

Facit till dugga 1 version B
 Integraler och differentialekvationer, VT20 $_{10~{ m februari}}$ 2020

Nedan anges facit i form av tipsrad till dugga 1 version B. Uppgifterna kan ni se på sidorna 2-5 i detta dokument.

	a	b	С	d	е
1			×		
2					×
3				×	
4			×		
5				×	
6				×	
7	×				
8	×				
9		×			
10		×			
11		×			
12					×

- 1. Det gäller att $\sum_{i=m}^6 i^2 = 77$ om mär lika med
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
 - (e) 6
- 2. Oberoende av indelning för intervallet [-2,-1] så kommer översumman och högersumman vara densamma om f(x) ges av
 - (a) x^2
 - (b) $x^2 2x + 1$
 - (c) $x^2 + 2x + 1$
 - (d) $x^2 4x + 4$
 - (e) $x^2 + 4x + 4$
- 3. Riemannsumman

$$\frac{1}{4} \sum_{i=0}^{7} \sqrt{4 + \frac{i}{4}}$$

för $f(x)=\sqrt{x}$ fås om vänstersumman på intervallet

- (a) [0,3] delas in i 4 delintervall
- (b) [0,3] delas in i 3 delintervall
- (c) [4, 5.75] delas in i 7 delintervall
- (d) [4,6] delas in i 8 delintervall
- (e) [4,6] delas in i 7 delintervall

- 4. Medelvärdet av $f(t) = 2\cos(t) \sin(t)$ på $[0, \pi/2]$ ges av
 - (a) $4/\pi$
 - (b) $3/\pi$
 - (c) $2/\pi$
 - (d) $1/\pi$
 - (e) π
- 5. Omskrivningen

$$\int_0^1 \frac{3u^2}{2+u^3} \, du = \int_a^b \frac{1}{t} \, dt$$

fås om

- (a) a = 0 och b = 2
- (b) a = 1 och b = 2
- (c) a = 1 och b = 3
- (d) a = 2 och b = 3
- (e) a = 2 och b = 4
- 6. Om

$$g(x) = \int_{x}^{x^2} (\sqrt{t} + \cos(t)) dt,$$

där x > 0, så ges g'(x) av

- (a) $x + \cos(x^2)$
- (b) $2x(x + \cos(x^2))$
- (c) $2x^2 + \sin(x)$
- (d) $2x(x + \cos(x^2)) \sqrt{x} \cos(x)$
- (e) $2x(\sqrt{x} \sin(\sqrt{x}))$

7. Vi får att

$$\int_{a}^{2} |x| \, dx = 4$$

om a ges av

- (a) -2
- (b) -1
- (c) -0
- (d) 1
- (e) 2
- 8. Allmän lösning till differentialekvationen $y'(x) = (1-x)e^{-x}$ ges av

$$y(x) = f(x)e^{-x} + C,$$

för godtycklig konstant C, där f(x) ges av

- (a) x
- (b) x 1
- (c) 1 x
- (d) x + 1
- (e) x + 2
- 9. Om ett komplext tal zmultipliceras med talet 1-iså motsvaras det geometriskt av en
 - (a) skalning med faktor 2 och rotation moturs med vinkeln $\pi/2$
 - (b) skalning med faktor $\sqrt{2}$ och rotation medurs med vinkeln $\pi/4$
 - (c) skalning med faktor $\sqrt{2}$ och rotation moturs med vinkeln $\pi/4$
 - (d) skalning med faktor 1 och rotation moturs med vinkeln $\pi/2$
 - (e) skalning med faktor 1 och rotation med
urs med vinkeln $\pi/4$

10. Förenkling ger att

$$\frac{1-i}{i} + \frac{2}{i}$$

kan skrivas om som

- (a) -i
- (b) -1 3i
- (c) -1 + 3i
- (d) 1 2i
- (e) 1 + 2i
- 11. Talet $i^3 \cdot (1+i\sqrt{3})$ kan skrivas om på polär form som
 - (a) $2(\cos(\pi/6) + i\sin(\pi/6))$
 - (b) $2(\cos(-\pi/6) + i\sin(-\pi/6))$
 - (c) $2(\cos(\pi/3) + i\sin(\pi/3))$
 - (d) $2(\cos(-\pi/3) + \sin(-\pi/3))$
 - (e) $2(\cos(2\pi/3) + i\sin(2\pi/3))$
- 12. Talet $(1-i)^4$ kan skrivas om som
 - (a) 0
 - (b) 4
 - (c) 4i
 - (d) -4i
 - (e) -4