Dynamic Programming (2)

Desain & Analisis Algoritma
Fakultas Ilmu Komputer
Universitas Indonesia

Compiled by Alfan F. Wicaksono from multiple sources

Credits

- Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
- Dynamic Programming: Weighted Interval Scheduling, CMSC 451: Lecture 10, by Dave Mount

Longest Common Subsequence

- Biological applications often need to compare the DNA of two (or more) different organisms.
- A strand of DNA consists of a string of molecules called <u>bases</u>, where
 the possible bases are adenine, cytosine, guanine, and thymine.
 Representing each of these bases by its initial letter, we can express a
 strand of DNA as a string over the 4-element set {A, C, G, T}.
- For example, the DNA of one organism may be

• and the DNA of another organism may be

 One reason to compare two strands of DNA is to measure of how closely related the two organisms are.

- A way to measure the similarity of strands S_1 and S_2 is by finding a third strand S_3 in which the **bases** in S_3 appear in each of S_1 and S_2 .
- These bases must appear in the same order, but not necessarily consecutively. The longer the strand S_3 , the more similar S_1 and S_2 are.
- We call this notion as "The longest common subsequence". In our example,
- S₁ = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
- $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$
- The longest common subsequence, or S_3 , is:

GTCGTCGGAAGCCGGCCGAA

- Given two sequences X and Y, a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
- If X = <A, B, C, B, D, A, B> and Y = <B, D, C, A, B, A>, then <B, C, A> is a common subsequence of both X and Y that has length three.

The longest-common-subsequence (LCS) problem:

Given two sequence X and Y, find a maximum-length common subsequence of X and Y.

- Brute-Force Approach: enumerate all subsequences of X and check each subsequence to see if it is also a subsequence of Y, while keeping track of the longest subsequence found.
- There are 2^n subsequences of X with n items. So the brute-force solution is **exponential** in the number of items in X.
- LCS can be efficiently solved using Dynamic Programming.

Notation:

Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, we define the *i*-th prefix of X, for i = 0,1,2...,m, as $pref(X,m) = \langle x_1, x_2, ..., x_m \rangle$.

For example, if $X = \langle A, B, A, C, D, B \rangle$, then $pref(X, 4) = \langle A, B, A, C \rangle$ and $pref(X, 0) = \langle \rangle$.

Step 1: a theorem (Optimal Substructure of an LCS)

Let $X=< x_1,x_2,...,x_m>$ and $Y=< y_1,y_2,...,y_n>$ be sequences, and let $Z=< z_1,z_2,...,z_k>$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and pref(Z, k-1) is an LCS of pref(X, m-1) and pref(Y, n-1).
- 2. If $x_m \neq y_n$ and $z_k \neq x_m$, then Z and is an LCS of pref(X, m-1) and Y.
- 3. If $x_m \neq y_n$ and $z_k \neq y_n$, then Z and is an LCS of X and pref(Y, n-1).

In general, an LCS of two sequences contains within it an LCS of prefixes of the two sequences.

Exercise:

Use "proof by contradiction" to show the truth of the optimal substructure of LCS!

Step 2: a recursive solution for LCS

Suppose c(i,j) be the <u>length</u> of an LCS of the sequences pref(X,i) and pref(Y,i).

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ c(i-1,j-1) + 1 & i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1], c[i-1,j]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Step 2: a recursive solution for LCS

Suppose c(i,j) be the <u>length</u> of an LCS of the sequences pref(X,i) and pref(Y,i).

If $x_i = y_j$ then you need to find an LCS of pref(X, i-1) and pref(Y, j-1). Appending $x_i = y_j$ yields an LCS of pref(X, i) and pref(Y, j)

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ \hline c(i-1,j-1) + 1 & i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1], c[i-1,j]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Step 2: a recursive solution for LCS

Suppose c(i,j) be the <u>length</u> of an LCS of the sequences pref(X,i) and pref(Y,i).

If $x_i \neq y_j$ then you need to solve **two subproblems**! Whichever of these two LCSs is longer is an LCS of of pref(X, i) and pref(Y, j)

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ c(i-1,j-1)+1 & i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1], c[i-1,j]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Step 2: a recursive solution has the overlapping-subproblems

To find an LCS of X and Y, you might need to find the LCSs of X and pref(Y,n-1) and of pref(X,m-1) and Y.

