

Wie beurteile ich die Qualität diagnostischer Tests?

Arnold von Eckardstein, Institut für Klinische Chemie, Unispital Zürich

Kriterien für die Beurteilung der klinischen Tauglichkeit von Biomarkern

1) Kann der Biomarker gemessen werden?

- a) Richtige und präzise Analyseverfahren
- b) bekannte und beherrschbare Präanalytik
- c) zugängliche Assays
- d) Hochdurchsatzfähig und kurze turn-around Zeit
- e) relativ kostengünstig

2) Bringt der Biomarker neue Information?

- a) Starke und konsistente diagnostische oder prognostische Assoziation zwischen dem Biomarker und der Krankheit in multiplen Studien
- b) Information ergänzt oder verbessert Information bisheriger Tests
- c) Entscheidungsgrenzen in >1 Studie evaluiert
- d) Evaluation auch in zufälligen Populationen

3) Hilft der Biomarker beim Management des Patienten?

- a) Überlegenheit gegenüber vorhandenen Tests, und/oder
- b) Assoziierte Krankheit bzw. Risiko ist therapeutisch beeinflussbar, und/oder
- c) Orientierung am Biomarker verbessert Patientenversorgung

Kriterien für die Beurteilung der klinischen Tauglichkeit von Biomarkern

1) Kann der Biomarker gemessen werden?

- a) Richtige und präzise Analyseverfahren
- b) bekannte und beherrschbare Präanalytik
- c) zugängliche Assays
- d) Hochdurchsatzfähig und kurze turn-around Zeit
- e) relativ kostengünstig

Heutige Vorlesung Kurs Klinische Chemie beides

2) Bringt der Biomarker neue Information?

- a) Starke und konsistente diagnostische oder prognostische Assoziation zwischen dem Biomarker und der Krankheit in multiplen Studien
- b) Information ergänzt oder verbessert Information bisheriger Tests
- c) Entscheidungsgrenzen in >1 Studie evaluiert
- d) Evaluation auch in zufälligen Populationen

3) Hilft der Biomarker beim Management des Patienten?

- a) Überlegenheit gegenüber vorhandenen Tests, und/oder
- b) Assoziierte Krankheit bzw. Risiko ist therapeutisch beeinflussbar, und/oder
- c) Orientierung am Biomarker verbessert Patientenversorgung

Wie beurteile ich die Qualität diagnostischer Tests? Lehr/Lernziele

Kennen der Beurteilungskriterien / Kenngrössen diagnostischer Tests und ihrer klinischen Implikationen:

- analytische Qualität:
 - Präzision und ihre Implikationen für Messgrenzen, minimale und kritische Differenzen
 - Richtigkeit und ihre Implikationen für die Methodenabhängigkeit von Messergebnissen und Grenzwerten

diagnostische Qualität:

- Spezifität/Sensivität, receiver operator characteristic (ROC) Kurven
- Positive und negative Likelihood-Ratios
- Positive und negative pr\u00e4diktive Werte und ihre Abh\u00e4ngigkeiten von Pr\u00e4valenz/Pr\u00e4-Testwahrscheinlichkeit einer Krankheit

Arnold von Eckardstein, Institut für Klinische Chemie USZ

Fehlerarten im Labor

Laboranalysen sind anfällig für

Verschiedene Arten von Messabweichungen (Fehler)

Zufällige Messabweichungen

- Resultate abwechselnd leicht zu hoch und leicht zu tief
- Summe aller Fehler, die bei einer Analyse unvermeidlich auftreten
- daher: nicht zu vermeiden, aber möglichst klein zu halten
- Mass: Unpräzision ("Präzision")

Systematische Messabweichungen

- Resultate immer zu hoch oder zu tief: "bias"
- Fehler bei Kalibration, verfallene Reagenzien, falsch eingestellte Pipetter
- Mass: Unrichtigkeit ("Richtigkeit")

Grobe Fehler

 häufig menschlichen Ursprungs: Verwechslungen von Proben, Abschreibe- und Umrechnungsfehler, Berechnungsfehler bei Verdünnungen

