Lecture17: CMOS amplifiers (4)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Read your textbook.

- Reading your textbook is important.
- Today, we will try to cover up to p. 773.
 - Common-source
 - Just before "CS Stage with Biasing"
 - 17. 4. 4 (Common-gate) and 17. 4. 5 (Source-follower) will be covered on Wednesday.

Common-source

Source terminal is grounded.

Small-signal model

Let's draw the small-signal model together!

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

Input/output impedances

Input impedance

$$R_{in} = \infty$$

Output impedance

Current-source load

- When $R_D \to \infty$,
 - The gain can be maximized.

Biasing of PMOS devices

- Let's recall the problem18 of our mid-term exam.
 - The amount of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Real current-source load

- Use a PMOS as a current source.
 - It is not an ideal current source.

$$v_{out} = -g_{m1}(r_{01}||r_{02})v_{in}$$

$$A_{v} = -g_{m1}(r_{01}||r_{02})$$

Self-biasing

- Already covered in Example 6.13.
 - Always in the saturation region.

Gate and drain are tied.

In this case,

- Use a diode-connected load.
 - It is not an ideal current source.

$$v_{out} = -g_{m1} \left(r_{O1} || \frac{1}{g_{m2}} || r_{O2} \right) v_{in}$$

$$A_v = -g_{m1} \left(r_{01} || \frac{1}{g_{m2}} || r_{02} \right)$$

Source degeneration (1/2)

A resistor placed in series with the source terminal

Source degeneration (2/2)

- Now we have to find the source voltage.
 - (Saturation current of the MOSFET) = (Current flowing through R_S)
 - After a simple manipulation, we can find

$$V_S = V_G + V_1 - V_{TH} - \sqrt{V_1^2 + 2(V_G - V_{TH})V_1}$$

Here,

$$V_1 = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_s}$$

Effect of R_S (1/2)

- Reduction of the gate-source voltage
 - Therefore, also reduction of the gain.
- For a while, neglect the channel-length modulation.

Effect of R_S (2/2)

After a simple manipulation,

$$A_v = -\frac{g_m R_D}{1 + g_m R_S}$$

Example 17.20

CS with degeneration

$$A_{v} = -\frac{R_{D}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$

Output impedance of CS (1/2)

- Still neglecting the channel-length modulation
 - No current!

Output impedance of CS (2/2)

- Now considering the channel-length modulation
 - Output resistance is $r_0 + (g_m r_0 + 1)R_S$.

Examples 17.23 and 17.24

- Compute the output resistance.
 - What is the difference?

