Formelsammlung Physik 2

Tim Hilt

23. Juni 2018

Inhaltsverzeichnis

1	3Cn	ıwınguı	
	1.1	Forme	lzeichen
	1.2	Forme	ln
		1.2.1	Allgemein
			k_{Ges} , wenn Federn parallel
			k_{Ges} , wenn Federn seriell
			Eigenkreisfrequenz
			Umrechnung $f \mid T$
		1 0 0	Drehmoment
		1.2.2	Ungedämpfte Systeme
			Kriterium für harmonische Schwingung:
			Weg-Zeit-Funktion ungedämpfter Systeme
			Schwingungsdauer ungedämpft
			Maximale Geschwindigkeit im Schwingvorgang
			Amplitude x_m
			Kreisfrequenz ungedämpft
			Hookesches Gesetz
			Hookesches Gesetz bei Drehbewegungen
			U-Rohr
			Schwingungsdgl am U-Rohr
		1.2.3	Gedämpfte Systeme
		1.2.5	
			Kreisfrequenz gedämpft
			Abklingkoeffizient
			Dämpfungskonstante
			Schwingungszeit gedämpft
			Reibkonstante
			Logarithmisches Dekrement
			Güte
			Schwingungsenergie
			Energieverlust
			Aperiodischer Grenzfall
		1.2.4	Erzwungen schwingende Systeme
			3g
2	Akı	ıstik	Ę
	2.1	Forme	Izeichen
	2.2		anten
	2.3	Forme	
	0	. 011110	Schallgeschwindigkeit

			Schallintensitätspegel	6
			Summe mehrerer gleich lauter Schallpegel	6
			Summe mehrerer unterschiedlich lauter Schallquellen	6
			Schallpegeldifferenz:	6
			Schallintensität	6
			Schallintensität Halbkugel	6
			Schallintensität Kugel	7
			Schallkennimpedanz / Wellenwiderstand	
			Schalldruckamplitude	7
			Umrechnung vom Effektivwert	
			Dopplereffekt	7
			Machscher Kegel	
			Machzahl	
			Ab wann Überschallknall?	
3	We	_		8
	3.1	Formelzeichen		8
	3.2	Formeln		8
4		hende Wellen		9
	4.1			
	4.2			
	4.3	Formeln		
			Schallgeschwindigkeit	
			Länge der Saite/des Rohres (gleiche Enden)	
			Länge der Saite/ des Rohres (ungleiche Enden)	
			Länge einfachster Fall (gleiche Enden)	
			Länge einfachster Fall (ungleiche Enden)	
			Grundschwingung/Wellenlänge gleiche Enden	
			Grundschwingung ungleiche Enden	
			Frequenzverhältnis	
			Wellenzahl	0
			Wellengeschwindigkeit	10
_	04	.:1.		11
5	Opt			11
	5.1			
	5.2			
	5.3	Formeln	7	
			Zusammenhang Frequenz / Ausbreitungsgeschwindigkeit	
			Abstand berechnen (Radarpistole u.Ä.)	
			Frequenzverschiebung	
		_	Geschwindigkeit Zielfahrzeug	
		Frequenzversc	hiebung beim Dopplereffekt	
			Optischer Dopplereffekt	
			Violett- / Rotverschiebung	
			Reflexionsgrad R	
			Transmissionsgrad T	
			Transmissionsgrad durch Medium	12

5.3.1	Entspiegelung	13
	Brechungsindex von Entspiegelungsschicht	13
	Gangunterschied zwischen den beiden Schichten	13
	Schichtdicke d	13
5.3.2	Brechung	13
	Umrechnungen	13
	Ausbreitungsgeschwindigkeit im Medium	13
	Grenzwinkel der Totalreflexion	14
	Brewsterwinkel	14
5.3.3	Beugung	14
	Einzelspalt	14
	Doppelspalt	14
	Intensitätsmaxima	14
	Intensitätsminima	14
	Gitter	14
	Intensitätsmaxima	14
	Schirmposition x_k der Maxima	14
	Spektralüberlappungen ab dem k -ten Maximum am Schirm	14

