Error Term is the $(n+1)^{th}$ term. Root Finding • Find p such that f(p) = 0. Generic Stopping Criterion 1. $\frac{|p_n - p_{n-1}|}{|p_n|} \le \mathcal{E}; p_n \ne 0$: relative error • Ensures small $f(p_n)$ • p_n may differ significantly from p3. Have a fixed number of iterations 4. (bisection) $\frac{b_n - a_n}{2} \le \mathcal{E}$ or $|p_n - p_{n-1}| < \mathcal{E}$ • Ensures p_n is within \mathcal{E} of p• Does not ensure small $f(p_n)$ Bisection Method: • Conditions: $f(x) \in C[a, b]$; f(a) and f(b) have opposite signs. • Midpoint: $x = \frac{a+b}{2}$

Fig. 13. The following function of the function of the following function of the following function of the following function of the function of the

Things to Remember

Error

• Error: $p - \hat{p}$

• Abs. Err: $|p - \hat{p}|$

Significant Digits

 $\frac{|p - \hat{p}|}{1 - 1} \le 5 \times 10^{-t}$

(and accuracy).

How to Reduce Errors

duce operations

representation of a number.

• Rel. Err: $\frac{|p-\hat{p}|}{p}$ (for accuracy)

• a_{ij} is the *i*th row and *j*th column of A.

An approximation \hat{p} has t significant digits if:

Catastrophic Cancellation (Roundoff)

• Reformat the formula to avoid roundoff

• Reduce num. of ops (avoid rounding)

Alternative Quadratic Formula

Algorithms and Convergence

• Unstable \rightarrow errors grow exponentially

 $k\beta_n$, $\beta_n \to 0$ then α_n is $\mathcal{O}(\beta_n)$

 \bullet Stable \rightarrow errors grow linearly

 kh^p then $f(h) = L + \mathcal{O}(h^p)$

Rate of Convergence

When subtracting nearly equal numbers, the relative

error is large, and you lose a lot of significant digits

- Nested Arithmetic: Rewrite polynomials to re-

 $x^3 - 6.1x^2 + 3.2x \rightarrow ((x - 6.1)x + 3.2)x$

 $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-2c}{b\mp\sqrt{b^2-4ac}}$

use the alt. form when |-b| is close to $+\sqrt{b^2-4ac}$

• Chopping is cheaper than rounding.

• $\pm 0.d_1d_2...d_k \times 10^n$ is the decimal floating point

$$\frac{|P^{n}-P^{n}-1|}{|p_{n}|} \le \mathcal{E}; p_{n} \ne 0 : \text{relative error}$$
 $|f(p_{n})|| \le \mathcal{E}$

$$f(a)$$
 and $f(b)$ have opposite signs.

• Requires f''(p) for quadratic convergence.

• Requires f'(p) to exist.

• Error Formula:
$$\frac{b-a}{2^n}$$

Newton's Method

• Faster than bisection, quadratic. We follow the tangent line at p_{n-1} to its x-intercept.

1. Start with initial guess
$$p_0$$
 and p_1
2. $p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1})f(p_{n-1})}$

• For functions, if
$$\lim_{h\to 0} f(h) = L$$
 and $|f(h)| \le kh^p$ then $f(h) = L + \mathcal{O}(h^p)$

1.
$$||A|| \ge 0$$

2. $||A|| = 0 \iff A = 0$
3. $||\alpha A|| = |\alpha| ||A||$

Secant Method

Fixed Points

Converges if:

Vector Norms

• $l_1: ||x||_1 = \sum x_i$

Vector Distances

Matrix Norms

• l_{α} distance: $||x-y||_{\alpha}$

Norms

• Does not require f'(p) to exist.

1. Start with initial guess p_0

3. Stop when $|p_n - p_{n-1}| < \mathcal{E}$

• Faster than Bisection, order $\phi \approx 1.618$

1. Start with initial guess p_0 and p_1

 $2. p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1}p_{n-2})}{2}$

2. Generate a sequence $p_n = g(p_{n-1})$

 $1.\:g:[a,b]\to [a,b]$ is continuous

3. f(x) = 0 can be rewritten as g(x) = x

• $l_2 : ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ (Euclidean)

• $l_{\infty} : ||x||_{\infty} = \max\{|x_1|, \cdots, |x_n|\} (\infty)$

• Triangle Inequality: $||x + y|| \le ||x|| + ||y||$

 $2. \forall x \in [a, b] : |g'(x)| \le k < 1$

 $f(p_{n-1})f(p_{n-2})$

• A fixed point of f is a point p such that f(p) = p.

