Basi di dati

Progettazione di basi di dati: Metodologie e modelli

Perché preoccuparci?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - da dove cominciamo?
 - rischiamo di perderci subito nei dettagli
 - dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
 - il modello relazionale è "rigido"

Progettazione di basi di dati

- È una delle attività del processo di sviluppo dei sistemi informativi
- va quindi inquadrata in un contesto più generale:
- il ciclo di vita dei sistemi informativi:
 - Insieme e sequenzializzazione delle attività svolte da analisti, progettisti, utenti, nello sviluppo e nell'uso dei sistemi informativi
 - attività iterativa, quindi ciclo

Il ciclo di vita Studio di fattibilità Raccolta e analisi dei requisiti Progettazione Realizzazione Validazione e collaudo **Funzionamento**

Fasi (tecniche) del ciclo di vita

- Studio di fattibilità: definizione costi e priorità
- Raccolta e analisi dei requisiti: studio delle proprietà del sistema
- Progettazione: di dati e funzioni
- Realizzazione
- Validazione e collaudo: sperimentazione
- Funzionamento: il sistema diventa operativo

Progettazione

La progettazione di un sistema informativo riguarda due aspetti:

- progettazione dei dati
- progettazione delle applicazioni

Ma:

- i dati hanno un ruolo centrale
 - i dati sono più stabili

Analisi & Progettazione

Metodologia di progetto

- Per garantire prodotti di buona qualità è opportuno seguire una
 - metodologia di progetto, con:
 - articolazione delle attività in fasi
 - criteri di scelta
 - modelli di rappresentazione
 - generalità e facilità d'uso

Modelli di dati: concettuale, logico e fisico

I prodotti della varie fasi sono schemi di alcuni modelli di dati:

- Schema concettuale
- Schema logico
- Schema fisico

Modello dei dati

- insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- componente fondamentale: meccanismi di strutturazione (o costruttori di tipo)
- come nei linguaggi di programmazione esistono meccanismi che permettono di definire nuovi tipi, così ogni modello dei dati prevede alcuni costruttori
- ad esempio, il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei

Schemi e istanze

- In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
 - nel modello relazionale, le intestazioni delle tabelle
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)
 - nel modello relazionale, il "corpo" di ciascuna tabella

Due tipi (principali) di modelli

- modelli logici: utilizzati nei DBMS esistenti per l'organizzazione dei dati
 - utilizzati dai programmi
 - indipendenti dalle strutture fisiche
 - esempi: relazionale, reticolare, gerarchico, a oggetti
- modelli concettuali: permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione il più noto è il modello Entity-Relationship

Modelli concettuali, perché?

- Proviamo a modellare una applicazione definendo direttamente lo schema logico della base di dati:
 - da dove cominciamo?
 - rischiamo di perderci subito nei dettagli
 - dobbiamo pensare subito a come correlare le varie tabelle (chiavi etc.)
 - i modelli logici sono rigidi

Modelli concettuali, perché?

- servono per ragionare sulla realtà di interesse, indipendentemente dagli aspetti realizzativi
- permettono di rappresentare le classi di oggetti di interesse e le loro correlazioni
- prevedono efficaci rappresentazioni grafiche (utili anche per documentazione e comunicazione)

Architettura (semplificata) di un DBMS

Progettazione: evoluzione

Modello Entity-Relationship (Entità-Relazione)

- Il più diffuso modello concettuale
 - Ne esistono molte versioni,
 - (più o meno) diverse l'una dall'altra

I costrutti del modello E-R

- Entità
- Relationship
- Attributo
- Identificatore
- Generalizzazione
- •

Entità

- Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - impiegato, città, conto corrente, ordine, fattura

Relationship

- Legame logico fra due o più entità, rilevante nell'applicazione di interesse
- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)

Uno schema E-R, graficamente

Entità (2)

- Classe di oggetti (fatti, persone, cose) della realtà di interesse con proprietà comuni e con esistenza "autonoma"
- Esempi:
 - impiegato, città, conto corrente, ordine, fattura

