На правах рукописи

Хабибуллин Ринат

Руководство пользователя Unifloc 7 VBA

вер 0.4

Проект: ТеХ

Оглавление

			C	Стр.
Введен	ие			7
Глава 1	. Макј	росы VBA для проведения расчётов		8
1.1	Запуск	«VBA		9
1.2	Ключе	евые особенности VBA и соглашения, используемые в		
	макрос	cax		9
1.3	Обозна	ачение параметров	•	10
Глава 2	а. Фунг	кции модуля «u7_Excel_functions»		11
2.1	Расчёт	физико-химических свойств флюидов (PVT)		11
	2.1.1	Обозначения PVT параметров		11
	2.1.2	Стандартные условия		13
	2.1.3	PVT_Pb_atma – давление насыщения		14
	2.1.4	PVT_Rs_m3m3 – газосодержание		16
	2.1.5	PVT_Bo_m3m3 – объёмный коэффициент нефти		20
	2.1.6	PVT_Bg_m3m3 – объёмный коэффициент газа		22
	2.1.7	PVT_Bw_m3m3 – объёмный коэффициент воды		24
	2.1.8	PVT_Muo_cP – вязкость нефти		26
	2.1.9	PVT_Mug_cP – вязкость газа		29
	2.1.10	PVT_Muw_cP – вязкость воды		31
	2.1.11	PVT_Rhoo_kgm3 – плотность нефти		33
	2.1.12	PVT_Rhog_kgm3 – плотность газа	•	34
	2.1.13	PVT_Rhow_kgm3 – плотность воды	•	36
	2.1.14	PVT_Z – коэффициент сверхсжимаемости газа		38
2.2	Расчёт	свойств потока		40
	2.2.1	MF_Qmix_m3day – расход газожидкостной смеси		40
	2.2.2	MF_Rhomix_kgm3 – плотность газожидкостной смеси		41
	2.2.3	MF_GasFraction_d – доля газа в потоке		41
	2.2.4	MF_PGasFraction_atma – целевое давления для заданной		
		доли газа в потоке		42

			Стр.	
	2.2.5	MF_RpGasFraction_m3m3 – целевой газовый фактор для		
		заданной доли газа в потоке	43	
2.3	Сепарация газа в скважине			
	2.3.1	MF_SeparNat_d – естественная сепарация газа	44	
	2.3.2	MF_SeparTotal_d – естественная сепарация газа	44	
2.4	Расчёт	многофазного потока в штуцере	45	
	2.4.1	Модель потока через штуцер	45	
	2.4.2	MF_PChoke_atm – Расчет давления на входе и на выходе		
		штуцера	45	
	2.4.3	MF_dPChoke_atm – Расчёт перепада давления в штуцере	46	
	2.4.4	MF_QChoke_m3day – функция расчёта дебита жидкости		
		через штуцер	48	
2.5	Расчет	многофазного потока в трубе	49	
	2.5.1	MF_dPpipe_atma – расчёт перепада давления в трубе	49	
2.6	Расчет	многофазного потока в пласте	51	
	2.6.1	IPR_PI_sm3dayatm – расчёт продуктивности	52	
	2.6.2	IPR_Pwf_atm – расчёт дебита по давлению и продуктивности	53	
	2.6.3	IPR_Q1_sm3Day – расчёт дебита по давлению и		
		продуктивности	54	
Глава 3.	. Функ	сции модуля «u7 Excel functions ESP»	55	
3.1	Гидрав	влический расчет центробежного насоса (ЦН)	56	
3.2	Электр	омеханический расчёт погружного электрического		
		еля ПЭД	56	
	3.2.1	Устройство трёхфазной асинхронной машины		
Глава 4	. Функ	сции модуля «tr_mdlTecRegimes»	60	
4.1	Технол	погический режим добывающих скважин	60	
	4.1.1	tr_Pwf_calc_atma – расчёт забойного давления по		
		динамическому уровню	61	
	4.1.2	tr_Pwf_calc_Pin_atma – расчёт забойного давления по		
		давлению на приеме	61	
	4.1.3	tr_Ppump_calc_atma – расчёт давления на приеме по		
		динамическому уровню	62	

			∠Tp.
	4.1.4	tr_Potential_Pwf_atma – расчёт целевого забойного	
		давления по доле газа	62
	4.1.5	tr_BB_Pwf_atma – расчёт забойного давления	
		фонтанирующей скважины по буферному давлению	62
	4.1.6	tr_BB_Pwf_Pin_atma – расчёт забойного давления по	
		давлению на приеме по корреляции Беггса-Брилла	63
Единиц	ы изм	мерений	65
Список	сокр	ащений и условных обозначений	66
C			(7
Словарі	ь тер	минов	0/
Прилож	сение	А. Автоматически сгенерированное описание	69
A.1	ESP	_decode_string	70
A.2		dP atm	
A.3	_	eff fr	
A.4	_	encode string	
A.5	ESP	head_m	73
A.6		IDbyRate	
A.7	ESP_	_maxRate_m3day	74
A.8	ESP_	_name	75
A.9	ESP_	_optRate_m3day	75
A.10	ESP_	_Power_W	75
A.11	ESP_	_system_calc	76
A.12	IPR_	_PI_sm3dayatm	77
A.13	IPR_	_Pwf_atma	77
A.14	IPR_	_Qliq_sm3Day	78
A.15	IPR_	_Q1_sm3Day	78
A.16	MF_	cfChoke_atma	79
A.17	MF_	CJT_Katm	79
A.18	MF_	dPChoke_atm	80
A.19	MF_	dPpipe_atm	81
A.20	MF_	GasFraction_d	82
A.21	MF_	Mumix_cP	83

Стр.
A.22 MF_PChoke_atm
A.23 MF_PChoke_atma
A.24 MF_PGasFraction_atma
A.25 MF_PpipeZLNF_atma
A.26 MF_Ppipe_atma
A.27 MF_PrGrad_atmm
A.28 MF_QChoke_m3day
A.29 MF_QliqChoke_sm3day
A.30 MF_Qmix_m3day
A.31 MF_Rhomix_kgm3
A.32 MF_RpGasFraction_m3m3
A.33 MF_SeparNat_d
A.34 MF_SeparTotal_d
A.35 nodal_Qliq_scm3day
A.36 PVT_Bg_m3m3
A.37 PVT_Bo_m3m3
A.38 PVT_Bw_m3m3
A.39 PVT_decode_string
A.40 PVT_encode_string
A.41 PVT_Mug_cP
A.42 PVT_Muo_cP
A.43 PVT_Muw_cP
A.44 PVT_Pb_atma
A.45 PVT_Rhog_kgm3
A.46 PVT_Rhoo_kgm3
A.47 PVT_Rhow_kgm3
A.48 PVT_Rs_m3m3
A.49 PVT_Sal_ppm
A.50 PVT_STliqgas_Nm
A.51 PVT_SToilgas_Nm
A.52 PVT_STwatgas_Nm
A.53 PVT_Z
A.54 readRange

	тр.
A.55 WellGL_decode_string	124
A.56 WellGL_encode_string	124
A.57 well_calcKdegr_fr	125
A.58 well_decode_string	126
A.59 well_encode_string	127
A.60 well_Pintake_Pwf_atma	128
A.61 well_Plin_Pwf_atma	129
A.62 well_Pwf_Hdyn_atma	130
A.63 well Pwf Plin atma	131

Введение

Документ описывает расчётный модуль Unifloc 7.7 VBA реализованный в Excel VBA. Модуль предназначен для изучения математических моделей систем нефтедобычи и развития навыков проведения инженерных расчётов.

Расчётный модуль охватывают основные элементы математических моделей систем нефтедобычи - модель физико-химических свойств пластовых флюидов, модели многофазного потока в трубах, в пласте, задачи узлового анализа, модели скважинного оборудования в частности УЭЦН.

Для использования Unifloc 7.7 VBA требуются навыки уверенного пользователя MS Excel, желательно знание основ программирования и основ теории добычи нефти.

Алгоритмы реализованные в расчётном модуле не претендуют на полноту и достоверность и ориентированы на учебные задачи и проведение простых расчётов. Руководство пользователя также не претендует на полноту описания системы (часто получается, что описание отстаёт от текущего состояния Unifloc 7.7 VBA). Все приводится как есть. Более надёжным способом получения достоверной информации о работе макросов Unifloc 7.7 VBA является изучение непосредственно расчётного кода в редакторе VBE.

По всем вопросам можно обращаться к автору расчётных модулей - Хабибуллину Ринату Альфредовичу (khabibullin.ra@gubkin.ru)

Глава 1. Макросы VBA для проведения расчётов

Расчёты с использованием Unifloc 7.7 VBA выполняются с использованием макросов написанных на языке программирования Visual Basic for Application (VBA) в среде Excel.

Для использования макросов не требуется программировать, достаточно уметь вызывать необходимые макросы из Excel. Тем не менее макросы Unifloc 7.7 VBA могут быть использованы для написания собственных подпрограмм или модифицированы для достижения необходимых целей. Владение навыками программирования и изучения исходного кода макросов может оказаться чрезвычайно полезным.

Исходный код расчётных модулей находится в отдельном файле - надстройке Excel файле с расширением.xlam. Для использования макросов данная надстройка должна быть установлена на компьютере, на котором проводятся расчёты. Подробное описание процедуры установки надстройки можно найти на сайте microsoft по ключевым словам "добавление и удаление надстроек в Excel".

Для активации надстройки

- 1. На вкладке Файл выберите команду Параметры, а затем категорию Надстройки.
- 2. В поле Управление выберите пункт Надстройки Excel, а затем нажмите кнопку Перейти. Откроется диалоговое окно Надстройки.
- 3. Чтобы установить и активировать надстройку Унифлок 7.1, нажмите кнопку Обзор (в диалоговом окне Надстройки), найдите надстройку, а затем нажмите кнопку ОК.
- 4. Надстройка появится в списке надстроек. Галочка активации надстройки должна быть установлена

После установки и активации надстройки, встроенными в нее макросами можно будет пользоваться в любой книге Excel на данным компьюетере. При переносе расчётный файлов на другой комппьютер для сохранения их работоспособности должна быть передана и установлена и надстройка.

В некоторых случаях может быть удобен альтернативный способ работы с надстройкой, не требующий ее установки на компьютере. Это бывает удобно, когда версия настройки часто меняется. Для этого необходимо открыть файл надстройки непосредственно в Excel, например двойным щелчком по файлу над-

стройки в проводнике. При этом Excel откроется, но никаких документов в нем не появится. Но сама надстройка будет загружена и готова к использованию любым файлом открытом в этой копии Excel. Следует обратить внимание, что при таком варианте работы с надстройкой при переносе сохраненных файлом между компьютерами при открытии файла может возникать запрос, что связанный файл надстройки не найден на новом компьютере. В этом случае в окне запроса следует выбрать кнопку изменить и указать правильное положение файла надстройки.

1.1 Запуск VBA

Чтобы получить доступ к макросам в текущей версии расчётного модуля для выполнения упражнений необходимо:

- Запустить Excel запустив рабочую книгу для выполнения упражнений
- Нажать комбинацию клавиш <Alt-F11>
- Откроется новое окно с редактором макросов VBA (Рис. 1.1). Иногда в литературе окно редактирования макросов обозначают как VBE (Visual Basic Environment)
- Окне VBE можно изучить структуру проекта (набора макросов и других элементов). Раздел со структурой проекта можно открыть из меню <Вид
 Обозреватель проекта>. Макросы располагаются в ветках «модули» и «модули классов»

1.2 Ключевые особенности VBA и соглашения, используемые в макросах

Строки, начинающиеся со знака 'являются комментариями. В VBE они выделяются зелёным цветом. На исполнение макроса не влияют.

Для многих макросов не обязательно задавать все параметры. Некоторые значения параметров могут не задаваться — тогда будут использованы значения параметров, принятые по умолчанию. Параметры, допускающие задание по умолчанию помечены в исходном коде ключевым словом Optional.

Рис. 1.1 — Окно редактора VBE

1.3 Обозначение параметров

При создании макросов в основном использовались международные обозначения переменных принятые в монографиях общества инженеров нефтяников SPE.

Глава 2. Функции модуля «u7_Excel_functions»

2.1 Расчёт физико-химических свойств флюидов (PVT)

Для расчёта физико-химических свойств пластовых флюидов используется модель нелетучей нефти. Для всех функций, реализующих расчёт с учётом PVT свойств необходимо задавать одинаковый полный набор параметров, описывающих нефть, газ и воду. При этом для некоторых частных функций не все параметры будут влиять на результат расчёта, тем не менее эти параметры необходимо задавать. Это сделано для унификации методик расчёта — при любом вызове функции проводится расчёт всех свойств модели нелетучей нефти, но возвращаются только необходимые данные. Это обстоятельности может замедлить расчёты с использованием функций Excel.

2.1.1 Обозначения PVT параметров

Типовой набор параметров приведён ниже:

- $-\gamma_g$ gamma_gas удельная плотность газа, по воздуху. Стандартное обозначение переменной gamma_gas. Безразмерная величина. Следует обратить внимание, что удельная плотность газа по воздуху не совпадает с плотностью воздуха в г/см3, поскольку плотность воздуха при стандартных условиях Const const_rho_air = 1.205 при температуре 20 °C и давлении 101325 Па для сухого воздуха. По умолчанию задается значение const gg default = 0.6
- $-\gamma_o$ gamma_oil удельная плотность нефти, по воде. Стандартное обозначение переменной gamma_oil. Безразмерная величина, но по значению совпадает с плотность в г/см3. По умолчанию задаётся значение const_go_default = 0.86
- $-\gamma_w$ gamma_wat- удельная плотность воды, по воде. Стандартное обозначение переменной gamma_wat. Безразмерная величина, но по значению совпадает с плотность в г/см3. По умолчанию задаётся значение

- const_gw_default = 1 Плотность воды может отличаться от задаваемой по умолчанию, например для воды с большой минерализацией.
- R_{sb} газосодержание при давлении насыщения, м3/м3. Стандартное обозначение в коде Rsb_m3m3. Значение по умолчанию const_Rsb_default = 100
- *R*_p- замерной газовый фактор, м3/м3. Стандартное обозначение в коде Rp_m3m3. Калибровочный параметр. По умолчанию используется значение равное газосодержанию при давлении насыщения. Если задаётся значение меньшее чем газосодержание при давлении насыщения, то последнее принимается равным газовому фактору (приоритет у газового фактора, потому что как правило это замерное значение в отличии от газосодержания определяемого по результатам лабораторных исследований проб нефти).
- Р_b давление насыщения, атм. Стандартное обозначение в коде Pb_atm.
 Калибровочный параметр. По умолчанию не задаётся, рассчитывается по корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра. При задании давления насыщения обязательно должна быть задана температура пласта температура при которой было определено давление насыщения.
- T_{res} пластовая температура, °C. Стандартное обозначение в коде Tres_C. Учитывается при расчёте давления насыщения. По умолчанию принято значение 90 °C.
- B_{ob} объёмный коэффициент нефти, м3/м3. Стандартное обозначение в коде Вор_m3m3. Калибровочный параметр. По умолчанию рассчитывается по корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра.
- μ_{ob} вязкость нефти при давлении насыщения, сП. Стандартное обозначение Muob_сР. Калибровочный параметр. По умолчанию рассчитывается по корреляции. Если задан, то все расчёты по корреляциям корректируются с учётом заданного параметра.
- PVTcorr номер набора PVT корреляций используемых для расчёта.
 - StandingBased = 0 на основе корреляции Стендинга
 - McCainBased = 1 на основе корреляции Маккейна
 - StraigthLine = 2 на основе упрощённых зависимостей

- PVTstr закодированная строка с параметрами PVT. Если задана перекрывает другие значения. Позволяет задать PVT параметры ссылкой всего на одну ячейку в Excel. Введена для удобства использования функций с большим числом параметров из Excel. Может быть сгенерирована вызовом функции PVT Encode string.
- $-K_s$ коэффициент сепарации газа. Определяет изменение свойств флюида после отделения части газа из потока в результате сепарации при определённых давлении и температуре. По умолчанию предполагается, что сепарации нет K_s =0. Для корректного задания свойств флюида после сепарации части газа необходимо также задать параметры P_{ksep} , T_{ksep}
- $-P_{ksep}$ Давление при которой произошла сепарация части газа. Необходимо для расчёта свойств флюида с учётом сепарации.
- T_{ksep} Температура при которой произошла сепарация части газа. Необходимо для расчёта свойств флюида с учётом сепарации.

