UNITED STATES DISTRICT COURT EASTERN DISTRICT OF MISSOURI EASTERN DIVISION

MONSANTO COMPANY and)	
MONSANTO TECHNOLOGY LLC,)	
)	
Plaintiffs,)	
)	
VS.)	
)	
E.I. DUPONT DE NEMOURS AND)	Case No. 4:09-cv-686 ERW
COMPANY and PIONEER HI-BRED)	
INTERNATIONAL,)	
INC.,)	
)	
Defendants.)	

PLAINTIFFS' CLAIM CONSTRUCTION BRIEF

Table of Contents

INTRO	ODUCT	TION
FACT	UAL B	ACKGROUND
I.	Basic (Concepts of Molecular Biology
	A.	Cells and the Concept of Genetic Information
	B.	The Central Dogma of Molecular Biology
	C.	DNA Transcription and the Structure of Genes
	D.	The Genetic Code
	E.	Transgenes and Genetic Engineering
II.	The In	vention Disclosed in the '247 Patent
	A.	Background of the Invention
	B.	DNA Encoding Class II EPSPS Enzymes
	C.	Functional Transgenes Encoding Class II EPSPS Enzymes
	D.	Transgenic, Glyphosate Tolerant Plants
III.	The '4	34 and '247 Patent's Claims
ARGU	JMENT	
I.		Terms are Given their Plain Meaning in Light of the Specification osecution History
	A.	The Claims and Written Description
	B.	The Prosecution History and Extrinsic Evidence
II.		oper Construction of the Claims to Genetically Engineered DNA ules
	A.	Claims to Isolated DNA Molecules
		1. An "isolated DNA molecule"

		contains the genetic code for the specified protein	
B.		Recombinant DNA molecules (independent claims)	
		1. A "promoter which functions in plant cells to cause the production of an RNA sequence"	
		2. A "structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of"	
		3. A "3" non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3" end of the RNA sequence"	
		4. "where the promoter is heterologous with respect to the structural DNA sequence"	
		5. The phrase "adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the Glyphosate tolerance of a plant cell transformed with the DNA molecule"	
III.	The C	laims to Glyphosate Tolerant Plant Cells, Plans, and Seeds	
	A.	A "Glyphosate tolerant" plant or plant cell is less harmed by application of Glyphosate than a similar, non-transgenic plant or plant cell	
	B.	3. The "Glyphosate Tolerance" is Cause at Least by the Claimed Gene Construct	
IV.	The C	laims to Methods of Selective Weed Control	
V.	Other	Claim Terms	
	A.	An "[amino terminal] chloroplast transit peptide" means an amino acid sequence capable of targeting an EPSPS enzyme to a chloroplast of a plant cell	
	B.	A "plant DNA virus promoter" means a region of DNA from a plant virus that is capable of regulating the transcription of DNA in a plant cell	

Case 4:09-cv-00686-ERW Document 259 Filed 07/09/10 Page 4 of 50

C.	A "CaMV35S promoter" means a region of DNA derived from the cauliflower mosaic virus 35S gene capable of regulating the	
	transcription of DNA in a plant cell	4
D.	A "FMV35S promoter" means a region of DNA derived from the	
	figwort mosaic virus 35S gene that is capable of regulating the	
	transcription of DNA in a plant cell	4
E.	A "NOS 3' or E9 3' non-translated region" means a region of	
	DNA derived from the 3' nontranslated region of	
	Agrobacterium's nopaline synthase gene or the 3' nontranslated	
	region of the ssRUBISCO gene from pea, capable of signaling	
	polyadenylation in a plant cell	4
CONCLUSIO	N	4

TABLE OF AUTHORITIES

Cases:

Acumed LLC v. Stryker Corp., 483 F.3d 800 (Fed. Cir. 2007)	30
AK Steel Corp. v. Sollac & Ugine, 344 F.3d 1234 (Fed. Cir. 2003)	29-30
Amgen Inc. v. Chugai Pharm. Co., Ltd., 13 U.S.P.Q.2d 1737 (D. Mass 1989), aff'd in part, vacated in part on other grounds, 927 F.2d 1200 (Fed. Cir. 1991)	18, 20, 21
Amgen Inc. v. Hoechst Marion Roussel, Inc., 314 F.3d 1313 (Fed. Cir. 2003)	15
Bayer AG v. Biovail Corp., 279 F.3d 1340 (Fed. Cir. 2002)	15
Edward Lifesciences LLC v. Cook Inc., 582 F.3d 1322 (Fed. Cir. 2009)	21, 24
Genentech, Inc. v. Chiron Corp., 112 F.3d 495 (Fed. Cir. 1997)	35
Honeywell Int'l, Inc. v. ITT Indus., Inc., 452 F.3d 1312 (Fed. Cir. 2006)	34
In re Kubin, 561 F.3d 1351 (Fed. Cir. 2009)	20
In re O'Farrell, 853 F.2d 894 (Fed. Cir. 1988)	3, 5
In re Suitco Surface, Inc., 603 F.3d 1255 (Fed. Cir. 2010)	36-37
Liebel-Flarsheim Co. v. Medrad, Inc., 358 F.3d 898 (Fed. Cir. 2004)	14
Markman v. Westview Instruments, Inc., 52 F.3d 967 (Fed. Cir. 1995), aff'd, 517 U.S. 370 (1996)	13

MBO Labs., Inc. v. Becton, Dickinson & Co., 474 F.3d 1323 (Fed. Cir. 2007)	
McCarty v. Lehigh Valley R.R. Co., 160 U.S. 110 (1895)	15
Moba, B.V. v. Diamond Automation, Inc., 325 F.3d 1306 (Fed. Cir. 2003)	32
Netword, LLC v. Centraal Corp., 242 F.3d 1347 (Fed. Cir. 2001)	33
Pause Tech., LLC v. Tivo Inc., 419 F.3d 1326 (Fed. Cir. 2005)	14
Phillips v. AWH Corp., 415 F.3d 1303 (Fed. Cir. 2005) (en banc)	2, 13-15, 20
Playtex Prods., Inc. v. Procter & Gamble Co., 400 F.3d 901 (Fed. Cir. 2005)	14-15
Renishaw PLC v. Marposs Societa' per Azioni, 158 F.3d 1243 (Fed. Cir. 1998)	14
Research Plastics, Inc. v. Fed. Packaging Corp., 421 F.3d 1290 (Fed. Cir. 205)	14, 20
Vitronics Corp. v. Conceptronic, Inc., 90 F.3d 1576 (Fed. Cir. 1996)	13, 14
White v. Dunbar, 119 U.S. 47 (1886)	13
Statutes and Other Authorities:	
35 U.S.C. §§ 101 and 112	38
35 U.S.C. § 112, ¶ 4	21
PTO Utility Examination Guidelines 66 Fed Reg 1092 (Jan 5 2001)	19

INTRODUCTION

The '247 patent sets forth one of the most celebrated inventions in biotechnology – the discovery and isolation of genes encoding Class II EPSPS enzymes, which are capable of rendering plants tolerant to the herbicide glyphosate. Monsanto's Roundup Ready® corn and soybeans, which are embodiments of this invention, have revolutionized farming by enabling cost-effective, efficient, and environmentally responsible weed control. The patented Roundup Ready® platform has been widely licensed and embraced by thousands of American farmers and seed companies. Indeed, DuPont and Pioneer estimate that over 90% of the soybeans planted in the United States contain this groundbreaking technology.

DuPont and Pioneer themselves took a license to the '247 patent (and its predecessor). Recognizing the strength of Monsanto's invention, DuPont and Pioneer have paid Monsanto many millions of dollars in royalties under the '247 patent for their sales of Roundup Ready® crops. Now, after nearly a decade of profiting tremendously from Monsanto's invention, Defendants allege the '247 patent is somehow invalid. They have chosen to breach their license by "stacking" their own failed "OGAT" gene with Monsanto's patented Roundup Ready® technology – an activity this Court has previously held violates their license agreement. Defendants' continued commercialization of these products is a breach of contract and a willful infringement of Monsanto's patent rights.

Three distinct categories of '247 patent claims cover Defendants' stacked Roundup Ready®/OGAT products. First, the '247 patent contains claims directed to the specific *DNA molecules* used in Roundup Ready®, and their close equivalents. Second, the '247 patent contains claims to transgenic *plant cells, plants, and seeds* that are glyphosate tolerant due to these functional DNA constructs. Third, the '247 patent contains claims to *methods of*

selectively controlling weeds in a field planted with these transgenic crops. Defendants infringe at least forty-eight patent claims in these three categories.

The Court's present task is to interpret these claims. Under well-settled law, patent claims are construed in accordance with their plain meaning to a person of ordinary skill in the art, in light of the patent's intrinsic evidence. *Phillips v. AWH Corp.*, 415 F.3d 1303, 1313-14 (Fed. Cir. 2005) (*en banc*). Here, much of the claim language is clear on its face. The claims include terminology (such as "crop" and "seed") that is comprehensible to laymen and skilled scientists alike, and need not be construed. However, the patent also contains technical language ("promoter," "3' non-translated region") unfamiliar to the average juror. In this briefing, Monsanto submits fourteen disputed terms for construction. While Monsanto recognizes this is not a trivial number, these terms involve concepts that oftentimes are clearly defined in the specification.¹

The parties' claim construction disputes stem primarily from unreasonable and self-contradictory positions Defendants have taken in this litigation. For purposes of manufacturing supposed non-infringement defenses, in their opposition to Monsanto's Motion for Partial Summary Judgment of Infringement, Defendants asked the Court to rewrite the claims to include many unstated limitations. In that briefing, Defendants attempted to construe the plant claims so narrowly that they require precise proof of the synthesis of a protein with "no more" and "no less" than a protein with a particular amino acid sequence and a defined level of catalytic

-

¹ Defendants, for their part, initially served an incredible list of nearly 100 claim terms for construction, which encompassed virtually every word in every patent claim. Later, Defendants trimmed their list to approximately 60 terms, but declined to identify during meet-and-confer discussions which of these terms they were seriously asking the Court to construe. Two days before the present brief was due – as Monsanto was finalizing its brief – Defendants formally identified seven terms they believed needed construction not included among Monsanto's terms. Defendants declined to identify any material issue implicated by these claim terms, nor did they identify their constructions of the terms. Monsanto reserves the right to respond as necessary to any argument Defendants make regarding these terms.

activity. Recently, however, Defendants filed a motion to invalidate the very same claims by interpreting them so broadly that they encompass useless, non-functional DNA incapable of making *any* protein. Defendants' constructions are inconsistent, wrong, and contrary to both the rules of claim interpretation and the nature of the invention. They should be rejected.

In construing the '247 patent claims, the Court should give effect to the plain meaning of the claim language in light of the intrinsic evidence. The claims cover DNA molecules (not proteins), transgenic plants that are glyphosate tolerant due to functional (not useless) DNA, and methods of selective weed control using those transgenic plants. The Court should therefore adopt Monsanto's proposed constructions, which are fully supported by the intrinsic record, based on the actual text of the claims, and which give utility to the remarkable inventions contributed by Monsanto's scientists.

FACTUAL BACKGROUND

I. Basic Concepts of Molecular Biology

The inventions claimed in the '247 patent concern molecular biology, and in particular, the structure and function of genes. Because the claims are to be interpreted in accordance with the understanding of a skilled scientist, it is important for the Court to be aware of some of the general principles of molecular biology. Monsanto's expert Dr. Stephen Dellaporta, Professor of Molecular, Cellular and Developmental Biology at Yale University, has provided an Expert Tutorial, which is attached for the Court's reference as Exhibit 1. In addition, the Federal Circuit's *In re O'Farrell* decision provides a useful discussion on DNA, RNA, and protein synthesis. 853 F.2d 894, 895-99 (Fed. Cir. 1988). The essential background is set forth below.

A. Cells and the Concept of Genetic Information

All living things are composed of one or more cells. (Ex. 1 at \P 11). Living cells contain hereditary or "genetic" information. (*Id.* at \P 12). The basic unit of genetic information is the "gene." (*Id.*). Each organism has a characteristic set of genes, called a "genome," that defines its unique characteristics. In plants, the genetic information is contained inside the nucleus of the cells, in long strands called "chromosomes," which may contain hundreds of thousands of different genes. (*Id.* at \P 13).

Genes are comprised of the chemical DNA. (*Id.*, ¶ 14). DNA is a large polymer molecule with many individual units, known as "nucleotides," linked together in strands that can be millions of units long. (*Id.*). Nucleotides contain a sugar deoxyribose, a phosphate chemical group, and one of four bases: adenine (A), thymine (T), guanine (G) or cytosine (C). (*Id.*; Ex. 2, '247 Patent, at 3:8-14).

Ex. 1, Figure 1(B), DNA double helix

In a chromosome, DNA exists in a "double helix" or "twisted ladder" configuration, comprised of two strands twisted around each other and running in opposite directions. (Ex. 1 at ¶ 14). The two strands of the double helix are held together by weak chemical interactions between complementary bases in opposite strands of the double helix. (*Id.* at ¶ 15). The bases form the rungs of the DNA "ladder." Strict rules of binding govern the relationship of the two DNA strands, such that T on one strand always pairs with A on the opposite DNA strand, while G always pairs with C. (*Id.*).

B. The Central Dogma of Molecular Biology

Proteins are "biological molecules of enormous importance," *O'Farrell*, 853 F.2d at 895, which perform critical structural and functional roles in all types of organisms. (Ex. 1 at ¶ 18). Enzymes, such as EPSPS, are types of proteins that catalyze important chemical reactions. All proteins are polymers that comprise multiple amino acids joined to one another by strong "peptide" bonds. (*Id.*). There are twenty different amino acids that may be bonded together to form proteins ("polypeptides") with a nearly infinite diversity of structures and functions. (*Id.*).

The central dogma of molecular biology provides that genetic information is transferred from DNA to RNA to proteins in a directional fashion. Genetic information may be used to make a protein through a series of biological steps. In plant cells, these steps occur as follows.

Ex. 1, Fig. 2. Central Dogma of Molecular Biology

First, through a process known as "transcription," the gene's information is converted into RNA (ribonucleic acid), a single-stranded polymer molecule similar in structure to DNA. (Ex 1 at ¶¶ 17, 20). Transcription occurs in the cell's nucleus. Second, after transcription, the RNA is processed in the nucleus. (*Id.* at 20; Ex. 2 at 7:35-39). Third, the processed RNA (also known as mRNA or messenger RNA), leaves the nucleus of the cell and enters the cytoplasm, where it proceeds to a factory-like apparatus called the "ribosome." (Ex. 1 at ¶ 20). Fourth, in the ribosome, the mRNA is "translated" into a polypeptide protein sequence. (*Id.*).

C. DNA Transcription and the Structure of Genes.

The enzyme RNA polymerase is responsible for the transcription of a gene. (*Id.* at ¶ 22; Ex. 2 at 7:40-46). During transcription, RNA polymerase binds to a chromosome at the beginning of a particular gene, separates the strands of a portion of the double helix, and copies the template strand of DNA into a complementary copy of RNA. (Ex. 1 at ¶ 22). The result of transcription is a single-stranded RNA molecule that contains the genetic code of the gene being copied. (*Id.*).

In plant cells, all functional genes contain three essential elements: a promoter, a structural DNA sequence, and a termination sequence known as a "3' non-translated region." The structure of a typical gene is depicted below.

The promoter is a region of DNA found at the beginning of the gene that regulates the gene's transcription. (*Id.* at \P 23; Ex. 2 at 7:40-41). Essentially, the promoter determines in

which cells, and when, a gene is turned "on" or turned "off." During transcription, the promoter itself is not transcribed; it acts to regulate the transcription process. Absent a promoter, transcription could not occur. (Ex. 1 at ¶ 23).

The structural DNA sequence contains DNA with the genetic code for a protein. (3:14-17). During transcription, it is transcribed into RNA by RNA polymerase. (Ex. 1 at ¶ 24).

The 3' non-translated region defines the end of the gene. (Ex. 1 at ¶ 24; Ex. 2 at 7:37-39). This region contains signals that stop transcription, and cause RNA transcript to become "polyadenylated." (Ex. 1 at ¶¶ 24- 25). Polyadenylation is an essential processing step that occurs in eukaryotic cells as part of the expression of a plant gene. (Ex. 1 at ¶ 25, Ex. 2 at 7:33-39). In this processing, a string of As are added to the 3' (terminal) end of the RNA to prevent degradation and to cause the RNA molecule to exit the cell's nucleus. (*Id.*).

D. The Genetic Code.

In the cytoplasm outside the cell nucleus, the coding information in the mRNA molecule is "translated" into a protein in ribosomes. (Ex. 1, \P 26). The protein's amino acid composition is dictated by the information embedded in the sequence of nucleotide bases of the mRNA — which, in turn, is dictated by the structural region of the DNA, from which the mRNA was copied. (*Id.*; Ex. 2 at 3:14-16).

The genetic code refers to the nucleotide bases in the gene that specify the twenty different amino acids found in proteins. It consists of 64 triplet nucleotides called "codons," which "code for the amino acids." (Ex. 1 at ¶ 27; Ex. 2 at 3:14-26). Since there are 64 possible codons – but only 20 different amino acids in a protein – the genetic code contains redundancy such that different codons may specify the same amino acid. (Ex. 1 at ¶ 27; Ex. 2 at 3:26-29). Due to this redundancy of the genetic code, many different DNA sequences can encode the same

protein. (*Id.*). The genetic code is "universal," meaning essentially all organisms recognize the same codons for each amino acid. (Ex. 1 at \P 29).

E. Transgenes and Genetic Engineering

Due to the universal nature of the genetic code, it is possible for one organism to use DNA inserted into its genome derived from another organism. (*Id.*). Through various techniques, scientists are able to isolate DNA from one organism, manipulate it, and cause it to be expressed in another organism. The '247 patent involves genetic engineering of this sort.

II. The Invention Disclosed in the '247 Patent

A. Background of the Invention

Glyphosate, or Roundup®, is a non-specific herbicide widely used by farmers to control weeds. On a molecular level, glyphosate works by inhibiting the biosynthetic pathway in plants that leads to the creation of certain amino acids necessary for plant life. (Ex. 2 at 1:28-31). Specifically, glyphosate inhibits the enzyme EPSP synthase ("EPSPS"). EPSPS is an enzyme present in all plants, which performs the critical role of catalyzing the conversion of phosphoenolpyruvic acid ("PEP") and 3-phosphoshikimic acid ("S3P") into 5-enolpyruvyl-3-phosphoshikimic acid ("EPSP"). (*Id.* at 1:32-36). Glyphosate disrupts the EPSPS enyzme's ability to bind with its natural substrates, and thus interferes with the plant's ability to create the amino acids necessary for life. A plant sprayed with a sufficient amount of glyphosate will, in effect, starve to death.

Due to the importance and efficacy of glyphosate as a herbicide, in the 1980s scientists became significantly interested in developing transgenic crops resistant to glyphosate. The '247 patent's "Background of the Invention" section describes some of the early efforts by scientists to genetically engineer glyphosate-resistant plants. (*Id.* at 1:42-67). For instance, the '247 patent

discusses attempts by scientists to mutate known, "Class I" EPSPS enzymes in order to decrease their sensitivity to inhibition by glyphosate, and to create gene constructs that would allow these mutated EPSPS enzymes to be produced in large quantities in plants. (*Id.*).

However, all of these known EPSPS enzymes had significant drawbacks. While attempts to mutate these enzymes resulted in reduced affinity for glyphosate (a higher " K_i "), the mutated enzymes also had reduced affinity for PEP (a higher " K_m "), meaning the mutated enzymes were not able to perform their necessary functions efficiently. (*Id.* at 1:46-2:1). In other words, the initial attempts to engineer glyphosate resistant EPSPS enzymes *also* caused the EPSPS enzymes to be less efficient. Thus, these enzymes were significantly compromised in their ability to make glyphosate resistant plants. At the time of the invention disclosed in the '247 patent, there was a significant need for EPSPS enzymes that were *both* efficient enzymes and glyphosate resistant. This is the problem that the '247 patent's inventors solved.

B. DNA Encoding Class II EPSPS Enzymes

Through their effort and ingenuity, the '247 inventors were able to invent DNA sequences encoding an entirely novel class of EPSPS enzymes – "Class II" enzymes. The patent reports that the new Class II enzymes contain little similarity in their amino acid sequences compared with Class I enzymes (*id.* at 3:40-45), and cannot react to polyclonal antibodies prepared from Class I enzymes (*id.* at 3:66-4:5). Unlike Class I enzymes, the Class II enzymes are both kinetically efficient (*i.e.*, having a low K_m for PEP) *and* insensitive to inhibition by glyphosate (*i.e.*, having a high K_i for glyphosate). (*Id.* at 3:35-57). Thus, DNA encoding these enzymes is very useful in rendering plants resistant to glyphosate.

The '247 patent describes the inventive process resulting in the isolation of DNA encoding Class II EPSPS enzymes and the design of synthetic Class II genes capable of

conferring glyphosate tolerance in plants. First, a strain of *Agrobacterium* known as CP4 was identified from a waste-water treatment facility at a glyphosate production plant. (*Id.* at 9:56-61). This bacterial strain possessed the surprising property of being able to grow in the presence of glyphosate concentrations that would normally inhibit bacterial growth. (*Id.* at 9:54-56). Kinetic tests of CP4 extracts showed EPSPS activity with low K_m for PEP *and* high K_i for glyphosate – indicating the presence of a novel, efficient, and glyphosate-tolerant enzyme. (*Id.* at 9:21-23, Table I).

Second, the inventors isolated the DNA encoding the CP4 EPSPS enzyme through a laborious process. (*E.g.*, *id.* at 12:46-60 to 17:1). Ultimately, the inventors were able to clone the DNA sequence encoding the CP4 EPSPS enzyme, and by deduction, determine the complete amino acid sequence of the enzyme encoded by that gene. (*Id.* at 17:24-42; SEQ ID NO:2). Additional DNA encoding Class II EPSPS enzymes were isolated from strains of *Achromobacter* (*id.* at 18:35-47), *Pseudomonas* (*id.* at 18:48-67; 19:1-27), *Bacillus* (*id.* at 20:8-33), and *Staphylococcus* (*id.* at 20:48-67; 21:1-58) bacteria.

C. Functional Transgenes Encoding Class II EPSPS Enzymes

In order to confer glyphosate tolerance to plants, it was not enough to have isolated the DNA encoding Class II EPSPS enzymes. To confer glyphosate tolerance in plants, it was necessary for the inventors to create synthetic or "recombinant" genes – "transgenes" – capable of functioning inside plant cells. (Ex. 1 at ¶ 32). In order for the recombinant genes to work, it was essential that they contained the elements necessary for gene expression in plants, including a functional promoter and a functional 3' non-translated region. (*Id.*; *see*, *e.g.*, Ex. 2 at 7:40-9:2).

The inventors constructed recombinant genes comprising the CP4 EPSPS coding sequence, along with promoters and 3' non-translated regions known to function in plant cells.

For instance, the patent stresses the use of promoters derived from plant viruses, such as the cauliflower mosaic virus 35S promoter (CaMV 35S) and the figwort mosaic virus 35S promoter (FMV35S), as capable of driving high levels of gene expression in plants. (Ex. 2 at 7:60-67; 8:28-40). The patent also describes the use of 3' non-translated regions – such as the 3' non-translated region from the nopaline synthase ("NOS") gene – to direct polyadenylation. (*Id.* at 8:54-65). Additionally, the patent describes the inventors' inclusion of DNA encoding chloroplast transit peptides ("CTPs") in the transgenes. (*E.g.*, *id.* at 4:16-23; 29:1-12). CTPs are amino acid sequences that are capable of directing EPSPS enzymes to the cell's chloroplasts, where the enzymes are most useful in conferring glyphosate tolerance. (*Id.* at 4:16-18; 29:1-5). The combination of these elements resulted in recombinant genes capable of conferring glyphosate tolerance to plant cells.

D. Transgenic, Glyphosate Tolerant Plants

Using the transgenes, Monsanto's scientists constructed "transformation vectors" and other genetic constructs, which were to be inserted into plant cells. (*Id.* at 31:18-33:46). Methods for transforming and regenerating plants were well known in the art. (*Id.* at 31:3-17; 33:58-60). The '247 patent describes the creation of numerous transgenic plants and plant cells transformed with genes encoding Class II EPSPS enzymes demonstrating enhanced tolerance to glyphosate as a result of the transgene encoding a Class II EPSPS enzyme. (*Id.* at 34:60-48:62).

Example 3 of the '247 patent describes the creation of the soybean event (*i.e.*, the insertion of the transgene into the soybean genome) that led to the commercial Roundup Ready® soybean line used by farmers throughout the United States. (*Id.* at 43:33-44:33). Under license from Monsanto, Defendants have sold Roundup Ready® soybeans for many years, to their substantial commercial benefit. Now, in this litigation, Defendants seek to torture the claim

language so that it does not cover this soybean event, even though the event is specifically set forth as an example of the invention, and even though Defendants have paid Monsanto hundreds of millions of dollars in patent license fees under the '247 and its predecessor patent to implement the Roundup Ready® trait in their soybean products.

III. The '435 and '247 Patent's Claims

In May 1997, Monsanto's inventors were awarded U.S. Patent 5,633,435 for their invention (Ex. 3). The '435 patent contained claims directed to the isolated DNA molecules encoding the CP4 gene (claims 1-2); claims to transgenes, *i.e.*, "recombinant" DNA molecules (*e.g.*, claim 4); claims to transgenic plant cells, plants, and seeds containing those transgenes (*e.g.*, claim 24); methods of controlling weeds using those transgenes (*e.g.*, claim 32); and other claims. In 2003, the '435 patent reissued as the '247 patent. The claims of the '247 patent contain these same categories of claims, and are directed to the same invention claimed in the '435 patent, as described above and set forth in the patent specification.

ARGUMENT

The asserted claims of the '247 patent contain claims within each of these categories. Many of the claims contain similar or identical terminology, and that terminology must be construed consistently across the claims. In the sections that follow, we present the various categories of claims in a progressive, stepwise fashion, proceeding from the simplest claims to more complicated claims adding additional elements. This brief examines the meaning of the claim terms in the context of the claims as a whole, beginning with the claims to isolated DNA molecules; proceeding to the claims to recombinant transgenes; the claims to transgenic, glyphosate tolerant plants; and finally, the methods of using those transgenic plants. We also

address Defendants' constructions of these claims to the extent they have previously been stated on the record in this case.

I. Claim Terms are Given their Plain Meaning in Light of the Specification and Prosecution History.

Claim construction is a matter of law for the Court. *Markman v. Westview Instruments*, *Inc.*, 52 F.3d 967, 979 (Fed. Cir. 1995), *aff'd*, 517 U.S. 370 (1996). To interpret patent claims, courts look to "those sources available to the public that show what a person of skill in the art would have understood disputed claim language to mean." *Phillips v. AWH Corp.*, 415 F.3d 1303, 1314 (Fed. Cir. 2005) (*en banc*) (quotation omitted). Those sources include the intrinsic evidence – "the words of the claims themselves, the remainder of the specification, [and] the prosecution history" – as well as "extrinsic evidence concerning relevant scientific principles, the meaning of technical terms, and the state of the art." *Id.* (quotation omitted).

A. The Claims and Written Description

In *Phillips*, the *en banc* Federal Circuit reaffirmed the "bedrock principle" of patent law that "the claims of a patent define the invention to which the patentee is entitled the right to exclude." *Id.* at 1312 (quotation omitted). "Because the patentee is required to 'define precisely what his invention is,' the Court explained, it is 'unjust to the public, as well as an evasion of the law, to construe it in a manner different from the plain import of its terms." *Id.* (quoting *White v. Dunbar*, 119 U.S. 47, 52 (1886)). Accordingly, claim construction starts with the words of the claims themselves, which "are generally given their ordinary and customary meaning" and which can "provide substantial guidance as to the meaning of particular claim terms." *Id.* at 1312, 1314 (quoting *Vitronics Corp. v. Conceptronic, Inc.*, 90 F.3d 1576, 1582 (Fed. Cir. 1996)). In that regard, *Phillips* noted that "the person of ordinary skill in the art is deemed to read the

claim term not only in the context of the particular claim in which the disputed term appears, but in the context of the entire patent, including the specification." *Id.* at 1313.

Thus, "[p]roper claim construction . . . demands interpretation of the *entire claim in context*, not a single element in isolation." *Pause Tech., LLC v. Tivo Inc.*, 419 F.3d 1326, 1331 (Fed. Cir. 2005) (quotation omitted) (emphasis added). Further, "claim terms are presumed to be used consistently throughout the patent, such that the usage of a term in one claim can often illuminate the meaning of the same term in other claims." *Research Plastics, Inc. v. Fed. Packaging Corp.*, 421 F.3d 1290, 1295 (Fed. Cir. 2005) (citing *Phillips*, 415 F.3d at 1313-14).

"Differences among claims can also be a useful guide in understanding the meaning of particular claim terms. For example, the presence of a dependent claim that adds a particular limitation gives rise to a presumption that the limitation in question is not present in the independent claim." *Phillips*, 415 F.3d at 1314-15 (citation omitted) (citing *Liebel-Flarsheim Co. v. Medrad, Inc.*, 358 F.3d 898, 910 (Fed. Cir. 2004)).

Claim terms must be interpreted "in view of the specification, of which they are a part." *Phillips*, 415 F.3d at 1315 (quotation omitted). This is true because the function of claims is to define the right to exclude based on the invention described in the patent specification. Hence, a claim interpretation that *excludes* a preferred embodiment is "*rarely, if ever, correct*." *Vitronics Corp.*, 90 F.3d at 1583 (emphasis added). "The construction that stays true to the claim language and most naturally aligns with the patent's description of the invention will be, in the end, the correct construction." *Phillips*, 415 F.3d at 1316 (quoting *Renishaw PLC v. Marposs Societa' per Azioni*, 158 F.3d 1243, 1250 (Fed. Cir. 1998)).

However, the Federal Circuit has repeatedly warned courts "not to import" extraneous limitations from the specification into the claims. *E.g.*, *Playtex Prods.*, *Inc. v. Procter & Gamble*

Co., 400 F.3d 901, 906 (Fed. Cir. 2005); Bayer AG v. Biovail Corp., 279 F.3d 1340, 1348 (Fed. Cir. 2002). "The danger of improperly importing a limitation is even greater" when "the purported limitation is based upon a term not appearing in the claim." Amgen Inc. v. Hoechst Marion Roussel, Inc., 314 F.3d 1313, 1325 (Fed. Cir. 2003). As the Supreme Court put it in McCarty v. Lehigh Valley R.R. Co., "if we once begin to include elements not mentioned in the claim, in order to limit such claim, . . . we should never know where to stop." 160 U.S. 110, 116 (1895) (quoted approvingly in Phillips, 415 F.3d at 1312).

To protect against importing limitations from the specification into the claims, the Federal Circuit requires the presence of language in one or more claims that requires further clarification before a feature described in the written description may be considered as a limitation of the claims. In other words, claim construction is the exercise of defining the terms that are *actually in the claim. MBO Labs., Inc. v. Becton, Dickinson & Co.*, 474 F.3d 1323, 1330-31 (Fed. Cir. 2007) ("[W]e cannot endorse a construction analysis that does not identify a textual reference in the actual language of the claim with which to associate a proffered claim construction.") (quotation omitted).

B. The Prosecution History and Extrinsic Evidence

Courts may also consider a patent's prosecution history when construing a patent's claims. However, the prosecution history "often lacks the clarity of the specification and thus is less useful for claim construction purposes." *Phillips*, 415 F.3d at 1317. Courts may also consider "extrinsic evidence," which "consists of all evidence external to the patent and prosecution history, including expert and inventor testimony, dictionaries, and learned treatises." *Id.* at 1317 (quotation omitted). "[W]hile extrinsic evidence can shed useful light on the relevant

art . . . it is less significant than the intrinsic record in determining the legally operative meaning of claim language." *Id.* (internal quotations omitted).

II. The Proper Construction of the Claims to Genetically Engineered DNA Molecules

The first category of claims at issue relates to genetically engineered DNA molecules that encode EPSPS proteins. There are two general types of these claims: first, claims to *isolated DNA molecules* that contain the genetic code for the CP4 EPSPS protein; and second, claims to *recombinant DNA molecules* – synthetic genes encoding Class II EPSPS proteins and containing the elements required to confer glyphosate tolerance in a transformed plant cell.

A. Claims to Isolated DNA Molecules

Claims and Disputed Terms	Monsanto's Proposed Constructions
1. An <i>isolated DNA molecule</i> which <i>encodes</i> an EPSPS enzyme having the sequence of SEQ	<i>isolated</i> : a DNA molecule existing separately from its natural source.
ID NO:3.	encodes: the DNA molecule contains the genetic code for the specified protein.

The asserted claims to "isolated" DNA molecules are claims 1 and 2. Claim 1 recites: "An isolated DNA molecule which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3." (Ex. 2 at 155:50-51). SEQ ID NO:3 is the *amino acid* sequence of the native CP4 EPSPS protein (*id.* at 5:53-56), and its sequence is reported at the end of the specification (*id.*, cols. 57-61). Because many different DNA molecules can contain the genetic code for a single protein (due to the redundancy of the genetic code), Claim 1 covers the *genus* of DNA sequences encoding a protein with the amino acid sequence of SEQ ID NO:3. Claim 2, which depends on claim 1 and is presumptively narrower, recites the "DNA molecule of claim 1, having the sequence of SEQ ID NO:2." SEQ ID NO:2 is a particular DNA molecule encoding the amino acid sequence of SEQ ID NO:3. (*Id.*, cols. 55-58). The parties' dispute involves the terms "isolated" and "encodes."

1. An "isolated DNA molecule"

Claim Term	Monsanto's Proposed Construction
An "isolated DNA molecule"	"a DNA molecule existing separately from its
	natural source."

In the context of the '247 patent, "isolated" DNA molecules are DNA molecules that exist separately from their natural source – *i.e.*, the CP4 strain from which DNA encoding SEQ ID NO:3 was isolated. The '247 patent specification repeatedly uses the phrase "isolated" to refer to DNA or other biological material that has been removed from its natural source. In the Summary of the Invention, for example, the patent states that: "Genes coding for Class II EPSPS enzymes have been *isolated* from five (5) different bacteria: Agrobacterium tumefaciens sp. Strain CP4, Achromobacter sp. Strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis, and Staphylococcus aureus." (*Id.* at 3:58-62). Elsewhere, the patent explains, "The EPSPS gene was *isolated* originally from Agrobacterium sp. strain CP4 and expresses a highly tolerant enzyme." (*Id.* at 41:67-42:2). On both occasions, the patent plainly uses "isolated" to refer to the fact that the claimed genes were removed from these natural sources and exist separately from them.

When describing the prior art enzymes, the patent uses the term "isolated" in the same manner: "Variants of the wild-type EPSPS enzyme have been *isolated* which are glyphosate-tolerant as a result of alterations in the EPSPS amino acid coding sequence." (*Id.* at 1:46-50). Further, the specification specifically contemplates that the "isolated" DNA is to be inserted into the genome of *plants*. For example, to enhance "the expression of a heterologous gene" in monocotyledonous plants, "one may use any of a number of introns which have been *isolated* from plant genes." (*Id.* at 8:48-53). Likewise, the patent identifies "promoters *isolated* from plant genes such as ssRUBISCO genes and the maize ubiquitin and rice actin genes" as being

useful "to cause transcription of DNA *in plant cells*." (*Id.* at 7:60-68). Other uses of the term are entirely consistent. (*E.g.*, *id.* at 32:16-17 (referencing "the 0.93 kb fragment *isolated* from transposon Tn7" as *part of* a plasmid)). Each of these examples shows that "isolated" merely refers to the existence of the identified genes separately from their natural sources.

The "isolated" DNA molecules claimed in claim 1 resulted from a laborious, inventive process that followed the identification of the CP4 bacteria. The inventors purified the EPSPS enzyme (*id.* at 13:40-67; 14:1-67; 15:1-28), determined a portion of its amino acid sequence (*id.* at 15:29-67; 16:1-7), created a "library" of DNA fragments representing the genome of *Agrobacterium* CP4 (*id.* at 12:1-45), and then identified the EPSPS gene from the library using a battery of tests. (*E.g.*, *id.* at 12:46-67; 13:1-11; 16:45-50; 16:58-17:1;17:5-13; 17:16-22). At the end of this inventive process, the inventors had obtained a cloned – "isolated" – form of previously unknown DNA sequences from the CP4 bacteria, which could ultimately be used to confer glyphosate tolerance to plants. It is this DNA – existing separately from the CP4 bacteria – that is claimed in claim 1.²

Monsanto's proposed construction is consistent with many thousands of biotechnology patents, including prominent patents in Defendants' own portfolios (*e.g.*, Ex. 3, claim 1; Ex. 4, claim 1), containing claims reciting "isolated" DNA. In such claims, the term "isolated" operates to exclude naturally occurring phenomena from the scope of the claims, and therefore confers patentability under 35 U.S.C. § 101. *See, e.g., Amgen, Inc. v. Chugai Pharm. Co., Ltd.*, 13 U.S.P.Q.2d 1737, 1759 (D. Mass. 1989), *aff'd in part, vacated in part on other grounds*, 927 F.2d 1200 (Fed. Cir. 1991) (noting that the limitation "purified and isolated" distinguished the claimed DNA from a naturally occurring phenomenon, which would be unpatentable in itself);

-

² The specification also describes the creation of a synthetic CP4 gene, which is likewise isolated in the sense that it is not a part of the native CP4 bacteria from which the sequence was derived. (*Id.* at 28:42-64).

PTO Utility Examination Guidelines, 66 Fed. Reg. 1092, 1093 (Jan. 5, 2001) (discussing the patentability of DNA isolated from natural sources).

Nothing supports Defendants' suggestion that these isolated DNA molecules must be limited to existing alone "in a test tube" (and not in a plant cell), as Defendants recently contended in their summary judgment papers. (*See* Defs' Mem. Supp. M.S.J. Inv., Dkt. No. 216 at 11). Clearly, the claim language itself contains no such limitation. Nor does any usage of the term in the specification. Indeed, Defendants' attempt to manufacture such a limitation is inconsistent with the very purpose of the invention. The inventors took pains to isolate DNA molecules encoding Class II enzymes for the express purpose of "producing transformed bacteria and plants which are tolerant to glyphosate herbicide." (Ex. 2, Abstract). It would be highly anomalous, and quite wrong, to interpret the invention to exclude the isolated molecules from being used in transformed cells. Defendants' attempt to do so betrays their desire to fabricate non-infringement theories, rather than legitimately interpret the patent claims.

In fact, Defendants' own patents make crystal clear that claims to "isolated" DNA molecules cover plants and plant cells containing those molecules. For instance, independent claim 1 of Defendants' '080 patent recites an "isolated" nucleic acid (*e.g.*, DNA), while dependent claim 12 specifies that "isolated" molecule is contained "*in a plant cell*," and dependent claim 14 specifies that the "isolated" molecule is in a "*transgenic plant*." (Ex. 3 at cols. 25-26). These claims would be incoherent and meaningless if the term "isolated" was restricted to compounds in a test tube. (*See also* Ex. 4 at claims 1, 8, 11 (claiming "isolated" nucleic acid in transformed host cell and plant).

When claimed separately from the CP4 bacteria, Monsanto's isolation and sequencing of DNA represents "a classic biotechnology invention," *In re Kubin*, 561 F.3d 1351, 1352 (Fed. Cir.

2009), subject to the same rules that apply to other chemical compounds, *see Amgen, Inc. v. Chugai Pharm. Co., Ltd.*, 927 F.2d 1200, 1206 (Fed. Cir. 1991). The isolated DNA molecules of claims 1 and 2 are not bound by artificial limitations. These claims cover DNA molecules existing apart from the naturally occurring CP4 bacteria *regardless* of whether the molecules are contained in a test tube or in a transformed plant cell, plant or seed.

2. A DNA molecule that "encodes" a protein means that it contains the genetic code for the specified protein.

Claim Term	Monsanto's Proposed Construction
"which <i>encodes</i> an EPSPS enzyme having the	"A DNA molecule that 'encodes' a protein
sequence of SEQ ID NO:3"	means that it contains the genetic code for the
	specified protein."

Claim 1 specifies that the isolated DNA molecule "encode" an enzyme containing the amino acid of SEQ ID NO:3. Some form of the term "encodes" also appears in every other asserted claim of the patent, and the terms (including their past and present participles) should be construed consistently across the claims. *See Phillips*, 415 F.3d at 1313-14; *Research Plastics*, *Inc.*, 421 F.3d at 1295. Monsanto proposes that "encodes" be interpreted in accordance with its plain meaning "to contain the genetic code for" the specified protein.

The ordinary meaning of encode, in the context of DNA, is "to specify the genetic code for." (Ex. 5, Merriam-Webster's Online Dictionary). The patent specification uses the term "encode" over and over again to describe just that – a DNA molecule specifying the genetic code of an amino acid sequence of a protein. For instance, when describing the nature of DNA, the patent explains that the "structural DNA consists of multiple nucleotide triplets called 'codons' which *code for* the amino acids." (Ex. 2 at 3:14-17) (emphasis added).

When describing the invention of the isolated DNA encoding EPSPS proteins, the patent uses the terms "encoding" and "coding for" interchangeably. For example, the patent contains two essentially identical sentences describing the isolated DNA, one of which uses the term

"encoding," while the other uses the term "coding for" to describe the DNA. (*See* 3:58-59 ("Genes *coding for* Class II EPSPS enzymes have been isolated from five (5) different bacteria..."); *id.* at 11:7-10 ("[T]he following description of the isolation of genes *encoding* Class II EPSPS enzymes is directed to the isolation of such a gene from a bacterial isolate.")). As the Federal Circuit has held, "[t]he interchangeable use of the two terms is akin to a definition equating the two." *Edward Lifesciences LLC v. Cook Inc.*, 582 F.3d 1322, 1329 (Fed. Cir. 2009). Thus, the patent could not be clearer that "encodes" refers to the informational content of DNA containing the genetic code for the EPSPS enzymes.

This conclusion is also inherent in the nature of the claim language. Claim 1 (and every other asserted claim) explicitly recites *DNA molecules* encoding proteins, not the proteins themselves. Since claims to DNA are treated as claims to chemical compounds, *see Amgen*, 927 F.2d at 1206, the limitation requiring that DNA molecules "encode" certain amino acid sequences acts as a structural limitation on the DNA itself, defining which *nucleotide* sequences are present in the DNA. By stating that the DNA encodes SEQ ID NO:3, claim 1 requires the DNA molecule to contain a nucleotide sequence which corresponds, according to the universal genetic code, to the amino acid sequence of SEQ ID NO:3. Since many such nucleotide sequences can encode SEQ ID NO:3, as the patent explains, claim 1 encompasses many DNA molecules. (Ex. 2 at 3:26-29). This evident conclusion is confirmed by the existence of claim 2, which depends upon claim 1 and is presumptively narrower. 35 U.S.C. § 112, ¶ 4. While Claim 1 claims DNA molecules that encode certain amino acid sequences, claim 2 explicitly recites a particular *nucleotide* sequence that encodes SEQ ID NO:3.

In their response to Monsanto's motion for summary judgment on infringement,

Defendants attempted to manufacture a non-infringement defense by proposing a construction of

"encode" requiring the *production* of a specific *protein* with "no more" and "no less" than the stated amino acid sequence. (Defs' Mem. Opp. M.S.J. Infr., Dkt. No. 111 at 23, 26). Monsanto's proposed construction is clearly the correct one. Had the applicants desired to claim the expression of EPSPS proteins or the proteins themselves, they would have and could have done so. In fact, they *did* do so – *in a different patent*. U.S. Patent 5,804,425, which stems from the same grandparent application as the '247 patent, expressly claims isolated EPSPS enzymes, including an isolated EPSPS enzyme having the sequence of SEQ ID NO:3. (Ex. 6, claims 1-3). The patents plainly cover different material, and the '247 claims should not be interpreted to render them duplicative.

In the end, there is no support for importing a limitation into the claims requiring translated EPSPS proteins, much less proteins having "no more" and "no less" than the sequence of SEQ ID NO:3. The claim clearly recites DNA molecules, the invention is directed to that DNA, and the usage of the term "encodes" in the specification is clear. Accordingly, the court should adopt Monsanto's construction of the term "encodes" in claim 1, and apply that construction to all instances in the asserted claims in which that term appears.

B. Recombinant DNA molecules (independent claims)

- 103. A recombinant, double-stranded DNA molecule comprising in sequence:
 - a) a promoter which functions in plant cells to cause the production of an RNA sequence;
 - b) *a structural DNA sequence* that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO: 70; and
 - c) a 3' non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence;

where the promoter is *heterologous with respect to the structural DNA sequence* and *adapted to cause sufficient expression of the encoded EPSPS enzyme* to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule.

The second class of asserted claims to DNA molecules are to "recombinant," or genetically engineered, DNA molecules. Independent claims 103 and 131 (and dependent claims discussed separately below) are at issue in this case. Claim 103 is quoted above. As a whole,

these claims are directed to a class of synthetic genes including the isolated DNA obtained from the CP4 bacteria and other bacterial sources, capable of functioning in plant cells. The two independent claims differ from one another only in the structural DNA sequence encoding the EPSPS enzyme. Claim 103 provides that the DNA contains the genetic code for SEQ ID NO:70, which is the amino acid sequence encoded by Roundup Ready® soybeans. Claim 131 requires the DNA contain the genetic code for SEQ ID NO:3 – which differs from the SEQ ID NO:70 by a single non-essential amino acid – or alternatively, the genetic code for the Class II enzymes derived from two other bacteria (SEQ ID NO:5 or NO:7).

Both claims recite the minimum structural elements required for the DNA constructs to function (*i.e.*, be transcribed) in a plant cell. Thus, they require a functional promoter; a functional, structural DNA sequence; and a functional 3' non-translated region. The claims also specify two other elements required for the transgene to function in plant cells to confer glyphosate tolerance – (1) that the promoter be "heterologous" (*i.e.*, it comes from another source) as compared to the structural DNA, and (2) that that the promoter be adapted to cause sufficient expression to enhance the glyphosate tolerance of a plant cell. Like the claims to the isolated DNA molecules, claims 103 and 131 contain no limitations directed to any location they may be found. Thus, these claims cover DNA existing either inside or outside of a plant cell.

1. A "promoter which functions in plant cells to cause the production of an RNA sequence"

Claim Term	Monsanto's Proposed Construction
"a promoter which functions in plant cells to	"a region of DNA capable of regulating the
cause the production of an RNA sequence"	transcription of DNA in a plant cell."

The first element of these claims is "a promoter which functions in plant cells to cause the production of an RNA sequence." The term is largely self-defining. As noted above, and in more detail in the attached Expert Tutorial, the promoter is the essential part of a functioning

gene that regulates transcription – the process of creating an RNA copy of the structural DNA. (Ex. 1 at ¶ 23; Ex. 2 at 7:41-46). The claim encompasses a genus of promoters capable of regulating transcription of DNA in a plant cell.

The specification is entirely consistent with Monsanto's construction. In the Statement of the Invention, the specification expressly defines "a promoter" according to its use in regulating transcription:

Transcription of DNA into mRNA is regulated by a region of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA, and to initiate the transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of RNA.

(*Id.* at 7:40-46). The specification further defines the claim language "which functions in plant cells" as meaning those promoters "which are known or found to cause transcription of DNA in plant cells." (*Id.* at 7:60-62) (emphasis added). It explains these promoters "may be obtained from a variety of sources such as plants and plant DNA viruses." (*Id.* at 7:62-63). It then identifies several such promoters within the scope of the claims, which "include, but are not limited to, the CaMV35A and FMV35S promoters and promoters isolated from plant genes such as ssRUBISCO genes and the maize ubiquitin and rice actin genes." (*Id.* at 7:64-67; *see also id.* at 7:46-59, 8:28-46).

The patent's definitions of the "promoter" claim language must be given effect. The Federal Circuit has clearly stated that the patentee can "act as its own lexicographer" in the specification and define a claim term in any way that the patentee desires – even if the patentee's definition is different from the ordinary meaning the term would have to a person of skill in the art. *E.g.*, *Edward Lifesciences LLC*, 582 F.3d at 1329. In this case, the applicants defined the

term in the specification *consistently* with its ordinary meaning. Accordingly, their definitions of the term, and its ordinary meaning, are dispositive.

2. A "structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of ..."

Claim Term	Monsanto's Proposed Construction
"a structural DNA sequence that causes the	"a DNA sequence capable being transcribed
production of an RNA sequence which encodes	that contains the genetic code for" the specified
an EPSPS enzyme having the sequence of"	amino acid sequence

The second element of the recombinant DNA molecule is a structural DNA sequence that contains the genetic code for an EPSPS enzyme having the amino acid sequence of SEQ ID NO:70 (for claim 103) or SEQ ID NO:3, NO:5, or NO:7 (for claim 131). This claim element involves the "meat" of the DNA construct, which encodes the Class II EPSPS enzyme. Like the "promoter" claim element, this element uses the phrase "causes the production of an RNA sequence" to specify that the structural DNA sequence is functional, and thus, capable of being transcribed in a plant cell. Because the claim is directed to the "recombinant DNA molecule," the claim requires the DNA (not the transcribed RNA) contain the code for the EPSPS enzyme.

The patent's written description again supports Monsanto's construction. In the Statement of the Invention section, the patent describes the various elements of the recombinant DNA molecules covered by the '247 patent's claims. (Ex. 2 at 7:60-9:2). When describing the structural DNA sequence, the written description expressly states that: "The DNA constructs of the present invention also contain a *structural coding sequence* in double-stranded *DNA form* which *encodes* a glyphosate-tolerant, highly efficient Class II EPSPS enzyme." (*Id.* at 8:66-9:2) (emphasis added). Elsewhere, the patent explains "the *structural DNA* consists of multiple nucleotide triplets called "codons" which *code for* the amino acids." (*Id.* at 3:14-16) (emphasis added). The specification thus confirms what is apparent from the structure of the claims: the

structural DNA region contains the code for the specified Class II EPSPS enzyme. This DNA region is functional and capable of being transcribed into RNA in transformed plant cells.

3. A "3' non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence"

Claim Term	Monsanto's Proposed Construction
"3' non-translated region that functions in plant	"a region of DNA capable of signaling
cells to cause the addition of a stretch of	polyadenylation in a plant cell"
polyadenyl nucleotides to the 3' end of the	
RNA sequence"	

The claims to recombinant DNA molecules also recite a "3' non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence." The 3' non-translated region ("3' NTR"), as the claim suggests, is a portion of the gene that signals polyadenylation of the RNA transcript. Polyadenylation is a processing step required for gene expression that involves the addition of numerous adenosine residues to the 3' end of the RNA transcript. Like the other claim elements, the 3' non-translated region refers to a portion of the recombinant *DNA molecule*, capable of signaling polyadenylation in plant cells.

The specification again supports Monsanto's construction. It states that the "expression of a plant gene which exists in double-stranded form" requires the "processing of the mRNA primary transcript inside the nucleus," which involves "a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA." (*Id.* at 7:33-39; *see id.* at 8:54-57 (stating the "3' non-translated region of the chimeric plant gene contains a polyadenylation signal which functions in plants to cause the addition of polyadenylate nucleotides to the 3' end" of the RNA)).

Like the "promoter" element, the 3′ non-translated region element encompasses all of the 3′ non-translated regions known or found to signal polyadenylation in a plant cell. The patent provides examples of such 3′ non-translated regions, including the nopaline synthase (NOS) gene, which are capable of signaling polyadenylation in plant cells. (*Id.* at 8:57-65). Accordingly, the meaning of the 3′ non-translated limitation is plain: it is a region of DNA capable of signaling polyadenylation in a plant cell.

4. "where the promoter is heterologous with respect to the structural DNA sequence"

Claim Term	Monsanto's Proposed Construction
"where the promoter is heterologous with	"the promoter does not come from the same
respect to the structural DNA sequence"	gene as the structural DNA sequence"

The claims to recombinant DNA molecules contain two additional elements regarding the promoter. The first of these elements requires that the promoter be "heterologous with respect to the structural DNA sequence." The term "heterologous" generally refers to DNA or other biological material that comes from a different source. (Ex. 7, YourDictionary.com ("consisting of differing elements; not corresponding, as parts of different organisms or of the same organism that are unlike in structure or origin")). In the context of claim 103, the claim specifies that the promoter must be heterologous with respect to the structural DNA sequence – meaning the promoter does not come from the same gene as the CP4 EPSPS gene.

The specification repeatedly uses the term to refer to genes derived from a different source. For example, the patent states that in "heterologous genes in monocotyledonous plants the use of an intron has been found to enhance expression of the heterologous gene." (Ex. 2 at 8:47-50). Elsewhere, the patent states, "Class II EPSPS enzymes are identifiable by an elevated K_i for glyphosate and thus the genes for these will impart a glyphosate tolerance phenotype in heterologous hosts." (Id. at 23:23-25).

In describing the promoters for use in the invention, the patent specifies the promoter may come from a "variety of sources such as plants and plant DNA viruses." (*Id.* at 7:62-63). Indeed, the patent indicates that the promoters can come from certain genes in *Agrobacterium* (CP4 is one strain of *Agrobacterium*). (*Id.* at 7:47-50). The only limitation that the term "heterologous" imparts in the claims is that the promoter does not come from the *same gene* as the structural DNA sequence. In the context of claim 103, for example, this means that the promoter does not come from the same gene of the CP4 *Agrobacterium* from which the structural DNA sequence encoding the EPSPS enzyme was isolated.³

5. The phrase "adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule"

Claim Term	Monsanto's Proposed Construction
"adapted to cause sufficient expression of the	"the promoter is capable of causing
encoded EPSPS enzyme to enhance the	transcription of enough structural DNA to
glyphosate tolerance of a plant cell transformed	increase the glyphosate tolerance of a
with the DNA molecule"	transformed plant cell"

The final element of the "recombinant DNA molecule" claims requires the promoter to be "adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule." This element requires the promoter be capable of causing transcription of enough structural DNA to increase the glyphosate tolerance of a transformed plant cell. We understand that Defendants, however, again propose that the EPSPS protein must be translated in a form that contains the precisely amino acid sequence of the enzyme. (*E.g.*, Defs' Mem. Opp. M.S.J. Infr., Dkt. No. 25-26). Once again,

Agrobacterium's tumor-inducing plasmids, and a nomologous promoter from that gene will not work to confer glyphosate tolerance in plant cells.

³ Typically, bacterial promoters will not function in plant cells. *Agrobacterium*, however, has a unique property of being able to infect plant cells with a small number of "plasmid" genes, which induce tumors in plants. The '247 patent identifies two promoters associated with these "tumor-inducing" genes, as examples of heterologous promoters. (Ex. 2 at 7:47-50). The EPSPS gene is not contained in *Agrobacterium's* tumor-inducing plasmids, and a homologous promoter from that gene will not work to

Defendants' proposal is contrary to the specification, and the structure and meaning of the claim as a whole. The Court should adopt Monsanto's proposed construction.

Consistent with the rest of the claim language, the requirement of the promoter to be "adapted to cause sufficient expression" simply recites a feature of the DNA. It does not claim the biological process of translating a protein, it does not require the protein itself, and it certainly does not require that the protein possesses "no more" and "no less" than a particular amino acid sequence. (Defs' Opp. M.S.J. Infr., Dkt. No. 111, at 26). What the claim specifies in its plain language is that the *promoter* be adapted to cause sufficient expression. The promoter, of course, is a segment of *DNA*.

The specification confirms that the limitation is directed to a feature of the promoter DNA. When the specification describes promoters, it states that "it is preferred that the particular promoter selected should be *capable* of causing sufficient expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant to glyphosate herbicides." (Ex. 2 at 7:67-8:4) (emphasis added). Certainly, Monsanto's DNA constructs *do* cause sufficient expression of Class II EPSPS proteins. The claim itself, however, is not concerned with the ultimate structure of the translated protein. By using the language "adapted to cause sufficient expression," the claim mirrors the language of the specification and indicates that the DNA is capable of expression – but need not actually *be expressed*. Thus, the claim can be infringed by a DNA molecule outside a plant cell (in a vector, for example), or inside it.⁴

_

⁴ This conclusion is confirmed by the existence of claim 128, which depends on claim 103, and adds the sole additional limitation that the DNA construct be in "a plant cell." Under the doctrine of claim differentiation, dependent claims "are presumed to be of narrower scope than the independent claims from which they depend." *AK Steel Corp. v. Sollac & Ugine*, 344 F.3d 1234, 1242 (Fed. Cir. 2003). "That presumption is especially strong when the limitation in dispute is the only meaningful difference between an independent and dependent claim, and one party is urging that the limitation in the dependent

Defendants' argument that the claim requires synthesis of a particular protein in the cell is further contrary to the definition of "expression" provided in the patent. As discussed earlier, the purpose of a promoter is to regulate *transcription* of the DNA molecule. This is exactly how the claim defines the term "expression" in the context of a double-stranded DNA molecule: "The *expression of a plant gene* which exists in double stranded DNA form involves synthesis of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase enzyme, and the subsequent processing of the mRNA primary transcript *inside the nucleus*." (Ex. 2 at 7:33-37) (emphasis added). Nothing in that definition or in the language or structure of the claims requires that a protein with a particular sequence be translated. In fact, protein translation occurs in the cytoplasm, not in the cell's nucleus as specified in the above definition. (*Id.*, Ex. 1 at ¶ 26).

III. The Claims to Glyphosate Tolerant Plant Cells, Plants, and Seeds

The second broad category of claims relates to plants, plant cells, and seeds that are glyphosate tolerant as a result of a functional transgene encoding a Class II EPSPS enzyme. (Ex. 2 at 5:31-35). These claims cover plants genetically transformed using the recombinant DNA molecules described in the specification and claimed in claims 103 and 131. (*See, e.g., id.* at 43:33-44:35, describing the creation of transgenic soybeans using recombinant vector pMON13640). Claim 115, for example, recites a "glyphosate tolerant plant cell comprising a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:70," while claim 116 recites a "glyphosate tolerant plant" with such a DNA construct. Claims 118 and 119 specify transgenic corn and soybean plants, respectively.

The parties' claim construction disputes regarding these claims highlight two fundamental questions. First, to what extent must the plant be glyphosate tolerant? Second, how

claim should be read into the independent claim." *Acumed LLC v. Stryker Corp.*, 483 F.3d 800, 806 (Fed. Cir. 2007) (quotation omitted). Thus, the recitation of "a plant cell" in dependent claim 128 shows that independent claim 103 cannot be limited to DNA actually functioning in a plant cell, as Defendants posit.

is the plant glyphosate tolerant? The intrinsic evidence clearly answers both questions. The plant is "glyphosate tolerant" when it is *less harmed* by application of glyphosate than a similar, non-transgenic plant. And, the plant "is made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS *DNA molecule* into the plant's genome." (*Id.* at 5:34-35) (emphasis added).

A. A "glyphosate tolerant" plant or plant cell is less harmed by application of glyphosate than a similar, non-transgenic plant or plant cell.

Claim Term	Monsanto's Proposed Construction
"glyphosate tolerant" plant or plant cell	"a plant or plant cell is less harmed by
	application of glyphosate than a similar, non-
	transgenic plant or plant cell"

The '247 patent uses the term "glyphosate tolerant" many times to refer to transgenic plants or cells that are less harmed by glyphosate than similar, non-transgenic plants or cells. In the Examples, the patent compares the transgenic plants or cells of the invention with a control group consisting of similar, non-transgenic plants that are "glyphosate tolerant." Each time, the transgenic plants were deemed to be "glyphosate tolerant" because they were *more* resistant to the application of glyphosate than the similar, non-transgenic plants. The phrase "glyphosate tolerant" should be construed accordingly.

For instance, Example 3 describes the creation of transformed soybean plants. It explains that soybean plants were transformed with a vector having the CP4 gene, and that "a number of plant lines of the transformed soybean were obtained which exhibit *glyphosate tolerance*." (*Id.* at 43:35-38). According to the patent, "The data from the analysis of one set of *transformed* and *control* soybean plants are described on Table X and show that the CP4 EPSPS gene imparts *glyphosate tolerance* in soybean also." (*Id.* at 44:16-19) (emphasis added). Table X is shown below:

TABLE X

Glyphosate tolerance in Class II EPSPS soybean transformants
(P-H35S, P-FMV35S; R0 plants; Spray rate = 128 oz./acre)

-	Vegetative score			
Vector/Plant No.	day 7	day 14	day 28	
13640/40-11	5	6	7	
13640/40-3	9	10	10	
13640/40-7	4	7	7	
control A5403 2	1	0		
control A5403 1	1	0		

(*Id.* at 44:20-35).

The control and transgenic plants were sprayed with glyphosate at a rate of 128 oz./acre, and then their appearance was judged at 7, 14, and 28 days according to a numerical score from 1-10, where a "10" indicated that the plants were not visibly damaged. (*Id.* at 44:10-15). The results in Table X show that the transgenic soybean plants were less harmed than the control plants (which were significantly harmed at day 7 and dead by day 14). Even though some of the transgenic plants showed visible damage (namely, plants 40-11 and 40-7), all of them exhibited "glyphosate tolerance" relative to the similar, non-transgenic plants.

The patent contains similar Examples for tobacco, canola, and corn. (*Id.* at 34:60-43:31; 45:48-48:62). Each Example contains a comparison of the "glyphosate tolerant" transgenic plants of the invention with similar, non-transgenic plants. (*See id.*, Tables VII, IXA, IXB, XII, and XIII). The patent's consistent usage of the term "glyphosate tolerance" throughout these Examples shows that the term is intended to represent a relative comparison, and that no particular tolerance parameters are to be imported into the claims. *See Moba, B. V. v. Diamond Automation, Inc.*, 325 F.3d 1306, 1315 (Fed. Cir. 2003) ("[T]he best indicator of claim meaning is its usage *in context* as understood by one of skill in the art at the time of invention.") (emphasis added).

Furthermore, it is well established that "[t]he claims are directed to the *invention that is described in the specification*" and "do not have meaning removed from the context from which they arose." *Netword, LLC v. Centraal Corp.*, 242 F.3d 1347, 1352 (Fed. Cir. 2001) (emphasis added). The transgenic plants set forth in the Examples, exhibiting less damage than the non-transgenic plants, are plainly embodiments of the invention. These embodiments should not be excluded from the scope of the claims by an unduly narrow interpretation of the term "glyphosate tolerant." Thus, the Court should adopt Monsanto's construction.

B. The "Glyphosate Tolerance" is Caused at Least by the Claimed Gene Construct.

Claim Term	Monsanto's Proposed Construction
A "glyphosate tolerant plant [cell] comprising	"The claimed transgenic seeds, plants, and
a DNA sequence encoding an EPSPS enzyme	plant cells are glyphosate tolerant at least as a
having the sequence of SEQ ID NO:70"	result of a functional Class II EPSPS DNA
	molecule inserted into the plant's genome."

The remaining dispute involves whether the claimed transgenic plants are glyphosate tolerant due to a functional Class II EPSPS gene, or whether the plants are glyphosate tolerant for any reason, such that the genes encoding SEQ ID NO:70 recited in the claims can be non-functional and useless. The intrinsic evidence is overwhelmingly clear that "glyphosate tolerant" plants and plant cells "comprising a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:70," according to claims 115 and 116 are glyphosate tolerant due at least to a *functional* DNA construct coding for that amino acid sequence. The claims should be construed accordingly.

The entire purpose of the invention was to create "[g]enes encoding Class II EPSPS enzymes" which "are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide." (Ex. 2, Abstract). Thus, unsurprisingly, the "Summary of the Invention" states that the invented transgenic plants are glyphosate tolerant due to functional ("plant-

expressible") DNA constructs encoding Class II enzymes. (*Id.* at 5:31-35). It expressly provides: "In still yet another aspect of the present invention, transgenic plants and transformed plant cells are disclosed that are *made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS DNA molecule into the plant's genome." (<i>Id.*) (emphasis added). The patent's clear statement describing the "present invention" is strong evidence of claim scope. *See Honeywell Int'l, Inc. v. ITT Indus., Inc.*, 452 F.3d 1312, 1318 (Fed. Cir. 2006).

In addition to the applicants' express statement of the "present invention," every example of a transgenic plant in the '247 patent was made glyphosate tolerant through a functional, recombinant DNA molecule encoding a Class II EPSPS enzyme. (Ex. 2, at 34:57-48:63). For example, the patent discusses that "[t]ransformed tobacco plants have been generated with a number of the Class II EPSPS gene vectors containing the CP4 EPSPS DNA sequence as described above with suitable expression of the EPSPS. These transformed plants exhibit glyphosate tolerance imparted by the Class II CP4 EPSPS." (*Id.* at 34:60-64).

The same is true for the transgenic soybean plants that Monsanto created and Defendants have sold under license for many years. The patent explains that these plants were made glyphosate tolerant through the insertion of the pMON13640 vector. (*Id.* at 43:34-37). As described in Figure 15, that vector is comprised of a recombinant DNA molecule with a CaMV35S promoter, CP4 EPSPS coding sequence, and NOS 3' non-translated region. (*See also id.* at 36:20-24 (disclosing canola plants that are glyphosate tolerant due to being transformed with functional Class II EPSPS transgenes)).

It should be stressed however, that the claims do not require that the glyphosate tolerance be due *solely* to the Class II EPSPS DNA constructs. The use of the term "comprising" in the

claims indicates that the transgenic plants can include other elements which confer glyphosate tolerance, in *addition to* the functional Class II EPSPS DNA constructs. *See Genentech, Inc. v. Chiron Corp.*, 112 F.3d 495, 501 (Fed. Cir. 1997) (holding "the open-ended term comprising . . . means that the named elements are essential, but other elements may be added"). Likewise, the specification provides:

To obtain the maximal tolerance to glyphosate herbicide it is preferable to transform the desired plant with a plant expressible Class II EPSPS gene *in conjunction with* another plant-expressible gene which expresses a protein capable of degrading glyphosate such as a plant-expressible gene encoding a glyphosate oxidoreductase enzyme as described in PCT Application No. WO 92/00377.

(*Id.* at 4:23-31) (emphasis added). Defendants' Roundup Ready®/OGAT stacks, which contain the patented transgene along with an additional transgene, are plainly within the contemplated scope of the invention.

Defendants, for their part, have vacillated between two self-contradictory claim constructions. First, in an attempt to evade infringement, they asserted claim 116 should be construed to require a "whole differentiated fertile plant that is glyphosate tolerant *due to the production of a glyphosate-tolerant EPSPS enzyme*" with the particular amino acid sequence of SEQ ID NO:70, and "no more and no less." (Defs' Mem. Opp. M.S.J. Infr., Dkt. 111, at 22, 26). Defendants have apparently abandoned this narrow construction in an attempt to convince this Court that the claims are actually impermissibly *broadened* over claims in the '435 patent. In their recent motion for summary judgment of invalidity, they assert the claimed plants can be glyphosate tolerant for *any reason*, such that the claims can encompass useless DNA encoding SEQ ID NO:70 without a promoter, and thus incapable of expressing *any* protein. (Defs' Mem. Supp. M.S.J. Inv., Dkt. 216 at 9-10, 14).

These alternative constructions are both plainly wrong, although Defendants' initial construction was less erroneous. Defendants previously submitted to this Court:

First, the "glyphosate-tolerance" of the plant must be attributed to the EPSPS enzyme identified in the remaining elements of the claim, namely the "DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:70." A basic tenet of claim construction is that elements cannot be interpreted in isolation, but must be given meaning within the context of the whole claim. *See*, *e.g.*, *Kyocera Wireless Corp. v. Int'l Trade Comm'n*, 545 F.3d 1340, 1347 (Fed. Cir. 2008) ("this court does not interpret claim terms in a vacuum, devoid of the context of the claim as a whole"); *Hockerson-Halberstadt*, *Inc. v. Converse Inc.*, 183 F.3d 1369, 1374 (Fed. Cir. 1999).

(Defs' Mem. Opp. M.S.J. Infr., Dkt. 111, at 21). Defendants were certainly correct that the claims must be interpreted in the context of the claims as a whole. However, Defendants' construction is inconsistent with both the plain language of the claims and the written description. The '247 patent is concerned with the "Class II EPSPS *DNA molecule*," rather than the translated protein's sequence. (Ex. 2 at 5:31-35).

Defendant's latest *ad hoc* construction – designed solely to create a spurious, technical invalidity defense – finds no support anywhere. The notion that the claims encompass nonfunctional DNA encoding SEQ ID NO:70 is contrary to the express language describing the "present invention" (*id.* at 5:31-35), the totality of the patent's examples of plants and plant cells, and the invention as a whole (which is a functional and useful invention, rather than useless).

The Federal Circuit has repeatedly warned against such an unreasonable construction divorced from the nature of the invention and the written description. The court's recent *In re Suitco Surface, Inc.* decision is illustrative. 603 F.3d 1255 (Fed. Cir. 2010). In that case, the invention involved a "floor finishing material" to be used on surfaces such as bowling lanes, involving "a thin plastic sheet placed over a floor surface connected by an adhesive layer." *Id.* at 1256. The claim recited, *inter alia*, "improved material for finishing the top surface of the

floor." *Id.* In rejecting the claim, the PTO construed that term to include the top layer of *any* possible layer in the floor surfacing, regardless of whether it was the final layer. *Id.* at 1259.

The court held that such a broad and literalistic construction – which would read on a hypothetical product containing "carpet on top of wood, on top of tile, on top of concrete, on top of a thin adhesive plastic sheet" – was unreasonably broad. *Id.* at 1260. The PTO did not have "an unfettered license to interpret claims to embrace anything remotely related to the claimed invention. Rather, claims should always be read in light of the specification and teachings in the underlying patent." *Id.* In *Suitco*, the Federal Circuit found the specification was clear that the invention related to the top surface on the floor, not to the "top surface" of any possible component layer in a floor. *Id.* at 1260-61.

Likewise, in this case Defendants' attempt to unreasonably broaden the patent claims to render the claimed DNA constructs non-functional must be rejected. The patent expressly states that the transgenic plants "are *made* glyphosate-tolerant *by* the introduction of the above-described plant-expressible Class II EPSPS DNA" constructs." (Ex. 2 at 5:31-35). Not once does the patent describe glyphosate tolerant plants that contain a non-functional DNA sequence encoding a Class II enzyme. Indeed, it would be impossible as a biological matter for the transgenic plants to be glyphosate tolerant on account of DNA encoding SEQ ID NO:70, if the recited DNA molecules were non-functional. As the patent makes clear, to be "plant-expressible," these DNA constructs *must* contain a promoter and a 3' non-translated region. (*Id.* at 7:33-41). And, the promoters must come from a different gene than the native CP4 EPSPS gene in order to be capable of conferring glyphosate tolerance in a plant cell – which is why every gene construct described in the patent requires a promoter heterologous with respect to the structural DNA sequence. (*See, e.g.*, Ex. 2 at 7:47-67, 8:28-36) (identifying promoters for use in

the present invention, all of which are heterologous to CP4 EPSPS coding sequence); *id.* at Figs. 13-17 (transformation vectors all containing CP4 EPSPS and heterologous promoters)).

Finally, to the extent that there is any doubt about the proper construction, the claims of the patent should be interpreted to preserve their validity and utility. Indeed, Defendants themselves previously recognized this principle in their brief in opposition to Monsanto's Motion for Partial Summary Judgment of Infringement, where they pointed out the propriety of construing claims "to comport[] with the utility and enablement requirements of 35 U.S.C. §§ 101 and 112." (Dkt. No. 111, at 25).

Defendants' alternative attempt to misconstrue the claims to encompass useless embodiments is contrary to the nature of the invention and the overwhelming intrinsic evidence, and contrary to Defendants' own previous claim construction which they strenuously argued *in this* litigation only months earlier. It should be rejected. The Court should construe the claimed "glyphosate tolerant plants" as encompassing plants that are glyphosate tolerant at least due to a functional transgene encoding SEQ ID NO:70.

IV. The Claims to Methods of Selective Weed Control

Claim Term	Monsanto's Construction
a sufficient amount of glyphosate herbicide to	any amount of glyphosate herbicide that
control the weeds without significantly	controls the growth of unwanted plants in a
affecting the crop	field, while not causing significant harm to the
	planted crop or crop seeds

The final set of asserted claims – Claims 130 and 149 – relate to methods of "selectively controlling" weeds in a field. The claimed method have two parts: (1) "planting crops that are glyphosate tolerant as a result of a recombinant double-stranded DNA molecule being inserted into the crop seed or plant" [containing the recombinant gene construct of claim 103 or 131,

respectively]; and (2) "applying to the crop and weeds in the field a *sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop.*"

The claims are essentially clear on their face, and require minimal construction. The disputes between the parties relate to the italicized language and concern: (1) the extent to which the weeds must be controlled, and (2) the extent to which the crop may be damaged by the glyphosate. As to the former issue, the plain meaning of the claims governs. "Control" means control. It indicates a reduction in the severity of the weeds – not their complete eradication. (*See, e.g.*, Ex. 8, Merriam-Webster's Online Dictionary (defining the term as meaning "to reduce the incidence or severity of especially to innocuous levels")).

As to the extent of permissible damage encompassed by "without significantly affecting," the claim should be construed in accordance with the patent's Examples describing tests on the "glyphosate tolerant" plants used in the method. As mentioned above, several of the plants characterized as "glyphosate tolerant" in the Examples were damaged by glyphosate – including plants judged to be as low as "4" or "5" on a 10 point scale. (See Ex. 2, col. 4, Table X). Some plants were infertile or had their fertility impaired. (E.g., id., cols. 38-39, Table IXA; 36:5-16 (discussing the scoring method)). The claims to using these plants in a field should take into account that not all of the plants were perfectly tolerant to glyphosate. Thus, the claim language reciting a "sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop" means any amount of glyphosate herbicide that controls the growth of unwanted plants in a field, while not causing significant harm to the planted crop or crop seeds. The Court should construe that phrase accordingly.

V. Other Claim Terms

Finally, several additional limitations appear in dependent claims of the '247 patent that are directed to DNA molecules. Because these terms may be unfamiliar to the average juror, Monsanto requests that they be construed, as follows.

A. An "[amino terminal] chloroplast transit peptide" means an amino acid sequence capable of targeting an EPSPS enzyme to a chloroplast of a plant cell.

Various claims – such as dependent claims 69 and 104 – include the term "chloroplast transit peptide" or "amino terminal chloroplast transit peptide." These terms both refer to a protein that targets the EPSPS protein to the chloroplasts of the plant cells, where the EPSPS proteins are most useful. For example, the patent provides that "[t]he Class II EPSPS enzymes are preferably fused to a chloroplast transit peptide (CTP) to target the protein to the chloroplasts of the plant into which it may be introduced." (Ex. 2 at 4:16-18; see id. at 29:1-4). Monsanto proposes that the Court construe these terms accordingly.

