Problem Set 6 MATH 25800

6 Getting Comfortable With Modules

All modules considered are left modules. Given A-modules M, N, the set of all A-module homomorphisms from $M \to N$ is denoted by $\operatorname{Hom}_A(M, N)$. It is an additive abelian group.

- 2/17: **6.1.** Let M be an A-module and let $e: M \to M$ be an A-module homomorphism satisfying $e \circ e = e$. We have shown that both e(M) and $\ker(e)$ are submodules of M.
 - (i) Prove that $\phi: e(M) \oplus \ker(e) \to M$ given by $\phi(v, w) = v + w$ for all $v \in e(M)$, $w \in \ker(e)$ is an isomorphism of A-modules.
 - (ii) Define $P: e(M) \oplus \ker(e) \to e(M) \oplus \ker(e)$ by P(v, w) = (v, 0) for all $(v, w) \in e(M) \oplus \ker(e)$. Prove that $P = \phi^{-1} \circ e \circ \phi$.
 - **6.2.** Let $f: M \to N$ and $g: N \to M$ be A-module homomorphisms such that g(f(m)) = m for all $m \in M$. Prove that $H: M \oplus \ker(g) \to N$ given by H(m,n) = f(m) + n for all $m \in M$, $n \in \ker(g)$ is an isomorphism of A-modules.
 - **6.3.** Let $\phi: A \to B$ be a ring homomorphism, and let M be a B-module. Show that $\cdot: A \times M \to M$ defined by

$$(a,m)\mapsto \phi(a)m$$

for all $a \in A$, $m \in M$ gives M the structure of an A-module.

In particular, every B-module M has the structure of an A module for every subring A of B.

A very important application of this observation (F[X]-modules) is discussed on Dummit and Foote (2004, p. 340); it will be all-important later on in this course.

- **6.4.** Let K be the fraction field of an integral domain R. Let V and W be K-modules (i.e., vector spaces over the field K). The preceding problem shows that V and W are also R-modules in a natural manner.
 - Prove that every R-module homomorphism $f: V \to W$ is also a K-module homomorphism (it has to be shown that f(av) = af(v) for all $a \in K$, $v \in V$).
- **6.5.** With K, R, V, W as in the preceding problem, let M be an R-submodule of V. Assume that for every $v \in V$, there is a nonzero $a \in R$ such that $av \in M$. Let $f: M \to W$ be an R-module homomorphism. Prove that f extends in a unique manner to a K-module homomorphism $F: V \to W$.
- **6.6.** We have shown in class that every A-module homomorphism $T:A^n\to M$ (where M is an A-module) is given by

$$T(a_1,\ldots,a_n)=a_1v_1+\cdots+a_nv_n$$

for all $(a_1, \ldots, a_n) \in A^n$ and some $v_1, \ldots, v_n \in M$. This gives a bijection between $\operatorname{Hom}_A(A^n, M)$ and M^n .

Now let $c = (c_1, \ldots, c_n) \in A^n$. We have the A-submodule $Ac = \{ac : a \in A\}$ of A^n and the quotient module A^n/Ac . Show that there is a bijection from the set of A-module homomorphisms $S: A^n/Ac \to M$ and a certain additive subgroup G of M^n . Describe G explicitly.

Hint: Given S, consider the composite $A^n \to A^n/Ac \xrightarrow{S} M$.

- **6.7.** Let $c=(c_1,\ldots,c_n)\in A^n$. Assume that the right ideal $c_1A+\cdots+c_nA$ equals A itself.
 - (i) Prove that there is a left A-module homomorphism $g: A^n \to A$ such that g(c) = 1.
 - (ii) Deduce that there is an isomorphism $A \oplus \ker(q) \to A^n$ of left A-modules. Hint: Problem 6.2.
- **6.8.** Assume that A is a commutative ring. Prove that if M is an A-module such that $M \oplus A \cong A^2$, then there is an A-module isomorphism $A \to M$.

Problem Set 6 MATH 25800

6.9. Let R be a commutative ring. Assume that there are $x, y, z \in R$ such that $x^2 + y^2 + z^2 = 1$. Define $f: R^3 \to R$ by f(a, b, c) = ax + by + cz. Let $M = \ker(f)$.

Prove that there is an R-module isomorphism $M \oplus R \to R^3$.

Note: However, M need not be isomorphic to R^2 . For example, if $R = \mathbb{R}[X,Y,Z]/(X^2+Y^2+Z^2-1)$ and x,y,z are \bar{X},\bar{Y},\bar{Z} , respectively, here M is not isomorphic to R^2 . This is saying that the tangent bundle of the two-sphere is nontrivial. It is proved using Algebraic Topology, but purely algebraic proofs exist.

- **6.10.** Prove that every (left) A-module homomorphism from A to itself is right multiplication by a, denoted by $r_a: A \to A$, for a unique $a \in A$.
- **6.11.** Let R be a commutative ring. Show that if $T:M\to N$ is a homomorphism of R-modules and if $a\in R$, then $S:M\to N$ given by S(m)=aT(m) for all $m\in M$ is also an R-module homomorphism. Deduce that $\operatorname{Hom}_R(M,N)$ has the structure of an R-module.
- **6.12.** Give an example of a PID A and an A-submodule M' of an A-module M such that M and $M' \oplus (M/M')$ are not isomorphic to each other (as A-modules).

Note: If A is a field, then there is an isomorphism $M \to M' \oplus (M/M')$. In class, it was shown that there is such an isomorphism if M/M' is isomorphic to A^n for some $n = 0, 1, 2, \ldots$

6.13. Let $f, g \in F[X]$ be polynomials of degrees d and e, respectively, where F is a field. Assume that gcd(f,g) = 1. Prove that there is a unique pair $a, b \in F[X]$ such that

$$af + bg = 1$$
 $\deg(a) < e$ $\deg(b) < d$

Hint: One already knows that there exist a, b satisfying af + bg = 1, but the a, b satisfying this equation are far from being unique. Given a, b, first find all a', b' satisfying a'f + b'g = 1. After this, you will see that the problem is easily solved.

Note: There is also a different constructive method of finding the desired a, b that relies on determinants and resultants.