МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра систем сбора и обработки данных

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине: Сетевые информационные технологии на тему: Моделирование компьютерных сетей

Факультет: ФПМИ

Группа: ПММ-21

Выполнили: Сухих А.С., Черненко Д.А.

Вариант №3

Проверил: к.т.н. Кобылянский В.Г.

Дата выполнения: 26.09.22

Отметка о защите:

1. Цель работы

Изучение технологии моделирования компьютерных сетей и получение практических навыков работы с сетевыми эмуляторами.

2. Ход выполнения работы

Для выполнения лабораторной работы был использован сетевой эмулятор GNS3, распространяемый по лицензии GPL. Он позволяет использовать прошивки различных роутеров, в том числе Cisco, для эмуляции работы сети.

Таблица 2.1 - Диапазон адресов для 1 и 2 задания

Номер бригады	Начальный IP-адрес для 1 и 2	Начальный ІР-адрес для 4
	задания	задания
1	172.27.34.0/10	192.168.15.1/18
2	10.72.0.1/19	10.10.14.1/23
3	192.168.11.1/24	172.17.98.0/17
4	10.10.84.0/20	192.168.12.1/10
5	192.168.15.1/12	10.10.11.0/15
6	172.30.6.0/21	172.18.73.0/20
7	10.10.56.0/13	192.168.9.1/14
8	172.98.8.1/22	172.98.8.1/22
9	192.168.9.1/14	10.10.56.0/13
10	172.18.73.0/20	172.30.6.0/21

11	10.10.11.0/15	192.168.15.1/12
12	192.168.12.1/10	10.10.84.0/20
13	172.17.98.0/17	192.168.11.1/24
14	10.10.14.1/23	10.72.0.1/19
15	192.168.15.1/18	172.27.34.0/10

Таблица 2.2 - Диапазон адресов для 5 задания

Номер	Начальный ір-адрес	Начальный ір-адрес	Начальный ір-адрес
бригады для первой подсети		для второй подсети	для третьей подсети
1	192.168.78.1/24	10.81.0.1/16	172.17.98.0/17
2	10.79.1.1/24	192.168.82.0/17	172.18.73.0/20
3	10.10.80.1/24	192.168.84.1/24	172.27.34.0/10
4	10.10.56.0/13	192.168.82.0/17	172.30.6.0/21
5	10.82.0.1/16	172.26.86.0/10	192.168.14.1/23
6	192.168.8.1/24	172.28.83.1/24	10.10.11.0/15
7	172.24.48.1/24	192.168.9.0/17	10.72.0.1/19
8	10.10.85.1/24	192.168.19.1/24	172.98.8.1/22
9	192.168.6.1/24	10.10.11.0/16	192.168.9.0/14
10	192.168.0.1/16	192.168.85.1/24	10.10.84.0/20
11	10.88.1.1/24	192.168.87.0/10	10.10.56.0/13
12	192.168.89.0/22	172.29.89.1/24	192.168.11.0/11
13	10.90.0.1/16	172.16.80.1/24	192.168.12.0/10
14	10.91.1.1/24	172.24.82.0/15	192.168.15.0/18
15	192.168.29.1/24	172.17.90.0/21	192.168.15.0/12

2.1. Задание №1

Смоделировать одноранговую локальную сеть, состоящую из одного концентратора и двух компьютеров. IP-адреса компьютерам выдать статически в соответствии с заданным вариантом из таблицы 2.1. Протестируйте сеть, отправив пользовательские пакеты.

Рис. 2.1.1 Топология одноранговой сети с концентратором

Настроим IP-адреса компьютеров:

PC1> ip 192.168.11.1/24

Checking for duplicate address...

PC1: 192.168.11.1 255.255.255.0

PC1> show ip all

NAME IP/MASK GATEWAY MAC DNS

PC1 192.168.11.1/24 0.0.0.0 00:50:79:66:68:00

PC2> ip 192.168.11.2

Checking for duplicate address...

