Statistical Methods for Quantitative MS-based Proteomics: Part II. Differential Abundance Analysis

Lieven Clement

June 30, 2021

Contents

O	utlin	e	1		
1	Fra	rancisella tularensis experiment			
	1.1	Import the data in R	2		
	1.2	Preprocessing	9		
	1.3	Summarized data structure	6		
	1.4	Multiple hypothesis testing	10		
	1.5	Moderated Statistics	14		
	1.6	Plots	21		
2	Exp	perimental Design	46		
	2.1	Sample size	46		
	2.2	Blocking	47		
	2.3	Nature methods: Points of significance - Blocking	47		
	2.4	Mouse example	47		
		terials are licensed under the Creative Commons Attribution-NonCommercial-Share Alike 4.0 Interials (CC BY-NC-SA 4.0)	er-		

• Playlist PDA Preprocessing

Outline

- $\bullet\,$ Francisella tularensis Example
- Hypothesis testing
- Multiple testing
- Moderated statistics
- Experimental design

Note, that the R-code is included for learners who are aiming to develop R/markdown scripts to automate their quantitative proteomics data analyses. According to the target audience of the course we either work with a graphical user interface (GUI) in a R/shiny App msqrob2gui (e.g. Proteomics Bioinformatics course of the EBI and the Proteomics Data Analysis course at the Gulbenkian institute) or with R/markdowns scripts (e.g. Bioinformatics Summer School at UCLouvain or the Statistical Genomics Course at Ghent University).

1 Francisella tularensis experiment

- Pathogen: causes tularemia
- Metabolic adaptation key for intracellular life cycle of pathogenic microorganisms.
- Upon entry into host cells quick phasomal escape and active multiplication in cytosolic compartment.
- Franciscella is auxotroph for several amino acids, including arginine.
- Inactivation of arginine transporter delayed bacterial phagosomal escape and intracellular multiplication.
- Experiment to assess difference in proteome using 3 WT vs 3 ArgP KO mutants

1.1 Import the data in R

Click to see code

1. Load libraries

```
library(tidyverse)
library(limma)
library(QFeatures)
library(msqrob2)
library(plotly)
library(ggplot2)
```

2. We use a peptides.txt file from MS-data quantified with maxquant that contains MS1 intensities summarized at the peptide level.

```
peptidesFile <- "https://raw.githubusercontent.com/statOmics/PDA21/data/quantification/francisella/pept
```

3. Maxquant stores the intensity data for the different samples in columns that start with Intensity. We can retreive the column names with the intensity data with the code below:

```
ecols <- grep("Intensity\\.", names(read.delim(peptidesFile)))</pre>
```

4. Read the data and store it in QFeatures object

```
pe <- readQFeatures(
  table = peptidesFile,
  fnames = 1,
  ecol = ecols,
  name = "peptideRaw", sep="\t")</pre>
```

5. Update data with information on design

```
colData(pe)$genotype <- pe[[1]] %>%
  colnames %>%
  substr(12,13) %>%
  as.factor %>%
  relevel("WT")
pe %>% colData
```

```
## DataFrame with 6 rows and 1 column
##
                             genotype
##
                             <factor>
## Intensity.1WT_20_2h_n3_3
                                   WT
## Intensity.1WT_20_2h_n4_3
                                   WT
## Intensity.1WT_20_2h_n5_3
                                   WT
## Intensity.3D8_20_2h_n3_3
                                   D8
## Intensity.3D8_20_2h_n4_3
                                   D8
## Intensity.3D8_20_2h_n5_3
                                   D8
```

1.2 Preprocessing

Click to see code to log-transfrom the data

1. Log transform

• Calculate number of non zero intensities for each peptide

```
rowData(pe[["peptideRaw"]])$nNonZero <- rowSums(assay(pe[["peptideRaw"]]) > 0)
```

Peptides with zero intensities are missing peptides and should be represent with a NA value rather than
 0.

```
pe <- zeroIsNA(pe, "peptideRaw") # convert 0 to NA
```

• Logtransform data with base 2

```
pe <- logTransform(pe, base = 2, i = "peptideRaw", name = "peptideLog")</pre>
```

