

Performance Analysis and Juning - Part 1

D. John Shakshober (Shak) - Sr Consulting Eng / Director Performance Engineering

Larry Woodman - Senior Consulting Engineer / Kernel VM

Jeremy Eder – Senior Principal Performance Engineer / Network/Atomic

Joe Mario - Senior Principal Performance Engineer / RHEL / NUM/

Agenda: Performance Analysis Tuning Part I

- Part I
 - RHEL Evolution 5->6->7 Hybrid Clouds Atomic / OSE / RHOP
 - NonUniform Memory Access (NUMA)
 - What is NUMA, RHEL Architecture, Auto-NUMA-Balance
 - Cgroups cpuset, memory, network and IO
 - Use to prevent IO from consuming 95% of memory
 - Used by RHEV w/ KVM and OSE w/ Atomic
 - System Performance/Tools
 - Tuned, Perf, and Tuna
 - "Meet The Experts" 5:45-7 PM Free Soda/Beer/Wine

Red Hat Enterprise Linux Performance Evolution

RHEL6

RHEL7

RH Cloud Suites

Static Hugepages Transparent HugePageTransparent

Tuned – choose profile Hugepages

RHEV — out-of-the-box

virt-host/guest

Tuned – throughputperformance (default)

RHEL OSP – blueprints

CPU Affinity (ts/numactl)

LXC -

Tuned, Numa pining NIC – jumbo sriov

Autonuma-Balance

RHEL Atomic

Host/Atomic Enterprise

RH OpenShift v3

Cloud Forms

NUMAD – uerspace tool

Cgroups -

CPU Affinity

(ts/numactl)

irqbalance – NUMA

enhanced

irqbalance – NUMA enhanced

Container/Docker

#redhat #rhsummit

RHEL Performance Workload Coverage

(bare metal, KVM virt w/ RHEV and/or OSP, LXC Kube/OSEand Industry Standard Benchmarks)

Benchmarks – code path coverage

- CPU linpack, Imbench
- Memory Imbench, McCalpin STREAM
- Disk IO iozone, fio SCSI, FC, iSCSI
- Filesystems iozone, ext3/4, xfs, gfs2, gluster
- Networks netperf 10/40Gbit, Infiniband/RoCE, Bypass
- Bare Metal, RHEL6/7 KVM, Atomic Containers
- White box AMD/Intel, with our OEM partners

Application Performance

- Linpack MPI, HPC workloads
- AIM 7 shared, filesystem, db, compute
- Database: DB2, Oracle 11/12, Sybase
 15.x, MySQL, MariaDB, Postgrs, MongoDB
- OLTP TPC-C, TPC-VMS
- DSS TPC-H/xDS
- Big Data TPCx-HS, Bigbench
- SPEC cpu, jbb, sfs, virt, cloud
- SAP SLCS, SD
- STAC = FSI (STAC-N)
- SAS mixed Analytic, SAS grid (gfs2)

RHEL / Intel Benchmarks Broadwell EP/EX

(http://rhelblog.redhat.com/2016/06/06

/red-hat-delivers-high-performance-on-critical-enterprise-workloads-with-the-latest-intel-xeon-e7-v4-processor-family/)

Performance Metrics - Latency==Speed - Throughput==Bandwidth

- Latency Speed Limit
 - Ghz of CPU, Memory PCI
 - Small transfers, disable aggregation TCP nodelay
 - Dataplane optimization DPDK

Throughput – Bandwidth - # lanes in Highway

- Width of data path / cachelines
- Bus Bandwidth, QPI links, PCI 1-2-3
- Network 1 / 10 / 40 Gb aggregation, NAPI
- Fiberchannel 4/8/16, SSD, NVME Drivers

Subsystem Analysis: ALL

pmcollectl -s cdnm

#cpu	sys	inter	ctxsw	KBRead	Reads	KBWrit	Writes	KBIn	PktIn	KBOut	Pkt0u	t #Free	Buff	Cach	Inac	Slab	Map
	<u> </u>	210	179	0	0	64	18	2	17	Θ	1	32355M	13M	52M	91M	63M	44M
		CPU	L50	0			10	1	14	Θ	1	32355M	13 M	52M	92M	63M	44M
4	1	10/8	∠ ⊍73	6876	DIS	SK IO	14	10	50	5	33	32346M	14 M	57 M	98M	63M	44M
17	U	2348	183	0	Θ	36	1 0	2	14	Θ	3	32346M	14 M	57 M	98M	63M	44M
17	Θ	2361	215	0	0	32	10				1	32346M	14 M	57 M	98M	63M	44M
7	1	1760	1629	272	20	88350	282		NET	5	46	32345M	1/M	FQM	OSM	- 53M	44M
3	2	1691	2526	40	10	795720	2336	0	11	Θ	2	32344M		MEN	1	3M	44M
3	2	1875	2855	28	7	924736	2714	2	18	0	3	32344M	141	PIOC	ויוסצ	3 M	44M
2	1	5137	5383	460	40	288836	85	35127	2583	161	2473	32345M	TOTI	Jori	SCM.	63M	44M
4	3	16997	28627	0	A	EC	10	245172	17629	1101	17958	32344M	15 M	58M	96M	63M	45.M
3	2	15619	28062	0	0	44	12	242954	17508	1087	16871	32345M	15 M	58M	96M	63M	44M
6	2	4495	7098	104	3	80	9	51692	3/0 T	240	36/5	31804M	15 M	58M	96M	63M	4/1
17	5	2380	187	0	0	20	5	1	12	0	3	282871		50M	CON	04 M	44M
17	5	2349	188	0	0	52	15	1	13	0	1	24805M	15 M	59M	96M	64M	44M
17	5	2356	214	0	0	32	10	2	16	0	1	21284M	15 M	59M	96M	64M	44M
17	5	2348	197	0	0	32	10	0	9	0	1	17436M	15 M	59M	96M	64M	44M
9	3	1366	225	0	0	32	10	2	20	0	4	24766M	15M	59M	96M	64M	44M
1	0	465	516	8	2	992	169	2	25	1	15	32344M	15M	59M	96M	64M	44M
1	0	236	205	0	0	32	10	1	10	0	1	32344M	15M	59M	96M	64M	44M
Θ	Θ	217	185	0	0	32	10	1	14	Θ	1	32344M	15M	59M	96M	64M	44M

