

XN297LBW 使用手册

XN297L 系列芯片是工作在 2.400~2.483GHz 世界通用 ISM 频段的单片无线收发芯片。该芯片集成射频收发机、频率发生器、晶体振荡器、调制解调器等功能模块,并且支持一对多组网和带 ACK 的通信模式。发射输出功率、工作频道以及通信数据率均可配置。芯片已将多颗外围贴片阻容感器件集成到芯片内部。

XN297LBW 追求简单实用方便的设计理念,芯片所需引脚、外围器件和占用 PCB 面积较少。

特性

三线 SPI 接口通信	SPI 接口速率最高支持4Mbps
支持最大数据长度为32字节(两级FIFO)	SOP8封装
或者 64字节(单级FIFO)	
1M / 2Mbps模式 , 需要晶振精度 ±40ppm	工作电压支持2.3~3.3V
250kbps模式,需要晶振精度 ±20ppm	工作温度支持-40~+85℃

目录

1. 命名規则	3
1.1 XN297L 命名规则	3
1.2 XN297L 系列产品选择	3
2. 引脚定义	4
3. 封装尺寸	5
4. SPI 读写方式	5
5. 参考原理图和版图	6
6. 方案调试注意点	7

版本	修订时间	更新内容	相关文档	
V1.3	2016. 03	兼容 250Kbps 使用说	《03_XN297L 软件设计和调试参考》	
		明。	《10_XN297LBW_1Mbps_SampleCode(3	
			线 SPI)》	
			《11_XN297L 250Kbps 使用说明》	
			《13_XN297LBW 250Kbps Samplecode	
			(3线SPI)》	
			《16_XN297L 安规设计和调试参考》	

1. 命名规则

1.1 XN297L 命名规则

图1 XN297L系列芯片命名规则

1.2 XN297L 系列产品选择

表1 XN297L系列产品选择

产品型号	芯片版本	封装形式
XN297LBW	В	W

2. 引脚定义

图2 XN297LBW引脚功能图

表 引脚功能说明

引出端	符号	功能	引出端	符号	功能
序号			序号		
1	CSN	SPI 片选信号	5	XC1	晶振输入
2	SCK	SPI 时钟信号	6	XC2	晶振输出
3	DATA	SPI 数据输入输出信号	7	VSS	地 (GND)
4	VDD	电源输入	8	ANT	射频信号输入输出

3. 封装尺寸

图 XN297LBW封装尺寸

4. SPI 读写方式

- 1)如有读的命令操作(包括 R_REGISTER、R_RX_PAYLOAD、R_RX_PL_WID 三条命令), DATA 引脚先为输入状态,在 SCK 信号的第八个时钟下降沿自动切换为输出状态,并且在后续时钟上升沿输出信号;要求 MCU 的对应 DATA 引脚的 GPIO,在 SCK 信号的第八个时钟上升沿的保持时间后,从输出状态转为输入状态。
- 2)需要 CE_SEL 设为 1, 启动命令方式控制; CE_L_sel 设为 1, 将 CE 的 GPIO 弱下拉电阻 使能;使用 CE_FSPI_ON/CE_FSPI_OFF 命令方式控制 CE 状态。

- 3)中断状态靠查询 STATUS 寄存器方式来获取。
- 4)在发送过程中,采用先在 STB1或 STB3状态下修改必要的寄存器,并写入 PAYLOAD; CE high 30us后 CE low,使得进入发射模式,等待发送完成后(约1ms)再进行 SPI读写操作。如在发送过程中,进行 SPI读写操作会引起电源纹波,影响发射信号的质量。

图 三线SPI读写操作

5. 参考原理图和版图

封装形式 器件值 No C9 0402 1uF Y1 2*6 16MHz C6 0402 20pF C7 0402 20pF R1 0402 510R

注 1: XN297LBW 使用中,需要串联 510ohm 电阻于 XC2 处,降低发射功率输出对于晶振的波形影响。

注 2: 过安规,需添加 Π 型匹配网络,如下图所示,具体过安规的相关信息参考 16 文档。

图 XN297LBW的过安规射频匹配网络原理图

6. 方案调试注意点

- 1) 进入发射模式,等待发送完成后(约1~2ms)再进行SPI读写操作。
- 2) XC2端需要串联510R左右电阻,保证晶振的正常工作。
- 3)芯片初始化配置,

1Mbps / 2Mbps通信使用参考《03_XN297L软件设计和调试参考》 250Kbps通信使用参考《11_XN297L 250Kbps使用说明》。