

자동화된 ML, 나도 해보자

Episode 1: 자동화된 ML이 왜 필요한가

한석진 마이크로소프트 Episode 1 자동화된 ML이 왜 필요한가 머신러닝 (간단하게) / 모델 생성 과정 자동화된 ML 기본 구조 오버피팅 (과적합) / 클래스 불균형 자동화된 ML의 역할 / 사람의 역할 자동화된 부분 더 알아보기

# 머신러닝 (간단하게)



# 모델 생성 과정



### 기본 구조

#### Automated machine learning



#### Leaderboard

|   | Rank | Model    | Score |
|---|------|----------|-------|
| ı | 1    | <u> </u> | 95%   |
| ł | 2    | <u>k</u> | 76%   |
|   | 3    | 7        | 53%   |

#### 결과적으로 얻는 것:

- ML 모델
- 상세 성능지표
- 상세 hyperparameter 설정

### 그 외 선택할 수 있는 것:

- Hyperparameter 범위 (Grid sampling, Random sampling, Bayesian optimization)
- Early Termination Policy (Bandit, Median stopping, Truncation selection)
- 동시에 실행할 파이프라인 개수
- 안 쓸 알고리즘
- 원격 실행 (대용량 클러스터에서)
- 기존 실행한 것에서 이어서 하기
- Sample weight 지정
- Subsampling

# Overfitting (과적합)





https://ko.wikipedia.org/wiki/%EA%B3%BC%EC%A0%81%ED%95%A9

# Class Imbalance (클래스 불균형)



## 자동화된 ML이 해주는 것과 우리가 할 것



### 과적합



### 클래스 불균형

### 자동화됨

- Regularization (정칙화/정규화),
  Hyperparameter (하이퍼파라미터) 튜닝
- 명시적으로 모델 복잡도 제한 (Tree 계열)
- Cross Validation (교차 검증)

### 우리가 할 일

- 학습데이터 추가 확보, 통계적 bias 제거
- Target Leakage 방지
- Feature 수 줄이기

- 불균형을 확인할 수 있는 시각화 생성
  - Confusion Matrix, Precision-Recall, ROC Curve 등
- Weight 컬럼 (중요한 row를 강조)
- 불균형을 측정하고 sub-sampling 시도
- 불균형에 robust한 AUC\_weighted 등 평가
- Up-sampling 또는 Down-sampling
- 성능지표 평가
  - F1: Precision과 Recall의 조화평균
  - Precision이 높으면 FP가 적음
  - Recall이 높으면 FN이 적음

### Feature 가공 단계



### 기본적으로

- StandardScaleWrapper / MinMaxScaler / MaxAbsScaler / RobustScalar / PCA
- TruncatedSVDWrapper (scipy.sparse 행렬에 유리) / SparseNormalizer

### 더 깊이 들어가서

- <u>카디널리티가 높거나 분산이 0인 속성은 제거 /</u> 빠진 값 채우기 (imputation)
- 추가 속성 만들기: DateTime, Text (TF 기반)
- 가공 및 인코딩
  - 숫자형 -> 범주형 (카디널리티가 낮을 때)
  - One-hot 인코딩 (카디널리티가 낮을 때), One-hot-hash 인코딩 (카디널리티가 낮을 때)
- 워드 임베딩
  - 토큰 -> sentence 벡터 (pre-trained 모델 사용: GloVe)
  - 워드 임베딩 -> document feature 벡터
- **타겟 인코딩** (범주형 속성의 경우)
  - 특히 오버피팅과 sparsity로 인한 노이즈를 피하기 위해 frequency-based weighting과 k-fold CV를 적용
- **텍스트 타겟 인코딩:** 각 class별 확률 계산을 위해 stacked linear model with bag-of-words를 사용
- Weight of Evidence (WoE): class별로 in-class vs out-of-class 확률비율의 log로 계산, 명시적으로 missing 값이나 outlier 처리할 필요성을 없앰
- Cluster distance (k-means)

# 알고리즘과 하이퍼파라미터 선택



| Classification                       | Regression                         | Time Series Forecasting           |
|--------------------------------------|------------------------------------|-----------------------------------|
| Logistic Regression*                 | Elastic Net*                       | Elastic Net                       |
| <u>Light GBM</u> *                   | <u>Light GBM</u> *                 | <u>Light GBM</u>                  |
| Gradient Boosting*                   | Gradient Boosting*                 | Gradient Boosting                 |
| <u>Decision Tree</u> *               | <u>Decision Tree</u> *             | <u>Decision Tree</u>              |
| K Nearest Neighbors*                 | K Nearest Neighbors*               | K Nearest Neighbors               |
| <u>Linear SVC</u> *                  | LARS Lasso*                        | LARS Lasso                        |
| Support Vector Classification (SVC)* | Stochastic Gradient Descent (SGD)* | Stochastic Gradient Descent (SGD) |
| Random Forest*                       | Random Forest*                     | Random Forest                     |
| Extremely Randomized Trees*          | Extremely Randomized Trees*        | Extremely Randomized Trees        |
| Xgboost*                             | Xgboost*                           | <u>Xgboost</u>                    |
| Averaged Perceptron Classifier       | Online Gradient Descent Regressor  | Auto-ARIMA                        |
| Naive Bayes*                         | <u>Fast Linear Regressor</u>       | <u>Prophet</u>                    |
| Stochastic Gradient Descent (SGD)*   |                                    | ForecastTCN                       |
| Linear SVM Classifier*               |                                    |                                   |

- + 앙상블 모델 (Ensemble Model) 비교평가
- Stack Ensemble
- Voting Ensemble

Episode 1 자동화된 ML이 왜 필요한가 머신러닝 (간단하게) / 모델 생성 과정 자동화된 ML 기본 구조 오버피팅 (과적합) / 클래스 불균형 자동화된 ML의 역할 / 사람의 역할 자동화된 부분 더 알아보기

# {다음 시간에는}

Episode 2 애저ML 처음 시작하기 애저포털과 애저ML포털 애저ML 워크스페이스 만들기 애저ML 스튜디오 둘러보기