B. A "plant DNA virus promoter" means a region of DNA from a plant virus that is capable of regulating the transcription of DNA in a plant cell.

Dependent claims 106 and 133 include a limitation requiring the promoter be a "plant DNA virus promoter." As discussed above, the '247 patent defines the "promoter" element to include a class of promoters capable of regulating transciption in plant cells. The patent specification notes that "[s]uch promoters may be obtained from a variety of sources such as plants and *plant DNA viruses* and include, but are not limited to, the CaMV35A and FMV35S promoters" (*Id.* at 7:60-64) (emphasis added). The limitation "plant DNA virus promoter" narrows the genus of promoters to those promoters from a plant virus. The claim should be construed accordingly.

C. A "CaMV35S promoter" means a region of DNA derived from the cauliflower mosaic virus 35S gene capable of regulating the transcription of DNA in a plant cell.

Various dependent claims, such as 107 and 134, further limit the promoter to being "a CaMV35S promoter" or an "FMV 35S promoter" – types of promoters that fall within the class of "plant DNA virus promoters." (Claims 107 and 134 depend on claims 106 and 133, respectively). CaMV35S promoters are derived from the cauliflower mosaic virus 35S gene. (*Id.* at 7:50-51). The patent specifically lists examples of "preferred promoters" as including the "full-length transcript (35S) promoter from cauliflower mosaic virus, including the enhanced CaMV35S promoter." (*Id.* at 8:28-34). The claim is broader, however, than just the preferred embodiments. It recites "a CaMV35S promoter," meaning that it encompasses any promoter derived from the cauliflower mosaic virus 35S gene that is capable of regulating the transcription of DNA in a plant cell.

D. A "FMV35S promoter" means a region of DNA derived from the figwort mosaic virus 35S gene that is capable of regulating the transcription of DNA in a plant cell.

The patent specification also identifies the FMV35S gene as a source of plant DNA virus promoters. This term should be given the same meaning as CaMV35S promoter, except that FMV35S promoters are derived from the figwort mosaic virus 35S gene. (*Id.* at 8:28-31).

E. A "NOS 3' or E9 3' non-translated region" means a region of DNA derived from the 3' nontranslated region of Agrobacterium's nopaline synthase gene or the 3' nontranslated region of the ssRUBISCO gene from pea, capable of signaling polyadenylation in a plant cell.

Finally, dependent claims including claims 108 and 136 recite the DNA molecule of claim 103, wherein the 3' non-translated region is "a NOS 3' or an E9 3' non-translated region." These terms are identified in the patent specification as being examples of "suitable" 3' non-translated regions. The patent identifies the NOS 3' non-translated region as being derived from

the 3' nontranslated region of *Agrobacterium's* nopaline synthase gene, while the E9 is derived from the 3' nontranslated region of the ssRUBISCO gene. (*Id.* at 8:54-65).

CONCLUSION

The Court should adopt Monsanto's proposed constructions.

Dated: July 9, 2010 Respectfully submitted,

HUSCH BLACKWELL SANDERS LLP

By: _/s/ Joseph P. Conran
Joseph P. Conran, E.D.Mo. # 6455
joe.conran@huschblackwell.com
Omri E. Praiss, E.D.Mo. # 35002
omri.praiss@huschblackwell.com
Greg G. Gutzler, E.D.Mo. # 84923
greg.gutzler@huschblackwell.com
Tamara M. Spicer, E.D.Mo. # 122214
tamara.spicer@huschblackwell.com
Steven M. Berezney, E.D.Mo. # 499707
steve.berezney@huschblackwell.com
190 Carondelet Plaza, Suite 600
St. Louis, MO 63105
(314) 480-1500 – telephone
(314) 480-1505 – facsimile

MCDERMOTT WILL & EMERY
Steven G. Spears
sspears@mwe.com
Scott W. Clark
sclark@mwe.com
1000 Louisiana Street
Suite 3900
Houston, TX 77002-5005
(713) 653-1700 – telephone
(713) 739-7592 – facsimile

Kurt G. Calia kcalia@cov.com

COVINGTON & BURLING LLP

1201 Pennsylvania Avenue, NW Washington, DC 20004-2401 (202) 662-6000 – telephone

(202 662-6291 – facsimile

WINSTON & STRAWN LLP

Dan K. Webb dwebb@winston.com Todd J. Ehlman tehlman@winston.com 35 W. Wacker Drive, Suite 4200 Chicago, IL 60601 (312) 558-5600 – telephone (312) 558-5700 – facsimile

WINSTON & STRAWN LLP

John J. Rosenthal jrosenthal@winston.com Matthew A. Campbell macampbell@winston.com 1700 K Street, N.W. Washington, DC 20006 (202) 282-5000 – telephone (202) 282-5100 – facsimile

ARNOLD & PORTER LLP

Anthony J. Franze anthony.franze@aporter.com 555 Twelfth Street, N.W. Washington, DC 20004 (202) 942-5000 – telephone (202) 942-5999 – facsimile

Attorneys for Plaintiff Monsanto Company and Monsanto Technology LLC

CERTIFICATE OF SERVICE

The undersigned hereby certifies that on the 9th day of July, 2010, the foregoing was filed electronically with the Clerk of the Court for the United States District Court Eastern District of Missouri, Eastern Division, and was served by operation of that Court's electronic filing system, upon the following:

Andrew Rothschild, Esq. C. David Goerisch, Esq. Lewis, Rice & Fingersh, L.C. 600 Washington, Suite 2500 St. Louis, MO 63102

Leora Ben-Ami, Esq. Thomas F. Fleming, Esq. Christopher T. Jagoe, Esq. Howard S. Suh, Esq. Jeanna Wacker, Esq. Kaye Scholer LLP 425 Park Avenue New York, NY 10022

Donald L. Flexner, Esq. Hershel Wancjer, Esq. Cynthia Christian, Esq. Robert M. Cooper, Esq. Boies, Schiller & Flexner LLP 575 Lexington Avenue, 7th Fl. New York, NY 10022

James P. Denvir, Esq. Amy J. Mauser, Esq. Boies, Schiller & Flexner LLP 5301 Wisconsin Avenue, N.W. Washington, D.C. 20015

Attorneys for Defendants

/s/ Joseph P. Conran .

UNITED STATES DISTRICT COURT EASTERN DISTRICT OF MISSOURI EASTERN DIVISION

MONSANTO COMPANY and)	
MONSANTO TECHNOLOGY LLC,)	
71 1 100)	
Plaintiffs,)	
)	
VS.)	
)	
E.I. DUPONT DE NEMOURS AND)	Case No. 4:09-cv-686 ERW
COMPANY and PIONEER HI-BRED)	
INTERNATIONAL,)	
INC.,	ĺ	
,	í	
Defendants.)	

EXPERT TUTORIAL OF DR. STEPHEN DELLAPORTA

I, Dr. Stephen Dellaporta, Ph.D, submit this expert report on behalf of Plaintiffs Monsanto Company and Monsanto Technology LLC ("Monsanto").

I. Background and Qualifications

- 1. I studied plant biology and received a B.Sc. Degree from the University of Rhode Island in 1976. Thereafter, I attended graduate school at Iowa State University in Genetics, and then at Worcester Polytechnic Institute, where I received a Ph.D. degree in Biomedical Sciences in 1981. I conducted my postdoctoral studies in plant molecular genetics from 1981-83 at Cold Spring Harbor Laboratories ("CSHL") under the guidance of Dr. Barbara McClintock, Nobel Laureate in Medicine.
- 2. As a postdoctoral associate, I conducted studies on plant molecular genetics, specifically mobile genetic elements called transposons, which were first discovered by Dr. McClintock. I was appointed to the position of Staff Scientist, by Dr. James Watson, Nobel

Laureate and Director of CSHL. In 1985, I was promoted to the position of Senior Staff Scientist. While on the staff at CSHL, my research program focused on understanding plant transposable elements and their utility in functional genomic analysis.

- 3. In 1986, I accepted an Assistant Professorship at Yale University in the Department of Biology (currently the Department of Molecular, Cellular and Developmental Biology) where I continued my research on the molecular genetic analysis of transposable elements, plant transcription factors, and the pathway of floral development. I was promoted to Associate Professor in 1990 and Full Professor in 1996, a position I currently hold. During my professional career at CSHL and Yale, I have trained many postdoctoral associates, graduate students and undergraduate students in the fields of molecular biology and genomics.
- 4. My teaching responsibilities at Yale University have covered many aspects of genetics and molecular biology. I have taught the course *Genetics* at Yale for over twenty years, and have been the Instructor in Charge of the course for over ten years. Additionally, I was cofounder and continue to be the Instructor in Charge of the course *Molecular Biology*, which has been offered at Yale for the past five years. I also co-teach the course *Advanced Genetics and Biochemistry*, which is a graduate seminar focused on functional and structural aspects of RNA.
- 5. Throughout the last twenty-five years, I have given numerous seminars on my research in plant molecular genetics, molecular biology and genomics at symposia, universities, research institutions and companies throughout the United States, and in Europe, Asia, and Latin America.
- 6. My professional focus encompasses several areas of molecular genetics and genomics including DNA, RNA and protein function, the role of DNA methylation in plant development, the molecular genetics of flowering, and functional genomics in *Arabidopsis* and

rice plants. My research is currently funded by grants from the National Institutes of Health, the National Science Foundation, and HarvestPlus, a consortium of international scientists working to alleviate hunger and malnutrition in developing countries. My work for HarvestPlus involves constructing transgenes and transgenic plants with enhanced nutritional qualities.

- 7. I have served as a member of the Genetics Study Section Panel at the National Institutes of Health (1991-95), a special panel member for the NIH Human Genome Program (1987) and the NSF Eukaryotic Genetics Program (1990), as well as a panel member of the USDA Plant Development Program. I currently serve on the Board of Control for the Connecticut Agriculture Experiment Station, one of our nation's oldest state experiment station.
- 8. I am being compensated at an hourly rate of \$400 for my time spent in conjunction with this matter. I have not testified at trial or deposition in the last four years. In preparing this Expert Tutorial, I have relied on the materials cited or referenced herein. My CV is attached as Exhibit A.
- 9. In conjunction with a hearing or trial in this case, I may be asked to provide a tutorial to assist the Court in understanding aspects of molecular biology. In presenting this tutorial, I may rely on visual aids and demonstrative exhibits that I may prepare or have prepared based on materials cited in this report, available in the public domain, or produced by the parties in this litigation.

II. Tutorial on Molecular Biology

10. The '247 patent describes how a novel class of genes encoding "Class II" EPSP synthase ("EPSPS") enzymes can be isolated and incorporated into a cell or cells of plants that do not normally have these particular genes. The cells that have incorporated novel EPSPS genes into their genome exhibit tolerance to the herbicide glyphosate. Because the patent relates

to the structure and function of these genes, and the relationship of these genes to the EPSPS enzymes that they encode, I have been asked to provide a brief tutorial on basic principles of molecular biology to assist the Court in understanding the technology that is described and claimed in the '247 patent.

Cells – The Basic Building Blocks of Life

- 11. Living organisms are composed of one or more cells. Biologists classify organisms according to the type of cells they contain. There are two general types of cells eukaryotic and prokaryotic cells. Eukaryotic cells have a nucleus and other membrane-bound organelles that perform defined functions. Prokaryotic cells do not. All plants and animals are comprised of eukaryotic cells with nuclei. Bacteria are comprised of single prokaryotic cells. Single-celled eukaryotic organisms, such as fungi, algae and protists, also exist.
- 12. Cells contain hereditary, "genetic" information. In eukaryotic cells, such as plant cells, the genetic information is contained inside the nucleus, in long strands called "chromosomes." The genetic information is arranged in the chromosomes in functional units called "genes." A typical plant cell has several chromosomes in its nucleus; each chromosome contains hundreds to thousands of different genes. By contrast, bacterial cells typically include one or more circular chromosomes encoding hundreds of genes.
- 13. Each organism has a characteristic set of genes, called a "genome," that defines its unique traits or characteristics. Plants typically contain tens of thousands of genes in their respective genomes.

DNA, RNA, and Proteins

14. Genes are composed of deoxyribonucleic acid ("DNA"). DNA is a large polymer of units called "nucleotides," which are linked together to form long strands that can be millions

of units in length. All nucleotides contain a sugar called deoxyribose, a chemical phosphate group, and one of four bases: adenine (A), thymine (T), guanine (G) or cytosine (C) (Fig 1A). In the chromosome, DNA is found in a "double helix" or "twisted ladder" configuration, comprised of two strands twisted around each other and running in opposite directions, as shown below (Fig. 1B)

Figure 1. (A) Deoxyribonucleic acid (DNA) from Watson et al. (2008)¹ Fig. 2-5; (B) DNA double helix, adapted from Sadava et al. (2009)²

¹ Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., and Losick, R. *Molecular Biology of the Gene*, 6th ed. 2008 (Pearson/Benjamin Cummings/Cold Spring Harbor Laboratory Press).

² Sadava, D., Hillis, D.M., Heller, H.C., and Berenbaum, M.R. *Life: The Science of Biology*, 9th ed. 2009 (Sinauer Associates/W.H. Freeman).

- 15. The two strands of the double helix are attracted to each other by weak chemical interactions known as "hydrogen bonds," which form between complementary bases in opposite strands of the double helix. A phenomenon known as "complementary base pairing" governs the specific association of nucleotides on each strand. In complementary base pairing, an adenine (A) base on one strand always pairs with a thymine (T) base on the opposite DNA strand, and guanine (G) always pairs with cytosine (C) (Fig. 1B). Because the two strands of the double helix run in opposite directions, one strand and hence each base is flipped with respect to its pairing partner.
- 16. In this way, each strand of DNA is a precise "complement" of its pairing partner. Therefore, knowing the sequence of bases on one strand makes it possible to predict the sequence of bases on the opposite strand by using the rules governing base pairing. For instance, if one strand of DNA reads **GCAT**, the partner strand would be complementary and read **CGTA**.
- RNA is a polynucleotide strand similar to DNA, except that the sugar found in RNA is *ribose* instead of deoxyribose, and the base thymine (T) is replaced by *uracil* (U) in RNA. Like T found in DNA, U is capable of complementary pairing to A. During transcription (discussed below), the DNA sequence of the template strand is read by the enzyme RNA polymerase and "transcribed" (i.e., copied) into a complementary strand of RNA containing the bases A, C, G and U. For instance, a DNA template sequence of GCAT would be copied during transcription to form an RNA molecule with the sequence CGUA, according to the rules of complementary base pairing.
- 18. Proteins are polymers of amino acid monomers chemically linked together with strong "peptide" bonds to form a "polypeptide" chain. Proteins perform critical structural and functional roles inside plant cells. Enzymes, such as EPSPS, are types of proteins that catalyze

(speed up) important chemical reactions. There are twenty different amino acids that may be bonded together to form proteins ("polypeptides") with a nearly infinite diversity of structures and functions. As discussed below, the structure and synthesis of a cell's proteins are determined by the information stored in the cell's DNA.

Structure and Function of Genes

- 19. The hereditary information of an organism is contained within its genes. A gene is a segment of chromosomal DNA that contains the genetic information necessary to produce a specific gene product, usually an RNA and protein, in the cell at the right time and place. In eukaryotic organisms, such as plants and animals, the DNA is found in a membrane-bound organelle called the nucleus.
- Francis Crick, provides that genetic information is transferred from DNA to RNA to proteins in a directional fashion (Fig. 2). In plants, this information transfer proceeds as follows. First, the information contained in DNA is copied into RNA in a process called "transcription." Second, the RNA transcript is processed within the plant cell's nucleus. This processing involves "polyadenylation," where numerous adenine bases are added to the end of the RNA transcript to allow the RNA transcript to exit the nucleus. Third, the polyadenylated RNA transcript (known as mRNA, or "messenger RNA") is exported from the cell's nucleus to the cytoplasm. Fourth, in the cytoplasm, the genetic information found in the mRNA is "read" in organelles called *ribosomes* in a process called "translation." During translation, the sequence of bases in mRNA is translated by the ribosome, which assembles a protein with an amino acid sequence that is dictated by the sequence of the mRNA transcript.

Figure 2. Central Dogma of Molecular Biology. The cellular processes of transcription and RNA processing take place in the nucleus; translation takes place outside the nucleus in the cytoplasm

Adapted from Sadava et al. (2009), Fig 14-7.

- 21. The flow of information from DNA to RNA to protein is tightly regulated, and involves the coordination and control of many chemical reactions. Transcription occurs when one strand of the gene, called the "template" strand, is copied into a complementary strand of ribonucleic acid, abbreviated RNA (Fig 3).
- 22. The enzyme RNA polymerase is responsible for the transcription of a gene.

 During transcription, RNA polymerase binds to a chromosome at the beginning of a particular gene, separates the strands of a portion of the double helix, and copies the template strand of DNA into a complementary copy of RNA. The result of transcription is a single-stranded RNA molecule that contains the genetic code of the gene being copied.

Figure 3. Transcription of template DNA by RNA polymerase. Adapted from Watson et al. (2008), Fig 2-17.

- 23. Transcription is regulated by a region of DNA, termed a "promoter," found at the beginning of a gene. In essence, the promoter determines where and when a gene is turned "on" or turned "off." Without a promoter, transcription would not occur. A promoter allows the binding and assembly of protein factors needed to initiate the process of transcription. Once initiation occurs, RNA polymerase can enter the double helix to begin the process of transcribing the template strand of DNA into a complementary strand of RNA.
- 24. The promoter directs the transcriptional machinery to begin the process of transcribing the template strand of DNA in a region called the "transcriptional start site". Once transcription begins, it continues until the RNA polymerase enzyme encounters another DNA sequence that instructs the polymerase to stop transcription. The signal to stop transcription, at the opposite end of the gene from the promoter, is located in a DNA region called the "terminator" or the "3' non-translated region," which directs the RNA to be modified by a

process called "polyadenylation," discussed below. The DNA structure of a typical gene is illustrated in Fig. 4.

Figure 4. Typical eukaryotic gene structure and its RNA product (pre-mRNA). Adapted from Sadava et al. (2009), Fig 14-7.

25. In plant cells, the RNA transcript must undergo a series of post-transcriptional processing steps and be exported from the nucleus to the cytoplasm where it can be used to direct the synthesis of a protein. During processing, the RNA is capped at one end (the "head" or "5' end") with a modified base. In addition, a string of As, called the poly(A) tail, is added to the other end (the "tail" or "3' end") of the RNA. (Fig 5). The poly(A) tail is required for the nuclear export, translation and stability of mRNA. After processing, the mature RNA, termed messenger RNA (mRNA), is exported to the cytoplasm.

Figure 5. Processing of the pre-mRNA removes introns (not shown), caps the 5' end and adds a string of As (polyA tail) to the 3 end of the mRNA. Adapted from Sadava et al. (2009), Fig 14-10.

26. In the cytoplasm, the protein coding information in the mRNA molecule is read and "translated" into a protein, as shown in Fig. 6 below. The sequence of bases in the mRNA directs the precise type, order and number of amino acids that get added to the growing polypeptide chain during the process of translation. The function of an individual protein is determined by the precise order and composition of amino acids in its polypeptide chain.

Figure 6. mRNA is translated into protein by a ribosome. Adapted from Sadava et al. (2009), Fig 14-22

The Genetic Code

27. The genetic code consists of the nucleotide bases required to specify the twenty different amino acids found in proteins. As the '247 patent explains, "structural DNA consists of multiple nucleotide triplets called 'codons' which code for the amino acids." ('247 patent, at 3:14-16). Because there are four nucleotide bases than can occupy any given position of a codon triplet (4 x 4 x 4), 64 different codons are possible. Since there are 64 possible codons but only

20 different amino acids in a protein, the genetic code contains "redundancy" whereby different codons specify the same amino acid. For instance, the codons CCA, CCU, CCC and CCG all specify the amino acid proline. Different codons that specify the same amino acid are termed "synonymous" codons.

Second letter											
		UC					Α	G			
	U	UUC	Phenyl- alanine	UCU	Serine	UAU	Tyrosine	UGU UGC	Cysteine	C	
	Ü	UUA UUG	Leucine	UCA UCG		UAA UAG	Stop codon Stop codon	UGA UGG		A G	
	С	CUU		CCU CCC CCA CCG	Proline	CAU	Histidine	CGU CGC	Arginine	C	
		CUA	Leacine			CAA CAG	Glutamine	CGA CGG	Aigillile	A G	Third
First letter	Α	AUC	Isoleucine	ACU ACC	Threonine	AAU AAC	Asparagine	AGU AGC	Serine	C	Third letter
^	î	AUA	Methionine; start codon	ACA ACG	THEOTHIE	AAA AAG	Lysine	AGA AGG	Arginine	A G	
	G	GUU	Valine	GCU	Alanine	GAU GAC	Aspartic acid	GGU GGC	Glycine	C	
	Ĩ	GUA GUG		GCA GCG		GAA GAG	Glutamic acid	GGA GGG	J., J10	A G	

Figure 7. Universal genetic code. Adapted from Sadava et al. (2009), Fig. 14-6.

- 28. In addition to the codons that specify particular amino acids, special codons instruct the translational machinery to start and stop the process of translation. The codon AUG, besides encoding methionine, is usually the first codon to be found at the beginning of the coding region. The codons UAA, UAG and UGA do not encode amino acids but rather instruct the translational machinery to stop protein synthesis.
- 29. The genetic code is "universal," meaning that all organisms generally recognize the same codons for each amino acid. (Fig. 7). There are minor exceptions to this principle, but for the most part the universal genetic code is used in bacteria, fungi, plants and animals.

 Therefore, in principle, the coding sequences (genes) from one organism can be "read" by the

translational machinery of another organism to direct synthesis of the corresponding protein. The universality of the genetic code is a foundation underlying the fields of genetic engineering and biotechnology.

Transgenes

- 30. Foreign genes can be used as the template for the creation of a synthetic gene, or "transgene," which is optimized for expression in a host organism. To create transgenes suitable for insertion in plant cells, scientists may identify a foreign gene and determine its DNA sequence. In some cases, this is done directly by sequencing a genomic (chromosomal) DNA segment containing the gene of interest.
- 31. Once the genomic sequence is identified, the predicted amino acid sequence of the encoded protein can be deduced by "virtual translation" using the universal genetic code. The coding sequence, identified by a starting AUG (methionine) codon and ending with an appropriate stop codon (UAA, UAG or UGA), may be modified to incorporate amino acid changes or manipulated for subsequent cloning steps.
- 32. In order for DNA derived from a bacterial host to be expressed in a plant cell, a transgene must be designed that contain structural elements capable of being recognized by plants internal machinery including a promoter that works in plant cells to initiate transcription and a 3′ non-translated region that works in plant cells to signal polyadenylation. As the '247 patent discusses, promoters derived from plant viruses, such as the cauliflower mosaic virus 35S promoter (CaMV 35S) and the figwort mosaic virus 35S promoter (FMV35S), are capable of driving high levels of gene expression in plants. ('247 patent, 7:60-67, 8:28-40). Likewise, the patent describes the use of 3′ non-translated regions such as the 3′ non-translated region from the nopaline synthase ("NOS") gene to direct polyadenylation in plant cells. (*Id.* at 8:54-65).

33. Additional modifications of the transgene may be needed to direct the protein to a particular subcellular organelle by the addition of "localization signals." For instance, plant EPSPS enzymes have an attached "chloroplast transit peptide" (CTP). The CTP directs the EPSPS protein to the chloroplast – a particular organelle within the plant cell. At the chloroplast, the CTP is cleaved from the protein to form the mature EPSPS protein. The '247 patent explains that it is preferable for DNA encoding EPSPS proteins from non-plant sources, such as the Agrobacterium CP4 strain, to be engineered with a CTP for proper subcellular localization in plants. This entails fusing a segment of DNA encoding a CTP, such as the petunia CTP4, to the bacterial EPSPS coding sequence. ('247 patent, 28:65 – 30:18).

Dated: July 9, 2010

Respectfully submitted,

Stephen L. Dellaporta, Ph.D

Egha I Meanty

Exhibit A

Curriculum Vitae: Stephen L. Dellaporta

Yale University Phone: (203) 432-3895 Dept. Molecular, Cellular & Developmental Biology Fax: (203) 432-3854

New Haven, CT 06520-8104 Email: stephen.dellaporta@yale.edu

Professional Preparation

InstitutionMajorDegree & YearUniversity of Rhode IslandNatural ResourcesB.Sc. 1976Worcester P. InstituteBiomedical SciencesPh.D. 1981Cold Spring Harbor LaboratoriesMolecular GeneticsPostdoc 1981-83

Appointments

Board of Control, CT Agriculture Experiment Station, New Haven, CT. 2001-present.

Professor. Yale University, New Haven, CT. 1996-present.

Associate Professor Yale University, New Haven, CT. 1990-96.

Assistant Professor 1986-90. Yale University, New Haven, CT

Editorial Board, Trends in Plant Sciences 1995-99.

Editorial Board, Developmental Genetics 1991-99.

Member, NIH Genetics Study Section. 1989-91, 1991-95.

Ad Hoc, NIH Human Genome Panel. 1987.

Member, USDA Plant Growth & Development. 1985-86, 88.

Staff Scientist Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 1983-86.

Honors & Awards

URI Scholastic Achievement Award James F. Danelli Graduate Research Award Honorary Degree, Yale University Junior Faculty Award, Yale University Visiting Professor, University of Milan

Publications (1999-present)

- Rosa, S.F., Powell, A.E., Rosengarten, R.D., Nicotra, M.L., Moreno, M.A., Grimwood, J., Lakkis, F.G., Dellaporta, S.L., and Buss, L.W. (2010). Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol (in press).
- Schierwater, B., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., Dellaporta, S.L., Kolokotronis, S.O., and Desalle, R. (2009). Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis. PLoS Biol *7*, e20.
- Persson, B., Kallberg, Y., Bray, J.E., Bruford, E., Dellaporta, S.L., Favia, A.D., Duarte, R.G., Jornvall, H., Kavanagh, K.L., Kedishvili, N., *et al.* (2009). The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact *178*, 94-98.
- Nicotra, M.L., Powell, A.E., Rosengarten, R.D., Moreno, M., Grimwood, J., Lakkis, F.G., Dellaporta, S.L., and Buss, L.W. (2009). A hypervariable invertebrate allodeterminant. Curr Biol *19*, 583-589.
- Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., and Dellaporta, S.L. (2009). *tasselseed1* is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science *323*, 262-265.

- Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., *et al.* (2008). The Trichoplax genome and the nature of placozoans. Nature *454*, 955-960.
- Schierwater, B., Kamm, K., Srivastava, M., Rokhsar, D., Rosengarten, R.D., and Dellaporta, S.L. (2008). The early ANTP gene repertoire: insights from the placozoan genome. PLoS One *3*, e2457.
- Rosengarten, R.D., Sperling, E.A., Moreno, M.A., Leys, S.P., and Dellaporta, S.L. (2008). The mitochondrial genome of the hexactinellid sponge Aphrocallistes vastus: evidence for programmed translational frameshifting. BMC Genomics *9*, 33.
- Lakkis, F.G., Dellaporta, S.L., and Buss, L.W. (2008). Allorecognition and chimerism in an invertebrate model organism. Organogenesis *4*, 236-240.
- Wu, X., Knapp, S., Stamp, A., Stammers, D.K., Jornvall, H., Dellaporta, S.L., and Oppermann, U. (2007). Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities. FEBS J *274*, 1172-1182.
- Signorovitch, A.Y., Buss, L.W., and Dellaporta, S.L. (2007). Comparative genomics of large mitochondria in placozoans. PLoS Genet *3*, e13.
- Powell, A.E., Nicotra, M.L., Moreno, M.A., Lakkis, F.G., Dellaporta, S.L., and Buss, L.W. (2007). Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics *177*, 2101-2107.
- Poudyal, M., Rosa, S., Powell, A.E., Moreno, M., Dellaporta, S.L., Buss, L.W., and Lakkis, F.G. (2007). Embryonic chimerism does not induce tolerance in an invertebrate model organism. Proc Natl Acad Sci U S A *104*, 4559-4564.
- Kim, J.C., Laparra, H., Calderon-Urrea, A., Mottinger, J.P., Moreno, M.A., and Dellaporta, S.L. (2007). Cell cycle arrest of stamen initials in maize sex determination. Genetics *177*, 2547-2551.
- Signorovitch, A.Y., Dellaporta, S.L., and Buss, L.W. (2006). Caribbean placozoan phylogeography. Biol Bull *211*, 149-156.
- Monteiro, A.S., Schierwater, B., Dellaporta, S.L., and Holland, P.W. (2006). A low diversity of ANTP class homeobox genes in Placozoa. Evol Dev *8*, 174-182.
- Kamm, K., Schierwater, B., Jakob, W., Dellaporta, S.L., and Miller, D.J. (2006). Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol *16*, 920-926.
- Dellaporta, S.L., Xu, A., Sagasser, S., Jakob, W., Moreno, M.A., Buss, L.W., and Schierwater, B. (2006). Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A *103*, 8751-8756.
- Signorovitch, A.Y., Dellaporta, S.L., and Buss, L.W. (2005). Molecular signatures for sex in the Placozoa. Proc Natl Acad Sci U S A *102*, 15518-15522.
- Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., Leonhardt, N., Dellaporta, S.L., and Tonelli, C. (2005). A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol *15*, 1196-1200.
- Jakob, W., Sagasser, S., Dellaporta, S., Holland, P., Kuhn, K., and Schierwater, B. (2004). The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol *214*, 170-175.
- Schierwater, B., Dellaporta, S., and DeSalle, R. (2002). Is the evolution of Cnox-2 Hox/ParaHox genes "multicolored" and "polygenealogical?". Mol Phylogenet Evol *24*, 374-378
- Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F., and Walker, E.L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346-349.

- Galbiati, M., Moreno, M.A., Nadzan, G., Zourelidou, M., and Dellaporta, S.L. (2000). Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis. Funct Integr Genomics *1*, 25-34.
- Calderon-Urrea, A., and Dellaporta, S.L. (1999). Cell death and cell protection genes determine the fate of pistils in maize. Development *126*, 435-441.

(19) United States

(12) Reissued Patent

Barry et al.

US RE39,247 E (10) Patent Number:

(45) Date of Reissued Patent: Aug. 22, 2006

GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE **SYNTHASES**

(75) Inventors: Gerard F. Barry, St. Louis, MO (US); Ganesh M. Kishore, Creve Coeur, MO (US); Stephen R. Padgette, Wildwood, MO (US); William C. Stallings,

Wildwood, MO (US)

Assignee: Monsanto Technology LLC, St. Louis,

(21) Appl. No.: 10/622,201

(22) Filed: Jul. 18, 2003

Related U.S. Patent Documents

Reissue of:

Patent No.: 5,633,435 May 27, 1997 Issued: 08/306,063 Appl. No.: Filed: Sep. 13, 1994

U.S. Applications:

- Continuation-in-part of application No. 07/749,611, filed on Aug. 28, 1991, now abandoned, which is a continuation-in-part of application No. 07/576,537, filed on Aug. 31, 1990, now abandoned.
- (51) Int. Cl. A01H 5/00 (2006.01)A01H 5/10 (2006.01)C12N 15/82 (2006.01)
- (52) **U.S. Cl.** **800/300**; 435/419; 435/320.1; 536/23.2; 536/23.4; 536/23.7; 800/278;

(58) Field of Classification Search 800/300, 800/278, 288, 312, 298; 536/23.2, 23.7; 435/419,

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,769,061	Α	*	9/1988	Comai 504/206
4,971,908	\mathbf{A}	*	11/1990	Kishore et al 435/172.1
5,004,863	Α		4/1991	Umbeck 800/205
5,094,945	Α	*	3/1992	Comai 435/172.3
5,159,135	Α		10/1992	Umbeck 800/205
5,164,316	Α		11/1992	McPherson et al 435/240.4
5,196,525	Α		3/1993	McPherson et al 536/24.1
5,310,667	Α	*	5/1994	Eichholtz et al 435/172.3
5,312,910	Α		5/1994	Kishore et al 536/23.2
5,322,938	Α		6/1994	McPherson et al 536/24.1
5,352,605	Α		10/1994	Fraley et al 435/240.4
5,416,011	Α		5/1995	Hinchee et al 435/172.3
5,463,174	Α		10/1995	Moloney et al 800/205
5,512,466	Α		4/1996	Klee et al 800/283
5,518,908	Α		5/1996	Corbin et al 435/172.3
5,569,834	Α		10/1996	Hinchee et al 800/205
5,627,061	Α		5/1997	Barry et al 800/288
5,633,435	Α		5/1997	Barry et al 800/205
5,804,425	Α		9/1998	Barry et al 435/193
6,204,436	B1		3/2001	Mannerloef et al 800/300
6,248,876	В1		6/2001	Barry et al 536/24.3

	FOREIGN PAI	TENT DOCU	MENTS
EP	0 193 259	* 9/1986	800/205
EP	0 218 571	4/1987	
EP	0 293 358	11/1988	
EP	0 426 641	5/1991	
EP	0 546 090	6/1996	
WO	WO 91/04323	4/1991	
WO	WO 92/04449	3/1992	

OTHER PUBLICATIONS

Comai et. al. (1988) Journal of Biological Chemistry 263:15104-15109.*

Fillatti et al. (Jul. 1987) Bio/Technology 5:726-730.*

Fitzgibbon (Dec. 1988) Ph.D. Thesis University Microfilms International, (1989).*

Griffin and Gasson (1995) Mol. Gen. Genet. 246:119-127.* Henner et al. (1986) Gene 49:147-152.*

Potrykus (Jun. 1990) Bio/Technology 8:535-542.*

Comai, et al (1988) Journal of Biological Chemistry 263:15104-15109.*

Fitzgibbon (Dec. 1988) Ph.D. Thesis University Microfilms International, 1989, pp. viii-ix, 18, 22-29, 32, 93, 96-108.* Henner, et al. (1984) Gene, 34:169-177.

Eichholtz, et al. (1989) Plant Physiology, 89: 47.

Fitzgibbon, et al (1990) Chemical Abstracts, vol. 112, abstract No. 92785.

Schulz, et al. (1985) FEMS Microbiol Lett., 28:297-301. Schulz, et al. (1985) Chemical Abstracts, vol. 103, abstract No. 119839.

Larson-Kelly et al. (1988) SAAS Bulletin, 1: 37-40. Barlow, et al. (1989) Biochemistry, 28: 7985-7991.

Shuttleworth et al. (1992) Protein Engineering, 5: 461-466,

Selvapandiyan, et al. (1995) FEBS Letters, 374: 253-256. Alberg, et al. (1989) Journal of The American Chemical Society. 111: 2337-2338.

Lanzetta, et al. (1979) Analytical Biochemistry, 100: 95-97. Majumder, et al. (1995) Eur. J. Biochem., 229: 99-106.

Steinrücken, et al. (1984) Eur. J. Biochem., 143: 341-349. Steinrücken, et al. (1986) Archives of Biochemistry and Biophysics, 244: 169-178.

Kane, et al. (1971) Journal of Biological Chemistry, 246: 4308-4316.

Fischer, et al. (1987) Archives of Biochemistry and Biophysics, 256: 325-334.

Chiesa, et al., Gene, (1994) 144: 145-146.

(Continued)

Primary Examiner—David H Kruse (74) Attorney, Agent, or Firm-Howrey LLP

(57)**ABSTRACT**

Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop

27 Claims, 70 Drawing Sheets

US RE39,247 E

Page 2

OTHER PUBLICATIONS

Kishore, et al., 1988 From Biochemistry to Genetic Engineering of Glyphosate Tolerance, American Chemical Society, Chapter 3, pp. 37-48.

Schulz, et al. (1985) FEMS Microbiology Letters, 28:

Padgette, et al. (1996) Herbicide-Resistant Crops, Chapter 4, pp. 53-84.

Padgette, et al. (1987) Archives of Biochemistry and Biophysics, 258: 564-573.

Lorz, et al. (1985) Mol. Gen. Gene, 199:178-182. Gasser, et al., (1989), Science, 244: 1293-1299.

Fromm, et al. (1990) Bio/Technology, 8: 833-839.

Gordon-Kamm, et al. (1990) Plant Cell, 2: 603-618.

Armstrong, et al. (1995) Crop Sci., 35:550-557.

Christou, et al. (1991) Bio/Technology, 9: 957–962.

Vasil, et al. (1992) Bio/Technology, 10: 667-674. Flavell, et al. (1987) Nature, 307: 108-109.

Goodman, et al. (1987) Science, 236: 48-54.

Paszkowski, et al. (1984) EMBO Journal, 3: 2717-2722.

Potrykus, et al. (1985) Mol. Gen. Genet., 199: 183-188.

Shimamoto, et al. (1989) Nature, 338: 274-276.

Rhodes, et al. (1988) Science, 240: 204-207.

Horn, et al. (1988) Plant Cell Reports, 7: 469-472.

Jahne, et al. (1995), Euphytica, 85: 35-44.

McCabe, et al. (1988) Bio/Technology, 6: 923-926.

Klein, et al. (1988) Proc. Natl. Acad. Sci. USA, 85: 8502-8505.

Christou, et al. (1988) Plant Physiol., 87: 671-674. Cheng, et al. (1996) Plant Cell Reports, 15: 653-657.

McKently, et al. (1995) Plant Cell Reports, 14: 699-703.

Yang, et al. (1996) Plant Cell Reports, 15: 459-464. Grant, et al. (1995) Plant Cell Reports, 15: 254-258.

De Kathen, et al. (1990) Plant Cell Reports, 9: 276-279.

Zhang, et al. (1988) *Plant Cell Reports*, 7: 379–384.

Weeks, et al. (1988) Plant Physiol., 102: 1077-1084.

Schroeder, et al. (1993) Plant Physiol., 101: 751-757. Wan, et al. (1994) Plant Physiol., 104: 37-48.

Bytebier, et al. (1987) Proc. Natl. Acad. Sci. USA, 84: 5345-5349.

Koziel, et al. (1993) Bio/Technology, 11: 194-200.

Somers, et al. (1992) Bio/Technology, 10: 1589-1594. Wang, et al. (1992) Bio/Technology, 10: 691-696.

Toryama, et al. (1990) Bio/Technology, 6: 1072-1074.

Zhang, et al. (1988) Theor. Appl. Genet., 76: 835-840.

Battraw, et al. (1990) Plant Mol. Biol., 15: 527-538. Davey, et al. (1989) Plant Mol. Biol., 13: 273-285.

Park, et al. (1996) Plant Mol. Biol., 32: 1135-1148.

De la Pena, et al. (1987) Nature, 325: 274-276.

Bower, et al. (1992) Plant Journal, 2: 409-416.

Davey, et al. (1986) "Transformation of the Genomic Expression of Plant Cells," in *Plasticity in Plants, Symposia*

of the Society for Experimental Biology, pp. 85–120. Fitzgibbon and Braymer (1990) Appl. Envir. Microbiol.

56:3382-3388. Schultz, et al. (1984) Arch. Microbiol., 137:121-123.

English language translation of excerpt, Chemistry and

Biology, Bioscience and Biotechnology, (1991) 29:734. English language translation of excerpt, Okada (ed.) "Gene Expression and Regulation in Higher Plants," in Develop-

ments of Molecular Biology, No. 13, Maruzen Co., Japan., 1990.

English language translation of excerpt, Uozumi (1993) Plant Engineering, p. 111, Maruzen Co., Ltd. Minutes of the Public Oral Proceedings before the EPO

English language translation of excerpt, Nagata (1993), Plant Protoplast and Cell Engineering, p. 104, Kodansha

Technical Board of Appeal, on Apr. 6, 2005, for European

Patent No. 0 546,090.

Co., Ltd.

"Monsanto Holds Right to Patent Herbicide-Resistant Seeds, European Patent Office Says," Associated Press, Apr. 9, 2005.

"Efficient Transfer Of A Glyphosate Tolerance Gene Into Tomato Using A Binary Agrobacterium Tumefaciens Vector," L. Fillati, J. Kiser, R. Rose, and L. Comai, Bio/ Technology 5:726-730 (1987).

"Chloroplast Transport Of A Ribulose Biphosphate Carboxylase Small Subunit-5-Enolpyruvyl 3-Phosphoshikimate Synthase Chimeric Protein Requires Part Of The Mature Small Subunit In Addition To The Transit Peptide, L. Comai, N. Larson-Kelly, J. Kiser, C. Mau, A. Pokalsky, C. Shewmaker, K. McBride, A. Jones, and D. Stalker, J. Biol. Chem. 263:15104-15109 (1988).

"The Organization And Nucleotide Sequence Of the Bacillus Subtilis hisH, tyrA and AroE Genes," D. Henner, L. Band, G. Glaggs, and E. Chen, Gene 49:147–152 (1986).

"Pseudomonas sp. Strain PG2082: Uptake Of Glyphosate And Cloning Of A Gene Which Confers Increased Resistance To Glyphosate," J. Fitzgibbon, Ph.D. (Dec. 1998).

"Gene Transfer To Cereal: An Assessment," I. Potrykus, Bio/Technology 1:535-542 (1990).

"Genetic Aspects Of Aromatic Amino Acid Biosynthesis In Lactococcus Lactis," H. Griffin, and M. Gasson, Mol. Gen. Genet. 246:119-127 (1995).

"Targeting A Herbicide-Resistant Enzyme From Escherichia Coli To Chloroplasts Of Higher Plants," G. della-Cioppa, S. Bauer, M. Taylor, D. Rochester, B. Klein, D. Shah, R. Fraley, and G. Kishore, Bio/Technology 5:579-584 (1987).

"Production Of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer," M. Hinchee, D. Connor-Ward, C. Newell, R. McDonnell, S. Sato, C. Gasser, D. Fischhoff, D. Re, R. Fraley, and R. Horsch, Bio/Technology 6:915-926 (1988).

"Chloroplast Delivery Of A Bacterial EPSPS Synthase In Transgenic Plants And Tolerance To Glyphosate," N. Larson-Kelly, L. Comai, J. Kiser, C. Mau, A. Pokalsky, K. McBride, A. Jones, C. Shewmaker, and D. Stalker, Biochem. Biotech. 1:37-40 (1998).

"Glyphosate Tolerant Flax Plants From Agrobacterium Mediated Gene Transfer," M. Jordan and A. McHughen, Plant Cell Reports 7:281-284 (1988).

"Agrobacterium-Mediated Gene Transfer To Plants; Engineering Tolerance To Glyphosate," R. Horsch, R. Fraley, S. Rogers, H. Klee, J. Fry, M. Hinchee, and D. Shah, Iowa State Journal of Research 62:487-502 (1988).

"The Use Of Bacterial Genes Encoding Herbicide Tolerance In Constructing Transgenic Plants, "E. Piruzian, V. Mett, N. Kobets, and F. Urmeeva, Microbiological Sciences 5:242-248 (1988).

"Cloning Of An Arabidopsis Thaliana Gene Encoding 5-Enolpyruvylshikimate-3-Phosphate Synthase: Sequence Analysis And Manipulation To Obtain Glyphosae-Tolerant Plants," H. Klee, Y. Muskopf, and C. Gasser, Mol. Gen. Gene. 210:437-442 (1987).

"Genetically-Engineered Herbicide Tolerance—Technical And Commercial Considerations," R. Fraley, G. Kishore, C. Gasser, S. Padgette, R. Horsch, S. Rogers, G. Della-Cioppa, and D. Shah, British Crop Protection Conference—Weeds 2:463–471 (1987).

"Engineering Herbicide Tolerance In Transgenic Plants," D. Shah, R. Horsch, H. Klee, G. Kishore, J. Winter, N. Tumer, C. Hironaka, P. Sanders, C. Gasser, S. Aykent, N. Siegel, S. Rogers, and R. Fraley, *Science* 233:478–481 (1986).

"An Altered aroA Gene Product Confers Resistance to the Herbicide Glyphosate," L. Comai, L. Sen, and D. Stalker, Science 221:370–371 (1983).

"A Single Amino Acid Substitution In The Enzyme 5–Enolpyruvylshikimate–3–Phosphate Synthase Confers Resistance To The Herbicide Glyphosate," D. Stalker, W. Hiatt, and L., Comai, J. Biol. Chem. 260:4724–4728 (1985). "Engineering Herbicide Resistance In Plants," J. Botterman and J. Leemans, Trends In Genetics 4:219–222 (1988).

"Glyphosate Tolerant Variants Of Petunia EPSP Synthase," D. Eichholtz, C. Gasser, D. Re, S. Padgette, G. Kishore, D. Shah, and R. Fraley, American Society of Plant Physiologists, Sup. To Plant Physiology (1989).

"EPSP Synthase—From Biochemistry To Genetic Engineering Of Herbicide Tolerance," G. Kishore, S. Padgette, G. Della–Cioppa, D. Biest Re, L. Brundage, D. Shah, C. Gasser, P. Sanders, H. Klee, R. Horsch, N. Hoffmann, and R. Fraley, American Society of Biological Chemists, 78th Annual Meeting, Abstract # 754 (1987).

"Genetic Engineering Of Plants For Herbicide Resistance Expression Of An RuBP Carboxylase Small Subunit-EPSP Synthase Chimeric Gene, Chlorophast Transport Of The Hybrid Protein, And Tolerance Phenotype In Transgenic Plants," L. Comai, N. Larson-Kelly, J. Kiser, A. Jones, D. Stalker, P. Moran, K. Kiehne, and A. Koning, Vortr. Pflanzenzüchtg 16:441–454 (1989).

"Biocontrol Of Plant Diseases vol. II" K. Mukerji and K. Garg, Editors, CRC Press Inc. (1988).

"The Development Of Herbicide Resistant Crops," B. Mazur and S. Falco, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:441–470 (1989).

"Producing Herbicide—Resistant Plants By Gene Transfer Technology". D. Stalker, in "Target Sites of Herbicide Action", P. Boger and G. Sandmann Editors, 1989.

"Genetic Engineering Of Tobacco For Resistance To The Herbicide Glyphosate," L. Comai, D. Stalker, W. Hiatt, G. Thompson, and D. Facciotti, (abstract, 1985).

"Performance Assessment Under Field Conditions Of A Rapid Immunological Test For Transgenic Soybeans," J. Fagan, B. Schoel, A. Haegert, J. Moore, and J. Beeby, International Journal of Food Science and Technology 36:357–367 (2001).

"Expression In Plants of a Mutant aroA Gene from Salmonella Typhimurium Confers Tolerance to Glyphosate," L. Comai, D. Facciotti, W.R. Hiatt, G. Thompson, R.E. Rose & D. M. Stalker, Nature 317:741–744 (1985).

Defendant's Second Supplemental Answers to Plaintiff's Third Set of Interrogatories to Mitchell Scruggs, as filed May 30, 2004, in *Monsanto Company* v. *Scruggs*, 3:00CV161–P–D, U.S. District Court, Northern District of Mississippi, Western Division.

Defendants' Motion for Summary Judgmnt on Plaintiff's Patent Infringement Claim, Count One, Third Amended Complaint, dated Aug. 8, 2003, as filed in *Monsanto Company v. Scruggs*, 3:00CV161–B–A, U.S. District Court, Northern District of Mississippi, Western Division.

Memorandum in Support of Defendants' Motion for Summary Judgment on Plaintiff's Patent Infringement Claim, Count One, Third Amended Complaint (with exhibits), dated Aug. 8, 2003, as filed in *Monsanto Company* v. *Scruggs*, 3:00CV161–B–A, U.S. District Court, Northern District of Mississippi, Western Division.

Defendants' Response to Plaintiff's Notice of Dismissal of Count One (and Rebuttal to Monsanto's Response to Defendant's Motion for Summary Judgment on Count One (with exhibits), dated Jan. 12, 2004, as filed in *Monsanto Company* v. *Scruggs*, 3:00CV161–B–A, U.S. District Court, Northern District of Mississippi, Western Division.

Defendants' Motion for Establishment of Certain Facts, Invalidation of Patent Claims and Expenses, as a Sanction, and Defendants' Opposition to Monsanto's Notice of Dismissal of Count One, Third Amended Complaint with Prejudice and Motion to Dismiss Defendants' Counterclaim Alleging Invalidity of the '435 Patent for Lack of Subject Matter Jurisdiction Filed Dec. 8, 2003, dated Dec. 31, 2003, as filed in *Monsanto Company v. Scruggs*, 3:00CV161–B–A, U.S. District Court, Northern District of Mississippi, Western Division.

Memorandum Brief in Support of Defendants' Motion for Establishment of Certain Facts, Invalidation of Patent Claims and Expenses, as a Sanction and in Opposition to Monsanto's Motion to Dismiss Counterclaim (with exhibits), dated Dec. 31, 2003, as filed in *Monsanto Company* v. *Scruggs*, 3:00CV161–B–A, U.S. District Court, Northern District of Mississippi, Western Division.

Amended Answer, Affirmative Defenses and Counterclaims, as filed Jun. 30, 2000, in *Monsanto Co.* v. *Roush*, 1:00CV0208, U.S. District Court for the Norther District of Indiana, Fort Wayne Division.

Amended Answer, Affirmative Defenses and Counterclaims, as filed Dec. 21, 2000, in *Monsanto Co. v. Roush*, 1:00CV0208, U.S. District Court for the Northern District of Indiana, Fort Wayne Division.

Defendants' Supplemental Answers to Monsanto's Third Set of Interrogatories to Defendants, dated Sep. 28, 2001, in *Monsanto Co. v. Roush,* 1:00CV0208, U.S. District Court for the Northern District of Indiana, Fort Wayne Division.

* cited by examiner

U.S. Patent Aug. 22, 2006 Sheet 2 of 70	US RE39,247 E
AAA 6717 TTC 6777 CTG 6837 CTA 6897	TATAAGAAGGCATTCCCATTTGAAGATCATCAAGATCATTGATTAAAGAG 6898 ATATTCTTCCGTAAGTAAACTTCCTAGTAGTCTATGATTGGTTATAAAGAG RE36'5-6 ATATTCTTCCGTAAGGGTAAACTTCCTAGTAGTCTATGATTGGTTATAAAGAG F 1 Gure 1B

Aug. 22, 2006

Sheet 3 of 70

Figure 2

U.S. Patent		Aug. 22	, 2006	Sheet 4 of 70		US RE3	US RE39,247 E	
09	106	154	202	250	298	346		
AAGCCCGCGT TCTCTCCGGC GCTCCGCCCG GAGAGCCGTG GATAGATTAA GGAAGACGCC	ATG TCG CAC GGT GCA AGC AGC CGG CCC GCA ACC GCC CGC AAA TCC Met Ser His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser 1	GGC CTT TCC GGA ACC GTC CGC ATT CCC GGC GAC AAG TCG ATC TCC 1801	CGG TCC TTC ATG TTC GGC GGT CTC GCG AGC GGT GAA ACG CGC ATC Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile 35	GGC CTT CTG GAA GGC GAC GTC ATC AAT ACG GGC AAG GCC ATG Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys Ala Met 50	GCC ATG GGC GCC AGG ATC CGT AAG GAA GGC GAC ACC TGG ATC ATC Ala Met Gly Ala Arg Ile Arg Lys Glu Gly Asp Thr Trp Ile Ile 70	GGC GTC GGC AAT GGC GGC CTG GCG CCT GAG GCG CCG CTC GAT Gly Val Gly Asn Gly Gly Leu Leu Ala Pro Glu Ala Pro Leu Asp 85	Figure 3A	
AA	Ö	TCT Ser	CAC His	ACC	CAG Gln	GAT Asp 80		

U.S. Pate	ent A	Aug. 22, 200	o6 Sh	eet 5 of 70		US RE39,247 E	
394	442	490	538	586	634	682	
GGG Gly	AAG Lys	CAG Gln	CCG	CAG Gln 175	ACG Thr	CTG Leu	
GTC Val 110	ACA Thr	GTG Val	GGG G1y	GCA Ala	ATC Ile 190	ATG Met	
CTC	CTC Leu 125	GGC Gly	CGC Arg	TCC	GGC Gly	AAG Lys 205	3B
GGC G1y	TCG	ATG Met 140	TTG	GCC Ala	CCC	GAA Glu	a)
ATG Met	GCC Ala	GAA Glu	ACC Thr 155	ATG Met	ACG Thr	ACG Thr	ŭ Ľ
ACC Thr	GAC Asp	CGC Arg	GTT Val	CCG Pro 170	AAC Asn	CAT His	Figure
CTG Leu 105	GGC Gly	CTG Leu	CCC	GTG Val	CTC Leu 185	gat Asp	H
CGC Arg	ATC Ile 120	CCG Pro	CTT Leu	CGC	66C 61y	CGC Arg 200	
TGC Cys	TTC Phe	AAC Asn 135	CGT Arg	TAC	GCC Ala	ACG Thr	
GGC Gly	ACC Thr	TTG Leu	GAC ASP 150	ACC Thr	CTC Leu	ATG Met	
ACG Thr	AGC Ser	GTG Val	GGT Gly	ATC Ile 165	CTG Leu	ATC Ile	
GCC Ala 100	GAC Asp	CGC Arg	GAC Asp	CCG	GTG Val 180	CCG	
GCC Ala	TTC Phe 115	GGC Gly	GAA G1u	ACG Thr	GCC Ala	GA G Gl u 195	
AAT Asn	GAT Asp	ATG Met 130	TCG	CCG	TCC	ATC Ile	
GGC G1y	TAC Tyr	CCG Pro	AAA Lys 145	ACG Thr	AAG Lys	GTC Val	
TTC	GTC Val	CGC	GTG Val	AAG Lys 160	GTG Val	ACG Thr	

U.S. P	U.S. Patent A		2006	Sheet 6 of 70		US RE39,247 E	
730	778	826	874	322	970	018	
		w	ω	σ	O1	10	
GTG val	ATC	. Ala 255	ASD	GAC BASD	GAC	GAC Asp	
GGC Gly	GTC Val	GCG Ala	ATG Met 270	GCC Ala	GCG Ala	GAA Glu	
GAC Asp	CAA Gln	GTT Val	CTG	GGC G1 <u>y</u> 285	GTG Val	CCG Pro	3C
GCG Ala	66C 61Y	CTG	GTG Val	ATG Met	GAC ASP 300	GTG Val	Φ
GAT Asp	ACC Thr 235	CCG	AAC Asn	GAA Glu	GAA Glu	ACG Thr 315	gur
ACG Thr	CTC	TTC Phe 250	CTC	CAG Gln	GGC G1y	GTC Val	-1
GAG Glu	AAG Lys	GCC	ATC 11e 265	CTG	GGC G1y	GGC Gly	Ē4
GTC Val	GGC Gly	ACG Thr	ACC Thr	ACG Thr 280	GCC Ala	AAG Lys	
ACC Thr	CGC	TCG Ser	GTC Val	CTG	CTT Leu 295	CTG Leu	
CTT Leu	GGC Gly 230	TCC	gac Asd	ATC Ile	CGC	ACG Thr 310	
AAC Asn	GAA Glu	CCG Pro 245	TCC	CTC	CCG Pro	TCC	
GCC	CTG	GAC Asp	GGC G1Y 260	66C G1y	AAC Asn	TCC Ser	
GGC G1y	CGC Arg	66C G1y	CCG	ACC Thr 275	ATC Ile	CGC	
TTT Phe	ATC Ile	CCG	GTT Val	CGC Arg	GTC Val 290	GTT Val	-
GGC G1y	ACC Thr 225	GTG Val	CTT Leu	ACC Thr	GAA Glu	CGC Arg 305	
CAG Gln	CGC Arg	GAC ASP 240	CTG Leu	CCC	ATC Ile	CTG	

U.S. Pat	ent	Aug. 22, 20	006	Sheet 7 of 70)	US RE39,247 E	
1066	1114	1162	1210	1258	1306	1354	
r TCG ATG ATC GAC GAA TAT CCG ATT CTC GCT GTC GCC GCC s ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala 3.25	GAA GGG GCG ACC GTG ATG AAC GGT CTG GAA GAA CTC CGC Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg 340	AGC GAC CGC CTC TCG GCC GTC GCC AAT GGC CTC AAG CTC Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu 355	GAT TGC GAT GAG GGC GAG ACG TCG CTC GTC GTG CGC GGC ASP Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly 375	GGC AAG GGG CTC GGC AAC GCC TCG GGC GCC GCC GTC GCC GCC GTC GCC GTC GIY Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala 390	GAT CAC CGC ATC GCC ATG AGC TTC CTC GTC ATG GGC CTC ASP His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu 415	AAC CCT GTC ACG GTG GAC GAT GCC ACG ATG ATC GCC ACG ASD Pro Val Thr Val ASD ASD Ala Thr Met Ile Ala Thr 420	Figure 3D
CCT Pro	GCG Ala	GAA Glu	: GTG Val 370		CTC	GAA Glu	
GCG Ala	TTC Phe	AAG	GGC Gly	CCT Pro 385	CAT	TCG	
CGC Arg 320	GCC Ala	GTC Val	aat Asn	CGC Arg	ACC Thr 400	GTG Val	

U.S. Pate	ent A	Aug. 22	, 2006		Sheet	8 of 7	0		US	RE39),247 E
1402	1456	1516	1576	1636	1696	1756	1816	1876	1936	1982	
AGC TTC CCG GAG TTC ATG GAC CTG ATG GCC GGG CTG GGC GCG AAG ATC Ser Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile 445	GAA CTC TCC GAT ACG AAG GCT GCC TGATGACCTT CACAATCGCC ATCGATGGTC Glu Leu Ser Asp Thr Lys Ala Ala 455	CCGCTGCGGC CGGCAAGGGG ACGCTCTCGC GCCGTATCGC GGAGGTCTAT GGCTTTCATC	ATCTCGATAC GGGCCTGACC TATCGCGCCA CGGCCAAAGC GCTGCTCGAT CGCGGCCTGT	CGCTTGATGA CGAGGCGGTT GCGGCCGATG TCGCCCGCAA TCTCGATCTT GCCGGGCTCG	ACCEGTCGGT GCTGTCGGCC CATGCCATCG GCGAGGCGGC TTCGAAGATC GCGGTCATGC	CCTCGGTGCG GCGGGCGCTG GTCGAGGCGC AGCGCAGCTT TGCGGCGCGT GAGCCGGGCA	CGGTGCTGGA TGGACGCGAT ATCGGCACGG TGGTCTGCCC GGATGCGCCG GTGAAGCTCT	ATGTCACCGC GTCACCGGAA GTGCGCGCGA AACGCCGCTA TGACGAAATC CTCGGCAATG	GCGGGTTGGC CGATTACGGG ACGATCCTCG AGGATATCCG CCGCCGCGAC GAGCGGGACA	TGGGTCGGGC GGACAGTCCT TTGAAGCCCG CCGACGATGC GCACTT	Figure 3E

U.S. Patent	Aug. 22,	2006	Sheet 9 of 7	70	US RE3	9,247 E
60	160	208	256	304	352	
GTAGCCACAC ATAATTACTA TAGCTAGGAA GCCCGCTATC TCTCAATCCC GCGTGATCGC GCCAAAATGT GACTGTGAAA AATCC ATG TCC CAT TCT GCA TCC CCG AAA CCA Met Ser His Ser Ala Ser Pro Lys Pro	GCA ACC GCC CGC TCG GAG GCA CTC ACG GGC GAA ATC CGC ATT CCG Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg Ile Pro 10	GGC GAC AAG TCC ATC TCG CAT CGC TCC TTC ATG TTT GGC GGT CTC GCA Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 30	TCG GGC GAA ACC CGC ATC ACC GGC CTT CTG GAA GGC GAG GAC GTC ATC Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile 55	AAT ACA GGC CGC GCC ATG CAG GCC ATG GGC GCG AAA ATC CGT AAA GAG Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg Lys Glu 60	GGC GAT GTC TGG ATC ATC AAC GGC GTC GGC AAT GGC TGC CTG TTG CAG Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu Leu Gln 75	Figure 4A

U.S. Pat	ent A	Aug. 22, 2006	5 Shee	et 10 of 70		US RE39,247 E		
400	448	496	544	592	640	688		
CTC Leu 105	GGC G1У	TTG Leu	CCG Pro	GTG Val	CTC Leu 185	GAC Asp		
CGC Arg	ATC Ile 120	CCG Pro	ATG Met	CGC	GGT Gly	CGC Arg 200		
GCG Ala	TTT Phe	AAC Asn 135	CGC	TAT Tyr	GCC Ala	ACC Thr	4 B	
66C 61Y	TCC	CTG	GAC ASD 150	ACC Thr	CTC	ATG Met	W	
ACC Thr	ACC Thr	GTG Val	GGC G11	ATC 11e 165	CTG	GTC Val	ür	
GGA G1y 100	AAG Lys	CGC	GAT ASP	CCG	GTG Val 180	CCG	Figur	
GCC Ala	ATG Met 115	GGC Gly	GCC Ala	AAT Asn	GCC Ala	GAG Glu 195	 	
AAT Asn	GAC	ATG Met 130	GCA Ala	GCC Ala	TCC	ATC Ile		
GGC Gly	TAT TYr	CCG	GAA Glu 145	ACG Thr	AAA Lys	GTC Val		
TTC	ACC Thr	CGC	GTG Val	AAG Lys 160	GTA Val	ACC		
GAT ASP 95	GGC Gly	AAG Lys	CAG Gln	CCG	CAG Gln 175	ACC Thr		
CTC	GTC Val 110	TCG	GTT Val	GGC Gly	GCG Ala	GTC Val 190		
GCG Ala	CTT Leu	CTG Leu 125	GGC Gly	ATC Ile	TCC	GGC Gly		
GCT Ala	GGC G1y	TCG	ATG Met 140	CTG	GCC Ala	CCG		
GAA	ATG	GCC Ala	GAA Glu	ACG Thr 155	ATG Met	ACG		
CCC Pro 90	ACC	GAC	CGC	CTG Leu	CCG Pro 170	AAC		

U.S. Pate	ent .	Aug. 22, 2000	6 She	et 11 of 70		US RE39,2	247 E
736	784	832	880	928	976	1024	
	· <u></u>		F. 4) .0	rh	<i>r</i> . b	F. L. N.	
GAG Glu	AAG Lys	GCC Ala	ATC 11e 265	TTG Leu	66C G1y	GGC Gly	
GTC Val	GGC Gly	ACC Thr	ACC Thr	ACC Thr 280	GCA	AAG Lys	
ACG Thr 215	CAG Gln	TCG	GTC Val	CTC Leu	CTT Leu 295	CTC	4 C
CTC Leu	GGC Gly 230	TCA Ser	GAC	ATC Ile	CGT	AAG Lys 310	Ø
GAC Asp	ACC Thr	CCG Pro 245	TCC Ser	CTC	GCC Ala	TCG	ur
GCC Ala	ATC	GAT Asp	GGT G1y 260	GGC Gly	AAT Asn	GCT .Ala	Figur
66C 61y	CGC Arg	GGC	GAA Glu	ACC Thr 275	CTC	AGG	14
TTT Phe 210	ATC Ile	CCG Pro	GTG Val	CGT Arg	GTG Val 290	GTC Val	
66C 61Y	CAT His 225	GTG Val	CTG	ACC Thr	GAA Glu	CGC Arg 305	
CAG Gln	CGC	GAC Asp 240	CTT Leu	CCG	ATC Ile	CTG Leu	
CTG	GTG Val	ATC Ile	GCC Ala 255	AAC Asn	GAT Asp	GAT Asp	
ATG Met	GGC G1y	ACC Thr	GCC	ATG Met 270	GCC Ala	GCC	
AAG Lys 205	GAT Asp	CAG Gln	GTT Val	CTG	GGC G1y 285	GTC Val	
GAA Glu	AAG Lys 220	6GC 61y	CTC	GTG Val	ATG Met	GAC ASD 300	
ACC Thr	GAC Asp	GTC Val 235	CCG	AAC Asn	GAA Glu	GAA Glu	
CAC His	ACC Thr	CTT	TTC Phe 250	CGC Arg	CAG Gln	GGC	

U.S. Pate	nt A	aug. 22, 2000	6 Shee	et 12 of 70	US RE39,247 E		
1072	1120	1168	1216	1264	1312	1360	
T CCG r Pro	G GAC t Asp 345	G GTC a Val 0	G ATG u Met	c eec y gly	c GTG u Val	c ATG n Met 425	
A TAT 1 TYY	3 ATG	A GCG A Ala 360	GAG Glu	3 GGC 7 Gly	CTC	AAC Asn	
GAA Glu	GTG Val	GCA Ala	GGC G1Y 375	GGC G1y	TTC Phe	AGT Ser	4 D
GAC Asp	ACC Thr	CTG	GAA Glu	CTG Leu 390	AGC Ser	GAC Asp	O
ATC Ile 325	GAA Glu	CGT Arg	ACC Thr	GGA Gly	ATG Met 405	GAC Asp	Figur
ATG Met	GGC Gly 340	GAT Asp	TGC Cys	AAG Lys	GCG Ala	GTT Val 420	با ا
TCG Ser	GAA Glu	TCG Ser 355	GAT Asp	ggC	ATC Ile	ACG Thr	ഥ
CCG Pro	GCG Ala	GAA Glu	GTC Val 370	GAC Asp	CGT Arg	GTG Val	
GCG	TTC	AAG Lys	GGC Gly	CCĊ Pro 385	CAT His	CCG Pro	
CGT Arg 320	TCC	GTC Val	AAC Asn	CGC	GAT ASD 400	AAG Lys	
GAA Glu	GCC Ala 335	CGC Arg	GCC Ala	GGC Gly	CTC	GAA G1u 415	
CCG	GCC Ala	CTG Leu 350	GAA Glu	CGC Arg	CAT His	GCG Ala	
CCG	ATT Ile	GAA Glu	CTT Leu 365	GrT Val	ACC Thr	GCG Ala	
GTT Val	GCG Ala	GAC Asp	66C 61y	ACG Thr 380	GCA	CTT	
GTC Val 315	CTG	CTC	CGC Arg	CTG	GTT Val 395	GGC G1y	
GTC	GTC Val 330	GGG 61y	GCA Ala	TCG	ACG (Thr	ATG (Met (

U.S. Patent	t Aug	. 22, 2006	She	et 13 o	of 70		US RE39,247 E
	1408	1462	1522	1582	1642	1673	
	ATC GCC ACG TCC TTC CCC GAA TTC ATG GAC ATG ATG CCG GGA TTG GGC Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly Leu Gly 435	GCA AAG ATC GAG TTG AGC ATA CTC TAGTCACTCG ACAGCGAAAA TATTATTTGC Ala Lys Ile Glu Leu Ser Ile Leu 445	GAGATIGGGC ATTATTACCG GTIGGTCTCA GCGGGGGTTT AATGICCAAT CTICCATACG	TAACAGCATC AGGAAATATC AAAAAGCTT TAGAAGGAAT TGCTAGAGCA GCGACGCCGC	CTAAGCTTTC TCAAGACTTC GTTAAAACTG TACTGAAATC CCGGGGGGTC CGGGGGATCAA	ATGACTTCAT TTCTGAGAAA TTGGCCTCGC A	Figure 4E

U.S. Pate	ent	Aug. 22, 200	06 Sho	eet 14 of 70	1	US RE39),247 E
41	8	0	80	v	4	8	
54	102	15	19	24	29	34:	
GTGATCGCGC CAAAATGTGA CTGTGAAAAA TCC ATG TCC CAT TCT GCA TCC CCG Met Ser His Ser Ala Ser Pro 1	AAA CCA GCA ACC GCC CGC TCG GAG GCA CTC ACG GGC GAA ATC CGC Lys Pro Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg 10	ATT CCG GGC GAC AAG TCC ATC TCG CAT CGC TCC TTC ATG TTT GGC GGT Ile Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly 35	CTC GCA TCG GGC GAA ACC CGC ATC ACC GGC CTT CTG GAA GGC GAG GAC Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp 40	GTC ATC AAT ACA GGC CGC GCC ATG CAG GCC ATG GGC GCG AAA ATC CGT Val 11e Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys 11e Arg 65	AAA GAG GGC GAT GTC TGG ATC ATC AAC GGC GTC GGC AAT GGC TGC CTG Lys Glu Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu 85	TTG CAG CCC GAA GCT GCG CTC GAT TTC GGC AAT GCC GGA ACC GGC GCG Leu Gln Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala 95	Figure 5A

U.S. Patent		Aug. 22, 20	006 SI	neet 15 of 7	0	US RE3	US RE39,247 E	
390	438	486	534	582	630	678		
TTT	AAC Asn 135	CGC Arg	TAT Tyr	GCC Ala	ACC Thr	ACG Thr 215		
TCC	CTG	GAC ASP 150	ACC Thr	CTC	ATG Met	CTC Leu		
ACC Thr	GTG Val	GGC Gly	ATC 11e 165	CTG	GTC Val	gac Asp	5 B	
AAG Lys	CGC Arg	GAT Asp	CCG	GTG Val 180	CCG	GCC Ala	a)	
ATG Met 115	66C 61y	GCC Ala	AAT Asn	GCC	GAG Glu 195	66C G1Y	u r	
GAC Asp	ATG Met 130	GCA Ala	GCC	TCC	ATC Ile	TTT Phe 210	Figur	
\mathtt{TAT}	CCG	GAA Glu 145	ACG Thr	AAA Lys	GTC Val	GGC Gly	H	
ACC Thr	CGC	GTG Val	AAG Lys 160	GTA Val	ACC Thr	CAG Gln		
66C 61y	AAG Lys	CAG Gln	CCG	CAG Gln 175	ACC Thr	CTG		
GTC Val 110	TCG	GTT Val	GGC Gly	GCG Ala	GTC Val 190	ATG Met		
CTT Leu	CTG Leu 125	66C G1y	ATC	TCC	GGC G1y	AAG Lys 205		
GGC Gly	TCG Ser	ATG Met 140	CTG	GCC	CCG Pro	GAA Glu		
ATG Met	GCC Ala	GAA Glu	ACG Thr 155	ATG Met	ACG Thr	ACC Thr		
ACC Thr	GAC Asp	CGC	CTG	CCG Pro 170	AAC Asn	CAC His		
CTC Leu 105	GGC Gly	TTG Leu	CCG	GTG Val	CTC Leu 185	GAC Asp		
CGC	ATC Ile 120	CCG	ATG Met	CGC	$_{\rm G1y}^{\rm GGT}$	CGC Arg 200		

U.S. Patent		Aug. 22, 2006		eet 16 of 70		US RE39,247 E	
726	774	822	870	918	996	1014	
CAG Gln	TCG Ser	GTC Val	CTC	CTT Leu 295	CTC	GAA Glu	
GGC Gly 230	TCA Ser	GAC Asp	ATC Ile	CGT Arg	AAG Lys 310	GAC Asp	
ACC Thr	CCG Pro 245	TCC	CTC	GCC, CGT Ala Arg	TCG	ATC Ile 325	5 C
ATC Ile	GAT Asp	GGT G1y 260	66c 61y	AAT Asn	GCT Ala	ATG Met	(1)
CGC Arg	66C G1y	GAA Glu	ACC Thr 275	CTC	AGG Arg	TCG Ser	ur
ATC Ile	CCG Pro	GTG Val	CGT Arg	GТG Val 290	GTC Val	CCG	Figur
CAT His 225	GTG Val	CTG	ACC Thr	GAA Glu	CGC Arg 305	GCG Ala	F 4
CGC	GAC Asp 240	CTT	CCG	ATC Ile	CTG Leu	CGT Arg 320	
GTG Val	ATC Ile	GCC Ala 255	AAC Asn	GAT Asp	GAT	GAA Glu	
GGC Gly	ACC Thr	GCC Ala	ATG Met 270	GCC Ala	GCC Ala	CCG	
GAT Asp	CAG Gln	GTT Val	CTG	GGC G1y 285	GTC Val	CCG	
AAG Lys 220	GGC Gly	CTC Leu	GTG Val	ATG Met	GAC Asp 300	GTT Val	
GAC Asp	GTC Val 235	CCG	AAC Asn	GAA Glu	GAA Glu	GTC Val 315	
ACC	CTT Leu	TTC Phe 250	CGC	cAG Gln	GGC Gly	GTC Val	
GAG Glu	AAG Lys	GCC Ala	ATC Ile 265	TTG	GGC Gly	66C 61y	
GTC Val	GGC G1y	ACC Thr	ACC Thr	ACC Thr 280	GCA Ala	aag Lys	

U.S. Pate	ent	Aug. 22, 200	6 She	et 17 of 70		US RE39,2	247 E
1062	1110	1158	1206	1254	1302	1350	
GTG Val	GCA Ala	GGC Gly 375	GGC Gly	TTC	AGT Ser	GGA Gly	
ACC Thr	CTG	GAA Glu	CTG Leu 390	AGC Ser	GAC Asp	CCG	
GAA	CGT Arg	ACC Thr	GGA Gly	ATG Met 405	GAC	ATG	5 D
GGC G1Y 340	GAT	TGC Cys	AAG Lys	GCG	GTT Val 420	ATG Met	U)
GAA	TCG Ser 355	GAT	66C 61y	ATC Ile	ACG	GAC ASD 435	ure
GCG Ala	GAA Glu	GTC Val 370	GAC Asp	CGT Arg	GTG Val	ATG Met	Figur
TTC	AAG Lys	GGC G1y	CCC Pro 385	CAT His	CCG	TTC Phe	ĬŽ4
TCC Ser	GTC Val	AAC Asn	CGC	GAT Asp 400	AAG Lys	GAA Glu	
GCC Ala 335	CGC Arg	GCC Ala	GGC	CTĊ L e u	GAA Glu 415	CCC Pro	
GCC Ala	CTG Leu 350	GAA Glu	CGC Arg	CAT His	GCG Ala	TTC Phe 430	
ATT Ile	GAA Glu	CTT Leu 365	GTT Val	ACC Thr	GCG Ala	TCC	
GCG Ala	GAC Asp	GGC Gly	ACG Thr 380	GCA Ala	CTT	ACG Thr	
CTG	CTC	CGC Arg	CTG Leu	GTT Val 395	GGC Gly	GCC Ala	
GTC Val 330	GGG Gly	GCA Ala	TCG	ACG Thr	ATG Met 410	ATC Ile	
CCG	GAC ASD 345	GTC Val	ATG Met	66C G1Y	GTG	ATG Met 425	
TAT Ty r	ATG Met	GCG Ala 360	GAG Glu	GGC Gly	CTC	AAC Asn	

U.S.	Patent	Aug. 22, 2006	6 Sheet 18 of 70			US RE39,247 E
		1400	1460	1500		
		TTG GGC GCA AAG ATC GAG TTG AGC ATA CTC TAGTCACTCG ACAGCGAAAA Leu Gly Ala Lys Ile Glu Leu Ser Ile Leu 440	TATTATTTGC GAGATTGGGC ATTATTACCG GTTGGTCTCA GCGGGGGTTT AATGTCCAAT	CTTCCATACG TAACAGCATC AGGAAATATC AAAAAAGCTT	Figure 5E	

