Parallel Bayesian inference for high dimensional dynamic factor copulas

Hoang Nguyen*1, M. Concepción Ausín^{1,2}, and Pedro Galeano^{1,2}

¹Department of Statistics, Universidad Carlos III de Madrid, Spain ²Instituto Flores de Lemus, Universidad Carlos III de Madrid.

October 30, 2018

Online Appendix

A Monte Carlo Study

In this section, we illustrate the proposed Bayesian methodology using simulated data from the MGSt one factor copula model. We generate a random sample of d=100 time series with G=10 groups and a time length T=1000 from the dynamic factor model (6-8). The numbers of time series in each groups are randomized and the parameters are fixed for the simulation purpose. More precisely, we set a=0.05 and b=0.98 as the parameter control for the dynamic correlation in each group, the degree of freedom ν is generated as a sequence from $\nu_1=6$ to $\nu_{10}=24$ with equally space and similarly the skewness γ is generated as a sequence from $\gamma_1=-0.5$ to $\gamma_{10}=0.4$. The expected correlation, ρ_c , between pseudo observation x_t and the latent factor z_t are generated in the range [0.1,0.9] with equally space, which results in values for f_{igc} ranging in the interval [0.2,3]. The latent variable z_t is generated from a standard Gaussian distribution and ξ_{gt} is generated from $IG(\nu_g/2,\nu_g/2)$.

We repeat each simulation 100 times and record the posterior mean. We estimate the set of true parameters, ϑ , using 10,000 MCMC iterations where the first 5,000 are discarded as burn-in iterations. The algorithm seems to perform adequately and convergence is fast. Practically, all the posteriors reached convergence after 1000 iterations. We retain every 10-th iterations to reduce autocorrelation. In each simulation, the algorithm takes around 13 minutes, 35 minutes and 45 minutes for the Gaussian, Student-t and MGSt one factor copula model, respectively, on an Intel Core i7-4770 processor (4 cores - 8 threads - 3.4GHz), although we only choose to report for the MGSt factor copula model.

Table 1 shows some summary statistics of the posterior mean in each MCMC iterations. In general, most of the parameters are correctly estimated. When the degree of freedom increases, its posterior estimation also becomes less accurate which leads to higher standard deviation of both ν and γ . On the other hand, the posterior estimation of the correlation becomes more accurate when there is a higher correlation with the latent variable. Similarly, the number of the assets in

^{*}Acknowledgements: We thank Michael Wiper, Andrew J. Patton, the Associate Editor and two anonymous referees for their helpful comments. The first author acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, project numbers ECO2015-66593-P. E-mail address: hoang.nguyen@uc3m.es

the groups also contributes to the standard deviation of parameters. We have observed that there is negative correlation between MCMC samples of a and b which means that if the posterior mean of a overestimates its true value, the value of b will underestimate its true value. Normally, the posterior variance of z_t reduces when the dimension increases.

				Simulatio			
	True	Bias	Std	Median	90%	10%	Diff
							(90%-10%)
a	0.050	0.007	0.015	0.055	0.075	0.042	0.033
b	0.980	-0.029	0.071	0.972	0.985	0.908	0.077
ν_1	6.000	0.062	0.277	6.045	6.402	5.770	0.632
ν_2	8.000	0.022	0.445	8.002	8.648	7.439	1.209
ν_3	10.000	0.041	0.695	9.960	10.828	9.235	1.593
$ u_4$	12.000	0.052	0.969	12.092	13.326	10.787	2.539
ν_5	14.000	-0.135	1.287	13.763	15.737	12.194	3.543
ν_6	16.000	-0.102	1.584	15.772	17.656	13.965	3.692
$ u_7$	18.000	-0.872	1.797	17.007	19.391	15.084	4.307
ν_8	20.000	-1.087	2.056	18.905	21.504	16.644	4.860
ν_9	22.000	-1.694	2.381	20.190	23.043	17.313	5.730
$ u_{10}$	24.000	-1.713	2.985	22.260	26.019	18.301	7.718
γ_1	-0.500	-0.003	0.024	-0.501	-0.471	-0.536	0.065
γ_2	-0.400	-0.000	0.025	-0.398	-0.372	-0.435	0.063
γ_3	-0.300	0.006	0.028	-0.293	-0.262	-0.323	0.061
γ_4	-0.200	0.003	0.032	-0.197	-0.160	-0.232	0.072
γ_5	-0.100	-0.002	0.028	-0.102	-0.068	-0.138	0.070
γ_6	0.000	0.002	0.033	-0.002	0.045	-0.036	0.081
γ_7	0.100	-0.003	0.034	0.100	0.139	0.052	0.087
γ_8	0.200	-0.008	0.044	0.196	0.246	0.138	0.108
γ_9	0.300	-0.025	0.040	0.274	0.330	0.220	0.110
γ_{10}	0.400	-0.036	0.056	0.365	0.424	0.295	0.128
$ ho_1$	0.100	0.022	0.058	0.119	0.188	0.059	0.129
$ ho_{12}$	0.189	0.001	0.060	0.195	0.255	0.130	0.125
ρ_{23}	0.278	-0.002	0.065	0.282	0.339	0.190	0.149
ρ_{34}	0.367	-0.006	0.046	0.361	0.417	0.312	0.105
$ ho_{45}$	0.456	-0.005	0.047	0.449	0.506	0.401	0.104
$ ho_{56}$	0.544	-0.005	0.047	0.544	0.589	0.487	0.103
$ ho_{67}$	0.633	-0.003	0.036	0.633	0.671	0.582	0.090
ρ_{78}	0.722	-0.008	0.042	0.720	0.749	0.679	0.071
$ ho_{89}$	0.811	-0.001	0.024	0.815	0.833	0.785	0.048
ρ_{100}	0.900	-0.005	0.025	0.900	0.912	0.881	0.031

Summary statistic for the posterior mean of the MGSt factor copula model in the Monte Carlo study. We choose some selected value of ρ_c to conserve space.

B Number of assets in each group sector

Table 2: Stock Groups

Group	SIC code	Industry	Number of Firms
1	1000 - 1999	Mining and Construction	13
2	2000 - 2099	Food and Beverage	7
3	2830 - 2839	Pharmacy	7
4	2800 - 2899	Plastic Material and Plant Chemical	7
5	2100 - 2999	Textile and Papers	12
6	3000 - 3599	Steels	17
7	3600 - 3799	Home Appliance and Automobile	15
8	3800 - 3999	Electronics	8
9	4000 - 4899	Transportation and Telecommunication	7
10	4900 - 5999	Retail and Distribution	11
11	6300 - 6399	Insurance Firms	18
12	6000 - 6999	Finance (not include Insurance)	18

The table shows the number of firms in each group sectors. We classify the categories based on the SIC code.

