BEITRÄGE ZU REAKTIONSSCHNELLEN UND HOCHGENAUEN DREHSTROM-POSITIONIER-SYSTEMEN

Von der Fakultät Elektrotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Dipl.-Ing. Bernhard Schwarz

geboren in Stuttgart

Hauptberichter:

Prof. Dr.-Ing. habil. A. Boehringer

Mitberichter:

Prof. Dr.-Ing. G. Kohn

Tag der mündlichen Prüfung: 6. N

^orüfung: 6. November 1986

Institut für Leistungselektronik und Anlagentechnik der Universität Stuttgart

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Leistungselektronik und Anlagentechnik der Universität Stuttgart.

Dem Direktor dieses Institutes, Herrn Prof. Dr.-Ing. habil. A. Boehringer, danke ich sehr herzlich für die Anregung zu dieser Arbeit sowie für seine Unterstützung und wertvollen Hinweise.

Herrn Prof. Dr.-Ing. G. Kohn, Direktor des Institutes für Elektrische Nachrichtentechnik, danke ich für die freundliche Übernahme des Mitberichtes.

Ferner gilt mein Dank allen Kollegen am Institut für Leistungselektronik und Anlagentechnik für Hinweise, klärende Gespräche sowie die außerordentlich kameradschaftliche Zusammenarbeit.

1 3 1

INHALTSVERZEICHNIS	RZEICHNIS	Seite
FORMELZEICHEN,	CHEN, INDIZES, ABKÜRZUNGEN	6
•	DIE AUFGABENSTELLUNG	9
2.	DER GRUNDSÄTZLICHE LÖSUNGSANSATZ	- 2
2.1	Die Antriebsmaschine	15
2.2	Das leistungselektronische Stellglied	7;
2.3	Die Systemführung	
2.4	Die Meßwerterfassung	₹.
ω.	DIE PERMANENTERREGTE SYNCHRONMASCHINE	
3.1	Prinzipielle Entwurfskriterien	<u> </u>
3.2	Drehmomentbildung einer permanenterregten	
	Synchronmaschine	
3.2.1	Auf Speisung mit blockförmigen Strömen	
	gelegte Masch	-1
,	ausgelegte Maschine	20
3.3	Das vereinfachte Ersatzschaltbild der	
	permanenterregten Synchronmaschine	2
	DER PULSUMRICHTER	ź
	Das gewählte Schaltungsprinzip	2,
4.2	Die möglichen Schaltzustände des Puls- wechselrichters	2
.	AUSFÜHRUNGSFORMEN DES REGELSYSTEMS	
5.1	VON POSITIONIERANTRIEBEN Darstellung der Regelstrecke mit Hilfe	ω
l I	ngstechnischer Übert	30
5. 2	Regelsystem	ų
S	puci	ب ب
5.2.1	Lage- und Drenzahlregelkreis	Ĺ.

1 5 1

Seite

ंकृ

•		3.1.2 Erläuterung der grundsätzlichen Funktions-	6.3.
	96	weise bekannter Lageerfaßsysteme	
		.3.1.1 Erläuterung der grundsätzlichen Funktions-	6.3.
	90	gegebenen Sollwert	
	2	mechanischen Drehwinkels von seinem vor-	
		hochwertige Erfassung der Abweichung des	
		3.1 Meßsystem für eine stationär und dynamisch	6.3.1
	95	des Rotors	
	1	3 Die Erfassung des mechanischen Drehwinkels c	6.3
		des Rotors	
	3	Die Erfassung der Winkelgeschwindigkeit ω_{m}	6.2
	8	des Rotors	
	3	η Die Erfassung der Winkelbeschleunigung α	6.1
	89	DIE MESSWERTERPASSUNG	6.
c- ·	85	richter aus einem Beschleunigungsregelkreis	
••		der Steuerbefehle für den Pulswechsel-	
LEBENSLAUF		2.2.4 Anwendbarkeit des Verfahrens zur Ableitung	5.2.2
SCHRIFTTUM	29	Rotors	
		kreises für die Winkelbeschleunigung des	
80		Grenzen der	5.2.2.3
-	4	permanenterregten Synchronmaschine	
7.2		die Winkelbeschleunigung des Rotors der	
7.1		wechselrichter aus einem Regelkreis für	
7.		2.2 Ableitung der Steuerbefehle für den	5.2.2
-		Synchronmaschine	
	ນ *	den Querstrom der permanenterregten	
			!
6.3.2		Ableitung der Steuerbefehle für den	5.2.2.1
	.#	Reglers	
	2	unterlagert wird sowie Ausführungsformen	
0.		schleife, welche	
6.3.1.3 V			5.2.2

weise eines neuartigen Lageerfaßsystems

98

Eigenschaften des Meßwertgebers für Meßfehler aufgrund der nichtidealen Sollwert der Abweichung des mechanischen ZUSAMMENFASSUNG Messungen an der Modellanlage Beschreibung der Modellanlage den mechanischen Drehwinkel Drehwinkels von einem vorgegebenen Vollständiges Meßsystem zur Erfassung DIE MODELLANLAGE 106 120 120 113 143 136 134 123

FORMEL ZEICHEN

Fouriertransformierte physikalischer Größen durch Kleinbuchstazeichen gekennzeichnet. Raumzeiger sind durch Großbuchstaben, Komplexe Größen sind durch einen Querstrich unter den Formelkenntlich gemacht. ben und Ubertragungsfunktionen durch die Schreibweise \underline{F} (p)

mit großen Buchstaben, Augenblickswerte mit kleinen Buchstaben Arithmetische Mittelwerte, Effektiv- und Gleichwerte werden

gekennzeichnet. Scheitelwerte sind durch das Zeichen ^ über dem Formelzeichen

e1 দা

Einige Abkürzungen, die nur an einer Stelle vorkommen und dort

Induktion Konstante Konstante Frequenz Koeffizient magnetische Feldstärke Strom Massenträgheitsmoment Induktivität einer Drossel Drehmoment mechanische Drehzahl komplexe Variable des Laplace-Bildbereiches Leistung ohmscher Widerstand Zeitkonstante, Periodendauer Spannung Systemgröße allgemein Polpaarzahl Drehbeschleunigung ganzzahliges Vielfaches des mechanischen Drehwinkels	.nige Aux .läutert :	erläutert sind, wurden nicht in das Verzeichnis aufgenommen.	þ.	
ist k k K K K K I he Feldstärke m gheitsmoment tät einer Drossel t he Drehzahl Variable des Laplace-Bildbereiches p Widerstand ante, Periodendauer ante, Periodendauer R S S S S S S S S S S S S S S S S S S			н	idealisiert
nt he Feldstärke I he Feldstärke I I I I I M Sheitsmoment t t t C D M M M M M M M M M M M M		Induktion	ist	Istwert
nt he Feldstärke I I gheitsmoment t the Drehzahl Variable des Laplace-Bildbereiches Widerstand ante, Periodendauer ante, Periodendauer she allgemein hl lleunigung ges Vielfaches des mechanischen		Konstante	*	laufender Index $(k = 1, 2, 6)$
che Feldstärke L L H ägheitsmoment nt che Drehzahl Variable des Laplace-Bildbereiches Widerstand witante, Periodendauer f che allgemein ahl shleunigung iges Vielfaches des mechanischen Els L M min max n R S Soll		Frequenz	×	Korrektur-
E Feldstärke In mheitsmoment Min at einer Drossel E Drehzahl ariable des Laplace-Bildbereiches N iderstand r nte, Periodendauer s e allgemein 1 eunigung es Vielfaches des mechanischen s		Koeffizient	ш	Leitergröße
mheitsmoment m M heitsmoment M it einer Drossel min max e Drehzahl n ariable des Laplace-Bildbereiches N iderstand r nte, Periodendauer R e allgemein S e allgemein S eunigung es Vielfaches des mechanischen S		magnetische Feldstärke	יי	Last-
Meitsmoment Mit einer Drossel max e Drehzahl ariable des Laplace-Bildbereiches n iderstand nte, Periodendauer R e allgemein l eunigung es Vielfaches des mechanischen s		Strom	m	mechani
#t einer Drossel min max e Drehzahl n ariable des Laplace-Bildbereiches N piderstand q nte, Periodendauer R e allgemein S e allgemein S e unigung es Vielfaches des mechanischen s		Massenträgheitsmoment	×	vom Per
max n ariable des Laplace-Bildbereiches N iderstand n r nte, Periodendauer e allgemein e e allgemein e svielfaches des mechanischen s max N N S S Soll 1		Induktivität einer Drossel	min	Minimal
e Drehzahl n ariable des Laplace-Bildbereiches N iderstand q inte, Periodendauer R e allgemein S e allgemein Soll l eunigung eus Vielfaches des mechanischen		Drehmoment	max	Maxima1
Variable des Laplace-Bildbereiches N P Widerstand q tante, Periodendauer R öße allgemein S ahl hleunigung iges Vielfaches des mechanischen els		mechanische Drehzahl	p	niederwertiger Anteil
Widerstand q widerstand q tante, Periodendauer R S S See allgemein S ahl hleunigung iges Vielfaches des mechanischen els		komplexe Variable des Laplace-Bildbereiches	z	Nenngrö
Widerstand q tante, Periodendauer r B B B B B B B B B B B B B B B B B B		Leistung	ייי	Pendel-
tante, Periodendauer R R Öße allgemein S ahl hleunigung iges Vielfaches des mechanischen els		ohmscher Widerstand	Δ	Kompone
R S Öße allgemein S soll hleunigung iges Vielfaches des mechanischen		Zeitkonstante, Periodendauer	н	Remaner
öße allgemein S ahl hleunigung iges Vielfaches des mechanischen els		Spannung	×	Reibun
soll .		Systemoroße allgemein	ຜ	Spannu
Drehbeschleunigung ganzzahliges Vielfaches des mechanischen Drehwinkels		Polpaarzahl	soll	Sollwe
ganzzahliges Vielfaches des mechanischen Drehwinkels		Drehbeschleunigung		
Drehwinkels		ganzzahliges Vielfaches des mechanischen		
		Drehwinkels		

elektrischer Drehwinkel ganzzahliges Vielfaches des Sollwertes relative Permeabilität Funktionen der Winkeldifferenz (p - 8) Flußverkettung mechanischer Drehwinkel Kreisfrequenz für den mechanischen Drehwinkel

INDIZES

a, b, c

elektrisch Komponente in Richtung der d-Achse der Maschine Kennzeichnung der Maschinenstränge und der zugehörigen Wechselrichterzweige

höherwertiger Anteil

r Maschine

1. Die Aufgabenstellung

Numerisch gesteuerten Systemen kommt auf allen Gebieten der Antriebstechnik eine immer größere Bedeutung zu. Dies gilt beispielsweise dort, wo Prozeßrechner ohne unmittelbare Kontrolle durch Bedienpersonal die Werkzeugmaschinen und Industrieroboter komplexer Fertigungsanlagen steuern und überwachen, oder dort, wo Sende- und Empfangsantennen hochgenau auf Satelliten ausgerichtet werden müssen.

Die Kernstücke solcher Anlagen bilden Positionierpysteme, welche unterschiedlichen, einander teilweise widersprechenden Anforderungen genügen müssen [1, 2, 3]. Dieser Umstand sei anhand des in Bild 1.1 dargestellten Vorschubantriebes für Werkzeugmaschinen kurz erläutert.

Die für die Erzeugung der Vorschubbewegung erforderliche Vorschubkraft F wird von einer Gewindespindel, an welcher das von der Antriebsmaschine abgegebene Drehmoment M angreift, auf den Vorschubschlitten übertragen.

Im Hinblick auf die angestrebte hohe Oberflächengüte der gefertigten Werkstücke werden eine hohe Systemruhe und eine möglichst gleichförmige Drehmomentbildung der Antriebsmaschine gefordert.

Weiterhin sollen Werkstücke in zunehmendem Maße reproduzierbar und ohne menschliche Eingriffe und Kontrollen gefertigt werden. Diese Forderung ist nur durch Einhaltung einer hohen Positioniergenauigkeit erfüllbar.

Ferner ist sicherzustellen, daß die Taktzeiten zwischen aufeinanderfolgenden Bearbeitungsgängen möglichst gering gehalten werden; daraus resultiert die Forderung nach hohem Beschleunigungsvermögen und nach hohen Verstellgeschwindigkeiten.

Schließlich sollen sich hochwertige Antriebssysteme noch durch

Bild 1.1: Prinzipieller Aufbau eines Vorschubantriebes für Werkzeugmaschinen

weitgehende Wartungsfreiheit auszeichnen. einen hohen Wirkungsgrad, ein geringes Bauvolumen und durch

sind heute die Voraussetzungen zur Erfüllung aller oben genannelektronik, der Steuer- und Regelelektronik sowie der Meßtechnik Durch die jüngsten Fortschritte auf den Gebieten der Leistungs-

der Maschine von n_N = 2000 1/min) ist Gegenstand dieser Arbeit drehmoment der Maschine von $M_N = 15$ Nm und einer Nenndrehzahl eines solchen, hochwertigen Positioniersystems (mit einem Nennten Anforderungen an Positioniersysteme gegeben. Die Realisierung

2. Der grundsätzliche Lösungsansatz

*

Vor einer ausführlichen Beschreibung des Aufbaus sowie einer Untersuchung der Eigenschaften des Antriebssystems werden nachstehend geeignete Ausführungsformen der Einzelkomponenten eines hochwertigen Positioniersystems kurz erläutert. Ohne Einschränkung der Allgemeingültigkeit der Aussagen und Ergebnisse der folgenden Abschnitte erfolgt diese Erläuterung anhand des in Bild 1.1 skizzierten Vorschubantriebes für Werkzeugmaschinen. Der Nachweis über die Eignung des im folgenden dargelegten Ansatzes erfolgt anhand der Meßergebnisse in Abschnitt 7.

2.1 Die Antriebsmaschine

Die eingangs genannte Forderung nach weitgehender Wartungsfreiheit ist nur mit Hilfe einer schleifringlosen Drehfeldmaschine
erfüllbar. Aufgrund der ebenfalls erhobenen Forderung nach einem
möglichst hohen Beschleunigungsvermögen der Antriebsmaschine gelangt in dieser Arbeit eine permanenterregte Synchronmaschine
zum Einsatz. Letzteres ist - wie in Kapitel 3.1 dargelegt wird darin begründet, daß der Rotor einer permanenterregten Synchronmaschine keines Rotorblechpaketes bedarf und daher mit sehr
kleinem Massenträgheitsmoment ausgeführt werden kann [4, 5].

2.2 Das leistungselektronische Stellglied

Die angestrebte hochgenaue und hochdynamische Führung des Drehmomentes der Antriebsmaschine erfordert einen Pulsumrichter, welcher über kurze Reaktionszeiten die Möglichkeit eröffnet, die für die Drehmomentbildung verantwortlichen Maschinenströme ihren Sollwerten nahezu verzögerungsfrei nachzuführen.

Zur Lösung der anstehenden Aufgabe wird ein Transistor-Pulswechselrichter herangezogen, welcher über einen Gleichspannungs-Zwischenkreis und einen ungesteuerten Eingangsgleichrichter direkt aus dem 380 V-Drehstromnetz gespeist wird [6, 7]. Die Regelung der Ausgangsströme dieses Pulsumrichters erfolgt nach dem Prinzip der zeitdiskreten Schaltzustandsänderung. Die mittlere Totzeit zwischen der Vorgabe eines neuen Schaltzustandes und dessen Einstellung beträgt nur 5 µs und übt, wie in Abschmitt 7 nachgewie-

sen wird, keinen Einfluß auf die erreichbare Systemruhe aus. Im Hinblick auf ein hohes Beschleunigungsvermögen des Antriebes ist der Pulsumrichter so dimensioniert, daß dieser der Synchronmaschine Ströme in Höhe des 4-fachen Wertes ihres Nennstromes einzuprägen vermag.

2.3 Die Systemführung

Durch Kombination der beiden oben genannten Komponenten sind auf Seiten der Aktorik, welche die Ausführung der Befehle einer Steuer- oder Regelelektronik wahrnimmt, alle Voraussetzungen für die Realisierung eines hochdynamischen Antriebssystems gegeben. Gleichzeitig besteht jedoch aufgrund der sehr kurzen Anregelzeiten für die Drehbeschleunigung, die Winkelgeschwindigkeit sowie den Drehwinkel der Maschine die Gefahr einer hohen Systemunruhe im drehzahl- oder lagegeregelten Betrieb.

Dieser Gefahr kann dadurch begegnet werden, daß im Regler möglichst viele Zustandsgrößen des Systems Einfluß nehmen [8]. Eine besonders hohe Systemruhe ist dann zu erwarten, wenn es gelingt, in einem dem Drehzahl- oder Lageregler unterlagerten Regelkreis die Beschleunigung des Antriebes zu regeln. Dies gilt insbesondere dann, wenn in neuartiger Weise die Schaltzustände des Pulsumrichters direkt aus diesem Beschleunigungsregelkreis und nicht aus zusätzlichen, unterlagerten Stromregelkreisen abgeleitet werden.

2.4 Die Meßwerterfassung

Die Güte des Positionierantriebes hinsichtlich von Positioniergenauigkeit und Systemruhe wird nicht zuletzt durch die Qualität der verwendeten Meßsysteme für die Zustandsgrößen der Regelstrecke bestimmt. In besonderem Maße gilt dies für das Lageerfaßsystem.

Einerseits sollte der Meßwert für die Lage dem Istwert derselben nahezu verzögerungsfrei folgen. Andererseits sollte das Meßsignal möglichst frei von Wechselanteilen sein. Meßverfahren, welche ein frequenz- oder amplitudenmoduliertes Meßsignal erzeugen, scheinen daher für die gestellte Aufgabe nur bedingt geeignet zu sein. Weiterhin sollte das Meßsignal im gesamten Meßbereich keinerlei ünstetigkeitsstellen aufweisen. Schließlich sollte das verwendete Meßverfahren unempfindlich sein gegen Störgrößen, insbesondere gegen Änderungen der Speisespannungen und -ströme sowie gegen Änderungen der Temperatur des Gebersystems.

Die Summe dieser Anforderungen legt die Neuentwicklung eines geeigneten Lageerfaßsystems nahe.

Zur Stabilisierung des Lageregelkreises sowie zur Erhöhung der Ruhe desselben ist es angebracht, dem Regler neben einer Information über die Wellenstellung auch eine solche über die Winkelgeschwindigkeit und Winkelbeschleunigung des Rotors der Maschine zuzuführen. Durch den Einsatz eines Sensors für die Winkelbeschleunigung des Rotors wird neben dem Aufbau eines Beschleunigungsregelkreises auch der Aufbau eines Teilstreckenbeobachters für die Winkelgeschwindigkeit ermöglicht. Auf eine Differentiation des Lagesignals oder den Einsatz eines zusätzlichen Gebers für die Winkelgeschwindigkeit kann daher verzichtet werden.

3. Die permanenterregte Synchronmaschine

Der Entwurf, der Aufbau sowie die Untersuchung der Eigenschaften permanenterregter Synchronmaschinen für Servoantriebe war in der Vergangenheit Gegenstand umfangreicher Arbeiten $[\,5\,,\,9\,,\,10\,]$.

Im folgenden ist eine kurze Darstellung der dort beschriebenen grundlegenden Eigenschaften der Maschine angegeben, soweit die Kenntnis derselben für das Verständnis der anschließenden Abschnitte nützlich ist.

3.1 Prinzipielle Entwurfskriterien

Die Ausführung der Maschine mit Trommelläufer bietet bei sehr schlanker, langer Bauform des Rotors die besten Voraussetzungen für eine Minimierung des Massenträgheitsmomentes. Durch konstruktive Maßnahmen kann sichergestellt werden, daß die Maschine auch bei hoher Überlastung keine erheblichen Sättigungserscheinungen aufweist und somit auch im Überlastbereich eine hohe Drehmomentausbeute ermöglicht; unter Drehmomentausbeute sei hier das Verhältnis zwischen dem abgegebenen Drehmoment und der Amplitude des zugehörigen Ankerstromes verstanden.

Eine mögliche Ausführungsform einer diesen Bedingungen gehorchenden Maschine ist in Bild 3.1 schematisch dargestellt.

Infolge eines großen wirksamen Luftspaltes δ_0 können Sättigungserscheinungen weitgehend vernachlässigt werden. Daran ändert sich auch dann nichts, wenn auf der Rotoroberfläche Permanentmagnete aufgebracht werden, welche eine relative Permeabilität von $\mu_r \approx 1$ aufweisen. Um sicherzustellen, daß die Magnete durch die Ankergegendurchflutung nicht irreversibel entmagnetisiert werden, müssen diese eine hohe Koerzitivfeldstärke H $_{\rm C}$ sowie im gesamten Arbeitsbereich eine lineare Magnetisierungskennlinie B = f (H) aufweisen. Diese Forderungen werden von Selten-Erd-Kobalt-Magneten (relative Permeabilität $\mu_{\rm r} = 1,1$; Koerzitivfeldstärke H $_{\rm c} = 660 \, {\rm kA} \over {\rm m}$; Remanenzinduktion B $_{\rm r} = 0,9$ T) in hervorragender Weise erfüllt. Aufgrund dieser Eigenschaften des Magnetmaterials sowie seines hohen Energieprodukts (B·H) $_{\rm max} = 160 \, {\rm kJ \over m^2}$ läßt sich damit

Bild 3.1: Prinzipieller Aufbau einer für den Einsatz als Servomotor geeigneten, permanenterregten Synchronmaschine

im Vergleich zu anderen Magnetmaterialien die Magnetmasse und damit auch das Massenträgheltsmoment der Maschine minimieren. Aus diesen Gründen wurden bei der ausgeführten Maschine Selten-Erd-Magnete eingesetzt.

Die durch die Nutung des Ständerblechpaketes bedingten Pulsationen des Luftspaltfeldes können infolge des großen wirksamen Luftspaltes δ_0 auf der Oberfläche des Eisens des Rotors vernachlässigt werden. Weiterhin ist das resultierende Luftspaltfeld der Maschine im stationären Betrieb bezüglich eines rotorfesten Koordinatensystems nach Amplitude und Lage konstant. Infolgedessen treten im Rotor keine Eisenverluste auf. Die Magnete können demnach unter Verzicht auf ein Rotorblechpaket direkt auf eine ferromagnetische Welle aufgebracht werden.

3.2 Drehmomentbildung einer permanenterregten Synchronmaschine Für eine Darstellung der permanenterregten Synchronmaschine als Teil der Regelstrecke ist der prinzipielle Zusammenhang zwischen den Klemmengrößen und dem Drehmoment der Maschine zu untersuchen. Zur Beschreibung des Modells der Maschine werden folgende Voraussetzungen getroffen:

- Im Ständer befinden sich drei identische Wicklungen, deren Achsen a, b und c jeweils um $\frac{120^{\circ}}{z}$ gegeneinander versetzt sind; hierin ist z_p die Polpaarzahl der Maschine. Die Achse a dient später als reelle Bezugsachse für ein ständerfestes Koprdinatensystem.
- Der Einfluß des Ankerfeldes auf das Luftspaltfeld ist vernachlässigbar klein.
- Die durch die Nutung des Ständers hervorgerufenen Oberwellen des Luftspaltfeldes werden nicht berücksichtigt.
- Die Maschine enthält keine Dämpferkreise; eine getrennte Betrachtung des stationären sowie des subtransienten Verhaltens ist daher nicht erforderlich.
- Der Streufluß einer Wicklung ist mit keiner anderen Wicklung verkettet.
- Sättigungs- und Hystereseerscheinungen werden vernachlässigt.
- Reibungs- und Wirbelstromverluste sind vernachlässigbar klein.

þ

19 -

Führung derselben- auf eine Speisung mit abschnittsweise konstan-Maschinen vorgestellt, welche - im Hinblick auf eine vereinfachte konzipiert sind, wurden in letzter Zeit auch Ausführungen solcher konventioneller Weise für eine Speisung mit sinusförmigen Strömen Neben derartigen permanenterregten Synchronmaschinen, welche in ten Strömen ausgelegt sind [10, 11, 12] .

Drehwinkel konstanten Drehmomentes ist es - konstante Winkelgeschiedlicher Polarität zu speisen. Zur Erzeugung eines über dem Maschine mit konstanten Strömen gleicher Amplitude, jedoch unterkonstante Abschnitte des Drehwinkels jeweils zwei Leiter einer 3.2.1 Auf Speisung mit blockförmigen Strömen ausgelegte Maschine schwindigkeit vorausgesetzt - dann erforderlich, daß die Spannung Der Grundgedanke dieser Maschinenauslegung besteht darin, über speist wird, in diesem gesamten Abschnitt einen konstanten Wert zwischen jenen Klemmen, über welche die Maschine momentan ge-

triebsweise ausgelegten, idealen Maschine bei konstanter Ände-Bild 3.2 a zeigt die verketteten Spannungen einer für diese Be-Strömen gemäß Bild 3.2 b gespeist, so nimmt sie die konstante rungsgeschwindigkeit des Drehwinkels arepsilon. Wird diese Maschine mit

$$P = \hat{\mathbf{u}}_1 \cdot \hat{\mathbf{1}} \tag{3.1}$$

auf. Unter Vernachlässigung aller Maschinenverluste tritt somit an der Welle ein konstantes Drehmoment auf

winkels erhebliche Pendelmomente, d. h. Abweichungen des Drehmomentes von seinem Mittelwert auf. In der Praxis treten jedoch bei einer Veränderung des Dreh-

Die Entstehung dieser Pendelmomente ist zum einen in Abweichungen der induzierten Spannungen der Maschine von den in Bild 3.2 a

Bild 3.2: a) Verlauf der verketteten Spannungen

Verlauf der zugehörigen Strangströme einer auf Speisung mit blockförmigen Strömen ausgelegten, digkeit des mechanischen Drehwinkels E. idealen Maschine bei konstanter Änderungsgeschwin-

Maschine mit Selten-Erd-Magnet-Erregung über einer Umdrehung ment einer derartigen, 6-poligen, industriell gefertigten dargestellten Verläufen begründet. In Bild 3.3 ist das Drehmo-Messung des Drehmoments erfolgte über eine Drehmomentmeßwelle; zugehörigen eingeprägten Maschinenströme wiedergegeben. Die ihres Rotors dargestellt. Die genannten Pendelmomente weisen danach beachtliche Werte auf. Weiterhin sind in Bild 3.3 die Anderungsgeschwindigkeit von $2 \cdot \pi \frac{\text{rad}}{\text{min}}$ variiert. die Rotorlage wurde dazu über einen Getriebemotor mit einer

Eine weitere Ursache für die Entstehung von Pendelmomenten liegt in den Kommutierungsvorgängen der Maschinenströme. Die unver-

Bild 3.3: Gemessener Verlauf der Maschinenströme i_a, i_b und i_c sowie des zugehörigen Drehmoments m einer auf Speisung mit blockförmigen Strömen ausgelegten, permanenterregten Synchronmaschine; stromgeregelter Betrieb bei Vorgabe des Nennstromes der Maschine.

meidlichen Streuinduktivitäten der Maschine lassen die angestrebten, schlagartigen Kommutierungen der Strangströme nämlich grundsätzlich nicht zu. Wie in [12] dargelegt ist, ergeben sich infolgedessen mit zunehmender Drehzahl immer stärkere Drehmomenteinbrüche, welche das mittlere Drehmoment der Maschine drastisch reduzieren.