Performance Tools - Tuned

tuned is a tool to dynamically tune Red Hat Enterprise Linux.

You could improve workload performance by applying one of the predefined profiles or use those that you've written yourself

Tuned Overview

- Installed by default
- Auto-set Profiles
- Single config file
- Inheritance/Hooks
- bootloader/cmdline configs

- New Profiles since last year
 - Realtime
 - NFV
 - RHEL Atomic Host
 - OpenShift
 - Oracle

See man tuned-profiles for profile definitions

Tuned: Your Custom Profiles

Mapping *tuned* profiles to Red Hat's product portfolio

RHEL Desktop/Workstation

balanced

RHEL Server/HPC

throughput-performance

RHEL KVM Host, Guest

virtual-host/guest

RHEV

virtual-host

RHEL for Real Time

realtime

Red Hat Storage

rhs-high-throughput, virt

RHEL OSP (compute node)

virtual-host

RHEL for Real Time KVM/NFV

realtime-virtual-host/guest

RHEL Atomic

atomic-host, atomic-guest

OpenShift

openshift-master, node

Tuned Profile Examples throughput-performance

governor=performance energy_perf_bias=performance min_perf_pct=100 transparent_hugepages=always readahead=>4096 sched_min_granularity_ns = 10000000 sched_wakeup_granularity_ns = 15000000 vm.dirty_ratio = 40 vm.dirty_background_ratio = 10 vm.swappiness=10

latency-performance

```
force_latency=1
governor=performance
energy_perf_bias=performance
min_perf_pct=100
kernel.sched_min_granularity_ns=10000000
vm.dirty_ratio=10
vm.dirty_background_ratio=3
vm.swappiness=10
kernel.sched_migration_cost_ns=5000000
```


Tuned: Storage Performance Boost: throughput-performance (default in RHEL7)

RHEL 6/7 Non-Uniform Memory (NUMA)

Typical Four-Node NUMA System

Non-optimal numa setup

Process 1 in red, 5 threads

Numa node 0

Numa node 1

Add in more processes: non-optimal

Process 1 in red, 5 threads
Process 2 in green, 4 threads.

Numa node 0

Numa node 1

Optimal numa setup

Process 1 in green, 4 threads Process 2 in red, 5 threads

Numa node 0

Numa node 1

Are my processes doing that?

- Variety of commands available to help:
 - lscpu
 - numactl
 - lstopo
 - numastat
 - ps
 - top

Tools to display CPU and Memory (NUMA)

```
Architecture:
                         x86_64
CPU op-mode(s):
                         32-bit, 64-bit
                         Little Endian
Byte Order:
CPU(s):
                         40
On-line CPU(s) list:
                         0 - 39
Thread(s) per core:
                          1
Core(s) per socket:
                          10
CPU socket(s):
NUMA node(s):
L1d cache:
                         32K
L1i cache:
                         32K
L2 cache:
                         256K
L3 cache:
                         30720K
NUMA node0 CPU(s):
                         0, 4, 8, 12, 16, 20, 24, 28, 32, 36
NUMA node1 CPU(s):
                         2, 6, 10, 14, 18, 22, 26, 30, 34, 38
NUMA node2 CPU(s):
                         1, 5, 9, 13, 17, 21, 25, 29, 33, 37
NUMA node3 CPU(s):
                         3, 7, 11, 15, 19, 23, 27, 31, 35, 39
```

cpu, core, socket, node info

The cpu numbers for each node

lscpu

Tools to display CPU and Memory (NUMA)

```
# numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36
node 0 size: 65415 MB
node 0 free: 63482 MB
node 1 cpus: 2 6 10 14 18 22 26 30 34 38
node 1 size: 65536 MB
node 1 free: 63968 MB
node 2 cpus: 1 5 9 13 17 21 25 29 33 37
node 2 size: 65536 MB
node 2 free: 63897 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39
node 3 size: 65536 MB
node 3 free: 63971 MB
node distances:
node 0 1 2 3
  0: 10 21 21 21
```

cpus & memory for each node

Relative "node-to-node" latency costs.

