Действие на група върху множество

Сайт: <u>learn.fmi.uni-sofia.bg</u> Разпечатано от: Мартин Попов

Курс: Алгебра 2, поток 1, летен семестър 2021/2022 Дата: Thursday, 24 March 2022, 21:21

Книга: Действие на група върху множество

Съдържание

1. Определение и примери

- 1.1. Примери 1
- 1.2. Примери 2
- 1.3. Основно свойство

2. Действието като хомоморфизъм на групи

- 2.1. Теорема
- 2.2. "Точно" действие
- 2.3. Теорема на Кейли

3. Орбити и стабилизатори

- 3.1. Релация в множеството М
- 3.2. Орбити свойства
- 3.3. Орбити примери
- 3.4. Стабилизатор
- 3.5. Връзката орбита и стабилизатор
- 3.6. Пример
- 3.7. Стабилизатори на елементи от една орбита
- 3.8. Транзитивно действие
- 3.9. Брой елементи в М

4. Спрягането като действие

- 4.1. Център на група
- 4.2. Свойства
- 4.3. Формула за класовете

5. Приложение

- 5.1. р- групи
- 5.2. елемент от ред р

1. Определение и примери

Определение:

Нека (G,*) е група и $M \neq \emptyset$ е непразно множество. Казваме, че групата G действа върху множеството M, когато на произволни елементи $g \in G$ и $x \in M$ е съпоставен елемент $gx = g(x) \in M$ който принадлежи на множеството M и са изпълнени равенствата:

- $e(x) = x, \forall x \in M$,
- $(g*h)(x) = g(h(x)), \forall g, h \in G, \forall x \in M.$

Забележка: Някои автори дефинират действие на група върху множество от дясната страна, като на елементите $g \in G$ и $x \in M$ се съпоставя елемент $x^g \in M$, и са изпълнени свойствата $x^e = x$ и $x^{g_1g_2} = (x^{g_1})^{g_2}$. Разглеждайки такова действие се получава разлика в някои от свойствата, като навсякъде където при нашите разглеждания се получат леви съседни класове, при дясното действие ще се получат десни съседни класове.

Основен пример за действие е начина на дефиниране на симетричната група.

Основен пример.

Ако $M \neq \emptyset$ е непразно множество с S(M) се бележи множеството от всички биективни изображения на множеството M и по дефиниция имаме $\varphi(x) \in M$, $\forall \varphi \in S(M)$. Ако $\varphi, \psi \in S(M)$ е изпълнено :

- $id(x) = x, \forall x \in M$,
- $(\psi \circ \varphi)(x) = \psi(\varphi(x)), \forall x \in M$.

Получава се, че групата S(M) действа върху множеството M.

Пример.1

Нека V е линейно пространство над полето F и с $F^*=F\setminus\{0\}$ да сме отбелязали множеството от ненулевите елементи на полето, което е група относно умножението в полето. Една от основните операции при линейното пространство е умножение на вектор със скалар,

$$\lambda \in F^*$$
, $x \in V \to \lambda x \in V$.

Следните аксиоми от дефиницията на линейно пространство

- 1.x = x, $\forall x \in V$
- $(\lambda. \mu)x = \lambda(\mu. x)$, $\forall x \in V$

показват, че имаме действие на групата F^* върху множеството V.

1.1. Примери 1

Пример 2.

Нека да разгледаме групата от обратимите матрици $G=GL_n(\mathbb{R})$ и $M=\mathbb{R}^n$ е множеството от n-мерните вектори. Ако $A\in GL_n(\mathbb{R})$ и $X\in\mathbb{R}^n$ разглеждаме произведението, което има в резултат също n-мерен вектор

$$A\in GL_n(\mathbb{R}),\; X=egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}\in \mathbb{R}^n \;\;\; \longrightarrow \;\;\; A(X)=A.\, X=A. egin{pmatrix} x_1\ dots\ x_n \end{pmatrix}\in \mathbb{R}^n$$

От линейната алгебра е известно, че са изпълнени свойствата EX=X, където E е единичната матрица и (AB)X=A(BX). По този начин се получава, че това съответствие задава действие на пълната линейна група върху множеството от n-мерните вектори.

Забележка:

Видяхме, че действието на група върху множество представлява изображение $au:G imes M o M,\ au(g,x)=g(x)\in M,$ за което са изпълнени свойствата au(e,x)=x и $au(g_1g_2,x)= au(g_1, au(g_2,x)), \forall x\in M.$ В някои случаи е по-удобно да се разглежда действието, записано по такъв начин като функция, в която първият аргумент е от групата G, а вторият аргумент е от множеството M.

Пример 3.

Нека да разгледаме действие на целите числа $\mathbb Z$ върху множеството от реални числа $\mathbb R$, изразявайки се в умножаване по степен на числото 2. В този случай е удачно да се използва функционален запис на действието $\eta(z,x)=2^z. \, x$. Ясно е, че са изпълнени равенствата за действие на група $\eta(0,x)=2^0. \, x=x$, както и $\eta(z_1+z_2,x)=2^{z_1+z_2}x=2^{z_1}. \, (2^{z_2}x)=\eta(z_1,\eta(z_2,x))$

1.2. Примери 2

Пример 4.

Нека $M=\mathbb{R}^2$ е множеството на точките в Евклидовата равнина и нека G е групата от всички ротации в равнината относно фиксирана точка O. Ротациите на точките в равнината са биективни изображения на множеството от точки, освен това множеството на ротациите относно една фиксирана точка образуват група, защото композицията на ротации около една и съща точка пак е ротация около същата точка, следователно $G < S(\mathbb{R}^2)$. Съобразява се, че са изпълнени условията за действие на групата G от всички ротации около точка O, върху множеството от всички точки в Евклидовата равнина \mathbb{R}^2 .

Пример 5.