C Univariate marginal distribution

Stock ID	c_i	ϕ_{1i}	ω_i	α_{1i}	β_{1i}	γ_i	$\xi_{i\eta}$	$\nu_{i\eta}$	K-S	AD	Neyman
AAPL	0.170	0.011	0.028	-0.074	0.977	0.181	1.030	5.303	0.159	0.525	0.686
$_{ m JPM}$	0.038	-0.066	0.010	-0.087	0.993	0.165	1.020	5.176	0.306	0.614	0.771
JNJ	0.031	-0.013	-0.011	-0.111	0.959	0.246	1.011	5.699	0.132	0.243	0.888
BAC XOM	$-0.012 \\ 0.025$	-0.018 -0.069	0.016	-0.074 -0.078	$0.992 \\ 0.980$	$0.222 \\ 0.180$	$1.046 \\ 0.952$	$4.397 \\ 6.216$	$0.215 \\ 0.284$	0.479	$0.986 \\ 0.992$
WFC	$0.025 \\ 0.036$	-0.009 -0.091	$0.010 \\ 0.010$	-0.078 -0.082	$0.980 \\ 0.994$	$0.180 \\ 0.201$	$\frac{0.932}{1.038}$	$\frac{0.210}{4.733}$	$0.284 \\ 0.295$	$0.499 \\ 0.540$	$0.992 \\ 0.982$
INTC	$0.050 \\ 0.054$	-0.031	$0.010 \\ 0.007$	-0.062	0.994	$0.201 \\ 0.104$	0.993	4.133	0.233	0.540	0.962
ČVX	0.037	-0.010 -0.042	0.009	-0.042 -0.080	$0.993 \\ 0.986$	0.151	0.871	$4.869 \\ 9.759$	$0.313 \\ 0.487$	$0.614 \\ 0.769$	0.901
CSCO	0.041	-0.006	0.002	-0.031	0.997	0.075	0.991	3.554	0.130	0.450	0.899 0.901 0.776
UNH	0.050	-0.019	0.009	-0.063	0.992	0.104	0.985	4.316	0.176	$0.664 \\ 0.898$	$0.949 \\ 0.921$
$_{\rm BA}$	0.031	0.021	0.013	-0.074	0.988	0.135	0.978	5.662	0.510	0.898	0.921
PG	0.009	-0.043	0.002	-0.089	0.985	0.147	0.976	3.815	0.390	0.560	0.812
$_{ m DIS}^{ m C}$	$-0.028 \\ 0.076$	0.029 -0.038	$0.018 \\ 0.009$	-0.068 -0.082	$0.991 \\ 0.989$	$0.204 \\ 0.124$	$\frac{1.021}{1.015}$	$\frac{4.492}{5.474}$	$0.219 \\ 0.279$	$0.406 \\ 0.682$	$0.970 \\ 0.757$
IBM	$0.070 \\ 0.043$	-0.038 -0.019	0.009	-0.082 -0.081	0.989	$0.124 \\ 0.169$	1.013 1.003	$\frac{3.474}{4.557}$	$0.279 \\ 0.490$	0.082 0.942	0.737 0.001
NVDA	$0.045 \\ 0.046$	-0.019	0.009 0.007	-0.031	0.980 0.996	$0.109 \\ 0.106$	1.003 1.028	$\frac{4.357}{4.766}$	$0.430 \\ 0.376$	$0.942 \\ 0.777$	$0.991 \\ 0.986$
GE	0.007	$0.025 \\ 0.007$	0.011	-0.081	0.990	0.170	0.995	4.645	0.251	0.588	0 999
MCD	0.032	-0.039	0.001	-0.024	0.994	0.116	0.934	5.552	0.113	0.638	0.833 0.994 0.897 0.922 0.891
MO	0.049	-0.016	0.003	-0.088	0.975	0.125	0.895	5.610	0.504	0.606	0.994
HON	0.053	-0.023	0.011	-0.101	0.988	0.136	1.002	7.518	0.195	0.606 0.216 0.474 0.427	0.897
MDT	0.026	-0.033	0.009	-0.060	0.986	$0.087 \\ 0.137$	0.972	4.901	0.206	0.474	0.922
ABT	0.033	-0.005	0.007	-0.061	0.979	0.137	1.024	5.698	0.188	0.427	0.891
$egin{array}{c} ext{UTX} \ ext{GILD} \end{array}$	$0.044 \\ 0.100$	-0.019	$0.008 \\ 0.033$	-0.105 -0.056	$0.986 \\ 0.973$	0.118	$0.990 \\ 1.017$	$7.039 \\ 3.952$	$0.345 \\ 0.650$	0.419	0.773
GILD	$0.100 \\ 0.045$	-0.045 -0.042	0.033	-0.056	0.973 0.994	$0.119 \\ 0.120$	1.017 1.011	5.952 5.152	$0.030 \\ 0.414$	0.419 0.717 0.532	$0.829 \\ 0.690$
$\widetilde{\mathrm{MS}}$	0.036	-0.012	0.019	-0.067	0.991	$0.170 \\ 0.171$	1.040	5.053	0.171	0.332 0.297	0.673
TXN	0.043	-0.059	0.003	-0.062	0.996	0.036	0.969	6.277	0.339	0.669	0.937
CAT	0.066	0.013	0.008	-0.062	0.994	0.127	1.013	5.077	0.476	0.743	0.813
$_{ m LMT}$	0.057	-0.056	0.008	-0.049	0.986	$0.122 \\ 0.133$	0.966	6.237	0.160	0.595	$\begin{array}{c} 0.928 \\ 0.862 \\ 0.958 \\ 0.923 \end{array}$
QCOM	0.057	-0.003	0.011	-0.082	0.989	0.133	1.034	4.366	0.082	$0.431 \\ 0.707$	0.862
SLB	0.078	-0.037	0.009	-0.055	0.994	$0.104 \\ 0.157$	1.037	6.817	0.533	0.707	0.958
BLK NKE	$0.064 \\ 0.064$	-0.032 -0.031	$0.013 \\ 0.008$	-0.074 -0.069	$0.991 \\ 0.991$	$0.157 \\ 0.125$	$1.025 \\ 0.994$	$5.667 \\ 3.957$	$0.333 \\ 0.802$	$0.616 \\ 0.772$	$0.923 \\ 0.982$
USB	$0.004 \\ 0.012$	-0.031	0.008	-0.009	$0.991 \\ 0.994$	$0.125 \\ 0.189$	$0.994 \\ 0.979$	5.821	0.552	$0.742 \\ 0.749$	$0.932 \\ 0.737$
AXP	$0.012 \\ 0.067$	-0.073	0.008	-0.063	0.994	0.163	0.988	5.343	0.332 0.177	0.149	0.757
PNC	0.028	-0.059	0.012	-0.066	0.992	0.203	1.011	4.721	0.085	0.300 0.389 0.471	0.869
SCHW	0.055	-0.075	0.015	-0.060	0.991	0.121	1.037	5.694	0.307	0.471	$0.869 \\ 0.945$
$_{\rm CB}$	0.037	-0.077	0.009	-0.072	0.988	0.210	0.964	5.303	0.361	0.712	0.958
COP	0.081	-0.050	0.012	-0.061	0.985	0.169	0.933	9.858	0.101	0.481	0.492
FDX	0.032	-0.043	0.006	-0.060	0.995	0.096	1.014	5.943	0.261	0.572	0.965
$_{ m MU}^{ m GD}$	$0.051 \\ 0.117$	$-0.047 \\ 0.010$	$0.010 \\ 0.017$	-0.080 -0.051	$0.987 \\ 0.993$	$0.107 \\ 0.109$	$\frac{1.005}{1.039}$	$5.927 \\ 5.747$	$0.184 \\ 0.064$	$0.268 \\ 0.527$	$0.845 \\ 0.901$
$\stackrel{ m MO}{ m AMAT}$	$0.117 \\ 0.056$	-0.010	$0.017 \\ 0.012$	-0.031	$0.993 \\ 0.991$	$0.109 \\ 0.111$	1.059 1.055	5.416	$0.004 \\ 0.220$	$0.327 \\ 0.419$	$0.901 \\ 0.795$
AMT	0.064	-0.042	0.012	-0.093	0.988	$0.111 \\ 0.153$	0.992	5.691	$0.220 \\ 0.476$	0.419 0.830	$0.733 \\ 0.873$
RTN	0.047	-0.030	0.011	-0.067	0.979	0.137	0.949	8.678	0.309	0.686	0.856
CL	0.044	-0.067	0.003	-0.049	0.984	0.132	1.025	4.509	0.143	0.350	0.999
NOC	0.062	-0.025	0.009	-0.076	0.984	0.125	0.927	6.715	0.368	$0.891 \\ 0.922$	0.864
EOG	0.100	-0.053	0.019	-0.063	0.987	0.143	1.008	7.945	0.686	0.922	0.804
AGN	0.127	-0.020	0.038	-0.067	0.960	0.184	1.087	4.345	0.074	0.627	0.879
MET PRU	0.026	-0.050	0.015	-0.093	0.991	0.175	0.983	5.165	0.229	0.545	$0.977 \\ 0.794$
F	$0.062 \\ 0.089$	-0.043	$0.013 \\ 0.010$	-0.086	$0.992 \\ 0.994$	$0.191 \\ 0.162$	$0.973 \\ 1.061$	5.552	$0.346 \\ 0.360$	0.535	$0.794 \\ 0.787$
OXY	0.069	0.039 -0.040	$0.010 \\ 0.008$	-0.028 -0.038	0.994 0.994	$0.102 \\ 0.140$	0.967	$4.699 \\ 8.151$	$0.300 \\ 0.184$	$0.685 \\ 0.448$	$0.787 \\ 0.940$
CI	0.093	-0.089	0.013	-0.092	0.990	0.134	1.004	5.438	$0.174 \\ 0.178$	0.417	0.716
SO	0.028	-0.054	-0.002	-0.029	0.979	0.176	1.005	5.926	0.280	0.647	0.693
TRV	0.050	-0.127	0.006	-0.062	0.991	0.173	0.966	4.792	0.662	0.747	0.683
VLO	0.108	0.013	0.020	-0.042	0.988	0.136	0.994	6.802	0.072	0.609	0.526
BAX	0.033	-0.026	0.011	-0.081	0.980	0.126	0.982	4.440	0.199	0.557	0.804
CCL	0.009	-0.017	0.006	-0.056	0.996	0.111	$\frac{1.010}{0.007}$	4.723	0.283	0.359	0.925
ECL KMB	$0.059 \\ 0.034$	-0.099 -0.094	$0.011 \\ 0.000$	-0.066 -0.028	$0.980 \\ 0.989$	$0.187 \\ 0.122$	$0.997 \\ 0.964$	$5.578 \\ 4.581$	$0.459 \\ 0.668$	$0.838 \\ 0.933$	$0.855 \\ 0.909$
IZMD	0.004	-0.094	0.000	-0.020	0.303	0.144	0.304	4.001	0.008	0.300	0.909

