

Eigenfaces and Fisherfaces

Presenter: Harry Chao aMMAI 2010

Outline

• I. Introduction:

Face recognition & Dimensionality reduction

- 2. Principal Component Analysis
- 3. Linear Discriminant Analysis
- 4. Other methods
- 5. Conclusion
- 6. Reference

What & Why is face recognition?

The definition:

Indentify or verify a person based on face

The motivation:

- > Remarkable face recognition capability of human visual system
- > Numerous important application: ex: Surveillance & face ID

Community involved:

Neuroscience, Psychology, pattern recognition, computer vision, machine learning.....

Observation:

Images, videos, and 3D images

Based on images:

- > Holistic-based methods (appearance)
- > Feature-based methods (landmark)

Funny idea form psychology

Thatcher Illusion

Challenge:

- > Feature + Classifier
- > The distance between different faces is not obvious!!

Distortion:

 illumination, pose, affine transform, expression, occlusion, noise

[9] Yang,2004

[7] He,2005

7

Dimensionality reduction

Why?

- > The curse of dimensionality
- > Intrinsic dimensionality may be smaller
- > Some feature are not relevant

Idea:

- > Reduce the feature dimension while preserving as much information as possible
- > Decorrelation
- > Extract the real distribution of the population

Methods:

- > Feature selection & Feature reduction
- > Supervised (LDA) & Unsupervised (PCA)

Face recognition is a special case:

- > Many classes but a few samples of each class
- > KNN or other distance-based measurements may perform better than classifiers

y= {•.•}

For holistic-based:

Dimension reduction performs like data-driven features

For feature-based:

Dimension reduction is based on domain knowledge

9

2. PCA: Eigenfaces

General idea

Objective:

 Look for a few linear combinations, which can be used to summarize the data and loses in data as little as possible (want to preserve the variance)

For face recognition:

- > A 256x256 face image is equivalent to a 665536-dim vector
- > We want to reduce the dimension based on the database
- > The new dimensionality depends on the number of images in the database

PCA is also known as:

> Karhunen-Loeve methods

[10] MMAI

П

Covariance matrix

$$\Sigma = [\sigma_{ij}^2]_{D \times D} = \begin{bmatrix} \sigma_{0,0}^2 & \sigma_{0,1}^2 & \sigma^2 0, D-1 \\ \sigma_{1,0}^2 & \sigma_{0,2}^2 & \sigma_{1,D-1}^2 \\ & & \ddots \\ \sigma_{D-1,0}^2 & \sigma_{D-1,1}^2 & \sigma_{D-1,D-1}^2 \end{bmatrix}$$

and covariance of two random variables (dimensions)

x, y is:
$$\sigma_{x,y}^2 = E[(\mathbf{x} - \mu_x)(\mathbf{y} - \mu_y)] = \sum_{i=0}^{N-1} (x_i - \mu_x)(y_i - \mu_y)/N$$

- Diagonal elements are individual variances in each dimension
- Off-diagonal elements are covariance indicating data dependency between variables (dimensions in histogram)

[10] MMAI

Procedure for PCA

Linear projection:

- $\begin{array}{l} \succ \text{ Originally N points in D-dim: } \{\mathbf{x}_i\}_{i=1}^N \in \mathcal{R}^D \\ \succ \text{ A set of basis for projection: } \{\mathbf{u}_i\}_{i=1}^M \in \mathcal{R}^D \\ \succ \text{ These basis are orthonormal, and generally we have M<<D} \end{array}$
- > Preserve the reconstruction error as well as variance

Procedure:

- \succ Find the mean vector Ψ (D-by-I)
- \triangleright Subtract each vector by Ψ and get Φ_i
- \triangleright Calculate the covariance matrix Σ of Φ_{i} (D-by-D)
- ightharpoonup Calculate the set of eigenvectors of Σ (D-by-N matrix)
- > Preserve the M largest eigenvalues (D-by-M matrix U)
- \rightarrow U' Φ_i is the eigenfaces of the *i*th face (M-by-1)