Insgesamt erscheint daher diese Ausführungsform permanenterregter Synchronmaschinen für den Einsatz in hochwertigen Positioniersystemen weniger geeignet.

3.2.2 Auf Speisung mit sinusförmigen Strömen ausgelegte Maschine Die Ermittlung des Drehmomentes kann in anschaulicher Weise mit

Hilfe von Raumzeigern vorgenommen werden. Eine besonders einfache Beziehung für das Drehmoment ergibt sich bei Beschreibung desselben in einem rotorfesten Koordinatensystem, dessen reelle Achse (d-Achse) mit der Symmetrieachse des Erregerfeldes zusammenfällt (vgl. Bild 3.1). Unter den eingangs getroffenen Voraussetzungen ergeben sich nach [13, 14] die Augenblickswerte des Drehmomentes $\mathbf{m}_{\mathbf{I}}$ dann aus den Längs-(Index d) und Quer- (Index q)-Komponenten der Raumzeiger der Flußverkettung $\underline{\Psi}$ und des Stromes $\underline{\mathbf{I}}$ zu

$$m_{\rm I} = \frac{3}{2} \cdot z_{\rm p} \cdot (\psi_{\rm d} \cdot i_{\rm q} - \psi_{\rm q} \cdot i_{\rm d}).$$
 (3.2)

Ist ψ_M jener Anteil der Flußverkettung, welcher von den Permanentmagneten herrührt, so gilt für die Längs- und Querkomponenten der Flußverkettung insgesamt:

$$\psi_{d} = L \cdot i_{d} + \psi_{M} \quad \text{sowie}$$
 (3.3)

$$\psi_{\mathbf{Q}} = \mathbf{L} \cdot \mathbf{1}_{\mathbf{Q}} \qquad (3.4)$$

L stellt hierin die Streuinduktivität einer Zweiachsen-Maschine dar, welche aus Symmetriegründen in Längs- und Querrichtung den gleichen Wert aufweist.

Durch Einsetzen der Gln. (3.3) und (3.4) in Gl. (3.2) kann unmittelbar nachgewiesen werden, daß ein vorgegebener Strom I dann das maximal mögliche Drehmoment hervorruft, wenn dieser streng in Richtung der q-Achse der Maschine geführt wird. Da in diesem Fall die Amplitude des Stromes I direkt proportional zum abgegebenen Drehmoment ist, ergeben sich auch sehr gute Voraussetzungen für eine einfache regelungstechnische Beschreibung der Maschine. Diese Betriebsweise des Motors wird für die folgenden Untersuchungen zugrundegelegt.

Legt man, wie in Bild 3.1 geschehen, die Achse der Ständerwicklung a als Bezugsachse für den elektrischen Drehwinkel γ fest, so erhält man den Zusammenhang zwischen dem Drehmoment $m_{\rm I}$ und

den für die Führung der Maschine erforderlichen Augenblickswerten der Maschinenströme zu

$$C = \frac{3}{2} \cdot z_{p} \cdot \psi_{M} . \tag{3.6}$$

Bei Speisung der Maschine mit einem symmetrischen Drehstromgen ein über dem mechanischen Drehwinkel arepsilon konstantes Drehmosystem gibt diese unter den eingangs getroffenen Voraussetzun-

Nutungsoberwellen des Luftspaltfeldes, Pendelmomente ein [15, 16]. idealen Eigenschaften der Maschine, insbesondere aufgrund von In der Praxis stellen sich jedoch auch hier aufgrund der nicht-

Bild 3.4: Gemessener Verlauf der Maschinenströme $\mathbf{i_a}$, $\mathbf{i_b}$ und $\mathbf{i_c}$ mit sinusförmigen Strömen ausgelegten, permanenterregregelter Betrieb bei Vorgabe des Nennstroms der ten Synchronmaschine des Versuchsantriebes; stromgesowie des zugehörigen Drehmomentes m der auf Speisung Maschine.

gelegten Maschine über einer Umdrehung ihres Rotors dargestellt gehörigen Leiterströme der den folgenden Untersuchungen zugrunde-Diese sind in Bild 3.4, in welchem das Drehmoment sowie die zukungen dieser Pendelmomente zu kompensieren. neter Maßnahmen auf Seiten der Regelungstechnik, um die Auswirrungen an einen Positionierantrieb gestellt, so bedarf es geeigsind, als Momentenwelligkeit sichtbar. Werden sehr hohe Anforde-

3.3 Das vereinfachte Ersatzschaltbild der permanenterregten

Synchronmaschine

erregten Synchronmaschine sowohl für Vorgänge im stationären als der Querachse der Maschine weist. Unter den eingangs getroffenen nete hervorgerufenen Flußverkettung ψ_{M} im Ständer ein symmetri-Bei Drehung des Rotors wird infolge der durch die Permanentmageiner besonderen Beachtung bedarf [17, 18] - durch diese induauch im subtransienten Bereich- welcher bei Umrichterspeisung Voraussetzungen kann das elektrische Verhalten einer permanenttäten L_{σ} der Ständerwicklung vollständig beschrieben werden. zierte Spannung, die Widerstände R₁ sowie die Streuinduktivisches Drehspannungssystem induziert, dessen Zeiger in Richtung

Bild 3.5: Vereinfachtes Ersatzschaltbild einer permanenterregten subtransienten Bereich. Synchronmaschine für Vorgänge im stationären sowie im

Das vereinfachte Ersatzschaltbild dieser Anordnung ist in Bild 3.5 wiedergegeben. Unter den eingangs getroffenen Voraussetzungen stimmt die Streuinduktivität \mathbf{L}_{σ} der Ständerwicklungen mit der Induktivität \mathbf{L}_{σ} der Gln. (3.3) und (3.4) überein. Die induzierten Spannungen ergeben sich zu

$$\begin{pmatrix} \mathbf{u}_{1\mathbf{a}}(t) \\ \mathbf{u}_{1\mathbf{b}}(t) \\ \mathbf{u}_{1\mathbf{c}}(t) \end{pmatrix} = \begin{pmatrix} \cos \gamma \\ \cos (\gamma - \frac{2}{3} \cdot \pi) \\ \cos (\gamma - \frac{4}{3} \cdot \pi) \end{pmatrix} \cdot \psi_{\mathbf{M}} \cdot 2 \cdot \pi \cdot \mathbf{z}_{\mathbf{p}} \cdot \mathbf{n}, \quad (3.7)$$

wenn n die Drehzahl der Maschine darstellt. Der resultierende Raumzeiger dieser Spannungen ist immer in Richtung der q-Achse der Maschine und somit parallel zur drehmomentbildenden Komponente des Ständerstromes gerichtet.

· Der karsamrichter

Eine hohe Qualität der Positioniereigenschaften des Antriebssystems ist nur dann zu erwarten, wenn die durch die Taktung der
Ventile des Pulsumrichters hervorgerufenen Pendelmomente keine
meßbare Auslenkung des Rotors bewirken. Durch die jüngsten Entwicklungen auf dem Gebiet der Leistungselektronik stehen heute
Geräte zur Verfügung, welche eine nahezu ideale Lösung der gestellten Aufgabe gestatten [2, 6, 7, 9, 19] .

4.1 Das gewählte Schaltungsprinzip

Die Speisung der Antriebsmaschine erfolgt über einen Transistor-Pulswechselrichter, welcher aus einem Gleichspannungs-Zwischenkreis gespeist wird (Bild 4.1).

Für die analytische Behandlung des Pulswechselrichters seien folgende vereinfachenden Voraussetzungen getroffen:

- Die Spannung $\mathbf{U}_{\mathbf{Z}}$ des Gleichspannungszwischenkreises ist starr.
- Die Schaltzeiten der Leistungstransistoren sind vernachlässigbar klein. Ihr Einfluß auf das dynamische Verhalten der Regelstrecke kann daher außer Acht gelassen werden.
- Die Durchlaßspannungen aller Leistungshalbleiter werden vernachlässigt. Die Ausgangsklemmen $K_{\rm a}$, $K_{\rm b}$ und $K_{\rm c}$ des Pulswechselrichters befinden sich somit nach der Ausführung von Schaltvorgängen immer auf dem gleichen Potential wie die positive oder negative Schiene des Gleichspannungs-Zwischenkreises.

Durch den Einsatz neuartiger Ansteuer- und Entlastungsnetzwerke [20, 21, 22, 23] kann die Zwischenkreisspannung UZ des Gleichspannungs-Zwischenkreises so hoch gewählt werden, daß dieser ohne Zwischenschaltung eines Transformators aus dem direkt gleichgerichteten 380 V-Drehstromnetz gespeist werden kann. Da durch den Einsatz dieser Netzwerke praktisch keine Schaltverluste in den Leistungstransistoren hervorgerufen werden, ist ein Betrieb derselben mit sehr hohen Schaltfrequenzen möglich, ohne daß hierdurch eine Minderung des Wirkungsgrades des Umrichters hervorgerufen wird [24].

Bild 4.1: Prinzipschaltbild des verwendeten Transistor-Pulswechselrichters

Die Taktung des Pulsumrichters erfolgt nach dem Prinzip der zeitdiskreten Schaltzustandssteuerung mit einer Taktfrequenz \mathbf{f}_{η} von 100 kHz [2, 6, 7]. Die grundsätzliche Funktion dieses Steuerverfahrens sei anhand des in Bild 4.2 dargestellten Regelkreises für die Zustandsgröße x eines Gleichstromverbrauchers kurz erläutert: Über einen Komparator wird das Vorzeichen der Regeldifferenz (x $_{\rm Soll}$ - x $_{\rm ist}$) erfaßt und zu diskreten Zeitpunkten in einen Speicherbaustein übernommen. Entsprechend dem Ausgangssignal dieses Speicherbausteins wird über eine Treiberstufe der Leistungstransistor ein- oder ausgeschaltet.

Bild 4.2: Prinzipieller Aufbau eines Regelkreises nach dem Prinzip der zeitdiskreten Schaltzustandssteuerung.

Neben anderen Vorteilen gegenüber sonstigen Steuerverfahren [6, 25] sind bei der vorliegenden Problemstellung insbesondere folgende Eigenschaften des in der geschilderten Weise gesteuerten Pulswechselrichters von Interesse

- Die mittlere Totzeit zwischen der Vorgabe eines Schaltbefehls und dessen Ausführung beträgt nur 5 µs. Dies trägt einerseits der Forderung nach einer hohen Reaktionsgeschwindigkeit des Stellgliedes Rechnung und führt andererseits dazu, daß diese Totzeit bei der regelungstechnischen Beschreibung der Strecke gegenüber den übrigen Streckenzeitkonstanten vernachlässigt werden kann.
- Infolge der hohen Taktfrequenz können die durch die Welligkeit der Maschinenströme hervorgerufenen Drehmomentpulsationen und Zusatzverluste der Maschine vernachlässigt werden.
- Zwischen zwei zeitlich aufeinanderfolgenden Schaltvorgängen eines Transistors verstreicht eine Zeit von mindestens 10 µs. Infolgedessen ist die Einhaltung der für einen sicheren Betrieb der Leistungstransistoren erforderlichen minimalen Ein- und Ausschaltzeiten [6] grundsätzlich sichergestellt.

Bei geeigneter Ausführung des Meßgliedes ist nicht nur die Realisierung eines sehr einfachen Stromregelkreises möglich. Vielmehr können die Schaltzustände des Stellgliedes ohne Erfassung des Laststromes beispielsweise direkt aus dem Vorzeichen der Differenz zwischen dem Sollwert x_{Soll} und dem Meßwert x_{ist} einer Verbraucherspannung [6], einer mechanischen Zugkraft [26] oder Beschleunigung [27] abgeleitet werden.

In Abschnitt 5 dieser Arbeit wird dargelegt, wie sich auch bei der hier gestellten Aufgabe durch Wahl einer geeigneten Zustandsgröße x der Regelstrecke eine sehr vorteilhafte Ausführungsform des innersten Regelkreises ergibt.

4.2 Die möglichen Schaltzustände des Pulswechselrichters über die Ansteuerung der Leistungstransistoren eines jeden Wechselrichterzweiges kann jede Ausgangsklemme Ka, Kb und Kc des Pulswechselrichters unabhängig von den Vorzeichen der momentan fließenden Maschinenströme wahlweise mit der oberen (Schaltzustand S = 1) oder unteren (Schaltzustand S = 0) Schiene des Gleichspannungs-Zwischenkreises verbunden werden. In der vorliegenden, dreiphasigen Brückenschaltung sind somit acht Schaltkombinationen S_k = (S_a , S_b , S_c) realisierbar; S_a , S_b und S_c kennzeichnen hierbei die Schaltzustände der Brückenzweige Z_a , Z_b und Z_c . Vernachlässigt man die Durchlaßverluste der Halbleiterventile, so kann man jeder dieser Schaltkombinationen S_k einen eindeutigen Raumzeiger S_k für die Ständerspannung der Maschine zuordnen (Bild 4.3).

Weisen alle Wechselrichterzweige den gleichen Schaltzustand auf (000 oder 111), dann ist die Amplitude dieses Raumzeigers gleich Null. Ansonsten ergibt sich deren Amplitude zu [28]

$$U_{S} = \frac{2}{3} \cdot U_{Z} \tag{4.1}$$

Bild 4.3: Mögliche Schaltkombinationen der Wechselrichterzweige mit zugehörigen Spannungszeigern \underline{S}_k der Ausgangsspannung des Pulswechselrichters.

und deren Winkel $\gamma_{f k}$ bezüglich der Achse der Ständerwicklung a

$$\gamma_k = (k-1) \cdot \frac{1}{3} \cdot \pi \text{ mit } k = 1, 2, \dots, 6$$
. (4.2)

Im Hinblick auf die angestrebte hohe Dynamik sowie Regelgüte besteht die Aufgabe der Regeleinrichtung darin, immer jenen Spannungszeiger auszuwählen, welcher eine gemessene Regeldifferenz schnellstmöglich verringert.

5. Ausführungsformen des Regelsystems von Positionierantrieben Für die grundsätzlichen Überlegungen dieses Abschnittes sei zunächst vorausgesetzt, daß alle Signale der Regelstrecke, welche dem Regler zugeführt werden sollen, in idealer Weise erfaßt werden können.

5.1 Darstellung der Regelstrecke mit Hilfe regelungstechnischer Ubertragungsglieder

Das Blockschaltbild der Regelstrecke, bestehend aus einer permanenterregten Synchronmaschine und dem sie speisenden Transistor-Pulsumrichter ist in Bild 5.1 dargestellt.

Im Bereich I dieses Bildes wird der Pulswechselrichter berücksichtigt, welcher gemäß den Ausführungen des Abschnittes 4 als steuerbare Spannungsquelle anzusehen ist. Aufgrund der sehr kleinen mittleren Totzeit \mathbf{T}_t und der daraus resultierenden ausgezeichneten Dynamik dieses Stellgliedes kann dasselbe in sehr guter Näherung als ideale Drehspannungsquelle angesehen werden. Durch geeignete Steuerung dieser Drehspannungsquelle kann die d-Komponente der Maschinenspannung stets so eingestellt werden, daß die d-Komponente des Maschinenstromes und damit auch deren Einfluß auf das Drehmoment vernachlässigt werden kann [9].

Der folgende Bereich II beschreibt die Einflüsse der q-Komponenten der Ausgangsspannung u des Pulswechselrichters und der aus Gl. (3.7) zu ermittelnden induzierten Spannung \mathbf{u}_1 der Maschine auf die drehmomentbildende q-Komponente des Stromes (i_1); da die Spannungsfälle an den Ständerwiderständen R_1 im interessierenden Bereich niedriger Drehzahlen klein sind gegenüber der Differenz der Spannungen $\mathbf{u}_{\mathbf{q}}$ ($\approx\pm\frac{2}{3}$ U_Z) und $\mathbf{u}_{\mathbf{i}\mathbf{q}}$, werden diese Widerstände im folgenden vernachlässigt.

Bild 5.1: Blockschaltbild der Regelstrecke, bestehend aus permanenterregter Synchronmaschine und Transistor-Pulswechselrichter.

Der Einfluß des Querstromes i_q auf das Drehmoment m_1 der idealisierten Maschine gemäß Gl. (3.2) und Gl. (3.3) ist im Bereich III wiedergegeben. Weiterhin werden hier der Einfluß des Pendelmoments m_p auf das Luftspaltmoment m_L sowie die Einflüsse des durch die Last hervorgerufenen Widerstandsmomentes m_W und der Summe aller Reibungsmomente m_R auf das Beschleunigungsmoment m_Q berücksichtigt.

[

ω

Die Bewegungsgleichungen

<u>د</u>

und

(5.1)

엄 (5.2)

aller zu bewegenden Massen des Antriebes, ω_{m} die mechanische auf die Welle der Maschine umgerechnete Massenträgheitsmoment Winkelgeschwindigkeit und arepsilon den mechanischen Drehwinkel des Rotors dar. finden ihren Niederschlag im Bereich IV; J stellt hierbei das

5.2.1 Lage- und Drehzahlregelkreis

richtung des Antriebssystems zuzuführen [29, 30].

Zustandsgrößen der Regelstrecke zu erfassen und der Regelein-

dessen Führungs- und Störverhaltens ist es anzustreben, alle

der Pole des Regelkreises und somit bei der Festlegung von

5.2 Aufbau eines Regelsystems für den mechanischen Drehwinkel arepsilon

Im Hinblick auf eine größtmögliche Freiheit bei der Festlegung

sche Winkelgeschwindigkeit ω_{m} zu unterlagern (Bild 5.2). Kaskadenstruktur zugrundegélegt | 30, Kapitels ist für die folgenden Überlegungen ein Regelsystem mit Ohne Einschränkung der Allgemeingültigkeit der Aussagen dieses mechanischen Drehwinkel ε ist dann ein solcher für die mechani-<u>ω</u>] . Dem Regler für den

zugehörigen Reglers besonderes Augenmerk zu widmen. Regelgröße x dieser inneren Regelschleife sowie dem Aufbau des schematisch dargestellte, Rest-Regelstrecke zum einen erhebliche rüstende Restregelstrecke von 1. Ordnung. Da diese, in Bild 5.2 so ist die verbleibende, mit einem unterlagerten Regler auszu-Vernachlässigt man die sehr geringe Totzeit \mathtt{T}_{t} (siehe Bild 5.1) merklichen Amplituden beaufschlagt wird, ist der Auswahl der Nichtlinearitäten aufweist und zum anderen von Störgrößen mit

Bild 5.2: Aufbau eines Regelsystems in Kaskadenstruktur für den mechanischen Drehwinkel einer über einen Transistor-Pulswechselrichter gespeisten permanenterregten Synchronmaschine.

5.2.2 Festlegung der Regelgröße für jene Regelschleife,

welche dem Drehzahlregelkreis unterlagert wird sowie Ausführungsformen des zugehörigen Reglers

Die Ausgangsgröße x_{SOll} des Drehzahlreglers stellt den Sollwert für die in der unterlagerten Schleife geregelte Systemgröße dar. Die Aufgabe des x-Reglers besteht darin, aus diesem Sollwert Die Sowie der gemessenen Größe x_{ist}, welche dem Regler als x_{Soll} sowie der gemessenen Größe x_{ist}, welche dem Regler als Istwert der Regelgröße x zugeführt wird, die Steuerbefehle für Istwert des Pulswechselrichters abzuleiten.

5.2.2.1 Ableitung der Steuerbefehle für den Pulswechselrichter aus einem Regelkreis für den Querstrom der permanenter-

regten Synchronmaschine ei dieser Ausführungsform des inneren Regelkreises wird davon Bei dieser Ausführungsform des inneren Regelkreises wird davon Gebrauch gemacht, daß das Drehmoment $m_{\rm I}$ einer gemäß Kapitel 3.2 idealisierten Maschine nach den Gln. (3.2) bis (3.4) für $i_{\rm d}$ = 0 direkt proportional zur Amplitude des Querstromes ist. Die Auswirkungen der in Bild 5.2 angedeuteten Störgrößen müssen dann vom Lage- und Drehzahlregelkreis kompensiert werden.

Setzt man $x_{\rm Soll}$ = $m_{\rm I}$, soll, so können die Sollwerte für die Phasen ströme der Maschine nach Gleichung (3.5) zu

$$\begin{pmatrix}
i_{a,soll} \\
i_{b,soll} \\
\vdots \\
i_{C,soll}
\end{pmatrix} = \frac{1}{C} \cdot \begin{pmatrix}
\cos \gamma \\
\cos (\gamma - \frac{2}{3}\pi)
\end{pmatrix} \cdot m_{I,soll}, \qquad (5.3)$$

mit C gemäß Gl. (3.6), angegeben werden. Der elektrische Drehwinkel γ wird dabei, wie in Bild 5.3 dargestellt, direkt aus der Rotorlage abgeleitet.

Die Regelung der Phasenströme kann in einfacher Weise dadurch erfolgen, daß jedem Zweig des Pulsumrichters ein Zweipunktregler nach Bild 4.2 für den zugehörigen Phasenstrom zugeordnet wird.

Neben seiner Einfachheit zeichnet sich dieser Reglertyp - angesichts der hohen möglichen Schaltfrequenz - einerseits durch sei

Bild 5.3: Prinzipieller Aufbau eines Regelkreises für den Querstrom einer permanenterregten Synchronmaschine.

außerordentlich gute Dynamik und andererseits durch seine hohe Regelgüte aus [6, 9, 32, 33]. Diese Aussagen finden ihre Bestätigung in den Ergebnissen theoretischer Untersuchungen sowie einschlägiger Messungen (Bilder 5.4 und 5.5) an einem pulswechselrichtergespeisten Drehstrommotor. Der Simulation wurde das in Bild 3.5 dargestellte Ersatzschaltbild mit folgenden Meßdaten der Maschine

Bild 5.4: Zeitlicher Verlauf des Sollwertes $i_{a,Soll}$ sowie des zugehörigen Istwertes $i_{a,ist}$ des Phasenstromes i_{a} einer festgebremsten Drehfeldmaschine. Vorgegebene Amplitude i_{soll} für die Sollwerte der Phasenströme: $i_{soll} = \sqrt{2} \cdot i_{N} = 6$ A Gemessene Daten der zugrundegelegten Maschine: $i_{d} = 39$ mH; $i_{l} = 3.9$ i_{l} .

Daten des verwendeten Pulswechselrichters: $i_{l} = 540$ V; $i_{l} = 100$ kHz

Bild 5.5: Zeitlicher Verlauf des Sollwertes i_a , soll sowie zugehöriger Istwert i_a , ist des Phasenstromes i_a einer festgebremsten Drehfeldmaschine. Vorgegebene Amplitude i_{soll} für die Sollwerte der Phasenströme: $i_{soll} = 0.02 \cdot \sqrt{2} I_N = 120 \text{ mA}$. Gemessene Daten der zugrundegelegten Maschine: $i_{soll} = 39 \text{ mH}$; $i_{soll} = 3.9 \text{ m}$. Daten des verwendeten Pulswechselrichter: $i_{soll} = 3.9 \text{ m}$. Simulation b) Messung.

$$L_{c} = 36 \text{ mH und}$$
 $R_{1} = 3.9 \Omega$

* .

sowie ein Pulswechselrichter mit den Daten

$$U_{Z} = 540 \text{ V und}$$
 { (5.5)

zugrundegelegt. Die Amplitude der Sollwerte betrug $\hat{s}_{\rm Soll} = \sqrt{2 \cdot I_N}$ (in Bild 5.4) sowie $\hat{s}_{\rm Soll} = 0.02 \cdot \sqrt{2} \cdot I_N$ (in Bild 5.5).

Außerdem wurde bei der Simulation noch ein Rauschsignal mit einer Amplitude von 2 % der Amplitude des Nennstromes auf die Eingänge der Komparatoren der Phasenstromregler aufgeschaltet. Dieser Test zeigte eine große Unempfindlichkeit des vorliegenden Reglertyps gegenüber derartigen Störgrößen.

Die beschriebene Ausführungsform der Stromregelung ist für die überwiegende Anzahl aller Anwendungsfälle geeignet. Werden jedoch, wie im vorliegenden Fall, extrem hohe Anforderungen an die Systemruhe eines Antriebs gestellt, so ist eine Erscheinung zu berücksichtigen, welche anhand des in Bild 4.2 dargestellten Gleichstromstellers kurz erläutert werden soll [34].

Als Last, deren Strom i_L geregelt werden soll, wird dort ein ohmisch-induktiver Verbraucher mit dem Lastwiderstand R_L und der Induktivität L_L zugrundegelegt; das Strommeßglied wird hinsichtlich seiner stationären sowie dynamischen Genauigkeit als ideal angenommen.

