 10^5$	$8.6827 \cdot 10^7$	$1.1488 \cdot 10^{10}$	$4.3774 \cdot 10^9$	$2.6183 \cdot 10^{11}$	$4.4949 \cdot 10^{13}$	5.8318
2.959	$97 \cdot 10^3$	$4.0303 \cdot 10^5$	$9.3185 \cdot 10^7$	$1.2329 \cdot 10^{10}$	$5.6492 \cdot 10^9$	$3.3789 \cdot 10^{11}$	$5.8007 \cdot 10^{13}$	7.5261
	$06 \cdot 10^3$	$4.2630 \cdot 10^5$	$9.8567 \cdot 10^7$	$1.3042 \cdot 10^{10}$	$6.9178 \cdot 10^9$	$4.1378 \cdot 10^{11}$	$7.1035 \cdot 10^{13}$	9.2163
3.36	$43 \cdot 10^3$	$4.5812 \cdot 10^5$	$1.0592 \cdot 10^8$	$1.4020 \cdot 10^{10}$	$8.9699 \cdot 10^9$	$5.3652 \cdot 10^{11}$	$9.2106 \cdot 10^{13}$	1.1950
3.55	$85 \cdot 10^3$	$4.8457 \cdot 10^5$	$1.1204 \cdot 10^8$	$1.4824 \cdot 10^{10}$	$1.0984 \cdot 10^{10}$	$6.5696 \cdot 10^{11}$	$1.1278 \cdot 10^{14}$	1.4633
3.81	$36 \cdot 10^3$	$5.1930 \cdot 10^5$	$1.2007 \cdot 10^8$	$1.5886 \cdot 10^{10}$	$1.4101 \cdot 10^{10}$	$8.4341 \cdot 10^{11}$	$1.4479 \cdot 10^{14}$	1.8786
3.969	$91 \cdot 10^{3}$	$5.4047 \cdot 10^5$	$1.2496 \cdot 10^8$	$1.6532 \cdot 10^{10}$	$1.6288 \cdot 10^{10}$	$9.7425 \cdot 10^{11}$	$1.6725 \cdot 10^{14}$	2.1700

Таблицата показва рязко покачване в броя съответно на раковите стволови, раковите прогениторни, раковите различими и раковите терминално различими клетки при отсъствие на $\mathit{UMATUHUE}$. Тази тревожна статистика е най-силно изразена след 600-тния ден на наблюдение. В последния ден на отчитане — 1200-тния, стволовите клетки са около 4000 на брой. Прогениторните клетки са приблизително 0.004 пъти повече — 550, 000. Различимите клетки са 32, 500 пъти повече на брой от стволовите — 130, 000, 000. Наймногобройни са терминално различимите клетки — $1.7 \cdot 10^{10}$, или $4.25 \cdot 10^6$ пъти повече от стволовите. Съдейки по стойностите, виждаме, че са изпълнени неравенствата $y_0(t) < y_1(t) < y_2(t) < y_3(t)$.

До същите изводи достигаме и като разгледаме четирите чертежа, отговарящи съответно за $y_0(t)$, $y_1(t)$, $y_2(t)$ и $y_3(t)$. Всяка от графиките изобразява много бърз темп на растеж, като най-силно това е изразено на черната на цвят, четвърта по ред графика (терминално различими левкемни клетки).

Системата на Мичър описва прогреса на левкемията без прием на медикаменти и без провеждане на друг начин на лечение. Да погледнем какво е състоянието на пациентите, ако те редовно приемат лекарството *ИМАТИ-НИБ*. За целта използваме следните данни:

• дни на отчитане на раковите клетки — от 106-тия ден до 406-тия през 30 (Michor, 2005, р. 10), т. е.

$$t = (106; 136; 166; \dots; 406);$$

• десетичния логаритъм на броя на всички левкемни популации, т. е.

$$\log_{10} \sum_{k=0}^{k=3} y_k = \log_{10} (y_0 + y_1 + y_2 + y_3) -$$

v = (20.6; 17.25; 14.58; 11.71; 8.96; 6.75; 5.14; 4.01; 3.21; 2.64; 2.23).

Чертежът по точките $(t_k; v_k), k = 1, 2, \ldots, 11$, в случая изглежда така, както се очакваше — монотонно намаляваща функция, чиито функционални стойности все повече се доближават до нула. Абсцисната ос ще бъде асимптота за графиката на функцията. Това е заради лекарството $\mathit{ИMA-TVHUB}$, което убива левкемните клетки.

