Kapittel 10

Seksjon 10.1

Oppgave 10.1.3

 $\mathbf{a})$

Vi har $f(x)=-\frac{2}{x}$, og en antiderivert til f er $F(x)=-2\ln x$. Setter vi $g(x)=x^2$ og brukr Setning 10.1.3 finner vi løsningen

$$y = e^{-F(x)} \left(\int e^{F(x)} g(x) dx + C \right) = e^{2\ln x} \left(\int e^{-2\ln x} x^2 dx + C \right)$$
$$= x^2 \left(\int dx + C \right) = x^3 + Cx^2.$$

d)

Vi har $f(x) = \frac{2}{x}$, og en antiderivert til f er $F(x) = 2 \ln x$. Setter vi $g(x) = \frac{\arctan x}{x^2}$ og bruker Setning 10.1.3 finner vi løsningen

$$\begin{split} y &= e^{-F(x)} \left(\int e^{F(x)} g(x) dx + C \right) = e^{-2\ln x} \left(\int e^{2\ln x} \frac{\arctan x}{x^2} dx + C \right) \\ &= \frac{1}{x^2} \left(\int \arctan x dx + C \right) = \frac{1}{x^2} \left(x \arctan x - \int \frac{x}{1+x^2} dx + C \right) \\ &= \frac{1}{x^2} \left(x \arctan x - \frac{1}{2} \ln(1+x^2) + C \right) = \frac{1}{x} \arctan x - \frac{1}{2x^2} \ln(1+x^2) + \frac{C}{x^2}, \end{split}$$

der vi har brukt delvis integrasjon.

Oppgave 10.1.7

Differensiallikningen (x+1)y'+y-1=0 kan skrives $y'+\frac{1}{x+1}y=\frac{1}{x+1}$ for x>-1. Vi setter $f(x)=g(x)=\frac{1}{x+1}$ og regner ut en antiderivert til f ved $F(x)=\ln(x+1)$. Vi bruker så setning 10.1.3 og får løsningen

$$y = e^{-F(x)} \left(\int e^{F(x)} g(x) dx + C \right) = e^{-\ln(x+1)} \left(\int e^{\ln(x+1)} \frac{1}{x+1} dx + C \right)$$
$$= \frac{1}{x+1} \left(\int dx + C \right) = \frac{x+C}{x+1}.$$

Seksjon 10.2

Oppgave 10.2.1

Veksten i befolkningen per år er 0.02y(t). Tilskuddet per år på grunn av innvandring er 40000, slik at vi får at y'(t) = 0.02y(t) + 40000. Dette kan også skrives y'(t) - 0.02y(t) = 40000. Vi setter f(t) = -0.02, og finner en antiderivert F(t) = -0.02t. Setter vi g(t) = 40000 og bruker Setning 10.1.3 finner vi

$$y(t) = e^{-F(t)} \left(\int e^{F(t)} g(t) dt + C \right) = e^{0.02t} \left(\int 40000 e^{-0.02t} dt + C \right)$$
$$= e^{0.02t} \left(-\frac{40000}{0.02} e^{-0.02t} + C \right) = -20000000 + Ce^{0.02t}.$$

Setter vi inn y(0) = 2000000 får vi at 2000000 = -2000000 + C, slik at C = 4000000. Løsningen blir derfor $y(t) = -2000000 + 4000000e^{0.02t}$.

Oppgave 10.2.5

a)

På grunn av nedbrytning mister vi -0.05y(t) per tidsenhet, slik at y'(t) = -0.05y(t). Den generelle løsningen blir derfor $y(t) = Ce^{-0.05t}$. Ved t = 0 er 200000 tonn av 10 millioner tonn skadelig stoff, som svarer til 2% av stoffet. Derfor er initialbetingelsen y(0) = 2. Setter vi inn t = 0 i $y(t) = Ce^{-0.05t}$ finner vi at C = 2, slik at $y(t) = 2e^{-0.05t}$.

b)

La z(t) være antall millioner tonn skadelig stoff på den nye lagringsplassen. Leddet -0.1z(t) stammer fra at hvert år brytes ned 10% på den nye lagringsplassen. Når vi overfører en halv million tonn søppel ved tid t overfører vi $\frac{2e^{-0.05t}}{100}$ 0.5 = $0.01e^{-0.05t}$ millioner tonn skadelig stoff. Dette forklarer det andre leddet i differensiallikningen. Initialbetingelsen z(0)=0 kommer av at vi starter med ingenting på den nye lagringsplassen.

c)

Differensiallikningen kan skrives $z'(t) + 0.1z(t) = 0.01e^{-0.05t}$, slik at vi kan sette f(t) = 0.1, og $g(t) = 0.01e^{-0.05t}$. En antiderivert til f(t) blir F(t) = 0.1t, og Setning 10.1.3 gir en generell løsning

$$z(t) = e^{-0.1t} \left(\int e^{0.1t} 0.01 e^{-0.05t} dt + C \right) = e^{-0.1t} \left(\int 0.01 e^{0.05t} dt + C \right)$$
$$= e^{-0.1t} \left(0.2 e^{0.05t} + C \right) = 0.2 e^{-0.05t} + C e^{-0.1t}.$$

Setter vi inn z(0) = 0 får vi at C = -0.2, slik at $z(t) = 0.2e^{-0.05t} - 0.2e^{-0.1t}$.