2.1.2 Стандартные условия

Многие параметры нефти, газа и воды существенно зависят от давления и температуры. Например объем занимаемый определённым количеством газа примерно в два раза снизится при повышении давления в два раза.

Поэтому для удобства фиксации и сравнения параметров они часто приводятся к стандартным или нормальным условиям - определённым давлениям и температуре.

Принятые в разных дисциплинах и разных организациях точные значения давления и температуры в стандартных условиях могут различаться (смотри например https://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure), поэтому указание значений физических величин без уточнения условий, в которых они приводятся, может приводить к ошибкам. Наряду с термином «стандартные условия» применяется термин «нормальные условия». «Нормальные условия» обычно отличаются от «стандартных» тем, что под нормальным давлением принимается давление равное 101 325 Па = 1 атм = 760 мм рт. ст.

Обычно в монографиях SPE принято, что стандартное давление для газов, жидкостей и твёрдых тел, равное 10^5 Па (100 кПа, 1 бар); стандартная температура для газов, равная 15.6 °C соответствующая 60 °F.

В Российском ГОСТ 2939-63 принято, что стандартное давление для газов, жидкостей и твёрдых тел, равное $10:13^5$ Па (101325 Па, 1 атм); стандартная температура для газов, равная 20 °C соответствующая 68 °F.

В Unifloc 7.7 VBA приняты следующие значения стандартных условий

```
Public Const const_Psc_atma As Double = 1
Public Const const_Tsc_C = 20
Public Const const_convert_atma_Pa = 101325
```

Листинг 1: Принятые параметры стандартных условий в расчетах

2.1.3 PVT_Pb_atma – давление насыщения

Функция рассчитывает давление насыщения по известным данным газосодержания при давлении насыщения, γ_g ; γ_o ; T_r .

При проведении расчётов с использованием значения давления насыщения, следует помнить, что давление насыщения является функцией температуры. В частности при калибровки результатов расчётов на известное значение давления насыщения P_b следует указывать значение пластовой температуры T_r при котором давление насыщения было получено.

В наборе корреляций на основе корреляции Стендинга расчет давления насыщения проводится по корреляции Стендинга [Yukos PVT 2002]

```
Optional ByVal muob cP = -1,
       Optional ByVal PVTcorr = StandingBased,
       Optional ByVal ksep fr = 0,
       Optional ByVal pksep_atma = -1, _
       Optional ByVal tksep C = -1,
       Optional ByVal PVTstr As String = ""
       ) As Double
' обязательные аргументы функции
' P_atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
   const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
```

```
' результат - число - давление насыщения.
```

Пример расчёта с использованием функции PVT_Pb_atma для различных наборов PVT корреляций приведён на рисунке ниже. Видно, что результаты расчетов по различным корреляциях дают качественно схожие результаты, но не совпадают друг с другом. Отличия, по всей видимости, обусловленные применением различных наборов исходных данных использовавшихся авторами. Поэтому при проведении расчетов для конкретного месторождения актуальной является задача выбора адекватного набора корреляций. Макросы Unifloc 7.7 VBA позволяют провести расчет с использованием различных подходов, но при этом выбор корреляции остается за пользователем.

При проведении расчётов с использованием набора корреляций на основе корреляций МакКейна следует учитывать, что они работают только для температур более 18 градусов Цельсия. При более низких значениях температуры расчёт будет проводиться для 18 градусов Цельсия.

2.1.4 PVT_Rs_m3m3 – газосодержание

Газосодержание это отношения объёма газа растворенного в нефти к объёму нефти приведённые к стандартным условиям.

$$R_s = \frac{(V_g)_{sc}}{(V_o)_{sc}}$$

Газосодержание является одним из ключевых свойств нефти при расчётах производительности скважин и работы скважинного оборудования. Динамика изменения газосодержания во многом определяет количество свободного газа в потоке и должна учитываться при проведении расчётов.

При задании PVT свойств нефти часто используют значение газосодержания при давлении насыщения r_{sb} - определяющее объем газа растворенного в нефти в пластовых условиях. В модели флюида Unifloc 7.7 VBA газосодержание при давлении насыщения является исходным параметров нефти и должно быть обязательно задано.

Следует отличать газосодержание в нефти при давлении насыщения $R_s b$ и газовый фактор R_p .

$$R_p = \frac{(Q_g)_{sc}}{(Q_o)_{sc}}$$

Газовый фактор R_p в отличии от газосодержания R_{sb} является, вообще говоря, параметром скважины - показывает отношение объёма добытого газа из скважины к объёму добытой нефти приведённые к стандартным условиям. Газосодержание же является свойством нефти - показывает сколько газа растворено в нефти. Если газ добываемой из скважины это газ который выделился из нефти в процессе подъёма, что характерно для недонасыщенных нефтей, то значения газового фактора и газосодержания будут совпадать. Если газ поступает в скважину не непосредственно из добываемой нефти, а например фильтруется из газовой шапки или поступает через негерметичность ствола скважины - то в такой скважине газовый фактор может значительно превышать значение газосодержания. Такая ситуация может быть смоделирована в Unifloc 7.7 VBA . Для этого необходимо наряду с газосодержанием при давлении насыщения R_{sb} задать значение газового фактора R_p . В этом случае газосодержание при давлении насыщения R_{sb} будет определять динамику выделения попутного газа из нефти при снижении давления, а газовый фактор R_p определять общее количество газа в потоке.

При определённых условиях газовый фактор может быть меньше газосодержания. Это происходит, когда газ выделяется в призабойной зоне и скапливается в ней не поступая в скважину вместе с нефтью. Но такие условия возникают достаточно редко, существуют на скважине ограниченное время и представляют интерес больше для разработчиков нежели чем для технологов. С точки зрения

анализа работы скважины и скважинного оборудования можно считать, что значение газового фактора не может быть меньше газосодержания при давлении насыщения. Такой предположение реализовано в Unifloc 7.7 VBA. При этом значение газового фактора технически легче измерить чем газосодержание - поэтому при противоречии значений газового фактора и газосодержания при давлении насыщения приоритет отдаётеся газовому фактору.

```
' расчет газосодержания
Public Function PVT Rs m3m3(
           ByVal P atma As Double,
           ByVal t C As Double, _
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
          const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const_go = 0.86
' gamma wat удельная плотность воды, по воде.
          const qw = 1
'rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
' имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
```

```
если не задан или = 0 то рассчитается по корреляции
tres C
          пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
          объемный коэффициент нефти, м3/м3.
bob m3m3
muob cP
          вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
          номер набора PVT корреляций для расчета
PVTcorr
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
          коэффициент сепарации - определяет изменение свойств
ksep fr
          нефти после сепарации доли свободного газа.
          изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
pksep atma
              давление при которой была сепарация
tksep C
              температура при которой была сепарация
          закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
результат - число - газосодержание при
          заданных термобарических условиях, м3/м3.
```

Примеры расчёта с использованием функции PVT_Rs_m3m3 для различных наборов PVT корреляций приведён на рисунке ниже.

2.1.5 PVT_Во_m3m3 – объёмный коэффициент нефти

Функция рассчитывает объёмный коэффициент нефти для произвольных термобарических условий. Объёмный коэффициент нефти определяется как отношение объёма занимаемого нефтью в пластовых условиях к объёму занимаемому нефтью при стандартных условиях.

$$B_o = \frac{(V_o)_{rc}}{(V_o)_{sc}}$$

Нефть в пласте занимает больший объем чем на поверхности за счёт растворенного в ней газа. Соответственно объёмный коэффициент нефти обычно имеет значение больше 1 при давлениях больше чем стандартное.

Для калибровки значения объёмного коэффициента можно использовать значение объёмного коэффициента нефти при давлении насыщения B_{ob} .

Следует отметить, что вообще говоря значение объёмного коэффициента нефти при давлении насыщения не является значением при пластовых условиях (при давлении выше давления насыщения играет роль сжимаемость нефти), однако при анализе производительности скважины и скважинного оборудования можно условно считать, что значение объёмного коэффициента при давлении насыщения соответствует значению объёмного коэффициента в пластовых условиях.

```
' расчет объемного коэффициента нефти
Public Function PVT Bo m3m3(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const go , _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const_Tres_default, _
            Optional ByVal bob m3m3 = -1,
            Optional ByVal muob cP = -1,
            Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
```

```
Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
    const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
  const gw = 1
'rsb m3m3 газосодержание при давлении насыщения, м3/м3.
         const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
   имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
         Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_C пластовая температура, С.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
             температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число
' Возвращает значение объемного коэффициента нефти, м3/м3
```

- ' для заданных термобарических условий.
- ' В основе расчета корреляции PVT

Примеры расчёта с использованием функции PVT_Bo_m3m3 для различных наборов PVT корреляций приведён на рисунке ниже.

Объёмный коэффициент нефти хорошо коррелирует со значением газосодержания. Поэтому различный вид кривых на рисунке ниже связан с первую очередь с различным газосодержанием при проведении расчётов.

2.1.6 PVT Bg m3m3 – объёмный коэффициент газа

Функция рассчитывает объёмный коэффициент нефтяного газа для произвольных термобарических условий.

Объёмный коэффициент газа определяется как отношение объема занимаемого газом для произвольных термобарических условий (при определенном давлении и температуре) к объёму занимаемому газом при стандартных условиях.

$$B_g = \frac{V_g(P;T)}{(V_g)_{sc}}$$

Значение объемного коэффиента газа может быть определено исходя из уравнения состояния газа

$$PV = zvRT$$

откуда можно получить

$$B_g = z \frac{P_{sc}}{P} \frac{T}{T_{sc}}$$

где P_{sc} ; T_{sc} давление (атм) и температура (К) при стандартных условиях, P; T давление (атм) и температура (К) при расчетных условиях, z коэффициент сверх-сжимаемости газа, который вообще говоря зависит от давления и температуры z = z(P;T).

```
' функция расчета объемного коэффициента газа
Public Function PVT Bg m3m3(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const gg , _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const_Rsb_default, _
           Optional ByVal rp_m3m3 = -1,__
           Optional ByVal pb_atma = -1, _
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
' T C
          температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
           const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
' имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
```

```
если не задан или = 0 то рассчитается по корреляции
 tres C
           пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
           объемный коэффициент нефти, м3/м3.
 bob m3m3
 muob cP
           вязкость нефти при давлении насыщения
           По умолчанию рассчитывается по корреляции
           номер набора PVT корреляций для расчета
 PVTcorr
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
 ksep fr
           коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
 pksep atma
               давление при которой была сепарация
               температура при которой была сепарация
 tksep C
           закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' Возвращает значение объемного коэффициента газа, м3/м3
' для заданных термобарических условий.
' В основе расчета корреляция для z факотора
```


2.1.7 PVT Bw m3m3 – объёмный коэффициент воды

Функция рассчитывает объёмный коэффициент воды для произвольных термобарических условий.

Объёмный коэффициент воды определяется как отношение объёма занимаемого водой для произвольных термобарических условий (при определённом давлении и температуре) к объёму занимаемому водой при стандартных условиях.

$$B_w = \frac{V_w(P;T)}{(V_w)_{sc}}$$

```
' расчет объемного коэффициента воды
Public Function PVT_Bw_m3m3( __
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const_Tres default, _
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob_cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep_C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
          const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const go = 0.86
' gamma wat удельная плотность воды, по воде.
   const_gw_=1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
    const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
         имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
```

```
Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
          Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep_C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число
' Возвращает значение объемного коэффициента воды, м3/м3
' для заданных термобарических условий.
```

2.1.8 PVT_Muo_cP – вязкость нефти

Функция рассчитывает вязкость нефти при заданных термобарических условиях по корреляции. Расчёт может быть откалиброван на известное значение вязкости нефти при давлении равном давлению насыщения и при пластовой температуре за счёт задания калибровочного параметра Muob_cP. При калибровке динамика изменения будет соответствовать расчету по корреляции, но значения будут масштабированы таким образом, чтобы при давлении насыщения удовлетворить калибровочному параметру.

При расчёте следует обратить внимание, что значение вязкости коррелирует со значением плотности нефти. Как правило вязкость тяжёлых нефтей выше чем для легких.

