14th Workshop on Quantum Information Processing Singapore, 10-14 January 2011 (tutorials 8-9 January)

Our Sponsors

Welcome Message

Dear friends and colleagues,

Welcome to Singapore and the 14th workshop on Quantum Information Processing. The booklet you're holding in your hands contains the essential information for you to navigate the packed programme of this week.

Instead of boring you with things that you can read in it yourself, let me do so rather by a couple of personal reflections. When I first faced the possibility of organising QIP in Singapore, it was with a mixture of disbelief, excitement and terror. Disbelief that evidently responsible people would entrust to me the foremost conference in the field; obvious excitement over the prospect of bringing three hundred scientists to Singapore; terror in the face of daunting logistical challenges, not to mention the pitfalls of scientific credibility.

That I didn't despair I owe to the thirty-five uniquely professional, enthusiastic and inspired persons of the committees listed overleaf (plus two of such eminent importance that we are not even allowed to name them). In particular the programme committee, chaired by Daniel Gottesman, did a tremendous job of sifting through more than two hundred papers submitted, to select 35 talks and 156 posters. Once local preparations started, we had our good moments too: "Schrödinger's monkey" was the first discovery of QIP 2011 – and still remains to be entered into the books of taxonomists. The mighty durian on the other poster came to help later – although I should probably have anticipated that the fruit would divide the local organising committee sharply into lovers and loathers ...

But enough of that: you don't want to know the story of organising this QIP – you want to enjoy the talks and posters, to interact with your colleagues, and to explore Singapore.

Have fun

Andreas Winter

A. With

Committees

Programme Committee

Andris AMBAINIS (University of Latvia)

Steve BARTLETT (University of Sydney)

Sergey BRAVYI (IBM)

Wim van DAM (UC Santa Barbara)

Daniel GOTTESMAN (Perimeter Institute) (chair)

Pawel HORODECKI (Gdansk University of Technology)

Iordanis KERENIDIS (Universite Paris-Sud)

Hirotada KOBAYASHI (National Institute of Informatics)

Robert KOENIG (Caltech)

Barbara KRAUS (University of Innsbruck)

Mio MURAO (University of Tokyo)

Peter SHOR (MIT)

Graeme SMITH (IBM)

Frank VERSTRAETE (University of Vienna)

Michael WOLF (Niels Bohr Institute)

Steering Committee

Dorit AHARONOV (Hebrew University of Jerusalem)

Ignacio CIRAC (MPQ, Garching)

Eddie FARHI (MIT)

Renato RENNER (ETH Zurich)

Louis SALVAIL (Universite de Montreal)

Barbara M. TERHAL (RWTH Aachen)

John WATROUS (University of Waterloo)

Andreas WINTER (University of Bristol / CQT, NUS) (chair)

Andrew Chi-Chih YAO (Tsinghua University)

Local Organisers

Cédric BÉNY (Poster Sessions)

Rahul JAIN (Local Arrangement and Social Events)

Hartmut KLAUCK (Tutorials)

KWEK Leong Chuan (Sponsorship)

Darwin GOSAL (Webmaster)

Markus GRASSL (Outreach and Publicity)

Ethan LIM (Webmaster)

Matthew MCKAGUE (Tutorials)

Ciara MORGAN (Conference Booklet)

Tomasz PATEREK (Rump Session)

Miklos SANTHA (Advisor)

Stephanie WEHNER (Coordinator)

Andreas WINTER (Coordinator)

Table of Contents

GENERAL INFORMATION	1
Workshop Overview	
Instructions for Speakers	
Business Meeting	
ABOUT CQT	2
ABOUT SINGAPORE	3
Transportation	3
Medical Facilities	3
LOST PASSPORT / SINGAPORE IMMIGRATION SERVICE	
THINGS TO DO AND SEE IN SINGAPORE	3
USEFUL NUMBERS	4
EMBASSIES / CONSULATES / HIGH COMMISSIONS	4
CONFERENCE VENUE INFORMATION	5
ACTIVITIES AT THE CAPELLA	5
GETTING TO SENTOSA ISLAND	5
TUTORIAL PROGRAMME	6
GETTING TO NUS FROM SENTOSA/HARBOURFRONT (ALSO SEE MAP ON PAGE 28)	6
TUTORIAL SCHEDULE	6
Tutorial Abstracts	7
SCIENTIFIC PROGRAMME	8
POSTER SESSIONS	13
Instructions for poster presenters	13
Monday Session	13
Tuesday Session	18
PUBLIC LECTURE	25
HOW TO GET TO THE PUBLIC LECTURE AT SMU (ALSO SEE MAP ON PAGE 28)	25
How to get to the Social Dinner after the Public Lecture	25
SOCIAL DINNER	26
GETTING TO THE MARINA BAY SANDS	26
RUMP SESSION	27
RUMP SUBMISSION GUIDELINE	27
DIRECTIONS TO THE RUMP SESSION (ALSO SEE MAP ON PAGE 28)	27
MAPS	28
Tutorial Sessions	28
Public Lecture	
RUMP SESSION	28
OID CHARTER	29

General Information

Workshop Overview

Tutorial Sessions Lecture Theatre 32, National University of Singapore Campus

Saturday, 8 January & Sunday, 9 January 2011

Welcome Reception Bob's Bar, Level 2, The Capella, Sentosa, Singapore

Sunday, 9 January 2011, 19:00

Workshop Venue Grand Ballroom, Level 1, The Capella, Sentosa, Singapore

Monday, 10 January – Friday, 14 January 2011

Note: Lunch will be provided each day

Social Dinner Convention Centre Ballroom, Level 4, Marina Bay Sands, Singapore

Wednesday, 12 January 2011, 19:00

Rump Session Sapphire Pavilion, Siloso Beach, Sentosa, Singapore

Thursday, 13 January 2011, 19:00 onwards

Instructions for Speakers

A laptop will be provided onto which all speakers are requested to upload their presentations before the relevant session. The 5 minutes scheduled before each talk should only be used for the transition between speakers.

Business Meeting

The business meeting can be attended by all conference participants, to enable the community to influence the future of QIP democratically. There, the organiser for the next QIP gives a presentation, and proposals for the venue of the QIP after that are presented and discussed, with an advisory vote taken among the participants. The actual decision about the venue is taken by the Steering Committee soon after that. Also other organisational matters can be discussed at the business meeting.

About CQT

Mission

Our mission is to conduct interdisciplinary theoretical and experimental research into the fundamental limits of information processing. The discovery that quantum physics allows fundamentally new modes of information processing has required the existing theories of computation, information and cryptography to be superseded by their quantum generalisations. We focus on the development of quantum technologies for coherent control of individual photons and atoms and explore both the theory and the practical possibilities of constructing quantum-mechanical devices for the purpose of cryptography and computation.

