

## Index

- Introduction
- Problem statement
- Optimization model reformulation
- Results
- Conclusion

## Introduction



## Motivation

- Process plants can be dangerous places
  - Energy products and chemical transformations that are driven by energy.
  - Hazardous substances or operation conditions.
  - Fuels and industrial chemicals can be hazardous:
    - Fuels burn readily with the release of energy.
    - Chemical reactions often involve large amounts of energy.

## Response

 Hazard identification and analysis techniques to reduce the frequency and consequences of accidents.

## Risk mitigation strategies

- Common method to mitigate risk
  - Adding layers of protection with safety devices (later phases of the process design).
  - These protective layers increase the complexity of the process.
  - Do not eliminate the hazards (can provoke an unanticipated potential incident).

#### Alternative method

 Another design philosophy of risk management is based on the concept Inherently Safer Design.

- Inherent safety performance of each design alternative has been assessed by the Dow's Fire and Explosion index (Dow, 1994).
- Suggested by Kletz (1998) and also used by other authors
   (Al-Mutairi et al., 2008,
   Suardin et al., 2007) as a an inherent safety metric.

| AREA / COUNTRY                                                                  | Business                                             | group                      | LOCATION                                        |                     | DATE                      |                             |
|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|-------------------------------------------------|---------------------|---------------------------|-----------------------------|
| SITE                                                                            | TE MANUFACTURING UNIT PROCESS UNIT                   |                            |                                                 |                     |                           |                             |
| PREPARED BY: APPROVED BY: (Production Manager) BUILDING                         |                                                      |                            |                                                 |                     |                           |                             |
|                                                                                 | PREPARED BY: (Production manager) BUILDING           |                            |                                                 |                     |                           |                             |
| REVIEWED BY: (Manageme                                                          | •                                                    | REVIEWED BY: (Techno       | ology)                                          | REVIEW              | ED BY: (Safety/En         | vironment)                  |
| MATERIALS IN PROCESS                                                            | UNIT                                                 |                            |                                                 |                     |                           |                             |
| STATE OF OPERATION                                                              |                                                      |                            | BAS                                             | IC MATERIA          | AL(S) FOR MATER           | IAL FACTOR                  |
| DESIGN START                                                                    | UP NORMAL C                                          | PERATION S                 | SHUTDOWN                                        |                     |                           |                             |
| MATERIAL FACTOR (See T                                                          | able 1 or Appendice                                  | s A or B) Note requirement | s when unit temperatu                           | re over 140 °       | F (60 °C)                 |                             |
| 1. General Process                                                              | Hazards                                              |                            |                                                 |                     | Penalty Fac-<br>tor Range | Penalty Fac-<br>tor Used(1) |
| Base Factor                                                                     |                                                      |                            |                                                 |                     | 1.00                      | 1.00                        |
| A. Exothermic Cher                                                              | mical Reactions                                      |                            |                                                 |                     | 0.00 to 1.25              | 0.3                         |
| B. Endothermic Pro                                                              | cesses                                               |                            |                                                 |                     | 0.00 to 0.40              | -                           |
| C. Material Handlin                                                             |                                                      |                            |                                                 |                     | 0.00 to 1.05              | -                           |
| D. Enclosed or Indo                                                             |                                                      |                            |                                                 |                     | 0.00 to 0.90              | -                           |
| E. Access                                                                       |                                                      |                            |                                                 |                     | 0.00 to 0.35              | -                           |
| F. Drainage and Sp                                                              | ill Control                                          |                            | ga                                              | or cu.m.            | 0.00 to 0.50              | -                           |
| General Process Hazards Factor (F <sub>1</sub> ) (SUM A to F)                   |                                                      |                            | 1.3                                             |                     |                           |                             |
| 2. Special Process Hazards                                                      |                                                      |                            |                                                 |                     |                           |                             |
| Base Factor                                                                     |                                                      |                            |                                                 |                     | 1.00                      | 1.00                        |
| A. Toxic Material(s)                                                            |                                                      |                            |                                                 | 0.0 to 0.80         | 1.00                      |                             |
| B. Sub-Atmospheric Pressure (< 500 mm Hg) 0.50                                  |                                                      |                            |                                                 |                     |                           |                             |
| C. Operation In or Near Flammable Range Inerted Not Inerted                     |                                                      |                            |                                                 |                     |                           |                             |
| Tank Farms Storage Flammable Liquids     0.50                                   |                                                      |                            |                                                 |                     |                           |                             |
| Process Upset or Purge Failure     0.30                                         |                                                      |                            |                                                 | 0.3                 |                           |                             |
| Always in Flammable Range     0.80                                              |                                                      |                            |                                                 | 0.80                |                           |                             |
| D. Dust Explosion (                                                             | See Table 3)                                         |                            |                                                 |                     | 0.00 to 2.00              |                             |
| E. Pressure (See F                                                              | igure 2)                                             | Operating Pres             | sure 720.1 psig or k                            | <del>Pa</del> gauge |                           | 0.90                        |
|                                                                                 |                                                      | Relief Se                  | etting <b>793.6</b> <u>psig</u> or <del>k</del> | <del>Pa</del> gauge |                           |                             |
| F. Low Temperatur                                                               |                                                      |                            |                                                 |                     | 0.0 to 0.30               |                             |
| G. Quantity of Flam                                                             | mable/Unstable M                                     |                            | Quantity 1681<br>C = 16051 BTU/lb               |                     |                           |                             |
| <ol> <li>Liquids or G</li> </ol>                                                | Liquids or Gases in Process (See Figure 3)      O.59 |                            |                                                 |                     |                           | 0.59                        |
| Liquids or Gases in Storage (See Figure 4)                                      |                                                      |                            |                                                 |                     |                           |                             |
| Combustible Solids in Storage, Dust in Process (See Figure 5)                   |                                                      |                            |                                                 |                     |                           |                             |
|                                                                                 |                                                      |                            | 0.00 to 0.75                                    |                     |                           |                             |
| I. Leakage – Joints and Packing 0.00 to 1.50                                    |                                                      |                            |                                                 |                     |                           |                             |
| J. Use of Fired Equipment (See Figure 8)                                        |                                                      |                            |                                                 |                     |                           |                             |
| K. Hot Oil Heat Exchange System (See Table 5) 0.00 to 1.15                      |                                                      |                            |                                                 |                     |                           |                             |
| L. Rotating Equipment 0.00 - 0.50 0.5                                           |                                                      |                            |                                                 |                     | 0.5                       |                             |
| Special Process Hazards Factor (F <sub>2</sub> ) (A to L)                       |                                                      |                            |                                                 | 3.89                |                           |                             |
| Process Unit Hazards Factor (F <sub>1</sub> x F <sub>2</sub> ) = F <sub>3</sub> |                                                      |                            | 5.06                                            |                     |                           |                             |
| Fire and Explosion Index (F3 x MF = F&EI)                                       |                                                      |                            |                                                 | 106.27              |                           |                             |

