Gli esercizi presentati in questo documento, esposti negli appunti di Optimization di Simone Bianco, sono tratti da esercizi del libro, e da esercizi che il professore ha presentato in classe durante il corso delle lezioni. Consider the following linear pr La matrice dei vincoli $\max x_1 + 2x_2 - 3x_3 + 7x_0$ $x_1 + 2x_2 + 2x_3 + x_4 = 3$ 4,5,6 Sono lin. indip. $x_1 + 2x_2 + 7x_3 + x_5 = 3$ Le colonne $2x_1 + 4x_2 + 7x_3 + x_6 = 6$ quindi c e' una BFS associata $x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$ base Determine and justify which of the following vectors is a basic feasible solution (BFS): tale 2. $b = \begin{bmatrix} 1 & 0 & 0 & 2 & 2 & 4 \end{bmatrix}$ Given a general linear program in equational form let \overline{x} and \overline{y} be two optimal solutions to the problem. Prove or disprove the following 1. Any convex combination of \overline{x} and \overline{y} is also an optimal solution to the linear 2. There exists an optimal solution \overline{z} on the line through \overline{x} and \overline{y} which is also basic combinazione convessa d: due punti \vec{x}, \vec{y} e' il scymento $c^{\mathsf{T}} \overset{\sim}{\approx} = c^{\mathsf{T}} \overset{\sim}{\mathsf{y}} : \mathsf{X} \qquad \mathsf{Z} : \alpha \overset{\sim}{\approx} + (1 - \alpha) \overset{\sim}{\mathsf{y}}$ $C^Tz = C^T(\alpha x + (1-\alpha)y) = \alpha C^T \overline{x} + (1-\alpha)C^T \overline{y} = \alpha S + (1-\alpha)S = S \Rightarrow z$ sono BFS, ossia vertici poliedro, 2 e' falsa perche' del ž oqni (per definizione) di linea di Devtici e' vertice. punto Seymento non Consider the polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ and let $v \in P$. Prove that vis a vertex of P if and only if there exists a vector c such that v is the unique optimal basic feasible solution to the linear program:] H= { x : c = a} vertice di P⇒ cTx < a Yx6P\ {v} e' oltimale Sol. max ctx => necessariamente di [<=]: U l'unic 2 Sol. BF5 บทล vertice Solve the following linear program using the Simplex method: Il problema in A: -1 1 -2 Forma matriciale $x_1 + 2x_2 + x_3 \le 8$ => In Forma di eq: A: -1 1 -2 0 1 b = [8 4]T 13= {4,5} base 8=34,55 x1+2 x2+ x3+ x4 = 8 $\infty_4 = 8 - \infty_1 - 2\infty_2 - \infty_3$ $\infty 5 : 4 + \infty_1 - \infty_2 + 2 \infty_3$ $-x_1+x_2-2x_2+x_5=4$ Z = 254+ 52-52 2: 224+ 22-22 => Per il 2 : {1,5} $\begin{cases} \infty_1 : 8 \\ \infty_5 : 12 \end{cases}$ Problema originale e' = [800] $\Rightarrow |a|$ Sol olt. x1=8-x1-2x2-x3 $x_5:4+x_4-x_2+2x_3$ $z : 16 - 2 \times 4 - 3 \times 2 - 3 \times 3$

Consider the standard form polyhedron $P = \{x \mid matrix A \text{ of dimensions } m \times n has linearly independent of the polyhedron of the po$			
solutions are non-degenerate. Given $\overline{x} \in P$ such that \overline{x} has exactly m positive co	mponents:		
 Show that \$\overline{x}\$ is a BFS Show that the previous point is false if we rem 	ove the non-degeneracy assumption		
Se = ha m compon	enti positive, e nov	ci sono so	oluzioni degenere,
allor a B: {i : Zi	>o} e' la base di	æ, ed e′ una	BFS Solo Se
Az, che ha m colo	nne, e' non sing	olave, essendo	che il rango
delle righe di Ae	m, lo e' anche	quello di Azz >	le colonne di
Azz sono lin. Ind.	=> A3 e non sing	lave.	
Se l'assunzione	sulle sol. non d	eyenere e F	alsa, hon si
puo alfermare che	B = { i : \$\frac{1}{2}i > 0} si	a la base di	∞.
