Project Euler #31: Coin sums

This problem is a programming version of Problem 31 from projecteuler.net

In England the currency is made up of pound, f, and pence, f, and there are eight coins in general circulation:

It is possible to make £2 in the following way:

$$1 imes \mathtt{f} 1 + 1 imes 50p + 2 imes 20p + 1 imes 5p + 1 imes 2p + 3 imes 1p$$

How many different ways can $N\,p$ be made using any number of coins? As the result can be large print answer mod (10^9+7)

Input Format

The first line contains an integer T , i.e., number of test cases.

Next T lines will contain an integer N.

Note: N is given as p and not £

Output Format

Print the values corresponding to each test case.

Constraints

 $1 \le T \le 10^4$

 $1 < N < 10^5$

Sample Input

3 10

15 20

Sample Output

11 22

41