Bài . Giao điểm giữa các đường thẳng. INTERSEC.*

Cho một tập gồm N đường thẳng được xác định theo phương trình $y=k_ix+b_i$. Câu hỏi đặt ra là liệu có ít nhất một giao điểm của những đường này, nằm ở bên trong khoảng $(x_1; x_2)$ với $x_1 < x_2$.

Nói cách khác, liệu có tồn tại $1 \le i < j \le n$ và x', y', thỏa mãn:

- $y' = k_i x' + b_i$, trong đó điểm (x', y') thuộc về đường thứ i;
- $y' = k_i x' + b_i$, trong đó điểm (x', y') thuộc về đường thứ j

 $x_1 < x' < x_2$, thỏa mãn điểm (x',y') nằm nghiêm ngặt bên trong miền được tạo thành bởi hai đường $x = x_1$ và $x = x_2$, trong đó $x_1 < x_2$

Dữ liệu vào từ tệp văn bản INTERSEC.INP

- Dòng đầu tiên chứa một số nguyên $N(2 \le N \le 100000)$ số đường trong bài toán.
- Dòng thứ hai chứa hai số nguyên x_1 và x_2 ($-1000000 \le x_1 < x_2 \le 1000000$) xác định vùng bên trong đó bạn cần phải tìm ít nhất một giao điểm của hai đường
- N dòng sau chứa các số nguyên k_i, b_i ($-1000000 \le k_i, b_i \le 1000000$), mô tả các đường thẳng. Đảm bảo rằng tất cả các đường thẳng này khác nhau, nghĩa là, cho $i \ne j$, hoặc $k_i \ne k_j$ hoặc $b_i \ne b_j$

Kết quả ghi ra tệp văn bản INTERSEC.OUT: Đưa ra "Yes", nếu có ít nhất một giao điểm giữa hai đường phân biệt, và nằm trong giới hạn đã cho. Ngược lại đưa ra "No"

INTERSEC.INP	INTERSEC.OUT
4	NO
1 2	
1 2	
1 0	
0 1	
0 2	
2	YES
1 3	
1 0	
-1 3	

Trong ví dụ đầu, có giao điểm của hai đường, nhưng nó không nằm đúng bên trong giới hạn của hai đường $x = x_1$ và $x = x_2$, mà giao điểm lại nằm trên đường $x = x_2$

Giới hạn thời gian 1 giây

- Có 50% số test ứng với $N \le 10^3$
- Có 50% số test ứng với $N \le 10^5$