Perceptron train loss = 0.029344175358
 Perceptron test loss = 0.387546468401
 MultinomialNB train loss = 0.13196040304
 MultinomialNB test loss = 0.350770047796
 SGDClassifier train loss = 0.0540038889871
 SGDClassifier test loss = 0.426181625066
 BernoulliNB baseline train loss = 0.401272759413
 BernoulliNB baseline test loss = 0.542087095061

For perceptron, I used 10-fold cross validation to pick the optimal max-iteration value and check whether this method is better than Bernoulli Naïve Bayes.

For SGDClassifier, I used 10-fold cross validation to choose the optimal penalty function and check whether this method is better than Bernoulli Naïve Bayes.

For MultinomialNB, I used 10-fold cross validation to choose the optimal alpha value and check whether this method is better than Bernoulli Naïve Bayes.

I first picked MultinomialNB since it is suitable for classification with discrete features. Then I took Perceptron as an attempt and it outperformed the baseline. Because SGDClassifier is also a linear model, I took it as the final attempt. Finally, all three models performed better than baseline and as expected, MultinomialNB generated minimal loss among them.

Following is the confusion matrix:

172	4	6	0	1	0	0	1	5	8	6	4	2	7	11	22	15	21	26	50
1	279	77	11	14	57	2	2	2	3	2	7	20	5	13	5	0	1	2	3
0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	16	136	280	30	10	29	2	1	0	0	2	29	3	1	1	0	1	0	1
0	22	44	50	273	12	29	1	2	1	0	6	18	2	0	1	0	0	0	0
2	19	62	5	1	285	0	0	1	1	0	1	0	0	1	0	1	3	0	0
0	2	2	7	6	3	272	8	3	3	0	0	5	2	0	0	2	0	1	0
5	2	2	3	7	0	11	293	32	4	3	0	20	7	10	1	5	2	6	1
3	3	4	0	3	3	8	27	295	6	6	6	5	7	6	0	4	3	5	3
2	1	0	1	0	0	2	1	4	314	23	3	1	0	0	1	0	1	0	2
9	5	15	7	14	5	10	25	13	20	328	16	11	14	18	14	11	6	7	7
2	15	9	4	6	6	1	2	1	4	3	285	33	1	1	1	6	5	3	2
1	5	5	21	19	2	6	10	10	2	1	8	222	7	6	0	3	0	1	4
2	3	4	1	1	4	1	1	4	3	1	3	8	300	6	0	3	0	6	3
6	6	9	0	4	1	8	3	0	2	2	7	10	4	277	1	3	0	6	4
54	4	3	0	2	2	3	4	6	10	5	7	3	13	9	330	15	25	7	78
9	0	0	1	1	1	3	4	9	6	1	15	2	4	2	2	226	8	84	17
9	1	0	0	0	0	1	2	2	1	4	7	1	5	6	1	15	269	13	11
13	2	11	1	1	2	3	9	6	9	12	17	3	12	24	2	34	25	133	9
28	0	4	0	1	1	1	1	2	0	2	2	0	3	3	16	21	6	10	56

By calculating the proportions that test examples belonging to class j were classified as class i, I built another table and observed that class 0 and 19 are the most confused class, which are alt.atheism and talk.religion.misc, respectively.

2. The test of SGD with momentum:

For model with beta=0:
Training accuracy is 0.911111111111.
Test accuracy is 0.911498005078.
Average training hinge loss is 0.404885244108.
Average test hinge loss is 0.408611242517.

For the model with beta = 0.1:
Training accuracy is 0.903219954649.
Test accuracy is 0.904243743199.
Average training hinge loss is 0.352736680825.
Average test hinge loss is 0.340984757148.

3.1 50	olution:
Fo	or 16, let 2 be a mainy built by eigenvectors of 16.
Si	nce V is systemmetic, then we can set A to be orthonormal, i.s
	A. A T = L => A T = A T
	and A'KA = diag(n), where n is a vector of K's eigenvalues.
V	Ve can see K = A diag(N) A = A diag(N) A T
	For any $x \in R^d$,
	$x^T K x = x^T A diag(N) A^T x$
	$=\sum_{i=1}^{\infty} \eta_i \cdot \left[\Lambda_i^* \chi \right]_i^2$
	That is, xTKx 30 IFF hiro for 15isd
	Thus, K is positive semi-definite ITT xTKX 70 for all xERd.
2 -	
	Solution:
	$k(x,y) = a \Rightarrow (\phi(x), \phi(y)) \Rightarrow a$
	Then let embedding pex = [], then
	(\$(x), \$ey) > = a for a > 0.
	Thus, h(x,y)=a is a hernel for a>0.
2).	k(x,y)=f(x)-f(y) => <p(x), p(y)="">=f(x)-f(y)</p(x),>
	For any $f: \mathbb{R}^d \to \mathbb{R}$, let $\beta(x) = \overline{t}f(x), 0, \dots, 01$, then
	(2g(x), g(y) > = f(x) f(y)
	Thus, k(x,y)= f(x)-f(y) for all fixd->R

$3/\lambda(x,y) = a \cdot k, (x,y) + b \cdot k_2(x,y)$
$K_{ij} = k(x^{(i)}, x^{(j)}) = \alpha \cdot k \cdot (x^{(i)}, x^{(j)}) + b \cdot k_z(x^{(i)}, x^{(j)})$
= a. K.i) + b. K.ij
and $K = a \cdot K^{(1)} + b \cdot K^{(2)}$
For any $x \in \mathbb{R}^d$, $x^T K x = x^T (a K + b K) x$ $= a \cdot x^T K \times + b \times K \times x$
70 #x1Kx,xKx>0, a,b>0
We can see Kij = Kji and thus K is positive semi-definite.
There fore k(x,y) is a hernel.
4) $k(x,y) = \frac{k(x,y)}{\sqrt{k(x,x)}} = \frac{k(x,y)}{\sqrt{k(y,y)}} = \frac{(\phi(x),\phi(y))}{\sqrt{k(y,y)}} = \frac{(\phi(x),\phi(y))}{\sqrt{k(y)}} $
2 b(x), p(y)>
= 11 p(x)112 · 11 p(x)112
$= \langle \frac{\rho(x)}{ \rho(x) _2}, \frac{\rho(y)}{ \rho(y) _2} \rangle$
Then $h(x,y) = \langle \varphi(x), \varphi(y) \rangle$ where $\varphi(u) = \frac{\varphi(u)}{ \varphi(u) _2}$
and hlx,y) is a hernel.