### **Week 8 Summary Exercises**

**Due** Nov 24 at 11:59pm **Points** 60 **Questions** 29

Available Nov 17 at 12am - Nov 24 at 11:59pm 8 days Time Limit 360 Minutes

**Allowed Attempts** 2

### **Attempt History**

|        | Attempt   | Time        | Score          |
|--------|-----------|-------------|----------------|
| KEPT   | Attempt 2 | 128 minutes | 60 out of 60   |
| LATEST | Attempt 2 | 128 minutes | 60 out of 60   |
|        | Attempt 1 | 279 minutes | 56.6 out of 60 |

Score for this attempt: 60 out of 60

Submitted Nov 24 at 7:52pm This attempt took 128 minutes.

|          | Question 1                                                                                        | 1 / 1 pts      |
|----------|---------------------------------------------------------------------------------------------------|----------------|
|          | The process of moving a datagram from a router's input port to chandled by the switching fabric . | output port is |
|          | Answer 1:                                                                                         |                |
| Correct! | switching fabric                                                                                  |                |
|          |                                                                                                   |                |

|          | Question 2  The Internet Protect (ID) implements data reliability convises |  |
|----------|----------------------------------------------------------------------------|--|
|          | The Internet Protocol (IP) implements data reliability services.           |  |
|          | O True                                                                     |  |
| Correct! | False                                                                      |  |

Question 3 1 / 1 pts

In a link between Host A, and Host B, we have three intermediary routers:

Host A ----- Router Snucky ------ Router Jumpy ----- Router Po ------ Host B

Host A's first hop router is Router Snucky.

### Answer 1:

Correct!

Snucky

Question 4 1 / 1 pts

The process of determining a path through the internet is called routing .

### Answer 1:

Correct!

routing

Question 5 1 / 1 pts

A router's routing table is output by a routing algorithm.

### Answer 1:

Correct!

routing algorithm

Question 6 2 / 2 pts

Upon encountering a router with the following routing table:

| Prefix Match                    | Port |
|---------------------------------|------|
| 10011110 00011110 10001111      | 0    |
| 10011110 00011110 10001111 000  | 1    |
| 10011110 00011110 10001111 01   | 2    |
| 10011110 00011110 10001110 0001 | 3    |
| Default                         | 4    |

A datagram with the destination IP address 158.30.142.90 would be routed to Port 4 .

### Answer 1:

Correct!

Port 4

|          | Question 7                                                                                                                                       | 2 / 2 pts |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|          | For a TCP/IP datagram coming into a home network through a NAP which of the following header fields (IP and/or TCP) are altered? (Cl that apply) |           |
|          | Source IP Address                                                                                                                                |           |
| Correct! | ✓ Header Checksum                                                                                                                                |           |
| Correct! | ✓ Destination Port                                                                                                                               |           |
|          | Upper Layer Protocol                                                                                                                             |           |
|          | Identification                                                                                                                                   |           |
|          | Source Port                                                                                                                                      |           |
| Correct! | ✓ Destination IP address                                                                                                                         |           |

|          | Question 8                                                                                                                                                                 | 2 / 2 pts   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|          | It is the responsibility of a routing algorithm to correlate MAC add IP addresses.                                                                                         | resses with |
|          | True                                                                                                                                                                       |             |
| Correct! | False                                                                                                                                                                      |             |
|          |                                                                                                                                                                            |             |
|          | Question 9                                                                                                                                                                 | 2 / 2 pts   |
|          | If an IP datagram is fragmented into 1000-byte fragments, and la encounters a link with an 800-byte MTU, a special procedure (oth standard IP fragmentation) must be used. |             |
|          | True                                                                                                                                                                       |             |
| Correct! | False                                                                                                                                                                      |             |
|          |                                                                                                                                                                            |             |
|          | Question 10                                                                                                                                                                | 2 / 2 pts   |
|          | The "traceroute" application (on Windows) sends UDP messages                                                                                                               | by default. |
|          | True                                                                                                                                                                       |             |
| Correct! | False                                                                                                                                                                      |             |
|          |                                                                                                                                                                            |             |