Abbildungsverzeichnis

5.1	Farbspektrum																		11
5.2	Entspiegelung																		13

1 Schwingungen

1.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
f	Frequenz	Hz
\overline{T}	Schwingungsdauer	s
ω_0	Winkelgeschwindigkeit (ungedämpftes System)	s^{-1}
ω_d	Winkelgeschwindigkeit (gedämpftes System)	s^{-1}
\overline{k}	Federkonstante	$\frac{N}{m}$
\overline{x}	Auslenkung	\overline{m}
\overline{D}	Dämpfungskonstante	(Einheitenlos)
δ	Abklingkoeffizient	s^{-1}
b	Reibkonstante	$\frac{kg}{s}$
$\overline{F_E}$	Anregende Kraft	N
E_v/E_n	Energie davor / Energie danach	
\overline{J}	Massenträgheitsmoment	$kg*m^2$
φ	Drehwinkel	Bogenmaß
M	Drehmoment	Nm

1.2 Formeln

1.2.1 Allgemein

 $m{k_{Ges}}$, wenn Federn seriell $\ldots \ldots \ldots \ldots \frac{1}{k_{Ges}} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \cdots + \frac{1}{k_n}$

1.2.2 Ungedämpfte Systeme

Kriterium für harmonische Schwingung: $\frac{x}{F}$, bzw. $\frac{\varphi}{M}$ muss linear sein!

Weg-Zeit-Funktion ungedämpfter Systeme $\dots \dots x(t) = x_m * \cos(\omega t + \varphi_0)$

Kreisfrequenz ungedämpft $\ldots \ldots \omega_0 = \sqrt{\frac{k}{m}}$ Und bei Drehbewegungen: $\omega_0 = \sqrt{\frac{k}{J}}$

Hookesches Gesetz $F_s = k * x$

U-Rohr

1.2.3 Gedämpfte Systeme

Abklingfunktion $x_m = x_0 * e^{-\delta * t}$ Kreisfrequenz gedämpft $\omega_d = \sqrt{\omega_0^2 - \delta^2} = \omega_0 \sqrt{1 - D^2}$

Abklingkoeffizient $\delta = \frac{b}{2m} = D*\omega_0$

Dämpfungskonstante $D = \frac{\delta}{\omega_0}$

Schwingungszeit gedämpft $T_D = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}} = \frac{T_0}{\sqrt{1 - D^2}}$

Logarithmisches Dekrement $\Lambda = \delta * T_0$

Güte $Q = \frac{\pi}{\delta * T} = \frac{1}{2D}$

Energieverlust $\frac{\Delta E}{E} = 1 - \frac{E_n}{E_v} = 1 - \frac{\frac{1}{2} \ c \ x_1^2}{\frac{1}{2} \ c \ x_0^2}$ Kann noch gekürzt werden! $1 - \frac{x_1^2}{x_0^2}$

Aperiodischer Grenzfall

$$D = 1$$

$$\delta = \omega_0$$

$$b = 2m * \omega_0$$

1.2.4 Erzwungen schwingende Systeme

2 Akustik

2.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
\overline{f}	Frequenz	Hz
L	Schallpegel	dB
C	Ausbreitungsgeschwindigkeit	$\frac{m}{s}$
λ	Wellenlänge	m
I	Schallintensität	$\frac{W}{m^2}$
\overline{P}	Schallleistung	\overline{W}
\overline{A}	Oberfläche (Kugelwelle)	m^2
\overline{Z}	Wellenwiderstand/Schallkennimpedanz	$\frac{kg}{m^2s}$
ρ	Dichte	$\frac{kg}{m^3}$
p	Schalldruckamplitude	Pa
Ma	Machzahl	Einheitenlos

2.2 Konstanten

$$I_0 = 10^{-12} \ \frac{W}{m^2}$$

2.3 Formeln

 ${\sf Schallgeschwindigkeit} \qquad \qquad c = \lambda * f$

Wichtigste Formel für Rechnung mit Schallwellen!

