(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 17. Oktober 2002 (17.10.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/080923 A1

(51) Internationale Patentklassifikation⁷: A61K 31/506, A61P 17/00, 17/06, 31/12, 35/00, 33/00, A61K 31/295

Dusslingen (DE). **DANIEL, Peter** [DE/DE]; Treiberpfad 14, 13469 Berlin (DE).

(21) Internationales Aktenzeichen: PCT/EP02/03835

(74) Anwälte: MEYERS, Hans-Wilhelm usw.; Postfach 10 22 41, 50462 Köln (DE).

(22) Internationales Anmeldedatum:

6. April 2002 (06.04.2002)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

101 17 479.9 7. April 2001 (07.04.2001) DE 01113051.5 29. Mai 2001 (29.05.2001) EP

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): UNIVERSITÄTSKLINIKUM CHARITÈ [DE/DE]; Medizinische Fakultät der Humboldt-Universität zu Berlin, Robert-Rössle Klinik, Lindenberger Weg 80, 13125 Berlin (DE).

(71) Anmelder und

(72) Erfinder: SCHMALZ, Hans-Günther [DE/DE]; Greinstr. 4, 50939 Köln (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): PROKOP, Aram [DE/DE]; Fetschowzeile 19, 13437 Berlin (DE). WIEDER, Thomas [DE/DE]; Nelkenstrasse 9, 72144

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: SUBSTANCES FOR USE IN THERAPY OF DISEASES THAT ARE CAUSED BY HIGHLY PROLIFERATIVE CELLS

(54) Bezeichnung: SUBSTANZEN ZUR THERAPIE VON ERKRANKUNGEN, DIE DURCH HOCHPROLIFERIERENDE ZEL-LEN VERURSACHT WERDEN

(57) Abstract: The invention relates to drugs and compounds for treating diseases that are caused by highly proliferative cells such as tumor cells, especially blasts of children suffering from acute leukemia. The invention also relates to the production of corresponding drugs and compounds. The inventive compounds are mainly 2',3'-unsaturated nucleoside analogs that are substituted in position 2' and/or 3' with substituted or unsubstituted vinyl groups and the iron, manganese, cobalt and ruthenium complexes thereof.

(57) Zusammenfassung: Die Erfindung betrifft Arzneimittel und Verbindungen zur Behandlung von Krankheiten, die durch stark proliferierende Zellen wie Tumorzellen, insbesondere Blasten von Kindern mit akuter Leukämie, verursacht werden. Die Erfindung betrifft auch die Herstellung entsprechender Arzneimittel und Verbindungen. Es handeld sich vornehmlich um 2', 3' -ungesättigte Nukleosidanaloge die in Position 2' und/oder 3' -mit substitutierten oder unsubstitutierten Vinylgroupen substituiert sind sowie deren Eisen-, Mangan-, Cobalt- or Rutheniumkomplexe.

<u>Substanzen zur Therapie von Erkrankungen, die durch hoch-</u> proliferierende Zellen verursacht werden

Die vorliegende Erfindung betrifft Substanzen und Arzneimittel zur Behandlung von Erkrankungen, die durch hoch-proliferierende Zellen verursacht werden, sowie Verfahren zur Herstellung solcher Substanzen und Arzneimittel.

Die Entstehung von Tumoren oder anderer gutartiger hyperproliferativer Erkrankungen, wie z. B. der Schuppenflechte oder des Keloids, ist auf eine gestörte Balance zwischen der Gewebeneubildung und dem regulierten Absterben von Zellen aus dem Gewebeverband zurückzuführen. In der klinischen Praxis wird durch den Einsatz zytotoxischer Behandlungsmethoden, wie der Chemotherapie, der Strahlentherapie und der Hyperthermie, versucht, diese gestörte Balance wieder ins Gleichgewicht zu bringen und die überschüssigen Tumorzellen gleichzeitig abzutöten. Es ist allgemein anerkannt, klinischen eingesetzten meisten derzeit in der Praxis die dass durch Einleitung **Apoptose** Wirkung Chemotherapeutika ihre (programmierter Zelltod) entfalten (Hannun, 1997). Allerdings entwickelt ein Teil der an malignen Tumoren erkrankten Patienten frühzeitig eine Chemotherapie- und Strahlenresistenz oder ist primär therapierefraktär (Hickman, 1996). Weiterhin ist bekannt, dass Primärtumor und Metastasen auf zytotoxische Therapien oft ganz different ansprechen. Aufgrund neuerer Untersuchungen ist wahrscheinlich, dass die Ursache für Resistenzen in unterschiedlichen Störungen der Apoptosesignalkaskade liegt (Raisova et al., 2000).

Besonders die Therapie eines Rezidivs der kindlichen akuten lymphoblastischen Leukämie (ALL), der häufigsten malignen Erkrankung im Kindesalter, ist noch immer nicht befriedigend gelöst. So versterben z. B. trotz aggressiver Therapie ca. 70% der erkrankten Kinder im Rezidiv der ALL. Ähnliches trifft auch auf andere teilweise schwer therapierbare Tumorerkrankungen, wie das

Schilddrüsenkarzinom, das sehr häufige Mammakarzinom, das schwer zugängliche Medulloblastom oder auf Gliome zu. Eine gutartige Hauterkrankung, die auch mit solchen Therapien behandelt wird, ist die Psoriasis (Schuppenflechte). Sie stellt eine der häufigsten Erkrankungen der Haut dar, an der zwei bis vier Prozent der Menschen leiden. Auch die Therapie dieser Erkrankung ist noch stark verbesserungsbedürftig.

Es besteht also ein starkes Bedürfnis, Substanzen und Arzneimittel zu entwickeln, mit denen die Heilungserfolge und die Überlebenschancen von Patienten verbessert werden, die an den oben aufgeführten Erkrankungen leiden. Insbesondere bei Tumorerkrankungen und Leukämien ist es von Bedeutung, neue Arzneimittel zu bereitzustellen, die hochselektiv gegen unnatürlich proliferierende Zellen wirken und dabei gesunde Zellen möglichst wenig angreifen. Darüber hinaus ist es von besonderer Wichtigkeit, Therapiestoffe gegen solche Tumoren bereitzustellen, die sich gegenüber bereits bekannten Substanzen als resistent erweisen.

Überraschenderweise wird diese Aufgabe durch Arzneimittel der folgenden Strukturformeln (**1a** oder **1b**) gelöst:

1b

mit X = O, S, CH_2 , NR, keine Bindung,

mit der Maßgabe, dass wenn X = O ist, die Verbindung der Formel 1a mit einem Metall-Ligandenkomplex assoziiert ist gemäß Formel 1'a;

Y = Adenin, Cytosin, Guanin, Uracil, Thymin, Bromuracil, Purine oder Pyrimidine sowie deren Derivate, Nucleobasen, Heterozyklen, Aminoalkyl, Aminoaryl oder sonstige zur Ausbildung von H-Brücken befähigte Reste,

Z = Alkyl, Fluoralkyl, Aryl, Fluoraryl, -(CH_2) $_nOR$, mit R = H, SiR_3 , Alkyl, Fluoralkyl, Aryl, Fluoraryl, Acyl und n = 0 bis 5, wobei vorzugsweise n = 1 ist;

a = keine Bindung, Einfachbindung oder CH_2 , bei Formel **1b** auch CH_2CH_2 ;

b= keine Bindung, Einfachbindung oder CH_2 ; wobei a und b so ausgewählt werden, dass die a und b umfassende Struktureinheit ein 1,3-Dien beinhaltet,

 $R^1 = -H$, F, Alkyl, Fluoralkyl, Aryl, Fluoraryl, OR, $-CO_2R$, $-SO_2OR$, $-CONR_2$,

 $R^2 = -H$, F, Alkyl, Fluoralkyl, Aryl, Fluoraryl, OR, $-CO_2R$, $-CONR_2$, $-SO_2OR$,

R= H, verzweigte und geradkettige Alkyl, insbesondere Methyl, Ethyl, Propyl, Thexyl, tert-Butyl

und/oder deren Salze.

Wenn a, b oder X als "keine Bindung" angegeben wird, bedeutet dies, dass die jeweils zwei Kohlenstoffatome, die in der Strukturformel mit a, b oder X verbunden sind, nicht verknüpft sind. Da die a und b umfassende Struktureinheit ein 1,3-Dien beinhalten soll, können jedoch nicht sowohl a als auch b "keine Bindung" sein.

Die a und b enthaltende Struktureinheit kann zum Beispiel als Cyclobutadienring, Cyclopentadienring oder als offenes 1,3-Butadien vorliegen, wobei im letzteren Fall R^1 oder R^2 mit dem endständigen Kohlenstoffatom verbunden sein kann.

Bei der SiR_3 -Gruppe sind die R vorzugsweise Methyl-, Ethyl-, Propyl-, tert-Butyl oder Thexylreste.

$$Z \sim X \sim Y$$
 $R^1 \sim R^2$
 $A = 1$
 ML_n

1'b

Weiterhin sind Arzneimittel der Strukturformeln $\mathbf{1}'\mathbf{a}$ und $\mathbf{1}'\mathbf{b}$ geeignet, bei denen das 1,3-Dien an ein Metallfragment ML_n gebunden ist, wobei

n eine ganze Zahl von 2 bis 4 ist

M = Mn, Fe, Co, Ru und

L = CO, CN-R, CN, CR_2 , COR, Hal, Cyclopentadienyl (Cp) oder ein substituiertes Cp-Derivat ist, und R ausgewählt wird wie für Strukturformel **1a** und **1b** angegeben.

und/oder deren Salze.

WO 02/080923

An ein M können dabei gleiche oder verschiedene L gebunden sein.

Das Metallfragment ist vorzugsweise ein $Fe(CO)_3$ - Komplex.

Besonders geeignet sind Arzneimittel mit einer Strukturformel 2, 3, 4a, 4b oder 4c:

$$Z$$
 $Fe(CO)_3$
 $QC)_3Fe$
 R^1
 $QC)_3Fe$
 R^1
 $QC)_3Fe$
 R^2
 R^1
 R^2
 R^2
 R^1
 R^2
 R

wobei die Fe(CO)₃-Einheit η^4 -gebunden,

X = O, CH_2 oder keine Bindung ist und

Y, Z, R¹ und R² wie für Strukturformel **1a** und **1b** ausgewählt werden.

Bei den Strukturformeln **4a** und **4b** handelt es sich um Resonanzformeln. **4c** ist aus **4b** durch eine formale Ringöffnung erhältlich.

Insbesondere geeignet sind Arzneimittel mit einer Strukturformel 5:

- 6 -

mit
$$X = O, CH_2$$
,

Y = Adenin, Cytosin, Guanin, Uracil, Thymin, Bromuracil, Purine oder Pyrimidine sowie deren Derivate, Nucleobasen, Heterozyklen,

$$R^1 = -H_1 - CO_2R_1$$

und

 $R^2 = H$, SiR_3 , Alkyl, Fluoralkyl, Aryl, Fluoraryl, Acyl.

Gegenstand der Erfindung sind auch Substanzen und Verfahren zu deren Herstellung der Strukturformel 5, bei denen

$$R^2 = SiR_3, X = O,$$

Y und R^1 wie für Strukturformel **5** angegeben ausgewählt werden und R wie bei Strukturformel **1a** und **1b** angegeben ausgewählt ist. Diese Verbindungen und Verfahren zu deren Herstellung sind jedoch nicht Gegenstand der Erfindung, wenn Y Bromuracil, Uracil oder Methyluracil ist und R^2 gleichzeitig Thexyl(CH_3)₂Si ist. Gegenstand der Erfindung sind in diesen Fällen die entsprechenden Arzneimittel.

Gegenstand der Erfindung sind insbesondere die Verbindungen der folgenden Strukturformeln:

- 7 -

Gegenstand der Erfindung ist auch eine Verbindung der Strukturformel 35:

Gegenstand der Erfindung sind die Racemate der erfindungsgemäßen Verbindungen und die Enantiomere.

Die erfindungsgemäßen Verbindungen und die Verbindungen der Strukturformel **1a**

wobei

 $X = O, S, CH_2$, NR oder keine Bindung ist und

Y, Z, a, b, R¹ und R² wie in Anspruch 1 ausgewählt werden,

werden erfindungsgemäß verwendet zur Herstellung eines Arzneimittels zur Behandlung maligner Erkrankungen des Knochenmarks oder anderer blutbildender Organe, solider Tumoren, epithelialer Tumoren, gutartiger oder semimaligner schnell proliferierender Tumore oder Hauterkrankungen, insbesondere Psoriasis vulgaris, Keloide und Basaliome, Lymphome, insbesonder Hodgkin- und Non-Hodgkin-Lymphome, entzündlicher, chronisch

- 9 -

entzündlicher, bakterieller und autoimmuner Erkrankungen, sowie zur antibakteriellen, antimykotischen, anti-Protozoen, anti-Plasmodien anti-helminthischen oder immunsuppressiven Therapie.

Die erfindungsgemäßen Arzneimittel Verbindungen und eianen sich unerwarteterweise zur Therapie von pathologisch schnell proliferierendem Gewebe, besonders von Knochenmark, aber auch von soliden Tumoren, wie epithelialen Tumoren oder insbesondere Hirntumoren. Weiterhin erstreckt sich die Anwendbarkeit der beschriebenen Substanzen auch auf die Behandlung gutartiger, hyperproliferativer Erkrankungen der Haut, wie z. B. die Psoriasis oder das Keloid. Die Arzneimittel und Substanzen der Erfindung zeichnen sich dadurch aus, dass sie in besonderem Maße geeignet sind, selektiv das Wachstum von hochproliferierenden Zellen zu inhibieren. Dadurch leiten sie die Apoptose von hochproliferierenden Zellen ein und bewirken so deren Zerstörung, wobei gesunde Zellen sehr wenig beeinträchtigt werden.

Die Substanzen sind im besonderen Maße membrangängig, was zu einer hohen intrazellulären Wirkstoffkonzentration führt. Die hohe Wirksamkeit wird daher wahrscheinlich durch die ausgeprägte Lipophilie der Substanzen erzielt. Die Substanzen unterscheiden sich grundlegend von bereits bekannten zur Therapie verwendeten Nukleosidanaloga, wie Cytarabin und Fludarabin-5'-dihydrogenphosphat. Sie sind in der Lage, vorhandene Zytostatikaresistenzen zu brechen.

Die Arzneimittel und Verbindungen der Erfindung sind insbesondere geeignet zur Behandlung von Tumorerkrankungen und Leukämie. Sie leiten den apoptotischen Zelltod nicht nur in aus Tumorzellen entstandenen permanenten Zellinien (BJAB-Zellen), sondern auch in primären Zellen von Patienten mit einer akuten lymphoblastischen Leukämie (ALL) ein. Dadurch können die erfindungsgemäßen Substanzen gegen Tumorerkrankungen des Knochenmarks, aber auch gegen Tumore einer anderen Provenienz, wie z. B. epitheliale Tumore, Sarkome oder maligne Erkrankungen der Haut usw. eingesetzt werden. Besonders soll darauf hingewiesen werden, dass mit den entwickelten Substanzen aufgrund ihrer Lipophilie eine Überschreitung der

Blut-Hirnschranke möglich ist, und diese daher auch für maligne Hirntumore, wie z. B. das Medulloblastom oder Gliome, eingesetzt werden können. Insgesamt können die erfindungsgemäßen Substanzen zur Behandlung maligner Erkrankungen des Knochenmarks oder anderer blutbildender Organe, solider Tumoren, epithelialer Tumoren, gutartiger oder semimaligner schnell proliferierender Hauterkrankungen, insbesondere Psoriasis vulgaris, Keloide und Basaliome, sowie entzündlicher und chronisch entzündlicher Erkrankungen verwendet werden. Sie sind auch geeignet zur antiviralen, antibakteriellen, antimykotischen, anti-Protozoen, anti-helminthischen oder immunsuppressiven Therapie.

In der Fig. 1A ist gezeigt, dass die Substanzen N76 (Verbindung der Strukturformel 5 mit $R^1 = CO_2Et$, $R^2 = Thexyldimethylsilyl$, X = O, Y =Bromuracil) und N69 (Verbindung der Strukturformel 6) bei einer Konzentration im Zellkulturmedium von 25 µmol/l in 60 - 70 % der BJAB-Zellen Apoptose auslösen. Die Messung der Apoptose basiert auf einer Methode, die die für die Apoptose typische Fragmentierung der DNA auf nachweist, die diese Zelltodform von Einzelzellniveau der Nekrose 24 h mit unterscheidet. Dazu wurden BJAB-Zellen unterschiedlichen Konzentrationen N76 oder N69 behandelt. Kontrollen enthielten entsprechende Mengen des Lösungsvermittlers Ethanol. Nach der Behandlung wurde die Fragmentierung der DNA durch Färbung mit Propidiumiodid und anschließender Quantifizierung mittels Durchflußzytometrie, wie von Eßmann et al. (2000) beschrieben, gemessen. Die Werte sind gegeben als % apoptotische Zellen der Gesamtpopulation \pm SD (n=3).

Die Substanzen wirken jedoch nicht nur auf permanente Zellinien, sondern auch auf Lymphoblasten, die direkt von Kindern mit einer ALL gewonnen wurden, proapoptotisch (Fig. 1B). Im Unterschied zum bereits bekannten und sehr verbreitet eingesetzten Chemotherapeutikum Epirubicin (abgekürzt mit E) leiten die Substanzen N76 und N69 auch in therapieresistenten Patientenzellen *in vitro* die Apoptose ein (Fig. 1B). In diesem Versuch wurden Lymphoblasten von Kindern mit einer akuten lymphoblastischen Leukämie (ALL) isoliert und nach Verdünnung mit Zellkulturmedium für 36 h mit 25 μ M N76, 25 μ M N69

- 11 -

oder als Positivkontrolle mit 9 μ M Epirubicin (E) behandelt. Kontrollen enthielten entsprechende Mengen des Lösungsvermittlers Ethanol. Nach der Behandlung wurde die Fragmentierung der DNA durch Färbung mit Propidiumiodid und anschließender Quantifizierung mittels Durchflußzytometrie, wie von Eßmann et al. (2000) beschrieben, gemessen. Die Werte sind gegeben als % apoptotische Zellen der Gesamtpopulation \pm SD (n=3).

In der Abfolge der Apoptose kommt es zur Aktivierung einer Familie von Cysteinproteasen, den sogenannten Caspasen, die die Zelle während des ablaufenden Todesprogramms von innen heraus auflösen (Cohen, 1997). Um die Spezifität der erfindungsgemäßen Substanzen näher zu untersuchen, wurde in einem Western Blot die Prozessierung und Aktivierung der Caspase-3 nachgewiesen (Figur 2). Dazu wurden BJAB-Zellen 24 h mit unterschiedlichen Konzentrationen von N76 behandelt. Kontrollen enthielten entsprechende Mengen des Lösungsvermittlers Ethanol (Ke). Nach der Behandlung wurde die Prozessierung der Procaspase-3 mittels spezifischer Immundetektion im Western Blot, wie von Eßmann et al. (2000) beschrieben, bestimmt. Die Positionen der Procaspase-3 und der prozessierten Untereinheit im SDS-Polyacrylamidgel sind durch Querstriche am linken Rand von Fig.2 gekennzeichnet. Die Zugabe von 25 oder 50 µmol/l der Substanz N76 zum Medium von BJAB-Zellen löst in diesen Zellen eine Prozessierung der Procaspase-3 aus. Zu sehen ist der spezifische, immunchemische Nachweis der aktiven Untereinheit der Caspase-3 in behandelten Zellen im Unterschied zu den entsprechenden Kontrollzellen. Das Ergebnis macht deutlich, dass die erfindungsgemäßen Substanzen spezifisch eine apoptotische Kaskade induzieren.

Die Verwendbarkeit erfindungsgemäßer Substanzen für die Therapie verschiedener bösartiger Erkrankungen des blutbildenden Systems wurde an Zellen von Patienten mit unterschiedlichen Erkrankungen erprobt. Dazu wurden Zellen von Patienten mit verschiedenen Leukämien isoliert und nach Verdünnung in Zellkulturmedium für 36 h mit 25 μ M N69 behandelt. Kontrollen

- 12 -

enthielten entsprechende Mengen des Lösungsvermittlers Ethanol. Nach der Behandlung wurde die Fragmentierung der DNA durch Färbung mit Propidiumiodid und anschließender Quantifizierung mittels Durchflußzytometrie, wie von Eßmann et al. (2000) beschrieben, gemessen. Das Ergebnis ist Figur 3 zu entnehmen. Die gemessenen Werte sind gegeben als % apoptotische Zellen der Gesamtpopulation und stellen den Mittelwert aus zwei unabhängigen Experimenten dar. Figur 3 zeigt, dass 25 µmol/l N69 Patienten sowohl in Zellen von mit einem Rezidiv der akuten lymphoblastischen Leukämie (ALL-Rez) als auch in Zellen von Patienten mit einer Erstmanifestation dieser Erkrankung (ALL), in Zellen von Patienten mit einer akuten myeloblastischen Leukämie (AML) und in Zellen von Patienten mit einer chronischen myeloblastischen Leukämie (CML) den apoptotischen Zelltod auslösen.

Damit werden mit N76 und N69 zwei Substanzen der allgemeinen Strukturformel 2 als wirksame Mittel gegen bestimmte Tumorzellen, besonders die der kindlichen ALL, aber auch gegen andere maligne Erkrankungen unterschiedlicher Herkunft, bereitgestellt. Zusammenfassend ist in Fig. 4 gezeigt, dass insbesondere die Substanz N69 in vitro eine signifikant bessere proapoptotische Wirkung gegenüber primären ALL-Zellen aufweist als die Zytostatika Doxorubicin, etablierten Cytarabin und Fludarabin-5'dihydrogenphosphat. In diesen Versuchen wurden die Zellen von 11 ALL-Patienten isoliert und nach Verdünnung in Zellkulturmedium für 36 h mit 25 μM N69, 25 μM N76 oder entsprechenden Mengen Cytarabin (AraC), Fludarabin oder Doxorubicin behandelt. Kontrollen enthielten entsprechende Mengen des Lösungsvermittlers Ethanol. Nach der Behandlung wurde die Fragmentierung der DNA durch Färbung mit Propidiumiodid anschließender Quantifizierung mittels Durchflußzytometrie, wie von Eßmann et al. (2000) beschrieben, gemessen. P-Werte wurden mittels eines gepaarten t-Tests berechnet und sind direkt in Fig. 4 für die einzelnen Vergleichspaare angegeben. P-Werte < 0.05 gelten als statistisch signifikant.

Um die Rolle der verschiedenen Komponenten der neu beschriebenen Substanzen näher zu charakterisieren, wurden die eisenkomplexierte

Verbindung N69 und die Verbindung, die durch Abspalten der Fe(CO)₃-Gruppe aus N69 erhältlich ist, hergestellt und in einem kombinierten Proliferationsund Zelltodassay eingesetzt. Dazu wurden BJAB-Zellen 24 h und 72 h mit unterschiedlichen Konzentrationen von N69 oder der entsprechenden Verbindung ohne Eisenkomplex behandelt. Kontrollen enthielten entsprechende Mengen des Lösungsvermittlers Ethanol. Nach der Behandlung wurde die Zellzahl in der Neubauer-Zählkammer und die Anzahl toter Zellen durch Trypan-Blaufärbung, wie von Wieder et al. (1995) beschrieben, bestimmt. In Fig. 5A ist die Gesamtzahl lebender Zellen mal $10^{-5} \pm SD$ (n=3) nach Inkubation mit Kontrollmedium (offene Kreise), 10 μM N69 (geschlossene Kreise) oder 25 μM N69 (offene Dreiecke) nach 24 h und 72 h gezeigt. In Fig. 5B ist der zu diesen Zeitpunkten bei der entsprechenden Konzentration bestimmte Anteil toter Zellen in $\% \pm SD$ (n=3) gegeben. Die linke Spalte zeigt das Ergebnis nach Behandlung mit der dekomplexierten Substanz, die rechte Spalte das Ergebnis für das komplexierte N69. Wie unschwer zu erkennen ist, spielt das komplexierte Eisen eine wichtige Rolle für den Zelltod-einleitenden Effekt der Substanzen. Dabei verschiebt das komplexierte Eisen die Dosis-/Wirkungskurve des Zelltod-induzierenden Effekts von N69 zu niedrigeren Konzentrationen. Während 25 µM der eisenfreien Verbindung nach 72 h nur in ca. 20 % der Zellen Zelltod induziert, sterben in Anwesenheit von 25 µM eisenhaltigem N69 bereits nach 24 h ca. 90 % der behandelten Zellen (Figur 5B). Hingegen ist für die antiproliferativen Eigenschaften von N69 eher der Nukleosidanteil verantwortlich, da beide getesteten Substanzen bei 10 μM die Proliferation signifikant erniedrigen und bei 25 µM vollständig blockieren (siehe Figur 5A). Das heißt, es werden in der vorliegenden Schrift neue Substanzklassen beschrieben, die zwei für die Wirkung Strukturmerkmale besitzen. Es soll jedoch betont werden, dass auch solche Substanzen der Erfindung, die nicht als Eisen-Komplex appliziert werden, eine hohe therapeutische Wirksamkeit aufweisen.

In einem weiteren Ausführungsbeispiel wird eine proapoptotische Wirkung für das neu synthetisierte, carbozyklische Nukleosidanalogon JV-206-1

(Strukturformel 35) nachweisen. In Fig. 6A ist gezeigt, dass die 48 stündige Inkubation von BJAB-Zellen mit JV-206-1 (35) den Zelltod auslöst. Weitere Untersuchungen ergaben, dass die BJAB Zellen durch JV-206-1 in den mitochondrialen Apoptosesignalweg getrieben werden. Dies wurde mittels Färbung der Zellen mit dem Mitochondrien-spezifischen Farbstoff JC-1, wie von Wieder et al. (2001) beschrieben, nachgewiesen. Die Inkubation der Zellen mit JV-206-1 führte hierbei zu einer konzentrationsabhängigen Erhöhung des Anteils von Zellen mit einem erniedrigten mitochondrialen Membranpotential $(\Delta \Psi_m)$, was auf eine starke Aktivierung der Mitochondrien während des apoptotischen Prozesses hinweist (Fig. 6B). Als spezifisches Apoptosemerkmal wurde außerdem die Fragmentierung der DNA, wie von Eßmann et al. (2000) beschrieben, gemessen. Dabei stellte sich heraus, daß der überwiegende Teil der Zellen bei JV-206-1 Konzentrationen von 20 µM durch Apoptose stirbt (Fig. 6C). Der Anteil der apoptotischen Zellen lag in diesen Versuchen je nach Konzentration Inkubationszeit und zwischen 20% 48% und der Gesamtpopulation.