Fehlerarten

Fehlertyp	kein Fehler	zufälliger Fehler	systematischer Fehler	grober Fehler
				falsche Scheibe, falsche Methode
Präzision	optimal	schlecht	gut	
Richtigkeit	optimal	gut	schlecht	

Statistische Grundlagen für die Beurteilung der Präzision

Verteilung der Werte (zufällige Messabweichungen):
 Normalverteilung (Gauss)

- 2. Mittelwert (arithmetisches Mittel): $\bar{x} = \sum (x_i) / N$
- 3. Streuung: Standardabweichung s

 $\overline{x} \pm s = 68.3\%$

 $\overline{x} \pm 2s = 95.5\%$

 $\overline{x} \pm 3s = 99.7\%$

4. Variationskoeffizient: VK = s/x

Kategorisierung von kardialen Troponin -Assays nach ihrer Impräzision (Funktionelle Assay-Sensitivität)

Beispiel:

Table 1. Scorecard designations of cTn assays.				
Acceptance designation	Total imprecision at the 99th percentile, CV%			
Guideline acceptable	≤10			
Clinically usable	>10 to ≤20			
Not acceptable	>20			
Assay designation	Measurable normal values below the 99th percentile, %			
Level 4 (third generation, hs)	≥95			
Level 3 (second generation, hs)	75 to <95			
Level 2 (first generation, hs)	50 to <75			
Level 1 (contemporary) <50				

Clinical Chemistry 55: 1303–1306 (2009)

Über-/Unterschreiten eines Cut-offs

- Mittelwert einer Mehrfachmessung > oder < Cutoff</p>
- ➤ Für eine Einfachmessung gilt: Bei p=0.05 (95% Sicherheit) beträgt die minimale Differenz +/-2s, um sicher über bzw. unter dem Cutoff zu liegen.

Frage 1: Sie bestimmen die Glukosekonzentration im Nüchternplasma bei Ihrem Patienten mit einem Glukometer. Dessen Impräzision beträgt 5 %.

Ab welcher Konzentration können Sie ausreichend sicher sein, dass die wahre Glukosekonzentration >7,0 mmol/l beträgt und damit die Definition eines Diabetes erfüllt ist? (Einfachauswahl)

- a) 7,1 mmol/l
- b) 7,2 mmol/l
- c) 7,4 mmol/l
- d) 7,6 mmol/l
- e) 7,8 mmol/l

Abhängigkeit der diagnostischen Zuverlässigkeit von der Impräzision: Beispiel der Diabetes-Diagnostik

Der kleinste Abstand zwischen einem Messwert und einem Grenzwert, bei denen sie als verschieden bezeichnet werden können, berechnet sich aus der Standardabweichung (SD).

Glukose [mmol/l]

$$MD = k \times \sqrt{SD^2} = 2 \times SD$$

MD= Minimale Differenz k=2 entspricht einem Konfidenzintervall von 95% Die Ärzte eines Spitals verordnen Ihrem Patienten nach einem Myokardinfarkt und wegen eines LDL-Cholesterin-Spiegels von 4.0 mmol/l ein hochwirksames Statin und empfehlen eine Kontrolluntersuchung beim Hausarzt. Sie messen acht Wochen später den LDL-Cholesterin-Spiegel mit 3.2 mmol/l. Die Impräzision der von Ihnen und im Spitallabor verwendeten Tests für die direkte LDL- Cholesterin Bestimmung oder für die Bestimmung des HDL-Cholesterins (für die Berechnung des LDL-Cholesterins nach Friedewald) beträgt 5%.

Wie ist dieser geringer als erwartete Abfall des LDL-Cholesterins (-30 bis -50 %) erklärbar?

