DCC-IME-USP

Complexidade de Contagem Parte 1

Thales A. B. Paiva thalespaiva@gmail.com

5 de novembro de 2015

Sumário

L	Definições Preliminares	2
2	Classes de contagem 2.1 A classe #P 2.2 A classe GapP 2.3 Algumas classes de contagem	
3	#P-completude 3.1 Definição	7
4	Teorema de Valiant	9
5	Poder das Classes de Contagem	14

1 Definições Preliminares

Nesta seção, introduzimos algumas notações e definições. Foram extraídas principalmente de [5].

Fixe $\Sigma = \{0, 1\}$ nosso alfabeto. Então Σ^* é o conjunto de todas as palavras sobre esse alfabeto. Σ^n é o conjunto de todas as strings de tamanho n sobre esse alfabeto.

Definição 1.0.1 (máquina-NP). Uma **Máquina NP** é uma máquina de Turing não determinística cujo tempo de execução é limitado por um polinômio no tamanho da entrada.

Definição 1.0.2 (\overline{M}) . Seja M uma máquina-NP, denotamos por \overline{M} a máquina-NP que simula M invertendo a decisão de M sobre uma dada entrada.

Definição 1.0.3. Seja M uma máquina-NP, denotamos por #M(x) o número de caminhos de aceitação para uma entrada x, ou o número de certificados de que x pertence à linguagem reconhecida por M. Fica claro, então, que $\#\overline{M}(x)$ é o número de caminhos de rejeição para uma entrada x.

Definição 1.0.4. Seja M uma máquina-NP, chamamos de **Intervalo** (Gap) de M(x), denotado por $\Delta M(x)$, a diferença entre o número de caminhos de aceitação e de rejeição para uma entrada x. Então

$$\Delta M(x) = \# M(x) - \# \overline{M}(x)$$

Note que, se o tempo de execução de M é limitado pelo polinômio $|x|^k$ para cada entrada x, temos que os valores de #M(x) e de $\Delta M(x)$ são limitados por $2^{|x|^k}$. Pois lembre que $2^{|x|^k}$ é o número de folhas de uma árvore de altura $|x|^k$.

Definição 1.0.5. A classe de problemas de função FP contém as funções $f: \Sigma^* \to \mathbb{N}$ que são computáveis em tempo polinomial.

Note que \mathbf{FP} é generalização da classe de problemas de decisão \mathbf{P} .

2 Classes de contagem

Uma classe de contagem é um conjunto de soluções de problemas cuja formulação é feita sobre o número de certificados para problemas em NP. Nesta seção, definimos as duas principais classes de contagem, #P e GapP. Jugamos que elas são as principais pois, podemos caracterizar outras classes de problemas a partir delas.

2.1 A classe #P

A classe #P contém os as funções cujas imagens são dadas pelo número de certificados de problemas em NP.

Podemos definir $\#\mathbf{P}$ facilmente em termos de uma máquina-NP M e #M.

Definição 2.1.1. A classe #P contém as funções f tais que existe uma máquina-NP M para que toda entrada x em Σ^* , temos f(x) = #M(x).

Uma definição alternativa para $\#\mathbf{P}$ usando máquinas de Turing polinomiais, como a de [3] é dada abaixo.

Definição 2.1.2 (De [3]). Uma função $f: \Sigma^* \to \mathbb{N}$ está em #P se existe um polinômio $p: \mathbb{N} \to \mathbb{N}$ e uma máquina de Turing polinomial M tal que, para todo $x \in \Sigma^*$, tem-se que

$$f(x) = \left| \{ y \in \{0, 1\}^{p(|x|)} : M(x, y) = 1 \} \right|$$

Como Arora aponta em [3], a principal questão em aberto sobre $\#\mathbf{P}$ é se seus problemas podem ser resolvidos eficientemente ($\#\mathbf{P} \stackrel{?}{=} \mathbf{FP}$). É direto a definição que:

- $\#P \subset FP \implies NP = P$.
- $\#P \subset PSPACE$.
- $\#P \not\supset FP$ (sob a nossa definição de FP).
- $P = PSPACE \implies P = \#P$.