1: 21 10 21 21

2: 21 21 10 21

21

21

10

21

Visualize CPUs via Istopo (hwloc-gui rpm)

lstopo

PCle

numastat shows need for NUMA management

```
# numastat -c qemu Per-node process memory usage (in Mbs)
                 Node 0 Node 1 Node 2 Node 3 Total
PID
                   1216
10587 (qemu-kvm)
                          4022
                                 4028
                                        1456 10722
     (qemu-kvm)
10629
                   2108
                            56
                                 473
                                        8077 10714
                                                        unaligned
10671 (qemu-kvm)
                         3470
                                       110 10712
                   4096
                                3036
10713 (qemu-kvm)
                                 2135
                          3498
                                        1055/10730
                   4043
Total
                                       10698 42877
                  11462
# numastat -c qemu
Per-node process memory usage (in Mbs)
                 Node 0 Node 1 Node 2 Node 3 Total
PID
      (qemu-kvm)
                         10723
10587
                                             10728
                                                       aligned
      (qemu-kvm)
10629
                                       10717
                                            10722
      (qemu-kvm)
10671
                            0 10726
                                           0 10726
10713
       qemu-kvm)
                                           0/10738
                 10733
Total
                                       10717 42913
                  10733
                         10723
                               10740
```


Numactl

 The numactl command can launch commands with static NUMA memory and execution thread alignment

- * # numactl -m <NODES> -N <NODES> <Workload>
- Can specify devices of interest to process instead of explicit node list
- Numactl can interleave memory for large monolithic workloads
 - * # numactl --interleave=all <Workload>

```
# numactl -m 6-7 -N 6-7 numactl --show
policy: bind
preferred node: 6
physcpubind: 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
cpubind: 6 7
nodebind: 67
membind: 67
# numactl -m netdev:ens6f2 -N netdev:ens6f2 numactl --show
policy: bind
preferred node: 2
physcpubind: 20 21 22 23 24 25 26 27 28 29
cpubind: 2
nodebind: 2
membind: 2
# numactl -m file:/data -N file:/data numactl --show
policy: bind
preferred node: 0
physcpubind: 0 1 2 3 4 5 6 7 8 9
cpubind: 0
nodebind: 0
membind: 0
# numactl --interleave=4-7 -N 4-7 numactl --show
policy: interleave
preferred node: 5 (interleave next)
interleavemask: 4 5 6 7
interleavenode: 5
physcpubind: 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
cpubind: 4 5 6 7
nodebind: 4567
membind: 0 1 2 3 4 5 6 7
```

What about my processes and threads? Two ways to see "where it last ran".

1) ps -T -o pid,tid,psr,comm <pid>

```
# ps -T -o pid,tid,psr,comm `pidof pig`
            TID PSR COMMAND
    PID
3175391 3175391 73 pig
3175391 3175392
                  1 pig
                                              "Last Ran CPU" column
3175391 3175393
                 25 pig
3175391 3175394
                 49 pig
                 74 pig
3175391 3175395
3175391 3175396
                  2 pig
3175391 3175397
                 26 pig
3175391 3175398
                 50 pig
                 75 pig
3175391 3175399
3175391 3175400
                  3 pig
```

2) Run "top", then enter "f", then select "Last used cpu" field

Techniques to control placement:

numactl:

Control NUMA policy for processes or shared memory:

taskset:

Retrieve or set a process's CPU affinity

```
sched_getaffinity(), sched_setaffinity()
```

• for process affinity from within program

```
mbind(), get_mempolicy(), set_mempolicy()
```

• set default NUMA memory policy for a process children.

Techniques to control placement (cont):

numad:

- User-mode daemon.
- Attempts to locate processes for efficient NUMA locality and affinity.
- Dynamically adjusting to changing system conditions.
- Available in RHEL 6 & 7.

Auto-Numa-Balance kernel scheduler:

- Automatically run programs near their memory, and moves memory near the programs using it.
- Default enabled. Available in RHEL 7+
- Great video on how it works:
 - https://www.youtube.com/watch?v=mjVw_oe1hEA

Early SAP HANA benefit from Auto-Numa-Balance 25+% gain. [Recent HANA numa-aware binary closed gap.]

benchBWEMLSim - MultiProvider QueryRuntime (LOWER==BETTER)

NUMA Nodes and Zones

64-bit End of RAM Normal Zone Node 1 Normal Zone Node 0 4GB DMA32 Zone 16MB DMA Zone

Per Node / Zone split LRU Paging Dynamics

User Allocations

Interaction between VM Tunables and NUMA

- Dependent on NUMA: Reclaim Ratios /proc/sys/vm/swappiness /proc/sys/vm/min_free_kbytes /proc/sys/vm/zone_reclaim_mode
- Independent of NUMA: Reclaim Ratios /proc/sys/vm/vfs_cache_pressure
 - Writeback Parameters
 /proc/sys/vm/dirty_background_ratio
 /proc/sys/vm/dirty_ratio
 - Readahead parameters
 //sys/block/<bdev>/queue/read_ahead_kb

swappiness

- Controls how aggressively the system reclaims anonymous memory versus pagecache memory:
 - Anonymous memory swapping and freeing
 - File pages writing if dirty and freeing
 - System V shared memory swapping and freeing
- Default is 60
- Decrease: more aggressive reclaiming of pagecache memory
- Increase: more aggressive swapping of anonymous memory
- Can effect Numa nodes differently.
- Tuning not as necessary on RHEL7 than RHEL6 and even less than RHEL5