Oppgave 10.2.10

Hvis y(t) er antall liter klor som finnes i badevannet, så mister vi $\frac{1}{20}y$ klor hvert døgn, siden 50000 liter er en tyvendedel av 1 million liter. Videre får vi hvert døgn tilførsel av $\frac{0.001 \times 50000}{100} = 0.5$ liter klor. Vekstraten blir derfor $y'(t) = -\frac{1}{20}y(t) + \frac{1}{2}$. Flytter vi over $-\frac{1}{20}y(t)$ får vi likningen fra boka. For å løse likningen setter vi $f(t) = \frac{1}{20}$, $g(t) = \frac{1}{2}$, og bruker Setning 10.1.3

til å finne løsningen

$$y(t) = e^{-0.05t} \left(\int \frac{1}{2} e^{0.05t} dt + C \right) = 10 + Ce^{-0.05t}.$$

Vi har videre initialbetingelsen $y(0) = \frac{0.004 \times 1000000}{100} = 40$. Setter vi inn t = 0 i løsningen over finner vi at C = 30, slik at $y(t) = 10 + 30e^{-0.05t}$. Klorprosenten er nede i 0.003% når $\frac{y(t)}{1000000} = 3 \times 10^{-5}$, det vil si når y(t) = 30. Vi må altså løse likningen $30 = 10 + 30e^{-0.05t}$, som gir at $e^{-0.05t} = \frac{2}{3}$, slik at $t = \frac{\ln 2 - \ln 3}{-0.05} = \frac{2}{3}$ $20(\ln 3 - \ln 2) \approx 8.1093$. Med andre ord, det tar oss litt mer enn 8 dager å nå en klorprosent på 0.003%.

Oppgave 10.2.15

Opplysningene i oppgaven gir at det finnes en α slik at $T'(t) = \alpha(20-T(t))$. Dette kan også skrives $T'(t) + \alpha T(t) = 20\alpha$. Dette gir løsningen $T(t) = e^{-\alpha t} \left(\int 20k e^{\alpha t} dt + B \right) =$ $20 + Be^{-\alpha t}$, som er på den formen som står i oppgaveteksten med A = 20. Videre er initialbetingelsene T(0)=6 og T(2)=13, som gir likningene 20+B=6(det vil si B = -14), og $20 + Be^{-\alpha^2} = 20 - 14e^{-2\alpha} = 13$. Den siste likningen kan skrives $\frac{1}{2} = e^{-2\alpha}$, som gir $\alpha = \frac{1}{2} \ln 2 \approx 0.34657$.

b)

Vi har at $T(3) = 20 - 14e^{-\alpha 3} \approx 15.0503$.

c)

Fra a) ser vi at $T(t) = A + Be^{-\alpha t}$, der A er temperaturen i kjøleskapet, B er ukjent, og der α er regnet ut i a). Initialbetingelsene er nå T(0) = 15 og T(1) = 12, som gir likningene

$$A + B = 15$$
$$A + Be^{-\alpha} = 12.$$

Trekker vi disse fra hverandre finner vi at $B(1 - e^{-\alpha}) = 3$, slik at $B = \frac{3}{1 - e^{-\alpha}}$. Dermed blir

$$A = 15 - B = 15 - \frac{3}{1 - e^{-\alpha}} \approx 4.7574.$$

Seksjon 10.3

Oppgave 10.3.1

Vi setter f(x) = -3 og finner antiderivert F(x) = -3x. Med $g(x) = e^{2x}$ finner vi den generelle løsningen

$$y(x) = e^{3x} \left(\int e^{-3x} e^{2x} dx + C \right) = e^{3x} \left(-e^{-x} + C \right) = -e^{2x} + Ce^{3x}.$$

Setter vi inn y(0)=0 finner vi 0=-1+C, slik at C=1, som gir løsningen $y(x)=-e^{2x}+e^{3x}.$

Oppgave 10.3.3

Vi setter $f(x) = \tan x$ og $g(x) = \sin(2x)$, og finner først

$$\int_{c}^{x} f(t)dt = \int_{0}^{x} \tan t dt = \int_{0}^{x} \frac{\sin t}{\cos t} dt = [-\ln \cos u]_{0}^{x} = -\ln \cos x.$$

Deretter finner vi

$$\int_{c}^{x} g(t)e^{\int_{c}^{t} f(s)ds}dt = \int_{0}^{x} \sin(2t)e^{-\ln\cos t}dt = \int_{0}^{x} \frac{\sin(2t)}{\cos t}dt$$
$$= \int_{0}^{x} 2\sin tdt = [-2\cos t]_{0}^{x} = -2\cos x + 2.$$

Setter vi inn i Setning 10.3.1 får vi

$$y(x) = e^{\ln \cos x} (-2\cos x + 2 + 2) = 4\cos x - 2\cos^2 x.$$

Oppgave 10.3.11

a)