Porém, não sabemos se $\mathbf{NP} = \mathbf{P} \stackrel{?}{\Longrightarrow} \# \mathbf{P} = \mathbf{FP}.$

Duas propriedades esperadas sobre $\#\mathbf{P}$ são o fechamento sob adição e sob multiplicacão.

Propriedade 2.1.1. #P é fechada sob a adição. Ou seja, para todas funções f_1 e f_2 em #P, existe uma função f também em #P tal que, para todo x em Σ^* , temos que

$$f(x) = f_1(x) + f_2(x)$$

Demonstração. Tome M_1 e M_2 máquinas NP tais que

$$\#M_1(x) = f_1(x)$$
 e $\#M_2(x) = f_2(x)$, para todo x em Σ^* .

Construa uma máquina-NP M cuja primeira ramificação seja simular a máquina M_1 ou a máquina M_2 . Claro que

$$#M(x) = #M_1(x) + #M_2(x)$$

= $f_1(x) + f_2(x)$
= $f(x)$.

Propriedade 2.1.2. #P é fechada sob a multiplicação.

Demonstração. Segue da propriedade anterior.

Apesar dessas propriedades, é óbvio que #P não é fechada sob a subtração. Para resolver esse problema e facilitar o estudo de #P, introduzimos a classe GapP.

2.2 A classe GapP

A classe GapP, definida por Fenner em [4], generaliza a classe #**P** sem perda de poder computacional. Sua definição, analoga à de #**P** para ΔM , é dada a seguir.

Definição 2.2.1. A classe GapP contém as funções f tais que existe uma máquina-NP M para que toda entrada x em Σ^* , temos $f(x) = \Delta M(x)$.

É fácil ver que GapP é fechado sob negação.

Propriedade 2.2.1. Se $f \in GapP$, então $-f \in GapP$.

Demonstração. Tome M uma máquina-NP tal que $f(x) = \Delta M(x)$, para todo x em Σ^* . Então $-f(x) = \Delta \overline{M}(x)$.

 \mathbf{GapP} é uma classe ao menos tão poderosa quando a classe $\mathbf{\#P}$. Ou seja, que toda função em $\mathbf{\#P}$ está em \mathbf{GapP} .

Teorema 2.2.1. Se $f \in \#P$, então $f \in GapP$.

Demonstração. Seja M uma máquina-NP tal que, para todo x em $\#\mathbf{P}$, f(x) = #M(x). Queremos construir uma máquina-NP N tal que $f(x) = \Delta N(x)$. Considere a seguinte construção de uma máquina-NP N:

- N simula M com entrada x em Σ^* .
- Se M aceita x, então N aceita x.
- Se M rejeita x, então N ramifica em duas configurações, uma de aceitação, outra de rejeição.

Temos então que:

$$\#N(x) = \#M(x) + \#\overline{M}(x)$$
, e que $\#\overline{N}(x) = \#\overline{M}(x)$.

Assim:

$$\Delta N(x) = \#N(x) - \#\overline{N}(x)$$

$$= (\#M(x) + \#\overline{M}(x)) - (\#\overline{M})$$

$$= \#M(x)$$

$$= f(x).$$

Mais à frente, veremos que GapP é exatamente o fechamento de #P sob a subtração e que #P e GapP têm poder de computação equivalente.

2.3 Algumas classes de contagem

Agora podemos definir um pouco melhor o termo **classe de contagem** como uma classe de funções que têm uma caracterização simples em termo de #P e GapP, (como Fortnow em [5]).

É útil caracterizar classes em termos de **GapP** e de #**P** para que se possa usar as propriedades de fechamento dessas classes, que veremos em próximas seções. Algumas caracterizações são:

Definição 2.3.1. A classe NP contém as linguagens L tais que existe uma função f em #P para que todo x em Σ^* :

- Se $x \in L$, então f(x) > 0.
- Se $x \notin L$, então f(x) = 0.

Essa caracterização não é muito útil mas é ilustrativa. Uma outra classe com caracterização simples é a \mathbf{UP} (Unique P).