Origins

Research in quantum information science in Singapore was initiated in 1998 by Kwek Leong Chuan, Lai Choy Heng, Oh Choo Hiap and Kuldip Singh as a series of informal seminars at the National University of Singapore. The seminars attracted local researchers and resulted in forming the Quantum Information Technology Group, informally referred in Singlish as "quantum lah".

In February 2002 the support from the Agency for Science, Technology and Research (A*STAR) - the Temasek Project - consolidated research efforts in the field and led to a number of faculty appointments. In 2007 the Quantum Information Technology Group was selected as the core of the first Research Centre of Excellence in quantum information science and technology. Since then, the Centre has attracted a number of other researchers and continues to expand.

The Centre is funded by the Singapore National Research Foundation and the Ministry of Education. It is hosted by the National University of Singapore, but enjoys a significant autonomy both in pursuing its research goals and in governance. The Centre has its own Governing Board, a Scientific Advisory Board and is headed by Director Artur Ekert.

About Singapore

Transportation

Traveling around Singapore is a cinch! An efficient public transportation network of taxis, buses and the modern Mass Rapid Transit (MRT) rail system ensures that getting from point A to point B is hassle-free and extremely affordable. There are also taxis which can be hired from taxi stands, hailed by the roadside, or booked by phoning the numbers listed below. A booking fee is usually charged when hired by telephone.

CityCab +65 6552 2222

Comfort CabLink +65 6552 1111

SMRT Taxis Skytrek Bookings / Premier Cabs +65 6555 8888

Medical Facilities

Most hotels have an on-call doctor. In the case of emergency, dial 995 for an ambulance. Pharmaceuticals are available at many outlets including supermarkets, department stores, hotels and shopping centres.

Lost Passport / Singapore Immigration Service

If you have lost your passport, you need to make a police report, then go to the Immigration & Checkpoints Authority to get a temporary visa. Finally, inform your embassy so that you can get through customs when you reach home.

Website: http://www.ica.gov.sg

Things to do and see in Singapore

Chinatown
 http://www.chinatown.org.sg

Clarke Quay http://www.clarkequay.com.sg

Esplanade Theatre Singapore http://www.esplanade.com

• Singapore Botanic Gardens http://www.sbg.org.sg

National Museum of Singapore http://www.nationalmuseum.sg

Singapore Art Museum http://www.singaporeartmuseum.sg

• Singapore Zoo & Night Safari http://www.zoo.com.sg

Alliance Francais de Singapore http://www.alliancefrancaise.org.sg

Useful Numbers

QIP 2011 Secretariat	+65 6516 7019
Police	999 (toll-free)
Ambulance / Fire	995 (toll-free)
Singapore Tourism Board	1800 736 2000

Embassies / Consulates / High Commissions

Australia	+65 6836 4100
Austria	+65 6396 6350
Belgium	+65 6220 7677
Brazil	+65 6256 9365
Canada	+65 6854 5900
Chile	+65 6223 8577
Denmark	+65 6355 5010
Finland	+65 6253 4042
France	+65 6880 7800
Germany	+65 6533 6002
Great Britain	+65 6424 4200
Greece	+65 6875 1205
Hungary	+65 6883 0882
India	+65 6737 6777
Ireland	+65 6238 7616
Italy	+65 6250 6022
Japan	+65 6235 8855
Latvia	+65 6256 6597
Malaysia	+65 6235 0111
Mexico	+65 6298 2678
Netherlands	+65 6737 1155
New Zealand	+65 6235 9966
People's Republic of China	+65 6418 0224
Poland	+65 6235 9478
Portugal	+65 6224 2256
Republic of Korea	+65 6256 1188
Slovak Republic	+65 6236 6111
Spain	+65 6725 9220
Sweden	+65 6415 9720
Switzerland	+65 6468 5788
Taiwan	+65 6500 0100
Turkey	+65 6533 3390
United States of America	+65 6476 9100

Conference Venue Information

Venue Address The Capella Hotel

Grand Ballroom 1 The Knolls Sentosa Island Singapore

Telephone +65 6377 8888

Website www.capellasingapore.com

Wireless Free Wi-Fi is available at the Capella without password

Activities at the Capella

Welcome Reception Sunday, 9 January 2011, Bob's Bar, Level 2, 19:00

Conference Talks 10-14 January 2011, Grand Ballroom, Level 1

Poster Sessions 10 & 11 January 2011, Outside Grand Ballroom, Level 1

Getting to Sentosa Island

By Taxi

You may instruct the cab driver to The Capella at The Sentosa Island.

By Mass Rapid Transit (MRT) and Sentosa Express

Take the North-East Line and alight at the Harbour Front MRT Station. From there, you may either go to the 3rd level (Lobby L) of VivoCity shopping mall, transfer onto the Sentosa Express or you may follow the signs to the HarbourFront Bus interchange. Hop onto the orange Sentosa bus and you'll be on your way to Sentosa.

More Information www.sentosa.com.sg/en/getting-around/sentosa-express

Tutorial Programme

Venue National University of Singapore (NUS) Campus, Lecture Theatre 32

Getting to NUS from Sentosa/Harbourfront (also see map on page 28)

Take the Sentosa Express from Sentosa to the Vivo City mall. Take the escalators down to the first floor. Walk straight for a few meters and then turn right. You should see signs pointing towards the bus stop and to the taxi stand nearby (a taxi from there should cost approx. 8 S\$). Alternatively, use the orange Sentosa bus and alight at the Harbourfront bus stop. From the bus stop take bus 97, but avoid the express bus 97e. Alight at the bus stop opposite Dover Institute of Technical Education, AYE, which is 13 stops after Vivo City and 12 stops after Harbourfront. From there it's a short walk to the tutorial venue LT32.

Tutorial Schedule

Saturday, 8 January 2011

09:00	Registration
09:30	Patrick Hayden , McGill University Montreal Quantum Information Theory via Decoupling
11:00-11:30	Coffee Break
13:00	Buffet Lunch
14:00	Ben Reichardt , IQC, University of Waterloo <i>Quantum Query Complexity</i>
15:30-16:00	Coffee Break
17:30	End

Sunday, 9 January 2011

09:00	Registration
09:30	Maciej Lewenstein, ICFO Barcelona Anything Goes, or Everything Fails: Quantum Simulators
11:00-11:30	Coffee Break
13:00	End
from 19:00	Welcome reception at The Capella, with registration

Tutorial Abstracts

Quantum Information Theory via Decoupling by **Patrick Hayden**, McGill University Montreal

Abstract

Quantum information theorists are lucky. If a classical information theorist wants to send bits through a noisy channel, (s)he has little choice but to specify in detail matching encoding and decoding procedures that will protect the data from noise. Quantum information theorists only have to work half as hard: they need to specify the encoding but then the decoding comes for free. This "free lunch" is a consequence of the no-cloning theorem: if no information leaks to the environment, then the quantum information theorist can conclude that a decoding exists without having to worry about the details. Of course, the free lunch may be a bit hard to digest. Casual readers of papers on quantum channel capacities are often put off by what look like formidable technicalities. The tutorial will teach participants how to prove some key capacity theorems from start to finish, breaking the technicalities into bite-sized chunks. The end of the tutorial will be devoted to discussing potential consequences of the results to information leakage from black holes.