Entità: schema e istanza

- Entità:
 - classe di oggetti, persone, ... "omogenei"
- Occorrenza (o istanza) di entità:
 - elemento della classe (l'oggetto, la persona, ..., non i dati)

 nello schema concettuale rappresentiamo le entità, non le singole istanze ("astrazione")

Rappresentazione grafica di entità

Impiegato

Dipartimento

Città

Vendita

Entità, commenti

- Ogni entità ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare

Relationship (2)

- Legame logico fra due o più entità, rilevante nell'applicazione di interesse
- Esempi:
 - Residenza (fra persona e città)
 - Esame (fra studente e corso)
- Chiamata anche:
 - relazione, correlazione, associazione

Rappresentazione grafica di relationship

Relationship, commenti

- Ogni relationship ha un nome che la identifica univocamente nello schema:
 - nomi espressivi
 - opportune convenzioni
 - singolare
 - sostantivi invece che verbi (se possibile)

Esempi di occorrenze

Relationship, occorrenze

- Una occorrenza di una relationship binaria è coppia di occorrenze di entità, una per ciascuna entità coinvolta
- Una occorrenza di una relationship n-aria è una n-upla di occorrenze di entità, una per ciascuna entità coinvolta
- Nell'ambito di una relationship non ci possono essere occorrenze (coppie, ennuple) ripetute

Relationship corrette?

Attenzione

"Promuoviamo" la relationship

La relazione Esame non è in grado di descrivere che uno Studente abbia sostenuto più volte lo stesso esame relativo a quel Corso

La soluzione sta nel rappresentare Esame come entità, collegata mediante relazioni a Studente e Corso

Con l'entità Esame

Due relationship sulle stesse entità

Relationship n-aria

Esempi di occorrenze

Relationship ricorsiva: coinvolge "due volte" la stessa entità

Relationship ricorsiva con "ruoli"

Esempi di occorrenze (2)

Relationship ternaria ricorsiva

Esempi di occorrenze (3)

T1 è migliore di T2 su S2

T2 è migliore di T1 su S1

T3 è migliore di T2 su S1

Attributo

- Proprietà elementare di un' entità o di una relationship, di interesse ai fini dell' applicazione
- Associa ad ogni occorrenza di entità o relationship un valore appartenente a un insieme detto dominio dell' attributo

Attributi, rappresentazione grafica

Esempi di occorrenze (4)

Attributi composti

- Raggruppano attributi di una medesima entità o relationship che presentano affinità nel loro significato o uso
- Esempio:
 - Via, Numero civico e CAP formano un Indirizzo

Rappresentazione grafica

Altri costrutti del modello E-R

- Cardinalità
 - di relationship
 - di attributo
- Identificatore
 - interno
 - esterno
- Generalizzazione

Cardinalità di relationship

- Coppia di valori associati a ogni entità che partecipa a una relationship
- specificano il numero minimo e massimo di occorrenze delle relationship cui ciascuna occorrenza di una entità può partecipare

Esempio di cardinalità

- Ad un Impiegato deve essere assegnato almeno 1 incarico ma non più di 5
- Ogni Incarico può non essere assegnato a nessuno (0) oppure può essere assegnato a un numero inferiore o uguale a 50 impiegati

Cardinalità

- per semplicità usiamo solo tre simboli:
- 0 e 1 per la cardinalità minima:
 - 0 = "partecipazione opzionale"
 - 1 = "partecipazione obbligatoria"
- 1 e "N" per la massima:
 - "N" non pone alcun limite

Occorrenze di Residenza

Cardinalità di Residenza

Tipi di relationship

- Con riferimento alle cardinalità massime, abbiamo relationship:
 - uno a uno
 - uno a molti
 - molti a molti

Relationship "molti a molti"

Relationship "uno a molti"

Due avvertenze

- Attenzione al "verso" nelle relationship uno a molti
- le relationship obbligatorie-obbligatorie sono molto rare

Relationship "uno a uno"