Die erfindungsgemäßen Arzneimittel können topisch oder intravenös appliziert werden. Bei intravenöser Applikation werden die Substanzen im Konzentrationsbereich zwischen 0,1 bis 100 μ g/ml, bezogen auf das Blutvolumen des Patienten, verabreicht. Die Substanzen werden in einer Konzentration von 0,1 bis 5 Gew.-%, bezogen auf das fertige Präparat, in die erkrankte Haut eingerieben.

Die vorliegende Erfindung betrifft auch Verfahren zur Synthese der erfindungsgemäßen Verbindungen, die in den Schemata 1 bis 5 zusammengefaßt sind. In einer Ausführungsform der Erfindung umfaßt das Verfahren die folgenden Schritte:

Schritt (a): Überführung eines Glycosides (bevorzugt ein Glucosederivat) **12** durch Umsetzung mit einem Trialkylsilyl-Reagenz in eine geschützte Verbindung **13**;

- 15 -

Schritt (b): Umwandlung von **13** in ein oder mehrere Epoxide vom Typ **14** unter Mitsunobu-Bedingungen (Azodicarbonsäurediester/Trialkylphosphan);

Schritt (c): Ringverengung von **14** (auch als Gemisch) zu Aldehyden vom Typ **15** durch Erhitzen mit LiBr in Toluol in Gegenwart von Donor-Kosolventien wie Tetraalkylharnstoffe.

Schritt (d): Olefinierung des Aldehydes **15** zu Dienen vom Typ **16**, vorzugsweise durch Wittig-Reaktion;

Schritt (e): Komplexierung von **16** zu **17** unter Verwendung von Fe₂(CO)₉ oder anderer zum Transfer der Fe(CO)₃-Gruppe befähigten Reagenzien;

Schritt (f): Einführung einer Nucleobase oder einer Gruppe Y (nach Formel **5**) durch diastereoselektive, eisen-unterstützte nucleophile Substitution, bevorzugt unter Verwendung silylierter Nucleobasen in Gegenwart einer Lewissäure (Heßler 1994).

Der allgemeine Syntheseweg (Schema 1) wurde im Rahmen der Dissertation von Erik Heßler (Universität Frankfurt am Main 1993) und der Diplomarbeit von Andre Majdalani (Universität Frankfurt am Main 1994) entwickelt und damit publiziert. Die Schritte (a), (b) und (c) (Herstellung der Aldehyd-Zwischenstufen vom Typ 15, mit $R_3Si = Thexyldimethylsilyl)$ basieren auf einem literaturbekannten Verfahren (Rehnberg 1990). Die Abtrennung von diastereomeren Nebenprodukten erfolgt durch Chromatographie und/oder Kristallisation auf der Stufe von 17, 18 oder 19.

(Schema 1)

Zur Variation der Gruppe R² bei der Herstellung von Verbindungen des Typs **5** (Schema 2) wird

- (g) die Silylgruppe von 17 mit Fluorid abgespalten;
- (h) die freie OH-Funktion erneut verethert oder verestert und
- (f) die Gruppe Y wiederum durch diastereoselektive, Eisen-unterstützte nucleophile Substitution, bevorzugt unter Verwendung silylierter Nucleobasen in Gegenwart einer Lewissäure, eingeführt.

17
$$\xrightarrow{g}$$
 \xrightarrow{HO} \xrightarrow{O} \xrightarrow{O} $\xrightarrow{R^2O}$ \xrightarrow{O} $\xrightarrow{R^2O}$ \xrightarrow{O} $\xrightarrow{R^1}$ $\xrightarrow{Fe(CO)_3}$ $\xrightarrow{Fe(CO)_4}$ $\xrightarrow{Fe(CO)_5}$ $\xrightarrow{Fe(CO)_$

(Schema 2)

Beispielsweise kann der Schritt (f) die folgende Reaktion umfassen:

$$Me_{2}ThxSiO$$

$$= Me_{2}ThxSiO$$

$$= Me_{$$

Die vorliegende Erfindung betrifft auch ein Verfahren zur Synthese von Substanzen vom Typ **44** (Typ **2** mit $X = CH_2$, z.B. Verbindung **35**), die als Arzneimittel verwendet werden (Schema 3). Es umfaßt die folgenden Schritte: Schritte (a, b, c): Überführung von Propargylalkohol **36** in das Acetal **37** durch C-Silylierung, Oxidation des Alkohols zum Aldehyd und säurekatalysierte Acetalisierung mit Allylalkohol;

Schritt (d): Cylisierung von **37** durch eine Pauson-Khand- oder Pauson-Khand- artige Reaktion;

Schritt (e): Diastereoselective Reduktion von **38**, vorzugsweise mit Natriumborhydrid in Gegenwart von Cer(III)chlorid;

Schritte (f, g): Desilylierung und Acetylierung zu 40;

Schritt (h): Diastereoselektive Pd-katalysierte Einführung einer Nucleobase oder einer anderen (nucleophilen) Gruppe Y (nach Formel **5**);

- 18 -

Schritt (i, j): säurekatalysierte Acetalhydrolyse zum Hydroxy-Aldehyd und nachfolgende Silylierung, Veretherung oder Veresterung der OH-Funktion (variable Einführung von R²);

Schritt (k): Olefinierung der Aldehyde **42** zu Dienen vom Typ **43**, vorzugsweise durch Wittig-Reaktion (variable Festlegung von R¹);

Schritt (I): Diastereoselektive Komplexierung von 43 zu 44 unter Verwendung von $Fe_2(CO)_9$ oder anderer zum Transfer der $Fe(CO)_3$ -Gruppe befähigten Reagenzien;

Der allgemeine Syntheseweg bis zu den Zwischenstufen vom Typ **42** (Schema 3) wurde bereits publiziert (J. Velcicky, J. Lex, H.-G. Schmalz, *Org. Lett.* **2002**, *4*, 565-568). Die Schritte (a) bis (d) (Herstellung des racemischen Pauson-Khand-Produktes **38** wurden in Analogie zu einem Literaturverfahren (N. Jeong, B.Y. Lee, S.M. Lee, Y.K. Chung, S.-G. Lee, *Tetrahedron Lett.* **1993**, *34*, 4023) durchgeführt.

HO a, b, c TMS d TMS TMS 38

36

37

$$R^{2O}$$
 R^{1}
 R^{2O}
 R^{1}
 R^{1}
 R^{2O}
 R^{1}
 R^{1}
 R^{2O}
 R^{1}
 R^{2O}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R

Zur Kontrolle der absoluten Konfiguration des Pauson-Khand-Produktes **38** kann der chirogene Schritt (d) entweder enantioselektiv durchgeführt (in Gegenwart chiraler Rhodium oder Iridium-Komplexe) werden oder das Produkt

35

durch kinetische Racematspaltung (z.B. wie in Schema 4 dargestellt durch Oxazaborolidin-katalysierte Boranreduktion) aufgetrennt werden.

(Schema 4)

Die vorliegende Erfindung betrifft auch ein Verfahren zur Synthese von Substanzen vom Typ **52** (Typ **3** mit X = O, $Z = CH_2OR^2$, z.B. Verbindung **53**), die als Arzneimittel verwendet werden (Schema 5). Es umfaßt die folgenden Schritte:

Schritte (a, b): Überführung von Ribonolacton **45** in das tritylgeschütze Enoltriflat **46** durch Tritylierung der primären OH-Funktion und Umsetzung mit Trifluormethansulfonsäureanhydrid in Pyridin;

Schritt (c): Pd-katalysierte Kupplung von **46** mit einem Vinylstannan oder Vinylboran zu **47**;

Schritt (d): Diastereoselektive Komplexierung von **47** zu **48** unter Verwendung von $Fe_2(CO)_9$ oder anderer zum Transfer der $Fe(CO)_3$ -Gruppe befähigten Reagenzien;

Schritt (e): Reduktion des Lactons zum Lactol **49** mit Diisobutylaluminiumhydrid;

Schritt (f): Säurekatalysierte Tritylspaltung und paralelle Substitution der OHgegen eine OMe-Gruppe (Methanol als Lösungsmittel);

Schritt (g): Silylierung, Veretherung oder Veresterung der OH-Funktion unter basischen Bedingungen (variable Einführung von R²);

WO 02/080923

Schritt (h): Einführung einer Nucleobase oder einer Gruppe Y (nach Formel **5**) durch diastereoselektive, eisen-unterstützte nucleophile Substitution, bevorzugt unter Verwendung silylierter Nucleobasen in Gegenwart einer Lewissäure.

HO TrO TrO TrO
$$\frac{1}{45}$$
 $\frac{1}{45}$ $\frac{1}{46}$ $\frac{1}{47}$ $\frac{1}{48}$ $\frac{1}{48}$ $\frac{1}{45}$ $\frac{1}{46}$ $\frac{1}{46}$ $\frac{1}{47}$ $\frac{1}{48}$ $\frac{1}{$

Synthesevorschriften:

1. Herstellung von (+)-Methyl-6-O-(dimethyl-thexyl-silyl)-α-D-glucopyranosid (21)

In einem 100 mL Schlenkkolben wurden in einer Argonatmosphäre 4.70 g (24.20 mmol) (+)-Methyl-α-*D*-glucopyranosid in 30 mL abs. Pyridin gelöst und anschließend im Eisbad auf 0°C gekühlt. Unter magnetischem Rühren und Argon-Gegenstrom injizierte man mit einer Spritze 5.0 mL (24.60 mmol) Thexyldimethylsilylchlorid, ließ noch 1 h bei 0°C rühren und enfernte dann das Kühlbad. Nach weiteren 22.5 h Rühren bei Raumtemp. wurde zweimal mit je 50 mL MeOH

versetzt und jeweils im Vak. am Rotationsverdampfer wieder eingeengt. Anschließend überführte man das Reaktionsgemisch mit 200 mL Essigester in einen Scheidetrichter, wusch die organische Phase mit 2 mal 100 mL einer Lösung aus 190 mL H₂O, 20 mL konz. HCl und 15 g NH₄Cl, sowie mit je 100 mL ges. wäßr. NaHCO3-Lösung und ges. wäßr. NaCl-Lösung. Die wäßrigen Phasen extrahierte man mit 2 x 100mL Essigester und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Nach Filtration wurde im Vak. am Rotationsverdampfer eingeengt und der Rückstand durch Flash-Chromatographie an 190 g Kieselgel (Essigester) gereinigt. Man erhielt nach ausgiebigem Trocknen im Ölpumpenvakuum 6.27g (77 %) des analysenreinen Silylethers 21 als farblosen Feststoff. Schmp.: 88 - 89°C (Essigester), farbloser Feststoff. - DC: Essigester, Rf = 0.34. - FT-IR (KBr): 3375 (s und br., O-H), 2958, 2902, 2876 (s,s,s, ges. C-H), 1466, 1379, 1251, 1152, 1118, 1081 (m,m,m,s,s,s), 1052 (s, C-O),831, 778 (s,m). - ¹**H-NMR:** (400 MHz, CD₃OD) : $\delta = 0.12$ (ys, 6H, (CH₃)₂Si), 0.87 (ys, 6H, (CH₃)₂C), 0.91 (d, J = 6.9 Hz, 6H, (C<u>H</u>₃)₂CH), 1.65 (sept, J = 6.9 Hz, 1H, (CH₃)₂C<u>H</u>), 3.28 (ψ t, J = 8.9 Hz, 1H, 4-H), 3.35 (dd, ${}^{3}J_{2,1} = 3.7$ Hz, ${}^{3}J_{2,3} =$ 9.7 Hz, 1H, 2-H), 3.39 (s, 3H, OMe), 3.51 (ddd, ${}^{3}J_{5.6b} = 2.1$ Hz, ${}^{3}J_{5.6a} = 5.5$ Hz, ${}^{3}J_{5.4} = 9.9$ Hz, 1H, 5-H), 3.60 (ψ t, J = 9.5 Hz, 1H, 3-H),3.75 (dd, ${}^{3}J_{6a,5} = 5.5$ Hz, ${}^{2}J_{6a,6b} = 11.2$ Hz, 1H, 6-Ha), $3.89 \text{ (dd, } ^3J_{6b.5} = 2.1\text{Hz}, ^2J_{6b.6a} = 11.2 \text{ Hz}, 1\text{H, } 6\text{-Hb}), 4.63 \text{ (d, } J = 3.7 \text{ Hz}, 1\text{H, } 1\text{-H}). - Analyse:$ C₁₅H₃₂O₆Si (336.50) ber.: C:53.54 %, H: 9.58 %; gef.: C: 53.28 %, H: 9.88 %.

2. Herstellung von Epoxiden des Typs 22 und 23 als Gemisch

HO.
$$OSiThxMe_2$$
 OSiThxMe₂
 $OSiThxMe_2$
 OMe
 OMe
 OH
 OMe
 OH

In einem 500 mL Dreihalskolben, mit Rückflußkühler und aufgesetztem Hg-Bubbler wurden unter Schutzgas 10.35g (30.76 mmol) des Silylethers 21 und 9.70 g (36.98 mmol) Triphenylphosphan in 250 mL abs. Benzol vorgelegt und durch kräftiges magnetisches Rühren weitgehend gelöst. Zu dieser Lösung gab man (unter Argon-Gegenstrom) mit einer Spritze 5.3 mL (33.66 mmol) DEAD und ließ 1 h bei Raumtemp. reagieren (wobei die Lösung nach 30 min trüb wurde) bevor man für 4 h zum Sieden erhitzte. Nach Abkühlen auf Raumtemp. wurde die Reaktionslösung in einen Scheidetrichter überführt und jeweils mit 250 mL 1N HCl-Lösung und ges. wäßr. NaCl-Lösung

- 23 -

gewaschen. Die wäßrigen Phasen extrahierte man mit 2 x 300 mL und 1 x 150 mL Ether und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Nach Filtration wurde im Vak. am Rotationsverdampfer eingeengt, der Rückstand mit CH₂Cl₂ auf Kieselgel aufgezogen und anschließend (in zwei Portionen) durch Flash-Chromatographie an 190 g Kieselgel (*n*-Hexan / Essigester = 2+1, dann 5+3) gereinigt. Man erhielt nach Trocknen im Ölpumpenvakuum 8.71 g (89 %) eines farblosen Feststoffs, bei dem es sich laut ¹H-NMR (wahrscheinlich) um ein Gemisch von vier isomeren Epoxiden handelte. Das Hauptprodukt konnte durch präparative HPLC (Bed. s.u.) als farbloser Feststoff in analytisch reiner Form isoliert werden.

Rohgemisch: - **DC**: n-Hexan / Essigester = 1 + 1, R_f = 0.34 und 0.41. - **analyt. HPLC**: n-Hexan / Essigester = 10 + 6.67; MN Nucleosil 50-10; 2 mL/min;Refraktom.; Retentionszeiten: 3.21 min, 3.43 min, 4.20 min, 5.13 min. - **präp. HPLC**: n-Hexan / Essigester = 10+6.67; 0.1 L/min; RI 20.- **Analyse:** $C_{15}H_{30}O_{5}Si$ (318.48); ber.: C:56.57 %, H: 9.49 %; gef.: C: 56.80 %, H: 9.39 %.

Hauptprodukt: - DC: n-Hexan / Essigester = 1 + 1, R_f = 0.34. - analyt. HPLC: n-Hexan / Essigester = 10 + 6.67; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 4.20 min. - präp. HPLC: n-Hexan / Essigester = 10+6.67; 0.1 L/min; RI 20. - FT-IR (KBr): \tilde{v} = 3441 (s und br., O-H), 2959, 2878 (s,m, ges. C-H), 1463, 1408 (m,m), 1257, 1149, 1130, 1105 (jeweils s), 1059 (s, C-O), 1001, 983, 906, 822, 780, 763 (jeweils s). - 1 H-NMR: (250 MHz, CDCl₃): δ = 0.13 (ψs, 6H, (CH₃)₂Si), 0.85 (ψs, 6H, (CH₃)₂C), 0.88 (d, J = 6.9 Hz, 6H, (CH₃)₂CH), 1.62 (sept, J = 6.9 Hz, 1H, (CH₃)₂CH), 2.52 (breites s, 1H, D₂O austauschbar, 4-OH), 3.45 (s, 3H, OMe), 3.46 (dd, 3 J_{3,4} = 1.8 Hz, 3 J_{3,2} = 4.2 Hz, 1H, 3-H), 3.54 (dd, 3 J_{2,1} = 3.1 Hz, 3 J_{3,2} = 4.2 Hz, 1H, 2-H), 3.67 (ψdt, 3 J_{5,6} = 4.9 Hz, 3 J = 9.0 Hz, 1H, 5-H), 3.74-3.85 (m, u.a. mit J = 5.3 Hz, J = 10.5 Hz, 2H, 6-H), 3.93 (breites d, J = 8.7 Hz, 1H, 4-H), 4.88 (dd, 4 J_{1,5} = 0.5 Hz, 3 J_{1,2} = 3.1 Hz, 1H, 1-H). - Analyse: C₁SH₃0O₅Si (318.48); ber.: C:56.57 %, H: 9.49 %; gef.: C: 56.03 %, H: 9.30 %.

3. Herstellung von (-)-(2S,5S)-5-((Dimethyl-thexyl-silyloxy)-methyl)-2-methoxy-2,5-dihydrofuran-4-carbaldehyd (24)

In einem 500 mL Dreihalskolben, ausgestattet mit Tropftrichter, Wasserabscheider und Rückflußkühler (mit aufgesetztem Hg-Bubbler) wurden in einer Argonatmosphäre 3.66 g (42.15 mmol) LiBr und 5.10 mL (42.46 mmol) frisch im Kugelrohr (40-60°C, ca. 2 mbar) destillierter Tetramethylharnstoff in 200 mL Toluol vorgelegt und unter magnetischem Rühren im Ölbad zum Rückfluß erhitzt. Anschließend tropfte man 3.14 g (9.86 mmol) des vorstehend beschriebenen Epoxidgemisches (22, 23), gelöst in 150 mL Toluol, innerhalb von 2.5 h zur siedenden Reaktionslösung. Man ließ noch weitere 30 min reagieren, kühlte dann auf Raumtemp. ab und versetzte mit 170 mL Ether. Zur Abtrennung eines braunen Polymerisationsproduktes filtrierte man durch 50 g Kieselgel, wusch mit 150 mL Toluol / Ether = 2+1 nach und zog im Vak. am Rotationsverdampfer das Lösungsmittel ab. Der braune, ölige Rückstand wurde durch Flash-Chromatographie an 220 g Kieselgel (n-Hexan / Essigester = 6+1) gereinigt. Man erhielt nach Trocknen im Ölpumpenvakuum 2.23 g (75 %) des Aldehydes 24 als analytisch reines, rot-braunes Öl. - DC: n-Hexan / Essigester = 4+1, $R_f = 0.37$. - Drehwert: $[\alpha]_{389}^{20} = -68.7$, (c = 1.0 in CHCl₃); - CD: $\Theta(\lambda) = -19352$ (233.0 nm), -2429 (335.0 nm), -2052 (341.0 nm), -2832 (348.0 nm), -1701 (357.0 nm), -2321 (365.0 nm), -679 (378.0 nm), -947 (384.0 nm), (c= 0.007 in *n*-Hexan). -UV (MeOH): $\lambda_{max}(\epsilon) = 214.0 \text{ nm}$ (8935). - FT-IR (Film): $\tilde{v} = 2958$, 2868 (m,m, ges. C-H), 2830, 2717 (m.w, C-H-Aldehyd), 1692 (s, C=O), 1465, 1354, 1252, 1190, 1136 (jeweils m), 1042 (s. C-O), 969, 903, 833, 778 (jeweils m), - ¹H-NMR: (270 MHz, CDCl₂): $\delta = 0.02 + 0.06$ (s+s, jeweils 3H, (CH₃)₂Si), 0.78 (ψ s, 6H, (CH₃)₂C), 0.82 (ψ d, J = 6.9 Hz, 6H, (CH₃)₂CH), 1.55 (sept, J = 6.9 Hz, 1H, (CH₃)₂CH), 3.43 (s, 3H, OMe), 3.90 (ψ d, J = 2.5 Hz, 2H, CH₂O), 5.12-5.16 (m, 1H, 5-H), 5.91 (ψ d, J = 4.3 Hz, 1H, 2-H), 6.68 (ψ s, 1H, 3-H), 9.88 (s, 1H,CHO). - Analyse: C₁₅H₂₈O₄Si (300.47); ber.: C: 59.96%, H: 9.39 %; gef.: C: 59.99 %, H: 9.34 %.

4. Herstellung von (-)-(2S,5S)-5-((Dimethyl-thexyl-silyloxy)-methyl)-2-methoxy-4-vinyl-2,5-dihydrofuran (25)

In einem 250 mL Schlenkkolben wurden in einer Argonatmosphäre 1.85 g (5.18 mmol) Methyltriphenylphosphoniumbromid in 50 mL abs. THF vorgelegt und auf - 40°C gekühlt. Unter magnetischem Rühren und Argon-Gegenstrom injizierte man mit einer Spritze 3.0 mL (4.80 mmol) n-Butyllithium-Lösung (1.6 M in Hexan) hinzu, ließ 30 min reagieren (Gelbfärbung), kühlte auf - 78°C ab und gab dann 1.01 g (3.36 mmol) des Aldehydes 24, gelöst in 20 mL abs. THF, zur Reaktionslösung. Man ließ langsam auf Raumtemp. kommen (ca. 4.5 h) wobei sich die Lösung orange färbte, und überführte sie mit 200 mL Ether in einen Scheidetrichter. Nach Zugabe von 200 mL Eiswasser trennte man die Phasen und wusch die organische Phase mit 200 mL ges. wäßr. NaCl-Lösung. Die wäßrigen Phasen extrahierte man mit 1 x 200 mL und 2 x 100 mL Ether und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Nach Filtration wurde im Vak. am Rotationsverdampfer eingeengt und der Rückstand durch Flash-Chromatographie an 60 g Kieselgel (n-Hexan / Essigester = 10+1) gereinigt. Man erhielt nach Trocknen im Ölpumpenyakuum 0.9741 g (97 %) analysenreines 25 als farbloses Öl. - DC: n-Hexan/Essigester = 10+1, $R_f = 0.32$. - Drehwerte: $[\alpha]_{589}^{20} = -49.5$, $[\alpha]_{578}^{20} = -52.5$, $[\alpha]_{546}^{20} = -62.5$, $[\alpha]_{436}^{20} = -136.3$, $[\alpha]_{ac}^{20} = -282.7$, (c = 1.1 in *n*-Hexan). - CD: $\Theta(\lambda) = -35370$ (227.5 nm), (c = 0.002 in *n*-Hexan). -UV (n-Hexan): $\lambda_{max}(\epsilon) = 226.0$ nm (15664). - FT-IR (Film): $\tilde{v} = 3092$ (w, unges. C-H), 2946, 2866 (s,s, ges. C-H),1597 (m, C=C), 1465, 1367, 1251, 1194, 1140 (m,m,s,m,s), 1066 (s, C-O), 960, 914, 832, 778 (m,m,s,m). - 1 H-NMR : (270 MHz, C₆D₆) : $\delta = 0.09 + 0.11$ (s+s, jeweils 3H, $(CH_3)_2Si$, 0.89 (ψ s, 6H, $(CH_3)_2C$), 0.94 (d, J = 6.8 Hz, 6H, $(CH_3)_2CH$), 1.63 (sept, J = 6.9 Hz, 1H, (CH₃)₂CH), 3.29 (s, 3H, OMe), 3.58 (dd, $^{3}J = 3.7$ Hz, $^{2}J = 11.1$ Hz, 1H, CH₂O), 3.79 (ψ dd, $^{3}J=2.7 Hz$, $^{2}J=10.9 Hz$, ^{1}H , $^{2}CH_{2}O$), $^{4}.93$ (d, $^{4}J=11.2 Hz$, ^{4}L , $^{$ 5.02 (d, J = 17.7 Hz, 1H, 2'-H(Z)), 5.57 (ψ s, 1H, 3-H), 5.87 (ψ d, J = 4.0 Hz, 1H, 2-H), 6.20 (dd, 3 J = 10.9 Hz, ${}^{3}J_{1}$ (2) = 18.1 Hz, 1H, 1'-H). - ${}^{13}C$ -NMR : (62.90 MHz, $C_{6}D_{6}$): δ = - 3.4, - 3.3 (jeweils q, (CH₃)₂Si), 18.7, 18.8 (jeweils q, (CH₃)₂CH), 20.5, 20.6 (jeweils q, (CH₃)₂C), 25.4 (s, Si-C), 34.6 (d, (CH₃)₂CH), 53.3 (q, OCH₃), 64.8 (t, CH₂O), 85.6 (d, C-5), 108.6 (d, C-2), 117.6 (t, C-2'), 126.2 (d, C-3), 129.5 (d, C-1'), 143.5 (s, C-4). - Analyse: C₁₆H₃₀O₃Si (298.50); ber.: C: 64.38%, H:10.13 %; gef.: C: 64.35 %, H: 10.13 %.

