RMBI 3110 Topic 7: Value at Risk and Short Fall Risk

- 1. Data Preprocessing
- 2. Nonparametric Estimation of Risk Measure
- 3. Standard Error of Estimation
- 4. Parametric Estimation of Risk Measure
- 5. Parametric Estimation with Monte-Carlo Simulation
- 6. Autocorrelation and Non-normality of Return: Independent Return?
- 7. Autocorrelation and Non-normality of Return: Normal Return?
- 8. VaR and CVaR for Portfolio Investment

Before our coding, we need to import some packages to handle the data. The packages used are:

- 1. Pandas
- 2. Numpy
- 3. matplotlib

```
In [1]:  # Data analysis and manipulation tool
    import pandas as pd

# Numerical computing of array and matrix
    import numpy as np

# Provides a MATLAB-like way of plotting
    import matplotlib.pyplot as plt
```

1. Data Preprocessing

```
In [2]: # Import the data set 'apple.csv'
# Transform the first column as the row (index_col=0)
apple=pd.read_csv("data/apple.csv",index_col=0)
In [3]: apple
Out[3]: Open High Low Close Adj Close Volume
```

Low

Close

Adj Close

Volume

High

Date

Open

Date						
2012- 11-07	20.494286	20.519285	19.848215	19.928572	17.373989	793648800
2012- 11-08	20.022499	20.079643	19.117500	19.205357	16.743479	1056146000
2012- 11-09	19.300714	19.817142	19.061428	19.537857	17.033361	929913600
2012- 11-12	19.791071	19.803572	19.237499	19.386786	16.901649	515802000
2012- 11-13	19.246786	19.660000	19.155714	19.389286	16.903831	532949200
	•••	•••	•••	•••	•••	•••
2020- 10-12	120.059998	125.180000	119.279999	124.400002	124.400002	240226800
2020- 10-13	125.269997	125.389999	119.650002	121.099998	121.099998	262330500
2020- 10-14	121.000000	123.029999	119.620003	121.190002	121.190002	151062300
2020- 10-15	118.720001	121.199997	118.150002	120.709999	120.709999	112559200
2020- 10-16	121.279999	121.550003	118.809998	119.019997	119.019997	115073800

2000 rows × 6 columns

In [4]: # Summary of basic statistical details
apple.describe()

Out[4]:		Open	High	Low	Close	Adj Close	Vc
	count	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2.000000
	mean	38.581717	38.982451	38.189815	38.603343	37.060424	2.014358
	std	21.554297	21.873378	21.215109	21.569187	22.144028	1.478722
	min	13.856071	14.271428	13.753572	13.947500	12.230474	3.247000
	25%	24.255625	24.469999	24.016250	24.254375	22.456524	1.06814′
	50%	31.753750	31.962500	31.472501	31.708750	29.107528	1.538082
	75%	46.906877	47.232501	46.486874	46.923126	45.705216	2.444863
	max	137.589996	137.979996	130.529999	134.179993	134.179993	1.460852

In [5]: # Time-series plot of Apple's closing price

```
plt.plot(apple['Close'])
```

```
Out[5]: [<matplotlib.lines.Line2D at 0x116113c90>]
```



```
In [6]: # Time-series plot of Apple's Volume
plt.plot(apple['Volume'])
```

Out[6]: [<matplotlib.lines.Line2D at 0x1154380d0>]


```
In [7]: # Create a figure with size=(20, 10)
plt.figure(figsize=(20,10))

# Compute the simple daily return of Apple
apple['Return']=apple['Close'].pct_change()

# Plot the daily return of Apple
plt.plot(apple['Return'], linestyle='--', marker='o')

# Indicate the 5% Quantile of daily return of Apple
plt.axhline(apple['Return'].quantile(0.05), color="red")
```

Out[7]: <matplotlib.lines.Line2D at 0x11b3e4d50>


```
In [8]: # Histogram of daily return of Apple
# no. of bins: 50
plt.hist(apple["Return"],bins=50)
plt.show()
```

