Università della Svizzera italiana Year 2015–2016

Calculus

Course Notes

Amedeo Zucchetti February 27, 2017

Calcul	us
Course	Notes

Contents

1	Sets, groups and fields	3
2	Spaces	6
3	Sequences	8
4	Series	10
5	Functions and continuity	12
6	Continuous functions and intervals	14
7	Uniform continuity	15
8	Power Series	16
9	Lipschitz continuity	17
10	Differentiability and derivatives	18
11	Integrals	20
12	Antiderivatives (or indefinite integrals)	21

1 Sets, groups and fields

Definition 1.1 (Natural numbers). The set of natural numbers is defined with the following properties

- (i) $1 \in \mathbb{N}$
- (ii) $n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N} \ (n+1 \text{ is the successor of } n)$
- (iii) $\nexists n \in \mathbb{N} : n+1=1$ (no number is predecessor of 1)
- (iv) $m, n \in \mathbb{N}$ and $m+1=n+1 \Rightarrow m=n$
- (v) $A \subseteq \mathbb{N}, n \in A \text{ and } n+1 \in A \Rightarrow A = \mathbb{N}$

Definition 1.2 (Group). A set X and an operation \circ form a group (X, \circ) if the following rules are satisfied for all $a, b, c \in X$

- (i) Closure: $a \circ b \in X$
- (ii) Associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- (iii) Identity: $\exists ! \ 0 \in X : a \circ 0 = 0 \circ a = a$
- (iv) Inverse: $\exists ! (-a) \in X : a \circ (-a) = (-a) \circ a = 0$

The group (X, \circ) is abelian if the following rule is satisfied too

(v) Commutativity: $a \circ b = b \circ a$

Definition 1.3 (Field). Given a set X, then $(X, +, \cdot)$ is a field if the following are satisfied for all $a, b, c \in X$

- (i) $a+b \in X$ and $a \cdot b \in X$
- (ii) (a+b)+c=a+(b+c) and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- (iii) $\exists ! \ 0 \in X : a + 0 = 0 + a = a \text{ and } \exists ! \ 1 \in X : a \cdot 1 = 1 \cdot a = a$
- (iv) $\exists ! (-a) \in X : a + (-a) = (-a) + a = 0 \text{ and } \forall a \neq 0, \exists ! a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1$
- (v) a + b = b + a and $a \cdot b = b \cdot a$
- (vi) $a \cdot (b+c) = a \cdot b + a \cdot c$

Definition 1.4 (Rational numbers). $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \}$

Remark. $(\mathbb{Q}, +, \cdot)$ is a field.

Definition 1.5 (Ordered Field). Let \leq be an order relation. Then the field $(X, +, \cdot, \leq)$ is an ordered field if the following properties are satisfied for $a, b, c \in X$

(i) Either $a \leq b$ or $b \leq a$

- (ii) If $a \leq b$ and $b \leq a$, then a = b
- (iii) If $a \leq b$ and $b \leq c$, then $a \leq c$
- (iv) If $a \le b$, then $a + c \le b + c$
- (v) If $a \leq b$ and $0 \leq c$, then $a \cdot c \leq b \cdot c$

Definition 1.6 (Countable Infinite). A set A is countably infinite if it exists a function $f: A \to \mathbb{N}$ bijective.

Remark. Let A, B sets, then

- If $|A| = |B| \iff$ exists a bijection between A and B
- If $|A| \leq |B| \iff$ exists an injection from A to B
- If $|A| < |B| \iff$ exists an injection, but not a bijection

Proposition 1.1. \mathbb{Z} is countably infinite

Proposition 1.2. \mathbb{Q} is countably infinite.

Proposition 1.3. \mathbb{R} *is not countable.*

Proposition 1.4. $|\mathbb{R}| = |\mathbb{R}^2|$

Definition 1.7 (Power set). Let A be a set. The power set of A is $2^A = \{A' : A' \subseteq A\}$, the set containing all subsets of A. $|2^A| = 2^{|A|}$

Proposition 1.5. $|2^{\mathbb{N}}| = |\mathbb{R}|$

Proposition 1.6. $\sqrt{2} \notin \mathbb{Q}$

Definition 1.8 (Bounds). Let A, X be sets, such that $A \subseteq X$, and $x \in X$, then

