

DEEP-URL: A MODEL-AWARE APPROACH TO BLIND DECONVOLUTION BASED ON DEEP UNFOLDED RICHARDSON-LUCY NETWORK

CHIRAG AGARWAL, SHAHIN KHOBAHI, ARINDAM BOSE, MOJTABA SOLTANALIAN, DAN SCHONFELD

Challenges with current DNN?

- Lack of interpretability
- Gap between classical estimation technique and deep neural network

Vs.

Problem formulation

$$\min_{x,H} ||y - H \circledast x||_2^2 + \lambda TV(x)$$

RL algorithm

Deep-URL algorithm

$$H^{k+1} = \left(\left[\frac{y}{x^k \circledast H^k} \right] \circledast x^{k^{\dagger}} \right) \odot H^k$$

$$H^{k+1} = \left(\left[\frac{y}{x^k \otimes H^k} \right] \otimes x^{k^{\dagger}} \right) \odot H^k \qquad H^{k+1} = \sigma \left(ReLU \left(\left[\frac{y}{ReLU(x^k \otimes W_H^k)} \right] \otimes x^{k^{\dagger}} \right) \odot W_H^k \right)$$

$$x^{k+1} = \left(\left[\frac{y}{x^k \circledast H^{k+1}} \right] \circledast H^{(k+1)^\dagger} \right) \odot x^k \quad x^{k+1} = \sigma \left(ReLU \left(\left[\frac{y}{ReLU(W_x^k \circledast H^{k+1})} \right] \circledast H^{k+1^\dagger} \right) \odot W_x^k \right)$$

Deep-URL

Deep-URL outperforms RL

Better reconstruction of both Image and Blurring kernel

Metrics	L=	=2	L=5		
	RL	Deep- URL	RL	Deep- URL	
PSNR (dB)	10.392	18.282	10.474	19.071	
ISNR (dB)	0.065	7.955	0.076	9.310	
SSIM	0.445	0.767	0.448	0.821	
RMSE (x 1e-3)	38.54	4.396	38.07	4.399	

Increase in performance with additional layers

Results (Levin dataset)

Deep-URL does not converge to trivial kernel solutions

Metrics	Li et al.	Nah et al.	Ayan et al.	RL	Deep -URL
PSNR (dB)	27.15	24.51	23.18	19.42	27.12
ISNR (dB)	3.79	1.35	0.02	-2.98	6.95
SSIM	0.88	0.81	0.81	0.53	0.91
RMSE (x 1e-3)	3.87	-	-	10.10	7.10

Levin et al. "Understanding and evaluating blind deconvolution algorithms," in 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2009.

Results (Levin dataset)

Deep-URL performs on par or better than existing deblurring methods

Final takeaways

- A model-aware deep blind deconvolution architecture
- Non-trivial solution

Questions?
chiragagarwall12@gmail.com
@ cagarwal