

Text Analytics

Text Classification

Ulf Leser

Content of this Lecture

- Classification
- Algorithms
- Case studies

Disclaimer

- This is not a course on Foundations of Machine Learning
- Classification/clustering are presented rather briefly
 - There exit many more methods, much work on comparing them empirically, and a lot of work on explaining the differences between the different approaches
- General experience: Choosing another classification / clustering typically will not lead to dramatic improvements
 - Instances are either well classifiable or not
 - Changing the classification method may yield 5-10% improvement, but usually not more
- More important: Choice of features
 - This requires creativity and must be adapted to every problem
 - We do not discuss feature selection

Text Classification

- Given a set D of docs and a set of classes C. A classifier is a function f: D→C
- How does this work in general?
 - Find a function v that maps a doc into a vector of features
 - For instance, its bag-of-words, possibly weighted by TF*IDF
 - Obtain a set D of docs with their classes
 - Find the characteristics of the features of docs in each class (= build a model)
 - What do they have in common?
 - How do they differ from docs in other classes?
 - Encode the model in a classifier function f operating on a feature vector: v: D→V, and f: V→C
 - We compute f(v(d))

Good Classifiers

- Our problem: Finding a good classifier
 - A good classifier assigns as many docs as possible to their "correct class"
- How do we know?
 - Supervised learning
 - Classification needs a sample S of docs with their correct classes
 - S is required for
 - Learning the model
 - Evaluating f: f is the better, the more docs are assign their correct class
 - Details on evaluation methods later

Overfitting

- We can easily build a perfect classifier for S
 - $f(d) = \{f(d'), if ∃d' \in S \text{ with } d' = d; random otherwise}\}$
 - Applied to only docs from S, f is a perfect classifier
- But: This classifier will not work well on "new" documents
- Improvement
 - $f(d) = \{f(d'), if ∃d' \in S \text{ with } d' \sim d; random otherwise}\}$
 - If S is small and "~" very narrow, this does not help a lot
 - But see kNN classifiers

Overfitting

- If the model strongly depends on S, f overfits it will only work well if all future d's are very similar to the docs in S
- You cannot find overfitting when evaluation is performed on S only

Against Overfitting

- f must generalize: Capture features that are typical for all docs in D, not for the docs in S
- Still, we only have S for evaluation ...
 - We need to extrapolate the quality of f to unknown docs
- Usual method: Cross-validation (leave-one-out, jack-knife)
 - Partition S into k sets (typical: k=10)
 - Leave-one-out: k=|S|
 - Learn model on k-1 sets and evaluate on the k'th
 - Perform k times, each time evaluating on another partition
 - Estimated quality on new docs = average performance
 - Often the best we can do

Problem 1: Information Leakage

- Developing a classifier is an iterative process
 - Define feature vector
 - Evaluate performance using cross-validation
 - Perform error analysis, leading to others features
 - Iterate until satisfied with result
- In this process, you "sneak" into the data (during error analysis) you later will evaluate on
 - "Information leakage": Information on eval data is used in training
- Solution
 - Reserve a portion P of S for evaluation
 - Perform iterative process only on S\P
 - Final evaluation on P; then no more iterations

Problem 2: Biased S

Very often, S is biased

- Often, one class c' (or some classes) is much less frequent than the other(s)
 - E.g. finding text written in dialect
- To have enough inst. of c' in S, these are searched actively in D
- Later, examples from other classes are added
- But how many?
- Fraction of c' in S is much (?) higher than expected by chance
 - I.e., than obtained by random sampling

Solutions

- Try to estimate fraction of c' in D and produce stratified S
- Very difficult and costly, often almost impossible
 - Because S would need to be very large

A Simple Example

An aggregated history of credit loss in a bank

Class	Age	Income	Risk
1	20	1500	High
2	30	2000	Low
3	35	1500	High
4	40	2800	Low
5	50	3000	Low
6	60	6000	High

- Now we see a new person, 45 years old, 4000 Euro income
- What is his risk?

