

Advance Technical Information

Trench™ **Power MOSFET**

IXTQ60N10T

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

$V_{\rm DSS}$	=	100V
 _{D25}	=	60A
	≤	18.0 m Ω

G = Gate	D	= [Drain
S = Source	Tab	= [Orain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°C	100	V	
V _{DGR}	$T_J = 25$ °C to 175°C, $R_{gs} = 1M\Omega$	100	V	
V _{GSM}	Transient	± 30	V	
I _{D25}	$T_{c} = 25^{\circ}C$	60	Α	
I _{DM}	$T_{\rm C}^{\circ}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	180	A	
I _A	$T_{c} = 25^{\circ}C$	10	Α	
E _{AS}	$T_{c} = 25^{\circ}C$	500	mJ	
P _D	T _C = 25°C	176	W	
T		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	Plastic Body for 10s	260	°C	
M _d	Mounting Torque	1.13/10	Nm/lb.in.	
Weight		5.5	g	

Features

- 175°C Operating Temperature
- Avalanche Rated
- Low R_{DS(on)}
 Fast Intrinsic Diode
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC/DC Converters and Off-Line UPS
- Primary Switch for 24V and 48V
- High Current Switching Applications
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Voltage Synchronous Recifier

Symbol Test Conditions Characteristic Values (T₁ = 25°C, Unless Otherwise Specified) Min. Typ. $\mathbf{BV}_{\mathrm{DSS}}$ $V_{GS} = 0V, I_{D} = 250\mu A$ 100 $V_{\underline{\mathsf{GS(th)}}}$ $V_{DS} = V_{GS}, I_{D} = 50\mu A$ 2.5 4.5 $V_{GS} = \pm 20V, V_{DS} = 0V$ \pm 100 nA $V_{DS} = V_{DSS}, V_{GS} = 0V$ 1 μΑ l_{DSS} 100 µA T₁ = 150°C $\mathbf{R}_{\mathrm{DS(on)}}$ $V_{GS} = 10V, I_{D} = 25A, \text{ Note 1}$ 14.8 18.0 $m\Omega$

•	SymbolTest ConditionsChar $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		acteristic Values Typ. Max.		
g _{fs}		$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	25	42	S
C _{iss})			2650	pF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		335	pF
\mathbf{C}_{rss}	J			60	pF
t _{d(on)})			27	ns
t,		Resistive Switching Times		40	ns
$\mathbf{t}_{d(off)}$		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 10A$		43	ns
$\mathbf{t}_{_{\mathbf{f}}}$	J	$R_{\rm G} = 15\Omega \text{ (External)}$		37	ns
$\mathbf{Q}_{g(on)}$)			49	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 10A$		15	nC
\mathbf{Q}_{gd}	J			11	nC
R _{thJC}					0.85 °C/W
R _{thCH}				0.25	°C/W

Source-Drain Diode

Symbol Test Conditions (T, = 25°C, Unless Otherwise Specified)		Characteristic Values Min. Typ. Max.			
I _s	$V_{GS} = 0V$			60	A
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			240	Α
V _{SD}	$I_F = 25A, V_{GS} = 0V, \text{ Note 1}$			1.2	V
t _{rr}	$I_{\rm F} = 0.5 \bullet I_{\rm S}, V_{\rm GS} = 0V$		59		ns
I _{RM}	-di/dt = 100A/μs		3.8		Α
Q _{RM}	V _R = 0.5 • V _{DSS}		112		nC
			l .	<u> </u>	

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 30A Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 30A Value vs.

Fig. 6. Drain Current vs. Case Temperature

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

