MATEMATIKA

1. letnik – splošna gimnazija

Jan Kastelic

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

24. april 2024

Vsebina

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
- Pravokotni koordinatni sistem, linearna funkcija

2/75

Section 1

Naravna in cela števila, izrazi, enačbe in neenačbe

3 / 75

- Naravna in cela števila, izrazi, enačbe in neenačbe
 - Naravna in cela števila
 - Računanje z naravnimi in celimi števili
 - Izraz, enačba, neenačba
 - Računanje s potencami z naravnimi eksponenti
 - Razčlenjevanje izrazov
 - ullet Razstavljanje izrazov v množici $\mathbb Z$
 - ullet Reševanje linearnih in razcepnih enačb v množici ${\mathbb Z}$
 - Reševanje linearnih neenačb v množici Z
- Deljivost, izjave, množice
- Racionalna števila

4 / 75

Naravna števila

Množica naravnih števil:

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

Naravna števila so števila s katerimi štejemo.

Naravna števila lahko predstavimo s točko na številski premici.

Množico naravnih števil definirajo Peanovi aksiomi:

- Vsako naravno število (n) ima svojega naslednika (n+1).
- Število 1 ni naslednik nobenega naravnega števila.
- Različni naravni števili imata različna naslednika: $(n+1 \neq m+1; n \neq m)$.
- Če neka trditev velja za vsako naravno število in tudi za njegovega naslednika, velja za vsa naravna števila princip popolne indukcije.

V množici $\mathbb N$ sta definirani notranji operaciji: **seštevanje** in **množenje**.

6/75

Seštevanje

Poljubnima naravnima številoma a in b priredimo **vsoto** a + b.

Vsota naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a + b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** členov/zakon o zamenjavi členov: a + b = b + a.
- asociativnost členov/zakon o združevanju členov: (a + b) + c = a + (b + c).

<□ > <□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

7 / 75

Množenje

Poljubnima naravnima številoma a in b priredimo **produkt** $a \cdot b$.

Produkt naravnih števil je naravno število: $a, b \in \mathbb{N} \Rightarrow a \cdot b \in \mathbb{N}$.

Lastnosti:

- **komutativnost** faktorjev/zakon o zamenjavi faktorjev: $a \cdot b = b \cdot a$.
- asociativnost faktorjev/zakon o združevanju faktorjev: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- **distributivnost**/zakon o razčlenjevanju: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- zakon o nevtralnem elementu: $a \cdot 1 = a$.

8 / 75

Cela števila

Množica celih števil:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$$

Množica celih števil je definirana kot unija treh množic:

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

- množica **pozitivnih celih števil** (\mathbb{Z}^+) naravna števila;
- število 0;
- množica **negativnih celih števil** (\mathbb{Z}^-) nasprotna števila vseh naravnih števil.

Nasprotno število število a je -a.

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 9 / 75

Poleg seštevanja in množenja je kot notranja operacija množice celih števil definirano še **odštevanje**.

Odštevanje

Poljubnima naravnima številoma a in b priredimo **razliko** a - b.

Odštevanje definiramo kot prištevanje nasprotne vrednosti: a-b=a+(-b)

Za odštevanje velja zakon **distributivnosti**: $a \cdot (b - c) = a \cdot b - a \cdot c$.

10 / 75

Računski zakoni

• Komutativnostni zakon:

$$a + b = b + a$$
 in $a \cdot b = b \cdot a$

Asociativnostni zakon:

$$a + (b + c) = (a + b) + c$$
 in $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Zakon o nevtralnem elementu:

$$a+0=a$$
 in $a\cdot 1=a$

• Zakon o inverznem/nasprotnem elementu:

$$a + (-a) = 0$$

Distributivnostni zakon:

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

(ロ ト 4 個 ト 4 분 ト 4 분 ト · 본 · ~ 의 Q (C)

11 / 75

Pravila za računanje s celimi števili

•
$$-(-a) = a$$

- $0 \cdot a = 0$
- \bullet $-1 \cdot a = -a$
- (-a) + (-b) = -(a+b)
- $\bullet (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $(-a) \cdot (-b) = a \cdot b$

12 / 75

Računanje z naravnimi in celimi števili

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 14 / 75

Izraz, enačba, neenačba

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQ@

15 / 75

Računanje s potencami z naravnimi eksponenti

Potenca $\mathbf{a}^{\mathbf{n}}$, pri čemer je $n \in \mathbb{N}$, je produkt n faktorjev enakih a.

