1. As it is shown in Figure 1, the radiation source is moving right towards the observer. If the source is not in line with the observer, and its velocity \mathbf{V} forms an angle θ with the observer, we can illustrate it by Figure 2.

 $\frac{1}{\theta}$

Figure 1

Figure 2

a) Shown as follows, Point A and point B are where the first two emissions take

Figure 3

place, respectively. The observer is at Point O. Then in S, it takes the source T to travel from A to B. Then the distance $|\mathbf{A}\mathbf{B}| = vT$. Suppose that $|\mathbf{A}\mathbf{O}| = x$, $|\mathbf{B}\mathbf{O}| = x + \Delta x$, then the relation between the arrival of the first two pulses in S should be $\Delta x = |\mathbf{B}\mathbf{O}| - |\mathbf{A}\mathbf{O}| = \sqrt{|\mathbf{A}\mathbf{O}|^2 + |\mathbf{A}\mathbf{B}|^2 - 2|\mathbf{A}\mathbf{O}||\mathbf{A}\mathbf{B}|\cos\theta_0} - |\mathbf{A}\mathbf{O}| = \frac{VT(VT - 2x\cos\theta_0)}{\sqrt{x^2 + (VT)^2 - 2xVT\cos\theta_0} + x}$. If T is such a short time that s

 $VT \ll x$, then $\Delta x = -VT \cos \theta_0 = -V_{r0}T$.

- b) The time observed in S would last longer, so $T = \frac{T_0}{\sqrt{1-\beta^2}}, \beta = V/c$.
- c) The wavelength observed in S should be compressed for the shifting of the source, that is $\lambda = cT V\cos\theta T = (c V_r)T$ (Figure 3). Then $v = \frac{c}{\lambda} = \frac{c}{c V\cos\theta} \cdot \frac{\sqrt{1 \beta^2}}{T_0}$

$$\frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta}v_0, = \frac{v}{v_0} = \frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta}.$$

d) From above, we could easily conclude that if $V_t = 0, V_r = V$, then $V = \frac{c}{\lambda} = \frac{c}{c - V_r}$.

$$\frac{\sqrt{1-\beta^2}}{T_0} = \frac{c}{c-V} \cdot \frac{\sqrt{1-\beta^2}}{T_0} = \sqrt{\frac{1+\beta}{1-\beta}} v_0.$$

- e) Similarly, if $V_t = V_t, V_r = 0$, then $v = \frac{c}{\lambda} = \frac{c}{c V_r} \cdot \frac{\sqrt{1 \beta^2}}{T_0} = \frac{c}{c 0} \cdot \frac{\sqrt{1 \beta^2}}{T_0} = \sqrt{1 \beta^2} v_0$.
- 2. Under the Lorentz transformation, $\begin{cases} x = \gamma(x' + \beta ct') \\ t = \gamma(\beta x' / c + t') \end{cases}, \beta = v / c, \gamma = 1 / \sqrt{1 \beta^2}.$

In that case,
$$\frac{\partial}{\partial x'} = \frac{\partial}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial}{\partial t} \frac{\partial t}{\partial x'} = \gamma \left(\frac{\partial}{\partial x} + \frac{\beta}{c} \frac{\partial}{\partial t} \right),$$

$$\frac{\partial^2}{\partial x'^2} = \frac{\partial}{\partial x'} \left(\frac{\partial}{\partial x'} \right) = \gamma \frac{\partial}{\partial x'} \left(\frac{\partial}{\partial x} + \frac{\beta}{c} \frac{\partial}{\partial t} \right) = \gamma^2 \left(\frac{\partial}{\partial x} + \frac{\beta}{c} \frac{\partial}{\partial t} \right)^2 = \gamma^2 \left(\frac{\partial^2}{\partial x^2} + 2 \frac{\beta}{c} \frac{\partial}{\partial x \partial t} + \frac{\beta^2}{c^2} \frac{\partial^2}{\partial t^2} \right).$$
Similarly, $\frac{\partial^2}{\partial t'^2} = \gamma^2 \left(\frac{\partial^2}{\partial t'^2} + 2 \beta c \frac{\partial}{\partial x \partial t} + \beta^2 c^2 \frac{\partial^2}{\partial x^2} \right).$
Therefore, $\frac{\partial^2}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t'^2} = \gamma^2 (1 - \beta^2) \left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) = \frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}.$
It is obvious that $\left(\frac{\partial^2}{\partial x'^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t'^2} \right) \cdot \Psi'(x, t) = \left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \cdot \Psi(x, t) = 0.$

3. The matrix of moduli of Lorentz transformation
$$a^{ik} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

Then under the Lorentz transformation, a second-order four-tensor A^{ij} should satisfy this equation: $A^{\prime ij} = a^{ik}a^{jl}A^{kl}$.