- a) Gute Adhärenz des Patienten (er nimmt das Statin ein)
- b) Mangelnde Adhärenz des Patienten (er nimmt das Statin nicht ein)
- c) Postaggressionsstoffwechsel beim akuten Herzinfarkt
- d) Impräzision der Messmethoden
- e) Unrichtigkeit der Methoden zur LDL- Cholesterinbestimmung

Verlaufsbeurteilung nach kritischer Differenz

$$D_{pat} \leq D_{crit}$$

$$D_{pat} > D_{crit}$$

Ab- oder Zunahme kann durch analytische Streuung allein erklärt werden

Ab- oder Zunahme wahrscheinlich "echt"

Verlaufsbeurteilung: Beispiel Kontrolle einer Cholesterin-senkenden Therapie

52-jähriger Mann nach Herzinfarkt: Kontrolle nach 2 Monaten

		Vorwer	t aktuell
LDL Cholesterin	mmol/L 4.0		3.2

■ Frage: hat die Statin Therapie wirklich eine Wirkung gezeigt oder ist die geringe Abnahme von Cholesterin durch die analytische Streuung von Tag zu Tag allein schon erklärbar?

Verlaufsbeurteilung: Beispiel Kontrolle einer Cholesterin-senkenden Therapie

52-jähriger Mann nach Herzinfarkt: Kontrolle nach 1 Monat

		Vorwert	aktuell
LDL Cholesterin	mmol/L 4.0	3.2	2

- VK LDL-Cholesterin: 5%
- $D_{crit} = 2.8 \cdot 4.0 \text{ mmol/L} \cdot 5\%/100 = 0.56 \text{ mmol/L}$
- $D_{\text{pat}} = 0.8 \text{ mmol/L}$
- D_{pat} > D_{crit} → kann durch analytische Streuung (Impräzision) nicht erklärt werden

Wie ermittelt man Kontroll-/ Warngrenzen?

- 1. Aus gesetzlichen Vorgaben (Schweiz: QUALAB)
 - -> legen maximale Toleranzen für jeden Parameter fest
- 2. Aus dem Kontrollbereich des Kontrollmaterialherstellers
 - -> (idealerweise deklariert als 2s oder 3s-Intervalle)
- 3. Aus Mehrfachmessungen der Qualitäts-Kontrolle (Vorperiode)
 - -> zeitaufwendig
 - -> teuer

Qualität von LDL Cholesterin im Ringversuch in der Schweiz (MQ 2/2023)

erlaubte Zielbereiche

pro Methode (3*VK): +/- 18%

Also erlaubter VK: +/- 6%

De facto:

über alle Methoden: +/- 29%

Also VK: +/- 9.6 %

LDL Cholesterin

QUALAB Toleranz: 18 %

Nı	r. Methode	Total	% OK	% ungen.	% Ausr	Zielwert	VK%	Тур
1	Selectra	6	50.0	33.3	16.7	1.4	18.7	e*
2	nasschemisch	15	100.0	0.0	0.0	1.4	4.0	е
3	Roche, Cobas	15	100.0	0.0	0.0	1.6	2.8	е
4	Autolyser/DiaSys	12	75.0	0.0	25.0	1.7	6.6	е
5	Beckman	4	100.0	0.0	0.0	1.6	5.2	e*

Ein Resultat wurde abgegeben, aber nicht publiziert, da die Methodengruppe zu klein war.

Wie beurteile ich die Qualität diagnostischer Tests? Lehr/Lernziele

diagnostische Qualität:

- Spezifität/Sensivität, receiver operator characteristic (ROC) Kurven
- Positive und negative Likelihood-Ratios
- Positive und negative pr\u00e4diktive Werte und ihre Abh\u00e4ngigkeiten von Pr\u00e4valenz/Pr\u00e4-Testwahrscheinlichkeit einer Krankheit

Arnold von Eckardstein, Institut für Klinische Chemie USZ

Der ideale Test

Der nicht-ideale Test

Sensitivität und Spezifität

Grundbegriffe der Beurteilung diagnostischer Tests: Sensitivität

Diagnostische Sensitivität

Definition: Anzahl wahrer positiver (=pathologischer) Ergebnisse bei Patienten, bei denen die Krankheit mit Sicherheit besteht.

