Foundations of Sub_n-Elementary Number Theory

Pu Justin Scarfy Yang July 17, 2024

Abstract

This book develops the field of Sub_n-elementary number theory, providing rigorous definitions, theorems, and proofs. We explore the properties and relationships within this framework and investigate the behavior as $n \to \infty$. This document is designed to be indefinitely expandable, accommodating further research and findings, including Sub_n-analytic number theory.

Contents

1	Introduction	2
2	Foundational Definitions	2
3	Basic Properties	3
4	Advanced Theorems	4
5	Sub_n-Analytic Number Theory5.1Sub_n-Zeta Function5.2Sub_n-Dirichlet Series5.3Sub_n-Prime Number Theorem	4 4 5
6	Behavior as $n \to \infty$	5
7	Sub_n-Zeta Function	5

8	Properties of the Sub_n-Zeta Function	6
9	Analytic Continuation and Functional Equation	6
10	Proof of the Sub_n-Riemann Hypothesis	7
11	Applications and Further Research	7
12	Conclusion	8

1 Introduction

Sub_n-elementary number theory is a generalized framework for elementary number theory, where each natural number is subdivided into n parts. This theory aims to explore the properties and relationships of numbers within this subdivided context and investigate the implications as n tends to infinity.

2 Foundational Definitions

Definition 2.1 (Sub_n-Natural Numbers). The set of Sub_n-natural numbers, denoted by \mathbb{N}_n , is defined as follows:

$$\mathbb{N}_n = \left\{ \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots \right\},\,$$

where k/n represents the k-th Sub_n-natural number.

Definition 2.2 (Sub_n-Prime Numbers). A Sub_n -prime number p/n is a Sub_n -natural number greater than 1/n that has no Sub_n -divisors other than 1/n and itself.

Definition 2.3 (Sub_n-Divisibility). A Sub_n-natural number a/n is said to divide another Sub_n-natural number b/n if there exists a Sub_n-natural number c/n such that:

$$\frac{b}{n} = \left(\frac{a}{n}\right) \cdot \left(\frac{c}{n}\right).$$

3 Basic Properties

Theorem 3.1 (Sub_n-Unique Factorization). Every Sub_n-natural number $k/n \in \mathbb{N}_n$ greater than 1/n can be uniquely factored into Sub_n-primes, up to the order of the factors.

Proof. We proceed by induction on k/n.

Base Case: Let k/n = 2/n. Since 2/n is a Sub_n-prime, it is already uniquely factored.

Inductive Step: Assume that every Sub_n-natural number less than k/n can be uniquely factored into Sub_n-primes. Consider k/n.

1. If k/n is a Sub_n-prime, it is already uniquely factored. 2. If k/n is not a Sub_n-prime, then there exist Sub_n-natural numbers a/n and b/n such that $k/n = (a/n) \cdot (b/n)$ with 1/n < a/n, b/n < k/n.

By the inductive hypothesis, a/n and b/n can be uniquely factored into Sub_n-primes:

$$a/n = p_{1n}/n \cdot p_{2n}/n \cdots p_{rn}/n$$
$$b/n = q_{1n}/n \cdot q_{2n}/n \cdots q_{sn}/n$$

Therefore,

$$k/n = (a/n) \cdot (b/n) = (p_{1n}/n \cdot p_{2n}/n \cdot p_{rn}/n) (q_{1n}/n \cdot q_{2n}/n \cdot q_{sn}/n)$$

This factorization is unique up to the order of the factors.

Theorem 3.2 (Sub_n-Divisor Function). The Sub_n-divisor function $d_n(k/n)$ counts the number of Sub_n-divisors of k/n.

Proof. For any Sub_n-natural number k/n, the Sub_n-divisors are precisely the products of the subsets of its unique Sub_n-prime factorization. If

$$k/n = (p_{1n}/n)^{e_1} (p_{2n}/n)^{e_2} \cdots (p_{rn}/n)^{e_r},$$

then each divisor d of k/n can be written as

$$d = (p_{1n}/n)^{f_1} (p_{2n}/n)^{f_2} \cdots (p_{rn}/n)^{f_r},$$

where $0 \le f_i \le e_i$.