Likningen kan også skrives $y' + \left(\frac{1}{x} + \frac{1}{x \ln x}\right) y = \frac{1}{x \ln x}$ Vi finner en antiderivert til $f(x) = \frac{1}{x} + \frac{1}{x \ln x}$ ved $F(x) = \ln x + \ln \ln x$, og finner dermed løsningen

$$y(x) = e^{-\ln x - \ln \ln x} \left(\int e^{\ln x + \ln \ln x} \frac{1}{x \ln x} dx + C \right)$$
$$= \frac{1}{x \ln x} (x + C) = \frac{1}{\ln x} + \frac{C}{x \ln x}.$$

b'

 $\frac{C}{x\ln x}$ er ikke definert for x=1. Hvis C=0 faller dette leddet imidlertid bort slik at vi da har løsningen $y(x)=\frac{1}{\ln x}.$

Seksjon 10.4

Oppgave 10.4.1

b)

Vi skriver likningen først som $y^3y'=x^2$. Integrerer vi dette finner vi at $\frac{1}{4}y^4=\frac{1}{3}x^3+C$, som gir at $y(x)=\pm\sqrt[4]{\frac{4}{3}x^3+D}$.

d)

Vi skriver likningen som

$$xyy' = 1 + x^2 + y^2 + x^2y^2 = (1 + x^2) + y^2(1 + x^2) = (1 + x^2)(1 + y^2).$$

Likningen kan dermed også skrives som $\frac{yy'}{1+y^2} = \frac{1}{x} + x$. Integrasjon gir $\frac{1}{2}\ln(1+y^2) = \ln|x| + \frac{1}{2}x^2 + C$, slik at

$$1 + y^2 = De^{2\ln|x| + x^2} = Dx^2 e^{x^2}.$$

Vi finner dermed løsningen $y = \pm \sqrt{Dx^2e^{x^2} - 1}$.

Oppgave 10.4.2

a)

Likningen kan skrives $\frac{1}{y}y' = 3x$, som gir at $\ln |y| = \frac{3}{2}x^2 + C$, og dermed $y = De^{3x^2/2}$. y(0) = 4 gir at D = 4, slik at $y(x) = 4e^{3x^2/2}$.

e)

Likningen kan skrives $e^{-y}y'=-2$, som gir at $-e^{-y}=-2x+C$, som gir at $y=-\ln(2x+C)$. y(0)=0 gir at C=1, slik at $y(x)=-\ln(2x+1)$.

Oppgave 10.4.4

Vi har at $y'=a(y-r_1)(y-r_2)$ kan skrives på separert form som $\frac{y'}{(y-r_1)(y-r_2)}=a$. Gjør vi delbrøksoppspalting får vi

$$\begin{split} \frac{A}{y-r_1} + \frac{B}{y-r_2} &= \frac{A(y-r_2) + B(y-r_1)}{(y-r_1)(y-r_2)} \\ &= \frac{(A+B)y - r_2A - r_1B}{(y-r_1)(y-r_2)} = \frac{1}{(y-r_1)(y-r_2)}. \end{split}$$

Dette gir likningene

$$A + B = 0$$
$$-r_2A - r_1B = 1.$$

Det første likningen gir at B = -A. Innsatt i den andre gir det at $(r_1 - r_2)A = 1$, som gir at $A = 1/(r_1 - r_2)$. Vi får nå at

$$\int \frac{y'}{(y-r_1)(y-r_2)} dt = \frac{1}{r_1-r_2} \int \left(\frac{1}{y-r_1} - \frac{1}{y-r_2}\right) dt$$
$$= \frac{1}{r_1-r_2} \left(\ln|y-r_1| - \ln|y-r_2|\right) + C_1$$
$$= \frac{1}{r_1-r_2} \ln\left(\frac{|y-r_1|}{|y-r_2|}\right) + C_1.$$

Siden integralet av høyresiden blir $at + C_2$ får vi at

$$\frac{1}{r_1 - r_2} \ln \left(\frac{|y - r_1|}{|y - r_2|} \right) + C_1 = at + C_2,$$

som gir at

$$\frac{y - r_1}{y - r_2} = Ke^{a(r_1 - r_2)t}$$

or en konstant K. Løser vi for y finner vi at

$$y = \frac{r_1 - r_2 K e^{a(r_1 - r_2)t}}{1 - K e^{a(r_1 - r_2)t}} = \frac{r_1 - r_1 K e^{a(r_1 - r_2)t} + r_1 K e^{a(r_1 - r_2)t} - r_2 K e^{a(r_1 - r_2)t}}{1 - K e^{a(r_1 - r_2)t}}$$
$$= r_1 - \frac{(r_2 - r_1) K e^{a(r_1 - r_2)t}}{1 - K e^{a(r_1 - r_2)t}} = r_1 + \frac{r_2 - r_1}{C e^{a(r_2 - r_1)t} + 1},$$

der vi til slutt har satt C = -1/K.