TGT	0.029	-0.060	0.004	-0.044	0.996	0.113	1.036	4.620	0.316	0.626	0.842
FOXA HUM	$0.034 \\ 0.086$	-0.040 -0.064	$0.012 \\ 0.011$	-0.091 -0.044	$0.992 \\ 0.992$	$0.120 \\ 0.097$	$1.014 \\ 1.039$	$6.365 \\ 3.740$	$0.334 \\ 0.493$	$0.574 \\ 0.580$	$0.749 \\ 0.987$
AFL	0.032	-0.085	0.009	-0.084	0.993	0.157	0.983	4.405	0.609	0.753	0.877
$_{\mathrm{PSA}}^{\mathrm{PGR}}$	$0.027 \\ 0.062$	-0.076 -0.102	$0.006 \\ 0.003$	-0.040 -0.035	$0.994 \\ 0.996$	$0.139 \\ 0.147$	$0.985 \\ 0.995$	$4.272 \\ 7.431$	$0.089 \\ 0.576$	$0.448 \\ 0.860$	$0.801 \\ 0.831$
ALL	0.036	-0.102	0.003	-0.033	0.990 0.991	$0.147 \\ 0.182$	1.011	4.918	$0.570 \\ 0.570$	$0.300 \\ 0.714$	0.880
ADI	0.012	-0.045	0.006	-0.073	0.995	0.057	0.961	5.127	0.461	0.543	0.778
$_{ m WDC}^{ m MCK}$	$0.079 \\ 0.125$	-0.056 -0.038	$0.012 \\ 0.009$	-0.070 -0.063	$0.986 \\ 0.995$	$0.121 \\ 0.087$	$\frac{1.035}{1.019}$	$\frac{4.214}{4.836}$	$0.286 \\ 0.201$	$0.511 \\ 0.571$	$0.934 \\ 0.942$
ALXN	0.113	-0.036	0.062	-0.107	0.962	0.172	1.077	4.896	0.257	0.576	0.593
APH ADM	$0.074 \\ 0.036$	-0.024 -0.055	$0.006 \\ 0.010$	-0.088 -0.037	$0.995 \\ 0.992$	$0.105 \\ 0.118$	$\frac{1.034}{0.963}$	$\frac{4.080}{4.067}$	$0.146 \\ 0.384$	$0.476 \\ 0.515$	$0.917 \\ 0.954$
${ m EW}$	0.108	-0.020	0.028	-0.050	0.980	0.109	1.003	2.660	0.255	0.543	0.789
FCX TROW	$0.016 \\ 0.049$	0.013 -0.098	$0.007 \\ 0.008$	-0.063	$0.996 \\ 0.994$	$0.094 \\ 0.154$	$0.957 \\ 0.972$	$8.029 \\ 5.547$	$0.312 \\ 0.245$	$0.334 \\ 0.645$	$0.555 \\ 0.980$
VFC	0.049 0.096	-0.098	0.008 0.010	-0.080 -0.068	0.994 0.990	$0.134 \\ 0.140$	$\frac{0.972}{1.047}$	$\frac{3.347}{4.815}$	$0.245 \\ 0.154$	$0.045 \\ 0.574$	0.980 0.666
PXD	0.152	-0.004	0.022	-0.052	0.988	0.149	1.037	7.183	0.297	0.685	0.992
${f MYL} \\ {f GLW}$	$0.056 \\ 0.048$	$-0.001 \\ 0.015$	$0.018 \\ 0.007$	-0.070 -0.052	$0.986 \\ 0.995$	$0.130 \\ 0.099$	$1.016 \\ 1.007$	$4.257 \\ 4.162$	$0.194 \\ 0.274$	$0.739 \\ 0.708$	$0.882 \\ 0.768$
K	0.033	-0.066	0.001	-0.044	0.976	0.153	0.986	3.861	0.485	0.748	0.773
ED IP	$0.016 \\ 0.038$	-0.051 -0.049	-0.001 0.009	-0.039 -0.058	$0.977 \\ 0.994$	$0.160 \\ 0.143$	$0.924 \\ 0.948$	$6.106 \\ 5.985$	$0.466 \\ 0.539$	$0.589 \\ 0.860$	$0.988 \\ 0.895$
NUE	0.005	-0.049	0.009	-0.069	0.994 0.995	$0.143 \\ 0.086$	0.948 0.962	8.082	0.359	0.814	0.893
OKE	0.094	0.010	0.024	-0.107	0.970	0.189	0.983	4.623	0.159	0.573	0.834
${\displaystyle ext{TSN} \ ext{DLR} }$	$0.086 \\ 0.070$	-0.041 -0.039	$0.009 \\ 0.009$	-0.041 -0.042	$0.994 \\ 0.994$	$0.089 \\ 0.151$	$0.966 \\ 0.959$	$4.118 \\ 5.909$	$0.697 \\ 0.185$	$0.822 \\ 0.331$	$0.913 \\ 0.785$
$_{ m BFB}$	0.038	-0.072	0.012	-0.085	0.985	0.126	0.997	4.434	0.180	0.317	0.663
$\frac{\mathrm{CBS}}{\mathrm{CNC}}$	$0.059 \\ 0.103$	-0.035 -0.018	$0.013 \\ 0.024$	-0.090 -0.066	$0.992 \\ 0.987$	$0.164 \\ 0.081$	$1.034 \\ 1.035$	$5.751 \\ 3.545$	$0.711 \\ 0.328$	$0.944 \\ 0.592$	$0.909 \\ 0.910$
KLAC	0.060	-0.044	0.001	-0.049	0.999	0.058	0.979	4.975	0.121	0.440	0.726
$_{ m MHK}^{ m LEN}$	$0.003 \\ 0.054$	0.033	$0.005 \\ 0.011$	-0.058	0.998	$0.112 \\ 0.114$	$1.107 \\ 1.065$	$6.799 \\ 5.692$	$0.335 \\ 0.222$	$0.612 \\ 0.499$	$0.752 \\ 0.892$
DOV	$0.054 \\ 0.052$	0.032 -0.011	$0.011 \\ 0.011$	-0.069 -0.091	$0.993 \\ 0.990$	$0.114 \\ 0.118$	0.980	$\frac{5.092}{6.552}$	$0.222 \\ 0.199$	$0.499 \\ 0.676$	$0.892 \\ 0.898$
EXPE	0.058	0.012	0.005	-0.061	0.997	0.064	1.006	3.478	0.279	0.659	0.850
IDXX L	$0.084 \\ 0.023$	-0.008 -0.106	$0.012 \\ 0.007$	-0.047 -0.080	$0.988 \\ 0.992$	$0.146 \\ 0.169$	$0.972 \\ 0.945$	$\frac{4.097}{5.112}$	$0.282 \\ 0.198$	$0.551 \\ 0.312$	$0.880 \\ 0.890$
TAP	0.042	-0.019	0.032	-0.087	0.964	0.164	1.022	3.653	0.260	0.488	0.870
$\begin{array}{c} \text{ANDV} \\ \text{BLL} \end{array}$	$0.114 \\ 0.052$	-0.019 -0.055	$0.016 \\ 0.006$	-0.037 -0.099	$0.992 \\ 0.991$	$0.119 \\ 0.086$	$\frac{1.007}{0.968}$	$7.802 \\ 5.013$	$0.425 \\ 0.356$	$0.635 \\ 0.654$	$0.813 \\ 0.912$
$_{ m DHI}$	0.032	0.009	0.006	-0.033	$0.991 \\ 0.997$	0.030 0.114	1.109	5.665	0.261	0.682	0.912 0.980
EMN	0.071	-0.042	0.016	-0.069	0.989	0.155	1.015	4.264	0.382	0.630	0.965
$_{ m NOV}^{ m HES}$	$0.099 \\ 0.101$	-0.041 -0.031	$0.008 \\ 0.006$	-0.054 -0.049	$0.995 \\ 0.996$	$0.114 \\ 0.118$	$0.959 \\ 0.972$	$8.616 \\ 6.532$	$0.228 \\ 0.515$	$0.669 \\ 0.774$	$0.712 \\ 0.843$
TPR	0.049	0.033	0.002	-0.046	0.998	0.101	0.999	4.089	0.161	0.456	0.639
$_{ m EQT}^{ m XL}$	$0.077 \\ 0.074$	$-0.066 \\ 0.003$	$0.007 \\ 0.025$	-0.086 -0.085	$0.995 \\ 0.982$	$0.194 \\ 0.156$	$0.993 \\ 0.963$	$4.557 \\ 6.285$	$0.079 \\ 0.050$	$0.267 \\ 0.164$	$0.459 \\ 0.930$
JBĦT	0.037	-0.047	0.005	-0.068	0.996	0.090	1.033	5.482	0.156	0.368	0.401
$\stackrel{ m NBL}{ m ARE}$	$0.075 \\ 0.020$	-0.040 -0.048	$0.016 \\ 0.007$	-0.072 -0.062	$0.989 \\ 0.995$	$0.130 \\ 0.165$	$0.971 \\ 0.951$	$8.645 \\ 6.673$	$0.196 \\ 0.251$	$0.449 \\ 0.408$	$0.938 \\ 0.789$
XRAY	$0.020 \\ 0.025$	-0.048	0.007 0.011	-0.002	0.986	$0.103 \\ 0.143$	0.969	$\frac{0.073}{4.543}$	$0.231 \\ 0.286$	0.511	0.789 0.809
IFF	0.060	-0.106	0.012	-0.073	0.983	0.146	0.994	4.259	0.567	0.427	0.885
MLM MKC	$0.046 \\ 0.060$	0.022 -0.065	$0.010 \\ 0.005$	-0.057 -0.022	$0.993 \\ 0.982$	$0.132 \\ 0.146$	$1.026 \\ 1.024$	$5.271 \\ 4.127$	$0.515 \\ 0.073$	$0.719 \\ 0.338$	$0.732 \\ 0.648$
NWL	0.040	-0.010	0.005	-0.060	0.996	0.081	1.019	4.286	0.349	0.690	0.904
PVH CHD	$0.066 \\ 0.050$	0.044 -0.045	$0.013 \\ 0.008$	-0.082 -0.086	$0.991 \\ 0.977$	$0.133 \\ 0.142$	$\frac{1.041}{0.998}$	$5.742 \\ 4.243$	$0.899 \\ 0.064$	$0.889 \\ 0.335$	$0.856 \\ 0.727$
$_{ m HAS}$	0.033	-0.035	0.009	-0.068	0.991	0.114	0.991	5.183	0.474	0.783	0.863
HSIC UNM	$0.067 \\ 0.062$	-0.036 -0.091	$0.008 \\ 0.013$	-0.078 -0.081	$0.983 \\ 0.990$	$0.145 \\ 0.170$	$0.944 \\ 0.961$	$5.345 \\ 5.361$	$0.420 \\ 0.272$	$0.595 \\ 0.502$	$0.785 \\ 0.895$
AMG	0.066	-0.091 -0.055	$0.013 \\ 0.019$	-0.031	0.988	0.153	$0.961 \\ 0.973$	6.292	$0.272 \\ 0.512$	0.698	0.982
RE	0.051	-0.063	0.008	-0.061	0.986	0.178	0.987	4.910	0.065	0.351	0.642
JWN PHM	0.030 -0.007	$-0.009 \\ 0.053$	$0.005 \\ 0.008$	-0.080 -0.053	$0.996 \\ 0.997$	$0.119 \\ 0.112$	$1.013 \\ 1.105$	$5.552 \\ 6.760$	$0.348 \\ 0.687$	$0.777 \\ 0.791$	$0.895 \\ 0.865$
TMK	0.041	-0.100	0.006	-0.102	0.993	$0.112 \\ 0.159$	0.928	8.418	0.517	0.488	0.861