= Wahrscheinlichkeitsmass, Kranke richtig zu erfassen

Sensitivität =
$$\frac{\text{Zahl der echt positiven}}{\text{Zahl der Kranken}} = \frac{\text{TP}}{\text{TP + FN}}$$

TP = true positive FN = false negative

Grundbegriffe der Beurteilung diagnostischer Tests: Spezifität

Diagnostische Spezifität

Definition: Anzahl wahrer negativer (=,,normaler") Ergebnisse bei Gesunden, bzw. Fehlen der bestimmten Krankheit

= Wahrscheinlichkeitsmass Gesunde richtig zu erfassen

TN = true negative FP = false positive

Sensitivität und Spezifität

Fibrinpolymerisierung und D-Dimer- Entstehung

Ein Beispiel: D-Dimer bei venöser Thrombose und Embolie

118 Patienten mit Verdacht auf pulmonale Embolie oder tiefer Beinvenenthrombose. Davon bei 41 verifiziert und bei 77 ausgeschlossen (Bildgebung).

Cut-off (μg/l)	Sensitivität	Spezifität
150 ng/mL	95	38
200 ng/mL	86	58
300 ng/mL	76	79
500 ng/mL	60	88
1000 ng/mL	36	96

(in %)

Receiver Operator Characteristic (ROC) - Analyse

Krankheitsstatus

Grundbegriffe der Beurteilung diagnostischer Tests: ROC-Kurve

ROC-Kurve

```
Definition: Vergleich von Sensitivität und Unspezifität (= 100% - Spezifität)
```

ermöglicht

 Vergleich der diagnostischen Qualität von mehreren Tests (Mass: Fläche unter der Kurve = AUC)

AUC = 1.00 idealer Test

AUC = 0.50 wertloser Test ("würfeln", "raten")

AUC > 0.8 diagnostisch relevante Tests

Receiver-operating-characteristic Kurven Analysen für konventionelle und sensitive Troponin T Assays in Abhängigkeit von der Zeit nach Symptombeginn

(718 konsekutive Patienten mit Verdacht auf AMI)

Reichlin et al.; N. Engl. J. Med. 2009; 361: 858-867

Grundbegriffe der Beurteilung diagnostischer Tests positive Likelihood Ratio (LR+)

Positive Likelihood Ratio (LR +)

Definition: Die Wahrscheinlichkeit einer Person mit der Krankheit, positiv getestet zu werden, relativ zur Wahrscheinlichkeit einer Person ohne diese Krankheit positiv getestet zu werden.

= Verhältnis von Sensitivität zu Unspezifität (100% - Spezifität)

Positive Likelihood Ratio (LR+) =
$$\frac{\text{Anteil der richtig-positiven Testresultate}}{\text{Anteil der falsch-positiven Testresultate}} = \frac{\text{TP/(FN + TP)}}{\text{FP/(TN + FP)}}$$

Grundbegriffe der Beurteilung diagnostischer Tests negative Likelihood Ratio (LR-)

negative Likelihood Ratio (LR +)

Definition: Die Wahrscheinlichkeit einer Person mit der Krankheit negativ getestet zu werden relativ zur Wahrscheinlichkeit einer Person ohne Krankheit, negativ gestestet zu werden

= Verhältnis von Unsensitivität (d.h. 100% - Sensitivität) zu Spezifität

Negative Likelihood Ratio (LR-) =
$$\frac{100\% - \text{Sensitivit\"at}}{\text{Spezifit\"at}}$$

$$\frac{100\% - \text{Sensitivit\"at}}{\text{Spezifit\"at}}$$

$$\frac{\text{TP = true positive}}{\text{TN = true negative}}$$

$$\frac{\text{TN = true positive}}{\text{TN = false negative}}$$

Interpretation von Likelihood-Ratios

Positive Likelihood Ratio (LR+)	Negative Likelihood Ratio (LR-)	Interpretation
LR+ > 10	LR- < 0.1	"überzeugende diagnostische Evidenz"
LR+ 5 – 10	LR- 0.1 – 0.2	"hohe diagnostische Evidenz"
LR+ 2 – 5	LR- 0.2 – 0.5	"schwache diagnostische Evidenz"
LR+ 1 – 2	LR- 0.5 – 1.0	"keine relevante diagnostische Evidenz"

