Definition: Random Variable

Random Variable

A random variable is a measurable function from a Probability Space to a measurable space.

Formal Definition

Given a probability space (Ω, \mathcal{F}, P) , a random variable is a function $X : \Omega \to \mathbb{R}$ such that for every Borel set $B \subseteq \mathbb{R}$:

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$$

This condition ensures that we can assign probabilities to events of the form $\{X \in B\}$.

Types of Random Variables

- 1. Discrete Random Variable: Takes countably many values
 - Characterized by probability mass function (PMF): $p_X(x) = P(X = x)$
- 2. Continuous Random Variable: Takes uncountably many values
 - Characterized by probability density function (PDF): $f_X(x)$ where $P(a \le X \le b) =$ $\int_a^b f_X(x) dx$

Properties

- Cumulative Distribution Function (CDF): $F_X(x) = P(X \le x)$
- Expected Value: $E[X] = \int_{\Omega} X(\omega) dP(\omega)$ Variance: $Var(X) = E[(X E[X])^2]$

Examples

- Bernoulli: $X \in \{0,1\}$ with P(X=1) = p
- Normal: $X \sim N(\mu, \sigma^2)$
- Poisson: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Dependency Graph

Local dependency graph