Ассоциативные правила

Наумов Д.А., доц. каф. КТ

Экспертные системы и искусственный интеллект, 2020

Содержание лекции

- 🚺 Задачи поиска ассоциативных правил
- Алгоритм Apriori
- Оправот в премена в премена премен
 - Пример: построение FP-дерева
 - Алгоритм построения FP-дерева
 - Рекурсивный поиск часто встречащихся наборов по FP-дереву
 - Условное FP-дерево
 - Быстрое построение условного FP-дерева
 - Эффективность алгоритма FP-Growth
- Визуализация ассоциативных правил

Что такое поиск ассоциативных правил?

Поиск ассоциативных правил

поиск часто в страчающихся шаблонов, ассоциаций, корреляций или структур среди множества элементов в транзакционной базе данных.

Понять покупательские привычки клиента, находя ассоциации и корреляции между различными товарами, которые клиенты размещают в их «корзину для покупок».

Практическое применение:

- анализ покупок;
- кросс-маркетинг;
- каталогизация;
- web-анализ;
- обнаружение мошеннических схем.

Что такое поиск ассоциативных правил?

Ассоциативное правило

Antecedent \rightarrow Consequent

[support, confidence]

- Antecedent антецедент, причина;
- Consequent косеквент, следствие;
- Support поддержка (мера интересности правила);
- Confedence значимость (мера интересности правила).

Примеры:

$$buys(x,"computer") \rightarrow buys(x,"financialmanagementsoftware")$$

$$[0.5\%, 60\%]$$
 $age(x,"30..39") and income(x,"42..48 K") \rightarrow buys(x,"car")$
$$[1\%, 75\%]$$

Как можно использовать ассоциативные правила?

• пусть правило имеет вид:

$$\{Bagels,...\} \rightarrow \{Potato\ Chips\}$$

- Potato chips (следствие) продажи чего мы собираемся (можем) увеличивать;
- Bagels (антецедент) какие продукты будут влиять на продажу, если объявить скидки;
- Bagels -> Potato chips какие продукты следует размещать рядом, чтобы увеличить продажи Potato Chips.

Практическое применение:

- оптимизировать размещение товара на полках;
- формировать персональные рекомендации;
- планирование промо-акции;
- более эффективно управлять ценами и ассортиментом.

Ассоциативные правила: основные понятия

Исходные данные

- 💶 база данных транзакций
- транзакция содержит список элементов

Результаты поиска ассоциативных правил

• все правила, которые связывают наличие одного **набора** (itemset) с другим набором элементов

Например, 98% людей, которые покупают шины и автоаксессуары, также заказывают услуги шионмонтажа.

Ассоциативные правила: поддержка и значимость

Пусть имеется ассоциативное правило:

$$A \Rightarrow B[s, c]$$

Поддержка (Support)

обозначает, как часто правило встречается в транзакциях.

$$support(A \Rightarrow B[s, c]) = p(A \cup B)$$

Значимость (confidence)

обозначает процент транакций, содержащая ${\bf A}$, которые содержат также ${\bf B}$.

$$confidence(A \Rightarrow B[s, c]) = p(B|A) = sup(A, B)/sup(A)$$

Значимость – это оценка условной вероятности 🔒 🗸 🧸 🗦 👢 🔗

Trans. Id	Purchased Items
1	A,D
2	A,C
3	A,B,C
4	B,E,F

Itemset:

A,B or B,E,F

Support of an itemset:

Sup(A,B)=1 Sup(A,C)=2

Frequent pattern:

Given min. sup=2, {A,C} is a frequent pattern

For minimum support = 50% and minimum confidence = 50%, we have the following rules

 $A \Rightarrow C$ with 50% support and 66% confidence $C \Rightarrow A$ with 50% support and 100% confidence

Математические обозначения

X — пространство объектов; $F=f_1,\ldots,f_n,f_i:X\to 0,1$ — бинарные признаки (items); $X^I=\{x_1,\ldots,x_I\}\subset X$ — обучающая выборка.