, wobei n die Anzahl der Schallquellen ist und L_0 der Pegel einer einzelnen Schallquelle.

Summe mehrerer unterschiedlich lauter Schallquellen $L_{\Sigma} =$ $10 * \log(10^{L_1/10} + 10^{L_2/10} + 10^{L_3/10} + \dots + 10^{L_n/10})$

Beispiel:

$$L_1 = 90dB, L_2 = 80dB, L_3 = 65dB$$

$$L_{\Sigma} = 10 * \log(10^9 + 10^8 + 10^{6.5})$$

$$L_{\sum} = 90.426dB$$

Schallpegeldifferenz:

$$\Delta L = L_2 - L_1$$
$$= 10 \log \left(\frac{I_2}{I_1}\right)$$

Und bei unterschiedlichem Radius/Abstand:

$$=20\log\left(\frac{r1}{r2}\right)$$

wobei L_2 der größere beider Werte ist

Bei allen fahrenden / mit der Erde verbundenen Schallquellen gilt $A=2\pi r^2$. Dies entspricht der Oberfläche einer Halbkugel. Dementsprechend gilt für alle fliegenden oder in der Luft aufgehängten Schallquellen $A = 4\pi r^2$

 ${\sf Schallkennimpedanz} \ / \ {\sf Wellenwiderstand} \qquad \ldots \qquad Z = \rho * c$

 ${\sf Schalldruckamplitude} \qquad \qquad p = Z*\omega*x$

Dopplereffekt

Ruhender Empfänger, bewegter Sender: $f_E = f_S rac{1}{1 \mp rac{v_S}{c}}$

Runder Sender, bewegter Empfänger: $f_E = f_S \left(1 \pm rac{v_E}{c}
ight)$

Bewegter Sender, bewegter Empfänger: $f_E = f_S \frac{c \pm v_E}{c \mp v_S}$

Oberes Zeichen: Annäherung; Unteres Zeichen: Entfernung

Machscher Kegel

3 Wellen

3.1 Formelzeichen

$\lambda = \dots $			Wellenlänge
Umrechung von Bogensekunden in Grad:	$0^{\circ}0^{\circ}$ Wert	Danach is	t Wert für weitere
Berechnungen nutzbar			

3.2 Formeln

4 Stehende Wellen

4.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
ρ	Dichte	$\frac{kg}{m^3}$
f	Frequenz	Hz
l	Länge	m
k	Anzahl d. Wellenbäuche	Wellen/m
\overline{p}	Luftdruck	Pa
κ	Isentropenexponent; $\frac{c_p}{c_v}$	Einheitenlos

4.2 Konstanten

Menschlicher Hörbereich: 16 - 20000Hz

4.3 Formeln

$$\text{Schallgeschwindigkeit} \qquad \qquad c = \sqrt{\frac{\kappa*p}{\rho_T}} = 331 \frac{m}{s} * \sqrt{\frac{273K + \cdots \circ C}{273K}}$$

Länge der Saite/des Rohres (gleiche Enden)
$$l=(k+1)*\frac{\lambda}{2}=(k+1)*\frac{c}{2f}$$
 $k\in \mathbf{0},\mathbf{1},\mathbf{2},\ldots$

Länge der Saite/ des Rohres (ungleiche Enden) $l = (2k+1) * \frac{\lambda}{4} = (2k+1) * \frac{c}{4f}$ " 1. Harmonische" \equiv " Grundschwingung " \equiv " 0. Oberschwingung" Gilt nur für Grundschwingung! Gilt nur für Grundschwingung! , Wenn nicht die gesamte, sondern die Geschwindigkeit an einer bestimmten Stelle gesucht ist