FFIV	0.117	-0.024	0.016	-0.054	0.992	0.085	1.054	4.081	0.229	0.619	0.921
GT	0.058	0.006	0.011	-0.059	0.995	0.111	0.987	5.071	0.172	0.765	0.984
LUK	0.041	-0.037	0.011	-0.045	0.993	0.166	0.986	6.484	0.568	0.551	0.911
PNW	0.014	-0.013	0.008	-0.083	0.980	0.150	0.976	5.303	0.065	0.176	0.943
SEE	0.025	-0.029	0.016	-0.067	0.989	0.136	0.996	3.770	0.539	0.828	0.904
SNA	0.038	-0.010	0.016	-0.110	0.988	0.165	1.024	3.973	0.288	0.586	0.804
UDR	0.049	-0.045	0.006	-0.044	0.995	0.186	0.988	7.603	0.124	0.556	0.664
XRX	0.034	-0.077	0.016	-0.069	0.989	0.113	0.976	4.770	0.446	0.613	0.816
FL	0.093	-0.008	0.017	-0.080	0.989	0.132	1.019	5.102	0.455	0.602	0.738
PWR	0.029	-0.001	0.009	-0.075	0.994	0.120	0.982	5.088	0.136	0.639	0.846
AIZ	0.057	-0.077	0.009	-0.042	0.992	0.155	0.962	4.938	0.479	0.583	0.959
NFX	0.081	0.016	0.013	-0.037	0.993	0.096	0.983	5.850	0.063	0.317	0.816
PDCO	0.065	-0.031	0.006	-0.028	0.992	0.102	0.975	3.929	0.106	0.385	0.584
BRKB	0.028	-0.032	0.009	-0.066	0.984	0.236	1.056	4.875	0.117	0.387	0.783

