Module Interface Specification for Software Engineering

Team 8 – Rhythm Rangers

Ansel Chen Muhammad Jawad Mohamad-Hassan Bahsoun Matthew Baleanu Ahmed Al-Hayali

January 13, 2025

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS] [Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Rev	ision I	History									
2	Syn	nbols,	Abbreviations and Acronyms									
3	Introduction											
4	Not	ation										
5	Mo	dule D	Decomposition									
6	MIS	MIS of User Input Interface										
	6.1		Input Interface									
	6.2											
	6.3	Syntax	X									
		6.3.1	Exported Constants									
		6.3.2	Exported Access Programs									
	6.4	Seman	$\operatorname{ntics}^{\circ}$									
		6.4.1	State Variables									
		6.4.2	Environment Variables									
		6.4.3	Assumptions									
		6.4.4	Access Routine Semantics									
		6.4.5	Local Functions			•						
7	MIS	S of Fi	irst-Match Text Field Input Module									
	7.1		Match Text Field Input Module									
	7.2	Uses										
	7.3		X									
		7.3.1	Exported Constants									
		7.3.2	Exported Access Programs									
	7.4	Seman	$\operatorname{ntics}^{\circ}$									
		7.4.1	State Variables									
		7.4.2	Environment Variables									
		7.4.3	Assumptions									
		7.4.4	Access Routine Semantics									
		7.4.5	Local Functions									
8	MIS	S of Sp	potify URL Input Module									
	8.1	_	fy URL Input Module									
	8.2											
	8.3		IX									
	-	8.3.1	Exported Constants									
			Exported Access Programs			_						

	8.4	Seman	tics	7
		8.4.1	State Variables	7
		8.4.2	Environment Variables	7
		8.4.3	Assumptions	7
		8.4.4	Access Routine Semantics	7
		8.4.5	Local Functions	
9	MIS	of Au	idio File Input Module	9
	9.1	Audio	File Input Module	9
	9.2	Uses		9
	9.3	Syntax	ς	9
		9.3.1	Exported Constants	9
		9.3.2	Exported Access Programs	9
	9.4	Seman	tics	9
		9.4.1	State Variables	9
		9.4.2	Environment Variables	9
		9.4.3	Assumptions	9
		9.4.4	Access Routine Semantics	9
		9.4.5	Local Functions	10
10	MIS	of Sp	otify Query Search & Select Input Module	11
	10.1	Spotify	y Query Search & Select Input Module	11
	10.2	Uses		11
	10.3	Syntax	α	11
		10.3.1	Exported Constants	11
		10.3.2	Exported Access Programs	11
	10.4	Seman	tics	11
		10.4.1	State Variables	11
		10.4.2	Environment Variables	11
		10.4.3	Assumptions	11
			Access Routine Semantics	
		10.4.5	Local Functions	12
11	App	endix		14

3 Introduction

The following document details the Module Interface Specifications for [Fill in your project name and description —SS]

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at [provide the url for your repo —SS]

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Software Engineering.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Software Engineering uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Software Engineering uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding	
	User Input Interface
	First-Match Text Field Input Module
	Spotify URL Input Module
Behaviour-Hiding	Audio File Input Module
	Spotify Query Search & Select
	Tempo (BPM) Feature Extraction Module
	Key and Scale Feature Extraction Module
	Instrument Type Feature Extraction Module
	Vocal Gender Feature Extraction Module
	Dynamic Range Feature Extraction Module
	Instrumentalness Feature Extraction Module
	Contour Feature Extraction Module
Mood Feature Extraction Module	
Recommendation Module	
	Program Results Interface
	Database
Software Decision	Pre-Processing Module
	Spotify API
	Deezer API
	Genre Fetching

Table 1: Module Hierarchy

6 MIS of User Input Interface

6.1 User Input Interface

6.2 Uses

- First-Match Text Field Input Module
- Spotify URL Input module
- Audio File Input Module
- Spotify Query Search & Select

6.3 Syntax

6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
Consolidate	Up to 4 collection(s)	Merged collection of	_
Inputs	of reference(s) to	track references	
	$\operatorname{track}(s)$		

6.4 Semantics

6.4.1 State Variables

• Collection of track reference(s)

6.4.2 Environment Variables

6.4.3 Assumptions

N/A

6.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

6.4.5 Local Functions

7 MIS of First-Match Text Field Input Module

7.1 First-Match Text Field Input Module

The text field input is turned into a multi-line string where each line is a spotify search query and a reference is generated for the first match of every query.

