Machine Learning

Topic: Basic Probability

Axioms of Probability

Let there be a space S composed of a countable number of events

$$S = \{e_1, e_2, e_3, \dots e_n\}$$

 The probability of each event is between 0 and 1

$$0 \le P(e_1) \le 1$$

The probability of the whole sample space is 1

$$P(S) = 1$$

When two events are probabilities are additive

mutually exclusive, their
$$P(e_1 \lor e_2) = P(e_1) + P(e_2)$$

Discrete Random Variable

* Discrete random variable X represents some experiment.

- * P(X) is the probability distributions over $\{x_1,...,x_n\}$, the set of possible outcomes for X.
- * These outcomes are mutually exclusive.
- * Their probabilities sum to one: $\sum_{i=1}^{n} P(x_i) = 1$

An Example: Your grade

GPA value	Letter grade	Probability
4	A	0.2
3	В	0.4
2	С	0.2
1	D	0.15
0	F	0.05

Bryan Pardo, Machine Learning: EECS 349 Fall 2009

Boolean Random Variable

 Boolean random variable: A random variable that has only two possible outcomes e.g.

X = "Tomorrow's high temperature > 60" has only two possible outcomes

As a notational convention, **P(X)** for a Boolean variable will mean **P(X="true")**, since it is easy to infer the rest of the distribution.

Vizualizing P(A) for a Boolean variable

 $0 \le P(A) \le 1$ If a value is over 1 or under 0, it isn't a probability

$$P(A) = \frac{\text{area of yellow oval}}{\text{area of blue rectangle}}$$

Vizualizing Stuff for two Booleans

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Independence

 variables A and B are said to be independent iff...

$$P(A)P(B) = P(A \land B)$$

Bayes Rule

Definition of Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Corollary:
 The Chain Rule

$$P(A \mid B)P(B) = P(A \land B)$$

Bayes Rule
 (Thomas Bayes, 1763)

$$P(B \mid A) = \frac{P(A \land B)}{P(A)}$$
$$= \frac{P(A \mid B)P(B)}{P(A)}$$

Conditional Probability

The conditional probability of A given B is represented by the following formula

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

NOT Independent

Can we do the following?

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = \frac{P(A)P(B)}{P(B)}$$

Only if A and B are *independent*

Probabilistic Inference

0.1 = P(S) = probability of sneeze

0.05 = P(C) = probability of cold

0.5 = P(S|C) = probability of sneeze, given cold

You sneeze. Your friend says "half of all colds are associated with sneezing. You have a 50% chance of having a cold."

Is this reasoning sound?

Probabilistic Inference

$$0.1 = P(S) = probability of sneeze$$

$$0.05 = P(C) = probability of cold$$

$$0.5 = P(S|C) = probability of sneeze, given cold$$

Let's apply Baye's rule and see....

$$P(B \mid A) = \frac{P(A \land B)}{P(A)}$$
$$= \frac{P(A \mid B)P(B)}{P(A)}$$

The Joint Distribution

- Make a truth table listing all combinations of variable values
- Assign a probability to each row
- Make sure the probabilities sum to 1

Α	В	С	Prob
0	0	0	0.1
0	0	1	0.2
0	1	0	0.1
0	1	1	0.05
1	0	0	0.05
1	0	1	0.2
1	1	0	0.25
1	1	1	0.05

Using The Joint Distribution

- Find P(A)
- Sum the probabilities of all rows where A=1

$$P(A) = 0.05 + 0.2 + 0.25 + 0.05$$

= 0.55

This can be done for any set of variables and assignments...

e.g.

 $P(Name = "bob" \land Age > 3)$

Α	В	С	Prob
0	0	0	0.1
0	0	1	0.2
0	1	0	0.1
0	1	1	0.05
1	0	0	0.05
1	0	1	0.2
1	1	0	0.25
1	1	1	0.05

Using The Joint Distribution

Find P(A|B)

$$P(A | B) = \frac{P(A \land B)}{P(B)}$$

$$= \frac{0.25 + 0.05}{0.1 + 0.05 + 0.25 + 0.05}$$

$$= \frac{0.3}{0.45}$$

$$= .6666667$$

Α	В	С	Prob
0	0	0	0.1
0	0	1	0.2
0	1	0	0.1
0	1	1	0.05
1	0	0	0.05
1	0	1	0.2
1	1	0	0.25
1	1	1	0.05

Using The Joint Distribution

Are A and B Independent?

$$P(A \wedge B) = 0.3$$

$$P(A) = 0.55$$

$$P(B) = 0.45$$

$$P(A)P(B) = 0.55 * 0.45$$

$$P(A \land B) \neq P(A)P(B)$$

NO. They are NOT independent

Α	В	С	Prob
0	0	0	0.1
0	0	1	0.2
0	1	0	0.1
0	1	1	0.05
1	0	0	0.05
1	0	1	0.2
1	1	0	0.25
1	1	1	0.05

How to learn the joint distribution?