При расчёте с использованием набора корреляций на основе корреляции Стендинга - вязкость как дегазированной нефти и нефти с учетом растворенного газа рассчитывается по корреляции Беггса Робинсона [Yukos_PVT_2002]. Корреляции для расчета вязкости разгазированной и газонасыщенной нефти, разработанные Beggs & Robinson, основаны на 2000 замерах 600 различных нефтей. Диапазоны значений основных свойств, использованных для разработки данной корреляции, приведены в таблице ниже.

```
давление, atma 8.96...483. температура, °C 37...127 газосодержание, R_s m^3/m^3 3.6...254 относительная плотность нефти по воде,, \gamma_o 0.725...0.956
```

```
' расчет вязкости нефти
Public Function PVT Muo cP(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma wat As Double = const_gw , _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
          const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
```

```
gamma wat удельная плотность воды, по воде.
            const gw = 1
 rsb m3m3
           газосодержание при давлении насыщения, м3/м3.
            const Rsb default = 100
           замерной газовый фактор, м3/м3.
 rp m3m3
           имеет приоритет перед Rsb если Rp < Rsb
 pb atma
           Давление насыщения при температуре tres C, атма.
           Опциональный калибровочный параметр,
            если не задан или = 0 то рассчитается по корреляции
           пластовая температура, С.
' tres C
           Учитывается при расчете давления насыщения.
           const Tres default = 90
bob m3m3
           объемный коэффициент нефти, м3/м3.
           вязкость нефти при давлении насыщения
' muob cP
           По умолчанию рассчитывается по корреляции
 PVTcorr
           номер набора PVT корреляций для расчета
            StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
           коэффициент сепарации - определяет изменение свойств
' ksep fr
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
            сепарации газа, которые должны быть явно заданы
               давление при которой была сепарация
 pksep atma
' tksep C
               температура при которой была сепарация
' PVTstr
          закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число - вязкость нефти
           при заданных термобарических условиях, сП
```


2.1.9 PVT_Mug_cP - вязкость газа

Функция рассчитывает вязкость газа при заданных термобарических условиях. Результат расчета в сП. Используется подход предложенный Lee [Lee_1966], который хорошо подходит для большинства натуральных газов. В отличии от нефти и других жидкостей вязкость газа, как правило, значительно ниже, что определяет высокую подвижность газа. Более подробное описание методов расчета вязкости газа можно найти на странице http://petrowiki.org/gas viscosity

```
' расчет вязкости газа
Public Function PVT Mug cP(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const gg , _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma wat As Double = const gw ,
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
          const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
           const Rsb default = 100
```

```
rp m3m3
          замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
          Давление насыщения при температуре tres C, атма.
pb atma
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
tres C
          пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const_Tres_default = 90
bob m3m3
          объемный коэффициент нефти, м3/м3.
muob cP
          вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
          номер набора PVT корреляций для расчета
PVTcorr
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
ksep fr
          коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
          изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
              давление при которой была сепарация
pksep atma
              температура при которой была сепарация
tksep C
PVTstr
          закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
результат - число - вязкость газа
          при заданных термобарических условиях, сП
```


2.1.10 PVT_Muw_cP - вязкость воды

Функция рассчитывает вязкость воды при заданных термобарических условиях. Результат расчета выдается в сП. Вязкость воды зависит от давления, температуры и наличия растворенных примесей. В общем вязкость аоды растет при росте давления, снижении температуры, повышении солености. Растворение газа почти не влияет на вязкость воды и в расчетах не учитывается. Расчет проводится по корреляции МсСаіп [МсСаіп 1991]

Более подробное описание методов расчета вязкости газа можно найти на странице http://petrowiki.org/Produced water properties

```
' расчет вязкости воды
Public Function PVT Muw cP(
           ByVal P atma As Double,
           ByVal t C As Double, _
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
            Optional ByVal gamma wat As Double = const gw ,
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1,
            Optional ByVal pb atma = -1,
           Optional ByVal tres_C = const_Tres_default, _
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob_cP = -1, _
            Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep_fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep_C = -1, _
            Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const qq = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
```

```
const gw = 1
         газосодержание при давлении насыщения, м3/м3.
rsb m3m3
          const Rsb default = 100
rp m3m3
          замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
          Давление насыщения при температуре tres C, атма.
pb atma
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
          пластовая температура, С.
tres C
          Учитывается при расчете давления насыщения.
          const Tres default = 90
bob m3m3
          объемный коэффициент нефти, м3/м3.
muob cP
          вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
PVTcorr
          номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
ksep fr
          коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
          изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
pksep atma давление при которой была сепарация
tksep C
              температура при которой была сепарация
PVTstr
          закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
результат - число - вязкость воды
          при заданных термобарических условиях, сП
```

Следует отметить, что вязкость воды достаточно сильно зависит от температуры, в то время как зависимость от давления менее выражена.

2.1.11 PVT_Rhoo_kgm3 – плотность нефти

Функция вычисляет значение плотности нефти при заданных термобарических условиях. Результат расчета имеет размерность кг/м3.

```
' расчет плотности нефти
Public Function PVT Rhoo kgm3(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
           имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
```

```
tres C
          пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
bob m3m3
          объемный коэффициент нефти, м3/м3.
          вязкость нефти при давлении насыщения
muob cP
          По умолчанию рассчитывается по корреляции
PVTcorr
          номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
          коэффициент сепарации - определяет изменение свойств
ksep fr
          нефти после сепарации доли свободного газа.
          изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
              давление при которой была сепарация
tksep C
              температура при которой была сепарация
PVTstr
          закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
результат - число - плотность нефти
          при заданных термобарических условиях, кг/м3.
```


2.1.12 PVT_Rhog_kgm3 – плотность газа

```
' расчет плотности газа
Public Function PVT_Rhog_kgm3( _

ByVal P_atma As Double, _
```

```
ByVal t C As Double,
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const go , _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob_cP = -1, _
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
' T C
          температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
           Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C
          пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const_Tres_default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
```

```
' StraigthLine = 2 - на основе упрощенных зависимостей 'ksep_fr коэффициент сепарации - определяет изменение свойств нефти после сепарации доли свободного газа. 'изменение свойств нефти зависит от условий сепарации газа, которые должны быть явно заданы 'pksep_atma давление при которой была сепарация 'tksep_C температура при которой была сепарация 'PVTstr закодированная строка с параметрами PVT. 'если задана - перекрывает другие значения 'peзультат - число - плотность газа при заданных термобарических условиях, кг/м3.
```


2.1.13 PVT Rhow kgm3 – плотность воды

```
' расчет плотности воды

Public Function PVT_Rhow_kgm3(_

ByVal P_atma As Double, _

ByVal t_C As Double, _

Optional ByVal gamma_gas As Double = const_gg_, _

Optional ByVal gamma_oil As Double = const_go_, _

Optional ByVal gamma_wat As Double = const_gw_, _

Optional ByVal rsb_m3m3 = const_Rsb_default, _

Optional ByVal rp_m3m3 = -1, _

Optional ByVal pb_atma = -1, _

Optional ByVal tres_C = const_Tres_default, _

Optional ByVal bob_m3m3 = -1, _
```

```
Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma
         давление, атм
' T C
          температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
   const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C
         пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
```

```
'
результат - число - плотность воды
при заданных термобарических условиях, кг/м3.
```


2.1.14 PVT Z – коэффициент сверхсжимаемости газа

Функция позволяет рассчитать коэффициент сверхсжимаемости газа.

$$PV = z \gamma RT$$

```
' расчет коэффициента сверхсжимаемости газа
Public Function PVT Z(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep_fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep_C = -1,
```

```
Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
         const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
         Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
         По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep_fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число - z фактор газа.
          коэффициент сверхсжимаемости газа,
          безразмерная величина
```


2.2 Расчёт свойств потока

2.2.1 MF_Qmix_m3day – расход газожидкостной смеси

Функция позволяет рассчитать объемный расход газожидкостной смеси при заданных термобарических условиях.

$$Q_{mix} = Q_w B_w(P;T) + Q_o B_o(P;T) + Q_o(R_p - R_s(P;T)) B_g(P;T)$$

```
' расчет объемного расхода газожидкостной смеси
' для заданных термобарических условий
Public Function MF Qmix m3day(
             ByVal Qliq_sm3day As Double, _
             ByVal fw perc As Double,
             ByVal P_atma As Double, _
             ByVal t C As Double,
    Optional ByVal PVTstr As String = "") As Double
' обязательные аргументы функции
' Qliq sm3day- дебит жидкости на поверхности
' fw perc
             - объемная обводненность
' P atma
             - давление, атм
            - температура, С.
' опциональные аргументы функции
             - закодированная строка с параметрами PVT.
```

```
' если задана - перекрывает другие значения
' результат - число - плотность ГЖС, кг/м3.
```

2.2.2 MF_Rhomix_kgm3 – плотность газожидкостной смеси

Функция позволяет рассчитать плотность газожидкостной смеси при заданных термобарических условиях.

```
' расчет плотности газожидкостной смеси для заданных условий
Public Function MF Rhomix kgm3(
            ByVal Qliq sm3day As Double,
            ByVal fw perc As Double, _
            ByVal P atma As Double,
            ByVal t C As Double,
   Optional ByVal PVTstr As String = "") As Double
' обязательные аргументы функции
' Qliq sm3day- дебит жидкости на поверхности
' fw_perc - объемная обводненность
' P atma
           - давление, атм
'ТС - температура, С.
' опциональные аргументы функции
' PVTstr - закодированная строка с параметрами PVT.
            если задана - перекрывает другие значения
' результат - число - плотность ГЖС, кг/м3.
```

2.2.3 MF_GasFraction_d – доля газа в потоке

Функция расчёта доли свободного газа в потоке (без учёта проскальзывания) в зависимости от термобарических условий для заданного флюида. В отличии от функций PVT учитывается обводнённость.

```
' расчет доли газа в потоке
Public Function MF_GasFraction_d( _
```

```
ByVal P_atma As Double, _
ByVal t_C As Double, _
Optional ByVal fw_perc = 0, _
Optional ByVal PVTstr As String = PVT_DEFAULT _
) As Double

' обязательные аргументы функции
' P_atma - давление, атм
' T_C - температура, C.
' опциональные аргументы функции
' fw_perc - обводненность объемная
' PVTstr - закодированная строка с параметрами PVT.
' если задана - перекрывает другие значения
' результат - число - доля газа в потоке
' (расходная без проскальзования)
```

2.2.4 MF_PGasFraction_atma – целевое давления для заданной доли газа в потоке

Функция расчёта давления при котором достигается заданная доля свободного газа в потоке (без учёта проскальзывания). В отличии от функций PVT учитывается обводнённость. Следует учитывать, что при вызове функции пересчитывается состояние смеси с различными термобарическими условиями.

2.2.5 MF_RpGasFraction_m3m3 – целевой газовый фактор для заданной доли газа в потоке

Функция расчёта давления при котором достигается заданная доля свободного газа в потоке (без учёта проскальзывания). В отличии от функций PVT учитывается обводнённость. Следует учитывать, что при вызове функции пересчитывается состояние смеси с различными термобарическими условиями.

```
' расчет газового фактора
' при котором достигается заданная доля газа в потоке
Public Function MF RpGasFraction m3m3(
               ByVal FreeGas d As Double, _
               ByVal P atma As Double, _
               ByVal t C As Double,
               ByVal fw perc As Double,
      Optional ByVal PVTstr As String = PVT DEFAULT) As Double
' обязательные аргументы функции
' FreeGas d - допустимая доля газа в потоке
' P atma - давление, атм
' T C
           - температура, С.
' опциональные аргументы функции
' PVTstr - закодированная строка с параметрами PVT.
             если задана - перекрывает другие значения
' результат - число - газовый фактор, м3/м3.
```

2.3 Сепарация газа в скважине

В скважинах оборудованных системами механизированной добычи нефти важную роль играет процесс сепарации газа на приёме насоса. Под сепарацией газа понимается отделение части свободного газа из потока и перенаправление его по отдельному гидравлическому каналу на поверхность. В результате сепарации газа меняются свойства флюида поступающего в насос и НКТ выше насоса. Оценка величины сепарации может быть проведена приведёнными ниже функциями.

2.3.1 MF_SeparNat_d – естественная сепарация газа

Функция рассчитывает естественную сепарацию газа на приёме насоса в скважине с использованием корреляции Маркеса [Marquez_2003] . Результат - безразмерная величина в диапазоне от 0 до 1.

```
' расчет натуральной сепарации газа на приеме насоса
Public Function MF SeparNat d(
            ByVal Qliq sm3day As Double,
            ByVal fw perc As Double, _
            ByVal Pin atma As Double,
   Optional ByVal Tin C As Double = 50,
   Optional ByVal dIntake mm As Double = 90, _
   Optional ByVal dcas_mm As Double = 120, _
   Optional ByVal PVTstr As String = PVT DEFAULT) As Double
' Qliq sm3day
              - дебит жидкости в поверхностных условиях
' fw_perc - обводненность
' Pin atma
             - давление сепарации
' Tin C
              - температура сепарации
' dintake mm - диаметр приемной сетки
' dcas mm - диаметр эксплуатационной колонны
' PVTstr - закодированная строка с параметрами PVT.
            если задана - перекрывает другие значения
' результат - число - естественная сепарация
```

2.3.2 MF_SeparTotal_d – естественная сепарация газа

Функция рассчитывает полную сепарацию газа на приёме насосе в скважине по известным значениям естественной сепарации газа и коэффициента сепарации газосепаратора. Результат - безразмерная величина в диапазоне от 0 до 1.

```
ByVal SepGasSep As Double) As Double

' SepNat — естественная сепарация

' SepGasSep — искусственная сепарация (газосепаратор)

MF_SeparTotal_d = SepNat + (1 - SepNat) * SepGasSep

End Function
```

2.4 Расчёт многофазного потока в штуцере

2.4.1 Модель потока через штуцер

Штуцер или локальное гидравлическое сопротивление - элемент скважины или системы трубопроводов применяемых для создания дополнительного перепада давления в системе и ограничения потока. Возможны различные варианты реализации штуцера - со штуцерное камерой, с угловым краном позволяющим менять диаметр штуцера и другие. Ключевым параметром штуцера является диаметр d_{choke} определяющий его способность к ограничению потока.

Как и у любого элемента гидравлического потока есть три ключевых параметра - давление на входе P_{in} , P_0 , давление на выходе P_{out} , P_1 и расход газожидкостной смеси, обычно задаваемый в стандартных условиях Q_{liq} .

2.4.2 MF_PChoke_atm – Расчет давления на входе и на выходе штуцера

Функция позволяет рассчитать давление на входе или выходе штуцера по известному давлению на противоположном конце при известных параметрах потока (дебите жидкости, обводненности, газовому фактору). Расчет проводится по корреляции Перкинса [Perkins_1993] с учетом многофазного потока.

2.4.3 MF_dPChoke_atm – Расчёт перепада давления в штуцере

Функция позволяет рассчитать по известному линейному давлению и дебиту или по известному буферному давлению и дебиту перепад давления. Расчет проводится по корреляции Перкинса [Perkins_1993] с учетом многофазного потока. Функция возвращает перепад давления и температуры в виде массива.

```
' Расчет перепада давления в штуцере (по потоку)
Public Function MF dPChoke atm(
           ByVal Qliq_sm3day As Double, _
           ByVal fw perc As Double, _
           ByVal dchoke mm As Double,
           Optional ByVal Pcalc atma As Double = -1,
           Optional ByVal calc along flow As Boolean = True,
           Optional ByVal dPipe mm As Double = 70,
           Optional ByVal Tchoke C As Double = 20,
           Optional ByVal cfChoke As Double = 0,
           Optional ByVal PVTstr As String = PVT DEFAULT
' Qliq_sm3day - дебит жидкости в пов условиях
' fw perc
              - обводненность
' dchoke mm
              - диаметр штуцера (эффективный)
' опциональные аргументы функции
' Pcalc atma - давление с которого начинается расчет, атм
                 граничное значение для проведения расчета
                 либо давление на входе, либое на выходе
'calc along flow - флаг направления расчета относительно потока
    если = True то расчет по потоку
    ищется давление на выкиде по известному давлению на входе,
    ищется линейное давление по известному буферному
     если = False то расчет против потока
     ищется давление на входе по известному давлению на выходе,
     ищется буферное давление по известному линейному
' dPipe mm - диаметр трубы до и после штуцера
' Tchoke C
            - температура, С.
' cfChoke
            - поправочный коэффициент на штуцер
                0 - отсутсвие поправки
                 dPchoke real = (1-cfChoke) *dPchoke model
' PVTstr - закодированная строка с параметрами PVT.
              если задана - перекрывает другие значения
' результат - число - давления на штуцере на расчетной стороне.
```

двухмерный массив с расширенным наборов параметров и подписей к параметрам

2.4.4 MF_QChoke_m3day – функция расчёта дебита жидкости через штуцер

Функция позволяет рассчитать по известному буферному давлению и линейному давлению дебит жидкости. Расчет проводится по корреляции Перкинса [Perkins_1993] с учетом многофазного потока.

