(19) 世界知的所有権機関 国際事務局

<u>| 1888| | 1888| | 1888| | 1889 | 188</u>

(43) 国際公開日 2004 年6 月24 日 (24.06.2004)

PCT

(10) 国際公開番号 WO 2004/053958 A1

(51) 国際特許分類7:

H01L 21/027, G03F 7/20

(21) 国際出願番号:

PCT/JP2003/015737

(22) 国際出願日:

2003年12月9日(09.12.2003)

(25) 国際出願の曾語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願 2002-357960

2002年12月10日(10.12.2002) JF

(71) 出願人(米国を除く全ての指定国について): 株式会社 ニコン(NIKON CORPORATION) [JP/JP]; 〒100-8331 東京都千代田区 丸の内三丁目 2番 3 号 Tokyo (JP). (72) 発明者; および

- (75) 発明者/出願人 (米国についてのみ): 水谷 英夫 (MIZU-TANI, Hideo) [JP/JP]: 〒100-8331 東京都 千代田区 丸の内三丁目 2番3号 株式会社ニコン内 Tokyo (JP). 馬込 伸貴 (MAGOME, Nobutaka) [JP/JP]; 〒100-8331 東京都千代田区 丸の内三丁目 2番3号 株式会社ニコン内 Tokyo (JP).
- (74) 代理人: 川北 喜十郎 (KAWA KITA, Kijuro); 〒160-0022 東京都 新宿区 新宿五丁目 1 番 1 5 号 新宿MMビル Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,

/続葉有)

- (54) Title: EXPOSURE APPARATUS AND METHOD FOR MANUFACTURING DEVICE
- (54) 発明の名称: 露光装置及びデパイス製造方法

Xa...SCANNING DIRECTION Xb...SCANNING DIRECTION

(57) Abstract: An exposure apparatus, wherein an exposure of a substrate (P) is carried out by filling at least a portion of the space between a projection optical system and the substrate (P) with a liquid and projecting an image of a pattern onto the substrate (P) through the projection optical system and the liquid, comprises an air-bubble sensor (20) for sensing air bubbles in the liquid. between the projection optical system and the substrate (P). Consequently, the exposure apparatus enables to suppress deterioration of a pattern image caused by air bubbles in the liquid when an exposure is carried out while filling the space between the projection optical system and the substrate with the liquid.

(57) 要約: 露光装置は、投影光学系と数板Pとの間の少な学系を次体で満たし、とれて連続を学系板Pとの間の少光学を板Pを表板Pを表板Pを表板Pを表板Pを表板Pを表板Pを表板Pを表している。 を介しることにている。 を介しることになる。 を介している。 を介している。 を介している。 を介している。 を介している。 を行うである。 を行うである。 を行うである。 を行うである。 を行うである。 を行うである。 を行うである。 を行うである。 を行うである。 を行うできる。 を行うできる。 を行うできる。 を行うできる。 を行うできる。 を行うできる。 を行うできる。 を行うできる。

SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特 許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッ FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, のガイダンスノート」を参照。

TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ. GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される パ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 各PCTガゼットの巻頭に掲載されている「コードと略語

明細書

露光装置及びデバイス製造方法

技術分野

本発明は、投影光学系と基板との間の少なくとも一部を液体で満たした状態で投影光学系によって投影したパターンの像で露光する露光装置、及びこの露光装置を用いるデバイス製造方法に関するものである。

背景技術

半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短くなるほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長は、KrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度 δ はそれぞれ以下の式で表される。

$$R = k_1 \cdot \lambda / NA \qquad \cdots \qquad (1)$$

$$\delta = \pm k_2 \cdot \lambda / NA^2 \qquad \cdots \qquad (2)$$

ここで、 λ は露光波長、N Aは投影光学系の開口数、 k_1 、 k_2 はプロセス係数である。(1)式、(2)式より、解像度 R を高めるために、露光波長 λ を短くして、開口数 N A を大きくすると、焦点深度 δ が狭くなることが分かる。

焦点深度 δ が狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のマージンが不足する恐れがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば国際公開第99/49504号公報に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、液体中での露光光の波長が、空気中の1/n(nは液体の屈折率で通常 $1.2\sim1.6$ 程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。

液浸法により露光処理を行う場合、投影光学系と基板との間の液体中(特に、基板の表面)に気泡などの気体部分が存在すると、この気泡(気体部分)の影響により基板上に形成されるパターン像が劣化する恐れがある。例えば、気泡は、供給されている液体に含まれている場合だけでなく、供給後に液体中で発生する可能性もある。このようなパターンの像の結像不良を放置しておくと、最終的なデバイスになった段階で不良品として発見されることになり、デバイス生産性の低下を招く恐れがある。

また、液浸法に基づく露光処理を行う際、投影光学系と基板との間に液体を供給する液体供給装置が動作不能となる等、何らかの原因で投影光学系と基板との間の少なくとも一部に液体が満たされない状態が生じて気体部分が形成される場合が考えられる。すなわち、パターンの像の全て、あるいは一部が液体を介さずに基板上に投影されてしまう恐れがある。この場合、パターンの像が基板上で結像しない可能性があり、そのまま放置しておくと最終的なデバイスになるまで不良であることを発見できず、生産性の低下を招く恐れがある。

さらに、液浸法を用いた露光装置では、投影光学系の像面側の液体を介して各種の計測を行う場合があるが、投影光学系の像面側に気体部分が存在し、十分な液体で満たされていない場合には、計測誤差が発生したり、計測不能状態に陥る可能性もある。

発明の開示

本発明はこのような事情に鑑みてなされたものであって、液浸法を用いる場合にも、生産性の低下を抑えることができる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。また、投影光学系と基板との間に液体を満たして露光処理する際、液体中の気泡に起因するパターン像の劣化等を検知できる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。さらに、投影光学系と基板との間に液体が満たされないことに起因する生産性の低下を抑えることができる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。また、本発明は、液浸法を用いる場合にも、露光不良や計測不良などの発生を抑えることのできる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。

上記の課題を解決するため、本発明は実施の形態に示す図1~図16に対応付けした以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定する意図は無い。

本発明の第1の態様に従えば、パターンの像を液体(50)を介して基板(P) トに転写して基板(P)を露光する露光装置であって、

パターンの像を基板(P)に投影する投影光学系(PL)と、

投影光学系(PL)と基板(P)との間の液体(50)中の気泡を検出する気 泡検出器(20)とを備える露光装置(EX)が提供される。

本発明によれば、液浸法に基づいて露光処理する際、気泡検出器により投影光学系と基板との間の液体中の気泡を検出することで、パターン転写精度に大きく係わる部分である投影光学系と基板との間の液体中の気泡に関する情報を検出することができる。この検出結果に基づいて露光不良(不良ショット)を把握できるため、高いデバイス生産性を維持するための適切な処置を施すことができる。

本発明の第2の態様に従えば、パターンの像を液体(50)を介して基板(P) 上に転写して基板(P)を露光する露光装置であって、

パターンの像を基板(P)に投影する投影光学系(PL)と、

投影光学系(PL)と基板(P)との間の液体(50)の不足を検出する液不足検出装置(20)とを備える露光装置(EX)が提供される。

本発明によれば、液浸法に基づいて露光処理する際、液不足検出装置により投 影光学系と基板との間に満たされている液体が不足したかどうかを検出すること ができる。したがって、この検出結果に基づいて露光不良や不良ショットの発生 を早期に把握することができ、液不足に起因する不良デバイスを発生させないた めの適切な処置を施すことができる。例えば、水不足が検出された場合には、そ の水不足が解消してから露光を行うようにすることで、露光不良や不良ショット の発生を抑えることができる。

本発明の第3の態様に従えば、投影光学系(PL)と液体(50)とを介して 露光光を基板(P)に照射して前記基板を露光する露光装置であって、

前記露光光の光路中における気体部分の有無を検出する気体検出系(70)を備える露光装置(EX)が提供される。

本発明によれば、気体検出系で露光光の光路中における気体部分の有無を検出することで、例えば、基板の露光中に、その気体部分に起因してパターン像の結像不良や不良ショットが生じたか否かを把握することができる。これにより、高いデバイス生産性を維持するための適切な処置を施すことができる。また、露光光の光路中に気体部分が無いことを確認した上で基板の露光を開始できるため、不良デバイスの発生を抑えることもできる。

本発明の第4の態様に従えば、投影光学系(PL)と液体(50)とを介して 露光光を基板(P)に照射して前記基板を露光する露光装置であって、

前記基板上の液体(50)を介して前記基板上に検出光を投射するとともに、前記基板上で反射した検出光を受光して、前記基板の面位置を検出する面位置検出系(70)を備え、

前記面位置検出系(70)の出力に基づいて、前記検出光の光路中における気体部分の有無を検出する露光装置(EX)が提供される。

本発明によれば、液体を介して基板の面位置情報を検出する面位置検出系を使用して、その検出光の光路中における気体部分の有無を検出することで、例えば、基板の露光中にその気体部分に起因してパターン像の結像不良や不良ショットが生じたか否かを把握することができる。これにより、高いデバイス生産性を維持するための適切な処置を施すことができる。また、面位置検出系を気体部分の有無を検出する気体検出系と兼用することで、装置構成を複雑化することなく気体部分の有無を検出することができる。

