Escalão B, Fase regional 2021

Enunciado: https://olimpiadas.spf.pt/docs/2021/teorica_B_reg.pdf

1. Conceitos-chave: Conservação energia, Aceleração centrípeta

Solução. Como o peso é uma força conservativa e a tensão atua sempre perpendicularmente à velocidade do objeto, a energia mecânica conserva-se. Assim, conseguimos calcular a sua velocidade quando a barra fica horizontal: $v^2 = 2 \times g \times 0.8L$.

Aplicando agora a $2^{\underline{a}}$ lei de Newton na direção radial, temos que $ma_{\text{radial}} = -T$. Como o objeto descreve uma trajetória circular de raio L, temos que $a_{\text{radial}} = -v^2/L$ e, portanto, T = 1.6mq.

2. Conceitos-chave: Cinemática

Solução. Quando a bola sai com velocidade v de um choque, o próximo choque ocorrerá um tempo Δt depois, dado por: $v - g\Delta t/2 = 0 \iff \Delta t = 2v/g$.

Assim, se num ressalto a bolinha sair com velocidade v_i , este ressalto dura $2v_i/g$. No seguinte ressalto, sai com velocidade βv_i , pelo que este salto irá durar $2\beta v_i/g$. Deste modo, a taxa de variação do tempo entre ressaltos é

$$\frac{2\beta v_i/g - 2v_i/g}{2v_i/q} = \beta - 1,$$

que é constante! Logo, o gráfico correto é uma reta com declive negativo $(\beta-1)$.

Vejamos o que acontece se em t=0 a bolinha é disparada do chão com velocidade v_0 . Este primeiro ressalto demora $2v_0/g$ (doravante chamado T_0). Passado um tempo $2v_0/g$, a bolinha embate no chão e ressalta com velocidade βv_0 . Assim, este ressalto irá demorar $2\beta v_0/g = \beta T_0$ e por aí em diante.

3. Conceitos-chave: Erro relativo, Cinemática

Solução. Seja h a profundidade do poço, o tempo que a pedra demora a cair é $\sqrt{2h/g}$. O tempo que o som demora a propagar-se até à superfície é h/c, onde c é a velocidade do som no ar. Assim, o intervalo de tempo t que medimos está relacionado com a altura h da seguinte forma

$$t = \sqrt{\frac{2h}{g}} + \frac{h}{c}.$$

Usando a aproximação, obtemos uma profundidade aproximada h' dada por

$$h' = \frac{1}{2}gt^2.$$

Queremos agora descobrir a altura para o qual a aproximação tem um erro de 5%, ou seja, queremos resolver a equação

$$\frac{h'-h}{h} = 0.05.$$

Podemos agora testar as opções do problema (usar h para calcular t, calculando depois h') e verificar que a solução da equação é h = 14 m.

Alternativamente, após alguma manipulação algébrica, temos a seguinte equação de segundo grau em \sqrt{h} :

$$\frac{g}{2c^2}(h^{1/2})^2 + \frac{\sqrt{2g}}{c}h^{1/2} - 0.05 = 0 \iff h = 14 \text{ m}.$$

4. Conceitos-chave: Corpo rígido

Solução. O tempo, T, que a barra demora a voltar à posição inicial é dado por $v_y - gT/2 = 0$, ou seja, $T = 2v_y/g$. Este tempo corresponde também ao período de rotação da barra, já que é o tempo que a barra demora a completar uma rotação. Assim a

velocidade angular da barra é

$$\omega = \frac{2\pi}{T} = \frac{\pi g}{v_u}.$$

A velocidade da base da barra é a soma da velocidade do centro de massa com a velocidade do ponto em relação ao centro de massa ($\vec{v^*}$ na figura).

Assim, a velocidade horizontal da base de barra no início do movimento é simplesmente a sua velocidade em relação ao centro de massa, pois a velocidade do centro de massa é vertical. Esta velocidade é dada por

$$\omega \frac{L}{2} = \frac{\pi g L}{2v_y},$$

já que no referencial do centro de massa, a barra está apenas em rotação.