PC2: 192.168.11.2 255.255.255.0

PC2> show ip all

NAME IP/MASK GATEWAY MAC DNS

PC2 192.168.11.2/24 0.0.0.0 00:50:79:66:68:01

Проверка доступности компьютеров:

PC1> show ip all

NAME IP/MASK GATEWAY MAC DNS

PC1 192.168.11.1/24 0.0.0.0 00:50:79:66:68:01

PC1> ping 192.168.11.2

84 bytes from 192.168.11.2 icmp_seq=1 ttl=64 time=0.151 ms

84 bytes from 192.168.11.2 icmp_seq=2 ttl=64 time=0.360 ms

84 bytes from 192.168.11.2 icmp seq=3 ttl=64 time=0.225 ms

84 bytes from 192.168.11.2 icmp_seq=4 ttl=64 time=0.282 ms

84 bytes from 192.168.11.2 icmp seq=5 ttl=64 time=0.308 ms

2.2. Задание №2

Смоделировать локальную сеть топологии «Звезда», состоящую из трёх компьютеров и одного коммутатора. IP-адреса компьютерам выдать статически в соответствии с заданным вариантом из таблицы 2.1.

Рисунок 2.2.1 — сеть топологии «Звезда»

Настройка IP-адресов компьютеров производится аналогично заданию 1.

Проверка доступности компьютеров:

PC1> show ip all NAME IP/MASK **GATEWAY** MAC **DNS** PC1 192.168.11.1/24 0.0.0.000:50:79:66:68:00 PC1> ping 192.168.11.2 84 bytes from 192.168.11.2 icmp seq=1 ttl=64 time=0.254 ms 84 bytes from 192.168.11.2 icmp seq=2 ttl=64 time=0.306 ms 84 bytes from 192.168.11.2 icmp seq=3 ttl=64 time=0.391 ms 84 bytes from 192.168.11.2 icmp_seq=4 ttl=64 time=0.454 ms 84 bytes from 192.168.11.2 icmp_seq=5 ttl=64 time=0.295 ms PC1> ping 192.168.11.3 84 bytes from 192.168.11.3 icmp seq=1 ttl=64 time=0.136 ms 84 bytes from 192.168.11.3 icmp_seq=2 ttl=64 time=0.330 ms 84 bytes from 192.168.11.3 icmp_seq=3 ttl=64 time=0.257 ms 84 bytes from 192.168.11.3 icmp seq=4 ttl=64 time=0.365 ms

84 bytes from 192.168.11.3 icmp_seq=5 ttl=64 time=0.282 ms

2.3. Задание №3

Смоделировать локальную сеть топологии «Звезда», состоящую из пяти компьютеров и одного коммутатора. IP-адреса компьютерам выдать динамически, используя DHCP протокол.

Рисунок 2.3.1 — Сеть типа «Звезда», состоящая из 5 компьютеров и одного коммутатора

Поскольку в GNS3 нет возможности установить ПК в качестве DHCP-сервера его роль будет выполнять роутер.

Настройка роутера R1:

R1#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

R1(config)#interface f0/0

R1(config-if)#no shutdown

*Mar 1 00:08:25.575: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

*Mar 1 00:08:26.575: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

R1(config-if)#ip address 192.168.1.1 255.255.255.0

R1(config-if)#exit

*Mar 1 00:12:34.843: %SYS-5-CONFIG_I: Configured from console by console

R1(config)#ip dhcp pool DHCP

R1(dhcp-config)#network 192.168.1.0 255.255.255.0

R1(dhcp-config)#default-router 192.168.1.1

Настройка компьютера РС1 (РС2-РС4 аналогично):

Рисунок 2.3.2 — пример настройки РС1

Анализ трафика DHCP при помощи Wireshark:

No.	Time	¥	Source	Destination	Protocol	Length	Info	
	46 285.365566		0.0.0.0	255.255.255.255	DHCP	406	DHCP	Discover - Transaction ID 0x28099d49
	47 285.375908		c4:01:7e:6a:00:00	Broadcast	ARP	60	Who h	nas 192.168.1.3? Tell 192.168.1.1
	48 286.365702		0.0.0.0	255.255.255.255	DHCP	406	DHCP	Discover - Transaction ID 0x28099d49
	49 287.380250		192.168.1.1	192.168.1.3	DHCP	342	DHCP (Offer - Transaction ID 0x28099d49
	50 287.390281		192.168.1.1	192.168.1.3	DHCP	342	DHCP (Offer - Transaction ID 0x28099d49
	51 289.365734		0.0.0.0	255.255.255.255	DHCP	406	DHCP	Request - Transaction ID 0x28099d49
	52 289.374947		192.168.1.1	192.168.1.3	DHCP	342	DHCP /	ACK - Transaction ID 0x28099d49

2.4. Задание №4

Смоделировать локальную сеть топологии «Дерево», состоящую из пяти компьютеров и двух коммутаторов. IP-адреса компьютерам выдать статически в соответствии с заданным вариантом из таблицы 2.1.

