ACMT Group of Colleges

Polytechnic- 1st Year/ 1st Sem

Physics Notes

By-Alit Kumar

UNIT - I: UNITS AND DIMENSIONS

मात्रक (Unit):

- किसी भी भौतिक राशि को मापने के लिए एक सदृश मानक का चुनाव किया जाता है, और फिर इसके साथ उस राशि की तुलना की जाती है।
- इसी तुलनात्मक मानक को उस भौतिक राशि का मात्रक कहा जाता है।
- िकसी भौतिक राशि को व्यक्त करने के लिए कम से कम संख्यात्मक मान एवं इकाई (मात्रक) की आवश्यकता होती है।

भौतिक राशियाँ (Physical Quantity)

- वैसी राशियाँ जिनकी माप की जा सके, उन्हें भौतिक राशियाँ कहा जाता है।
- भौतिक राशियाँ दो प्रकार की होती हैं-
- (i) मूल राशियाँ (ii) व्युत्पन्न राशियाँ।
- मात्रकों की निम्नलिखित पद्धितियाँ हैं -
 - 1. सेंटीमीटर-ग्राम-सेकेंड पद्धति (CGS System):
- इस पद्धित में लंबाई, द्रव्यमान तथा समय के मात्रक क्रमशः सेंटीमीटर, ग्राम और सेकेंड है।
 - 2. फुट-पौण्ड-सेकेण्ड पद्धति (FPS System) :
- इस पद्धिति में लंबाई, द्रव्यमान तथा समय के मात्रक क्रमशः फुट, पौण्ड तथा सेकेण्ड है।
 - 3. मीटर-किलोग्राम-सेकेण्ड पद्धति (MKS System):
- इस पद्धिति में लम्बाई, द्रव्यमान एवं समय का मात्रक क्रमशः मीटर, किलोग्राम तथा सेकेण्ड है।
 - 4. अन्तर्राष्ट्रीय पद्धति मात्रक (SI/International System of Units) :
- यह MKS पद्धिति का विकसित रूप है। आजकल इसी पद्धित का प्रयोग किया जा रहा है।
- तौल एवं माप के सात मूल मात्रक तय किया गया है जो इस प्रकार हैं –

– SI के मूल मात्रक

क्र.सं.	भौतिक राशियाँ	नाम	चिन्ह
1.	लम्बाई	मीटर	m
2.	द्रव्यमान	किलोग्रा म	kg
3.	समय	सेकंड	S
4.	विद्युत् धरा	एम्पेयर	A
5.	ताप	केल्विन	k
6.	ज्योति तीव्रता	कण्डेला	cd
7.	पदार्थ का परिमाण	मोल	Mol

प्रमुख मात्रक

- (i) प्रकाश वर्ष (Light Year):
- प्रकाश द्वारा निर्वात में एक वर्ष में तय की गई दूरी को प्रकाश वर्ष कहा जाता है।
- 1 प्रकाश वर्ष = 9.46 x 10¹⁵ मीटर होता है।
 - (ii) खगोलीय मात्रक (Astronomical Unit):
- पृथ्वी तथा सूर्य के बीच की औसत दूरी को खगोलीय मात्रक कहा जाता है।
- 1 खगोलीय मात्रक = 1.496 x 10¹¹ मीटर होता है।
 - (iii) पारसेक (पारलैक्टिक सेकेंड):
- यह दूरी का सबसे बड़ा मात्रक है।
- 1 पारसेक = 3.08 x 10¹⁶ मीटर = 3.26 प्रकाश वर्ष होता है। (iv) फेदम:
- इसका प्रयोग समुद्र की गहराई मापने के लिए किया जाता है।
- 1 फैदम = 6 फीट = 1.828 मीटर,
- 1 **केबल** = 100 फैदम होता है।
 - (v) समुद्री मील:
- इनका प्रयोग समुद्र में दूरी मापने में होता है।
- 1 समुद्री मील = 1852 मीटर होता है।

: लम्बाई के मात्रक

1 पारसेक = 3.26 प्रकाश वर्ष।
1 प्रकाश वर्ष = 9.46 x 10¹⁵ मीटर।
1 खगोलीय मात्रक = 1.496 x 10¹¹ मीटर।
1 मील= 1760 गज = 5280 फीट = 1.6 किमी।
1 नाटिकल मील = 1852 मीटर।
1 स्टेटयूट मील = 1609 मीटर।
1 फर्मी = 10⁻¹⁵ मीटर।
1 ऑग्स्ट्रम मात्रक = 10⁻¹⁰ मीटर।
1 फेदम = 6 फीट.

द्रव्यमान के प्रमुख मात्रक

1 किलोग्राम = 1000 ग्राम

1 स्लग = 14.59 किलोग्राम

1 स्टोन = 14.50 किलोग्राम

1 ग्रेन = 7.776 ग्राम

1 एटॉमिक द्रव्यमान मात्रक (amu) = 1.6×10^{-27} कि.ग्रा.

1 क्विंटल = 100 किलोग्राम

1 पाउण्ड = 453.59 ग्राम

विमीय विशलेषण एवं इसके अनुप्रयोग (Uses Of Dimension) -

- 1. किसी समीकरण की शुद्धता (विमीय संगती) की जाँच करना |
- 2. विभिन्न भौतिक राशियों के मध्य सम्बन्ध (Relation) व्युत्पन्न (Find) निकालना |
- 3. किसी समीकरण (Equation) में नियतान्को (Constant) और चरों (Variables) की विमाएँ ज्ञात करना

Example :- 1. गति के प्रथम समीकरण की विमीय संगति की जाँच कीजिये ?

Ans. :- जैसा कि हम जानते है - V = u + at गति का प्रथम समीकरण है

V = u + at

जहाँ - V= किसी वस्तु का अंतिम वेग , u= वस्तु का प्रारंभिक वेग , a= वस्तु का त्वरण , t= समय

चूँकि हमें विमीय संगति की जाँच करनी है अर्थात समीकरण की दोनों तरफ विमा बराबर करनी है , इस लिए गति के प्रथम समीकरण के दोनों तरफ विमा लेने पर -

$$[V] = [u] + [a][t]$$

उपरोक्त विमीय समीकरण में V, u, a व t की विमा रखनें पर -

$$[M^0 L^1 T^-1] = [M^0 L^1 T^-1] + [M^0 L^1 T^-2][T^1]$$

यहाँ ध्यान दें कि चिन्ह (^) का मतलब घात है

$$[M^0 L^1 T^-1] = [M^0 L^1 T^-1] + [M^0 L^1 T^-1]$$

$$[M^0 L^1 T^-1] = 2[M^0 L^1 T^-1]$$

Note :- विमीय विश्लेषण विधि में नियतांक (Constant) गुणांकों का कोई मतलब नहीं होता