Oppgave 10.4.7

a)

Løser vi $0.56p - 4.0 \cdot 10^{-8}p^2 - 16 \cdot 10^5 = 0$ finner vi at

$$p = \frac{-0.56 \pm \sqrt{0.56^2 - 256 \cdot 10^{-3}}}{-8.0 \cdot 10^{-8}} = \frac{-0.56 \pm \sqrt{0.3136 - 0.256}}{-8.0 \cdot 10^{-8}}$$
$$= \frac{-0.56 \pm \sqrt{0.0576}}{-8.0 \cdot 10^{-8}} = \frac{-0.56 \pm 0.24}{-8.0 \cdot 10^{-8}} = (0.07 \pm 0.03)10^8,$$

som gir at $p=10^7$, eller $p=4\cdot 10^6$. Differensiallikningen kan dermed skrives

$$\frac{p'(t)}{(p-10^7)(p-4\cdot 10^6)} = -4.0\cdot 10^{-8}.$$

Vi må nå bruke delbrøksoppspalting, og skriver

$$\frac{1}{(p-10^7)(p-4\cdot 10^6)} = \frac{A}{p-10^7} + \frac{B}{p-4\cdot 10^6} = \frac{(A+B)p-4\cdot 10^6A-10^7B}{(p-10^7)(p-4\cdot 10^6)},$$

som gir likningene

$$A + B = 0$$
$$-4 \cdot 10^6 A - 10^7 B = 1,$$

som har løsning $A = \frac{1}{6} \cdot 10^{-6}, B = -\frac{1}{6} \cdot 10^{-6}$. Integrasjon gir deretter

$$\frac{1}{6} \cdot 10^{-6} \ln|p - 10^7| - \frac{1}{6} \cdot 10^{-6} \ln|p - 4 \cdot 10^6| = -4.0 \cdot 10^{-8} t + C,$$

som gir at $\ln \left| \frac{p-10^7}{p-4\cdot 10^6} \right| = -0.24t + C$, og deretter

$$\frac{p - 10^7}{p - 4 \cdot 10^6} = De^{-0.24t}.$$

Setter vi inn initialbetingelsen finner vi at $D=\frac{-4\cdot 10^6}{2\cdot 10^6}=-2$. Vi får nå at $p-10^7=-2(p-4\cdot 10^6)e^{-0.24t}$, og til slutt at

$$p(t) = \frac{10^7 + 8 \cdot 10^6 e^{-0.24t}}{1 + 2e^{-0.24t}} = 2 \times 10^6 \frac{5 + 4e^{-0.24t}}{1 + 2e^{-0.24t}} = 2 \cdot 10^6 \left(2 + \frac{3}{1 + 2e^{-0.24t}}\right).$$

b)

Vi ser at $\lim_{t\to\infty} p(t) = 2 \cdot 10^6 \left(2 + \frac{3}{1}\right) = 10^7$.

 \mathbf{c}

Vekstraten er størst når $(p-10^7)(p-4\cdot 10^6)$, som skjer når $p=7\cdot 10^6$ (midt mellom de to nullpunktene). Setter vi inn i

$$\frac{p - 10^7}{p - 4 \cdot 10^6} = -2e^{-0.24t}$$

finner vi at $\frac{-3\cdot10^6}{3\cdot10^6} = -1 = -2e^{-0.24t}$, som gir at

$$t = \frac{\ln(1/2)}{-0.24} = \frac{\ln 2}{0.24} \approx 2.881,$$

som svarer til 1963.

Oppgave 10.4.10

a)

Leddet -ax kommer fra at dødsraten er proporsjonal med antall fisk x(t). Leddet bx^2 kommer fra at, siden antall møter av en gitt fisk med andre fisk er proporsjonal med x, så vil det totale antall møter mellom to fisk være proporsjonal med x^2 , slik at fødselsraten også er proporsjonal med x^2 , det vil si at den er på formen bx^2 .

b)

Differensiallikningen kan skrives $\frac{1}{x(bx-a)}\frac{dx}{dt}=1$. Etter delbrøksoppspalting og integrasjon får vi

$$\int \frac{1}{x(bx-a)} \frac{dx}{dt} dt = \int \frac{1}{x(bx-a)} dx = \frac{1}{a} \int \left(-\frac{1}{x} + \frac{1}{x-a/b} \right) dx$$
$$= \frac{1}{a} \left(\ln|x-a/b| - \ln|x| \right) = \frac{1}{a} \ln\left| \frac{x-a/b}{x} \right| = t + C,$$

slik at $\frac{x-a/b}{x}=1-\frac{a}{bx}=De^{at}$. Setter vi inn $x(0)=x_0$ finner vi at $D=1-\frac{a}{bx_0}$, Løser vi for x finner vi at

$$x(t) = \frac{a}{b(1 - De^{at})} = \frac{a}{b - (b - \frac{a}{r_0})e^{at}}.$$

c)

