OVERVIEW

- Introduction
- Statistical Parsing Models
 - 1. History-Based Models
 - 2. Head-Driven Models
- Results
- Future Work
- Conclusions

Parsing as a Machine Learning Problem

- Training data (the Penn WSJ Treebank (Marcus et al 93))
- Learn a model from training data
- Evaluate the model's accuracy on test data
- A standard evaluation:

Train on 40,000 sentences from Wall Street Journal

Test on 2,300 sentences

A KEY PROBLEM: EXAMPLES OF AMBIGUITY

Prepositional phrase attachment

I (saw the man) with the telescope I saw (the man with the telescope)

Part-of-speech ambiguity

 $V \Rightarrow saw$ $N \Rightarrow saw$ (used to cut wood...)

Coordination

a program to promote safety in ((trucks) and minivans)

a program to promote ((safety in trucks) and minivans) ((a program to promote safety in trucks) and minivans)

STILL MORE PARSES...

a program to promote safety in trucks and minivans

Need a rule NP → NP NP

Suddenly Reagan the actor became Reagan the president

- a program to promote is an NP
- safety in trucks and minivans has two readings as an NP

TWO QUESTIONS

1. What objects to count?

 $Count(NP \rightarrow NP NP), Count(program is a noun), \\ Count(promote=transitive), Count(trucks, vans coordinated)$

2. How to combine the counts to give a *Score* for each parse?

a program to promote safety ... ⇒

PROBABILISTIC PARSING

- S = a sentence.
- T = a parse tree for the sentence.
- A statistical model defines $P(T \mid S)$.
- The best parse is then

$$T_{best} = \arg\max_{T} P(T \mid S)$$

$$= \arg\max_{T} \frac{P(T,S)}{P(S)}$$

$$= \arg\max_{T} P(T,S)$$

Two Problems

- 1. How to define the function which maps $(T, S) \rightarrow [0, 1]$.
 - What to count?
 - How to combine the counts?

2. Given a sentence S, how to find the tree T_{best} which maximizes P(T,S)?

MOTIVATION FOR LEXICALIZATION

- PCFGs give 72% accuracy: Poor use of lexical information
- Prepositional Phrase Attachment (Hindle and Rooth 91, Ratnaparkhi et al 94, Brill and Resnik 94, Collins and Brooks 95)

Binary Classification:

"saw, man, with, telescope" > Noun or Verb-attach

Method	Accuracy
Always noun attachment	59%
$P(Noun-attach \mid saw,man,with,telescope)$	84.1%

A GENERAL APPROACH: HISTORY-BASED MODELS (BLACK ET. AL 92)

- 1) Representation Choose non-terminal labels, parts-of-speech etc.
- **2) Decomposition** Define a one-to-one mapping between parse trees (T, S) and decision sequences $\langle d_1, d_2, ..., d_n \rangle$

$$P(T,S) = \prod_{i=1...n} P(d_i|d_1...d_{i-1})$$

3) Independence Assumptions Define a function ϕ

$$P(T,S) = \prod_{i=1...n} P(d_i | \phi(d_1...d_{i-1}))$$

A HEAD-DRIVEN APPROACH: REPRESENTATION

Lexicalized trees

A HEAD-DRIVEN APPROACH

Decomposition: A head-centered, top-down derivation

Independence Assumptions:

- Each parameter is conditioned on a lexical item
- Each word has an associated sub-derivation, and an associated set of probabilities:
 - Head-projection
 - Subcategorization
 - Placement of complements/adjuncts
 - Lexical dependencies

THE FIRST STEP OF THE DERIVATION

 $START \Rightarrow S(told)$

P(S(told)|START)