Когато е фиксиран центъра на ротацията, тогава всяка ротация може да се опише чрез нейния ъгъл. При фиксирано начало O и описвайки ротациите чрез ъгъла (записан в радиани), можем да получим действие на адитивната група на реалните числа $(\mathbb{R},+)$ върху множеството на точките в Евклидовата равнина \mathbb{R}^2 . В този случай е по-удачно да се използа функционалния запис на действието и нека чрез ρ_{α} да записваме ротацията на ъгъл α около началната точка O. Тогава :

$$au: \mathbb{R} imes \mathbb{R}^2 o \mathbb{R}^2, \ \ au(lpha,A) = B,$$
 където $B =
ho_lpha(A).$

За произволна точка A от равнината са изпълнени равенствата:

$$egin{aligned} au(0,A) &=
ho_0(A) = A, \ au(lpha+eta,A) &=
ho_{lpha+eta}(A) =
ho_lpha(
ho_eta(A)) = au(lpha, au(eta,A)) \end{aligned}$$

Забележка: В последните два примера имаме действие на две различни групи $G < S(\mathbb{R}^2)$ и \mathbb{R} върху едно и също множество $M = \mathbb{R}^2$ -точките от Евклидовата равнина, като и двете действия показват еднакви зависимости в равнината.

1.3. Основно свойство

Твърдение:

Нека групата $\,G\,$ действа върху множеството $\,M\,$ ($orall g\in G,\ orall x\in M o g(x)\in M\,$). За $\,g\in G$, дефинираме изображението

$$\phi_g: M o M, \; \phi_g(x) = g(x).$$

Тогава ϕ_g е биективно изображение на M, т.е. $\phi_g \in S(M)$ и $(\phi_g)^{-1} = \phi_{g^{-1}}$.

Доказателство:

Проверяваме, че ϕ_q е инективно и сюрективно съответствие:

ullet Инекция: Нека $x_1,x_2\in M$, тогава

$$\begin{split} \phi_g(x_1) &= \phi_g(x_2) &\Leftrightarrow & g(x_1) = g(x_2) \Leftrightarrow \\ &\Leftrightarrow & g^{-1}(g(x_1)) = g^{-1}(g(x_2)) \Leftrightarrow \\ &\Leftrightarrow & (g^{-1}g)(x_1) = (g^{-1}g)(x_2) \Leftrightarrow \\ &\Leftrightarrow & e(x_1) = e(x_2) \Leftrightarrow \\ &\Leftrightarrow & x_1 = x_2 \end{split}$$

• Сюрекция: Ако $y \in M$ е произволен елемент, тогава е изпълнено y = e(y) и затова $y = e(y) = (gg^{-1})(y) = g(g^{-1}(y))$, получихме, че y принадлежи на образа $\phi_g(M)$ и следователно $\phi_g(M) = M$ и изображението е сюрекция.

По този начин получаваме, че ϕ_q е биекция и принадлежи на симетричната група $\phi_q \in S(M)$.

За произволен елемент $x \in M$ проверяваме:

$$egin{aligned} (\phi_g \circ \phi_{g^{-1}})(x) &= g(g^{-1}(x)) = e(x) = x \ (\phi_{g^{-1}} \circ \phi_g)(x) &= g^{-1}(g(x)) = e(x) = x \end{aligned}
ight\} \Rightarrow (\phi_g)^{-1} = \phi_{g^{-1}}$$

2. Действието като хомоморфизъм на групи

В предишното твърдение установихме, че използвайки действието на група G върху множество M, всеки елемент от групата $g \in G$ определя биекция $\phi_g \in S(M)$ в множеството M. От следващата теорема ще видим, че на всяко действие на групата G върху множество M, може да се съпостави хомоморфизъм от групата G в симетричната група S(M) и това съответствие е биективно. По този начин се получава, че действието на група върху множество описва (илюстрира) хомоморфизъм от G в S(M).

2.1. Теорема

Теорема:

Нека G е група и M е непразно множество, тогава:

- а) Двете твърдения са еквивалентни:
 - (1) Групата G действа върху множеството M, чрез съответствието $g,x \longrightarrow g(x) = \phi_g(x) \in M, \ \forall x \in M, \ \forall g \in G$.
 - (2) Изображението $\Phi:G o S(M),\;$ където $\;\Phi(g)=\phi_g\in S(M)\;$ е хомоморфизъм на групи.
- б) Съществува биективно съответствие между всички действия на групата G върху множеството M и всички хомоморфизми от вида $\Phi: G \to S(M)$.

Доказателство: а)

 $(1)\Rightarrow (2)$: Нека групата G действа върху множеството M, тогава в предишното твърдение за всеки елемент от групата $g\in G$, определихме изображението $\phi_g:M\to M,\;\phi_g(x)=g(x)$, за което доказахме, че е биекция и принадлежи на симетричната група S(M). Използвайки тези биекции можем да дефинираме изображение от групата G в симетричната група S(M), по следния начин:

$$\Phi:G o S(M),\;$$
 където $\Phi(g)=\phi_g\in S(M).$

За произволен елемент $x \in M$ пресмятаме

$$(\Phi(g_1g_2))(x) = \phi_{g_1g_2}(x) = (g_1g_2)(x) = g_1(g_2(x)) \ (\Phi(g_1) \circ \Phi(g_2))(x) = \Phi(g_1)(\Phi(g_2)(x)) = \phi_{g_1}(\phi_{g_2}(x)) = g_1(g_2(x))$$

Следователно $\Phi(g_1g_2)=\Phi(g_1)\circ\Phi(g_2)$, откъдето получаваме, че това изображение е хомоморфизъм на групи.