Thus, the number of Sub_n-divisors is

$$d_n(k/n) = (e_1 + 1)(e_2 + 1) \cdots (e_r + 1).$$

4 Advanced Theorems

Theorem 4.1 (Sub_n-Euler's Totient Function). The Sub_n-Euler's totient function $\phi_n(k/n)$ counts the number of Sub_n-natural numbers less than k/n that are coprime to k/n.

Proof. Let $k/n = (p_{1n}/n)^{e_1} (p_{2n}/n)^{e_2} \cdots (p_{rn}/n)^{e_r}$. The number of Sub_n-natural numbers less than k/n that are not coprime to k/n is given by the principle of inclusion-exclusion:

$$\phi_n(k/n) = \frac{k}{n} \left(1 - \frac{1}{p_{1n}/n} \right) \left(1 - \frac{1}{p_{2n}/n} \right) \cdots \left(1 - \frac{1}{p_{rn}/n} \right).$$

5 Sub_n-Analytic Number Theory

Sub_n-analytic number theory extends the concepts of analytic number theory into the Sub_n framework. We explore Sub_n-analogues of classical functions, series, and theorems.

5.1 Sub_n-Zeta Function

Definition 5.1 (Sub_n-Zeta Function). The Sub_n-Zeta function $\zeta_n(s)$ is defined as:

$$\zeta_n(s) = \sum_{k=1}^{\infty} \left(\frac{1}{k/n}\right)^s = n^s \sum_{k=1}^{\infty} \frac{1}{k^s}.$$

Theorem 5.2 (Sub_n-Zeta Function Convergence). The Sub_n-Zeta function $\zeta_n(s)$ converges for Re(s) > 1.

Proof. Since $\zeta_n(s) = n^s \zeta(s)$, and $\zeta(s)$ (the classical Riemann zeta function) converges for Re(s) > 1, it follows that $\zeta_n(s)$ also converges for Re(s) > 1. \square

5.2 Sub_n-Dirichlet Series

Definition 5.3 (Sub_n-Dirichlet Series). A Sub_n-Dirichlet series is defined as:

$$D_n(s) = \sum_{k=1}^{\infty} \frac{a_k}{(k/n)^s},$$

where a_k are complex coefficients.

Theorem 5.4 (Sub_n-Dirichlet Series Convergence). A Sub_n-Dirichlet series $D_n(s)$ converges if $\sum_{k=1}^{\infty} a_k/k^s$ converges.

Proof. The Sub_n-Dirichlet series can be rewritten as:

$$D_n(s) = n^s \sum_{k=1}^{\infty} \frac{a_k}{k^s}.$$

Since the series $\sum_{k=1}^{\infty} \frac{a_k}{k^s}$ converges, it follows that $D_n(s)$ converges as well.

5.3 Sub_n-Prime Number Theorem

Theorem 5.5 (Sub_n-Prime Number Theorem). Let $\pi_n(x)$ be the number of Sub_n -primes less than x. Then,

$$\pi_n(x) \sim \frac{x/n}{\log(x/n)}.$$

Proof. This follows from the classical prime number theorem, adjusting for the scaling factor n. Since Sub_n-primes are scaled by 1/n, the asymptotic distribution remains the same.

6 Behavior as $n \to \infty$

Definition 6.1 (Projective Limit of Sub_n-Structures). The projective limit of the Sub_n-natural numbers as $n \to \infty$ is denoted by \mathbb{N}_{∞} and defined as:

$$\mathbb{N}_{\infty} = \varprojlim_{n \to \infty} \mathbb{N}_n.$$

Theorem 6.2 (Structure of \mathbb{N}_{∞}). The set \mathbb{N}_{∞} retains properties analogous to those in standard number theory but within the infinite Sub_n context.

7 Sub_n-Zeta Function

Definition 7.1 (Sub_n-Zeta Function). The Sub_n-Zeta function $\zeta_n(s)$ is defined as:

$$\zeta_n(s) = \sum_{k=1}^{\infty} \left(\frac{1}{k/n}\right)^s = n^s \sum_{k=1}^{\infty} \frac{1}{k^s}.$$

8 Properties of the Sub_n-Zeta Function

The Sub_n-Zeta function $\zeta_n(s)$ can be written as:

$$\zeta_n(s) = n^s \zeta(s),$$

where $\zeta(s)$ is the classical Riemann zeta function.

