SODIUM SULFUR BATTERIES FOR SPACE APPLICATIONS

James A. DeGruson

Eagle-Picher Industries, Inc. C&Porter Streets Joplin, MO

30 October 1991

1991 NASA AEROSPACE BATTERY WORKSHOP

PRECEDING PAGE BLANK NOT FILMED

1991 NASA Aerospace Battery Workshop

PRESENTATION ABSTRACT

Name	James A. DeGruson			
Company	Eagle-Picher Industries, Inc.			
Address	P.O. Box 47, Joplin, MC 64802			
Telephone	417-623-8000, ex. 491			
Preliminary T	itle Sodium Sulfur Batteries for Space Applications			
Brief Abstract	In 1986, Eagle-Picher Industries was selected by the Air			
Force to deve	elop sodium sulfur cells for satellite applications. Specifically,			
the developme	ent program was geared toward low earth orbit goals requiring			
high charge/d	ischarge rates. A number of improvements have been made on			
the cell leve	l and a transition to a complete space battery has been			
initiated at	Eagle Picher.			
The resu	lts of six months of testing a 250 watt-hour sodium sulfur			
space battery	look very promising. With over 1,000 LEO cycles conducted			
	battery, the next generation battery is being designed. This			
next design wi	ll focus on achieving greater energy densities associated			
with the sodiu	m sulfur chemistry.			

THERMAL-ORDNANCE OPERATION

ELECTRONICS DIVISION

EAGLE PO PICHER

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

98.6 Whrs/Kg 217.4 Whrs/1 1.56 VOLTS 40.24 AMPS 2.39 VOLTS 104.6 Whrs 67.7 Whrs 65.2 MIN 6.1 mOhms Ω 35 MIN 64.70% 58.40% 87.4 Whrs/Kg 196.0 Whrs/I 34.81 AMPS 1.39 VOLTS 104.6 Whrs 2.44 VOLTS 6.4 mOhms 21.61 61.1 Whrs 73.9 MIN C 75 AMPS 35 MIN 50.70% 73.1 Whrs/Kg 160.5 Whrs/l 1.24 VOLTS 2.43 VOLTS 98.3 Whrs 49.9 Whrs 33.2 AMPS 8.8 mOhms B 75 AMPS 32 MIN 73 MIN 50.20% 72.6 Whrs/Kg 159.2 Whrs/1 1.20 VOLTS 2.44 VOLTS 8.8 mOhms 30.00 49.5 Whrs 33.5 AMPS 98.6 Whrs ¥ 75 AMPS 73 MIN 33 MIN (Whrs DIS/Whrs CHG) RESISTANCE (mOhms) AVE. CHARGE RATE END OF DISCHARGE AVE. VOLTS (DIS) AVE. VOLTS (CHG) SPECIFIC ENERGY DISCHARGE TIME Whrs DISCHARGE DISCHARGE RATE ENERGY DENSITY CHARGE TIME CELL DESIGN Whrs CHARGE EFFICIENCY Note:

Fl is a measure of the percent nonavailable theoretical cell capacity.