また、本発明では、上記態様の露光装置(EX)を用いることを特徴とするデバイス製造方法が提供される。

図面の簡単な説明

- 図1は、本発明の露光装置の一実施形態を示す概略構成図である。
- 図2は、投影光学系の先端部と液体供給装置及び液体回収装置との位置関係を示す図である。
 - 図3は、供給ノズル及び回収ノズルの配置例を示す図である。
 - 図4は、気泡検出器を示す平面図である。
 - 図5は、気泡検出手順の一例を示すフローチャート図である。
 - 図6は、基板上のショット領域を示す平面図である。
- 図7(a)及び(b)は、気泡検出器の検出光について説明するための図である。
 - 図8は、本発明に係る気体検出系の一実施形態を示す図である。

- 図9は、本発明に係る気体検出系について説明するための模式図である。
- 図10は、本発明に係る気体検出系による気体部分検出動作を示す図である。
- 図11は、本発明に係る気体検出系による気体部分検出動作を示す図である。
- 図12(a)~(c)は、本発明に係る気体検出系による気体部分検出動作を示す図である。
 - 図13は、本発明に係る気体検出系について説明するための模式図である。
 - 図14は、本発明に係る気体検出系の一実施形態を示す図である。
 - 図15は、本発明に係る気体検出系による気体部分検出動作を示す図である。
 - 図16は、半導体デバイスの製造工程の一例を示すフローチャート図である。

発明を実施するための最良の形態

以下、本発明の露光装置及びデバイス製造方法について図面を参照しながら説明するが、本発明はこれに限定されない。図1は、本発明の露光装置の一実施形態を示す概略構成図である。

図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTと、制御装置CONTに接続され、露光処理に関する情報を記憶する記憶装置MRYと、露光処理に関する情報を表示する表示装置DSとを備えている。

ここで、本実施形態では、露光装置 E X としてマスクM と基板 P とを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板 P に露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系 P L の光軸 A X と一致する方向を Z 軸方向、 Z 軸方向に垂直な平面内でマスクM と基板 P との同

照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(9線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びF2レーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態では、ArFエキシマレーザ光を用いた。

マスクステージMSTは、マスクMを支持するものであって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及び θ Z方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。

投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露

光するものであって、複数の光学素子(レンズ)で構成されており、これら光学素子は金属部材としての鏡筒 P Kで支持されている。本実施形態において、投影光学系 P L は、投影倍率 B が例えば 1/4 あるいは 1/5 の縮小系である。なお、投影光学系 P L は等倍系及び拡大系のいずれでもよい。また、本実施形態の投影光学系 P L の先端側(基板 P 側)には、光学素子(レンズ) 6 O が鏡筒 P K L り露出している。この光学素子 B O は鏡筒 P K に対して着脱(交換)可能に設けられている。

基板ステージPSTは、基板Pを支持するものであって、基板Pを基板ホルダを介して保持する Z ステージ S 1 と、 Z ステージ S 1 を支持する X Y ステージ S 2 と、 X Y ステージ S 2 を支持する X Y ステージ S 2 と、 X Y ステージ S 2 を支持する X Y ステージ S 7 により S 7 により S 7 により S 8 を備えている。基板ステージ S 7 により S 8 を顕動することにより、 S 8 の S 7 により 制御される。 S 8 なの S 8 の S 7 に保持されている S 8 を駆動することにより、 S 8 の S 9 次 S 9 の S 9 が S 8 の S 9 が S 9 の S 9 が S 9 が S 9 が S 9 によける S 6 の S 8 によい S 9 次 S 9 によける S 6 によける S 6 によける S 6 によい S 8 によい S 9 によい

基板ステージPST(Zステージ51)上には、基板ステージPSTとともに投影光学系PLに対して移動する移動鏡54が設けられている。また、移動鏡54に対向する位置にはレーザ干渉計55が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計55によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計55の計測結果に基づいて基板ステージ駆動装置PSTDを駆動

することで基板ステージPSTに支持されている基板Pの位置決めを行う。

本実施形態では、露光波長を実質的に短くして解像度を向上するとともに、焦点深度を実質的に広くするために、液浸法を適用する。そのため、少なくともマスクMのパターンの像を基板P上に転写している間は、基板Pの表面と投影光学系PLの基板P側の光学素子(レンズ)60の先端面(下面)7との間に所定の液体50が満たされる。上述したように、投影光学系PLの先端側にはレンズ60が露出しており、液体50はレンズ60のみに接触するように構成されている。これにより、金属からなる鏡筒PKの腐蝕等が防止されている。本実施形態において、液体50には純水が用いられる。純水は、ArFエキシマレーザ光のみならず、露光光ELを例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)とした場合、この露光光ELを透過可能である。

露光装置 E X は、投影光学系 P L の先端面(レンズ 6 0 の先端面) 7 と基板 P との間の空間 5 6 に所定の液体 5 0 を供給する液体供給装置 1 と、空間 5 6 の液体 5 0 を回収する液体回収装置 2 とを備えている。液体供給装置 1 は、投影光学系 P L と基板 P との間の少なくとも一部を液体 5 0 で満たすためのものであって、液体 5 0 を収容するタンク、加圧ポンプなどを備えている。液体供給装置 1 には供給管 3 の一端部が接続され、供給管 3 の他端部には供給 ノズル 4 が接続されている。液体供給装置 1 は供給管 3 及び供給 ノズル 4 を介して空間 5 6 に液体 5 0 を供給する。液体供給装置 1 は、空間 5 6 に供給する液体 5 0 の温度を、例えば露光装置 E X が収容されているチャンパ内の温度(例えば 2 3 ℃)と同程度に設定する。

液体回収装置2は、吸引ポンプ、回収した液体50を収容するタンクなどを備えている。液体回収装置2には回収管6の一端部が接続され、回収管6の他端部には回収ノズル5が接続されている。液体回収装置2は回収ノズル5及び回収管6を介して空間56の液体50を回収する。空間56に液体50を満たす際、制

御装置CONTは液体供給装置1を駆動し、供給管3及び供給ノズル4を介して空間56に対して単位時間当たり所定量の液体50を供給するとともに、液体回収装置2を駆動し、回収ノズル5及び回収管6を介して単位時間当たり所定量の液体50を空間56より回収する。これにより、投影光学系PLの先端面7と基板Pとの間の空間56に液体50が保持される。

露光装置 E X は、投影光学系 P L と基板 P との間の空間 5 6 の液体 5 0 中の気泡を検出する気泡検出器 2 0 を備えている。気泡検出器 2 0 は液体 5 0 中の気泡を光学的に検出するものであり、空間 5 6 の液体 5 0 に検出光を投射する投射系2 1 と、空間 5 6 の液体 5 0 からの検出光を受光する受光系 2 2 とを備えている。投射系 2 1 は検出光を基板 P の表面に対して傾斜方向から投射することにより、空間 5 6 の液体 5 0 に検出光を投射する。投射系 2 1 は、投影光学系 P L の光軸A X に対して基板 P の走査方向である X 軸方向に離れた位置から検出光を基板 P の表面に対して投射する。本実施形態では、投射系 2 1 は投影光学系 P L の光軸A X に対して - X 方向に離れた位置に設けられている。

図2は、露光装置 E X の投影光学系 P L の下部、液体供給装置 1 及び液体回収装置 2 等を示す図 1 の部分拡大図である。図2 において、投影光学系 P L の最下端のレンズ 6 0 は、先端部 6 0 A が走査方向に必要な部分だけを残して Y 軸方向(非走査方向)に細長い矩形状に形成されている。走査露光時には、先端部 6 0 A の直下の矩形の投影領域 P A にマスク M の一部のパターン像が投影され、投影光学系 P L に対して、マスク M が - X 方向(又は + X 方向)に速度 V で移動するのに同期して、X Y ステージ 5 2 を介して基板 P が + X 方向(又は - X 方向)に速度 β・V(β は投影倍率)で移動する。そして、1 つのショット領域への露光終了後に、基板 P のステッピングによって次のショット領域が走査開始位置に移動し、以下、ステップ・アンド・スキャン方式で各ショット領域に対する露光処理が順次行われる。本実施形態では、基板 P の走査方向と平行に液体 5 0 を流すように設定されている。

図3は、投影光学系PLのレンズ60の先端部60Aと、液体50をX軸方向に供給する供給ノズル4(4A~4C)と、液体50を回収する回収ノズル5(5A、5B)との位置関係を示す図である。図3において、レンズ60の先端部60Aの形状はY軸方向に細長い矩形状となっており、投影光学系PLのレンズ60の先端部60AをX軸方向に挟むように、+X方向側に3つの供給ノズル4A~4Cが配置され、-X方向側に2つの回収ノズル5A、5Bが配置されでいる。そして、供給ノズル4A~4Cは供給管3を介して液体供給装置1に接続され、回収ノズル5A、5Bは回収管4を介して液体回収装置2に接続されている。また、供給ノズル4A~4Cと回収ノズル5A、5Bとを先端部60Aの中心に対して略180°回転した位置に、供給ノズル8A~8Cと、回収ノズル9A、9Bとが配置されている。供給ノズル4A~4Cと回収ノズル9A、9BとはY軸方向に交互に配列され、供給ノズル8A~8Cと回収ノズル5A、5BとはY軸方向に交互に配列され、供給ノズル8A~8Cは供給管10を介して液体供給装置1に接続され、回収ノズル9A、9Bは回収管11を介して液体回収装置2に接続されている。

