Risoluzione del compito n. 2 (Gennaio 2020/1)

PROBLEMA 1

Determinate le soluzioni (z, w), con $z, w \in \mathbb{C}$, del sistema

$$\begin{cases} w(\bar{z}+\mathrm{i})=\mathrm{i}(\bar{z}+\mathrm{i}) \\ 2z\bar{w}-3\bar{z}=5\mathrm{i}w \end{cases}.$$

Dalla prima equazione ricaviamo immediatamente $(w-\mathrm{i})(\bar{z}+\mathrm{i})=0$, pertanto abbiamo due casi: o $w=\mathrm{i}$ o $\bar{z}=-\mathrm{i}$ ossia $z=\mathrm{i}$. Nel primo caso, sostituendo $w=\mathrm{i}$ nella seconda equazione otteniamo $-2\mathrm{i}z-3\bar{z}=-5$ da cui (eventualmente sostituendo $z=x+\mathrm{i}y$) si ricava $z=3+2\mathrm{i}$. Nel secondo caso, sostituendo $z=\mathrm{i}$ nella seconda equazione si ricava $5w-2\bar{w}=3$ che ha come sola soluzione w=1. Dunque il sistema ha due soluzioni (z,w), che sono

$$z=3+2\mathrm{i}\;,\;w=\mathrm{i}\qquad \mathrm{e}\qquad z=\mathrm{i}\;,\quad w=1\;.$$

PROBLEMA 2

Sia $f(x) = (x+2)^2 e^{x-1}$.

- a) Determinate il dominio di f, il segno, i limiti agli estremi del dominio.
- b) Determinate il segno di f', gli intervalli di monotonia di f, i punti di massimo o minimo locale.
- c) Determinate il segno di f'' e gli intervalli di concavità e convessità di f.
- d) Disegnate il grafico di f.
- e) Scrivete l'equazione della retta tangente al grafico di f nel punto di ascissa 1.
- f) Determinate per quale valore di $\, lpha \in \mathbb{R} \,$ si ha $\, \int_{-\infty}^{1} lpha f(x) \, dx = 1 \, . \,$

La funzione è definita su tutto \mathbb{R} , è sempre positiva salvo per x=-2 dove si annulla, tende a $+\infty$ per $x\to+\infty$ e tende a 0^+ per $x\to-\infty$, dato che l'esponenziale domina sulla potenza. La derivata di f è $f'(x)=(x+2)(x+4)\,\mathrm{e}^{x-1}$, dunque f risulta

crescente in
$$]-\infty, -4]$$

decrescente in $[-4, -2]$
crescente in $[-2, +\infty[$.

Il punto x=-2, come già sapevamo, è di minimo assoluto, mentre si ha un massimo locale in x=-4, dove f vale $4\,\mathrm{e}^{-5}\sim 3/100$, per cui il grafico sopra è pesantemente fuori scala.

La derivata seconda è $(x^2+8x+14)\,{\rm e}^{x-1}\,$ e si annulla per $x=-4\pm\sqrt{2}\,,$ mentre è negativa fra questi due valori. Allora f risulta

convessa in
$$]-\infty, -4-\sqrt{2}]$$

concava in $[-4-\sqrt{2}, -4+\sqrt{2}]$
convessa in $[-4+\sqrt{2}, +\infty[$.

Per tracciare il grafico, osserviamo che

$$-4 - \sqrt{2} < -4 < -4 + \sqrt{2} < -2$$

quindi (come ci si poteva aspettare) i punti di flesso si trovano uno fra $-\infty$ (dove la derivata tende a zero) e il punto di massimo locale, e uno tra il punto di massimo locale e quello di minimo.