Zum Zeitpunkt t = 0 habe der Istwert i_L des Laststromes, welcher auf den konstanten Sollwert i_L , soll geregelt werden soll, den Wert i_V < i_L , soll (Bild 5.6). Infolgedessen wird der Transistor T_1 durchgesteuert und der Strom i_L wird gemäß der Beziehung

$$i_L = (i_v - \frac{u_z}{R_L}) \cdot e^{-\frac{L}{R_L}} + \frac{u_z}{R_L} \quad \text{worin } T_L = \frac{L_L}{R_L} \quad (5.6)$$

Bild 5.6: Prinzipieller Verlauf des Laststromes i_L des Gleichstromstellers nach Bild 4.2 unter Voraussetzung einer gemischt ohmsch-induktiven Last bei Vorgabe eines konstanten Sollwertes i_L, soll·

ist, anwachsen. Unter der Voraussetzung, daß bei der hier interessierenden Speisung einer elektrischen Maschine die dafür im allgemeinen gültige Relation

$$I_{L,ist} << \frac{U_Z}{R_L}$$
 (5.7)

besteht, wird beim nächstmöglichen Umschaltzeitpunkt (t = T_T) wegen $i_{\nu+1}>i_{L,soll}$ der Transistor wieder gesperrt. Der Laststrom berechnet sich somit zu

$$i_L = i_{v+1} \cdot e^{-\frac{t^*}{T_L}}$$
 mit $t^* = t - T_T$, (5.8)

bis zum Zeitpunkt t = v · T_T wieder der Wert $i_L = i_v$ erreicht ist und ein neuer Schaltzyklus beginnt. In Abhängigkeit von der Amplitude des Sollwertes i_L , soll stellt sich dabei ein Grenz-

Ċ

zyklus mit der Periodendauer

$$T_{V} = v \cdot T_{T}$$
 mit $v = 2, 3, 4, ...$ (5.9)

ein. Jedem Wert $\nu=\frac{T_{\nu}}{T_{\mu}^{T}}$ ist ein Minimalwert i_{ν} , ein Maximalwert $i_{\nu+1}$ sowie ein Mittelwert i_{ν} , ist gemäß

$$i_{v} = \frac{v_{z}}{R_{L}} \cdot \frac{e}{e} \frac{T_{T}}{T_{L}} - v \cdot \frac{T_{T}}{T_{L}}$$

$$1_{v} = \frac{v_{z}}{R_{L}} \cdot \frac{e}{T_{L}} - v \cdot \frac{T_{T}}{T_{L}}$$

$$1_{v} = \frac{v_{z}}{T_{L}} \cdot \frac{v_{z}}{T_{L}}$$

$$1_{v} = \frac{v_{z}}{T_{L}} \cdot \frac{v_{z}}{T_{L}}$$
(5.10)

$$\frac{1}{v+1} = \frac{\frac{U_Z}{R_L}}{\frac{R_L}{R_L}} \cdot \frac{1 - e^{-\frac{T_L}{T_L}}}{\frac{T_T}{R_L}} \quad \text{und}$$

$$\frac{1 - e^{-\frac{T_L}{T_L}}}{1 - e^{-\frac{T_L}{T_L}}}$$

$$I_{L,1st} = \frac{U_Z}{R_L} \cdot \frac{1}{v}$$
 (5.1)

zugeordnet. Ist $i_{\nu-1}$ jener Wert des Laststromes, welchen dieser zu einem Abtastzeitpunkt unmittelbar vor Erreichen des Minimalwertes i_{ν} aufweist, so wird ein bestehender Grenzzyklus – und eine damit verbundene Abweichung des Mittelwertes des Laststromes von dessen vorgegebenem Sollwert – für alle Sollwerte im Bereich $i_{\nu} < i_{L,soll} < i_{\nu-1}$ aufrechterhalten.

Analoge Überlegungen für pulswechselrichtergespeiste Drehstromverbraucher führen zu dem Ergebnis, daß für jeden Sollwert des Stromraumzeigers mehrere Grenzzyklen von Schaltkombinationen \mathbb{S}_k mit unterschiedlichen mittleren Abweichungen des Sollwertes des Stromraumzeigers von dessen Istwert möglich sind.

Diese Erscheinung kann grundsätzlich durch den Einsatz eines Reglers mit Integralanteil vermieden werden. Bei nicht angeschlossenem Mittelpunkt des Drehstromverbrauchers wäre es auf-

grund der Beziehung

$$\frac{1}{4}$$
a,ist * $\frac{1}{4}$ b,ist * $\frac{1}{4}$ c,ist = 0 (5.13)

ausreichend, zwei Phasenstromregler mit Integralanteil auszurüsten. Mit Hilfe der in Bild 5.7 dargestellten, von A. Boehringer
vorgeschlagenen Ausführungsform der Maschinenstromregelung ist
jedoch auch eine im allgemeinen vorteilhafte, symmetrische Lösung des Problemes möglich. Der Korrekturregler übernimmt dabei
die Aufgabe, ein Driften der Integrierer infolge unvermeidlicher
Offsetspannungen im Regelsystem auszugleichen.

Bild 5.7: Ausführung des Stromreglers in Bild 5.3 nach dem Prinzip der zeitdiskreten Schaltzustandssteuerung ohne bleibende Regelabweichung

Setzt man vereinfachend voraus, daß die Sollwerte und die Ist-

werte der drei Phasenströme jeweils ein ideales, symmetrisches Drehstromsystem ohne Nullkomponente darstellen und daß außer dem in Bild 5.7 auf den obersten Soll-Istwertvergleich wirkenden Fehlerstrom \underline{i}_F im Regelkreis keine weiteren Störgrößen angreifen, so ergibt sich die Ausgangsgröße \underline{i}_K des Korrekturreglers zu

$$\frac{i}{R} = \frac{C_K}{p \cdot T_K} \left(\frac{\Delta i}{a} + \frac{\Delta i}{b} + \frac{\Delta i}{c} \right) \text{ mit } p = j\omega + \sigma.$$
 (5.14)

Die Summe der Differenzströme in Gl. (5.14) ergibt sich unter Berücksichtigung von Gl. (5.13) und der entsprechenden Beziehung für die Sollwerte

$$\frac{1}{a}$$
, soll + $\frac{1}{b}$, soll + $\frac{1}{c}$, soll = 0 (5.15)

zu

$$\Delta i_a + \Delta i_b + \Delta i_c = -3i_K + i_F$$
 (5.16)

Aus den Gln. (5.14) und (5.16) ergibt sich \underline{i}_K letztlich zu

$$\frac{1}{3} + p \cdot \frac{1}{C_K} \cdot \frac{1}{2p} \cdot$$
 (5.17)

Alle auf den Regelkreis einwirkenden Störgrößen werden somit stationär (p = 0) gleichmäßig auf die drei Phasen des Verbrauchers verteilt.

Wie in diesem Kapitel eingangs erläutert wurde, müssen die Auswirkungen der Pendel-, Widerstands- und Reibungsmomente bei dieser, in der Vergangenheit ausschließlich eingesetzten, indirekten Regelung der Winkelbeschleunigung der Maschine über deren Maschinenströme von einem überlagerten Drehzahl- und/oder Lage-regelkreis kompensiert werden. Eine grundsätzliche Verbesserung dieses Schwachpunktes ist durch die in jüngster Vergangenheit vorgeschlagene "Direkte Selbst-Regelung" umrichtergespeister

Drehfeldmaschinen [35] zu erwarten. Hierbei werden nicht die Maschinenströme, sondern das aus den Klemmengrößen der Maschine berechnete Drehmoment derselben geregelt. Die Auswahl der Schaltzustände des Pulswechselrichters kann dabei in einfacher Weise derart erfolgen, daß der Drehmomentregelkreis als Zweipunktregelkreis unter voller Nutzung der vorhandenen Stellreserve arbeitet.

Bei dem für Positionierantriebe sehr wichtigen Fall des Stillstandes ergeben sich für das in [35] beschriebene Regelverfahren jedoch Probleme, da dann aus den Klemmengrößen der Maschine keine ausreichende Informationen über die Flußverkettungen derselben mehr gewonnen werden können. Weiterhin ist anzumerken, daß zwar das innere Drehmoment der Maschine erfaßt wird, nicht jedoch das Widerstandsmoment. Aus letztgenanntem Grund können Pulsationen des Reibungs- und des Widerstandsmomentes wiederum nur indirekt über überlagerte Regelkreise kompensiert werden.

Im folgenden wird ein Regelsystem vorgestellt, in welchem die Steuerbefehle für den Pulswechselrichter ebenfalls ohne direkte Regelung der Maschinenströme unmittelbar aus einem Zweipunkt-regelkreis für eine mechanische Systemgröße abgeleitet werden, welches jedoch eine schnellstmögliche Ausregelung aller im Regelkreis angreifenden Störgrößen, insbesondere der Pulsationen des Reibungs- und des Widerstandsmomentes erlaubt.

5.2.2.2 Ableitung der Steuerbefehle für den Pulswechselrichter aus einem Regelkreis für die Winkelbeschleunigung α des Rotors der permanenterregten Synchronmaschine

a)_Prinzipieller_Ansatz

Bei der im vorstehenden Kapitel beschriebenen Ausführungsform der inneren Regelschleife wurde davon Gebrauch gemacht, daß der Stromraumzeiger aufgrund der sehr kurzen Reaktionszeit des Pulswechselrichters nach Amplitude und Phasenlage in einem sehr engen Toleranzbereich um den vorgegebenen Sollwert herum geführt werden kann. Insbesondere kann dieser Stromraumzeiger so geführt werden, daß er nur eine für die Drehmomentbildung verantwortliche Komponente ig in Richtung der q-Achse der Maschine aufweist. Auf diese Weise wird eine unnötige thermische Belastung der Maschine durch einen Strom ig in deren d-Achse bestmöglich vermieden.

Die hohe Dynamik des Pulswechselrichters kann in noch besserer Weise genutzt werden, wenn dessen Steuerbefehle in der nachfolgend beschriebenen Art direkt aus einem Regelkreis für die Drehbeschleunigung des Rotors der Maschine abgeleitet werden.

Diesem neuartigen Regelverfahren liegt folgender Ansatz zugrunde: Eine Abweichung des Istwertes α_{ist} der Drehbeschleunigung des Rotors der Maschine von dem aus einem überlagerten Drehzahlregel-kreis vorgegebenen Sollwert α_{soll} ist im Rahmen einer Zweipunktregelung schnellstmöglich zu vermindern; hierfür ist immer jener Spannungszeiger \underline{S}_k (mit k = 1,2,...,6) der Ausgangsspannung des Pulswechselrichters einzustellen, welcher die für die Drehmomentbildung der Synchronmaschine verantwortliche q-Komponente von deren Stromraumzeiger schnellstmöglich in der gewünschten Richtung beeinflußt.

Der drehmomentbildende Querstrom \mathbf{i}_q der Maschine, welcher deren Drehbeschleunigung unmittelbar beeinflußt, kann unter Nutzung der vollen Ausgangsspannung des Pulswechselrichters über ein Integralglied 1. Ordnung verstellt werden. Weiterhin können die Auswirglied 1.

kungen aller an der Welle angreifenden Störgrößen über deren Drehbeschleunigung ohne Zeitverzug erfaßt werden. Infolgedessen können die Auswirkungen aller an der Welle der Maschine angreifenden Störgrößen über eine Zweipunktregelung für die Drehbeschleunigung des Rotors schnellstmöglich kompensiert werden.

nen Spannungszeiger \underline{s}_0 und \underline{s}_7 verzichtet werden. Unter Nutzung stellung der in dem auf Seite 28 angegebenen Bild 4.3 eingetragean dieser Stelle verzichtet werden. Weiterhin soll in den folgenrichters und/oder eine Verminderung der Wechselanteile der Drehdieser Zeiger, deren Beträge den Wert "Null" aufweisen, könnte den grundsätzlichen Überlegungen von der Möglichkeit der Eindargestellten Aufnehmern aufweist, soll auf dessen Beschreibung prinzipiellen Unterschiede zu den in der genannten Literatur der dieser Arbeit zugrundegelegte Beschleunigungssensor keine cher Geber sind in [36, 37, 38, 39] ausführlich beschrieben. Da nigung unumgänglich. Das Meßprinzip sowie Ausführungsformen sol-Differentiation des Drehzahlsignals wegen des hohen Störpegels Klemmengrößen ist nicht möglich. Andererseits soll auf eine Die Berechnung der Drehbeschleunigung der Maschine aus deren beschleunigung erzielt werden. eine Reduktion der resultierenden Schaltfrequenz des Pulswechselist der Einsatz eines zusätzlichen Gebers für die Winkelbeschleudes dabei entstehenden Signals verzichtet werden. Infolgedessen

Die räumliche Lage des rotorfesten Koordinatensystems, dessen d-Achse die Symmetrieachse eines Polpaares bildet, wird im folgenden wieder mit Hilfe des elektrischen Drehwinkels y beschrieben (siehe auch das auf Seite 16 angegebene Bild 3.1). Dieser ergibt sich als Produkt des mechanischen Drehwinkels ε mit der Polpaarzahl z und gibt die Auslenkung der q-Achse des Rotors gegenüber der Symmetrieachse der Ständerwicklung a an.

Die Drehbeschleunigung der Maschine soll voraussetzungsgemäß in einem Zweipunktregelkreis unter voller Nutzung der vorhandenen Stellreserve geregelt werden. Hierfür ist die Kenntnis

jener Schaltzustände des Pulswechselrichters vonnöten, welche bei gegebener räumlicher Lage des rotorfesten d-q-Koordinatensystems eine größtmögliche Änderungsgeschwindigkeit des drehmomentbildenden Querstromes hervorrufen.

Ausgangspunkt für die Ermittlung dieser Schaltzustände sind die Gleichungen für die Spannungen der Maschine $\left[\ 13,\ 14\ \right]$

$$u_{d} = R_{1} \cdot i_{d} + \frac{d\psi_{d}}{dt} - 2 \cdot \pi \cdot z_{p} \cdot n \cdot \psi_{q} \quad \text{und}$$
 (5.18)

$$u_{\mathbf{q}} = R_1 \quad \mathbf{i}_{\mathbf{q}} + \mathbf{d}_{\mathbf{q}} + 2 \cdot \pi \cdot \mathbf{z}_{\mathbf{p}} \cdot \mathbf{n} \cdot \psi_{\mathbf{d}} \quad . \tag{5.19}$$

Die hierin enthaltenen Flußverkettungen können gemäß Gl. (3.3) ($\psi_{\bf d}$ = L·i_d+ $\psi_{\bf M}$) und Gl. (3.4) ($\psi_{\bf q}$ = L·i_q) ermittelt werden.

Unter Voraussetzung der in Abschnitt 3 getroffenen Annahmen ist die durch die Permanentmagnete hervorgerufene Flußverkettung konstant; demnach gilt für deren Ableitung nach der Zeit:

$$\frac{\mathrm{d}\psi_{\mathrm{M}}}{\mathrm{d}t} = 0 . \tag{5.20}$$

Berücksichtigt man weiterhin die Beziehung

$$\omega_{\text{el}} = 2 \cdot \pi \cdot \bar{z}_{p} \cdot n, \qquad (5.21)$$

dann erhält man die gesuchten Zusammenhänge zwischen den Strömen und Spannungen der Maschine[14]

$$u_{d} = R_{1} \cdot i_{d} + L \frac{di_{d}}{dt} - \omega_{e1} \cdot L \cdot i_{q} \quad \text{und} \qquad (5.22)$$

$$u_q = R_1 \cdot i_q + L \frac{di_q}{dt} + \omega_{el} \cdot (L \cdot i_d + \psi_M).$$
 (5.23)

Bei der vorliegenden Ausführungsform permanenterregter Synchronmaschinen kann die durch den d-Strom hervorgerufene Flußver-

kettung L·i_d insbesondere für kleine Beträge dieses Stromes i_d gegenüber der durch die Permanentmagnete hervorgerufenen Flußverkettung ψ_{M} vernachlässigt werden. Unter Berücksichtigung dieser Tatsache kann die Gl. (5.23) auch in der Form

$$u_{q} = R_{1} \cdot i_{q} + L \cdot \frac{di_{q}}{dt} + \omega_{e1} \cdot \psi_{M}$$
 (5.24)

geschrieben werden.

b) Regelung der Winkelbeschleunigung des Rotors der permanenterregten Synchronmaschine ohne Rücksicht auf den sich dabei einstellenden Strom id in Richtung der d-Achse

Die erwünschten größtmöglichen Beträge der Änderungsgeschwindigkeit $\frac{\mathrm{d} 1_{\mathrm{q}}}{\mathrm{d} t}$ des Querstromes und demzufolge der Drehbeschleunigung a werden nach Gl. (5.24) dann erzielt, wenn der Betrag der Spannung ug größtmöglich ist. Für eine Erhöhung des Querstromes ist demnach jener Spannungszeiger \underline{S}_k (mit k = 1, 2, ..., 6) einzustellen, welcher die größte Komponente in Richtung der positiven q-Achse aufweist; eine Verminderung dieses Stromes hat entsprechend mit Hilfe jenes Spannungszeigers zu erfolgen, welcher die größte Komponente in Richtung der negativen q-Achse aufweist.

Anhand des Bildes 5.8 wurden die vom Drehwinkel γ abhängigen d- und q-Komponenten der von den einzelnen Schaltzuständen S_k hervorgerufenen Maschinenspannung ermittelt. Diese Komponenten sind in Tabelle 5.1 wiedergegeben. Als Bezugsgröße dient dort der Betrag U_S der Spannungszeiger \underline{S}_k , welcher sich gemäß Gl. (4.1) ($U_S = \frac{2}{3} \cdot U_Z$) aus der Spannung U_Z des Gleichspannungszwischenkreises ergibt.

- 49 -

Bild 5.8: Ermittlung der d- und q-Komponenten der vom elektrischen Drehwinkels y. zeiger \underline{S}_k (mit $k = 1, 2, \dots, 6$) als Funktion des Pulswechselrichter einstellbaren Spannungs-

ſα	Ω	18	អូន	.S ₂	ī	
$-\cos \left(\gamma - \frac{2}{3} \cdot \pi\right)$	$-\cos (\gamma - \frac{1}{3} \cdot \pi)$	- cos y	$\cos (\gamma - \frac{2}{3} \cdot \pi)$	$\cos (\gamma - \frac{1}{3} \cdot \pi)$	cos	N L
- $\sin \left(\gamma - \frac{2}{3} \cdot \pi\right)$	$-\sin \left(\gamma - \frac{1}{3} \cdot \pi\right)$	- sin y	$\sin (\gamma - \frac{2}{3} \cdot \pi)$	$\sin (\gamma - \frac{1}{3} \cdot \pi)$	sin Y	u _d

Tabelle 5.1: Komponenten der vom Pulswechselrichter einstell-Funktion des Drehwinkels y. Richtung der d- und q-Achse der Maschine als baren Spannungszeiger \underline{S}_k (mit k= 1,2,...,6) in

q-Achse der Maschine (schraffiert) und welcher den größten gibt an, welcher Schaltzustand S_k (mit k= 1,2,...,6) bei gege-Betrag in Richtung der negativen q-Achse (kariert) hervorruft. benem Drehwinkel y den größten Betrag in Richtung der positiven den Spannungskomponenten $u_q=u_q(S_k$, $\gamma)$ als Funktion des Drehwinkels γ graphisch dargestellt. Als Bezugsgröße dient dort wiederum der Betrag U $_{\rm S}$ der Spannungszeiger $\underline{\bf S}_{\rm k}$. In Bild 5.9.b ist die zugehörige Schaltzustandstabelle wiedergegeben; diese In Bild 5.9 a sind die hier in besonderem Maße interessieren-

zeiger \underline{S}_{k} eingetragen, welche gemäß Zusätzlich sind in Bild 5.9.b die Drehwinkel $\gamma_{\mathbf{k}}$ der Spannungs-

$$\gamma_{k} = (k-1) \cdot \frac{\pi}{3}$$
 (5.25)

angegeben werden können.

Bild 5.9: a) Auf den Betrag U_g der Spannungszeiger \underline{S}_k (mit $k=1,2,\ldots,6$) bezogene Komponente der Spannung u_g in Richtung der q-Achse der Maschine in Abhängigkeit des Drehwinkels γ für alle möglichen Schaltzustände S_k (mit $k=1,2,\ldots,6$).

b) Schaltzustandstabelle zur Auswahl jenes Spannungszeigers, dessen Komponente ug bei gegebenem Drehwinkel y den größten (schraffiert) bzw. den kleinsten (kariert) Wert aufweist.

Aus Bild 5.9.b wird ersichtlich, daß der schnellstmögliche Aufbau des drehmomentbildenden Querstromes i mit Hilfe jenes Spannungszeigers vorzunehmen ist, welcher der positiven q-Achse der Maschine (deren Lage durch den Drehwinkel γ beschrieben wird) am nächsten ist. Entsprechend erfolgt ein schnellstmöglicher Abbau des Querstromes über eine Einstellung jenes Zeigers, welcher der negativen q-Achse am nächsten ist. Bei gegebenem Drehwinkel γ, sowie gegebenem Vorzeichen der Regeldifferenz des Beschleunigungsregelkreises ist demnach eine eindeutige Festlegung der für die Zweipunktregelung heranzuziehenden Schaltzustände des Pulswechselrichters möglich.

Für den in Bild 5.8 eingetragenen Wert des Drehwinkels von 20° (entspricht $\frac{\pi}{9}$ rad) muß demmach vom Beschleunigungsregelkreis einer der beiden Zeiger \underline{S}_1 und \underline{S}_4 für den geforderten, schnellstmöglichen Auf- oder Abbau des drehmomentbildenden Stromes ig eingestellt werden. Die Zuordnung der Schaltzustände zum Vorzeichen der Regeldifferenz ist in Tabelle 5.2 angegeben.

$$\frac{(\alpha_{soll} - \alpha_{ist}) < 0! (\alpha_{soll} - \alpha_{ist})}{S_4} = \frac{S_1}{S_1}$$

Tabelle 5.2: Auswahl der Schaltzustände in einem Zweipunkt-Regelkrois für die Drehbeschleunigung α einer permanenterregten Synchronmaschine ohne Rücksicht auf den sich dabei einstellenden Längsstrom i_d .

Durch einen fortlaufenden Wechsel zwischen diesen Zeigern \underline{S}_1 und \underline{S}_4 stellt sich im zeitlichen Mittel ein resultierender zeiger in Richtung des erstgenannten ein, dessen Amplitude U_1 durch die mittleren Verweildauern T_1 und T_4 in diesen Schaltzuständen S_1 und S_4 gemäß $U_1 = 2$ $U_1 = 1$ $U_2 = 1$ $U_3 = 1$ $U_4 = 1$ $U_5 = 1$ $U_5 = 1$ $U_5 = 1$ $U_6 = 1$ $U_7 = 1$

$$U_1 = \frac{2}{3} \cdot U_2 \cdot \frac{T_1 - T_4}{T_1 + T_4}$$

bestimmt wird.

Bei genügend hoher Taktfrequenz des Pulswechselrichters kann für den gesamten Drehzahlbereich der Maschine vorausgesetzt werden, daß sich der elektrische Drehwinkel γ in einer für eine hinreichend genaue Mittelwertbildung von U_1 ausreichenden Zeit nicht nennenswert ändert. In einem dann zu betrachtenden quasistationären Zustand ergibt sich diese Spannung U_1 aus der in Bild 5.10 wiedergegebenen Projektion des für die Aufrechterhaltung des Querstromes erforderlichen Zeigers $\underline{U}_{\mathbf{q}}$ auf den Zeiger $\underline{\mathbf{S}}_1$ gemäß

$$U_1 = U_{\frac{1}{2} \cos \gamma}$$
 (5.27)

Bild 5.10: Ermittlung des Betrages des für die Aufrechterhaltung eines Querstromes I erforderlichen Zeigers U₁ sowie des sich bei dem im Text erläuterten Steuerverfahren einstellenden Spannungszeigers U₁

Die zur Aufrechterhaltung des drehmomentbildenden Querstromes erforderliche Spannung U $_{\rm q}$ kann aus der auf Seite 47 angegebenen Beziehung (5.24) ermittelt werden; ersetzt man die dort auftretenden Augenblickswerte u $_{\rm q}$ sowie i $_{\rm q}$ durch deren sich im quasistationären Zustand einstellende Mittelwerte U $_{\rm q}$ sowie I $_{\rm q}$ und berücksichtigt man, daß die Änderungsgeschwindigkeit dI $_{\rm q}$ im quasistationären Zustand gleich "Null" ist, so ergibt sich U $_{\rm q}$ zu

$$U_{q} = R_{1} \cdot I_{q}^{+\omega} e_{1} \cdot \psi_{M}$$
 (5.28)

Wie aus Bild 5.10 hervorgeht, tritt bei dieser Vorgehensweise für die Auswahl der Schaltzustände des Pulswechselrichters zusätzlich zu U $_{\rm q}$ eine Spannung U $_{\rm d0}$ in Richtung der d-Achse der Maschine gemäß

$$U_{d0} = U_{q} \cdot tan \gamma$$
 (5.3)

auf.

Zusätzlich zu dieser Spannung U_{d0} nach Gl. (5.29) tritt nach der auf Seite 46 angegebenen Gl. (5.22) eine vom Belastungszustand abhängige Spannung U_{d} in Richtung der d-Achse auf. Ersetzt man wiederum die Augenblickswerte der Maschinenströme durch deren im quasistationären Zustand auftretenden Mittelwerte, dann kann diese Spannung zu

$$U_{d} = -\omega_{el} \cdot L \cdot I_{q}$$
 (5.3)

angegeben werden.

Die Spannungen U_{d0} nach Gl. (5.29) sowie U_d nach Gl. (5.30) haben einen Strom I_d in Richtung der d-Achse der Maschine zur Folge, welcher zu deren thermischer Belastung beiträgt ohne das Drehmoment wesentlich zu beeinflussen.