/Users/ccmakad/.local/lib/python3.7/site-packages/numpy/lib/histogram
s.py:829: RuntimeWarning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
/Users/ccmakad/.local/lib/python3.7/site-packages/numpy/lib/histogram

s.py:830: RuntimeWarning: invalid value encountered in less_equal keep &= (tmp_a <= last_edge)


```
In [11]: # Histogram of daily return of Apple
# no. of bins: 1000
plt.hist(apple['Return'].dropna(), bins=1000, color='purple')

# Indicate the 5% Quantile of daily return of Apple
plt.axvline(x=apple['Return'].dropna().quantile(0.05), linewidth=4, colored
```

Out[11]: <matplotlib.lines.Line2D at 0x12716d650>


```
In [12]: # 5% Quantile of daily return of Apple
apple['Return'].quantile(0.05)
```

Out[12]: -0.02575171592698291

\$1-\alpha=0.95\$ and \$VaR_{0.05}=0.0258\$

```
In [13]: # Import norm to use normal distribution
from scipy.stats import norm

# For standard normal r.v. P(Z<-2.33)=0.01
# Return the -2.33
norm.ppf(0.01)</pre>
```

Out[13]: -2.3263478740408408

1. Nonparametric Estimation of Risk Measure

```
In [14]: # Value at Risk(VaR)
    VaR=-apple['Return'].quantile(0.05)
    VaR

Out[14]: 0.02575171592698291

In [15]: # Shape of DataFrame 'apple'
    apple.shape

Out[15]: (2000, 7)

In [16]: # Shape of DataFrame 'apple' after filtering
    apple[apple["Return"]<-VaR].shape</pre>
```

```
Out[16]: (100, 7)
In [17]:
          # Daily return of apple less than -VaR
          apple[apple["Return"]<-VaR]["Return"]</pre>
Out[17]: Date
                       -0.036290
         2012-11-08
         2012-12-05
                       -0.064357
         2012-12-14
                       -0.037569
         2013-01-04
                       -0.027855
         2013-01-14
                       -0.035653
                          . . .
         2020-09-18 -0.031720
         2020-09-23 -0.041946
         2020-10-02
                       -0.032280
         2020-10-06
                       -0.028669
         2020-10-13
                       -0.026527
         Name: Return, Length: 100, dtype: float64
In [18]:
          # CVaR: mean of daily return less than -VaR
          CVaR=-apple[apple["Return"]<-VaR]["Return"].mean()</pre>
          CVaR
```

Out[18]: 0.042060646441772785

1.1 Standard Error of Estimation

```
In [19]:
          # Shape of DataFrame 'apple'
          apple.shape
Out[19]: (2000, 7)
In [20]:
          # Empty list for saving VaR
          VaRList=[]
          # For loop to resample a single dataset to create many simulated sample
          for n in range(1000):
              returnsample=apple["Return"].sample(n=1000, replace=True)
              # Save the negative 5% quantile to 'VaRList'
              VaRList.append(-returnsample.quantile(0.05))
          # Histogram of VaR
          # no. of bins: 20
          plt.hist(VaRList, bins=20)
          # Title
          plt.title("Histogram of VaR")
          plt.show()
```

```
Histogram of VaR

175 - 150 - 125 - 100 - 75 - 50 - 25 - 0.022 0.024 0.026 0.028 0.030 0.032
```



```
In [23]:
          # Standard error of CVaR
          SE CVaR=pd.Series(CVaRList).std()
          SE CVaR
```

Out[23]: 0.0035954149241852027

2. Parametric Estimation of Risk Measure

```
In [24]:
          # Histogram of daily return of Apple
          # no. of bins: 500
          plt.hist(apple["Return"],bins=500)
          plt.show()
```

