Maxwell
equations
applied to Mie
scattering
theory

GONIN Alexis

Maxwell equations applied to Mie scattering theory

GONIN Alexis

University of Strasbourg

24th of Mars

Mie scattering theory

Maxwell
equations
applied to Mie
scattering
theory

GONIN Alexis

Objectives

Maxwell
equations
applied to Mie
scattering
theory

GONIN Alexis

- Learn to use feel++ CFPDE
- Create a simple model to simulate Mie theory.
- improve incrementaly the model

Maxwell equations

Maxwell
equations
applied to Mie
scattering
theory

CONIN Alexis

$$\operatorname{div}(\vec{E}) = \frac{\rho}{\epsilon_0} \qquad \operatorname{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$$
 (Maxwell-Gauss) (Maxwell-Faraday)

$$\begin{aligned} \operatorname{div}(\vec{B}) &= 0 & \operatorname{rot}(\vec{B}) &= \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \\ \text{(Maxwell-Flux)} & \text{(Maxwell-Ampère)} \end{aligned}$$

Modeling incrementation

Maxwell
equations
applied to Mie
scattering
theory

GONIN Alexis

- 1 wave 1 particle
- 2D / 3D
- non spherical particle
- multiple particles/waves

- Feel++
 - Coefficient forms in PDE (Partial Differential Equation)
 - •

$$\frac{\partial \textbf{\textit{u}}}{\partial \textbf{\textit{t}}} + \nabla \cdot \left(-c \nabla \textbf{\textit{u}} - \alpha \textbf{\textit{u}} + \gamma \right) + \beta \cdot \nabla \textbf{\textit{u}} + \textbf{\textit{a}} \textbf{\textit{u}} = \textbf{\textit{f}} \text{ dans } \Omega$$

- gmsh
- Paraview

Biblio

Maxwell
equations
applied to Mie
scattering
theory

CONIN Alexis

- https://opg.optica.org/optcon/fulltext.cfm?uri=optcon-2-3-520id=526697
- https://www.techno-science.net/glossaire-definition/Theorie-de-Mie.html
- https://jeretiens.net/les-4-equations-de-maxwell/