

Parcours Data Scientist

Projet 5:

Segmentation des clients

Sommaire

- Présentation et Objectifs
- Nettoyage / Exploration
- Clustering des Clients
- Interprétation des Clusters
- Classification
- API
- Pistes d'évolutions
- Conclusion

Présentation et Objectifs

- Dataset issue d'un magasin
 - Clients (ID + pays)
 - Articles achetés et qté
 - Date d'achat
 - Numéro de facture
- Objectif
 - Segmenter la clientèle par comportement
 - Prédire au plus tôt dans quel groupe sera une personne

- Achat annulés
 - Nouvelle features
 - Gardé pour la fin
 - Suppression des achats faits puis annulés
 - Explication des outliers

Cas 1:

Achat Objet A – qte N Annulation Objet A – qte M avec (M < N)

- Difficile à gérer
- InvoiceNo achat manquant

Cas 2:

Achat Objet A – qte N Annulation Objet A – qte N

> Tentative de suppression

01/01/2018 MINE Nicolas

- Pays d'origine
 - 11 % des clients sont étrangers
 - 18 % du CA
 - ➤ A conserver
 - Labélisation parClassement

- Quantity & Prix Unitaire
 - Boxplot et exploration des outliers
 - Peu de vrais outliers (certains articles chers ou grosse qté)

- Date
 - Découpage
 - jour de la semaine
 - Moment de la journée

01/01/2018 MINE Nicolas

- Description
 - Suppression articles en minuscule (faux articles)
 - Suppression StockCode (POST / DOT)
 - Frais de ports
 - Suppression client Nan (Magasin)

- Description
 - Nouveau Dataset
 - Objet Initial=> Objet cleané
 - BLUE RETRO KITCHEN WALL CLOCK => RETRO KITCHEN WALL CLOCK
 - SET OF 6 RIBBONS COUNTRY STYLE => RIBBS COUNTRY STYLE
 - Objet Cleané => keyword
 - 95 % d'apparitions
 - Matrice Objet Initial x Keywords (4000 x 1300)
 - Discount Factor (0,99)
 - Clustering Kmeans

- Présentation du Kmeans (aparté)
 - Minimisation \sum (distances)²
 - Glisser les moyenne n fois

MINE Nicolas

- Description
 - N-cluster basé sur Score de Silhouette
 - Plusieurs essais
 - Avec et sans top keywords
 - Avec et sans
 Discount factor
 - Faible Score
 - Superposition

Description

Description

01/01/2018 MINE Nicolas

- Description
 - Encodage des articles par cluster
 - OneHotEncoding de ces clusters

- Fin du nettoyage / Exploration
 - Sauvegarde du dataset
 - Sauvegarde du converter Pays => Label
 - Sauvegarde du converter Objet => Cluster

Clustering des Clients

- Préparation du dataset Clients
 - Phase 1:
 - Dataset groupé par invoice
 - Ajout de Features
 - Jour depuis achat
 - Prix Panier
 - Nb articles / clusters
 - Phase 2:
 - Dataset groupé par clients
 - Ajout de features
 - 1ere visite/dernière visite
 - Nb visites
 - Temps moyen entre visites

Clustering des Clients

- 2nd Clustering Kmeans
 - N-cluster basé sur Score de Silhouette
 - Scaling Standard et MinMax
 - MinMax meilleur si
 N cluster > 7
 - Std Scaling trouve
 les outliers (1 seul gros cluster env 3500 pers.)
 - Garder suffisamment de pers. / cluster

Clustering des Clients

- 2nd Clustering Kmeans
 - Visualisation sur TSNE

MINE Nicolas

01/01/2018 MINE Nicolas

MINE Nicolas

01/01/2018

MINE Nicolas

Classification

- Suppression Cluster 6 (4 clients VIP)
- Standard & MinMax Scaling
- Multiple Modèles testés
 - KNN (Accuracy 93,6 %)
 - SVC (Accuracy 83,6 %)
 - Naive Bayes (Accuracy 46,3%)
 - Decision Tree(Accuracy 94 %)
 - ✓ Random Forest(Accuracy 95,6 %)
- Grid Search + export top model fitted

Classification

Résultats

– Accuracy: 96,46%

- Recall: 94,29%

- Precision: 95,21%

-FP > FN

01/01/2018

MINE Nicolas

API

Test

- Extraction du dataset initial
 - 1 Client par Cluster (sauf 6)
 - Sauvegarde sous testN.csv (N=cluster)

Code

- Ouvre chaque dataset
- Reforme le dataset du training (shape)
- Charge scaler + modèle fitté => prédiction

Runtest.bat

- Appelle test.py
- ❖ python test.py client.csv ...
- Certains dataset = 2 invoices
- Peut-être du train set

```
Prediction sur test1.csv
Ce client est predit pour appartenir au Groupe 1
Prediction sur test2.csv
Ce client est predit pour appartenir au Groupe 2
Prediction sur test3.csv
Ce client est predit pour appartenir au Groupe 3
Prediction sur test4.csv
Ce client est predit pour appartenir au Groupe 4
Prediction sur test5.csv
Ce client est predit pour appartenir au Groupe 5
Prediction sur test7.csv
Ce client est predit pour appartenir au Groupe 7
Prediction sur test8.csv
Ce client est predit pour appartenir au Groupe 8
```

Pistes d'évolutions

- Le Clustering des objets impacte le Clustering des Clients
 - Meilleur Extraction des articles?
 - Jonction avec fournisseur par exemple
 - Type de Produits (jouets, soins, décorations, bijoux, ...)
 - Moins de Mots-clés pour les articles ?
 - 2nd Clustering par couleur?
- Convertir comme le RFM (perte d'info mais aide au Clustering)

Conclusion

- On a groupé les Clients dans 8 groupes
- Permet de savoir :
 - Qui ne reviendra potentiellement pas
 - Qui revient fréquemment
 - Qui a tendance à être bon acheteur
- Aide à la décision :
 - Cibler des clients pour des offres
 - Faire revenir des clients perdu avec des promotions?
 - Cibler les produits/catégories phares
- Risque d'erreur assez faible même avec peu d'achats
- Evolution des clients de certains clusters dans le temps?
 - Fidélisation ou perte du client

01/01/2018 MINE Nicolas