Advanced Control Systems Lab 4 and 5 Report Marking Guide

- A <u>maximum of three students are allowed per group</u>. The <u>groups must be fixed</u> between Labs 4-5 and all group members <u>must attend the same lab</u> session.
- Due to the work required to complete the lab, students who do not attend a lab with their group will not receive a mark for the report. Your attendance will be recorded.
- Labs 4-5 will be combined into a single report worth 15% of your ACS grade. Please submit the report on Canvas. Only one submission is required per group. [Total Report Marks: 235]
- Present the results and diagrams clearly with annotations for complicated features. Graphs should be plotted in MATLAB and should include the legend, title, x-axis and y-axis labels. Moreover, the pictures in the report should be clear to read i.e. of good resolution.
- Address the questions in the order as they appear in this document, and in your reports, clearly indicate the section that you are answering.
- Finally, please ensure that the content included in your report is your own intellectual property. Any occurrence of significant plagiarism may result in loss of partial/full credit.

Overall production quality of the report [15 marks]

Lab 4:

0.1.1: Park-Clarke Transformation

- 1. What is the meaning of a balanced three-phase load? How does it help in reducing the number of current sensors? [2 marks]
- What are the input and output variables to Park-Clarke Current transform block?[3 marks]
- Show the screenshot of <u>block diagram</u> and <u>code</u> of the PCCurrent block? [7 marks]
- 4. Explain the working of PCCurrent block? [4 marks]
- 5. How is 'theta' (input to the PCCurrent block) measured and supplied to the PCCurrent block? [3 marks]

0.1.2: Inverse Park-Clarke Transformation

- 1. What is the role of Inverse Park-Clarke Voltage transformation? [3 marks]
- 2. What are the input and output variables to Inverse Park-Clarke Voltage transform block? [3 marks]
- Show the screenshot of <u>block diagram</u> and <u>code</u> of the IPCVoltage block? [7 marks]
- 4. Explain the working of IPCVoltage block? [4 marks]

0.2: Simulation Model for PMSM

- 1. Show the complete block diagram of your *PMSMModel.slx* file. [10 marks]
- 2. Explain the working of this block diagram? [8 marks]
- Does this block diagram characterize an open-loop or closed-loop system? [2 marks]
- 4. Identify the input and output variables of the system shown in *PMSMModel.slx*? [4 marks]

- 5. What is the role of Zero-Order Hold blocks in this block diagram? [2 marks]
- 6. Identify the load disturbance in this block diagram. [3 marks]
- 7. Why is the <Rotor angle thetam (rad/s)> multiplied with "p" before feeding it to the IPCVoltage and PCCurrent blocks? [3 marks]
- 8. Show the code of m-file generated for defining parameters in Lab 04? [7 marks]

Lab 5:

Model of PMSM

- What control structure is being used for the angular speed control of PMSM? [4 marks]
- 2. Show the mathematical model of PMSM and identify input and output variables in the model? [7 marks]

Task-1: Current Controller Design

- 1. Write down the transfer functions $G_1(s)$ and $G_2(s)$? [6 marks]
- 2. Are $G_1(s)$ and $G_2(s)$ open-loop or closed-loop transfer functions? [3 marks]
- Identify the input and output of G₁(s) and G₂(s) transfer function block? [4 marks]
- 4. What are the poles and zeros of $G_1(s)$ and $G_2(s)$? [4 marks]
- 5. Is PI controller a suitable controller for step reference tracking for $G_1(s)$ and $G_2(s)$; why/why not? [4 marks]
- 6. Can we design a PID controller for G₁(s); why/why not? [2 marks]
- 7. How does γ_1 impact the bandwidth of the current PI controllers? [2 marks]
- 8. Write down the <u>process</u> of control design for $G_1(s)$ and $G_2(s)$? (You can attach a screenshot of your handwritten notes.) [10 marks]
- 9. Write down the closed-loop poles of i_d and i_a control loops? [6 marks]
- 10. Apply final value theorem to prove that the closed-loop system for $G_2(s)$ can track a step reference of i_q * = 10A (i.e. I_q *(s) = 10/s) with zero steady-state error. [Hint: Y(s) = $I_q(s)$ and R(s) = I_q *(s)] [10 marks]
- 11. Show the m-file code with PI parameter equations for $G_1(s)$ and $G_2(s)$? [6 marks]

Task-2: Speed/Velocity Controller Design

- 1. Write down the transfer functions G₃(s)? [3 marks]
- 2. Identify the input and output of G₃(s) transfer function? [3 marks]
- 3. What are the poles and zeros of $G_3(s)$? [3 marks]
- 4. How does γ_2 impact the bandwidth of the speed PI controller? [2 marks]
- 5. Write down the <u>process</u> of control design for outer (speed) control loop? (You can attach a screenshot of your handwritten notes.) [12 marks]
- 6. Apply final value theorem to prove that the closed-loop system of speed control loop can reject step output disturbance of $d_o(t) = 20 \text{ rad/s}$ (i.e. $D_o(s) = 20/s$). [10 marks]
- 7. Would the speed control loop be able to track a sinusoidal speed reference without steady state error; why/why not? [4 marks]
- 8. Show the m-file code for PI parameter equations for $G_3(s)$? [6 marks]

Task-3: Simulation of Closed Loop Control of Speed/Velocity

- 1. Show the complete block diagram of closed-loop system with all the PI controllers? [10 marks]
- 2. What is the role of load torque "TL" in the closed-loop simulation? [2 marks]
- 3. Show the graphs : i_d and i_d * on one graph, and ω_e and ω_e * on another graph for each of the following cases:
 - a. $\gamma_1 = \gamma_2 = 0.8$
 - b. $\gamma_1 = 0.8$, $\gamma_2 = 0.93$
 - c. $\gamma_1 = 0.93$, $\gamma_2 = 0.8$
 - d. $\gamma_1 = \gamma_2 = 0.93$

State your observations. [10 marks]

- 4. Plot sum of squared errors for ω_e in all four cases? Which case is best and why? [7 marks]
- 5. Observe and comment on the noise rejection capability of all cases by adding a suitable measurement noise in the speed measurement. Describe in terms of speed controller bandwidth. Provide insight without showing graphs. [5 marks]