Каждому подмножеству $arphi \subseteq F$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), x \in X$$

Если $\varphi(x)=1$, то «признаки из φ совместно встречаются в x»/Поддержка (support) φ в выборке X^I

$$\nu(\varphi) = \frac{1}{I} \sum_{i=1}^{I} \varphi(x_i)$$

Если $\nu(\varphi) \geq \delta$, то «набор φ частый» (frequent itemset). Параметр δ — минимальная поддержка, (min support).

Математические обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y$ — это пара непересекающихся наборов $\varphi, y \subseteq F$, таких, что:

 $oldsymbol{0}$ наборы arphi и y совместно часто встречаются,

$$\nu(\varphi \cup y) \geq \delta;$$

 $oldsymbol{arphi}$ если встречаются arphi, то часто встречается также и y:

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \ge \chi$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка (min support).

Параметр χ – минимальная значимость (min conf).

Содержание лекции

- 🕕 Задачи поиска ассоциативных правил
- Алгоритм Apriori
- ③ Алгоритм FP-Growth
 - Пример: построение FP-дерева
 - Алгоритм построения FP-дерева
 - Рекурсивный поиск часто встречащихся наборов по FP-дереву
 - Условное FP-дерево
 - Быстрое построение условного FP-дерева
 - Эффективность алгоритма FP-Growth
- 4 Визуализация ассоциативных правил

Логические (булевые) ассоциативные правила

Each transaction is represented by a Boolean vector

Cliente	A1	A2	A3	A4	A5	A6	Α7	A 8	Α9	A10	A11	A12	A13
1	1	1	0	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	- 1	0	0	0	0	0	0	0
3	1	0	1	1	1	0	0	0	0	0	0	0	0
4	1	1	1	0	1	0	0	0	0	0	0	0	0
5	0	0	1	0	0	1	0	1	- 1	- 1	0	0	0
6	0	1	0	0	0	0	0	- 1	0	- 1	0	0	0
7	1	0	0	0	0	0	1	1	0	1	0	1	1
8	0	1	0	0	0	0	0	- 1	0	0	0	0	(
9	0	0	0	0	0	0	0	0	0	1	0	- 1	0

Пример поиска ассоциативных правил

Transaction ID	Items Bought		Min. support 50% Min. confidence 5		
2000	A,B,C		mini. compractice o	070	
1000	A,C		Frequent Itemset	Support	
4000	A,D		{A}	75%	
5000	B,E,F	\vdash	{B}	50%	
			{ <i>C</i> }	50%	
			{A,C}	50%	
For rule $A \Rightarrow C$:					
support = support($\{A, C\}$) = 50%					
confidence = s	upport({A , C}) / s	support({	A}) = 66.6%		

Принцип Apriori

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- lacktriangle если ψ частый, то все его подмножества $arphi\subset\psi$ частые.
- $oldsymbol{Q}$ если arphi не частый, то все наборы $\psi\supsetarphi$ также не частые.
- $(\varphi \cup \psi) \leqslant \nu(\varphi)$ для любых φ, ψ .

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Принцип Apriori: множество наборов

Принцип Apriori: не рассматриваемые наборы

Принцип Apriori: основная идея – поиск в ширину

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \ \varkappa = \text{MinConf};
   выход: R = \{(\varphi, y)\} — список ассоциативных правил;
1 множество всех частых исходных признаков:
     G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
2 для всех i = 2, ..., n
       множество всех частых наборов мощности і:
       G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
4 если G_j = \emptyset то выход из цикла по j;
6 R := \emptyset:
7 для всех \psi \in G_i, j = 2, ..., n
8 AssocRules (R, \psi, \varnothing);
```

Принцип Apriori: пример

Принцип Apriori: пример

Принцип Apriori: получение ассоциативных правил

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \ \varkappa = \text{MinConf};
   выход: R = \{(\varphi, y)\} — список ассоциативных правил;
1 множество всех частых исходных признаков:
     G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
2 для всех i = 2, ..., n
       множество всех частых наборов мощности і:
       G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
4 если G_j = \emptyset то выход из цикла по j;
6 R := \emptyset:
7 для всех \psi \in G_i, j = 2, ..., n
8 AssocRules (R, \psi, \varnothing);
```

