STAT 6390: Analysis of Survival Data

Textbook coverage: Chapter 8

Steven Chiou

Department of Mathematical Sciences, University of Texas at Dallas

Parametric models

- Methods described previously are non-parametric; no distributional assumptions were made.
- Non-parametric (and semi-parametric) methods have the flexibility to accommodate a wide range of applications.
- If the assumption of a particular probability distribution for the data is valid, inferences based on such an assumption will be more precise.
- The validity of the parametric methods depends heavily on the appropriateness of the distributional assumption.
- Parametric models are often much easier to work with.

- Suppose actual survival times observed for n individuals are $\{t_1, \ldots, t_n\}$.
- If the probability density function of the random variable associated with theos survival times is f(t), the likelihood of the n observations is

$$\prod_{i=1}^n f(t_i).$$

• If a distributional assumption is made (e.g., $f(t) = \lambda e^{-t\lambda}$.), the unkonwon parameters (λ) can be estimated by maximzing the likelihood.

- Now suppose a the survival data includes (right) censored data.
- In this case, n pairs of observations are observed (\tilde{t}_i, Δ_i) , $i = 1, \dots, n$, where \tilde{T}_i is the observed survival time.
- When $\Delta_i = 0$, t_i is right-censored.
- The likelihood then takes the form

$$L = \prod_{i=1}^{n} [f_{\mathcal{T}}(t_i)]^{\Delta_i} \cdot [S_{\mathcal{T}}(t_i)]^{1-\Delta_i} = \prod_{i=1}^{n} [h_{\mathcal{T}}(t_i)]^{\Delta_i} \cdot S_{\mathcal{T}}(t_i). \tag{1}$$

- The last equation follows from the property h(t) = f(t)/S(t).
- Note that the derivation of of L does not require a distributional assumption.

- A more careful derivation of the likelihood function in (1) is to assume the censoring times to be random.
- Let C_i be the random variable associated with the censoring time.
- Let \tilde{T}_i be the observed survival time, $\tilde{T}_i = \min(C_i, T_i)$.
- We will consider censored and uncensored cases separately.
- For the censored observation:

$$P(\tilde{T}_i = t, \Delta_i = 0) = P(C_i = t, T_i > t).$$

For the uncensored observation:

$$P(\tilde{T}_i = t, \Delta_i = 1) = P(T_i = t, C_i > t).$$

The likelihood is then

$$L^* = \prod_{i=1}^n [P(T_i = t, C_i > t)]^{\Delta_i} \cdot [P(C_i = t, T_i > t)]^{1-\Delta_i}.$$

Under the assumption that C_i and T_i are independent, L* becomes

$$L^* = \prod_{i=1}^n \left[f_T(t_i)S_C(t_i)\right]^{\Delta_i} \cdot \left[f_C(t_i)S_T(t_i)\right]^{1-\Delta_i}.$$

- If the interest is in the parameter estimation in $f_{\mathcal{T}}(\cdot)$, e.g., the λ in the exponential assumption, $f_{\mathcal{C}}(\cdot)$ and $S_{\mathcal{C}}(\cdot)$ can be considered as constant in the maximum likelihood estimation and L^* reduces to L.
- This construction shows the relevance of the assumption of independent censoring.

Exponential model

• If a random variable, T, follows an exponential distribution with rate λ , then

$$f(t) = \lambda e^{-\lambda t}$$
, $S(t) = e^{-\lambda t}$, and $h(t) = \lambda$.

• If we are willing to assumption $\{t_1, \ldots, t_n\}$ are iid samples from an exponential distribution with rate λ , then the likelihood $L(\lambda)$ is

$$L(\lambda) = \prod_{i=1}^{n} \left[\lambda e^{-\lambda t_i} \right]^{\Delta_i} \cdot \left[e^{-\lambda t_i} \right]^{1-\Delta_i} = \prod_{i=1}^{n} \lambda^{\Delta_i} \cdot e^{-\lambda t_i}.$$

The log-likelihood is

$$\log L(\lambda) = \ell(\lambda) = \log(\lambda) \left(\sum_{i=1}^{n} \Delta_{i} \right) - \lambda \sum_{i=1}^{n} t_{i}.$$

Exponential model

Solving for

$$\frac{\mathrm{d} \log L(\lambda)}{\mathrm{d} \lambda} = \ell'(\lambda) = 0 \text{ gives } \hat{\lambda} = \frac{\sum_{i=1}^{n} \Delta_i}{\sum_{i=1}^{n} t_i}.$$

- The maximum likelihood estimator (MLE), $\hat{\lambda}$, is the *number of deaths* divides by the total survival time (*number of person-years*).
- The MLE for the average survival time is $1/\hat{\lambda}$, which is the total survival time divides by the number of deaths.
- With $\hat{\lambda}$, other quantities like the MLE for median survival times, can be derived.

