Announcement

Assignment 2 will be posted tonight

o Due Jan. 23.

Algorithm Performance

(the Big-O)

Lecture 6

Today:

- Worst-case Behaviour
- Counting Operations
- Performance Considerations
- Time measurements
- Order Notation (the Big-O)

Pessimistic Performance Measure

- Often consider the worst-case behaviour as a benchmark.
 - make guarantees about code performance under all circumstances
- Can predict performance by counting the number of "elementary" steps required by algorithm in the worst case
 - o derive total steps (T) as a function of input size (N)

Analysis of dup_chk()

Q. What is N?

The number of elements in the array

```
int dup chk(int a[], int length) {
    int i = length;
N+1 while (i > 0) {
 N i--;
 N int j = i - 1;
i+1 while (j >= 0) {
  if (a[i] == a[j]) {
             return 1;
    return 0;
```

Outside of loop: 2 (steps)

Outer loop: 3N + 1

Inner loop: 3i + 1 for all possible i from 0 to N - 1.

$$= 3/2 N^2 - 1/2 N$$

Grand total = $3/2 N^2 + 5/2 N + 3$

A *quadratic* function!

$$1 + 4 + 7 + ... + 3(N-1) + 1$$

$$1 + 4 + 7 + ... + 3(N-1) + 1$$

$$1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2$$

$$1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2$$

= $1/2 * (3N-1) * N$

$$1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2$$

= $1/2 * (3N-1) * N$
= $1/2 * (3N^2 - N)$

```
1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2
= 1/2 * (3N-1) * N
= 1/2 * (3N^2 - N)
= 3/2 * N^2 - 1/2 * N
```

```
1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2
= 1/2 * (3N-1) * N
= 1/2 * (3N^2 - N)
= 3/2 * N^2 - 1/2 * N
```

$$1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2$$

= $1/2 * (3N-1) * N$
= $1/2 * (3N^2 - N)$
= $3/2 * N^2 - 1/2 * N$

Observation 1: The 1/2 *N term doesn't matter very much

$$1 + 4 + 7 + ... + 3(N-1) + 1 = (3N-3+1+1) * N/2$$

$$= 1/2 * (3N-1) * N$$

$$= 1/2 * (3N^2 - N)$$
Arithmetic series
$$= 3/2 * N^2 - 1/2 * N$$

Observation 1: The 1/2 *N term doesn't matter very much

Observation 2: Arithmetic series have N^2 leading terms

- 1. As N gets bigger, the last number that we add is bigger
- 2. The number of pairs of numbers is bigger

Analysis of dup_chk()

Q. What is N?

 The number of elements in the array

```
int dup chk(int a[], int length) {
    int i = length;
N+1 while (i > 0) {
 N i--;
 N int j = i - 1;
i+1 while (j \ge 0) {
  if (a[i] == a[j]) {
             return 1;
    return 0;
```

Outside of loop: 2 (steps)

Outer loop: 3N + 1

Inner loop: 3i + 1 for all possible i from 0 to N - 1. $= 3/2 N^2 - 1/2 N$

Grand total = $3/2 N^2 + 5/2 N + 3$

A quadratic function!

Observation: The 5/2 * N and 3 terms don't matter very much

Empirical Measurement

Another graph - a quadratic this time!

 Confirms predictions: doubling (2x) the input size leads to a quadrupling (4x) of the running time.

N	time (in ms)
10000	89
20000	365
40000	1424
100000	9011

N

2D Maximum Density Problem

Problem: Given a 2-dimensional array (*NxN*) of integers, find the 10x10 swatch that yields the largest sum.

Applications:

- Resource management and optimization
- Finding brightest areas of photos

Algorithm / Code?

