Practice with Big-Oh notation

William Hendrix

Today

- Review
 - Formal definitions
 - Properties
- Logarithms review

Formal definitions

f(n) = O(g(n)) if and only if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$.

 $f(n) = \Omega(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$.

 $f(n) = \Theta(g(n))$ if and only if there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n \geq n_0$.

- Analogy: O, Ω , and Θ act like \leq , \geq , and =
- Most algorithms we discuss will belong to a few classes: $O(1) \ll O(\lg n) \ll O(n) \ll O(n \lg n) \ll O(n^2) \ll O(n^3) \ll O(2^n) \ll O(n!)$

Properties of Big-Oh notation

Transitivity

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \rightarrow f(n) = O(h(n))$
 $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \rightarrow f(n) = \Omega(h(n))$
 $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \rightarrow f(n) = \Theta(h(n))$

Equivalence rules

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

$$f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)) \Leftrightarrow f(n) = \Theta(f(n))$$

Reflexivity and symmetry

$$f(n) = O(f(n)), f(n) = \Omega(f(n)), \text{ and } f(n) = \Theta(f(n))$$

 $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

All three ignore constant coefficients

$$\forall x > 0, xf(n) = O(f(n)), xf(n) = \Omega(f(n)), \text{ and } xf(n) = \Theta(f(n))$$

Only the largest term matters

$$f(n) = O(g(n)) \rightarrow O(f(n) + g(n)) = O(g(n))$$

$$f(n) = O(g(n)) \rightarrow \Omega(f(n) + g(n)) = \Omega(g(n))$$

$$f(n) = O(g(n)) \rightarrow \Theta(f(n) + g(n)) = \Theta(g(n))$$

Big-Oh exercises

• Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:

1.
$$n \lg n \neq \Omega(n^2)$$

2.
$$\sum_{i=1}^{n} i = O(n^2)$$

3. For any x > 0, if $f(n) = \Theta(g(n))$, then $xf(n) = \Theta(g(n))$

Big-Oh exercises

- Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:
- 1. Proof. We show that for any positive constants c and n_0 , there is some $n \geq n_0$ such that $n \lg n > cn$. (Apply De Morgan's Laws to the formal definition carefully.)

 Let c and n_0 be positive constants. Consider $n = \max\{2^c, n_0\} + 1$. Note that $n \geq n_0$. Since $n \geq 2^c + 1$, $n \lg n \geq n \lg(2^c + 1)$. Since $\lg n$ is always increasing, $n \lg(2^c + 1) > n \lg(2^c) = nc$. Thus, there is some $n \geq n_0$ such that $n \lg n > cn$.
- 2. Proof. Consider the sum $\sum_{i=1}^{n} i$, which equals $1+2+\ldots+n$. Note that every term in this sum is at most n. So, $\sum_{i=1}^{n} i \leq n+n+\ldots+n=n(n)=n^2$. Since $\sum_{i=1}^{n} i \leq n^2$, there exist positive constants $c=n_0=1$ such that $\sum_{i=1}^{n} i \leq cn^2$ for all $n \geq n_0$, so $\sum_{i=1}^{n} i = O(n^2)$.

Big-Oh exercises

- Use the *formal definitions* of Big-Oh, Big-Omega, and Big-Theta to prove the following:
- 3. Proof. Since $f(n) = \Theta(g(n))$, there exist positive constants c and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$, for all $n \geq n_0$. Since x > 0, we may multiply all sides of this inequality by x, yielding $xc_1g(n) \leq xf(n) \leq xc_2g(n)$. Thus, there exist constants $c_3 = xc_1$, $c_4 = xc_2$, and n_0 such that $c_3g(n) \leq xf(n) \leq c_4g(n)$ for all $n \geq n_0$, so $xf(n) = \Theta(g(n))$.

One more property

- Envelopment
 - Addition

$$O(f(n)) + O(g(n)) = O(f(n) + g(n))$$

$$\Omega(f(n)) + \Omega(g(n)) = \Omega(f(n) + g(n))$$

$$\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$$

- Multiplication

$$\begin{split} O(f(n))O(g(n)) &= O(f(n)g(n)) \\ \Omega(f(n))\Omega(g(n)) &= \Omega(f(n)g(n)) \\ \Theta(f(n))\Theta(g(n)) &= \Theta(f(n)g(n)) \end{split}$$

• Informally, you can move the entire expression inside Big-Oh

Revenge of the logarithms

• Logarithm: inverse exponential function

$$y = \ln x \Leftrightarrow x = e^y$$

- Natural log (ln): inverse of e^x
- Logarithms of other base: $\log_b(x)$
 - $-\log_{2}(x)$ is very common in algorithms
- Computing logs of other bases

$$-\log_b(x) = \frac{\ln x}{\ln b}$$

- All logs are *scalar multiples* of one another

Log vs. exp

Log properties

Base 2
$$\rightarrow \lg(ab) = \lg(a) + \lg(b)$$

$$\lg(a^b) = b \lg(a)$$

$$\sum_{i=1}^{n} \frac{1}{i} = \Theta(\lg n)$$

$$\lg(n!) = \Theta(n \lg n)$$

Because

$$2^A 2^B = 2^{A+B}$$

$$\left(2^A\right)^b = 2^{Ab}$$

$$\int_{1}^{n} \frac{1}{x} dx = \ln n$$

Properties 1 and 3 above

Coming up

- More Big-Oh practice
- Homework 3 is due tonight
- Homework 4 is due Thursday
- Homework 5 is delayed
- Recommended readings: Chapter 2
- **Practice problems:** attempt 1-2 problems from "Interview Problems" (p. 63)