

جبرخطی کاربردی نیمسال دوم ۹۸_۹۷

مدرس : دكتر امير مزلقاني

تمرین دوم (جبر ماتریسی)

توجه !!!

- سوالات زیر مربوط به فصل اول درس جبر خطی کاربردی با موضوع ((جبر ماتریسی) می باشد که شامل ۱۰ سوال تئوری و ۱ سوال عملی است
 - سوالات را به دقت و مطالعه و به صورت خوانا و مرتب بنویسید
 - برای قسمت پیاده سازی گزارشی دقیق از عملکرد خود بنویسید.
 - در صورت وجود هرگونه مشكل يا ابهام در ارتباط با سوالات از طريق

ala.spring 2019@gmail.com

با رعایت مواردی که در قوانین ارسال تمارین آماده است سوال خود را بیرسید.

• پاسخ های خود را در قالب یک فایل zip به صورت الگوی زیر آپلود کنید:

 $9531000_Sokratis_Papastathopoulos_HW1.zip$

• مهلت ارسال این تمرین ساعت ۲۳:۵۵ روز جمعه ۹۸/۰۱/۰۹ می باشد.

تمارين:

۱. معکوس ماتریس زیر را به روش گوس_جردن پیدا کنید:

$$B = \left[\begin{array}{ccc} 1 & \cdot & -7 \\ -7 & 1 & 7 \\ 7 & -7 & 7 \end{array} \right]$$

- ٧. محاسبه معكوس ماتريس:
- (آ) به کمک الگوریتم هایی که در این فصل برای محاسبه ماتریس معکوس آموخته اید، معکوس ماتریس های زیر را محاسبه نمایید:

$$A_{\mathtt{Y},\mathtt{Y} imes\mathtt{Y}} = \left[egin{array}{cccc} \mathtt{Y} & \mathtt{Y} & \mathtt{Y} & \mathtt{Y} & \mathtt{Y} \\ \mathtt{Y} & \mathtt{Y} & \mathtt{Y} & \mathtt{Y} \\ \mathtt{Y} & \mathtt{Y} & \mathtt{Y} & \mathtt{Y} \end{array}
ight] \qquad \mathcal{A}_{\mathtt{Y},\mathtt{Y} imes\mathtt{Y}} = \left[egin{array}{cccc} \mathtt{Y} & \mathtt{Y} & \mathtt{Y} \\ \mathtt{Y} & \mathtt{Y} & \mathtt{Y} \end{array}
ight]$$

(ب) فرض کنید ماتریس A یک ماتریس $n \times n$ پایین مثلثی با درایه های ۱ باشد و ماتریس B معکوس آن در نظر گرفته شود. با توجه به قسمت قبل فرم ماتریس B را حدس زده و ثابت کنید : BA = I

(ج) استراتژی ای که در قسمت الف و ب برای پیدا کردن معکوس ماتریس $A_{n \times n}$ استفاده کردید را درپیش گرفته و معکوس ماتریس زیر را حدس بزنید.

$$A = \left[\begin{array}{cccc} 1 & \bullet & \bullet & \cdots & \bullet \\ 1 & 7 & \bullet & & \bullet \\ 1 & 7 & 7 & & & \bullet \\ \vdots & & & \ddots & \vdots \\ 1 & 7 & 7 & \cdots & n \end{array} \right]$$

۳. یکی از ماتریس های کاربردی در پردازش سیگنال، تصحیح خطا و درون یابی چند جمله ای ها، ماتریس واندرموند می باشد. ماتریس واندرموند به صورت زیر تعریف می شود:

$$V = \begin{bmatrix} \begin{matrix} 1 & x_1 & x_1^{\mathsf{Y}} & \cdots & x_1^{n-1} \\ 1 & x_1^{\mathsf{Y}} & x_1^{\mathsf{Y}} & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^{\mathsf{Y}} & \cdots & x_n^{n-1} \end{bmatrix}$$

 $V\mathbf{c} = \mathbf{y}$ فرض کنید که بردار $\mathbf{y} = (y_1, \dots, y_n)$ و بردار $\mathbf{y} = (y_1, \dots, y_n)$ در $\mathbf{v} = (y_1, \dots, y_n)$ برقرار باشد. هم چنین چند جمله ای $\mathbf{y} = (y_1, \dots, y_n)$ به صورت زیر تعریف می شود:

$$p(t) = c_1 + c_1 t + c_1 t^{r} + \dots + c_{n-1} t^{n-1}$$

(آ) نشان دهید برای i = 1, 1, ..., n داریم:

$$p\left(x_i\right) = y_i$$

در واقع p(t) چند جمله ای درون یاب برای نقاط $(x_1,y_1),\ldots,(x_n,y_n)$ محسوب می شود چرا که از نقاط مذکور می گذرد.