- Simple approach: Try all possible positions for the upper left corner
 - \circ (N-9)x(N-9) of them
 - use a nested loop
- Total each swatch using a 10x10 nested loop
- A brute-force approach!
 - Generate a possible solution [naively]
 - Test it [naively]

In C

```
int max10by10(int a[N][N]) {
       int best = 0;
       for (int u row = 0; u row < N-9; u row++) {
            for (int u col = 0; u col < N-9; u col++) {
x(N-9)
                int total = 0;
     x(N-9)
                for (int row = u row; row < u row+10; row++) {
                    for (int col = u_col; col < u_col+10; col++)</pre>
           x10
                         total += a[row][col];
                                                       11
                                                                        10
                                     10
                                                Approximate Method:
                                                Count the barometer instructions, the
                best = max(best, total);
                                                instructions executed most frequently.
                                                Usually, in the innermost loop.
                                                Innermost loop: 11 + 10 + 10 = 31 ops
       return best;
                                               Total = 31 \times 10 \times (N-9) \times (N-9) = 310N^2
```

Which Performance Measurement?

- Empirical timings
 - run your code on a real machine with various input sizes
 - plot a graph to determine the relationship
- Operation counting
 - assumes all elementary instructions are created equal
- Actual performance can depend on much more than just your algorithm!

Running Time is Affected By . . .

- CPU speed
- Amount of main memory
- Specialized hardware (e.g., graphics card)
- Operating system
- System configuration (e.g., virtual memory)
- Programming Language
- Algorithm Implementation
- Other Programs
- . . .

Comparing Algorithm Performance

- There can be many ways to solve a problem, i.e., different algorithms that produce the same result
 - E.g., There are numerous sorting algorithms.
- Compare algorithms by their behaviour for large input sizes, i.e., as N gets large
 - On today's hardware, most algorithms perform quickly for small N
- Interested in growth rate as a function of N
 - \circ E.g., Sum an array: *linear* growth = O(N)
 - Ε.g., Check for duplicates: quadratic growth

Order Notation (the Big-O)

- Suppose we express the number of operations used in our algorithm as a function of N, the size of the problem.
- Intuitively, take the dominant term, remove the leading constant, and put O(...) around it.

• E.g.,
$$f(N) = \frac{348N^2}{0} - 6956N + 34762 \rightarrow O(N^2)$$

Formalities of the Big-O

- Given a function T(N), we say T(N) = O(f(N)) if T(N) is at most a constant times f(N), except perhaps for some small values of N.
- Properties:
 - constant factors don't matter
 - low-order terms don't matter
- Rules:

From Wikipedia, the free encyclopedia

Change of base [edit] the

The logarithm $\log_b x$ can be c

$$\log_b x = \frac{\log_k x}{\log_k b}.$$

- For any k and any function f(N), $k \cdot f(N) = O(f(N))$
 - E.g., 5N = O(N)
 - E.g., $\log_a N = O(\log_b N)$. Why?
 - Q. Do leading constants really not matter?

Leading Constants - Experiment

Of course, constant factors affect performance

- E.g., If two different algorithms run in $f_1(N) = 20N^2$ and $f_2(N) = 2N^2$ recent tive $f_1(N) = 20N^2$ expect Algorithms
- E.g., Sime e running
 Algorithm
 e same running time.
- Big-O hir ading constants a hardware independent analysis.

Cray Supercomputer

17.6 x 10^{15} instructions per second runs optimized dup_chk() code from last time $f(N) = 3/2 \frac{N^2}{N^2} + 5/2 N + 3$

VS

iMac Desktop Personal Computer (2011)

 40×10^9 instructions per second runs an unoptimized, different dup_chk () $f(N) = 30 \frac{N \log N + 5N + 4}{N \log N}$

Experimental Results

N	iMac	Cray
100,000	1.2 ms	850 ns
10 ⁶	15 ms	85 µs
10 ⁷	0.2 s	8.5 ms
10 ⁸	2 s	0.85 s
10 ⁹	22 s	1.75 min
10 ¹⁰	4.2 min	2:22 hr
10 ¹¹	56 min	10 days
10 ¹²	8:20 hr	2.7 years

Conclusions:

- Cray runs $O(N^2)$ algorithm
- iMac runs O(N logN) algorithm which runs faster than
 Cray for large N (10⁹ and beyond)
- Thus slow computer + no opt + $O(N \log N)$ >> fast computer + optimization + $O(N^2)$ algorithm
- Rule of Thumb: The slower the function grows, the faster the algorithm.
- For the $O(N^2)$ Cray, a 10x increase in N leads to roughly a 100x increase in running time.
- For the O(N logN) iMac, a 10x increase in N leads to roughly a 10x increase in running time (for the N), plus a little (for the logN).