Dato che f(1) = 9 e f'(1) = 15, la retta tangente ha equazione y = 9 + 15(x - 1) = 15x - 6. Infine,

$$\int f(x) dx = (x+2)^2 e^{x-1} - 2 \int (x+2) e^{x-1} dx$$
$$= (x+2)^2 e^{x-1} - 2 \left((x+2) e^{x-1} - \int e^{x-1} dx \right) = \left[(x+2)^2 - 2x - 2 \right] e^{x-1} ,$$

quindi

$$\int_{-\infty}^{1} f(x) dx = 5 \quad \Rightarrow \quad \int_{-\infty}^{1} \alpha f(x) dx = 5\alpha ,$$

e se vogliamo che valga 1 occorre scegliere $\alpha = 1/5$.

PROBLEMA 3

Sia $f(x) = \tan(x^3) - \sin^3 x$.

- a) Calcolate lo sviluppo di Taylor di ordine 8 di f, centrato in $x_0 = 0$.
- b) Dite quali sono l'ordine di infinitesimo e la parte principale per $x \to 0^+$ della funzione

$$g(x) = an(x\sqrt{x}) - ext{sen}^3(\sqrt{x}) - rac{1}{2}x^2\sqrt{x}$$
.

Da $\sin x = x - x^3/6 + x^5/120 + o(x^6)$ e $\tan t = t + t^3/3 + o(t^4)$ segue

$$\tan x^{3} = x^{3} + \frac{x^{9}}{3} + o(x^{12}) = x^{3} + o(x^{8})$$

$$\sin^{3} x = \left(x - \frac{x^{3}}{6} + x^{5}/120 + o(x^{6})\right)^{3}$$

$$= x^{3} - 3x^{2} \cdot \frac{x^{3}}{6} + 3x^{2} \cdot \frac{x^{5}}{120} + o(x^{8}) + 3x \cdot \left(-\frac{x^{3}}{6}\right)^{2}$$

$$= x^{3} - \frac{x^{5}}{2} + \frac{3x^{7}}{120} + \frac{3x^{7}}{36} + o(x^{8}) = x^{3} - \frac{x^{5}}{2} + \frac{13x^{7}}{120} + o(x^{8}),$$

dunque

$$f(x) = \frac{x^5}{2} - \frac{13x^7}{120} + o(x^8) \ .$$

Dato che $g(x)=f\left(\sqrt{x}\,\right)+x^2\sqrt{x}\,,$ e che $x^2\sqrt{x}=\left(\sqrt{x}\,\right)^5\,,$ abbiamo subito

$$g(x) = \frac{1}{2} \left(\sqrt{x} \right)^5 - \frac{13}{120} \left(\sqrt{x} \right)^7 + o\left(\sqrt{x} \right)^8 - \frac{1}{2} \left(\sqrt{x} \right)^5 = -\frac{13}{120} x^{7/2} + o(x^4)$$

che è un infinitesimo di ordine 7/2 con parte principale $-\frac{13}{120}x^{7/2}$.

PROBLEMA 4

Sia $\alpha > 0$.

Sia $\alpha > 0$.

a) Posto $a_n = \int_0^{1/n^{\alpha}} 2x \, dx$, determinate per quali α converge $\sum_n a_n$.

b) Calcolate $\lim_{x \to 0^+} \frac{1}{x^4} \int_0^x 4 \sec t^3 \, dt$.

c) Posto $b_n = \int_0^{1/n^{\alpha}} 7 \tan x^3 \, dx$, determinate per quali α converge $\sum_n b_n$.

Dato che $1/n^{\alpha} \to 0$, per n abbastanza grande le funzioni integrande sono positive, quindi sia a_n che b_n sono maggiori di zero, ed entrambe le serie sono a termini positivi. Per la prima serie calcoliamo direttamente

$$a_n = \left[x^2\right]_0^{1/n^\alpha} = \frac{1}{n^{2\alpha}} \;,$$

pertanto $\sum_n a_n$ è una serie armonica generalizzata, che converge se e solo se $2\alpha>1$ ossia $\alpha>1/2$.