Hvis $b-\frac{a}{x_0}>0$ vil vi når $b=(b-\frac{a}{x_0})e^{at}$ få 0 i nevneren, slik at $x(t)\to\infty$ når t går mot denne verdien. Løser vi for dette finner vi at $e^{at}=\frac{b}{b-\frac{a}{x_0}}$, som gir at $t=-\frac{1}{a}\ln(1-a/(bx_0))$. Videre er $b-\frac{a}{x_0}>0$ det samme som at $b>\frac{a}{x_0}$, som er det samme som at $x_0>\frac{a}{b}$. Med $k_0=\frac{a}{b}$ har vi altså at hvis $x_0>k_0$ så vil populasjonen vokse over alle grenser når $t\to-\frac{1}{a}\ln(1-a/(bx_0))$. Hvis $x_0< k_0$ kan vi aldri få null i nevneren, og nevneren går mot uendelig, slik at populasjonen dør ut i dette tilfellet.

d)

Hvis fiskepopulasjonen skal holde seg konstant lik x_0 må vi ha at $\frac{dx}{dt} = 0$. Da må $bx^2 - ax - c = 0$, slik at $x = \frac{a \pm \sqrt{a^2 + 4bc}}{2b}$. Her er det bare $x = \frac{a + \sqrt{a^2 + 4bc}}{2b}$ som er interessant (den andre er negativ). Vi må altså ha at $x(t) = x_0 = \frac{a + \sqrt{a^2 + 4bc}}{2b}$ for alle t. Løser vi for c finner vi at $c = c_0 = \frac{(2bx_0 - a)^2 - a^2}{4b}$.

Oppgave 10.4.13

a)

Nullpunkter for h har vi kun når t=0. Vi har at $h'(t)=-0.1e^{-0.1t}+0.5e^{-0.5t}$. Setter vi dette lik 0 får vi at $e^{-0.1t}=5e^{-0.5t}$, som gir at $-0.1t=-0.5t+\ln 5$, slik at $t=\frac{5}{2}\ln 5$. Det er klart at dette må være et maksimumspunkt, og at

$$h(\frac{5}{2}\ln 5) = e^{-0.25\ln 5} - e^{-1.25\ln 5} = 5^{-0.25} - 5^{1.25} \approx 0.5350$$

Vi har også at $h''(t) = 0.1^2 e^{-0.1t} - 0.5^2 e^{-0.5t}$. h''(t) = 0 gir at $e^{-0.1t} = 25 e^{-0.5t}$, som gir at $-0.1t = -0.5t + 2 \ln 5$, slik at $t = 5 \ln 5$.

c)

Vi ser først at $f(t) = Ce^{-kt}$. Siden f(0) = 10 må vi ha at C = 10, slik at $f(t) = 10e^{-kt}$. Den andre likningen blir nå $g'(t) + lg(t) = 10ke^{-kt}$. Løser vi denne som en førsteordens lineær differensiallikning finner vi at

$$g(t) = e^{-lt} \left(\int e^{lt} 10k e^{-kt} dt + C \right) = e^{-lt} \left(\frac{10k}{l-k} e^{(l-k)t} dt + C \right)$$
$$= \frac{10k}{l-k} e^{-kt} + Ce^{-lt}.$$

g(0)=0 gir at $0=\frac{10k}{l-k}+C$, slik at $C=\frac{10k}{k-l}$. Vi får derfor $g(t)=\frac{10k}{l-k}(e^{-kt}-e^{-lt})$.

d)

Vi har her at $g(t) = \frac{5}{2}(e^{-0.1t} - e^{-0.5t}) = \frac{5}{2}h(t)$. Kl 1700 har det gått 10 timer, og da er $g(10) = \frac{5}{2}(e^{-1} - e^{-5}) = 0.9029$.

e)

Hvis vi endrer initialkravet til f(0)=A får vi at $f(t)=Ae^{-kt}$, og $g(t)=\frac{0.1A}{0.4}(e^{-0.1t}-e^{-0.5t})=\frac{1}{4}Ah(t)$. Maksimumsverdien her er $\frac{1}{4}A\times0.5350$. For at denne skal være mindre enn 5 må vi ha at $A<\frac{20}{0.5350}=37.3837$.

Oppgave 10.4.18

a)

Deriverer vi begge sider og bruker analysens fundamentalteorem finner vi at

$$2f(x)f'(x) = -\frac{1}{x^2} \int_1^x f(t)dt + \frac{1}{x}f(x) = -\frac{1}{x} \left(\frac{1}{x} \int_1^x f(t)dt\right) + \frac{1}{x}f(x)$$
$$= -\frac{1}{x} [f(x)]^2 + \frac{1}{x}f(x) = \frac{f(x) - [f(x)]^2}{x}.$$

Her vi også substituert $[f(x)]^2 = \frac{1}{x} \int_1^x f(t) dt$, det vil si brukt likningen i boka. Likningen i boka får vi nå ved å sette in y = f(x), og dele med 2.

b)

Likningen er separabel siden vi kan skrive

$$\frac{1}{1-y}y' = \frac{1}{2x}.$$

Vi integrerer og finner $-\ln |1-y| = \frac{1}{2} \ln |x| + C$, slik at $|1-y|^{-1} = e^{\ln |x|/2 + C} = De^{\ln |x|^{1/2}} = D\sqrt{x}$, slik at $1-y = \frac{E}{\sqrt{x}}$, og dermed $y = 1 - \frac{E}{\sqrt{x}}$.