Quantum Query Complexity by **Ben Reichardt**, IQC, University of Waterloo

Abstract

The general adversary bound is a lower bound on quantum query complexity that can also be used to design quantum algorithms with a very simple form. In this tutorial, we will study the adversary bounds and how to design quantum algorithms based upon them.

Anything Goes, or Everything Fails: Quantum Simulators by Maciej Lewenstein, ICFO Barcelona

Abstract

"Anything goes" is a musical by Cole Porter. The title song of it was used in the beginning of Steven Spielberg's movie "Indiana Jones and the Temple of Doom". Here it applies to a concept of so-called quantum simulators, that is simple physical systems that are supposed to mimic other not so simple physical systems, i.e. serve as quantum computers of special purpose. In recent years most of such quantum simulators have been proposed in the area of quantum optics and atomic physics using ultracold atoms and ions. In this tutorial I will review the fundamentals of quantum simulators based on ultracold matter, and argue that although in principle "anything goes", sometimes "everything might fail".

Scientific Programme

Sunday, 9 January 2011

from 19:00 Welcome reception and registration: Bob's Bar, Level 2, The Capella

Monday, 10 January 2011

08:00-09:00	Registration
09:00-09:30	Opening Remarks Guest of Honor: Mr. Lam Chuan Leong Chairman of the CQT Governing Board Ambassador-at-large, Ministry of Foreign Affairs Chairman, Competition Commission of Singapore Director, Singapore Cooperation Enterprise Director, ST Electronics (Info-Software Systems) Pte Ltd
09:30-10:20	Ashley Montanaro (plenary, based on joint work with A. W. Harrow) An efficient test for product states, with applications to quantum Merlin- Arthur games
10:20-10:50	Break
10:50-11:20	Julia Kempe and Thomas Vidick (featured) Parallel repetition of entangled games
11:25-11:45	<u>Tsuyoshi Ito</u> , Hirotada Kobayashi and John Watrous Quantum interactive proofs with weak error bounds
11:50-12:10	Shengyu Zhang Quantum strategic game theory
12:10-14:00	Lunch
14:00-14:50	John Martinis (plenary, based on joint work with H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. O'Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao and A. N. Cleland) Synthesis of complex microwave photon states with superconducting qubits
14:55-15:15	Tzu-chieh Wei, Ian Affleck and Robert Raussendorf (UBC); Akimasa Miyake (PI) The 2D AKLT state is universal for measurement-based quantum computation

15:15-15:45	Break
15:45-16:05	<u>David Poulin</u> , Angie Qarry, Rolando Somma and Frank Verstraete Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space
16:10-16:30	Ramis Movassagh and Alan Edelman Isotropic entanglement
16:35-16:55	Sarah Harrison, Norbert Schuch, Tobias Osborne and Jens Eisert Information propagation for interacting particle systems
from 17:15	Poster session 1 organised by Cédric Bény
Tuesday, 11 Jar	nuary 2011
09:00-09:50	Oded Regev (plenary, based on joint work with B. Klartag) Quantum one-way communication can be exponentially stronger than classical communication
09:55-10:15	Loïck Magnin, Martin Roetteler and Jérémie Roland On the additive and multiplicative adversary methods
10:15-10:45	Break
10:45-11:15	Harry Buhrman, Oded Regev, <u>Giannicola Scarpa</u> and Ronald de Wolf (featured) Near-optimal and explicit Bell inequality violations
11:20-11:40	Marius Junge and <u>Carlos Palazuelos</u> Large violation of Bell inequalities with low entanglement
11:45-12:05	Tobias Fritz Tsirelson's problem and Kirchberg's conjecture
12:05-14:00	Lunch
14:00-14:20	Adán Cabello, <u>Simone Severini</u> and Andreas Winter (Non-)Contextuality of physical theories as an axiom
14:25-14:55	Jonathan Oppenheim and <u>Stephanie Wehner</u> (featured) The uncertainty principle determines the non-locality of quantum mechanics
14:55-15:30	Break

15:30-16:00	Hari Krovi, Frédéric Magniez, Maris Ozols and <u>Jérémie Roland</u> (featured) <i>Finding is as easy as detecting for quantum walks</i>
16:05-16:25	Jianxin Chen, <u>Xie Chen</u> , Runyao Duan, Zhengfeng Ji, Zhaohui Wei and Bei Zeng On the solution space of quantum 2-SAT problems
16:30-16:50	Andrew Childs and Robin Kothari Quantum query complexity of minor-closed graph properties
16:55-17:15	<u>Fernando Brandão</u> and Michał Horodecki Exponential quantum speed-ups are generic
from 17:15	Poster session 2 organised by Cédric Bény
Wednesday, 12	January 2011
09:00-09:50	Sergey Bravyi (plenary, based on joint work with M. B. Hastings and S. Michalakis) Topological quantum order: stability under local perturbations
09:55-10:15	Teiko Heinosaari and <u>Michael Wolf</u> <i>Topological implications in quantum tomography</i>
10:15-10:45	Break
10:45-11:15	Earl Campbell (featured) Catalysis and activation of magic states in fault tolerant architectures
11:20-11:40	<u>James Wootton</u> , Robert Heath and Jiannis Pachos Localization assisted quantum error correction in the toric code
11:45-12:15	Hector Bombin (featured) Anyons, twists and topological codes
12:15	Lunch & free time
16:30-17:00	Registration and Reception for Public Lecture
17:00-18:00	Public Lecture Information is Quantum Charles Bennett, IBM Research, USA Venue: Singapore Management University (SMU)

