- **13.** (a) Probar que $\mathcal{P}(A) \sim \{0, 1\}^A = \{\phi : A \to \{0, 1\} \text{ funciones}\}.$
 - (b) Probar que $[0,1) \sim \{0,1\}^{\mathbb{N}}$. Sugerencia: escribir el desarrollo binario de los números del intervalo [0,1). ¡Ojo! la escritura no es única.
 - (c) Concluir que $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$.

a)
$$\mathcal{P}(A) = \{ x \in A \}$$

2 todos los posibles subconjuntos de A

· Condidas A prede ser finito, numerable ó no numerable!

 $\phi: A \longrightarrow \{0,1\}$

no suceriones ni numerabler subconjuntos

1 d tonz algún elemento de A y devuelve o ó 1.

· Con esto, puedo de hinir:

 $\emptyset : \mathcal{P}(A) \longrightarrow \{0,1\}^{N}$

 $\left\{ \phi : A \longrightarrow \{0,1\} \right\}$ In cioner $\left\{ \right\}$

 $\mathcal{B} \longmapsto \phi_{\mathcal{B}}(x) = \begin{cases} 0 & \text{si } x \in \mathcal{B} \\ 1 & \text{si } x \notin \mathcal{B} \end{cases}$

con $B \in \mathcal{P}(A)$, o ste, $B \subseteq A$

.. Pro codo B en P(A), tengo uno

OB que depende de B, y porz codo B, OB es diferente, pues 3 + 3 = 36 = 3 an $6 \neq 3$ 0 NG NG 23 de forms que φ₃ (b) = 1 Ø\$ (b) = 0 $\phi_{\mathbb{B}}(x) \neq \phi_{\mathbb{B}}(x) \quad \forall \, \mathbb{B} \neq \mathbb{B}$ Yxe (BiB UBiB) con la que y es injectiva, $\Rightarrow \# \mathcal{P}(A) \leqslant \# \{0,1\}^A$

· Ahors, de fino otra Punción Y

$$\{\phi: A \to \{0,1\} \text{ hower}\}$$

$$\begin{cases}
\chi \in \mathbb{B} : \phi_{\mathbb{B}}(\chi) = 1
\end{cases}$$
función que manda elementos
$$de \mathbb{B} \subseteq A \quad \text{en} \quad \{0,1\}$$

· Como

$$\Psi\left(\phi_{\mathcal{B}}\right) + \Psi\left(\phi_{\tilde{\mathcal{B}}}\right) \quad \forall \, \mathcal{B} \neq \tilde{\mathcal{B}}$$

$$\Rightarrow \left\{ x \in \mathbb{B} : \phi_{\mathbb{B}}(x) = 1 \right\} \neq \left\{ x \in \mathbb{B} : \phi_{\mathbb{B}}(x) = 1 \right\}$$

$$\rightarrow \qquad \forall \left(\phi_{\mathfrak{B}} \right) \neq \forall \left(\phi_{\tilde{\mathfrak{B}}} \right)$$

$$y : \{0,1\}^A \rightarrow \mathcal{P}(A) \text{ in year is } y$$

=> por Teorema de Cantor - Schröder - Bornstein existe una función biyectiva entre $\{0,1\}^A$ y P(A) con lo que $P(A) \sim \{0,1\}^A$

W