

# Predicting Home Sales in the NYC Suburbs

Jen Hilibrand

## Why

- For most families, home equity is the largest component of household wealth
- US total real estate market is more than \$35 Trillion dollars
- Post-pandemic desire for more space (demand for suburban versus urban homes)



- Time on market
- Square Feet
- Baths
- Address/location
- Distance to midtown





#### **BeautifulSoup**

#### Per Zipcode

- Median household
- Average gross household income
- Public school test performance
- Average commute time



Pandas, geopy, sklearn, matplotlib, seaborn

#### Data

#### Challenges:

- Zillow's advanced web scrapping detection
  - Added request headers to mask HTML scrape from search page
  - Focused on features from aggregate search page as opposed to individual home pages
- Outliers
  - Dropped homes sold at greater than \$10mm to reduce variance in model
  - Dropped towns with less than 10 homes

#### Data focus:

- Sold homes (as opposed to currently listed homes)
  - ~3.5k homes over the past 6 months across 10 towns

## Step One: Basic OLS Regression

- Categorical features such as "Town" and "Zipcode" not taken into account
- Skewed distribution of prices
- Cross validation average score R<sup>2</sup> of .66



## Step Two: Feature engineering and transformation

- Feature engineering:
  - Polynomial features: Beds<sup>2</sup>
  - Multiplicative features: School\*Space
  - Formulaic features:
    - Average of commute time and distance to midtown
    - Total sum of square feet, beds, and baths
- Dummy variable creation for categorical features:
  - Zipcode dummies
  - Town dummies
- Transformation of target
  - Log transform on Y (Price) to adjust for skew
- Cross validation average R<sup>2</sup> score of .75



## Step 3: Regularized models

- Standardize numeric features
- Solve for optimal alphas for lasso and ridge regularization
- Observe largest absolute value coefficients:
  - Ridge
    - Beds (+0.249)
    - Baths (+0.191)
    - Sqft (+.103)
  - Lasso
    - Average Gross Income (+5.602)
    - Zipcode 10573 (-2.617)
    - Sqft (+0.264)

## <u>Step 3:</u> Regularized models

- Standardize numeric features
- Solve for optimal alphas for lasso and ridge regularization
- Observe largest absolute value coefficients:
  - Ridge
    - Beds (+0.249)
    - Baths (+0.191)
    - Sqft (+.103)
  - Lasso
    - Average Gross Income (+5.602)
    - Zipcode 10573 (-2.617) Taxes!
    - Sqft (+0.264)

## Lasso v Ridge training data

#### <u>Ridge</u>

CV average  $R^2$  .754

#### **Lasso**

CV average R<sup>2</sup>.749





#### Lasso v Ridge test data



Are we overfitting...?





## Mean Absolute Error: Town by Town Comparison



## Mean Absolute Error: Town by Town Comparison







### Most "over-priced" homes





#### "Value" homes







#### "Value" homes







#### **Future Work**

- Add more towns to my model
- Overlay tax conditions
- Build out selenium pipeline for more specific house data