from 19:00	Co-organised by: Centre for Quantum Technologies, NUS School of Information Systems, SMU Social dinner Marina Bay Sands Ballroom, Marina Bay Sands Convention Hall, Level 4, 10 Bayfront Avenue
Thursday, 13 Jai	nuary 2011
09:00-09:50	Andrew Lutomirski (plenary, based on joint work with E. Farhi, D. Gosset, A. Hassidim and P. W. Shor) Quantum money
09:55-10:15	Andrew Childs, David Jao and Vladimir Soukharev Constructing elliptic curve isogenies in quantum subexponential time
10:15-10:45	Break
10:45-11:15	Sean Hallgren, Adam Smith and Fang Song (featured) Classical cryptographic protocols in a quantum world
11:20-11:40	Hang Dinh, Cristopher Moore and Alexander Russell The McEliece cryptosystem resists quantum Fourier sampling attacks
11:45-12:05	Hirotada Kobayashi, <u>François Le Gall</u> , Harumichi Nishimura and Martin Roetteler Constructing quantum network coding schemes from classical nonlinear protocols
12:05-14:00	Lunch
14:00-14:50	Omar Fawzi (plenary, based on joint work with P. Hayden and P. Sen) From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking
14:55-15:25	Fernando Brandão and <u>Jonathan Oppenheim</u> (featured) The quantum one-time pad and superactivation
15:25-16:00	Break
16:00-17:00	Business meeting
from 19:00	Rump Session @ Sapphire Pavillion, Siloso Beach chaired by Louis Salvail

organised by Stephanie Wehner and Tomasz Paterek

Friday, 14 January 2011

09:00-09:50	Serge Fehr (plenary, based on joint work with H. Buhrman, N. Chandran, R. Gelles, V. Goyal, R. Ostrovsky and C. Schaffner) Position-based quantum cryptography: impossibility and constructions
09:55-10:25	Debbie Leung, Laura Mancinska, <u>William Matthews</u> , Maris Ozols and Aidan Roy (featured) Entanglement can increase asymptotic rates of zero-error classical communication over classical channels
10:25-11:00	Break
11:00-11:20	Christian Gogolin, Markus Müller and Jens Eisert Under what conditions do quantum systems thermalise? New insights from quantum information theory
11:25-11:45	Man Hong Yung and Alán Aspuru-Guzik A quantum-quantum metropolis algorithm
11:50-12:10	Ersen Bilgin and Sergio Boixo Preparing thermal states of quantum systems by dimension reduction
12:10-14:00	Lunch
14:00-14:30	<u>Bill Fefferman</u> and Christopher Umans (featured) Pseudorandom generators and the BQP vs. PH problem
14:35-14:55	Michael Bremner, Richard Jozsa and Dan Shepherd Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy
14:55-15:30	Break
15:30-16:20	Fernando Brandão (plenary, based on joint work with M. Christandl and J. T. Yard) Faithful squashed entanglement
16:20-16:30	Closing Remarks

Poster Sessions

There will be two poster sessions, one on Monday 10 January and one on Tuesday 11 January 2011. The posters will be located just outside the conference hall, and arranged loosely according to topic. The list of posters below is sorted by the last name of the first author.

Instructions for poster presenters

Please check your session (Monday or Tuesday) and poster number below. Your poster number will tell you where to attach it. You have the whole day to set up your poster. Please remove it at the end of your session. Posters will be rewarded by prizes presented during the social dinner.

Monday Session

20			. 5:	
29a	iviamdoun i	Abbara and .	Jean-Pierre	HIIIICN

Quantum serial turbo-like codes with minimum distance growing polynomially in the code length

65a Abbas Al-shimary and Jiannis Pachos

Energy gaps of Hamiltonians from graph Laplacians

5a Armen Allahverdyan and Karen Hovhannisyan

Transferring elements of a density matrix

32a **Jonas Anderson, Andrew Landahl and Pat Rice**

Fault-tolerant quantum computing with color codes

58a Motonori Ando, Takayuki Miyadera and Hideki Imai

The uncertainty principle for simultaneous measurement of arbitrary number of POVMs on a qubit

6a Koenraad Audenaert, Milán Mosonyi and Frank Verstraete

State discrimination bounds for finite sample size

33a Sean Barrett and Thomas Stace

Fault tolerant quantum computation with very high threshold for loss errors

60a Thomas Barthel, Martin Kliesch and Jens Eisert

For D>1 MERA states are a subclass of PEPS

70a Almut Beige and Jonathan Busch

Generating single-mode behavior in fiber-coupled optical cavities

20a Ville Bergholm and Jacob Biamonte

Categorical quantum circuits

43a	Dominic W. Berry Quantum algorithm for solving linear differential equations
21a	Jacob Biamonte, Stephen Clark, Dieter Jaksch and Ville Bergholm Categorical tensor network states
52a	Jan Bouda, Matej Pivoluska, Libor Caha, Paulo Mateus and Nikola Paunkovic Quantum simultaneous contract signing
1a	Kamil Bradler, Patrick Hayden and Prakash Panangaden Private quantum capacity
11a	Fernandao Brandão, Jens Eisert, Michał Horodecki and Dong Yang Entanglement cannot make imperfect quantum channels perfect
36a	Courtney Brell, Steven Flammia, Stephen Bartlett and Andrew Doherty Toric codes and quantum doubles from two-body Hamiltonians
38a	Brielin Brown, Steven Flammia and Norbert Schuch Computational complexity of computing the density of states
76a	Katherine Brown, Suvabrata De, Bill Munro and Viv Kendon Improvements in quantum simulation using a qubus quantum computer
22a	Oliver Buerschaper, Matthias Christandl, Liang Kong and Miguel Aguado Electric-magnetic duality and topological order on the lattice
71a	Abudhahir Buhari, Zuriati Zukarnain, Shamala Subramaniam and Hishamuddin Zainuddin A single photon quantum user bi-directional authentication scheme over noiseless channel
72a	Abudhahir Buhari, Zuriati Zukarnain, Shamala Subramaniam and Hishamuddin Zainuddin Efficient modeling and simulation of BB84 type protocols using OptiSystem™: an approach
10a	Francesco Buscemi Statistical morphisms and a quantum Blackwell theorem
50a	André Chailloux, Iordanis Kerenidis and Jamie Sikora Lower bounds for quantum oblivious transfer
7a	Lin Chen, Huangjun Zhu and Tzu-Chieh Wei Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

