<팔머 펭귄 데이터 분석>

12 조 - 홍주형, 황지융

목표 : 팔머 펭귄 종별 특징 분석

1. 팔머 펭귄 데이터 확인

먼저 팔머 펭귄 데이터 불러오기

```
from palmerpenguins import load_penguins
peng = load_penguins()
peng
```

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	year
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	male	2007
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	female	2007
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	female	2007
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN	2007
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	female	2007

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	year
	•••	•••						
339	Chinstrap	Dream	55.8	19.8	207.0	4000.0	male	2009
340	Chinstrap	Dream	43.5	18.1	202.0	3400.0	female	2009
341	Chinstrap	Dream	49.6	18.2	193.0	3775.0	male	2009
342	Chinstrap	Dream	50.8	19.0	210.0	4100.0	male	2009
343	Chinstrap	Dream	50.2	18.7	198.0	3775.0	female	2009

344 rows × 8 columns

팔머 펭귄 데이터는 남극에 서식하는 펭귄에 대한 정보를 담고 있음.

각 열에 대한 설명

열 이름	데이터 타입	설명
species	문자열 (str)	펭귄의 종
island	문자열 (str)	펭귄이 발견된 섬
bill_length_mm	실수 (float)	부리 길이 (mm 단위)
bill_depth_mm	실수 (float)	부리 깊이 (mm 단위)
flipper_length_mm	정수 (int)	날개(지느러미) 길이 (mm 단위)
body_mass_g	정수 (int)	몸무게 (g 단위)
sex	문자열 (str)	성별
year	정수 (int)	데이터 수집된 연도

이후 팔머 펭귄의 종, 서식 섬, 성별 확인

```
set(peng['species']) # 어떤 종 있는지 확인
```

{'Adelie', 'Chinstrap', 'Gentoo'}

펭귄의 종은 Adelie, Chinstrap, Gentoo 의 세 종류 확인 가능.

```
set(peng['island']) # 어떤 섬 있는지 확인
```

{'Biscoe', 'Dream', 'Torgersen'}

펭귄이 서식하는 섬은 Biscoe, Dream, Torgersen 으로 확인 가능.

```
set(peng['sex']) # 어떤 성별 있는지 확인
```

{'female', 'male', nan}

펭귄의 성별은 female, male 과 수집되지 않아 데이터가 없는 nan 으로 확인 가능.

2. 팔머 펭귄 데이터 계산 함수 작성 및 데이터 프레임 정리

팔머 펭귄의 종별 특징을 확인하기 위해서, 숫자형 데이터의 경우 평균값, 최댓값, 최솟값을 확인. 이외 데이터인 서식 섬과 성별은 각각의 해당 개체 수 확인.

위 데이터들을 확인할 수 있는 함수 작성.

```
import pandas as pd
# 모든 펭귄 종에 대해 평균, 최댓값, 최솟값 및 개체 수를 계산하는 함수
def summarize_species(data, name):
   # 특정 종의 데이터 필터링
   species_data = data.loc[data['species'] == name, ['bill_length_mm', 'bill_depth mm', 'flip
   # 숫자형 데이터 평균, 최댓값, 최솟값 계산
   species_mean = species_data.mean()
   species_max = species_data.max()
   species_min = species_data.min()
   # 섬별 서식 수 계산
   biscoe_live = len(data.loc[(data['species'] == name) & (data['island'] == 'Biscoe')])
   dream_live = len(data.loc[(data['species'] == name) & (data['island'] == 'Dream')])
   torgersen_live = len(data.loc[(data['species'] == name) & (data['island'] == 'Torgersen')]
   island_nan = data.loc[data['species'] == name, 'island'].isna().sum()
   # 성별 개체 수 계산
   male_count = len(data.loc[(data['species'] == name) & (data['sex'] == 'male')])
   female_count = len(data.loc[(data['species'] == name) & (data['sex'] == 'female')])
   sex_nan = data.loc[data['species'] == name, 'sex'].isna().sum()
   # 데이터프레임으로 변환
   species_df = pd.DataFrame({
       'bill length mm mean': [species mean['bill length mm']],
        'bill_depth_mm_mean': [species_mean['bill_depth_mm']],
       'flipper length mm mean': [species mean['flipper length mm']],
       'body_mass_g_mean': [species_mean['body_mass_g']],
       'year_mean': [species_mean['year']],
       'bill_length_mm_max': [species_max['bill_length_mm']],
        'bill depth mm max': [species max['bill depth mm']],
       'flipper_length_mm_max': [species_max['flipper_length_mm']],
       'body_mass_g_max': [species_max['body_mass_g']],
       'year_max': [species_max['year']],
       'bill_length_mm_min': [species_min['bill_length_mm']],
       'bill depth mm min': [species min['bill depth mm']],
       'flipper_length_mm_min': [species_min['flipper_length_mm']],
        'body_mass_g_min': [species_min['body_mass_g']],
        'year min': [species min['year']],
```

```
'Biscoe_live': [biscoe_live],
'Dream_live': [dream_live],
'Torgersen_live': [torgersen_live],
'island_nan': [island_nan],
'male': [male_count],
'female': [female_count],
'sex_nan': [sex_nan]
})
return species_df
```