Definição 2.3.2. A classe UP contém todas as linguagens L tais que existe uma função f em #P para que todo x em Σ^* :

- Se $x \in L$, então f(x) = 1.
- Se $x \notin L$, então f(x) = 0.

Definição 2.3.3. A classe $\oplus P$ contém todas as linguagens L tais que existe uma função f em #P para que todo x em Σ^* :

• Se $x \in L$, então f(x) é par.

• Se $x \notin L$, então f(x) é impar.

Uma caracterização bem útil é a da classe **PP**. Definida por Gill, como a classe de problemas de decisão tais que existe uma máquina de Turing polinomial probabilística tal que, x pertence a **PP** se e somente se $\mathbb{P}(M(x)=1)>\frac{1}{2}$. **PP** é mais forte do que **BPP**, inclusive **BPP** \subset **PP**, pois o quão próximo de $\frac{1}{2}$ estão as probabilidades de erro e acerto podem depender da entrada. Isso faria com que o algoritmo devesse ser rodado por tempo exponencial para aumentar a probabilidade de acerto, e não por tempo polinomial através do limite de Chernoff.

Essa classe é particularmente importante no estudo de classes de contagem, pois veremos mais para frente que \mathbf{PP} é tão poderosa quanto $\#\mathbf{P}$.

Definição 2.3.4. A classe **PP** contém todas as linguagens L tais que existe uma função f em **GapP** para que todo x em Σ^* :

- Se $x \in L$, então f(x) > 0.
- Se $x \notin L$, então $f(x) \leq 0$.

3 #P-completude

Nesta seção curta, definimos $\#\mathbf{P}$ -completude e mostramos alguns exemplos de funções $\#\mathbf{P}$ -completas.

3.1 Definição

UMa função de #**P** é #**P**-completa se um algoritmo polinomial para f implica que #**P** \subset FP. Para a definição formal, podemos usar classes com oráculos.

Lembre que uma classe FP com oráculo para uma função f, denotado por FP^f é o conjunto de funções eficientemente computáveis dado que se sabe calcular o valor de f em um passo computacional.

Definição 3.1.1. Uma função f de #P é #P-completa se cada g em #P pertence a FP^f .

Problemas NP-completos costumam ter formulações de contagem #P-completas. Exemplos são #SAT, #3SAT, #CLIQUE, e #HAM.

3.2 Reduções parcimoniosas

Em complexidade de contagem estamos interessados em reduções de A para B que preservem o número de soluções.

Definição 3.2.1. Dadas duas linguagens A e B de NP. Uma redução parcimoniosa é uma redução $h:A\to B$ tal que h é calculada em tempo polinomial e o número de certificados para $x\in A$ é o mesmo de $f(x)\in B$.

Como pode ser difícil (ou impossível) encontrar reduções parcimoniosas, podemos relaxar um pouco o tipo de redução que precisamos. Basta que, para nossa redução de A para B, seja possível reconstruir o número de soluções de A através do número de soluções para B.

Definição 3.2.2 (Erik Demaine). Dadas duas linguagens A e B de NP. Uma redução c-moniosa \acute{e} uma redução $h:A\to B$ tal que h \acute{e} calculada em tempo polinomial e o número de certificados para $x\in A$ \acute{e} o mesmo de $f(x)\in B$ multiplicado por um inteiro c.

3.3 #SAT é #P-completo

Demonstração. Basta ver que a redução de Cook-Levin para mostrar que SAT é NP-completa é, em particular, uma redução de Levin. Esta redução consiste de três funções f, g, h de uma linguagem $L \in \mathbf{NP}$ para SAT tal que:

- 1. $x \in L \Leftrightarrow f(x) \in \mathbf{SAT}$.
- 2. y é certificado de que $x \in L \Leftrightarrow g(y)$ é certificado de que $f(x) \in \mathbf{SAT}$.

3. h(z) é certificado de que $x \in L \Leftrightarrow z$ é certificado de que $f(x) \in \mathbf{SAT}$.