The table shows the estimation of AR(1) - EGARCH(1,1) - skew Student-t distribution for marginal returns and the goodness of fit test for the standarized residuals. We check the goodness of fit using Kolmogorov-Smirnov test, Anderson-Darling test, Neyman's smooth test of fit. All series passed the test with p-values larger than 0.05.

D Estimation for dynamic one factor copula models

	Gauss	ian Cop.	Studer	nt Cop.	MGS	t Cop.	Converger	nce test
	Est.	s.e.	Est.	s.e.	Est.	s.e.	Geweke	\hat{R}
$\overline{a_1}$	0.078	(0.005)	0.067	(0.005)	0.061	(0.006)	0.520	1.00
a_2	0.056	(0.007)	0.043	(0.007)	0.045	(0.008)	-0.597	1.03
a_3	0.106	(0.015)	0.059	(0.011)	0.066	(0.014)	-1.534	1.01
a_4	0.106	(0.013)	0.052	(0.014)	0.051	(0.013)	1.453	1.00
a_5	0.086	(0.006)	0.067	(0.006)	0.069	(0.006)	-0.157	1.01
a_6	0.134	(0.011)	0.034	(0.004)	0.035	(0.004)	-0.464	1.00
a_7	0.096	(0.013)	0.038	(0.006)	0.034	(0.005)	0.176	1.01
a_8	0.146	(0.015)	0.025	(0.004)	0.026	(0.004)	0.128	1.00
a_9	0.066	(0.008)	0.049	(0.010)	0.052	(0.009)	1.121	1.00
a_{10}	0.059	(0.007)	0.045	(0.006)	0.047	(0.007)	0.123	1.02
a_{11}	0.066	(0.008)	0.041	(0.004)	0.047	(0.005)	-1.263	1.00
a_{12}	0.094	(0.009)	0.041	(0.004)	0.042	(0.004)	-0.204	1.01
b_1	0.984	(0.002)	0.985	(0.002)	0.984	(0.003)	-0.454	1.00
b_2	0.982	(0.004)	0.987	(0.005)	0.984	(0.006)	-0.323	1.04
b_3	0.950	(0.013)	0.977	(0.009)	0.970	(0.013)	1.199	1.03
b_4	0.892	(0.021)	0.945	(0.037)	0.956	(0.023)	-1.085	1.00
b_5	0.972	(0.004)	0.976	(0.004)	0.977	(0.004)	-1.714	1.00
b_6	0.857	(0.020)	0.986	(0.003)	0.986	(0.003)	1.647	1.01
b_7	0.926	(0.020)	0.985	(0.005)	0.989	(0.003)	-0.552	1.00
b_8	0.855	(0.028)	0.995	(0.002)	0.995	(0.002)	-1.354	1.00
b_9	0.969	(0.007)	0.975	(0.013)	0.976	(0.009)	-0.562	1.00
b_{10}	0.978	(0.005)	0.985	(0.004)	0.985	(0.005)	0.307	1.03
b_{11}	0.966	(0.008)	0.988	(0.002)	0.985	(0.003)	0.113	1.00
b_{12}	0.952	(0.009)	0.992	(0.002)	0.992	(0.002)	0.630	1.00
$ u_1$			6.816	(0.215)	23.086	(1.926)	0.222	1.03
$ u_2$			9.827	(0.606)	13.967	(1.671)	0.452	1.01
ν_3			9.690	(0.644)	17.039	(3.107)	-0.589	1.01
$ u_4$			8.954	(0.471)	10.022	(0.648)	-0.065	1.01
$ u_5$			9.292	(0.377)	9.875	(0.436)	1.623	1.01
ν_6			11.870	(0.421)	12.354	(0.460)	1.590	1.00
$ u_7$			9.457	(0.331)	10.230	(0.399)	2.324	1.00
ν_8			11.001	(0.657)	12.028	(0.819)	0.720	1.03
ν_9			9.706	(0.533)	9.997	(0.629)	1.560	1.03
$ u_{10}$			10.659	(0.530)	13.994	(1.051)	-0.229	1.01
ν_{11}			8.001	(0.224)	8.750	(0.296)	1.069	1.00

