NAME

CUTEST_chprod - CUTEst tool to form the matrix-vector product of a vector with the Hessian matrix of the Lagrangian.

SYNOPSIS

CALL CUTEST_chprod(data, status, n, m, goth, X, Y, VECTOR, RESULT)

DESCRIPTION

The CUTEST_chprod subroutine forms the product of a vector with the Hessian matrix of the Lagrangian function $l(x, y) = f(x) + y^T c(x)$ corresponding to the problem decoded from a SIF file by the script *sifdecode* at the point (x, y) = (X, Y).

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_chprod are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

goth [in] - logical

a logical variable which specifies whether the first and second derivatives of the groups and elements have already been set (goth = .TRUE.) or if they should be computed (goth = .FALSE.),

X [in] - real/double precision

when goth = .FALSE., the derivatives will be evaluated at X. Otherwise X is not used.

Y [in] - real/double precision

when goth = .FALSE., the derivatives will be evaluated with Lagrange multipliers Y. Otherwise Y is not used.

VECTOR [in] - real/double precision

an array which gives the vector whose product with the Hessian is required,

RESULT [out] - real/double precision

an array which gives the result of multiplying the Hessian by VECTOR.

NOTE

goth should be set to .TRUE. whenever

a call has been made to CUTEST cdb. CUTEST csb. CUTEST cg

a call has been made to $CUTEST_cdh$, $CUTEST_csh$, $CUTEST_cgrdh$ or $CUTEST_csgrsh$ at the current point, or

(2)

a previous call to CUTEST_chprod, with goth = .FALSE., at the current point has been made.

Otherwise, it should be set .FALSE.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

cutest_uhprod(3M), sifdecode(1).

NAME

CUTEST_chprod - CUTEst tool to form the matrix-vector product of a vector with the Hessian matrix of the Lagrangian.

SYNOPSIS

CALL CUTEST_chprod(data, status, n, m, goth, X, Y, VECTOR, RESULT)

DESCRIPTION

The CUTEST_chprod subroutine forms the product of a vector with the Hessian matrix of the Lagrangian function $l(x, y) = f(x) + y^T c(x)$ corresponding to the problem decoded from a SIF file by the script *sifdecode* at the point (x, y) = (X, Y).

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_chprod are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

n [in] - integer

the number of variables for the problem,

m [in] - integer

the total number of general constraints,

goth [in] - logical

a logical variable which specifies whether the first and second derivatives of the groups and elements have already been set (goth = .TRUE.) or if they should be computed (goth = .FALSE.),

X [in] - real/double precision

when goth = .FALSE., the derivatives will be evaluated at X. Otherwise X is not used.

Y [in] - real/double precision

when goth = .FALSE., the derivatives will be evaluated with Lagrange multipliers Y. Otherwise Y is not used.

VECTOR [in] - real/double precision

an array which gives the vector whose product with the Hessian is required,

RESULT [out] - real/double precision

an array which gives the result of multiplying the Hessian by VECTOR.

NOTE

goth should be set to .TRUE. whenever

a call has been made to CUTEST cdb. CUTEST csb. CUTEST cg

a call has been made to $CUTEST_cdh$, $CUTEST_csh$, $CUTEST_cgrdh$ or $CUTEST_csgrsh$ at the current point, or

(2)

a previous call to CUTEST_chprod, with goth = .FALSE., at the current point has been made.

Otherwise, it should be set .FALSE.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

cutest_uhprod(3M), sifdecode(1).