disease-classification-inceptionv3

March 28, 2024

```
[1]: import numpy as np
     import pandas as pd
     import seaborn as sns
     import tensorflow as tf
     import matplotlib.pyplot as plt
     import os
     from distutils.dir_util import copy_tree, remove_tree
     from PIL import Image
     from random import randint
     from imblearn.over_sampling import SMOTE
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import matthews_corrcoef as MCC
     from sklearn.metrics import balanced_accuracy_score as BAS
     from sklearn.metrics import classification_report, confusion_matrix
     import tensorflow addons as tfa
     from keras.utils.vis_utils import plot_model
     from tensorflow.keras import Sequential, Input
     from tensorflow.keras.layers import Dense, Dropout
     from tensorflow.keras.layers import Conv2D, Flatten
     from tensorflow.keras.callbacks import ReduceLROnPlateau
     from tensorflow.keras.applications.inception_v3 import InceptionV3
     from tensorflow.keras.preprocessing.image import ImageDataGenerator as IDG
     from tensorflow.keras.layers import SeparableConv2D, BatchNormalization, __
      →GlobalAveragePooling2D
     print("TensorFlow Version:", tf.__version__)
```

TensorFlow Version: 2.4.1

```
[2]: base_dir = "/kaggle/input/alzheimers-dataset-4-class-of-images/Alzheimer_s<sub>□</sub>

Dataset/"

root_dir = "./"
```

```
test_dir = base_dir + "test/"
train_dir = base_dir + "train/"
work_dir = root_dir + "dataset/"

if os.path.exists(work_dir):
    remove_tree(work_dir)

os.mkdir(work_dir)
copy_tree(train_dir, work_dir)
copy_tree(test_dir, work_dir)
print("Working Directory Contents:", os.listdir(work_dir))
```

Working Directory Contents: ['MildDemented', 'VeryMildDemented', 'ModerateDemented', 'NonDemented']

Found 6400 images belonging to 4 classes.

```
[5]: def show_images(generator,y_pred=None):
    """

Input: An image generator,predicted labels (optional)
Output: Displays a grid of 9 images with lables
```

```
nnn
    # get image lables
    labels =dict(zip([0,1,2,3], CLASSES))
    # get a batch of images
    x,y = generator.next()
    # display a grid of 9 images
    plt.figure(figsize=(10, 10))
    if y_pred is None:
        for i in range(9):
            ax = plt.subplot(3, 3, i + 1)
            idx = randint(0, 6400)
            plt.imshow(x[idx])
            plt.axis("off")
            plt.title("Class:{}".format(labels[np.argmax(y[idx])]))
    else:
        for i in range(9):
            ax = plt.subplot(3, 3, i + 1)
            plt.imshow(x[i])
            plt.axis("off")
            plt.title("Actual:{} \nPredicted:{}".format(labels[np.
