

报告人: 李浩然

导 师:姚鸿勋

2023年5月19日

人体2D姿态估计

人体2D姿态估计

人体2D姿态估计

5

人体2D姿态估计

Bottom-up Top-down

• Liu, Wu, et al. "Recent advances of monocular 2d and 3d human pose estimation: a deep learning perspective." *ACM Computing Surveys* 55.4 (2022): 1-41.

Sotas

Pose Estimation on COCO test-dev

https://paperswithcode.com/sota/pose-estimation-on-coco-test-dev

Sotas top-down

Figure 2: (a) The framework of ViTPose. (b) The transformer block. (c) The classic decoder. (d) The simple decoder. (e) The decoders for multiple datasets.

Xu, Yufei, et al. "Vitpose: Simple vision transformer baselines for human pose estimation." *arXiv preprint arXiv:2204.12484* (2022).

8

Sotas top-down

Table 9: Comparison of ViTPose and SOTA methods on MS COCO val set. * denotes the models are trained under the multi-dataset setting.

		Params Speed		Input	Feature	COC	O val
Model	Backbone	(M)	(fps)	Resolution	Resolution	AP	AR
SimpleBaseline [42]	ResNet-152	60	829	256x192	1/32	73.5	79.0
HRNet [36]	HRNet-W32	29	916	256x192	1/4	74.4	78.9
HRNet [36]	HRNet-W32	29	428	384x288	1/4	75.8	81.0
HRNet [36]	HRNet-W48	64	649	256x192	1/4	75.1	80.4
HRNet [36]	HRNet-W48	64	309	384x288	1/4	76.3	81.2
UDP [18]	HRNet-W48	64	309	384x288	1/4	77.2	82.0
TokenPose-L/D24 [27]	HRNet-W48	28	602	256x192	1/4	75.8	80.9
TransPose-H/A6 [44]	HRNet-W48	18	309	256x192	1/4	75.8	80.8
HRFormer-B [48]	HRFormer-B	43	158	256x192	1/4	75.6	80.8
HRFormer-B [48]	HRFormer-B	43	78	384x288	1/4	77.2	82.0
ViTPose-B	ViT-B	86	944	256x192	1/16	75.8	81.1
ViTPose-B*	ViT-B	86	944	256x192	1/16	77.1	82.2
ViTPose-L	ViT-L	307	411	256x192	1/16	78.3	83.5
ViTPose-L*	ViT-L	307	411	256x192	1/16	78.7	83.8
ViTPose-H	ViT-H	632	241	256x192	1/16	79.1	84.1
ViTPose-H*	ViT-H	632	241	256x192	1/16	79.5	84.5

[•] The speed of all methods is recorded on a single A100 GPU with a batch size of 64.

• Xu, Yufei, et al. "Vitpose: Simple vision transformer baselines for human pose estimation." *arXiv preprint* arXiv:2204.12484 (2022).

9

Sotas bottom-up

Figure 2. During training, the ground-truth heatmaps are firstly scaled according to predicted scale maps and then are used to supervise the whole model via weight-adaptive loss. During testing, the predicted heatmaps and associative embeddings are used for grouping of individual persons.

• Luo, Zhengxiong, et al. "Rethinking the heatmap regression for bottom-up human pose estimation." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2021.

Sotas bottom-up

Methods	Backbone	Input Size	#Params	GFLOPs	AP	AP^{50}	AP^{75}	AP^{M}	AP^L		
w/o mutli-scale test											
OpenPose [4]	-	-	-	-	61.8	84.9	67.5	57.1	68.2		
Hourglass [25]	Hourglass	512	277.8	206.9	56.6	81.8	61.8	49.8	67		
PersonLab [27]	ResNet-152	1401	68.7	405.5	66.5	88.0	72.6	62.4	72.3		
PifPaf [17]	-	-	-	-	66.7			62.4	72.9		
HrHRNet [7]	HRNet-W32	512	28.5	47.9	66.4	87.5	72.8	61.2	74.2		
HrHRNet [7] + SWAHR	HRNet-W32	512	28.6	48.0	67.9	88.9	74.5	62.4	75.5		
HrHRNet [7]	HRNet-W48	640	63.8	154.3	68.4	88.2	75.1	64.4	74.2		
HrHRNet [7] + SWAHR	HRNet-W48	640	63.8	154.6	70.2	89.9	76.9	65.2	77.0		
	w/ mutli-scale test										
Hourglass [25]	-	512	277.8	206.9	63.0	85.7	68.9	58.0	70.4		
PersonLab [27]	-	1401	68.7	405.5	65.5	86.8	72.3	60.6	72.6		
HrHRNet [7]	HRNet-W48	640	63.8	154.3	70.5	89.3	77.2	66.6	75.8		
HrHRNet [7] + SWAHR	HRNet-W48	640	63.8	154.6	72.0	90.7	78.8	67.8	77.7		

Table 1. Results on COCO test-dev2017. Top: without multi-scale test. Bottom: with multi-sale test (scale factors are 0.5, 1.0, and 1.5).

