Rozdział 1

Płyn idealny

W tym rozdziałe naszym celem jest opracowanie modelu fizycznego cieczy idealnej i uzasadnienie jej podstawowych równań ruchu.

1.1 Pojęcia wstępne

Zaczniemy od przypomnienia podstawowych pojęć w teorii rozmaitości gładkich. Niech M będzie rzeczywistą n-rozmaitością różniczkowalną klasy C^{∞} , p będzie dowolnym punktem rozmaitości M i niech $U, V \subset M$ będą otoczeniami punktu p. Powiemy, że dwie funkcje rzeczywiste $f: U \to \mathbb{R}, g: V \to \mathbb{R}$ są równoważne, jeśli w pewnym otoczeniu $W \subset U \cap V$ punktu p są one sobie równe. Pod pojęciem **kiełka** funkcji rzeczywistej klasy C^{∞} w punkcie $p \in M$ będziemy rozumieli każdą klasę równoważności tak zadanej relacji. Zbiór wszystkich kiełków w punkcie p, $C_p^{\infty}(M)$, jest wówczas \mathbb{R} -algebrą. Zbiór wszystkich funkcji klasy C^{∞} określonych na M będziemy oznaczali $\mathcal{F}(M)$.

Zmierzamy do określenia pojęcia przestrzeni stycznej za pomocą kiełków funkcji. Każde odwzorowanie liniowe $D:C_p^\infty(M)\to\mathbb{R}$ spełniające warunek:

$$D(fg) = (Df)g(p) + f(Dg)(p)$$
(1.1)

nazywamy **różniczkowaniem** w punkcie p. Przestrzeń liniową wszystkich różniczkowań w punkcie p nazywamy **przestrzenią styczną** w p i oznaczamy przez T_pM .

Niech $\pi: E \to M$ będzie dowolnym odwzorowaniem między rozmaitościami E i M. Przeciwobraz $E_p = \pi^{-1}(p)$ punktu p nazywamy **włóknem** w p. Niech $\pi': E' \to M$ będzie odwzorowaniem rozmaitości E' i M. Powiemy, że odwzorowanie $\phi: E \to E'$ zachowuje **włókna**, jeśli $\phi(E_p) \subset E'_p$ dla każdego $p \in M$. Jeśli π jest surjekcją klasy \mathbb{C}^{∞} oraz

- i) każde włókno $\pi^{-1}(p)$ ma strukturę n-wymiarowej przestrzeni wektorowej,
- ii) dla każdego $p\in M$ istnieje otoczenie $U\in M$ punktu p i zachowujący włókna dyfeomorfizm $\phi:\pi^{-1}(U)\to U\times\mathbb{R}^r$ taki, że dla każdego $q\in U$ zawężenie

$$\phi|_{\pi^{-1}(q)}:\pi^{-1}(q)\to \{q\}\times\mathbb{R}^r$$

jest izomomorfizmem przestrzeni wektorowych,

wówczas π określamy odwzorowaniem lokalnie trywialnym rzędu r. Tak określony zbiór U nazywamy zbiorem trywializującym E, zaś ϕ nazywamy trywializacją E nad U.

Korzystając z powyższych rozstrzygnięć definiujemy wiązką wektorową klasy C^{∞} rzędu r jako trójkę (E, M, π) . Nadużywając notacji często zamiast odnosić się bezpośrednio do tak zdefiniowanej struktury, będziemy mówili o wiązce wektorowej E albo wiązce wektorowej $\pi: E \to M$. W tę myśl cięciem wiązki $\pi: E \to M$ nazywamy odwzorowanie $s: M \to E$ takie, że $\pi \circ s = id_M$. Przyporządkowuje ono każdemu punktowi $p \in M$ włókno E_p .

Okazuje się, że zbiór wszystkich sekcji klasy C^{∞} wiązki E, oznaczany $\Gamma(E)$, ma interesujące własności algebraiczne. Jeśli U jest otwartym pozdbiorem rozmaitości E, wówczas analogicznie określmy $\Gamma(U)$. Na tak zadanym zbiorze można zadać strukturę modułu nad pierścieniem $C^{\infty}(U)$ funkcji klasy C^{∞} zadanych na U. $\Gamma(U)$ jest również rzeczywistą przestrzeńą wektorowa w której możemy wybrać uporządkowaną bazę (s_1, s_2, \ldots, s_r) . Jest to tak zwany reper wiązki wektorowej $\pi: E \to M$ nad U.