Question 11

2 / 2 pts

| The transport-layer header is encapsulated in the first fragmented IP datagram. |  |  |
|---------------------------------------------------------------------------------|--|--|
| True                                                                            |  |  |
| O False                                                                         |  |  |

# Given an internet represented as a weighted undirected graph, the shortest path between node X and node Y is the path that... has the smallest sum of edge weights. begins with the smallest weight on the first hop edge from node X connects node X to node Y directly has the smallest number of hops

| Question 13                                                   | 2 / 2 pts                                                           |
|---------------------------------------------------------------|---------------------------------------------------------------------|
| The "Identification" header field is unchanged by IP datagram | fragmentation.                                                      |
| True                                                          |                                                                     |
| False                                                         |                                                                     |
|                                                               | The "Identification" header field is unchanged by IP datagram  True |

Question 14 2 / 2 pts

| 1/24/2019 | Week 8 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_F201                           | 9) |
|-----------|-------------------------------------------------------------------------------------------------|----|
|           | It is the responsibility of a routing algorithm to determine a datagram's next hop information. |    |
| Correct!  | True                                                                                            |    |
|           | False                                                                                           |    |
|           |                                                                                                 |    |
|           | Question 15 2 / 2 p                                                                             | ts |
|           | The "ping" application (on Windows) uses ICMP echo request/reply.                               |    |
| Correct!  | True                                                                                            |    |
|           | False                                                                                           |    |
|           |                                                                                                 |    |
|           | Question 16 2 / 2 p                                                                             | ts |
|           | The path MTU is the smallest MTU on a path from sender to receiver.                             |    |
| Correct!  | True                                                                                            |    |

## 2 / 2 pts **Question 17** In network graph terminology, [a] represent routers. Weights

False

| Nodes    |      |  |
|----------|------|--|
| Shortest | Path |  |
| Edges    |      |  |

|          | Question 18 2 / 2 pts                                                                                                        |
|----------|------------------------------------------------------------------------------------------------------------------------------|
|          | In network graph terminology, a [a] from A to B is the set of edges to traverse to reach B from A for the lowest total cost. |
| Correct! | Shortest Path                                                                                                                |
|          | Weight                                                                                                                       |
|          | Node                                                                                                                         |
|          | ○ Edge                                                                                                                       |

|          | Question 19                                                        | 2 / 2 pts |
|----------|--------------------------------------------------------------------|-----------|
|          | The transport-layer header is encapsulated in every IP datagram fr | agment.   |
|          | True                                                               |           |
| Correct! | False                                                              |           |

Question 20 2 / 2 pts

The "time to live" field in a modern IPv4 datagram header specifies...

- the number of remaining hops before the datagram is dropped.
- the milliseconds remaining before the datagram is dropped.

the seconds remaining before data in the datagram is considered obsolete.

the seconds to wait for the remaining fragments of a datagram that has been fragmented.

### Question 21 2 / 2 pts

If an IP datagram is fragmented into 1000-byte fragments, and later encounters a link with an 800-byte MTU, it is dropped.

True

Correct!

False

| Question 22 |                                                     | 2 / 2 pts |
|-------------|-----------------------------------------------------|-----------|
|             | ICMP can carry messages from (Check all that apply) |           |
| Correct!    | Router to Sender Host                               |           |
| Correct!    | Destination Host to Source Host                     |           |
| Correct!    | Router to Router                                    |           |
| Correct!    | Source Host to Destination Host                     |           |

|          | Question 23                                                    | 2 / 2 pts |
|----------|----------------------------------------------------------------|-----------|
|          | Network address translation alters IP to add new IP addresses. |           |
|          | True                                                           |           |
| Correct! | <ul><li>False</li></ul>                                        |           |
|          |                                                                |           |
|          | Question 24                                                    | 2 / 2 pts |
|          | Network address translation is strictly a Layer-3 protocol.    |           |
|          | O True                                                         |           |
| Correct! | False                                                          |           |
|          |                                                                |           |
|          | Question 25                                                    | 2 / 2 pts |
|          | The IP header is encapsulated in IP datagram fragments.        |           |
|          | O True                                                         |           |
| Correct! | False                                                          |           |
|          |                                                                |           |
|          | Question 26                                                    | 2 / 2 pts |
|          | ICMP messages are carried within the payload of IP datagrams.  |           |