• Luo, Zhengxiong, et al. "Rethinking the heatmap regression for bottom-up human pose estimation." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2021.

Sotas single stage

Fig. 1. Illustrations of different paradigms of multi-person pose estimation, (a) top-down paradigm, (b) bottom-up paradigm and (c) regression based paradigm.

Fig. 3. Overview of the proposed PolarPose for multi-person pose estimation. PolarPose consists of a backbone feature extractor and three head branches for person center detection, orientation classification and length classification, respectively. H and W denote the height and width of feature maps, r is the number of quantized orientations. 17 equals to the number of keypoints annotated in the COCO dataset. Regression result of each keypoint is represented as an orientation and a length.

• Li, Jianing, Yaowei Wang, and Shiliang Zhang. "PolarPose: Single-Stage Multi-Person Pose Estimation in Polar Coordinates." *IEEE Transactions on Image Processing* 32 (2023): 1108-1119.

Sotas single stage

 $TABLE\ VI \\ Comparisons\ With\ Heatmap\ Based\ and\ Regression\ Based\ Methods\ on\ the\ COCO2017\ Test-Dev\ Set$

Method	Backbone	Input size	FPS	single-scale test				multi-scale test					
				AP	AP_{50}	AP_{75}	AP_M	AP_L	AP	AP_{50}	AP_{75}	AP_M	AP_L
Heatmap based													
Mask-RCNN [2]	ResNet50+FPN	800	14.2	63.1	87.3	68.7	57.8	71.4	-	-	-	-	-
RMPE [3]	-	-	10.6	61.8	83.7	69.8	58.6	67.6	-	-	-	-	-
Openpose* [7]	-	-	10.1	61.8	84.9	67.5	57.1	68.2	-	-	-	-	-
HGG [26]	Hourglass	800	-	60.4	83.0	66.2	84.0	69.8	67.6	85.1	73.7	62.7	74.6
AE [4]	Hourglass	512	8.1	56.6	81.8	61.8	49.8	67.0	63.0	85.7	68.9	58.0	70.4
AE* [4]	Hourglass	512	8.1	62.8	84.6	69.2	57.5	70.6	65.5	86.8	72.3	60.6	72.6
PersonLab [24]	ResNet152	1401	5.0	66.5	88.0	72.6	62.4	72.3	68.7	89.0	75.4	64.1	75.5
Bottom-up HRNet [5]	HRNet-W32	512	6.5	64.1	86.3	70.4	57.4	73.9	-	-	-	-	-
PifPaf [25]	ResNet152	-	-	66.7	-	-	62.4	72.3	-	-	-	-	-
FCPose [41]	ResNet101	800	15.2	65.6	87.9	72.6	62.1	72.3	-	-	-	-	-
HigherHRNet [5]	HRNet-W32	512	6.0	66.4	87.5	72.8	61.2	74.2	-	-	-	-	-
HigherHRNet [5]	HRNet-W48	640	4.9	68.4	88.2	75.1	64.4	74.2	70.5	89.3	77.2	66.6	75.8
Regression based		•											
CenterNet [8]	Hourglass104	512	13.1	55.0	83.5	59.7	49.4	64.0	-	-	-	-	-
CenterNet-jd [8]	Hourglass104	512	12.2	63.0	86.8	69.6	58.9	70.4	-	-	-	-	-
LS-Net [11]	ResNeXt101-DCN	_	5.9	59.0	83.6	65.2	53.3	67.9	-	-	-	-	-
SPM [9]	Hourglass	512	17.2	-	-	-	-	-	66.9	88.5	72.9	62.6	73.1
Integral [18]	ResNet101	-	-	67.8	88.2	74.8	63.9	74.0	-	-	-	-	-
End2end PRTR [28]	ResNet101	-	-	63.4	86.2	69.4	59.3	72.0	-	-	-	-	-
End2end PRTR [28]	HRNet-W48	-	-	64.9	87.0	71.7	60.2	72.5	-	-	-	-	-
PSA [10]	HRNet-W48	800	4.8	66.3	87.7	73.4	64.9	70.0	68.7	89.9	76.3	64.8	75.3
PSA+RLE [42]	HRNet-W48	800	4.8	67.4	87.5	73.9	-	-	-	-	-	-	-
DEKR [14]	HRNet-W32	512	5.1	67.3	87.9	74.1	61.5	76.1	69.8	89.0	76.6	65.2	76.5
DEKR [14]	HRNet-W48	640	4.2	70.0	89.4	77.3	65.7	76.9	71.0	89.2	78.0	67.1	76.9
PolarPose	HRNet-W32	512	24.5	67.5	88.0	74.5	61.7	75.7	68.9	88.3	75.7	65.0	75.2
PolarPose	HRNet-W48	640	21.5	70.2	89.5	77.5	66.1	76.4	71.3	89.5	78.4	67.3	76.6

