Фрактальные фотонные кристаллы

Л. Б. Матюшкин leva.matyushkin@gmail.com СПбГЭТУ «ЛЭТИ»

13 ноября 2015 г.

Рассмотрены оптические свойства многослойных структур на основе диоксидов кремния и титана, толщины слоев которых соотносятся между собой как элементы канторова множества. Исследовано влияние правил разбиения пространства структуры на спектры пропускания.

Введение

Современные технологии синтеза тонких пленок, такие как метод атомнослоевого осаждения (ALD), позволяют создавать структуры с прецизионной точностью до единиц и даже десятых долей нм. При этом толщины структур, технологически задаваемые количеством циклов осаждения, могут изменяться в широком интервале размеров. Это создает предпосылки для создания структур с фрактальными отношениями толщин слоев, в частности оптических структур.

Структуру классического фотонного кристалла можно представить в виде чередующихся слоев материалов с низким и высоким значением показателя преломления — обозначим их S (silica) и T (titania).

1 Модель структуры

Моделирование проводилось с учетом известных законов дисперсии показателей преломления наиболее популярной пары материалов — оксида кремния ${
m SiO_2}$ и оксида и титана ${
m TiO_2}$, взятых из базы данных http://refractiveindex.info/. Соответствюущие зависимости имеют вид:

$$n_{SiO_2} = \sqrt{1 + \frac{0.6961663\lambda^2}{\lambda^2 - 0.0684043^2} + \frac{0.4079426\lambda^2}{\lambda^2 - 0.1162414^2} + \frac{0.8974794\lambda^2}{\lambda^2 - 9.896161^2}}$$

$$n_{TiO_2} = \sqrt{5.913 + \frac{0.2441}{\lambda^2 - 0.0803}}$$

При моделировании также учитывалась среда, в которой находится структура (в наиболее распространенном случае воздух):

$$n_{air} = 1 + \frac{0.05792105}{238.0185 - \lambda^{-2}} + \frac{0.00167917}{57.362 - \lambda^{-2}}$$

Так как приведенные зависимости были получены для различных интервалов длин волн, мы рассматривали общую часть этих интервалов — 0.4–1.5 мкм. Для удобства отображения спектров мы использовали принятые в спектроскопии координаты волнового числа $k=1/\lambda$.

2 Влияние правила замены

С позиций фрактальной геометрии структуру классического фотонного кристалла $STSTSTS\dots$ можно рассматривать как частный случай принципа самоподобия, когда при замене $S\to STS$ не происходит скейлинга элемента T. Представим, что в структуре чередующихся слоев произошел скейлинг, соответствующий замене $T\to TTT$:

$$S \to STS \to STSTTTSTS \to \\ \to STSTTTSTSTTTTTTTTTSTSTTTSTS \to \dots$$

Рис. 1: Структура фрактального ФК на различных итерациях $C_i:S o STS, i=0\dots 5$

Считая, что между слоями повторяющихся материалов нет границы раздела, можно сопоставить каждому такому множеству однотипных

Рис. 2: Спектры отражения фрактального ФК $C_i:S \to STS$

символов пропорциональные толщины материалов, ставя в соответствие общей толщине структуры длину строки символов (Рис. 1). При одной и той же толщине структуры повторение описанной процедуры приводит к быстрому уменьшению толщины самых тонких слоев структуры. В описанном случае толщина самого малого элемента уменьшается как $h/3^n$, где h— толщина структуры в целом, n— номер итерации.

Стоит заметить, что количество слоев с учетом описанного правила повторяющихся элементов нарастает медленнее — как $2^{n+1}-1$, что важно с практической точки зрения получения таких структур.

В большинстве случаев мы исходили из возможности получения слоев с точностью 1 нм и общей толщиной структуры 1 мкм. Для таких ограничений максимальное количество имеющих физический смысл итераций составляет 4–5, что соответствует чередованию ~30–60 слоев. Поэтому в расчете не рассматривается большее количество итераций.

Рис. 3: Структура фрактального ФК на различных итерациях $C_i: T \to TST, i=0\dots 5$

2.1 Сравнение с классическим фотонным кристал-

Можно заметить, что структура C_1 соответствует обычной очередности в фотонном кристалле из трех слоев (? как назвать), а структура C_2 повторяет структуру классического фотонного кристалла из 9 слоев за исключением средней части, и т. д. В рамках фрактальной геометрии можно рассматривать структуру фотонного кристалла как использование правила, когда одновременно выполняются замены:

$$C_i: S \to STS, T \to TST.$$

Соответствующие структуры представлены на Рис. 5.

2.2 Изменение центральной вставки

В случае изменения исходного правила $STS \to STTS$ (то есть при увеличении внутренней вставки), происходит существенное изменение спектра. В этом случае слои оптически менее плотного материала удаляются

Рис. 4: Спектры отражения фрактального ФК $C_i: T \to TST$

друг от друга за счет фрактального повторения более широкой вставки оптически плотного материала:

$$S \to STTS \to STTSTTTTTTTTTTSTTS \to \dots$$

Количество чередующихся слоев остается по-прежнему $2^{n+1}-1$. На Рис. 8 можно видеть, что структура C2 для TSST может использоваться как структура фильтра.

Рис. 5: Структура классического ФК на различных итерациях $C_i:S o STS, T o TST$

Рис. 6: Спектры отражения классического ФК $C_i:S \to STS, T \to TST$

Рис. 7: Спектры отражения фрактального ФК при изменении центральной вставки $C_i:S \to STTS$

2.3 Правило попеременной замены

3 Влияние размера структуры

3.1 Соотнесение

3.2 Усиление эффекта повтором

3.3 Половинчатые структуры

Рассмотрим как повлияет на спектр использование половины исходной структуры.

Рис. 8: Спектры отражения фрактального ФК при изменении центральной вставки $C_i: T \to TSST$

4 Заключение