Алгебра. Курс лекций

П.Н Иваньшин

Оглавление

1	Множества 5				
	1.1	Отношения эквивалентности	5		
	1.2	Теорема о факторизации	6		
2	Группы				
	2.1	Кольца и поля	8		
	2.2	Подгруппы	9		
	2.3	Классы смежности	11		
	2.4	Нормальные подгруппы	12		
	2.5	Идеалы колец	12		
3	Матрицы				
	3.1	Линейные (векторные) пространства	15		
	3.2	Ранг матрицы	18		
4	Матрицы и линейные отображения				
	4.1	Линейная комбинация матриц	20		
	4.2	Умножение матриц	20		
	4.3	Транспонирование матриц	21		
	4.4	Ранг произведения матриц	21		
5	Квадратные матрицы				
	5.1	Алгоритм поиска обратной матрицы	24		
6	Группа перестановок				
	6.1	Знак перестановки	27		
7	Определители 2				
	7.1	Свойства функции det	29		
	7.2	Разложение определителя по элементам столбца или строки	32		

Оглавление

8	Жо	рданова нормальная форма матрицы	35		
	8.1	Проекторы	35		
	8.2	Инвариантные подпространства	36		
	8.3	Собственные векторы	37		
	8.4	Критерии диагонализируемости	39		
	8.5	Теорема Гамильтона-Кэли	43		
	8.6	ФНЖ	44		
	8.7	Корневые подпространства	44		
	8.8	ЖНФ нильпотентного оператора	46		
	8.9	Единственность	47		
9	Квадратичные формы				
	9.1	Определение	51		
	9.2	Существование канонического вида квадратичной формы.	52		
	9.3	Метод Лагранжа приведения квадратичной формы к ка-			
		ноническому виду	53		
	9.4	Нормальный вид квадратичной формы	54		
10	Kon	плексные числа	57		
	10.1	Определение множества комплексных чисел	57		
	10.2	Тригонометрическая форма записи комплексных чисел	59		
	10.3	Сопряженные числа	60		
11	Мно	огочлены	61		
	11.1	Основная теорема алгебры	62		
	11.2	Доказательство Основной теоремы алгебры	63		
	11.3	Другое доказательство	65		
12	Pac	ширения полей	69		
	12.1	Конечные и алгебраические расширения	69		

Множества

Определение 1. Разбиение множества S — такое множество π его подмножеств, что

- a) Ecau $A \in \pi$, mo $A \neq \emptyset$.
- b) $Ecnu\ A \in \pi\ u\ B \in \pi$, mo nubo A = B, nubo $A \cap B = \emptyset$
- c) каждый элемент множества S принадлежит некоторому элементу множества π .

То есть, разбиение множества S — семейство его непустых подмножеств, таких, что каждый элемент из S принадлежит в точности одному подмножеству из этого семейства.

Пример 1. Пусть $S = \{1, 2, 3, 4, 5\}$. Тогда $\pi = \{\{1, 2, 3\}, \{4, 5\}\}$ — разбиение S на два подмножества.

1.1 Отношения эквивалентности

Определение 2. Бинарное отношение R на непустом множестве A — подмножество декартова произведения $A \times A$, то есть $R \subset A \times A$.

Пример 2. Отношение "меньше или равно" на множестве \mathbb{R} можно задать подмножеством $\mathbb{R} \times \mathbb{R} \supset R = \{(x,y)|y-x \geq 0\}.$

Можно определить и отношение, обратное к данному, как $R^{-1} = \{(y,x)|(x,y) \in R\}.$

Определение 3. Отношение эквивалентности E на множестве A — бинарное отношение $E \subset A \times A$, удовлетворяющее условиям

- а) Рефлексивность: $\forall x \in A \ (x, x) \in E$.
- b) Симметричность: $\forall (x,y) \in E \ (y,x) \in E$.
- c) Транзитивность: $(x,y),(y,z) \in E$ влечет $(x,z) \in E$.

Будем обозначать через $x \equiv_E y$ или $x \equiv y$ (x эквивалентно y), если $(x,y) \in E$.

Класс эквивалентности элемента $x \in A$ — множество $[x] = \{y \in A | (x,y) \in E\}$. Любой элемент $y \in [x]$ называется представителем класса эквивалентности [x].

Задача 1. Доказать, что $y \in [x] \Leftrightarrow [y] = [x]$

Определим, наконец, множество всех классов эквивалентности, или так называемое фактормножество $A/\equiv_E=\{[x]|x\in A\}.$

Пример 3. Пусть $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Определим отношение эквивалентности на A следующим образом; $(x, y) \equiv (x', y') \Leftrightarrow xy' = x'y$. Проверить, $uno \equiv -$ отношение эквивалентности.

 $Tor \partial a A/ \equiv \cong \mathbb{Q}.$

Предложение 1. Если E — отношение эквивалентности на множестве A, то фактор-множество $A/E = \{[a]|a \in A\}$ — разбиение множества A. И наоборот, если π — разбиение A, то существует такое отношение эквивалентности E на A, что $\pi \cong A/E$.

Доказательство — упражнение.

1.2 Теорема о факторизации

Пусть $f: A \to B$. Определим отношение эквивалентности на множестве A по правилу: $x \equiv x'$, если f(x) = f(x').

Задача 2. Доказать, что $\equiv -$ отношение эквивалентности.

Определим $i:A/\equiv\to B$ равенством i([x]):=f(x). Пусть $s:A\to A/\equiv -$ каноническое отображение на фактормножество.

Теорема 1. Пусть $f:A\to B$ — произвольная функция. Тогда диаграмма

коммутативна, то есть $f = i \circ s$.

Задача 3. Доказать теорему.

Группы

Определение 4. Группа — множество G с бинарной операцией * : $G \times G \to G$, удовлетворяющее следующим свойствам:

- a) $\forall a, b \in G, \ a * b \in G.$
- b) Ассоциативность: $\forall a, b, c \in G, \ a * (b * c) = (a * b) * c.$
- c) Существование нейтрального элемента: $\exists e \in G, \ \forall a \in G, \ a*e = e*a = a.$
- d) Существование обратного элемента: $\forall a \in G \ \exists a^{-1} \in G, \ aa^{-1} = a^{-1} * a = e.$

Если опустить последнее требование, то получим определение полугруппы с единицей или моноида.

Определение 5. Пусть $(G_i, *_i)$, i = 1.2 — группы. Отображение $f : (G_1, *_1) \to (G_2, *_2)$ — гомоморфизм групп, если $\forall a, b \in G_1$ $f(a *_1 b) = f(a) *_2 f(b)$.

Eсли f — биекция G_1 на G_2 , то f — изоморфизм.

Задачи

- 1. Ассоциативна ли операция * на множестве M, если
- a) $M = \mathbb{N}, x * y = x^y;$
- b) $M = \mathbb{N}, x * y = GCD\{x, y\};$
- c) $M = \mathbb{N}, x * y = 2xy;$
- d) $M = \mathbb{Z}, \ x * y = x y;$
- e) $M = \mathbb{Z}, x * y = x^2 + y^2;$
- f) $M = \mathbb{R}, \ x * y = x/y;$
- 2. Доказать, что во всякой конечной полугруппе найдется идемпотент (то есть $\exists x \in G, \exists n \in \mathbb{N}, x^n = x$)
- 3. Полугруппа моногенна, если состоит из положительных степеней одного из своих элементов, который называется порождающим. Доказать, что

- а) моногенная полугруппа конечна ⇔ содержит идемпотент;
- b) конечная моногенная полугруппа либо группа, либо имеет только один порождающий элемент;
 - с) любые две бесконечные полугруппы изоморфны.
 - 4. Какие из указанных множеств с операциями есть группы:
 - а) (A, +), где A одно из множеств $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$;
 - b) (A, \bullet) , где A одно из множеств $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$;
 - c) (A^*, \bullet) , где A одно из множеств $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}, A^* = A \setminus \{0\};$
 - d) $(n\mathbb{Z}, +), n \in \mathbb{N}$.
 - e) $(\{-1,1\}, \bullet)$.
- 5. Доказать, что коммутатор $[x,y] = xyx^{-1}y^{-1}$ элементов x,y группы G обладает свойствами
 - a) $[x, y]^{-1} = [y, x];$
 - b) $[xy, z] = x[y, z]x^{-1}[x, z];$
 - c) $[z, xy] = [z, x]x[z, y]x^{-1}$.

2.1 Кольца и поля

Определение 6. Кольцо $(R, +, \cdot)$ — алгебраическая система, удовлетворяющая условиям:

- а) R коммутативная группа относительно операции +, (то есть $\forall x, y \in R, \ x+y=y+x$). Единичный элемент 0_R называется нулевым.
 - b) R полугруппа с единицей 1_R по умножению.
- c) Дистрибутивность: $\forall x, y, z \in R \ x(y+z) = xy + xz \ u \ (y+z)x = yx + zx.$

Пример 4. Множества $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ — кольца относительно обычных операций.

Кольцо R называется коммутативным, если $\forall a,b\in R,\ ab=ba.$ Если $\forall n\in\mathbb{N},\ \sum\limits_{i=1}^n 1_R\neq 0,$ то говорят, что R имеет характеристику 0.

Определение 7. Элемент $a \in R$ называется делителем нуля, если $\exists b \in R, b \neq 0, ab = 0.$ Элемент $u \in R$ обратим, если $\exists u^{-1} \in R, uu^{-1} = 1.$

Область целостности — нетривиальное коммутативное кольцо без делителей нуля.

Пример 5. Кольцо \mathbb{Z} — область целостности.

Определение 8. Поле — нетривиальное коммутативное кольцо, в котором каждый ненулевой элемент обратим.

2.2. Подгруппы

Пример 6. Множества \mathbb{R} и \mathbb{Q} со стандартными арифметическими операциями — поля.

9

Задачи

- 1. Какие из следующих множеств образуют кольцо относительно операций сложения и умножения:
 - a) \mathbb{Z} ;
 - b) $n\mathbb{Z}$;
 - c) $\mathbb{Z}^+ \bigcup \{0\};$
 - d) 0;
 - e) $\{x + \sqrt{2}y | x, y \in \mathbb{Q}\};$
 - f) $\{x + \sqrt[3]{2}y | x, y \in \mathbb{Q}\};$
 - 2. Какие из приведенных выше колец содержат делители нуля?
 - 3. Пусть R кольцо с единицей, $x, y \in R$. Доказать, что
 - а) Обратимость xy и yx влечет обратимость x и y.
- b) Если R без делителей нуля, то обратимость xy влечет обратимость x и y.

2.2 Подгруппы

Пусть G — группа.

Определение 9. Непустое подмножество H в группе G называется подгруппой, если вместе с любыми двумя его элементами оно содержит их произведение, и с каждым своим элементом H содержит его обратный.

Предложение 2. Если H — подгруппа в группе G и e — единичный элемент G, то $e \in H$.

Задача 4. В произвольной группе произведение любого числа элементов не зависит от расстановки скобок.

Предложение 3. Для непустого подмножества H в группе G следующие условия эквивалентны:

- A) H является подгруппой в G;
- B) $ecnu x, y \in H$, $mo xy^{-1} \in H$.

Доказательство. Пусть выполнено условие A), и $x,y \in H$. В силу определения 9 получаем $x,y^{-1} \in H$, откуда $xy^{-1} \in H$, т. е. выполнено условие B). Обратно, пусть выполнено условие B), и $y \in H$. Тогда $y,y^{-1} \in H$, откуда $e = yy^{-1} \in H$ по B). Далее $e,y \in H$, откуда $y^{-1} = ey^{-1} \in H$ по B). Наконец, если $x,y \in H$, то $x,y^{-1} \in H$ по доказанному выше. Отсюда $x(y^{-1})^{-1} = xy \in H$.

Задача 5. Если $H_i, i \in I - noдеруппы$ группы $G, mo \bigcap_{i \in I} H_i - noдеруппа$ группы G.

Определение 10. Пусть $a \in G$. Для произвольного целого числа n положим

$$a^{n} = \left\{ \begin{array}{ll} e & n = 0 \\ a \cdots a & n > 0 \\ a^{-1} \cdots a^{-1} & n < 0 \end{array} \right.$$

Предложение 4. Пусть a — элемент некоторой группы u $n, m \in \mathbb{Z}$. Тогда $a^{n+m} = a^n a^m$, $(a^n)^m = a^{mn}$.

Определение 11. Пусть a — элемент некоторой группы. Порядком |a| элемента а называется такое наименьшее натуральное число n, что $a^n = e$. Если такого числа n нет, то говорят, что порядок a равен бесконечности.

Предложение 5. Пусть $|a| = n \le \infty$, и $m \in \mathbb{Z}$. Следующие условия эквивалентны:

- A) n|m (n denum m);
- B) $a^m = e$.

Определение 12. Пусть $a \in G$. Через (a) обозначим множество $\{a^n | n \in \mathbb{Z}\}$ всех степеней элемента a.

Задача 6. (a) является подгруппой в G.

Определение 13. Пусть G — группа, а S — подмножество G. Говорят, что S порождает G, или, что S — семейство генераторов G, если $\forall g \in G, \; \exists x_1, \ldots, x_n \in S, \; (g = x_1^{e_1} \cdots x_n^{e_n}, \; e_i = \pm 1).$

Задача 7. Доказать, что семейство всех таких произведений -1) подгруппа G, 2) наименьшая подгруппа G, содержащая S.

Пример 7. Существует две неабелевы группы порядка 8.

 $O \partial ha - \mathit{группa}$ симметрий квадрата, порожденная такими двумя элементами σ и τ , что $\sigma^4 = \tau^2 = e$ и $\tau \sigma \tau^{-1} = \sigma^3$.

Вторая — группа кватернионов, порожденная двумя элементами i u j, такими, что если ввести в рассмотрение еще два элемента k=ij u $m=i^2$, получим соотношения $i^4=j^4=k^4=e,\ i^2=j^2=k^2=m,$ ij=mji.

2.3 Классы смежности

Пусть G — группа, а H — подгруппа G.

Определение 14. Правый класс смежности по H в G — подмножество G вида aH для некоторого элемента $a \in G$. Любой элемент aH называется представителем класса смежности aH.

Задача 8. Отображение $h \mapsto ah - buekuun H$ на aH.

Следовательно, любые два класса смежности состоят из одного и того же количества элементов.

Предложение 6. Пусть $a, b \in G$ и $aH \cap bH \neq \emptyset$. Тогда aH = bH.

Доказательство. Пусть $ax = by \ x, y \in H$. Тогда $a = byx^{-1}$. Но $yx^{-l} \in H$. Следовательно, $aH = b(yx^{-1})H = bH$, так как $\forall z \in H \ zH = H$.

Таким образом, G — дизъюнктное объединение левых классов смежности по H. То же утверждение верно и для правых классов смежности (то есть подмножеств G вида Ha). Обозначим число левых классов смежности в группе G по подгруппе H через (G:H), и назовем (левым) индексом H в G. Таким образом, получаем

Предложение 7. Пусть G — группа, а H — подгруппа G. Тогда (G:H)(H:1)=(G:1), то есть, если два из рассматриваемых индексов конечны, конечен и третий, и тождество верно. Если (G:1) конечен, порядок H делит порядок G.

Более общо, пусть H, K — подгруппы G и $H \supset K$. Пусть $\{x_i\}$ — семейство (левых) представителей K в H, а $\{y_j\}$ — семейство представителей H в G. Тогда $\{y_jx_i\}$ — семейство представителей K в G.

Доказательство. Заметим, что

$$H = \bigcup_{i} x_{i}K$$
 (дизъюнктное) $G = \bigcup_{j} y_{j}H$ (дизъюнктное)

Следовательно,

$$G = \bigcup_{i,j} y_j x_i K.$$

Покажем, что последнее объединение также дизъюнктно. Пусть $\exists i, j, i', j', y_j x_i K = y_{j'} x_{i'} K$. Умножим слева на H и заметим, что $x_i, x_{i'} \in H$. Тогда $y_j H = y_{j'} H$, следовательно, $y_j = y_{j'}$. Тогда $x_i K = x_{i'} K$, то есть $x_i = x_{i'}$.

Пример 8. Группа простого порядка — циклическая. Пусть G порядка $p, a \in G$ и H — подгруппа G, порожденная a. Тогда порядок H делит порядок G, то есть, так как $a \neq 1$, H = G. Следовательно, группа G циклическая.

2.4 Нормальные подгруппы

Пусть $f: G \to G'$ — гомоморфизм групп, и пусть H — его ядро. Если $x \in G$, то xH = Hx так как оба множества есть $f^{-1}(f(x))$. Это же соотношение можно переписать как $xHx^{-1} = H$.

Пусть, напротив, G — группа, и H — ее подгруппа. Пусть $\forall x \in G$ $xH \subset Hx$ (или, что эквивалентно, $xHx^{-1} \subset H$). Если мы рассмотрим x^{-1} вместо x, то получим $H \subset xHx^{-l}$, следовательно $xHx^{-1} = H$. Итак, наше условие эквивалентно условию $\forall x \in G \ xHx^{-i} = H$.

Определение 15. Подгруппа, удовлетворяющая этому условию, называется нормальной.

Пусть G' — набор классов смежности H. (По предположению, правый смежный класс совпадает с левым, то есть можно опустить этот термин.) Если xH и yH — классы смежности, то их произведение (xH)(yH) — также класс смежности, поскольку xHyH = xyHH = xyH. Таким образом, на G' определена бинарная операция, очевидно ассоциативная. Ясно, что единичным элементом для этой операции является класс смежности H, и что $x^{-l}H$ — обратный элемент для класса смежности xH. То есть, G' — группа.

Пусть $f: G \to G'$ — отображение, определенное по правилу f(x) — класс смежности xH. Тогда f — гомоморфизм, и (подгруппа) H содержится в его ядре. Если f(x) = H, то xH = H. Так как H содержит единицу, $x \in H$. Следовательно, H совпадает с ядром гомоморфизма f, и верно утверждение, обратное приведенному в начале параграфа.

