Interrogation écrite n°07

NOM: Prénom: Note:

1. Montrer que $\mathrm{GL}_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$.

L'application $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \det(M)$ est continue car $\det(M)$ est polynomial en les coefficients de M. Or $GL_n(\mathbb{R})$ est l'image réciproque de l'ouvert \mathbb{R}^* par l'application continue \det donc $GL_n(\mathbb{R})$ est ouvert.

2. L'application $f:(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \mapsto \frac{xy}{x^2+y^2}$ admet-elle une limite en (0,0)? Justifier.

D'une part, $f(t,0) = 0 \xrightarrow[t\to 0]{} 0$ et d'autre part, $f(t,t) = \frac{1}{2} \xrightarrow[t\to 0]{} \frac{1}{2}$. Comme $(t,0) \xrightarrow[t\to 0]{} (0,0)$ et $(t,t) \xrightarrow[t\to 0]{} (0,0)$, f n'admet pas de limite en (0,0).

3. L'application $f:(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \mapsto \frac{x^3+y^3}{x^2+y^2}$ admet-elle une limite en (0,0)? Justifier.

Posons $(x, y) = (r \cos \theta, r \sin \theta)$ où $r = \sqrt{x^2 + y^2}$. Alors

$$|f(x,y)| \le \frac{|x^3 + y^3|}{|x^2 + y^2|} \le \frac{|x|^3 + |y|^3}{r^2} = r\left(|\cos\theta|^3 + |\sin\theta|^3\right) \le 2r = 2\sqrt{x^2 + y^2}$$

Comme $\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} = 0$, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

4. On munit $E = \mathcal{C}([0,1],\mathbb{R})$ de la norme uniforme $\|\cdot\|_{\infty}$. Montrer que $\varphi: f \in E \mapsto \int_0^1 f(x) \, dx$ est continue sur E.

Pour tout $f \in E$, on a

$$|\varphi(f)| = \left| \int_0^1 f(x) \, \mathrm{d}x \right| \le \int_0^1 |f(x)| \, \mathrm{d}x \le \int_0^1 ||f||_{\infty} \, \mathrm{d}x = ||f||_{\infty}$$

On en déduit que φ est continue sur E par caractérisation de la continuité pour les applications linéaires.

5. On munit $\mathbb{R}[X]$ de la norme $\|\cdot\|_{\infty}$ définie par $\left\|\sum_{n=0}^{+\infty}a_nX^n\right\|_{\infty}=\max_{n\in\mathbb{N}}|a_n|$. Montrer que l'endomorphisme $D:P\in\mathbb{R}[X]\mapsto P'$ n'est pas continu.

Pour tout $k \in \mathbb{N}$, $\|X^k\|_{\infty} = 1$ et $\|D(X^k)\|_{\infty} = \|kX^{k-1}\|_{\infty} = k$. Ainsi $\frac{\|D(X^k)\|_{\infty}}{\|X^k\|_{\infty}} = k \xrightarrow[k \to +\infty]{} +\infty$. On en déduit que D n'est pas un endomorphisme continu de $(\mathbb{R}[X], \|\cdot\|_1)$.

6. Montrer que \mathbb{Q} est dense dans \mathbb{R} .

Soit $x \in \mathbb{R}$. Posons $u_n = \frac{\lfloor nx \rfloor}{n}$ pour $n \in \mathbb{N}^*$. Par encadrement de la partie entière,

$$\forall n \in \mathbb{N}^*, \ nx - 1 < \lfloor nx \rfloor \le nx$$

puis

$$\forall n \in \mathbb{N}^*, \ x - \frac{1}{n} < u_n \le x$$

Par théorème des gendarmes, $\lim_{n\to+\infty}u_n=x$. On en déduit que $\mathbb Q$ est dense dans $\mathbb R$.