1. 개요

- ●목차
- 1)트리 정의 및 표현
 - Definitions
 - 3 Representation: Adjacency Matrix, Adjacency List, Adjacency Multi-list
- 2)그래프 기본 연산 (Elementary Graph Operation)
 - Depth First search, Breadth First search
- 3) Minimum cost Spanning Tree (MST)
 - Kruskal, Prim, Sollin
- 4) Shortest Path (single source all destination)

1.1 정의

A graph, G, consists of two sets, a finite set of vertices and a finite set of edges.

. G = (V, E) V: set of vertex E: Set of edges

- . Undirected Graph (무방향): (v1, v2) = (v2, v1) G1, G2
- . Directed Graph ($^{\text{H}}$ $^{\text{To}}$): $\langle v1, v2 \rangle \neq \langle v2, v1 \rangle$ G3

$$\begin{array}{ll} V(G1) = \{0,1,2,3\} & E(G1) = \{(0,1)(0,2)(0,3)(1,2)(1,3)(2,3)\} \\ V(G2) = \{0,1,2,3,4,5,6\} & E(G2) = \{(0,1)(0,2)(1,3)(1,4)(2,5)(2,6)\} \\ V(G3) = \{0,1,2,\} & E(G3) = \{<0,1><1,0><1,2>\} \end{array}$$

- Restriction on a graph: <u>no self-loop, and no Multigraph</u>
 - self-loop: 자기 자신을 가리키는 간선
 - multigraph: 두 정점간에 여러 간선있는 graph
- Complete Graph 란?

 the maximum number of edges 를 갖는 그래프

 (ex. G1 is a complete Graph, G2, G3 is not complete graph)
 - \Rightarrow For undirected graph max number of edges \Rightarrow n(n-1)/2
 - \Rightarrow For directed graph, max number of edges \Rightarrow **n(n-1)**

- If (0,1) is an edge in undirected graph, then vertices 0 and 1 are **ADJACENT**, and the edge (0,1) is **INCIDENT** on vertices 0 and 1
 - ex) In Graph G2, vertices 3,4,0 are adjacent to vertex 1 and edges (0,1), (1,3), (1,4) are incident on vertex 1
- Subgraph: A subgraph of graph G is G', such that $V(G') \subseteq V(G)$ & $E(G') \subseteq E(G)$

ex) in Graph G1, many subgraphs, such as

Cycle and Path

- Path(경로): 정점(간선)들의 연속
 - 경로의 길이 : 경로상의 간선 수
 - Simple PATH(단순경로): 서로 다른 정점으로 구성된 경로
- CYCLE: (처음과 끝 정점이 같은 단순경로)

Cycle is a simple path in which the FIRST and LAST vertices are the same vertex

■ CONNECTED: 62(connected) 그래프, G $vi, vj \in V(G)$ $\Rightarrow vi \text{ odd} vj \text{ 로의 경로 존재}$

Connected

Disconnected

- Connected Component: number of subgraphs ex) G4 has two components H1 and H2
 - * Diff with Tree and Graph
 - 1) Tree is special case of graph
 - 2) Tree is a graph that is connected
 - 3) Tree is a graph that has no cycle (ex. G1, G3 is not Tree, G2 is tree)
- DEGREE: number of edges incident to that vertex
 - . Undirected Graph:
 - . Directed Graph: (indegree, outdegree)

In G3, vertex 1: indegree 1, outdegree 2 → degree 3.

If d_i is degree of vertex i in G, with n vertices and e edges:

⇒ number of edges :

$$e = \left(\sum d_{i}\right) / 2$$

0

1.2 Graph Representation (3 가지 표현방법)

- 1)인접행렬 (Adjacent matrix)
- 2)인접리스트 (Adjacent list)
- 3)인접다중리스트 (Adjacent multilist)

1) Adjacency Matrix

. Undirected Graph: Symmetric

. can save space by storing only upper/lower triangle of matrix

. Degree of any vertex = low sum

G3 1 2 3 1 0 1 0 2 1 0 1 3 0 0 0

. Directed Graph: Not symmetric

. Degree of vertex: row sum -> outdegree col sum -> indegree

- Sparse graphs 란?: 간선의 개수가 적은 그래프를 뜻함
- sparse graph 를 adjacency matrix 로 표현하면 memory waste 임. adjacency list 가 적합함.

2) Adjacent List

Replace n rows of adjacency matrix with n linked list, one for each vertex in G (각 정점에 대해 1개의 리스트 존재)

For G3:

3) Adjacent Multilist

인접리스트에서는 각 간선이 두 번 표현되었음 (예: (1,0)) => Multilist 로 해결 가능

■ Node structure

marked | vertex1 | vertex2 | path1 | path2

The lists are: vertex0: N1->N2->N3

vertex1: N1->N4->N5 vertex2: N2->N4->N6 vertex3: N3->N5->N6

2. Elementary Graph Operations

```
1) DFS (Depth First Search): 깊이 우선탬색
  . use Adjacency linked list
  . visited[MAX_VERTICES]: 배열 (초기치 = FALSE)
  . visited[i] = TRUE : 정점 i 방문
                          . 시작정점 v 방문 (visited[v]=true)
  void DFS(int v)
                         . For each vertex W adjacent to v do
    {
                              if not visited[W] then DFS(W);
      Node
                          . 더이상 없으면 dfs 끝
      visited[v] = true;
      cout << v;
     for (w= graph[v]; w!=NULL; w=w->link)
        if (!visited[w->link]) DFS(w->link);
     }
                   A. list representation:
   0
             vertex0
                                       null
                                    3
                            0
                                                null
                   1
                                    5
                            0
                                                null
                   3
                                    7
                            1
                                       null
                   4
                            1
                                       null
                   5
                            2
                                    7
                                       null
                                       null
                   6
```

• Analysis: total time of DFS by A. List: O(e), by A. matrix: O(n²)

2) BFS (Breadth First Search) . Implement with Linked Queue

Q 1 2

• Analysis of BFS: same as DFS

```
Sample Code
  class node {
       int vertex; node *next;
       node(int num)  { vertex = num; next = 0; }
    friend class Graph;
  };
  class Graph {
       private:
         node *graph[MaxVertices];
              visited[MaxVertices];
                          node *rear;
                *front;
         node
       public:
         Graph() \{front = 0; rear = 0;\}
         void initGraph();
         void insertGraph(int num1, int num2);
         void displayGraph();
         void enqueue(int v);
         int dequeue();
         void bfs(int v);
    };
void Graph::initGraph()
   for (int i = 0; i < MaxVertices; i++) {
         graph[i] = 0; visited[i] = false; }
void Graph::enqueue(int v)
    node *temp = new node(v); .....
int Graph::dequeue()
```

node *p; int vertex;

{

3) SPANNING TREES (신장트리)

Definition: any tree that includes all the vertices in G

예) 하나의 연결 Graph 는 출발점이나 검색방법에 따라 각기 다른 신장 트리가 만들어진다.

- We can use DFS or BFS to create a spanning tree
 - when DFS is used => the result is dfs spanning tree
 - when BFS is used => the result is bfs spanning tree

3. Minimum cost spanning trees(MST)

- ▶ cost가 제일 적은 신장트리
- ▶ Greedy Method 의 응용 예 ▶ 총 (n-1) edges 이다
 - 대표적인 MST algorithms
 - ⇒ Kruskal's, Prim's, Sollin's

1) Kruskal's Algorithm (Greedy method)

```
T = { };
while (T contains < n-1 edges) & (E is not empty) {
   choose a least cost edge (v,w) from E;
   delete (v,w) from E;
   if ((v,w) does not create a CYCLE in T)
        add(v,w) to T => ACCEPT
   else discard(v,w); => REJECT
}
If T contains fewer than n-1 edges than
   Print ("No spanning tree");
```

0 28
10 / 14 16
5 6 2 25 24 /
18 /12
2× \ 3

cost	edge	action
10	(0,5)	accept
12	(2,3)	accept
14	(1,6)	accept
16	(1,2)	accept
18	(3,6)	reject => cycle
22	(3,4)	accept
24	(4,6)	reject => cycle
25	(4,5)	accept
28	stop	already (n-1) edges added

2) Prim's Algorithm - 각 단계에서 선택된 간선의 집합 = 트리 Prim's algorithm form a tree at each stage, but Kruskal's form a forest

```
{can start with any vertex}
Algorithm:
                  //Prime MST
      T = \{ \};
      TV={0} //start with vertex 0//
      while (T contains fewer than n-1 edges)
                                                    u \in TV \& v \notin TV;
           let (u,v) be a least cost edge such that
           if (there is no such edge)
                                          break;
                        v to TV;
           else
                  add
                      (u,v) to T;
                 add
          (T contains fewer than n-1 edges)
      if
                    print ("No spanning Tree");
```

ex) starting vertex '0'

- 3) Sollin's Algorithm 각 단계별, T에 포함될 간선을 여러개 선택
 - (i) 그래프의 모든 n 정점을 포함하는 신장트리 구성
 - (ii) forest 내의 각 트리에 대해 하나의 간선 선택,(최소비용선택)

- . Tree $\{0,5\}:=>(1,0),(4,5)$, will select (4,5) since cost is 25 (minimum)
- . Tree $\{1,6\}$: => (1,2), (6,3), will select (1,2) since cost is 16 (min)
- . Tree $\{2,3,4\}:=>(2,1),(3,6)(4,6)$, will select (2,1) since cost is 16 (min)

4. Shortest Path (최단경로)

- 1) Single Source All Destination (단일 출발점-> 모든 도착지)
- v0(source)에서 G의 다른 모든 정점(도착지)까지의 최단경로

	45
0 50	10^{10}
20/) 15	35
104	20 30
2	3
15	3

path	length
1) v0 v2	10
2) v0 v2 v3	25
3) v0 v2 v3 v1	45
4) v0 v4	45

< shortest path from v0 to v1,v2,v3,v4> <no path from v0 to v5>

* found[i]: if found[i]=TRUE vi 까지의 최단경로 발견

distance[i]: v0에서 S 내의 정점만을 거친 vi까지의 최단거리

(S=최단경로가 발견된 정점의 집합)

- 초기치 : *distance*[i] = *cost*[0][i]

- cost[i][j] : <i, j>의 가중치

* 그래프 : 비용 인접 행렬(cost adjacency matrix)로 표현

void initCostMatrix(int cost[][]) { //initialize
int I, j;

for
$$(i = 0; i < 8; i++)$$

for $(j = 0; j < 8; j++)$
if $(i == j)$ cost $[i][j] = 0;$
else cost $[i][j] = 999;$

// Enter distance value from data file.