ν_{12}			7.032	(0.186)	7.885	(0.297)	2.025	1.01
γ_1				, ,	-1.215	(0.078)	-0.106	1.01
γ_2					-0.450	(0.072)	-0.441	1.02
γ_3					-0.682	(0.124)	0.290	1.00
γ_4					-0.251	(0.032)	-0.523	1.00
γ_5					-0.236	(0.023)	-1.637	1.01
γ_6					-0.264	(0.018)	-1.906	1.00
γ_7					-0.257	(0.020)	-2.264	1.00
γ_8					-0.270	(0.034)	-1.583	1.02
γ_9					-0.246	(0.029)	-2.909	1.03
γ_{10}					-0.418	(0.044)	-0.541	1.01
γ_{11}					-0.212	(0.017)	-1.781	1.01
γ_{12}	1 170	(0.054)	1.000	(0.071)	-0.184	(0.022)	-1.413	1.00
$f_{1,c}$	1.176	(0.054)	1.226	(0.071)	1.199	(0.075)	0.697	1.00
$f_{2,c}$	2.004	(0.059)	2.233	(0.101)	2.229	(0.104)	0.498	1.00
$f_{3,c}$	1.433	(0.066)	1.496	(0.077)	1.482	(0.072)	1.443	1.00
$f_{4,c}$	1.856	(0.063)	2.069	(0.108)	2.072	(0.105)	0.962	1.00
$f_{5,c}$	1.825	(0.078)	1.960	(0.077)	1.912	(0.079)	0.618	1.00
$f_{6,c}$	2.052	(0.065)	2.211	(0.103)	2.207	(0.107)	0.429	1.01
$f_{7,c}$	1.583	(0.054)	1.693	(0.072)	1.669	(0.083)	-0.568	1.00
$f_{8,c}$	1.854	(0.076)	1.974	(0.078)	1.942	(0.076)	-1.575	1.00
$f_{9,c}$	1.647	(0.049)	1.745	(0.070)	1.719	(0.072)	0.743	1.00
$f_{10,c}$	1.123	(0.063)	1.250	(0.082)	1.236	(0.079)	1.239	1.01
$f_{11,c}$	1.603	(0.057)	1.709	(0.073)	1.690	(0.082)	-0.300	1.00
$f_{12,c}$	1.314	(0.051)	1.401	(0.056)	1.387	(0.058)	0.180	1.00
$f_{13,c}$	1.868	(0.062)	2.068	(0.104)	2.050	(0.102)	0.499	1.01
$f_{14,c}$	1.913	(0.065)	2.031	(0.065)	1.980	(0.070)	0.273	1.00
$f_{15,c}$	1.598	(0.048)	1.697	(0.070)	1.694	(0.072)	-0.178	1.00
$f_{16,c}$	1.281	(0.053)	1.332	(0.077)	1.319	(0.081)	0.168	1.00
$f_{17,c}$	1.976	(0.052)	2.074	(0.074)	2.038	(0.083)	0.614	1.00
$f_{18,c}$	1.206	(0.075)	1.235	(0.085)	1.221	(0.080)	1.275	1.00
$f_{19,c}$	1.145	(0.077)	1.189	(0.077)	1.158	(0.078)	-0.265	1.00
$f_{20,c}$	2.205	(0.055)	2.319	(0.072)	2.287	(0.082)	0.774	1.00
$f_{21,c}$	1.453	(0.052)	1.551	(0.104)	1.515	(0.109)	0.157	1.00
$f_{22,c}$	1.172	(0.066)	1.240	(0.076)	1.219	(0.071)	-0.326	1.00
$f_{23,c}$	2.122	(0.055)	2.257	(0.069)	2.225	(0.082)	0.467	1.00
$f_{24,c}$	1.188	(0.067)	1.239	(0.073)	1.238	(0.069)	-0.414	1.00
$f_{25,c}$	1.869	(0.061)	2.010	(0.103)	2.009	(0.102)	2.733	1.00
$f_{26,c}$	1.930	(0.062)	2.130	(0.105)	2.120	(0.104)	-0.059	1.01
$f_{27,c}$	1.619	(0.052)	1.772	(0.073)	1.747	(0.081)	0.966	1.00
$f_{28,c}$	1.924	(0.049)	2.037	(0.071)	2.004	(0.075)	0.531	1.00
$f_{29,c}$	1.375	(0.056)	1.469	(0.075)	1.460	(0.082)	-0.504	1.01
$f_{30,c}$	1.435	(0.056)	1.498	(0.069)	1.476	(0.080)	0.345	1.00
$f_{31,c}$	1.673	(0.098)	1.747	(0.096)	1.755	(0.092)	-0.162	1.00
$f_{32,c}$	1.985	(0.065)	1.977	(0.103)	1.975	(0.103)	1.208	1.00
$f_{33,c}$	1.525	(0.049)	1.626	(0.071)	1.596	(0.073)	0.174	1.00
$f_{34,c}$	1.947	(0.062)	2.146	(0.102)	2.144	(0.104)	2.017	1.01
$f_{35,c}$	2.045	(0.062)	2.125	(0.105)	2.104	(0.105)	0.323	1.00
$f_{36,c}$	1.856	(0.063)	2.004	(0.103)	2.025	(0.105)	0.084	1.00
$f_{37,c}$	1.902	(0.064)	1.972	(0.102)	1.974	(0.103)	-0.700	1.00
$f_{38,c}$	1.705	(0.065)	1.852	(0.086)	1.852	(0.081)	0.548	1.00
$f_{39,c}$	1.748	(0.077)	1.846	(0.077)	1.813	(0.080)	-0.924	1.00
$f_{40,c}$	1.790	(0.065)	1.908	(0.067)	1.860	(0.068)	0.178	1.00
$f_{41,c}$	1.761	(0.055)	1.887	(0.074)	1.853	(0.082)	0.553	1.00
$f_{42,c}$	1.305	(0.054)	1.359	(0.073)	1.346	(0.082)	-1.482	1.01
$f_{43,c}$	1.638	(0.056)	1.739	(0.075)	1.711	(0.082)	-0.249	1.00
$f_{44,c}$	1.371	(0.064)	1.409	(0.099)	1.388	(0.103)	-0.301	1.00