Ein Beispiel zu Likelihood Ratios: D-Dimer bei venöser Thrombose und Embolie

118 Patienten mit Verdacht auf pulmonale Embolie oder tiefer Beinvenenthrombose. Davon bei 41 verifiziert und bei 77 ausgeschlossen (Bildgebung).

Cut-off (μg/l)	Sensitivität	Spezifität	LR+	LR-
150 ng/mL	95	38	1.5	0.13
200 ng/mL	86	58	2.0	0.24
300 ng/mL	76	79	3.6	0.30
500 ng/mL	60	88	5.0	0.45
1000 ng/mL	36	96	9.0	0.67

(in %)

Ausschluss venöser Thromboembolien mittels D-dimer bei unterschiedlicher Prävalenz

Sensitivität 90%, Spezifität 60% negative Likelihood Ratio 0.17

Wells, P. S. et al. JAMA 2006;295:199-207.

Grundbegriffe der Beurteilung diagnostischer Tests Positiver Prädiktiver Wert

Positiver prädiktiver Wert:

Definition: Wahrscheinlichkeit, mit der bei Vorliegen eines positiven Tests eine bestimmte Erkrankung tatsächlich vorliegt

$$PV_{pos} = \frac{\text{wahre positive}}{\text{alle positiven}} - 100 = \frac{TP}{TP + FP} - 100$$

TP = true positive FP = false positive

(abhängig von Prävalenz!)

Grundbegriffe der Beurteilung diagnostischer Tests: negativer prädiktiver Wert

Negativer prädiktiver Wert

Definition: Wahrscheinlichkeit, mit der bei Vorliegen eines negativen Tests eine bestimmte Erkrankung ausgeschlossen werden kann.

$$PV_{neg} = \frac{\text{wahre negative}}{\text{alle negativen}} \cdot 100 = \frac{TN}{TN + FN} \cdot 100$$

(abhängig von Prävalenz!)

TN = true negative FN = false negative

Ein Beispiel: D-Dimer bei venöser Thrombose und Embolie

118 Patienten mit Verdacht auf pulmonale Embolie oder tiefer Beinvenenthrombose. Davon bei 41 verifiziert und bei 77 ausgeschlossen (Bildgebung).

Cut-off (μg/l)	Sensitivität	Spezifität	PV _{pos}	PV _{neg.}
150 ng/mL	95	38	45	94
200 ng/mL	86	58	52	88
300 ng/mL	76	79	66	86
500 ng/mL	60	88	73	83
1000 ng/mL	36	96	80	74

Abhängigkeit der positiven (pPV) und negativen (nPV) prädiktiven Werte eines Tests von der Prävalenz der gesuchten Diagnose

Berechnung der prädiktiven Werte pPV und nPV für einen I abortest mit 95 % Spezifität und 80 % Sensitivität in Abhängigkeit von der Prävalenz Die höchste Aussagekraft hat dieser Test. wenn die gesuchte Krankheit etwa bei jedem dritten Patienten vorliegt (Prävalenz 30 bis 40%).

Hofmann, Aufenanger, Hoffmann, (Hrsg).: Klinikhandbuch Labordiagnostische Pfade, 2011

Ein Beispiel: Einfluss der Vortestwahrscheinlichkeit (= Prävalenz) auf die Testqualität von D-Dimer bei venöser Thrombose und Embolie

Vortestwahrscheinlichkeit (= Prävalenz, %)	niedrig 5	mittel 15	hoch 50
Sensitivität, %	90	90	90
Spezifität, %	60	60	60
Positiver prädiktiver Wert, %	10.6	28.4	69.2
Negativer prädiktiver Wert, %	99.1	97.1	85.7
	L		
Situation typisch für	ambul Media		onäre lizin
D-Dimer geeignet für rule-out ovenösen Thrombose oder Emb	•	ne	in

