Mathematical Analysis. Assignment 4. Mean Value Theorems & l'Hôpital's rule

- 1. Prove that the derivative of a function f(x) = x(x-1)(x-2)(x-3)(x-4) has four distinct roots that belong to intervals (0;1), (1;2), (2;3), (3;4), the multiplicity of each root being equal to 1.
- 2. Using mean value theorems prove the inequalities¹

(b) $e^x \ge 1 + x$, $x \in \mathbb{R}$.

- 3. Rolle's theorem states that if function f(x)
 - (a) is continuous on [a;b],
 - (b) is differentiable on (a; b),
 - (c) has equal values at the endpoints of the interval, that is f(a) = f(b) then there exists $c \in (a; b)$ such that f'(c) = 0.

Show that all conditions of the theorem are substantial, i.e. that the theorem does not hold if you omit at least one of them 2 .

4. Find the following limits (use l'Hôpital's rule³):

(a)
$$\lim_{x \to 1} \frac{x^{100} - 100x + 99}{x^{50} - 50x + 49}$$
;

(b)
$$\lim_{x \to 0} \frac{e^{\sin x} - e^x}{\sin x - x}$$
; = $\frac{\cos x \cdot e^{\sin x}}{\cos x - 1} = \frac{-\sin x \cdot e^{\sin x} + \cos^2 x \cdot e^{\sin x}}{-\sin x}$;
(c) $\lim_{x \to 0^+} \frac{3 + \ln x}{2 - 3 \ln(\sin x)}$; = $\frac{1}{\cos x} \left(-\sin x \cdot e^{\sin x} + \cos^2 x \cdot e^{\sin$

(c)
$$\lim_{x \to 0^+} \frac{3 + \ln x}{2 - 3 \ln(\sin x)}$$
; $= \frac{1}{\cos x}$

(d)
$$\lim_{x\to 0} \sin x \ln(\cot x);$$

$$+ \cos^2 x \cdot e^{\sin x} - e^{\sin x}$$

(e)
$$\lim_{x \to +\infty} (\pi - 2 \arctan \sqrt{x}) \sqrt{x};$$
 = -(o-1-2+1-1)=

(f)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right);$$

(g)
$$\lim_{x \to 1} x^{\frac{1}{x-1}}$$
;

(h)
$$\lim_{x \to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}};$$

(i)
$$\lim_{x \to \frac{\pi}{2}^-} (\tan x)^{\cos x};$$

(j)
$$\lim_{x\to 0} \frac{\ln \frac{1+x}{1-x} - 2x}{x - \sin x}$$
;

(k)
$$\lim_{x \to 0} \frac{(a+x)^x - a^x}{x^2}$$
, $a > 0$.

(1)
$$\lim_{x \to 0} \frac{2\tan 3x - 6\tan x}{3\arctan x - \arctan 3x};$$

(m)
$$\lim_{x\to 0^+} x^{\alpha} \ln^{\beta} \left(\frac{1}{x}\right);$$

(n)
$$\lim_{x \to +\infty} x^{\alpha} a^x$$
, $a > 0$, $a \neq 1$;

(o)
$$\lim_{x \to +\infty} \left(x^{\frac{7}{8}} - x^{\frac{6}{7}} \ln^2 x \right);$$

¹(a) Apply Lagrange mean value theorem to function $f(t) = \ln(1+t)$, $t \in [0;x]$. (b) If $x \in (-1;0)$ consider $g(t) = e^t - t$, $t \in [x; 0]$; if x > 0 consider $g(t) = e^t$, $t \in [0; x]$. Otherwise this inequality is obvious.

²It implies that you have to provide 3 counterexamples.

 $^{^3}$ The dreams come true...

(a)
$$\frac{x}{x+1} < \ln(1+x) < x \text{ for } x > 0;$$

$$\frac{\ln(x+t)}{x} = \int_{0}^{t} (\xi) = \frac{t}{3+t} \quad 0 \in \xi \in X$$

$$\frac{1}{1} \frac{1}{1} \frac{1}$$

1)
$$\frac{\ln(x+1)}{x} = \frac{1}{3+1} > \frac{1}{x+1} = \frac{\ln(x+1)}{x}$$

$$=$$
 $\ln(x+1) > \frac{x}{x+1}$

5. 1920 44hg

(b)
$$e^x \geqslant 1 + x, x \in \mathbb{R}$$
.

