



# Python pour l'Aménagement et l'Urbanisme







## Plan du cours

| Séance   | Contenu                                    | Objectifs                                                    |
|----------|--------------------------------------------|--------------------------------------------------------------|
| Séance 1 | Introduction à la programmation &          | Comprendre la notion de langage de programmation et          |
|          | Python                                     | mettre en place l'environnement Python nécessaire pour       |
|          | - Installation et configuration de         | développer des projets en urbanisme.                         |
|          | l'environnement                            |                                                              |
| Séance 2 | Variables, types de données et opérations  | Maîtriser les bases du calcul et du traitement de chaînes de |
|          | - Manipulations de nombres et de textes    | caractères pour préparer des données d'aménagement.          |
| Séance 3 | Conditions et structures de contrôle       | Implémenter la logique conditionnelle dans des programmes    |
|          | - Utilisation des instructions             | afin de modéliser des scénarios d'analyse urbaine.           |
|          | conditionnelles (if, elif, else)           |                                                              |
| Séance 4 | Boucles for et while                       | Automatiser des opérations répétitives pour le traitement de |
|          | - Utilisation des boucles pour automatiser | données urbaines en masse.                                   |
|          | les répétitions                            |                                                              |
|          | Fonctions : définition et utilisation      | Structurer et modulariser le code en créant des fonctions    |
| Séance 5 | - Création et appel de fonctions           | pour favoriser la réutilisation et la maintenance.           |
|          | réutilisables                              |                                                              |
| Séance 6 | Listes, tuples et dictionnaires            | Manipuler et organiser efficacement des collections de       |
|          | - Gestion d'ensembles de données           | données issues du domaine urbain (par exemple, statistiques  |
|          | urbaines simples                           | démographiques ou inventaires d'équipements).                |

| Séance    | Contenu                                   | Objectifs                                                     |  |
|-----------|-------------------------------------------|---------------------------------------------------------------|--|
| Séance 7  | Introduction à NumPy                      | Utiliser NumPy pour traiter rapidement de grands ensembles    |  |
|           | - Opérations sur des tableaux de données  | de données numériques liés à l'aménagement.                   |  |
|           | numériques                                |                                                               |  |
| Séance 8  | Introduction aux fichiers CSV et Pandas   | Importer, explorer et transformer des données urbaines (ex. : |  |
|           | - Lecture et écriture de fichiers         | données de population, équipements publics) grâce à Pandas.   |  |
|           | - Traitement de jeux de données           | Étude de cas : Analyse des équipements publics d'une          |  |
|           |                                           | commune.                                                      |  |
| Séance 9  | Visualisation de données avec Matplotlib  | Réaliser des visualisations (graphiques, histogrammes,        |  |
|           | - Création de graphiques pour illustrer   | courbes) afin de présenter des résultats d'analyse de manière |  |
|           | des analyses                              | claire et impactante.                                         |  |
| Séance 10 | Analyse spatiale avec GeoPandas           | Exploiter GeoPandas pour traiter et analyser des données      |  |
|           | - Gestion de données géospatiales         | géographiques de régions et quartiers, en vue d'études        |  |
|           | (formes, coordonnées)                     | d'aménagement.                                                |  |
|           | Cartographie interactive avec Folium      | Développer des cartes interactives pour présenter des         |  |
| Séance 11 | - Création de cartes interactives pour    | analyses de quartiers et de zones urbaines de manière         |  |
|           | visualiser des projets urbains            | dynamique et intuitive.                                       |  |
|           | Mini-projet ou QCM final                  | Mettre en application l'ensemble des compétences acquises     |  |
| Séance 12 | - Projet pratique : Analyse d'un quartier | en réalisant une étude de cas sur un quartier, incluant la    |  |
|           | marocain à partir de données réelles      | collecte, l'analyse et la visualisation des données, afin de  |  |
|           |                                           | présenter un projet d'aménagement urbain.                     |  |



#### **Formulaire**

https://forms.gle/BjjTy1pfq85tDW7V6





## Séance 1 : Introduction à la programmation & Python

#### **Objectifs:**

- Comprendre ce qu'est un langage de programmation
- Découvrir Python et son usage dans l'aménagement et l'urbanisme
- Installer Python et un environnement de travail
- Écrire et exécuter son premier programme Python

Qu'est-ce qu'un langage de programmation ?



## Qu'est-ce qu'un langage de programmation ?

Un langage de programmation est un langage utilisé pour donner des instructions à un ordinateur afin qu'il effectue des tâches spécifiques.