Memory reclaim Watermarks

Free memory list

min_free_kbytes

Directly controls the page reclaim watermarks in KB

Distributed between the Numa nodes

Defaults are higher when THP is enabled

zone_reclaim_mode

- Controls NUMA specific memory allocation policy
- To see current setting: cat /proc/sys/vm/zone_reclaim_mode
 - Turn ON: echo 1 > /proc/sys/vm/zone_reclaim_mode
 - Reclaim memory from local node rather than allocating from next node
 - Turn OFF: echo 0 > /proc/sys/vm/zone_reclaim_mode
 - Allocate from all nodes before reclaiming memory
- Default is set at boot time based on NUMA factor
- •In Red Hat Enterprise Linux 6.6+ and 7+, the default is usually OFF because this is better for many applications

zone_reclaim_mode (continued)

- Low-memory SPEC CPU loses huge performance with wrong zone reclaim mode setting! Several benchmarks off more than 40%.
- (BTW, Don't run SPEC CPU with low memory!!)

NUMA tuning for KVM / Atomic is the same!

- Best performance is achieved if the size of the guest/container can fit into a single NUMA node.
 - •In RHEL7, auto-numa kernel scheduler will try to move guest to one node.

- Great doc with numerous examples: See the NUMA chapter in:
 - Red Hat Virtualization Tuning and Optimization Guide

NUMA Performance – SPECjbb2005 on DL980 Westmere EX

RHEL7 Auto-Numa-Balance SPECjbb2005 multi-instance - bare metal + kvm

8 socket, 80 cpu, 1TB mem

Red Hat Enterprise Linux Cgroups

Cgroup default mount points

RHEL6

```
# cat /etc/cgconfig.conf
mount {
    cpuset= /cgroup/cpuset;
    cpu = /cgroup/cpu;
    cpuacct = /cgroup/cpuacct;
    memory = /cgroup/memory;
    devices = /cgroup/devices;
    freezer = /cgroup/freezer;
    net_cls = /cgroup/net_cls;
    blkio = /cgroup/blkio;
}
```

RHEL7

/sys/fs/cgroup/

```
# ls -l /cgroup
drwxr-xr-x 2 root root 0 Jun 21 13:33 blkio
drwxr-xr-x 3 root root 0 Jun 21 13:33 cpu
drwxr-xr-x 3 root root 0 Jun 21 13:33 cpuacct
drwxr-xr-x 3 root root 0 Jun 21 13:33 cpuset
drwxr-xr-x 3 root root 0 Jun 21 13:33 devices
drwxr-xr-x 3 root root 0 Jun 21 13:33 freezer
drwxr-xr-x 3 root root 0 Jun 21 13:33 memory
drwxr-xr-x 2 root root 0 Jun 21 13:33 net cls
 RHEL7
 #ls -l /sys/fs/cgroup/
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 blkio
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 cpu,cpuacct
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 cpuset
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 devices
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 freezer
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 hugetlb
 drwxr-xr-x. 3 root root 0 Mar 20 16:40 memory
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 net cls
 drwxr-xr-x. 2 root root 0 Mar 20 16:40 perf event
 drwxr-xr-x. 4 root root 0 Mar 20 16:40 systemd
```


Cgroup how-to

Create a 2GB/4CPU subset of a 16GB/8CPU system

```
# numactl --hardware
# mount -t cgroup xxx /cgroups
# mkdir -p /cgroups/test
# cd /cgroups/test
# echo 0 > cpuset.mems
# echo 0-3 > cpuset.cpus
# echo 2G > memory.limit_in_bytes
# echo $$ > tasks
```


cgroups

```
\# echo 0-3 > cpuset.cpus
# runmany 20MB 110procs &
# top -d 5
top - 12:24:13 up 1:36, 4 users, load average: 22.70, 5.32, 1.79
Tasks: 315 total, 93 running, 222 sleeping, 0 stopped, 0 zombie
     : 100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu0
     : 100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si,
Cpu1
                                                                   0.0%st
     : 100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si,
Cpu2
                                                                   0.0%st
Cpu3 : 100.0%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu4 : 0.4%us, 0.6%sy, 0.0%ni, 98.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
Cpu5 : 0.4%us, 0.0%sy, 0.0%ni, 99.2%id, 0.0%wa, 0.0%hi, 0.4%si, 0.0%st
Cpu6 : 0.0%us, 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Cpu7 : 0.0%us, 0.0%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
```


Correct NUMA bindings Incorrect NUMA bindings

```
# echo 1 > cpuset.mems
# echo 0 > cpuset.mems
                                                      # echo 0-3 > cpuset.cpus
# echo 0-3 > cpuset.cpus
                                                      # numastat
# numastat
                                                                                  node0
                                                                                                   node1
                            node0
                                             node1
                                                                                1623318
                                                                                                  434106
                                                      numa_hit
numa_hit
                          1648772
                                            438778
                                                                                  23459
                                                                                                 1082458
                                                      numa_miss
numa_miss
                            23459
                                           2134520
                                                      local_node
                                                                                1623194
                                                                                                  418490
local_node
                          1648648
                                            423162
                                                      other_node
                                                                                  23583
                                                                                                 1098074
other_node
                                           2150136
                            23583
                                                      # /common/lwoodman/code/memory 4G
# /common/lwoodman/code/memory 4G
                                                      faulting took 1.976627s
faulting took 1.616062s
                                                      touching took 0.454322s
touching took 0.364937s
                                                      # numastat
# numastat
                                                                                  node0
                                                                                                   node1
                            node0
                                             node1
                                                                                1623341
                                                                                                  434147
                                                      numa_hit
numa_hit
                          2700423
                                            439550
                                                                                  23459
                                                                                                 2133738
                                                      numa_miss
                            23459
                                           2134520
numa_miss
                                                      local_node
                                                                                1623217
                                                                                                  418531
local_node
                          2700299
                                            423934
                                                      other_node
                                                                                  23583
                                                                                                 2149354
other_node
                            23583
                                           2150136
```


