MAT A29 TUT0018, Tutorial 2 (Week 3) Tuesdays 7 - 9pm (We will start at 7:10pm)

XiangQian Hong (Richard) richard.hong@mail.utoronto.ca

Compute the value of $\lim_{x\to 0} \frac{\sin(2x)}{x}$ by making a table of values for $x=\pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$.

X	5in (2x)
0.1	1.99
0	2
-0.01	1,9999

Consider the graph below. Is it true that $\lim_{x\to -8} f(x) = f(-8)$?

$$\lim_{x \to -8^{-}} A(x) = \lim_{x \to -8^{+}} A(x)$$

$$\pm (-8) = -3$$

Consider the graph below. Calculate $\lim_{x\to 2^-} f(x)$.

using the left side value,

lim J(x) = -2 x=2

Calculate the value of $\lim_{x\to 4} \frac{x^2-16}{x-4} = \frac{1}{x} (x)$

This suggests
$$(x) = 8$$

Calculate the value of $\lim_{x\to 4} \frac{x^2-16}{x-4} = \frac{1}{x-4}$

Graph

$$(x - 4)(x + 4) = (x - 4)$$

Calculate the value of
$$\lim_{x\to 4} \frac{x^2-16}{x-4} = (x+4)$$

$$\lim_{x \to 4} \frac{1}{x-16} = \lim_{x \to 4} (x+4)$$

Assume that $\lim_{x\to 6} f(x) = 4$ and $\lim_{x\to 6} g(x) = 9$. Calculate:

$$L = \lim_{x \to 6} \sqrt{g(x) - f(x)}$$

find range algebraically

$$\frac{1}{(x^2-16)}$$

$$\frac{2}{4(x)^{2}} = \frac{2}{4(x)} - \frac{2}{4(x)}$$

= /x > Ct

domain

JX D: {x cp | x 2 0}

$$3 \times -1 \geq 0$$

$$\Rightarrow 8 \times \geq 1$$

range
$$\sqrt{8} \times -1 = \frac{1}{8} \times \frac{1}{8}$$

range $\sqrt{8} \times -1 = \frac{1}{8} \times \frac{1}{8}$