Pravila za računanje s potencami:

- $\mathbf{a^n} \cdot \mathbf{b^n} = (\mathbf{ab})^\mathbf{n}$ potenci z enakima eksponentoma zmnožimo tako, da zmnožimo osnovi in prepišemo eksponent
- $oldsymbol{a^m}\cdot oldsymbol{a^n}=oldsymbol{a^{m+n}}$ potenci z enako osnovo zmnožimo tako, da osnovo prepišemo in seštejemo eksponenta
- $(a^n)^m=a^{nm}$ potenco potenciramo tako, da osnovo prepišemo in zmnožimo eksponenta

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 16 / 75

Razčlenjevanje izrazov

17 / 75

Razstavljanje izrazov v množici $\mathbb Z$

18 / 75

Reševanje linearnih in razcepnih enačb v množici Z

19 / 75

Reševanje linearnih neenačb v množici Z

20 / 75

Section 2

Deljivost, izjave, množice

21 / 75

- Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
 - Relacija deljivosti
 - Pravila za deljivost
 - Praštevila in sestavljena števila
 - Največji skupni delitelj in najmanjši skupni večkratnik
 - Osnovni izrek o deljenju
 - Evklidov algoritem in zveza Dv = ab
 - Številski sestavi
 - Izjave
 - Množice
- Racionalna števila

22 / 75

Relacija deljivosti

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕○○

23 / 75

Pravila za deljivost

◆□▶◆□▶◆■▶◆■▶ ■ 釣魚@

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 24/75

Praštevila in sestavljena števila

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

25 / 75

24. april 2024

Največji skupni delitelj in najmanjši skupni večkratnik

◄□▶
◄□▶
◄□▶
◄□▶
₹
₽
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

26 / 75

Osnovni izrek o deljenju

24. april 2024

27 / 75

Evklidov algoritem in zveza Dv = ab

Številski sestavi

24. april 2024

Izjave

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९ⓒ

Jan Kastelic (FMF)

30 / 75

Množice

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९ⓒ

Jan Kastelic (FMF)

Section 3

Racionalna števila

32 / 75

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- Racionalna števila
 - Številski ulomki
 - Racionalna števila
 - Urejenost racionalnih števil
 - Algebrski ulomki
 - Računanje z ulomki
 - Potence s celimi eksponenti
 - Pravila za računanje s potencami s celimi eksponenti
 - Premo in obratno sorazmerje
 - Odstotki

24. april 2024

Številski ulomki

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 34/75

Racionalna števila

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 35 / 75

Racionalna števila

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 36 / 75

24. april 2024

Jan Kastelic (FMF)

Glede na predznak razdelimo racionalna števila v tri množice:

$$\mathbb{Q} =$$

24. april 2024

Glede na predznak razdelimo racionalna števila v tri množice:

• množico negativnih racionalnih števil Q-,

$$\mathbb{Q} = \mathbb{Q}^-$$

24. april 2024

Jan Kastelic (FMF)

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: $\{\mathbf{0}\}$ in

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\}$$

24. april 2024

Jan Kastelic (FMF)

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil \mathbb{Q}^- ,
- množico z elementom nič: {0} in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

36 / 75

MATEMATIKA Jan Kastelic (FMF)

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

Jan Kastelic (FMF) MATEMATIKA

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

37 / 75

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

• prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;

<ロ > ← □ > ← □ > ← □ > ← □ = ・ のへの

37 / 75

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;

<ロト 4回 ト 4 直 ト 4 直 ト - 直 - りへの

37 / 75

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti* $ve\check{c}ji$ (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- o ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

37 / 75

Množica racionalnih števil je **linearno urejena** z relacijo *biti manjši* (<) oziroma *biti večji* (>). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d \in \mathbb{N}$) velja natanko ena izmed treh možnosti:

- prvi ulomek je večji od drugega $\frac{a}{b} > \frac{c}{d}$ natanko tedaj, ko je ad > bc;
- ② drugi ulomek je večji od prvega $\frac{a}{b} < \frac{c}{d}$ natanko tedaj, ko je ad < bc;
- **3** ulomka sta enaka $\frac{a}{b} = \frac{c}{d}$ natanko tedaj, ko je ad = bc.

Enaka ulomka predstavljata isto racionalno število.

