

Esperienza 2: Interferometro di Michelson

G. Galbato Muscio

F. Ghimenti

L. Gravina

L. Graziotto

11 Aprile 2019

Gruppo D1-1

Abstract

Si osservano le frange di interferenza di un laser HeNe¹ mediante un interferometro di Michelson. Dalla misura della visibilità, si stima il tempo di coerenza del laser.

Indice

¹https://www.dropbox.com/s/5aqzs2uykfi81ms/ 8-Coherence_function_He_Ne.pdf?dl=0

1 Apparato strumentale

Si utilizza un laser He-Ne di lunghezza d'onda $\lambda=632.8\,\mathrm{nm},$ montato su tavolo ottico. La configurazione utilizzata è illustrata in Figura ??.

In serie al laser è posta una lamina di ritardo $\lambda/4$ montata su uno stadio di rotazione goniometrica, che ha lo scopo di produrre luce polarizzata circolarmente (o ellitticamente, come si vedrà nella sezione ??). Inoltre è presente anche un attenuatore di fascio, per ridurre l'intensità della luce emessa, e un'iride.

Al fine di misurare l'intensità del fascio luminoso si utilizza un fotodiodo, che produce un segnale di tensione direttamente proporzionale (ammesso che si lavori nella condizione di linearità, ovvero non superando un voltaggio di circa $10\,\mathrm{V}$) all'intensità stessa. La differenza di potenziale ai capi del fotodiodo è misurata con

il multimetro METEX M-4650, e le incertezze che saranno associate alla misura sono quelle indicate dal manuale di utilizzo. Il segnale di fondo del fotodiodo risulta essere

$$I_b = (7.6 \pm 0.4) \,\mathrm{mV},$$

ottenuto mediante una misura con il laser oscurato. Ai valori ottenuti sperimentalmente sarà dunque necessario sottrarre il segnale di fondo. Nel seguito, le misure di intensità verranno espresse direttamente come differenza di potenziale, lasciando sottinteso che esista una costante di proporzionalità non nota tra le due².

I filtri polarizzatori lineari adoperati sono dotati di una ghiera goniometrica di sensibilità 2° che permette di misurare l'angolo di rotazione. L'incertezza associata, posto di poter interpolare a mezza tacca, sarà dunque di 1°.

2 Appendice

 $^{^2{\}rm In}$ particolare, sarà quindi sensato rapportare sempre l'intensità in uscita con quella del fascio incidente.