4. Représentation fréquentielle des fonctions de transfert

1. Introduction

Une fonction de transfert d'un système étant définie par H(p), les représentations fréquentielles ont pour but de caractériser le nombre complexe $H(j.\omega)$ obtenu en posant $p = j.\omega$.

A partir de ce nombre complexe, on détermine le gain G de $H(j.\omega)$ exprimé en décibel (dB) et la phase ϕ de $H(j.\omega)$ exprimée en degré ou en radians :

Gain:
$$G = 20.\log_{10} |H(j.\omega)|$$

Phase:
$$\varphi = \arg(H(j.\omega))$$

Trois types de représentation sont couramment utilisés :

• les lieux de **Bode** : deux courbes dans le plan semi-logarithmique :

G $_{dB}$ en fonction de ω (rd/s) et ϕ (°) en fonction de ω (rd/s),

• le lieu de **Nyquist** : courbe dans le plan complexe :

 $Im[H(j\omega)]$ en fonction de $Re[H(j\omega)]$

• le lieu de **Black** : courbe dans le plan cartésien :

G_{dB} en fonction de φ (°)

2. Rappels sur les complexes

$$z = a + i.b$$
 a : partie réelle de z

• conjugué de z :
$$\overline{z} = a - i.b$$

module de z :
$$|z| = \sqrt{a^2 + b^2}$$
, $|z| = |\overline{z}|$ $|z| = r$

• module de
$$z^2$$
: $|z|^2 = z.\overline{z}$ $|z|^2 = r^2$

 $z = r e^{-i.\varphi}$

• argument de z :
$$\varphi = \arg(z) = \arctan(\frac{b}{a})$$

$$\varphi = \arg(z)$$

• rationnel:
$$Z = \frac{z_1}{z_2} = \frac{z_1.\overline{z_2}}{|z_2|^2}$$
,

$$b$$
 r
 ϕ
 $M(z)$

module:
$$|Z| = \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
,

argument:
$$arg(Z) = arg(z_1) - arg(z_2)$$

3. Lieux de Bode

Le gain G et la phase φ sont décrits de façon paramétrique en fonction de ω , exprimé en échelle semi-logarithmique. Le plan de Bode consiste donc à tracer deux diagrammes, un de phase et un de module en fonction de la pulsation ω ou de la fréquence f (ω =2. π .f).

Courbe de phase

4. Lieu de Nyquist

Le diagramme de Nyquist représente l'évolution en coordonnées polaires du nombre complexe $H(j.\omega)$ pour ω variant de 0 à $+\infty$.

Le lieu de Nyquist consiste donc à tracer la courbe représentant l'extrémité d'un vecteur dont la longueur est le module de $H(j.\omega)$ et dont l'angle est la phase de $H(j.\omega)$ lorsque ω variant de 0 à $+\infty$. On trace donc, pour tout ω réel positif la partie imaginaire de $H(j.\omega)$ en fonction de la partie réelle de $H(j.\omega)$

5. Lieu de Black

Le lieu de Black de F(p) est une représentation cartésienne de $F(j.\omega)$ avec la phase en degré en abscisse et le gain en dB en ordonnée. Le lieu de Black est généralement gradué avec les valeurs du paramètres ω .

On utilise en général un abaque de Black/Nichols (appelé aussi abaque de Black) comportant une série de courbes equi-modules et équi-phases (cf. étude en boucle fermée).

