Sistemas de Telecomunicações

3ª Aula

Rede Pública Digital

Conteúdo

- Rede Pública Digital
 - Meios de transmissão
 - Rede de Transporte
 - Hierarquias Plesiócronas
 - PDH (Plesiochronous Digital Hierarchy)
 - Multiplexagem Digital Síncrona
 - Multiplexagem Digital Assíncrona
 - Hierarquia Síncrona
 - SDH (Synchronous Digital Hierarchy)

Introdução

- Os sistemas hierárquicos digitais síncronos permitem:
 - transmissão de novos canais de banda larga
 - suporte de transporte dos níveis hierárquicos dos sistemas PDH
 - garantem o acesso directo a qualquer canal multiplexado
 - sem recorrer à desmultiplexagem dos tributários (desvantagem do sistema PDH)
 - SDH Synchronous Digital Hierarchy norma ITU-T (1990)
- Estes sistemas estão a ser adoptados em todo o mundo
 - Nos EUA os tributários da hierarquia digital síncrona são compatíveis com algumas das interfaces da rede óptica de alto débito
 - SONET Synchronous Optical NETwork norma ANSI (1988)
- Sistema hierárquico
 - cada sinal de um nível é obtido a partir de 4 tributários do nível anterior
 - a multiplexagem é síncrona por entrelaçamentos de octetos

José Manuel Cabral

Departamento de Electrónica Industrial

Escola de Engenharia

Universidade do Minho

Nível	Débito (Mbit/s)
STM - 1	155,52
STM - 4	622,08
STM - 16	2488,32
STM - 64	9953,28

STM – N: Synchronous Transport Module – Level N

Vantagens:

- elevadas taxas de transmissão, acompanhando a evolução tecnológica
- inserção/remoção directa de tributários de qualquer módulo
- funcionalidades muito completas de operação e manutenção (OAM)
 - grande fiabilidade, com protecção contra falhas
 - possibilidade de reconfiguração remota por procedimentos de gestão
- pequeno conjunto de equipamentos normalizados
 - NE Network Elements
- arquitectura flexível adaptada aos vários níveis da rede de transporte

Compatibilidade:

- interfaces da hierarquia plesiócrona (suporte de tributários PDH)
- RDIS de Banda Larga (suporte de fluxos de células ATM)
- tráfego de dados (interfaces Ethernet 10/100 BaseT e Gbit)

Desvantagens:

- Por ser baseada no modo de circuito estático (contentores com débito fixo)
 - dificuldade em suportar tráfego variável com elevada eficiência
- VC (Virtual Container)
 - Unidade de transporte de informação de utilizador

- POH Path overhead Funções de OAM relativas ao caminho
- C Container informação útil de utilizador

Modelo Arquitectónico em camadas

	Contentor	Capacidade (kbit/s)
Baixa Ordem	C-11 C-12 C-2 C-3	1 600 2 176 6 784 48 384
Alta Ordem	C-3 C-4	48 384 149 760

Exemplo de uma rede SDH

POH - Path Overhead

MSOH - Multiplex Section Overhead RSOH - Regenerator Section Overhead

- Período: 125 μs / Frequência: 8 kHz
- Overhead de transporte:
 - apontadores dinâmicos para unidades de informação
 - Contentores Virtuais de Ordem Alta
 - overhead de secção de regenerador RSOH
 - overhead de secção de multiplex MSOH
- Carga de transporte: 9 × 261 octetos (mais até 3 octetos no caso de justificação negativa)
 - apontadores dinâmicos para unidades de informação
 - Contentores Virtuais de Ordem Baixa
 - unidades de informação de utilizador (Contentores Virtuais)
 - overhead de caminho POH

Estrutura de trama: STM-1 e STM-N

Funções dos Overheads

Overhead de secção do módulo STM - 1

	Função	RSOH	MSOH
	Alinhamento de trama	Х	
-	Identificação de sinais STM-1		Х
ō	Monitoração de erros	Х	Х
Š	Comunicação de dados (ex: gestão, supervisão)	Χ	Х
	Comunicação de voz (ex: manutenção)	Х	Х
	Comutação automática de protecção	Х	

Overhead de caminho

	Função
POH	Monitoração de erros Comunicação de dados (ex: gestão, supervisão) Comunicação do utilizador Indicação da estrutura de multiplexagem

Overhead de secção do módulo STM - N

		1ª trama	sTM-1	Outras	tramas
	Função	RSOH	MSOH	RSOH	мѕон
	Alinhamento de trama	Х		Х	
_	Identificação de sinais STM-1		Х		X
0	Monitoração de erros	Х	Х	Χ	X
S	Comunicação de dados (ex: gestão, supervisão)	Х	Х		
	Comunicação de voz (ex: manutenção)	Х	Х		
	Comutação automática de protecção	X			

Estruturas da multiplexagem

Contentor C

Contentor Virtual VC = C + etiqueta adicional de caminho (POH) Unidade Tributária / Administrativa TU / AU = VC + apontador