$$\frac{e^{x}}{x} = e^{\xi} > 1$$

$$e^{x} > x$$

$$e^{x}-e^{1}=e^{3}-1<\xi< x$$

054	11.08		
119 618	1(4)=0	No F. Koms	
	S(x) = x	,,,,	
100		,	
7 (8)	- g (s) = d(!	52	
9 (6)	- 9 (4) - 81((3)	
J '	0,		
9	٠, ٤		
<u>e</u> ~-	<u>e</u> _ e , ,	0-2-8	
Х -	0 - 1 -	2 .	
a X	0 - 0.	1<03<04	
<u>e</u>	- <u>(</u> > X		
10	4		
(e	\ _T_ \	0< \(\x\) 1< \(\ext{e}^{\frac{3}{5}} \cdot \ext{e}^{\frac{4}{5}}	

(p)
$$\lim_{x\to 1} \left(\frac{\alpha}{1-x^{\alpha}} - \frac{\beta}{1-x^{\beta}}\right);$$

(q)
$$\lim_{x \to +\infty} (3x^2 + 3^x)^{\frac{1}{x}}$$
.

Answer. (a)
$$\frac{198}{49}$$
; (b) 1; (c) $-\frac{1}{3}$; (d) 0; (e) 2; (f) $\frac{1}{2}$; (g) e ; (h) $e^{-\frac{1}{2}}$; (i) 1; (j) 4; (k) $\frac{1}{a}$; (l) 2; (m) 0; (n) 0 if $0 < a < 1$; $+\infty$ if $a > 1$; (o) $+\infty$; (p) $\frac{\alpha - \beta}{2}$; (q) 3.

5. Show that l'Hôpital's rule is not applicable for the limits below and calculate them using some other methods:

(a)
$$\lim_{x \to \infty} \frac{x + \cos x}{x - \cos x}$$
;

(b)
$$\lim_{x \to 0} \frac{x^3 \sin \frac{1}{x}}{\sin^2 x}$$
.

Answer. (a) 1; (b) 0.

6. Let us suppose that f(x) has at least three derivatives in the neighborhood of point a. Calculate the limits

(a)
$$\lim_{h\to 0} \frac{f(a+h)+f(a-h)-2f(a)}{h^2}$$
;

(b)
$$\lim_{h\to 0} \frac{f(a+3h)-3f(a+2h)+3f(a+h)-f(a)}{h^3}$$
.

Answer. (a) f''(a); (b) f'''(a).

7. Let us consider $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ Prove that this function is infinitely differentiable for all $x \in \mathbb{R}$. Find $f^{(k)}(0)$ as well.

Answer. $f^{(k)}(0) = 0, k \in \mathbb{N}.$

8. Find the following limits:

(a)
$$\lim_{x \to 1^{-}} \ln x \cdot \ln(1-x);$$

(b)
$$\lim_{x \to 0^+} \frac{\ln x \cdot \ln(1+x)}{\sqrt{x}};$$

(c)
$$\lim_{x\to 0} \frac{\cos x - \cos 3x + x^3 \cos \frac{\pi}{x}}{x^2}$$
.

Answer. (a) 0; (b) 0; (c) 4.

$$\lim_{x \to +\infty} (3x^{2} + 3x)^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{1}{2} \ln(3x^{2} + 3^{4})} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}}{e^{\frac{1}{2} \ln(3x^{2} + 3^{4})}} = \lim_{x \to +\infty} \frac{e^{\frac{1}$$

$$\left(\lambda(\iota_{-}x^{p}) - \rho(\iota_{-}x^{2}) \right) \left(\iota_{+}x^{p} \right) =$$

$$= \lambda \left(\iota_{+}x^{p} \right) \left(\iota_{+}x^{p} \right) - \rho(\iota_{-}x^{p}) - \rho(\iota_{-}x^{p}) \left(\iota_{+}x^{p} \right) \right)$$

$$= \lim_{X \to L} \frac{\lambda \left(\iota_{-}x^{p} \right) - \rho(\iota_{-}x^{p})}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} = \lim_{X \to L} \frac{\lambda - \lambda x^{p} - \beta x \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} = \lim_{X \to L} \frac{\lambda - \lambda x^{p} - \beta x \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} + \beta x \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p} + \beta x \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda x^{p} - \lambda x^{p}}{\left(\iota_{-}x^{p} \right) \left(\iota_{-}x^{p} \right)} =$$

$$= \lim_{X \to L} \frac{-\lambda p \lambda$$