Introduction to Software Testing Chapter 8.1 Logic Coverage

Paul Ammann & Jeff Offutt

Ch. 8: Logic Coverage

Four Structures for Modeling Software

Semantic Logic Criteria (8.1)

- Logic expressions show up in many situations
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- A predicate is an expression that evaluates to a boolean value
- Predicates can contain
 - boolean variables
 - non-boolean variables that contain >, <, ==, >=, <=, !=
 - boolean function calls
- Internal structure is created by logical operators
 - ¬ the negation operator
 - $\land -$ the and operator
 - $\lor -$ the or operator
 - $\rightarrow -$ the implication operator
 - $-\oplus$ the exclusive or operator
 - \leftrightarrow the equivalence operator
- A clause is a predicate with no logical operators

Example and Facts

- $(a < b) \lor f(z) \land D \land (m >= n*o)$ has four clauses:
 - (a < b) relational expression
 - f (z) boolean-valued function
 - D boolean variable
 - $(m \ge n^*o) relational expression$
- Most predicates have few clauses
 - 88.5% have I clause
 - 9.5% have 2 clauses
 - 1.35% have 3 clauses
 - Only 0.65% have 4 or more!
- Sources of predicates
 - Decisions in programs
 - Guards in finite state machines
 - Decisions in UML activity graphs
 - Requirements, both formal and informal
 - SQL queries

from a study of 63 open source programs, >400,000 predicates

Translating from English

- "I am interested in SE 4367 and CSE 3354"
- course = se4367 OR course = cse3354

Humans have trouble translating from English to Logic

- "If you leave before 6:30 AM, take PATH_A, if you leave after 7:00 AM, take PATH_B"
- (time < 6:30 \rightarrow path = PATH_A) \wedge (time > 7:00 \rightarrow path = PATH_B)
- Hmm ... this is incomplete!
- (time < 6:30 \rightarrow path = PATH_A) \land (time \leftarrow 6:30 \rightarrow path = PATH_B)

Logic Coverage Criteria (8.1.1)

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses
- Abbreviations:
 - P is the set of predicates
 - -p is a single predicate in P
 - C is the set of clauses in P makes
 - $-C_p$ is the set of clauses in predicate p
 - -c is a single clause in C

Predicate and Clause Coverage

• The first (and simplest) two criteria require that each predicate and each clause be evaluated to both true and false

Predicate Coverage (PC): For each p in P, TR contains two requirements: p evaluates to true, and p evaluates to false.

- When predicates come from conditions on edges, this is equivalent to edge coverage
- PC does not evaluate all the clauses, so ...

Clause Coverage (CC): For each c in C, TR contains two requirements: c evaluates to true, and c evaluates to false.

Predicate Coverage Example

$$((a < b) \lor D) \land (m >= n*o)$$
predicate coverage

```
Predicate = true

a = 5, b = 10, D = true, m = 1, n = 1, o = 1

= (5 < 10) \lor true \land (1 >= 1*1)

= true \lor true \land TRUE

= true
```

```
Predicate = false

a = 10, b = 5, D = false, m = 1, n = 1, o = 1

= (10 < 5) \lor false \land (1 >= 1*1)

= false \lor false \land TRUE

= false
```

Clause Coverage Example

$$((a < b) \lor D) \land (m \ge n*o)$$

Clause coverage

$$(a < b) = true$$
 $(a < b) = false$
 $a = 5, b = 10$
 $a = 10, b = 5$

 D = true
 D = false

 D = true
 D = false

$$m \ge n^*o = true$$
 $m \ge n^*o = false$
 $m = 1, n = 1, o = 1$ $m \ge 1, n = 2, o = 2$

false cases

true cases

Two tests

I)
$$a = 5, b = 10, D = true, m = 1, n = 1, o = 1$$

2)
$$a = 10$$
, $b = 5$, $D = false$, $m = 1$, $n = 2$, $o = 2$

Problems with PC and CC

 PC does not fully exercise all the clauses, especially in the presence of short circuit evaluation

- CC does not always ensure PC
 - That is, we can satisfy CC without causing the predicate to be both true and false
 - This is definitely not what we want!
- The simplest solution is to test all combinations ...

Combinatorial Coverage

- CoC requires every possible combination
- Sometimes called Multiple Condition Coverage

Combinatorial Coverage (CoC): For each pin_P,TR has test requirements for the clauses in_Cp to evaluate to each possible combination of truth values.

	a < b	D	m >= n*o	((a < b) ∨ D) ∧ (m >= n*o)
- 1	Т	Т	Т	Т
2	Т	Т	F	F
3	Т	F	Т	Т
4	Т	F	F	F
5	F	Т	Т	Т
6	F	Т	F	F
7	F	F	Т	F
8	F	F	F	F

Combinatorial Coverage

- This is simple, neat, clean, and comprehensive ...
- But quite expensive!
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause independently from the other clauses

- Getting the details right is hard
- What exactly does "independently" mean?
- The book presents this idea as "making clauses active" ...