 $(2)\Rightarrow (1)$: Нека $\Phi:G o S(M)$ е хомоморфизъм на групи, като $\Phi(g)=\phi_g\in S(M)$ е биекция в M. За произволни елементи $g\in G$ и $x\in M$ дефинираме изображението

$$g, x \rightarrow g(x) = \phi_g(x) = (\Phi(g))(x) \in M.$$

Проверяваме дали са изпълнени условията от определението за действие на група:

- от $\Phi(e)=\phi_e=id_M$ получаваме $e(x)=\phi_e(x)=id_M(x)=x$
- от Φ хомоморфизъм имаме $\phi_{g_1g_2}=\Phi(g_1g_2)=\Phi(g_1)\circ\Phi(g_2)=\phi_{g_1}\circ\phi_{g_2}$, откъдето получаваме

$$(g_1g_2)(x) = \phi_{g_1g_2}(x) = (\phi_{g_1}\circ\phi_{g_2})(x) = \phi_{g_1}(\phi_{g_2}(x)) = g_1(g_2(x))$$

Получихме, че така дефинираното изображение е действие на групата G върху множеството M

6) В точка а) на всеки хомоморфизъм $\Phi:G o S(M)$ съпоставихме действие на групата G върху множеството M и видяхме, че всяко действие на групата G върху множеството M може да се получи от такъв тип хомоморфизъм. Това означава, че разглежданото съпоставяне на хомоморфизъм (от G в S(M)) и действие (на групата G в множеството M) е сюрективно изображение.

За да покажем, че това съпоставяне е инективно изображение, да разгледаме два различни хомоморфизма: $\Phi: G o S(M)$ и съответните им действия:

хомоморфизъм	действие на G върху M
$\Phi:G o S(M)\Rightarrow$	$G imes M o M$ при което: $g,x\longrightarrow \phi_g(x)=(\Phi(g))(x)\in M$
$\Psi:G o S(M)\Rightarrow$	$G imes M o M$ при което: $g,x\longrightarrow \psi_g(x)=(\Psi(g))(x)\in M$

Изпълнено е:

$$egin{array}{ccc} \Phi
eq\Psi &\Leftrightarrow& \exists\ t\in G\ :\ \Phi(t)=\phi_t
eq\psi_t=\Psi(t)\in S(M) \ &\updownarrow \ &\exists\ y\in M\ :\ \phi_t(y)
eq\psi_t(y) \ &\updownarrow \ &\updownarrow \end{array}$$

действията, определени от Φ и Ψ са различни

Пот този начин установихме, че имаме биективно съответствие между всички действия на групата G върху множеството M и всички хомоморфизми от вида $\Phi:G o S(M)$.

2.2. "Точно" действие

От доказаната теорема видяхме, че когато е зададено действие на G върху множество M, тогава съществува хомоморфизъм $\Phi:G\to S(M)$. Ядрото на този хомоморфизъм се състои от всички елементи на групата G, за които е изпълнено $\Phi(g)=id_M$ и следователно

$$\mathtt{Ker}(\Phi) = \{g \in G | g(x) = x, \forall x \in M\} \lhd G$$

Когато К $\mathbf{er}(\Phi) = \{e\}$, тогава казваме, че действието е точно (faithful).

Примери за точно действие: От показаните примери в началото, "точно" е действието на примери с номера 1,...,4.

Пример за действие, което не е точно: Пример 5 от началото е действие на група върху множество, което не е точно. Действието е $au: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, \ \tau(\alpha,A) = \rho_\alpha(A), \$ в което ротациите в равнината ρ_α се описват чрез реалното число α , задаващо мярката на ъгъла на ротация около началната точка O. Ядрото на хомоморфизма, задаващ това действие представлява множеството от всички числа, кратни на 2π и имаме $\mathrm{Ker}(\tau) = < 2\pi >$.

Образът е съвкупността от всички ротации

$$exttt{Im}(au) = G = \{
ho_lpha \mid exttt{potatus c център } O ext{ на ъгъл } lpha \}.$$

Поради тази причина действието (от пример 4) на групата G от всички ротации около началната точка O съответства на описаното действие $\tau: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$. (от пример 5) Съответствието се състои в това, че образите на хомоморфизмите, съставени от тези две действия са една и съща група $G < S(\mathbb{R}^2)$.

2.3. Теорема на Кейли

Теорема (Кейли):

Всяка група G е изоморфна на подгрупа на симетричната група S(G) и в частност, всяка крайна група от ред |G|=n е изоморфна на подгрупа на S_n .

Доказателство:

Ще разгледаме действие на групата G върху множеството M=G от собствените си елементи чрез умножаване отляво $g(x)=g.\ x$. Непосредствено се проверява, че са изпълнени равенствата от дефиницията на действие:

- e(x) = e. x = x,
- $(g_1g_2)(x) = (g_1, g_2)$. $x = g_1$. $(g_2, x) = g_1(g_2(x))$.

От доказаното в предишната теорема следва , че съществува хомоморфизъм $\Psi:G o S(G)$, който съответства на това действие $\Psi(g)(x)=gx$. Ядрото на този хомоморфизъм се състои от тези елементи $g\in G$ на групата, за които $\,$ е изпълнено

$$\Psi(g)=id \iff gx=g(x)=id(x)=x, \ \forall x\in G \iff g=e.$$

Това означава, че ядрото се състои само от единичния елемент $\mathrm{Ker}(\Psi)=\{e\}$. От теоремата за хомоморфизмите получаваме, че $G/\{e\}\cong \mathrm{Im}(\Psi)$ известно е, че $G/\{e\}=G$, откъдето получаваме търсения изоморфизъм $G\cong G_1=\mathrm{Im}(\Psi)< S(G)$.

В случая когато групата е крайна и има n елемента и $S(G) = S_n$, тогава получаваме $G \cong G_1 < S_n$.

3. Орбити и стабилизатори

При разглеждане на действие на група G върху множество M основно се интересуваме от орбитите, на които се разбива множеството M, както и от зависимостите им със стабилизаторите на елементите, които се явяват подгрупи на групата G.