Szczególnie interesującym nas obiektem tej kategorii jest wiązka styczna (TM, M, π) , gdzie

$$TM := \bigcup_{p \in M} T_p M$$

oraz $\pi:TM\ni v\mapsto p\in M$ jest naturalną projekcją. Jeśli M jest n-rozmaitością klasy \mathbf{C}^k , to tak zdefiniowana wiązka styczna TM okazuje się 2n-rozmaitością klasy \mathbf{C}^{k-1} . Korzystając z powyższego wygodnego aparatu matematycznego możemy teraz określić **pole wektorowe** na rozmaitości M po prostu jako cięcie wiązki stycznej TM. Zbiór wszystkich pól wektorowych na M, $\mathfrak{X}(M)$, stanowi szczególny rodzaj \mathcal{F} -modułu, mianowicie moduł Liego. Pola wektorowe można w nim rozumieć jako różniczkowania w algebrze \mathcal{F} oraz określony jest w nim operator komutacji pól wektorowych, nazywany również nawiasem Liego:

$$[X,Y]f := X(Yf) - Y(Xf).$$

Okazuje się, że komutacja gładkich pól wektorowych nie wyprowadza poza $\mathfrak{X}(M)$ i lokalnie spełnia warunek (1.1), czyli jest różniczkowaniem.

Przez $L^k(V;\mathbb{R})$ oznaczać będziemy przestrzeń wszystkich funkcjonałów k-liniowych określonych na przestrzeni liniowej V. Rozważmy skończenie wymiarowe rzeczywiste przestrzenie wektorowe $V_1,\,V_2,\,\ldots,\,V_r$ i odpowiednio ich przestrzenie dualne $V_1^*,\,V_2^*,\,\ldots,\,V_r^*$. Dzięki kanonicznemu izomorfizmowi przestrzeni i ich dwusprzężonych, przestrzenie V_i możemy traktować jako przestrzenie funkcjonałów na V_i^* ,

$$x_i: V_i^* \ni \varphi^i \mapsto \langle \varphi^i, x_i \rangle_i := x_i(\varphi^i) \in \mathbb{R}$$

gdzie $\langle *, * \rangle_i$ jest funkcją dualności pary przestrzeni V_i^*, V_i . Możemy określić iloczyn tak rozumianych funkcji,

$$x_1 \otimes \cdots \otimes x_r : V_1^* \times \cdots \times V_r^* \mapsto \mathbb{R},$$

$$(x_1 \otimes \cdots \otimes x_r)(\varphi^1, \dots, \varphi^r) := \langle \varphi^1, x_1 \rangle_1 \dots \langle \varphi^r, x_r \rangle_r.$$

Tak określone działanie jest łączne, r-liniowe, ciągłe i nie jest przemienne. Dla wygody oznaczamy $\mathcal{T}_0^0(V) = \mathbb{R}$. Wektor postaci $x_1 \otimes \cdots \otimes x_r$ nazywamy iloczynem tenstorowym wektorów x_1, \ldots, x_r .

Niech V będzie przestrzenią wektorową. Rozważając funkcjonały liniowe na iloczynie tensorowym kilku kopii V i jej dualnych otrzymujemy strukturę, którą nazywamy przestrzenią tensorów o walencji $\begin{bmatrix} p \\ a \end{bmatrix}$ nad przestrzenią V,

$$\mathcal{T}^p_q(V) := \mathrm{L}^{p+q}(\underbrace{V^* \otimes \cdots \otimes V^*}_{p \text{ razy}} \otimes \underbrace{V \otimes \cdots \otimes V}_{q \text{ razy}}; \mathbb{R}), \quad p+q \geq 1.$$

Taką definicję określa się niekiedy klasyczną definicją tensora. Elementy $\mathcal{T}_q^p(V)$ nazywamy tensorami q-krotnie kowariantnymi i p-krotnie kontrawariantnymi albo prościej: tensorami o walencji $\begin{bmatrix} p \\ q \end{bmatrix}$. Dla tensorów $t_1 \in \mathcal{T}_{s_1}^{r_1}(V)$ i $t_2 \in \mathcal{T}_{s_2}^{r_2}(V)$ mamy $t_1 \otimes t_2 \in \mathcal{T}_{s_1+s_2}^{r_1+r_2}(V)$ oraz

$$(t_1 \otimes t_2)(\beta^1, \dots, \beta^{r_1}, \gamma^1, \dots, \gamma^{r_2}, f_1, \dots, f_{s_1}, g_1, \dots, g_{s_2}) = t_1(\beta^1, \dots, \beta^{r_1}, f_1, \dots, f_{s_1}) t_2(\gamma^1, \dots, \gamma^{r_2}, g_1, \dots, g_{s_2}).$$