13

Let's see an example

Face database

[II] Yale database

Mean face

Formula of PCA

• Assume we have Subtract each vector by Ψ and get Φ i, we want to find a projection vector b to minimize:

$$E[||bb^{\mathrm{T}}\phi_{i}-\phi_{i}||^{2}] = E[||(bb^{\mathrm{T}}-I)\phi_{i}||^{2}] = E[((bb^{\mathrm{T}}-I)\phi_{i})^{\mathrm{T}}(bb^{\mathrm{T}}-I)\phi_{i}]$$

Important tools

$$trace(scale) = scale$$

 $trace(ABC) = trace(CAB) = trace(BCA)$
 $trace(E) = E(trace)$

 $b: \begin{bmatrix} \prod_{i} \mathbf{p} \ \phi_{i} : \prod_{i} \mathbf{p} \\ \end{bmatrix} \mathbf{b} \mathbf{b}^{\mathsf{T}} : \begin{bmatrix} \prod_{i} \mathbf{p} \ \phi_{i} \mathbf{p}^{\mathsf{T}} \end{bmatrix} : \begin{bmatrix} \prod_{i} \mathbf{p} \\ \end{bmatrix} \mathbf{p}$ $\Sigma = E[\phi_{i} \phi_{i}^{\mathsf{T}}] : \begin{bmatrix} \prod_{i} \mathbf{p} \\ \end{bmatrix} \mathbf{p}$

Then we can rewrite the formula

$$\begin{split} &tr(E[((bb^{\mathsf{T}}-I)\phi_i)^{\mathsf{T}}(bb^{\mathsf{T}}-I)\phi_i]) = E[tr(\phi_i^{\mathsf{T}}(bb^{\mathsf{T}}-I)^{\mathsf{T}}(bb^{\mathsf{T}}-I)\phi_i)] = E[tr((bb^{\mathsf{T}}-I)^{\mathsf{T}}(bb^{\mathsf{T}}-I)\phi_i\phi_i^{\mathsf{T}})] \\ &= E[tr((I-bb^{\mathsf{T}})\phi_i\phi_i^{\mathsf{T}})] = tr(E[\phi_i\phi_i^{\mathsf{T}}]) - tr(bb^{\mathsf{T}}E[\phi_i\phi_i^{\mathsf{T}}]) = tr(\Sigma) - tr(b^{\mathsf{T}}\Sigma b) \end{split}$$

• Now we want to maximize: (Using Language multiplier)

$$tr(b^{\mathrm{T}}\Sigma b) = b^{\mathrm{T}}\Sigma b$$
 with $b^{\mathrm{T}}b = 1$

15

Formula for eigenvectors

No we want to get the eigenvectors of Σ :

 \triangleright Problem: Σ is of size 65536-by-65536 for 256-by-256 images

Solution:

$$\Sigma = E[\phi_i \phi_i^T] = \text{constant} * \Phi \Phi^T (\Phi \text{ is of } D\text{-by-}N)$$

We can first solve
$$\Phi^T \Phi x = \lambda x$$

then do
$$\Phi\Phi^{\mathrm{T}}(\Phi x) = \lambda(\Phi x)$$

where $\Phi\Phi^{\mathrm{T}}$ is of *D*-by-*D* and $\Phi^{\mathrm{T}}\Phi$ of *N*-by-*N*

$$\Phi : \begin{bmatrix} \prod_{\mathbf{N}} \mathbf{D} & \Phi \Phi^{\mathbf{T}} : \begin{bmatrix} \prod_{\mathbf{D}} \mathbf{D} & \Phi^{\mathbf{T}} \Phi : \begin{bmatrix} \prod_{\mathbf{N}} \mathbf{N} & \Sigma = E[\phi_i \phi_i^{\mathbf{T}}] : \begin{bmatrix} \prod_{\mathbf{D}} \mathbf{D} & \Phi^{\mathbf{T}} & \mathbf{D} \end{bmatrix} \end{bmatrix}$$

Covariance matrix

 The covariance matrix is symmetric with variances on the diagonal; assuming D dimensions (or variables)

$$\Sigma = [\sigma_{ij}^2]_{D \times D} = \begin{bmatrix} \sigma_{0,0}^2 & \sigma_{0,1}^2 & \sigma^{20}, D-1 \\ \sigma_{1,0}^2 & \sigma_{0,2}^2 & \sigma_{1,D-1}^2 \\ \vdots & \ddots & \vdots \\ \sigma_{D-1,0}^2 & \sigma_{D-1,1}^2 & \sigma_{D-1,D-1}^2 \end{bmatrix}$$

and covariance of two random variables (dimensions)

$$\sigma_{x,y}^2$$
 is: $\sigma_{x,y}^2 = E[(\mathbf{x} - \mu_x)(\mathbf{y} - \mu_y)] = \sum_{i=0}^{N-1} (x_i - \mu_x)(y_i - \mu_y)/N$

- Diagonal elements are individual variances in each dimension
- Off-diagonal elements are covariance indicating data dependency between variables (dimensions in histogram)

17

Example of face reconstruction

Reconstruction procedure

Example of character recognition

Good for dealing with random noise, but not good for rotationscaling-translation (RST) distortion. It could minimize the distance between projection space and data space, and really reduce the redundancy!

Objective:

 Look for dimension reduction based on discrimination purpose

For face recognition:

- > The variance among faces in the database may come from distortions such as illumination, facial expression, and pose variation. And sometimes, these variations are larger than variations among standard faces!!
- ➤ The images of a particular face, under varying illumination but fixed pose, lie in a 3D linear subspace of the high dimensional image space. (without shadowing)

23

General idea (II)

Idea:

- > Try to find a basis for projection that minimize the intra-class variation but preserve the inter-class variation.
- Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discount those regions of the face with large deviation

Fisher linear discriminant

want to maximize:
$$J(w) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$

$$y, \tilde{m}_1, \tilde{m}_2 : \begin{bmatrix} 1 & (w^T x - w^T m_i) : \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$x, w, m_1, m_2 : \prod_{1}^{D} S_B, S_w : \prod_{1}^{D} S_B$$

$$\begin{aligned} \widetilde{s}_{i}^{2} &= \sum_{x \in D_{i}} (w^{\mathsf{T}} x - w^{\mathsf{T}} m_{i}) (w^{\mathsf{T}} x - w^{\mathsf{T}} m_{i})^{\mathsf{T}} = \sum_{x \in D_{i}} w^{\mathsf{T}} (x - m_{i}) (x - m_{i})^{\mathsf{T}} w = w^{\mathsf{T}} S_{i} w \\ \widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2} &= w^{\mathsf{T}} S_{1} w + w^{\mathsf{T}} S_{2} w = w^{\mathsf{T}} S_{w} w \end{aligned}$$

$$|\tilde{m}_1 - \tilde{m}_2|^2 = (w^{\mathrm{T}} m_1 - w^{\mathrm{T}} m_2)^2 = w^{\mathrm{T}} (m_1 - m_2) (m_1 - m_2)^{\mathrm{T}} w = w^{\mathrm{T}} S_{\mathrm{B}} w$$

want to maximize:
$$J(w) = \frac{w^{T} S_{B} w}{w^{T} S_{w} w}$$

 $S_{R} w = \lambda S_{w} w$

Multiple discriminant analysis

$$S_{\rm B} = \sum_{i=1}^{c} N_i (m_i - m)(m_i - m)^{\rm T}$$

$$= \sum_{i=1}^{c} \sum_{x \in D_i} (x - m_i)(x - m_i)^{T}$$

Problem: $S_{\rm w}$ is always singular

$$S_{\mathrm{B}} = \sum_{i=1}^{c} N_{i} (m_{i} - m)(m_{i} - m)^{\mathrm{T}}$$

$$S_{\mathrm{w}} = \sum_{i=1}^{c} \sum_{x \in D_{i}} (x - m_{i})(x - m_{i})^{\mathrm{T}}$$

$$S_{\mathrm{B}} w_{i} = \lambda_{r} S_{\mathrm{w}} w_{i}$$

$$m \le c - 1$$
want to maximize: $J(W) = \frac{|W^{\mathrm{T}} S_{\mathrm{B}} W|}{|W^{\mathrm{T}} S_{\mathrm{w}} W|}$

