EEE6206 Power Semiconductor Devices:

Section 2a: P-N Junctions

PN junction diodes

- A p-n junction servers an important role both in modern electronic applications and in understanding other semiconductor devices
- It is used extensively in rectification, switching and other operating in electronics circuits
- It is a building block for key device technologies
 - bipolar transistors, thyristors and MOSFETs

Formation of Junctions: Epitaxial Growth

- Epitaxial Growth
 - Can be used of the formation of...
 - Thin silicon layers for lateral power devices
 - Thick n- regions for vertical power devices
- Substrate may be a wafer of the same material or a different material with a similar lattice structure
 - Acts as a seed crystal
- Growth performed at temperatures considerably below the melting point of the substrate crystal
- Methods for epitaxial growth
 - Chemical vapour deposition (CVD)
 - Liquid phase epitaxy (LPE)
 - Molecular beam epitaxy (MBE)

Epitaxial growth: Chemical Vapour Deposition (CVD)

- Susceptor (horizontal, pancake, barrel)
 - mechanically support the substrates (wafers)
 - Source of thermal energy for the chemical reaction
- Mechanisms in CVD
 - Reactants are transported to the substrates (dopants and chemicals)
 - Reactants are then transferred to the surface where they are absorbed
 - Chemical reaction occurs, followed by growth of the epitaxial layer
 - Gaseous products from the reaction is desorbed from the sample into the gas stream and transferred out of the reaction chamber

Junction Formation: Implantation and Diffusion

- Direct implantation of energetic ions into the semiconductor
- In this process a beam of impurity ions are accelerated to kinetic energies ranging from several eV to MeV directed at the surface of the semiconductor
- Ion doses can vary from 10¹² ions/cm² for threshold voltage adjust to 10¹⁸ ions/cm² for the formation of high conductive buried layers
- As the impurity enters the semiconductor they give up their energy to the lattice and come to rest at an average penetration depth
 - Projected range: Dependant upon energy level
 - Varies from a several 100's Angstroms to ~1μm

Schematic diagram of an ion implantation system

Heated filament to break up source gas (BF₃ AsH₃). An extraction voltage (~40kV) causes the ions to move from the source

Impurity activation

- After implantation impurity is activated by an annealing process
 - Causing impurities to form bonds with the silicon lattice
 - Repairing crystalline damage from impurity
 - Drives junction deeper into the substrate to control junction depth via a diffusion process
- Common technique to form p type and n type structures in Silicon and Silicon Carbide

Practical example: 80V NMOS process simulation

- Buried oxide, lateral device technology
 - Fully compatible with low voltage CMOS structures (BiCMOS Process)

Buried oxide, lateral device process (Doping contours)

N+ implant formation

Cross section after formation of the MOSFET channel

Source dopant cutline

P-N junction: Formation

p type semiconductor:

- Fermi level near valence band
 - high hole carrier concentration
 - few electrons

n type semiconductor

- n type semiconductor:
- Fermi level near conduction band
 - high electron carrier concentration
 - few holes

When Junction is formed...

- When n and p type material are joined
- Large carrier concentration gradient at junction cause carrier diffusion
 - Holes diffuse from p type to n type
 - Electrons diffuse from n type to p type

- As the carries diffuse across the metallurgical junction
- Fixed negative acceptor (N_A⁻) and positive donor (N_D⁺) charges are left uncompensated at the junction
- Creates a space charge (or depletion region) and electric field across the junction

Fixed charge

Junction Energy Diagram

 Under thermal equilibrium diffusion and drift currents will be equal as under zero bias current=0

Equilibrium Fermi Levels

- At thermal equilibrium
 - Steady state condition at a uniform temperature without any external bias
- The individual electron and hole current components flowing across the junction must be zero