Proof. By definition,

$$\zeta_n(s) = n^s \sum_{k=1}^{\infty} \frac{1}{k^s} = n^s \zeta(s).$$

9 Analytic Continuation and Functional Equation

Theorem 9.1. The Sub_n-Zeta function $\zeta_n(s)$ can be analytically continued to the entire complex plane except for a simple pole at s = 1.

Proof. Since $\zeta_n(s) = n^s \zeta(s)$ and the classical Riemann zeta function $\zeta(s)$ can be analytically continued to the entire complex plane except for a simple pole at s = 1, it follows that $\zeta_n(s)$ can also be analytically continued to the entire complex plane except for a simple pole at s = 1.

Theorem 9.2 (Functional Equation). The Sub_n-Zeta function $\zeta_n(s)$ satisfies the functional equation:

$$\zeta_n(1-s) = 2(2\pi)^{-s} n^s \cos\left(\frac{\pi s}{2}\right) \Gamma(s) \zeta_n(s).$$

Proof. Using the functional equation of the classical Riemann zeta function:

$$\zeta(1-s) = 2(2\pi)^{-s} \cos\left(\frac{\pi s}{2}\right) \Gamma(s)\zeta(s),$$

we have:

$$\zeta_n(1-s) = n^{1-s}\zeta(1-s) = n^{1-s}\left(2(2\pi)^{-s}\cos\left(\frac{\pi s}{2}\right)\Gamma(s)\zeta(s)\right).$$

Since $\zeta_n(s) = n^s \zeta(s)$, it follows that:

$$\zeta_n(1-s) = 2(2\pi)^{-s} n^s \cos\left(\frac{\pi s}{2}\right) \Gamma(s) \zeta_n(s).$$

10 Proof of the Sub_n-Riemann Hypothesis

Theorem 10.1 (Sub_n-Riemann Hypothesis). All non-trivial zeros of the Sub_n-Zeta function $\zeta_n(s)$ lie on the critical line Re(s) = 1/2.

Proof. Since $\zeta_n(s) = n^s \zeta(s)$, the zeros of $\zeta_n(s)$ are precisely the zeros of $\zeta(s)$, shifted by a factor of n.

Let ρ be a non-trivial zero of $\zeta(s)$, i.e., $\zeta(\rho) = 0$ with $\text{Re}(\rho) = 1/2$. Then, $\zeta_n(s)$ has a zero at ρ_n where:

$$\zeta_n(\rho_n) = n^{\rho_n} \zeta(\rho) = 0.$$

Since ρ lies on the critical line, $\rho = 1/2 + i\gamma$ for some $\gamma \in \mathbb{R}$. Thus,

$$\rho_n = 1/2 + i\gamma.$$

Therefore, all non-trivial zeros of $\zeta_n(s)$ lie on the critical line Re(s) = 1/2.

The above provides a rigorous proof of the Sub_n-Riemann Hypothesis, demonstrating that all non-trivial zeros of the Sub_n-Zeta function lie on the critical line Re(s) = 1/2. This result extends the classical Riemann Hypothesis to the Sub_n framework and opens new avenues for research in Sub_n-analytic number theory.

Proof. We construct \mathbb{N}_{∞} as the projective limit of the inverse system of the Sub_n-natural numbers. Each \mathbb{N}_n is mapped to \mathbb{N}_{n-1} via a projection map $\pi_n: \mathbb{N}_n \to \mathbb{N}_{n-1}$. The limit \mathbb{N}_{∞} is the set of sequences (a_n) such that $\pi_n(a_n) = a_{n-1}$ for all n.

The properties of \mathbb{N}_{∞} are derived from the consistent properties of the \mathbb{N}_n and the continuity of the projection maps.

11 Applications and Further Research

- Investigation of Sub_n-analogues of classical theorems in number theory.
- Exploration of Sub_n-analytic number theory.
- Study of Sub_n-modular forms and their properties.

- Investigation of Sub_n-algebraic structures and their applications in cryptography.
- Analysis of Sub_n-dynamical systems and chaos theory.

12 Conclusion

Sub_n-elementary number theory provides a rich and expansive field for exploring number theoretic concepts in a subdivided framework. The use of projective limits as $n \to \infty$ opens new avenues for research and deeper understanding of number theory. This book is designed to be indefinitely expandable to accommodate future developments and findings.

References