	Typical subsystem entropy in convex probabilistic theories
62a	Niel de Beaudrap, Matthias Ohliger, Tobias Osborne and Jens Eisert Solving frustration-free spin systems
57a	Lídia Del Rio, Johan Aaberg, Renato Renner, Oscar Dahlsten and Vlatko Vedral The thermodynamic meaning of negative entropy
2a	Frédéric Dupuis, Jan Florjanczyk, Patrick Hayden and Debbie Leung Locking classical information
39a	Sevag Gharibian and Julia Kempe Approximation algorithms for QMA-complete problems
73a	Pavel Ginzburg, Michael Shalyt, Alex Hayat and Meir Orenstein Photon-energy qubit generation by spontaneous emission in a V-type system
27a	Demerson N. Gonçalves and Renato Portugal The hidden subgroup problem for a class of noncommutative groups
63a	Alexey Gorshkov, Johannes Otterbach, Eugene Demler, Michael Fleischhauer and Mikhail Lukin Photonic phase gate via an exchange of Fermionic spin waves in a spin chain
54a	Matty Hoban and Dan Browne A bigger quantum region in multi-party Bell experiments
30a	Monireh Houshmand, Saied Hosseini-Khayat and Mark Wilde Minimal-memory, non-catastrophic quantum convolutional encoders
56a	Li-Yi Hsu, I-Ching Yu and Feng-Li Lin Information causality and noisy computations
77a	Marcus Huber Experimentally implementable criteria for detection of genuine multipartite entanglement in high-dimensional systems
18a	Peter Janotta, Christian Gogolin, Jonathan Barrett and Nicolas Brunner Limits on non-local correlations from the structure of the local state space
12a	Nathaniel Johnston, David Kribs, Vern Paulsen and Rajesh Pereira Minimal and Maximal Operator Spaces and Operator Systems in Entanglement Theory
67a	Jaewoo Joo, William J. Munro and Tim P. Spiller Quantum phase estimation in NOON, BAT, and entangled coherent states

Oscar Dahlsten and Markus Müller

19a

51a Go Kato and Kiyoshi Tamaki

Security of six-state quantum key distribution protocol with threshold detectors

25a Yasuhito Kawano and Hiroshi Sekigawa

Matrix decomposition and its application to complex Hadamard matrices

34a Viv Kendon, Katherine Louise Brown, Clare Horsman and Bill Munro

Robust, scalable cluster state generation using ancilla-based systems

66a **Omid Khosravani**

Investigation of entanglement in cyclic atomic ensembles with Δ -type transitions

49a Yoshiyuki Kinjo, Mio Murao, Akihito Soeda and Peter S. Turner

Quantum computation over the butterfly network

53a **Dmitry Kravchenko**

Symmetric nonlocal games

44a Jaehak Lee, Hai-Woong Lee and Mark Hillery

Quantum walk search on star graphs with multi-valued functions

17a Seung-Woo Lee and Hyunseok Jeong

Testing high-dimensional Bell inequalities by reconstructing quasiprobability functions

74a Jiun-Yi Lien, Yueh-Nan Chen and Chung-Hsien Chou

Detecting quantum phase transitions of photons through a defect cavity

23a Lucy Liuxuan Zhang and Hector Bombin

Twists arising from group automorphisms in the Kitaev model

31a Prabha Mandayam Doddamane and Stephanie Wehner

Achieving the physical limits of the bounded-storage model

28a Iman Marvian and Robert Spekkens

A generalization of Noether's theorem and the information-theoretic approach to the study of symmetric dynamics

8a Keiji Matsumoto

Characterization of quantum relative entropy and asymptotic state transformation

41a Masaki Nakanishi

On the weakness of one-way quantum pushdown automata under empty-stack acceptance

59a Koji Nuida, Gen Kimura and Hideki Imai

On derivation of qubit systems from physical principles

26a Sam Ocko, Xie Chen, Bei Zeng, Beni Yoshida, Zhengfeng Ji, Mary Beth Ruskai and Isaac Chuang

Quantum codes give counterexamples to the unique pre-image conjecture of the N-representability problem

3a Yingkai Ouyang

Strictly convex upper bounds on the quantum capacity of the depolarization channel

78a **Jiannis Pachos, Igacio Cirac and Paolo Maraner**

Cold atom simulation of interacting relativistic quantum field theories

35a Adam Paetznick and Ben Reichardt

Fault-tolerant ancilla preparation for the Golay code

13a **Jeonghoon Park and Soojoon Lee**

Separable states to distribute entanglement

68a Carlos A. Perez Delgado, Marcin Zwierz and Pieter Kok

General optimality of the Heisenberg limit for quantum metrology

47a **Dong Pyo Chi, Jinwon Hong, Taewan Kim and Soojoon Lee**

Entanglement purification protocol via two bilateral controlled-NOT operations

55a **Nikhil Ratanje and Shashank Virmani**

Non-local correlations and generalised state spaces in fault tolerant quantum computing schemes

4a Joseph M. Renes and Renato Renner

Repurposing (quantum) information processing protocols: from randomness extraction to channel coding

69a Elisabeth Rieper

Quantum coherence in biological systems

75a Serge Rosenblum, Alex Hayat, Pavel Ginzburg, David Neiman and Meir Orenstein

QND detection of photon holes by electromagnetically induced transparency

14a Katarzyna Roszak, Paweł Horodecki and Ryszard Horodecki

Sudden death of effective entanglement

48a **Takahiko Satoh and Rodney Van Meter**

Path selection in heterogeneous quantum networks

40a Antonello Scardicchio and Daniel Nagaj

The SAT-UNSAT transition in a satisfiability game gives an upper bound for the Quantum SAT threshold

45a Arun Sehrawat, Le Huy Nguyen and Berthold-Georg Englert

Test state approach to the search problem

24a Ferenc Szollosi

Understanding complex Hadamard matrices and mutually unbiased bases of order 6

61a Kristan Temme and Frank Verstraete

Stochastic matrix product states

37a Graham White and Stephen Bartlett

Efficient topological codes for quantum error correction

64a Johannes Wilms and Frank Verstraete

Mutual information as a tool to study phase transitions

46a Abuzer Yakaryilmaz

Exact quantum algorithms for promise problems in automata theory

9a Nengkun Yu, Runyao Duan and Mingsheng Ying

Any $2 \otimes n$ subspace is locally distinguishable

42a **Bohua Zhan, Shelby Kimmel and Avinatan Hassidim**

Super-polynomial quantum speed-ups for Boolean evaluation trees with hidden structure

15a **Dong Zhou and Robert Joynt**

Disappearance of entanglement: a topological point of view

16a Huangjun Zhu, Lin Chen and Masahito Hayashi

Additivity and non-additivity of multipartite entanglement measures

Tuesday Session

70b David Aghamalyan and Yuri Malakyan

Photonic time-bin qubit generation with a tripod atomic system

78b Gonzalo Agustín Álvarez and Dieter Suter

NMR quantum simulation of localization effects induced by decoherence

38b Gorjan Alagic, Stephen Jordan, Robert Koenig and Ben Reichardt

The quantum-computational complexity of approximating 3-manifold invariants

43b Andris Ambainis

Variable time amplitude amplification and a faster quantum algorithm for systems of linear equations