• Error: $\mathcal{O}(q^n)$, for some q, faster when q is small

2.
$$||A|| = 0 \iff A = 0$$

3. $||\alpha A|| = |\alpha|||A||$
4. $||A + B|| \le ||A|| + ||B||$

2. For $l_2: ||A||_2 = \sqrt{\rho(A^T A)}$

tually every $x^{(k)}$ is within \mathcal{E} of x

• Scalability: $\|\alpha x\| = |\alpha| \|x\|$

$$|B| \leq |A| + |B|$$

$$|B| \leq |A| + |B|$$

$$|A| = \max |A|$$

1. For any natural norm $\|\cdot\|_{\alpha}: \rho(A) \leq \|A\|_{\alpha}$

defined as a function that satisfies:

• **Def.**
$$||A + B|| \le ||A|| + ||B||$$

• **Def.** $||A||_* = \max_{\|x\|=1} ||Ax||_*$ where $||Ax||$ is any vec-

• The Natural Norm $\|\cdot\|_*$ for $A, B \in \mathbb{R}^{n \times n}$; $\alpha \in \mathbb{R}$ is

•
$$l_{\infty}: \|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|$$
 (row sum)
Special Properties

Vector Sequence Convergence • $\{x^{(k)}\}$ converges to x for any small $\mathcal{E} > 0$ even-

Eigenvalues and Eigenvectors **E.value** (λ): Scalar s.t. $A\vec{x} = \lambda \vec{x}$

E.vector (\vec{x}) : Nonzero vector only scaled by ASpectral Radius: $\rho(A) = \max\{|\lambda_i|\}$

$1. \det(A - \lambda I) = 0 \iff \lambda \text{ is an eigenvalue. Solve}$ the characteristic polynomial for λ . 2. $\forall \lambda [(A - \lambda I)\vec{x} = 0 \iff \vec{x} \text{ is an eigenvector}]$

3. If $\rho A < 1$, A is <u>convergent</u> $\Longrightarrow \lim_{k \to \infty} A^k = 0$ Linear Systems - Pivoting Strategies

If the pivot is small, large errors can occur. Pivoting helps maintain numerical stability.

Partial Pivoting Choose the largest element in the current column

(below or at the pivot) to avoid dividing by a small 1. For $k = 1 \dots n - 1$:

1. For
$$k = 1 \dots n - 1$$
:

• Find $r = \underset{k \leq i \leq n}{\arg \max\{|a_{ik}|\}}$

• If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$

• Continue Gaussian Elimination as usual Scaled Partial Pivoting

 $s_i = \max_j |a_{ij}|$

Handles rows with vastly different magnitudes by normalizing. 1. For each row $i = 1 \dots n$, compute the scale factor:

2. For pivot column k, choose the row r such that $\frac{|a_{rk}|}{|a_{rk}|}$ is maximal for r > k

Most stable but most expensive. Swap both rows

3. If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$

4. Proceed with Gaussian Elimination

and columns.

- matrix $A_{k:n,k:n}$

Full Pivoting

- 1. At step k, find the largest element $|a_{ij}|$ in the sub-
- 2. Swap row k with row i, and column k with column
- 3. Update row and column permutations 4. Continue Gaussian Elimination

Linear Algebra

• To multiply $A \cdot B$, dot-product the rows of A by the columns of B.

• $AA^{-1} = A^{-1}A = I$

• To find A^{-1} , row reduce the aug. matrix [A|I].

• A^T is A flipped over the main diagonal.

Determinant

• $\det(A) \neq 0 \implies \begin{cases} A^{-1} & \text{exists} \\ Ax = b & \text{has a unique solution} \end{cases}$ • Cofactor Expansion (Laplace Expansion): $\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(A_{ij})$

Matrix Factorization

LU Decomposition If Gaussian elimination can be performed without row exchanges: A = LU, where L is lower triangular

with unit diagonal entries and U is upper triangular.

To solve Ax = b: 1. Solve Ly = b via forward substitution. 2. Solve Ux = y via backward substitution.

Cost: $O(n^3)$ for factorization, $O(n^2)$ per solve. Row Swaps: If row swaps are needed, introduce a

• Formed by permuting rows of I_n , So there is ex-

permutation matrix $P: PA = LU \Rightarrow A = P^{-1}LU$, Then solve: LUx = PbSpecial Matrices

actly one entry of 1 per row and column. • $P^{-1} = P^{\top}$

- A matrix A is singular if det(A) = 0.
- Not invertible; Ax = b has either no solution or
 - infinitely many.

Permutation Matrices

 \bullet PA permutes rows of A.

- **Banded Matrices**
- Nonzero entries confined to a diagonal band.
- If $|i-j| > w \Rightarrow a_{ij} = 0$, bandwidth = w. · Common in finite difference methods and sparse

linear systems. Tridiagonal Matrices

- Banded matrix with w = 1 (main ± 1 diagonals). · Nonzero entries only on the main diagonal and the
- first sub/super diagonals.
- Diagonally Dominant (DD / SDD)
- \bullet A is strictly diagonally dominant if: $|a_{ii}| > \sum_{j \neq i} |a_{ij}| \quad \forall i$
- A is weakly diagonally dominant of $|a_{ii}| \geq ...$
- Guarantees LU factorization without row swaps. • Guaranteed convergence of Jacobi and G-S.