- 1. Select the process units.
- 2. Determine MF.
- 3. Determine risk factors.
- General Process Hazards (F1)
- Special process Hazards (F2)

| 1. | 1. General Process Hazards  Base Factor |                  | alty Fac-<br>Range | Penalty Fac<br>tor Used(1) |
|----|-----------------------------------------|------------------|--------------------|----------------------------|
|    |                                         |                  | 1.00               | 1.00                       |
|    | A. Exothermic Chemical Reactions        | 0.3              | 0 to 1.25          |                            |
|    | B. Endothermic Processes                | 0.2              | 0 to 0.40          |                            |
|    | C. Material Handling and Transfer       | 0.2              | 5 to 1.05          |                            |
|    | D. Enclosed or Indoor Process Units     | 0.2              | 5 to 0.90          |                            |
|    | E. Access                               | 0.2              | 0 to 0.35          |                            |
|    | F. Drainage and Spill Control           | gal or cu.m. 0.2 | 5 to 0.50          |                            |

## Special Process Hazards

| Base Factor                                                                                       | 1.00         | 1.00 |
|---------------------------------------------------------------------------------------------------|--------------|------|
| A. Toxic Material(s)                                                                              | 0.20 to 0.80 |      |
| B. Sub-Atmospheric Pressure (< 500 mm Hg)                                                         | 0.50         |      |
| C. Operation In or Near Flammable Range Inerted Not Inerted                                       |              |      |
| Tank Farms Storage Flammable Liquids                                                              | 0.50         |      |
| 2. Process Upset or Purge Failure                                                                 | 0.30         |      |
| 3. Always in Flammable Range                                                                      | 0.80         |      |
| Dust Explosion (See Table 3)                                                                      | 0.25 to 2.00 |      |
| E. Pressure (See Figure 2) Operating Pressure psig or kPa gauge Relief Setting psig or kPa gauge  |              |      |
| F. Low Temperature                                                                                | 0.20 to 0.30 |      |
| G. Quantity of Flammable/Unstable Material:  Quantity lb or kg  H <sub>C</sub> =BTU/lb or kcal/kg |              |      |
| Liquids or Gases in Process (See Figure 3)                                                        |              |      |
| Liquids or Gases in Storage (See Figure 4)                                                        |              |      |
| 3. Combustible Solids in Storage, Dust in Process (See Figure 5)                                  |              |      |
| H. Corrosion and Erosion                                                                          | 0,10 to 0.75 |      |
| Leakage – Joints and Packing                                                                      | 0.10 to 1.50 |      |
| J. Use of Fired Equipment (See Figure 6)                                                          |              |      |
| K. Hot Oil Heat Exchange System (See Table 5)                                                     | 0.15 to 1.15 |      |
| L. Rotating Equipment                                                                             | 0.50         |      |