Выделение ассоциативных правил

$$confidence(A \Rightarrow B) = P(B|A) = support(A \cup B)/support(A)$$

- Для каждого частого набора элементов x сгенерировать все непустые подмножества x;
- Для каждого непустого подмножества x множества s получить правило:

$$s \Rightarrow (s \setminus x)$$

если

Выделение ассоциативных правил

Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

```
1 функция AssocRules (R, \varphi, y)
       вход: (\varphi, y) — ассоциативное правило;
       выход: R — список ассоциативных правил;
       для всех f \in \varphi: \mathrm{id}_f > \max_{g \in \mathcal{Y}} \mathrm{id}_g (чтобы избежать повторов y)
2
        arphi':=arphi\setminus\{f\}; \quad y':=y\cup\{f\};если 
u(y'|arphi')\geqslantarkappa то
3
      добавить ассоци|arphi'|>1 то
               добавить ассоциативное правило (\varphi', y') в список R;
5
                  AssocRules (R, \varphi', y');
```

 id_f — порядковый номер признака f в $\mathscr{F} = \{f_1, \dots, f_n\}$

Задан часто встречающийся набор (А, В, Е). Какие возможны ассоциативные правила?

- Q: Given frequent set {A,B,E}, what are possible association rules?
 - A => B, E
 - A, B => E
 - A, E => B
 - B => A, E
 - B, E => A
 - E => A, B
 - __ => A,B,E (empty rule), or true => A,B,E

Items
ACD
BCE
ABCE
BE
ABCE

Rule	Conf.
$\{BC\} => \{E\}$	100%
$\{BE\} => \{C\}$	75%
$\{CE\} => \{B\}$	100%
$\{B\} => \{CE\}$	75%
$\{C\} => \{BE\}$	75%
$\{E\} => \{BC\}$	75%

Min_support: 60% Min_confidence: 75%

Frequent Itemset	Support
{BCE},{AC}	60%
{BC},{CE},{A}	60%
{BC},{CE},{A} {BE},{B},{C},{E}	80%
c memory memory	

Упражнение

TID	Items
1	Bread, Milk, Chips, Mustard
2	Beer, Diaper, Bread, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk, Chips
5	Coke, Bread, Diaper, Milk
6	Beer, Bread, Diaper, Milk, Mustard
7	Coke, Bread, Diaper, Milk

Упражнение

Bread	Milk	Chips	Mustard	Beer	Diaper	Eggs	Coke
1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	0
0	1	0	0	1	1	0	1
1	1	1	0	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	1	0	0
1	1	0	0	0	1	0	1

Упражнение

0.4*7=2.8

C1	
Bread	6
Milk	6
Chips	2
Mustard	2
Beer	4
Diaper	6
Eggs	1
Coke	3

L1	
Bread	6
Milk	6
Beer	4
Diaper	6
Coke	3

	_
C2	
Bread, Milk	-
Bread,Beer	
Bread, Diaper	
Bread,Coke	1
Milk,Beer	,
Milk,Diaper	
Milk,Coke	
Beer, Diaper	
Beer,Coke	
Diaper,Coke	
	-

C3	
Bread,Milk,Beer	2
Bread, Milk, Diaper	4
Bread,Beer,Diaper	3
Milk,Beer,Diaper	3
Milk,Beer,Coke	
Milk,Diaper,Coke	3

$$8 + C_2^8 + C_3^8 = 92 >> 24$$

Модификация алгоритма Apriori

Основные проблемы при генерации наборов:

- общее число транзакций может быть очень большим;
- одна транзакция может содержать много элементов.

Модификации алгоритма:

- более эффективные структуры данных для быстрого поиска;
- поиск по частичной случайной выборке при пониженных поддержке и значимости с последующей проверкой на полной базе;
- алгоритмы, учитывающие иерархию признаков;
- поиск последовательных шаблонов;
- учет информации о клиентах.

Модификации алгоритма Apriori

- **Проблема**: на каждом уровне осуществляется просмотр всей базы данных транзакций
- AprioriTID:
 - генерировать набора как в алгоритме Apriori, но БД используется для вычисления поддержки всех наборов за один проход;
 - требуется значительно больше памяти;
 - вычисляются и хранятся часто встречающиеся наборы $C^{\hat{}}_k$ для каждой транзакции;
- AprioriHybrid
 - на начальном этапе используется алгоритм Apriori;
 - \bullet вычисляется размер C_k ;
 - как только C^*_k будет умещаться в памяти, переключиться на AprioriTid.