Or we could use another method to do the transformation—by regarding A^{ij} as a product of two four-vectors : $A^{ij} \sim B^i C^j$ (not saying that A^{ij} is actually equal to $B^i C^j$).

In that case, $A'^{ij} \sim B'^i C'^j$, where

b
$$B'^0 = \gamma(B^0 - \beta B^1), B'^1 = \gamma(B^1 - \beta B^0), C'^0 = \gamma(C^0 - \beta C^1), C'^1 = \gamma(C^1 - \beta C^0).$$

Then if A^{ij} is symmetric, we have

$$A'^{00} \sim B'^{0}C'^{0} = \gamma^{2}(B^{0} - \beta B^{1})(C^{0} - \beta C^{1}) = \gamma^{2}(B^{0}C^{0} + \beta^{2}B^{1}C^{1} - \beta B^{0}C^{1} - \beta B^{1}C^{0}),$$

$$A'^{00} = \gamma^{2}(A^{00} + \beta^{2}A^{11} - \beta A^{01} - \beta A^{10}) = \gamma^{2}(A^{00} + \beta^{2}A^{11} - 2\beta A^{01}).$$

Likewise, we can derive from $A'^{ij} = a^{ik}a^{jl}A^{kl}$ the other components of A'^{ij} . And it would be the same case when A^{ij} is anti-symmetric. (For instance, $A'^{00} = \gamma^2 \cdot (A^{00} + \beta^2 A^{11} - \beta A^{01} - \beta A^{10}) = \gamma^2 (0 + 0 - \beta A^{01} + \beta A^{01}) = 0$)

4. The momentum four-vector of a free particle is $p^2 = (\frac{E}{c}, \mathbf{p}) = (\frac{E}{c}, p_x, p_y, p_z)$. From the general formulas for transformation of four-vectors, we immediately have the transformation of momentum and energy from one inertial system to another:

$$p_{x} = \gamma(p'_{x} + \beta E'/c), p_{y} = p'_{y}, p_{z} = p'_{z}, E = \gamma(E' + \beta c p'_{x}).$$
5.
$$\left(\frac{\partial}{\partial x^{i}}\right)^{2} = g_{\mu\nu} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x^{\nu}}^{2} = \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} - \frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}} - \frac{\partial^{2}}{\partial z^{2}} = \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} - \nabla^{2}.$$

6. The matrix of moduli of Lorentz transformation
$$a^{ik} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Then under the Lorentz transformation, T^{ij} should satisfy this equation: $T'^{ij} = a^{ik}a^{jl}T^{kl}.$ Therefore, $T'^{00} = \gamma^2(T^{00} + \beta^2T^{11} - \beta T^{01} - \beta T^{10}) = \gamma^2(T^{00} + \beta^2T^{11} - 2\beta T^{01}).$

For instance, if the energy-momentum tensor for the given portion of the body (in the reference system in which it is at rest) has the form:

$$T^{ik} = \left(\begin{array}{cccc} \varepsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{array} \right),$$

where ε is the energy density and p (equally transmitted in all directions) the pressure applied to the body, then the expressions for T'^{00} (the energy density W) is $T'^{00} = \gamma^2 (\varepsilon + \beta^2 p)$.

