

SEGMENTEZ DES CLIENTS D'UN SITE E-COMMERCE

DATA SCIENCE

MÉTHODOLOGIE

- I. PRESENTATION
- II. DESCRIPTION DES DONNEES
- III. DATA CLEANING
- IV. ANALYSE DES DONNEES
- V. FEATURES ENGINEERING
- VI. MODELISATION
- VII. EVALUATION DU MODELE
- VIII. CONCLUSION

PRESENTATION

Contexte

- Fournir aux équipes d'ecommerce de Olist une segmentation des clients .
- Pourvoir faire leurs campagnes de communication.

Objectifs

- Faire la segmentation des clients
- Déterminer la fréquence nécessaire de mise à jour du modèle de segmentation

Contraintes

- La base de données est composée de plusieurs fichiers
- Les données sont nonsupervisées et contiennent plusieurs valeurs manquantes et doublons

DESCRIPTION DES DONNEES

Base de données

Huit 09 fichiers dont:

- 01 fichier produit,
- 01 fichier catégorie produit,
- 01 fichier géolocalisation,
- 02 fichiers commande,
- 01 fichier acheteur
- 01 fichier paiement,
- 01 fichier commentaire,
- 01 fichier vendeur

DESCRIPTION DES DONNEES

Fusion en Dataframe unique

Elle consiste en deux (2) phases :

- Phase 1,
- Phase 2.

Une Dataframe centrée sur les commandes

```
Int64Index: 102652 entries, 0 to 102651
Data columns (total 17 columns):
    Column
                                   Non-Null Count
                                                   Dtype
    order id
                                                   object
                                   102652 non-null
    customer id
                                   102652 non-null
                                                   object
    customer_unique_id
                                   102652 non-null object
    customer state
                                   102652 non-null object
    customer city
                                   102652 non-null object
    seller id
                                   102652 non-null object
    seller city
                                   102652 non-null object
    product id
                                   102652 non-null object
    product size
                                   102636 non-null object
    product category
                                   101633 non-null object
    order approved at
                                                   obiect
                                   102638 non-null
    order_estimated_delivery_date 102652 non-null object
    order status
                                   102652 non-null object
    order delivered customer date 100409 non-null object
    price
                                   102652 non-null float64
    payment value
                                   102651 non-null float64
16 review_score
                                  101855 non-null float64
dtypes: float64(3), object(14)
```

DATA CLEANING

Il a consisté à :

- Sélectionner les variables pertinentes
- Eliminer les valeurs manquantes,
- Supprimer des Variables
- Ajouter des Variables

	Données initiales	Données finales
Nbre de Lignes	102.652	99.401
Nbre de colonnes	17	17

