Grundlagen der Mensch-Computer Interaktion

2. Kapitel

MCI: Eine Standortbestimmung

- Informatik / MCI
 - ⇔ natürliche Informationsverarbeitung
- Architektur informationsverarbeitender Systeme
 - kognitive Architekturen
- Ebenen der Informationsverarbeitung

Das Informationsverarbeitungsparadigma

- Informatik Computer Science
 - "Berechnung ist Informationsverarbeitung Informationsverarbeitung ist Berechnung"
 - Information als Grundbegriff (obwohl nur partiell geklärt ist, was in der Informatik unter Information verstanden wird)
- Kognitionswissenschaft Cognitive Science
 - Kognition beruht auf Informationsverarbeitung
 - Grundannahme der Kognitionswissenschaft:
 Es existieren allgemeine Prinzipien der Informationsverarbeitung, denen sowohl Menschen und Tiere, also natürliche Systeme, als auch Maschinen, also künstliche Systeme, unterliegen.
- Kognitive Systeme (kognitive Agenten) als gemeinsames Forschungsthema von Informatik und Kognitionswissenschaft.

Ch. Habel
Grundlagen der Mensch-Computer-Interaktion (IKON-1)

WS 2009/10

Klassische Aufsätze & Bücher zum Informationsverarbeitungsparadigma

- Newell, A. & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
- Newell, Allen & Simon, Herbert A. (1976). Computer science as empirical inquiry. *Communications of the ACM, 19.* 113–126.
- Newell, A. (1980). Physical symbol systems. Cognitive Science, 4. 135–83.
- Newell, Allen, Rosenbloom, Paul S. & Laird, John E. (1989).
 Symbolic Architectures for Cognition. In Michael I. Posner (ed.),
 Foundations of Cognitive Science. (pp. 93–131). Cambridge, MA: MIT-Press.
- Newell, Allen (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

VORSICHT:

- Die drei hier behandelten Begriffe werden weder in der Informatik, noch in den Kognitionswissenschaften – einheitlich verwendet. Das heisst auch, dass die hier vorgestellte Charakterisierung nicht DIE einzige bzw. richtige ist.
 - So sind etwa "Datenbanken" im Sinne der hier vorliegenden Charakterisierung eher "Informationsbanken".
- Sie sollten daher immer genau "hinhören", wenn Sie Begriffe verwendet werden, und darüber nachdenken, ob und inwieweit die spezielle Verwendung mit anderen Verwendungen übereinstimmg.

hier vorgestellte Charakterisierung und die Abbildung gehen auf chap. 2.3 von

Lowe, David & Hall, Wendy (1999). *Hypermedia & the Web: an engineering approach*. Chichester: Wiley.

zurück. [Abb entspricht Figure 2-2; p. 47]

Geschichte des Informationsverarbeitungsparadigmas (1)

- Leibniz (ca. 1677): Konzept eines formalen Systems zum quasimechanischen Schliessen: "Calculemus"
- 1830er: Charles Babbage: "Analytical Engine"
- 1936:
 - A. Turing: Konzeption einer abstrakten, mathematischen Maschine
 - A. Church: Church'sche These: Alles, was in einem intuitiven Sinne berechenbar ist, kann mit rekursiven Funktionen berechnet werden.
 - Emil Post: Church'sche These ist ein Naturgesetz, welches "the mathematicizing power of Homo Sapiens" betrifft.
- 1940er
 - Entwicklung der ersten Computer (u.a. durch J. v. Neumann, K. Zuse)
 - Logische Beschreibungen von Nervensystemen (McCulloch & Pitts, 1943)

2 - 4

WS 2009/10

 "Conference on Cybernetics" (N. Wiener, J. v. Neumann, W. McCulloch) 1946

Ch. Habel
Grundlagen der Mensch-Computer-Interaktion (IKON-1)

