

Programa del curso EE-0706

Elementos de máquinas

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica (tronco común)

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Elementos de máquinas

Código: EE-0706

Tipo de curso: Teórico

Obligatorio o electivo: Obligatorio

Nº de créditos: 3

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 5

Ubicación en el plan de estudios: Curso de 7^{mo} semestre en Ingeniería Electromecánica (tronco

común)

Requisitos: EE-0605 Resistencia de materiales; EE-0609 Dibujo industrial

Correquisitos: Ninguno

El curso es requisito de: Énfasis en Aeronáutica: EE-0806 Máquinas y mecanismos; EE-6808

Taller de metrología aeronáutica Énfasis en Sistemas Ciberfísicos: EE-

0806 Máquinas y mecanismos

Asistencia: Libre

Suficiencia: Sí

Posibilidad de reconocimiento: Sí

Aprobación y actualización del pro-

grama:

01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Elementos de máquinas* aporta en el desarrollo del siguiente rasgo del plan de estudios: aplicar los principios de la mecánica de sólidos y fluidos, termodinámica y transferencia de calor para analizar el comportamiento de los sistemas electromecánicos.

Los aprendizajes que los estudiantes desarrollarán en el curso son: analizar esfuerzos y deformaciones para la estimación de factores de seguridad en componentes mecánicos, utilizando teorías de falla estática y dinámica; seleccionar materiales adecuados para componentes mecánicos, teniendo en cuenta sus propiedades y el comportamiento frente a esfuerzos estáticos y dinámicos; evaluar la falla en componentes mecánicos, considerando factores como la fatiga, el desgaste y la fractura, con el fin de garantizar la seguridad y durabilidad de los diseños; y optimizar el diseño de componentes mecánicos, mediante el uso de métodos de análisis y simulación, con el fin de mejorar su desempeño y la seguridad en aplicaciones de ingeniería.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Resistencia de materiales, Ciencia e ingeniería de los materiales, Manufactura, Laboratorio de manufactura, y Dibujo industrial.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Máquinas y mecanismos, Robótica, y Análisis mecánico de estructuras de la aeronave.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

Aplicar los fundamentos de la mecánica, para el diseño y selección de componentes mecánicos, enfocándose en los principios que rigen la elección y especificación de materiales y geometrías, el análisis de esfuerzos y deformaciones, factores de seguridad, la prevención de fallos y la optimización de componentes para aplicaciones de la ingeniería mecánica.

Objetivos específicos

- Analizar esfuerzos y deformaciones para la estimación de factores de seguridad en componentes mecánicos, utilizando teorías de falla estática y dinámica.
- Seleccionar materiales adecuados para componentes mecánicos, teniendo en cuenta sus propiedades y el comportamiento frente a esfuerzos estáticos y dinámicos.
- Evaluar la falla en componentes mecánicos, considerando factores como la fatiga, el desgaste y la fractura, con el fin de garantizar la seguridad y durabilidad de los diseños.
- Optimizar el diseño de componentes mecánicos, mediante el uso de métodos de análisis y simulación, con el fin de mejorar su desempeño y la seguridad en aplicaciones de ingeniería.

4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Introducción al diseño mecánico
 - 1.1. La finalidad del diseño mecánico
 - 1.2. Metodología del diseño
 - 1.3. Factores que afectan el diseño: seguridad, costo, materiales, manufactura y mantenimiento.
 - 1.4. Curso de elementos de máquinas en el contexto del diseño mecánico
- 2. Teoría de Falla estática
 - 2.1. Teorías de falla para materiales dúctiles
 - 2.2. Teorías de falla para materiales frágiles
- 3. Resistencia de Fatiga
 - 3.1. Definiciones fundamentales
 - 3.2. Diagramas de las tensiones límite
 - 3.3. Ciclo simétrico
 - 3.4. Ciclo asimétrico
 - 3.5. Teorías de falla a fatiga
 - 3.6. Medios para aumentar la resistencia a la fatiga
- 4. Transmisiones
 - 4.1. Introducción a transmisiones mecánicas
 - 4.2. Transmisiones por banda
 - 4.3. Transmisiones por fricción
 - 4.4. Transmisiones por engranaje
 - 4.5. Transmisiones por tornillo sin fin
 - 4.6. Reductores
 - 4.7. Transmisiones por cadena
- 5. Uniones
 - 5.1. Introducción a uniones mecánicas
 - 5.2. Uniones soldadas
 - 5.3. Uniones con apretura
 - 5.4. Uniones roscadas
 - 5.5. Cuñas y pasadores
 - 5.6. Uniones de chaveta
 - 5.7. Uniones estriadas y sin chaveta
 - 5.8. Uniones elásticas (resortes)

