	· ·	_		Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	1	UNIVERSAL		
speed of light in vacuum	c, c_0	299 792 458	${ m m~s^{-1}}$	(exact)
magnetic constant	μ_0	$4\pi \times 10^{-7}$	${ m N~A^{-2}}$,
_		$= 12.566370614\times 10^{-7}$	${ m N~A^{-2}}$	(exact)
electric constant $1/\mu_0 c^2$	ε_0	$8.854187817\times10^{-12}$	${\rm F}{\rm m}^{-1}$	(exact)
characteristic impedance				
of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730313461	Ω	(exact)
Newtonian constant				
of gravitation	G	$6.673(10) \times 10^{-11}$	${ m m}^3~{ m kg}^{-1}~{ m s}^{-2}$	1.5×10^{-3}
	$G/\hbar c$	$6.707(10) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	1.5×10^{-3}
Planck constant	$h^{'}$	$6.62606876(52)\times10^{-34}$	J s	7.8×10^{-8}
in eV s		$4.13566727(16)\times10^{-15}$	eV s	3.9×10^{-8}
$h/2\pi$	\hbar	$1.054571596(82) \times 10^{-34}$	J s	7.8×10^{-8}
in eV s		$6.58211889(26)\times10^{-16}$	eV s	3.9×10^{-8}
Planck mass $(\hbar c/G)^{1/2}$	mp	$2.1767(16) \times 10^{-8}$	kg	7.5×10^{-4}
Planck length $\hbar/m_{\rm P}c = (\hbar G/c^3)^{1/2}$	$m_{ m P}$ $l_{ m P}$	$1.6160(12) \times 10^{-35}$	m	7.5×10^{-4} 7.5×10^{-4}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.3906(40) \times 10^{-44}$	S	7.5×10^{-4} 7.5×10^{-4}
Tank time $ip/e = (nG/e^{-})^{-}$		CTROMAGNETIC	3	7.5 × 10
	LLLC	CINOMAGNETIC		
elementary charge	e	$1.602176462(63) \times 10^{-19}$	C	3.9×10^{-8}
, ,	e/h	$2.417989491(95)\times 10^{14}$	${ m A~J^{-1}}$	3.9×10^{-8}
magnetic flux quantum $h/2e$	Φ_0	$2.067833636(81)\times10^{-15}$	Wb	3.9×10^{-8}
conductance quantum $2e^2/h$	G_0	$7.748091696(28) \times 10^{-5}$	S	3.7×10^{-9}
inverse of conductance quantum	G_0^{-1}	12906.403786(47)	Ω	3.7×10^{-9}
Josephson constant ^a $2e/h$	$K_{ m J}$	$483597.898(19) \times 10^9$	$\mathrm{Hz}\mathrm{V}^{-1}$	3.9×10^{-8}
von Klitzing constant ^b	11,	100 001.000(10) × 10	112 ,	0.0 × 10
$h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25812.807572(95)	Ω	3.7×10^{-9}
D 1		007 400 000 (07) 10-26	r.m-1	4.0 10-8
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400899(37) \times 10^{-26}$	$J T^{-1}$	4.0×10^{-8}
in eV T^{-1}	/1-	$5.788381749(43) \times 10^{-5}$	$ m eV~T^{-1}$ $ m Hz~T^{-1}$	7.3×10^{-9}
	$\mu_{\rm B}/h$	$13.99624624(56) \times 10^9$	$m^{-1} T^{-1}$	4.0×10^{-8} 4.0×10^{-8}
	$\mu_{\rm B}/hc$	46.686 4521(19) 0.671 7131(12)	$\mathbf{K} \mathbf{T}^{-1}$	4.0×10^{-6} 1.7×10^{-6}
	$\mu_{ m B}/k$	0.0717131(12)	K I	1.7 × 10
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.05078317(20) \times 10^{-27}$	$ m J~T^{-1}$	4.0×10^{-8}
in eV T ⁻¹		$3.152451238(24) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	7.6×10^{-9}
	$\mu_{ m N}/h$	7.62259396(31)	$ m MHz~T^{-1}$	4.0×10^{-8}
	$\mu_{ m N}/hc$	$2.54262366(10) \times 10^{-2}$	$m^{-1} T^{-1}$	4.0×10^{-8}
	$\mu_{ m N}/k$	$3.6582638(64) \times 10^{-4}$	$K T^{-1}$	1.7×10^{-6}
	ATOM	IC AND NUCLEAR		
		General		
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.297352533(27) \times 10^{-3}$		3.7×10^{-9}
inverse fine-structure constant	α^{-1}	137.03599976(50)		3.7×10^{-9}