- Leibniz und Babbage können als die Vorläufer des Informationsverarbeitungsparadigmas angesehen werden:
 - · "Denken ist Berechnen von sprachlichen Ausdrücken."
 - · "Diese Berechnungen sind mechanisierbar."
- Die Mathematik / Logik der 30-er Jahre liefert die Grundlage für die Informatik und das Informationsverarbeitungsparadigmas durch die Entwicklung eines wohldefinierten Konzepts der <u>Berechnung</u>.
- Die Folge dieser mathematischen Grundlagenforschung ist die Entwicklung genereller, programmierbarer Computer in den USA in der Kooperation von Elektroingenieuren und Logikern.
- Die Verwendung von Logik als Grundlage der Beschreibungen des Nervensystems erfolgt in der Kooperation von Biologen und Logikern.
 - McCulloch, Warren & Pitts, Walter (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5. 115-133.
 - Auch Turing und von Neumann haben zahlreiche Arbeiten zu natürlichen Informationssystemen vorgelegt.
- Kybernetik: Entwicklung einer (ersten) interdisziplinären Gruppierung zur Erforschung genereller Prinzipien der Informationsverarbeitung.
 - Primär beteiligte Disziplinen: Mathematik, Physik, Elektrotechnik, Biologie
 - Die Bezeichnung Kybernetik verschwindet in den USA in den 50er jahren in der Konkurrenz mit Computer Science.
 - Kybernetik bleibt eine "europäische Erscheinung" (insbesondere Osteuropa.)

Geschichte des Informationsverarbeitungsparadigmas (2)

- 1956:
 - Dartmouth-Conference: Einführung des Begriffs "Artificial Intelligence". (McCarthy, Minsky, Newell, Shannon, Simon)
 - Noam Chomsky: "Three Models for the Description of Language" begründet die "Generative Grammatik".
 - George Miller "The Magical Number Seven": Beginn der Kognitiven Psychologie
- 1950er 1970er: Informatik wird zu einer wissenschaftlichen Disziplin
- 1970er: Cognitive Science auf dem Weg zu einer eigenständigen wissenschaftlichen Disziplin (in den USA)
- 1980er: Human-Computer-Interaction als eigenständige Teildisziplin der Informatik
- 1990er: Autonome Agenten: Integration von Künstlicher Intelligenz, Softwaretechnik und Theoretischer Informatik.
- 2000er: Robotik & virtuelle Agenten werden als neue Form von selbständig handelnden Assistenten entworfen und realisiert.

Ch. Habel
Grundlagen der Mensch-Computer-Interaktion (IKON-1)

2 - 5 WS 2009/10

- Ab Mitte der 50er Jahre Entwicklung einer Kognitionswissenschaft:
 - Primär beteiligte Disziplinen: Informatik, Logik, Psychologie, Linguistik, Neurowissenschaften, Philosophie, Anthropologie
- Einige zentrale Veröffentlichungen (der Startphase):
 - Chomsky, N. (1956). Three Models for the description of language. In I.R.E. Transactions on Information Theory II 2-3. (pp. 113-124).
 - Miller, G. A. (1956). The Magical Number Seven, plus or minus two.some limits on our capacity for processing information. Psychological Review 63, 81–97.
 - Newell, A. & Simon, H. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
 - McCarthy, J. (1958). Programs with common sense. In Proceedings of the Symposium on the Mechanization of Thought Processes. (pp. 77-84). (repr. in: M. Minsky (Ed.). Semantic Information Processes. Cambridge, MA: MIT-Press. .)
 - McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine. Part I. Communications of the ACM. 3, 184–195.
- Wichtige Konferenzreihen (im Hinblick auf IKON-1-Inhalte):
 - International Joint Conference on Artificial Intelligence (IJCAI), seit 1969
 - Cognitive Science Conference (CogSci) seit 1980
 - Human Factors in Computing Systems (ACM-CHI), seit 1983

- Mensch-Computer Kooperation: Problemlösen unter Verwendung des Computers als kognitives Artefakt.
- Erfolgreiche Mensch-Computer Interaktion / Mensch-Computer Kooperation setzt voraus, dass Designer/Entwickler die folgenden Anforderungen berücksichtigen.
 - Die Fähigkeiten des Computers müssen auf die Fähigkeiten des Menschen angepasst werden.
 - Der Mensch sollte durchschauen können, was das System in der gemeinsamen Problemlösung tut. (Internes Modell des Systems.)
 - Die Kommunikation zwischen Mensch und Computer muss funktionieren.
- → Die Cartoon-ähnliche Abbildung (rechts) ist aus: Card, S. K.; Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Die Idee der Kognitiven Architekturen wird später (Folie 2-12) genauer erläutert.

- Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. *Human-Computer Interaction.*, 12, 391-438.
 - · KierasMeyer 1997.pdf
- Kieras, D.E., Wood, S.D., & Meyer, D.E. (1997). Predictive engineering models based on the EPIC architecture for a multimodal high-performance human-computer interaction task. ACM Transactions on Computer-Human Interaction. 4, 230-275.
 - KierasWoodMeyer_1997.pdf
- Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive control processes and human multiple-task performance: Part 1. Basic Mechanisms. *Psychological Review*, 104, 3–65.
 - MeyerKieras_1997a.pdf
- Meyer, D. E. & Kieras, D. E. (1997). A computational theory of executive control processes and human multiple-task performance: Part 2. Accounts of Psychological Refractory-Period Phenomena. Psychological Review. 104, 749–791.
 - MeyerKieras 1997b.pdf

- Einblick in die interdisziplinäre Arbeitsweise & Methodik des Gebietes MCI
 - Dies betrifft insbesondere die "Nachbarfächer": Psychologie im Allgemeinen, und für spezifische Fragestellung Linguistik, Erziehungswissenschaften, …
 - → Für Informatiker die im Bereich MCI tätig sind, ist es notwendig, mit VertreterInnen der anderen Disziplinen zusammen arbeiten zu können.

- Die Perspektive "Gedächtnis" ist orthogonal zu der hier (auf dieser Folie) eingenommen Prozess-Perspektive.
- Introspektion ist keine gute Analysestratgegie, Befragung und insbesondere experimentelle Überprüfung sind notwendig...
- Die Cartoon-ähnliche Abbildung (rechts) ist aus: Card, S. K.; Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

- Mit dieser Detailbetrachtung wird nur ein kleiner Ausschnitt der Fragestellungen / Prozesse (vgl. die vorangehende Folie) erläutert, die systematisch untersucht und berücksichtigt werden müssen.
- Card et al. verweisen für die verschiedenen in der Abbildung aufgeführten "Performanzangaben" auf Arbeiten anderer Wissenschaftlern, die entsprechende Phänomene experimentell untersucht haben. In späteren Vorlesungen werden wir exemplarisch auf entsprechende Fragestellungen und Untersuchungen detaillierter eingehen.
- Abb: Ausschnitt aus Fig. 2.1 in Card, S. K.; Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

"wie der Mensch funktioniert" (3) Leistungen & Beschränkungen

- Ikonisches Gedächtnis / Visual Image Store
 - decay / Verfall: δ
 "Halbwertzeit" 200 msec
 Intervall [90 1000] msec
 - Kapazität / memory capacity: μ
 Messgrösse: Buchstaben
- Augenbewegungen / gaze
 - typische Dauer (Planung & Durchführung): 230 msec Intervall [70 – 700] msec

- Die Angaben sind nicht generalisierbar.
 - Sie beziehen sich jeweils auf spezifische Mess- & Versuchsanordnungen sowie (Aufgabenstellungen).
 - Es gibt zum Teil erhebliche Unterschiede, sowie innerhalb von Individuen als auch zwischen Individuen.
- Menschen sind in vielen
 Bereichen nur sehr –
 eingeschränkt in der Lage,
 Leistungsgrenzen durch Training
 oder Anpassung zu verändern.

Ch. Habel Grundlagen der Mensch-Computer-Interaktion (IKON-1) 2 – 11 WS 2009/10

- "innerhalb von Individuen zwischen Individuen" wird häufig auch mit dem Begriffspaar "intraindividuell –. interindividuell" bezeichnet.
- Derartige "Leistungsbereiche" müssen beim Design von Schnittstellen berücksichtigt werden!
- Abb: Ausschnitt aus Fig. 2.1 in Card, S. K.; Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Kognitive Architekturen - Kognitive Modelle

- Kognitive Architekturen
 - sind Theorien der Module und Prozesse, auf denen (menschliche) Kognition basiert
 - fokussieren auf Funktion / Verhalten (nicht auf die "biologische Ausstattung")
 - ermöglichen die Entwicklung kognitiver Modelle realisiert durch spezielle Programmiersprachen / Repräsentationsformalismen (Soar, ACT-R, EPIC)
 - integrieren Grundlagenforschung und Anwendungen (MCI)
- **Kognitive Modelle**
 - sind Computer Programme, die menschliches Verhalten bei der Lösung kognitiver Aufgaben simulieren
 - ermöglichen qualitative und quantitative Vorhersagen über Benutzerverhalten in der Mensch-Computer-Interaktion

