4.5.2. Интерференция лазерного излучения

Балдин Виктор Группа Б01-303

Цель работы: исследовать зависимость видности интерфереционной картины от разности хода интерферирующих лучей и от их поляризации.

В работе используются: Не-Ne лазер, интерферометр Майкельсона с подвижным зеркалом, фотодиод с усилителем, осциллограф С1-76, поляроид, линейка.

Теория

Гелий-неоновый лазер

Лазер представляет собой интерферометр Фабри-Перо — газовую трубку с двумя параллельными зеркалами по обе стороны. В лазере длиной L для излучения вдоль оси для резонансных частот выполняется

$$f_m = \frac{c}{\lambda_m} = \frac{mc}{2L}. (1)$$

Условие генерации может выполняться для сразу нескольких колебаний с частостами f_m , разположенными в диапазоне генерации $2\Delta F$. В этом случае генерируется несколько волн – $mo\partial$ – межмодовое расстояние для которых

$$\Delta \nu = f_{m+1} - f_m = \frac{c}{2L}.\tag{2}$$

Число мод можно оценить как

$$N \approx 1 + \frac{2\Delta F}{\Delta \nu}.\tag{3}$$

Видимость

Видимость интерфереционной картины – параметр, определяемый формулой

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}},\tag{4}$$

где I_{max} , I_{min} — максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Разобьём его на произведение функций параметров установки

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$
.

Здесь γ_1 отвечает за соотношение интенсивности интерферирующих волн:

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{5}$$

где $\delta = \frac{B_m^2}{A_m^2}, \, A_m$ и B_m – амплитуды волн. Параметр δ определяется устройством разделения волн.

Функция γ_2 отвечает за влияние разности хода и спектрального состава волн,

$$\gamma_2 = \frac{\sum_{n} A_n^2 \cos \frac{2\pi \Delta \nu n l}{c}}{\sum_{n} A_n^2},$$

где l — разность хода, $\Delta \nu$ — спектральный состав излучения, A_n^2 — интенсивности мод. В непрерывном пределе получим

$$\gamma_2 = e^{-\left(\frac{\pi\Delta Fl}{c}\right)^2}$$

Рис. 1: Зависимость $\gamma_2 = \gamma_2(l)$.

— для гауссова линии излучения с полушириной ΔF получили гауссову зависимость $\gamma_2=\gamma_2(l)$ с полушириной

$$l_{1/2} = \frac{c}{\pi \Delta F} \sqrt{\ln 2} \approx \frac{0.26c}{\Delta F}.$$
 (6)

Последняя функция γ_3 отвечает за разность в поляризации. Если α – угол между плоскостями поляризаций волн, то

$$\gamma_3 = |\cos \alpha|. \tag{7}$$

Установка

Рис. 2: Схема установки.

В работе используется интерферометр Майкельсона (Рис. 2). Луч лазера, отражённый от зеркала З и прошедший через параллелепипед Френеля (ПФ), делится делительной призмой ДП на два луча. Первый проходит блок B_1 с поляроидом Π_1 и зеркалом B_1 , прикленным к пьезокерамике, которая может совершать малые колебания вдоль луча, с возможность изменения угла наклона зеркала. Второй проходит блок B_2 с линзой B_2 поляроидом B_2 и зеркалом B_2 в фокальной плоскости линзы, чтобы выходящий луч, в отличие от первого, был параллелен входящему. Оба луча, проходя ДП, попадают на

сферическое зеркало 3_3 и интерферируют на экране. Интенсивность света считывается фотодиодом на осциллограф через щель, параллельную интерфереционным полосам, в центре экрана. На экране осциллографа наблюдаются колебания с изменяющимся периодом, так как на пьезокерамику подаются напряжение, из-за чего её длина колеблется.

Рис. 3: Осциллограмма сигналов фотодиода.