${\bf Fundamental\ Physical\ Constants--Complete\ Listing}$

Quantity	Symbol	Value	Unit	Relative std. uncert. u_r
Quantity	- Bylliooi	varue	Cint	difect. ar
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10 973 731.568 549(83)	m^{-1}	7.6×10^{-12}
rejudeig constant a mee 2n	$R_{\infty}c$	$3.289841960368(25)\times10^{15}$	Hz	7.6×10^{-12}
	$R_{\infty}hc$	$2.17987190(17)\times 10^{-18}$	J	7.8×10^{-8}
$R_{\infty}hc$ in eV	100,000	13.60569172(53)	eV	3.9×10^{-8}
- CO - C - C - C - C - C - C - C - C - C		-0.000 00-1-(00)		0.00
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_{\rm e}e^2$	a_0	$0.5291772083(19)\times10^{-10}$	m	3.7×10^{-9}
Hartree energy $e^2/4\pi\varepsilon_0 a_0 = 2R_{\infty}hc$	v	()		
$= \alpha^2 m_{\rm e} c^2$	$E_{ m h}$	$4.35974381(34) \times 10^{-18}$	J	7.8×10^{-8}
in eV		27.211 3834(11)	eV	3.9×10^{-8}
quantum of circulation	$h/2m_{ m e}$	$3.636947516(27)\times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	7.3×10^{-9}
	$h/m_{ m e}$	$7.273895032(53)\times10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	7.3×10^{-9}
	Elec	troweak		
F	C //+ \3	1 100 00 (1) 10 - 5	a_{N-2}	0.6 10-6
Fermi coupling constant ^c	$G_{\mathrm{F}}/(\hbar c)^3$	$1.16639(1) \times 10^{-5}$	${ m GeV^{-2}}$	8.6×10^{-6}
weak mixing angle ^d $\theta_{\rm W}$ (on-shell scheme)	. 20	0.0004(10)		0.710-3
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.2224(19)		8.7×10^{-3}
	Elec	tron, e		
1		0.100.001.00(70) 10-31	1	7.0 10-8
electron mass	$m_{ m e}$	$9.10938188(72) \times 10^{-31}$	kg	7.9×10^{-8}
in u, $m_{\rm e}=A_{\rm r}({\rm e})$ u (electron		F 49F 700 110(19) × 10-4		0.1 × 10=9
relative atomic mass times u)	2	$5.485799110(12) \times 10^{-4}$	u J	2.1×10^{-9} 7.9×10^{-8}
energy equivalent	$m_{ m e}c^2$	$8.18710414(64) \times 10^{-14}$	J MeV	4.0×10^{-8}
in MeV		0.510998902(21)	Me v	4.0 × 10
electron-muon mass ratio	$m_{ m e}/m_{\mu}$	$4.83633210(15) \times 10^{-3}$		3.0×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ au}$	$2.87555(47)\times10^{-4}$		1.6×10^{-4}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.446170232(12) \times 10^{-4}$		2.1×10^{-9}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.438673462(12) \times 10^{-4}$		2.2×10^{-9}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.7244371170(58) \times 10^{-4}$		2.1×10^{-9}
electron to alpha particle mass ratio	$m_{ m e}/m_{lpha}$	$1.3709335611(29)\times10^{-4}$		2.1×10^{-9}
1 1	ε, α	,		
electron charge to mass quotient	$-e/m_{ m e}$	$-1.758820174(71)\times10^{11}$	${ m C~kg^{-1}}$	4.0×10^{-8}
electron molar mass $N_{ m A} m_{ m e}$	$M(e), M_e$	$5.485799110(12) \times 10^{-7}$	$kg mol^{-1}$	2.1×10^{-9}
Compton wavelength $h/m_{ m e}c$	$\lambda_{ m C}$	$2.426310215(18) \times 10^{-12}$	m	7.3×10^{-9}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{ m C}$	$386.1592642(28) \times 10^{-15}$	m	7.3×10^{-9}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.817940285(31) \times 10^{-15}$	m	1.1×10^{-8}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$\sigma_{ m e}$	$0.665245854(15)\times 10^{-28}$	m^2	2.2×10^{-8}
electron magnetic moment	$\mu_{ m e}$	$-928.476362(37) \times 10^{-26}$	$ m J~T^{-1}$	4.0×10^{-8}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.0011596521869(41)		4.1×10^{-12}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.2819660(39)		2.1×10^{-9}
electron magnetic moment		4.450.050.4000(11) 10.2		0 = 10 0
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.1596521869(41) \times 10^{-3}$		3.5×10^{-9}
electron g -factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.0023193043737(82)		4.1×10^{-12}
electron-muon				
magnetic moment ratio	11 /11	206.766 9720(63)		3.0×10^{-8}
magnetic moment ratio	$\mu_{ m e}/\mu_{\mu}$	200.100 3120(03)		0.0 \ 10

