See the HiHW grading rubric posted on Carmen

Name: Cage Farmer Recitation Instructor: Chris Thompson

A child slides from rest down a playground slide. The top and bottom of the slide are separated by $\Delta y = 4.0\,\mathrm{m}$ vertically and $\Delta x = 7.0\,\mathrm{m}$ horizontally. A sheet of metal (straight, not curved) connects the two ends of the slide, and the coefficient of friction between the slide's surface and the child's clothes is $\mu_k = 0.22$. What is the child's speed v upon reaching the bottom of the slide? For the limits check, investigate what happens to v_f as the slide becomes dangerously steep ($\Delta x \to 0$). Note: you must use a work/energy approach rather than a kinematics approach to solve this problem.

Representation:	0	1	2
Physics Concept(s):	0	1	2
Initial Equation(s):	0	0.5	1
Symbolic Answer:	0		1
Units Check:	0	0.5	1
Limits Check:	0	0.5	1
Neatness:	-2	-1	0
Total:			
Correct Answer:	Y	N	

Due Date: 10/2/2022

Representation

Physics Concept(s) (Refer to the list posted on Carmen)

Initial Equations

(1) Work-Energy Theorem

Algebra Work (Symbols only. Don't plug in any numbers yet.)

$$f = \mu \, \text{mg cos} \, \theta$$

$$\rho \text{gh-} \mu \text{ng cos} \, \theta = \frac{1}{2} \, \text{mv}^2$$

$$V = \sqrt{2(gh-\mu g \cos \theta)}$$

Symbolic Answer: 2(gh-19089)

Units Check

Limits Check

a) As $\Delta x \to 0$, what limit does v approach?

V-> 8.85 ms

b) Why does the result make physical sense?

That is the speed the kid would be able to reach in free fall from 4m high

Numerical Answer: Obtain this by plugging numbers into your symbolic answer.)