Seksjon 10.5

Oppgave 10.5.1

a)

Den karakteristiske likningen blir $r^2+r-6=0$, som har røtter r=-3,2. Dermed blir den genereller løsningen $y(x)=Ce^{-3x}+De^{2x}$.

 $\mathbf{c})$

Den karakteristiske likningen blir $r^2+6r+9=0$, som har røtter r=-3. Dermed blir den genereller løsningen $y(x)=Ce^{-3x}+Dxe^{-3x}$.

Oppgave 10.5.3

a)

Den karakteristiske likningen blir $r^2-5r+4=0$, som har røtter r=1,4. Dermed blir den generelle løsningen $y(x)=Ce^x+De^{4x}$. Initialbetingelsene y(0)=2 og y'(0)=-4 gir dermed likningene

$$C + D = 2$$
$$C + 4D = -4,$$

som gir at $C=4,\,D=-2.$ Løsningen blir dermed $y(x)=4e^x-2e^{4x}.$

c)

Den karakteristiske likningen blir $r^2-4r-1=0$, som har røtter $r=2\pm\sqrt{5}$. Dermed blir den generelle løsningen $y(x)=Ce^{(2+\sqrt{5})x}+De^{(2-\sqrt{5})x}$. Initialbetingelsene y(1)=2 og y'(1)=-1 gir dermed likningene

$$Ce^{2+\sqrt{5}} + De^{2-\sqrt{5}} = 2$$

$$C(2+\sqrt{5})e^{2+\sqrt{5}} + D(2-\sqrt{5})e^{2-\sqrt{5}} = -1,$$

Ved å sette inn den første likningen i den andre kan disse skrives om til

$$Ce^{2+\sqrt{5}} + De^{2-\sqrt{5}} = 2$$

 $Ce^{2+\sqrt{5}} - De^{2-\sqrt{5}} = -\sqrt{5}$.

Legger vi disse sammen og trekker de fra hverandre finner vi at $C=\frac{1}{2}(2-\sqrt{5})e^{-2-\sqrt{5}}$, og $D=\frac{1}{2}(2+\sqrt{5})e^{-2+\sqrt{5}}$. Løsningen blir dermed

$$y(x) = \frac{1}{2}(2 - \sqrt{5})e^{-2 - \sqrt{5}}e^{(2 + \sqrt{5})x} + \frac{1}{2}(2 + \sqrt{5})e^{-2 + \sqrt{5}}e^{(2 - \sqrt{5})x}$$
$$= \frac{1}{2}(2 - \sqrt{5})e^{(2 + \sqrt{5})(x - 1)} + \frac{1}{2}(2 + \sqrt{5})e^{(2 - \sqrt{5})(x - 1)}.$$

Oppgave 10.5.4

a)

Den karakteristiske likningen blir $r^2 - 4r + 4 = 0$, som har r = 2 som en dobbeltrot. Det betyr at den generelle løsningen blir $y(x) = Ce^{2x} + Dxe^{2x}$. Kravene y(0) = 1 og y(1) = -1 gir likningene

$$C = 1$$
$$Ce^2 + De^2 = -1,$$

som gir at C=1 of $D=-e^{-2}-1$. Dette gir løsningen $y(x)=e^{2x}-(e^{-2}+1)xe^{2x}$.

Oppgave 10.5.5

a)

Fra løsningen ser vi at -2 må være en dobbelrot i den karakteristiske likningen, som dermed må ha formen $a(r+2)^2 = a(r^2+4r+4) = 0$. En differensiallikning blir dermed y'' + 4y' + 4y = 0.

b)

Den generelle løsningen av likningen er $Ae^{-2x}+Bxe^{-2x}$. Løsningen der y(0)=0 og y'(0)=1 kan vi derfor finne ved å løse

$$A = 0$$
$$-2A + B = 1.$$

som gir A = 0, B = 1, slik at løsningen blir $y(x) = xe^{-2x}$.

Oppgave 10.5.11

a)

x(t) er rovdyr og y(t) er byttedyr siden x(t) gir en reduksjon i vekstraten til y(t).

b)

Vi har at x''(t) = by'(t) = -bcx(t), der vi i det andre steget brukte den andre likningen.

c)

Differensiallikningen x''(t) + bcx(t) = 0 for å finne x(t) har karakteristisk likning $r^2 + bc = 0$, som har løsning $r = \pm \sqrt{bci}$. Vi får dermed $x(t) = C\cos(\sqrt{bct}) + D\sin(\sqrt{bct})$. Siden $x(0) = x_0$ og $x'(0) = by(0) = by_0$ kan vi finne C og D ved å sette inn t = 0 i

$$x(t) = C\cos(\sqrt{bct}) + D\sin(\sqrt{bct})$$

$$x'(t) = -C\sqrt{bc}\sin(\sqrt{bct}) + D\sqrt{bc}\cos(\sqrt{bct})$$

og får da

$$C = x_0$$
$$D\sqrt{bc} = by_0,$$

som gir at $C = x_0$ og $D = \sqrt{\frac{b}{c}}y_0$, slik at

$$x(t) = x_0 \cos(\sqrt{bc}t) + \sqrt{\frac{b}{c}} y_0 \sin(\sqrt{bc}t).$$

Vi får også

$$y(t) = \frac{1}{b}x'(t) = \frac{1}{b}\left(-x_0\sqrt{bc}\sin(\sqrt{bc}t) + \sqrt{\frac{b}{c}}\sqrt{bc}y_0\cos(\sqrt{bc}t)\right)$$
$$= -\sqrt{\frac{c}{b}}x_0\sin(\sqrt{bc}t) + y_0\cos(\sqrt{bc}t).$$

d)