5. Herstellung von (-)-(2'S,5'S)-3-*E*-(5'-((Dimethyl-thexyl-silyloxy)-methyl)-2'-methoxy-2',5'-dihydrofuran-4-yl)-acrylsäureethylester (26)

- 26 -

In einem 250 mL Zweihalskolben mit Rückflußkühler und aufgesetztem Hg-Bubbler wurden 1.64 g (5.46 mmol) des Aldehydes 24 und 2.85 g (8.18 mmol) Ethoxycarbonyl-methylentriphenylphosphoranin 100 mL abs. THF gelöst und unter magnetischem Rühren im Wasserbad zum Sieden erhitzt. Da nach 1 h die DC-Reaktionskontrolle (Bed. s.u.) einen vollständigen Umsatz, ließ man auf Raumtemp. abkühlen, engte im Vak. am Rotationsverdampfer ein und trocknete kurz im Ölpumpenvakuum. Den verbliebenen Rückstand zog man mit CH2Cl2 auf Kieselgel auf und reinigte ihn durch Flash-Chromatographie an 80 g Kieselgel (n-Hexan / Essigester = 6+1). Man erhielt 1.92g (95 %) des Esters 26 als gelbes Öl in analytisch reiner Form. - DC: n-Hexan / Essignster = 4 + 1, $R_f = 0.39$. - Drehwerte: $[\alpha]_{589}^{20} = -16.8$, $[\alpha]_{578}^{20} = -18.1$, $[\alpha]_{546}^{20} = -23.3, [\alpha]_{436}^{20} = -66.5, [\alpha]_{365}^{20} = -171.8, (c = 1.2 in n-Hexan). - CD : \Theta(\lambda) = +1631 (224.0)$ nm), - 16944 (253.5 nm), (c = 0.002 in *n*-Hexan). - UV (*n*-Hexan) : $\lambda_{max}(\epsilon) = 253.5$ nm (19913). - FT-IR (Film): $\tilde{v} = 3080$ (w, unges. C-H), 2957, 2868 (m,m, ges. C-H), 1720 (s, C=O), 1648, 1609 (m,m, C=C), 1465, 1366, 1307, 1254, 1177 (m,m,m,m,s), 1041 (s, C-O), 833, 778 (s,m). -¹H-NMR: (270 MHz, C₆D₆): $\delta = 0.04 + 0.06$ (s+s, jeweils 3H, (CH₃)₂Si), 0.85 (ψs, 6H, $(CH_3)_2C$, 0.90 (d, J = 6.9 Hz, 6H, $(CH_3)_2CH$), 0.98 (t, J = 7.1 Hz, 3H, OCH_2CH_3), 1.59 (sept, J = 6.9 Hz, 1H, (CH₃)₂CH), 3.22 (s, 3H, OMe), 3.53 (dd, ${}^{3}J = 3.2$ Hz, ${}^{2}J = 11.1$ Hz, 1H, CH₂O), 3.65 (dd, $^{3}J = 3.5 \text{ Hz}$, $^{2}J = 11.1 \text{ Hz}$, 1H, CH₂O), 4.02 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 4.85-4.89 (m, 1H, 5'-H), 5.67 (ψ s, 1H, 3'-H), 5.75 (ψ d, J = 4.1 Hz, 1H, 2'-H), 5.99 (d, J = 16.2 Hz, 1H, 2-H), 7.46 (d, J = 16.2 Hz, 1H, 3-H). - 13 C-NMR : (62.90 MHz, C_6 D₆) : $\delta = -3.5$, - 3.4 (jeweils q, (CH₃)₂Si), 14.2 (q, CH₃CH₂O), 18.7 (q, (CH₃)₂CH), 20.5 (q, (CH₃)₂C), 25.4 (s, Si-C), 34.5 (d, (CH₃)₂CH), 53.5 (q, OCH₃), 60.4 (t, CH₃CH₂O), 64.5 (t, CH₂O), 85.4 (d, C-5'), 108.3 (d, C-2'), 122.5 (d, C-3'), 132.4 (d, C-3), 135.8 (d, C-2), 142.0 (s, C-4'), 165.9 (s, C-1). -Analyse: C₁₉H₃₄O₅Si (370.56); ber.: C: 61.58%, H: 9.25 %; gef.: C: 61.77 %, H: 9.27 %.

Herstellung von (-)-endo-[1',2',3,4-η-((2S,5S)-5-((Dimethyl-thexyl-silyloxy)-methyl)-2-methoxy-4-(s-cis-vinyl)-2,5-dihydrofuran)]-tricarbonyl-eisen (27)

In einem 100 mL Zweihalskolben mit Rückflußkühler und aufgesetztem Hg-Bubbler wurden in einer Argonatmosphäre 0.2425 g (0.81 mmol) des Vinyldihydrofurans 25 und 0.44 g (1.21mmol) Fe₂(CO)₉ in 40 mL entgastem Ether (frisch durch basisches Al₂O₃ filtriert) vorgelegt und unter weitgehendem Lichtausschluß zum Sieden erhitzt (Grünfärbung durch entstehendes Fe₃(CO)₁₂). Nach 2 h versetzte man erneut unter Argon-Gegenstrom mit 0.15 g (0.41 mmol) Fe₂(CO)₀, spülte mit wenig Ether nach und erhitzte solange unter Rückfluß, bis laut DC (Bed. s.u.) alle eisenhaltigen Nebenprodukte (wahrscheinlich η²-Fe(CO)₄-Komplexe) verschwunden waren (insgesamt 6.5 h). Zur Aufarbeitung wurde die Reaktionslösung im Vak. am Rotationsverdampfer eingeengt, kurz im Ölpumpenvakuum getrocknet, anschließend unter striktem Sauerstoffausschluß mit wenig n-Hexan in eine Flash-Säule überführt und mit Argondruck chromatographiert (90 g entgastes Kieselgel, erst n-Hexan zum Entfernen von Fe(CO)5 und Fe3(CO)12, dann n-Hexan / Essigester = 10+1). Man erhielt nach Trocknen im Ölpumpenvakuum 0.3091 g (87 %) Rohprodukt in Form eines rotbraunen Öls, bei dem es sich laut ¹H-NMR um ein Gemisch des endo-Komplexes 27 und seines exo-Diastereomeren im Verhältnis von 77:23 handelte. Das diastereomere Nebenprodukt konnte durch präparative HPLC abgetrennt werden. Man isolierte 0.1316g (37 %) des Komplexes 27 als rotbraunes Öl in analytisch reiner Form.

- DC: n-Hexan / Essigester = 10+1, R_f = 0.39. - analyt. HPLC: n-Hexan / Ether = 10+0.25; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 5.64 min. - s.-präp. HPLC: n-Hexan/Essigester = 10+0.3;10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{589}^{20} = -62.2$, $[\alpha]_{578}^{20} = -66.7$, $[\alpha]_{546}^{20} = -82.9$, bei 436 und 365 nm kein Lichtdurchlaß, (c =1.3 in CHCl₃).- CD: Θ (λ) = -9215 (258.5 nm), + 1920(284.0 nm), -7087 (320.0 nm), (c = 0.010 in CHCl₃). - UV (CHCl₃): λ max(ϵ) = 289.0 nm (2554). - FT-IR (Film): \tilde{v} = 3046 (w, unges. C-H), 2958, 2866 (m,m, ges. C-H), 2054, 1979 (s, s und br., C=O), 1465, 1365, 1253, 1121 (jeweils m), 1054 (m, C-O), 831, 778

- 28 -

(m,m). - ¹H-NMR : (270 MHz, CDCl₃): δ = - 0.15 (dd, ${}^{2}J_{2}$ ° $_{anti,2}$ ° $_{syn}$ = 2.3 Hz, ${}^{3}J_{2}$ ° $_{anti,1}$ ° = 8.6 Hz,1H, 2'-H $_{anti}$), 0.12 + 0.13 (s+s, jeweils 3H, (CH₃) $_{2}$ Si), 0.86 (ψs, 6H, (CH₃) $_{2}$ C), 0.88 (d, J = 6.9 Hz, 6H, (CH₃) $_{2}$ CH), 1.55 - 1.71 (m, u.a. mit ${}^{3}J_{2}$ ° $_{syn,1}$ ° = 6.5 Hz, 2H, 2'-H $_{syn}$, (CH₃) $_{2}$ CH), 1.77 (ψd, J = 3.0 Hz, 1H, 3-H), 3.42 (s, 3H,OMe), 3.73 (dd, ${}^{3}J_{2}$ = 5.9 Hz, ${}^{2}J_{2}$ = 10.3 Hz, 1H, CH₂O), 3.86 (dd, ${}^{3}J_{2}$ = 3.6 Hz, ${}^{2}J_{2}$ = 10.3 Hz, 1H, CH₂O), 4.81 (ψt, J = 4.8 Hz, 1H, 5-H), 5.40-5.41(m, 1H, 2-H), 5.44 (ψt, J = 8.1 Hz, 1H, 1'-H). - ${}^{13}C_{-NMR}$: (100.61 MHz, CDCl₃) : δ = - 3.5, - 3.4 (jeweils q, (CH₃) $_{2}$ Si), 18.6 (q, (CH₃) $_{2}$ CH), 20.1, 20.3 (jeweils q, (CH₃) $_{2}$ C), 25.2 (s, Si-C), 34.1 (d, (CH₃) $_{2}$ CH), 36.3 (t, C-2'), 56.1 (q, OCH₃), 62.5 (d, C-3), 66.4 (t, CH₂O), 74.4 (d, C-1'), 82.5 (d, C-5), 107.9 (d, C-2), 111.5 (s, C-4), 210.2 (br., Fe(CO)₃).- **Analyse**: C₁₉H₃₀FeO₆Si (438.38); ber.: C: 52.06% H: 6.90 %; gef.: C: 52.04 %, H: 6.76 %.

7. Herstellung von (—)-endo-[2,3,3',4'- η -(2'S,5'S)-3-E-(5'-((Dimethyl-thexyl-silyloxy) methyl)-2'-methoxy-2',5'-dihydrofuran-4-yl)-acrylsäureethylester]-tricarbonyleisen (28)

In einem 100 mL Zweihalskolben mit Rückflußkühler und aufgesetztem Hg-Bubbler wurden in einer Argonatmosphäre 0.2467 g (0.67 mmol) des Esters 26 und 0.36 g (0.99 mmol) Fe₂(CO)₉ in 50 mL entgastem Ether (frisch durch basisches Al₂O₃ filtriert) vorgelegt und unter weitgehendem Lichtausschluß zum Sieden erhitzt (Grünfärbung durch entstehendes Fe₃(CO)₁₂). Nach 2 h versetzte man erneut unter Argon-Gegenstrom mit 0.16 g (0.44 mmol) Fe₂(CO)₉, spülte mit wenig Ether nach und erhitzte solange unter Rückfluß, bis laut DC (Bed. s.u.) alle eisenhaltigen Nebenprodukte verschwunden waren (insgesamt 28 h). Zur Abtrennung unlöslicher Fe_x(CO)_y-Komplexe filtrierte man die Reaktionslösung unter Schutzgas durch 30 g Kieselgel, wusch mit *n*-Hexan / Essigester = 1+1 nach und zog im Vak. am Rotationsverdampfer das Lösungsmittel ab. Der dunkle, ölige Rückstand wurde anschließend unter striktem Sauerstoffausschluß mit wenig *n*-Hexan in eine Flash-Säule überführt und mit Argondruck chromatographiert (Hexan / Essigester = 8+1). Man erhielt nach Trocknen im Ölpumpenvakuum 0.3115 g (92 %) Rohprodukt in Form eines rotbraunen Öls, bei dem es sich laut ¹H-NMR um ein Gemisch von 28 und seinem exo-

- 29 **-**

Diastereomeren im Verhältnis von 79: 21 handelte. Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semi-präparative HPLC (Bed. s.u.). Man erhielt 0.1938g (57 %) des *endo*-Komplexes 28 als rotbraunes Öl in analytisch reiner Form.

- DC: n-Hexan / Essignster = 10+1, R_f = 0.29. - analyt. HPLC: n-Hexan / Essignster = 10+0.5; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 4.56 min. - s.-präp. HPLC: n-Hexan / Essignster = 10+0.5;10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{559}^{20} = -111.0$, $[\alpha]_{578}^{20} = -$ 117.0, $[\alpha]_{346}^{20} = -136.8$, bei 436 und 365 nm kein Lichtdurchlaß, (c = 1.2 in CHCl₃). - CD: $\Theta(\lambda)$ = ca. - 25985 (256.0 nm) + 11968 (314.5 nm) - 10338 (350.0 nm) + 1566 (402.5 nm) (c=0.011)in CHCl₃). - UV (CHCl₃): $\lambda_{max}(\epsilon) = 301.0$ nm (2883). - FT-IR (Film): 3070 (w, unges. C-H), 2959, 2867 (m,m, ges. C-H), 2063, 1986 (s, s und br., C≡O), 1709 (m, C=O), 1466, 1368, 1253, 1194, 1125, 1052, 833 (jeweils m). - ¹**H-NMR**: (270 MHz, CDCl₃): $\delta = 0.11 + 0.12$ (s+s, jeweils 3H, $(CH_3)_2Si$, 0.59 (d, J = 7.5Hz, 1H, 2-H), 0.84 (ψ s, 6H, $(CH_3)_2C$), 0.87 (d, J = 6.9 Hz, 6H, $(C_{H_3})_2$ CH), 1.25 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.62 (sept, J = 6.9 Hz, 1H, (CH₃)₂CH), 2.03 -2.04 (m, 1H, 3'-H), 3.42 (s, 3H, OMe), 3.78 (dd, $^{3}J = 5.2 \text{ Hz}$, $^{2}J = 10.5 \text{ Hz}$, 1H, CH₂O), 3.88 (dd, $^{3}J = 3.3 \text{ Hz}$, $^{2}J = 10.5 \text{ Hz}$, ^{1}H , $^{2}CH_{2}O$), $^{2}H_{2}O$, $^{2}H_{2}O$, 4.82 (m, 1H, 5'-H), 5.44 - 5.45 (m, 1H, 2'-H), 5.96 (d, J = 8.2 Hz, 1H, 3-H). - 13 C-NMR: (100.61) MHz, CDCl₃): $\delta = -3.5$ (q, (CH₃)₂Si), 14.2 (q, CH₃CH₂O), 18.5, 18.6 (jeweils q, (CH₃)₂CH), 20.2, 20.3 (jeweils q, ($\underline{CH_3}$)₂C), 25.2 (s, Si-C), 34.1 (d, ($\underline{CH_3}$)₂ \underline{CH}), 43.4 (d, C-2), 56.2 (q, OCH₃), 60.5 (t, CH₃CH₂O), 63.1 (d, C-3'), 66.2 (t, CH₂O), 75.4 (d, C-3), 82.6 (d, C-5'), 107.7 (d, C-2'), 110.1 (s, C-4'), 172.4 (s, C-1), 212 (br., Fe(CO)₃). - Analyse: C₂₂H₃₄FeO₈Si (510.44); ber.: C: 51.77 %, H: 6.71 %; gef.: C: 51.97 %, H: 6.57 %.

8. Herstellung von exo-[1",2",2',3'- η -(2',3'-Didehydro-2',3'-dideoxy-5'-O-(dimethyl-thexyl-silyl)-3'-s-cis-vinyl- β -D-uridin]-tricarbonyl-eisen (29)

- 30 -

29

Fe(CO)₃

In einem ausgeheizten 100 mL Dreihalskolben mit Rückflußkühler und aufgesetztem Hg-Bubbler wurden unter striktem Sauerstoff-und Feuchtigkeitsausschluß zu 0.5715 g (2.23 mmol) 2,4-Bistrimethylsiloxy-pyrimidin 0.3260 g (0.74mmol) Komplex 27 und 100 mL CH₂Cl₂ (frisch durch basisches Al₂O₃ filtriert und entgast) gegeben und unter magnetischem Rühren zum Sieden erhitzt. Zu dieser Lösung gab man mittels einer Dosierpumpe innerhalb von 2 h 1.75 mL (1.75 mmol) SnCl₄- Lösung (1 M in Heptan) hinzu und ließ, nachdem die DC-Reaktionskontrolle (Bed. s.u.) einen vollständigen Umsatz anzeigte, auf Raumtemp. abkühlen. Zur Aufarbeitung wurde die Lösung mit 20 mL CH₂Cl₂ in einem Scheidetrichter überführt und rasch mit jeweils 100 mL ges. wäßr. NaHCO3-Lösung und ges. wäßr. NaCl-Lösung gewaschen. Die wäßrigen Phasen extrahierte man mit 2 x 50 mL CH₂Cl₂ und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Zur Vermeidung einer möglichen oxidativen Dekomplexierung entgaste man die Lösung sofort durch kurzzeitiges Anlegen eines leichten Ölpumpenvakuums und belüftete anschließend wieder mit Argon. Nach Filtration wurde im Vak. am Rotationsverdampfer eingeengt und kurz im Ölpumpenvakuum getrocknet. Anschließend wurde der gelbe, ölige Rückstand unter striktem Sauerstoffausschluß in eine Flash-Säule überführt und mit Argondruck chromatographiert (90 g entgastes Kieselgel, n-Hexan / Essigester = 3+2). Man erhielt nach Trocknen im Hochvakuum 0.3617 g (94 %) Rohprodukt in Form eines gelben Schaumes, bei dem es sich laut ¹H-NMR um ein Gemisch des Komplexes 29 und des Diastereomeren im Verhältnis von 84: 16 handelte. Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semi-präparative HPLC (Bed.

Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semi-präparative HPLC (Bed. s.u.). Man erhielt 0.2588 g (67 %) des Komplexes 29 und 0.0451 als gelben, erstarrten Schaum, in analytisch reiner Form.

- Schmp.: 76 - 78°C (CH₂Cl₂), gelber, fester Schaum. - DC: n-Hexan / Essigester = 1+1, R_f = 0.40. - analyt. HPLC: n-Hexan / Essigester = 10+4.33; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 4.65 min. - s.-präp. HPLC: n-Hexan / Essigester = 10+5; 10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{389}^{29} = -165.7$, $[\alpha]_{578}^{29} = -175.1$, $[\alpha]_{546}^{29} = -206.8$, bei 436 und

- 31 -

WO 02/080923 PCT/EP02/03835

365 nm kein Lichtdurchlaß, (c= 0.9 in MeOH). - CD: $\Theta(\lambda) = -1079 (271.5 \text{ nm})$, - 21924 (306.0 nm), (c = 0.006 in MeOH). - UV (MeOH) : $\lambda_{max}(\epsilon)$ = 260.0 nm (14251). - FT-IR (KBr) : \tilde{v} = 3412, 3192 (w,w, jeweils br., N-H), 3061 (w, unges. C-H), 2959, 2867 (m,w, ges. C-H), 2057, 1987 (s, s und br., C=O), 1686 (s und br., C=O), 1464, 1255, 1123, 832 (jeweils m). - ¹H-NMR: (270 MHz, CDCl₃): $\delta = -0.03$ (dd, 2J_2 "anti.2"syn = 2.4 Hz, 3J_2 "anti.1" = 8.6 Hz, 1H, 2"- H_{anti}), 0.15 + 0.18 (s+s, jeweils 3H, (CH₃)₂Si), 0.86-0.88 (m, 12H, (CH₃)₂C, (CH₃)₂CH), 1.63 (sept, J = 7.0 Hz, 1H, (CH₃)₂CH), 1.79 - 1.82 (m, 2H, 2'-H, 2"-H_{SVn}), 3.94 - 4.05 (m, 2H, 5'-H), 4.99 (ψ t, J = 3.8 Hz, 1H, 4'-H), 5.59 (ψ t, J = 7.8 Hz, 1H, 1"-H), 5.67 (dd, J = 2.2 Hz, 3 J₅ 6 = 8.2 Hz, 1H, 5-H), 6.15 (s, 1H, 1'-H), 7.85 (d, J = 8.2 Hz, 1H, 6-H), 8.28 (breites s, 1H, D₂O austauschbar, N-H). - 13 C-NMR : (62.90 MHz, CDCl₃) : δ = - 3.4, - 3.3 (jeweils q, (CH₃)₂Si), 18.5, 18.6 (jeweils q, (CH₃)₂CH), 20.2, 20.3 (jeweils q, (CH₃)₂C), 25.5 (s, Si-C), 34.0 (d, (CH₃)₂CH), 37.6 (t, C-2"), 58.2 (d, C-2'), 66.3 (t, C-5'), 75.6 (d, C-1"), 85.0 (d, C-4'), 90.4 (d, C-4"), 1'), 101.9 (d, C-5), 109.7 (s, C-3'), 140.3 (d, C-6), 150.2 (s, C-4), 163.0 (s, C-2), 209.3 (br., Fe(CO)₃). - MS: (MAT 8222, EI, 70 eV): m/z (%) = 518 (2) $[M^+]$, 490 (1) $[M^+$ - CO], 434 (40) $[M^{+}-3xCO]$, 349 (48) $[M^{+}-3xCO, -Thexyl]$. - Analyse: $C_{22}H_{30}FeN_{2}O_{7}Si$ (518.42); ber.: C: 50.97 %, H: 5.83 %, N: 5.40 %; gef.: C: 50.95 %, H: 5.67 %, N: 5.66 %.

9. Herstellung von $exo-[1'',2'',2',3'-\eta-(2',3'-Didehydro-2',3'-dideoxy-5'-O-(dimethyl-thexyl-silyl)-3'-s-cis-vinyl-<math>\beta$ -D-thymidin]-tricarbonyl-eisen (30)

$$Me_2$$
ThxSiO N -H

Fe(CO)₃

30

In einem ausgeheizten 100 mL Zweihalskolben mit Hg-Bubbler wurden unter striktem Sauerstoffund Feuchtigkeitsausschluß zu 0.1842 g (0.68 mmol) 5-Methyl-2,4-bis-trimethylsiloxy-pyrimidin (0.1019 g, 0.23mmol) Komplex 28 und 50 mL CH₂Cl₂ (frisch durch basisches Al₂O₃ filtriert und entgast) gegeben und unter magnetischem Rühren im Eisbad auf 0°C gekühlt. Zu dieser Lösung

gab man mittels einer Dosierpumpe innerhalb von 1.5 h 0.70 mL (0.70 mmol) SnCl₄-Lösung (1 M in Heptan) hinzu, kontrollierte den Umsatz per DC (Bed. s.u.) und überführte dann den Kolbeninhalt mit einer Transfer-Nadel in 100 mL einer kräftig gerührten ges. wäßr. NaHCO₃-Lösung. Anschließend wurde die Lösung mit 20 mL CH₂Cl₂ in einem Scheidetrichter überführt und rasch mit 100 mL ges. wäßr. NaCl-Lösung gewaschen. Die übrige Aufarbeitung erfolgte analog zu der in Abschnitt 7.8.3.1. beschriebenen. Nach Filtration vom Trockenmittel und Entfernen des Lösungsmittels im Vak. am Rotationsverdampfer wurde der Rückstand unter striktem Sauerstoffausschluß in eine Flash-Säule überführt und mit Argondruck chromatographiert (80 g entgastes Kieselgel, *n*-Hexan / Essigester= 3+2). Man erhielt nach Trocknen im Ölpumpenvakuum 0.1237g (100 %) Rohprodukt in Form eines gelben Schaumes, bei dem es sich laut ¹H-NMR um ein Gemisch des Komplexes 30 und seines Diastereomeren im Verhältnis von 59: 41 handelte. Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semipräparative HPLC (Bed. s.u.). Man erhielt 0.0619 g (50 %) des Komplexes 30 als gelben, erstarrten Schaum, in analytisch reiner Form.

Komplex E14: - Schmp.: 74 - 77°C (subl., CH₂Cl₂), gelber, fester Schaum. - DC: n-Hexan / Essigester = 1+1, R_f = 0.48. - analyt. HPLC: n-Hexan / Essigester = 10 + 4.33; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 2.85 min. - s.-präp. HPLC: n-Hexan / Essigester = 10 + 5; 10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{589}^{20} = -176.5$, $[\alpha]_{578}^{20} = -186.5$, $[\alpha]_{546}^{20} = -219.8$, $[\alpha]_{436}^{20} = -468.1$, bei 365 nm kein Lichtdurchlaß, (c = 0.9 in MeOH). - CD: $\Theta(\lambda) = ca. -9964$ (241.5 nm), -12588 (257.0 nm), - 8268 (278.0 nm), - 22366 (305.0 nm), (c =0.005 in MeOH). -UV (MeOH): $\lambda_{\text{max}}(\epsilon) = 266.0 \text{ nm}$ (13387). - FT-IR (KBr): $\bar{v} = 3413, 3185$ (w,w, jeweils br., N-H), 3059 (w, unges. C-H), 2959, 2867 (m,w, ges. C-H), 2057, 1987 (s, s und br., C≡O), 1691 (s und br., C=O), 1466, 1255, 1118, 832 (jeweils m). - 1 H-NMR: (250 MHz, CDCl₃) : δ = 0.00 (dd, $2J_{2}$ " $_{anti,2}$ " $_{syn} = 2.5$ Hz, $3J_{2}$ " $_{anti,1}$ " = 8.7 Hz, 1H, 2"-H $_{anti}$), 0.16 + 0.17 (s+s, jeweils 3H, $(CH_3)_2Si$, 0.88 - 0.90 (m, 12H, $(CH_3)_2C$, $(CH_3)_2CH$), 1.65 (sept, J = 6.9 Hz, 1H, $(CH_3)_2CH$), 1.79 - 1.83 (m, u.a. mit J = 2.5 Hz, 2H, 2"-H_{SVn}, 2'-H), 1.92 (d, ${}^{4}J = 1.2$ Hz, 3H, 5-CH₃), 3.84 (dd, $^{3}J_{5'a,4'} = 6.2 \text{ Hz}, ^{2}J_{5'a,5'b} = 10.8 \text{ Hz}, ^{1}H, ^{5'}-Ha), ^{3.98} (dd, ^{3}J_{5'b,4'} = 4.8 \text{ Hz}, ^{2}J_{5'b,5'a} = 10.8 \text{ Hz}, ^{$ Hz, 1H, 5'-Hb), 4.92 (ψ t, J = 5.2 Hz, 1H, 4'-H), 5.64 (ψ t, J = 7.9 Hz, 1H, 1"-H), 6.09 (s, 1H, 1'-H), 7.35 (d, $^{4}J = 1.2$ Hz, 1H, 6-H), 8.40 (breites s, 1H, D₂O austauschbar, N-H). - ^{13}C -NMR: (62.90) MHz, CDCl₃): $\delta = -3.3$ (q, (CH₃)₂Si), 12.7 (q, 5-CH₃), 18.5, 18.6 (jeweils q, (CH₃)₂CH), 20.2, 20.4 (jeweils q, (<u>C</u>H₃)₂C), 25.4 (s, Si-C), 34.0 (d, (CH₃)₂CH), 37.6 (t, C-2"), 57.5 (d, C-2"), 66.3

(t, C-5'), 76.2 (d, C-1"), 84.5 (d, C-4'), 90.8 (d, C-1'), 109.8 (s, C-3'), 110.3 (s, C-5), 135.5 (d, C-6), 150.3 (s, C-4), 163.5 (s, C-2), 209.5 (br., Fe(CO)₃). - **MS**: (MAT 8222, EI, 70 eV): m/z (%) = 532 (3) [M⁺], 504 (1) [M⁺- CO], 448 (40) [M⁺- 3xCO], 363 (50) [M⁺- 3xCO, - Thexyl]. - **Analyse:** C₂₃H₃₂FeN₂O₇Si (532.45); ber.: C: 51.88 %, H: 6.06 %, N: 5.26 %; gef.: C: 51.96 %, H: 6.11 %, N: 5.19 %.

