You should work carefully on all problems. However you only have to hand in solutions to problems 3 and 4. This assignment is due on Tuesday, October 4 in class.

Solutions will be posted shortly after the class so that you can look at them before the midterm. No late assignments will be accepted.

Exercise 1. Show that the set $\mathcal{F}(\mathbb{N})$ of all finite subsets of \mathbb{N} is countable.

Exercise 2. We want to prove that the set $\mathcal{P}(\mathbb{N})$ of all subsets of \mathbb{N} is not countable. For this, we proceed by contradiction and assume that there exists a bijection φ from \mathbb{N} to $\mathcal{P}(\mathbb{N})$. Show that there is a contradiction. *Hint: You may use the set* $A = \{n \in \mathbb{N} : n \notin \varphi(n)\}$.

Exercise 3. [10 points] We call algebraic number any real number x such that there exist $n \in \mathbb{N}$ and $a_0, a_1, \ldots, a_n \in \mathbb{Z}$ such that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$
 and $a_n \neq 0$. (*)

Show that the set of all algebraic numbers is countable. You may assume the following result from algebra: for any $n \in \mathbb{N}$ and $a_0, a_1, \ldots, a_n \in \mathbb{Z}$, the equation (*) has at most n solutions.

Exercise 4. [10 points] Let x and y be two real numbers. By using <u>only</u> the field and order properties of \mathbb{R} , show that the following statements are true:

- (i) (-x)(-y)=xy
- (ii) If x < y < 0, then 1/y < 1/x < 0.

Write every step of the proofs carefully indicating which property you are using. If needed, you can find the statements of the field and order properties of \mathbb{R} in a file on the course webpage (below the link to this assignment).

Exercise 5. Let x, y, z be three real numbers. Show that the following inequalities are true:

- (i) $|x| + |y| \le |x y| + |x + y|$
- (ii) $1 + |xy 1| \le (1 + |x 1|)(1 + |y 1|)$

Exercise 6.

- (i) Show that $x(1-x) \le 1/4$ for all real numbers x.
- (ii) Let x, y be two real numbers such that $0 \le x \le 1$ and $0 \le y \le 1$. Show that at least one of the two numbers xy and (1-x)(1-y) is less than or equal to 1/4.
- (iii) Let x, y, z be three positive real numbers. Show that at least one of the three numbers x(1-y), y(1-z), z(1-x) is less than or equal to 1/4.