

Organización de computadoras

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parcial									
Lic. en Ciencias de la Computación – Ing. en Computación	– Ing. en Sistemas o	de Información							
Apellido y Nombre:	LU:	Hojas entregadas:							
(en ese orden)		(sin enunciado)							
Profesor:									
NOTA: Resolver los ejercicios en hojas separadas. Poner n	ombre, LU y núm	ero en cada hoja.							

Ejercicio 1. Implementar la siguiente expresión aritmética $B = (A \times (D+C)) + (A \times (D+C)^2)$, siendo A, B, C y D etiquetas que denotan direcciones de memoria, y asumiendo que se cuenta con las instrucciones add y mpy, para las siguientes arquitecturas:

- a) Una arquitectura de **0-direcciones** (tipo pila), contando con la instrucción dup (duplica el tope de la pila). Determinar la profundidad de la pila alcanzada.
- b) Una arquitectura estilo RISC, registro a registro, con instrucciones 1da, 1d y st. Indicar la cantidad de accesos a memoria realizados.
- c) Una arquitectura de 1-dirección + registro (tipo Intel), con la instrucción mov. Indicar la cantidad de accesos a memoria requeridos.

Ejercicio 2. En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Sig (1bit)	Exponente (8 bits)	Mantisa (10 bits)
------------	--------------------	-------------------

Dados los números $X = (1\ 10110\ 0011111001)$ e $Y = (0\ 00111\ 1000111100)$, realizar el producto $X \times Y$ aplicando redondeo por proximidad hacia los pares y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 3. Considerando la representación en punto flotante propuesta para el ejercicio anterior, y los números $X = (0\ 01101\ 0010110101)$ e $Y = (0\ 01110\ 1101000110)$, realizar la suma X + Y aplicando redondeo por proximidad unbiased (hacia los pares), explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 4. Determinar cuál es el contenido final de cada uno de los registros y posiciones de memoria involucrados en la siguiente secuencia de instrucciones. Indicar en cada caso, el número de instrucción que origina cada cambio. Asumir que el primer operando es el destino y el segundo la fuente de información para la operación.

Interpretació	on .
#xxxx	Inmediato
R	Registro
(R)	Registro indirecto
XXXX	Absoluto
xxxx(R)	Indexado
(xxxx)	Memoria indirecto
@xxxx(R)	Pre-indexado indirecto
	#xxxx R (R) xxxx xxxx(R) (xxxx)

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar:

	LDA RO, FFh				
	-	OP.	Descr.	FORM.	Pseudocódigo
	LOAD R1, O(RO)	0	add	Ι	$R[d] \leftarrow R[s] + R[t]$
	LOAD R2, O(RO)	1	sub	I	$R[d] \leftarrow R[s] - R[t]$
	XOR R3, R3, R3	2	and	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$
	LDA R4, 1b13	3	xor	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$
	JZ R1, 1b13	4	lsh	Ī	$R[d] \leftarrow R[s] << R[t]$
	JZ R2, 1b13	5	rsh	Ī	$R[d] \leftarrow R[s] \Rightarrow R[t]$
	SUB R5, R1, R2	6	load	Ī	$R[d] \leftarrow mem[offset + R[s]]$
	JG R5, 1b12	7	store	Ī	$mem[offset + R[d]] \leftarrow R[s]$
lbl1:	ADD R3, R3, R2	8	lda	II	$R[d] \leftarrow addr$
	DEC R1	9	_	II	if $(R[d] == 0)$ PC \leftarrow PC + addr
	JG R1, 1bl1		jz		
	JMP R4	A	jg	II	if (R[d] > 0) PC \leftarrow PC + addr \mid
1610.		\mathbf{B}	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$
1012:	ADD R3, R3, R1	\mathbf{C}	jmp	III	$PC \leftarrow R[d]$
	DEC R2	D	inc	III	$R[d] \leftarrow R[d] + 1$
11.10	JG R2, 1b12	${f E}$	dec	III	$R[d] \leftarrow R[d] - 1$
TDT3:	STORE R3, O(RO)	\mathbf{F}	hlt	III	exit
	HLT				

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	×	×	×		dest.	d			src	. s		sr	c. t	/ o	ff.
II	1	0	×	×	dest. d						ad	dres	s ac	ldr		
III	1	1	×	×	dest. d								-			

- a) Ensamblar el programa a partir de la dirección 00h.
- b) Si se reubicara el código máquina obtenido en el inciso (a) a partir de la dirección 20h, ¿qué referencias a memoria requieren ser ajustadas? Justificar adecuadamente.
- c) Suponiendo que los valores ingresados por teclado son 1Ah y 04h, realice una traza mostrando la evolución del contenido de cada registro, para luego, describir el propósito del programa en su conjunto.
- d) ¿Qué sucede con el resultado retornado si los valores ingresados fueran 04h y 1Ah? ¿Cuál es la diferencia? ¿Existe alguna restricción para los datos de entrada en cuanto al correcto funcionamiento del programa?