Prova-02 - Loops, Functions and Pointers

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Números invertíveis em \mathbb{Z}_n (+++)	
2	Potência nrima (+++)	

3 Potência prima (+++)

1 Números invertíveis em \mathbb{Z}_n (+++)

A teoria dos números é um assunto fascinante. Por exemplo, podemos definir o conjunto \mathbb{Z} como o conjunto infinito dos números inteiros de modo que, qualquer operação, por exemplo a multiplicação, entre dois números desse conjunto produza um outro número que também pertence a esse conjunto. Dentro do conjunto \mathbb{Z} podemos definir outros conjuntos, tal o qual o conjunto \mathbb{Z}_n . Esse conjunto é definido em função de n, é finito e representa todos os números de 0 a n-1. Por exemplo, o conjunto \mathbb{Z}_9 é formado pelos números $\{0,1,2,3,4,5,6,7,8\}$. Se considerarmos a teoria de anéis, podemos observar que qualquer número de \mathbb{Z} está dentro do conjunto \mathbb{Z}_n de forma cíclica. Por exemplo, o número 15 equivale ao número 6 no conjunto \mathbb{Z}_9 , porque 15 **mod** 9=6, onde **mod** representa o operador de módulo, ou seja, o resto da divisão. Dentro do conjunto \mathbb{Z}_n há outro sub-conjunto, denominado de conjunto dos números invertíveis. Dois números a e b são ditos invertíveis dentro de \mathbb{Z}_n se $a \cdot b = 1$, ou $(a \cdot b)$ **mod** n = 1. Isso significa dizer que o produto de a e b gera um número equivalente ao número 1 dentro de \mathbb{Z}_n .

Faça um programa que, dado o valor de n, apresente todos os pares de números invertíveis dentro do conjunto \mathbb{Z}_n .

Entrada

Um número inteiro que corresponde ao n do conjunto \mathbb{Z}_n .

Saída

O programa deverá apresentar todos os pares de números invertíveis em uma linha seguindo o formato "(x,y)". Como x e y formam os pares (x,y) e (y,x), para evitar duplicidades, seu programa deve apresentar somente os pares (x,y) tal que $x \le y$.

Exemplo

Entrada	Saída
7	(1,1)
	(2,4)
	(3,5)(6,6)
	(6, 6)

Entrada	Saída
9	(1,1)
	(2,5)
	(4,7)
	(8,8)

2 Potência prima (+++)

Uma potência prima n é um número maior que 1 que é escrito por uma potência de um único número primo. Ou seja, $n = k^p$, sendo k um número primo e maior do que 1. Exemplos de potências primas: $7 = 7^1$, $4 = 2^2, 25 = 5^2, 27 = 3^3$ e $81 = 3^4$. Escreva um programa que imprima os N primeiros termos da sequência de potências primas e suas representações em potências primas correspondentes.

Você deve implementar a função:

```
/**

* Função que verifica e decompõe um número n como uma potência prima. Esta

* função recebe o valor n e retorna o resultado da decomposição de n como uma

* potência prima via ponteiros. Quando a decomposição é possível, a função retorna 1.

* Quando a decomposição não é possível, a função retorna 0.

*

* @param n valor inteiro a ser verificado

* @param k ponteiro para a base da potência prima.

* @param p valor da potencia.

* @return retorna 1 caso n seja uma potência prima e 0 caso contrário.

* no último caso, quando n não é uma potência prima, os conteúdos de k

* e p devem ser desconsiderados.

*/

int potencia_prima( int n, int * k, int * p );
```

Entrada

O programa deve ler um número inteiro *N* referente a quantidade de termos da sequência de potências primas.

Saída

O programa deve apresentar N linhas, cada uma correspondendo a uma potência prima e sua representação correspondente. A saída deve seguir o formato $n : k^p$.

Dica

Para facilitar, você pode construir outras funções auxiliares. Quando for imprimir o caracter ^, certifiquese que ele foi digitado pelo teclado, ou seja, não coloque o símbolo via Ctrl+C | Ctrl+V.

Exemplo

Entrada	Saída
7	2 : 2^1
	3: 3^1
	4 : 2^2
	5 : 5^1
	7 : 7^1
	8 : 2^3
	9: 3^2