Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	

Sprawozdanie nr 5

1. Opis ćwiczenia

Ćwiczenie złożone było z następujących części:

- 1. Badanie prawa Malusa
- 2. Badanie prawa Snella
- 3. Wyznaczenie kąta granicznego
- 4. Wyznaczenie kąta Brewstera

1.1. Wstęp teoretyczny

1.2. Układ pomiarowy

2. Pomiary i obliczenia

2.1. Badanie prawa Malusa

Przy pomocy obu polaryzatorów oraz fotodetektora została zmierzona wartość natężenia światła spolaryzowanego. Wpierw odnaleziony został taki kąt obrotu analizatora, przy którym mierzona wartość natężenia światła była maksymalna ($\alpha_0=176^\circ$). Następnie, siedmiokrotnie dokonano obrotu analizatora o 15° i pomiaru wartości natężenia. Wyniki zostały przedstawione w tablicy 1. Na rysunku 1 przedstawione zostały 2 próby jak najlepszego dopasowania wykresu funkcji cos² uwzględniając wszystkie niepewności standardowe, przy założeniach:

- \bullet kąt α_0 jest kątem, dla którego natężenie jest maksymalne kolor czerwony
- kąty obrotu analizatora zostały odczytane z przesunięciem 10°, pomiar k=1 jest błędem grubym, a kąt α_0 nie jest kątem maksymalnego natężenia kolor zielony

Biorąc pod uwagę trudności podczas przeprowadzania ćwiczenia, pomimo większej ilości założeń prawdziwy zdaje się być przypadek drugi (kolor zielony na wykresie).

\overline{k}	α_k (°)	$I (\mu A)$	$u_I \; (\mu A)$
0	176	260.0	3.662877
1	161	240.0	3.662877
2	146	225.0	3.662877
3	131	160.0	3.662877
4	116	94.0	1.414214
5	101	32.0	1.414214
6	86	2.2	0.036629
7	71	13.0	0.366288

Tabela 1: Pomiary natężenia światła spolaryzowanego

- 2.2. Badanie prawa Snella
- 2.3. Wyznaczenie kąta granicznego
- 2.4. Wyznaczenie kąta Brewstera
- 2.5. Wnioski

Rysunek 1: Prawo Malusa

Rysunek 2: Wykres