Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl I für Mathematik Prof. Dr. Christof Melcher

## Übungen zur Höheren Mathematik 3 Serie 03 vom 26. Oktober 2009

## Teil A

Aufgabe A7 Bestimmen Sie mit Hilfe von Satz 4.10 (Lagrange-Multiplikator) das achsenparallele Rechteck mit dem größten Umfang dessen Eckpunkte auf der Ellipse

$$\left\{ (x_1, x_2) \in \mathbb{R}^2; \quad \frac{x_1^2}{2} + \frac{x_2^2}{4} = 1 \right\}$$

liegen.

**Aufgabe A8** Betrachten Sie die Funktion  $F:(0,\frac{\pi}{3})\to\mathbb{R}$ , definiert durch

$$F(y) := \int_{0}^{\sin(y)} \arctan(\tan(y) - x) dx.$$

Zeigen Sie, dass F differenzierbar ist und berechnen Sie F'(0).

Aufgabe A9 Sei  $f: \mathbb{R}^2 \to \mathbb{R}$  eine differenziebare Funktion. Durch  $F: \mathbb{R}^3 \to \mathbb{R}$ , definiert

$$F(y,a,b) := \int_{a}^{b} f(x,y)dx$$

wird eine differenzierbare Funktion festgelegt. Berechnen Sie im Fall  $f(x, y) := y^2 \exp(x)$ ,  $a = a(y) := \log(y)$ ,  $b = b(y) = 2\log(y)$  für y > 0 die Ausdrücke

$$\frac{\partial}{\partial y}F(y,a(y),b(y))$$
 sowie  $\frac{d}{dy}F(y,a(y),b(y)).$ 

**Aufgabe A10** Man bestimme die Punkte der Sattelfläche  $x^2 - y^2 = 8z$ , die vom Punkt  $\overline{P = (0,0,2)}$  den kleinsten Abstand besitzen und prüfe, ob dieser Abstand kleiner als 1 ist. Verwenden Sie hierfür die explizite Methode (d.h. Einsetzen der Nebenbedingung).

## Teil B

Aufgabe B9 Bestimmen Sie mit Hilfe von Satz 4.10 (Lagrange-Multiplikator) den achsenparallelen Quader mit dem größten Volumen dessen Eckpunkte auf dem Ellipsoid

$$\left\{ (x_1, x_2, x_3) \in \mathbb{R}^3; \quad x_1^2 + \frac{x_2^2}{4} + \frac{x_3^2}{8} = 1 \right\}$$

liegen.

Aufgabe B10 Betrachten Sie die folgenden Mengen

$$\Omega_1 := \{x \in \mathbb{R}^2; ||x - (1,3)|| < 1\},$$

$$\Omega_2 := \{(r\cos(\varphi), r\sin(\varphi)) \in \mathbb{R}^2; \ 0 \le r < 1, \quad \frac{\pi}{4} < \varphi < \frac{3}{4}\pi, \quad \frac{5}{4}\pi < \varphi < \frac{7}{4}\pi\},$$

$$\Omega_3 := \{(x_1, x_2) \in \mathbb{R}^2; \max\{|x_1|, |x_2|\} < 1\}.$$

Skizzieren Sie die angegebenen Mengen. Handelt es sich um Gebiete? Geben Sie eine Parametrisierung der Randkurven an und zeichen Sie den Umlaufsinn in Ihre Skizze ein.

**Aufgabe B11** Betrachten Sie die Funktion  $F:(-\frac{1}{2},\frac{1}{2})\to\mathbb{R}$ , definiert durch

$$F(y) := \int_{\arcsin(y)}^{\pi} \exp(y \sin(x)) dx.$$

Zeigen Sie, dass F differenzierbar ist und berechnen Sie F'(0).

Aufgabe B12 Lösen Sie Aufgabe A10 mit der Methode der Langrange-Mulitplikatoren.

**Aufgabe B13** Sei  $f: M \subset \mathbb{R}^n \to \mathbb{R}$ , M offen, nicht leer, eine auf ihrem Definitionsbereich differenzierbare Funktion. Geben Sie für die folgenden Aussagen jeweils deren Wahrheitswert an

- (a) Dann ist f auf M auch stetig.
- (b) Die Funktion f ist partiell differenzierbar.
- (c) Verschwinden die partiellen Ableitungen von f überall, so ist f konstant.
- (d) f ist Riemann-integrierbar.
- (e) Mit dem Satz von Taylor folgt:

$$\forall_{x,x_0 \in M} f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$





Uniformy des Rechtechs hing f nur von der Wall etres Echpunktes (x, x, des Dechtechs ab.

o. B. d. A. +, 20, +, 20.