/Users/ccmakad/.local/lib/python3.7/site-packages/numpy/lib/histogram s.py:829: RuntimeWarning: invalid value encountered in greater equal keep = (tmp a >= first edge) /Users/ccmakad/.local/lib/python3.7/site-packages/numpy/lib/histogram

s.py:830: RuntimeWarning: invalid value encountered in less equal keep &= (tmp a <= last edge)</pre>


```
In [25]:
          # Mean of daily return of Apple
          mean=apple["Return"].mean()
```

mean

```
Out[25]: 0.0010584931758779558
In [26]:
          # SD of daily return of Apple
          std=apple["Return"].std()
          std
Out[26]: 0.01809210334154013
In [27]:
          # Import norm to use normal distribution
          from scipy.stats import norm
          # For standard normal r.v. P(X < mean-1.645*std)=0.05
          norm.ppf(0.05, mean, std)
Out[27]: -0.02870036862463519
In [28]:
          # VaR
          VaR=-norm.ppf(0.05, mean, std)
          VaR
Out[28]: 0.02870036862463519
```

2.1 Parametric Estimation with Monte-Carlo Simulation

\$z\$ is standard normal, what is mean of \$\sqrt{z^2+1}\$?

```
In [29]:
          # Generate 1000000 values from Standard Normal Distribution r.v.
          z=np.random.randn(1000000)
          # Generate 1000000 values of (z^2 + 1)^0.5
          X=(z**2+1)**0.5
          # Mean of 1000000 values of (z^2 + 1)^0.5
          X.mean()
Out[29]: 1.3542990113314888
In [31]:
          # Mean of daily return of Apple
          meanDelta=apple['Return'].mean()
          # SD of daily return of Apple
          sigmaDelta=apple['Return'].std()
In [32]:
          # Generate 1000000 values from Standard Normal Distribution r.v.
          epsilon=np.random.randn(10000)
```

```
# Daily return of 'A Stock Model' in the lecture slide
dailyReturn=meanDelta+sigmaDelta*epsilon
```

Daily VaR at 95% level is

```
In [33]:
          # VaR of Daily return of 'A Stock Model' in the lecture slide
          VaR=-pd.Series(dailyReturn).quantile(0.05)
          VaR
Out[33]: 0.02845287393261486
         To calculate CVaR, we need to get
In [34]:
          # Daily return of 'A Stock Model' less than -VaR
          lossReturn=dailyReturn[dailyReturn<-VaR]</pre>
          lossReturn.shape, dailyReturn.shape
Out[34]: ((500,), (10000,))
In [35]:
          # Daily return of 'A Stock Model' less than -VaR
          lossReturn=dailyReturn[dailyReturn<-VaR]</pre>
          # CVaR: Negative mean of Daily return of 'A Stock Model' less than -Ve
          CVaR=-lossReturn.mean()
          CVaR
Out[35]: 0.03601740740744003
In [36]:
          # The last price of Apple's closing price
          S0=apple['Close'][-1]
          # Create an array with 252 zeros
          price_simmulation=np.zeros(252)
          # Assign the first item as S0
          price simmulation[0]=S0
          # For loop to do simmulation
          for day in range (1,252):
              price simmulation[day]=price simmulation[day-1]+price simmulation[
In [37]:
          # Plot: price simmulation
          plt.plot(price simmulation)
Out[37]: [<matplotlib.lines.Line2D at 0x1a29b5b110>]
```


Hence we should generate a lot of paths.

```
In [40]: # PriceGeneration function of above code
def PriceGeneration(S0, T, mu, sigma):
    # Create an array with T zeros
    price_simmulation=np.zeros(T)

# Assign the first item as S0
    price_simmulation[0]=S0

# For loop to do simmulation
for day in range(1,T):
        price_simmulation[day]=price_simmulation[day-1]+price_simmulation[day]=price_simmulation[day-1]+price_simmulation
```

```
In [41]: # Create an empty DataFrame
Stockpaths=pd.DataFrame()

# For loop to generate a lot of paths
for path in range(10000):
         Stockpaths[path]=PriceGeneration(apple['Close'][-1], 252, meanDelt

# First five rows
Stockpaths.head()
```

