## Résolution de Problèmes Recherche Locale

Marie Pelleau

marie.pelleau@unice.fr

Master 1 - Semestre 1

 Marie Pelleau
 Recherche Locale
 2019-2020
 1 / 21

Algorithme glouton

# Algorithme glouton

## Principe

- À chaque étape, on fait un choix, celui qui semble le meilleur à cet instant
- Construit une solution pas à pas
  - sans revenir sur ses décisions
  - en effectuant à chaque étape le choix qui semble le meilleur
  - en espérant obtenir un résultat optimum global
- Approche glouton
  - suivant les problèmes pas de garantie d'optimalité (heuristique gloutonne)
  - peu coûteuse (comparée à une énumération exhaustive)
  - choix intuitif

 Marie Pelleau
 Recherche Locale
 2019-2020
 2 / 21

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
| Notes |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

## Recherche locale

## Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
  - en essayant d'améliorer la valeur de la fonction objectif
  - en espérant obtenir l'optimum global
- Approche locale
  - suivant les problèmes pas de garantie d'optimalité (heuristique)
  - peu coûteuse

#### Solution initiale

- Solution "vide"
- Solution aléatoire
- Solution d'un algorithme glouton

Marie Pellea

lecherche Locale

2019-2020

-2020 3

Recherche locale

## Recherche locale

## Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution
  - en essayant d'améliorer la valeur de la fonction objectif
  - en espérant obtenir l'optimum global
- Approche locale
  - suivant les problèmes pas de garantie d'optimalité (heuristique)
  - peu coûteuse

## Modifications

- Modifie la valeur d'une variable
- Échange la valeur de deux variables

Marie Pelleau Recherche Locale 2019-2020 3 / 21

# Le sac-à-doc (knapsack)

## Description

#### On a:

- Un Sac dans lequel on peut mettre un poids limité
- Un ensemble d'objets, chaque objet  $o_i$  a
  - Un poids : p<sub>i</sub>Une valeur : v<sub>i</sub>

Quels sont les objets que l'on doit prendre pour maximizer la valeur transportée tout en respectant la contrainte de poids ?

- La somme des valeurs des objets pris est maximale
- La somme des poids des objets pris est ≤ poidsmax du sac

Marie Pelleau Recherche Locale 2019-2020 4 / 21

Recherche locale

# Le sac-à-doc (knapsack)

#### Les variables

- On associe à chaque objet une variable 0-1 (elle ne prend que les valeurs 0 ou 1)
- C'est une variable d'appartenance au sac à dos
- Si l'objet est pris alors la variable vaut 1 sinon elle vaut 0

Marie Pelleau Recherche Locale 2019-2020 5 / 21

| Votes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

# Le sac-à-doc (knapsack)

#### Modèle

- La valeur d'un objet et son poids sont des données, donc pour l'objet o<sub>i</sub> on a la valeur v<sub>i</sub> et le poids p<sub>i</sub>
- La variable d'appartenance au sac est  $x_i$
- ullet Le poids maximum du sac est W

#### Les contraintes

•  $max \sum_{i=1}^{n} v_i x_i$ 

l'objectif

 $\bullet \sum_{i=1}^n p_i x_i \leq W$ 

somme des poids inférieure ou égale au poids maximal

Marie Pellea

Recherche Locale

2019-2020

6 / 21

Recherche locale

# Le sac-à-doc (knapsack)

## Solution initiale

- ullet Solution "vide" : sac à dos vide  $\Rightarrow$  fonction objectif 0
- Solution aléatoire : sac à dos aléatoire ⇒ il faut vérifier que c'est une solution
- Solution d'un algorithme glouton

#### Modifications

- Ajoute un élément au sac à dos ⇒ si la capacité max n'est pas dépassée
- Supprime un élément du sac à dos

 Marie Pelleau
 Recherche Locale
 2019-2020
 7 / 21

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

## Hitting-set: Recouvrement (set cover)

## Description

- Un interrupteur est relié à certaines ampoules
- Si on appuie sur l'interrupteur alors on allume toutes les ampoules reliées
- Question : sur combien d'interrupteur au minimum doit-on appuyer pour allumer toutes les ampoules ?

2019-2020 8 / 21

#### Recherche locale

## Hitting-set: Recouvrement (set cover)

### Solution initiale

- Solution "vide" : tous les interrupteurs allumés ⇒ fonction objectif nombre d'interrupteurs
- Solution aléatoire : position des interrupteurs aléatoire ⇒ il faut vérifier que c'est une solution
- Solution d'un algorithme glouton

### Modifications

- Allume un interrupteur
- Éteint un interrupteur ⇒ si toutes les ampoules restent allumées