Группа классов смежности по нормальной подгруппе H обозначается через G/H. Отображение f G на G/H, построенное выше, называется каноническим отображением, и G/H называется факторгруппой G по H.

2.5 Идеалы колец

Определение 16. Левым идеалом кольца A называется такое подмножество $\alpha \subset A$, что 1) α — подгруппа аддитивной группы A, 2) $A\alpha \subset A$

(то есть, $A\alpha = \alpha$ поскольку $1 \in A$). Правый идеал определяется аналогично соотношением $\alpha A = \alpha$, а двусторонний идеал — множество, которое одновременно является и правым и левым идеалом. Двусторонний идеал часто называю просто идеалом.

Заметим, что 0 и A — сами идеалы A.

Если A — кольцо, и $a \in A$, то Aa — левый идеал, называемый главным. Говорят, что a — порождающий элемент (генератор) α (над A). Аналогично, AaA — главный двусторонний идеал, если мы определим AaA как набор всех сумм вида $\sum_i x_i ay_i$, где $x_i, y_i \in A$. В более общем случае, пусть a_l, \ldots, a_n — элементы A. Обозначим через (a_l, \ldots, a_n) множество элементов A, которые можно записать в виде

$$x_1a_1 + \ldots + x_na_n, x_i \in A$$

Легко видеть, что это множество — левый идеал, а a_l, \ldots, a_n называются генераторами левого идеала.

Если $\{\alpha_i\}_{i\in I}$ — семейство идеалов, то их пересечение $\bigcap_{i\in I}\alpha_i$ — также идеал. Аналогичное утверждение верно для левых идеалов.

Задача 9. Доказать, что если $\alpha = (a_l, \ldots, a_n)$, то alpha — пересечение всех левых идеалов, содержащих элементы a_l, \ldots, a_n .

Определение 17. Гомоморфизм колец — такое отображение $f: A \to B$, где A, B — кольца, что f — гомоморфизм, сохраняющий сложение u умножение на A u B. То есть, f удовлетворяет условиям: f(a+a') = f(a) + f(a'), $f(0_A) = 0_B$, f(aa') = f(a)f(a'), $f(1_A) = 1_B$.

Ядром f называется его ядро как гомоморфизма групп по сложению.

Задача 10. Ядро гомоморфизма колец $f:A \to B - u dean A$.

Пусть, наоборот, α — идеал кольца A. Построим факторкольцо A/α . Пусть A/α — факторгруппа группы A по сложению. Определим операцию умножения на A/α следующим образом: Пусть $x+\alpha$ и $y+\alpha$ — классы смежности по α , определим $(x+\alpha)(y+\alpha)$ как класс смежности $(xy+\alpha)$. Этот класс смежности корректно определен, так как если x_l, y_1 лежат в классах смежности x и y, соответственно, то и x_1y_1 принадлежит классу смежности xy. Умножение тогда очевидно ассоциативно, относительно него определен единичный элемент, а именно, класс смежности $1+\alpha$, эта операция также дистрибутивна, поскольку дистрибутивность выполняется для представителей классов смежности. Таким образом, определена структура кольца на A/α , и каноническое отображение $f: A \to A/\alpha$ — гомоморфизм колец.

- **Задача 11.** 1. Описать правые классы смежности при разложении группы G по подгруппе H.
- а) G циклическая группа \mathbb{Z}_8 восьмого порядка, H ее подгруппа четвертого порядка;
- $b)\ G$ группа вращений куба, H ее подгруппа, совмещающая с собой одну из граней куба;
- c) G группа всех невырожденных вещественных матриц, H подгруппа матриц c определителем 1.
- 2. Доказать, что в конечной группе нечетного порядка любой элемент является квадратом другого, однозначно определенного, элемента
- 3. Доказать, что если число правых классов смежности в разложении бесконечной группы G по подгруппе H конечно, то и число левых классов смежности конечно и равно числу правых классов.
- 4. Центром группы называется множество всех элементов, коммутирующих со всеми элементами группы. Доказать, что центр есть нормальный делитель.
- 5. Пусть G конечная группа, $H = \phi(G)$ ее гомоморфный образ. Доказать, что порядок $x \in G$ делится на порядок $\phi(x) \in H$.
- 6. Коммутатором элементов а и в группы G называется $aba^{-1}b^{-1}$. Подгруппа, порожденная коммутаторами, называется коммутантом группы G. Доказать, что:
- a) коммутатор a u b равен e тогда u только тогда, когда a u b коммутируют;
 - b) конечные произведения коммутаторов составляют коммутант;
 - с) коммутант является нормальным делителем;
 - d) факторгруппа по коммутанту абелева;
 - $e)\ ecnu\ G/H\ -\ abeneba\ группа,\ mo\ H\ coдержит\ коммутант\ G.$
- 7. Доказать, что если A и B нормальные делители группы G и $a \in A, b \in B, \ mo \ aba^{-1}b^{-1} \in A \bigcap B.$

Матрицы

Решение систем линейных уравнений вида

$$Ax = b$$
, где $A = (a_{ij})_{i,j=1}^{k,n}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$, $b = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_k \end{pmatrix}$ непосредственно использует понятие матрицы.

3.1 Линейные (векторные) пространства

Определение 18. Векторное (линейное) пространство или пространство строк длины n — множество \mathbb{R}^n вместе с операциями сложения и умножения на скаляры (элементы \mathbb{R}), удовлетворяющее условиям:

- 1) X + Y = Y + X для любых векторов $X, Y \in \mathbb{R}^n$ (закон коммутативности);
- 2) (X+Y)+Z=X+(Y+Z) для любых трех векторов $X,Y,Z\in\mathbb{R}^n$ (закон ассоциативности);
- 3) существует специальный (нулевой) вектор 0 такой, что X+0=X для всех $X\in\mathbb{R}^n$;
- 4) каждому $X \in \mathbb{R}^n$ отвечает противоположный (или обратный) вектор -X такой, что X + (-X) = 0;
 - 5) 1X = X dar $ecex X \in \mathbb{R}^n$;
 - 6) $(\alpha\beta)X = \alpha(\beta X)$ das $ecex\ \alpha, \beta \in \mathbb{R}\ u\ X \in \mathbb{R}^n$;
 - 7) $(\alpha + \beta)X = \alpha X + \beta X$ dis $acex \ \alpha, \beta \in \mathbb{R} \ u \ X \in \mathbb{R}^n$;
 - 8) $\alpha(X+Y) = \alpha X + \alpha Y$ dis $\alpha \in \mathbb{R}$ $\alpha \in \mathbb{R}$

Элементы векторного пространства называются векторами.

Система векторов $X_1,...,X_k$ называется линейно зависимой, если найдутся k чисел $\alpha_1,...,\alpha_k$, одновременно не равных нулю и таких, что

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_k X_k = 0.$$

Теорема 2. Имеют место следующие утверждения:

- 1) система векторов $\{X_1, \ldots, X_k\}$ с линейно зависимой подсистемой сама линейно зависима;
- 2) любая часть линейно независимой системы векторов $\{X_1, \ldots, X_k\}$ линейно независима;
- 3) среди линейно зависимых векторов X_1, \ldots, X_k хотя бы один является линейной комбинацией остальных;
- 4) если один из векторов X_i, \ldots, X_k выражается через остальные, то векторы X_1, \ldots, X_k линейно зависимы;
- 5) если векторы X_1, \ldots, X_k линейно независимы, а X_1, \ldots, X_k, X линейно зависимы, то X линейная комбинация векторов X_1, \ldots, X_k ;
- 6) если векторы X_1, \ldots, X_k линейно независимы и вектор X_{k+1} нельзя через них выразить, то система $X_1, \ldots, X_k, X_{k+1}$ линейно независима.

Доказательство. 1) Пусть, например, первые s векторов $X_1,\ldots,X_s,$ s< k, линейно зависимы, т.е. $\alpha_1X_i+\ldots+\alpha_sX_s=0$, где не все α_i равны нулю. Положив тогда $\alpha_{s+i}=\ldots=\alpha_k=0$, получим нетривиальную линейную зависимость $\alpha_1X_i+\ldots+\alpha_sX_s+\alpha_{s+1}X_i+\ldots+\alpha_kX_k=0$.

Утверждение 2) непосредственно следует из і) (рассуждение от противного).

3) Пусть, например, $\alpha_k \neq 0$ в исследуемом соотношении. Тогда

$$X_k = -\frac{\alpha_1}{\alpha_k} X_1 - \dots - \frac{\alpha_{k-1}}{\alpha_k} X_{k-1}.$$

Оставшиеся пункты — упражнение.

Определение 19. Пусть V — ненулевая линейная оболочка в \mathbb{R}^n , то есть линейное подпространство \mathbb{R}^n . Система векторов $X_1, \ldots, X_r \in V$ называется базисом для V (или в V), если она линейно независима и её линейная оболочка совпадает с V:

$$\langle X_1, \dots, X_r \rangle := \{ \alpha_1 X_1 + \dots + \alpha_r X_r | \alpha_i \in \mathbb{R}, i = 1, \dots, r \} = V.$$

Лемма 1. Пусть V — линейная оболочка в \mathbb{R}^n с базисом X_1, \ldots, X_r и Y_1, Y_2, \ldots, Y_s — линейно независимая система векторов из V. Тогда $s \leq r$.

Доказательство — упражнение. Указание — применить предыдущую теорему. В качестве простого следствия получаем

17

Теорема 3. Каждая ненулевая линейная оболочка $V \subset \mathbb{R}^n$ обладает конечным базисом. Все базисы оболочки V состоят из одинакового числа $r \leq n$ векторов (это число называется размерностью оболочки V и обозначается $\dim_{\mathbb{R}} V$ или просто $\dim V$).

Пусть базис пространства, состоящий из векторов e_i, \ldots, e_n , записывается строкой (e_i, \ldots, e_n) , а при переходе к матричной записи координаты базисных векторов располагаются в столбец. Матрицей перехода от старого базиса к новому базису (e_i', \ldots, e_n') , называется матрица $T = (t_{ij})$, в столбцах которой стоят координаты новых базисных векторов в старом базисе. Таким образом, $(e_i', \ldots, e_n') = (e_i, \ldots, e_n)T$, а координаты вектора x в старом и новом базисах связаны равенствами $x_i = \sum_{j=1}^n t_{ij} x_j'$ или, в матричной записи,

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = T \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix}$$

Задача 12. 1. Пусть $x, y - векторы, \alpha, \beta - скаляры. Доказать, что:$

- 1) $\alpha x = 0$ тогда и только тогда, когда $\alpha = 0$ или x = 0;
- 2) $\alpha x + \beta y = \beta x + \alpha y$ тогда и только тогда, когда $\alpha = \beta$ или x = y.
- 2. При каких значениях λ :
- 1) из линейной независимости системы векторов $\{a_i, a_2\}$ вытекает линейная независимость системы $\{\lambda a_i + a_2, a_1 + \lambda a_2\};$
- 2) из линейной независимости системы $\{a_i, \ldots, a_n\}$ вытекает линейная независимость системы $\{a_1 + a_2, a_2 + a_3, \ldots, a_{n-1} + a_n, a_n + \lambda a_1\}$.
 - 3. Пусть F none, E его подполе.
- 1) Доказать, что F является векторным пространством над полем E.
- 2) Пусть m_1, \ldots, m_n различные натуральные числа, каждое из которых не делится на квадрат простого числа. Доказать, что числа $1, \sqrt{m_1}, \ldots, \sqrt{m_n}$ линейно независимы в пространстве \mathbb{R} над \mathbb{Q} .
- 3) Пусть r_1, \ldots, r_n различные рациональные числа из интервала (0,1). Доказать, что в пространстве $\mathbb R$ над полем $\mathbb Q$ числа $2^{r_1}, \ldots, 2^{r_n}$ независимы.
- 3. Пусть векторы e_i, \ldots, e_n и x заданы своими координатами в некотором базисе:
 - 1) $e_i = (l, l, l), e_2 = (1, 1, 2), e_3 = (1, 2, 3), x = (6, 9, 14);$
 - 2) $e_i = (2, 1, -3), e_2 = (3, 2, -5), e_3 = (1, -1, 1), x = (6, 2, -7);$
- 3) $e_i = (1, 2, -1, -2), e_2 = (2, 3, 0, -1), e_3 = (1, 2, 1, 4), e_4 = (1, 3, -1, 0), x = (7, 14, -1, 2).$

Доказать, что $(e_i, ..., e_n)$ — также базис пространства, и найти координаты вектора x в этом базисе.

```
1) S = ((1,2,1), (2,3,3), (3,8,2)),

S' = ((3,5,8), (5,14,13), (1,9,2));

2) S = ((1,1,1,1), (1,2,1,1), (1,1,2,1), (1,3,2,3)),

S' = ((1,0,3,3), (-2,-3,-5,-4), (2,2,5,4), (-2,-3,-4,-4)).
```

3.2 Ранг матрицы

Назовём пространством столбцов прямоугольной матрицы A размера $m \times n$, линейную оболочку $V_v = (\langle A_1, A_2, \ldots, A_n \rangle$. Размерность $r_v(A) = \dim V$ назовём рангом по столбцам матрицы A. Аналогично вводится ранг по строкам матрицы A $r_h(A) = \dim V_h$, где $V_h = (\langle A^1, A^2, \ldots, A^m \rangle -$ пространство строк матрицы A, т.е. линейная оболочка в \mathbb{R}^n , натянутая на векторы-строки.

Теорема 4. Для любой прямоугольной $m \times n$ -матрицы A справедливо равенство $r_h(A) = r_v(A)$ (это число называется рангом матрицы A и обозначается $\operatorname{rank} A$).

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

Матрицы и линейные отображения

Пусть \mathbb{R}^n и \mathbb{R}^m — векторные пространства столбцов высоты n и m соответственно. Пусть, далее, $A=(a_{ij})$ — матрица размера $m\times n$. Определим отображение $\phi_A:\mathbb{R}^n\to\mathbb{R}^m$, полагая для любого $X=[x_1,x_2,\ldots,x_n]\in\mathbb{R}^n$ $\phi_A(X)=x_1A_1+x_2A_2+\ldots+x_nA_n$, где A_1,\ldots,A_n — столбцы матрицы A. Так как они имеют высоту m, то в правой части стоит вектор-столбец $Y=[y_1,y_2,\ldots,y_m]\in\mathbb{R}^m$. То есть, $Y=\sum_{i=1}^n a_{ij}x_j,\ i=1,2,\ldots,m$

Нетрудно проверить, что

- 1) Если X = X' + X'', то $\phi_A(X) = \phi_A(X') + \phi_A(X'')$;
- $2) \phi_A(\lambda X) = \lambda \phi_A(X).$

Определение 20. Отображение $\phi : \mathbb{R}^n \to \mathbb{R}^m$, обладающее свойствами 1), 2), называется линейным отображением из \mathbb{R}^n в \mathbb{R}^m . Часто, в особенности при n=m, говорят о линейном преобразовании.

Предположим теперь, что $\phi: \mathbb{R}^n \to \mathbb{R}^m$ — линейное отображение. Так как $\mathbb{R}^n = \langle E_1, \dots, E_n \rangle$ — линейная оболочка стандартных базисных столбцов, имеем

$$X = \sum_{i=1}^{n} x_i E_i.$$

Согласно свойствам 1), 2) имеем

$$\phi(X) = \phi(\sum_{i=1}^{n} x_i E_i) = \sum_{i=1}^{n} x_i \phi(E_i).$$

Последнее соотношение показывает, что отображение ϕ полностью определяется своими значениями на базисных векторах-столбцах. Положив

 $\phi(E_j) = [a_{1j}, a_{2j}, \dots, a_{mj}] = A_j \in \mathbb{R}^m$ мы обнаруживаем, что задание ϕ равносильно заданию прямоугольной матрицы $A = (a_{ij})$ размера $m \times n$ со столбцами A_1, \dots, A_m . То есть, можно положить $\phi = \phi_A$. Матрица A называется матрицей линейного отображения ϕ_A . Суммируем полученные результаты в утверждении.

Теорема 5. Между линейными отображениями \mathbb{R}^n в \mathbb{R}^m и матрицами размера $m \times n$ существует взаимно однозначное соответствие.

4.1 Линейная комбинация матриц

Линейные функции, равно как и произвольные линейные отображения $\mathbb{R}^n \to \mathbb{R}^m$ при фиксированных m и n можно складывать и умножать на скаляры. В самом деле, пусть $\phi_A, \phi_B : \mathbb{R}^n \to \mathbb{R}^m$ — два линейных отображения. Тогда отображение $\phi = \alpha \phi_A + \beta \phi_B : \mathbb{R}^n \to \mathbb{R}^m, \ \alpha, \beta \in \mathbb{R}$ определено своими значениями $\phi(X) := \alpha \phi_A(X) + \beta \phi_B(X)$. Очевидно, ϕ — линейное отображение. Следовательно, определена матрица C этого отображения. Столбец C_j можно определить из соотношения $C_j = [c_{1j}, c_{2j,\dots,c_{mj}}] = \phi(E_j) = \alpha \phi_A(E_j) + \beta \phi_B(E_j) = \alpha A_j + \beta B_j$. Следовательно, $c_{ij} = \alpha a_{ij} + \beta b_{ij}$.