Regression

- Simple approach: Linear regression
 - Linear separation with minimum square of error
- Use location relative to regression line as classifier
- Compute parameters such that error is the smallest
 - This is one way of doing it; no details on regression here

Performance on the Training Data

- Quality of predicting "high risk"
 - Precision = TP/(TP+FP) = 2/2, Recall = TP/(TP+FN) = 2/3, Accuracy: 5/6
- Regression makes many assumptions
 - Assumes linear correlations between attributes
 - Requires numerical attributes
 - Method of choice if C is continuous (infinitely many ordered classes)

Categorical Attributes

Class	Age	Type of car	Risk of Accident
1	23	Family	High
2	17	Sports	High
3	43	Sports	High
4	68	Family	Low
5	25	Truck	Low

- Assume this classification was created by some insurance manager. What was in his head?
 - Probably a set of rules, such as

```
if age > 50 then risk = low
elseif age < 25 then risk = high
elseif car = sports then risk = high
else risk = low</pre>
```

Decision Rules

Class	Age	Type of car	Risk of Accident
1	23	Family	High
2	17	Sports	High
3	43	Sports	High
4	68	Family	Low
5	25	Truck	Low

 Can we find less rules which, for these data sets, result in the same classification?

```
if age > 50 then risk = low
elseif car = truck then risk = low
else risk = high
```

A Third Approach

Class	Age	Type of car	Risk of Accident
1	23	Family	High
2	17	Sports	High
3	43	Sports	High
4	68	Family	Low
5	25	Truck	Low

Why not:

```
If age=23 and car = family then risk = high elseif age=17 and car = sports then risk = high elseif age=43 and car = sports then risk = high elseif age=68 and car = family then risk = low elseif age=25 and car = truck then risk = low else flip a coin
```

Overfitting - Again

- This was in instance of our "perfect classifier"
- We always learn a model from a small sample of the real world

Overfitting

- If the model is too close to the training data, it performs perfect on the training data but learned any bias present in the training data
- Thus, the rules do not generalize well

Solution

- Use an appropriate feature set and learning algorithm
- Evaluate you method using cross-validation

Text Classification

- Many problems in text analytics can be cast as classification
 - Language identification
 - Topic identification
 - Spam detection
 - Content-based message routing
 - Named entity recognition (is this token part of a NE?)
 - Author identification (which plays were really written by Shakespeare?)
 - **—** ...
- Common problem
 - No well discriminating single features
 - We need to use a high dimensional feature space

Classification Methods

- There are a zillion different methods
 - k-nearest neighbor
 - Naïve Bayes and Bayesian Networks
 - Decision Trees and Rainforests
 - Maximum Entropy, Maximum Entropy Markov Models, Conditional Random Fields
 - Support Vector Machines
 - Perceptrons, Neural Networks
 - **–** ...
- Effectiveness of classification depends on problem, algorithm, feature selection method, sample, evaluation, ...
 - But: Often the difference between different methods are astonishing small

Content of this Lecture

- Classification
- Algorithms
 - Nearest Neighbor
 - Naïve Bayes
 - Maximum Entropy
 - Linear Models and Support Vector Machines (SVM)
- Case studies

Nearest Neighbor Classifiers

- Very simple and effective method
- Definition

Let S be a set of classified documents, m a distance function between any two documents, and d an unclassified doc.

- A nearest-neighbor (NN) classifier assigns to d the class of the nearest document in S (wrt. m)
- A k-nearest-neighbor (kNN) classifier assigns to d the most frequent class among the k nearest documents in (S wrt. m)

Remark

- Obviously, a proper distance function is very important
- We may weight the k nearest docs according to their distance to d
- We need to take care of multiple docs with the same distance

Illustration

A 5NN

Properties

- Assumption: Similar docs should have the same class
 - Depends a lot on the distance function
- kNN is simple and astonishing good
- kNN in general is more robust than NN
- (k)NN is an example of lazy learning
 - Actually, there is no learning
 - Actually, there is no model
 - Where are the features?
- Features
 - We still need to define features
 - These features are the input to the distance function

