Learning Object Representations by Mixing Scenes

Master Thesis Presentation Lukas Zbinden May 23rd, 2019

Supervisor: Prof. Dr. Paolo Favaro
Computer Vision Group, Institute of Computer Science
University of Bern

Agenda

- Research Question
- Our approach: Learning Object Representations by Mixing Scenes (LORBMS)
- Prior Work
- Model and Architecture
- Experimental Results
- Conclusions and Future Work

Datasets used by previous works:

Datasets used by previous works:

CelebA

Can we learn directly from natural image data?

Potential: unsupervised learning on Internet-scale data (i.e. billions of images)

Can we learn directly from natural image data?

Potential: unsupervised learning on internet-scale data (i.e. billions of images)

MS COCO

Our thesis: learn directly from natural image data

- → devise an unsupervised representation learning method
- → learn object representations by mixing everyday scenes

The proposed LORBMS system

1. natural dataset

images

2. pick similar 3. LORBMS: mix images, generate new 4. new mixed scene

LORBMS Concept

The 4 object assumption

LORBMS Concept

Prior Work

Disentangling Factors of Variation by Mixing Them, Hu et al.

Pose/smile

Idea: leverage Hu's method and apply to natural data

- Encoder

- Encoder + Decoder = Generator

2x autoencoder

LORBMS Training: GAN & Loss Functions

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{I_{ref} \sim p_{data}} [log D(I_{ref})] +$$

$$\mathbb{E}_{I_{i} \sim p_{data}} [log (1 - D(G(I_{ref}, I_{q1}, I_{q2}, I_{q3}, I_{q4})))]$$

Generator joint loss

$$\mathcal{L}_{G} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}^{G} + \lambda_{Cls} \mathcal{L}_{Cls}$$

Discriminator loss

$$\mathcal{L}_D = \mathcal{L}_{real}^D + \mathcal{L}_{fake}^D$$

Latent Space Mixing of Scenes

Latent Space Mixing of Scenes

- aim: assist the network in learning, mix a meaningful scene
- two step approach:
 - 1. Preprocessing: Visual similarity detection algorithm
 - 2. Training: Latent space scene mixing algorithm

Visual Similarity Detection Algorithm

Latent Space Sence Mixing Algorithm

- at training time:
 - → mix the reference image with up to 3 quadrant replacement images
 - → constraint #1: at least one quadrant remains from reference image
 - → constraint #2: at least one quadrant is replaced
 - → constraint #3: only "sufficiently similar" replacements occur

Latent Space Sence Mixing Algorithm

- One quadrant

- Two quadrants

Latent Space Sence Mixing Algorithm

- Three quadrants

- Qualitative and quantitative evaluations

- Mixed scene renderings

- Mixed scene renderings Input

- Mixed scene renderings - failings

Object transfer

+ 0010 =

caption by PowerPoint

«A truck on a city street»

Object transfer

«A truck on a city street»

+ 1100 =

«A group of people standing around a plane»

- Object transfer

«A truck on a city street»

«A group of people standing around a plane»

«A truck driving down a dirt road»

«A picture containing sky, indoor»

Object transfer - failings

+

+ 1010 =

«A blurry image of a kitchen»

+

0010 =

«A group of people on a beach»

4

+ 0101 =

«A blurry image of a person»

- FID of generated images

	Mean	SD	Best
FID	158.5	±10.9	137.7
IS	6.9	± 0.5	7.6

Random

Model	Accuracy	SD	Cls
Random	10.0%	-	-
Random encoder	43.4%	± 0.4	17,290
Random encoder (finetuned)	56.5%	± 0.6	17,290
STL-10 encoder	78.7%	± 0.1	17,290
PASCAL encoder	47.1%	± 0.2	17,290
STL-10 AlexNet	60.9%	± 0.1	40,970
ImageNet AlexNet	62.4%	± 0.3	40,970
Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970
Swersky et al. [69]	70.1%	± 0.6	-
Ours (discriminator)	62.8%	± 0.3	120,970
Ours (discriminator finetuned)	62.6%	± 0.2	120,970
Ours (encoder)	36.5%	± 0.2	17,290
Ours (encoder finetuned)	54.2%	± 0.2	17,290
Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970
Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970