2.5 Расчет многофазного потока в трубе

2.5.1 MF_dPpipe_atma – расчёт перепада давления в трубе

Функция позволяет рассчитать перепад давления в участке трубопровода. Функция возвращает давление и температуру в виде массива.

```
' расчет перепада давления и распределения температуры в трубе
' с использованием многофазных корреляций
Public Function MF dPpipe atm(
       ByVal Qliq_sm3day As Double, _
       ByVal fw perc As Double,
       ByVal Hmes0 m As Double,
        ByVal Hmes1 m As Double,
        ByVal Pcalc atma As Double,
        Optional ByVal PVTstr As String = PVT DEFAULT,
        Optional ByVal theta deg As Double = 90,
        Optional ByVal d mm As Double = 60,
        Optional ByVal HydrCorr As H CORRELATION = 0,
        Optional ByVal Tcalc C As Double = 50,
        Optional ByVal Tother C As Double = -1,
        Optional ByVal betta grav = 1,
        Optional ByVal betta fric = 1, _
        Optional ByVal roughness m As Double = 0.0001)
' Обязательные параметры
' Qliq sm3Day -дебит жидкости в поверхностных условиях
' fw perc - обводненность
' Hmes0 m
           - начальная координата трубы, м
            - конечная координата трубы, м
' Hmes1 m
             расчет всегда ведется от начальной координаты к
              конечной. если Hmes0 m < Hmes1 m то расчет
              идет сверху вниз для вертикальной трубы
              иначе расчет идет снизу вверх
' Pcalc atma - давление с которого начинается расчет, атм
              граничное значение для проведения расчета
' Необязательные параметры
' стандартные набор PVT параметров
' PVTstr - закодированная строка с параметрами PVT.
             если задана - перекрывает другие значения
' theta deg - угол направления потока к горизонтали
```

```
(90 - вертикальная труба вверх)
               может принимать отрицательные значения
             - внутриний диаметр трубы
 d mm
 HydrCorr
             - гидравлическая корреляция, H CORRELATION
                    BeggsBriilCor = 0
                    AnsariCor = 1
                    UnifiedCor = 2
                    Gray = 3
                    HagedornBrown = 4
                    SakharovMokhov = 5
 Tcalc C
             - температура в точке где задано давление, С
 Tother C
             - температура на другом конце трубы
               по умолчанию температура вдоль трубы постоянна
               если задано то меняется линейно по трубе
 betta grav - поправка на гравитационную составляющую
               перепада давления
' betta fric - поправка на трение в перепаде давления
' roughness m- шероховатость трубы
             - число - перепад давления в трубе.
```

Ниже на рисунке приведены результаты расчёта кривой оттока (перепада давления в вертикальной трубе) для различных корреляций реализованных в Unifloc 7.7 VBA .

2.6 Расчет многофазного потока в пласте

2.6.1 IPR_PI_sm3dayatm – расчёт продуктивности

Функция позволяет рассчитать коэффициент продуктивности скважины.

```
' расчёт продуктивности

Public Function IPR_PI_sm3dayatm(Qtest_m3day, Pwftest_atm, Pr
Optional WCT_perc As Double = 0, Optional Pb_atm As Double =

' Qtest_m3day - тестовый дебит скважины
' Pwftest_atm - тестовое забойное давление
' Pr_atm - пластовое давление, атм
' необязательные параметры
' WCT_perc - обводненность
' Pb_atm - давление насыщения
'
```

Листинг 2: Объявление функции расчёта продуктивности

2.6.2 IPR Pwf atm – расчёт дебита по давлению и продуктивности

Функция позволяет рассчитать дебит жидкости скважины по известным значениям давления и продуктивности.

```
' расчёт дебита по давлению и продуктивности

Public Function IPR_Pwf_atm(PI_m3dayatm, Pr_atm, Ql_m3day, _
Optional WCT_perc As Double = 0, Optional Pb_atm As Double =

' PI_m3dayatm - коэффициент продуктивности
' Pr_atm - пластовое давление, атм
' Ql_m3day - дебит жидкости скважины на поверхности
' необязательные параметры
' WCT_perc - обводненность
' Pb_atm - давление насыщения
```

Листинг 3: Объявление функции расчёта дебита по давлению и продуктивности

2.6.3 IPR_Ql_sm3Day – расчёт дебита по давлению и продуктивности

Функция позволяет рассчитать дебита по давлению и продуктивности.

```
' расчёт дебита по давлению и продуктивности

Public Function IPR_Ql_sm3Day(PI_m3dayatm, Pr_atm, Pwf_atm, _
Optional WCT_perc As Double = 0, Optional Pb_atm As Double =

' PI_m3dayatm - коэффициент продуктивности
' Pr_atm - пластовое давление, атм
' Pwf_atm - забойное давление
' необязательные параметры
' WCT_perc - обводненность
' Pb_atm - давление насыщения
```

Листинг 4: Объявление функции расчёта дебита по давлению и продуктивности

Глава 3. Функции модуля «u7_Excel_functions_ESP»

В этом модули приведены интерфейсные функции Excel (функции, которые можно вызывать непосредственно с листа Excel) для расчёта параметров работы УЭЦН - установки электрического центробежного насоса.

УЭЦН состоит из следующих основных конструктивных элементов:

- ЦН центробежный насос. Модуль обеспечивающий перекачку жидкости.
- ПЭД погружной электрический двигатель. Модуль обеспечивающий преобразование электрической энергии, поступающий к УЭЦН по кабелю в механическую энергию вращения вала.
- ГС газосепаратор или приемный модуль. Модуль обеспечивающий забор пластовой жидкости из скважины и подачу ее в насос. При этом центробежный газосепаратор способе отделить часть свободного газа в потоке и направить его в межтрубное пространство скважины.
- вал узел передающий энергию от погружного электрического двигателя (ПЭД) к остальным узлам установки, в том числе к центробежному насосу.

Задача расчета УЭЦН обычно сводится к следующим:

- Прямая задача по заданным значения дебита жидкости скважины, давлению на приеме, напряжению питания УЭЦН на поверхности найти давление на выкиде насоса, потребляему электрическую мощность, потребляемый ток установки, КПД всей системы и отдельных узлов системы
- Обратная задача по данным контроля параметров работы УЭЦН на поверхности - потребляемому току, напряжению питания частоте подаваемого напряжения, данным по конструкции УЭЦН и скважины найти дебит жидкости и обводнённость по скважине, давление на приеме и забойное давление.
- Задача узлового анализа по данным конструкции скважины, параметров работы погружного оборудования оценить дебит по жидкости скважины при заданным параметрах работы УЭЦН или при из изменении. К этому типу задач относится задача подбора погружного оборудования для достижения заданных условий эксплуатации

Для расчёта УЭЦН требуется рассчитать гидравлические параметры работы ЦН и электромеханические параметры ПЭД

3.1 Гидравлический расчет центробежного насоса (ЦН)

Расчет выполняется на основе паспортных характеристик ЦН.

3.2 Электромеханический расчёт погружного электрического двигателя ПЭД

Рассматривается асинхронный электрический двигатель.

Погружные асинхронные электрические двигатели для добычи нефти выполяются трехфазными.

Впервые конструкция трёхфазного асинхронного двигателя была разработана, создана и опробована русским инженером М. О. Доливо-Добровольским в 1889-91 годах. Демонстрация первых двигателей состоялась на Международной электротехнической выставке во Франкфурте на Майне в сентябре 1891 года. На выставке было представлено три трёхфазных двигателя разной мощности. Самый мощный из них имел мощность 1.5 кВт и использовался для приведения во вращение генератора постоянного тока. Конструкция асинхронного двигателя, предложенная Доливо-Добровольским, оказалась очень удачной и является основным видом конструкции этих двигателей до настоящего времени.

За прошедшие годы асинхронные двигатели нашли очень широкое применение в различных отраслях промышленности и сельского хозяйства. Их используют в электроприводе металлорежущих станков, подъёмно-транспортных машин, транспортёров, насосов, вентиляторов. Маломощные двигатели используются в устройствах автоматики.

Широкое применение асинхронных двигателей объясняется их достоинствами по сравнению с другими двигателями: высокая надёжность, возможность работы непосредственно от сети переменного тока, простота обслуживания.

Для расчёта электромеханических параметров погружных электрических двигателей полезно понимать теоретические основы их работы. Теория работы погружных асинхронных двигателей не отличаем от теории применимой к двигателям применяемым на поверхности. Далее кратко изложены основные положения теории.

Трехфазная цепь является частным случаем многофазных систем электрических цепей, представляющих собой совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, отличающиеся по фазе одна от другой и создаваемые общим источником энергии. Переменный ток протекающий по трехфазной цели характеризуется следующими параметрами:

- Фазное напряжение U_A ; U_B ; U_C напряжение между линейным проводом и нейтралью
- Линейное напряжение U_{AB} ; U_{BC} ; U_{CA} напряжение между одноименными выводами разных фаз
- Фазный ток I_{phase} ток в фазах двигателя.
- Линейный ток I_{line} ток в линейных проводах.
- $-\cos \phi$ коэффициент мощности, где ϕ величина сдвига по фазе между напряжением и током

Подключение двигателя к цепи трехфазного тока может быть выполнено по схеме "звезда"или "треугольник".

Тут нужен рисунок

Для схемы звезда фазное напряжение меньше линейного в $\sqrt{3}$ раз.

$$U_{AB} = \sqrt{3}U_A$$

$$I_{phase} = I_{line}$$

Для схемы треугольник

$$U_{AB} = U_A$$

$$I_{line} = \sqrt{3}I_{phase}$$

В погружных двигателях обычно применяет схема подключения звезда. Эта схема обеспечивает более низкое напряжение в линии, что способствует повышению КПД передачи энергии по длинному кабелю. Еще есть причины? При схеме подключения звезда токи в линии и в фазной обмотке статора двигателя совпадают, поэтому значение тока обозначают I не указывая индекс в явном

виде. Поскольку линейное напряжения проще измерить и легче контролировать параметры трехфазного двигателя обычно заданию линейный. в частности номинальное напряжение питания двигателя это линейное напряжение (напряжение между фазами). Далее линейное напряжение будет обозначать без индекса как U

Активная электрическая мощность в трехфазной цепи задается выражением

$$P = \sqrt{3}UI\cos\varphi$$

Реактивная мощность

$$Q = \sqrt{3}UI\sin\varphi$$

Соответственно полная мощность

$$S = \sqrt{3}UI$$

3.2.1 Устройство трёхфазной асинхронной машины

Неподвижная часть машины называется статор, подвижная – ротор. Обмотка статора состоит из трёх отдельных частей, называемых фазами.

При подаче переменного напряжения и тока на обмотки статора внутри статора формируется вращающееся магнитное поле. Частота вращения магнитного поля совпадает с частотой питающего напряжения.

Магнитный поток Φ и напряжение подаваемое на статор связаны приближенном соотношением

$$U_1 \approx E_1 = 4.44 w_1 k_1 f \Phi$$

где

 Φ - магнитный поток;

 U_1 - напряжение в одной фазе статора;

f - частота сети;

 E_1 - ЭЦН в фазе статора;

 w_1 - число витков одной фазы обмотки статора;

 k_1 - обмоточный коэффициент.

Из этого выражения следует, что магнитный поток Φ в асинхронной машине не зависит от её режима работы, а при заданной частоте сети f зависит только от действующего значения приложенного напряжения U_1

Для ЭДС ротора можно записать выражение

$$E_2 = 4:44w_2k_2fS\Phi$$

где

S - величина скольжения (проскальзования);

 E_2 - ЭЦН в фазе ротора;

 w_2 - число витков одной фазы обмотки ротора;

 k_2 - обмоточный коэффициент ротора.

ЭДС, наводимая в обмотке ротора, изменяется пропорционально скольжению и в режиме двигателя имеет наибольшее значение в момент пуска в ход. Для тока ротора в общем случае можно получить такое соотношение

$$I_2 = \frac{E_2 S}{\sqrt{R_2^2 + (SX_2^2)}}$$

где

 R_2 - активное сопротивление обмотки ротора, связанное с потерями на нагрев обмотки;

 $X_2 = 2\pi f L_2$ - индуктивное сопротивление обмотки неподвижного ротора, связанное с потоком рассеяния;

Отсюда следует, что ток ротора зависит от скольжения и возрастает при его увеличении, но медленнее, чем ЭДС.

Для асинхронного двигателя можно получить следующее выражение для механического момента

$$M = \frac{1}{4:44w_2k_2k_T^2f} \frac{U_1^2R_2S}{R_2^2 + (SX_2^2)^2}$$

гле

 $k_T = \frac{E_1}{E_2} = \frac{w_1 k_1}{w_2 k_2}$ - коэффициент трансформации асинхронной машины

Из полученного выражения для электромагнитного момента следует, что он сильно зависит от подведённого напряжения ($M \sim U_1^2$). При снижении, например, напряжения на 10%, электромагнитный момент снизится на 19% $M \sim (0;9U_1)^2 = 0.81U_1^2$). Это является одним из недостатков асинхронных двигателей.

Глава 4. Функции модуля «tr mdlTecRegimes»

Одна из первых реализаций расчётных модулей Unifloc 7.7 VBA была создана для проведения расчётов потенциала добычи нефти в форме технологического режима добывающих скважин. Расчёты были реализованы в начале 2000х годов. Расчётная форма оказалась удобной для практического применения и со временем алгоритмы расчёта распространились по разным компаниям и широко использовались.

4.1 Технологический режим добывающих скважин

Для обеспечения обратной совместимости расчётов в Unifloc 7.7 VBA заложены основные функции расчёта из технологического режима работы скважин. У функций изменены названия функций и имена аргументов, однако алгоритмы расчётов оставлены без изменений.