Disadvantages

- Major problem: Performance (speed)
 - We need to compute the distance between d and any doc in S
 - This requires d*|S| applications of the distance function
 - Often the cosine of two 100K-dimensional vectors
- Various suggestions for speeding-up the method
 - Clustering aggregate groups of very close points in S into a single representative
 - Linear speed-up
 - Extreme case: Chose one representative per class
 - Usually not a good idea (high dimensional space!); no kNN any more;
 very fast and space efficient
 - Multidimensional index structures and metric embeddings
 - Map into a lower-dimensional space such that distances are preserved

kNN for Text

- In the VSM world, kNN is implemented very easily using the methods we already learned
- How?
 - Use cosine distance of bag-of-word vectors as distance
 - The usual VSM query mechanism computes exactly the k nearest neighbors when d is used as query
 - Difference
 - d usually much larger than the average q
 - We might need other ways of optimizing "queries"

Content of this Lecture

- Classification
- Algorithms
 - Nearest Neighbor
 - Naïve Bayes
 - Maximum Entropy
 - Linear Models and Support Vector Machines (SVM)
- Case studies

Bayes' Classification

- Simple method based on relative frequencies of features in the different classes
- Given
 - Set S of docs and set of classes $C=\{c_1, c_2, ... c_m\}$
 - Docs are described as a set F of binary features
 - Usually the presence/absence of terms in d
- We seek p(c_i|d), the probability of a doc d∈S being a member of class c_i
- d eventually is assigned to c with $p(c|d) = argmax p(c_i|d)$
- Replace d with feature representation

$$p(c \mid d) = p(c \mid F[d]) = p(c \mid f_1[d], ..., f_n[d]) = p(c \mid t_1, ..., t_n)$$

Probabilities

- What we learn from the training data (MLE)
 - The a-priori probability p(t) of every term t
 - How many docs from S have t?
 - The a-priori probability p(c) of every class c∈C
 - How many docs in S are of class c?
 - The conditional probabilities p(t|c) for term t being true in class c
 - Proportion of docs in c with term t among all docs in c
- Rephrase and use Bayes' theorem

$$p(c \mid t_1, ..., t_n) = \frac{p(t_1, ..., t_n \mid c) * p(c)}{p(t_1, ..., t_n)} \approx p(t_1, ..., t_n \mid c) * p(c)$$

Term can be dropped; value is identical for all classes, and we only want to rank the p(c|d)

Naïve Bayes

- We have $p(c | d) \approx p(t_1,...,t_n | c) * p(c)$
- The first term cannot be learned with any reasonably large training set
 - There are 2ⁿ combinations of feature values
- Solution: Be "naïve"
 - Assume statistical independence of all terms
- Then $p(t_1,...,t_n \mid c) = p(t_1 \mid c) * ... * p(t_n \mid c)$
- And finally

$$p(c \mid d) \approx p(c) * \prod_{i=1}^{n} p(t_i \mid c)$$

Properties

- Simple algorithm, quite robust, comparably fast, needs extensive smoothing
- Often used as baseline for other methods
- Learning the model is simple, and the model is quite compact (O(|K|*|C|) space)
- When we use the logarithm (equally well for ranking), we see that NB is a (log-)linear classifier

$$p(c \mid d) \approx \log(p(c)) + \prod p(t_i \mid c)$$
$$= \log(p(c)) + \sum \log(p(t_i \mid c))$$

Feature Selection

- One can easily speed-up classification by using only a subset of all features
- Simplest case: Use those t where p(t|c) show the biggest differences between the different classes
- Numerous methods for feature selection
 - Information gain, statistical tests, Bayesian information criterion,
 GINI score, ...
 - Finding the best features is not the same as finding the best subset of features
 - Overfitting is an issue: "Best features for S" ≠ "best features for D"
- Same methods benefit from feature selection, some not
 - SVM usually not, Bayes usually yes (think of redundant features)

Content of this Lecture

- Classification
- Algorithms
 - Nearest Neighbor
 - Naïve Bayes
 - Maximum Entropy
 - Support Vector Machines (SVM)
- Case studies