2019-2020

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |

# TSP



2019-2020 10 / 21 Recherche Locale

Recherche locale

## TSP



Marie Pelleau

Recherche Locale

- Les villes par ordre alphabétique
- Les villes dans un ordre aléatoire

2019-2020 10 / 21

| Notes |  |  |  |
|-------|--|--|--|
| Notes |  |  |  |

Notes

## TSP



## Solution initiale

- Les villes par ordre alphabétique
- Les villes dans un ordre aléatoire

Notes

• Solution d'un algorithme glouton

Marie Pelleau Recherche Locale 2019-2020 10 / 21

Recherche locale

## TSP



Marie Pelleau

## Modifications

*k*-opt

Recherche Locale

- k = 2
- k = 3

2019-2020 11 / 21

| Notes |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

# TSP



Recherche Locale

Recherche locale

2019-2020 11 / 21

2019-2020 11 / 21

TSP

Marie Pelleau

Marie Pelleau



Recherche Locale

| Votes |      |  |  |
|-------|------|--|--|
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
| lotes |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |

## **TSP**



Recherche locale

## Recherche locale

## Principe

- On part d'une solution initiale
- ullet À chaque étape, on modifie la solution  $\Rightarrow$  notion de voisinage

## Voisinage

Pour une solution, l'ensemble des solutions à une modification près

| Notes |       |      |  |  |
|-------|-------|------|--|--|
| Notes |       |      |  |  |
| Notes |       | <br> |  |  |
| Notes |       |      |  |  |
| Notes |       | <br> |  |  |
| Notes |       |      |  |  |
| Notes |       | <br> |  |  |
| Notes |       |      |  |  |
| Notes |       | <br> |  |  |
| Notes |       |      |  |  |
|       |       |      |  |  |
|       | Notes |      |  |  |

Marie Pelleau

Recherche Locale

2019-2020 12 / 21

2019-2020 11 / 21

Notes

# Hitting-set: Recouvrement (set cover)

# Voisinage

Marie Pelleau

Recherche Locale

2019-2020 13 / 21

2019-2020 14 / 21

#### Recherche locale

# Hitting-set: Recouvrement (set cover)

Voisinage



Recherche Locale

| Notes |      |  |  |
|-------|------|--|--|
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
| Votes |      |  |  |
| votes |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       | <br> |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |
|       |      |  |  |

## Recherche locale

## Principe

- On part d'une solution initiale
- À chaque étape, on modifie la solution (on choisit un voisin)

## Quel voisin choisir?

- Aléatoirement
- Le meilleur
- Un parmi les meilleurs

 Marie Pelleau
 Recherche Locale
 2019-2020
 15 / 21

Recherche locale

## Plan

- Marche aléatoire
- 2 Algorithme de la descente
- Restarts
- 4 Recherche Tabou

 Marie Pelleau
 Recherche Locale
 2019-2020
 16 / 21

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Notes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

## Marche aléatoire

## Principe

- On part d'une solution initiale
- À chaque étape, on modifie aléatoirement la solution



Marie Pelleau Recherche Locale 2019-2020 17 /

Algorithme de la descente

# Algorithme de la descente

## Principe

- On part d'une solution initiale
- À chaque étape, on se déplace vers une solution du voisinage améliorant strictement l'objectif



## Inconvénients

On peut rester bloquer dans des minimum locaux

 Marie Pelleau
 Recherche Locale
 2019-2020
 18 / 21

| Notes |  |  |
|-------|--|--|
| Notes |  |  |

Notes

#### Algorithme de la descente

# Algorithme de la descente

## Principe

- On part d'une solution initiale
- À chaque étape, on se déplace vers une solution du voisinage améliorant strictement l'objectif



#### Restarts

On recommence à partir d'une autre solution

 Marie Pelleau
 Recherche Locale
 2019-2020
 18 / 21

Restarts

## Recherche locale

#### Restarts

- Solution aléatoire
- Solution "vide", dans laquelle on fixe un certain pourcentage de variables comme dans la meilleure solution trouvée jusqu'ici
  - 5%, 10%, 20%

Large Neighborhood Search (LNS) [Shaw, 1998]

#### Pas d'amélioration

On se déplace vers une solution du voisinage sans améliorer l'objectif
 Il ne faut pas être un poisson rouge

 Marie Pelleau
 Recherche Locale
 2019-2020
 19 / 21

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| Votes |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### Recherche Tabou

## Recherche Tabou [Glover, 1986]

## Principe

- On part d'une solution s
- On se déplace vers la meilleure solution du voisinage qui ne soit pas interdite
- ullet On ajoute s aux solutions interdites pour les m itérations suivantes

#### Mémoire

- Interdire des solutions peut être coûteux en mémoire
- À la place on interdit des mouvements

## Critère d'aspiration

On peut accepter un mouvement tabou s'il permet d'obtenir une meilleure solution que la meilleure solution connue jusqu'ici

Marie Pelleau

Recherche Local

Recherche Tabou

## Taille de la liste taboue

- Si m trop faible, intensification trop forte ⇒ blocage de la recherche autour d'un optimum local
- Si m trop grand, diversification trop forte ⇒ risque de rater des solutions

La longueur optimale de la liste varie

- d'un problème à l'autre
- d'une instance à l'autre d'un même problème
- au cours de la résolution d'une même instance

[Battiti, Protasi 2001]: adapter cette longueur dynamiquement

- Besoin de diversification  $\Rightarrow$  augmenter m
- Besoin de d'intensification ⇒ diminuer m

2019-2020 Notes 2019-2020 21 / 21

Notes

 Marie Pelleau
 Recherche Locale
 2019-2020
 21 / 21