Primjena konstruktivnog optimizacijskog algoritma na problem rasporeda studenata Završni rad br. 6297

Martin Čekada

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Zagreb, Srpanj 2019

Sadržaj

- Opis algoritma
- Opis problema
- Nadogradnje algoritma
 - Inicijalna distribucija
 - Heuristike
 - Prioritetni red
- 4 Rezultati

Opis algoritma

- Konstruktivni algoritam
- Temeljen na radu Asymptotic Properties of a Generalized Cross-Entropy Optimization Algorithm (Wu, Kolonko)

Primjer

	Student 1	Student 2	Student 3
T1	0.5	0.5	0.5
T2	0.5	0.5	0.5

Generirana rješenja: (T1, T1, T2); (T2, T1, T2); (T2, T2, T2)

	Student 1	Student 2	Student 3
T1	0.33	0.66	1
T2	0.67	0.37	0

Nova distribucija:

	Student 1	Student 2	Student 3
T1	0.415	0.585	0.75
T2	0.585	0.415	0.25

Opis algoritma

- Parametri
 - *Q* faktor zaglađivanja
 - L duljina rješenja
 - N veličina uzorka
 - N_b broj najboljih uzoraka

- Rad algoritma
 - Početak
 - Uzorkovanje
 - Ocjenjivanje
 - Ažuriranje

Opis problema

- Skup studenata
- Skup termina
- Funkcija dodjeljivanja kazne
 - Tvrda ograničenja
 - Meka ograničenja

Inicijalna distribucija

- Želja: spriječiti nastajanje kolizija
- Pri inicijalizaciji rada algoritma je poznat skup studenata i skup termina
- Umjesto uniformne distribucije, smanjiti vjerojatnost pridjeljivanja u kojima nastaju kolizije

Heuristike

- Rebalansiranje trenutne distribucije
- Redistribucija vjerojatnosti prepunjenih termina

Zagreb, Srpanj 2019

Prioritetni red

- Želja: smanjiti specijalizaciju algoritma
- Koeficijent i veličina
- Periodičko pražnjenje reda

Funkcija dodjeljivanja kazne

- Za svaku koliziju: 8000
- Za svaki prepunjeni (analogno i potpunjeni) termin: 5000 + koeficijentPrepunjenja · (popunjenost – maksimalanBrojStudenataZaTermin)²
- Za svako produljivanje trajanja dana studentu: 50
- Za svako pridjeljivanje koje je studentu na slobodan dan: 50

Utjecaj nadogradnji na rad algoritma

Tablica: Utjecaj nadogradnji algoritma

Inicijalna dist.	Prior. red	Rebalansiranje	Redistribuiranje	Prepunjenost	Kolizije	Medijan	Srednja vrijednost	Najmanji	Najveći
	1	1	1	0	2	346000	425990	346000	676700
Т	1	1	1	0	0	20400	20315	20050	20950
Т	Т	1	1	0	0	19350	19265	18250	20650
Т	Т	Т	1	0	0	21250	24250	21250	36250
Т	Т	Т	Т	1	0	50800	49295	35550	51000

Rezultati

Tablica: Imenovanje problema

Ime	Opis
Problem 1	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 2	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 3	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 4	Laboratorijske vježbe iz Digitalne logike 2018./2019.
Problem 5	Laboratorijske vježbe iz Objektno orijentiranog programiranje 2018./ 2019.
Problem 6	Laboratorijske vježbe iz Objektno orijentiranog programiranje 2018./ 2019.

Tablica: Podaci o problemima

Broj	Problem1	Problem2	Problem3	Problem4	Problem5	Problem6	
Studenata	371	372	372	372	515	515	_
Termina	27	27	27	27	32	32	1
Maksimalno	14	14	14	14	19	19	
Minimalno	0	0	0	0	17	17 F	==

Rezultati rasporeda za kolegij Digitalne logike

- N = 300
- $N_b = 50$
- $\rho = 0.6$
- Duljina prioritetnog reda = 50
- Koeficijent prioritetnog reda = 0.3

Tablica: Rezultati rasporeda za kolegij Digitalne logike

Ime problema	Medijan	Srednja vrijednost	Najmanji	Najveći
Problem1	14900	14900	14850	15000
Problem2	15500	15480	15450	15500
Problem3	15600	15600	15600	15600
Problem4	15400	15410	15400	15450
	•	•	•	·

Zagreb, Srpanj 2019

Rezultati rasporeda za kolegij Objektno orijentiranog programiranja

- N = 300
- $N_b = 50$
- $\rho = 0.6$
- Duljina prioritetnog reda = 50
- Koeficijent prioritetnog reda = 0.3

Tablica: Rezultati rasporeda za kolegij Objektno orijentiranog programiranja

Ime problema	Medijan	Srednja vrijednost	Najmanji	Najveći
Problem5	21900	27895	21900	81850
Problem6	20950	20960	20950	21000

Zaključak

- Algoritam je uspješno zadovoljio tvrda ograničenja za sve primjere
- Paraleliziranje postupka uzorkovanja i ocjenjivanja
- Redistribucija vjerojatnosti prepunjenih termina

Kraj

Hvala na pažnji!

