Algorytmy i struktury danych LABORATORIUM

Zajęcia 11 i 12

Struktury danych: drzewa wyszukiwań binarnych (BST)

Cel zajęć

Zapoznanie studentów ze strukturą danych drzewa wyszukiwań binarnych, implementacja podstawowych operacji na tej strukturze danych, jak również implementacja wybranych problemów algorytmicznych wykorzystujących tę strukturę.

Zadania

- Napisz program, który dla tekstu "T E S T D R Z E W B S T" określi krotność występowania poszczególnych liter. Wykorzystaj strukturę drzewa wyszukiwań binarnych (BST), gdzie w każdym wierzchołku będzie występowała litera (typu String) jako klucz oraz liczba_wystapien (typu Integer) jako wartość skojarzona z kluczem. Zaimplementuj (oprócz konstruktora) funkcje: put (), get (), delete (), size ().
 - a. Utwórz drzewo, wykorzystując funkcję put ()
 - b. Ile razy występuje słowo "T", a ile razy słowo "G"? Wykorzystaj funkcję get ().
 - c. Usuń z drzewa najwcześniejszą literę "R"
 - d. Dodaj literę "K", zakładając, że występuje 4 razy
 - e. Usuń z drzewa najwcześniejszą literę z alfabetu
- 2. (patrz zad. 1 z poprzednich zajęć) Napisz program, który pozwala gromadzić informacje o produktach w postaci pary (kod produktu, cena). Wykorzystaj strukturę danych tablicy symboli, zaimplementowanej w postaci drzewa BST. Strukturę przedstaw w postaci prywatnej klasy Produkty_BST z zaimplementowanymi odpowiednimi funkcjami: Produkty_BST() konstruktor, oraz put(), get(), delete() oraz size(). Wprowadź do struktury dane o 5 produktach:
 - "P01", 14.90
 - "P07", 27.10
 - "P03", 120.00
 - "P02", 31.80
 - "P09", 39.20

a następnie wydrukuj powstała listę. Wykonaj następnie kolejne operacje:

- a. Zmień cenę produktu "P03" na 99,90
- b. Dodaj produkt "P04" w cenie 18,50.
- c. Usuń produkt "P01"