4.1.1 tr_Pwf_calc_atma – расчёт забойного давления по динамическому уровню

Функция рассчитывает забойное давление добывающей нефтяной скважины. Расчёт выполняется по известному значению затрубного давления и динамическому уровню. [Khasanov TR 2006]

Результат расчёта - абсолютное значение забойного давления.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления как для интервала выше насоса в межтрубном пространстве, так и для участка ниже насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]

Функция позволяет учесть удлинения скважин для забоя, глубины спуска насоса, и динамического уровня. Два последних значения являются опциональными и могут быть опущены при проведении расчёта.

4.1.2 tr_Pwf_calc_Pin_atma – расчёт забойного давления по давлению на приеме

Функция рассчитывает забойное давление добывающей нефтяной скважины по известному значению давления на приёме насоса.

Результат расчёта - абсолютное значение забойного давления.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления для участка ниже насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]

Функция позволяет учесть удлинения скважин для забоя, глубины спуска насоса. Последнее значение являются опциональными и могут быть опущены при проведении расчёта.

4.1.3 tr_Ppump_calc_atma – расчёт давления на приеме по динамическому уровню

Функция рассчитывает давление на приёме насоса добывающей нефтяной скважины по известному значению затрубного давления и динамическому уровню.

Расчёт выполняется по модифицированной корреляции Хасана-Кабира оптимизированной для скорости вычисления для участка выше насоса. При расчёте пренебрегается трением в потоке и используются упрощённые PVT зависимости, что позволило получить результат в аналитическом виде и ускорить расчёты. [ссылку надо будет привести когда то]. Значение коэффициента сепарации используется для оценки объёмного расхода газа в межтрубном пространстве.

Результат расчёта - абсолютное значение давления на приёме насоса.

4.1.4 tr_Potential_Pwf_atma – расчёт целевого забойного давления по доле газа

Функция рассчитывает целевое забойное давление добывающей нефтяной скважины при котором достигается заданная доля газа в потоке.

Результат расчёта - абсолютное значение забойного давления.

4.1.5 tr_BB_Pwf_atma – расчёт забойного давления фонтанирующей скважины по буферному давлению

Функция рассчитывает забойное давление фонтанирующей добывающей скважины по известному значению буферного давления. Расчет выполняется по корреляции Бегсса Брилла.

Расчет отличается рядом упрощений - из PVT свойств используется только значение газового фактора - давление насыщения и объемный коэффициент газа вычисляются по корреляциям.

В отличии от расчёта скважин с насосом в корреляции Беггса Брилла учитывается наличие трения. Хотя для низких дебитов эта корреляция может давать завышенные значения перепада давления.

Для расчётов рекомендуется использовать функцию Unifloc 7.7 VBA реализующую аналогичную функциональность с меньшим набором допущений Результат расчёта - абсолютное значение забойного давления.

4.1.6 tr_BB_Pwf_Pin_atma – расчёт забойного давления по давлению на приеме по корреляции Беггса-Брилла

Функция рассчитывает забойное давление добывающей скважины по известному значению давления на приёме. Расчёт выполняется по корреляции Бегсса-Брилла. Расчёт отличается рядом упрощений - из PVT свойств используется только значение газового фактора - давление насыщения и объёмный коэффициент газа вычисляются по корреляциям.

В отличии от расчёта скважин с насосом в корреляции Беггса Брилла учитывается наличие трения. Хотя для низких дебитов эта корреляция может давать завышенные значения перепада давления.

Для расчётов рекомендуется использовать функцию Unifloc 7.7 VBA реализующую аналогичную функциональность с меньшим набором допущений

Результат расчёта - абсолютное значение забойного давления.

Заключение

Заключение возможно будет тут когда то

Единицы измерений

Давление

atm, атм — физическая атмосфера atma, атма — абсолютное значение величины в атмосферах atmg, атми — избыточное (измеренное) значение величины в атмосферах. отличается от абсолютной на величину атмосферного давления (1.01325 атма)

Список сокращений и условных обозначений

 γ_g - gamma gas - удельная плотность газа, по воздуху.

 γ_o - gamma oil - удельная плотность нефти, по воде.

 $\gamma_{\scriptscriptstyle W}$ - gamma wat- удельная плотность воды, по воде.

 R_{sb} - Rsb m3m3 газосодержание при давлении насыщения, м3/м3.

 R_p - Rp m3m3. замерной газовый фактор, м3/м3.

 P_b - Pb atma. давление насыщения, атма.

 T_{res} - Tres С пластовая температура, °C.

 B_{ob} - Bob_m3m3 объёмный коэффициент нефти, м3/м3.

 μ_{ob} - Muob_cP. вязкость нефти при давлении насыщения, с Π .

 Q_{liq} - Qliq_scm3day. дебит жидкости измеренный на поверхности (приведенный к стандартным условиям), м3/сут.

 $f_{\it w}$ - fw_perc, fw_fr объёмная обводненность (fraction of water), проценты или доли единиц.

Словарь терминов

- **VBA** Visual Basic for Application язык программрования встроенный в Excel и использованный для написания макросов Unifloc 7.7 VBA .
 - **VBE** Среда разработки для языка VBA. Встроена в Excel.
 - BHP, Pwf Bottom hole pressure. Well flowing pressure Забойное давление
 - ВНТ, ТВН Bottom hole temperature. Забойная температура
- **WHP, PWH** Well head pressure. Устьевое давление. Как правило, соответствует буферному давлению.
- WHT, TWH Well head temperature. Устьевая температура. Температура флюида на устье скважины. Температура в точке замера буферного давления.
- **IPR** Inflow performance relationship. Индикаторная кривая. Зависимость забойного давления от дебита для пласта. Широко используется в узловом анализе.
- **VLP, VFP** Vertical lift performance, vertical flow performance, outflow curve. Кривая лифта, кривая оттока. Зависимость забойного давления от дебита для скважины. Широко используется в узловом анализе.
- **ZNLF** Zero net liquid flow. Барботаж движение газа через столб неподвижной жидкости. Соответствует условиям движения газа в затрубном пространстве при эксплуатации добывающих скважин с использованием погружных насосов.
 - ЭЦН Электрический центробежный насос.
- УЭЦН Установка электрического центробежного насоса. Включает весь комплекс погружного и поверхностного оборудования необходимого для работы насоса насос (ЭЦН), погружной электрический двигатель (ПЭД), гидрозащита (ГЗ), входной модуль (ВМ) и газосепаратор (ГС), электрический кабель, станция управления (СУ) и другие элементы
 - **ESP** Electrical submersible pump. Электрический центробежный насос.
 - GL Gas Lift. Газлифтный способ эксплуатации добывающих скважин.
- **РНХ** ЭЦН Расходно напорная характеристика электрического центробежного насоса. Ключевая характеристика ЭЦН. Дается производителем в каталоге ЭЦН для новых насосов или определяется на стенде для ремонтных ЭЦН.
- **PVT** Pressure Volume Temperature. Общепринятое обозначение для физико-химических свойств пластовых флюидов нефти, газа и воды.

- **MF** MultiPhase. Много Фазный поток. Префикс для функций имеющих дело с расчетом многофазного потока в трубах и скважине.
- **НКТ** Насосно компрессорная труба. Часть конструкции скважины. по колонне НКТ добывается скважинная продукция или закачивается вода. Может быть заменена в процессе эксплуатации при ремонте скважины.
- \mathbf{K} Эксплуатационная колонна. Часть конструкции скважины. Не может быть заменена в процессе эксплуатации при ремонте скважины.

Приложение А

Автоматически сгенерированное описание

Далее следует описание расчетных функций Unifloc 7.7 VBA автоматически сгенерированное из исходного кода. Более подробное описание основных функций можно найти в описании выше. Автоматическое описание возможно будет более полным и актуальным пока продолжается разработка.

A.1 ESP_decode_string

A.2 ESP_dP_atm

```
' функция расчета перепада давления ЭЦН в рабочих условиях
Public Function ESP dP atm(
                ByVal Qliq sm3day As Double, _
                ByVal fw perc As Double, _
                ByVal P atma As Double,
       Optional ByVal NumStages As Integer = 1, _
       Optional ByVal freq_Hz As Double = 50, _
       Optional ByVal PumpID = 674,
       Optional ByVal PVTstr As String = PVT DEFAULT,
       Optional ByVal Tin_C As Double = 50, _
       Optional ByVal Tdis C As Double = 50,
       Optional ByVal CalcFromIntake As Boolean = 1, _
        Optional ByVal GasDegtType As Integer = 0, _
       Optional ByVal Kdegr As Double = 0)
' Qliq sm3day
                  - дебит жидкости на поверхности
' fw perc
                   - обводненность
' P atma
                   - давление для которого делается расчет
                    либо давление на приеме насоса
                    либо давление на выкиде насоса
                    определяется параметром CalcFromIntake
' NumStages
                  - количество ступеней
' freq Hz
                   - частота, Гц
```

```
' PumpID
                  - идентификатор насоса
' PVTstr
                   - набор данных PVT
' Tin C
                   - температура на приеме насоа
' Tdis C
                   - температура на выкиде насоса.
                     если = 0 и CalcFromIntake = 1 то рассчитывается
' CalcFromIntake
                  - режим расчета снизу вверх или сверху вниз
                 CalcFromIntake = True => P atma давление на приеме
                 CalcFromIntake = False => P atma давление на выкиде
' GasDeqtType
                  - тип насоса по работе с газом
      GasDegtType = 0 нет коррекции
      GasDegtType = 1 стандартный ЭЦН (предел 25%)
      GasDegtType = 2 ЭЦН с газостабилизирующим модулем (предел 50%)
      GasDegtType = 3 ЭЦН с осевым модулем (предел 75%)
      GasDegtType = 4 ЭЦН с модифицированным ступенями (предел 40%)
                 предел по доле газа на входе в насос после сепарации
                 на основе статьи SPE 117414 (с корректировкой)
                 поправка дополнительная к деградации (суммируется)
' Kdegr
                   - коэффициент деградации напора
 результат - массив значений включающий
                   перепад давления
                   перепад температур
                   мощность потребляемая с вала, Вт
                   мощность гидравлическая по перекачке жидкости, Вт
                   кпд эцн
```

A.3 ESP_eff_fr

```
' PumpID - номер насоса в базе данных
' mu_cSt - вязкость жидкости
```

A.4 ESP_encode_string

```
' функция кодирования параметров работы УЭЦН в строку,
' которую можно потом использовать для задания ЭЦН в прикладных функциях
Public Function ESP encode string(
                    Optional ByVal esp ID As Double = 1005,
                   Optional ByVal HeadNom_m As Double = 2000, _
                   Optional ByVal ESPfreq Hz As Double = 50,
                   Optional ByVal ESP U V As Double = 1000, _
                    Optional ByVal MotorPowerNom kW As Double = 30,
                   Optional ByVal Tintake C As Double = 85,
                   Optional ByVal Tdis C As Double = 85,
                   Optional ByVal KsepGS fr As Double = 0,
                  Optional ByVal ESP energy_fact_Whday As Double = 0, _
                    Optional ByVal ESP_cable_type As Double = 0, _
                   Optional ByVal ESP Hmes m As Double = 0,
                   Optional ByVal GasDegtType As Integer = 0,
                   Optional ByVal Kdegr As Double = 0,
                   Optional ByVal PKV work min = -1,
                   Optional ByVal PKV stop min = -1
' PumpID
                   - идентификатор насоса
' HeadNom m
                   - номинальный напор системы УЭЦН
                   - соответствует напора в записи ЭЦН 50-2000
' ESPfreq Hz
                      - частота, Гц
' ESP U V
                   - напряжение на ПЭД
' ESP Motor power nom kW - номинальная мощность двигателя
' Tin C
                   - температура на приеме насоа
' Tdis C
                   - температура на выкиде насоса.
                     если = 0 и CalcFromIntake = 1 то рассчитывается
                   - коэффициент сепарации газосепаратора УЭЦН
' KsepGS fr
' ESP energy fact Whday - фактическое потребление мощности ЭЦН
' ESP cable type
                  - тип кабельной линии
                   тип 1: cable R Omkm = 1.18
                           cable name = "K\Pi\pi\Lambda\pi B\Pi-120 3x16"
```

```
cable Tmax C = 120
' ESP Hmes m
                  - длина кабельной линии
               - тип насоса по работе с газом
' GasDegtType
      GasDegtType = 0 нет коррекции
      GasDegtType = 1 стандартный ЭЦН (предел 25%)
      GasDegtType = 2 ЭЦН с газостабилизирующим модулем (предел 50%)
      GasDegtType = 3 ЭЦН с осевым модулем (предел 75%)
      GasDegtType = 4 ЭЦН с модифицированным ступенями (предел 40%)
                 предел по доле газа на входе в насос после сепарации
                 на основе статьи SPE 117414 (с корректировкой)
                 поправка дополнительная к деградации (суммируется)
' Kdegr
                   - коэффициент деградации напора
' PKV work min
                   - время работы скважины для режима ПКВ в минутах
                   - время ожидания запуска скважины для ПКВ , мин
' PKV stop min
                    ПКВ - периодическое кратковременное включение
                     если не заданы, то скважина в ПДФ
                    ПДФ - постоянно действующий фонд
                  - строка с параметрами УЭЦН
' результат
```

A.5 ESP_head_m

A.6 ESP_IDbyRate

```
' функция возвращает идентификатор типового насоса по значению
' номинального дебита
Public Function ESP IDbyRate(Q As Double)
' возвращает ID в зависимости от диапазона дебитов
' насосы подобраны вручную из текущей базы
' функция нужна для удобства использования
' непосредственно в Excel для тестовых заданий и учебных примеров
   If Q > 0 And Q < 20 Then ESP IDbyRate = 738: 'BHH5-15
   If Q \ge 20 And Q < 40 Then ESP IDbyRate = 740: 'BHH5-30
   If Q >= 40 And Q < 60 Then ESP IDbyRate = 1005: 'BHH5-50
   If Q \ge 60 And Q < 100 Then ESP IDbyRate = 1006: 'BHH5-80
    If Q >= 100 And Q < 150 Then ESP IDbyRate = 737: 'BHH5-125
   If Q >= 150 And Q < 250 Then ESP IDbyRate = 1010: ' 9\muH5A-200
   If Q >= 250 And Q < 350 Then ESP IDbyRate = 1033: ' 9445A-3209
    If Q >= 350 And Q < 600 Then ESP IDbyRate = 753: 'BHH5A-500
    If Q >= 600 And Q < 800 Then ESP IDbyRate = 754: 'BHH5A-700
    If Q \ge 800 And Q < 1200 Then ESP IDbyRate = 755: 'BHH6-1000
    If Q > 1200 Then ESP IDbyRate = 264
End Function
```

A.7 esp_maxRate_m3day

```
' максимальный дебит ЭЦН для заданной частоты
' по номинальной кривой РНХ

Public Function esp_maxRate_m3day(_

    Optional ByVal freq_Hz As Double = 50, _

    Optional ByVal PumpID = 674) As Double

' freq_Hz - частота вращения ЭЦН
' PumpID - идентификатор насоса в базе данных
```