4.2 Умножение матриц

Пусть $\phi_B: \mathbb{R}^n \to \mathbb{R}^s, \ \phi_A: \mathbb{R}^s \to \mathbb{R}^m$ — два линейных отображения с матрицами $A=(a_{ij})_{i=1,\dots m,j=1,\dots,s}, \ B=(b_{ij})_{i=1,\dots s,j=1,\dots,n}$. Рассмотрим $\phi_C=\phi_A\circ\phi_B: \mathbb{R}^n \to \mathbb{R}^m$. Пусть $X=[x_1,\dots,x_n]\in \mathbb{R}^n, \ Y=[y_1,\dots,y_s]\in \mathbb{R}^s$ и $Z=[z_1,\dots,z_m]\in \mathbb{R}^m$. При этом $z_i=\sum\limits_{k=1}^s a_{ik}y_k=\sum\limits_{k=1}^s a_{ik}\sum\limits_{j=1}^n b_{kj}x_j=\sum\limits_{j=1}^n (\sum\limits_{k=1}^s a_{ik}b_{kj})x_j$. С другой стороны, $z_i=\sum\limits_{j=1}^n c_{ij}x_j$. То есть, $c_{ij}=\sum\limits_{k=1}^s a_{ik}b_{kj}$

Теорема 6. Произведение $\phi_A\phi_B$ двух линейных отображений с матрицами A и B является линейным отображением с матрицей C=AB. Другими словами, $\phi_A\phi_B=\phi_{AB}$.

Следствие 1. Умножение матриц ассоциативно:

доказательство — упражнение.

4.3 Транспонирование матриц

Пусть $A=(a_{ij})_{i=1,\dots m,j=1,\dots,n}$. Тогда транспонированной матрицей tA называется матрица с компонентами $a_{ij}^t=a_{ji},\ i=1,\dots,n,\ j=1,\dots m.$

Основное свойство транспонирования — ${}^{t}(AB) = {}^{t}B^{t}A$.

Доказательство — упражнение.

4.4 Ранг произведения матриц

Теорема 7. $\operatorname{rank}(AB) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$

Доказательство. Для строк и столбцов матрицы C имеем соотношения $C_i = AB_i$ и $C^j = A^jB$. Тогда первое соотношение влечет, что линейная зависимость системы B_i влечет линейную зависимость C_i , следовательно, $\operatorname{rank}(C) = \operatorname{rank}(C_i) \leq \operatorname{rank}(B_i) = \operatorname{rank}(B)$. Аналогично, второе соотношение влечет $\operatorname{rank}(C) \leq \operatorname{rank}(A)$.

Матричная единица E_{ij} — матрица, у которой на i,j месте стоит 1, остальные элементы — нули.

Символ Кронекера $\delta_{ij} = \left\{ \begin{array}{ll} 1 & i=j \\ 0 & i \neq j \end{array} \right.$

Задача 13. 1. Перемножить матрицы а)

$$\left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array}\right)$$

$$\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix}$$

$$\begin{pmatrix} 3 & -4 & 5 \\ 2 & -3 & 1 \\ 3 & -5 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 29 \\ 2 & 18 \\ 0 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 5 & 3 \\ 2 & -3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 & 5 \\ -1 & 4 & -2 \\ 3 & -1 & 1 \end{pmatrix}$$

2.
$$Buvucnumb\ a$$
)
$$\begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}^n$$

$$\left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right)^n$$

3. Вычислить степени квадратной матрицы

$$H = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

4. Вычислить $e^A = Id + \frac{A}{1!} + \frac{A^2}{2!} + \dots$ для a) $A = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$

$$b) \ A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{array} \right)$$

- 5. a) Доказать, что $E_{ij}E_{pq}=\delta_{jp}E_{iq}$
- b) Пусть A произвольная матрица. Вычислить $E_{ij}A$.
- c) Пусть A- произвольная матрица. Вычислить AE_{ij} .
- d) Пусть A квадратная матрица, причём $E_{ij}A = AE_{ij}$ для всех матричных единиц E_{ij} . Доказать, что $A = \lambda Id$ для некоторого скаляра λ .
- е) Пусть $A \kappa в адратная матрица, причём <math>E_{ii}A = AE_{ii}$ для всех i. Доказать, что матрица A диагональна.
- f) Найти все матрицы A порядка n такие, что $\mathrm{tr}AX=0$ для любой матрицы X порядка n. Здесь $\mathrm{tr}A=\sum_{i=1}^n a_{ii}$.

Квадратные матрицы

Множество всех квадратных матриц (a_{ij}) порядка n с вещественными коэффициентами, обычно обозначается $M_n(\mathbb{R})$ (или M_n). Можно показать, что M_n — векторное пространство. При этом по отношению к операциям сложения и умножения матриц выполнены свойства ассоциативности и дистрибутивности.

Определение 21. Говорят, что квадратные матрицы фиксированного порядка п образуют матричное (ассоциативное) кольцо. Кроме того, с учётом легко проверяемых правил $\lambda AB = (\lambda A)B = A(\lambda B)$ умножения на скаляры $\lambda \in \mathbb{R}$ множество M_n называют также алгеброй матриц над \mathbb{R} .

Рассмотрим единичную матрицу $E = \mathrm{Id} = \delta_{kj}$, где

$$\delta_{kj} = \{ \begin{array}{ll} 1 & k = j \\ 0 & k \neq j. \end{array}$$

— символ Кронекера. Очевидно, что $\operatorname{rank}(E) = n$.

Правило умножения матриц, в котором следует заменить b_{kj} на δ_{kj} , показывает, что справедливы соотношения $\forall A \in M_n, EA = A = AE$.

Для данной матрицы $A \in M_n(\mathbb{R})$ можно попробовать найти такую матрицу $A' \in M_n(\mathbb{R})$, чтобы выполнялись соотношения AA' = E = A'A. Сразу же заметим, что $AA' = E = A''A \Rightarrow A'' = A'$.

Действительно, A'' = A''E = A''(AA') = (A''A)A' = EA' = A'. Таким образом, матрица A', если она существует, единственна. Её называют матрицей, обратной к A, и обозначают A^{-1} :

$$AA^{-1} = E = A^{-1}A (5.1)$$

При выполнении (5.1) говорят ещё, что матрица A обратима. Определение.

Определение 22. Матрица $A \in M_n(\mathbb{R})$ называется невырожденной, если система её строк (а тем самым и столбцов) линейно независима, т.е. $\operatorname{rank} A = n$. Если $\operatorname{rank} A < n$, то A называется вырожденной.

Теорема 8. Матрица $A \in M_n(\mathbb{R})$ обратима тогда и только тогда, когда она невырожденна.

Доказательство. 1) (\Rightarrow) Если AB = E (или BA = E), то по теореме 7 имеем $n = \mathrm{rank} E = \mathrm{rank} AB \leq \min\{\mathrm{rank}(A),\mathrm{rank}(B)\} \leq n$, откуда $\mathrm{rank} A = n$.

2) (
$$\Leftarrow$$
) Если rank $A=n$, то $\langle E_1,\ldots,E_n\rangle=\mathbb{R}^n=\langle a_1,\ldots,A_n\rangle$, следовательно, $E_j=\sum_{i=1}^n a'_{ij}A_i,\ j=1,\ldots,n.$ Тогда $E=AA'.$

5.1 Алгоритм поиска обратной матрицы

Рассмотрим в $M_n(\mathbb{R})$ так называемые элементарные матрицы следующих типов:

$$F_{s,t} = \operatorname{Id} - E_{ss} - E_{tt} + E_{st} + E_{ts};$$

$$F_{s,t}(\lambda) = \operatorname{Id} + \lambda E_{st};$$

$$F_s(\lambda) = \operatorname{Id} + \lambda E_{st} = \operatorname{diag}\{1, \dots, \lambda, 1, \dots, 1\}, \lambda \neq 0.$$

Пусть A — произвольная $m \times n$ -матрица. Тогда непосредственно проверяется, что матрица A' = FA получается из A посредством элементарного преобразования (э.п.) над строками типа (I) или (II) в зависимости от того, будет $F = F_{st}$ или $F = F_{st}(\lambda)$. В случае $F = F_s(\lambda)$ будем говорить об э.п. типа (III) (умножение s-й строки A на λ). Аналогично, матрица A'' = AF получается из A посредством э.п. столбцов.

Известно, что э.п. типов (I) и (II), совершаемыми над строками и столбцами, А приводится к матрице с диагональной невырожденной подматрицей. Поскольку

$$\begin{pmatrix} a_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & a_2 & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & a_r & 0 & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 \end{pmatrix} =$$

$$= F_1(a_1) \cdots F_r(a_r) \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & 0 \end{pmatrix},$$

использование э.п. типа (III) даёт возможность получить из A матрицу вида $\begin{pmatrix} \operatorname{Id}_r & 0 \\ 0 & 0 \end{pmatrix}$ (здесь Id_r — единичная матрица в $M_r(\mathbb{R})$. Таким образом, $P_k P_{k-1} \cdots P_1 A Q_1 Q_2 \cdots Q_l = \begin{pmatrix} \operatorname{Id}_r & 0 \\ 0 & 0 \end{pmatrix}$, где P_i , (соответственно Q_j) — элементарные матрицы порядка m (соответственно n).

Предложение 8. Всякая невырожденная $n \times n$ -матрица записывается в виде произведения элементарных матриц.

Доказательство. Действительно, все невырожденные матрицы порядка n элементарными преобразованиями приводятся к диагональному виду, поскольку их ранги равны n. Соотношение $P_k P_{k-1} \cdots P_1 A Q_1 Q_2 \cdots Q_l = \mathrm{Id}$, переписанное в виде $A = P_1^{-1} \cdots P_k^{-1} Q_l^{-1} \cdots Q_1^{-1}$ даёт нужное утверждение.

Если в приведенных выше рассуждениях ограничиться преобразованиями над строками и рассмотреть с самого начала расширенную матрицу $(A|\mathrm{Id})$ размера $n\times 2n$, то в случае невырожденной матрицы $M_n(\mathbb{R})$ возникнет цепочка $(A|\mathrm{Id})\stackrel{P_1}{\longrightarrow}(P_1A|P_1\mathrm{Id})\stackrel{P_2}{\longrightarrow}(P_2P_1A|P_2P_1\mathrm{Id})\stackrel{P_3}{\longrightarrow}\dots\stackrel{P_k}{\longrightarrow}(P_k\cdots P_2P_1A|P_k\cdots P_2P_1\mathrm{Id})=(\mathrm{Id}|A^{-1}).$ Она оборвётся на k-м шаге, когда в левой половине расширенной матрицы место A заполнит единичная матрица Id . В правой половине при этом получится однозначный ответ: A^{-1} . В случае вырожденной матрицы A процесс оборвётся, возможно, раньше — приведением A к ступенчатому виду и вычислением ранга $r=\mathrm{rank}A$.

Пример 9. $\Pi ycmb$

$$A - \left(\begin{array}{ccc} 0 & 2 & 0 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{array}\right)$$

Имеем

$$(A|\text{Id} - \begin{pmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & | & 0 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{pmatrix}$$

Группа перестановок

Пусть Ω — конечное множество из n элементов. Поскольку природа его элементов для нас несущественна, удобно считать, что $\Omega = \{1, 2, \ldots, n\}$. Элементы множества $S_n = S(\Omega)$ всех взаимно однозначных преобразований $\Omega \to \Omega$, называются перестановками. Произвольную перестановку $\pi \in S_n$ можно представить в виде

$$\pi = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{array}\right)$$

Умножение перестановок. $(\sigma \tau)(i) = \sigma(\tau(i)), i = 1, ..., n$. Наделенное такой операцией, множество S_n становится группой (проверить самостоятельно).

Определение 23. Цикл перестановки σ — элементарная составляющая перестановки, описывающая переход некоторого элемента Ω при последовательном применении перестановки σ .

Определение 24. Цикл длины 2 называется транспозицией.

Предложение 9. *Каждая перестановка является произведением транс- позиций.*

6.1 Знак перестановки

Теорема 9. Пусть π — перестановка из S_n и $\pi = \tau_1 \tau_2 \dots \tau_k$ — произвольное разложение π в произведение транспозиций. Тогда число $\operatorname{sgn}(\pi) := (-1)^k$, называемое знаком π (иначе: сигнатурой или чётностью), полностью определяется перестановкой π и не зависит от способа разложения, т.е. чётность целого числа k для данной перестановки π всегда одна и та же. Кроме того, $\operatorname{sgn}(\alpha\beta) = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$.

Доказательство. 1) Предположим, что наряду с данным мы имеем также разложение $\pi = \tau_1' \tau_2' \dots \tau_{k'}'$, причём четности k и k' различны. Это значит, что целое число k+k' нечётно. Так как $(\tau_s')^2 = e$, то, последовательно умножая справа обе части равенства $\tau_1 \tau_2 \dots \tau_k = \tau_1' \tau_2' \dots \tau_{k'}'$, на $\tau_{k'}', \dots \tau_2', \tau_1'$, получим $\tau_1 \tau_2 \dots \tau_k \tau_{k'}', \dots \tau_2', \tau_1' = e$.

То есть задача сведена к следующей. Пусть $e = \sigma_1 \sigma_2 \dots \sigma_m$ — запись единичной перестановки в виде произведения m > 0 транспозиций. Нужно показать, что обязательно m — чётное число. С этой целью будет установлено, что от данной записи мы можем перейти к записи e в виде произведения m-2 транспозиций. Продолжив этот спуск, мы пришли бы при нечётном m к одной транспозиции τ . Но, очевидно, $e \neq \tau$. Итак, нам нужно обосновать спуск от m к m-2 множителям.

- 2) Пусть $s, 1 \leq s \leq n$ любое фиксированное натуральное число, входящее в одну из транспозиций $\sigma_2, \ldots, \sigma_m$. Для определённости считаем, что $e = \sigma_1 \ldots \sigma_{p-1} \sigma_p \sigma_{p+1} \ldots \sigma_m$, где $\sigma_p = (st)$, а $\sigma_{p+1}, \ldots, \sigma_m$ не содержат s. Для σ_{p-i} имеются четыре возможности:
- а) $\sigma_{p-i} = (st)$; тогда отрезок $\sigma_{p-1}\sigma_p$ из записи e удаляется, и мы приходим к m-2 транспозициям;
- б) $\sigma_{p-i} = (sr), r \neq s, t$, здесь $\sigma_{p-1}\sigma_p = (sr)(st) = (st)(rt)$, и мы сдвинули вхождение s на одну позицию влево, не изменив m;
- в) $\sigma_{p-i}=(tr),r\neq s,t,$ здесь $\sigma_{p-1}\sigma_p=(tr)(st)=(sr)(tr),$ и снова, как в случае б), произошёл сдвиг s влево без изменения m;
 - г) $\sigma_{p-i} = (qr), \{q,r\} \cap \{s,t\} = \emptyset$; здесь $\sigma_{p-1}\sigma_p = (qr)(st) = (st)(qr)$.

В случае а) наша цель достигнута. В случаях б)-г) повторяем процесс, сдвигая вхождение s на одну позицию влево. В конечном счёте мы придем либо к случаю а), либо к экстремальному случаю, когда $e = \sigma_1' \sigma_2' \dots \sigma_m'$, причём $\sigma_1' = (st')$ и s не имеет вхождений в $\sigma_2', \dots, \sigma_m'$. Значит, $\sigma_k'(s) = s$ при k > 1 и $s = e(s) = \sigma_1'(s) = t' \neq s$. Полученное противоречие доказывает утверждение об инвариантности $\mathrm{sgn}(\pi)$.

3) Если
$$\alpha = \tau_1 \dots \tau_k$$
, $\beta = \tau_{k+1} \dots \tau_{k+l}$ то $\alpha\beta = \tau_1 \dots \tau_k \tau_{k+1} \dots \tau_{k+l}$ и $\operatorname{sgn}(\alpha) = (-1)^k$, $\operatorname{sgn}(\beta) = (-1)^l \operatorname{sgn}(\alpha\beta) = (-1)^{k+l} = \operatorname{sgn}(\alpha)\operatorname{sgn}(\beta)$.

Определение 25. Перестановка $\pi \in S_n$ называется чётной, если $sgn(\pi) = 1$, и нечётной, если $sgn(\pi) = -1$.

Из определения вытекает, что все транспозиции — нечётные перестановки, а sgn(e) = 1.

Определители

Если A — квадратная таблица, заполненная своими коэффициентами (обычно числами), то определитель порядка n — это число (или выражение), приписываемое матрице A и определённое формулой полного развёртывания

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)}$$
(7.1)

Другими словами, определителем $\det A$ матрицы $A = (a_{ij})_{i,j=1}^n$ называется алгебраическая сумма всевозможных произведений коэффициентов a_{ij} , взятых по одному из каждой строки и из каждого столбца. В каждом произведении сомножители записываются в порядке следования строк, а номера столбцов определяются образами $\sigma(1), \sigma(2), \ldots, \sigma(n)$ номеров строк при перестановке $\sigma \in S_n$. Всего под знаком суммы в (7.1) стоит n! слагаемых; слагаемые, отвечающие чётным перестановкам, входят со знаком плюс, а отвечающие нечётным перестановкам, — со знаком минус.

7.1 Свойства функции det

Теорема 10. Определители любой квадратной матрицы A и транспонированной c ней матрицы A^t совпадают: $\det A^t = \det A$.

Доказательство. Положив $A=(a_{ij}),\ ^tA=(a_{ij}^{'}),\$ где $a_{ij}^{'}=a_{ij},\$ и заметив, что $k=\pi(\pi^{-1}(k))$ для любой перестановки $\pi\in S_n$ и для любого номера $k\in\{1,2,\ldots,n\},$ мы видим, что упорядочение множителей произведения $a_{1\pi(1)}^{'}\ldots a_{n\pi(n)}^{'}$ в соответствии с перестановкой π^{-1} даёт

$$a'_{1\pi(1)} \dots a'_{n\pi(n)} = a'_{\pi^{-1}(1)\pi(\pi^{-1}(1))} \dots a'_{\pi^{-1}(n)\pi(\pi^{-1}(n))} =$$

$$=a'_{\pi^{-1}(1)1}\dots a'_{\pi^{-1}(n)n}=a_{1\pi^{-1}(1)}\dots a_{n\pi^{-1}(n)}.$$

Так как $sgn(\pi) = sgn(\pi^{-1}) (sgn(\pi)sgn(\pi^{-1}) = sgn(\pi\pi^{-1}) = sgn(e) = 1)$ и $\{\pi^{-1} | \pi \in S_n\} = S_n$, по формуле (7.1) имеем

$$\det^{t} A = \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a'_{1\pi(1)} \dots a'_{n\pi(n)} =$$

$$= \sum_{\pi \in S_{n}} \operatorname{sgn}(\pi^{-1}) a'_{1\pi^{-1}(1)} \dots a'_{n\pi^{-1}(n)} = \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{n\sigma(n)} = \det A.$$

Теорема 11. Функция $\det : A \mapsto \det A$ на множестве $M_n(\mathbb{R})$ обладает следующими свойствами.