Equilibrium Fermi Levels

- For each carrier both drift and diffusion components of current must cancel each other out
 - Taking hole current density for example:

$$J_p = J_p(drift) + J_p(diffusion) = 0$$

Equilibrium Fermi Levels

The expression for hole concentration

$$p = n_i e^{\left(\frac{E_i - E_F}{kT}\right)}$$

and its derivative

$$\frac{dp}{dx} = \frac{p}{kT} \left(\frac{dE_i}{dx} - \frac{dE_F}{dx} \right)$$

Yields:

$$J_p = q\mu_p p \left(\frac{1}{q} \frac{dE_i}{dx} \right) - kT\mu_p \left(\frac{p}{kT} \left[\frac{dE_i}{dx} - \frac{dE_F}{dx} \right] \right) = 0$$

$$J_p = \mu_p p \frac{dE_i}{dx} - \mu_p p \frac{dE_i}{dx} - \mu_p p \frac{dE_F}{dx} = 0$$

$$J_p = \mu_p p \frac{dE_F}{dx} = 0$$
 or $\frac{dE_F}{dx} = 0$

 Therefore for zero net electron and hole currents the Fermi level must be constant throughout the sample

Fermi level position

Space Charge

- Moving from a neutral region towards the junction, we encounter a narrow transition region.
- Here the space charge of impurity ion is partially compensated by the mobile carriers
- Beyond the transition region we enter the completely depleted region where the mobile carriers are zero, called the depletion region (or space charge region)

- For typical p-n junctions the transition regions are small compered to the depletion region and is therefore neglected and the depletion region can be represented by a rectangular representation
 - $-x_p$ and x_n denote the depletion layer widths in the p and n regions

Poisson's equation: Neutral Regions

- Constant Fermi level required at thermal equilibrium results in an unique space charge distribution at the junction
- The space charge distribution and electrostatic potential (Ψ) is given by Poisson's Equation:

$$\frac{d^2\Psi}{dx^2} \equiv -\frac{dE}{dx} = \frac{\rho_s}{\varepsilon_s \varepsilon_s} = -\frac{q}{\varepsilon_s} (N_D - N_A + p - n)$$

Dielectric constant of semiconductor

- In regions far away from the metallurgical junction, charge neutrality is maintained and the total space charge is zero
- In these regions, this simplified Poisson's Equation to:

$$\frac{d^2\Psi}{dx^2} = 0 \qquad \text{and} \qquad N_D - N_A + p - n = 0$$

Poisson's equation: Space charge region

- As we move closer to the metallurgical junction,
 - The depletion region causes charge neutrality no be no longer maintained
 - i.e. the number of electrons is no longer is equal to the number of holes $(n \neq p)$
- If we consider the p type region we assume:
 - $-N_D=0$ and $p\gg n$
- The electrostatic potential (Ψ_p) with is given by:

$$0 = N_D - N_A + p - n = N_A$$

• Setting the co-ordinates from the edge of the depletion region $(x \le -x_p)$ yields the electrostatic potential in the p region:

$$\Psi_p \equiv -\frac{1}{q} (E_i - E_F) \Big|_{x \le -x_p}$$

Likewise for the n region $(x \ge x_n)$:

$$\Psi_n \equiv -\frac{1}{q} (E_i - E_F) \Big|_{x \ge x_n}$$

Electrostatic potential

• Potential in the p region at a distance greater than x_p from the junction:

$$\Psi_{p} \equiv -\frac{1}{q} (E_{i} - E_{F}) \Big|_{x \leq -x_{p}}$$

$$p = n_{i} exp^{\frac{E_{i} - E_{F}}{kT}} \qquad E_{i} - E_{F} = kT \ln \left(\frac{N_{A}}{n_{i}}\right)$$

$$\Psi_{p} \equiv -\frac{kT}{q} \ln \left(\frac{N_{A}}{n_{i}}\right)$$

• Likewise for the n region at a distance greater than x_n from the junction:

$$\Psi_{n} \equiv -\frac{1}{q} (E_{i} - E_{F}) \Big|_{x \ge x_{n}}$$

$$n = n_{i} exp^{\frac{E_{F} - E_{i}}{kT}} \qquad E_{i} - E_{F} = -kT \ln \left(\frac{N_{D}}{n_{i}}\right)$$

$$\Psi_{n} \equiv \frac{kT}{q} \ln \left(\frac{N_{D}}{n_{i}}\right)$$

 Therefore due to the relative position of the intrinsic energy level p material will always be shown as a negative electrostatic potential whereas the n material will be positive