Aug. 22, 2006

Sheet 19 of 70

US RE39,247 E

Figure 6A

```
144
                                                                                                                                                                                                            197
                                                                                                                                                                                                                                                                                247
                                                                                                                                         ~
                                                                                                                                                                                                                                                                                                                   4
                                                                                                                                                                                                                                               4
                                                                                                                                         14.
                                                                                                                                                                                                                                              19
                                                                                                                                                                                                                                                                                                                   24,
50
                                  44
                                                                    98
                                                                                                      94
                                ... MESLTLQPIARVDGTINLPGSKTVSNRALLLAALAHGKTVLTNL
                                                                    . FGN
                                                                                                     LDSDDVRHMLNALTALGVSYTLSADRTRCEIIGNGGPLHAEGALELFLGN
                                                                                                                                        AATGCRLTMGLVGVYDFDSTFIGDASLTKRPMGRVLNPLREMGVQVK.SE
                                                                                                                                                                                                                                                                               MTRDHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSS
                                                                                                                                                                         AGTAMRPLAAALCLGSNDIVLTGEPRMKERPIGHLVDALRLGGAKITYLE
                                                                                                                                                                                                           DGDRLPVTLRGPKTPTPITYRVPMASAQVKSAVLLAGLNTPGITTVIEPI
                                                                                                                                                                                                                                             QENYPPLRLQGGFTGGNVDVDGSVSSQFLTALLMTAPLAPEDTVIRIKGD
                                                                                                                                                                                                                                                                                                                  LVSKPYIDITLNLMKTFGVEIENQHYQQFVVKGGQSYQSPGTYLVEGDAS
MSHGASSRPATARKSSGLSGTVRIPGDKSISHRSFMFGGLASGETRITGL
                                                            LEGEDVINTGKAMQAMGARİRKEGDTWIIDGVGNGGLLAPEAPLD
                                                                                                                                                          :
                                                                                                                                                                                                                                                                                       198
                                                                                                                                                                                                                                                    145
                                                                                                                                               9
                                                                                                                                                                                                                   148
                                                                           51
                                                                                                              S
                                                                                                                                                                                 Ŋ
                                                                                                                                                                                                                                                                                                                         9
                                                                                                                                                                                                                                                                                                                         19
                                                                                                              4
                                                                                                                                                                                  \mathcal{O}
```

四

Figu

U.S. Patent Aug. 22, 2006 **Sheet 20 of 70** US RE39,247 E 87 5 376 S $^{\circ}$ S $\mathbf{\Omega}$ S 34 33 39 44! $\boldsymbol{\omega}$ 42 2 TAFPLVAALLVPGSDVTILNVLMNPTRTGLILT..LQEMGADIEVINPRL CWGDDY..ISCTRGELNAIDMDMNHIP...DAAMTIATAALFAKGTTRLR GLEELRVKESDRLSAVANGLKLNGVDCDEGETSLVVRGRPDGKGLGNASG AGGEDVADLRVRSSTLKGVTVPEDRAPSMIDEYPILAVAAAFAEGATVMN AAVATHLDHRIAMSFLVMGLVSENPVTVDDATMIATSFPEFMDLMAGLGA NIYNWRVKETDRLFAMATELRKVGAEVEEGHDYIRI.TPPEKLNF.... AEIATYNDHRMAMCFSLVAL.SDTPVTILDPKCTAKTFPDYFEQLARISQ SASYFLAAAAIKGGTVKVTGIGRNSMQGDIRFADVLEKMGATI. 9 ∞ Ŋ KIELSDTKAA* <u>..</u>

248

Ŋ

24

9

29

 ∞

288

Q

34

3

33

9

39

377

9

44

Q

Aug. 22, 2006

Sheet 21 of 70

US RE39,247 E

Figure 7A

```
100
                                                                                                   100
                                                                                                                                     150
                                                                                                                                                                      150
                                                                                                                                                                                                       200
                                                                                                                                                                                                                                       200
                                                                                                                                                                                                                                                                        250
                                                                                                                                                                                                                                                                                                         250
                                                                                                                                                                                                                                                                                                                                           300
                                                                                                                                                                                                                                                                                                                                                                            300
                                 50
50
                                                                LEGEDVINTGKAMQAMGARIRKEGDTWIIDGVGNGGLLAPEAPLDFGNAA
                                                                                                   LEGEDVINTGRAMQAMGAKIRKEGDVWIINGVGNGCLLQPEAALDFGNAG
                                                                                                                            TGCRLTMGLVGVYDFDSTFIGDASLTKRPMGRVLNPLREMGVQVKSEDGD
                                                                                                                                                                     TGARL TMGLVGTYDMKTSFIGDASLSKRPMGRVLNPLREMGVQVEAADGD
                                                                                                                                                                                                                                       RMPLTLIGPKTANPITYRVPMASAQVKSAVLLAGLNTPGVTTVIEPVMTR
                                                                                                                                                                                                                                                                    DHTEKMLQGFGANLTVETDADGVRTIRLEGRGKLTGQVIDVPGDPSSTAF
                                                                                                                                                                                                                                                                                                          DHTEKMLQGFGADLTVETDKDGVRHIRITGQGKLVGQTIDVPGDPSSTAF
                                                                                                                                                                                                                                                                                                                                           PLVAALLVPGSDVTILNVLMNPTRTGLILTLQEMGADIEVINPRLAGGED
                                                                                                                                                                                                                                                                                                                                                                             PLVAALLVEGSDVTIRNVLMNPTRTGLILTLQEMGADIEVLNARLAGGED
                                 MSHSASPKPATARRSEALTGEIRIPGDKSISHRSFMFGGLASGETRITGL
                                                                                                                                                                                                      RL PVTLRGPKTPTPITYRVPMASAQVKSAVLLAGLNTPGITTVIEPIMTR
MSHGASSRPATARKSSGLSGTVRIPGDKS1SHRSFMFGGLASGETRITGL
                                                                                                                                                                                                                                                                                                                                                         51
       Н
                                                                                                           51
                                                                                                                                           101
                                                                                                                                                                            101
                                                                                                                                                                                                              151
                                                                                                                                                                                                                                              151
                                                                                                                                                                                                                                                                                201
                                                                                                                                                                                                                                                                                                                 201
                                                                                                                                                                                                                                                                                                                                                 251
                                                                                                                                                                                                                                                                                                                                                                                   251
```

U.S. Patent	Aug. 22, 2006	Sheet 22 of 70	US RE39,247 E
350	400	450	
MNGLEEI : :	SGAAVAT :. .GGTVAT	LMAGLGAKIELS : :	7.B
DRAPSMIDEYPILAVAAAFAEGATVMNGLEEL :	GVDCDEGETSLVVRGRPDGKGLGNASGAAVAT	HLDHRIAMSFLVMGLVSENPVTVDDATMIATSFPEFMDLMAGLGAKIELS	H A
ILAVAAA : : . VLAIAAS	GVDCDEGETSLVVRGRPDGKGLGN	IATSFPEF] IATSFPEF]	Figu.
SMIDEYP: 	SVDCDEGETSLY	/DDATMI/	
	LNGVDCI .	· SENPVTVI . .	
TLKGVTV .	AVANGLK . .	FLVMGLV FLVMGLA	ത
VADLRVRSSTLKGVTVPE VADLRVRASKLKGVVVPP	RVKESDRLSAVANGLKLN 	HLDHRIAMSFLVMGLVSENF 	449
			H.
301	351 351	401 398 451	4 4 8 8

U.S.	Pat	ent		Aug. 2	22, 200)6	She	eet 23	of 70			US I	RE39,	,247 E
09	120	180	240	300	360	420	480	540	009	099	720	780	840	
SGTCTTTCTG	TTTGGAGGTC	ATCAACACTG	TGGATCATTG	GGTAACGCTG	AGCACTTTCA	CTTCGCGAAA	CGTGGACCAA	AAGTCCGCTG	ATCATGACTC	GAGACTGATG	CAAGTGATTG	CTTGTTCCAG	CTCATCTTGA	
CAACTGCTCG TAAGTCCTCT GGTCTTTCTG	GTCCTTCATG		AGGTGATACT	TCTCGATTTC (CGATTTCGAT 1	GTTGAACCCA (AGTTACCTTG (TATCGAGCCA !	CCTTACCGTT (recrecerre (CCGTACTGGT (Figure 8A
CAACTGCTCG	TCTCCCACAG	TTTTGGAAGG TGAAGATGTT	TCCGTAAGGA	CTGAGGCTCC	TTGGTGTTTA	TGGGTCGTGT	ATCGTCTTCC	CTATGGCTTC CGCTCAAGTG	TCACCACTGT	TTGGTGCTAA	GTCGTGGTAA GCTCACCGGT	TCCCATTGGT	TGAACCCAAC	Fig
	GACAAGTCTA	ATCACCGGTC	GGTGCCAGAA	CTCCTTGCTC	ATGGGTCTTG	AAGCGTCCAA	GAAGACGGTG	TACAGGGTAC	ACCCCAGGTA	CTTCAAGGTT		TCTACTGCTT	AACGTTTTGA	
CCATGGCTCA CGGTGCAAGC AGCCGTCCAG	GAACCGTCCG TATTCCAGGT GACAAGTCTA	TCGCTAGCGG TGAAACTCGT ATCACCGGTC	GTAAGGCTAT GCAAGCTATG GGTGCCAGAA	ATGGTGTTGG TAACGGTGGA CTCCTTGCTC	CAACTGGTTG CCGTTTGACT ATGGGTCTTG	TTGGTGACGC TTCTCTCACT AAGCGTCCAA	TGGGTGTGCA GGTGAAGTCT GAAGACGGTG	AGACTCCAAC GCCAATCACC TACAGGGTAC	TTCTGCTTGC TGGTCTCAAC ACCCCAGGTA	GTGACCACAC TGAAAAGATG CTTCAAGGTT	CTGACGGTGT GCGTACCATC CGTCTTGAAG	ATGTICCAGG TGATCCATCC TCTACTGCTT	GTTCCGACGT CACCATCCTT AACGTTTTGA	
CCATGGCTCA	GAACCGTCCG	TCGCTAGCGG	GTAAGGCTAT	ATGGTGTTGG	CAACTGGTTG	TTGGTGACGC	TGGGTGTGCA	AGACTCCAAC	TTCTGCTTGC	GTGACCACAC	CTGACGGTGT	ATGTTCCAGG	GTTCCGACGT	

U.S. Patent	$oldsymbol{A}$ i	ug. 22,	2006	S	Sheet 2	24 of 7	70		US RE39,247 E
006	096	1020	1080	1140	1200	1260	1320	1377	
CTCTGCAGGA AATGGGTGCC GACATCGAAG TGATCAACCC ACGTCTTGCT GGTGGAGAAG	CTTTGAAGGG TGTTACTGTT CCAGAAGACC	GTGCTCCTTC TATGATCGAC GAGTATCCAA TTCTCGCTGT TGCAGCTGCA TTCGCTGAAG	TTGGAAGAAC TCCGTGTTAA GGAAAGCGAC CGTCTTTCTG	TTGATTGCGA TGAAGGTGAG ACTTCTCTCG	TCGGTAACGC TTCTGGAGCA GCTGTCGCTA	TCCTCGTTAT GGGTCTCGTT TCTGAAAACC	CTACTAGCIT CCCAGAGTTC ATGGATTTGA	CCGACACTAA GGCTGCTTGA TGAGCTC	Figure 8B
GACATCGAAG	CGTTCTTCTA	GAGTATCCAA	TTGGAAGAAC	CTCAACGGTG	GGTAAGGGTC	GCTATGAGCT	ACTATGATCG	ATCGAACTCT	
AATGGGTGCC	ACGTGGCTGA CTTGCGTGTT	TATGATCGAC	GTGCTACCGT TATGAACGGT	CTGTCGCAAA CGGTCTCAAG CTCAACGGTG	TCGTGCGTGG TCGTCCTGAC GGTAAGGGTC	CCCACCTCGA TCACCGTATC	CTGTTACTGT TGATGATGCT ACTATGATCG	TGGCTGGTCT TGGAGCTAAG ATCGAACTCT	
CTCTGCAGGA	ACGTGGCTGA	GTGCTCCTTC	GTGCTACCGT	CTGTCGCAAA	TCGTGCGTGG	CCCACCTCGA	CTGTTACTGT	TGGCTGGTCT	

U.S.	Patent	Aug. 22,	2006	Sheet 25 of 7	70	US RE39	,247 E
9	113	161	209	257	305	318	
AGATCTATCG ATAAGCTTGA TGTAATTGGA GGAAGATCAA AATTTTCAAT CCCCATTCTT	CGATTGCTTC AATTGAAGTT TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT Met Ala Gln Val Ser Arg Ile Cys Asn 1 5	GGT GTG CAG AAC CCA TCT CTT ATC TCC AAT CTC TCG AAA TCC AGT CAA Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln 10	CGC AAA TCT CCC TTA TCG GTT TCT CTG AAG ACG CAG CAG CAT CCA CGA Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg 30	GCT TAT CCG ATT TCG TCG TCG TGG GGA TTG AAG AAG AGT GGG ATG ACG Ala Tyr Pro Ile Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr 50	TTA ATT GGC TCT GAG CTT CGT CCT CTT AAG GTC ATG TCT TCT GTT TCC Leu lle Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser 60	ACG GCG TGC ATG C Thr Ala Cys Met 75	Figure 9

US RE39,247 E

Figure

U.S. Patent	Aug. 22, 2006		Sheet 26 of 70		
09	113	161	209	257	
AGATCTATCG ATAAGCTTGA TGTAATTGGA GGAAGATCAA AATTTTCAAT CCCCATTCTT	CGATTGCTTC AATTGAAGTT TCTCCG ATG GCG CAA GTT AGC AGA ATC TGC AAT Met Ala Gln Val Ser Arg Ile Cys Asn 1	GGT GTG CAG AAC CCA TCT CTT ATC TCC AAT CTC TCG AAA TCC AGT CAA Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln 10	CGC AAA TCT CCC TTA TCG GTT TCT CTG AAG ACG CAG CAG CAT CCA CGA Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg 30	GCT TAT CCG ATT TCG TCG TCG TGG GGA TTG AAG AAG AGT GGG ATG ACG Ala Tyr Pro Ile Ser Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr 50	

U.S. Paten	t Aug. 2	Aug. 22, 2006		70	US RE39,247 E
	305	353	401	402	
	ATT GGC TCT GAG CTT CGT CCT CTT AAG GTC ATG TCT TCT GTT TCC Ile Gly ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser 60	GCG GAG AAA GCG TCG GAG ATT GTA CTT CAA CCC ATT AGA GAA ATC Ala Glu Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile 75	GGT CTT ATT AAG TTG CCT GGC TCC AAG TCT CTA TCA AAT AGA ATT Gly Leu ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg ile 100	5	Figure 10B
	TTA Leu	ACG Thr	TCC Ser 90	Ü	

U.S. Patent	Aug. 22, 2	2006 Sh	neet 28 of 70		US RE39,247 E
<u>4</u> 9	76	145	193	233	
		2	د ع	TCA GTG GCT ACA GCC TGC ATG C Ser Val Ala Thr Ala Cys Met 70	igure 11
GCA C	TCC Ser	TTT. Phe	3 AAA 1 Lys 50	GCA GCA	
ATG Met	AAT Asn	r GTT 1 Val	r TTG L Leu	r TCA e Ser	,
AGA	r ccc r Pro	r CTT e Leu	s GTT u Val	3 ATT g ile	
ITCA	T AAT u Asn 15	T TTT r Phe 0	G TTG t Leu	T AGG e Arg	
AGATCTTTCA	c crr ir Leu	TCA AGT Ser Ser 30	TCT ATG Ser Met 45	TCC TTT Ser Phe	
AC	ACC Thr	T Se	Š,	ŇÄ	

U.S. Patent	Aug. 22, 2006	Sheet 29	9 of 70
57	105	153	201
AGATCTGCTA GAAATATT TGTTTAACTT TAAGAAGGAG ATATATCC ATG GCA CAA	rcc aar Ser Asn	CCC CAA GTT CCT AAA TCT TCA AGT TTT CTT GTT TTT GGA Pro Gln Val Pro Lys Ser Ser Ser Phe Leu Val Phe Gly 30	CTG AAA AAT TCA GCA AAT TCT ATG TTG GTT TTG AAA AAA Leu Lys Asn Ser Ala Asn Ser Met Leu Val Leu Lys Lys 45
CTA	AAC Asn	AAA Lys	AAA Lys
PCTG(AAC Asn 5	CAT	AAA Lys
AGA	ATT Ile	TTC Phe 20	TCT Ser

 \mathbf{E}

U.S. Patent	Aug. 22, 2006	Sheet 3	0 of 70	US RE39,247
249	297	345	352	
TCA		AAT Asn		
GCA	Ala ATT Ile	TCT Ser		
TCA	ser 65 CCC Pro	TTA Leu		12B
ATT		TCA Ser		
AGG		AAA Lys 95		gure
T.T.T.		TCT Ser		ıgı.
JCC		GGC		Íμ
TGT	Cys 60 GAG Glu	CCT		
TTT	Phe TCT Ser 75	TTG		
AAG	Lys CCT Pro	AAA Lys 90		
CAA	Gln AAG Lys	GTT Val		
ATG	Met CAG Gln	ACT Thr		
ተ ጥ	Phe 55 GCA Ala	GGC Gly		
ATT	Ile ACA Thr	TCA	O	
TCA	Ser GCT Ala	ATT Ile	ATT Tle	
GAT		GAG Glu	AGA Arg 100	

Aug. 22, 2006

Sheet 31 of 70

Figure 13

Aug. 22, 2006

Sheet 32 of 70

Figure 14

U.S. Patent Aug. 22, 2006 Sheet 33 of 70 US RE39,247 E

Figure 15

Aug. 22, 2006

Sheet 34 of 70

Figure 16

Aug. 22, 2006 Sheet 35 of 70

Figure 17

U.S. Pat	ent	Aug. 22, 20	06 She	eet 36 of 70		US RE39,2	247 E
48	96	144	192	240	288	336	
CCC	GCG Ala	CTG Leu	AGC Ser	GAG Glu 80	CTG Leu	GGA Gly	
ATT Ile 15	CTA	TGT Cys	CAA Gln	AAA Lys	CGC Arg 95	GCC Ala	_
CAT His	GCG Ala 30	GAT Asp	GAG Glu	CTG	ATT Ile	GTA Val 110	18A
ATA Ile	GGC Gly	GCA Ala 45	ATT Ile	GCC Ala	ACG Thr	GCG	
GAA Glu	TTT Phe	GGA Gly	CAC His 60	GAT Asp	ACA Thr	AGC Ser	ıre
GGA Gly	ATG Met	CCG	GTT Val	ATC Ile 75	GGT Gly	TAC Tyr	Figure
CAT His 10	GTT Val	CTG	GGT	GGA G1y	TCA Ser 90	rrr Phe	ĨΉ
TTA Leu	TCT Ser 25	TTT Phe	ATG Met	AAA Lys	AAT Asn	CCT Pro 105	
ACC Thr	CGC Arg	AAC Asn 40	AAA Lys	GGA Gly	GGA Gly	CGT Arg	
CAG Gln	CAC His	AAA Lys	AGA Arg 55	CAC His	GTC Val	GGC Gly	
GTG Val	TCT Ser	GTT Val	TYT Phe	ATT Ile 70	GAT Asp	GCG Ala	
AAG Lys 5	ATT Ile	ACA Thr	TGC	GTG Val	TTA Leu 85	TTG	
GAT Asp	TCC Ser 20	ACA Thr	GAT Asp	GTC Val	CTT	ATA Ile 100	
CGA Arg	AAA Lys	ACA Thr 35	ATC Ile	GAT Asp	AGC Ser	GGA	
AAA Lys	GAT Asp	GGC Gly	ACG Thr 50	AGC Ser	GAA Glu	CTC	
ATG Met 1	GGT Gly	GCA Ala	AGC	AGC Ser 65	CCA	ATG Met	

U.S.	J.S. Patent		Aug. 22, 2006	Sheet 37 of 70		US RE39,247		
4		7	0	80	vo	4,	N	
38		43	48	52	57	62,	67	
TTG	Leu	ACA Thr	TCA Ser 160	TTA Leu	GAC Asp	GAT Asp	GAT Asp	
CCT	Pro	TTT Phe	GTA Val	GGA G1y 175	CGG Arg	GAA Glu	GCT Ala	
GAG		GAG Glu	TAT Tyr	GCC Ala	TCT Ser 190	TCT	GCT Ala	18B
ACT	Thr 125	GGA Gly	GAT Asp	CTG	AAA Lys	CTT Leu 205	ACA Thr	
GTG	Val	GGC Gly 140	ATT Ile	TTG	CAT His	AAG Lys	CTG Leu 220	Figure
CGT	Arg	GCC Ala	GGA Gly 155	GTT Val	CCC	GTT Val	aaa Lys	igı
AAG	Lys	AGA Arg	AAA Lys	GCT Ala 170	GAG Glu	GGC	CAG Gln	Įz,
ATG	Met	GGC Gly	TTA Leu	TCT	ACA Thr 185	TTT Phe	GGC G1Y	
CCA	Pro 120	GAC Asp	TCA Ser	AAA Lys	GTA Val	GCT Ala 200	GGT G1y	
၁ဗ္ဗ၁	Arg	ATC I1e	GCT	ATT Ile	ACT Thr	TCT Ser	GCT Ala 215	
AAA	Lys	AAA Lys	GGC Gly 150	CAA Gln	ACA Thr	CTT Leu	ATT Ile	
9 0 9	Ala	GCT Ala	AGC Ser	GCG Ala 165	ACA Thr	ATG Met	TCC	
ATT	Ile Ile	GGG Gly	GTG Val	AGC Ser	GGC Gly 180	CGG Arg	GTT Val	
AGC	Ser 115	ATG Met	TCA Ser	GCA Ala	GAG Glu	GAG Glu 195	AGT	
GAG	Glu	AAA Lys	CTG	GTT Val	GCT Ala	ACT Thr	ACG Thr 210	
GA T	Asp	AAA Lys	CCG Pro	CCT	CAG Gln	CAC His	CAA Gln	

U.S. Pate	ent	Aug. 22, 200	06 Sh	eet 38 of 70		US RE39,247 E				
720	768	816	864	912	096	1008				
GCT Ala 240	TTA	GCA Ala	GGA Gly	GGA Gly	CTT Leu 320	CTA				
GCT Ala	GGT G1y 255	GGG Gly	ТАТ Ту <i>к</i>	GGA Gly	CTT Leu	GAG Glu 335				
CTT Leu	GTA Val	ATG Met 270	CCT	ATC Ile	GCG Ala	GCA	18C			
TTC Phe	AAC Asn	AAC Asn	GAG Glu 285	GAA Glu	ATC Ile	GCG				
TTT Phe	AAA Lys	CAA Gln	GCA Ala	GTT Val 300	ATC Ile	GAC Asp	ıre			
GCG Ala 235	TTG	CTT Leu	GGT Gly	GCA Ala	CCT Pro 315	AAG Lys	Figure			
GCC Ala	GTA Val 250	GTC Val	AGC Ser	AAG Lys	ATC Ile	ATT Ile 330	<u> </u>			
TCA	ATT Ile	GAT ASP 265	GAT Asp	CTA	GAG Glu	GTT Val				
TCT Ser	aga Afg	ATT Ile	GCT Ala 280	TCT Ser	GAT Asp	ACC Thr				
ATT Ile	AGC Ser	ATT Ile	TCT Ser	TCA Ser 295	ATT Ile	ACC Thr				
GAC Asp 230	AAC Asn	GGT Gly	CCA	ACG Thr	TTA Leu 310	GGA Gly				
GGA Gly	CCA Pro 245	ACA Thr	AAA Lys	GAA Glu	CGT Arg	GAA G1u 325				
CCT	GTT Val	CGG Arg 260	ATC Ile	ATA Ile	CCG	GCG				
GTT Val	ATG Met	ACT	GAA Glu 275	ATT Ile	ATT Ile	CAG Gln				
TTT Phe	GCG Ala	CCG	CTT	TTG Leu 290	ATC Ile	ACT				
ATT 11e 225	GGC Gly	AAT Asn	AAA Lys	GAT Asp	GAT ASD 305	GCG Ala				

U.S. Patent	Aug.	22, 2006	Sheet 39	of 70	US RI	Е39,247 Е
1056	1104	1152	1200	1248	1287	
CGC	TAT Tyr	GAT Asp	GAG Glu 400	ACC Thr		
CTT	GTT Val	GGA G1y	GAG Glu	CCA Pro 415		
GAG Glu 350	AAG Lys	CAC His	ACG	TAT TYr		18D
TCT	ATG Met 365	AGC	ATA Ile	TCT	TGA	
GTT Val	GGA	TCC Ser 380	TGT Cys	GTT Val	TCC	r re
GTT	GAT Asp	GTG Val	TCC Ser 395	CAC	AAA Lys	Figur
ACT	GCA Ala	GCA Ala	GCT Ala	ATT Ile 410	AAA Lys	(Tr
GAT Asp 345	ACA Thr	GCT Ala	ATT Ile	GCC Ala	TCG Ser 425	
ATT Ile	CCG Pro 360	GGC	GGT Gly	GAT Asp	CTT	
CGT	GAA Glu	GGC Gly 375	CTT	ACG Thr	AAG Lys	
AAC Asn	ATT Ile	AAA Lys	ATG Met 390	CAC His	AAT Asn	
ACA Thr	GAA Glu	TTG	ATG Met	GAG Glu 405	TTA Leu	
GAA G1u 340	GCT Ala	ACG Thr	GGA Gly	ATC Ile	CAT His 420	
AAA Lys	GGT G1Y 355	CAA Gln	ATC Ile	GAA G1u	GAG Glu	
GTG Val	CTG	AAA Lys 370	CGA Arg	ATT Ile	TTC Phe	
AAA Lys	AAG Lys	GGC Gly	CAT His 385	CCG Pro	TTC Phe	

U.S. Pater	nt A	aug. 22, 200	6 She	eet 40 of 70)	US RE39,247 E				
m	10	s#I	C)	0	m	9				
48	96	144	192	240	288	336				
4 5	rh e	<i>(</i>)	4 5	4.50	<i></i>	F				
GAA Glu	TTG Leu	GGC Gly	GAA Glu	CAA Gln 80	ACA Thr	GTT Val				
GGC G1y 15	ATG Met	CTT Leu	GTA Val	\mathtt{TAT}	ACG Thr 95	AGT	4			
AAG Lys	ATC 11e 30	CTA	GGT Gly	GGA Gly	GGT Gly	GAA Glu 110	19A			
TTA	GCA Ala	CCA Pro 45	TTA	CCA	TCT Ser	AAT Asn				
CCG	CGT	AAG Lys	CAC His 60	TCC	AAT	GGT Gly	ıre			
GGT Gly	CAC His	TAT Ty <i>r</i>	cga Arg	ACT Thr 75	GGT Gly	TTA	'igur			
TCA Ser	ACA Thr	ATA Ile	TTC Phe	GTG Val	ACA Thr 90	GGT Gly	<u> </u>			
ATT Ile	ATG Met 25	ACT Thr	ATT Ile	GTT Val	\mathtt{TAT}	AGT Ser 105				
GAT ASP	TCA Ser	TCT Ser 40	gac Asp	TTA Leu	TTG Leu	TTA Leu				
ATT Ile	AAG Lys	GTA Val	ATG Met 55	AAA Lys	GTA Val	TTG Leu				
ATC Ile	GAT Asp	GGT Gly	ACG Thr	GAA Glu 70	CAA Gln	GGT Gly				
CAA Gln 5	GGC Gly	GAA Glu	CGT Arg	GAT Asp	CAT His 85	GCA Ala				
GAA Glu	CCG Pro 20	GCT Ala	CGT Arg	GAT Asp	CCA Pro	TTG Leu 100				
AAT Asn	GTG Val	CTA Leu 35	TGT Cys	GAA Glu	ACG Thr	TTA Leu				
GTA Val	GAA Glu	TCG Ser	GAT ASD 50	AAA Lys	AAC Asn	CGA Arg				
ATG Met	ATA Ile	GCG	GAA Glu	ATC Ile 65	GTT Val	ACA Thr				

U.S. Pate	ent	Aug. 22, 200	6 Sho	eet 41 of 70		US RE39,247 E		
384	432	480	528	576	624	672		
TTG Leu	AAT Asn	TAT Tyr 160	GCA Ala	AGT Ser	GAA Glu	ATT Ile		
GTC Val	GAT Asp	AAT Asn	TTT Phe 175	GTA Val	ATT Ile	TAC Tyr		
CGT Arg	GAA Glu	ATA Ile	TTA Leu	GAT ASD 190	CCA	CGA	19B	
GAT ASD 125	ATT Ile	GGT G1y	ATT Ile	TTA Leu	ATT 11e 205	ATT Ile		
ATG	GGT G1y 140	AAA Lys	GCC Ala	GAA Glu	AAT Asn	GC A Ala 220	Figure	
CCA	GAA Glu	ATA 11e	AGT Ser	AAA Lys	TTT Phe	GAA Glu	igı	
AGG Arg	ATT Ile	GTC Val	AAA Lys 170	ATT Ile	CAT His	CCT	ľ4	
AAA Lys	AAT Asn	TCT Ser	GTA Val	ATC Ile 185	AAA Lys	ACC		
GGT Gly 120	GCG Ala	CCA Pro	CAA Gln	ACC	TTC Phe 200	ACA Thr		
ATT Ile	GAT ASP 135	AAG Lys	GCA Ala	CCG	ATG Met	AAT Asn 215		
TCA Ser	ATG Met	ATT Ile 150	AGT	GAA Glu	ACG Thr	ATT Ile		
GTT Val	CTT	ATT Ile	GCA Ala 165	AAG Lys	GAG Glu	TCA Ser		
GAT Asp	AAA Ly.s	TTA Leu	GTT Val	TCT Ser 180	ACT Thr	TTA Leu		
GGC Gly 115	TTG	CCA	GAA Glu	TTT Phe	CAT His 195	666 G1y		
TCT Ser	CCA Pro 130	ACA Thr	ATG Met	TTG	AAT Asn	GAA Glu 210		
TTG Leu	AGA Arg	TAT TYY 145	CAA Gln	AGT Ser	CGA	GCA Ala		

U.S. Pate	ent	Aug. 22, 200)6 Sh	eet 42 of 70	1	US RE39	,247 E
720	768	816	864	912	096	1008	
TTC Phe 240	CAT His	GAA Glu	GAA Glu	ATA Ile	GTA Val 320	GAT Asp	
GCG Ala	ATT Ile 255	GTT Val	GCT Ala	CCA	CCT	AAA Lys 335	
GCA Ala	ACA Thr	ATT Ile 270	$_{\rm G1y}^{\rm GGT}$	CAA Gln	CTG	ATT Ile	19C
TCT	GTA Val	GAT Asp	ACT Thr 285	CTT	GAA Glu	ACA Thr	
TCA	GAT Asp	ATT Ile	ACA Thr	ATG Met 300	GAT Asp	AGT Ser	igure
ATT 11e 235	AGT Ser	ATT Ile	CAA Gln	CCA Pro	ATT Ile 315	ACG Thr	igi
GAT Asp	GGA G1y 250	GGT Gly	AAT	ACA Thr	GCA Ala	GGC G1y 330	<u>Fi</u>
GGC Gly	CCA Pro	TCA Ser 265	TTC Phe	TAC Tyr	AAA Lys	GTT Val	
CCT	ACA Thr	CGT	CTT Leu 280	CAA Gln	CCA Pro	GCA Ala	
GTT Val	ATC	ACA Thr	CAA Gln	ATT 11e 295	GTT Val	CAA Gln	
CAT His 230	CTT Leu	CAA Gln	ATC Ile	CGT Arg	TTA Leu 310	ACA Thr	
TTT Phe	GCA Ala 245	AAT Asn	AAT Asn	ATT Ile	GAA Glu	TGT Cys 325	
GAT	GCA Ala	ATC Ile 260	GGT Gly	TCT	GGA Gly	CTT Leu	
GCA Ala	GTT Val	GGA Gly	GGC Gly 275	GCT Ala	GAA Glu	TTA	
CCT	ATT Ile	GTT Val	ATG Met	ACT Thr 290	ATC	GCA Ala	
AAA Lys 225	TTT Phe	AAT	AAA Lys	CCT	ACA Thr 305	ATA Ile	

U.S. Paten	t Aug.	22, 2006	Sheet 43	of 70	US RE	E39,247 E
1056	1104	1152	1200	1248	1293	
GCT Ala	GGA Gly	TTA Leu	TCA Ser 400	TTT Phe		
ACG Thr	GAT Asd	ATT Ile	CTT Leu	TCA Ser 415	TAA	_
ACA Thr 350	AAT Asn	GAT Asp	GTA Val	GTA Val	GGA G1y 430	19D
GAT Asp	ACT Thr 365	ACA Thr	TGT	AAT	GAG Glu	
ATT Ile	CCA Pro	GCA Ala 380	GCT Ala	GTA Val	AAT Asn	H H
aga Arg	CAA Gln	AAT Asn	GTT Val 395	GCT Ala	CAA	Figure
AAT Asn	TTA Leu	ACA Thr	GCA Ala	GAT Asp 410	TTA Leu	<u>F</u>
ACA Thr 345	GAA Glu	AAA Lys	CTT Leu	TTT Phe	CTT Leu 425	
GAA Glu	TTT Phe 360	TTT Phe	ATG Met	CAA Gln	AAG. Lys	
aaa Lys	666 617	GAA Glu 375	ATG Met	AAA Lys	CTA Leu	
GTA	TTA	TCA Ser	GGA Gly 390	ATC Ile	AAA Lys	
AAA Lys	TTG	CCG Pro	ATA Ile	AAA Lys 405	CCA Pro	
TTA Leu 340	AAC Asn	CAT His	CGA Arg	GTC Val	TTA Leu 420	
GAA Glu	TTA Leu 355	ATT Ile	CAT His	CCT Pro	TTT Phe	
GAG Glu	ATG Met	ATT Ile 370	GAT Asp	GAG Glu	GGA Gly	
GCC Ala	GAT ASD	TTG	ACT Thr 385	AGC Ser	CCA	

Aug. 22, 2006 Sheet 44 of 70

U.S. Patent

		 	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1	Consensus
	DLFAAKLAKG	. MSGLA	•		•	•
	RLEPISRVAG	• (•		•	A. salmonicida
	TLNPISYIEG	MIKDATAI		•	•	P. multocida
	H	MEKI	•	•	•	,
	മ	MLESL	•	•	•	Y. entoercolitica
	TLOPIARVDG	MESL		•	•	K, pneumoniae
	TLOPIARVDG	MESL		•		E. Coli
	TLOPIARVDG	MESL	• • • • • • • • • • • • • • • • • • • •	•		7
	TLQPIARVDG	MESL	•	•		+
	TLQPIARVDG	MESL	•	•		Transler o
	VLQPIKEISG	AGAEEI	•			Dorrayii . I
	VLQPIKEISG	.KPSEI	•	•		
	VLXPIKDISG	.KPHEI	•			
	VLQPIKDISG	.KPNEI	•	•		M tabacin
	VLQPIREISG	.KASEI	• • • • • • • • • • • • • • • • • • • •	•		ים מתהיו הלד ע
	VLQPIREISG	.KASEI	•	•		B namis
_	GVAHSSNV	VHP	• • • • • • • • • • • • • • • • • • • •	•		4
	FKDIFADQQK	LVYP	•	•		יייייייייייייייייייייייייייייייייייייי
	IIDISGPLKG	MVNEQ	•	•		
	KRDKVQTLHG	M	•	•		
	TARKSSGLSG	MSHGASSRPA	•	•		CP4
	TARRSEALTG	MSHSASPKPA	• • • • • • • • • • • • • • • • • • • •	•		I,BAA
	TARRSEALTG	MSHSASPKPA		•	•	pG2982
	ე ი				-	

U.S. Patent Aug. 22, 2006 Sheet 45 of 70

US RE39,247 E

	51				100
PG2982	EIRIPGDKSI	SHRSFMFGGL	ASGETRITGL	LEGEDVINTG	RAMQAM.GAK
10001 448,1		SHRSFMFGGL	ASGETRITGL	LEGEDVINTG	RAMQAM.GAK
Agrobacterium CP4	TVRIPGDKSI	SHRSFMFGGL	ASGETRITGL	LEGEDVINTG	KAMQAM.GAR
and and a	ETHIPGDKSI	SHRSVMFGAL	AAGTTTVKNF	LPGADCLSTI	DCFRKM.GVH
C)		THRAIMLASL	AEGVSTIYKP	LLGEDCRRTM	DIFRHL.GVE
		SNRALILAAL	GEGOCKIKNE	LHSDDTKHML	TAVHELKGAT
Ø	ICAPPGSKSI	SNRALVLAAL	GSGTCRIKNL	LHSDDTEVML	NALERLGAAT
B. napus	LIKLPGSKSL	SNRILLLAAL	SEGTTVVDNL	LNSDDINYML	DALKKL.GLN
A. thallana	LIKLPGSKSL	SNRILLLAAL	SEGTTVVDNL	LNSDDINYML	DALKRL.GLN
N. tabacum	TVKLPGSKSL	SNRILLLAAL	SKGRTVVDNL	LSSDDIHYML	GALKTL.GLH
	TVKLPGSKSL	SNRILLLAAL	SEGRTVVDNL	LSSDDIHYML	GALKTL.GLH
	TVKLPGSKSL	SNRILLLAAL	SEGTIVVDNL	LSSDDIHYML	GALKTL.GLH
Z. mays	TVKLPGSKSL	SNRILLLAAL	SEGTTVVDNL	LNSEDVHYML	GALRTL.GLS
S dellinarum	AINLPGSKSV	SNRALLLAAL	ACGKTVLTNL	LDSDDVRHML	NALSAL.GIN
. +	AINLPGSKSV	SNRALLLAAL	PCGKTALTNL	LDSDDVRHML	NALSAL.GIN
	AINLPGSKSV	SNRALLLAAL	ACGKTVLTNL	LDSDDVRHML	NALSAL.GIN
	TINLPGSKTV	SNRALLLAAL	AHGKTVLTNL	LDSDDVRHML	NALTAL.GVS
	TVNLPGSKSV	SNRALLLAAL	ARGTTVLTNL	LDSDDVRHML	NALSAL.GVH
	TVNLPGSKSV	SNRALLLAAL	AEGTTQLNNL	LDSDDIRHML	NALOAL GVK
H infliensae	TINLPGSKSL	SNRALLLAAL	AKGTTKVTNL	LDSDDIRHML	NALKAL.GVR
P. multocida	EVRLPGSKSL	SNRALLLSAL	AKGKTTLTNL	LDSDDVRHML	NALKEL.GVT
A. salmonicida	EVNLPGSKSV	SNRALLLAAL	ARGTTRLTNL	LDSDDIRHML	AALTQL.GVK
മ	EVALPGSKSI	SNRVLLLAAL	AEGSTEITGL	LDSDDTRVML	AALRQL.GVS
Consensus	PG-K	RL		LD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Aug. 22, 2006 Sheet 46 of 70

US RE39,247 E

		101				150
	PG2982	IRKEGDVWII	NGVGNGCLLQ	PEAA	LDFGNAGTGA	RLTMGLVGTY
	LBAA	IRKEGDVWII	NGVGNGCLLQ	PEAA	LDFGNAGTGA	RLTMGLVGTY
4	Agrobacterium CP4	IRKEGDTWII	DGVGNGGLLA	PEAP	LDFGNAATGC	RITMGLVGVY
1	B. subtilis	IEQSSSDVVI	HGKGIDALKE	PESL	LDVGNSGTTI	RLMLGILAGR
			TSPGYQ.VNT	PHQV	LYTGNSGTTT	RLLAGLLSGL
	r. e	ISWEDNGETV	VVEGHGG	STLSACADP	LYLGNAGTAS	RFLTSLAALV
	<<	FSWEEEGEVL	VVNGKGG	NLQASSSP	LYLGNAGTAS	RFLTTVATLA
		VERDSVNNRA	VVEGCGGIFP	ASLDSKSDIE	LYLGNAGTAM	RPLTAAVTAA
	ha	VETDSENNRA	VVEGCGGIFP	ASIDSKSDIE	LYLGNAGTAM	RPLTAAVTAA
	•	VEDDNENQRA	IVEGCGGQFP	VGKKSEEEIQ	LFLGNAGTAM	RPLTAAVTVA
	ပ	VEDDNENORA	IVEGCGGQFP	VGKKSEEEIQ	LFLGNAGTAM	RPLTAAVTVA
		VEEDSANQRA	VVEGCGGLFP	VGKESKEEIQ	LFLGNAGTAM	RPLTAAVTVA
		VEADKAAKRA	VVVGCGGKFP	VE.DAKEEVQ	LFLGNAGTAM	RPLTAAVTAA
	S. gallinarum	YTLSADRTRC	DITGNGGPLR	APGALE	LFLGNAGTAM	RPLAAALCL.
	Ù	YTLSADRTRC	DITGNGGALR	APGALE	LFLGNAGTAM	RPLAAALCL.
	,	YTLSADRTRC	DITGNGGPLR	ASGTLE	LFLGNAGTAM	RPLAAALCL.
	EI.	YTLSADRTRC	EIIGNGGPLH	AEGALE	LFLGNAGTAM	RPLAAALCL.
	ဥ	YVLSSDRTRC	EVTGTGGPLQ	AGSALE	LFLGNAGTAM	RPLAAALCL.
>	L .	YRLSADRTRC	EVDGLGGKLV	AEQPLE	LFLGNAGTAM	RPLAAALCL.
•	H. influenzae	YQLSDDKTIC	EIEGLGGAFN	IQDNLS	LFLGNAGTAM	RPLTAALCLK
	Д.	YQLSEDKSVC	EIEGLGRAFE	WQSGLA	LFLGNAGTAM	RPLTAALCLS
	A. salmonicida	YKLSADKTEC	TVHGLGRSFA	VSAPVN	LFLGNAGTAM	RPLCAALCL.
	B. pertussis	VGEVADGC	VTIEGVARFP	TEQAE	LFLGNAGTAF	RPLTAALALM
	Consensus	1 1 1 1 1 1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	1	LUD1	R

Aug. 22, 2006 Sheet 47 of 70

US RE39,247 E

Figure 20D

•	KKMGAKIDGR AGGEFTPL KLMDANIEG. IEDNYTPL RANGTKIEYL NNEGSLPIKV	TANVLPLNTS KGRASLPLKI KQLGADVECT LGTNCPPVRV KQLGADVECT LGTNCPPVRV KQLGAEVDCF LGTNCPPVRI	RQGGANIDYL EQENYPPLRL RLGGAKITYL EQENYPPLRL RQGGAQIDYL EQENYPPLRL RQGGAQIDYL EQENYRR.CI RQAGADIRYL ENEGYPPLAI CQAGAEIQYL EQEGYPPLAI ALKGAHIQYL KKDGYPPLVV RQFGAGIEYL GQAGYPPLRI
RPMGRVLNPL REMC RPMGRVLNPL REM RPMGRVLNPL REM	RPMKRVTEPL KKM RPMDRVLRPL KLMI RPIAPLVDSL RAN	RPIGDLVDAL TAN RPIGDLVVGL KQLK RPIGDLVVGL KQLK RPIGDLVDGL KQLK	RPIGHLVDSL RQGC RPIGHLVDAL RLGC RPIGHLVDAL RQGC RPIGHLVDAL RQGC RPILHLVDAL RQGC RPIQHLVDAL CQAC RPIGHLVDAL CQAC RPIGHLVDAL CQAC RPIGHLVDAL RQFC
KT SFIGDASLSK KT SFIGDASLSK DS TFIGDASLTK	YS AVAGDESIAK ES VLSGDVSIGK YI VLTGNARMQQ	SS VLTGNNRMKQ SY VLDGVPRMRE SY VLDGVPRMRE RY VLDGVPRMRE	QNEI VLTGEPRMKE SNDI VLTGEPRMKE KNDI VLTGEPRMKE KNDI VLTGEPRMKE KNEI VLTGEPRMKE KNEI VLTGEPRMKE GGEY MLGGEPRMEE
151 DM DM	SO: .	· · · · · · · · · · · · · · · · · · ·	 GGDY G. NHEV. EI TPNREGKNEI GGSGEY GGSGEY
PG2982 LBAA Agrobacterium CP4	il re Si	A A	י איים אים אים אים אים אים אים אים אים א

U.S. Patent Aug. 22, 2006 Sheet 48 of 70

US RE39,247 E

20区

250 TPGVTT TPGVTT	AEGTTT	.EPVTLALVG .EPVTLRLVG	.LGDVEIEII	.LGDVEIEII	.LGDVEIEII	.LGDVEIEII	. PKDTIIRVK	. PKDTIIRVK	.PEDTIIRVK PEDTIIRVK	PODTVIAIK	EQDTEIQIQ.	ENDTEIEII	EADTEIEII	.PVIPRIHIK	SGODITIEVV)
LLAGLN LLAGLN	LLAGLO	LMCAPYAE LMCAPYAK	LMSAP.LA LMSAP.LA	LMAAP.LA	LMAAP.LA.	LMAAP.LP.	LMTAP.LA	LMTAP. LA.	LMTAP.LA	LMASP.LA	LMTAP.LA	LMSAP.LA	LMAAP.MA	LMAAPAMA	LMAAPVLARR	I
MASAQVKSAV MASAQVKSAV MASAOVKSAV	VASAQIKSAV VA <u>SAOVK</u> SAI	TVSSQYVSSI	SISSQYLTAL SISSQYLTAL	SISSOYLTAL		SISSOYLSAL	SVSSQFLTAL	SVSSQFLTAL	SVSSQFLTAL	SVSSQFLTAL	SVSSQFLTAL	SISSQFLTAL	SVSSQFLTAL	SVSSQFLTAF	SVSSQFLTAL	S-Q
TANPITYRVP TANPITYRVP TPTPITYRVP	SLKGIDYVSP VIKGINYQME	GRIELAA	GKVKLSG	GKVKLSG	GKVKLSG	GKVKLSG	·GDIEVDG	GDIEVDG	GDIEVDG	GDVEVDG	GKLTVDG	GKVKIDG	GRIQIDG	GDVHVDG	GPVRVEG	1 1 1 1 1 1 1 1 1 1 1
201 LIGPK LIGPK I.RGPK	SVSGA	YTDSVFKG	NANGGLPG	VSKGGLPG	VSKGGLPG	NGIGGLPG	RGGFIG	•		OG.GFTG.		Υ.	RNT.GLKG	DAK.GLWG	GGGSIRVD	
PG2982 LBAA	B. subtilis S. aureus	re ni		Z	L. esculentum P. hybrida	Z. mays	S. gallinarum	S. typhimurium	s. typhi i	E. Coll	0	H. influenzae	P. multocida	A. salmonicida	മ	Consensus

Aug. 22, 2006

Sheet 49 of 70

US RE39,247 E

	• •			AGGQ KLTAA.DIFV	PEAI RYIKPADFHV	IPKG HYINPSEYVI	IPQG RYVNPAEYVI	KGGQ KYKSPGNAYV	KGGQ KYKSPGNAYV			RGGQ KYKSPGKAFV		_		KGGQ QYHSPGRYLV			_	KGNQ SYISPNKYLV	KGHQ QYQSPHRFLV	KGNQ SIVSPGDFLV	ARDA VYRGPGRMAI	†
	VRHIRITGQG	VRHIRITGQG	VRTIRLEGRG	VSIAGGQ	INTTPEAI	EPYTYYIPKG	EEHTYHIPQG	WDRFFVKGGQ	WDRFFVKGGQ	WDKFLVRGGQ	WDRFLVKGGQ	WDRFFVRGGQ	WDRFYIKGGQ	YQQFVVKGGQ	YQQFVVKGGQ	YQQFVVKGGQ	YQQFVVKGGQ	YORFIVRGNO	YQIFHIKGGQ	YOKFOVKGNO	YQRFLVKGHQ	YKLFYIKGNQ	WRAFTIARDA	1 1 1 1
	DLTVETDKDG	DLTVETDKDG	NLTVETDADG	KLSEDQTS	PIEAEGLS	IN. VET. STT	IDVQKSTT	VSAEHSDS	VSVEHSDS	VSVEHTSS	VF. VEHSSG	ISVEHSSS	VKAEHSDS	VEIAN.HH	VE. IAN. HH	VE. IAN. HH	VE. IEN. QH	VE. VEN. QA	VD VVH. EN	VK. VEN. HH	VEVEN.QA	VV. IEH. DN	VSV.RRDG	
	TEKMLQGFGA	TEKMLQGFGA	TEKMLQGFGA	TERMLSAFGV	TETMFKHFNI	MTIKMMEKFG	MTTAMMRSFG	MTLKLMERFG	MTLKLMERFG	MTLKLMERFG	MTLKLMERFG	MTLKLMERFG	MTLRLMERFG	ITLNLMKTFG	ITLNLMKTFG	ITLNLMKTFG	ITLNLMKTFG	ITLHLMKTFG	ITLHLMKAFG	ITLAMMRDFG	ITLKMMQTFG	ITLHIMNSSG	ITLNLMARFG	
251	VIEPVMTRDH	VIEPVMTRDH	VIEPIMTRDH	VTEPHKSRDH	IKELDVSRNH	GKPISKLYVD	GKPISOPYID	DKLISVPYVE	DKLISVPYVE	DKLISVPYVE	DKLISVPYVE	DKLISVPYVE	DKLISIPYVE	GELVSKPYID	GELVSKPYID	GELVSKPYID	GDLVSKPYID	GELVSRPYID	GELVSKPYID	GELVSKPYID	GELVSKPYID	GELVSKPYID	GELISKPYIE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	PG2982	LBAA	Agrobacterium CP4	- [V.	s cerevisiae	় ব		A thallana		I. esculentum		Z. Havs	s dallinarum	. ↓			C		H inflinencae	P. miltocida	יני	B. pertussi	Consensus

Figure 20F

U.S. Patent Aug. 22, 2006 Sheet 50 of 70

US RE39,247 E

		301				350
	PG2982	PGDPSSTAFP	LVAALLVEGS	DVTIRNVLMN	PTRTGLI	LTLQEMGADI
	LBAA	PGDPSSTAFP	LVAALLVEGS	DVTIRNVLMN	PTRTGLI	LTLQEMGADI
AG	Agrobacterium CP4	PGDPSSTAFP	LVAALLVPGS	DVTILNVLMN	PTRTGLI	LTLQEMGADI
7)	B. subtilis	PGDISSAAFF	LAAGAMVPNS	RIVLKNVGLN	PTRTGII	DVLQNMGAKL
	S. aureus	PGDISSAAFF	IVAALITPGS	DVTIHINGIN	OTRSGI	DIVEKMGGNI
	S. cerevisiae	ESDASSATYP	LAFAA.MTGT	TVTVPNIGFE	SLQGDARFAR	DVLKPMGCKI
	⋖	ESDASCATYP	LAVAA.VTGT	TCTVPNIGSA	SLQGDARFAV	EVLRPMGCTV
	B. napus	EGDASSASYF	LAGAA.ITGE	TVTVEGCGTT	SLQGDVKFA.	EVLEKMGCKV
	A. thaliana	EGDASSASYF	LAGAA.ITGE	TVTVEGCGTT	SLQGDVKFA.	EVLEKMGCKV
	N. tabacum	EGDASSASYF	LAGAA.VTGG	TVTVEGCGTS	SLQGDVKFA.	EVLEKMGAEV
	L. esculentum	EGDASSASYF	LAGAA.VTGG	TVTVEGCGTS	SLQGDVKFA.	EVLEKMGAEV
		EGDASSASYF	LAGAA.VTGG	TITVEGCGTN	SLOGDVKFA.	EVLEKMGAEV
	Z. mays	EGDASSASYF	LAGAA.ITGG	TVTVEGCGTT	SLQGDVKFA.	EVLEMMGAKV
	S. dallinarum	EGDASSASYF	LAAGA.IKGG	TVKVTGIGRK	SMQGDIRFA.	DVLEKMGATI
	u	EGDASSASYF	LAAGA.IKGG	TVKVTGIGRK	SMQGDIRFA.	DVLEKMGATI
	S. typhi	EGDASSASYF	LAAGG.IKGG	TVKVTGIGGK	SMQGDIRFA.	DVLHKMGATI
	E. coli	EGDASSASYF	LAAAA.IKGG	TVKVTGIGRN	SMQGDIRFA.	DVLEKMGATI
	K. pneumoniae	EGDASSASYF	LAAGA.IKGG	TVKVTGIGRN	SVQGDIRFA.	DVLEKMGATV
×	entoercolitica	EGDASSASYF	LAAAA.IKGG	TVRVTGIGKQ	SVQGDTKFA.	DVLEKMGAKI
, I	H. influenzae	EGDASSASYF	LAAGA.IK.G	KVKVTGIGKN	SIQGDRLFA.	DVLEKMGAKI
	P. multocida	EGDASSASYF	LAAAA.IK.G	KVKVTGVGKN	SIQGDRLFA.	DVLEKMGAHI
	A. salmonicida	EGDASSASYF	LAAGA.IK.G	KVRVTGIGKH	SI.GDIHFA.	DVLERMGARI
	m	EGDASTASYF	LALGA.IGGG	PVRVTGVGED	SIQGDVAFA.	ATLAAMGADV
	Consensus	D-S	1 1 1 1 1 1	 		MG

U.S. Patent Aug. 22, 2006 Sheet 51 of 70

US RE39,247 E

400 YPVLAIAASF YPVLAIAASF YPILAVAAAF	IPIIALLATQ LPVIALLCTQ	FLTACVVAAI CVPRCFRTGS AMTLAVVALF	AMTLAVVALF AMTLAVVALF AMTLAVVALF	AMTLAVVALY AMTLAVVALE AMTIATTALE	AMTIATTALE AMTIATTALE AMTIATAALE	AMTIATTALF AMTIATTALF AMTIATTALF GHDHSGQSHC AMTAATLALY
PERAPSMIDE Y PERAPSMIDE Y EDRAPSMIDE Y		HVDMEPMTDA F KRGYGT.NDR C DVNMNKMPDV A	DVNMNKMPDV A DVNMNKMPDV A	• •		
ASKLKGVVVP ASKLKGVVVP SSTI,KGVTVP	TSSLKAVEIG TPMLQPITIE	GTLKPLK GILRATS FGMRHLRAV.	FGMRHLRAI. SGMKHLRAV. SGMKHLRAI.	SGRKHLRAI. FGRKHLKAI. CTRGELHAI.	CTRGELHAI. CTRGELHAI. CTRGELNAI.	CSRGELQGI. AEHAELNGI. VEKGNLKGI. AEQGPLHGV. GGRLKAF.
EDVADLRVR. EDVADLRVR. FDVADTRVR.	EPYGDLIIE. EPTASIRIQY	TTVSGPPV TTVTGPSD VTVTGPSRDA	VTVTGPPRDA VTVKGPPRNS	VIVEPPRSS VTVTGPPREP		IQ IQ IE IETRGVRVAE
351 EVLNARLAGG EVLNARLAGG	EVINFALAGGE EIKPSADSGA OL. FNOTTGA			TWTENS	TWGDDF TWGDDF CWGDDY	SWGDDY TWGEDF TWGDDF TWGDDF
PG2982 LBAA	Agrobacterium cr4 B. subtilis	S. cerevisiae A. nidulans B. napus	~	•	1)	Y. pheumoniae Y. entoercolitica H. influenzae P. multocida A. salmonicida B. pertussis Consensus

U.S. Patent Aug. 22, 2006 Sheet 52 of 70

45	VARGLEANGV DCTEGEMSLT	VARGLEANGV DCTEGEMSLT	VANGLKLNGV DCDEGETSLV	VVSELRKLGA EIEPTADGMK	TADMLNLLGF ELQPTNDGLI	MATELAKFGV KTTELPDGIQ	MKDELAKFGV ICREHDDGLE	ΔŢ	ŢŲ.	TV.	ΣŢ	•	IRTELTKLGA SV.EEGPDYC	MATELRKVGA EV.EEGHDYI	MATELRKVGA EV.EEGHDYI	MATELRKVGA EV. EEGHDYI	MATELRKVGA EV.EEGHDYI	MATELRKVGA EV. EEGEDYI	MATELRKVGA EV.EEGQDYI	MATELRKVGA EV.EEGEDFI	MATELRKVGA EV.EEGEDFI	CTHGHRRAQA GVSEEGTTFI	MHTELEKLGA GV. QSGADWL	
	RVKESDRLAA	RVKESDRLAA	RVKESDRLSA	KVKETNRIDT	KVKETNRIDT	RVKECNRILA	RVKECNRIKA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKETERMIA	RVKETERMVA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETDRLFA	RVKETDRLSA	RVKETDRLTA	RVKETDRLTA	AVRD. DRCTP	RVKETDRIHA	-VR
	ETVMDGLDEL	ETVMDGLDEL	ATVMNGLEEL	TTVIKDAAEL	TSTIKDAEEL	TTTIEGIANO	PPVSSGIANQ	PTTIRDVASW	PTTIRDVASW	PTAIRDVASW	PTTIRDVASW	PTAIRDVASW	PTAIRDVASW	TTTLRNIYNW	TTTLRNIYNW	TTTLRNIYNW	TTRLRNIYNW	TTTLRNIYNW	PTVIRNIYNW	ETVIRNIYNW	ETVIRNIYNW	VPPHSQHLQL	PCRLRNIGSW	
401	AEG	AEG	AEG	AEG			HRPMEKSQTT	ADG	ADG	ADG	ADG	ADG	ADG	AKG	AKG	AKG		ARG	ADG	SNG	AEG	•	ADG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	PG2982	LBAA	Agrobacterium CP4	B. subtilis			${\it \prec}$		A. thaliana	N. tabacum		P. hybrida	Z. mays	S. dallinarum	رز		E. Coli	O	റ		P. multocida	A. salmonicida	B. pertussis	Consensus

U.S. Patent	Aug. 22, 2006	Sheet 53 of 70	US RE39,247
5000 A	VTPQ	4400000000	! ! !
AMSFLVMGLA AMSFLVMGLA AMSFLVMGLV GMMLGIASCI GMMLAVACVL	•	AMAFSLAAC. AMAFSLAAC. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL. AMCFSLVAL.	
	GVCIIDDENCY GVFCYDDHRV EIDTYDDHRM EIDTYDDHRM EIDTYDDHRM	DIDTYDDHRM AIDTYDDHRM DIGTYNDHRM DIGTYNDHRM EIATYNDHRM EIGTYNDHRM EIGTYNDHRM	ELNI.HDHRM RHLQRSRI HIGTWDDHRMR-
	KVFSDSSGFV RQPVG KPA KTA	NVT OHA OHA OHA OFA IAA	QHARD.RDA
451 VRGRPDGKGL VRGRPDGKGL VYGKQTLKG. IHPSEFKTN.	VHGLNSIKDL IDGIDR.SNL VITPPAKV VITPPKKV IITPPEKL	IITP. PEKL IITP. PEKL RITP. PAKL RITP. PAKL RITP. PAKL RITP. PEKL RITP. PLTL	RIQPLNLAQF TRDAADPAQA EVAPPEPGGW
ပ္က	S. cerevisiae A. nidulans B. napus A. thaliana N. tabacum L. esculentum	P. hybrida Z. mays S. gallinarum S. typhimurium S. typhi E. coli K. pneumoniae entoercolitica	h. influenzae P. multocida A. salmonicida B. pertussis Consensus
Ä		>	

U.S. Patent Aug. 22, 2006 Sheet 54 of 70 US RE39,247 E

538	ELSIL	ELSIL	ELSDTKAA					•	•			•	•		•		•	•	•	CLKN	AYR		D	
	DMMPGLGAKI	DMMPGLGAKI	DLMAGLGAKI	EHLNKLSKKS	PKLKLLQNEG	DVLH	DTLRQLFKV.	QVLESITKH.	QVLERITKH.	DVLQQYSKH.	EVLQKYSKH.	DVLQQYSKH.	DVLSTFVKN.	EQLARMSTPA	EQLARMSTPA	EQLARMSTPA	EQLARISQAA	GQLARISTLA	EQLARLSQIA	NEFEKI	ILFTLNTREV	DKLASVSQAV	DVYAGLLAAR	1 1 1 1 1 1
	MIATSFPEFM	MIATSFPEFM	MIATSFPEFM	AIHVSYPTFF	AVNVSFPGFL	CTGKTWPGWW	CVGKTWPGWW	CTRKTFPDYF	CTRKTFPDYF	CTRKTFPNYF	CTRKTFPDYF	CTRKTFPNYF	CTRKTFPDYF	CTAKTFPDYF	CTAKTFPDYF	CTAKTFPDYF	CTAKTFPDYF	CTAKTFPDYF	CTAKTFPDYF	CTAKTFPTFF	CTAKTFPTFL	CTSKTFPDYF	CVSKTFPDYF	
501	EKPVTVDDSN	EKPVTVDDSN	ENPVTVDDAT	EEPIEIEHTD	SEPVKIKQFD	ANPVRILERH	PTLILEKE	DVPVTIKDPG	DVPITINDSG	DVPVTIKDPG	DVPVTIKNPG	DVPVTINDPG	EVPVTIRDPG	DTPVTILDPK	DTPVTILDPK	DTPVTILDPK	DTPVTILDPK	DTPVTILDPK	DTPVTILDPK	NTPVTILDPK	KTSVTILDPS	DIAVTINDPG	PAAVRILDPG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	PG2982	LBAA	Agrobacterium CP4	B. subtilis	- OJ	S. cerevisiae	~	B. napus	A, thaliana	N. tabacum	L. esculentum	P. hybrida	Z. mays	S. gallinarum			E. coli	K. pneumoniae	Y. entoercolitica	H. influenzae	P. multocida	A. salmonicida	m	Consensus

U.S.]	Pate	nt	A	Aug. 22, 200)6 She	et 55 of 70		US RE39	9,247 E
AA 60	AG 120	TT 180	TA 240	292	340	388	436	484	
ACGGGCTGTA ACGGTAGTAG GGGTCCCGAG CACAAAAGCG GTGCCGGCAA GCAGAACTAA	TITCCATGGG GAATAATGGT ATTTCATTGG TITGGCCTCT GGTCTGGCAA TGGTTGCTAG	GCGATCGCCT GTTGAAATTA ACAAACTGTC GCCCTTCCAC TGACCATGGT AACGATGTTT	TITACITICCI TGACTAACCG AGGAAAATTT GGCGGGGGC AGAAATGCCA ATACAATTTA	GCTTGGTCTT CCCTGCCCT AATTTGTCCC CTCC ATG GCC TTG CTT TCC CTC Met Ala Leu Leu Ser Leu 1	AAC AAT CAT CAA TCC CAT CAA CGC TTA ACT GTT AAT CCC CCT GCC CAA Asn Asn His Gln Ser His Gln Arg Leu Thr Val Asn Pro Pro Ala Gln 10	GGG GTC GCT TTG ACT GGC CGC CTA AGG GTG CCG GGG GAT AAA TCC ATT Gly Val Ala Leu Thr Gly Arg Leu Arg Val Pro Gly Asp Lys Ser Ile 25	TCC CAT CGG GCC TTG ATG TTG GGG GCG ATC GCC ACC GGG GAA ACC ATT Ser His Arg Ala Leu Met Leu Gly Ala Ile Ala Thr Gly Glu Thr Ile 40	ATC GAA GGG CTA CTG TTG GGG GAA GAT CCC CGT AGT ACG GCC CAT TGC Ile Glu Gly Leu Leu Gly Glu Asp Pro Arg Ser Thr Ala His Cys 55 65	Figure 21A

U.S. Pate	nt .	Aug. 22, 200	6 She	eet 56 of 70)	US RE39,247 E	
532	280	628	676	724	772	820	
A ATC	GTT Val	TTG	r TCC 5 Ser	A ATG Met 150	GCA 1 Ala 5	r GCT e Ala	
AAA Lys 85	ACC Thr	GGC G1y	GAT Asp	CAA Gln	CTG Leu 165	ATT Ile	m
GAA Glu	AGT Ser 100	TTG Leu	GAT	CAA Gln	CCG	CCC Pro 180	21B
TCA	CCC Pro	ATG Met 115	GGC Gly	TTG Leu	GCG Ala	TCC Ser	
AAT Asn	GAA Glu	TTA	ACC Thr 130	CCC	TTT Phe	CAT His	ıre
CTA	CAG Gln	CGC Arg	GTC Val	CAA G1n 145	AAG Lys	TAC Tyr	igure
GAA Glu 80	TTG	ATG Met	ACC Thr	ATT Ile	GGC Gly 160	CAT His	1 24
AGC	CAG Gln 95	ACC Thr	TTC Phe	GTA Val	AAC Asn	ATC Ile 175	
ATC Ile	GGA G1y	ACC Thr 110	TTA	CGG Arg	AGT Ser	CCG	
GAA	CTG	66C 61Y	TGT Cys 125	TCC	CGG	AAA Lys	
GCA Ala	GGT Gly	TCT Ser	GAT Asp	ATG Met 140	GCC Ala	TTA Leu	
GGA G1y 75	CGG Arg	AAC Asn	AAA Lys	CCC	TGG Trp 155	CAA Gln	
ATG Met	GGT Gly 90	666 61y	CAA Gln	CGC Arg	ATT Ile	AGC Ser 170	
GCC Ala	CAG Gln	GCG Ala 105	GGG Gly	CAC His	AAA Lys	GGT Gly	
CGG	GTT Val	GAT	GCC Ala 120	CGT Arg	GCA Ala	CAG Gln	
TTT (Phe 1	ATC (TTG (Len)	CTA C	CTC CLeu i	GGG (GTC (

U.S. Pat	ent	Aug. 22, 200)6 Sh	eet 57 of 70)	US RE39),247 E
898	916	964	1012	1060	1108	1156	
GAG Glu	GAA Glu	ACC Thr 230	GTG Val	GCA Ala	AAC Asn	GAC Asp	
ACC Thr	AGC Ser	GTA Val	CGG Arg 245	GCG Ala	ATT Ile	GCG Ala	
ACC	CAT His	CCA Pro	CAA Gln	GTG Val 260	66C G1y	666 Gly	21C
TTA Leu 195	GAT Asp	GAT Asp	GGG G1y	TTA	GTA Val 275	ATG Met	
GGG G 1Y	CGG Arg 210	ATT Ile	ACG Thr	TGG Trd	AAT Asn	CAG Gln 290	ıre
GCG Ala	TCC Ser	ACC Thr 225	TTA Leu	TTT Phe	GAA Glu	GCC Ala	Figure
CTA	CTA	TTA Leu	CAT His 240	GCC	GTG Val	TTG	ĨΞ.
${f TTG}$	GCT Ala	AAA Lys	GCC Ala	GCG Ala 255	TTG	GTG Val	
CTG Leu 190	CCA Pro	GCC Ala	CCG	TCG Ser	TTG Leu 270	GAA Glu	
TGC Cys	GAA Glu 205	GGA Gly	GGC Gly	AGC	GAA Glu	TTG Leu 285	
TCC	ACA Thr	TTT Phe 220	CAT His	ATC Ile	TCA	GTG Val	
AAG Lys	GTT Val	GCC	GTC Val 235	GAC Asp	GGA Gly	$\frac{GGG}{G1Y}$	
GTA Val	ACG Thr	CAG Gln	ACT Thr	GGG Gly 250	CCT	ACA Thr	
CAG Gln 185	ACC Thr	TTG	GTC Val	CCA	TTG Leu 265	AGG Arg	
GCC	GAC Asp 200	ATG Met	AGC Ser	GTG Val	ATT Ile	ACC Thr 280	
TCA	GGG Gly	CGC Arg 215	CAT His	GTG Val	TCC	CCC	

U.S. Pate	ent	Aug. 22, 200	6 She	eet 58 of 70		US RE39,	247 E
1204	1252	1300	1348	1396	1444	1492	
GAT Asp 310	GAA Glu	GCG Ala	AGG Arg	AAA Lys	GGG Gly 390	CGC Arg	
GCA Ala	GGC Gly 325	GCG Ala	CTG Leu	GGC Gly	CAA Gln	CAT His 405	
GTA Val	66C G1Y	GTG Val 340	GAA Glu	TTG	ATT 11e	GAT Asp	21I
CCG	TTC Phe	GCA Ala	GCA Ala 355	GAG Glu	GAA Glu	ACG Thr	
GAA Glu	ACC Thr	TTG Leu	GCC Ala	TCG Ser 370	CTG Leu	TTG Leu	igure
GGG G1Y 305	TGC Cys	ATT Ile	GAT Asp	GCT Ala	GGC G1Y 385	AGC Ser	igi
ACG Thr	GGT G1Y 320	CCC Pro	GAA Glu	ATT Ile	GAT Asp	GAT ASP 400	Ŀ
GTA Val	CAG Gln	ATT Ile 335	ATT Ile	GCC Ala	GAT Asp	GTG Val	
TTG	CTC	GAA Glu	CGC Arg 350	GCG	TTT Phe	GAG Glu	
CGA Arg	CAT His	GAT Asp	ACC Thr	CTG Leu 365	GAA Glu	GCC Ala	
GAA G1u 300	AGC Ser	ATT Ile	ACT Thr	CGC Arg	ACC Thr 380	GGG G1y	
AAT Asn	GCA Ala 315	CTG Leu	GGC Gly	GAT Asp	GTC Val	CAA Gln 395	
GAG Glu	AGG	CGA Arg 330	GAG Glu	AGC Ser	AAA Lys	TTA Leu	
CCG	GTT Val	CCC Pro	GCA Ala 345	GAA Glu	GCC Ala	CCG	
ACC Thr	CGG Arg	ATT 11e	TTT Phe	AAA Lys 360	GGG G1y	AGC	
ATT 11e 295	CTG	ATT Ile	GCC	GTT Val	ATG Met 375	GGA Gly	

U.S. Patent	Aug. 22	, 2006	Sheet 5	59 of 7	70		US R	RE39,247 E
1540	1588	1635	1695	1755	1815	1875	1894	
ATT GCC ATG GCG ATC GCC GCT TTA GGT AGT GGG GGG CAA ACA Ile Ala Met Ala Leu Ala Ile Ala Ala Leu Gly Ser Gly Gly Gln Thr 410	ATT ATT AAC CGG GCG GAA GCG GCC GCC ATT TCC TAT CCA GAA TTT TTT Ile Ile Asn Arg Ala Glu Ala Ala Ala Ile Ser Tyr Pro Glu Phe Phe 435	GGC ACG CTA GGG CAA GTT GCC CAA GGA TAAAGTTAGA AAAACTCCTG Gly Thr Leu Gly Gln Val Ala Gln Gly	TGT AAATGTTTTA CC	GGGTAATTTA TCCGCAATTG ACCAATCGGC ATGGACCGTA TCGTTCAAAC TGGGTAATTC	TCCCTTTAAT TCCTTAAAAG CTCGCTTAAA ACTGCCCAAC GTATCTCCGT AATGGCGAGT	GAGTAGAAGT AATGGGGCCA AACGGCGATC GCCACGGGAA ATTAAAGCCT GCATCACTGA	CCACTTATAA CTTTCGGGA	Figure 21E

U.S. P	atent	Aug. 22,	2006	Sheet 60 of	70	US RE	39,247 E
09	115	163	211	259	307	355	
TTTAAAAACA ATGAGTTAAA AAATTATTTT TCTGGCACAC GCGCTTTTTT TGCATTTTT	CTCCCATTTT TCCGGCACAA TAACGTTGGT TTTATAAAAG GAAATG ATG ATG ACG Met Met Thr 1	AAT ATA TGG CAC ACC GCG CCC GTC TCT GCG CTT TCC GGC GAA ATA ACG Asn Ile Trp His Thr Ala Pro Val Ser Ala Leu Ser Gly Glu Ile Thr 5	ATA TGC GGC GAT AAA TCA ATG TCG CAT CGC GCC TTA TTA TTA GCA GCG Ile Cys Gly Asp Lys Ser Met Ser His Arg Ala Leu Leu Leu Ala Ala 20	GCA GAA GGA CAA Ala Glu Gly Gln 40	TGT TTG GCG ACG CGG CAA GCA TTG CGC GCA TTA GGC GTT GAT ATT CAA Cys Leu Ala Thr Arg Gln Ala Leu Arg Ala Leu Gly Val Asp Ile Gln 65	AGA GAA AAA GAA ATA GTG ACG ATT CGC GGT GTG GGA TTT CTG GGT TTG Arg Glu Lys Glu Ile Val Thr Ile Arg Gly Val Gly Phe Leu Gly Leu 70	Figure 22A

U.S. Pate	ent	Aug. 22, 2	006	Sheet 61 of	70	US RI	Е39,247 Е
403	451	<u>გ</u> დ	547	595	643	691	
ATG Met	TTA Leu 115	ACG Thr	ACG Thr	GCG Ala	GGA Gly	CGC Arg 195	
AGC Ser	GTG Val	ATT 11e 130	TTT Phe	TAC Tyr	GCA Ala	AGT Ser	m
ACT Thr	AGC Ser	ATT Ile	AAT Asn 145	GAT Asp	TTG Leu	ATC Ile	22B
GGC	GAG Glu	CGC Arg	AGC Ser	ATT Ile 160	ATT Ile	GGC Gly	
AGT Ser 95	TTT Phe	CAG Gln	CAC His	GGC Gly	CTT Leu 175	TGC Cys	gure
AAC	CGC Arg	ATG	AGT Ser	ACC Thr	TGC Cys	ACT Thr 190	i gı
CAA Gln	CAG Gln	CCG Pro 125	GTC Val	CTG Leu	AGT Ser	CAT His	Ē4
ATG Met	GCG	CGT	ATT Ile 140	CCG	AAA Lys	CTG	
AAT	GCA Ala	AAA Lys	AAA Lys	CGC Arg 155	TTA Leu	CGG Arg	
TTA Leu 90	TTG	GAA Glu	GCA Ala	GGA Gly	CAA Gln 170	ACG Thr	
CCG	ATT Ile	TTA Leu	GGG Gly	TCA Ser	GCG Ala	ACC Thr 185	
GCA Ala	GGA G1y	TCA Ser 120	ATG Met	ATT Ile	AGC Ser	GGT Gly	
AAA Lys	GCA Ala	GAA Glu	CAA Gln 135	CAT His	CCC Pro	GAC Asp	
CCG	TTG Leu	GAT Asp	GTG Val	TTA Leu 150	CTT Leu	GCT Ala	
CCG Pro 85	TTA Leu	GGC	CTT Leu	CCG	CCG Pro	TTG Leu	
CAG Gln	CGT Arg 100	TGC Cys	CCG Pro	GCG Ala	TTA	TTA Leu 180	

