

On Solving Partial Differential Equations with Neural Networks (The Deep Ritz Method)

Sajed N. Zarrinpour

Dr Khadijeh Nedaiasl, Dr Parvin Razaghi sa.zarrinpour@iasbs.ac.ir

Institute for Advanced Studies in Basic Sciences

Fall 2019

Outline

Introduction

Problem Definition

Results

Conclusion

Introduction

"The key is in not spending time, but in investing it"
- Stephen R. Covey.

Finite Element Method

Poisson Equation on Unit Square - Strong Form

$$\begin{cases} -\Delta u = \mathit{f}(x) &, on \Omega = [0 \times 1] \times [0 \times 1] - [0, 1) \\ u = 0 &, on \partial \Omega \end{cases}$$

Finite Element Method

Poisson Equation on Unit Square - Weak Form

$$\begin{split} & \sum_{i=1}^{M} c_{i} < \phi_{i}, \phi_{j} > = < f, \phi_{j} > \qquad i = 1, ..., M, \\ & \text{where} \\ & u_{h} = \sum_{i=1}^{M} c_{i} \phi_{i} \ \ \text{and} \in V_{h} = span\{\phi_{i}\}_{i=1}^{M} \end{split}$$

Finite Element Method

Quite Complex, eh?

Lets cheat!

Universal Approximation Theorem

Let $\phi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0\times 1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for i=1,...,N, such that we may have define : $F(x)=\sum_{i=1}^N v_i\phi(w_i^Tx+b_i)$ as an approximate realization of the function f; that is, $|F(x)-f(x)|<\epsilon$ for all $x\in I_m$.

Poisson Equation - Neural Networks Form

$$u_{\theta}(x)=a.f_n(x)\circ...\circ f_1(x)+b$$
 where $f_i(x)=\phi(W_i2.\phi(W_i1.x+b_{i1})+b_{i2})+x$ and $a\in\mathbb{R}^m,b\in\mathbb{R}$ and $\phi(x)=\max\{x^3,0\}$

Poisson Equation - Neural Networks Form

Figure: (a) DRM - 811 parameter, (b) FDM - 1681 parameter

Conclusion

Bypass the calculation of the basis

Conclusion

- Bypass the calculation of the basis
- Better accuracy in less cost

Conclusion

- Bypass the calculation of the basis
- Better accuracy in less cost
- Domain and Problem Agnostic

Q&A

"Ask, and it shall be given you!"

Matthew 7:7

- The Deep Ritz Method
- Universal Approximation Theorem
- Quotes about the time