2 – 12

Ch. Habel WS 2009/10 Grundlagen der Mensch-Computer-Interaktion (IKON-1)

- Die kognitionsnahen Bereiche von Perzeption & Motorik werden meist ebenfalls INNERHALB von Kognitiven Architekturen behandelt.
- Ritter, Frank E.; Baxter, Gordon D.; Jones, Gary & Young, Richard M. (2000). Supporting Cognitive Models as Users. ACM Transactions on Computer-Human Interaction. 7. 141–173.
- Olson, Gary M. & Olson, Judith S. (2003). Human-Computer Interaction: Psychological Aspects of the Human Use of Computing. Annual Review of Psychology, 54. 491-516.
- Im Bereich HCI werden kognitive Modelle u.a. in Anwendungsfeldern verwendet, in denen die Untersuchung "echter Benutzer" kostspielig, zeitaufwendig und risikoreich ist, z.B. Luft- und Raumfahrt, Medizintechnik (einschliesslich Operationstechnik / -unterstützung). In solchen Feldern werden kognitive Modelle für die ersten Phasen der Systementwicklung eingesetzt, um die - notwendigen -Untersuchungen mit "echten Benutzern" erst in der Endphase der Entwicklung – und dann mit reduziertem Aufwand – durchzuführen.

2 – 13 WS 2009/10

 Die zentrale Frage der Kognitions- und Neurowissenschaften ist: Welche internen Prozesse des kognitiven und perzeptiven Systems führen dazu, dass "äussere Reize" dazu führen, dass ein gewisses Verhalten des Agenten auftritt.

Ch. Habel

Grundlagen der Mensch-Computer-Interaktion (IKON-1)

Bis in die 50-er Jahre des 20. Jhd. wurden in der Psychologie überwiegend Beziehungen zwischen äusseren Reizen (stimuli) und darauf folgenden Verhaltensreaktionen (response) untersucht.

- Diese Richtung der Psychologie wird als Behaviorismus / behavioristische Psychologie bezeichnet.
- Chomsky und Miller (vgl. Folie 2–5) sind zwei der einflussreichsten Wissenschaftler im Übergang vom Behaviorismus zur kognitiven Psychologie und Kognitionswissenschaft.

Ebenen der Informationsverarbeitung (David Marr, 1982)

- computational level
 - betrifft die Bedingungen (constraints) an die Abbildung von Eingabe- zu Ausgabeinformationen
 - Was wird berechnet?
- representational / algorithmic level
 - betrifft die Repräsentationsformate der Eingabe- und der Ausgabeinformation sowie die Algorithmen, die die abstrakte Abbildung (des computational levels) realisieren
 - Wie wird berechnet?
- implementational / physical level
 - betrifft die Realisierung der Repräsentationen und Algorithmen auf konkreter "Hardware", d.h. durch eine physikalisches System
 - Wie ist der Algorithmus aktuell implementiert?

Ch. Habel Grundlagen der Mensch-Computer-Interaktion (IKON-1) 2 - 14 WS 2009/10

- Marr, David (1982). Vision. New York: W.H. Freeman
- Erläuterungen zu Marrs Ansatz finden sich u.a.in:
 - Kosslyn, Stephen M. (1994). Image and Brain. Cambridge, MA.: MIT-Press.
 - Palmer, Stephen E. (1999). Vision Science. Photons to Phenomenology. Cambridge, MA: MIT-Press.
- Die von Marr angesprochenen Ebenen der Informationsverarbeitung beziehen sich auf natürliche und künstliche Systeme.
- Wird etwa das Verhalten oder Fehlverhalten eines technischen Systems untersucht, so sind die Marrschen Ebenen ebenfalls grundlegend.
 - Situation: Bei gegebenen Eingabewerten wird (durch ein System) ein falsches Resultat geliefert, d.h. es wird nicht F(x) berechnet. Warum?
 - Im System wurde eine andere Funktion realisiert. (z.B. eine inadäquate Approximation von F).
 - · Der Algorithmus zur Berechnung von F ist nicht korrekt.
 - Die Hardware / Basissoftware ist nicht dazu in der Lage, den Algorithmus korrekt zu realisieren.