7.

a)
$$M^{\alpha\beta\gamma} = x^{\alpha}T^{\beta\gamma} - x^{\beta}T^{\alpha\gamma} = -(x^{\beta}T^{\alpha\gamma} - x^{\alpha}T^{\beta\gamma}) = -M^{\beta\alpha\gamma}$$
.

b) Noting that $\frac{\partial x^{\alpha}}{\partial x^{\gamma}} = \delta_{\gamma}^{\alpha}$ and, we could then find:

$$\frac{\partial}{\partial x^{\gamma}} (M^{\alpha\beta\gamma}) = \delta_{\gamma}^{\alpha} T^{\beta\gamma} - \delta_{\gamma}^{\beta} T^{\alpha\gamma} = T^{\beta\alpha} - T^{\alpha\beta} = 0.$$

c) Generally, if

$$\mathbf{A} = A^{\alpha\beta} \mathbf{e}_{\alpha} \mathbf{e}_{\beta}, \nabla = \mathbf{e}_{\alpha} \frac{\partial}{\partial x^{\alpha}} (\alpha, \beta = 0, 1, 2, 3) ; \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta} = \delta_{\alpha\beta} = \begin{cases} 1, \alpha = \beta \\ 0, \alpha \neq \beta \end{cases} (\alpha, \beta = 0, 1, 2, 3),$$

then

$$\nabla \cdot \mathbf{A} = \left(\mathbf{e}^{i} \frac{\partial}{\partial x^{i}}\right) \cdot \left(A^{\alpha\beta} \mathbf{e}_{\alpha} \mathbf{e}_{\beta}\right) = \frac{\partial A^{\alpha\beta}}{\partial x^{i}} \left(\mathbf{e}_{i} \cdot \mathbf{e}_{\alpha}\right) \mathbf{e}_{\beta} = \frac{\partial A^{i\beta}}{\partial x^{i}} \mathbf{e}_{\beta}.$$

Therefore,

$$\nabla \cdot M^{\alpha\beta\gamma} = \left(\mathbf{e}_{i} \frac{\partial}{\partial x^{i}}\right) \cdot \left(x^{\alpha} T^{\beta\gamma} \mathbf{e}_{\beta} \mathbf{e}_{\gamma} - x^{\beta} T^{\alpha\gamma} \mathbf{e}_{\alpha} \mathbf{e}_{\gamma}\right)$$

$$= \frac{\partial \left(x^{\alpha} T^{i\gamma}\right)}{\partial x^{i}} \mathbf{e}_{\gamma} - \frac{\partial \left(x^{\beta} T^{i\gamma}\right)}{\partial x^{i}} \mathbf{e}_{\gamma} = \left(\frac{\partial x^{\alpha}}{\partial x^{i}} - \frac{\partial x^{\beta}}{\partial x^{i}}\right) T^{i\gamma} \mathbf{e}_{\gamma}$$

$$= \left(\delta_{i}^{\alpha} - \delta_{i}^{\beta}\right) T^{i\gamma} \mathbf{e}_{\gamma} = \left(T^{\alpha\gamma} - T^{\beta\gamma}\right) \mathbf{e}_{\gamma}.$$

That is,

$$\nabla \cdot M^{\alpha\beta\gamma} = \left(T^{\alpha\gamma} - T^{\beta\gamma}\right) \mathbf{e}_{\gamma},$$

$$L^{\alpha\beta} = \int_{V} \left(T^{\alpha\gamma} - T^{\beta\gamma}\right) \mathbf{e}_{\gamma} dV(\alpha, \beta, \gamma, i = 0, 1, 2, 3; dV = dx^{1} dx^{2} dx^{3}).$$

From the Gauss theorem, we first obtain $\oint \nabla \cdot M^{\alpha\beta\gamma} dS_{\gamma} = \int_{Spacetime} \frac{\partial M^{\alpha\beta\gamma}}{\partial x^{\gamma}} d\Omega = 0$.

Now we take S consisting of any two space-like surfaces, S_1 and S_2 , whose connection point is the zero. Then $\oint \nabla \cdot M^{\alpha\beta\gamma} dS_{\gamma} = \int_{S_2} \nabla \cdot M^{\alpha\beta\gamma} dS_{\gamma} - \int_{S_1} \nabla \cdot M^{\alpha\beta\gamma} dS_{\gamma} = 0$.

Hence, $\int_{S} \nabla \cdot M^{\alpha\beta\gamma} dS_{\gamma}$ is independent of the space-like surface S. For example, by choosing the hyper-surface $x^{0} = 0$, we have $L^{\alpha\beta} = \int_{S} \nabla \cdot M^{\alpha\beta0} dS_{0} = \int_{V} \nabla \cdot M^{\alpha\beta0} dV = const.$

d) The antisymmetric second-order tensor $L^{\alpha\beta}$ has only six independent nonzero components. Each component of $L^{\alpha\beta}$ is a energy four-vector.