矢印X a (図3参照)で示す走査方向(-X方向)に基板 Pを移動させて走査露光を行う場合には、供給管3、供給ノズル4A~4C、回収管4、及び回収ノズル5A、5Bを用いて、液体供給装置1及び液体回収装置2により液体50の供給及び回収が行われる。すなわち、基板 Pが-X方向に移動する際には、供給管3及び供給ノズル4(4A~4C)を介して液体供給装置1から液体50が投影光学系 P L と基板 P との間に供給されるとともに、回収ノズル5(5A、5B)、及び回収管6を介して液体50が液体回収装置2に回収され、レンズ60と基板Pとの間を満たすように-X方向に液体50が流れる。-方、矢印Xbで示す走査方向(+X方向)に基板 P を移動させて走査露光を行う場合には、供給管10、供給ノズル8A~8C、回収管11、及び回収ノズル9A、9Bを用いて、液体供給装置1及び液体回収装置2により液体50の供給及び回収が行われる。すなわち、基板 P が+ X 方向に移動する際には、供給管10及び供給ノズル8(8A

~8 C)を介して液体供給装置 1 から液体 5 0 が投影光学系 P L と基板 P との間に供給されるとともに、回収ノズル 9 (9 A、9 B)、及び回収管 1 1 を介して液体 5 0 が液体回収装置 2 に回収され、レンズ 6 0 と基板 P との間を満たすように + X 方向に液体 5 0 が流れる。このように、制御装置 C O N T は、液体供給装置 1 及び液体回収装置 2 を用いて、基板 P の移動方向に沿って基板の移動方向と同一方向に液体 5 0 を流す。この場合、例えば液体供給装置 1 から供給ノズル 4 を介して供給される液体 5 0 は基板 P の - X 方向への移動に伴って空間 5 6 に引き込まれるようにして流れるので、液体供給装置 1 の供給エネルギーが小さくても液体 5 0 を空間 5 6 に容易に供給できる。そして、走査方向に応じて液体 5 0 を流す方向を切り替えることにより、 + X 方向、又は - X 方向のどちらの方向に基板 P を走査する場合にも、レンズ 6 0 の先端面 7 と基板 P との間を液体 5 0 で満たすことができ、高い解像度及び広い焦点深度を得ることができる。

図4は、気泡検出器20の概略構成を示す平面図である。投射系21及び受光系22は投影光学系PLのレンズ60の先端部60A、すなわち投影光学系PLの基板P上における投影領域PAをX軸方向に挟むように設けられている。投射系21は、Y軸方向に並ぶ複数の投射部21Aを有しており、それぞれの投射部21Aから基板Pに対して検出光が投射される。複数の投射部21Aから投射される検出光の基板P表面に対する入射角度はそれぞれ同じ角度に設定されている。受光系22は、投射系21の投射部21Aに対応する複数の受光部22Aを有している。それぞれの投射部21Aから投射された検出光は、液体中に気泡がない場合には液体50を通過して基板Pの表面で反射し、受光部22Aで受光される。

また、受光系22は、投射系21からの検出光が直接入射しない位置に配置された受光部22B、22Cを有している。液体中に気泡が存在する場合に、投射系21からの検出光が液体中の気泡に当たって反射したときの散乱光は、この受光部22B、22Cで受光(暗視野検出)される。

投射系21から投射される複数の検出光のうち、一部の検出光L1は基板P上

のレンズ60の先端部60Aに対応する領域(投影光学系PLの投影領域PA)に投射され、残りの検出光L2は投影領域PAのY軸方向両外側の領域に投射される。また、投射系21は、複数の検出光のうち少なくとも一部の検出光Leを投影領域PAのY軸方向における境界部近傍に対して投射する。ここで、レンズ60の先端部60Aと基板Pとの間、すなわち基板P上の投影領域PAに対応する部分に液体供給装置1より液体50が供給されるため、この投影領域PAに対応する部分が液浸部分となっている。

図7(a)は、基板Pの表面に付着している気泡18に対して検出光が照射される状態を側方から見た模式図であり、図7(b)は図7(a)の平面図である。

図7(a)に示すように、例えば検出光がスポット光であり、その光束の径が D1である場合、検出光を基板Pに対して傾斜方向から投射することにより、基板P上における検出光は図7(b)に示すようにX軸方向(走査方向)を長手方向とする楕円状となる。基板P上における検出光の楕円状検出領域の長手方向の大きさD2は、上記径D1より大きい。すなわち、例えば検出光を基板Pの表面に対して垂直方向から照射した場合は検出光の検出領域のX軸方向における大きさはD1となるが、傾斜方向から検出光を照射することで、X軸方向においてD1より大きいD2の検出領域で気泡18を検出することができる。したがって、X軸方向に走査する基板P上の気泡18を検出する際、気泡18は径D1の検出領域に比べてより広い検出領域で検出されることになり、気泡検出器20は気泡18の検出精度を向上することができる。なお、ここでは検出光をスポット光として説明したが、検出光がスリット光であっても同様の効果が得られる。

次に、上述した構成を有する露光装置EXを用いてマスクMのパターンを投影 光学系PL及び液体50を介して基板Pに露光する手順について図5のフローチャートを参照しながら説明する。

まず、マスクMをマスクステージMSTにロードするとともに、基板Pを基板

ステージ P S T にロードする。次いで、制御装置 C O N T は液体供給装置 1 及び液体回収装置 2 を駆動し、空間 5 6 に対する液体供給動作を開始する。これにより、投影光学系 P L の下面 7 (先端部 6 O A)と基板 P の投影領域 P A との間に液体 5 O が満たされる(ステップ S 1)。

次いで、制御装置CONTは、基板ステージPSTを駆動して基板PをX軸方向に走査しつつ、照明光学系ILからの露光光ELでマスクMを照明し、マスクMのパターンを投影光学系PL及び液体50を介して基板Pに投影する。これと同時に、制御装置CONTは投射系21より検出光を基板Pに対して傾斜方向から投射する。制御装置CONTは基板P表面の2軸方向における位置を検出しつつ、基板Pに対して露光処理する(ステップS2)。

投射系21から基板 P に投射された検出光は空間56に満たされている液体50中を通過し、基板 P 上の投影領域に投射される。ここで、図4に示すように、投影領域内の基板 P の表面に気泡18が存在(付着)している場合、気泡18に投射された検出光は散乱する。気泡18に投射された検出光の一部が散乱することで、通常では検出されない強い光が受光部22B、22Cに入射し、この検出光に対応する受光部22Aに受光される光強度が低下する。受光部22A、22B及び22Cの検出結果は制御装置CONTに出力され、制御装置CONTはこの受光系22で検出される光の強度に基づいて、基板 P 上に気泡が存在するか否かを検出する(ステップS3)。

ここで、制御装置CONTは、受光部22B、22Cで検出される光の強度に基づいて気泡18の大きさや量を求めることができる。例えば、小さい気泡はより大きな角度で光を散乱するので、制御装置CONTは、受光部22B、22Cの検出結果に基づいて、気泡18からの散乱光の方向を求めることにより、気泡18の大きさを求めることができる。更に、受光した光の強度を検出することで基板P上の単位面積当たりの気泡18の量を求めることもできる。

このとき、基板 Pの X Y 方向の位置はレーザ干渉計 5 5 の計測結果より特定されるとともに、気泡 1 8 に投射された検出光を受光した受光部 2 2 A の Y 軸方向における設置位置も設計値に基づいて特定される。したがって、制御装置 C O N T は、レーザ干渉計 5 5 の計測結果及び受光する光の強度が低下した受光部 2 2 A の設置位置に関する情報に基づいて、基板 P 上において気泡 1 8 が存在する位置を特定することができる。気泡 1 8 が存在する位置を特定したら、制御装置 C O N T はこの気泡 1 8 の位置情報を記憶装置 M R Y に記憶する (ステップ S 4)。

また、制御装置 CONTは基板 Pを X 軸方向に走査しつつ基板 P に対して検出 光を投射することで、気泡 18の存在の有無や気泡の量等、ショット領域のそれ それについての気泡 18に関する情報を検出することができる。

ここで、記憶装置MRYには、基板Pに対して所望のパターン転写精度でパターンが転写されるかどうかの気泡18に関するしきい値情報が記憶されている。このしきい値は、気泡18の大きさに関するしきい値、あるいは1つのショット領域についての気泡18の量(数)に関するしきい値を含む。制御装置CONTは、記憶装置MRYに記憶されているしきい値情報と、気泡検出器20による気泡検出結果とを比較する(ステップS5)。