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$	
electron-proton magnetic moment ratio electron to shielded proton	$\mu_{ m e}/\mu_{ m p}$	-658.2106875(66)		1.0×10^{-8}	
magnetic moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275954(71)		1.1×10^{-8}	
electron-neutron					
magnetic moment ratio electron-deuteron	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}	
magnetic moment ratio electron to shielded helion ^e	$\mu_{ m e}/\mu_{ m d}$	-2143.923498(23)		1.1×10^{-8}	
magnetic moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058 255(10)		1.2×10^{-8}	
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$rac{\gamma_{ m e}}{\gamma_{ m e}/2\pi}$	$1.760859794(71)\times 10^{11} \\ 28024.9540(11)$	$ m s^{-1} \ T^{-1} \ MHz \ T^{-1}$	4.0×10^{-8} 4.0×10^{-8}	
		Iuon, μ^-			
		1 009 591 00/16) 10-28	1 .	0.410=8	
muon mass in u, $m_{\mu}=A_{\mathrm{r}}(\mu)$ u (muon	m_{μ}	$1.88353109(16) \times 10^{-28}$	kg	8.4×10^{-8}	
relative atomic mass times u) energy equivalent in MeV	$m_{\mu}c^2$	$\begin{array}{c} 0.1134289168(34) \\ 1.69283332(14)\times 10^{-11} \\ 105.6583568(52) \end{array}$	u J MeV	3.0×10^{-8} 8.4×10^{-8} 4.9×10^{-8}	
muon-electron mass ratio	$m_{\mu}/m_{ m e}$	206.768 2657(63)		3.0×10^{-8}	
muon-tau mass ratio	$m_{\mu}/m_{ au}$	$5.94572(97) \times 10^{-2}$		1.6×10^{-4}	
muon-proton mass ratio	$m_{\mu}/m_{ m p}$	0.112 609 5173(34)		3.0×10^{-8}	
muon-neutron mass ratio muon molar mass $N_{ m A} m_{\mu}$	$m_{\mu}/m_{ m n} \ M(\mu), M_{\mu}$	$0.1124545079(34) 0.1134289168(34) \times 10^{-3}$	${\rm kg\ mol^{-1}}$	3.0×10^{-8} 3.0×10^{-8}	
·		, ,			
muon Compton wavelength $h/m_{\mu}c$ $\lambda_{\mathrm{C},\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$11.73444197(35) \times 10^{-15}$ $1.867594444(55) \times 10^{-15}$	m m	2.9×10^{-8} 2.9×10^{-8}	
muon magnetic moment	$\lambda_{\mathrm{C},\mu} \ \mu_{\mu}$	$-4.49044813(22) \times 10^{-26}$	$ m J~T^{-1}$	4.9×10^{-8}	
to Bohr magneton ratio	$\mu_{\mu}/\mu_{ m B}$	$-4.84197085(15)\times 10^{-3}$		3.0×10^{-8}	
to nuclear magneton ratio	$\mu_{\mu}/\mu_{ m N}$	-8.89059770(27)		3.0×10^{-8}	
muon magnetic moment anomaly					
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16591602(64) \times 10^{-3}$		5.5×10^{-7}	
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318320(13)		6.4×10^{-10}	
muon-proton	,	2.422.247.22(4.2)			
magnetic moment ratio	$\mu_{\mu}/\mu_{ m p}$	-3.18334539(10)		3.2×10^{-8}	
Tau, $ au^-$					
tau mass $^{ m f}$ in u, $m_{ au}=A_{ m r}(au)$ u (tau	$m_ au$	$3.16788(52)\times10^{-27}$	kg	1.6×10^{-4}	
relative atomic mass times u) energy equivalent in MeV	$m_{ au}c^2$	$1.90774(31) 2.84715(46) \times 10^{-10} 1777.05(29)$	u J MeV	1.6×10^{-4} 1.6×10^{-4} 1.6×10^{-4}	

