16. Честотен критерий за абсолютна устойчивост на В.М. Попов

Методът е предложен през 1959-1960г. от румънския учен В.М.Попов.

1. Общи сведения за абсолютна устойчивост на положението на равновесие.

Нека $x_0(t)$ (Фиг.1) е изчезващо външно въздействие. Под изчезващо външно въздействие се разбира ограничено въздействие, което представлява абсолютно изчезваща функция на времето, т.е., изпълнени са условията:

$$\int_{0}^{\infty} |x_0(t)| dt < \mu_0 < \infty, \qquad \lim_{t \to \infty} x_0(t) = 0.$$

В зависимост от това при какви стойности на горната граница (supremum) на изчезващото външно въздействие, а именно

$$\sup |x_0(t)| = \eta_S$$

се изпълнява определено условие за устойчивост, се различават:

- устойчивост при малки отклонения (η_S е достатъчно, или безкрайно малка величина);
- устойчивост при големи отклонения (η_S голяма, но крайна, ограничена величина);
- устойчивост в цялост (η_S ≤ ∞ , т.е. неограничена голяма величина).

Ако съществува асимптотическа устойчивост, и условието за тази устойчивост не зависи от големината на началните отклонения, съответно от $\sup |x_0(t)|$, като е изпълнено при произволно големи начални отклонения, нелинейната система се нарича асимптотически устойчива в цялост.

Абсолютната устойчивост е асимптотическа устойчивост в цялост, при зададена нелинейност в системата, принадлежаща към определен клас. Типичен е класът на нелинейности със статична характеристика, разположена в определен, ограничен ъгъл, например от права и абсцисната ос.

Фиг.2

където $\alpha = \operatorname{arctg} k$; k е коефициент на наклона; $0 < \frac{\Phi(x)}{x} < k$.

Проблемът на критерия за абсолютна устойчивост на положението на равновесие на нелинейната система с типова структура, представена на фиг.1, се свежда до това, какви условия трябва да се наложат на характеристиките на нелинейния елемент и линейната част на системата, за да има затворената, нелинейна САР абсолютно устойчиво положение на равновесие.

Предполага се, че линейната част на системата е устойчива (т. е. предавателната й функция W(s) има полюси в лявата полуравнина). Изисква се характеристиките на HE да принадлежат на сектора (0,k), т.е.

$$0 < \frac{\Phi(x)}{x} < k ,$$

 \Rightarrow статическият коефициент на усилване $K_C(x)$ на HE е ограничен, т.е.

$$0 < K_C(x) < k$$
.

За прилагане на метода на В.М.Попов се въвежда видоизменена АФЧХ:

$$W^*(j\omega) = \text{Re}[W(j\omega)] + j\omega \text{Im}[W(j\omega)],$$

където $W^*(j\omega)$ е модифицирана АФЧХ.

2. Абсолютна устойчивост при устойчива линейна част (критерий на Попов).

За да съществува **абсолютно устойчиво състояние на равновесие** в НСАР (с устойчива ЛЧ) е достатъчно да се подбере такова крайно реално число h, при което за всяко $\omega \ge 0$ е изпълнено условието:

$$\operatorname{Re}\{(1+jh\omega)W(j\omega)\}+\frac{1}{k}>0,$$

където k е коефициент, определящ ъгъла, в който е статичната характеристика на HE.

Геометрична интерпретация.

За да има абсолютна устойчивост положението на равновесие в НСАР с устойчива линейна част и характеристика на НЕ, принадлежаща на сектор (0, k), достатъчно е да се избере права в комплексната равнина на предавателната функция $W^*(j\omega)$, която да е прекарана през точката $(-\frac{1}{k}, j0)$, така че модифицираната АФЧХ да бъде надясно от тази права. Наклонът на правата не е от значение, зависи от избора на h.