C'est un **moyen de communication** entre l'humain (le programmeur) et la machine (l'ordinateur).

```
# checking response.status_code (if you get 502, try remains to come)

if response.status_code != 200:
    print(f"Status: {response.status_code} - Try remains to come)

else:
    print(f"Status: {response.status_code} \ - Try remains to come)

# using BeautifulSoup to parse the response object

# using BeautifulSoup(response.content, "html.argum")

soup = BeautifulSoup(response.content, "html.argum")

# finding Post images in the soup

# finding Post images in the soup

images = soup.find_all("img", attrs=(alt": "Most amm"))

# downloading images

# downloading images

# downloading images
```

## Pourquoi utiliser un langage de programmation ?

- ✓ Un ordinateur ne comprend que des instructions précises.
- Ine comprend pas le langage humain, donc on utilise des langages structurés, avec des règles.
- Ces langages sont ensuite traduits (compilés ou interprétés) en langage machine (des 0 et des 1).

## Langages populaires:

- ✓ Python : simple et facile à apprendre (idéal pour les débutants).
- ✓ Java : souvent utilisé pour les applications d'entreprise.
- ✓ JavaScript : pour les sites web interactifs.
- ✓ C / C++ : rapides, utilisés dans les systèmes et logiciels embarqués.
- ✓ R : pour les statistiques et l'analyse de données.

#### Chaque langage a ses spécificités :

- ✓ Certains sont **plus faciles à apprendre**.
- ✓ D'autres sont faits pour des usages plus techniques ou plus proches du matériel.





## **Top 10 des langages de programmation de 2025**



| Jan 2025 | Jan 2024 | Change | Programming Language | Ratings | Change |
|----------|----------|--------|----------------------|---------|--------|
| 1        | 1        |        | Python               | 23.28%  | +9.32% |
| 2        | 3        | ^      | G C++                | 10.29%  | +0.33% |
| 3        | 4        | ^      | Java                 | 10.15%  | +2.28% |
| 4        | 2        | ~      | <b>©</b> c           | 8.86%   | -2.59% |
| 5        | 5        |        | <b>⊙</b> C#          | 4.45%   | -2.71% |
| 6        | 6        |        | JS JavaScript        | 4.20%   | +1.43% |
| 7        | 11       | *      | -so Go               | 2.61%   | +1.24% |
| 8        | 9        | ^      | SQL SQL              | 2.41%   | +0.95% |
| 9        | 8        | •      | VB Visual Basic      | 2.37%   | +0.77% |
| 10       | 12       | ^      | Fortran              | 2.04%   | +0.94% |



## **Python**

#### Qu'est-ce que Python

- ✓ Python est un langage de programmation très populaire, simple à lire et à écrire.
- ✓ Créé en 1991, il est utilisé dans **de nombreux domaines** : web, intelligence artificielle, traitement de données, automatisation, géomatique, urbanisme, etc.

Pourquoi Python est-il populaire?

| Avantages          | Détails                                                      |
|--------------------|--------------------------------------------------------------|
| Simple             | Syntaxe claire, facile à lire                                |
| Polyvalent         | Utilisé dans la science des données, le web, la cartographie |
| Rapide à apprendre | Parfait pour les débutants                                   |
| Communauté active  | Beaucoup de ressources, d'outils, d'aides en ligne           |









#### Pourquoi Python pour l'aménagement et l'urbanisme ?

- ✓ Analyse de données urbaines (densité, mobilité, accessibilité...)
- ✓ Traitement de données géographiques avec des bibliothèques comme geopandas, shapely, folium,
   QGIS + Python
- ✓ Modélisation urbaine (ex. : analyser la croissance d'un quartier)
- ✓ Automatisation de tâches répétitives (extraction de données, génération de rapports, etc.)





