MATH 494: HONORS ALGEBRA II

Contents

1.	January 4, 2017	1
2.	January 6, 2017	3
3.	January 9, 2017	6
4.	January 11, 2017	8
5.	January 13, 2017	10

1. January 4, 2017

Rings

Definition 1.1.

- a) A **ring** is a tuple $(R, +, \cdot, 0)$ where:
 - \bullet R is a set
 - $0 \in R$
 - $\bullet \ +, \cdot : R \times R \to R, \quad \ (a,b) \mapsto a+b, a \cdot b$

subject to:

- (R, +, 0) is an abelian group
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- $(a+b) \cdot c = a \cdot c + b \cdot c$
- $a \cdot (b+c) = a \cdot b + a \cdot c$
- b) A **ring with unity** is a tuple $(R, +, \cdot, 0, 1)$, where $(R, +, \cdot, 0)$ is a ring, and $1 \in R$ is subject to $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.
- c) A ring $(R, +, \cdot, 0)$ is called **commutative** if ab = ba for all $a, b \in R$.
- d) A field is a commutative ring with unity $(R, +, \cdot, 0, 1)$ such that $(R \setminus \{0\}, \cdot, 1)$ is a group.

Remark.

- We don't really need to include 0,1 in notation: they are unique if they exist
- There is a notion of a **skew field**: ring with unity $(R, +, \cdot, 0, 1)$ such that $(R \setminus \{0\}, \cdot, 1)$ is a group. (This drops the commutative condition from the definition of a field).
- In French: corps is a skew field, and corps commutatif is a field.

Fact 1.2. Let R be a ring. For all $a \in R$, $0 \cdot a = 0$.

Proof.
$$(0 \cdot a) = (0+0) \cdot a = 0 \cdot a + 0 \cdot a \Rightarrow 0 = 0 \cdot a$$

Example.

- \mathbb{Z} is a ring, commutative, with unity
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields

• $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ where $i^2 = j^2 = k^2 = ijk = -1$ are called the **Hamiltonian** Quaternions and are a skew-field

- $C_C(\mathbb{R})$ = functions on \mathbb{R} with compact support $(\sup f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}})$ is a commutative ring without unity
- $R = \{\star\}, 0 = 1 = \star \text{ is the zero ring.}$

Fact 1.3. If $(R, +, \cdot, 0, 1)$ is a ring with unity and 0 = 1, then R is the zero ring.

Proof. Take $a \in R$. Then $a = a \cdot 1 = a \cdot 0 = 0$ by Fact 1.2.

Convention: Unless otherwise noted, ring will refer to a commutative ring with 1.

Definition 1.4. Let R be a ring. Its group of units is

$$R^{\times} = \{ a \in R \mid \exists b \in R : ab = 1 \}$$

Fact 1.5.

- For $a \in R^{\times}$, there is a unique $b \in R$ such that ab = 1. Write $b = a^{-1}$.
- For $a, b \in R^{\times}$, $a \cdot b \in R^{\times}$.

Proof.

- Given b, b', we have $b = b \cdot 1 = b(ab') = (ba)b' = 1 \cdot b' = b'$.
- $(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = 1$

Example. $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}, \mathbb{Z}^{\times} = \{1, -1\}$

Definition 1.6. Let R, S be rings. A morphism $\phi: R \to S$ is a map of sets $\varphi: R \to S$ satisfying

- $\varphi(a+b) = \varphi(a) + \varphi(b)$
- $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$
- $\varphi(1) = 1$

Example. $\varphi: \mathbb{Z} \to \mathbb{Z}$ $u \mapsto 0$ is not a morphism of rings with 1. (it is a morphism of general rings).

Fact 1.7. For any ring R there is a unique morphism $\varphi : \mathbb{Z} \to R$. Given $z \in \mathbb{Z}$, we write z_R , or simply z for its image under φ .

Example. $5 \in \mathbb{Z}$, $5_{\mathbb{Q}} \in \mathbb{Q}$ usual number 5. $5_{\mathbb{Z}/2\mathbb{Z}} = 1_{\mathbb{Z}/2\mathbb{Z}}$

Definition 1.8. Let R be a ring. A subset $I \subset R$ is called an **ideal** if

- I is a subgroup of (R, +, 0)
- $a \cdot f \in I$ for all $a \in R, f \in I$.

Definition 1.9. Let R be a ring. A subset $S \subset R$ is called a **subring** if

- S is a subgroup of (R, +, 0)
- $a \cdot b \in S$ for all $a, b \in S$.
- $1 \in S$.

Remark.

- The only subset that is both a subring and an ideal is R itself. (reason: if $1 \in I$, then $a \cdot 1 \in I$ for all $a \in R$, meaning I = R)
- $I = \{0\}, I = R$ are always ideals.
- In rings without unity, the 2 notions align closer: ideal becomes a special case of subring as $1 \in S$ condition is dropped.