		Model	Accuracy	SD	Cls
		Random	10.0%	-	-
Random	_	Random encoder	43.4%	± 0.4	17,290
		Random encoder (finetuned)	56.5%	± 0.6	17,290
		STL-10 encoder	78.7 %	± 0.1	17,290
Supervised		PASCAL encoder	47.1%	± 0.2	17,290
Supervised	1	STL-10 AlexNet	60.9%	± 0.1	40,970
		ImageNet AlexNet	62.4%	± 0.3	40,970
	_	Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970
		Swersky et al. [69]	70.1%	± 0.6	-
		Ours (discriminator)	62.8%	± 0.3	120,970
		Ours (discriminator finetuned)	62.6%	± 0.2	120,970
		Ours (encoder)	36.5%	± 0.2	17,290
		Ours (encoder finetuned)	54.2%	± 0.2	17,290
	•	Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970
		Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970

	Model	Accuracy	SD	Cls
Γ	Random	10.0%	-	-
\dashv	Random encoder	43.4%	± 0.4	17,290
	Random encoder (finetuned)	56.5%	± 0.6	17,290
	STL-10 encoder	78.7%	± 0.1	17,290
	PASCAL encoder	47.1%	± 0.2	17,290
1	STL-10 AlexNet	60.9%	± 0.1	40,970
	ImageNet AlexNet	62.4%	± 0.3	40,970
	Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970
	Swersky et al. [69]	70.1%	± 0.6	-
	Ours (discriminator)	62.8%	± 0.3	120,970
	Ours (discriminator finetuned)	62.6%	± 0.2	120,970
	Ours (encoder)	36.5%	± 0.2	17,290
	Ours (encoder finetuned)	54.2%	± 0.2	17,290
	Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970
	Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970
		Random encoder Random encoder (finetuned) STL-10 encoder PASCAL encoder STL-10 AlexNet ImageNet AlexNet Jenni & Favaro [34] (frozen) Swersky et al. [69] Ours (discriminator) Ours (discriminator finetuned) Ours (encoder) Ours (encoder finetuned) Ours (knowledge transfer [57], discriminator)	Random 10.0% Random encoder 43.4% Random encoder (finetuned) 56.5% STL-10 encoder 78.7% PASCAL encoder 47.1% STL-10 AlexNet 60.9% ImageNet AlexNet 62.4% Jenni & Favaro [34] (frozen) 76.9% Swersky et al. [69] 70.1% Ours (discriminator) 62.8% Ours (discriminator finetuned) 62.6% Ours (encoder) 36.5% Ours (encoder finetuned) 54.2% Ours (knowledge transfer [57], discriminator) 42.9%	Random 10.0% - Random encoder 43.4% ± 0.4 Random encoder (finetuned) 56.5% ± 0.6 STL-10 encoder 78.7% ± 0.1 PASCAL encoder 47.1% ± 0.2 STL-10 AlexNet 60.9% ± 0.1 ImageNet AlexNet 62.4% ± 0.3 Jenni & Favaro [34] (frozen) 76.9% ± 0.1 Swersky et al. [69] 70.1% ± 0.6 Ours (discriminator) 62.8% ± 0.3 Ours (discriminator finetuned) 62.6% ± 0.2 Ours (encoder) 36.5% ± 0.2 Ours (encoder finetuned) 54.2% ± 0.2 Ours (knowledge transfer [57], discriminator) 42.9% ± 0.3

		Model	Accuracy	SD	Cls
	Γ	Random	10.0%	-	-
Random	$ \downarrow $	Random encoder	43.4%	± 0.4	17,290
		Random encoder (finetuned)	56.5%	± 0.6	17,290
		STL-10 encoder	78.7%	± 0.1	17,290
Cupariond		PASCAL encoder	47.1%	± 0.2	17,290
Supervised	1	STL-10 AlexNet	60.9%	± 0.1	40,970
		ImageNet AlexNet	62.4%	± 0.3	40,970
SOTA		Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970
301A	1	Swersky et al. [69]	70.1%	± 0.6	-
		Ours (discriminator)	62.8%	± 0.3	120,970
Ours		Ours (discriminator finetuned)	62.6%	± 0.2	120,970
	1	Ours (encoder)	36.5%	± 0.2	17,290
		Ours (encoder finetuned)	54.2%	± 0.2	17,290
		Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970
		Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970