#### Installation simple - Étape par Étape

#### **Télécharger Python**

Aller sur le site officiel : <a href="https://www.python.org/downloads/">https://www.python.org/downloads/</a>

- ✓ Le site détecte automatiquement votre système (Windows, macOS, Linux).
- ✓ Cliquez sur "Download Python 3.x.x" (ex : 3.13.3)

Pour les utilisateurs Windows

- ✓ Ouvrir le fichier téléchargé python-3.x.x.exe
- ✓ Cochez la case "Add Python to PATH"
- ✓ Cliquez sur "Install Now"
- ✓ Une fois terminé, cliquez sur "Close"



#### Installation simple - Étape par Étape

#### **Tester l'installation:**

- ✓ Ouvrir le menu Démarrer → chercher cmd
- ✓ Écrire dans la console :





#### **Environnement de Développement Intégré (IDE)**

Un **Environnement de Développement Intégré** (en anglais *Integrated Development Environment* ou **IDE**) est un **logiciel** ou un **ensemble d'outils** regroupés dans une interface unifiée, qui permet aux développeurs de **concevoir**, **écrire**, **tester**, **déboguer et exécuter** des programmes informatiques de manière efficace



**Pycharm** 



**VS** Code



Thonny



Jupyter Notebook



## Installation de Python Jupyter Notebook

#### Pourquoi l'utiliser?

- ✓ Interface claire : on écrit du texte et du code dans le même document.
- ✓ Permet d'ajouter des **explications en Markdown**, des **graphiques**, des **résultats en temps réel**. 

  □ Jupyter plot\_show\_
- ✓ Idéal pour tester, expérimenter, faire des démonstrations ou documenter un projet.







#### Installation avancée avec Anaconda



Anaconda: Une distribution Python clé en main

- ✓ Distribution Python complète :
   Anaconda installe Python et une vaste bibliothèque de packages prédéfinis. (voir la liste de packages Anaconda)
- ✓ Gestion simplifiée des packages avec Conda : L'outil Conda permet de mettre à jour et installer facilement les librairies dont vous avez besoin pour vos développements.



#### Installation avancée avec Anaconda

#### Télécharger Anaconda



Rendez-vous sur le site officiel d'Anaconda : <a href="https://www.anaconda.com/products/distribution">https://www.anaconda.com/products/distribution</a>

Téléchargez la version pour votre système d'exploitation (Windows, macOS, ou Linux).

- ✓ Choisissez la version **Graphique** (pour Windows, c'est un fichier .exe) pour une installation facile.
- ✓ Choisissez la version Python 3.x (de préférence la plus récente).





#### Installation avancée avec Anaconda

#### **Installation sur Windows**

- 1. Lancez l'installateur que vous avez téléchargé (Anaconda3-xxx-Windows-x86\_64.exe).
- 2. Suivez les étapes d'installation : Cochez la case "Add Anaconda to my PATH environment variable" (recommandé pour simplifier l'accès).
- 3. Choisissez l'option "Install for me only" pour une installation personnalisée (ou "All users" si nécessaire).
- 4. Cliquez sur "Install" et attendez que l'installation se termine.
- 5. Cliquez sur "Next" et "Finish" pour terminer.





#### Vérification de l'installation

Après l'installation, vérifiez que Anaconda et Python sont bien installés en ouvrant un terminal ou une invite de commande et en tapant :

```
Command Prompt × + v - - - X

Microsoft Windows [Version 10.0.22631.5126]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Amine>conda --version
```





#### **Utilisation de Anaconda Navigator**

Anaconda inclut **Anaconda Navigator**, une interface graphique qui permet de gérer facilement vos environnements Python et d'installer des bibliothèques.

- 1. Ouvrez Anaconda Navigator à partir du menu Démarrer (Windows) ou via la recherche macOS.
- 2. Vous pouvez maintenant utiliser Jupyter Notebook, PyCharm, Spyder, ou VS Code pour coder en Python.







#### Créer un environnement virtuel avec Anaconda

Il est recommandé de travailler avec des **environnements virtuels** pour éviter les conflits de dépendances entre les projets.

✓ Ouvrez un terminal et tapez la commande suivante pour créer un nouvel environnement Python :

```
Command Prompt × + v - - - ×

Microsoft Windows [Version 10.0.22631.5126]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Amine>conda create --name monenv python=3.13
```





#### Créer un environnement virtuel avec Anaconda

Pour activer l'environnement :

```
Command Prompt × + v - - - ×

Microsoft Windows [Version 10.0.22631.5126]

(c) Microsoft Corporation. All rights reserved.

C:\Users\Amine>conda activate monenv
```





#### Installer des packages avec Anaconda

Anaconda vous permet d'installer facilement des packages et des bibliothèques avec conda :

```
Command Prompt × + v - - - X

Microsoft Windows [Version 10.0.22631.5126]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Amine>conda install numpy matplotlib pandas geopandas folium
```





#### **Test final**

Pour tester l'installation d'Anaconda et Python, lancez **Jupyter Notebook** via Anaconda Navigator et créez un nouveau notebook Python. Tapez : **print("Bonjour INAU")** 





