The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

PROBLEM SET II

Due: Sunday, September 22, 2019.

- 1. (Extreme points of Isomorphic polyhedra) A mapping f is called affine if it is of the form f(x) = Ax + b, where A is a matrix and b is a vector. Let P and Q be polyhedra in \mathbb{R}^n and \mathbb{R}^m , respectively. We say that P and Q are isomorphic if there exist affine mappings $f: P \mapsto Q$ and $g: Q \mapsto P$ such that g(f(x)) = x for all $x \in P$, and f(g(y)) = y for all $y \in Q$. (Intuitively, isomorphic polyhedra have the same shape.)
 - (a) If P and Q are isomorphic, show that there exists a one-to-one correspondence between their extreme points. In particular, if f and g are as above, show that x is an extreme point of P if and only if f(x) is an extreme point of Q.
 - (b) (Introducing slack variables leads to an isomorphic polyhedron) Let $P = \{x \in \mathbb{R}^n | Ax \geq b, x \geq 0\}$, where A is a matrix of dimensions $k \times n$. Let $Q = \{(x, z) \in \mathbb{R}^{n+k} | Ax z = b, x \geq 0, z \geq 0\}$. Show that P and Q are isomorphic.
- 2. Let P be a bounded polyhedron in \mathbb{R}^n , let a be a vector in \mathbb{R}^n and let b be some scalar. We define

$$Q = \{x \in P | a^T x = b\}.$$

Show that every extreme point of Q is either an extreme point of P or a convex combination of two extreme points of P.

3. Let A be a symmetric square matrix. Consider the linear programming problem

minimize
$$c^T x$$

subject to $Ax \ge c$
 $x \ge 0$.

Prove that if x^* satisfies $Ax^* = c$ and $x^* > 0$, then x^* is an optimal solution.

4. Use the Theorem of Alternatives to prove the following:

For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, and $\mathbf{d} \in \mathbb{R}^p$ exactly one of the following statements holds:

- (a) There exists an $\mathbf{x} \in \mathbb{R}^n$ that satisfies $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ and $\mathbf{C}\mathbf{x} = \mathbf{d}$.
- (b) There exist $\mathbf{z} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^p$ that satisfy $\mathbf{z} \geq \mathbf{0}$, $\mathbf{A}^{\top}\mathbf{z} + \mathbf{C}^{\top}\mathbf{y} = \mathbf{0}$, $\mathbf{b}^{\top}\mathbf{z} + \mathbf{d}^{\top}\mathbf{y} < 0$.
- 5. Solve Exercise 41 in LLP.