

AGENDA DU JOUR

PROJET ET DÉMARCHE PRÉ-TRAITEMENT DES DONNÉES PRÉSENTATION DES APPROCHES

CHOIX MODÈLE ET DÉPLOIEMENT

PROJET ET DÉMARCHE

CONTEXTE PROJET ET DÉMARCHE

Problématique

Surveiller la réputation sur les réseaux sociaux

Prédire le sentiment associé à un tweet

Livrer un prototype fonctionnel du modèle

Source de travail

Utiliser des données open source d'analyse de sentiment

Trouver des tweets annotés du sentiment exprimé (+ive ou -ive)

Jeu de données : Sentiment140

Démarche

Analyser et prétraiter les données

Explorer les différentes approches

Déployer le meilleur modèle

PRÉ-TRAITEMENT DES DONNÉES

EXPLORATION DES DONNÉES

1,6 millions de Tweets collectés sur 3 mois: avril-juin 2009

Classes cible équilibrées

13/14 mots en moyenne

Hashtags peu informatifs (top 50)

Identification d'utilisateur étrange

549, 3)			
ser	timent	user	tweet
43935	0	lost_dog	@NyleW I am lost. Please help me find a good home
45574	0	lost_dog	@SallyD I am lost. Please help me find a good home
46919	0	lost_dog	@zuppaholic I am lost. Please help me find a good home
47949	0	lost_dog	@LOSTPETUSA I am lost. Please help me find a good home
50572	0	lost_dog	@JeanLevertHood I am lost. Please help me find a good home.

APPLICATION DE 2 TYPES DE PRÉTRAITEMEN

Nettoyage préliminaire : Suppression des doublons sur le sous-ensemble [Utilisateur –Tweet] et des lignes vides

Normalisation du texte

Suppression majuscules, ponctuations, caractères spéciaux et nombres

Suppression des mots creux

Suppression des mots trop communs

Vectorisation

Transformation du texte en nombre

Traitement spécifique aux tweets

Remplacement mentions, url et hashtags

Lemmatisation / Stemmoing

Application de la racine lexicale des mots

Prétraitement standard

Prétraitement avancé

COMPARAISON DES PRÉTRAITEMENTS

user nope not

'user no not behaving mad not see'

PRÉSENTATION DES APPROCHES

3 APPROCHES DIFFÉRENTES

Modèle «Prêt-à-l'emploi »

1.600 tweets

ℽ

AZURE Machine Learning

Bibliothèque de modules pour construire des modèles

1.600 tweets

TensorFlow

Modèles «propriétaire» de réseaux de neurones profonds

1.600 & 400.000 tweets

*Vectorisation si applicable

⊌

*Entraînement si applicable

 \sim

Hachage des caractéristiques

Extraction des caractéristiques n-grams

¥

Régression logistique

ℽ

Word Embeddings (plongement de mots)

 \geqslant

Réseaux de neurones récurrents

ℽ

Prédiction

Evaluation des 3 approches + Déploiement du meilleur modèle

MODÈLE CLÉ-EN-MAIN: API SENTIMENT ANALYSIS DE MICROSOFT AZURE

Prérequis:

Ouverture d'un compte Azure (sur le Portail)

Souscription au service **Text Analytics** de la collection Azure

Cognitive Services

Récupération du point de terminaison et de la clé de souscription pour utiliser le service Utilisation du Kit de Développement Logiciel (SDK) Azure Machine Learning pour Python pour appeler le service

Pour valider notre hypothèse sur le prétraitement des données, nous avons testé l'API (Interface de programmation d'application avec les données :

- **Brutes**, sans aucun traitement;
- **Prétraitées**, standard;
- Prétraitées, avancé.

		rrearce_crme	AUC_Score	Accuracy
0	Original tweets	186.1	74.349%	74.335%
1	Cleaned tweets	192.2	75.989%	75.949%
2	Lemmatized tweets	184.0	75.380%	75.319%

MODÈLE BOÎTE-À-OUTILS : AZURE MACHINE LEARNING STUDIO (AMLS)

Prérequis:

Ouverture d'un compte Azure (sur le Portail) Souscription d'un espace de travail **Azure Machine Learning**

Clonage d'un pipeline existant

Text Classification - Wikipedia SP 500 Dataset ③

AMLS: CONCEPTEUR ET PIPELINE DE MODULES

MODÈLE AVANCÉ: RÉSEAUX DE NEURONES PROFONDS

Optimisation du modèle de base (baseline)


```
        Model
        AUC_Score
        Accuracy
        Loss

        0
        SimpleRNN
        85.245085
        77.525002
        56.828576
```