| True  |  |  |
|-------|--|--|
| False |  |  |

| Question 27                                                                                                                                                                                           | 1 / 1 pts |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| A private network uses a NAPT device at public IP address 128.100 The computers in the network use addresses of the form 10.0.0.x/22 Suppose that computer inside the NATed network sends a request w |           |  |  |  |
| Source address: 10.0.0.4 Source port: 932                                                                                                                                                             |           |  |  |  |
| Destination address: 108.155.105.30  Destination port: 22                                                                                                                                             |           |  |  |  |
| The next available port number on the NAPT device is 12000                                                                                                                                            |           |  |  |  |
| PART 1:                                                                                                                                                                                               |           |  |  |  |
| What source and destination information do the request packet head contain when the request is sent out by the sending host?                                                                          | lers      |  |  |  |
| Source address: [Select]                                                                                                                                                                              |           |  |  |  |
| Source port : [Select]                                                                                                                                                                                |           |  |  |  |
| Destination address: [Select]                                                                                                                                                                         |           |  |  |  |
| Destination port : [Select]                                                                                                                                                                           |           |  |  |  |

### PART 2:

What source and destination information do the request packet headers contain when the request is sent out by the NAT box?

| Source address: [Select]                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Source port :   [Select]  ▼                                                                                                                |
| Destination address: [Select]                                                                                                              |
| Destination port : [Select]                                                                                                                |
|                                                                                                                                            |
| PART 3:                                                                                                                                    |
| What source and destination information do the response packet headers contain when the response is received by the NAT box?               |
| Source address: [Select]                                                                                                                   |
| Source port : [Select]                                                                                                                     |
| Destination address:   [Select]  ▼                                                                                                         |
| Destination port : [Select]                                                                                                                |
|                                                                                                                                            |
| PART 4:                                                                                                                                    |
| What source and destination information do the response packet headers contain when the response is received by the original sending host? |
| Source address: 108.155.105.30                                                                                                             |
| Source port : [Select]                                                                                                                     |
| Destination address:   [Select]  ▼                                                                                                         |
| Destination port :   [ Select ]  ▼                                                                                                         |
| Answer 1:                                                                                                                                  |
| 10.0.0.4                                                                                                                                   |
| Answer 2:                                                                                                                                  |

11/24/2019

| 11/24/2010 | Work of Galliniary Exercises. IN The To Gold of Entire (GG_072_400_12016) |
|------------|---------------------------------------------------------------------------|
| Correct!   | 932                                                                       |
|            | Answer 3:                                                                 |
| Correct!   | 108.155.105.30                                                            |
|            | Answer 4:                                                                 |
| Correct!   | 22                                                                        |
|            | Answer 5:                                                                 |
| Correct!   | 128.100.116.1                                                             |
|            | Answer 6:                                                                 |
| Correct!   | 12000                                                                     |
|            | Answer 7:                                                                 |
| Correct!   | 108.155.105.30                                                            |
|            | Answer 8:                                                                 |
| Correct!   | 22                                                                        |
|            | Answer 9:                                                                 |
| Correct!   | 108.155.105.30                                                            |
|            | Answer 10:                                                                |
| Correct!   | 22                                                                        |
|            | Answer 11:                                                                |
| Correct!   | 128.100.116.1                                                             |
|            | Answer 12:                                                                |
| Correct!   | 12000                                                                     |
|            | Answer 13:                                                                |
| Correct!   | 108.155.105.30                                                            |
|            | Answer 14:                                                                |
|            |                                                                           |

# Question 28 6 / 6 pts

Suppose that a 1600-byte datagram (identification #20) must transit a network which has a 740-byte MTU. Assume the minimum IP and TCP header sizes, i.e., the IP header is 20 bytes and the TCP header is 20 bytes.

