

2. Linear Activation Function	
$\frac{2o}{2} = x$ $\frac{2}{2} = 2e - i \cdot 3e + be$ $\frac{2}{2} = 4e + (2e)$	
If ϕ_{ℓ} is the identity function them any equivalent to a 1-layer neural network.	notwork with depth L>1 is
Proof:	
	23 = 22 · B3 + 12
2 e = \$ e (\bar{2} e)	= (2, B2 + b2) · B3 + b3
$=$ id $(\tilde{\lambda}_{\ell})$	$= ((2_0 \cdot \beta_1 + b_1) \cdot \beta_2 + b_2) \cdot \beta_3 + b_3$
= id (2 _{e-1} ·Be 4 be)	= (XB, B2+b1B2+b2) ·B2+b3
= 2 l-1. Be + be	= X B,
Let l be greater than I	5,323+b283+b2
Ze = Ze-1 Betbe = X. II Bit Di II Bit	
= X · 11 B; + 2 b; 11 Bj+	1
Now we define $B := \prod_{i=1}^{\ell} B_{\ell}$ and I	
NOW We define 15 - 11 be and	
2e = X·B+b	
This is the same expression as 2,=	
	X · B, +b,
So in this case any network with	clepth L > 1 is equivalent
to a 1-layer neural network	