DATA CLEANING

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 99401 entries, 0 to 102651
Data columns (total 17 columns):
    Column
                         Non-Null Count Dtype
    order
                         99401 non-null object
    customer_unique_id
                         99401 non-null object
    customer state
                         99401 non-null object
    customer city
                         99401 non-null object
    seller id
                         99401 non-null object
    seller city
                         99401 non-null object
                         99401 non-null object
    product id
    product size
                         99401 non-null object
    product category
                         99401 non-null object
    order_status
                         99401 non-null object
    price
                         99401 non-null float64
                         99401 non-null float64
 11 payment value
12 score
                         99401 non-null float64
 13 order approved Date 99401 non-null object
 14 order approved hour 99401 non-null object
15 Time(day)
                         99401 non-null int32
16 Delay(day)
                         99401 non-null int32
dtypes: float64(3), int32(2), object(12)
memory usage: 12.9+ MB
```

Analyse Exploratoire

Analyse des variables

Analyse Exploratoire

Analyse des variables

- ☐ Trois catégories de produits sont plus commandes sur les dix(10)
- Un taux de satisfaction meilleur dans l'ensemble

Analyse Exploratoire

Analyse des variables

Nombre de commades par intervalle de durée

La majorité des commandes ont été livrée avant vingt (20) jours

Analyse Exploratoire

Analyse Bivariée

La durée de livraison est relativement longue pour la ville de 'rio de Janeiro'

Analyse Exploratoire

Analyse des correlations

Il y'a une forte corrélation entre les variables 'price' et 'payment_value'

Analyse RFM

La table RFM

	customer_unique_id	last_order_date	order_count	total_spent
87659	f2aa8ff9b2dca8ccfc255b8bceda4e0c	2018-07-23	1	68.43
34175	5e5930a6046d05c80794ca72464762ec	2018-01-23	1	35.69
85888	ed9804f42ea58ef893439f6cd0355cf8	2018-08-22	1	112.77
69188	bf432226a944503e91c6ec2159c6663e	2018-02-01	1	87.38
7090	137979cbe1d895efb140ca1aad7e9915	2017-10-17	1	58.62
53275	93c19a2a1d633765971086fc540a1d36	2018-02-07	1	55.61
70076	c1b4427dc13af0fa51d44306cdef0e3e	2017-10-22	1	77.89

Analyse RFM

Calcul de score

	customer_unique_id	last_order_date	order_count	total_spent	recency	frequency	monetary
8174	16537a831ca74e633b94cfa47164c420	2017-10-01	1	864.13	332	0.066667	0.054080
75043	cfb1b50c3f73e9a4da0186f0a7d959a0	2018-06-23	1	112.09	67	0.066667	0.007015
76351	d31233132950973bd0df88d4523ed465	2017-02-01	1	237.99	574	0.066667	0.014894
28808	4f916ba67d94ea608ff6915700595b49	2018-08-07	1	208.14	22	0.066667	0.013026
29879	529a8faa9d37064b655b398164e4fda7	2018-04-12	1	88.31	139	0.066667	0.005527
14370	27a86b0297f39efe6b94046f95a5f4bf	2018-01-22	1	44.75	219	0.066667	0.002801
52596	91dda3852e8a4757ed73fc91360cfa5f	2017-11-05	2	415.60	297	0.133333	0.026010
28972	50091850aa6ef7671af8c3e0e6762e1c	2017-10-18	1	158.52	315	0.066667	0.009921
39988	6e6fabd95676ab9f6fe71473894669ed	2017-12-11	1	144.12	261	0.066667	0.009020
32719	5a48e68daf6419abb65cd6fd1c03dda3	2017-06-10	1	97.10	445	0.066667	0.006077

Analyse RFM

Catégorisation

	customer_unique_id	last_order_date	order_count	total_spent	recency	frequency	monetary	category
0	0000366f3b9a7992bf8c76cfdf3221e2	2018-05-10	1	141.90	111	0.066667	0.008881	6
1	0000b849f77a49e4a4ce2b2a4ca5be3f	2018-05-07	1	27.19	114	0.066667	0.001702	6
2	0000f46a3911fa3c0805444483337064	2017-03-10	1	86.22	537	0.066667	0.005396	8
3	0000f6ccb0745a6a4b88665a16c9f078	2017-10-12	1	43.62	321	0.066667	0.002730	2
4	0004aac84e0df4da2b147fca70cf8255	2017-11-14	1	196.89	288	0.066667	0.012322	2

FEATURES ENGINEERING

Transformation de la dataframe

❖ Analyse en Composantes Principales (ACP)

FEATURES ENGINEERING

Transformation de la dataframe

	customer_unique_id	customer_state	order_count	total_spent	average_score	large	medium	small	Automotive_Industry	Beauty_Health_Well
0	871766c5855e863f6eccc05f988b23cb	RJ	1	72.19	5.0	0.0	0.0	1.0	0.0	
1	eb28e67c4c0b83846050ddfb8a35d051	SP	2	284.56	4.5	1.0	0.0	1.0	0.0	
2	3818d81c6709e39d06b2738a8d3a2474	MG	1	216.87	5.0	0.0	0.0	1.0	0.0	
3	af861d436cfc08b2c2ddefd0ba074622	SP	1	25.78	4.0	0.0	0.0	1.0	0.0	
4	64b576fb70d441e8f1b2d7d446e483c5	SP	1	218.04	5.0	0.0	0.0	1.0	0.0	

FEATURES ENGINEERING

Analyse en Composantes Principales (ACP)

	customer_unique_id	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
0	871766c5855e863f6eccc05f988b23cb	-0.453173	-0.475505	0.908050	-0.198068	1.982270	-1.692184	-0.218758	-0.570270
1	eb28e67c4c0b83846050ddfb8a35d051	0.563502	3.187697	2.066192	3.404257	1.274128	0.622491	-0.392839	-2.069185
2	3818d81c6709e39d06b2738a8d3a2474	0.318968	0.335463	-0.733735	-0.975728	0.005529	-0.745319	-0.194401	-0.192341
3	af861d436cfc08b2c2ddefd0ba074622	0.373827	-1.228459	1.049602	-0.339624	-0.995308	-0.327800	-0.064375	-0.065938
4	64b576fb70d441e8f1b2d7d446e483c5	-0.167254	0.000962	0.349539	-0.149792	-0.201059	1.940684	-0.518369	-2.227760

Nous allons tester trois algorithmes de clustering et ensuite choisir le mieux adapter nos données

- K-means
- **❖ DBSCAN**
- * Agglomerative clustering

K-MEANS

La méthode du coude

Le coude est observé pour un nombre de cluster = 10

DBSCAN

Recherche des hyperparamètre