		Model	Accuracy	SD	Cls
	Γ	Random	10.0%	-	-
Random	_	Random encoder	43.4%	± 0.4	17,290
		Random encoder (finetuned)	56.5%	± 0.6	17,290
		STL-10 encoder	78.7 %	± 0.1	17,290
Cupamicad		PASCAL encoder	47.1%	± 0.2	17,290
Supervised	7	STL-10 AlexNet	60.9%	± 0.1	40,970
		ImageNet AlexNet	62.4%	± 0.3	40,970
SOTA		Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970
301A	1	Swersky et al. [69]	70.1%	± 0.6	-
		Ours (discriminator)	62.8%	± 0.3	120,970
Ouro		Ours (discriminator finetuned)	62.6%	± 0.2	120,970
Ours	1	Ours (encoder)	36.5%	± 0.2	17,290
Ours*		Ours (encoder finetuned)	54.2%	± 0.2	17,290
		Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970
	1	Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970

Random 10.0% - -			Model	Accuracy	SD	Cls		
Random encoder (finetuned) 56.5% ±0.6 17,290 STL-10 encoder 78.7% ±0.1 17,290 PASCAL encoder 47.1% ±0.2 17,290 STL-10 AlexNet 60.9% ±0.1 40,970 ImageNet AlexNet 62.4% ±0.3 40,970 Jenni & Favaro [34] (frozen) 76.9% ±0.1 40,970 Swersky et al. [69] 70.1% ±0.6 - Ours (discriminator) 62.8% ±0.3 120,970 Ours (encoder) 36.5% ±0.2 17,290 Ours (encoder finetuned) 54.2% ±0.2 17,290 Ours (knowledge transfer [57], discriminator) 42.9% ±0.3 40,970 Ours*		Γ	Random	10.0%	-	-		
Supervised STL-10 encoder 78.7%	Random	\dashv	Random encoder	43.4%	± 0.4	17,290		
Supervised PASCAL encoder STL-10 AlexNet 60.9% ±0.1 40,970			Random encoder (finetuned)	56.5%	± 0.6	17,290		
STL-10 AlexNet			STL-10 encoder	78.7%	± 0.1	17,290		
Sota Sill-10 AlexNet 60.9% ±0.1 40,970	Supervised		PASCAL encoder	47.1%	± 0.2	17,290		
SOTA	Supervised	Ĭ	STL-10 AlexNet	60.9%	± 0.1	40,970		
Swersky et al. [69] 70.1% ± 0.6 $-$ Ours (discriminator) 62.8% ± 0.3 $120,970$ Ours (discriminator finetuned) 62.6% ± 0.2 $120,970$ Ours (encoder) 36.5% ± 0.2 $17,290$ Ours (encoder finetuned) 54.2% ± 0.2 $17,290$ Ours (knowledge transfer [57], discriminator) 42.9% ± 0.3 $40,970$			ImageNet AlexNet	62.4%	± 0.3	40,970		
Ours (discriminator) 62.8% ± 0.3 $120,970$ Ours (discriminator finetuned) 62.6% ± 0.2 $120,970$ Ours (encoder) 36.5% ± 0.2 $17,290$ Ours (encoder finetuned) 54.2% ± 0.2 $17,290$ Ours (knowledge transfer [57], discriminator) 42.9% ± 0.3 $40,970$	SOTA		Jenni & Favaro [34] (frozen)	76.9%	± 0.1	40,970		AlovNot
Ours Ours (discriminator finetuned) 62.6% ± 0.2 120,970 Ours (encoder) 36.5% ± 0.2 17,290 Ours (encoder finetuned) 54.2% ± 0.2 17,290 Ours (knowledge transfer [57], discriminator) 42.9% ± 0.3 40,970	301A	1	Swersky et al. [69]	70.1%	± 0.6	-	/ /	TICKINCL
Ours (encoder) $36.5\% \pm 0.2 17,290$ Ours (encoder finetuned) $54.2\% \pm 0.2 17,290$ Ours (knowledge transfer [57], discriminator) $42.9\% \pm 0.3 40,970$			Ours (discriminator)	62.8%	± 0.3	120,970		
Ours (encoder) $0 = \frac{0.2 \times (0.2 \times 17,290)}{0 \times (0.2 \times 17,290)}$ Ours (encoder finetuned) $0 = \frac{0.5\%}{0.2 \times 0.2} \times \frac{17,290}{17,290}$ Ours (knowledge transfer [57], discriminator) $42.9\% \times 0.3 \times 40,970$	Ouro		Ours (discriminator finetuned)	62.6%	± 0.2	120,970		
Ours (knowledge transfer [57], discriminator) 42.9% ± 0.3 $40,970$	Ours	1	Ours (encoder)	36.5%	± 0.2	17,290		
Ouis -			Ours (encoder finetuned)	54.2%	± 0.2	17,290		
Ours (knowledge transfer [57], encoder) $38.5\% \pm 0.1 \mid 40,970 \mid 4$	∩urs*		Ours (knowledge transfer [57], discriminator)	42.9%	± 0.3	40,970		
	Ouis		Ours (knowledge transfer [57], encoder)	38.5%	± 0.1	40,970		

