3.3 Вычисление функций на машине Тьюринга

Вычисления, производимые МТ в алфавите *A* – *правильные*, если

- В начальный момент машина находится в состоянии q₁
- на ленте записано некоторое слово W в алфавите A
- все ячейки ленты, не содержащие слово
 W, содержат пустой символ.
- Головка машины обозревает ячейку с первой буквой слова *W*.

- При переходе МТ в заключительное состояние q_0 все ячейки левее головки содержат пустой символ.
- Головка находится над самой левой среди ячеек, не содержащей пустой символ (если такие имеются).

Результатом правильных вычислений МТ считается

- Пустое слово, если ячейки ленты не содержат непустых символов.
- Слово, на первую букву которого указывает указатель, последняя буква слова отлична от пустого символа.
- Все ячейки правее заполнены пустыми символами.

- Поскольку алгоритм можно представить как преобразование входных данных в выходные (в результат),
- а любые данные как неотрицательное целое число,
- то алгоритм можно понимать как некоторую арифметическую функцию.

 Функции, определенные на множестве наборов неотрицательных целых чисел,

 $f: N \cup \{0\} \times N \cup \{0\} \times ... \times N \cup \{0\} \to N \cup \{0\}$ называются арифметическими функциями.

■ Если функция определена не для каждого набора переменных, то такие функции будем называть частично определенными арифметическими функциями (ЧАФ).

M

- Рассмотрим правильное вычисление арифметических функций на МТ.
- Для вычисления значений f(x), x=0,1,...,

будем записывать *х* на ленте в виде последовательности *х*+1 единиц.

Для вычисления f(x)

 Если функция зависит от нескольких переменных, то на ленте записывают последовательно группы единиц, которые соответствуют аргументам функции.

Для вычисления f(x, y)

M

Начальная конфигурация

Конечная конфигурация

Пример. Вычисление функции O(x)=0

- действия МТ сводятся к последовательной замене всех единиц на ленте нулями.
- И записи одной единицы.

Начальная конфигурация

1-й шаг

2-й шаг

3-й шаг

4-й шаг Завершение работы МТ

Программа вычислений

	q_1	q_2
0		1Hq ₀
1	0Rq ₂	0Rq ₂

Пример. Вычисление функции S(x)=x+1

- Для вычисления этой функции достаточно приписать слева одну единицу к последовательности единиц на ленте и
- перевести МТ в заключительное состояние.

Начальная конфигурация

Конечная конфигурация

Программа вычислений

	q_1	q_2
0		$1Hq_0$
1	1Lq ₂	

Пример.

■ Построить машину Тьюринга для вычисления функции C(x)=1

M

- Искомую машину будем строить как суперпозицию машин, вычисляющих функции *O(x)*=0 и *S(x)*=x+1
- T.e. C(x)=S(O(x)).

Ŋė.

■ Пусть имеются две машины T_1 и T_2 , которые вычисляют функции $f_1(x)$ и $f_2(x)$

соответственно в одном и том же алфавите.

 Построим новую машину Тьюринга Т следующим образом.

Состояния машины Т₂
переобозначим так, чтобы они
отличались от состояний Т₁.

- Начальное состояние q_1^1 машины T_1 объявляем начальным состоянием q_1 машины T.
- Заключительное состояние q_0^2 машины T_2 объявляем заключительным состоянием q_0 для машины T.

- **В** Заключительное состояние q_0^1 машины T_1 и начальное состояние q_1^2 машины T_2 отождествляем.
- Полученные команды для обеих машин объединяем в одну программу новой машины.

ķΑ

■ Построенная машина Т вычисляет суперпозицию функций $f(x)=f_2(f_1(x))$ и называется суперпозицией машин T_1 и T_2 .

В результате из двух таблиц

	q_1	q_2
0		1Hq ₀
1	0Rq ₂	0Rq ₂

	q_1	q_2
0		1Hq ₀
1	1Lq ₂	

получим одну

	q ₁	q ₂ ¹	q_0^{1}	q_2^2
0		$1H q_0^1$		1Hq ₀
1	$0R q_2^{-1}$	$0R q_2^{-1}$	$1L q_2^2$	

Пример.

 Построить МТ для вычисления функции

$$f(x) = \begin{cases} 0, x > 1 \\ x + 1, x \le 1 \end{cases}$$

Ранее были построены МТ для вычисления функций O(x)=0 и S(x)=x+1.