- x is upper bound of A if $a \leq x$, for all $a \in A$
- x is lower bound of A if $x \leq a$, for all $a \in A$

Definition 1.9 (Supremum and infimum). Let A be a set

- The supremum is the smallest upper bound of A
- \bullet The infimum is the greatest lower bound of A

Definition 1.10 (Maximum and minimum). Let A be a set

- The maximum is the biggest element of A (if $\sup(A) \in A$, then $\max(A) = \sup(A)$)
- The minimum is the smallest element of A (if $\inf(A) \in A$, then $\min(A) = \inf(A)$)

2 Spaces

Definition 2.1 (Topology). Let X be a set. Then $\tau \subseteq 2^X$ is a topology if

- (i) $X \in \tau$
- (ii) $\emptyset \in \tau$
- (iii) $A_{\alpha} \in \tau$, then $\bigcup_{\alpha} A_{\alpha} \in \tau$ (the union of any element of τ is also contained in τ)
- (iv) $A_i \in \tau$, then $\bigcap_{i=1}^n A_i \in \tau$ (any finite intersection of elements of τ is also contained in τ)

Definition 2.2 (Topological space). Let X be a set, τ a topology, then (X,τ) is a topological space.

Definition 2.3 (Neighborhood in a topological space (X,τ)). A set N is a neighborhood of $x \in X$ if there exists a set $U \in \tau$ such that $x \in U$ and $U \subseteq N$.

Definition 2.4 (Metric). Let X be a set, $x, y, z \in X$. The function $d: X \times X \to \mathbb{R}$ is a metric if

- (i) d(x, y) = d(y, x)
- (ii) $d(x,y) = 0 \iff x = y$
- (iii) $d(x,z) \le d(x,y) + d(y,z)$

Definition 2.5 (Metric space). Let X be a set, d be a metric, then (X, d) is a metric space.

Definition 2.6 (Ball in a metric space (X,d)**).** $B_r(x) = \{y \in X : d(x,y) < r\}$ is a ball of center x and radius r. $B_r(x)$ is subset of X.

Definition 2.7 (Open set in a topological space (X,τ)). A set U is open in (X,τ) if $U \in \tau$.

Definition 2.8 (Open set in a metric space (X,d)). A set U is open in (X,d) if for all $x \in U$ exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$.

Definition 2.9 (Closed set). $C \subseteq X$ is closed if $X \setminus C$ is open. A set is closed if its complement is open.

Proposition 2.1. Let S = (X, x) be a space (x a metric or a topology), then

(i) X is open in S

- (ii) \emptyset is open in S
- (iii) For all A_{α} open in S, then $\bigcup_{\alpha} A_{\alpha}$ is open in S (any union of any open set is also open)
- (iv) For all A_i open in S, then $\bigcap_{i=1}^n A_i$ is open in S (any finite intersection of any open set is also open)

3 Sequences

Definition 3.1 (Sequence). A sequence (x_n) is a function $x : \mathbb{N} \to X$, where $x(n) = x_n$. The elements of a sequence can be listed in an ordered set with repetition

$$(x_n) = (x_1, x_2, x_3, x_4, \ldots)$$

Definition 3.2 (Cauchy sequence). A sequence (x_n) is a Cauchy sequence if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x_m) < \varepsilon$, for all $n, m \ge N_{\varepsilon}$. That is, starting from an index N_{ε} all values x_n are contained in an interval $[x_{N_{\varepsilon}} - \varepsilon, x_{N_{\varepsilon}} + \varepsilon]$.

Definition 3.3 (Convergence in metric space). (X, d) is a metric space. A sequence (x_n) converges to a limit x if for all $\varepsilon > 0$ exists N_{ε} such that $d(x_n, x) < \varepsilon$, for all $n \ge N_{\varepsilon}$.

Definition 3.4 (Convergence in topological space). (X,τ) is a topological space. A sequence (x_n) converges to a limit x if for all $U \in \tau$ such that $x \in U$, it exists N_U such that $x_n \in U$, for all $n \geq N_U$. That is, x is a limit of a sequence, if all sets of τ that contain x also contain the tail of the sequence.

Proposition 3.1. $x_n \to x$ in $(X,d) \iff$ for all $U \subseteq X$ open exists N_U such that $x_n \in U$, for all $n \ge N_U$.

Theorem 3.2. If a sequence converges to a limit in a metric space, then the limit is unique.