7.2 Uses

7.3 Syntax

7.3.1 Exported Constants

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
Input But-	Text Field/Multi-line	Collection of song ref-	N/A
ton Press	string	erences corresponding	
		to each line in the in-	
		put	

7.4 Semantics

7.4.1 State Variables

• Collection of reference(s) to track(s)

7.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

- Spotify Client ID
- Spotify Client Secret
- Screen Display
- Keyboard (physical or digital) for text input

7.4.3 Assumptions

N/A

7.4.4 Access Routine Semantics

```
[accessProg —SS]():
```

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

7.4.5 Local Functions

8 MIS of Spotify URL Input Module

8.1 Spotify URL Input Module

User inputs a spotify URL and a reference is generated through the input.

8.2 Uses

•

8.3 Syntax

8.3.1 Exported Constants

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
On Input	Spotify URL Song	Song reference	Invalid
Button			Spotify
Press			URL

8.4 Semantics

8.4.1 State Variables

•

8.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

8.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

8.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

8.4.5 Local Functions

9 MIS of Audio File Input Module

9.1 Audio File Input Module

User inputs an audio file to the system to analyze.

9.2 Uses

•

9.3 Syntax

9.3.1 Exported Constants

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
On Input	Audio File	Song reference	Invalid
Button			File Type
Press			

9.4 Semantics

9.4.1 State Variables

•

9.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

9.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

9.4.4 Access Routine Semantics

[accessProg —SS]():

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

9.4.5 Local Functions

10 MIS of Spotify Query Search & Select Input Module

10.1 Spotify Query Search & Select Input Module

User inputs a song and that is turned into a spotify search query where the top 10 matches are available for user to select

10.2 Uses

•

10.3 Syntax

10.3.1 Exported Constants

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
On Input	Audio File	Song reference	Invalid
Button			File Type
Press			

10.4 Semantics

10.4.1 State Variables

•

10.4.2 Environment Variables

[This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

10.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

10.4.4 Access Routine Semantics

[accessProg —SS]():

• transition: [if appropriate —SS]

• output: [if appropriate —SS]

• exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

10.4.5 Local Functions

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

11 Appendix

 $[{\bf Extra~information~if~required~-\!SS}]$

Appendix — Reflection

[Not required for CAS 741 projects—SS]

The information in this section will be used to evaluate the team members on the graduate attribute of Problem Analysis and Design.

The purpose of reflection questions is to give you a chance to assess your own learning and that of your group as a whole, and to find ways to improve in the future. Reflection is an important part of the learning process. Reflection is also an essential component of a successful software development process.

Reflections are most interesting and useful when they're honest, even if the stories they tell are imperfect. You will be marked based on your depth of thought and analysis, and not based on the content of the reflections themselves. Thus, for full marks we encourage you to answer openly and honestly and to avoid simply writing "what you think the evaluator wants to hear."

Please answer the following questions. Some questions can be answered on the team level, but where appropriate, each team member should write their own response:

- 1. What went well while writing this deliverable?
- 2. What pain points did you experience during this deliverable, and how did you resolve them?
- 3. Which of your design decisions stemmed from speaking to your client(s) or a proxy (e.g. your peers, stakeholders, potential users)? For those that were not, why, and where did they come from?
- 4. While creating the design doc, what parts of your other documents (e.g. requirements, hazard analysis, etc), it any, needed to be changed, and why?
- 5. What are the limitations of your solution? Put another way, given unlimited resources, what could you do to make the project better? (LO_ProbSolutions)
- 6. Give a brief overview of other design solutions you considered. What are the benefits and tradeoffs of those other designs compared with the chosen design? From all the potential options, why did you select the documented design? (LO_Explores)