Рисунок 2.4.1 — локальная сеть топологии «Дерево»

Настройка компьютеров на примере РС1 и РС4:

PC1> ip 172.17.98.0/17

Checking for duplicate address...

PC1: 172.17.98.0 255.255.128.0

PC4> ip 172.17.98.3/17

Checking for duplicate address...

PC4: 172.17.98.3 255.255.128.0

Проверка сети:

PC4> ping 172.17.98.1

84 bytes from 172.17.98.1 icmp seq=1 ttl=64 time=0.240 ms

84 bytes from 172.17.98.1 icmp seq=2 ttl=64 time=0.254 ms

84 bytes from 172.17.98.1 icmp_seq=3 ttl=64 time=0.447 ms

84 bytes from 172.17.98.1 icmp_seq=4 ttl=64 time=0.275 ms

PC5> ping 172.17.98.0

84 bytes from 172.17.98.0 icmp_seq=1 ttl=64 time=0.210 ms

84 bytes from 172.17.98.0 icmp_seq=2 ttl=64 time=0.323 ms

84 bytes from 172.17.98.0 icmp seq=3 ttl=64 time=0.174 ms

84 bytes from 172.17.98.0 icmp_seq=4 ttl=64 time=0.212 ms

84 bytes from 172.17.98.0 icmp_seq=5 ttl=64 time=0.240 ms

2.5. Задание №5

Смоделировать локальную сеть, разделенную на три подсети. Используйте протокол маршрутизации RIP. В соответствии с заданным вариантом статически раздать IP-адреса компьютерам из таблицы 2.2.

Смоделированная локальная сеть разделена на 3 подсети, доступ к которой осуществляется через собственный роутер. Её топология представлена на рисунке 6.

Рисунок 2.5.1 — локальная сеть, разделённая на 3 подсети

Настройка роутеров (на примере R1):

R1#conf t

Enter configuration commands, one per line. End with CNTL/Z.

R1(config)#interface fastEthernet 1/0

R1(config-if)#ip address 10.10.80.1 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#int

R1(config)#interface f0/0

R1(config-if)#ip address 10.10.10.1 255.255.255.252

R1(config-if)#no shutdown

R1(config-if)#

*Mar 1 00:07:49.631: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

*Mar 1 00:07:50.631: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

R1(config-if)#exit

R1(config)#interface f0/1

R1(config-if)#ip address 10.10.12.1 255.255.255.252

R1(config-if)#no shutdown

После аналогичной настройки роутеров R2 и R3 проверим таблицу маршрутизации:

R1#show ip route

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

- C 10.10.10.0/30 is directly connected, FastEthernet0/0
- C 10.10.12.0/30 is directly connected, FastEthernet0/1
- C 10.10.80.0/24 is directly connected, FastEthernet1/0

R2#show ip route

10.0.0.0/30 is subnetted, 2 subnets

- C 10.10.10.0 is directly connected, FastEthernet0/0
- C 10.10.11.0 is directly connected, FastEthernet0/1
- C 192.168.84.0/24 is directly connected, FastEthernet1/0

R3#show ip route

10.0.0.0/30 is subnetted, 2 subnets

- C 10.10.11.0 is directly connected, FastEthernet0/1
- C 10.10.12.0 is directly connected, FastEthernet0/0
- C 172.0.0.0/10 is directly connected, FastEthernet1/0

В таблице маршрутизации имеются данные только о тех подсетях, что непосредственно подключены к роутеру. Активируем протокол RIP динамической маршрутизации. На примере R3:

R3#conf t

Enter configuration commands, one per line. End with CNTL/Z.