Okazuje się, że jeśli $\{e_1, \ldots, e_n\}$ jest bazą przestrzeni V i $\{e^1, \ldots, e^n\}$ jest bazą przestrzeni dualnej, to

$$\left\{e_{i_1}\otimes\cdots\otimes e_{i_q}\otimes e^{j_1}\otimes\cdots\otimes e^{j_p}\,|\,i_1,\ldots,i_q,j_1,\ldots,j_p=1,\ldots,n\right\}$$

jest bazą $\mathcal{T}_q^p(V)$, a zatem $\dim \mathcal{T}_q^p(V) = (\dim V)^{p+q}$.

Niech π : $TM \to M$ będzie wiązką styczną i niech $T_m M = \pi^{-1}(m)$ oznacza włókno nad punktem $m \in M$. Określmy

$$\mathcal{T}_s^r(M) = \bigcup_{m \in M} T_r^s(T_m M),$$

oraz niech odwzorowanie $\pi_s^r: \mathcal{T}_s^r(M) \to M$, $\pi_s^r(e) = m$ dla $e \in \mathcal{T}_s^r(E_m)$ będzie naturalną projekcją elementu z włókna na rozmaitość. Naśladując konstrukcję wiązki stycznej, trójkę $(\mathcal{T}_s^r(M), M, \pi_s^r(e))$ nazywamy wiązką tensorową o walencji $\begin{bmatrix} r \\ s \end{bmatrix}$ na M. Analogicznie, cięcie wiązki tensorowej określamy **polem tensorowym**. Pole tensorowe k-kowariantne i 0-kontrawariantne na M, które jest antysymetryczne, nazywamy **k-formą różniczkową** na M.

Jeśli V jest przestrzenią wektorową, przez $A_k(V) \subset \mathcal{T}_k^0(V)$ oznaczamy podprzestrzeń liniową alternujących k-tensorów na V, oznaczaną czasem $\bigwedge^k(V^\vee)$ przez nawiązanie do izomorficznej konstrukcji na gruncie algebr Grassmanna. W tej pracy wyłącznie zaznaczymy tę odpowiedniość przez stosowanie tej notacji, gdyż wzmiankowana konstrukcja daleko wykracza poza jej zakres. Piszemy odpowiednio:

$$\begin{split} & \bigwedge^0(V^\vee) = A_0(V) = \mathbb{R} \\ & \bigwedge^1(V^\vee) = A_1(V) = V^* \\ & \bigwedge^2(V^\vee) = A_2(V), \text{ i tak dalej.} \end{split}$$

Niech X będzie polem wektorowym klasy \mathbf{C}^r na M i niech $(U,\varphi)=(U,x^1,x^2,\ldots,x^n)$ będzie mapą wokół $p\in M$. Wówczas $X_p=\sum_{j=1}^n a_j(p)\frac{\partial}{\partial x^j}\big|_p$ jest wektorem stycznym w p, gdzie $a_j\in C^r(M)$ są kiełkami funkcji klasy \mathbf{C}^r w p. Popchnięcie X przez φ , czyli funkcję wektorową $\mathbf{X}=\varphi_*\circ X(\varphi^{-1}):\mathbb{R}^n\supset \varphi(U)\ni p\mapsto [a_j(p)]_{j=1}^n\in\mathbb{R}^n$ nazywamy lokalną reprezentacją X.

$$M \supset U \xrightarrow{\varphi} \varphi(U) \subset \mathbb{R}^{n}$$

$$X \downarrow \qquad \qquad \downarrow \mathbf{X}$$

$$TU \xrightarrow{\varphi_{*}} T\mathbb{R}^{n} \cong \mathbb{R}^{n}$$

Chwilą $t \in \mathbb{R}$ będziemy nazywać zmienną czasową. Polem wektorowym zależnym od czasu klasy C^r na M nazywamy odwzorowanie $X : \mathbb{R} \times M \to TM$ takie, że $X_t(m) := X(t, m) \in T_m M$ jest wektorem stycznym w m w chwili t dla wszytkich par $(t, m) \in \mathbb{R} \times M$. Przez $X_t \in \mathfrak{X}^r(M)$ oznaczamy pole wektorowe na M w chwili t, gdzie $\mathfrak{X}^r(M)$ to zbiór wszystkich pól wektorowych klasy C^r na M.