cpu.shares default

cpu.shares throttled

cat cpu.shares 1024

echo 10 > cpu.shares

top - 10:04:19	9 up 1	L3 d	ays, 17	:24, 1	1 users,	load ave	erage: 8	3.41, 8.31, 6.17	top - 09:51:58	3 up :	13 d	ays, 17:	:11, 11	users,	load	laver	age: 7.14	., 5.78, 3.0)9
PID USER	PR	NI	VIRT	RES	SHR S	%CPU %	MEM	TIME	PID USER	PR	NI	VIRT	RES	SHR	S %	CPU	%MEM	TIME	
20104 root	20	0	4160	360	284 R	99.4 0.0	12:35	.83 useless	20102 root	20	0	4160	360	284 R	100.0	0.0	0:17.45	useless	
20103 root	20	0	4160	356	284 R	91.4 0.0	12:34	.78 useless	20103 root	20	0	4160	356	284 R	100.C	0.0	0:17.03	useless	
20105 root	20	0	4160	360	284 R	90.4 0.0	12:33	.08 useless	20107 root	20	0	4160	356	284 R	100.C	0.0	0:15.57	useless	
20106 root	20	0	4160	360	284 R	88.4 0.0	12:32	.81 useless	20104 root	20	0	4160	360	284 R	99.8	0.0	0:16.66	useless	
20102 root	20	0	4160	360	284 R	86.4 0.0	12:35	.29 useless	20105 root	20	0	4160	360	284 R	99.8	0.0	0:16.31	useless	
20107 root	20	0	4160	356	284 R	85.4 0.0	12:33	3.51 useless	20108 root	20	0	4160	360	284 R	99.8	0.0	0:15.19	useless	
20110 root	20	0	4160	360	284 R	84.8 0.0	12:31	87 useless	20110 root	20	0	4160	360	284 R	99.4	0.0	0:14.74	useless	
20108 root	20	0	4160	360	284 R	82.1 0.0	12:30	.55 useless	20106 root	20	0	4160	360	284 R	99.1	0.0	0:15.87	useless	
20410 root	20	0	4160	360	284 R	91.4 0.0	0:18.	51 useful	20111 root	20	0	4160	356	284 R	1.0	0.0	0:00.08	useful	

cpu.cfs_quota_us unlimited

```
# cat cpu.cfs_period_us
100000
# cat cpu.cfs_quota_us
-1
top - 10:11:33 up 13 days, 17:31, 11 users, load average: 6.21, 7.78, 6.80
                                 SHR S %CPU %MEM
PID USER
                     VIRT
                           RES
                                                       TIME+ COMMAND
             PR NI
                                 284 R
                                         100.0 0.0
                                                    0:30.77 useful
20614 root
              20 0
                            360
                     4160
```

echo 1000 > cpu.cfs_quota_us

```
top - 10:16:55 up 13 days, 17:36, 11 users, load average: 0.07, 2.87, 4.93
```

```
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 20645 root 20 0 4160 360 284 R 1.0 0.0 0:01.54 useful
```


Cgroup OOMkills

```
# mkdir -p /sys/fs/cgroup/memory/test
# echo 1G > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
# echo 2G > /sys/fs/cgroup/memory/test/memory.memsw.limit_in_bytes
# echo $$ > /sys/fs/cgroup/memory/test/tasks
# ./memory 16G
size = 10485760000
touching 2560000 pages
Killed
# vmstat 1
...
```

0	0	52224 1640116	Θ
1	0	52224 1640116	Θ
0	1	248532 587268	Θ
0	1	406228 586572	Θ
0	1	568532 585928	Θ
0	1	729300 584744	Θ
1	0	885972 585404	Θ
0	1	1042644 587128	Θ
0	1	1169708 587396	Θ
0	0	86648 1607092	Θ

Θ	3676924	Θ	$oldsymbol{\Theta}$	Θ	Θ	202	487	Θ	Θ	100	Θ	$oldsymbol{\Theta}$
0	3676924	Θ	Θ	Θ	Θ	162	316	0	0	100	0	0
0	3676948	32	196312	32	196372	912	974	1	4	88	7	0
0	3677308	Θ	157696	Θ	157704	624	696	0	1	87	11	0
0	3676864	Θ	162304	Θ	162312	722	1039	0	2	87	11	0
0	3676840	Θ	160768	Θ	160776	719	1161	0	2	87	11	0
0	3677008	Θ	156844	Θ	156852	754	1225	0	2	88	10	0
0	3676784	Θ	156500	Θ	156508	747	1146	0	2	86	12	0
0	3676748	Θ	127064	4	127836	702	1429	0	2	88	10	0
0	3677020	144	0	148	Θ	491	1151	0	1	97	1	0