3.1. Релация в множеството М

Нека G действа върху множеството M. В множеството M разглеждаме релацията " \sim ", определена по следното правило:

$$a\sim b,\,$$
 когато $\,\exists\;g\in G,\,\,$ за който $g(a)=b.$

Твърдение:

Ако групата G действа върху множеството M, тогава въведената в множеството M релация $a \sim b \Leftrightarrow g(a) = b, \ {
m 3a} \ g \in G$ е релация на еквивалентност.

Доказателство:

Проверяваме, че са изпълнени изисванията за релация на еквивалентност:

- ullet За произволен елемент $a\in M$ е изпълнено a=e(a) , следователно $a\sim a$;
- Ако е изпълнено $a \sim b$, тогава съществува елемент от групата, такъв че g(a) = b. Като действаме с обратния елемент получаваме $g^{-1}(g(a)) = g^{-1}(b)$. По този начин установихме, че $a = e(a) = g^{-1}(b)$ и следователно $b \sim a$, т.е. релацията е симетрична;
- Ако е изпълнено $a \sim b$ и $b \sim c$, тогава съществуват елементи g,h от групата, за които е изпълнено g(a) = b и h(b) = c . Получаваме:

$$(h. g)(a) = h(g(a)) = h(b) = c \implies a \sim c.$$

Следователно въведената релация е транзитивна.

Получихме, че " \sim " е релация на еквивалентнтост.

3.2. Орбити - свойства

Множеството M се разбива на класове на еквивалентност относно въведената релация " \sim " получена от действието на групата G врху множеството. Тези класове на еквивалентност се наричат орбити под действието на групата G.

Определение:

Нека групата G действа върху множеството M, орбита на елемента $x \in M$, наричаме множеството :

$$\mathcal{O}(x) = \{g(x) \mid g \in G\} = \{y \in M \mid x \sim y\} \subset M.$$

Свойството, че " \sim " е релация на еквивалентност и $\mathcal{O}(x)$ са класовете на еквивалентност показват, че са в сила следните свойства за орбитите:

Свойство 1. $x \in \mathcal{O}(x), \ \forall x \in M;$

Свойство 2. $y \in \mathcal{O}(x) \iff x \in \mathcal{O}(y);$

Свойство 3.

$$\mathcal{O}(x)\cap\mathcal{O}(y)=\left\{egin{array}{ll} \emptyset, & ext{ когато } y
otin \mathcal{O}(x)\ \mathcal{O}(x)=\mathcal{O}(y), & ext{ когато } y\in\mathcal{O}(x) \end{array}
ight.$$

Свойство 4. Множеството M е обединение на непресичащи се орбити и ако $I = \{y_1, \dots, y_s, \dots\}$ е множество, в което сме взели по един предствавител от всички различни орбити, тогава

$$M = igcup_{x \in M} \mathcal{O}(x) = igcup_{y \in I} \mathcal{O}(y).$$

Свойство 5. Когато M е крайно множество и $I=\{y_1,\ldots,y_s\}$ е подмножество на M, в което сме взели по един предствавител от всички различни орбити, тогава

$$|M| = |\mathcal{O}(y_1)| + \ldots + |\mathcal{O}(y_s)|.$$

3.3. Орбити - примери

Пример 1.

Нека G е мултипликативна група и H < G е нейна подгрупа. Разглеждаме действието "умножение отляво" на подгрупата H върху множеството M = G, състоящо се от всички елементи на групата

$$h(x) = hx \in G, \ \forall x \in G, \ \forall h \in H.$$

При това действие, орбитата на един елемент $x \in G$ по дефиниция е $\mathcal{O}(x) = \{hx | h \in H\}$, което съвпада точно с определението на десен съседен клас на подгрупата H, а именно $\mathcal{O}(x) = Hx$.

Пример 2:

Ако разгледаме отново M е множеството на точките в равнината \mathbb{R}^2 и групата G от всички ротации в равнината относно фиксирана точка O. Орбитите при това действие представляват множеството от всички концентрични окръжности относно центъра на ротациите. Само орбитата на началната точка се състои само от една точка $\mathcal{O}(O) = \{O\}$.

Пример 3:

Нека $\varphi\in S_n$ е произволен елемент от симетричната група и да разгледаме действието на цикличната подгрупа $H=<\varphi>$ върху множеството $M=\{1,2,\ldots,n\}$. За да намерим орбитата, определена от едно число $i_1\in M$ ще трябва последователно да пресмятаме

 $i_2=arphi(i_1),\dots,i_s=arphi^{s-1}(i_1),\dots$. Тази редица използвахме при намиране представянето на елемента arphi като произведение на независими цикли и така определяхме цикъла, който съдържа числото i_1 - ако първото повторение на числа в редицата е $i_{k+1}=i_1$, то търсения цикъл е (i_1,\dots,i_k) и от дефиницията на орбита получаваме, че $\mathcal{O}_H(i_1)=\{i_1,\dots,i_k\}$. Следователно, от представянето на елемента arphi като произведение на независими цикли непосредствено се получава и разбиването на множеството $M=\{1,2,\dots,n\}$ като обединение на орбити при действие на групата H=<arphi>:

$$\varphi = (i_1^{(1)}, \dots, i_{k_1}^{(1)}) \circ \dots \circ (i_1^{(s)}, \dots, i_{k_s}^{(s)}),$$
 и j_1, \dots, j_p неподвижни точки за φ
$$\Downarrow$$

$$\mathcal{O}_H(i_1^{(1)}) = \{i_1^{(1)}, \dots, i_{k_1}^{(1)}\}, \dots, \mathcal{O}_H(i_1^{(s)}) = \{i_1^{(s)}, \dots, i_{k_s}^{(s)}\} \cdot$$

$$\mathcal{O}_H(j_1) = \{j_1\}, \dots, \mathcal{O}_H(j_p) = \{j_p\}$$

$$\Downarrow$$

$$M = \mathcal{O}_H(i_1^{(1)}) \cup \dots \cup \mathcal{O}_H(i_1^{(s)}) \cup \mathcal{O}_H(j_1) \cup \dots \cup \mathcal{O}_H(j_p)$$

3.4. Стабилизатор

Определение:

Нека групата G действа върху множеството M и $x \in M$. Стабилизатор на x наричаме множеството от всички елементи на G, които оставят x на място, т.е.

$$St_G(x) = St(x) = \{g \in G \mid g(x) = x\} \subset G.$$

Пример:

Нека разгледаме действието на S_n върху множеството от числата $M = \{1, \dots, n\}$.

