CHEM101 Report for Laboratory Exercise #1

Measurement of Volumes and Weights: Accuracy and Precision¹

Name: Arfaz Hossain	Lab Section: B01	Quad: 02	Date: May 21, 2024
---------------------	------------------	-----------------	---------------------------

Abstract

By measuring the volume and weight of samples the density of a solution of NaCl (concentration **2.676** mol/L) was determined to be **1.05** g/mL.

Data/Results

Table 1. Experimental data and calculated values

10.00 mL of NaCl solution	# 1	# 2	# 3
Weight of sample from Volumetric pipette (g)	11.132	10.150	10.133
Calculated density (g/mL)	1.1132	1.0150	1.0133
Concentration (mol/L)	2.676		
Average calculated density of NaCl solution (g/mL)	$1.047166667 \cong 1.05$		
Standard Deviation, σ	$0.46697775345537 \cong 0.05$		
%RSD for the density of NaCl solution	5.462%		

Algebraic Equations

$$Relative \ SD, \ \% \mathbf{RSD} = \frac{Standard \ Deviation, \ \boldsymbol{\sigma}}{Average \ Density, \ \overline{\boldsymbol{X}}} \times 100$$

$$Standard \ Deviation, \ \boldsymbol{\sigma} = \sqrt{\sum \frac{(Calculated \ Density - Average \ Density)^2}{n-1}}$$

$$V = \frac{Mass}{Density} \quad Density, \ \boldsymbol{\rho} = \frac{Weight \ of \ NaCl \ solution, \ \mathbf{m} \ (\mathbf{g})}{Volume \ of \ NaCl \ Solution, \ \mathbf{V} \ (\mathbf{mL})}$$

$$Concentration = \frac{Moles \ of \ NaCl, \ \boldsymbol{mol} \ or, \ \left[\frac{Mass \ of \ NaCl, \ \boldsymbol{g}}{Molar \ Mass \ of \ NaCl, \ \boldsymbol{g}/mol}\right]}{Volume \ of \ NaCl \ Solution, \ \boldsymbol{L}}$$

Discussion

The density of the prepared NaCl solution $2.676 \ mol/L$ was determined to be $1.05 \ g/ml$ by measuring 3 samples of 10.00 mL of the NaCl solution. The %RSD calculated for these measurements was 5.462%. The accuracy of the measurement required the use of a pipette and not a graduated cylinder because pipettes are designed to deliver precise volumes, ensuring that each $10.00 \ mL$ sample is consistent in volume.

Conclusions

The measured density of the NaCl solution with concentration $2.676 \ mol/L$ using a volumetric pipette is $1.05 \ g/ml$ with a % relative standard deviation of 5.462%.

References

1. Reimer, M. et al, *Laboratory Manual, Chemistry 101*, pp. 13-18. (University of Victoria: Victoria, B.C.). **Summer 2024**.

 $\ @$ 2024 Department of Chemistry, Faculty of Science