1. Suppose that (X, d_X) and (Y, d_Y) are metric spaces. Define $d: (X \times Y) \times (X \times Y) \to \mathbb{R}$ by

$$d((x, y), (a, b)) = d_X(x, a) + d_Y(y, b).$$

Prove $(X \times Y, d)$ is a metric space.

2. Let X be a set with the following metric:

$$\rho(x,x) = 0$$

$$\rho(x,y) = 1, \quad x \neq y$$

Show that in (X, ρ) every subset is open.

3. Let $a_1 = \sqrt{2}$, and $a_{n+1} = \sqrt{2a_n}$ for $n \ge 1$. Show that this sequence converges.

Hint: Show that this sequence is bounded above by 2 and increasing via induction.

4. Find the limits and show by arguing directly from the definitions that the following sequences converge.

a)
$$a_n = \frac{2n-3}{n+5}, n \ge 0.$$

b)
$$b_n = \frac{n+5}{n^2 - n - 1}, n \ge 2.$$

- 5. Suppose (a_n) , (b_n) and (c_n) are sequences of real numbers. Show if $a_n \leq b_n \leq c_n$ for all n and both (a_n) and (c_n) converge to L then (b_n) converges to L.
- 6. Prove that a set is closed if and only if S contains all its limit points. As a reminder:

Definition 0.1. Let S be a subset of a metric space X. A point $y \in X$ is a limit point of S if and only if for every $\varepsilon > 0$ there exists a point $s \in S$ such that $s \neq y$ and $d(s,y) < \varepsilon$ (i.e. $N_{\varepsilon}(y) \cap (S \setminus \{y\}) \neq \emptyset$).