	5 8 - 0 0 - 0	0 0 2 2 3 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.60(57)		1.6×10^{-4}
tau-muon mass ratio	$m_{ au}/m_{\mu}$	16.8188(27)		$1.6 imes 10^{-4}$
tau-proton mass ratio	$m_{ au}/m_{ m p}$	1.89396(31)		1.6×10^{-4}
tau-neutron mass ratio	$m_{ au}/m_{ m n}$	1.89135(31)		1.6×10^{-4}
tau molar mass $N_{ m A} m_ au$	$M(\tau), M_{\tau}$	$1.90774(31) \times 10^{-3}$	$kg mol^{-1}$	1.6×10^{-4}
		. ,		
tau Compton wavelength $h/m_{ au}c$	$\lambda_{\mathrm{C}, au}$	$0.69770(11) \times 10^{-15}$	m	1.6×10^{-4}
$\lambda_{\mathrm{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111042(18) \times 10^{-15}$	m	1.6×10^{-4}
		Proton, p		
proton mass	$m_{ m p}$	$1.67262158(13) \times 10^{-27}$	kg	7.9×10^{-8}
in u, $m_{ m p}=A_{ m r}({ m p})$ u (proton	P		8	
relative atomic mass times u)		1.00727646688(13)	u	1.3×10^{-10}
energy equivalent	$m_{ m p}c^2$	$1.50327731(12)\times10^{-10}$	J	7.9×10^{-8}
in MeV	търе	938.271 998(38)	MeV	4.0×10^{-8}
III IVIC V		000.211000(00)	1110 1	1.0 / 10
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.1526675(39)		2.1×10^{-9}
proton-muon mass ratio	$m_{ m p}/m_{\mu}$	8.880 244 08(27)		3.0×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ au}$	0.527 994(86)		1.6×10^{-4}
proton-neutron mass ratio	$m_{\rm p}/m_{\rm n}$	0.998 623 478 55(58)		5.8×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.57883408(38)\times10^7$	${ m C~kg^{-1}}$	4.0×10^{-8}
proton molar mass $N_{ m A} m_{ m p}$	$M(\mathbf{p}), M_{\mathbf{p}}$	$1.00727646688(13)\times10^{-3}$	kg mol ⁻¹	1.3×10^{-10}
proton motal mass 1 (Amp	111 (p), 111p	1.001 210 100 00(19) × 10	Kg mor	1.0 × 10
proton Compton wavelength $h/m_{ m p}c$	$\lambda_{\mathrm{C,p}}$	$1.321409847(10) \times 10^{-15}$	m	7.6×10^{-9}
$\lambda_{\mathrm{C,p}}/2\pi$	$\lambda_{ m C,p}$	$0.2103089089(16) \times 10^{-15}$	m	7.6×10^{-9}
proton magnetic moment	$\mu_{ m p}$	$1.410606633(58)\times10^{-26}$	$ m J~T^{-1}$	4.1×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032203(15)\times 10^{-3}$		1.0×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792847337(29)		1.0×10^{-8}
proton g -factor $2\mu_{ m p}/\mu_{ m N}$	$g_{ m p}$	5.585694675(57)		1.0×10^{-8}
proton-neutron	,	1 450 000 05 (24)		0.410=7
magnetic moment ratio	$\mu_{\mathrm{p}}/\mu_{\mathrm{n}}$	-1.45989805(34)	$ m JT^{-1}$	2.4×10^{-7}
shielded proton magnetic moment	$\mu_{ m p}'$	$1.410570399(59)\times10^{-26}$	JI	4.2×10^{-8}
$(H_2O, sphere, 25 °C)$, ,	1 500 000 100(10) 10-3		1 1 10-8
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993132(16) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}'/\mu_{ m N}$	2.792775597(31)		1.1×10^{-8}
proton magnetic shielding	,	27 227(17) 12 6		10 1
correction $1 - \mu_{\rm p}'/\mu_{\rm p}$	$\sigma_{ m p}'$	$25.687(15) \times 10^{-6}$		5.7×10^{-4}
$(H_2O, sphere, 25 °C)$				
proton gyromagnetic ratio $2\mu_{ m p}/\hbar$	$\gamma_{ m p}$	$2.67522212(11)\times 10^8$	$s^{-1} T^{-1}$	4.1×10^{-8}
1 C. C , P,	$\gamma_{ m p}/2\pi$	42.577 4825(18)	$ m MHz~T^{-1}$	4.1×10^{-8}
shielded proton gyromagnetic	· F ·	, ,		
ratio $2\mu_{_{\mathrm{D}}}^{'}/\hbar$	$\gamma_{ m p}'$	$2.67515341(11) \times 10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	4.2×10^{-8}
$(H_2O, \text{ sphere, } 25 ^{\circ}C)$, Þ.	` '		
· · · · · · · · · · · · · · · · · · ·	$\gamma_{ m p}'/2\pi$	42.5763888(18)	$ m MHz~T^{-1}$	4.2×10^{-8}
	1	Neutron, n		

