Inhaltsverzeichnis

1 Topologische Gruppen			3		
	1.1	Topolo	ologische Gruppen		
		1.1.1	Definition: Topologische Gruppen	3	
		1.1.2	Bemerkung	3	
		1.1.3	Proposition	3	
		1.1.4	Proposition	4	
		1.1.5	Proposition	4	
		1.1.6	Proposition	5	

Kapitel 1

Topologische Gruppen

1.1 Topologische Gruppen

1.1.1 Definition: Topologische Gruppen

Ein Paar (G, \mathcal{T}) einer Gruppe und einer Topologie auf G heißt **topologische Gruppe**, wenn die Abbildungen

$$_\cdot_:G\times G\longrightarrow G$$
$$^{-1}:G\longrightarrow G$$

stetig sind.

Unter einem **Homomorphismus topologischer Gruppen** verstehen wir einen stetigen Gruppenhomomorphismus.

1.1.2 Bemerkung

Seien G, H topologische Gruppen.

- $U \subset G$ heißt **Umgebung** von $g \in G$, falls eine Teilmenge $V \subset_o G$ existiert, sodass $g \in V \subseteq U$.
- $\phi:G\to H$ ist genau ein Homomorphismus, wenn das Urbild jeder Umgebung der 1 in H eine Umgebung der 1 in G ist.

1.1.3 Proposition

Sei G eine topologische Gruppe und $U \subset G$ eine Umgebung der 1.

- (i) Es existiert eine offene Umgebung V der 1, sodass $V \cdot V \subset U$ und $V = V^{-1}$.
- (ii) Es existiert eine Umgebung V der 1, deren Abschluss \overline{V} in U enthalten ist.

Sei nun $H \leq G$ eine Untergruppe.

- (iii) Der Abschluss von H ist ebenfalls eine Untergruppe. Dieser ist insbesondere normal, falls H ebenfalls normal ist.
- (iv) Ist $H \leq_o G$ offen, so auch abgeschlossen, also insbesondere eine Zusammenhangkomponente.

Beweis

(i) Definiere

$$f: G \to G, x \mapsto x^2$$

$$V' := f^{-1}(U) \cap U$$

$$V := V' \cap {V'}^{-1}$$

(ii) Wir geben ohne Beweis einen Satz an, aus dem die Behauptung sofort folgt:

Satz von Weil Eine topologische Gruppe G ist $T_{3\frac{1}{2}}$, d. h., ist $A \subseteq_a G$ eine Teilmenge, die die 1 nicht enthält, so existiert eine stetige Abbildung $f: G \to [0,1] \subset \mathbb{R}$ mit folgenden Eigenschaften:

$$- f(A) = \{1\}$$

- f(1) = 0

- (iii) Seien $a, b \in \overline{H}$, dann existieren Folgen $a_n, b_n \in H$, die gegen a, b konvergieren. Dann ist (a_n, b_n^{-1}) eine Folge in $G \times G$, die gegen (a, b^{-1}) konvergiert. Da Multiplikation stetig ist, konvergiert $a_n b_n^{-1} \in H$ gegen ab^{-1} , ergo liegt ab^{-1} in \overline{H} . Analog zeigt man, dass \overline{H} normal ist, falls H normal ist.
- (iv) Sei $H \leq_o G$ offen und sei $a \in \overline{H}$. Dann existiert eine Folge $a_n \in H$, die gegen a konvergiert. aH ist eine Umgebung von a, ergo existiert ein $N \in \mathbb{N}$, sodass $a_n \in aH$. Daraus folgt $a \in a_nH^{-1} = H$.

1.1.4 Proposition

Sei G eine topologische Gruppe. Dann sind folgende Aussagen äquivalent:

- (i) G ist hausdorffsch.
- (ii) $\{1\}$ ist abgeschlossen in G.
- (iii) $\{g\}$ ist abgeschlossen in G für alle $g \in G$.

Beweis

Es bleibt die Implikation (iii) \Longrightarrow (i) zu zeigen. Seien $g,h\in G$ verschieden. Dann ist $U=G\setminus\{gh^{-1}\}$ offen in G. Laut Proposition 1.1.3 (i) existiert eine offene Teilmenge V von U mit folgenden Eigenschaften:

- $1 \in V$
- $VV \subset U$
- $\bullet \ V^{-1} = V$

Dann sind Vg, Vh disjunkte Umgebungen von g, h. Denn wäre ihr Schnitt nichtleer, so würden $v, w \in V$ existieren, sodass vg = wh, woraus folgt dass gh^{-1} in U liegen würde.

1.1.5 Proposition

Sei G eine topologische Gruppe und $H \leq G$ eine Untergruppe.

- (i) H ist genau dann diskret, wenn H einen isolierten Punkt besitzt.
- (ii) Ist G hausdorffsch und H diskret, so ist H abgeschlossen.

Beweis: (ii)

H ist diskret, d. h., es existiert eine offene Teilmenge $V \subseteq_o G$, s. d. $V \cap H = \{1\}$. Ohne Einschränkung darf angenommen werden, dass $V = V^{-1}$.

G ist hausdorffsch, ergo ist $\{1\}$ abgeschlossen in V. Sei $x \in \overline{H}$, dann existiert ein $y \in H$, das in xV liegt. Man erhält durch Umformung

$$x \in yV \cap \overline{H} = \bigcap_{H \subset A \subset_a G} A \cap yV = \bigcap_{\{y\} = H \cap yV \subset A \subset_a yV} A = \{y\}$$

Ergo gilt $x = y \in H$.

1.1.6 Proposition

Sei G eine topologische Gruppe mit Untergruppe H.

- G operiert stetig auf G/H.
- $\pi_H: G \to G/H$ ist eine offene Abbildung.
- \bullet G/H ist genau dann hausdorffsch, wenn H abgeschlossen ist.
- G/H ist genau dann diskret, wenn H offen ist.
- Ist H normal, so ist G/H eine topologische Gruppe und π_H ein Morphismus topologischer Gruppen.

Beweis: (iii)

 \implies : Sei $a \in \overline{H}$, dann existiert eine Folge $a_n \in H$, die gegen a konvergiert. Da π_H stetig ist, gilt

$$\pi_H(a_n) \stackrel{n \to \infty}{\longrightarrow} \pi_H(a)$$

Da alle a_n in H liegen, gilt aber $\pi_H(a_n) = \pi_H(1)$. Da G/H hausdorffsch ist, besitzt diese Folge höchstens einen Grenzwert, ergo gilt

$$\pi_H(a) = \pi_H(1) \Longrightarrow a \in H$$

 \Leftarrow : Seien $\pi_H(b), \pi_H(c) \in G/H$. Ohne Einschränkung nehmen wir an, dass $\pi_H(c) = \pi_H(1)$. In jeder Umgebung \widetilde{U} von $\pi_H(b)$ sei $\pi_H(1)$ enthalten. Dann ist b im Abschluss von H enthalten, denn ist U eine Umgebung von b, so ist $\pi(U)_H$ eine Umgebung von $\pi_H(b)$. Ergo ist $\pi_H(1) \in \pi_H(U)$, ergo existiert ein $h \in H$, sodass $h \in U$.

1.1.7 Definition

Ist G eine topologische, so ist $\overline{\{1\}}$ normal. $G/\overline{\{1\}}$ wird als **Hausdorffquotient** von G bezeichnet.