

NTE2633 (NPN) & NTE2634 (PNP) Silicon Complementary Transistors High Frequency Video Driver

Description:

The NTE2633 (NPN) and NTE2634 (PNP) are silicon complementary epitaxial transistor in a TO126 type package designed for use in the buffer stage of the driver for high–resolution color graphics monitors.

Features:

- High Breakdown Voltage
- Low Output Capacitance

Absolute Maximum Ratings:

Collector–Base Voltage, V _{CBO}	115V
Collector–Emitter Voltage, V _{CEO}	
Collector–Emitter Voltage (R _{BE} = 100Ω), V _{CER}	110V
Emitter–Base Voltage, V _{EBO}	3V
DC Collector Current, I _C	300mA
Total Power Dissipation ($T_S \le +115^{\circ}C$, Note 1), P_{tot}	3W
Operating Junction Temperature, T _J	+175°C
Storage Temperature Range, T _{stq}	-65° to +175°C
Thermal Resistance, Junction–to–Soldering Point ($T_S \le +115$ °C, Note 1), R_{thJS}	20K/W
Note 1. T _S is the temperature at the soldering point of the collector lead.	

<u>Electrical Characteristics:</u> (T_J = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = 0.1mA	115	_	_	V
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	I _C = 10mA	95	_	_	V
	V _{(BR)CER}	$I_C = 10$ mA, $R_{BE} = 100\Omega$	110	_	_	V
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	I _E = 0.1mA	3	_	_	V
Collector Cutoff Current	I _{CES}	$I_B = 0, V_{CE} = 50V$	_	_	100	μΑ
	I _{CBO}	$I_E = 0, V_{CB} = 50V$	_	_	20	μΑ
DC Current Gain	h _{FE}	$I_C = 50 \text{mA}, V_{CE} = 10 \text{V}, T_A = +25 ^{\circ}\text{C}$	20	35	_	
Transition Frequency	f⊤	$I_C = 50$ mA, $V_{CE} = 10$ V, $f = 100$ MHz, $T_A = +25$ °C	0.8	1.2	_	GHz
Collector-Base Capacitance	C _{cb}	$I_C = 0$, $V_{CB} = 10V$, $f = 1MHz$, $T_A = +25$ °C	_	2.0	_	pF