만든 함수 통해서 각 펭귄 종에 대한 데이터 뽑아낸 후, 하나의 데이터 프레임으로 정리.

```
# 만든 함수 통해 세 종류 펭귄 데이터 구하기

peng_A_df = summarize_species(peng, 'Adelie')

peng_C_df = summarize_species(peng, 'Chinstrap')

peng_G_df = summarize_species(peng, 'Gentoo')

# 세 개의 데이터를 하나의 데이터프레임으로 합치기

peng_final = pd.concat([peng_A_df, peng_C_df, peng_G_df], ignore_index=True)

# 펭귄 종 이름으로 인덱스 변경

peng_final.index = ['Adelie', 'Chinstrap', 'Gentoo']

# 최종 결과 확인

pd.set_option('display.max_columns', None)

pd.set_option('display.width', 1000)

peng_final
```

	bill_length_mm_mean	bill_depth_mm_mean	flipper_length_mm_mean	body_mass_g_mean	year_me
Adelie	38.791391	18.346358	189.953642	3700.662252	2008.013
Chinstrap	48.833824	18.420588	195.823529	3733.088235	2007.970
Gentoo	47.504878	14.982114	217.186992	5076.016260	2008.080
4					>

최종 데이터 프레임 형식으로 세 종에 대한 정리 데이터 확인 가능.

3. 최종 데이터 통한 팔머 펭귄 종별 특징 분석

1) 분석 방향성 정하기

- 분석 가능 여부
 - 먼저, 각 종들의 성비가 비슷함(34:34, 73:73, 61:58)을 통해 성비의 균형에 따라 각 펭귄들의 데이
- ✓ 터가 비교할 가치가 있음.

- 또한 각 데이터가 입력된 년도가 비슷하기에 비교할 가치가 있음.
- 분석 방향성
 - 평균데이터를 통해서 각 펭귄 종들의 신체적 특징 비교 가능.
 - 최대, 최소 데이터를 통해서 이상치를 비교할 수 있음.

2) 데이터 비교

- 평균 데이터

	bill_length_mm_mean	bill_depth_mm_mean	flipper_length_mm_mean	body_mass_g_mean	year_mean
Adelie	38.791391	18.346358	189.953642	3700.662252	2008.013158
Chinstrap	48.833824	18.420588	195.823529	3733.088235	2007.970588
Gentoo	47.504878	14.982114	217.186992	5076.016260	2008.080645

해당 데이터를 통해 일반적으로 부리는 Chinstrap이 크고, 다른 종들은 상대적으로 작음을 확인 가능.

또한 날개 길이와 몸무게는 Gentoo가 가장 크기 때문에 상대적으로 덩치가 큰 편임. 반대로, Adelie의 덩치가 상대적으로 작은 편임을 알 수 있음.

- 최대, 최소 데이터

bill_length_mm_min	bill_depth_mm_min	flipper_length_mm_min	body_mass_g_min	year_min
32.1	15.5	172.0	2850.0	2007.0
40.9	16.4	178.0	2700.0	2007.0
40.9	13.1	203.0	3950.0	2007.0

최대, 최소 데이터를 통해서는 이상치가 Gentoo와 Adelie에 많이 있음을 확인 가능.

Adelie는 세 지역에 고루 분포해있기 때문에 이상치가 있을 확률이 높고, Gentoo는 한 지역에만 있기 때문에 종 자체가 자랄 때 변동폭이 있음을 유추 가능.

추가로 Chinstrap은 종이 평균적으로 비슷하게 자람을 확인 가능.

3) 분석 결과

• 부리 길이

Chinstrap > Gentoo > Adelie

• 부리 깊이

Chinstrap > Adelie > Gentoo

• 날개 길이, 몸무게

Gentoo > Chinstrap > Adelie

• 이상치 존재 가능성

Gentoo > Adelie > Chinstrap

4) 추가 분석 제안

• 'Adelie' 종은 3가지 섬에 모두 살기 때문에 해당 종끼리의 데이터 비교를 통해 사는 환경에 따라 달라지는 경향을 확인 가능함.