Contrôle continu 3

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Soit A un événement aléatoire. On appelle variable aléatoire indicatrice de A une variable aléatoire $\mathbbm{1}_A$ qui vaut 1 si A est réalisé et 0 sinon. Soit $A,B,C\subset\Omega$:

1. Exprimer en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$ les variables $\mathbb{1}_{A\cup B}$, $\mathbb{1}_{A\cap B}$ et $\mathbb{1}_{A\Delta B}$. Faire les démontrations!

2. Que dire de A et B si $\mathbb{1}_A \leq \mathbb{1}_B$

Exercice 2. (Longueur de courbes) Calculer la longueur des courbes paramétrées suivantes : $1. \ \gamma(t) = ((1-t)^2 e^t, 2(1-t)e^t), \ t \in [0,1].$

2. γ est la courbe d'équation polaire $r(t) = \sin(t), \, \theta(t) = t.$

Exercice 3. (Intégrale de Gauss) Pour R>0, on pose $D_R=\{(x,y)\in\mathbb{R}^2, x^2+y^2\leq R^2\}$ et $\Delta_R=[-R,R]\times[-R,R]$. 1. Montrer que $D_R\subset\Delta_R\subset D_{\sqrt{2}R}$. En déduire que :

$$\iint_{D_R} e^{-x^2 - y^2} dx dy \le \iint_{\Delta_R} e^{-x^2 - y^2} dx dy \le \iint_{D_{\sqrt{2}R}} e^{-x^2 - y^2} dx dy$$

2. En utilisant les coordonnées polaires, calculer $\iint_{D_R} e^{-x^2-y^2} dx dy$.

3. Montrer que
$$\iint_{\Delta_R} e^{-x^2-y^2} dx dy = \left(\int_{-R}^R e^{-t^2} dt \right)^2$$

4. En déduire la valeur de $\int_{-\infty}^{\infty}e^{-t^2}dt=\lim_{R\to+\infty}\int_{-R}^{R}e^{-t^2}dt.$