Active Clauses (8.1.2)

- Clause coverage has a weakness: The values do not always make a difference
- Consider the first test for clause coverage, which caused each clause to be true:

```
-(5 < 10) \lor true \land (1 >= 1*1)
```

- Only the first clause counts!
- To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination:

A clause C_i in predicate p, called the major clause, determines p if and only if the values of the remaining minor clauses C_j are such that changing C_i changes the value of p

• This is considered to make the clause active

Determining Predicates

$P = A \vee B$

if B = true, p is always true.

so if B = false, A determines p.

if A = false, B determines p.

$P = A \wedge B$

if B = false, p is always false.

so if B = true, A determines p.

if A = true, B determines p.

- Goal: Find tests for each clause when the clause determines the value of the predicate
- This is formalized in a family of criteria that have subtle, but very important, differences

Active Clause Coverage

Active Clause Coverage (ACC): For each p in P and each major clause C_i in C_i , choose minor clauses C_i , i!= i, so that C_i determines p. TR has two requirements for each C_i : C_i evaluates to true and C_i evaluates to false.

```
a = true, b = false

2) a = false, b = false

3) a = false, b = true

1) a = false, b = false

Duplicate

Duplicate
```

- This is a form of MCDC, which is required by the FAA for safety critical software
- Ambiguity: Do the minor clauses have to have the same values when the major clause is true and false?

Resolving the Ambiguity

$$p = a \lor (b \land c)$$

Major clause: a

$$a = false, b = false c = false$$

Is this allowed?

- This question caused confusion among testers for years
- Considering this carefully leads to three separate criteria :
 - Minor clauses do not need to be the same
 - Minor clauses do need to be the same
 - Minor clauses force the predicate to become both true and false

General Active Clause Coverage

General Active Clause Coverage (GACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i do not need to be the same when c_i is true as when c_i is false, that is, $c_i(c_i = true) = c_i(c_i = false)$ for all c_i OR $c_i(c_i = true) != c_i(c_i = false)$ for all c_i .

- This is complicated!
- It is possible to satisfy GACC without satisfying predicate coverage
- We really want to cause predicates to be both true and false!

Restricted Active Clause Coverage

Restricted Active Clause Coverage (RACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p. TR has two requirements for each c_i : c_i evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i must be the same when c_i is true as when c_i is false, that is, it is required that $c_i(c_i = true) = c_i(c_i = false)$ for all c_i .

- This has been a common interpretation by aviation developers
- RACC often leads to infeasible test requirements
- There is no logical reason for such a restriction

Correlated Active Clause Coverage

Correlated Active Clause Coverage (CACC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i determines p. TR has two requirements for each $c_i : c_i$ evaluates to true and c_i evaluates to false. The values chosen for the minor clauses c_i must cause p to be true for one value of the major clause c_i and false for the other, that is, it is required that $p(c_i = true) != p(c_i = false)$.

- A more recent interpretation
- Implicitly allows minor clauses to have different values
- Explicitly satisfies (subsumes) predicate coverage

CACC and **RACC**

	a	h_	C	2 ∧ (b∨c)
	T	Т	Т	T
2	T	_		
2		T	F	T
8	T	F	T	T
4	T	R	K	F
5	F	T	T	F
6	F	T	\mathbf{F}	\mathbf{F}
7	F	F	T	F
8	F	F	F	F
				· · · · · · · · · · · · · · · · · · ·

	a	b	c	a ∧ (b ∨ c)
1	T	T	T	T
2	T	T	F	T
3	T	F	T	T
4	T	F	F	F
5	F	T	T	F
6	F	T	F	${f F}$
7	F	F	T	\mathbf{F}
8	F	F	F	F

major clause

P_a:b=true or c = true

CACC can be satisfied by choosing any of rows 1, 2, 3 AND any of rows 5, 6, 7 – a total of nine pairs

RACC can only be satisfied by row pairs (1, 5), (2, 6), or (3, 7)

Only three pairs

Inactive Clause Coverage (8.1.3)

- The active clause coverage criteria ensure that "major" clauses do affect the predicates
- Inactive clause coverage takes the opposite approach major clauses do not affect the predicates

Inactive Clause Coverage (ICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , j != i, so that c_i does not determine p. TR has four requirements for each c_i : (1) c_i evaluates to true with p true, (2) c_i evaluates to false with p true, (3) c_i evaluates to true with p false, and (4) c_i evaluates to false with p false.