$f_{45,c}$	1.513	(0.050)	1.614	(0.105)	1.578	(0.107)	1.540	1.00
$f_{46,c}$	1.217	(0.052)	1.301	(0.055)	1.290	(0.058)	-0.136	1.00
$f_{47,c}$	1.609	(0.051)	1.750	(0.105)	1.735	(0.109)	0.323	1.00
$f_{48,c}$	1.412	(0.099)	1.576	(0.097)	1.603	(0.090)	-0.013	1.00
$f_{49,c}$	1.106	(0.067)	1.180	(0.076)	1.163	(0.071)	-0.487	1.00
	2.228	(0.063)	2.410	(0.087)	2.408	(0.082)	0.336	1.00
$f_{50,c}$		\ /		\ /		\ /		
$f_{51,c}$	2.214	(0.064)	2.440	(0.084)	2.432	(0.081)	1.544	1.00
$f_{52,c}$	1.502	(0.057)	1.535	(0.072)	1.517	(0.081)	0.030	1.01
$f_{53,c}$	1.636	(0.094)	1.721	(0.101)	1.724	(0.090)	-0.666	1.00
$f_{54,c}$	1.338	(0.066)	1.487	(0.089)	1.496	(0.079)	1.876	1.00
	1.093	(0.076)	1.200	(0.085)	1.211	(0.083)	-1.365	1.00
$f_{55,c}$								
$f_{56,c}$	1.692	(0.066)	1.811	(0.088)	1.804	(0.082)	-0.139	1.01
$f_{57,c}$	1.366	(0.076)	1.454	(0.078)	1.432	(0.078)	-1.640	1.00
						\		
$f_{58,c}$	1.274	(0.053)	1.324	(0.100)	1.304	(0.107)	0.139	1.00
$f_{59,c}$	1.739	(0.067)	1.823	(0.068)	1.805	(0.071)	-0.898	1.01
	1.738	(0.050)	1.857	(0.054)	1.814	(0.057)	-0.727	1.00
$f_{60,c}$						\		
$f_{61,c}$	1.241	(0.075)	1.319	(0.077)	1.291	(0.076)	-0.083	1.00
$f_{62,c}$	1.335	(0.077)	1.397	(0.082)	1.388	(0.081)	-0.625	1.01
$f_{63,c}$	1.875	(0.067)	1.995	(0.070)	1.948	(0.068)	-0.817	1.00
$f_{64,c}$	1.031	(0.066)	1.143	(0.087)	1.148	(0.081)	-0.636	1.00
	2.099	(0.066)	2.222	(0.088)	2.230	(0.082)	0.132	1.00
$f_{65,c}$								
$f_{66,c}$	1.614	(0.062)	1.658	(0.084)	1.667	(0.080)	0.454	1.00
$f_{67,c}$	1.725	(0.060)	1.769	(0.103)	1.767	(0.106)	1.894	1.00
	1.846	(0.066)	1.997	(0.086)	2.028	(0.082)	2.486	1.00
$f_{68,c}$								
$f_{69,c}$	1.728	(0.055)	1.880	(0.073)	1.852	(0.081)	0.964	1.00
$f_{70,c}$	1.251	(0.074)	1.316	(0.085)	1.290	(0.081)	-0.927	1.00
				\		\		
$f_{71,c}$	1.268	(0.052)	1.358	(0.073)	1.334	(0.073)	0.387	1.00
$f_{72,c}$	1.097	(0.068)	1.156	(0.077)	1.126	(0.072)	-0.755	1.00
$f_{73,c}$	1.941	(0.053)	2.064	(0.073)	2.030	(0.081)	-0.296	1.00
$f_{74,c}$	1.353	(0.080)	1.377	(0.083)	1.364	(0.081)	0.000	1.00
$f_{75,c}$	0.994	(0.053)	1.035	(0.104)	1.015	(0.107)	1.587	1.00
	1.431	(0.095)	1.542	(0.102)	1.526	(0.090)	-0.163	1.00
$f_{76,c}$						\		
$f_{77,c}$	2.369	(0.064)	2.442	(0.108)	2.422	(0.103)	-0.427	1.00
$f_{78,c}$	1.440	(0.077)	1.544	(0.074)	1.520	(0.081)	-0.097	1.00
		(1.635			
$f_{79,c}$	1.502	(0.098)	1.596	(0.099)		(0.091)	-1.353	1.00
$f_{80,c}$	1.286	(0.068)	1.324	(0.076)	1.287	(0.073)	1.083	1.01
$f_{81,c}$	1.635	(0.048)	1.760	(0.069)	1.731	(0.074)	-0.653	1.00
		\ /						
$f_{82,c}$	1.129	(0.079)	1.220	(0.088)	1.233	(0.083)	2.517	1.00
$f_{83,c}$	1.196	(0.077)	1.281	(0.078)	1.285	(0.082)	0.388	1.00
$f_{84,c}$	1.661	(0.077)	1.758	(0.074)	1.702	(0.077)	-0.718	1.00
$f_{85,c}$	1.761	(0.050)	1.853	(0.070)	1.822	(0.074)	-1.046	1.00
$f_{86,c}$	1.565	(0.074)	1.587	(0.084)	1.555	(0.084)	0.712	1.00
	1.127	(0.078)	1.170	(0.085)	1.156	(0.080)	-0.532	1.00
$f_{87,c}$								
$f_{88,c}$	1.297	(0.066)	1.322	(0.100)	1.309	(0.102)	0.157	1.00
$f_{89,c}$	1.359	(0.079)	1.455	(0.082)	1.455	(0.082)	1.047	1.01
		((0.070)		
$f_{90,c}$	1.836	(0.068)	1.935	(0.068)	1.894	\	1.154	1.00
$f_{91,c}$	0.965	(0.066)	1.030	(0.084)	1.021	(0.080)	0.422	1.00
$f_{92,c}$	1.642	(0.048)	1.690	(0.105)	1.628	(0.115)	0.631	1.01
$f_{93,c}$	1.447	(0.094)	1.547	(0.093)	1.400	(0.090)	-1.945	1.00
$f_{94,c}$	1.600	(0.078)	1.670	(0.075)	1.617	(0.079)	-0.423	1.00
	2.092	(0.050)	2.183	(0.071)	2.162	(0.072)	-0.350	1.00
$f_{95,c}$								
$f_{96,c}$	1.287	(0.066)	1.367	(0.069)	1.338	(0.071)	0.184	1.00
$f_{97,c}$	1.288	(0.068)	1.335	(0.075)	1.287	(0.071)	-1.250	1.00
	2.329	(0.065)	2.381	(0.089)	2.368	(0.083)	0.253	1.00
$f_{98,c}$								
$f_{99,c}$	1.214	(0.080)	1.280	(0.086)	1.268	(0.082)	1.802	1.00
$f_{100,c}$	1.149	(0.078)	1.220	(0.077)	1.186	(0.078)	0.996	1.00
	1.737	(0.052)	1.803		1.772	(0.073)	-2.006	1.01
$f_{101,c}$	1.191	(0.002)	1.000	(0.071)	1.114	(0.013)	-2.000	1.01