Discriminative versus Generative Models

NB uses Bayes' Theorem to estimate p(c|d)

$$p(c \mid t_1, ..., t_n) = \frac{p(t_1, ..., t_n \mid c) * p(c)}{p(t_1, ..., t_n)} \approx p(t_1, ..., t_n \mid c) * p(c)$$

- Notation
 - Approaches that estimate p(d|c) are called generative
 - p(d|c) is the probability of class c producing data d
 - Thus, NB is a generative model
 - Approaches that directly estimate p(c|d) are called discriminative

Maximum Entropy Modeling

- Maximum Entropy (ME) is discriminative
- Given a set of binary features, it directly learns conditional probabilities p(c|d)
- Definition
 Let s_{ij} be the score of feature i for doc d_j (such as TF*IDF).
 We derive from s_{ij} a binary indicator function f_i for doc j
 and class c:

$$f_i(d_j, c) = \begin{cases} 1, & \text{if } s_{ij} > 0 \land c = 1 \\ 0 & \text{otherwise} \end{cases}$$

- Remark
 - We will often call those indicator functions "features", although they embed information about classes ("a feature in a class")

Classification with ME

- Since p(c,d)=p(c|d)*p(d) and p(d) is the same for all c, we directly use p(c|d)~p(c,d)
- The ME approach models the joint probability p(c,d) as

$$p(c,d) = \frac{1}{Z} * \prod_{i=1}^{K} \alpha_i^{f_i(d,c)}$$

- Z is a normalization constant
- The feature weights α_i are learned from the data
- K is the number of features
- Classification with ME
 - Compute p(c,d) for all c and return the class with the highest value

Finding Feature Weights

- Of course, the problem is finding appropriate α_i
- We want to choose the α_i such that the probability of the training data S given the model M is maximized

$$p(S \mid M) = \sum_{d \in S} p(c(d), d \mid M)$$

- This choice must take the dependencies between the features in the model into account
- Naïve Bayes computes α -like values independently for each feature and uses their linear combination for classification
 - This only works if statistical independence holds
 - For instance, using the same feature multiple times does bias the NB result

Maximum Entropy Models

- Essentially, ME applies a search strategy to find those α_i
- Problem: There are indefinitely many combinations of weights that may all give rise to the same maximal probability of S
- ME chooses the model with the largest entropy
 - Abstract formulation: The training data leaves too much freedom.
 We want to choose M such that all "undetermined" probability mass is distributed equally
 - ME tried to make as few assumptions as possible given the data
 - Such a distribution exists and is unique
 - The search strategy needs to take this into account

Entropy of a Distribution

 Let F be the feature space and M be an assignment of probabilities to each state in F. The entropy of the probability distribution M is defined as:

$$h(M) = -\sum_{s \in F} p(s \mid M) * \log(p(s \mid M))$$

- Thus, ME searches M such that
 - P(S|M) is maximal and
 - h(M) is maximal

Example [NLTK, see http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html]

 Assume we have 10 different classes A-J and no further knowledge. Now we want to classify an document d. Which probabilities would you assign to the classes?

	Α	В	С	D	E	F	G	Н	I	J
(i)	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
(ii)	5%	15%	0%	30%	0%	8%	12%	0%	6%	24%
(iii)	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%

- Model (i) does not model more than we know
- Model (i) also has maximal entropy

Example continued

 Now we learn that A is true in 55% of all cases. Which model do you chose?

	Α	В	С	D	E	F	G	Н	I	J
(iv)	55%	45%	0%	0%	0%	0%	0%	0%	0%	0%
(v)	55%	5%	5%	5%	5%	5%	5%	5%	5%	5%
(vi)	55%	3%	1%	2%	9%	5%	0%	25%	0%	0%

Model (v) also has maximal entropy

Example continued

- We additionally learn that if the word "up" appears in a document, then there is an 80% chance that A or C are true. Furthermore, "up" is contained in 10% of the docs.
- This would result in the following model
 - We now introduce features
 - The 55% a-priori chance for A still holds

