Compressed Sampling in Image Processing

Dr. Rafiqul Islam

Professor

Compressed Sensing

- Compressive sensing (CS) theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use.
- CS relies on two principle
 - Sparsity: which pertains to the signal of interest
 - In coherence: which pertains to the sensing modality

Compressed Sensing

- Signal acquisition/processing framework:
 - Want to acquire a signal $x=[x_1...x_n]$
 - Acquisition proceeds by computing Ax of dimension m<<n
 - From Ax we want to recover an approximation x^* of x
 - Note: x* does not have to be k-sparse
 - Method: solve the following program:

```
minimize ||x^*||_1
subject to Ax^* = Ax
```

Signal acquisition

- Measurement:
 - Image x reflected by a mirror a (pixels randomly off and on)
 - The reflected rays are aggregated using lens
 - The sensor receives ax
- Measurement process repeated k times → sensor receives Ax
- Now we want to recover the image from the measurements

Solving the program

- Recovery:
 - minimize | | x* | | 1
 - subject to Ax*=Ax
- This is a linear program:
 - minimize ∑_i t_i
 - subject to
 - $-t_i \le x^*_i \le t_i$
 - Ax*=Ax

Compressed Sampling in MRI

• Compressed Sampling in MRI, while reducing acquisition time, enables high subsampling factors maintaining diagnosable image quality.

- This technique changes the goal based on three golden rules:
 - 1. Incoherent sub-sampling
 - 2. Transform sparsity
 - 3. Non-linear iterative reconstruction technique

Introduction

• MRI Principle

Introduction

- Inherent slow data collection
 - Limits spatial resolution
 - Limits temporal resolution
 - Introduces artifacts in image
- Moreover, slow acquisition is uncomfortable for patients, especially-
 - Who are anxious
 - Who can not keep still or motionless
 - Who have limited breath-hold capacity, and
 - Who are uncooperative such as children

Introduction

• Acquisition of k-space data within reasonable time is a challenge

- Possible solution
 - Enables faster acquisition by reducing sampling data

• These challenges can be solved using compressed sampling

Many possible trajectories through k-space...

Compressed Sampling

	Nyquist's Sampling	Compressed Sampling
Sampling Frequency	$\geq 2f_b$	< 2 <i>f</i> _b
Reconstruction	Low pass filter	Non-linear reconstruction

Non-linear Iterative Reconstruction

• Basic formulation of CS technique:

$$y = \Phi_c x + b$$

• Objective function:

$$J(x) = \frac{1}{2} \|\Phi_c \Psi x - y\|_2 + \tau \|\Psi x\|_1$$

- $\Phi_c \Psi x$ generates low coherence
- Our goal is to achieve and optimal balance of data consistency and sparsity

Non-linear Iterative Reconstruction

- Total Variation (TV) based iterative algorithm
- Soft-thresholding based iterative algorithm
- Fast Composite Splitting Algorithm
- Many More....
- References
 - Beck A, Teboulle M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
 - Guerquin-Kern M, Haberlin M, Pruessmann KP, Unser M. 2011. A fast wavelet-based reconstruction method for magnetic resonance imaging.
 - Huang J, Zhang S, Metaxas D. 2011. Efficient MR image reconstruction for compressed MR imaging.
 - R. Islam 2014, Improved regularisation constraints for compressed sensing of multislice MRI

Proposed Methodology: Algorithm Flowchart

Implementation on GPU: Background

- GPU is coprocessor, which is controlled by CPU.
- It consists of hundreds of special purpose streaming multiprocessors (SMs)
- It is virtually partitioned into several grids
- Each grid is further partitioned into multiple blocks
- Each block comprises hundreds of threads, which run concurrently on SMs

CPU-GPU comparison

Implementation on GPU: Mapping

Experimental Setup: System Configuration

Property	CPU	Property	GPU
Processor	Core i7	Brand	NVIDIA Geforce 730
Clock Speed	3.40 GHz	Graphics Speed	602 MHz
No. of Cores	2	CUDA Cores	384
No. of Threads	4	Max Threads	1024
RAM	8 GB	Graphics	2024 MB
Cache	3 M	Bandwidth	14.40 GB/s

Experimental Setup: Input and sampling mask

Fig: Visual display of (a) Original Image (b) Random Undersampled Mask

Experimental Result: Visualization

Fig. Visual display of the output of the algorithms using (a) TV (b) ST and (c) proposed prior.

Experimental Result: PSNR

Image	Sampling	Algorithm Name		
Size	measurements	TV	ST	Proposed
256×256	50%	27.52	30.02	31.95
	66.7%	23.34	24.32	28.40
	75%	21.16	22.54	26.86
512×512	50%	31.73	33.27	35.61
	66.7%	25.87	26.72	29.97
	75%	24.70	25.13	28.73

TABLE. PSNR COMPARISON OF DIFFERENT ALGORITHMS

Experimental Result: Execution Time

Processor	Algorithm Name	Execution time (256×256)	Execution time (512×512)
CPU	TV	294	2135
	ST	228	1829
	Proposed	274	2062
GPU	TV	14	80
	ST	07	71
	Proposed	09	78
Speed-up	TV	21	26
	ST	32	25
	Proposed	30	26

TABLE. EXECUTION TIME, IN SECONDS

Conclusion

- The proposed prior-based method exhibits improved performance in terms of quality of the reconstructed image
- The proposed GPU implementation exceedingly outperforms the CPU implementation, yielding a speedup of 26x, 32x, and 30x over the CPU-based methods, for TV, ST and proposed implementation respectively
- The proposed GPU implementation exhibits massive parallelism that can enable real-time reconstruction of CS MRI

Thank you

Any Questions?

GPU based Real Time Reconstruction of Compressed Sampling MRI