Cardinalità di attributi

- E' possibile associare delle cardinalità anche agli attributi, con due scopi:
 - indicare opzionalità ("informazione incompleta")
 - indicare attributi multivalore

Rappresentazione grafica

Identificatore di una entità

- "strumento" per l'identificazione univoca delle occorrenze di un'entità
- costituito da:
 - attributi dell' entità
 - identificatore interno
 - (attributi +) entità esterne attraverso relationship
 - identificatore esterno

Identificatori interni (1)

L'attributo Targa è identificatore interno dell'entità Automobile in quanto non posso esistere due automobili con la stessa targa

Identificatori interni (2)

L'insieme degli attributi: Nome, Cognome e Data di nascita costituiscono l'identificatore interno dell'entità Persona in quanto non possono esistere (nel nostro caso) due persone aventi nome, cognome e data di nascita identici

Identificatore esterno

L'attributo Matricola e l'entità Università rappresentano l'identificatore esterno in quanto possiamo avere studenti con lo stesso numero di matricola, ma appartententi ad università diverse

Alcune osservazioni

- ogni entità deve possedere almeno un identificatore, ma può averne in generale più di uno
- una identificazione esterna è possibile solo attraverso una relationship a cui l'entità da identificare partecipa con cardinalità (1,1)
- Perché non parliamo degli identificatori delle relationship?
 - perché è opportuno privilegiare l'inserimento di attributi nelle entità piuttosto che nelle relationship

Attenzione

 Differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

Identificatori esterni e cardinalità

- Nel primo schema E-R (slide 71) viene assegnato ad ogni Dipartimento una ed una sola Sede: possiamo avere quindi anche dipartimenti con lo stesso Nome, l'importante è che la Città dove ha sede il dipartimento sia diversa
- Viceversa nel secondo schema E-R (slide 72) viene assegnato ad ogni Sede uno ed un solo Dipartimento: quindi possiamo avere nella stessa Città più dipartimenti ma con Nome diverso

Generalizzazione

 mette in relazione una o più entità E1, E2, ..., En con una entità E, che le comprende come casi particolari

- E è generalizzazione di E1, E2, ..., En
- E1, E2, ..., En sono specializzazioni (o sottotipi) di E

Rappresentazione grafica

Proprietà delle generalizzazioni

Se E (genitore) è generalizzazione di E1, E2, ..., En (figlie):

- ogni proprietà di E è significativa per E1,
 E2, ..., En
- ogni occorrenza di E1, E2, ..., En è occorrenza anche di E

Proprietà delle generalizzazioni: esempio

Ereditarietà

 tutte le proprietà (attributi, relationship, altre generalizzazioni) dell'entità genitore vengono ereditate dalle entità figlie e non rappresentate esplicitamente

Tipi di generalizzazioni

- totale se ogni occorrenza dell'entità genitore è occorrenza di almeno una delle entità figlie, altrimenti è parziale
- esclusiva se ogni occorrenza dell'entità genitore è occorrenza di al più una delle entità figlie, altrimenti è sovrapposta
- consideriamo (senza perdita di generalità) solo generalizzazioni esclusive e distinguiamo fra totali e parziali

Generalizzazione esclusiva parziale

Generalizzazione esclusiva totale

Altre proprietà

- possono esistere gerarchie a più livelli e multiple generalizzazioni allo stesso livello
- un'entità può essere inclusa in più gerarchie, come genitore e/o come figlia
- se una generalizzazione ha solo un' entità figlia si parla di sottoinsieme
- alcune configurazioni non hanno senso
- il genitore di una generalizzazione totale può non avere identificatore, purché ...