Consider the following primal program: $\min c^T x$	Il duale e ma	xx by (min -b	7.9
$Ax \geq b$ $x \geq 0$. Form the dual program and state it as an equivalent minimization pro	A^{T}_{Y}	4 c = A 4 5 C	, e' self-dual se
 2. Derive the conditions on A, b and c such that the dual is identical to t meaning that the problem is self-dual 3. Give a concrete example of a primal program identical to its dual 	he primal,	20 2 2 20	F. 73-0
{x: Ax ≥b} = {x: A}x	¿c}	Un'esempio e:	
{ α: A = > b } = { α: -A =	2-c}		1 0 = [1]
)			~ > ~
Consider the following linear program:	Considere il (Mana 26 4 12 V	∞ ≥0
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$	Considero il (problema duale:	min 32+1222 221-322 = 2	∞ ≥0
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$	Considero il (problema duale:	$2 \chi_{1} - 3 \chi_{2} \ge 2$ $\chi_{1} + 8 \chi_{2} \ge 16$	∞ ≥0
$\max\ 2x_1+16x_2+12x_3$ $2x_1+x_2-x_3\leq 3$ $-3x_1+8x_2+2x_3\leq 12$ $x_1,x_2,x_3\geq 0$ Determine if the feasible solution $x^*=\begin{bmatrix}6&0&12\end{bmatrix}$ is also optimal.	Considero il (problema duale:	$\begin{array}{c} 2 \zeta_{1} - 3 \zeta_{2} \geq 2 \\ \zeta_{1} + 8 \zeta_{2} \geq 16 \\ -\zeta_{1} + 2 \zeta_{2} \geq 12 \end{array}$	x ≥0
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal.	problema duale:	$2\xi_{1}-3\xi_{2} \ge 2$ $\xi_{1}+8\xi_{2} \ge 16$ $-\xi_{1}+2\xi_{2} \ge 12$ $\xi_{4},\xi_{2} \ge 0$	
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal.	problema duale:	$2\xi_{1}-3\xi_{2} \ge 2$ $\xi_{1}+8\xi_{2} \ge 16$ $-\xi_{1}+2\xi_{2} \ge 12$ $\xi_{4},\xi_{2} \ge 0$	
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal.	Considero il problema duale: = $2+3\chi_2$ $\qquad \qquad \qquad$	$2\xi_{1}-3\xi_{2} \ge 2$ $\xi_{1}+8\xi_{2} \ge 16$ $-\xi_{1}+2\xi_{2} \ge 12$ $\xi_{4},\xi_{2} \ge 0$	
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal.	problema duale: = $2+3\gamma_2$ $\qquad \qquad \qquad$	$2\xi_{1}-3\xi_{2} \ge 2$ $\xi_{1}+8\xi_{2} \ge 16$ $-\xi_{1}+2\xi_{2} \ge 12$ $\xi_{4},\xi_{2} \ge 0$	£ = [40 26] T
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. $\begin{bmatrix} 2 & 2 & 3 & 2 & 2 & 3 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 4 & 3 & 2 & 4 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 4 & 3 & 2 & 4 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 3 & 2 & 4 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 3 & 2 & 4 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 3 & 2 & 4 \\ 2 & 4 & 3 & 2 & 4 \end{bmatrix}$	problema duale: = $2+372$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	£ = [40 26] T
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. $\begin{bmatrix} 2 & 2 & 1 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	problema duale: = $2+372$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\(\frac{4}{5} = [40 26]^\tau\) hiamo
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. $\begin{bmatrix} 2 & 2 & 1 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	= 2+3/2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\(\frac{4}{5} = [40 26]^\tau\) hiamo
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. $\begin{bmatrix} 2 & 2 & 1 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	= 2+3/2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\(\frac{4}{5} = [40 26]^\tau\) hiamo
$\max 2x_1 + 16x_2 + 12x_3$ $2x_1 + x_2 - x_3 \le 3$ $-3x_1 + 8x_2 + 2x_3 \le 12$ $x_1, x_2, x_3 \ge 0$ Determine if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. $\begin{bmatrix} 2 & 2 & 1 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	= 2+3/2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\(\frac{4}{5} = [40 26]^\tau\) hiamo

