Problem 1. Week 1 - 9.)

 $Let E: y^2 = x^3 + Ax + B.$

- (a) Find a polynomial in x whose roots are the x-coordinates of the point P = (x, y) satisfying $3P = \infty$ (Hint. The relation $3P = \infty$ can also be written 2P = -P.)
- (b) For the particular curve $E: y^2 = x^3 + 1$, solve the equation from part (a) to find all points of E satisfying $3P = \infty$. Note that you will need to use complex numbers.

Solution.

The obvious idea following the hint is to express 2P using the duplication formula and express it in the equation 2P = -P.

(a) Points P x-coordinate is calculated as following: $\left(\frac{3x_P^2+A}{2y_P}\right)^2-2x_P$. We know that point -P is just a reflection against x-axis, namely $-P=(x_P,-y_P)$. That gives us something to work with:

$$\left(\frac{3x_P^2 + A}{2y_P}\right)^2 - 2x_P = x_P$$

$$\frac{9x_P^4 + 6Ax_P^2 + A^2}{4y_P^2} = 3x_P$$

. Assuming that $y_P \neq 0$, we get

$$9x_P^4 + 6x_P^2A + A^2 = 12x_Py_P^2$$

Considering the fact that P is a point on an elliptic curve, we know that $y_P^2 = x_P^3 + Ax_P + B$. That gives us:

$$9x_P^4 + 6Ax_P^2 + A^2 = 12x_P(x_P^3 + Ax_P + B)$$

$$9x_P^4 + 6Ax_P^2 + A^2 = 12(x_P^4 + Ax_P^2 + Bx_P)$$

$$-3x_P^4 - 6Ax_P^2 - 12Bx_P + A^2 = 0$$

or if we multiply by -1 to have a bit more positive parameters :)

$$3x_P^4 + 6Ax_P^2 + 12Bx_P - A^2 = 0$$

This polynomial $f(x) = 3x^4 + 6Ax^2 + 12Bx - A^2$ is the one whose roots satisfy the $3P = \infty$.

(b) Given $y^2 = x^3 + 1$, we see that A = 0, B = 1. That simplifies our polynomial into

$$f(x) = 3x^4 + 12x$$

. Starting our hunt for zeroes, we can clearly divide the whole equation by 3, and perform some minor grouping

$$x(x^3+4) = 0$$

Obviously,

$$x_1 = 0$$

is one solution and gives us the first two points such that $3P = \infty$, point $P_1 = (0, 1)$, and $P_2 = (0, -1)$.

Equation $x^3 = -4$ has three distinct roots (the real and two complex). Real one is

$$x_2 = -\sqrt[3]{4}$$

while the complex ones can be written like

$$x_{3,4} = \sqrt[3]{4} \left(\frac{1}{2} \pm \frac{\sqrt{3}}{2} i \right)$$

.

All these values give us two values for y, since from $x^3 + 4 = 0$, we can figure out that $x^3 + 1 = -3$, which means that our y values are $\pm \sqrt{3}$. This adds up six more points, namely:

$$P_{3,4} = \left(-\sqrt[3]{4}, \pm\sqrt{3}i\right), P_{5,6} = \left(\sqrt[3]{4}\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right), \pm\sqrt{3}i\right), P_{7,8} = \left(\sqrt[3]{4}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right), \pm\sqrt{3}i\right)$$

The last remaining point is the 'point at infinity', which we can mark by index P_9 . \square

Problem 2. Week 2 - 7.)

Let E/\mathbb{Q} be an elliptic curve. Prove that $E(\mathbb{Q})_{tors}$ is finite.

Solution. Let $E: y^2 = x^3 + Ax + B$ be some elliptic curve over \mathbb{Q} . From the Nagell-Lutz theorem, we know that if a point $P \in E(\mathbb{Q})_{tors}$ then two things are known about its coordinates:

- 1.) $x, y \in \mathbb{Z}$
- 2.) If $y \neq 0$, then $y^2 | \Delta$, where $\Delta = 4A^3 + 27B^2$.

As Δ is some element of $\mathbb Z$ it can have a finite set of divisors. Even more precisely, by the fundamental theorem of arithmetic, we can write $\Delta = \prod_i p_i^{q_i}$, where $p_i \in \mathbb P$, $\mathbb P$ being the set of all prime numbers, and $q_i \in \mathbb N_{\vdash}$. The exact count of options that y^2 can be is $\prod_i \left\lceil \frac{q_i}{2} \right\rceil$ (each p_i can be $0, 2, ..., \left\lfloor \frac{q_i}{2} \right\rfloor$, and independently we can choose exponents for other primes.). That means that the set of y coordinates is finite. Each of the values of y can give no more than 3 different values for x since our elliptic curve becomes just a simple cubic equation. This implies that whole $E/\mathbb Q$ cannot be infinite. \square