```
eps=0.1, min_samples=2000, n_clusters=7
eps=0.1, min_samples=4000, n_clusters=3
eps=0.1, min_samples=6000, n_clusters=1
eps=0.1, min_samples=8000, n_clusters=0
eps=0.1, min_samples=10000, n_clusters=0
eps=0.3, min_samples=2000, n_clusters=8
eps=0.3, min_samples=4000, n_clusters=5
eps=0.3, min_samples=6000, n_clusters=3
eps=0.3, min_samples=8000, n_clusters=3
eps=0.3, min_samples=10000, n_clusters=3
eps=0.6, min_samples=2000, n_clusters=9
eps=0.6, min_samples=4000, n_clusters=7
eps=0.6, min_samples=6000, n_clusters=7
```

```
eps=0.6, min_samples=8000, n_clusters=3
eps=0.6, min_samples=10000, n_clusters=3
eps=0.8, min_samples=2000, n_clusters=9
eps=0.8, min_samples=4000, n_clusters=7
eps=0.8, min_samples=6000, n_clusters=4
eps=0.8, min_samples=8000, n_clusters=3
eps=0.8, min_samples=10000, n_clusters=3
eps=1, min_samples=2000, n_clusters=9
eps=1, min_samples=4000, n_clusters=8
eps=1, min_samples=6000, n_clusters=4
eps=1, min_samples=8000, n_clusters=3
eps=1, min_samples=10000, n_clusters=3
```

Choix de l'Algorithme

Qualité des clusters

K-means:

```
clusters = 3; Score de silhouette moyen : 0.327
clusters = 10; Score de silhouette moyen: 0.652
```

DBSCAN:

```
clusters = 3;Score de silhouette moyen : 0.349
clusters = 9;Score de silhouette moyen : 0.646
```

Agglomerative clustering:

```
clusters = 3;Score de silhouette moyen : 0.003
clusters = 10;Score de silhouette moyen : -0.10
```

Analyse des groupes de clusters

Analyse des groupes de clustering par ANOVA

Analyse des groupes avec les statistiques descriptives

Analyse graphique des groupes du clustering

Analyse des groupes de clusters

Analyse statistique

Clusters	Nombre	60 -		930 (\$100)	100 0 0000 0 0 0000	0.09	•	Cluster H
Cluster E	18662		201 CONTR					Cluster A Cluster E
Cluster A	17426	40 -	16.	er en		1		Cluster C
Cluster B	15164	20 -	200					Cluster B
Cluster G	7375				100 (16			Cluster F
Cluster F	6932	Dim 2						Cluster G Cluster J
Cluster H	6931	-20 -	4	are to		8		Cluster D
Cluster C	6082	-20			ref .	443	•	Cluster I
Cluster J	6002	-40 -						0
Cluster D	5575	60	A 60			on Con		<i>(.</i>
Cluster I	2295	-60 -		40HO	6) 6) 6(9	00000		
			-60 -40	-20	ó	20	40	60
				B 1 2	Dim 1			

Analyse des groupes de clusters

Analyse Graphique

Analyse des groupes de clusters

Analyse Graphique

Analyse des groupes de clusters

Conclusion de l'analyse

- La majorité des clients de chacun des groupes sont issue de l'état SP et les groupes ont quasiment la même moyenne de satisfaction.
- Les groupes A et J ont des moyennes de commande et de dépenses plus élevées que celles des autres groupes qui ont moyenne de commande environ égale 1
- Les clients des groupes B, C, D et E commande uniquement que des produits de petite et moyenne taille ; le groupe G a une moyenne de commande en produit de grande taille largement supérieure
- Les clients des groupes A et J commande beaucoup plus les 3 catégories de produits les plus commandés que ceux des autres groupes qui en général ne commande que un (1) ou deux (2) de cers produits
- Les clients des groupes A et J sont les moins nombreux

EVALUATION DU MODÈLE

L'évaluation consiste à déterminer le temps de mise à jour des clusters :

- CREATION DE DATAFRAME PERIODIQUE ;
- **EVALUATION DE LA STABILITE**;

EVALUATION DU MODÈLE

CONCLUSION

Une maintenance en vue de mettre à jour des clusters sera effectuée tous les quatre (4) mois

La majorité de ces clients est installée dans l'état SP

Deux groupes (A et J) se distinguent de façon significative des huit autres groupes existants dans la base de données des clients

CONCLUSION

Périodicité de maintenance quatre (4) mois

Mener des campagnes marketing de fidélisations auprès des groupes A et J

Renforcer les campagnes d'incitation à l'achat auprès des autres groupes

MERCI OPENCLASSROOM