[Select]

- fragments

  2. How many bytes of <u>application data</u> are carried in the first fragment?
- 2. How many bytes of <u>application data</u> are carried in the first fragment?

  [Select] 
  ▼ bytes
- 3. How many bytes of <u>application data</u> are carried in the second fragment?

  [Select] 

   bytes
- 4. How many bytes of <u>application data</u> are carried in the last fragment?

  [Select] 

   bytes
- 5. What is the identification number of the second fragment? #

  [Select]
- 6. What is the fragment offset in the last fragment?

[Select]

1. How many fragments are created?

### Answer 1:

Correct!

11/24/2019

Correct!

Correct!

Correct!

932

3

|          | Answer 2: |
|----------|-----------|
| Correct! | 700       |
|          | Answer 3: |
| Correct! | 720       |
|          | Answer 4: |
| Correct! | 140       |
|          | Answer 5: |
| Correct! | 20        |
|          | Answer 6: |
| Correct! | 180       |
|          |           |

### Question 29

6 / 6 pts

Using the version of *Dijkstra's Algorithm* discussed in the lectures (see below), and the network configuration in the graph (see below), to calculate the shortest path from node *H* to node *B*.

(NOTE#1: H is  $\underline{not}$  in the original set S.)

(NOTE#2: A tie goes to the lower node (alphabetically).

(NOTE#3: If you use the textbook version of Dijkstra's Algorithm, find the 3rd node to be added to set S', where  $S = \{A,B,C,D,E,F,G\}$  and S' starts as  $\{H\}$ .)

• What is the  $3_{rd}$  node to be eliminated from the set **S** = {A,B,C,D,E,F,G}?

- What is the full shortest path from node H to node B? (e.g. for a path from H to D you would type "H-D" without the quotes)
- What is the cost of the shortest path from node H to node B?

8

 Fill in the complete routing table for node H, as it would be calculated by Dijkstra's algorithm and stored inside router H. (It's OK to do this by inspection; you don't have to crank through Dijkstra's algorithm for each destination.)

| Destination | First Hop |
|-------------|-----------|
| А           | G         |
| В           | G         |
| С           | G         |
| D           | D         |
| E           | G         |
| F           | G         |
| G           | G         |



### Dijkstra's algorithm S = {all nodes except source} for u in $S \{ /*initialization*/ \}$ D[u] = edge weight (if edge (source, a)exists) or ∞ (otherwise) R[u] = u (if edge (source, u) exists) or \* (otherwise) P[u] = source ((if edge (source, u) exists) or \* (otherwise) while (not empty(S)) { u = node with smallest value in D /\* if tie, choose lower (alpha) node \*/ if u in S { $if(D[u] = \infty)$ { error: "no path"; exit;} $S = S - \{u\};$ for (each v such that edge (u, v) exists) { $if(v in S) {$ $c = \mathbf{D}[u] + \text{weight } (u, v);$ $if(c \le D[v])$ { D[v] = c; R[v] = R[u];P[v] = u} }

### Answer 1:

Correct!

Ε

### Answer 2:

Correct!

H-G-E-A-C-B

orrect Answer

H-G-E-A-C-B

orrect Answer

**HGEACB** 

orrect Answer

HGEACB

### Answer 3:

Correct!

8

### Answer 4:

Correct!

G

| 11/24/2019 |            | Week 8 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_F2019) |
|------------|------------|-------------------------------------------------------------------------|
|            | Answer 5:  |                                                                         |
| Correct!   | G          |                                                                         |
|            | Answer 6:  |                                                                         |
| Correct!   | G          |                                                                         |
|            | Answer 7:  |                                                                         |
| Correct!   | D          |                                                                         |
|            | Answer 8:  |                                                                         |
| Correct!   | G          |                                                                         |
|            | Answer 9:  |                                                                         |
| Correct!   | G          |                                                                         |
|            | Answer 10: |                                                                         |
| Correct!   | G          |                                                                         |

Quiz Score: 60 out of 60