Ans:

1.

(a)

(b)

$$d\tau = dF \cdot y = \ \rho gy(H-y) \cdot dA. \ \div \ \tau = \int d\tau = \int_0^H \rho gWy(H-y) \cdot dy = \frac{1}{6} \rho gWH^3.$$

2.

n = 1 and $\gamma = 5/3$.

 $1 \rightarrow 2 \text{ is isothermal at } T_2 \text{, so } \Delta U = 0 = Q_{12} - W_{12}. \ \Delta S = S_2 - S_1 = Q_{12}/T_2 > 0 \text{, therefore, } Q_{12} = W_{12} > 0.$

Gas does positive work W_{12} by adsorbing heat Q_{12} .

 $2\rightarrow 3$: because $\Delta S = 0$, means $Q_{23} = 0$. So $2\rightarrow 3$ is adiabatic and $\Delta T < 0$.

Gas does positive work W23.

(a) $Q = Q_{12} + Q_{23} + Q_{31}$

$$Q_{12}$$
: $\Delta S = S_2 - S_1 = \int_1^2 \frac{dQ}{T} = \frac{1}{T_2} \int_1^2 dQ = \frac{Q_{12}}{T_2}$, so $Q_{12} = T_2(S_2 - S_1)$

 $Q_{23} = 0$

 Q_{31} : dS = dQ/T, so $dQ = T \times dS$ and $T = M(S - S_2) + T_1$, where $M = slope = (T_2 - T_1)/(S_1 - S_2)$. So $dQ = [M(S - S_2) + T_1] \times dS$

$$Q_{31} = \int_3^1 dQ = \int_3^1 [M(S - S_2) + T_1] \cdot dS = \frac{1}{2} (T_1 + T_2)(S_1 - S_2)$$

$$Q = Q_{12} + Q_{23} + Q_{31} = \frac{1}{2}(T_2 - T_1)(S_2 - S_1)$$
 = area enclosed by the cycle.

(b) isothermal: $1\rightarrow 2$, $W_{12} = Q_{12} = T_2(S_2 - S_1)$ (>0)

Adiabatic: 2
$$\rightarrow$$
3, $W_{23} = \left| \frac{p_3 V_3 - p_2 V_2}{\gamma - 1} \right| = \frac{nR}{\gamma - 1} |T_3 - T_2| = \frac{3R}{2} (T_2 - T_1)$ (> 0)

(c) from (b) $W_{12} = nRT_2ln(V_2/V_1) = T_2(S_2 - S_1)$, where n = 1. So $V_2 = V_1 \cdot exp(\frac{S_2 - S_1}{R})$.

Sine 2 \rightarrow 3 is adiabatic, so $T_2 \cdot V_2^{\gamma-1} = T_3 \cdot V_3^{\gamma-1}$, where $T_3 = T_1$.

Therefore,
$$V_3 = V_2 \cdot (\frac{T_2}{T_1})^{\frac{1}{\gamma-1}} = V_1 \cdot (\frac{T_2}{T_1})^{3/2} \cdot \exp(\frac{S_2 - S_1}{R})$$

(d) $\Delta U = Q - W = 0$ for a full cycle.