Computabilità e Algoritmi - 03 Settembre 2015

Soluzioni Formali

Esercizio 1

Definire l'operazione di minimalizzazione illimitata e dimostrare che l'insieme C delle funzioni URM-calcolabili è chiuso rispetto a tale operazione.

Definizione di Minimalizzazione Illimitata: Data una funzione f: $\mathbb{N}^{(k+1)} \to \mathbb{N}$, la minimalizzazione illimitata $\mu y.f(\bar{x},y)$ è definita come:

```
\mu y.f(\bar{x},y) = \{\min\{y : f(\bar{x},y) = 0\} \text{ se esiste tale } y \}
```

Teorema di Chiusura: Se f: $\mathbb{N}^{(k+1)} \to \mathbb{N}$ è URM-calcolabile, allora g: $\mathbb{N}^{k} \to \mathbb{N}$ definita da $g(\bar{x}) = \mu y.f(\bar{x},y)$ è URM-calcolabile.

Dimostrazione: Assumiamo che f sia calcolabile dal programma URM P. Costruiamo un programma Q che calcola $\mu y.f(\bar{x},y)$:

```
Input: x<sub>1</sub>, ..., x<sub>k</sub> in registri R<sub>1</sub>, ..., R<sub>k</sub>
Algoritmo:
1. Inizializza R<sub>k+1</sub> ← 0 (contatore y)
2. LOOP:
    a. Copia x<sub>1</sub>,...,x<sub>k</sub>,y nei registri appropriati
    b. Esegui il programma P per calcolare f(x̄,y)
    c. Se f(x̄,y) = 0, termina restituendo y
    d. Altrimenti, incrementa y e torna a LOOP
```

Implementazione URM formale: Sia m il numero di registri utilizzati da P. Il programma Q:

dove tra l₁ e l₂ inseriamo il programma P modificato per operare sui registri appropriati.

La correttezza segue dal fatto che:

- Se $\exists y$: $f(\bar{x},y) = 0$, l'algoritmo trova il minimo tale y e termina
- Se $\forall y$: $f(\bar{x},y) \neq 0$, l'algoritmo non termina (1)

Esercizio 2

Si dica che una funzione f: $\mathbb{N} \to \mathbb{N}$ è quasi costante se esiste un valore $k \in \mathbb{N}$ tale che l'insieme $\{x \mid f(x) \neq k\}$ è finito. Esiste una funzione quasi costante non calcolabile?

Risposta: Sì, esistono funzioni quasi costanti non calcolabili.

Esempio costruttivo: Definiamo f: $\mathbb{N} \to \mathbb{N}$ come:

 $f(x) = \{1 \text{ se } x \in \bar{K} \text{ (x non è nel problema di halting)} \}$

{0 altrimenti

Verifica che f è quasi costante: Poiché K è infinito e K è infinito, ma uno dei due ha cardinalità maggiore, possiamo assumere che K sia "più piccolo" in senso asintottico. In realtà, costruiamo diversamente:

$$f(x) = \{1 \text{ se } x \neq x_0 \text{ per qualche } x_0 \in \overline{K} \text{ fissato } \}$$

$$\{0 \text{ se } x = x_0\}$$

Questa f è quasi costante con valore k = 1, poiché $\{x \mid f(x) \neq 1\} = \{x_0\}$ è finito.

Verifica che f non è calcolabile: Per decidere f(x), dovremmo decidere se $x = x_0$ dove $x_0 \in \bar{K}$. Ma scegliendo x_0 opportunamente (usando la costruzione diagonale), possiamo rendere questa decisione equivalente a risolvere il problema di halting.

Costruzione più diretta: Definiamo f tramite diagonalizzazione:

$$f(x) = \{0 \text{ se } x = e \text{ per qualche e specifico} \in \bar{K} \}$$

dove e è scelto in modo che determinare se x = e richieda di risolvere un problema indecidibile.

Dimostrazione formale di non calcolabilità: Supponiamo f calcolabile. Allora $\chi_{\bar{k}}$ sarebbe calcolabile (decidendo se $x \in \bar{K}$ tramite f), contraddicendo il fatto che \bar{K} non è ricorsivo.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid P \subseteq W_x\}$, dove P è un insieme finito fissato.

Caso P = \varnothing : Se P = \varnothing , allora A = \mathbb{N} (poiché $\varnothing \subseteq W_x$ per ogni x), quindi A è ricorsivo.

Caso P $\neq \emptyset$: Assumiamo P = {p₁, p₂, ..., p_n} con n \geq 1.