Trajektorią (także: linią przepływu, krzywą całkową) pola wektorowego X w punkcie $m \in M$ nazywamy krzywą $c : \mathbb{R} \supset I \to M$ o początku w m, taką, że $c'(t) = X_{c(t)}$ dla każdego $t \in I$. Jeśli $(U,\varphi) = (U,x^1,x^2,\ldots,x^n)$ jest mapą wokół c(0) = p i $[X^1,X^2,\ldots,X^n]^T$ jest lokalną reprezentacją X, funkcja wektorowa $\mathbf{c} = \varphi \circ c, I \ni t \mapsto \left[c^i(t)\right]_{i=1}^m \in \mathbb{R}^n$ jest lokalną reprezentacją krzywej c oraz spełniony jest układ równań różniczkowch pierwszego rzędu nazywany układem charakterystyk

$$\frac{dc^{1}}{dt}(t) = X^{1}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right),$$

$$\frac{dc^{2}}{dt}(t) = X^{2}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right),$$

$$\vdots$$

$$\frac{dc^{n}}{dt}(t) = X^{n}\left(c^{1}(t), c^{2}(t), \dots, c^{n}(t)\right).$$

Prędkością $c'(t_0)$ krzywej c w chwili $t \in]a,b[$ nazywamy wektor styczny

$$c'(t_0) = c_* \left(\frac{d}{dt} \Big|_{t_0} \right) \in T_{c(t_0)} M,$$
 (1.2)

Zachodza następujące twierdzenia

Twierdzenie 1.1. Niech X_p będzie wektorem stycznym w punkcie p rozmaitości M i niech $f \in C_p^{\infty}(M)$ będzie kielkiem funkcji C^{∞} w p. Jeśli $c:] - \varepsilon, \varepsilon[\to M$ jest gładką krzywą o początku w p taką, że $c'(0) = X_p$, wówczas

$$X_p f = \left. \frac{d}{dt} \right|_0 (f \circ c). \tag{1.3}$$

Twierdzenie 1.2. Niech $F: N \to M$ będzie gładkim odwzorowaniem między rozmaitościami, $p \in N$, $X_p \in T_pN$. Jeśli c jest gładką krzywą o początku w p i jej prędkość w p to X_p , wówczas

$$F_{*,p}(X_p) = \frac{d}{dt} \bigg|_{0} (F \circ c)(t). \tag{1.4}$$

Czyli popchnięcie prędkości X_p przez F jest wektorem prędkości krzywej $F \circ c$ w M.

Przez \mathcal{D}_X oznaczmy wszystkie pary $(m,t) \in M \times \mathbb{R}$ dla których istnieje trajektoria $c: I \to M$ pola wektorowego X w punkcie m i zmienna czasowa t zawiera się w pewnym przedziale I. Mówimy, że pole wektorowe jest **zupełne**, jeśli $\mathcal{D}_X = M \times \mathbb{R}$. Oznacza to, że dla każdego punktu na rozmaitości znajdziemy trajektorię cząsteczki próbnej poruszającej się dowolnie długo. Zbiór wszystkich punktów rozmaitości na których pole wektorowe nie znika, Supp $X = \{m \in M \mid X_m \neq 0\}$, nazywamy **nośnikiem** pola wektorowego X.

Zachodzą następujące twierdzenia

Twierdzenie 1.3. Niech X będzie polem wektorowym na M klasy C^r , $r \geq 1$. Wówczas

- $i) \mathcal{D}_X \supset M \times \{0\},$
- ii) \mathcal{D}_X jest otwarty $w \ M \times \mathbb{R}$,
- iii) istnieje jednoznacznie wyznaczone odwzorowanie $F_X : \mathcal{D}_X \to M$ takie, że krzywa $t \mapsto F_X(m,t)$ jest trajektorią w m dla wszystkich $m \in M$,
- iv) dla $(m,t) \in \mathcal{D}_X$, $F_X(m,t)$, $s) \in \mathcal{D}_X$ wtedy i tylko wtedy, $gdy(m,t+s) \in \mathcal{D}_X$.