Тогава стабилизатора на числото n се състои от пермутациите, които не разместват числото n и следователно, принадлежат на подгрупата S_{n-1} . По този начин се получава $St(n) = \{ \varphi \in S_n | \ \varphi(n) = n \} = S_{n-1} < S_n$

Твърдение:

Нека групата G действа върху множеството M, и нека $\Phi:G\to S(M)$, е хомоморфизмът породен от действието, където $\Phi(g)(x)=g(x)$. Тогава е изпълнено:

- a) $St(x) < G, \ \forall x \in M;$
- 6) $\operatorname{Ker}(\Phi) = \bigcap_{x \in M} St(x)$.

Доказателство:

а) Нека $x \in M$, знаем че e(x) = x , следователно $e \in St(x)$.

Ако $g_1,g_2\in St(x)$, тогава

$$(g_1g_2)(x) = g_1(g_2(x)) = g_1(x) = x,$$

 $g_1(x) = x \Rightarrow x = (g_1^{-1}g_1)(x) = g_1^{-1}(x)$,

следователно $g_1 \cdot g_2 \;$ и g_1^{-1} са елементи от стабилизатора, откъдето получаваме, че стабилизаторът на елемента x е подгрупа St(x) < G .

6) Нека $h\in {\tt Ker}(\varPhi)$, което означава че образът на този елемент при хомоморфизма, описващ действието, е идентитета на множеството M и затова имаме $\varPhi(h)=id_M$, откъдето получаваме, че $h(x)=id_M(x)=x, \forall x\in M$. Получава се, че елементът $h\in {\tt Ker}(\varPhi)$ принадлежи на стабилизаторите $h\in St(x) \forall x\in M$, следователно ${\tt Ker}(\varPhi)\subset \bigcap_{x\in M}St(x)$.

Обратно, ако $t\in\bigcap_{x\in M}St(x)\Rightarrow t(x)=x, \forall x\in M$, откъдето получаваме, че изображението $\varPhi(t)$ съвпада с идентитета на множеството M. Затова от $t\in \mathrm{Ker}(\varPhi)$, следва че е изпълнено включването $\bigcap_{x\in M}St(x)\subset \mathrm{Ker}(\varPhi)$. По този начин установяваме, че $\mathrm{Ker}(\varPhi)=\bigcap_{x\in M}St(x)$.

3.5. Връзката орбита и стабилизатор

Теорема:

Нека групата G действа върху множеството M и $\ x \in M$ е произволен елемент :

а) Ако $\,y=g(x)\in\mathcal{O}(x)\,\,$ и $t\in G$, тогава $\,$ е изпълнено

$$t(x) = y \iff t \in gSt(x);$$

б) Има биективно съответствие между точките на орбитата $\mathcal{O}(x)$ и множеството от всички леви съседни класове на подгрупата St(x).

в) Ако
$$|G:St(x)|<\infty,\;$$
 тогава $|\mathcal{O}(x)|=|G:St(x)|=\dfrac{|G|}{|St(x)|}.$

Доказателство:

а) Нека $y=g(x)\in \mathcal{O}(x)$, и за елемента $t\in G$ също е изпълнено t(x)=y , прилагаме g^{-1} към равенството $g^{-1}(t(x))=g^{-1}(y)=x$ следователно $g^{-1}t\in St(x)$. По този начин получаваме, че t принадлежи на левия съседен клас на стабилизатора $t\in g.$ St(x) .

Обратно, нека $p=gh_1\in gSt(x), h_1\in St(x)$ е произволен елемент от левия съседен клас и за него пресмятаме $p(x)=g(h_1(x))=g(x)$, откъдето се получава, че елемента удовлетворява условието p(x)=y.

б) Нека $LC_G(St(x)) = \{gSt(x)|g \in G\}$ е множеството от всички леви съседни класове на стабилизатора на x. Да разгледаме изображението

$$\eta: LC_G(St(x)) o \mathcal{O}(x)$$
, където $\eta(gSt(x)) = g(x) \in \mathcal{O}(x)$,

Използвайки доказаното в т. а) установяваме, че това е коректно дефинирано и биективно изображение:

• η е коректно: От доказаното в т. а) имаме,

$$t \in q.$$
 $St(x) \Leftrightarrow t.$ $St(x) = q.$ $St(x) \Rightarrow t(x) = q(x) \in \mathcal{O}(x) \Rightarrow \eta(q.$ $St(x)) = \eta(t.$ $St(x))$

и изображението не зависи от конкретния представител, с който е записан съседния клас;

 η е инективно: следва пак от т а):

$$\eta(gSt(x)) = \eta(tSt(x)) \Rightarrow t(x) = g(x) \in \mathcal{O}(x) \Rightarrow t. St(x) = g. St(x)$$

- η е сюрективно: Ако вземем произволен елемент от орбитата $y \in \mathcal{O}(x)$, тогава съществува елемент $g \in G$, за който е изпълнено $y = g(x) = \eta(g, St(x))$, следователно y принадлежи на образа на η .
- в) Ако множеството $LC_G(St(x))$ от левите съседни класове е крайно, от изоморфизма в т. б) получаваме, че индексът на подгрупата е равен на броя на точките в орбитата, а ако групата G е крайна може да се приложи теоремата на Лагранж:

$$|\mathcal{O}(x)| = |LC_G(St(x))| = |G:St(x)| = rac{|G|}{|St(x)|}.$$

3.6. Пример

Пример:

Да разгледаме действието на групата $H=<\sigma>$ върху множеството $M=\{1,\dots,8\}$, където $\sigma=(1,3,5,7)\circ(2,4,8)\in S_8$. Редът на елемента σ е 12 и групата е циклична с 12 елемента. Орбитите, на които се разбива множеството са:

$$\mathcal{O}(1) = \{1, 3, 5, 7\}, \ \mathcal{O}(2) = \{2, 4, 8\}, \ \mathcal{O}(6) = \{6\}.$$

За да пресметнем стабилизаторите, използваме, че

$$\sigma^k = (1, 3, 5, 7)^k \circ (2, 4, 8)^k$$

•

Редът на цикъла (1,3,5,7) е 4 и затова стабилизаторите на елементите 1,3,5,7 съдържат елементи от вида σ^{4t} и се получава

$$St(1) = \{id, \sigma^4, \sigma^8\} = St(3) = St(5) = St(7)$$

Аналогично, за да принадлежи елемента σ^k на стабилизатора на числото 2, трябва 3 да е делител на степента k:

$$St(2) = \{id, \sigma^3, \sigma^6, \sigma^9\} = St(4) = St(8)$$

Изпълнено е, че $\{\sigma,\sigma^4,\sigma^7,\sigma^{10}\}$ е съседен клас на St(2) и от $4=\sigma(2)\in\mathcal{O}(2)$ получаваме и

$$4 = \sigma(2); \ 4 = \sigma^4(2); \ \ 4 = \sigma^7(2); \ \ 4 = \sigma^{10}(2)$$

Аналогично, от $5\in \mathcal{O}(1)$ и $5=\sigma^2(1)$, може да се получи $5=\sigma^6(1); \ \ 5=\sigma^{10}(1).$

3.7. Стабилизатори на елементи от една орбита

Следващото твърдение е много полезно при решаване на някои конкретни задачи за действие на група, което ни показва, че стабилизаторите на точките от една орбита са спрегнати помежду си подгрупи на G:

Твърдение:

Нека групата G действа върху множеството M, $x\in M$ и $y=g(x)\in \mathcal{O}(x)$, тогава $St(y)=gSt(x)g^{-1}.$

Доказателство:

Нека $y=g(x)\in\mathcal{O}(x)$, тогава имаме

По този начин се получава $gSt(x)g^{-1}\subset St(y)$.

За обратното включване нека от равенството y=g(x) да получим $g^{-1}(y)=x$ и да вземем произволен елемент $t\in St(y),\;\;$ тогава:

$$egin{aligned} y = t(y) &\Rightarrow & x = g^{-1}(y) = g^{-1}(t(y)) = g^{-1}t(g(x)) \Rightarrow \ &\Rightarrow & h_1 = g^{-1}tg \in St(x) \Rightarrow \ &\Rightarrow & t = g(g^{-1}tg)g^{-1} = gh_1g^{-1} \in g(St(x))g^{-1} \end{aligned}$$

Получехме включването $St(y)\subset gSt(x)g^{-1}$ и окончателно получаваме $St(y)=gSt(x)g^{-1}.$

3.8. Транзитивно действие

Определение:

Казваме, че групата G действа транзитивно върху множеството M, ако за всяка двойка елементи $x,y\in M$ съществува елемент $g\in G$, така че y=g(x).

Като сравним това определени с дефиницията за орбита , установяваме че групата G действа транзитивно върху множеството M, когато всички елементи от множеството са от една орбита при това действие $M=\mathcal{O}(x)$.

Пример на транзитивно действие е действието на симетричната група S_n върху множеството $\{1,\ldots,n\}$.

Следствие:

Ако крайната група G действа транзитивно върху множеството M, тогава $|M| \mid |G|$.

3.9. Брой елементи в М

Теорема:

Ако групата G действа върху крайното множество M, и x_1,\dots,x_s са по един представител от всички орбити при това действие, тогава

$$|M| = |G:St(x_1)| + \ldots + |G:St(x_s)|$$

В случая, когато G е крайна група, е изпълнено:

$$|M|=|G|.\sum_{i=1}^s\frac{1}{|St(x_i)|}.$$

Доказателство:

От доказаното свойство, че множеството M е обединение на непресичащи се орбити и x_1, \dots, x_s са по един представител от всички орбити, и като приложим полученото от предната теорема и теоремата на Лагранж, получаваме:

$$|M| = |\mathcal{O}(x_1)| + \ldots + |\mathcal{O}(x_s)| =$$
 $= |G: St(x_1)| + \ldots + |G: St(x_s)| =$
 $= \frac{|G|}{|St(x_1)|} + \ldots + \frac{|G|}{|St(x_s)|}$

4. Спрягането като действие

Използвайки спрягането в една група G, можем да дефинираме следното съответствие:

$$g\in G, x\in G \;\;
ightarrow \;\; g[x]=gxg^{-1}\in G$$

Проверяваме, че то изпълнява условията за действие на групата $\,G\,$ върху множеството $M=G\,$ от собствените си елементи:

$$\begin{split} e[x] &= exe^{-1} = x \\ (g_1g_2)[x] &= (g_1g_2)x(g_1g_2)^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = g_1[g_2[x]] \end{split}$$

Забележка: Ако групата G е Абелева, тогава за произволен елемент g действието спрягане е идентитета $g[x]=gxg^{-1}=x$ и всички елементи остават неподвижни при това действие.

4.1. Център на група

При това действие съществена роля играе центърът на групата.

Определение:

Център на група, наричаме множеството от всички елементи, които комутират с всеки елемент от групата:

$$\mathbf{Z}(G) = \{ a \mid a. \ x = x. \ a, \ \forall x \in G \}$$

Лема:

Нека G е група, тогава $\mathbf{Z}(G) \lhd G$ и групата G е Абелева група, тогава и само тогава, когато $G = \mathbf{Z}(G)$.