THE SUB-DERIVATION ASSOCIATED WITH told

SUB-DERIVATIONS FOR THE OTHER WORDS

$$NP-C(they) \Rightarrow NP-C(they)$$
 $PRP(they)$ $they$

HEAD-PROJECTION PARAMETERS

$$S(told) \Rightarrow S(told) \Rightarrow S(told)$$
 $VP(told)$
 $VP(told)$
 $VBD(told)$
 $VBD(told)$

$$P(VP | S, told) \times P(VBD | VP, told)$$

SUBCATEGORIZATION PARAMETERS

$$P(\{\text{NP-C}\}|\text{S,VP,told,LEFT}) \times P(\{\}|\text{S,VP,told,RIGHT}) \times \\ P(\{\}|\text{VP,VBD,told,LEFT}) \times P(\{\text{NP-C,SBAR-C}\}|\text{VP,VBD,told,RIGHT}) \\$$

PLACEMENT OF COMPLEMENTS AND ADJUNCTS

PLACEMENT OF COMPLEMENTS AND ADJUNCTS

 $\Downarrow P(NP-C|VP, VBD, \{NP-C,SBAR-C\}, told, RIGHT)$

 $\Downarrow P(NP|VP, VBD, \{SBAR-C\}, told, RIGHT)$

$\Downarrow P(SBAR-C|VP, VBD, \{SBAR-C\}, told, RIGHT)$

$\Downarrow P(\text{STOP}|\text{VP, VBD, }\{\}, \text{ told, RIGHT})$

DEPENDENCY PARAMETERS

 $P(\textcolor{red}{\mathsf{IBM}}| \textsf{told,S,VP,NP-C,left}) \times P(\textcolor{red}{\mathsf{him}}| \textcolor{red}{\mathsf{told,VP,VBD,NP-C,right}}) \times \\$

 $P(\text{yesterday}|\text{told,VP,VBD,NP,right}) \times P(\text{that}|\text{told,VP,VBD,SBAR-C,right})$

ESTIMATION

Maximum-Likelihood estimates:

$$P(\{\mathsf{NP-C,SBAR-C}\}|\mathsf{VP,VBD,told,RIGHT}) = \\ \frac{\mathsf{Count}(\{\mathsf{NP-C,SBAR-C}\},\,\mathsf{VP,VBD,told,RIGHT})}{\mathsf{Count}(\mathsf{VP,VBD,told,RIGHT})}$$

• Smoothing:

$$P(\{\text{NP-C,SBAR-C}\}|\text{VP,VBD,told,RIGHT}) = \\ \lambda \times \frac{\text{Count}(\{\text{NP-C,SBAR-C}\}, \text{VP,VBD,told,RIGHT})}{\text{Count}(\text{VP,VBD,told,RIGHT})} + \\ (1 - \lambda) \times \frac{\text{Count}(\{\text{NP-C,SBAR-C}\}, \text{VP,VBD,RIGHT})}{\text{Count}(\text{VP,VBD,RIGHT})}$$

P(him|told,VP,VBD,NP-C/PRP) =

$$\lambda_{1} \times \frac{\text{Count}(\text{him, told,VP,VBD,NP-C/PRP,RIGHT})}{\text{Count}(\text{told,VP,VBD,NP-C/PRP,RIGHT})} + \\ \lambda_{2} \times \frac{\text{Count}(\text{him, VP,VBD,NP-C/PRP,RIGHT})}{\text{Count}(\text{VP,VBD,NP-C/PRP,RIGHT})} + \\ \lambda_{3} \times \frac{\text{Count}(\text{him, PRP})}{\text{Count}(\text{PRP})}$$

CLOSE-ATTACHMENT PREFERENCES: ADJACENCY

CLOSE-ATTACHMENT PREFERENCES: VERB-CROSSING

PLACEMENT OF COMPLEMENTS AND ADJUNCTS: ADJACENCY

 $P(PP|NP, N, \{\}, dog, adjacency=TRUE)$

 $P(PP|NP, N, \{\}, dog,adjacency=FALSE)$

Close-attachment means

$$P(PP|NP, N, \{\}, dog, adjacency=TRUE) > P(PP|NP, N, \{\}, dog, adjacency=FALSE)$$