Med verdiene i oppgaven får vi at $\sqrt{bc} = \sqrt{4.2}$, og $\sqrt{\frac{c}{b}} = \sqrt{20 \times 84} = \sqrt{1680}$. Videre er det klart at

$$x_0 = N_1(0) - 300 = 300 - 300 = 0$$

 $y_0 = N_2(0) - 10000 = 1400 - 10000 = -8600.$

Dermed blir antall individer av hver art

$$N_1(t) = x(t) + 300 = \sqrt{\frac{b}{c}} y_0 \sin(\sqrt{bct}) + 300 = -\frac{8600}{\sqrt{1680}} \sin(\sqrt{4.2}t) + 300$$
$$N_2(t) = y(t) + 10000 = y_0 \cos(\sqrt{bct}) + 10000 = -8600 \cos(\sqrt{4.2}t) + 10000.$$

Figur 2: Bestandene $N_1(t)$ og $N_2(t)$.

Det er klart fra dette at $N_1(t)$ varierer mellom $300 + \frac{8600}{\sqrt{1680}} \approx 509.185$ og $300 - \frac{8600}{\sqrt{1680}} \approx 90.1815$, og at minimum inntreffer for $t = \frac{T}{4}$, maksimum for $t = \frac{3T}{4}$, der T er perioden. $N_2(t)$ varierer mellom 10000 - 8600 = 1400 og 10000 + 8600 = 18600 men minimum som inntreffer for t = 0, maksimum for $t = \frac{T}{2}$. Det er klart at perioden er $T = \frac{2\pi}{\sqrt{bc}} = \frac{2\pi}{\sqrt{4.2}} \approx 3.0659$. Vi har plottet bestandene i Figur 2. $N_2(t)$ er den bestanden med flest dyr, det vil si at det alltid er flest byttedyr. Forklaringen på at bunner og topper er forskjøvet i forhold til hverandre kan være at når byttedyrbestanden blir stor blir det bedre tider for rovdyrene, mens når byttedyrbestanden blir liten blir det dårligere tider for rovdyrene.

Seksjon 10.6

Oppgave 10.6.1

a)

y''-y'-2y=0 har karakteristisk likning $r^2-r-2=0$, som har røtter $r=\frac{1\pm\sqrt{1+8}}{2}=\frac{1\pm3}{2}$, slik at røttene er -1 og 2. Den generelle løsningen er dermed $y(x)=Ce^{-x}+De^{2x}$.

b)

Vi prøver med $y_p = Ae^x$, og da blir $(y_p)'' - (y_p)' - 2y_p = (A - A - 2A)e^x = -2Ae^x = e^x$, slik at $A = -\frac{1}{2}$, slik at $y_p = -\frac{1}{2}e^x$ er en partikulær løsning.

 $\mathbf{c})$

Den generelle løsningen til $y''-y'-2y=e^x$ er $y(x)=Ce^{-x}+De^{2x}-\frac{1}{2}e^x$. Vi har også at $y'(x)=-Ce^{-x}+2De^{2x}-\frac{1}{2}e^x$. Setter vi inn initialbetingelsene får vi at

$$C + D - \frac{1}{2} = 2$$

$$-C + 2D - \frac{1}{2} = 2.$$

Legger vi sammen likningene får vi først at 3D-1=4, slik at $D=\frac{5}{3}$. Deretter får vi at $C=2+\frac{1}{2}-D=\frac{5}{2}-\frac{5}{3}=\frac{5}{6}$. Dermed blir løsningen $y(x)=\frac{5}{6}e^{-x}+\frac{5}{3}e^{2x}-\frac{1}{2}e^{x}$.

