9.2 Spanningsstabilisatie met zenerdiode

9.2.1 Gegevens zenerdiodes

- ullet Zoek de gegevens U_Z en P_{MAX} op in de datasheets en vul tabel 9.1 aan.
- Geef tevens de betekenis van deze karakteristieken.

Gegeven	BZX79C10	Betekenis
Uz	100	Zener Spannif
P_{MAX}	0,5W	Vermogen Maximum

Tabel 9-1: gegevens zenerdiode

• Bepaal de minimale en maximale toegelaten zenerstroom om de zenerdiode correct als zener te laten werken:

9.2.2 Karakteristiek zenerdiode

Bouw de volgende schakeling (figuur 9.1).

Figuur 9.1: opstelling voor karakteristieken zenerdiodes

- Kies het juiste meetbereik voor de meettoestellen en schakel deze in.
- Start de voeding en stel de voedingsspanning in op een waarde te beginnen van 0 V. Deze waarde lees je af op voltmeter V1 op de voeding zelf.
- Stel de stroombegrenzing van de voeding in zodat de maximale stroom begrensd wordt op ongeveer 100 mA.
- Meet de spanning over de zenerdiode Uz voor een stroom Iz van 0 mA t.e.m. 50 mA.

- Kies de meetpunten zorgvuldig zodat je het buigpunt in de grafiek precies kunt opmeten en noteer de gemeten waarden van U_Z en I_Z in de volgende tabel 9.2.
- Schets de gemeten zenerkarakteristiek op figuur 9.2. Duid duidelijk de meetpunten aan met een bolletje en teken er de best passende kromme door.

BZX79C10				
U _Z (V)	I _Z (mA)			
0	0			
1	14,8nA			
2	2,75mA			
3	4,2mA			
4	5,28 mA			
5	6,56mA			
6	7,68mA			
9	11,6mA			
10,10	32,48mA			
10,12	40,6mA			
9Walk, V	50,00			

Tabel 9-2: zenerkarakteristieken

• Verklaar de codering van de gebruikte zenerdiode.

Bepaal de dynamische weerstand van de zenerdiode bij een stroom Iz van 30 mA.

• Teken de maximaal toegelaten dissipatie-hyperbool op de opgenomen karakteristiek van de zenerdiode (figuur 9.2). Leg uit hoe je dit doet en wat dit betekent. Tip, bereken de maximale Iz bij alle Uz en zet deze uit op de grafiek.

Figuur 9.2: karakteristiek zenerdiode

Besluiten.

Hoe Hoger de Spannif, the hoger de Storom

9.2.3 Instelpunt bij maximaal dissipatievermogen

- Teken de belastingslijn van onderstaande schakeling (figuur 9.3) op de grafiek van
 Figuur 9.2.

• Bepaal het instelpunt met de grafische methode.

 Bouw de volgende schakeling (figuur 9.3). Zorg er voor dat je een overzichtelijke opstelling bekomt.

Figuur 9.3: bepalen instelpunt bij maximaal dissipatievermogen

• Meet de bronspanning U_g en de uitgansspanning U_o met respectievelijk voltmeter V_1 en V_2 .

U0= 10,15V Ugz 16V

 Bepaal de stroom I_Z door de zenerdiode D_1 uit U_g en U_o .

50 mA

 Vergelijk de bepaalde waarde van Iz met deze die bekomen werd uit de grafische methode bovenaan deze pagina.

Kant Overseen

Hoeveel vermogen dissipeert de zenerdiode?

Besluit.

Besluit. De Zenerchode Kan 50mA Op de jusste

9.2.4 Belastingskarakteristiek

Bouw de schakeling volgens figuur 9.4.

- Hou de ingangsspanning Ug constant op 16 V en meet de uitgangsspanning U₀ volgens tabel 9.3.
- Als belastingsweerstand R_L plaatsen we een aantal weerstanden van 1 $k\Omega$ in parallel.

Aantal 1K//	$R_{L}(\Omega)$	U _o (V)	I _L (mA)	Ig (mA)	I _Z (mA)	P _Z (mW)
0	œ		0			
1	1000	10,120	COMA	50mA	40mA	400mW
2	500	10,09V	20mA	49,2mA		
3	333,3	10,06 V	30,2mA	49,5mA	19,3mA	194mW
4	250	10,03 V	40,1mA		9,63mA	
5	200	9,984	49,89mA	50,12mA		
6	166,67	9,310	10	55,78mA		0,19mW
7	142,8	8,70 V	1 -	60,9mA	OmA	0
8	124,9	8,161		65,3mA	OmA	0
9	111,1	7,690	69,26mA	69,26mA		0
10	99,97	7,271	72,7mA		OmA	6

Tabel 9-3: belastingskarakteristiek

 Bereken alle ontbrekende gegevens in tabel 9.3. Noteer hieronder de gebruikte formules voor I_L, I_g, I_Z en P_Z.

Teken de uitgangsspanning U_o i.f.v. de belastingsstroom I_L op figuur 9.5.

Tie exal

Figuur 9.5: belastingskarakteristiek

• Verklaar het verloop van de belastingskarakteristiek U_0 i.f.v. I_L (figuur 9.5).

Als spaning dealt stight do Stroom

• Wat kan je hieruit besluiten i.v.m. de stabilisatie?

Hoe groter de weerstand hoe beter de spanning gestableseerd wordt

• Hoe verloopt het gedissipeerd vermogen P_Z i.f.v. de belastingsstroom I_L ?

Heeft zelfde Verloop als de Spanip Vo

9.2.5 Stabilisatie bij variabele ingangsspanning

• Gebruik de volgende opstelling. Als belastingsweerstand R_L wordt een parallelschakeling van twee 1 k Ω -weerstanden voorzien.

Figuur 9.6: stabilisatie van een variabele ingangsspanning

- Laat Ug variëren van 0 V tot 18 V en meet telkens de uitgangsspanning Uo.
- Noteer uw meetgegevens in tabel 9.4.

Jones Start	
	F. S. A. C.

$U_{g}(V)$	U _o (V)
0	0
5	4,03
10	8,06
11	8,87
12	9,68
12,5	fov
13	10,610
14	10,040
16	10,091
18	10v

Tabel 9-4: Uo i.f.v. Ug

Schets de grafiek van de uitgangsspanning U_o i.f.v. de ingangsspanning U_g op figuur 9.7

Figuur 9.7: Uo i.f.v. Ug

Verklaar het verloop.van U₀ i.f.v. Ug.

Hoe gover Ug wordt, hoe groter Uo wordt

9.2.6 Stabilisatiefactor

ullet Bepaal de stabilisatiefactor F uit de gegevens van tabel 9.4 bij een ingangsspanning U_g van 16 V. Op welke manier wordt dit bepaald?

$$f_{2} = \frac{U_{9}}{U_{2}} \approx \frac{16}{10} \approx \frac{1}{6}$$

$$f_{2} = \frac{R_{5} + R_{2}}{R_{2}} \approx \frac{204 + 500}{500} \approx \frac{1}{6}$$