- Experts tell us the value for each row?
- Learn from data?(e.g. US Census data)

Size of Household	Zip Code	Rent vs. Own	Name
1	60201	rent	M. Mathers
2	60201	own	W. Smith
2	90210	own	J. Lopez
1	60201	own	K. Frog
2	90210	own	O. Henry
10	60201	rent	N. Suleman

How to learn the joint distribution?

- Count all occurrences of event X.
- Divide by total number of events.

Learned Joint Distribution

Observed Data

Size of Household	Zip Code	Rent vs. Own	Name
1	60201	rent	M. Mathers
2	60201	own	W. Smith
2	90210	own	J. Lopez
1	60201	own	K. Frog
2	90210	own	O. Henry
10	60201	rent	N. Suleman

Size of Household	Zip Code	Rent vs. Own	Probability
1	60201	Rent	1/6
1	60201	Own	1/6
1	90210	Rent	0
1	90210	Own	0
2	60201	Rent	0
2	60201	Own	1/6
2	96210	Rent	0
2	90210	Own	1/3
18	60201	Rent	1/6
10	60201	Own	0
10	90210	Rent	0
10	90210	Own	0

Should these really all be 0?

Why not estimate like this?

Given m boolean variables, we need to estimate 2^m values.

20 yes-no questions = a million observable events How many observations do we need to feel confident estimating all these probabilities?

- Just because you didn't observe it, doesn't mean it never happens (black swan events).
- How do we get around this combinatorial explosion?
 - Assume independence of variables!!

...back to Independence

 Independence is DOMAIN Knowledge, often supplied by the problem designer

Is the probability I get a haircut independent of the probability you have an apple for lunch?

Is the probability Germany will close a nuclear power plant independent of the probability of a tidal wave in Japan?

- Independence implies you can learn the probability distribution for A without worrying about how it is influenced by B: $P(A \mid B) = P(A)$
- Independence also implies you can learn the probability of a joint event by multiplying the probabilities of the independent events: $P(A \land B \land C) = P(A)P(B)P(C)$

To learn the independent distributions

- Treat all variables as independent.
- Count all occurrences of event X.
- Divide by total number of events.

Observed Data

Size of Household	Zip Code	Rent vs. Own	Name
1	60201	rent	M. Mathers
2	60201	own	W. Smith
2	90210	own	J. Lopez
1	60201	own	K. Frog
2	90210	own	O. Henry
10	60201	rent	N. Suleman

S: Size of Household	Probability
1	2/6
2	3/6
10	1/6

Z: Zip Code	Probability
60201	4/6
90210	2/6

R:Rent/Own	Probability
rent	2/6
own	4/6

How to learn the joint distribution?

 Under the independence assumption, multiply independent events together to get the joint probability.

S: Size of Household Probability 2/6 2 3/6 10 1/6

Z: Zip Code	Probability		
60201	4/6		
90210	2/6		

R: Rent/Own	Probability		
rent	2/6		
own	4/6		

Learned Joint Distribution

Size of Household	Zip Code	Rent vs. Own	Probability	
1	60201	Rent	16/216	
1	60201	Own	32/216	
I	90210	Rent	8/216	
1	90210	Own	16/216	
2	60201	Rent	24/216	
2	60201	Own	48/216	
2	90210	Rent	12/216	
2	90210	Own	24/216	
10	60201	Rent	8/216	
10	60201	Own	16/216	
10	90210	Rent	4/216	
10	90210	Own	8/216	

Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2011

Let's compare the distributions

Assume No Independence

Assume Complete Independence

Size of Household	Zip Code	Rent vs. Own	Probability	Size of Household	Zip Code	Rent vs. Own	Probability
1	60201	Rent	1/6	1	60201	Rent	16/216
1	60201	Own	1/6	1	60201	Own	32/216
1	90210	Rent	0	1	90210	Rent	8/216
1	90210	Own	0	1	90210	Own	16/216
2	60201	Rent	0	2	60201	Rent	24/216
2	60201	Own	1/6	2	60201	Own	48/216
2	90210	Rent	0	2	90210	Rent	12/216
2	90210	Own	1/3	2	90210	Own	24/216
10	60201	Rent	1/6	10	60201	Rent	8/216
10	60201	Own	0	10	60201	Own	16/216
10	90210	Rent	0	10	90210	Rent	4/216
10	90210	Own	0	10	90210	Own	8/216

Let's compare the distributions

Assume No Independence

Assume Complete Independence

- Very different distributions learned from the same data
- How would you decide which method to use?

If you know it is illegal for 10 people to share a house in Beverly Hills? (two variable values are mutually exclusive)

If you can't get more than 15 census questionnaires filled out? (sparse data)

 Can we assume something between complete independence and "everything is connected"?

We'll discuss this later...also, take Doug Downey's 395 class.

Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2011

What kind of learning is this?

- Categorization by feedback:
 - * Supervised
 - * Semi-supervised
 - * Reinforcement
 - * Unsupervised
- Categorization by WHAT you're learning:
 - * Classifier (e.g. decision tree)
 - * Regressor (e.g. linear regression)
 - * Probability Distribution Estimator (what we just did)