Für den bei Positionierantrieben besonders interessanten Fall des Stillstandes (d.h. $\omega_{e1}=0$) kann dieser Strom I_d leicht ermittelt werden. Für den Winkelbereich - $\frac{\pi}{6} \le \gamma \le \frac{\pi}{6}$, welcher auch den Bildern 5.8 und 5.10 zugrundeliegt, ergibt sich

$$I_{d} = \frac{U_{d}}{R_{1}} = I_{q} \cdot \tan \gamma . \qquad (5.31)$$

Wie aus Gründen der zyklischen Aufeinanderfolge der in Bild 5.8 dargestellten Zeiger leicht einsichtig ist, gilt für alle Winkelbereiche

$$-\frac{\pi}{6} + z \cdot \frac{\pi}{3} \le \gamma \le \frac{\pi}{6} + z \cdot \frac{\pi}{3}$$
mit $z = 0, \pm 1, \pm 2, \dots$ (5.32)

für den Längsstrom der Maschine:

$$I_{d} = I_{q} \cdot \tan \left(\gamma - z \cdot \frac{\pi}{3} \right) . \qquad (5.33)$$

Der Betrag I des resultierenden Stromraumzeigers I kann danach gemäß I = $\sqrt{I_{d}^{3} + I_{q}^{3}}$ zu

$$I = I_q \cdot \sqrt{1 + \tan^2 (\gamma - z \cdot \frac{\pi}{3})}$$
 (5.34)

und dessen Maximalwert I max zu

$$I_{\text{max}} = I_{\mathbf{q}} \cdot \frac{1}{\cos^{\frac{\pi}{6}}} = \frac{2}{\sqrt{3}} \cdot I_{\mathbf{q}} = 1,15 \cdot I_{\mathbf{q}}$$
 (5.35)

angegeben werden.

Diese nach den Gln. (5.33) und (5.34) berechneten Ströme I_d und I sind in Bild 5.11 unter Voraussetzung eines konstanten Querstromes als Funktion des elektrischen Drehwinkels y dargestellt.

Bild 5.11: a) Schaltzustandstabelle der zugelassenen Schaltzustände \mathbb{S}_{k} sowie

b) berechnete Werte \mathbf{I}_d und I des Längsstromes und des Stromraumzeigers einer stillstehenden permanenterregten Synchronmaschine in Abhängigkeit vom elektrischen Drehwinkel γ unter Voraussetzung eines konstanten Querstromes;

Ableitung der Schaltzustände des Pulswechselrichters aus einem Beschleunigungsregelkreis ohne Regelung des Längsstromes.

Weiterhin ist in Bild 5.11 die Schaltzustandstabelle der bei dem beschriebenen Verfahren zur Regelung der Drehbeschleunigung α in Abhängigkeit vom Drehwinkel γ zugelassenen Schaltzustände S_{k} wiedergegeben.

Bild 5.12: a) Aus einem Beschleunigungsregelkreis abgeleitete Schaltzustände S_k des Pulswechselrichters und b) zugehörige, gemessene Werte des auf den Mittelwert I_O des Querstromes bezogenen Längsstromes I_d und des Querstromes I_q einer mit konstantem Widerstandsmoment belasteten, permanenterregten Synchronmaschine.

eine Messung durchgeführt, deren Ergebnis in Bild 5.12 dargewinkels γ wurde an der in Abschnitt 7 beschriebenen Modellanlage mittelten Verlaufes des Längsstromes $\mathbf{I}_{\mathbf{d}}$ als Funktion des Drehmit einem konstanten Widerstandsmoment $m_{W} = 0.5 \cdot M_{N}$ belastet. Die stellt ist. Hierbei wurde die permanenterregte Synchronmaschine Zur Bestätigung des in Bild 5.11 dargestellten, theoretisch erständen $\mathbf{S}_{\mathbf{k}}$ sind aufgrund der sehr kurzen Übergangszeiten, welche wandler erfaßten, vom Beschleunigungsregelkreis vorgegebenen die über einen Dekodierer mit nachgeschaltetem Digital-Analog-Außer den Verläufen des Längs- und Querstromes sind in Bild 5.12 des lagegeregelten Versuchsantriebes betrug $\dot{\epsilon}_{\rm SOll}$ = $2 \cdot \pi \frac{{\rm rad}}{{\rm min}}$. Anderungsgeschwindigkeit $\epsilon_{ ext{soll}}$ für den mechanischen Drehwinkel $\epsilon_{ ext{rol}}$ lässigbar sind, nicht sichtbar. gegenüber den Verweildauern in diesen Schaltzuständen $\mathbf{S}_{\mathbf{k}}$ vernachdargestellt. Die Übergänge zwischen den geforderten Schaltzu-Schaltzustände S_k (mit k = 1, 2, ..., 6) für den Pulswechselrichter

Das Auftreten der (unerwünschten) d-Komponente des Stromraumzeigers, deren Mittelwert mit zunehmender Kreisfrequenz ω_{e1} ansteigt und die ein Vielfaches der q-Komponente betragen kann, wird mit der im folgenden beschriebenen Ausführungsform des Regelkreises für die Winkelbeschleunigung bestmöglich verhindert.

c)_Regelung der Winkelbeschleunigung_des_Rotors der permanenterregten_Synchronmaschine unter Vermeldung_eines_Stromes_I_d in_Richtung der d-Achse

Bei diesem Steuerverfahren erfolgt die Auswahl des einzustellenden Spannungszeigers unter der Randbedingung, daß der Strom in Richtung der d-Achse bestmöglich auf dem Wert Null gehalten werden soll; die Spannung u_q in Querrichtung der Maschine ist nun also unter Wahrung dieser Randbedingung in einem Zweipunktregelkreis für die Drehbeschleunigung so einzustellen, daß die Änderungsgeschwindigkeit des q-Stromes entweder ihren Größtwert (für

 $\alpha_{\rm soll}$ - $\alpha_{\rm ist}$ > 0) oder ihren Kleinstwert (für $\alpha_{\rm soll}$ - $\alpha_{\rm ist}$ < 0) annimmt.

Ausgangspunkt für die Erläuterung des Regelsystems ist der Wirkungssinn der einzelnen Spannungszeiger \underline{S}_k (mit k = 1,2,...,6) auf die d- und q-Komponente des Stromraumzeigers. Dieser Wirkungssinn sei wiederum für den bei Positionierantrieben besonders interessanten Fall des Stillstandes (d.h. ω_{el} = 0) kurz erläutert. Dies geschieht anhand des auf Seite 48 in Bild 5.8 beispielhaft eingetragenen Drehwinkels γ = 20° sowie anhand der auf Seite 49 angegebenen Tabelle 5.1 für die d- und q-Komponenten der Ständerspannung aller Spannungszeiger \underline{S}_k . Der Nachweis für die Funktionsfähigkeit des Regelsystems für Kreisfrequenzen ω_{el} $^{+}$ 0 erfolgt im anschließenden Kapitel 5.2.2.3.

Da die d-Komponente des Stromraumzeigers nur aus thermischen Gründen unterdrückt werden soll, wird keine hohe Änderungsgeschwindigkeit für dieselbe gefordert. Demzufolge muß in dem für den Längsstrom i_d aufzubauenden Regelkreis keine hohe Stellreserve für die d-Komponente der Maschinenspannung, welche nach der auf Seite 46 angegebenen Gl. (5.22) einen unmittelbaren Einfluß auf diese Änderungsgeschwindigkeit ausübt, vorgesehen werden. Auf die Einstellung jener Spannungszeiger, deren Betrag in Richtung der d-Achse der Maschine maximal ist, soll also im Hinblick auf eine möglichst hohe verfügbare Stellreserve zur Regelung der Drehbeschleunigung α verzichtet werden.

Für die auf Seite 48 in Bild 5.8 eingetragene Rotorstellung (mit einem Drehwinkel γ = 20°), welche auch dem Bild 5.13 zugrunde liegt, verbleiben somit zur Regelung des d-Stromes sowie zur gleichzeitigen Regelung der Drehbeschleunigung α die in Bild 5.13 hervorgehobenen Spannungszeiger \underline{S}_1 , \underline{S}_2 , \underline{S}_4 und \underline{S}_5 . Es werden also – im Unterschied zu dem unter Punkt b erläuterten Regelverfahren – nicht nur jene Spannungszeiger \underline{S}_k für die

Regelung der Drehbeschleunigung α herangezogen, welche der positiven oder der negativen q-Achse am nächsten sind, sondern auch jene, welche diesen Achsen am zweitnächsten sind.

Bild 5.13: Ermittlung der Spannungszeiger S_k, welche für einen Regelkreis für die Drehbeschleunigung α mit gleichzeitiger Regelung des Längsstromes i_d der Maschine benötigt werden.

Die Entscheidung, welcher dieser Spannungszeiger \underline{S}_1 , \underline{S}_2 , \underline{S}_4 und \underline{S}_5 momentan vom Pulswechselrichter eingestellt werden soll, erfolgt im Regelkreis über die Vorzeichenkombination der Abweichungen des Längsstromes i_d und der Drehbeschleunigung α_{ist} von

den hierfür vorgegebenen Sollwerten entsprechend der Tabelle 5.3.

i _d < 0	i _d > 0	
læ	ျှၖ	$(\alpha_{soll}-\alpha_{ist}) < 0$
<u>'</u> ιν	w	$(\alpha_{\text{soll}} - \alpha_{\text{ist}}) > 0$

Tabelle 5.3: Auswahl des einzustellenden Spannungszeigers an einer permanenterregten Synchronmaschine bei Regelung von deren Drehbeschleunigung mit minimaler d-Komponente des Stromraumzeigers für die Rotorlage gemäß Bild 5.13.

Die Funktion dieser Ausführungsform des inneren Regelkreises des Regelsystems für die permanenterregte Synchronmaschine kann wie folgt zusammengefaßt werden:

Die Einstellung der (drehmomentbildenden) q-Komponente des Stromraumzeigers erfolgt ohne Messung derselben über einen Zweipunkt-Regelkreis für die Drehbeschleunigung a des Rotors der Maschine, während die (unerwünschte) d-Komponente des Stromraumzeigers über die Einstellung der d-Komponente der Spannung auf dem Wert Null gehalten wird.

Die Funktionsfähigkeit dieses Regelsystems wird durch die in Bild 5.14 dargestellte Messung belegt. Im unteren Teil des

Bild 5.14: a) Aus einem Beschleunigungsregelkreis mit d-Strom-Regelung abgeleitete Schaltzustände \textbf{S}_{k} des Pulswechselrichters sowie

b) zugehörige, gemessene Werte des auf den Mittelwert \mathbf{I}_{O} des Querstromes bezogenen Längsstromes \mathbf{I}_{d} und des Querstromes \mathbf{I}_{q} einer mit konstantem Widerstandsmoment belasteten, permanenterregten Synchronmaschine.

Oszillogrammes sind die d- und q-Komponenten des Stromraumzelgers der mit konstantem Widerstandsmoment $m_{\widetilde{W}}=0.5\cdot M_{N}$ belasteten, in Abschnitt 7 beschriebenen permanenterregten Synchronmaschine der Modellanlage dargestellt. Im oberen Teil sind die über einen Dekodierer mit nachgeschaltetem Digital-Analog-Wandler erfaßten Schaltzustände S_{K} dargestellt, welche dem Pulswechselrichter vom beschriebenen Beschleunigungsregelkreis mit d-Strom-Regelung kommandiert wurden. Die Messung erfolgte im lagegeregelten

erforderlichen Pulsationen des Querstromes der Maschine sichtbegründeten, für die Erzeugung eines konstanten Drehmomentes Nutungsharmonischen des Luftspaltfeldes der Versuchsmaschine bestmöglich unterdrückt wird. Weiterhin sind die durch die Schaltzuständen ein Strom in Richtung der d-Achse der Maschine durch Nutzung von vier, vom jeweiligen Drehwinkel 7 abhängigen $von : soll = z_p \cdot soll = 2 \cdot \pi \frac{rad}{min}$. Es ist deutlich erkennbar, wie Betrieb mit einer konstanten Änderungsgeschwindigkeit der Lage

5.2.2.3 Grenzen der Funktionsfähigkeit des Regelsystems für die Winkelbeschleunigung des Rotors einer permanenterregten Synchronmaschine

a) _Grundsätzliche Begrenzung_des_Betriebsbereiches_des beschleunigungsgeregelten Antriebes

teln, welche durch diese Randbedingung festgelegt wird. Drehbeschleunigung mit gleichzeitiger d-Strom-Regelung zu ermitden Untersuchungen ist es, die Grenze des Regelsystems für die Längsstromes dieser Maschine mehr möglich. Das Ziel der folgenaufgebracht werden kann, so ist keine kontrollierte Führung des Betrage nach größer als jene, welche von der Stelleinrichtung die in der Maschine auftretende Spannung in deren d-Achse dem vom leistungselektronischen Stellglied aufgebracht werden. Ist drücken zu können, muß diese Spannung bei jedem Drehwinkel γ drückt wird. Um den d-Strom der Maschine wie gefordert unterwenn die d-Komponente des Maschinenstromes bestmöglich untermäß der auf Seite 46 angegebenen Gl. (5.22) auch dann eine vom Drehwinkel γ unabhängige Spannung in Richtung der d-Achse auf, Bei rotierendem Läufer einer belasteten Synchronmaschine tritt ge-

> b) Vereinfachende Voraussetzungen für die Ermittlung der Grenzen der Funktionsfähigkeit des Beschleunigungsregelkreises.

sich der Drehwinkel γ der Maschine infolge der hohen Taktfrequenz Für die folgenden Berechnungen ist wiederum vorausgesetzt, daß des Pulswechselrichters in einer für eine hinreichena genaue nicht nennenswert ändert. Mittelwertbildung der Maschinenspannungen erforderlichen Zeit

Die in den auf den Seiten 46 und 47 angegebenen Gln. (5.22) und stationären Betrieb gültigen Mittelwerte $\mathbf{U_d},\ \mathbf{U_q},\ \mathbf{I_d}$ und $\mathbf{I_q}$ teressierenden Maschinengrößen können dann durch die für quasiersetzt werden. (5.24) enthaltenen Augenblickswerte $\mathbf{u}_{\mathbf{d}}$, $\mathbf{u}_{\mathbf{q}}$, $\mathbf{i}_{\mathbf{d}}$ und $\mathbf{i}_{\mathbf{q}}$ der in-

Pendelmomente werden vernachlässigt. Bei konstanter Winkelgekonstantes Widerstandsmoment $m_{\mbox{\scriptsize W}}$ vorausgesetzt; Reibungs- und Weiterhin wird im folgenden ein vom Drehwinkel γ unabhängiges, gleich Null. Die Spannung $\mathbf{U}_{\mathbf{d}}$ kann dann gemäß der auf Seite 46 Längsstrom voraussetzungsgemäß auf dem Wert Null gehalten werden vorgeht, ein konstanter Querstrom erforderlich. Da dazuhin der schwindigkeit $\boldsymbol{\omega}_{m}$ der Maschine ist dann, wie aus Bild 5.1 herangegebenen Beziehung (5.22) zu soll, sind die Ableitungen dieser Ströme $\mathrm{I}_{\mathbf{d}}$ und $\mathrm{I}_{\mathbf{q}}$ nach der Zeit

$$U_{d} = -\omega_{el} \cdot L \cdot I_{q}$$
 (5.36)

angegeben werden.

zeigern \underline{s}_1 und \underline{s}_2 eingeschlossenen Drehwinkels von Die folgenden Untersuchungen werden auf den Bereich des von den

(5.37)

beschränkt. Aufgrund der Ausführungen des vorstehenden Kapitels werden dann die auf Seite 59 in Bild 5.13 hervorgehobenen Spannungszeiger \underline{S}_1 , \underline{S}_2 , \underline{S}_4 und \underline{S}_5 für das dort beschriebene Regelverfahren herangezogen. Wie aus Gründen der zyklischen Aufeinanderfolge der in Bild 5.13 eingetragenen Zeiger \underline{S}_k (mit k = 1,2,...,6) leicht einsichtig ist, können die in diesem Winkelbereich gewonnenen Ergebnisse unmittelbar für alle Winkelbereiche

$$z \cdot \frac{\pi}{3} \le \gamma \le (z+1) \cdot \frac{\pi}{3}$$
 (5.38) mit $z = 0, \pm 1, \pm 2, \dots$

übernommen werden.

Zusätzlich erfolgt eine Beschränkung auf positive Werte der Winkelgeschwindigkeit ω_{e1} und des Querstromes \mathbf{I}_q . Gemäß Gl. (5.36) muß dann vom Pulswechselrichter eine negative Spannung U $_{d}$ sowie gemäß der auf Seite 53 angegebenen Gl. (5.28) eine positive Spannung U $_{q}$ aufgebracht werden. Durch Symmetrie-überlegungen kann unmittelbar nachgewiesen werden, daß die gewonnenen Ergebnisse auch auf andere Vorzeichenkombinationen von ω_{e1} und \mathbf{I}_{q} übertragbar sind.

Schließlich seien noch die Widerstände \mathbf{R}_1 der Ständerwicklungen für die folgenden, grundsätzlichen Überlegungen vernachlässigt.

c) Prinzipielle Vorgehensweise bei der Ermittlung der Grenzen der Funktionsfähigkeit des Beschleunigungsregelkreises

Das Ziel der folgenden Berechnungen ist es, jenen Bereich der Drehzahl-Drehmoment-Ebene zu ermitteln, in welchem eine ordnungsgemäße Funktion des beschriebenen Beschleunigungsregelkreises sichergestellt werden kann. In diesem Bereich muß der Pulswechselrichter für alle Drehwinkel y gleichzeitig zwei Bedingungen erfüllen. Zum einen muß er in der Lage sein, die

für die Aufrechterhaltung des Querstromes erforderliche Spannung U zur Verfügung zu stellen. Zum anderen muß er unter Einhaltung der erstgenannten Bedingung in der Lage sein, die in Gl. (5.36) angegebene Spannung $\rm U_d$ einzustellen.

Unter den im vorstehenden Punkt b) genannten vereinfachenden Voraussetzungen besteht eine direkte Proportionalität zwischen dem Drehmoment der Maschine und deren Querstrom. Gemäß dem Bereich III des auf Seite 31 wiedergegebenen Bildes 5.1 kann der Zusammenhang zwischen diesen beiden Größen damit zu

$$M_{L} = \frac{3}{2} \cdot z_{p} \cdot \psi_{M} \cdot I_{q}$$
 (5.3)

angegeben werden.

Bezieht man das Drehmoment sowie den Querstrom auf deren Nennwerte, so ergibt sich der sehr einfache Zusammenhang

$$\frac{M_{L}}{M_{N}} = \frac{I_{Q}}{I_{QN}}$$
 (5.40)

Wie aus dem Bereich II des Bildes 5.1 hervorgeht ist der Mittelwert \mathbf{I}_q des Querstromes \mathbf{i}_q dann konstant, wenn die vom Pulswechselrichter aufgebrachte Spannung U $_q$ gleich der in der Maschine induzierten Spannung U $_{iq}$ ist. Die letztgenannte Spannung ergibt sich dabei zu

$$U_{\text{iq}} = z_{\text{p}} \cdot \psi_{\text{M}} \cdot \omega_{\text{m}} . \qquad (5.41)$$

Im quasistationären Betrieb besteht somit ein direkter Zusammenhang zwischen der vom Pulswechselrichter einzustellenden Spannung Ug und der mechanischen Drehzahl n gemäß

$$U_{\mathbf{Q}} = \mathbf{Z}_{\mathbf{p}} \cdot \psi_{\mathbf{M}} \cdot 2 \cdot \pi \cdot \mathbf{n} . \qquad (5.42)$$

Infolgedessen ist eine kontrollierte Führung des Querstromes nur unterhalb jener Grenzdrehzahl

$$n_{\text{max}} = \frac{1}{2 \cdot \pi \cdot z_p \cdot \psi_M} \cdot U_{\text{qmax}}$$
 (5.43)

möglich, bei welcher vom Pulswechselrichter höchstens jene Spannung U $_{\rm qmax}$ gefordert wird, welche dieser für alle Drehwinkel γ mindestens zur Verfügung stellen kann.

Aus den Gln. (5.42) und (5.43) kann unmittelbar die Beziehung

$$\frac{q}{q_{\text{max}}} = \frac{n}{n_{\text{max}}}$$
(5.44)

gewonnen werden. Diese Gleichung, welche den sehr einfachen Zusammenhang zwischen der induzierten Spannung der Maschine und deren mechanischer Drehzahl wiedergibt, gestattet eine anschauliche Interpretation der im folgenden abgeleiteten Ergebnisse.

Der Maximalwert der in Richtung der q-Achse einstellbaren Spannung ergibt sich bei vorgegebenem Drehwinkel γ durch Projektion des nächstgelegenen Zeigers \underline{S}_k auf diese Achse (siehe Bild 5.15).

Wie unmittelbar eingesehen werden kann, nimmt diese Projektion für einen Winkel $\gamma=\frac{\pi}{6}$ ihren Mindestwert an. Die Spannung Uqmax ergibt sich demnach zu

$$U_{\text{qmax}} = U_{\text{S}} \cdot \cos \frac{\pi}{6}$$
 (5.45)

Bild 5.15: Ermittlung der maximal einstellbaren Spannung in Richtung der q-Achse als Funktion des Drehwinkels γ.

Die Ermittlung jenes, von der Drehzahl abhängigen Drehmomentes, welches maximal zulässig ist, ohne daß die ordnungsgemäße Funktion des Beschleunigungsregelkreises beeinträchtigt wird, geschieht wie folgt: Zunächst wird die bei gegebener Spannung Uq (und somit bei gegebener Drehzahl n) als Funktion des Drehwinkels γ maximal einstellbare Spannung -U_d γ (γ) in Richtung der negativen d-Achse der Maschine berechnet. Anschließend wird jener Wert -U_dmin dieser Spannung -U_d γ (γ) ermittelt, welcher den kleinsten Betrag aufweist. Übersteigt die vom Belastungszustand

der Maschine abhängige Spannung -U_d nach Gl. (5.36) diesen Minimalwert -U_{dmin}, so kann der Längsstrom der Maschine nicht mehr im gesamten betrachteten Winkelbereich auf dem Wert Null gehalten werden. Die Grenze des zulässigen Betriebsbereiches des Antriebes kann also durch Berechnung jenes Querstromes erfolgen, welcher bei gegebener Drehzahl n eine Spannung -U_d hervorruft, die gleich groß ist wie die ebenfalls von der Drehzahl abhängige Spannung -U_{dmin}.

d)_Berechnung der Grenze der Funktionsfähigkeit des Beschleunigungsregelkreises

Im hier betrachteten Winkelbereich 0 \le γ \le $\frac{\pi}{3}$ werden nach den Ausführungen des vorstehenden Kapitels nur die Spannungszeiger \le_1 , \le_2 , \le_4 und \le_5 für die Regelung der Drehbeschleunigung zugelassen (siehe auch Bild 5.13 auf Seite 59).

Die maximal einstellbare Spannung $^{-U}_{\mathrm{d}\gamma}(\gamma)$ ergibt sich dann, wenn für die Einstellung der gewünschten Spannung $^{U}_{\mathrm{q}}$ nur jene dieser Spannungszeiger herangezogen werden, die eine Komponente in Richtung der negativen d-Achse der Maschine aufweisen. Tabelle 5.4 gibt den hier interessierenden Teil der auf Seite 49 angegebenen Tabelle 5.1 wieder, in welchem die d- und q-Komponenten der vom Beschleunigungsregelkreis zugelassenen Spannungszeiger zusammengefaßt sind.

Is.	150	S ₂	13 S	
$-\cos (\gamma - \frac{1}{3} \cdot \pi)$	- cos y	$\cos (\gamma - \frac{1}{3} \cdot \pi)$	cos y	s u
$-\sin \left(\gamma - \frac{1}{3} \cdot \pi\right)$	- sin Y	sin $(\gamma - \frac{1}{3} \cdot \pi)$	sin Y	u d

Tabelle 5.4: Komponenten der für die Beschleunigungsregelung mit gleichzeitiger Regelung des Längsstromes der Maschine im Winkelbereich $0 \le \gamma \le \frac{\pi}{3}$ zugelassenen Spannungszeiger \underline{S}_k (mit k = 1, 2, 4, 5) in Richtung der Längsund der Querachse.

Aus der im betrachteten Winkelbereich gültigen Beziehung

$$\gamma = \frac{1}{3} \cdot \pi \le 0$$
 (5.

und den in Tabelle 5.4 angegebenen Komponenten $\frac{u_d}{U_S}$ der Ständerspannung folgt, daß nur die beiden Spannungszeiger \underline{S}_2 und \underline{S}_4 eine negative Komponente u_d aufweisen. Die Spannung - U_d kann dann ihren größten Wert annehmen, wenn es möglich ist, die geforderte Spannung U_g nur mit Hilfe dieser beiden letztgenannten Zeiger (\underline{S}_2 und \underline{S}_4) einzustellen.

Unter T_k werde im folgenden die Zeitdauer verstanden, in welcher ein Zeiger \underline{S}_k während des für die Mittelwertbildung des resultierenden Spannungszeigers betrachteten Zeitintervalls eingestellt wird. Unter alleiniger Nutzung der Zeiger \underline{S}_2 und \underline{S}_4 (also k = 2,4) ergeben sich die Spannungen U_q und U_d dann zu

$$U_{Q} = \frac{1}{T_{2} + T_{4}} \cdot U_{S} \cdot \left[T_{2} \cdot \cos(\gamma - \frac{1}{3} \cdot \pi) - T_{4} \cdot \cos(\gamma) \right]$$
 (5.4)

und

$$U_{d} = \frac{1}{T_{2} + T_{4}} \cdot U_{S} \cdot \left[T_{2} \cdot \sin(\gamma - \frac{1}{3} \cdot \pi) - T_{4} \cdot \sin(\gamma) \right] .$$
 (5.48)

Bei gegebener Spannung U_q sowie gegebenem Drehwinkel γ kann nach Gl. (5.47) das Verhältnis der Verweildauern T_2 und T_4 in den Schaltzuständen S_2 und S_4 ermittelt werden. Unter Kenntnis dieses Verhältnisses $\frac{T_2}{T_4}$ kann dann über die Gl. (5.48) der zugehörige Wert der maximal einstellbaren Spannung in Richtung der negativen d-Achse der Maschine ermittelt werden. Diese Spannung -U_{d\gamma}(\gamma) ist in Bild 5.16a) als Funktion des Drehwinkels γ dargestellt. Als Parameter dient dort die für eine Aufrechterhaltung des Querstromes erforderliche Spannung U_q , welche gemäß Gl. (5.44) direkt proportional zur Drehzahl der Maschine ist.