है हम इन्हें हटा सकते है।

विमीय समीकरण के सीमा बंधन:

हम विमीय समीकरण के उपयोग के बारे में पढ़ चुके है जिसमे हमने देखा की विमीय समीकरण बहुत ही उपयोगी है लेकिन हर चीज की बंधन सीमा है या कमियां है , यहाँ हम विमीय समीकरण के बंधन सीमा के बारे में पढ़ेंगे की इनकी क्या क्या कमियाँ है।

- 1. विमीय समीकरण विधि द्वारा उन सूत्रों या समीकरणों का व्युत्पन्न नहीं किया जा सकता जिनमे जोड़ या घटाना आता है।
- 2. वे स्थिरांक जिनकी विमा नहीं होती है अर्थात जो स्थिरांक विमहीन होते है उनको विमीय समीकरण द्वारा प्राप्त नहीं किया जा सकता है।
- 3. उन सूत्रों का व्युत्पन्न विमीय समीकरण से नहीं किया जा सकता जिनमे त्रिकोणमितीय , लघुगणक और चर घातांकी फलन उपस्थित होते है।

UNIT -2: Force & Motion

अदिश एवं सदिश राशियाँ :

भौतिक राशि: - सामान्य शब्दों में वे सभी राशियाँ जिनको नापा जा सकता है भौतिक राशियाँ कहलाती है। या ये कहें जिस राशि का कोई मान होता है अथवा जिसका कोई मात्रक होता है वह भौतिक राशियाँ कहलाती है।

किसी भी भौतिक राशि को पूर्णतः व्यक्त करने के लिए दिशा की आवश्यकता होती है तथा दिशा के आधार पर भौतिक **राशियों** को दो भागों में बांटा जाता है।

1) अदिश राशियाँ या स्केलर राशियाँ (2) सदिश राशियाँ या वेक्टर राशियाँ :

(1). अदिश या स्केलर राशियाँ:

वह भौतिक राशियाँ जिन्हें व्यक्त करने के लिए केवल परिमाण magnitude की आवश्यकता होती है direction दिशा कि नहीं अदिश राशियाँ कहलाती है।

उदाहरण के लिए दूरी, चाल, द्रव्यमान, समय, कार्य, ऊर्जा, ताप, आदि।

2). सदिश राशियाँ या वेक्टर राशियाँ

वेक्टर परिभाषा:- वह भौतिक राशियाँ जिन्हें व्यक्त करने के लिए परिमाण व दिशा दोनों की आवश्यकता होती है सदिश राशियाँ कहलाती है। उदाहरण के लिए विस्थापन, वेग, त्वरण, बल, रेखीय, संवेग, बल आधूर्ण आदि।

यदि कोई व्यक्ति 10 km की दूरी तय करता है तो इसमें 10 माप है एवं KM मात्रक लेकिन अगर यह कहा जाए कि कोई व्यक्ति 10 km की दूरी दक्षिण दिशा की तरफ तय करता है तो पहले वाली स्थिति में 10 किलोमीटर दूरी है तथा दूसरी स्थिति में 10 किलोमीटर विस्थापन है जिसमें एक अदिश राशि है एवं दूसरी सदिश राशि है क्योंकि उसमें दिशा का बोध हुआ है।

लेकिन कुछ भौतिक राशियाँ ऐसी भी हैं जिनमें दिशा के बारे में बताया जाता है परंतु फिर भी वे सदिश राशि नहीं होती।

उदाहरण के लिए विद्युत धारा इसमें दिशा का ज्ञान होता है लेकिन फिर भी इसे सदिश राशि नहीं कहा जाता है तो इसका अर्थ यह हुआ कि सदिश राशि के लिए परिमाण एवं दिशा के अलावा किसी अन्य चीज जिसकी आवश्यकता है सदिश राशि की पूर्ण परिभाषा इस प्रकार हैं:−

वे भौतिक राशियाँ जिनमें परिमाण एवं दिशा दोनों होते हैं तथा जो vector के योग के नियमों का पालन करती है सदिश राशियाँ कहलाती है।

वेग (velocity): किसी वस्तु के विस्थापन की दर को या एक निश्चित दिशा में प्रति सेकंड वस्तु द्वारा तय की दूरी को वेग कहते हैं. यह एक सदिश राशि है. इसका ... S.I. मात्रक मी./से. है.

त्वरण (acceleration): किसी वस्तु के वेग में परिवर्तन की दर को त्वरण कहते हैं. इसका S.I. मात्रक मी/से^ 2 है. यदि समय के साथ वस्तु का वेग घटता है तो त्वरण ऋणात्मक होता है, जिसे मंदन (retardation) कहते हैं.

न्यूटन का पहला गित-नियम (newton's first law of motion): यदि कोई वस्तु विराम अवस्था में है तो वह विराम अवस्था में रहेगी या यदि वह एक समान चाल से सीधी . खा में चल रही है, तो वैसी हे चलती रहेगी, जब तक उस पर कोई बाहरी बल लगाकर उसकी वर्तमान अवस्था में परिवर्तन न किया जाए

न्यूटन का द्वितीय गति नियम (newton's second law of motion): किसी वस्तु के संवेग में परिवर्तन की दर उस वस्तु पर आरोपित बल के समानुपाती होती है. तथा संवेग परिवर्तन की दिशा में होता हैं अब यदि आरोपित बल F, बल की दिशा में उत्पन्न त्वरण a एवं वस्तु का द्रव्यमान m, f = ma

न्यूटन का तृतीय गति नियम (newton's third law of motion): प्रत्येक क्रिया के बराबर, परन्तु विपरीत दिशा में प्रतिक्रिया होती है.

उदाहरणः

- (i) बंदूक से गोली चलाने पर, चलाने वाले को पीछे की ओर धक्का लगना
- (ii): नाव से किनारे पर कूदने पर पीछे की ओर हट जाना
- (iii): रॉकेट को उड़ाने में.

बल की परिभाषाः बल वह बाहय कारक है जो किसी वास्तु की प्रारम्भिक अवस्था में परिवर्तन करता है या परिवर्तन करने की चेष्टा करता है. बल एक सदिश राशि है. इसका S.I. मात्रक न्यूटन है.