10. Herstellung von exo-[2',2'',3',3''- η -(3'-(3''(E)-Acrylsäureethylester-3-yl)-2',3'-didehydro-2',3'-dideoxy-5'-O-(dimethyl-thexyl-silyl)-f3b-D-uridin)]-tricarbonyl-eisen (31)

Unter striktem Sauerstoff- und Feuchtigkeitsausschluß wurden 0.2495 g (0.97 mmol) 2,4-Bistrimethylsiloxypyrimidin, 0.1774 g (0.35 mmol) Ester **28** und 80 mL CH₂Cl₂ unter magnetischem Rühren zum Sieden erhitzt. Mittels einer Dosierpumpe wurde innerhalb von 2 h mit 1.20 mL (1.20 mmol) SnCl₄-Lösung (1 M in Heptan) zugegeben. Nach dem die DC-Reaktionskontrolle (Bed. s.u.) vollständigen Umsatz anzeigte, wurde wie oben beschrieben aufgearbeitet. Nach Filtration vom Trockenmittel und Entfernen des Lösungsmittels im Vak. am Rotationsverdampfer wurde der Rückstand unter striktem Sauerstoffausschluß in eine Flash-Säule überführt und mit Argondruck chromatographiert (80 g entgastes Kieselgel, *n*-Hexan / Essigester = 1+1). Man erhielt nach Trocknen im Ölpumpenvakuum 0.1968 g (96 %) Rohprodukt in Form eines gelben Schaumes, bei dem es sich laut ¹H-NMR um ein Gemisch der Komplexe **31** und seines Diastereomeren im Verhältnis von 87 : 13 handelte. Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semi-präparative HPLC (Bed. s.u.). Man erhielt 0.1497g (73 %) des Komplexes als gelben, erstarrten Schaum, in analytisch reiner Form.

- Schmp.: 84 - 86°C (CH₂Cl₂), gelber, fester Schaum. - DC: n-Hexan / Essigester = 1+1, R_f = 0.40. - analyt. HPLC: n-Hexan / Essigester = 10 + 6.67; MN Nucleosil 50-10; 2 mL/min; Refraktom.; Retentionszeit: 3.75 min. - s.-präp. HPLC: n-Hexan / Essigester = 10 + 6; 10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{330}^{20} = -182.0$, $[\alpha]_{578}^{20} = -190.4$, $[\alpha]_{546}^{20} = -217.4$, bei 436 und

365 nm kein Lichtdurchlaß, (c= 1.0 in MeOH). - CD: $\Theta(\lambda)$ = ca. - 10310 (272.5 nm),- 14553 (288.0 nm), -2003 (316.5 nm), -9848 (344.0 nm), +3878 (397.0 nm), (c = 0.007 in MeOH). -UV(MeOH): $\lambda_{\text{max}}(\epsilon) = 300.0 (3042)$. - FT-IR (KBr): $\tilde{v} = 3413, 3203$ (w,w, jeweils br., N-H), 3062 (w, unges. C-H), 2960, 2868 (m,w, ges. C-H), 2067, 2004 (s, s und br., C≡O), 1704 (s und br., C=O), 1465, 1378, 1268, 831 (jeweils m). - 1 H-NMR : (270 MHz, CDCl₃) : $\delta = 0.15 + 0.17$ (s+s, jeweils 3H, $(CH_3)_2Si$), 0.73 (d, J = 7.6 Hz, 1H, 2"-H), 0.85 - 0.87 (m, 12H, $(CH_3)_2C$, $(C\underline{H}_3)_2CH$), 1.26 (t, J = 7.1 Hz, 3H, OCH₂C \underline{H}_3), 1.62 (sept, J = 6.8 Hz, 1H, (CH₃)₂CH), 2.10 (s, 1H, 2'-H), 3.99 - 4.04 (m, 2H, 5'-H), 4.06 - 4.25 (m, u.a. mit J = 7.1 Hz, 2H, OCH₂CH₃), 4.98 (ψ t, J = 3.8 Hz, 1H, 4'-H), 5.69 (dd, J = 2.3 Hz, ${}^{3}J_{5.6} = 8.1 \text{ Hz}$, 1H, 5-H), 6.10 (dd, J = 0.7 Hz, ${}^{3}J_{3}$, 2" = 8.4 Hz, 1H, 3"-H), 6.11 (s, 1H, 1'-H), 7.85 (d, J = 8.1 Hz, 1H, 6-H), 8.43 (breites s, 1H, D_2O austauschbar, N-H). - 13 C-NMR : (62.90 MHz, CDCl₃) : $\delta = -3.4$, - 3.2 (jeweils q, (CH₃)₂Si), 14.1 (q, CH₃CH₂O), 18.4, 18.5 (jeweils q, (CH₃)₂CH), 20.2, 20.3 (jeweils q, (CH₃)₂C), 25.4 (s, Si-C), 33.9 (d, (CH₃)₂CH), 44.9 (d, C-1"), 58.6 (d, C-2"), 60.9 (t, CH₃CH₂O), 66.1 (t, C-5"), 76.5 (d, C-3"), 85.1 (d, C-4'), 90.4 (d, C-1'), 102.0 (d, C-5), 108.2 (s, C-3'), 140.1 (d, C-6), 150.1 (s, C-4), 162.6 (s, C-2), 171.5 (s, C-1"), 209.5 (br., Fe(CO)₃). - MS: (MAT 8222, EI, 70 eV): m/z (%) = 590 (<1) [M⁺], 545 (3) [M⁺- OCH₂CH₃], 506 (100) [M⁺- 3xCO], 421 (50) [M⁺- Fe(CO)₃, -OCH₂CH₃]. - Analyse: C₂₅H₃₄FeN₂O₉Si (590.48); ber.: C: 50.85 %, H: 5.80 %, N: 4.74 %; gef.: C: 50.64 %, H: 5.86 %, N: 4.70 %.

11. Herstellung von exo-[2',2'',3',3''- η -(3'-(3''(E)-Acrylsäureethylester-3-yl)-2',3'-didehydro-2',3'-dideoxy-5'-O-(dimethyl-thexyl-silyl)-f3b-D-thymidin)]-tricarbonyl-eisen (32)

$$Me_2$$
ThxSiO Ne_2 ThxSiO $Ne_$

Analog zu den vorstehenden Vorschriften wurden unter striktem Sauerstoff- und Feuchtigkeitsausschluß 0.2988 g (1.10mmol) 5-Methyl-2,4-bis-trimethylsiloxy-pyrimidin, 0.1464

g (0.29 mmol) Ester 28 und 70 mL CH₂Cl₂ unter magnetischem Rühren zum Sieden erhitzt und mittels einer Dosierpumpe innerhalb von 2 h mit 1.30 mL (1.30 mmol) SnCl₄-Lösung (1 M in Heptan) versetzt. Nach dem die DC-Reaktionskontrolle (Bed. s.u.) vollständigen Umsatz anzeigte, wurde wie zuvor beschrieben aufgearbeitet. Nach Filtration vom Trockenmittel und Entfernen des Lösungsmittels im Vak. am Rotationsverdampfer wurde der Rückstand unter striktem Sauerstoffausschluß in eine Flash-Säule überführt und mit Argondruck chromatographiert (80 g entgastes Kieselgel, *n*-Hexan / Essigester = 1+1). Man erhielt nach Trocknen im Ölpumpenvakuum 0.1609 g (93 %) Rohprodukt in Form eines gelben Schaumes, bei dem es sich laut ¹H-NMR um ein Gemisch des Komplexes 32 und eines Diastereomeren im Verhältnis von 70 : 30 handelte. Die Abtrennung des diastereomeren Nebenproduktes erfolgte durch semipräparative HPLC (Bed. s.u.). Man erhielt 0.0983g (57 %) des Komplexes 32 als gelben, erstarrten Schaum, in analytisch reiner Form.

- Schmp.: 81 - 84°C (CH₂Cl₂), gelber, fester Schaum. - DC: n-Hexan / Essigester = 1+1, R_f = 0.45. - s.-präp. HPLC: n-Hexan / Essigester = 10 + 5; 10 mL/min; RI-Detekt. - Drehwerte: $[\alpha]_{589}^{20} = -205.5$, $[\alpha]_{578}^{20} = -215.1$, $[\alpha]_{546}^{20} = -246.4$, bei 436 und 365 nm kein Lichtdurchlaß, (c= 0.9) in MeOH). - CD: $\Theta(\lambda) = -32856 (251.5 \text{ nm}), -2643 (316.5 \text{ nm}), -10309 (343.5 \text{ nm}), +3991$ (397.0 nm), (c = 0.005 in MeOH). - UV (MeOH): $\lambda_{max}(\epsilon) = 259.5$ (15053), λ (ϵ) = 305.0 (sh, 3032). - FT-IR (KBr): $\tilde{v} = 3412, 3190$ (w,w, jeweils br., N-H), 3065 (w, unges. C-H), 2959, 2868 (m,w, ges. C-H), 2067, 2004 (s, s und br., C=O), 1698 (s und br., C=O), 1466, 1265, 1197, 832 (jeweils m). - 1 H-NMR: (250 MHz, CDCl₃): $\delta = 0.15 + 0.17$ (s+s, jeweils 3H, (CH₃)₂Si), 0.76 (d, J = 7.7 Hz, 1H, 2"-H), 0.87 (s, 6H, (CH₃)₂C), 0.88 (d, J = 5.4 Hz, (CH₃)₂CH), 1.26 (t, J = 7.1 Hz,3H, OCH₂CH₃), 1.64 (ψ quin, J = 6.8 Hz, 1H, (CH₃)₂CH), 1.92 (d, 4 J = 1.2 Hz, 3H, 5-CH₃), 2.14 (s, 1H, 2'-H), 3.90 (dd, ${}^{3}J_{5'a,4'} = 5.7$ Hz, ${}^{2}J_{5'a,5'b} = 10.9$ Hz, 1H, 5'-Ha), 4.01 (dd, ${}^{3}J_{5'b,4'}$ = 4.8 Hz, ${}^{2}J_{5}$ ' $_{b,5}$ ' $_{a}$ = 10.9 Hz, 1H, 5'-Hb), 4.06 - 4.23 (m, u.a. mit J = 7.1 Hz, 2H, OC \underline{H}_{2} CH₃), 4.92 (ψ t, J = 5.3 Hz, 1H, 4'-H), 6.04 (s, 1H, 1'-H), 6.15 (d, J = 8.3 Hz, 1H, 3"-H), 7.36 (d, 4 J = 1.2 Hz, 1H, 6-H), 8.41 (breites s, 1H, D₂O austauschbar, N-H). - ¹³C-NMR: (62.90 MHz, CDCl₃): δ = - 3.3 (q, (CH₃)₂Si), 12.7 (q, 5- $\underline{\text{CH}}_3$), 14.1 (q, $\underline{\text{CH}}_3$ CH₂O), 18.5, 18.6 (jeweils q, (CH₃)₂CH), 20.2, 20.3 (jeweils q, $(CH_3)_2C$), 25.4 (s, Si-C), 34.0 (d, $(CH_3)_2CH$), 45.0 (d, (C-2)), 58.1 (d, (C-2)), 60.8 (t, CH₃CH₂O), 66.1 (t, C-5'), 77.1 (d, C-3"), 84.7 (d, C-4'), 90.9 (d, C-1'), 108.3 (s, C-5), 110.4 (s, C-3'), 135.4 (d, C-6), 150.3 (s, C-4), 163.4 (s, C-2), 171.5 (s, C-1"), 209 (br., Fe(CO)₃). -

- 36 -

MS: (MAT 8222, DCI negativ, NH₃): m/z (%) = 604 (20) [M⁺], 576 (15) [M⁺-CO], 548 (80) [M⁺- 2xCO], 265 (100) [M⁺- Fe(CO)₃, - Thymin-1-yl, - CO₂Et, - H]. - Analyse: $C_{26}H_{36}FeN_{2}O_{9}Si$ (604.51); ber.: C: 51.66 %, H: 6.00 %, N: 4.63 %; gef.: C: 51.82 %, H: 6.07 %, N: 4.54 %.

12. Herstellung von $exo-[2',2'',3',3''-\eta-(3'-(E)-Acrylsäureethylester-3''-yl)-2',3'-didehydro-2',3'-dideoxy-5'-<math>O$ -(dimethyl-thexyl-silyl)- β -D-cytidin)]-tricarbonyl-eisen (6)

$$\begin{array}{c} \text{NH}_2\\ \text{N}\\ \text{N}\\ \text{N}\\ \text{O}\\ \text{EtO}_2C\\ \text{Fe(CO)}_3\\ \\ \textbf{6}\\ \end{array}$$

In einem 100 mL Dreihalskolben mit Rückflußkühler, Magnetrührkern und Absaughahn wurden unter einer Argonatmosphäre 0.570 g (1.12 mmol) des Komplexes 28 und 0.672 mg (2.63 mmol) N,O-Bistrimethylsilylcytosin in 40 ml abs. Dichlormethan gelöst und zum Rückfluß erhitzt. Nun wurde über einen Zeitraum von vier Stunden eine Lösung von 1.00 ml TMSOTf (1.24 g, 5.6 mmol) in 8 ml abs. Dichormethan zudosiert und die Reaktionsmischung anschließend für eine weitere Stunde unter Rückfluß erhitzt. Nach dem Abkühlen wurde der Kolbeninhalt auf Eis gegossen und mit gesättigter NaHCO3-Lösung versetzt. Nach Trennung der Phasen wurde die organische Phase mit Wasser gewaschen, und die wäßrigen Phasen wurden je zweimal mit Dichlormethan reextrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet. Nach Abfiltrieren des Trockenmittels wurde das Lösungsmittel Rotationsverdampfer Rückstand wurde unter Argonatmosphäre entfernt. Der Argonatmosphäre an entgastem Kieselgel einer Chromatographie mit einem entgasten Lösungsmittelgemisch von Essigester: Methanol = 8:1 unterzogen. Das Produkt 6 wurde mit einer Ausbeute von 171 mg (0.29 mmol, 26%) als erstarrter, gelblich weißer Schaum erhalten.- DC: Essignster: Methanol = 30:1, $R_f = 0.094$. - 1H-NMR: (300 MHz, CDCl₃): $\delta = 0.12$ (s, 3H, Si(CH₃)), 0.14 (s, 3H, Si(CH₃)), 0.68 (d, 1H, 2"-H, $^{3}J_{2}$ "-H, $^{3}J_{2}$ "-H $^{2}J_{2}$ "-H $^{2}J_{$ SiC(CH₃)), 0.83 (s, 3H, SiC(CH₃)), 0.84 (_d, 6H, C(C<u>H</u>₃)₂H, 3 J_C(C<u>H</u>₃)₂H, C(CH₃)₂H = 6.9 Hz), 1.22 (ψ t, 3H, CH₃CH₂, ³J_{CH3CH2}, CH₃CH₂ = 7.2 Hz), 1.59 (ψ sept, 1H, C(CH₃)₂H,

 3 JC(CH₃)2H, C(CH₃)2H = 6.9 Hz), 2.32 (s, 1H, 2'-H), 3.96 (ψ d, 2H, 5'-H, 3 J_{4'-H}, 5'-H = 4.3 Hz), 4.06 (m, 1H, CH₃CH₄Hb), 4.14 (m, 1H, CH₃CHaHb), 4.95 (ψ t, 1H, 4'-H, 3 J_{4'-H}, 5'-H = 4.3 Hz), 5.64 (d, 1H, 5-H, 3 J_{5-H}, 6-H = 7.4 Hz), 6.00 (s, sehr breit, 2H, NH₂), 6.04 (d, 1H, 3''-H, 3 J_{2''-H}, 3''-H = 7.9 Hz), 6.06 (s, 1H, 1'-H), 7.83 (d, 1H, 6-H, 3 J_{5-H}, 6-H = 7.4 Hz) - **13C-NMR**: (70 MHz, CDCl₃): -3.4 und -3.2 (Si(CH₃)₃), 14.1 (CH₃CH₂), 18.5 und 18.6 (C(CH₃)₂H), 20.2 und 20.3 (SiC(CH₃)₂), 25.4 (SiC(CH₃)₂), 34.0 (C(CH₃)₂H), 44.6 (2''-C), 60.4 (2'-C), 60.7 (CH₃CH₂), 66.2 (5'-C), 76.3 (3''-C), 85.1 (4'-C), 91.8 (1'-C), 93.6 (5-C), 107.9 (3'-C), 141.3 (6-C), 155.8 (2-C), 156.7 (4-C), 171.8 (1''-C).

13. Herstellung von $exo-[1'',2'',2',3'-\eta-(2',3'-Didehydro-2',3'-dideoxy-3'-s-cis-vinyl-\beta-D-uridin)]-tricarbonyl-eisen (33)$

In einem 100 mL Schlenkkolben mit aufgesetztem Hg-Bubbler wurden unter Schutzgas 0.2515 g (0.48 mmol) Komplex 29 in 50 mL abs. THF vorgelegt und mit einem Eisbad auf 0°C gekühlt. Zu der magnetisch gerührten Lösung injizierte man unter Argon-Gegenstrom 2.5 mL (2.5 mmol) TBAF-Lösung (1 M in THF) und ließ noch 2.5 h reagieren, wonach DC-Reaktionskontrolle (Bed. s.u.) einen vollständigen Umsatz anzeigte. Zur Aufarbeitung wurde die Lösung mit 100 mL Essigester in einen Scheidetrichter überführt und mit 100 mL H₂O versetzt. Nach der Phasentrennung wusch man die organische Phase mit 100 mL ges. wäßr. NaCl-Lösung, extrahierte die wäßrigen Phasen mit 100 mL Essigester und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Zur Vermeidung einer möglichen oxidativen Dekomplexierung entgaste man die Lösung sofort durch kurzzeitiges Anlegen eines leichten Ölpumpenvakuums und belüftete anschließend wieder mit Argon. Nach Filtration wurde im Vak. am Rotationsverdampfer eingeengt und kurz im Ölpumpenvakuum getrocknet. Anschließend wurde der gelbe Rückstand unter striktem Sauerstoffausschluß in eine Flash-Säule überführt und mit Argondruck chromatographiert (90 g entgastes Kieselgel, n-Hexan / Aceton = 9+11). Man erhielt nach Trocknen im Hochvakuum 0.1812 g (99 %) des desilylierten Komplexes 33 in Form eines gelben Feststoffs, der anschließend

WO 02/080923

PCT/EP02/03835

bei - 20°C aus CH₂Cl₂ umkristallisiert wurde. - Schmp.: 118 - 120°C (CH₂Cl₂), gelber Feststoff. - DC: n-Hexan / Aceton = 1+1, $R_f = 0.23$. - CD: $\Theta(\lambda) = -5451$ (274.0 nm), - 20501 (306.0 nm), (c = 0.006 in MeOH). UV (MeOH): $\lambda_{\text{max}}(\epsilon) = 258.5 \text{ nm}$ (13326), $\lambda_{\text{c}}(\epsilon) = 300.0 \text{ nm}$ (sh, 2384). - FT-IR (KBr): \tilde{v} = 3394, 3198 (m,w, jeweils br., N-H), 3060 (w, unges. C-H), 2934 (w, ges. C-H), 2057, 1976 (s, s und br., C=O), 1707, 1683 (jeweils s und br., C=O), 1471, 1258, 1096, 966 (jeweils m). - ¹H-NMR: (270 MHz, Aceton-d⁶): $\delta = 0.32$ (dd, ${}^{2}J_{2}$ "anti,2"syn = 2.0 Hz, ${}^{3}J_{2}$ " $_{anti,1}$ " = 8.8 Hz, 1H, 2"-H $_{anti}$), 1.91 (dd, ${}^{2}J_{2}$ " $_{syn,2}$ " $_{anti}$ = 2.0 Hz, ${}^{3}J_{2}$ " $_{syn,1}$ " = 6.7 Hz, 1H, 2"- H_{SVn}), 2.32 (s, 1H, 2'-H), 3.94 (ψ dd, ${}^{3}J_{5}$ 'a.4' = 4.3 Hz, ${}^{2}J_{5}$ 'a.5'b = 11.9 Hz, 1H, 5'-Ha), 4.06 (ψ dd, ${}^{3}J_{5}$ 'b, 4 ' = 4.1 Hz, ${}^{2}J_{5}$ 'b, 5 'a = 11.9 Hz, 1H, 5'-Hb), 4.57 (ψ t, J = 4.9 Hz, nicht integrierbar da z.T. bereits ausgetauscht, D₂O austauschbar, O-H), 5.03 (ψ t, J = 3.8 Hz, 1H, 4'-H), 5.54 (d, J = 8.1 Hz, 1H, 5-H), 6.01 (ψ t, J = 7.9 Hz, 1H, 1"-H), 6.31 (s, 1H, 1'-H), 8.05 (d, J = 8.1Hz, 1H, 6-H), 10.0 (breites s, nicht integrierbar da z.T. bereits ausgetauscht, D2O austauschbar, N-H). - MS: (MAT 8222, EI, 70 eV): m/z (%) = 376 (1) [M⁺], 348 (1) [M⁺- CO], 320 (1) [M⁺-2xCO], 292 (1) [M⁺- 3xCO], 262 (35) [M⁺- 3xCO, $-CH_2OH$, + H], 236 (10) [M⁺-Ura., - CO, -H], 208 (18) [M⁺- Ura., - 2xCO, - H], 180 (40) [M⁺- Ura., - 3xCO, - H]. - HRMS: (MAT 8222, 70 eV): ber.: 375.9994; gef.: 375.9977; C₁₄H₁₂FeN₂O₇ (376.11).

14. Herstellung von 2',3'-Didehydro-2',3'-dideoxy-3'-vinyl-β-D-uridin (34)

In einem 100 mL Kolben wurden 0.1719 g (0.46 mmol) Komplex 33 in 30 mL EtOH gelöst und mit 20 mL H₂O versetzt. Zu der magnetisch gerührten und auf 0°C gekühlten Lösung gab man 2.10 g (3.8 mmol) Ce(NH₄)₂(NO₃)₆ und ließ 45 min reagieren (sofortige CO - Entwicklung). Zur Aufarbeitung überführte man die Reaktionslösung mit 80 mL Essigester in einen Scheidetrichter und versetzte mit 100 mL H₂O. Nach der Phasentrennung wusch man die organische Phase mit 100 mL ges. wäßr. NaCl-Lösung, extrahierte die wäßrigen Phasen mit 2 x 80 mL Essigester und trocknete die vereinigten organischen Phasen mit Na₂SO₄. Nach Filtration vom Trockenmittel

wurde im Vak. am Rotationsverdampfer eingeengt und anschließend im Ölpumpenvakuum getrocknet. Man erhielt 0.056 g (52 %) des Produktes 34 als farblosen Feststoff in reiner Form. - Schmp.: 151°C (Essigester, Zersetzung). - FT-IR (KBr): \tilde{v} = 3442 (m und br., O-H, N-H), 3094 (w, unges. C-H), 2927 (w, ges. C-H), 1704 (m, C=O), 1467, 1396, 1249 (jeweilsm), 1127 (s, C-O). - ¹H-NMR: (270 MHz, CD₃OD) : δ = 3.79 (ψd, J = 12.5 Hz, 1H, 5'-Ha), 3.88 (ψd, J = 12.2 Hz, 1H, 5'-Hb), 5.00 (s, 1H, 4'-H), 5.36 (d, J = 11.1 Hz, 1H, 2"-H(E)), 5.47 (d, J= 17.9 Hz, 1H, 2"-H(Z)), 5.60 (d, J = 7.8 Hz, 1H, 5-H), 5.83 (s, 1H, 2'-H), 6.55 (dd, 3 J₁···,2··· = 11.3 Hz, 3 J₁···,2···(Z) = 17.9 Hz, 1H, 1"-H), 6.84 (s, 1H, 1'-H), 7.91 (d, J = 7.7 Hz, 1H, 6-H). C₁₁H₁₂N₂O₄ (236.23).

15. Herstellung von (5RS,8RS)-8-Allyloxy-2-trimethylsilyl-7-oxa-bicyclo-[3.3.0]-oct-1-en-3-on (rac-38).

$$0 \longrightarrow TMS \longrightarrow 0 \longrightarrow TMS$$

$$37 \qquad rac-38$$

Zu einer gerührten Mischung von Octacarbonyldicobalt (25 g, 69 mmol) und 4Å-Molekularsieb (108 g) in trockenem, entgasten CH₂Cl₂ (1.5 l) gab man unter Argon bei Raumtemp. (13.52 g, 60 mmol) 3,3-Diallyloxy-1-propinyltrimethylsilan (37). Nach 2 h Rühren bei Raumtemp. kühlte man die Reaktionsmischung auf < 0°C ab (Eis-NaCl-Bad) und versetzte sie mit azeotrop getrocknetem Trimethylamin-N-oxid (42 g, 560 mmol). Nach der Zugabe ließ man den Kolben offen und leitete für 5-10 min. Luft durch die Reaktionslösung. Anschließend ließ man auf Raumtemp. erwärmen und rührte noch 15 h an der Luft. Die durch etwas Kieselgel filtrierte Reaktionsmischung wurde im Vakuum eingeengt und der Rückstand durch Flashchromatographie (EtOAc/CyHex = 1+4) gereinigt. Man erhielt *rac-*38 als blassgelbes Öl in einer Ausbeute von 11.56 g (76%). (Diastereoselektivität > 24:1).