 →argmax(y[i])],labels[y_pred[i]]))
# Display Train Images
show_images(train_data_gen)
```


- [6]: #Retrieving the data from the ImageDataGenerator iterator

 train_data, train_labels = train_data_gen.next()
- [7]: #Getting to know the dimensions of our dataset
 print(train_data.shape, train_labels.shape)

(6400, 176, 176, 3) (6400, 4)

[8]: #Performing over-sampling of the data, since the classes are imbalanced

sm = SMOTE(random_state=42)

```
train_data, train_labels = sm.fit_resample(train_data.reshape(-1, IMG_SIZE *__
       →IMG_SIZE * 3), train_labels)
      train_data = train_data.reshape(-1, IMG_SIZE, IMG_SIZE, 3)
      print(train_data.shape, train_labels.shape)
     (12800, 176, 176, 3) (12800, 4)
     /opt/conda/lib/python3.7/site-packages/sklearn/utils/validation.py:72:
     FutureWarning: Pass classes=[0 1 2 3] as keyword args. From version 1.0
     (renaming of 0.25) passing these as positional arguments will result in an error
       "will result in an error", FutureWarning)
 [9]: #Splitting the data into train, test, and validation sets
      train_data, test_data, train_labels, test_labels = train_test_split(train_data,__
       →train_labels, test_size = 0.2, random_state=42)
      train_data, val_data, train_labels, val_labels = train_test_split(train_data,_u
       strain_labels, test_size = 0.2, random_state=42)
[10]: |inception_model = InceptionV3(input_shape=(176, 176, 3), include_top=False,__
       ⇔weights="imagenet")
     Downloading data from https://storage.googleapis.com/tensorflow/keras-applicatio
     ns/inception v3/inception v3_weights_tf_dim_ordering_tf_kernels_notop.h5
     87916544/87910968 [============ ] - Os Ous/step
[11]: for layer in inception model.layers:
          layer.trainable=False
[12]: | custom_inception_model = Sequential([
              inception_model,
              Dropout(0.5),
              GlobalAveragePooling2D(),
              Flatten(),
              BatchNormalization(),
             Dense(512, activation='relu'),
             BatchNormalization(),
             Dropout(0.5),
             Dense(256, activation='relu'),
             BatchNormalization(),
             Dropout(0.5),
             Dense(128, activation='relu'),
              BatchNormalization(),
              Dropout(0.5),
              Dense(64, activation='relu'),
```

```
Dropout(0.5),
            BatchNormalization(),
            Dense(4, activation='softmax')
        ], name = "inception_cnn_model")
[13]: #Defining a custom callback function to stop training our model when accuracy
      ⇒goes above 99%
     class MyCallback(tf.keras.callbacks.Callback):
        def on_epoch_end(self, epoch, logs={}):
            if logs.get('acc') > 0.99:
                print("\nReached accuracy threshold! Terminating training.")
                self.model.stop_training = True