प्रक्षेप्य गित (projectile motion): गित का एक रूप है, जहाँ किसी पिण्ड (जिसे प्रक्षेप्य कहा जाता है) को पृथ्वी की सतह के निकट क्षितिज से किसी कोण पर प्रक्षेपित किया (फेंका) जाता है और यह गुरुत्वाकर्षण के अधीन वक्रीय गित करता है (विशेष रूप से, वायु प्रतिरोध के प्रभाव नगण्य माना जाता

है)। प्रक्षेप्य के पथ को प्रक्षेप्य वक्र कहा जाता है। यदि प्रक्षेप्य पर केवल एक ही दिशा में नियत बल लग रहा हो (जैसे गुरुत्वाकर्षण बल), तो उसकी गित का पथ परवलय के आकार की होती है। इसलिए प्रायः प्रक्षेप्य गित को **परवलयिक गित** भी कहते हैं।

प्रक्षेप्य की पथ का समीकरण projectile motion formula derivation

यदि कोई वस्तु क्षैतिज से किसी θ angle पर प्रारंभिक वेग u से फेंकी जाती है तो वस्तु के क्षैतिज तथा ऊर्ध्वांधर वेग के components

 $u_x = u\cos\theta$ एवं $u_y = u\sin\theta$

यहाँ पर वायु के घर्षण बल को नगण्य माना जाता है तथा गुरुत्वीय त्वरण g का नियत मान नीचे की और है। t समय बाद वस्तु का वेग v हो जाता है यहाँ यह ध्यान रहे कि क्षैतिज गित पर गुरुत्वीय त्वरण का कोई प्रभाव नहीं पड़ेगा अर्थात $v_x = u_x$

अतः क्षैतिज विस्थापन के लिए
$$x = ucos\theta t$$
 (1)
ऊर्ध्व विस्थापन के लिए $h = u_v t - \frac{1}{2} g t^2$
 $\Rightarrow y = u_v t - \frac{1}{2} g t^2$
 $\Rightarrow y = usin\theta t - \frac{1}{2} g t^2$ (2)

समीकरण (1) से $t = x/u\cos\theta$ का मान समीकरण (2) में रखने पर

$$y = u \sin \theta \left(\frac{x}{u \cos \theta}\right) - \frac{1}{2} g \left(\frac{x}{u \cos \theta}\right)^{2}$$
$$= \left(\frac{\sin \theta}{\cos \theta}\right) x - \frac{1}{2} g \left(\frac{x^{2}}{u^{2} \cos^{2} \theta}\right)$$
$$y = (\tan \theta) x - \frac{1}{2} \frac{g}{u^{2} \cos^{2} \theta} x^{2}$$

Time of Flight of a projectile प्रक्षेप्य के उड़ान का समय

वस्तु द्वारा लिया गया वह aime period जिसमे वस्तु अपने तल में लौट आती है उसे उड्डयन काल कहते हैं। पहले चित्र में OABC द्वारा लिया गया समय ही उड्डयन काल है।

उड़्डयन काल के लिए गति के दूसरी समीकरण का उपयोग करते हैं क्योंकि इसमें वस्तु द्वारा तय किये गए उर्ध्व विस्थापन zero है।

$$0 = u_y T - \frac{1}{2} gT^2$$

$$\frac{1}{2} gT^2 = u_y T$$

$$T = \frac{2u_y}{g} = \frac{2u \sin \theta}{g}$$

$$T = \frac{2u \sin \theta}{g}$$

Time period of projectile motion

 $\xrightarrow{\hspace*{1cm}\rightarrow\hspace*$

Maximum Height प्रक्षेप्य की अधिकतम ऊँचाई

वस्तु के highest point पर वस्तु के ऊर्ध्व वेग का घटक ($v_v = 0$) इस बिन्दु की ऊँचाई H है, इसे गित के 3सरे समीकरण द्वारा ज्ञात करेंगे।

$$0 = u_y^2 - 2gH$$

$$H = \frac{u_y^2}{2g} = \frac{(u \sin \theta)^2}{2g}$$

$$H = \frac{u^2 \sin^2 \theta}{2g}$$

Maximum height of projectile motion

प्रक्षेप्य का परास Range of Projectile

वस्तु द्वारा अपने उड्डयन काल के दौरान तय की गई क्षैतिज विस्थापन को परास कहते हैं।

परास
$$R = 4$$
 तिज वेग \times उड्डयन काल $= u_x T$

$$= u \cos \theta \times \frac{2u \sin \theta}{g}$$

$$= \frac{u^2 2 \sin \theta \cos \theta}{g}$$

$$R = \frac{u^2 \sin 2 \theta}{g}$$

अभिकेंद्रीय बल (Centripetal Force): जब कोई पिंड r त्रिज्या वाले किसी वृत्तीय पथ पर गित करता है तो पिंड पर वृत्त के केंद्र की ओर एक बल कार्य करता है, जिसे 'अभिकेंद्रीय बल' कहते हैं। इस बल की अनुपस्थिति में कोई पिंड वृत्तीय पथ पर गित नहीं कर सकेगा। M द्रव्यमान के पिंड को r त्रिज्या के वृत्ताकार मार्ग पर U चाल से गित करने के लिये आवश्यक अभिकेंद्र बल

$$F = mv^2/r$$
 होता है.

अपकेंद्रीय बल (Centrifugal Force):

- जब कोई पिंड वृत्ताकार पथ पर गित करता है तो अभिकेंद्रीय बल के विपरीत बाहर की ओर लगने वाले बल को 'अपकेंद्रीय बल' कहते हैं। यह बल एक प्रकार का छद्म बल होता है। वस्तुतः वृत्ताकार पथ पर गित करने वाले पिंड में त्वरण होता है, इसलिए इस प्रकार के बल का आभास होता है।
- कपड़ा साफ करने की मशीन, दूध से मक्खन निकालने की मशीन अपकेंद्रीय बल के सिद्धांत
 पर कार्य करती है।

घर्षण

यदि किसी स्थिर ठोस वस्तु पर कोई दूसरी ठोस वस्तु इस तरह से रखी जाती है कि दोनों समतल पृष्ठ एक दूसरे को स्पर्श करते है, तो इस दशा में दूसरी वस्तु को पहली वस्तु पर खिसकने के लिए बल लगाना पड़ता है | इस बल का मान एक सीमा से कम होने पर दूसरी वस्तु पहली वस्तु पर नहीं खिसक सकती है | इस विरोधी बल को **घर्षण** (Friction) कहते है |

घर्षण एक <u>बल</u> है जो दो तलों के बीच सापेक्षिक स्पर्शी <u>गति</u> का विरोध करता है। घर्षण बल का मान दोनों तलों के बीच <u>अभिलम्ब बल</u> पर निर्भर करता है। घर्षण के दो प्रकार हैं: स्थैतिक घर्णण और गतिज घर्षण। स्थैतिक घर्षण दो पिण्डों के संपर्क-पृष्ठ की समान्तर दिशा में लगता है, लेकिन गतिज घर्षण, गति की दिशा पर निर्भर नहीं करता।

घर्षण के उपयोग:

हमारे दैनिक जीवन में घर्षण का बहुत महत्वपूर्ण स्थान है। पृथ्वी की सतह पर चलनेवाले प्रत्येक वाहन की गति सतह तथा वाहन के आधार के बीच घर्षणबल द्वारा ही संभव है। अत: घर्षण गति बाधक तथा साधक दोनों ही है। धारुक और स्नेहकों के व्यवहार में भी घर्षण का प्रमुख स्थान है।

घर्षण का परिमाण

. किसी ठोस पदार्थिपिंड को ठोस सतह पर विस्थापित करने के लिये स्पर्श सतह के समांतर बल प्रयुक्त करना होता है। यदि प्रयुक्त बल एक निश्चित परिमाण (चरम घर्षणबल) से कम हुआ, तो पदार्थिपिंड विस्थापित नहीं होता और यदि अधिक हुआ तो निश्चित वेग से विस्थापित होता है। ऐसा स्पर्श करनेवाली सतहों के बीच घर्षण के कारण होता है, जिससे तात्पर्य यह है कि ठोस पदार्थिपिंड पर स्पर्श सतह के समांतर प्रयुक्त बल की विरुद्ध दिशा में एक बल कार्य करता है, जिसे घर्षण बल कहते हैं। घर्षण बल का कारण सतहों का खुरदुरापन होता है।

विस्थापन से पूर्व (जब पिण्ड स्थिर हों) घर्षणबल प्रयुक्त बल के बराबर होता है, जिसे स्थैतिक घर्षण कहते है। विस्थापन के लिये प्रयुक्त बल कम से कम इतने परिमाण का होना चाहिए कि विकृति चरम प्रत्यास्थता से अधिक हो। विस्थापन के लिये आवश्यक इस न्यूनतम बल के परिमाण को चरम घर्षणबल कहते हैं।

चरम घर्षणबल (Fa) तथा दोनो सतहों के बीच अभिलंबी दाब (P) में निम्नलिखि संबंध होता है :

स्थैतिक धर्षणस्थिरांक कहलाता है। इसका मान पदार्थपिंड को सतह पर रखकर सतह पर रखकर सतह का न्यूनतम झुकाव कोण (q), जिसपर पदार्थपिंड फिसलन प्रारंभ करे, ज्ञात करके मालूम कर सकते हैं। इस कोण को धर्षणकोण कहते हैं। घर्षणकोण की स्पर्शज्या ही परिमाण में स्थैतिक धर्षणस्थिरांक के बराबर होती है, अर्थात्

गति के समय भी पदार्थिपिंड पर घर्षणबल कार्य करता है। इसका परिमाण मुख्यतया विस्थापन के प्रकार पर निर्भर करता है। एक ठोस पदार्थिपिंड को ठोस सतह पर खिसकाकर या लुढ़काकर ही विस्थापित कर सकते हैं; अतः इन्हीं दो विस्थापन प्रकारों के अनुसार निम्नांकित दो प्रकार के गतीय घर्षण होते हैं।

1 - विसर्पी (sliding) घर्षण

2 - लुंठन (rolling) घर्षण

दोनों प्रकार की गतियों के लिये घर्षणबल का परिमाण निम्नलिखित सूत्र द्वारा व्यक्त किया जाता है :

 $Fb = bc \times P$

जबकि (Fb) घर्षणबल, (P) सतह पर अभिलंबी दाब तथा (bc) गितज घर्षण स्थिरांक है, जिसका मान दोनों सतहों पर निर्भर करता है। सतहों की लघु सापेक्ष गित के लिये कम का मान गित के परिमाण पर निर्भर नहीं करता। परंतु जब गित का परिमाण क्रांतिक वेग (critical velocity) से अधिक हो जाता है, तो वेग की वृद्धि के साथ साथ कम का मान होता जाता है। कम का मान लुंठन तथा सर्पण (rolling and sliding) गितयों के लिये भिन्न भिन्न होता है।

UNIT – 3: Work, Power & Energy

कार्य (WOrk): कार्य होना तब माना जाता है जब किसी वस्तु पर कोई <u>बल</u> लगाने से वह वस्तु बल की दिशा में कुछ <u>विस्थापित</u> हो। दूसरे शब्दों में, कोई बल लगाने से बल की दिशा में वस्तु का विस्थापन हो तो कहते हैं कि बल ने कार्य किया। कार्य, भौतिकी की सबसे महत्वपूर्ण राशियों में से एक है। कार्य करने की दर को शक्ति कहते हैं। कार्य करने या कराने से वस्तुओं की ऊर्जा में परिवर्तन होता है।

किसी वस्तु पर F बल लगाने पर वह वस्तु बल की दिशा में S दूरी विस्थापित हो जाय तो किया गया कार्य

W= F* s

उदाहरण:

10 न्यूटन (F=10~N) का बल किसी वस्तु पर दक्षिण दिशा में लगता है और वह वस्तु दक्षिण दिशा में 2~ मीटर (d=2~m) विस्थापित हो जाती है तो बल द्वारा किया गया कार्य W=(10~N)(2~m)=20~N~m=20~J~ हुआ। किसी वस्तु पर 5~ न्यूटन का बल लगाकर उसे 4~ मीटर विस्थापित करने पर भी 20~J~ ही कार्य होगा (5~N~x~4~m=20~J) .

कार्य का मात्रक 'जूल' है। इसे संक्षेप में Ј से निरूपित किया जाता है। १ जूल = १ न्यूटन−मीटर। कार्य एक अदिश राशि है।

यदि किसी वस्तु पर एक नियत बल लगाया जाय और वह सीधी रेखा में (बल की दिशा में या बल की दिशा से अलग दिशा में) गति करे तो किया गया कार्य निम्नलिखित सूत्र से निकाला जा सकता है— शक्ति या विद्युत-शक्ति या पावर : वह दर है जिस पर कोई <u>कार्य</u> किया जाता है या <u>ऊर्जा</u> संचारित होती है, या एक नियत समय में कितनी ऊर्जा की आवश्यकता होती है या उर्जा व्यय होती है।

शक्ति की इकाई, ऊर्जा की इकाई का समय द्वारा विभाजन के बराबर है। शक्ति की एस आई इकाई वाट (W) है जो '१ जूल प्रति सेकेन्ड' के बराबर होती है।

<u>ऊर्जा</u>: ऊर्जा <u>वस्तुओं</u> का एक <u>गुण</u> है, जो अन्य वस्तुओं को स्थानांतरित किया जा सकता है या विभिन्न रूपों में <u>रूपान्तरित</u> किया जा सकता हैं। विभिन्न रूपों में <u>रूपान्तरित</u> किया जा सकता हैं। किसी भी कार्यकर्ता के <u>कार्य</u> करने की क्षमता को **ऊर्जा** (Energy) कहते हैं। ऊँचाई से गिरते हुए जल में ऊर्जा है क्योंकि उससे एक पहिये को घुमाया जा सकता है जिससे बिजली पैदा की जा सकती है।