TEC | Tecnológico de Costa Rica

- 6. Elementos de las transmisiones
 - 6.1. Árboles y ejes
 - 6.2. Cojinetes de deslizamiento
 - 6.3. Cojinetes de contacto rodante
 - 6.4. Acoplamientos
 - 6.5. Juntas de retención
- 7. Tornillos de potencia
 - 7.1. Tipos de rosca
 - 7.2. Cálculos de pandeo
 - 7.3. Cálculos de cortante
 - 7.4. Cálculos de desgaste
 - 7.5. Cálculos de la eficiencia, potencia y torque

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las asignaciones extraclase. Esta última se implementará mediante técnicas como el estudio de casos, el aprendizaje basado en proyectos, el modelado y la simulación.

Las personas estudiantes podrán desarrollar actividades en las que:

- Recibirán instrucción sobre los fundamentos del diseño de elementos de máquinas, para la selección, evaluación y diseño de componentes mecánicos.
- Analizarán componentes mecánicos reales bajo cargas estáticas o dinámicas, para extraer aprendizajes aplicables a contextos similares.
- Evaluarán diferentes diseños mecánicos bajo un mismo escenario de carga para evaluar, de forma comparativa, la mejor opción de diseño.
- Trabajarán en proyectos prácticos de diseño y manufactura de componentes mecánicos, para desarrollar habilidades técnicas, de investigación, prototipado, trabajo en equipo y resolución de problemas en un contexto aplicado al diseño de componentes mecánicos.
- Usarán herramientas computacionales para modelar partes de máquinas y estimar esfuerzos, deformaciones, vida esperada y factores de seguridad en las mismas

Este enfoque metodológico permitirá a la persona estudiante aplicar los fundamentos de la mecánica, para el diseño y selección de componentes mecánicos, enfocándose en los principios que rigen la elección y especificación de materiales y geometrías, el análisis de esfuerzos y deformaciones, factores de seguridad, la prevención de fallos y la optimización de componentes para aplicaciones de la ingeniería mecánica

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Pruebas cortas: evaluaciones breves y frecuentes que sirven para comprobar el dominio de temas específicos. Suelen ser de menor peso en la calificación final y permiten reforzar el aprendizaje continuo.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.

Pruebas parciales (2)	60 %
Pruebas cortas (5)	25 %
Act. aprendizaje activo (4)	15 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante tiene derecho a presentar un examen de reposición si su nota luego de redondeo es 60 o 65.

7. Bibliografía

- [1] R. G. Budynas y J. K. Nisbett, *Diseño en Ingeniería Mecánica de Shigley*, 11.ª ed. México: McGraw-Hill, 2021, ISBN: 978-1-4562-8761-0.
- [2] R. C. Juvinall y K. M. Marshek, *Fundamentals of Machine Component Design*, 7.^a ed. Hoboken, NJ: John Wiley & Sons, 2024, ISBN: 978-1-119-72360-8.
- [3] T. Stolarski, *Tribology in Machine Design*, 2.^a ed. Oxford: Butterworth-Heinemann, 2000, ISBN: 978-0-7506-7040-3.

8. Persona docente

8. Persona do- El curso será impartido por:

M.Sc. Noel Jacob Ureña Sandí

Máster en ciencias en Concepción y Producción Asistida por Computadora en Ingeniería Mecánica. RWTH Aachen University. Alemania.

Licenciado en Ingeniería en Materiales. Instituto Tecnológico de Costa Rica. Costa Rica

Correo: nurena@itcr.ac.cr Teléfono: 25509347

Oficina: 22 Escuela: Ingeniería Electromecánica Sede: Cartago

Mag. Manuel Francisco Mata Coto

LLENAR

Correo: mfmata@itcr.ac.cr Teléfono: 0

Oficina: O Escuela: Ingeniería Electromecánica Sede: Cartago