- (ب) فرض کنید x_1,\dots,x_n اعدادی متمایز هستند. نشان دهید که ستون های ماتریس V متسقل خطی اند. (راهنمایی: یک چند جمله ای درجه n-1 چه تعداد صفر می تواند داشته باشد؟)
- (ج) ثابت کنید که اگر $(x_1,y_1),\dots,(x_n,y_n)$ اعداد متمایز و y_1,\dots,y_n اعداد دلخواه باشند، یک چند جمله ای از درجه حداکثر $(x_1,y_1),\dots,(x_n,y_n)$ می گذرد.

 ۴. یکی از تبدیلات معمولی که در کارهای گرافیکی دو بعدی برروی مختصات همگن مورد استفاده قرار می گیرد شامل ماتریس ۳ × ۳ با فرمت زیر است :

$$\left[\begin{array}{cc} A & \mathbf{p} \\ \bullet^T & \mathbf{1} \end{array}\right]$$

که در آن A یک ماتریس $Y \times Y$ بوده و \mathbf{p} در \mathbb{R}^Y تعریف می شود. نشان دهید که چنین تبدیلی اینگونه عمل می کند که ابتدا یک تبدیل خطی را اعمال کرده و به دنبال یک انتقال را انجام میدهد. (راهنمایی: یک فاکتوریزاسیون مناسب شامل ماتریس های بلوکی پیدا کنید.)

م. تجزیه LU را برای ماتریس زیر بدست آورده و با استفاده از آن معادله $\mathrm{A}x=b$ را حل کنید.

$$A = \left[egin{array}{ccc} \Upsilon & \Upsilon & \Upsilon & \Upsilon \ \Upsilon & \varUpsilon & \Delta \ \Upsilon & \varUpsilon & \Lambda \end{array}
ight] \qquad b = \left[egin{array}{ccc} \varUpsilon & \Upsilon & \Upsilon & \Upsilon \ \Upsilon & \Upsilon & \Upsilon \end{array}
ight]$$

- موارد زیر را ثابت کنید.
- (آ) اگر ستون های B مستقل خطی باشند ستون های AB نیز مستقل خطی هستند.

- (ب) اگر A,B و C ماتریس های وارون پذیر $n \times n$ باشند آنگاه جواب معادله $C^{-1}(A+X)B^{-1}=C$ بیابید. (Xیک ماتریس مجهول است).
 - (ج) اگر مجموع داریه های روی قطر اصلی یک ماتریس مربعی را با trc(A) نشان دهیم ثابت کنید: trc(AB) = trc(BA)
 - $trc(\lambda A + B) = \lambda trc(A) + trc(B)$ $\lambda \in \mathbb{R}$:د) ثابت کنید
 - (ه) ثبات کنید اگر $trc(AA^T) = trc(AA^T)$ آنگاه
 - را در نظر بگیرید. $\begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix}_{(n+m) \times (n+m)}$ را در نظر بگیرید.
 - (آ) اگر ماتریس A و $D CA^{-1}B$ معکوس پذیر باشند، آنگاه نشان دهید:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B (D - CA^{-1}B)^{-1} CA - 1 & -A^{-1}B (D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1} CA - 1 & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

(ب) اگر ماتریس D و $A-BD^{-1}C$ معکوس پذیر باشند، آنگاه نشان دهید:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} + D^{-1} \end{bmatrix}$$

. اگر داشته باشیم $A^{\mathsf{T}} = \mathsf{T}I$ ،نشان دهید ماتریس B وارون پذیر است.

$$B = A^{\mathsf{Y}} - \mathsf{Y}A + \mathsf{Y}I$$

 $L=L_1$. اگر A=LU و همچنین $A=L_1U_1$ و همه فاکتورها (L_1,U_1,L,U) وارون پذیر باشند ، ثابت کنید: $L=L_1$. $U=U_1$

.1.