Out[41]:		0	1	2	3	4	5	
	0	119.019997	119.019997	119.019997	119.019997	119.019997	119.019997	119.0199
	1	119.449417	115.579153	117.094279	116.063598	119.104630	119.210989	121.9135
	2	120.177828	114.399736	116.551326	113.792149	116.642568	120.535652	120.2320
	3	122.700561	116.732300	118.466779	112.106294	122.009760	123.116707	120.8186
	4	123.681928	115.599699	118.227926	114.232442	122.991073	123.402301	119.9698

5 rows × 10000 columns

```
In [42]:  # Plot of 10000 paths
```

```
plt.plot(Stockpaths)
plt.show()
```

```
400 -

300 -

200 -

100 -

0 50 100 150 200 250
```

```
In [43]: # The last column of DataFrame 'Stockpaths'
Price_T=Stockpaths.iloc[-1,:]

# Compute the return
Return_T=(Price_T-S0)/S0

# VaR: negative 5% quantile
VaR=-Return_T.quantile(0.05)
VaR
```

Out[43]: 0.22083229491456488

```
In [44]: # Return less than -VaR
    loss_T=Return_T[Return_T<-VaR]

# CVaR: Negative mean of Return less than -VaR
    CVaR=-loss_T.mean()
    CVaR</pre>
```

Out[44]: 0.29911316900097246

```
# Histogram of return
plt.hist(Return_T, color='purple', bins=100)

# Indicate the 5% quantile
plt.axvline(x=Return_T.quantile(0.05), linewidth=4, color='r')
```

Out[45]: <matplotlib.lines.Line2D at 0x1a390a20d0>

2.2 Independent Return?

```
In [46]: # Shift down the daily return one row
apple["ReturnLag1"]=apple['Return'].shift(1)

# First five rows of "Return", "ReturnLag1"
apple[["Return", "ReturnLag1"]].head()
```

Out[46]: Return ReturnLag1

		Date
NaN	NaN	2012-11-07
NaN	-0.036290	2012-11-08
-0.036290	0.017313	2012-11-09
0.017313	-0.007732	2012-11-12
-0.007732	0.000129	2012-11-13

```
# correlation table of "Return", "ReturnLag1"
apple[["Return", "ReturnLag1"]].corr()
```

```
        Return
        ReturnLag1

        Return
        1.000000
        -0.071349

        ReturnLag1
        -0.071349
        1.000000
```

```
In [48]: # Autocorrelation of the daily return of apple
apple["Return"].autocorr()
```

Out[48]: -0.07134860427315212

2.3. Normal Return?

```
In [55]:
          # Sample 3 data of daily return of apple
          apple["Return"].sample(n=3, replace=True)
Out[55]: Date
         2013-07-30
                        0.012350
         2020-05-05
                        0.015009
         2017-12-19
                       -0.010656
         Name: Return, dtype: float64
In [56]:
          # Sample 1 data of daily return of apple
          apple["Return"].sample(n=1, replace=True).values[0]
Out[56]: 0.025314423907359496
In [57]:
          # The last price of Apple's closing price
          S0=apple['Close'][-1]
          # Create an array with 252 zeros
          price simmulation=np.zeros(252)
          # Assign the first item as S0
          price_simmulation[0]=S0
          # For loop to do simmulation
          for day in range(1,252):
              # Sample 1 data of daily return of apple
              r=apple["Return"].sample(n=1, replace=True).values[0]
              price simmulation[day]=price simmulation[day-1]+price simmulation[
In [58]:
          # Plot of price simmulation
          plt.plot(price simmulation)
Out[58]: [<matplotlib.lines.Line2D at 0x1a390d9090>]
          150
          140
          130
          120
          110
          100
          90
          80
          70
                      50
                              100
                                      150
                                              200
                                                      250
In [59]:
          # PriceGenerationWithBS function of above code
          def PriceGenerationWithBS(S0,T,mu,sigma):
              # Create an array with T zeros
              price simmulation=np.zeros(T)
```

```
# Assign the first item as S0
price_simmulation[0]=S0

# For loop to do simmulation
for day in range(1,T):
    # Sample 1 data of daily return of apple
    r=apple["Return"].sample(n=1, replace=True).values[0]
    price_simmulation[day]=price_simmulation[day-1]+price_simmulat
return price_simmulation
```

```
In [60]: # Empty DataFrame for storing a lot of paths
    Stockpaths=pd.DataFrame()

# For loop the generate the paths
    for path in range(10000):
        Stockpaths[path]=PriceGenerationWithBS(apple['Close'][-1],252,mean

# First five rows
    Stockpaths.head()
```