U(x, x1) = 4x, + 4x1

=) 
$$\frac{1}{maximile} U(x_1, x_2^2) \text{ un fer } NB:$$
 $\frac{1}{maximile} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - 1 = 0$ 

- Da U stetig und Def. Bereich kompakt, existiert etn Maximum. (auf dem Def. Bereich)
- Vg(x1, x2) + O für (x1, x2) EE (Vg(x1, x2)=(x1, 2x2))

Sei  $(x_1, x_1)$  eine Extrem stelle, denn gilt:  $\exists \mathcal{R} \in \mathbb{R} \text{ wit } \nabla U(x_1, x_1) + \mathbf{\lambda} \cdot \nabla g(x_1, x_1) = 0$ and  $g(x_1, x_1) = 0$ 

$$\frac{211}{2} \cdot x_1 = -4 \qquad 2x_1^2 = -4x_1 \\ 2 \cdot \frac{1}{2}x_2 = -4 \qquad 7 \cdot \frac{1}{2}x_2^2 = -4x_2$$

=) 
$$\lambda = -7 \cdot (x_1 + x_2)$$
 [Beicle Ursprungsgl. eingosetet]

$$\left( = \frac{\chi_{1}^{2}}{2} = -1 + \frac{\chi_{2}^{2}}{2} \right)$$

$$=) \frac{x_1^2}{2} + \frac{t_2^2}{4} - 1 = -7 + \frac{3}{4} + \frac{3}{2}$$

Extremum wird an Stelle 
$$(x_1,x_2)=(\frac{1}{2}\sqrt{6};\frac{2}{3}\sqrt{6})$$
  
angenommen, d. h. gesuchtes Rechtech  
besitet De Echpunkte  $(x_1,x_1)=(\frac{1}{2}\sqrt{6};\frac{2}{3}\sqrt{6})$ ,  
wit  $U(x_1,x_2)=4.\sqrt{6}$ .

HM3 GU3

A8.) F: 
$$(0, \frac{M}{3}) \rightarrow \mathbb{R}$$

sin(y)

 $F(y) = \int \operatorname{arctan}(\tan(y) - x) dx$ 

Zeigen: Fist diff bar, F'(0) =? Wollen Leibniz-Regel anwenden. Priten Voranssetzungen:

 $G := \{(x,y) \in \mathbb{R}^2, 0 < y < \frac{\overline{M}}{3}, 0 < x < s, n(y)\}$ 

Ski22e:



Gist often, der viel zersammenhängend, d.h. Gist Gebiet. V

at = 0, sin(y) (3(y) = sin(y) sind out [0; 5] diff box.

 $f(x,y) = \operatorname{arctan}(\operatorname{tan}(y)-x), \frac{\partial}{\partial y} f(x,y) = \frac{1+\operatorname{tan}^{2}(y)}{4+(\operatorname{tan}(y)-x)^{2}}$ and G stelig.

Leibniz - Regel

=> F(y) stetis, and diff box out  $[0; \frac{\pi}{3}]$ and  $F'(y) = \int \frac{\partial}{\partial y} f(x,y) dx + f(\beta(y), y) \cdot (\beta'(y))$ 

also  $F'(0) = 0 + f(0,0) \cdot \cos(\phi) - f(0,0) \cdot 0$ = f(0,0)

= arctan (tan (0)-0)=0  $\frac{Ag.}{}$  F(y, a, b):=  $\int f(x,y) dx$ wit  $f(x,y) = y^2 \cdot e^x$ 9= a(y) = lu(x), b= b(y)=7.lu(y) Zu bestimmen: Dy F(y, alyb), so wie J F(4, a(4), b(4) i)  $\frac{\partial}{\partial y} F(y, o(y), b(y)) = \int_{0}^{\infty} \frac{\partial}{\partial y} f(x, y) dx$  $= \int 2y e^{x} dx = \int 2y e^{x} dx = 2y e^{x} \left| \ln(y) \right|$   $= \int 2y e^{x} dx = \int 2y e^{x} dx = 2y e^{x} \left| \ln(y) \right|$ = 24.42 - 24.4 = 242 - 242 ii) d F(y, a(y), b(y)) = d F + d F. a'(y) + d F. b'(y) De F = - f(a(y), y), a'(y) = 1 analog: DF = f(b(y),y) b'(y) = ? also: d F = 2y3 8 - 7y2 4 - f(luly), y). 1 +f(2(u/y),y) =

= 243-242- 424. + 42. 4. 4. 2. 2

= 7y - 2y - 7 + 2. y = 4y - 3y

$$\frac{A10.1}{S:=\left\{(x,y,z)\in\mathbb{R}^3\mid x^2-y^2=8z\right\}}$$
 and  $P=(0,0,2)$ 

$$=\widehat{f}(x,y)=x^2+y^2+\left(\frac{1}{8}(x^2-y^2)^2-2\right)^2$$

$$=x^2+y^2+\frac{1}{64}(x^2-y^2-16)^2$$

$$\nabla \widehat{f}(x,y) = (2x + \frac{1}{6y} \cdot 7 \cdot (x^2 - y^2 - 16) \cdot 7x,$$

$$7y + \frac{2}{6y} (x^2 - y^2 - 16) \cdot (-2)y$$

Pristen ab (0,0) willful Extremum with

Hesse-Ketrix

$$4 - (x,y) = \begin{cases}
f_{xx}(x,y) & f_{xy}(x,y) \\
f_{yx}(x,y) & f_{yy}(x,y)
\end{cases}$$

$$f_{xx}(x,y) = 2 + \frac{1}{16}(x^2 - y^2) - 16 + \frac{x}{16} \cdot 2x$$

$$f_{yy}(x,y) = 2 - \frac{1}{16}(x^2 - y^2 - 16) - \frac{y}{16} \cdot (-2y)$$

$$f_{xy}(x,y) = f_{yx}(x,y) = \frac{x}{16} \cdot (-2y)$$

$$A_{y}(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix} \quad EW \quad 1; 3 \quad besche > 0$$