Фигура 7: Пълна левкемна популация $\sum_{k=0}^3 y_k = y_0 + y_1 + y_2 + y_3$ при провеждане на лечение с лекарството *ИМАТИНИБ*

4 Заключение

Ние решихме аналитично и числено (с помощта на съставена от нас компютърна програма) системата диференциални уравнения на Мичър. Така достигнахме до заключението, че този модел е правдив и описва левкемната популация в тялото на болния. Видяхме, че получените графики за четирите вида левкемни клетки се стремят към безкрайност при увеличаване на времето t, т. е.

$$\lim_{t \to +\infty} y_k(t) = +\infty, \ k = 0, \ 1, \ 2, \ 3.$$

Линията, която представя растежа на раковите клетки, е експоненциална и показва, че техният брой се увеличава мълниеносно при непровеждане на лечение.

Клетките, които най-бързо се размножават при отсъствие на лекарството, са терминално различимите клетки. Затова при анализ на наблюдаваните стойности трябва да се обърне най-голямо внимание на техния брой.

Като изчертахме в равнината точките с показателите на левкемната популация за време от 300 дена с прием на лекарство, забелязахме, че ако ги свържем с линия, тази линия ще се стреми към абсцисната ос. Това се дължи на антираковото действие на *ИМАТИНИБ*. Лечението значително влияе върху броя на левкемните клетки — до пълно излекуване в повечето случаи не се стига, а само до увеличаване живота на болния. Преживяемостта е най-много 5 години.

Ще отбележим изрично, че прекъсването на лечението налага увеличен риск от мутации на клетките.

А Приложение

Тук ще приложим програмния код, който решава системата от диференциални уравнения за избрани от нас стойности.

• файл-функция, която пресмята дясната част на системата диференциални уравнения

```
system1.m
```

```
function res = system(t, y)
lambda = 0.75;
d0 = 0.003 * lambda;
d1 = 0.008 * lambda;
d2 = 0.05 * lambda;
d3 = lambda;
ry = 0.008;
ay = 1.6;
by = 10;
cy = 100;
rz = 0.023;
az = 1.6;
bz = 10;
cz = 100;
u = 0;
res = [(ry * (1-u) - d0) * y(1);
    ay * y(1) - d1 * y(2);
    by * y(2) - d2 * y(3);
    cy * y(3) - d3 * y(4);
    (rz - d0) * y(5) + ry * u * y(1);
    az * y(5) - d1 * y(6);
    bz * y(6) - d2 * y(7);
    cz * y(7) - d3 * y(8)];
end
```

• скрипт, който намира явния вид на решението на системата от ОДУ

```
exact.m
```

```
lambda = 0.75;
d0 = 0.003 * lambda;
```

```
d1 = 0.008 * lambda;
d2 = 0.05 * lambda;
d3 = lambda;
ry = 0.008;
ay = 1.6;
by = 10;
cy = 100;
rz = 0.023;
az = 1.6;
bz = 10;
cz = 100;
u = 0;
syms y0 y1 y2 y3
[y0, y1, y2, y3] = dsolve('Dy0 = (0.008 * (1 - 0) - 0.003 * 0.75) * y0', ...
    'Dy1 = 1.6 * y0 - 0.008 * 0.75 * y1', ...
        ^{\prime}Dy2 = 10 * y1 - 0.05 * 0.75 * y2^{\prime}, ...
            'Dy3 = 100 * y2 - 0.75 * y3');
y0 = expand(y0);
y0 = simplify(y0);
display('y0 = ')
pretty(y0)
y1 = expand(y1);
y1 = simplify(y1);
display('y1 = ')
pretty(y1)
y2 = expand(y2);
y2 = simplify(y2);
display('y2 = ')
pretty(y2)
y3 = expand(y3);
y3 = simplify(y3);
display('y3 = ')
pretty(y3)
```

Решенията $y_0(t)$, $y_1(t)$, $y_2(t)$, $y_3(t)$, които ни интересуват, се изписват в командния прозорец на MATLAB.