Esercizio

 Le persone hanno CF, cognome ed età; gli uomini anche la posizione militare; gli impiegati hanno lo stipendio e possono essere segretari, direttori o progettisti (un progettista può essere anche responsabile di progetto); gli studenti (che non possono essere impiegati) un numero di matricola; esistono persone che non sono né impiegati né studenti (ma i dettagli non ci interessano)

Schema concettuale

Documentazione associata agli schemi concettuali

- dizionario dei dati
 - entità
 - relationship
- vincoli non esprimibili

Dizionario dei dati (entità)

Entità	Descrizione	Attributi	Identificatore
Impiegato	Dipendente dell'azienda	Codice, Cognome,	Codice
Drogotto	Drogotti	Stipendio	Nomo
Progetto	Progetti aziendali	Nome, Budget	Nome
Dipartimento	Struttura	Nome,	Nome,
	aziendale	Telefono	Sede
Sede	Sede	Città,	Città
	dell'azienda	Indirizzo	

Dizionario dei dati (relationship)

Relazioni	Descrizione	Componenti	Attributi
Direzione	Direzione di un	Impiegato,	
	dipartimento	Dipartimento	
Afferenza	Afferenza a un	Impiegato,	Data
	dipartimento	Dipartimento	
Partecipazione	Partecipazione	Impiegato,	
	a un progetto	Progetto	
Composizione	Composizione	Dipartimento,	
	dell'azienda	Sede	

Vincoli non esprimibili

Vincoli di integrità sui dati

- (1) Il direttore di un dipartimento deve a afferire a tale dipartimento
- (2) Un impiegato non deve avere uno stipendio maggiore del direttore del dipartimento al quale afferisce
- (3) Un dipartimento con sede a Roma deve essere diretto da un impiegato con più di dieci anni di anzianità
- (4) Un impiegato che non afferisce a nessun dipartimento non deve partecipare a nessun un progetto

Modellazione dei dati in UML

- UML viene talvolta utilizzato in alternativa al modello ER per la rappresentazione concettuale dei dati
- Si fa uso dei diagrammi delle classi
- Cambia la rappresentazione diagrammatica ma non l'approccio alla progettazione
- Vediamo come sia possibile rappresentare schemi concettuali con UML

Classi

Impiegato

Codice Cognome Stipendio Età **Progetto**

Nome Budget Data consegna

Associazioni

Classe di associazione

La classe Esame è una classe di associazione che usiamo per rappresentare gli attributi Voto e Data dell'associazione tra la classe Studente e la classe Corso

Associazione ternaria

E' rappresentata da un rombo con le classi che vi partecipano (Fornitore, Dipartimento e Prodotto), facendo uso di una classe di associazione (Fornitura) per assegnare attributi all'associazione tra queste classi

Reificazione di associazione

Le associazioni n-arie sono poco usate nei diagrammi delle classi e, per questo, le reifichiamo ovvero trasformiamo l'associazione (Fornitura) in una classe legata alle classi originarie con associazioni binarie

Aggregazione e composizione

 Un Tecnico fa parte di un Team. Esso può essere rappresentato indipendentemente dal Team di cui fa parte (aggregazione semplice)

 Una Filiale è parte di un'Azienda. Essa non può essere rappresentata indipendentemente dall'Azienda (composizione)

Associazioni con molteplicità

Un Ordine può avere 0 o al massimo 1 Fattura di vendita associata.
 Viceversa una Fattura ha 1 solo Ordine di vendita

 L'assenza di molteplicità sottintende 1..1, quindi una Persona può essere residente in una ed una sola Città. Viceversa una Città può avere 0 o al massimo N persone residenti

 Un Turista può prenotare 1 o al massimo N viaggi. Viceversa un Viaggio può essere prenotato da 0 o al massimo N turisti

Identificatori

Automobile

Targa {id}
Modello
Colore

Persona

Data Nascita {id}
Cognome {id}
Nome {id}
Indirizzo

- Targa è identificatore della classe Automobile
- L'insieme di attributi Data Nascita, Cognome e Nome costituiscono l'identificatore per la classe Persona

Identificatore esterno

 Lo stereotipo <<identificante>> serve ad indicare che l'associazione tra Studente e Università è appunto identificante in quanto insieme all'attributo Matricola identifica uno studente

Generalizzazioni

Esclusiva Totale

Uno schema concettuale in UML