Example.

- Every subgroup of $(\mathbb{Z}, +, 0)$ is an ideal of \mathbb{Z} .
- If F is a field, then $\{0\}$, R are the only ideals
- Let $R = \mathcal{C}_C(\mathbb{R}), S \in R$ subset.

$$I = \{ f \in \mathcal{C}_C(\mathbb{R}) \mid f \mid_S = 0 \}$$

is an ideal

Definition 1.10. An ideal $I \in R$ is called **principal** if $I = \{a \cdot r \mid r \in R\}$ for some $a \in R$. Then a is called a **generator**.

Definition 1.11. Let $a_1, a_2, \ldots a_n \in R$. An ideal generated by $a_1, \ldots a_n$ is

$$(a_1, \dots a_n) = \{a_1r_1 + \dots + a_nr_n \mid r_i \in R\}$$

Fact 1.12. Given ideals $I, J \subset R$ we have

- $I \cap J$ is an ideal
- $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal
- $I \cdot J = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in I, b_i \in J \right\}$ is an ideal

2. January 6, 2017

Fact 2.1. Let $\varphi: R \to S$ be a morphism. Then

$$\ker(\varphi) = \{ x \in R \mid \varphi(x) = 0 \}$$

is an ideal.

Proof. (A Pranav Exclusive) We first show that the kernel is a subgroup of (R, +, 0). Well, we first show that $0 \in \ker(\varphi)$. Well,

$$\varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0)$$

so, we have that $\varphi(0) = 0$ and thus $0 \in \ker(\phi)$. Next, we show that inverses are in the kernel as well. If we have that $\varphi(a) = 0$, then we have

$$0 = \varphi(0) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a) = \varphi(-a)$$

Now, we complete this step by proving closure. Assume $a, b \in \ker(\varphi)$. Then,

$$\phi(a+b) = \phi(a) + \phi(b) = 0 + 0 = 0$$

Thus, we have that the kernel is a subgroup. Now, we verify the second condition. Fix $a \in R$ and $f \in \ker(\varphi)$. We have that

$$\phi(a \cdot f) = \phi(a) \cdot \phi(f) = \phi(a) \cdot 0 = 0$$

Thus, we have that $a \cdot f \in \ker(\varphi)$, meaning that $\ker(\varphi)$ is an ideal.

Question: Is every ideal the kernel of morphism?

Propostion 2.2. Let R be a ring, $I \subset R$ an ideal. Let R/I be the quotient of abelian groups and $p: R \to R/I$ the canonical projection. Then there is a unique product map

$$\cdot: R/I \times R/I \to R/I$$

making R/I into a ring such that p is a morphism.

Proof. For p to be a morphism of rings, we need

- $p(1_R) = 1_{R/I}$
- The following diagram to commute

$$\begin{array}{c|c} R \times R & \xrightarrow{\cdot R} & R \\ p \times p & & \downarrow p \\ \hline \\ R/I \times R/I & \xrightarrow{\cdot R/I} & R/I \end{array}$$

Uniqueness of $\cdot_{R/I}$ follows from surjectivity of $p \times p$ (each element in $R/I \times R/I$ must go precisely to the result of the composition of p and \cdot_R)

For existence, define $1_{R/I} = p(1_R)$ and $(a+I) \cdot (b+I) \stackrel{\text{def}}{=} (a \cdot b) + I$. We have to show this is well-defined (i.e it is independent of choice of a, b).

Well, choose a', b' such that a' + I = a + I, b' + I = b + I. Thus, a' = a + i, b' = b + j for some $i, j \in I$. Then

$$(a' + I)(b' + I) = (a' \cdot b') + I = ((a + i) \cdot (b + j)) + I = (a \cdot b + a \cdot j + b \cdot i + i \cdot j) + I = a \cdot b + I$$

as we note that $a \cdot j, b \cdot i$, and $i \cdot j$ are all in I as I is an ideal.

We have that all of the ring axioms for R/I are inherited from the ring structure on R.

Remark. ker(p) = I

Theorem 2.3. (Homomorphism Theorem): Let $\phi: R \to S$ be a morphism of rings, $I \subset \ker(\varphi)$ be an ideal of R. There is a unique morphism $\overline{\varphi}: R/I \to S$ such that $\overline{\varphi} \circ p = \varphi$ i.e.

commutes. Moreover, $\overline{\varphi}$ is injective $\iff \ker(\varphi) = I$

Proof. All statements follow from looking at the abelian group (R, +, 0) and its subgroup I, except multiplicativity of $\overline{\varphi}$.