- $l. \det A \kappa$ ососимметрическая функция строк матрицы A (m.e. npu nepecmahobke местами любых двух строк определитель меняет знак на <math>npomubonoложный).
- $2. \det A nолилинейная функция строк матрицы <math>A$ (т.е. определитель матрицы A является линейной функцией элементов любой её строки A^i .
 - 3. $\det E = 1$.

Доказательство. 1. Пусть A' — матрица, получающаяся из A перестановкой строк A^s и A^t , т.е. $A'^s = A^t$, $A'^t = A^s$, $A'^i = A^i$ при $i \neq s,t$. Тогда, записав любую перестановку $\pi \in S_n$ в виде $\pi = \sigma \tau$ с транспозицией $\tau = (s,t)$, будем иметь

$$\det A' = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) a'_{1\pi(1)} \dots a'_{n\pi(n)} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma \tau) a'_{1\sigma\tau(1)} \dots a'_{s\sigma\tau(s)} \dots a'_{t\sigma\tau(t)} \dots a'_{n\sigma\tau(n)} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma \tau) a'_{1\sigma(1)} \dots a'_{s\sigma t} \dots a'_{t\sigma s} \dots a'_{n\sigma(n)} =$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma \tau) a_{1\sigma(1)} \dots a_{t\sigma t} \dots a_{s\sigma s} \dots a_{n\sigma(n)} =$$

$$= -\sum_{\sigma \in S} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \dots a_{t\sigma t} \dots a_{s\sigma s} \dots a_{n\sigma(n)} = -\det A.$$

2. Пусть $A = (a_{ij})$, и пусть $A^k = \lambda' A'^k + \lambda'' A''^k$, где штрихи указывают на вспомогательные матрицы

$$A' = [A^1, \dots, A^{k-1}, A^{k'}, A^{k+1}, \dots, A^n],$$

$$A'' = [A^1, \dots, A^{k-1}, A^{k''}, A^{k+1}, \dots, A^n].$$

По условию $a_{kj} = \lambda' a'_{kj} + \lambda'' a''_{kj}, \ j = 1, 2, \dots, n$. По определению $\det[A^1, \dots, A^k, \dots, A^n] = \det A = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \dots a_{n,\sigma(n)} = \sum_{\sigma \in S_n} p_\sigma a_{k,\sigma(k)},$ где $p_\sigma \sigma \in S_n$, — коэффициенты, не зависящие от эле-

ментов строки A^k . Собирая подобные члены, отвечающие тем $\sigma \in S_n$, для которых $\sigma(k)=j$, и полагая $\alpha_j=\sum_{\sigma(k)=j}p_\sigma$, получим нужное свой-

ство линейности:

$$\det[\dots, A^k, \dots] = \sum_{j=1}^n \alpha_j a_{kj},$$

$$\det[\dots, A^{'k} + \lambda'' A^{''k}, \dots] = \sum_{j=1}^n \alpha_j (\lambda' a_{kj}' + \lambda'' a_{kj}'') =$$

$$= \lambda' \sum_{j=1}^n \alpha_j a_{kj}' + \lambda'' \sum_{j=1}^n \alpha_j a_{kj}'' = \lambda' \det(A') + \lambda'' \det(A'').$$

3. Очевидно,
$$\det E = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \delta_{1\sigma(1)} \dots \delta_{n\sigma(n)} = \operatorname{sgn}(e) \delta_{11} \dots \delta_{nn}$$
.

Некоторые дополнительные свойства есть следствия уже известных.

Следствие 2. 4. Пусть $A \in M_n(\mathbb{R})$, $\lambda \in \mathbb{R}$. Тогда

$$\det(\lambda A) = \lambda^n \det(A)$$

- 5. Определитель с нулевой строкой равен нулю.
- 6. Если в квадратной матрице A две строки совпадают, то её определитель равен нулю.
- 7. Определитель не меняется, если над его строками совершать элементарные преобразования следующего типа: $A'^i = A^i$ для всех $i \neq s$ и $A'^s = A^s + \lambda A^t$, $s \neq t$, $\lambda \in \mathbb{R}$.

Доказательно. 4. Действительно, в силу свойства 2, применённого последовательно к строкам с номерами 1, 2, ..., n, имеем $\det(\lambda A) = \det[\lambda A^1, ..., \lambda A^n] = \lambda \det[A^1, \lambda A^2, ..., \lambda A^n] = ... = \lambda^n \det(A)$.

- 5. Пусть, например, $A^k = (0, \dots, 0$. Тогда и $2A^k = (0, \dots, 0)$. Следовательно, по 2. $\det(A) = 2 \det(A)$, то есть $\det(A) = 0$.
- 6. Поменяв местами две совпадающие строки A^i , A^j в A, мы получим ту же матрицу A. С другой стороны, согласно свойству 1 для det значение $\det(A)$ примет противоположный знак. Таким образом, $\det(A) = -\det(A)$, откуда $2\det(A) = 0$ и $\det(A) = 0$.

7. Достаточно рассмотреть случай применения одного элементарного преобразования. Пусть после прибавления к s-й строке матрицы A её t-й строки, умноженной на λ , получилась матрица A'. Тогда в соответствии со свойствами 1 и 6 для det имеем

$$\det(A') = \det[A^1, \dots, A^s + \lambda A^t, \dots, A^n] =$$

$$= \det[A^1, \dots, A^s, \dots, A^n] + \det[A^1, \dots, \lambda A^t, \dots, A^n] = \det(A) + 0 = \det(A).$$

7.2 Разложение определителя по элементам столбца или строки

Существует регулярный способ вычисления определителей, основанный на редукции к определителям меньшего порядка. При этом используются понятия минора и алгебраического дополнения.

Определение 26. Определитель матрицы, получающейся из $A = (a_{st})$ вычёркиванием i-й строки и j-го столбца, обозначается M_{ij} и называется минором матрицы A, соответствующим элементу a_{ij} . Величина $A_{ij} = (-1)^{i+j} M_{ij}$ называется алгебраическим дополнением элемента a_{ij} .

Предложение 10. Ecnu

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

 $mo \det(A) = a_{11}M_{11} = a_{11}A_{11}.$

Доказательство. По теореме 10 $\det A = \det^t A$ и $a_{\pi(1),1} = 0$ для любой перестановки $\pi \in S_n$, для которой $\pi(!) \neq 1$, имеем

$$\det(A) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) a_{\pi(1),1} \dots a_{\pi(n),n} = \sum_{\pi \in S_n, \pi(1) = 1} \operatorname{sgn}(\pi) a_{11} a_{\pi(2),2} \dots a_{\pi(n),n}.$$

Совокупность всех перестановок $\pi \in S_n$, оставляющих на месте символ 1, отождествляется с множеством S_{n-i} перестановок, действующих на множестве $\{2,3,\ldots,n\}$. Таким образом,

$$\det(A) = a_{11} \sum_{\pi \in S_{n-1}} \operatorname{sgn}(\pi) a_{\pi(2),2} \dots a_{\pi(n),n} = a_{11} M_{11}$$

Теорема 12. Пусть $A = (a_{ij}) \in M_n(\mathbb{R})$. Справедливы следующие формулы:

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$
 (разложение по элементам j-го столбца);

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij} = \sum_{j=1}^{n} a_{ij} A_{ij}$$
 (разложение по элементам i-й строки).

Иначе говоря, определитель матрицы A равен сумме произведений всех элементов некоторого столбца (некоторой строки) на их алгебраические дополнения.

Доказательство. 1) Опираясь на основные свойства 1 и 2 определителей (сначала относительно столбцов, а затем относительно строк), выпишем цепочку равенств:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1j} & a_{1n} \\ a_{12} & \dots & 0 & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & 0 & a_{1n} \\ a_{12} & \dots & a_{2j} & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & 0 & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & 0 & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & 0 & a_{nn} \end{vmatrix}$$

$$+ \begin{vmatrix} a_{11} & \dots & 0 & a_{1n} \\ a_{12} & \dots & 0 & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{nj} & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} (-1)^{j-1} \begin{vmatrix} 0 & a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{ij} & a_{i1} & \dots & a_{i,j-1} & a_{i,j+1} & \dots & a_{i,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots \\$$

$$= \sum_{i=1}^{n} (-1)^{j-1+i-1} \begin{vmatrix} a_{ij} & a_{i1} & \dots & a_{i,j-1} & a_{i,j+1} & \dots & a_{i,n} \\ 0 & a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ 0 & a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{vmatrix} =$$

$$= \sum_{i=1}^{n} (-1)^{j+i} a_{ij} M_{ij}$$

Последнее равенство основано на Предложении 10.

2) Вторая формула получается из первой с использованием Теоремы 10. $\hfill\Box$

Жорданова нормальная форма матрицы

8.1 Проекторы

Пусть $V = W_1 \oplus W_2 \oplus \ldots \oplus W_m$ — разложение пространства V в прямую сумму m подпространств. Тогда каждый вектор $x \in V$ однозначно записывается в виде $x = x_i + x_2 + \ldots + x_m, x_i \in W_i$, а отображение $P_i : x \to x_i$ является линейным оператором на V. Кроме того,

$$P_1 + \ldots + P_m = Id$$
,

причём $P_i P_j = 0$ при $i \neq j$ и $P_i^2 = P_i$. Наконец, $W_i = P_i V = \{x \in V | P_i x = x\}$, $K_i = \operatorname{Ker} P_i = W_1 + \ldots + \hat{W}_i + \ldots + W_m$ и P_i суть оператор проектирования V на W_i вдоль K_i .

Теорема 13. Пусть $P_1, \ldots, P_m : V \to V$ — конечное множество линейных операторов, удовлетворяющих условиям

$$\sum_{i=1}^{m} P_i = Id; P_i^2 = P_i, 1 \le i \le m; P_i P_j = 0, i \ne j.$$
(8.1)

Тогда $V = W_1 \oplus W_2 \oplus \ldots \oplus W_m$, где $W_i = \operatorname{Im} P_i$.

Доказательство. По условию для любого $x \in V$ имеем $x = \mathrm{Id} x = \sum_{i=1}^m P_i x = x_i + \ldots + x_m, \, x_i \in W_i$. Поэтому $V = W_1 + \ldots + W_m$.

Эта сумма является прямой. Именно, предположим, что $x \in W_j \cap \sum_{i=1, i \neq j}^m W_i$.

Так как $W_i = \text{Im} P_i$, то найдутся такие векторы x_1, \ldots, x_m , что

$$x = P_j(x_j) = \sum_{i=1, i \neq j}^{m} P_i(x_i).$$

Применяя к этому равенству оператор P_j и используя определяющие свойства $P_j^2=P_j,\ P_jP_i=0$ при $i\neq j,$ получим $x=P_j(x_j)=P_j^2(x_j)=\sum_{i=1,i\neq j}^m P_jP_i(x_j)=0.$ Таким образом, сумма $V=\sum_{i=1}^m W_i$ прямая и P_i оператор проектирования V на W_i вдоль $K_i=\mathrm{Ker}P_i=\sum_{i=1,i\neq j}^m W_j.$

Добавим, что если $P^2=P$ и $V=U\oplus W$ — связанное с этим проектором прямое разложение с $U={\rm Im}P=\langle e_1,\ldots,e_r\rangle,\ W={\rm Ker}P=\langle e_{r+i},\ldots,e_n\rangle,$ то в выбранном базисе оператору P отвечает матрица

$$\begin{pmatrix} Id_r & 0\\ 0 & 0 \end{pmatrix}, r = \operatorname{rank}P \tag{8.2}$$

В частности, мы видим, что любая $n \times n$ -матрица A ранга r, обладающая свойством $A^2 = A$, подобна матрице $P \colon B^{-1}aB = P$ и $\operatorname{rank} A = \operatorname{tr} A$.

8.2 Инвариантные подпространства

Всякий линейный оператор $A:V\to V$ действует не только на отдельные векторы $x\in V$, но и на подпространства $U\subset V$: $AU=\{Ax|x\in U\}$. В связи с этим важное значение приобретает понятие инвариантности.

Определение 27. Подпространство $U \subset V$ инвариантно относительно линейного оператора $A: V \to V$, если $AU \subset U$.

Наличие собственного инвариантного подпространства $U\subset V$ даёт возможность упростить матрицу A оператора L_A путём выбора надлежащего базиса в V. Именно, если дополнить базис (e_1,\ldots,e_r) в U до базиса $(e_1,\ldots,e_r,e_{r+1},\ldots,e_n)$ в Y, то из условия $Ae_i\in U$, $1\leq i\leq r$, следует, что в этом базисе матрицей оператора L_A будет

$$A = \left(\begin{array}{cc} A_1 & A_0 \\ 0 & A_2 \end{array}\right),$$

где $A_1 - r \times r$ -матрица, $A_2 - (n-r)x(n-r)$ -матрица и $A_0 - r \times (n-r)$ -матрица. На A_1 можно смотреть как на матрицу линейного оператора L_{A_U} — оператора L_A , ограниченного на U (удобно положить $A_1 = A_U$). Пусть A_0 — нулевая матрица. Тогда, очевидно, $W = (e_{r+1}, \ldots, e_n)$ тоже будет инвариантным подпространством в V, а A_2 — матрицей оператора L_{A_W} В этом случае говорят о прямой сумме операторов, соответствующей разложению $V = U \oplus W$ в прямую сумму инвариантных

37

подпространств. Матрица прямой суммы операторов имеет клеточнодиагональный вид:

$$A = \begin{pmatrix} A_U & 0\\ 0 & A_W \end{pmatrix} \tag{8.3}$$

Таким образом, доказана

Теорема 14. Пространство V является прямой суммой двух подпространств U, W, инвариантных относительно линейного оператора $A: V \to V$, тогда и только тогда, когда матрица этого оператора в какомлибо базисе принимает клеточно-диагональный вид (8.3)

Задача 14. 1. Найти собственные векторы и собственные значения:

- а) оператора дифференцирования в пространстве $\mathbb{R}[X]_n$;
- б) оператора $X \to X^{tr}$ в пространстве $Mat_n(\mathbb{R})$;
- в) оператора $x \frac{d}{dx}$ в пространстве $\mathbb{R}[X]_n$;
- г) оператора $\frac{1}{x} \int\limits_0^x f(t)dt$ в пространстве $\mathbb{R}[X]_n$;

8.3 Собственные векторы

Определение 28. Любой ненулевой вектор из одномерного подпространства, инвариантного относительно A, называется собственным вектором оператора A. Если x — собственный вектор: $Ax = \lambda x$, то скаляр $\lambda \in \mathbb{R}$ называется собственным значением оператора A, отвечающим собственному вектору x. Иногда говорят также: характеристический вектор, характеристическое значение.

Заметим, что $Ax = \lambda x \Rightarrow A^k x = \lambda^k x$, откуда $f(Ax) = f(\lambda)x$ каков бы ни был многочлен f. В частности, $f(A) = 0 \Rightarrow f(\lambda) = 0$ для всякого собственного значения λ оператора A. Пусть $V^{\lambda} = \{v \in V | Av = \lambda v\}$ — подпространство, состоящее из 0 и всех собственных векторов, ассоциированных с собственным значением λ .

Определение 29. Очевидная импликация $Ax = \lambda x$, $Ay = \lambda y \Rightarrow \forall \alpha, \beta \in \mathbb{R}$ $A(\alpha x + \beta y) = \lambda(\alpha x + \beta y)$ даёт основание называть V^{λ} собственным подпространством оператора A, ассоциированным с λ . Его размерность $\dim V^{\lambda}$ называется геометрической кратностью собственного значения λ

Условие существования собственного вектора записывается, очевидно, в виде

$$(A - \lambda Id)x = 0, x \neq 0, \tag{8.4}$$

T.e. $Ker(A - \lambda Id) \neq 0$.

Это значит, что оператор $A - \lambda Id$ вырожден:

$$\det(A - \lambda Id) = 0. \tag{8.5}$$

Если в каком-нибудь базисе (e_i) пространства V матрицей оператора L_A является $A = (a_{ij})$, то матрицей оператора $L_{A-\lambda Id}$ будет $A - \lambda Id$, так что условие (8.5) переписывается в виде

$$\det(A - \lambda Id) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0$$

Расписав определитель, получим многочлен

$$\chi_A(t) = \det(tId - A) = t^n + \chi_1 t^{n-1} + \dots + \chi_{n-1} t + \chi_n$$
 (8.6)

степени n относительно независимой переменной t с коэффициентами $\chi_i \in \mathbb{R}$.

Определение 30. Многочлен (8.6) называется характеристическим многочленом матрицы A. Уравнение $\chi_A(t) = 0$ называется также характеристическим.

Теорема 15. *Характеристические многочлены подобных матриц сов- падают.*

Доказательство. Пусть
$$A' = C^{-1}AC$$
. Тогда $\det(tId-A') = \det(tC^{-1}IdC-C^{-1}AC) = (C^{-1}(tId-A)C) = \det C^{-1}\det(tId-A)\det C = \det(tId-A)$. \square

Итак, полагаем $\chi_{L_A}(t) := \chi_A(t)$.