Bild 5.16: Mit Hilfe der Zeiger \underline{S}_k (mit k= 1,2,4,5) maximal eina) $0 \le U_q \le 0.58 \cdot U_{qmax}$ und b) $0.58 \cdot U_{qmax} < U_q \le U_{qmax}$. d-Achse der Maschine als Funktion des elektrischen Drehwinkels γ und der geforderten Spannung U $_{\mathbf{q}}$ für stellbare Spannung $-U_{\overline{d}\gamma}(\gamma)$ in Richtung der negativen

Grenzdrehzahl gehörige Spannung $\mathbf{U}_{\mathbf{qgrenz}}$ ergibt sich durch Proder gewünschten Weise eingestellt werden kann. Die zu dieser drehzahl n_{grenz} , oberhalb derer die Spannung U_{q} nicht mehr in Spannungsraumzeigers herangezogen, so ergibt sich eine Grenz-Werden nur die beiden Zeiger \mathbb{S}_2 und \mathbb{S}_4 zur Einstellung des Grenzfall nicht zur Spannungseinstellung herangezogen. Die aus seiner negativen Komponente $u_{\mathbf{q}}$ (vgl. Tabelle 5.4) in diesem 5.15 auf Seite 67). Der Spannungszeiger $\underline{\mathbf{S}}_4$ wird nämlich wegen weist für $\gamma = 0$ einen Minimalwert der genannten Projektion hervorgehende Maschinenspannung $\mathbf{U}_{\mathbf{q}}$ jektion des Zeigers $\underline{\mathbb{S}}_2$ auf die q-Āchse der Maschine (vgl. Bild

$$U_{\text{qgrenz}} = U_{\text{S}} \cdot \cos \left(-\frac{1}{3} \cdot \pi\right) = \frac{1}{2} \cdot U_{\text{S}}$$
 (5.49)

auf. Diese kann mit Hilfe der Gl. (5.45) auch in der Form

$$U_{\text{qgrenz}} = \frac{1}{\sqrt{3}} \cdot U_{\text{qmax}} = 0.58 \cdot U_{\text{qmax}}$$
 (5.50)

angegeben werden.

Hervorzuheben ist, daß diese Spannung $\mathbf{U}_{\tt qgrenz}$ weder vom Belastungszustand noch von der Größe der Streuinduktivität der richter bedingte Grenze dar. Maschine abhängt. Sie stellt vielmehr eine durch den Wechsel-

und (5.43) zu Die zugehörige Grenzdrehzahl berechnet sich nach den Gln. (5.42)

$$n_{\text{grenz}} = \frac{1}{2 \cdot \pi \cdot z_p \cdot \psi_M} \cdot U_{\text{ggrenz}} = 0.58 n_{\text{max}}.$$
 (5.51)

stellt werden kann, der Zeiger \underline{S}_1 anstelle von \underline{S}_4 für deren Ein-Oberhalb dieser Grenzdrehzahl ngrenz muß dann, wenn die geforderte Spannung U $_{
m q}$ nicht mehr mit Hilfe der Zeiger ${f S}_2$ und ${f S}_4$ eingestellung herangezogen werden.

Für Werte des Drehwinkels $\gamma > 0$ kann unter ausschließlicher

Nutzung des Zeigers \underline{S}_2 eine vom Drehwinkel γ abhängige Spannung U_{qo} eingestellt werden, welche größer als die in Gl. (5.50) angegebene Spannung U_{qgrenz} ist. Bei gegebenem Drehwinkel γ_0 kann wiederum durch Projektion des Zeigers \underline{S}_2 auf die q-Achse jene Spannung U_{qo} gefunden werden, welche mit Hilfe dieses Zeigers maximal eingestellt werden kann; sie ergibt sich zu

$$U_{qo} = U_{S} \cdot \cos \left(\gamma_{o} - \frac{1}{3} \cdot \pi \right) \cdot$$
 (5.52)

Diese Beziehung (5.52) kann wie folgt interpretiert werden: Ist die vom Pulswechselrichter einzustellende Spannung U größer als U $_{\rm S}$ · cos ($-\frac{1}{3}\cdot\pi$), dann existiert ein Grenzwinkel $\gamma_{\rm O}$, oberhalb dessen die Maschinenspannung mit Hilfe der Spannungsceiger \underline{S}_2 und \underline{S}_4 eingestellt werden kann; im Bereich 0 \leq γ \leq $\gamma_{\rm O}$ muß anstelle des Zeigers \underline{S}_4 (welcher zufolge Tabelle 5.4 eine negative d-Komponente aufweist) der Zeiger \underline{S}_1 für die Einstellung der Maschinenspannung U herangezogen werden (obwohl dieser keine negative d-Komponente aufweist).

 ${\tt U}_{\tt q}$ und ${\tt U}_{\tt d}$ ergeben sich dann zu

$$U_{q} = \frac{1}{T_{1} + T_{2}} \cdot U_{S} \cdot \left[T_{1} \cdot \cos(\gamma) + T_{2} \cdot \cos(\gamma - \frac{1}{3} \cdot \pi) \right]$$
 (5.53)

IWOS

$$U_{d} = \frac{1}{T_{1} + T_{2}} \cdot U_{S} \cdot \left[T_{1} \cdot \sin(\gamma) + T_{2} \cdot \sin(\gamma - \frac{1}{3} \cdot \pi) \right].$$
 (5.54)

Bei gegebener Spannung U sowie gegebenem Drehwinkel γ kann nach Gl. (5.53) das zu deren Einstellung erforderliche Verhältnis der Verweildauern T_1 und T_2 in den Schaltzuständen S_1 und S_2 ermittelt werden. Unter Kenntnis dieses Verhältnisses $\frac{T_1}{T_2}$ kann dann über Gl. (5.54) der zugehörige Wert der maximal einstellbaren Spannung $-U_{\rm d\gamma}(\gamma)$ ermittelt werden. Diese Spannung $-U_{\rm d\gamma}(\gamma)$

ist in dem auf Seite 70 angegebenen Bild 5.16b) für Drehzahlen oberhalb der Grenzdrehzahl n_{grenz} nach Gl. (5.51) dargestellt. Als Parameter dient dort die der Drehzahl direkt proportionale Spannung U_q . Die Knickstellen der wiedergegebenen Kurven liegen bei den von der vorgegebenen Spannung U_q abhängigen Drehwinkeln γ_o , welche aus Gl. (5.52) ermittelt werden können. Im Grenzfall $U_q = U_{gmax}$ ergibt sich ein Winkel γ_o von $\gamma_o = \frac{\pi}{6}$ (strichlierte Kurve des Bildes 5.16b)). Unmittelbar vor diesem Drehwinkel wird die volle Stellreserve des Pulswechselrichters zur Einstellung der Spannung U_q benötigt. Infolgedessen kann keine Spannung in Richtung der negativen d-Achse aufgebracht werden; somit kann gemäß Gl. (5.36) ($U_d = -\omega_{el}$ ·L·I $_q$) kein (drehmomentbildender) Querstrom geführt werden.

Wie in Punkt c) dieses Kapitels erläutert wurde, sollte die vom Belastungszustand der Maschine abhängige Spannung U_d nach Gl. (5.36) zu keinem Augenblick dem Betrage nach größer sein als der Mindestwert -U_{dmin} der bei gegebener Spannung U_q maximal einstellbaren Spannung -U_{dγ}(γ) in Richtung der negativen d-Achse. Ansonsten ist es nicht mehr möglich, den Längsstrom der Maschine im gesamten Winkelbereich auf dem Wert Null zu halten.

Diese Mindestwerte - U_{dmin} sind in Bild 5.17 als Funktion der Spannung U_q dargestellt. Weiterhin ist dort strichliert der negative Wert der belastungsabhängigen Spannung U_d nach Gl. (5.36) für unterschiedliche Belastungszustände eingetragen. Den letztgenannten Kurven liegen die in Abschnitt 7 angegebenen Daten der in dieser Arbeit verwendeten Versuchsmaschine zugrunde.

Der Schnittpunkt dieser belastungsabhängigen Kurven $-U_{\rm d}=f(U_{\rm q})$ mit der Kurve $-U_{\rm dmin}=f(U_{\rm q})$ gibt an, welchen Wert die Spannung $U_{\rm q}$ bei gegebenem Belastungszustand maximal annehmen darf. Berücksichtigt man die in den Gln. (5.40) und (5.44) angegebenen Zusammenhänge zwischen dem Querstrom und dem Drehmoment einerseits

Bild 5.17: Mindestwerte - $U_{\rm dmin}$ der vom Pulswechselrichter einstellbaren Spannung - $U_{\rm d\gamma}$ (γ) sowie vom Belastungszustand der Maschine abhängige Spannung - $U_{\rm d}$ als Funktion der für die Aufrechterhaltung des Querstromes erforderlichen Spannung $U_{\rm q}$.

sowie zwischen der Spannung U_q und der Drehzahl andererseits, so kann man mit Hilfe dieser Schnittpunkte die Drehzahl-Drehmoment-Grenzkurve angeben. Diese Grenzkurve ist in Bild 5.18 wiedergegeben. Die obere Grenze für das Drehmoment wird dort durch die Kennwerte der zugrundegelegten Versuchsmaschine festgelegt. Um irreversible Änderungen des Erregerfeldes der Maschine zu vermeiden, darf deren Querstrom den 6-fachen Wert des Nennstromes nicht überschreiten.

Bild 5.18: Drehzahl-Drehmoment-Grenzkurve des beschleunigungsgeregelten Antriebes der in Abschnitt 7 beschriebenen Modellanlage.

In Bild 5.18 wird deutlich, daß die Maschine des beschleunigungsgeregelten Antriebssystems auch bei vollständiger Unterdrückung
des Längsstromes in der Lage ist, nahezu bis zu ihrer Maximaldrehzahl hin das Nenndrehmoment abzugeben. Insbesondere unterliegt
der Antrieb in dem für Positioniersysteme interessierenden Bereich sehr kleiner Drehzahlen in seiner Überlastfähigkeit keinen
Beschränkungen aufgrund des Steuerverfahrens.

In jenen Fällen, in welchen eine Erweiterung des Betriebsbereichs des Antriebes im Bereich hoher Drehzahlen erforderlich ist, kann diese unter Hinnahme geringfügiger Pulsationen des d-Stromes wie folgt vorgenommen werden.

e)_Erweiterung_des_Betriebsbereiches_des_beschleunigungs_ qeregelten_Antriebes_unter_Hinnahme_geringfügiger Pulsationen_des_d-Stromes_der_Maschine_

Wird von der Forderung abgegangen, daß der Längsstrom im gesamten Winkelbereich 0 $\leq \gamma \leq \frac{\pi}{3}$ auf dem Wert Null gehalten werden soll, dann kann das mögliche Arbeitsgebiet des Antriebes im Bereich hoher Drehzahlen erheblich erweitert werden. Im folgenden soll geklärt werden, bis zu welcher Betriebsgrenze der d-Strom der Maschine dann zwar einen pulsierenden Verlauf aufweist, in seinem Mittelwert aber immer noch kontrolliert geführt werden kann.

In dem neu zugelassenen Betriebsbereich muß ein Anwachsen des über einen Winkelbereich $\Delta\gamma=\frac{\pi}{3}$ gemittelten Wertes des (pulsierenden) Längsstromes verhindert werden. Infolgedessen darf der vom Pulswechselrichter maximal einstellbare Mittelwert -U dmax der über diesen Winkelbereich gemittelten Spannungen -U $_{d\gamma}(\gamma)$ nicht kleiner sein als die vom Belastungszustand abhängige Spannung -U $_{d}$ nach Gl. (5.36).

Bei gegebener Drehzahl ergibt sich dieser maximal einstellbare Mittelwert aus der Spannung - $\mathbf{U}_{\mathrm{d}\gamma}(\gamma)$, welche in dem auf Seite 70 dargestellten Bild 5.16 beispielhaft für einige Drehzahlen dargestellt ist, gemäß

$$-U_{\text{dmax}} = \frac{3}{\pi} \cdot \int_{0}^{\frac{\pi}{3}} -U_{\text{d}\gamma}(\gamma) \, d\gamma .$$
 (5.55)

Die nach Gl. (5.55) numerisch ermittelten Maximalwerte sind in Bild 5.19 in Abhängigkeit von der geforderten Spannung U dargestellt. Weiterhin ist dort strichliert die belastungsabhängige Spannung -U nach Gl. (5.36) für unterschiedliche Belastungszustände eingetragen. Letzteren Kurven liegen wiederum die in Abschnitt 7 angegebenen Daten der für diese Arbeit verwendeten Versuchsmaschine zugrunde. Der Schnittpunkt der belastungsabhängigen Spannung -U = f(U) mit der Kurve -U dmax = f(U) gibt an, welchen wert die Spannung U und somit die Drehzahl n bei gegebenem Querstrom maximal annehmen darf, ohne daß der über einen Winkelbereich

Bild 5.19: Maximalwerte $-U_{dmax}$ der vom Pulswechselrichter einstellbaren, über einen Winkelbereich $\Delta \gamma = \frac{\pi}{3}$ gemittelten Spannung $-U_{d\gamma}(\gamma)$, Mindestwerte $-U_{dmin}$ der in diesem Winkelbereich einstellbaren Spannung sowie vom Belastungszustand abhängige Spannung $-U_d$ als Funktion der für die Aufrechterhaltung des Querstromes erforderlichen Spannung U_q .

 $\Delta \gamma = \frac{\pi}{3} \; \text{gemittelte Wert des Längsstromes ständig größer wird.}$ Schließlich ist in diesem Bild nochmals die Spannung -V_dmin = f(U_q) eingetragen. Ein Vergleich der Schnittpunkte von -V_d mit -V_dmin einerseits und -V_dmax andererseits zeigt, daß bei Hinnahme von Pulsationen des Längsstromes eine erhebliche Erweiterung des Betriebsbereiches des Antriebes möglich ist. Diese Baussage wird auch durch die zugehörigen, in Bild 5.20 darge-

stellten Drehzahl-Drehmoment-Grenzkurven belegt.

Bild 5.20: Grenzkurve des erweiterten Drehzahl-DrehmomentBereiches des beschleunigungsgeregelten Antriebes
der in Abschnitt 7 beschriebenen Modellanlage (ausgezogen). Grenzkurve jenes Drehzahl-Drehmoment-Bereiches dieser Anlage in welchem der d-Strom vollständig unterdrückt wird (strichpunktiert).

Außer der Grenzkurve für den in der beschriebenen Weise erweiterten Betriebsbereich ist dort strichpunktiert nochmals die Grenzkurve jenes Bereiches dargestellt, in welchem der d-Strom der Maschine vollständig unterdrückt werden kann.

Aus Bild 5.20 geht hervor, daß die Maschine selbst bei der Maximaldrehzahl n_{max} in der Lage ist, noch das 1,7-fache Nenn-

drehmoment abzugeben. Die sich dabei einstellenden Pulsationen des Längsstromes sollen im folgenden kurz abgeschätzt werden.

f) _Abschätzung_der_Pulsationen_des_Längsstromes der permanenterregten_Synchronmaschine bei Erweiterung des Betriebsbereiches des beschleunigungsgeregelten Antriebes nach_el

Die Ermittlung einer allgemeingültigen Beziehung für den zeitlichen Verlauf des Stromes I_d in dem nach Punkt e) erweiterten Betriebsbereich erfordert einen erheblichen mathematischen Aufwand. Die Berechnung der maximalen Schwankungsbreite dieses pulsierenden Stromes ist jedoch sehr einfach möglich.

Bei gegebener Drehzahl der Maschine und somit gegebener Spannung U_{q} kann der zugehörige Verlauf der in d-Richtung einstellbaren spannung $-U_{d\gamma}(\gamma)$, welche in Bild 5.16 für einige Werte der Spannung U_{q} dargestellt ist, ermittelt werden. Weiterhin kann der in Bild 5.19 angegebene Mittelwert $-U_{dmax}$ dieser Spannung $-U_{d\gamma}(\gamma)$ bestimmt werden. Die vom Drehwinkel γ abhängige Differenz zwischen den Spannungen $-U_{dmax}$ und $-U_{d\gamma}(\gamma)$ muß von der Streuinduktivität der Maschine aufgenommen werden und führt zu einer Änderung des Stromes in Richtung der Längsachse. Die maximale Schwankungsbreite des Längsstromes ergibt sich aus der gesamten positiven oder negativen Spannungszeitfläche, welche im betrachteten Winkelbereich an der Streuinduktivität auftritt.

Das Ziel der folgenden Überlegungen ist es, die von den Pulsationen des Längsstromes hervorgerufene, zusätzliche thermische Belastung der Maschine abzuschätzen. Dabei sei vorausgesetzt, daß der Mittelwert des Längsstromes den Wert Null aufweise. Dies kann in einfacher Weise dadurch sichergestellt werden, daß der Regler für den d-Strom, wie in Bild 5.21 dargestellt ist, mit einem Integralanteil ausgestattet wird. Weiterhin ist in diesem Bild, welches das vollständige Blockschaltbild der in der Modell-anlage realisierten Regeleinrichtung wiedergibt, ein Integral-

Bild 5.21: Blockschaltbild der ausgeführten Regeleinrichtung für die Drehbeschleunigung α einer permanenterregten Synchronmaschine.

anteil des Reglers für die Drehbeschleunigung α eingetragen. Diese Ausführungsform des Drehbeschleunigungsreglers dient dazu, jene Grenzzyklen im Regelkreis zu vermeiden, deren mögliches Auftreten in zeitdiskret arbeitenden Zweipunkt-Regelsystemen in Kapitel 5.2.2.1 ausführlich erörtert wurde.

Die Abschätzung für die Erhöhung des Effektivwertes der Maschinenströme bei Hinnahme von d-Strom-Pulsationen erfolgt beispielhaft anhand des Bildes 5.22. In diesem Bild ist der berechnete Verlauf des Längsstromes im betrachteten Winkelbereich $\Delta \gamma = \frac{\pi}{3}$ dargestellt; dabei ist ein Betrieb des Motors mit der maximal möglichen Dreh-

Bild 5.22: Berechneter Verlauf des Längsstromes i_d bei Betrieb der Maschine mit der Maximaldrehzahl n_{max} sowie dem dann maximal möglichen Drehmoment M_L nach Bild 5.20 in Abhängigkeit des Drehwinkels y (ausgezogene Kurve), zugehöriger Verlauf eines rechteckförmigen Stromes i mit gleichen Extremwerten und gleichem Mittelwert (strichlierte Kurve) sowie zugehöriger Verlauf eines rechteckförmigen Stromes i_d ersatz mit gleicher Schwan-kungsbreite, gleichem Mittelwert und maximal möglichem Effektivwert.

zahl n_{max} und bei Abgabe des maximal möglichen Drehmomentes in dem nach Punkt e) erweiterten Betriebsbereich vorausgesetzt. Der zugehörige Verlauf der vom Pulswechselrichter eingestellten Spannung $-U_{\mbox{d}\gamma}(\gamma)$ ist dem auf Seite 70 angegebenen Bild 5.16b) zu entnehmen (strichlierte Kurve).

Infolge der grundsätzlich vorhandenen Streuinduktivitäten der Maschine weist der Längsstrom i_d einen stetigen Verlauf auf. Wie recht einfach nachgewiesen werden kann ist der Effektivwert dieses Stromes geringer als der Effektivwert eines angenommenen Stromes i_{dr} mit rechteckförmigem Verlauf (siehe strichlierte Kurve des Bildes 5.22), welcher in folgenden Eigenschaften mit dem erstgenannten übereinstimmt:

- Die Extremwerte beider Ströme sind gleich groß und
 der arithmetische Mittelwert beider Ströme ist gleich Null.
- Wie des weiteren leicht nachgewiesen werden kann, weist ein rechteckförmiger Strom, dessen Mittelwert bei gegebener Schwankungsbreite Δi_d gleich Null ist, dann den maximal möglichen Effektivwert auf, wenn seine Extremwerte gleiche Beträge aufweisen.

Eine obere Grenze für den Effektivwert des Stromes $i_{\rm dr}$ und somit auch des Stromes $i_{\rm d}$ kann demnach dann ermittelt werden, wenn man den Effektivwert eines zugehörigen Stromes $i_{\rm d}$ ersatz (strichpunktierte Kurve des Bildes 5.22) mit folgenden Eigenschaften berechnet:

- Die Schwankungsbreite $\Delta i_{f d}$ der Ströme $i_{f d}$ und $i_{f d}$ ersatz ist gleich groß;
- der positive und der negative Wert des Stromes i $_{\rm d}$ ersatz weisen gleiche Beträge auf; diese sind gleich der halben Schwankungsbreite $\Delta i_{\rm d}$ des Stromes i $_{\rm d}$ und
- die positiven und negativen Strom-Zeit-Flächen sind im betrachteten Winkelbereich gleich groß.

Bild 5.23a) zeigt die unter diesen Annahmen berechnete Amplitude $\mathbf{1}_d$ des Stromes $i_{d\ ersatz}$ für den in Abschnitt 7 beschriebenen Versuchsantrieb bei dessen Betrieb an der Drehzahl-Drehmoment-Grenze nach punkt e); als Bezugsgröße dient dort der bei Abgabe des Nenndrehmomentes fließende Querstrom \mathbf{I}_{qN} . Weiterhin sind in Bild 5.23a) nochmals die Drehzahl-Drehmoment-Grenzkurven des Betriebsbereiches mit vollständiger Unterdrückung des Längsstromes (strichpunktierte Kurve) sowie des Betriebsbereiches mit pulsierendem Längsstrom (strichlierte Kurve) dargestellt. Im Bereich I des Bildes 5.23

Bild 5.23: a) Amplitude $\mathbf{1}_d = \frac{1}{2} \cdot \Delta \mathbf{1}_d$ des Stromes \mathbf{i}_d ersatz für die beschleunigungsgeregelte Synchronmaschine als Funktion der Drehzahl sowie Drehzahl-Drehmoment-Grenzkurven des Antriebes bei vollständiger Unterdrückung (strichpunktierte Kurve) und bei Hinnahme von Pulsationen (strichlierte Kurve) des Längsstromes.

 b) Erhöhung des Effektivwertes der Maschinenströme aufgrund der Pulsationen des Längsstromes.

wird das Drehmoment durch die Maschine limitiert; der Längsstrom kann entsprechend den Ausführungen des Punktes d) vollständig unterdrückt werden. Im Bereich II kann der Motor immer noch mit seinem maximalen Drehmoment betrieben werden; allerdings müssen hierfür Pulsationen des Längsstromes hingenommen werden. Im Bereich III ist eine Reduktion des Drehmomentes erforderlich; in diesem Bereich muß dafür gesorgt werden, daß die vom Belastungszustand abhängige Spannung -U $_{\rm d}$ nach Gl. (5.36) (U $_{\rm d}$ = - $_{\rm uel}$ 'L·I $_{\rm q}$) nicht größer ist als der Mittelwert -U $_{\rm dmax}$ der vom Pulswechselrichter einstellbaren Spannung in Richtung der negativen d-Achse der Maschine.

Unter Zuhilfenahme eines Stromes i dersatz entsprechend Bild 5.22 kann auch die Zunahme des Effektivwertes der resultierenden Maschinenströme abgeschätzt werden, welche durch die Pulsationen des d-Stromes höchstens hervorgerufen wird. Der Längsstrom wechselt dabei voraussetzungsgemäß bei einem gleichbleibenden Betrag von $\frac{1}{2}$ · Δi_d periodisch das Vorzeichen (siehe Bild 5.24).

Bild 5.24: Ermittlung der oberen Grenze für die Erhöhung des Effektivwertes der Maschinenströme aufgrund von Pulsationen des d-Stromes.

Unter Voraussetzung eines konstanten Querstromes weist die Amplitude des resultierenden Stromraumzeigers dann den konstanten Wert

$$I = \sqrt{I_q^2 + (\frac{1}{2} \cdot \Delta I_d)^2}$$
 (5.56)

auf. Die Zunahme der Amplitude dieses Zeigers und somit die Zunahme des Effektivwertes der Maschinenströme aufgrund der Pulsationen des Längsstromes kann zu

$$\frac{\Delta I}{I_{\mathbf{q}}} = (\frac{I}{I_{\mathbf{q}}} - 1) \tag{5.57}$$

angegeben werden. Diese Erhöhung der Maschinenströme ist in Bild 5.23b als Funktion der Drehzahl dargestellt. Dabei wurde ein Betrieb der Anlage an der maximal möglichen Drehzahl-Drehmoment-Grenzkurve nach Punkt e) zugrundegelegt. Aus diesem Bild geht hervor, daß die Zunahme der Amplitude des Stromraumzeigers (und somit auch des Effektivwerts der Maschinenströme) im gesamten Betriebsbereich kleiner als 1 % ist. Die hierdurch hervorgerufene zusätzliche thermische Beanspruchung der Maschine bedarf daher in der Praxis keiner besonderen Beachtung. Dies gilt darüberhinaus auch deshalb, weil dieser erweiterte Betriebsbereich bei Positionierantrieben nur sehr kurzzeitig für schnelle Beschleunigungsvorgänge durchlaufen wird.

5.2.2.4 Anwendbarkeit des Verfahrens zur Ableitung der Steuerbefehle für den Pulswechselrichter aus einem Beschleunigungsregelkreis

In den vorstehenden Kapiteln wurden zwei Ausführungsformen der innersten Regelschleife von Positionierantrieben erläutert, Einerseits war dies die bekannte Variante als Regelkreis für den Querstrom der Maschine, andererseits die neuartige Ausführungsform als Regelkreis für die Drehbeschleunigung des Rotors, Die letztgenannte Version weist zwei wesentliche Vorteile auf.