(A Pranav Exclusive) Some justification: the uniqueness of this morphism follows because the projection map is surjective, meaning that in order for the composition to be commutative, we must have that each element in R/I maps exactly to where its associated element maps under φ . Now, the existence. We simply need to check that the map $\overline{\varphi}$ that sends a+I to $\varphi(a)$ is well defined and is a morphism. We note that the additive morphism properties are inherited from the fact that φ is a morphism itself. So, we check the well-definedness of $\overline{\varphi}$. Pick 2 representatives of a+I, call them a+I and a'+I. We have that a'=a+i for $i \in I$. Then, we have that

$$\overline{\varphi}(a'+I) = \overline{\varphi}(a+i+I) = \overline{\varphi}(a+I) + \overline{\varphi}(i+I) = \overline{\varphi}(a+I) + \overline{\varphi}(I) = \overline{\varphi}(a+I) + 0$$

as we have that $\varphi(i)=0$ for all $i\in I$ (since $I\subset \ker(\varphi)$). We finally verify the injective biconditional. Assume $\overline{\varphi}$ is injective. We already have that $I\subset \ker(\varphi)$. Now, since $\overline{\varphi}$ is injective, its kernel is trivial, and is thus the identity of R/I, namely I itself. For any $g\in \ker(\varphi)$ we note that g+I must belong to the kernel of $\overline{\varphi}$, meaning that g+I=I and thus $g\in I$. This gives us double containment and thus equality.

Now, assume that $\ker(\varphi) = I$. We consider $\ker(\overline{\varphi})$. This is exactly the collection $\{a + I \mid a \in \ker(\varphi)\}$. Thus, this is $\{a + I \mid a \in I\}$ and thus we have that $\ker(\overline{\varphi}) = I$. Since the kernel of $\overline{\varphi}$ is trivial, we have that $\overline{\varphi}$ is

injective.

Checking Multiplicativity: Let $A, B \in R/I$. Choose $a, b \in R$ such that p(a) = A, p(b) = B. Then

$$\overline{\varphi}(A \cdot B) = \overline{\varphi}(p(a) \cdot p(b)) = \overline{\varphi}(p(ab)) = \varphi(ab) = \varphi(a)\varphi(b) = \overline{\varphi}(p(a))\overline{\varphi}(p(b)) = \overline{\varphi}(A)\overline{\varphi}(B)$$

Definition 2.4. Let R be a ring.

- Let $a, b \in R$. We say that a **divides** b (denoted $a \mid b$) if there is $c \in R$ such that ac = b.
- We say $0 \neq a \in R$ is a **zero divisor** if there is $0 \neq b \in R$ such that ab = 0.
- We call R a **domain** (or **integral domain**) if it has no zero divisors.

Fact 2.5. $a \mid b \iff (b) \subset (a) \iff b \in (a)$

Proof. (A Pranav Exclusive) We first show the first forward implication. Assume that $a \mid b$. Then, there is $c \in R$ such that ac = b. Now, fix $g \in (b)$. It is of the form br for some $r \in R$. Thus, we have that g = (ac)r = a(cr). Since $cr \in R$, we have that $g \in (a)$.

Next, we show the second forward implication. Assume that $(b) \subset (a)$. Well, $b \in (b) \subset (a)$.

Finally, we show that $b \in (a)$ implies the original condition. Well, if $b \in (a)$, then b = ar for $r \in R$. This is exactly what it means for $a \mid b$! Thus, we have shown equality of the above statements.

Fact 2.6. (Cancellation Law) If $a \neq 0 \in R$ is not a zero divisor, then for $x, y \in R$

$$ax = ay \Rightarrow x = y$$

Proof. $ax = ay \iff a(x - y) = 0$. $a \ne 0$ implies that x - y = 0 as a is not a zero divisor.

Definition 2.7. An ideal $I \subseteq R$ is called

- **prime** if $a \cdot b \in I$ implies $a \in I$ or $b \in I$ for all $a, b \in R$.
- maximal if I and R are the only ideals containing I.

Example. In $R = \mathbb{Z}$, the ideals are of the form $n\mathbb{Z}$. $n\mathbb{Z}$ is prime $\iff n$ is prime or n = 0.

Proof. (A Pranav Exlusive). We start with the forward direction. We proceed by contrapositive. Assume that $n \neq 0$ and that n is not prime. Then, n is composite (we exclude n = 1 as we must have a properly contained ideal by definition). Thus, we have that n = ab for some 1 < a, b < n. Note that we have $ab = n \in n\mathbb{Z}$, but we have that both a and b are less than n, and thus there is no $z \in \mathbb{Z}$ such that nz = a or nz = b. This means that $n\mathbb{Z}$ is not prime, as we have found a, b such that $ab \in n\mathbb{Z}$ but neither a nor b are in $n\mathbb{Z}$.