10b	Martin Aulbach, Damian Markham and Mio Murao Visual characterization of symmetric state entanglement
71b	Koji Azuma, Hitoshi Takeda, Masato Koashi and Nobuyuki Imoto Quantum repeaters and computation by a single module: remote nondestructive parity measurement
32b	Dave Bacon and Jonathan Shi Graph state subsystem codes
49b	Jeongho Bang, Changhyoup Lee and Jinhyoung Lee The role of quantum-mechanical superposition in machine learning
60b	Normand Beaudry and Renato Renner An intuitive proof of the data processing inequality
28b	Cédric Bény Operational commutativity of jointly-measurable observables
29b	Cédric Bény Perturbative quantum error correction
56b	Adán Cabello and Marcelo Terra Cunha Proposal of a two-qutrit contextuality test free of the finite-precision and compatibility loopholes
72b	Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada Hong-Ou-Mandel zero knowledge
36b	Chris Cesare, Dave Bacon, Steve Flammia, Andrew Landahl and Alice Neels Adiabatic topological quantum computing with surface codes
39b	André Chailloux, Iordanis Kerenidis and Bill Rosgen Quantum commitments from complexity assumptions
22b	Jianxin Chen, Zhengfeng Ji, Mary Beth Ruskai, Bei Zeng and Duanlu Zhou Principle of maximum entropy and ground spaces of local Hamiltonians
67b	Taeseung Choi, Jin Hur and Jaewan Kim Relativistic properties of mean spin entanglement of two massive Dirac particles
57b	Bob Coecke and Raymond Lal Time-asymmetry and causal structure
33b	Gregory Crosswhite and Dave Bacon Automated searching for quantum subsystem codes

62b Andrew Darmawan, Gavin Brennen and Stephen Bartlett Prospects for measurement based quantum computation in a 2D phase around the AKLT point 50b Nilanjana Datta and Min-Hsiu Hsieh Universal coding for transmission of private information 24b **David Dolphin and Michael McGettrick** Fairness in lazy quantum random walks 63b Raphael Drumond, Leonardo Souza and Marcelo Terra Cunha Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity 1b Runyao Duan, Simone Severini and Andreas Winter Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta-function 73b **Mark Everitt and Barry Garraway** Photonic qubit logic in multi-mode cavities 21b Edward Farhi, Jeffrey Goldstone, David Gosset, Sam Gutmann and Peter Shor Unstructured randomness, small gaps and localization 11b Marcio Fernando Cornelio, Marcos C. de Oliveira and Felipe F. Fanchini Entanglement irreversibility from quantum discord and quantum deficit 35b Keisuke Fujii and Yuuki Tokunaga Fault-tolerant topological one-way quantum computation with probabilistic two-qubit gates 34b Vlad Gheorghiu, Shiang Yong Looi and Robert Griffiths Location of quantum information in stabilizer codes and tripartitions of stabilizer states 15b Davide Girolami, Mauro Paternostro and Gerardo Adesso Faithful nonclassicality indicators and extremal two-qubit quantum correlations 58b Mile Gu, Karoline Wiesner, Elisabeth Rieper and Vlatko Vedral Sharpening Occam's razor with quantum mechanics 20b Poya Haghnegahdar On the group of local complementation of graphs

Capacity with energy constraint in coherent state channel

5b

Masahito Hayashi

6b Masahito Hayashi

Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

74b Alex Hayat, Amir Nevet and Meir Orenstein

Ultrafast g(4) measurement by HBT interferometery of upconverted autocorrelation

75b Alex Hayat, Pavel Ginzburg, Amir Nevet and Meir Orenstein

Energy qubit QIP by semiconductor two-photon processes

9b Fumio Hiai, Milán Mosonyi, Dénes Petz and Cédric Bény

Quantum f-divergences and error correction

Mahboobeh Houshmand, Monireh Houshmand and Habib Rajabi Mashhadi

Game theory based view to the quantum key distribution BB84 protocol

40b Min-Hsiu Hsieh and François Le Gall

NP-hardness of decoding quantum error correction codes

61b Tomi Johnson, Stephen Clark, Dieter Jaksch and Jacob Biamonte

Dynamical simulations of classical stochastic systems using matrix product states

44b Yasuhito Kawano

Hidden shift problem for quadratic functions on a product of cyclic groups

52b Takeshi Koshiba and Takanori Odaira

Non-interactive statistically-hiding quantum bit commitment from any quantum one-way function

16b Younghun Kwon

On the asymptotic relation between Bell violations and entanglement distillability

31b Ching-Yi Lai, Todd Brun and Mark Wilde

Duals and identities for maximal-entanglement quantum codes

69b Chang-Woo Lee and Hyunseok Jeong

Measure of macroscopic quantum interference as a new criterion for the size of macroscopic quantum superposition states

54b Yeong-Cherng Liang, Támas Vértesi and Nicolas Brunner

Device-independent bounds on entanglement

7b Cheng Lu, Jianxin Chen and Runyao Duan

Optimal perfect distinguishability between unitaries and quantum operations

68b Easwar Magesan, Jay Gambetta and Joseph Emerson Scalable and robust benchmarking of quantum processes 18b **Matthew McKague** Self-testing graph states 19b Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya and Peter S. **Turner** Structural characterization of graph states for quantum information processing 2b Mehdi Mirzaee, Mehdi Rezaei and Saadet Moghimi Classical capacity for a continuous variable teleportation with random displacements on the input coherent state 65b **Akimasa Miyake** Quantum computation on the edge of a symmetry-protected topological order 12b Alex Monras, Gerardo Adesso, Salvatore M. Giampaolo, Giulia Gualdi, Gary B. Davies and Fabrizio Illuminati Entanglement quantification from local unitaries 25b Markus Müller, David Gross and Jens Eisert Concentration of measure for quantum states with a fixed expectation value 66b Yoshifumi Nakata, Peter Turner and Mio Murao How effectively can Hamiltonian dynamics with multi-body interactions generate random states? 8b Masaki Owari and Masahito Hayashi Local hypothesis testing between a pure bipartite state and the white noise state 45b Maris Ozols, Martin Roetteler and Jérémie Roland Quantum algorithms for the hidden shift problem of Boolean functions 76b Jiyong Park, Su-Yong Lee, Ho-Joon Kim and Hai-Woong Lee Theoretical analysis of the cavity-QED scheme to verify the photon commutation relation 13b Marco Piani, Sevag Gharibian, Gerardo Adesso, John Calsamiglia, Pawel **Horodecki and Andreas Winter** Activation of non-classical correlations: the entanglement potential of the relative entropy of quantumness