Mapeamento:

- insere tributários nos contentores virtuais preparando a multiplexagem síncrona
- introduz bits de justificação para adaptar diferenças de débitos
- acrescenta overhead de caminho (POH)

Alinhamento:

- localiza a posição do primeiro octeto de um VC num TU ou AU
- coloca um apontador no TU ou AU para essa posição

Multiplexagem

- agrega múltiplos sinais de baixa ordem numa estrutura de alta ordem
- agrega múltiplos sinais de alta ordem num módulo de transporte
- Preenchimento (stuffing)
 - introduz octetos de stuffing para ajustar posição de VCs num TU ou AU
 - adaptar flutuações de débitos

- Constituição de estruturas de multiplexagem SDH para:
 - tributários PDH
 - fluxos de células ATM

• Exemplo: Estrutura STM-1 baseada em AU-4 e TUG-2

Estrutura de Unidades Tributárias e Unidades Administrativas

– dimensão de 9 linhas e um número inteiro de colunas (AU-4 e AU-3/TU-3 contêm mais alguns octetos para apontadores e área de justificação)

 Exemplo de multiplexagem de TU-12 e AU-4 (por entrelaçamento de colunas)

Estrutura de trama STM - 1

- Transmissão de um débito de 155 520kbit/s
- Recomendação G.703 do ITU-T
- A ordem de transmissão começa no byte da 1º linha da coluna mais à esquerda e acaba no último byte da última linha da coluna mais à direita
- A taxa de repetição da trama é de 125µs e cada octeto representa um canal com débito de 64kbit/s

total 2 430 octetos

Cabeçalho da trama STM – 1 (SOH)

A 1	A 1	A 1	A2	A2	A2	J0	X	X
B1			E1			F1	X	X
D1			D2			D3		
			A	U Point	er			
B2	B2	B2	K1			K2		
D4			D5			D6		
D7			D8			D9		
D10			D11			D12		
S1					M1	E2		

Cabecalho de secção de regeneração

- A1, A2: Padrão de alinhamento de trama (A1=11110110, A2=00101000)
- JO: Traço de secção de regeneração.
 Verifica a integridade da ligação a nível de secção
- B1: Monitorização de erros a nível da secção de regeneração.
- D1 D3: Canal de comunicação de dados. Transporta informação de gestão de rede.
- E1: Canal de comunicação de voz (64 kbit/s) entre regeneradores.
- F1: Canal de utilizador. Diferentes aplicações. Ex: transmissão de dados, alarmes, etc
- X Reservado para uso nacional
- (.) Relacionado com o meio de transmissão (e.g. Ligação por satélite ou Ligação Rádio)

Cabeçalho da trama STM – 1 (SOH)

A1	A1	A1	A2	A2	A2	J0	Х	Х
B1			E1			F1	X	Х
D1			D2			D3		
			Al	U Point	er			
B2	B2	B2	K1			K2		
D4			D5			D6		
D7			D8			D9		
D10			D11			D12		
S 1					M1	E2		

Cabeçalho de secção de multiplexagem

- B2: Monitorização de erros a nível da secção de multiplexagem
- K1 K2: Comutação de protecção automática (Transporta o protocolo APS)
- D4 D12: Canal de comunicação de dados a 576 kbit/s. Transporta informação de gestão de rede entre os elementos que terminam a secção de multiplexagem e entre estes e o sistema de gestão de rede
- S1: Indicador da qualidade do relógio. Transporta mensagens referentes ao tipo de relógio usado no processo de sincronização
- M1: É usado para transportar uma indicação de erro remoto ou REI (remote error indication) a nível de secção de multiplexagem. O alarme REI é enviado para o ponto onde a secção de multiplexagem é originada e indica o número de blocos detectados errados a partir da informação dada pelo B2
- E2: Canal de comunicação de voz (64 kbit/s) para comunicações de voz entre as extremidades da camada de multiplexagem

Cabeçalho da trama STM – 1 (SOH)

A1	A1	A1	A2	A2	A2	J0	Х	Х
B1			E1			F1	Х	Х
D1			D2			D3		
Н1	h1	h1	H2	h2	h2	Н3	Н3	Н3
B2	B2	B2	K1			K2		
D4			D5			D6		
D7			D8			D9		
D10			D11			D12		
S 1					M1	E2		

AU Pointer

- H1, H2: Octetos de ponteiro.
 Indicam o início do contentor
 virtual na trama
- H3: Octetos de acção do ponteiro.
 Usados para justificação negativa.
- h1, h2: Octetos com um valor invariável.