 $\it Remark.$ This isn't true in a topological space. In a topological space, a sequence can converge to multiple limits.

Proposition 3.3. $x_n \to x$ in (X,d) metric space, then for all $y \in X$, $d(x_n,y) \to d(x,y)$.

Proposition 3.4 (Properties of real sequences). For all (x_n) , (y_n) such that $x_n \to x$, $y_n \to y$, we have the following properties

- (i) $\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha \lim_{n \to \infty} x_n + \beta \lim_{n \to \infty} y_n$
- (ii) $\lim_{n \to \infty} x_n x_y = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$
- (iii) $\lim_{n \to \infty} \frac{x_n}{x_y} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$

Definition 3.5 (Bounded sequence). A sequence (x_n) is bounded if exists c such that $|s_n| \le c$.

Definition 3.6 (Monotonic sequence). A sequence is monotonic if

- (x_n) is monotonic increasing if $x_n \leq x_{n+1}$ for all n
- (x_n) is monotonic decreasing if $x_{n+1} \leq x_n$ for all n

Theorem 3.5. If a sequence monotonic and bounded, then the sequence is convergent.

Definition 3.7 (Limit superior and inferior). If (x_n) is a sequence, then

- $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} \sup\{x_k : k \ge n\}$
- $\lim \inf_{n \to \infty} x_n = \lim_{n \to \infty} \inf \{ x_k : k \ge n \}$

Definition 3.8 (Subsequence). $(x_{n_k}) \subseteq (x_n)$ is a subsequence of (x_n) . Only some terms of a sequence are part of a subsequence.

Theorem 3.6. If $x_n \to x$, then $x_{n_k} \to x$. If a sequence converges, all subsequences converge to the same limit.

Definition 3.9 (Dominant term). x_n is a dominant term if $x_m < x_n$ for all n < m.

Theorem 3.7. Every sequence has a monotonic subsequence.

Theorem 3.8 (Bolzano-Weierstrass). Every bounded sequence has a convergent subsequence.

Definition 3.10. $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded (this is not true for \mathbb{R}^{∞}).

4 Series

Definition 4.1 (Series). (x_n) is sequence. $s_n = \sum_{k=1}^n x_k$ is a series (also known as the partial sum). A series is the summation of the terms of a sequence.

Definition 4.2 (Convergence of series). $s_n = \sum_{k=1}^n x_k$ a series. $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n x_k = \sum_{n=1}^\infty x_k$.

Definition 4.3 (Absolute convergence of series). $s_n = \sum_{k=1}^n x_k$ is a series. s_n converges absolutely if

$$\sum_{n=1}^{\infty} |x_k| < \infty$$

Proposition 4.1. Absolute convergence \Rightarrow convergence. If $\sum_{n=1}^{\infty} |x_k| < \infty$, then $\sum_{n=1}^{\infty} x_k < \infty$.

Definition 4.4 (Cauchy criterion for series). $s_n = \sum_{k=1}^n x_k$, and $\sum_{n=1}^\infty x_k < \infty$ is a Cauchy series if for all $\varepsilon > 0$ it exists N such that:

$$\forall N \le m \le n \Rightarrow |s_n - s_m| = \left| \sum_{k=1}^n x_k - \sum_{k=1}^m x_k \right| = \left| \sum_{k=m}^n x_k \right| < \varepsilon$$

Proposition 4.2 (Comparison test). For x_n, y_n sequences and $x_n \ge 0$

(i) If
$$\sum_{n=1}^{\infty} x_k < \infty$$
 and $|y_n| \le x_n \Rightarrow \sum_{n=1}^{\infty} y_k < \infty$

(ii) If
$$\sum_{n=1}^{\infty} x_k = +\infty$$
 and $x_n \le y_n \Rightarrow \sum_{n=1}^{\infty} y_k = +\infty$

Proposition 4.3 (Ratio test). For x_n sequence, $x_n \neq 0$ and $s_n = \sum_{k=1}^n x_k$ series:

- (i) s_n converges absolutely if $\limsup_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| < 1$
- (ii) s_n diverges if $\liminf_{n\to\infty} \left| \frac{x_{n+1}}{x_n} \right| > 1$

Proposition 4.4 (Root test). Let $s_n = \sum_{k=1}^n x_k$ a series, $\alpha = \limsup_{n \to \infty} \sqrt[n]{|x_n|}$:

- (i) s_n converges absolutely if $\alpha < 1$
- (ii) s_n diverges if $\alpha > 1$

5 Functions and continuity

Definition 5.1 (Image). Given a function $f: X \to Y$, the image of f is defined as $Im_f(X) = \{f(x) : x \in X\}$. It contains all the images of all elements of X.