Oppgave 10.6.2

a)

y''-2y'-8y=0 har karakteristisk likning $r^2-2r-8=0$, som har røtter $r=\frac{2\pm\sqrt{4+32}}{2}=1\pm3$, slik at røttene er 4 og -2. Den generelle løsningen er dermed $y(x)=Ce^{4x}+De^{-2x}$.

b)

Vi prøver med $y_p = Ax + B$, og da blir $(y_p)'' - 2(y_p)' - 8y_p = -2A - 8Ax - 8B = -8Ax - 2A - 8B = 6 - 8x$. Vi må da ha at A = 1. Videre må -2A - 8B = -2 - 8B = 6, slik at B = -1, og dermed blir $y_p = x - 1$ en partikulær løsning.

c)

Den generelle løsningen til $y'' - y' - 2y = e^x$ er $y(x) = Ce^{4x} + De^{-2x} + x - 1$. Vi har også at $y'(x) = 4Ce^{4x} - 2De^{-2x} + 1$. Setter vi inn initialbetingelsene får vi at

$$Ce^4 + De^{-2} = 0$$

 $4Ce^4 - 2De^{-2} + 1 = 1.$

Fra den siste likningen får vi at $4Ce^6 = 2D$, slik at $D = 2Ce^6$. Setter vi inn i den første likningen får vi at $Ce^4 + 2Ce^6e^{-2} = 0$, som gir at $3Ce^4 = 0$. Vi får dermed C = 0, og D = 0, slik at løsningen blir y(x) = x - 1.

Oppgave 10.6.3

 $\mathbf{a})$

Deriverer vi $y(x) = Ae^x \sin(2x)$ får vi at

$$y'(x) = Ae^{x} \sin(2x) + 2Ae^{x} \cos(2x)$$

$$y''(x) = Ae^{x} \sin(2x) + 2Ae^{x} \cos(2x) + 2Ae^{x} \cos(2x) - 4Ae^{x} \sin(2x)$$

$$= -3Ae^{x} \sin(2x) + 4Ae^{x} \cos(2x).$$

Setter vi inn får vi at

$$y'' - 2y' - 3y = -3Ae^{x}\sin(2x) + 4Ae^{x}\cos(2x)$$
$$-2Ae^{x}\sin(2x) - 4Ae^{x}\cos(2x) - 3Ae^{x}\sin(2x)$$
$$= -8Ae^{x}\sin(2x).$$

Skal dette være lik $e^x \sin(2x)$ så må $A = -\frac{1}{8}$, slik at $y(x) = -\frac{1}{8}e^x \sin(2x)$.

b)

Den karakteristiske likningen har røtter $r=\frac{2\pm\sqrt{4+12}}{2}=1\pm2$, slik at røttene er 3 og -1. Dermed blir den generelle løsningen av den homogene likningen $y_h=Ce^{3x}+De^{-x}$. Den generelle løsningen er dermed

$$y = y_p + y_h = Ce^{3x} + De^{-x} - \frac{1}{8}e^x \sin(2x).$$

Oppgave 10.6.4

a)

Den karakteristiske likningen her blir $r^2 - 4r + 4 = 0$, som bare har den reelle roten r = 2. Dermed er den generelle løsningen $y_h(x) = Ce^{2x} + Dxe^{2x}$.

b)

Vi prøver med $y_p(x) = Ax + B$, og får da at

$$(y_p)'' - 4(y_p)' + 4y_p = -4A + 4Ax + 4B = 4Ax - 4A + 4B = x.$$

Vi ser da at $A=B=\frac{1}{4}$, slik at $y_p(x)=\frac{1}{4}(x+1)$ er en partikulær løsning. Den generell løsningen blir dermed $y(x)=Ce^{2x}+Dxe^{2x}+\frac{1}{4}(x+1)$. Vi får nå at $y'(x)=2Ce^{2x}+(D+2Dx)e^{2x}+\frac{1}{4}$. Setter vi inn initialbetingelesene får vi at

$$C + \frac{1}{4} = 0$$
$$2C + D + \frac{1}{4} = 1,$$

som gir at $C=-\frac{1}{4}$, og $D=1-\frac{1}{4}+\frac{1}{2}=\frac{5}{4}$. Løsningen blir dermed $y(x)=-\frac{1}{4}e^{2x}+\frac{5}{4}xe^{2x}+\frac{1}{4}(x+1)$.

Oppgave 10.6.7

Vi prøver med $y_n = Ax^2 + Bx + C$, og får da at

$$(y_p)'' - 8(y_p)' + 6y_p = 2A - 8(2Ax + B) + 6(Ax^2 + Bx + C) = 6Ax^2 + (-16A + 6B)x + 2A - 8B + 6C.$$

Skal dette være lik x^2 så må A, B, C oppfylle likningene

$$\begin{aligned} 6A &= 1\\ -16A + 6B &= 0\\ 2A - 8B + 6C &= 0 \end{aligned}$$

Den første likningen gir at $A=\frac{1}{6}$. Den andre likningen gir nå at $B=\frac{16}{6}A=\frac{4}{9}$. Den tredje likningen gir til slutt at $C=-\frac{1}{3}A+\frac{4}{3}B=-\frac{1}{18}+\frac{16}{27}=\frac{-3+32}{54}=\frac{29}{54}$. Vi har dermed den partikulære løsningen $y_p=\frac{1}{6}x^2+\frac{4}{9}x+\frac{29}{54}$. Videre har den karakteristiske løkningen røtter $\frac{8\pm\sqrt{64-24}}{2}=4\pm\sqrt{10}$. Dermed blir den generelle løsningen

$$y(x) = Ce^{(4+\sqrt{10})x} + De^{(4-\sqrt{10})x} + \frac{1}{6}x^2 + \frac{4}{9}x + \frac{29}{54}$$