

Homework 4

ME 5010

Mathematical Methods for Engineers

Submitted by:

Pushkar Mishra ME22RESCH11007

github_repository: https://github.com/mepushkar/Math-assngmt

Question 1:

a) The exact roots of the given polynomial are $\pm\sqrt{3}$ and -1. Thus with the Initial guess $P_0=2$ and tolerance $\epsilon=10^{-10}$ we converge to $\pm\sqrt{3}$ at 4^{th} iteration.

The error_ratio_2 is nearly a constant so we may say that Newton raphson has second order convergenve.

iteration	absolute_error	error_ratio_1	error_ratio_2	error_ratio_3
1	0.037179962			
2	0.000873003	0.023480466	0.63153551	16.985910748
3	0.000000499	0.000571064	0.654137117	749.295529697
4	0	0.000000326	0.654853289	1313541.86698098

Table for Q 1a)

- b) As there are three roots and the problem we are solving in this question is Newton Raphson root finding problem with $\,P_0\,$ as initial guess, we would have four (4) possible outcomes, namely
 - (1) The guess P_0 leads us to $-\sqrt{3}$
 - (2) or to -1
 - (3) or to $\sqrt{3}$
 - (4) if none of the above three destinations are reached the initial guess would diverge instead of converging to a particular root.

The figure shown below shows the root which is reached by starting the initial guess from -5 to 5 with an step-size of 0.2.

In the graph shown below, the destination to which a particular initial guess P_0 would lead is indicated by means of different coloured markers.

In the given range [-5,5] all the initial guesses lead to either of the roots, therefore there is no such initial guess P_0 for which Newton Raphson does not converge to a particular root.

As in the table above we can see that the value of error ratio 2 nearly remains constant, hence we may say that Newton Raphson has second order of convergence.

Question 2:

The Table shown below shows the data which was asked in the assignment the table includes the values rounded off to 5 decimal places due to 'aesthetic' reasons.

If anyhow more accuracy is desired code shared can be referred.

Non linear Newton-Raphson method is employed for solving the given set of equations as there are 3 unknowns and 3 equations and in this case we are getting 3 distinct roots. Hence the given set of equations has unique solution.

Iteration_No.	Infinity_norm_f	[f1 f2 f3]	vector_x [x1,x2,x3]
0	3	[-3. 3. 0.]	[1.0, 1.0, 1.0]
1	0.71	[0.629738 -0.28863 -0.708455]	[1.42857, 0.14286, 1.42857]
2	0.02	[0.000572 -0.000592 -0.015152]	[1.44011, 0.49305, 1.41331]
3	1.987236353251E-05	[2.0e-05 1.6e-05 1.8e-05]	[1.44226, 0.50001, 1.41421]
4	0	[0. 0. 0.]	[1.44225, 0.5, 1.41421]
5	1.7763568394002E-15	[-0. 00.]	[1.44225, 0.5, 1.41421]

Table showing Infinity norm of vector f, values of functions f and x after each iteration

The graph below shows us a variation between number of iterations and infinity norm of function values ([f1,f2,f3])

Infinity Norm vs Iteration Number

Question 3: all answers are in the writeup below

As it can be interpreted from the table below that:

- Error in simpsons in less than the trapezoidal rule.
- Error ratio in trapezoidal becomes nearly 4 which is 2² when step size is doubled so error reduces with order 2.
- Whereas in simpsons rule the error reduces at 4th order as ration attains a constant value of 16 i.e. 2⁴.
- $I_{exact}=2$.
- The graph below shows the reduction in error with increase in number of intervals **n.***** for aesthetic purpose The value upto 6th place of decimal are shown for more details refer code.
- Incase the exact solution is not known then we may look for the error ratio untill which the ratio becomes nearly constant.

n_value	Trapezoidal	Trapezoidal_e rror	error_rat io_t	Simpsons	Simpsons_err or	error_ratio _s
1	0	2		0	2	
2	1.570796	0.429204	4.659792	2.094395	0.094395	21.18754
4	1.896119	0.103881	4.131682	2.00456	0.00456	20.701793
8	1.974232	0.025768	4.031337	2.000269	0.000269	16.94006
16	1.99357	0.00643	4.007741	2.000017	0.000017	16.223806
32	1.998393	0.001607	4.00193	2.000001	0.000001	16.055292
64	1.999598	0.000402	4.000482	2	0	16.013783
128	1.9999	0.0001	4.00012	2	0	16.00344

Table for Q3

Trapezoidal vs Simpsons

Question 4:

S No.	Step_h	y_num6	Error	e_2h/e_h
1	1	16.1741666666667	0.576390148701666	3.09283855637344
2	0.5	16.5641939845268	0.186362830841556	3.49840026861121
3	0.25	16.6972859439607	0.0532708714076158	3.74249386546785
4	0.125	16.7363227582603	0.0142340571080553	3.87100722780494
5	0.0625	16.746879721457	0.00367709391132465	3.93567474810188
6	0.03125	16.7496225171484	0.000934298219917196	3.96791114674847
7	0.015625	16.750321351875	0.000235463493350352	3.98397795641787
8	0.0078125	16.7504977127588	5.91026094838298E-05	3.99199506575477
9	0.00390625	16.7505420100871	1.48052811965726E-05	3.99599908389922
10	0.001953125	16.7505531103422	3.70502617386137E-06	3.99800008018449
11	0.0009765625	16.7505558886484	9.26719884830618E-07	

Table showing the relation between error ratio for $y_{num}(6)$ and step-size h

- a) The handwritten solution of the first part is attached at the end of this pdf
- b) The final value $y_{num}(6)$ for h=0.5 can be seen from the table above.
- c) The code submitted in the zip file gives the table above and from the error ratio we can observe that it nearly approaches a constant ratio 2² upon reducing the step size to half, the error reduces 4 times hence we can say that with the help of error ratio that error reduces at second order.

Handwritten part

$$y_{01} = y_{0} + \left(\frac{1}{2} \times 1 + \frac{k_{2}}{2}\right) h$$

$$K_{1} = f(x_{0}, y_{0})$$

$$K_{2} = f(x_{0} + k_{1}, y_{0} + k_{1}, k_{1})$$

$$K_{3} = f(x_{0} + k_{1}, y_{0} + k_{2}, k_{1})$$

$$= (1 + \frac{2}{1.5}) = (1 + \frac{4}{3}) = \frac{7}{3}$$

$$y_{1} = 1 + \frac{k_{2}}{2} (K_{1} + k_{2})$$

$$y_{1} = 1 + \frac{0.5}{2} (K_{1} + k_{2})$$

$$y_{1} = 2.0833333333$$

$$f_{0x} = f(1.5 + 2.08333333333)$$

$$= 2.3888888889$$

$$k_{2} = f(2, 2.3888x h)$$

$$= 1.59722222$$

$$y_{2} = y_{1} + \frac{h}{2}(K_{1} + K_{2})$$

= BLORGHERHELLER 3.34027