Definition 5.2 (Preimage). Given a function $f: X \to Y$, the preimage of f is defined as $PreIm_f(Y) = \{x: f(x) \in Y\}$. It contains all the elements of X that have an image in Y.

Definition 5.3 (Continuity in metric space). $f:(X,d_x)\to (Y,d_y)$ is continuous at $x\in X$ if

$$\forall \ \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0 : \ \forall \ x' \in X, d_x(x, x') < \delta_{\varepsilon} \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Remark. Continuity can also be defined as follows

$$\forall \ \varepsilon > 0 \ \exists \ \delta_{\varepsilon} > 0 : Im_f(B_{\delta_{\varepsilon}}^{d_x}(x)) \subseteq B_{\varepsilon}^{d_y}(f(x))$$

This means that the image of each ball around each x is contained in another ball around f(x).

Definition 5.4 (Continuity in topological space). $f:(X,\tau_x)\to (Y,\tau_y)$ is continuous at $x\in X$ if for all $U\in\tau_y$ such that $f(x)\in U$, then $PreIm_f(U)\in\tau_x$.

Proposition 5.1. Continuous functions map open sets into open sets.

If
$$f:(X,d_x)\to (Y,d_y)$$
 continuous, then $PreIm_f(A)$ is open, for all $A\subseteq Y$ open

Theorem 5.2. Continuous functions map limits to limits

$$f$$
 continuous, $x_n \to x \iff f(x_n) \to f(x)$

Proposition 5.3. $f,g:\mathbb{R}\to\mathbb{R}$ continuous at $x\Rightarrow f+g$, $f\cdot g$ and $\frac{f}{g}$ (for $g(x)\neq 0$) are continuous at x.

Proposition 5.4. f continuous at x and g continuous at $f(x) \Rightarrow g \circ f = g(f(x))$ is continuous at x.

Definition 5.5 (Contraction). $f:(X,d)\to (X,d)$ is a contraction \iff it exists $0\leq c<1$ such that $d(f(x),f(y))\leq cd(x,y),$ for all $x,y\in X.$

Theorem 5.5 (Banach fixed point). Let's take (X,d) complete (Cauchy \iff convergence) and $f:(X,d)\to (X,d)$ a contraction, then

- (i) $\exists ! \ x^* \in X : f(x^*) = x^*$
- (ii) $x_0 \in X$, $x_{n+1} = f(x_n) \Rightarrow x_n \to x^*$

Definition 5.6 (Convergence of a function). f converges to c at $x_0 \iff$ for all (x_n) such that $x_n \to x_0$ we have $f(x_n) \to c$. We write $\lim_{x \to x_0} f(x) = c$. Moreover

- f converges from above if, for all (x_n) , then $x_0 < x_n$. We write $\lim_{x \to x_0^+} f(x) = c$.
- f converges from below if, for all (x_n) , then $x_n < x_0$. We write $\lim_{x \to x_0^-} f(x) = c$.

Proposition 5.6. f continuous at $a \iff \lim_{x\to a} f(x) = f(a)$

Proposition 5.7. $\lim_{x\to a} (fg)(x) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$

6 Continuous functions and intervals

Definition 6.1 (Bounded function). $f: \mathbb{R} \to \mathbb{R}$ is bounded on $X \subseteq \mathbb{R}$ if $Im(X) = \{f(x) : x \in X\}$ is bounded. That is, it exists c such that $|f(x)| \le c$ for all $x \in X$.

Theorem 6.1 (Extreme value). If $f: \mathbb{R} \to \mathbb{R}[a,b]$ is continuous, then:

- (i) f is bounded on [a, b]
- (ii) f has a maximum and a minimum on [a, b], meaning that

$$\exists x_{minimizer}, x_{maximizer} \in [a, b] : f(x_{minimizer}) \leq f(x) \leq f(x_{maximizer}), \ \forall \ x \in [a, b]$$

Theorem 6.2 (Intermediate value). f continuous on [a,b], $f(a) < c < f(b) \Rightarrow \exists x \in [a,b] : f(x) = c$.