PLACEMENT OF COMPLEMENTS AND ADJUNCTS: VERB-CROSSING

IBM told him that they bought Lotus yesterday

 $P(STOP|VP, VBD, \{\}, told, verb-crossing=TRUE)$

Close-attachment means

$$P(\mathsf{STOP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{verb\text{-}crossing=}\mathsf{TRUE}) > P(\mathsf{NP}|\mathsf{VP},\mathsf{VBD},\{\},\mathsf{told},\mathsf{verb\text{-}crossing=}\mathsf{TRUE})$$

WH-MOVEMENT: A GPSG-STYLE TREATMENT

RESULTS

- Results on the Penn WSJ treebank
- Contribution of subcategorization, adjacency, verb-crossing
- Accuracy on different types of dependencies

RESULTS ON SECTION 23 OF THE PENN WSJ TREEBANK

MODEL	LR	LP
Magerman 95	84.0%	
Goodman 97	84.8%	
Collins 96	85.3%	85.7%
Charniak 97	86.7%	86.6%
Ratnaparkhi 97	86.3%	
Head-Driven Models	88.1%	88.3%

Also: Eisner 96 gives same dependency accuracy as Collins 96

LR = Labeled Recall

LP = Labeled Precision

CONTRIBUTION OF DIFFERENT FEATURES

	LR	LP	
None	75.0%	76.5%	
Subcat	85.1%	86.8%	+10.2
Subcat + Adjacency	87.7%	87.8%	+1.8
Subcat + Adjacency + Verb	88.7%	89.0%	+1.1

	LR	LP	
None	75.0%	76.5%	
Adjacency	86.6%	86.7%	+10.9
Adjacency + Verb	87.8%	88.2%	+1.4
Adjacency + Verb + Subcat	88.7%	89.0%	+0.9

(Section 0 of the Penn WSJ Treebank)

SUBCATEGORIZATION AND ADJACENCY OVERLAP

Subcategorization and adjacency both fix this problem

EVALUATION OF DEPENDENCIES

• A sentence with n words has n dependencies

Head	Modifier	label	direction	description
told	IBM	S VP NP-C	Left	Subject
told	him	VP TAG NP-C	Right	Object
told	yesterday	VP TAG NP	Right	Adjunct
told	that	VP TAG SBAR-C	Right	SBAR complement

• Overall: 88.3% accuracy on section 0 (91% ignoring labels)

Туре	Sub-type	Description	Count	Recall	Precision
Complement to a verb	a verb S VP NP-C L		3248	95.75	95.11
	VP TAG NP-C R	Object	2095	92.41	92.15
6495 = 16.3% of all cases	VP TAG SBAR-C R		558	94.27	93.93
	TOTAL		6495	93.76	92.96
Other complements	PP TAG NP-C R		4335	94.72	94.04
	VP TAG VP-C R		1941	97.42	97.98
7473 = 18.8% of all cases	SBAR TAG S-C R		477	94.55	92.04
	TOTAL		7473	94.47	94.12
Mod'n within BaseNPs	NPB TAG TAG L		11786	94.60	93.46
	NPB TAG NPB L		358	97.49	92.82
12742 = 29.6% of all cases	NPB TAG TAG R		189	74.07	75.68
	TOTAL		12742	93.20	92.59
Sentential head	TOP TOP S R		1757	96.36	96.85
	TOP TOP SINV R		89	96.63	94.51
1917 = 4.8% of all cases	TOP TOP NP R		32	78.12	60.98
	TOP TOP SG R		15	40.00	33.33
	TOTAL		1917	94.99	94.99