POH – Path Overhead

- Ao adicionar o POH a um Contentor obtém-se um VC (VC, Virtual Container)
- As funções do POH são:
 - Monitorar a qualidade de serviço
 - Indicar o tipo de VC
- O formato e a dimensão do POH depende do tipo de VC
- É feita uma distinção entre os contentores:
 - -VC-3/4 eVC-11/12

POH – Path Overhead

VC-3/4 (POH)

J1	Indicação do caminho
В3	Monitorização de qualidade
C2	Formato do Contentor
G1	Confirmação de erros de transmissão
F2	Manutenção
H4	Indicação de supertrama
F3	Manutenção
КЗ	Protecção automática de comutação
N1	Monitoração de ligação em "Tandem"

VC - 11 / 12 (POH)

V5	Controlo e indicação de erros
J2	Indicação do caminho
N2	Monitoração de ligação em "Tandem"
K4	Protecção automática de comutação

Multiplexagem com Apontadores dinâmicos

- Permite suportar variações de fase
- Permite suportar relógios assíncronos
- Qualquer estrutura pode flutuar relativamente aquela em que está contida
- Memórias elásticas de baixa capacidade
 - atraso introduzido reduzido
- Introduz-se uma pequena histerese para evitar correcções excessivas
 - VC 12: 2bytes; VC 4: 12 bytes

Multiplexagem com Apontadores dinâmicos

- Em cada trama STM-N existe um apontador (VC Pointer Payload) que indica o início do VC
- Permite que um VC possa "deslizar" dentro de uma trama STM-N
 - No caso de um VC-4 o apontador é constituído pelos bytes H1 e H2 que devem ser considerados como um só valor
 - O valor do apontador indica o offset em bytes desde o apontador até ao 1º byte do VC (byte J1)
 - Como os bytes do SO não contam, e os apontadores indicam pontos de início com incrementos de 3 bytes, a gama de valores deste apontador é:
 - (Nº total de bytes STM-1 − Nº de bytes de SO): 3
 - \triangleright (2430 81) / 3 = 783 valores válidos para o apontador.
 - A gama do apontador varia de 0 a 782

Flutuação de VC-4 em STM-1

Sem justificação

A posição zero corresponde à posição a seguir ao octeto H3. A cada variação unitária do ponteiro correspondem três octetos.

Flutuação de VC-4 em STM-1

- Justificação negativa
 - o débito de VC-4 é superior a AU-4

Os três octetos H3 são usados para transportar informação do contentor virtual VC-4. A seguir à justificação (na trama seguinte) o ponteiro é decrementado de uma unidade

Flutuação de VC-4 em STM-1

- Justificação positiva
 - o débito de VC-4 é inferior a AU-4

Os três octetos a seguir a H3 não são usados para transportar informação. Depois da justificação (trama seguinte) o ponteiro é incrementado de uma unidade

SDH - Operação e manutenção

- Minimiza o impacto de defeitos e falhas sobre a qualidade de serviço
- A informação de supervisão é transmitida nos overheads
- Recorre a acções preventivas, sempre que possível:
 - ocorrência de anomalias indicia defeitos ou falhas iminentes
 - intervenção antecipada pode evitar degradação significativa do serviço
- São efectuadas acções correctivas para restabelecer a qualidade de serviço:
 - protecção automática de sistemas
 - reconfiguração da rede através de procedimentos de gestão

SDH - Operação e manutenção

DEFINIÇÕES:

– Anomalia:

 mínima discrepância entre o que foi observado e o que era desejado

– Defeito:

 frequência de anomalias atingiu um limite a partir do qual deixa de ser possível executar satisfatoriamente uma determinada função

– Falha:

 incapacidade total de uma função executar uma determinada acção dentro de um tempo limite

SDH - Operação e manutenção

- Informação de supervisão transmitida nos overheads:
 - monitoração de parâmetros do sistema, (e.g. erros)
 - estado de sincronização
 - estado de caminhos
 - Alarmes
 - indicações de que um defeito ou falha foi detectado

SDH – Network Elements

Regenerador:

 Regenera o relógio e a forma dos sinais de entrada. Possui canais de comunicação a 64 kbit/s para transmitir mensagens

- Multiplexador terminal:
 - Agrega sinais plesiócronos ou síncronos de modo a formar sinais STM-N de débito mais elevado

- Multiplexador de inserção / extracção:
 - Permite extrair / inserir, quer sinais
 PDH, quer sinais SDH de débito mais
 baixo do que o da linha

SDH – Network Elements

- Comutadores de cruzamento
 - (DXC, digital cross-connects):
 - Proporciona funções de comutação apropriadas para estabelecer ligações semi-permanentes entre canais E1, E3, E4, e STM-1
- Os comutadores de cruzamento são usados para interligar anéis SDH, ou como nós de redes em malha.

SDH – Topologias

Anéis unidireccionais e bidireccionais:

- Topologia emalhada (usada no núcleo central da rede)
 - A presença dos DXC permite implementar um sistema de restauro dinâmico para fazer face a falhas na rede
 - Com esta técnica o sistema de gestão da rede reencaminha o tráfego por percursos alternativos àqueles onde ocorreram falhas

Bibliografia

- SDH Pocket Guide JDSU
- SDH Pocket Guide Wandel Goltermann
- SDH Telecommunications Standard Primer Textronix