Definition 6.2 (Darboux function). A Darboux function is a function that satisfies the intermediate value property.

Proposition 6.3. Continuous implies Darboux, but not the opposite.

Proposition 6.4. Continuous functions map intervals to intervals.

Definition 6.3 (Connectedness). Let (X, τ) a topological space, the $A \subseteq X$ is disconnected if the two equivalent definitions hold

- There exists $U, V \in \tau$ such that:
 - $-(A\cap U)\cap (A\cap V)=\emptyset$, and
 - $-(A \cap U) \cup (A \cap V) = A$, and
 - $-A \cap U \neq \emptyset \neq A \cap V$
- There exists $U, V \subseteq A$ such that:
 - $-A = U \cup V$, and
 - $\overline{U} \cap V = \emptyset = U \cap \overline{V}$

N.B.: here \overline{U} doesn't mean complementary set of U, but set closure of U. That is, the smallest closed set containing U.

A set is connected if it is not disconnected.

Proposition 6.5. Continuous functions preserve connectedness.

$$f:(X,\tau_x)\to (Y,\tau_y), A\subseteq X$$
 connected in $(X,\tau_x)\Rightarrow Im(A)\subseteq Y$ is connected in (Y,τ_y)

7 Uniform continuity

Definition 7.1 (Uniform continuity). $f:(X,d_x)\to (Y,d_y)$ is uniformly continuous on X if

$$\forall \ \varepsilon > 0 \quad \exists \ \delta_{\varepsilon} > 0 : \ \forall \ x, x' \in X : d_x(x, x') < \delta \Rightarrow d_y(f(x), f(x')) < \varepsilon$$

Remark. Uniform continuity is different from normal continuity. In normal continuity the δ depends on both ε and x, while in uniform continuity δ depends solely on ε . In fact, f is "normally" continuous on $x_0 \in X$ if:

$$\forall \ \varepsilon > 0 \quad \exists \ \delta_{\varepsilon,x_0} > 0 : \ \forall \ x \in X : d_x(x_0,x) < \delta \Rightarrow d_y(f(x_0),f(x)) < \varepsilon$$

Theorem 7.1. f continuous on A, closed and bounded \Rightarrow f is uniformly continuous on A.

Theorem 7.2. f uniformly continuous on S, $(s_n) \subseteq S$ is Cauchy sequence $\Rightarrow f(s_n)$ is Cauchy sequence.

Definition 7.2 (Sequence of functions). $(f_n) \subseteq \{f : S \to \mathbb{R}\}$ is a sequence of functions. A sequence of function can converge to a function: $f_n \to f$.

Definition 7.3 (Pointwise convergence). f_n converges pointwise to $f \iff \lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in S$.

$$\forall \ \varepsilon > 0, x \in S \ \exists \ N_{\varepsilon} : |f_n(x) - f(x)| < \varepsilon$$

Definition 7.4 (infinite norm). $d_{\infty}(f_n, f) = \sup\{|f_n(x) - f(x)|\}$

Definition 7.5 (Uniform convergence). f_n converges uniformly to f if exists N_{ε} such that $d_{\infty}(f_n, f) < \varepsilon$ for all $n \geq N_{\varepsilon}$.

Theorem 7.3. Uniform limit of a continuous function is continuous.

$$f_n(x)$$
 continuous and $f_n(x) \xrightarrow{unif.} f(x) \Rightarrow f(x)$ is continuous

8 Power Series

Definition 8.1 (Power series). Let $(a_n)_{n\geq 0}\subseteq \mathbb{R}$ a sequence. Then $\sum_{n=0}^{\infty}a_nx^n$ is a power series. We have three cases

- The series converges for all $x \in \mathbb{R}$.
- The series converges for x = 0 only.
- The series converges for some bounded interval.

Theorem 8.1. Let $\beta = \limsup \sqrt[n]{|a_n|}$ and $R = \frac{1}{\beta}$ $(R = \infty \text{ if } \beta = 0, R = 0 \text{ if } \beta = \infty)$. Then $\sum_{n=0}^{\infty} a_n x^n$

- Converges for |x| < R.
- Diverges for |x| > R.

The same can be done with $\beta = \limsup \left| \frac{a_n}{a_{n+1}} \right|$.