A.8 ESP_name

```
' название ЭЦН по номеру
Public Function ESP_name(Optional ByVal PumpID = 674) As String
' PumpID - идентификатор насоса в базе данных
' результат - название насоса
```

A.9 ESP_optRate_m3day

A.10 ESP_Power_W

```
' PumpID - номер насоса в базе данных
' mu_cSt - вязкость жидкости
```

A.11 ESP_system_calc

```
' расчет производительности системы УЭЦН
' считает перепад давления, электрические параметры и деградацию КПД
Public Function ESP system calc(
                ByVal Qliq sm3day As Double, _
                ByVal fw_perc As Double, _
                ByVal P_atma As Double, _
       Optional ByVal PVTstr As String, _
       Optional ByVal ESPstr As String,
       Optional ByVal CalcFromIntake As Boolean = 1
' Qliq sm3day
                   - дебит жидкости на поверхности
' fw perc
                   - обводненность
' P atma
                   - давление для которого делается расчет
                    либо давление на приеме насоса
                    либо давление на выкиде насоса
                     определяется параметром CalcFromIntake
' PVTstr
                   - набор данных PVT
                   - набор данных ЭЦН
' ESPstr
' CalcFromIntake - режим расчета снизу вверх или сверху вниз
                CalcFromIntake = True => Р atma давление на приеме
                 CalcFromIntake = False => Р atma давление на выкиде
' результат - массив значений включающий
                   перепад давления
                   перепад температур
                   мощность потребляемая с вала, Вт
                   мощность гидравлическая по перекачке жидкости, Вт
                   кпд эцн
                   список неполон
```

A.12 IPR PI sm3dayatm

```
' расчет коэффициента продуктивности пласта
' по данным тестовой эксплуатации
Public Function IPR PI sm3dayatm(
       ByVal Qtest sm3day As Double, _
       ByVal Pwftest atma As Double,
       ByVal Pres atma As Double,
       Optional ByVal fw perc As Double = 0, _
       Optional ByVal pb_atma As Double = -1)
' Qtest sm3day - тестовый дебит скважины
' Pwftest atma - тестовое забойное давление
' Pres_atma - пластовое давление, атм
' необязательные параметры
' fw perc
               - обводненность
          - давление насыщения
' pb atma
```

A.13 IPR_Pwf_atma

A.14 IPR_Qliq_sm3Day

A.15 MF_cfChoke atma

```
' расчет корректирующего фактора модели штуцера под замеры
Public Function MF cfChoke atma(
           ByVal Qliq_sm3day As Double, _
           ByVal fw perc As Double,
           ByVal dchoke_mm As Double, _
           Optional ByVal Pin atma As Double = -1,
           Optional ByVal Pout_atma As Double = -1, _
           Optional ByVal dPipe_mm As Double = 70, _
           Optional ByVal Tchoke_C As Double = 20, _
           Optional ByVal PVTstr As String = PVT DEFAULT
' Qliq sm3day
               - дебит жидкости в пов условиях
' fw perc
               - обводненность
' dchoke mm - диаметр штуцера (эффективный)
' опциональные аргументы функции
' Pin atma — давление на входе (высокой стороне)
```

A.16 MF_CJT_Katm

```
' функция расчета коэффициента Джоуля Томсона
Public Function MF CJT Katm(
            ByVal P atma As Double,
            ByVal t_C As Double, _
   Optional ByVal PVTstr As String = PVT DEFAULT,
   Optional ByVal Qliq sm3day As Double = 10,
  Optional ByVal fw perc As Double = 0) As Double
' обязательные аргументы функции
' P atma - давление, атм
' T C
            - температура, С.
' опциональные аргументы функции
' PVTstr - encoded to string PVT properties of fluid
' Qliq sm3Day - liquid rate (at surface)
' fw_perc - water fraction (watercut)
' output - number
```

A.17 MF_dPChoke_atm

```
Optional ByVal calc along flow As Boolean = True,
           Optional ByVal dPipe mm As Double = 70,
           Optional ByVal Tchoke C As Double = 20,
           Optional ByVal cfChoke As Double = 0,
           Optional ByVal PVTstr As String = PVT DEFAULT
' Qliq sm3day
               - дебит жидкости в пов условиях
' fw perc
               - обводненность
' dchoke mm
               - диаметр штуцера (эффективный)
' опциональные аргументы функции
' Pcalc atma - давление с которого начинается расчет, атм
                 граничное значение для проведения расчета
                 либо давление на входе, либое на выходе
'calc along flow - флаг направления расчета относительно потока
     если = True то расчет по потоку
     ищется давление на выкиде по известному давлению на входе,
    ищется линейное давление по известному буферному
     если = False то расчет против потока
     ищется давление на входе по известному давлению на выходе,
     ищется буферное давление по известному линейному
' dPipe mm
            - диаметр трубы до и после штуцера
' Tchoke C
            - температура, С.
' cfChoke
            - поправочный коэффициент на штуцер
                 0 - отсутсвие поправки
                 dPchoke real = (1-cfChoke) *dPchoke model
' PVTstr
            - закодированная строка с параметрами PVT.
              если задана - перекрывает другие значения
' результат - число - давления на штуцере на расчетной стороне.
            двухмерный массив с расширенным наборов параметров
              и подписей к параметрам
```

A.18 MF_dPpipe_atm

```
ByVal Hmes0 m As Double, _
       ByVal Hmes1 m As Double,
       ByVal Pcalc atma As Double,
       Optional ByVal PVTstr As String = PVT DEFAULT,
       Optional ByVal theta deg As Double = 90,
       Optional ByVal d mm As Double = 60, _
       Optional ByVal HydrCorr As H CORRELATION = 0,
       Optional ByVal Tcalc_C As Double = 50, _
       Optional ByVal Tother C As Double = -1, _
       Optional ByVal betta_grav = 1, _
       Optional ByVal betta fric = 1,
       Optional ByVal roughness m As Double = 0.0001)
' Обязательные параметры
' Qliq sm3Day -дебит жидкости в поверхностных условиях
' fw perc - обводненность
' Hmes0 m - начальная координата трубы, м
' Hmes1 m
           - конечная координата трубы, м
              расчет всегда ведется от начальной координаты к
              конечной. если Hmes0 m < Hmes1 m то расчет
              идет сверху вниз для вертикальной трубы
              иначе расчет идет снизу вверх
' Pcalc atma - давление с которого начинается расчет, атм
              граничное значение для проведения расчета
' Необязательные параметры
' стандартные набор PVT параметров
' PVTstr - закодированная строка с параметрами PVT.
              если задана - перекрывает другие значения
' theta deg - угол направления потока к горизонтали
             (90 - вертикальная труба вверх)
             может принимать отрицательные значения
'd mm
        - внутрнний диаметр трубы
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                   BeggsBriilCor = 0
                   AnsariCor = 1
                   UnifiedCor = 2
                   Gray = 3
                  HagedornBrown = 4
                   SakharovMokhov = 5
' Tcalc C - температура в точке где задано давление, С
' Tother C - температура на другом конце трубы
             по умолчанию температура вдоль трубы постоянна
             если задано то меняется линейно по трубе
' betta grav - поправка на гравитационную составляющую
```

```
' перепада давления
' betta_fric - поправка на трение в перепаде давления
' roughness_m- шероховатость трубы
' результат - число - перепад давления в трубе.
```

A.19 MF_GasFraction_d

```
' расчет доли газа в потоке
Public Function MF GasFraction d(
             ByVal P_atma As Double, _
             ByVal t_C As Double, _
    Optional ByVal fw_perc = 0, _
    Optional ByVal PVTstr As String = PVT_DEFAULT _
                           ) As Double
' обязательные аргументы функции
' P atma - давление, атм
' Т С - температура, С.
' опциональные аргументы функции
' fw perc - обводненность объемная
' PVTstr - закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число - доля газа в потоке
             (расходная без проскальзования)
```

A.20 MF_Mumix_cP

```
Optional ByVal PVTstr As String = "") As Double

' обязательные аргументы функции

' Qliq_sm3day - дебит жидкости на поверхности

' fw_perc - объемная обводненность

' P_atma - давление, атм

' T_C - температура, C.

' опциональные аргументы функции

' PVTstr - закодированная строка с параметрами PVT.

' если задана - перекрывает другие значения

' результат - число - вязкость ГЖС, м3/сут.
```

A.21 MF PChoke atma

```
' расчет давления в штуцере
Public Function MF PChoke atma(
           ByVal Qliq_sm3day As Double, _
           ByVal fw perc As Double, _
           ByVal dchoke mm As Double,
           Optional ByVal Pcalc atma As Double = -1,
           Optional ByVal calc along flow As Boolean = True,
           Optional ByVal dPipe mm As Double = 70,
           Optional ByVal Tchoke C As Double = 20,
           Optional ByVal cfChoke As Double = 0,
           Optional ByVal PVTstr As String = PVT DEFAULT
' Qliq sm3day - дебит жидкости в пов условиях
' fw perc
               - обводненность
' dchoke mm
              - диаметр штуцера (эффективный)
' опциональные аргументы функции
' Pcalc atma - давление с которого начинается расчет, атм
                 граничное значение для проведения расчета
                 либо давление на входе, либое на выходе
'calc along flow - флаг направления расчета относительно потока
     если = True то расчет по потоку
     ищется давление на выкиде по известному давлению на входе,
     ищется линейное давление по известному буферному
     если = False то расчет против потока
     ищется давление на входе по известному давлению на выходе,
```

```
' ищется буферное давление по известному линейному
' dPipe_mm — диаметр трубы до и после штуцера
' Tchoke_C — температура, C.
' cfChoke — поправочный коэффициент на штуцер
' 0 — отсутсвие поправки
' dPchoke_real = (1-cfChoke)*dPchoke_model
' PVTstr — закодированная строка с параметрами PVT.
' если задана — перекрывает другие значения
' результат — число — давления на штуцере на расчетной стороне.
```

A.22 MF PGasFraction atma

A.23 MF_PpipeZLNF_atma

```
' расчет давления и распределения температуры в трубе
' при барботаже (движение газа в затрубе при неподвижной жидкости)
' с использованием многофазных корреляций
Public Function MF_PpipeZLNF_atma( _
```

```
ByVal Qliq sm3day As Double,
       ByVal fw perc As Double, _
       ByVal Hmes0 m As Double, _
       ByVal Hmes1 m As Double,
       ByVal Pcalc atma As Double, _
       Optional ByVal PVTstr As String = PVT DEFAULT,
       Optional ByVal theta deg As Double = 90,
       Optional ByVal d mm As Double = 60,
       Optional ByVal HydrCorr As H CORRELATION = 0,
       Optional ByVal Tcalc_C As Double = 50, _
       Optional ByVal Tother C As Double = -1,
       Optional ByVal betta_grav = 1, _
       Optional ByVal betta fric = 1,
       Optional ByVal roughness m As Double = 0.0001,
       Optional ByVal Qgcas free scm3day As Double = 50)
' Обязательные параметры
' Qliq sm3Day - дебит жидкости в поверхностных условиях
                (учтется при расчете газа в затрубе)
' fw perc - обводненность
' Hmes0 m - начальная координата трубы, м
            - конечная координата трубы, м
' Hmes1 m
             расчет всегда ведется от начальной координаты к
              конечной. если Hmes0 m < Hmes1 m то расчет
              идет сверху вниз для вертикальной трубы
              иначе расчет идет снизу вверх
' Pcalc atma - давление с которого начинается расчет, атм
              граничное значение для проведения расчета
' Необязательные параметры
' стандартные набор PVT параметров
' PVTstr - закодированная строка с параметрами PVT.
              если задана - перекрывает другие значения
' theta deg - угол направления потока к горизонтали
              (90 - вертикальная труба вверх)
              может принимать отрицательные значения
'd mm
            - внутриний диаметр трубы
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                   BeggsBriilCor = 0
                   AnsariCor = 1
                   UnifiedCor = 2
                   Gray = 3
                   HagedornBrown = 4
                   SakharovMokhov = 5
               для барботажа принудительно на основе Ансари пока
```

```
' Tcalc_C - температура в точке где задано давление, С
' Tother_C - температура на другом конце трубы
' по умолчанию температура вдоль трубы постоянна
' если задано то меняется линейно по трубе
' betta_grav - поправка на гравитационную составляющую
' перепада давления
' betta_fric - поправка на трение в перепаде давления
' roughness_m - шероховатость трубы
' Qgcas_free_scm3day - количество газа в затрубе
' результат - число - давление на другом конце трубы atma.
```

A.24 MF_Ppipe_atma

```
расчет давления и распределения температуры в трубе
' с использованием многофазных корреляций
Public Function MF Ppipe atma(
       ByVal Qliq_sm3day As Double, _
       ByVal fw perc As Double, _
       ByVal Hmes0 m As Double,
       ByVal Hmes1 m As Double,
       ByVal Pcalc atma As Double,
       Optional ByVal PVTstr As String = PVT DEFAULT,
       Optional ByVal theta deg As Double = 90,
       Optional ByVal d mm As Double = 60,
       Optional ByVal HydrCorr As H_CORRELATION = 0,
       Optional ByVal Tcalc C As Double = 50,
       Optional ByVal Tother C As Double = -1,
       Optional ByVal betta grav = 1,
       Optional ByVal betta fric = 1,
       Optional ByVal roughness m As Double = 0.0001)
' Обязательные параметры
' Qliq sm3Day - дебит жидкости в поверхностных условиях
' fw perc - обводненность
' Hmes0 m
            - начальная координата трубы, м
' Hmes1 m - конечная координата трубы, м
              расчет всегда ведется от начальной координаты к
              конечной. если Hmes0 m < Hmes1 m то расчет
              идет сверху вниз для вертикальной трубы
```

```
иначе расчет идет снизу вверх
' Pcalc atma - давление с которого начинается расчет, атм
               граничное значение для проведения расчета
' Необязательные параметры
' стандартные набор PVT параметров
' PVTstr - закодированная строка с параметрами PVT.
              если задана - перекрывает другие значения
' theta deg - угол направления потока к горизонтали
              (90 - вертикальная труба вверх)
              может принимать отрицательные значения
             - внутриний диаметр трубы
'd mm
            - гидравлическая корреляция, Н CORRELATION
' HydrCorr
                  BeggsBriilCor = 0
                  AnsariCor = 1
                  UnifiedCor = 2
                  Gray = 3
                  HagedornBrown = 4
                  SakharovMokhov = 5
' Tcalc C - температура в точке где задано давление, С
' Tother C
            - температура на другом конце трубы
               по умолчанию температура вдоль трубы постоянна
               если задано то меняется линейно по трубе
' betta grav - поправка на гравитационную составляющую
              перепада давления
' betta fric - поправка на трение в перепаде давления
' roughness m - шероховатость трубы
' результат - число - давление на другом конце трубы atma.
```