Então, o número de certificados para cada $x \in L$, é o mesmo de certificados para $f(x) \in \mathbf{SAT}.$

Note que isso implica que #3SAT é #P-completa, pois a redução de SAT para 3SAT também é parcimoniosa. Usaremos esse fato para provar o Teorema de Valiant.

4 Teorema de Valiant

Valiant mostrou que calcular o número de emparelhamentos perfeitos num grafo bipartido é $\#\mathbf{P}$ -completo. Isso é surpreendente pois o problema de decisão associado está em \mathbf{P} .

Para demonstrar esse teorema, primeiro lembramos que calcular o número de emparelhamentos perfeitos num grafo bipartido é o mesmo que encontrar o número de coberturas por ciclos de um grafo direcionado. Ainda, se considerarmos A como uma matriz de adjacência de um digrafo G, calcular o permanente de A é calcular o número de coberturas por ciclos de G. Finalmente, reduzimos o problema #3SAT, que é #**P-completo**, ao cálculo do número de coberturas por ciclos de um digrafo.

Teorema 4.0.1 (Valiant 1979). PERMANENTE \acute{e} #P-completo.

Demonstração. Queremos reduzir #3sat a PERMANENTE. Para isso, dada uma fórmula ϕ na 3-FNC, devemos construir um digrafo G cujas coberturas por ciclos correspondam a valorações das variáveis de ϕ que a satisfazem.

Seja ϕ uma fórmula na forma normal conjuntiva com exatamente 3 variáveis por cláusula sobre as variáveis em $X = \{x_1, \overline{x_1}, x_2, \overline{x_2}, \dots, x_n, \overline{x_n}\}$. Assim, temos que

$$\phi = \bigwedge_{i=1}^{m} C_i = C_1 \wedge C_2 \wedge \cdots \wedge C_m,$$

onde cada cláusula C_i é da forma $C_i = (y_{i1} \vee y_{i2} \vee y_{i3})$, com cada y_{ij} em X.

Iremos considerar três dispositivos para construir o digrafo G relacionado. Cada dispositivo representa alguma característica ou restrição de uma fórmula na 3-FNC em um digrafo. Os dispositivos e suas descrições resumidas são dadas a seguir.

Dispositivo de Valoração D_V :

Cada variável gera um dispositivo de valoração. Sua valoração está associada univocamente a como os dois vértices deste dispositivo são cobertos por uma cobertura por ciclos de G. A representação gráfica de D_v para uma variável x pode ser vista na Figura 4.0.1, em que 0 e 1 representam respectivamente os valores verdadeiro e falso. Dois dos arcos estão pontilhados pois poderão ser acoplados a outros dispositivos na construção de G.

Dispositivo de Cláusula D_C :

Semelhante ao dispositivo anterior, cada cláusula gera um dispositivo de cláusula. Este dispositivo captura a restrição de que ao menos uma das expressões componentes de uma cláusula deve ser verdadeiro. Assim, para uma cláusula C, cada ciclo em seu dispositivo associado corresponde a uma valoração que faz C ser satisfeita.

Nesse dispositivo, três arcos externos representam as valorações que fazem cada expressão de uma cláusula $C = (y_1 \lor y_2 \lor y_3)$ ser falsa. Podemos ver na Figura 4.0.2 que não pode haver cobertura por ciclos que percorra os três arcos externos. Também vemos

Figura 4.0.1: Dispositivo de valoração para variável \boldsymbol{x}

Figura 4.0.2: Dispositivo de cláusula para a cláusula $C = (y_1 \vee y_2 \vee y_3)$

que para qualquer aresta externa ou par de arestas externas, há apenas uma cobertura por ciclos do dispositivo. Aqui, os arcos externos estão tracejados pois serão conectados a dispositivos de valoração através de dispositivos de valoração exclusiva.

Dispositivo de Valoração Exclusiva D_{\oplus} :

Este dispositivo é o que garante a consistência entre os dispositivos de valoração e de cláusulas. Queremos garantir que uma cobertura por ciclos de G não possua arestas que se contradizem. Ou seja, garantir que as cobertura dos dispositivos de valoração para cada variável de uma cláusula C não entrem em conflito com as coberturas de C.