Each of these subproblems has the subsubproblem of finding an LCS of pref(X,m-1) and pref(Y,n-1).

$$c(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ c(i-1,j-1) + 1 & i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i,j-1], c[i-1,j]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Step 3: a DP solution (bottom-up version)

There are only $\Theta(mn)$ distinct subproblems.

- The following LCS-LENGTH procedure takes two sequences $X=\langle x_1,x_2,...,x_m\rangle$ and $Y=\langle y_1,y_2,...,y_n\rangle$ as inputs, along with their lengths.
- It stores c(i,j) values the in a table c[0:m,0:n] whose entries are computed in row-major order.
- The procedure also maintains the table b[1:m,1:n] to help in constructing an optimal solution (step 4).

Step 3: a DP solution (bottom-up version)

```
LCS-LENGTH(X, Y, m, n):
  let b[1:m, 1:n] and c[0:m, 0:n] be new matrix
  for i = 1 to m:
    c[i,0] = 0
  for j = 0 to n:
    c[0,j] = 0
  for i = 1 to m:
                            //iterate the matrix in row-major order
    for j = 1 to n:
       if X_i = Y_i then
         c[i,j] = c[i-1, j-1] + 1
         b[i,i] = "\"
       else if c[i-1,j] \ge c[i,j-1] then
          c[i,j] = c[i-1, j]
                                                 The running time is \Theta(mn)
         b[i,j] = "↑"
       else
          c[i,j] = c[i, j-1]
         b[i,j] = "←"
  return c and b
```

MITURIT. WICKSOND, FUSIKONI OI

Example

Create the table/matrix when computing an LCS of $X = \langle A,B,C,B,D,A,B \rangle$ and $Y = \langle B,D,C,A,B,A \rangle$

		j 0	1	2	3	4	5	6
i			В	D	C	Α	В	A
0		0	0	0	0	0	0	0
1	A	0	<u></u> ↑0	<u></u> ↑0	<u></u> ↑0	1	←1	\1
2	В	0	\1	←1	←1	↑1	۲2	←2
3	C	0	↑1	†1	۲2	←2	<u>†2</u>	↑2
4	В	0	1	†1	†2	↑2	√3	←3
5	D	0	↑1	\2	†2	↑2	†3	↑3
6	A	0	↑1	↑2	↑2	\3	†3	54
7	В	0	\1	↑2	↑2	↑3	^4	†4

Step 4: Print a solution using the table b

```
// initial call: PRINT-LCS(n,X,m,n)
PRINT-LCS(b, X, i, j):
  if i == 0 or j == 0 then
      return []
  if b[i,j] == "\" then
      return PRINT-LCS(b, X, i-1, j-1) + [x_i] // same as + [y_i]
 else if b[i,j] == "\tau" then
      return PRINT-LCS(b, X, i-1, j)
 else
      return PRINT-LCS(b, X, i, j-1)
```

The running time is $\Theta(m+n)$

Rod Cutting Problem

The summary so far

- Weighted Interval Scheduling, Knapsack, LCS
 - There are n subproblems
 - Two cases: e.g., include j or don't include j
- Rod Cutting Problem (what we're going to see)
 - There are n subproblems
 - · Many cases ...

Given a rod of length n inches and a table of prices p_i for i=1,2,...,n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

If the price p_n for a rod of length n is large enough, an optimal solution might require no cutting at all.

Consider the case when n=4, and the following price table for rods:

Length i	1	2	3	4	5	6	7	8	9	10
Price p_i	1	5	8	9	10	17	17	20	24	30

There are 8 possible ways of cutting up a rod of length 4:

We can determine the optimal revenue r_i for i=1,...,10 by inspection:

```
r_1=1 from solution r_1=p_1 (no cuts) r_2=5 from solution r_2=p_2 (no cuts) r_3=8 from solution r_3=p_3 (no cuts) r_4=10 from solution r_4=r_2+r_2 r_5=13 from solution r_5=r_2+r_3 r_6=17 from solution r_6=p_6 (no cuts) r_7=18 from solution r_7=r_1+r_6 or r_7=r_2+r_2+r_3 r_8=22 from solution r_8=r_2+r_6 r_9=25 from solution r_9=r_3+r_6 r_{10}=30 from solution r_{10}=p_{10} (no cuts)
```