Now, the reverse direction. First, we show the condition for n prime. Assume that we have $a, b \in \mathbb{Z}$ such that $ab \in n\mathbb{Z}$. This means that we have ab = nq for some $q \in \mathbb{Z}$. In particular, this means that n divides the product ab. However, we note that as n is prime, we have that n must divide a or b by Euclid's lemma. Thus, we have that either a = nr or b = nr (or both), which implies that $a \in n\mathbb{Z}$ or $b \in n\mathbb{Z}$. Next, for n = 0. Well, if $ab \in 0\mathbb{Z}$, then ab = 0. This in \mathbb{Z} implies that either a or b is 0 and is also in $n\mathbb{Z}$. This completes the reverse direction.

Theorem 2.8. Let R be a ring.

- i) R is a domain \iff $\{0\}$ is prime.
- ii) R/I is a domain $\iff I \subset R$ is a prime ideal.
- iii) Let $\varphi: R \to S$ be a morphism, S a domain. Then $\ker(\varphi)$ is prime. The converse is true if φ is surjective.
- iv) R is a field \iff {0} is maximal.
- v) R/I is a field \iff $I \subset R$ is a maximal ideal.
- vi) Every field is a domain.

vii) Every maximal ideal is prime.

Proof. We first claim that iii) implies ii) which in turn implies i). First, for iii) implies ii), we note that letting S be R/I (which means φ is the projection map p (which is definitely surjective)) gives us ii). (We have that $\ker(p) = I$).

ii) implies i) simply by letting I be the zero ideal.

Now, we prove statement iii).

Let $a, b \in R$ such that $a \cdot b \in \ker(\varphi)$. Then $0 = \varphi(a \cdot b) = \varphi(a)\varphi(b)$. Since we have that S is a domain, then we have no zero divisors, meaning that either $\varphi(a) = 0$ or $\varphi(b) = 0$. This in turn implies that either $a \in \ker(\varphi)$ or $b \in \ker(\varphi)$, so we have show that $\ker(\varphi)$ is a prime ideal. Now, the converse assuming surjectivity. We want to show that S has no zero divisors. Well, fix $A, B \in S$ such that $A \cdot B = 0$. Since φ is surjective, we have $a, b \in R$ such that $\varphi(a) = A$ and $\varphi(b) = B$. Then, we have $0 = \varphi(a)\varphi(b) = \varphi(ab)$, meaning that ab is in $\ker(\varphi)$. Because we assume that $\ker(\varphi)$ is prime, this in turn implies that either a or b is in $\ker(\varphi)$ meaning that either $\varphi(a) = 0$ or $\varphi(b) = 0$. This means that either A or B is A0, and thus A1 is a domain, as desired. Next, note that A2 implies iv). This comes from letting A3 be the zero ideal.

The proof of v) comes from the bijection

$$\{ideals in R containing I\} \leftrightarrow \{ideals in R/I\}$$

This is a homework problem.

Now, we show vi). Assume that F is a field. Pick $a, b \in F$ such that $a \cdot b = 0$ with $a \neq 0$. We will show that b must be 0, thereby showing that F is a domain. Well, since $a \neq 0$, and $F \setminus \{0\}$ is a group, we have that a^{-1} exists. Thus, we have that ab = 0 implies that $a^{-1}ab = 0$ and thus b = 0, as desired. vii) follows from the facts vi), v) and ii). We have that

I is a maximal ideal
$$\stackrel{\mathbf{v}}{\Longleftrightarrow} R/I$$
 is a field $\stackrel{\mathbf{vi}}{\Rightarrow} R/I$ is a domain $\stackrel{\mathbf{ii}}{\Longleftrightarrow}$ I is prime.

3. January 9, 2017

Definition 3.1. Let R be a domain. The canonical morphism $\mathbb{Z} \to R$ of Fact 1.7 has a prime ideal as its kernel. By Thm 2.8, this is of the form $p\mathbb{Z}$ with p prime of p = 0. We call p the **characteristic** of R.

Example.

$$\operatorname{char}(\mathbb{Z}) = 0 \quad \operatorname{char}(\mathbb{Z}/3\mathbb{Z}) = 3$$

 $\operatorname{char}(\mathbb{Q}) = 0 \quad \operatorname{char}(\mathbb{Z}/6\mathbb{Z}) \text{ doesn't exist! } \mathbb{Z}/6\mathbb{Z} \text{ is not a domain.}$

Lemma. (Zorn's Lemma) (from Artin). An inductive (every totally ordered subset has an upper bound) partially ordered set S has at least one maximal element.

Theorem 3.2. Let R be a ring. Every proper ideal is contained in a max ideal.

Proof. Let $I \subset R$ be a proper ideal. Let \mathcal{M} be the set of all proper ideals of R that contain I, with partial order given by inclusion.

Let $\mathcal{C} \subset \mathcal{M}$ be a totally ordered subset.