Twierdzenie 1.4. Każde pole wektorowe klasy C^r na zwartej rozmaitości M jest zupełne.

Określone w Twierdzeniu 1.3 odwzorowanie F_X nazywamy **całką** X, zaś trajektorię $t \to F_X(m,t)$ maksymalną krzywą całkową X w m. Jeśli pole wektorowe X jest zupełne, F_X nazywamy **przepływem** pola wektorowego X. Każdy przepływ F określa 1-parametrową grupę dyfeomorfizmów $\{F_t: M \to M \mid t \in \mathbb{R}\}$ z operacją składania $F_{t_1} \circ F_{t_2} = F_{t_1+t_2}$ dla $t_1, t_2 \in \mathbb{R}$, gdzie F_0 jest elementem neutralnym i $F_t \circ F_{-t} = F_0$ dla dowolnego $t \in \mathbb{R}$. Jeśli X jest polem wektorowym zależnym od czasu, wówczas analogicznie określamy **przepływ zależny od czasu** $F_{t,s}$ pola X dla którego odwzorowanie $t \mapsto F_{t,s}(m)$ jest trajektorią X o początku w punkcie m i w chwili t = s, czyli

$$\frac{d}{dt}F_{t,s}(m) = X(t, F_{t,s}(m)), \quad F_{s,s}(m) = m.$$
(1.5)

Wówczas działanie składania staje się przechodnie, $F_{t,s} \circ F_{s,r} = F_{s,r}$, a $F_{t,t}$ jest jego elementem neutralnym.

Niech $X, Y \in \mathfrak{X}(M)$ i $F :]-\varepsilon, \varepsilon[\times U \to M]$ będzie lokalnym przepływem pola wektorowego X w otoczeniu $U \subset M$ punktu $p \in M$. Pochodną Liego $\mathcal{L}_X Y$ pola wektorowego Y względem X w p nazywamy wektor

$$(\mathcal{L}_{X}Y)_{p} = \lim_{t \to 0} \frac{F_{-t*}(Y_{F_{t}(p)}) - Y_{p}}{t} =$$

$$= \lim_{t \to 0} \frac{(F_{-t*}Y)_{p} - Y_{p}}{t} =$$

$$= \frac{d}{dt} \Big|_{t=0} (F_{-t*}Y)_{p}.$$
(1.6)

Jeśli ω jest gładką k-formą na rozmaitości M, to **pochodną Liego** $\mathcal{L}_X \omega$ k-formy ω względem X w $p \in M$ nazywamy formę

$$(\mathcal{L}_X \omega)_p = \lim_{t \to 0} \frac{F_t^*(\omega_{F_t(p)}) - \omega_p}{t} =$$

$$= \lim_{t \to 0} \frac{(F_t^* \omega)_p - \omega_p}{t} =$$

$$= \frac{d}{dt} \Big|_{t=0} (F_t^* \omega)_p.$$
(1.7)

Niech (M,g) będzie zwartą, orientowalną n-rozmaitością Riemannowską z brzegiem i $\mu \in \Omega^n(M)$ będzie formą objętości na M. Przypomnijmy, że metryka Riemannowska $g: M \to \Omega^2(M)$ to pole tensorowe $\mathcal{T}_2^0(M)$ takie, że $g_p \in T_m^*M \otimes T_p^*M$ dla $p \in M$ jest iloczynem skalarnym określonym na przestrzeni stycznej T_pM . Formą objętości na n-rozmaitości M nazywamy n-formę $\mu \in \Omega^n(M)$ taką, że $\mu(m) \neq 0$ dla wszystkich $m \in M$. Mówimy, że M jest orientowalna, jeśli na M można określić formę objętości.

Niech X będzie polem wektorowym na M. Funkcję $\operatorname{div}_{\mu}X \in C^{\infty}(M)$ taką, że

$$\mathcal{L}_X \mu = (\operatorname{div}_{\mu} X) \mu \tag{1.8}$$

nazywamy **dywergencją** X. Mówimy, że X jest **nieściśliwy** (względem μ), jeśli $\mathrm{div}_{\mu}X=0$.

Bibliografia