Какие правила интересны?

- все ли найденные правила будут полезны и интересны?
- как можно измерить «интересность» правила?

Субъективные критерии:

- 💶 правило интересно, если оно неожиданно для пользователя;
- ② правило полезно, если пользователь может его применить.

Объективные критерии:

- 💶 поддержка (Support)
- значимость (Confidence)
- интересность (Lift, Interest, Correlation)
- убедительность (Conviction)
- влияние (Leverage, Piatetsky-Shapiro)
- покрытие (Coverage)

Среди 5000 студентов:

- 3000 играют в баскетбол;
- 3750 едят хлопья;
- 2000 и играют в баскетбол, и едят хлопья.

play basketball
$$\rightarrow$$
 eat cereal [40%, 66.7%]

play basketball \rightarrow not eat cereal [20%, 33.3%]

	basketball	not basketball	sum(row)	
cereal	2000	1750	3750	75%
not cereal	1000	250	1250	25%
sum(col.)	3000	2000	5000	
	60%	40%		

Lift (Correlation, Interest):

$$Lift(A \to B) = \frac{sup(A, B)}{sup(A) \cdot sup(B)} = \frac{P(B|A)}{P(B)}$$

А и В имеют отрицательную корреляцию, если значение $\mathit{Lift} < 1$, иначе корреляция положительная.

X	1	1	1	1	0	0	0	0
Υ	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

rule	Support	Lift	
X⇒Y	25%	2.00	
X⇒Z	37.50%	0.86	
Y⇒Z	12.50%	0.57	

Продолжение примера:

• play basketball => eat cereal [40%, 66.7%]

$$Lift = \frac{\frac{2000}{5000}}{\frac{3000}{5000} \times \frac{3750}{5000}} = 0.89$$

• play basketball => not eat cereal [20%, 33.3%]

$$Lift = \frac{\frac{1000}{5000}}{\frac{3000}{5000} \times \frac{1250}{5000}} = 1.33$$

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Убедительность

Убедительность — мера импликации, ее значение равно 1, если элементы не связаны.

$$Conv(A \rightarrow B) = \frac{sup(A \cdot sup(\neg B)}{sup(A, \neg B)} = \frac{P(A) \cdot P(\neg B)}{P(A, \neg B)} = \frac{P(A)(1 - P(B))}{P(A) - P(A, B)}$$

Замечание: A o B можно записать в виде $\neg (A, \neg B)$.

- play basketball => eat cereal [40%, 66.7%]
- eat cereal => play basketball conv: 0.85

$$Conv = \frac{\frac{3000}{5000} \left(1 - \frac{3750}{5000}\right)}{\frac{3000}{5000} - \frac{2000}{5000}} = 0.75$$

- play basketball => not eat cereal [20%, 33.3%]
- not eat cereal => play basketball conv: 1.43

$$Conv = \frac{\frac{3000}{5000} \left(1 - \frac{1250}{5000}\right)}{\frac{3000}{5000} - \frac{1000}{5000}} = 1.125$$

Влияние

Влияние (Leverage, Piatetsky-Shapiro, PS)

мера зависимости предпосылки и следствия.

$$PS(A \rightarrow B) = sup(A, B) - sup(A) \cdot sup(B)$$

Покрытие (coverage)

$$Coverage(A \rightarrow B) = sup(A)$$

Содержание лекции

- 🕕 Задачи поиска ассоциативных правил
- Алгоритм Aprior
- ③ Алгоритм FP-Growth
 - Пример: построение FP-дерева
 - Алгоритм построения FP-дерева
 - Рекурсивный поиск часто встречащихся наборов по FP-дереву
 - Условное FP-дерево
 - Быстрое построение условного FP-дерева
 - Эффективность алгоритма FP-Growth
- 4 Визуализация ассоциативных правил

Префиксное FP-дерево (FP-frequent pattern)

В каждой вершине v дерева T задаются:

- ullet признак $f_{v} \in \mathscr{F}$;
- ullet множество дочерних вершин $S_{
 u}\subset T$;
- поддержка $c_v = \nu(\varphi_v)$ набора признаков $\varphi_v = \{f_u \colon u \in [v_0, v]\}$, где $[v_0, v]$ путь от корня дерева v_0 до вершины v.

