Test di Calcolo Numerico

Ingegneria Informatica 8/07/2013

COGNOME NOME		
Μ	ATRICOLA	
RISPOSTE		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 8/07/2013

- 1) Si consideri l'insieme dei numeri di macchina $\mathcal{F}(10, 2, -3, 3)$. Dati i numeri $x_1 = 22.8765483$, $x_2 = 0.4377827$ e $x_3 = 0.0324455$, determinare le loro rappresentazioni nell'insieme \mathcal{F} .
- 2) La funzione $\phi(x) = (x-3)^2 + 3$ ha come punti fissi i valori $\alpha_1 = 3$ e $\alpha_2 = 4$. Il metodo iterativo

$$x_{n+1} = (x_n - 3)^2 + 3, \qquad n = 0, 1, 2, \dots,$$

può risultare convergente ad α_1 e/o α_2 ?

Nel caso in cui risulti convergente, quale è il suo ordine di convergenza?

3) Data la matrice

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right) ,$$

calcolare gli autovalori di $A = I + \alpha B$ con $\alpha \in \mathbb{R}$.

- 4) Per le matrici $A, B \in \mathbb{R}^{n \times n}$ risulta $||A||_2 = 1.5$ e $||B||_2 = 4$. Delle seguenti affermazioni dire quali si possono verificare e quali no.
 - a) La matrice A è convergente;
 - b) $\rho(A) = 1.5$;
 - c) $\rho(AB) = 7$;
 - d) $||A + B||_2 = 5$.
- 5) Si consideri la formula di quadratura

$$J_2(f) = a_0 f\left(-\frac{1}{3}\right) + a_1 f(0) + a_2 f\left(\frac{1}{3}\right)$$

che approssima l'integrale $I(f) = \int_{-1}^{1} f(x)dx$.

Si calcolino i pesi a_0 , a_1 e a_2 in modo da ottenere la formula che ha massimo grado di precisione.

Si indichi il grado di precisione ottenuto.

SOLUZIONE

1) Le rappresentazioni richieste sono

$$\hat{x}_1 = 0.23 \times 10^2$$
, $\hat{x}_2 = 0.44 \times 10^0$, $\hat{x}_3 = 0.32 \times 10^{-1}$.

- 2) Risultando $\phi'(3) = 0$ e $\phi''(3) = 2$ si deduce che il metodo può convergere con ordine 2 per approssimare il punto fisso α_1 . Da $\phi'(4) = 2$ si deduce che il metodo non assicura la convergenza al punto fisso α_2 .
- 3) La matrice B ha autovalori $\mu_1=0$ e $\mu_{2,3}=\pm\sqrt{2}$. Gli autovalori di A sono quindi $\lambda_1=1$ e $\lambda_{2,3}=1\pm\alpha\sqrt{2}$.
- 4) Dalle proprietà delle norme matriciali e dal teorema di Hirsh si ha:
 - a) possibile;
 - b) possibile;
 - c) impossibile;
 - d) possibile.
- 5) Imponendo che la formula sia esatta per $f(x) = 1, x, x^2$ si ricava $a_0 = a_2 = 3$ e $a_1 = -4$. La formula così ottenuta risulta esatta anche per $f(x) = x^3$ ma non per $f(x) = x^3$

 x^4 per cui il grado di precisione è 3.