37 / 75

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 38 / 75

Urejenost racionalnih števil

< ロ ト 4 回 ト 4 重 ト 4 重 ト 3 車 り 9 0 0

38 / 75

38 / 75

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

38 / 75

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
negativna števila pozitivna števila

38 / 75

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\mathbb{Q}^ \mathbb{Q}^+$$
 negativna števila pozitivna števila

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

Jan Kastelic (FMF)

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 39 / 75

Monotonost vsote

39 / 75

24. april 2024

Jan Kastelic (FMF) MATEMATIKA

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

39 / 75

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

39 / 75

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

(ロト 4回 ト 4 差 ト 4 差 ト) 差 | 夕久(*)

39 / 75

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

39 / 75

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} + \frac{e}{f} < \frac{c}{d} + \frac{e}{f}$$

Tranzitivnost

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{c}{d} < \frac{e}{f} \quad \Rightarrow \quad \frac{a}{b} < \frac{e}{f}$$

39 / 75

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 40 / 75

40 / 75

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Jan Kastelic (FMF)

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Jan Kastelic (FMF)

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

Jan Kastelic (FMF) MATEMATIKA

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Jan Kastelic (FMF)

MATEMATIKA

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Jan Kastelic (FMF)

MATEMATIKA

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

Jan Kastelic (FMF)

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} > 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} < \frac{c}{d} \cdot \frac{e}{f}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{a}{b} < \frac{c}{d} \quad \wedge \quad \frac{e}{f} < 0 \quad \Rightarrow \quad \frac{a}{b} \cdot \frac{e}{f} > \frac{c}{d} \cdot \frac{e}{f}$$

Pri prehodu na nasprotno vrednost se neenačaj obrne:

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad -\frac{a}{b} > -\frac{c}{d}$$

◆ロト 4回 ト 4 重 ト 4 重 ト 4 回

40 / 75

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩@

41 / 75

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši ali enak* (\leq) oziroma *biti večji ali enak* (\geq). Za ulomka $\frac{a}{b}$ in $\frac{c}{d}$ ($b,d\in\mathbb{N}$) velja vsaj ena izmed možnosti:

• prvi ulomek je večji ali enak od drugega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \geq bc$;

(D) (B) (E) (E) (E) (900

41 / 75

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \geq \frac{c}{d}$ natanko tedaj, ko je $ad \leq bc$;

<ロト 4回ト 4 直ト 4 直ト - 直 - 釣り()

41 / 75

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

41 / 75

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

• $\frac{a}{b} \leq \frac{a}{b}$ - refleksivnost;

41 / 75

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in

41 / 75

- prvi ulomek je večji ali enak od drugega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \ge bc$;
- ② drugi ulomek je večji ali enak od prvega $\frac{a}{b} \ge \frac{c}{d}$ natanko tedaj, ko je $ad \le bc$;

Za (zgornjo) relacijo delne urejenosti veljajo naslednje lastnosti:

- $\frac{a}{b} \leq \frac{a}{b}$ refleksivnost;
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{a}{b} \Rightarrow \frac{a}{b} = \frac{c}{d}$ antisimetričnost in
- $\frac{a}{b} \le \frac{c}{d} \land \frac{c}{d} \le \frac{e}{f} \Rightarrow \frac{a}{b} \le \frac{e}{f}$ tranzitivnost.

41 / 75

Algebrski ulomki

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

42 / 75

Jan Kastelic (FMF) MATEMATIKA

Računanje z ulomki

4□ → 4問 → 4 = → 4 = → 9 Q ○

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 43 / 75

Potence s celimi eksponenti

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥ ♀○

44 / 75

Pravila za računanje s celimi eksponenti

◆ロ → ← 荷 → ← き → ← ● ・ り へ ○

Premo in obratno sorazmerje

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 46 / 75

Odstotki

Jan Kastelic (FMF) MATEMATIKA

Section 4

Realna števila, statistika

48 / 75

- 1 Naravna in cela števila, izrazi, enačbe in neenačbe
- 2 Deljivost, izjave, množice
- Racionalna števila
- Realna števila, statistika
 - Realna števila
 - Kvadratni in kubični koren
 - Intervali
 - Absolutna vrednost
 - Sistem linearnih enačb
 - Obravnavanje linearnih enačb, neenačb, sistemov
 - Absolutna in relativna napaka

24. april 2024

Jan Kastelic (FMF)

Realna števila

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 50 / 75

Kvadratni in kubični koren

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

51 / 75

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$\left(5\sqrt{3} + 2\sqrt{27}\right)\left(\sqrt{75} - 4\sqrt{12} + \sqrt{147}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\;\left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\left(g\right)\ 8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

$$\text{(g) }8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

$$\left(\breve{c}\right)\ \left(5\sqrt{3}+2\sqrt{27}\right)\left(\sqrt{75}-4\sqrt{12}+\sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3})\cdot 3\sqrt{2}-(2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6}} \cdot \sqrt{5 + 2\sqrt{6}} + \sqrt{5^4}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(b)
$$4\sqrt{8} - (2\sqrt{5} + 3\sqrt{8})\sqrt{10}$$

