

Chapter3: Multiplexer, Latch, Buffer

Asst.Prof.Dr.Supakit Nootyaskool

Objective

- Explain the concept of multiplexer and de-multiplexer circuit in the data communication system of the lecon
- Understand the different between the latch circuit and buffer circuit.
- Explain the truth table of Set-Reset flipflop also know the circuit.

Topic

- Multiplexer circuit
- Demultiplexer circuit
- Latch circuit
- Buffer circuit
- Set-Reset Flipflop

MULTIPLEXER CIRCUIT

Student will able to explain the multiplexer circuit.

Student realizes the important of the multiplexer circuit in the communication system.

Selector switch

byr sanguignar Internet かなからかかんならうきょう

Nucrouse grundsontion, Microwave

A selector switch is a mechanical switch used to select between different signal channels. Selector switches are commonly found in electrical machines, radios, and even in vehicles.

Switch -> Multiplexer (MUX)

Multiplexer Breakout Board Module For Arduino

Compare between No MUX and MUX

What is circuit inside MUX and DEMUX

Multiplexer circuit

Multiplexer circuit

DEMULTIPLEXER CIRCUIT

Student will able to understand the data switching in the multiplexer through the demultiplexer circuit .

De-multiplexer circuit

MUX + DEMUX

Example devices use MUX/DMUX

trai-sfate gate

TRISTATE GATE

Student will understand the role of tristate gate in the switching circuit. Student will able to explain the state of high implement in the digital system.

Tristate gate

- Three possible logic levels:
 - Logic high (H)
 - Logic low (ov)
 - High impledence (Z) harmon >1M-D
- High impendence (Z) occurs when the output behaves like an open circuit (disconnecting).
- High impledence typically exceeding $1M\Omega$. like open circuit.

L) ฐายไฟ งาด

Enable	Input	Output
0	0	Hi-Z
0	1	Hi-Z
1	0	1
1	1	0

แต่ก็จางกับ ठाँक र्राट्ट active में १ एडंट

Tristate gate datasheet and package

OUEGZZGI -MFRIL 1888-REVIGED OUTOBER 2014

SN74LVC1G125 Single Bus Buffer Gate With 3-State Output

1 Features

- Available in the Ultra Small 0.64-mm² Package (DPW) With 0.5-mm Pitch
- Supports 5-V V_{CC} Operation
- · Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Max t_{nd} of 3.7 ns at 3.3 V
- Low Power Consumption, 10-μA Max I_{CC}
- · ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

2 Applications

- · Cable Modem Termination System
- High-Speed Data Acquisition and Generation
- · Military: Radar and Sonar
- Motor Control: High-Voltage
- · Power Line Communication Modem
- · SSD: Internal or External
- Video Broadcasting and Infrastructure: Scalable Platform
- Video Broadcasting: IP-Based Multi-Format Transcoder
- Video Communications System

3 Description

This bus buffer gate is designed for 1.65-V to 5.5-V V_{CC} operation.

The SN74LVC1G125 device is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is high.

The CMOS device has high output drive while maintaining low static power dissipation over a broad $V_{\rm CC}$ operating range.

The SN74LVC1G125 device is available in a variety of packages including the ultra-small DPW package with a body size of 0.8 mm × 0.8 mm.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)
SN74LVC1G125	SOT-23 (5)	2.90 mm × 1.60 mm
	SC70 (5)	2.00 mm × 1.25 mm
	SON (6)	1.45 mm × 1.00 mm
	DSBGA (5)	1.40 mm × 0.90 mm
	X2SON (4)	0.80 mm × 0.80 mm

 For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

LATCH AND BUFFER

Student will able to explain the different between the latch and buffer.

Latch vs Buffer

- Latch: A latch is used in digital circuits to hold data. The data in the latch remains unchanged until a clearing or enabling signal is sent, which triggers the data to change. Essentially, the latch's primary function is to store memory.
- **Buffer**: A buffer operates with both analog and digital signals. Unlike latches, buffers are not just used for holding memory. They serve additional purposes, such as increasing output power or altering output impedance.

ขับสัญญาณ

Latch/buffer concept

Latch circuit functions

- Holds data from the input signals
- Controls data retention using a clock or enable pin
- Includes an output enable pin that control on/off state of the output signal

Buffer circuit functions

- No hold data
- Pass through data by amplifying the signal
- Some buffer has an enable pin that control on/off state of the output signal

Work of the buffer circuit

"Z" means a high-impedance state similar to the open circuit.

Work of the buffer circuit

Work of the buffer circuit

Work of the latch circuit

Work of the latch circuit

Work of the latch circuit

Latch/buffer in the computer

Lotch -> minima computer

SET-RESET FLIP-FLOP

SR Flip-Flop truth table

S	R	Q	State	
0	0	Previous state	No change	
0	1	0	Reset	
1	0	1 —	Set - in 1	। र्ष यने
1	1	?	Forbidden	

Α	В	Y	Z
0	0	1	0
0	1		
0	0		
1	0		
0	0		
0	1		

Α	В	Y	Z
0	0	1	0
0	1	1	0
0	0		
1	0		
0	0		
0	1		

A	В	Υ	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0		
0	0		
0	1		

A	В	Y	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0		
0	1		

A	В	Υ	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0	0	1
0	1		

Α	В	Υ	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0	0	1
0	1	1	0

Step6

Truth table of SET/RESET — Flip Flop

Reset	Set	Q	Q'	
0	0	1	0	
0	1	1	0	
0	0	1	0 No	change
1	0	0	1	
0	0	0	1 No	change
0	1	1	0	

Activity 3.1 Build the SR flipflop on ThinkerCAD

Activity 3.2 Build the SR flipflop with clock on ThinkerCAD

Reference