^{*} indicates using extra single-person pose estimation model for refinement.

• Li, Jianing, Yaowei Wang, and Shiliang Zhang. "PolarPose: Single-Stage Multi-Person Pose Estimation in Polar Coordinates." *IEEE Transactions on Image Processing* 32 (2023): 1108-1119.

Sotas single stage

Figure 2. The overall architecture of PETR. C3 to C5 are multi-scale feature maps extracted from the backbone network (e.g., ResNet-50). The visual feature encoder takes the flattened image features as inputs and refines them. Given N pose queries and the refined multi-scale feature tokens, pose decoder predicts N full-body poses in parallel. After that, an additional joint decoder takes each scattered pose (i.e., kinematic joints of each pose) as its reference points and outputs the refined pose as final results. K is the number of keypoints for each instance (e.g., K = 17 in COCO [21] dataset).

Shi, Dahu, et al. "End-to-end multi-person pose estimation with transformers." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

Sotas single stage

		<u> </u>	1			I		1			
Single-stage methods											
	DirectPose [34]	ResNet-50	62.2	86.4	68.2	56.7	69.8	74			
	FCPose [26]	ResNet-50	64.3	87.3	71.0	61.6	70.5	68			
þ	InsPose [32]	ResNet-50	65.4	88.9	71.7	60.2	72.7	80			
)-eī	DirectPose [34]	ResNet-101	63.3	86.7	69.4	57.8	71.2	-			
l-to	FCPose [26]	ResNet-101	65.6	87.9	72.6	62.1	72.3	93			
enc	InsPose [32]	ResNet-101	66.3	89.2	73.0	61.2	73.9	100			
Non end-to-end	CenterNet [41]	Hourglass-104	63.0	86.8	69.6	58.9	70.4	160			
	Point-Set Anchors ^{†‡} [36]	HRNet-w48	68.7	89.9	76.3	64.8	75.3	-			
pu	PETR (Ours)	ResNet-50	67.6	89.8	75.3	61.6	76.0	89			
0-e	PETR [‡] (Ours)	ResNet-50	69.2	90.5	77.1	64.2	76.4	_			
Fully end-to-end	PETR (Ours)	ResNet-101	68.5	90.3	76.5	62.5	77.0	95			
	PETR [‡] (Ours)	ResNet-101	70.0	90.9	78.2	65.3	77.1	-			
	PETR (Ours)	Swin-L	70.5	91.5	78.7	65.2	78.0	133			
	PETR [‡] (Ours)	Swin-L	71.2	91.4	79.6	66.9	78.0	-			

• Shi, Dahu, et al. "End-to-end multi-person pose estimation with transformers." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

轻量化模型

Top-down

Figure 1. Comparison of RTMPose and open-source libraries on COCO val set regarding model size, latency, and precision. The circle size represents the relative size of model parameters.

• Jiang, Tao, et al. "RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose." arXiv preprint arXiv:2303.07399 (2023).

Figure 1. LitePose provides up to $2.9\times$ latency reduction compared to EfficientHRNet [36] on Qualcomm Snapdragon 855 while achieving higher mAP on COCO. Compared with Lightweight OpenPose [39], LitePose obtains 14% higher mAP on COCO with lower latency.

• Wang, Yihan, et al. "Lite pose: Efficient architecture design for 2d human pose estimation." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

谢谢!