

Lecture 21: Introduction to
Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

11. One-Parameter Canonical

> Exponential Families

11. One-Parameter Canonical Exponential Families Worked example: Find B for Bernoulli Distribution

Practice: Binomial Distribution as a Canonical Exponential Family

3/3 points (graded)

Recall from a previous problem that the pmf of a Binomial distribution $\mathsf{Binom}\,(n,p)$ with known n can be written as

$$f_p\left(y
ight) \; = \; inom{n}{y} e^{y\left(\ln\left(p
ight) - \ln\left(1-p
ight)
ight) + n \ln\left(1-p
ight)}.$$

Rewrite $f_{p}\left(y\right)$ as the pmf of a canonical exponential family:

$$f_{ heta}\left(y
ight) \;=\; \exp\left(rac{y heta-b\left(heta
ight)}{\phi}+c\left(y,\phi
ight)
ight).$$

Enter the canonical parameter θ , in terms of p, the dispersion parameter ϕ , and the function $b(\theta)$ below.

$$\theta = \boxed{\ln(p/(1-p))} \qquad \qquad \textbf{Answer: } \ln(p) - \ln(1-p)$$

$$\boxed{\ln\left(\frac{p}{1-p}\right)}$$

$$b\left(\theta\right) = \boxed{n*\ln(1+e^{\wedge} theta)} \qquad \qquad \textbf{Answer: } n*\ln(1+e^{\wedge} (theta))$$

$$\boxed{n \cdot \ln\left(1+e^{\theta}\right)}$$

$$\phi = \boxed{1} \qquad \qquad \qquad \textbf{Answer: } 1$$

STANDARD NOTATION

Solution:

Pattern matching, we have

$$f_{p}\left(y
ight) \; = \; \exp\left(y\underbrace{\left(\ln\left(p
ight) - \ln\left(1 - p
ight)}_{ heta} + \underbrace{n\ln\left(1 - p
ight)}_{-b(heta)} + \underbrace{\ln\left(inom{n}{y}
ight)}_{c\left(y,\phi
ight)}
ight).$$

That is, the dispersion parameter is $\phi=1$, and the canonical parameter is $\theta=\ln{(p)}-\ln{(1-p)}$. To find $b\left(\theta\right)$, first invert $\theta\left(p\right)$:

$$heta = \ln \left(rac{p}{1-p}
ight) \iff p = rac{e^{ heta}}{1+e^{ heta}}$$

Plugging this into $n \ln{(1-p)}$ gives

$$b\left(heta
ight) \; = \; - n \ln \left(1 - p
ight) \, = \; n \ln \left(1 + e^{ heta}
ight).$$

Finally, $c\left(y,\phi
ight)=\ln\left({n\choose y}
ight)$ (remember n is known).

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Properties of Canonical Exponential Families

1/1 point (graded)

Which of the following are examples of one-parameter canonical exponential families for **nonzero** θ ? (Select all that apply.)

 $lap{black}{lack}$ Bernoulli(p)

ightharpoonup Binomial (1000, p)

 \checkmark Exponential (λ)

Solution:

Every choice here is an example of a canonical exponential family except the uniform distribution parametrized by a. There is no way to write it in the form f_{θ} described in the beginning of this section: we require $y\theta$ to show up in the exponent, yet the density does not depend on the value of y.

Every other distribution can be expressed as a canonical exponential family; just as before, apply the trick of writing some function f(y) as $e^{\ln f(y)}$, and identify η (using the generalized exponential family notation) as θ .

For example, Bernoulli(p) has the distribution $p^y(1-p)^{1-y}$, with y taking one of two values 0 or 1. We can write it as

$$p^y (1-p)^{1-y} = e^{y \ln p + (1-y) \ln(1-p)} = e^{y \ln rac{p}{1-p} + \ln(1-p)}$$

and take $heta=\lnrac{p}{1-p}$ and $b\left(heta
ight)=-\ln\left(1-p
ight)=\ln\left(1+e^{ heta}
ight)$. (Here, we also took $\phi=1$ and $c\left(y,\phi
ight)=0$.)

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7 Generalized Linear Models:Lecture 21: Introduction to Generalized Linear Models; Exponential Families / 11. One-Parameter Canonical Exponential Families

Add a Post

Show all posts ▼	by recent activity ▼
There are no posts in this topic yet.	
×	

© All Rights Reserved