$f_{102,c}$	1.432	(0.102)	1.552	(0.100)	1.385	(0.090)	0.919	1.00
$f_{103,c}^{102,c}$	1.970	(0.051)	2.055	(0.057)	2.000	(0.058)	-1.244	1.00
$f_{104,c}$	1.596	(0.080)	1.691	(0.074)	1.655	(0.079)	-1.200	1.00
$f_{105,c}^{104,c}$	1.521	(0.051)	1.619	(0.072)	1.575	(0.074)	-1.049	1.00
$f_{106,c}$	1.464	(0.051)	1.566	(0.071)	1.537	(0.072)	0.194	1.00
$f_{107,c}$	1.829	(0.066)	1.904	(0.084)	1.893	(0.082)	0.308	1.00
$f_{108,c}$	1.391	(0.097)	1.550	(0.101)	1.469	(0.089)	0.242	1.00
$f_{109,c}$	1.553	(0.067)	1.630	(0.066)	1.614	(0.070)	-0.375	1.01
$f_{110,c}$	1.609	(0.100)	1.709	(0.100)	1.744	(0.089)	0.369	1.00
$f_{111,c}$	1.693	(0.065)	1.731	(0.102)	1.730	(0.101)	0.576	1.00
$f_{112,c}$	1.728	(0.052)	1.765	(0.114)	1.749	(0.118)	1.558	1.00
$f_{113,c}$	1.965	(0.049)	2.120	(0.056)	2.089	(0.057)	0.425	1.00
$f_{114,c}$	1.545	(0.098)	1.551	(0.098)	1.452	(0.089)	-1.053	1.00
$f_{115,c}$	1.331	(0.077)	1.414	(0.083)	1.412	(0.081)	1.208	1.00
$f_{116,c}$	1.706	(0.048)	1.753	(0.068)	1.715	(0.074)	-0.851	1.00
$f_{117,c}$	1.361	(0.076)	1.458	(0.075)	1.416	(0.077)	0.826	1.01
$f_{118,c}$	1.112	(0.051)	1.197	(0.057)	1.181	(0.058)	0.135	1.01
$f_{119,c}$	1.362	(0.054)	1.390	(0.104)	1.339	(0.109)	-1.236	1.00
$f_{120,c}$	1.644	(0.073)	1.716	(0.083)	1.712	(0.079)	-0.922	1.00
$f_{121,c}$	2.074	(0.063)	2.242	(0.084)	2.250	(0.081)	1.134	1.00
$f_{122,c}$	2.229	(0.061)	2.267	(0.109)	2.250	(0.107)	1.495	1.00
$f_{123,c}$	1.356	(0.064)	1.410	(0.087)	1.435	(0.082)	1.006	1.00
$f_{124,c}$	1.558	(0.073)	1.584	(0.081)	1.556	(0.081)	-0.127	1.00
$f_{125,c}$	1.491	(0.101)	1.607	(0.095)	1.476	(0.091)	0.073	1.00
$f_{126,c}$	2.189	(0.064)	2.383	(0.091)	2.392	(0.080)	0.000	1.00
$f_{127,c}$	1.261	(0.051)	1.348	(0.071)	1.331	(0.072)	-0.852	1.01
$f_{128,c}$	1.555	(0.050)	1.631	(0.070)	1.612	(0.073)	-0.682	1.00
$f_{129,c}$	2.099	(0.083)	2.074	(0.087)	2.010	(0.085)	-0.916	1.00
$f_{130,c}$	1.376	(0.075)	1.456	(0.079)	1.458	(0.081)	0.482	1.01
$f_{131,c}$	1.806	(0.050)	1.883	(0.055)	1.848	(0.057)	-0.529	1.00
$f_{132,c}$	2.065	(0.048)	2.217	(0.070)	2.176	(0.073)	-1.100	1.00
$f_{133,c}$	1.560	(0.064)	1.612	(0.103)	1.599	(0.102)	0.056	1.00
$f_{134,c}$	1.705	(0.050)	1.837	(0.070)	1.818	(0.071)	0.152	1.00
$f_{135,c}$	1.233	(0.074)	1.264	(0.082)	1.242	(0.082)	-1.236	1.00
$f_{136,c}$	1.517	(0.099)	1.549	(0.098)	1.445	(0.089)	1.552	1.01
$f_{137,c}$	1.677	(0.063)	1.805	(0.084)	1.811	(0.080)	1.030	1.00
$f_{138,c}$	1.386	(0.098)	1.458	(0.098)	1.494	(0.092)	-0.797	1.00
$f_{139,c}$	1.598	(0.073)	1.662	(0.081)	1.663	(0.083)	-0.671	1.01
$f_{140,c}$	1.754	(0.063)	1.755	(0.086)	1.752	(0.081)	-0.664	1.01

The table shows the estimation of one factor copula models and the convergence check for MGSt copulas using the Geweke statistics (Geweke (1992)) and the Gelman and Rubin's convergence statistics (\hat{R} statistics, Gelman and Rubin (1992)). We report the Geweke statistic based on the standard Z-score of the difference between the two sample means of first 10% proportion and last 50% proportion of posterior samples. We report the 0.95% upper confidence limits statistics, see Plummer et al. (2006). The \hat{R} values are close to 1 indicate the convergence.

E The trace plots of parameters in MGSt copulas

References

- A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple sequences. *Statistical Science*, pages 457–472, 1992.
- J. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Bayesian Statistics 4. Edited by: Bernardo JM, Berger J, Dawid AP, Smith AFM., 1992.

M. Plummer, N. Best, K. Cowles, and K. Vines. Coda: Convergence diagnosis and output analysis for mcmc. R News, 6(1):7-11, 2006. URL https://journal.r-project.org/archive/.