次いで、制御装置CONTは、気泡検出器20による気泡検出結果が前記しきい値以上であるかどうかを判別する(ステップS6)。

例えば、径の小さい気泡18が液体50中を僅かに浮遊している場合等、気泡18が液体中に存在していても所望のパターン転写精度を得られる場合がある。そこで、気泡18の量及び大きさに関するしきい値を予め求めておき、気泡検出結果が前記しきい値以下であれば基板Pの露光を適切に行うことができると判断する。すなわち、制御装置CONTは、記憶装置MRYに記憶されている気泡に関するしきい値情報を参照し、気泡検出器20の検出結果に基づいて、基板Pの露光が適切に行われたか否かを判断する。なお、しきい値は、例えば予め実験的

に求め、記憶装置MRYに記憶しておく。

気泡18が上記しきい値以下であると判断した場合、つまり基板Pの露光が適切に行われると判断した場合、制御装置CONTは露光処理を継続する。一方、気泡18が上記しきい値以上であると判断した場合、つまり、気泡18の存在により基板Pの露光が適切に行われないと判断した場合、制御装置CONTは、例えば露光処理動作を中断したり、あるいは表示装置DSや不図示の警報装置を駆動して、許容範囲以上(しきい値以上)の気泡が存在する旨を通知したり、あるいは基板P上における気泡18の位置情報を表示装置DSで表示する等の処理を行う(ステップS7)。

ここで、図6に示すように、基板P上の複数のショット領域SHのそれぞれについて露光する場合について考える。この場合、ステップS6において気泡18が上記しきい値以上であると判断した場合でも、制御装置CONTは露光処理を継続する。このとき、制御装置CONTは、基板P上の複数のショット領域SHのそれぞれの露光中に気泡検出器20による気泡18の検出を行い、上記しきい値情報とレーザ干渉計による気泡の位置情報とを参照し、複数のショット領域SHのうち気泡18によりパターンの像の結像が適切に行われなかったショット領域SH'を記憶装置MRYに記憶する(ステップS8)。露光処理終了後、記憶装置MRYに記憶された情報に基づいて、複数のショット領域SHのうちパターンの像の結像が適切に行われなかったショット領域SH'について、その後の別のレイヤの露光処理を行わなかったり、レジストをつけ直して再露光することができる。

本実施形態においては、複数の検出光のうち、基板 P上の投影領域 PAには検出光 L1が投射され、Y軸方向の両側境界部に対して検出光 Leが投射される。この検出光 L1や Leの受光系 22での受光結果に基づいて、空間 56に液体 50が満たされているかどうかを判断することができる。例えば、基板 P上の投影領域 PAの境界部付近で液体 50の剥離等の不都合により空間 56の一部に液体

50が保持されてない状態が生じた場合には、検出光Leの光路が変化して受光系22に受光されず、非入射状態となる。制御装置CONTは、検出光Leの受光部22Aの受光結果に基づいて、空間56に液体50が満たされていないことを判断することができる。また、例えば、液体供給装置1が何らかの原因で動作不能となり、投影光学系PLと基板Pとの間の液体50が不足する場合も考えられる。この場合にも、検出光L1の光路が変化して受光部22Aに対して非入射状態となる。制御装置CONTは、受光部22Aの受光結果に基づいて、空間56の液体が不足していることを検出することができる。このように、気泡検出器20は、投影光学系PLと基板Pとの間の液体50が不足することを検出する液不足検出装置としての機能も有する。なお、本文中、「液体が不足する」とは、液体が空間56に部分的に又は量的に供給されない場合のみならず、全く存在しなくなる場合も含む。

この場合においても、制御装置CONTは、基板P上の複数のショット領域SHのそれぞれの露光中に液不足検出装置20による液切れ(液不足)の検出を行い、レーザ干渉計の位置計測結果に基づいて、複数のショット領域SHのうち露光中に液不足が生じたショット領域(不良ショット領域)SH を記憶装置MRYに記憶する。そして、露光処理終了後、記憶装置MRYに記憶した情報に基づいて、複数のショット領域SHのうち液不足に起因してパターンの像の結像が適切に行われなかったショット領域SH について、その後の別レイヤの露光処理を行わなかったり、レジストをつけ直して再露光を行う。

なお、上述した液不足検出装置は、液不足が生じているかどうかを光学的に検出する構成であるが、例えば、液体供給装置1の供給管3や供給ノズル4に設けた流量計(流量検出装置)により液不足検出装置を構成してもよい。流量検出装置は、空間56に供給される液体50の単位時間当たりの液体流量を検出し、制御装置CONTに検出結果を出力する。制御装置CONTは流量検出装置の検出結果に基づいて、液体の流量が所定値以下である場合、液不足が生じていると判断する。

また、気泡のような小さい気体部分だけでなく、比較的大きな気体の空間(気体部分)が液体中に発生してしまう場合や、液体供給装置 1 から液体の供給を開始したときに、投影光学系 P L の像面側に気体が残ってしまう場合も考えられる。こうした場合にも、検出光 L 1 が受光部 2 2 A に対して非入射状態となるため、受光部 2 2 A の受光結果に基づいて、投影光学系 P L の像面側の気体部分の有無を検出することができる。このように、気泡検出器 2 0 は、液体中の気泡の検出だけでなく、投影光学系 P L と基板 P との間の気体部分の有無を検出する機能も有する。

以上説明したように、投影光学系PLと基板Pとの間の空間56に満たされた液体50中の気泡18を検出する気泡検出器20を設けることにより、空間56においてパターン転写精度に大きく影響を及ぼす気泡18の情報を検出することができる。これにより、良好な生産性を維持するための適切な処置を施すことができる。また、液体中に気泡が存在した場合には、気泡の検出結果に基づいてパターンが適切に転写されたかどうかを判断することで、例えば、パターンが適切に転写されたショット領域に対応するデバイスのみを製品として採用したり、あるいは露光処理を一旦中断して気泡を除去するための処理を施すことができる。

なお、本実施形態では、基板 P の表面に付着している気泡 1 8 を検出する場合について説明したが、液体 5 0 中に気泡が浮遊している場合でも、浮遊している気泡に検出光が照射されることにより受光系 2 2 で受光される光の強度が変化するので、液体 5 0 中に浮遊している気泡の量を検出することも可能である。また、浮遊している気泡を検出した検出光と基板 P に付着している気泡を検出した検出光とでは受光部 2 2 B、2 2 C に受光される光の強度が異なるので、検出した気泡が浮遊しているものか基板 P に付着しているものかを受光部 2 2 B、2 2 C の受光結果に基づいて判別することも可能である。さらに、検出光を投影光学系 P L の下面 7 に対して照射することにより、投影光学系 P L の下面 7 に付着している気泡に関する情報を検出することもできる。また、投射系 2 1 からの検出光の

一部を基板Pの表面位置の検出に用いてもよい。

なお、本実施形態では、投射系 2 1 は基板 P の走査方向の離れた位置から基板 P に対して X Z 平面と平行に検出光を投射することにより、検出精度の向上を図っているが、基板 P に対して Y Z 平面と平行に検出光を投射する構成とすることもできる。また、本実施形態では、基板 P に対して Y 軸方向に複数並んだスポット光(検出光)を照射したが、例えば 1 つのスポット光を Y 軸方向に走査しつつ、このスポット光に対して基板 P を X 軸方向に走査するようにしてもよい。あるいは、 Y 軸方向に延びるスポット光を基板 P に投射するようにしてもよい。このような構成であっても、基板 P 表面の所定の領域に対する気泡検出動作を行うことができる。

また、上述の実施形態においては、基板 P上に液浸領域を形成する場合について説明したが、基板ステージ PST (Zステージ 5 1)上の各種計測部材やセンサを用いる場合にも、投影光学系 PLの像面側を液体で満たすことが考えられる。こうした計測部材やセンサで液体を介して計測を行うときに、投影光学系 PLの像面側に気体部分(液中の気泡など)が存在すると計測誤差となってしまうおそれがある場合には、気泡検出器 20を使って気体部分の有無などを検出するようにしてもよい。なお、基板ステージ PST (Zステージ 5 1)上に用い得る各種計測部材やセンサの具体的な内容については、特開 2002-14005号公報、特開平11-16816号公報、特開昭57-117238号公報、特開平11-238680号公報、特開2000-97916号公報、特開平4-324923号公報等に詳細に記載されており、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて、これらの文献の記載内容を援用して本文の記載の一部とする。

次に、本発明の別の実施形態について図8を参照しながら説明する。以下の説明において、上述した実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略もしくは省略する。

図8は、投影光学系PLの先端部近傍を示す側面図である。図8において、投影光学系PLの先端部の光学素子60と基板Pとの間には液体50が満たされており、基板P上には液体50の液浸領域ARが形成されている。なお、図8では、基板P上に液体50を供給する供給ノズル4及び基板P上の液体50を回収する回収ノズル5の図示を省略した。

なお、本実施形態の以下の説明においては、基板 P が投影光学系 P L の光学素 子 6 0 と対向している場合について説明するが、特開 2 0 0 2 - 1 4 0 0 5 号公報、特開平 1 1 - 1 6 8 1 6 号公報、特開昭 5 7 - 1 1 7 2 3 8 号公報、特開平 1 1 - 2 3 8 6 8 0 号公報、特開 2 0 0 0 - 9 7 9 1 6 号公報、特開平 4 - 3 2 4 9 2 3 号公報などに開示されているような、基板ステージ P S T (Z ステージ 5 1) 上の各種計測部材やセンサが投影光学系 P L の光学素子 6 0 に対向している場合も同様である。