9 Lipschitz continuity

Definition 9.1 (Lipschitz continuity). $f:(X,d_x)\to (Y,d_y)$ is Lipschitz continuous if it exists $c\in [0,+\infty)$ such that $d_y(f(x),f(x'))\leq cd_x(x,x')$.

Proposition 9.1. Lipschitz continuity \Rightarrow uniform continuity.

Theorem 9.2 (Weierstrass approximation). Every continuous function on [a,b] can be uniformly approximated by polynomials on [a,b]

$$\exists (a_n) \subseteq \mathbb{R} : p_n(x) = \sum_{k=1}^n a_k x^k \xrightarrow{unif.} f(x) \ on \ [a,b]$$

Theorem 9.3 (Bernstein polynomials). $b_{m,n}(x) = \binom{n}{m} x^m (1-x)^{n-m}$

$$span\{b_{0,n}(x),...,b_{n,n}(x)\} = \left\{\sum_{k=1}^{n} a_k x^k, a_i \in R\right\}$$

Theorem 9.4. $f:[0,1] \to \mathbb{R}$ continuous, then

- $B_n(f)(x) = \sum_{m=0}^n f(\frac{m}{n}) b_{m,n}(x)$
- $B_n(f)(x) \to f(x)$ uniformly continuous on [0, 1]

10 Differentiability and derivatives

Definition 10.1 (Derivative). The derivative of a function f at point a is defined as one

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{\varepsilon \to 0} \frac{f(a + \varepsilon) - f(a)}{\varepsilon}$$

Definition 10.2 (Differentiability). f is differentiable if the derivative f' exists.

Proposition 10.1. f differentiable at a, then f continuous at a.

Definition 10.3. $f \in \mathcal{C}^k(\mathbb{R})$, f is differentiable k times, and the derivatives are continuous.

Proposition 10.2. Properties of derivatives

- (f+g)'(x) = f'(x) + g'(x)
- (fg)'(x) = f'(x)g(x) + f(x)g'(x)
- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \quad \forall \ g(x) \neq 0$
- $\bullet \ (g\circ f)'(x)=(g'\circ f)(x)f'(x)=g'(x)f(x)f'(x)$
- $f^{-1}(x)' = \frac{1}{f'(f^{-1}(x))}$

Definition 10.4 (Local minimizer). x^* is a local minimizer if exists $\varepsilon > 0$ such that $f(x^*) \le f(x)$ for all $x \in (x^* - \varepsilon, x^* + \varepsilon)$. This means, $f(x^*)$ is local minimum (the smallest image in a given interval).

Theorem 10.3. $f: \mathbb{R} \to \mathbb{R}(a,b)$ is differentiable and has a local minimum at $x \Rightarrow f'(x) = 0$.

Theorem 10.4 (Rolle's theorem). Let $f : \mathbb{R} \to \mathbb{R}[a,b]$ differentiable on (a,b) and $f(a) = f(b) \Rightarrow it$ exists $x \in (a,b)$ such that f'(x) = 0.

Theorem 10.5 (Mean value theorem). Let $f : \mathbb{R} \to \mathbb{R}[a,b]$ differentiable on $(a,b) \Rightarrow it$ exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Theorem 10.6 (Second order optimality conditions). Let $f \in \mathcal{C}^2(\mathbb{R})$ and f'(x) = 0

- If $f''(x) > 0 \Rightarrow x$ is a local minimum
- If $f''(x) < 0 \Rightarrow x$ is a local maximum
- If $f''(x) = 0 \Rightarrow x$ is an inflection point

Definition 10.5 (Convex vector space). Let A be a vector space, $x, y \in A$ and $t \in [0, 1]$. Then A is convex if $tx + (1 - t)y \in A$.

Definition 10.6 (Convex function). $f: \mathbb{R} \to \mathbb{R}[a,b]$ is convex if for all $x,y \in [a,b]$, $t \in [0,1]$, then

$$f(tx + (1-t)y) < tf(x) + (1-t)f(y)$$

Theorem 10.7. If f is convex, then global minimum is local minimum.

Theorem 10.8 (Gradient inequality). $f \in \mathcal{C}^1$ is convex $\iff f(x) \geq f(y) + f'(y)(x-y)$

Theorem 10.9 (Newton's method). Newton's method is a way to approximate a local minimum or maximum of a function. $x^{(0)}$ is the initial guess of a local minimum $\Rightarrow x^{(n+1)} = x^{(n)} - \frac{f'(x^{(n)})}{f''(x^{(n)})}$ is a more precise approximation.