EAGLE F PICHER

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

EAGLE F PICHER THERMAL-

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

EAGLE F PICHER

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

THERMAL-ORDNANCE OPERATION EAGLE PICHER

Na-S BATTERIES

ELECTRONICS DIVISION JOPLIN, MO

EAGLE PICHER T

ELECTRONICS DIVISION
JOPLIN, MÖ

THERMAL-ORDNANCE OPERATION

AVERAGE VOLTS WHILE DISCHARGING: 1.50 AVERAGE VOLTS DURING CHARGE: 2.40

SPECIFIC ENERGY: 63.3 WH / KG

ENERGY DENSITY: 145 WH/I

E.O.D. RESISTANCE: .0088 ohms

THERMAL-ORDNANCE OPERATION EAGLE PICHER

ELECTRONICS DIVISION JOPLIN, MO

Na-S BATTERIES

LIFE CYCLE TESTS

55AH CELLS DISCHARGED TO 60% DOD AT "C" RATE

CYCLES ACCOMPLISHED TO DATE: 7,200

-593-

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

LATEST CELL DESIGN

55AH CELLS DISCHARGED TO 60% DOD AT "C" RATE

CYCLES ACCOMPLISHED TO DATE: 5,000

AVERAGE VOLTS WHILE DISCHARGING: 1.63

AVERAGE VOLTS DURING CHARGE: 2.40

SPECIFIC ENERGY: 73 WH / KG

ENERGY DENSITY: 165 WH/

E.O.D. RESISTANCE: .0075 ohms

EAGLE F PICHER THERM

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

IMPROVED CELL TECHNOLOGY AVAILABLE NOW

55AH CELLS DISCHARGED TO 60% DOD AT "C" RATE

AVERAGE VOLTS WHILE DISCHARGING: 1.75

AVERAGE VOLTS DURING CHARGE: 2.40

SPECIFIC ENERGY: 100 WH / KG

ENERGY DENSITY: 225 WH/I

E.O.D. RESISTANCE: .005 ohms

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

CELL - TO - BATTERY TRANSITION

- 1. CELL OPTIMIZATION AND DEVELOPMENT
- IMPROVED LOW RESISTANCE CATHODE Ą œ
 - STRUCTURE POROUS ANODE
- LIGHT WEIGHT
- FABRICATION OF LIGHT WEIGHT MOLYBDENUM COMPONENTS REGULATES / LIMITS AVAILABLE SODIUM FOR SAFETY ပ ဝ
 - DEFINE OPTIMUM ELECTROLYTE PARAMETERS
- BALANCE OF PHYSICAL / ELECTRICAL PROPERTIES GEOMETRY TAILOR TO CELL REQUIREMENTS AND PROCESS DEFINITION / FORMULATION **NSPECTION CRITERIA**

EAGLE F PICHER

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

CELL - TO - BATTERY TRANSITION (CONTINUED)

CELL TESTING - BUILD STATISTICAL BODY OF DATA

6

MONITOR TEMPERATURE AND ELECTRICAL DATA

VARYING LENGTHS OF ORBITS

OPTIMUM RECHARGE PARAMETERS VS. DOD

ESTABLISH PERFORMANCE TRENDS DURING LIFE CYCLE **С** С Ш

DETERMINE VARIABILITY / CONSISTENCY WITHIN CELL POPULATION

INCORPORATION INTO BATTERY CONFIGURATION က

AIDED BY HISTORY OF NUMEROUS SECONDARY BATTERY CHEMISTRIES 4 B C G

USE CELL-LEVEL RESULTS TO ACHIEVE BATTERY REQUIREMENTS

FIX MEANS OF MONITORING AND ELECTRICAL CONTROLS PACKAGE FOR EFFICIENCY, RUGGEDNESS, AND SAFETY

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

EAGLE PICHER

ELECTRONICS DIVISION JOPLIN, MO

1991 NASA Aerospace Battery Workshop

-598-

Advanced Technologies Session

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

THE NEXT GENERATION SPACE BATTERIES

EAGLE-PICHER INVOLVEMENT IN SODIUM SULFUR SPACE BATTERIES **BEGAN IN 1986**. U.S. AIR FORCE SELECTED EAGLE-PICHER AS THE SOLE DEVELOPER FOR SODIUM SULFUR LEO CELLS. EAGLE-PICHER'S EXPERIENCE IN NICKEL HYDROGEN SPACE BATTERIES PROVIDES A VALUABLE BASE FOR TRANSITIONING TO SODIUM SULFUR SPACE BATTERIES.

EAGLE 🗐 PICHER T

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

BATTERY STATUS

ENTRY LEVEL BATTERY EFFORTS FUNDED INTERNALLY

UNIT APPROACHING 1000 CYCLES
CONSTANT CURRENT CHARGE / DISCHARGE
NOMINAL 60% DOD (= 30 A.H.)

CYCLE CONTROLLED BY FIRST CELL TO ACHIEVE PRE-SET VALUES (OTHERWISE BY CYCLE DEFINITION ONLY)

CALENDA: LIFE NOW FIVE MONTHS

Sodium Sulfur Battery

-601-

Battery Test Set-up

EAGLE P PICHER

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

ELECTRONICS DIVISION JOPLIN, MO

THERMAL-ORDNANCE OPERATION

Na-S BATTERIES

BATTERY DESCRIPTION

- (ENERGY, POWER, CAPACITY, VOLUME CONSTRAINT, CYCLE NUMBER OF CELLS DEPENDENT UPON USER SPECIFICATION
- 2. CELLS ORIENTED VERTICALLY INTERCONNECTS DEPEND UPON REQUIREMENT
- EFFICIENT THERMAL ENCLOSURE TAILORED TO APPLICATION PROVISIONS FOR ELECTRICAL HEATING **MULTILAYER - EVACUATED WALL** ACTIVE OR PASSIVE COOLING "MONOLITHIC WALL" က်
- ASSURANCE AGAINST EXCESSIVE CHARGE / DISCHARGE PROTECTS MAY BE ELECTRICAL (SWITCHING) TEMPERATURE (SAMPLED OR INDIVIDUAL) CELL / BATTERY VOLTAGE OR PHYSICAL (FUSIBLE) MONITOR / CONTROLS 4