1H-NMR (250 MHz, CDCl₃): δ = 5.93 (tdd, J_1 = 5.4, J_2 = 17.2, J_3 = 10.3, 1H, CH=CH₂); 5.58 (s, 1H, H-8); 5.31 (tdd, J_1 = 1.6, J_2 = 17.2, J_3 = 1.6, 1H, CH=CH-H_{trans}); 5.22 (tdd, J_1 = 1.2, J_2 = 10.3, J_3 = 1.8, 1H, CH=CH-H_{cis}); 4.38 (dd, J_1 = 6.6, J_2 = 7.2, 1H, H-6); 4.29 (tdd, J_1 = 1.4, J_2 = 12.2, J_3 = 5.6, 1H, CH₂-CH=CH₂); 4.10 (tdd, J_2 = 1.3, J_3 = 12.5, J_4 = 6.4, 1H, CH₂-CH=CH₂); 3.46 (m, 1H, H-5); 3.42 (dd, J_1 = 6.7, J_2 = 6.2, 1H, H-6); 2.66 (dd, J_1 = 17.6, J_2 = 6.4, 1H, H-4); 2.10 (dd, J_1 = 17.6, J_2 = 3.6, 1H, H-4); 0.21 (s, 9H, SiCH₃); **13**C-NMR (63 MHz, CDCl₃): δ =

- 40 -

213.4 (C3), 184.9 (C1), 137.6 (C2), 133.8 (CH=CH₂), 118.2 (CH=CH₂), 96.7 (C8), 71.0 (C6), 68.8 (CH₂CH=CH₂), 42.6 (C5), 41.8 (C4), -1.5 (SiC); **FT-IR** (ATR): 2954 (m, CH), 2896 (m, CH), 1703 (s, C=O), 1640 (s, C=C), 1410 (m), 1247 (s, C-O), 1126 (s), 1073 (s), 997 (s), 838 (s), 762 (s); **MS** (EI, 70 eV): m/z (%): 253 (1) [M+1]⁺, 237 (2), 211 (15), 195 (20), 181 (21), 167 (8), 151 (20), 137 (7), 123 (32), 109 (9), 93 (17), 75 (44), 73 (100), 59 (11), 41 (21); **HRMS** (EI) C₁₂H₁₇O₃Si: ber. 237.095 [M-15]⁺; gef. 237.095.

16. Herstellung von (3RS,5RS,8RS)-8-Allyloxy-2-trimethylsilyl-7-oxa-bicyclo-[3.3.0]-oct-1-en-3-ol (rac-39).

Zu einer eisgekühlten Lösung (ca. 0°C) von rac-38 (2.52 g, 10 mmol) und CeCl₃-7H₂O (3.54 g, 9.5 mmol) in MeOH (200ml) gab man NaBH₄ (1.48 g, 38 mmol) in kleinen Portionen, ließ auf Raumtemp. erwärmen und rührte noch 0.5 h bevor man die Reaktion durch Zugabe von Wasser (100 ml) quenchte. Nach 1 h verteilte man zwischen MTBE (100 ml) und 10%-NaHCO₃ (aq.) (100 ml) und extrahierte die wässrige Phase nochmals mit MTBE (3x100 ml). Die vereinigten organischen Phasen wusch man mit 10%-NaHCO₃ (aq.) (100 ml) und ges. NaCl (aq.) (100 ml), trocknete mit MgSO₄, filtrierte und entfernte das Lösungsmittel im Vakuum. Man erhielt rac-39 als farbloses Öl (2.46 g, 98%), das laut NMR keiner weiterer Reinigung bedurfte und direkt weiter umgesetzt wurde.

1H-NMR (250 MHz, CDCl₃): δ = 5.90 (tdd, J_1 = 5.4, J_2 = 17.2, J_3 = 10.3, 1H, CH=CH₂); 5.38 (s, 1H, H-8); 5.26 (tdd, J_1 = 1.3, J_2 = 17.2, J_3 = 1.5, 1H, CH=CH- $\underline{\mathbf{H}}_{trans}$); 5.17 + 5.16 (m + tdd, J_1 = 1.1, J_2 = 10.3, J_3 = 1.8, 2H, H-3 + CH=CH- $\underline{\mathbf{H}}_{Cis}$); 4.20 (dd, J_1 = J_2 = 8.2, 1H, H-6); 4.19 (tdd, J_1 = 1.4, J_2 = 12.4, J_3 = 5.3, 1H, CH₂-CH=CH₂); 4.00 (tdd, J_1 = 1.3, J_2 = 12.4, J_3 = 6.4, 1H, CH₂-CH=CH₂); 3.42 (dd, J_1 = J_2 = 7.9, 1H, H-6); 3.20 (m, 1H, H-5); 2.69 (ddd, J_1 = 12.1, J_2 = 6.5, J_3 = 6.0, 1H, H-4); 1.64 (bs, 1H, OH); 1.22 (ddd, J_1 = 12.0, J_2 = J_3 = 8.6 Hz, 1H, H-4); 0.21 (s, 9H, SiCH₃); **13C-NMR** (63 MHz, CDCl₃): δ = 156.8 (C1), 140.3 (C2), 134.3 (CH=CH₂), 17.7 (CH=CH₂), 97.3 (C8), 87.61 (C3), 72.1 (C6), 68.3 (CH₂CH=CH₂), 46.4 (C5), 43.9 (C4), -0.6 (SiC); **FT-R** (ATR): 3437 (m, OH), 2952 (s, CH), 2886 (m, CH), 1657 (m, C=C), 1408 (m), 1324 (s), 1245 (s, C-O), 1107 (s), 1064 (s), 989 (s), 834 (s), 753 (s); **MS** (EI, 70 eV): m/z (%) = 253 (1) [*M*-1]⁺, 210 (3), 197 (22), 183 (20), 167 (17), 151 (19), 135 (11), 123 (20), 115 (7), 107

WO 02/080923

PCT/EP02/03835

(18), 95 (16), 75 (46), 73 (100), 59 (10), 41 (21); **HRMS** (EI) $C_{12}H_{19}O_3Si$: ber. 239.114 [M-15]⁺; gef. 239.110.

17. Herstellung von (3RS,5RS,8RS)-8-Allyloxy-7-oxa-bicyclo-[3.3.0]-oct-1-en-3-ol (rac-39)

Zu einer gerührten Mischung von *t*-BuOK (1.14 g) in DMSO/H₂O (1:19 v/v; ca. 20 ml) gab man bei Raumtemp. *rac-*39 (2.54 g, 10 mmol). Die nun braune Reaktionsmischung erhitzte man für 2 h unter Rückfluß. Nach Abkühlen auf Raumtemp. versetzte man mit Wasser (100 ml) und extrahierte mit Essigester (4x80 ml). Die vereinigten organischen Phasen wusch man mit Wasser (2x100 ml) und ges. NaCl-Lsg. (100 ml), trocknete mit MgSO₄ und engte die filtrierte Lösung im Vakuum ein. Das als blassgelbes Öl erhaltene Produkt (*rac-*39°) (1.59 g, 87%). erwies sich als ausreichend rein, um direkt weiter umgesetzt zu werden. Eine analytische Probe wurde dennoch durch Flashchromatographie (EtOAc/CyHex = 1+9) aufgereinigt.

1H-NMR (250 MHz, CDCl₃): δ = 5.85 (tdd, J_1 = 5.4, J_2 = 17.2, J_3 = 10.3, 1H, CH=CH₂); 5.70 (m, 1H, H-2); 5.36 (s, 1H, H-8); 5.22 (tdd, J_1 = 1.2, J_2 = 17.2, J_3 = 1.6, 1H, CH=CH-H_{trans}); 5.13 + 5.12 (m + tdd, J_1 = 1.2, J_2 = 10.3, J_3 = 1.6, 2H, H-3 + CH=CH-H_{cis}); 4.18 (dd, J_1 = J_2 = 8.2, 1H, H-6); 4.12 (tdd, J_1 = 1.6, J_2 = 12.6, J_3 = 5.3, 1H, CH₂-CH=CH₂); 3.96 (tdd, J_1 = 1.6, J_2 = 12.6, J_3 = 6.1, 1H, CH₂-CH=CH₂); 3.38 (dd, J_1 = J_2 = 7.1, 1H, H-6); 3.20 (m, 1H, H-5); 2.66 (ddd, J_1 = 12.4, J_2 = 6.3, J_3 = 6.1, 1H, H-4); 2.11 (bs, 1H, OH); 1.29 (ddd, J_1 = 12.3, J_2 = J_3 = 8.0, 1H, H-4); 13C-NMR (63 MHz, CDCl₃): δ = 147.9 (C1), 134.0 (CH=CH₂), 126.8 (C2), 117.3 (CH=CH₂), 96.8 (C8), 82.2 (C3), 72.7 (C6), 67.8 (CH₂CH=CH₂), 44.9 (C5), 42.9 (C4); FT-IR (ATR): 3396 (w, OH), 2920 (s, C-H), 2851 (m, C-H), 1646 (w, C=C), 1458 (m), 1326 (m), 1295 (m, C-O), 1149 (m), 1033 (s), 985 (s), 823 (s), 775 (m); MS (EI, 70 eV): m/z (%): 183 (4) [M+1]+, 152 (20), 125 (13), 110 (40), 95 (82), 83 (64), 69 (60), 66 (98), 55 (100).

18. Herstellung von (3RS,5RS,8RS)-3-Acetoxy-8-allyloxy-7-oxa-bicyclo-[3.3,0]-oct-1-en (rac-40).

- 42 -

Zu einer unter Argon gerührten Mischung von *rac-39*' (2.38 g, 13 mmol), Et₃N (2.3 ml, 15.6 mmol) und DMAP (196 mg, 1.56 mmol) in CH₂Cl₂ (50 ml) gab man bei Raumtemp. Essigsäureanhydrid (2.7 ml, 28.6 mmol). Nach 3 h Rühren versetzte man die Reaktionsmischung mit ges. NaHCO₃-Lsg. (aq.) (50 ml) und extrahierte die Wasserphase mit CH₂Cl₂ (3x80 ml). Die organischen Phasen wusch man mit ges. Lösungen von NaHCO₃ (aq.) (2x100 ml) und NaCl (100 ml), trocknete mit MgSO₄ und entfernte das Lösungsmittel im Vakuum. Den braunen Rückstand reinigte man durch Flashchromatographie (EtOAc/CyHex = 1+4). Man erhielt *rac-40* als farbloses Öl (2.89 g, 99%).

1H-NMR (250 MHz, CDCl₃): δ = 5.95 (m, 1H, H-3); 5.87 (tdd, J_1 = 5.4, J_2 = 17.2, J_3 = 10.3, 1H, CH=CH₂); 5.73 (m, 1H, H-2); 5.41 (s, 1H, H-8); 5.26 (tdd, J_1 = 1.2, J_2 = 17.2, J_3 = 1.6, 1H, CH=CH-H_{trans}); 5.17 (tdd, J_1 = 1.3, J_2 = 10.3, J_3 = 1.6, 1H, CH=CH-H_{cis}); 4.25 (dd, J_1 = J_2 = 8.0, 1H, H-6); 4.18 (tdd, J_1 = 1.6; J_2 = 12.4, J_3 = 5.4, 1H, CH₂-CH=CH₂); 3.96 (tdd, J_1 = 1.4, J_2 = 12.4, J_3 = 6.1, 1H, CH₂-CH=CH₂); 3.44 (dd, J_1 = J_2 = 7.91, 1H, H-6); 3.32 (m, 1H, H-5); 2.77 (ddd, J_1 = 12.7, J_2 = J_3 = 6.8, 1H, H-4); 2.03 (s, 1H, CH₃COO); 1.50 (ddd, J_1 = 12.7, J_2 = J_3 = 7.7, 1H, H-4); 13C-NMR (63 MHz, CDCl₃): δ = 170.0 (C=O), 150.2 (C1), 134.2 (CH=CH₂), 122.6 (C2), 117.4 (CH=CH₂), 96.8 (C8), 84.1 (C3), 72.6 (C6), 68.0 (CH₂CH=CH₂), 45.0 (C5), 39.0 (C4), 21.1 (CH₃COO); FT-IR (ATR): 2973 (m, C-H), 2932 (m, C-H), 2887(m, C-H), 1732 (s, C=O), 1444 (w), 1426 (w), 1362 (s), 1295 (m, C-O), 1232 (s, C-O), 1152 (s), 1065 (s), 1023 (s), 991 (s), 891 (s), 826 (m), 782 (w); MS (EI, 70 eV): m/z (%) = 225 (2) [M+H]⁺, 182 (5), 167 (42), 150 (8), 142 (13), 134 (27), 124 (32), 111 (25), 95 (52), 94 (100), 93 (26), 83 (18), 79 (38), 67 (45), 66 (74), 57 (12), 55 (42), 53 (18).

19. Allgemeine Vorschrift zur Pd-katalysierten Einführung von Pyrimidin-Nucleobasen

- 43 -

Eine gerührte Suspension einer Pyrimidin-Nucleobase (1.65 mmol) und NaH (60 mg, ~ 60% Dispersion in Mineralöl) in trockenem, entgastem DMSO (10 ml) wird unter Argon für 30 min. auf 70°C erhitzt, wobei eine annähernd klare Lösung entsteht. Nach Abkühlung auf Raumtemp. werden Pd(PPh₃)₄ (58 mg, ca. 5 mol%), PPh₃ (29 mg, 11 mol %) sowie eine Lösung des Allylacetates *rac-40* (224 mg, 1 mmol) in trockenem THF (2 ml) zugegeben. Anschließend wird unter Argon für 15 h auf 70°C erhitzt. Die auf Raumtemp. abgekühlte Mischung wird dann durch etwas Kieselgel filtriert und mit CH₂Cl₂ (20 ml) verdünnt. Nach dem Waschen mit ges. wäßrig. NaCl (4x20 ml) wird mit MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wird durch Flashchromatographie (EtOAc/CyHex = 1:9 bis 2:1) gereinigt.

20. Herstellung von (1RS,3aRS,5RS)-1-(1-Allyloxy-3,3a,4,5-tetrahydro-1*H*-cyclopenta[c]furan-5-yl)-1*H*-pyrimidine-2,4-dion (rac-41a).

Ein Experiment im 1 mmol-Maßstab lieferte *rac-41*a als weiß-gelben Feststoff (188 mg, 66%). Die Substanz enthielt geringe Verunreinigungen (<3%) an Ph₃P=O.

1H-NMR (250 MHz, CDCl₃): δ = 10.09 (bs, 1H, NH); 7.17 (d, J = 8.0, 1H, H-6'); 6.04 (dd, J_1 = 7.2, J_2 = 8.7, 1H, H-3); 5.86 (tdd, J_1 = 5.4, J_2 = 17.2, J_3 = 10.4, 1H, CH=CH₂); 5.70 (d, J = 8.0, 1H, H-5'); 5.57 (m, 1H, H-2); 5.43 (s, 1H, H-8); 5.23 (tdd, J_1 = 1.2, J_2 = 17.2, J_3 = 1.6, 1H, CH=CH- \underline{H}_{trans}); 5.13 (tdd, J_1 = 1.1, J_2 = 10.3, J_3 = 1.6, 1H, CH=CH- \underline{H}_{Cis}); 4.24 (dd, J_1 = J_2 = 7.4, 1H, H-6); 4.05 (tdd, J_1 = 1.6, J_2 = 12.7, J_3 = 5.4, 1H, CH₂-CH=CH₂); 4.04 (tdd, J_1 = 1.3, J_2 = 12.6, J_3 = 6.1, 1H, CH₂-CH=CH₂); 3.47 (dd, J_1 = J_2 = 7.6, 1H, H-6); 3.44 (m, 1H, H-5); 2.84 (ddd, J_1 = 12.5, J_2 = 7.0, J_3 = 6.8, 1H, H-4); 1.37 (ddd, J_1 = 12.5, J_2 = 8.3, J_3 = 7.6, 1H, H-4); 13C-NMR (63 MHz, CDCl₃): δ = 163.5 (C4'), 152.4 (C1), 150.8 (C2'), 140.4 (C6'), 133.8 (CH=CH₂), 120.6 (C2), 117.5 (CH=CH₂), 103.0 (C5'), 96.2 (C8), 71.8 (C6), 67.9 (CH₂CH=CH₂), 65.5 (C3), 45.4 (C5), 40.4 (C4); FT-IR (ATR): 3180 (w, N-H), 3051 (w, N-H), 2970 (w, C-H), 2886 (w, C-H), 1681 (m, C=O), 1626 (w, C=C), 1456 (m), 1375 (m), 1296 (w), 1242 (m, C-O), 1060 (m), 989 (m), 812 (w), 760 (w); MS (EI, 70 eV): m/z (%): 277 (8) [M+1]+,

- 44 -

276 (5) [*M*]⁺, 247 (12), 235 (9), 219 (78), 205 (100), 189 (6), 177 (7), 164 (13), 162 (38), 134 (52), 119 (37), 113 (23), 91 (13), 79 (57), 67 (15), 53 (11).

21. Herstellung von (1RS,3aRS,5RS)-1-(1-Allyloxy-3,3a,4,5-tetrahydro-1H-cyclopenta[c]furan-5-yl)-5-methyl-1H-pyrimidine-2,4-dion (rac-41b).

Ein Experiment im 2 mmol-Maßstab lieferte rac-41b in 63 % Ausbeute.

Schmp. = 164-166°C (EtOAc/Hex); ¹H-NMR (250 MHz, CDCl₃): δ = 8.63 (bs, 1H, NH); 6.96 (dq, Jl= 1.3, J2 = 1.0, 1H, H-6′); 6.04 (dddd, J1 = 2.2, J2 = 1.3, J3 = 6.8, J4 = 8.5, 1H, H-3); 5.91 (tdd, J1 = 5.4, J2 = 17.2, J3 = 10.3, 1H, CH=CH₂); 5.60 (m, 1H, H-2); 5.50 (s, 1H, H-8); 5.29 (tdd, J1 = 1.2, J2 = 17.2, J3 = 1.6, 1H, CH=CH-H_{trans}); 5.20 (tdd, J1 = 1.3, J2 = 10.3, J3 = 1.7, 1H, CH=CH-H_{cis}); 4.30 (dd, J1 = J2 = 8.1, 1H, H-6); 4.20 (tdd, J1 = 1.6, J2 = 12.6, J3 = 5.4, 1H, CH₂-CH=CH₂); 3.53 (dd, J1 = J2 = 7.8, 1H, H-6); 3.45 (m, 1H, H-5); 2.86 (ddd, J1 = 12.4, J2 = 7.0, J3 = 6.8, 1H, H-4); 1.91 (d, J = 1.0, 1H, CH₃); 1.42 (ddd, J1 = 12.4, J2 = J3 = 7.7, 1H, H-4); 13C-NMR (63 MHz, CDCl₃): δ = 163.4 (C4′), 152.3 (C1), 150.5 (C2′), 136.1 (C6′), 134.0 (CH=CH2), 120.9 (C2), 117.7 (CH=CH₂), 111.7 (C5′), 96.4 (C8), 72.01 (C6), 68.1 (CH₂CH=CH₂), 65.4 (C3), 45.5 (C5), 40.5 (C4), 12.5 (CH₃); FT-IR (ATR): 3171 (w, N-H), 3052(w, N-H), 2923 (w, C-H), 2887 (w, C-H), 1682 (s, C=O), 1467 (m), 1364 (m), 1297 (m, C-O), 1246 (m, C-O), 1061 (m), 989 (m), 825 (m), 728 (w); MS (EI, 70 eV): m/z (%): 249 (1), 221 (2), 207 (20), 191 (5), 179 (4), 165 (7), 153 (8), 141 (6), 133 (10), 126 (17), 111 (14), 105 (18), 98 (21), 97 (42), 91 (23), 85 (17), 83 (35), 71 (23), 70 (28), 69 (48), 57 (62), 55 (100).

22. Herstellung von (1RS,3aRS,5RS)-1-(1-Allyloxy-3,3a,4,5-tetrahydro-1H-cyclopenta[c]furan-5-yl)-5-brom-1H-pyrimidine-2,4-dion (rac-41c).

Ein Experiment im 2 mmol-Maßstab lieferte rac-41c in 83 % Ausbeute.

Schmp. 156-158°C; ¹H-NMR (250 MHz, CDCl₃): δ = 8.81 (bs, 1H, NH); 7.47 (s, 1H, H-6'); 6.03 (m, 1H, H-3); 5.89 (tdd, J_1 = 5.4, J_2 = 17.1, J_3 = 10.2, 1H, CH=CH₂); 5.60 (m, 1H, H-2); 5.51 (s, 1H, H-8); 5.28 (tdd, J_1 = 1.2, J_2 = 17.1, J_3 = 1.5, 1H, CH=CH- \underline{H}_{trans}); 5.18 (tdd, J_1 = 1.2, J_2 = 10.2, J_3 = 1.5, 1H, CH=CH- \underline{H}_{cis}); 4.29 (dd, J_1 = J_2 = 7.8, 1H, H-6); 4.21 (tdd, J_1 = 1.5, J_2 = 12.7, J_3 = 5.4, 1H, CH₂-CH=CH₂); 4.18 (tdd, J_1 = 1.3, J_2 = 12.7, J_3 = 5.4, 1H, CH₂-CH=CH₂); 3.54 (dd, J_1 = 7.8, J_2 = 7.6, 1H, H-6); 3.45 (m, 1H, H-5); 2.90 (ddd, J_1 = 12.4, J_2 = J_3 = 6.8, 1H, H-4); 1.42 (ddd, J_1 = 12.4, J_2 = 8.3, J_3 = 8.8, 1H, H-4); 13C-NMR (63 MHz, CDCl₃): δ = 159.0 (C4'), 152.6 (C1), 150.0 (C2'), 140.0 (C6'), 133.7 (CH=CH₂), 120.2 (C2), 117.3 (CH= \underline{C} H₂), 97.1 (C5'),

- 45 -

96.1 (C8), 71.6 (C6), 67.7 (<u>C</u>H₂CH=CH₂), 65.8 (C3), 45.3 (C5), 40.4 (C4); **FT-IR** (ATR): 3167 (w, N-H), 3046 (w, N-H), 2975 (w, C-H), 2885 (w, C-H), 2829 (w, CH), 1691(s, C=O), 1615 (m, C=C), 1441 (m), 1338 (w), 1296 (w, C-O), 1242 (m, C-O), 1061 (w), 990 (m), 820 (w), 750 (m); **MS** (EI, 70 eV): m/z (%): 356(4) [⁸¹BrM]⁺, 354 (4) [⁷⁹BrM]⁺, 327 (5), 325 (6), 299 (40), 297 (41), 285 (13), 283 (12), 277 (12), 254 (7), 242 (9), 240 (12), 228 (4), 226 (7), 214 (10), 212 (10), 193 (13), 191 (14), 165 (11), 149 (5), 147 (8), 135 (55), 119 (51), 107 (29), 95 (14), 93 (21), 91 (23), 81 (31), 79 (100), 77 (34), 67 (17), 66 (18), 65 (18), 57 (4), 55 (8), 53 (13); **HRMS (EI)** C₁₄H₁₅BrN₂O₅: ber. 354.022 [⁷⁹BrM]⁺; gef: 354.021.

23. Herstellung von (1RS,3aRS,5RS)-9-(1-Allyloxy-3,3a,4,5-tetrahydro-1H-cyclopenta[c]furan-5-yl)-9H-purin-6-ylamin (rac-41d).

OAC
$$\rightarrow$$
 OAC \rightarrow ON \rightarrow NH₂ \rightarrow NH

Eine Suspension von Adenin (1.022 g, 7.5 mmol) und wasserfreiem Cs₂CO₃ (2.47 g, 7.5 mmol) in trockenem, entgastem DMSO (25 ml) wurde unter Argon bei 50°C für 45 min gerührt. Nach dem Abkühlen auf Raumtemp. wurde eine Lösung von *rac-40* (1.12 g, 5 mmol) in DMSO (5 ml) sowie Ph₃P (145 mg, 11 mol%) und Pd(PPh₃)₄ (290 mg, 5 mol%) zugegeben, und die erhaltene Mischung bei 50°C für 15 h gerührt. Nach dem Abkühlen auf Raumtemp. wurde die Reaktionsmischung mit CH₂Cl₂ durch etwas Kieselgel filtriert. Das Filtrat wurde mit ges. NaCl-Lsg. (4x100 ml) gewaschen, mit MgSO₄ getrocknet und im Vakuum aufkonzentriert. Der Rückstand wurde durch Flashchromatographie (EtOAc/MeOH = 9+1) gereinigt. Man erhielt reines *rac-41d* als gelbes Wachs in 73% Ausbeute.

1H-NMR (250 MHz, CDCl₃): S = 8.29 (s, 1H, H-2'); 7.47 (s, 1H, H-8'); 6.42 (bs, 2H, NH₂); 6.04 (tdd, $J_1 = 2.0$, $J_2 = 7.3$, $J_3 = 8.6$, 1H, H-3); 5.90 (dddd, $J_1 = 5.4$, $J_2 = 6.1$, $J_3 = 17.1$, $J_4 = 10.2$, 1H, CH=CH₂); 5.83 (m, 1H, H-2); 5.51 (s, 1H, H-8); 5.26 (tdd, $J_1 = 1.4$, $J_2 = 17.1$, $J_3 = 1.8$, 1H, CH=CH-H_{trans}); 5.17 (tdd, $J_1 = 1.2$, $J_2 = 10.2$, $J_3 = 1.8$, 1H, CH=CH-H_{cis}); 4.29 (dd, $J_1 = J_2 = 7.1$, 1H, H-6); 4.19 (tdd, $J_1 = 1.5$, $J_2 = 12.6$, $J_3 = 5.4$, 1H, CH₂-CH=CH₂); 4.03 (tdd, $J_1 = 1.2$, $J_2 = 12.6$, $J_3 = 6.1$, 1H, CH₂-CH=CH₂); 3.56 (dd, $J_1 = 7.1$, $J_2 = 7.5$, 1H, H-6); 3.51 (m, 1H, H-5); 2.99 (ddd, $J_1 = 12.4$, $J_2 = 7.1$, $J_3 = 6.6$, 1H, H-4); 1.75 (ddd, $J_1 = 12.4$, $J_2 = 8.6$, $J_3 = 9.1$, 1H, H-

4); ${}^{13}\text{C-NMR}$ (63 MHz, CDCl₃): $\delta = 155.8$ (C6'), 152.9 (C2'), 151.9 (C1), 149.5 (C4'), 138.2 (C8'), 133.9 (CH=CH₂), 121.3 (C2), 119.6 (C5'), 117.6 (CH=CH₂), 96.5 (C8), 72.0 (C6), 68.1 (CH2CH=CH₂), 64.1 (C3), 45.9 (C5), 41.9 (C4); **FT-IR** (ATR): 3315 (m, N-H), 3162 (m, N-H), 2970 (w, C-H), 2918 (w, C-H), 2887 (w, C-H), 1644 (s, C=C), 1596 (s), 1571 (m), 1471 (m), 1413 (m), 1327 (m), 1299 (m), 1247 (m, C-O), 1061 (m), 989 (m), 831 (w), 797 (w), 722 (m); **MS** (EI, 70 eV): m/z (%): 299 (3) [M]+, 258 (61), 242 (57), 228 (9), 212 (16), 200 (15), 164 (63), 136 (100), 135 (63), 123 (17), 108 (21), 95 (18), 79 (39), 67 (18), 55 (18), **HRMS** (EI) C₁₅H₁₇N₅O₂: ber. 299.138 [M]+, 96.5: 299.139.