	Α	В	С	D	E	F	G	Н	I	J
+up	5.1%	0.25%	2.9%	0.25%	0.25%	0.25%	0.25%	0.25%	0.25%	0.25%
-up	49.9%	4.46%	4.46%	4.46%	4.46%	4.46%	4.46%	4.46%	4.46%	4.46%

Things get more complicated if we have >100k features

Example 2 [Pix,Stockschläder, WS07/08]

- Assume we count features "has blue eyes" and "is lefthanded" among a population of tamarins
- We observe p(eye)=1/3 and p(left)=1/3
- What is the joint probability p(eye,blue) of blue-eyed, left-handed tamarins?
 - We don't now
 - It must be $0 \le p(eye,blue) \le min(p(eye),p(left)) = 1/3$
- Four cases

p(,)	left-handed	not left-handed	sum
blue-eyed	X	1/3-x	1/3
not blue-eyed	1/3-x	1-2/3+x	2/3
sum	1/3	2/3	1

Maximizing Entropy

The entropy of the joint distribution M here is

$$h(M) = -\sum_{i=1}^{4} p(x, y) * \log(p(x, y))$$

- The value is maximal for $\frac{dH}{dx} = 0$
- Computing the first derivative and solving the equation leads to x=1/9
 - Which, in this case, is the same as assuming independence, but this is not generally the case
 - In general, finding a solution in this analytical way is not possible

Generalized Iterative Scaling (idea only)

- How do we find M in general?
- Generalized Iterative Scaling
 - Iterative procedure finding the optimal solution
 - Essentially, it starts from a random guess of all the p(c,d) and iteratively redistributes probability mass until convergence
 - See [MS99] for the algorithm
- Problem: Usually converges very slowly
 - Long training times
- Several improved algorithms are known
 - Improved Iterative Scaling
 - Conjugate Gradient Descent

Properties of Maximum Entropy Classifiers

- In general, ME outperforms NB
- ME does not assume independence of features
 - Feature weights are learned by always taking the entire distribution into account
 - Two "redundant" features will simply get half of the weight as if there was only one feature
- Very popular in statistical NLP
 - Some of the best POS-tagger are ME-based
 - Some of the best NER systems are ME-based
- Several extensions
 - Maximum Entropy Markov Models
 - Conditional Random Fields

Content of this Lecture

- Classification
- Algorithms
 - Nearest Neighbor
 - Naïve Bayes
 - Maximum Entropy
 - Support Vector Machines (SVM)
- Case studies

Class of Linear Classifiers

- Many common classifiers are (log-)linear classifiers
 - Naïve Bayes
 - Perceptron / Winnow
 - Linear and Logistic Regression
 - Maximum Entropy
 - Support Vector Machines
- If applied on a binary classification problem, all these methods somehow compute a hyperplane which (hopefully) separates the two classes
- Despite similarity, noticeable performance differences exist
 - Which of the infinite number of possible separating hyperplanes is chosen?
 - How are non-separable data sets (by a linear model) handled?
- Experience: Classifiers more powerful than linear often don't perform better (on text)

NB and Regression

- Using linear regression, we compute a separating hyperplane using error minimization
- If we assume binary Naïve Bayes, we may compute

$$\frac{p(c \mid d)}{p(\neg c \mid d)} \approx \log \left(\frac{p(c)}{p(\neg c)}\right) + \sum \log \left(\frac{p(t_i \mid c)}{p(t_i \mid \neg c)}\right)$$

$$= a + \sum_{k \in K} b_k * TF_k$$

This is a linear hyperplane; value>0 gives c, value<0 gives not c

ME is a Log-Linear Model

$$p(c,d) = \frac{1}{Z} * \prod_{i=1}^{K} \alpha_i^{f_i(d,c)} \approx \log\left(\frac{1}{Z}\right) + \sum_{i=1}^{K} f_i(d,c) * \alpha_i$$

Roccio Classification

- Recall relevance feedback in the VSM using Roccio
 - Compute initial result
 - Build new query by aggregating all true positives and discounting all/some false positives
- This idea can be turned into a classifier
 - Compute the centroid of all positive examples
 - Compute the centroid of all negative examples
 - Compute the hyperplane with minimal distance to both centroids

Text = High Dimensional Data

- Document co-ordinates are zero along almost all axes
- Most document pairs are very far apart (i.e., not strictly orthogonal, but only share very common words)
- In classification terms: virtually all document sets are separable for essentially any classification
 - This is part of why linear classifiers are quite successful in this domain
- The trick is more of finding the "right" separating hyperplane instead of just finding (any) one

Linear Classifiers

- Hyperplane separating classes in high dimensional space
 - For illustration, we stay in 2-dimensional
- But which?