ऊर्जा की सरल परिभाषा देना कठिन है। ऊर्जा वस्तु नहीं है। इसको हम देख नहीं सकते, यह कोई जगह नहीं घेरती, न इसकी कोई छाया ही पड़ती है। संक्षेप में, अन्य वस्तुओं की भाँति यह <u>द्रव्य</u> नहीं है, यद्यापि बहुधा द्रव्य से इसका घनिष्ठ संबंध रहता है। फिर भी इसका अस्तित्व उतना ही वास्तविक है जितना किसी अन्य वस्तु का और इस कारण कि किसी पिंड समुदाय में, जिसके ऊपर किसी बाहरी बल का प्रभाव नहीं रहता, इसकी मात्रा में कमी बेशी नहीं होती।

गतिज ऊर्जा:

यदि आपको आसान भाषा में समझाया जाये तो किसी वस्तु की गित की ऊर्जा को गितज ऊर्जा कहा जाता है. एक निश्चित द्रव्यमान की वस्तु को उसकी स्थिति से गित में लाने के लिए उसपे कार्य करना पड़ता है. यदि हमे किसी वस्तु पे गित देनी होती है तो हम उसपे एक बल लगाते हैं, जिसके जिरये ऊर्जा को एक वस्तु से दूसरी वस्तु में स्थानांतिरत किया जाता है, जिससे वस्तु फिर एक नई और स्थिर गित से चलती है। इसी हस्तांतिरत ऊर्जा को गितिज ऊर्जा के नाम से जाना जाता है, जो वस्तु और गित दोनों के द्रव्यमान पे निर्भर करती है. अर्थात द्रव्यमान और गित जितनी अधिक होगी, उसकी गितज ऊर्जा भी उतनी अधिक होगी.

गतिज ऊर्जा कई प्रकार की होती है:

- कंपन ऊर्जा
- घूर्णन ऊर्जा
- ट्रांसलेशनल ऊर्जा

गतिज ऊर्जा

 $E = \frac{1}{2} * m * v^2$ जहाँ पर M वस्तु का भार है और V उसका वेग है।

स्थितिज ऊर्जा:

वो ऊर्जा होती है, जो किसी वस्तु में पूर्णतः संग्रहित होती है, और वस्तु में कोई गति नहीं होती है. प्रकृति की शिक्तयों पर काबू पाने के लिए ये ऊर्जा भौतिक शरीर के भीतर संग्रहीत रहती है. ये प्रत्येक वस्तु के अंदर संग्रहित होती है, जो एक जगह और द्रव्यमान लिए रहता है किसी बल क्षेत्र के अंदर. उदाहरणः टेबल पे चाय का कप, पहाड़ी के शीर्ष पर बॉल, आदि.

स्थितिज ऊर्जा – m*g*h

स्थितिज ऊर्जा भी कई प्रकार की होती है:

- गुरुत्वाकर्षण ऊर्जा
- प्रत्यास्थ ऊर्जा
- विद्युत ऊर्जा
- रासायनिक ऊर्जा
- परमाणु ऊर्जा

ऊर्जा संरक्षण क्या है:-

ऊर्जा संरक्षण का अर्थ इसके उच्चारण से ही स्पष्ट होता है कि "ऊर्जा का संरक्षण (बचाव)" अर्थात ऊर्जा को इस प्रकार उपयोग में लिया जाए की व्यय होने वाली ऊर्जा की मात्रा कम से कम हो। यानी ऊर्जा का अधिक से अधिक बचाव करना ही ऊर्जा संरक्षण है।

और बचाव करने में प्रयुक्त उपाय विधियों को है ऊर्जा संरक्षण के उपाय कहते है।

ऊर्जा संरक्षण का नियम :-

"इस नियम के अनुसार, ऊर्जा केवल एक रूप से दूसरे रूप में रूपांतरित हो सकती है, न तो इसकी उत्पत्ति की जा सकती है और न ही विनाश(नष्ट)।"
अर्थात ऊर्जा सदैव अचर रहती है ऊर्जा को न तो उत्पादित किया जा सकता है और ना ही ख़तम (नष्ट)। ऊर्जा को सिर्फ एक रूप से दूसरे रूप में बदला जा
सकता है।

जैसे:- पंखे में विद्युत ऊर्जा को यांत्रिक ऊर्जा में बदला जाता है।

ऊर्जा संरक्षण के उदाहरण :-

(i) मुक्त रूप से गिरता हुआ पिंड := माना m द्रव्यमान का एक पिंड पृथ्वी तल से h ऊंचाई पर विरामावस्था में है। इस अवस्था में पिंड की कुल ऊर्जा = गतिज ऊर्जा + स्थितिज ऊर्जा

$$= 0 + mgh = mgh$$

अब मान लो पिंड को उसकी स्थिति से s दूरी से नीचे गिराया जाता है। गति के तीसरे समीकरण से पिंड में उत्पन्न वेग

UNIT -4: Rotational & Simple Harmonic Motion.

जङ्लाघूर्णः

किसी पिण्ड की <u>घूर्णन</u> की दर के परिवर्तन के प्रति प्रतिरोध की माप उस पिण्ड का **जड़त्वाघूर्ण** (Moment of inertia) कहलाता है

$$I = M \cdot r^2$$

where M= Mass of a body

r = distance from the rotational axis

कुछ पिण्डों के मुख्य जड़त्वाघूर्ण:

Thin hoop, radius R	Through center	Axis	MR^2
Thin hoop, radius R width w	Through central diameter	Axis	$\frac{1}{2}MR^2 + \frac{1}{12}Mw^2$
Solid cylinder, radius R	Through center	Axis	$\frac{1}{2}MR^2$
Hollow cylinder, inner radius R ₁ outer radius R ₂	Through center	Axis	$\frac{1}{2}M(R_1^2 + R_2^2)$
Uniform sphere, radius R	Through center	Axis	$\frac{2}{5}MR^2$
Long uniform rod, length ℓ	Through center	Axis	$\frac{1}{12}M\ell^2$
Long uniform rod, length ℓ	Through end	Axis	$\frac{1}{3}M\ell^2$
Rectangular thin plate, length ℓ , width w	Through center	Axis	$\frac{1}{12}M(\ell^2+w^2)$

<u>बलाघूर्ण:</u>

किसी <u>बल</u> द्वारा किसी वस्तु को किसी अक्ष के परितः घुमाने की प्रवृत्ति (tendency) को **बलाघूर्ण** (Torque, moment या moment of force) कहते हैं।

पार्श्व चित्र में बल \mathbf{F} का बिन्दु \mathbf{O} के सापेक्ष बलाघूर्ण \mathbf{M} है तो -