     my_callback = MyCallback()
     #ReduceLROnPlateau to stabilize the training process of the model
     rop_callback = ReduceLROnPlateau(monitor="val_loss", patience=3)
[14]: METRICS = [tf.keras.metrics.CategoricalAccuracy(name='acc'),
               tf.keras.metrics.AUC(name='auc'),
               tfa.metrics.F1Score(num_classes=4)]
     CALLBACKS = [my_callback, rop_callback]
     custom_inception_model.compile(optimizer='rmsprop',
                               loss=tf.losses.CategoricalCrossentropy(),
                                metrics=METRICS)
     custom_inception_model.summary()
    Model: "inception_cnn_model"
                  Output Shape
    Layer (type)
                                                    Param #
    ______
    inception_v3 (Functional) (None, 4, 4, 2048)
                                                     21802784
                      (None, 4, 4, 2048)
    dropout (Dropout)
    global_average_pooling2d (G1 (None, 2048)
    _____
    flatten (Flatten)
                      (None, 2048)
    batch_normalization_94 (Batc (None, 2048)
                                                    8192
                              (None, 512)
    dense (Dense)
                                                    1049088
```

batch_normalization_95 (Batc	(None, 512)	2048
dropout_1 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
batch_normalization_96 (Batc	(None, 256)	1024
dropout_2 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 128)	32896
batch_normalization_97 (Batc	(None, 128)	512
dropout_3 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 64)	8256
dropout_4 (Dropout)	(None, 64)	0
batch_normalization_98 (Batc	(None, 64)	256
dense_4 (Dense)	(None, 4)	260

Total params: 23,036,644
Trainable params: 1,227,844
Non-trainable params: 21,808,800

```
[15]: #Fit the training data to the model and validate it using the validation data
EPOCHS = 100

history = custom_inception_model.fit(train_data, train_labels,__

validation_data=(val_data, val_labels), callbacks=CALLBACKS, epochs=EPOCHS)
```

```
0.6651 - auc: 0.9002 - f1_score: 0.6647 - val_loss: 0.5888 - val_acc: 0.7236 -
val_auc: 0.9333 - val_f1_score: 0.7144
Epoch 5/100
0.6878 - auc: 0.9152 - f1_score: 0.6823 - val_loss: 0.5507 - val_acc: 0.7358 -
val_auc: 0.9420 - val_f1_score: 0.7282
Epoch 6/100
0.7008 - auc: 0.9193 - f1_score: 0.7013 - val_loss: 0.5433 - val_acc: 0.7427 -
val_auc: 0.9444 - val_f1_score: 0.7417
Epoch 7/100
0.7451 - auc: 0.9333 - f1_score: 0.7436 - val_loss: 0.5172 - val_acc: 0.7607 -
val_auc: 0.9498 - val_f1_score: 0.7588
Epoch 8/100
0.7449 - auc: 0.9378 - f1_score: 0.7446 - val_loss: 0.4915 - val_acc: 0.7866 -
val_auc: 0.9567 - val_f1_score: 0.7818
Epoch 9/100
0.7608 - auc: 0.9437 - f1_score: 0.7569 - val_loss: 0.4486 - val_acc: 0.7993 -
