Recap

 \triangleright **Key-prefixed** short Schnorr signatures achieve k bits of multi-user security against preprocessing attacks (of length $3k + \log S$ bits) riangle **Standardized implementations** of short Schnorr signatures achieve k bits of multi-user security against **preprocessing attacks** (of length $3k + \log S$ bits) We extend Coretti et al.'s BF-to-Al technique to work in multiple idealized models

 \triangleright Short Schnorr signatures achieve k bits of multi-user security (of length 3k bits)

Open Questions

Security Bound

Key-Prefixed

$$\leq \mathcal{O}\left(\frac{q^2S\log p}{p} + \frac{q}{2^k}\right)$$

Standardized

$$<\mathcal{O}\left(\frac{q2^kS}{4}+\frac{q}{2}\right)$$

Can we use this technique to other cryptographic primitives? (e.g., Oblivious Transfer)

Recap

- \triangleright Short Schnorr signatures achieve k bits of multi-user security (of length 3k bits)
- hd **Key-prefixed** short Schnorr signatures achieve k bits of multi-user security against **preprocessing attacks** (of length $3k + \log S$ bits)
- \triangleright Standardized implementations of short Schnorr signatures achieve k bits of multi-user security against preprocessing attacks (of length $3k + \log S$ bits)
- ▶ We extend Coretti et al.'s BF-to-Al technique to work in multiple idealized models

Open Questions

Security Bound

Key-Prefixed

$$\varepsilon \le \mathcal{O}\left(\frac{q^2 S \log p}{p} + \frac{q}{2^k}\right)$$

Standardized

$$\varepsilon \le \mathcal{O}\left(\frac{q2^kS}{p} + \frac{q}{2^k}\right)$$

Can we use this technique to other cryptographic primitives? (e.g., Oblivious Transfer)

Thank you!