25. Allgemeine Arbeitsvorschrift zur Hydrolyse und Schützung der Produkte vom Typ 41'.

Eine Lösung von rac-41' (1 mmol) und PyH+TsO- (76 mg, 0.3 mmol) in nassem Aceton (10 ml) wird für 3 h zum Rückfluß erhitzt. Danach wird das Lösungsmittel im Vakuum entfernt und der Kolben unter Argon gesetzt. Der Rückstand wird in trockenem Pyridin (3 ml) gelöst und mit einem Chlortrialkylsilan (1.5 mmol) versetzt. Nach 15 h Rühren bei Raumtemp. wird zwischen ges. NaHCO3 (aq.) (20 ml) und EtOAc (10 ml) verteilt (30 min. Rühren bei Raumtemp.). Danach wird die Wasserphase mit EtOAc extrahiert (2x30 ml) und die vereinigten organischen Phasen mit ges. wäßrigen Lösungen von NaHCO3 (40 ml) und NaCl (40 ml) gewaschen. Nach dem Trocknen (MgSO4) wird im Vakuum eingeengt und das Rohprodukt (rac-42') durch Flashchromatographie gereinigt.

26. Herstellung von (3RS,5RS)-5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-3-(2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-encarbaldehyd (*rac*-42a).

rac-42a

Ein Experiment im 0.5 mmol-Maßstab lieferte *rac-*42a in 80 % Ausbeute als gelblich-weißen Feststoff, ausgehend von *rac-*41a und Thexyldimethylsilylchlorid (gemäß Vorschrift 25).

Schmp.: 191°C (dec.); ¹H-NMR (250 MHz, CDCl₃): δ = 9.85 (s, 1H, HC=O), 8.78 (bs, 1H, NH), 7.47 (d, J_1 = 8.0, 1H, H-6′), 5.56 (dd, J_1 = J_2 = 2.2, 1H, H-2), 5.90 (dddd, J_1 = J_2 = 2.2, J_3 = 9.5, J_4 = 7.1, 1H, H-3), 5.71 (dd, J_1 = 8.0, J_2 = 2.4, 1H, H-5′), 4.27 (dd, J_1 = 10.0, J_2 = 3.0, 1H, SiOCH_a), 3.58 (dd, J_1 = 10.0, J_2 = 2.5, 1H, SiOCH_b), 3.18 (m, 1H, H-5), 2.79 (ddd, J_1 = 14.2, J_2 = J_3 = 9.5, 1H, H-4), 1.82 (ddd, J_1 = 14.2, J_2 = J_3 = 7.5, 1H, H-4), 1.56 (septet, J = 6.8, 1H, Me₂CH), 0.81 (d, J = 6.8 Hz, 6H, (CH₃)₂CH), 0.788 + 0.786 (2s, 6H, C(CH₃)₂), 0.042 + 0.036 (2s, 6H, SiCH₃); ¹³C-NMR (63 MHz, CDCl₃): δ = 188.9 (CH=O), 163.2 (C4′), 150.8 (C2′), 150.3 (C1), 147.8 (C2), 141.4 (C6′), 103.2 (C5′), 62.2 (CH₂OSi), 58.9 (C3), 44.3 (C5), 34.0 Me₂CH), 33.3 (C4), 25.4 (Me₂CSi), 20.3 and 20.2 ((CH₃)₂CH), 18.5 and 18.4 ((CH₃)₂CSi), -3.5 and -3.6 ((CH₃)₂Si); FT-IR (ATR): 3038 (w, N-H), 2955 (m, C-H), 2865 (w, C-H), 1697 (s, C=O), 1680 (s, C=O), 1649 (s, C=C), 1473 (w), 1445 (w), 1425 (w), 1383 (m), 1276 (m), 1248 (m, C-O), 1186 (m), 1111 (m), 1063 (w), 1019 (w), 998 (w), 979 (w), 849 (m), 828 (m), 804 (m), 779 (m), 761 (m); MS (EI, 70 eV): m/z (%): 295 (7), 294 (17), 293 (100) [M-85]⁺, 275 (27), 250 (18), 201 (55), 181 (62), 169 (26), 151 (8), 137 (5), 99 (7), 91 (5), 89 (7), 85 (6), 77 (6), 75 (23), 73 (18), 69 (6), 59 (8), 57 (5); HRMS (EI) C₁₃H₁₇N₂O₄Si [M-85]⁺: ber. 293.096, gef.: 293.096.

27. Herstellung von (3RS,5RS)-5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-3-(5-methyl-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-encarbaldehyd (*rac*-42b).

Ein Experiment im 0.7 mmol-Maßstab lieferte *rac-42b* in 65 % Ausbeute als gelblichen Feststoff, ausgehend von *rac-41b* und Thexyldimethylsilylchlorid (gemäß Vorschrift 25).

Schmp.: 187°C; 1H-NMR (250 MHz, CDCl₃): δ = 10.06 (bs, 1H, NH), 9.81 (s, 1H, HC=O), 6.99 (q, J = 1.2, 1H, H-6′), 6.58 (m, 1H, H-2), 5.83 (dddd, J_1 = J_2 = 2.4, J_3 = J_4 = 8.6,1H, H-3), 4.18 (dd, J_1 = 10.0, J_2 = 3.4, 1H, SiOCH_a), 3.53 (dd, J_1 = 10.0, J_2 = 2.4, 1H, SiOCH_b), 3.10 (m, 1H, H-5), 2.65 (ddd, J_1 = 13.4, J_2 = J_3 = 8.8, 1H, H-4), 1.85 (d, J = 1.2, 3H, CH₃), 1.80 (ddd, J_1 = 13.4, J_2 = J_3 = 8.4, 1H, H-4), 1.51 (Sept., J = 7.1, 1H, Me₂CH), 0.83 (d, J = 7.1, 6H, (CH₃)₂CH], 0.793 + 0.790 (2s, 6H, C(CH₃)₂), 0.058 + 0.057 (2s, 6H, SiCH₃); 13C-NMR (63 MHz, CDCl₃): δ = 188.9 (CH=O), 164.1 (C4′), 151.1 (C2′), 149.8 (C1), 148.4 (C2), 136.2 (C6′), 111.8 (C5′), 61.4 (CH₂OSi), 59.0 (C3), 44.2 (C5), 34.0 (Me₂CH), 33.4 (C4), 25.1 (Me₂CSi), 20.2 and 20.2 ((CH₃)₂CH), 18.4 und 18.4 ((CH₃)₂CSi), 12.3 (CH₃), -3.5 und -3.7 (SiCH₃); FT-IR (ATR): 3177 (w, N-H), 3050 (w, N-H), 2954 (m, C-H), 2864 (m, C-H), 1683 (s, C=O), 1464 (m), 1376 (m), 1279 (m), 1249 (m, C-O), 1153 (w), 1113 (m), 1057 (w), 1017 (w), 982 (w), 874 (m), 830 (m), 778(m), 722 (w); MS (EI, 70 eV): m/z (%): 393 (4) [M+1]⁺, 365 (13), 341 (5), 307 (100), 289 (27), 264 (10), 215 (52), 183 (31), 181 (73), 167 (12), 151 (7), 137 (5), 113 (4), 89 (7), 75 (15), 59 (4); HRMS (ESI) C₂OH₃3N₂O₄Si [M+1]⁺: ber. 393.2209, gef. 393.2209.

28. Herstellung von (3RS,5RS)-3-(5-Brom-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-5-[dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-cyclopent-1-encarbaldehyd (*rac*-42c).

Ein Experiment im 1 mmol-Maßstab lieferte *rac-42c* in 83 % Ausbeute als farblosen Feststoff, ausgehend von *rac-41c* und Thexyldimethylsilylchlorid (gemäß Vorschrift 25).

Schmp.: 163°C (dec.); ¹H-NMR (250 MHz, CDCl₃): $\delta = 9.87$ (s, 1H, $\underline{\text{H}}\text{C}=\text{O}$), 8.52 (bs, 1H, N $\underline{\text{H}}$), 7.54 (s, 1H, H-6'), 6.57 (m, 1H, H-2), 5.85 (dddd, $J_1 = J_2 = 2.3$, $J_3 = 8.7$, $J_4 = 7.6$, 1H, H-3), 4.25 (dd, $J_1 = 10.0$, $J_2 = 3.2$, 1H, SiOC $\underline{\text{H}}_{\text{a}}$), 3.52 (dd, $J_1 = 10.0$, $J_2 = 2.3$, 1H, SiOC $\underline{\text{H}}_{\text{b}}$), 3.17 (m, 1H, H-5), 2.75 (ddd, $J_1 = 13.7$, $J_2 = J_3 = 8.8$, 1H, H-4), 1.85 (ddd, $J_1 = 13.7$, $J_2 = J_3 = 7.7$, 1H, H-4), 1.55 (septet, J = 6.8, 1H, Me₂C $\underline{\text{H}}$), 0.83 (d, J = 6.8, 6H, (C $\underline{\text{H}}_3$)₂CH), 0.810 + 0.805 (2s, 6H, C(C $\underline{\text{H}}_3$)₂), 0.06 (s, 6H, SiC $\underline{\text{H}}_3$), ¹³C-NMR (63 MHz, CDCl₃): $\delta = 188.9$ (CH=O), 159.2 (C4'),

WO 02/080923

PCT/EP02/03835

150.5 (C2'), 150.4 (C1), 147.3 (C2), 140.2 (C6'), 97.7 (C5'), 61.5 (CH2OSi), 59.9 (C3), 44.3 (C5), 34.0 (Me2CH), 33.5 (C4), 25.3 (Me2CSi), 20.4 and 20.3 ((CH3)2CH), 18.5 and 18.4 ((CH3)2CSi), -3.5 and -3.7 (CH3Si); FT-IR (ATR): 3177 (w, N-H), 3046 (w, N-H), 2954 (m, C-H), 2862 (w, C-H), 2823 (w), 1704 (s, C=O), 1684 (s, C=O), 1617 (m, C=C), 1444 (m), 1368 (w), 1276 (m), 1249 (m, C-O), 1150 (w), 1109 (m), 1038 (w), 982 (w), 847 (m), 830 (m); MS (EI, 70 eV): m/z (%) = 374 (22), 373 (95), 372 (28), 371 (100) [M-85]⁺, 355 (34), 353 (32), 339 (7), 328 (13), 297 (3), 281 (92), 279 (89), 251 (10), 249 (47), 226 (3), 224 (5), 184 (3), 183 (11), 182 (58), 181 (90), 167 (28), 152 (3), 151 (12), 137 (10), 116 (5), 91 (7), 89 (14), 85 (10), 75 (31), 73 (18), 59 (8); HRMS (EI) C13H16BrN2O4Si [M-85]⁺: ber. 371.006, gef. 371.005.

- 49 -

29. Herstellung von (3RS,5RS)-3-(5-Brom-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-5-[tert-butyl-diphenyl-silanyloxymethyl]-cyclopent-1-encarbaldehyd (rac-42d).

Ein Experiment im 1 mmol-Maßstab lieferte *rac-42d* in 76 % Ausbeute als farblosen Feststoff, ausgehend von *rac-41c* und *tert*.-Butyldiphenylsilylchlorid (gemäß Vorschrift 25).

Schmp.: 164°C; ¹H-NMR (250 MHz, CDCl₃): δ = 10.24 (bs, 1H, N<u>H</u>), 9.86 (s, 1H, <u>H</u>C=O), 7.75-7.32 (m, 10H, 2xPh), 7.48 (s, 1H, H-6′), 6.65 (dd, $J_1 = J_2 = 2.0$, 1H, H-2), 5.80 (dddd, $J_1 = J_2 = 2.1$, $J_3 = J_4 = 8.6$, 1H, H-3), 4.21 (dd, $J_1 = 10.3$, $J_2 = 4.4$, 1H, SiOC<u>H</u>_a), 3.52 (dd, $J_1 = 10.3$, $J_2 = 2.7$, 1H, SiOC<u>H</u>_b), 3.15 (m, 1H, H-5), 2.72 (ddd, $J_1 = 13.7$, $J_2 = J_3 = 8.6$, 1H, H-4_a), 1.85 (ddd, $J_1 = 13.7$, $J_2 = J_3 = 8.4$, 1H, H-4_b), 1.07 + 1.06 (2s, 9H, (C<u>H</u>₃)₃C); ¹³C-NMR (250 MHz, CDCl₃): δ = 188.8 (<u>C</u>H=O), 159.3 (C4′), 150.4 (C2′), 150.4 (C1), 147.1 (C2), 140.0 (C6′), (136.0+135.5) und (133.0+132.8) und (129.8+129.4) und (127.7+127.6) (alle vom Ph), 97.8 (5′), 62.5 (<u>C</u>H₂OSi), 60.1 (C3), 44.3 (C5), 34.0 (C4), 26.9 und 26.8 und 26.5 ((<u>C</u>H₃)₃CSi), 19.3 ((CH₃)₃<u>C</u>Si); **FT-IR** (cm⁻¹, ATR): 3177 (w, N-H), 3067 (w, N-H), 2928 (m, C-H), 2854 (m, C-H), 1707 (s, C=O), 1683 (s, C=O), 1619 (m, C=C), 1588 (w), 1469 (w), 1443 (m), 1426 (m), 1362 (w), 1276 (m), 1261 (m), 1242 (m, C-O), 1151 (w), 1110 (m), 1060 (w), 1037 (w), 997 (w), 983 (w), 839 (m), 821 (m), 741 (m), 701 (s).

30. Herstellung von (3RS,5RS)-3-(6-Amino-purin-9-yl)-5-[dimethyl-(1,1,2-trimethyl-propyl)-silanyloxy-methyl]-cyclopent-1-encarbaldehyd (rac-42e).

- 50 -

Ein Experiment im 1 mmol-Maßstab lieferte *rac-*42e in 45 % Ausbeute als gelb-orangen Feststoff, ausgehend von *rac-*41d und Thexyldimethylsilylchlorid (gemäß Vorschrift 25, jedoch unter Verwendung von 2 Äquiv. PyH⁺TsO⁻ (1. Schritt) sowie 3.3 Äquiv. ThexMe₂SiCl, 3.3 Äquiv. Et₃N, 0.3 Äquiv. DMAP in 5 ml CH₂Cl₂ (2. Schritt).

Schmp.: 144°C (dec.); ¹H-NMR (250 MHz, CDCl₃): δ = 9.86 (s, 1H, $\underline{\text{HC}}$ =O), 8.30 (s, 1H, H-2′), 7.93 (s, 1H, H-8′), 6.75 (dd, J_1 = J_2 = 2.2, 1H, H-2), 6.40 (s, 2H, N $\underline{\text{H}}_2$), 5.84 (dddd, J_1 = J_2 = 2.2, J_3 = 9.1, J_4 = 6.8, 1H, H-3), 4.14 (dd, J_1 = 10.0, J_2 = 3.8, 1H, SiOC $\underline{\text{H}}_4$), 3.66 (dd, J_1 = 10.0, J_2 = 2.4, 1H, SiOC $\underline{\text{H}}_6$), 3.24 (m, 1H, H-5), 2.89 (ddd, J_1 = 14.0, J_2 = J_3 = 9.1, 1H, H-4), 2.10 (ddd, J_1 = 14.0, J_2 = J_3 = 6.8, 1H, H-4), 1.53 (septet, J = 6.8, 1H, Me₂C $\underline{\text{H}}$), 0.78 (d, J = 6.8, 6H, (C $\underline{\text{H}}_3$)₂CH), 0.77 (s, 6H, C(C $\underline{\text{H}}_3$)₂), 0.02 (s, 6H, C $\underline{\text{H}}_3$ Si), ¹³C-NMR (63 MHz, CDCl₃): δ = 189.2 (CH=O), 155.7 (C4′), 152.8 (C2′), 149.5 (C1), 149.5 (C6′), 147.4 (C2), 138.5 (C8′), 119.2 (C5′), 62.2 (C $\underline{\text{H}}_2$ OSi), 57.5 (C3), 44.7 (C5), 35.1 (C4), 34.0 (Me₂C $\underline{\text{H}}$), 25.3 (Me₂C $\underline{\text{S}}$)i), 20.3 and 20.2 ((C $\underline{\text{H}}_3$)₂CH), 18.4 and 18.4 ((C $\underline{\text{H}}_3$)₂CSi), -3.6 (C $\underline{\text{H}}_3$ Si); FT-IR (ATR): 3318 (w, N-H), 3168 (w, N-H), 2953 (m, C-H), 2864 (w, C-H), 1683 (s, C=O), 1645 (s, C=C), 1598 (s), 1575 (m), 1468 (m), 1413 (m), 1327 (m), 1297 (m), 1250 (s, C-O), 1149 (w), 1109 (m), 1085 (m), 1085 (m), 1015 (w), 979 (w), 830 (m), 777 (m), 649 (m); MS (EI, 70 eV): m/z (%): 401(2) [M]⁺, 318 (8), 317 (24), 316 (100), 302 (7), 242 (4), 224 (5), 212 (4), 192 (5), 182 (11), 181 (30), 167 (8), 151 (7), 137 (4), 136 (12), 135 (10), 108 (3), 85 (4), 75 (17), 59 (4); HRMS (ESI) C₂₀H₃₁N₅O₂Si: ber. 402.2325, gef. 402.2327.

31. Allgemeine Arbeitsvorschrift für die Überführung der Aldehyde vom Typ 42' in Ester vom Typ 43' durch Wittig-Reaktion.

Zu einer Lösung des benötigten Wittig-Ylides (202 mg, 1.1 eq.) in trockenem THF (2 ml) gibt man bei 50°C eine Lösung des Aldehydes *rac-42* (500 μmol, 1 eq.) in trockenem THF (4 ml). Nach 16 h Rühren bei 50°C wird die Reaktionsmischung auf Raumtemp. abgekühlt, im Vakuum etwas eingeengt und das Produkt *rac-42* durch Chromatographie an Kieselgel (EtOAc/CyHex = 1+2) gereinigt.

32. Herstellung von (3RS,5RS)-3-[5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-3-(2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-enyl]-acrylsäure-ethylester (rac-43a).

Ein Experiment im 0.25 mmol-Maßstab lieferte *rac*-43a in 96 % Ausbeute als blassgelben Feststoff, ausgehend von *rac*-42a (gemäß Vorschrift 31).

Schmp. 92-96°C (EtOAc/Hex); **1H-NMR** (250 MHz, CDCl₃): δ = 8.45 (s, 1H, NH), 7.47 (d, J_{Cis} = 8.0, 1H, H-5′'), 7.38 (d, J_{trans} = 16.2, 1H, H-2), 6.06 (d, J_{trans} = 16.2, 1H, H-3), 5.91 (s, 1H, H-2'), 5.71 (m, 1H, H-3'), 5.66 (d, J_{Cis} = 8.0, 1H, H-6′'), 4.22 (q, J = 7.2, 2H, OCH₂CH₃), 3.96 (dd, J_1 = 10.4, J_2 = 3.8, 1H, SiOCH_a), 3.63 (dd, J_1 = 10.5, J_2 = 2.7, 1H, SiOCH_b), 3.08 (m, 1H, H-5'), 2.79 (ddd, J_1 = 14.3, J_2 = J_3 = 9.5, 1H, H-4'), 1.73 (ddd, J_1 = 14.5, J_2 = J_3 = 5.5, 1H, H-4'), 1.55 (septet, J = 6.8, 1H, Me₂CH₁), 1.29 (t, J = 7.1, 3H, OCH₂CH₃), 0.81 (d, J = 6.8, 6H, (CH₃)₂CH), 0.79 (s, 6H, C(CH₃)₂), 0.04 (s, 6H, CH₃Si); **13**C-NMR (63 MHz, CDCl₃): δ = 166.4 (C1), 163.0 (C4''), 150.8 (C2''), 146.7 (C1'), 141.7 (C6''), 137.9 (C3), 134.7 (C2'), 121.7 (C2), 102.5 (C5''), 63.2 (CH₂OSi), 60.7 OCH₂CH₃), 59.4 (C3'), 45.8 (C5'), 34.0 (Me₂CH), 33.7 (C4'), 25.4 (Me₂CSi), 20.4 and 20.2 ((CH₃)₂CH), 18.5 and 18.3 ((CH₃)₂CSi), 14.3 (OCH₂CH₃), -3.5 (CH₃Si); **FT-IR** (ATR): 3184 (w, N-H), 3051(w, N-H), 2955 (m, C-H), 2865 (w, C-H), 1703 (s, C=O), 1687 (s, C=O), 1638 (m, C=C), 1605 (w), 1461 (m), 1378 (m), 1305 (m), 1265 (s, C-O),

WO 02/080923

1249 (s, C-O), 1174 (s), 1111 (m), 1094 (m), 1064 (w), 1034 (w), 986 (w), 873 (w), 830 (s), 778 (m);

MS (EI, 70 eV): m/z (%): 449 (1) [M+1]⁺, 403 (45), 379 (13), 363 (15) [M-85]⁺, 253 (8), 252 (25), 251 (100), 205 (37), 188 (7), 187 (41), 177 (33), 169 (58), 149 (9), 133 (5), 132 (8), 131 (48), 104 (13), 103 (44), 99 (18), 89 (17), 77 (7), 75 (35), 74 (9), 73 (38), 59(10), 58 (21); HRMS (EI) C₁₇H₂₃N₂O₅Si (M⁺-85): ber. 363.138, gef. 363.138.

33. Herstellung von (3RS,5RS)-3-[5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-3-(5-methyl-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-enyl]-acrylsäureethylester (rac-43b).

Ein Experiment im 0.25 mmol-Maßstab lieferte *rac-*43b in 95 % Ausbeute als blassgelben Feststoff, ausgehend von *rac-*42b (gemäß Vorschrift 31).

Schmp.: 132-134 (EtOAc/Hex); **1H-NMR** (250 MHz, CDCl₃): δ = 8.50 (s, 1H, NH), 7.38 (d, J_{trans} = 16.2, 1H, H-2), 7.05 (s, 1H, H-6''), 6.08 (d, J_{trans} = 16.2, 1H, H-3), 5.93 (s, 1H, H-2'), 5.65 (m, 1H, H-3'), 4.22 (q, J = 7.1, 2H, OCH₂CH₃), 3.87 (dd, J_1 = 10.4, J_2 = 4.4, 1H, SiOCH_a), 3.63 (dd, J_1 = 10.4, J_2 = 3.3, 1H, SiOCH_b), 3.06 (m, 1H, H-5'), 2.72 (ddd, J_1 = 13.9, J_2 = J_3 = 8.9, 1H, H-4'), 1.88 (s, 3H, CH₃-5''), 1.72 (ddd, J_1 = 13.6, J_2 = J_3 = 6.7, 1H, H-4'), 1.56 (septet, J = 6.8, 1H, Me₂CH), 1.29 (t, J = 7.1, 3H, OCH₂CH₃), 0.82 (d, J = 6.9, 6H, (CH₃)₂CH), 0.79 (s, 6H, C(CH₃)₂), 0.04 (s, 6H, CH₃Si); **13C-NMR** (63 MHz, CDCl₃): δ = 166.4 (C1), 163.6 (C4''), 150.8 (C2''), 146.7 (C1'), 138.1 (C6''), 136.7 (C3), 134.6 (C2'), 121.5 (C2), 111.0 (C5''), 63.0 (CH₂OSi), 60.7 OCH₂CH₃), 59.5 (C3'), 45.9 (C5'), 34.0 (Me₂CH), 33.9 (C4'), 25.3 (Me₂CSi), 20.34 and 20.27 ((CH₃)₂CH), 18.48 and 18.44 ((CH₃)₂CSi), 14.2 (OCH₂CH₃), 12.5 (5''-CH₃), -3.5 (CH₃Si); **FT-IR** (ATR): 3176 (w, N-H), 3043 (w, N-H), 2954 (m, C-H), 2864 (w, C-H), 1684 (s, C=O), 1639 (s, C=C), 1603 (w), 1464 (m), 1387 (m), 1377 (w), 1364(m), 1305 (m), 1266 (s, C-O), 1249 (s, C-O), 1173 (s), 1159(s), 1112 (m), 1094 (m), 1065 (w), 1034 (w), 985 (w), 873 (w), 830 (s); **MS** (EI, 70 eV): m/z (%): 449 (1) [M+1]+, 403 (45), 379 (13), 363 (15) [M-85]+, 253 (8), 252 (25), 251 (100), 205 (37), 188 (7), 187 (41), 177 (33), 169 (58), 149 (9), 133 (5), 132 (8), 131

(48), 104 (13), 103 (44), 99 (18), 89 (17), 77 (7), 75 (35), 74 (9), 73 (38), 59(10), 58 (21); **HRMS** (EI) C₁₈H₂₅N₂O₅Si (M⁺-85): ber. 377.153, gef. 377.153.

34. Herstellung von (3RS,5RS)-3-[3-(5-Brom-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-5-[dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-cyclopent-1-enyl]-acrylsäure-ethylester (rac-43c).

Ein Experiment im 0.5 mmol-Maßstab lieferte *rac-*43c in 82 % Ausbeute als farblosen Feststoff, ausgehend von *rac-*42c (gemäß Vorschrift 31).