Исходная функция

- это функция *O(x)*, если *x*>1
- \blacksquare и функция S(x) в противном случае.

- Таким образом, перед вычислением нужно определить сколько единиц находится на ленте, и в зависимости от этого переходить к вычислению функций.
- Для определения количества единиц на ленте будем сдвигаться по ленте вправо и на каждом сдвиге менять состояние МТ.

- Если обнаружили больше двух единиц, необходимо вернуться назад на начало последовательности единиц и применить МТ для вычисления функции *O(x)*.
- Если обнаружили две или одну единицу, то устанавливаем головку на начале последовательности единиц и применяем МТ для вычисления функции S(x).

- Внутренние состояния машин для вычисления функций *O(x)* и *S(x)* пометим буквами *O* и *S* соответственно.
- Заключительные состояния этих машин отождествим.

- $= q_1 1 \rightarrow 1Rq_2$
- $= q_2 1 \rightarrow 1Rq_3$

На ленте больше одной единицы

 $q_20 \rightarrow 0Lq_{S1}$

На ленте одна единица, начинаем вычисление S(x)

- q₄1 → 1Lq₄
 Сдвигаемся обратно на начало последовательности
- $q_40 \rightarrow 0Rq_{01}$ Начинаем вычисление функции O(x)

- q₃0→0Lq₅
 На ленте две единицы, переходим на начало последовательности
- $= q_5 1 \rightarrow 1Lq_5$
- q₅0→0Rq_{S1} начинаем вычисление S(x)

3.4. Алгоритмически неразрешимые задачи

 Согласно Тьюрингу алгоритм решения задачи – это машина Тьюринга для вычисления подходящей арифметической функции.

- Если машина Тьюринга существует для решения задачи, то такая задача называется алгоритмически разрешимой,
- в противном случае задача алгоритмически неразрешима.

M

 Предварительно пронумеруем все машины Тьюринга следующим образом. Зафиксируем счетные множества символов

$$A = \{a_0, a_1, \dots, a_i, \dots\}$$

И

$$Q = \{q_0, q_1, ..., q_j, ...\}$$

Каждому символу х из множества

$$\{L,R,H\} \cup A \cup Q$$

■ поставим в соответствие двоичную последовательность *п(x)* по следующему правилу

X	n(x)	X	n(x)	X	n(x)
R	10	a_0	10000	$\mathbf{q_0}$	100000
L	100	a ₁	1000000	q_1	10000000
Н	1000				
		a _i	10 ²ⁱ⁺⁴	q _j	10 ^{2j+5}

■ Очевидно, что последовательности $n(x_1)$ и $n(x_2)$ могут совпадать только тогда, когда $x_1 = x_2$.

• Команде МТ $q_j a_i \to a_k Sq_m$ $q_i, q_m \in Q \quad a_i, a_k \in A \quad S \in \{L, R, H\}$

сопоставим последовательность такого вида (числа здесь не перемножаются, а последовательно записаны)

$$n(q_j a_i \rightarrow a_k Sq_m) = n(q_j)n(a_i)n(a_k)n(S)n(q_m)$$

- Все команды МТ упорядочим в соответствием с лексикографическим порядком левых частей команд и МТ сопоставим набор нулей и единиц, состоящий из последовательно записанных двоичных наборов для каждой команды МТ.
- Эту последовательность назовем шифром машины Тьюринга.

- Разные машины Тьюринга имеют различные шифры, при этом по шифру можно однозначно восстановить программу машины Тьюринга.
- Шифр машины состоит из нулей и единиц и всегда начинается с единицы.
 Его можно считать двоичной записью некоторого натурального числа.

Пример. Найдем шифр машины Тьюринга, вычисляющую функцию O(x)=0.

■ Программа вычислений имеет такой вид $a_0 = 0, a_1 = 1$

$$q_1 1 \rightarrow 0Rq_2$$

$$q_2 0 \rightarrow 1Hq_0$$

$$q_2 1 \rightarrow 0Rq_2$$

■ и машина имеет такой шифр

 $n(q_1)n(1)n(0)n(R)n(q_2)n(0)n(1)n(H)n(q_0)n(q_2)n(1)n(0)n(R)n(q_2)$ $10^7 10^6 10^4 1010^9 10^6 10^4 10^6 10^3 10^5 10^6 10^4 10 10^9$

- Пусть теперь внешний алфавит некоторой машины Тьюринга содержит символы множества $\{a_0,0,1\}$
- На ленте записан шифр этой машины, головка МТ обозревает самую левую единицу шифра, а машина находится в начальном состоянии q₁.

