Traducción automática neuronal e inteligencia artificial: entrenamiento, evaluación e integración

1. Introducción a la inteligencia artificial para la traducción

Antoni Oliver (aoliverg@uoc.edu)

Presentación del seminario

Traducción automática neuronal e inteligencia artificial: entrenamiento, evaluación e integración

- WIKI
- Repositorio

1. Introducción a la inteligencia artificial para la traducción

Traducción automática neuronal e inteligencia artificial: principios teóricos

Tipos de sistemas de traducción automática

- Basado en reglas
- Basado en corpus

Historia de la traducción automática

1930	1940	1950	1960		1970	1980	1990	2000	2010	2	020	
Preci	ursores y pioi	neros	Grandes expectativas	ALPAC	Década silenciosa	Sistemas operativos y comerciales	TA es	tadística	TA neurona	al E	: 1	

Neurona artificial

$$S4 = F (\omega 1 \times S1 + \omega 2 \times S2 + \omega 3 \times S3)$$

Funciones de activación

Funció	Fórmula	Rang
Tangent hiperbòlica	$tanh(x) = \frac{sin(x)}{cosh(x)}$ $= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$	de -1 a +1
Sigmoide	$sigmoid(x) = \frac{1}{1 + e^{-x}}$	de 0 a +1
Rectificador o ReLU	relu(x) = max(0, x)	de 0 a ∞

Funciones de activación

Redes neuronales

Aprendizaje profundo

Ejemplo de red neuronal sencilla

https://github.com/aoliverg/materiales-TAN

- Demo neurona artificial
- Demo red neuronal

Words embeddings

c=0	La matrícula de mi <mark>coche</mark> era fácilmente identificable en una ciudad pequeña como la nuestra.
c=1	La matrícula de mi coche era fácilmente identificable en una ciudad pequeña como la nuestra.
c=2	La matrícula <mark>de mi coche</mark> <mark>era fácilmente</mark> identificable en una ciudad pequeña como la nuestra.
c=3	La matrícula de mi coche era fácilmente identificable en una ciudad pequeña como la nuestra.

- **CBOW** (Continuous Bag of Words), que lee las palabras del contexto e intenta predecir la palabra central más probable.
- Modelo Skip-Gram, que predice las palabras del contexto a partir de la palabra central.

CBOW - Skip Gram

Operaciones con Word Embeddings

- Similitud
- Operaciones

Grandes modelos de Word Embeddings

https://docs.google.com/open?id=0B7XkCwpI5KDYNINUTTISS21pQm
 M

Sentence Embeddings

- La misma idea que Word Embeddings, pero ahora se pretende representar toda una oración.
- Retomaremos esto en la alineación de documentos con una estrategia que se llama bilingual sentence mining

Modelos de lenguaje neuronales

Modelo de lenguaje neuronal recurrente

Modelos de traducción neuronal

Entrenamiento

Toolkits de entrenamiento y uso de motores de traducción automática neuronal

Toolkits (no neuronales)

- Apertium: transferencia sintáctica superficial
- Moses: Traducción automática estadística

Toolkits neuronales

- Marian
- OpenNMT
- <u>Fairseq</u>
- <u>Transformers</u>

Modelos de traducción automática neuronal libres

OpusMT

https://github.com/Helsinki-NLP/Opus-MT

https://huggingface.co/Helsinki-NLP/opus-mt-en-es

Ejecución desde un script

```
from transformers import MarianMTModel, MarianTokenizer

src_text = ["This is a simple translation test.", "And this is another sentence."]

model_name = "Helsinki-NLP/opus-mt-en-es"

tokenizer = MarianTokenizer.from_pretrained(model_name)

model = MarianMTModel.from_pretrained(model_name)

translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

res = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]

print(res)
```

NLLB - No Language Left Behind

https://ai.meta.com/research/no-language-left-behind/

https://huggingface.co/facebook/nllb-200-distilled-600M

Ejecución desde un script

```
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")

model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")

translator = pipeline('translation', model=model, tokenizer=tokenizer,
    src_lang='eng_Latn', tgt_lang='spa_Latn', max_length = 200)

src_text = ["This is a simple translation test.", "And this is another sentence."]

res = translator(src_text)

print(res)
```


El proyecto MTUOC

Objetivos del proyecto

Facilitar la creación de corpus paralelos, el entrenamiento, evaluación e integración de motores de traducción automática neuronales (y estadísticos).

https://mtuoc.github.io/

MTUOC-server

Server, localhost or virtual machine

config-server.yaml

```
MTEngine:
 MTengine: OpusMT
 #one of Marian, OpenNMT, Moses, GoogleTranslate, DeepL, Lucy, OpusMT, NLLB, Softcatalà, Apertium, Transformers, Aina
 SLcode: en
 TLcode: es
 multilingual: False
 #False or <2tgtlang> or any multilingual code used by the system.
MTUOCServer:
 port: 8000
 type: MTUOC
 #one of MTUOC, Moses, ModernMT, OpenNMT, NMTWizard
 verbosity level: 3
 log file: log.log
 ONMT url root: "/translator"
 #specific configuration when acting as ONMT server
Transformers:
#use the same configuration for OpusMT
 model path: ../opus-mt-en-es
 #model path: Helsinki-NLP/opus-mt-tc-big-en-cat oci spa
 beam size: 5
 num hypotheses: 5
```


Servidor en funcionamiento

2024-11-19 13:35:25.470616 3 MTUOC server started using MTUOC protocol MTUOC server IP: 192.168.1.51 MTUOC server port: 8000 MTUOC server type: MTUOC

¡Gracias por vuestra atención!

Antoni Oliver aoliverg@uoc.edu

- f UOC.universitat
- ✗ @UOCuniversitat
- O UOCuniversitat

Universitat Oberta de Catalunya

I UOC.universitat

X @UOCuniversitat

© UOCuniversitat