U.S. Pate	ent	Aug. 22, 200	6 Sho	eet 62 of 70		US RE39,247 E							
739	787	835	883	931	979	1027							
ATC 11e	TGC Cys	GTT Val	GGC Gly	GGC Gly 275	GTG Val	GCG Ala							
GAG Glu 210	GGT Gly	ATG Met	GTC Val	ATG Met	CCG Pro 290	GTG Val							
CTT	CAC His 225	TTT Phe	AAT Asn	AAA Lys	GAA Glu	ACG Thr 305	22C						
GCA Ala	TTG Leu	TTT Phe 240	CGT Arg	CAA Gln	GCC Ala	ATT Ile							
66C 61y	AAA Lys	GCG Ala	ATT Ile 255	TTG	GGC Gly	66C 61y	ıre						
GGT Gly	CAA Gln	GCG Ala	GTT Val	TTG Leu 270	TGG Trp	CGC Arg	Figure						
TTT Phe 205	GGA Gly	GCG Ala	GTC Val	ACT Thr	TTT Phe 285	TTG Leu	Ħ						
CTT Leu	GGT G1y 220	TCG Ser	GAA Glu	ATT Ile	CGC Arg	AAA Lys 300							
CCG	ACC Thr	TTG Leu 235	GCG Ala	ATC Ile	CAG Gln	TCA							
TTG Leu	GTC Val	GAT Asp	CGC Arg 250	GCA Ala	CAT His	CAT His							
ATG Met	ATC Ile	GGC	CCG	GCG Ala 265	CAT His	TAT TYr							
CGC Arg 200	ATA Ile	GTC Val	GCG Ala	CGG Arg	TTG Leu 280	GTT Val							
GAA Glu	CAA Gln 215	ATT Ile	ATT Ile	ACG Thr	GAA Glu	GTT Val 295							
ACG Thr	GAG Glu	GAT Asp 230	TTG	CCG	ATT Ile	ATT Ile							
CAC His	AAA Lys	CTT Leu	GCT Ala 245	AAT Asn	CGG Arg	GAT Asp							
GAC Asp	AAG Lys	GTG Val	GCG Ala	ATT Ile 260	GGA Gly	GCA Ala							

U.S. Pater	nt A	ug. 22, 2006	Shee	t 63 of 70		US RE39,	247 E
1075	1123	1171	1219	1267	1315	1363	
AAC GCG ATT GAT GAA TTG CCG ATT TTT TTT ATT Asn Ala Ile Asp Glu Leu Pro Ile Phe Phe Ile 315	GAA GGG ACG ACT TTT GTG GGC AAT TTG TCA GAA Glu Gly Thr Thr Phe Val Gly Asn Leu Ser Glu 330	TCG GAT CGT TTA GCG GCG ATG GCG CAA AAT TTA Ser Asp Arg Leu Ala Ala Met Ala Gln Asn Leu 345		CGG CAA TTT TTA CCG GCG CGG GTG AAC AGT TTT 1 Arg Gln Phe Leu Pro Ala Arg Val Asn Ser Phe 380	GCG ATG AGT TTG GCG GTG GCA GGT GTG CGC GCG Ala Met Ser Leu Ala Val Ala Gly Val Arg Ala 395		Figure 22D
GCC Ala	GCG Ala	GAA Glu	GTG Val 360	GAT	ATT Ile	TTG	
ATT D Ile	r TGC	s AAA L Lys	3 GGC	A AGC 3 Ser 375	r cgg s Arg)	A TTA 1 Leu	
A TGG 1 Trp 310	A GCT a Ala 5	r GTG y Val	r rrg	A AGA	r CAT > His 390	r GAA 7 Glu 5	
GAA Glu	GC A1 32	G CGT Arg	ACT Thr	GGA GJy	GAT	GGT GIY	
CCG	GCG Ala	TTG Leu 340	CAA Gln	TAT Tyr	GGC Gly	GCA Ala	

U.S. Patent	Aug. 22, 2006	Sheet	64 of 70	US RE39,247 E
	1411	1465	1479	
	CCG CAA TTT CGC GAT TTT GCC GCA ATT GGT ATG AAT GTA GGA GAA Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile Gly Met Asn Val Gly Glu 420	AAA GAT GCG AAA AAT TGT CAC GAT TGATGGTCCT AGCGGTGTTG GAAAAGGCAC Lys Asp Ala Lys Asn Cys His Asp 440	GGTGGCGCAA GCTT Figure 22E	

U.S. Patent Aug. 22, 2006 Sheet 65 of 70

US RE39,247 E

40			RIPGDKSISH	RVPGDKSISH	HIPGDKSISH	TICGDKSMSH	EVPGDKSMTH	-I-GDKSH	80	MQAMGAKI.R	MQAMGAKI.R	MQAMGARI.R	FRAMGAEISE	FRKMGVHI.E	LRALGVDI.Q	FRHLGVEI.K	MG	120	GARLTMGLVG	GARLTMGLVG	GCRLTMGLVG	TMRLMLGLLA	TIRLMLGILA	SMRLLAGILA	TTRLLAGLLS	RLG
	RRSEALTGEI	RRSEALTGEI	RKSSGLSGTV	AQGVALTGRL	DKVQTLHGEI	APVSALSGEI	DISGPLKGEI			GEDVINTGRA	GEDVINTGRA	GEDVINTGKA	GEDPRSTAHC	GADCLSTIDC	CADCLATRQA	GEDCRRTMDI	LQ		AALDFGNAGT	AALDFGNAGT	APLDFGNAAT	TVLDAGNSGT	SLLDVGNSGT	APLNMONSGT	QVLYTGNSGT	TNT
	HSASPKPATA	HSASPKPATA	HGASSRPATA	SHQRLTWNPP		MMINIMHT	MVNEQII			GETRITGLLE	GETRITGLLE	GETRITGLLE	GETIIEGLLL	GTTTVKNFLP	GOTEIRGFLA	GVSTIYKPLL	GIL-		VGNGCLLQPE	VGNGCLLQPE	VGNGGLLAPE	RGLGQLQEPS	KGIDALKEPE	VGFLGLQPPK	PGYQ.VNTPH	-G
↔	MS	MS	MS	MALLSLNNHQ	•	•	•	1 1 1 1 1	41	RSFMFGGLAS	RSFMFGGLAS	RSFMFGGLAS	RALMLGAIAT	RSVMFGALAA	RALLLAALAE	RAIMLASLAE	RMFA-	81	KEGDVWIING	KEGDVWIING	KEGDTWIIDG	LNSEKIIVQG	OSSSDVVIHG	REKEIVTIRG	EDDEKLVVTS	
	PG2982	LBAA	Agrobacterium CP4	Synechorystis sp. PCC6803	В. В.		S. aureus	Consensus		PG2982	LBAA	Agrobacterium CP4		B.	•	S. aureus	Consensus		PG2982	LBAA	Agrobacterium CP4		B. S		ග	蒀

U.S. Patent Aug. 22, 2006 Sheet 66 of 70

^	- 'T	T	TR	Consensus
INTTPEAIRY	NIPIEAEGLS	NHTETMFKHF	TIIKELDVSR	S. aureus
IKKEQI	· · · · · GGALE	DHTERMLPLF	TRLHTCGISR	
EDQTSV	GVKLS	DHTERMLSAF	TTVTEPHKSR	
IDPVTHSV	GAKLT	DHSERMLQAF	TTVTEPALSR	shocystis sp. PCC6803
VETDADGVRT	GANLT	DHTEKMLQGF	TTVIEPIMTR	Agrobacterium CP4
VETDKDGVRH	GADLT	DHTEKMLQGF	TTVIEPVMTR	LBAA
VETDKDGVRH	GADLT	DHTEKMLQGF	TTVIEPVMTR	PG2982
240			201	
-LA-L	SAO-KS	X-I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Consensus
LFASLFSKEP	VASAQVKSAI	VIKGINYQME	YTPLIIKPS	
ILAGLLADGT	LPSAQLKSCL	PLTGIDYALP	T.APLHISGR	
LLAGLQAEGT	VASAQIKSAV	SLKGIDYVSP	EFTPLSVSGA	
LLAGLTTEGD	IASAQVKSCL	QLKPIHYHSP	KFAPLAVQGS	thorvatis sp. PCC6803
LLAGLNTPGI	MASAQVKSAV	TPTPITYRVP	RLPVTLRGPK	Agropacterium CP4
LLAGLNTPGV	MASAQVKSAV	TANPITYRVP	RMPLTLIGPK	LBAA
LLAGLNTPGV	MASAQVKSAV	TANPITYRVP	RMPLTLIGPK	PG2982
200			161	
	-RVPLM	GD-SRPM) 	
DANIEGIEDN	DRVLRPLKLM	GDVSIGKRPM	GLGN. ESVLS	S. aureus
GAKIVSHSNF	QRIITPLVQM	GDESLEKRPM	AQR. FESVLC	•
GAKIDGRAGG	KRVTEPLKKM	GDESIAKRPM	G.RPFYSAVA	
GAKIWARSNG	SRVIQPLQQM	GDDSLRHRPM	GOKDCLFTVT	horvatia sp. PCC6803
GVQVKSEDGD	GRVLNPLREM	GDASLTKRPM	VY. DFDSTFI	Agrobacterium CP4
GVQVEAADGD	GRVLNPLREM	GDASLSKRPM	TY. DMKTSFI	LBAA
GVQVEAADGD	GRVLNPLREM	GDASLSKRPM	TY.DMKTSFI	PG2982
160			121	

Aug. 22, 2006

Sheet 67 of 70

	27.1			280
PG2982	TRITGOGKLV	GOTIDVPGDP	SSTAFPLVAA	LLVEGSDVTI
LBAA	IRITGOGKLV	GOTIDVPGDP	SSTAFPLVAA	LLVEGSDVTI
Agrobacterium CP4	IRLEGRGKLT	GOVIDVPGDP	SSTAFPLVAA	LLVPGSDVTI
	. TVHGPAHLT	GORVVVPGDI	SSAAFWLVAA	SILPGSELLV
) ДД	.SIAGGOKLT	AADIFVPGDI	SSAAFFLAAG	AMVPNSRIVL
D. nodosus	IVTGGQKLH	GCVLDIVGDL	SAAAFFMVAA	LIAPRAEVVI
	IKPAD	FHVPGDI	SSAAFFIVAA	LITPGSDVTI
	} 		SAFA-	1 1 1 1 1 1 1
	281			320
PG2982	RNVLMNPTRT	GLILTLQEMG	ADIEVLNARL	AGGEDVADLR
LBAA	RNVLMNPTRT	GLILTLQEMG	ADIEVLNARL	AGGEDVADLR
Agrobacterium CP4	LNVLMNPTRT	GLILTLQEMG	ADIEVINPRL	AGGEDVADLR
	ENVGINPTRT	GVLEVLAQMG	ADITPENERL	VTGEPVADLR
Щ	KNVGLNPTRT	GIIDVLQNMG	AKLEIKPSAD	SGAEPYGDLI
Д	RNVGINPTRA	AIITLLOKMG	GRIELHHQRF	WGAEPVADIV
S. aureus	HNVGINQTRS	GIIDIVEKMG	GNIQLFNQT.	TGAEPTASIR
	-NVN-TR-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	321			360
PG2982	VR. ASKLKGV	VVPPERAPSM	IDEYPVLAIA	ASFAEGETVM
LBAA	VR. ASKLKGV	VVPPERAPSM	IDEYPVLAIA	ASFAEGETVM
Agrobacterium CP4	VR.SSTLKGV	TVPEDRAPSM	IDEYPILAVA	AAFAEGATVM
	VR. ASHLQGC	TFGGEIIPRL	IDEIPILAVA	AAFAEGTTRI
В	IE. TSSLKAV	EIGGDIIPRL	IDEIPIIALL	ATQAEGTTVI
	VY.HSKLRGI	TVAPEWIANA	IDELPIFFIA	AACAEGTTFV
S. aureus	IQYTPMLQPI	TIEGELVPKA	IDELPVIALL	CTQAVGTSTI
ㅁ	VL		IDE-PI	A-G

U.S. Patent Aug. 22, 2006 Sheet 68 of 70

US RE39,247 E

400	GEMSLTVRGR	GEMSLTVRGR	GETSLVVRGR	FDDGLEIQGG	TADGMKVYGK	GADFIHIYGR	TNDGLIIHPS	<u>V</u>	440	LAAEKPVTVD	LAAEKPVTVD	LVSENPVTVD	LGSGGQTIIN	CITEEPIEIE	VRAAGELLID	VLSSEPVKIK	! 	473	•	•	Α	•	•	CHD	•	1 .	
	LEANGVDCTE	LEANGVDCTE	LKLNGVDCDE	LGKMGAKVTE	LRKLGAEIEP '	LQTLGVACDV	LNLLGFELQP '	LG				RIAMSFLVMG	RIAMALAIAA	RIGMMLGIAS	RIAMSLAVAG	RIGMMLAVAC '	RI-M-L-V	•	AKIELSIL		AKIELSDTKA	OG*	KKS	MNVGEKDAKN	NEG		
	SDRLAAVARG	SDRLAAVARG	SDRLSAVANG	SDRLAAIASE	TNRIDIVVSE	SDRLAAMAQN	TNRIDTTADM	- H	-	GGTVATHLDH	GGTVATHLDH	GAAVATHLDH	GAEVDSLTDH	GAAVSSHGDH	PARVNSFGDH	TNATDILTDH	HQ		EFMDMMPGLG	EFMDMMPGLG	EFMDLMAGLG	EFFGTLGQVA	TFFEHLNKLS	QFRDFAAAIG	GFLPKLKLLQ	1	
361	DGLDELRVKE	DGLDELRVKE	NGLEELRVKE	EDAAELRVKE	KDAAELKVKE	GNLSELRVKE	KDAEELKVKE	EL-VKE	401	PDGKGLG	PDGKGLG	PDGKGLGNAS	SPLO	OTLK.G	SDROFL	EFK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	441	DSNMIATSFP	DSNMIATSFP	DATMIATSFP	RAEAAAISYP	HTDAIHVSYP	DGAVAAVSMP	QFDAVNVSFP	d-S	
	PG2982	LBAA	Agrobacterium CP4	Synechocystis sp. PCC6803	ъ, В,		ິນ.	Consensus		PG2982	LBAA	Agrobacterium CP4	Synerhorystis sp. PCC6803	. B	_	ຸ ເກ	_ C		PG2982	LBAA	Agrobacterium CP4	Synechocystis sp. PCC6803			S. aureus	Consensus	

Aug. 22, 2006

Sheet 69 of 70

Figure 24

Aug. 22, 2006 Sheet 70 of 70

Figure 25

1

GLYPHOSATE-TOLERANT 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASES

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This is a continuation-in-part of a U.S. patent application Ser. No. 07/749,611, filed Aug. 28, 1991 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 07/576,537, filed Aug. 31, 1990, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates in general to plant molecular biology and, more particularly, to a new class of glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases.

Recent advances in genetic engineering have provided the requisite tools to transform plants to contain foreign genes.

It is now possible to produce plants which have unique characteristics of agronomic importance. Certainly, one such advantageous trait is more cost effective, environmentally compatible weed control via herbicide tolerance. Herbicidetolerant plants may reduce the need for tillage to control weeds thereby effectively reducing soil erosion.

One herbicide which is the subject of much investigation in this regard is N-phosphonomethylglycine commonly referred to as glyphosate. Glyphosate inhibits the shikimic acid pathway which leads to the biosynthesis of aromatic compounds including amino acids, plant hormones and vitamins. Specifically, glyphosate curbs the conversion of phosphoenolpyruvic acid (PEP) and 3-phosphoshikimic acid to 5-enolpyruvyl-3-phosphoshikimic acid by inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase 35 (hereinafter referred to as EPSP synthase or EPSPS). For purposes of the present invention, the term "glyphosate" should be considered to include any herbicidally effective form of N-phosphonomethylglycine (including any salt thereof) and other forms which result in the production of 40 the glyphosate anion in plants.

It has been shown that glyphosate-tolerant plants can be produced by inserting into the genome of the plant the capacity to produce a higher level of EPSP synthase in the chloroplast of the cell (Shah et al., 1986) which enzyme is 45 preferably glyphosate-tolerant (Kishore et al. 1988). Variants of the wild-type EPSPS enzyme have been isolated which are glyphosate-tolerant as a result of alterations in the EPSPS amino acid coding sequence (Kishore and Shah, 1988; Schulz et al., 1984; Sost et al., 1984; Kishore et al., 50 1986). These variants typically have a higher K, for glyphosate than the wild-type EPSPS enzyme which confers the glyphosate-tolerant phenotype, but these variants are also characterized by a high K_m for PEP which makes the enzyme kinetically less efficient (Kishore and Shah, 1988; 55 Sost et al., 1984; Schulz et al., 1984; Kishore et al., 1986; Sost and Amrhein, 1990). For example, the apparent K_m for PEP and the apparent K, for glyphosate for the native EPSPS from E. coli are 10 µM and 0.5 µM while for a glyphosatetolerant isolate having a single amino acid substitution of an 60 alanine for the glycine at position 96 these values are 220 μM and 4.0 mM, respectively. A number of glyphosatetolerant plant variant EPSPS genes have been constructed by mutagenesis. Again, the glyphosate-tolerant EPSPS was impaired due to an increase in the K_m for PEP and a slight 65 reduction of the V_{max} of the native plant enzyme (Kishore and Shah, 1988) thereby lowering the catalytic efficiency

2

 (V_{max}/K_m) of the enzyme. Since the kinetic constants of the variant enzymes are impaired with respect to PEP, it has been proposed that high levels of overproduction of the variant enzyme, 40–80 fold, would be required to maintain normal catalytic activity in plants in the presence of glyphosate (Kishore et al., 1988).

While such variant EPSP synthases have proved useful in obtaining transgenic plants tolerant to glyphospate, it would be increasingly beneficial to obtain an EPSP synthase that is highly glyphosate-tolerant while still kinetically efficient such that the amount of the glyphosate-tolerant EPSPS needed to be produced to maintain normal catalytic activity in the plant is reduced or that improved tolerance be obtained with the same expression level.

Previous studies have shown that EPSPS enzymes from different sources vary widely with respect to their degree of sensitivity to inhibition by glyphosate. A study of plant and bacterial EPSPS enzyme activity as a function of glyphosate concentration showed that there was a very wide range in the degree of sensitivity to glyphosate. The degree of sensitivity showed no correlation with any genus or species tested (Schulz et al., 1985). Insensitivity to glyphosate inhibition of the activity of the EPSPS from the Pseudomonas sp. PG2982 has also been reported but with no details of the studies (Fitzgibbon, 1988). In general, while such natural tolerance has been reported, there is no report suggesting the kinetic superiority of the naturally occurring bacterial phosphosatetolerant EPSPS enzymes over those of mutated EPSPS enzymes nor have any of the genes been characterized. Similarly, there are no reports on the expression of naturally glyphosate-tolerant EPSPS enzymes in plants to confer glyphosate tolerance.

For purposes of the present invention the term "mature EPSP synthase" relates to the EPSPS polypeptide without the N-terminal chloroplast transit peptide. It is now known that the precursor form of the EPSP synthase in plants (with the transit peptide) is expressed and upon delivery to the chloroplast, the transit peptide is cleaved yielding the mature EPSP synthase. All numbering of amino acid positions are given with respect to the mature EPSP synthase (without chloroplast transit peptide leader) to facilitate comparison of EPSPS sequences from sources which have chloroplast transit peptides (i.e., plants and fungi) to sources which do not utilize a chloroplast targeting signal (i.e., bacteria).

In the amino acid sequences which follow, the standard single letter or three letter nomenclature are used. All peptide structures represented in the following description are shown in conventional format in which the amino group at the N-terminus appears to the left and the carboxyl group at the C-terminus at the right. Likewise, amino acid nomenclature for the naturally occurring amino acids found in protein is as follows: alanine (Ala;A), asparagine (Asn;N), aspartic acid (Asp;D), arginine (Arg;R), cysteine (Cys;C), glutamic acid (Glu;E), glutamine (Gln;Q), glycine (Gly;G), histidine (His;H), isoleucine (Ile;I), leucine (Leu;L), lysine (Lys;k), methionine (Met;M), phenylalanine (Phe;F), proline (Pro;P), serine (Ser;S), threonine (Thr;T), tryptophan (Trp;W), tyrosine (Tyr;Y), and valine (Val;V). An "X" is used when the amino acid residue is unknown and parentheses designate that an unambiguous assignment is not possible and the amino acid designation within the parentheses is the most probable estimate based on known information.

The term "nonpolar" amino acids include alanine, valine, leucine, isoleucine, proline, phenylalanine, tryptophan, and methionine. The term "uncharged polar" amino acids

include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The term "charged polar" amino acids

includes the "acidic" and "basic" amino acids. The term "acidic" amino acids includes aspartic acid and glutamic acid. The term "basic" amino acid includes lysine, arginine 5 and histidine. The term "polar" amino acids includes both "charged polar" and "uncharged polar" amino acids.

Deoxyribonucleic acid (DNA) is a polymer comprising four mononucleotide units, dAMP (2'-Deoxyadenosine-5monophosphate), dGMP (2'-Deoxyguanosine-5-10 monophosphate), dCMP (2'-Deoxycytosine-5monophosphate) and dTMP (2'-Deoxythymosine-5monophosphate) linked in various sequences by 3',5'phosphodiester bridges. The structural DNA consists of multiple nucleotide triplets called "codons" which code for the amino acids. The codons correspond to the various amino acids as follows: Arg (CGA, CGC, CGG, CGT, AGA, AGG); Leu (CTA, CTC, CTG, CTT, TTA, TTG); Ser (TCA, TCC, TCG, TCT, AGC, AGT); Thr (ACA, ACC, ACG, ACT); Pro (CCA, CCC, CCG, CCT); Ala (GCA, GCC, 20 GCG, GCT); Gly (GGA, GGC, GGG, GGT); Ile (ATA, ATC, ATT); Val (GTA, GTC, GTG, GTT); Lys (AAA, AAG); Asn (AAC, AAT); Gla (CAA, CAG); His (CAC, CAT); Glu (GAA, GAG); Asp (GAC, GAT); Tyr (TAC, TAT); Cys (TGC, TGT); Phe (TTC, TTT); Met (ATG); and 25 Trp (UGG). Moreover, due to the redundancy of the genetic code (i.e., more than one codon for all but two amino acids), there are many possible DNA sequences which may code for a particular amino acid sequence.

SUMMARY OF THE INVENTION

DNA molecules comprising DNA encoding kinetically efficient, glyphosate-tolerant EPSP synthases are disclosed. The EPSP synthases of the present invention reduce the amount of overproduction of the EPSPS enzyme in a trans- 35 genic plant necessary for the enzyme to maintain catalytic activity while still conferring glyphosate tolerance. The EPSP synthases described herein represent a new class of EPSPS enzymes, referred to hereinafter as Class II EPSPS enzymes. Class II EPSPS enzymes of the present invention 40 usually share only between about 47% and 55% amino acid similarity or between about 22% and 30% amino acid identity to other known bacterial or plant EPSPS enzymes and exhibit tolerance to glyphosate while maintaining suitable K_m (PEP) ranges. Suitable ranges of K_m (PEP) for 45 EPSPS for enzymes of the present invention are between $1-150 \mu M$, with a more preferred range of between 1-35 μM , and a most preferred range between 2–25 μM . These kinetic constants are determined under the assay conditions specified hereinafter. An EPSPS of the present invention 50 preferably has a K, for glyphosate range of between 15-10000 μM. The K/K_m ratio should be between about 2–500, and more preferably between 25–500. The $V_{\it max}$ of the purified enzyme should preferably be in the range of 2–100 units/mg (μ moles/minute.mg at 25° C.) and the K_m 55 closed from seven sources: Agrobacterium sp. strain desigfor shikimate-3-phosphate should preferably be in the range of 0.1 to 50 μ M.

Genes coding for Class II EPSPS enzymes have been isolated from five (5) different bacteria: Agrobacterium tumefaciens sp. strain CP4, Achromobacter sp. strain 60 LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis, and Staphylococcus aureus. The LBAA and PG2982 Class II EPSPS genes have been determined to be identical and the proteins encoded by these two genes are very similar to the CP4 protein and share approximately 84% amino acid identity with it. Class II EPSPS enzymes often may be distinguished from Class I EPSPS's by their inability to

react with polyclonal antibodies prepared from Class I EPSPS enzymes under conditions where other Class I EPSPS enzymes would readily react with the Class I antibodies as well as the presence of certain unique regions of amino acid homology which are conserved in Class II EPSP

synthases as discussed hereinafter.

Other Class II EPSPS enzymes can be readily isolated and identified by utilizing a nucleic acid probe from one of the Class II EPSPS genes disclosed herein using standard hybridization techniques. Such a probe from the CP4 strain has been prepared and utilized to isolate the Class II EPSPS genes from strains LBAA and PG2982. These genes may also optionally be adapted for enhanced expression in plants by known methodology. Such a probe has also been used to identify homologous genes is bacteria isolated de novo from

The Class II EPSPS enzymes are preferably fused to a chloroplast transit peptide (CTP) to target the protein to the chloroplasts of the plant into which it may be introduced. Chimeric genes encoding this CTP-Class II EPSPS fusion protein may be prepared with an appropriate promoter and 3' polyadenylation site for introduction into a desired plant by standard methods.

To obtain the maximal tolerance to glyphosate herbicide it is preferable to transform the desired plant with a plantexpressible Class II EPSPS gene in conjunction with another plant-expressible gene which expresses a protein capable of degrading glyphosate such as a plant-expressible gene encoding a glyphosate oxidoreductase enzyme as described in PCT Application No. WO 92/00377, the disclosure of which is hereby incorporated by reference.

Therefore, in one aspect, the present invention provides a new class of EPSP synthases that exhibit a low K_m for phosphoenolpyruvate (PEP), a high V_{max}/K_m ratio, and a high K, for glyphosate such that when introduced into a plant, the plant is made glyphosate-tolerant such that the catalytic activity of the enzyme and plant metabolism are maintained in a substantially normal state. For purposes of this discussion, a highly efficient EPSPS refers to its efficiency in the presence of glyphosate.

More particularly, the present invention provides EPSPS enzymes having a K_m for phosphoenolpyruvate (PEP) between 1–150 μ M and a K_i (glyphosate)/ K_m (PEP) ratio between 3-500, said enzymes having the sequence domains:

-R-X₁-H-X₂-E-(SEQ ID NO:37), in which

 X_1 is an uncharged polar or acidic amino acid,

 X_2 is serine or threonine; and

-G-D-K-X₃-(SEQ ID NO:38), in which

X₃ is serine or threonine; and

-S-A-Q-X₄-K-(SEQ ID NO:39), in which

 X_4 is any amino acid; and

-N-X₅-T-R-(SEQ ID NO:40), in which

 X_5 is any amino acid.

Exemplary Class II EPSPS enzyme sequences are disnated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

In another aspect of the present invention, a doublestranded DNA molecule comprising DNA encoding a Class II EPSPS enzyme is disclosed. Exemplary Class II EPSPS enzyme DNA sequences are disclosed from seven sources: Agrobacterium sp. strain designated CP4, Achromobacter sp. strain LBAA, Pseudomonas sp. strain PG2982, Bacillus subtilis 1A2, Staphylococcus aureus (ATCC 35556), Synechocystis sp. PCC6803 and Dichelobacter nodosus.

5

In a further aspect of the present invention, nucleic acid probes from EPSPS Class II genes are presented that are suitable for use in screening for Class II EPSPS genes in other sources by assaying for the ability of a DNA sequence from the other source to hybridize to the probe.

In yet another aspect of the present invention, a recombinant, double-stranded DNA molecule comprising in sequence:

- a) a promoter which functions in plant cells to cause the production of an RNA sequence;
- b) a structural DNA sequence that causes the production of an RNA sequence which encodes a Class II EPSPS enzyme having the sequence domains;

-R-X₁-H-X₂-E-(SEQ ID NO:37), in which

X₁ is an uncharged polar or acidic amino acid,

 X_2 is serine or threonine; and

-G-D-K-X₃-(SEQ ID NO:38), in which

 X_3 is serine or threonine; and

-S-A-Q-X₄-K-(SEQ ID NO:39), in which

X₄ is any amino acid; and

-N-X₅-T-R-(SEQ ID NO:40), in which

X₅ is any amino acid; and

 c) a 3' nontranslated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSP synthase polypeptide to enhance the glyphosate tolerance of a plant cell transformed with said DNA molecule.

In still yet another aspect of the present invention, transgenic plants and transformed plant cells are disclosed that are made glyphosate-tolerant by the introduction of the above-described plant-expressible Class II EPSPS DNA molecule into the plant's genome.

In still another aspect of the present invention, a method for selectively controlling weeds in a crop field is presented by planting crop seeds or crop plants transformed with a plant-expressible Class II EPSPS DNA molecule to confer glyphosate tolerance to the plants which allows for glyphosate containing herbicides to be applied to the crop to selectively kill the glyphosate sensitive weeds, but not the crops.

Other and further objects, advantages and aspects of the invention will become apparent from the accompanying 45 drawing figures and the description of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A, 1B, show the DNA sequence (SEQ ID NO:1) for the full-length promoter of figwort mosaic virus (FMV35S).

- FIG. 2 shows the cosmid cloning vector pMON17020.
- FIG. 3A, 3B, 3C, 3D and 3E show the structural DNA sequence (SEQ ID NO:2) for the Class II EPSPS gene from bacterial isolate Agrobacterium sp. strain CP4 and the deduced amino acid sequence (SEQ ID NO:3).
- FIG. 4A, 4B, 4C, 4D and 4E show the structural DNA sequence (SEQ ID NO:4) for the Class II EPSPS gene from the bacterial isolate Achromobacter sp. strain LBAA and the deduced amino acid sequence (SEQ ID NO:5).
- FIG. 5A, 5B, 5C, 5D and 5E show the structural DNA sequence (SEQ ID NO:6) for the Class II EPSPS gene from the bacterial isolate Pseudomonas sp. strain PG2982 and the deduced amino acid sequence (SEQ ID NO:7).
- FIG. 6A and 6B show the Bestfit comparison of the CP4 65 EPSPS amino acid sequence (SEQ ID NO:3) with that for the E. coli EPSPS (SEQ ID NO:8).

6

- FIG. 7A and 7B show the Bestfit comparison of the CP4 EPSPS amino acid sequence (SEQ ID NO:3) with that for the LBAA EPSPS (SEQ ID NO:5).
- FIG. **8**A and **8**B show the structural DNA sequence (SEQ ID NO:9) for the synthetic CP4 Class II EPSPS gene.
- FIG. 9 shows the DNA sequence (SEQ ID NO:10) of the chloroplast transit peptide (CTP) and encoded amino acid sequence (SEQ ID NO:11) derived from the Arabidopsis thaliana EPSPS CTP and containing a SphI restriction site at the chloroplast processing site, hereinafter referred to as CTP2.
- FIG. 10A and 10B show the DNA sequence (SEQ ID NO:12) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:13) derived from the Arabidopsis thaliana EPSPS gene and containing an EcoRI restriction site within the mature region of the EPSPS, hereinafter referred to as CTP3.
- FIG. 11 shows the DNA sequence (SEQ ID NO:14) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:15) derived from the Petunia hybrida EPSPS CTP and containing a SphI restriction site at the chloroplast processing site and in which the amino acids at the processing site are changed to -Cys-Met-, hereinafter referred to as CTP4.
- FIG. 12A and 12B show the DNA sequence (SEQ ID NO:16) of the chloroplast transit peptide and encoded amino acid sequence (SEQ ID NO:17) derived from the Petunia hybrida EPSPS gene with the naturally occurring EcoRI site in the mature region of the EPSPS gene, hereinafter referred to as CTP5.
- FIG. 13 shows a plasmid map of CP4 plant transformation/expression vector pMON17110.
- FIG. **14** shows a plasmid map of CP4 synthetic EPSPS gene plant transformation/expression vector pMON17131.
 - FIG. 15 shows a plasmid map of CP4 EPSPS free DNA plant transformation expression vector pMON13640.
 - FIG. **16** shows a plasmid map of CP4 plant transformation/direct selection vector pMON17227.
 - FIG. 17 shows a plasmid map of CP4 plant transformation/expression vector pMON19653.
 - FIG. **18**A, **18**B, **18**C and **18**D show the structural DNA sequence (SEQ ID NO:41) for the Class II EPSPS gene from the bacterial isolate Bacillus subtilis and the deduced amino acid sequence (SEQ ID NO:42).
 - FIG. **19**A, **19**B, **19**C and **19**D show the structural DNA sequence (SEQ ID NO:43) for the Class II EPSPS gene from the bacterial isolate Staphylococcus aureus and the deduced amino acid sequence (SEQ ID NO:44).
 - FIG. 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J and 20K show the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. stain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Bacillus subtilis (SEQ ID NO:42), and Staphylococcus aureus (SEQ ID NO:44) with that for representative Class I EPSPS amino acid sequences [Sacchromyces cerevisiae (SEQ ID NO:49), Aspergillus nidulans (SEQ ID NO:50), Brassica napus (SEQ ID NO:51), Arabidopsis thaliana (SEQ ID NO:52), Nicotina tobacum (SEQ ID NO:53), L. esculentum (SEQ ID NO:54), Petunia hybrida (SEQ ID NO:55), Zea mays (SEQ ID NO:56), Solmenella gallinarum (SEQ ID NO:57), Solmenella typhimurium (SEQ ID NO:58), Solmenella typhi (SEQ ID NO:65), E. coli (SEQ ID NO:8), K. pneumoniae (SEQ ID NO:59), Y. enterocolitica (SEQ ID NO:60), H. influenzae

(SEQ ID NO:61), P. multocida (SEQ ID NO:62), Aeromonas salmonicida (SEQ ID NO:63), Bacillus pertussis (SEQ ID NO:64)] and illustrates the conserved regions among Class II EPSPS sequences which are unique to Class II EPSPS sequences. To aid in a comparison of the EPSPS 5 sequences, only mature EPSPS sequences were compared. That is, the sequence corresponding to the chloroplast transit peptide, if present in a subject EPSPS, was removed prior to making the sequence alignment.

FIG. 21A, 21B, 21C, 21D and 21E show the structural 10 DNA sequence (SEQ ID NO:66) for the Class II EPSPS gene from the bacterial isolate Synechocystis sp. PCC6803 and the deduced amino acid sequence (SEQ ID NO:67).

FIG. 22A, 22B, 22C, 22D and 22E show the structural DNA sequence (SEQ ID NO:68) for the Class II EPSPS gene from the bacterial isolate Dichelobacter nodosus and the deduced amino acid sequence (SEQ ID NO:69).

FIG. 23A, 23B, 23C and 23D show the Bestfit comparison of the representative Class II EPSPS amino acid sequences Pseudomonas sp. strain PG2982 (SEQ ID NO:7), Achromobacter sp. strain LBAA (SEQ ID NO:5), Agrobacterium sp. strain designated CP4 (SEQ ID NO:3), Synechocystis sp. PCC6803 (SEQ ID NO:67), Bacillus subtilis (SEQ ID NO:42), Dichelobacter nodosus (SEQ ID NO:69) and Staphylococcus aureus (SEQ ID NO:44).

FIG. 24 a plasmid map of canola plant transformation/ expression vector pMON17209.

FIG. 25 a plasmid map of canola plant transformation/ expression vector pMON17237.

STATEMENT OF THE INVENTION

The expression of a plant gene which exists in doublestranded DNA form involves synthesis of messenger RNA (mRNA) from one strand of the DNA by RNA polymerase 35 enzyme, and the subsequent processing of the mRNA primary transcript inside the nucleus. This processing involves a 3' non-translated region which adds polyadenylate nucleotides to the 3' end of the RNA.

Transcription of DNA into mRNA is regulated by a region 40 of DNA usually referred to as the "promoter." The promoter region contains a sequence of bases that signals RNA polymerase to associate with the DNA, and to initiate the transcription into mRNA using one of the DNA strands as a template to make a corresponding complementary strand of 45 RNA. A number of promoters which are active in plant cells have been described in the literature. These include the nopaline synthase (NOS) and octopine synthase (OCS) promoters (which are carried on tumor-inducing plasmids of Agrobacterium tumefaciens), the cauliflower mosaic virus 50 (CaMV) 19S and 35S promoters, the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ssRUBISCO, a very abundant plant polypeptide) and the full-length transcript promoter from the figwort mosaic virus (FMV35S), promoters from the maize 55 contains a polyadenylation signal which functions in plants ubiquitin and rice actin genes. All of these promoters have been used to create various types of DNA constructs which have been expressed in plants; see, e.g., PCT publication WO 84/02913 (Rogers et al., Mosanto).

Promoters which are known or found to cause transcrip- 60 tion of DNA in plant cells can be used in the present invention. Such promoters may be obtained from a variety of sources such as plants and plant DNA virsues and include, but are not limited to, the CaMV35A and FMV35S promoters and promoters isolated from plant genes such as 65 ssRUBISCO genes and the maize ubiquitin and rice actin genes. As described below, it is preferred that the particular

promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of a Class II EPSPS to render the plant substantially tolerant to glyphosate herbicides. The amount of Class II EPSPS needed to induce the desired tolerance may vary with the plant species. It is preferred that the promoters utilized have relatively high expression in all meristematic tissues in addition to other tissues inasmuch as it is now known that glyphosate is translocated and accumulated in this type of plant tissue. Alternatively, a combination of chimeric genes can be used to cumulatively result in the necessary overall expression level of the selected Class II EPSPS enzyme to result in the glyphosate-tolerant phenotype.

The mRNA produced by a DNA construct of the present invention also contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNAs, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from both the 5' non-translated sequence that accompanies the promoter sequence and part of the 5' non-translated region of the virus coat protein gene. Rather, the non-translated leader sequence can be derived from an unrelated promoter or coding sequence as discussed above.

Preferred promoters for use in the present invention the full-length transcript (SEQ ID NO:1) promoter from the figwort mosaic virus (FMV35S) and the full-length transcript (35S) promoter from cauliflower mosaic virus (CaMV), including the enhanced CaMV35S promoter (Kay et al. 1987). The FMV35S promoter functions as strong and uniform promoter with particularly good expression in meristematic tissue for chimeric genes inserted into plants, particularly dicotyledons. The resulting transgenic plant in general expresses the protein encoded by the inserted gene at a higher and more uniform level throughout the tissues and cells of the transformed plant than the same gene driven by an enhanced CaMV35S promoter. Referring to FIG. 1, the DNA sequence (SEQ ID NO:1) of the FMV35S promoter is located between nucleotides 6368 and 6930 of the FMV genome. A 5' non-translated leader sequence is preferably coupled with the promoter. The leader sequence can be from the FMV35S genome itself or can be from a source other than FMV35S.

For expression of heterologous genes in moncotyledonous plants the use of an intron has been found to enhance expression of the heterologous gene. While one may use any of a number of introns which have been isolated from plant genes, the use of the first intron from the maize heat shock 70 gene is preferred.

The 3' non-translated region of the chimeric plant gene to cause the addition of polyadenylate nucleotides to the 3' end of the viral RNA. Examples of suitable 3' regions are (1) the 3' transcribed, non-translated regions containing the polyadenylated signal of Agrobacterium tumor-inducing (Ti) plasmid genes, such as the nopaline synthase (NOS) gene, and (2) plant genes like the soybean storage protein genes and the small subunit of the ribulose-1,5-biphosphate carboxylase (ssRUBISCO) gene. An example of a preferred 3' region is that from the ssRUBISCO gene from pea (E9), described in greater detail below.

The DNA constructs of the present invention also contain a structural coding sequence in double-stranded DNA form

50

9

which encodes a glyphosate-tolerant, highly efficient Class II EPSPS enzyme.

Identification of glyphosate-tolerant, highly efficient EPSPS enzymes

In an attempt to identify and isolate glyphosate-tolerant, highly efficient EPSPS enzymes, kinetic analysis of the EPSPS enzymes from a number of bacteria exhibiting tolerance to glyphosate or that had been isolated from suitable sources was undertaken. It was discovered that in some cases the EPSPS enzymes showed no tolerance to inhibition by glyphosate and it was concluded that the tolerance phenotype of the bacterium was due to an impermeability to glyphosate or other factors. In a number of cases, however, microorganisms were identified whose EPSPS enzyme showed a greater degree of tolerance to inhibition by glyphosate and that displayed a low K,, for PEP when compared to that previously reported for other microbial and plant sources. The EPSPS enzymes from these microorganisms were then subjected to further study and analysis.

Table I displays the data obtained for the EPSPS enzymes identified and isolated as a result of the above described analysis. Table I includes data for three identified Class II EPSPS enzymes that were observed to have a high tolerance to inhibition to glyphosate and a low K_m for PEP as well as data for the native Petunia EPSPS and a glyphosate-tolerant variant of the Petunia EPSPS referred to as GA101. The GA101 variant is so named because it exhibits the substitution of an alanine residue for a glycine residue at position 101 (with respect to Petunia). When the change introduced into the Petunia EPSPS (GA101) was introduced into a number of other EPSPS enzymes, similar changes in a kinetics were observed, an elevation of the K_i for glyphosate and of the K_m for PEP.

TABLE I

Kinetic characterization of EPSPS enzymes				
ENZYME K_m PEP K_1 Glyphosate SOURCE (μM) (μM)				
Petunia	5	0.4	0.08	
Petunia GA101	200	2000	10	
PG2982	$2.1 - 3.1^{1}$	25-82	~8-40	
LBAA	~7.3–8 ²	60 (est) ⁷	~7.9	
CP4	12^{3}	2720	227	
B. subtilis 1A2	13 ⁴	440	33.8	
S. aureus	5 ⁵	200	40	

¹Range of PEP tested = $1-40 \mu M$

The Agrobacterium sp. strain CP4 was initially identified by its ability to grow on glyphosate as a carbon source (10 55 mM) in the presence of 1 mM phosphate. The strain CP4 was identified from a collection obtained from a fixed-bed immobilized cell column that employed Mannville R-635 diatomaceous earth beads. The column had been run for three months on a waste-water feed from a glyphosate 60 production plant. The column contained 50 mg/ml glyphosate and NH₃ as NH₄Cl. Total organic carbon was 300 mg/ml and BOD's (Biological Oxygen Demand—a measure of "soft" carbon availability) were less than 30 mg/ml. This treatment column has been described (Heitkamp et al., 65 1990). Dworkin-Foster minimal salts medium containing glyphosate at 10 mM and with phosphate at 1 mM was used

10

to select for microbes from a wash of this column that were capable of growing on glyphosate as sole carbon source. Dworkin-Foster minimal medium was made up by combining in I liter (with autoclaved H₂O), 1 ml each of A, B and C and 10 ml of D (as per below) and thiamine HCl (5 mg).

A. D–F Salts (1000X stock; per 100 ml; aut H ₂ BO ₃ 1 mg MnSO ₄ .7 H ₂ O 1 mg ZnSO ₄ .7 H ₂ O 12.5 mg CuSO ₄ .5 H ₂ O 8 mg NaMoO ₃ .3 H ₂ O 1.7 mg B. FeSO ₄ .7 H ₂ O (1000X Stock; per 100 ml; autoclaved)	
$\begin{array}{ccccc} MnSO_4.7 \; H_2O & 1 \; mg \\ ZnSO_4.7 \; H_2O & 12.5 \; mg \\ CuSO_4.5 \; H_2O & 8 \; mg \\ NaMoO_3.3 \; H_2O & 1.7 \; mg \\ B. & FeSO_4.7 \; H_2O \; (1000X \; Stock; \; per \; 100) \end{array}$	oclaved):
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CuSO ₄ .5 H_2O 8 mg NaMoO ₃ .3 H_2O 1.7 mg B. FeSO ₄ .7 H_2O (1000X Stock; per 100	
NaMoO ₃ .3 H_2O 1.7 mg B. FeSO ₄ .7 H_2O (1000X Stock; per 100	
B. FeSO ₄ .7 H ₂ O (1000X Stock; per 100	
7 2 \ /1	
	0.1 g
C. MgSO ₄ ,7 H ₂ O (1000X Stock; per 100 ml; autoclaved)	20 g
D. $(NH_4)_2SO_4$ (100X stock; per 100 ml; autoclaved)	20 g

Yeast Extract (YE; Difco) was added to a final concentration of 0.01 or 0.001%. The strain CP4 was also grown on media composed of D–F salts, amended as described above, containing glucose, gluconate and citrate (each at 0.1%) as carbon sources and with inorganic phosphate (0.2–1.0 mM) as the phosphorous source.

Other Class II EPSPS containing microorganisms were identified as Achromobacter sp. strain LBAA (Hallas et al., 1988), Pseudomonas sp. strain PG2982 (Moore et al., 1983; Fitzgibbon 1988), Bacillus subtilis 1A2 (Henner et al., 1984) and Staphylococcus aureus (O'Connell et al., 1993). It had been reported previously, from measurements in crude lysates, that the EPSPS enzyme from strain PG2982 was less sensitive to inhibition to glyphosate than that of E. coli, but there has been no report of the details of this lack of sensitivity and there has been no report on the K_m for PEP for this enzyme or of the DNA sequence for the gene for this enzyme (Fitzgibbon, 1988; Fitzgibbon and Braymer, 1990). Relationship of the Class II EPSPS to those previously studied.

All EPSPS proteins studied to date have shown a remarkdouble degree of homology. For example, bacterial and plant
EPSPS's are about 54% identical and with similarity as high
as 80%. Within bacterial EPSPS's and plant EPSPS's themselves the degree of identity and similarity is much greater
(see Table II).

TABLE II

Comparison between exemplary (Class I EPSPS prot	ein sequences
	similarity	identity
E. coli vs. S. typhaurium	93	88
P. hybrids vs. E. coli	72	55
P. hybrids vs. L. excalentum	93	88

¹The EPSPS sequences compared here were obtained from the following reference: *E. coli*, Rogers et al., 1983; *S. typhourium*, Smetzer et al, 1985; *Petanoic hybrids*; Shah et al, 1986; and tomato (*L. escalautum*), Gasper et al. 1988.

When crude extracts of CP4 and LBAA bacteria (50 µg protein) were probed using rabbit anti-EPSPS antibody (Padgette et al., 1987) to the Petunia EPSPS protein in a Western analysis, no positive signal could be detected, even with extended exposure times (Protein A—¹²⁵I development system) and under conditions where the control EPSPS (Petunia EPSPS, 20 ng; a Class I EPSPS) was readily detected. The presence of EPSPS activity in these extracts was confirmed by enzyme assay. This surprising result, indicating a lack of similarity between the EPSPS's from

²Range of PEP tested = $5-80 \mu M$

 $^{^{3}}$ Range of PEP tested = 1.5–40 μ M

 $^{^4}$ Range of PEP tested = 1–60 μM

 $^{^{5}}$ Range of PEP tested = 1–50 μ M

⁷⁽est) = estimated

these bacterial isolates and those previously studied, coupled with the combination of a low K_m for PEP and a high K_i for glyphosate, illustrates that these new EPSPS enzymes are different from known EPSPS enzymes (now referred to as Class I EPSPS).

11

Glyphosate-tolerant Enzymes is Microbial Isolates

For clarity and brevity of disclosure, the following description of the isolation of genes encoding Class II EPSPS enzymes is directed to the isolation of such a gene from a bacterial isolate. Those skilled in the art will recognize that the same or similar strategy can be utilized to isolate such genes from other microbial isolates, plant or fungal sources.

Cloning of the Agrobacterium sp. strain CP4 EPSPS Gene(s) in E. coli

Having established the existence of a suitable EPSPS in Agrobacterium sp. strain CP4, two parallel approaches were undertaken to clone the gene: cloning based on the expected phenotype for a glyphosate-tolerant EPSPS; and purification of the enzyme to provide material to raise antibodies and to 20 obtain amino acid sequences from the protein to facilitate the verification of clones. Cloning and genetic techniques, unless otherwise indicated, are generally those described in Maniatis et al., 1982 or Sambrook et al., 1987. The cloning strategy was as follows: introduction of a cosmid bank of 25 strain Agrobacterium sp. strain CP4 into E. coli and selection for the EPSPS gene by selection for growth on inhibitory concentrations of glyphosate.

Chromosomal DNA was prepared from strain Agrobacterium sp. strain CP4 as follows: The cell pellet from a 200 30 ml L-Broth (Miller, 1972), late log phase culture of Agrobacterium sp. strain CP4 was resuspended in 10 ml of Solution I; 50 mM Glucose, 10 mM EDTA, 25 mM Tris-CL pH 8.0 (Birnboim and Doly, 1979). SDS was added to a final concentration of 1% and the suspension was subjected to 35 three freeze-thaw cycles, each consisting of immersion in dry ice for 15 minutes and in water at 70° C. for 10 minutes. The lysate was then extracted four times with equal volumes of phenol:chloroform (1:1; phenol saturated with TE; TE=10 mM Tris pH8.0; 1.0 mM EDTA) and the phases separated by 40 and adding H₂O to 22.0 µl. This mixture was incubated for centrifugation (15000 g; 10 minutes). The ethanolprecipitable material was pelleted from the supernatant by brief centrifugation (8000 g; 5 minutes) following addition of two volumes of ethanol. The pellet was resuspended in 5 ml TE and dialyzed for 16 hours at 4° C. against 2 liters TE. 45 This preparation yielded a 5 ml DNA solution of 552 µg/ml.

Partially-restricted DNA was prepared as follows. Three 100 μg aliquot samples of CP4 DNA were treated for 1 hour at 37° C. with restriction endonuclease HindIII at rates of 4, 2 and 1 enzyme unit/µg DNA, respectively. The DNA 50 samples were pooled, made 0.25 mM with EDTA and extracted with an equal volume of phenol:chloroform. Following the addition of sodium acetate and ethanol, the DNA was precipitated with two volumes of ethanol and pelleted by centrifugation (12000 g; 10 minutes). The dried DNA 55 pellet was resuspended in 500 µl TE and layered on a 10–40% Sucrose gradient (in 5% increments of 5.5 ml each) in 0.5M NaCl, 50 mM Tris pH8.0, 5 mM EDTA. Following centrifugation for 20 hours at 26,000 rpm in a SW28 rotor, the tubes were punctured and ~1.5 ml fractions collected. 60 Samples (20 µl) of each second fraction were run on 0.7% agarose gel and the size of the DNA determined by comparison with linearized lambda DNA and HindIII-digested lambda DNA standards. Fractions containing DNA of 25-35 kb fragments were pooled, desalted on AMICON10 columns 65 (7000 rpm; 20° C.; 45 minutes) and concentrated by precipitation. This procedure yielded 15 µg of CP4 DNA of the

12

required size. A cosmid bank was constructed using the vector pMON17020. This vector, a map of which is presented in FIG. 2, is based on the pBR327 replicon and contains the spectinomycin/streptomycin (Sp^r;spc) resistance gene from Tn7 (Fling et al., 1985), the chloramphenicol resistance gene (Cm^r;cat) from Tn9 (Alton et al., 1979), the gene10 promoter region from phage T7 (Dunn et al., 1983), and the 1.6 kb BgIII phage lambda cos fragment from pHC79 (Hohn and Collins, 1980). A number of cloning sites are located downstream of the cat gene. Since the predominant block to the expression of genes from other microbial sources in E. coli appears to be at the level of transcription, the use of the T7 promoter and supplying the T7 polymerase in trans from the pGP1-2 plasmid (Tabor and Richardson, 1985), enables the expression of large DNA segments of foreign DNA, even those containing RNA polymerase transcription termination sequences. The expression of the spc gene is impaired by transcription from the T7 promoter such that only Cmr can be selected in strains containing pGP1-2. The use of antibiotic resistances such as Cm resistance which do not employ a membrane component is preferred due to the observation that high level expression of resistance genes that involve a membrane component, i.e. β-lactamase and Amp resistance, give rise to a glyphosatetolerant phenotype. Presumably, this is due to the exclusion of glyphosate from the cell by the membrane localized resistance protein. It is also preferred that the selectable marker be oriented in the same direction as the T7 promoter.

The vector was then cut with HindIII and treated with calf alkaline phosphatase (CAP) in preparation for cloning. Vector and target sequences were ligated by combining the following:

Vector DNA (HindIII/CAP)	3 µg
Size fractionated CP4 HindIII fragments	1.5 μg
10X ligation buffer	2.2 µl
T4 DNA ligase (New England Biolabs) (400 U/μl)	1.0 µl

18 hours at 16° C. 10X ligation buffer is 250 mM Tris-HCl, pH 8.0; 100 mM MgCl₂; 100 mM Dithiothreitol; 2 mM Spermidine. The ligated DNA (5 µl) was packaged into lambda phage particles (Stratagene; Gigapack Gold) using the manufacturer's procedure.

A sample (200 µl) of E. coli HB101 (Boyer and Rolland-Dussoix, 1973) containing the T7 polymerase expression plasmid pGP1-2 (Tabor and Richardson, 1985) and grown overnight in L-Broth (with maltose at 0.2% and kanamycin at 50/µg/ml) was infected with 50 µl of the packaged DNA. Transformants were selected at 30° C. on M9 (Miller, 1972) agar containing kanamycin (50 μg/ml), chloramphenicol (25 $\mu g/ml),$ L-proline (50 $\mu g/ml),$ L-leucine (50 $\mu g/ml)$ and B1(5 $\mu g/ml$), and with glyphosate at 3.0 mM. Aliquot samples were also plated on the same media lacking glyphosate to titer the packaged cosmids. Cosmid transformants were isolated on this latter medium at a rate of $\sim 5 \times 10^{3}$ per μg CP4 HindIII DNA after 3 days at 30° C. Colonies arose on the glyphosate agar from day 3 until day 15 with a final rate of ~1 per 200 cosmids. DNA was prepared from 14 glyphosatetolerant clones and, following verification of this phenotype, was transformed into E. coli GB100/pGP1-2 (E. coli GB100 is an aroA derivative of MM294 [Talmadge and Gilbert, 1980) and tested for complementation for growth in the absence of added aromatic amino acids and aminobenzoic acids. Other aroA strains such as SR481 (Bachman et al., 1980; Padgette et al., 1987), could be used and would be

13 14

suitable for this experiment. The use of GB100 is merely exemplary and should not be viewed in a limiting sense. This aroA strain usually requires that growth media be supplemented with L-phenylalanine, L-tyrosine and L-tryptophan each at 100 μg/ml and with para-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid and para-aminobenzoic acid each at 5 $\mu\text{g/ml}$ for growth in minimal media. Of the fourteen cosmids tested only one showed complementation of the aroA- phenotype. Transformants of this cosmid, pMON17076, showed weak but uniform growth on the 10 unsupplemented minimal media after 10 days.

The proteins encoded by the cosmids were determined in vivo using a T7 expression system (Tabor and Richardson, 1985). Cultures of E. coli containing pGP1-2 (Tabor and Richardson, 1985) and test and control cosmids were grown 15 at 30° C. in L-broth (2 ml) with chloramphenicol and kanamycin (25 and 50 μg/ml, respectively) to a Klett reading of ~50. An aliquot was removed and the cells collected by centrifugation, washed with M9 salts (Miller, 1972) and 0.2%, thiamine at 20 μg/ml and containing the 18 amino acids at 0.01% (minus cysteine and methionine). Following incubation at 30° C. for 90 minutes, the cultures were transferred to a 42° C. water bath and held there for 15minutes. Rifampicin (Sigma) was added to 200 µg/ml and 25 the cultures held at 42° C. for 10 additional minutes and then transferred to 30° C. for 20 minutes. Samples were pulsed with 10 μCi of ^{35}S -methionine for 5 minutes at 30° C. The cells were collected by centrifugation and suspended in 60–120 µl cracking buffer (60 mM Tris-HCl 6.8, 1% SDS, 30 1% 2-mercaptoethanol, 10% glycerol, 0.01% bromophenol blue). Aliquot samples were electrophoresed on 12.5% SDS-PAGE and following soaking for 60 minutes in 10 volumes of Acetic Acid-Methanol-water (10:30:60), the gel was soaked in ENLIGHTNINGTM (DUPONT) following manu- 35 facturer's directions, dried, and exposed at $-70^{\circ}\,\mathrm{C}.$ to X-Ray film. Proteins of about 45 kd in size, labeled with ³⁵Smethionine, were detected in number of the cosmids, including pMON17076.

Purification of EPSPS from Agrobacterium sp. strain CP4 40 All protein purification procedures were carried out at 3°-5° C. EPSPS enzyme assays were performed using either the phosphate release or radioactive HPLC method, as previously described in Padgette et al., 1987, using 1 mM phosphoenol pyruvate (PEP, Boehringer) and 2 mM 45 shikimate-3-phosphate (S3P) substrate concentrations. For radioactive HPLC assays, 14-CPEP (Amersham) was utilized. S3P was synthesized as previously described in Wibbenmeyer et al. 1988. N-terminal amino acid sequencing was performed by loading samples onto a Polybrene 50 precycled filter in aliquots while drying. Automated Edman degradation chemistry was used to determine the N-terminal protein sequence, using an Applied Biosystems Model 470A gas phase sequencer (Hunkapiller et al., 1983) with an Applied Biosystems 120A PTH analyzer.

Five 10-liter fermentations were carried out on a spontaneous "smooth" isolate of strain CP4 that displayed less clumping when grown in liquid culture. This reduced clumping and smooth colony morphology may be due to reduced polysaccharide production by this isolate. In the following 60 section dealing with the purification of the EPSPS enzyme, CP4 refers to the "smooth" isolate—CP4-S1. The cells from the three batches showing the highest specific activities were pooled. Cell paste of Agrobacterium sp. CP4 (300 g) was washed twice with 0.5 L of 0.9% saline and collected by 65 centrifugation (30 minutes, 8000 rpm in a GS3 Sorvall rotor). The cell pellet was suspended in 0.9 L extraction

buffer (100 mM TrisCl, 1 mM EDTA, 1 mM BAM (Benzamidine), 5 mM DTT, 10% glycerol, pH 7.5) and lysed by 2 passes through a Manton Gaulin cell. The resulting solution was centrifuged (30 minutes, 8000 rpm) and the supernatant was treated with 0.21 L of 1.5% protamine sulfate (in 100 mM TrisCl, pH 7.5, 0.2% w/v final protamine sulfate concentration). After stirring for 1 hour, the mixture was centrifuged (50 minutes, 8000 rpm) and the resulting supernatant treated with solid ammonium sulfate to 40% saturation and stirred for 1 hour. After centrifugation (50 minutes, 8000 rpm), the resulting supernatant was treated with solid ammonium sulfate to 70% saturation, stirred for 50 minutes, and the insoluble protein was collected by centrifugation (1 hour, 8000 rpm). This 40-70% ammonium sulfate fraction was then dissolved in extraction buffer to give a final volume of 0.2 L, and dialyzed twice (Spectrum 10,000 MW cutoff dialysis tubing) against 2 L of extraction buffer for a total of 12 hours.

To the resulting dialyzed 40-70% ammonium sulfate resuspended in 1 ml M9 medium containing glucose at 20 fraction (0.29 L) was added solid ammonium sulfate to give a final concentration of 1M. This material was loaded (2 ml/min) onto a column (5 cm×15 cm, 295 ml) packed with phenyl Sepharose CL-4B (Pharmacia) resin equilibrated with extraction buffer containing 1M ammonium sulfate, and washed with the same buffer (1.5 L, 2 ml/min). EPSPS was eluted with a linear gradient of extraction buffer going from 1M to 0.00M ammonium sulfate (total volume of 1.5 L, 2 ml/min). Fractions were collected (20 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 36–50) were pooled and dialyzed against 3×2 L (18 hours) of 10 mM TrisCl, 25 mM KCl, 1 mM EDTA, 5 mM DTT, 10% glycerol, pH 7.8.

The dialyzed EPSPS extract (350 ml) was loaded (5 ml/min) onto a column (2.4 cm×30 cm, 136 ml) packed with Q-Sepharose Fast Flow (Pharmacia) resin equilibrated with 10 mM TrisCl, 25 mM KCl, 5 mM DTT, 10% glycerol, pH 7.8 (Q Sepharose buffer), and washed with 1 L of the same buffer. EPSPS was eluted with a linear gradient of Q Sepharose buffer going from 0.025M to 0.40M KCl (total volume of 1.4 L, 5 ml/min). Fractions were collected (15 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions with the highest EPSPS activity (fractions 47–60) were pooled and the protein was precipitated by adding solid ammonium sulfate to 80% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation (20 minutes, 12000 rpm in a GSA Sorvall rotor), dissolved in Q Sepharose buffer (total volume of 14 ml), and dialyzed against the same buffer (2×1 L, 18 hours).

The resulting dialyzed partially purified EPSPS extract (19 ml) was loaded (1.7 ml/min) onto a Mono Q 10/10 column (Pharmacia) equilibrated with Q Sepharose buffer, and washed with the same buffer (35 ml). EPSPS was eluted with a linear gradient of 0.025M to 0.35M KCl (total volume of 119 ml, 1.7 ml/min). Fractions were collected (1.7 ml) and assayed for EPSPS activity by the phosphate release assayed. The fractions with the highest EPSPS activity (fractions 30–37) were pooled (6 ml).

The Mono Q pool was made 1M in ammonium sulfate by the addition of solid ammonium sulfate and 2 ml aliquots were chromatographed on a Phenyl Superose 5/5 column (Pharmacia) equilibrated with 100 mM TrisCl, 5 mM DTT, 1M ammonium sulfate, 10% glycerol, pH 7.5 (Phenyl Superose buffer). Samples were loaded (1 ml/min), washed with Phenyl Superose buffer (10 ml), and eluted with a linear gradient of Phenyl Superose buffer going from 1M to 0.00M

15

ammonium sulfate (total volume of 60 ml, 1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay. The fractions from each run with the highest EPSPS activity (fractions ~36–40) were pooled together (10 ml, 2.5 mg protein). For 5 N-terminal amino acid sequence determination, a portion of one fraction (#39 from run 1) was dialyzed against 50 mM NaHCO₃ (2×1 L). The resulting pure EPSPS sample (0.9 ml, 77 μg protein) was found to exhibit a single N-terminal amino acid sequence of:

XH(G)ASSRPATARKSS(G)LX(G)(T)V(R)IPG(D)(K)(M) (SEQ ID NO:18).

The remaining Phenyl Superose EPSPS pool was dialyzed against 50 mM TrisCl, 2 mM DTT, 10 mM KCl, 10% glycerol, pH 7.5 (2×1 L). An aliquot (0.55 ml, 0.61 mg protein) was loaded (1 ml/min) onto a Mono Q 5/5 column (Pharmacia) equilibrated with Q Sepharose buffer, washed with the same buffer (5 ml), and eluted with a linear gradient of Q Sepharose buffer going from 0–0.14M KCl in 10 minutes, then holding at 0.14M KCl (1 ml/min). Fractions were collected (1 ml) and assayed for EPSPS activity by the phosphate release assay and were subjected to SDS-PAGE (10–15%, Phast System, Pharmacia, with silver staining) to determine protein purity. Fractions exhibiting a single band of protein by SDS-PAGE (22–25, 222 µg) were pooled and dialyzed against 100 mM ammonium bicarbonate, pH 8.1 (2×1 L, 9 hours).

Trypsinolysis and peptide sequencing of Agrobacterium sp strain CP4 EPSPS

To the resulting pure Agrobacterium sp. strain CP4 EPSPS (111 μg) was added 3 μg of trypsin (Calbiochem), and the trypsinolysis reaction was allowed to proceed for 16 hours at 37° C. The tryptic digest was then chromatographed (1 ml/min) on a C18 reverse phase HPLC column (Vydac) as previously described in Padgette et al., 1988 for E. coli EPSPS. For all peptide purifications, 0.1% trifluoroacetic acid (TFA, Pierce) was designated buffer "RP-A" and 0.1% TFA in acetonitrile was buffer "RP-B". The gradient used for elution of the trypsinized Agrobacterium sp. CP4 EPSPS was: 0-8 minutes, 0% RP-B; 8-28 minutes, 0-15% RP-B; 28-40 minutes, 15-21% RP-B; 40-68 minutes, 21-49% RP-B; 68-72 minutes, 49-75% RP-B; 72-74 minutes, 75–100% RP-B. Fractions were collected (1 ml) and, based on the elution profile at 210 nm, at least 70 distinct peptides were produced from the trypsinized EPSPS. Fractions 40–70 were evaporated to dryness and redissolved in 150 µl each of 10% acetonitrile, 0.1% trifluoroacetic acid.

The fraction 61 peptide was further purified on the C18 column by the gradient: 0–5 minutes, 0% RP-B; 5–10 minutes, 0–38% RP-B; 10–30 minutes, 38–45% B. Fractions were collected based on the UV signal at 210 nm. A large peptide peak in fraction 24 eluted at 42% RP-B and was dried down, resuspended as described above, and rechromatographed on the C18 column with the gradient: 0–5 minutes, 0% RP-B; 5–12 min, 0–38% RP-B; 12–15 min, 38–39% RP-B; 15–18 minutes, 39% RP-B; 18–20 minutes, 39–41% RP-B; 20–24 minutes, 41% RP-B; 24–28 minutes, 42% RP-B. The peptide in fraction 25, eluting at 41% RP-B and designated peptide 61–24–25, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

APSM(I)(D)EYPILAV (SEQ ID NO:19)

The CP4 EPSPS fraction 53 tryptic peptide was further purified by C18 HPLC by the gradient 0% B (5 minutes),

16

0–30% B (5–17 minutes), 30–40% B (17–37 minutes). The peptide in fraction 28, eluting at 34% B and designated peptide 53–28, was subjected to N-terminal amino acid sequencing, and the following sequence was determined:

ITGLLEGEDVINTGK (SEQ ID NO:20).

In order to verify the CP4 EPSPS cosmid clone, a number of oligonucleotide probes were designed on the basis of the sequence of two of the tryptic sequences from the CP4 enzyme (Table III). The probe identified as MID was very low degeneracy and was used for initial screening. The probes identified as EDV-C and EDV-T were based on the same amino acid sequences and differ in one position (underlined in Table III below) and were used as confirmatory probes, with a positive to be expected only from one of these two probes. In the oligonucleotides below, alternate acceptable nucleotides at a particular position are designated by a "/" such as A/C/T.

TABLE III

	Selected CP4 EPSPS peptide sequences and I	NA probes
25 I	PEPTIDE 61-24-25 APSM(I)(D)EYPILAV Probe MID; 17-mer; mixed probe; 24-fold degenerate ATGATA/C/TGAC/TGAG/ATAC/TCC	(SEQ ID NO:19) (SEQ ID NO:21)
I	PEPTIDE 53-28 ITGLLEGEDVINTGK Probe EDV-C; 17-mer; mixed probe; 48-fold degenerate	(SEQ ID NO:20) (SEQ ID NO:22)
30 I	FSAA/GGAC/TGTA/C/G/TATA/C/TAACAC Probe EDV-T; 17-mer; mixed probe; 48-fold degenerate GAA/GGAC/TGTA/C/G/TATA/C/TAATAC	(SEQ ID NO:23)

The probes were labeled using gamma-³²P-ATP and poly-35 nucleotide kinase. DNA from fourteen of the cosmids described above was restricted with EcoRI, transferred to membrane and probed with the oligonucleotide probes. The conditions used were as follows: prehybridization was carried out in 6× SSC, 10× Denhardt's for 2-18 hour periods at 60° C., and hybridization was for 48-72 hours in 6× SSC, 10× Denhardt's, 100 μg/ml tRNA at 10° C. below the T_d for the probe. The T_d of the probe was approximated by the formula 2° C×(A+T)+4° C×(G+C). The filters were then washed three times with 6x SSC for ten minutes each at room temperature, dried and autoradiographed. Using the MID probe, an ~9.9 kb fragment in the pMON17076 cosmid gave the only positive signal. This cosmid DNA was then probed with the EDV-C (SEQ ID NO:22) and EDV-T (SEQ ID NO:23) probes separately and again this ~9.9 kb band gave a signal and only with the EDV-T probe.

The combined data on the glyphosate-tolerant phenotype, the complementation of the E. coli aroA- phenotype, the expression of a ~45 Kd protein, and the hybridization to two probes derived from the CP4 EPSPS amino acid sequence strongly suggested that the pMON17076 cosmid contained the EPSPS gene.

Localization and subcloning of the CP4 EPSPS gene

The CP4 EPSPS gene was further localized as follows: a number of additional Southern analyses were carried out on different restriction digests of pMON17076 using the MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes separately. Based on these analyses and on subsequent detailed restriction mapping of the pBlueScript (Stratagene) subclones of the ~9.9 kb fragment from pMON17076, a 3.8 kb EcoRI-SalI fragment was identified to which both probes hybridized. This analysis also showed that MID (SEQ ID NO:21) and EDV-T (SEQ ID NO:23) probes hybridized to

17

different sides of BamHI, ClaI, and SacII sites. This 3.8 kb fragment was cloned in both orientations in pBlueScript to form pMON17081 and pMON17082. The phenotypes imparted to E. coli by these clones were then determined. Glyphosate tolerance was determined following transformation into E. coli MM294 containing pGP1-2 (pBlueScript also contains a T7 promoter) on M9 agar media containing glyphosate at 3 mM. Both pMON17081 and pMON17082 showed glyphosate-tolerant colonies at three days at 30° C. $_{10}$ at about half the size of the controls on the same media lacking glyphosate. This result suggested that the 3.8 kb fragment contained an intact EPSPS gene. The apparent lack of orientation-dependence of this phenotype could be explained by the presence of the T7 promoter at one side of 15 the cloning sites and the lac promoter at the other. The aroA phenotype was determined in transformants of E. coli GB100 on M9 agar media lacking aromatic supplements. In this experiment, carried out with and without the Plac inducer IPTG, pMON17082 showed much greater growth than pMON17081, suggesting that the EPSPS gene was expressed from the SalI site towards the EcoRI site.

Nucleotide sequencing was begun from a number of restriction site ends, including the BamHI site discussed 25 above. Sequences encoding protein sequences that closely matched the N-terminus protein sequence and that for the tryptic fragment 53-28 (SEQ ID NO:20) (the basis of the EDV-T probe) (SEQ ID NO:23) were localized to the SalI side of this BamHI site. These data provided conclusive 30 evidence for the cloning of the CP4 EPSPS gene and for the direction of transcription of this gene. These data coupled with the restriction mapping data also indicated that the complete gene was located on an ~2.3 kb XhoI fragment and this fragment was subcloned into pBlueScript. The nucle- 35 otide sequence of almost 2 kb of this fragment was determined by a combination of sequencing from cloned restriction fragments and by the use of specific primers to extend the sequence. The nucleotide sequence of the CP4 EPSPS gene and flanking regions is shown in FIG. 3 (SEQ ID NO:2). The sequence corresponding to peptide 61-24-25 (SEQ ID NO:19) was also located. The sequence was determined using both the SEQUENASETM kit from IBI (International Biotechnologies Inc.) and the T7 sequencing/ 45 Deaza Kit from Pharmacia.

That the cloned gene encoded the EPSPS activity purified from the Agrobacterium sp. strain CP4 was verified in the following manner: By a series of site directed mutageneses, BgIII and NcoI sites were placed at the N-terminus with the fMet contained within the NcoI recognition sequence, the first internal NcoI site was removed (the second internal NcoI site was removed later), and a SacI site was placed after the stop codons. At a later stage the internal NotI site was also removed by site-directed mutagenesis. The following list includes the primers for the site-directed mutagenesis (addition or removal of restriction sites) of the CP4 EPSPS gene. Mutagenesis was carried out by the procedures of Kunkel et al. (1987), essentially as described in Sambrook et al. (1989).

PRIMER BgNc
(addition of BgIII and NcoI sites to N-terminus)
CGTGGATAGATCTAGGAAGACCATGGCTCACGGTC
(SEQ ID NO:24)

18

-continued

PRIMER Sph2

(addition of SphI site to N-terminus)
GGATAGATTAAGGAAGACGCGCATGCTTCACGGTGCAAGCAGCC
(SEQ ID NO:25)

PRIMER S1 (addition of SacI site immediately
after stop codons)
GGCTGCCTGATGAGCTCCACAATCGCCATCGATGG
(SEO ID NO:26)

PRIMER N1

(removal of internal NotI recognition site)
CGTCGCTCGTCGTGCGTGGCCGCCCTGACGGC
(SEO ID No:27)

PRIMER Ncol

(removal of first internal NcoI recognition site)
CGGGCAAGGCCATGCAGGCTATGGGCGCC
(SEO ID NO:28)

PRIMER Nco2

(removal of second internal NcoI recognition site)
CGGGCTGCCGCCTGACTATGGGCCTCGTCGG
(SEQ ID NO:29)

This CP4 EPSPS gene was then cloned as a NcoI-BamHI N-terminal fragment plus a BamHI-SacI C-terminal fragment into a PrecA-gene10L expression vector similar to those described (Wong et al., 1988; Olins et al., 1988) to form pMON17101. The K_m for PEP and the K_i for glyphosate were determined for the EPSPS activity in crude lysates of pMON17101/GB100 transformants following induction with nalidixic acid (Wong et al., 1988) and found to be the same as that determined for the purified and crude enzyme preparations from Agrobacterium sp. strain CP4.

Characterization of the EPSPS gene from Achromobacter sp. strain LBAA and from Pseudomonas sp. strain PG2982

A cosmid bank of partially HindIII-restricted LBAA DNA was constructed in E. coli MM294 in the vector pHC79 (Hohn and Collins, 1980). This bank was probed with a full length CP4 EPSPS gene probe by colony hybridization and positive clones were identified at a rate of ~1 per 400 cosmids. The LBAA EPSPS gene was further localized in these cosmids by Southern analysis. The gene was located on an ~2.8 kb XhoI fragment and by a series of sequencing steps, both from restriction fragment ends and by using the oligonucleotide primers from the sequencing of the CP4 EPSPS gene, the nucleotide sequence of the LBAA EPSPS gene was completed and is presented in FIG. 4 (SEQ ID NO:4).

The EPSPS gene from PG2982 was also cloned. The EPSPS protein was purified, essentially as described for the CP4 enzyme, with the following differences: Following the Sepharose CL-4B column, the fractions with the highest EPSPS activity were pooled and the protein precipitated by adding solid ammonium sulfate to 85% saturation and stirring for 1 hour. The precipitated protein was collected by centrifugation, resuspended in Q Sepharose buffer and following dialysis against the same buffer was loaded onto the column (as for the CP4 enzyme). After purification on the Q Sepharose column, ~40 mg of protein in 100 mM Tris pH 7.8, 10% glycerol, 1 mM EDTA, 1 mM DTT, and 1M ammonium sulfate, was loaded onto a Phenyl Superose (Pharmacia) column. The column was eluted at 1.0 ml/minutes with a 40 ml gradient from 1.0M to 0.00M ammonium sulfate in the above buffer.