Como exemplo, suponha que a fórmula ϕ seja composta por apenas duas cláusulas e dada por

$$\phi = C_1 \wedge C_2 = (x_1 \vee x_2 \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_3 \vee \overline{x_4}).$$

Um esquema do digrafo para ϕ é dado na Figura 4.0.3. Nesta figura, os D_{\oplus} representam os dispositivos de valoração exclusiva que devem ser acoplados às arestas contraditórias.

Figura 4.0.3: D_{\oplus} para forçar o uso exclusivo de arestas contraditórias

Gostaríamos que D_{\oplus} garantisse que exatamente uma das arestas contraditórias fosse atravessada. Porém, se isso fosse possível, esta redução seria parcimoniosa, o que implicaria $\mathbf{P} = \mathbf{NP}$. Pois como sabemos dizer se $perm(A) \geq 0$ eficientemente, saberíamos dizer se uma instância de **3sat** tem ao menos uma solução.

Para desconsiderar coberturas por ciclos de G que implicariam valorações contraditórias, usaremos faremos de D_{\oplus} um digrafo com pesos nas arestas. O permanente, então, passa a ser a soma dos pesos de todas as coberturas por ciclos de G.

Assim, este digrafo deve ser tal que coberturas que correspondem a valorações contraditórias tenham peso 0. Coberturas que correspondem a valorações válidas têm peso constante. Queremos então, as observar as seguintes propriedades na matriz de adjacência $M_{D_{\oplus}}$ deste dispositivo:

- 1. Seu permanente é 0. .
- 2. O permanente de $M_{D_{\oplus}}$ sem a primeira linha e sem a última coluna deve ser 0. O mesmo para a última linha e última coluna.
- 3. O permanente de $M_{D_{\oplus}}$ sem a primeira e última linha e sem a primeira e última colunas deve ser 0.
- 4. O permanente da matriz sem a primeira linha e última coluna deve ser o mesmo que o da matriz sem a primeira coluna e última linha. Ainda, esse valor deve ser uma constante maior que 0.

Veja que o dispositivo mostrado na Figura 4.0.4 e sua matriz de adjacências $M_{D_{\oplus}}$ dada a seguir satisfazem as exigências. Note ainda que a exigência 4 é satisfeita para a constante k=4.

Figura 4.0.4: O dispositivo de valoração exclusiva D_{\oplus} sobre arcos (u_1,u_2) e (v_1,v_2)

$$M_{D_{\oplus}} = egin{bmatrix} 0 & 1 & -1 & -1 \ 1 & -1 & 1 & 1 \ 0 & 1 & 1 & 2 \ 0 & 1 & 3 & 0 \end{bmatrix}$$

Nossa construção usa três dispositivos D_{\oplus} por cláusula, totalizando 3m dispositivos. Cada valoração que satisfaz ϕ corresponde a uma cobertura por ciclos de peso 4^{3m} . Assim, se $\#\phi$ denotar o número de soluções de ϕ :

$$perm(G) = \#\phi 4^{3m}$$

 $\implies \#\phi = \frac{perm(G)}{4^{3m}}.$

Como não estamos mais usando apenas entradas 0 e 1 na matriz de G, provamos que a generalização de **Permanent** é #**P**-completa. Então, precisamos reduzir esta solução ao problema inicial.

Para simular arestas de peso 2 e 3, use os dispositivos da Figura 4.0.5

Figura 4.0.5: Dispositivo para substituir arestas de peso 2 e 3

Então resta apenas lidar com a entrada -1 da matriz. Para isso, consideramos o problema **Permanent mod N** que obviamente se reduz a **PermanentGeral**.

Assim, podemos calcular o permanente de G mod N, para N grande, digamos $N=2^{8(3m)}+1$. Então podemos substuir a aresta -1 pelo dispositivo da Figura 4.0.6.

E finalmente, o permanente de $G \mod N$ é $(\#\phi)4^{3m}$ e, por causa do mod N, temos a correspondência com emparelhamentos perfeitos.

Figura 4.0.6: Dispositivo para substituir arestas de peso 2^n por n concatenações

5 Poder das Classes de Contagem

Nesta seção, estudamos as relações entre as classes de contagem e algumas classes conhecidas.