Algorithmus zur Diagnose einer tiefen Beinvenenthrombose oder Lungenembolie

Hofmann, Aufenanger, Hoffmann, (Hrsg).: Klinikhandbuch Labordiagnostische Pfade, 2014

Vereinfachtes klinisches Modell zur Beurteilung einer tiefen Beinvenenthrombose (DVT)

Klinische Variable	Punkte
- Aktive Krebserkrankung (in Behandlung während der letzten 6 Monate)	1
- Paralyse, Parese oder İmmobilisierung	1
- Bettlägerigkeit während der letzten 3 Tage oder	1
grösserer chirurgischer Eingriff in den vergangenen 12 Monaten	
- Druckschmerz entlang des Verlaufes tiefer Beinvenen	1
- Schwellung des gesamten Beines	1
- Lokale Unterschenkel-Schwellung (> 3 cm als kontralateral)	1
- Hautödeme	1
- Kollateralvenen (keine Varikose)	1
- Frühere tiefe Beinvenenthrombose	1
- Andere Dlagnose als DVT mindestens so wahrscheinlich	-2

Wahrscheinlichkeit einer DVT:

hoch: 3 Punkte oder mehr; mittel: 1-2 Punkte; tief: 0 Punkte

Klinisches Modell (Well's Score) zum Ausschluss einer Lungenenembolie

Variablen	Punkte
Klinische Befunde und Symptomatik einer TVT (min. Ödem und Druckdolenz im tiefen Leitvenensystem)	3,0
Alternative Diagnose weniger wahrscheinlich als LE	3,0
Herzfrequenz > 100/min	1,5
Immobilisation (> 3 Tage) oder Operation innerhalb der letzten 4 Wochen	1,5
Frühere TVT oder LE	1,5
Hämoptyse	1,0
Aktives Malignom, Chemo- oder Strahlentherapie, < 6 Monate palliati	v 1,0
Klinische Vortestwahrscheinlichkeit gering	≤ 4
Klinische Vortestwahrscheinlichkeit hoch	> 4

Mögliche Klinische Nutzen neuer Biomarker

Patienten Zufriedenheit

Früherkennung
Schnelle Diagnosen
Richtige Dosierungen
Bessere medizinische
Ergebnisse
Bessere Lebensqualität

Klinischer Nutzen

Frühe, bessere Diagnosen
Beurteilung der Effektivität von
Therapien

Unterstützung des Krankheits-Managements

Besseres individuelles
Gesundheitsmanagement
vermindert die Notwendigkeit
späterer medizinischer
Interventionen

Ökonomischer Nutzen

Vermeidung unnötiger Behandlungen

Verkürzung der Hospitalisationsdauer

Verminderung der Kosten für Behandlung & Rehabilitation

Verminderung der Gesamtkosten pro Patient

BASEL Studie zum klinischen Nutzen von BNP

Beispiel Basel Studie:

(N Engl J Med. 2004 Feb 12;350(7):647-54)

	End Point	Peptide Group (N=225)	Control Group (N=227)	P Value
	Time to treatment — min Median Interquartile range	63 16–153	90 20–205	0.03†
	Time to discharge — days Median Interquartile range	8.0 1.0–16.0	11.0 5.0–18.0	0.001†
	Hospitalization — no. (%)	169 (75)	193 (85)	0.008
	Admission to intensive care — no. (%)	33 (15)	54 (24)	0.01
	Cost of intensive care — \$ Median 95% Confidence interval	874 423–1,324	1,516 989–2,043	0.07
	Total treatment cost — \$ Median 95% Confidence interval	5,410 4,516–6,304	7,264 6,301–8,227	0.006
	In-hospital mortality — no. (%)	13 (6)	21 (9)	0.21‡
	30-day mortality — no. (%)	22 (10)	28 (12)	0.45‡
	30-day readmission rate — no. (%)	26 (12)	23 (10)	0.63

