Music AI: Threats and Opportunities

overview

alexander lerch

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Dean for Research & Creative Practice, College of Design, Georgia Tech
- Associate Professor, School of Music, Georgia Tech
- prev: 2000-2013: CEO at zplane.development

background

- machine learning for audio and music (20+ years)
- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

introduction artificial intelligence

■ artificial intelligence

- unclear definition: everything that is perceived to act intelligently
- changes over time

■ machine learning

 data-driven: algorithm is more agnostic to task and is parametrized through training with data

■ deep learning

deep neural networks are the ML approach used

■ generative AI

• deep neural networks generating content

machine learning importance of data

Georgia Center for Music Tech Technology

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

machine learning importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amoun

machine learning importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics **from data**
- ⇒ model success largely depends on training data
- technical challenges concerning data
 - imbalance & bias (distribution is skewed, biased)
 - diversity & representativeness
 - subjectivity of annotations
 - noisiness (bad quality, bad annotations, ...)
 - amount

musical communication chain of musical communication

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data: timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

musical communication chain of musical communication

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

musical communication chain of musical communication

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- distribution & listening
 - music recommendation and discovery

musical communication

- **creation of musical ideas** ("score")
 - defines style and idea
- realization of musical ideas into acoustical rendition
 - interpretation, modification, addition, and dismissal of score information
 - unique acoustic representation of score
- recording, mixing, and editing (in case of record media)
 - editing and splicing of recorded data; timbre, equalization choices
 - not separable from performance in a recording
- **■** distribution & listening
 - music recommendation and discovery

musical communication paradigm shift

historical technological disruptions:

- music
 - ► recording devices (tape, grammophone)
 - digitization/softwarization of recording studio
- general:
 - **▶** internet
 - introduction of photography

systematic evaluation evaluation targets

Georgia Center for Music Tech Tech College of Pesign

■ system output

- originality
 - plagiarism
 - diversity
 - creativity
- audio quality
- musical & aesthetic qualities

■ user experience

- other criteria
 - explainability
 - bias
 - ethical use of data & data curation practices
 - resource use & environmental impact

■ subjective testing

- preference test
- Turing test
- rating of properties

objective testing

- reference-independent
- comparison of distributions
- even fundamental, trivial properties are often not matched between training and generated data

- subjective testing
 - preference test
 - Turing test
 - rating of properties
- objective testing
 - reference-independent
 - comparison of distributions
 - even fundamental, trivial properties are often no matched between training and generated data

- subjective testing
 - preference test
 - Turing test
 - rating of properties
- objective testing
 - reference-independent
 - comparison of distributions
 - even fundamental, trivial properties are often not matched between training and generated data

Georgia Center for Music Tech Technology

■ subjective testing

- preference test
- Turing test
- rating of properties

objective testing

- reference-independent
- comparison of distributions
- ⇒ even fundamental, trivial properties are often not matched between training and generated data

music ai where we are now

- ML/Al used by and **impacting all stakeholders** in chain of music communication
 - content creators
 - performers
 - producers
 - labels/music industry
 - distributors
 - consumers
- technologies are here to stay
- technologies will improve in usability, reliability, and accuracy

¹generated on suno.com with the same prompt for different genres

content creation, production:

- increased efficiency
- expanded creative options (separation, morphing, etc.)
- co-creative idea generation
- democratization of music making

consumption:

- personalization
- effective discovery and accessibility
- (inter)active listening experiences

music ai risks & threats

■ content creation, production:

- ethical use of data
- growth in plagiarism, impersonation
- liability for harmful content
- livelihood of creators
- value perception of artistic content

consumption:

- consumer distrust through
 - ▶ inflationary ai-generated content
 - ► inexplainable black-box systems

general:

- 'mainstreamification' (novelty vs. homogeneity)
- bias (data curation)
- monopolization (for-profit system control)
- sustainability and energy

music ai risks & threats

■ content creation, production:

- ethical use of data
- growth in plagiarism, impersonation
- liability for harmful content
- livelihood of creators
- value perception of artistic content

consumption:

- consumer distrust through
 - ► inflationary ai-generated content
 - ► inexplainable black-box systems

general:

- 'mainstreamification' (novelty vs. homogeneity)
- bias (data curation)
- monopolization (for-profit system control)
- sustainability and energy

music ai risks & threats

■ content creation, production:

- ethical use of data
- growth in plagiarism, impersonation
- liability for harmful content
- livelihood of creators
- value perception of artistic content

consumption:

- consumer distrust through
 - ► inflationary ai-generated content
 - inexplainable black-box systems

general:

- 'mainstreamification' (novelty vs. homogeneity)
- bias (data curation)
- monopolization (for-profit system control)
- sustainability and energy

conclusion impact

■ society & culture

- value of music/art, value of human origin
- musical bias, increasing homogeneity

science

measuring progress

economy

- livelihoods/workforce
- new business models

environment

energy, local impact

■ regulatory & legal

- fair use terms
- monopolies
- labeling of ai-created content
- accountability and liability

conclusion conclusion

■ many opportunities

- increased efficiency in content production
- new tech will always be used in unforeseen creative ways
- accessibility increases dramatically

paradigm shift has to be actively managed

- management and mitigation of impact on workforce/livelihood
- transparency and informed consumers
- models for fair compensation

old questions worth asking anew

- when is a musical piece considered creative
- what makes a human performance unique
- can generated content be art

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

music informatics group: musicinformatics.gatech.edu

