LEC1 Estadística Computacional 2015-1, UTFSM

Gonzalo Moya 201173016-k

Valparaíso, 15 de Noviembre del 2015

${\bf Contents}$

1	1 Introducción														3												
2	Des	Desarrollo															3										
	2.1	Pregunta 1																									3
	2.2	Pregunta 2																	 								3
	2.3	Pregunta 3																									3
	2.4	Pregunta 4																									3
	2.5	Pregunta 5																									6
	2.6	Pregunta 6																									6
	2.7	Pregunta 7																									6
	2.8	Pregunta 8																									6
3	Cor	nclusiones																									6

1 Introducción

Este infrome aborda distintos problemas de probabilidad basándose en la noción frecuentista de esta con el fin de analizar el cómo la simulación de experimentos nos permite relacionar la probabilidad empírica con la probabilidad teórica, demostrando como la primera converge a la segunda y por tanto probando que la simulación es un método correcto para estudiar probabilidades.

2 Desarrollo

2.1 Pregunta 1

El problema en cuestión es el famoso Monty Hall Problem para un caso particular de 5 puertas.

- a) El jugador en cuestión inicialmente tenía la probabilidad de $\frac{1}{5}$ de acertar a la puerta, una vez que el presentador abre una puerta y a su vez el participante decide cambiar de elección entonces las otras 3 puertas restantes tienen
- b)
- c)

2.2 Pregunta 2

?

2.3 Pregunta 3

?

2.4 Pregunta 4

a) Para responder a la pregunta se realizan distintos experimentos para n=100,500,1000,1500, A continuación se muestra el para $n=100.\,$ 0 1 2 3 4 5 6 7 0.03 0.10 0.32 0.60 0.88 0.98 0.99 1.00 p real [1] 0.01822838 0.10800994 0.30700341 0.56836796 0.79364860 0.92679954 0.98145105 [8] 0.99683271

Figure 1: P. Teórica para n=100

Figure 2: P. Empírica para n=100

Para n = 500

frec acum 0 1 2 3 4 5 6 7 8 0.024 0.116 0.304 0.552 0.756 0.934 0.984 0.992 1.000

 $\begin{bmatrix} 1 \end{bmatrix} \ 0.01822838 \ 0.10800994 \ 0.30700341 \ 0.56836796 \ 0.79364860 \ 0.92679954 \ 0.98145105 \ [8] \ 0.99683271 \ 0.99967373$

[1] 0.08569003

Figure 3: P. Teórica para n=500

Figure 4: P. Empírica para n=500

free acum 0 1 2 3 4 5 6 7 8 9 0.033 0.127 0.318 0.583 0.804 0.938 0.982 0.996 0.998 1.000 p real [1] 0.01822838 0.10800994 0.30700341 0.56836796 0.79364860 0.92679954 0.98145105 [8] 0.99683271 0.99967373 0.99998468 suma [1] 0.08401288

Figure 5: P. Teórica para n = 1000

Figure 6: P. Empírica para n=1000 $0.97800000\ 7\ 8\ 0.99600000\ 1.00000000\ p\ real\ [1]\ 0.01822838\ 0.10800994\ 0.30700341\ 0.56836796$ $0.79364860\ 0.92679954\ 0.98145105\ [8]\ 0.99683271\ 0.99967373\ \mathrm{suma}\ [1]\ 0.03022055$

Figure 7: P. Teórica para n = 1500Figure 8: P. Empírica para n = 1500 $0.99967\ 1.00000\ p\ real\ [1]\ 0.01822838\ 0.10800994\ 0.30700341\ 0.56836796\ 0.79364860\ 0.92679954$ $0.98145105 \ [8] \ 0.99683271 \ 0.99967373 \ 0.99998468 \ \mathrm{suma} \ [1] \ 0.008844152$

Figure 9: P. Teórica para n=100000

Figure 10: P. Empírica para n = 100000

b) Finalmente para un n=100000 se encuentra una convergencia menor a 0.01, para el caso puntual es de 0.008844152.

2.5 Pregunta 5

Al ser cauchy una distribución continua se tomarán valores por intervalos a los cuales se calculará la probabilidad empírica y teórica respectivamente para distintos n pedidos.

a) Luego de varias muestras para obtenidas de la distribución, se grafica los errores desde el menor n hasta el mayor, el como disminuye este error hasta llegara 0 (o casi 0) permite apreciar la convergencia de la probabilidad empírica hacia la teórica con pruebas de ello, mostrando que la gran cantidad de experimentos logra representar el fenómeno a estudiar.

Figure 11: Boxplot de error a medida que se aumenta el tamaño de la muestra

- 2.6 Pregunta 6
- 2.7 Pregunta 7
- 2.8 Pregunta 8
- 3 Conclusiones