

Comment appréhender la problématique des biais avec les LLMs

Session pratique : zoom sur les biais géographiques

Aurélie Névéol, Mathieu Roche, Rémy Decoupes

LISN - Paris
UMR TETIS - Montpellier

Introduction

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

(a) BERT

(b) ChatGPT (GPT-3.5-turbo-0301)

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

```
Does the tokenizer has to subtokens those cities:

Taipei,
Tokyo,
Seoul,
Ouagadougou,
Montpellier,
```

https://tiktokenizer.vercel.app/

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

- 1. Distribution de la qualité des connaissances géographiques
- 2. Évaluation de la quantité d'information géographiques dans les corpus d'entraînement
- 3. Corrélation entre distance géographique et distance sémantique
- 4. Mesure de la distorsion des distances géographiques

3 Types de modèles de langues:

1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

3 Types de modèles de langues:

1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

Output Probabilities
Softmax

The Decoder

Add & Norm
Feed Forward

Add & Norm
Multi-Head Attention

The Decoder

Add & Norm
Multi-Head Attention

Add & Norm
Multi-Head Attention

Positional Encoding

Embedding

Inputs

Attention is all you need - 2017

- 3 Types de modèles de langues:
 - 1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

muoninion is an you nooun ounning

O. Impropriate points

Attention is all you need - 2017

- 3 Types de modèles de langues:
 - 1. BERT-like (encoder ou SLM)

2. LLMs en inference locale

3. LLMs via une API distante

Open AI

Pré-requis

Pré-requis : clés API

Créer vos comptes pour obtenir vos clé API

Coller vos clés dans un fichier temporaire

Pré-requis : Licences d'utilisation pour certains LLMs

Accès aux notebooks

https://github.com/

tetis-nlp/geographical-biases-in-llms

https://github.com/

tetis-nlp/geographical-biases-in-llms

- 1. Spatial disparities in geographical knowledge. Open in Colab
- 2. Spatial information coverage in training datasets. Open in Colab
- 3. Correlation between geographic distance and semantic distance. Open in Colab
- 4. Anomaly between geographical distance and semantic distance. Open in Colab

Indicateur 1

x}

₩


```
[ ] # Installation
  !pip install -U bitsandbytes
  !pip install transformers==4.37.2
  !pip install -U git+https://github.com/huggingface/peft.git
  !pip install -U git+https://github.com/huggingface/accelerate.git
  !pip install openai==0.28
```


Attendre l'installation de l'environnement d'exécution

Oceania

3.703704

tetis-nlp/geographical-biases-in-llms

Europe

Oceania

81.250000

37.037037

Europe

Oceania

89.583333

77.77778

RoBERTa Mistral GPT-3.5

Indicateur 2

```
Taipei,
Tokyo,
Seoul,
Ouagadougou,
Montpellier,
```


x}

On peut rester sur un CPU!

Pas besoin de changer d'environnement

Region	
	50.000000
Africa	6.779661
Americas	18.750000
Asia	37.500000
Europe	52.083333
Oceania	11.111111

50.000000
0.000000
0.000000
2.083333
4.166667
0.000000

Region	
	0.000000
Africa	1.694915
Americas	2.083333
Asia	2.083333
Europe	8.333333
Oceania	0.000000

RoBERTa

Mistral

GPT-3.5

Figure 2: The prevalence of geospatial data in select CC releases, estimated within $\pm 0.5\%$ at 95% confidence

Référence: Pre-print: Quantifying Geospatial in the **Common Crawl** Corpus - Ilyankou et al 2024. http://arxiv.org/abs/2406.04952

Indicateur 3

Waldo Tobler

Waldo Tobler en 2007.

Waldo Tobler, né en 1930 à Portland ¹ et mort le 20 février 2018, est un cartographe et géographe <u>américano-suisse</u> [réf. nécessaire]. Il est considéré comme un pionnier de la cartographie assistée par ordinateur et a développé plusieurs modèles de cartogramme ².

Il est aussi l'auteur de la « première loi de la géographie » selon laquelle « Tout interagit avec tout, mais deux objets proches ont plus de chances de le faire que deux objets éloignés ³. »

Il est l'inventeur de la projection hyperelliptique de Tobler⁴.

Référence: Tobler - 1970 - A Computer Movie Simulating Urban Growth in the Detroit Region

x}

Pour la section 3.2 : Ce notebook a besoin d'une GPU d'au moins 28 GB de RAM (GPU payante) :

• A100 (40BG)

Les sections 3.1 et 3.3 n'ont pas besoin d'environnement payant


```
Distance between Taipei and Seoul: 1480.973652900838 km
Distance between Taipei and Hanoi: 1669.0557310016254 km
Distance between Taipei and Tokyo: 2104.49710309371 km
Distance between Taipei and Singapore: 3240.6438418256876 km
Distance between Taipei and London: 9803.291481023301 km
```

```
Similarity between Taipei and Seoul: [[0.94581884]] [[0.6629474]] [[0.83839009]]
Similarity between Taipei and Hanoi: [[0.94002306]] [[0.61929286]] [[0.84440932]]
Similarity between Taipei and Singapore: [[0.9552131]] [[0.6553747]] [[0.86354661]]
Similarity between Taipei and London: [[0.9342403]] : [[0.59408295]] [[0.80025356]]
```

RoBERTa

MISTRAL

GPT-3.5

=> Tokyo trop proche sémantiquement de Taipei

BERT:

R2: 0.01

GPT-3.5: R2:0.04

Indicateur 4

0.450

0 0.475 mean semantique 0.500

0.525

0.550

0.375

0.425

0.400

x}

On peut rester sur un CPU!

Pas besoin de changer d'environnement

Aller plus loin

- 1. Prédire le pays en fonction de sa capitale
 - a. Ajouter d'indicateurs (Population, Revenue / habitant / nombre d'hopitaux / ...)
 - b. Améliorer les prompts pour améliorer la reproductibilité
- Vocabulaire :
 - a. Comment évaluer indirectement la proportion d'info geo dans les corpus d'entraînement
- 3. Correlation distance Sémantique et Géographique
 - a. Clusterisation des pays en fonction de leurs proximité
- 4. Distorsion
 - Data vizualisation : Quelles villes sont au centre de l'espace sémantique

MERCI!

Session pratique : zoom sur les biais géographiques

Aurélie Névéol, Mathieu Roche, Rémy Decoupes

LISN - Paris

UMR TETIS - Montpellier