По картине на экране осциллографа можно определить параметры видимости по следующим формулам:

$$\delta = \frac{h_1}{h_2},\tag{8}$$

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3},\tag{9}$$

Здесь 0 — уровень при отсутствии лучей, 1 и 2 — при закрытии одного из них. Используя δ , можно рассчитать γ_1 по формуле (5).

При условии одинаковой поляризации лучей ($\alpha = 0$),

$$\gamma_2 = \frac{\gamma}{\gamma_1}.\tag{10}$$

Если же разность хода отсутствует (l = 0), то

$$\gamma_3 = \frac{\gamma}{\gamma_1}.\tag{11}$$

Ход работы

Пронаблюдаем интерференционную картину на экране. Поставим дополнительный поляроид между лазером и $\Pi\Phi$, вращая его, наблюдаем, что поляризация линейная. Перенесём поляроид и поставим его на пути луча, выходящего из $\Pi\Phi$. Наблюдаем, что теперь у луча круговая поляризация. Установим минимальную чёткость интерфереционной картину вращением Π_1 . Внесём дополнительный поляроид на пути луча, идущего на экран, – интерфереционная картина вновь возникает из-за поляризованности света, так как после прохождения второго поляроида два луча будут иметь одну поляризацию, задаваемую поляроидом.

Исследуем зависимость видности интерфереционной картина от угла α между плоскостями поляризации интерферирущих лучей. В нашем случае α – угол поворота поляроида Π_1 . Результаты измерений представлены в Таблице 1. При подсчётах были использованы формулы (8), (5), (9) и (11). Погрешность измерения угла приборная $\sigma_{\alpha} = 1^{\circ}$, погрешность измерения всех h – половина цены деления $\sigma_{h_i} = 0.1$ дел. Для γ_3 погрешность вычисляется по формуле

$$\sigma_{\gamma_3} = \sqrt{\sum_{i=1}^4 \left(\frac{\partial \gamma_3}{\partial h_i}\right)^2 \sigma_{h_i}^2}.$$

Представим результаты на графике $\gamma_3 = \gamma_3(\cos \alpha)$ (Рис. 4), убеждаемся в верности теоретической зависимости (7). На графике для $\alpha = 0$ значение γ_3 было принято за 1, а все остальные γ_3 поделены на полученное для $\alpha = 0$, чтобы исключить влияние γ_2 на результат.

α	h_1 , дел	h_2 , дел	h_3 , дел	h_4 , дел	γ_3	σ_{γ_3}
0	2.6	1.8	0.6	3.8	0.74	0.18
10	2.8	1.5	0.6	3.7	0.76	0.18
20	3.0	1.6	0.8	3.9	0.69	0.18
30	3.0	1.5	0.9	3.6	0.64	0.18
40	2.4	1.4	0.8	3.0	0.60	0.17
50	2.0	1.4	0.8	2.6	0.54	0.16
60	1.2	1.4	0.8	1.8	0.39	0.15
70	0.6	1.2	0.8	1.3	0.25	0.15
80	1.1	3.1	3.8	4.8	0.13	0.16
90	1.0	3.0	3.6	4.2	0.09	0.16
100	1.2	3.0	3.0	4.2	0.18	0.16
110	1.7	2.7	1.2	2.0	0.26	0.15
120	2.6	2.8	1.5	2.8	0.30	0.15
130	3.4	2.8	1.7	3.4	0.33	0.15
140	3.2	2.8	1.4	3.4	0.42	0.15

Таблица 1: Результаты измерений для $\gamma_3 = \gamma_3(\alpha)$.

Теперь исследуем зависимость видимости интерфереционной картины от разности хода между лучами. Для этого будем перемещать блок B_2 вдоль направления распространения луча, координата блока x будет определять разность хода. Значения измерений представлены в Таблице 2, а так же на графике (Puc. 5).

На графике явно видны два максимума – на $x_1=14\pm 2$ см и на $x_2=76\pm 2$ см. Тогда $L=\frac{1}{2}(x_2-x_1)=31.0\pm 1.4$ см. Отсюда из формулы (2)

$$\Delta \nu = \frac{c}{2L} = (48 \pm 2) \cdot 10^7 \, \Gamma$$
ц.