Quelle: Xiaojin Zhu, SVM-cs540

Support Vector Machines (sketch only)

- SVMs compute the hyperplane which maximizes the margin
 - I.e., is as far away from any data point as possible
- Can be cast in a linear optimization problem and solved efficiently
 - Classification finally only depends on the support vectors efficient
 - Points most closest to hyperplane
 - Complication since usually the classes are not linearly separable
 - Minimizes the error under some assumptions

Problems not Linearly Separable

- Map data into an even higher dimensional space
- Not-linearly separable sets may become linearly separable
- Doing this efficiently requires a good deal of work
 - The "kernel trick"

Properties of SVM

- State of the art in text classification
- Might require long training time
 - Worst case quadratic in training data
 - Various clever tricks and heuristics exist
- Classification is rather fast
 - Only distance to hyperplane is needed
 - Hyperplane is defined by only few vectors (support vectors)
- SVM are quite good "as is", but lot of tuning possible
 - Kernel function, biased margins, ...
- Several implementations exist
 - SVMlight, libSVM, ...

Content of this Lecture

- Classification
- Algorithms
- Case studies
 - Topic classification
 - Spam filtering

Topic Classification [Rutsch et al., 2005]

- Find publications treating the molecular basis of hereditary diseases
- Pure key word search generates too many results
 - "Asthma": 84 884 hits
 - Asthma and cats, factors inducing asthma, treatment, ...
 - "Wilson disease": 4552 hits
 - Including all publications from doctors named Wilson
- Pure key word search does not cope with synonyms

Idea

- Learn what is typical for a paper treating molecular basis of diseases from examples
 - 25 hereditary diseases
 - 20 abstracts for each disease
- We call this "typical" a model of the data
- Models are learned using some method
- Classification: Given a new text, find the model which fits best and predict the associated class (disease)
- What can we learn from 20 documents?

Complete Workflow

Results (Nearest-Centroid Classifier)

- Configurations (y-axis)
 - Stemming: yes/no
 - Stop words: 0, 100, 1000, 10000
 - Different forms of tokenization
- Best: No stemming, 10.000 stop words

Results with Section Weighting

- For fixed configuration, use different weights for terms depending on the section they appear in
 - Introduction, results, material and methods, discussion, ...

Influence of Stemming

Mit stemmer			
Nomen und Verben			
	100	1000	10000
Precision	61,00	63,07	67,42
Recall	59,29	60,51	65,01
F-Measure	60,13	61,76	66,19

Ohne Stemmer			
Nomen und Verben			
	100	1000	10000
Precision	62,90	64,94	66,17
Recall	62,59	62,38	62,71
F-Measure	62,75	63,63	64,39

Naive Bayes

Best results

Versuche:	Α	В	С	D	E
Precision	64.55	64.80	66.00	69.94	64.55
Recall	62.82	62.61	65.35	55.20	62.82
F-Measure	63.67	63.69	65.68	61.70	63.67

- A = Stemmer: ON, Stoppwörter: 10 000, Nomen-Tagging: ON, VerbenTagging: ON
- B = Stemmer: OFF, Stoppwörter: 10 000, Nomen-Tagging: ON, VerbenTagging: ON
- C = Stemmer: ON, Stoppwörter: 10 000, Nomen-Tagging: ON, VerbenTagging: OFF
- D = Stemmer: ON, Stoppwörter: OFF, Nomen-Tagging: OFF, VerbenTagging: OFF
- E = Stemmer: ON, Stoppwörter: 10 000, Nomen-Tagging: ON, VerbenTagging: ON

Nearest Centroid outperforms Naïve Bayes

On this particular problem and training set ...