Claim.
$$J_0 = \left(\bigcup_{J \in \mathcal{C}} J\right) \in \mathcal{M}$$

Proof. (of claim). We want to show that J_0 is a proper ideal containing I. First, we show it is an ideal by showing closure of the subgroup and the ideal multiplicative closure. Let $f_1, f_2 \in J_0$ and $a \in R$. Now, this means there is $J_1, J_2 \in \mathcal{C}$ such that $f_1 \in J_1$ and $f_2 \in J_2$. However, since \mathcal{C} is totally ordered, we have that

the larger of J_1 and J_2 contains both f_1 and f_2 , meaning that we have the existence of $J \in \mathcal{C}$ such that $f_1, f_2 \in J$. Since J is an ideal, we have that $f_1 + f_2 \in J$ and that $a \cdot f_1 \in J$. This thus implies that since $J \in \mathcal{C}$, we have that $a \cdot f_1$ and $f_1 + f_2$ are both in J_0 . Thus J_0 is an ideal. Since $I \in \mathcal{C}$, we also have that $I \subset J_0$. Finally, J_0 is not R, because otherwise $1 \in J_0$, which would mean that $1 \in J$ for some $J \in \mathcal{C}$. This would then imply that that J = R, which is not possible as J itself is a proper ideal. Thus, we have that $J_0 \in \mathcal{M}$.

Thus, for every totally ordered subset of \mathcal{M} , we have the existence of an upper bound (namely J_0). This gives us, by Zorn's Lemma, that \mathcal{M} has a maximal element. This maximal element is exactly what we wished to show existed.

Definition 3.3. Let R, S be rings. Their product is the set $R \times S$ with component-wise operations

- (r,s) + (r',s') = (r+r',s+s')
- $\bullet (r,s) \cdot (r',s') = (r \cdot r', s \cdot s')$
- $1_{R\times S} = (1_R, 1_S), 0_{R\times S} = (0_R, 0_S)$

Remark. Given morphisms $\varphi_1: R \to S_1, \varphi_2: R \to S_2$, we get a unique morphism $\varphi_1 \times \varphi_2: R \to S_1 \times S_2$.

Remark. Given $I, J \subset R$ ideals we have

$$I \cdot J \subset I \cap J \subset I, J \subset I + J$$

Definition 3.4. Two ideals $I, J \subset R$ are **coprime** if I + J = R.

Theorem 3.5. (Chinese Remainder Theorem) Let R be a ring, $I_1, \ldots I_n \subset R$ be pairwise coprime ideals. Then the natural morphism

$$p: R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n$$

factors through the quotient $R/(I_1 \cap I_2 \cap \cdots \cap I_n)$ and induces an isomorphism of rings

$$\overline{p}: R/(I_1 \cap I_2 \cap \cdots \cap I_n) \to R/I_1 \times R/I_2 \times \cdots \times R/I_n$$

Moreover, $I_1 \cdot I_2 \cdots I_n = I_1 \cap I_2 \cap \dots I_n$

Proof. As p is the natural morphism to a product of rings, we let $p = p_1 \times p_2 \cdots \times p_n$, where each p_i is the projection morphism from R to R/I_i . Now, we can say that $\ker(p) = \{r \in R \mid 0 = p_1(r), 0 = p_2(r), \ldots 0 = p_n(r)\}$. Well, since each p_i by definition has kernel exactly I_i , this is the same as saying that $\ker(p) = \{r \in R \mid r \in I_1 \cap I_2 \cap \cdots \cap I_n\}$.

By the homomorphism theorem (2.3), we have that p factors through $R/I_1 \cap I_2 \cap \ldots I_n$ and also induces an injective ring morphism $\overline{p}: R/I_1 \cap \cdots \cap I_n \to R/I_1 \times \ldots R/I_n$.

Claim. \overline{p} is also surjective, and hence a isomorphism.

Proof. (of claim) We note that since each of the ideals are coprime, we have that $I_1 + I_k = R$. Now, we also note that $R \cdot R = R$. Thus, we can express

$$R = (I_1 + I_2) \cdot (I_1 + I_3) \cdot \cdot \cdot (I_1 + I_n)$$

expanding the product, we note that by the earlier remark that any term containing an I_1 (which is almost all of them) will be contained in I_1 . The only term that is outside arises from selecting the second term in every single term of the product, so we can write that the above expression is

$$\subset I_1 + (I_2 \cdot I_3 \cdots I_n)$$

Now, since $R \subset I_1 + (I_2 \cdot I_3 \cdots I_n)$, we can take $v_1 \in I_1$ and $u_1 \in I_2 \cdots I_n$ such that $u_1 + v_1 = 1$. Now, since $u_1 \in I_2 \cdots I_n$, $u_1 \in I_j$ for $j \neq 1$. Thus, we can say that u_1 maps to $0_{R/I_j}$ under the projection map, as it is

in the kernel.