Погрешность считается из соотношения $\varepsilon_{\Delta\nu}=\varepsilon_L$. Полуширина кривой из графика

$$l_{1/2} \approx 10 \pm 2 \text{ cm},$$

откуда по формуле (6)

$$\Delta F = rac{0.26c}{l_{1/2}} = (78 \pm 16) \cdot 10^7$$
 Гц.

Погрешность считается аналогично $\Delta \nu$. Тогда по формуле (3) число мод

$$N = 1 + \frac{2\Delta F}{\Delta \nu} = 4 \pm 1,$$

погрешность рассчитана по формуле

$$\sigma_N = \sqrt{\left(\frac{\partial N}{\partial \Delta F}\right)^2 \sigma_{\Delta F}^2 + \left(\frac{\partial N}{\partial \Delta \nu}\right)^2 \sigma_{\Delta \nu}^2}$$

с округлением до целых.

Выводы

Точки графика $\gamma_3(\cos^2\alpha)$ намного лучше ложатся на прямую, чем точки графика $\gamma_3(\cos\alpha)$. Это связано с хаотически меняющимся направлением линейной поляризации источника. Действительное значение расстояния между зеркалами составляет 65 см, что в два раза больше полученного нами. По рис. 3 можно предположить, что число мод равно 3.

Рис. 4: Зависимость $\gamma_3 = \gamma_3(\cos \alpha)$.

Рис. 5: Зависимость $\gamma_3 = \gamma_3(\cos^2 \alpha)$.

Рис. 6: Зависимость $\gamma_2 = \gamma_2(x)$.

x, cm	h_1 , дел	h_2 , дел	<i>h</i> ₃ , дел	h_4 , дел	γ_2
10	2.2	2.4	2.4	4.0	0.25
12	2.3	0.8	2.6	3.8	0.21
14	2.2	1.2	2.3	4.6	0.35
16	2.2	3.2	4.7	7.0	0.20
18	2.2	1.2	2.6	4.2	0.25
20	2.2	2.2	3.6	5.4	0.20
21	2.2	2.2	3.8	5.4	0.17
22	2.2	2.2	3.8	5.2	0.16
24	2.2	2.0	3.8	5.0	0.14
26	2.2	3.9	4.8	5.6	0.08
28	2.2	2.0	4.2	4.4	0.02
30	2.2	1.0	3.2	3.3	0.02
34	2.2	1.4	3.6	3.8	0.03
36	2.2	2.0	4.2	4.4	0.02
38	2.2	0.8	3.0	3.2	0.04
42	2.2	0.6	2.6	3.2	0.13
46	2.2	1.2	3.4	3.6	0.03
50	2.2	0.8	3.0	3.0	0.00
54	2.4	0.2	2.4	2.4	0.00
56	2.4	0.4	2.6	2.8	0.05
58	2.4	0.8	3.0	3.2	0.04
60	2.4	0.6	3.0	3.0	0.00
62	2.4	0.4	2.8	3.0	0.05
64	2.4	0.4	2.6	3.0	0.10
66	2.4	0.4	2.6	3.2	0.15
68	2.4	0.8	2.8	3.4	0.11
70	2.4	0.4	2.8	3.2	0.10
72	2.4	0.6	2.6	3.7	0.22
74	2.4	0.8	2.6	4.0	0.24
76	2.5	1.0	2.7	4.3	0.25
78	2.8	1.2	3.2	4.6	0.20
80	2.4	2.4	3.6	5.7	0.23
82	3.2	1.6	4.4	5.2	0.09
84	3.4	1.0	4.0	4.8	0.11
86	3.4	1.6	4.6	5.2	0.07
88	3.4	2.2	3.4	4.0	0.08

Таблица 2: Результаты измерений для $\gamma_2 = \gamma_2(x)$.