Electro-static potential of a junction

Built in potential

• The difference between electrostatic potential between the n and p sides is termed the built in potential (V_{bi})

$$V_{bi} = \Psi_n - \Psi_p$$

$$\Psi_p \equiv -\frac{kT}{q} \ln \left(\frac{N_A}{n_i}\right) \qquad \Psi_n \equiv \frac{kT}{q} \ln \left(\frac{N_D}{n_i}\right)$$

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_D}{n_i} \right) + \frac{kT}{q} \ln \left(\frac{N_A}{n_i} \right)$$

$$V_{bi} = \frac{kT}{q} ln \left(\frac{N_A N_D}{n_i^2} \right)$$

Junction built in potential

Example: Built in potential

• Calculate the built in potential for a silicon PN junction with $N_A=10^{18}~cm^{-3}$ and $N_D=10^{15}~cm^{-3}$ at 300K considering a intrinsic carrier concentration (n_i) of 5.22x10⁹

Example: Built in potential

 Calculate the built in potential for a silicon PN junction with N_A=10¹⁸ cm⁻³ and N_D=10¹⁵ cm⁻³ at 300K considering a intrinsic carrier concentration (n_i) of 5.22x10⁹

$$V_{bi} = \frac{kT}{q} ln \left[\frac{N_A N_D}{n_i^2} \right]$$

$$\left(\frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}}\right) ln \left[\frac{1 \times 10^{18} \times 1 \times 10^{15}}{(5.22 \times 10^9)^2}\right] = 0.765V$$

Built-in potentials on the p and n side of abrupt junctions

- The built in potential and its behaviour to applied bias is the most important characteristic of a p-n junction
- Most important feature of a p-n junction is that they rectify
 - Allows current to flow in one direction

Diode Circuit Schematic Symbol

Approximate doping profile for abrupt junctions

Depletion regions for abrupt junctions

- In the depletion region, free carriers are totally depleted
 - Poisson's equation simplifies to:

$$\frac{d^2\psi}{dx^2} = \frac{qN_A}{\varepsilon_S} for - x_p \le x < 0$$

$$\frac{d^2\psi}{dx^2} = -\frac{qN_D}{\varepsilon_S} for 0 < x \le x_n$$

Electric field at the junction

 Due to space charge neutrality the total negative charge must equal positive charge

$$N_A x_p = N_D x_n$$

Total depletion layer width (W) is given by:

$$W = x_p + x_n$$

The electric field is obtained by integrating Poisson's equation:

$$E_{(x)} = -\frac{d\psi}{dx} = -\frac{qN_A(x + x_p)}{\varepsilon_S} \text{ for } -x_p \le x < 0$$

$$E_{(x)} = -E_m + \frac{qN_D(x)}{\varepsilon_S} = \frac{qN_D(x - x_n)}{\varepsilon_S} \text{ for } 0 < x \le x_n$$

• Maximum (E_m) electric field occurs at x = 0 and is given by:

$$E_m = \frac{qN_D x_n}{\varepsilon_S} = \frac{qN_A x_p}{\varepsilon_S}$$

Depletion regions for abrupt junctions and electric field

Depletion Width

Integrating the electric field across the junction yields its potential

$$V_{bi} = -\int_{-x_p}^{x_n} E(x) = \int_{-x_p}^{0} E(x) dx \left| p \text{ side } -\int_{0}^{-x_n} E(x) dx \right| n \text{ side}$$

$$V_{bi} = \frac{qN_A x_p^2}{2\epsilon_S} + \frac{qN_D x_n^2}{2\epsilon_S} = \frac{E_m(x_p + x_n)}{2} = \frac{1}{2} E_m W$$