Similarly, since $u_1 = 1 - v_1$, with $v_1 \in I_1$, we have that $u_1 \in 1 + I$, meaning that u_1 maps to $1_{R/I_1}$ under the projection map.

So, we have (abusing notation) that $u_1 = 1$ in R/I_1 and $u_1 = 0$ in R/I_j for $j \neq 1$ (really, as we showed above, it belongs to the associated cosets).

Now, we can repeat this construction with any I_i instead of I_1 . Thus, we get for each such construction a $v_i \in I_i$ and $u_i \in I_1 \cdot I_2 \cdots \widehat{I_i} \cdots I_n$ With this construction, we now have the existence of the u_i that belong to the 1 coset in exactly R/I_i and the 0 coset in all remaining R/I_j . With this, we can prove surjectivity. Fix any $(x_1, \ldots x_n) \in R/I_1 \times \ldots R/I_n$. We have that there exists an associated $r_1, \ldots r_n \in R$ such that $p_1(r_1) = x_1, \ldots p_n(r_n) = x_n$. Now, if we consider the element $r \in R$ that equals $u_1r_1 + u_2r_2 \ldots u_nr_n$, note that $p(r) = (p_1(r), p_2(r) \ldots p_n(r))$. However, since the u_i map to 1 under p_i and to 0 otherwise, this maps precisely to $(x_1, \ldots x_n)$. Thus, we have that p(r) maps to the desired element in the product, meaning that the associated coset will map to the desired element under \overline{p} . This proves surjectivity.

Thus, we have that \overline{p} is an isomorphism. Now, we show the second part of part of the statement. Well, we know by definition that $I_1 \cdot I_2 \cdots I_n \subset I_1 \cap \cdots \cap I_n$. So, we simply need to show the other containment, which we do by induction on n.

n=1: $I_1\subset I_1$.

n=2: Take $u_1 \in I_1$ and $u_2 \in I_2$ such that $1=u_1+u_2$ (this exists as $I_1+I_2=R$.) Now, for any $u \in I_1 \cap I_2$, we have

$$u = u \cdot 1 = u \cdot (u_1 + u_2) = u \cdot u_1 + u \cdot u_2$$

Since $u \in I_1$ and $u \in I_2$, we have $u \cdot u_1 \in I_2 \cdot I_1$ and $u \cdot u_2 \in I_1 \cdot I_2$. Thus, we have the sum in $I_1 \cdot I_2$. This gives us $I_1 \cap I_2 \in I_1 \cdot I_2$.

Now, for general n. By the inductive hypothesis, we have that $I_1 \cap I_2 \dots I_n \subset (I_1 \cdots I_{n-1}) \cap I_n$. From the claim above, we know that $R = (I_1 \cdot I_{n-1}) + I_n$. This implies thus that the ideals $(I_1 \cdots I_{n-1})$ and I_n are coprime. Thus, applying the n = 2 case on these 2 ideals, we have that $(I_1 \cdots I_{n-1}) \cap I_n \subset (I_1 \cdots I_{n-1}) \cdot I_n$, thereby proving the desired result.

4. January 11, 2017

Remark. .

- Any field is a domain.
- Any subring of a domain is a domain.
- Any subring of a field is a domain.

Is the opposite true?

Theorem 4.1. Let R be a domain.

1) There exists a pair (i, K) with K a field, $i: R \to K$ an injective morphism such that if (j, L) is another such pair, there exists a morphism $l: K \to L$ such that $j = l \circ i$, which is to say that the following diagram commutes.

2) If (i', K') is another pair as in 1) there exists a unique isomorphism $\phi: K \to K'$ such that

Remark. .

- (i, K) is an example of a "universal object"
- (j, L) is called a test object
- \bullet K is produced from R, just like the rationals are produced from the integers.

Proof. 2) Given two universal objects (i, K), (i', K'), apply 1) with (i, K) as the universal object, and (i', K') as a test object to get $l: K \to K'$. Do it the other way to get $l': K' \longrightarrow K$.

Claim.
$$l \circ l' = id_{K'}, l' \circ l = id_K$$

Proof. Note that both $l' \circ l$ and id_k make the diagrams

When (i, k) is both a universal object and a test object, we get $l \circ l = id_K$.

1) Consider the set $P = R \times R \setminus \{0\}$. Introduce the relation $(n, d) \sim (n', d') \iff nd' = n'd$.

Claim. \sim is an equivalence relation.

Proof. Reflexive: $(n,d) \sim (n,d) \iff nd = nd$.

