

## **Experiment-10**

Student Name: Jatin UID: 20BCS5951

Branch: BE-CSE Section/Group:605-B

Semester: 6<sup>th</sup> Date of Performance: 04/05/2023

Subject Name: Data Mining Lab Subject Code: 20CSP-376

**1. Aim:** Outlier detection using R programming.

**2. Objective:** Data points far from the dataset's other points are considered outliers. This refers to the data values dispersed among other data values and upsetting the dataset's general distribution.

#### Effects of an outlier on model:

- The format of the data appears to be skewed.
- Modifies the mean, variance, and other statistical characteristics of the data's overall distribution.
- Leads to the model's accuracy level being biased.

## 3. Script and Output:

The algorithm is as follows:

- Generates 500 normally distributed random numbers and assigned to variable **data**.
- Adds 10 random outliers to the dataset.
- Creates a box plot of the data variable
- Plot shows the distribution of the data, including the outliers and it in "Boxplot.png".
- Removes the outliers from the data variable.
- Creates a box plot of the **data** variable again, but this time it shows the data after the outliers have been removed.
- The resulting plot is saved in the file "Boxplot1.png".

# R Script:

```
#create the data with 500 different data points using the
rnorm() function data <- rnorm(500)

#add 10 random outliers to this data data[1:10]
<- c(46,9,15,-90,42,50,-82,74,61,-32)

# output to be present as PNG file
png(file="Boxplot.png")

# analyze the outliner in the provided data using the
boxplot boxplot(data) # saving the file dev.off()

# remove the outlier of the provided data boxplot.stats()
function in R
data <- data[!data %in% boxplot.stats(data)$out]
png(file="Boxplot1.png")
# verify if the outliner has been removed by plotting the
boxplot boxplot(data) # saving the file dev.off()</pre>
```

## **Output:**