Cgroup OOMkills (continued)

```
# vmstat 1
52224 1640116
                           0 3676924
                                                                        487
                                                                  202
                                                                             0
                                                                                0 100
                                                                                           0
                                                                                        0
       52224 1640116
                           0 3676924
                                                                  162
                                                                        316
                                                                                  100
                                                                                0
                                                                                        0
                                                                                           0
    1 248532 587268
                           0 3676948
                                                                        974
                                         32 196312
                                                       32 196372
                                                                  912
                                                                                4 88
                                                                                           0
    1 406228 586572
                                                                        696
                           0 3677308
                                         0 157696
                                                       0 157704
                                                                  624
                                                                                1 87
                                                                             0
                                                                                       11
                                                                                           0
                                                                                2 87
    1 568532 585928
                           0 3676864
                                         0 162304
                                                       0 162312
                                                                  722 1039
                                                                                       11
                                                                  719 1161
                                                                                2 87
    1 729300 584744
                           0 3676840
                                         0 160768
                                                       0 160776
                                                                                       11
                                                                                           0
    0 885972 585404
                           0 3677008
                                                                  754 1225
                                         0 156844
                                                       0 156852
                                                                                2 88
                                                                                       10
    1 1042644 587128
                           0 3676784
                                         0 156500
                                                       0 156508
                                                                                2 86
                                                                                       12
                                                                  747 1146
                                                                                           0
    1 1169708 587396
                           0 3676748
                                         0 127064
                                                        4 127836
                                                                  702 1429
                                                                                2 88
                                                                                       10
                                                                                           0
       86648 1607092
                           0 3677020
                                                     148
                                                                  491 1151
                                                                             0
                                                                                1 97
                                       144
                                               0
                                                              0
                                                                                           0
```

dmesg
...
[506858.413341] Task in /test killed as a result of limit of /test
[506858.413342] memory: usage 1048460kB, limit 1048576kB, failcnt 295377
[506858.413343] memory+swap: usage 2097152kB, limit 2097152kB, failcnt 74
[506858.413344] kmem: usage 0kB, limit 9007199254740991kB, failcnt 0
[506858.413345] Memory cgroup stats for /test: cache:0KB rss:1048460KB rss_huge:10240KB
mapped_file:0KB swap:1048692KB inactive_anon:524372KB active_anon:524084KB inactive_file:0KB
active file:0KB unevictable:0KB

redhat.

#redhat #rhsummit

C-group Dynamic resource control

Cgroup – Application Isolation

System Level Memory Swapping

Memory Resource Management Oracle OLTP Workload

Even though one application does not have resources and starts swapping, other applications are not affected

Summary - Red Hat Enterprise Linux NUMA

- RHEL6 NUMAD With Red Hat Enterprise Linux 6.5
 - NUMAD can significantly improve performance and automate NUMA management on systems with server consolidation or replicated parallel workloads.
- RHEL7, Auto-NUMA-Balance works well for most applications out of the box!
- Use NUMAstat and NUMActl tools to measure and/or fine control your application on RHEL.
- App Developers use perf to check for false sharing, advise padding
- •Q+A at "Meet The Experts" Free as in Soda/Beer/Wine

Performance Whitepapers

- Performance Tuning of Satellite 6.1 and Capsules https://access.redhat.com/articles/2356131
- OpenShift v3 Scaling, Performance and Capacity Planning https://access.redhat.com/articles/2191731
- Performance and Scaling your RHEL OSP 7
 Cloud https://access.redhat.com/articles/2165131
- RHEL OSP 7: Cinder Volume Performance on RHCS 1.3 (Ceph) https://access.redhat.com/articles/2061493
- RHGS 3.1 Performance Brief (Gluster)
 https://access.redhat.com/articles/1982243

- Red Hat Performance Tuning Guide
- Red Hat Low Latency Tuning Guide
- Red Hat Virtualization Tuning Guide
- RHEL Blog / Developer Blog

Performance Utility Summary

Supportability

- redhat-support-tool
- SOS
- kdump
- perf
- psmisc
- strace
- sysstat
- systemtap
- trace-cmd
- Util-linux-ng

NUMA

- hwloc
- Intel PCM
- numactl
- numad
- numatop (01.org)

Power/Tuning

- cpupowerutils (R6)
- kernel-tools (R7)
- powertop
- tuna
- tuned

Networking

- dropwatch
- ethtool
- netsniff-ng (EPEL6)
- tcpdump
- wireshark/tshark

Storage

- blktrace
- iotop
- iostat

PCP#redhat #rhsummit

Agenda: Performance Analysis Tuning Part II

- Part II
 - Scheduler tunables
 - Transparent Hugepages, Static Hugepages 4K/2MB/1GB
 - Disk and Filesystem IO Throughput-performance RHS / Cloud
 - Network Performance and Latency-performance noHZ_full
 - NFV Kernel vs offload DPDK, w/ Virt, Container
 - Demo low latency profile