2.1

Zum einen wird auf eine mechanische Größe geregelt, aus welcher über einfache Integralglieder die letztendlich interessierenden Größen Drehzahl und Drehwinkel hervorgehen. Alle auf die Regelstrecke einwirkenden Störgrößen greifen, wie auch aus dem auf Seite 31 wiedergegebenen Bild 5.1 hervorgeht, innerhalb der innersten Regelschleife an. Thre Auswirkungen werden somit schnellstmöglich erkannt und ausgeregelt. In Abschnitt 7 wird nachhaltig belegt, daß diese Vorgehensweise zu einer wesentlichen Verbesserung des Störübertragungsverhaltens des Antriebes führt.

bei gegebenem Drehwinkel der Maschine deren Drehbeschleunigung Umrichter verfügbaren Stellreserve als bei Einsatz eines unter-Auf diese Weise erfolgt eine wesentlich bessere Nutzung der im daß der Längsstrom der Maschine bestmöglich unterdrückt wird. Schaltzustände hat jedoch unter der Randbedingung zu erfolgen, schnellstmöglich beeinflussen. Die Auswahl der zugelassenen schleunigungsregelkreises werden für die Steuerung des Pulsgemeinsamen Steuereinheit abgeleitet werden. Im Fall des Bewechselrichters immer nur jene Schaltzustände zugelassen, welche Schaltbefehle für die einzelnen Wechselrichterzweige aus einer flussen. Soll dieser Nachteil vermieden werden, so müssen die welche die zu regelnde mechanische Größe schnellstmöglich beein-Es werden somit nicht nur jene Schaltzustände ausgewählt, trieb unabhängig vom Drehwinkel γ alle Schaltzustände S $_{\mathbf{k}}$ Wechselrichterzweig zugeordnet sind. Bei dieser Art der Stromlagerten Stromregelkreises. (mit k = 1, 2, ..., 6) zur Führung der Maschinenströme benutzt [9]. regelung werden vom Pulswechselrichter im quasistationären Bewechselrichters nicht über einzelne Stromregler, welche jedem Zum anderen erfolgt die Auswahl der Schaltzustände des Puls-

Die praktische Nutzanwendung des beschriebenen Verfahrens der Beschleunigungsregelung sei anhand der in den drei vorstehenden Kapiteln wiedergegebenen Meß- und Simulationsergebnisse für einen Positionierantrieb kurz erläutert.

Positioniersysteme werden im zeitlichen Mittel überwiegend im Bereich sehr kleiner Drehzahlen betrieben. Hier werden von ihnen ein sehr guter Rundlauf sowie kurze Reaktionszeiten bei Knderungen der Führungsgröße und bei der Ausregelung von Störeinflüssen gefordert. Durch die unmittelbare Regelung der Drehbeschleunigung in einem Zweipunktregelkreis sind die besten Voraussetzungen für sehr gute Rundlaufeigenschaften sowie für sehr kurze Reaktionszeiten gegeben. Der Antrieb unterliegt in diesem Drehzahlbereich auch im Hinblick auf seine Überlastbarkeit keinen im Steuerverfahren begründeten Beschränkungen. Diese Aussage wird durch das auf Seite 74 angegebene Bild 5.17 belegt.

Eine vollständige Unterdrückung des Längsstromes ist möglich, solange die vom Belastungszustand abhängige Spannung Udnach Gl.(5.36)(Ud = $-\omega_{\rm el}$.L·Iq) dem Betrage nach kleiner ist als die vom Pulswechselrichter einstellbare Spannung Udmin; dies ist für alle Betriebspunkte unterhalb der ausgezogenen Kurve des Bildes 5.17 der Fall. Wie aus Bild 5.18 hervorgeht, wird das Drehmoment des Antriebes in diesem Bereich kleiner Drehzahlen durch das maximal zulässige Drehmoment der Synchronmaschine limitiert.

Um beim Anfahren neuer Positionen kurze Übergangszeiten zu erreichen, wird ein hohes Beschleunigungsvermögen des Antriebes angestrebt. Ist die maximale Verstellgeschwindigkeit erreicht, so wird im allgemeinen der Maschine kein nennenswertes Drehmoment mehr abverlangt. Wie durch Bild 5.18 belegt wird, kann der letztgenannte Betriebszustand mit Hilfe des beschriebenen Regelverfahrens ohne Hinnahme von Pulsationen des d-Stromes aufrechterhalten werden; die Beschleunigung des Antriebes muß jedoch beim Übergang in diesen Betriebszustand mit zunehmender Drehzahl stark reduziert werden.

Dieser Mangel kann weitgehend beseitigt werden, wenn während dieser nur kurzzeitig auftretenden Übergänge eine geringfügige Pulsation des Längsstromes hingenommen wird. Die vom Belastungs-

(

١,

zustand abhängige Spannung -U_d kann dann so weit angehoben werden, bis sie gleich dem maximal einstellbaren Mittelwert der vom Pulswechselrichter einstellbaren Spannung -U_{dmax} ist. Somit sind auch alle Betriebspunkte des auf Seite 77 angegebenen Bildes 5.19 zwischen der strichpunktierten Kurve (unterhalb derer der Längsstrom vollständig unterdrückt werden kann) und der ausgezogenen Kurve (bis zu welcher der Mittelwert des Längsstromes kontrolliert geführt werden kann) einstellbar. Die zugehörige Erweiterung des möglichen Drehzahl-Drehmoment-Bereiches geht aus Bild 5.20 hervor. Die nun erforderliche Reduktion des Drehmomentes im Bereich hoher Drehzahlen dürfte im wesentlichen jener entsprechen, welche sich auch beim stromgeregelten Antrieb ergibt.

In Bild 5.23 ist schließlich noch die Erhöhung der Maschinenströme aufgrund jener Pulsationen des Längsstromes dargestellt,
welche sich bei Nutzung des erweiterten Drehzahl-DrehmomentBereiches maximal ergeben. Infolge der Geringfügigkeit dieser
Erhöhung ist die hieraus resultierende, zusätzliche thermische
Belastung der Maschine vernachlässigbar klein. Diese Aussage wird
noch durch den Umstand bestärkt, daß die Beschleunigungsvorgänge
im allgemeinen nur einen unwesentlichen Anteil der gesamten Betriebszeit des Antriebes in Anspruch nehmen.

Das Verfahren der Ableitung der Steuerbefehle für den Pulswechselrichter aus einem Zweipunkt-Regelkreis für die Drehbeschleunigung des Rotors einer Synchronmaschine dürfte somit den Wünschen der Anwender uneingeschränkt genügen.

In den bisherigen Überlegungen wurde immer vorausgesetzt, daß alle interessierenden Größen der Regelstrecke in idealer Weise erfaßt werden können. Um diese Annahme in ausreichend guter Näherung erfüllen zu können, bedarf es einer geeigneten Ausführung der Meßwertgeber nebst zugehöriger Signalaufbereitung.

6. Die Meßwerterfassung

Bei den in Abschnitt 5 beschriebenen Ausführungen des Regelsystems müssen aus der Regelstrecke Meßwerte für die Lage des Maschinenrotors, dessen Winkelgeschwindigkeit und Winkelbeschleunigung sowie für die Maschinenströme gewonnen werden. Die Erfassung der Ströme bereitet dank des Vorhandenseins geeigneter, potentialtrennender Meßglieder keine Probleme; die Erfassung der übrigen genannten Größen bedarf jedoch einer genaueren Betrachtung.

6.1 Die Erfassung der Winkelbeschleunigung des Rotors Prinzipien zur berührungsfreien Erfassung einer Drehbeschleunigung sind seit langem bekannt und erprobt [36,37,38,39]. Allen ausgeführten Beschleunigungssensoren ist jedoch gemeinsam, daß sie einen, für die Realisierung eines hochdynamischen Beschleunigungsregelkreises (nach Kapitel 5.2.2.2) nicht vernachlässigbaren Frequenzgang \underline{F}_{α} (p) aufweisen. Um auch einen dynamisch verwertbaren Meßwert $\underline{\alpha}_{ist}$ für die Beschleunigung $\underline{\alpha}$ zu erhalten, ist eine Korrektur des mit dem Frequenzgang \underline{F}_{α} (p) des Beschleunigungssensors gewichteten Signales für die Drehbeschleunigung $\underline{\alpha}$ (Bild 6.1) erforderlich.

In der Praxis kann der Frequenzgang \mathbf{F}_{α} (p) in guter Näherung durch jenen eines Verzögerungsgliedes 1. Ordnung gemäß

$$\frac{F_{\alpha}(p)}{1+pT} = \frac{1}{1+pT} \tag{6.1}$$

angegeben werden [38]. Der Meßwert $\underline{\alpha}_{ist}^*$ stimmt demnach stationär (p = 0) mit der tatsächlich vorhandenen Beschleunigung $\underline{\alpha}$ überein; er weist jedoch dynamisch erhebliche Abweichungen von derselben auf. Eine Korrektur des Meßwertes $\underline{\alpha}_{ist}^*$

(

$$\underline{\underline{\alpha}} = \underbrace{\underline{F_{\alpha}(p)}}_{\underline{F_{\alpha}(p)} \cdot \underline{\alpha}} = \underline{F_{\alpha}(p)} \cdot \underline{\alpha}$$

schleunigung Winkelbedes Rotors

> des Beschleu-Frequenzgang

nigungssensors des Rotors Winkelbeschleunigung Meßwert für die

Bild 6.1: Blockschaltbild des Beschleunigungssensors

kann prinzipiell durch Einsatz eines Meßfilters durchgeführt werden, welches den Frequenzgang

$$E_{\text{me8}} = \frac{1}{E_{\alpha}} = 1 + pT$$
 (6.2)

aufweist (Bild 6.2).

Bild 6.2: Korrektur des Meßwertes $rac{lpha_{1st}^{*}}{2}$ des Beschleunigungssensors mit Hilfe eines Meßfilters

Meßwert α_{ist} führt. Die Differentiation des Meßwertes α_{ist}^* kann führende Differentiation des Meßwertes α_{ist}^* aufgrund eines nicht jedoch in einfacher Weise durch die im folgenden dargestellte zu einem nicht mehr vertretbaren Störpegel in dem so berechneten vernachlässigbaren, in Bild 6.2 angedeuteten, Rauschsignales \underline{r} In der Praxis zeigt sich jedoch, daß die im Meßfilter durchzu-

Ausführungsform der Meßeinrichtung vermieden werden.

Korrektureinheit (Bild 6.3) kann dann ein Signal α_{ist} gemäß der Ausgangssignale $lpha_{ ext{ist}}^*$, des Beschleunigungssensors sowie $lpha_{ ext{K}}$, der den Frequenzgang \underline{F}_{K} aufweist, zur Verfügung steht. Durch Addition nommen, daß die tatsächlich vorhandene Beschleunigung α des Rotors als Eingangssignal für eine Korrektureinheit, welche Für die Beschreibung dieser Meßeinrichtung sei zunächst ange-

$$\frac{\alpha_{\text{ist}}}{-\alpha_{\text{ist}}} = \frac{F_{\alpha} \cdot \alpha + F_{K} \cdot \alpha}{-\alpha_{\text{ist}}}$$
 (6.3)

gewonnen werden. Für den geforderten Fall

$$\frac{\alpha}{1} \text{st} = \frac{\alpha}{2} \tag{6.4}$$

Frequenzganges \underline{F}_{α} (p) muß \underline{F}_{K} (p) der Beziehung und unter Berücksichtigung des in Gl. (6.1) angegebenen

$$\frac{\mathbf{F}_{\mathbf{K}}(\mathbf{p})}{1+\mathbf{p}\mathbf{T}} = \frac{\mathbf{p}\mathbf{T}}{1+\mathbf{p}\mathbf{T}} \tag{6.5}$$

unmittelbar ersichtlich ist, besteht dann eine direkte Proportio-Wie aus dem Bereich III des auf Seite 31 angegebenen Bildes 5.1 nalität zwischen den Änderungsgeschwindigkeiten $\frac{dn_{lpha}}{dt}$, des bezogenen Summe aller Pendel-, Widerstands- und Reibmomente. Maschine sehr viel größer ist als jene der auf das Nennmoment schwindigkeit des auf den Nennstrom bezogenen Querstromes der aufgrund der Annahme gefunden werden, daß die Änderungsgenigung dynamisch maßgeblich beeinflußt. Diese Systemgröße kann einer anderen Systemgröße erfolgen, welche die Drehbeschleu $lpha_{ ext{ist}}$ des Beschleunigungssensors kann demnach auch mit Hilfe genügen. Das Ausgangssignal dieser Korrektureinheit weist zufolge dieser Beziehung (6.5) keinen Gleichanteil auf $(F_{K}(0) = 0)$. Die angestrebte Korrektur des Ausgangssignales

<u>.</u> *

Bild 6.3: Korrektur des Meßwertes α_{1st}^* des Beschleunigungssensors mit Hilfe einer Korrektureinheit.

Beschleunigungsmomentes m_{α} und $\frac{di}{dt}$, des Querstromes i_{q} der Maschine. Infolge der auf Seite 32 angegebenen Bewegungsgleichung $(m_{\alpha} = J \cdot \alpha)$ besteht dann auch eine direkte Proportionalität zwischen den Änderungsgeschwindigkeiten der Drehbeschleunigung α sowie des Querstromes i_{q} der Maschine gemäß

$$\frac{d\alpha}{dt} = \frac{3}{2} \cdot z_p \cdot \psi_M \cdot \frac{1}{J} \cdot \frac{di}{dt}$$
 (6.6)

Nach Durchführung einer Fouriertransformation kann diese Gl. (6.6) auch in der Form

$$p \cdot \underline{\alpha} = C_{\alpha} \cdot p \cdot \underline{i}_{q} \quad \text{mit} \quad (6.7)$$

$$C_{\alpha} = \frac{3}{2} \cdot Z_{\mathbf{p}} \cdot \psi_{\mathbf{M}} \cdot \frac{1}{J} \tag{6.8}$$

geschrieben werden. Der in Gl. (6.3) enthaltene Term $\underline{F}_K(p)\cdot\underline{\alpha}$, welcher unter Berücksichtigung der Gl. (6.5) auch in der Form

$$\underline{\mathbf{F}}_{\mathbf{K}} \cdot \underline{\mathbf{G}} = \frac{\mathbf{T}}{\mathbf{1} + \mathbf{p} \cdot \mathbf{T}} \cdot \mathbf{P} \cdot \underline{\mathbf{G}}$$
 (6.9)

darstellbar ist, kann dann mit Hilfe der Gl. (6.7) auch als

$$\frac{F_{K} \cdot \alpha}{I} = \frac{T}{I + pT} \cdot C_{\alpha} \cdot p \cdot \frac{1}{2}$$
 (6.

angegeben werden. Die angestrebte Korrektur des Ausgangssignales α_{ist}^* des Meßwertgebers kann also, wie im Bild 6.4 dargestellt ist, mit Hilfe des über eine differenzierende Korrektureinheit erfaßten Querstromes der Maschine geschehen.

Bild 6.4: Korrektur des Meßwertes α_{ist}^* des Beschleunigungssensors mit Hilfe des Querstromes i_q der Maschine.

6.2 Die Erfassung der Winkelgeschwindigkeit des Rotors
Der Einsatz eines Gebersystems für die Drehbeschleunigung der
Welle der Maschine bietet neben den in Kapitel 5.2 geschilderten Vorteilen auch noch die Möglichkeit der hochgenauen Erfassung der mechanischen Winkelgeschwindigkeit des Rotors durch
den Aufbau eines Teilstreckenbeobachters [40,41]nach Bild 6.5.

Der in der Praxis übliche Einsatz eines gesonderten Gebers für die Winkelgeschwindigkeit des Rotors der Maschine ist dann nicht mehr erforderlich; gleiches gilt für die alternativ mögliche Differentiation des Signales für die Rotorlage, mit der eine erhebliche Erhöhung des Störpegels des Drehzahlsignales vertwinden wäre

Bild 6.5: Realisierung eines Teilstreckenbeobachters für die Winkelgeschwindigkeit des Rotors.

6.3 Die Erfassung des mechanischen Drehwinkels c des Rotors Um die Qualität des Positioniersystems durch die Eigenschaften des Lageerfaßsystems in möglichst geringem Maße zu beeinträchtigen, sind an letzteres im wesentlichen zwei Forderungen zu stellen:

Einerseits wird eine nahezu unendlich hohe Auflösung des Lageistwertes gefordert. Meßwertgeber, welche ein quantisiertes Lagesignal generieren, sind daher für die gestellte Aufgabe grundsätzlich ungeeignet.

Andererseits soll das verwendete Meßverfahren keinen prinzip-bedingten Tiefpaßcharakter aufweisen, welcher z.B. im Phasen-regelkreis der Auswerteelektronik eines Resolvers grundsätzlich vorhanden ist.

Im folgenden wird ein Lageerfaßsystem beschrieben, welches die gestellte Aufgabe in nahezu idealer Weise zu erfüllen vermag [42] .

6.3.1 Meßsystem für eine stationär und dynamisch hochwertige Erfassung der Abweichung des mechanischen Drehwinkels von seinem vorgegebenen Sollwert

Als Randbedingung für die Entwicklung des im folgenden vorgestellten Meßsystems für eine hochwertige Erfassung der Abweichung des mechanischen Drehwinkels von seinem vorgegebenen Sollwert wurde die Forderung erhoben, daß dasselbe unter Einsatzjenes Types von Meßwertgebern realisiert werden sollte, welcher in der Industrie die weiteste Verbreitung aufweist. Bei diesen Meßwertgebern werden im allgemeinen zwei Signale u₁ und u₂ erzeugt, welche bestmöglich die folgenden Anforderungen erfüllen

sollen:

- Die Signale sollen einen in Abhängigkeit vom Drehwinkel sinusförmigen Verlauf aufweisen.
- Das Argument dieser sinusförmigen Signale soll ein ganzzahliges Vielfaches g $\cdot \epsilon$ des mechanischen Drehwinkels ϵ

$$\beta = g \cdot \varepsilon$$
 (6.11

sein.

- Das Signal u_1 soll gegenüber u_2 eine Phasenverschiebung von $\psi_1=\frac{\pi}{2}$ aufweisen.
- Die Amplituden \mathfrak{A}_1 und \mathfrak{A}_2 der Signale \mathfrak{u}_1 und \mathfrak{u}_2 sollen einen konstanten und einheitlichen Wert \mathfrak{A} aufweisen.

Werden diese Anforderungen erfüllt, so können die Signale $\mathbf{u_1}$ und $\mathbf{u_2}$ in der Form

$$u_1 = 0 \cdot \sin \beta$$
 und (6.12)

$$u_2 = 0 \cdot \cos \beta \tag{6.13}$$

beschrieben werden.

6.3.1.1 Erläuterung der grundsätzlichen Funktionsweise

Die Erfassung des Drehwinkels des Rotors erfolgt bei Einsatz dieser Meßwertgeber vornehmlich durch eine Erfassung der Nulldurchgänge der Signale \mathbf{u}_1 und \mathbf{u}_2 sowie eine (drehrichtungsabhängige) Erfassung der dabei generierten Zählimpulse in einem Speicherbaustein. Am Ausgang dieses Speicherbausteins steht dann das in Bild 6.6 dargestellte, quantisierte Signal $\mathbf{u}_{\beta 1}$ zur verfügung. In jenen Fällen, in welchen hohe Anforderungen an die Positioniergenauigkeit und Positionierruhe eines Antriebssystems gestellt werden, muß eine Interpolation dieses Signales $\mathbf{u}_{\beta 1}$ vorgenommen werden. Diese Interpolation kann mit Hilfe einer,

Bild 6.6: Ermittlung eines mechanischen Drehwinkels durch Auswertung der Nulldurchgänge der Signale \mathbf{u}_1 und \mathbf{u}_2 eines Meßwertgebers sowie Interpolation des dabei entstehenden quantisierten Signales $\mathbf{u}_{\beta 1}$.

1

(

aus den Signalen \mathbf{u}_1 und \mathbf{u}_2 abzuleitenden, sägezahnförmigen Funktion $\mathbf{u}_{\beta2}$ des Drehwinkels β gemäß Bild 6.6 erfolgen.

Die Ausgangssignale realer Geber weisen aber Abweichungen von den in den Gln. (6.12) und (6.13) angegebenen Verläufen auf. Infolgedessen stellen sich auch Abweichungen der Interpolationsfunktion $\mathfrak{u}_{\beta2}$ von ihrem in Bild 6.6 dargestellten Verlauf ein. Dieser Umstand führt zu Unstetigkeitsstellen im Verlauf der interpolierten Funktion $\mathfrak{u}_{\beta1}+\mathfrak{u}_{\beta2},$ welche eine exakte und ruhige Positionierung an diesen Stellen nicht zulassen. Dieser Mangel solcher Systeme wird bei der im folgenden dargestellten Ausführungsform eines Lageerfaßsystems grundsätzlich vermieden.

6.3.1.2 Erläuterung der grundsätzlichen Funktionsweise eines

neuartigen Lageerfaßsystems

Der Grundgedanke für dieses neuartige Erfaßsystem besteht darin, die Zählimpulse für den Speicherbaustein nicht aus den Signalen u_1 und u_2 abzuleiten, sondern aus den neu zu bildenden Signalen u_1' und u_2' , welche aus u_1 und u_2 durch eine Phasendrehung um den Sollwert ρ für den Drehwinkel β gemäß

$$u_1' = \alpha \cdot \sin(\rho - \beta)$$
 und (6.14)

$$u_2^* = 0 \cos(\rho - \beta)$$
 (6.15)

gebildet werden. Im angestrebten Zustand (Sollwert ρ = Istwert β) sollen Unstetigkeitsstellen im Ausgangssignal des Meßsystems vermieden werden. Infolgedessen ist es zweckmäßig, die Zählimpulse für den Speicherbaustein nicht aus den Nulldurchgängen der Signale u_1' und u_2' nach den Gln. (6.14) und (6.15) gängen der Signale u_1' und u_2' nach den Gln. (6.14) vnd (6.15)

Bild 6.7: Grundsätzlicher Ansatz zur Erfassung der Abweichung des mechanischen Drehwinkels β von einem vorgegebenen Sollwert ρ .

$$u_1^{\prime} + u_2^{\prime} = \sqrt{2 \cdot 0 \cdot \sin(\rho - \beta + \frac{\pi}{4})}$$
 und (6.16)

$$u_1^{\dagger} - u_2^{\dagger} = \sqrt{2 \cdot \hat{u} \cdot \sin(\rho - \beta - \frac{\pi}{4})}$$
 (6.17)

Wird die am Ausgang des Speicherbausteines anstehende Funktion h der Winkeldifferenz $(\rho-\beta)$ mit Hilfe der – ebenfalls in Bild 6.7 eingetragenen – Funktion $\lambda_{\rm I}$ interpoliert, so ergibt sich eine Funktion ζ , welche folgende Eigenschaften hat:

- Die Funktion ζ weist, unabhängig vom vorgegebenen Sollwert ρ für ρ = β den Wert Null auf;
- die Funktion ζ verläuft in einem weiten Bereich um den Punkt $\rho=\beta$ linear und weist insbesondere in jenem Bereich, welcher infolge einer unvermeidlichen Systemunruhe im Regelkreis um den Punkt $\rho=\beta$ herum durchlaufen wird, prinzipbedingt keine Unstetigkeitsstelle auf.

Für die Bildung der Funktion ζ müssen zunächst die Funktionen u_1' und u_2' sowie eine Funktion λ , deren Verlauf in guter Näherung mit jenem der Funktion λ_I übereinstimmt, gewonnen werden. Dies kann in einfacher Weise mit Hilfe der Ausgangsgrößen u_1 und u_2 des Meßwertgebers sowie dem Sollwert ρ für den Drehwinkel β geschehen. Hierfür erzeugt man über Funktionsgeneratoren, welche als einfache Festwertspeicher ausgeführt sein können, aus dem Sollwinkel ρ die Funktionen sinp und cosp. Die eigentliche Phasendrehung der Funktionen u_1 und u_2 um den Sollwinkel ρ wird dann durch deren Verknüpfung mit den neu gebildeten Funktionen sinp und cosp gemäß

$$u'_{1} = \hat{u} \cdot \sin(\rho - \beta) = \hat{u} \cdot (\sin \rho \cdot \cos \beta - \cos \rho \cdot \sin \beta)$$
 (6.18)

und

$$u_2' = \hat{u} \cos(\rho - \beta) = \hat{u} \cdot (\cos \rho \cdot \cos \beta + \sin \rho \cdot \sin \beta)$$
 (6.19)

erreicht (Bild 6.8).

Bild 6.8: Phasendrehung der an den Meßwerteingängen anstehenden Funktionen $0\cdot\sin\beta$ und $0\cdot\cos\beta$ um den am Sollwerteingang anstehenden Sollwinkel ρ .

Die gesuchte Funktion λ kann, wie in Bild 6.9 dargestellt ist, abschnittsweise aus einer der Funktionen u¦ und u½ sowie den hieraus durch Inversion hervorgehenden Funktionen -u′ und -u½ gebildet werden. Durch gewichtete Addition der in Bild 6.7 dargestellten Funktion h und der in Bild 6.9 wiedergegebenen Funktion λ gemäß

$$\zeta = h + C_{\lambda} \cdot \lambda$$
 mit (6.20)

$$\frac{V_2}{a} \cdot \frac{\pi}{4}$$
 (6.21)

Bild 6.9: Bildung einer Funktion λ_{f} welche eine sehr gute übereinstimmung mit der idealisierten Funktion λ_{f} aufweist.

kann dann eine Funktion ζ der Winkeldifferenz $(\rho-\beta)$ gewonnen werden, welche in jedem Punkt in sehr guter Näherung mit der Winkeldifferenz $(\rho-\beta)$ übereinstimmt.