Доказателство:

Нека $a,b\in\mathbf{Z}(G)$, и $x,g\in G$ са произволни елементи от групата:

$$(ab)x = a(bx) = a(xb) = (xa)b = x(ab), \quad \Rightarrow ab \in \mathbf{Z}(G)$$
 $ax = xa \Rightarrow x = a^{-1}xa \Rightarrow xa^{-1} = a^{-1}x \quad \Rightarrow a^{-1} \in \mathbf{Z}(G)$ $(gag^{-1})x = (gg^{-1})ax = xa = xa(gg^{-1}) = x(gag^{-1}) \quad \Rightarrow gag^{-1} \in \mathbf{Z}(G)$

Следователно центърът е нормална подгрупа $\mathbf{Z}(G) \lhd G$.

Ако групата G е Абелева група, тогава за произволни елементи от групата имаме ab=ba, следователно всеки елемент принадлежи на центъра. Обратно, ако всеки елемент от групата принадлежи на центъра, тогава той комутира със всеки друг елемент и затова групата е Абелева.

42 Свойства

Определение:

Клас спрегнати елементи на елемента $a \in G$ се нарича множеството

$$C(a) = \{gag^{-1} \mid g \in G\}.$$

Определение:

Централизатор на елемента $a \in G$ се нарича множеството

$$\mathbf{Z}(a) = \{g \mid gag^{-1} = a\} = \{g \mid ga = ag\}.$$

При така дефинираното действие чрез спрягане на групата върху елементите си, орбитата на елемента a представлява точно класа спрегнати елементи $\mathcal{O}(a) = C(a)$, а централизатора е стабилизатора на елемента при при това действие $St(a) = \mathbf{Z}(a)$.

Следващото твърдение задава връзката на центъра на групата с действието спрягане.

Лема:

Нека G е група $\Psi:G o S(G)$ е хомоморфизма, който се поражда от разглеждането на спрягането като действие на група $\Psi(g):x o g[x]=gxg^{-1}$. Тогава:

$$\mathrm{a)}\;\mathbf{Z}(G) = \mathtt{Ker}(\Psi) = \bigcap_{a \in G} \mathbf{Z}(a)$$

6)
$$a \in \mathbf{Z}(G) \iff C(a) = \{a\}.$$

Доказателство:

а) Ясно е, ако $a\in \mathbf{Z}(G)$ е произволен елемент от центъра, тогава всички равенства $ax=xa, (\forall x\in G)$, записани във вида $axa^{-1}=x, (\forall x\in G)$ ни показват, че $\Psi(a)=id$ и $\mathbf{Z}(G)\subset \mathrm{Ker}(\Psi)$.

Ако g е елемент от ядрото на хомоморфизма, тогава образът му е единичния елемент (т.е. идентитета) при това действие и $\Psi(g)=id=\Psi(e)$, т.е. $g[x]=x=e[x],\ \forall x$. От това получаваме $gxg^{-1}=x,$ и $gx=xg,\ (\forall x)$ и $g\in\mathbf{Z}(G)$, следователно $\mathrm{Ker}(\Psi)\subset\mathbf{Z}(G)$.

Равенството $\mathbf{Z}(G) = \bigcap_{a \in G} \mathbf{Z}(a)$ следва от доказаното свойство за стабилизаторите.

б) От схемата, лесно се вижда, че твърдението е изпълнено

$$egin{aligned} a \in \mathbf{Z}(G) &\Leftrightarrow & ax = xa, (orall x \in G) \ &\updownarrow & &\updownarrow & . \ C(a) = \{a\} &\Leftrightarrow & a = xax^{-1}, (orall x \in G) \end{aligned}.$$

4.3. Формула за класовете

Теорема: [формула за класовете спрегнати елементи]

Нека G е, крайна група и x_1, \ldots, x_s са по един представител на онези спрегнати класове, които имат повече от един елемент. Тогава броя на спрегнатите елементи във всеки клас спрегнати елементи дели реда на групата $\{(|C(x_i)| \mid |G|)\}$ и е изпълнено:

$$|G| = |\mathbf{Z}(G)| + |C(x_1)| + \ldots + |C(x_s)|,$$

$$|G| = |\mathbf{Z}(G)| + \frac{|G|}{|\mathbf{Z}(x_1)|} + \ldots + \frac{|G|}{|\mathbf{Z}(x_s)|}$$

Доказателство:

Пресмята се броят на елементите в класовете спрегнати елементи, които се явяват орбити при действието на групата чрез спрягане върху множеството от собствените си елементи. От доказаната теорема имаме, че е изпълнено $|C(x_i)| = |G: \mathbf{Z}(x_i)|$, откъдето от следствие на теоремата на Лагранж получаваме, че $|C(x_i)|$ дели реда на групата.

От Лемата за центъра имаме, че центъра $\mathbf{Z}(G) = \{a_1, \dots, a_m\} = C(a_1) \cup \dots \cup C(a_m)$ е обединение на тези класове, които се състоят от по един елемент.

Използваме, че централизаторите $\mathbf{Z}(x_i)$ са точно стабилизаторите при това действие и прилагаме Теорема за орбитите, за да получим търсеното равенство.

$$G = C(a_1) \cup \ldots \cup C(a_m) \cup C(x_1) \cup \ldots \cup C(x_s)$$
 \Downarrow
 $G = \mathbf{Z}(G) \cup C(x_1) \cup \ldots \cup C(x_s)$
 \Downarrow
 $|G| = |\mathbf{Z}(G)| + |C(x_1)| + \ldots + |C(x_s)|,$
 \Downarrow
 $|G| = |\mathbf{Z}(G)| + \frac{|G|}{|\mathbf{Z}(x_1)|} + \ldots + \frac{|G|}{|\mathbf{Z}(x_s)|}$

5. Приложение

Действието на група върху множество се прилага много често при доказване на някои от възловите теореми в алгебрата.