露光装置 E X は、基板 P の面位置情報を検出するフォーカス検出系 7 0 を備えている。フォーカス検出系 7 0 は、投影光学系 P L の投影領域 P A を挟んでその両側にそれぞれ設けられている投射系 7 1 と受光系 7 2 とを有し、投射系 7 1 から基板 P 上の液体 5 0 を介して基板 P 表面(露光面)に斜め方向から検出光 L a を投射し、基板 P 上で反射した検出光(反射光) L a を受光系 7 2 で受光する。制御装置 C O N T は、フォーカス検出系 7 0 の動作を制御するとともに、受光系 7 2 の受光結果に基づいて、所定基準面に対する基板 P 表面の Z 軸方向における位置(フォーカス位置)及び傾きを検出する。なお、図 8 では、投射系 7 1 及び受光系 7 2 は投影領域 P A を挟んで土 X 方向のそれぞれの側に、投影領域 P A を挟んで土 Y 方向のそれぞれの側に設けられてもよい。

フォーカス検出系70の投射系71は複数の投射部を有し、図9に示すように、 基板P上に複数の検出光Laを投射する。また、受光系72は複数の投射部に応

じた複数の受光部を有している。これにより、フォーカス検出系70は、基板P表面の、例えばマトリクス状の複数の各点(各位置)での各フォーカス位置を求めることができる。また、求めた複数の各点でのフォーカス位置に基づいて、基板Pの傾斜方向の姿勢を求めることができる。なお、フォーカス検出系70の構成については、例えば特開平8-37149号公報に詳細に記載されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献中の記載を援用して本文の記載の一部とする。

制御装置CONTは、フォーカス検出系TOO検出結果に基づいて、基板ステージ駆動装置PSTDを介して基板ステージPSTOZステージSTOZ3年)(図1参照)を駆動することにより、Z3年)に保持されている基板POZ4軸方向における位置(フォーカス位置)、及びSPOZ4分向における位置を制御する。すなわち、SPOZ51は、フォーカス検出系SPOZ70の検出結果に基づく制御装置 SPOZ70の指令に基づいて動作し、基板SPOZ70の技出結果に基づく制御装置 (QNTからの指令に基づいて動作し、基板SPOZ70の技出結果に基づく制御装置 (QNTからの指令に基づいて動作し、基板SPOZ70の技能等。SPOZ70を介して形成される像面に合わせ込む。

図8に戻って、投影光学系PLの先端部近傍には、フォーカス検出系70の投射系71から射出された検出光Laを透過可能な第1光学部材81と、基板P上で反射した検出光Laを透過可能な第2光学部材82とが設けられている。第1光学部材81及び第2光学部材82は、投影光学系PL先端の光学素子60とは分離した状態で支持されており、第1光学部材81は光学素子60の-X方向側に配置され、第2光学部材82は光学素子60の+X方向側に配置されている。また、第1光学部材81及び第2光学部材82は、露光光ELの光路及び基板Pの移動を妨げない位置で且つ液浸領域ARの液体50に接触可能な位置に設けられている。

図8に示すように、基板Pの露光処理中においては、投影光学系PLを通過した露光光ELの光路、つまり光学素子60と基板P(基板P上の投影領域PA)

との間の露光光ELの光路が全て液体50で満たされるように、液体供給装置1 (図1参照)から液体50が基板P上に供給される。また、光学素子60と基板Pとの間の露光光ELの光路の全てが液体50で満たされ、基板P上において液浸領域ARが投影領域PAの全てを覆うような所定の状態となったとき、液浸領域ARを形成する液体50は第1光学部材81及び第2光学部材82のそれぞれの端面に密着(接触)している。基板P上に液浸領域ARが形成され、液体50が第1光学部材81及び第2光学部材82のそれぞれの端面に密着している状態においては、フォーカス検出系70の投射系71から射出された検出光La及び基板P上における反射光Laの光路のうち第1光学部材81と第2光学部材82との間の光路は全て液体50で満たされる。また、検出光Laの光路の全てが液体50で満たされた状態では、フォーカス検出系70の投射系71から射出された検出光Laは、基板P上の投影光学系PLの投影領域PAに照射されるように設定されている。なお、投影領域PAの外側、特に投影領域PAに対して基板Pの走査方向(X軸方向)に離れた位置に照射される検出光があってもよい。

液浸領域ARが所定の状態で形成され、第1光学部材81と第2光学部材82 との間の検出光Laの光路の全てが液体50で満たされた状態では、フォーカス 検出系70の投射系71から射出された検出光Laは、散乱や屈折などを生じる ことなく、第1光学部材81及び液浸領域ARの液体50を通過して基板P(投 影領域PA)に所望状態で照射される。基板Pからの反射光Laは、液浸領域ARの液体50及び第2光学部材82を通過して受光系72に所望状態で受光される。換言すれば、フォーカス検出系70の投射系71から射出された検出光Laが受光系72に受光されるとき、液浸領域ARは所定の状態に形成されている。 このように、フォーカス検出系70の受光系72の出力に基づいて、検出光Laの光路中の全てが液体50で満たされているか否かを光学的に検出することができる。

また、上述したように、液浸領域 A R が所定の状態で形成されている場合、フォーカス検出系 7 0 の投射系 7 1 から射出された検出光 L a は、投影光学系 P L

の投影領域 P A に照射されるようになっており、投影領域 P A を含む露光光 E L の光路の少なくとも一部を通過するようになっている。これにより、フォーカス 検出系 7 0 は、受光系 7 2 の出力に基づいて、露光光 E L の光路が液体 5 0 で満たされているか否かを光学的に検出することができる。

なお、ここでは、第1光学部材81と第2光学部材82とは互いに独立した部材として説明したが、第1光学部材81と第2光学部材82とを例えば投影光学系PLの先端部の光学素子60を囲むように一つの環状光学部材として構成してもよい。環状光学部材の一部に検出光を照射し、液浸領域AR及び基板P表面を通過した検出光を、環状光学部材を介して受光することができる。光学部材を環状に形成して液浸領域ARの液体50を環状光学部材の内側面に密着させることにより、液浸領域AR2の形状を良好に維持することができる。また、本実施形態においては、第1光学部材81及び第2光学部材82は投影光学系PLに対して分離して設けられているが、投影光学系PLの光学素子60と一体で設けられていてもよい。

なお、上記第1、第2光学部材81、82の端面である液体接触面や上記環状 光学部材の液体接触面を、例えば親液化処理して親液性とすることにより、液浸 領域ARの液体50は光学部材の液体接触面に密着し易くなるため、液浸領域A Rの形状を維持し易くなる。

図10は、液浸領域ARの液体50中に気泡18が存在している状態を示す図である。図10に示すように、フォーカス検出系70の投射系71から射出された複数の検出光Laのうち、気泡18に当たった検出光Laは散乱や屈折などを生じる。これにより、気泡18に当たった検出光Laは、受光系72に光量を低下した状態で受光されるか、あるいはその光路が変化するため受光されない。つまり、液体50中に気泡(気体部分)18がある場合、受光系72に受光される光強度が変化(低下)する。したがって、フォーカス検出系70は、受光系72の出力に基づいて、露光光ELの光路上に形成された液浸領域ARの液体50中

に存在する気泡(気体部分)18を光学的に検出することができる。液浸領域ARは露光光ELの光路上に形成され、また、検出光Laは露光光ELの光路の一部である投影領域PAを照射するため、フォーカス検出系70は、受光系72の出力に基づいて、露光光ELの光路中における気泡(気体部分)の有無、すなわち露光光ELの光路が液体50で満たされているか否かを検出することができる。さらに、フォーカス検出系70は、液体50における検出光Laの光路中の気泡(気体部分)を検出することができる。

ここで、気泡18とは、図10中、液体50中を浮遊している気泡18A、第1光学部材81の端面(液体接触面)に付着している気泡18B、第2光学部材82の端面(液体接触面)に付着している気泡18C、及び基板P上に付着している気泡(不図示)を含む。このように、液浸領域ARの液体50中に気泡18が存在する場合、フォーカス検出系70の投射系71から射出された検出光Laは、散乱や屈折等を生じ、受光系72に対する光量(受光量)を変化させるか、あるいはその光路を変化させて受光系72に受光されないので(符号Lb参照)、フォーカス検出系70は、受光系72の出力に基づいて、露光光ELの光路上に設けられている液浸領域ARの液体50中の気体部分(気泡)の有無を検出することができる。