5. Conceitos-chave: Plano inclinado, Cinemática

Solução. Desenhando um diagrama de forças (notar que a força de atrito se opõe ao movimento) e escrevendo a 2^{a} lei de Newton no eixo paralelo à rampa, temos

$$ma_s = mg\sin\theta + F_a \iff a_s = g\sin\theta + \frac{F_a}{m}.$$

3

Com a aceleração, conseguimos agora calcular o tempo de subida:

$$v_0 - a_s t_s = 0 \iff t_s = \frac{v_0}{a_s}.$$

Também podemos calcular a distância percorrida, algo que será útil para mais tarde determinar o tempo de descida. Esta distância é

$$d = v_0 t_s - \frac{1}{2} a_s t_s^2 = \frac{v_0^2}{2a_s}.$$

Para o movimento descendente, as leis de Newton dão-nos

$$ma_d = mg\sin\theta - F_a \iff a_d = g\sin\theta - \frac{F_a}{m}.$$

Podemos agora relacionar o tempo de descida com o de subida, uma vez que sabemos que a distância percorrida será d:

$$d = \frac{1}{2}a_d t_d^2 \iff \frac{v_0^2}{2a_s} = \frac{1}{2}a_d t_d^2 \iff \frac{(t_s a_s)^2}{2a_s} = \frac{1}{2}a_d t_d^2 \iff t_d = \sqrt{\frac{a_s}{a_d}}t_s.$$

Usando $\sin \theta = 0.6L/L = 0.6$ e os valores do enunciado, obtemos $t_d = \sqrt{5}t_s$.

6. Conceitos-chave: Força de resistência

Solução. Quando é lançado, o objeto tem velocidade positiva. Tanto a força gravítica como a resistência do ar têm sentido para baixo, logo a velocidade do objeto vai diminuindo até ser nula.

Neste momento, a resistência do ar é zero, pelo que o objeto cai com a aceleração da gravidade. À medida que vai ganhando velocidade, a força de resistência do ar vai aumentando, fazendo com que a aceleração seja cada vez menor. A velocidade aproxima-

4

se assintoticamente de uma velocidade terminal.

Deste modo, o gráfico correto é o D.

7. Conceitos-chave: Plano inclinado, Corpos ligados, Impulsão

Solução. Balançando as forças que atuam corpo A na direção paralela ao plano, temos que $T = mg \sin \theta$. Balançando as forças no corpo B, temos

$$T + I = mg \iff I = mg - mg\sin\theta = mg(1 - \sin\theta).$$

Como $\theta = 30^{\circ}$, temos que a impulsão é mg/2.

8. Conceitos-chave: Velocidade angular, Cinemática

Solução. Após cair uma distância h
 com aceleração constante a, o corpo tem velocidade $v=\sqrt{2ah}$. Como esta é também a velocidade na periferia da roldana, temos que $\omega R=v$ e, portanto, $\omega=\sqrt{2ah}/R=1$ rad/s.

9. Conceitos-chave: Variação de entalpia mássica, Calor específico

Solução. Em primeiro lugar, devemos notar que a variação de entalpia mássica de vaporização da água é muito maior do que a do gelo. Por isso, devemos primeiro confirmar se a transferência de energia do vapor de água para o gelo é suficiente para que todo o vapor se condense.

Sendo m a massa do gelo e do vapor, a energia necessária para a fusão do gelo e elevar a temperatura de água a $0^{\rm o}$ C até $100^{\rm o}$ C é

$$m \times 3.35 \times 10^5 \text{J/kg} + m \times 4190 \text{J/kg} \times 100 = m \times 7.54 \times 10^5 \text{J/kg}.$$

Como a energia para condensar totalmente o vapor de água é $m \times 2.26 \times 10^6 \text{J/kg} > m \times 7.54 \times 10^5 \text{J/kg}$, a temperatura final da mistura é $100^{\circ}C$. Ou seja, o vapor de água (sem nunca condensar totalmente) vai transferindo energia sob a forma de calor ao gelo, fazendo com que este funda completamente e com que a água líquida resultante aumente a sua temperatura até $100^{\circ}C$.

10. Conceitos-chave: Indução eletromagnética

Solução. A variação de fluxo magnético irá causar uma força eletromotriz induzida $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$ no circuito, que faz com que surja uma corrente elétrica, $I = \varepsilon/R$.

