

X-ray Computed Tomography (XCT)

Tamas Varga William "Billy" Petersen

MONet Data types - Images

Imaging - RAW

Grey scale image based on density

- Fresh scan, unaltered
- Cropped
 - 1240 x 1200 x 1575 voxels (actual size 47.28mm x 45.76mm x 60.0456mm)
- Shade based on density
 - White = increased density
 - Black = decreased density

Imaging - Pores

Isolated Pores

- Binary image
- Size and shape analysis
- Base for further data analysis

Imaging – Pores: Connected

Isolated Pores

- Binary image
- Connectivity based on axis (X, Y, & Z)
- Size and shape analysis
- Used to calculate flow rates

Imaging – Pores: Unconnected

Unconnected Pores

- Binary image
- No connectivity on any axis
- "Islands"

Imaging – Pore Network Model View

Pore Network Model

- Computer generated image based on flow rate calculations.
 - Scale: Volume
 - Coloring: Equatorial radius
 - Throat scale: Channel Length

Image Thresholding

- Image Thresholding
- Based on grey scale values
- Binarizes image, creates an 'object'
- Analyzes fundamentals of the porosity

Example; Pore thresholding from low to high, and high to low

Thresholding Pore spaces

- Thresholding from minimum in the direction of maximum until darker slots are selected.
- Potential for machine learning "Deep Learning"
- Slightly Over-selecting is a good thing.

Thresholding Pore spaces (cont.)

- Reasoning: The AI in Avizo creates a "blending" type gradient.
- Example:

Thresholding slightly over

Thresholding Pore spaces (cont.)

MONet Data types - Numerical

- Pore size
- Pore volume fraction
- Pore connectivity
- Wet Bulk density
- Permeability
- Flow rate
- Tortuosity