Teorema 5.0.1. Toda função f em FP também está em GapP. Em particular, se f(x) é não negativo para toda string x, então f também está em #P.

Demonstração. Seja f uma função em ${\bf FP}$. Construa uma máquina-NP M tal que, dada uma entrada x:

- 1. Calcula n = |f(x)|.
- 2. Chuta n caminhos de computação.
- 3. Se f(x) > 0, então aceita todos os caminhos.
- 4. Senão, rejeita todos.

Claro que, para toda palavra x, $\Delta M = f(x)$ e, se $f(x) \ge 0$, então # M(x) = f(x). \square

Mostramos a seguir que GapP e #P têm o mesmo poder de computação.

Teorema 5.0.2. Para toda função f, as seguintes afirmações são equivalentes:

- 1. f pertence a GapP.
- 2. f é dada pela diferença entre duas funções de #P.
- 3. $f \in dada$ pela diferença entre uma função de #P e outra de FP.
- 4. f é dada pela diferença entre uma função de FP e outra de #P. Demonstração.
- $1 \Rightarrow 2$ É direto da definição pois

$$f \in \mathbf{GapP} \Rightarrow f = \Delta M \Rightarrow = \#M - \#\overline{M}$$

- $2 \Rightarrow 3$ Sejam f e g funções de $\#\mathbf{P}$. Então para algum par de máquinas-NP, M_1 e M_2 , temos que $f = \#M_1$ e $g = \#M_2$. Suponha que M_2 tem, para algum polinômio q no tamanho da entrada, $2^{q(|x|)}$ caminhos de computação (caso contrário, basta adicionar o número de caminhos restantes). Construa uma máquina N tal que:
 - 1. N se ramifica em dois ramos, $L \in \mathbb{R}$.
 - 2. Simula M_1 no ramo L e M_2 no ramo R.

Então, para qualquer x:

$$f(x) - g(x) = \#M_1(x) - \#M_2(x)$$

$$= \#M_1(x) + \#M_2(x) - 2^{q(|x|)}$$

$$= \#N(x) - 2^{q(|x|)}$$

E claro que $\#N \in \#\mathbf{P}$ e $2^{q(|x|)} \in \mathbf{FP}$.

Pelo fechamento sob a negação, $3 \Leftrightarrow 4$.

 $3 \Rightarrow 1$ Sejam f função de $\#\mathbf{P}$ e g função de \mathbf{FP} . Seja M a máquina-NP tal que $\Delta M = f$. Construa N tal que, para cada palavra x, N(x) é dada por M(x) com mais g(x) caminhos de rejeição. Então:

$$\#N(x) = \#M(x)$$
$$\#\overline{N}(x) = \#\overline{M}(x) + g(x)$$

E assim:

$$\Delta N(x) = \#N(x) - \#\overline{N}(x)$$
$$= \#M(x) - \#\overline{M}(x) - g(x)$$
$$= f(x) - g(x)$$

Uma consequência deste teorema, é que $\mathbf{GapP} \subset \mathbf{FP}^{\#\mathbf{P}[1]}$. Lembre que $\mathbf{FP}^{\#\mathbf{P}[k]}$ contém as funções computáveis em tempo polinomial dado que se pode fazer até k consulta a um oráculo de $\#\mathbf{P}$.

Teorema 5.0.3. Seja f função de FP e g função de #P (ou GapP). Então $g \circ f$ está em #P (ou GapP).

Demonstração. Seja M máquina-NP tal que #M = g. Construa a máquina-NP N que, para uma entrada x calcula f(x) e simula M(f(x)). Claro que #N(x) = #M(f(x)) = g(f(x)).

Babai e Fortnow mostraram em [7] que qualquer função em **GapP** pode ser expressada como polinômios construídos de maneira simples. Não provaremos este resultado.