Като пример са дадени няколко теореми, чието доказателство лесно се получава използвайки подходящо подбрани множества и действие на група върху тях.

Определение:

Ако група G има ред p^k , където p е просто число, тогава групата се нарича p-група.

Теорема:

Ако G е крайна група, от ред $|G|=p^k$ където p е просто число, тогава групата има нетривиален център

$$Z(G) \neq \{e\}.$$

Доказателство:

Разглеждаме действието на групата върху собствените си елементи чрез спрягане и прилагаме формулата за класовете спрегнати елементи

$$|G| = |\mathbf{Z}(G)| + |C(x_1)| + \ldots + |C(x_s)|$$

Елементите x_1, \dots, x_s са по един представител на онези спрегнати класове, които имат повече от един елемент и затова $|C(x_i)| \mid p^k$, следователно $|C(x_i)| = p^{m_i}$, където $1 \le m_i < k$.

Пресмятаме броя на елементите в центъра на групата

$$|\mathbf{Z}(G)| = |G| - |C(x_1)| - \ldots - |C(x_s)| = p^k - p^{m_1} - \ldots - p^{m_s},$$

и получаваме, че простото число p дели $|\mathbf{Z}(G)|$. Знаем, че центърът на групата е подгрупа и затова $|\mathbf{Z}(G)|=p^m, \ m\geq 1$ и групата има нетривиален център.

Следствие:

Ако G е крайна група, от ред $|G|=p^2$ където p е просто число, тогава групата е Абелева.

Доказателство:

От доказаното в предната теорема имаме, че групата G има нетривиален център. Следователно $|\mathbf{Z}(G)|=p$ или $|\mathbf{Z}(G)|=p^2$.

Допускаме, че $|\mathbf{Z}(G)|=p$ и да изберем елемент $x\in G\setminus \mathbf{Z}(G)$ който не принадлежи на центъра на групата. На централизатора на елемента x, (който е подгрупа на G) принадлежат всички елементи от центъра на групата и освен това и самия елемент x, защото $x=x.x.x^{-1}$.

Получи се, че $|\mathbf{Z}(x)| \geq p+1$ откъдето $|\mathbf{Z}(x)| = p^2 = |G|$. Следователно за елемента x е изпълнено $xg = gx, \forall g \in G$, т.е. x принадлежи на центъра на групата, което е в противоречие с допускането.

Получихме, че единствената възможност е $|\mathbf{Z}(G)| = p^2 = |G|$, което означава, че групата е Абелева.

 \Box

5.2. елемент от ред р

Следващата теорема обобщава доказаното твърдение, че в група от ред четно число има елемент от ред 2. Тя се явява частен случай на теорема на Силов, според която ако p е просто число и $p^k \mid |G|$, тогава в групата има подгрупа от ред p^k .

Теорема:

Ако G е крайна група, и p е просто число, което дели реда на групата ($p \mid |G|$), тогава в групата има елемент от ред p.

Доказателство:

• Намираме подходящо множество: Да разгледаме множеството от вектори, имащи дължина p, с координати елементи на групата G, имащи произведение равно на единичния елемент на групата G.

$$M=\{X=(x_1,\ldots,x_p)\mid x_i\in G,\;$$
 за които $x_1.\,x_2\ldots x_p=e\;\}$

Един елемент $Y=(y,\ldots,y)\in M$ от множеството има равни координати, точно когато $y^p=e$, в групата G такива са само единичния елемент и елементите от ред p.

За да пресметнем броя на елементите в множеството M, съобразяваме, че ако вземем $x_1,\dots,x_{p-1}\in G^{p-1}$ - произволен набор от p-1 елемента от групата G, тогава той еднозначно може да се допълни до вектор от множеството M по следния начин

$$(x_1,\ldots,x_{p-1}\in G^{p-1}) o (x_1,\ldots,x_{p-1},(x_1,\ldots,x_{p-1})^{-1})\in M$$

Получаваме, че броят на елементите в множеството е $|M| = |G|^{p-1}$ и се дели на простото число p.

ullet Определяме група, действаща върху множеството: Нека $\sigma=(1,2,\ldots,p)\in S_p$, и да разлеждаме ullet изображението

$$\sigma(x_1,\ldots,x_p)=(x_{\sigma(1)},\ldots,x_{\sigma(p)})=(x_2,\ldots,x_p,x_1).$$

Ясно е, че ако $(x_1,\ldots,x_p)\in M$ следва, че $\sigma(x_1,\ldots,x_p)\in M$, защото $x_1.x_2\ldots x_p=e \Rightarrow (x_2\ldots x_p).x_1=e$. По този начин се получава, че цикличната група $H=<\sigma>\subset S_p$ от ред p действа върху множеството M. При това действие един елемент $X=(x_1,\ldots,x_p)\in M$ образува орбита с дължина 1, когато всички координати на вектора са равни помежду си, защото

$$\sigma(X) = X \Leftrightarrow (x_1, \ldots, x_p) = (x_2, \ldots, x_p, x_1) \Leftrightarrow x_1 = x_2 = \ldots = x_p$$

• *Използваме свойства на действието на групата върху множеството*: При дефинираното действие орбитите на елементите имат дължини 1 или *p*.

Ако множеството M се разбива на t орбити с дължина p и s орбити с дължина 1, тогава прилагайки формулата за броя на елементите в множеството получаваме |M|=s+t. p, откъдето виждаме, че s=|M|-tp се дели на p. Известно ни е, че $s\geq 1$, защото $(e,\dots,e)\in M$ и $\mathcal{O}((e,\dots,e))=\{(e,\dots,e)\}$, следователно $s\geq p$, като в групата има поне p-1 елемента от ред p.