• скрипт, който решава системата за конкретни стойности

```
y0 = [4, 2.5, 1, 0.5, 0.25, 0.1, 0.01, 0];
tspan = [0, 1200];
[t, y] = ode45('system1', tspan, y0);
subplot(2, 2, 1)
plot(t, y(:, 1), 'b'), grid on
set(gca, 'FontName', 'Times', 'FontSize', 11)
```

sysfile1.m

```
xlabel('Време \it{t} в дни')
ylabel('Количество левкемни клетки')
title('Състояние на пациента без лечение с \it{ИМАТИНИБ}')
subplot(2, 2, 2)
plot(t, y(:, 2), 'g'), grid on
set(gca, 'FontName', 'Times', 'FontSize', 11)
xlabel('Време \it{t} в дни')
ylabel('Количество левкемни клетки')
title('Състояние на пациента без лечение с \it{ИМАТИНИБ}')
subplot(2, 2, 3)
plot(t, y(:, 3), 'r'), grid on
set(gca, 'FontName', 'Times', 'FontSize', 11)
xlabel('Време \it{t} в дни')
ylabel('Количество левкемни клетки')
title('Състояние на пациента без лечение с \it{ИМАТИНИБ}')
subplot(2, 2, 4)
plot(t, y(:, 4), 'k'), grid on
set(gca, 'FontName', 'Times', 'FontSize', 11)
xlabel('Време \it{t} в дни')
ylabel('Количество левкемни клетки')
title('Състояние на пациента без лечение с \it{ИМАТИНИБ}')
```

• скрипт, който показва какво е състоянието на пациента, ако се използва лекарството

```
sysfile.m
1_time = [106 : 30 : 406]; % дни на отчитане на раковите клетки
l_val = [20.6, 17.25, 14.58, 11.71, ...
    8.96, 6.75, 5.14, 4.01, ...
        3.21, 2.64, 2.23]; % съответни стойности
plot(1_time, 1_val, 'go') % изобразяване на точките
hold on
grid on
1i = 100 : 410;
p1 = interp1(l_time, l_val, li, 'spline');
plot(li, p1, 'cyan')
axis([106, 400, 0, 21])
set(gca, 'FontName', 'Times', 'FontSize', 11)
xlabel('Време \it{t} в дни')
ylabel('Количество левкемни клетки')
title('Резултат от лечение с \it{ИМАТИНИБ}')
legend('\it{Данни}', '\it{Сплайн}')
p2 = polyfit(l_time, l_val, 3); % интерполиращ полином от трета степен
for i = 106 : 406
display(i)
display(' ден')
```

```
polyval(p2, i)
end
```

Разполагаме с данни за дните на отчитане и съответни стойности за брой ракови клетки —

```
l_time, l_val.
```

Понеже информацията не е за всеки един ден, а за период от време през 30 дена, ние не знаем какви са медицинските показатели в тези промеждутъци. За целта с командата

```
p2 = polyfit(l_time, l_val, 3);
```

построяваме интерполационен полином от трета степен (степента на полинома е по наше усмотрение, но се избира така, че да се получи достатъчно гладка линия; например интерполацията с линейна функция е по-неточна от интерполацията с парабола; а пък интерполацията с кубичен полином е по-точна от такава с парабола). По този начин си осигуряваме приблизителния брой на раковите клетки в дните, за които не са отчетени измервания. Интересуващите ни стойности намираме с командата

```
polyval(p2, value).
```

В програмния код освен изчертаването на графиката сме включили и изписването на екрана на тези стойности от 106-тия до 406-тия ден на наблюдение включително.

```
Забележка 1 Информация за командата [4]
```

```
polyfit(args)
```

и за командата [5]

polyval(args)

може да бъде намерена в приложената библиография.

Забележка 2 Таблиците и съответните им чертежи са изготвени в средата на MS Excel 2010.

Забележка 3 За решаване на системата на Мичър е използван **Matlab**. Генерираните от кода графики са запазени с разширение *png, за да бъдат използвани пълноценно в ETEX.

Съдържание

1	Уво	Д	1
2	Лев	кемия и начини на лечение	2
	2.1	Хронична миелобластна левкемия	2
	2.2	Място на рака сред другите видове рак	3
	2.3	Кой се разболява от този рак?	3
	2.4	Какъв е процентът на смъртността при този рак?	4
	2.5	Статистика през годините	4
	2.6	Лъчелечение	4
	2.7	ИМАТИНИБ	6
3	Мат	гематически модел на развитие на левкемната попула-	
	ция		8
	3.1	Аналитично решение на системата на Мичър	10
	3.2	Числено решаване на системата на Мичър	14
4	Зак	лючение	18
A	При	ложение	19
Л	ите	ература	
[1]		nor, F., 2005, Strategic Treatment Interruptions During Imati- atment of Chronic Myelogenous Leukemia, 19 p.	nib
	_	o://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article &&context=math_fac	e=
[2]	http	o://seer.cancer.gov/statfacts/html/leuks.html	
[3]	http	o://en.wikipedia.org/wiki/Imatinib	
[4]	http	o://www.mathworks.com/help/matlab/ref/polyfit.html	
[5]	http	o://www.mathworks.com/help/matlab/ref/polyval.html	