また、本実施形態においては、フォーカス検出系70は、受光系72の出力に基づいて、検出光Laの光路中の気泡18を検出する構成であるため、基板P上に付着している気泡や第1、第2光学部材81、82に付着している気泡18(18B、18C)はもちろん、液浸領域ARを形成する液体50中を浮遊している気泡18(18A)についても検出することができる。そのため、検出光Laの光路上であれば、液浸領域ARの液体50中の露光光ELの光路以外の位置に存在する気泡18も検出することができる。制御装置CONTは、フォーカス検出系70を使用して基板Pの面位置情報を検出しつつ露光処理を行う。フォーカス検出系70は、基板Pの露光処理中に検出光Laを投射し、露光光ELの光路上の、液体50中の気体部分の有無や、検出光Laの光路中の気体部分の有無を検

出することができる。もちろん、フォーカス検出系70は、露光処理以外のタイミングにおいても液浸領域ARの液体50中の気体部分の有無を検出することもできる。

また、フォーカス検出系70は、検出光Laの光路上であれば、液浸領域ARの液体50中の露光光ELの光路以外の位置に存在する気泡18も検出することができる。例えば、走査露光中において、露光光ELの光路以外の位置に存在する気泡18が基板Pの移動に伴って液体50中を移動して露光光ELの光路上に配置されたり、基板Pや光学素子60に付着した場合でも、フォーカス検出系70によって、露光光ELの光路以外の位置に存在する気泡18が露光光ELの光路上に配置されたり、基板Pや光学素子60に付着する前に、その気泡18を検出することができる。したがって、露光処理中において、例えば液体50中を浮遊していた気泡18が露光光ELの光路上や基板P上に配置される前に、フォーカス検出系70の出力に基づいて気泡18が露光光ELの光路上や基板P上に配置されることを予測し、例えば露光処理の停止や警報装置の駆動等の適切な処理を行うことができる。これにより、露光不良や不良ショットが発生する不都合を回避することができる。

また、フォーカス検出系70の投射系71は複数の検出光Laを基板P上のマトリクス状の各点に照射するため、受光系72に受光される複数の検出光Laそれぞれの光強度(受光量)に基づいて、フォーカス検出系70は気泡18の位置情報を求めることができる。ここで、複数の検出光Laのそれぞれの照射位置情報は設計値に基づいて特定される。制御装置CONTは、複数の検出光Laのうち、受光系72の各受光部に入射する光強度が低下した検出光Laの照射位置情報、あるいはその検出光Laに対応する受光系72の受光部の設置位置に関する情報に基づいて、気泡18の位置(気泡18が存在した検出光の光路)を特定することができる。

また、図11に示すように、投影光学系PLの光学素子60と基板Pとの間に

液体50が十分に満たされずに液体50の一部が切れて、液浸領域ARが所定の 状態で形成されずに、露光光ELの光路中に気体領域AGが生成される可能性が ある。フォーカス検出系70は、その気体領域AGの有無を検出することもでき る。なお気体領域AGは、例えば基板Pの移動に伴う液体50の剥離や液体供給 装置1の動作不良などによって生じる。図11では、気体領域AGは第2光学部 材82近傍に形成されており、液浸領域ARの液体50は第2光学部材82の端 面に密着(接触)していない。この場合においても、フォーカス検出系70の投 射系71から射出された検出光Laは、液浸領域ARの液体50と気体領域AG との界面で散乱や屈折等を生じ、受光系72に光量を低下した状態で受光される か、あるいは受光されない。フォーカス検出系70は、受光系72の出力に基づ いて、液浸領域ARのうち露光光ELの光路中の気体領域AGの有無、すなわち 露光光ELの光路が液体50で満たされているか否かを検出することができる。 また、この場合においても、制御装置CONTは、フォーカス検出系70を使っ て基板Pの面位置情報を検出しつつ露光処理を行うため、そのフォーカス検出系 70(受光系72)の出力に基づいて、基板Pの露光中に露光光ELの光路中の 気体部分の有無や検出光しaの光路中の気体部分の有無を検出することができる。 そして、露光処理中に気体領域 A G をフォーカス検出系 7 0 で検出した場合には、 制御装置CONTは、フォーカス検出系70の出力に基づいて、例えば露光動作 を停止したり、液体供給装置1による液体供給量や液体回収装置2による液体回 収量を調整して液浸領域ARを所定の状態に維持する等の適切な処置を施すこと ができる。

ところで、基板 P を液浸露光処理する際には、図12(a)に示すように、基板 P を基板ステージ P S T にロードした後、露光処理を開始する前に、液体供給装置 1 及び液体回収装置 2 を駆動することで基板 P 上に液浸領域 A R を形成する液浸領域形成動作が行われる。このとき、制御装置 C O N T は、フォーカス検出系70の投射系71より検出光 L a を基板 P に照射しつつ露光処理前の液浸領域形成動作を行うことにより、フォーカス検出系70(受光系72)の出力に基づいて、基板 P の露光開始の適否を判断することができる。すなわち、露光処理前

の液浸領域形成動作において、図12(b)に示すように、液浸領域ARが未だ 十分に形成されずに気体領域AGが存在する場合、受光系72に達する検出光し aの光強度は低下する。制御装置CONTは、フォーカス検出系70の受光系7 2の出力に基づいて、液浸領域ARは未だ十分に形成されていないと判断し、液 浸露光処理を開始することは不適切であると判断する。制御装置CONTは、液 漫領域ARが所定の状態に形成されるまで液浸領域形成動作を継続し、場合によ っては液体供給装置1の液体供給量や液体回収装置2の液体回収量を変更したり 基板 P の位置を動かす等の液浸領域形成に関する動作条件を変更する。図 1 2 (c)に示すように、液浸領域ARが十分に形成されて、第1光学部材81と第 2光学部材82との間の検出光しaの光路が液体50で満たされると、投影光学 系PLの光学素子60と基板Pとの間の露光光ELの光路も液体50で満たされ たことになる。この状態において、投射系71から射出された検出光Laは受光 系72に所定の光強度で入射するので、制御装置CONTは、フォーカス検出系 70の受光系72の出力に基づいて、液浸領域ARが形成されたと判断し、液浸 露光処理を開始することは適切であると判断する。次いで、制御装置CONTは、 露光光ELの照射を開始して露光処理を行う。

ところで、上述したように、基板Pの露光中において、フォーカス検出系70によって露光光ELの光路を含む液浸領域AR中に気泡18や気体領域AG等の気体部分が検出された場合、制御装置CONTはその基板Pの露光処理を停止する等の処理を行うが、露光光ELの光路上に液体50が満たされているにも係わらず、検出光Laが受光系72に所定の光強度で受光されない状況が発生することが考えられる。この場合、液浸露光処理可能であるにも係わらず、露光処理を停止してしまう不都合が生じる。例えば、図13に示すように、フォーカス検出系70の投射系71から投射された複数の検出光La1~La5のうち、基板Pのエッジ部Eと基板Pの周りに設けられたプレート部材57との間の隙間58に照射された検出光La3は、散乱や屈折などを生じて受光系72に所定の光強度で受光されない可能性がある。ここで、プレート部材57は基板Pに同心状に設けられた環状部材であって、プレート部材57の上面と基板Pの上面とは略同じ

高さであり、このプレート部材 5 7によって、基板 Pのエッジ部 E 近傍を液浸露 光する際にも投影光学系 P L の光学素子 6 0 の下に液体 5 0 を保持して液浸領域 A R の形状を維持できる。基板 P とプレート部材 5 7 との間に隙間 5 8 が形成されているが、その隙間 5 8 に照射された検出光 L a 3 は、液浸領域 A R が良好に 形成されているにも係わらず、受光系 7 2 に所定の光強度で受光されない可能性 があり、その場合、制御装置 C O N T が受光系 7 2 の出力に基づいて露光処理を 停止してしまう不都合を生じる。また、プレート部材 5 7 が設けられていない構成も考えられるが、その場合、基板 P と基板ステージ P S T (Z ステージ 5 1) との間に段差が形成され、エッジ部 E 近傍の基板 P 上には液浸領域 A R が形成されているにも係わらず、基板 P の外側に照射される検出光 L a 3、L a 4、L a 5 などが受光系 7 2 に所定の光強度で受光されない可能性がある。

その場合、制御装置CONTは、基板Pを支持する基板ステージPSTの位置を計測するレーザ干渉計55(図1参照)の計測結果と、レーザ干渉計55で規定されるステージ座標系での基板Pのエッジ部E(隙間58)の位置情報に基づいて、露光動作を制御する。具体的には、例えば、露光処理前のアライメント処理時等において、制御装置CONTは前記ステージ座標系での基板Pのエッジ部E(隙間58)の位置情報を予め求めて記憶装置MRYに記憶しておく。次いで、制御装置CONTは、レーザ干渉計55により基板Pの位置情報を計測しつつ露光処理する。露光処理中、制御装置CONTは、隙間58を含む基板Pのエッジ部E近傍に検出光Laが照射されているか否かを、記憶装置MRYに記憶されている基板Pのエッジ部Eの位置情報を参照して判断する。例えば、隙間58に検出光Laが照射されていると判断した場合には、受光系72に受光される検出光Laの光量が低下したりあるいは受光されない状況が生じても、制御装置CONTは、受光系72の出力を無視し、露光処理を継続する。こうすることにより、液浸露光処理が良好に行われているにも係わらず露光処理を停止してしまうといった不都合を回避できる。