Schmp.: 164-165°C (EtOAc/CyHex); ¹H-NMR (250 MHz, CDCl₃): δ = 10.17 (s, 1H, NH), 7.51 (s, 1H, H-6′′), 7.35 (d, J_{trans} = 16.4, 1H, H-2), 6.04 (d, J_{trans} = 16.0, 1H, H-3), 5.92 (s, 1H, H-2′), 5.62 (m, 1H, H-3′), 4.17 (q, J = 7.1, 2H, OCH₂CH₃), 3.84 (dd, J_1 = 10.4, J_2 = 4.2, 1H, SiOCH_a), 3.57 (dd, J_1 = 10.2, J_2 = 3.2, 1H, SiOCH_b), 3.03 (m, 1H, H-5′), 2.72 (ddd, J_1 = 14.1, J_2 = J_3 = 9.0, 1H, H-4′), 1.68 (ddd, J_1 = 13.9, J_2 = J_3 = 6.4, 1H, H-4′), 1.51 (Sept., J = 6.8, 1H, Me₂CH), 1.24 (t, J = 7.0, 3H, OCH₂CH₃), 0.77 (d, J = 6.8, 6H, (CH₃)₂CH), 0.74 (s, 6H, C(CH₃)₂), 0.01 + 0.01 (2xs, 6H, CH₃Si); ¹³C NMR (125 MHz, CDCl₃): δ = 166.2 (C1), 159.3 (C4′′), 150.6 (C2′′), 147.3 (C1′), 140.3 (C6′′), 137.8 (C3), 133.7 (C2′), 121.7 (C2), 96.9 (C5′′), 62.8 (CH₂OSi), 60.5 OCH₂CH₃), 60.3 (C3′), 45.7 (C5′), 33.9 (Me₂CH), 33.8 (C4′), 25.2 (Me₂CSi), 20.28 und 20.13 ((CH₃)₂CH), 18.35 und 18.26 ((CH₃)₂CSi), 14.1 (OCH₂CH₃), -3.56 und -3.64 ((CH₃)₂Si); FT-R (ATR): 3178 (w, N-H), 3053 (w, N-H), 2954 (m, C-H), 2864 (w, C-H), 1705 (s, C=O), 1637 (m, C=C), 1617 (m), 1442 (m), 1389 (w), 1366 (w), 1337(w), 1306 (m), 1265 (m, C-O), 1249 (m, C-O), 1174 (m), 1112 (m), 1066 (w), 1034 (m), 985 (w), 874 (w), 830 (m), 777 (m).

35. Herstellung von (3RS,5RS)-3-[3-(5-Bromo-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-5-(*tert*-butyl-diphenyl-silanyloxymethyl)-cyclopent-1-enyl]-acrylsäureethylester (*rac*-43d).

Ein Experiment im 0.2 mmol-Maßstab lieferte *rac-43d* in 72 % Ausbeute als farbloses Öl, ausgehend von *rac-42c* (gemäß Vorschrift 31).

1H-NMR (250 MHz, CDCl₃): δ = 9.61 (s, 1H, NH), 7.44-7.32 (m, 12H, H-6′′, H-3, 2xPh), 5.94 (d, J_{trans} = 16.1, 1H, H-3), 5.93 (s, 1H, H-2′), 5.61 (m, 1H, H-3′), 4.22 (q, J = 7.1, 2H, OCH₂CH₃), 3.74 (m, 2H, SiOCH₂), 3.08 (m, 1H, H-5′), 2.77 (ddd, J_1 = 14.2, J_2 = J_3 = 8.8, 1H, H-4′), 1.79 (ddd, J_1 = 14.1, J_2 = J_3 = 6.3, 1H, H-4′), 1.30 (t, J = 7.0, 3H, OCH₂CH₃), 1.04 (s, 9H, C(CH₃)₃); **13**C-NMR (63 MHz, CDCl₃): δ = 166.2 (C1), 159.1 (C4′′), 150.3 (C2′′), 147.7 (C1′), 140.0 (C6′′), 137.6 (C3), (135.5 + 135.4) and (132.9 + 132.7) and (129.9 + 129.5) and (127.8 + 127.7) (all of Ph), 133.4 (C2′), 122.2 (C2), 97.1 (C5′′), 64.2 (CH₂OSi), 60.7 (OCH₂CH₃), 60.4 (C3′), 46.0 (C5′), 34.3 (C4′), 26.9 ((CH₃)₃C), 19.2 ((CH₃)₃C), 14.2 (OCH₂CH₃); **FT-IR** (ATR): 3472 (w), 3178 (w, N-H), 3066 (w, N-H), 2953 (w, C-H), 2854 (w, C-H), 1703 (s, C=O), 1638 (m, C=C), 1617 (m), 1442 (m), 1426 (m), 1367 (w), 1306 (w), 1266 (m, C-O), 1240 (m, C-O), 1175 (m), 1110 (s), 1034 (w), 985 (w), 821 (m), 741 (m), 702 (s).

36. Allgemeine Arbeitsvorschrift für die Fe(CO)3-Komplexierung von Dienen des Typs 43'.

Zu einer gerührten Suspension von Fe₂(CO)₉ (91 mg, 0.25 mmol) in abs. Et₂O (5 ml) gibt man unter Argon eine Lösung des Diens *rac-43* (0.1 mmol) in abs. Et₂O (1 ml) und erhitzt die Mischung für 24 h zum Rückfluß. Nach Abkühlung auf Raumtemp. entfernt man das Lösungsmittel im Vakuum und reinigt den Rückstand durch Flashchromatographie (EtOAc/CyHex

WO 02/080923

- 55 -

= 1 : 4 bis = 1 : 2). Neben dem Hauptprodukt *rac-*44' erhält man stets noch (separiert) gewisse Mengen des diastereomeren Komplexierungsproduktes.

37. Herstellung von (3SR,5RS)-3-[5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxy-methyl]-3-(2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-enyl]-acrylsäureethylester-tricarbonyleisen (*rac*-44a).

Ein Experiment im 0.1 mmol-Maßstab lieferte *rac-*44a in 37 % Ausbeute als orange-rotes Öl ausgehend von *rac-*43a (gemäß Vorschrift 36).

1H-NMR (250 MHz, CDCl₃): δ = 8.99 (s, 1H, NH), 7.59 (d, J_{Cis} = 7.7, 1H, H-5′′), 6.06 (d, J = 7.9, 1H, H-3), 5.68 (d, J_{Cis} = 8.0, 1H, H-6′′), 5.16 (dd, J_{1} = 10.0, J_{2} = 3.4, 1H, H-3′), 4.10 (m, 2H, OCH₂CH₃), 3.98 (dd, J_{1} = 10.1, J_{2} = 4.9, 1H, SiOCH_a), 3.78 (dd, J_{1} = 10.2, J_{2} = 5.9, 1H, SiOCH_b), 3.14 (m, 1H, H-5′), 2.66 (ddd, J_{1} = 15.5, J_{2} = J_{3} = 9.5, 1H, H-4a′), 1.87 (s, 1H, H-2′), 1.76 (ddd, J_{1} = 15.3, J_{2} = J_{3} = 3.5, 1H, H-4b′), 1.62 (Sept., J = 6.8, 1H, Me₂CH), 1.22 (t, J = 7.1, 3H, OCH₂CH₃), 0.86 (d, J = 6.8, 6H, (CH₃)₂CH), 0.85 (s, 6H, C(CH₃)₂), 0.70 (d, J = 7.6, 1H, H-2), 0.14 + 0.12 (2xs, 6H, CH₃Si); ¹³C-NMR (63 MHz, CDCl₃): δ = 171.8 (C1), 163.0 (C4′′), 150.5 (C2′′), 141.2 (C6′′), 113.1 (C1′), 102.7 (C5′′), 78.2 (C3), 67.3 (CH₂OSi), 64.2 (C2′), 60.7 (OCH₂CH₃), 59.4 (C3′), 49.6 (C2), 45.4 (C5′), 34.0 (Me₂CH), 33.9 (C4′), 25.5 (Me₂CSi), 20.5 and 20.3 ((CH₃)₂CH), 18.5 and 18.4 ((CH₃)₂CSi), 14.1 (OCH₂CH₃), -3.2 and -3.3 (CH₃Si); **FT-IR** (ATR): 3189 (w, N-H), 3053 (w, N-H), 2956 (m, C-H), 2865 (w, C-H), 2055 (s, C≡O), 1992 (s, C≡O), 1974 (s, C≡O), 1701 and 1697 and 1692 and 1681 (s, C=O), 1630 (m, C=C), 1495 (w), 1461 (m), 1427 (m), 1375 (m), 1275 (m, C-O), 1250 (m, C-O), 1177 (m), 1098 (m), 1033 (m), 873 (w), 830 (m), 778 (m), 615 (m), 607 (m);

38. Herstellung von (3RS,5RS)-3-[5-[Dimethyl-(1,1,2-trimethyl-propyl)-silanyloxy-methyl]-3-(5-methyl-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-cyclopent-1-enyl]-acrylsäureethylester-tricarbonyleisen (*rac*-44b).

Ein Experiment im 0.1 mmol-Maßstab lieferte *rac-*44b in 40 % Ausbeute als orange-rotes Öl ausgehend von *rac-*43b (gemäß Vorschrift 36).

1H-NMR (250 MHz, CDCl₃): δ = 8.56 (s, 1H, NH), 7.10 (s, 1H, H-6''), 6.12 (d, J = 7.9, 1H, H-3), 5.07 (dd, J₁ = 9.4, J₂ = 3.6, 1H, H-3'), 4.11 (m, 2H, OCH₂CH₃), 3.84 (dd, J₁ = 10.2, J₂ = 6.3, 1H, SiOCH_a), 3.73 (dd, J₁ = 10.1, J₂ = 7.6, 1H, SiOCH_b), 3.12 (m, 1H, H-5'), 2.60 (ddd, J₁ = 15.5, J₂ = J₃ = 9.1, 1H, H-4a'), 1.89 (s, 4H, H-2' + CH₃), 1.73 − 1.56 (m, 2H, H-4b' + Me₂CH), 1.23 (t, J = 7.2, 3H, OCH₂CH₃), 0.88 (d, J = 6.5, 6H, (CH₃)₂CH), 0.87 (s, 6H, C(CH₃)₂), 0.72 (d, J = 7.8, 1H, H-2), 0.13 (s, 6H, CH₃Si); 13C-NMR (63 MHz, CDCl₃): δ = 171.7 (C1), 163.3 (C4''), 150.4 (C2''), 136.3 (C6''), 112.9 (C1'), 111.2 (C5''), 78.9 (C3), 66.9 (CH₂COSi), 63.4 (C2'), 60.6 (OCH₂CH₃), 60.0 (C3'), 46.6 (C2), 45.5 (C5'), 34.1 (Me₂CH), 33.8 (C4'), 25.4 (Me₂CSi), 20.4 und 20.3 ((CH₃)₂CH), 18.6 und 18.5 ((CH₃)₂CSi), 14.1 (OCH₂CH₃), 12.6 (5''-CH₃), -3.3 (CH₃Si); FT-IR (ATR): 3178 (w, N-H), 3047 (w, N-H), 2955 (m, C-H), 2864 (w, C-H), 2094 (w, C≡O), 2056 (s, C≡O), 2023 (s, C≡O), 1991 (s, C≡O), 1701 und 1698 und 1692 (s, C=O), 1465 (m), 1450 (w), 1426 (w), 1389 (w), 1376 (w), 1366 (w), 1278 (m, C-O), 1250 (m, C-O), 1220 (w), 1175 (m), 1111 (m), 1094 (m), 1035 (w), 873 (w), 830 (m), 777 (m), 621 (m), 610 (m).

39. Herstellung von (3RS,5RS)-3-[3-(5-Brom-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-5-[dimethyl-(1,1,2-trimethyl-propyl)-silanyloxymethyl]-cyclopent-1-enyl]-acrylsäure-ethylester-tricarbonyleisen <math>(rac-35 = rac-44c).

- 57 -

rac-44c (= rac-35)

Fe(CO)₃

Ein Experiment im 0.1 mmol-Maßstab lieferte, ausgehend von *rac-*43c, *rac-*44c in 73 % Ausbeute als gelbes Öl, das aus Cyclohexan kristallisierte (gemäß Vorschrift 36).

Schmp.: 100 ~ 104°C (CyHex); ¹H-NMR (250 MHz, CDCl₃): δ = 8.79 (s, 1H, NH), 7.64 (s, 1H, H-6′′), 6.13 (d, J = 7.9, 1H, H-3), 5.09 (dd, J_1 = 9.6, J_2 = 3.6, 1H, H-3′), 4.12 (m, 2H, OCH₂CH₃), 3.87 (dd, J_1 = 10.1, J_2 = 6.2, 1H, SiOCH_a), 3.73 (dd, J_1 = 10.1, J_2 = 7.2, 1H, SiOCH_b), 3.14 (m, 1H, H-5′), 2.63 (ddd, J_1 = 15.3, J_2 = J_3 = 9.4, 1H, H-4a′), 1.85 (s, 1H, H-2′), 1.72 (ddd, J_1 = 15.6, J_2 = J_3 = 3.9, 1H, H-4b′), 1.65 (Sept., J = 6.9, 1H, Me₂CH), 1.23 (t, J = 7.1, 3H, OCH₂CH₃), 0.88 (d, J = 6.6, 6H, (CH₃)₂CH), 0.88 (s, 6H, C(CH₃)₂), 0.76 (d, J = 7.7, 1H, H-2), 0.16 + 0.15 (2xs, 6H, CH₃Si); ¹³C-NMR (63 MHz, CDCl₃): δ = 171.6 (C1), 158.6 (C4′′), 149.7 (C2′′), 140.0 (C6′′), 112.9 (C1′), 97.0 (C5′′), 79.0 (C3), 67.0 (CH₂OSi), 62.4 (C2′), 60.73 (OCH₂CH₃), 60.69 (C3′), 46.5 (C2), 45.7 (C5′), 34.1 (Me₂CH), 33.9 (C4′), 25.5 (Me₂CSi), 20.5 und 20.4 ((CH₃)₂CH), 18.6 und 18.5 ((CH₃)₂CSi), 14.1 (OCH₂CH₃), -3.22 und -3.24 ((CH₃)₂Si); FT-R (ATR): 3179 (w, N-H), 3055 (w, N-H), 2954 (m, C-H), 2926 (m, C-H), 2863 (w, C-H), 2058 (s, C=O), 1996 (s, C=O), 1978 (s, C=O), 1701 (s, C=O), 1617 (w), 1445 (w), 1427 (w), 1376 (w), 1271 (m, C-O), 1252 (m, C-O), 1177 (m), 1104 (m), 1035 (w), 871 (w), 831 (m), 778 (w), 613 (m);

40. Herstellung von (3RS,5RS)-3-[3-(5-Brom-2,4-dioxo-3,4-dihydro-2*H*-pyrimidin-1-yl)-5-(*tert*-butyl-diphenyl-silanyloxymethyl)-cyclopent-1-enyl]-acrylsäure-ethylester tricarbonyleisen (*rac*-44d).

WO 02/080923

- 58 -

Ein Experiment im 0.91 mmol-Maßstab lieferte *rac-*44d in 49 % Ausbeute als gelb-oranges Öl ausgehend von *rac-*43d (gemäß Vorschrift 36).

1H-NMR (250 MHz, CDCl₃): δ = 8.58 (s, 1H, NH), 7.67-7.63 (m, 5H, H-6" + Ph), 7.44-7.35 (m, 6H, Ph), 6.10 (d, J = 8.0, 1H, H-3), 5.02 (dd, J_1 = 9.4, J_2 = 3.2, 1H, H-3"), 4.12 (m, 2H, OCH₂CH₃), 3.81 (d, J = 7.0, 2H, SiOCH₂), 3.14 (m, 1H, H-5"), 2.60 (ddd, J_1 = 15.7, J_2 = J_3 = 9.1, 1H, H-4a"), 1.76 (s, 1H, H-2"), 1.63 (ddd, J_1 = 15.9, J_2 = J_3 = 3.6, 1H, H-4b"), 1.26 (t, J = 7.1, 3H, OCH₂CH₃), 1.11 (s, 9H, (CH₃)₃C), 0.67 (d, J = 7.8, 1H, H-2); **FT-R** (ATR): 3184 (w, N-H), 3068 (w, N-H), 2928 (w, C-H), 2855 (w, C-H), 2058 (s, C=O), 1997 (s, C=O), 1979 (s, C=O), 1698 (s, C=O), 1617 (w), 1444 (w), 1426 (m), 1375 (w), 1270 (m, C-O), 1238 (m, C-O), 1178 (m), 1111 (m), 1034 (w), 822 (w), 740 (w), 701 (m), 625 (w), 613 (m), 609 (m);

41. Herstellung von 5-O-(Trityl)-D-ribono-1,4-lacton (45°)

20.1 g (+)-D-Ribonsäure- γ -lacton (0.136 mol) wurden in 350 ml Pyridin gelöst. Zur weitgehenden Entfernung von Wasser wurden etwa 50 ml des Lösungsmittels am Rotationsverdampfer abdestilliert. Anschließend wurde mit 41.7 g Chlortriphenylmethan (0.149 mmol) versetzt und ein Trockenrohr (CaCl₂) aufgesetzt. Bei 55°C wurde über Nacht gerührt. Das Lösungsmittel wurde am Rotationsverdampfer weitgehend entfernt. Der Rückstand wurde mit EtOAc und 0.1%iger HCl in einen Scheidetrichter überführt. Die organische Phase wurde mit ges. NaCl-Lösung gewaschen und die wäßrigen Phasen zweimal mit EtOAc reextrahiert. Die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet, das Lösungsmittel am Rotationsverdampfer entfernt und das Produkt aus Chloroform umkristallisiert. Das Produkt 45° kristallisierte zusammen mit einem Äquivalent Chloroform in feinen, weißen Nadeln aus (44.0 g, 63%). Einengen der Mutterlauge ergab weitere 490 mg (4%).

[α] $\mathbf{D^{20}}$ = +33.5 (c = 1.0 in Benzol); ¹H-NMR (250 MHz, C₆D₆): δ = 2.40 (d, J = 1.5 Hz, 1H, HO-C4, austauschbar gegen D₂O), 2.58 (d, J = 4.4 Hz, 1H, HO-C3, austauschbar gegen D₂O), 2.68 (dd, J = 2.6, 10.9 Hz, 1H, C*H*HO), 3.23 (dd, J = 3.2, 10.9 Hz, 1H, CHHO), 3.73 (dd, J = 1.5, 5.4 Hz, 1H, H-C4), 4.10 (ψ t, 1H, H-C5), 4.63 (dd, J = 4.4, 5.4 Hz, 1H, H-C3), 6.95-7.07 und 7.30-7.34 (m, 15H, ArH); ¹³C-NMR (62.5 MHz, CDCl₃): δ = 63.3 (CH₂O), 69.8 (C-4), 70.6

(C-3), 84.5 (C-5), 88.0 (CAr₃), 127.6, 128.3, 128.4, 143.6 (Ar), 177.2 (C-2); **FT-IR**: 3416, 3055, 2931, 2872, 1777, 1595, 1488, 1447, 1220, 1181, 1139, 1090, 1031, 1022, 993, 947, 766, 745, 703; **MS** (EI, 70 eV): 390 (18) [M]⁺, 313 (20), 243 (100), 183 (19), 165 (47); **HR-MS** (EI, 70 eV): berechnet für C₂₄H₂₂O₅: 390.147; gefunden: 390.146; **Schmp.:** 104.6°C.

42. Herstellung von Trifluormethansulfonsäure-2-oxo-5-trityloxymethyl-2,5-dihydrofuran-3-ylester (46)

10.45 g des Lactons 45' (20.5 mmol) wurden unter Schutzgasatmosphäre in 100 ml trockenem Dichlormethan und 8.6 ml trockenem Pyridin (0.107 mol) gelöst und auf -78°C gekühlt. Dem Gemisch wurde eine Lösung aus 9.5 ml Trifluormethansulfonsäureanhydrid (56.3 mmol) in 35 ml trockenem Dichlormethan zugetropft. Nach einer Stunde wurde auf -15°C erwärmt und eine weitere Stunde gerührt. Nach Abkühlen auf -78°C wurde mit 100 ml Diethylether versetzt und mit weiteren 500 ml Diethylether durch Kieselgel filtriert. Die Lösungsmittel wurden am Rotationsverdampfer entfernt, das Rohprodukt wurde durch Säulenchromatographie an Kieselgel mit CyHex/EtOAC (8/1) gereinigt. Das Produkt 46 (8.84 g, 85%) wurde als weißer Feststoff erhalten, der aus Hexan/MTBE umkristallisiert wurde.

[α]**D**²⁰ = -43.9 (c = 1.0 in CHCl₃), ¹H-NMR (250 MHz, CDCl₃): δ = 3.44 (dd, J_{AB} = 10.5 Hz, J = 4.3 Hz, 1H, CHHO), 3.55 (dd, J_{AB} = 10.5 Hz, J = 4.7 Hz, 1H, CHHO), 5.06 (m, J = 4.5, 1.9 Hz, 1H, H-C5), 7.11 (d, J = 1.9, 1H, H-C4), 7.24-7.40 (m, 15H, ArH); ¹³C-NMR (62.5 MHz, CDCl₃): δ = 62.7 (CH₂O), 77.7 (C5), 87.4 (Ar₃CO), 118.5 (q, J_{CF} = 319 Hz, CF₃), 127.5, 128.1, 128.5 (Ar), 136.1 (C4), 137.8 (C3), 142.8 (Ar), 163.6 (C2); Schmp.: 140.1°C (unter Verfärbung nach gelb).

43. Herstellung von 5-Trityloxymethyl-3-vinyl-5H-furan-2-on (47a)

37 mg Pd2(dba)3.CHCl3 (0.040 mmol) und 86 mg Triphenylarsin (0.28 mmol) wurden unter Argonatmosphäre in 10 ml trochenem THF gelöst. Nach Bildung des orange-roten Tetrakis(triphenylarsin)palladiumkomplexes wurden 1.01 g Lithiumchlorid (24.1 mmol) und 2.55 g Tributylvinylstannan (8.04 mmol) zugesetzt. Zu dieser Mischung wurde eine Lösung von 4.05 g des Triflates 46 (8.04 mmol) in 15 ml abs. THF während eines Zeitraumes von 15 min. getropft. Nach 10 min. wurden 2.43 g Caesiumfluorid (16 mmol) zugesetzt. Das Gemisch wurde für 2 h gerührt, anschließend mit Essigsäureethylester in einen Scheidetrichter überführt und mit 50 ml halbkonzentrierter Natriumchloridlösung gewaschen. Nach Trennung der Phasen wurde die organische Phase mit gesättigter Natriumchloridlösung gewaschen. Die wäßrigen Phasen wurden zweimal mit Essigsäureethylester reextrahiert und die vereinigten organischen Phasen über Natriumsulfat getrocknet. Das Produkt wurde durch Säulenchromatographie an Kieselgel mit Cyclohexan/Essigsäureethylester (12/1) gereinigt. Laut NMR enthielt das Produkt (2.99g) noch 14% Tributylchlorstannan (Ausbeute an 47a: 87%), wurde aber wie nachfolgend beschrieben ohne weitere Reinigung mit Dieisennonacarbonyl komplexiert. Zur Charakterisierung wurde eine analytische Probe des Produktes 47a aus Cyclohexan/Essigsäureethylester (15/1) umkristallisiert. $[\alpha]_{\mathbf{D}}^{20} = -41.0 \ (c = 1.0 \text{ in CHCl}_3); \ ^{1}_{\mathbf{H}-\mathbf{NMR}} \ (250 \text{ MHz}, \text{CDCl}_3); \ \delta = 3.35 \ (\text{dd}, J_{AB} = 5.3 \text{ Hz}, \text{CDCl}_3)$ J = 5.0 Hz, 1H, CH₂O), 4.98 (m, J = 5.0, 1.7 Hz, 1H, H-C₅), 5.48 (dd, J = 2.0, 10.8 Hz, 1H, CHH=CH), 6.27 (dd, J=2.0, 17.7 Hz, 1H, CHH=CH), 6.42 (dd, J=10.8, 17.7 Hz, 1H, $CH_2=CH$). 7.09 (d, J = 1.5 Hz, 1H, H-C4), 7.22-7.32 und 7.38-7.43 (m, 15H, ArH); 13C-NMR (62.5 MHz, CDCl₃): $\delta = 63.9$ (CH₂O), 79.6 (C5), 87.0 (Ar₃CO), 121.6 (CH₂CH), 125.3 (CH₂CH), 127.3. 128.0, 128.6 (Ar), 130.5 (C3), 143.3 (Ar), 146.0 (C4), 171.3 (C2); FT-IR 3056, 3020, 2918, 2868, 1963, 1757, 1594, 1488, 1447, 1407, 1345, 1272, 1218, 1152, 1103, 1074, 1031, 1013, 990, 933, 910, 870, 796, 767, 746, 731, 705; **MS** (EI, 70 eV): 382 (5) $[M]^+$, 243 (100), 183 (9), 165 (57), 105 (31), 77 (25), 67 (12), 53 (17); **HR-MS** (EI, 70 eV): berechnet für C₂₆H₂₂O₃: 382.157; gefunden: 382.157; Schmp.: 94.2°C.

44. Herstellung von $[(1^{\prime\prime},2^{\prime\prime},3,4-\eta)$ -5-Trityloxymethyl-3-vinyl-5*H*-furan-2-on]-tricarbonyleisen (48a)

Zu einer Lösung von 102 mg 47a (0.267 mmol) in 5 ml trockenem THF wurden unter Argonatmosphäre 215 mg Fe₂(CO)₉ (0.590 mmol) gegeben. Es wurde für zwei Stunden bei Raumtemperatur gerührt und dann für eine Stunde zum Rückfluß erhitzt. Anschließend wurden erneut 215 mg Fe₂(CO)₉ zugesetzt, es wurde für eine Stunde bei Raumtemperatur gerührt und für eine weitere zum Rückfluß erhitzt. Dann wurde an der Luft durch Kieselgel filtriert, das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand säulenchromatographisch gereinigt. Dazu wurde zunächst mit Cyclohexan (CyHex) das als Nebenprodukt entstandene Fe₃(CO)₁₂ eluiert, anschließend das Produkt mit CyHex/EtOAc (20:1). Nach Entfernen des Lösungsmittels am Rotationsverdampfer wurden 50 mg 48a (0.096 mmol, 36%) als gelber Feststoff erhalten.