Exponential model

- The second derivative of $\ell(\lambda)$ gives the *information*.
- In the exponential model, we have

$$\ell''(\lambda) = -\frac{1}{\lambda^2} \sum_{i=1}^n \Delta_i.$$

The standard MLE theory implies

$$\operatorname{Var}(\hat{\lambda}) \approx \frac{\hat{\lambda}^2}{\sum_{i=1}^n \Delta_i}.$$

- The 100(1 α)% confidence interval can be constructed accordingly.
- The Delta method can be applied to obtain standard errors for $g(\lambda)$, e.g., average survival time, median survival time, etc.

- The simplicity of the exponential distribution makes it attractive for some specialized applications.
- A more flexibility alternative is modeling with the Weibull distribution.
- If T follows a Weibull distribution with scale parameters λ and shape parameter γ , then

$$f(t) = \lambda \gamma t^{\gamma - 1} e^{-\lambda t^{\gamma}}, S(t) = e^{-\lambda t^{\gamma}}, \text{ and } h(t) = \lambda \gamma t^{\gamma - 1}.$$

• It is easy to see that when $\gamma =$ 1, Weibull reduces to an exponential distribution with rate λ .

10 / 24

• Following the similar procedure as before, the likelihood $L(\lambda, \gamma)$ is

$$\prod_{i=1}^{n} \left\{ \lambda \gamma t_i^{\gamma - 1} \right\}^{\Delta_i} e^{-\lambda t_i^{\gamma}}.$$

• Let $\ell(\lambda, \gamma) = \log L(\lambda, \gamma)$, the MLE for λ turns out to be

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} \Delta_i}{\sum_{i=1}^{n} t_i^{\hat{\gamma}}},$$

but there is no close-form solution for $\hat{\gamma}$.

- The MLE $\hat{\theta} \equiv (\hat{\lambda}, \hat{\gamma})$ can be obtained directly implementing the likelihood and optimized with optim.
- Numerical method like the Newton-Raphson procedure can also be used.
- The basic idea of the Newton-Raphson procedure iterates

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \left(-\frac{\mathrm{d}^2 \ell(\hat{\theta}_n)}{\mathrm{d}\theta^2} \right)^{-1} \cdot \frac{\mathrm{d}\ell(\hat{\theta}_n)}{\mathrm{d}\theta}.$$

The variance-covariance matrix comes as a by-product.

- Since parametric models are sensitive to the distributional assumption, it is important to have a diagnostic tool.
- A diagnostic tool for Weibull model is derived from its survival curve.
- The log-log transformation of the Weibull survival function gives

$$\log[-\log S(t)] = \log(\lambda) - \gamma \log(t).$$

- This suggest that if $\log[-\log S(t)]$ is plotted against $\log(t)$, we would expect to see a straight line if the Weibull assumption is valid.
- S(t) can be replaced with $\widehat{S}_{KM}(t)$ or $\widehat{S}_{NA}(t)$.

- An alternative way is to select λ and γ to match the survival data at two specified time points.
- This approach is motivated by the linear relationship between log [-log S(t)] and log(t).
- Suppose we have (t_1, s_1) , and (t_2, s_2) that are two time points on a estimated survival curve (e.g., set $s_i = \widehat{S}_{KM}(t_i)$ for i = 1, 2).
- Then $\hat{\lambda}$ and $\hat{\gamma}$ can be obtained by solving the system of equation

$$\begin{cases} \log\left(-\log s_1\right) = \log(\lambda) - \gamma \log(t_1) \\ \log\left(-\log s_2\right) = \log(\lambda) - \gamma \log(t_2) \end{cases},$$

for λ and γ .

- The Weibull2 function in the Hmisc package can be used to produce a Weibull function that matches the two points (t_1, s_1) , and (t_2, s_2) .
- Recall that $\hat{S}_{KM}(t)$ for the whas 100 can be obtained with the survfit: > km <- survfit (Surv(lenfol, fstat) ~ 1, whas 100)
- Suppose we want to find a Weibull distribution that matches the KM estimator at the 1st and the 6th year (t = 365 and t = 2190).

```
> summary(km, time = c(365, 2190))
Call: survfit(formula = Surv(lenfol, fstat) ~ 1, data = whas100)

time n.risk n.event survival std.err lower 95% CI upper 95% CI
365  80  20  0.800  0.0400  0.725  0.882
2190  15  27  0.505  0.0537  0.410  0.622
```

The two points are (365, 0.8) and (2190, 0.505).