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
Quantity	Symbol	varac	Cint	uncert. ar
neutron mass $ \text{in u, } m_{\mathrm{n}} = A_{\mathrm{r}}(\mathrm{n}) \text{ u (neutron } $	$m_{ m n}$	$1.67492716(13) \times 10^{-27}$	kg	7.9×10^{-8}
relative atomic mass times u)		1.00866491578(55)	u	5.4×10^{-10}
energy equivalent	$m_{ m n}c^2$	$1.50534946(12) \times 10^{-10}$	J	7.9×10^{-8}
in MeV		939.565330(38)	MeV	4.0×10^{-8}
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.6836550(40)		2.2×10^{-9}
neutron-muon mass ratio	$m_{ m n}/m_{\mu}$	8.89248478(27)		3.0×10^{-8}
neutron-tau mass ratio	$m_{ m n}/m_{ au}$	0.528 722(86)		1.6×10^{-4}
neutron-proton mass ratio	$m_{\rm n}/m_{\rm p}$	1.001 378 418 87(58)	1 1_1	5.8×10^{-10}
neutron molar mass $N_{ m A} m_{ m n}$	$M(n), M_n$	$1.00866491578(55)\times10^{-3}$	kg mol ^{−1}	5.4×10^{-10}
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{ m C,n}$	$1.319590898(10) \times 10^{-15}$	m	7.6×10^{-9}
$\lambda_{ m C,n}/2\pi$	$\lambda_{ m C,n}$	$0.2100194142(16)\times 10^{-15}$	m	7.6×10^{-9}
neutron magnetic moment	$\mu_{ m n}$	$-0.96623640(23) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304272(45)		2.4×10^{-7}
neutron g -factor $2\mu_{\rm n}/\mu_{\rm N}$ neutron-electron	$g_{ m n}$	-3.82608545(90)		2.4×10^{-7}
magnetic moment ratio neutron-proton	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times 10^{-3}$		2.4×10^{-7}
magnetic moment ratio neutron to shielded proton	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
magnetic moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)		2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	$1.83247188(44) \times 10^8$	$s^{-1} T^{-1}$	2.4×10^{-7}
	$\gamma_{\rm n}/2\pi$	29.164 6958(70)	$ m MHz~T^{-1}$	2.4×10^{-7}
	D	euteron, d		
deuteron mass $ {\rm in} \ {\rm u}, \ m_{\rm d} = A_{\rm r}({\rm d}) \ {\rm u} \ ({\rm deuteron}$	$m_{ m d}$	$3.34358309(26) \times 10^{-27}$	kg	7.9×10^{-8}
relative atomic mass times u)		2.01355321271(35)	u	1.7×10^{-10}
energy equivalent	$m_{ m d}c^2$	$3.00506262(24) \times 10^{-10}$	J	7.9×10^{-8}
in MeV		1875.612762(75)	MeV	4.0×10^{-8}
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.4829550(78)		2.1×10^{-9}
deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.99900750083(41)		2.0×10^{-10}
deuteron molar mass $N_{ m A} m_{ m d}$	$M(d), M_d$	$2.01355321271(35)\times10^{-3}$	kg mol ^{−1}	1.7×10^{-10}
deuteron magnetic moment	$\mu_{ m d}$	$0.433073457(18) \times 10^{-26}$	$ m J~T^{-1}$	4.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m d}/\mu_{ m B}$	$0.4669754556(50) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.8574382284(94)		1.1×10^{-8}
deuteron-electron				
magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	$-4.664345537(50) \times 10^{-4}$		1.1×10^{-8}
deuteron-proton magnetic moment ratio	$\mu_{ m d}/\mu_{ m p}$	0.3070122083(45)		1.5×10^{-8}