Out[60]:		0	1	2	3	4	5	
	0	119.019997	119.019997	119.019997	119.019997	119.019997	119.019997	119.019
	1	118.533478	120.271035	118.040605	117.616858	124.643798	120.379074	121.411
	2	121.051226	120.891653	115.796049	116.603922	124.848825	121.675535	122.303
	3	119.587588	121.570340	118.267691	116.165290	123.059390	121.517179	122.118
	4	119.959408	122.042369	115.403490	117.470452	127.967804	120.505647	123.348

5 rows × 10000 columns

```
In [61]: # Plot of 10000 paths
    plt.plot(Stockpaths)
    plt.show()
```



```
In [62]: # The last column of DataFrame 'Stockpaths'
```

```
Price_T=Stockpaths.iloc[-1,:]

# Compute the return
Return_T=(Price_T-S0)/S0

# VaR: negative 5% quantile
VaR=-Return_T.quantile(0.05)
VaR
```

```
Out[62]: 0.22109871024911504
```

```
In [63]: # Return less than -VaR
loss_T=Return_T[Return_T<-VaR]

# CVaR: Negative mean of Return less than -VaR
CVaR=-loss_T.mean()
CVaR</pre>
```

Out[63]: 0.3047707470611795

3. VaR and CVaR for Portfolio Investment

```
In [64]: # Import data set google.csv
# Change the dafault row to Columns 'Date'
google=pd.read_csv("data/google.csv",index_col=0)

# Empty DataFrame to store closing price of Apple and Google
Portfolio=pd.DataFrame()
Portfolio['APPL']=apple['Close']
Portfolio['GOOG']=google['Close']
Portfolio['Wealth']=Portfolio['APPL']+Portfolio['GOOG']
```

```
In [66]: # First five rows
Portfolio.head()
```

```
        Date
        APPL
        GOOG
        Wealth

        2012-11-07
        19.928572
        332.314392
        352.242964

        2012-11-08
        19.205357
        324.927094
        344.132450

        2012-11-09
        19.537857
        330.277039
        349.814896

        2012-11-12
        19.386786
        331.706696
        351.093481

        2012-11-13
        19.389286
        328.294464
        347.683750
```

```
# Compute the daily return of portfolio
Portfolio['Return']=Portfolio['Wealth'].pct_change()
```

```
# First five rows
Portfolio.head()
```

```
APPL
                                  GOOG
                                             Wealth
                                                       Return
Out[67]:
              Date
          2012-11-07 19.928572 332.314392 352.242964
                                                         NaN
          2012-11-08 19.205357 324.927094 344.132450 -0.023025
          2012-11-09 19.537857 330.277039 349.814896 0.016512
          2012-11-12 19.386786 331.706696
                                         351.093481 0.003655
          2012-11-13 19.389286 328.294464 347.683750 -0.009712
In [68]:
          # VaR of daily return of portfolio
          VaR=-Portfolio['Return'].quantile(0.05)
          VaR
Out[68]: 0.02266836729305749
In [69]:
          # CVaR of daily return of portfolio
          CVaR=-Portfolio[Portfolio['Return']<-VaR]["Return"].mean()</pre>
          CVaR
Out[69]: 0.035801588934483944
In [70]:
          # Compute the daily return of Apple
          Portfolio['Areturn'] = Portfolio['APPL'].pct change()
          # Compute the daily return of Google
          Portfolio['Greturn'] = Portfolio['GOOG'].pct_change()