Approximately 1.0 mg of protein from the active fractions of the Phenyl Superose 10/10 column was loaded onto a Pharmacia Mono P 5/10 Chromatofocusing column with a flow rate of 0.75 ml/minutes. The starting buffer was 25 mM

19

bis-Tris at pH 6.3, and the column was eluted with 39 ml of Polybuffer 74, pH 4.0. Approximately 50 µg of the peak fraction from the Chromatofocusing column was dialyzed into 25 mM ammonium bicarbonate. This sample was then used to determine the N-terminal amino acid sequence.

The N-terminal sequence obtained was:

XHSASPKPATARRSE (where X=an unidentified residue) (SEQ

A number of degenerate oligonucleotide probes were 10 designed based on this sequence and used to probe a library of PG2982 partial-HindIII DNA in the cosmid pHC79 (Hohn and Collins, 1980) by colony hybridization under nonstringent conditions. Final washing conditions were 15 minutes with $1 \times$ SSC, 0.1% SDS at $5\bar{5}^{\circ}$ C. One probe with $_{15}$ EcoRI) to the sequences of the following oligonucleotides: the sequence GCGGTBGCSGGYTTSGG (where B=C, G, or T; S=C or G, and Y=C or T) (SEQ ID NO:31) identified a set of cosmid clones.

The cosmid set identified in this way was made up of cosmids of diverse HindIII fragments. However, when this set was probed with the CP4 EPSPS gene probe, a cosmid containing the PG2982 EPSPS gene was identified (designated as cosmid 9C1 originally and later as pMON20107). By a series of restriction mappings and Southern analysis this gene was localized to a ~2.8 kb XhoI fragment and the nucleotide sequence of this gene was 25 determined. This DNA sequence (SEQ ID NO:6) is shown in FIG. 5. There are no nucleotide differences between the EPSPS gene sequences from LBAA (SEQ ID NO:4) and PG2982 (SEQ ID NO:6). The kinetic parameters of the two enzymes are within the range of experimental error.

A gene from PG2982 that imparts glyphosate tolerance in E. coli has been sequenced (Fitzgibbon, 1988; Fitzgibbon and Brayruer, 1990). The sequence of the PG2982 EPSPS Class II gene shows no homology to the previously reported of the previous work is not related to EPSPS.

Characterization of the EPSPS from Bacillus subtilis

Bacillus subtilis 1A2 (prototroph) was obtained from the Bacillus Genetic Stock Center at Ohio State University. Standard EPSPS assay reactions contained crude bacterial 40 conditions for the subcloned (pMON21133) and PCRextract with, 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3-phosphate (S3P), 0.1 mM ammonium molybdate, 5 mM potassium fluoride, and 50 mM HEPES, pH 7.0 at 25° C. One unit (U) of EPSPS activity is defined as one µmol EPSP formed per minute under these condi- 45 tions. For kinetic determinations, reactions contained crude bacterial, 2 mM S3P, varying concentrations of PEP, and 50 mM HEPES, pH 7.0 at 25° C. The EPSPS specific activity was found to be 0.003 U/mg. When the assays were performed in the presence of 1 mM glyphosphate, 100% of the 50 EPSPS activity was retained. The app $K_m(PEP)$ of the B. subtilis EPSPS was determined by measuring the reaction velocity at varying concentrations of PEP. The results were analyzed graphically by the hyperbolic, Lineweaver-Burk and Eadie-Hofstee plots, which yielded appK_m(PEP) values 55 of 15.3 μM, 10.8 μM and 12.2 μM, respectively. These three data treatments are in good agreement, and yield an average value for app $K_m(PEP)$ of 13 μ M. The app $K_i(glyphosate)$ was estimated by determining the reaction rates of B. subtilis 1A2 EPSPS in the presence of several concentrations of 60 glyphosphate, at a PEP concentration of 2 μM. These results were compared to the calculated $V_{\it max}$ of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for B. subtilis EPSPS, as it is for all other characterized EPSPSs, an appK_i(glyphosate) was 65 determined graphically. The appK_i(glyphosate) was found to be 0.44 mM.

20

The EPSPS expressed from the B. subtilis aroE gene described by Henner et al. (1986) was also studied. The source of the B. subtilis aroE (EPSPS) gene was the E. coli plasmid-bearing strain ECE13 (original code=MM294[p trp100]; Henner, et al., 1984; obtained from the Bacillus Genetic Stock Center at Ohio State University; the culture genotype is [pBR322 trp100] Ap [in MM294] [pBR322::6 kb insert with trpFBA-hisH]). Two strategies were taken to express the enzyme in E. coli GB100 (aroA-): 1) the gene was isolated by PCR and cloned into an overexpression vector, and 2) the gene was subcloned into an overexpression vector. For the PCR cloning of the B. subtilis aroE from ECE13, two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NdeI and

(SEQ ID NO:45)

GGAACATATGAAACGAGATAAGGTGCAG

(SEO ID NO:46)

GGAATTCAAACTTCAGGATCTTGAGATAGAAAATG

The other approach to the isolation of the B. subtilis aroE gene, subcloning from ECE13 into pUC118, was performed as follows:

- (i) Cut ECE13 and pUC with XmaI and SphI.
- (ii) Isolate 1700bp aroE fragment and 2600bp pUC118 vector fragment.
- (iii) Ligate fragments and transform into GB100.

30 The subclone was designated pMON21133 and the PCRderived clone was named pMON21132. Clones from both approaches were first confirmed for complementation of the aroA mutation in E. coli GB100. The cultures exhibited EPSPS specific activities of 0.044 U/mg and 0.71 U/mg for sequence suggesting that the glyphosate-tolerant phenotype 35 the subclone (pMON21133) and PCR-derived clone (pMON21132) enzymes, respectively. These specific activities reflect the expected types of expression levels of the two vectors. The B. subtilis EPSPS was found to be 88% and 100% resistant to inhibition by 1 mM glyphosate under these derived (pMON21132) enzymes, respectively. The app K_m (PEP) and the appK_i(glyphosate) of the subcloned B. subtilis EPSPS (pMON21133) were determined as described above. The data were analyzed graphically by the same methods used for the 1A2 isolate, and the results obtained were comparable to those reported above for B. subtilis 1A2

> Characterization of the EPSPS gene from Staphylococcus aureus

> The kinetic properties of the S. aureus EPSPS expressed in E. coli were determined, including the specific activity, the app $K_m(PEP)$, and the app $K_i(glyphosate)$. The S. aureus EPSPS gene has been previously described (O'Connell et al., 1993)

> The strategy taken for the cloning of the S. aureus EPSPS was polymerase chain reaction (PCR), utilizing the known nucleotide sequence of the S. aureus aroA gene encoding EPSPS (O'Cormell et al., 1993). The S. aureus culture (ATCC 35556) was fermeated in an M2 facility in three 250 mL shake flasks containing 55 mL of TYE (tryptone 5 g/L, yeast extract 3 g/L, pH 6.8). The three flasks were inoculated with 1.5 mL each of a suspension made from freeze dried ATCC 35556 S. aureus cells in 90 mL of PBS (phosphatebuffered saline) buffer. Flasks were incubated at 30° C. for 5 days while shaking at 250 rpm. The resulting cells were lysed (boiled in TE [tris/EDTA] buffer for 8 minutes) and the DNA utilized for PCR reactions. The EPSPS gene was

21

amplified using PCR and engineered into an E. coli expression vector as follows:

(i) two oligonucleotides were synthesized which incorporated two restriction enzyme recognition sites (NcoI and SacI) to the sequences of the oligonucleotides:

(SEQ ID NO:47)

GGGGCCATGGTAAATGAACAAATCATTG

(SEQ ID NO:48) 10

GGGGGAGCTCATTATCCCTCATTTTGTAAAAGC

- (ii) The purified, PCR-amplified aroA gene from S. aureus was digested using NcoI and SacI enzymes.
- (iii) DNA of pMON 5723, which contains a pRecA bacterial promoter and Gene10 leader sequence (Olins et al., 1988) was digested NcoI and SacI and the 3.5 kb digestion product was purified.
- (iv) The S. aureus PCR product and the NcoI/SacI pMON 5723 fragment were ligated and transformed into E. coli JM101 competent cells.
- (v) Two spectinomycin-resistant E. coli JM101 clones from above (SA#2 and SA#3) were purified and transformed formed into a competent aroA- E. coli strain,

For complementation experiments SAGB#2 and SAGB#3 25 were utilized, which correspond to SA#2 and SA#3, respectively, transformed into E. coli GB100. In addition, E. coli GB100 (negative control) and pMON 9563 (wt petunia EPSPS, positive control) were tested for AroA complementation. The organisms were grown in minimal media plus 30 and minus aromatic amino acids. Later analyses showed that the SA#2 and SA#3 clones were identical, and they were assigned the plasmid identifier pMON21139.

SAGB#2 in E. coli GB100 (pMON21139) was also grown in M9 minimal media and induced with nalidixic acid. A 35 negative control, E. coli GB100, was grown under identical conditions except the media was supplemented with aromatic amino acids. The cells were harvested, washed with 0.9% NaCl, and frozen at -80° C., for extraction and EPSPS

The frozen pMON21139 E. coli GB100 cell pellet from above was extracted and assayed for EPSPS activity as previously described. EPSPS assays were performed using 1 mM phosphoenolpyruvate (PEP), 2 mM shikimate-3phosphate (S3P), 0. 1 mM ammonium molybdate, 5 mM 45 potassium fluoride, pH 7.0, 25° C. The total assay volume was 50μL, which contained 10 μL of the undiluted desalted extract.

The results indicate that the two clones contain a functional aroA/EPSPS gene since they were able to grow in 50 minimal media which contained no aromatic amino acids. As expected, the GB100 culture did not grow on minimal medium without aromatic amino acids (since no functional EPSPS is present), and the pMON9563 did confer growth in cloning of a functional EPSPS gene from S. aureus. Both clones tested were identical, and the E. coli expression vector was designated pMON21139.

The plasmid pMON21139 in E. coli GB100 was grown in M9 minimal media and was induced with nalidixic acid to 60 induce EPSPS expression driven from the RecA promoter. A desalted extract of the intracellular protein was analyzed for EPSPS activity, yielding an EPSPS specific activity of 0.005 µmol/min mg. Under these assay conditions, the S. aureus EPSPS activity was completely resistant to inhibition by 1 65 mM glyphosate. Previous analysis had shown that E. coli GB100 is devoid of EPSPS activity.

22

The app $K_m(PEP)$ of the S. aureus EPSPS was determined by measuring the reaction velocity of the enzyme (in crude bacterial extracts) at varying concentrations of PEP. The results were analyzed graphically using several standard kinetic plotting methods. Data analysis using the hyperbolic, Lineweaver-Burke, and Eadie-Hofstee methods yielded app K_m (PEP) constants of 7.5, 4.8, and 4.0 μ M, respectively. These three data treatments are in good agreement, and yield an average value for app $K_m(PEP)$ of 5 μM .

Further information of the glyphosate tolerance of S. aureus EPSPS was obtained by determining the reaction rates of the enzyme in the presence of several concentrations of glyphosate, at a PEP concentration of 2 μM. These results were compared to the calculated maximal velocity of the EPSPS, and making the assumption that glyphosate is a competitive inhibitor versus PEP for S. aureus EPSPS, as it is for all other characterized EPSPSs, an appK_i(glyphosate) was determined graphically. The appK_i(glyphosate) for S. aureus EPSPS estimated using this method was found to be 0.20 mM.

The EPSPS from S. aureus was found to be glyphosatetolerant, with an appK_i(glyphosate) of approximately 0.2 mM. In addition, the app $K_m(PEP)$ for the enzyme is approximately 5 μ M, yielding a app K_i (glyphosate)/app K_m (PEP) of

Alternative Isolation Protocols for Other Class II EPSPS Structural Genes

A number of Class II genes have been isolated and described here. While the cloning of the gene from CP4 was difficult due to the low degree of similarity between the Class I and Class II enzymes and genes, the identification of the other genes were greatly facilitated by the use of this first gene as a probe. In the cloning of the LBAA EPSPS gene, the CP4 gene probe allowed the rapid identification of cosmid clones and the localization of the intact gene to a small restriction fragment and some of the CP4 sequencing primers were also used to sequence the LBAA (and PG2982) EPSPS gene(s). The CP4 gene probe was also used to confirm the PG2982 gene clone. The high degree of simi-40 larity of the Class II EPSPS genes may be used to identify and clone additional genes in much the same way that Class I EPSPS gene probes have been used to clone other Class I genes. An example of the latter was in the cloning of the A. thaliana EPSPS gene using the P. hybrida gene as a probe (Klee et al., 1987).

Glyphosate-tolerant EPSPS activity has been reported previously for EPSP synthases from a number of sources. These enzymes have not been characterized to any extent in most cases. The use of Class I and Class II EPSPS gene probes or antibody probes provide a rapid means of initially screening for the nature of the EPSPS and provide tools for the rapid cloning and characterization of the genes for such

Two of the three genes described were isolated from minimal media. These results demonstrated the successful 55 bacteria that were isolated from a glyphosate treatment facility (Strains CP4 and LBAA). The third (PG2982) was from a bacterium that had been isolated from a culture collection strain. This latter isolation confirms that exposure to glyphosate is not a prerequisite for the isolation of high glyphosate-tolerant EPSPS enzymes and that the screening of collections of bacteria could yield additional isolates. It is possible to enrich for glyphosate degrading or glyphosate resistant microbial populations (Quinn et al., 1988; Talbot et al., 1984) in cases where it was felt that enrichment for such microorganisms would enhance the isolation frequency of Class II EPSPS microorganisms. Additional bacteria containing class II EPSPS gene have also been identified. A

23

bacterium called C 12, isolated from the same treatment column beads as CP4 (see above) but in a medium in which glyphosate was supplied as both the carbon and phosphorus source, was shown by Southern analysis to hybridize with a probe consisting of the CP4 EPSPS coding sequence. This 5 result, in conjunction with that for strain LBAA, suggests that this enrichment method facilitates the identification of Class II EPSPS isolates. New bacterial isolates containing Class II EPSPS genes have also been identified from environments other than glyphosate waste treatment facilities. 10 An inoculum was prepared by extracting soil (from a recently harvested soybean field in Jerseyville, Ill.) and a population of bacteria selected by growth at 28° C. in Dworkin-Foster medium containing glyphosate at 10 mM as a source of carbon (and with cycloheximide at 100 μg/ml to 15 prevent the growth of fungi). Upon plating on L-agar media, five colony types were identified. Chromosomal DNA was prepared from 2ml L-broth cultures of these isolates and the presence of a Class II EPSPS gene was probed using a the CP4 EPSPS coding sequence probe by Southern analysis 20 under stringent hybridization and washing conditions. One of the soil isolates, S2, was positive by this screen.

Class II EPSPS enzymes are identifiable by an elevated Ki for glyphosate and thus the genes for these will impart a glyphosate tolerance phenotype in heterologous hosts. 25 Expression of the gene from recombinant plasmids or phage may be achieved through the use of a variety of expression promoters and include the T7 promoter and polymerase. The T7 promoter and polymerase system has been shown to and offers the advantage of expression of many proteins that may be present on large cloned fragments. Tolerance to growth on glyphosate may be shown on minimal growth media. In some cases, other genes or conditions that may give glyphosate tolerance have been observed, including 35 over expression of beta-lactamase, the igrA gene (Fitzgibbon and Braymer, 1990), or the gene for glyphosate oxidoreductase (PCT Pub. No. WO92/00377). These are easily distinguished from Class II EPSPS by the absence of EPSPS enzyme activity.

The EPSPS protein is expressed from the aroA gene (also called aroE in some genera, for example, in Bacillus) and mutants in this gene have been produced in a wide variety of bacteria. Determining the identity of the donor organism (bacterium) aids in the isolation of Class II EPSPS gene- 45 such identification may be accomplished by standard microbiological methods and could include Gram stain reaction, growth, color of culture, and gas or acid production on different substrates, gas chromatography analysis of methylesters of the fatty acids in the membranes of the 50 microorganism, and determination of the GC % of the genome. The identity of the donor provides information that may be used to more easily isolate the EPSPS gene. An AroA- host more closely related to the donor organism could be employed to clone the EPSPS gene by complementation 55 but this is not essential since complementation of the E. coli AroA mutant by the CP4 EPSPS gene was observed. In addition, the information on the GC content the genome may be used in choosing nucleotide probes—donor sources with high GC % would preferably use the CP4 EPSPS gene or 60 sequences as probes and those donors with low GC would preferably employ those from Bacillus subtilis, for example. Relationships between different EPSPS genes

The deduced amino acid sequences of a number of Class I and the Class II EPSPS enzymes were compared using the 65 Bestfit computer program provided in the UWGCG package (Devereux et al. 1984). The degree of similarity and identity

24

as determined using this program is reported. The degree of similarity/identity determined within Class I and Class II protein sequences is remarkably high, for instance, comparing E. coli with S. typhimurium (similarity/identity=93%/ 88%) and even comparing E. coli with a plant EPSPS (Petunia hybrida; 72%/55%). These data are shown in Table IV. The comparison of sequences between Class I and Class II, however, shows a much lower degree of relatedness between the Classes (similarity/identity=50-53\%/23-30\%). The display of the Bestfit analysis for the E. coli (SEQ ID NO:8) and CP4 (SEQ ID NO:3) sequences shows the positions of the conserved residues and is presented in FIG. 6. Previous analyses of EPSPS sequences had noted the high degree of conservation of sequences of the enzymes and the almost invariance of sequences in two regions—the "20–35" and "95-107" regions (Gasser et al., 1988; numbered according to the Petunia EPSPS sequence)—and these regions are less conserved in the case of CP4 and LBAA when compared to Class I bacterial and plant EPSPS sequences (see FIG. 6 for a comparison of the E. coli and CP4 EPSPS sequences with the E. coli sequence appearing as the top sequence in the Figure). The corresponding sequences in the CP4 Class II EPSPS are:

PGDKSTSHRSFMGGL	(SEQ	ID	NO:32)
and			
LDFGNAATGCRLT.	(SEQ	ID	NO:33)

These comparisons show that the overall relatedness of work in a wide range of bacterial (and mammalian) hosts 30 Class I and Class II is EPSPS proteins is low and that sequences in putative conserved regions have also diverged considerably.

> In the CP4 EPSPS an alanine residue is present at the "glycine101" position. The replacement of the conserved glycine (from the "95-107" region) by an alanine results in an elevated K_i for glyphosate and in an elevation in the K_m for PEP in Class I EPSPS. In the case of the CP4 EPSPS, which contains an alanine at this position, the K_m for PEP is in the low range, indicating that the Class II enzymes differ in many aspects from the EPSPS enzymes heretofore characterized.

> Within the Class II isolates, the degree of similarity/ identity is as high as that noted for that within Class I (Table IVA). FIG. 7 displays the Bestfit computer program alignment of the CP4 (SEQ ID NO:3) and LBAA (SEQ ID NO:5) EPSPS deduced amino acid sequences with the CP4 sequence appearing as the top sequence in the Figure. The symbols used in FIGS. 6 and 7 are the standard symbols used in the Bestfit computer program to designate degrees of similarity and identity.

TABLE IVA^{1.2}

Comparison of relatedness of EPSPS protein sequences Comparison between Class I and Class II EPSPS protein sequences

	similarity	identity
S. cerevisiae vs. CP4	54	30
A. nidulans vs. CP4	50	25
B. napus vs. CP4	47	22
A. thaliana vs. CP4	48	22
N. tabacum vs. CP4	50	24
L. esculentum vs. CP4	50	24
P. hybrida vs. CP4	50	23
Z. mays vs. CP4	48	24
S. gallinarum vs. CP4	51	25
S. typhimurium vs. CP4	51	25

25

TABLE IVA^{1.2}-continued

S. typhi vs. CP4	51	25
K. pneumoniae vs. CP4	56	28
Y. enterocolitica vs. CP4	53	25
H. influenzae vs. CP4	53	27
P. multocida vs. CP4	55	30
A. salmonicida vs. CP4	53	23
B. pertussis vs. CP4	53	27
E. coli vs. CP4	52	26
E. coli vs. LBAA	52	26
E. coli vs. B. subtilis	55	29
E. coli vs. D. nodosus	55	32
E. coli vs. S. aureus	55	29
E. coli vs. Synechocystis sp. PCC6803	53	30

Comparison between Class I EPSPS protein sequences

	similarity	identity
E. coli vs. S. typhimurium	93	88
P. hybrids vs. E. coli	72	55

Comparison between Class II EPSPS protein sequences

	similarity	identity
D. nodosus vs. CP4	62	43
LBAA vs. CP4	90	83
PG2892 vs. CP4	90	83
S. aureus vs. CP4	58	34
B. subtills vs. CP4	59	41
Synechocystis sp. PCC6803 vs. CP4	62	45

¹The EPSPS sequences compared here were obtained from the following references: *E. coli*, Rogers et al., 1983; *S. typhimurium*, Stalker et al., 1985; *Petunia hybrids*, Shah et al., 1986; *B. pertussis*, Maskell et al., 1988; *S. cerevisiae*, Duncan et al., 1987, *Synechocystis* sp. PCC6803, Dalla Chiesa et al., 1994 and *D. nodosus*, Alm et al., 1992, "GAP" Program, Genetics Computer Group, (1991), Program Manual for the GCG Package, Version 7, April 1991, 575 Science Drive, Madison, Wisconsin, USA 53711

The relative locations of the major conserved sequences among Class II EPSP sythase which distinguishes this group from the Class I EPSP synthases is listed below in Table IVB.

TABLE IVB

Location of Conserved Sequences in Class II EPSP Synthases					
Source	Seq. 1 ¹	Seq. 2 ²	Seq. 3 ³	Seq. 4 ⁴	_ 4
CP4					
start	200	26	173	271	
end LBAA	204	29	177	274	5
start	200	26	173	271	
end PG2982	204	29	177	274	
start	200	26	173	273	5
end B. subtilis	204	29	177	276	
start	190	17	164	257	
end	194	20	168	260	
S. aureus					6
start	193	21	166	261	
end Synechocystis sp. PCC6803	197	24	170	264	
start	210	34	183	278	6
end	214	38	187	281	

TABLE IVB-continued

26

5		Location of Conse			
	Source	Seq. 1 ¹	Seq. 2 ²	Seq. 3 ³	Seq. 4 ⁴
	D. nodosus				
10	start end min. start max. end	195 199 190 214	22 25 17 38	168 172 164 187	261 264 257 281

¹-R-X₁-H-X₂-E-(SEQ ID NO:37) ²-G-D-K-X₃-(SEQ ID NO:38)

The domains of EPSP synthase sequence identified in this application were determined to be those important for maintenance of glyphosate resistance and productive binding of PEP. The information used in indentifying these domains included sequence alignments of numerous glyphosatesensitive EPSPS molecules and the three-dimensional x-ray structures of E. coli EPSPS (Stallings, et al. 1991) and CP4 EPSPS. The structures are representative of a glyphosatesensitive (i.e., Class I) enzyme, and a naturally-occuring glyphosate-tolerant (i.e., Class II) enzyme of the present invention. These exemplary molecules were superposed three-dimensionally and the results displayed on a computer graphics terminal. Inspection of the display allowed for structure-based fine-tuning of the sequence alignments of glyphosate-sensitive and glyphosate-resistant EPSPS molecules. The new sequence alignments were examined to determine differences between Class I and Class II EPSPS enzymes. Seven regions were identified and these regions were located in the x-ray structure of CP4 EPSPS which also contained a bound analog of the intermediate which forms catalytically between PEP and S3P.

The structure of the CP4 EPSPS with the bound intermediate analog was displayed on a computer graphics terminal and the seven sequence segments were examined. Important residues for glyphosate binding were identified as well as those residues which stabilized the conformations of those important residues; adjoining residues were considered necessary for maintenance of correct three-dimensional structural motifs in the context of glyphosate-sensitive EPSPS molecules. Three of the seven domains were determined not to be important for glyphosate tolerance and maintenance of productive PEP binding. The following four primary domains were determined to be characteristic of Class II EPSPS enzymes of the present invention:

-R-XrH-X₂-E(SEQ ID NO:37), in which

X₁ is an uncharged polar or acidic amino acid,

 X_2 is serine or threonine,

The Arginine (R) reside at position 1 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate. The Histidine (H) residue at position 3 stabilizes the Arginine (R) residue at position 4 of SEQ ID NO:40. The Glutamic Acid (E) residue at position 5 stabilizes the Lysine (K) residue at position 5 of SEQ ID NO:39.

-G-D-K-X₃(SEQ ID NO:38), in which

 X_3 is serine or threonine,

The Aspartic acid (D) residue at position 2 stabilizes the Arginine (R) residue at position 4 of SEQ ID

³-S-A-Q-X₄-K-(SEQ ID NO:39)

⁴-N-X₅-T-E-(SEQ ID NO:40)

27

NO:40. The Lysine (K) residue at position 3 is important because for productive PEP binding.

-S-A-Q-X₄-K(SEQ ID NO:39), in which X_4 is any amino acid,

The Alanine (A) residue at position 2 stabilizes the Arginine (R) residue at position 1 of SEO ID NO:37. The Serine (S) residue at position 1 and the Glutamine (Q) residue at position 3 are important for productive S3P binding.

-N-X₅-T-R(SEQ ID NO:40), in which X_5 is any amino acid,

The Asparagine (N) residue at position 1 and the Threonine (T) residue at position 3 stabilize residue X₁ at position 2 of SEQ ID NO:37. The Arginine (R) residue at position 4 is important because the positive charge of its guanidium group destabilizes the binding of glyphosate.

Since the above sequences are only representative of the Class II EPSPSs which would be included within the generic structure of this group of EPSP synthases, the above sequences may be found within a subject EPSP synthase molecule within slightly more expanded regions. It is believed that the above-described conserved sequences would likely be found in the following regions of the mature EPSP synthases molecule:

-R-X₁-H-X₂-E-(SEQ ID NO:37) located between amino acids 175 and 230 of the mature EPSP synthase sequence;

-G-D-K-X₃-(SEQ ID NO:38) located between amino acids 5 and 55 of the mature EPSP synthase sequence;

-S-A-Q-X₄-K-(SEQ ID NO:39) located between amino acids 150 and 200 of the mature EPSP synthase sequence; and

-N-X₅-T-R-(SEQ ID NO:40) located between amino acids 245 and 295 of the mature EPSPS synthase sequence.

One difference that may be noted between the deduced amino acid sequences of the CP4 and LBAA EPSPS proteins is at position 100 where an Alanine is found in the case of the CP4 enzyme and a Glycine is found in the case of the LBAA enzyme. In the Class I EPSPS enzymes a Glycine is usually found in the equivalent position, i.e Glycine96 in E. coli and K. pneumoniae and Glycine101 in Petunia. In the case of these three enzymes it has been reported that converting that Glycine to an Alanine results in an elevation of the appKi for glyphosate and a concomitant elevation in the appKm for PEP (Kishore et al., 1986; Kishore and Shah, 1988; Sost and Amrhein, 1990), which, as discussed above, makes the enzyme less efficient especially under conditions of lower PEP concentrations. The Glycine100 of the LBAA EPSPS was converted to an Alanine and both the appKm for PEP and the appKi for glyphosate were determined for the variant. The Glycine100Alanine change was introduced by mutagenesis using the following primer:

CGGCAATGCCGCCACCGGCGCGCCC (SEQ ID NO:34)

and both the wild type and variant genes were expressed in 60 E. coli in a RecA promoter expression vector (pMON17201 and pMON17264, respectively) and the appKm's and app-Ki's determined in crude lysates. The data indicate that the appKi(glyphosate) for the G100A variant is elevated about 16-fold (Table V). This result is in agreement with the 65 Expression of Chloroplast Directed CP4 EPSPS observation of the importance of this G-A change in raising the appKi(glyphosate) in the Class I EPSPS enzymes.

28

However, in contrast to the results in the Class I G-A variants, the appKm(PEP) in the Class II (LBAA) G-A variant is unaltered. This provides yet another distinction between the Class II and Class I EPSPS enzymes.

TABLE V

	sppKm(PEP)	sppKi (glyphosate)
Lysato prepared from:		
E. coli/pMON17201 (wild type)	5.3 μM	28 μM*
E. coli/pMON17264 (G100A variant)	5.5 μM	459 μM#

@range of PEP; 2-40 µM *range of glyphosate; 0-310 μM; #range of glyphosate; 0-5000 μM.

The LBAA G100A variant, by virtue of its superior kinetic properties, should be capable of imparting improved in planta glyphosate tolerance.

Modification and Resynthesis of the Agrobacterium sp. strain CP4 EPSPS Gene Sequence

The EPSPS gene from Agrobacterium sp. strain CP4 contains sequences that could be inimical to high expression of the gene in plants. These sequences include potential polyadenylation sites that are often and A+T rich, a higher G+C % than that frequently found in plant genes (63% versus ~50%), concentrated stretches of G and C residues, and codons that are not used frequently in plant genes. The high G+C % in the CP4 EPSPS gene has a number of potential consequences including the following: a higher usage of G or C than that found in plant genes in the third position in codons, and the potential to form strong hair-pin structures that may affect expression or stability of the RNA. The reduction in the G+C content of the CP4 EPSPS gene, the disruption of stretches of G's and C's, the elimination of potential polyadenylation sequences, and improvements in the codon usage to that used more frequently in plant genes, could result in higher expression of the CP4 EPSPS gene in plants.

A synthetic CP4 gene was designed to change as completely as possible those inimical sequences discussed above. In summary, the gene sequence was redesigned to eliminate as much as possible the following sequences or sequence features (while avoiding the introduction of unnecessary restriction sites): stretches of G's and C's of 5 or greater; and A+T rich regions (predominantly) that could function as polyadenylation sites or potential RNA destabilization region. The sequence of this gene is shown in FIG. **8** (SEQ ID NO:9). This coding sequence was expressed in E. coli from the RecA promoter and assayed for EPSPS activity and compared with that from the native CP4 EPSPS gene. The apparent Km for PEP for the native and synthetic genes was 11.8 and 12.7, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was mutagenized to place an SphI site at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. The following primer was used to accomplish this mutagenesis:

(SEQ ID NO:35)

 ${\tt GGACCGCTGCTTGCACCGTGAAGCATGCTTAAGCTTGGCGTAATCATGG.}$

The glyphosate target in plants, the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, is located

29

in the chloroplast. Many chloroplast-localized proteins, including EPSPS, are expressed from nuclear genes as precursors and are targeted to the chloroplast by a chloroplast transit peptide (CTP) that is removed during the import steps. Examples of other such chloroplast proteins include the small subunit (SSU) of Ribulose-1,5-bisphosphate carboxylase (RUBISCO), Ferredoxia, Ferredoxin oxidoreductase, the Light-harvesting-complex protein I and protein II, and Thioredoxin F. It has been demonstrated in vivo and in vitro that non-chloroplast proteins may be targeted to the chloroplast by use of protein fusions with a CTP and that a CTP sequence is sufficient to target a protein to the chloroplast.

A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CTP was engineered by site-directed mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The sequence of this CTP, designated as CTP2 (SEQ ID NO:10), is shown in FIG. 9. The N-terminus of the CP4 EPSPS gene 20 was modified to place a SphI site that spans the Met codon. The second codon was converted to one for leucine in this step also. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by rate of complementation of the aroA allele. This modified 25 N-terminus was then combined with the SacI C-terminus and cloned downstream of the CTP2 sequences. The CTP2-CP4 EPSPS fusion was cloned into pBlueScript KS(+). This vector may be transcribed in vitro using the T7 polymerase and the RNA translated with 35S-Methionine to provide 30 material that may be evaluated for import into chloroplasts isolated from Lactuca sativa using the methods described hereinafter (della-Cioppa et al., 1986, 1987). This template was transcribed in vitro using T7 polymerase and the ³⁵Smethionine-labeled CTP2-CP4 EPSPS material was shown 35 to import into chloroplasts with an efficiency comparable to that for the control Petunia EPSPS (control=35S labeled PreEPSPS [pMON6140; della-Cioppa et al., 1986]).

In another example the Arabidopsis EPSPS CTP, desig-EcoRI site. The sequence of this CTP3 (SEQ ID NO:12) is shown in FIG. 10. An EcoRI site was introduced into the Arabidopsis EPSPS mature region around amino acid 27, replacing the sequence -Arg-Ala-Leu-Leu- with -Arg-Ile-Leu-Leu- in the process. The primer of the following 45 sequence was used to modify the N-terminus of the CP4 EPSPS gene to add an EcoRI site to effect the fusion to the

CTG3: GGAAGACGCCCAGATTCACGGTGCAAGCAGCCGG (the EcoRI site is underlined) (SEQ ID NO:36)

This CTP3-CP4 EPSPS fusion was also cloned into the pBlueScript vector and the T7 expressed fusion was found to also import into chloroplasts with an efficiency compa-

A related series of CTPs, designated as CTP4 (SphI) and CTP5 (EcoRI), based on the Petunia EPSPS CTP and gene were also fused to the SphI- and EcoRI-modified CP4 EPSPS gene sequences. The SphI site was added by sitedirected mutagenesis to place this restriction site (and 60 change the amino acid sequence to -Cys-Met-) at the chloroplast processing site. All of the CTP-CP4 EPSPS fusions were shown to import into chloroplasts with approximately equal efficiency. The CTP4 (SEQ ID NO:14) and CTP5 (SEQ ID NO:16) sequences are shown in FIGS. 11 and 12. 65

A CTP2-LBAA EPSPS fusion was also constructed following the modification of the N-terminus of the LBAA 30

EPSPS gene by the addition of a SphI site. This fusion was also found to be imported efficiently into chloroplasts.

By similar approaches, the CTP2-CP4 EPSPS and the CTP4-CP4 EPSPS fusion have also been shown to import efficiently into chloroplasts prepared from the leaf sheaths of corn. These results indicate that these CTP-CP4 fusions could also provide useful genes to impart glyphosate tolerance in monocot species.

The use of CTP2 or CTP4 is preferred because these transit peptide constructions yield mature EPSPS enzymes upon import into the chloroplast which are closer in composition to the native EPSPSs not containing a transit peptide signal. Those skilled in the art will recognize that various chimeric constructs can be made which utilize the functionality of a particular CTP to import a Class II EPSPS enzyme into the plant cell chloroplast. The chloroplast import of the Class II EPSPS can be determined using the following assay.

Chloroplast Uptake Assay

Intact chloroplasts are isolated from lettuce (Latuca sativa, var. longifolia) by centrifugation in Percoll/ficoll gradients as modified from Bartlett et al., (1982). The final pellet of intact chloroplasts is suspended in 0.5 ml of sterile 330 mM sorbitol in 50 mM Hepes-KOH, pH 7.7, assayed for chlorophyll (Arnon, 1949), and adjusted to the final chlorophyll concentration of 4 mg/ml (using sorbitol/Hepes). The yield of intact chloroplasts from a single head of lettuce is 3–6 mg chlorophyll.

A typical 300 µl uptake experiment contained 5 mM ATP, 8.3 mM unlabeled methionine, 322 mM sorbitol, 58.3 mM Hepes-KOH (pH 8.0), 50 µl reticulocyte lysate translation products, and intact chloroplasts from L. sativa (200 µg chlorophyll). The uptake mixture is gently rocked at room temperature (in 10×75 mm glass tubes) directly in front of a fiber optic illuminator set at maximum light intensity (150 Watt bulb). Aliquot samples of the uptake mix (about 50 µl) are removed at various times and fractionated over 100 µl silicone-oil gradients (in 150 µl polyethylene tubes) by centrifugation at 11,000x g for 30 seconds. Under these nated as CTP3, was fused to the CP4 EPSPS through an 40 conditions, the intact chloroplasts form a pellet under the silicone-oil layer and the incubation medium (containing the reticulocyte lysate) floats on the surface. After centrifugation, the silicone-oil gradients are immediately frozen in dry ice. The chloroplast pellet is then resuspended in 50-100 µl of lysis buffer (10 mM Hepes-KOH pH 7.5, 1 mM PMSF, 1 mM benzamidine, 5 mM e-amino-n-caproic acid, and 30 μg/ml aprotinin) and centrifuged at 15,000× g for 20 minutes to pellet the thylakoid membranes. The clear supernatant (stromal proteins) from this spin, and an aliquot 50 of the reticulocyte lysate incubation medium from each uptake experiment, are mixed with an equal volume of 2×SDS-PAGE sample buffer for electrophoresis (Laemmli,

SDS-PAGE is carried out according to Laemmli (1970) in rable to that for the control Petunia EPSPS (pMON6140). 55 3-17% (w/v) acrylamide slab gels (60 mm×1.5 mm) with 3% (w/v) acrylamide stacking gels (5 mm×1.5 mm). The gel is fixed for 20–30 rain in a solution with 40% methanol and 10% acetic acid. Then, the gel is soaked in EN³HANCE™ (DuPont) for 20–30 minutes, followed by drying the gel on a gel dryer. The gel is imaged by autoradiography, using an intensifying screen and an overnight exposure to determine whether the CP4 EPSPS is imported into the isolated chloroplasts.

Plant Transformation

Plants which can be made glyphosate-tolerant by practice of the present invention include, but are not limited to, soybean, cotton, corn, canola, oil seed rape, flax, sugarbeet,

31 sunflower, potato, tobacco, tomato, wheat, rice, alfalfa and lettuce as well as various tree, nut and vine species.

A double-stranded DNA molecule of the present invention ("chimeric gene") can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed, e.g., by Herrera-Estrella (1983), Beyart (1984), Klee (1985) and EPO publication 120,516 (Schilperoort et al.). In addition to plant transformation vectors derived from the Ti or rootinducing (Ri) plasmids of Agrobacterium, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, free DNA delivery via 15 microprojectile bombardment, and transformation using viruses or pollen.

Class II EPSPS Plant transformation vectors

Class II EPSPS DNA sequences may be engineered into vectors capable of transforming plants by using known 20 techniques. The following description is meant to be illustrative and not to be read in a limiting sense. One of ordinary skill in the art would know that other plasmids, vectors, markers, promoters, etc. would be used with suitable results. The CTP2-CP4 EPSPS fusion was cloned as a BglII-EcoRI 25 fragment into the plant vector pMON979 (described below) to form pMON17110, a map of which is presented in FIG. 13. In this vector the CP4 gene is expressed from the enhanced CaMV35S promoter (E35S; Kay et al. 1987). A FMV35S promoter construct (pMON17116) was completed 30 in the following way: The SaII-NotI and the NotI-BgIII fragments from pMON979 containing the Spc/AAC(3)-III/ oriV and the pBR322/Right Border/NOS 3'/CP4 EPSPS gene segment from pMON17110 were ligated with the XhoI-BglII FMV35S promoter fragment from pMON981. 35 These vectors were introduced into tobacco, cotton and canola.

A series of vectors was also completed in the vector pMON977 in which the CP4 EPSPS gene, the CTP2-CP4 EPSPS fusion, and the CTP3-CP4 fusion were cloned as 40 BgIII-SacI fragments to form pMON17124, pMON17119, and pMON17120, respectively. These plasmids were introduced into tobacco. A pMON977 derivative containing the CTP2-LBAA EPSPS gene was also completed (pMON17206) and introduced into tobacco.

The pMON979 plant transformation/expression vector was derived from pMON886 (described below) by replacing the neomycin phosphotransferase typeII (KAN) gene in pMON886 with the 0.89 kb fragment containing the bacterial gentamicin-3-N-acetyltransferase type III (AAC(3)-III) 50 gene (Hayford et al., 1988). The chimeric P-35S/AA(3)-III/ NOS 3' gene encodes gentamicin resistance which permits selection of transformed plant cells. pMON979 also contains a 0.95 kb expression cassette consisting of the enhanced CaMV 35S promoter (Kay et al., 1987), several unique 55 restriction sites, and the NOS 3' end (P-En-CaMV35SfNOS 3'). The rest of the pMON979 DNA segments are exactly the same as in pMON886.

Plasmid pMON886 is made up of the following segments of DNA. The first is a 0.93 kb AvaI to engineered-EcoRV 60 fragment isolated from transposon Tn7 that encodes bacterial spectinomycin/streptomycin resistance (Spc/Str), which is a determinant for selection in E. coli and Agrobacterium tumefaciens. This is joined to the 1.61 kb segment of DNA encoding a chimeric kanamycin resistance which permits 65 selection of transformed plant cells. The chimeric gene (P-35S/KANfNOS 3') consists of the cauliflower mosaic

32

virus (CaMV) 35S promoter, the neomycin phosphotransferase typeII (KAN) gene, and the 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983). The next segment is the 0.75 kb oriV containing the origin of replication from the RK2 plasmid. It is joined to the 3.1 kb SalI to PvuI segment of pBR322 (ori322) which provides the origin of replication for maintenance in E. coli and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells. The next segment is the 0.36 kb PvuI to BcII from pTiT37 that carries the nopaline-type T-DNA right border (Fraley et al., 1985).

The pMON977 vector is the same as pMON981 except for the presence of the P-En-CaMV35S promoter in place of the FMV35S promoter (see below).

The pMON981 plasmid contains the following DNA segments: the 0.93 kb fragment isolated from transposon Tn7 encoding bacterial spectinomycin/streptomycin resistance [Spc/Str; a determinant for selection in E. coli and Agrobacterium tumefaciens (Fling et al., 1985)]; the chimeric kanamycin resistance gene engineered for plant expression to allow selection of the transformed tissue, consisting of the 0.35 kb cauliflower mosaic virus 35S promoter (P-35S) (Odell et al., 1985), the 0.83 kb neomycin phosphotransferase typeII gene (KAN), and the 0.26 kb 3'-nontranslated region of the nopaline synthase gene (NOS 3') (Fraley et al., 1983); the 0.75 kb origin of replication from the RK2 plasmid (oriV) (Stalker et al., 1981); the 3.1 kb Sall to Pvul segment of pBR322 which provides the origin of replication for maintenance in E. coli (ori-322) and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells, and the 0.36 kb PvuI to BcII fragment from the pTiT37 plasmid containing the nopalinetype T-DNA right border region (Fraley et al., 1985). The expression cassette consists of the 0.6 kb 35S promoter from the figwort mosaic virus (P-FMV35S) (Gowda et al., 1989) and the 0.7 kb 3' non-translated region of the pea rbcS-E9 gene (E9 3') (Coruzzi et al., 1984, and Morelli et al., 1985). The 0.6 kb SspI fragment containing the FMV35S promoter (FIG. 1) was engineered to place suitable cloning sites downstream of the transcriptional start site. The CTP2-CP4syn gene fusion was introduced into plant expression vectors (including pMON981, to form pMON17131; FIG. 14) and transformed into tobacco, canola, potato, tomato, sugarbeet, cotton, lettuce, cucumber, oil seed rape, poplar, and Arabidopsis.

The plant vector containing the Class II EPSPS gene may be mobilized into any suitable Agrobacterium strain for transformation of the desired plant species. The plant vector may be mobilized into an ABI Agrobacterium strain. A suitable ABI strain is the A208 Agrobacterium tumefaciens carrying the disarmed Ti plasmid pTiC58 (pMP90RK) (Koncz and Schell, 1986). The Ti plasmid does not carry the T-DNA phytohormone genes and the strain is therefore unable to cause the crown gall disease. Mating of the plant vector into ABI was done by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). When the plant tissue is incubated with the ABI-::plant vector conjugate, the vector is transferred to the plant cells by the vir functions encoded by the disarmed pTiC58 plasmid. The vector opens at the T-DNA right border region, and the entire plant vector sequence may be inserted into the host plant chromosome. The pTiC58 Ti plasmid does not transfer to the plant cells but remains in the Agrobacterium. Class II EPSPS free DNA vectors

Class II EPSPS genes may also be introduced into plants through direct delivery methods. A number of direct delivery vectors were completed for the CP4 EPSPS gene. The vector

33

pMON13640, a map of which is presented in FIG. 15, is described here. The plasmid vector is based on a pUC plasmid (Vieira and Messing, 1987) containing, in this case, the nptII gene (kanamycin resistance; KAN) from Tn903 to provide a selectable marker in E. coli. The CTP4-EPSPS gene fusion is expressed from the P-FMV35S promoter and contains the NOS 3' polyadenylation sequence fragment and from a second cassette consisting of the E35S promoter, the CTP4-CP4 gene fusion and the NOS 3' sequences. The scoreable GUS marker gene (Jefferson et al., 1987) is 10 expressed from the mannopine synthase promoter (P-MAS; Velten et al., 1984) and the soybean 7S storage protein gene 3' sequences (Schuler et al., 1982). Similar plasmids could also be made in which CTP-CP4 EPSPS fusions are expressed from the enhanced CaMV35S promoter or other 15 plant promoters. Other vectors could be made that are suitable for free DNA delivery into plants and such are within the skill of the art and contemplated to be within the scope of this disclosure.

Plastid transformation:

While transformation of the nuclear genome of plants is much more developed at this time, a rapidly advancing alternative is the transformation of plant organelles. The transformation of plastids of land plants and the regeneration of stable transformants has been demonstrated (Svab et al., 25 1990; Maliga et al., 1993). Transformants are selected, following double cross-over events into the plastid genome, on the basis of resistance to spectinomycin conferred through rRNA changes or through the introduction of an aminoglycoside 3"-adenyltransferase gene (Svab et al., 30 1990; Svab and Maliga, 1993), or resistance to kanamycin through the neomycin phosphotransferase NptII (Carrer et al., 1993). DNA is introduced by biolistic means (Svab et al, 1990; Maliga et al., 1993) or by using polyethylene glycol (O'Neill et al., 1993). This transformation route results in 35 the production of 500-10,000 copies of the introduced sequence per cell and high levels of expression of the introduced gene have been reported (Carrer et al., 1993; Maliga et al., 1993). The use of plastid transformation offers the advantages of not requiring the chloroplast transit pep- 40 tide signal sequence to result in the localization of the heterologous Class II EPSPS in the chloroplast and the potential to have many copies of the heterologous plantexpressible Class II EPSPS gene in each plant cell since at least one copy of the gene would be in each plastid of the 45 cell.

Plant Regeneration

When expression of the Class II EPSPS gene is achieved in transformed cells (or protoplasts), the cells (or protoplasts) are regenerated into whole plants. Choice of 50 methodology for the generation step is not critical, with suitable protocols being available for hosts from Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, etc.), Cucurbitaceae (melons and cucumber), Gramineae (wheat, 55 rice, corn, etc.), Solanaceae (potato, tobacco, tomato, peppers), various floral crops as well as various trees such as poplar or apple, nut crops or vine plants such as grapes. See, e.g., Ammirato, 1984; Shimamoto, 1989; Fromm, 1990; Vasil, 1990.

The following examples are provided to better elucidate the practice of the present invention and should not be intrepreted in any way to limit the scope of the present invention. Those skilled in the art will recognize that various modifications, truncations, etc. can be made to the methods 65 and genes described herein while not departing from the spirit and scope of the present invention.

34

In the examples that follow, EPSPS activity in plants is assayed by the following method. Tissue samples were collected and immediately frozen in liquid nitrogen. One gram of young leaf tissue was frozen in a mortar with liquid nitrogen and ground to a fine powder with a pestle. The powder was then transferred to a second mortar, extraction buffer was added (1 ml/gram), and the sample was ground for an additional 45 seconds. The extraction buffer for canola consists of 100 mM Tris, 1 mM EDTA, 10% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4° C.). The extraction buffer for tobacco consists of 100 mM Tris, 10 mM EDTA, 35 mM KCl, 20% glycerol, 5 mM DTT, 1 mM BAM, 5 mM ascorbate, 1.0 mg/ml BSA, pH 7.5 (4° C.). The mixture was transferred to a microfuge tube and centrifuged for 5 minutes. The resulting supernatants were desalted on spin G-50 (Pharmacia) columns, previously equilibrated with extraction buffer (without BSA), in 0.25 ml aliquots. The desalted extracts were assayed for EPSP synthase activity by radioactive HPLC 20 assay. Protein concentrations in samples were determined by the BioRad microprotein assay with BSA as the standard.

Protein concentrations were determined using the BioRad Microprotein method, BSA was used to generate a standard curve ranging from 2–24 μg . Either 800 μl of standard or diluted sample was mixed with 200 μl of concentrated BioRad Bradford reagent. The samples were vortexed and read at A(595) after ~5 minutes and compared to the standard curve.

EPSPS enzyme assays contained HEPES (50 mM), shikimate-3-phosphate (2 mM), NH $_4$ molybdate (0.1 mM) and KF (5 mM), with or without glyphosate (0.5 or 1.0 mM). The assay mix (30 μ l) and plant extract (10 μ l) were preincubated for 1 minute at 25° C. and the reactions were initiated by adding $^{14}\text{C-PEP}$ (1 mM). The reactions were quenched after 3 minutes with 50 μ l of 90% EtOH/0.1M HOAc, pH 4.5. The samples were spun at 6000 rpm and the resulting supernatants were analyzed for $^{14}\text{C-EPSP}$ production by HPLC. Percent resistant EPSPS is calculated from the EPSPS activities with and without glyphosate.

The percent conversion of $^{14}\mathrm{C}$ labeled PEP to $^{14}\mathrm{C}$ EPSP was determined by HPLC radioassay using a C18 guard column (Brownlee) and an AX $_{100}$ HPLC column (0.4×25 cm, Synchropak) with 0.28M isocratic potassium phosphate eluant, pH 6.5, at 1 ml/min. Initial velocities were calculated by multiplying fractional turnover per unit time by the initial concentration of the labeled substrate (1 mM). The assay was linear with time up to ~3 minutes and 30% turnover to EPSPS. Samples were diluted with 10 mM Tris, 10% glycerol, 10 mM DTT, pH 7.5 (4° C.) if necessary to obtain results within the linear range.

In these assays DL-dithiotheitol (DTT), benzamidine (BAM), and bovine serum albumin (BSA, essentially globulin free) were obtained from Sigma. Phosphoenolpyruvate (PEP) was from Boehringer Mannheim and phosphoenol[1-14C]pyruvate (28 mCi/mmol) was from Amersham.

EXAMPLES

Example 1

Transformed tobacco plants have been generated with a number of the Class II EPSPS gene vectors containing the CP4 EPSPS DNA sequence as described above with suitable expression of the EPSPS. These transformed plants exhibit glyphosate tolerance imparted by the Class II CP4 EPSPS.

Transformation of tobacco employs the tobacco leaf disc transformation protocol which utilizes healthy leaf tissue about 1 month old. After a 15–20 minutes surface steriliza-

35

tion with 10% Clorox plus a surfactant, the leaves are rinsed 3 times in sterile water. Using a sterile paper punch, leaf discs are punched and placed upside down on MS104 media (MS salts 4.3 g/l, sucrose 30 g/l, B5vitamins 500×2 ml/l, NAA 0.1 mg/l, and BA 1.0 mg/l) for a 1 day preculture.

The discs are then inoculated with an overnight culture of a disarmed Agrobacterium ABI strain containing the subject vector that had been diluted 1/5 (i.e.: about 0.6 OD). The inoculation is done by placing the discs in centrifuge tubes with the culture. After 30 to 60 seconds, the liquid is drained off and the discs were blotted between sterile filter paper. The discs are then placed upside down on MS104 feeder plates with a filter disc to co-culture.

After 2–3 days of co-culture, the discs are transferred, still 15 upside down, to selection plates with MS104 media. After 2–3 weeks, callus tissue formed, and individual clumps are separated from the leaf discs. Shoots are cleanly cut from the callus when they are large enough to be distinguished from stems. The shoots are placed on hormone-free rooting media 20 (MSO: MS salts 4.3 g/l, sucrose 30 g/l, and B5 vitamins 500×2 ml/l) with selection for the appropriate antibiotic resistance. Root formation occurred in 1–2 weeks. Any leaf callus assays are preferably done on rooted shoots while still sterile. Rooted shoots are then placed in soil and kept in a 25 high humidity environment (i.e.: plastic containers or bags). The shoots are hardened off by gradually exposing them to ambient humidity conditions.

Expression of CP4 EPSPS protein in transformed plants

Tobacco cells were transformed with a number of plant 30 vectors containing the native CP4 EPSPS gene, and using different promoters and/or CTP's. Preliminary evidence for expression of the gene was given by the ability of the leaf tissue from antibiotic selected transformed shoots to recallus on glyphosate. In some cases, glyphosate-tolerant callus was selected directly following transformation. The level of expression of the CP4 EPSPS was determined by the level of glyphosate-tolerant EPSPS activity (assayed in the presence of 0.5 mM glyphosate) or by Western blot analysis using a goat anti-CP4 EPSPS antibody. The Western blots 40 were quantitated by densitometer tracing and comparison to a standard curve established using purified CP4 EPSPS. These data are presented as % soluble leaf protein. The data from a number of transformed plant lines and transformation vectors are presented in Table VI below.

TABLE VI

Expression of CP4 EPSPS in transformed tobacco tissue		
Vector	Plant #	CP4 EPSPS** (% leaf protein)
pMON17110	25313	0.02
pMON17110	25329	0.04
pMON17116	25095	0.02
pMON17119	25106	0.09
pMON17119	25762	0.09
pMON17119	25767	0.03

^{**}Glyphosate-tolerant EPSPS activity was also demonstrated in leaf extracts for these plants.

Glyphosate tolerance has also been demonstrated at the whole plant level in transformed tobacco plants. In tobacco, R_o transformants of CTP2-CP4 EPSPS were sprayed at 0.4 lb/acre (0.448 kg/hectare), a rate sufficient to kill control non-transformed tobacco plants corresponding to a rating of 65 3, 1 and 0 at days 7, 14 and 28, respectively, and were analyzed vegetatively and reproductively (Table VII).

36

TABLE VII

Glyphosate tolerance in R_n tobacco CP4 transformants*

	Score**			
		Vegetative	<u> </u>	
Vector/Plant #	day 7	day 14	day 28	Fertile
pMON17110/25313	6	4	2	no
pMON17110/25329	9	10	10	yes
pMON17119/25106	9	9	10	yes

^{*}Spray rate = 0.4 lb/acre (0.448 kg/hectare)

Example 2A

Canola plants were transformed with the pMON17110, pMON17116, and pMON17131 vectors and a number of plant lines of the transformed canola were obtained which exhibit glyphosate tolerance.

Plant Material

Seedlings of Brassica napus cv Westar were established in 2 inch (~5 cm) pots containing Metro Mix 350. They were grown in a growth chabmer at 24° C., 16/8 hour photoperiod, light intensity of 400 $\mu \rm Em^{-2} sec^{-1}$ (HID lamps). They were fertilized with Peters 20-10-20 General Purpose Special. After 2½ weeks they were transplanted to 6 inch (~15 cm) pots and grown in a growth chamber at 15°/10° C. day/night temperature, 16/8 hour photoperiod, light intensity of 800 $\mu \rm Em^{-2} sec^{-1}$ (HID lamps). They were fertilized with Peters 15-30-15 Hi-Phos Special.

Transformation/Selection/Regeneration

Four terminal internodes from plants just prior to bolting or in the process of bolting but before flowering were removed and surfaced sterilized in 70% v/v ethanol for 1 minute, 2% w/v sodium hypochlorite for 20 minutes and rinsed 3 times with sterile deionized water. Stems with leaves attached could be refrigerated in moist plastic bags for up to 72 hours prior to sterilization. Six to seven stem segments were cut into 5 mm discs with a Redco Vegetable Slicer 200 maintaining orientation of basal end.

The Agrobacterium was grown overnight on a rotator at 24° C. in 2 mls of Luria Broth containing 50 mg/l kanamycin, 24 mg/l chloramphenicol and 100 mg/l spectinomycin. A 1:10 dilution was made in MS (Murashige and Skoog) media giving approximately 9×10^8 cells per ml. This was confirmed with optical density readings at 660 mu. The stem discs (explants) were inoculated with 1.0 ml of Agrobacterium and the excess was aspirated from the explants.

The explants were placed basal side down in petri plates containing 1/10× standard MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1.0 mg/l 6-benzyladenine (BA). The plates were layered with 1.5 ml of media containing MS salts, B5 vitamins, 3% sucrose, pH 5.7, 4.0 mg/l p-chlorophenoxyacetic acid, 0.005 mg/l kinetin and covered with sterile filter paper.

Following a 2 to 3 day co-culture, the explants were transferred to deep dish petri plates containing MS salts, B5 vitamins, 3% sucrose, 0.8% agar, pH 5.7, 1 mg/l BA, 500 mg/l carbenicillin, 50 mg/l cefotaxime, 200 mg/l kanamycin or 175 mg/l gentamicin for selection. Seven explants were placed on each plate. After 3 weeks they were transferred to fresh media, 5 explants per plate. The explants were cultured in a growth room at 25° C., continuous light (Cool White).

^{**}Plants are evaluated on a numerical scoring system of 0–10 where a vegetative score of 10 represents no damage relative to nonsprayed controls and 0 represents a dead plant. Reproductive scores (Fertile) are determined at 28 days after spraying and are evaluated as to whether or not the plant is fertile.

Expression Assay

After 3 weeks shoots were excised from the explants. Leaf recallusing assays were initiated to confirm modification of R_o shoots. Three tiny pieces of leaf tissue were placed on recallusing media containing MS salts, B5 vitamins, 3% 5 six integrations of section of R_o shoots. Three tiny pieces of leaf tissue were placed on recallusing media containing MS salts, B5 vitamins, 3% 5 Six integrations of reproduct the same and 200 mg/l kanamycin or gentamicin or 0.5 mM glyphosate. The leaf assays were incubated in a growth room under the same conditions as explant culture. After 3 weeks the leaf recallusing assays were scored for herbicide tolerance (callus or green leaf tissue) or sensitivity (bleaching).

37

Transplantation

At the time of excision, the shoot stems were dipped in 15 Rootone® and placed in 2 inch (~5 cm) pots containing Metro-Mix 350 and placed in a closed humid environment. They were placed in a growth chamber at 24° C., 16/8 hour photoperiod, 400 uEm⁻¹sec⁻²(HID lamps) for a hardening-off period of approximately 3 weeks.

The seed harvested from R_o plants is R_1 seed which gives rise to R_1 plants. To evaluate the glyphosate tolerance of an R_o plant, its progeny are evaluated. Because an R_o plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the R_1 . 25 Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few R_1 plants need be grown to find at least one 30 resistant phenotype.

Seed from an R_o plant is harvested, threshed, and dried before planting in a glyphosate spray test. Various techniques have been used to grow the plants for R_1 spray evaluations. Tests are conducted in both greenhouses and 35 growth chambers. Two planting systems are used; ~10 cm pots or plant trays containing 32 or 36 cells. Soil used for planting is either Metro 350 plus three types of slow release fertilizer or plant Metro 350. Irrigation is either overhead in greenhouses or sub-irrigation in growth chambers. Fertilizer 40 is applied as required in irrigation water. Temperature regimes appropriate for canola were maintained. A sixteen hour photoperiod was maintained. At the onset of flowering, plants are transplanted to ~15 cm pots for seed production.

A spray "batch" consists of several sets of R_1 progenies all 45 sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more 50 non-segregating transformed genotypes previously identified as having some resistance.

Two-six plants from each individual R_o progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not 55 induced by the glyphosate. When the other plants reach the 2–4 leaf stage, usually 10 to 20 days after planting, glyphosate is applied at rates varying from 0.28 to 1.12 kg/ha, depending on objectives of the study. Low rate technology using low volumes has been adopted. A laboratory track 60 sprayer has been calibrated to deliver a rate equivalent to field conditions.

A scale of 0 to 10 is used to rate the sprayed plants for vegetative resistance. The scale is relative to the unsprayed plants from the same R_o plant. A 0 is death, while a 10 65 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively

38

less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT), or until bolting, and a line is given the average score of the sprayed plants within an R_{α} plant family.

Six integers are used to qualitatively describe the degree of reproductive damage from glyphosate:

- 0: No floral bud development
- 2: Floral buds present, but aborted prior to opening
- 4: Flowers open, but no anthers, or anthers fail to extrude past petals
 - 6: Sterile anthers
 - 8: Partially sterile anthers
 - 10: Fully fertile flowers

Plants are scored using this scale at or shortly after initiation of flowering, depending on the rate of floral structure development.

Expression of EPSPS in Canola

After the 3 week period, the transformed canola plants were assayed for the presence of glyphosate-tolerant EPSPS activity (assayed in the presence of glyphosate at 0.5 mM). The results are shown in Table VIII.

TABLE VIII

Ex pression of	CP4 EPSPS in	transformed Canola lants
	Plant #	% resistant EPSPS activity of Leaf extract (at 0.5 mM glyphosate)
Vector Control		0
pMON17110	41	47
pMON17110	52	28
pMON17110	71	82
pMON17110	104	75
pMON17110	172	84
pMON17110	177	85
pMON17110	252	29*
pMON17110	350	49
pMON17116	40	25
pMON17116	99	87
pMON17116	175	94
pMON17116	178	43
pMON17116	182	18
pMON17116	252	69
pMON17116	298	44*
pMON17116	332	89
pMON17116	383	97
pMON17116	395	52
	Vector Control pMON17110 pMON17110 pMON17110 pMON17110 pMON17110 pMON17110 pMON17110 pMON17110 pMON17116	Vector Control pMON17110 41 pMON17110 52 pMON17110 71 pMON17110 104 pMON17110 172 pMON17110 177 pMON17110 252 pMON17110 252 pMON17110 350 pMON17116 40 pMON17116 99 pMON17116 175 pMON17116 175 pMON17116 178 pMON17116 182 pMON17116 252 pMON17116 298 pMON17116 298 pMON17116 332 pMON17116 332 pMON17116 332

^{*}assayed in the presence of 1.0 mM glyphosate

 $\rm R_1$ transformants of canola were then grown in a growth chamber and sprayed with glyphosate at 0.56 kg/ha (kilogram/hectare) and rated vegetatively. These results are shown in Table IXA–IXC. It is to be noted that expression of glyphosate resistant EPSPS in all tissues is preferred to observe optimal glyphosate tolerance phenotype in these transgenic plants. In the Tables below, only expression results obtained with leaf tissue are described.

TABLE IXA

Glyphosate tolerance in Class II EPSPS
canola R₁ transformants
(pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants;
Spray rate = 0.56 kg/ha)

	% resistant		etative ore**	
Vector/Plant No.	EPSPS*	day 7	day 14	
Control Westar pMON17110/41	0 47	5 6	3 7	

39
TABLE IXA-continued

Glyphosate tolerance in Class II EPSPS
canola R₁ transformants
(pMON17110 = P-E35S; pMON17116 = P-FMV35S; R1 plants;
Spray rate = 0.56 kg/ha)

	% resistant		etative ore**
Vector/Plant No.	EPSPS*	day 7	day 14
pMON17110/71	82	6	7
pMON17110/177	85	9	10
pMON17116/40	25	9	9
pMON17116/99	87	9	10
pMON17116/175	94	9	10
pMON17116/178	43	6	3
pMON17116/182	18	9	10
pMON17116/383	97	9	10

TABLE IXB

Glyphosate tolerance in Class II EPSPS canola R₁ transformants (pMON17131 = P-FWV35S; R1 plants; Spray rate = 0.84 kg/ha)

Vector/Plant No.	Vegetative score** day 14	Reproductive score day 28
17131/78	10	10
17131/102	9	10
17131/115	9	10
17131/116	9	10
17131/157	9	10
17131/169	10	10
17131/255	10	10
control Westar	1	0

TABLE IXC

Glyphosate tolerance in Class I EPSPS canola transformants
(P-E35S; R2 Plants; Spray rate = 0.28 kg/ha)

	% resistant		etative ore**
Vector/Plant No.	EPSPS*	day 7	day 14
Control Westar	0	4	2
pMON899/715	96	5	6
pMON899/744	95	8	8
pMON899/794	86	6	4
pMON899/818	81	7	8
pMON899/885	57	7	6

^{*%} resistant EPSPS activity in the presence of 0.5 mM glyphosate

The data obtained for the Class II EPSPS transformants may be compared to glyphosate-tolerant Class I EPSP transformants in which the same promoter is used to express 55 the EPSPS genes and in which the level of glyphosate-tolerant EPSPS activity was comparable for the two types of transformants. A comparison of the data of pMON17110 [in Table IXA] and pMON17131 [Table IXB] with that for pMON899 [in Table IXC; the Class I gene in pMON899 is 60 that from A. thaliana {Klee et al., 1987} in which the glycine at position 101 was changed to an alanine] illustrates that the Class II EPSPS is at least as good as that of the Class I EPSPS. An improvement in vegetative tolerance of Class II EPSPS is apparent when one takes into account that the 65 Class II plants were sprayed at twice the rate and were tested as R₁ plants.

40 Example 2B

The construction of two plant transformation vectors and the transformation procedures used to produce glyphosatetolerant canola plants are described in this example The vectors, pMON17209 and pMON17237, were used to generate transgenic glyphosate-tolerant canola lines. The vectors each contain the gene encoding the 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4. The vectors also contain either the gox gene encoding the glyphosate oxidoreductase enzyme (GOX) from Achromobacter sp. strain LBAA (Barry et al., 1992) or the gene encoding a variant of GOX (GOX v.247) which displays improved catalytic properties. These enzymes convert glyphosate to aminomethylphosphonic acid and glyoxylate and protect the plant from damage by the metabolic inactivation of glyphosate. The combined result of providing an alternative, resistant EPSPS enzyme and the metabolism of glyphosate produces transgenic plants with enhanced tolerance to glyphosate

Molecular biology techniques. In general, standard molecular biology and microbial genetics approaches were employed (Maniatis et al., 1982). Site-directed mutageneses were carried out as described by Kunkel et al. (1987).

Plant-preferred genes were synthesized and the sequence confirmed.

Plant transformation vectors. The following describes the general features of the plant transformation vectors that were modified to form vectors pMON17209 and pMON17237. 30 The Agrobacterium mediated plant transformation vectors contain the following well-characterized DNA segments which are required for replication and function of the plasmids (Rogers and Klee, 1987; Klee and Rogers, 1989). The first segment is the 0.45 kb ClaI-DraI fragment from the pTi15955 octopine Ti plasmid which contains the T-DNA left border region (Barker et al., 1983). It is joined to the 0.75 kb origin of replication (oriV) derived from the broad-host range plasmid RK2 (Stalker et al., 1981). The next segment is the 3.1 kb SalI-PvuI segment of pBR₃₂₂ which provides 40 the origin of replication for maintenance in E. coli and the born site for the conjugational transfer into the Agrobacterium turnefaciens cells (Bolivar et al., 1977). This is fused to the 0.93 kb fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and streptomycin resis-45 tance (Fling et al., 1985), a determinant for the selection of the plasmids in E. coli and Agrobacterium. It is fused to the 0.36 kb PvuI-BcII fragment from the pTiT37 plasmid which contains the nopaline-type T-DNA right border region (Fraley et al., 1985). Several chimeric genes engineered for plant expression can be introduced between the Ti right and left border regions of the vector. In addition to the elements described above, this vector also includes the 35S promoter/ NPTII/NOS 3' cassette to enable selection of transformed plant tissues on kanamycin (Klee and Rogers, 1989; Fraley et al., 1983; and Odell, et al., 1985) within the borders. An "empty" expression cassette is also present between the borders and consists of the enhanced E35S promoter (Kay et al., 1987), the 3' region from the small subunit of RUBP carboxylase of pea (E9) (Coruzzi et al., 1984; Morelli et al., 1986), and a number of restriction enzyme sites that may be used for the cloning of DNA sequences for expression in plants. The plant transformation system based on Agrobacterium tumefaciens delivery has been reviewed (Klee and Rogers, 1989; Fraley et al., 1986). The Agrobacterium mediated transfer and integration of the vector T-DNA into the plant chromosome results in the expression of the chimeric genes conferring the desired phenotype in plants.

^{**}A vegetative score of 10 indicates no damage, a score of 0 is given to a dead plant.

41

Bacterial Inoculum. The binary vectors are mobilized into Agrobacterium tumefaciens strain ABI by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al., 1980). The ABI strain contains the disarmed pTiC58 plasmid pMP90RK (Koncz and Schell, 1986) in the chloramphenicol resistant derivative of the Agrobacterium tumefaciens strain A208.

Transformation procedure. Agrobacterium inocula were grown overnight at 28° C. in 2 ml of LBSCK (LBSCK is made as follows: LB liquid medium [1 liter volume]=10 g NaCl; 5 g Yeast Extract; 10 g tryptone; pH 7.0, and autoclave for 22 minutes. After autoclaving, add spectinomycin (50 mg/ml stock)—2 ml, kanamycin (50 mg/ml stock)—1 ml, and chloramphenicol (25 mg/ml stock)—1 ml.). One day prior to inoculation, the Agrobacterium was subcultured by inoculating 200 µl into 2 ml of fresh LBSCK and grown overnight. For inoculation of plant material, the culture was diluted with MSO liquid medium to an A660 range of 0.2-0.4.

Seedlings of Brassica napus cv. Westar were grown in Metro Mix 350 (Huminert Seed Co., St. Louis, Mo.) in a 20 growth chamber with a day/night temperature of 15°/10° C., relative humidity of 50%, 16h/8h photoperiod, and at a light intensity of 500 μmol m⁻² sec⁻¹. The plants were watered daily (via sub-irrigation) and fertilized every other day with Peter's 15:30:15 (Fogelsville, Pa.).

In general, all media recipes and the transformation protocol follow those in Fry et al. (1987). Five to six week-old Westar plants were harvested when the plants had bolted (but prior to flowering), the leaves and buds were removed, and the 4–5 inches of stem below the flower buds 30 were used as the explant tissue source. Following sterilization with 70% ethanol for 1 min and 38% Clorox for 20 min, the stems were rinsed three times with sterile water and cut into 5 mm-long segments (the orientation of the basal end of incubated for 5 minutes with the diluted Agrobacterium culture at a rate of 5 ml of culture per 5 stems. The suspension of bacteria was removed by aspiration and the explants were placed basal side down—for an optimal shoot regeneration response—onto co-culture plates (1/10 MSO 40 solid medium with a 1.5 ml TXD (tobacco xanthi diploid) liquid medium overlay and covered with a sterile 8.5 cm filter paper). Fifty-to-sixty stem explants were placed onto each co-culture plate.

After a 2 day co-culture period, stem explants were 45 moved onto MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP (benzylaminopurine) for 3 days. The stem explants were then placed for two periods of three weeks each, again basal side down and with 5 explants per plate, onto an MS/0.1 mM glyphosate, 50 selection medium (also containing carbenicillin, cefotaxime, and BAP (The glyphosate stock [0.5M] is prepared as described in the following: 8.45 g glyphosate [analytical grade] is dissolved in 50 ml deionized water, adding KOH to 100 ml following adjusting the pH to 5.7. The solution is filter-sterilized and stored at 4° C.). After 6 weeks on this glyphosate selection medium, green, normally developing shoots were excised from the stem explants and were placed onto fresh MS medium containing 750 mg/l carbenicillin, 50 mg/l cefotaxime, and 1 mg/l BAP, for further shoot development. When the shoots were 2-3 inches tall, a fresh cut at the end of the stem was made, the cut end was dipped in Root-tone, and the shoot was placed in Metro Mix 350 soil and allowed to harden-off for 2-3 weeks.

Construction of Canola transformation vector pMON17209. The EPSPS gene was isolated originally from 42

Agrobacterium sp. strain CP4 and expresses a highly tolerant enzyme. The original gene contains sequences that could be inimical to high expression of the gene in some plants. These sequences include potential polyadenylation sites that are often A+T rich, a higher G+C % than that frequently found in dicotyledonous plant genes (63% versus ~50%), concentrated stretches of G and C residues, and codons that may not used frequently in dicotyledonous plant genes. The high G+C % in the CP4 EPSPS gene could also result in the formation of strong hairpin structures that may affect expression or stability of the RNA. A plant preferred version of the gene was synthesized and used for these vectors. This coding sequence was expressed in E. coli from a PRecAgene 10L vector (Olins et al., 1988) and the EPSPS activity was compared with that from the native CP4 EPSPS gene. The app K_m for PEP for the native and synthetic genes was 11.8 µM and 12.7 µM, respectively, indicating that the enzyme expressed from the synthetic gene was unaltered. The N-terminus of the coding sequence was then mutagenized to place an SphI site (GCATGC) at the ATG to permit the construction of the CTP2-CP4 synthetic fusion for chloroplast import. This change had no apparent effect on the in vivo activity of CP4 EPSPS in E. coli as judged by complementation of the aroA mutant. A CTP-CP4 EPSPS fusion was constructed between the Arabidopsis thaliana EPSPS CTP (Klee et al., 1987) and the CP4 EPSPS coding sequences. The Arabidopsis CTP was engineered by sitedirected mutagenesis to place a SphI restriction site at the CTP processing site. This mutagenesis replaced the Glu-Lys at this location with Cys-Met. The CTP2-CP4 EPSPS fusion was tested for import into chloroplasts isolated from Lactuca sativa using the methods described previously (della-Cioppa et al., 1986; 1987).

The GOX gene that encodes the glyphosate metabolizing the stem segments was noted). The plant material was 35 enzyme glyphosate oxidoreductase (GOX) was cloned originally from Achromobacter sp. strain LBAA (Hallas et al., 1988; Barry et al., 1992). The gox gene from strain LBAA was also resynthesized in a plant-preferred sequence version and in which many of the restriction sites were removed (PCT Appln. No. WO 92/00377). The GOX protein is targeted to the plastids by a fusion between the C-terminus of a CTP and the N-terminus of GOX. A CTP, derived from the SSU1A gene from Arabidopsis thaliana (Timko et al., 1988) was used. This CTP (CTP1) was constructed by a combination of site-directed mutageneses. The CTP1 is made up of the SSU1A CTP (amino acids 1–55), the first 23 amino acids of the mature SSU1A protein (56-78), a serine residue (amino acid 79), a new segment that repeats amino acids 50 to 56 from the CTP and the first two from the mature protein (amino acids 80-87), and an alanine and methionine residue (amino acid 88 and 89). An NcoI restriction site if located at the 3' end (spans the Met89 codon) to facilitate the construction of precise fusions to the 5' of GOX. At a later stage, a BglII site was introduced upstream pellets to dissolve the glyphosate, and the volume is brought 55 of the N-terminus of the SSU1A sequences to facilitate the introduction of the fusions into plant transformation vectors. A fusion was assembled between CTP1 and the synthetic GOX gene.

> The CP4 EPSPS and GOX genes were combined to form pMON17209 as described in the following. The CTP2-CP4 EPSPS fusion was assembled and inserted between the constitutive FMV35S promoter (Gowda et al., 1989; Richins et al., 1987) and the E9 3' region (Coruzzi et al., 1984; Morelli et al., 1985) in a pUC vector (Yannisch-Perron et al., 1985; Vieira and Messing, 1987) to form pMON17190; this completed element may then be moved easily as a NotI-NotI fragment to other vectors. The CTP1-GOX fusion was also

43

assembled in a pUC vector with the FMV35S promoter. This element was then moved as a HindIII-BamHI fragment into the plant transformation vector pMON10098 and joined to the E9 3' region in the process. The resultant vector pMON17193 has a single NotI site into which the FMV 35S/CTP2-CP4 EPSPS/E9 3' element from pMON17190 was cloned to form pMON17194. The kanamycin plant transformation selection cassette (Fraley et al., 1985) was then deleted from pMON17194, by cutting with XhoI and re-ligating, to form the pMON17209 vector (FIG. 24).