val_auc: 0.9633 - val_f1_score: 0.7964
Epoch 10/100
0.7695 - auc: 0.9486 - f1_score: 0.7665 - val_loss: 0.4358 - val_acc: 0.8115 -
val_auc: 0.9653 - val_f1_score: 0.8098
Epoch 11/100
0.7869 - auc: 0.9537 - f1_score: 0.7847 - val_loss: 0.4071 - val_acc: 0.8296 -
val_auc: 0.9699 - val_f1_score: 0.8290
Epoch 12/100
0.7984 - auc: 0.9552 - f1_score: 0.7975 - val_loss: 0.4066 - val_acc: 0.8228 -
val_auc: 0.9691 - val_f1_score: 0.8210
Epoch 13/100
0.8202 - auc: 0.9631 - f1_score: 0.8210 - val_loss: 0.3969 - val_acc: 0.8306 -
val_auc: 0.9708 - val_f1_score: 0.8293
Epoch 14/100
0.8194 - auc: 0.9627 - f1_score: 0.8184 - val_loss: 0.3753 - val_acc: 0.8389 -
val_auc: 0.9741 - val_f1_score: 0.8374
Epoch 15/100
0.8189 - auc: 0.9632 - f1_score: 0.8198 - val_loss: 0.3720 - val_acc: 0.8457 -
val_auc: 0.9741 - val_f1_score: 0.8447
Epoch 16/100
```

```
0.8317 - auc: 0.9670 - f1_score: 0.8299 - val_loss: 0.3618 - val_acc: 0.8506 -
val_auc: 0.9758 - val_f1_score: 0.8486
Epoch 17/100
0.8459 - auc: 0.9693 - f1_score: 0.8469 - val_loss: 0.3750 - val_acc: 0.8423 -
val_auc: 0.9743 - val_f1_score: 0.8391
Epoch 18/100
0.8519 - auc: 0.9712 - f1_score: 0.8503 - val_loss: 0.3475 - val_acc: 0.8608 -
val_auc: 0.9777 - val_f1_score: 0.8590
Epoch 19/100
0.8567 - auc: 0.9748 - f1_score: 0.8554 - val_loss: 0.3757 - val_acc: 0.8359 -
val_auc: 0.9739 - val_f1_score: 0.8371
Epoch 20/100
0.8611 - auc: 0.9741 - f1_score: 0.8612 - val_loss: 0.3454 - val_acc: 0.8599 -
val_auc: 0.9778 - val_f1_score: 0.8579
Epoch 21/100
0.8633 - auc: 0.9738 - f1_score: 0.8635 - val_loss: 0.3740 - val_acc: 0.8574 -
val_auc: 0.9752 - val_f1_score: 0.8549
Epoch 22/100
0.8694 - auc: 0.9771 - f1_score: 0.8677 - val_loss: 0.3317 - val_acc: 0.8638 -
val_auc: 0.9802 - val_f1_score: 0.8628
Epoch 23/100
0.8815 - auc: 0.9793 - f1_score: 0.8827 - val_loss: 0.3263 - val_acc: 0.8696 -
val_auc: 0.9804 - val_f1_score: 0.8676
Epoch 24/100
0.8861 - auc: 0.9818 - f1_score: 0.8851 - val_loss: 0.3254 - val_acc: 0.8682 -
val_auc: 0.9809 - val_f1_score: 0.8663
Epoch 25/100
0.8929 - auc: 0.9828 - f1_score: 0.8924 - val_loss: 0.3461 - val_acc: 0.8589 -
val_auc: 0.9785 - val_f1_score: 0.8577
Epoch 26/100
0.8799 - auc: 0.9801 - f1_score: 0.8794 - val_loss: 0.3268 - val_acc: 0.8672 -
val_auc: 0.9814 - val_f1_score: 0.8657
Epoch 27/100
0.8899 - auc: 0.9821 - f1_score: 0.8896 - val_loss: 0.3142 - val_acc: 0.8784 -
val_auc: 0.9825 - val_f1_score: 0.8771
Epoch 28/100
```

```
0.8988 - auc: 0.9851 - f1_score: 0.8980 - val_loss: 0.3369 - val_acc: 0.8633 -
val_auc: 0.9811 - val_f1_score: 0.8629
Epoch 29/100
0.9001 - auc: 0.9839 - f1_score: 0.8999 - val_loss: 0.3036 - val_acc: 0.8838 -
val_auc: 0.9834 - val_f1_score: 0.8825
Epoch 30/100
0.8927 - auc: 0.9842 - f1_score: 0.8915 - val_loss: 0.3020 - val_acc: 0.8789 -
val_auc: 0.9836 - val_f1_score: 0.8784
Epoch 31/100