$$\text{with } W = [w_{1} \ w_{2} \dots w_{m}]$$

$$S_{\mathrm{B}} w_{i} = \lambda_{r} S_{\mathrm{w}} w_{i}$$

$$m \le c - 1$$

Fisherface solution:

$$W_{\text{PCA}} = \arg \max_{W} |W^{T} S_{T} W| \text{ where } S_{T} = \sum_{x} (x - m)(x - m)^{T}$$

$$W_{\text{FLD}} = \arg \max_{W} \frac{|W^{\text{T}} W_{\text{PCA}}^{\text{T}} S_{\text{B}} W_{\text{PCA}} W|}{|W^{\text{T}} W_{\text{PCA}}^{\text{T}} S_{\text{w}} W_{\text{PCA}} W|}$$

 $S_{\rm T}$ is called the total scatter matrix

[3] Belhumeur, 1997

27

PCA vs. LDA (II)

PCA:

> The performance is weaker than correlation

LDA:

- > LDA can be used for any kinds of classification problems
- > Ex. Glasses recognition

Experimental types:

- > Extrapolation & Interpolation
- > Leaving-one-out

[3] Belhumeur, 1997

[3] Belhumeur, 1997

Other methods

- The combination of PCA & LDA: [Zhao, 1998]
- Use PCA for noise cleaning and generalization when only a few samples in each class
- The use of 2-D PCA: [Yang, 2004] $\Sigma = E[(A E[A])^{T}(A E[A])] \qquad A: \begin{bmatrix} \end{bmatrix}^{m}$
- Laplacianfaces: [He,2005]
- > Extract the low-dimensional manifold structure
- Robust face recognition: [Wright, 2007]
- > Involved compressive sensing, sparse representation, and LI minimization
- > Feature extraction is no longer important

Robust face recognition

 Robust for occlusion, and the feature extraction is no longer important!

PCA vs. LDA

- PCA is an unsupervised dimension reduction algorithm, while LDA is supervised
- PCA is good at outlier cleaning, and LDA could learn the within-class deviation
- These two methods only extract Ist and 2nd statistical moments
- The combination of PCA & LDA could enhance the performance
- PCA serves as the first-step processing of several kinds of face recognition technique
- Techniques of dimension reduction are frequently used in face recognition

Database

FERET database

Yale database (suitable for LDA)

More resources http://www.face-rec.org/

Reference

- [1] M. Turk and A. Pentland, "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, 1991.
- [2] P. Belhumeur, J. Hespanha, D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," IEEE PAMI, 1997.
- [3] W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips, "Face Recognition: A Literature Survey, " ACM Computing Surveys, 2003, pp. 399-458
- [4] W. Zhao, A. Krishnaswamy, R. Chellappa, "Discriminant Analysis of Principal Components for Face Recognition," In Proceedings, International Conference on Automatic Face and Gesture Recognition. 336–341.
- [5] L. Wiskott, J.-M. Fellous, C. Von Der Malsburg, "Face recognition by elastic bunch graph matching," IEEE Trans. Patt. Anal. Mach. Intell. 19, 775–779, 1997.
- [6] Richard Duda, et. al., Pattern Classification, 2nd Edition, Wiley-Interscience, 2000
- [7] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, "Face Recognition Using Laplacianfaces," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340, Mar. 2005.
- [8] J. Wright, A. Ganesh, A. Yang, and Y. Ma, "Robust face recognition via sparse representation," Technical Report, University of Illinois, submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.
- [9] J. Yang, D. Zhang, A. Frangi, and J. Yang, "Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131-137, Jan. 2004.
- [10] W. Hsu, "Multimedia Analysis and Indexing Course Website," 2009. [online] Available: http://www.csie.ntu.edu.tw/~winston/courses/mm.ana.idx/index.html. [Accessed Oct. 21, 2009].
- [11] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Anal. Mach. Intelligence, 2001
- [12] R. Baraniuk, "Compressive Sensing," IEEE Signal Processing Magazine, 2007
- [13] http://www.michaelbach.de/ot/fcs_thompson-thatcher/index.html