Construction of Canola transformation vector pMON17237. The GOX enzyme has an apparent Km for glyphosate [app K_m (glyphosate)] of ~25 mM. In an effort to improve the effectiveness of the glyphosate metabolic rate in plants, a variant of GOX has been identified in which the appK_m(glyphosate) has been reduced approximately 10-fold; this variant is referred to as GOX v.247 and the sequence differences between it and the original plantpreferred GOX are illustrated in PCT Appln. No. WO 92/00377. The GOX v.247 coding sequence was combined 20 with CTP1 and assembled with the FMV35S promoter and the E9 3' by cloning into the pMON17227 plant transformation vector to form pMON17241. In this vector, effectively, the CP4 EPSPS was replaced by GOX v.247. The pMON17227 vector had been constructed by replacing 25 the CTP1-GOX sequence in pMON17193 with those for the CTP2-CP4 EPSPS, to form pMON17199 and followed by deleting the kanamycin cassette (as described above for pMON17209). The pMON17237 vector (FIG. 25) was then completed by cloning the FMV35S/CTP2-CP4 EPSPS/E9 3' 30 element as a NotI-NotI fragment into pMON17241.

Example 3

Soybean plants were transformed with the pMON13640 (FIG. 15) vector and a number of plant lines of the transformed soybean were obtained which exhibit glyphosate tolerance.

Soybean plants are transformed with pMON13640 by the method of microprojectile injection using particle gun technology as described in Christou et al. (1988). The seed harvested from $R_{\rm o}$ plants is $R_{\rm 1}$ seed which gives rise to $R_{\rm 1}$ plants. To evaluate the glyphosate tolerance of an $R_{\rm o}$ plant, its progeny are evaluated. Because an $R_{\rm o}$ plant is assumed to be hemizygous at each insert location, selfing results in maximum genotypic segregation in the $R_{\rm 1}$. Because each insert acts as a dominant allele, in the absence of linkage and assuming only one hemizygous insert is required for tolerance expression, one insert would segregate 3:1, two inserts, 15:1, three inserts 63:1, etc. Therefore, relatively few $R_{\rm 1}$ plants need be grown to find at least one resistant phenotype.

Seed from an R_o soybean plant is harvested, and dried before planting in a glyphosate spray test. Seeds are planted into 4 inch (~5 cm) square pots containing Metro 350. Twenty seedlings from each R_o plant is considered adequate 55 for testing. Plants are maintained and grown in a greenhouse environment. A 12.5–14 hour photoperiod and temperatures of 30° C. day and 24° C. night is regulated. Water soluble Peters Pete Lite fertilizer is applied as needed.

A spray "batch" consists of several sets of R_1 progenies all 60 sprayed on the same date. Some batches may also include evaluations of other than R_1 plants. Each batch also includes sprayed and unsprayed non-transgenic genotypes representing the genotypes in the particular batch which were putatively transformed. Also included in a batch is one or more 65 non-segregating transformed genotypes previously identified as having some resistance.

44

One to two plants from each individual R_o progeny are not sprayed and serve as controls to compare and measure the glyphosate tolerance, as well as to assess any variability not induced by the glyphosate. When the other plants reach the first trifoliate leaf stage, usually 2–3 weeks after planting, glyphosate is applied at a rate equivalent of 128 oz./acre (8.895 kg/ha) of Roundup®. A laboratory track sprayer has been calibrated to deliver a rate equivalent to those conditions

A vegetative score of 0 to 10 is used. The score is relative to the unsprayed progenies from the same $R_{\rm o}$ plant. A 0 is death, while a 10 represents no visible difference from the unsprayed plant. A higher number between 0 and 10 represents progressively less damage as compared to the unsprayed plant. Plants are scored at 7, 14, and 28 days after treatment (DAT). The data from the analysis of one set of transformed and control soybean plants are described on Table X and show that the CP4 EPSPS gene imparts glyphosate tolerance in soybean also.

TABLE X

Glyphosate tolerance in Class II EPSPS soybean transformants
(P-H35S, P-FMV35S; R0 plants; Spray rate = 128 oz./acre)

-		Vegetative sc	ore
Vector/Plant No.	day 7	day 14	day 28
13640/40-11	5	6	7
13640/40-3	9	10	10
13640/40-7	4	7	7
control A5403 2	1	0	
control A5403 1	1	0	

Example 4

The CP4 EPSPS gene may be used to select transformed plant material directly on media containing glyphosate. The ability to select and to identify transformed plant material depends, in most cases, on the use of a dominant selectable marker gene to enable the preferential and continued growth of the transformed tissues in the presence of a normally inhibitory substance. Antibiotic resistance and herbicide tolerance genes have been used almost exclusively as such dominant selectable marker genes in the presence of the corresponding antibiotic or herbicide. The nptII/kanamycin selection scheme is probably the most frequently used. It has been demonstrated that CP4 EPSPS is also a useful and perhaps superior selectable marker/selection scheme for producing and identifying transformed plants.

A plant transformation vector that may be used in this scheme is pMON17227 (FIG. 16). This plasmid resembles many of the other plasmids described infra and is essentially composed of the previously described bacterial replicon system that enables this plasmid to replicate in E. coli and to be introduced into and to replicate in Agrobacterium, the bacterial selectable marker gene (Spc/Str), and located between the T-DNA right border and left border is the CTP2-CP4 synthetic gene in the FMV35S promoter-E9 3' cassette. This plasmid also has single sites for a number of restriction enzymes, located within the borders and outside of the expression cassette. This makes it possible to easily add other genes and genetic elements to the vector for introduction into plants.

The protocol for direct selection of transformed plants on glyphosate is outlined for tobacco. Explants are prepared for pre-culture as in the standard procedure as described in

45

Example 1: surface sterilization of leaves from 1 month old tobacco plants (15 minutes in 10% clorox+surfactant; 3×dH₂O washes); explants are cut in 0.5×0.5 cm squares, removing leaf edges, mid-rib, tip, and petiole end for uniform tissue type; explants are placed in single layer, upside 5 down, on MS104 plates+2 ml 4COO5K media to moisten surface; pre-culture 1-2 days. Explants are inoculated using overnight culture of Agrobacterium containing the plant transformation plasmid that is adjusted to a titer of 1.2×10^9 bacteria/ml with 4COO5K media. Explants are placed into 10 a centrifuge tube, the Agrobacterium suspension is added and the mixture of bacteria and explants is "Vortexed" on maximum setting for 25 seconds to ensure even penetration of bacteria. The bacteria are poured off and the explants are blotted between layers of dry sterile filter paper to remove 15 excess bacteria. The blotted explants are placed upside down on MS104 plates+2 ml 4COO5K media+filter disc. Co-culture is 2-3 days. The explants are transferred to MS104+Carbenicillin 1000 mg/l+cefotaxime 100 mg/l for 3 days (delayed phase). The explants are then transferred to 20 MS104+glyphosate 0.05 mM+Carbenicillin 1000 mg/l+ cefotaxime 100 mg/l for selection phase. At 4-6 weeks shoots are cut from callus and placed on MSO+Carbenicillin 500 mg/l rooting media. Roots form in 3-5 days, at which time leaf pieces can be taken from rooted plates to confirm 25 glyphosate tolerance and that the material is transformed.

The presence of the CP4 EPSPS protein in these transformed tissues has been confirmed by immunoblot analysis of leaf discs. The data from one experiment with pMON17227 is presented in the following: 139 shoots formed on glyphosate from 400 explants inoculated with Agrobacterium ABI/pMON17227; 97 of these were positive on recallusing on glyphosate. These data indicate a transformation rate of 24 per 100 explants, which makes this a highly efficient and time saving transformation procedure for plants. Similar transformation frequencies have been obtained with pMON17131 and direct selection of transformants on glyphosate with the CP4 EPSPS genes has also been shown in other plant species, including, Arabidopsis, soybean, corn, wheat, potato, tomato, cotton, lettuce, and 40 sugarbeet.

The pMON17227 plasmid contains single restriction enzyme recognition cleavage sites (NotI, XhoI, and BstXI) between the CP4 glyphosate selection region and the left border of the vector for the cloning of additional genes and to facilitate the introduction of these genes into plants.

EXAMPLE 5A

The CP4 EPSPS gene has also been introduced into Black 50 Mexican Sweet (BMS) corn cells with expression of the protein and glyphosate resistance detected in callus.

The backbone for this plasmid was a derivative of the high copy plasmid pUC119 (Viera and Messing, 1987). The 1.3 Kb FspI-DraI pUC119 fragment containing the origin of 55 replication was fused to the 1.3 Kb SmaI-HindIII filled fragment from pKC7 (Rao and Rogers, 1979) which contains the neomycin phosphotransferase type II gene to confer bacterial kanamycin resistance. This plasmid was used to construct a monocot expression cassette vector containing 60 the 0.6 kb cauliflower mosaic virus (CaMV) 35S RNA promoter with a duplication of the –90 to –300 region (Kay et al., 1987), an 0.8 kb fragment containing an intron from a maize gene in the 5' untranslated leader region, followed by a polylinker and the 3' termination sequences from the 65 nopaline synthase (NOS) gene (Fraley et al., 1983). A 1.7 Kb fragment containing the 300 bp chloroplast transit peptide

46

from the Arabidopsis EPSP synthase fused in a frame to the 1.4 Kb coding sequence for the bacterial CP4 EPSP synthase was inserted into the monocot expression cassette in the polylinker between the intron and the NOS termination sequence to form the plasmid pMON19653 (FIG. 17).

pMON19653 DNA was introduced into Black Mexican Sweet (BMS) cells by co-bombardment with EC9, a plasmid containing a sulfonylurea-resistant form of the maize aceto-lactate synthase gene. 2.5 mg of each plasmid was coated onto tungsten particles and introduced into log-phase BMS cells using a PDS-1000 particle gun essentially as described (Klein et al., 1989). Transformants are selected on MS medium containing 20 ppb chlorsulfuron. After initial selection on chlorsulfuron, the calli can be assayed directly by Western blot. Glyphosate tolerance can be assessed by transferring the calli to medium containing 5mM glyphosate. As shown in Table XI, CP4 EPSPS confers glyphosate tolerance to corn callus.

TABLE XI

 TABLE AI		
Exp ression of CP4	in BMS Corn Callus- MON 19653	_
 Line	CP4 expression (% extract protein)	
 284	0.006%	_
287	0.036	
290	0.061	
295	0.073	
299	0.113	
309	0.042	
313	0.003	

To measure CP4 EPSPS expression in corn callus, the following procedure was used: BMS callus (3 g wet weight) was dried on filter paper (Whatman#1) under vacuum, reweighed, and extraction buffer (500 µl/g dry weight; 100 mM Tris, 1 mM EDTA, 10% glycerol) was added. The tissue was homogenized with a Wheaton overhead stirrer for 30 seconds at 2.8 power setting. After centrifugation (3 minutes, Eppendorf microfuge), the supernatant was removed and the protein was quantitated (BioRad Protein Assay). Samples (50 µg/well) were loaded on an SDS PAGE gel (Jule, 3–17%) along with CP4 EPSPS standard (10 ng), electrophoresed, and transferred to nitrocellulose similarly to a previously described method (Padgette, 1987). The nitrocellulose blot was probed with goat anti-CP4 EPSPS IgG, and developed with I-125 Protein G. The radioactive blot was visualized by autoradiography. Results were quantitated by densitometry on an LKB UltraScan XL laser densitomer and are tabulated below in Table X.

TABLE XII

	• •	ince in BMS Corn C pMON 19653	allus
Vector	Experiment	# chlorosulfuron- resistant lines	# cross-resistant to Glyphosate
19653 19653 EC9 control	253 254 253/254	120 80 8	81/120 = 67.5% 37/80 = 46% 0/8 = 0%

Improvements in the expression of Class II EPSPS could also be achieved by expressing the gene using stronger plant promoters, using better 3' polyadenylation signal sequences, optimizing the sequences around the initiation codon for ribosome loading and translation initiation, or by combination of these or other expression or regulatory sequences or factors.

47

Example 5B

The plant-expressible genes encoding the CP4 EPSPS and a glyphosate oxidoreductasease enzyme (PCT Pub. No. WO92/00377) were introduced into embryogenic corn callus through particle bombardment. Plasmid DNA was prepared using standard procedures (Ausubel et al., 1987), cesium-chloride purified, and re-suspended at 1 mg/ml in TE buffer. DNA was precipitated onto M10 tungsten or 1.0 µg gold particles (BioRad) using a calcium chloride/spermidine precipitation protocol, essentially as described by Klein et al. (1987). The PDS1000® gunpowder gun (BioRad) was used. Callus tissue was obtained by isolating 1-2 mm long immature embryos from the "Hi-II" genotype (Armstrong et al., 1991), or Hi-II X B73 crosses, onto a modified N6 medium (Armstrong and Green, 1985; Songstad et al., 1991). Embryogenic callus ("type-II"; Armstrong and Green, 1985) initiated from these embryos was maintained by subculturing at two week intervals, and was bombarded when less than two months old. Each plate of callus tissue was bombarded from 1 to 3 times with either tungsten or gold particles coated with the plasmid DNA(s) of interest. Callus was transferred to a modified N6 medium containing an appropriate selective agent (either glyphosate, or one or more of the antibiotics kanamycin, G418, or paromomycin) 1–8 days following bombardment, and then re-transferred to fresh selection media at 2-3 week intervals. Glyphosateresistant calli first appeared approximately 6-12 weeks post-bombardment. These resistant calli were propagated on selection medium, and samples were taken for assays gene expression. Plant regeneration from resistant calli was accomplished essentially as described by Petersen et al. (1992).

In some cases, both gene(s) were covalently linked together on the same plasmid DNA molecule. In other instances, the genes were present on separate plasmids, but were introduced into the same plant through a process termed "co-transformation". The 1 mg/ml plasmid preparations of interest were mixed together in an equal ratio, by volume, and then precipitated onto the tungsten or gold particles. At a high frequency, as described in the literature (e.g., Schocher et al., 1986), the different plasmid molecules integrate into the genome of the same plant cell. Generally the integration is into the same chromosomal location in the plant cell, presumably due to recombination of the plasmids prior to integration. Less frequently, the different plasmids integrate into separate chromosomal locations. In either case, there is integration of both DNA molecules into the same plant cell, and any plants produced from that cell.

Transgenic corn plants were produced as described above 50 which contained a plant-expressible CP4 gene and a plantexpressible gene encoding a glyphosate oxidoreductase

The plant-expressible CP4 gene comprised a structural DNA sequence encoding a CTP2/CP4 EPSPS fusion pro- 55 tein. The CTP2/CP4 EPSPS is a gene fusion composed of the N-terminal 0.23 Kb chloroplast transit peptide sequence from the Arabidopsis thaliana EPSPS gene (Klee et al. 1987, referred to herein as CTP2), and the C-terminal 1.36 Kb 5-enolpyruvylshikimate-3-phosphate synthase gene (CP4) from an Agrobacterium species. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature CP4 protein.

doreductase enzyme comprised a structural DNA sequence comprising CTP1/GOXsyn gene fusion composed of the 48

N-terminal 0.26 Kb chloroplast transit peptide sequence derived from the Arabidopsis thaliana SSU 1a gene (Timko et al., 1988 referred to herein as CTP1), and the C-terminal 1.3 Kb synthetic gene sequence encoding a glyphosate oxidoreductase enzyme (GOXsyn, as described in PCT Pub. No. WO92/00377 previously incorporated by reference. The GOXsyn gene encodes the enzyme glyphosate oxidoreductase from an Achromobacter sp. strain LBAA which catalyzes the conversion of glyphosate to herbicidally inactive products, aminomethylphosphonate and glyoxylate. Plant expression of the gene fusion produces a pre-protein which is rapidly imported into chloroplasts where the CTP is cleaved and degraded (della-Cioppa et al., 1986) releasing the mature GOX protein.

Both of the above described genes also include the following regulatory sequences for plant expression: (i) a promoter region comprising a 0.6 Kb 35S cauliflower mosaic virus (CaMV) promoter (Odell et al., 1985) with the duplicated enhancer region (Kay et al., 1987) which also contains a 0.8 Kb fragment containing the first intron from the maize heat shock protein 70 gene (Shah et al., 1985 and PCT Pub. No. WO93/19189, the disclosure of which is hereby incorporated by reference); and (ii) a 3' nontranslated region comprising a 0.3 Kb fragment of the 3' non-translated region of the nopaline synthase gene (Fraley et al., 1983 and Depicker, et al., 1982) which functions to direct polyadenylation of the mRNA.

The above described transgenic corn plants exhibit tolerance to glyphosate herbicide in greenhouse and field trials.

Example 6

The LBAA Class II EPSPS gene has been introduced into plants and also imparts glyphosate tolerance. Data on tobacco transformed with pMON17206 (infra) are presented in Table XIII.

TABLE XIII

(pMON17206; E35S-CTP2-LBAA EPSPS; 0/4 lbs/ac)		
Line	7 Day Rating	
33358	9	
34586	9	
33328	9	
34606	9	
33377	9	
34611	10	
34607	10	
34601	9	
34589	9	
Samsun (Control)	4	

From the foregoing, it will be recognized that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with advantages which are obvious and which are inherent to the invention. It will be further understood that certain features and subcombinations are to utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims. Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

BIBLIOGRAPHY

The plant-expressible gene expressing a glyphosate oxi- 65 Alm, R. A., Dalrympie, B. P. and Mattick, J. S. 1994. Sequencing and expression of the aroA gene from Dichelobacter nodosus, Gene, 145: 97-101.

- Altos, N. K. and Vapnek, D. (1979) Nature 282:864-869. Ammirato, P. V., et al. Handbook of Plant Cell Culture— Crop Species. Macmillan Publ. Co. (1984).
- Armstrong, C. L., and Green, C. E. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207-214.
- Armstrong, C. L., Green, C. E., and Phillips, R. L. 1991. Development and availability of germplasm with high Type II culture formation response. Maize Genetics Cooperation NewsLetter 65:92–93.
- Arnon, D. I. Plant Physiol. 24:1–15 (1949).
- Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. 1987. CUR-RENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley and Sons, Inc. New York.
- Bachmann, B. J. et al., Microb. Rev., 44:1-56 (1980).
- Barker, R., Idler, K., Thompson, D., and Kemp, J. (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens Ti plasmid pTi15955. Plant Mol
- Barry, G., Kishore, G., Padgette, S., Taylor, M., Kolacz, K., 20 Weldon, M., Re D., Eichholtz, Fincher, K., and Hallas, L. (1992) Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In: Biosynthesis and Molecular Regulation of Amino Acids in Plants. pp. 139–145. [Edited by Singh, B. K., Flores, H. 25] E., and Shannon, J. C.] American Society of Plant Physiologists, Rockville, Md.
- Bartlett, S. G., Grossman, A. R., and Chua, N. H. (1982) in Methods in Chloroplast Molecular Biology, pp. 1081–1091. M. Edelman, R. B., Hallick, and Chua, N. H., 30 eds.
- Bevan, M. (1984) Nucleic Acids Res. 12 (22): 8711-8721. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7:1513-1525.
- Bolivar, R., Rodriguez, R. L., Greene, P. J., Betlach, M. B., Heynecker, H. L., Boyer, H. W., Crosa, J. H., and Falkow, S. (1977) Construction and characterization of new cloning vehicles, II. A multi-purpose cloning system. Gene 2:
- Boyer, H. W. and Rolland-Dussolx, D. (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli, J. Mol. Biol. 41:459
- Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for 45 Fry J., Barnason A., and Horsch R. (1987) Plant Cell Reports plastid transformation in tobacco. Mol. Gen. Genet. 241:
- Criston, P., D. E. McCabe, and W. F. Swain (1988) Stable transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol. 87:671-674.
- Coruzzi, G., Broglie, R., Edwards, C., and Chua, N. H. (1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3: 1671.
- Dalla Chiesa, M., Mayes, S. R., Maskell, D. J., Nixon, P. J. 55 and Barber, J. 1994 An AroA homologue from Synechocystis sp. PCC6803, Gene, 144: 145–146.
- della-Cioppa, G., Bauer, S. C., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. K. (1986) Translocation of synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad Sci. USA 83: 6873-6877.
- della-Cioppa, G., Bauer, S. C., Taylor, M. T., Rochester, D. E., Klein, B. K., Shah, D. M., Fraley, R. T. and Kishore G. M. (1987) Targeting a herbicide-resistant enzyme from 65 Herrera-Estrella, L., et al. (1983) Nature 303:209 Escherichia coli to chloroplasts of higher plants. Bio/ Technology 5: 579-584.

50

- Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., and Goodman, H. M. 1982. Nopaline Synthase: Transcript Mapping and DNA Sequence. J. MOLEC. APPL. GENETICS 1:561-573.
- Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucl. Acids. Res. 12:387–395.
- Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-Negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77, 7347–7351.
- Duncan, K., Edwards, R. M., Coggins, J. R. (1987) The pentafunctional aroM enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Biochem. J. 246:375-386.
- Dunn, J. J. and Studier, F. W., (1983) J. Mol. Biol. 166:477-535.
- Fitzgibbon, J. E. (1988) Pseudomonas sp. strain PG2982: uptake of glyphosate and cloning of a gene which confers increased resistance to glyphosate. Ph.D. Dissertation, Louisiana State University.
- Fitzgibbon, E. F. and Braymer, H. D. (1990) Cloning of a gene from Pseudomonas sp. PG2982 conferring increased glyphosate resistance Appl. Environ. Microbiol. 56: 3382-3388.
- Fling, M. E., Kopf, J., and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-Onucleotidyltransferase. Nucleic Acids Res. 13 no. 19,
- Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R. Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L., Fry, J. S., Galluppi, G. R., Goldberg, S. B., Hoffman, N. L., and Woo, S. C. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80:4803-4807.
- Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3: 629-635.
- Fromm, M., (1990) UCLA Symposium on Molecular Strategies for Crop Improvement, Apr. 16-22, 1990. Keystone, Colo.
- 6: 321-325
 - Gasser, C. S., Winter, J. A., Hironaka, C. M. and Shah, D. M. (1988) Structure, expression, and evolution of the 5-enolpyruvylshikimate 3-phosphate synthase genes of petunia and tomato. J. Biol. Chem. 263: 4280-4289.
 - Gowda, S., Wu, F. C., and Shepard, R. J. (1989). Identification of promoter sequences for the major RNA transcripts of figwort mosaic and peanut chlorotic streak viruses (caulimovirus group). Journal of Cellular Biochemistry supplement 13D, 301 (Abstract).
 - Hallas, L. E., Hahn, E. M. and Korndorfer, C. (1988) Characterization of microbial traits associated with glyphosate biodegradation in industrial activated sludge. J. Industrial Microbiol. 3: 377–385.
- the precursor of 5-enolpyruvylshikimate-3-phosphate 60 Hayford, M. B., Medford, J. I., Hoffmann, N. L., Rogers, S. G. and Klee, H. J. (1988) Development of a plant transformation selection system based on expression of genes encoding gentamicin acetyltransferases. Plant Physiol. 86: 1216-1222.

 - Heitkamp, M. A., Hallas, L. and Adams, W. J. (1990) Biotreatment of industrial wastewater with immobilized

51

- microorganisms—Presented in Session 11, Paper S40, Society for Industrial Microbiology Annual Meeting, Orlando, Fla. Jul. 29-Aug. 3, 1990.
- Henher, J. H., Band, L. and Shimotsu, H. (1984) Nucleotide sequence of the Bacillus subtilis tryptophan operon. 5 Gene., 34: 169-177.
- Henner, J. H., Band, L., Flaggs, G. and Chen, E. (1986) The organization and nucleotide sequence of the Bacillus subtilis hisH, tyrA and aroE genes Gene 49: 147-152.
- Hohn, B. and Collins J. (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11: 291-298.
- Horsch, R. B. and H. Klee. (1986) Proc. Natl. Acad. Sci. U.S.A. 83:4428-32.
- Hunkapiller, M. W., Hewick, R. M., Dreyer, R. J., and Hood, L. (1983) Methods Enzymol. 91, 399-413.
- Jefferson, R. A., Kavanaugh, T. A. and Bevan, M. W., 1987, 15 EMBO J., 6:3901-3907.
- Kay, R., Chan, A., Daly, M. and McPherson, J. 1987. Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. Science 236, 1299-1302.
- Kishore, G., Shah, D., Padgette, S., della-Cioppa, G., 20 Gasser, C., Re, D., Hironaka, C., Taylor, M., Wibbenmeyer, J., Eichholtz, D., Hayford, M., Hoffman, N., Delannay, X., Horsch, R., Klee, H., Rogers, S., Rochester, D., Brundage, L., Sanders, P. and Fraley, R. T. (1988) 5-Enolpyruvylshikimate 3-phosphate synthase: From Biochemistry to genetic engineering of glyphosate tolerance, in Biotechnology for Crop Protection ACS Symposium series No. 379. Eds. Hedlin P. A., Menn, J. J. and Hollingsworth, R. M. pp. 37-48.
- Kishore, G. and Shah, D. (1988) Ann. Rev. Biochem. 30 Padgette, S. R., Huynh, Q. K., Aykent, S., Sammons, R. D.,
- Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, Q. K. and della-Cioppa, G. (1986) Fed. Proc. 45: 1506.
- Klee, H. J., et al. (1985) Bio/Technology 3:637-42.
- Klee, H. J., Muskopf, Y. M. and Gasser, C. S. (1987) Cloning 35 of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet. 210: 437-442.
- Klee, H. J. and Rogers, S. G. (1989) Plant gene vectors and 40 genetic transformation: plant transformation systems based on the use of Agrobacterium tumefaciens in: Cell Culture and Somatic Cell: Genetics of Plants eds. J. Schell and L. K. Vasil. 6: 1-23.
- Klein, T. M., Kornstein, L., Sanford, J. C., and Fromm, M. 45 E. 1989. Genetic transformation of maize cells by particle bombardment. Plant Phys. 91:440-444.
- Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary 50 vector. Mol. Gen. Genet. 204:383-396.
- Kunkel, T. A., Roberts, J. D. and Zakour, R. A. (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367.
- during the assembly of the head of the bacteriophage T4" Nature, 227:680.
- Maliga, P., Carrer, H., Kanevski, I., Staub, J., and Svab, Z. (1993) Plastid engineering in land plants: a conservative genome is open to change. Philos. Trans. R. Soc. London 60 B Biol. Sci. 342: 203-208.
- Maniatis, T., Fritsch, E. F. and Sambrook, J. (1982) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Maskell, D. J., Morrissey, P. and Dougan, G. (1988) Cloning 65 and nucleotide sequence of the aroA gene of Bordetella pertussis. J. Bacteriol. 170:2467-2471.

52

- Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Moore, J. K., Braymer, H. D. and Larson, A. D. (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 46: 316-320.
- Morelli, G., Nagy, F., Fraley, R. T., Rogers, S. G., and Chua, N. H. (1985). A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5bisphosphate carboxylase small subunit of pea. Nature 315, 200–204.
- O'Connell, C., Pattee, P. A. and Foster, T. J. (1993) Sequence and mapping of the aroA gene of Staphylococcus aureus 8325-4. J. Gen. Micr. 139: 1449-1460.
- Odell, J. T., Nagy, F., and Chua, N. H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810-812.
- Olins, P. O., Devine, C. S., Rangwala, S. H. and Kavka, K. S. (1988) Gene 73: 227-235.
- O'Neill, C., Horvath, G. V., Horvath, E., Dix, P. J. and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J. 3: 729 - 738
- Padgette, S. R., Huynh, Q. K., Borgmeyer, J., Shah, D. M., Brand, L. A., Re, D. B., Bishop, B. F., Rogers, S. G., Fraley, R. T., and Kishore, G. (1987) Bacterial expression and isolation of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase. Arch. Biochem. Biophys. 258, 564-573.
- Sikorski, J. A., and Kishore, G. M. (1988) J. Biol. Chem. 263, 1798-1802.
 - Petersen, W. L., Sulc, S., and Armstrong, C. L. 1992. Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension protoplasts. Plant Cell Reports 10:591-594.
 - Quinn, J. P., Peden, J. M. M. and Dick, E. (1988) Glyphosate tolerance and utilization by the microflora of soils treated with the herbicide. Appl. Microbiol. Biotechnol.29: 511-516.
 - Rao, R. N. and Rogers, S. G. (1979). Plasmid pKC7: A vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7:79
- Richins, R. D., Scholthof, H. B., and Shepard, R. J. (1987) Sequence of the figwort mosaic virus DNA (caulimovirus group). Nucl. Acids Res. 15: 8451-8466.
- Rogers, S. G., Brand, L. A. Holder, S. B. Sharps, E. S. and Brackin, M. J. (1983) Amplification of the aroA gene from E. coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46:37-43.
- Rogers, S. G. and Klee, H. J. (1987). "Pathways to genetic manipulation employing Agrobacterium." in Plant Gene Research, Plant DNA Infectious Agents, Vol IV, Hohn, T. and Schell, J., eds. Springer-Verlag, Vienna, pp.179-203.
- Laemmli, U.K. (1970), "Cleavage of structural proteins 55 Sambrook, J., Fritsch, E. F. and Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
 - Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J., and Potrykus, I. (1986). Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/ Technology 4:1093–1097.
 - Songstad, D. D., Armstrong, C. L., and Petersen, W. L. (1991). AgNO₃ increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Reports 9: 699-702.
 - Schuler, M. A., Schmitt, E. S. and Beachy, R. N. (1982) Nucleic Acids Res. 10:8225-8244.

53

- Schulz, A., Kruper, A. and Amrhein, N. (1985) Differential sensitivity of bacterial 5-enolpyruvylshikimate-3phosphate synthases to the herbicide glyphosate. FEMS Microbiol. Lett. 28: 297-301.
- Schulz, A., Sost, D. and Amrhein, D. (1984) Arch. Micro- ⁵ Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) Stable biol. 137: 121–123.
- Shah, D., Horsch, R., Klee, H., Kishore, G., Winter, J., Turner, N., Hironaka, C., Sanders, P., Gasser, C., Aykent, S., Siegal, N., Rogers, S., and Fraley, R. (1986). Engineering herbicide tolerance in transgenic plants. Science 10 233, 478–481.
- Shah, D. M., Rochester, D. E., Krivi, G., Hironaka, C., Mozer, T. J., Fraley, R. T., and D. C. Tiemeier. 1985. Structure and expression of the maize hsp70 gene. Cell. and Mol. Biol. of Plant Stress, Alan R. Liss, Inc. pp. 15 181-200.
- Shimamoto, K. et al. (1989) Nature 338:274-276.
- Sost, D., Schulz, A. and Amrhein, N. (1984) FEBS Lett. 173:
- Ala in the 5-enolpyruvylshikimate 3-phosphate synthase of Klebsiella pneumoniae results in greatly reduced affinity for the herbicide glyphosate. Arch. Biochem. Biophys. 282: 433-436.
- Stalker, D. M., Thomas, C. M., and Helinski, D. R. (1981). 25 Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Mol Gen Genet 181: 8-12.
- Stalker, D. M., Hiatt, W. R. and Comai, L. (1985) A single amino acid substitution in the enzyme 30 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to glyphosate. J. Biol. Chem. 260: 4724-4728.
- Stallings, W. C., Abdel-Meguid, S.S., Lim, L. W., Shieh, Huey-Sheng, Dayringer, H. E., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A.,

- 54
- Padgette S. R., Kishore, G. M. (1991). Structure and Topological Symmetry of the Glyphosate Target 5-enolpyruvylshikimate-3-phosphate synthase, Proc. Natl. Acad. Sci. USA 88, 5046-5050.
- transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526-8530.
- Svab, Z. and Maliga, P. (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad Sci. USA 90:913-917.
- Tabor, S. and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074-1078.
- Talbot, H. W., Johnson, L. M. and Munnecke, D. M. (1984) Glyphosate utilization by Pseudomonas sp. and Alcaligenes sp. isolated from environmental sources. Current Microbiol. 10: 255-260.
- Sost, D. and Amrhein, N. (1990) Substitution of Gly-96 to 20 Talmadge, K., and Gilbert, W., (1980) "Construction of plasmid vectors with unique PstI cloning sites in the signal sequence coding region" Gene, 12: 235-241.
 - Timko, M. P., Herdies, L., de Almeida, E., Cashmore, A. R., Leemans, J., and Krebbers, E. 1988. Genetic Engineering of Nuclear-Encoded Components of the Photosynthetic Apparatus in Arabidopsis in "The Impact of Chemistry on Biotechnology," ACS Books, 279-295.
 - Vasil, V., F. Redway and I. Vasil. (1990), Bio/Technology 8:429-434.
 - Vieira, J. and Messing J. (1987) Production of singlestranded plasmid DNA. Methods Enzymol. 153: 3–11.
 - Yanisch-Perron, C., Vieira, J. and Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119

SEQUENCE LISTING

<160> NUMBE	R OF SEQ II	NOS: 70				
	H: 597 DNA HSM: Figwor	rt mosaic vi	.rus			
<400> SEQUE	INCE: 1					
tcatcaaaat	atttagcagc	attccagatt	gggttcaatc	aacaaggtac	gagccatatc	60
actttattca	aattggtatc	gccaaaacca	agaaggaact	cccatcctca	aaggtttgta	120
aggaagaatt	ctcagtccaa	agcctcaaca	aggtcagggt	acagagtctc	caaaccatta	180
gccaaaagct	acaggagatc	aatgaagaat	cttcaatcaa	agtaaactac	tgttccagca	240
catgcatcat	ggtcagtaag	tttcagaaaa	agacatccac	cgaagactta	aagttagtgg	300
gcatctttga	aagtaatctt	gtcaacatcg	agcagctggc	ttgtggggac	cagacaaaaa	360
aggaatggtg	cagaattgtt	aggcgcacct	accaaaagca	tctttgcctt	tattgcaaag	420
ataaagcaga	ttcctctagt	acaagtgggg	aacaaaataa	cgtggaaaag	agctgtcctg	480
acagcccact	cactaatgcg	tatgacgaac	gcagtgacga	ccacaaaaga	attccctcta	540
tataagaagg	cattcattcc	catttgaagg	atcatcagat	actaaccaat	atttctc	597

55 56

-continued

_																	
<212	2> T ?	ENGTH	DNA		- h 4												
<220)> FI	RGANI EATUF	Œ:	-	obact	eri	ım sp	•									
		AME/F CATI)(1	.426))										
<400)> SI	EQUE	ICE:	2													
aago	cccg	cgt t	ctc	taag	gc go	ctcc	gada	g ga	gagco	egtg	gat	agat	taa q	ggaaq	gacgcc	60	
	-	-	-	-		•	_		_	la Ti	_		_		cc tct er Ser	109	
		tcc Ser														157	
		ttc Phe 35	_						-		-	_	-			205	
		ctg Leu														253	
		ggc Gly														301	
		ggc Gl y														349	
		gcc Ala														397	
		ttc Phe 115														445	
		ggc Gl y														493	
		gaa Glu														541	
		acg Thr														589	
		gcc Ala														637	
		gag Glu 195														685	
		ggc Gly														733	
		cgc Arg														781	
		ggc Gly														829	
		ccg Pro														877	

57 **58**

-continued	
acc cgc acc ggc ctc atc ctg acg ctg cag gaa atg ggc gcc gac atc Thr Arg Thr Gly Leu Ile Leu Thr Leu Gln Glu Met Gly Ala Asp Ile 275 280 285	925
gaa gtc atc aac ccg cgc ctt gcc ggc ggc gaa gac gtg gcg gac ctg Glu Val Ile Asn Pro Arg Leu Ala Gly Gly Glu Asp Val Ala Asp Leu 290 295 300	973
cgc gtt cgc tcc tcc acg ctg aag ggc gtc acg gtg ccg gaa gac cgc Arg Val Arg Ser Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg 305 310 315 320	1021
gcg cct tcg atg atc gac gaa tat ccg att ctc gct gtc gcc gcc Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val Ala Ala Ala 325 330 335	1069
ttc gcg gaa ggg gcg acc gtg atg aac ggt ctg gaa gaa ctc cgc gtc Phe Ala Glu Gly Ala Thr Val Met Asn Gly Leu Glu Glu Leu Arg Val 340 345 350	1117
aag gaa agc gac cgc ctc tcg gcc gtc gcc aat ggc ctc aag ctc aat Lys Glu Ser Asp Arg Leu Ser Ala Val Ala Asn Gly Leu Lys Leu Asn 355 360 365	1165
ggc gtg gat tgc gat gag ggc gag acg tcg ctc gtc gtg cgc ggc cgc Gly Val Asp Cys Asp Glu Gly Glu Thr Ser Leu Val Val Arg Gly Arg 370 375 380	1213
cct gac ggc aag ggg ctc ggc aac gcc tcg ggc gcc gcc gcc gcc acc Pro Asp Gly Lys Gly Leu Gly Asn Ala Ser Gly Ala Ala Val Ala Thr 385 390 395 400	1261
cat ctc gat cac cgc atc gcc atg agc ttc ctc gtc atg ggc ctc gtg His Leu Asp His Arg Ile Ala Met Ser Phe Leu Val Met Gly Leu Val 405 410 415	1309
tcg gaa aac cct gtc acg gtg gac gat gcc acg atg atc gcc acg agc Ser Glu Asn Pro Val Thr Val Asp Asp Ala Thr Met Ile Ala Thr Ser 420 425 430	1357
ttc ccg gag ttc atg gac ctg atg gcc ggg ctg ggc gcg aag atc gaa Phe Pro Glu Phe Met Asp Leu Met Ala Gly Leu Gly Ala Lys Ile Glu 435 440 445	1405
ctc tcc gat acg aag gct gcc tgatgacctt cacaatcgcc atcgatggtc Leu Ser Asp Thr Lys Ala Ala 450 455	1456
ccgctgcggc cggcaagggg acgctctcgc gccgtatcgc ggaggtctat ggctttcatc	1516
atotogatac gggcctgacc tatcgcgcca cggccaaagc gctgctcgat cgcggcctgt	1576
cgcttgatga cgaggcggtt gcggccgatg tcgcccgcaa tctcgatctt gccgggctcg	1636
accggtcggt gctgtcggcc catgccatcg gcgaggcggc ttcgaagatc gcggtcatgc	1696
cctcggtgcg gcgggcgctg gtcgaggcgc agcgcagctt tgcggcgcgt gagccgggca	1756
cggtgctgga tggacgcgat atcggcacgg tggtctgccc ggatgcgccg gtgaagctct	1816
atgtcaccgc gtcaccggaa gtgcgcgcga aacgccgcta tgacgaaatc ctcggcaatg	1876
gcgggttggc cgattacggg acgatcctcg aggatatccg ccgccgcgac gagcgggaca	1936
tgggtcgggc ggacagtcct ttgaagcccg ccgacgatgc gcactt	1982
<210> SEQ ID NO 3 <211> LENGTH: 455	

Met Ser His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser 1 $$ 5 $$ 10 $$ 15

<211> LENGTH: 455 <212> TYPE: PRT <213> ORGANISM: Agrobacterium sp.

<400> SEQUENCE: 3

Gly Leu Ser Gly Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

59 60

Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Lys	Ala	Met	Gln
Ala 65	Met	Gly	Ala	Arg	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Thr	Trp	Ile	Ile	Asp 80
Gly	Val	Gly	Asn	Gly 85	Gly	Leu	Leu	Ala	Pro 90	Glu	Ala	Pro	Leu	Asp 95	Phe
Gly	Asn	Ala	Ala 100	Thr	Gly	Cys	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Val
Tyr	Asp	Phe 115	Asp	Ser	Thr	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Thr	Lys	Arg
Pro	Met 130	Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val
Lys 145	Ser	Glu	Asp	Gly	Asp 150	Arg	Leu	Pro	Val	Thr 155	Leu	Arg	Gly	Pro	L y s 160
Thr	Pro	Thr	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Val
Lys	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Ile 190	Thr	Thr
Val	Ile	Glu 195	Pro	Ile	Met	Thr	Arg 200	Asp	His	Thr	Glu	L y s 205	Met	Leu	Gln
Gly	Phe 210	Gly	Ala	Asn	Leu	Thr 215	Val	Glu	Thr	Asp	Ala 220	Asp	Gly	Val	Arg
Thr 225	Ile	Arg	Leu	Glu	Gly 230	Arg	Gly	Lys	Leu	Thr 235	Gly	Gln	Val	Ile	Asp 240
Val	Pro	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu	Val	Pro	Gly 260	Ser	Asp	Val	Thr	Ile 265	Leu	Asn	Val	Leu	Met 270	Asn	Pro
Thr	Arg	Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gl y 285	Ala	Asp	Ile
Glu	Val 290	Ile	Asn	Pro	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	Asp	Leu
Arg 305	Val	Arg	Ser	Ser	Thr 310	Leu	Lys	Gly	Val	Thr 315	Val	Pro	Glu	Asp	Arg 320
Ala	Pro	Ser	Met	Ile 325	Asp	Glu	Tyr		Ile 330		Ala	Val	Ala	Ala 335	Ala
Phe	Ala	Glu	Gly 340	Ala	Thr	Val	Met	Asn 345	Gly	Leu	Glu	Glu	Leu 350	Arg	Val
Lys	Glu	Ser 355	Asp	Arg	Leu	Ser	Ala 360	Val	Ala	Asn	Gly	Leu 365	Lys	Leu	Asn
Gly	Val 370	Asp	Cys	Asp	Glu	Gly 375	Glu	Thr	Ser	Leu	Val 380	Val	Arg	Gly	Arg
	370				Glu Leu 390	375					380				
Pro 385	370 Asp	Gly	Lys	Gly	Leu	375 Gly	Asn	Ala	Ser	Gl y 395	380 Ala	Ala	Val	Ala	Thr 400
Pro 385 His	370 Asp Leu	Gly Asp	L y s His	Gly Arg 405	Leu 390	375 Gly Ala	Asn Met	Ala Ser	Ser Phe 410	Gly 395 Leu	380 Ala Val	Ala Met	Val Gly	Ala Leu 415	Thr 400 Val

61 62

Leu Ser Asp Thr Lys Ala Ala 450 4210> SEQ ID NO 4 4211> LENGTH: 1673 4212> TYPE: DNA 4213> ORGANISM: Agrobacterium sp. 4210> SEQUENCE: 4 gtagccacac ataattacta tagctaggaa gcccgctatc tctcaatccc gcgtgatcgc 420> FEATURE: 4212> NAME/KEY: CBS (1432) 4400> SEQUENCE: 4 gtagccacac ataattacta tagctaggaa gcccgctatc tctcaatccc gcgtgatcgc 60 gccaaaatgt gactgtgaaa aatcc atg tcc cat tct gca tcc ccg aaa cca Net Ser His Ser Ala Ser Pro Lys Pro 1 gca acc gcc cgc cgc tcg gag gca ctc acg ggc gaa atc cgc att ccg Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg Ile Pro 10 12 ggc gac aag tcc atc tcg cat cgc tct tct atg ttt ggc ggt ctc gca Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 30 tcg ggc gaa acc cgc atc acc ggc ctt ctg gaa ggc gag gac gtc atc Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Gly Asp Val Ile 45 aat aca ggc cgc gcc atg cag gcc atg ggc gc aaa atc cgt aaa gag Aen Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg Lys Glu 65 ggc gat gtc tgg atc atc aca ggc ttc ggc aat ggc gg gc gc gc ctc Fro Glu Ala Ala Leu Asp Phe Gly Val Gly Asn Gly Cys Leu Leu Gln 75 ccc gaa gct ggc ctc gat ttc ggc aat gcc gga acc gc gc gc ctc Fro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 90 91 acc atg ggc ctt gtc ggc acc tat gac atg as acc gc gc gc gc ctc Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 gac gcc tcg ctg tcg aac gcc cat ggc gcg gtg ctg ctg ctg ttg cac gcd ttg cac gcd ttg cac gcd gcc ctc Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 gac gcc tcg ctg tcg aac gcc cat gt ggc cgc gtg ctg ctg ttg cac ctg ttg cac gcc ctc gtc tcg acc ctg tcg aac gcc ctg ttg cac ctg atg ccc ctg ttg cac ctg atg ccc ctg ttg cac cac ctg atg ccc ctg ttg cac ctg atg ccc ctg ttg cac ccc atg ccc atg ccc cac atg ccc ctg ttg cccc atg ccc ccc atg ccc ccc atg ccc ccc atg ccc ccc
<pre>2211> LENGTH: 1673 2212> TYPE INA 2213 ORGANISM: Agrobacterium sp. 2220> FEATURE: 2221> NAMM/KEY: CDS 2222> LOCATION: (86)(1432) <400> SEQUENCE: 4 gragcacac ataattacta tagctaggaa geoogctate teteaatece gegtgatege 60 gccaaaatgt gactgtgaaa aatec atg tee cat tet goa tee ega aaa eea 112</pre>
gtagccacac ataattacta tagctaggaa gcccgctatc tctcaatccc gcgtgatcgc gccaaaatgt gactgtgaaa aatcc atg tcc cat tct gca tcc ccg aaa cca Met Ser His Ser Ala Ser Pro Lys Pro 11
gccaaaatgt gactgtgaaa aatcc atg tcc cat tct gca tcc ccg aaa cca Met Ser His Ser Ala Ser Pro Lys Pro 1 1 2 1 2 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5
Met Ser His Ser Ala Ser Pro Lys Pro 1
Ala Thr Ala Arg Arg Ser Glu Ala Leu Thr Gly Glu Ile Arg Ile Pro 25 ggc gac aag tcc atc tcg cat cgc tcc ttc atg ttt ggc ggt ctc gca Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 40 tcg ggc gaa acc cgc atc acc ggc ctt ctg gaa ggc gag gac gtc atc Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile 55 aat aca ggc cgc gcc atg cag gcc atg ggc ggc aat acc ggc gcg aaa acc cgt aaa ggc ggc ggc aaa acc ggc ctc fly Ala Lys Ile Arg Lys Glu 70 ggc gat gtc tgg atc atc acc ggc gtc ggc gat gtc ggc aat gtc ggc gat gtc ggc gat gtc ggc gat gtc ggc gat gtc ggc acc ggc gtc ggc aat gtc ggc ggc gat gtc ggc ggc gat gtc ggc ggc gat gtc ggc ggc gat gtc ggc ggc ggc ggc ggc ggc ggc ggc gg
Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 30 Ser His Arg Ser Phe Met Phe Gly Gly Leu Ala 35 Ser Gly Glu Thr Arg Ile Thr Gly Leu Cdu Glu Gly Glu Asp Val Ile 55 Val Ile 55 Val Ile 55 Ser Gly Glu Thr Arg Ile Thr Gly Leu Cdu Glu Gly Glu Asp Val Ile 55 Val Ile 56 Val Ile 57 Val Ile 58 Val Ile 59 Val Ile 59 Val Ile 59 Val Ile 50 Val Gly Asp Val Ile 50 Val Gly Asp Cly Cys Cdu Leu Glu 60 Val Gly Asp Cly Cys Leu Leu Gln 75 Val Trp Ile Ile 56 Val Gly Asp Val Cly Ser Leu Leu Gln 75 Val Trp Ile Ile 57 Val Gly Asp Phe Gly Asp Ala 60 Val Gly Asp Ala 60 Val Gly Thr Gly Ala 60 Val Gly Thr Gly Ala 61 Val Cly Thr Gly Ala 61 Val Arg Leu 61 Val Arg Leu 61 Val 61 Val Gly Thr Gly Ala 61 Val
Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile aat aca ggc cgc gcc atg cag gcc atg ggc atg ggc aaa atc cgt aaa gag Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg Lys Glu ggc gat gtc tgg atc atc atc aac ggc ggc ggc aat ggc ctg ttg cag Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu Leu Gln 75 ccc gaa gct gcg ctc gat ttc ggc aat gcg gga acc ggc gga acc ggc ctc Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 90 acc atg ggc ctt gtc ggc acc tat gac atg acc atg acc atg acc atg acc atg ggc gcg ctc Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 115 gac gcc tcg ttg cg aac ccg atg ggc cgc gtg ctg acc ccg atg ggc ggc gtg ctg Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu 135
Asn Thr Gly Arg Ala Met Gln Ala Met Gly Ala Lys Ile Arg Lys Glu ggc gat gtc tgg atc atc aac ggc gtc ggc aat ggc tgc ctg ttg cag Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu Leu Gln 75 ccc gaa gct gcg ctc gat ttc ggc aat gcg gga acc ggc ggg acc ggc ctc Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 90 acc atg ggc ctt gtc ggc acc tat gac atg acc tcc ttt atc ggc Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 115 gac gcc tcg ctg tcg aag cgc ccg atg ggc ggc gtg ctg aac ccg ttg Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu 135
Gly Asp Val Trp Ile Ile Asn Gly Val Gly Asn Gly Cys Leu Leu Gln ccc gaa gct gcg ctc gat ttc ggc aat gcc gga acc ggc gcg ccc Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 90 acc atg ggc ctt gtc ggc acc tat gac atg aag acc tcc ttt atc ggc Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 gac gcc tcg ctg tcg aag cgc ccg atg ggc gcg gtg ctg aac ccg ttg Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asp Pro Leu 130 Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asp Pro Leu 130
Pro Glu Ala Ala Leu Asp Phe Gly Asn Ala Gly Thr Gly Ala Arg Leu 105 acc atg ggc ctt gtc ggc acc tat gac atg aag acc tcc ttt atc ggc 448 Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 gac gcc tcg ctg tcg aag cgc ccg atg ggc cgc gtg ctg aac ccg ttg 496 Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asp Pro Leu 130 130 As Ala Gly Thr Gly Ala Arg Leu 105 448 448 496
Thr Met Gly Leu Val Gly Thr Tyr Asp Met Lys Thr Ser Phe Ile Gly 110 115 120 gac gcc tcg ctg tcg aag cgc ccg atg ggc cgc gtg ctg aac ccg ttg Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu 125 130 135
Asp Ala Ser Leu Ser Lys Arg Pro Met Gly Arg Val Leu Asn Pro Leu 125 130 135
cgc gaa atg ggc gtt cag gtg gaa gca qcc gat ggc gac cgc atg ccg 544
Arg Glu Met Gly Val Gln Val Glu Ala Ala Asp Gly Asp Arg Met Pro 140 145 150
ctg acg ctg atc ggc ccg aag acg gcc aat ccg atc acc tat cgc gtg Leu Thr Leu Ile Gly Pro Lys Thr Ala Asn Pro Ile Thr Tyr Arg Val 155 160 165
ccg atg gcc tcc gcg cag gta aaa tcc gcc gtg ctc gcc ggt ctc640Pro Met Ala Ser Ala Gln Val Lys Ser Ala Val Leu Leu Ala Gly Leu175180185
aac acg ccg ggc gtc acc acc gtc atc gag ccg gtc atg acc cgc gac Asn Thr Pro Gly Val Thr Thr Val Ile Glu Pro Val Met Thr Arg Asp 190 195 200
cac acc gaa aag atg ctg cag ggc ttt ggc gcc gac ctc acg gtc gag 736 His Thr Glu Lys Met Leu Gln Gly Phe Gly Ala Asp Leu Thr Val Glu 205 210 215
acc gac aag gat ggc gtg cgc cat atc cgc atc acc ggc cag ggc aag Thr Asp Lys Asp Gly Val Arg His Ile Arg Ile Thr Gly Gln Gly Lys 220 225 230
ctt gtc ggc cag acc atc gac gtg ccg ggc gat ccg tca tcg acc gcc Leu Val Gly Gln Thr Ile Asp Val Pro Gly Asp Pro Ser Ser Thr Ala 235 240 245

63

				-
-cor	١+	пr	111	മപ

	_		-	-	-				-			-	-	acc Thr		880
														acc Thr 280		928
_	-	_		_	-		-				-	_		gca Ala		976
														aag L y s		1024
														tat Tyr		1072
														atg Met		1120
														gcg Ala 360		1168
-	-			_	-			_	-	_		_		gag Glu	_	1216
														ggc Gly		1264
														ctc Leu		1312
														aac Asn		1360
														ttg Leu 440		1408
					agc Ser			tag	tcac	tog a	acago	cgaa	aa ta	attat	ttgc	1462
gaga	ttgg	ggc a	attat	taco	cg gt	ttgg	tctca	a gc	3333	gttt	aat	gtcc	aat o	cttco	ataco	g 1522
															gccg	
	-				-				ctga	aatc	ccg	gggg	gtc (gggg	jatca	
atga	ctto	cat t	tct	gagaa	aa ti	rggc	eteg	c a								1673
<211 <212	<pre> <210> SEQ ID NO 5 <2211> LENGTH: 449 <2212> TYPE: PRT <213> ORGANISM: Agrobacterium sp. </pre>															
<400	> SE	QUEN	ICE:	5												
Met 1	Ser	His	Ser	Ala 5	Ser	Pro	Lys	Pro	Ala 10	Thr	Ala	Arg	Arg	Ser 15	Glu	
Ala	Leu	Thr	Gly 20	Glu	Ile	Arg	Ile	Pro 25	Gly	Asp	Lys	Ser	Ile 30	Ser	His	
Ara																
5	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr	

65 66

_														CIII	<u></u>	
	50)					55					60				
Al 65	a Me	et	Gly	Ala	Lys	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Val	Trp	Ile	Ile	Asn 80
Gl	y Va	1	Gly	Asn	Gly 85	Cys	Leu	Leu	Gln	Pro 90	Glu	Ala	Ala	Leu	Asp 95	Phe
Gl	y As	sn	Ala	Gly 100	Thr	Gly	Ala	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Thr
Ту	r As		Met 115	Lys	Thr	Ser	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Ser	Lys	Arg
Pr	o Me		Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val
G1 14	u Al 15	.a	Ala	Asp	Gly	Asp 150	Arg	Met	Pro	Leu	Thr 155	Leu	Ile	Gly	Pro	Lys 160
Th	nr Al	.a	Asn	Pro	Ile 165	Thr	Tyr	Arg	Val	Pro 170	Met	Ala	Ser	Ala	Gln 175	Val
Ly	rs Se	er	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Val 190	Thr	Thr
Vē	al Il		Glu 195	Pro	Val	Met	Thr	Arg 200	Asp	His	Thr	Glu	L y s 205	Met	Leu	Gln
Gl	y Ph 21		Gly	Ala	Asp	Leu	Thr 215	Val	Glu	Thr	Asp	L y s 220	Asp	Gly	Val	Arg
Ні 22	s Il 25	.е	Arg	Ile	Thr	Gly 230	Gln	Gly	Lys	Leu	Val 235	Gly	Gln	Thr	Ile	Asp 240
Va	al Pr	0.0	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Le	eu Va	ıl	Glu	Gly 260	Ser	Asp	Val	Thr	Ile 265	Arg	Asn	Val	Leu	Met 270	Asn	Pro
Th	ır Ar		Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gl y 285	Ala	Asp	Ile
Gl	.u Va 29		Leu	Asn	Ala	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	Asp	Leu
Ar 30	:g Va)5	1	Arg	Ala	Ser	Lys 310	Leu	Lys	Gly	Val	Val 315	Val	Pro	Pro	Glu	Arg 320
Al	a Pr	0	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Val 330	Leu	Ala	Ile	Ala	Ala 335	Ser
Ph	ne Al	.a	Glu	Gly 340	Glu	Thr	Val	Met	Asp 345	Gly	Leu	Asp	Glu	Leu 350	Arg	Val
Ly	⁄s Gl		Ser 355	Asp	Arg	Leu	Ala	Ala 360	Val	Ala	Arg	Gly	Leu 365	Glu	Ala	Asn
Gl	y Va. 37		Asp	Cys	Thr	Glu	Gly 375	Glu	Met	Ser	Leu	Thr 380	Val	Arg	Gly	Arg
Pr 38	o As	sp	Gly	Lys	Gly	Leu 390	Gly	Gly	Gly	Thr	Val 395	Ala	Thr	His	Leu	Asp 400
Hi	s Ar	g	Ile	Ala	Met 405	Ser	Phe	Leu	Val	Met 410	Gly	Leu	Ala	Ala	Glu 415	Lys
Pr	o Va	1	Thr	Val 420	Asp	Asp	Ser	Asn	Met 425	Ile	Ala	Thr	Ser	Phe 430	Pro	Glu
Ph	ne Me		Asp 435	Met	Met	Pro	Gly	Leu 440	Gly	Ala	Lys	Ile	Glu 445	Leu	Ser	Ile
L€	eu															

67

<212><213><220>	> OR	GANI	SM:	Pset	ıdomo	nas	sp.											
<221> <222>	> NA	ME/K	EY:)(1	1380))											
<400>	> SE	QUEN	CE:	6														
gtgat	tege	gc o	aaaa	atgt	ga c	tgtga	aaaa	a tco		-			_		c ccg r Pro	54		
aaa d Lys I		-		-	_	_	_		-		_		-		-	102		
att o																150		
ctc o Leu <i>l</i> 40																198		
gtc a Val 1					_	-	_	_	-	_					_	246		
aaa q Lys (294		
ttg (Leu (-		-	-			-				-					342		
ege o Arg I			_			_				-	_	_				390		
atc of Ile (438		
ccg t Pro I																486		
atg o Met I	_	_	_	_			_		_	_		_				534		
ege q Arg V																582		
ggt d Gly I			_	_		-			-			_	_	_		630		
cgc q Arg <i>I</i> 200																678		
gtc q Val (726		
ggc a																774		
acc o	_		_		-	_	-		_		-			_	-	822		
acc a Thr 1																870		

69 70

-continued	
acc ttg cag gaa atg ggc gcc gat atc gaa gtg ctc aat gcc cgt ctt Thr Leu Gln Glu Met Gly Ala Asp Ile Glu Val Leu Asn Ala Arg Leu 280 285 290 295	918
gca ggc ggc gaa gac gtc gcc gat ctg cgc gtc agg gct tcg aag ctc Ala Gly Glu Asp Val Ala Asp Leu Arg Val Arg Ala Ser Lys Leu 300 305 310	966
aag ggc gtc gtc gtt ccg ccg gaa cgt gcg ccg tcg atg atc gac gaa Lys Gly Val Val Val Pro Pro Glu Arg Ala Pro Ser Met Ile Asp Glu 315 320 325	1014
tat ccg gtc ctg gcg att gcc gcc tcc ttc gcg gaa ggc gaa acc gtg Tyr Pro Val Leu Ala Ile Ala Ala Ser Phe Ala Glu Gly Glu Thr Val 330 335 340	1062
atg gac ggg ctc gac gaa ctg cgc gtc aag gaa tcg gat cgt ctg gca Met Asp Gly Leu Asp Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala 345 350 355	1110
gcg gtc gca cgc ggc ctt gaa gcc aac ggc gtc gat tgc acc gaa ggc Ala Val Ala Arg Gly Leu Glu Ala Asn Gly Val Asp Cys Thr Glu Gly 360 365 370 375	1158
gag atg tcg ctg acg gtt cgc ggc cgc ccc gac ggc aag gga ctg ggc Glu Met Ser Leu Thr Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly 380 385 390	1206
ggc ggc acg gtt gca acc cat ctc gat cat cgt atc gcg atg agc ttc Gly Gly Thr Val Ala Thr His Leu Asp His Arg Ile Ala Met Ser Phe 395 400 405	1254
ctc gtg atg ggc ctt gcg gcg gaa aag ccg gtg acg gtt gac gac agt Leu Val Met Gly Leu Ala Ala Glu Lys Pro Val Thr Val Asp Asp Ser 410 415 420	1302
aac atg atc gcc acg tcc ttc ccc gaa ttc atg gac atg atg ccg gga Asn Met Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Met Met Pro Gly 425 430 435	1350
ttg ggc gca aag atc gag ttg agc ata ctc tagtcactcg acagcgaaaa Leu Gly Ala Lys Ile Glu Leu Ser Ile Leu 440 445	1400
tattatttgc gagattgggc attattaccg gttggtctca gcgggggttt aatgtccaat	1460
cttccatacg taacagcatc aggaaatatc aaaaaagctt	1500
<210> SEQ ID NO 7 <211> LENGTH: 449 <212> TYPE: PRT <213> ORGANISM: Pseudomonas sp.	
<400> SEQUENCE: 7	
Met Ser His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu 1 10 15	
Ala Leu Thr Gly Glu Ile Arg Ile Pro Gly Asp Lys Ser Ile Ser His $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$	
Arg Ser Phe Met Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr 35 40 45	
Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Arg Ala Met Gln 50 55 60	
Ala Met Gly Ala Lys Ile Arg Lys Glu Gly Asp Val Trp Ile Ile Asn 65 70 75 80	
Gly Val Gly Asn Gly Cys Leu Leu Gln Pro Glu Ala Ala Leu Asp Phe 85 90 95	
Gly Asn Ala Gly Thr Gly Ala Arg Leu Thr Met Gly Leu Val Gly Thr 100 105 110	

Tyr Asp Met Lys Thr Ser Phe Ile Gly Asp Ala Ser Leu Ser Lys Arg

71 72

-continued

### Pro Ret Gly Ar 130 ### Ala Ala As Pr ### Lys Ser Ala Va 18 ### Val Ile Glu Pr 195 ### Gly Phe Gly Al 210	p Gly o Ile 165 l Leu o Val a Asp	Asp 150 Thr Leu Met	135 Arg Tyr Ala Thr	Met Arg Gly	Pro Val Leu 185	Leu Pro 170	Thr 155 Met	140 Leu	Ile	Gly		
Glu Ala Ala As 145 Thr Ala Asn Pr Lys Ser Ala Va 18 Val Ile Glu Pr 195 Gly Phe Gly Al	p Gly o Ile 165 l Leu o Val a Asp	Asp 150 Thr Leu Met	135 Arg Tyr Ala Thr	Met Arg Gly Arg	Pro Val Leu 185	Leu Pro 170	Thr 155 Met	140 Leu	Ile	Gly		Lys
Thr Ala Asn Pr Lys Ser Ala Va 18 Val Ile Glu Pr 195 Gly Phe Gly Al	o Ile 165 l Leu 0 Val a Asp	150 Thr Leu Met	Tyr Ala Thr	Arg Gly Arg	Val Leu 185	Pro 170	155 Met			_	Pro	
Lys Ser Ala Va 18 Val Ile Glu Pr 195 Gly Phe Gly Al	165 l Leu Val Asp	Leu Met Leu	Ala Thr	Gly	Leu 185	170		Ala	Ser	n1 -		
Val Ile Glu Pr 195 Gly Phe Gly Al	o Val a Asp e Thr	Met Leu	Thr Thr	Arg	185	Asn	ml			Ата	Gln 175	Val
195 Gly Phe Gly Al	a Asp e Thr	Leu	Thr		Acn		THE	Pro	Gly	Val 190	Thr	Thr
	e Thr				мър	His	Thr	Glu	L y s 205	Met	Leu	Gln
		${\tt Gly}$		Val	Glu	Thr	Asp	L y s 220	Asp	Gly	Val	Arg
His Ile Arg Il 225		230	Gln	Gly	Lys	Leu	Val 235	Gly	Gln	Thr	Ile	Asp 240
Val Pro Gly As	p Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
Leu Val Glu Gl 26		Asp	Val	Thr	Ile 265	Arg	Asn	Val	Leu	Met 270	Asn	Pro
Thr Arg Thr Gl 275	y Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gly 285	Ala	Asp	Ile
Glu Val Leu As 290	n Ala	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	Asp	Leu
Arg Val Arg Al 305	a Ser	Lys 310	Leu	Lys	Gly	Val	Val 315	Val	Pro	Pro	Glu	Arg 320
Ala Pro Ser Me	t Ile 325	Asp	Glu	Tyr	Pro	Val 330	Leu	Ala	Ile	Ala	Ala 335	Ser
Phe Ala Glu Gl 34		Thr	Val	Met	Asp 345	Gly	Leu	Asp	Glu	Leu 350	Arg	Val
Lys Glu Ser As 355	p Arg	Leu	Ala	Ala 360	Val	Ala	Arg	Gly	Leu 365	Glu	Ala	Asn
Gly Val Asp Cy 370	s Thr	Glu	Gly 375	Glu	Met	Ser	Leu	Thr 380	Val	Arg	Gly	Arg
Pro Asp Gly Ly 385	s Gly	Leu 390	Gly	Gly	Gly	Thr	Val 395	Ala	Thr	His	Leu	Asp 400
His Arg Ile Al	a Met 405	Ser	Phe	Leu	Val	Met 410	Gly	Leu	Ala	Ala	Glu 415	Lys
Pro Val Thr Va 42	-	Asp	Ser	Asn	Met 425	Ile	Ala	Thr	Ser	Phe 430	Pro	Glu
Phe Met Asp Me 435	t Met	Pro	Gly	Leu 440	Gly	Ala	Lys	Ile	Glu 445	Leu	Ser	Ile
Leu												
<pre><210> SEQ ID Not <211> LENGTH: <212> TYPE: PR <213> ORGANISM</pre>	423 T	herio	chia	coli	Ĺ							
<400> SEQUENCE	: 8											
Ser Leu Thr Le	u Gln 5	Pro	Ile	Ala	Arg	Val 10	Asp	Gly	Thr	Ile	Asn 15	Leu
Pro Gly Ser Ly		Val	Ser	Asn	Arg 25	Ala	Leu	Leu	Leu	Ala 30	Ala	Leu

Ala His Gly Lys Thr Val Leu Thr Asn Leu Leu Asp Ser Asp Val

73 74

		35					40					45			
Arg	His 50	Met	Leu	Asn	Ala	Leu 55	Thr	Ala	Leu	Gly	Val 60	Ser	Tyr	Thr	Leu
Ser 65	Ala	Asp	Arg	Thr	Arg 70	Cys	Glu	Ile	Ile	Gl y 75	Asn	Gly	Gly	Pro	Leu 80
His	Ala	Glu	Gly	Ala 85	Leu	Glu	Leu	Phe	Leu 90	Gly	Asn	Ala	Gly	Thr 95	Ala
Met	Arg	Pro	Leu 100	Ala	Ala	Ala	Leu	Cys 105	Leu	Gly	Ser	Asn	Asp 110	Ile	Val
Leu	Thr	Gl y 115	Glu	Pro	Arg	Met	L y s 120	Glu	Arg	Pro	Ile	Gl y 125	His	Leu	Val
Asp	Ala 130	Leu	Arg	Leu	Gly	Gly 135	Ala	Lys	Ile	Thr	Ty r 140	Leu	Glu	Gln	Glu
Asn 145	Tyr	Pro	Pro	Leu	Arg 150	Leu	Gln	Gly	Gly	Phe 155	Thr	Gly	Gly	Asn	Val 160
Asp	Val	Asp	Gly	Ser 165	Val	Ser	Ser	Gln	Phe 170	Leu	Thr	Ala	Leu	Leu 175	Met
Thr	Ala	Pro	Leu 180	Ala	Pro	Glu	Asp	Thr 185	Val	Ile	Arg	Ile	L y s 190	Gly	Asp
Leu	Val	Ser 195	Lys	Pro	Tyr	Ile	Asp 200	Ile	Thr	Leu	Asn	Leu 205	Met	Lys	Thr
Phe	Gly 210	Val	Glu	Ile	Glu	Asn 215	Gln	His	Tyr	Gln	Gln 220	Phe	Val	Val	Lys
Gl y 225	Gly	Gln	Ser	Tyr	Gln 230	Ser	Pro	Gly	Thr	Ty r 235	Leu	Val	Glu	Gly	Asp 240
Ala	Ser	Ser	Ala	Ser 245	Tyr	Phe	Leu	Ala	Ala 250	Ala	Ala	Ile	Lys	Gly 255	Gly
Thr	Val	Lys	Val 260	Thr	Gly	Ile	Gly	Arg 265	Asn	Ser	Met	Gln	Gl y 270	Asp	Ile
Arg	Phe	Ala 275	Asp	Val	Leu	Glu	L y s 280	Met	Gly	Ala	Thr	Ile 285	Cys	Trp	Gly
Asp	Asp 290	Tyr	Ile	Ser	Сув	Thr 295	Arg	Gly	Glu	Leu	Asn 300	Ala	Ile	Asp	Met
Asp 305	Met	Asn	His	Ile	Pro 310	Asp	Ala	Ala	Met	Thr 315	Ile	Ala	Thr	Ala	Ala 320
Leu	Phe	Ala	Lys	Gly 325	Thr	Thr	Arg	Leu	Arg 330	Asn	Ile	Tyr	Asn	Trp 335	Arg
Val	Lys	Glu	Thr 340	Asp	Arg	Leu	Phe	Ala 345	Met	Ala	Thr	Glu	Leu 350	Arg	Lys
Val	Gly	Ala 355	Glu	Val	Glu	Glu	Gly 360	His	Asp	Tyr	Ile	Arg 365	Ile	Thr	Pro
Pro	Glu 370	Lys	Leu	Asn	Phe	Ala 375	Glu	Ile	Ala	Thr	Ty r 380	Asn	Asp	His	Arg
Met 385	Ala	Met	Cys	Phe	Ser 390	Leu	Val	Ala	Leu	Ser 395	Asp	Thr	Pro	Val	Thr 400
Ile	Leu	Asp	Pro	Lys 405	Сув	Thr	Ala	Lys	Thr 410	Phe	Pro	Asp	Tyr	Phe 415	Glu
Gln	Leu	Ala	Arg 420	Ile	Ser	Gln									
<210)> SF	:0 тг	NO NO	9											

<210> SEQ ID NO 9 <211> LENGTH: 1377 <212> TYPE: DNA <213> ORGANISM: Artificial sequence

75 76

-continued	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 9	
ccatggctca cggtgcaagc agccgtccag caactgctcg taagtcctct ggtctttctg	60
gaaccgtccg tattccaggt gacaagtcta tctcccacag gtccttcatg tttggaggtc	120
tegetagegg tgaaactegt ateaceggte ttttggaagg tgaagatgtt ateaacactg	180
gtaaggctat gcaagctatg ggtgccagaa tccgtaagga aggtgatact tggatcattg	240
atggtgttgg taacggtgga ctccttgctc ctgaggctcc tctcgatttc ggtaacgctg	300
caactggttg ccgtttgact atgggtcttg ttggtgttta cgatttcgat agcactttca	360
ttggtgacgc ttctctcact aagcgtccaa tgggtcgtgt gttgaaccca cttcgcgaaa	420
tgggtgtgca ggtgaagtct gaagacggtg atcgtcttcc agttaccttg cgtggaccaa	480
agactccaac gccaatcacc tacagggtac ctatggcttc cgctcaagtg aagtccgctg	540
ttctgcttgc tggtctcaac accccaggta tcaccactgt tatcgagcca atcatgactc	600
gtgaccacac tgaaaagatg cttcaaggtt ttggtgctaa ccttaccgtt gagactgatg	660
ctgacggtgt gcgtaccatc cgtcttgaag gtcgtggtaa gctcaccggt caagtgattg	720
atgttccagg tgatccatcc tctactgctt tcccattggt tgctgccttg cttgttccag	780
gttccgacgt caccatcctt aacgttttga tgaacccaac ccgtactggt ctcatcttga	840
ctctgcagga aatgggtgcc gacatcgaag tgatcaaccc acgtcttgct ggtggagaag	900
acgtggctga cttgcgtgtt cgttcttcta ctttgaaggg tgttactgtt ccagaagacc	960
gtgctccttc tatgatcgac gagtatccaa ttctcgctgt tgcagctgca ttcgctgaag	1020
gtgctaccgt tatgaacggt ttggaagaac tccgtgttaa ggaaagcgac cgtctttctg	1080
ctgtcgcaaa cggtctcaag ctcaacggtg ttgattgcga tgaaggtgag acttctctcg	1140
tcgtgcgtgg tcgtcctgac ggtaagggtc tcggtaacgc ttctggagca gctgtcgcta	1200
cccacctcga tcaccgtatc gctatgagct tcctcgttat gggtctcgtt tctgaaaacc	1260
ctgttactgt tgatgatgct actatgatcg ctactagctt cccagagttc atggatttga	1320
tggctggtct tggagctaag atcgaactct ccgacactaa ggctgcttga tgagctc	1377
<210> SEQ ID NO 10 <211> LENGTH: 318 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (87)(317)	
<400> SEQUENCE: 10	
agatctatcg ataagcttga tgtaattgga ggaagatcaa aattttcaat ccccattctt	60
cgattgcttc aattgaagtt tctccg atg gcg caa gtt agc aga atc tgc aat Met Ala Gln Val Ser Arg Ile Cys Asn 1 $$ 5	113
ggt gtg cag aac cca tct ctt atc tcc aat ctc tcg aaa tcc agt caa Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln 10 15 20 25	161
cgc aaa tct ccc tta tcg gtt tct ctg aag acg cag cag cat cca cga Arg Lys Ser Pro Leu Ser Val Ser Leu Lys Thr Gln Gln His Pro Arg 30 35 40	209
gct tat ccg att tcg tcg tcg tgg gga ttg aag aag agt ggg atg acg Ala Tyr Pro Ile Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr 45 50 55	257

77 78

tta att ggc tc Leu Ile Gly Se											
60 for the GIV Se											305
acg gcg tgc at Thr Ala Cys Me 75											318
<210> SEQ ID N <211> LENGTH: <212> TYPE: PR <213> ORGANISM	77 T	dopsis.	thali	iana							
<400> SEQUENCE	: 11										
Met Ala Gln Va 1	l Ser A 5	arg Ile	Cys A	Asn Gl	_	Gln	Asn	Pro	Ser 15	Leu	
Ile Ser Asn Le		ys Ser		Gln Ar 25	g L y s	Ser	Pro	Leu 30	Ser	Val	
Ser Leu Lys Th 35	ır Gln G	3ln His	Pro A	Arg Al	a Tyr	Pro	Ile 45	Ser	Ser	Ser	
Trp Gly Leu Ly 50	rs Lys S	Ser Gly 55	Met 1	Thr L∈	eu Ile	Gly 60	Ser	Glu	Leu	Arg	
Pro Leu L y s Va 65		Ser Ser '0	Val S	Ser Th	ır Ala 75	Cys	Met				
<220> FEATURE: <221> NAME/KEY <222> LOCATION	: CDS	.(401)									
<400> SEQUENCE agatctatcg ata	agcttga	ı tgtaai	g atg	gcg c		t ago	c aga	a ato	: tg	aat:	60 113
agatctatcg ata	agcttga tgaagtt c cca t	tgtaat tctccc	g atg Met 1 atc t	gcg c Ala G	aa gt In Va	t ago 1 Sei 5	c aga r Arg	a ato	tgo Cyn agt	caat	
agatctatcg ata cgattgcttc aat ggt gtg cag aa Gly Val Gln As 10 cgc aaa tct cc	agcttga tgaagtt c cca t n Pro s 1	tgtaat tctccc cct ctt Ser Leu 5	g atg Met 1 atc t Ile S tct c	gcg c Ala G tcc aa Ser As	aa gtool aa gaaa gaaa gaaa gaaa gaaa gaaa gaa	t ago 1 Sei 5 tcg Ser	aaa Lys	tcc Ser	c tgo e Cyr agt Ser	caa Gln 25	113
agatctatcg ata cgattgcttc aat ggt gtg cag aa Gly Val Gln As	agcttga tgaagtt ac cca t n Pro S 1 cc tta t o Leu S 30 tt tcg t e Ser S	a tgtaan tctccc cct ctt eer Leu 5 ccg gtt eer Val	g atg Met 1 atc t Ile S tct c Ser I	gcg c Ala G tcc as Ser As ctg as Leu Ly 35	aa gt ln Va t ctc n Leu 20 ag acg	t ago 1 Ser 5 tcg Ser cag Gln	aaa Lys cag Gln	tcc Ser cat	agt Ser cca Pro 40	caats Asn	113 161
agatctatcg ata cgattgcttc aat ggt gtg cag aa Gly Val Gln As 10 cgc aaa tct cc Arg Lys Ser Pr gct tat ccg at Ala Tyr Pro Il	agcttga tgaagtt ccca t n Pro 1 cctta t co Leu S 30 tt tcg t e Ser S	a tgtaad ct ctt cer Leu 5 ccg gtt ccr Val	g atg Met 1 atc t Ile s tct c Ser I tgg c Trp c	gcg c Ala G Ala G tcc as Ser As ctg as Leu Ly 35 gga tt Gly Le 50	eaa gt In Va It ctc In Leu 20 It acg	t ago 1 Sen 5 tcg Ser cag Gln aag Lys	aaa Lys cag Gln agt Ser	tcc Ser cat His ggg Gly 55	agt Ser cca Pro 40 atg Met	caat s Asn caa Gln 25 cga Arg acg Thr	113 161 209
agatctatcg ata cgattgcttc aat ggt gtg cag aa Gly Val Gln As 10 cgc aaa tct cc Arg Lys Ser Pr gct tat ccg at Ala Tyr Pro I1 45 tta att ggc tc Leu Ile Gly Se	agcttga tgaagtt ac cca t in Pro S 1 cc tta t co Leu S 30 at tcg t e Ser S ct gag ccr Glu L	a tgtaad tctccc cct ctt er Leu 5 ccg gtt er Val ccg tcg er Ser ett cgt eu Arg	g atg Met 1 atc t Ile s tct c Ser I tgg c Trp c cct c Pro I 65	gcg c Ala c tcc aa Ser As ctg aa Leu Ly 35 gga tt 31y Le 50 ctt aa Leu Ly gta ct	aa gt: In Va It ctc In Leu 20 Ig acg Ig acg Ig aage It Lys Ig gtc Is Val	t agg 1 Ser 5 tcg Ser cag Gln aag Lys atg	aaaa Lys cag Gln agt Ser tct Ser 70	tcc Ser cat His ggg Gly 55 tct Ser aga	agt Ser cca Pro 40 atg Met Val	caat s Asn caa Gln 25 cga Arg acg Thr tcc Ser atc	113 161 209 257

<213> ORGANISM: Arabidopsis thaliana

79 80

-continued <400> SEQUENCE: 13 Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val 25 Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Glu Lys Ala Ser Glu Ile Val Leu Gln Pro Ile Arg Glu Ile Ser Gly Leu Ile Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile <210> SEQ ID NO 14 <211> LENGTH: 233 <212> TYPE: DNA <213> ORGANISM: Petunia x hybrida <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (14)..(232) <400> SEQUENCE: 14 agatctttca aga atg gca caa att aac aac atg gct caa ggg ata caa Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln 1 5 5 10 10 ... 49 acc ctt aat ccc aat tcc aat ttc cat aaa ccc caa gtt cct aaa tct Thr Leu Asn Pro Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser 97 20 tca agt ttt ctt gtt ttt gga tct aaa aaa ctg aaa aat tca gca aat Ser Ser Phe Leu Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn 30 35 40 145 tct atg ttg gtt ttg aaa aaa gat tca att ttt atg caa aag ttt tgt Ser Met Leu Val Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys 193 50 tcc ttt agg att tca gca tca gtg gct aca gcc tgc atg c Ser Phe Arg Ile Ser Ala Ser Val Ala Thr Ala Cys Met 233 65 <210> SEQ ID NO 15 <211> LENGTH: 73 <212> TYPE: PRT <213> ORGANISM: Petunia x hybrida <400> SEOUENCE: 15 Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile

<210> SEQ ID NO 16

Ser Ala Ser Val Ala Thr Ala Cys Met

81

```
<211> LENGTH: 352
<212> TYPE: DNA
<213> ORGANISM: Petunia x hybrida
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (49)..(351)
<400> SEQUENCE: 16
agatctgcta gaaataattt tgtttaactt taagaaggag atatatcc atg gca caa
                                                     Met Ala Gln
att aac aac atg gct caa ggg ata caa acc ctt aat ccc aat tcc aat
Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro Asn Ser Asn
ttc cat aaa ccc caa gtt cct aaa tct tca agt ttt ctt gtt ttt gga
Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu Val Phe Gly
tct aaa aaa ctg aaa aat tca gca aat tct atg ttg gtt ttg aaa aaa
Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val Leu Lys Lys
gat tca att ttt atg caa aag ttt tgt tcc ttt agg att tca gca tca
Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile Ser Ala Ser
gtg gct aca gca cag aag cct tct gag ata gtg ttg caa ccc att aaa
Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln Pro Ile Lys
gag att tca ggc act gtt aaa ttg cct ggc tct aaa tca tta tct aat
Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn
aga att c
                                                                      352
Arg Ile
<210> SEQ ID NO 17
<211> LENGTH: 101
<212> TYPE: PRT
<213> ORGANISM: Petunia x hybrida
<400> SEQUENCE: 17
Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro
                                   10
Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Ser Phe Leu
                               25
Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val 35 45
Leu Lys Lys Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile
Ser Ala Ser Val Ala Thr Ala Gln Lys Pro Ser Glu Ile Val Leu Gln
                                        75
Pro Ile Lys Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser
Leu Ser Asn Arg Ile
            100
<210> SEO ID NO 18
<211> LENGTH: 28
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium sp.
<220> FEATURE:
<221> NAME/KEY: UNSURE
<222> LOCATION: (1)..(18)
<223> OTHER INFORMATION: Xaa = Unknown
```

83

```
<400> SEQUENCE: 18
Xaa His Gly Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly
Leu Xaa Gly Thr Val Arg Ile Pro Gly Asp Lys Met
<210> SEQ ID NO 19
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium sp.
<400> SEQUENCE: 19
Ala Pro Ser Met Ile Asp Glu Tyr Pro Ile Leu Ala Val
1 5
<210> SEQ ID NO 20
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Agrobacterium sp.
<400> SEQUENCE: 20
Ile Thr Gly Leu Leu Glu Gly Glu Asp Val Ile Asn Thr Gly Lys
<210> SEQ ID NO 21
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 21
atgathgayg artaycc
                                                                          17
<210> SEQ ID NO 22
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: R = A or G;
      Y = C \text{ or } T/U;
     N = A or C or G or T/U;
H = A or C or T/U
<400> SEQUENCE: 22
gargaygtna thaacac
                                                                          17
<210> SEQ ID NO 23
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: R = A or G;
      Y = C \text{ or } T/U;
      N = A \text{ or } C \text{ or } G \text{ or } T/U;
      H = A \text{ or } C \text{ or } T/U
<400> SEQUENCE: 23
```

85

	-concinued
gargaygtna thaatac	17
J J J	
<210> SEQ ID NO 24	
<211> LENGTH: 38	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<pre><220> FEATORE: <223> OTHER INFORMATION: Oligonucleotide</pre>	
allor officer information. Offiguration of the state of t	
<400> SEQUENCE: 24	
cgtggataga tctaggaaga caaccatggc tcacggtc	38
<210> SEQ ID NO 25	
<211> SEQ 15 NO 25 <211> LENGTH: 44	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
AAAA CECHENGE - 25	
<400> SEQUENCE: 25	
ggatagatta aggaagacgc gcatgcttca cggtgcaagc a	agec 44
5555555- 5555-55	
<210> SEQ ID NO 26	
<211> LENGTH: 35	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<pre><220> FEATORE: <223> OTHER INFORMATION: Oligonucleotide</pre>	
12237 OTHER INFORMATION. OTTYONACTOCIAC	
<400> SEQUENCE: 26	
ggctgcctga tgagctccac aatcgccatc gatgg	35
<210> SEQ ID NO 27	
<211> SEQ 1D NO 27 <211> LENGTH: 32	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
400 00000000000000000000000000000000000	
<400> SEQUENCE: 27	
cgtcgctcgt cgtgcgtggc cgccctgacg gc	32
egeogetege egegegege egeocegueg ge	32
<210> SEQ ID NO 28	
<211> LENGTH: 29	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide</pre>	
1220 OTHER INTORMATION. OTTGORDCTEOCTUE	
<400> SEQUENCE: 28	
cgggcaaggc catgcaggct atgggcgcc	29
2210; CEO ID NO 20	
<210> SEQ ID NO 29 <211> LENGTH: 31	
<211> LENGIN: 31 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Oligonucleotide	
<400> SEQUENCE: 29	
caaactaaaa aataactata aacataataa a	31
egggetgeeg eetgaetatg ggeetegteg g	31
<210> SEQ ID NO 30	
<211> LENGTH: 15	
<212> TYPE: PRT	
<213> ORGANISM: Pseudomonas sp.	