Algo (Shortest path) by Dijkstra's algorithm

```
Void Shortestpath (int v, int cost[][], int dist[], int n, bool found[]) {
    int I,u,w;
    for (I=0; I<n; I++) {
                                         O(n)
                                          . found all FALSE
        found[I] = false;
        distance[I] = cost[v,I];}
                                         . initial value assign
    found[v]=true;
                     // start vertex mark
    distance[v]=0;
                    // start vertex 0
    for (I=0; I<n-1; I++)
       u = choose(distance, n, found); // find min value node
                                             // mark that node
       found[u]= true;
       for (w = 0; w < n; w++) { // and replace if revised value
        if (!found[w]) {
                           // if not marked
         if (distance[u]+cost[u,w] < distance[w]) //is smaller than org
            distance[w] = distance[u] + cost[u,w]; // value
       }}
     Print "Distance ->", dist[]; print 1 row for the vertex
} }
int choose()
    int i, min; // min=max_value 로 초기화
   for (i = 0; i < n; i++)
        if (dist[i] < min && !found[i]) {
             min = distance[i]
   return i;
}
```


	0	1	2	3	4	5
0		50	10		45	
1	Ì		15		10	
2	20			15		
3		20			35	
4				30		
5				3		
•	비용	인접	행렬] - (cost	

Vertex	0	1	2	3	4	5
Distance	0	50	10	999	45	999
S	1	0	0	0	0	0

1. S = {v0} : 초기는 공백

distance(1) = 50

distance(2) = 10 <= min

distance(3) = 999

distance(4) = 45

distance(5) = 999

Vertex	0	1	2	3	4	5
distance	0	50	10	999	45	999
S	1	0	1	0	0	0

2. $S = S \cup \{v2\} = \{v0, v2\}$

distance(1)<- min{distance(1), distance(2)+(v2,v1,999)} 50 distance(3)<-min{distance(3), distance(2)+(v2,v3,15)} 25 <= min distance(4)<- min{distance(4), distance(2)+(v2,v4,999)} 45 distance(5)<- min{distance(5), distance(2)+(v2,v5,999)} 999

vertex	0	1	2	3	4	5
distance	0	50	10	25	45	999
S	1	0	1	1	0	0

3. $S = S \cup \{v3\} = \{v0, v2, v3\}$

45 <= *min* $distance(1) < -min{distance(1), distance(3) + v3, v1, 20}}$ $distance(4) < -min{distance(4), distance(3) + (v3, v4, 35)}$ 45 $distance(5) < -min{distance(5), distance(3)+(v3,v5,999)}$ 999

Vertex	0	1	2	3	4	5
Distance	0	45	10	25	45	999
S	1	1	1	1	0	0

4. $S = S \cup \{v1\} = \{v0, v1, v2, v3\}$

 $distance(4) < -min\{distance(4), distance(1) + (v1, v4, 10)\}$ 45<= min $distance(5) < -min{distance(5), distance(1)+(v1,v5,999)}$ 999

Vertex	0	1	2	3	4	5
distance	0	45	10	25	45	999
S	1	1	1	1	1	0

5. $S = S \cup \{v4\}$

 $distance(5) < min{distance(5), distance(4)+(v4,v5,999)}$

999 <= min

	, 111111	Carbtaire	$\sigma(v), \alpha$		·/ · (· · · · · · · · · · · · · · · · ·	10,000
Vertex	0	1	2	3	4	5
Distance	0	45	10	25	45	999
S	1	1	1	1	1	1

6.
$$S = S \cup \{v5\}$$

Final Solution:

Distance	0	45	10	25	45	999
----------	---	----	----	----	----	-----

			Distance							
		vertex	LA	SF	DEN	CHI I	BOS	NY	MA	NO
Iteratio	on visited	selected	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Initi	al -	-	∞	∞	∞	1500	0	<u>250</u>	∞	∞
1	4	5	∞	∞	∞ /	1250	0	250	<u>1150</u>	1650
2	4,5	6	∞	∞	90	1250	0	250	1150	1650
3	4,5,6	3	∞	∞ /	2450	1250	0	250	1150	<u>1650</u>
4	4,5,6,3	7	3350	ø	<u> 2450</u>	1250	0	250	1150	1650
5	4,5,6,3,7	2	3350/	<u>3250</u>	2450	1250	0	250	1150	1650
6	4,5,6,3,7,2	1	3350	3250	2450	1250	0	250	1150	1650
	{4,5,6,3,7,2,1}									

1500 250 Chi 1000 NY