Tutorial 1Sagemath Introduction Question set(ITVC)

- 1. Plot the graph of the function $f(x, y) = xye^{-x^2-y^2}$ for $-2 \le x, y \le 2$.
- 2. Find the following limits (plot graph of function):

$$\lim_{x\to 0} (x^2 - \frac{2^x}{1000})$$

- 3. Find the 1st four derivative of $f(t) = \log(1 + t^2)$ and plot them along with the graph of f(t).
- 4. What is the n-th derivative of x^x for various values of n?
- 5. Consider the function implicitly defined cos(x sin(y)) = sin(y sinx).
 - i) Plot the curve represented by the given function.
 - ii) Find $\frac{dy}{dx}$ and $\frac{d^2y}{d^2x}$.
- 6. Consider $f(x) = e^{-x} \cos 2x$.
- (i) Plot the graph of the function along with Taylor's polynomial of degree 1, 2, 3, 6, 7, 9, 10.
- (ii) Use sage interacts to create interactive plot to plot Taylor's polynomial along with the curve of desired degree at a desired point.
- 7. Evaluate the following indefinite integrals.
 - i) $\int \frac{-4}{\sqrt{1-x^2}} dx$
 - ii) $\int \sin^5 x dx$
- 8 Evaluate the following definite integrals.
 - $(i) \int_1^4 \frac{3x}{\sqrt{3x-1}} dx$

(ii)
$$\int_{\pi/3}^{\pi/2} \frac{1}{1+\sin x - \cos x} dx$$

- 9 Graph the curve $y = (1 + x^2)^{3/2}$ for $0 \le x \le 4$ and hence find its arc length.
- 10 Find the area that the curve $r = 3(1 \cos 2\theta)$, $0 \le \theta \le 2\pi$ encloses.
- 11. Find roots of $x^3 2x^2 5x + 6 = 0$ for x.
- 12. Solve the system of nonlinear equations $x^2 + y^2 = 4$ and $y = x^2 2$ for x and y.