Туре	Sub-type	Description	Count	Recall	Precision
PP modification	NP NPB PP R		2112	84.99	84.35
	VP TAG PP R		1801	83.62	81.14
4473 = 11.2% of all cases	S VP PP L		287	90.24	81.96
	TOTAL		4473	82.29	81.51
Adjunct to a verb	VP TAG ADVP R		367	74.93	78.57
	VP TAG TAG R		349	90.54	93.49
2242 = 5.6% of all cases	VP TAG ADJP R		259	83.78	80.37
	TOTAL		2242	75.11	78.44
Mod'n to NPs	NP NPB NP R	Appositive	495	74.34	75.72
	NP NPB SBAR R	Relative clause	476	79.20	79.54
1418 = 3.6% of all cases	NP NPB VP R	Reduced relative	205	77.56	72.60
	TOTAL		1418	73.20	75.49
Coordination	NP NP NP R		289	55.71	53.31
	VP VP VP R		174	74.14	72.47
763 = 1.9% of all cases	SSSR		129	72.09	69.92
	TOTAL		763	61.47	62.20

Some Thoughts about Related Work

- SPATTER: the importance of the choice of decomposition
- Charniak 97: the importance of breaking down rules

SPATTER (MAGERMAN 95, JELINEK ET. AL 94)

Representation Context-free trees with head-words

Decomposition d_i is the i'th decision in a left-to-right, bottom-up parse of the tree

$$P(T|S) = \prod_{i=1...n} P(d_i|d_1...d_{i-1}, S)$$

Independence Assumptions $\phi(d_1...d_{i-1})$ is found automatically using decision trees

PROBLEMS WITH SPATTER

VB NP P NP

VB P NP P NP

VB ADVP P NP P NP

PROBLEMS WITH SPATTER

A CONTRAST WITH CHARNIAK 97

Generation of a rule is broken down into smaller steps

- The model can generalize to produce rules in test data that have not been seen in training
- Charniak 97: entire rule is expanded in one step

THE PENN TREEBANK HAS MANY RULES

• 17.1% of sentences in test data have a rule not seen in training

Chomsky Adjunction	Penn Treebank
$VP \rightarrow V NP-C$	$VP \rightarrow V NP-C$
$VP \rightarrow VP PP$	$VP o V \; NP\text{-}C \; PP \ VP o V \; NP\text{-}C \; PP \$
	$VP \to V \; NP\text{-}C \; PP \; PP$
	$VP \to V \; NP\text{-}C \; PP \; PP \; PP \;$

ullet With good motivation: $VP \to NP$ -C NP SBAR-C

THE IMPACT OF COVERAGE ON ACCURACY

MODEL	LR	LP	CBs	0 CBs	≤ 2 CBs
					85.6
Full model (restricted)	87.9	87.0	1.19	62.5	82.4

FUTURE WORK: IMPROVING ACCURACY

- Improving accuracy:
 - Increased Context/Improved Estimation
 - Unsupervised Learning
- Deeper Analysis:
 - Non-constituent coordination, wh-movement of phrases other than NPs, PRO-control, tough raising etc. etc.
 - Mapping to theta roles
 - General information extraction from parse trees

FUTURE WORK: OTHER LANGUAGES

- Old/Middle English
- Czech. 1998 Johns Hopkins Summer Workshop:
 - -82% dependency accuracy
 - Major problem is inflection. Need parameters

P(modifier tag|head tag)

P(word form|word stem, tag)

SUMMARY

- What to count? Lexically conditioned parameters:
 - Head-projection
 - Subcategorization
 - Placement of complements/adjuncts
 - Dependencies
 - Close-attachment/Wh-movement
- How to combine the counts? History-based Approach:
 - Representation = Lexicalized trees
 - Decomposition = head-centered, top-down derivation

• Results:

- Over 88% constituent accuracy
- Over 90% accuracy on dependencies

A FINAL POINT

Prior knowledge is unavoidable:

- History-based models generalize practically all parsing models
- The choice of decomposition is crucial, implies a substantial bias
- Prior linguistic knowledge is embedded in the choice of decomposition
- Decomposition should be motivated by concerns about locality

The learning component shouldn't be underestimated:

- Volume of information: 780,000 dependency events (390,000 distinct dependency types), over 9,000,000 dependency counts
- Blends many different knowledge sources into a consistent model (subcategorization, dependencies, close-attachment etc.)
- Balances fine-grained lexical statistics against coarser statistics (backed-off estimation)