 $M_o = r \times F$

कोणीय संवेग

भौतिक विज्ञान में कोणीय संवेग (Angular momentum), संवेग आघूर्ण (moment of momentum) या घूर्णी संवेग (rotational momentum) किसी वस्तु के द्रव्यमान, आकृति और वेग को ध्यान में रखते हुए इसके घूर्णन का मान का मापन है। यह एक सिदेश राशि है जो किसी विशेष अक्ष के सापेक्ष जड़त्वाघूर्ण व कोणीय वेग के गुणा के बराबर होता है। किसी कणों के निकाय (उदाहरणार्थ: दृढ़ पिण्ड) का कोणीय संवेग उस निकाय में उपस्थित सभी कणों के कोणीय संवेग के योग के तुल्य होता है। इसे L से प्रदर्शित किया जाता है I

सरल आवर्त गति: सरल आवर्त गति (simple harmonic motion / SHM) उस गति को कहते हैं जिसमें वस्तु जिस बल के अन्तर्गत गति करती है उसकी दिशा सदा विस्थापन के विपरीत एवं परिमाण विस्थापन के समानुपाती होता है।

उदाहरण — किसी स्प्रिंग से लटके द्रव्यमान की गति, किसी सरल लोलक की गति, किसी घर्षणरहित क्षैतिज तल पर किसी स्प्रिंग से बंधे द्रव्यमान की गति आदि।

सरल आवर्त गति की विशेषता-

सरल आवर्त गति करने वाला कण जब अपनी माध्य स्थिति से गुजरता है, तो-

- (i) उसका त्वरण तथा स्थितिज ऊर्जा शून्य होती है।
- (ii) कोई बल कार्य नहीं करता
- (iii) वेग तथा गतिज ऊर्जा अधिकतम होती है।

सरल आवर्त गति करने वाला कण जब अपनी गति के अन्तः बिन्दुओं से गुजरता है–

- (i) इसमें त्वरण तथा स्थितिज ऊर्जा अधिकतम होती है।
- (ii) इसमें प्रत्यानयन बल कार्य करता है।
- (iii) वेग तथा गतिज ऊर्जा शून्य होती है |

एक दोलन या एक कम्पन

दोलन करने वाले कण का अपनी साम्य स्थिति के एक और जाना फिर साम्य स्थिति में आकर दूसरी ओर जाना और प्नः साम्य स्थिति में वापस लौटना एक दोलन या कम्पन कहलाता है।

आवृत्ति (Frequency)

कम्पन करने वाली वस्तु एक सेकण्ड में जितना कम्पन करती है, उसे उसकी आवृत्ति कहते हैं। इसका SI मात्रक हर्ट्ज होता है। यदि आवृत्ति n तथा आवर्तकाल T हो, तो होता है।

आवर्त काल (Time Period)

एक दोलन पूरा करने में लगे समय को आवर्तकाल कहते हैं। कम्पन गति के आवर्त काल को कम्पन काल या दोलन काल भी कहते हैं। इसे T द्वारा सूचित करते हैं।

<u>कोणीय आवृत्ति (Angular Frequency)</u>

राशि से आवृत्ति (n) के गुणन को कोणीय आवृत्ति कहा जाता है। इसे w से सूचित किया जाता है। कोणीय आवृत्ति w = 2πn

स्प्रिंग में लटके पिंड की गति (Motion of a body suspended by a string)

माना कि एक हल्की स्प्रिंग जिसकी सामान्य लंबाई 'L' है, एक दृढ़ आधार A से लटकी है। यदि m द्रव्यमान के पिंड को स्प्रिंग के निचले सिरे से लटकाकर और थोड़ा खींचकर छोड़ दिया जाए तो वह ऊपर-नीचे दोलन करने लगता है, जिनका-

<u>अनुनाद :</u>

भौतिकी बहुत से तंत्रों (सिस्टम्स्) की ऐसी प्रवृत्ति होती है कि वे कुछ <u>आवृत्तियों</u> पर बहुत अधिक <u>आयाम</u> के साथ <u>वोलन</u> करते हैं। इस स्थिति को **अनुनाद** (रिजोनेन्स) कहते हैं। जिस आवृत्ति पर सबसे अधिक आयाम वाले दोलन की प्रवृत्ति पायी जाती है, उस आवृत्ति को **अनुनाद आवृत्ति** (रेसोनेन्स फ्रिक्वेन्सी) कहते हैं।

सभी प्रकार के <u>कम्पनों</u> या <u>तरंगों</u> के साथ अनुनाद की घटना जुड़ी हुई है। अर्थात <u>यांत्रिक, ध्वनि, विद्युतचुम्बकीय</u> अथवा क्वांटम तरंग फलनों के साथ अनुनाद हो सकती है। कोई छोटे आयाम का भी आवर्ती बल, जो अनुनाद आवृत्ति वाला या उसके लगभग बराबर आवृत्ति वाला हो, उस तंत्र में बहुत अधिक आयाम के दोलन पैदा कर सकता है।

अनुनादी तंत्रों के बहुत से उपयोग हैं। इनका उपयोग किसी वांछित आवृत्ति पर कम्पन (दोलन) पैदा करने के लिया किया जा सकता है; अथवा किसी जटिल कम्पन (जिसमें बहुत सी आवृत्तियों का मिश्रण हो; जैसे रेडियो या टीवी सिगनल) में से किसी चुनी हुई आवृत्ति को छाटने (फिल्टर करने) के लिये किया जा सकता है।

अनुनाद होने के लिये तीन चींजें जरूरी हैं-

१एक वस्तु या तन्त्र - जिसकी कोई प्राकृतिक आवृत्ति हो;

- २) वाहक या कारक बल (ड्राइविंग फोर्स) जिसकी आवृत्ति, तन्त्र की प्राकृतिक आवृत्ति के समान हो;
- इस तंत्र में उर्जा नष्ट करने वाला अवयव कम से कम हो (कम डैम्पिंग हो)।
 (घर्षण, प्रतिरोध (रेजिस्टैन्स), श्यानता (विस्कासिटी) आदि किसी तन्त्र में उर्जा हास के लिये जिम्मेदार होते हैं।)

UNIT – 5: Heat & Thermodynamics

उपी: ऊष्मा (heat) या ऊष्मीय ऊर्जा (heat energy), <u>ऊर्जा</u> का एक रूप है जो <u>ताप</u> के कारण होता है। ऊर्जा के अन्य रूपों की तरह ऊष्मा का भी प्रवाह होता है। किसी पदार्थ के गर्म या ठंडे होने के कारण उसमें जो ऊर्जा होती है उसे उसकी ऊष्मीय ऊर्जा कहते हैं। अन्य ऊर्जा की तरह इसका मात्रक भी जुल (Joule) होता है पर इसे कैलोरी (Calorie) में भी व्यक्त करते हैं।