Определяющее равенство (8.6) показывает, что скаляр $\lambda \in F$ является собственным значением оператора L_A тогда и только тогда, когда $\chi_A(\lambda) = 0$, т.е. λ — корень характеристического многочлена. Если многочлен $\chi_A(t)$ не имеет корней в F, то у оператора L_A нет собственных векторов. Всякий линейный оператор, действующий на комплексном векторном пространстве, обладает собственными векторами.

Определение 31. Кратность λ как корня характеристического многочлена $\chi_A(t)$ называется алгебраической кратностью собственного значения λ оператора L_A .

Теорема 16. Геометрическая кратность собственного значения λ не превосходит его алгебраической кратности.

Доказательство. По определению геометрическая кратность есть размерность m пространства V^{λ} решений уравнения $L_A x = \lambda x$. Очевидно, что V^{λ} инвариантно относительно L_A , и если L'_A — ограничение L_A на V^{λ} , то $\det(tId'-A1)=(t-\lambda)^m$, причём $\chi_{L_A}(t)=(t-\lambda)^mq(t)$, где q(t) — некоторый многочлен из F[t]. Пусть λ — корень кратности $k\geq 0$ многочлена q(t). В таком случае алгебраической кратностью λ будет m+k. \square

Задача 15. 1. Доказать, что если оператор A^2 имеет собственное значение λ^2 , то одно из чисел λ и $-\lambda$ является собственным значением оператора A.

- 3. Доказать, что все характеристические числа матрицы отличны от нуля тогда и только тогда, когда матрица невырожденная.
- 4. Найти собственные значения и собственные векторы линейных операторов, заданных в некотором базисе матрицами:

$$\left(\begin{array}{ccc}
2 & -1 & 2 \\
5 & -3 & 3 \\
-1 & 0 & -2
\end{array}\right)$$

$$\left(\begin{array}{ccc}
4 & -5 & 2 \\
5 & -7 & 3 \\
6 & -9 & 4
\end{array}\right)$$

8.4 Критерии диагонализируемости

Корни характеристического многочлена χ_{L_A} (говорят также: характеристические корни) составляют множество, несущее важную информацию о линейном операторе L_A . По понятным причинам, однако, не все характеристические корни равноправны.

Определение 32. Множесство всех собственных значений линейного оператора Π называют спектром этого оператора и обозначают символом $\operatorname{Spec} L_A$ (собственные значения считаются с их геометрическими кратностями). Аналогично говорят о спектре $\operatorname{Spec} A$ матрицы A. Точка спектра называется простой, если ей отвечает алгебраическая кратность!. Если все точки спектра простые, то и спектр называется простым.

В случае алгебраически замкнутого поля, например, $F = \mathbb{C}$, характеристические корни совпадают с точками спектра, но в общем случае спектр может быть пуст, как, например, для оператора поворота на вещественной плоскости.

Лемма 2. Собственные векторы, принадлежащие к различным собственным значениям, линейно независимы. Сумма $\sum_{\lambda \in \operatorname{Spec} L_A} V^{\lambda}$ прямая (вообще говоря, $\sum_{\lambda \in \operatorname{Spec} L_A} V^{\lambda}$ не совпадает с V).

Доказательство. Пусть $\lambda_1,\dots,\lambda_m$ — какие-то различные собственные значения, $V^{\lambda_1},\dots,V^{\lambda_m}$ — соответствующие собственные подпространства. Выберем в каждом V^{λ_i} по одному собственному вектору e_i . Нужно доказать их линейную независимость. Для m=1 утверждение верно. Рассуждая по индукции относительно m и предполагая существование нетривиальной линейной зависимости $a_1e_1+a_2e_2+\dots+a_me_m=0$, где, скажем, $a_1\neq 0$, мы применим к обеим частям этого равенства оператор L_A . Так как $L_ae_i=\lambda_ie_i$, то $a_1\lambda_1e_1+a_2\lambda_2e_2+\dots+a_m\lambda_me_m=0$. Умножая первое соотношение на λ_m и вычитая из него второе, приходим к линейной зависимости первых m-1 векторов: $a_1(\lambda_m-\lambda_1)e_1+a_2(\lambda_m-\lambda_2)e_2+\dots+a_{m-1}(\lambda_m-\lambda_{m-1})e_{m-1}=0$. По предположению индукции $a_i(\lambda_m-\lambda_i)=0$, $i=l,\dots,m-1$. Но $a_1\neq 0$, $\lambda_i\neq \lambda_m$, $i< m\Rightarrow a_i(\lambda_m-\lambda_i)\neq 0$. Полученное противоречие доказывает наше утверждение.

По определению любой отличный от нуля вектор $e_i \in V^{\lambda_i}$ является собственным. Поэтому по доказанному $V^{\lambda_i} \bigcap \sum_{i \neq j} V^{\lambda_j} = 0$. Это и значит, что сумма $\sum_i V^{\lambda_i}$ прямая.

Определение 33. Линейный оператор L_A на n-мерном пространстве V называется диагонализируемым, если существует базис (e_i) , относительно которого матрица оператора принимает диагональный вид

$$A = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \lambda_n \end{array}\right).$$

Теорема 17. Линейный оператор L_A с простым спектром диагонализируем.

Доказательство. Формулировка теоремы предполагает, что многочлен $\chi_A(t)$ имеет в основном поле F $n=\dim V$ различных корней $\lambda_i,\ldots,\lambda_n$, которым отвечают собственные векторы $e_i,\ i=1,\ldots,n$. По лемме 2 эти

41

векторы линейно независимы. Значит, $V = \langle e_1, \dots, e_n \rangle$, и так как $L_A e_i = \lambda_i e_i$, то $L_A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Простота спектра оператора является всего лишь достаточным условием его диагонализируемости. Например, идемпотентный оператор диагонализируем, хотя его спектр при $n \geq 2$ не будет простым.

Теорема 18. Пусть L_A — линейный оператор на конечномерном векторном пространстве V над полем F. Для диагонализируемости L_A необходимо и достаточно выполнения следующих двух условий:

- 1) все корни характеристического многочлена χ_A лежат в F;
- 2) геометрическая кратность каждого собственного значения L_A совпадает с его алгебраической кратностью.

Доказательство. Пусть выполнены условия 1), 2). Если $\lambda_1, \ldots, \lambda_m$ — различные корни многочлена χ_A , а f_i, \ldots, f_m — их кратности, то

$$\dim V^{\lambda_i} = f_i, f_i + f_2 + \ldots + f_m = n.$$
 (8.7)

По лемме 2 любая совокупность не равных одновременно нулю векторов $v_i \in V^{\lambda_i}, i = 1, \dots, m$, линейно независима, так что

$$V^{\lambda_i} \bigcap (V^{\lambda_1} + \ldots + \hat{V}^{\lambda_i} + \ldots + V^{\lambda_m}) = 0$$
 (8.8)

Значит, сумма $V^{\lambda_1} + \ldots + V^{\lambda_m}$ прямая, а с учётом равенств (8.7) получаем

$$V = V^{\lambda_1} + \ldots + V^{\lambda_m}. (8.9)$$

Взяв за базис в V объединение базисов в V^{λ_i} , мы придём к собственному базису, т.е. к базису, состоящему из n линейно независимых собственных векторов оператора L_A . Его существование эквивалентно диагонализируемости L_A .

Обратно: пусть оператор L_A диагонализируем. Доказать самостоятельно.

Теорема 19. Всякий комплексный (соответственно вещественный) линейный оператор L_A имеет одномерное (соответственно одномерное или двумерное) инвариантное подпространство.

Доказательство. Так как характеристический многочлен χ_A имеет в \mathbb{C} хотя бы один корень, то известный метод нахождения собственных векторов заведомо даст одномерное инвариантное подпространство исходного пространства V. В случае вещественного поля \mathbb{R} рассмотрим минимальный многочлен $\mu_A(t)$ оператора L_A . Его коэффициенты лежат в \mathbb{R} . Если

 $\mu_A(t)$ имеет вещественный корень a, то $\mu_A(t)=(t-a)g(t),\,g(t)\in\mathbb{R}[t].$ Так как $g(L_A)\neq 0$ в силу минимальности $\mu_A(t)$, то $g(L_A)u\neq 0$ для некоторого вектора $u\in V$. Но $(L_A-aId)u=(L_A-aId)g(L_A)u=\mu_A(L_A)u=0$, откуда $L_Au=au$, т.е. u— собственный вектор.

Предположим теперь, что L_A не имеет собственных векторов. Тогда по доказанному у $\mu_A(t)$ нет вещественных корней. Но по теореме о многочленах с вещественными коэффициентами мы имеем право записать $\mu_A(t)=(t^2-at-b)h(t),\ a,b\in\mathbb{R},\ h(t)\in\mathbb{R}[t].$ Снова $v=h(A)u\neq 0$ для некоторого $u\in V$ и $L_A^2v-aL_Av-bv=\mu_A(L_A)v=0$. Получается, что $L_A^2v=aL_Av+bv$, а так как $L_Av\neq \lambda v$ (одномерного инвариантного подпространства нет), то $L=\langle v,L_Av\rangle$ — двумерное инвариантное подпространство.

Задача 16. 1. Выяснить, какие из следующих матриц можно привести к диагональному виду путём перехода к новому базису над полем \mathbb{R} или над полем \mathbb{C} :

a)
$$\begin{pmatrix}
-1 & 3 & -1 \\
-3 & 5 & -1 \\
-3 & 3 & 1
\end{pmatrix}$$
6)
$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}$$

Рассмотрим пространство V^* линейных функций на V. Тогда можно ввести как операцию $(\cdot,\cdot):V^*\times V\to F$, так и

Определение 34. Линейный оператор L_A^* на V^* , заданный соотношением

$$(L_A^*f, x) := (f, L_A x),$$
 (8.10)

называют оператором, сопряжённым к L_A .

Теорема 20. Всякий комплексный линейный оператор L_A на V обладает инвариантной гиперплоскостью.

Доказательство. Пусть dim V=n. Как мы знаем, dim $\mathrm{Ker} f=n-1$ для любой линейной функции $f\neq 0$ на V. Возьмём теперь в качестве f собственный вектор линейного оператора L_A^* на V^* . Он существует по теореме 19, и если λ — отвечающее ему собственное значение, то, как следует из определяющего равенства (8.10), $x\in\mathrm{Ker} f\Rightarrow 0=\lambda(f,x)=(\lambda f,x)=(\lambda f,x)=(f,L_Ax)\Rightarrow L_Ax\in\mathrm{Ker} f$. Это и означает, что $\mathrm{Ker} f$ — искомая гиперплоскость.

8.5 Теорема Гамильтона-Кэли

Теорема 21. Матрицу линейного оператора L_A всегда можно привести (в смысле подобия) к треугольному виду.

Доказательство. Проще всего в этом убедиться рассуждением по индукции. По теореме 20 из пространство V содержит инвариантную относительно L_A гиперплоскость $U:L_AU\subset U$. По предположению индукции в U можно выбрать такой базис (e_i,\ldots,e_{n-i}) , что $L_Ae_i=\lambda_ie_i+v_i,$ $v_i\in\langle e_i,\ldots,e_{n-i}\rangle$. Имеем $V=\langle U,e_n\rangle$, где e_n — произвольный, не содержащийся в U вектор. Пусть $L_Ae_n=\lambda_ne_n+u,\ u\in U$. Таким образом, в базисе (e_i,\ldots,e_{n-i},e_n) действие оператора L_A выражается матрицей требуемого вида

$$A = \begin{pmatrix} \lambda_1 & \dots & \dots \\ 0 & \lambda_2 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 (8.11)

Теорема 22. (Гамильтона—Кэли). Линейный оператор L_A и соответствующая ему матрица A (в любом базисе) аннулируются своим характеристическим многочленом $\chi_A(t)$ т.е. $\chi_A(A) = 0$.

Доказательство. Так как это утверждение не зависит от выбора базиса, то естественно воспользоваться теоремой 21, с самого начала считая матрицу A в базисе (e_1, \ldots, e_n) имеющей треугольный вид (8.11).

Рассмотрим цепочку L_A -инвариантных подпространств $V = V_0 \supset V_1 \supset \cdots \supset V_{n-1} \supset V_n = 0$, где $V_k = \langle e_i, \dots, e_{n-k-i}, e_{n-k} \rangle$. Так как $(L_A - \lambda_{n-k}Id)e_{n-k} \in V_{k+i}$, то $(L_A - \lambda_{n-k}Id)V_k \subset V_{k+1}$, и, стало быть, $\chi_A(A) = \prod_{i=1}^n (L_A - \lambda_i Id)V = (L_A - \lambda_1 Id)\cdots (L_A - \lambda_n Id)V_0 \subset (L_A - \lambda_1 Id)\cdots (L_A - \lambda_{n-1}Id)V_1 \subset \ldots \subset (L_A - \lambda_1 Id)V_{n-1} = 0$. Но $\chi_A(A)V = 0 \Leftrightarrow \chi_A(A) = 0$.

Следствие 3. Минимальный многочлен μ_A линейного оператора является делителем характеристического многочлена $\chi_A(t)$, делящимся на все линейные множители $t - \lambda$, $\lambda \in \operatorname{Spec}(L_A)$.

Доказательство — упражнение.

8.6 ЖНФ

Определение 35. 1) Назовём (верхней) клеткой Жордана размера $m \times m$ (или порядка m), соответствующей собственному значению λ , матрицу

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & \dots & 0 \\ 0 & \lambda & 1 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

2) Жордановой матрицей называется матрица, состоящая из диагональных блоков $J_{m_i}(\lambda_i)$ и нулей вне этих блоков:

$$J = \begin{pmatrix} J_{m_1}(\lambda_1) & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & J_{m_s}(\lambda_s) \end{pmatrix}$$
(8.12)

- 3) Жордановым базисом для линейного оператора $L_A: V \to V$ называется такой базис пространства V, в котором матрица оператора L_A является жордановой, или, как говорят, имеет жорданову нормальную форму (ЖНФ) $J(L_A)$.
- 4) Приведением квадратной матрицы A к жордановой нормальной форме называется решение уравнения в матрицах вида $X^{-1}AX = J(A)$, где X (неизвестная) невырожденная матрица, а J(A) (неизвестная) жорданова матрица.

8.7 Корневые подпространства

Определение 36. Множесство векторов $V(\lambda) = \{v \in V | \exists k \in \mathbb{N}, (L_A - \lambda Id)^k v = 0\}$ называется корневым подпространством, соответствующим собственному значению $\lambda \in \operatorname{Spec} A$.

Теорема 23. Пусть $L_A: V \to V$ — линейный оператор с характеристическим многочленом $\chi_A(t) = \prod_{i=1}^p (t-\lambda_i)^{n_i}, \ \lambda_i \neq \lambda_j$ при $i \neq j$. Тогда $V = V(\lambda_i) \oplus \ldots \oplus V(\lambda_p)$ — прямая сумма корневых подпространств $V(\lambda_i),$ каждое из которых инвариантно относительно L_A и имеет размерность $\dim V(\lambda_i) = n_i$. Оператор $L_a - \lambda_i Id$, нильпотентный на $V(\lambda_i),$ действует невырожденным образом на подпространстве $V_i = V(\lambda_i) \oplus \ldots \oplus V(\lambda_{i-1}) \oplus V(\lambda_{i+1}) \oplus \ldots V(\lambda_p)$. Наконец, λ_i — единственное собственное значение оператора $L_A|_{V(\lambda_i)}$.

Доказательство. Ни один из простых множителей $t-\lambda_k$ не может быть делителем одновременно всех многочленов $\chi_i(t) = \prod_{j \neq i} (t-\lambda_j)^{n_j}, i=1,\ldots,p$

и поэтому $GCD(\chi_1(t,\ldots,\chi_p(t))=1)$. Следовательно, найдутся многочлены $f_1(t),\ldots,f_p(t)\in\mathbb{C}[t]$, для которых

$$\sum_{i=1}^{p} \chi_i(t) f_i(t) = 1 \tag{8.13}$$

Подпространства $W_i = \chi_i(L_A)f_i(L_A)V = \{\chi_i(L_A)f_i(L_A)v|v \in V\}, 1 \le i \le p$, инвариантны относительно L_A . Кроме того, $(A - \lambda_i Id)^{n_i}W_i = \chi_i(L_A)f_i(L_A)V = 0$ (поскольку по теореме $22 \chi_i(L_A) = 0$), так что

$$W_i \subset V(\lambda_i). \tag{8.14}$$

Соотношение (8.13), переписанное в виде $Id = \sum_{i=1}^{p} \chi_i(A) f_i(A)$ даёт нам

разложение $V = \sum_{i=1}^p W_i$ и тем более (ввиду включения (8.14)) $V = \sum_{i=1}^p V(\lambda_i)$.

Предположим, что $v \in V(\lambda_i) \cap V_i$, где, как и в формулировке теоремы, $V_i = \sum_{i \neq j} V(\lambda_j)$. Тогда $(L_A - \lambda_i Id)^n v = 0$, а так как $v = \sum_{i \neq j} v_j$ и $(L_A - \lambda_j Id)^n v_j = 0$, то и $(\prod_{j \neq i} (L_A - \lambda_j Id)^n) v = 0$. Но из взаимной простоты многочленов $(t - \lambda_i)^n$, $c(t) = \prod_{j \neq i} (t - \lambda_j)^n$ следует существование a(t), b(t), для которых $a(t)(t - \lambda_i)^n + b(t)c(t) = 1$. Получаем $v = a(L_A)(L_A - \lambda_i Id)^n v + b(L_A)(\prod_{j \neq i} (L_A - \lambda_j Id)^n) v = 0$, т.е. пространства $V(\lambda_i)$ и V_i не пересекаются. Значит, мы имеем разложение

$$V = V(\lambda_1) \oplus \ldots \oplus V(\lambda_p) \tag{8.15}$$

в прямую сумму L_A -инвариантных подпространств.