- 2. Filtering
- Handling overlapping protein groups

```
pe[["peptideLog"]] <-
pe[["peptideLog"]] [rowData(pe[["peptideLog"]]) Proteins
%in% smallestUniqueGroups(rowData(pe[["peptideLog"]]) Proteins),]</pre>
```

• Remove reverse sequences (decoys) and contaminants. Note that this is indicated by the column names Reverse and depending on the version of maxQuant with Potential.contaminants or Contaminants.

```
pe[["peptideLog"]] <- pe[["peptideLog"]][rowData(pe[["peptideLog"]])$Reverse != "+", ]
pe[["peptideLog"]] <- pe[["peptideLog"]][rowData(pe[["peptideLog"]])$
    Contaminant != "+", ]</pre>
```

• Drop peptides that were only identified in one sample

```
pe[["peptideLog"]] <- pe[["peptideLog"]][rowData(pe[["peptideLog"]])$nNonZero >= 2, ]
nrow(pe[["peptideLog"]])
```

```
## [1] 6525
```

We keep 6525 peptides upon filtering.

3. Normalization by median centering

4. Summarization. We use the standard sumarisation in aggregateFeatures, which is a robust summarisation method.

```
pe <- aggregateFeatures(pe,
    i = "peptideNorm",
    fcol = "Proteins",
    na.rm = TRUE,
    name = "protein")</pre>
```

Your quantitative and row data contain missing values. Please read the
relevant section(s) in the aggregateFeatures manual page regarding the
effects of missing values on data aggregation.

Plot of preprocessed data

```
pe[["peptideNorm"]] %>%
  assay %>%
  as.data.frame() %>%
  gather(sample, intensity) %>%
  mutate(genotype = colData(pe)[sample,"genotype"]) %>%
  ggplot(aes(x = intensity,group = sample,color = genotype)) +
    geom_density() +
    ggtitle("Peptide-level")
```

Warning: Removed 7561 rows containing non-finite values (stat_density).

Peptide-level


```
pe[["protein"]] %>%
  assay %>%
  as.data.frame() %>%
  gather(sample, intensity) %>%
  mutate(genotype = colData(pe)[sample, "genotype"]) %>%
  ggplot(aes(x = intensity,group = sample,color = genotype)) +
    geom_density() +
    ggtitle("Protein-level")
```

Warning: Removed 428 rows containing non-finite values (stat_density).

1.3 Summarized data structure

1.3.1 Design

```
pe %>%
  colData %>%
  knitr::kable()
```

	genotype
Intensity.1WT_20_2h_n3_3	WT
$Intensity.1WT_20_2h_n4_3$	WT
$Intensity.1WT_20_2h_n5_3$	WT
Intensity.3D8_20_2h_n3_3	D8
Intensity.3D8_20_2h_n4_3	D8
$Intensity.3D8_20_2h_n5_3$	D8

- WT vs KO
- 3 vs 3 repeats

1.3.2 Summarized intensity matrix

```
pe[["protein"]] %>% assay() %>% head() %>% knitr::kable()
```

	Intensity.1WT	120ten2shityn13W3T	120ter2sityn4W3T	DiterMityr&D8	210nte2thsityu33D88	210nteAbsityu43D8	_20_2h_n5_3
WP	00301 373 748775	-0.0856247	0.1595370	-0.2809009	0.0035526	0.0567110	
WP_0	003013860 NA	NA	-0.2512039	NA	NA	-0.4865646	
WP_{0}	00301 39 009851118	-0.8161658	-0.7557906	-0.4591476	-0.5449424	-0.4962482	
WP_0	003014 068 495386	0.8522239	1.1344852	0.5459176	0.9187714	0.5974741	
WP_{0}	003014 0272 630863	-1.0430741	-0.8091715	-1.1743951	-1.1924725	-1.2565893	
WP_{0}	00301 4023 051672	-0.3361704	-0.2151930	-0.3855747	-0.2802011	-0.5801771	

• 1115 proteins

1.3.3 Hypothesis testing: a single protein

1.3.3.1 T-test

$$\log_2 FC = \bar{y}_{p1} - \bar{y}_{p2}$$

$$T_g = \frac{\log_2 FC}{\text{se}_{\log_2 FC}}$$

$$T_g = \frac{\widehat{\text{signal}}}{\widehat{\text{se}_{\text{rec}}}}$$

If we can assume equal variance in both treatment groups:

$$\operatorname{se}_{\log_2 \operatorname{FC}} = \operatorname{SD} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

```
WP_003023392 <- data.frame(
    intensity = assay(pe[["protein"]]["WP_003023392",]) %>% c(),
    genotype = colData(pe)[,1])

WP_003023392 %>%
ggplot(aes(x=genotype,y=intensity)) +
geom_point() +
ggtitle("Protein WP_003023392")
```

Protein WP_003023392

$$t = \frac{\log_2 \widehat{\text{FC}}}{\text{se}_{\log_2 \widehat{\text{FC}}}} = \frac{-1.43}{0.0577} = -24.7$$

- Is t = -24.7 indicating that there is an effect?
- How likely is it to observe t = -24.7 when there is no effect of the argP KO on the protein expression?

1.3.3.2 Null hypothesis (H_0) and alternative hypothesis (H_1)

- With data we can never prove a hypothesis (falsification principle of Popper)
- With data we can only reject a hypothesis
- In general we start from alternative hypothese H_1 : we want to show an effect of the KO on a protein

 H_1 : On average the protein abundance in WT is different from that in KO

• But, we will assess this by falsifying the opposite: H_0 : On average the protein abundance in WT is equal to that in KO<-

```
t.test(intensity ~ genotype, data = WP_003023392, var.equal=TRUE)
```

##
Two Sample t-test

```
##
## data: intensity by genotype
## t = 24.747, df = 4, p-value = 1.582e-05
## alternative hypothesis: true difference in means between group WT and group D8 is not equal to 0
## 95 percent confidence interval:
## 1.267666 1.588058
## sample estimates:
## mean in group WT mean in group D8
## -0.1821147 -1.6099769
```

- How likely is it to observe an equal or more extreme effect than the one observed in the sample when the null hypothesis is true?
- When we make assumptions about the distribution of our test statistic we can quantify this probability: *p-value*. The p-value will only be calculated correctly if the underlying assumptions hold!
- When we repeat the experiment, the probability to observe a fold change for this gene that is more extreme than a 2.69 fold ($\log_2 FC = -1.43$) down or up regulation by random change (if H_0 is true) is 16 out of 1 000 000.
- If the p-value is below a significance threshold α we reject the null hypothesis. We control the probability on a false positive result at the α -level (type I error)
- Note, that the p-values are uniform under the null hypothesis, i.e. when H_0 is true all p-values are equally likely.

1.4 Multiple hypothesis testing

- Consider testing DA for all m = 1066 proteins simultaneously
- What if we assess each individual test at level α ? \rightarrow Probability to have a false positive (FP) among all m simultatenous test $>>> \alpha=0.05$
- Indeed for each non DA protein we have a probability of 5% to return a FP.
- In a typical experiment the majority of the proteins are non DA.
- So an upperbound of the expected FP is $m \times \alpha$ or $1066 \times 0.05 = 53$.
- \rightarrow Hence, we are bound to call many false positive proteins each time we run the experiment.

1.4.1 Multiple testing

1.4.1.1 Family-wise error rate The family-wise error rate (FWER) addresses the multiple testing issue by no longer controlling the individual type I error for each protein, instead it controls:

$$FWER = P[FP > 1].$$

The Bonferroni method is widely used to control the type I error:

· assess each test at

$$\alpha_{\rm adj} = \frac{\alpha}{m}$$

• or use adjusted p-values and compare them to α :

$$p_{\text{adj}} = \min(p \times m, 1)$$

Problem, the method is very conservative!

1.4.1.2 False discovery rate

- FDR: Expected proportion of false positives on the total number of positives you return.
- An FDR of 1% means that on average we expect 1% false positive proteins in the list of proteins that are called significant.
- Defined by Benjamini and Hochberg in their seminal paper Benjamini, Y. and Hochberg, Y. (1995).
 "Controlling the false discovery rate: a practical and powerful approach to multiple testing". Journal of the Royal Statistical Society Series B, 57 (1): 289–300.

The False Discovery Proportion (FDP) is the fraction of false positives that are returned, i.e.

$$FDP = \frac{FP}{R}$$

- However, this quantity cannot be observed because in practice we only know the number of proteins for which we rejected H_0 , R.
- But, we do not know the number of false positives, FP.

Therefore, Benjamini and Hochberg, 1995, defined The False Discovery Rate (FDR) as

$$FDR = E\left[\frac{FP}{R}\right] = E\left[FDP\right]$$

the expected FDP.

• Controlling the FDR allows for more discoveries (i.e. longer lists with significant results), while the fraction of false discoveries among the significant results in well controlled on average. As a consequence, more of the true positive hypotheses will be detected.

1.4.1.3 Intuition of BH-FDR procedure Consider m = 1000 tests

- Suppose that a researcher rejects all null hypotheses for which p < 0.01.
- If we use p < 0.01, we expect $0.01 \times m_0$ tests to return false positives.
- A conservative estimate of the number of false positives that we can expect can be obtained by considering that the null hypotheses are true for all features, $m_0 = m = 1000$.
- We then would expect $0.01 \times 1000 = 10$ false positives (FP = 10).
- Suppose that the researcher found 200 genes with p < 0.01 (R = 200).
- The proportion of false positive results (FDP = false positive proportion) among the list of R = 200 genes can then be estimated as

$$\widehat{\text{FDP}} = \frac{FP}{R} = \frac{10}{200} = \frac{0.01 \times 1000}{200} = 0.05.$$

1.4.1.4 Benjamini and Hochberg (1995) procedure for controlling the FDR at α

- 1. Let $p_{(1)} \leq \ldots \leq p_{(m)}$ denote the ordered p-values.
- 2. Find the largest integer k so that

$$\frac{p_{(k)} \times m}{k} \le \alpha$$
or
$$p_{(k)} \le k \times \alpha/m$$

3. If such a k exists, reject the k null hypotheses associated with $p_{(1)}, \ldots, p_{(k)}$. Otherwise none of the null hypotheses is rejected.

The adjusted *p*-value (also known as the *q*-value in FDR literature):

$$q_{(i)} = \tilde{p}_{(i)} = \min \left[\min_{j=i,...,m} \left(m p_{(j)}/j \right), 1 \right].$$

In the hypothetical example above: k = 200, $p_{(k)} = 0.01$, m = 1000 and $\alpha = 0.05$.

1.4.1.5 Francisella Example Click to see code

```
ttestMx <- function(y,group) {</pre>
    test <- try(t.test(y[group],y[!group],var.equal=TRUE),silent=TRUE)</pre>
    if(is(test, "try-error")) {
      return(c(log2FC=NA, se=NA, tstat=NA, p=NA))
      return(c(log2FC= (test$estimate%*%c(1,-1)),se=test$stderr,tstat=test$statistic,pval=test$p.value)
      }
}
res <- apply(
    assay(pe[["protein"]]),
    ttestMx,
    group = colData(pe)$genotype=="D8") %>%
 colnames(res) <- c("logFC", "se", "tstat", "pval")</pre>
res <- res %>% as.data.frame %>% na.exclude %>% arrange(pval)
res$adjPval <- p.adjust(res$pval, "fdr")</pre>
 alpha \leftarrow 0.05
res$adjAlphaForm <- pasteO(1:nrow(res), " x ",alpha,"/",nrow(res))</pre>
res$adjAlpha <- alpha * (1:nrow(res))/nrow(res)</pre>
res$"pval < adjAlpha" <- res$pval < res$adjAlpha
res$"adjPval < alpha" <- res$adjPval < alpha</pre>
```

FWER: Bonferroni method: $\alpha_{\rm adj} = \alpha/m = 0.05/1066 = 5 \times 10^{-5}$

-logFC	pval	adjPval	adjAlphaForm	adjAlpha	pval < adjAlpha	adjPval < alpha
WP_003038940 - 0.2876290	0.0000146	0.0084347	1 x 0.05/1066	0.0000469	TRUE	TRUE

logFC	pval	adjPval	adjAlphaForm	adjAlpha	pval < adjAlpha	adjPval < alpha
WP_003023392 -	0.0000158	0.0084347	2 x	0.0000938	TRUE	TRUE
1.4278622			0.05/1066			
WP_003039212 -	0.0000820	0.0291520		0.0001407	TRUE	TRUE
0.2658247			0.05/1066			
WP_003026016 -	0.0001395	0.0346124		0.0001876	TRUE	TRUE
1.0800305			0.05/1066			
WP_003039615 -	0.0001623	0.0346124		0.0002345	TRUE	TRUE
0.3992190			0.05/1066			
WP_011733588 -	0.0002291	0.0407034		0.0002814	TRUE	TRUE
0.4323262			0.05/1066			
WP_003014552 -	0.0003224	0.0440266		0.0003283	TRUE	TRUE
0.9843865			0.05/1066			
WP_003040849 -	0.0003304	0.0440266		0.0003752	TRUE	TRUE
1.2780743			0.05/1066		T. 1. T. C. T.	
WP_003038430 -	0.0004505	0.0489078		0.0004221	FALSE	TRUE
0.4331987		0.04000=0	0.05/1066	0.000.4000	DATED	mp up
	0.0005047	0.0489078		0.0004690	FALSE	TRUE
0.2949061	0 0005454	0.04000=0	0.05/1066	0 0005150	DATOD	mp i i i
WP_0117336453531405	0.0005171	0.0489078		0.0005159	FALSE	TRUE
IIID 044 B00 B00		0.04000=0	0.05/1066	0 000 7 000	TDIII.	mp.up
WP_011733723 -	0.0005506	0.0489078		0.0005629	TRUE	TRUE
0.3935768	0.0007000	0.0500001	0.05/1066	0.0000000	EAT CE	DAT OD
WP_003038679 -	0.0007083	0.0580821		0.0006098	FALSE	FALSE
0.3909725	0.0000496	0.0603810	0.05/1066	0.0006567	EALCE	FALSE
WP_003033719 - 1.1865453	0.0008420	0.0003810	0.05/1066	0.0000307	FALSE	FALSE
1.1000403			•			
WP 0030405 62 0039480	0.0076420	0.9985797	 1065 v	0.0499531	 FΔISE	FALSE
**10000400 0 40003400	0.3310423	0.000131	0.05/1066	0.0433001	LUDD	LAUGE
WP 0030411 8 00002041	0 9992812	0 9992812		0.05	FALSE	FALSE
WI _0000411 0 00002341	0.0002012	0.0002012		0.00	1111011	TALDE
WP_0030411 30 0002941	0.9992812	0.9992812	1066 x 0.05/1066	0.05	FALSE	FALSE

1.4.1.6 Results Click to see code

```
volcanoT <- res %>%
  ggplot(aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)) +
  geom_point(cex = 2.5) +
  scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
  theme_minimal()</pre>
```

volcanoT

1.5 Moderated Statistics

Problems with ordinary t-test

Click to see code

```
problemPlots <- list()</pre>
problemPlots[[1]] <- res %>%
 ggplot(aes(x = logFC, y = se, color = adjPval < 0.05)) +
    geom_point(cex = 2.5) +
    scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
    theme_minimal()
for (i in 2:3)
problemPlots[[i]] <- colData(pe) %>%
    as.data.frame %>%
    mutate(intensity = pe[["protein"]][rownames(res)[i],] %>%
             assay %>%
             c) %>%
    ggplot(aes(x=genotype,y=intensity)) +
    geom_point() +
    ylim(-3,0) +
    ggtitle(rownames(res)[i])
}
```

problemPlots

[[1]]

[[2]]

[[3]]

A general class of moderated test statistics is given by

$$T_g^{mod} = \frac{\bar{Y}_{g1} - \bar{Y}_{g2}}{C \quad \tilde{S}_g},$$

where \tilde{S}_q is a moderated standard deviation estimate.

- C is a constant depending on the design e.g. $\sqrt{1/n_1+1/n_2}$ for a t-test and of another form for linear
- $\tilde{S}_g=S_g+S_0$: add small positive constant to denominator of t-statistic. This can be adopted in Perseus.

Click to see code

```
simI<-sapply(res\serverser(1/3+1/3),function(n,mean,sd) rnorm(n,mean,sd),n=6,mean=0) %>% t
resSim <- apply(</pre>
    simI,
    1,
    group = colData(pe)$genotype=="D8") %>%
 colnames(resSim) <- c("logFC", "se", "tstat", "pval")</pre>
resSim <- as.data.frame(resSim)</pre>
 tstatSimPlot <- resSim %>%
   ggplot(aes(x=tstat)) +
     geom_histogram(aes(y=..density.., fill=..count..),bins=30) +
```

gridExtra::grid.arrange(tstatSimPlot,tstatSimPerseus,nrow=1)

- The choice of S_0 in Perseus is ad hoc and the t-statistic is no-longer t-distributed.
- Permutation test, but is difficult for more complex designs.
- Allows for Data Dredging because user can choose S_0

1.5.1 Empirical Bayes

Shrinkage of Standard Deviations

The data decides whether $\frac{\mathbf{I}_g}{g}$ should be closer to $t_{g,pooled}$ or to t_g

Figure courtesy to Rafael Irizarry

$$T_g^{mod} = \frac{\bar{Y}_{g1} - \bar{Y}_{g2}}{C \quad \tilde{S}_q},$$

- empirical Bayes theory provides formal framework for borrowing strength across proteins,
- Implemented in popular bioconductor package limma and msqrob2

$$\tilde{S}_g = \sqrt{\frac{d_g S_g^2 + d_0 S_0^2}{d_g + d_0}},$$

- S_0^2 : common variance (over all proteins)
- Moderated t-statistic is t-distributed with $d_0 + d_q$ degrees of freedom.
- Note that the degrees of freedom increase by borrowing strength across proteins!

Click to see the code

```
pe <- msqrob(object = pe, i = "protein", formula = ~genotype)
L <- makeContrast("genotypeD8 = 0", parameterNames = c("genotypeD8"))
pe <- hypothesisTest(object = pe, i = "protein", contrast = L)

volcano <- ggplot(
    rowData(pe[["protein"]])$genotypeD8,
    aes(x = logFC, y = -log10(pval), color = adjPval < 0.05)
) +
    geom_point(cex = 2.5) +
    scale_color_manual(values = alpha(c("black", "red"), 0.5)) +
    theme_minimal() +
    ggtitle("msqrob2")</pre>
```

```
gridExtra::grid.arrange(
  volcanoT +
   xlim(-3,3) +
```

```
ggtitle("ordinary t-test"),
volcano +
    xlim(-3,3)
,nrow=2)
```

Warning: Removed 109 rows containing missing values (geom_point).

- The volcano plot opens up when using the EB variance estimator
- Borrowing strength to estimate the variance using empirical Bayes solves the issue of returning proteins with a low fold change as significant due to a low variance.

1.5.2 Shrinkage of the variance and moderated t-statistics

```
qplot(
  sapply(rowData(pe[["protein"]])$msqrobModels,getSigma),
  sapply(rowData(pe[["protein"]])$msqrobModels,getSigmaPosterior)) +
  xlab("SD") +
  ylab("moderated SD") +
  geom_abline(intercept = 0,slope = 1) +
  geom_hline(yintercept = )
```

Warning: Removed 109 rows containing missing values (geom_point).

- Small variances are shrunken towards the common variance resulting in large EB variance estimates
- Large variances are shrunken towards the common variance resulting in smaller EB variance estimates
- Pooled degrees of freedom of the EB variance estimator are larger because information is borrowed across proteins to estimate the variance