5 Optik

5.1 Formelzeichen

Formelzeichen	Physikalische Größe	Einheit
λ	Wellenlänge	m
c	Lichtgeschwindigkeit	$\frac{m}{s}$
\overline{f}	Frequenz	Hz
\overline{R}	Reflexionsgrad	Gibt reflektierten Anteil
\overline{T}	Transmissionsgrad	Gibt transmittierten Anteil
\overline{g}	Gitterkonstante / Abstand der Spaltmitten	m
α_k	Ablemkungswinkel am k-ten Maximum	rad

5.2 Konstanten

$$c_0 = 3 * 10^8 \frac{m}{s}$$

Wellenlängenempfindlichkeit des Auges: $400-750 \ nm$

Abbildung 5.1: Farbspektrum und menschlicher Sehbereich

5.3 Formeln

Abstand berechnen (Radarpistole u.Ä.) $s = \frac{c*t}{2}$ Aus Formel der Kinetik $v = \frac{s}{t}$

Frequenzverschiebung $\Delta f = \frac{2*f_s*v}{c} = \frac{2*v}{\lambda_s}$

Frequenzverschiebung beim Dopplereffekt

Annäherung ightarrow höhere Frequenz / kleinere Wellenlänge ightarrow Violett-Verschiebung

 ${\sf Entfernung} \quad \to \quad {\sf niedrigere} \,\, {\sf Frequenz} \,\, / \,\, {\sf gr\"{o}Bere} \,\, {\sf Wellenl\"{a}nge} \quad \to \quad {\sf Rot-Verschiebung}$

Reflexionsgrad $m{R}$ $R = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$

Gibt jeweils nur **einen** Übergang an!

Falls Medium nicht transparent gilt mit dieser Formel der Absorptionsgrad

5.3.1 Entspiegelung

Hierbei sei n_1/λ_1 die Wellenlänge und Brechzahl in Luft, n_2/λ_2 die Brechzahl und Wellenlänge in der Entspiegelungsschicht der Dicke d und n_3/λ_3 die Wellenlänge und Brechzahl des Brillenglases.

Bei perfekt entspiegelten Oberflächen beträgt der Gangunterschied an der Oberfläche immer $\frac{\lambda_1}{2}$

Abbildung 5.2: Grafik zur Veranschaulichung der Entspiegelung

Brechungsindex von Entspiegelungsschicht $n_2 = \sqrt{n_1*n_3}$ Gangunterschied zwischen den beiden Schichten $\Delta x = 2*n_2*d$ Schichtdicke d $d = \frac{\lambda_1}{4n_2}$

5.3.2 Brechung

Umrechnungen $\frac{\sin\alpha}{\sin\beta} = \frac{n_2}{n_1} = \frac{c_1}{c_2} = \frac{\lambda_1}{\lambda_2}$

Von dünn nach dicht o zum Lot hin; von dicht nach dünn o vom Lot weg

Grenzwinkel der Totalreflexion $\sin \alpha = \frac{n_1}{n_2}$ Von dichtem nach dünnem Medium Brewsterwinkel $\tan \alpha = \frac{n_2}{n_1}$ Gilt jeweils, wenn vollständig polarisierter Winkel gefragt ist 90° zwischen reflektiertem und gebrochenem Strahl Der reflektierte Strahl ist vollständig linear polarisiert, der transmittierte Anteil wird vorwiegend parallel polarisiert. 5.3.3 Beugung **Einzelspalt Doppelspalt** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ Intensitätsminima $\ldots g \sin(\alpha_k) = \left(k + \frac{1}{2}\right)\lambda$ $k \in \mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$ **Gitter** Intensitätsmaxima $g\sin(\alpha_k) = k\lambda = \Delta s$ $k \in 0, 1, 2, \dots$ α kann maximal 90° sein arcsin muss zwischen -1 und 1 liegen! L ist Abstand des Gitters zum Schirm