•Q+A at "Meet The Experts" - Free as in Soda/Beer/Wine

Performance Tools - Perf

perf list

List counters/tracepoints available on your system

```
perf list
List of pre-defined events (to be used in -e):
  cpu-cycles OR cycles
                                                        [Hardware event]
  instructions
                                                        [Hardware event]
  cache-references
                                                        [Hardware event]
  cache-misses
                                                        [Hardware event]
  branch-instructions OR branches
                                                        [Hardware event]
                                                        [Hardware event]
  branch-misses
                                                        [Software event]
  cpu-clock
  task-clock
                                                        [Software event]
  page-faults OR faults
                                                        [Software event]
  context-switches OR cs
                                                        [Software event]
  cpu-migrations OR migrations
                                                        [Software event]
  minor-faults
                                                        [Software event]
                                                        [Software event]
  major-faults
```


perf top

System-wide 'top' view of busy functions

```
Samples: 10K of event 'cycles', Event count (approx.): 5973713325
                     [kernel.kallsyms]
                                          [k] avtab search node
               httpd
 34.35%
                      [kernel.kallsyms]
                                          [k] spin lock
               httpd
 12.70%
                                          [k] tg load down
               httpd
                      [kernel.kallsyms]
 8.61%
                                          [k] spin lock irq
               httpd [kernel.kallsyms]
  7.42%
                                          [k] intel idle
                init
 5.79%
                      [kernel.kallsyms]
                                          [k] spin lock irqsave
               httpd
                     [kernel.kallsyms]
 3.92%
                      [kernel.kallsyms]
                                          [k] sidtab search core
               httpd
  1.75%
                                          [k] load balance fair
                      [kernel.kallsyms]
               httpd
  1.74%
 1.18%
                      [kernel.kallsyms]
               httpd
                                          [k] tg nop
                init
                      [kernel.kallsyms]
                                          [k]
                                               spin lock
  1.13%
```


perf record

- Record system-wide (-a)
 - perf record -a sleep 10
 - perf record -a // Hit ctrl-c when done.
- Or record a single command
 - perf record myapp.exe
- Or record an existing process (-p)
 - perf record -p <pid>
- Or add call-chain recording (-g)
 - perf record -g ls -rl /root
- Or only record specific events (-e)
 - perf record -e branch-misses -p <pid>

perf report

```
Overhead
           Command
                         Shared Object
  43.53%
                     [kernel.kallsyms] [k] <u>    clear</u>user
                da
                                                      /dev/zero
                       _clear_user
                     --99.75%-- read_zero.part.5
                                read_zero
                                vfs_read
                                sys_read
                                system_call_fastpath
                                ___GI____libc__read
                     --0.25%-- [...]
                                                       oflag=direct
                     [kernel.kallsyms] [k] do_blockdev_direct_IO
   5.37%
                aa
                     do_blockdev_direct_IO
                       _blockdev__direct__IO
                     xfs_vm_direct_IO
                     generic_file_direct_write
                     xfs_file_dio_aio_write
                     xfs_file_aio_write
                     do_sync_write
```


perf diff / sched

Compare 2 perf recordings

```
perf diff
Event 'cycles'
Baseline
           Delta
                            Shared Object
                                                    Symbol
                                               [k] lookup mnt
  12.88%
         -12.27% [kernel.kallsyms]
                                               [.] 0x0000000000064968
  11.97\%
         -11.17%
                  systemd
  4.32% +6.43% libdbus-1.so.3.7.4
                                               [.] 0x0000000000029258
                                               [.] 0x0000000000014a6e
  4.06% +4.72% dbus-daemon
                                               [.] 0x00000000000088d6a
  3.79% -3.79% libglib-2.0.so.0.3600.3
          +0.25% [kernel.kallsyms]
   3.72%
                                               [k] seq list start
```

grep for something interesting, maybe to see what numabalance is doing?

```
# perf list | grep sched: | grep numa
    sched:sched_move_numa
    sched:sched_stick_numa
    sched:sched_swap_numa
    [Tracepoint event]
```


False Sharing

- Different threads sharing common data struct
- Different processes sharing common shared memory.

Ex: Two hotly contended data items sharing a 64-byte cacheline.

Gets you contention like this:

Can be quite painful

64 byte cache line

int a;	offset	0
mutex	offset	8
mutex	offset	16
mutex	offset	24
mutex	offset	32
mutex	offset	40
long b;	offset	48
long seq_cnt;	offset	5 6

Split it up into two lines, with hot items in their own lines:

Cacheline 1

Hot mutex

Hot sequence counter

Cacheline 2

With padding or cold variables

pthread_mutex_t mutex1;	0
	8
	16
	24
	32
long a;	40
long b;	48
long cold_var;	56
long sequence_cnt;	0
long pad1;	8
long pad2;	16
long pad3;	24
long pad4;	32
long pad5;	40
long pad6;	48

Future Red Hat update to perf: "c2c data sharing" tool

Cach #	ne Refs	Stores	Data Address P	id Ti	d In	st Address	Symbol Object Par		CPU
0	======= 118789	====== 273709	 0x6023 80	====== 37878	======	:=========	=======================================		
		136078	31133 = 3 3 3		37878	0x401520	read wrt thread	a.out	0{0}
	13452	137631	0x6023 88	37878	37883	0x4015a0	read_wrt_thread	a.out	0{1}
	15134	0	0x6023 a8	37878	37882	0x4011d7	reader_thread	a.out	1{5}
	14684	0	0x6023 b0	37878	37880	0x4011d7	reader_thread	a.out	1{6}
	13864	0	0x6023 b8	37878	37881	0x4011d7	reader_thread	a.out	1{7}
1	31	69	0xffff88023960df 40	37878					
	13	69	0xffff88023960df 70	37878	***	0xfffffff8109f8e5	update_cfs_rq_blocked_load	vmlinux	0{0,1,2}; 1{14,16}
	17	0	0xffff88023960df 60	37878	***	0xfffffff8109fc2e	update_entity_load_avg_contrib	vmlinux	0{0,1,2}; 1{14,16}
	1	0	0xffff88023960df 78	37878	37882	0xfffffff8109fc4e	_update_entity_load_avg_contrib	vmlinux	0{2}