Wie vorstehend dargelegt ist, wird bei jedem Vorzeichenwechsel einer der Funktionen ($u_1^1+u_2^1$) und ($u_1^1-u_2^1$) ein Zählimpuls für den Speicherbaustein ausgelöst. Weiterhin kann über die Vorzeichenkombination dieser Funktionen in eindeutiger Weise die Auswahl jener Funktion u_1^1 , u_2^1 , $-u_1^1$ oder $-u_2^1$ erfolgen, welche bei gegebener Winkeldifferenz (ρ - β) zur Bildung der Funktion λ herangezogen werden soll. Hierfür werden, wie aus den in Bild 6.10 wiedergegebenen Kurvenverläufen und dem in Bild 6.11 dargestellten Ausführungsbeispiel der zugehörigen Auswahleinheit hervorgeht, zunächst die Vorzeichen V_1 und V_2 der Funktionen $u_1^1+u_2^1$ und $u_1^4-u_2^1$ gemäß

$$V_1 = sgn (u_1^2 + u_2^2)$$
 und (6.22)

$$V_2 = sgn (u_1^2 - u_2^2)$$
 (6.23)

sowie deren komplementäre Größen

$$\overline{V}_1 = \text{sgn} \left(-u_1^2 - u_2^2\right) \quad \text{und} \quad (6.24)$$

$$\overline{V}_2 = \text{sgn} (-u_1' + u_2')$$
 (6.25)

ermittelt. Durch einfache logische Verknüpfungen dieser binären Funktionen $V_1,\ V_2,\ \overline{V}_1$ sowie \overline{V}_2 kann dann jene der Funktionen $u_1^i,\ u_2^i,\ -u_1^i$ und $-u_2^i$ ermittelt und zur Bildung der Funktion λ herangezogen werden, deren Verlauf mit dem erwünschten Verlauf der in Bild 6.7 eingetragenen idealisierten Funktion λ_1 momentan bestmöglich übereinstimmt.

Bild 6.10: Ermittlung jener Funktion, welche in Abhängigkeit von der Winkeldifferenz (ρ-β) zur Bildung der Funktion λ herangezogen werden soll.

Bild 6.11: Ausführungsbeispiel der Auswahleinheit für die Bildung der Funktion λ .

Bild 6.12: Prinzipschaltbild eines neuartigen Meßsystems zur Erfassung der Abweichung des mechanischen Drehwinkels β von seinem vorgegebenen Sollwert ρ .

Das Prinzipschaltbild des vorstehend beschriebenen Lageerfaßsystems ist in Bild 6.12 wiedergegeben. Die Ausgangsgröße ζ dieses Systems weist neben den auf Seite 100 genannten Eigenschaften noch das Merkmal auf, daß eine Änderung des mechanischen Drehwinkels β ohne prinzipbedingten Zeitverzug registriert wird. Insgesamt bietet es somit die besten Voraussetzungen für die Realisierung eines hochwertigen Positionierantriebs mit sehr hoher Positionierruhe.

6.3.1.3 Vollständiges Meßsystem zur Erfassung der Abweichung des mechanischen Drehwinkels von einem vorgegebenen Sollwert

Voraussetzung für eine ordnungsgemäße Funktion des beschriebenen

Lageerfaßsystems ist es, daß alle Nulldurchgänge der Funktionen $u_1'+u_2'$ sowie $u_1'-u_2'$, welche bei einer Änderung der Winkeldifferenz $(\rho-\beta)$ durchlaufen werden, erfaßt und zur Auslösung von Zählimpulsen herangezogen werden. Um diese Voraussetzung auch bei einer sprungförmigen Änderung dieser Winkeldifferenz erfüllen zu können, ist eine Begrenzung der Änderungsgeschwindigkeit des Argumentes $(\rho-\beta)$ unerläßlich. Die Änderungsgeschwindigkeit des Drehwinkels β ist grundsätzlich durch die maximal mögliche Drehzahl des Rotors begrenzt; die Änderungsgeschwindigkeit des Sollwertes ρ muß hingegen durch einen zusätzlichen Anstiegsbegrenzer (siehe Bild 6.13) limitiert werden.

Die Anstiegsgeschwindigkeit $\frac{d\rho}{dt}$ der Ausgangsgröße ρ^* dieses Anstiegsbegrenzers legt die maximal mögliche Drehzahl der Maschine im lagegeregelten Betrieb fest. Ein Mindestwert $\frac{d\rho^*}{dt}$ min ergibt sich aus dem Wunsch, daß diese Drehzahl nicht unterhalb jener Drehzahl n_{max} nach der auf Seite 66 angegebenen Gl. (5.43) liegt, oberhalb derer keine kontrollierte Führung der Augenblickswerte des Querstromes mehr möglich ist.

Der Anstiegsbegrenzer kann in einfacher Weise als digitaler Aufund Abwärtszähler mit nachfolgendem Komparator ausgeführt sein. Bei unterschiedlichen Werten der Ausgangsgröße ρ^* und der Eingangsgröße ρ läuft ein zählvorgang mit der zählfrequenz f_T in jener Richtung ab, in welcher der Betrag $\left|\begin{array}{cc} \rho^* - \rho \end{array}\right|$ vermindert wird; bei Gleichheit der Größen ρ^* und ρ wird der zählvorgang unterbrochen.

Der Mindestwert f_{Tmin} dieser Zählfrequenz soll für die in Abschnitt 7 beschriebene Modellanlage im folgenden berechnet werden. In dieser Anlage gelangte ein Meßwertgeber zum Einsatz, dessen Ausgangssignale u₁ und u₂ jeweils 2^{10} = 1024 Perioden promechanischer Umdrehung aufweisen. Die Vorgabe des Sollwinkels ρ

Bild 6.13: Erweitertes Prinzipschaltbild eines neuartigen Meßsystems zur Erfassung der Abweichung des mechanischen Drehwinkels β von seinem vorgegebenen Sollwert ρ .

erfolgt mit einer Auflösung von einem 1024-sten Teil dieser Perioden. Infolgedessen sind bei jeder Umdrehung der Welle der Maschine 2^{20} Zählimpulse erforderlich. Bei der angestrebten Maximaldrehzahl von 2000 $\frac{1}{\min}$ ist demnach eine Zählfrequenz f_{Tmin} von

$$f_{\text{Tmin}} = 2^{20} \cdot \frac{2000}{60} \frac{1}{\text{s}} \approx 35 \text{ MHz}$$
 (6.26)

erforderlich.

In Anwendungsfällen, in welchen eine noch höhere Maximaldrehzahl und/oder Auflösung des Sollwertes angestrebt werden, erfordert die schaltungstechnische Beherrschung der dann geforderten Taktfrequenz einen erheblichen Aufwand auf Seiten der Signalelektronik.

Um einerseits die Ansprüche an die zugehörige Hardware zu reduzieren und andererseits keinen Beschränkungen hinsichtlich der maximal möglichen Drehzahl bzw. der maximal möglichen Auflösung des Lagesollwertes zu unterliegen, wird im folgenden eine Erweiterung des beschriebenen Lageerfaßsystems vorgenommen (siehe Bild 6.14).

Das Ziel dieser Erweiterung ist es, jenen Anteil des Sollwinkels ρ , welcher bei dessen Änderung sicher zu einer Auslösung von Zählimpulsen führt, nicht dem Anstlegsbegrenzer zuzuführen. Vielmehr soll dieser Anteil $\Delta\rho_h$ der Sollwertänderung $\Delta\rho$ über einen Signalpfad, welcher einen Bypaß zu jenem über den Anstlegsbegrenzer bildet, direkt zu einer Änderung der gemessenen Winkeldifferenz ζ führen.

Im vorliegenden Fall erfolgt die Auslösung der Zählimpulse in den Nulldurchgängen der Funktionen $u_1^i+u_2^i$ sowie $u_1^i-u_2^i$, also viermal pro Periode von deren Argument. Die Großsignaländerung $\Delta\rho_h$ stellt somit das größte ganzzahlige Vielfache von $\frac{\pi}{2}$ dar, welches in der Sollwertänderung $\Delta\rho$ enthalten ist.

Der bei jeder Änderung des Sollwinkels neu zu ermittelnde Wert $\Delta\rho_h$ wird zum Inhalt eines Großsignalspeichers der Eingangsstufe addiert, welcher die Summe aller bisher berechneten Großsignaländerungen $\Delta\rho_h$ enthält. Die Ausgangsgröße ρ_h dieses Großsignalspeichers wird dann zum Inhalt h des im vorstehenden Kapitel erläuterten Speicherbausteines addiert. Die so gewonnene Funktion (h+ ρ_h) wird schließlich mit Hilfe der Funktion λ interpoliert, welche wiederum in der

(

Bild 6.14: Vollständiges Ersatzschaltbild eines Meßsystems zur Erfassung der Abweichung des mechanischen Drehwinkels ß von seinem vorgegebenen Sollwert p.

im vorstehenden Kapitel beschriebenen Weise aus den Signalen u_1^{\prime} und u_2^{\prime} gewonnen wird. Die zur Bildung dieser letztgenannten Signale erforderliche Phasendrehung wird nun nicht mehr um den gesamten Sollwinkel ρ vollzogen, sondern nur noch um den Kleinsignalsollwert ρ_n , welcher sich aus der Summe aller gemäß

$$\Delta \rho_{\mathbf{n}} = \Delta \rho - \Delta \rho_{\mathbf{h}} \tag{6.27}$$

ermittelten Kleinsignaländerungen $\Delta
ho_n$ ergibt.

einer sprunghaften Änderung der Führungsgröße p um mehr als Argument $(\rho_n^*-\beta)$ der Funktionen u_1' und u_2' abnehmen, was über die daß der Drehwinkel β vergrößert wird. Infolgedessen wird das Lageregelkreis wird nun in der Weise auf den Antrieb einwirken, durch dessen It: halt und somit die Summe $h+\rho_{\mbox{\scriptsize h}}$ erhöht wird. Der ein Zählimpuls für den Speicherbaustein ausgelöst werden, wo-Abhängigkeit von der Höhe der Kleinsignaländerung $\Delta
ho_{
m n}$ kann dabei eine geringfügige Erhöhung des Meßwertes ; herbeigeführt. In drehung der Ausgangssignale des Meßwertgebers. Hierdurch wird grenzer zugeführt und bewirkt eine zeitkontinuierliche Phasenzu einer Änderung der Größe $ho_{
m h}$ beiträgt, wird dem Anstiegsbe-Meßwertes C. Jener Anteil der Sollwertänderung, welcher nicht größe $ho_h^{}$ des Eingangsspeichers, der Summe (h+ $ho_h^{}$) sowie des $\Delta \rho = \frac{\pi}{2}$ erfolgen ebenfalls sprunghafte Änderungen der Ausgangseinen sehr kleinen Wert um den Wert Null herum auf. Bei Die Summe (h+ $ho_{
m h}$) weist demnach den Wert Null, die Meßgröße hosich der Antrieb in einem quasistationären Zustand befinde. für den zu betrachtenden Regelvorgang sei vorausgesetzt, daß anhand des Bildes 6.14 nachvollzogen werden. Als Ausgangspunkt welcher als Führungsgröße für einen Lageregelkreis diene, schließend für eine sprunghafte Erhöhung des Sollwinkels ρ , Die Funktionsweise des beschriebenen Lageerfaßsystems soll ab-Auslösung der entsprechenden Zählimpulse zur Folge hat, daß der

Inhalt h des Speicherbausteins abnimmt. Demzufolge werden auch die Summe (h+ ρ_h) sowie der Meßwert ζ vermindert. Dieser Vorgang wird so lange andauern, bis der Meßwert ζ wieder den Wert Null angenommen hat. Unabhängig von der Höhe des Sollwertsprunges $\Delta\rho$ stellt das Meßsystem in diesem neuen quasistationären Zustand wieder einen Meßwert ζ zur Verfügung, welcher

- für ρ = β den Wert "Null" annimmt,
- in einem großen Bereich um den Punkt ρ = β herum weitgehend linear verläuft,
- in jenem Bereich um den Punkt $\rho=\beta$ herum, welcher infolge einer unvermeidlichen Systemunruhe durchlaufen wird, auch bei Abweichungen der Signale u_1 und u_2 von ihren idealisierten Verläufen keine Unstetigkeitsstelle aufweist und
- . einer Änderung des mechanischen Drehwinkels $\boldsymbol{\beta}$ ohne prinzipbedingten Zeitverzug folgt.

Seitens des Lageerfaßsystems sind somit alle Voraussetzungen für eine hochgenaue und gleichzeitig sehr ruhige Positionierung erfüllt.

Bei den bisherigen Überlegungen wurde vorausgesetzt, daß am Eingang der Auswerteelektronik zwei ideale Signale u_1 und u_2 gemäß den auf Seite 96 angegebenen Gln. (6.12) und (6.13) anstehen. Unter Berücksichtigung der nichtidealen Eigenschaften realer Geber stellen sich Meßfehler ein, welche im folgenden näherungsweise ermittelt werden sollen.

6.3.2 Meßfehler aufgrund der nichtidealen Eigenschaften des Meßwertgebers für den mechanischen Drehwinkel

Im allgemeinen Fall können die Ausgangssignale des Meßwertgebersfür den mechanischen Drehwinkel gemäß

$$u_1 = G_{10} + \sum_{\nu=1}^{2} G_{1\nu} \cdot \sin(\nu \cdot \beta + \phi_{\nu})$$
 und (6.28)

$$u_2 = G_{20}^{+} + \sum_{\mu=1}^{\infty} G_{2\mu} \cdot \cos(\mu \cdot \beta + \phi_{\mu})$$
 (6.29)

angegeben werden. Der Meßfehler dζ im Ausgangssignal ζ des Meßsystems, welcher ein Maß für die mittlere Regelabweichung im quasistationären Betrieb des Positionierantriebes darstellt, kann dann durch Bildung des totalen Differentials für das Signal ζ abgeschätzt werden.

Die Ausgangssignale realer Meßwertgeber weisen Abweichungen von ihren idealisierten Verläufen nach den auf Seite 96 angegebenen Gln. (6.12) und (6.13) auf. Für den in der Modellanlage verwendeten Meßwertgeber wurden die Maximalwerte dieser Abweichungen durch eine Messung ermittelt. Diese Maximalwerte dienen als Grundlage für die folgende Fehlerbetrachtung. Nach der genannten Messung können die Gln. (6.28) und (6.29) mit schrguter Näherung zu

$$u_1 = G_{10} + G_{11} \cdot \sinh + G_{13} \cdot \sin(3 \cdot \beta)$$

(6.30)

$$u_2 = G_{20} + G_{21} \cdot \cos(\beta + \phi_1) + G_{23} \cdot \cos(3 \cdot \beta + 3 \cdot \phi_1)$$
 (6.31)

ĺ

net. Die auf diesen mittleren Scheitelwert û bezogenen Koeffizischen Umdrehung des Rotors durchlaufen werden, sei mit $\hat{\mathbf{u}}$ bezeichder Ausgangssignale des Meßwertgebers, welche bei einer mechanivereinfacht werden. Der mittlere Scheitelwert aller Schwingungen dieser Arbeit zugrundegelegten Meßwertgeber zu enten der Gln. (6.30) und (6.31) ergeben sich dann für den

$$\frac{G_{10}}{a} = g_{10} = 0.5$$
,
$$\frac{G_{11}}{a} = g_{11} = 96.6$$
,
$$\frac{G_{13}}{a} = g_{13} = 4.0$$

$$\frac{G_{20}}{a} = g_{20} = 1.68$$
; $\frac{G_{21}}{a} = g_{21} = 103.58$; $\frac{G_{23}}{a} = g_{23} = 4.28$;

der Phasenwinkel ϕ_{\uparrow} hat den Wert

$$\phi_1 = -3.3^{\circ}.$$
 (6.33)

abweichungen, d.h. im Bereich $(h+\rho_h)=0$ zu Das Meßsignal ζ ergibt sich dann im Bereich sehr kleiner Regel-

$$\zeta = C_{\lambda} \cdot (\sinh u_{1} - \cosh u_{2}) \cdot \tag{6.34}$$

ein, so ergibt sich Setzt man die Gln. (6.21) und (6.30) bis (6.33) in Gl. (6.34)

$$\zeta = \sqrt{2 \cdot \frac{\pi}{4}} \cdot \left[\sin \rho \cdot (g_{10} + g_{11} \cdot \sin \beta + g_{13} \cdot \sin (3 \cdot \beta)) - \cos \rho \cdot (g_{20} + g_{21} \cdot \cos (\beta + \phi_1) + g_{23} \cdot \cos (3 \cdot \beta + 3 \cdot \phi_1)) \right].$$
 (6.35)

Dieses Meßsignal weist – auch im interessierenden Punkt β = ρ – Abweichungen von der tatsächlich vorliegenden Winkeldifferenz gangssignale des Meßwertgebers, sowie von Phasenabweichungen fehlern (g_{11}, g_{21}) und von Oberschwingungen (g_{13}, g_{23}) der Ausauf, welche von Offsetfehlern (g_{10}, g_{20}) , von Amplituden- (ϕ_{1}) zwischen den Signalen \mathbf{u}_{1} und \mathbf{u}_{2} hervorgerufen werden

> dç kann dann wie folgt näherungsweise angegeben werden [43]: Der gesamte, durch diese Fehlerquellen hervorgerufene Meßfehler

$$d\zeta = \frac{\partial \zeta}{\partial g_{10}} \cdot dg_{10} + \frac{\partial \zeta}{\partial g_{20}} \cdot dg_{20} + \frac{\partial \zeta}{\partial g_{11}} \cdot dg_{11} + \frac{\partial \zeta}{\partial g_{21}} \cdot dg_{21}$$

$$+\frac{\partial \zeta}{\partial g_{13}} \cdot dg_{13} + \frac{\partial \zeta}{\partial g_{23}} \cdot dg_{23} + \frac{\partial \zeta}{\partial \phi_1} \cdot d\phi_1 \cdot (6.36)$$

a)_Der_von_den_Offsetspannungen_des_Meßwertgebers hervorgerufene_Mesfehler

hervorgerufenen Meßfehlers d ζ_0 ergibt Eine Abschätzung des von den Offsetspannungen des Meßwertgebers

$$\hat{a}\zeta_0 = \frac{\partial \zeta}{\partial g_{10}} \cdot dg_{10} + \frac{\partial \zeta}{\partial g_{20}} \cdot dg_{20}$$
 mit (6.37)

$$\frac{\partial \zeta}{\partial g_{10}} = \sqrt{2} \cdot \frac{\pi}{4} \cdot \sin \rho \qquad \qquad u$$

(6.38)

$$\frac{\partial \zeta}{\partial g_{20}} = -\sqrt{2} \cdot \frac{\pi}{4} \cdot \cos \rho \quad . \tag{6.39}$$

Werte der Koeffizienten g_{10} und g_{20} dargestellt. Periode des Sollwertes ρ für die in Gl. (6.32) angegebenen Der Verlauf dieses Meßfehlers d ζ_0 ist in Bild 6.15a über einer

b) Der von den Amplitudenfehlern der Ausgangssignale des Wegwertdepers pervordernfene wegfepler

Mittelwert û hervorgerufenen Meßfehlers å $\zeta_{f j}$ führt auf das amplituden der Ausgangssignale des Meßwertgebers von deren Eine Abschätzung des von den Abweichungen der Grundschwingungs-

Bild 6.15: Durch die nichtidealen Eigenschaften des Meßwertdes Meßsystems für den Drehwinkel β ; gebers hervorgerufene Meßfehler im Ausgangssignal Ç

- a) Meßfehler aufgrund von Offsetspannungen
- b) Meßfehler aufgrund von Amplitudenfehlern
- c) Meßfehler aufgrund von Phasenfehlern
- d) Meßfehler aufgrund von Oberschwingungen
- e) gesamter Meßfehler

Resultat

$$d\zeta_1 = \frac{\partial \zeta}{\partial g_{11}} \cdot dg_{11} + \frac{\partial \zeta}{\partial g_{21}} \cdot dg_{21}$$
 mit (6.40)

$$\frac{\partial \zeta}{\partial g_{11}} = \sqrt{2 \cdot \frac{\pi}{4}} \cdot \sin \rho \cdot \sin \beta \qquad \text{und} \qquad (6.41)$$

$$\frac{\partial \zeta}{\partial g_{21}} = -\sqrt{2} \cdot \frac{\pi}{4} \cdot \cos \rho \cdot \cos \left(\beta + \phi_1\right) \quad . \tag{6.42}$$

Phasenwinkels ϕ_1 nach Gl. (6.33). Gl. (6.32) angegebenen Koeffizienten g_{11} und g_{21} sowie des einer Periode des Sollwertes punter Voraussetzung der in Bild 6.15b zeigt den für den interessierenden Fall β = ρ nach den Gln. (6.40) bis (6.42) zu ermittelnden Meßfehler dζ, über

c) Der von einer Phasenverschiebung zwischen den Ausgangssignalen_des_Meßwertgebers_hervorgerufene Meßfehler

Ausgangssignalen des Meßwertgebers hervorgerufenen Meßfehlers Eine Abschätzung des von einer Phasenverschiebung zwischen den

$$dc_{2} = \frac{3c_{1}}{3\phi_{1}} \cdot d\phi_{1}$$

$$= \sqrt{2} \cdot \frac{\pi}{4} \cdot \left[\cos \rho \cdot g_{21} \cdot \sin (\beta + \phi_{1}) + g_{23} \cdot 3 \cdot \sin (3 \cdot \beta + 3 \cdot \phi_{1}) \right] \cdot (6.4)$$

gegebenen Werten für die Koeffizienten \mathbf{g}_{21} und \mathbf{g}_{23} sowie dem über einer Periode des Sollwertes ρ mit den in Gl. (6.32) an-Dieser Meßfehler $d\zeta_2$ ist für den interessierenden Fall $\beta = \rho$

 d) _Der_von_den_Oberschwingungen_der &usgangssignale des Meßwertgebers hervorgerufene_Meßfehler_

Der von den Oberschwingungen der Ausgangssignale des Meßwertgebers hervorgerufene Meßfehler d \mathfrak{c}_3 kann wie folgt abgeschätztwerden:

$$d\zeta_3 = \frac{\partial \zeta}{\partial g_{13}} \cdot dg_{13} + \frac{\partial \zeta}{\partial g_{23}} \cdot dg_{23}$$
 mit (6.44)

$$\frac{\partial \zeta}{\partial g_{13}} = \sqrt{2} \cdot \frac{\pi}{4} \cdot \left[\sin \rho \cdot \sin \left(3 \cdot \beta \right) \right] \quad \text{und} \quad (6.45)$$

$$\frac{\partial \zeta}{\partial q_{23}} = -\sqrt{2} \cdot \frac{\pi}{4} \cdot \left[\cos \rho \cdot \cos (3 \cdot \beta + 3 \cdot \phi_1) \right] \cdot (6.46)$$

In Bild 6.15d ist dieser Meßfehler $d\varsigma_3$ für $\rho=\beta$ und die in Gl. (6.32) angegebenen Werte für die Koeffizienten g_{13} und g_{23} sowie den in Gl. (6.33) angegebenen Phasenwinkel ϕ_1 über einer Periode des Sollwertes ρ dargestellt.

e)_Gesamter,_aufgrund der nichtidealen_Eigenschaften_des_ Meßwertgebers hervorgerufener Meßfehler

Der gesamte, gemäß den Gln. (6.35) und (6.36) mit den in den Gln. (6.32) und (6.33) angegebenen Zahlenwerten ermittelte Meß-fehler dt ist in Bild 6.15e wiedergegeben. Als Maximalwert dieses, die absolute Positioniergenauigkeit des Antriebes bestimmenden Meßfehlers ergibt sich

$$d_{\text{max}} = 7,7^{\circ} . \qquad (6.47)$$

Infolge der für den verwendeten Meßwertgeber gültigen Beziehung

$$\beta = 1024 \cdot \varepsilon \tag{6.}$$

entspricht dies dem 48000sten Teil einer Umdrehung. Die Systemruhe, welche die Oberflächengüte des bearbeiteten Werkstückes bestimmt, wird hierdurch nicht beeinflußt, wie in Abschnitt 7 noch gezeigt wird.

(

Die Modellanlage

Die im Rahmen dieser Arbeit entstandene Versuchsanlage diente zum ersten der Überprüfung der angestrebten hohen Dynamik des Antriebs, gekennzeichnet durch kurze Anregelzeiten für das Drehmoment, die mechanische Winkelgeschwindigkeit sowie den mechanischen Drehwinkel. Sie diente zum zweiten dem praktischen Nachweis der prinzipiellen Funktionsweise der in den Abschnitten 5. und 6. erläuterten Regel- und Meßsysteme und zum dritten der Untersuchung der Grenzen des Gesamtsystems hinsichtlich Systemruhe und Störverhalten.

7.1 Beschreibung der Modellanlage

Bild 7.1 zeigt den verwendeten Versuchsantrieb, bestehend aus einer permanenterregten Synchronmaschine, einem Transistorpulsumrichter, der Regelelektronik sowie einem Meßwertgeber für den mechanischen Drehwinkel & des Rotors. Für die Untersuchung verschiedener Ausführungsformen des Regelsystems wurde die Anlage durch zusätzliche signalelektronische Komponenten sowie durch einen Sensor für die Erfassung der Winkelbeschleunigung a des Rotors, welcher in das Maschinengehäuse integriert wurde, erweitert [44].

Im folgenden sind die wesentlichen Kenngrößen der Gesamtanlage zusammengestellt.