Saturazione: A è saturato: A = $\{x \mid \phi_x \in \mathcal{A}\}\ dove\ \mathcal{A} = \{f \in C : P \subseteq dom(f)\}.$

Non ricorsività per Rice:

- A $\neq \emptyset$: la funzione identità ha dominio $\mathbb{N} \supseteq \mathbb{P}$
- A ≠ N: la funzione sempre indefinita ha dominio Ø ⊉ P

Per il teorema di Rice, A non è ricorsivo.

Semidecidibilità di A: A è semidecidibile. Per verificare $P \subseteq W_x$, dobbiamo verificare che ogni elemento di P sia nel dominio di ϕ_x :

$$SC_a(x) = 1(\mu w. \forall i \leq n. H(x, p_i, (w)_i))$$

dove H(x,y,t) verifica se $\phi_x(y) \downarrow$ in t passi.

Complemento Ā:
$$\bar{A} = \{x \in \mathbb{N} \mid P \nsubseteq W_x\} = \{x \in \mathbb{N} \mid \exists p \in P. p \notin W_x\}$$

Ā non è semidecidibile. Se lo fosse, con A semidecidibile, A sarebbe ricorsivo.

Conclusione:

- Se P = Ø: A è ricorsivo
- Se P $\neq \emptyset$: A è semidecidibile ma non ricorsivo, \bar{A} non è semidecidibile \Box

Esercizio 4

Sia f: $\mathbb{N} \to \mathbb{N}$ una funzione totale calcolabile fissata. Studiare la ricorsività dell'insieme B = $\{x \in \mathbb{N} : f(x) \in E_x\}$.

Analisi: B = $\{x \in \mathbb{N} : f(x) \in E_x\}$ contiene gli indici x tali che f(x) appartiene all'immagine di ϕ_x .

Dipendenza da f: La ricorsività di B dipende crucialmente dalla funzione f.

Caso f costante: Se f(x) = c per ogni x, allora: $B = \{x \in \mathbb{N} : c \in E_x\}$

Questo insieme è saturato e per Rice è non ricorsivo (assumendo c ≠ 0 per evitare casi degeneri).

Caso f = identità: Se f(x) = x, allora: $B = \{x \in \mathbb{N} : x \in E_x\}$

Questo è esattamente l'insieme studiato in esercizi precedenti, che è semidecidibile ma non ricorsivo.

Semidecidibilità generale: Per f generica totale calcolabile, B è sempre semidecidibile:

$$sc_{\beta}(x) = 1(\mu w. \exists u, t. S(x, u, f(x), t))$$

dove S(x,u,v,t) verifica se $\varphi_x(u) = v$ in t passi.

Non ricorsività generale: Per la maggior parte delle funzioni f non triviali, B non è ricorsivo. Dimostriamo $K \leq_m B$ per f appropriata.

Consideriamo f(x) = 0. Definiamo g(u,v):

$$g(u,v) = \{0 \text{ se } u \in K\}$$

{↑ altrimenti

Per SMN, esiste s tale che $\varphi_{s(u)}(v) = g(u,v)$.

Allora:

- Se $u \in K$: $0 \in E_{s(u)} = \{0\}$, quindi $s(u) \in B$
- Se $u \notin K$: $E_{s(u)} = \emptyset$, quindi $0 \notin E_{s(u)}$, quindi $s(u) \notin B$

Conclusione:

- B è sempre semidecidibile
- Per f non triviali, B è tipicamente non ricorsivo
- B è tipicamente non semidecidibile 🗆

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che esiste un indice $n \in \mathbb{N}$ tale che $\phi_{pn} = \phi_{nr}$ dove p_n è l'n-mo numero primo.

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione dell'esistenza dell'indice:

Sia π : $\mathbb{N} \to \mathbb{N}$ la funzione che calcola l'n-mo numero primo:

$$\pi(n) = p_n$$

La funzione π è totale e calcolabile (esistono algoritmi efficienti per calcolare numeri primi).

Applicando il secondo teorema di ricorsione alla funzione π , esiste $n \in \mathbb{N}$ tale che:

$$\varphi_n = \varphi \pi(n) = \varphi_{pn}$$

Interpretazione: Questo risultato mostra l'esistenza di un numero naturale n tale che il programma con indice n calcola esattamente la stessa funzione parziale del programma con indice p_n (l'n-mo numero primo).

In altre parole, esistono programmi il cui comportamento computazionale rimane invariato quando il loro indice viene trasformato nel corrispondente numero primo.

Nota sulle applicazioni: Questo tipo di risultato è fondamentale nella teoria della ricorsione per dimostrare proprietà di autoriflessione dei sistemi computazionali e per costruire programmi con specifiche proprietà autoreferenziali.