LOW LEVEL DESIGN (LLD) DOCUMENT
CROP PRODUCTION DATA ANALYSIS
Revision Number: 1.0
Last date of Revision: 25/09/2021
Submitted by:
Dattatreya Thunuguntla

Document Version Control:

Date Issued	Version	Description	Author
25 th September,2021	1.0	First Version of	Dattatreya
_		Complete LLD	Thunuguntla

Contents:

S. No	Topic	Page No
I	Document Version Control	2
1	Introduction	4
1.1	What is Low Level Design Document	4
1.2	Scope	4
2	Architecture	5
2.1	Tableau Architecture	5
3	Architecture Description	6
3.1	Data Description	6
3.2	Web Scraping	6
3.3	Data Transformation	6
3.4	Data Exploration & Exploratory Data Analysis:	9
3.5	Creating relationships between Parameters	9
3.5	Deployment	15
4	Unit Test Cases	17

1. Introduction

1.1 What is Low Level Design Document

The goal of the LDD or Low-level design document (LLDD) is to give the internal logic design of the actual program code for the House Price Prediction dashboard. LDD describes the class diagrams with the methods and relations between classes and programs specs. It describes the modules so that the programmer can directly code the program from the document.

1.2 Scope

Low-level design (LLD) is a component-level design process that follows a stepby-step refinement process. The process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work.

2. Architecture:

2.1 TABLEAU Architecture:

Functional Architecture of Business Intelligence

3. Architecture Description:

3.1 Data Description:

The Crop Production Data consists of following columns:

- State Name: Name of the State
- District Name: Name of the District
- Crop Year: What's the year
- Season: Crop Season
- Crop: Type of Crop grown in the field
- Area: In how much area does the crop has grown (in Hectares)
- Production: What's the total crop production (in Tonnes)

3.2 Web Scraping:

Web scraping is a technique to automatically extract content and data from websites using bots. It is also known as web data extraction or web harvesting. Web scrapping is made simple now days, many tools are used for web scrapping. Some of python libraries used for web scrapping are Beautiful Soup, Scrapy, Selenium, etc.

3.3 Data Transformation:

In the Transformation Process, we will convert our original datasets with other necessary attributes format. For the given Data Set names of the Columns have been changed and Null Values, Error Values have been removed from the Data Set.

Data Transformation and manipulation using Pandas library and visualized in Matplotlib library. Firstly, we import the libraries and do the data manipulation & EDA.

Importing Libraries

Given Data Set

В	df						
т.	ui						
	State_Name	District_Name	Crop_Year	Season	Crop	Area	Production
	Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Arecanut	1254.0	2000.0
	1 Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Other Kharif pulses	2.0	1.0
	2 Andaman and Nicobar Islands	NICOBARS	2000	Kharif	Rice	102.0	321.0
	3 Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Banana	176.0	641.0
	4 Andaman and Nicobar Islands	NICOBARS	2000	Whole Year	Cashewnut	720.0	165.0
				100	100	407	735
2460	West Benga	PURULIA	2014	Summer	Rice	306.0	801.0
2460	87 West Benga	PURULIA	2014	Summer	Sesamum	627.0	463.0
2460	West Benga	PURULIA	2014	Whole Year	Sugarcane	324.0	16250.0
2460	89 West Benga	PURULIA	2014	Winter	Rice	279151.0	597899.0
2460	90 West Benga	I PURULIA	2014	Winter	Sesamum	175.0	88.0

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 246091 entries, 0 to 246090
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
82.22			
0	State_Name	246091 non-null	object
1	District_Name	246091 non-null	object
2	Crop_Year	246091 non-null	int64
3	Season	246091 non-null	object
4	Crop	246091 non-null	object
5	Area	246091 non-null	float64
6	Production	242361 non-null	float64
	es: float64(2), ry usage: 13.1+	int64(1), object MB	(4)

1 df.describe()

	Crop_Year	Area	Production
count	246091.000000	2.460910e+05	2.423610e+05
mean	2005.643018	1.200282e+04	5.825034e+05
std	4.952164	5.052340e+04	1.706581e+07
min	1997.000000	4.000000e-02	0.000000e+00
25%	2002.000000	8.000000e+01	8.800000e+01
50%	2006.000000	5.820000e+02	7.290000e+02
75%	2010.000000	4.392000e+03	7.023000e+03
max	2015.000000	8.580100e+06	1.250800e+09

