

מערכת SLAM לרכב אוטונומי

פרויקט מספר: 24-1-1-3049

מבצעים:

תובל

אורית

מנחה: רועי רייך

מקום ביצוע הפרויקט: אוניברסיטת תל אביב

נושא הפרויקט

תמונת הרכב האוטונומי באוניברסיטה

- Simultaneous Localization and Mapping SLAM
 - שימוש בחיישנים למיפוי סביבת הרכב
 - מפה מתעדכנת של הסביבה
 - מיקום הרכב בתוך המפה
- הטמעה והרצת אלגוריתמי SLAM בסביבת Ubuntu 20.04 בסביבת Ros2 Foxy בתוכנת Ros2 Foxy במחשבים ביתיים ומחשבי הרכב

מטרות הפרויקט והמוטיבציה ההנדסית

מטרות הפרויקט: 💠

- סקירה של אלגוריתמי SLAM שיתאימו לעבודה בסביבת הרכב האוטונומי
 - הטמעת אלגוריתמים מתאימים במחשב ביתי
- הטמעת האלגוריתמים במחשבים והרצתם תוך שימוש בחיישני LiDAR ו- INS\IMU הנמצאים ברכב

:המוטיבציה ❖

- חקר אלגוריתמי הSLAM בסביבת עבודה משולבת
- לחקור את יעילות אלגוריתמי SLAM מבוססי ליידר במכוניות אוטונומיות

שיטות ומימוש

• הרכב מערכת הרכב:

- חיישני LiDAR טכנולוגיה אופטית בעזרתה האלגוריתם מקבל נתוני מרחק מהסביבה
 - חיישני INS\IMU חיישן משולב בעזרתו מקבלים מידע על מיקום ומהירות המערכת
 - ROS מערכת •
 - * תוכנה בעזרתה מייצרים סביבת פיתוח נוחה לרובוטים
 - * ניתן לפתח כל חלק ברובוט בנפרד
 - * בעלת כלי ויזואלי Rviz המאפשר לבצע סימולציות

• בדיקות האלגוריתמים:

- הרצת האלגוריתמים במחשבים הביתיים על גבי מאגרי נתונים
 - הרצת האלגוריתמים במחשבי הרכב על גבי נתוני החיישנים

חיישן OUSTER המובנה ברכב האוטונומי

דיאגרמת בלוקים

:SLAM

:MAP

:Path Planning

• תוצר ישיר של הSLAM

• קביעת נקודת הגעה במרחב • מפה מתעדכנת בזמן אמת

ממפה את הסביבה

• תיוגים לעצמים במרחב

ו- Point Cloud וצר מהודעות ROS2ב Path

:Labled Map

ממקם את הרכב במפה

משתמש בנתוני החיישנים

• ניווט אוטונומי לנקודה

Fast Lidar inertial odometry

עקרונות פעולה:

- האלגוריתם מקבל נתוני ליידר ונתונים אינרציאליים ובעזרתם משערך את מיקום הרכב
 - אלגוריתם SLAM מבוסס מסנן

יתרונות האלגוריתם:

- נתוני ה Point Cloud לא עוברים עיבוד תורם למהירות האלגוריתם ולתיאור מדויק יותר של הסביבה
 - הנתונים מתעדכנים באמצעות מבנה ikd tree מאפשר זמני
 חישוב קצרים יותר
 - Ouster, Velodyne, Livox avia : תומך במגוון חיישני ליידר כגון

Fast Lio דוגמאות הרצאה מהאינטרנט של

Fast Lio דוגמאות הרצאה מהאינטרנט של

Fast Lio הדגמת סימולציות של

סרטון מתוך הרצת הסימולציה של Fast Lio במחשב הבייתי

הסבר על אלגוריתם LIORF

?LIORF מהו

ו Lidar הינו אלגוריתם מבוסס גרף שמשלב מידע מ ובנוסף פועל בזמן אמת. Ros 2 Foxy ובנוסף פועל בזמן אמת.

שלבי הפעולה:

- הערכת תנועה בין סריקות LiDAR בעזרת נתוני •
- התאמת נקודות מפתח (קצוות, משטחים) בין סריקות עוקבות.
- סינון פריימים שמירה על פריימים אשר התקיים בהם שינוי של מקום או זמן.
- יצירת גרף מבוסס פריימים נבחרים עם זיהוי חזרה למיקום קודם (loop closure).