Из включения (8.14) и из разложения (8.15) непосредственно вытекает, что $W_i = V(\lambda_i)$. Таким образом, для $V(\lambda_i)$ получено выражение $V(\lambda_i) = \chi_i(L_A) f_i(L_A) V$, где $\chi_i(L_A)$, $f_i(L_A)$ — многочлены из тождества (8.13). В частности, $(L_A - \lambda_i Id)^n V(\lambda_i) = 0$.

Минимальным многочленом для L_A на $V(\lambda_i)$ будет некоторый делитель многочлена $(t-\lambda_i)^{n_i}$. Отсюда следует, во-первых, что λ_i — единственное собственное значение оператора $L_A|_{V(\lambda_i)}$. Далее, в базисе, являющемся объединением базисов пространств $V(\lambda_i)$, оператор L_A имеет матрицу

$$A = \left(\begin{array}{ccc} A_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & A_p \end{array}\right),$$

где A_i — матрица порядка $m_i = \dim V(\lambda_i)$ с единственным собственным значением λ_i и характеристическим многочленом $\chi_{A_i}(t) = (t - \lambda_i)^{m_i}$, $m_i \leq n_i$. Так как $\chi_a(t) = \prod_{i=1}^p \chi_{A_i}(t)$, то $n = n_i + \dots + n_p$ и $m_i = n_i$.

Осталось доказать невырожденность ограничения $(L_A - \lambda_i Id)|_{V_i}$. Но в противном случае $(\operatorname{Ker}(L_A - \lambda_i Id) \cap V_i \neq 0$ и $L_a v - \lambda_i v = 0$ для некоторого $0 \neq v \in V_i$. Однако на V_i характеристическим многочленом для L_a является $\chi_i(t) = \prod_{j \neq i} (t - \lambda_j)^{n_j}$, и λ_i собственным значением быть не может.

8.8 ЖНФ нильпотентного оператора

Определение 37. Линейная оболочка $F(L_A)v = \langle v, L_A v, L_A^2 v, \dots, L_A^{n'-1} v \rangle$ называется циклическим подпространством, ассоциированным с оператором L_A индекса нильпотентности n и вектором v. Предполагается, что $n' \leq n$ — наименьшее натуральное число, для которого $L_A^{n'}v = 0$.

Теорема 24. Жорданова нормальная форма J(A) нильпотентной матрицы A существует (основное поле F произвольно

Доказательство. Из определения 37 видно, что всякому циклическому подпространству отвечает клетка Жордана. Нам нужно показать, что векторное пространство V, на котором действует нильпотентный оператор L_A с матрицей A, разлагается в прямую сумму надлежащим образом выбранных циклических подпространств.

По теореме 21 матрица A приводится к верхнему треугольному виду с нулями по диагонали. Это значит, что линейная оболочка U первых n-1 базисных векторов инвариантна относительно L_A . По определению $L_AV \subset U$, а по предположению индукции в U можно выбрать жорданов базис для A, или, что то же самое,

$$U = F[L_A]e_1 \oplus \ldots \oplus F[L_A]e_s,$$

$$F[L_A]e_i = \langle e_i, L_A e_i, L_A^2 e_i, \ldots, L_A^{m_i - 1} e_i \rangle, L_A^{m_i} e_i = 0$$
(8.16)

Без ограничения общности считаем

$$m_1 \ge m_2 \ge \ldots \ge m_s \tag{8.17}$$

Далее, $V = \langle v, U \rangle$, $L_A v \in U$ для любого вектора v, не содержащегося в U, так что $L_A v = \sum_i \alpha_i e_i + L_A u$, $u \in U$. Заменяя v на v' = v - u, будем

иметь
$$V = \langle v', U \rangle$$
, $L_A v' = \sum_{i=1}^s \alpha_i e_i$.

Если $\alpha_i = 0, 1 \leq i \leq s$, то к клеткам Жордана $J_{m_i}(0), \ldots, J_{m_s}(0)$ добавится $J_1(0)$, отвечающая циклическому подпространству $\langle v' \rangle$, то есть $A \sim J(A) = \mathrm{diag}(J_{m_i}(0), \ldots, J_{m_s}(0), J_1(0))$. Остаётся рассмотреть случай, когда $\alpha_1 = \ldots \alpha_{r-1} = 0$, $L_A v' = \sum_{i=r}^s \alpha_i e_i$, $\alpha_r \neq 0$ для некоторого индекса $r \geq 1$. Удобно положить $e_i' = e_i$, $i \neq r$, $e_r' = \frac{1}{\alpha_r} v'$, $\beta_i = \frac{\alpha_i}{\alpha_r}$.

Тогда $L_A e_r^{'} = e_r + \sum_{i=r+1}^s \beta_i e_i := f_r$. В соответствии с упорядочением (8.17) $L_A^{m_r} f_r = 0$, а так как сумма (8.16) прямая, то $L_A^{m_r-1} f_r \neq 0$, какие бы ни были коэффициенты β_i . Кроме того, простое рассуждение показывает, что сумма $\sum i \neq r f[L_A] e_i^{'} + F[L_A] f_r$ также является прямой и совпадает с U.

Но теперь циклическое подпространство $F[L_A]f_r$ расширяется за счёт вектора $e'_r \not\in U$: $F[L_A]f_r \subset f[L_A]e'_r$, и мы имеем прямую сумму $V = \bigoplus_{i=1}^s f[L_A]e'_i$, отвечающую набору индексов m'_1, \ldots, m'_s , где $m'_i = m_i, i \neq r, m'_r = m_r + 1$. В свою очередь $A \sim \mathrm{diag}(J_{m'_1}(0), \ldots, J_{m'_s}(0))$. (число клеток Жордана сохранилось прежним, но размер одной клетки увеличился на 1). Последовательность (m'_1, \ldots, m'_s) , вообще говоря, не упорядочена, но этого всегда можно добиться путём переобозначения векторов e'_i . Таким образом, существование жорданова базиса для нильпотентного оператора L_A доказано.

8.9 Единственность

Приступая к доказательству единственности, укажем заодно практическое правило для приведения произвольной матрицы A порядка n к жордановой нормальной форме. Для этого нужно уметь находить число $N(m,\lambda)$ жордановых клеток $J_m(A)$ порядка m, отвечающих собственному значению λ матрицы A. Сопоставим обычным образом матрице A оператор L_A , действующий на n-мерном векторном пространстве V, и разложим V в прямую сумму

$$V = V(\lambda) \oplus V' \tag{8.18}$$

где $V(\lambda) = \bigoplus_{j=1}^s \langle e_j, (L_A - \lambda Id) e_j, \dots, (L_A - \lambda Id)^{m_j - 1} e_j \rangle$, $V' = \sum_{\lambda' \neq \lambda} V(\lambda')$. Будем подсчитывать ранг $r_t = \operatorname{rank}(A - \lambda Id)^t$ матрицы $(A - \lambda Id)^t$, или, что то же самое, размерность пространства $(L_A - \lambda Id)^t V$. Эта размерность, конечно, не зависит от выбора базиса в V. Каждое из пространств в раз-

ложении (8.18) инвариантно относительно $(L_A - \lambda Id)^t$, поэтому $\dim(L_A - \lambda Id)^t V = \sum_i \dim(L_A - \lambda Id)^t \mathbb{C}[L_A] e_j + \dim(L_A - \lambda Id)^t V'$.

Пусть для определённости $m_1 \leq m_2 \leq \ldots \leq m_s$. Если $m_j \leq t$, то $(L_A - \lambda Id)^t \mathbb{C}[L_A] e_j = 0$. При $m_j > t$ имеем $(L_A - \lambda Id)^t \mathbb{C}[L_A] e_j = \langle (L_A - \lambda Id)^t e_j, (L_A - \lambda Id)^{t+1} e_j, \ldots, (L_A - \lambda Id)^{m_j-1} e_j \rangle$ так что $\dim(L_A - \lambda Id)^t \mathbb{C}[L_A] e_j = m_j - t$. На V оператор $(L_A - \lambda Id)$ невырожден (теорема 21), поэтому $\dim(L_A - \lambda Id)^t V' = \dim V'$. Получаем $r_t = \sum_{m_j > t} (m_j - t) + \dim V'$, откуда $r_t - r_{t+i} = \sum_{m_j > t} (m_j - t) - \sum_{m_j > t+1} (m_j - t - 1) = \sum_{m_j > t} (m_j - t) - \sum_{m_j > t+1} (m_j - t) + \sum_{m_j > t+1} 1 = \sum_{m_j = t+1} 1 + \sum_{m_j > t+1} 1 = N(t+1,\lambda) + N(t+2,\lambda) + \ldots$ Следовательно, $r_{m-i} - r_m - (r_m - r_{m+i}) = (N(m,\lambda) + N(m+1,\lambda) + \ldots) - (N(m+1,\lambda) + N(m+2,\lambda) + \ldots) = N(m,\lambda)$, и мы получаем окончательную формулу

$$N(m,\lambda) = r_{m-i} - 2r_m + r_{m+i},$$

$$m > 1, \ r_t = \text{rank}(L_A - \lambda Id)^t, \ r_0 = n.$$
(8.19)

Заметим, что r_t — инвариант матрицы A (т.е. число, определяемое классом подобия матрицы A). Значит, формулой (8.19) устанавливается также единственность жордановой формы J(A).

Задача 17. Найти ЖНФ матриц, найти базис пространств, соответствующих собственным значениям

a)
$$\begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ 2 & -2 & 1 \end{pmatrix}.$$
b)
$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 3 \end{pmatrix}.$$
c)
$$\begin{pmatrix} 9 & 22 & -6 \\ -1 & -4 & 1 \\ 8 & 16 & -5 \end{pmatrix}.$$
d)
$$\begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & -6 & -1 & 0 \end{pmatrix}.$$

8.9. Единственность

49

$$\left(\begin{array}{ccccc}
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & 1 \\
1 & 0 & 0 & \dots & 0
\end{array}\right).$$

Глава 9

Квадратичные формы

9.1 Определение

Рассмотрение симметричных билинейных форм приводит к следующему важному понятию, которое естественным образом возникает в разных разделах математики.

Определение 38. Квадратичной формой на конечномерном векторном пространстве V над \mathbb{R} (или любым другим полем) называется функция $q:V\to\mathbb{R}$, обладающая двумя свойствами:

- i) $q(-v) = q(v) \forall v \in V$;
- ii) отображение $F:V imes V o \mathbb{R}$, определённое формулой

$$F(x,y) = \frac{1}{2}(q(x+y) - q(x) - q(y)), F)$$
(9.1)

является билинейной формой на V (очевидно, симметричной). $E\ddot{e}$ ранг называется также рангом q: $\mathrm{rank}q=\mathrm{rank}F$. Говорят ещ \ddot{e} , что симметричная билинейная форма F, определ \ddot{e} нная формулой (9.1), получается из q поляризацией или что F — билинейная форма, полярная κ квадратичной форме q.

Пусть теперь f — произвольная симметричная билинейная форма на V. Положив

$$q_f(x) = f(x, x) \tag{9.2}$$

мы получим функцию $q_f: V \to \mathbb{R}$, удовлетворяющую условиям i), ii) в определении квадратичной формы, поскольку f(-x, -x) = f(x, x) и f(x, y) = 1/2(f(x + y, x + y) - f(x, x) - f(y, y)).

Теорема 25. Каждая квадратичная форма q однозначно восстанавливается по своей полярной форме f; другими словами, $q = q_f$.

Доказательство. Положим в (9.1) y=-x. Тогда q(x)=f(x,x)+1/2q(0). Так как f — билинейная форма, то f(0,0)=0. Поэтому при x=0 имеем q(0)=1/2q(0), т.е. q(0)=0. Значит, q(x)=f(x,x).

Определение 39. Матрицей квадратичной формы $q=q_f$ относительно базиса (e_i,\ldots,e_n) пространства V называется матрица F билинейной формы f, полярной κ q, то есть $F=(f_{ij})$, где $f_{ij}=\frac{1}{2}(q(e_i+e_j)-q(e_i)-q(e_j))$, $i,j=1,2,\ldots,n$.

Любой симметричной матрице $F = (f_{ij})$ в свою очередь отвечает квадратичная форма q, заданная соотношением

$$q(x) = x^t F x = \sum_{i,j=1}^n f_{ij} x_i x_j, x \in V$$
 (9.3)

Таким образом, в соответствии с названием квадратичная форма есть однородная квадратичная функция координат x_1, \ldots, x_n вектора $x = \sum_{i=1}^n x_i e_i$.

Определение 40. Говорят, что квадратичная форма q имеет в базисе (e_1, \ldots, e_n) пространства V канонический или диагональный вид, если для каждого вектора $x \in V$ значение q(x) вычисляется по формуле

$$q(x) = \sum_{i=1}^{n} f_{ii} x_i^2 \tag{9.4}$$

Базис (e_1,\ldots,e_n) при этом называется каноническим базисом для q.

9.2 Существование канонического вида квадратичной формы

Вопрос о возможности выбора базиса, в котором данная форма принимала бы канонический вид, имеет важное теоретическое и прикладное значение.

Теорема 26. Для всякой симметричной билинейной формы f на V существует канонический базис.

Доказательство. По индукции по размерности V. При n=1 утверждение очевидно.

Если f(x,y)=0 для всех $x,y\in V$ (т.е. f=0), то теорема очевидна: любой базис годится. Пусть $f\neq 0$, тогда отлична от нуля и соответствующая квадратичная форма (теорема 25). Пусть e_1 — такой вектор, что $f(e_i,e_i)=q(e_i)\neq 0$. Тогда линейная функция $f_1:x\mapsto f(x,e_i)$ отлична от нуля. Тогда линейное подпространство $L=\mathrm{Ker}\, f_1=\{x\in V|f_1(x)=0\}$ имеет размерность n-1, т.е. является гиперплоскостью. По предположению индукции L обладает базисом (e_2,\ldots,e_n) , в котором матрица формы f, ограниченной на L, диагональна, т.е. $f(e_i,e_j)=0$ при $i\neq j$, $i,j=2,\ldots,n$. Так как по построению $f(e_i,e_1)=0$, $i=2,3,\ldots,n$, то мы получаем свойства $f(e_i,e_j)=0$ при $i\neq j$, характеризующие канонический базис (e_1,\ldots,e_n) , если только система векторов (e_1,\ldots,e_n) линейно независима. Предположив противное, мы в любом соотношении $\alpha_1e_i+\ldots+\alpha_ne_n=0$ имели бы коэффициент $\alpha_1\neq 0$, поскольку (e_1,\ldots,e_n) — базис в L. Но в таком случае $e_i=\sum_{i=2}^n\beta_ie_i$ и $0\neq f_1(e_1)=f_1(\sum_{i=2}^n\beta_ie_i)=\sum_{i=2}^n\beta_if_1(e_i)=0$ — противоречие, доказывающее теорему.

Следствие 4. Пусть на векторном пространстве V размерности n над полем \mathbb{F} задана квадратичная форма q ранга $r \leq n$. Тогда в V существует базис (e_1, \ldots, e_n) , в котором q принимает канонический вид.

Следствие 5. Для любой симметричной матрицы F существует такая невырожденная матрица A, что A^tFA — диагональная матрица того же ранга, что и F. Другими словами, всякая симметричная матрица конгруэнтна диагональной.

9.3 Метод Лагранжа приведения квадратичной формы к каноническому виду

Рассмотрим квадратичную форму $q(x) = \sum_{i,j=1}^n f_{ij} x_i x_j$. Выделим все члены, содержащие координату x_1 .

$$q(x_1, \dots, x_n) = f_1 1x_1^2 + 2f_{12}x_1x_2 + \dots + 2f_{1n}x_1x_n + \sum_{i,j=2}^n f_{ij}x_ix_j.$$

Пусть $f_{11} \neq 0$. Тогда

$$q(x_1, \dots, x_n) = \frac{1}{f_{11}} \left(\sum_{i=1}^n f_{1i} x_i \right)^2 + \sum_{i,j=2}^n f'_{ij} x_i x_j.$$

Положим $x_{1}^{'} = \sum_{i=1}^{n} f_{1i}x_{i}$. Тогда

$$q(x_1^{'},\ldots,x_n)=\frac{1}{f_{11}}x_1^{'2}+q'(x_2,\ldots,x_n).$$

И т.д. Если $f_{11}=0$ рассмотрим замену переменных $x_1^{'}=x_1-x_2,\ x_2^{'}=x_1+x_2.$ В такой системе координат $f_{11}^{'}\neq 0.$

9.4 Нормальный вид квадратичной формы

Определение 41. Говорят, что квадратичная форма q, значения которой вычисляются по формуле

$$q(x) = \sum_{i=1}^{s} x_i^2 - \sum_{i=s+1}^{r} x_i^2$$

имеет нормальный вид.

Следствие 6. Всякая квадратичная форма q на вещественном векторном пространстве V приводится κ нормальному виду.

Кроме ранга r у квадратичной формы q на векторном пространстве V над $\mathbb F$ появилась еще одна числовая характеристика — количество s коэффициентов 1 в её нормальном виде.

Теорема 27. (закон инерции). Пусть q — квадратичная форма на n-мерном векторном пространстве V над \mathbb{F} . Тогда целые числа r и s, $s \leq r \leq n$, входящие в нормальный вид, зависят только от q.

Доказательство. Инвариантность r нам известна, так что нужно лишь убедиться в инвариантности (независимости от выбора канонического базиса) числа s. Предположим, что в каком-то другом базисе (e_1',\ldots,e_n') форма q имеет нормальный вид $q(x)=x_1^{'2}+\ldots+x_t^{'2}-x_{t+1}^{'2}-\ldots-x_r^{'2}$. с t положительными членами. При $t\neq s$ без ограничения общности считаем t< s. Рассмотрим в V подпространства $L=< e_i,\ldots,e_s>L'=< e_{t+1}',\ldots,e_n'$. Так как $\dim(L+L')\leq \dim V=n$, то $\dim(L\cap L')=\dim L+\dim L'-\dim(L+L')\geq s+(n-t)-n=s-t>0$. Следовательно, существует ненулевой вектор $x\in (L\cap L'):0\neq x=x_1e_i+\ldots+x_se_s=x_{t+1}'e_{t+1}'+\ldots+x_n'e_n$. С одной стороны $q(x)=x_1^2+\ldots+x_s^2>0$. В то же время $q(x)=-x_{t+1}^{'2}-\ldots-x_n^{'2}<0$. Полученное противоречие устраняется только в случае s=t.