Обозначения:

$$V(T,f) = \{v \in T : f_v = f\}$$
 — все вершины признака f . $C(T,f) = \sum_{v \in V(T,f)} c_v$ — суммарная поддержка признака f .

Свойства FP-дерева T, построенного по всей выборке X^{ℓ} :

- **①** T содержит полную информацию о всех $\nu(\varphi), \ \varphi \subseteq \mathscr{F}.$
- ② $C(T,f) = \nu(f)$ для всех $f \in \mathscr{F}$.

Тогда каждый объект описывается словом в алфавите \mathscr{F} ; FP-дерево — это эффективный способ хранения словаря; уровни дерева соответствуют признакам, по убыванию $\nu(f)$.

ма	три	ца	слова			
a		d	-	f	-	d a
a	- c	d	е	-	-	dcae
- 1	b -	d	-	-	-	d b
- 1	b c	d	-	-	-	d b c
- 1	b c	-	-	-	-	Ъс
a	b -	d	-	-	-	dba
- 1	b -	d	е	-	-	dbe
- 1	b c	-	е	-	g	ъсе
-	- c	d	-	f	-	d c
a	b -	d	-	-	-	dba

38 / 60

Ма	атј	ис	ιа	слова			
a	-	-	d	-	f	-	d a
a.	-	С	d	е	_	_	dcae
-	b	_	d	_	_	_	d b
_	b	С	d	_	_	_	d b c
-	b	С	_	_	_	_	Ъс
a.	b	_	d	_	_	_	d b a
-	b	_	d	е	_	_	d b e
-	b	С	_	е	_	g	ъсе
-	_	С	d	_	f	_	d c
а	b	-	d	-	_	_	d b a

M	атј	риі	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	_	d	_	_	_	d b
-	b	С	d	_	_	_	d b c
_	b	С	-	_	_	_	bс
a	b	-	d	_	_	-	d b a
-	b	-	d	е	_	-	d b e
-	b	С	-	е	-	g	b c e
-	_	С	d	_	f	-	d c
a.	b	-	d	-	-	-	d b a

ма	атр	иі	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	_	-	-	d b c
-	b	С	_	_	_	_	bс
а	b	_	d	_	_	_	d b a
_	b	_	d	е	_	-	d b e
-	b	С	_	е	_	g	b c e
_	_	С	d	_	f	_	d c
а	b	-	d	-	-	_	d b a

при $\delta=3$ признаки f, g не частые

ма	т	иі	ца	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	_	-	-	bс
а	b	_	d	_	_	-	d b a
-	b	_	d	е	_	_	d b e
-	b	С	_	е	_	g	b c e
-	_	С	d	_	f	_	d c
а	b	_	d	_	_	-	d b a

ма	тр	иі	ιа	слова			
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	ъс
а	b	-	d	-	-	_	d b a
-	b	_	d	е	_	-	d b e
-	b	С	-	е	_	g	b c e
-	_	С	d	_	f	_	d c
а	b	_	d	_	_	_	d b a

Ма	атр	иі	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	Ъс
a	b	-	d	-	-	-	dba
-	b	_	d	е	_	_	d b e
-	b	С	-	е	_	g	ъсе
-	_	С	d	_	f	_	d c
а	b	_	d	-	_	-	d b a

М	атр	иі	ιа				слова
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	dbc
-	b	С	-	-	-	-	Ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	b c e
-	-	С	d	-	f	-	d c
а	b	_	d	_	_	-	d b a

ма	τŗ	INC	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	Ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	ſ	-	d c
a	b	-	d	-	-	-	d b a

ма	тŗ	иі	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	d b c
-	b	С	-	-	-	-	ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	d b e
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
а	b	_	d	_	_	_	d b a

