Wrap-up of Valuation

Katharina Lewellen Finance Theory II May 14, 2003

Final Exam

- Rules of the game:
 - No laptops
 - Closed books
 - > Cheat sheet

Valuation

Valuation tools:

- Free cash flows
- Cost of capital: WACC and APV
- Real options

Valuing companies

- DCF analysis:
 - Forecast horizon and terminal values
 - EVA: When is growth good?
- Comparables, Multiples

Estimating the FCF

Free cash flows (FCF) are the expected after-tax cash flows that the firm would generate if it were 100% equity financed.

FCF = EBIT*(1-t) + Dep. - CAPX -
$$\triangle$$
NWC

FCF = EBITD*(1-t) + t * Dep. - CAPX -
$$\triangle$$
NWC

$$FCF = EBIT*(1-t) - \Delta NA$$

Recall:

- NWC = Current assets Current liabilities
- NA = Assets Current liabilities.

FCF = EBIT*(1-t) + Dep. - CAPX - \triangle WC

- This expression amends EBIT(1-t) which is an accounting measure of cash flow into an economic measure.
- CAPX not reported as cash outflow but is one ⇒ CAPX
- Depreciation
 - is reported as cash outflow but is not one ⇒ Add (1-t)*Dep
 - however, depreciation does imply a cash inflow of t*Dep.
 - ➤ Altogether ⇒ + Dep
- Working capital has an opportunity cost ⇒ ∆NWC

Other Things to Keep In Mind

- Formulas need to be adapted in particular situations
 - Need to understand the economics (e.g., Southland's asset sales)
- Use all incremental cash flows:
 - Ignore sunk costs, Count opportunity costs, Avoid "accounting illusions"...
- Don't forget FCF at the end of the project's life:
 - If liquidated: SV*(1-t) + t * PPE
 - Even if not liquidated, recoup WC
- FCF ignores the tax shield provided by the firm's debt.
- We deal with it separately in APV or WACC. Do not include the effects of financing at this stage: You would count them twice!

APV Step 1: Value if 100% equity

- 1. *Identify comps*, i.e., publicly traded pure plays in same business.
- **2.** Unlever each comp's β_E to estimate its β_A using

$$\beta_A = \beta_E \frac{E}{E+D}$$

(OK if the comp's D not too high (+ can assume their D/V is stable))

- **3.** Use the comps' β_A to estimate the **project's** β_A (e.g., as average).
- **4.** Use estimated β_A to calculate the **all-equity cost of capital** k_A

$$k_A = r_f + \beta_A \cdot Market Risk Premium$$

5. Use k_A to *discount the project's FCF*

Why We Need to Unlever

- Comps may have different leverage
- Equity in a firm with debt is more risky than equity in a firm without debt because debt receives some of the safe cashflows.

Note: Business Risk and Financial Risk

- Financial risk has nothing to do with costs of financial distress!
- Similar firms have similar business risk (β_A) but can have different financial risk (β_F - β_A) if they have different leverage.
- As leverage increases, equity becomes riskier (i.e. $\beta_E \nearrow$).

APV Step 2: Add PV (Tax Shield)

If the project's D is constant over time, then

$$PV(TS) = t*D*k_D / k_D = t*D$$

If the project's D/V is constant, then

$$PV(TS) = t*D*k_D/k_A$$

- If there is a known debt policy or repayment schedule
 - you can simply forecast actual debt levels and discount by a rate between k_D and k_A

APV Step 2: Add PV (Tax Shield), Remarks

- Count only debt attributed to the project
 - Recall: If a project is 100% debt finance, some of the debt is probably issued against firm's other assets
- Make sure to discount expected not maximum tax shields
 - This is particularly important for high D/V
- For high D/V, should count costs of financial distress
- Recall: Use the marginal (as opposed to the average) tax rate

Weighted Average Cost of Capital (WACC)

Approach: Adjust the discount rate to account for the tax shield.

WACC =
$$\frac{D}{D + E} k_D (1 - t) + \frac{E}{D + E} k_E$$

- Most widely used DCF analysis method.
- The aim is to avoid 1st order mistakes:
 - > A priori, WACC is project-specific (except for tax rate t)
 - Firm-wide WACC is OK only if project comparable to the firm

Leverage ratio: D/(D+E)

- What we want: The debt that is incremental to the project, i.e., that could not be raised w/o the project.
- 1st-order mistakes we want to avoid:
 - Use the deal's leverage ratio;
 - Use the "acquirer" s leverage ratio.
- Imperfect approach to what we want:
 - Target leverage ratio if project/firm were a stand-alone
- How we get there:
 - Get D/V from comps, business plan, checklist, etc.