- Therefore the area of the field triangle corresponds to the potential across the junction
- Combining this with space charge neutrality gives the depletion width as a function of junction of potential

$$W = \sqrt{\frac{2\varepsilon_S}{q} \left(\frac{N_A + N_D}{N_A N_D}\right) V_{bi}}$$

One side abrupt junction

- Due to the greater electron mobility (1450 compared to 450 m²/ (V. s), majority of diodes are p(+)/n(-)/n(+) in nature
 - termed abrupt junction

- When the impurity concentration is much greater on one side of the abrupt junction
- Considering a P+/n- junction the depletion width into the p+ region is significantly less than that of the n- therefore it can be disregarded
- This simplifies the depletion width expression to:

$$W \cong x_n = \sqrt{\frac{2\varepsilon_s V_{bi}}{qN_D}}$$
 and $E_m = \frac{qN_DW}{\varepsilon_s}$

 The Junction capacitance can be obtained from:

$$C_j = \frac{\varepsilon_s}{W}$$
 F/cm²

Effects of applied bias at a p-n junction

(increased conduction)

material energy level
Voltage barrier (Vbi)
increase reducing current
conduction

Current flow across junction

Current flow across junction

Typical current-voltage characteristics

Current voltage characteristics: Forward bias

- A voltage applied to the junction will disturb the balance between diffusion and drift currents of electrons and holes
- Under forward bias, the applied voltage reduces the electrostatic potential across the depletion region
 - Drift current is reduced in comparison to diffusion current
 - Hole diffusing from the p side and electron diffusion from the n side are enhanced
 - Minority carrier injection occurs

Ideal forward current voltage characteristics: Assumptions

- Depletion region has abrupt boundaries and outside the boundary the semiconductor is assumed to be neutral
- Carrier densities at the boundaries are related by the electrostatic potential difference across the junction
- Low injection condition: injected minority carrier densities are smaller compered with the majority carrier density
- Neither generation or recombination currents exist in the depletion region
- Electron and hole currents are constant throughout the depletion region

- At thermal equilibrium the majority carrier density in the neutral regions is equal to the doping concentration
 - In the following n and p denotes the semiconductor type
 - Subscript o specifies thermal equilibrium conditions
 - i.e. n_{no} n_{po} are the equilibrium electron densities in the n and p sides of the junction

Using this terminology, diode turn on voltage (V_{bi}) can be written as:

$$V_{bi} = \frac{kT}{q} ln \left[\frac{p_{po} n_{no}}{n_i^2} \right] = \frac{kT}{q} ln \left[\frac{n_{no}}{n_{po}} \right]$$
Mass action law

Rearranging we have:

g we have:
$$ho_{po}n_{pn}=n_i^2$$
 $n_{no}=n_{po}e^{qV_{bi}/_{kT}}$ and $p_{po}=p_{no}e^{qV_{bi}/_{kT}}$

- Electron and hole density at the depletion region boundary $(-x_p \text{ and } x_n)$ are related through their electrostatic potential difference at thermal equilibrium
- From our second assumption:
 - Carrier densities at the boundaries are related by the electrostatic potential difference across the junction
 - We expect that this relationship holds when this electrostatic potential difference is changed by and applied bias

Minority carrier densities at the depletion region boundary

- For a forward biased junction the electrostatic potential is reduced by $(V_{bi}-V)$ and increased by $(V_{bi}+V_R)$ for a reverse biased
- This modifies the previous equation:

- Where n_n and n_p are the non equilibrium electron densities at the boundaries of the depletion region in the n and p sides
- We are only assuming low injection conditions
 - Therefore injected carrier concentration is less than the majority, therefore $n_n \cong n_{no}$
 - Substituting this and combining these equations yields the electron density at the boundary of the depletion region of the p side $(x = -x_p)$

