Metformin 500mg Formulation Combinations Matrix

Overview

For Metformin HCl 500mg tablets, we can create multiple formulation combinations by varying excipient types and amounts. This document shows the systematic approach to generate all possible combinations.

Fixed Components

• Metformin HCI: 500mg (constant)

• Target tablet weight: 650-750mg

• Available space for excipients: 150-250mg

Variable Components Matrix

FILLERS (Primary Excipient)

Filler Type	Low Amount	Medium Amount	High Amount
MCC (Microcrystalline Cellulose)	100mg	150mg	200mg
Lactose Monohydrate	80mg	120mg	160mg
Mannitol	90mg	130mg	170mg
DCP (Dicalcium Phosphate)	85mg	125mg	165mg
MCC + Lactose (50:50)	90mg	135mg	180mg

BINDERS

Binder Type	Low Amount	Medium Amount	High Amount
Povidone K30	10mg	20mg	30mg
HPC (Hydroxypropyl Cellulose)	12mg	18mg	25mg
Copovidone	8mg	15mg	22mg
Starch	15mg	25mg	35mg

DISINTEGRANTS

Disintegrant Type	Low Amount	Medium Amount	High Amount
Croscarmellose Sodium	15mg	25mg	35mg
Sodium Starch Glycolate	18mg	28mg	38mg
Crospovidone	12mg	20mg	28mg

LUBRICANTS (Fixed amounts)

Lubricant Type	Standard Amount
Magnesium Stearate	5-8mg
Sodium Stearyl Fumarate	8-12mg

GLIDANTS (Fixed amounts)

Glidant Type	Standard Amount	
Colloidal Silicon Dioxide	2-5mg	

Combination Calculation

Total Possible Combinations:

Basic Calculation:

• Fillers: 5 types × 3 amounts = **15 options**

• Binders: 4 types × 3 amounts = **12 options**

• Disintegrants: 3 types × 3 amounts = **9 options**

• Lubricants: 2 types = **2 options**

Total Theoretical Combinations = $15 \times 12 \times 9 \times 2 = 3,240$ combinations

Practical Constraints:

Weight Limitations:

• Maximum excipient space: ~250mg

• Minimum tablet weight for handling: ~650mg

• This eliminates high-amount combinations of all excipients

Realistic Combinations after constraints: ~800-1,000 viable formulations

Sample Formulation Matrix

Formulation Examples (showing variety):

Formula	Filler	Binder	Disintegrant	Lubricant	Total Weight
F001	MCC 150mg	PVP K30 20mg	CCS 25mg	Mg St 6mg	701mg
F002	Lactose 120mg	HPC 18mg	SSG 28mg	SSF 10mg	676mg
F003	Mannitol 130mg	Copovidone 15mg	Crospovidone 20mg	Mg St 7mg	672mg
F004	MCC+Lactose 135mg	PVP K30 25mg	CCS 30mg	Mg St 8mg	698mg
F005	DCP 125mg	Starch 30mg	SSG 35mg	SSF 12mg	702mg

Note: All formulations include Metformin HCl 500mg + Colloidal SiO2 3mg

Systematic Development Approach

Phase 1: Initial Screening (36 formulations)

Select key combinations for preliminary testing:

- 3 filler types (MCC, Lactose, Mannitol)
- 3 binder types (PVP, HPC, Copovidone)
- 2 disintegrant types (CCS, SSG)
- 2 amounts (medium, high)

Screening Matrix: $3 \times 3 \times 2 \times 2 = 36$ formulations

Phase 2: Optimization (9-15 formulations)

Focus on best performers from Phase 1:

- · Vary amounts of promising excipients
- Fine-tune ratios
- Test edge cases

Phase 3: Final Selection (3-5 formulations)

- Scale-up feasibility
- Stability testing
- Regulatory compliance testing

Detailed Combination Examples

High Dissolution Focus Formulations:

```
F-HD001: MCC 140mg + PVP K30 15mg + CCS 35mg + Mg St 6mg = 696mg
F-HD002: Mannitol 130mg + HPC 12mg + CCS 30mg + SSF 10mg = 682mg
F-HD003: MCC 120mg + Copovidone 10mg + SSG 38mg + Mg St 7mg = 675mg
```

Moisture Protection Focus Formulations:

```
F-MP001: MCC 180mg + PVP K30 20mg + CCS 20mg + Mg St 7mg = 727mg
F-MP002: Mannitol 160mg + HPC 18mg + Crospovidone 15mg + SSF 8mg = 701mg
F-MP003: MCC 150mg + Copovidone 15mg + CCS 25mg + Mg St 6mg = 696mg
```

Cost Optimization Formulations:

F-CO001: Lactose 140mg + Starch 25mg + SSG 30mg + Mg St 8mg = 703mg

F-CO002: MCC+Lactose 160mg + PVP K30 20mg + CCS 25mg + Mg St 6mg = 711mg

F-CO003: DCP 130mg + Starch 30mg + SSG 28mg + Mg St 7mg = 695mg

Selection Criteria for Testing

Priority Testing Sequence:

1. Tier 1 (15 formulations): Core combinations with proven excipients

2. Tier 2 (25 formulations): Variations of successful Tier 1 formulations

3. Tier 3 (35 formulations): Novel combinations and edge cases

Key Performance Indicators:

• Dissolution: >85% in 30 minutes

• Hardness: 4-8 kp

• **Friability**: <1.0%

• Content Uniformity: RSD <6%

• Stability: No degradation at 40°C/75% RH

Practical Development Strategy

Recommended Approach:

- 1. Start with 12-15 core formulations covering main excipient families
- 2. **Test systematically** using Design of Experiments (DoE)
- 3. Narrow to 3-5 lead candidates based on performance
- 4. Optimize final formulations with fine-tuning
- 5. **Scale-up and validate** the best 1-2 formulations

Resource Considerations:

• Material costs: ~\$500-1,000 per formulation for initial testing

• **Time requirement**: 2-3 months for comprehensive screening

• **Testing capacity**: Plan for 50-100 analytical tests per formulation

Conclusion

While theoretically 3,000+ combinations are possible, practical development focuses on **50-100 systematically selected formulations** that cover the design space effectively. The key is strategic selection based on scientific rationale rather than testing every possible combination.

This systematic approach ensures optimal formulation discovery while managing time and resource
constraints.