- Машина называется самоприменимой, если после начала работы в указанной конфигурации она через конечное число шагов попадет в заключительное состояние q₀,
- в противном случае машина называется *несамоприменимой*.

Пример.

■ Машина $q_1 1 \rightarrow 1Hq_0$ $q_1 0 \rightarrow 0Hq_0$ является самоприменимой, поскольку после выполнения одной команды машина попадает в заключительное состояние независимо от того, что было записано на ленте (т.е. в том числе и если был записан шифр этой машины)

Пример.

Программа машины

$$q_1 1 \rightarrow 1Hq_1 \qquad q_1 0 \rightarrow 0Hq_1$$

не содержит состояния q_0 , поэтому машина не может попасть в это состояние

и является несамоприменимой.

M

Проблема самоприменимости

■ Пусть арифметическая функция *p(x)* определена следующим образом

$$p(x) = \begin{cases} 1, \text{ если } x \text{ шифр самоприменимой машины,} \\ 0, \text{ если } x \text{ шифр несамоприменимой машины} \end{cases}$$

■ Существует ли машина Тьюринга T в алфавите $\{a_0, 0, 1\}$, которая правильно вычисляет функцию p(x)?

- Будем считать, что машина будет оставлять на ленте одну единицу в случае, если слово на ленте в начальной конфигурации было шифром некоторой самоприменимой машины,
- и будет оставлять 0, если слово на ленте в начальной конфигурации было шифром некоторой несамоприменимой машины.

Теорема. Проблема самоприменимости алгоритмически неразрешима

- Доказательство от противного.
- Предположим, что существует машина Тьюринга *T*, которая решает проблему самоприменимости.

Пусть $Q = \{q_0, q_1, ..., q_m\}$ внутренний алфавит машины T.

- Изменим программу машины *Т* следующим образом.
- В командах, содержащих символ q_0 , заменим q_0 на q_{m+1} .
- Добавим к программе команды $q_{m+1}1 \rightarrow 1Hq_{m+1} \ q_{m+1}0 \rightarrow 0Hq_0$

 В результате получим новую машину Тьюринга, которую обозначим через Т₁.

- Предположим, что в начальный момент на лентах машин Т и Т₁ был записан шифр какой-то самоприменимой МТ и обе машины начинают работу.
- Действия машин будут идентичны до тех пор, пока машина T не попадет в состояние q_0 , записав на ленте 1 и остановит головку над ячейкой с этой единицей.

- Машина T₁ также напечатает на ленте единицу и поместит головку над этой ячейкой, но не остановится, а перейдет в состояние q_{m+1} и продолжит работу, выполняя новые команды.
- В состояние q_0 машина попасть не может.

■ Если в начальный момент на лентах машин *T* и *T*₁ был записан шифр некоторой несамоприменимой машины Тьюринга, то каждая из них попадет в заключительное состояние, выдав в качестве результата 0.

Определим к какому классу относится машина *T*₁.

- Для этого на ленте запишем шифр этой машины и запустим её.
- Если машина самоприменимая, то ее шифр является шифром самоприменимой машины, и машина никогда не попадет в заключительное состояние и, следовательно, самоприменимой быть не может.

- Предположим, что машина несамоприменимая и ее шифр является шифром несамоприменимой машины.
- Тогда через конечное число шагов машина попадет в состояние q₀.
- Это означает, что машина самоприменимая, что противоречит предположению.

Проблема останова

■ Проблема останова заключается в том, чтобы по любой машине Тьюринга и любой последовательности во внешнем алфавите узнать применима ли машина к последовательности, т.е. остановится ли машина через конечное число шагов после начала работы с начальной последовательностью на ленте.

- Данная проблема алгоритмически неразрешима, т.к. если бы она была разрешимой, то взяв в качестве начальной последовательности шифр машины, получили бы разрешимость проблемы самоприменимости.
- Таким образом, проблема останова *сводится* к проблеме самоприменимости.

Тезис Чёрча -Тьюринга

 Для любой интуитивно вычислимой функции существует вычисляющая её значения машина Тьюринга.