General and Restricted ICC

- Unlike ACC, the notion of correlation is not relevant
 - ci does not determine p, so cannot correlate with p
- Predicate coverage is always guaranteed

General Inactive Clause Coverage (GICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_j , $j \not = i$, so that c_i does not determine p. The values chosen for the minor clauses c_i do not need to be the same when c_i is true as when c_i is false, that is, $c_j(c_i = true) = c_j(c_i = false)$ for all c_j OR $c_j(c_i = true) \not = c_j(c_i = false)$ for all c_j .

Restricted Inactive Clause Coverage (RICC): For each p in P and each major clause c_i in Cp, choose minor clauses c_i , $j \neq i$, so that c_i does not determine p. The values chosen for the minor clauses c_i must be the same when c_i is true as when c_i is false, that is, it is required that $c_i(c_i = true) = c_i(c_i = talse)$ for all c_i .

Infeasibility & Subsumption (8.1.4)

Consider the predicate:

$$(a > b \land b > c) \lor c > a$$

- (a > b) = true, (b > c) = true, (c > a) = true is infeasible
- As with graph-based criteria, infeasible test requirements have to be recognized and ignored
- Recognizing infeasible test requirements is hard, and in general, undecidable
- Software testing is inexact engineering, not science

Logic Criteria Subsumption

Making Clauses Determine a Predicate (8.1.5)

- Finding values for minor clauses c_j is easy for simple predicates
- But how to find values for more complicated predicates?
- Definitional approach:
 - $-p_{c=true}$ is predicate p with every occurrence of c replaced by true
 - $-p_{c=false}$ is predicate p with every occurrence of c replaced by false
- To find values for the minor clauses, connect $p_{c=true}$ and $p_{c=false}$ with exclusive OR

$$p_c = p_{c=true} \oplus p_{c=false}$$

After solving, p_c describes exactly the values needed for c
to determine p

Examples

```
p = a \lor b
p_a = p_{a=true} \oplus p_{a=false}
= (true \lor b) XOR (false \lor b)
= true XOR b
= \neg b
```

```
P_a = P_{a=true} \oplus P_{a=false}
= (true \land b) \oplus (false \land b)
= b \oplus false
= b
```

```
p = a \lor (b \land c)
P_{a} = P_{a=true} \oplus P_{a=false}
= (true \lor (b \land c)) \oplus (false \lor (b \land c))
= true \oplus (b \land c)
= \neg (b \land c)
= \neg b \lor \neg c
```

- "NOT $b \vee NOT c$ " means either b or c can be false
- RACC requires the same choice for both values of a, CACC does not

XOR Identity Rules

Exclusive-OR (xor, ⊕) means both cannot be true That is, A xor B means "A or B is true, but not both"

$$p = A \oplus A \vee b$$
$$= \neg A \wedge b$$

with fewer symbols ...

Repeated Variables

 The definitions in this chapter yield the same tests no matter how the predicate is expressed

•
$$(a \lor b) \land (c \lor b) == (a \land c) \lor b$$

- (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)
 - Only has 8 possible tests, not 64

• Use the simplest form of the predicate, and ignore contradictory truth table assignments

A More Subtle Example

```
p = (a \land b) \lor (a \land \neg b)
p_{a} = p_{a=true} \oplus p_{a=false}
= ((true \land b) \lor (true \land \neg b)) \oplus ((false \land b) \lor (false \land \neg b))
= (b \lor \neg b) \oplus false
= true \oplus false
= true
```

```
p = (a \land b) \lor (a \land \neg b)
p_b = p_{b=true} \oplus p_{b=false}
= ((a \land true) \lor (a \land \neg true)) \oplus ((a \land false) \lor (a \land \neg false))
= (a \lor false) \oplus (false \lor a)
= a \oplus a
= false
```

- a always determines the value of this predicate
- b never determines the value b is irrelevant!

Tabular Method for Determination

- The math sometimes gets complicated
- A truth table can sometimes be simpler
- Example

	a	Ь	C	a ∧ (b ∨ c)	Pa	P _b	p _c	
I	Т	Т	Т	Т	(
2	т	Т	F	Т	0			5
3	т	F	Т	Т	O		0	1
4	Т	F	F	F		•	0	1
5	F	Т	Т	F	(3
6	F	Т	F	F	0			3
7	F	F	Т	F	O			
8	F	F	F	F				

In sum, three separate pairs of rows can cause a to determine the value of p, and only one pair each for b and c

Logic Coverage Summary

- Predicates are often very simple—in practice, most have less than 3 clauses
 - In fact, most predicates only have one clause!
 - With only clause, PC is enough
 - With 2 or 3 clauses, CoC is practical
 - Advantages of ACC and ICC criteria significant for large predicates
 - CoC is impractical for predicates with many clauses
- Control software often has many complicated predicates, with lots of clauses
- Question ... why don't complexity metrics count the number of clauses in predicates?