          # Mean of the daily return of Apple
          mu apple=Portfolio['Areturn'].mean()
          # SD of the daily return of Apple
          sigma apple=Portfolio['Areturn'].std(ddof=1)
          # Mean of the daily return of Google
          mu_google=Portfolio['Greturn'].mean()
          # SD of the daily return of Google
          sigma google=Portfolio['Greturn'].std(ddof=1)
          # Correlation between 'Areturn' and 'Greturn'
          corr=Portfolio[['Areturn','Greturn']].corr().iloc[0,1]
In [72]:
          # PriceGeneration function of above code
          def PortfolioGeneration(S0,T,mu,sigma,rho):
              # pricel: an array with T zeros
              price1=np.zeros(T)
```

```
# price2: an array with T zeros
price2=np.zeros(T)
# portfolio: an array with T zeros
portfolio=np.zeros(T)
# Assign the first item of price1 as S0[0]
price1[0]=S0[0]
# Assign the first item of price2 as SO[1]
price2[0]=S0[1]
for day in range(1,T):
    # ep1: Generate one value from Standard normal r.v.
    ep1=np.random.randn(1)
    # ep2: Generate one value from Standard normal r.v.
    ep2=np.random.randn(1)
    price1[day]=price1[day-1]+price1[day-1]*(mu[0]+sigma[0]*ep1)
    price2[day]=price2[day-1]+price2[day-1]*(mu[1]+sigma[1]*(rho*e
return price1+price2
```

```
In [73]: # The last price of Apple and Google
    S0=[Portfolio['APPL'][-1], Portfolio['GOOG'][-1]]

In [74]: # Mean of the daily return of Apple and Google
    mu=[mu_apple,mu_google]

# SD of the daily return of Apple and Google
    sigma=[sigma_apple,sigma_google]

# Apply the PriceGeneration function
    a_portfolio=PortfolioGeneration(S0,252,mu,sigma,corr)
```

```
In [75]: # Plot of portfolio
    plt.plot(a_portfolio)
```


Next we generate 10000 paths of portfolio

```
In [76]: # Empty DataFrame for storing the paths
Portfliopaths=pd.DataFrame()

# For loop to generate 10000 paths
for path in range(10000):
    Portfliopaths[path]=PortfolioGeneration(S0,252,mu,sigma,corr)

# First five rows
Portfliopaths.head()
```

Out[76]:		0	1	2	3	4	5
	0	1692.030006	1692.030006	1692.030006	1692.030006	1692.030006	1692.030006
	1	1633.355376	1674.710143	1694.443611	1676.915528	1693.354254	1716.393652
	2	1625.104813	1693.199981	1687.355178	1690.848224	1722.731510	1699.533734
	3	1621.578096	1709.533577	1693.982399	1704.463544	1749.729769	1708.850814
	4	1620.268403	1666.032335	1677.050117	1720.383449	1764.592944	1694.889036

5 rows × 10000 columns

```
In [77]: # Plot of 10000 paths
    plt.plot(Portfliopaths)
    plt.show()
```



```
In [78]: # The last path of Portflio paths
Portfolio_T=Portfliopaths.iloc[-1,:]

# Compute the return of the last path
# S0[0]: The last price of Apple
# S0[1]: The last price of Google
Return_T=(Portfolio_T-(S0[0]+S0[1]))/(S0[0]+S0[1])

# VaR: negative 5% quantile
VaR=-Return_T.quantile(0.05)
VaR
```

Out[78]: 0.18290531329160703

```
In [79]: # Histogram of the return of the last path
# no. of bins: 100
plt.hist(Return_T,color='purple',bins=100)

# Indicate the 1% quantile
plt.axvline(x=Return_T.quantile(0.01), linewidth=4, color='r')
```

Out[79]: <matplotlib.lines.Line2D at 0x1a3077c110>

