证明: 先证必要性。

 $x \in C \implies x \in A \cap B$ $\iff x \in A \land x \in B$

(集合交定义)

1.27

证明:对于任意集合 A,有:

 $\varnothing \subseteq A$ (教材定理 1.1) $\iff \varnothing \in \mathcal{P}(A)$ (幂集定义) $\iff \{\varnothing\} \subseteq \mathcal{P}(A) \land \varnothing \subseteq \mathcal{P}(A)$ (子集关系定义、教材定理 1.1) $\iff \{\varnothing\} \in \mathcal{PP}(A) \land \varnothing \in \mathcal{PP}(A)$ (幂集定义) $\iff \{\varnothing, \{\varnothing\}\} \subseteq \mathcal{PP}(A)$ (子集关系定义) $\iff \{\varnothing, \{\varnothing\}\} \in \mathcal{PPP}(A)$ (幂集定义) $\iff \{\varnothing, \{\varnothing\}\} \in \mathcal{PPP}(A)$ (幂集定义) $\implies \{\varnothing, \{\varnothing\}\} \in \mathcal{PPP}(A)$ (幂集定义)

由于上述证明中的 A 为任意集合,只需将 A 替换成 $\mathcal{P}(A)$,则证明的倒数第二行即为待证的第二部分: $\{\emptyset, \{\emptyset\}\} \subseteq \mathcal{PPP}(A)$ 。

1.28 下面依次证 $(1) \Leftrightarrow (2), (1) \Leftrightarrow (3), (1) \Leftrightarrow (4), (1) \Leftrightarrow (5)$ 。 先证: $(1) \Leftrightarrow (2)$,即 $A \subseteq B \Leftrightarrow \sim B \subseteq \sim A$ 。

证明: $A \subseteq B \iff \forall x(x \in A \to x \in B)$

 $B \iff \forall x(x \in A \to x \in B)$ (子集关系定义) $\iff \forall x(\neg(x \in B) \to \neg(x \in A))$ (命题逻辑假言易位) $\iff \forall x(x \notin B \to x \notin A)$ (使定义) $\iff \forall x(x \in \sim B \to x \in \sim A)$ (绝对补定义) $\iff \sim B \subseteq \sim A$ (子集关系定义)

再证: $(1) \Leftrightarrow (3)$, 即 $A \subseteq B \Leftrightarrow \sim A \cup B = E$ 。证明:

 $A \subseteq B \iff \forall x(x \in A \to x \in B)$ (子集关系定义) $\iff \forall x(\neg(x \in A) \lor (x \in B))$ (蕴涵等值式) $\iff \forall x(x \notin A \lor x \in B)$ (使定义) $\iff \forall x(x \in \sim A \lor x \in B)$ (绝对补定义) $\iff \forall x(x \in \sim A \cup B)$ (集合并定义) $\iff \sim A \cup B = E$ (全集定义)