Symmetric
$$(n,d) \sim (n',d') \iff nd' = n'd \iff n'd = nd' \iff (n',d') \sim (n,d).$$

Transitive: Assume $(n_1,d_1) \sim (n_2,d_2) \sim (n_3,d_3)$. We want $(n_1,d_1) \sim (n_3,d_3)$. We have $n_1d_2 = n_2d_1, n_2d_3 = n_3d_2$ and want $n_1d_3 = n_3d_1$. We see that $n_1d_3n_2d_2 = n_1d_3n_2d_3 = n_2d_1n_3d_2 = n_3d_1n_2d_2$. Since R is a domain, n_2d_2 is not a zero-divisor. If $n_2d_2 \neq 0$, then by Fact 6, Jan 6, we get $n_1d_3 = n_3d_1$. If $n_2d_2 = 0$, then $(d_2 \neq 0)$ and not a 0-divisor $n_2 = 0$. For the same reason, $n_1 = n_3 = 0$. Again, $n_1d_3 = n_3d_1$. Either way, we are done.

Put $K = P/\sim$. Write [n,d] for the image of $(n,d) \in P$ in K. Define

$$[n,d] \cdot [n',d'] = [nn',dd']$$

 $[n,d] + [n',d'] = [nd' + n'd,dd']$
 $0 = [0,1], 1 = [1,1]$
 $i:R \to K, i(r) = [r,1].$

We leave as homework the verifications that $+,\cdot$ are well defined, that K is a field, and that i is a morphism. Injectivity is obvious. Given (j, L), define $l: K \longrightarrow L$ by

$$l([n,d]) = l(i(n)) \cdot l(i(d)^{-1}) = j(n)j(d)^{-1}.$$

Homework: l is well defined and a ring morphism.

Definition 4.2. A pair (i, K) is called a (the) field of fractions (fraction field) of R.

Definition 4.3. 1) Let R be a ring. A polynomial in T over R is a formal expression $a_nT^n + a_{n-1}T^{n-1} + \dots + a_0, a_i \in R$.

2) Given $P(T) = a_n T^n + ... + a_0, Q(T) = b_n T^n + ... + b_0$ define

$$(P+Q)(T) = (a_n + b_n)T^n + \ldots + (a_0 + b_0)$$

$$(P \cdot Q)(T) = (c_m T^m + c_{m-1} T^{m-1} + \dots + c_0)$$

where

$$c_k = \sum_{i+j=k} a_i \cdot b_j.$$

- 3) Given $r \in R$ we have the constant polynomial $r: (a_nT^n + \ldots + a_0, a_0 = r, a_i = 0 \text{ for } i > 0)$. In particular, we have 0, 1 as constant polynomials.
 - 4) Let R[T] be the set of all polynomial in T over R.

Fact 4.4. $(R[T], +, \cdot, 0, 1)$ is a ring. Moreover $R \to R[T]$, $r \to constant$ polynomial r is an injective morphism. The proof is left as an exercise to the reader.

Definition 4.5. Given $0 \neq P \in R[T]$, define $\deg(P) = \min\{n | a_m = 0 \forall m > n\}$, $\deg(0) = -\infty$.

Fact 4.6. 1) $deg(P+Q) \leq \max(deg(P), deg(Q))$ with equality if $deg(P) \neq deg(Q)$. 2) $deg(P\cdot Q) \leq deg(P) + deg(Q)$ with equality if the leading coefficient of P (or Q) is not a 0 divisor. 3) In particular, if R is a domain, so is R[T]. The proof is left as an exercise to the reader.

Remark. Any $P \in R[T]$ gives a function $R \to R$ by $r \mapsto P(r) = a_n r^n + ... + a_0$. However, P is not necessarily determined by this function. For example, let $R = \mathbb{Z}/p\mathbb{Z}$ where p is a prime and $P(T) = T^p - T$. Since $x^p = x$ for all $x \in R$, P and 0 give the same function. However, $P \neq 0$.

Example

$$P = T^2 + 3T - 2$$
, $Q = -T^2 + 3T - 7$ gives $P + Q = 6T - 9$ (deg $(P + Q) < \max(\deg(P), \deg(Q))$)
 $R = \mathbb{Z}/4\mathbb{Z}$, $P = 2T^2 + 1$, $Q = 2T^3 + 3T$ gives $PQ = 3T$ (deg $(PQ) < \deg(P) + \deg(Q)$)

Fact 5.1. Let $\phi: R \to S$ be a morphism and let $s \in S$. There exists a unique morphism $\phi_s: R[T] \to S$ such that $\phi_s(r) = \phi(r)$ for all $r \in R$ and $\phi_s(T) = s$.

Proof. If ϕ_s is any such morphism then $\phi_s(a_nT^n + ... + a_0)$ must equal $\phi(a_n)s^n + ... + \phi(a_0)$. This proves uniqueness and existence (upon checking that this is a morphism).

Example.