יתרונות בולטים:

- מותאם לסביבות מורכבות בעלות שינויים מרחביים רבים.
 - מפחית רעש חישובי בזכות סינון פריימים.
- ובמאגרי נתונים נפוצים. Velodyne/Ouster תומך בחיישני $_{_{\mathrm{S}}}$ •

תמונה מתוך הרצת הסימולציה של LIORF במחשב הבייתי

LIORF הדגמת סימולציות של

תוצאות סימולציה:

הרצות מוצלחות עם מאגרי NCLT ו NCLT לאלגוריתמים LIORF בהתאמה תוך אוריתמים SLAM בהתאמה תוך אוריתמים SLAM עלת־מימדית תקינה הכוללת TF Tree תקין (קישור מלא בין כל הפריימים).

תוצאות בזמן אמת ברכב:

- התקנת שני האלגוריתמים ללא תקלות במחשבי הרכב.
- אי הצלחה בהשלמת תהליך SLAM מלא לשני האלגוריתמים (לא נוצרה מפה דינאמית).
 - אלגוריתם LIORF הצליח לקלוט Point Cloud ולשדר ב RVIZ אך לא הושלמה בניית מפה עקב נתק ב TF Tree.
 - אלגוריתם Fast Lio תקלת חוסר תקשורת בין החיישנים לבין האלגוריתם Fast Lio שלגוריתם בעת ההרצה ברכב, נתוני הPoint Cloud של הליידר במוצא האלגוריתם לא נראו ב Rviz.

קליטת נתוני הליידר ברכב בזמן אמת באלגוריתם LIORF קליטת נתוני

דרישות כמותיות

	LIO SAM אלגוריתם	FAST LIO אלגוריתם
קצב היענות SLAM	10-12Hz	2.5-4.6Hz
דיוק מרחק סטטי	לא נבחן בזמן אמת	לא נבחן בזמן אמת
דיוק מרחק דינאמי	ללא נבחן בזמן אמת	לא נבחן בזמן אמת

מסקנות

הבנה עמוקה של מערכות SLAM

הפרויקט אפשר הבנה מעשית ותיאורטית של אלגוריתמים מתקדמים לשילוב IMU ו Lidar הכולל תהליכי סינון, התאמת סריקות ובניית גרף.

חשיבות של סימולציה מוקדמת:

ההרצות הביתיות היו שלב קריטי לזיהוי כשלים פוטנציאליים מראש, שלב זה היווה הכנה מקדימה ומעמיקה אשר פרסה את התשתית לעבודה עם הרכב בשלב הבא

שילוב בין תוכנה לחומרה במחשבי הרכב – האתגר המרכזי:

התאמה בין האלגוריתמים לגרסאות ROS עם החיבור לחיישנים אשר בעיות אלו בסיסן בתקלות תקשורת בין האלגוריתמים לחיישנים, הוכיחה את החשיבות של תיאום מלא לאורך כל המערכת.

ערך מוסף לפרויקט הרכב האוטונומי:

גם ללא הצלחה מלאה בהרצת זמן אמת, הממצאים והתיעוד עם פתרון חלק מהתקלות מספקים תשתית להמשך פיתוח ולהמשך עבודה וחקירה ברכב האוניברסיטה.

הצעות להמשך

שדרוג סביבת העבודה

מעבר לגרסאות עדכניות של ubuntu ו Ros2 אשר יאפשר שימוש באלגוריתמים עדכניים יותר עם תמיכה טובה יותר בקוד פתוח.

שימוש במאגרים מותאמים

המרה של מאגרי המידע באופן מלא לתמיכת Ros2 (כגון מאגרי ההקלטות מהרכב האוטונומי עצמו) או אפשרות של ביצוע פרויקט המרה מלא ממאגר Kitti ל Ros2 לצורך סימולציות אמינות.

שיפור התקשורת בין החיישנים לאלגוריתמים

המשך חקירת בעיית ההתאמה בתקשורת בין החיישנים לאלגוריתמים (ופתרון בעיות קישור ה TF-Tree), אשר תוביל להמשך פיתוח מעמיק בנושא הSLAM במחשבי הרכב.