Фиг.3

Модифицираната честотна характеристика $W^*(j\omega)$ и обикновената честотна характеристика $W(j\omega)$ имат общи точки при честотите $\omega=0$, $\omega=1$ и в евентуалните пресичания на честотната характеристика $W(j\omega)$ с абсцисната ос, което следва от съотношенията:

$$U^{*}(\omega) = U(\omega)$$
$$V^{*}(\omega) = \omega V(\omega).$$

Чрез честотния критерий на В.М.Попов е възможно да се решат 2 основни задачи:

- 1) Да се определи дали съществува абсолютна устойчивост на положението на равновесие, когато нелинейните характеристики са разположени в сектор [0, k] при основния случай;
- 2) Да се определи най-голямата възможна стойност на коефициента $k=k_{\Gamma}$, т.е. най-широкия сектор $[0,k_{\Gamma}]$, за който съществува абсолютна устойчивост при основния случай или $[0,k_{\Gamma}]$ при особени случаи.

Определяне на k_{Γ}

На фиг. 5 е показана модифицираната АФЧХ 1, която лежи надясно от правата 1, прекарана през точкава $-\frac{1}{k_1}$. Следователно, съществува абсолютна устойчивост на положението на равновесие за система с ЛЧ 1 в сектора $[0,k_1]$. Системата с модифицирана АФЧХ 2 е с абсолютна устойчивост в сектора $[0,k_2]$, не би могло да се твърди, че същата система е абсолютно устойчива в сектора $[0,k_1]$.

Чрез транслиране на правата на Попов надясно се получава граничният коефициент k_{Γ} (когато правата допре $W^*(j\omega)$). Следователно, $[0,k_{\Gamma}]$ е максималната ширина на сектора на HE.

Ъгловият коефициент $\frac{1}{h}$ на правата на Попов може да бъде изменян и същата права линия да променя своето положение, без да пресича модифицираната честотна характеристика. На фиг. 7 е показано такова движение на правата, когато h има положителна стойност, нулева стойност и отрицателна стойност. Такова своеобразно "ротационно" движение на правата може да се съчетае с транслиране на същата надясно, така че правата да се допре до честотната характеристика при някакво положение, за което

съществува граничната точка на пресичане с реалната ос $-\frac{1}{k_{\Gamma}}$. По този начин се определя най-широкият сектор на разполагане на нелинейните характеристики, а именно $[0, k_{\Gamma}]$.

При изпъкнала предавателна функция $W^*(j\omega)$, критерият на Попов означава, че НЕ може да се замести с ЛЧ с предавателна функция k. Тогава по Найквист за линейни системи може да се определи граничният предавателен коефициент k_{Γ} . При това k_{Γ} определен по критерия на Найквист и k_{Γ} , определен по критерия на Попов, съвпадат. В този случай модификацията на критерия на Найквист и честотният критерий на Попов за абсолютна устойчивост на положението на равновесие водят до един и същи резултат при определяне на k_{Γ} и за разглеждания случай критерият на Попов прераства в необходимо и достатъчно условие.

Този метод (крителий на В.М.Попов) дава достатъчно условие за устойчивост (дава част от областта на абсолютна устойчивост). Неизпълнението на условието не означава непременно, че системата е неустойчива.

Определяне на k_{zp} за изпъкнала и вдлъбната $\boldsymbol{W}^*(j\omega)$.

Ако $W^*(j\omega)$ е от втори ред, то АФЧХ е в долната полуравнина, \Rightarrow секторът ограждащ НЕ е максимално широк $(0,\infty)$ (Фиг.8).

Примери за определяне на абсолютна устойчивост на равновесното състояние при изпъкнала и вдлъбната $W^*(j\omega)$ (устойчива $W(j\omega)$):

3. Абсолютна устойчивост при неустойчива линейна част (обобщен критерий на Попов).

Прави се преобразуване на HCAP за получаване на устойчива линейна част (фиг. 10). За целта се въвежда ЛЕ, пропорционално звено с коефициент на усилване k_{Φ} , в местна ООВ, която обхваща линейната част на системата (фиг. 10) и я превръща в устойчива. За да бъде еквивалентно преобразованието същият коефициент k_{Φ} се въвежда паралелно (със знак "- и а HE.

където:

 $\Phi(x)$ - функция на НЕ;

І корекция – прави ЛЧ устойчива;

II корекция – прави се, за да не се промени системата.

Фиг.10

 k_{Φ} - ограничава статичната характеристика отдолу (може да е с различна стойност в зависимост от статичната характеристика.

 k_{Φ} трябва да се подбере така, че включено към линейната част като ОВ да я превърне в устойчива. Тогава:

$$W_{\Pi}(s) = \frac{W(s)}{1 + k_{\Phi}W(s)}$$
$$\Phi_{\Pi}(x) = \Phi_{\Pi}(x) - k_{\Phi}x.$$

Случаите на устойчива или неутрална ЛЧ се получават като частен случай на обобщения критерий на Попов.

