Classification and Topology

(or Consequences of Sobolev Consistency)

Olivier Binette Université du Québec à Montréal

Key points

- Topologically accurate class boundary reconstruction in binary classification.
- A fruitful relationship with topology and real algebraic geometry is highlighted.
- Hints at a research project: Can the technique be adapted to different surface reconstruction frameworks? Can similar results be obtained in Bayesian nonparametrics or with neural nets?

The Problem

Starting point: $\gamma\subset (0,1)^k$ a compact connected hypersurface (think of the seal).

 γ separates the space in two connected components, one of which is bounded. These

components are called classes and γ is the separation surface (or class boundary).

A priori, γ is unknown and we are trying to reconstruct it using the following labelled points indexed by $i \in \{1, 2, \dots, n\}$:

$$\ell_i \mid x_i \sim \text{Ber}(p(x_i))$$
 $x_i \text{ i.i.d. uniform}((0,1)^k)$

where

A1: $p:(0,1)^k \to [0,1]$ is smooth and has regular value 1/2;

A2: p>1/2 in the interior of γ and p<1/2 in the exterior of γ .

Note: $\gamma = p^{-1}(1/2)$

A Solution

By the Nash-Tognoli theorem of real algebraic geometry, compact surfaces are not topologically distinguishable from compact nonsingular real algebraic varieties. This suggest estimating γ by $f^{-1}(1/2)$ where $f:(0,1)^k\to\mathbb{R}$ is a polynomial function.

This is done by first estimating $\,p\,$ globally using a two-step method.

1. Histogram approximation over the regions

$$R_{i,j}^d = \left[\frac{i}{d+1}, \frac{i+1}{d+1}\right] \times \left[\frac{j}{d+1}, \frac{j+1}{d+1}\right]$$

2. Bernstein polynomial smoothing:

$$\hat{f}_d(u,v) = (d+1)^2 \sum_{i,j=1}^d E_{i,j}^d B_{i,d}(u) B_{j,d}(v)$$
 where

$$B_{i,d}(u) = \binom{d}{i} u^i (1-u)^{d-i}.$$

We let the degree $d\to\infty$ as the sample size increase, and our estimate of the surface γ is

$$\hat{\gamma} = \hat{f}_d^{-1}(1/2).$$

But does it converge? In what sense?

Main results

Le

$$W^{2,\infty}=\left\{f:[0,1]^k\to\mathbb{R}\mid \|f\|_{W^{2,\infty}}<\infty\right\}$$
 be a Sobolev space of twice continuously differentiable functions endowed with its norm

$$||f||_{W^{2,\infty}} = ||f||_{\infty} + ||\nabla f||_{\infty}.$$

Theorem

Let $p\in W^{2,\infty}$ have regular value 0 with $p^{-1}(0)\subset (0,1)^k$ and let \hat{f}_d be a $W^{2,\infty}$ -consistent estimator of p. Then a.s.:

- 1. $\hat{f}_d^{-1}(0)$ converges to $p^{-1}(0)$ in the Hausdorff distance as $d \to \infty$,
- 2. $\hat{f}_d^{-1}(0)$ is eventually diffeomorphic to $p^{-1}(0)$

Hausdorff distance is:

$$d_H(A, B) = \max \left\{ \sup_{x \in A} d(x, B), \sup_{y \in B} d(A, y) \right\}.$$

Corollary

If the degree d grows sufficiently slowy in the number of observations, then our estimator $\hat{\gamma}$ is consistent in the Hausdorff + diffeomorphic topology of compact manifold space.

Examples

Binary classification:

Supervised edge detection:

References

- Binette, O. (2018) Topologie et apprentissage machine. Dans le Notes from the Margin.
- Lima, E.K. (1988) The Jordan-Brouwer separation theorem for smooth hypersurfaces. *Amer. Math. Monthly* 95 (1)
- Telyakovskii, S. A. (2008) On the approximation of differentiable functions by Bernstein polynomials and Kantorovich polynomials. *Proc. Steklov Inst. Math.* 260 (1)
- Kollar, J. (2017) Nash's Work in Real Algebraic Geometry. Bull. Amer. Math. Soc. (N.S.) 54 (2)

 $m{*}$ i.e. \hat{f}_d almost surely converges to p in the Sobolev norm.