Definição 5.0.1. Um programa de aritmética retardada com substituição binária (RAB) é uma sequência $\{p_1, p_2, ...\}$ de instruções tais que, para todo k, vale uma das condições seguintes:

- 1. $p_k = 0$ ou $p_k = 1$;
- 2. $p_k = x_i \text{ para algum } i \leq k;$
- 3. $p_k = 1 x_i \text{ para algum } i \leq k;$
- 4. $p_k = p_i p_j$ para algum par i, j < k;
- 5. $p_k = p_i p_j$ para algum par i, j tais que $i + j \le k$;
- 6. $p_k = p_j(x_i = 0)$ ou $p_k = p_j(x_i = 1)$, para algum par i, j < k. (substituição binária)

Dizemos que um RAB é uniforme se existe uma máquina de Turing polinomial que, com entrada 1^n imprime as primeiras n instruções.

Teorema 5.0.4. Para toda função f, as afirmações seguintes são equivalentes:

- 1. $f \in GapP$
- 2. Existe um RAB uniforme se existe um polinômio q(n) tal que $p_{q(n)}$ tem variáveis livres x_1, \ldots, x_n e tal que, para cada palavra $x \in \Sigma^*$, tem-se que $f(x) = p_{q(n)}(x)$.

Vamos mostrar agora que **GapP** e **PP** têm mesmo poder computacional. Mas antes, mostramos uma caracterização alternativa para **PP**.

Teorema 5.0.5. A classe **PP** contém todas as linguagens L para que existe uma função f em **GapP** tal que, para toda palavra x

- Se $x \in L$, então f(x) > 0
- Se $x \notin L$, então f(x) < 0

Demonstração. Sabemos, da definição de **PP**, que se $x \in \mathbf{PP}$, então existe uma função g de **GapP** tal que:

- Se $x \in L$, então g(x) > 0
- Se $x \notin L$, então q(x) < 0

Considere a função f tal que f(x) = 2g(x) - 1. Sabemos que $f \in \mathbf{GapP}$ e, f é tal que:

- Se q(x) > 0, então f(x) > 0
- Se q(x) < 0, então f(x) < 0

Dessa caracterização, é direto que \mathbf{PP} é fechada sob complemento. Mostramos agora que \mathbf{PP} e \mathbf{GapP} têm mesmo poder computacional.

Teorema 5.0.6. $P^{PP} = P^{GapP}$

Demonstração. Como **GapP** é tão ou mais forte que **PP**, precisamos apenas mostrar que toda função g de **GapP** está em **FP**^{PP}. Considere a linguagem:

$$L = \{ \langle x, k \rangle : g(x) > k \}.$$

 $L \in \mathbf{PP}$, comprovado pelo fato de a função f(x,k) = g(x) - k estar em \mathbf{GapP} . Então, dada uma palavra x, podemos calcular g(x) fazendo uma busca binária com ajuda de um oráculo para L.

Referências Referências

Finalmente, enunciamos, sem demonstração, o teorema de Toda sobre a relação das classes de contagem e a hierarquia polinomial.

Teorema 5.0.7 (Toda).

$$PH \subseteq P^{GapP[1]}$$

E suas consequências imediatas são:

- 1. $\mathbf{PH} \subseteq \mathbf{P}^{\#\mathbf{P}[1]}$
- 2. $\mathbf{PH} \subseteq \mathbf{P^{PP}}$

Referências

- [1] Valiant, Leslie G. "The complexity of enumeration and reliability problems." SIAM Journal on Computing 8.3 (1979): 410-421.
- [2] Valiant, Leslie G. "The complexity of computing the permanent." Theoretical computer science 8.2 (1979): 189-201.
- [3] Arora, Sanjeev, and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
- [4] Fenner, Stephen A., Lance J. Fortnow, and Stuart A. Kurtz. "Gap-definable counting classes." Journal of Computer and System Sciences 48.1 (1994): 116-148.
- [5] Fortnow, Lance. "Counting complexity." Complexity theory retrospective II (1997): 81-107.
- [6] Papadimitriou, Christos H. Computational complexity. John Wiley and Sons Ltd., 2003.
- [7] Babai, László, and Lance Fortnow. "Arithmetization: A new method in structural complexity theory." Computational Complexity 1.1 (1991): 41-66.