За преобразуваната линейна част, която вече е устойчива се прилага условието за абсолютна устойчивост:

$$\operatorname{Re}\left\{(1+jh\omega)\frac{W(j\omega)}{1+k_{\Phi}W(j\omega)}\right\}+\frac{1}{k}>0,$$

където k е ъглов коефициент на правата, която ограничава отгоре сектора на преобразуваните нелинейни характеристики $\Phi_{\Pi}(x)$.

$$\Phi_{\Pi}(x) = \Phi(x) - k_{\Phi}x; \quad 0 < \frac{\Phi_{\Pi}(x)}{x} < k, \quad 0 < \frac{\Phi(x) - k_{\Phi}x}{x} < k,$$

$$\Rightarrow k_{\Phi} < \frac{\Phi(x)}{x} < k + k_{\Phi}, \quad k_{0} = k + k_{\Phi},$$

 \Rightarrow Непреобразуваната нелинейна характеристика $\Phi(x)$ трябва да принадлежи на сектора (k_{Φ},k_0) , т.е. $(k_{\Phi},k+k_{\Phi})$.

 $k_C = \frac{\Phi(x)}{x}$ - статичен предавателен коефициент на НЕ

Формулировка на обобщения критерий на Попов

За да има HCAP с ЧХ $W(j\omega)$ абсолютно устойчиво положение на равновесие, достатъчно е да бъдат изпълнени следните условия:

- 1) Избира се k_{Φ} , при който характеристичното уравнение $1+k_{\Phi}W(s)=0$ има корени в лявата полуравнина;
- 2) Характеристиките на НЕ $\Phi(x)$ да принадлежат на сектора (k_{Φ},k_0) , където $k_0=k+k_{\Phi}$;
- 3) Приведената $W_{II}(s) = \frac{W(s)}{1 + k_{\Phi}W(s)}$ да се модифицира (имагинерната част се умножава с ω)

и $W_{\Pi}^{*}(j\omega)$ да лежи надясно от правата на Попов, прекарана през т. $(-\frac{1}{k_{0}-k_{\Phi}},j0)$.

4. Абсолютна устойчивост при динамични режими.

- (a) При устойчива линейна част ако HE е в сектора (0,k). Условията са:
- Да съществува права на Попов, успоредна на ординатната ос, така че $W(j\omega)$ да остава надясно от нея. Правата е през т. $(-\frac{1}{k}, j0)$.
- Производните на $\Phi(x)$ да се намират в участъка (0,k) $(0 < \frac{d\Phi(x)}{dx} < k)$.

(б) При неустойчива линейна част – също като в статичен режим (с въвеждане на k_{Φ}).

За да бъде породеният от ограничено външно въздействие процес в НСАР абсолютно устойчив, достатъчно е производната $\Phi'(x)$ на характеристиката на НЕ да принадлежи на определена лента, т.е., $k_{\Phi} < \frac{d\Phi(x)}{dx} < k_0$ (където $k_0 = k + k_{\Phi}$), да съществува такъв коефициент k_{Φ} , при който преобразуваната линейна част на системата е устойчива и АФЧХ $W(j\omega)$ на изходната (непреобразувана) линейна част да лежи извън окръжността (k_{Φ},k_0) , която има център върху реалната ос и пресича същата в точките $-\frac{1}{k_{\Phi}}$ и $-\frac{1}{k_0}$, като тази честотна характеристика не навлиза в окръжността и при неустойчива изходна линейна част я обхваща толкова пъти и така, както съответната критична точка при критерия на Найквист.

Също като при статични режими линейната неустойчива част се обхваща с ООВ k_{Φ} и се преобразува в устойчива, а нелинейната характеристика се преобразува до

$$\Phi_{\varPi}(x) = \Phi(x) - k_\Phi x \; ;$$
 като
$$k_\Phi < \frac{d\Phi(x)}{dx} < k_0 \; , \qquad$$
 където $k_0 = k + k_\Phi \; ,$

като преобразуваната характеристика на HE е разположена в сектора (0,k) .

Фиг.12