We can determine the optimal revenue r_i for $i=1,\dots,10$ by inspection:

```
r_2=5 from solution r_2=p_2 (no cuts)

r_3=8 from solution r_3=p_3 (no cuts)

r_4=10 from solution r_4=r_2+r_2

r_5=13 from solution r_5=r_2+r_3

r_6=17 from solution r_6=p_6 (no cuts)

r_7=18 from solution r_7=r_1+r_6 or r_7=r_2+r_2+r_3

r_8=22 from solution r_8=r_2+r_6

r_9=25 from solution r_9=r_3+r_6

r_{10}=30 from solution r_{10}=p_{10} (no cuts)
```

 $r_1 = 1$ from solution $r_1 = p_1$ (no cuts)

This exhibits optimal substructure!

In General,
$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, r_{n-1} + r_1\}$$

$$r_n = \max\{p_i + r_{n-i} : 1 \le i \le n\}$$

Recursive Implementation

$$r_n = \max\{p_i + r_{n-i}: 1 \le i \le n\}$$

$$CUT-ROD(p,n) = max\{p_i + CUT-ROD(p, n-1): 1 <= i <= n\}$$

```
CUT-ROD(p, n):
    if n == 0 then
        return 0
    q = - INF
    for i = 1 to n:
        q = max {q, p[i] + CUT-ROD(p, n - i)}
    return q
```

Running Time:

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n$$

Overlapping Subproblems? Let's inspect the recursion tree:

DP solution (bottom-up)

A subproblem of size i is "smaller" than a subproblem of size j if i < j. Thus, the procedure solves subproblems of sizes $j = 0 \dots n$ in that order.

```
CUT-ROD(p, n):
  let r[0:n] be a new array
                             // to save the results of subproblems
  let s[1:n] be a new array
                             // the optimal size of the first piece to cut off (for reconstruction)
  r[0] = 0
  for j = 1 to n:
     q = -INF
    for i = 1 to j:
                                             Exercise:
        temp = p[i] + r[j - i]
        if q < temp then
           q = temp
                                              Running time = \Theta(?)
           S[j] = i
     r[j] = q
  return r and s
```

Reconstructing a solution

```
PRINT-CUT-ROD-SOLUTION(s, n):
  solution = []
  while n > 0:
    solution = solution + [s[n]]
    n = n - s[n]
  return solution
```

Ordinary Least Squares (OLS)

- It's a foundational problem in statistics and numerical analysis.
- Given n points in the plane: (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Find a line y = ax + b that minimizes the sum of the squared errors:

$$= \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Least Squares Solution

Use your calculus knowledge and least squares are achieved when:

$$a = \frac{n\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$b = \frac{\sum_{i=1}^{n} y_i - a \sum_{i=1}^{n} x_i}{n}$$

If you encapsulate this formula as a subroutine, what is the **running** time?

Least Squares

We sometimes think that a single line is just not enough.

Given n points in the plane: (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) with $x_1 < x_2 < ... < x_n$, find <u>sequence of lines</u> that fits well.

Too many lines: perfect solution, but too complex (prone to overfitting)

Goal: Find a sequence to minimize some combination of

• The total error from each segment -> err (fitness)

The number of lines -> L (complexity)

Trade-off function:

For some constant c > 0

- OPT(j) = minimum cost for points p₁, p₂, ..., p_j
- e(i,j) = minimum sum of squared errors for points p_i , p_{i+1} , ..., p_j

$$Cost = e(i,j) + c + OPT(i-1)$$

$$OPT(j) = \begin{cases} 0 & j = 0\\ \min_{1 \le i \le j} \{e(i,j) + c + OPT(i-1)\} & j > 0 \end{cases}$$


```
Segmented-LS(n, p_1, ..., p_n, c):
   let M[0:n] be a new array
   let e[1:n, 1:n] be a new matrix
   M[0] = 0
   for j = 1 to n:
      for i = 1 to j:
         compute least square error e[i,j] for the segment pi, ..., pi
   for j = 1 to n:
      M[j] = INF
      for i = 1 to j:
         temp = e[i,j] + c + M[i-1]
                                               What is the running time?
         if temp < M[j] then
             M[j] = temp
```