Relations binaires

QCOP RELB. 1

Soit E un ensemble. Soit \mathcal{R} une relation d'équivalence sur E.

- Définir « \mathcal{R} est une relation d'équivalence sur E » et définir la classe d'équivalence de $a \in E$ pour \mathcal{R} , notée $\operatorname{c}\ell_{\mathcal{R}}(a)$.
- **M** Montrer que $\{c\ell_{\mathscr{R}}(a) \; ; \; a \in E\}$ forme une partition de E.
- \aleph Soit $n \in \mathbb{N}^*$.
 - (a) Justifier que la congruence modulo n est une relation d'équivalence sur \mathbb{Z} .
 - **(b)** En déduire une partition de \mathbb{Z} .

QCOP RELB.2

Soit E un ensemble. Soit \leq une relation d'ordre sur E.

- \blacksquare Définir « \preccurlyeq est une relation d'ordre sur E » et « (E, \preccurlyeq) est totalement ordonné ».
- lpha Donner des exemples d'ensembles ordonnés. Lesquels sont totalement ordonnés? On s'intéressera par exemple à \mathbb{R} , \mathbb{Z} , $\mathscr{P}(E)$ et $\mathscr{F}(\mathbb{R}, \mathbb{R})$.