A.25 MF_PrGrad_atmm

```
Optional ByVal sigma o Nm As Double = const sigma oil Nm,
   Optional ByVal gamma oil As Double = const_go_, _
   Optional ByVal gamma_gas As Double = const_gg_, _
   Optional ByVal eps_m As Double = 0.0001, _
   Optional ByVal theta deg As Double = 90,
   Optional ByVal ZNLF As Boolean = False)
' расчет градиента давления по одной из корреляций
' объемные коэффициенты по умолчанию
' заданы равными единицам - если их не трогать,
' значит дебиты в рабочих условиях
' газосодержание равно нулю по умолчанию
' - значит весь газ который указан идет в потоке
' пока только для Ансари - потом можно
' распространить и на другие методы
' d m - диаметр трубы в которой идет поток
' Р atma - давление в точке расчета
' Ql rc m3day - дебит жидкости в рабочих условиях
' Qg rc m3day - дебит газа в рабочих условиях
' Muo cP - вязкость нефти в рабочих условиях
' Mug cP - вязкость газа в рабочих условиях
' sigma o Nm - поверхностное натяжение
              жидкость газ
' gamma oil - удельная плотность нефти
' gamma gas - удельная плотность газа
' eps m - шероховатость
' theta deg - угол от горизонтали
' ZNLF - флаг для расчета барботажа
```

A.26 MF_QliqChoke_sm3day

```
Optional ByVal Tchoke C = 20,
       Optional ByVal cfChoke As Double = 0,
       Optional ByVal PVTstr As String = PVT DEFAULT)
' fw perc - обводненность
' dchoke mm
            - диаметр штуцера (эффективный)
' Pin atma
            - давление на входе (высокой стороне)
' Pout atma - давление на выходе (низкой стороне)
' опциональные аргументы функции
' dPipe mm
            - диаметр трубы до и после штуцера
' Tchoke C
             - температура, С.
' cfChoke - поправочный коэффициент на штуцер
               0 - отсутсвие поправки
               dPchoke real = (1-cfChoke)*dPchoke model
' PVTstr
              - закодированная строка с параметрами PVT.
                если задана - перекрывает другие значения
```

A.27 MF_Qmix_m3day

```
' расчет объемного расхода газожидкостной смеси
' для заданных термобарических условий
Public Function MF Qmix m3day(
            ByVal Qliq sm3day As Double,
            ByVal fw_perc As Double, _
            ByVal P_atma As Double, _
            ByVal t_C As Double, _
   Optional ByVal PVTstr As String = "") As Double
' обязательные аргументы функции
' Qliq sm3day- дебит жидкости на поверхности
' fw perc - объемная обводненность
' P atma
           - давление, атм
'ТС - температура, С.
' опциональные аргументы функции
' PVTstr - закодированная строка с параметрами PVT.
             если задана - перекрывает другие значения
' результат - число - плотность ГЖС, кг/м3.
```

A.28 MF_Rhomix_kgm3

```
' расчет плотности газожидкостной смеси для заданных условий
Public Function MF Rhomix kgm3(
            ByVal Qliq sm3day As Double,
            ByVal fw perc As Double, _
            ByVal P atma As Double,
            ByVal t C As Double, _
   Optional ByVal PVTstr As String = "") As Double
' обязательные аргументы функции
' Qliq sm3day- дебит жидкости на поверхности
' fw perc - объемная обводненность
' P atma
           - давление, атм
           - температура, С.
' опциональные аргументы функции
' PVTstr - закодированная строка с параметрами PVT.
             если задана - перекрывает другие значения
' результат - число - плотность ГЖС, кг/м3.
```

A.29 MF RpGasFraction m3m3

```
' если задана – перекрывает другие значения
' результат – число – газовый фактор, м3/м3.
```

A.30 MF_SeparNat_d

```
' расчет натуральной сепарации газа на приеме насоса
Public Function MF_SeparNat_d(
            ByVal Qliq sm3day As Double,
            ByVal fw_perc As Double, _
            ByVal Pin_atma As Double, _
   Optional ByVal Tin C As Double = 50,
   Optional ByVal dIntake mm As Double = 90,
   Optional ByVal dcas_mm As Double = 120, _
   Optional ByVal PVTstr As String = PVT DEFAULT) As Double
' Qliq sm3day - дебит жидкости в поверхностных условиях
' fw perc
               - обводненность
' Pin atma
              - давление сепарации
' Tin C
               - температура сепарации
' dintake mm - диаметр приемной сетки
' dcas mm - диаметр эксплуатационной колонны
' PVTstr - закодированная строка с параметрами PVT.
            если задана - перекрывает другие значения
' результат - число - естественная сепарация
```

A.31 MF_SeparTotal_d

```
MF_SeparTotal_d = SepNat + (1 - SepNat) * SepGasSep
End Function
```

A.32 nodal_Qliq_scm3day

```
' функция расчета узлового анализа системы "пласт - скважина - УЭЦН"
' по заданным параетрам пласта, скважины и УЭЦН
' определяется рабочий дебит и забойное давление
Public Function nodal Qliq scm3day(
            ByVal PI_sm3dayatm As Double, _
            ByVal Plin_atma As Double, _
            ByVal fw_perc As Double, _
   Optional ByVal Pres atma = 250,
   Optional ByVal Pcas atma As Double = 10,
   Optional ByVal wellStr As String = WELL_DEFAULT, _
   Optional ByVal PVTstr As String = PVT_DEFAULT, _
   Optional ByVal ESPstr As String = ESP_DEFAULT, _
   Optional ByVal HydrCorr As H CORRELATION = 0,
   Optional ByVal ksep_fr As Double = 0, _
   Optional ByVal Kdegr d As Double = 0,
   Optional ByVal param num As Integer = 0)
' исходные параметры
' PI sm3dayatm - коэффициент продуктивности пласта
' Plin atma - линейное давление
' fw perc - обводненность (объемная на поверхности)
' ----- опциональные параметры
' Pres atma - пластовое давление
' Pcas atma - затрубное давление (для определения Ндин)
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                   BeggsBriilCor = 0
                   AnsariCor = 1
                   UnifiedCor = 2
                   Gray = 3
                   HagedornBrown = 4
                   SakharovMokhov = 5
```

```
' ksep_fr - коэффициент сепарации.

' если задан - то используется вместо расчетного

' явное задание коэффициента серации ускоряет расчет

' Kdegr_d - коэффициент деградации УЭЦН

' param_num - параметры для вывода в качестве результата

' если не задан выводятся все в виде массива

' ----- результаты расчета

' массив параметры работы системы "пласт - скважина - УЭЦН"
```

A.33 PVT Bg m3m3

```
' функция расчета объемного коэффициента газа
Public Function PVT_Bg_m3m3(
           ByVal P atma As Double,
           ByVal t_C As Double, _
           Optional ByVal gamma_gas As Double = const gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const_Rsb_default, _
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
```

```
const go = 0.86
' gamma wat удельная плотность воды, по воде.
 const_gw_ = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
        имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
             температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' Возвращает значение объемного коэффициента газа, м3/м3
' для заданных термобарических условий.
' В основе расчета корреляция для z факотора
```

A.34 PVT_Bo_m3m3

```
ByVal t C As Double,
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const go , _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob_cP = -1, _
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
' T C
          температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
           Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C
          пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const_Tres_default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
       По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
```

```
StraigthLine = 2 - на основе упрощенных зависимостей ksep_fr коэффициент сепарации - определяет изменение свойств нефти после сепарации доли свободного газа.

изменение свойств нефти зависит от условий сепарации газа, которые должны быть явно заданы pksep_atma давление при которой была сепарация tksep_C температура при которой была сепарация

PVTstr закодированная строка с параметрами PVT.

ссли задана - перекрывает другие значения

результат - число
Возвращает значение объемного коэффициента нефти, м3/м3

для заданных термобарических условий.
В основе расчета корреляции PVT
```

A.35 PVT_Bw_m3m3

```
' расчет объемного коэффициента воды
Public Function PVT Bw m3m3(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const gg , _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb default, _
           Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const_Tres default, _
           Optional ByVal bob_m3m3 = -1,
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
```

```
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const qw = 1
'rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C
          пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
        По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число
' Возвращает значение объемного коэффициента воды, м3/м3
' для заданных термобарических условий.
```

A.36 PVT_decode_string

A.37 PVT_encode_string

```
' функция кодирования параметров PVT в строку,
' которую можно потом использовать в прикладных функциях
Public Function PVT encode string(
                   Optional ByVal gamma_gas As Double = const_gg_, _
                   Optional ByVal gamma_oil As Double = const_go_, _
                   Optional ByVal gamma_wat As Double = const_gw_, _
                   Optional ByVal rsb m3m3 = const Rsb default,
                   Optional ByVal rp m3m3 = -1,
                   Optional ByVal pb atma = -1,
                   Optional ByVal tres C = const Tres default,
                   Optional ByVal bob_m3m3 = -1,
                   Optional ByVal muob_cP = -1,
                   Optional ByVal PVTcorr = StandingBased,
                   Optional ByVal ksep_fr = 0, _
                   Optional ByVal pksep atma = -1,
                   Optional ByVal tksep C = -1
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
```

```
const go = 0.86
' gamma wat удельная плотность воды, по воде.
 const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
         const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
         имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
             температура при которой была сепарация
' результат - закодированная строка
```

A.38 PVT_Mug_cP

```
Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres_C = const_Tres_default, _
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep_C = -1, _
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
    const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
```

```
' сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep_C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
' если задана - перекрывает другие значения
' результат - число - вязкость газа
' при заданных термобарических условиях, сП
```

A.39 PVT Muo cP

```
' расчет вязкости нефти
Public Function PVT Muo_cP(
           ByVal P atma As Double,
           ByVal t_C As Double, _
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const_Rsb_default, _
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
' Т С температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
```

```
const go = 0.86
' gamma wat удельная плотность воды, по воде.
 const_gw_ = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
' имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
         Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
          StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
             температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число - вязкость нефти
         при заданных термобарических условиях, сП
```

A.40 PVT_Muw_cP

```
' расчет вязкости воды
Public Function PVT_Muw_cP( _
ByVal P_atma As Double, _
ByVal t_C As Double, _
```

```
Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_,_
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
' T C
       температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
   const_gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb_atma Давление насыщения при температуре tres_C, атма.
           Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
```

```
' ksep_fr коэффициент сепарации - определяет изменение свойств

' нефти после сепарации доли свободного газа.

' изменение свойств нефти зависит от условий

' сепарации газа, которые должны быть явно заданы

' pksep_atma давление при которой была сепарация

' tksep_C температура при которой была сепарация

' PVTstr закодированная строка с параметрами PVT.

' если задана - перекрывает другие значения

' результат - число - вязкость воды

' при заданных термобарических условиях, сП
```

A.41 PVT_pb_atma

```
' Расчет давления насыщения
Public Function PVT pb atma(
                ByVal t C As Double, _
       Optional ByVal gamma_gas As Double = const_gg_, _
       Optional ByVal gamma_oil As Double = const_go_, _
       Optional ByVal gamma wat As Double = const gw ,
       Optional ByVal rsb_m3m3 = const_Rsb_default, _
       Optional ByVal rp m3m3 = -1,
       Optional ByVal pb_atma = -1, _
       Optional ByVal tres C = const Tres default,
       Optional ByVal bob_m3m3 = -1, _
       Optional ByVal muob cP = -1,
       Optional ByVal PVTcorr = StandingBased, _
       Optional ByVal ksep_fr = 0,
       Optional ByVal pksep atma = -1,
       Optional ByVal tksep C = -1,
       Optional ByVal PVTstr As String = ""
       ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
```

```
const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
  const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
         const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
         имеет приоритет перед Rsb если Rp < Rsb
' рb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
' По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число - давление насыщения.
```

A.42 PVT_Rhog_kgm3

```
' расчет плотности газа
Public Function PVT_Rhog_kgm3( _

ByVal P_atma As Double, _
```

```
ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const go , _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob_cP = -1, _
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep_C = -1, _
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
' T C
          температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
           Опциональный калибровочный параметр,
           если не задан или = 0 то рассчитается по корреляции
' tres C
          пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const_Tres_default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
       По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
```

```
' StraigthLine = 2 - на основе упрощенных зависимостей 'ksep_fr коэффициент сепарации - определяет изменение свойств нефти после сепарации доли свободного газа. 'изменение свойств нефти зависит от условий сепарации газа, которые должны быть явно заданы 'pksep_atma давление при которой была сепарация 'tksep_C температура при которой была сепарация 'PVTstr закодированная строка с параметрами PVT. 'если задана - перекрывает другие значения 'peзультат - число - плотность газа при заданных термобарических условиях, кг/м3.
```

A.43 PVT Rhoo kgm3

```
' расчет плотности нефти
Public Function PVT Rhoo kgm3(
           ByVal P atma As Double, _
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma wat As Double = const gw , _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob_cP = -1, _
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
' Т С температура, С.
```

```
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
   const_gg_ = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
        имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_C пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
          нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
          сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число - плотность нефти
          при заданных термобарических условиях, кг/м3.
```

A.44 PVT Rhow kgm3

```
' расчет плотности воды
Public Function PVT Rhow kgm3(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' Р atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
           имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_С пластовая температура, С.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
```

```
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
           StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число - плотность воды
          при заданных термобарических условиях, кг/м3.
```

A.45 PVT_Rs_m3m3

```
' расчет газосодержания
Public Function PVT Rs m3m3(
           ByVal P atma As Double,
           ByVal t_C As Double, _
           Optional ByVal gamma gas As Double = const gg , _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
            Optional ByVal rp m3m3 = -1,
           Optional ByVal pb atma = -1,
            Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
            Optional ByVal muob cP = -1,
            Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep_fr = 0, _
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
```

```
Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
         const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
         имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
         Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, C.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
         По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
          McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep_fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число - газосодержание при
    заданных термобарических условиях, м3/м3.
```

A.46 PVT Sal ppm

```
' расчет объемного коэффициента воды
Public Function PVT Sal ppm(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const_Tres default, _
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' Р atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
           имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_C пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
```

```
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число
' Возвращает соленость воды, ррт
' для заданных термобарических условий.
```

A.47 PVT_STliqgas_Nm

```
' расчет коэффициента поверхностного натяжения жидкость - газ
Public Function PVT STliggas Nm(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob_cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
```

```
Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
         const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
  const gw = 1
'rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
          имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
              температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число
' Возвращает коэффициента поверхностного натяжения жидкость - газ, Нм
' для заданных термобарических условий.
```

A.48 PVT_SToilgas_Nm

```
' расчет коэффициента поверхностного натяжения нефть - газ
Public Function PVT SToilgas Nm(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma_oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const_Tres default, _
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' Р atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
          const_go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
           имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_C пластовая температура, С.
          Учитывается при расчете давления насыщения.
          const Tres default = 90
```

```
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число
' Возвращает коэффициента поверхностного натяжения нефть - газ, Нм
' для заданных термобарических условий.
```

