Applicant: Gilbert Wolrich et al.

Attorney's Docket No.: 10559-311US1 / P9632US

Serial No.: 10/070 008

Intel Corporation

Serial No.: 10/070,008 Filed: July 3, 2002 Page: 2 of 11

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of operating a processor comprising:
executing a branch instruction in execution of an instruction stream with a branch based
on a bit specified in the branch instruction of a register specified in the branch instruction being
set or cleared, the bit and the register being specified in the branch instruction, and including a
first token that specifies the number of instructions in the instruction stream that are after the
branch instruction to execute before performing the branch operation and a second token that

- 2. (Previously presented) The method of claim 1 wherein the second token that specifies the branch guess operation if set, pre-fetches a guessed instruction.
- 3. (Previously presented) The method of claim 1 wherein the branch instruction further comprises an optional token that indicates a pipeline stage that the branch operation is evaluated in.
- 4. (Previously presented) The method of claim 1 wherein the first token can specify, one, two or three instructions following to execute before performing the branch operation.
 - 5. (Cancelled).

specifies a branch guess operation.

6. (Previously presented) The method of claim 1 wherein one the tokens are specified by a programmer or assembler program to enable variable cycle deferred branching.

Applicant: Gilbert Wolrich et al. Attorney's Docket No.: 10559-311US1 / P9632US

Intel Corporation

Serial No.: 10/070,008 Filed: July 3, 2002

Page : 3 of 11

7. (Previously presented) The method of claim 1 wherein the tokens are specified to assist an assembler program to produce more efficient code.

- 8. (Previously Presented) The method of claim 1 wherein the branch instruction is a branch unconditionally or branch to an instruction at a specified label based on an ALU condition code.
 - 9. (Cancelled).
- 10. (Previously Presented) The method of claim 1 wherein the branch instruction is a branch instruction that causes the processor to branch to the instruction at a specified label if a specified byte in a longword matches or mismatches a byte_compare_value.
- 11. (Previously Presented) The method of claim 1 wherein the branch instruction is a branch instruction that causes the processor to branch to the instruction at a specified label based on whether or not a current context is a specified context in the branch instruction.
- 12. (Previously Presented) The method of claim 1 wherein the branch instruction a branch instruction that causes the processor to branch if the state of a specified state name is a selected value.
- 13. (Previously Presented) The method of claim 1 wherein the branch instruction a branch instruction that causes the processor to branch if a specified signal is deasserted.
- 14. (Previously Presented) The method of claim 1 wherein the branch instruction further includes an additional token, a guess_branch token which causes the processor to prefetch the instruction for the "branch taken" condition rather than the next sequential instruction.

15-16. (Cancelled).

Applicant: Gilbert Wolrich et al. Attorney's Docket No.: 10559-311US1 / P9632US

Intel Corporation

Serial No. : 10/070,008 Filed : July 3, 2002 Page : 4 of 11

17.

executing a branch instruction that causes a branch operation in an instruction stream based on a bit specified in the branch instruction of a register specified in the branch instruction being set or cleared, the bit and the register being specified in the branch instruction; and

(Currently Amended) A method of operating a processor comprises:

deferring performance of the branch operation of the branch instruction based on evaluating a token that specifies a number of instructions to execute before performing the branch operation.

- 18. (Previously presented) The method of claim 17 further comprising:
 evaluating a second token that specifies a branch guess operation, which causes the
 processor to prefetch an instruction for the "branch taken" condition rather than a next sequential
 instruction.
- 19. (Original) The method of claim 17 wherein the optional token is selectable by a programmer.
- 20. (Original) The method of claim 17 wherein the optional token is specified by a programmer or assembler program to enable variable cycle deferred branching.
- 21. (Original) The method of claim 17 wherein one of the optional token is specified to assist an assembler program to produce more efficient code.
 - 22. (Currently amended) A processor comprising:

decode logic for decoding instructions, the decode logic including logic to:

execute a branch instruction in execution of an instruction stream in the processor, with a branch operation based on a bit specified in the branch instruction of a register specified in the branch instruction being set or cleared, the bit and the register being specified in the branch instruction, and including a token that specifies the number of instructions in the instruction stream to execute before performing the branch operation.

Applicant: Gilbert Wolrich et al.

Attorney's Docket No.: 10559-311US1 / P9632US

Serial No.: 10/070,008

Intel Corporation

Serial No.: 10/070,008 Filed: July 3, 2002

Page : 5 of 11

23. (Previously presented) The processor of claim 22 wherein the branch instruction further includes an additional token, a guess_branch token which causes the processor to prefetch the instruction for the "branch taken" condition rather than the next sequential instruction.

24. (Previously presented) The method of claim 1, wherein the processor is a hardware-based multithreaded processor having multiple engines to process multiple threads and the branch instruction is part of an instruction set for the multiple engines; and executing comprises:

executing the branch on one of the multiple engines.

- 25. (Previously presented) The method of claim 17, wherein the processor is a hardware-based multithreaded processor having multiple engines to process multiple threads and the branch instruction is part of an instruction set for the multiple engines; and executing and deferring occurs on one of the multiple engines.
- 26. (Previously presented) The processor of claim 22, wherein the branch instruction is part of an instruction set for a hardware-based multithreaded processor having multiple engines to process multiple threads.