

3 TO 8 LINE DECODER LATCH

- HIGH SPEED
- $t_{PD} = 12 \text{ ns} (TYP.) \text{ at } V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A \text{ (MAX.)} \text{ AT } I_A = 25 \text{ °C}$
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | I_{OH} | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPÄGATÍON DELAYS tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS237

DESCRIPTION

The M54/74HC237 is a high speed CMOS 3 TO 8 LINE DECODER LATCH fabricated in silicon gate C²MOS technology.

It has the same high speed performance of LSTTL combined with true CMOS low power consumption. When \overline{GL} goes from low to high, the address present at the select inputs (A, B, C) is stored in the latches. As long as \overline{GL} remains high no address changes will be recognized. Output enable controls, G1 and $\overline{G2}$ control the state of the outputs independantly of the select or latch-enable inputs. All of the outputs are low unless G1 is high and $\overline{G2}$ is low. The 'HC237 is ideally suited for the implementation of glitch-free decoders in stored-address applications in bus oriented systems. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

October 1992 1/11

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 2, 3	A, B, C	Data Inputs
4	lG	Latch Enable Input (Active LOW)
5	G2	Data Enable Input (Active LOW)
6	G1	Data Enable Input (Active HIGH)
15, 14, 13, 12, 11, 10, 9, 7	Y0 to Y7	Decoder Outputs
8	GND	Ground (0V)
16	Vcc	Positive Supply Voltage

IEC LOGIC SYMBOLS

TRUTH TABLE

		INP	UTS						OUT	DIIG				
Е	NABL	E	S	ELEC	T	0011 00								
G	G2	G1	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	
Χ	Χ	L	Х	Χ	Χ	L	L	L	L	L	L	L	L	
Χ	Н	Х	Х	Χ	Χ	L	L	L	L	L	L	L	L	
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L	
L	L	Н	L	L	Ι	L	Н	L	L	L	L	L	L	
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L	
L	L	Н	L	Н	Н	L	L	L	Н	L	L	L	L	
L	L	Н	Н	L	L	L	L	L	L	Н	L	L	L	
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L	
L	L	Н	Н	Н	L	L	L	L	L	L	L	Н	L	
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н	
Н	L	Н	Х	Х	Х	OUTPU	OUTPUT CORRESPONDING TO STORED ADDRESS, H: ALL OTHERS, L							

X: Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
Іок	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin	± 25	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit	
Vcc	Supply Voltage	Supply Voltage			
V_{I}	Input Voltage		0 to V _{CC}	V	
Vo	Output Voltage	0 to V _{CC}	V		
T_{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C O°	
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns	
		V _{CC} = 4.5 V	0 to 500		
		V _{CC} = 6 V	0 to 400		

DC SPECIFICATIONS

		Te	est Co	nditions				Value				
Symbol	Parameter	Vcc			$T_A = 25$ °C 54HC and 74HC			l	85 °C HC	-55 to 125 °C 54HC		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V _{OH}	High Level	2.0	V _I =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	VIL	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	Vı =			0.0	0.1		0.1		0.1	
	Voltage	4.5	VIH	I _O = 20 μA		0.0	0.1		0.1		0.1	
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	V _{IL}	lo= 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
II	Input Leakage Current	6.0	V _I = '	V _{CC} or GND			±0.1		±1		±1	μΑ
Icc	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Test Conditions				Value				
Symbol	Parameter	VCC		T _A = 25 °C -40 to 85 °C 54HC and 74HC 74HC					C -55 to 125 °C 54HC	
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t⊤∟H	Output Transition	2.0		30	75		95		115	
t_{THL}	Time	4.5		8	15		19		22	ns
		6.0		7	13		16		19	
t _{PLH}	Propagation	2.0		60	180		225		270	
t _{PHL}	Delay Time	4.5		19	36		45		54	ns
	(A, B, C - Y)	6.0		16	31		38		46	
t _{PLH}	Propagation	2.0		45	140		175		210	
t _{PHL}	Delay Time	4.5		15	28		35		42	ns
(G1 - Y)	6.0		13	24		30		36		
t _{PLH} Propagation t _{PHL} <u>Del</u> ay Time	2.0		45	140		175		210		
	4.5		15	28		35		42	ns	
	(G2 - Y)	6.0		13	24		30		36	
t _{PLH}	Propagation	2.0		65	190		240		285	
t _{PHL}	Delay Time	4.5		21	38		48		57	ns
	(GL - Y)	6.0		18	32		41		48	
t _{W(L)}	Minimum Pulse	2.0		10	75		95		110	
	Width	4.5		6	15		19		22	ns
	(GL)	6.0		6	13		16		19	
ts	Minimum Set-up	2.0		12	50		65		75	
	Time	4.5		3	10		13		15	ns
	(A, B, C - GL)	6.0		2	9		11		13	
t _h	Minimum Hold	2.0			25		30		40	
Time	4.5			5		6		8	ns	
	(A, B, C - GL)	6.0			5		5		7	
CIN	Input Capacitance			5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance			52						pF

^(*) CPD is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load.

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT ICC (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	0.77		1.65	0.030		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		17.78			0.700			
F			7.1			0.280		
ı			5.1			0.201		
L		3.3			0.130			
Z			1.27			0.050		

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