87

```
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa = unknown
<400> SEQUENCE: 30
Xaa His Ser Ala Ser Pro Lys Pro Ala Thr Ala Arg Arg Ser Glu
                 5
                                       10
<210> SEQ ID NO 31
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(17)
<223> OTHER INFORMATION: B = C or G or T
      S = G \text{ or } C
      Y = C \text{ or } T
<400> SEQUENCE: 31
gcggtbgcsg gyttsgg
<210> SEQ ID NO 32
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 32
Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu 1 \phantom{\bigg|}5\phantom{\bigg|} 10 \phantom{\bigg|}15\phantom{\bigg|}
<210> SEQ ID NO 33
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 33
Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg Leu Thr 1 \phantom{\Big|}
<210> SEQ ID NO 34
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEOUENCE: 34
cggcaatgcc gccaccggcg cgcgcc
                                                                             26
<210> SEQ ID NO 35
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEOUENCE: 35
ggacggctgc ttgcaccgtg aagcatgctt aagcttggcg taatcatgg
                                                                             49
```

89 90

```
<210> SEQ ID NO 36
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 36
ggaagacgcc cagaattcac ggtgcaagca gccgg
                                                                        35
<210> SEQ ID NO 37
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa = Gly, Ser, Thr, Cys, Tyr, Asn, Gln, Asp,
     or Glu
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa = Ser or Thr
<400> SEQUENCE: 37
Arg Xaa His Xaa Glu
<210> SEQ ID NO 38
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa = Ser or Thr
<400> SEQUENCE: 38
Gly Asp Lys Xaa
<210> SEQ ID NO 39
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON_CONS
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa=Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly,
     His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val
<400> SEQUENCE: 39
Ser Ala Gln Xaa Lys
<210> SEO ID NO 40
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: NON CONS
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa=Ala, Arg, Asn, Asp, Cys, ln, lu, ly, His,
```

91 92

-continued	
Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr or Val	
<400> SEQUENCE: 40	
Asn Xaa Thr Arg 1	
<210> SEQ ID NO 41 <211> LENGTH: 1287 <212> TYPE: DNA <213> ORGANISM: Bacillus subtilis <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (1)(1287)	
<400> SEQUENCE: 41	
atg aaa cga gat aag gtg cag acc tta cat gga gaa ata cat att ccc Met Lys Arg Asp Lys Val Gln Thr Leu His Gly Glu Ile His Ile Pro 1 5 10 15	48
ggt gat aaa too att tot cac ege tot gtt atg ttt gge geg cta geg Gly Asp Lys Ser Ile Ser His Arg Ser Val Met Phe Gly Ala Leu Ala 20 25 30	96
gca ggc aca aca aca gtt aaa aac ttt ctg ccg gga gca gat tgt ctg Ala Gly Thr Thr Thr Val Lys Asn Phe Leu Pro Gly Ala Asp Cys Leu 35 40 45	144
agc acg atc gat tgc ttt aga aaa atg ggt gtt cac att gag caa agc Ser Thr Ile Asp Cys Phe Arg Lys Met Gly Val His Ile Glu Gln Ser 50 55 60	192
agc agc gat gtc gtg att cac gga aaa gga atc gat gcc ctg aaa gag Ser Ser Asp Val Val Ile His Gly Lys Gly Ile Asp Ala Leu Lys Glu 65 70 75 80	240
cca gaa agc ctt tta gat gtc gga aat tca ggt aca acg att cgc ctg Pro Glu Ser Leu Leu Asp Val Gly Asn Ser Gly Thr Thr Ile Arg Leu 85 90 95	288
atg ctc gga ata ttg gcg ggc cgt cct ttt tac agc gcg gta gcc gga Met Leu Gly Ile Leu Ala Gly Arg Pro Phe Tyr Ser Ala Val Ala Gly 100 105 110	336
gat gag agc att gcg aaa cgc cca atg aag cgt gtg act gag cct ttg Asp Glu Ser Ile Ala Lys Arg Pro Met Lys Arg Val Thr Glu Pro Leu 115 120 125	384
aaa aaa atg ggg gct aaa atc gac ggc aga gcc ggc gga gag ttt aca Lys Lys Met Gly Ala Lys Ile Asp Gly Arg Ala Gly Gly Glu Phe Thr 130 135 140	432
ccg ctg tca gtg agc ggc gct tca tta aaa gga att gat tat gta tca Pro Leu Ser Val Ser Gly Ala Ser Leu Lys Gly Ile Asp Tyr Val Ser 145 150 155 160	480
cct gtt gca agc gcg caa att aaa tct gct gtt ttg ctg gcc gga tta Pro Val Ala Ser Ala Gln Ile Lys Ser Ala Val Leu Leu Ala Gly Leu 165 170 175	528
cag gct gag ggc aca aca act gta aca gag ccc cat aaa tct cgg gac Gln Ala Glu Gly Thr Thr Thr Val Thr Glu Pro His Lys Ser Arg Asp 180 185 190	576
cac act gag cgg atg ctt tct gct ttt ggc gtt aag ctt tct gaa gat His Thr Glu Arg Met Leu Ser Ala Phe Gly Val Lys Leu Ser Glu Asp 195 200 205	624
caa acg agt gtt tcc att gct ggt ggc cag aaa ctg aca gct gct gat Gln Thr Ser Val Ser Ile Ala Gly Gly Gln Lys Leu Thr Ala Ala Asp 210 215 220	672
att ttt gtt cct gga gac att tct tca gcc gcg ttt ttc ctt gct gct Ile Phe Val Pro Gly Asp Ile Ser Ser Ala Ala Phe Phe Leu Ala Ala 225 230 235 240	720
ggc gcg atg gtt cca aac agc aga att gta ttg aaa aac gta ggt tta	768

											_	con	tin	ued			
Gly	Ala	Met	Val	Pro 245	Asn	Ser	Arg	Ile	Val 250	Leu	Lys	Asn	Val	Gly 255	Leu		
	ccg Pro			aca				-	gtc				_	ggg	-	816	
	ctt Leu	-					-	_	-		-					864	
	ttg Leu 290															912	
	atc Ile															960	
	act Thr															1008	
	gtg Val															1056	
	ctg Leu															1104	
	aaa Lys 370															1152	
	cga Arg			_	_				-		-		_			1200	
	att Ile															1248	
	ttc Phe					_		_				tga				1287	
<21 <21	0> SI 1> LI 2> TY 3> OI	NGTH	I: 42 PRT	28	illus	s sul	otili	Ls									
<40	0> SI	EQUEN	ICE:	42													
Met 1	Lys	Arg	Asp	Lys 5	Val	Gln	Thr	Leu	His 10	Gly	Glu	Ile	His	Ile 15	Pro		
Gly	Asp	Lys	Ser 20	Ile	Ser	His	Arg	Ser 25	Val	Met	Phe	Gly	Ala 30	Leu	Ala		
Ala	Gly	Thr 35	Thr	Thr	Val	Lys	Asn 40	Phe	Leu	Pro	Gly	Ala 45	Asp	Cys	Leu		
Ser	Thr	Ile	Asp	Cys	Phe	Arg 55	Lys	Met	Gly	Val	His 60	Ile	Glu	Gln	Ser		
Ser 65	Ser	Asp	Val	Val	Ile 70	His	Gly	Lys	Gly	Ile 75	Asp	Ala	Leu	Lys	Glu 80		
Pro	Glu	Ser	Leu	Leu 85	Asp	Val	Gly	Asn	Ser 90	Gly	Thr	Thr	Ile	Arg 95	Leu		
Met	Leu	Gly	Ile 100	Leu	Ala	Gly	Arg	Pro 105	Phe	Tyr	Ser	Ala	Val 110	Ala	Gly		
Asp	Glu	Ser 115	Ile	Ala	Lys	Arg	Pro 120	Met	Lys	Arg	Val	Thr 125	Glu	Pro	Leu		

95 96

Lys Lys Met Gly	la Lys Ile Asp Gly Arg Ala Gly Gly Glu Phe Thr 135 140	
Pro Leu Ser Val	er Gly Ala Ser Leu Lys Gly Ile Asp Tyr Val Ser 150 155 160	
Pro Val Ala Ser	la Gln Ile Lys Ser Ala Val Leu Leu Ala Gly Leu 65 170 175	
Gln Ala Glu Gly	hr Thr Thr Val Thr Glu Pro His Lys Ser Arg Asp 185 190	
His Thr Glu Arg	et Leu Ser Ala Phe Gly Val Lys Leu Ser Glu Asp 200 205	
Gln Thr Ser Val	er Ile Ala Gly Gly Gln Lys Leu Thr Ala Ala Asp 215 220	
	ly Asp Ile Ser Ser Ala Ala Phe Phe Leu Ala Ala 230 235 240	
	ro Asn Ser Arg Ile Val Leu Lys Asn Val Gly Leu 45 250 255	
Asn Pro Thr Arg	hr Gly Ile Ile Asp Val Leu Gln Asn Met Gly Ala 265 270	
	ys Pro Ser Ala Asp Ser Gly Ala Glu Pro Tyr Gly 280 285	
Asp Leu Ile Ile	lu Thr Ser Ser Leu Lys Ala Val Glu Ile Gly Gly	
_	295 300 rg Leu Ile Asp Glu Ile Pro Ile Ile Ala Leu Leu	
305 Ala Thr Gln Ala	310 315 320 lu Gly Thr Thr Val Ile Lys Asp Ala Ala Glu Leu	
	25 330 335	
Lys Val Lys Glu 340	hr Asn Arg Ile Asp Thr Val Val Ser Glu Leu Arg 345 350	
Lys Leu Gly Ala 355	lu Ile Glu Pro Thr Ala Asp Gly Met Lys Val Tyr 360 365	
Gly Lys Gln Thr 370	eu Lys Gly Gly Ala Ala Val Ser Ser His Gly Asp 375 380	
His Arg Ile Gly 385	et Met Leu Gly Ile Ala Ser Cys Ile Thr Glu Glu 390 395 400	
Pro Ile Glu Ile	lu His Thr Asp Ala Ile His Val Ser Tyr Pro Thr 05 410 415	
Phe Phe Glu His	eu Asn Lys Leu Ser Lys Lys Ser 425	
<pre><210> SEQ ID NO <211> LENGTH: 1 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY: <222> LOCATION: <400> SEQUENCE:</pre>	3 taphylococcus aureus DS 1)(1293)	
	aa atc att gat att tca ggt ccg tta aag ggc gaa	48
	ln Ile Ile Asp Ile Ser Gly Pro Leu Lys Gly Glu 10 15	
	gc gat aag tca atg aca cac cgt gca atc atg ttg ly Asp Lys Ser Met Thr His Arg Ala Ile Met Leu 25 30	96
	aa ggt gta tct act ata tat aag cca cta ctt ggc lu Gly Val Ser Thr Ile Tyr Lys Pro Leu Leu Gly 40 45	144
33	40 40	

											_	con	tin	ued		
		tgt C y s														192
		gaa Glu	-	-	-			-								240
		acg Thr														288
	-	tta Leu	_	_		_		_					-	_	-	336
		ggc Gly 115														384
		ttg Leu														432
		cca Pro				_			_							480
		gaa Glu														528
		ttt Phe														576
_		cat His 195			_	_									-	624
		Gl y ggg														672
		gca Ala														720
		gtt Val														768
Asn	Val	gga Gly	Ile 260	Asn	Gln	Thr	Arg	Ser 265	Gly	Ile	Ile	Āsp	Ile 270	Val	Glu	816
		ggc Gly 275														864
		gct Ala														912
		gaa Glu														960
		tta Leu														1008
		gaa Glu														1056
		tta Leu														1104

											_	con	tin [.]	ued			
		355					360					365					
_		att Ile		_		_					-		-			1152	
		cat His														1200	
		g cct i Pro														1248	
		ttt Phe										-		taa		1293	
<21 <21	1> I 2> T	EQ II ENGTI YPE:	PRT	30	phylo	ococo	cus a	aurei	ıs								
		EQUE															
Met 1	Va]	Asn	Glu	Gln 5	Ile	Ile	Asp	Ile	Ser 10	Gly	Pro	Leu	Lys	Gly 15	Glu		
Ile	Glu	ı Val	Pro 20	Gly	Asp	Lys	Ser	Met 25	Thr	His	Arg	Ala	Ile 30	Met	Leu		
Ala	Ser	Leu 35	Ala	Glu	Gly	Val	Ser 40	Thr	Ile	Tyr	Lys	Pro 45	Leu	Leu	Gly		
Glu	Asp 50	Сув	Arg	Arg	Thr	Met 55	Asp	Ile	Phe	Arg	His 60	Leu	Gly	Val	Glu		
Ile 65	Lys	Glu	Asp	Asp	Glu 70	Lys	Leu	Val	Val	Thr 75	Ser	Pro	Gly	Tyr	Gln 80		
Val	Asr	Thr	Pro	His 85	Gln	Val	Leu	Tyr	Thr 90	Gly	Asn	Ser	Gly	Thr 95	Thr		
Thr	Arg	, Leu	Leu 100	Ala	Gly	Leu	Leu	Ser 105	Gly	Leu	Gly	Asn	Glu 110	Ser	Val		
Leu	Ser	Gly 115		Val	Ser	Ile	Gl y 120	Lys	Arg	Pro	Met	Asp 125	Arg	Val	Leu		
Arg	Pro 130	Leu	Lys	Leu	Met	Asp 135	Ala	Asn	Ile	Glu	Gly 140	Ile	Glu	Asp	Asn		
Ty r 145		Pro	Leu	Ile	Ile 150	Lys	Pro	Ser	Val	Ile 155	Lys	Gly	Ile	Asn	Ty r 160		
Gln	Met	: Glu	Val	Ala 165		Ala	Gln	Val	Lys 170	Ser	Ala	Ile	Leu	Phe 175	Ala		
Ser	Leu	ı Phe	Ser 180		Glu	Pro	Thr	Ile 185	Ile	Lys	Glu	Leu	Asp 190	Val	Ser		
Arg	Asr	His 195		Glu	Thr	Met	Phe 200	Lys	His	Phe	Asn	Ile 205	Pro	Ile	Glu		
Ala	Glu 210	Gly	Leu	Ser	Ile	Asn 215	Thr	Thr	Pro	Glu	Ala 220	Ile	Arg	Tyr	Ile		
L y s 225		Ala	Asp	Phe	His 230	Val	Pro	Gly	Asp	Ile 235	Ser	Ser	Ala	Ala	Phe 240		
Phe	Ile	val	Ala	Ala 245	Leu	Ile	Thr	Pro	Gly 250	Ser	Asp	Val	Thr	Ile 255	His		
Asn	Va]	Gly	Ile 260	Asn	Gln	Thr	Arg	Ser 265	Gly	Ile	Ile	Asp	Ile 270	Val	Glu		
Lys	Met	Gl y 275	Gly	Asn	Ile	Gln	Leu 280	Phe	Asn	Gln	Thr	Thr 285	Gly	Ala	Glu		

101

```
Pro Thr Ala Ser Ile Arg Ile Gln Tyr Thr Pro Met Leu Gln Pro Ile
                        295
Thr Ile Glu Gly Glu Leu Val Pro Lys Ala Ile Asp Glu Leu Pro Val
Ile Ala Leu Leu Cys Thr Gln Ala Val Gly Thr Ser Thr Ile Lys Asp
Ala Glu Glu Leu Lys Val Lys Glu Thr Asn Arg Ile Asp Thr Thr Ala
Asp Met Leu Asn Leu Leu Gly Phe Glu Leu Gln Pro Thr Asn Asp Gly
Leu Ile Ile His Pro Ser Glu Phe Lys Thr Asn Ala Thr Asp Ile Leu
Thr Asp His Arg Ile Gly Met Met Leu Ala Val Ala Cys Val Leu Ser
Ser Glu Pro Val Lys Ile Lys Gln Phe Asp Ala Val Asn Val Ser Phe
Pro Gly Phe Leu Pro Lys Leu Lys Leu Gln Asn Glu Gly
<210> SEQ ID NO 45
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 45
                                                                       28
ggaacatatg aaacgagata aggtgcag
<210> SEQ ID NO 46
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 46
                                                                       35
ggaattcaaa cttcaggatc ttgagataga aaatg
<210> SEQ ID NO 47
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEQUENCE: 47
ggggccatgg taaatgaaca aatcattg
                                                                       28
<210> SEQ ID NO 48
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide
<400> SEOUENCE: 48
gggggagctc attatccctc attttgtaaa agc
                                                                       3.3
<210> SEO ID NO 49
<211> LENGTH: 480
```

103

													<u> </u>		
	?> TY ?> OF			Saco	harc	myce	es ce	erevi	siae)					
<400)> SE	QUE	ICE:	49											
Leu 1	Thr	Asp	Glu	Thr 5	Leu	Val	Tyr	Pro	Phe 10	Lys	Asp	Ile	Pro	Ala 15	Asp
Gln	Gln	Lys	Val 20	Val	Ile	Pro	Pro	Gly 25	Ser	Lys	Ser	Ile	Ser 30	Asn	Arg
Ala	Leu	Ile 35	Leu	Ala	Ala	Leu	Gly 40	Glu	Gly	Gln	Cys	Lys 45	Ile	Lys	Asn
Leu	Leu 50	His	Ser	Asp	Asp	Thr 55	Lys	His	Met	Leu	Thr 60	Ala	Val	His	Glu
Leu 65	Lys	Gly	Ala	Thr	Ile 70	Ser	Trp	Glu	Asp	Asn 75	Gly	Glu	Thr	Val	Val 80
Val	Glu	Gly	His	Gly 85	Gly	Ser	Thr	Leu	Ser 90	Ala	Cys	Ala	Asp	Pro 95	Leu
Tyr	Leu	Gly	Asn 100	Ala	Gly	Thr	Ala	Ser 105	Arg	Phe	Leu	Thr	Ser 110	Leu	Ala
Ala	Leu	Val 115	Asn	Ser	Thr	Ser	Ser 120	Gln	Lys	Tyr	Ile	Val 125	Leu	Thr	Gly
Asn	Ala 130	Arg	Met	Gln	Gln	Arg 135	Pro	Ile	Ala	Pro	Leu 140	Val	Asp	Ser	Leu
Arg 145	Ala	Asn	Gly	Thr	L y s 150	Ile	Glu	Tyr	Leu	Asn 155	Asn	Glu	Gly	Ser	Leu 160
Pro	Ile	Lys	Val	Ty r 165	Thr	Asp	Ser	Val	Phe 170	Lys	Gly	Gly	Arg	Ile 175	Glu
Leu	Ala	Ala	Thr 180	Val	Ser	Ser	Gln	Ty r 185	Val	Ser	Ser	Ile	Leu 190	Met	Cys
Ala	Pro	Ty r 195	Ala	Glu	Glu	Pro	Val 200	Thr	Leu	Ala	Leu	Val 205	Gly	Gly	Lys
Pro	Ile 210	Ser	Lys	Leu	Tyr	Val 215	Asp	Met	Thr	Ile	L y s 220	Met	Met	Glu	Lys
Phe 225	Gly	Ile	Asn	Val	Glu 230	Thr	Ser	Thr	Thr	Glu 235	Pro	Tyr	Thr	Tyr	Ty r 240
Ile	Pro	Lys	Gly	His 245	Tyr	Ile	Asn	Pro	Ser 250	Glu	Tyr	Val	Ile	Glu 255	Ser
Asp	Ala	Ser	Ser 260	Ala	Thr	Tyr	Pro	Leu 265	Ala	Phe	Ala	Ala	Met 270	Thr	Gly
Thr	Thr	Val 275	Thr	Val	Pro	Asn	Ile 280	Gly	Phe	Glu	Ser	Leu 285	Gln	Gly	Asp
Ala	Arg 290	Phe	Ala	Arg	Asp	Val 295	Leu	Lys	Pro	Met	Gly 300	Cys	Lys	Ile	Thr
Gln 305	Thr	Ala	Thr	Ser	Thr 310	Thr	Val	Ser	Gly	Pro 315	Pro	Val	Gly	Thr	Leu 320
Lys	Pro	Leu	Lys	His 325	Val	Asp	Met	Glu	Pro 330	Met	Thr	Asp	Ala	Phe 335	Leu
Thr	Ala	Cys	Val 340	Val	Ala	Ala	Ile	Ser 345	His	Asp	Ser	Asp	Pro 350	Asn	Ser
Ala	Asn	Thr 355	Thr	Thr	Ile	Glu	Gly 360	Ile	Ala	Asn	Gln	Arg 365	Val	Lys	Glu
Cys	Asn 370	Arg	Ile	Leu	Ala	Met 375	Ala	Thr	Glu	Leu	Ala 380	Lys	Phe	Gly	Val
L y s 385	Thr	Thr	Glu	Leu	Pro 390	Asp	Gly	Ile	Gln	Val 395	His	Gly	Leu	Asn	Ser 400

105

Ile	Lys	Asp	Leu	Lys 405	Val	Pro	Ser	Asp	Ser 410	Ser	Gly	Pro	Val	Gly 415	Val
Сув	Thr	Tyr	Asp 420	Asp	His	Arg	Val	Ala 425	Met	Ser	Phe	Ser	Leu 430	Leu	Ala
Gly	Met	Val 435	Asn	Ser	Gln	Asn	Glu 440	Arg	Asp	Glu	Val	Ala 445	Asn	Pro	Val
Arg	Ile 450	Leu	Glu	Arg	His	C y s 455	Thr	Gly	Lys	Thr	Trp 460	Pro	Gly	Trp	Trp
Asp 465	Val	Leu	His	Ser	Glu 470	Leu	Gly	Ala	Lys	Leu 475	Asp	Gly	Ala	Glu	Pro 480
<211 <212)> SE l> LE 2> TY 3> OF	NGTH	I: 46 PRT	0	arai l	lue	rido	ılane							
)> SE			_	, r 9 - 1	Lub	TIGO	ituut	,						
	Ala				Glu	Val	His	Pro	Gly 10	Val	Ala	His	Ser	Ser 15	Asn
Val	Ile	Cys	Ala 20	Pro	Pro	Gly	Ser	Lys 25	Ser	Ile	Ser	Asn	Arg 30	Ala	Leu
Val	Leu	Ala 35	Ala	Leu	Gly	Ser	Gly 40	Thr	Cys	Arg	Ile	Lys 45	Asn	Leu	Leu
His	Ser 50	Asp	Asp	Thr	Glu	Val 55	Met	Leu	Asn	Ala	Leu 60	Glu	Arg	Leu	Gly
Ala 65	Ala	Thr	Phe	Ser	Trp 70	Glu	Glu	Glu	Gly	Glu 75	Val	Leu	Val	Val	Asn 80
Gly	Lys	Gly	Gly	Asn 85	Leu	Gln	Ala	Ser	Ser 90	Ser	Pro	Leu	Tyr	Leu 95	Gly
Asn	Ala	Gly	Thr 100	Ala	Ser	Arg	Phe	Leu 105	Thr	Thr	Val	Ala	Thr 110	Leu	Ala
Asn	Ser	Ser 115	Thr	Val	Asp	Ser	Ser 120	Val	Leu	Thr	Gly	Asn 125	Asn	Arg	Met
Lys	Gln 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Asp	Ala	Leu 140	Thr	Ala	Asn	Val
Leu 145	Pro	Leu	Asn	Thr	Ser 150	Lys	Gly	Arg	Ala	Ser 155	Leu	Pro	Leu	Lys	Ile 160
Ala	Ala	Ser	Gly	Gly 165	Phe	Ala	Gly	Gly	Asn 170	Ile	Asn	Leu	Ala	Ala 175	Lys
Val	Ser	Ser	Gln 180	Tyr	Val	Ser	Ser	Leu 185	Leu	Met	Cys	Ala	Pro 190	Tyr	Ala
Lys	Glu	Pro 195	Val	Thr	Leu	Arg	Leu 200	Val	Gly	Gly	Lys	Pro 205	Ile	Ser	Gln
Pro	Ty r 210	Ile	Asp	Met	Thr	Thr 215	Ala	Met	Met	Arg	Ser 220	Phe	Gly	Ile	Asp
Val 225	Gln	Lys	Ser	Thr	Thr 230	Glu	Glu	His	Thr	Ty r 235	His	Ile	Pro	Gln	Gly 240
Arg	Tyr	Val	Asn	Pro 245	Ala	Glu	Tyr	Val	Ile 250	Glu	Ser	Asp	Ala	Ser 255	Cys
Ala	Thr	Tyr	Pro 260	Leu	Ala	Val	Ala	Ala 265	Val	Thr	Gly	Thr	Thr 270	Сув	Thr
Val	Pro	Asn 275	Ile	Gly	Ser	Ala	Ser 280	Leu	Gln	Gly	Asp	Ala 285	Arg	Phe	Ala
Val	Glu	Val	Leu	Arg	Pro	Met	Gly	Cys	Thr	Val	Glu	Gln	Thr	Glu	Thr

107

											_	con	tin [.]	ued	
	290					295					300				
Ser 305	Thr	Thr	Val	Thr	Gly 310	Pro	Ser	Asp	Gly	Ile 315	Leu	Arg	Ala	Thr	Ser 320
Lys	Arg	Gly	Tyr	Gly 325	Thr	Asn	Asp	Arg	Cys 330	Val	Pro	Arg	Cys	Phe 335	Arg
Thr	Gly	Ser	His 340	Arg	Pro	Met	Glu	Lys 345	Ser	Gln	Thr	Thr	Pro 350	Pro	Val
Ser	Ser	Gl y 355	Ile	Ala	Asn	Gln	Arg 360	Val	Lys	Glu	Cys	Asn 365	Arg	Ile	Lys
Ala	Met 370	Lys	Asp	Glu	Leu	Ala 375	Lys	Phe	Gly	Val	Ile 380	Cys	Arg	Glu	His
Asp 385	Asp	Gly	Leu	Glu	Ile 390	Asp	Gly	Ile	Asp	Arg 395	Ser	Asn	Leu	Arg	Gln 400
Pro	Val	Gly	Gly	Val 405	Phe	Cys	Tyr	Asp	Asp 410	His	Arg	Val	Ala	Phe 415	Ser
Phe	Ser	Val	Leu 420	Ser	Leu	Val	Thr	Pro 425	Gln	Pro	Thr	Leu	Ile 430	Leu	Glu
Lys	Glu	Cys 435	Val	Gly	Lys	Thr	Trp	Pro	Gly	Trp	Trp	Asp 445	Thr	Leu	Arg
Gln	Leu 450	Phe	Lys	Val	Lys	Leu 455	Glu	Gly	Lys	Glu	Leu 460				
<211 <212 <213)> SE 1> LE 2> TY 3> OF	NGTH PE:	PRT	14 Bras	ssica	a nag	pus								
	Ala				Val	Leu	Gln	Pro	Ile 10	Arg	Glu	Ile	Ser	Gly 15	Leu
	Lys	Leu	Pro 20		Ser	Lys	Ser	Leu 25		Asn	Arg	Ile	Leu 30		Leu
Ala	Ala	Leu 35		Glu	Gly	Thr	Thr		Val	Asp	Asn	Leu 45		Asn	Ser
Asp	Asp 50		Asn	Tyr	Met	Leu 55		Ala	Leu	Lys	Lys		Gly	Leu	Asn
	Glu	Arg	Asp	Ser			Asn	Arg	Ala			Glu	Gly	Cys	Gly 80
65 Gly	Ile	Phe	Pro		70 Ser	Leu	Asp	Ser	Lys 90	75 Ser	Asp	Ile	Glu		
Leu	Gly	Asn		85 Gly	Thr	Ala	Met			Leu	Thr	Ala		95 Val	Thr
Ala	Ala		100 Gly	Asn	Ala	Ser		105 Val	Leu	Asp	Gly		110 Pro	Arg	Met
Arg	Glu	115 Arg	Pro	Ile	Gly		120 Leu	Val	Val	Gly		125 Lys	Gln	Leu	Gly
	130 Asp	Val	Glu	Cys		135 Leu	Gly	Thr	Asn	_	140 Pro	Pro	Val	Arg	
145 Asn	Ala	Asn	Gly	Gly	150 Leu	Pro	Gly	Gly	Lys	155 Val	Lys	Leu	Ser	Gly	160 Ser
Ile	Ser	Ser	Gln	165 Tyr	Leu	Thr	Ala	Leu	170 Leu	Met	Ala	Ala	Pro	175 Leu	Ala
			180	-				185					190		

Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Val Pro 195 200205

109

Tyr	Val 210	Glu	Met	Thr	Leu	L y s 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Ser	Ala
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Asn	Ala	Tyr	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Glu	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Cys 295	Lys	Val	Ser	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	Thr	Gly	Pro	Ser 310	Arg	Asp	Ala	Phe	Gly 315	Met	Arg	His	Leu	Arg 320
	Val	Asp	Val	Asn 325		Asn	Lys	Met	Pro		Val	Ala	Met	Thr	
Ala	Val	Val	Ala 340		Phe	Ala	Asp	Gly 345		Thr	Thr	Ile	Arg 350		Val
Ala	Ser	Trp 355		Val	Lys	Glu	Thr		Arg	Met	Ile	Ala 365		Cys	Thr
Glu	Leu		Lys	Leu	Gly			Val	Glu	Glu	_		Asp	Tyr	Cys
	370 Ile	Thr	Pro	Pro		375 Lys	Val	Lys	Pro		380 Glu	Ile	Asp	Thr	_
385 Asp	Asp	His	Arg		390 Ala	Met	Ala	Phe		395 Leu	Ala	Ala	Cys		400 Asp
				405					410					415	
Val	Pro	Val	Thr 420	Ile	Lys	Asp	Pro	Gly 425	Сув	Thr	Arg	Lys	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Gln	Val	Leu	Glu	Ser 440	Ile	Thr	Lys	His				
<211	0> SE	O TT) NIO	52											
<21	1> LE 2> TY	ENGTH	I: 4												
	3> OF			Aral	oido	osis	thal	Liana	1						
<40	0> SE	EQUEN	ICE:	52											
Lys 1	Ala	Ser	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	Arg	Glu	Ile	Ser	Gly 15	Leu
Ile	Lys	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Thr	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Asn	Ser
Asp	Asp 50	Ile	Asn	Tyr	Met	Leu 55	Asp	Ala	Leu	Lys	Arg 60	Leu	Gly	Leu	Asn
Val 65	Glu	Thr	Asp	Ser	Glu 70	Asn	Asn	Arg	Ala	Val 75	Val	Glu	Gly	Суѕ	Gly 80
Gly	Ile	Phe	Pro	Ala 85	Ser	Ile	Asp	Ser	Lys 90	Ser	Asp	Ile	Glu	Leu 95	Tyr
Leu	Gly	Asn	Ala		Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala	Val	Thr
Ala	Ala	Gly 115		Asn	Ala	Ser	Ty r 120	Val	Leu	Asp	Gly	Val 125		Arg	Met
Arg	Glu 130			Ile	Gly	Asp 135		Val	Val	Gly	Leu 140		Gln	Leu	Gly
	130					133					140				

111 112

Ala 145	Asp	Val	Glu	Cys	Thr 150	Leu	Gly	Thr	Asn	C y s 155	Pro	Pro	Val	Arg	Val 160
Asn	Ala	Asn	Gly	Gly 165	Leu	Pro	Gly	Gly	L y s 170	Val	Lys	Leu	Ser	Gl y 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ser	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Val	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	L y s 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Ser	Val
Glu 225	His	Ser	Asp	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Lys	Gly	Gly	Gln	Lys 240
Tyr	Lys	Ser	Pro	Gly 245	Asn	Ala	Tyr	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Cys	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Ile 265	Thr	Gly	Glu	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	Lys 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	C y s 295	Lys	Val	Ser	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	Thr	Gly	Pro	Pro 310	Arg	Asp	Ala	Phe	Gly 315	Met	Arg	His	Leu	Arg 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Thr	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Сув	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Glu	Glu	Gl y 380	Ser	Asp	Tyr	Cys
Val 385	Ile	Thr	Pro	Pro	L y s 390	Lys	Val	Lys	Thr	Ala 395	Glu	Ile	Asp	Thr	Tyr 400
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	Сув	Ala 415	Asp
Val	Pro	Ile	Thr 420	Ile	Asn	Asp	Ser	Gly 425	Cys	Thr	Arg	Lys	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Gln	Val	Leu	Glu	Arg 440	Ile	Thr	Lys	His				
	0> SE 1> LE														
<21	2> T Y 3> OF	PE:	${\tt PRT}$		otiar	na ta	bacu	ım							
	0> SE				, o _ u .	.a 00									
Lys 1	Pro	Asn	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	Lys	Asp	Ile	Ser	Gly 15	Thr
Val	Lys	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Lys	Gly	Arg	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Ser	Ser
Asp	Asp 50	Ile	His	Tyr	Met	Leu 55	Gly	Ala	Leu	Lys	Thr	Leu	Gly	Leu	His
Val	Glu	Asp	Asp	Asn	Glu	Asn	Gln	Arg	Ala	Ile	Val	Glu	Gly	Cys	Gly

113

												CO11	CIII	ueu	
65					70					75					80
Gly	Gln	Phe	Pro	Val 85	Gly	Lys	Lys	Ser	Glu 90	Glu	Glu	Ile	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Val	Ala	Gl y 115	Gly	His	Ser	Arg	Ty r 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	Сув	Phe 150	Leu	Gly	Thr	Asn	Cys 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gly 165	Leu	Pro	Gly	Gly	Lys 170	Val	Lys	Leu	Ser	Gl y 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195		Glu	Ile	Glu	Ile 200		Asp	Lys	Leu	Ile 205		Val	Pro
Tyr	Val 210		Met	Thr	Leu	Lys 215		Met	Glu	Arg	Phe		Val	Ser	Val
		Thr	Ser	Ser	Trp		Lys	Phe	Leu			Gly	Gly	Gln	-
225 Ty r	Lys	Ser	Pro	_	230 Lys	Ala	Tyr	Val		235 Gly	Asp	Ala	Ser		240 Ala
Ser	Tyr	Phe		245 Ala	Gly	Ala	Ala		250 Thr	Gly	Gly	Thr		255 Thr	Val
Glu	Gly		260 Gly	Thr	Ser	Ser		265 Gln	Gly	Asp	Val	Lys	270 Phe	Ala	Glu
Val	Leu	275 Glu	Lys	Met	Gly	Ala	280 Glu	Val	Thr	Trp	Thr	285 Glu	Asn	Ser	Val
	290		_		Pro	295					300				
305		_			310					315		_			320
		_		325	Met				330					335	
			340		Phe			345					350		
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Cys	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Val	Glu	Gl y 380	Ser	Asp	Tyr	Cys
Ile 385	Ile	Thr	Pro	Pro	Glu 390	Lys	Leu	Asn	Val	Thr 395	Glu	Ile	Asp	Thr	Ty r 400
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	Сув	Ala 415	Asp
Val	Pro	Val	Thr 420	Ile	Lys	Asp	Pro	Gly 425	Cys	Thr	Arg	Lys	Thr 430	Phe	Pro
Asn	Tyr	Phe 435	Asp	Val	Leu	Gln	Gln 440	Tyr	Ser	Lys	His				
<211 <212 <213 <220 <221	> LE > TY > OF > FE > NA	ATUF ME/K	PRT SM: E: EY:	Lyco UNSU	opers JRE		n eso	culer	ntum						

115

													<u></u>	aoa	
<223	3> O]	HER	INF	ORMAT	CION:	Xaa	a = ε	ny							
<400)> SI	EQUE	ICE:	54											
Lys 1	Pro	His	Glu	Ile 5	Val	Leu	Xaa	Pro	Ile 10	Lys	Asp	Ile	Ser	Gly 15	Thr
Val	Lys	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Arg	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Ser	Ser
Asp	Asp 50	Ile	His	Tyr	Met	Leu 55	Gly	Ala	Leu	Lys	Thr 60	Leu	Gly	Leu	His
Val 65	Glu	Asp	Asp	Asn	Glu 70	Asn	Gln	Arg	Ala	Ile 75	Val	Glu	Gly	Cys	Gly 80
Gly	Gln	Phe	Pro	Val 85	Gly	Lys	Lys	Ser	Glu 90	Glu	Glu	Ile	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Val	Ala	Gl y 115	Gly	His	Ser	Arg	Ty r 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Gly	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	Cys	Ser 150	Leu	Gly	Thr	Asn	С у в 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gly 165	Leu	Pro	Gly	Gly	L y s 170	Val	Lys	Leu	Ser	Gly 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	L y s 215	Leu	Met	Glu	Arg	Phe 220	Gly	Val	Phe	Val
Glu 225	His	Ser	Ser	Gly	Trp 230	Asp	Arg	Phe	Leu	Val 235	Lys	Gly	Gly	Gln	L y s 240
Tyr	Lys	Ser	Pro	Gly 245	Lys	Ala	Phe	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Val 265	Thr	Gly	Gly	Thr	Val 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Ser	Ser	Leu 280	Gln	Gly	Asp	Val	L y s 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	Glu	Val	Thr	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	Lys	Gly	Pro	Pro 310	Arg	Asn	Ser	Ser	Gly 315	Met	Lys	His	Leu	Arg 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
Ala	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Thr	Ile	Arg 350	Asp	Val
Ala	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Ile	Ala 365	Ile	Cys	Thr
Glu	Leu 370	Arg	Lys	Leu	Gly	Ala 375	Thr	Val	Val	Glu	Gly 380	Ser	Asp	Tyr	Cys
Ile 385	Ile	Thr	Pro	Pro	Glu 390	Lys	Leu	Asn	Val	Thr 395	Glu	Ile	Asp	Thr	Tyr 400

117

												COII	CIII	ueu	
Asp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	Суѕ	Ala 415	Asp
Val	Pro	Val	Thr 420	Ile	Lys	Asn	Pro	Gly 425	Cys	Thr	Arg	Lys	Thr 430	Phe	Pro
Asp	Tyr	Phe 435	Glu	Val	Leu	Gln	Lys 440	Tyr	Ser	Lys	His				
<211 <212)> SE > LE > TY S> OF	NGTH PE:	1: 44 PRT	14	ınia	x hy	brid	la							
<400)> SE	QUEN	ICE:	55											
Lys 1	Pro	Ser	Glu	Ile 5	Val	Leu	Gln	Pro	Ile 10	Lys	Glu	Ile	Ser	Gly 15	Thr
Val	Lys	Leu	Pro 20	Gly	Ser	Lys	Ser	Leu 25	Ser	Asn	Arg	Ile	Leu 30	Leu	Leu
Ala	Ala	Leu 35	Ser	Glu	Gly	Thr	Thr 40	Val	Val	Asp	Asn	Leu 45	Leu	Ser	Ser
Asp	Asp 50	Ile	His	Tyr	Met	Leu 55	Gly	Ala	Leu	Lys	Thr 60	Leu	Gly	Leu	His
Val 65	Glu	Glu	Asp	Ser	Ala 70	Asn	Gln	Arg	Ala	Val 75	Val	Glu	Gly	Cys	Gly 80
Gly	Leu	Phe	Pro	Val 85	Gly	Lys	Glu	Ser	L y s 90	Glu	Glu	Ile	Gln	Leu 95	Phe
Leu	Gly	Asn	Ala 100	Gly	Thr	Ala	Met	Arg 105	Pro	Leu	Thr	Ala	Ala 110	Val	Thr
Val	Ala	Gly 115	Gly	Asn	Ser	Arg	Ty r 120	Val	Leu	Asp	Gly	Val 125	Pro	Arg	Met
Arg	Glu 130	Arg	Pro	Ile	Ser	Asp 135	Leu	Val	Asp	Gly	Leu 140	Lys	Gln	Leu	Gly
Ala 145	Glu	Val	Asp	Cys	Phe 150	Leu	Gly	Thr	Lys	С у в 155	Pro	Pro	Val	Arg	Ile 160
Val	Ser	Lys	Gly	Gl y 165	Leu	Pro	Gly	Gly	L y s 170	Val	Lys	Leu	Ser	Gl y 175	Ser
Ile	Ser	Ser	Gln 180	Tyr	Leu	Thr	Ala	Leu 185	Leu	Met	Ala	Ala	Pro 190	Leu	Ala
Leu	Gly	Asp 195	Val	Glu	Ile	Glu	Ile 200	Ile	Asp	Lys	Leu	Ile 205	Ser	Val	Pro
Tyr	Val 210	Glu	Met	Thr	Leu	L y s 215	Leu	Met	Glu	Arg	Phe 220	Gly	Ile	Ser	Val
Glu 225	His	Ser	Ser	Ser	Trp 230	Asp	Arg	Phe	Phe	Val 235	Arg	Gly	Gly	Gln	L y s 240
Tyr	Lys	Ser	Pro	Gly 245	Lys	Ala	Phe	Val	Glu 250	Gly	Asp	Ala	Ser	Ser 255	Ala
Ser	Tyr	Phe	Leu 260	Ala	Gly	Ala	Ala	Val 265	Thr	Gly	Gly	Thr	Ile 270	Thr	Val
Glu	Gly	Cys 275	Gly	Thr	Asn	Ser	Leu 280	Gln	Gly	Asp	Val	L y s 285	Phe	Ala	Glu
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	Glu	Val	Thr	Trp	Thr 300	Glu	Asn	Ser	Val
Thr 305	Val	Lys	Gly	Pro	Pro 310	Arg	Ser	Ser	Ser	Gly 315	Arg	Lys	His	Leu	Arg 320
Ala	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu

119

-continued

Ala Val Val Ala Leu Tyr Ala Asp Gly Pro Thr Ala Ile Arg Asp Val 345 Ala Ser Trp Arg Val Lys Glu Thr Glu Arg Met Ile Ala Ile Cys Thr Glu Leu Arg Lys Leu Gly Ala Thr Val Glu Glu Gly Pro Asp Tyr Cys Ile Ile Thr Pro Pro Glu Lys Leu Asn Val Thr Asp Ile Asp Thr Tyr Asp Asp His Arg Met Ala Met Ala Phe Ser Leu Ala Ala Cys Ala Asp Val Pro Val Thr Ile Asn Asp Pro Gly Cys Thr Arg Lys Thr Phe Pro Asn Tyr Phe Asp Val Leu Gln Gln Tyr Ser Lys His 435<210> SEQ ID NO 56 <211> LENGTH: 444 <212> TYPE: PRT <213> ORGANISM: Zea mays <400> SEQUENCE: 56 Ala Gly Ala Glu Glu Ile Val Leu Gln Pro Ile Lys Glu Ile Ser Gly Thr Val Lys Leu Pro Gly Ser Lys Ser Leu Ser Asn Arg Ile Leu Leu Ser Val Glu Ala Asp Lys Ala Ala Lys Arg Ala Val Val Gly Cys 65 70 75 80Gly Gly Lys Phe Pro Val Glu Asp Ala Lys Glu Glu Val Gln Leu Phe $85 \hspace{1cm} 90 \hspace{1cm} 95$ Leu Gly Asn Ala Gly Thr Ala Met Arg Pro Leu Thr Ala Ala Val Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$ Arg Glu Arg Pro Ile Gly Asp Leu Val Val Gly Leu Lys Gln Leu Gly Ala Asp Val Asp Cys Phe Leu Gly Thr Asp Cys Pro Pro Val Arg Val 145 150150155155 Asn Gly Ile Gly Gly Leu Pro Gly Gly Lys Val Lys Leu Ser Gly Ser $165 \\ 170 \\ 175$ Ile Ser Ser Gln Tyr Leu Ser Ala Leu Leu Met Ala Ala Pro Leu Pro Leu Gly Asp Val Glu Ile Glu Ile Ile Asp Lys Leu Ile Ser Ile Pro 200 Tyr Val Glu Met Thr Leu Arg Leu Met Glu Arg Phe Gly Val Lys Ala 215 Glu His Ser Asp Ser Trp Asp Arg Phe Tyr Ile Lys Gly Gly Gln Lys 225 230235235235 Tyr Lys Ser Pro Lys Asn Ala Tyr Val Glu Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Gly Ala Ala Ile Thr Gly Gly Thr Val Thr Val

121

_													COII	CIII	ueu	
				260					265					270		
G	lu	Gly	Cys 275	Gly	Thr	Thr	Ser	Leu 280	Gln	Gly	Asp	Val	L y s 285	Phe	Ala	Glu
V	al	Leu 290	Glu	Met	Met	Gly	Ala 295	Lys	Val	Thr	Trp	Thr 300	Glu	Thr	Ser	Val
	hr 05	Val	Thr	Gly	Pro	Pro 310	Arg	Glu	Pro	Phe	Gly 315	Arg	Lys	His	Leu	L y s 320
A	la	Ile	Asp	Val	Asn 325	Met	Asn	Lys	Met	Pro 330	Asp	Val	Ala	Met	Thr 335	Leu
A	la	Val	Val	Ala 340	Leu	Phe	Ala	Asp	Gly 345	Pro	Thr	Ala	Ile	Arg 350	Asp	Val
A	la	Ser	Trp 355	Arg	Val	Lys	Glu	Thr 360	Glu	Arg	Met	Val	Ala 365	Ile	Arg	Thr
G	lu	Leu 370	Thr	Lys	Leu	Gly	Ala 375	Ser	Val	Glu	Glu	Gly 380	Pro	Asp	Tyr	Cys
	le 85	Ile	Thr	Pro	Pro	Glu 390	Lys	Leu	Asn	Val	Thr 395	Ala	Ile	Asp	Thr	Tyr 400
A	sp	Asp	His	Arg	Met 405	Ala	Met	Ala	Phe	Ser 410	Leu	Ala	Ala	Cys	Ala 415	Glu
V	al	Pro	Val	Thr 420		Arg	Asp	Pro	Gly 425	Cys	Thr	Arg	Lys	Thr 430		Pro
A	sp	Tyr	Phe		Val	Leu	Ser	Thr		Val	Lys	Asn		•		
<2 <2	212 213	> TY > OF	NGTH PE: RGANI QUEN	PRT SM:	Salr	mone]	lla q	galli	inarı	ım						
M 1		Glu	Ser	Leu	Thr 5	Leu	Gln	Pro	Ile	Ala 10	Arg	Val	Asp	Gly	Ala 15	Ile
A	sn	Leu	Pro	Gly 20	Ser	Lys	Ser	Val	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
A	la	Leu	Ala 35	Cys	Gly	Lys	Thr	Val 40	Leu	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
A	sp	Val 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Ser	Ala	Leu 60	Gly	Ile	Asn	Tyr
T)		Leu	Ser	Ala	Asp	Arg 70	Thr	Arg	Cys	Asp	Ile 75	Thr	Gly	Asn	Gly	Gly 80
P	ro	Leu	Arg	Ala	Pro 85	Gly	Ala	Leu	Glu	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly
T	hr	Ala	Met	Arg 100	Pro	Leu	Ala	Ala	Ala 105	Leu	Cys	Leu	Gly	Gln 110	Asn	Glu
I	le	Val	Leu 115	Thr	Gly	Glu	Pro	Arg 120	Met	Lys	Glu	Arg	Pro 125	Ile	Gly	His
L	eu	Val 130	Asp	Ser	Leu	Arg	Gln 135	Gly	Gly	Ala	Asn	Ile 140	Asp	Tyr	Leu	Glu
	ln 45	Glu	Asn	Tyr	Pro	Pro 150	Leu	Arg	Leu	Arg	Gl y 155	Gly	Phe	Ile	Gly	Gl y 160
A	sp	Ile	Glu	Val	Asp 165	Gly	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Leu
L	eu	Met	Thr	Ala 180	Pro	Leu	Ala	Pro	Lys 185	Asp	Thr	Ile	Ile	Arg 190	Val	Lys

123

												CO11	_	T111	Indea
ly	Glu	Leu 195	Val	Ser	Lys	Pro	Ty r 200	Ile	Asp	Ile	Thr	Leu 205	Asn	I	eu
Lys	Thr 210	Phe	Gly	Val	Glu	Ile 215	Ala	Asn	His	His	Ty r 220	Gln	Gln	Phe	
Val 225	Lys	Gly	Gly	Gln	Gln 230	Tyr	His	Ser	Pro	Gly 235	Arg	Tyr	Leu	Val	G 2
Gly	Asp	Ala	Ser	Ser 245	Ala	Ser	Tyr	Phe	Leu 250	Ala	Ala	Gly	Ala	Ile 255	Lys
Gly	Gly	Thr	Val 260	Lys	Val	Thr	Gly	Ile 265	Gly	Arg	Lys	Ser	Met 270	Gln	Gly
Asp	Ile	A rg 275	Phe	Ala	Asp	Val	Leu 280	Glu	Lys	Met	Gly	Ala 285	Thr	Ile	Thr
Trp	Gly 290	Asp	Asp	Phe	Ile	Ala 295	Cys	Thr	Arg	Gly	Glu 300	Leu	His	Ala	Ile
Asp 305	Met	Asp	Met	Asn	His 310	Ile	Pro	Asp	Ala	Ala 315	Met	Thr	Ile	Ala	Thr 320
Thr	Ala	Leu	Phe	Ala 325	Lys	Gly	Thr	Thr	Thr 330	Leu	Arg	Asn	Ile	Tyr 335	Asn
Trp	Arg	Val	Lys 340	Glu	Thr	Asp	Arg	Leu 345	Phe	Ala	Met	Ala	Thr 350	Glu	Leu
Arg	Lys	Val 355	Gly	Ala	Glu	Val	Glu 360	Glu	Gly	His	Asp	Ty r 365	Ile	Arg	Ile
Thr	Pro 370	Pro	Ala	Lys	Leu	Gln 375	His	Ala	Asp	Ile	Gl y 380	Thr	Tyr	Asn	Asp
His 385	Arg	Met	Ala	Met	Cys 390	Phe	Ser	Leu	Val	Ala 395	Leu	Ser	Asp	Thr	Pro 400
Val	Thr	Ile	Leu	Asp 405	Pro	Lys	Cys	Thr	Ala 410	Lys	Thr	Phe	Pro	Asp 415	Tyr
Phe	Glu	Gln	Leu 420	Ala	Arg	Met	Ser	Thr 425	Pro	Ala					
-0.1.0		10 TT	. 1	EO											
<211 <212)> SE .> LE !> TY	NGTH	H: 42 PRT	27		11- '	L 1 .								
)> OF)> SE				none:	ıla 1	t y ph:	Lmuri	Lum						
					Leu	Gln	Pro	Ile	Ala 10	Arg	Val	Asp	Gly	Ala 15	Ile
	Leu	Pro	_		Lys	Ser	Val			Arg	Ala	Leu			Ala
Ala	Leu		20 Cys	Gly	Lys	Thr		25 Leu	Thr	Asn	Leu		30 Asp	Ser	Asp
Asp		35 Arg	His	Met	Leu		40 Ala	Leu	Ser	Ala		45 Gly	Ile	Asn	Tyr
Thr	50 Leu	Ser	Ala	Asp	Arg	55 Thr	Arg	Cys	Asp	Ile	60 Thr	Gly	Asn	Gly	Gly
65				_	70 Gly		-	-	_	75		_		_	80
				85	Leu				90					95	
			100					105		_			110		
		115			Glu		120					125			
Leu	Val 130	Asp	ser	Leu	Arg	Gln 135		Gly	Ala	Asn	11e 140	Asp	Tyr	Leu	Glu

125

-continued

Asp Ile Glu V	al Asp Gly 165	Ser Val Se	r Ser Gln Ph 170	ie Leu Thr	Ala Leu 175
Leu Met Thr A	la Pro Leu 80	Ala Pro Gl		e Ile Arg. 190	
Gly Glu Leu V 195	al Ser Lys	Pro Tyr Il 200	e Asp Ile Th	r Leu Asn 205	Leu Met
Lys Thr Phe G 210	ly Val Glu	Ile Ala As 215	n His His Ty 22		Phe Val
Val Lys Gly G 225	ly Gln Gln 230		r Pro Gly Ar 235	g Tyr Leu	Val Glu 240
Gly Asp Ala S	er Ser Ala 245	Ser Tyr Ph	e Leu Ala Al 250	a Gly Gly.	Ile Lys 255
Gly Gly Thr V 2	al L y s Val 60	Thr Gly I1 26		s Ser Met 270	Gln Gly
Asp Ile Arg P 275	he Ala Asp	Val Leu Hi 280	s Lys Met Gl	y Ala Thr 285	Ile Thr
Trp Gly Asp A 290	sp Phe Ile	Ala Cys Th 295	r Arg Gly Gl 30		Ala Ile
Asp Met Asp M 305	et Asn His 310		p Ala Ala Me 315	et Thr Ile	Ala Thr 320
Thr Ala Leu P	he Ala Lys 325	Gly Thr Th	r Thr Leu Ar 330	g Asn Ile	Tyr Asn 335
Trp Arg Val L	ys Glu Thr 40	Asp Arg Le		et Ala Thr 350	Glu Leu
Arg Lys Val G 355	ly Ala Glu	Val Glu Gl 360	u Gly His As	sp Tyr Ile 365	Arg Ile
Thr Pro Pro A	la L y s Leu	Gln His Al 375	a Asp Ile Gl 38		Asn Asp
His Arg Met A 385	la Met Cys 390		u Val Ala Le 395	eu Ser Asp	Thr Pro 400
Val Thr Ile L	eu Asp Pro 405	Lys Cys Th	r Ala Lys Th 410	r Phe Pro	Asp Tyr 415
Phe Glu Gln L 4	eu Ala Arg 20	Met Ser Th			
<210> SEQ ID 1 <211> LENGTH: <212> TYPE: P1 <213> ORGANISI	427 R T	lla nneumon	iae		
<400> SEQUENCE		rra pricamon	140		
Met Glu Ser L	eu Thr Leu 5	Gln Pro Il	e Ala Arg Va 10	al Asp Gly	Thr Val
Asn Leu Pro G		Ser Val Se		a Leu Leu 30	Leu Ala
Ala Leu Ala A 35	rg Gly Thr	Thr Val Le	u Thr Asn Le	eu Leu Asp 45	Ser Asp
Asp Val Arg H	is Met Leu	Asn Ala Le 55	u Ser Ala Le 60		His Tyr
Val Leu Ser S 65	er Asp Arg 70	Thr Arg Cy	s Glu Val Th	ır Gl y Thr	Gly Gly 80
Pro Leu Gln A	la Gly Ser	Ala Leu Gl	u Leu Phe Le	eu Gly Asn	Ala Gly

Gln Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Ile Gly Gly 145 150150155155

127

Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 175 Leu Met Ala Ser Pro Leu Ala Pro Gln Asp Thr Val Ile Ala Ile Lys 185 Leu Met Ala Ser Pro Leu Ala Pro Gln Asp Thr Val Ile Ala Ile Lys 185 Leu Met Ala Ser Arg Pro Tyr Ile Asp Ile Thr Leu His Leu Met 195 Leu Met 195 Leu Wet 195 Leu Wet 195 Leu Met 200 Leu Sap Ile Thr Leu His Leu Met 205 Leu Met 210 Leu Glu Leu Val Glu Val Glu Val Glu Asp Ile Thr Leu His Leu Met 205 Leu Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys 245 Leu Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asp Tyr Leu Val Glu 270 Lap Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr 275 Leu Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asp Ala Ile Met Ala Ala Ile 300 Lap Met Asp Met Asp Met Ash His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 310 Lap Arg Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu Arg Asp 335 Leu Arg Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu Arg Arg Lys Glu Gly Ala Glu Cys Met Gly Glu Asp Tyr Ile Ala Met Ala Thr 336 Leu Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 360 Leu Arg Lys Glu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asp Arg Lys Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 376 Leu Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 376 Leu Arg Lys Val Gly Ala Glu Val Glu Glu Glu Glu Glu Ser Asp Thr Pro 376 Leu Arg Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 Leu Cys Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 425 Leu Cyllo SEQ ID No 60 Leu Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asp Gly Thr Cyte FRT Leu Cyllo SEQ ID No 60 Leu Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asp Gly Thr													con	tin [.]	ued	
100 105 110					85					90					95	
115 120 125 120 125 121	Thr	Ala	Met	_	Pro	Leu	Ala	Ala		Leu	Cys	Leu	Gly		Asn	Asp
130 135 140 131 Sin Glu Asn Tyr Pro Pro Leu Arg Leu Arg Gly Gly Phe Thr Gly Gly 145 132 Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 175 138 Asp Val Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr Ala Leu 175 139 Cly Glu Leu Val Ser Arg Pro Tyr Ile Asp Ile Thr Leu His Leu Met 195 130 Asp Val Glu Val Glu Val Glu Asn Gln Ala Tyr Gln Arg Phe Ile 210 131 Arg Gly Asn Gln Gln Tyr Gln Ser Pro Gly Asp Tyr Leu Val Glu 235 131 Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys 245 139 Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 130 Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile 275 131 Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 310 132 Arg Lys Val Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn Asp 375 130 Arg Lys Val Gly Asp Arg Lau Phe Ala Met Ala Thr Glu Leu Arg Asp 110 131 Asp Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 375 132 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 360 133 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 360 134 Arg Lys Glu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 370 135 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 375 136 Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 375 136 Arg Met Ala Arg Ile Ser Thr Leu Ala 420 137 Ala Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 415 138 Arg Met Ala Arg Ile Ser Thr Leu Ala 420 139 Arg Lys Cyl ID No 60 1212 > LENGTH: 427 1212 > TFFE: FRT 1213 > ORGANISM: Yersinia enterocolitica 1400 > SEQUENCE: 60 141 Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu Leu	Ile	Val		Thr	Gly	Glu	Pro		Met	Lys	Glu	Arg		Ile	Gly	His
145	Leu		Asp	Ala	Leu	Arg		Gly	Gly	Ala	Gln		Asp	Tyr	Leu	Glu
165	Gln 145	Glu	Asn	Tyr	Pro		Leu	Arg	Leu	Arg		Gly	Phe	Thr	Gly	_
180 185 190 190 191	Asp	Val	Glu	Val		Gly	Ser	Val	Ser		Gln	Phe	Leu	Thr		Leu
200 205 205 207 208 208 209 209 209 209 209 209	Leu	Met	Ala		Pro	Leu	Ala	Pro		Asp	Thr	Val	Ile		Ile	Lys
210 215 220 7al Arg Gly Asn Gln Gln Tyr Gln Ser Pro Gly Asp Tyr Leu Val Glu 240 Sly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Ala Ile Lys 245 Sly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 Sly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 Sly Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 Sly Gly Gly Thr Val Lys Val Thr Gly Ile Gly Arg Asn Ser Val Gln Gly 265 Sly Gly Gly Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile 290 Sly Gly Glu Asp Tyr Ile Ala Cys Thr Arg Gly Glu Leu Asn Ala Ile 305 Sly Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 315 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 325 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 350 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 365 Thr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 375 Slis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 370 Ala Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 425 Sly Gly Thr Leu Ala Arg Ile Ser Thr Leu Ala 425 Arg Lys SeQ ID No 60 Seq UENCE: 60 Set Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 15 Ara Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu	Gly	Glu		Val	Ser	Arg	Pro		Ile	Asp	Ile	Thr		His	Leu	Met
235 240 240 251 240 255 255 261 245 255 255 251 250 245 255 251 250 245 255 255 251 250 245 255 255 251 250 245 255 255 251 250 251 255 255 251 250 251 255 255 251 250 251 255 255 251 250 251 255 255 251 250 251 255 255 251 250 255 255 251 250 255 255 251 250 255 255 251 250 255 255 251 250 255 255 255 251 255 255 251 255 255 255	Lys		Phe	Gly	Val	Glu		Glu	Asn	Gln	Ala		Gln	Arg	Phe	Ile
245	Val 225	Arg	Gly	Asn	Gln		Tyr	Gln	Ser	Pro		Asp	Tyr	Leu	Val	
Asp Ile Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr 275 Asp Met Arg Phe Ala Asp Val Leu Glu Lys Met Gly Ala Thr Val Thr 275 Asp Met Asp Met Ash His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 310 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Ash Ile Tyr Ash 325 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Ash Ile Tyr Ash 335 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 365 Arg Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Ash Asp 370 Ala Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 390 Ala Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 415 Ala Callo Seq ID NO 60 Ala Callo Se	Gly	Asp	Ala	Ser		Ala	Ser	Tyr	Phe		Ala	Ala	Gly	Ala		Lys
275 280 285 287 287 288 288 288 288 288	Gly	Gly	Thr		Lys	Val	Thr	Gly		Gly	Arg	Asn	Ser		Gln	Gly
290 295 300 Asp Met Asp Met Ash His Ile Pro Asp Ala Ala Met Thr Ile Ala Thr 320 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Ash Ile Tyr Ash 325 Arg Lys Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 355 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 365 Arr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Ash Asp 370 Alis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 395 Ala Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 410 Arg Cys Tyre: PRT 4213 ORGANISM: Yersinia enterocolitica Arg Leu Pro Gly Ser Leu Thr Leu His Pro Ile Ala Leu Ile Ash Gly Thr Ish Cyal Ash Leu Pro Gly Ser Lys Ser Val Ser Ash Arg Ala Leu	Asp	Ile		Phe	Ala	Asp	Val		Glu	Lys	Met	Gly		Thr	Val	Thr
310 315 320 Ala Ala Leu Phe Ala Arg Gly Thr Thr Thr Leu Arg Asn Ile Tyr Asn 335 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 350 Arg Lys Val Gly Ala Glu Val Glu Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 Thr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 370 Alis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 390 Ala Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 415 Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 Sequence: 60 Act Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr Ile Cal Leu Cal Asn Leu Cya Asn Leu	Trp			Asp	Tyr	Ile		Cys	Thr	Arg	Gly		Leu	Asn	Ala	Ile
325 330 335 Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr Glu Leu 340 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 Thr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 370 Als Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 395 Als Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 395 Als Arg Met Ala Arg Ile Ser Thr Leu Ala Lys Thr Phe Pro Asp Tyr 410 Als Callo Seq ID No 60 Active Type: PRT 2213> ORGANISM: Yersinia enterocolitica Als Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr Ile Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr Ile Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr Ile Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr Ile Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu	Asp 305		Asp	Met	Asn		Ile	Pro	Asp	Ala		Met	Thr	Ile	Ala	
340 345 350 Arg Lys Val Gly Ala Glu Val Glu Glu Gly Glu Asp Tyr Ile Arg Ile 355 Chr Pro Pro Leu Thr Leu Gln Phe Ala Glu Ile Gly Thr Tyr Asn Asp 370 Ris Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 390 Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 Che Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 Callo> SEQ ID NO 60 Callo SEQ ID NO 60 Callo> Length: 427 Callo> SEQ ID NO 60 Callo Seq ID No 60 Call	Ala	Ala	Leu	Phe		Arg	Gly	Thr	Thr		Leu	Arg	Asn	Ile		Asn
The Pro Pro Leu The Leu Gln Phe Ala Glu Ile Gly The Tyr Asn Asp 370 Ris Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp The Pro 885 Ris Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp The Pro 400 Ris Ris Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp The Pro 400 Ris	Trp	Arg	Val		Glu	Thr	Asp	Arg		Phe	Ala	Met	Ala		Glu	Leu
370 375 380 Alis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 395 390 Alis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 395 Alis Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp Thr Pro 400 Alis Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 410 Alis Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 Alis Seq ID No 60 Alis Leu Seq ID No 60 Alis Leu Ser ID No 60 Alis Seq ID No 60 Alis Seq ID No 60 Alis Leu Ser Seq ID No 60 Alis Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 Alis Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu	Arg	Lys		Gly	Ala	Glu	Val		Glu	Gly	Glu	Asp		Ile	Arg	Ile
390 395 400 7al Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro Asp Tyr 405 Phe Gly Gln Leu Ala Arg Ile Ser Thr Leu Ala 420 2210> SEQ ID NO 60 2211> LENGTH: 427 2212> TYPE: PRT 2213> ORGANISM: Yersinia enterocolitica 2400> SEQUENCE: 60 Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 7al Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu	Thr		Pro	Leu	Thr				Ala			_		Tyr	Asn	Asp
210> SEQ ID NO 60 2211> LENGTH: 427 2212> TYPE: PRT 2213> ORGANISM: Yersinia enterocolitica 2400> SEQUENCE: 60 Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 15 Val Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu	His 385	Arg	Met	Ala	Met	_	Phe	Ser	Leu	Val		Leu	Ser	Asp	Thr	
420 425 2210> SEQ ID NO 60 2211> LENGTH: 427 2212> TYPE: PRT 2213> ORGANISM: Yersinia enterocolitica 2400> SEQUENCE: 60 Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 15 Val Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu	Val	Thr	Ile	Leu	_	Pro	Lys	Cys	Thr		Lys	Thr	Phe	Pro	_	Tyr
### 2211> LENGTH: 427 ### 427 ### 2213> ORGANISM: Yersinia enterocolitica #### 400> SEQUENCE: 60 #### Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr ### 1	Phe	Gly	Gln		Ala	Arg	Ile	Ser		Leu	Ala					
Met Leu Glu Ser Leu Thr Leu His Pro Ile Ala Leu Ile Asn Gly Thr 10 15 Val Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu	<212	l> LE 2> TY	ENGTH	I: 42 PRT	27	sinia	ı ent	ceroo	colit	cica						
7al Asn Leu Pro Gly Ser Lys Ser Val Ser Asn Arg Ala Leu Leu Leu	<400)> SE	EQUEN	ICE:	60											
	Met 1	Leu	Glu	Ser		Thr	Leu	His	Pro		Ala	Leu	Ile	Asn	_	Thr
	Val	Asn	Leu		Gly	Ser	Lys	Ser		Ser	Asn	Arg	Ala		Leu	Leu

