TOPOLOGÍA. UAM, 27 de noviembre de 2015

Apellidos, Nombre: _______Grupo:

- 1. Considera en \mathbb{R}^2 y en \mathbb{R} la topología usual, y la función $f:\mathbb{R}^2\ni (x,y)\mapsto x\cdot y\in\mathbb{R}$.
 - 1. Demuestra que f es continua ¿Es f abierta? Justifica tu respuesta.
 - 2. Considera en $X = \mathbb{R}^2$ la relación de equivalencia:

$$(x,y) \sim (x',y') \iff f(x,y) = f(x',y')$$
.

Si $X^* = X/\sim$ es el espacio cociente de X por la relación de equivalencia anterior, describe la topología cociente, es decir la topología de X^* .

3. Si llamamos $\pi: X \to X^*$ a la proyección canónica, demostrar que existe una única aplicación continua $\tilde{f}: X^* \to \mathbb{R}$ tal que $f = \tilde{f} \circ \pi$. ¿Es \tilde{f} un homeomorfismo?

2.

1. Define con precisión qué es un espacio topológico compacto. Si en el plano \mathbb{R}^2 consideramos la topología asociada al orden lexicográfico, ¿es el subconjunto

$$Y = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 1 \ \}$$

un compacto de \mathbb{R}^2 para esta topología?

- 2. Si (X, τ) es un espacio topológico compacto, y se tienen dos topologías sobre X, τ' y τ'' , tales que $\tau' \subset \tau \subset \tau''$, ξ son los expacios topológicos (X, τ') y (X, τ'') espacios compactos? Justifica detalladamente tu respuesta.
- 3. Un espacio compacto (X, τ) se dice maximal si para cada topología τ' en X que sea estrictamente más fina que τ (es decir $\tau' \supseteq \tau$ y $\tau' \neq \tau$) el espacio (X, τ') no es compacto. Demuestra que el espacio topológico (X, τ) es maximal si y sólo si cada subconjunto compacto de X es cerrado.
- 4. Demuestra que todo compacto que es Hausdorff es maximal y que todo compacto maximal es T_1 .

3. Sea $X = \mathbb{R}^{\omega}$ el conjunto de sucesiones de números reales. Sea D el subconjunto de X formado por todas las sucesiones que son finalmente 0, es decir:

$$(x_n) \in D \Longleftrightarrow x_i \neq 0$$
solo para un número finito de valores $\ i$.

- 1. Si en X consideramos la topología producto τ_1 , calcula la adherencia de D.
- 2. Si en X consideramos la topología de las cajas τ_2 , calcula la adherencia de D.
- 3. Para cada natural no nulo m consideremos el el subconjunto de X,

$$\mathbb{P}_m = \{(x_n) : x_i = 0 \text{ para } i > m\}$$

Calcula la adherencia de \mathbb{P}_m en D visto como subespacio de (X, τ_1) ò de (X, τ_2) ¿Son iguales las dos adherencias? Explica tu respuesta.

4. Define con precisión qué es un espacio topológico conexo, y qué es un espacio topológico conexo por arcos (o arcoconexo).

Sean A, B subconjuntos de un espacio topológico X. Supongamos que B es conexo, que B no está contenido en \overline{A} , y que B corta al interior de A. Demuestra que B corta a la frontera de A.