This shows who is contributing to the false sharing:

- The hottest contended cachelines
- The process names, data addr, ip, pids, tids
- The node and CPU numbers they ran on,
- And how the cacheline is being accessed (read or write)
- •Disassemble the binary to find the ip, and track back to the sources.

Performance Tools - Tuna

System Tuning Tool - tuna

- Tool for fine grained control
- Display applications / processes
- Displays CPU enumeration
- Socket (useful for NUMA tuning)
- Dynamic control of tuning
 - Process affinity
 - Parent & threads
 - Scheduling policy
 - Device IRQ priorities, etc

Tuna (RHEL6/7)

	Socket ()	Socket 1		IRQ ▼	Affinity		Events	Users	*
	Filter C	PU Usage	Filter CPU	Usage	0	0-23		12994	timer	
	√ 0	29	✓ 1	0	1	0,2,4,6,8,10		2	i8042	
	√ 2	6	√ 3	0	3	0,2,4,6,8,10		268	serial	
-)	□ 4	19	✓ 5	0	4	0,2,4,6,8,10		1		
	- 6		☑ 7	0	8	0,2,4,6,8,10		1	rtc0	
	■ ✓ 8		☑ 9		9	0,2,4,6,8,10		0	acpi	
		.0 0	☑ 11		12	0,2,4,6,8,10		4	i8042	
		.2 0	√ 13	0	14	6		0	pata_atiixp	
		4 7	15	0	15	0,2,4,6,8,10		0	pata_atiixp	
		6 0	17	0	16	20		0	radeon, ahci	
		8 0	√ 19	0	22	2		0	ehci_hcd:usb2,ohci_hcd:usb3,ohci_hcd:usb4	
		0 0	21	0	23	4		0	ehci_hcd:usb1,ohci_hcd:usb5,ohci_hcd:usb6	
	✓ 2	2 0	√ 23	0	44	0,2,4,6,8,10,12,14,16	,18,20,22	25	uhci_hcd:usb7,hpilo	-
	PID	Policy	Priority	Affinits		VolCtxtSwitch	NonVolCtxts	Ewitch C	command Line	_
	7			Affinity	'					4
	383	OTHE		0-23 0-23		1452	55 0		sbin/init sbin/udevd -d	
	b 404	OTHE		0,2,4,6	8 1 0	59290707	77026		usr/libexec/qemu-kvm -name ose-broker -S -M rhel6.4.0 -cpu Opteron_G3,+nodeid_msr,+wdt,+skin	
)	911	OTHE		0-23	,0,10	668	91		sbin/udevd -d	1
•	▶ 2428		R 0	0-23		111966	0		uditd	
	2446		R O	0-23		1	0		sbin/portreserve	
	Þ 2453		R O	0-23		51	О		sbin/rsyslogd -i /var/run/syslogd.pid -c 5	
	2482		R O	0-23		379632	1387		qbalance	
	2503	OTHE	R O	0-23		126446	О	rp	ocbind	
	2510	OTHE	R 0	0-23		10356	34	55	shd: root@pts/2	
	2513	OTHE	R 0	0-23		49	6	-b	pash	
	2521	OTHE	R 0	0-23		12	0	r _j ;	oc.statd	
	2542	OTHE	R O	0-23		5567	1302	/١	usr/bin/python /usr/bin/tuna	
	2577	OTHE	R O	0-23		1	0	rp	oc.idmapd	
	▶ 2677	OTHE	R 0	0-23		2485	3	d	bus-daemonsystem	
				0-23						

avahi-daemon

/usr/sbin/acpid

0

0

2690

2718

OTHER

OTHER 0

0-23

0-23

Tuna GUI Capabilities Updated for RHEL7

Monitoring Profile management	Profile editing		
Current active tuna profile: exa	ample.conf		
Save Snapshot	☑ Save & Apply permanently	nestore changes	Apply changes
-Kernel scheduler			
kernel.core_pattern	core		
kernel.sched_latency_ns		24000000	vm.dirty_expire_centisecs
kernel.sched_min_granularity_	10000000 ns		vm.dirty_ratio
kernel.sched_nr_migrate	32		vm.dirty_writeback_centis
kernel.sched_rt_period_us	1000000		vm.laptop_mode
kernel.sched_rt_runtime_us		950000	
kernel.sched_tunable_scaling	1 		vm.memory_failure_early
kernel.sched_wakeup_granula		0000	vm.swappiness
Network IPv4			Network IPv6
ipv4.conf.all.forwarding			ipv6.conf.all.forwarding
			ipv6. conf. default.forwardi
ipv4.conf.all.rp_filter	0		ipv6.conf.docker0.forward
ipv4.tcp_congestion_control	cubic		ipv6.conf.em1.forwarding
	Į		ipv6.conf.em2.forwarding