Low injection assumption
$$n_{po} = n_{p}e^{qV_{bi}-V}/_{kT} \qquad n_{no} = n_{p}e^{qV_{bi}-V}/_{kT}$$

$$n_{po}e^{qV_{bi}}/_{kT} = n_{p}e^{qV_{bi}-V}/_{kT}$$

$$n_{po}e^{qV_{bi}}/_{kT} \qquad \text{or} \qquad \boxed{n_{p}-n_{po}} = n_{po}\left(e^{qV}/_{kT}-1\right)$$
 Injection level

• Likewise for hole carrier concentration the depletion boundary in the n region $(x = x_n)$:

$$p_n = p_{no}e^{qV/_{kT}}$$
 or $p_n - p_{no} = p_{no}\left(e^{qV/_{kT}} - 1\right)$

 These equation define the boundary conditions to calculate the ideal current-voltage characteristics of a p-n junction

- Under our idealised assumptions
 - No current generated within the depletion region
 - All currents must come from the neutral regions
 - In the neutral region there is no electric field
 - Continuity equation:

$$\frac{dp_n}{dt} = p_n \mu_p \frac{dE}{dx} + \mu_p E \frac{dp_n}{dx} + D_p \frac{d^2 p_n}{dx^2} + G_p - \frac{p_n - p_{no}}{\tau_p}$$

Due to assumptions: reduces to...

$$\frac{d^2p_n}{dx^2} - \frac{p_n - p_{no}}{D_p \tau_p} = 0$$

Solution to the continuity equation: Injection of holes at x=0

- In steady state we expect the distribution of excess holes to decay to zero for large values of x
- The solution to the steady state continuity equation takes the form of:

$$\delta p = C_1 e^{x/L_p} + C_2 e^{-x/L_p}$$

- C_1 and C_2 can be evaluated from:
 - Since recombination must reduce $\delta p(x)$ to zero at large values of x, $\delta_p = 0$ at $x = \infty$ therefore $C_1 = 0$
 - Likewise $\delta p = \Delta p$ at x = 0 gives $C_2 = \Delta p$

Therefore the solution is: $\delta p(x) = \Delta p e^{-r/L_p}$

Minority carrier injection into the n region

The minority carrier injection level in the n region is:

$$p_{n} - p_{no} = \Delta p e^{-x/L_{p}}$$

$$\Delta p = p_{no} \left(e^{qV/kT} - 1 \right)$$

$$p_n - p_{no} = p_{no}(e^{qV}/kT - 1)e^{-(x-x_n)}/L_p$$

- Where L_p is the diffusion length for holes (minority carriers) in the n region
- The total hole current injected into the n region (at $x = x_n$)

$$J_p(x_n) = -qD_p \frac{dp_n}{dx} | x_n = \frac{qD_p p_{no}}{L_p} \left(e^{qV/kT} - 1\right)$$
 Hole diffusion length (L_p)
$$L_p = \sqrt{D_p \tau_p}$$

Minority carrier injection from the n into the p region

 Likewise, the carrier electron injection into the p region is given by:

$$n_p - n_{po} = \Delta n e^{x/L_n}$$

$$\Delta n = n_{po} \left(e^{qV/kT} - 1 \right)$$

$$n_p - n_{po} = n_{po} \left(e^{qV} / kT - 1 \right) e^{\left(x + x_p \right) / L_n}$$