A corrente elétrica será nula quando a força eletromotriz for nula, ou seja, quando a taxa de variação temporal do fluxo magnético for zero. O que isto significa é que decorrido um tempo pequeno Δt , o fluxo magnético praticamente não se altera:

$$\frac{\Phi(t + \Delta t) - \Phi(t)}{\Delta t} \approx 0.$$

O fluxo magnético é dado simplesmente pelo produto da área com o campo magnético, porque o campo é perpendicular ao plano do circuito. Logo, no instante t temos

$$\Phi(t) = L_{AB} \cdot L(t) \cdot kt,$$

onde k = 0.05T/s. Após um intervalo Δt , a distância L diminui $v\Delta t$, por isso temos

$$\Phi(t + \Delta t) = L_{AB} \cdot (L(t) - v\Delta t) \cdot k(t + \Delta t).$$

Assim, a taxa de variação de fluxo magnético é

$$\frac{\Phi(t + \Delta t) - \Phi(t)}{\Delta t} = kL_{AB} \left[L(t) - vt - v\Delta t \right].$$

Como o intervalo de tempo Δt é muito pequeno, o termo $v\Delta t$ é desprezável. Além disso, como $L(t) = L_0 - vt$, podemos reescrever a equação do seguinte modo:

$$\frac{\Phi(t + \Delta t) - \Phi(t)}{\Delta t} = kL_{AB} \left[2L(t) - L_0 \right].$$

Logo, a taxa de variação de fluxo é zero quando $L(t) = L_0/2$. Assim, a distância para a qual a corrente no circuito é nula apenas depende da distância inicial, é independente da velocidade v, da resistência R e do comprimento AB.

Nota: Este exercício pode ser feito com recurso a derivadas, pois o que queremos calcular é na verdade a derivada temporal do fluxo magnético, ou seja, $\frac{d}{dt} [L_{AB} \cdot L(t) \cdot B(t)]$.

11. Conceitos-chave: Refração, Lei de Snell-Descartes

Solução. Aplicando a lei de Snell-Descartes entre o meio 0 e 1, temos $n_0 \sin \theta_0 = n_1 \sin \theta_1$. Aplicando agora entre o meio 1 e 2, obtemos $n_1 \sin \theta_1 = n_2 \sin \theta_2$ e por isso $n_0 \sin \theta_0 = n_2 \sin \theta_2$. Podemos continuar a aplicar este raciocínio e concluir que para qualquer placa $i \in \{1, 2, 3, ...\}$, temos $n_0 \sin \theta_0 = n_i \sin \theta_i$.

O raio de luz irá sendo refratado e ficando cada vez mais horizontal, até incidir numa placa com um ângulo superior ao crítico e ser refletido completamente.

O ângulo crítico da fronteira entre as placa i e i+1 é dado por $\sin \theta_c = \frac{n_i+1}{n_i}$. Queremos portanto descobrir a placa i para a qual

$$\theta_{i} > \theta_{c} \iff \sin \theta_{i} > \sin \theta_{c}$$

$$\iff \frac{n_{0} \sin \theta_{0}}{n_{i}} > \frac{n_{i+1}}{n_{i}}$$

$$\iff n_{0} \sin \theta_{0} > n_{0} - 0.05(i+1)$$

$$\iff i > \frac{n_{0}(1 - \sin \theta_{0})}{0.05} - 1 = 4.3$$

$$\iff i \ge 5.$$

Ou seja, na fronteira entre a placa 4 e 5 o raio de luz ainda não tem um ângulo superior ao crítico, por isso passa para a placa 5. No entanto, quando chega à fronteira com a placa 6, este já é totalmente refletido. Logo, o raio consegue atravessar 5 placas.

12. Conceitos-chave: Trabalho

Solução. O trabalho da força será a área debaixo do gráfico (caso F_x seja negativo, contabilizamos como sendo "área negativa"). Deste modo, o trabalho será

$$W = \frac{6\times8}{2} \mathrm{N} \ \mathrm{m} - \frac{(12-8)\times3}{2} \mathrm{N} \ \mathrm{m} = 18 \ \mathrm{J}.$$