Ввиду теоремы 27 для числовых инвариантов формы используются специальные термины.

Определение 42. Ранг вещественной квадратичной формы называется также её индексом инерции, число s — положительным индексом инерции, число r — s — отрицательным индексом инерции. Под сигнатурой формы понимают либо пару (s,r-s), либо разность 2s — r между числом положительных и числом отрицательных квадратов.

Определение 43. Невырожденная квадратичная форма $q: V \times V \to \mathbb{F}$ называется положительно (соответственно отрицательно) определённой или просто положительной (отрицательной), когда q(x)>0 (q(x)<0) для любого вектора $x\neq 0$. Форма q называется положительно полуопределённой (или неотрицательной), если $q(x)\geq 0$ для всех $x\in V$. Наконец, форма q неопределённая, если она принимает как положительные, так и отрицательные значения.

Следствие 7. Любая положительно определённая матрица F имеет вид $F=A^{tr}A$, где A— вещественная невырожденная матрица. Верно и обратное: всякая вещественная матрица вида $A^{tr}A$ положительно определена.

Рассмотрим следующие полезные объекты, носящие название главных миноров матрицы F:

$$\Delta_1 = f_{11}, \Delta_2 = \begin{vmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{vmatrix}, \dots, \Delta_i = \begin{vmatrix} f_{11} & \dots & f_{1i} \\ \dots & \dots & \dots \\ f_{i1} & \dots & f_{ii} \end{vmatrix}$$

Пусть $\Delta_0 = 1$.

Теорема 28. (метод Якоби). Пусть $q - \kappa$ вадратичная форма на V с матрицей F, все главные миноры которой отличны от нуля. Тогда существует базис $(e_i^{'}, \ldots, e_n^{'})$ пространства V, в котором q(x) принимает канонический вид

$$q(x) = \frac{\Delta_0}{\Delta_1} x_1^{'2} + \ldots + \frac{\Delta_{n-1}}{\Delta_n} x_n^{'2}.$$

Доказательство. Доказательство по индукции по n. Пусть (e_i,\ldots,e_n) — первоначальный базис пространства V. Рассмотрим (n-1)-мерное подпространство $L=<e_i,\ldots,e_{n-1}>$. Пусть $q|_L$ — ограничение q на L. Матрица F формы q получается из F вычёркиванием последней строки и последнего столбца, поэтому её главными минорами будут $\Delta_1'=\Delta_1$,

..., $\Delta'_{n-1} = \Delta_{n-1}$. Все они по условию отличны от нуля. Выберем в L базис, в котором $q(x), x \in L$, принимает вид

$$q|_L(x) = \frac{\Delta_0}{\Delta_1}x_1^{'2} + \ldots + \frac{\Delta_{n-2}}{\Delta_{n-1}}x_{n-1}^{'2}.$$

Тогда $f(e_i^{'},e_j^{'})=0,\ i\neq j$ и $f(e_i^{'},e_i^{'})=\frac{\Delta_{i-1}}{\Delta_i}$. Рассмотрим систему из n-1 линейного уравнения:

$$f(x, e'_i) = 0, \dots, f(x, e'_{n-1}) = 0.$$

Эта система имеет решение, обозначим его через e_n' и нормируем так, чтобы матрица перехода A от (e_i,\ldots,e_n) к (e_i',\ldots,e_n') имела определитель $\det A=\frac{1}{\det F}$.

Пусть F' — матрица формы q в базисе $(e_i^{'},\ldots,e_n^{'})$. Тогда $f(e_i^{'},e_j^{'})=0,$ $i\neq j$ и

$$f(e'_{n}, e'_{n}) = \Delta_{n-1} \frac{\Delta_{0}}{\Delta_{1}} \cdots \frac{\Delta_{n-2}}{\Delta_{n-1}} f(e'_{n}, e'_{n}) = \Delta_{n-1} \prod_{i=1}^{n} f(e'_{i}, e'_{i}) =$$

$$= \Delta_{n-1} \det F' = \Delta_{n-1} \det (A^{tr} F A) = \Delta_{n-1} \frac{1}{\Delta_{n}}$$

Задача 18. 1. Найти нормальный вид квадратичных функций:

$$x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$$
$$x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3$$
$$x_1^2 - 3x_3^2 - 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$

Глава 10

Комплексные числа

10.1 Определение множества комплексных чисел

Очевидно, что далеко не каждое линейное уравнение с натуральными коэффициентами имеет целое неотрицательное решение. С введением целых отрицательных чисел область решения таких уравнений была явно расширена. Решение любого уравнения первого порядка с целыми коэффициентами стало возможно лишь с появлением рациональных чисел. Исследование простейшего квадратного уравнения $x^2-2=0$ привело в конечном итоге к появлению полной системы действительных чисел. В настоящее время не все квадратные уравнения с действительными коэффициентами решаются в школьном курсе математики. Если дискриминант уравнения отрицательный, то по школьным учебникам такое уравнение решений не имеет. Самым простым среди квадратных уравнений, не имеющих действительных корней, является уравнение

$$x^2 + 1 = 0 ag{10.1}$$

Поставим перед собой следующую задачу: построить новую систему чисел, которая, во-первых, содержала бы корень уравнения (10.1) и, вовторых, являлась бы алгебраическим расширением системы действительных чисел. Второе условие в этой задаче означает, что новая система чисел должна содержать все действительные числа как подмножество и все числовые операции для новой системы, если они применяются к действительным числам, должны совпадать с известными операциями над действительными числами. Обозначим через $\mathbb R$ множество всех действительных чисел. Буквой $\mathbb K$ обозначим множество всех точек плоскости и будем рассматривать эти точки как элементы новой числовой системы.

Выберем на плоскости декартову систему координат. Будем считать, что по оси абсцисс располагаются действительные числа и при этом начало координат совпадает с числом 0. Каждая точка плоскости теперь однозначно определяется своими координатами, т. е. парой действительных чисел.

Таким образом, $\mathbb{K} = \{(\alpha, \beta) | \alpha, \beta \in \mathbb{R}\}$. Новая числовая система будет полностью построена, когда будут определены все основные операции для ее элементов, и, строго говоря, только после этого элементы \mathbb{K} можно называть числами. Понимая это, до окончательного построения числовой системы формально назовем точки плоскости, а значит, все элементы \mathbb{K} , комплексными числами. Очевидно, что два комплексных числа равны тогда и только тогда, когда равны их соответствующие координаты. Очевидно, что каждое действительное число α как точка плоскости имеет координаты $(\alpha, 0)$. Таким образом, $\mathbb{R} \subset \mathbb{K}$.

Определение 44. Пусть даны два комплексных числа $a=(\alpha,\beta)$, $b=(\gamma,\delta)$. Под суммой a+b будем понимать такое комплексное число c, координаты которого находятся по следующему правилу: $c=(\alpha+\gamma,\beta+\delta)$

Задача 19. $(\mathbb{K},+)$ — коммутативная группа по сложению.

Определение 45. Пусть $a = (\alpha, \beta)$, $b = (\gamma, \delta)$. Под произведением $a \cdot b = ab$ двух комплексных чисел a u b будем понимать такую точку c, координаты которой находятся по следующему правилу: $c = ab = (\alpha\gamma - \beta\delta, \alpha\delta + \beta\gamma)$.

Задача 20. ($\mathbb{K} \setminus \{(0,0)\}, \cdot$) — коммутативная группа по умножению.

Задача 21. $(\mathbb{K}, +, \cdot) - none$.

Теперь осталось выяснить, содержит ли \mathbb{K} корень уравнения (10.1). Обозначим через i комплексное число (0,1). Тогда $i^2=(0,1)(0,1)=(-1,0)$. Выше было условлено не отличать действительное число -1 от комплексного числа (-1,0), поэтому $i^2=-1$. Очевидно, что число i является корнем уравнения (10.1) и поставленная в начале этого параграфа задача решена полностью.

Далее перейдем к другой, более удобной форме записи комплексных чисел. Пусть (α, β) — произвольное комплексное число. Очевидно, $(\alpha, \beta) = (\alpha, 0) + (0, \beta)$. Но $(0, \beta) = (\beta, 0)(0, 1)$. Учитывая, что $(\alpha, 0) = \alpha$, $(\beta, 0) = \beta$ и (0, 1) = i, окончательно получаем

$$(\alpha, \beta) = \alpha + \beta i.$$

Если комплексное число записано в виде $a=\alpha+\beta i$ либо $a=\alpha+i\beta$, то любую из этих форм записи комплексного числа будем называть алгебраической. По сложившейся терминологии число i называется мнимой единицей, α называется действительной, а $i\beta$ — мнимой частями комплексного числа. Плоскость, точки которой использованы для построения множества комплексных чисел, называют комплексной плоскостью) оси абсцисс и ординат в выбранной системе координат называют соответственно действительной и мнимой осями.

10.2 Тригонометрическая форма записи комплексных чисел

Пусть $a=(\alpha,\beta)$ — произвольное комплексное число. Соединим начало координат с точкой $A(\alpha,\beta)$ и длину полученного отрезка обозначим r. Далее угол между положительным направлением оси абсцисс и направлением из начала координат на эту точку обозначим ϕ . Из прямоугольного треугольника OAB имеем $\alpha^2+\beta^2=r^2,\ \alpha=r\cos\phi,\ \beta=r\sin\phi.$ При этом, очевидно, $r=+\sqrt{\alpha^2+\beta^2}$. Подставляя α и β в формулу $a=\alpha+\beta i$, получаем тригонометрическую форму записи комплексного числа $a:a=r(\cos\phi+r\sin\phi)$.

Определение 46. Число r называется модулем, а угол ϕ — аргументом комплексного числа a.

Для модуля и аргумента имеют место следующие обозначения: $r=|a|, \phi=\arg(a)$. Аргумент числа a считается положительным, если угол отсчитывается против часовой стрелки, и отрицательным — в противном случае. При этом любой из углов $\phi+2k\pi$, где $k\in\mathbb{Z}$, также считается аргументом числа a. Аргумент не определен лишь для числа 0=(0,0), но это число вполне определяется равенством |0|=0.

Задача 22. Модуль произведения двух комплекс- комплексных чисел равен произведению модулей сомножителей, а аргумент произведения равен сумме аргументов сомножителей.

Задача 23. Модуль частного двух комплексных чисел равен частному от деления модуля делимого на модуль делителя, а аргумент частного равен разности аргумента делимого и аргумента делителя.

10.3 Сопряженные числа

Определение 47. Пусть дано комплексное число $a = \alpha + i\beta$. Тогда число $a = \alpha - i\beta$ будем называть сопряженным с а и обозначать \bar{a} . Замена знака на противоположный перед мнимой частью комплексного числа называется операцией сопряжения. Таким образом,

$$\overline{a} = \overline{\alpha + i\beta} = \alpha - i\beta$$

По определению, $\overline{a}=a$ и поэтому числа a и \overline{a} сопряжены друг с другом. Очевидно, что если a — действительное число, то $\overline{a}=a$. Следовательно, всегда имеется не более двух сопряженных друг другу чисел.

Теорема 29. Если число а некоторым образом выражено через комплексные числа b_1, b_2, \ldots, b_n при помощи сложения, умножения, вычитания и деления, то, заменяя в этом выражении все числа b_i их сопряженными, мы получим число, сопряженное с a.

Доказательство — упражнение.

Пример 10. Найти модуль и аргумент числа z = 1 + i. $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$. Если $\phi = \arg(z)$, то $\tan \phi = 1$. Поскольку число z находится в первой четверти, то $\arg z = \pi/4$.

Пример 11. Записать число $z = l + i\sqrt{3}$ в тригонометрической форме. $|z| = \sqrt{1+3} = 2$; если $\phi = \arg(z)$, то $\tan \phi = \sqrt{3}$. Тогда $\arg(z) = \pi/3$. Следовательно, $z = 2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$.

Пример 12. Используя тригонометрическую форму записи, выполнить действия: $(1+i)(l+i\sqrt{3})$, $\frac{(1+i)}{(l+i\sqrt{3})}$. Результаты записать в тригонометрической форме.

$$(1+i)(l+i\sqrt{3}) = (\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}))(2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})) =$$

$$= 2\sqrt{2}(\cos(\frac{\pi}{4} + \frac{\pi}{3}) + i\sin(\frac{\pi}{4} + \frac{\pi}{3})) = 2\sqrt{2}(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12})$$

$$\frac{(1+i)}{(l+i\sqrt{3})} = \frac{\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})}{2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})} =$$

$$= \frac{\sqrt{2}}{2}(\cos(\frac{\pi}{4} - \frac{\pi}{3}) + i\sin(\frac{\pi}{4} - \frac{\pi}{3})) = \frac{\sqrt{2}}{2}(\cos(-\frac{\pi}{12}) + i\sin(-\frac{\pi}{12}))$$

Глава 11

Многочлены

В школьном курсе математики рассматриваются выражения вида $a_k x^k$, где x — переменная (неизвестное), которая может принимать любые действительные значения, а a_k — числовой коэффициент. При этом степень k — любое, в том числе и отрицательное, целое число. Такие выражения в элементарной алгебре называют одночленами. В настоящей главе рассматриваются выражения, которые являются формальными конечными суммами одночленов от одного неизвестного x, причем все степени x — целые неотрицательные. Если некоторое такое выражение традиционно обозначить через f(x), то его, после приведения подобных относительно одинаковых степеней x, всегда можно записать в следующем виде:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0.$$
 (11.1)

Определение 48. Любое выражение вида (11.1), где x — неизвестное, а $a_n, a_{n-1}, \ldots, a_0$ — числовые коэффициенты, будем называть многочленом от x. Под степенью многочлена будем понимать наивысшую степень его неизвестного x, входящую в многочлен c ненулевым коэффициентом.

Так, если в правой части (11.1) коэффициент $a_n \neq 0$, то f(x) — многочлен степени n, при этом a_n — старший коэффициент, $a_n x^n$ — старший член многочлена f(x), a_0 — свободный член. Всюду далее при записи многочленов в виде (11.1) будем считать, что старший коэффициент отличен от нуля. Если же потребуется к записи многочлена приписать несколько слагаемых с нулевыми коэффициентами, то это будет отмечено специально. Для сокращенной записи многочленов будут употребляться символы f(x), g(x), $\phi(x)$, $\psi(x)$ и т. п. В этой главе рассматриваются многочлены с комплексными коэффициентами от неизвестного x, которая может принимать любые комплексные значения.

Обозначим множество многочленов от одной переменной x с коэффициентами из поля F через F[x].

Определение 49. Два многочлена f(x) и g(x) будут считаться равными (или тождественно равными), если равны их коэффициенты при одинаковых степенях неизвестного.

Определим основные операции над многочленами. Пусть f(x) и g(x) — два многочлена с комплексными коэффициентами. Для удобства запишем эти многочлены по возрастающим степеням неизвестного: $f(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n$, $a_n \neq 0$; $g(x) = b_0 + b_1 x + \ldots + b_{m-1} x^{m-1} + b_m x^m$, $b_m \neq 0$. Пусть $m \leq n$. Тогда g(x) можно представить в виде $g(x) = b_0 + b_1 x + \ldots + b_{m-1} x^{m-1} + b_m x^m + 0 x^{m+1} + \ldots + 0 x^n$.

Определение 50. Под суммой многочленов f(x) и g(x) будем понимать такой многочлен $h(x) = c_0 + c_1 x + \ldots + c_n x^n$, коэффициенты которого равны сумме коэффициентов многочленов f(x) и g(x) при одинакових степенях неизвестного, т.е. $c_i = a_i + b_i$, $i = 0, 1, \ldots, n$. При этом будем записывать h(x) = f(x) + g(x).

Задача 24. (F[x], +) - группа.

Определение 51. Под произведением $f(x) \cdot g(x)$ будем понимать такой многочлен $h(x) = d_0 + d_i x + \ldots + d_{n+m-1} x^{n+m-1} + d_{n+m} x^{n+m}$, коэффициенты которого вычисляются по формуле $d_i = \sum_{k+l=i} a_k b_l$, $i=0,1,\ldots,n+m$.

Задача 25. $(F[x], +, \cdot) - \kappa$ оммутативное кольцо.

11.1 Основная теорема алгебры

Пусть F — поле и f — произвольный многочлен над F.

Определение 52. Поле F называется алгебраически замкнутым, если кажсдый многочлен из кольца F[x] раскладывается на линейные множители.

То же самое можно выразить другими словами: поле F алгебраически замкнуто, если неприводимыми над F являются лишь многочлены степени 1 (линейные многочлены). Если любой многочлен $f \in F[x]$ обладает в F по крайней мере одним корнем, то поле F алгебраически замкнуто. Действительно, тогда $f(x) = (x-a)h(x), a \in F, h \in F[x]$, но по условию для многочлена h в F тоже существует хотя бы один корень,

т.е. $h(x) = (x-b)r(x), b \in F, r \in F[x]$. Продолжая этот процесс, мы придём в конце концов к полному разложению f на линейные множители. Так как f — произвольный многочлен, то поле f удовлетворяет определению алгебраической замкнутости. Хотя и справедливо утверждение о том, что для всякого поля F существует расширение $\overline{F} \supset F$, являющееся алгебраически замкнутым полем (теорема Штейница), на первых порах всё же трудно воспринять не только конструкцию алгебраически замкнутого расширения, но и саму идею такого расширения.

Теорема 30. (Основная теорема алгебры) Поле комплексных чисел \mathbb{C} алгебраически замкнуто.