(آ) نشان دهید که وارون ماتریس و ترانهاده ماتریس جایگشت با هم برابر است. (توضیح : ماتریس جایگشت، از ضرب دنباله ای از ماتریس های مقدماتی که از جابجایی دو سطر ایجاد شده اند ، به دست می آید)

$$P^{-1} = P^T$$

(ب) اگر $A^{-1} = A^T$ ، آیا لزوما A ،ماتریس جایگشت است؟ اگر بله ، اثبات کنید و در غیر این صورت مثال نقض بزنید.

مسائل شبیه سازی و پیاده سازی:

11. ماتریس متراکم (ماتریسی که بیشتر درایه های آن _ مثلا بماتریس متراکم (ماتریسی که بیشتر درایه های آن _ مثلا بیش از نیمی از آنها_ غیر صفر باشد) و معکوس پذیر A با ابعاد $n \times n$ را در نظر بگیرید، روش استاندارد حل دستگاه معادله خطی Ax = b به صورت زیر است:

- A = LU ماتریس A را بیاید: LU ماتریس ۱.
- ۲. اگر u از طریق جایگزینی پیشرو $\hat{x} = b$ سیستم $\hat{x} = u$ (که در آن L یک ماتریس پایین مثلثی است) را از طریق جایگزینی پیشرو $\hat{x} = u$ (forwardsubstitution) حل کنید.
- ۳. سیستم بالا مثلثی $ux = \hat{x}$ را (که در آن $ux = \hat{x}$ ماتریس بالا مثلثی است) از طریق جایگزینی عقب گرد (backsubstitution) حل کنید.
- ره) تابعی بنویسید که تجزیه LU ماتریس A را پیدا کند. فرض کنید که می توان ماتریس A را بدون استفاده از عمل جا به جایی دو سطر vow-interchange از بین اعمال سطری مقدماتی به ماتریس بالا مثلثی U تبدیل کرد. تابع شما باید ماتریس A را به عنوان ورودی بگیرد و ماتریس پایین مثلثی D و ماتریس بالا مثلثی U را باز گرداند.

```
Function [L, U] = lu\_factor(A)

[n , n1] = size(A);

if n \sim= n1

error ("A must be square")

end

L = eye(n)

U = zeros(n)

...
```

return;

در کد بالا شما باید قسمت را تکمیل کنید. برای این منظور تنها مقادیر بالای قطر اصلی ماتریس U که مقدار اولیه صفر گرفته است و مقادیر پایین قطر اصلی ماتریس L که برابر ماتریس همانی است را آپدیت کنید.

تابع دیگری بنویسید که معادله b = Ax را از طریق مراحل ۱ و ۲ و ۳ را که در بالا ذکر شده است، حل کند. تابع شما باید به شکل زیر باشد:

```
function x = linear_sys_solver(A,b)
% compute the LU factorization of A
% Solve Ly = b for y by forward substitution
% Solve Ux = y by back substitution
return;
```

می توانید از کد خود مروبط به سوال ۸ تمرین اول در این بخش استفاده کنید

lu_factor را برای محاسبه وارون ماتریس A با سایز $n \times n$ بنویسید. توجه کنید که باید از تابع myinverse و $n \times n$ بنویسید. توبع $n \times n$ بنویسید و $n \times n$ بنویسید و $n \times n$ با نوشته اید استفاده توابع $n \times n$ و $n \times n$ با نوشته اید استفاده کنید. فرض کنید که $n \times n$ به ازای $n \times n$ با را می تواند از تجزیه $n \times n$ ماتریس $n \times n$ و ماتریس $n \times n$ استفاده کنید. (توجه کنید که شما تنها یک بار می تواند از تجزیه $n \times n$ ماتریس $n \times n$ را محاسبه کنید)

(d) ماتریس هیلبرت یک ماتریس مربعی است به گونه ای که $\frac{1}{1+i+j}=\frac{1}{1+i+j}$ ماتریس هیلبرت A از مرتبه A و ۱۰ و ۱۰ و ۱۵ و ۲۰ را بسازید و ماتریس وارون آنها A^{-1} را از طریق توابع آماده (مثلا در متلب از طریق تابع inv) به دست آورید. سپس ماتریس وارون آن را از طریق تابع myinverse که در بخش قبل نوشته اید به دست آورید (آن را A^{-1} بنامید) مقادیر A^{-1} و A^{-1} را به دست آورید و نتایج را مقایسه و تحلیل کنید. (راهنمایی: به ویژگی های ماتریس های ill-conditioned توجه کنید)