$\begin{array}{c} \text{Page 1 de 4} \\ \text{ST0245} \\ \text{Data Structures} \end{array}$

Laboratory practice No. 5: Graphs

Simón Álvarez Ospina

Universidad EAFIT Medellín, Colombia salvarezo1@eafit.edu.co David Madrid Restrepo

Universidad EAFIT Medellín, Colombia dmadridr@eafit.edu.co

November 9, 2020

1 Report

- i. For the code in 1.1 see [1]. [2]
- **ii.** For the code in 2.1 see [3]. [4]
- iii. *.
- i. *.
- ii. To calculate the complexity in memory of the code 1.1, we first define n as the number of vertices. Then we say that:

 $M(n) = c_1 + c_2 \cdot n + n^2$, where c_1 and c_2 are constants.

Solving the equation, we get the following:

$$M(n) = n^2$$

With this last equation, we can define the complexity as: $O(n^2 + c_1 + c_2 \cdot n)$. Using the addition rule, we'll get $O(n^2 + c_2 \cdot n)$, and by the product rule, the complexity is $O(n^2 + n)$. Because $O(n^2) > O(n)$ we say that the final complexity for this algorithm is $O(n^2)$.

- iii. *.
- iv. *.

Page 2 de 4 ST0245 Data Structures

v. To calculate the complexity of this algorithm, first we will say that n and m are the number of nodes and the connections that each node has respectively, thus, we can define the time as follows:

$$T(n,m) = c_1 + c_2 \cdot n + c_3 \cdot n \cdot m + c_4 \cdot n^2 \cdot m$$
, where c_1, c_2, c_3 and c_4 are constants.

We can define T(n,m) as O(n,m), therefore, $O(n,m) = O(c_1 + c_2 \cdot n + c_3 \cdot n \cdot m + c_4 \cdot n^2 \cdot m)$. By the addition rule, factorizing and the product rule, we'll obtain that the complexity is $O(n^2 \cdot m)$.

 $\begin{array}{c} \text{Page 3 de 4} \\ \text{ST0245} \\ \text{Data Structures} \end{array}$

2 Midterm Exam [5]

	0	1	2	3	4	5	6	7
0				1	1			
1	1		1			1		
2		1			1		1	
3								1
4			1					
5								
6			1					
7								

i.

- ii. $0 \Rightarrow [3, 4]$
 - **ii.** $1 \Rightarrow [0, 2, 5]$
 - iii. $2 \Rightarrow [1, 4, 6]$
 - iv. $3 \Rightarrow [7]$
 - $\mathbf{v.} \ 4 \Rightarrow [2]$
 - vi. $6 \Rightarrow [2]$
- **iii.** b) $O(n^2)$.
- **iv. i.** ii. 1, 4, 5, 0, 2, 3.
 - **ii.** i. 1, 4, 5, 0, 2, 3.

Page 4 de 4 ST0245 Data Structures

References

- [1] S. Álvarez and D. Madrid. (). "For code 1.1," [Online]. Available: https://github.com/dmadridr/ST0245-002/tree/master/laboratorios/lab05/codigo.
- [2] S. Vaid. (). "For the dijkstra algorithm used in 1.1 see," [Online]. Available: https://www.geeksforgeeks.org/shortest-path-unweighted-graph/?ref=lbp.
- [3] S. Álvarez and D. Madrid. (). "For code 2.1," [Online]. Available: https://github.com/dmadridr/ST0245-002/blob/master/laboratorios/lab05/codigo/TwoColors.java.
- [4] M. Toro. (). "For the digraph code used in 1.1 and 2.1 see," [Online]. Available: https://github.com/mauriciotoro/ST0245-Eafit/tree/master/talleres/taller11/codigo_estudiante/java.
- [5] —, "Laboratorio Nro. 5 Grafos.," version 19., pp. 12-22, 2019. [Online]. Available: https://github.com/mauriciotoro/ST0245-Eafit/blob/master/laboratorios/lab05/ED1-Laboratorio5%20Vr%208.0.pdf.