(č)
$$\left(5\sqrt{3} + 2\sqrt{27}\right)\left(\sqrt{75} - 4\sqrt{12} + \sqrt{147}\right)$$

(g)
$$8\sqrt{3}\left(\sqrt{2}-1\right)-\left(\sqrt{5}+2\sqrt{6}\right)\left(4-2\sqrt{2}\right)$$

(j)
$$(2-4\sqrt{3}) \cdot 3\sqrt{2} - (2\sqrt{2}-3\sqrt{3})^2$$

(I)
$$(3-2\sqrt{2})^3 - (\sqrt{8}-5\sqrt{2})(-3\sqrt{2})$$

(o)
$$\sqrt{300} - \sqrt{5 - 2\sqrt{6} \cdot \sqrt{5 + 2\sqrt{6} + \sqrt{5^4}}}$$

(r)
$$\sqrt{5\sqrt{3}-5} \cdot \sqrt{2\sqrt{3}+2} - (\sqrt{5})^3$$

(u)
$$(\sqrt{17}-3)\sqrt{26+6\sqrt{17}}-\sqrt{2}(\sqrt{2}+\sqrt{6})$$

Intervali

Interval

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, a < b.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

Števili a in b imenujemo krajišči intervala.

• Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

53 / 75

Vrste intervalov

Zaprti interval

$$[\mathbf{a},\mathbf{b}]=\{\mathbf{x}\in\mathbb{R};\mathbf{a}\leq\mathbf{x}\leq\mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

Odprti interval

$$(\mathbf{a},\mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}\}$$

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

4□ > 4ⓓ > 4틸 > 4틸 > 틸

54 / 75

Polodprti/polzaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

55 / 75

Neomejeni/neskončni intervali

$$\bullet \ [\mathbf{a}, \infty) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} \geq \mathbf{a}\}$$

$$\bullet \ (\mathsf{a},\infty) = \{\mathsf{x} \in \mathbb{R}; \frac{\mathsf{x} > \mathsf{a}\}}{\mathsf{a}}$$

$$\bullet \ (-\infty, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{x} \le \mathbf{b} \}$$

$$ullet$$
 $(-\infty, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b}\}$

$$ullet$$
 $(-\infty,\infty)=\{\mathbf{x};\mathbf{x}\in\mathbb{R}\}$

24. april 2024

b

Absolutna vrednost

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ©

Jan Kastelic (FMF) MATEMATIKA

Sistem linearnih enačb

58 / 75

Obravnavanje linearnih enačb, neenačb, sistemov

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQ@

59 / 75

Absolutna in relativna napaka

60 / 75

Sredine

24. april 2024

Jan Kastelic (FMF)

Razpršenost podatkov

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 62 / 75

Prikazi

Jan Kastelic (FMF) MATEMATIKA 24. april 2024 63 / 75

Section 5

Pravokotni koordinatni sistem, linearna funkcija

64 / 75

- Naravna in cela števila, izrazi, enačbe in neenačbe
- Deljivost, izjave, množice
- Racionalna števila
- 4 Realna števila, statistika
- 🏮 Pravokotni koordinatni sistem, linearna funkcija
 - Pravokotni koordinatni sistem
 - Razdalja med točkama in razpolovišče daljice
 - Ploščina trikotnika
 - Osnovno o funkcijah
 - Linearna funkcija in premica

65 / 75

24. april 2024

Jan Kastelic (FMF) MATEMATIKA

Pravokotni koordinatni sistem

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 66 / 75

Razdalja med točkama in razpolovišče daljice

4日 > 4周 > 4 厘 > 4 厘 > 厘 9 9 9 6

67 / 75

Ploščina trikotnika

4 D > 4 A > 4 B > 4 B > B 9 9 9 9

68 / 75

Osnovno o funkcijah

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 69 / 75

Linearna funkcija in premica

70 / 75

Oblike enačbe premice

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

71 / 75

Presešišče premic

72 / 75

Sistem linearnih neenačb

 Jan Kastelic (FMF)
 MATEMATIKA
 24. april 2024
 73 / 75

Modeliranje z linearno funkcijo

4□ > 4□ > 4 = > 4 = > = 900

74 / 75

(i) Linearno programiranje

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

75 / 75