 Model
 AUC_Score
 Accuracy
 Loss

 0
 do3L2 SimpleRNN
 86.35236
 78.49375
 49.211758

 Model
 AUC_Score
 Accuracy
 Loss

 0
 do5L2 SimpleRNN
 87.459093
 79.468751
 44.949293

MODÈLE AVANCÉ: DEEPLEARNING & PLONGEMENT DE MOTS

Modèle avancé: RNN & Embeddings

Meilleure mémoire du passé proche

lstm (LSTM)	(None, 128)	197120
	Lecture gauche/droite et droite/gauc	he

Utilisation du modèle LSTM avec les Embeddings pré-entraînés

word2Vec embedding 3 (Embedding) (None, 36, 300) 28044000

		GloVe		
1	embedding_4 (Embedding)	(None, 36,	200)	18696000

USE

keras_layer (KerasLayer) (None, 512) 256797824

Paramètres communs

Configure all modeling variables
VOCAB_SIZE: 50000
MAX_LEN: 36
EMBEDDING_DIM: 256
DROP_OUT: 0.5
OPTIM_LR: 0.001
REGUL_LR: 0.001
NUM_EPOCHS: 5
BATCH_SIZE: 250

Modèle de base qu'on veut encore améliorer

Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	36, 256)	12800000
spatial_dropout1d (SpatialDr	(None,	36, 256)	0
simple_rnn (SimpleRNN)	(None,	128)	49280
aropout (propout)	(None,	128)	И
dense (Dense)	(None,	64)	8256
dropout_1 (Dropout)	(None,	64)	0
dense_1 (Dense)	(None,	1)	65
Total params: 12,857,601 Trainable params: 12,857,601 Non-trainable params: 0			

Différents réseaux de neurones : RNN → LSTM → LSTM bidirectionnel

Différents embeddings: fromscratch → pré-entrainés (Word2Vec, GloVe, USE...)

Transforme une phrase entière en vecteurs, n'utilise pas de LSTM

PERFORMANCE DES MODÈLES AVANCÉS

Confusion matrix - Base model: SimpleRNN

8767

25000

20000

15000

31284

7696

negative

positive

Word2Vec et USE en sous-apprentissage (underfit)

CHOIX MODÈLE ET DÉPLOIEMENT

SYNTHÈSE DES PERFORMANCES MODÈLES AVANCÉS 1600 tweets

0.6

0.1

34.0

6.8

2.9

0.2

	Model	False positives	AUC_Score	Accuracy	Loss	Fit_time	Eval_time	Predict_time
6	Glove (full DF)	24499	91.580%	83.556%	37.130%	174.9	10.3	19.9
4	GloVe +LSTM	54	79.405%	72.500%	62.565%	4.7	0.1	0.5
3	Word2Vec +LSTM	111	73.094%	57.812%	71.840%	5.5	0.1	0.9
1	LSTM	87	68.042%	59.375%	69.497%	7.1	0.1	0.5
5	BERT	38	66.425%	61.719%	65.152%	38.5	0.6	3.9
2	Bi-LSTM	122	65.731%	57.187%	79.331%	7.8	0.1	0.9
0	Simple RNN	99	57.612%	53.438%	75.649%	7.5	0.1	0.2
	Model	False positives	AUC_Score	Accuracy	Loss	Fit_time	Eval_time	Predict_time
6	Glove (full DF)	29843	89.812%	81.645%	40.549%	145.1	4.7	15.8
4	GloVe +LSTM	46	77.884%	72.812%	65.494%	3.5	0.1	0.4
2	Bi-LSTM	17	76.235%	66.250%	69.596%	5.6	0.1	0.7
3	Word2Vec +LSTM	105	73.460%	61.875%	71.015%	4.7	0.1	0.7
1	LSTM	108	71.757%	59.062%	70.933%	3.9	0.1	0.4
5	BERT	107	64.335%	57.031%	68.499%	31.8	0.6	2.9
0	Simple RNN	161	57.082%	48.438%	77.619%	4.1	0.1	0.2
	Model	False positives	AUC_Score	Accuracy	Loss	Fit_time	Eval_time	Predict_time
6	Glove (full DF)	29303	89.037%		42.303%	150.0	4.7	15.6
3	Word2Vec +LSTM	100	75.733%	63.125%	68.884%	3.8	0.1	0.7
1	LSTM	83	75.111%	64.062%	69.772%	5.7	0.1	0.4
4	GloVe +LSTM	53	74.997%	68.437%	68.806%	3.4	0.1	0.3
2	Bi-LSTM	111	71.718%	58.438%	71.898%	5.8	0.1	0.7

51.172% 78.047%

52.188% 76.632%

BERT

Simple RNN

Prétraitement standard

Prétraitement avancé - Lemmitization

Prétraitement avancé - Stemming

SYNTHÈSE DES PERFORMANCES DES APPROCHES (Final)