Theorem 10.10 (Taylor' series). Taylor series are a way to approximate a function. Let $f \in \mathcal{C}^{\infty}(\mathbb{R})$, then its Taylor series around point x_0 is $T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \approx \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$.

Definition 10.7. If $f(x) = T_f(x)$ for all x, then f(x) is analytic.

Theorem 10.11 (Taylor's theorem). $f \in \mathcal{C}^{n+1}(\mathbb{R})$, then it exists $\xi \in (a,x)$ such that

$$f(x) = \sum_{k=0}^{n} \left(\frac{f^{(k)}(a)}{k!} (x - a)^k \right) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$

Where $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} = O((x-a)^{n+1})$ is the error of approximation.

11 Integrals

Definition 11.1 (Partition). Let $f: \mathbb{R} \to \mathbb{R}[a,b]$, $\Delta = \{a = x_0, x_1, \dots, x_{n-1}, x_n = b\}$ is a partition of [a,b]. Let $m_k = \inf\{f(x): x \in [x_{k-1}, x_k]\}$ and $M_k = \sup\{f(x): x \in [x_{k-1}, x_k]\}$. Then

$$L_{\Delta}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) m_k, \quad U_{\Delta}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) M_k$$

 $L(f) = \sup\{L_{\Delta}(f)\}\$ and $U(f) = \inf\{U_{\Delta}(f)\}\$ are the lower and upper Darboux sums.

Theorem 11.1 (Ross' theorem). f bounded on $[a,b] \Rightarrow L(f) \leq U(f)$

Definition 11.2 (Darboux (Riemann) integral). If L(f) = U(f), then f is Darboux integrable and we call the integral $L(f) = U(f) = \int_a^b f(x) dx$.

Proposition 11.2. f continuous and bounded $\Rightarrow f$ is Riemann integrable.

Proposition 11.3 (Properties of integrals). $f, g : \mathbb{R} \to \mathbb{R}[a, b]$ integrable, $\lambda \in \mathbb{R}$ and $c \in [a, b]$. Then:

- (1) $\int_a^b (\lambda f)(x) dx = \lambda \int_a^b f(x) dx$
- (2) $\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$
- (3) $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$
- (4) If $f(x) \le g(x) \ \forall \ x \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$

Theorem 11.4. If f is monotonic or continuous, then f is integrable.

Theorem 11.5. If f is integrable on [a,b], then |f| is integrable on [a,b] and $\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx$.

Theorem 11.6 (Mean value theorem for integrals). $f,g:\mathbb{R}\to\mathbb{R}[a,b]$ continuous, $g(x)\geq 0$ for all $x\in [a,b]\Rightarrow it\ exists\ c\in [a,b]$ such that $\int_a^b f(x)g(x)dx=f(c)\int_a^b g(x)dx$

Corollary 11.6.1. $f: \mathbb{R} \to \mathbb{R}[a,b]$ continuous, then it exists $c \in [a,b]$ such that $\int_a^b f(x)dx = f(c)(b-a)$.

12 Antiderivatives (or indefinite integrals)

Definition 12.1 (Antiderivative). $F: \mathbb{R} \to \mathbb{R}[a, b]$ differentiable, is the antiderivative of $f: \mathbb{R} \to \mathbb{R}[a, b]$ if F'(x) = f(x). We write $\int f(x)dx$.

Theorem 12.1 (Fundamental theorem of calculus). $f : \mathbb{R} \to \mathbb{R}[a, b]$ continuous, then f has an unique antiderivative $F(x) = \int_a^x f(t)dt$, with F(a) = 0.

Corollary 12.1.1. $f: \mathbb{R} \to \mathbb{R}[a,b]$, F antiderivative of f, then $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$.

Theorem 12.2 (Integration by parts). $f, g : \mathbb{R} \to \mathbb{R} \int a, b \in C^1([a, b]), then$

$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x)dx$$

Theorem 12.3 (Integration by substitution). $f: \mathbb{R} \to \mathbb{R} \int a, b \ continuous \ g: \mathbb{R} \to \mathbb{R} \int a, b \in C^1([a,b]),$ then:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{a(a)}^{g(b)} f(t)dt$$