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
deutenen mentuen				
deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}
-		elion, h		
helion mass ^e	$m_{ m h}$	$5.00641174(39) \times 10^{-27}$	kg	7.9×10^{-8}
in u, $m_{ m h}=A_{ m r}({ m h})$ u (helion relative atomic mass times u) energy equivalent in MeV	$m_{ m h}c^2$	3.01493223469(86) $4.49953848(35)\times10^{-10}$ 2808.39132(11)	u J MeV	2.8×10^{-10} 7.9×10^{-8} 4.0×10^{-8}
helion-electron mass ratio helion-proton mass ratio helion molar mass $N_{\rm A}m_{\rm h}$ shielded helion magnetic moment (gas, sphere, 25 °C)	$m_{ m h}/m_{ m e} \ m_{ m h}/m_{ m p} \ M({ m h}), M_{ m h} \ \mu_{ m h}'$	5495.885238(12) 2.99315265850(93) $3.01493223469(86) \times 10^{-3}$ $-1.074552967(45) \times 10^{-26}$	kg mol $^{-1}$ J T $^{-1}$	2.1×10^{-9} 3.1×10^{-10} 2.8×10^{-10} 4.2×10^{-8}
to Bohr magneton ratio to nuclear magneton ratio shielded helion to proton	$\mu_{ m h}'/\mu_{ m B} \ \mu_{ m h}'/\mu_{ m N}$	$-1.158671474(14) \times 10^{-3} -2.127497718(25)$		$1.2 \times 10^{-8} 1.2 \times 10^{-8}$
magnetic moment ratio (gas, sphere, 25 °C)	$\mu_{ m h}'/\mu_{ m p}$	-0.761766563(12)		1.5×10^{-8}
shielded helion to shielded proton magnetic moment ratio (gas/H ₂ O, spheres, 25 °C) shielded helion gyromagnetic	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
ratio $2 \mu'_{\rm h} /\hbar$ (gas, sphere, 25 °C)	$\gamma_{ m h}'$	$2.037894764(85) \times 10^8$	$s^{-1} T^{-1}$	4.2×10^{-8}
	$\gamma_{ m h}'/2\pi$	32.4341025(14)	$ m MHz~T^{-1}$	4.2×10^{-8}
	Alpha	particle, α		
alpha particle mass $ \text{in u, } m_{\alpha} = A_{\mathrm{r}}(\alpha) \text{ u (alpha particle} $	m_{lpha}	$6.64465598(52)\times10^{-27}$	kg	7.9×10^{-8}
relative atomic mass times u) energy equivalent in MeV	$m_{\alpha}c^2$	$4.0015061747(10) 5.97191897(47) \times 10^{-10} 3727.37904(15)$	u J MeV	2.5×10^{-10} 7.9×10^{-8} 4.0×10^{-8}
alpha particle to electron mass ratio alpha particle to proton mass ratio alpha particle molar mass $N_{\rm A}m_{\alpha}$	$m_lpha/m_{ m e} \ m_lpha/m_{ m p} \ M(lpha), M_lpha$	$7294.299508(16) \\ 3.9725996846(11) \\ 4.0015061747(10)\times 10^{-3}$ D-CHEMICAL	kg mol ⁻¹	2.1×10^{-9} 2.8×10^{-10} 2.5×10^{-10}
Avogadro constant atomic mass constant	$N_{ m A}, L$	$6.02214199(47)\times10^{23}$	mol^{-1}	7.9×10^{-8}
$m_{ m u} = rac{1}{12} m (^{12}{ m C}) = 1 \ { m u}$ = $10^{-3} \ { m kg mol}^{-1}/N_{ m A}$	$m_{ m u}$	$1.66053873(13)\times 10^{-27}$	kg	7.9×10^{-8}
energy equivalent in MeV	$m_{\rm u}c^2$	$\begin{array}{c} 1.49241778(12)\times 10^{-10} \\ 931.494013(37) \end{array}$	J MeV	7.9×10^{-8} 4.0×10^{-8}
Faraday constant $N_A e$	F	96485.3415(39)	$\mathrm{C} \ \mathrm{mol}^{-1}$	4.0×10^{-8}

