CPSC3300 – Computer Systems Organization Homework #3 – Boolean Algebra and Adders Due: 3:30 PM February 8 Submit to canvas

Total 100pts

- 1. [2pts] Logical completeness
 - a. Show that you can use only two-input NAND gates to implement each of the following two-input logic functions, and draw the used NAND gates and wiring.
 - i. NOR function

ii. XOR function

- b. Show that you can use only two-input NOR gates to implement each of the following two-input logic functions, and draw the used NOR gates and wiring.
 - i. NAND function

ii. XOR function

2. [10pts] Show how to use 2-1 Muxes to build a 4-1 Mux. Draw the used 2-1 Muxes and the wiring, and mark the 4 inputs and 1 output for the resulting 4-1 Mux.

- 3. [10pts] Demonstrate by means of truth tables the validity of the following identities:
 - a. $\overline{A \cdot B \cdot C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$

A	В	C	$\overline{A \cdot B \cdot C}$	$\bar{A}\cdot \bar{B}\cdot \bar{C}$
0	0	0	1	1
0	0	1	1	0
0	1	0	1	0
1	0	0	1	0
0	1	1	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

False

b. $A + B \cdot C = (A + B) \cdot (A + C)$

A	В	С	$A + B \cdot C$	$(A+B)\cdot (A+C)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
1	0	0	1	1
0	1	1	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

True

- 4. [20pts] Prove the identity of each of the following Boolean equations, using algebraic manipulation:
 - a. $\bar{A} \cdot \bar{B} + \bar{A} \cdot B + A \cdot B = \bar{A} + B$ $\bar{A}(\bar{B} + B) + A \cdot B = \bar{A} + B$ - distributive (T3) $\bar{A}(1) + A \cdot B = \bar{A} + B$ - (T6) $(\bar{A} + A) \cdot B = \bar{A} + B$ - commutative (T1) $1 \cdot B = \bar{A} + B$ - (T6) B = B

b.
$$\bar{A} \cdot B + \bar{B} \cdot \bar{C} + A \cdot B + \bar{B} \cdot C = 1$$

 $\bar{A} \cdot B + A \cdot B + \bar{B} \cdot \bar{C} + \bar{B} \cdot C = 1$ rearrange
 $B(\bar{A} + A) + \bar{B}(\bar{C} + C) = 1$ distributive law (T3)
 $B(1) + \bar{B}(1) = 1$ - (T6)
 $B + \bar{B} = 1$ - (T6)
 $1 = 1$

5. [2pts] For the Boolean function O1 and O2, as given in the following truth table:

Inp	out		Output	
X	y	Z	01	O2
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

- a. List the minterms for a three-variable function with variables x, y, and z.
 - i. $\bar{x} \cdot \bar{y} \cdot \bar{z}$
 - ii. $\bar{x} \cdot \bar{y} \cdot z$
 - iii. $\bar{x} \cdot y \cdot \bar{z}$
 - iv. $\bar{x} \cdot y \cdot z$
 - v. $x \cdot \bar{y} \cdot \bar{z}$
 - vi. $x \cdot \overline{y} \cdot z$
 - vii. $x \cdot y \cdot \bar{z}$
 - viii. $x \cdot y \cdot z$
- b. Express O1 and O2 in sum-of-product algebraic form.

i. O1 =
$$(\bar{x} \cdot \bar{y} \cdot \bar{z}) + (\bar{x} \cdot \bar{y} \cdot z) + (\bar{x} \cdot y \cdot z) + (x \cdot \bar{y} \cdot z) + (x \cdot y \cdot \bar{z})$$

ii. O2 = $(\bar{x} \cdot y \cdot \bar{z}) + (x \cdot \bar{y} \cdot \bar{z}) + (x \cdot y \cdot z)$

6. [20] In class, we learned the implementation for a 4-bit carry lookahead adder. We can use the same idea and extend to build a 16-bit carry lookahead adder. Denote this implementation as a one-level carry lookahead adder.

In the textbook, Figure B.6.3 shows a two-level implementation of a 16-bit carry lookahead adder. This adder uses 4-bit carry lookahead adders at the lower level, and uses a carry lookahead unit at the higher level.

Compare these two implementations and provide your explanation why the two-level implementation could be preferred.

The two-level implementation is generally more efficient because it requires the signals which anticipate a carry to travel through fewer gates. The reason that this is important is because by definition, a CLA "looks ahead" to see if a carry will be occurring, and the sooner this can be confirmed/denied, the faster the operation of the adder will be.