100**log(x)**+60 (yellow)

0.3**x**+200 (purple)

0.18**x*log(x)** (green)

0.0001**x^2**+0.2x+50 (red)

0.00000005**x^3** (black)

Some Plots t

100log(x)+60 (yellow) 0.3x+200 (purple) 0.18x*log(x) (green) 0.0001x^2+0.2x+50 (red) 0.00000005x^3 (black)

What Does It All Mean?

- A carefully crafted algorithm can make the difference between a usable and an useless piece of software
- E.g., If it costs one algorithm 0.5s to search 1 billion bank records and another one 0.005s.
- E.g., Or, if 10⁹ isn't "big" how about Google?
- E.g., Real-time systems where a nearly instant response is required
- "You can't make a racehorse of a pig, but you can make a very fast pig."

As N Gets Large, The Algorithm is Most Important

"You can't make a racehorse of a pig, but you can make a very fast pig."

"When you find yourself trying all sorts of clever implementation tricks to speed up an algorithm, you should step back for a moment and ask if you're trying to make a racehorse out of a pig. It might be more productive to use your time to look for a racehorse."

"It's important to know whether an efficient algorithm is possible. There's no sense spending time looking for a unicorn. In this situation, the best you can hope for is a fast pig and a short racecourse."

- Lou Hafer, SFU CS

Big-O and Barometer Instructions

Rule of thumb:

The frequency of the barometer instructions will be proportional to the big-O running time

So, find the most frequent operation(s) and count them!

Loops Multiply

```
int max10by10(int a[N][N]) {
        int best = 0;
        for (int u row = 0; u row < N-9; u row++) {
x(N-9)
            for (int u col = 0; u col < N-9; u col++) {
      x(N-0)
                int total = 0;
                for (int row = u row; row < u row+10; row++) {
                    for (int col = u col; col < u col + 10; col + +) {
            x10
                x10
                       total += a[row][col];
                best = max(best, total);
                                                      barometer instructions
        return best;
                                 f(N) = 3 \times 10 \times 10 \times (N-9) \times (N-9) = O(N^2)
```

Polynomials

Rule:

The powers of N are ordered according to their exponents, i.e., $N^a = O(N^b)$ if and only if $a \le b$

• E.g., $N^2 = O(N^3)$, but N^3 is not $O(N^2)$.

Why are lower-ordered terms not included?

E.g., If your bank account followed f(N) = N² + N + 1, you would probably care a lot about the lower-ordered terms for small N, like N=5, as f(5) = 5² + 5 + 1 = \$31. You'll care about every dollar. But not for larger N, like N=1000, as f(1000) = 1000² + 1000 + 1 = \$1,001,001. You care most that you have that million bucks, and not much about the \$1000 or the \$1.

More Rules

- 3. A logarithm grows more slowly than any other positive power of N.
 - \circ E.g., $\log_2 N = O(N^{1/2})$.
- 4. If f(N) = O(g(N)) and g(N) = O(h(N)) then f(N) = O(h(N)).
- 5. If both f(N) and g(N) are O(h(N)) then f(N) + g(N) = O(h(N))
- 6. If $f_1(N) = O(g_1(N))$ and $f_2(N) = O(g_2(N))$ then $f_1(N) \times f_2(N) = O(g_1(N) \times g_2(N))$
- E.g., $(10 + 5N^2)(10\log_2 N + 1) + (5N + \log_2 N)(10N + 2N \log_2 N)$

Typical Growth Rate Functions

- O(1) constant time
 - The time is independent of N, E.g., list look-up
- O(logN) logarithmic time
 - Usually the log is to the base 2, E.g., binary search
- O(N) linear time, E.g., linear search
- O(N logN) E.g., quicksort, mergesort
- O(N²) quadratic time, e.g. selection sort
- O(N^k) polynomial (where k is a constant)
- O(2^N) exponential time, very slow!