Abbiamo $\lim_{x\to 0} \int_0^x 4 \sec t^3 \, dt = 0$, quindi possiamo applicare il Teorema di de l'Hôpital ottenendo per il Teoerma fondamentale del calcolo

$$\lim_{x \to 0^+} \frac{\int_0^x 4 \sin t^3 dt}{x^4} = \lim_{x \to 0^+} \frac{4 \sin x^3}{4x^3} = 1.$$

Per quanto riguarda la seconda serie, analogamente a quanto appena visto abbiamo

$$\lim_{x \to 0^+} \frac{\int_0^x 7 \tan t^3 \, dt}{x^4} = \lim_{x \to 0^+} \frac{7 \tan x^3}{4x^3} = \frac{7}{4}$$

e quindi, essendo $1/n^{\alpha} \to 0^+$ dato che $\alpha > 0$,

$$\lim_{n \to +\infty} \frac{b_n}{1/n^{4\alpha}} = \lim_{n \to +\infty} \frac{\int_0^{1/n^{\alpha}} 7 \tan t^3 dt}{(1/n^{\alpha})^4} = \frac{7}{4}$$

e per il criterio del confronto asintotico $\sum_n b_n$ ha lo stesso carattere di $\sum_n 1/n^{4\alpha}$, che converge se e solo se $\alpha > 1/4$.

Esercizio 1. Sia $z=\frac{\mathrm{i} \bar{w}}{|w|^2-5}\,,$ dove $w=3+4\mathrm{i}\,.$ Allora:

(A)
$$\Re z + \Im z = 7/20$$
.

(C)
$$\Re z = -1/5$$

(B)
$$|z| = 1/5$$
.

(D)
$$\Im z = 3i/20$$

Dato che $|w|^2 = 25$ e che $i\bar{w} = i(3-4i) = 4+3i$, si ha z = (4/20) + (3/20)i quindi $\mathbb{R}z = 4/20$ e $\Im z = 3/20$, e inoltre |z| = 1/4.

Esercizio 2. Il limite per $x \to 0^+$ della funzione $\frac{e^{3x} - \cos \sqrt{x}}{\sin(5x)}$ è uguale a:

(A)
$$7/10$$
.

(C)
$$1/10$$

(D)
$$-\infty$$

Basta scrivere

$$\frac{e^{3x} - \cos\sqrt{x}}{\sin(5x)} = \frac{e^{3x} - \cos\sqrt{x}}{x} \cdot \frac{5x}{\sin(5x)} \cdot \frac{1}{5}$$

е

$$\frac{e^{3x} - \cos\sqrt{x}}{x} = \frac{e^{3x} - 1}{x} + \frac{1 - \cos\sqrt{x}}{x} = 3\frac{e^{3x} - 1}{3x} + \frac{1 - \cos\sqrt{x}}{\left(\sqrt{x}\right)^2} \to 3 + \frac{1}{2} = \frac{7}{2} ,$$

quindi il limite proposto vale $(7/2) \cdot 1 \cdot (1/5) = 7/10$. Esercizio 3. La serie $\sum_{n} \frac{1 - n \operatorname{sen}(1/n)}{n^{\alpha}}$

- (A) converge se e solo se $\alpha > -1$. (B) converge se e solo se $\alpha > 1$. (C) diverge se e solo se $\alpha < 0$. (D) converge quando $\alpha = -1$.

Dato che sen $x = x - x^3/6 + o(x^3)$, abbiamo

$$\sin\frac{1}{n} = \frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right) \quad \Rightarrow \quad 1 - n\sin\frac{1}{n} = \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$$

e quindi la serie è a termini (almeno definitivamente) positivi, e per il criterio del confronto asintotico ha lo stesso carattere di $\sum_{n} (1/n^2)/n^{\alpha} = \sum_{n} 1/n^{\alpha+2}$, che converge se e solo se $\alpha + 2 > 1$ ossia $\alpha > -1$.