There are missing values lets do some data manipulation techniques using Transform & Fillna()

```
1 df.loc[df.Production.isnull(),'Production']=df.groupby(['Crop_Year','Crop']).Production.transform('mean')
 1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 246091 entries, 0 to 246090
Data columns (total 7 columns):
 # Column
                     Non-Null Count
                                         Dtype
---
 0
    State_Name
                      246091 non-null object
     District_Name 246091 non-null object
 1
 2
     Crop_Year
                      246091 non-null
                                         int64
 3
                      246091 non-null object
     Season
                      246091 non-null
 4
     Crop
                                         object
 5
                      246091 non-null
                                         float64
     Area
                      246035 non-null float64
     Production
 6
dtypes: float64(2), int64(1), object(4)
memory usage: 13.1+ MB
 1 df.describe()
           Crop Year
                             Area
                                    Production
 count 246091.000000 2.460910e+05 2.460350e+05
 mean
         2005.643018 1.200282e+04 5.843780e+05
   std
            4.952164 5.052340e+04 1.696752e+07
         1997.000000 4.000000e-02 0.000000e+00
  min
  25%
         2002.000000 8.000000e+01 9.100000e+01
  50%
         2006.000000 5.820000e+02 7.670000e+02
  75%
         2010.000000 4.392000e+03 7.099500e+03
         0045 000000 0 500400--00 4 050000--00
                            1 df['Production']=df['Production'].fillna(df['Production'].median())
                            1 df.info()
                           <class 'pandas.core.frame.DataFrame'>
                           RangeIndex: 246091 entries, 0 to 246090
                           Data columns (total 7 columns):
                           #
                               Column
                                             Non-Null Count Dtype
                               State_Name
                                             246091 non-null object
                               District_Name 246091 non-null object
                               Crop_Year
                                             246091 non-null int64
                               Season
                                             246091 non-null object
                                             246091 non-null object
                               Crop
                               Area
                                             246091 non-null float64
                               Production
                                             246091 non-null
                                                             float64
                           dtypes: float64(2), int64(1), object(4)
                           memory usage: 13.1+ MB
                            1 df.describe()
                                    Crop_Year
                                                  Area
                           count 246091.000000 2.460910e+05 2.460910e+05
                                  2005.643018 1.200282e+04 5.842452e+05
                            mean
                             std
                                    4.952164 5.052340e+04 1.696559e+07
                                  1997.000000 4.000000e-02 0.000000e+00
                                  2002.000000 8.000000e+01 9.100000e+01
                             25%
                             50%
                                  2006.000000 5.820000e+02 7.670000e+02
                             75%
                                  2010.000000 4.392000e+03 7.095500e+03
                             max
                                  2015.000000 8.580100e+06 1.250800e+09
                            1 df.to_csv('datasource.csv')
```

3.4 Data Exploration & Exploratory Data Analysis:

The file which has been saved as Datasource.csv has been analyzed and you can see the EDA operations in the following link: https://github.com/dattu-98/crops_india/blob/master/Crop%20Production%20EDA.ipynb

3.5 Creating relations between Parameters.

In this Project we had used many types of Visualizations like

- 1. Text Tables
- 2. Symbol Maps
- 3. Maps
- 4. Pie Charts
- 5. Horizontal Bars
- 6. Treemap
- 7. Forecasting Models

With the use of all the available parameters we had plotted visualizations.

		Season Wise Analysis of Crops		
	Season wise Analysis of Crops			
ason	Crop		1997	
tumn	Rice	1,906,333 ^		
	Paddy	812,852		
	Jute	123,210		
	Maize	83,026		
	Ragi	42,215		
	Groundnut	34,433		
	Urad	8,536		
	Arhar/Tur	6,487		
	Sesamum	1,626		
rif	Rice	32,723,519		
	Total foodgrain	30,740,079		
	Sugarcane	16,932,950		
	Jute	9,814,775		
	Maize	7,473,616		
	Bajra	7,029,733		
	Soyabean	5,475,933		
	Paddy	5,039,539		
	Jowar	4,844,803		
	Groundnut	4,443,849		
	Cotton(lint)	3,108,234		
	Banana	2,762,324		
	Arhar/Tur	1,608,325		
	Ragi	1,428,682		
	Mesta	830,152		
	Onion	622,828		
	Oilseeds total	563,081		
	Urad	495,830		
	Moong(Green Gram)	412,349		
	Dry chillies	396,706		
	Gram	340,900		
	Small millets	243,628		
	Tobacco	210,969		
	Sesamum	166,065		
	Sunflower	132,727		
	Horse-gram	132,460		
	Castor seed	116,008		
	Other Kharif pulses	72,625		
	Dry ginger	50,807		
	Moth	24,216		
	Korra	19,100		
	Samai	12,700		
	Pulses total	8,439		
	Black pepper	924		
	Rapeseed & Mustard	924 440		
	Kapas			
	napas	429 🗸		

3.5 Deployment:

We can deploy the Tableau report using Tableau Online and Server. But we need a Enterprise version to deploy it in the portal. There are different ways of tableau deployment like Tableau Server - On Premises, Tableau Server - Public Cloud (IaaS), Tableau Online (SaaS).

In this project we had used Heroku to deploy our webapp.

The deployment in the Heroku consists of 3 types like

- 1. Heroku Git
- 2. Personal GitHub
- 3. Container Registry

In this project we had used Personal GitHub Deployment method. You can check the source files in the personal GitHub repository in the following link: https://github.com/dattu-98/crops_india

• The GitHub repository consists of Procfile, app.py, requirements.txt, runtime.txt, setup.sh

HEROKU DEPLOYMENT PHASES

After deployment in Heroku the Webapp looks in the following fashion:

Heroku Webapp Link: https://cropsindia.herokuapp.com/

4. Unit Test Cases:

S. No	Test Case Description	Expected Results
1	Select Andhra Pradesh as State, year as	The Stacked bar charts
	2002, crop as Rice	are plotted in the
		Streamlit Web App
2	Selecting the State Name and Crop in the	Results will be appeared
	Production Overview Worksheet in the	according to the State
	Tableau report	and Crop Selected
3	Playing the Area racing bar chart	The bar chart changes
		dynamically over years
		showing values of Arable
		Area
4	Selecting the State Name and year from	The overall Production
	the Map Overview Worksheet of the	appears in the forms of
	Tableau File	Symbol Maps with
		Production values
5	Selecting the State Name and year from	The Highest Crop
	the Crop Overview Worksheet of the	produced in the state
	Tableau File	appears in the State Label
		with its production
6	Selecting the year from Season wise	Text Tables is appeared
	analysis of Crop Production	as soon as we enter the
		year according to the
		Season and Crop