0.9078 - auc: 0.9863 - f1_score: 0.9085 - val_loss: 0.3057 - val_acc: 0.8828 -
val_auc: 0.9838 - val_f1_score: 0.8824
Epoch 32/100
0.9011 - auc: 0.9848 - f1_score: 0.9007 - val_loss: 0.3001 - val_acc: 0.8848 -
val_auc: 0.9835 - val_f1_score: 0.8840
Epoch 33/100
0.9061 - auc: 0.9859 - f1_score: 0.9054 - val_loss: 0.3083 - val_acc: 0.8857 -
val_auc: 0.9838 - val_f1_score: 0.8853
Epoch 34/100
0.9125 - auc: 0.9856 - f1_score: 0.9121 - val_loss: 0.3197 - val_acc: 0.8809 -
val_auc: 0.9818 - val_f1_score: 0.8800
Epoch 35/100
0.9126 - auc: 0.9852 - f1_score: 0.9129 - val_loss: 0.3060 - val_acc: 0.8857 -
val_auc: 0.9839 - val_f1_score: 0.8853
Epoch 36/100
0.9149 - auc: 0.9887 - f1_score: 0.9137 - val_loss: 0.2967 - val_acc: 0.8901 -
val auc: 0.9846 - val f1 score: 0.8896
Epoch 37/100
0.9230 - auc: 0.9892 - f1_score: 0.9227 - val_loss: 0.2950 - val_acc: 0.8892 -
val_auc: 0.9851 - val_f1_score: 0.8886
Epoch 38/100
0.9325 - auc: 0.9913 - f1_score: 0.9319 - val_loss: 0.2930 - val_acc: 0.8945 -
val_auc: 0.9854 - val_f1_score: 0.8939
Epoch 39/100
0.9179 - auc: 0.9897 - f1_score: 0.9180 - val_loss: 0.2920 - val_acc: 0.8916 -
val_auc: 0.9855 - val_f1_score: 0.8907
Epoch 40/100
```

```
0.9280 - auc: 0.9909 - f1_score: 0.9278 - val_loss: 0.2888 - val_acc: 0.8940 -
val_auc: 0.9859 - val_f1_score: 0.8932
Epoch 41/100
0.9317 - auc: 0.9905 - f1_score: 0.9313 - val_loss: 0.2913 - val_acc: 0.8931 -
val_auc: 0.9856 - val_f1_score: 0.8922
Epoch 42/100
0.9382 - auc: 0.9904 - f1_score: 0.9380 - val_loss: 0.2885 - val_acc: 0.8931 -
val_auc: 0.9859 - val_f1_score: 0.8922
Epoch 43/100
0.9309 - auc: 0.9896 - f1_score: 0.9310 - val_loss: 0.2873 - val_acc: 0.8984 -
val_auc: 0.9859 - val_f1_score: 0.8976
Epoch 44/100
0.9371 - auc: 0.9924 - f1_score: 0.9373 - val_loss: 0.2855 - val_acc: 0.8994 -
val_auc: 0.9863 - val_f1_score: 0.8988
Epoch 45/100
0.9352 - auc: 0.9912 - f1_score: 0.9350 - val_loss: 0.2885 - val_acc: 0.9004 -
val_auc: 0.9862 - val_f1_score: 0.8996
Epoch 46/100
0.9267 - auc: 0.9906 - f1_score: 0.9272 - val_loss: 0.2845 - val_acc: 0.8989 -
val_auc: 0.9865 - val_f1_score: 0.8982
Epoch 47/100
0.9369 - auc: 0.9932 - f1_score: 0.9372 - val_loss: 0.2870 - val_acc: 0.9004 -
val_auc: 0.9864 - val_f1_score: 0.8996
Epoch 48/100
0.9461 - auc: 0.9935 - f1_score: 0.9464 - val_loss: 0.2870 - val_acc: 0.9004 -
val auc: 0.9867 - val f1 score: 0.8997
Epoch 49/100
0.9365 - auc: 0.9916 - f1_score: 0.9363 - val_loss: 0.2841 - val_acc: 0.9019 -
val_auc: 0.9870 - val_f1_score: 0.9012
Epoch 50/100
0.9462 - auc: 0.9943 - f1_score: 0.9459 - val_loss: 0.2870 - val_acc: 0.9004 -
val_auc: 0.9868 - val_f1_score: 0.8998
Epoch 51/100
0.9422 - auc: 0.9925 - f1_score: 0.9418 - val_loss: 0.2872 - val_acc: 0.8999 -
val_auc: 0.9865 - val_f1_score: 0.8994
Epoch 52/100
```

```
0.9386 - auc: 0.9946 - f1_score: 0.9387 - val_loss: 0.2885 - val_acc: 0.9004 -