Сформулируем ещё раз это фундаментальное утверждение, теперь уже в терминах корней.

Произвольный многочлен f(x) степени $n \geq 1$ с комплексными (или вещественными) коэффициентами имеет ровно n комплексных корней, считаемых со своими кратностями.

11.2 Доказательство Основной теоремы алгебры

Его неалгебраичность начинается с двух вспомогательных утверждений.

- 1) Каждый комплексный многочлен $f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \ n \geq 1$, является непрерывной функцией в любой точке плоскости $\mathbb C$ (функция $f: \mathbb C \to \mathbb C$ непрерывна в точке $z_0 \in \mathbb C$, если $\lim_{z \to z_0} f(z) = f(z_0)$; другими словами, для любой окрестности $V(f(z_0))$ найдётся окрестность $U(z_0)$ такая, что при любом $z \in U(z_0)$ будет $f(z) \in V(f(z_0))$.
- 2) Каждая непрерывная функция $f: K \to \mathbb{R}$ на компакте $K \in \mathbb{C}$ достигает своего минимума в K (компакт замкнутое ограниченное множество). Заметим, что следовало бы говорить о непрерывности полиномиальной функции $f: \mathbb{C} \to \mathbb{C}$, но мы следуем упрощённому языку, принятому в анализе. Компактом у нас будет круг $|z| \le r$ некоторого достаточно большого радиуса r, определённого ниже. Тривиальный случай многочлена f со свободным членом $a_0 = 0$ исключается из рассмотрения, поскольку тогда f имеет корень $z_0 = 0$.

Чтобы пояснить геометрически идею доказательства, вообразим себе поверхность в \mathbb{R}^3 , отвечающую уравнению w=|f(z)|: значения z изображаются на горизонтальной плоскости \mathbb{R}^2 , а значения |f(z)| откладываются вверх, в направлении оси w, перпендикулярной к \mathbb{R}^2 . Из непрерывности f(z) следует непрерывность функции |f(z)| на всей плоскости

 \mathbb{C} . Нужно убедиться в том, что хотя бы одной точкой наша поверхность "опирается" на горизонтальную плоскость \mathbb{R}^2 (w=0). Последующие рассуждения разобьём на несколько шагов.

Лемма 3. Существует положительное число $r \in \mathbb{R}$ такое, что |f(z)| > f(0) для всех $z \in \mathbb{C}$ с |z| > r.

Доказательство. Действительно, для $z \neq 0$ имеем $|f(z)| = |z|^n |a_n + g(z^{-1})|$, где $g(u) = a_n u + a_{n-1} u^2 + \ldots + a_1 u^n \in \mathbb{C}[u]$. Из непрерывности g в точке 0 следует существование такого вещественного $\delta > 0$, что $|g(u)| \leq |a_n|/2$ при $|u| < \delta$. Таким образом, $|f(z)| \geq |z|^n (|a_n| - |g(z^{-1})|) \geq \frac{1}{2} |a_n| |z|^n$ при $|z| > \delta^{-1}$. Следовательно, осталось выбрать любое вещественное число $r > \delta^{-1}$, для которого было бы выполнено неравенство $|a_n| r^n > 2 |a_0|$.

Следствие 8. (лемма Коши о минимуме). Для каждого многочлена $f \in \mathbb{C}[z]$ существует $z_0 \in \mathbb{C}$ такое, что $|f(z_0)| = \inf_{z \in \mathbb{C}} |f(z)|$.

Доказательство. В самом деле, ввиду утверждения 2) непрерывная функция |f(z)| принимает в круге $D_r = \{z \in \mathbb{C} | |z| \leq r\}$ минимальное значение, т.е. существует $z_0 \in D_r$ такое, что $|f(z_0)| = \inf_{z \in D_r} |f(z)|$. Но так как $|f(z_0)| \leq |f(0)|$, и по лемме 3 имеет место неравенство $|f(0)| \leq \inf_{z \in \mathbb{C} \setminus D_r} |f(z)|$, то $|f(z_0)| = \inf_{z \in \mathbb{C}} |f(z)|$.

Лемма 4. Пусть $k \in \mathbb{N}$, и пусть $h \in \mathbb{C}[z]$ — многочлен с $h(0) \neq 0$. Тогда для каждого $a \in \mathbb{C}^*$ найдётся такое $b \in \mathbb{C}$, что $|a + b^k h(b)| < |a|$.

Доказательство. Так как многочлен h непрерывен, существует $\delta>0$ такое, что при $|z|<\delta$ имеет место неравенство |h(z)-h(0)|< h(0)/2. Это позволяет нам получить оценку для $a+z^kh(z)=a+h(0)z^k+z^k(h(z)-h(0))$:

$$|a + z^k h(z)| \le |a + h(0)z^k| + \frac{1}{2}|h(0)||z|^k$$
(11.2)

из круга $|z| < \delta$.

Выберем теперь комплексное число $b \in \mathbb{C}$, для которого $h(0)b^k = -ta$, 0 < t < 1 (ниже на вещественное число t будут наложены дополнительные ограничения). В качестве b достаточно взять любой корень степени k из $-tah(0)^{-1} \neq 0$. Получаем $|a+h(0)b^k = (1-t)|a|$ и $\frac{1}{2}|h(0)||b|^k = t|a|/2$, что в соединении с (11.2) приведет к нужному неравенству, коль скоро $|b| < \delta$. Мы обеспечим выполнение этого условия, наложив на $t = -h(0)a^{-1}b^k$ ограничение $t < |h(0)a^{-1}|\delta^k$. Итак, подставив в (11.2) значение z = b, $|b| < \delta$, получаем окончательно $|a+b^kh(b)| \leq (1-t)|a| + \frac{1}{2}t|a| = (1-\frac{1}{2}t)|a| < |a|$.

Следствие 9. (лемма Даламбера—Аргана). Пусть f(z) — многочлен положительной степени над \mathbb{C} . Тогда каждой точке $c \in \mathbb{C}$ такой, что $f(c) \neq 0$, отвечает точка $c' \in \mathbb{C}$, для которой |f(c')| < |f(c)|.

Доказательство. Для доказательства многочлен f(z+c), подобно f(z) не являющийся константой, разложим по степеням z: $f(z+c) = f(c) + b_k z^k + b_{k+1} z^{k+1} + \ldots + b_n z^n$, $b_k \neq 0$. Другими словами, $f(z+c) = f(c) + z^k h(z)$, где $h(z) = b_k + b_{k+1} z + \ldots + b_n z^{n-k}$, $h(0) \neq 0$. Подставив в формулировку леммы 4 значение $a = f(c) \neq 0$, мы можем утверждать существование такого $b \in \mathbb{C}$, что при c' = b + c будет выполнено требуемое неравенство $|f(c')| = |f(b+c)| = |f(c) + b^k h(b)| < f(c)$.

Геометрический смысл: если на поверхности w=f(z) взята точка, расположенная строго выше плоскости w=0, то обязательно найдётся другая точка на поверхности с более низким расположением.

Окончание доказательства основной теоремы (теоремы 30). Согласно следствию леммы 3 существует такая точка $z_0 \in \mathbb{C}$, что $|f(z_0)| \leq |f(z)|$ для всех $z \in \mathbb{C}$. Если $|f(z_0)| \neq 0$, то, как утверждает следствие леммы 4, найдётся такая точка $z_0' \in \mathbb{C}$, что $|f(z_0')| < |f(z_0)|$ — противоречие.

11.3 Другое доказательство

Определение 53. Функция $f: \mathbb{C} \to \mathbb{C}, \ f=u(z)+iv(z)$ — голоморфная, если удовлетворяет условиям (Коши-Римана) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}.$

Теорема 31. (Интегральная формула Коши) Пусть U — открытая область в \mathbb{C} , u $f: U \to \mathbb{C}$ — голоморфная функция, а диск $D = \{z | | z - z_0| \le r\}$ содержится в U. Пусть C — граница D. Тогда $\forall n \in \mathbb{N}$ внутри D верно:

$$f(a) = (1/(2\pi i)) \oint_C f(z)/(z-a)dz$$

где интеграл берется по контуру, проходимому в положительном направлении (против часовой стрелки).

Доказательство. Можно показать (Теорема Грина), что интеграл по C равен интегралу по произвольно малой окружности, ограничивающей a. Так как f(z) непрерывна, можно выбрать такую окружность, внутри которой f(z) произвольно близка к f(a). С другой стороны

$$\oint_C 1/(z-a) \, dz$$

вдоль любой окружности C с центром в a равен $2\pi i$. (Прямое вычисление

$$z = a + \varepsilon e^{it}$$
,

где $0 \le t \le 2\pi$ и ε — радиус окружности.) Тогда, при $\varepsilon \to 0$ получаем

$$\left| \frac{1}{2\pi i} \oint_C f(z)/(z-a)dz - f(a) \right| \le$$

$$\le \frac{1}{2\pi i} \oint_C \frac{|f(z) - f(a)|}{z-a} dz \to 0.$$

Теорема 32. Любая голоморфная функция — аналитическая

Доказательство. Пусть f дифференцируема внутри диска D с центром в $a \in \mathbb{C}$. Пусть $z \in D$. Пусть C — положительно ориентированный контур окружности с центром в a, лежащий внутри D но дальше от a чем z.

$$f(z) = (1/(2\pi i)) \int_C f(w)/(w-z) \, dw =$$

$$= (1/2\pi i) \int_C 1/(w-a) \cdot (w-a)/(w-z) f(w) \, dw =$$

$$= (1/(2\pi i)) \int_C (1/(w-a)) \cdot ((w-a)/((w-a)-(z-a))) f(w) \, dw =$$

$$= (1/(2\pi i)) \int_C (1/(w-a)) \cdot (1/(1-(z-a)/(w-a))) f(w) \, dw =$$

$$= (1/(2\pi i)) \int_C (1/(w-a)) \cdot (\sum_{n=0}^{\infty} ((z-a)/(w-a))^n) f(w) \, dw =$$

$$= \sum_{n=0}^{\infty} (1/(2\pi i)) \int_C ((z-a)^n/(w-a)^{n+1}) f(w) \, dw.$$

Теорема 33. (Лиувилль) Функция, аналитическая на всей комплексной плоскости и не имеющая особенностей на бесконечности, есть константа.

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

где

$$a_k = \frac{f^{(k)}}{k!} = 1/(2\pi i) \oint_{C_r} f(\zeta)/\zeta^{k+1} d\zeta,$$

а C_r окружность радиуса r с центром в 0. Тогда

$$|a_k| \le \frac{1}{2\pi} \oint_{C_r} \frac{|f(\zeta)|}{|\zeta^{k+1}|} d\zeta \le \frac{1}{2\pi} \oint_{C_r} \frac{M}{r^{k+1}} d\zeta \le \frac{M}{r^k},$$

где во втором тождестве использовано предположение о том, что $|f(z)| \le M \ \forall z \in \mathbb{C}$. Эти интегралы не зависят от r. То есть, при $r \to \infty \ a_k = 0$ $\forall k \ge 1$. Следовательно, $f(z) = a_0$.

Посему, функция, обратная многочлену должна иметь хоть один полюс на комплексной плоскости, а, соответственно, многочлен имеет хоть один корень.

Глава 12

Расширения полей

12.1 Конечные и алгебраические расширения

Определение 54. Пусть F — поле. Если F — подполе поля E, то мы говорим также, что E есть расширение поля F. Мы можем рассматривать E как векторное пространство над F, и мы говорим, что E — конечное или бесконечное расширение F, в зависимости от того, конечна или бесконечна размерность этого векторного пространства.

Определение 55. Пусть F- подполе поля E. Элемент α из E называется алгебраическим над F, если в F существуют элементы a_0, \ldots, a_n $(n \ge 1)$, не все равные 0 и такие, что

$$a_0 + a_1 \alpha + \ldots + a_n \alpha^n = 0$$

Для алгебраического элемента $\alpha \neq 0$ мы всегда можем найти такие элементы a_i в предыдущем равенстве, что $a_0 \neq 0$ (сокращая на подходящую степень a).

Пусть X — переменная над F. Можно также сказать, что элемент α алгебраичен над F, если гомоморфизм $F[X] \to E$, тождественный на F и переводящий X в α , имеет ненулевое ядро. В таком случае это ядро будет главным идеалом, порожденным одним многочленом p(X), относительно которого мы можем предполагать, что его старший коэффициент равен 1. Имеет место изоморфизм $F[X]/(p(x)) \approx F[\alpha]$, и так как кольцо $F[\alpha]$ целостное, то p(X) неприводим. Если p(X) нормализован условием, что его старший коэффициент равен 1, то p(X) однозначно определяется элементом α и будет называться неприводимым многочленом элемента α над F. Иногда мы будем обозначать его через $\operatorname{Irr}(\alpha, F, X)$.

Определение 56. Расширение E поля F называется алгебраическим, если всякий элемент из E алгебраичен над F.

Предложение 11. Всякое конечное расширение E поля F алгебраично над F.

Доказательство. Пусть $\alpha \in E$, $\alpha \neq 0$. Степени $\alpha 1, \alpha, \alpha^2, \dots, \alpha^n$ не могут быть линейно независимы над F для всех целых положительных n, иначе размерность E над F была бы бесконечна. Линейное соотношение между этими степенями показывает, что элемент α алгебраичен над F.

Заметим, что утверждение, обратное предложению 11, не верно: существуют бесконечные алгебраические расширения. Если E — расширение поля F, то мы обозначаем символом [E:F] размерность E как векторного пространства над F. Будем называть [E:F] степенью E над F. Она может быть бесконечной.

Предложение 12. Пусть k- поле $u\ F\subset E-$ расширения k. Тогда [E:k]=[E:F][F:k]. Если $\{x_i\}_{i\in I}-$ базис поля F над k и $\{y_j\}_{j\in J}-$ базис поля E над F, то $\{x_iy_j\}_{(i,j)\in I\times J}$ будет базисом поля E над k.

Доказательство. Пусть $z \in E$. По предположению существуют элементы $\alpha_j \in F$, почти все равные нулю и такие, что $z = \sum_{j \in J} \alpha_j y_j$. Для каждого $j \in J$ существуют элементы $b_{ij} \in k$, из которых почти все равны 0, такие, что $\alpha_j = \sum_{i \in I} b_{ji} x_i$, следовательно, $z = \sum_{i \in I} j \in J$ $\sum_{i \in I} b_{ji} x_i y_j$. Это означает, что $\{x_i y_j\}$ является семейством образующих для E над k. Мы должны показать, что оно линейно независимо. Пусть $\{c_{ij}\}$ — семейство элементов из k, почти все из которых равны 0, такое, что $\sum_{i \in I} j \in J$ $\sum_{i \in I} c_{ij} x_i y_j = 0$. Тогда для каждого $j \sum_{i \in I} i \in I$ для всякого i, так как $\{x_i\}$ — базис поля E над E, что и доказывает наше предложение.

Следствие 10. Расширение $E \supset F \supset k$ поля k конечно в том и только в том случае, если E конечно над F и F конечно над k.

Назовем башней полей последовательность расширений $F_1 \subset F_2 \subset \ldots \subset F_n$. Для конечности башни необходимо и достаточно, чтобы каждый ее этаж был конечен.

Пусть k — поле, E — его расширение и $\alpha \in E$. Мы обозначаем через $k(\alpha)$ наименьшее подполе в E, содержащее k и α . Оно состоит из всех дробей $f(\alpha)/g(\alpha)$, где f, g — многочлены с коэффициентами в k и $g(\alpha) \neq 0$

Предложение 13. Пусть элемент α алгебраичен над k. Тогда $k(\alpha) = k[\alpha]$ и поле $k(\alpha)$ конечно над k. Степень $[k(\alpha):k]$ равна степени многочлена Irr(a,k,X).

Доказательство. Пусть $p(X) = \operatorname{Irr}(\alpha, k, X)$. Пусть многочлен $f(X) \in k[X]$ таков, что $f(\alpha) \neq 0$. Тогда f(X) не делится на p(X) и, следовательно, существуют многочлены g(X), $h(X) \in k[X]$, такие, что g(X)p(X) + h(X)f(X) = 1. Отсюда мы получаем, что $h(\alpha)f(\alpha) = l$ и, значит, $f(\alpha)$ обратим в $k[\alpha]$. Следовательно, $k[\alpha]$ не только кольцо, но и поле, а потому должно быть равно $k(\alpha)$. Пусть $d = \deg p(X)$. Степени $1, \alpha, \ldots, \alpha^{d-1}$ линейно независимы над k; действительно, предположим, что $a_0 + a_1 \alpha + \ldots + a_{d-1}\alpha^{d-1} = 0$, где $a_i \in k$, причем не все $a_i = 0$. Положим $g(X) = a_0 + a_1 X + \ldots + a_{d-1} X^{d-1}$. Тогда $g \neq 0$ и $g(\alpha) = 0$.

Следовательно, g(X) делится на p(X) — противоречие. Наконец, пусть $f(\alpha) \in k[\alpha]$, где $f(X) \in k[X]$. Существуют многочлены q(X), $r(X) \in k[X]$, такие, что $\deg r < d$ и f(X) = q(X)p(X) + r(X). Тогда $f(\alpha) = r(\alpha)$ и мы видим, что $1, \alpha, \ldots, \alpha^{d-1}$ порождают $k[\alpha]$ как векторное пространство над k. Это доказывает наше предложение.

Пусть E, F — расширения поля k. Если E и F содержатся в некотором поле L, то мы обозначаем через EF наименьшее подполе в L, содержащее и E, и F, и называем его композитом E и F в L,

Литература

- [1] Кострикин А. И., Введение в алгебру.Ч.1-3, Москва, ФИЗМАТЛИТ, 2004.
- [2] Артамонов В.А., Лекции по алгебре, МГУ, 2004.
- [3] S. S. Adams, Introduction to Algebraic Coding Theory, 2008