- If $\phi = id : R \to R$ then we get evaluation morphism $R[T] \to R$ given by $P \mapsto P(s)$.
- Let $I \subseteq R$ be an ideal and let $\phi: R \to R/I \hookrightarrow R/I[T]$ and let s = T. We get "reduction mod I" morphism $R[T] \to R/I[T]$.

Remark. (def. 1.5) $a \in R$ is **nilpotent** if $a^n = 0$ for some $n \in \mathbb{N}$

Propostion 5.2. Let $P = a_n T^n + ... + a_0 \in R[T]$. We have $P \in R[T]^{\times}$ iff $a_0 \in R^{\times}$ and $a_1, ..., a_n$ are nilpotent. Proof.

Assume that R is a domain. We have that P is a unit iff there exists $Q \in R[T]$ such that PQ = 1. By 1-11 Fact 6, 0 = deg(1) = deg(PQ) = deg(P) + deg(Q) (R is a domain so the leading coefficient of P (alternatively Q) is not a zero divisor). Thus deg(P), deg(Q) = 0. Thus $a_1, ..., a_n = 0$ are nilpotent and $a_0 \in R^{\times}$.

Let R be a general ring. Let $\mathcal{P} \subseteq R$ be a prime ideal. Since P is a unit in R[T], the image of P in $R/\mathcal{P}[T]$ is a unit. Since R/\mathcal{P} is a domain by 1-6 thm. 8, by the above argument $a_1, ..., a_n = 0_{R/\mathcal{P}}$ and thus $a_1, ..., a_n \in \mathcal{P}$. Since this holds for all \mathcal{P} , by HW we have that $a_1, ..., a_n$ are nilpotent.

Lemma 5.3. Let $P \in R[T]$ and $r \in R$. We have P(r) = 0 iff $(T - r) \mid P$.

Proof. The backward direction is clear. Apply fact 1 with $S = R[T], \phi : R \hookrightarrow R[T], s = T + r$ to get a morphism $R[T] \to R[T]$. This is an isomorphism with inverse given by the same construction with s = T - r. Under this isomorphism, $P \mapsto Q$ with Q(0) = 0. Thus $Q(T) = b_n T^n + ... + b_1 T$ so $T \mid Q$. Taking the preimage under the above isomorphism, we have $(T-r) \mid P$.

Gitlin's thoughts: The constructed isomorphism can be thought of as the map $R[T] \to R[T]$ which "replaces every T with T+r." Thus Q(x)=P(x+r) for all $x\in R$. In particular, Q(0)=P(r) which is 0. The inverse map is the map $R[T] \to R[T]$ which "replaces every T with T-r." In particular, the preimage of $Q(T) = b_n T^n + ... + b_1 T$ is $b_n (T - r)^n + ... + b_1 (T - r)$.

Propostion 5.4. Let $P,D \in R[T]$. Assume that $D \neq 0$ and that the leading coefficient of D is a unit. There exist unique $Q, Z \in R[T]$ with deg(Z) < deg(D) such that P = QD + Z.

Proof.

Choose Q so that deg(Z) is minimal where Z = P - QD. We claim deg(Z) < deg(D). Suppose not. Let $D = d_n T^n + ... + d_0$ and $Z = z_m T^m + ... + z_0$ with $m \ge n$. Note that $P - (Q + z_m d_n^{-1} T^{m-n})D =$ $Z - (z_m d_n^{-1} T^{m-n})D$ has degree less than deg(Z), contradicting the minimality of Z. This shows existence.

Gitlin's thoughts: The set of "candidates" is the set of elements of R[T] that have the form P-*Dwhere * varies over R[T]. Clearly $P - (Q + z_m d_n^{-1} T^{m-n})D$ is a candidate. Furthermore, the leading term $z_m T^m$ of Z cancels with the leading term $z_m d_n^{-1} T^{m-n} \cdot d_n T^n = z_m T^m$ of $(z_m d_n^{-1} T^{m-n})D$ in the subtraction $Z - (z_m d_n^{-1} T^{m-n})D$ so the degree of Z is at least one more than the degree of $Z - (z_m d_n^{-1} T^{m-n})D$.

Let Q', Z' be another such pair. We have QD + Z = P = Q'D + Z' so (Q - Q')D = Z' - Z. Thus $(1-11 \text{ fact } 6) \ deg(D) > \max(deg(Z'), deg(Z)) \ge deg(Z'-Z) = deg((Q-Q')D) = deg(Q-Q') + deg(D)$ (the leading coefficient of D is a unit and thus not a divisor of zero). This means $deg(Q-Q')=-\infty$ so Q - Q' = 0 so Q = Q'. Thus Z = P - QD = P - Q'D = Z'. This shows uniqueness.

Gitlin's thoughts: My uniqueness proof likely differs from the one given in class. Sorry Tasho. I couldn't follow your inequalities.