129 130

Ala	Ala	Leu 35	Ala	Glu	Gly	Thr	Thr 40	Gln	Leu	Asn	Asn	Leu 45	Leu	Asp	Ser
Asp	Asp 50	Ile	Arg	His	Met	Leu 55	Asn	Ala	Leu	Gln	Ala 60	Leu	Gly	Val	Lys
Ty r 65	Arg	Leu	Ser	Ala	Asp 70	Arg	Thr	Arg	Cys	Glu 75	Val	Asp	Gly	Leu	Gly 80
Gly	Lys	Leu	Val	Ala 85	Glu	Gln	Pro	Leu	Glu 90	Leu	Phe	Leu	Gly	Asn 95	Ala
Gly	Thr	Ala	Met 100	Arg	Pro	Leu	Ala	Ala 105	Ala	Leu	Cys	Leu	Gly 110	Lys	Asn
Asp	Ile	Val 115	Leu	Thr	Gly	Glu	Pro 120	Arg	Met	Lys	Glu	Arg 125	Pro	Ile	Gly
His	Leu 130	Val	Asp	Ala	Leu	Arg 135	Gln	Gly	Gly	Ala	Gln 140	Ile	Asp	Tyr	Leu
Glu 145	Gln	Glu	Asn	Tyr	Arg 150	Arg	Cys	Ile	Ala	Gly 155	Gly	Phe	Arg	Gly	Gly 160
Lys	Leu	Thr	Val	Asp 165	Gly	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Leu
Leu	Met	Thr	Ala 180	Pro	Leu	Ala	Glu	Gln 185	Asp	Thr	Glu	Ile	Gln 190	Ile	Gln
Gly	Glu	Leu 195	Val	Ser	Lys	Pro	Ty r 200	Ile	Asp	Ile	Thr	Leu 205	His	Leu	Met
Lys	Ala 210	Phe	Gly	Val	Asp	Val 215	Val	His	Glu	Asn	Ty r 220	Gln	Ile	Phe	His
Ile 225	Lys	Gly	Gly	Gln	Thr 230	Tyr	Arg	Ser	Pro	Gly 235	Ile	Tyr	Leu	Val	Glu 240
Gly	Asp	Ala	Ser	Ser 245	Ala	Ser	Tyr	Phe	Leu 250	Ala	Ala	Ala	Ala	Ile 255	Lys
Gly	Gly	Thr	Val 260	Arg	Val	Thr	Gly	Ile 265	Gly	Lys	Gln	Ser	Val 270	Gln	Gly
Asp	Thr	L y s 275	Phe	Ala	Asp	Val	Leu 280	Glu	Lys	Met	Gly	Ala 285	Lys	Ile	Ser
Trp	Gl y 290	Asp	Asp	Tyr	Ile	Glu 295	Cys	Ser	Arg	Gly	Glu 300	Leu	Gln	Gly	Ile
Asp 305	Met	Asp	Met	Asn	His 310	Ile	Pro	Asp	Ala	Ala 315	Met	Thr	Ile	Ala	Thr 320
Thr	Ala	Leu	Phe	Ala 325	Asp	Gly	Pro	Thr	Val 330	Ile	Arg	Asn	Ile	Ty r 335	Asn
Trp	Arg	Val	Lys 340	Glu	Thr	Asp	Arg	Leu 345	Ser	Ala	Met	Ala	Thr 350	Glu	Leu
Arg	Lys	Val 355	Gly	Ala	Glu	Val	Glu 360	Glu	Gly	Gln	Asp	Tyr 365	Ile	Arg	Val
Val	Pro 370	Pro	Ala	Gln	Leu	Ile 375	Ala	Ala	Glu	Ile	Gly 380	Thr	Tyr	Asn	Asp
His 385	Arg	Met	Ala	Met	Cys 390	Phe	Ser	Leu	Val	Ala 395	Leu	Ser	Asp	Thr	Pro 400
Val	Thr	Ile	Leu	Asp 405	Pro	Lys	Сув	Thr	Ala 410	Lys	Thr	Phe	Pro	Asp 415	Tyr
Phe	Glu	Gln	Leu 420	Ala	Arg	Leu	Ser	Gln 425	Ile	Ala					

<210> SEQ ID NO 61 <211> LENGTH: 432 <212> TYPE: PRT

131

													<u></u>	aoa	
<213	3> OF	RGAN]	SM:	Haer	noph	ilus	influ	ienza	ıe						
<400)> SE	QUEN	ICE:	61											
Met 1	Glu	Lys	Ile	Thr 5	Leu	Ala	Pro	Ile	Ser 10	Ala	Val	Glu	Gly	Thr 15	Ile
Asn	Leu	Pro	Gly 20	Ser	Lys	Ser	Leu	Ser 25	Asn	Arg	Ala	Leu	Leu 30	Leu	Ala
Ala	Leu	Ala 35	Lys	Gly	Thr	Thr	Lys 40	Val	Thr	Asn	Leu	Leu 45	Asp	Ser	Asp
Asp	Ile 50	Arg	His	Met	Leu	Asn 55	Ala	Leu	Lys	Ala	Leu 60	Gly	Val	Arg	Tyr
Gln 65	Leu	Ser	Asp	Asp	Lys 70	Thr	Ile	Cys	Glu	Ile 75	Glu	Gly	Leu	Gly	Gly 80
Ala	Phe	Asn	Ile	Gln 85	Asp	Asn	Leu	Ser	Leu 90	Phe	Leu	Gly	Asn	Ala 95	Gly
Thr	Ala	Met	Arg 100	Pro	Leu	Thr	Ala	Ala 105	Leu	Cys	Leu	Lys	Gly 110	Asn	His
Glu	Val	Glu 115	Ile	Ile	Leu	Thr	Gly 120	Glu	Pro	Arg	Met	L y s 125	Glu	Arg	Pro
Ile	Leu 130	His	Leu	Val	Asp	Ala 135	Leu	Arg	Gln	Ala	Gly 140	Ala	Asp	Ile	Arg
Ty r 145	Leu	Glu	Asn	Glu	Gl y 150	Tyr	Pro	Pro	Leu	Ala 155	Ile	Arg	Asn	Lys	Gly 160
Ile	Lys	Gly	Gly	L y s 165	Val	Lys	Ile	Asp	Gly 170	Ser	Ile	Ser	Ser	Gln 175	Phe
Leu	Thr	Ala	Leu 180	Leu	Met	Ser	Ala	Pro 185	Leu	Ala	Glu	Asn	Asp 190	Thr	Glu
Ile	Glu	Ile 195	Ile	Gly	Glu	Leu	Val 200	Ser	Lys	Pro	Tyr	Ile 205	Asp	Ile	Thr
Leu	Ala 210	Met	Met	Arg	Asp	Phe 215	Gly	Val	Lys	Val	Glu 220	Asn	His	His	Tyr
Gln 225	Lys	Phe	Gln	Val	L y s 230	Gly	Asn	Gln	Ser	Ty r 235	Ile	Ser	Pro	Asn	L y s 240
Tyr	Leu	Val	Glu	Gly 245	Asp	Ala	Ser	Ser	Ala 250	Ser	Tyr	Phe	Leu	Ala 255	Ala
Gly	Ala	Ile	L y s 260	Gly	Lys	Val	Lys	Val 265	Thr	Gly	Ile	Gly	L y s 270	Asn	Ser
Ile	Gln	Gl y 275	Asp	Arg	Leu	Phe	Ala 280	Asp	Val	Leu	Glu	L y s 285	Met	Gly	Ala
Lys	Ile 290	Thr	Trp	Gly	Glu	Asp 295	Phe	Ile	Gln	Ala	Glu 300	His	Ala	Glu	Leu
Asn 305	Gly	Ile	Asp	Met	Asp 310	Met	Asn	His	Ile	Pro 315	Asp	Ala	Ala	Met	Thr 320
Ile	Ala	Thr	Thr	Ala 325	Leu	Phe	Ser	Asn	Gly 330	Glu	Thr	Val	Ile	Arg 335	Asn
Ile	Tyr	Asn	Trp 340	Arg	Val	Lys	Glu	Thr 345	Asp	Arg	Leu	Thr	Ala 350	Met	Ala
Thr	Glu	Leu 355	Arg	Lys	Val	Gly	Ala 360	Glu	Val	Glu	Glu	Gl y 365	Glu	Asp	Phe
Ile	Arg 370	Ile	Gln	Pro	Leu	Ala 375	Leu	Asn	Gln	Phe	L y s 380	His	Ala	Asn	Ile
Glu 385	Thr	Tyr	Asn	Asp	His 390	Arg	Met	Ala	Met	Cys 395	Phe	Ser	Leu	Ile	Ala 400

133

Leu	Ser	Asn	Thr	Pro 405	Val	Thr	Ile	Leu	Asp 410	Pro	Lys	Cys	Thr	Ala 415	Lys
Thr	Phe	Pro	Thr 420	Phe	Phe	Asn	Glu	Phe 425	Glu	Lys	Ile	Сув	Leu 430	Lys	Asn
<211 <212)> SE !> LE !> TY !> OF	NGTH PE:	: 44 PRT		eure	ella	mult	ocid	la						
<400)> SE	QUEN	ICE:	62											
Val 1	Ile	Lys	Asp	Ala 5	Thr	Ala	Ile	Thr	Leu 10	Asn	Pro	Ile	Ser	Ty r 15	Ile
Glu	Gly	Glu	Val 20	Arg	Leu	Pro	Gly	Ser 25	Lys	Ser	Leu	Ser	Asn 30	Arg	Ala
Leu	Leu	Leu 35	Ser	Ala	Leu	Ala	Lys 40	Gly	Lys	Thr	Thr	Leu 45	Thr	Asn	Leu
Leu	Asp 50	Ser	Asp	Asp	Val	Arg 55	His	Met	Leu	Asn	Ala 60	Leu	Lys	Glu	Leu
Gl y 65	Val	Thr	Tyr	Gln	Leu 70	Ser	Glu	Asp	Lys	Ser 75	Val	Сув	Glu	Ile	Glu 80
Gly	Leu	Gly	Arg	Ala 85	Phe	Glu	Trp	Gln	Ser 90	Gly	Leu	Ala	Leu	Phe 95	Leu
Gly	Asn	Ala	Gly 100	Thr	Ala	Met	Arg	Pro 105	Leu	Thr	Ala	Ala	Leu 110	Сув	Leu
Ser	Thr	Pro 115	Asn	Arg	Glu	Gly	L y s 120	Asn	Glu	Ile	Val	Leu 125	Thr	Gly	Glu
Pro	Arg 130	Met	Lys	Glu	Arg	Pro 135	Ile	Gln	His	Leu	Val 140	Asp	Ala	Leu	Сув
Gln 145	Ala	Gly	Ala	Glu	Ile 150	Gln	Tyr	Leu	Glu	Gln 155	Glu	Gly	Tyr	Pro	Pro 160
Ile	Ala	Ile	Arg	Asn 165	Thr	Gly	Leu	Lys	Gl y 170	Gly	Arg	Ile	Gln	Ile 175	Asp
Gly	Ser	Val	Ser 180	Ser	Gln	Phe	Leu	Thr 185	Ala	Leu	Leu	Met	Ala 190	Ala	Pro
Met	Ala	Glu 195	Ala	Asp	Thr	Glu	Ile 200	Glu	Ile	Ile	Gly	Glu 205	Leu	Val	Ser
Lys	Pro 210	Tyr	Ile	Asp	Ile	Thr 215	Leu	Lys	Met	Met	Gln 220	Thr	Phe	Gly	Val
Glu 225	Val	Glu	Asn	Gln	Ala 230	Tyr	Gln	Arg	Phe	Leu 235	Val	Lys	Gly	His	Gln 240
Gln	Tyr	Gln	Ser	Pro 245	His	Arg	Phe	Leu	Val 250	Glu	Gly	Asp	Ala	Ser 255	Ser
Ala	Ser	Tyr	Phe 260	Leu	Ala	Ala	Ala	Ala 265	Ile	Lys	Gly	Lys	Val 270	Lys	Val
Thr	Gly	Val 275	Gly	Lys	Asn	Ser	Ile 280	Gln	Gly	Asp	Arg	Leu 285	Phe	Ala	Asp
Val	Leu 290	Glu	Lys	Met	Gly	Ala 295	His	Ile	Thr	Trp	Gly 300	Asp	Asp	Phe	Ile
Gln 305	Val	Glu	Lys	Gly	Asn 310	Leu	Lys	Gly	Ile	Asp 315	Met	Asp	Met	Asn	His 320
Ile	Pro	Asp	Ala	Ala 325	Met	Thr	Ile	Ala	Thr 330	Thr	Ala	Leu	Phe	Ala 335	Glu
Gly	Glu	Thr	Val 340	Ile	Arg	Asn	Ile	Tyr 345	Asn	Trp	Arg	Val	L y s 350	Glu	Thr

135

Asp	Arg	Leu 355	Thr	Ala	Met	Ala	Thr 360	Glu	Leu	Arg	Lys	Val 365	Gly	Ala	Glu
Val	Glu 370	Glu	Gly	Glu	Asp	Phe 375	Ile	Arg	Ile	Gln	Pro 380	Leu	Asn	Leu	Ala
Gln 385	Phe	Gln	His	Ala	Glu 390	Leu	Asn	Ile	His	Asp 395	His	Arg	Met	Ala	Met 400
Суѕ	Phe	Ala	Leu	Ile 405	Ala	Leu	Ser	Lys	Thr 410	Ser	Val	Thr	Ile	Leu 415	Asp
Pro	Ser	Cys	Thr 420	Ala	Lys	Thr	Phe	Pro 425	Thr	Phe	Leu	Ile	Leu 430	Phe	Thr
Leu	Asn	Thr 435	Arg	Glu	Val	Ala	Tyr 440	Arg							
<211 <212)> SE l> LE 2> TY 3> OF	ENGTH	I: 42 PRT	26	omona	as sa	almor	ició	la						
<400)> SE	QUEN	ICE:	63											
Asn 1	Ser	Leu	Arg	Leu 5	Glu	Pro	Ile	Ser	Arg 10	Val	Ala	Gly	Glu	Val 15	Asn
Leu	Pro	Gly	Ser 20	Lys	Ser	Val	Ser	Asn 25	Arg	Ala	Leu	Leu	Leu 30	Ala	Ala
Leu	Ala	Arg 35	Gly	Thr	Thr	Arg	Leu 40	Thr	Asn	Leu	Leu	Asp 45	Ser	Asp	Asp
Ile	Arg 50	His	Met	Leu	Ala	Ala 55	Leu	Thr	Gln	Leu	Gly 60	Val	Lys	Tyr	Lys
Leu 65	Ser	Ala	Asp	Lys	Thr 70	Glu	Суѕ	Thr	Val	His 75	Gly	Leu	Gly	Arg	Ser 80
Phe	Ala	Val	Ser	Ala 85	Pro	Val	Asn	Leu	Phe 90	Leu	Gly	Asn	Ala	Gly 95	Thr
Ala	Met	Arg	Pro 100	Leu	Cys	Ala	Ala	Leu 105	Cys	Leu	Gly	Ser	Gly 110	Glu	Tyr
Met	Leu	Gly 115	Gly	Glu	Pro	Arg	Met 120	Glu	Glu	Arg	Pro	Ile 125	Gly	His	Leu
Val	Asp 130	Суѕ	Leu	Ala	Leu	L y s 135	Gly	Ala	His	Ile	Gln 140	Tyr	Leu	Lys	Lys
Asp 145	Gly	Tyr	Pro	Pro	Leu 150	Val	Val	Asp	Ala	L y s 155	Gly	Leu	Trp	Gly	Gly 160
Asp	Val	His	Val	Asp 165	Gly	Ser	Val	Ser	Ser 170	Gln	Phe	Leu	Thr	Ala 175	Phe
Leu	Met	Ala	Ala 180	Pro	Ala	Met	Ala	Pro 185	Val	Ile	Pro	Arg	Ile 190	His	Ile
Lys	Gly	Glu 195	Leu	Val	Ser	Lys	Pro 200	Tyr	Ile	Asp	Ile	Thr 205	Leu	His	Ile
Met	Asn 210	Ser	Ser	Gly	Val	Val 215	Ile	Glu	His	Asp	Asn 220	Tyr	Lys	Leu	Phe
Ty r 225	Ile	Lys	Gly	Asn	Gln 230	Ser	Ile	Val	Ser	Pro 235	Gly	Asp	Phe	Leu	Val 240
Glu	Gly	Asp	Ala	Ser 245	Ser	Ala	Ser	Tyr	Phe 250	Leu	Ala	Ala	Gly	Ala 255	Ile
Lys	Gly	Lys	Val 260	Arg	Val	Thr	Gly	Ile 265	Gly	Lys	His	Ser	Ile 270	Gly	Asp
Ile	His	Phe	Ala	Asp	Val	Leu	Glu	Arg	Met	Gly	Ala	Arg	Ile	Thr	Trp

137

_															
		275					280					285			
Gly	290	Asp	Phe	Ile	Glu	Ala 295	Glu	Gln	Gly	Pro	Leu 300	His	Gly	Val	Asp
Met 305	Asp	Met	Asn	His	Ile 310	Pro	Asp	Val	Gly	His 315	Asp	His	Ser	Gly	Gln 320
Ser	His	Cys	Leu	Pro 325	Arg	Val	Pro	Pro	His 330	Ser	Gln	His	Leu	Gln 335	Leu
Ala	val	Arg	Asp 340	Asp	Arg	Cys	Thr	Pro 345	Cys	Thr	His	Gly	His 350	Arg	Arg
Ala	Gln	Ala 355	Gly	Val	Ser	Glu	Glu 360	Gly	Thr	Thr	Phe	Ile 365	Thr	Arg	Asp
Ala	Ala 370		Pro	Ala	Gln	Ala 375		Arg	Asp	Arg	His 380		Gln	Arg	Ser
A rg 385	, Ile	Ala	Met	Сув	Phe		Leu	Val	Ala	Leu 395		Asp	Ile	Ala	
	: Ile	Asn	Asp			Cys	Thr	Ser	-		Phe	Pro	Asp	-	400 Phe
Asp	L y s	Leu		405 Ser	Val	Ser	Gln		410 Val					415	
			420					425							
<21	0> SI	ENGTH	I: 44												
	.2> T .3> OF			Baci	illus	s per	rtuss	sis							
<40	0> SI	EQUE	ICE:	64											
Met 1	Ser	Gly	Leu	Ala 5	Tyr	Leu	Asp	Leu	Pro 10	Ala	Ala	Arg	Leu	Ala 15	Arg
Gly	Glu	Val	Ala 20	Leu	Pro	Gly	Ser	Lys 25	Ser	Ile	Ser	Asn	Arg 30	Val	Leu
Leu	ı Leu	Ala 35	Ala	Leu	Ala	Glu	Gly 40	Ser	Thr	Glu	Ile	Thr 45	Gly	Leu	Leu
Asp	Ser 50	Asp	Asp	Thr	Arg	Val 55	Met	Leu	Ala	Ala	Leu 60	Arg	Gln	Leu	Gly
Val	. Ser	Val	Gly	Glu	Val 70	Ala	Asp	Gly	Cys	Val 75	Thr	Ile	Glu	Gly	Val
	ı Arg	Phe	Pro	Thr 85		Gln	Ala	Glu	Leu 90		Leu	Gly	Asn	Ala 95	
Thr	Ala	Phe	Arg		Leu	Thr	Ala	Ala 105		Ala	Leu	Met			Asp
Tyr	: Arg			Gly	Val	Pro			His	Glu	Arg		110	Gly	Asp
Leu	ı Val	115 Asp	Ala	Leu	Arg		120 Phe	Gly	Ala	Gly		125 Glu	Tyr	Leu	Gly
61 .	130	C1	П	D	D~-	135	λ··· -·	т1 -	C1-	C1-	140	C =	т1 -	7	77 ~ 7
G1n 145	ı Ala	чт	Tyr	Pro	150	ьeu	Arg	тте	чтĀ	G1 y 155	GTA	ser	тте	Arg	Val 160
Asp	Gly	Pro	Val	Arg 165	Val	Glu	Gly	Ser	Val 170	Ser	Ser	Gln	Phe	Leu 175	Thr
Ala	. Leu	Leu	Met 180	Ala	Ala	Pro	Val	Leu 185	Ala	Arg	Arg	Ser	Gly 190	Gln	Asp
Ile	Thr	Ile 195	Glu	Val	Val	Gly	Glu 200	Leu	Ile	Ser	Lys	Pro 205	Tyr	Ile	Glu
Ile	Thr 210	Leu	Asn	Leu	Met	Ala 215	Arg	Phe	Gly	Val	Ser 220	Val	Arg	Arg	Asp

139

225	Trp	Arg	Ala	Phe	Thr 230	Ile	Ala	Arg	Asp	Ala 235	Val	Tyr	Arg	Gly	Pro 240
Gly	Arg	Met	Ala	Ile 245	Glu	Gly	Asp	Ala	Ser 250	Thr	Ala	Ser	Tyr	Phe 255	Leu
Ala	Leu	Gly	Ala 260	Ile	Gly	Gly	Gly	Pro 265	Val	Arg	Val	Thr	Gl y 270	Val	Gly
Glu	Asp	Ser 275	Ile	Gln	Gly	Asp	Val 280	Ala	Phe	Ala	Ala	Thr 285	Leu	Ala	Ala
Met	Gly 290	Ala	Asp	Val	Arg	Ty r 295	Gly	Pro	Gly	Trp	Ile 300	Glu	Thr	Arg	Gly
Val 305	Arg	Val	Ala	Glu	Gl y 310	Gly	Arg	Leu	Lys	Ala 315	Phe	Asp	Ala	Asp	Phe 320
Asn	Leu	Ile	Pro	Asp 325	Ala	Ala	Met	Thr	Ala 330	Ala	Thr	Leu	Ala	Leu 335	Tyr
Ala	Asp	Gly	Pro 340	Cys	Arg	Leu	Arg	Asn 345	Ile	Gly	Ser	Trp	Arg 350	Val	Lys
Glu	Thr	Asp 355	Arg	Ile	His	Ala	Met 360	His	Thr	Glu	Leu	Glu 365	Lys	Leu	Gly
Ala	Gly 370	Val	Gln	Ser	Gly	Ala 375	Asp	Trp	Leu	Glu	Val 380	Ala	Pro	Pro	Glu
Pro 385	Gly	Gly	Trp	Arg	Asp 390	Ala	His	Ile	Gly	Thr 395	Trp	Asp	Asp	His	Arg 400
Met	Ala	Met	Cys	Phe 405	Leu	Leu	Ala	Ala	Phe 410	Gly	Pro	Ala	Ala	Val 415	Arg
Ile	Leu	Asp	Pro 420	Gly	Cys	Val	Ser	L y s 425	Thr	Phe	Pro	Asp	Tyr 430	Phe	Asp
Val	Tyr	Ala 435	Gly	Leu	Leu	Ala	Ala 440	Arg	Asp						
<211 <211	1> LI 2> T	EQ II ENGTH	1: 42												
<400		RGANI	SM:	Saln	nonel	lla t	yphi	.muri	um						
M-+	0> SI	RGANI EQUEN			none]	lla t	yphi	.muri	.um						
Met 1			ICE:	65						Arg	Val	Asp	Gly	Ala 15	Ile
1	Glu	EQUEN	ICE: Leu	65 Thr 5	Leu	Gln	Pro	Ile	Ala 10			_	_	15	
1 Asn	Glu Leu	EQUEN Ser	Leu Gly 20	65 Thr 5 Ser	Leu L y s	Gln Ser	Pro Val	Ile Ser 25	Ala 10 Asn	Arg	Ala	Leu	Leu 30	15 Leu	Ala
1 Asn Ala	Glu Leu Leu	Ser Pro	Leu Gly 20 Cys	65 Thr 5 Ser	Leu Lys Lys	Gln Ser Thr	Pro Val Val 40	Ile Ser 25 Leu	Ala 10 Asn Thr	Arg Asn	Ala Leu	Leu Leu 45	Leu 30 Asp	15 Leu Ser	Ala Asp
1 Asn Ala Asp	Glu Leu Leu Val	Ser Pro Ala	Leu Gly 20 Cys	65 Thr 5 Ser Gly Met	Leu Lys Lys Leu	Gln Ser Thr Asn 55	Pro Val Val 40	Ile Ser 25 Leu Leu	Ala 10 Asn Thr	Arg Asn Ala	Ala Leu Leu 60	Leu Leu 45 Gly	Leu 30 Asp	15 Leu Ser Asn	Ala Asp Tyr
Asn Ala Asp Thr 65	Glu Leu Leu Val 50 Leu	Ser Pro Ala 35 Arg	Leu Gly 20 Cys His	65 Thr 5 Ser Gly Met Asp	Leu Lys Lys Leu Arg	Gln Ser Thr Asn 55 Thr	Pro Val Val 40 Ala	Ile Ser 25 Leu Leu Cys	Ala 10 Asn Thr Ser	Arg Asn Ala Ile 75	Ala Leu Leu 60 Thr	Leu Leu 45 Gly	Leu 30 Asp Ile	15 Leu Ser Asn Gly	Ala Asp Tyr Gly
Asn Ala Asp Thr 65 Pro	Glu Leu Val 50 Leu Leu	Ser Pro Ala 35 Arg	Leu Gly 20 Cys His Ala	65 Thr 5 Ser Gly Met Asp	Leu Lys Lys Leu Arg 70	Gln Ser Thr Asn 55 Thr	Pro Val Val 40 Ala Arg	Ile Ser 25 Leu Leu Cys	Ala 10 Asn Thr Ser Asp	Arg Asn Ala Ile 75 Phe	Ala Leu Leu 60 Thr	Leu Leu 45 Gly Gly	Leu 30 Asp Ile Asn	15 Leu Ser Asn Gly Ala 95	Ala Asp Tyr Gly 80
Asn Ala Asp Thr 65 Pro	Glu Leu Val 50 Leu Leu Ala	Ser Pro Ala 35 Arg Ser	Leu Gly 20 Cys His Ala Ala Arg 100	Thr 5 Ser Gly Met Asp Ser 85 Pro	Leu Lys Leu Arg 70 Gly Leu	Gln Ser Thr Asn 55 Thr Thr	Pro Val Val 40 Ala Arg Leu Ala	Ile Ser 25 Leu Leu Cys Glu Ala 105	Ala 10 Asn Thr Ser Asp Leu 90	Arg Asn Ala Ile 75 Phe	Ala Leu Leu 60 Thr Leu	Leu Leu 45 Gly Gly	Leu 30 Asp Ile Asn Asn Gln 110	Leu Ser Asn Gly Ala 95 Asn	Ala Asp Tyr Gly 80 Gly Glu
Asn Ala Asp Thr 65 Pro Thr	Glu Leu Val 50 Leu Leu Val	Ser Pro Ala 35 Arg Ser Arg Leu	CE: Leu Gly 20 Cys His Ala Ala Arg 100	65 Thr 5 ser Gly Met Asp Pro Gly	Leu Lys Lys Leu Arg 70 Gly Leu Glu	Gln Ser Thr Asn 55 Thr Thr	Pro Val Val 40 Ala Arg Leu Ala Arg 120	Ile Ser 25 Leu Leu Cys Glu Ala 105 Met	Alaa 10 Asn Thr Ser Asp Leu 90 Leu Lys	Arg Asn Ala Ile 75 Phe Cys	Ala Leu Leu 60 Thr Leu Leu Arg	Leu Leu 45 Gly Gly Gly Pro 125	Leu 30 Asp Ile Asn Asn Ile	15 Leu Ser Asn Gly Ala 95 Asn	Ala Asp Tyr Gly 80 Gly Glu His
Asn Ala Asp Thr 65 Pro Thr Leu	Leu Val 50 Leu Leu Val 130	Ser Pro Ala 35 Arg Ser Arg Leu 115	CE: Leu Gly 20 Cys His Ala Ala Arg 100 Thr	Gly Met Asp Fro Gly Leu	Leu Lys Leu Arg 70 Gly Leu Glu Arg	Gln Ser Thr Asn 55 Thr Thr Ala Pro Gln 135	Pro Val Val 40 Ala Arg Leu Ala Arg 120 Gly	Ile Ser 25 Leu Leu Cys Glu Ala 105 Met Gly	Alaa 10 Asn Thr Ser Asp Leu 90 Leu Lys	Arg Asn Ala Ile 75 Phe Cys Glu Asn	Ala Leu 60 Thr Leu Arg Ile 140	Leu Leu 45 Gly Gly Gly Pro 125 Asp	Leu 30 Asp Ile Asn Asn Ile Tyr	15 Leu Ser Asn Gly Ala 95 Asn Gly	Ala Asp Tyr Gly 80 Gly Glu His

141 142

Asp Ile Glu Val Asp Gly Ser Val Ser Ser Gln Phe Leu Thr	Ala Leu 175
Leu Met Thr Ala Pro Leu Ala Pro Glu Asp Thr Ile Ile Arg	Val Lys
Gly Glu Leu Val Ser Lys Pro Tyr Ile Asp Ile Thr Leu Asn 195 200 205	Leu Met
Lys Thr Phe Gly Val Glu Ile Ala Asn His His Tyr Gln Gln 210 215 220	Phe Val
Val Lys Gly Gly Gln Gln Tyr His Ser Pro Gly Arg Tyr Leu 225 230 235	Val Glu 240
Gly Asp Ala Ser Ser Ala Ser Tyr Phe Leu Ala Ala Gly Gly 245 250	Ile L y s 255
Gly Gly Thr Val Lys Val Thr Gly Ile Gly Gly Lys Ser Met 260 265 270	Gln Gly
Asp Ile Arg Phe Ala Asp Val Leu His Lys Met Gly Ala Thr 275 280 285	Ile Thr
Trp Gly Asp Asp Phe Ile Ala Cys Thr Arg Gly Glu Leu His 290 295 300	Ala Ile
Asp Met Asp Met Asn His Ile Pro Asp Ala Ala Met Thr Ile 305 310 315	Ala Thr 320
Thr Ala Leu Phe Ala Lys Gly Thr Thr Thr Leu Arg Asn Ile 325 330	Tyr Asn 335
Trp Arg Val Lys Glu Thr Asp Arg Leu Phe Ala Met Ala Thr 340 345 350	Glu Leu
Arg Lys Val Gly Ala Glu Val Glu Glu Gly His Asp Tyr Ile 355 360 365	Arg Ile
Thr Pro Pro Ala Lys Leu Gln His Ala Asp Ile Gly Thr Tyr 370 375 380	Asn Asp
His Arg Met Ala Met Cys Phe Ser Leu Val Ala Leu Ser Asp 385 390 395	Thr Pro 400
Val Thr Ile Leu Asp Pro Lys Cys Thr Ala Lys Thr Phe Pro 405 410	Asp Tyr 415
Phe Glu Gln Leu Ala Arg Met Ser Thr Pro Ala 420 425	
<210> SEQ ID NO 66 <211> LENGTH: 1894 <212> TYPE: DNA <213> ORGANISM: Synechocystis sp. <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (275)(1618) <400> SEQUENCE: 66	
acgggctgta acggtagtag gggtcccgag cacaaaagcg gtgccggcaa g	cagaactaa 60
tttccatggg gaataatggt atttcattgg tttggcctct ggtctggcaa t	ggttgctag 120
gcgatcgcct gttgaaatta acaaactgtc gcccttccac tgaccatggt a	acgatgttt 180
tttacttcct tgactaaccg aggaaaattt ggcggggggc agaaatgcca a	tacaattta 240
gcttggtctt ccctgcccct aatttgtccc ctcc atg gcc ttg ctt tc $$\operatorname{Met}$$ Ala Leu Leu Se 1	
aat cat caa tcc cat caa cgc tta act gtt aat ccc cct gcc Asn His Gln Ser His Gln Arg Leu Thr Val Asn Pro Pro Ala 10 15 20	

143

													con	tin.	uea			
										ccg Pro							391	
Η										gcc Ala							439	
_				_	_		_	-		cgt Arg 65	_	_	_		_		487	
		-	_		-	-		-	-	cta Leu			-				535	
										cag Gln							583	
										cgc Arg							631	
A										gtc Val							679	
	-		_		_			-		caa Gln 145		_			_		727	
										aag Lys							775	
	_		_				_			tac Tyr					-		823	
_		_	-	_		_	_	_		gcg Ala							871	
A			_	_		-		-		tcc Ser		-		_	_	-	919	
										acc Thr 225							967	
										tta Leu							1015	
										ttt Phe							1063	
										gaa Glu							1111	
Т						_	_		_	gcc Ala	_	_			-		1159	
										ggg Gl y 305							1207	
		-		_	-			_		tgc Cys					-		1255	
			_	_		-	_			att Ile	_	-				-	1303	

145

-continued	
ttt gca gag ggc act acc cgc att gaa gat gcc gca gaa ctg agg gtt Phe Ala Glu Gly Thr Thr Arg Ile Glu Asp Ala Ala Glu Leu Arg Val 345 350 355	1351
aaa gaa agc gat cgc ctg gcg gcc att gct tcg gag ttg ggc aaa atg Lys Glu Ser Asp Arg Leu Ala Ala Ile Ala Ser Glu Leu Gly Lys Met 360 365 370 375	1399
ggg gcc aaa gtc acc gaa ttt gat gat ggc ctg gaa att caa ggg gga Gly Ala Lys Val Thr Glu Phe Asp Asp Gly Leu Glu Ile Gln Gly Gly 380 385 390	1447
age ccg tta caa ggg gcc gag gtg gat age ttg acg gat cat cgc att Ser Pro Leu Gln Gly Ala Glu Val Asp Ser Leu Thr Asp His Arg Ile 395 400 405	1495
gcc atg gcg ttg gcg atc gcc gct tta ggt agt ggg ggg caa aca att Ala Met Ala Leu Ala Ile Ala Ala Leu Gly Ser Gly Gly Gln Thr Ile 410 415 420	1543
att aac cgg gcg gaa gcg gcc gcc att tcc tat cca gaa ttt ttt ggc Ile Asn Arg Ala Glu Ala Ala Ala Ile Ser Tyr Pro Glu Phe Phe Gly 425 430 435	1591
acg cta ggg caa gtt gcc caa gga taa agttagaaaa actcctgggc Thr Leu Gly Gln Val Ala Gln Gly 440 445	1638
ggtttgtaaa tgttttacca aggtagtttg gggtaaaggc cccagcaagt gctgccaggg	1698
taatttatcc gcaattgacc aatcggcatg gaccgtatcg ttcaaactgg gtaattctcc	1758
ctttaattcc ttaaaagctc gcttaaaact gcccaacgta tctccgtaat ggcgagtgag	1818
tagaagtaat ggggccaaac ggcgatcgcc acgggaaatt aaagcctgca tcactgacca cttataactt tcggga	1878 1894
<210> SEQ ID NO 67 <211> LENGTH: 447 <212> TYPE: PRT <213> ORGANISM: Synechocystis sp.	
<400> SEQUENCE: 67	
Met Ala Leu Leu Ser Leu Asn Asn His Gln Ser His Gln Arg Leu Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$	
Val Asn Pro Pro Ala Gln Gly Val Ala Leu Thr Gly Arg Leu Arg Val 25 30	
Pro Gly Asp Lys Ser Ile Ser His Arg Ala Leu Met Leu Gly Ala Ile 35 40 45	
Ala Thr Gly Glu Thr Ile Ile Glu Gly Leu Leu Leu Gly Glu Asp Pro 50 55 60	
Arg Ser Thr Ala His Cys Phe Arg Ala Met Gly Ala Glu Ile Ser Glu 65 70 75 80	
Leu Asn Ser Glu Lys Ile Ile Val Gln Gly Arg Gly Leu Gly Gln Leu 85 90 95	
Gln Glu Pro Ser Thr Val Leu Asp Ala Gly Asn Ser Gly Thr Thr Met 100 105 110	
Arg Leu Met Leu Gly Leu Leu Ala Gly Gln Lys Asp Cys Leu Phe Thr 115 120 125	
Val Thr Gly Asp Asp Ser Leu Arg His Arg Pro Met Ser Arg Val Ile 130 135 140	
Gln Pro Leu Gln Gln Met Gly Ala Lys Ile Trp Ala Arg Ser Asn Gly 145 150 155 160	
Lys Phe Ala Pro Leu Ala Val Gln Gly Ser Gln Leu Lys Pro Ile His 165 170 175	

147

Tyr His Ser Pro Ile Ala Ser Ala Gln Val Lys Ser Cys Leu Leu Leu 180 185 190	
Ala Gly Leu Thr Thr Glu Gly Asp Thr Thr Val Thr Glu Pro Ala Leu 195 200 205	
Ser Arg Asp His Ser Glu Arg Met Leu Gln Ala Phe Gly Ala Lys Leu 210 225 220	
Thr Ile Asp Pro Val Thr His Ser Val Thr Val His Gly Pro Ala His 225 230 235 240	
Leu Thr Gly Gln Arg Val Val Val Pro Gly Asp Ile Ser Ser Ala Ala 245 250 255	
Phe Trp Leu Val Ala Ala Ser Ile Leu Pro Gly Ser Glu Leu Leu Val 260 265 270	
Glu Asn Val Gly Ile Asn Pro Thr Arg Thr Gly Val Leu Glu Val Leu 275 280 285	
Ala Gln Met Gly Ala Asp Ile Thr Pro Glu Asn Glu Arg Leu Val Thr 290 295 300	
Gly Glu Pro Val Ala Asp Leu Arg Val Arg Ala Ser His Leu Gln Gly 305 310 315 320	
Cys Thr Phe Gly Gly Glu Ile Ile Pro Arg Leu Ile Asp Glu Ile Pro 325 330 335	
Ile Leu Ala Val Ala Ala Ala Phe Ala Glu Gly Thr Thr Arg Ile Glu 340 345 350	
Asp Ala Ala Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ala Ala Ile 355 360 365	
Ala Ser Glu Leu Gly Lys Met Gly Ala Lys Val Thr Glu Phe Asp Asp 370 375 380	
Gly Leu Glu Ile Gln Gly Gly Ser Pro Leu Gln Gly Ala Glu Val Asp 385 390 395 400	
Ser Leu Thr Asp His Arg Ile Ala Met Ala Leu Ala Ile Ala Ala Leu 405 410 415	
Gly Ser Gly Gly Gln Thr Ile Ile Asn Arg Ala Glu Ala Ala Ile 420 425 430	
Ser Tyr Pro Glu Phe Phe Gly Thr Leu Gly Gln Val Ala Gln Gly 435 440 445	
<pre><210> SEQ ID NO 68 <211> LENGTH: 1479 <212> TYPE: DNA <213> ORGANISM: Dichelobacter nodosus <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (107)(1438) </pre>	
tttaaaaaca atgagttaaa aaattatttt tctggcacac gcgctttttt tgcattttt	60
ctcccatttt tccggcacaa taacgttggt tttataaaag gaaatg atg atg acg Met Met Thr 1	115
aat ata tgg cac acc gcg ccc gtc tct gcg ctt tcc ggc gaa ata acg Asn Ile Trp His Thr Ala Pro Val Ser Ala Leu Ser Gly Glu Ile Thr 5 10 15	163
ata tgc ggc gat aaa tca atg tcg cat cgc gcc tta tta tta gca gcg Ile Cys Gly Asp Lys Ser Met Ser His Arg Ala Leu Leu Ala Ala 20 25 30 35	211
tta gca gaa gga caa acg gaa atc cgc ggc ttt tta gcg tgc gcg gat Leu Ala Glu Gly Gln Thr Glu Ile Arg Gly Phe Leu Ala Cys Ala Asp	259

												_	con	tin [.]	ued				
_					40					45					50				
						caa Gln											307		
						gtg Val											355		
	.n					ccg Pro											403		
	g					att Ile 105											451		
						tta Leu											499		
						ggg Gl y											547		
						tca Ser											595		
	eu					gcg Ala											643		
	eu	_	-	_		acc Thr 185	_		_			-			_	-	691		
						atg Met											739		
						atc Ile											787		
						ggc Gl y											835		
	a.					ccg Pro											883		
	е.					gcg Ala 265											931		
				-	_	cat His		_	-				-	-	_		979		
						tat Tyr											1027		
						aac Asn											1075		
	.a					gaa Glu											1123		
	eu .	-			_	tcg Ser 345	_	-				-					1171		
Cē	ıa	act	ttg	ggc	gtg	gcg	tgc	gac	gtt	ggc	gcc	gat	ttt	att	cat	ata	1219		

151 152

-continued	
Gln Thr Leu Gly Val Ala Cys Asp Val Gly Ala Asp Phe Ile His Ile 360 365 370	
tat gga aga agc gat cgg caa ttt tta ccg gcg cgg gtg aac agt ttt Tyr Gly Arg Ser Asp Arg Gln Phe Leu Pro Ala Arg Val Asn Ser Phe 375 380 385	1267
ggc gat cat cgg att gcg atg agt ttg gcg gtg gca ggt gtg cgc gcg Gly Asp His Arg Ile Ala Met Ser Leu Ala Val Ala Gly Val Arg Ala 390 395 400	1315
gca ggt gaa tta ttg att gat gac ggc gcg gtg gcg gcg gtt tct atg Ala Gly Glu Leu Leu Ile Asp Asp Gly Ala Val Ala Ala Val Ser Met 405 410 415	1363
ccg caa ttt cgc gat ttt gcc gcc gca att ggt atg aat gta gga gaa Pro Gln Phe Arg Asp Phe Ala Ala Ala Ile Gly Met Asn Val Gly Glu 420 425 430 435	1411
aaa gat gcg aaa aat tgt cac gat tga tggtcctagc ggtgttggaa Lys Asp Ala Lys Asn Cys His Asp 440	1458
aaggcacggt ggcgcaagct t	1479
<210> SEQ ID NO 69 <211> LENGTH: 443 <212> TYPE: PRT	
<213> ORGANISM: Dichelobacter nodosus	
<400> SEQUENCE: 69	
Met Met Thr Asn Ile Trp His Thr Ala Pro Val Ser Ala Leu Ser Gly 1 5 10 15	
Glu Ile Thr Ile Cys Gly Asp Lys Ser Met Ser His Arg Ala Leu Leu 20 25 30	
Leu Ala Ala Leu Ala Glu Gly Gln Thr Glu Ile Arg Gly Phe Leu Ala 35 40 45	
Cys Ala Asp Cys Leu Ala Thr Arg Gln Ala Leu Arg Ala Leu Gly Val 50 55 60	
Asp Ile Gln Arg Glu Lys Glu Ile Val Thr Ile Arg Gly Val Gly Phe 65 70 75 80	
Leu Gly Leu Gln Pro Pro Lys Ala Pro Leu Asn Met Gln Asn Ser Gly 85 90 95	
Thr Ser Met Arg Leu Leu Ala Gly Ile Leu Ala Ala Gln Arg Phe Glu 100 105 110	
Ser Val Leu Cys Gly Asp Glu Ser Leu Glu Lys Arg Pro Met Gln Arg 115 120 125	
Ile Ile Thr Pro Leu Val Gln Met Gly Ala Lys Ile Val Ser His Ser 130 135 140	
Asn Phe Thr Ala Pro Leu His Ile Ser Gly Arg Pro Leu Thr Gly Ile 145 150 155 160	
Asp Tyr Ala Leu Pro Leu Pro Ser Ala Gln Leu Lys Ser Cys Leu Ile 165 170 175	
Leu Ala Gly Leu Leu Ala Asp Gly Thr Thr Arg Leu His Thr Cys Gly 180 185 190	
Ile Ser Arg Asp His Thr Glu Arg Met Leu Pro Leu Phe Gly Gly Ala 195 200 205	
Leu Glu Ile Lys Lys Glu Gln Ile Ile Val Thr Gly Gly Gln Lys Leu 210 215 220	
His Gly Cys Val Leu Asp Ile Val Gly Asp Leu Ser Ala Ala Ala Phe 225 230 235 240	
Phe Met Val Ala Ala Leu Ile Ala Pro Arg Ala Glu Val Val Ile Arg	

153 154

-continued 245 250 255

Asn	Val	Gly	Ile 260	Asn	Pro	Thr	Arg	Ala 265	Ala	Ile	Ile	Thr	Leu 270	Leu	Gln
Lys	Met	Gly 275	Gly	Arg	Ile	Glu	Leu 280	His	His	Gln	Arg	Phe 285	Trp	Gly	Ala
Glu	Pro 290	Val	Ala	Asp	Ile	Val 295	Val	Tyr	His	Ser	L y s 300	Leu	Arg	Gly	Ile
Thr 305	Val	Ala	Pro	Glu	Trp 310	Ile	Ala	Asn	Ala	Ile 315	Asp	Glu	Leu	Pro	Ile 320
Phe	Phe	Ile	Ala	Ala 325	Ala	Cys	Ala	Glu	Gl y 330	Thr	Thr	Phe	Val	Gl y 335	Asn
Leu	Ser	Glu	Leu 340	Arg	Val	Lys	Glu	Ser 345	Asp	Arg	Leu	Ala	Ala 350	Met	Ala
Gln	Asn	Leu 355	Gln	Thr	Leu	Gly	Val 360	Ala	Cys	Asp	Val	Gly 365	Ala	Asp	Phe
Ile	His 370	Ile	Tyr	Gly	Arg	Ser 375	Asp	Arg	Gln	Phe	Leu 380	Pro	Ala	Arg	Val
Asn 385	Ser	Phe	Gly	Asp	His 390	Arg	Ile	Ala	Met	Ser 395	Leu	Ala	Val	Ala	Gly 400
Val	Arg	Ala	Ala	Gly 405	Glu	Leu	Leu	Ile	Asp 410	Asp	Gly	Ala	Val	Ala 415	Ala
Val	Ser	Met	Pro 420	Gln	Phe	Arg	Asp	Phe 425	Ala	Ala	Ala	Ile	Gly 430	Met	Asn
Val	Gly	Glu 435	Lys	Asp	Ala	Lys	Asn 440	Cys	His	Asp					
<211 <212 <213 <220 <223)> SE L> LE 2> TY 3> OF)> FE 3> OT)> SE	PE: RGANI CATUR CHER	FRT SM: SE: INFO	Arti ORMAT			_								
Met 1	Leu	His	Gly	Ala 5	Ser	Ser	Arg	Pro	Ala 10	Thr	Ala	Arg	Lys	Ser 15	Ser
Gly	Leu	Ser	Gly 20	Thr	Val	Arg	Ile	Pro 25	Gly	Asp	Lys	Ser	Ile 30	Ser	His
Arg	Ser	Phe 35	Met	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	Arg	Ile	Thr
Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	Asn	Thr	Gly 60	Lys	Ala	Met	Gln
Ala 65	Met	Gly	Ala	Arg	Ile 70	Arg	Lys	Glu	Gly	Asp 75	Thr	Trp	Ile	Ile	Asp 80
Gly	Val	Gly	Asn	Gly 85	Gly	Leu	Leu	Ala	Pro 90	Glu	Ala	Pro	Leu	Asp 95	Phe
Gly	Asn	Ala	Ala 100	Thr	Gly	Cys	Arg	Leu 105	Thr	Met	Gly	Leu	Val 110	Gly	Val
Tyr	Asp	Phe 115	Asp	Ser	Thr	Phe	Ile 120	Gly	Asp	Ala	Ser	Leu 125	Thr	Lys	Arg
Pro	Met 130	Gly	Arg	Val	Leu	Asn 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	Val
L y s 145	Ser	Glu	Asp	Gly	Asp 150	Arg	Leu	Pro	Val	Thr 155	Leu	Arg	Gly	Pro	L y s 160

Thr Pro Thr Pro Ile Thr Tyr Arg Val Pro Met Ala Ser Ala Gln Val

155 156

-continued

_																
					165					170					175	
L	ys	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Asn	Thr	Pro	Gly	Ile 190	Thr	Thr
V	al	Ile	Glu 195	Pro	Ile	Met	Thr	Arg 200	Asp	His	Thr	Glu	Lys 205	Met	Leu	Gln
G	ly	Phe 210	Gly	Ala	Asn	Leu	Thr 215	Val	Glu	Thr	Asp	Ala 220	Asp	Gly	Val	Arg
	hr 25	Ile	Arg	Leu	Glu	Gly 230	Arg	Gly	Lys	Leu	Thr 235	Gly	Gln	Val	Ile	Asp 240
V	al	Pro	Gly	Asp	Pro 245	Ser	Ser	Thr	Ala	Phe 250	Pro	Leu	Val	Ala	Ala 255	Leu
L	eu	Val	Pro	Gl y 260	Ser	Asp	Val	Thr	Ile 265	Leu	Asn	Val	Leu	Met 270	Asn	Pro
Т	hr	Arg	Thr 275	Gly	Leu	Ile	Leu	Thr 280	Leu	Gln	Glu	Met	Gl y 285	Ala	Asp	Ile
G	lu	Val 290	Ile	Asn	Pro	Arg	Leu 295	Ala	Gly	Gly	Glu	Asp 300	Val	Ala	Asp	Leu
	rg 05	Val	Arg	Ser	Ser	Thr 310	Leu	Lys	Gly	Val	Thr 315	Val	Pro	Glu	Asp	Arg 320
A	la	Pro	Ser	Met	Ile 325	Asp	Glu	Tyr	Pro	Ile 330	Leu	Ala	Val	Ala	Ala 335	Ala
P	he	Ala	Glu	Gl y 340	Ala	Thr	Val	Met	Asn 345	Gly	Leu	Glu	Glu	Leu 350	Arg	Val
L	ys	Glu	Ser 355	Asp	Arg	Leu	Ser	Ala 360	Val	Ala	Asn	Gly	Leu 365	Lys	Leu	Asn
G	ly	Val 370	Asp	Cys	Asp	Glu	Gl y 375	Glu	Thr	Ser	Leu	Val 380	Val	Arg	Gly	Arg
	ro 85	Asp	Gly	Lys	Gly	Leu 390	Gly	Asn	Ala	Ser	Gl y 395	Ala	Ala	Val	Ala	Thr 400
Н	is	Leu	Asp	His	Arg 405	Ile	Ala	Met	Ser	Phe 410	Leu	Val	Met	Gly	Leu 415	Val
s	er	Glu	Asn	Pro 420	Val	Thr	Val	Asp	Asp 425	Ala	Thr	Met	Ile	Ala 430	Thr	Ser
P	he	Pro	Glu 435	Phe	Met	Asp	Leu	Met 440	Ala	Gly	Leu	Gly	Ala 445	Lys	Ile	Glu
L	eu	Ser 450	Asp	Thr	Lys	Ala	Ala 455									

50

We claim:

- 1. An isolated DNA molecule which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 2. [A] The DNA molecule of claim 1 having the sequence of SEQ ID NO:2.
- 3. [A] The DNA molecule of claim 1 having the sequence 55 of SEQ ID NO:9.
- 4. A recombinant, double-stranded DNA molecule comprising in sequence:
 - a) a promoter which functions in plant cells to cause the $_{60}$ production of an RNA sequence;
 - b) a structural DNA sequence that causes the production of an RNA sequence which encodes a EPSPS enzyme having the sequence domains:
 - -R-X₁-H-X₂-E-(SEQ ID NO:37), in which X_1 is G, S, T, C, Y, N, Q, D or E; X₂ is S or T; and

- -G-D-K-X₃-(SEQ ID NO:38), in which X₃ is S or T; and
- -S-A-Q-X₄-K-(SEQ ID NO:39), in which
- X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and -N-X₅-T-R-(SEQ ID NO:40), in which
- - X₅ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V
- provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, S, T, W, Y, or V; and
- c) a 3' non-translated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence;
- where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient 65 expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule.

157

- **5. [A]** *The* DNA molecule of claim **4** in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- **6.** [A] The DNA molecule of claim **4** in which X_1 is D or S_1 N; S_2 is S or T; S_3 is S or T; S_4 is V, I or L; and S_5 is P or Q, provided that when S_1 is D, S_2 is T, S_3 is S, and S_4 is V, then S_5 is Q.
- [7. A DNA molecule of claim 6 in which the structural DNA sequence encodes an EPSPS enzyme selected from the 10 group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.]
- **8.** [A] The DNA molecule of claim **5** in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is X_5 15 V, then X_5 is Q.
- [9. A DNA molecule of claim 8 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.]
- 10. [A] The DNA molecule of claim [8] 137 in which the EPSPS [sequence is] enzyme has the sequence set forth in SEQ ID NO:3.
- 11. [A] *The* DNA molecule of claim [10] 4 in which the promoter is a plant DNA virus promoter.
- 12. [A] *The* DNA molecule of claim 11 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- **13. [A]** *The* DNA molecule of claim **[10]** 5 in which the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11 and SEQ ID NO:15.
- **14.** [A] *The* DNA molecule of claim **13** in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- **15**. A method of producing genetically transformed plants which are tolerant toward glyphosate herbicide, comprising the steps of:
 - a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence domains:
 - -R- X_1 -H- X_2 -E-(SEQ ID NO:37), in which

X₁ is G, S, T, C, Y, N, Q, D or E;

 X_2 is S or T; and

-G-D-K-X₃-(SEQ ID NO:38), in which

X₃ is S or T; and

-S-A-Q-X₄-K-(SEQ ID NO:39), in which

X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and

-N-X₅-T-R-(SEQ ID NO:40), in which

 X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, 55 S, T, W, Y or V, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, S, T, W, Y or V; and

iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of 60 polyadenyl nucleotides to the 3' end of the RNA sequence;

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the polypeptide to enhance the glyphosate 65 tolerance of a plant cell transformed with the DNA molecule:

- b) obtaining a transformed plant cell; and
- c) regenerating from the transformed plant cell a genetically transformed plant which has increased tolerance to glyphosate herbicide.
- **16.** [A] The method of claim **15** in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_5 is O.
- [17. A method of claim 16 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.]
- **18**. **[A]** *The* method of claim **15** in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- **19. [A]** The method of claim **18** in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_4 is O.
- [20. A method of claim 19 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:42 and SEQ ID NO:44.]
- 21. [A] *The* method of claim [19] *143* in which the EPSPS enzyme is that set forth in SEQ ID NO:3.
- **22.** [A] *The* method of claim [21] *15* in which the promoter is from a plant DNA virus.
- 23. [A] *The* method of claim 22 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 24. A glyphosate-tolerant plant cell comprising [a] the DNA molecule of [claims] claim 4, 5 or 8[or 10].
- 25. [A] *The* glyphosate-tolerant plant cell of claim 24 in which the promoter is a plant DNA virus promoter.
- **26.** [A] *The* glyphosate-tolerant plant cell of claim **25** in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 27. [A] *The* glyphosate-tolerant plant cell of claim 24 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, [eukalyptus] *eucalyptus*, apple, lettuce, peas, lentils, grape and turf grasses.
- **28**. A glyphosate-tolerant plant comprising *the* plant [cells] *cell* of claim **27**.
- 29. [A] *The* glyphosate-tolerant plant of claim 28 in which the promoter is from a DNA plant virus promoter.
- **30.** [A] *The* glyphosate-tolerant plant of claim **29** in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 31. [A] *The* glyphosate-tolerant plant of claim 30 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, [eukalyptus] *eucalyptus*, apple, lettuce, peas, lentils, grape and turf grasses.
- **32**. A method for selectively controlling weeds in a field containing a crop having plant crop seeds or plants comprising the steps of:
 - a) planting the crop seeds or plants which are glyphosatetolerant as a result of a recombinant double-stranded DNA molecule being inserted into the crop seed or plant, the DNA molecule having:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence domains:

159

-R-X₁-H-X₂-E-(SEQ ID NO:37), in which X_1 is G, S, T, C, Y, N, Q, D or E; X_2 is S or T; and -G-D-K-X₃-(SEQ ID NO:38), in which

 X_3 is S or T; and -S-A-Q-X₄-K-(SEQ ID NO:39), in which

X₄ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y or V; and

-N-X₅-T-R-(SEQ ID NO:40), in which

X₅ is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, 10 S, T, W, Y or V, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_5 is A, R, N, D, C, Q, E, G, H, I, L, K, M, F, S, T, W, Y or V; and

iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of 15 and FMV 35S promoters. polyadenyl nucleotides to the 3' end of the RNA

where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSPS enzyme to enhance the glyphosate 20 non-translated region is selected from the group consisting tolerance of the crop plant transformed with the DNA molecule; and

- b) applying to the crop and weeds in the field a sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop.
- 33. [A] The method of claim 32 in which X₁ is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then X_5 is Q.
- [34. A method of claim 33 in which the structural DNA 30 sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:42 and SEQ ID NO:44.]
- 35. [A] The method of claim 32 in which the structural DNA sequence encodes a fusion polypeptide comprising an 35 amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- **36.** [A] The method of claim **35** in which X_1 is D or N; X_2 is S or T; X_3 is S or T; X_4 is V, I or L; and X_5 is P or Q, provided that when X_1 is D, X_2 is T, X_3 is S, and X_4 is V, then 40 DNA sequence encodes an EPSPS enzyme selected from the X_5 is Q.
- [37. A method of claim 36 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 38. [A] The method of claim [36] 155 in which the DNA molecule encodes an EPSPS enzyme as set forth in SEQ ID NO:3.
- 39. [A] The method of claim [38] 32 in which the DNA molecule further comprises a promoter selected from the 50 group consisting of the CAMV35S and FMV35S promoters.
- **40**. [A] *The* method of claim **39** in which the crop plant is selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, 55 [eukalyptus] eucalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
- 41. [A] The DNA molecule of claim 5 in which the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, 60 SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17.
- 42. [A] The DNA molecule of claim 41 in which the chloroplast transit peptide is encoded by a DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16.
- 43. [A] The DNA molecule of claim 5 in which the structural DNA sequence encodes a chloroplast transit pep-

160

tide selected from the group consisting of SEQ ID NO:11 and SEQ ID NO:15.

- 44. [A] The DNA molecule of claim 43 in which the chloroplast transit peptide is encoded by a DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14.
- 45. [A] The DNA molecule of claim 41 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- **46.** [A] *The* DNA molecule of claim **42** in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 47. [A] The DNA molecule of claim 43 in which the promoter is selected from the group consisting of CaMV 35S
- 48. [A] The DNA molecule of claim 44 in which the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters.
- 49. [A] The DNA molecule of claim 45 in which the 3' of the NOS 3' and the E9 3' non-translated regions.
- 50. [A] The DNA molecule of claim 46 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 51. [A] The DNA molecule of claim 47 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 52. [A] The DNA molecule of claim 48 in which the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- [53. A DNA molecule of claim 49 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.]
- [54. A DNA molecule of claim 50 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.]
- [55. A DNA molecule of claim 51 in which the structural group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:42 and SEQ ID NO:44.]
- [56. A DNA molecule of claim 52 in which the structural DNA sequence encodes an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEO ID NO:42 and SEO ID NO:44.1
- 57. [A] The DNA molecule of claim [53] 137 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43].
- 58. [A] The DNA molecule of claim [54] 137 in which the structural DNA sequence contains an EPSPS encoding sequence [selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43] as set forth in SEQ ID NO:9.
- [59. A DNA molecule of claim 55 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.]
- [60. A DNA molecule of claim 56 in which the structural DNA sequence contains an EPSPS coding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.]
- [61. A DNA molecule of claim 49 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.

161

- [62. A DNA molecule of claim 50 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.
- [63. A DNA molecule of claim 51 in which the structural DNA sequence encodes an EPSPS enzyme having the 5 sequence of SEQ ID NO:3.]
- [64. A DNA molecule of claim 52 in which the structural DNA sequence encodes an EPSPS enzyme having the sequence of SEQ ID NO:3.]
- **[65**. A DNA molecule of claim **61** in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- [66. A DNA molecule of claim 62 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and 15 SEQ ID NO:9.]
- [67. A DNA molecule of claim 63 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.]
- [68. A DNA molecule of claim 64 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2 and SEQ ID NO:9.
- **69**. **[A]** The glyphosate-tolerant plant cell of claim **[25]** ²⁵ 149 in which:
 - (a) the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters;
 - (b) the structural DNA sequence encodes:
 - (i) a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17; and
 - (ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7[, SEQ ID NO:42 and SEQ ID NO:44]; and
 - (c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 70. [A] The glyphosate-tolerant plant cell of claim 69 in wherein the seed comprises the recombinant DNA molecule. which the structural DNA sequence comprises:
 - (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16;
 - (b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43
- 71. [A] The glyphosate-tolerant plant cell of claim 69 in which the structural DNA sequence comprises:
 - (a) a chloroplast transist peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14; and
 - (b) a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 72. [A] The glyphosate-tolerant plant cell of claim 71 in which the structural DNA sequence comprises an EPSPS encoding sequence [selected from the group consisting of SEQ ID NO:2 and as set forth in SEQ ID NO:9.
- 73. [A] The glyphosate-tolerant plant cell of claim 71 60 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, [eukalyptus] eucalyptus, apple, lettuce, peas, lentils, grape and turf grasses.
- 74. A glyphosate-tolerant plant comprising [a] the DNA molecule of [claims 5, 8 or 10] claim 131 in which:

- (a) the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters:
- (b) the structural DNA sequence encodes[:];
- (i) a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17; and
- (ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7[, SEQ ID NO:42 and SEQ ID NO:44]; and
- (c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 75. [A] *The* glyphosate-tolerant plant of claim 74 in which the structural DNA sequence comprises:
 - (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16;
 - (b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:6, SEQ ID NO:41 and SEQ ID NO:43.
- 76. [A] The glyphosate-tolerant plant of claim 75 in which the structural DNA sequence comprises:
 - (a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10 and SEQ ID NO:14; and
 - (b) a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO:3.
- 77. [A] The glyphosate-tolerant plant of claim [76] 74 in 30 which the structural DNA sequence comprises an EPSPS encoding sequence [selected from the group consisting of SEQ ID NO:2 and as set forth in SEQ ID NO:9.
 - 78. [A] The glyphosate-tolerant plant of claim [77] 74 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, [eukalyptus] eucalyptus, apple, lettuce, peas, lentils, grape and turf grasses
 - 79. A seed of [a] the glyphosate-tolerant plant of claim 28,
 - **80**. A seed of [a] *the* glyphosate-tolerant plant of claim **31**, wherein the seed comprises the recombinant DNA molecule.
 - 81. A seed of [a] the glyphosate-tolerant plant of claim 75, wherein the seed comprises the recombinant DNA molecule.
 - **82**. A seed of [a] *the* glyphosate-tolerant plant of claim 76, wherein the seed comprises the recombinant DNA molecule.
 - 83. A seed of [a] the glyphosate-tolerant plant of claim 77, wherein the seed comprises the recombinant DNA molecule.
- **84**. A seed of [a] *the* glyphosate-tolerant plant of claim 50 [78] 129, wherein the seed comprises the recombinant DNA
 - **85**. A seed of [a] *the* glyphosate-tolerant plant of claim [79] 144, wherein the seed comprises the recombinant DNA molecule.
 - [86. A transgenic soybean plant which contains a heterologous gene which encodes an EPSPS enzyme having a K_m for phosphoenolpyruvate (PEP) between 1 and 150 μM and a K_i (glyphosate)/ K_m (PEP) ratio between about 2 and 500, plant exhibiting tolerance said N-phosphonomethylglycine herbicide at a rate of 1 lb/acre without significant yield reduction due to herbicide application.
 - [87. Seed of a soybean plant of claim 86.]
- 88. The DNA molecule of claim 6 in which the structural 65 DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.

163

- 89. The DNA molecule of claim 8 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.
- 90. The method of claim 16 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.
- 91. The method of claim 19 in which the structural DNA sequence encodes an EPSPS enzyme having a sequence selected from the group consisting of SEQ ID NO:42 and SEO ID NO:44.
- 92. The method of claim 33 in which the structural DNA sequence encodes an EPSPS enzyme having a sequence selected from the group consisting of SEQ ID NO:42 and SEQ ID NO:44.
- 93. The method of claim 36 in which the structural DNA sequence contains an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.
- 94. The DNA molecule of claim 49 in which the structural ²⁰ DNA sequence encodes an EPSPS enzyme having a sequence selected from the group consisting of SEQ ID NO: 42 and SEO ID NO: 44.
- 95. The DNA molecule of claim 50 in which the structural DNA sequence encodes an EPSPS enzyme having a ²⁵ sequence selected from the group consisting of SEQ ID NO: 42 and SEQ ID NO: 44.
- 96. The DNA molecule of claim 51 in which the structural DNA sequence encodes an EPSPS enzyme having a sequence selected from the group consisting of SEQ ID NO: ³⁰ 42 and SEQ ID NO: 44.
- 97. The DNA molecule of claim 52 in which the structural DNA sequence encodes an EPSPS enzyme having a sequence selected from the group consisting of SEQ ID NO: 42 and SEQ ID NO: 44.
- 98. The glyphosate-tolerant plant cell of claim 25 in which:
 - a) the promoter is selected from the group consisting of CaMV 35S and FMV 35S promoters;
 - b) the structural DNA sequence encodes:
 - a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17; and
 - ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:42 and SEQ ID NO:44; and
 - c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 99. The glyphosate-tolerant plant cell of claim 26 in 50 which the structural DNA sequence comprises:
 - a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16; and
 - b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.
- 100. The glyphosate-tolerant plant comprising the DNA molecule of claim 4, 5 or 8 in which:
 - a) the promoter is selected from the group consisting of 60 CaMV 35S and FMV 35S promoters;
 - b) the structural DNA sequence encodes:
 - i) a chloroplast transit peptide selected from the group consisting of SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15 and SEQ ID NO:17; and
 - ii) an EPSPS enzyme selected from the group consisting of SEQ ID NO:42 and SEQ ID NO:44; and

- c) the 3' non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
- 101. The glyphosate-tolerant plant of claim 28 in which 5 the structural DNA sequence comprises:
 - a) a chloroplast transit peptide encoding DNA sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16;
 - b) an EPSPS encoding sequence selected from the group consisting of SEQ ID NO:41 and SEQ ID NO:43.
 - 102. An isolated DNA molecule that encodes a 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme having the sequence of SEQ ID NO:70.
 - 103. A recombinant, double-stranded DNA molecule comprising in sequence:
 - a) a promoter which functions in plant cells to cause the production of an RNA sequence;
 - b) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO:70; and
 - c) a 3' non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence;
 - where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule.
 - 104. The DNA molecule of claim 103, wherein the structural DNA sequence further causes the production of an RNA sequence that encodes an amino-terminal chloroplast transit peptide that is fused to the EPSPS enzyme.
- 105. The DNA molecule of claim 104, wherein the chloroplast transit peptide has the sequence of SEQ ID NO:11 or SEQ ID NO:15.
- 106. The DNA molecule of claim 103, wherein the promoter is a plant DNA virus promoter.
- 107. The DNA molecule of claim 106, wherein the promoter is a CaMV35S promoter or an FMV35S promoter.
- 108. The DNA molecule of claim 103, wherein the 3' non-translated region is a NOS 3' or an E9 3' non-translated region.
- 109. A method of producing a genetically transformed plant which is tolerant toward glyphosate herbicide, comprising the steps of:
 - a) inserting into the genome of a plant cell a recombinant double-stranded DNA molecule comprising:
 - i) a promoter that functions in plant cells to cause the production of an RNS sequence;
 - ii) a structural DNA sequence that causes the production of an RNS sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO: 70; and
 - iii) a 3' non-translated DNA sequence that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNS sequence;
 - wherein the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the polypeptide to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule;
 - b) obtaining a transformed plant cell; and
 - c) regenerating from the transformed plant cell a genetically transformed plant which has increased tolerance to glyphosate herbicide.

165

- 110. The method of claim 109, wherein the structural DNA further causes the production of an RNA sequence that encodes an amino-terminal chloroplast transit peptide that is fused to the EPSPS enzyme.
- 111. The method of claim 110, wherein the chloroplast 5 transit peptide has the sequence of SEQ ID NO:11 or SEQ ID NO:15.
- 112. The method of claim 109, in which the promoter is a plant DNA virus promoter.
- 113. The method of claim 112, in which the promoter is a $_{10}$ CaMV35S promoter or an FMV35S promoter.
- 114. The method of claim 109, wherein the 3' nontranslated DNA sequence is a NOS 3' or an E9 3' nontranslated sequence.
- 115. A glyphosate-tolerant plant cell comprising a DNA 15 sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO: 70.
- 116. A glyphosate-tolerant plant comprising a DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO: 70.
- 117. The plant of claim 116, wherein the plant is corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eucalyptus, apple, lettuce, peas, lentils, grape or turf grasses.
 - 118. The plant of claim 117, wherein the plant is corn.
 - 119. The plant of claim 117, wherein the plant is soybean.
 - 120. The plant of claim 117, wherein the plant is canola.
 - 121. The plant of claim 117, wherein the plant is cotton.
- 122. A seed of the plant of claim 116, wherein the seed 30 comprises the DNA sequence encoding an EPSPS enzyme having the sequence of SEQ ID NO: 70.
- 123. The seed of claim 122, wherein the seed is corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, poplar, pine, eucalyptus, apple, lettuce, peas, lentils, grape or turf grass seed.
 - 124. The seed of claim 123, wherein the seed is corn seed.
- 125. The seed of claim 123, wherein the seed is soybean
- 126. The seed of claim 123, wherein the seed is canola seed.
- 127. The seed of claim 123, wherein the seed is cotton seed.
- 128. A glyphosate tolerant plant cell comprising the 45 recombinant DNA molecule of claim 103.
- 129. A plant comprising the glyphosate tolerant plant cell of claim 128.
- 130. A method for selectively controlling weeds in a field containing a crop having planted crop seeds or plants 50 comprising the steps of:
 - a) planting the crop seeds or plants which are glyphosatetolerant as a result of a recombinant double-stranded DNA molecule being inserted into the crop seed or plant, the DNA molecule having:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO:70; and 60
 - iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence,
 - where the promoter is heterologous with respect to the 65 structural DNA sequence and adapted to cause sufficient expression of the EPSPS enzyme to enhance the

- glyphosate tolerance of the crop plant transformed with the DNA molecule; and
- b) applying to the crop and weeds in the field a sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop.
- 131. A recombinant, double-stranded DNA molecule comprising in sequence:
 - a) a promoter which functions in plant cells to cause the production of an RNA sequence;
 - b) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO: 7;
 - c) a 3' non-translated region which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence;
 - where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the encoded EPSPS enzyme to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule.
- 132. The DNA molecule of claim 131 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS enzyme.
- 133. The DNA molecule of claim 131 in which the promoter is a plant DNA virus promoter.
- 134. The DNA molecule of claim 133 in which the promoter is selected from the group consisting of CaMV35S and FMV35S promoters.
- 135. The DNA molecule of claim 132 in which the structural DNA sequence encodes a chloroplast transit peptide selected from the group consisting of SEQ ID NO: 11 and SEQ ID NO: 15.
- 136. The DNA molecule of claim 131 in which the 3' canola, flax, sunflower, potato, tobacco, tomato, alfalfa, 35 non-translated region is selected from the group consisting of the NOS 3' and the E9 3' non-translated regions.
 - 137. A method of producing genetically transformed plants which are tolerant toward glyphosate herbicide, comprising the steps of:
 - a) inserting into the genome of a plant cell a recombinant, double-stranded DNA molecule comprising:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:7; and
 - iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA
 - where the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the polypeptide to enhance the glyphosate tolerance of a plant cell transformed with the DNA molecule;
 - b) obtaining a transformed plant cell; and
 - c) regenerating from the transformed plant cell a genetically transformed plant which has increased tolerance to glyphosate herbicide.
 - 138. The method of claim 137 in which the structural DNA sequence encodes a fusion polypeptide comprising an amino-terminal chloroplast transit peptide and the EPSPS
 - 139. The method of claim 130, wherein the chloroplast transit peptide has the sequence of SEQ ID NO: 11 or SEQ ID NO: 15.

167

- 140. The method of claim 137 in which the promoter is a plant DNA virus.
- 141. The method of claim 140 in which the promoter is a CaMV35S promoter or a FMV35S promoter.
- 142. The method of claim 137, wherein the 3' non-5 translated DNA sequence is a NOS 3' or an e9 3' non-translated sequence.
- 143. A glyphosate-tolerant plant cell comprising the DNA molecule of claim 131.
- 144. A plant comprising the glyphosate-tolerant plant cell 10 of claim 143.
- 145. A glyphosate-tolerant plant cell comprising an EPSPS enzyme having the sequence of SEQ ID NO:3, SEQ ID NO:5 or SEQ ID NO:7.
- 146. A glyphosate-tolerant plant comprising an EPSPS 15 enzyme having the sequence of SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7.
- 147. The glyphosate-tolerant plant cell of claim 143 or 145 selected from the group consisting of corn, wheat, rice, barley, soybean, cotton, sugarbeet, oilseed rape, canola, 20 flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eucalyptus, apple, lettuce, peas, lentils, grape, and turf grasses.
- 148. The glyphosate-tolerant plant of claim 144 or 146 selected from the group consisting of corn, wheat, rice, 25 barley, soybean, cotton, sugarbeet, oilseed rape, canola, flax, sunflower, potato, tobacco, tomato, alfalfa, poplar, pine, eucalyptus, apple, lettuce, peas, lentils, grapes, and turf grasses.

168

- 149. A method for selectively controlling weeds in a field containing a crop having planted crop seeds or plants comprising the steps of:
 - a) planting the crop seeds or plants which are glyphosatetolerant as a result of a recombinant double-stranded DNA molecule being inserted into the crop seed or plant, the DNA molecule having:
 - i) a promoter which functions in plant cells to cause the production of an RNA sequence,
 - ii) a structural DNA sequence that causes the production of an RNA sequence which encodes an EPSPS enzyme having the sequence of SEQ ID NO:3, SEQ ID NO:5, or SEQ ID NO:7; and
 - iii) a 3' non-translated DNA sequence which functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence,
 - wherein the promoter is heterologous with respect to the structural DNA sequence and adapted to cause sufficient expression of the EPSPS enzyme to enhance the glyphosate tolerance of the crop plant transformed with the DNA molecule; and
 - b) applying to the crop and weeds in the field a sufficient amount of glyphosate herbicide to control the weeds without significantly affecting the crop.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : RE 39,247 E Page 1 of 1

APPLICATION NO.: 10/622201
DATED: August 22, 2006
INVENTOR(S): Gerard F. Barry et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Col. 157, in claim 10, line 1, replace "137" with --131--.

Col. 158, in claim 21, line 1, replace "143" with --137--.

Col. 158, in claim 32, line 2, replace "plant" with --planted--.

Col. 159, in claim 38, line 1, replace "155" with --149--.

Col. 160, in claim 57, line 1, replace "137" with --131--.

Col. 160, in claim 58, line 1, replace "137" with --131--.

Col. 161, in claim 69, line 2, replace "149" with --143--.

Col. 164, in claim 109, lines 7, 9 and 13, replace "RNS" with --RNA--.

Col. 166, in claim 139, line 1, replace "130" with --138--.

Signed and Sealed this

Third Day of July, 2007

JON W. DUDAS

Director of the United States Patent and Trademark Office