R. Type Matriuratic

Phasen in der Entwicklung von diagnostischen Biomarkern

Grösse der untersuchten Population

Zeitablauf und (Miss)erfolgsrate in der Entwicklung diagnostischer Biomarker

lo B	larker dentifizierung: siomedizische forschung - Akademie - Industrie	Marker Validierung: Prüfung der beabsichtigten Anwendung an gut charakterisierten klinischen Proben	Klinische Entwicklung: Verifizierung der beabsichtigten Anwendung auf diagnostischen Plattformen und an grossen Kohorten Forschungstests	Zulassung: CE/PMA-Studien für die beabsichtigte Anwendung Kommerzialisierung In vitro Diagnostika (IVD) Produkte
		Prototyp Tests 50-100 Kandidaten-Marker	2 – 20 Kandidaten-Marker	1- 7 Biomarker
	(2 Jahre)	1-2 Jahre	1-2 Jahre	2 Jahre

Biomarker mit hohem negativ-prädiktivem Wert (PV_{neg}) und hoher Sensitivität sind gut für Ausschlussdiagnostik

$$PV_{neg} = \frac{\text{wahre negative}}{\text{alle negativen}} \cdot 100 = \frac{TN}{TN + FN} \cdot 100$$

PV_{neq} umso grösser

Je grösser der Anteil TN Je kleiner der Anteil FN TN = true negative FN = false negative

Sensitivität =
$$\frac{\text{Zahl der echt positiven}}{\text{Zahl der Kranken}} = \frac{\text{TP}}{\text{TP + FN}}$$

TP = true positive FN = false negative

Grundbegriffe der Beurteilung diagnostischer Tests

$$Sensitivität = \frac{Zahl \ der \ echt \ positiven}{Zahl \ der \ Kranken} = \frac{TP}{TP + FN}$$

$$Spezifität = \frac{Zahl \ der \ echt \ negativen}{Zahl \ der \ Gesunden} = \frac{TN}{TN + FP}$$

$$Positive \ Likelihood \ Ratio = \frac{Sensitivität}{(100\% - Spezifität)} = \frac{TP/(FN + TP)}{FP/(TN + FP)}$$

$$Negative \ Likelihood \ Ratio = \frac{(100\% - Sensitivität)}{(Spezifität)} = \frac{FN/(FN + TP)}{TN/(TN + FP)}$$

$$PV_{neg} = \frac{Zahl \ echt \ positive}{Zahl \ alle \ positive} - 100 = \frac{TP}{TP + FP} - 100$$

$$PV_{neg} = \frac{Zahl \ echt \ negative}{Zahl \ alle \ negative} - 100 = \frac{TN}{TN + FN} - 100$$

TP = true positive FP = false positive TN = true negative

FN = false negative

Zusammenfassung: Sensitivität/Spezifität und prädiktive Werte

Rechenbeispiele: Prävalenz, Sensitivität, Spezifität, Likelihood Ratios, Vorhersagewerte

krank? Test	ja	nein	gesamt
positiv	33 <i>(TP)</i>	4 (FP)	37
negativ	37 (FN)	39 <i>(TN)</i>	76
gesamt	70	43	113 (alle)

Begriff	Definition	Beispiel
Prävalenz	(TP + FN) / alle	(33 + 37)/113 * 100% = 62%
Sensitivität	TP / (TP + FN)	33 / (33 + <mark>37</mark>) * 100% = 47%
Spezifität	TN / (TN + FP)	39 / (39 + 4) * 100% = 91%
pos. Likelihood Ratio	Sens./(100%-Spez.)	47%/(100%-9%) = 5.22
neg. Likelihood Ratio	(100%-Sens)/Spez.	(100%-47%)/91% = 0.58
pos. Vorhersagewert	TP / (TP + FP)	33 / (33 + 4) * 100% = 89%
neg. Vorhersagewert	TN / (TN + FN)	39 / (39 + 37) * 100% = 51%