TO DO LIST - Semaine 4

Anciennes tâches: □ mettre à jour la documentation antora du stage \square ranger code du stage et push github? ☐ faire sauvegarder sur disque dur tablette et pc fixe \square regarder proposition inria pc portable □ réinstaller environnement pytorch sur pc fixe (dépend de si je le gardes ?) Nouvelles tâches: \square Modifier la présentation du stage pour présentation Mimesis $\rightarrow 12/12/2023$ 🗹 Organisation de la partie Correction avec sauvegarde des images - script qui lance la correction à partir d'un modèle donnée ✓ Faire récap semaine 3 ✓ Push code pour la Semaine 3 sur github \square Préparer TP3 + cours 3 \rightarrow 27/10/2023 \square Lire article 2301.05187 sur les WIRE Remettre en forme la partie excel ("create_xlsx_file.py") Ø ajout des résultats de correction si existe? Ø griser les cellules qui sont différentes de la configuration précédente Ø génération d'un grand fichier qui regroupe tous les sous fichiers → je pense qu'on ne peut pas créer des feuilles pour Circle puis des sous-feuilles pour Poisson2D_f.. \square regarder code Killian sur le recalage de la levelset et tester : O sampling de n points sur le bord à une tolérance fixée puis recalage O sampling de n points dans le carré puis recalage → comparer le nombre d'itération et garder celui qui est le plus rapide + régénération des modèles avec loss au bord □ Regarder méthode de Newton (proposé par Emmanuel par mail) et la tester ? - Explication ☐ faire un suivi hebdomadaire rapide avec les résultats (demandé par Michel) \square récupérer les coordonnées des points au bord de Ω_h à partir de la sélection de cellule PhiFEM \square entraı̂nement du cas test du cercle sur O le carré tout entier \mathbf{p} Ω_h - utilisation de MVP présenté dans l'article 2104.08426 pour la génération d'une fonction distance à Ω_h pour le sampling (ATTENTION : cette fonction distance n'est pas utilisé directement dans la loss du PINNs, elle sert juste à générer le domaine sur lequel on veut entraîner le modèle) $\to \Omega_h$ varie en fonction du nombre de noeuds choisis, est-ce qu'on va le fixer ou est-ce qu'il varie? O un cercle un peu plus grand (de rayon plus grand) 🗆 dans le cas des erreurs PhiFEM calculée avec FEniCS, rajouter la projection sur un maillage conforme (maillage

qui fit avec le bord, maillage FEM) afin d'avoir des erreurs sur Ω et pas Ω_h

 $\hfill\Box$ Pour le script "run_model.py":

	 O ajouter la possibilité de donner directement un nom de fichier de configuration et pas seulement un numéro ? O vérifier le code (config+args fonctionne ?)
	essayer de regarder à nouveau tricontourf pour plot mieux la fonction ϕ calculée par MVP sur Ω_h
√	vérification du code quand on fait varier $f \to \text{plage}$ de paramètres donnée en argument de la classe mais pas utilisé
	relancer tous les codes avec f paramétrisé par S