Esercizio 4. All'appello di Gennaio prendono parte i 100 studenti con numero di matricola da 300'001 a 300'100, e ne vengono promossi 70. Qual è la probabilità che i promossi siano proprio quelli con numero di matricola da da 300 001 a 300 070?

(A)
$$\left[\begin{pmatrix} 100 \\ 70 \end{pmatrix} \right]^{-1}$$
.

(C)
$$\frac{70!}{100!}$$

(B)
$$\frac{70}{100}$$

(D)
$$\binom{70}{30}$$
.

I casi possibili sono i gruppetti di 70 studenti scelti fra i 100, e questi gruppetti sono le combinazioni di 100 oggetti presi a 70 per volta. Il caso favorevole è uno solo, quello in cui il gruppetto scelto è formato dai primi 70. Allora la probabilità è

$$1/\binom{100}{70}$$
.

Esercizio 5. Se $a_n \to 0^+$ e $b_n \to 2$ allora $(1 + a_n b_n)^{1/a_n}$

(A) tende a e^2 .

(B) tende a 1/2.

Basta scrivere

$$(1 + a_n b_n)^{1/a_n} = \exp\left(\frac{\log(1 + a_n b_n)}{a_n}\right) = \exp\left(\frac{\log(1 + a_n b_n)}{a_n b_n} \cdot b_n\right),$$

ma $a_n b_n \to 0$ quindi la frazione tende a 1 e quindi l'argomento dell'esponenziale tende a $1\cdot 2=2\,,$ dunque per la continuità dell'esponenziale il limite vale $\,e^2\,.$

Esercizio 6. Se $f:[-1,1] \to \mathbb{R}$ è una funzione derivabile che ha immagine [1,3] e se f(-1) = f(1) = 2 allora

- (A) f' si annulla almeno due volte. (B) f si annulla almeno una volta. (C) anche f(0) = 2. (D) f è debolmente crescente.

Dato che f ha massimo 3 e minimo 1, e agli estremi dell'intervallo vale 2, i punti di massimo e minimo assoluto sono interni all'intervallo, quindi vi sono almeno due punti in cui la derivata si annulla. Le altre risposte sono o inverosimili (se f ha immagine [1,3]non si può certo annullare, e se parte e arriva a quota 2 non può certo essere monotona a meno di non essere costante, che non è) o implausibili (e perché mai f(0) non potrebbe valere 3 o qualunque altro numero?).

Esercizio 7. L'integrale $\int_{a\pi/4}^{e^{\pi/2}} \operatorname{sen}(\log_e x) dx$ vale

(A) $e^{\pi/2}/2$.

- (B) $1 \sqrt{2}/2$.
- (C) $(1 \sqrt{2})/2$. (D) $e^{\pi/4}(e^{\pi/4} 1)/2$.

Si può sostituire $x=\mathrm{e}^t$, che porta a calcolare $\int_{\pi/4}^{\pi/2}\mathrm{e}^t \sin t\,dt$, oppure (tanto, i calcoli gano applicabilità in transferit de la calcolare d sono analoghi) integrare direttamente per parti

$$\int \operatorname{sen}(\log x) \, dx = x \operatorname{sen}(\log x) - \int \cos(\log x) \, dx$$
$$= x \operatorname{sen}(\log x) - x \cos(\log x) - \int \operatorname{sen}(\log x) \, dx$$

da cui $\int \operatorname{sen}(\log x) \, dx = x \big(\operatorname{sen}(\log x) - \cos(\log x) \big) / 2 + c$ e

$$\int_{\mathrm{e}^{\pi/4}}^{\mathrm{e}^{\pi/2}} \mathrm{sen}(\log_{\mathrm{e}} x) \, dx = \left[\frac{x}{2} \big(\mathrm{sen}(\log x) - \cos(\log x) \big) \right]_{\mathrm{e}^{\pi/4}}^{\mathrm{e}^{\pi/2}} = \, \mathrm{e}^{\pi/2}/2 - 0 \; .$$