図14は、本発明の別の実施形態を示す図である。本実施形態の特徴的な部分

は、フォーカス検出系70の検出光しaを透過可能な光学部材81、82が投影 光学系PLの光学素子60と一体となるように設けられている点である。フォーカス検出系70の投射系71から射出される複数の検出光しaのうち一部又は全部の検出光しaは、投影光学系PLを構成する複数の光学素子のうち一部(先端部)の光学素子60を通過するように設定されている。フォーカス検出系70は、光学素子60を介して検出光しaを基板P上に投射する。このような構成によっても、フォーカス検出系70は、露光光ELの光路中の気体部分の有無を検出することができる。また、図14では、光学部材81、82のそれぞれの下端面(液体接触面)は、XY平面に略平行な平坦面となっており、光学素子60の先端面(下端面)と略同じ高さとなっている。液浸領域ARの液体50は、光学部材81、82の下端面及び光学素子60の下端面に密着し、投影光学系PLと基板Pとの間において、広い領域に液浸領域ARが形成される。

また、図15に示すように、液浸領域ARの液体50中に気泡18が存在する場合には、上記実施形態同様、投射系71から射出された検出光Laは気泡18に当たって散乱等するため、光強度が低下した状態で受光系72に受光される。これにより、フォーカス検出系70は、受光系72の出力に基づいて、液浸領域ARのうち露光光ELの光路中や検出光Laの光路中における気泡(気体部分)18の有無を検出することができる。

なお、この場合においても、光学部材81、82のそれぞれは互いに独立した 部材で構成してもよいし、投影光学系PLの先端部の光学素子60を囲むように 環状に一体で形成してもよい。

上述したように、本実施形態における液体50には純水を用いた。純水は、半 導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジスト や光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に 対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、 及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も

期待できる。

そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.47~1.44程度と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約131~134nm程度に短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.47~1.44倍程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。

本実施形態では、投影光学系PLの先端にレンズ60が取り付けられているが、 投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特 性、例えば収差(球面収差、コマ収差等)の調整に用いる光学プレートであって もよい。あるいは露光光ELを透過可能な平行平面板であってもよい。液体 5 O と接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装 置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での 露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系 有機物等)がその平行平面板に付着しても、液体50を供給する直前にその平行 平面板を交換するだけでよく、液体50と接触する光学素子をレンズとする場合 に比べてその交換コストが低くなるという利点がある。すなわち、露光光ELの 照射によりレジストから発生する飛散粒子、または液体50中の不純物の付着な どに起因して液体50に接触する光学素子の表面が汚れるため、その光学素子を 定期的に交換する必要があるが、この光学素子を安価な平行平面板とすることに より、レンズに比べて交換部品のコストが低く、且つ交換に要する時間を短くす ることができ、メンテナンスコスト(ランニングコスト)の上昇やスループット の低下を抑えることができる。

また、液体50の流れによって生じる投影光学系PLの先端の光学素子と基板

Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、 その圧力によって光学素子が動かないように堅固に固定してもよい。

なお、本実施形態では、投影光学系PLと基板P表面との間は液体50で満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体50を満たす構成であってもよい。このとき、カバーガラスも投影光学系PLの一部を構成する。すなわち、マスクMと基板Pとの間における露光光ELの光路上に存在する全ての光学素子を投影光学系とする。

なお、本実施形態の液体 50 は水であるが、水以外の液体であってもよい、例えば、露光光 E L の光源が F_2 レーザである場合、この F_2 レーザ光は水を透過しないので、この場合、液体 50 としては F_2 レーザ光を透過可能な例えば過フッ化ポリエーテル(PFPE)やフッ素系オイルであってもよい。また、液体 50 としては、その他にも、露光光 E L に対する透過性があってできるだけ屈折率が高く、投影光学系 E L や基板 E 表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。

上記各実施形態において、上述したノズルの形状は特に限定されるものでなく、例えば先端部60Aの長辺について2対のノズルで液体50の供給又は回収を行うようにしてもよい。なお、この場合には、+X方向、又は-X方向のどちらの方向からも液体50の供給及び回収を行うことができるようにするため、供給ノズルと回収ノズルと上下に並べて配置してもよい。

なお、上記各実施形態の基板 P としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。

また、上述の実施形態においては、投影光学系PLと基板Pとの間を局所的に

液体で満たす露光装置を採用しているが、露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置や、ステージ上に所定深さの液体槽を形成し、その中に基板を保持する液浸露光装置にも本発明を適用可能である。露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置の構造及び露光動作は、例えば特開平6-124873号公報に詳細に記載されており、また、ステージ上に所定深さの液体槽を形成し、その中に基板を保持する液浸露光装置の構造及び露光動作は、例えば特開平10-303114号公報や米国特許5,825,043に詳細に記載されており、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて、これらの文献の記載内容を援用して本文の記載の一部とする。

露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。

また、本発明は、ツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10-163099号及び特開平10-214783号(対応米国特許6,341,007、6,400,441、6,549,269及び6,590,634)、特表2000-505958号(対応米国特許5,969,441)あるいは米国特許6,208,407に開示されており、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて、これらの文献の記載内容を援用して本文の記載の一部とする。

露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体

素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。

基板ステージPSTやマスクステージMSTにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツカまたはリアクタンスカを用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。ステージにリニアモータを用いた例は、米国特許5,623,853及び5,528,118に開示されており、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて、これらの文献の記載内容を援用して本文の記載の一部とする。

各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTの移動 面側に設ければよい。

基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方法は、例えば、米国特許5,528,118(特開平8-166475号公報)に詳細に開示されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の記載内容を援用して本文の記載の一部とする。

マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この

反力の処理方法は、例えば、米国特許 5,874,820 (特開平8-33022 4号公報)に詳細に開示されており、本国際出願で指定または選択された国の法令で許容される限りにおいて、この文献の記載内容を援用して本文の記載の一部とする。

以上のように、本願実施形態の露光装置 E X は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。

半導体デバイス等のマイクロデバイスは、図16に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ20・6等を経て製造される。

産業上の利用可能性

本発明によれば、液浸法に基づいて露光処理する際、気泡検出器や気体検出系により、パターン転写精度に大きく係わる部分である、投影光学系と基板との間の液体中の気泡を含む気体部分を検出することができる。また、投影光学系と基板との間の液体が切れたかどうか、また、投影光学系の像面側が露光や計測に十分な液体で満たされているかを検出することもできる。この検出結果に基づいて、良好な生産性を維持するための適切な処理を施すことができる。

特許請求の範囲

1. パターンの像を液体を介して基板上に転写して基板を露光する露光装置であって、

パターンの像を基板に投影する投影光学系と、

該投影光学系と前記基板との間の液体中の気泡を検出する気泡検出器とを備える露光装置。

- 2. 前記気泡検出器は、前記気泡を光学的に検出することを特徴とする請求項1に記載の露光装置。
- 3. 前記気泡検出器は、前記液体に光を投射する投射系と、前記液体からの光を受光する受光系とを有することを特徴とする請求項2に記載の露光装置。
- 4. 前記基板は所定の走査方向に移動しながら走査露光され、前記投射系は、前記投影光学系の光軸に対して前記走査方向に離れた位置から光を投射することを特徴とする請求項3に記載の露光装置。
- 5. 前記液体を供給する供給装置を備え、前記液体は、前記走査露光中に、前記投影光学系と前記基板との間を前記走査方向と平行に流れることを特徴とする 請求項4に記載の露光装置。
- 6. 前記気泡検出器は、前記受光系で検出される光の強度に基づいて、前記気泡の量を検知することを特徴とする請求項3に記載の露光装置。
- 7 前記気泡検出器の検出結果に基づいて、前記基板の露光が適切に行われたか否かが判断されることを特徴とする請求項1に記載の露光装置。
- 8. 前記基板上の複数のショット領域のそれぞれの露光中に前記気泡検出器に

よる気泡の検出を行い、該検出結果に基づき、前記気泡により前記パターンの像の結像が適切に行われなかったショット領域を記憶することを特徴とする請求項7に記載の露光装置。

9. パターンの像を液体を介して基板上に転写して基板を露光する露光装置であって、

パターンの像を基板に投影する投影光学系と、

前記投影光学系と前記基板との間の液体の不足を検出する液不足検出装置とを 備える露光装置。

- 10. 前記液不足検出装置は、前記投影光学系と前記基板との間の液体不足を光学的に検出することを特徴とする請求項9に記載の露光装置。
- 11 前記液不足検出装置は、前記液体に光を投射する投射系と、前記液体からの光を受光する受光系とを有することを特徴とする請求項10に記載の露光装置。
- 12. 前記液不足検出装置は、前記液体からの光の前記受光系への非入射により前記液体不足を検出することを特徴とする請求項11に記載の露光装置。
- 13. 投影光学系と液体とを介して露光光を基板に照射して前記基板を露光する露光装置であって、

前記露光光の光路中における気体部分の有無を検出する気体検出系を備える露光装置。

- 14. 前記気体検出系は、前記露光光の光路中の気泡を検出することを特徴とする請求項13に記載の露光装置。
- 15. 前記気体検出系は、前記露光光の光路が液体で満たされているか否かを