Matching the two points with

```
> weiSurv <- Weibull2(c(365, 2190), c(.8, .505))
> str(weiSurv)
function (times = NULL, alpha = 0.00560289516761242, gamma = 0.624507785991088)
> class(weiSurv)
[1] "function"
```

- Weibull2 returns a function.
- The parameters are $\lambda = 0.006$ and $\gamma = 0.625$.
- The "alpha" used in Weibull2 is equivalent to our λ .

weiSurv returns survival probability depending on inputs.

```
> weiSurv(365)
[1] 0.8
> weiSurv(2190)
[1] 0.505
> weiSurv(0:13)
[1] 1.0000000 0.9944128 0.9913993 0.9889347 0.9867714 0.9848084 0.9829920
[8] 0.9812894 0.9796788 0.9781448 0.9766759 0.9752633 0.9739001 0.9725807
```


- Recall that if T follows an exponential distribution with rate λ , T has the hazard function $h(t) = \lambda$.
- If one wants to construct a regression model under the exponential assumption, it is natural to model the exponential parameter λ .
- Suppose a covariates vector $X = (X_1, \dots, X_p)'$ is available for an individual.
- The hazard at time t for an individual can be written as

$$\lambda(t; \mathbf{x}) = \lambda \cdot r(\mathbf{X}'\beta),$$

where $\beta = (\beta_1, \dots, \beta_p)'$ is the regression coefficient, λ is a constant, and $r(\cdot)$ is a specified functional form.

- A few choices of $r(\cdot)$ have been proposed:

 - 1 r(u) = u2 $r(u) = u^{-1}$
 - $r(u) = e^{u}$
- The first two forms suffer from the disadvantage that 4ta must be restricted to guarantee $r(X'\beta) > 0$ for all possible X.
- The third form is commonly considered and will be used here.

• A few choices of $r(\cdot)$ have been proposed:

```
1 r(u) = u
2 r(u) = u^{-1}
3 r(u) = e^{u}
```

- The first two forms suffer from the disadvantage that 4ta must be restricted to guarantee $r(X'\beta) > 0$ for all possible X.
- The third form is commonly considered and will be used here, but we should keep in mind that there may be more appropriate forms in specific settings.

20/24

Working with model with hazard function

$$\lambda(t;x) = \lambda e^{X'\beta}. (2)$$

- This model specifies that log failure rate is a linear function of X.
- Setting $Y = \log(T)$, the model (2) implies

$$Y = \alpha - X'\beta + \epsilon, \tag{3}$$

where $\alpha = -\log(\lambda)$ and ϵ follows an extreme value distribution.

The model (3) is a log-linear model.

Steven Chiou (UTD) STAT 6390 21 / 24

• The model (2) also implies

$$S(t; x) = \lambda t e^{X'\beta}$$

and the conditional density function of T given X is then

$$f(t;x) = \lambda e^{X'\beta} \cdot e^{\{-\lambda t e^{X'\beta}\}}.$$

Parameters can be solved by maximizing the likelihood.

Weibull regression model

The similar idea can be applied to Weibull assumption.

$$\lambda(t; \mathbf{x}) = \lambda \gamma t^{\gamma - 1} e^{X'\beta}. \tag{4}$$

• Setting $Y = \log(T)$, model 4 implies

$$Y = \alpha - X'\beta^* + \sigma\epsilon, \tag{5}$$

where $\alpha = -\log(\lambda)/\gamma$, $\beta^* = \beta/\gamma$, $\sigma = 1/\gamma$, and ϵ is an extreme value distribution.

- The (Weibull) relationship suggests the effect of the covariates
 - 1 act multiplicatively on the hazard function.
 - 2 act additively on Y; the general model has a log-linear models.
- The conditional density function and the survival function can be derived for likelihood estimation

Weibull regression model

 The survreg function in survival package covers a large family of parametric models.

```
> library(survival)
> args(survreg)
function (formula, data, weights, subset, na.action, dist = "weibull",
    init = NULL, scale = 0, control, parms = NULL, model = FALSE,
    x = FALSE, y = TRUE, robust = FALSE, score = FALSE, ...)
NULL
```