- Ablation Analysis

$$\mathcal{L}_{G} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}^{G} + \lambda_{Cls} \mathcal{L}_{Cls}$$

- Ablation Analysis on STL-10, after 10 epochs

- Ablation Analysis with FID on COCO test set, after 10 epochs

Conclusions

- novel method for unsupervised representation learning
- learns directly from Internet-scale natural image data by mixing scenes
- experiments demonstrate capability of rendering realistic scenes
 - degree of realism offers room for improvement
- learnt representations for TL not at SOTA level

Future Work

- more experiments could yield substantial improvements considering:
 - → standard architectures, increased model capacity, more data augmentations, larger hyperparameter search
- introduce explicit notion of object location
- train model iteratively on datasets of increasing complexity
 - → finetuning across multiple datasets
- later: disentangle not only objects but its attributes as well

Thank you for your attention.

LORBMS Model Architecture

- Classifier

Visual Similarity Detection Algorithm

k-means

LORBMS Model Architecture

- Vanilla GAN

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)} [log D(x)] + \mathbb{E}_{z \sim p_{z}(z)} [log (1 - D(G(z)))]$$

- LORBMS GAN

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{I_{ref} \sim p_{data}} [\log D(I_{ref})] +$$

$$\mathbb{E}_{I_{j} \sim p_{data}} [log(1 - D(G(I_{ref}, I_{q1}, I_{q2}, I_{q3}, I_{q4})))]$$

- Transfer learning on STL-10: Knowledge transfer from LORBMS to AlexNet

Loss functions

$$\mathcal{L}_{G} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}^{G} + \lambda_{Cls} \mathcal{L}_{Cls}$$

$$\mathcal{L}_{rec} = \mathbb{E}_{I_{ref} \sim p_{data}(I_{ref})} \left[\|I_{ref} - \hat{I}_{ref}\|_p + \|I_{ref} - I'_{ref}\|_p \right]$$

$$\mathcal{L}_{adv}^{G} = \mathbb{E}_{I_{j} \sim p_{data}(I_{j})} \big[\mathcal{L}_{bce}(D(G(I_{ref}, I_{q1}, I_{q2}, I_{q3}, I_{q4})), 1) \big]$$

$$\mathcal{L}_{\textit{Cls}} = \mathbb{E}_{\textit{I}_{j} \sim p_{\textit{data}}(\textit{I}_{j})} \big[\sum_{j} \lambda_{j} \mathcal{L}_{\textit{bce}}(\hat{y}^{j}, y^{j}) \big]$$

$$\mathcal{L}_{bce}(p, y) = -(ylog(p) + (1 - y)log(1 - p))$$

- Object transfer

Visual Similarity Detection Algorithm

- the search for "quadrant replacement" candidates

Challenges

- unsupervised learning
- learning object representations given natural images
- disentangle factors of variation
- unaligned natural dataset
- generalization (inference)