47b **Martin Plesch and Časlav Brukner** *Efficient quantum state preparation*

	Symmetries in discrete time quantum walks on Cayley graphs
3b	Dong Pyo Chi and Kabgyun Jeong Approximate quantum state sharing protocols
26b	David Reeb, Michael M. Wolf and Michael J. Kastoryano Hilbert's projective metric in quantum information theory
37b	Joseph M. Renes, Akimasa Miyake, Gavin K. Brennen and Stephen D. Bartlett Holonomic quantum computing using symmetry-protected topological order
64b	Rebecca Ronke, Timothy P. Spiller and Irene D'Amico Effect of perturbations on information transfer in spin chains
17b	Akira SaiToh, Robabeh Rahimi and Mikio Nakahara Limitation for linear maps in a class for detection and quantification of bipartite nonclassical correlation
14b	Jeong San Kim and Barry Sanders Monogamy of multi-qubit entanglement in terms of Réenyi and Tsallis entropies
4b	Pradeep Sarvepalli Information theoretic methods in quantum secret sharing schemes
53b	Jonathan Silman, André Chailloux, Nati Aharon, Iordanis Kerenidis, Stefano Pironio and Serge Massar Device-independent quantum bit-commitment
77b	Devin Hugh Smith, Geoff Gillett and Andrew G. White Optical quantum information with highly efficient photon-number resolving transition edge sensors
41b	Akihito Soeda and Mio Murao On the feasibility of adding a control to an oracle
27b	Christoph Spengler, Marcus Huber and Beatrix Hiesmayr A composite parameterization of unitary groups, density matrices and subspaces
48b	Yasuhiro Takahashi Reducing the resources of measurement-only quantum computation
59b	Marco Tomamichel and Renato Renner The uncertainty relation for smooth entropies and its application to QKD: security in a model that is fully device-independent for the receiver

23b

Václav Potoček and Igor Jex

- 42b Maarten Van den Nest
 Full characterization of matchgate-computable functions 46b J. D. Whitfield, V. Bergholm, J. D. Biamonte, J. Fitzsimons and A. Aspuru-Guzik
 Adiabatic quantum simulators 30b Mark Wilde and Min-Hsiu Hsieh
 Entanglement boosts quantum turbo codes
- Yuchun Wu and Guangcan Guo
 Characterization of classical correlation states

Public Lecture

Information is Quantum:

how physics has helped us understand what information is and what can be done with it

Charles H. Bennett, IBM Research, USA

Abstract

The information revolution is largely based on what a physicist would call a classical view of information, assuming that it can be copied freely and is not disturbed by observation. Quantum effects in information processing, which prevent the information in microscopic objects like atoms or photons from being observed or copied accurately, were long regarded as a mere nuisance, but are now known to make possible feats such as quantum cryptography, quantum teleportation and dramatic computational speedups. Although progress toward a practical quantum computer is slow, other surprising quantum informational effects continue to be discovered, and quantum cryptographic systems are already available commercially. Most importantly, the quantum approach has led to a more coherent and powerful way of thinking about how physical objects interact and influence one another, and how that interaction can be used to compute, communicate, and protect privacy. This talk will avoid mathematical complications and instead aim to explain central quantum concepts like entanglement, which at first sight seem counterintuitive.

Date Wednesday 12 January 2011

Registration qip2011.quantumlah.org/publiclecture **before 11 January 2011, 12:00**

Venue Singapore Management University

School of Accountancy/School of Law Ngee Ann Kongsi Auditorium (Level 2)

60 Stamford Road

Registration & Reception from 16:30

Lecture 17:00-18:00

Co-organised by Centre for Quantum Technologies &

Singapore Management University

How to get to the Public Lecture at SMU (also see map on page 28)

You can take the North East MRT line from Harbour Front MRT (NE 1) to Dhoby Ghaut MRT (NE 6), from there it is a ca 800 m walk along Orchard Road/Stamford Road.

How to get to the Social Dinner after the Public Lecture

- walking in groups with local guides
- by bus:
 - walk north on Stamford Road, turn right into Bras Basah Road
 - board Bus No. 106 in front of NTUC Income Centre
 - alight at Marina Bay Sands MICE, Bayfront Avenue 10, 6 stops later (6-8 min.)
- by taxi

Social Dinner

Wednesday, 12 January 2011

Venue Marina Bay Sands, Convention Centre Ballroom, Level 4

10 Bayfront Ave, Singapore 018956

Time 19:00

Entertainment Musical performances by local groups

Prizes for posters presented earlier in the week will be awarded during the evening of the social dinner

Getting to the Marina Bay Sands

- Circle Line (by foot): Exit at Promenade MRT Station and take a 10-minute walk from the station to Bayfront Avenue via the pedestrian footpath adjacent to the public road
- Circle Line (by bus): Exit at Promenade MRT Station and board the public buses (no. 133, no. 97, no. 97e, no. 106) from bus stop along Temasek Ave outside the station.
- North South Line: Exit at Marina Bay MRT Station and board the public buses (no. 133, no. 97, no. 97e, no. 106) from the bus stop opposite the station.
- From Harbourfront: Take the no. 100 bus

Rump Session

The rump session is intended to be an informal session (2-3 hours) in which participants give short presentations on new results from tomorrow's arXiv, work in progress, and other topics of interest to the QIP community, e.g., workshop announcements. The length of the rump presentation should not be longer than 4.31 minutes. The session will be in a relaxed atmosphere by the beach and there will be BBQ food and drinks served. In order to contribute to this spirit, non-technical and humorous contributions are highly encouraged.

Organisers Stephanie Wehner (CQT, NUS) and Tomasz Paterek (CQT, NUS)

Session Chair Louis Salvail (University of Montreal)

Rump Submission Guideline

Maximum (!!!) one page (standard margin), single column, font size = 11pt Online Submission will open on Monday, 10 January 2011, 10:00 (Singapore Time) and close on Wednesday, 12 January 2011, 13:00 (Singapore Time).

Date Thursday 13 January 2011, 19:00 – 23:00 **Venue** Sapphire Pavilion, Siloso Beach, Sentosa Island

Rump Schedule

19:00 BBQ Buffet Opens
20:00 Talk Session I
20:45 Break
21:30 Talk Session II

<u>Directions to the Rump Session (also see map on page 28)</u>

By Sentosa Bus

Take the Red Line or Blue Line bus and alight at the Underwater World Station and walk to the Sapphire Pavilion.

• By Sentosa Express

Alight at the Beach Station and walk about 5-8 minutes to the Sapphire Pavilion. Alternatively, you can also hop on to the Siloso Beach Tram from the Beach station.

From City

Take the North East Line (NEL) train and alight at the Harbour Front MRT station. From there take the Sentosa Express from Vivo City Shopping Centre, Level 3 and alight at the Beach Station.