• The total electron current injected into the p region (at $x = -x_p$) is given by:

$$J_{n}(-x_{p}) = -qD_{n} \frac{dn_{p}}{dx} \Big| -x_{p} = \frac{qD_{n}n_{po}}{L_{n}} \Big(e^{qV/kT} - 1\Big)$$
Electron diffusion length (L_{n})

$$L_{n} = \sqrt{D_{n}\tau_{n}}$$

Total current density

• Total current density (J) is the algebraic sum of the electron (J_n) and hole (J_p) components

$$Total\ current(J) = J_p(x_n) + J_n(-x_p)$$

$$J = \frac{qD_{n}n_{po}}{L_{n}} \left(e^{qV}/kT - 1 \right) + \frac{qD_{p}p_{no}}{L_{p}} \left(e^{qV}/kT - 1 \right)$$

$$J = J_s \left(e^{qV/kT} - 1 \right) \quad J_s \equiv \frac{qD_p p_{no}}{L_p} + \frac{qD_n n_{po}}{L_n}$$

Where J_s is the saturation current density

Injected minority carrier distribution under forward bias

Injected minority carrier distribution under reverse bias

Example: Diode saturation current

- Calculate the ideal reverse saturation current in a Si P-N diode with a crosssectional area of 2 x 10⁻⁴ cm² the diode parameters are:
- N_A = 5e16cm⁻³, N_D =1e16cm⁻³, n_i =9.65e9cm⁻³, D_n =21cm²/s, D_P =10cm²/s, t_n = t_p =5e-7s

Example: Diode saturation current

- Calculate the ideal reverse saturation current in a Si P-N diode with a crosssectional area of 2 x 10⁻⁴ cm² the diode parameters are:
- N_A = 5e16cm⁻³, N_D =1e16cm⁻³, n_i =9.65e9cm⁻³, D_n =21cm²/s, D_p =10cm²/s, t_n = t_p =5e-7s

$$J_{s} = \frac{qD_{p}p_{no}}{L_{p}} + \frac{qD_{n}n_{po}}{L_{n}} = qn_{i}^{2} \left[\frac{1}{N_{D}} \sqrt{\frac{D_{p}}{\tau_{p}}} + \frac{1}{N_{A}} \sqrt{\frac{D_{n}}{\tau_{n}}} \right]$$

$$= 1.6 \times 10^{-19} \times (9.65 \times 10^{9})^{2} \times \left[\frac{1}{10^{16}} \sqrt{\frac{10}{5 \times 10^{-7}}} + \frac{1}{5 \times 10^{16}} \sqrt{\frac{21}{5 \times 10^{-7}}} \right]$$

$$= 8.58 \times 10^{-12} \frac{A}{cm^2} = 8.58 \times 10^{-12} \times 2 \times 10^{-4} = 1.72 \times 10^{-15} A$$

Example: Forward current calculation

 What is the forward current of the previous diode at a bias of 1V considering a V_{bi} of 0.7V

Example: Forward current calculation

 What is the forward current of the previous diode at a bias of 1V considering a V_{bi} of 0.7V

$$J = J_s \left(e^{(V_a - V_{bi})} \frac{q}{kT} - 1 \right) = 8.58 \times 10^{-12} \left(e^{(1 - 0.7)} \frac{1}{0.0259} - 1 \right)$$

$$= 9.49 \times 10^{-7} A cm^{-2}$$

$$= 9.49 \times 10^{-7} \times 2 \times 10^{-4} = 1.898 \times 10^{-10} A$$

Ideal current/voltage characteristics for Si and WBG

Temperature effect on ideal current voltage characteristic (Si)

Influence of temperature with saturation current density

Off-state performance of 1200V 60A rated diode

On-state performance of 1200V 60A rated diode

WBG P-N Junctions

- Diode knee voltage influenced by:
 - Doping concentration
 - Ambient temperature
 - Semiconductor band gap
- Therefore wide band gap (WBG) semiconductors would turn on > 3V
 - 1200V silicon diode structure
 - On-state forward voltage drop ~3.2V at rated current
 - Due to the knee voltage a wide band gap device would turn of at ~3V
 - Solution: Schottky junctions

Further reading

- Ben G Streetman: Solid State Electronic Devices: ISBN: 0-13-149726-X
 - Chapter 5
- S.M.Sze: Semiconductor Devices: Physics and technology: ISBN0-471-33372-7
 - Chapters 4