Af	2 A	VIſ	UC) .
20	<u> ۱</u> ۹	HO	20	12p

Lectuse 18

Image Segementation

Hassis Corres:

slide across a window. -> How intensity changes as we any

> In 114 segion, no change in disection

In edge segion, no change in average intensity

In we have window centered in cooner, change in quadients is

Math behind its

(x,y)

change of intensity ?

 $E(U,V) = \sum_{x,y} u(x,y) I(x,y,y,v) - I(x,y)$ Le change of intensity as hunction of shift Weight [Window fn]

brample 3 (1) 1-in window
0-outside window

(2) Gaussian weights

$$E(u,v) = \sum_{x,y} \omega(x,y) \left[\frac{1}{2}(x+v,y+v) - \frac{1}{2}(x,y) \right]^{2}$$
Using bilinear approximation,
$$E(u,v) \approx \left[u,v \right] M \left[u \right]$$

and matrix computed from

Mis basis los how we classify cosness

A, Az ase large A, M Az E increase in all disceptions

is constant -> Plat signer

If $\lambda_2 >> \lambda_1$, shift is alone λ_a onis \Longrightarrow Edge

If 1,>> La shiff is along A, axis => Fige

IF A, and A a ase large, 27 1/2 shift causes increase in intensity in all directions

 $\lambda_1 + \lambda_2 = bs(M)$ $\lambda_1 \lambda_a = deb(M)$ y Quantity in terms image derivative Cintensity gradients

To give a 66 score in R = det(M)- k (dronce(M))² Lyneasure of cooner sexponse

> R-Empreical constant 40.04-0.06 -R depends only on eigenvalues

Edges - ve twith large magnitude Corners large for a cooner Ant Region: 121 is small
Algorithms. Sind points with large correr sesponse R (R > thoushold) Take points of local maxima of R
Applications - SEnding a susponding points using set matching algorithms
- Supertiess - Invasiant to sotation[as they're bound on eigenvalues which stored same]
> Pastial invasionce to altine intensity change L. Reason Oby desiratives are used => Invasiont to intensity shift Intensity scale: I > Ia
> Non-invokant to mage size La Can't accurately localise La Can be solved by SIFT and other descriptors

IMAGE SEGMENTATION

> Seg	mentation is part	thon of image.	I into set of	2 notions
satis	shyings	Slast	thion covers whole	mage
	= 5,05;	e.) True	- Homogenity	psedicate
	$P(s; U^s)$)=false (Inion of adjocent - Doesn't satisfy	- Sylony horsenontal
	-> 17 j 15; 0	glacent to 3 -	→ (>eN(A ZAAZM	

Threshold based approach

Separate pixel associated with object of interest from background

Siven P(x,y), segment of(x,y)

O(x,y) = S1, P(x,y)>T

$$g(x,y) = \begin{cases} 1, & f(x,y) > T \\ 0, & f(x,y) \leq T \end{cases}$$

T-> Constant over entire inge [Global Thresholding]

Latable " " Variable Thresholding

> Use image hubogram [check has some intensity that separates by k fg

Role of noise:		Mod poles
No noise .	Little noise	Most noise
So, need to Alte	er out noise	
Role of illumination ar	An with a comp, went	get good output
Finding T:		
Iterative approach:		
-> Selectivital or	timate of 9th J	
→ Segment wing → Produc	ces two groups of pixels (G_{1},G_{2}
-> Compute are son	ces two groups of fixed (ge intensity values m, ma establi value Trees=(m, +m; 2	hos pixells in the and to
Ste St T=Tree	epsilon, stop	
Usualy Docated at	vally fore of the ralley	
If by I is very cla	are to Argion of Interest (Ro:	I), can't separate (no val

Obscu's methods -> Based on histograms -> Automatically find optimal thousand maximum blusclass & variance -) Relate the scatters of on image We count high inter-class variance and low inter-class vorsiones Variance = Measure of region homogenity Aegras with high homogenity > Low variance Obsula method minimise intra-class restance Algorithm -> Grades possible thresholds T (0,255) a Fre each T, 1. Find inter-class vasione for class 1 (< T), classet (> T)

MINIMISMUS INTER-CLASS VARIANCE => MAXIMISME

BETWEEN BETWEEN Intra-class variances VARIANCE F2(t)= w(t) 0,2(t) + w2(t) 02 (t) Between class Vasiance

Stsus	limitat -> Usi Thee	ions ng glob sholds	al th	laesho (ding	bu	b	Can	ha	ndle	((nul	Uiq	de
es pixol	Variable La Not	threeho helly	ldings gane c	ver in	das	To 1	æ `	ક્ટર્લ <u>,</u>	ઋત	দিত	M	داء	ída	
Characting	thoushol -> Ba	sed an	size	of to	/AOI:									
		> Small Large =	⇒A ⇒ G	pative/2 lobal	Zoeal · · · ·									