Note

Beach tram service from 9am - 11pm (Sunday - Thursday), 9am - 12 midnight (Fri and Sat). Frequency: 15-20 minutes.

Blue Line service from 7am – 11pm, Last Bus: 10.40pm (Sunday – Thursday), 7am – 12.30am,

Last Bus: 12mn (Fri and Sat).

Red Line service from 9am – 9pm daily.

Maps

Tutorial Sessions

Public Lecture

Rump Session

QIP Charter

Goal of the Conference

Workshop on Quantum Information Processing (QIP) is an annual conference about quantum computation and information which is usually held around January. Its goal is to represent the preceding year's best research in the area, in the form of both invited and contributed talks. To be able to also represent work already published elsewhere, the conference has no published proceedings of itself.

The Steering Committee

The role of the Steering Committee (SC) is to determine the longer-term course of the conference and to decide upon venues for the next conferences. It should also serve as a watchdog and make sure there are no obvious mistakes, e.g., in the choice of time of the conference by the local organiszing committee. The SC consists of 9 people, including the local organisers of the previous, next, and subsequent QIPs, and is chaired by the local organiser of the next QIP. Members typically serve for 3 years, with the 3 longest-serving members being replaced once a year, typically soon after QIP. The SC chooses the chair of the programme committee (PC) for the next QIP. Starting typically in late summer, the SC invites roughly 5 presentations (of the best recent research, but possibly also some more perspective/survey talks) and possibly some tutorial speakers, but otherwise leaves the details of the conference programme to the PC. At each QIP there is a business meeting that can be attended by all conference participants, to enable the community to influence the future of QIP democratically. There, the organiser for the next QIP gives a presentation, and proposals for the venue of the QIP after that are presented and discussed, with an advisory vote taken among the participants. The actual decision about the venue is taken by the SC soon after that. Also other organiszational matters can be discussed at the business meeting.

The Programme Committee

The role of the Programme Committee (PC) is to select the best submitted papers and to put together a programme for the next QIP. The PC chair chooses the members of the PC (helped by advice from the SC), typically 15 or more people representing the broad range of subfields, both from computer science and from physics. The PC chair determines (in cooperation with the SC) the rules for submission and puts out a call for submissions. The selection of contributed talks among the submitted papers is competitive, with typically around 32 accepted submissions. The PC can promote up to 4 of the best contributed talks to "invited" status, and can distinguish between longer and shorter time slots for the rest (typically 30 and 20 minutes). Poster submissions will generally be accepted unless they are off-topic or clearly wrong, to enable people to obtain funds for travel.

On the days preceding the conference, tutorials can take place, typically each a half or a full day of lectures on a specific topic, aimed at students. The actual conference takes place from Monday to Friday, with (usually) Wednesday afternoon off for scientific discussions and social excursions. Each morning and afternoon session starts with a 45-minute invited talk (either invited by the SC or a contributed talk promoted to invited status by the PC), followed by contributed talks. Each talk is followed by 5 minutes for questions and for setting up the next talk. The poster session(s), business meeting, and a rump session (for short impromptu presentations of very recent results) are held in late afternoons.

Conflict of Interest

- 1. SC member cannot be an invited speaker, but PC members can be invited speakers.
- 2. Both SC and PC member are allowed to submit papers and as a paper presenter if the paper submission is accepted.
- 3. PC members must declare a conflict of interest on certain submissions (such as their own), so that they are not involved in the discussion concerning these paper

THE CENTRE FOR QUANTUM TECHNOLOGIES AND

SINGAPORE MANAGEMENT UNIVERSITY ARE PLEASED TO ANNOUNCE A

FREE PUBLIC LECTURE

Speaker:

Charles H. Bennett IBM Research, USA

INFORMATION IS QUANTUM

HOW PHYSICS HAS HELPED US UNDERSTAND WHAT INFORMATION IS AND WHAT CAN BE DONE WITH IT

12 January 2011 (Wednesday), 5pm

Registration & reception at 4.30pm

Singapore Management University School of Accountancy / School of Law Ngee Ann Kongsi Auditorium (Level 2)

Monday		Tuesday			Wednesday		Thursday		Friday	
09:00-09:30	Welcome Mr. Lam Chuan Leong, Chairman CQT GB	09:00-09:50	Oded Regev	09:00-09:50	Sergey Bravyi	09:00-09:50	Andrew Lutomirski	09:00-09:50	Serge Fehr	
9:30-10:20	Ashley Montanaro	09:55-10:15	Loïck Magnin	09:55-10:15	Michael Wolf	09:55-10:15	Andrew Childs	09:55-10:25	William Matthews	
0:20-10:50	Break	10:15-10:45	Break	10:15-10:45	Break	10:15-10:45	Break	10:25-11:00	Break	
0:50-11:20	Thomas Vidick	10:45-11:15	Giannicola Scarpa	10:45-11:15	Earl Campbell	10:45-11:15	Fang Song	11:00-11:20	Christian Gogolin	
1:25-11:45	Tsuyoshi Ito	11:20-11:40	Carlos Palazuelos	11:20-11:40	James Wootton	11:20-11:40	Hang Dinh	11:25-11:45	Man Hong Yung	
1:50-12:10	Shengyu Zhang	11:45-12:05	Tobias Fritz	11:45-12:15	Hector Bombin	11:45-12:15	François Le Gall	11:50-12:10	Ersen Bilgin	
2:10-14:00	Lunch	12:05-14:00	Lunch		Lunch & Free Afternoon	12:05-14:00	Lunch	12:10-14:00	Lunch	
4:00-14:50	John Martinis	14:00-14:20	Simone Severini			14:00-14:50	Omar Fawzi	14:00-14:30	Bill Fefferman	
4:55-15:15	Tzu-Chieh Wei/ Akimasa Miyake	14:25-14:55	Stephanie Wehner			14:55-15:25	Jonathan Oppenheim	14:35-14:55	Michael Bremner	
5:15-15:45	Break	14:55-15:30	Break			15:25-16:00	Break	14:55-15:30	Break	
5:45-16:05	David Poulin	15:30-16:00	Jérémie Roland			16:00-17:00	Business Meeting	15:30-16:20	Fernando Brandão	
6:10-16:30	Ramis Movassagh	16:05-16:25	Xie Chen					16:20-16:30	Closing Remarks	
6:35-16:55	Norbert Schuch	16:30-16:50	Robin Kothari	16:30-17:00	Registration & Reception @ SMU					
		16:55-17:15	Fernando Brandão	17:00-18:00	Public Lecture @ SMU Charles H. Bennett					
rom 17:15	Poster Session 1	from 17:15	Poster Session 2	from 19:00	Conference Dinner @ Marina Bay Sands	from 19:00	Rump Session @ Siloso Beach			