Content of this Lecture

- Classification
- Algorithms
- Case studies
 - Topic classification
 - Spam filtering

Thanks to: Conrad Plake, "Vi@gra and Co.: Approaches to E-Mail Spam Detection", Desden, December 2010

Spam

- Unsolicited Bulk E-Mail
- Old "problem": 1978 first spam e-mail for advertisement
- Estimate: >95% of all mails are spam
- Many important issues not covered here
 - Filtering at provider, botnets, DNS filtering with black / gray / white lists, using further metadata (attachments, language, embedded images, n# of addressees, ...) etc.
 - Legal issues

SPAM Detection as a Classification Task

- Content-based SPAM filtering
- Task: Given the body of an email classify as SPAM or not
- Difficulties
 - Highly unbalanced classes (97% Spam)
 - Spammer react on every new trick an arms race
 - Topics change over time
- Baseline approach: Naïve Bayes on VSM
 - Implemented in Thunderbird and MS-Outlook
 - Fast learning, relatively fast classification
 - Using TF, TF-IDF, Information Gain, ...
 - Stemming (mixed reports)
 - Stop-Word removal (seems to help)

Many Further Suggestions

- Rule learning [Cohen, 1996]
- k-Nearest-Neighbors
 [Androutsopoulos et al., 2000]
- SVM [Kolcz/Alspector, 2001]
- Decision trees [Carreras/Marquez, 2001]
- Centroid-based
 [Soonthornphisaj et al., 2002]
- Artificial Neural Networks
 [Clark et al., 2003]
- Logistic regression [Goodman/Yih, 2006]
- Maximum Entropy Models

.

Source: Blanzieri and Bryl, 2009

Measuring Performance

- We so far always assumed that a FP is as bad as a FN
 - Inherent in F-measure
- Is this true for Spam?
 - Missing a non-spam mail (FP) usually is perceived as much more severe than accidentally reading a spam mail (FN)
- Performance with growing feature sets and c(FP)=9*c(FN)

Problem Solved?

- Tricking a Spam filter
 - False feedback by malicious users (for global filters)
 - Bayesian attack: add "good" words
 - Change orthography (e.g., viaagra, vi@gra)
 - Tokenization attack (e.g., free -> f r e e)
 - Image spam (already >30%)
- Spam ≠ Spam: Concept drifts
 - Spam topics change over time
 - Filters need to adapt

CEAS 2008 Challenge: Active Learning Task

- CEAS: Conference on Email and Anti-Spam
- Active Learning
 - Systems selected up to 1000 mails
 - Selection using score with pre-learned model
 - Classes of these were given
 - Simulates a system which asks a user if uncertain
- 143,000 mails

	_		
Name	Spam Caught %	Blocked Ham %	1-AUC %
Logistic Regression + Active Learning	99.92	0.12	0.0033
Online SVM (TREC07-tftS) - Entry 1	98.65	0.08	0.0250
Online SVM (TREC07-tftS) - Entry 3	98.65	0.07	0.0257
Heilongjiang Institute of Technology - Entry 3	98.66	0.14	0.0303
Online SVM (TREC07-tftS) - Entry 2	98.61	0.07	0.0331
Heilongjiang Institute of Technology - Entry 2	98.64	0.19	0.0557
PPM Compression (TREC07-ijsppm)	94.28	0.01	0.1031
Communication and Computer Network Lab (South China Univ. of Technology) - Entry 3	99.98	27.55	0.1500
Dynamic Markov Compression(TREC07-wat2)	98.11	0.34	0.2988
Communication and Computer Network Lab (South China Univ. of Technology) - Entry 2	99.88	25.53	0.5234
IGF (Ígor Assis Braga) - Entry 3	72.57	0.01	1.4495
IGF (Ígor Assis Braga) - Entry 2	80.59	0.01	8.9047
Kosmopoulos Aris - Entry 2	81.84	51.14	27.1210
Kosmopoulos Aris - Entry 1	86.20	57.20	28.7998