val_auc: 0.9867 - val_f1_score: 0.8997
Epoch 53/100
0.9471 - auc: 0.9952 - f1_score: 0.9472 - val_loss: 0.2866 - val_acc: 0.9019 -
val_auc: 0.9867 - val_f1_score: 0.9011
Epoch 54/100
0.9443 - auc: 0.9932 - f1_score: 0.9443 - val_loss: 0.2866 - val_acc: 0.9009 -
val_auc: 0.9867 - val_f1_score: 0.9003
Epoch 55/100
0.9477 - auc: 0.9934 - f1_score: 0.9474 - val_loss: 0.2861 - val_acc: 0.9043 -
val_auc: 0.9870 - val_f1_score: 0.9037
Epoch 56/100
0.9384 - auc: 0.9932 - f1_score: 0.9384 - val_loss: 0.2853 - val_acc: 0.9028 -
val_auc: 0.9869 - val_f1_score: 0.9022
Epoch 57/100
0.9443 - auc: 0.9934 - f1_score: 0.9450 - val_loss: 0.2868 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 58/100
0.9313 - auc: 0.9907 - f1_score: 0.9315 - val_loss: 0.2864 - val_acc: 0.9009 -
val_auc: 0.9868 - val_f1_score: 0.9003
Epoch 59/100
0.9431 - auc: 0.9937 - f1_score: 0.9431 - val_loss: 0.2875 - val_acc: 0.9023 -
val_auc: 0.9870 - val_f1_score: 0.9017
Epoch 60/100
0.9362 - auc: 0.9906 - f1_score: 0.9355 - val_loss: 0.2869 - val_acc: 0.9014 -
val auc: 0.9869 - val f1 score: 0.9007
Epoch 61/100
0.9402 - auc: 0.9940 - f1_score: 0.9401 - val_loss: 0.2863 - val_acc: 0.9023 -
val_auc: 0.9867 - val_f1_score: 0.9015
Epoch 62/100
0.9462 - auc: 0.9942 - f1_score: 0.9462 - val_loss: 0.2845 - val_acc: 0.9019 -
val_auc: 0.9871 - val_f1_score: 0.9011
Epoch 63/100
0.9377 - auc: 0.9919 - f1_score: 0.9381 - val_loss: 0.2871 - val_acc: 0.9023 -
val_auc: 0.9869 - val_f1_score: 0.9018
Epoch 64/100
```

```
0.9453 - auc: 0.9949 - f1_score: 0.9451 - val_loss: 0.2874 - val_acc: 0.9014 -
val_auc: 0.9867 - val_f1_score: 0.9008
Epoch 65/100
0.9430 - auc: 0.9919 - f1_score: 0.9431 - val_loss: 0.2871 - val_acc: 0.9028 -
val_auc: 0.9867 - val_f1_score: 0.9022
Epoch 66/100
0.9513 - auc: 0.9941 - f1_score: 0.9511 - val_loss: 0.2886 - val_acc: 0.9009 -
val_auc: 0.9865 - val_f1_score: 0.9001
Epoch 67/100
0.9367 - auc: 0.9930 - f1_score: 0.9359 - val_loss: 0.2878 - val_acc: 0.9004 -
val_auc: 0.9865 - val_f1_score: 0.8996
Epoch 68/100
0.9425 - auc: 0.9930 - f1_score: 0.9421 - val_loss: 0.2852 - val_acc: 0.9019 -
val_auc: 0.9870 - val_f1_score: 0.9013
Epoch 69/100
0.9405 - auc: 0.9922 - f1_score: 0.9398 - val_loss: 0.2875 - val_acc: 0.9023 -
val_auc: 0.9867 - val_f1_score: 0.9016
Epoch 70/100
0.9508 - auc: 0.9947 - f1_score: 0.9509 - val_loss: 0.2848 - val_acc: 0.9009 -
val_auc: 0.9870 - val_f1_score: 0.9002
Epoch 71/100
0.9351 - auc: 0.9917 - f1_score: 0.9350 - val_loss: 0.2871 - val_acc: 0.9023 -
val_auc: 0.9867 - val_f1_score: 0.9019
Epoch 72/100
0.9413 - auc: 0.9942 - f1_score: 0.9408 - val_loss: 0.2875 - val_acc: 0.9019 -
val auc: 0.9867 - val f1 score: 0.9014
Epoch 73/100
0.9388 - auc: 0.9924 - f1_score: 0.9389 - val_loss: 0.2853 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 74/100