ма	т	риі	слова				
a	-	-	d	-	f	-	d a
a	-	С	d	е	-	-	dcae
-	b	-	d	-	-	-	d b
-	b	С	d	-	-	-	dbc
-	b	С	-	-	-	-	Ъс
a	b	-	d	-	-	-	dba
-	b	-	d	е	-	-	dbe
-	b	С	-	е	-	g	ъсе
-	-	С	d	-	f	-	d c
a	b	-	d	-	-	-	dba


```
Вход: X^{\ell} — обучающая выборка:
Выход: FP-дерево T, \langle f_{\nu}, c_{\nu}, S_{\nu} \rangle_{\nu \in T};
```

```
1: упорядочить признаки f \in \mathscr{F}: \nu(f) \geqslant \delta по убыванию \nu(f);
   ЭТАП 1: построение FP-дерева T по выборке X^{\ell}
2: для всех x_i \in X^{\ell}
3:
      v := v_0;
      для всех f \in \mathscr{F} таких, что f(x_i) \neq 0
4:
         если нет дочерней вершины u \in S_v: f_u = f то
5:
            создать новую вершину u; S_v := S_v \cup \{u\};
6:
            f_{ii} := f: c_{ii} := 0: S_{ii} := \emptyset:
7:
         c_{ii} := c_{ii} + 1/\ell; \quad v := u;
8: ЭТАП 2: рекурсивный поиск частых наборов по FP-дереву Т
   FP-find (T, \emptyset, \emptyset):
```

Вход: FP-дерево T, набор $\varphi \subset \mathscr{F}$, список правил R; **Выход:** добавить в R все частые наборы, содержащие φ ;

- 1: ПРОЦЕДУРА FP-find (T, φ, R) ;
- 2: для всех $f \in \mathscr{F}$: $V(T,f) \neq \varnothing$ по уровням снизу вверх
- 3: если $C(T,f)\geqslant \delta$ то
- 4: добавить частый набор $\varphi \cup \{f\}$ в список R: $R := R \cup \{\varphi \wedge f\};$
- 5: построить условное FP-дерево T' := T | f, а именно: T' := FP-дерево по подвыборке $\left\{ x_i \in X^\ell \colon f(x_i) = 1 \right\}$;
- 6: найти по T' все частые наборы, включающие φ и f: FP-find $(T', \varphi \cup \{f\}, R)$;

Условное FP-дерево T' := T|f можно построить быстро, используя только FP-дерево T и не заглядывая в выборку.

Пусть FP-дерево T построено по выборке X^{ℓ} .

Oпр. Условное FP-дерево (conditional FP-tree) — это FP-дерево T' := T | f, построенное по подвыборке $\{ x_i \in X^{\ell} : f(x_i) = 1 \}$, из которого удалены все вершины $v \in V(T', f)$ и все их потомки.

Продолжение примера: CFP-дерево T "e"

Вход: FP-дерево T, признак $f \in \mathscr{F}$; **Выход:** условное FP-дерево T' = T|f;

1: оставить в дереве только вершины на путях из вершин v признака f снизу вверх до корня v_0 :

$$T' := \bigcup_{v \in V(T,f)} [v, v_0];$$

2: поднять значения счётчиков c_v от вершин $v \in V(T',f)$ снизу вверх по правилу

$$c_u := \sum_{w \in S_u} c_w$$
 для всех $u \in T'$;

3: удалить из T' все вершины признака f; их поддеревья также не нужны и даже не создаются, т.к. в момент вызова FP-find все наборы, содержащие признаки ниже f, уже просмотрены.

Одна из типичных зависимостей log времени работы алгоритма от MinSupp (на выборке данных census).

Нижние кривые — две разные реализации FP-growth.

Christian Borgelt. An Implementation of the FPgrowth Algorithm. 2005.

Содержание лекции

- 🕕 Задачи поиска ассоциативных правил
- Алгоритм Apriori
- ③ Алгоритм FP-Growth
 - Пример: построение FP-дерева
 - Алгоритм построения FP-дерева
 - Рекурсивный поиск часто встречащихся наборов по FP-дереву
 - Условное FP-дерево
 - Быстрое построение условного FP-дерева
 - Эффективность алгоритма FP-Growth
- Визуализация ассоциативных правил

Выводы

- Поиск ассоциативных правил обучение без учителя.
- Простые алгоритмы типа APriory вычислительно неэффективны на больших данных.
- FP-growth один из самых эффективных алгоритмов поиска ассоциативных правил.
- Для практических приложений часто используются его инкрементные и/или иерархические обобщения.