 $F_1 = 1 + \sum penalties$  Process Hazard

 $F_2 = 1 + \sum penalties$  Special Process Hazard

| AREA / COUNTRY                            | D                                                                                            |                         | LOCATION         |                  | DATE                      |                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------|------------------|------------------|---------------------------|-----------------------------|
| AREA/COUNTRY                              | Business gro                                                                                 | oup                     | LOCATION         |                  | DATE                      |                             |
| SITE                                      | ITE MANUFACTURING UNIT PROCESS UNIT                                                          |                         |                  |                  |                           |                             |
| PREPARED BY:                              | PREPARED BY: APPROVED BY: (Production Manager) BUILDING                                      |                         |                  | NG               |                           |                             |
| REVIEWED BY: (Management)                 | F                                                                                            | REVIEWED BY: (Techno    | ology)           | REVIEW           | VED BY: (Safety/En        | vironment)                  |
| MATERIALS IN PROCESS UNIT                 |                                                                                              |                         |                  | -                |                           |                             |
| STATE OF OPERATION DESIGN START UP_       | STATE OF OPERATION BASIC MATERIAL(S) FOR MATERIAL  DESIGN START UP NORMAL OPERATION SHUTDOWN |                         |                  |                  |                           | IAL FACTOR                  |
| MATERIAL FACTOR (See Table                | 1 or Appendices A                                                                            | or B) Note requirements | s when unit temp | erature over 140 | °F (60 °C)                |                             |
| 1. General Process Ha                     | azards                                                                                       |                         |                  |                  | Penalty Fac-<br>tor Range | Penalty Fac-<br>tor Used(1) |
| Base Factor                               |                                                                                              |                         |                  |                  | 1.00                      | 1.00                        |
| A. Exothermic Chemical Reactions          |                                                                                              |                         | 0.00 to 1.25     | 0.3              |                           |                             |
| B. Endothermic Processes 0.0              |                                                                                              |                         |                  | 0.00 to 0.40     | -                         |                             |
| C. Material Handling an                   | d Transfer                                                                                   |                         |                  |                  | 0.00 to 1.05              | -                           |
| D. Enclosed or Indoor P                   | rocess Units                                                                                 |                         |                  |                  | 0.00 to 0.90              | -                           |
| E. Access                                 |                                                                                              |                         |                  |                  | 0.00 to 0.35              | -                           |
| F. Drainage and Spill C                   | ontrol                                                                                       |                         |                  | gal or cu.m.     | 0.00 to 0.50              | -                           |
| General Process Ha                        | General Process Hazards Factor (F <sub>1</sub> ) (SUM A to F)                                |                         |                  |                  |                           | 1.3                         |
| 2. Special Process Ha                     |                                                                                              |                         |                  |                  |                           |                             |
| Base Factor                               | Base Factor                                                                                  |                         |                  | 1.00             | 1.00                      |                             |
| A. Toxic Material(s)                      |                                                                                              |                         | 0.0 to 0.80      | 1.00             |                           |                             |
| B. Sub-Atmospheric Pressure (< 500 mm Hg) |                                                                                              |                         | 0.50             |                  |                           |                             |
| C. Operation In or Near                   | Flammable Ran                                                                                | ge In                   | erted            | Not Inerted      |                           |                             |
| 1 Tank Farms Sto                          | rane Flammable                                                                               | l innide                |                  |                  | n 50                      |                             |

Special Process Hazards Factor (F2)

Process Unit Hazards Factor (F<sub>1</sub> x F<sub>2</sub>) = F<sub>3</sub> .....