Cost of debt capital: k_D

- What we want: Expected return for creditors if project were a stand-alone with leverage ratio D/(D+E) estimated above.
- Imperfect approach to what we want: k_D close the interest rate charged to project as stand-alone (unless debt is very risky).
- How we get there:
 - Find comps with similar leverage + recent interest rate.
 - Estimate the debt rating and examine corporate yield curve.
- 1st-order mistakes we want to avoid:
 - Use the interest rate in the deal or of the "acquirer";

Effective Marginal Tax Rate t

Marginal tax rate of firm undertaking the project: t

Using CAPM to Estimate k_F

- 1. Find comps for the project under consideration.
- 2. *Unlever* each comp's β_E (using its D/(D+E)): $\beta_A = \beta_E \frac{E}{E+D}$

$$\beta_A = \beta_E \frac{E}{E + D}$$

- **3.** Use the comps' β_{A} to estimate the **project's** β_{A} (e.g. average).
- **4.** Relever the project's estimated β_A (using its own D/(D+E)):

$$\beta_{E} = \frac{E + D}{E} \beta_{A} = \left[1 + \frac{D}{E}\right] \beta_{A}$$

5. Use the estimated β_F to calculate the **project's cost of equity** k_F :

$$k_{\rm E} = r_{\rm f} + \beta_{\rm E} \cdot \text{Market Risk Premium}$$

Note: These (un-) levering formulas are OK only if the (comp) firm's debt is not too risky and its D/V is reasonably stable.

Remarks

- WACC can be used only if D/V is reasonably stable
- Use APV when debt is very risky and/or when D/V is unstable (recall the Southland LBO case)
- WACC is an attribute of the project, not the firm (except tax rate)
- OK to use the firm's WACC when project is very much like the firm (because the firm happens to be a comp for the project).
- Few companies have WACC that they can use for all projects (recall our discussion of GE).

Real options

Embedded options

- Follow-up investments
- Option to abandon the project
- Option to wait before investing
- Option to expand / change production methods

Key issues

- Identification
- Valuation

Identify significant options

- Look for clues in project's description and cash flow pattern
 - "Phases", "Strategic investment", "Scenarios"...
 - Large expenditures are likely discretionary
- Is there an option? Verify two conditions:
 - (1) News will possibly arrive in the future;
 - (2) When it arrives, the news may affect decisions.
- Search for the uncertainty that managers face:
 - What is the main thing that managers will learn over time?
 - How will they exploit that information?

Practical Issue: Simplifications

- Search for significant options
 - > E.g., option to shut down the plant may not be very valuable (why?)
 - Look for primary sources of uncertainty
- Cut the projects into simple options
 - You might want to ignore nested options (difficult to value)
- Use *European* rather than American option
- Ignoring some adverse effects of waiting (e.g. possible entry)

A simplified model that is dominated by the project gives a *lower bound* for the project's value (and vice versa).

Value the options

Step 1:

- Start with the simple DCF analysis
 - Pretend that there is no option embedded in the project
 - This benchmark constitute a lower bound for the project's value

Step 2:

- Value the option
 - Decision trees (dynamic DCF)
 - Option pricing models (Black-Scholes)

Mapping: Project → Call Option

Project		Call Option
Expenditure required to acquire the assets	Х	Exercise price
Value of the operating assets to be acquired	S	Stock price (price of the underlying asset)
Length of time the decision may be deferred	Т	Time to expiration
Riskiness of the operating assets	σ^2	Variance of stock return
Time value of money	r	Risk-free rate of return

Practical Issue: What Volatility?

What do we want?

- Standard deviation of returns for the underlying asset
- In case of real options, the underlying is the PV of the project's CFs

Imperfect ways to get it?

Informed guess

20-30% per year is not remarkably high for a single project.

Data

- Historical return volatilities on comparable traded assets
- Implied volatilities can be computed from quoted option prices

Simulations

Valuing Companies

- Terminal values:
 - Liquidation
 - > Flat, growing, or decreasing perpetuity
- EVA: When is growth good?
- Comparables, Multiples.

Terminal Values

Liquidation: Should be adjusted (e.g. if cannot recoup all A/R, etc.)