0.9478 - auc: 0.9944 - f1_score: 0.9477 - val_loss: 0.2856 - val_acc: 0.9023 -
val_auc: 0.9869 - val_f1_score: 0.9015
Epoch 75/100
0.9397 - auc: 0.9931 - f1_score: 0.9391 - val_loss: 0.2849 - val_acc: 0.9014 -
val_auc: 0.9869 - val_f1_score: 0.9007
Epoch 76/100
```

```
0.9394 - auc: 0.9927 - f1_score: 0.9390 - val_loss: 0.2863 - val_acc: 0.9028 -
val_auc: 0.9870 - val_f1_score: 0.9022
Epoch 77/100
0.9443 - auc: 0.9922 - f1_score: 0.9442 - val_loss: 0.2866 - val_acc: 0.9019 -
val_auc: 0.9867 - val_f1_score: 0.9012
Epoch 78/100
0.9432 - auc: 0.9924 - f1_score: 0.9428 - val_loss: 0.2855 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 79/100
0.9429 - auc: 0.9921 - f1_score: 0.9428 - val_loss: 0.2874 - val_acc: 0.9019 -
val_auc: 0.9867 - val_f1_score: 0.9011
Epoch 80/100
0.9388 - auc: 0.9924 - f1_score: 0.9384 - val_loss: 0.2854 - val_acc: 0.9023 -
val_auc: 0.9869 - val_f1_score: 0.9016
Epoch 81/100
0.9366 - auc: 0.9917 - f1_score: 0.9364 - val_loss: 0.2866 - val_acc: 0.9033 -
val_auc: 0.9869 - val_f1_score: 0.9027
Epoch 82/100
0.9477 - auc: 0.9936 - f1_score: 0.9476 - val_loss: 0.2853 - val_acc: 0.9019 -
val_auc: 0.9870 - val_f1_score: 0.9011
Epoch 83/100
0.9430 - auc: 0.9939 - f1_score: 0.9425 - val_loss: 0.2865 - val_acc: 0.9014 -
val_auc: 0.9869 - val_f1_score: 0.9005
Epoch 84/100
0.9413 - auc: 0.9933 - f1_score: 0.9412 - val_loss: 0.2853 - val_acc: 0.9019 -
val_auc: 0.9868 - val_f1_score: 0.9012
Epoch 85/100
0.9447 - auc: 0.9932 - f1_score: 0.9452 - val_loss: 0.2864 - val_acc: 0.9019 -
val_auc: 0.9867 - val_f1_score: 0.9012
Epoch 86/100
0.9468 - auc: 0.9934 - f1_score: 0.9469 - val_loss: 0.2855 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 87/100
0.9462 - auc: 0.9934 - f1_score: 0.9460 - val_loss: 0.2865 - val_acc: 0.9009 -
val_auc: 0.9868 - val_f1_score: 0.9003
Epoch 88/100
```

```
0.9410 - auc: 0.9937 - f1_score: 0.9409 - val_loss: 0.2856 - val_acc: 0.9014 -
val_auc: 0.9869 - val_f1_score: 0.9008
Epoch 89/100
0.9457 - auc: 0.9938 - f1_score: 0.9455 - val_loss: 0.2851 - val_acc: 0.9014 -
val_auc: 0.9870 - val_f1_score: 0.9008
Epoch 90/100
0.9431 - auc: 0.9936 - f1_score: 0.9433 - val_loss: 0.2866 - val_acc: 0.9033 -
val_auc: 0.9867 - val_f1_score: 0.9027
Epoch 91/100
0.9427 - auc: 0.9925 - f1_score: 0.9427 - val_loss: 0.2859 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 92/100
0.9478 - auc: 0.9950 - f1_score: 0.9470 - val_loss: 0.2878 - val_acc: 0.9033 -
val_auc: 0.9868 - val_f1_score: 0.9026
Epoch 93/100
0.9408 - auc: 0.9923 - f1_score: 0.9402 - val_loss: 0.2865 - val_acc: 0.9019 -
val_auc: 0.9869 - val_f1_score: 0.9012
Epoch 94/100
0.9406 - auc: 0.9935 - f1_score: 0.9409 - val_loss: 0.2842 - val_acc: 0.9014 -
val_auc: 0.9870 - val_f1_score: 0.9008
Epoch 95/100
0.9446 - auc: 0.9929 - f1_score: 0.9443 - val_loss: 0.2869 - val_acc: 0.9014 -
