AN5430

カラーテレビ偏向信号処理回路/Color TV Deflection Signal Processing Circuit

■ 概 要/Description

AN 5430 は、カラーテレビの偏向信号処理回路用に設計された半 導体集積回路です。

■ 特 徵/Features

- 電源電圧変動,温度変化に対して安定な垂直,水平発振回路を 内蔵
- ●雑音に対して安定な同期分離回路を内蔵
- ●垂直発振パルスが取り出されている
- ●高圧保護回路を内蔵
- Incorporating vertical and horizontal oscillator circuit, operations highly stable against changes in supply voltage and temperature
- Highly stable synchro separation circuit against noise
- Vertical oscillation pulse output
- Built-in high tension protector circuit

■ ブロック図/Block Diagram

■ 絶対最大定格/Absolute Maximum Ratings (Ta=25°C)

	Item	Symbol	Ra	ting	Unit
電圧	電源電圧	V ₇₋₁₀	12.0		v
		V_{15-10}	14.4		V
	回路電圧	V_{1-10}	0	10	V
		V_{11-10}	0	V ₁₅₋₁₀	V
		V_{18-10}	-3	1	V
	電源電流	I ₇	15		m A
		I ₁₅	20		m A
		I_3	-5	0	m A
		I_5	-1	1	m A
電 流		Ι ₆	0	30	m A
	回路電流	I ₈	1	2	m A
		I ₁₂	-1	0.5	m A
		I_{13}	0	20	m A
		I ₁₈	0	1	m A
許容損失 (Ta=70℃)		P_{D}	470		m W
温 度	動作周囲温度	Topr	-20~+70		$^{\circ}$ C
	保存温度	Tstg	$-55 \sim +150$		$^{\circ}$

注) 回路電流では⊕は回路へ流入する電流であり、⊖は流出する値である。

■ 電気的特性/Electrical Characteristics (Ta=25°C)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
回路電流	I 7		$V_{7-16} = 9.2V$	8.0	11.5	15.0	mA
回时电机	I ₁₅		$V_{15-10} = 12V$	9.5	15.0	20.0	mA
X線プロテクタ動作電圧	V ₅₋₁₀			0.5		0.75	V
発振開始電圧 (V-Osc)	Vosc-S(1)	1	fvoが40~60Hzで出力3V _{P-P} 以上になるVcc1			6	v
垂直発振周波数	fvo	1	Rosαvi=29.2kΩの時の発振周波数 Vcci=12V	57	60	63	Hz
パルス幅(V-Osc)	τ	1	Roscavi=29.2kΩの時の発振パルス幅, Vcci=12V	420	600	780	μs
パルス振幅(V-Osc)	υ	1	Rosc(v)=29.2kΩ時の発振パルス振幅, Vcc1=12V	9	10	11	V _{P-P}
fvo 電源電圧依存度	Δf vo/ V_{CC}	1	V _{CC1} =14.4Vと9.6Vの時のf _{VO} の差	-0.5	0	1	Hz
垂直引込範囲	fvP	2	ビデオ入力2.0V _{P-P} , V _{CC1} =12V		40	44	Hz
発振開始電圧(H-Osc)	Vosc-s(2)	3	fноが10~20kHz で出力が2V _{P-P} 以上 になる V _{CC2}	6			v
水平発振周波数	f _{HO}	3	Rosc(H) = 2.95kΩの時の発振周波数,	15.0	15.75	16.25	kHz
パルス幅デューティ比(H-Osc)	τ	3	$V_{CC2}=9.2V$	31.5	35.4	38.9	%
fHo電源電圧依存度	Δf HO/ V_{CC}	3	V _{CC2} =8.2と10.2Vの時のf _{HO} の差	0	60	120	Hz
制御感度 (H-Osc)	β	4	ΔI1±100μA流入出時の f Ho の差	19.8	21.8	23.8	Hz/μA
水平引込範囲 *1	f HP				±600		Hz
fнo周囲温度依存度 *1	Δfно/Та	3	$Ta = -20 \sim +70^{\circ}C$	-150		150	Hz
直流ループ利得 *1	f DC			7.2	9.7	12.2	kHz/rad
fvo周囲温度依存度 *1	Δf vo/Ta	1	$Ta = -20 \sim +70^{\circ}C$			1	H ₂

^{*1} 設計参考値

Test Circuit 1 $(V_{\rm OSC-SOI}, f_{\rm VO}, \tau, \nu, \Delta f_{\rm VO}/V_{\rm CC}, \Delta f_{\rm VO}/T_a)$

Test Circuit 2 (fvp)

Test Circuit 3 $(V_{\rm OSC-S(2)}, f_{\rm HO}, \tau, \varDelta f_{\rm HO}/V_{\rm CC}, \\ \varDelta f_{\rm HO}/Ta\dot{})$

Test Circuit 4 (β)

■ 応用回路例/Application Circuit

