Programare declarativă Categorii¹

Ioana Leuștean Traian Florin Șerbănută

Departamentul de Informatică, FMI, UNIBUC traian.serbanuta@unibuc.ro

7 decembrie 2017

¹bazat pe <u>Categories for programmers</u>

Categorii și Functori

Categorii

O categorie \mathbb{C} este dată de:

- O clasă |C| a obiectelor
- Pentru oricare două obiecte A, B ∈ |C|,
 o mulțime C(A, B) a săgeților "de la A la B"
 f ∈ C(A, B) poate fi scris ca f : A → B
- Pentru orice obiect A o săgeată $id_A: A \rightarrow A$ numită identitatea lui A
- Pentru orice obiecte A, B, C, o operație de compunere a săgeților
 : ℂ(B, C) × ℂ(A, B) → ℂ(A, C)

Bartosz Milewski
— Category: The
Essence of Composition

Compunerea este asociativă și are element neutru id

Exemplu: Categoria Set

Obiecte: multimi

Săgeți: funcții

Identități: Funcțiile identitate

Compunere: Compunerea funcțiilor

Exemplu: Categoria Hask

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

Identități: funcția polimorfică id

```
Prelude> :t id id :: a -> a
```

• Compunere: funcția polimorfică (.)

```
Prelude> :t (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
```

- Obiecte: o clasă restânsă de tipuri din |⊞ask|
 - Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte
 - Exemple: concat :: [[a]] -> [a], words :: [Char] -> [String],
 reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Arbori obiecte: tipuri de forma Arbore a

Comenzi I/O obiecte: tipuri de forma IO a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele P₁,...P_n
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările $p_1, \dots p_n$ într-o rezolvare p pentru problema inițială

Categoriile rezolvă problema compunerii

- Ne forţează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți (metode?)
- Forțează un stil de compunere independent de structura obiectelor

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F:\mathbb{C}\to\mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

Bartosz Milewski — Functors

Functori în Haskell

În general un functor $F : \mathbb{C} \to \mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$
- Compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice A
 - $F(g \circ f) = F(g) \circ F(f)$ pentru orice $f : A \to B, g : B \to C, h = g \circ f$

În Haskell o instanță Functor m este dată de

- Un tip m a pentru orice tip a (deci m trebuie sa fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a \rightarrow b) \rightarrow (m a \rightarrow m b)$$

Compatibilă cu identitățile și cu compunerea

fmap
$$id == id$$

fmap $(g \cdot f) == fmap g \cdot fmap f$

pentru orice f :: a -> b si g :: b -> c