検出することを特徴とする請求項13に記載の露光装置。

- 16. 前記気体検出系の出力に基づいて、前記基板の露光開始の適否を判断することを特徴とする請求項13に記載の露光装置。
- 17. 前記気体検出系は、前記基板の露光中に前記露光光の光路中の気体の有無を検出することを特徴とする請求項13に記載の露光装置。
- 18. 前記気体検出系は、前記気体部分を光学的に検出することを特徴とする請求項13に記載の露光装置。
- 19. 前記気体検出系は、前記基板上の液体を介して検出光を前記基板上に投射するとともに、その反射光を受光することによって、前記基板の面位置を検出する面位置検出機能を備えていることを特徴とする請求項18に記載の露光装置。
- 20. 投影光学系と液体とを介して露光光を基板に照射して前記基板を露光する露光装置であって、

前記基板上の液体を介して前記基板上に検出光を投射するとともに、前記基板上で反射した検出光を受光して、前記基板の面位置を検出する面位置検出系を備え、

前記面位置検出系の出力に基づいて、前記検出光の光路中における気体部分の 有無を検出する露光装置。

- 21. 前記検出光は、前記露光光の光路を通過することを特徴とする請求項20に記載の露光装置。
- 22. 前記面位置検出系の出力に基づいて、前記検出光の光路中の気泡を検出することを特徴とする請求項20に記載の露光装置。

23. 前記面位置検出系の出力に基づいて、前記基板の露光開始の適否を判断することを特徴とする請求項20に記載の露光装置。

- 24. 前記面位置検出系の出力に基づいて、前記基板の露光中に、前記検出光の光路中の気体の有無を検出することを特徴とする請求項20に記載の露光装置。
- 25. 前記面位置検出系は、前記基板上に複数の検出光を投射することを特徴とする請求項20に記載の露光装置。
- 26. 前記面位置検出系は、前記投影光学系の一部の光学部材を介して前記検出光を前記基板上に投射することを特徴とする請求項20に記載の露光装置。
- 27. 請求項1、9、13及び20のいずれか一項に記載の露光装置を用いることを特徴とするデバイス製造方法。

2/16

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

8/16

Fig. 9

10/16

Fig. 11

Fig. 12

Fig. 13

Fig. 1

Fig. 16

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/15737

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01L21/027, G03F7/20						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS	S SEARCHED					
Minimum do	ocumentation searched (classification system followed b C1 H01L21/027, G03F7/20	y classification symbols)				
Int.	C1 HUILZ1/UZ/, GUSI//20		}			
	ion searched other than minimum documentation to the	extent that such documents are included Toroku Jitsuyo Shinan Koho	in the fields searched			
Kokai	uyo Shinan Koho 1926-1996 L Jitsuyo Shinan Koho 1971-2004	Jitsuyo Shinan Toroku Koho	1996–2004			
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, sear	ch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
A	JP 5-304072 A (NEC Corp.),		1-27			
	16 November, 1993 (16.11.93), Full text; all drawings					
	(Family: none)					
75.	JP 6-124873 A (Canon Inc.),		1-27			
Ā	06 May, 1994 (06.05.94),					
	Claims; Par. No. [0015]; Fig.	1				
	(Family: none)					
A	JP 6-168866 A (Canon Inc.),		1-27			
	14 June, 1994 (14.06.94), Full text; all drawings					
	(Family: none)	·				
			<u></u>			
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
* Specia "A" docum	d categories of cited documents: tent defining the general state of the art which is not	"I" later document published after the inte priority date and not in conflict with t	he application but cited to			
conside	ered to be of particular relevance document but published on or after the international filing	"X" understand the principle or theory und document of particular relevance; the	claimed invention cannot be			
date "L" document which may throw doubts on priority claim(s) or which is		considered novel or cannot be considered to involve an inventive step when the document is taken alone				
cited to establish the publication date of another citation or other special reason (as specified)		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is				
"O" docum	ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such combination being obvious to a person	documents, such			
"P" docum						
Date of the	Date of the actual completion of the international search Date of mailing of the international search report					
22 March, 2004 (22.03.04) 06 April, 2004 (06.04.04)						
Name and mailing address of the ISA/ Authorized officer						
Japanese Patent Office						
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/15737

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	JP 7-220990 A (Hitachi, Ltd.), 18 August, 1995 (18.08.95), Full text; all drawings (Family: none)	1-27			
A	JP 10-255319 A (Hitachi Maxell, Ltd.), 25 September, 1998 (25.09.98), Full text; all drawings (Family: none)	1-27			
A	EP 834773 A2 (NIKON CORP.), 08 April, 1998 (08.04.98), Full text; all drawings & JP 10-154659 A & US 5825043 A	1-27			
A	JP 10-303114 A (NIKON CORP.), 13 November, 1998 (13.11.98), Full text; all drawings (Family: none)	1-27			
Α ·	JP 10-340846 A (NIKON CORP.), 22 December, 1998 (22.12.98), Full text; all drawings (Family: none)	1-27			
A	JP 11-176727 A (NIKON CORP.), 02 July, 1999 (02.07.99), Full text; all drawings (Family: none)	1-27			
A	WO 99/49504 A1 (NIKON CORP.), 30 September, 1999 (30.09.99), Claims; page 5, lines 20 to 21; Fig. 1 & AU 2747999 A	1-27			
Α	JP 2000-58436 A (NIKON CORP.), 25 February, 2000 (25.02.00), Full text; all drawings (Family: none)	1-27			

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' H01L21/027, G03F7/20						
 B. 調査を行						
	1つたガギ b小限資料(国際特許分類(IPC))					
	H01L21/027, G03F7/2	0				
最小限資料以外	トの資料で調査を行った分野に含まれるもの					
日本国宝田新	宏公報 1926-1996年	·	i			
日本国公開実	用新案公報 1971-2004年					
	用新案公報 1994-2004年	•				
日本国実用新	案登録公報 1996-2004年		•			
国際調査で使用	国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)					
	5と認められる文献					
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	:きは、その関連する箇所の表示	関連する請求の範囲の番号			
A	JP 5-304072 A (日本	電気烘オ会社)	1-27			
A	1993.11.16,全文,全図		1 2 1			
	1993. 11. 10, 主义, 主因	(2) x = y - a c)				
	77 0 104070 4 (7)	, <u>, , , , , , , , , , , , , , , , , , </u>	1 0 7			
Α	JP 6-124873 A (++)		1 - 27			
	1994.05.06,特許請求の	色囲、段落0015、図1(フ				
	ァミリーなし)		· ·			
\mathbf{A}	JP 6-168866 A (キャ)	ノン株式会社)	1 - 27			
	1994.06.14,全文,全図					
X C欄の続き			紙を参照。			
						
* 引用文献の		の日の後に公表された文献	la la di mbadala mada a ma			
	事のある文献ではなく、一般的技術水準を示す		M PET - PET - 12 - PET A			
もの For English	顔日前の出願または特許であるが、国際出願日	出願と矛盾するものではなく、そ の理解のために引用するもの	ものの原理人は理論			
	関ロ前の四個または特許であるか、国際四個日 公表されたもの	「X」特に関連のある文献であって、	5該文献のユで路田			
1	は我ではたもの 主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え				
	こ版に発送を延迟する人間へは他の人間の光刊	「Y」特に関連のある文献であって、				
	理由を付す)	上の文献との、当業者にとって				
	よる開示、使用、展示等に言及する文献	よって進歩性がないと考えられる				
「P」国際出版	頭日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献				
同時間大きのアトルロ 同時間大却ルッツリョ						
国際調査を完了した日 22.03.2004 国際調査報告の発送日 06.4.2004						
		00. 4. 2	· · · · · · · · · · · · · · · · · · ·			
国際調査機関の	の名称及びあて先	特許庁審査官(権限のある職員)	2M 8605			
日本国特許庁(ISA/JP) 新井 重雄			L			
1	郵便番号100-8915					
東京和	郎千代田区飯が関三丁目4番3号	電話番号 03-3581-1101	内線 3274			

国際出願番号 PCT/JP03/15737

	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
A	JP 7-220990 A (株式会社日立製作所) 1995.08.18,全文,全図 (ファミリーなし)	1-27	
A	JP 10-255319 A (日立マクセル株式会社) 1998.09.25,全文,全図(ファミリーなし)	1-27	
A	EP 834773 A2 (NIKON CORPORATIO N) 1998. 04. 08, 全文, 全図&JP 10-15465 9 A&US 5825043 A	1-27	
Α .	JP 10-303114 A (株式会社ニコン) 1998.11.13,全文,全図 (ファミリーなし)	1-27	
A	JP 10-340846 A (株式会社ニコン) 1998.12.22,全文,全図(ファミリーなし)	1-27	
A	JP 11-176727 A (株式会社ニコン) 1999.07.02,全文,全図(ファミリーなし)	1-27	
A	WO 99/49504 A1 (株式会社ニコン) 1999.09.30,特許請求の範囲,第5頁第20-21行, 図1&AU 2747999 A	1-27	
A .	JP 2000-58436 A (株式会社ニコン) 2000.02.25,全文,全図(ファミリーなし)	1-27	
	·	·	
	·		