R3(config)#router rip

R3(config-router)#version 2

R3(config-router)#network 172.0.0.0

R3(config-router)#network 10.10.12.0

R3(config-router)#network 10.10.11.0

R3(config-router)#exit

R3(config)#exit

Таблицы маршрутизации, дополненные протоколом RIP:

R1#show ip route

10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks

- C 10.10.10.0/30 is directly connected, FastEthernet0/0
- R 10.10.11.0/30 [120/1] via 10.10.12.2, 00:00:14, FastEthernet0/1

- [120/1] via 10.10.10.2, 00:00:03, FastEthernet0/0
- C 10.10.12.0/30 is directly connected, FastEthernet0/1
- C 10.10.80.0/24 is directly connected, FastEthernet1/0
- R 192.168.84.0/24 [120/1] via 10.10.10.2, 00:00:03, FastEthernet0/0
- R 172.0.0.0/10 [120/1] via 10.10.12.2, 00:00:15, FastEthernet0/1

R2#show ip route

- 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
- C 10.10.10.0/30 is directly connected, FastEthernet0/0
- C 10.10.11.0/30 is directly connected, FastEthernet0/1
- R 10.10.12.0/30 [120/1] via 10.10.11.2, 00:00:09, FastEthernet0/1 [120/1] via 10.10.10.1, 00:00:12, FastEthernet0/0
- R 10.10.80.0/24 [120/1] via 10.10.10.1, 00:00:12, FastEthernet0/0
- C 192.168.84.0/24 is directly connected, FastEthernet1/0
- R 172.0.0.0/10 [120/1] via 10.10.11.2, 00:00:09, FastEthernet0/1

R3#show ip route

- 10.0.0.0/8 is variably subnetted, 4 subnets, 2 masks
- R 10.10.10.0/30 [120/1] via 10.10.12.1, 00:00:27, FastEthernet0/0 [120/1] via 10.10.11.1, 00:00:23, FastEthernet0/1
- C 10.10.11.0/30 is directly connected, FastEthernet0/1
- C 10.10.12.0/30 is directly connected, FastEthernet0/0
- R 10.10.80.0/24 [120/1] via 10.10.12.1, 00:00:27, FastEthernet0/0
- R 192.168.84.0/24 [120/1] via 10.10.11.1, 00:00:23, FastEthernet0/1
- C 172.0.0.0/10 is directly connected, FastEthernet1/0

Проверим доступность подсетей:

PC2> show ip all

NAME IP/MASK GATEWAY MAC DNS

PC2 10.10.80.3/24 10.10.80.1 00:50:79:66:68:01

PC2> ping 172.27.34.2

84 bytes from 172.27.34.2 icmp seq=1 ttl=62 time=27.269 ms

84 bytes from 172.27.34.2 icmp_seq=2 ttl=62 time=26.159 ms

84 bytes from 172.27.34.2 icmp_seq=3 ttl=62 time=26.363 ms

84 bytes from 172.27.34.2 icmp seq=4 ttl=62 time=26.675 ms

84 bytes from 172.27.34.2 icmp_seq=5 ttl=62 time=25.485 ms

PC5> show ip all

NAME IP/MASK GATEWAY MAC DNS

PC5 172.27.34.1/10 172.27.34.0 00:50:79:66:68:04

PC5> ping 192.168.84.3

84 bytes from 192.168.84.3 icmp seq=1 ttl=62 time=39.919 ms

```
84 bytes from 192.168.84.3 icmp_seq=2 ttl=62 time=26.605 ms
84 bytes from 192.168.84.3 icmp_seq=3 ttl=62 time=26.987 ms
84 bytes from 192.168.84.3 icmp_seq=4 ttl=62 time=26.540 ms
84 bytes from 192.168.84.3 icmp_seq=5 ttl=62 time=26.760 ms
```

```
PC3> show ip all
```

```
NAME IP/MASK GATEWAY MAC DNS
PC3 192.168.84.2/24 192.168.84.1 00:50:79:66:68:02
PC3> ping 10.10.80.2
84 bytes from 10.10.80.2 icmp_seq=1 ttl=62 time=36.899 ms
84 bytes from 10.10.80.2 icmp_seq=2 ttl=62 time=20.662 ms
84 bytes from 10.10.80.2 icmp_seq=3 ttl=62 time=36.661 ms
84 bytes from 10.10.80.2 icmp_seq=4 ttl=62 time=35.972 ms
84 bytes from 10.10.80.2 icmp_seq=5 ttl=62 time=36.624 ms
```

Вывод:

В ходе выполнения данной лабораторной работы был смоделированы сети с различными топологиями и протестирована их работа в программном эмуляторе GNS3. Были построены сети топологии «Звезда» и «Дерево» при помощи коммутаторов и «Шина» на основе концентратора.

На основе топологии «Звезда» была продемонстрирована работа протокола DHCP, позволяющего динамически выделять IP-адреса устройствам, находящимся в сети.

Также был протестирован протокол сетевой маршрутизации RIP в условиях коммутации 3 локальных сетей.