Symmetric Positive Definite (SPD) • A is positive definite if $\forall x \neq 0 : x^T A x > 0$

 $\forall k \det \left(A_{1:k,1:k} \right) > 0$

Also: $A = LDL^T$

- All eigenvalues are positive. • All leading principal minors are positive.
- Cholesky factorization: $A = LL^T$ lets us solve Ax = b in $O(n^2)$ time.

Iterative Methods for Linear Systems

Convergent Matrix Theorem

The following statements are equivalent:

- (i) A is convergent
- (ii) $\rho(A) < 1$ (nec + suf for Jacobi and G-S)
- (iii) $\forall x : \lim_{n \to \infty} A^n x = 0$
- (iv) $\forall \alpha : \lim_{n \to \infty} ||A^n||_{\alpha} = 0$

Jacobi Method A = D + L + U

$$x^{(k+1)} = \underbrace{D^{-1}(L+U)}_{T_J} x^{(k)} + \underbrace{D^{-1}b}_{C_J}$$

- Requires $a_{ii} \neq 0$. Always permute so a_{ii} big.
- Uses previous iteration values for all components.
- Converges if A strictly diagonally dominant or

Gauss-Seidel Method A = D + L + U

$$x^{(k+1)} = \underbrace{(D+L)^{-1}U}_{T_{GS}} x^{(k)} + \underbrace{(D+L)^{-1}Lb}_{C_{GS}}$$

- Iteration uses most recent updates:
- Often converges faster than Jacobi.
- Also converges under strict diagonal dominance

Numerical Interpolation

Lagrange Interpolation

Constructs a polynomial P(x) of degree $\leq n$ through points $(x_0, y_0), \dots, (x_n, y_n)$:

$$P(x) = \sum_{j=0}^{n} y_j L_j(x)$$
$$L_j(x) = \prod_{\substack{0 \le i \le n \\ i \ne j}} \frac{x - x_i}{x_j - x_i}$$

Error: If $f \in C^{n+1}[a,b]$, then

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

for some $\xi \in [a, b]$

Newton's Divided Differences

Efficient and updatable polynomial form:

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Recursive definition:

- zeroth: $f[x_0] = f(x_0)$

- first: $f[x_0, x_1] = \frac{f(x_1) f(x_0)}{x_1 x_0}$ kth: $f[x_i, \dots, x_{i+k}] = \frac{f[x_{i+1}, \dots, x_{i+k}] f[x_i, \dots, x_{i+k-1}]}{x_{i+k} x_i}$

Neville's Method

Recursive algorithm to evaluate P(x) at a point:

$$P_{i,j}(x) = \frac{(x - x_i)P_{i+1,j}(x) - (x - x_j)P_{i,j-1}(x)}{x_j - x_i}$$

Returns P(x) only — not the polynomial form.

Hermite Interpolation

Matches both values and derivatives: - Duplicate nodes in divided difference table. - Derivative at a node: $f[x_i, x_i] = f'(x_i)$.

Cubic Spline Interpolation

Piecewise cubic $S_i(x)$ defined on $[x_i, x_{i+1}]$:

- S(x), S'(x), and S''(x) are continuous.
- Natural spline: $S''(x_0) = S''(x_n) = 0$.
- Solve a tridiagonal linear system for coefficients.

Parametric Curves

For 2D/3D data: interpolate x(t), y(t), z(t) independently. Used in animation and CAD. Preserves geometric continuity.

Numerical Integration

Trapezoidal Rule

• Approximates f(x) with a linear polynomial over

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} [f(x_0) + f(x_1)]$$

• Composite version over n subintervals $(h = \frac{b-a}{n})$:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(x_0) + 2 \sum_{j=1}^{n-1} f(x_j) + f(x_n) \right]$$

• Error: $-\frac{(b-a)^3}{12n^2}f^{(2)}(\xi)$ for some $\xi \in [a,b]$

• Approximates f(x) with a quadratic polynomial:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

• Composite version (even n):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f(x_0) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \right]$$

• Error: $-\frac{(b-a)^5}{180n^4}f^{(4)}(\xi)$ for some $\xi\in[a,b]$

ODE Initial Value Problems

Euler's Method

$$w_{n+1} = w_n + h f(t_n, w_n)$$

Error: $O(h)$

Modified Euler Method (Heun's)

$$w_{n+1} = w_n + \frac{h}{2} [f(t_n, w_n) + f(t_{n+1}, w_n + hf(t_n, w_n))]$$

Error: $O(h^2)$

Midpoint Method

$$w_{n+1} = w_n + hf\left(t_n + \frac{h}{2}, w_n + \frac{h}{2}f(t_n, w_n)\right)$$

Error: $O(h^2)$

Runge-Kutta Method (RK4)

$$k_1 = hf(t_n, w_n)$$

$$k_2 = hf\left(t_n + \frac{h}{2}, w_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(t_n + \frac{h}{2}, w_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(t_n + h, w_n + k_3)$$

$$w_{n+1} = w_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Error: $O(h^4)$