1H-NMR (250 MHz, CDCl₃): δ = 0.11 (dd, J = 2.2, 9.5 Hz, 1H, C*H*H=CH), 1.64 (dd, J = 2.2, 6.8 Hz, 1H, CH*H*=CH), 2.05 (d, J = 0.8 Hz, 1H, H-C4), 3.26 (dd, 4.1, 10.3 Hz, 1H, CH*H*O), 3.44 (dd, J = 4.1 Hz, 10.3 Hz, 1H, C*H*HO), 4.30 (ψ t, 1H, J = 4.1 Hz, 1H, H-C5), 6.24 (dd, J = 6.8, 9.5 Hz, 1H, CHH=C*H*), 7.23 bis 4.41 (m, 15H, ArH).

45. Herstellung von $[(1^{\circ},2^{\circ},3,4-\eta)-5-Trityloxymethyl-3-vinyl-2,5-dihydrofuran-2-ol]-tricarbonyleisen (49a)$

Unter Argonatmosphäre wurden bei -78°C zu einer Lösung von 332 mg 48a (0.636 mmol) in 20 ml absolutem Toluol 770 µl einer 1 M DIBAL-H-Lösung in Toluol (0.77 mmol) getropft. Die gelbe Lösung wurde für zweieinhalb Stunden bei dieser Temperatur gerührt. Anschließend wurde mit einigen Tropfen Aceton versetzt, im Scheidetrichter auf 0.5 M Weinsäurelösung gegossen und mit EtOAc extrahiert. Die organischen Phasen wurden mit ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Säulenchromatographie an Kieselgel mit CyHex/EtOAc (15:1) lieferte das

Produkt 49a in Form eines gelben Öles als Diastereomerengemisch (NMR) in einer Ausbeute von 235 mg (0.449 mmol, 71%). Dieses Gemisch wurde direkt für die nachfolgend beschriebene Transformation eingesetzt.

46. Herstellung von [1"",2"",3",4"- η -(5-Methoxy-4-vinyl-2,5-dihydrofuran-2-yl)-methanol]-tricarbonyleisen (50a)

Unter Argonatmosphäre wurde eine Lösung von 90 mg **49a** (0.305 mmol) in 15 ml absolutem MeOH mit 12 mg *p*-Toluolsulfonsäuremonohydrat (0.061 mmol) und 130 µl *o*-Ameisensäuretrimethylester (130 mg, 1.22 mmol) versetzt und für fünf Stunden bei Raumtemperatur gerührt. Anschließend wurde mit zwei Tropfen Pyridin versetzt und das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wurde in CyHex:EtOAc (3.5:1) aufgenommen und durch Kieselgel filtriert. Nach Entfernen des Lösungsmittels wurde das Produkt **50a** als gelber Feststoff (89 mg, 99%) erhalten.

1H-NMR (250 MHz, CDCl₃): δ = -0.01 (dd, J= 2.2, 8.8 Hz, 1H, C*H*H=CH), 1.68 (dd, J= 2.2, 6.6 Hz, 1H, CH*H*=CH), 1.73 (s, 1H, H-C4'), 2.83 (dd, J 2.5, 10.2 Hz, 1H, OH), 3.36 bis 3.59 (m, 4H, C*H*HO und CH₃O), 3.75 (dt, 2.6, 12.1 Hz, 1H, CH*H*O), 4.33 (ψt, 1H, J= 2.9, 8.1 Hz, 1H, H-C5'), 5.53 (s, 1H, H-C2'), 5.59 (dd, J= 6.6, 8.8 Hz, 1H, CHH=C*H*).

47. Hersetllung von [1"',2"',3,4- η -5-(Dimethyl-(1,1,2-trimethylpropyl)-silanyloxymethyl)-2-methoxy-3-vinyl-2,5-dihydrofuran]-tricarbonyleisen (51a)

Unter Argonatmosphäre wurden zu einer Lösung von 87 mg 50a (0.294 mmol) und 100 mg Imidazol (1.47 mmol) in 3 ml absolutem Dichlormethan 90 µl Thexyldimethylsilylchlorid (80 mg, 0.44 mmol) getropft. Die gelbe Lösung wurde über Nacht bei Raumtemperatur gerührt. Anschließend wurde mit Dichlormethan verdünnt, mit Wasser versetzt und eine weitere Stunde gerührt. Nach Phasentrennung wurde die wäßrige Phase zweimal mit Dichlormethan reextrahiert. Nach Trocknung der vereinigten organischen Phasen über Na₂SO₄ wurde das Produkt 51a durch Chromatogtaphie an Kieselgel mit CyHex:EtOAc (15:1) mit einer Ausbeute von 124 mg (0.283 mmol, 96%) als gelbes Öl erhalten.

1H-NMR (250 MHz, CDCl₃): δ = -0.08 (dd, J= 2.2, 8.8 Hz, 1H, CHH=CH), 0.08 und 0.09 (je s, 6H, Si(CH₃)₂), 0.81 (s, 6H, SiC(CH₃)₂), 0.82 (d, J= 6.8 Hz, 6H, CH(CH₃)₂), 1.57 (sept, J= 6.8 Hz, 1H, CH(CH₃)₂), 1.64 (dd, J= 2.2, 6.6 Hz, 1H, CHH=CH), 1.99 (s, 1H, H-C4), 3.44 (dd, J= 8.1 Hz, 9.7 Hz, 1H, CHHO), 3.74 (dd, 5.9, 9.7 Hz, 1H, CHHO), 4.09 (dd, 1H, J= 5.9, 8.1 Hz, 1H, H-C5), 5.52 (s, 1H, H-C2), 5.59 (dd, J= 6.6, 8.8 Hz, 1H, CHH=CH).

48. Herstellung von [4-Amino-1- $\{\eta^4$ -5-[dimethyl-(1,1,2-trimethylpropyl)-silanyloxymethyl]-3-vinyl-2,5-dihydrofuran-2-yl}-3,4-dihydro-1*H*-pyrimidin-2-on]-tricarbonyleisen (52a)

Unter Argonatmosphäre wurden zu einer Lösung von 117mg **51a** (0.267 mmol) und 275 mg 2,4-Bis-trimethylsiloxycytosin (1.07 mmol) in 6 ml trockenem Dichlormethan 290 μl Trimethylsilyltriflat (356 mg, 1.60 mmol) getropft. Die gelbe Lösung wurde für vier Stunden bei Raumtemperatur gerührt und anschließend zu 20 ml ges. NaHCO3-Lösung getropft. Nach Trennung der Phasen wurde die wäßrige Phase zweimal mit Dichlormethan extrahiert, die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen und über Na₂SO₄ getrocknet. Das Produkt (**52a**) wurde nach Säulenchromatographie an Kieselgel mit EtOAc/MeOH (30:1) in einer Ausbeute von 116 mg (0.224 mmol, 84%) als hellgelber Feststoff erhalten.

¹H-NMR (250 MHz, CDCl₃): δ = -0.16 (dd, J= 2.2, 8.9 Hz, 1H, CHH=CH), 0.08 und 0.09 (je s, 6H, Si(CH₃)₂), 0.81 (s, 6H, SiC(CH₃)₂), 0.82 (d, J= 6.8 Hz, 6H, CH(CH₃)₂), 1.57 (sept, J= 6.8 Hz, 1H, CH(CH₃)₂), 1.68 (dd, J= 2.2, 6.7 Hz, 1H, CHH=CH), 1.85 (s, 1H, H-C4'), 3.72 (dd, JAB = 14.1 Hz, J= 4.5 Hz, 1H, CHHO), 3.78 (dd, JAB = 14.1 Hz, J= 4.1 Hz, 1H, CHHO), 4.30

- 64 -

(ψ t, 1H, H-C5'), 5.73 (d, J = 7.4 Hz, 1H, H-C5), 6.06 (ψ t, 1H, CHH=H), 7.00 (s, 1H, H-C2'), 7.98 (d, J = 7.4 Hz, 1H, H-C6); **FT-IR** 3343, 3104, 2955, 2046, 1968, 1660, 1632, 1484, 1400, 1276, 1250, 1170, 1108, 1079, 1033, 830, 775, 730; **MS** (ESI, 70 eV): 540 (100) [M-Na]⁺, 518 (41) [M-H]⁺, 407 (76), 276 (39); **HR-MS** (ESI, 70 eV): berechnet für C₂₂H₃₁FeN₃O₆Si-H: 518.141; gefunden: 518.140.

Literatur:

- Y. A. Hannun (1997), Apoptosis and the dilemma of cancer therapy, Blood 89, 1845-1853.
- J. A. Hickman (1996), Apoptosis and chemotherapy resistance, Eur. J. Cancer 32A, 921-926.
- M. Raisova, M. Bektas, T. Wieder, P. T. Daniel, J. Ebene, C. E. Orfanos, C. C. Geilen (2000), Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release, FEBS Lett. 473, 27-32.
- G. M. Cohen (1997), Caspases: the executioners of apoptosis, Biochem. J. 326, 1-16.
- F. Eßmann, T. Wieder, A. Otto, E.-C. Müller, B. Dörken, P. T. Daniel (2000), The GDP dissociation inhibitor, D4-GDI (Rho-GDI 2), but not the homologous Rho-GDI 1, is cleaved by caspase-3 during drug-induced apoptosis, Biochem. J. 346, 777-783.
- E. Heßler, H.-G. Schmalz, G. Dürner (1994), Chiral Butadiene-Fe(CO)₃ Complexes for Organic Synthesis. Reactions of $(\eta^4$ -2-Alkoxy-4-vinyl-2,5-dihydrofuran)-Fe(CO)₃ Derivatives, Tetrahedron Lett. 35, 4547-4550.
- N. Rehnberg, G. Magnusson (1990), Chiral Aldehydes by Ring Contraction of Pento- and Hexapyranoside Epoxides, J. Org. Chem. 55, 5467 5476.
- T. Wieder, C. Perlitz, M. Wieprecht, R. T. C. Huang, C. C. Geilen, C. E. Orfanos (1995), Two new sphingomyelin analogues inhibit phosphatidylcholine biosynthesis by decreasing membranebound CTP: phosphocholine cytidylyltransferase levels in HaCaT cells, Biochem. J. 311, 873-879.
- T. Wieder, F. Eßmann, A. Prokop, K. Schmelz, K. Schulze-Osthoff, R. Beyaert, B. Dörken, P. T. Daniel (2001), Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3, Blood 97, 1378-1387.

PCT/EP02/03835

Figuren:

Figur 1:

Proapoptotische Wirkung der Nukleosidanaloga N76 und N69 in malignen lymphoblastischen Zellen. Die Präparation von N69 enthielt Verunreinigungen durch ein Isomer.

- 66 ~

Figur 2:

N76-induzierte Aktivierung der Caspase-3 in malignen lymphoblastischen Zellen.

Figur 3:

Proapoptotische Wirkung des Nukleosidanalogons N69 in primären Zellen von Patienten mit verschiedenen bösartigen Erkrankungen des blutbildenden Systems. Die Präparation von N69 enthielt Verunreinigungen durch ein Isomer.

Figur 4:

Proapoptotische Wirkung der Nukleosidanaloga N69 und N76 in primären Patientenzellen im Vergleich mit etablierten Zytostatika.

Figur 5:

Einfluß des komplexierten Eisens auf die antiproliferative und Zelltodeinleitende Wirkung von N69.

Figur 6:

Das carbozyklische Nukleosidanalogon JV-206-1 (Strukturformel **35**) induziert Zelltod in BJAB Zellen über den mitochondrialen Apoptosesignalweg.

Patentansprüche:

1. Arzneimittel, enthaltend mindestens eine Verbindung der Strukturformel **1a** oder **1b**:

$$Z \sim X \sim Y$$

$$R^1 \sim R^2$$

$$a \sim R^2$$

$$1b$$

mit

 $X = O, S, CH_2, NR,$ keine Bindung,

mit der Maßgabe, dass wenn X = O ist, die Verbindung der Formel 1a mit einem Metall-Ligandenkomplex assoziiert ist gemäß Formel 1'a;

Y = Adenin, Cytosin, Guanin, Uracil, Thymin, Bromuracil, Purine oder Pyrimidine sowie deren Derivate, Nucleobasen, Heterozyklen, Aminoalkyl, Aminoaryl oder sonstige zur Ausbildung von H-Brücken befähigte Reste;

Z = Alkyl, Fluoralkyl, Aryl, Fluoraryl, $-CH_2-OR'$, $-(CH_2)_nOR'$ mit R' = H, SiR_3 , Alkyl, Fluoralkyl, Aryl, Fluoraryl, Acyl und n = 0 bis 5;

a = keine Bindung, Einfachbindung, CH_2 , bei Strukturformel **1b** auch CH_2CH_2 ;

b= keine Bindung, Einfachbindung oder CH_2 ; wobei a und b so ausgewählt werden, dass die a und b umfassende Struktureinheit ein 1,3-Dien beinhaltet,

 R^1 = H, F, Alkyl, Fluoralkyl, Aryl, Fluoraryl, OR, -CO₂R, -SO₂OR, -CONR₂, R^2 = H, F, Alkyl, Fluoralkyl, Aryl, Fluoraryl, OR, -CO₂R, -SO₂OR, -CONR₂, R= H, Aryl, verzweigte und geradkettige Alkyl, insbesondere Methyl, Ethyl, Propyl, Thexyl, tert-Butyl

und/oder deren Salze.

WO 02/080923

2. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, dass es die Strukturformel 1'a oder 1'b

1'b

aufweist, wobei n eine ganze Zahl von 2 bis 4 ist,

M = Mn, Fe, Co, Ru und

L = CO, CN-R, CN, CR_2 , COR, Halogen, Cylopentadienyl (Cp) oder ein substituiertes Cp-Derivat ist,

und an ein M gleiche oder verschiedene L gebunden sein können.

3. Arzneimittel nach Anspruch 2, dadurch gekennzeichnet, dass die mindestens eine Verbindung der Strukturformel **1** a oder **1** die Strukturformel **2**, **3**, **4a**, **4b** oder **4c**

Z

Fe(CO)₃

$$(OC)_3$$
 R^1
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2

aufweist, wobei die Fe(CO)₃-Einheit η⁴-gebunden ist,

X = O, CH_2 oder keine Bindung ist

und Y, Z, R¹ und R² wie in Anspruch 1 ausgewählt werden.

4. Arzneimittel nach Anspruch 3, dadurch gekennzeichnet, dass die mindestens eine Verbindung der Strukturformel 2 die Strukturformel 5

aufweist, wobei $X = O, CH_2$,

Y = Adenin, Cytosin, Guanin, Uracil, Thymin, Bromuracil, Purine oder Pyrimidine sowie deren Derivate, Nucleobasen, Heterozyklen,

$$R^1 = -H_1 - CO_2R_1$$

 $R^2 = H$, SiR_3 , Alkyl, Fluoralkyl, Aryl, Fluoraryl, Acyl ist,

wobei R wie in Anspruch 1 ausgewählt wird.

5. Verbindungen der Strukturformel **5** nach Anspruch 4, dadurch gekennzeichnet, dass

$$R^2 = SiR_3$$
, $X = O$,

Y und R¹ wie in Anspruch 4 und R wie in Anspruch 1 ausgewählt sind, mit der Maßgabe, dass

wenn Y Bromuracil, Uracil oder Methyluracil ist, R^2 nicht Thexyl(CH_3) $_2Si$ ist.

6. Verbindungen nach Anspruch 5, ausgewählt aus der Gruppe bestehend aus:

- 71 -

7. Verbindung der Strukturformel 5 nach Anspruch 4, ausgewählt aus der Gruppe bestehend aus:

WO 02/080923

8. Verwendung von Verbindungen nach einem der Ansprüche 1 bis 7 und/oder Verbindungen der Strukturformel **1a**

wobei

WO 02/080923

 $X = O, S, CH_2, NR$ oder keine Bindung ist und

Y, Z, a, b, R¹ und R² wie in Anspruch 1 ausgewählt werden,

zur Herstellung eines Arzneimittels zur Behandlung maligner Erkrankungen des Knochenmarks oder anderer blutbildender Organe, solider Tumoren, epithelialer Tumoren, gutartiger oder semimaligner schnell proliferierender Tumore oder Hauterkrankungen, insbesondere Psoriasis vulgaris, Keloide und Basaliome, Lymphome, insbesonder Hodgkin- und Non-Hodgkin-Lymphome, entzündlicher, chronisch entzündlicher, bakterieller und autoimmuner Erkrankungen, zur antibakteriellen, antimykotischen, anti-Protozoen, anti-Plasmodien anti-helminthischen oder immunsuppressiven Therapie und/oder zur Auslösung der Apoptose.

9. Verfahren zur Synthese von Verbindungen nach Anspruch 5, 6 und/oder Anspruch 7, dadurch gekennzeichnet, dass es den Reaktionsschritt einer diaastereoselektiven, Eisen-unterstützten nucleophilen vorzugsweise unter Verwendung silylierter Nucleobasen in Gegenwart einer Lewissäure umfaßt, und dass bei diesem Reaktionsschritt Ausgangssubstanz, die an der wie in Strukturformel 5 lokalisierten Y-Position eine veretherte oder veresterte Hydroxygruppe aufweist, umgesetzt wird, so dass an Stelle dieser Hydroxygruppe eine Nucleobase eingeführt wird.

B) Patientenzellen (Kinder mit ALL)

Fig.1

WO 02/080923 PCT/EP02/03835

-2/6-

K Ke 25 50 100 $/\mu M$

Procaspase-3 —

prozessierte ___ Caspase-3

Fig.2

PCT/EP02/03835

Fig.3

Fig.4

Fig.5

Fig.6
ERSATZBLATT (REGEL 26)

International Application No
PCT/EP 02/03835

A. CLASSI IPC 7	FICATION OF SUBJECT MATTER A61K31/506 A61P17/00 A61P17/0 A61P33/00 A61K31/295	06 A61P31/12	A61P35/00		
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC			
B. FIELDS	SEARCHED				
Minimum do IPC 7	ocumentation searched (classification system followed by classification $A61K$	ion symbols)			
	llon searched other than minimum documentation to the extent that s				
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search te	rms used)		
CHEM A	BS Data, WPI Data, MEDLINE, BIOSIS,	EMBASE, EPO-Inter	nal		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the rel	levant passages	Relevant to claim No.		
X	HOSSAIN, N. ET AL: "Synthesis of 3'-spiro-isoxazolidine derivative thymidine and their conversions to 2',3'-dideoxy-2',3'-didehydro-3'-substituted nucleosides by radical promoted fragmentation" TETRAHEDRON (1993), 49(44), 10133, 1993, XP001041896 abstract Schema 1-3 page 10133, paragraph 1	es of to -C- al	1		
X Furth	ner documents are listed in the continuation of box C.	Patent family members a	are listed in annex.		
° Special ca	tegories of cited documents :	*T* later document published after	r the international filing date		
	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in cor cited to understand the princ	nflict with the application but		
"E" earlier o	document but published on or after the international	invention "X" document of particular relevan			
filing d "L" docume which	ate int which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel	or cannot be considered to en the document is taken alone		
citation "O" docume	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to invo document is combined with o	olve an inventive step when the		
"P" docume	other means ments, such combination being obvious to a person skilled in the art.				
	later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report				
3(0 August 2002	05/09/2002			
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer			
	NL – 2280 HV Pijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	A. Jakobs			

International Application No
PCT/EP 02/03835

PCT/EP 02/03835				
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	HARAGUCHI, KAZUHIRO ET AL: "Uracil and adenine nucleosides having a 2',3'-bromovinyl structure: highly versatile synthons for the synthesis of 2'-C- and 3'-C-branched 2',3'-unsaturated derivatives" TETRAHEDRON (1993), 49(7), 1371-90, XP001041725 abstract page 1376, paragraphs 3,4; table 2	1		
X	HARAGUCHI, KAZUHIRO ET AL: "Preparation and reactions of 2'- and 3'-vinyl bromides of uracil nucleosides: versatile synthons for anti-HIV agents" TETRAHEDRON LETT. (1991), 32(28), 3391-4, XP001041740 the whole document	1		
X	DATABASE WPI Section Ch, Week 199217 Derwent Publications Ltd., London, GB; Class B03, AN 1992-136754 XP002185460 & JP 04 077485 A (YAMASA SHOYU KK), 11 March 1992 (1992-03-11) abstract			

International application No.
PCT/EP 02/03835

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. x	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: See supplemental sheet FURTHER INFORMATION PCT/ISA/210				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

FURTHER INFORMATION PCT/ISA/210

Continuation of box 1.2

Present patent claims 1-4, 8 relate to a disproportionately large number of possible compounds of which only a small portion are supported in the description according to the terms of Article 6 PCT and can be considered disclosed according to the terms of Article 5 PCT. In the present case, the patent claims lack the appropriate support and the patent application lacks the required disclosure to such an extent that a meaningful search encompassing the entire scope of protection sought seems impossible. For this reason, the search was restricted to those parts of the claims that seemed to be supported and disclosed according to the above mentioned terms, i.e. those parts that relate to the compounds of claims 5-7, 9 and their therapeutical uses.

Note: compounds 43a, 43b, 43c and 43d (claim 7) are not covered by the structural formula 5 of claim 4 (Fe(CO)3) not contained), however, a corresponding search was carried out.

The applicant's attention is drawn to the fact that claims, or parts of claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). EPO policy, when acting as an International Preliminary Examining Authority, is normally not to carry out a preliminary examination on matter which has not been searched. This is the case, irrespective of whether or not the claims are amended following receipt of the search report (Article 19 PCT) or during any Chapter II procedure whereby the applicant provides new claims.

Information on patent family members

International Application No
PCT/EP 02/03835

Pa cited	atent document I in search report	Publication date	Patent family member(s)	Publication date
JP	4077485 A	11-03-1992	NONE	
				:
				ļ

Internationales Aktenzeichen
PCT/EP 02/03835

		101/21	- 			
a. KLASSI IPK 7	Fizierung des anmeldungsgegenstandes A61K31/506 A61P17/00 A61P17/0 A61P33/00 A61K31/295	06 A61P31/12 A	A61P35/00			
Nach der Int	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	ssifikation und der IPK				
B. RECHE	RCHIERTE GEBIETE					
Recherchier IPK 7	Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)					
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	oweit diese unter die recherchierten G	Gebiete fallen			
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	lame der Datenbank und evtl. verwe	ndete Suchbegriffe)			
CHEM A	BS Data, WPI Data, MEDLINE, BIOSIS,	EMBASE, EPO-Interna	aT			
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN					
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Telle	Betr. Anspruch Nr.			
X	HOSSAIN, N. ET AL: "Synthesis of 3'-spiro-isoxazolidine derivative thymidine and their conversions to 2',3'-dideoxy-2',3'-didehydro-3'-substituted nucleosides by radical promoted fragmentation" TETRAHEDRON (1993), 49(44), 10133, 1993, XP001041896 Zusammenfassung Schema 1-3 Seite 10133, Absatz 1	es of co -C- al	1			
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfamilie				
"A" Veröffer aber ni "E" älteres [S Anmele "L" Veröffer schein andere soll od ausgef "O" Veröffer eine Be "P" Veröffer dem be	ntlichung, die den allgemeinen Stand der Technik definiert, licht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erenzu lassen, oder durch die das Veröffentlichungsdatum einer im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie übrt) ntlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht nitlichung, die vor dem internationalen Anmeidedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	 "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung die Mitglied derselben Patentfamilie ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist 				
	Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 30. August 2002 05/09/2002					
маніе или Р	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter A. Jakobs				

Internationales Aktenzeichen
PCT/EP 02/03835

		PCI/EF U	-7 03833
	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
х	HARAGUCHI, KAZUHIRO ET AL: "Uracil and adenine nucleosides having a 2',3'-bromovinyl structure: highly versatile synthons for the synthesis of 2'-C- and 3'-C-branched 2',3'-unsaturated derivatives" TETRAHEDRON (1993), 49(7), 1371-90, XP001041725 Zusammenfassung Seite 1376, Absätze 3,4; Tabelle 2		1
X	HARAGUCHI, KAZUHIRO ET AL: "Preparation and reactions of 2'- and 3'-vinyl bromides of uracil nucleosides: versatile synthons for anti-HIV agents" TETRAHEDRON LETT. (1991), 32(28), 3391-4, XP001041740 das ganze Dokument		1
X	DATABASE WPI Section Ch, Week 199217 Derwent Publications Ltd., London, GB; Class B03, AN 1992-136754 XP002185460 & JP 04 077485 A (YAMASA SHOYU KK), 11. März 1992 (1992-03-11) Zusammenfassung		1

Internationales Aktenzeichen PCT/EP 02/03835

Feld I Be	emerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Art	tikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ar	nsprüche Nr. eil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
we da	nsprüche Nr. eil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, aß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich i 1ehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ar	nsprüche Nr. eil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regei 6.4 a) abgefaßt sind.
Feld II Be	emerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internat	tionale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
1. Da	a der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ternationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da	a für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine ısätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
into	a der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ternationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die nsprüche Nr.
4. De che	er Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher- nenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- Bit:
Bemerkung	gen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Die geltenden Patentansprüche 1-4,8 beziehen sich auf eine unverhältnismäßig große Zahl möglicher Verbindungen, von denen sich nur ein kleiner Anteil im Sinne von Art. 6 PCT auf die Beschreibung stützen und/oder als im Sinne von Art.5 PCT in der Patentanmeldung offenbart gelten kann. Im vorliegenden Fall fehlt den Patentansprüchen die entsprechende Stütze und fehlt der Patentanmeldung die nötige Offenbarung in einem solchen Maße, daß eine sinnvolle Recherche über den gesamten erstrebten Schutzbereich unmöglich erscheint. Daher wurde die Recherche auf die Teile der Patentansprüche gerichtet, welche im o.a. Sinne als gestützt und offenbart erscheinen, nämlich die Teile betreffend, die Verbindungen der Ansprüche 5-7,9 sowie deren therapeutische Anwendungen.

Bemerkung: Verbindungen 43a,43b, 43c und 43d (Anspruch 7) fallen nicht unter die Strukturformel 5 nach Anspruch 4 (Fe(CO)3) abwesend), wurden aber recherchiert.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 02/03835

lm R angefüh	echerchenbericht rtes Patentdokume	ent	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
JP	4077485	Α	11-03-1992	KEINE	
			*1		