Eigenvalues and Eigenvectors

Learning Objectives:

- 1. Calculate eigenvalues, eigenvectors, and eigenspaces of a square matrix
- 2. Describe the geometric interpretation of eigenvectors under transformation

1 Eigenvectors

Definition: An **eigenvector** of an $n \times n$ matrix A is a nonzero vector \mathbf{x} such that _____ for some scalar λ . The scalar λ is called the **eigenvalue** corresponding to \mathbf{x} .

Example 1. Why is it important that we require $\mathbf{x} \neq 0$?

Example 2. Let
$$A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$$
 and $\mathbf{u} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Are \mathbf{u} and \mathbf{v} eigenvectors of A ?

Example 3. What is the geometric interpretation of eigenvectors?

Example 4. Show that 7 is an eigenvalue of $A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$.

Remark: In the next section we will see how to find the right λ without being told what it is.

2 Eigenspace

Example 5. What connections are there between eigenvectors and subspaces?

Definition: The **eigenspace** of A corresponding to the eigenvalue λ is the subspace corresponding to the set of all solutions to _____

Example 6. Let $A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}$. An eigenvalue is 2. Find the dimension of the corresponding eigenspace.

Example 7. If
$$A = \begin{pmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{pmatrix}$$
, then what are the eigenvalues of A ? **Hint:** When does $A - \lambda I$

Theorem: The eigenvalues of a triangular matrix are

Theorem: If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvalues corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_r$, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.

Example 8. T/F: An $n \times n$ matrix can have at most n eigenvalues.