IoT-Projekt Bloombuddy

1. Allgemeine Informationen

Projektname: (Bloombuddy)Ersteller: Jerrit Schnaible

• Datum: (11.03.2025 bis 06.05.2025)

2. Projektbeschreibung

Kurzbeschreibung:

Mein Projekt ist eine Smarte-Pflanzenbewässerung, wobei die Temperatur, die Luftfeuchtigkeit, die Helligkeit am Standort der Pflanze, sowie die Bodenfeuchtigkeit der Erde gemessen und automatisch eine Bewässerung gesteuert wird. Zusätzlich wird in meinem Projekt der Füllstand des Wassertanks gemessen und eine entsprechende Push-Benachrichtigung ausgegeben, wenn der Füllstand des Tanks unter den 20% Wert fällt. Die Werte werden über Node-Red visualisiert. Alle Messdaten werden in einer Datenbank gespeichert, um später darauf zurückgreifen zu können.

3. Anforderungen und Funktionalitäten

Sensorik

AHT21: Dieser Sensor misst die Luftfeuchtigkeit und die Temperatur im Raum

BH1750: Dieser Sensor misst die Helligkeit am Standort der Pflanze

VL53L0X TOF: Dieser Sensor misst über TOF den aktuellen Füllstand des Wassertanks

Kapazitiver Bodenfeuchtigkeitssensor: Dieser Sensor misst die Bodenfeuchtigkeit in der Pflanzerde

Aktoren-Steuerung

AM325 Mini Pump: Bewässerung der Pflanze, wenn die Pumpe angesteuert wird

Webinterface & Benutzerinteraktion

Das Webinterface wird über Node-Red realisiert. Hier werden die aktuellen Messwerte angezeigt und für den Benutzer visualisiert. Der Benutzer kann also die aktuelle Helligkeit, die Luftfeuchtigkeit, die Temperatur, die Bodenfeuchtigkeit und den Füllstand des Wassertanks direkt ablesen. Außerdem bekommt der Benutzer eine Push-Benachrichtigung aufs Handy wenn der Füllstand des Wassertanks unter 20% fällt.

4. Benötigte Komponenten

4.1 Hardware

Komponente	Modell/Typ	Funktion
Mikrocontroller	ESP32 S3 WROOM 1	Sensoren auswerten und Pumpe ansteuern Kommunikation mit Node-Red
Sensor 1	VL53L0X Time-of-Flight	Füllstand des Wassertanks überwachen
Sensor 2	AHT21 digitales Temperatur- Feuchtigkeitssensor-Messmodul mit I2C-Kommunikation	Messen der Temperatur und der Luftfeuchtigkeit im Raum
Sensor 3	Capacitive soil moisture sensor v2.0 kapazitiver Bodenfeuchtigkeitssensor	Messen der Bodenfeuchtigkeit in der Pflanzenerde
Sensor 4	BH1750 Lichtintensitätsbeleuchtungsmodul	Messen der Helligkeit am Standort der Pflanze
Aktor 1	AM325 Mini Pump DC 3V-6V Peristaltische Dosierpumpe Selbstansaugend	Bewässerung der Pflanze
Stromversorgung	5V Netzteil	Spannungsversorgung des ESPs, der Sensoren und der Pumpe
Weitere Bauteile	3,3V 1 Kanal Relaismodul Low Level Trigger	Ansteuern der Pumpe über das Relais
	Breadboard	Zum Aufbauen der Komponenten
	Jumpercable in verschiedenen Längen	Zum Verbinden und anschließen der einzelnen Bauteile
	PVC-Schlauch und Schlauchverbinder	Um das Wasser zur Pflanze zu führen

4.2 Software & Datenbank

Komponente	Technologie	Funktion
Microcontroller-Code	Micropython	Speziell für Systeme mit begrenzten Ressourcen Benötigt nur wenig Speicherplatz Für ARM-basierte Chips
Webinterface	Node-Red	Visualisierung der Messwerte
Datenbank	MariaDB	Speicherung der Daten

5. Systemarchitektur

Die Abbildung weicht leicht von meinem Projekt ab, ist aber dennoch sehr vergleichbar. Die Änderungen, die ich hinzufügen würde, wäre das ich noch einen TOF-Sensor über I2C-Bus an den ESP32 anschließen würde, um den Füllstand des Wassertanks zu messen. Zusätzlich noch einen AHT21-Sensor zum Messen der Luftfeuchtigkeit und der Temperatur im Raum, dieser ist ebenfalls über den I2C-Bus mit dem ESP32 verbunden. Außerdem verbaue ich einen BH1750 zum Messen der Helligkeit am Standort der Pflanze, dieser ist auch an dem I2C-Bus angeschlossen.

6. Zeitplanung (Meilensteine)

Datum	Aufgabe
KW 11	Festlegung der Projektziele Ermittlung der Anforderungen an das System (z.B. Sensoren für Feuchtigkeit, Temperatur) Erstellung eines Projektplans mit Meilensteinen und Zeitrahmen
KW 12	Definition der notwendigen Sensoren und Aktoren Auswahl der geeigneten Hardwarekomponenten (z.B. Mikrocontroller, Pumpe) Erstellung eines technischen Designs für das Bewässerungssystem Bestellung der notwendigen Komponenten (z.B. Sensoren, Mikrocontroller, Pumpen)
KW 13-14	Entwicklung der Software Implementierung der Bewässerungslogik mit Micropython Integration der Sensordaten zur Steuerung der Bewässerung Durchführung von Tests zur Sicherstellung der korrekten Funktion Implementierung der Daten in Node-Red, Visualisierung in Node-Red Ablegen der gemessen Werte in einer Datenbank

Datum	Aufgabe
KW 15	Zusammenbau des Bewässerungssystems mit allen Komponenten Durchführung von umfassenden Tests des gesamten Systems unter realen Bedingungen
KW 16	Anpassung der Parameter zur Verbesserung der Effizienz und Zuverlässigkeit Kalibrierung der Sensoren und Anpassung der Aktoren
KW 17	Erstellung einer detaillierten Dokumentation des Systems, inklusive Schaltpläne und genauer Funktionsbeschreibung unter realen Bedingungen
KW 18	Durchführung der finalen Tests und Abnahme des Systems Installation des Systems am Einsatzort (an der Pflanze)
KW 19	Reserve zum Ausgleich auftretender Probleme oder zur Verbesserung des Systems

7. Offene Fragen & Herausforderungen

Batterie- und Stromprobleme: Unzureichende Batterieleistung oder Stromausfälle können das System lahmlegen, zum Beispiel bei der Versorgung über eine Powerbank

Über- oder Unterbewässerung: Falsche Einstellungen, fehlerhafte Sensoren oder unvollständige Daten können zu Über- oder Unterbewässerung führen, was der Pflanze schädigen kann

Ungleichmäßige Wasserverteilung: Ungleichmäßige Wasserverteilung kann die Pflanze unterschiedlich stark bewässern

Programmierung: Analogwertverarbeitung kann komplex sein, zudem kann die Darstellung der Daten in Node-Red eine Schwierigkeit sein. Außerdem ist die Überwachung des Füllstands vom Wassertank durch einen TOF-Sensor bisher nicht getestet wurden.

8. Fazit & Zielsetzung

(Was soll das Projekt am Ende können? Welche Verbesserungen wären für eine Weiterentwicklung denkbar?)