Bild 7.1: Die Modellanlage

paten der permanenterregten Synchronmaschine:

- Polpaarzahl	- Spannungskonstante	- Nennstrom	 Spitzendrehmoment 	- Nenndrehmoment
ະ 2	$k_{\rm u} = 100 \frac{1}{1000 \frac{1}{\text{min}}}$	$I_{N} = 5,3 A$	M _{max} = 90 Nm	$M_{N} = 1.5 \text{ Nm}$

= 2000 min

= 12,2 mH= 0,92

1,8 n

 $= 2,58 \cdot 10^{-3} \text{ kgm}^2$

띰

= 32 A

= 100 kHz

signale pro Umdrehung	- Anzahl der Perioden der Ausgangs-

maximal zulässige Drehzahl

$$ho$$
lung < 3 Winkelsekunden
10000 $rac{1}{ ext{min}}$

11 µA_{SS}

1024

7.2 Messungen an der Modellanlage

permanenterregten Synchronmaschine ausgeführt. Regelsystem unterzogen; bei letzterem war die innere Regelschleisystems wurde es einem direkten Vergleich mit einem bekannten tet werden. Zur Beurteilung der Leistungsfähigkeit dieses Regelpunktregelkreis für die Drehbeschleunigung der Maschine abgelei-Steuerbefehle für den Pulswechselrichter direkt aus einem Zwei-In Kapitel 5.2 wurde ein Regelsystem erläutert, in welchem die fe in konventioneller Art als Regelkreis für den Querstrom der

beschriebene Anordnung liefert weiterhin ein Signal für den gangssignale des Meßwertgebers und einer sich anschließenden Aus-Winkelgeschwindigkeit erfolgte nach dem in [45] beschriebenen welcher für die Realisierung des Zweipunktregelkreises für diese haltens des Antriebes dienen. Messungen herangezogen, welche der Beurteilung des Großsignalverwurde für die in den folgenden Punkten a) bis c) wiedergegebenen mechanischen Drehwinkel ε_{ullet} Ein in dieser Weise gewonnenes Signal Die Mittenfrequenz des Modulators betrug 100 kHz. Die in [45] wertung der Seitenbänder des Ausgangssignales des Modulators. Verfahren. Dieses beruht auf einer Frequenzmodulation der Aus-Drehbeschleunigung entwickelt wurde $\left[\begin{array}{c}44\end{array}\right]$. Die Erfassung der schleunigung erfolgte dabei über den Drehbeschleunigungssensor, Anregungen des Systems wiedergegeben. Die Messung der Drehbeder interessierenden mechanischen Größen bei unterschiedlichen In den folgenden Oszillogrammen sind die zeitlichen Verläufe

Messungen noch verzichtet. Dies geschah auch unter dem Gesichtsin Kapitel 6.3 erläuterten Lageerfaßsystems wurde daher für diese signalverhaltens maßgeblichen Meßergebnisse. Auf den Einsatz des Einfluß auf die zur Beurteilung des hier interessierenden Großdie Abweichung des mechanischen Drehwinkels von einem hierfür punkt, daß das letztgenannte Meßsystem unmittelbar ein Signal für sich bei dieser Anordnung einstellte, hatte keinen merklichen Die im lagegeregelten Betrieb auftretende Systemunruhe, welche

vorgegebenen Sollwert zur Verfügung stellt; die Meßergebnisse wären somit einem direkten Vergleich mit solchen Darstellungen, in welchen in konventioneller Weise der Lageistwert verwendet ist, nicht ohne weiteres zugänglich.

Die Eignung des Lageerfaßsystems nach Kapitel 6.3 für den Einsatz in hochwertigen Positioniersystemen wird in Punkt d) nachgewiesen.

a) Führungsverhalten bei Großsignalanregung

In Bild 7.2 sind die für schnelle Positioniervorgänge maßgebenden Sprungantworten des unbelasteten Antriebes im drehzahlgeregelten Betrieb (Bild 7.2.a) sowie im lagegeregelten Betrieb (Bild 7.2.b) des Regelsystems mit unterlagerter Querstromregelung der Maschine wiedergegeben. In dieser Betriebsweise ergibt sich - erwartungsgemäß - kein Unterschied zum Regelsystem mit unterlagertem Zweipunkt-Beschleunigungsregelkreis; auf die Wiedergabe der entsprechenden Oszillogramme für letzteren kann daher verzichtet werden.

Bei der vorliegenden Kombination von Maschine und Umrichter, welche eine 4-fache Überlastung der Maschine gegenüber ihrem Nenndrehmoment ermöglicht, ergibt sich eine maximale Winkelbeschleunigung α_{\max} von

$$\alpha_{\text{max}} = 2.6 \cdot 10^4 \frac{\text{rad}}{\text{s}^2}$$
 (7.1)

Dieser Wert liegt weit über jenem, welcher bei Gleichstromantrieben mit ähnlichen Leistungsdaten erzielt werden kann $\left[\ 5\ \right]$.

Bild 7.2: Sprungantworten der unbelasteten Modellanlage
a) im drehzahlgeregelten Betrieb
b) im lagegeregelten Betrieb.

b) Drehbeschleunigung aufgrund von Pendelmomenten

Wie in Kapitel 5.2 erläutert wurde, greifen die im Regelsystem als Störgrößen auftretenden Pendel-, Widerstands- und Reibmomente bei Einsatz eines Regelkreises für den Querstrom i außerhalb der innersten Regelschleife an. Diese Störgrößen werden somit nicht unmittelbar kompensiert. Vielmehr müssen deren um ein Integralglied 1. Ordnung verzögert auftretenden Auswirkungen im Drehzahlregelkreis ausgeregelt werden. Diese Tatsache wird durch die in Bild 7.3 wiedergegebene Messung belegt. Hierbei wurde der unbelastete Antrieb drehzahlgeregelt bei einer Drehzahl von 200 $\frac{1}{\min}$ betrieben und die gemessene Lage ϵ_{ist} sowie Drehbeschleunigung α_{ist} des Rotors über einer mechanischen Umdrehung desselben oszillographiert. Die Periodizität des gemessenen Signales für die Drehbeschleunigung α ergibt sich zu einer Nutteilung der Maschine (= 15°). Die Amplitude des zugehörigen, aus Gl. (5.1) gemäß

$$m_{\alpha} = J \cdot \alpha_{ist}$$
 (7.2)

zu ermittelnden Beschleunigungsmomentes \mathbf{m}_{α} ist nur unwesentlich geringer als die Amplitude der bei stromloser Maschine gemessenen Rastmomente.

Auf die Wiedergabe des entsprechenden Oszillogrammes bei Einsatz eines unterlagerten Zweipunkt-Beschleunigungsregelkreises soll an dieser Stelle verzichtet werden, da hierbei keine erkennbaren Beschleunigungspulsationen mehr auftraten.

Bild 7.3: Gemessene Verläufe des mechanischen Drehwinkels ϵ sowie der Drehbeschleunigung α der Modellanlage im drehzahlgeregelten Betrieb bei Einsatz eines Regelsystems mit unterlagerter Regelschleife für den Querstrom der Maschine.

c) _Störverhalten_

In jenen Einsatzfällen, in welchen der Antrieb mit einem stark pulsierenden Widerstandsmoment beaufschlagt wird, bedarf es einer gesonderten Betrachtung der Reaktion des Systéms auf diese, als Störgröße wirkenden, Drehmomentpulsationen.

In einem ersten Schritt erfolgte die Untersuchung des Regelsystems mit unterlagerter Regelschleife für den Querstrom der
Maschine. Bild 7.4 zeigt die in diesem Fall gemessenen zeitlichen
Verläufe des mechanischen Drehwinkels sowie der Winkelgeschwindigkeit, welche auch dem Regler als Istwerte für die Zustandsgrößen
des Regelsystems zugeführt werden. Zum Zeitpunkt t = 0 (siehe
Bild 7.4) erfolgt ein Lastsprung mit dem 0,4-fachen Wert des
Nenndrehmomentes. Die hieraus resultierende Auslenkung der Welle
beträgt 1°.

In einem zweiten Schritt wurde die unterlagerte Regelschleife für den Querstrom durch eine Zweipunktregelschleife für die Drehbeschleunigung ersetzt. Ansonsten fand für die dann durchgeführte Messung das gleiche Regelsystem Verwendung, welches auch dem Bild 7.4 zugrundelag. Bild 7.5 zeigt als Ergebnis dieser Untersuchung die zeitlichen Verläufe jener gemessenen Zustandsgrößen des Regelsystems, welche den Reglern zugeführt werden. Dabei erfolgt wiederum zum Zeitpunkt t = 0 ein Lastsprung um dasco,4-fache Nenndrehmoment. Die resultierende Auslenkung der Welle beträgt nur noch weniger als 0,3°.

Eine weitere Verbesserung des Systemverhaltens beim Auftreten von Störgrößen konnte in einem dritten Schritt erzielt werden. Dabei wurden dem Regler nicht mehr die Ausgangssignale des Meßsystems nach [45], welches auf einer Freuquenzmodulation der Ausgangssignale des Meßwertgebers beruht, als Istwerte für den Drehwinkel E und die mechanische Winkelgeschwindigkeit war zugeführt; vielmehr wurden diese Istwerte aus einem vollständigen Streckenbeobachter

Bild 7.4: Gemessene Verläufe des mechanischen Drehwinkels eist sowie der mechanischen Drehzahl n_{ist} des Antriebssystems mit unterlagerter Regelschleife für den Querstrom bei einem Lastsprung um das 0,4-fache Nenndrehmoment.

Bild 7.5: Gemessene Verläufe des mechanischen Drehwinkels ε_{ist}, der mechanischen Drehzahl n_{ist} sowie der Drehbeschleunigung α_{ist} des Antriebssystems mit unterlagerter Zweipunkt-Regelschleife für die Drehbeschleunigung α bei einem Lastsprung um das 0,4-fache Nenndrehmoment.

ŧ

Bild 7.6: Meßsystem mit Streckenbeobachter zur Erfassung der mechanischen Zustandsgrößen der Modellanlage.

abgeleitet, welcher an dem nach Kapitel 6.1 gebildeten Meßwert für die Drehbeschleunigung orientiert wurde (siehe Bild 7.6). Der Regeleinrichtung steht somit ein direkt zusammengehöriger Satz von Meßwerten zur Verfügung; die Genauigkeit der Meßwerte wird dabei

im nichtstationären Betrieb nur noch durch die Qualität der Beschleunigungserfassung begrenzt.

Bild 7.7: Gemessene Verläufe des mechanischen Drehwinkels ε_{1st}, der mechanischen Drehzahl n_{ist} sowie der Drehbeschleunigung α_{ist} des Antriebssystems mit unterlagerter Zweipunkt-Regelschleife für die Drehbeschleunigung α bei einem Lastsprung um das 0,4-fache Nenndrehmoment. Ermittlung der Meßwerte aus einem Meßsystem nach Bild 7.6.

Bild 7.7 zeigt die Reaktion des Antriebes auf einen zum Zeitpunkt t = 0 auftretenden Belastungssprung um das 0,4-fache Nenndrehmoment. Um diese Messung einem Vergleich mit den Bildern 7.4 und 7.5 zugänglich zu machen, erfolgte die Darstellung der mechanischen Größen mit Hilfe jener Meßeinrichtung, welche auch bei der Aufnahme der letztgenannten Bilder zum Einsatz gelangte. Die Auslenkung der Welle beträgt nur noch 0,1°. Durch eine Optimierung der Übertragungsfunktion \underline{F}_{α} (p) des Beschleunigungssensors läßt sich hier wohl noch eine weitergehende Verbesserung des Störverhaltens des Antriebssystems erreichen.

d) Systemunruhe sowie Einfluß der Abtastzeit des Pulswechseltrichters.auf diese Systemunruhe

Die Messung der Systemunruhe erfolgte bei lagegeregeltem, unbelastetem Antriebsmotor. Dabei wurde die Synchronmaschine bei unterschiedlichen Drehwinkeln so positioniert, daß die infolge der unvermeidlichen Systemunruhe auftretende Pulsation einer der (in Abhängigkeit des Drehwinkels sinusförmigen) Ausgangssignale des Meßwertgebers für die Wellenstellung um den Wert Null herum erfolgt. Aus dem Betrag der maximalen Abweichung des gemessenen Ausgangssignales vom Wert Null, welcher über einen Spitzenwertspeicher ermittelt wird, kann unmittelbar der Betrag $\left|\Delta\beta\right|_{max}$ der zugehörigen Drehwinkeldifferenz bestimmt werden. Aufgrund der für den verwendeten Meßwertgeber gültigen Beziehung $\beta=1024\,^\circ$ e kann dann die maximale Abweichung $\left|\Delta\epsilon\right|_{max}$ des mechanischen Drehwinkels ϵ von einem hierfür vorgegebenen Sollwert ermittelt werden.

Da zum Zeitpunkt dieser Messung noch kein geeigneter Drehbeschleunigungssensor zur Verfügung stand, erfolgte dieselbe an einem Antriebssystem mit unterlagerter Regelschleife für den Querstrom der Maschine. Die Messung der Systemunruhe wurde zum einen unter Einsatz des in Kapitel 6.3 erläuterten neuartigen Lageerfaßsystems durchgeführt; die maximale Abweichung $|\Delta\epsilon|_{max}$ des mechanischen Drehwinkels vom vorgegebenen Sollwert betrug dabei 5 Winkelsekunden. Zum anderen gelangte ein Meßsystem nach [45] zum Einsatz, welches auf einer Frequenzmodulation der Ausgangssignale des Meßwertgebers beruht; hierdurch wurde die Systemunruhe um den Faktor 4 auf 20 winkelsekunden erhöht.

Infolge der deutlichen Überlegenheit des in Kapitel 6.3 beschriebenen Lageerfaßsystems fand dies dann auch bei der folgenden Messung Verwendung. Dabei sollte geklärt werden, welchen Einfluß die Taktfrequenz des Pulswechselrichters auf die Systemunruhe des Antriebssystems ausübt. Hierfür wurde diese Taktfrequenz f_T im Berreich

18 kHz
$$\leq$$
 f_T \leq 180 kHz

(7.3

variiert. Ansonsten erfolgte die Messung unter den gleichen

Bedingungen, welche auch bei der Bestimmung der Systemunruhe gegeben waren. Bild 7.8 zeigt das Resultat dieser Untersuchungen. Aus diesem Bild geht hervor, daß eine Erhöhung der Taktfrequenz auf Werte oberhalb von ca. 50 kHz keine nennenswerte Verminderung des Betrages der maximalen Regelabweichung $|\Delta\varepsilon|$ max mehr bewirkt.

Bild 7.8: Maximalwert $\left| \Delta \varepsilon \right|_{max}$ des Betrages der Abweichung des mechanischen Drehwinkels $\varepsilon_{\rm ist}$ von einem hierfür vorgegebenen Sollwert $\varepsilon_{\rm Soll}$ der unbelasteten Modellanlage als Funktion der Taktfrequenz $f_{\rm T}$ des Pulswechselrichters.

Insbesondere wird deutlich, daß für den in der vorliegenden Arbeit zugrundegelegten Fall der Taktung des Pulswechselrichters mit einer Frequenz von 100 kHz der Einfluß der hieraus resultierenden Totzeiten auf die Systemunruhe vernachlässigt werden kann.

(

8. Zusammenfassung

positionierantrieben kommt auf vielen Gebieten der Technik eine immer größere Bedeutung zu. Dies gilt beispielhaft für den Betrieb numerisch gesteuerter Fertigungseinrichtungen, für die Ausrichtung von Sende- und Empfangsantennen oder für die Betätigung von Klappen und Rudern in der Luftfahrt-technik.

In Abhängigkeit vom jeweiligen Einsatzfall haben diese Antriebe unterschiedlichen, einander teilweise widersprechenden Anforderungen zu genügen. Dies gilt insbesondere bei gleichzeitiger Forderung nach hoher Positioniergenauigkeit und Positionierruhe, nach hoher Dynamik sowie nach einem guten Störübertragungsverhalten des gesamten Systems.

In der vorliegenden Arbeit wird gezeigt, daß beim heutigen Stand der Technik Antriebssysteme realisiert werden können, welche alle an sie gestellten Anforderungen in sehr guter Weise erfüllen.

Ohne Einschränkung der Allgemeingültigkeit der Ergebnisse dieser Arbeit wurde derselben als elektromechanischer Energiewandler eine permanenterregte Synchronmaschine zugrundegelegt. Diese bietet neben einer einfachen mathematischen Beschreibbarkeit auch die Möglichkeit einer sehr trägheitsarmen Ausführung und somit sehr gute Voraussetzungen für die Realisierung eines hochdynamischen Antriebssystems.

Die Speisung der Drehfeldmaschine erfolgt über einen Transistorpulswechselrichter. Infolge der hohen Taktfrequenz desselben, welche dank geeigneter Ansteuer- und Entlastungsnetzwerke keine Minderung des Wirkungsgrades der Anlage zur Folge hat, kann das Zeitverhalten dieses leistungselektronischen Stellgliedes gegenüber den übrigen Streckenzeitkonstanten der Regelstrecke

vernachlässigt werden.

In einem ersten Schwerpunkt befaßt sich die vorliegende Arbeit mit der Beschreibung eines geeigneten Regelsystems für Positionierantriebe. Es wird begründet, daß die Auswahl der dem Regler zugeführten Zustandsgrößen von entscheidender Bedeutung für die Reaktion des Systems beim Auftreten schnell veränderlicher Widerstandsmomente ist. Insbesondere wird dargelegt, wie die Schaltzustände des Pulswechselrichters unter Einsatz eines Sensors für die Drehbeschleunigung des Rotors der Maschine in einfacher Weise aus einem Regelkreis für diese Drehbeschleunigung abgeleitet werden können. Durch diesen, als Zweipunktregelkreis ausgeführten Beschleunigungsregelkreis ergibt sich eine Wesentliche Verbesserung des Störübertragungsverhaltens gegenüber der in der Vergangenheit ausschließlich verwendeten Systemführung mit unterlagerten Regelkreisen für die Maschinenströme.

In einem weiteren Schwerpunkt konzentriert sich die vorliegende Arbeit auf die Problematik der Meßwerterfassung. Insbesondere wird ein Lageerfaßsystem vorgestellt und analysiert, welches die Probleme bekannter Systeme hinsichtlich endlicher Auflösung. Nichtlinearitäten, Empfindlichkeit gegenüber Amplitudenfehlern der Eingangssignale sowie dynamischem Verhalten vom Ansatz her vermeidet.

Zur Erprobung und Bestätigung der in dieser Arbeit beschriebenen Prinzipien und Maßnahmen wurde eine Modellanlage aufgebaut. Die an ihr durchgeführten Messungen, deren wichtigste Resultate in den vorhergehenden Abschnitten wiedergegeben sind, zeigen eine sehr gute Übereinstimmung mit den theoretisch zu erwartenden Ergebnissen.

ŧ

[7] Würslin, R.

SCHRIFTTUM

- [1] Grotstollen, H.
- etz Archiv, Bd. 5 (1983), H. 11, magnetisch erregtem Synchronmotor. Die polradorientierte Regelung eines S. 339 - 346.Drehstrom-Servoantriebes mit dauer-
- Boehringer, A.; Ruppmann, C.; Stute, G.;
- Entwicklung eines drehzahlgesteuerten Werkzeugmaschinen. Asynchronmaschinenantriebs für
- Vogt, G.; Würslin, R.
- Fertigung (1979), Nr. 8, wt. Zeitschrift für industrielle

s. 463 - 473.

Herold, H.-H.; Maßberg, W.;

<u>_</u> _

- VDI-Verlag Düsseldorf (1971). Fertigungstechnik. Die numerische Steuerung in der
- N. N.

Stute, G.

- AC Brushless Servo Drives Contraves Goerz Corporation. Technische Information 1984
- Grotstollen, H.; Pfaff, G.
- Bürstenloser Drehstrom-Servoantrieb S. 1382 - 1386. etz 100, (1979), H. 24, mit Erregung durch Dauermagnete.
- Boehringer, A.; Brugger, F.
- E und M (1979), H. 12, bis 50 kVA. umrichter mit Ausgangsleistungen Transformatorlose Transistor-Puls-

S. 538 - 545

- Leonhard, W.
- VDI-Zeitschrift 123 (1981), Nr. 10, Maschinenbau. Elektrische Regelantriebe für den

Oxnard, USA.

Powerconversion International, (1980), pp 2.4-1 - 2.4-14, European Power Conversion Conference" Proceedings of the "Second Annual 380 V Three Phase Mains.

Transistor Converter Operating on

S. 419 - 428.

[9] Wick, A.

Synchroner Drehstrom-Servoantrieb mit

Transistor-Pulsumrichter.

Dissertation Universität Erlangen, 1983. erregter Synchron-Servomotoren. Entwurf und Eigenschaften permanent-Dissertation Universität Erlangen, 1982.

[10] Weschta, A.

- [11] Zimmermann, P.
- Bürstenlose Servoantriebe für Werkzeugmaschinen.
- Fertigung 73 (1983), wt-Zeitschrift für industrielle S. 629 - 632.
- Vagati, A.; Villata, F.
- Pergamon Press, Oxford, U.K. A Brushless System for Position Control Electrical Drives", (1983), "Control in Power Electronics and Proceedings of the Third IFAC Symposium Lausanne, Switzerland. pp 407 - 414,

- [13] Kovács, K.P.; Rácz, I. Wissenschaften, Budapest, (1959). verlag der Ungarischen Akademie der maschinen, Band I. Transiente Vorgänge in Wechselstrom-
- [14] Müller, G. Elektrische Maschinen, Theorie. VEB Verlag Technik, Berlin, (1967).
- [15] Grotstollen, H. Die Unterdrückung der Oberwellen-
- Speisung mit oberschwingungsbehaftetem drehmomente von Synchronmotoren durch

Archiv für Elektrotechnik 67 (1984),

S. 17 - 27.

- [16] Weschta, A. etz Archiv, Bd. 5 (1983), H. 4, Synchron-Servomotoren. pendelmomente von permanenterregten S. 141 - 144.
- [17] Boehringer, A. Der Anlauf von Stromrichter-Synchron-Dissertation TH Stuttgart, 1965. maschinen mit Gleichstromzwischenkreis.
- [18] Kleinrath, H. S. 12 - 24. Archiv für Elektrotechnik 56 (1974), Gleichstromzwischenkreis. Der Kommutierungsvorgang beim Asynchronmotor mit Speisung über Umrichter mit
- 19 Rischmüller, K. elektronik industrie 3 (1984), Darlington-Module für Wechselrichter und Frequenzumrichter.

- [20] Boehringer, A.; Knöll, H. etz Bd. 100 (1979), H. 13, S. 664 - 670. hoher Leistungen und Frequenzen. Transistorschalter im Bereich
- [21] Boehringer, A. Deutsche Patentoffenlegungsschrift OS 26 41 183.
- [22] Boehringer, A.
- Deutsche Patentschrift OS 26 44 715.
- [23] Knöll, H. Dissertation Universität Stuttgart, in Gleichstromstellern hoher Leistung. Transistoren als schnelle Schalter
- [24] Würslin, R. und sehr großem Feldschwächbereich. Dissertation Universität Stuttgart, maschinenantrieb mit hoher Taktfrequenz Pulsumrichtergespeister Asynchron-
- [25] Zimmermann, W. etz Archiv Bd. 6 (1984), H. 5, S. 189 - 194 Probleme und Grenzen beim Einsatz abschaltbarer Thyristoren.
- [26] Boehringer, A.; OS 31 14 426.8 Deutsche Patentoffenlegungsschrift

[27] Wieland, E.

Brugger, F.

Universität Stuttgart, 1985. elektronik und Anlagentechnik der Diplomarbeit am Institut für Leistungs-Linearbeschleunigungsgebers. einspritzpumpe mit Hilfe eines Regelung des Stellwerks einer Diesel-

(

Ţ

34	33	32	[30]	[29]	[28]
Schwarz, B.	Vogt, G.	Leonhard, W.	Föllinger, O. Oppelt, W.	Boehringer, A.	Pfaff, G.; Wick, A.
Converter-fed Synchronous Machine with High Perfermance Dynamic Behaviour for Servo-drive Application. Proceedings of the Third IFAC Symposium "Control in Power Electronics and Electrical Drives", (1983), pp 375-382, Lausanne, Switzerland. Pergamon Press, Oxford, U.K.	Digitale Regelung von Asynchronmotoren für numerisch gesteuerte Fertigungs-einrichtungen. Dissertation Universität Stuttgart, 1984.	Verlag Chemie, Weinheim, (1972). Einführung in die Regelungstechnik, Nichtlineare Regelvorgänge. Verlag Friedrich Vieweg + Sohn, Braunschweig, (1970)	Regelungstechnik. Elitera-Verlag, Berlin, (1972). Kleines Handbuch technischer Regelvorgänge.	Anlagen- und Systemtechnik I. Vorlesung Universität Stuttgart, (1980).	Direkte Stromregelung bei Drehstrom- antrieben mit Pulswechselrichter. rtp 24, (1983), H. 11, S. 472 - 477.

[41] Boehringer,	[39] Sobota, J.	[38] Denne, Rausch, Friese,	[37] von Ba		[35] Depenbrock,
	, J. rger, D.G.	A.;	Basel, C.		brock, M.
ter		Aufnehmer zur Messung schnell veränder licher Drehbeschleunigungen und Dreh- momente. Technisches Messen 48, (1981), H. 10, S. 339 - 342.	<pre>synchronmotor. Dissertation TH Stuttgart, 1961. Elektrische Drehbeschleunigungsmesser. ATM, J 163-4, (1964), S. 113 - 116.</pre>	amische Drehfeld chterspeisung. hiv Bd. 7 (1985) - 218.	Direkte Selbstregelung (DSB) fir

Moderne angewandte Regelungstechnik.

É

- [42] Boehringer, A.; Deutsche Patentanmeldung Schwarz, B. P 34 46 049.7.
- [43] Zurmühl, R. Praktische Mathematik.

 Springer Verlag Berlin, Heidelberg,

 New York, (1965).
- [44] Steinhauser, K. Aufbau und Untersuchung eines Regelsystems für permanenterregte Synchronmaschinen unter Einbeziehung eines
 unterlagerten Beschleunigungsregelkreises.
 Diplomarbeit am Institut für Leistungselektronik und Anlagentechnik der
 Universität Stuttgart, 1985.
- [45] Hopfengärtner, H. Auswertung von Impulsgebersignalen zur
 Drehzahlmessung.
 Technisches Messen 49, (1982), H. 2,
 S 59 62

Lebenslauf:

Persönliches:

Bernhard Schwarz

geb. am 9. April 1954
in Stuttgart-Degerloch
Eltern: Johann Schwarz, kaufm. Angestellter

und Ursula Schwarz, geb. Lippe Ehefrau: Ursula Schwarz, geb. Heimsch Kinder: Stefanie und Michaela

Schulbildung:

1960...1964 Grundschule Stuttgart-Fasanenhof

1964...1973 Gymnasium StuttgartDegerloch
Hochschulreifergusnic

Hochschulreifezeugnis vom 20. Juni 1973

Wehrdienst:

1. Juli 1973 bis 30. September 1974

Studium:

WS 1974/75 bis WS 1979/80
Elektrotechnik an der Universität
Stuttgart;
Diplomhauptprüfungszeugnis vom

Praktikum:

1975 und 1976 bei der Firma Robert Bosch GmbH, Stuttgart

12. März 1980

Berufstätigkeit:

Ab April 1980 wissenschaftlicher Mitarbeiter bei Prof. Dr.-Ing. habil. A. Boehringer am Institut für Leistungselektronik und Anlagentechnik der Universität Stuttgart