

IRF830, IRF831, IRF832, IRF833

4.0A and 4.5A, 450V and 500V, 1.5 and 2.0 Ohm, N-Channel Power MOSFETs

July 1998

Features

- 4.0A and 4.5A, 450V and 500V
- $r_{DS(ON)} = 1.5\Omega$ and 2.0 Ω
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- · High Input Impedance
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Ordering Information

PART NUMBER	PACKAGE	BRAND
IRF830	TO-220AB	IRF830
IRF831	TO-220AB	IRF831
IRF832	TO-220AB	IRF832
IRF833	TO-220AB	IRF833

NOTE: When ordering, include the entire part number.

Description

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Formerly developmental type TA17415.

Symbol

Packaging

JEDEC TO-220AB

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IRF830, IRF831, IRF832, IRF833

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	IRF830	IRF831	IRF832	IRF833	UNITS
Drain to Source Voltage (Note 1)	500	450	500	450	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	500	450	500	450	V
Continuous Drain CurrentID	4.5	4.5	4.0	4.0	Α
$T_C = 100^{\circ}C \dots I_D$	3.0	3.0	2.5	2.5	Α
Pulsed Drain Current (Note 3)	18	18	16	16	Α
Gate to Source VoltageV _{GS}	±20	±20	±20	±20	V
Maximum Power DissipationPD	75	75	75	75	W
Linear Derating Factor	0.6	0.6	0.6	0.6	W/oC
Single Pulse Avalanche Energy Rating (Note 4)	300	300	300	300	mJ
Operating and Storage Temperature T _J , T _{STG}	-55 to 150	-55 to 150	-55 to 150	-55 to 150	oC
Maximum Temperature for Soldering					
Leads at 0.063in (1.6mm) from Case for 10s T _L	300	300	300	300	√ °C
Package Body for 10s, See Techbrief 334	260	260	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage IRF830, IRF832	BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$ (Figure 10)	500	NW.	100X 00X.	cQM
IRF831, IRF833	TW.	WWW.100 COM. TW 4		Min	100	1.CV
Gate to Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	2.0	WW	4.0	VV
Zero-Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	VE VI	25	μA
		$V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0 \text{V}, T_{J} = 125^{\circ}\text{C}$	-	W	250	μА
On-State Drain Current (Note 2) IRF830, IRF831	I _{D(ON)}	$V_{DS} > I_{D(ON) \times r_{DS(ON)MAX}}, V_{GS} = 10V$	4.5	- 1	MAN.	100 X
IRF832, IRF833	COM	CAL MANNIOUS COM	4.0	-	WW	Α
Gate to Source Leakage	I _{GSS}	V _{GS} = ±20V	W	-	±100	nA
Drain to Source On Resistance (Note 2) IRF830, IRF831	r _{DS(ON)}	V _{GS} = 10V, I _D = 2.5A (Figures 8, 9)	M.TV	1.3	1.5	Ω
IRF832, IRF833	100 X.C.	OM.TW WW.100X.C.	ONTIT	1.5	2.0	Ω
Forward Transconductance (Note 2)	9 _{fs}	V _{DS} ≥ 10V, I _D = 2.7A (Figure 12)	2.5	4.2	-	S
Turn-On Delay Time	t _d (ON)	$V_{DD} = 250V, I_D \approx 4.5A, R_G = 12\Omega, R_L = 54\Omega$	coM	10	17	ns
Rise Time	t _r 00	(Figures 17, 18). MOSFET Switching Times are Essentially Independent of Operating	-	15	23	ns
Turn-Off Delay Time	t _d (OFF)	Temperature.	-	33	53	ns
Fall Time	t _f	OX.COM.TW		16	23	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V_{GS} = 10V, I_D \approx 4.5A, V_{DS} = 0.8 x Rated BV _{DSS} $I_{g(REF)}$ = 1.5mA (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature.		22	32	nC
Gate to Source Charge	Q _{gs}			3.5	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			11	-	nC

IRF830, IRF831, IRF832, IRF833

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDIT	IONS	MIN	TYP	MAX	UNITS
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1.0MHz		COM	600	-	pF
Output Capacitance	C _{OSS}	See Figure 11			100	-	pF
Reverse-Transfer Capacitance	C _{RSS}	L.COM.TW			20	-	pF
Internal Drain Inductance	L _D	Contact Screw on Tab Sym to Center of Die Inter	ified MOSFET bol Showing the rnal Devices	07.C	3.5		nH
	WWW	Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	ctances PD	100X	4.5	T.TW	nH
Internal Source Inductance	L _S	Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad	ELS S	WW.10	7.5	COM	nH
Thermal Resistance Junction to Case	$R_{\theta JC}$	IMM. Ing. COM.	TW V	M.W.	4002	1.67	°C/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	Free Air Operation	TW	WAN	1.10	62.5	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	- 1	M.	4.5	Α
Pulse Source to Drain Current (Note 3)	I _{SDM}	Symbol Showing the Integral Reverse P-N Junction Diode	<u>-</u>	NN NN	180	A A A A A A A A A A A A A A A A A A A
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J = 25^{\circ}\text{C}$, $I_{SD} = 4.5\text{A}$, $V_{GS} = 0\text{V}$ (Figure 13)		-	1.6	V
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_{SD} = 4.5A$, $dI_{SD}/dt = 100A/\mu s$	180	350	760	ns
Reverse Recovered Charge	Q _{RR}	$T_J = 25^{\circ}C$, $I_{SD} = 4.5A$, $dI_{SD}/dt = 100A/\mu s$	0.96	2.2	4.3	μC

NOTES:

WW.100Y.COM.TW

- 2. Pulse test: pulse width $\leq 300 \mu s,$ duty cycle $\leq 2\%.$
- 3. Repetitive rating: pulse width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
- 4. V_{DD} = 50V, starting T_J = 25°C, L = 25mH, R_G = 25 Ω , peak I_{AS} = 4.5A. See Figures 15 and 16.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Typical Performance Curves Unless Otherwise Specified

Http://www. 100y. com. tw

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE **TEMPERATURE**

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs **CASE TEMPERATURE**

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

FIGURE 5. OUTPUT CHARACTERISTICS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Typical Performance Curves Unless Otherwise Specified (Continued)

FIGURE 6. SATURATION CHARACTERISTICS

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

WWW.100Y.C IRF830, IRF831, IRF832, IRF833

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

WWW.100Y.CO

WWW.1007 WWW.100

WWW.1

JOY.COM

Typical Performance Curves Unless Otherwise Specified (Continued)

Http://www. 100y. com. tw

WW.100Y.COM.TW

COM.TW

FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT

FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE

WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Test Circuits and Waveforms

FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 16. UNCLAMPED ENERGY WAVEFORMS

FIGURE 17. SWITCHING TIME TEST CIRCUIT

FIGURE 18. RESISTIVE SWITCHING WAVEFORMS

FIGURE 19. GATE CHARGE TEST CIRCUIT

FIGURE 20. GATE CHARGE WAVEFORMS