Vectorisation	Modèle	Machine	Dimension de vecteurs	Echantillon	Paramètres entraînables	Temps d'exécution	AUC Score	Accuracy
N.A.	API Sentiment	CPU	N.A.	1.600	N.A.	3,2 min	75,989 %	75,949 %
Hachage de caractéristiques	Régression logistique	vCPU	N.A.	1.600	N.A.	1,35 min	70,200 %	63,400 %
Extraction de caract. n-grams	Régression logistique	vCPU	N.A.	1.600	N.A.	1,72 min	78,400 %	70,600 %
Embeddings propriétaire (Keras)	RNN Simple	GPU	256	400.000	12.857.601	8,10 min	87,653 %	79,421 %
Embeddings propriétaire (Keras)	LSTM	GPU	256	400.000	13.005.441	7,41 min	88,955 %	80, 953%
Embeddings propriétaire (Keras)	LSTM bidirectionnel	GPU	256	400.000	13.210.753	7,23 min	89,091 %	81,094 %
Embeddings pré- entraînés: Word2Vec	LSTM	GPU	300	400.000	227.969	1,20 min	88,685 %	80,586 %
Embeddings pré- entraînés: GloVe	LSTM	GPU	200	400.000	176.769	1,73 min	90,279 %	82,121 %
Embeddings pré- entraînés: USE	N.A.	GPU	512	400.000	131,585	2,53 min	87,912 %	79,594%
Bert - Transformers	Distill BERT	GPU	768	400.000	108.890.881	159 min	87,742 %	79,484 %

TWEETS LABELISÉS «NÉGATIF» PRÉDITS «POSITIF»

Housemate has told me to shut up with the hysterical laughing.

Holiday Was FANTASTIC

Sugarsnap peas, carrots and califlower. what a lunch!

kind of very pissed off that my parentals are going to NYC in Septmember without me. but now I just figured out what they can buy me!

Rona Howarda? S tim to jde z kopce. Kdyz vezmu Beautiful Mind ... Sifra... Andele. Od deviti k peti

housemate has told me to shut up with the hysterical laughing

holiday was fantastic

sugarsnap peas carrots and califlower what a lunch

kind of very pissed off that my parentals are going to nyc in septmember without me but now i just figured out what they can buy me

user rona howarda s tim to jde z kopce kdyz vezmu beautiful mind sifra andele od deviti k peti

INTERPRETATION

Erreur réelle du modèle

Erreur de label à l'origine? Ce tweet semble très positif

Détection de sarcasme compliquée

Mix d'émotions: joie, peine...

Tweets qui sont dans une langue autre que l'Anglais (ici, le tchèque)

DÉPLOIEMENT SUR AZURE MACHINE LEARNING

Flux de travail

- Installation de Azure SDK pour Python
- Inscription du modèle sur Azure
- Préparation d'un script pour initier le déploiement et prédire avec le modèle
- Définition des configurations: environnement, dépendances, inférence
- Exécution du déploiement
- Utilisation du service web déployé

SYNTHÈSE

PROPOSITION DE CRITÈRES DE SÉLECTION

	Approche 1 «Clé en main»	Approche 2 «Boîte à outils»	Approche 3 «propriétaire»
Connaissance en IA	Peu de connaissance	Connaissances de base	Expertise
Prise en main	Simple	Relativement simple	Complexe
Adaptabilité	Aucune	Possible	Complète
Local / Cloud	Non / Oui	Non / Oui	Oui / Oui
Performance	Moyen	Bon	Très bon
Investissement matériel	Inclus	Inclus	(à définir)*
Investissement temps	Faible	Modéré	Conséquent
Coûts Cloud	Usage en volumétrie	Usage horaire	e(à définir)*

*Le coût d'un GPU est moindre par rapport à un vrai coût matériel

CONCLUSION

Un **choix d'approche** dépendant principalement des besoins exprimés par les équipes en interne ET des ressources disponibles (humain, financier, temps).

Une **performance du modèle** dépendant principalement :

- -La qualité initiale des données ;
 - -Du prétraitement effectué.

- Analyse de texte (text mining) avec <u>Azure Cognitive Services -TextAnalytics</u>
- Solution Cloud de Machine Learning avec <u>Azure Machine Learning</u> et son <u>concepteur (Drag and Drop)</u>
- Deep Learning: <u>Tensorflow-Réseaux de neurones récurrents</u>, <u>LSTM-TowardsData Science</u>, <u>wordembeddings</u>
- Pre-trained word embeddings: <u>word2vec</u>, <u>GloVe(Global Vectors for Word Representation</u>, <u>USE (Universal Sentence Encoder) -v4</u>
- Transformers: The Illustrated Transformer
- Déploiement : <u>How and where to deploy Machine Learning models to Azure</u>
- Autre: neptune.ai -structure and manage nlp projects

Ce document a été produit dans le cadre de la soutenance du projet n°7 du parcours Ingénieur IA d'OpenClassrooms: «Détectez les Bad Buzz grâce au DeepLearning »

> Mentor : Mohamed Laaraiedh Evaluateur : Aminata Diaby