Fire and Explosion Index (F3 x MF = F&EI) .....

|                                                                                 |              | Language Company of the |
|---------------------------------------------------------------------------------|--------------|-------------------------|
| K. Hot Oil Heat Exchange System (See Table 5)                                   | 0.00 to 1.15 |                         |
| L. Rotating Equipment                                                           | 0.00 - 0.50  | 0.5                     |
| Special Process Hazards Factor (F2) (A to L)                                    |              |                         |
| Process Unit Hazards Factor (F <sub>1</sub> x F <sub>2</sub> ) = F <sub>3</sub> |              |                         |
| Fire and Explosion Index (F3 x MF = F&EI)                                       |              |                         |

 $F\&EI = MF F_1 F_2^{cte} + MF F_1 E_2(P) + MF F_1 G_2(V)$ 

# **Problem statement**

## Case study on a styrene production plant



## **Problem statement**

$$C_6H_5CH_2CH_3 \leftrightarrow C_6H_5CHCH_2 + H_2$$
  
E-Benzene Styrene

$$C_6H_5CH_2CH_3 \rightarrow C_6H_6 + C_2H_4$$
  
E-Benzene Benzene Ethylene

$$C_6H_5CH_2CH_3 \rightarrow C_6H_5CH_3 + CH_4$$
  
E-Benzene Toluene Methane

$$2H_2O + C_2H_4 \rightarrow 2CO + 4H_2$$

$$H_2O + CH_4 \rightarrow CO + 3H_2$$

$$H_2O + CO \rightarrow CO_2 + H_2$$

$$r_1 = A_1 \exp\left(-\frac{E_1}{RT}\right) \left(p_{EB} - \frac{p_{ST}p_{H_2}}{K'}\right)$$

$$r_2 = A_2 \exp\left(-\frac{E_2}{RT}\right) p_{EB}$$

$$r_3 = A_3 \exp\left(-\frac{E_3}{RT}\right) p_{EB} p_{H_2}$$

$$r_4 = A_4 \exp\left(-\frac{E_4}{RT}\right) p_{Ethyl} \ p_{H_2O}^2$$

$$r_5 = A_5 \exp\left(-\frac{E_5}{RT}\right) p_{Met} p_{H_2O}$$

$$r_6 = A_6 \exp\left(-\frac{E_6}{RT}\right) p_{CO} p_{H_2O}$$

## Problem statement



Determine the optimal process layout and its operating conditions (pressures, areas, reactor length, flow rates) that minimize the hazard (**F&EI**) and total annualised cost (**TAC**).



#### SAFETY

# $F\&EI = MF F_1 F_2^{cte} + MF F_1 E_2(P) + MF F_1 G_2(V)$

#### E. Pressure relief

$$Y = 0.16109 + 1.61503 \left(\frac{X}{1000}\right) - 1.42879 \left(\frac{X}{1000}\right)^{2} + 0.5172 \left(\frac{X}{1000}\right)^{3}$$

$$E = 1.2 \frac{Y^{2}(operating\ pressure)}{Y(realief\ pressure)}$$

#### G. Inflammable Material

$$\begin{split} logY &= 0.17179 \,+\, 0.42988(1ogX) \,-\, 0.37244(1ogX)^2 \,+\, 0.17712(1og\,X)^3 \,-\, 0.029984(1ogX)^4 \\ X &\geq V_{equipment} \cdot \sum_j C_j^{average} \cdot H_{cj} \\ X &\geq H_{cj} \cdot m_j \cdot t \end{split}$$

## • INHERENT SAFETY

$$F\&EI = 128.52 + 40.8 \left[ 1.2 \frac{Y(P_{operating})^2}{Y(P_{realive})} + G_2(V) \right]$$

$$G_2 = \frac{2.509x + 0.01545}{x + 0.6932}$$

$$1 < X < 9 \quad BTU \cdot 10^9$$

| aterial Factor                       | 24       |
|--------------------------------------|----------|
| General Process Hazards              |          |
| ase Factor                           | 1        |
| <b>Exothermic Chemical Reactions</b> | 0.3      |
| <b>Endothermic Processes</b>         | 0.4      |
| Material Handling and Transfer       | 0        |
| Enclosed or Indoor Process Units     | 0        |
| Access                               | 0        |
| Drainage and Spill Control           | 0        |
| eneral Process Hazards Factor (F1)   | 1.7      |
| Special Process Hazards              |          |
| ase Factor                           |          |
| Toxic Marial(s)                      | 0.6      |
| Sub-Atmospheric Pressure (<500       |          |
| mHg)                                 | 0        |
| Operation In or Near Flammable       |          |
| ange                                 |          |
| Tank Farms Storage Flammable         |          |
| quids                                | -        |
| Process Upset or Purge Failure       | -        |
| Always in Flammable Range            | 0.8      |
| Dust Explosion                       | 0        |
| Pressure                             | Equation |
| Low Temperature                      | 0        |
| Quantity of Flammable/Unstable       |          |
| aterial                              |          |
| Liquid or Gases in Process           | Equation |
| Liquids or Gases in Storage          | -        |
| Combustible Solids in Storage, Dust  |          |
| Process                              | -        |
| Corrosion and Erosion                | 0.75     |
| Leakage-Joints and Packing           | 0        |
| Use of Fired Equipment               | 1        |
| Hot Oil Heat Exchange System         | 0        |
| Rotating Equipment                   | 0        |
| pecial Process Hazads Factor (F2)    | 3.15     |
| ocess Unit Hazards Factor (F1xF2)=F3 | 5.355    |