ऊष्मा, एक वस्तु से दूसरी वस्तु में कुछ प्रकार के ऊष्मीय अन्तर्क्रियाओं (thermal interactions) के द्वारा स्थानान्तरित होती है। उदाहरण के लिए अधिक ताप वाली कोई लोहे की छड़ पानी में डाली जाय तो छड़ से जल में ऊष्मीय ऊर्जा का स्थानान्तरण होगा। पूरे ब्रह्माण्ड में ऊष्मा की महती भूमिका है। उष्मा की प्रकृति का अध्ययन तथा पदार्थों पर उसका प्रभाव जितना मानव हित से संबंधित है उतना कदाचित् और कोई वैज्ञानिक विषय नहीं। उष्मा से प्राणिमात्र का भोजन बनता है। वसन्त ऋतु के आगमन पर उष्मा के प्रभाव से ही कली खिलकर फूल हो जाती है तथा वनस्पित क्षेत्र में एक नए जीवन का संचार होता है। इसी के प्रभाव से अंडे से बच्चा बनता है। इन कारणों से यह कोई आश्चर्य की बात नहीं कि पुरातन काल में इस बलवान्, प्रभावशील तथा उपयोगी अभिकर्ता से मानव प्रभावित हुआ तथा उसकी पूजा—अर्चना करने लगा। कदाचित् इसी कारण मानव ने सूर्य की पूजा की। पृथ्वी पर उष्मा के लगभग संपूर्ण महत्वपूर्ण प्रभावों का स्रोत सूर्य है। कोयला, और पेट्रोलियम, जिनसे हमें उष्मा प्राप्त होती है, प्राचीन युगों से संचित धूप का प्रतिनिधित्व करते हैं। ऊष्मा, भौतिकी की एक महत्वपूर्ण उपशाखा है जिसमें ऊष्मा, ताप और उनके प्रभाव का वर्णन किया जाता है। प्रायः सभी द्रव्यों का आयतन तापवृद्धि से बढ़ जाता है। इसी गुण का उपयोग करते हुए तापमापी बनाए जाते हैं।

तापमान: गर्म या ठंढे होने की माप <u>तापमान</u> कहलाता है जिसे **तापमापी** यानि थर्मामीटर के द्वारा मापा जाता है। लेकिन तापमान केवल ऊष्मा की माप है, खुद ऊष्मीय ऊर्जा नहीं। इसको मापने के लिए कई प्रणालियां विकसित की गई हैं जिनमें <u>सेल्सियस</u>(Celsius), <u>फॉरेन्हाइट</u>(Farenhite) तथा <u>केल्विन</u>(Kelvin) प्रमुख हैं। इनके बीच का आपसी सम्बंध इनके व्यक्तिगत पृष्ठों पर देखा जा सकता है।

ऊष्मा मापने का मात्रक <u>कैलोरी</u> है। विज्ञान की जिस उपशाखा में ऊष्मा मापी जाती है, उसको <u>ऊष्मामिति</u> (Clorimetry) कहते हैं। इस मापन का बहुत महत्व है। विशेषतया <u>विशिष्ट ऊष्मा</u> का सैद्धांतिक रूप से बहुत महत्व है और इसके संबंध में कई सिद्धांत प्रचलित हैं। ऊष्मा का एस आई मात्रक जूल है।

उष्मागितकी: उष्मागितकी (उष्मा + गितकी = उष्मा की गित संबंधी या ऊष्मा और गिति) के अन्तर्गत <u>ऊर्जा</u> का कार्य और <u>उष्मा</u> में रूपान्तरण, तथा इसका <u>तापमान</u> और <u>दाब</u> जैसे स्थूल चरों से सम्बन्ध का अध्ययन किया जाता है। इसमें <u>ताप, दाब</u> तथा <u>आयतन</u> का सम्बन्ध भी समझा जाता है।

उष्मागित का प्रथम नियम: जूल के प्रयोगों ने यह सिद्ध किया कि उष्मा, ऊर्जा का ही एक रूप है और वह अपनी मात्रा के अनुपात में ही काम कर सकती है। इसी को उष्मागित का प्रथम नियम कहते हैं। इसके अनुसार बिना लगातार <u>ईंधन</u> जलाए किसी उष्मिक इंजन से निरन्तर काम नहीं लिया जा सकता। किन्तु उष्मा की मात्रा तो चारों ओर अनन्त है और इसलिए यह सम्भावना हो सकती है कि हम चारों ओर के पदार्थों की उष्मा निकालकर उसको काम में परिवर्तित करते रहें और इस प्रकार बिना व्यय के इंजन चला सकें। अनुभव यह बतलाया है कि ऐसा होना संभव नहीं और यही दूसरे नियम का विषय है।

यह नियम उन परिवर्तनों पर लागू होता है जिनमें एक चक्र (साइकिल) के उपरान्त समुदाय पुनः अपने मूल रूप में आ जाता है। इसका यह अर्थ है कि हम केवल ऐसे परिवर्तनों पर विचार करेंगे जिनमें उष्मा कर्म में परिवर्तित होती है और इसके अतिरिक्त कोई अन्य परिवर्तन नहीं होता। इस नियम के अनुसार यदि कोई पदार्थ और उसके परिपार्श्व (Surroundings) सब एक ही ताप पर हों तो उनकी उष्मा को काम में नहीं बदला जा सकता। ऐसा करने के लिए कम से कम दो भिन्न तापवाले पदार्थों की आवश्यकता होती है और उनसे ताप के अंतर के कारण ही काम करने के लिए उष्मा प्राप्त हो सकती है। इस नियम के मूल में यह तथ्य है कि अणुओं की उष्मिक गित अनियमित होती है और इंजन के पिस्टन की सुनियमित। जैसे ताश के पत्तों को बारंबार फेंटकर उनका नियमित विन्यास करना असंभव सा ही है, ऐसे ही अणुओं की अनियमित उष्मिक गित का भी स्वतः पिस्टन की नियमित गित में परिवर्तित होना अतिदुष्कर है। इंजन जो भी उष्मा काम में परिवर्तित करते हैं उसका कारण यह है कि इसके साथ ही साथ उनमें कर्म करनेवाले पदार्थ कुछ उष्मा भट्टी से संघनित्र (कंडेन्सर) में स्थानांतरित कर देते हैं। इस कारण इसकी आणविक गित की अनियमितता बढ़ जाती है और कुल समुदाय की अनियमितता का हास नहीं होता।

ऊष्मा अन्तरण:

संचालन:

: पदार्थ के कणों में सीघे संपर्क से ऊष्मा के संचार को संचालन कहते हैं। ऊर्जा का संचार प्राथमिक रूप से सुनम्य समाघात द्वारा जैसे द्रवों में या परासरण द्वारा जैसा कि धातुओं में होता है या फोनॉन कंपन द्वारा जैसा कि इंसुलेटरों में होता है, हो सकता है। अन्य शब्दों में, जब आसपास के परमाणु एक दूसरे के प्रति कम्पन करते हैं, या इलेक्ट्रान एक परमाणु से दूसरे में जाते हैं तब ऊष्मा का संचार संचालन द्वारा होता है। संचालन ठोस पदार्थों में अधिक होता है, जहां परमाणुओं के बीच अपेक्षाकृत स्थिर स्थानिक संबंधों का जाल कंपन द्वारा उनके बीच ऊर्जा के संचार में मदद करता है।

ऐसी स्थिति में जहां द्रव का प्रवाह बिलकुल भी न हो रहा हो, ताप संचालन, द्रव में कणों के परासरण से सीधे अनुरूप होता है। इस प्रकार का ताप परासरण बर्ताव में ठोसों में होने वाले पिंडीय परासरण से भिन्न होता है, जबकि पिंडीय परासरण अधिकतर द्रवों तक ही सीमित होता है।

संवहन:

िकसी पदार्थ के एक भाग से दूसरे में अणुओं के जाने से हुए ताप ऊर्जा के संचार को संवाहन कहते हैं। तरल की गित के बढ़ने के साथ−साथ संवाहित ताप संचार भी बढ़ता है। द्रव के परिमाण में गित की उपस्थिति ठोस सतह और तरल के बीच ताप के संचार को बढ़ावा देती है।^[2] संवाहित ताप संचार के दो प्रकार होते हैं:

- प्राकृतिक संवाहनः जब तरल की गित तरल के तापमान में पिरवर्तनों के कारण हुए घनत्व के बदलावों के पिरणाम स्वरूप उत्पन्न उत्प्लावन बलों के कारण होती है। उदा.िकसी बाह्य स्रोत की अनुपस्थित में, जब तरल का पिंड िकसी गर्म सतह से संपर्क में आता है, तो उसके अणु अलग होकर फैल जाते हैं जिससे तरल के पिंड का घनत्व कम हो जाता है। जब ऐसा होता है, तब तरल ऊर्ध्व या क्षितिज के समानांतर विस्थापित हो जाता है जबिक अधिक ठंडा तरल अधिक घना हो जाता है और तरल डूब जाता है। इस तरह से अधिक गर्म आयतन उस तरल के अधिक ठंडे आयतन की ओर ताप का संचार करता है।
- बलपूर्वक संवाहनः जब कोई तरल किसी बाह्य स्रोत जैसे पंखों या पम्पों द्वारा सतह पर बलपूर्वक प्रवाहित किया जाता है जिससे कृत्रिम संवाहक धारा उत्पन्न होती है।

विकिरण:

ताप ऊर्जा के किसी रिक्त स्थान में संचार को विकिरण कहते है। परम शून्य के ऊपर के तापमान वाली सभी वस्तुएं उनकी प्रवाहकता गुणा यदि वे कोई काले रंग की वस्तु हों तो उनमें से ऊर्जा के विकिरत होने की दर के बराबर ऊर्जा का विकिरण करती हैं। विकिरण के लिये किसी माध्यम की जरूरत नहीं है क्यौंकि इसका संचार विद्युतचुम्बकीय तरंगों द्वारा होता है; विकिरण पूर्ण निर्वात में भी कार्य करता है। सूर्य की ऊर्जा पृथ्वी को गर्म करने के पहले अंतरिक्ष के निर्वात में से गुजरती है।

सभी पिंडों की परावर्तकता और प्रवाहकता दोनो ही तरंगदैर्घ्य पर निर्भर करती हैं। प्लैंक्स लॉ ऑफ ब्लैक बॉडी रेडियेशन के अनुसार तापमान तीव्रता की सीमा तक विद्युतचुम्बकीय विकिरण के तरंगदैर्घ्य के वितरण को निश्चित करता है। किसी भी पिंड के लिये परावर्तकता भीतर आ रहे विद्युतचुम्बकीय विकिरण के तरंगदैर्घ्य के वितरण और इसलिये विकिरण के स्रोत के .तापमान पर निर्भर करती है। प्रवाहकता तरंगदैर्घ्य के वितरण पर और इसलिये पिंड के तापमान पर निर्भर करती है। उदा.ताज़ी बर्फ जो दिखाई देन् वाले प्रकाश के लिये उच्च परावर्ती होती है (लगभग 0.90 परावर्तकता), करीब 0.5 माइक्रोमीटर के शीर्ष ऊर्जा तरंगदैर्घ्य वाले सूर्यप्रकाश को परावर्तित करने के कारण सफेद दिखती है। परंतु करीब -5 °C तापमान और 12 माइक्रोमीटर के शीर्ष ऊर्जा तरंगदैर्घ्य पर उसकी प्रवाहकता 0.99 होती है।

गैसें तरंगदैर्घ्य के विशिष्ट प्रतिमानों में, जो हर गैस के लिये भिन्न होते हैं, ऊर्जा का अवशोषण और उत्सर्जन करती हैं।

ताप पैमानाः

Degree Fahrenheit

$$^{\circ}F = 1.8^{\circ}C + 32^{\circ}$$

Degree Celsius

$$^{\circ}C = \frac{^{\circ}F - 32^{\circ}}{1.8}$$

Kelvin

$$K=^{\circ}C+273.15$$

Degree Rankine

$${}^{\circ}Ra = {}^{\circ}F + 459.67$$

Chimie Amazing

कृष्णिका विकिरण(Black Body Radiation): यदि कोई वस्तु अपने पर्यावरण के साथ उष्मागतिक साम्य में हो तो उस वस्तु के अन्दर या उसके आसपास से निकलने वाले विद्युतचुम्बकीय विकिरण को कृष्णिका विकिरण (Black-body radiation) कहते हैं। किसी नियत एवं एकसमान ताप वाली कृष्णिका द्वारा उत्सर्जित विद्युतचुम्बकीय विकिरण 'कृष्णिका विकिरण' कहलाता है। कृष्णिका विकिरण का एक विशिष्ट स्पेक्ट्रम तथा तीव्रता होती है जो केवल उस वस्तु के तापमान पर निर्भर होता है।

ऐसा आदर्श पिंड जो हर प्रकार के आवृत्ति के विकिरणों को एक समान उत्सर्जित तथा अवशोषित करता है, कृष्णिका (black body) कहा जाता है तथा इस पिंड से उत्सर्जित विकिरण को कृष्णिका विकिरण कहते हैं।