Growing perpetuity: Take EBIT and NA in last year of forecast

$$TV = [(1+g)*EBIT*(1-t) - g*NA] / (k-g)$$

Flat perpetuity:

$$TV = EBIT*(1-t) / k$$

Terminal Values, Remarks

- Growing perpetuity formula assumes a linear relationship between EBIT and NA
- Don't forget to take PVTV
- Forecast horizon: Company is reasonably stable afterwards

EVA

Growth is valuable when (very roughly!):

$$EVA = EBIT*(1-t) - k*NA > 0$$
 or $EBIT*(1-t) / NA > k$

 Growth is good if the cost of scaling up NA is offset by the value of increased revenues.

Remarks:

- Assumes linearity between EBIT and NA and that NA is a good measure of marginal "replacement cost", now and in the future.
- EVA has nothing to do with sustainable growth.

EVA: Bottom Line

Use EVA as...

- ... a simple measure of whether a business is generating value and whether growth is enhancing value
- ... as a way of setting goals to enhance value

Beware of EVA for...

- ... young companies
- ... companies in rapidly changing business environment
- ... companies in which book values are not accurate measures of marginal replacement cost.

Multiples

- Assess the value based on that of publicly traded comps
- Cash-flow based Value multiples
 - MV(firm)/Earnings, MV(firm)/EBITDA, MV(firm)/FCF,...
- Cash-flow based Price multiples:
 - Price/Earnings, Price/EBITDA, Price/FCF,...
- Asset-based multiples:
 - MV(firm)/BV(assets), MV(equity)/BV(equity),...

Motivation for Multiples?

Assumption 1:

- E = CF to shareholders
- > E is a perpetuity

$$P = \frac{E}{k_E - g}$$
 \Rightarrow $\frac{P}{E} = \frac{1}{k_E - g}$

Assumption 2:

- Comps have the same k_F => This requires similar leverage!
- Comps are growing at a similar rate g

Multiples: Pros and Cons

Pros:

- Incorporates simply a lot of information from other valuations
- Embodies market consensus
- Can provide discipline for DCF valuation: Ask yourself "How do I explain the difference?"
- Sometimes, what you care about is what the market will pay, not the fundamental value (e.g., Venture firm will want out).

Cons:

- Hard to incorporate firm specific information.
- Relies on accounting measures being comparable too.

Other Things to Think About

Control:

- With a controlling stake, influence operations, implement synergies and capture (part of) their value
- Also, entrepreneur might care about "the vision"

Large individual shareholder (e.g., entrepreneur):

Maybe very undiversified, at least for a while

Liquidity:

- Especially for private companies
- Note: Need to account for IPO plans

Valuation: Conclusion

- Main merit of DCF analysis: Forces to argue where value comes from ⇒ Most important step is a <u>reasonable</u> forecast of FCF.
- Sales forecasts: Reasonable given the firm's resources, the industry, and competition? What market share is needed?
- Margin forecasts: Reasonable given potential competition/entry barriers and bargaining position with suppliers and customers?
- CAPX and other investment forecasts: Consistent with the sales and margin forecasts?
- Terminal value: Does it make sense?
- Sensitivity analysis: What variables and assumptions are crucial to the value? Get more information about these levers.

Valuation: Conclusion

- The different methods are not mutually exclusive.
- Comparables and multiples are important but:
 - don't tell you where value comes from;
 - whether comparables are really comparable.
- DCF analysis (+ Real options) forces to justify valuation but:
 - only as good as the data input;
 - relies on imperfect models.
- Go back and forth between the two approaches.

Course: Conclusion

What We Have Been About

- Acquire a few general tools:
 - Capital structure
 - DCF analysis
 - Comparales and multiples
- Avoiding 1st order misconceptions (list your own below if any):

 - etc.
- Developing a healthy skepticism.

Financing

- The bulk of the value is created on the LHS by making good investment decisions.
- You can destroy much value by mismanaging your RHS: Financial policy should be supporting your business strategy.
- You cannot make sound financial decisions without knowing the implications for the business.
- Avoid one-size-fit-all approaches.
- Finance is too serious to leave it to finance people.

Valuation

- Making sound business decisions requires valuing them.
- This involves mostly knowing the business (to make appropriate cash-flow forecasts and scenario analysis, etc.)
- But also some finance:
 - What discount rate?
 - Valuation exercises can indicate key value levers,...
- Avoid one-size-fit-all approaches.
- Business is too serious to leave it to business people.