Kombinationen der Fehlerquellen sind möglich.

- Die hier dargestellte SOAR-Architektur ist ein Beispiel für eine "Kognitive Architektur", d.h. für ein formales Modell der menschlichen Kognition und Perzeption [andere kognitive Architekturen werden in Veranstaltungen des 3. Bachelor-Studienjahres und im Masterstudium behandelt werden]. SOAR wurde von Alan Newell (und MitarbeiterInnen) entwickelt, um das Verhalten natürlicher kognitive Systeme zu beschreiben und zu erklären, und, um leistungsfähige künstliche Systeme entwerfen und realisieren zu können..
 - Lehman, Jill Fain; Laird, John E. & Rosenbloom, Paul (1998). A gentle introduction to Soar: An
 architecture for human cognition. In Scarborough, Don & Sternberg, Saul (eds.), An invitation to
 cognitive science: Methods, models, and conceptual issues. Vol 4. (pp. 211–251). Cambridge, MA:
 MIT-Press
 - Laird, John E., Newell, Alan & Rosenbloom, Paul S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33. 1–64.
 - Newell, Allen (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
- Die obige Abbildung, die in ähnlicher Form in den oben genannten Publikationen zu SOAR zu finden ist, zeigt die zentrale Stellung verschiedener Typen des Gedächtnisses in kognitiven Prozessen.
 - Die Interaktion des Systems findet über Ein- bzw. Ausgabe vermittels der Sensorik und Mechanik statt.
 - Die relevanten internen Prozesse stellen Transformationen / Verarbeitungen von Gedächtnisinhalten (internen Repräsentationen) dar.
 - Kritik: C.H.: Die ursprüngliche SOAR-Architektur vernachlässigt die Aspekte der Kommunikation. Daher ist hier eine eigene Komponente für Verstehen und Generieren von Sprache, Graphiken etc. eingeführt. Der "akustische" Teil der sprachlichen Kommunikation muss dabei in der klassischen SOAR-Konzeption als spezielle Wahrnehmung aufgefasst werden.
- In den Teilen der VORLESUNG (IKON-1), die die Grundlagen natürlicher Informationsverarbeitung betreffen, werden insbesondere die drei Bereiche Wahrnehmung, Gedächtnis & Denken und Kommunikation jeweils in Blöcken von anderthalb bis zwei Vorlesungen behandelt werden.
- Verhalten kann häufig direkt beobachtet werden, und ist deswegen als "Hinweis" (Evidenz) für nicht direkt beobachtbare kognitive und perzeptive Prozesse relevant.

- Abbildung nach Figure 2.3.6 in Palmer, Stephen E. (1999). Vision Science. Photons to Phenomenology. Cambridge, MA: MIT-Press. (p. 75)
- Vgl. auch die SOAR-Architektur (Folie SOAR, 2–15)
- In dieser Abbildung ist in der zweiten Verfeinerungsebene auf die visuelle Wahrnehmung fokussiert worden.
- Palmers Blick auf die menschliche Kognition ist von seinen Forschungsschwerpunkten, Wahrnehmung und Motorik, geprägt. Daher werden alle "Output-Kanäle" als Bewegung dargestellt. Dies ist – aus einer sehr basalen – Perspektive möglich:
 - Sprache wird gesprochen (Motorik der Artikulationsorgane) oder schriftlich (Handbewegung) verwendet.
 - · Gestik und Mimik basieren auf Motorik.
 - Handlung, die nach aussen wirkt, ist stets mit Bewegung verbunden.

Grundlagen der Mensch-Computer Interaktion

2. Kapitel

- Informatik / MCI
 - ⇔ natürliche Informationsverarbeitung
- Architektur informationsverarbeitender Systeme
- Ebenen der Informationsverarbeitung
- Kapitel 3: "Der Mensch"
 - Menschliche Informationsverarbeitung: Wahrnehmung, Gedächtnis, Problemlösen, Kommunikation

· So geht es weiter!