val_auc: 0.9867 - val_f1_score: 0.9009
Epoch 96/100
0.9415 - auc: 0.9933 - f1_score: 0.9416 - val_loss: 0.2863 - val_acc: 0.9009 -
val_auc: 0.9868 - val_f1_score: 0.9002
Epoch 97/100
0.9420 - auc: 0.9913 - f1_score: 0.9420 - val_loss: 0.2869 - val_acc: 0.9033 -
val_auc: 0.9869 - val_f1_score: 0.9027
Epoch 98/100
0.9468 - auc: 0.9932 - f1_score: 0.9468 - val_loss: 0.2858 - val_acc: 0.9023 -
val_auc: 0.9870 - val_f1_score: 0.9018
Epoch 99/100
0.9412 - auc: 0.9936 - f1_score: 0.9401 - val_loss: 0.2882 - val_acc: 0.9019 -
val_auc: 0.9866 - val_f1_score: 0.9010
Epoch 100/100
```

```
0.9432 - auc: 0.9937 - f1_score: 0.9428 - val_loss: 0.2899 - val_acc: 0.9004 -
    val_auc: 0.9864 - val_f1_score: 0.8996
[16]: #Plotting the trend of the metrics during training
     fig, ax = plt.subplots(1, 3, figsize = (30, 5))
     ax = ax.ravel()
     for i, metric in enumerate(["acc", "auc", "loss"]):
        ax[i].plot(history.history[metric])
        ax[i].plot(history.history["val_" + metric])
        ax[i].set_title("Model {}".format(metric))
        ax[i].set_xlabel("Epochs")
        ax[i].set_ylabel(metric)
        ax[i].legend(["train", "val"])
                              § 0.85
[17]: #Evaluating the model on the data
     #train_scores = model.evaluate(train_data, train_labels)
     #val_scores = model.evaluate(val_data, val_labels)
     test_scores = custom_inception_model.evaluate(test_data, test_labels)
     #print("Training Accuracy: %.2f%%"%(train_scores[1] * 100))
     #print("Validation Accuracy: %.2f%%"%(val_scores[1] * 100))
     print("Testing Accuracy: %.2f%%"%(test_scores[1] * 100))
    0.9055 - auc: 0.9875 - f1_score: 0.9055
    Testing Accuracy: 90.55%
[18]: #Predicting the test data
     pred_labels = custom_inception_model.predict(test_data)
[19]: #Print the classification report of the tested data
```

	precision	recall	f1-score	support
NonDemented	0.93	0.96	0.94	639
VeryMildDemented	1.00	1.00	1.00	635
MildDemented	0.88	0.81	0.84	662
ModerateDemented	0.81	0.86	0.83	624
micro avg	0.91	0.91	0.91	2560
macro avg	0.91	0.91	0.91	2560
weighted avg	0.91	0.91	0.91	2560
samples avg	0.91	0.91	0.91	2560


```
[21]: #Printing some other classification metrics

print("Balanced Accuracy Score: {} %".format(round(BAS(test_ls, pred_ls) * 100, □ ←2)))

print("Matthew's Correlation Coefficient: {} %".format(round(MCC(test_ls, □ ←)pred_ls) * 100, 2)))
```

Balanced Accuracy Score: 90.62 %
Matthew's Correlation Coefficient: 87.44 %

```
[22]: #Saving the model for future use

custom_inception_model_dir = work_dir + "alzheimer_inception_cnn_model"
custom_inception_model.save(custom_inception_model_dir, save_format='h5')
os.listdir(work_dir)
```

```
[22]: ['MildDemented',
    'VeryMildDemented',
    'alzheimer_inception_cnn_model',
    'ModerateDemented',
    'NonDemented']
```

[23]:

