How do we analyze continuous longitudinal data?

What is our goal?

Stated Mathematically

We want to fit a model that gives

$$E[Y_{ij}|X_{ij},t_{ij}],$$

in terms of **interpretable parameters**.

Let's use an example!

ID	Trt	W0	W1	W4	W6	ID	Trt	time	W
1	Р	30.8	26.9	25.8	23.8	1	Р	1	30.8
2	Α	26.5	14.8	19.5	21	2	Α	1	26.5
3	Α	25.8	23	19.1	23.2	3	Α	1	25.8
:	:	:	:	:	:	:	÷	:	:
98	Α	29.4	22.1	25.3	4.1	98	Α	4	4.1
99	Α	21.9	7.6	10.8	13	99	Α	4	13
100	Α	20.7	8.1	25.7	12.3	100	Α	4	12.3

Consider the TLC trial data, in wide format (left-hand side) and then in long format (right-hand side).

Let's use an example!

ID	Trt	W0	W1	W4	W6	ID	Trt	time	W
1	Р	30.8	26.9	25.8	23.8	1	Р	1	30.8
2	Α	26.5	14.8	19.5	21	2	Α	1	26.5
3	Α	25.8	23	19.1	23.2	3	Α	1	25.8
÷	:	÷	:	÷	÷	÷	÷	÷	÷
98	Α	29.4	22.1	25.3	4.1	98	Α	4	4.1
99	Α	21.9	7.6	10.8	13	99	Α	4	13
100	Α	20.7	8.1	25.7	12.3	100	Α	4	12.3

- Consider the TLC trial data, in wide format (left-hand side) and then in long format (right-hand side).
- ▶ In the right-hand side we have an outcome (W), with two explanatory factors $({Trt, time})$.

Let's use an example!

ID	Trt	W0	W1	W4	W6	ID	Trt	time	W
1	Р	30.8	26.9	25.8	23.8	1	Р	1	30.8
2	Α	26.5	14.8	19.5	21	2	Α	1	26.5
3	Α	25.8	23	19.1	23.2	3	Α	1	25.8
÷	:	÷	:	÷	÷	:	÷	:	÷
98	Α	29.4	22.1	25.3	4.1	98	Α	4	4.1
99	Α	21.9	7.6	10.8	13	99	Α	4	13
100	Α	20.7	8.1	25.7	12.3	100	Α	4	12.3

- Consider the TLC trial data, in wide format (left-hand side) and then in long format (right-hand side).
- ▶ In the right-hand side we have an outcome (W), with two explanatory factors $({Trt, time})$.
 - \blacktriangleright We want E[W|Trt, time]. Is this familiar?

Why can't we just use linear regression?

Using Linear Regression

	Estimate	Std. Error	Pr(> t)
(Intercept)	26.540	0.9370175	0.0000000
time2	-13.018	1.3251428	0.0000000
time3	-11.026	1.3251428	0.0000000
time4	-5.778	1.3251428	0.0000166
TreatmentP	-0.268	1.3251428	0.8398322
time2:TreatmentP	11.406	1.8740349	0.0000000
time3:TreatmentP	8.824	1.8740349	0.0000035
time4:TreatmentP	3.152	1.8740349	0.0933783

We can fit the model in R, using lm. Is this valid?

► There is a **linear conditional mean** structure:

$$\begin{split} E[W_{ij}|\mathsf{Trt}_i,t_j] &= \beta_0 + \beta_1 \mathsf{Trt}_i + \beta_2 I(t_j = 2) + \beta_3 I(t_j = 3) \\ &+ \beta_4 I(t_j = 4) + \beta_5 \mathsf{Trt}_i I(t_j = 2) + \beta_6 \mathsf{Trt}_i I(t_j = 3) \\ &+ \beta_7 \mathsf{Trt}_i I(t_j = 4). \end{split}$$

► There is a **linear conditional mean** structure:

$$E[W_{ij}|\text{Trt}_{i}, t_{j}] = \beta_{0} + \beta_{1}\text{Trt}_{i} + \beta_{2}I(t_{j} = 2) + \beta_{3}I(t_{j} = 3) + \beta_{4}I(t_{j} = 4) + \beta_{5}\text{Trt}_{i}I(t_{j} = 2) + \beta_{6}\text{Trt}_{i}I(t_{j} = 3) + \beta_{7}\text{Trt}_{i}I(t_{j} = 4).$$

▶ There is **constant variance** such that $var(W_{ij}) = \sigma^2$ for all i, j.

► There is a **linear conditional mean** structure:

$$E[W_{ij}|\text{Trt}_{i}, t_{j}] = \beta_{0} + \beta_{1}\text{Trt}_{i} + \beta_{2}I(t_{j} = 2) + \beta_{3}I(t_{j} = 3) + \beta_{4}I(t_{j} = 4) + \beta_{5}\text{Trt}_{i}I(t_{j} = 2) + \beta_{6}\text{Trt}_{i}I(t_{j} = 3) + \beta_{7}\text{Trt}_{i}I(t_{j} = 4).$$

- ▶ There is **constant variance** such that $var(W_{ij}) = \sigma^2$ for all i, j.
- ▶ The values of W_{ij} are **independent**.

► There is a **linear conditional mean** structure:

$$E[W_{ij}|\mathsf{Trt}_{i},t_{j}] = \beta_{0} + \beta_{1}\mathsf{Trt}_{i} + \beta_{2}I(t_{j}=2) + \beta_{3}I(t_{j}=3) + \beta_{4}I(t_{j}=4) + \beta_{5}\mathsf{Trt}_{i}I(t_{j}=2) + \beta_{6}\mathsf{Trt}_{i}I(t_{j}=3) + \beta_{7}\mathsf{Trt}_{i}I(t_{j}=4).$$

- ▶ There is **constant variance** such that $var(W_{ij}) = \sigma^2$ for all i, j.
- ▶ The values of W_{ij} are **independent**.
 - ▶ Uh oh...

What makes longitudinal data special?

Longitudinal data are characterized by correlation within individuals.

The previous 1m will work **only if** we are willing to assume that the observations are

independent.

How can we adapt linear regression to allow for this

association?

▶ When the data are in **long format**, it appears that the outcomes are univariate.

- ▶ When the data are in **long format**, it appears that the outcomes are univariate.
- When the data are in **wide format**, we can view the outcome as a vector of outcomes, (e.g., $\mathbf{W} = (W_0, W_1, W_4, W_6)$).

- ▶ When the data are in **long format**, it appears that the outcomes are univariate.
- When the data are in **wide format**, we can view the outcome as a vector of outcomes, (e.g., $\mathbf{W} = (W_0, W_1, W_4, W_6)$).
- ► The analysis of longitudinal data is **multivariate analysis**.

- When the data are in long format, it appears that the outcomes are univariate.
- When the data are in **wide format**, we can view the outcome as a vector of outcomes, (e.g., $\mathbf{W} = (W_0, W_1, W_4, W_6)$).
- ▶ The analysis of longitudinal data is **multivariate analysis**.
 - ▶ This accounts for the lack of independence in the outcomes!

Multivariate Normal

Instead of assuming that $Y_{ij} \sim N(X_{ij}\beta, \sigma^2)$, what if took

$$Y_i \sim \mathsf{MVN}(X_i\beta, \Sigma_i)$$
?

Recall that the multivariate normal (MVN) has a density given by

$$f(y; \mu, \Sigma) = ([2\pi]^k |\Sigma|)^{-1/2} \exp\left\{\frac{1}{2}(y - \mu)' \Sigma^{-1}(y - \mu)\right\}.$$

▶ In this proposal, we specify a **linear form** for the conditional mean.

- ▶ In this proposal, we specify a **linear form** for the conditional mean.
 - ▶ That is, $E[Y_i|X_i] = X_i\beta$, where X_i is a matrix and Y_i is a vector!

- In this proposal, we specify a **linear form** for the conditional mean.
 - ▶ That is, $E[Y_i|X_i] = X_i\beta$, where X_i is a matrix and Y_i is a vector!
- ▶ We allow for **correlation** through the individual covariance matrix, Σ_i .

- In this proposal, we specify a **linear form** for the conditional mean.
 - ▶ That is, $E[Y_i|X_i] = X_i\beta$, where X_i is a matrix and Y_i is a vector!
- \blacktriangleright We allow for **correlation** through the individual covariance matrix, Σ_i .
- We could (theoretically) find the MLE under the assumption of multivariate normality.

Covariance Matrix

Recall that
$$cor(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$
, and so, re-arranging,

$$cov(X, Y) = cor(X, Y)\sqrt{var(X)var(Y)}.$$

Moreover, recall that a variance/covariance matrix is

$$\operatorname{cov}(Y_i) = \Sigma_i = \begin{bmatrix} \operatorname{var}(Y_{i1}) & \operatorname{cov}(Y_{i1}, Y_{i2}) & \cdots & \operatorname{cov}(Y_{i1}, Y_{ip}) \\ \operatorname{cov}(Y_{i2}, Y_{i1}) & \operatorname{var}(Y_{i2}) & \cdots & \operatorname{cov}(Y_{i2}, Y_{ip}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(Y_{ip}, Y_{i1}) & \operatorname{cov}(Y_{ip}, Y_{i1}) & \cdots & \operatorname{var}(Y_{ip}) \end{bmatrix}.$$

Covariance Matrix Simplification

If we assume that $var(Y_{ij}) = \sigma^2$ for all i, j, and we denote $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ for all i, then note that

$$\operatorname{\mathsf{cov}}(Y_{ij},Y_{i\ell}) = \operatorname{\mathsf{cor}}(Y_{ij},Y_{i\ell}) \sqrt{\operatorname{\mathsf{var}}(Y_{ij}) \operatorname{\mathsf{var}}(Y_{i\ell})} = \sigma^2 \rho_{j\ell}.$$

We write

$$\mathbf{R}(\rho) = \begin{vmatrix} \rho_{11} & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{21} & \rho_{22} & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{p1} & \rho_{p2} & \cdots & \rho_{pp} \end{vmatrix} = \begin{vmatrix} 1 & \rho_{12} & \cdots & \rho_{1p} \\ \rho_{12} & 1 & \cdots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1p} & \rho_{2p} & \cdots & 1 \end{vmatrix}.$$

With this notation,

$$\Sigma_i = \sigma^2 \mathbf{R}(\rho).$$

Under the previous specification we can find the MLE to be

$$\widehat{\beta} = \left(\sum_{i=1}^n X_i' \mathbf{R}_i^{-1} X_i\right)^{-1} \sum_{i=1}^n X_i' \mathbf{R}_i^{-1} Y_i.$$

For the variance parameter, we get

$$\widehat{\sigma}^2 = \frac{1}{nk} \sum_{i=1}^n (Y_i - X_i \beta)' \mathbf{R}_i^{-1} (Y_i - X_i \beta).$$

And we can solve numerically for \mathbf{R}_i .

We want to model $E[Y_{ij}|X_i]$ (for some purpose) and so we specify a **multivariate linear model**. By assuming that the variance **is constant across different times**, and we can accommodate the correlation expected within each individual.

The **multivariate normality** assumption gives us a process for computing the MLE, which can produce estimates for the parameters of interest, denoted $\widehat{\beta}$.

What comes next?

► How can we conduct **inference** on the estimated parameters? (Why do we want to?)

- ► How can we conduct **inference** on the estimated parameters? (Why do we want to?)
- ▶ How can we specify **time trends** in the model for the mean?

- ► How can we conduct **inference** on the estimated parameters? (Why do we want to?)
- ▶ How can we specify **time trends** in the model for the mean?
- How can we use this model to answer scientific questions of interest?

- ► How can we conduct **inference** on the estimated parameters? (Why do we want to?)
- ▶ How can we specify **time trends** in the model for the mean?
- How can we use this model to answer scientific questions of interest?
- What can we do about the correlation matrix? (Are there any shortcomings with our assumptions?)

Inference

Asymptotic Normality

It can be shown that, asymptotically,

$$\widehat{\beta} \sim MVN(\beta, var(\widehat{\beta})),$$

where

$$\operatorname{var}(\widehat{\beta}) = \left[\frac{1}{\sigma^2} \sum_{i=1}^n X_i' \mathbf{R}_i^{-1} X_i\right]^{-1},$$

which can be estimated by plugging-in $\widehat{\sigma}^2$ and $\widehat{\rho}$.

This gives us s.e.
$$(\widehat{\beta}_j) = \left[\widehat{\text{var}}(\widehat{\beta})\right]_{(i,j)}^{1/2}$$
.

Inference based on Wald Statistics

As a result,

$$\frac{(\widehat{\beta}_j - \beta_j)}{\text{s.e.}(\widehat{\beta}_j)} \dot{\sim} N(0, 1).$$

This can be used to test $H_0: \beta_j = \beta^*$, or for confidence intervals, **just like with linear regression**!

Note this is equivalent to
$$\frac{(\widehat{\beta}_j - \beta_j)^2}{\operatorname{var}(\widehat{\beta}_i)} \sim \chi_1^2$$
.

Time Trends

► Generally speaking, we can simply include **time** as a **covariate** in the model.

- ▶ Generally speaking, we can simply include **time** as a **covariate** in the model.
- ▶ If the data are **balanced** and there are *relatively few* time points, we can include it as a factor.

- ► Generally speaking, we can simply include **time** as a **covariate** in the model.
- ▶ If the data are **balanced** and there are *relatively few* time points, we can include it as a factor.
- ▶ If the data are **not balanced** or there are *too many* time points, we can include it as a continuous variable.

- ► Generally speaking, we can simply include **time** as a **covariate** in the model.
- ▶ If the data are **balanced** and there are *relatively few* time points, we can include it as a factor.
- ▶ If the data are **not balanced** or there are *too many* time points, we can include it as a continuous variable.
 - We can also include quadratic time trends, or logarithmic time trends, or any other functional form.

- Generally speaking, we can simply include time as a covariate in the model.
- ▶ If the data are **balanced** and there are *relatively few* time points, we can include it as a factor.
- ▶ If the data are **not balanced** or there are *too many* time points, we can include it as a continuous variable.
 - We can also include quadratic time trends, or logarithmic time trends, or any other functional form.
- We can include time as calendar time, time since baseline, index of time point, age, etc.

- Generally speaking, we can simply include time as a covariate in the model.
- ▶ If the data are **balanced** and there are *relatively few* time points, we can include it as a factor.
- ▶ If the data are **not balanced** or there are *too many* time points, we can include it as a continuous variable.
 - We can also include quadratic time trends, or logarithmic time trends, or any other functional form.
- We can include time as calendar time, time since baseline, index of time point, age, etc.
 - ► This will depend on what we have **measured** and what we are **interested** in.

I he choice of how we include time will be dictated both by the <i>available</i> data,
and by the scientific questions of inquiry.
This goes for the form it takes in the model, and the time scale that we choose

to use.

Scientific Questions

Linear Transformations of Parameters

If we want to test a **joint hypothesis** or make a **prediction of outcome**, we are interested in $L\widehat{\beta}$ for some matrix L.

Standard results give that

$$L\widehat{\beta} \dot{\sim} N(L\beta, L\widehat{\text{var}}(\widehat{\beta})L').$$

As a result we get that

$$\left[L\widehat{\beta} - L\beta\right]' \left[L\widehat{\mathsf{var}}(\widehat{\beta})L'\right]^{-1} \left[L\widehat{\beta} - L\beta\right] \dot{\sim} \chi_r^2,$$

where r is the rank of L.

Many scientific questions of interest can be posed as $H_0: L\beta = C$.

▶ Is the effect of placebo any different from the effect of experimental treatment?

- ▶ Is the effect of placebo any different from the effect of experimental treatment?
 - ▶ Two equivalent effects, take $L = (0, \dots, 1, \dots, -1, \dots, 0)$ and C = 0 (r = 1).

- ▶ Is the effect of placebo any different from the effect of experimental treatment?
 - ▶ Two equivalent effects, take $L = (0, \dots, 1, \dots, -1, \dots, 0)$ and C = 0 (r = 1).
- ▶ Is the time trend the same between individuals in the placebo and control group?

- ▶ Is the effect of placebo any different from the effect of experimental treatment?
 - ▶ Two equivalent effects, take $L = (0, \dots, 1, \dots, -1, \dots, 0)$ and C = 0 (r = 1).
- ▶ Is the time trend the same between individuals in the placebo and control group?
 - Simultaneous effects, take $L = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \end{pmatrix}$ and C = 0 (r = 2).

- ▶ Is the effect of placebo any different from the effect of experimental treatment?
 - ▶ Two equivalent effects, take $L = (0, \dots, 1, \dots, -1, \dots, 0)$ and C = 0 (r = 1).
- ▶ Is the time trend the same between individuals in the placebo and control group?
 - Simultaneous effects, take $L = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \end{pmatrix}$ and C = 0 (r = 2).
- ▶ What is the expected outcome for a patient with a specific set of variates, X?

- ▶ Is the effect of placebo any different from the effect of experimental treatment?
 - ▶ Two equivalent effects, take $L = (0, \dots, 1, \dots, -1, \dots, 0)$ and C = 0 (r = 1).
- ▶ Is the time trend the same between individuals in the placebo and control group?
 - Simultaneous effects, take $L = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \end{pmatrix}$ and C = 0 (r = 2).
- ▶ What is the expected outcome for a patient with a specific set of variates, X?
 - ▶ Take L = X, and do not run it as a hypothesis, but instead build a confidence interval (for instance).

Correlation

Possible Shortcomings of our Method

▶ It assumes constant variance across observations.

Possible Shortcomings of our Method

- ▶ It assumes constant variance across observations.
- ▶ It requires $\frac{k(k-1)}{2}$ different correlation paramaters.

Possible Shortcomings of our Method

- It assumes constant variance across observations.
- ▶ It requires $\frac{k(k-1)}{2}$ different correlation paramaters.
- lt requires balanced data.

• Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ii}, Y_{i\ell}) = 0$ for all $j \neq \ell$.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.
- We could assume an **autoregressive** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho^{|j-\ell|}$.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.
- We could assume an **autoregressive** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho^{|j-\ell|}$.
- We could assume an **exponential** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = exp(-\rho|t_j t_\ell|)$.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.
- We could assume an **autoregressive** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho^{|j-\ell|}$.
- We could assume an **exponential** structure. That is, $cor(Y_{ii}, Y_{i\ell}) = exp(-\rho|t_i t_{\ell}|).$
 - ► This pattern can handle unequal spaced times!.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.
- We could assume an **autoregressive** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho^{|j-\ell|}$.
- We could assume an **exponential** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = exp(-\rho|t_j t_\ell|)$.
 - This pattern can handle unequal spaced times!.
- We can expand the exponential to the **Gaussian**. That is, $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \exp(-\rho |t_i t_\ell|^2)$.

- Our current assumption is **unstructured**. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho_{j\ell}$ without restriction.
- ▶ We could assume **independence**. That is, $cor(Y_{ij}, Y_{i\ell}) = 0$ for all $j \neq \ell$.
 - ► This would become our previously fit linear model!
- ▶ We could assume that the observations are **exchangeable**. That is $\operatorname{cor}(Y_{ij}, Y_{i\ell}) = \rho$, for $j \neq \ell$.
 - This is also referred to as uniform or compound symmetry.
- We could assume an **autoregressive** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = \rho^{|j-\ell|}$.
- We could assume an **exponential** structure. That is, $cor(Y_{ij}, Y_{i\ell}) = exp(-\rho|t_j t_\ell|)$.
 - ► This pattern can handle unequal spaced times!.
- ▶ We can expand the exponential to the **Gaussian**. That is, $cor(Y_{ij}, Y_{i\ell}) = exp(-\rho|t_j t_\ell|^2)$.
 - Produces more rapid decay!

Relaxing Constant Variance

All of the previous pattern matrices replace $\mathbf{R}_i(\rho)$ with a parsimonious model. What about the **constant variance?**

If we define

$$A_i = egin{bmatrix} \mathsf{var}(Y_{i1}) & 0 & 0 & \cdots & 0 \ 0 & \mathsf{var}(Y_{i2}) & 0 & \cdots & 0 \ 0 & 0 & \mathsf{Var}(Y_{i3}) & \cdots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \cdots & \mathsf{var}(Y_{ik_i}) \end{bmatrix},$$

then we can write

$$\Sigma_i = A_i^{1/2} \mathbf{R}_i(\rho) A_i^{1/2}.$$

Notation

Since it is **unlikely** that we will *correctly* specify $\mathbf{R}_i(\rho)$, we typically denote

$$V_i = A_i^{1/2} \mathbf{R}_i(\rho) A_i^{1/2},$$

and refer to this as **the working covariance matrix**, to distinguish it from the true, Σ_i .

The Punchline

Any correlation structure you can imagine, can be used in theory. **In practice** the previously listed ones will work quite well!

These structures can be made to vary based on time, or on other covariates as well! (We will see this in R code!)

► We require the complete specification of the **mean model** and the **covariance structure**.

- ► We require the complete specification of the **mean model** and the **covariance structure**.
- ▶ If the covariance structure is *misspecified* then inference regarding $\widehat{\beta}$ is **invalid**.

- We require the complete specification of the mean model and the covariance structure.
- ▶ If the covariance structure is *misspecified* then inference regarding $\widehat{\beta}$ is **invalid**.
- Our results so far have relied on the assumption of **normality**, which is not ideal!

- We require the complete specification of the mean model and the covariance structure.
- ▶ If the covariance structure is *misspecified* then inference regarding $\widehat{\beta}$ is **invalid**.
- ▶ Our results so far have relied on the assumption of **normality**, which is not ideal!
- We have not handled non-linear outcomes.

What comes next?

Despite these shortcomings, this serves as an incredibly useful basis for **analyzing continuous longitudinal data**.

Next we will explore these **theoretical properties**, deriving the results that were explored here, and providing **an application in R** of these concepts. The application will further explore how we can ask scientific questions of these models, test hypothesis, and interpret the parameters!

From there, we will begin to **tackle these limitations**.

▶ We cannot use linear regression to analyze continuous longitudinal data **unless** we assume independence.

- ▶ We cannot use linear regression to analyze continuous longitudinal data **unless** we assume independence.
- ► Instead, we can generalize this by assuming multivariate normality and imposing a specific correlation structure.

- ▶ We cannot use linear regression to analyze continuous longitudinal data **unless** we assume independence.
- ► Instead, we can generalize this by assuming multivariate normality and imposing a specific correlation structure.
- ▶ This gives us asymptotic results for **inference** and hypothesis testing.

- We cannot use linear regression to analyze continuous longitudinal data unless we assume independence.
- ► Instead, we can generalize this by assuming multivariate normality and imposing a specific correlation structure.
- ▶ This gives us asymptotic results for **inference** and hypothesis testing.
- Imposing specific correlation structures allow for us to explore more parsimonious models.