LAB 9: DATABASES FOR BIOLOGICAL INFORMATION LARRY HELSETH, PHD & JASON EDELSTEIN

3/13/19

March 13, 2019

Putting content into a database

- 2
- □ Using bds-files/chapter13 content
- > Create a new DB: sqlite3 practice.db
- Create a schema:
 CREATE TABLE variants(
 id integer primary key,
 chrom text,
 start integer,
 end integer,
 strand text,

name text);

In today's lecture, when you see the arrow head bullet point please execute these commands on your VM.

Adding content to table

- Follow syntax like:
 INSERT INTO tablename (column1, column2)
 VALUES (value1, value2);
 - INSERT INTO variants(id, chrom, start, end, strand, name)
 VALUES(NULL, "16", 48224287, 48224287, "+", "rs17822931");
 - **start** and **end** are Integers. Use quotes for strings.
 - Confirm insertion by "SELECT * FROM variants;"<enter>:

```
        sqlite> SELECT * FROM variants;

        id
        chrom
        start
        end
        strand
        name

        1
        16
        48224287
        48224287
        +
        rs17822931
```

Let's install pglllAdmin on your VM

- 4
- Install pg3admin on your VM using:
 - > sudo yum install pgadmin3
 - > sudo su postgres
 - \password
 - pass
 - exit
 - Start pgAdminIII from menu
 - Click the "plug" to connect then configure by clicking on "Server Groups" and adding msbi32400lab5 and localhost

Create your oncokb database

- 5
- □ Download Files/Lab9/oncokb.dump from Canvas
- □ From your VM:
 - createdb oncokb
 - □ psql oncokb < oncokb.dump

MSBI 32400 - Introduction to Bioinformatics 3/13/19

Use pgAdminIII to browse data

- 6
- Double click on msbi32400lab5 to expand
- Expand the Databases, then double click on "oncokb"
- Expand :schema" then "public" then expand "Tables" to view tables
- Click on first table (alteration) to view SQL create statement
- Ctrl-click on alteration, select "View Data" then "View Top 100 Rows"
- Can also choose "Scripts" then "SELECT" to build a SELECT statement against that table

Running same query from command line

7

- psql oncokb OR mysql oncokb -p (use same pw as VM)
- SELECT id, uuid, entrez_gene_id, alteration, name, alteration_type, consequence, ref_residues, protein_start, protein_end, variant_residues FROM alteration WHERE entrez_gene_id = 3845;
 - How many rows did you retrieve (you may have to keep hitting the space bar to show next screen)? Include this in your README

MSBI 32400 - Introduction to Bioinformatics 3/13/19

Query UCSC MySQL from VM

- □ See
 https://genome.ucsc.edu/goldenpath/help/mysql.htm
 https://genome.ucsc.edu/goldenpath/help/mysql.htm
- □ **bedtools genomecov** gives us a hint to use the UCSC Genome Browser's MySQL database to extract chromosome sizes:
- mysql --user=genome --host=genomemysql.cse.ucsc.edu -A -e "select chrom, size from hg19.chromlnfo" > hg19.genome
 - ➤ How many lines are in the file?

Backup your data with DUMP □ From the command line (not inside psql or mysql) run: pg dump mydatabase > mydatabase.dump (or .SQL) mysqldump mydatabase > mydatabase.dump (or .SQL) Contains SQL to recreate your database and insert data Check help/Google for dumping data only, table only, dump without database owner, etc. □ Common during development to run: pg_dump dbname > dbname.SQL Can also use **GUI tools** dropdb dbname createdb dbname ■ psql dbname < dbname.SQL</p> MSBI 32400 - Introduction to Bioinformatics 3/13/19

SQLite dump

11

- □ Buffalo has an example of using ".dump" in sqlite3 from the end of Chapter 13:
- Can use this to backup and duplicate your database:
 - > sqlite3 variants.db ".dump" > dump.sql
 - sqlite3 variants-duplicate.db < dump.sql</p>

MSBI 32400 - Introduction to Bioinformatics 3/13/19

Lab

12

- Create /data/lab9 then bin, doc, data, src & results
- Copy files from the /data/bds-files/chapter13-outof-memory directory to data/lab9/data

Another Buffalo example

13

Files at /data/bds-files/chapter-13-out-of-memory/code-examples

- From /data/labx/data/code-examples, run python create_table.py
 - Run Is -Itr to see what was created
- Run python load_variants.py variants.txt
- ➤ View: sqlite3 variants.db
 - Note .header on and .mode column improve readability

MSBI 32400 - Introduction to Bioinformatics 3/13/19

In the lab

14

- Today we'll build a table and import the SnpSift extracted data from Lab 7:

 /data/lab7/results/hgvs_test_cases_snpEff.clinvar.E

 xtracted
- > SQL build script in Lab9 folder on Canvas

FROM LAB 7: Extract data from VCF using SnpSift

15

□ java -Xmx2G -jar /data/snpEff/SnpSift.jar extractFields -s
',' -e '.' /data/lab7/results/hgvs_test_cases_snpEff.clinvar.vcf
CHROM POS REF ALT ID "ANN[*].ALLELE" "ANN[*].EFFECT"
"ANN[*].IMPACT" "ANN[*].GENE" "ANN[*].FEATURE"
"ANN[*].FEATUREID" "ANN[*].BIOTYPE" "ANN[*].RANK"
"ANN[*].HGVS_C" "ANN[*].HGVS_P" "ANN[*].CDNA_POS"
"ANN[*].CDNA_LEN" "ANN[*].AA_LEN" "ANN[*].DISTANCE"
"LOF[*].GENE" "LOF[*].NUMTR" "LOF[*].PERC" CLNREVSTAT
RS CLNDNINCL ORIGIN MC CLNDN CLNVC CLNVI AF_EXAC
AF_ESP CLNSIG CLNSIGINCL CLNDISDB GENEINFO
CLNDISDBINCL AF_TGP CLNHGVS SSR >
/data/lab7/results/hgvs_test_cases_snpEff.clinvar.Extracted

MSBI 32400 - Introduction to Bioinformatics 3/13/19

Build and populate your database

16

From /data/labx/data

- cp -p
 /data/lab7/results/hgvs_test_cases_snpEff.clinvar.Extracted .
 (or Download)
- EDIT the copy of hgvs_test_cases_snpEff.clinvar.Extracted to REMOVE FIRST ROW
 - > Open in vi, use "dd" command, then Esc :wq to save changes
- createdb lab9db
- psql lab9db
- lab9db# \i create_variants.sql
- lab9db# \copy variants FROM 'hgvs_test_cases_snpEff.clinvar.Extracted' WITH DELIMITER E'\t'

Now we can ask questions:

17

- SELECT chr, pos, snp_id, rs, af_exac, ann_gene, ann_effect, ann_impact, ann_feature, ann_hgvs_c, ann_hgvs_p FROM variants WHERE clnsig LIKE '%athogenic' AND ann_gene = 'BRCA1';
 - ➤ Use wildcard '%' with LIKE instead of =
- SELECT COUNT(*) FROM variants WHERE clnsig LIKE '%athogenic%';
- Include some example search results in your README

MSBI 32400 - Introduction to Bioinformatics 3/13/19

Thanks!

18

- □ Please post your lab write-up to Canvas or e-mail Jason with Lab 9 in the subject line. Include answers to the specific lab questions as well as sample SQL statements and a description of the results. E-mail DB questions to me: lhelseth@qmail.com
- No homework from next week's lab but we'll still work on it in class since some of you may want to use the bash scripting for your final project