Tutorial: (function of a variable).

EXCI): Lot X be a random variable such that $X \cap \exp(X)$. Consider the transfermation $Y = X^{\frac{1}{2}}$. Find probability density function of the variable Y, where $\sqrt{70}$.

Solution: Let us recall the fundamental result as stated below:

Suppose that X is a continuous random variable with poly fx(oc). Let Y= 9(x) be variable with poly fx(oc). Let Y= 9(x) be a function of X such that 9(x) is either a function of X such that 9(x) is either strictly elecreasing. Then strictly increasing or strictly elecreasing. Then poly of Y is given by

 $f_{y}(y) = f_{x}(\tilde{g}'(y)) \left| \frac{d\tilde{g}'(y)}{dy} \right|.$

This is a very useful result for finding polf of transformed variable under the given framowak.

Let up solve the given problem. we are given X u exp(x). so we have $f_{\chi} = \frac{1}{\chi} e^{-\chi/\chi}$, oliver given transformation is $\gamma = g(x) = \chi^{/\gamma}$ $g(x) = \frac{1}{\gamma} x^{\frac{1}{\gamma}-1} > 0$

go given transfermation is strictly increasing. we can apply fundamental result as stated earlier. The inverse function

$$x = \overline{g}(y) = y^{2}.$$

Thus we have $f_{Y}(y) = f_{X}(\bar{y}(y)) | \bar{d}_{y}\bar{y}(y)| = f_{X}(y^{2}) \cdot \bar{y}y^{2} - 1$ $= f_{X}(\bar{y}^{2}) \cdot \bar{y}y^{2} - 1$

$$f_{\gamma}(y) = \frac{2}{\lambda} y^{2} + \frac{3}{2} \sqrt{\lambda}$$

$$0 \leq y \leq \infty$$

This is known as Weibull distribution?

(Yn Weibull(?, x).

This probability model is named after

Swedish Mathematician W, Weibull, who was the first person to use it as a post. model for describing strength of meterials. This distribution is many different applications of lifetimo analyin in Reliability theory. Now try to solve following problems. (ii) Let $\times n \exp(x)$. Consider the transformation $Y = (2x)^{1/2}$, $\times 70$. Find the pdf of random variable Y.

(Namo of polf of Y is Rayleigh dist Useful in communication system). (iii) Let Xun exp(1) then find pdf of Y=d-7/16g X, - DLXLD, OL7LD. Your answer for poly y is Gumbel (4,7) dist ribution.

EX: Let X follows a gamma distribution $G(\frac{3}{2},b)$ then find pdf of $Y=(\frac{4}{b})^{1/2}$ where b > 0.

[pof of y is known as Maxwell dist!]

Problem: Let $f_{X}(x) = 30x^{2}(1-x)^{2}$, o(x<1).

Consider the transfermation $Y = x^{2}$. Find poly of Y.

=) $Y = X^2$: $g(x) = x^2$ g'(x) = 2x > 0 \forall ockel 80 given transformation in the strictly increasing. Thus g'(y) = 5y : $g'(y) = \frac{1}{25y}$

 $f_{Y}(y) = f_{X}(\bar{g}(y)) \left| \frac{1}{2} \bar{g}(y) \right| = f_{X}(\bar{g}(y)) \left| \frac{1}{2} \bar{g}(y) \right| = f_{X}(\bar{g}(y)) \left| \frac{1}{2} \bar{g}(y) \right| = 30 \sqrt{9} (1 - \sqrt{9})^{2} \cdot \frac{1}{2} \cdot \frac$

Ex: Let x has pdf given by $f_{\chi}(x) = \frac{1}{2} e^{-|x|}, -\infty (x < \infty)$ Consider the transformation $Y = |x|^3$, then find the pdf of Y.

Solution: horse $g(x) = |x|^3$, $-2(x + \infty)$ = $5x^3$, $o(x + \infty)$ $(-x^3)$, $-\infty(x + \infty)$

Carridor two disjoint sets of X such an

 $\begin{array}{lll}
\cos(2x 2 \cos \frac{1}{2}\cos y) & -\cos(2x 2 \cos y) & -\cos(2x 2 \cos y) \\
Y &= 9(x) = x^{3} & y' = 9(x) = -x^{3} \\
9_{1}(y) &= y^{1/3} & 9_{1}(y) &= -y^{1/3} \\
\frac{d}{dy} g_{1}(y) &= \frac{1}{3} y^{-1/3} & \frac{d}{dy} g_{1}(y) &= -\frac{1}{3} y^{-1/3}
\end{array}$

 $-if_{Y}(y) = f_{X}(9iy) \left| \frac{d}{dy}i(y) + f_{X}(9iy) \left| \frac{d}{dy}i(y) \right|$ $= f_{X}(y^{1/3}) \frac{1}{3} y^{-2/3} + f_{X}(-y^{1/3}) \cdot \frac{1}{3} y^{-2/3} \right)$ $= \frac{1}{3} \left[e^{-y^{1/3}} \frac{1}{3} y^{-2/3} + e^{-y^{1/3}} \frac{1}{3} y^{-2/3} \right] \quad \text{of } y \in \mathcal{Y}$ $= \frac{1}{3} e^{-y^{1/3}} y^{-2/3} \quad \text{of } y \in \mathcal{Y}$

Ex: Let $f_{\chi}(x) = \frac{3}{8}(x+1)^2$, -|(x < 1).

Consider the transferration $\gamma = 1-x^2$. Find pdf of γ .

EX: Let X be distributed as $\exp(2)$ and Consider the transformation $Y = (x-2)^2$. Find the pdf of Y.

Ex: Suppose that $f_{\chi}(x) = \{0.5 \text{ a.e.}^{\alpha \chi}, x > 0.5 \text{ a.e.}^{\alpha \chi}, x < 0.5 \text{ a.e.}^{\alpha \chi}, x <$

Ex: Let probo man funct of X is given by $p_{X}(x) = \frac{1}{3} \left(\frac{2}{3}\right)^{X}, \quad x = 0, 1, 2, ---$ Consider the funct $Y = \frac{X}{1+x}$. Find PMFof Y.