	~			Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
and a Discolar sector	N 7 1	2.000.212.600/20\ 10-10	r1-1	7.610-9
molar Planck constant	$N_{\rm A}h$	$3.990312689(30) \times 10^{-10}$	$J \text{ s mol}^{-1}$	7.6×10^{-9}
	$N_{\rm A}hc$	0.11962656492(91)	$J \text{ m mol}^{-1}$	7.6×10^{-9}
molar gas constant	R	8.314472(15)	J mol ⁻¹ K ⁻¹	1.7×10^{-6}
Boltzmann constant $R/N_{\rm A}$	k	$1.3806503(24) \times 10^{-23}$	$ m J~K^{-1}$	1.7×10^{-6}
in eV K^{-1}		$8.617342(15) \times 10^{-5}$	eV K ⁻¹	1.7×10^{-6}
	k/h	$2.0836644(36) \times 10^{10}$	$Hz K^{-1}$	1.7×10^{-6}
	k/hc	69.50356(12)	${\rm m}^{-1}~{\rm K}^{-1}$	1.7×10^{-6}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.413996(39) \times 10^{-3}$	$m^3 \text{ mol}^{-1}$	1.7×10^{-6}
Loschmidt constant $N_{\rm A}/V_{ m m}$	n_0	$2.6867775(47) \times 10^{25}$	m^{-3}	1.7×10^{-6}
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.710981(40) \times 10^{-3}$	$\mathrm{m}^3 \ \mathrm{mol}^{-1}$	1.7×10^{-6}
Sackur-Tetrode constant				
(absolute entropy constant) ^h				
$\frac{5}{2} + \ln[(2\pi m_{\rm u}kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517048(44)		3.8×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.1648678(44)		3.7×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670400(40) \times 10^{-8}$	$ m W~m^{-2}~K^{-4}$	7.0×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.74177107(29) \times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2$	7.8×10^{-8}
first radiation constant for spectral radiance $2hc^2$	$c_{1 m L}$	$1.191042722(93)\times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	7.8×10^{-8}
second radiation constant hc/k	c_2	$1.4387752(25) \times 10^{-2}$	m K	1.7×10^{-6}
Wien displacement law constant	-	` /		
$b = \lambda_{\text{max}} T = c_2 / 4.965114231$	b	$2.8977686(51) \times 10^{-3}$	m K	1.7×10^{-6}

^a See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

^b See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

^c Value recommended by the Particle Data Group, Caso et al., Eur. Phys. J. C **3**(1-4), 1-794 (1998).

^d Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Caso et al., 1998). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\,24(24)$.

^e The helion, symbol h, is the nucleus of the ³He atom.

^f This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group, Caso et al., Eur. Phys. J. C **3**(1-4), 1-794 (1998), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

^g The numerical value of F to be used in coulometric chemical measurements is $96\,485.3432(76)$ [7.9×10^{-8}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{\rm J-90}$ and $R_{\rm K-90}$ given in the "Adopted values" table.

^h The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$. ⁱ The relative atomic mass $A_r(X)$ of particle X with mass m(X) is defined by $A_r(X) = m(X)/m_u$, where $m_u = m(^{12}C)/12 = M_u/N_A = 1$ u is the atomic mass constant, N_A is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_r(X)$ u and the molar mass of X is $M(X) = A_r(X)M_u$.

^j This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

^k This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect. ^a This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from lattice spacing measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.