1.6 Plots

```
sigNames <- rowData(pe[["protein"]])$genotypeD8 %>%
    rownames_to_column("protein") %>%
    filter(adjPval < 0.05) %>%
    pull(protein)
heatmap(assay(pe[["protein"]])[sigNames, ])
```



```
for (protName in sigNames)
        pePlot <- pe[protName, , c("peptideNorm", "protein")]</pre>
        pePlotDf <- data.frame(longFormat(pePlot))</pre>
        pePlotDf$assay <- factor(pePlotDf$assay,</pre>
            levels = c("peptideNorm", "protein")
        pePlotDf$genotype <- as.factor(colData(pePlot)[pePlotDf$colname, "genotype"])</pre>
        # plotting
        p1 <- ggplot(
            data = pePlotDf,
            aes(x = colname, y = value, group = rowname)
        ) +
            geom_line() +
            geom_point() +
            theme_minimal() +
            facet_grid(~assay) +
            ggtitle(protName)
        print(p1)
        # plotting 2
        p2 <- ggplot(pePlotDf, aes(x = colname, y = value, fill = genotype)) +</pre>
            geom_boxplot(outlier.shape = NA) +
            geom_point(
                position = position_jitter(width = .1),
```

```
aes(shape = rowname)
) +
scale_shape_manual(values = 1:nrow(pePlotDf)) +
labs(title = protName, x = "sample", y = "peptide intensity (log2)") +
theme_minimal()
facet_grid(~assay)
print(p2)
}
```


Intensity Intens

Intensity.1WTnt@0sth.1WTnt.1W

WP_003014581

Intensity Interfisized hour is its a large is the same is the same

Intensity I **/h 1/4**/17sig 0 **/h**/1/4/17sig 0 **/h**/1/4/17

Intensity.1MVens20.2Mvens20.2M

Intensity Interfisized hour is its a large is the same is the same

Intensity.1VI/Tte20itQH_VI/Tte20itQH_VI/Tte20itQH_VI/Tte20itQH3_00itQH3_00itQh

Intensity I **/h 1/4**/17sig 0 **/h**/1/4/17sig 0 **/h**/1/4/17

-3
Intensity Int

-6 Intensity I fi VeriT <u>si20 fi XeriT si20 fi XeriT si20</u>

Intensity Intens

Intensity.1WITiteNosiBh1WITiteNosiBh1WITiteNosiBh1WITiteNosiBh3DBh1Be0sBh.3DBh1Be0sBh1Be0sBh.3DBh1Be0s

IntensityIntArTsig0nt

Intensity Interfisized hour is its a large is the same is the same

Intensity.1VI/nte26itg/h_VI/nt

Intensity Intens

2 Experimental Design

2.1 Sample size

$$\log_2 FC = \bar{y}_{p1} - \bar{y}_{p2}$$

$$T_g = \frac{\log_2 \mathrm{FC}}{\mathrm{se}_{\log_2 \mathrm{FC}}}$$

$$T_g = \frac{\widehat{\text{signal}}}{\widehat{\text{Noise}}}$$

If we can assume equal variance in both treatment groups:

$$\operatorname{se}_{\log_2 \operatorname{FC}} = \operatorname{SD} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- \rightarrow if number of bio-repeats increases we have a higher power!
 - cfr. Study of tamoxifen treated Estrogen Recepter (ER) positive breast cancer patients

2.2 Blocking

$$\sigma^2 = \sigma_{bio}^2 + \sigma_{\text{lab}}^2 + \sigma_{\text{extraction}}^2 + \sigma_{\text{run}}^2 + \dots$$

- Biological: fluctuations in protein level between mice, fluctations in protein level between cells, ...
- Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, \dots

2.3 Nature methods: Points of significance - Blocking

https://www.nature.com/articles/nmeth.3005.pdf

2.4 Mouse example

Fig. 1. Label-free quantitative analysis of conventional and regulatory T cell proteomes. General analytical workflow based on cell sorting by flow cytometry using the DEREG mouse model and parallel proteomic analysis of Tconv and Treg cell populations by nanoLC-MS/MS and label-free relative quantification.

Duguet et al. (2017) MCP 16(8):1416-1432. doi:

10.1074/mcp.m116.062745

- All treatments of interest are present within block!
- We can estimate the effect of the treatment within block!
- We can isolate the between block variability from the analysis using linear model:

$$y \sim \text{type} + \text{mouse}$$

• Not possible with Perseus!

2.4.1 Assess the impact of blocking in the tutorial session!

 $\bullet\,$ Completely randomized design with only one cell type per mouse (Treg and Tconv)

 \updownarrow

• Randomized complete block design assessing Treg and Tconv on each mouse