31. A rotation maps A to A' and B to B'. Construct the center of the rotation. (Hint: If the center is O, then OA = OA' and OB = OB'.)

 B'_{\bullet}

- **32. a.** Draw a coordinate grid with origin O and plot the points A(0, 3) and B(4, 1).
 - **b.** Plot A' and B', the images of A and B by $\mathcal{R}_{0.90}$.
 - **c.** Compare the slopes of \overrightarrow{AB} and $\overrightarrow{A'B'}$. What does this tell you about these lines?
 - **d.** Without using the distance formula, you know that A'B' = AB. State the theorem that tells you this.
 - **e.** What reason supports the conclusion that $\triangle AOB$ and $\triangle A'OB'$ have the same area?
 - **f.** Use your graph to find the image of (x, y) by $\mathcal{R}_{0,90}$.
- 33. Repeat Exercise 32 using $\mathcal{R}_{O, 270}$.
- **34.** A half-turn about (3, 2) maps P to P'. Where does this half-turn map the following points?

b. (0, 0)

c. (3, 0)

- **d.** (1, 4)
- e. (-2, 1)
- $\mathbf{f}.$ (x, y)

35. The rotation $\mathcal{R}_{O,x}$ maps line l to line l'. (You can think of rotating \overline{OF} , the perpendicular from O to l, through x° . Its image will be \overline{OF}' .) Show that one of the angles between l and l' has measure x.

- **36.** $\triangle ABC$ and $\triangle DCE$ are equilateral.
 - **a.** What rotation maps A to B and D to E?
 - **b.** Why does AD = BE?
 - c. Find the measure of an acute angle between \overrightarrow{AD} and \overrightarrow{BE} . (Hint: See Exercise 35.)

- 37. $\triangle ABC$ and $\triangle DEC$ are isosceles right triangles.
 - **a.** What rotation maps *B* to *A* and *E* to *D*?
 - **b.** Why does AD = BE?
 - c. Explain why $\overline{AD} \perp \overline{BE}$. (*Hint*: See Exercise 35.)

