Исследование и реализация методов автоматического распознавания САРТСНА различных форматов на основе нейросетевых моделей

Студент группы 5.306М: Лаптев Александр Владимирович Научный руководитель: к.ф.-м.н., доцент Калачев Александр Викторович

11 июня 2025 г.

Актуальность работы

Актуальность данной работы обусловлена как возрастающей сложностью CAPTCHA-систем, так и развитием инструментов, позволяющих преодолевать защитные механизмы web-ресурсов.

Анализ эффективности и разработка подходов для автоматизированного решения CAPTCHA могут применяться не только с точки зрения изучения устойчивости самих систем, но и в рамках исследования прикладного применения нейросетевых моделей в задачах распознавания информации в условиях ограничений.

Цель работы

Целью работы является разработка и анализ комплексного подхода к автоматизации решения САРТСНА в различных форматах с использованием современных нейросетевых инструментов и АРI для распознавания.

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 3/22

Задачи работы

Для достижения поставленной цели были сформулированы следующие задачи:

- провести обзор существующих форматов САРТСНА и методов их защиты;
- разработать систему автоматического распознавания текстовых САРТСНА с искажениями;
- реализовать подход к решению графических САРТСНА на основе методов компьютерного зрения и нейросетевых моделей;
- построить решение для аудио САРТСНА с использованием средств автоматического распознавания речи;
- протестировать реализованные решения в реальных условиях, оценить точность распознавания и стабильность работы.

Популярные форматы САРТСНА

Проверочный код CAPTCHA — метод защиты, основанный на принципе аутентификации «вызов-ответ», предназначен для предотвращения различных автоматических действий путем выполнения пользователем простого теста, подтверждающего, что он человек, а не программа.

Наиболее популярными форматами САРТСНА являются:

- текстовый формат;
- аудио формат;
- графический формат.

Пример САРТСНА в текстовом формате

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 6/22

Пример САРТСНА в аудио формате

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 7/23

Пример САРТСНА в графическом формате

Подходы к автоматизированному решению САРТСНА

Подходы, которые использовались для автоматизации решения САРТСНА в различных форматах:

- аудио формат: облачный API с поддержкой продвинутых моделей автоматического распознавания речи (ASR);
- текстовый формат: модель последовательного обучения (Seq2Seq) и алгоритмы шумоподавления на изображениях;
- графический формат: одноэтапная модель для детекции объектов (YOLO) с поддержкой сегментации.

Обработка аудиофайла САРТСНА

Процесс обработки аудиофайла состоит из нескольких этапов:

- преобразование формата аудиофайла;
- распознавание речи в аудиофайле;
- сохранение результата распознавания.

Блок-схема алгоритма распознавания аудио САРТСНА.

Тестирование решения для автоматизации решения аудио САРТСНА

Блок-схема алгоритма решения аудио САРТСНА.

Подготовка датасета с текстовыми САРТСНА

Для обучения модели был создан датасет из 100 000 изображений с текстовыми CAPTCHA, сгенерированными с использованием библиотеки captcha на Python. Датасет включает в себя следующие символы: ABCDEFGHJKLMNPQRSTWXYZ23456789.

Каждое изображение прошло этап предобработки, как показано на рисунке ниже:

Изображения САРТСНА: a) – сгенерированное изображение, б) – результат обработки.

Обучение модели для автоматизации решения текстовых САРТСНА

Исходный датасет был случайным образом перемешан и разделен на три подмножества: обучающее, тестовое и валидационное в соотношении 80:10:10.

График изменения значений функции потерь в процессе обучения модели для решения текстовых CAPTCHA.

Обучение модели для автоматизации решения текстовых САРТСНА

Матрица ошибок обученной модели для решения текстовых САРТСНА.

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 14/22

Тестирование модели для автоматизации решения текстовых САРТСНА

Точность распознавания моделью отдельных символов составила 0.9263.

Точность распознавания последовательностей различной длины представлена в таблице ниже.

Точность предсказаний для последовательностей различной длины.

Длина последовательности	Точность распознавания
4 символа	0.9305
5 символов	0.7450
6 символов	0.4575
7 символов	0.1915

Подготовка датасета с графическими САРТСНА

Пример разметки изображения с тестовой графической САРТСНА.

Набор классов, пути к выборкам и параметры конфигурации задаются в YAML-файле, который передается при обучении модели. Содержимое такого файла для данной модели:

```
path: ../datasets/image_dataset
train: images/train
val: images/val

nc: 9 # Konuvecmeo классов
names: ['pedestrian transition', 'stair', 'motorcycle',

'bus', 'traffic light', 'car', 'bicycle', 'fire
hydrant', 'tractor']
```

Параметры конфигурации для обучения модели.

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 17/22

Обучение модели для автоматизации решения графических САРТСНА

Матрица ошибок для изображений валидационной выборки для модели YOLOv8.

4□ > 4□ > 4□ > 4 ≥ > ≥

Лаптев А.В. Барнаул 2025 11 июня 2025 г. 18/22

Результаты обучения модели на основе YOLO отслеживались по ключевым метрикам (IoU, Precision, Recall, Loss), которые визуализировались автоматически. Примеры графиков с результатами обучения приведены ниже:

Изменение ключевых метрик в процессе обучения модели YOLOv8.

Тестирование модели для автоматизации решения графических САРТСНА

Блок-схема алгоритма решения графических САРТСНА.

Заключение

В результате выполненной работы были решены следующие задачи:

- проведён обзор форматов САРТСНА и существующих методов защиты от автоматических атак;
- реализована система для распознавания САРТСНА в текстовом формате на основе нейросетевой модели Sequenceto-Sequence;
- создано решение для графических САРТСНА с использованием модели YOLO, адаптированной для распознавания объектов на изображениях;
- реализован подход к решению САРТСНА в аудиоформате с использованием облачного АРI распознавания речи;
- проведено тестирование всех компонентов системы в условиях, приближенных к реальным, с подтверждением их корректной и стабильной работы.

Заключение

Перспективы дальнейших исследований включают:

- расширение набора поддерживаемых типов САРТСНА, включая более сложные динамические варианты;
- оптимизацию времени обработки и точности распознавания;
- исследование механизмов защиты САРТСНА, устойчивых к современным методам автоматического анализа.

22 / 22