## EQUIPMENT DESIGN

Reactor



## EQUIPMENT DESIGN

#### Reactor

$$\frac{dn_j}{dL} = Ar_j$$

$$\frac{dT}{dL} = \frac{Ua(T_a - T) - A\sum_{i=1}^{R} r_i \Delta H_i}{\sum_{j=1}^{S} n_j C_{pj}}$$

$$\frac{dP}{dL} = -\frac{G}{\rho g_c D_p} \left(\frac{1-\varepsilon}{\varepsilon^3}\right) \left[\frac{150(1-\varepsilon)\mu}{D_p} + 1.75G\right]$$

## EQUIPMENT DESIGN

#### Reactor





EQUIPMENT DESIGN





## Equipment design



#### **Distillation columns**

**Molokanov Equation** 

$$\frac{NP - N_{min}}{NP + 1} = 1 - \exp\left[\frac{1 + 54.4X}{11 + 117.2X} \cdot \frac{X - 1}{X^{0.5}}\right]$$

Kirkbride Equation

$$\frac{NR}{NS} = \left[\frac{z_{HK}}{z_{LK}} \cdot \frac{x_{LK,B}^2}{x_{HK,D}^2} \cdot \frac{B}{D}\right]^{0.206}$$

Fair correlation

$$A_{column} = \frac{M_V}{(\rho_L \cdot \rho_V)^{0.5}} \cdot \frac{1}{0.7} \cdot \frac{1}{C_o} \cdot \frac{A}{A_n} \cdot V_{real}$$

Economic evaluation

$$TAC\left(\frac{M\$}{year}\right) = (OPEX + CAPEX \cdot F) \cdot 10^{-6}$$

Economic evaluation



Vessel

**Catalyst cost** 

Cooler

**Tower** 

Trays

Condenser

Reboiler

coolingWaterCost SteamCost

 $Equipment_{CBM}^{update} = Equipment_{CBM} \cdot UpdateFactor$ 

 $Equipment_{CBM} = Equipment_{Cp0} \cdot FBM_{equipment}$ 

 $Equipment_{Cp0} = 10^{K_1 + K_2 \cdot \log_{10} X + K_3 [\log_{10} X]^2}$ 

$$FBM_{equipment} = B_1 + B_2 \cdot F_M \cdot F_P$$

Richard Turton, R. C. (s.f.). Analysys, Synthesis and Design of Chemical Processes.

# Multi-objective optimization algorithm



ε-constraint method

Pareto points  $(TAC_p, F\&EI_p)$ 

#### Pareto optimal frontier









#### Increase in the level of hazard

Min F&EI

Min TAC

|                     | Column1 | Column 2 |
|---------------------|---------|----------|
| D (m)               | 1.554   | 1.417    |
| NP                  | 24      | 55       |
| L (m)               | 18.007  | 38.128   |
| V (m <sup>3</sup> ) | 33.711  | 60.105   |

|          | Column1 | Column 2 |
|----------|---------|----------|
| D(m)     | 3.639   | 3.174    |
| NP       | 24      | 55       |
| L (m)    | 17.300  | 36.393   |
| $V(m^3)$ | 179.963 | 287.873  |

Point "c"

|                    | Column1  | Column 2   |
|--------------------|----------|------------|
|                    | Columnia | Coldinii 2 |
|                    |          |            |
| D(m)               | 2.195    | 1.946      |
| NP                 | 24       | 55         |
| $L\left( m\right)$ | 17.538   | 36.976     |
| $V(m^3)$           | 66.394   | 110.03     |

#### TAC and OPEX comparison among solutions









CAPEX distribution at the minimum TAC extreme solution





## **Conclusions**

- Methodology is useful to incorporate and quantify inherent safety into chemical plants design.
- A set of Pareto solutions are presented, there is not a unique optimal solution.
- In the case study, the most economic plant is not the safest inherently design according to F&EI methodology.
- An economic analysis has been carried out for the calculation economic objective.
- The applied optimization approach achieves the best design (equipment parameters and operation conditions) of a styrene production plant. That is to say, it is not just a styrene production plant feasible design, hence its importance.