A.49 PVT_STwatgas_Nm

```
' расчет коэффициента поверхностного натяжения вода - газ
Public Function PVT STwatgas Nm(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb m3m3 = const Rsb default,
           Optional ByVal rp_m3m3 = -1,
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob m3m3 = -1,
           Optional ByVal muob_cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep atma = -1,
```

```
Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' P_atma давление, атм
'ТС температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
         const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const_go_ = 0.86
' gamma wat удельная плотность воды, по воде.
  const gw = 1
'rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
         имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres C пластовая температура, С.
           Учитывается при расчете давления насыщения.
           const Tres default = 90
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep_atma давление при которой была сепарация
' tksep C
             температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
          если задана - перекрывает другие значения
' результат - число
' Возвращает коэффициента поверхностного натяжения вода - газ, Нм
' для заданных термобарических условий.
```

A.50 PVT Z

```
' расчет коэффициента сверхсжимаемости газа
Public Function PVT Z(
           ByVal P atma As Double,
           ByVal t C As Double,
           Optional ByVal gamma_gas As Double = const_gg_, _
           Optional ByVal gamma oil As Double = const_go_, _
           Optional ByVal gamma_wat As Double = const_gw_, _
           Optional ByVal rsb_m3m3 = const_Rsb_default, _
           Optional ByVal rp m3m3 = -1, _
           Optional ByVal pb atma = -1,
           Optional ByVal tres C = const Tres default,
           Optional ByVal bob_m3m3 = -1, _
           Optional ByVal muob cP = -1,
           Optional ByVal PVTcorr = StandingBased,
           Optional ByVal ksep fr = 0,
           Optional ByVal pksep_atma = -1, _
           Optional ByVal tksep C = -1,
           Optional ByVal PVTstr As String = ""
           ) As Double
' обязательные аргументы функции
' Р atma давление, атм
' Т С температура, С.
' опциональные аргументы функции
' gamma gas удельная плотность газа, по воздуху.
           const gg = 0.6
' gamma oil удельная плотность нефти, по воде.
           const go = 0.86
' gamma wat удельная плотность воды, по воде.
          const gw = 1
' rsb m3m3 газосодержание при давлении насыщения, м3/м3.
          const Rsb default = 100
' rp m3m3 замерной газовый фактор, м3/м3.
           имеет приоритет перед Rsb если Rp < Rsb
' pb atma Давление насыщения при температуре tres C, атма.
          Опциональный калибровочный параметр,
          если не задан или = 0 то рассчитается по корреляции
' tres_С пластовая температура, С.
           Учитывается при расчете давления насыщения.
          const Tres default = 90
```

```
' bob m3m3 объемный коэффициент нефти, м3/м3.
' muob cP вязкость нефти при давлении насыщения
          По умолчанию рассчитывается по корреляции
' PVTcorr номер набора PVT корреляций для расчета
          StandingBased = 0 - на основе кор-ии Стендинга
           McCainBased = 1 - на основе кор-ии Маккейна
           StraigthLine = 2 - на основе упрощенных зависимостей
' ksep fr коэффициент сепарации - определяет изменение свойств
           нефти после сепарации доли свободного газа.
           изменение свойств нефти зависит от условий
           сепарации газа, которые должны быть явно заданы
' pksep atma давление при которой была сепарация
' tksep C температура при которой была сепарация
' PVTstr закодированная строка с параметрами PVT.
           если задана - перекрывает другие значения
' результат - число - z фактор газа.
          коэффициент сверхсжимаемости газа,
           безразмерная величина
```

A.51 wellGL_decode_string

```
' функция расшифровки параметров работы
' газлифтной скважины закодированных в строке

Public Function wellGL_decode_string(well_GL_str As String, Optional

→ ByVal getStr As Boolean = False)
' well_GL_str - строка с параметрами газлифтной скважины
' getStr - флаг проверки работы функции
' по умолчанию False (0) - функция выдает объект CESPsystemSimple
' если задать True - функция раскодирует строку и снова закодирует
' и выдаст строку (можно использовать из листа)
' результат - объект CESPsystemSimple
```

A.52 wellGL_encode_string

```
' функция кодирования параметров работы скважины с газлифтом
Public Function wellGL encode string(
                   Optional ByVal hperf_m As Double = 2000, _
                   Optional ByVal htub m As Double = 1800, _
                   Optional ByVal udl m As Double = 0,
                   Optional ByVal dcas mm As Double = 150,
                   Optional ByVal dtub mm As Double = 72, _
                   Optional ByVal dchoke mm As Double = 15,
                   Optional ByVal roughness m As Double = 0.0001,
                   Optional ByVal tbh_C As Double = 85, _
                   Optional ByVal twh C As Double = 25,
                   Optional HmesGLV m = 0,
                   Optional dGLV mm = 0,
                   Optional PsurfGLV atma = 0)
' hperf m
               - измеренная глубина верхних дыр перфорации
                 глубина пласта на которой рассчитывается
                 забойное давление
' hpump m
               - измеренная глубина спуска насоса
' udl m
               - удлинение
                разница между измеренной и вертикальной
                глубиной пласта
               - внутренний диаметр эксплуатационной колонны
' dcas mm
' dtub mm
               - внешний диаметр НКТ
' dchoke mm
               - диаметр штуцера
' roughness m
               - шероховатость стенок НКТ и ЭК
' tbh C
               - температура флюида на забое скважины
' twh C
               - температура флюида на устье скважины
                по умолчанию температурный расчет идет
                такие образом, что температура флюида меняется
                линейно относительно вертикальной глубины
' результат - строка с закодированными параметрами
```

A.53 well_calcKdegr_fr

```
' функция адаптации модели скважины по данным эксплуатации
' подбирает коэффициента деградации УЭЦН и штуцера
' по замера на поверхности и на забое/приеме насоса
Public Function well calcKdegr fr(
                    ByVal Q m3Day As Double, _
                    ByVal fw perc As Double,
                    ByVal Pdown atma As Double, _
                    ByVal Pbuf_atma As Double, _
           Optional Pdown at intake As Boolean = False,
           Optional ByVal Plin_atma As Double = -1, _
            Optional ByVal Pcas atma As Double = -1,
            Optional ByVal wellStr As String = WELL DEFAULT,
           Optional ByVal PVTstr As String = PVT_DEFAULT, _
           Optional ByVal ESPstr As String = ESP DEFAULT,
           Optional ByVal HydrCorr As H_CORRELATION = 0, _
           Optional ByVal ksep fr As Double = -1, _
           Optional ByVal Kdegr d As Double = 0,
           Optional ByVal param num As Integer = 0)
' исходные параметры
' Q m3Day - дебит жидкости, на поверхности
' fw perc - обводненность (объемная на поверхности)
' Pdown atma - давление ниже насоса (внизу) для расчета
     либо забойное давление (по умолчанию)
     либо давление на приеме
    определяется опциональным параметром Pdown at intake
' Pbuf atma - буферное давление
' ----- опциональные параметры
' Pdown at intake - флаг определяет точку расчета давления
                   ниже насоса. По умолчанию забойное
' Plin atma - линейное давление
             если не задано штуцер не учитывается
' Pcas atma - затрубное давление
' если не задано динамический уровень не рассчитывается
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                  BeggsBriilCor = 0
                  AnsariCor = 1
                   UnifiedCor = 2
```

```
Gray = 3

HagedornBrown = 4

SakharovMokhov = 5

ksep_fr - коэффициент сепарации.

если задан - то используется вместо расчетного
явное задание коэффициента серации ускоряет расчет

Kdegr_d - коэффициент деградации УЭЦН

param_num - параметры для вывода в качестве результата

если не задан выводятся все в виде массива

------ результаты расчета

массив параметры работы системы "пласт - скважина - УЭЦН"
```

A.54 well decode string

A.55 well_encode_string

```
' функция кодирования параметров конструкции скважины
' в строку, которую можно потом использовать

Public Function well_encode_string(

Optional ByVal hperf_m As Double = 2000,

Optional ByVal hpump_m As Double = 1800,

Optional ByVal udl_m As Double = 0,
```

```
Optional ByVal dcas mm As Double = 150,
               Optional ByVal dtub mm As Double = 72,
               Optional ByVal dchoke mm As Double = 15,
               Optional ByVal roughness m As Double = 0.0001,
               Optional ByVal tbh C As Double = 85,
               Optional ByVal twh C As Double = 25)
' hperf m
               - измеренная глубина верхних дыр перфорации
                глубина пласта на которой рассчитывается
                 забойное давление
               - измеренная глубина спуска насоса
' hpump m
' udl m
               - удлинение
                разница между измеренной и вертикальной
                глубиной пласта
' dcas mm
               - внутренний диаметр эксплуатационной колонны
' dtub mm
               - внешний диаметр НКТ
' dchoke mm
               - диаметр штуцера
' roughness m
               - шероховатость стенок НКТ и ЭК
' tbh C
               - температура флюида на забое скважины
' twh C
               - температура флюида на устье скважины
                по умолчанию температурный расчет идет
                 такие образом, что температура флюида меняется
                 линейно относительно вертикальной глубины
' результат - строка с закодированными параметрами
```

A.56 well Pintake Pwf atma

```
' исходные параметры
' Q m3Day - дебит жидкости, на поверхности
' fw perc - обводненность (объемная на поверхности)
' Pwf atma - забойное давление
' ----- опциональные параметры
' Pcas atma - затрубное давление
' если не задано динамический уровень не рассчитывается
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                  BeggsBriilCor = 0
                  AnsariCor = 1
                   UnifiedCor = 2
                   Grav = 3
                  HagedornBrown = 4
                  SakharovMokhov = 5
' ksep fr - коэффициент сепарации.
          если задан - то используется вместо расчетного
           явное задание коэффициента серации ускоряет расчет
' Kdegr d - коэффициент деградации УЭЦН
' param num - параметры для вывода в качестве результата
             если не задан выводятся все в виде массива
' ----- результаты расчета
' массив параметры работы системы "пласт - скважина - УЭЦН"
```

A.57 well Plin Pwf atma

```
Optional ByVal HydrCorr As H CORRELATION = 0,
       Optional ByVal ksep_fr As Double = 0, _
       Optional ByVal Kdegr d As Double = 0,
       Optional ByVal param num As Integer = 0 _
' исходные параметры
' Q m3Day - дебит жидкости, на поверхности
' fw perc - обводненность (объемная на поверхности)
' Pwf atma - забойное давление
' ----- опциональные параметры
' Pcas atma - затрубное давление
если не задано динамический уровень не рассчитывается
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                  BeggsBriilCor = 0
                   AnsariCor = 1
                  UnifiedCor = 2
                   Gray = 3
                   HagedornBrown = 4
                   SakharovMokhov = 5
' ksep fr - коэффициент сепарации.
           если задан - то используется вместо расчетного
           явное задание коэффициента серации ускоряет расчет
' Kdegr d - коэффициент деградации УЭЦН
' param num - параметры для вывода в качестве результата
            если не задан выводятся все в виде массива
' ----- результаты расчета
' массив параметры работы системы "пласт - скважина - УЭЦН"
```

A.58 well_Pwf_Hdyn_atma

```
ByVal Hdyn m As Double,
           Optional ByVal wellStr As String = WELL DEFAULT,
           Optional ByVal PVTstr As String = PVT DEFAULT,
           Optional ByVal ESPstr As String = ESP_DEFAULT, _
           Optional ByVal HydrCorr As H CORRELATION = 0,
           Optional ByVal ksep fr As Double = 0, _
           Optional ByVal Kdegr d As Double = 0,
           Optional ByVal param num As Integer = 0)
' исходные параметры
' Q m3Day - дебит жидкости, на поверхности
' fw perc - обводненность (объемная на поверхности)
' Pcas atma - затрубное давление
' Hdyn m - динамический уровень (при данном затрубном)
' ---- опциональные параметры
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr
          - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, H_CORRELATION
                  BeggsBriilCor = 0
                  AnsariCor = 1
                  UnifiedCor = 2
                  Gray = 3
                  HagedornBrown = 4
                  SakharovMokhov = 5
' ksep fr - коэффициент сепарации.
          если задан - то используется вместо расчетного
          явное задание коэффициента серации ускоряет расчет
' Kdegr d - коэффициент деградации УЭЦН
' param num - параметры для вывода в качестве результата
            если не задан выводятся все в виде массива
' ----- результаты расчета
' массив параметры работы системы "пласт - скважина - УЭЦН"
```

A.59 well_Pwf_Plin_atma

```
' функция расчета забойного давления по устьевому для скважины
' расчет сверху-вниз, считает быстро за счет угадывания сепарации
'
температура только линейная или по градиенту
```

```
Public Function well Pwf Plin atma(
                ByVal Q m3Day As Double, _
                ByVal fw perc As Double,
                ByVal Plin_atma As Double, _
       Optional ByVal Pcas atma As Double = -1,
       Optional ByVal wellStr As String = WELL DEFAULT,
       Optional ByVal PVTstr As String = PVT DEFAULT,
       Optional ByVal ESPstr As String = ESP_DEFAULT, _
       Optional ByVal HydrCorr As H CORRELATION = 0,
       Optional ByVal ksep fr As Double = -1,
       Optional ByVal Psep_atma As Double = 40, _
       Optional ByVal Tsep_C As Double = 40, _
       Optional ByVal Kdegr d As Double = 0,
       Optional ByVal param_num As Integer = 0)
' функция расчета забойного давления скважины по линейному
' на основе устьевых параметров работы скважины
' исходные параметры
' Q m3Day - дебит жидкости, на поверхности
' fw perc - обводненность (объемная на поверхности)
' Plin atma - линейное (устьевое) давление
' ----- опциональные параметры
' Pcas atma - затрубное давление
' если не задано динамический уровень не рассчитывается
' wellStr - закодированные параметры конструкции скважины
' PVTstr - закодированные параметры флюидов
' ESPStr - закодированные параметры УЭЦН
' HydrCorr - гидравлическая корреляция, Н CORRELATION
                   BeggsBriilCor = 0
                   AnsariCor = 1
                   UnifiedCor = 2
                   Gray = 3
                   HagedornBrown = 4
                   SakharovMokhov = 5
' ksep fr - коэффициент сепарации.
           если задан - то используется вместо расчетного
           явное задание коэффициента серации ускоряет расчет
' Psep atma - давление сепарации
' Тsep C - температура сепарации
           при расчете сверху вниз неизвестны параметры сепарации
           если задать их явно (угадать)
           тогда расчет упрощается и ускоряется
' Kdegr d - коэффициент деградации УЭЦН
' param num - параметры для вывода в качестве результата
```

```
    если не задан выводятся все в виде массива
    ----- результаты расчета
    массив параметры работы системы "пласт - скважина - УЭЦН"
```