## 1. Solution

The sample size, *n*, is 36. We determine the indeces and values of Q1, Q2, and Q3.

| Quartile | Formula for <i>i</i>           | i  | X      |
|----------|--------------------------------|----|--------|
| Q1       | $\lceil 0.25 	imes 36  ceil$   | 9  | 112.43 |
| Q2       | $\lceil 0.5 \times 36 \rceil$  | 18 | 117.77 |
| Q3       | $\lceil 0.75 \times 36 \rceil$ | 27 | 123.88 |

We determine the IQR.

$$IQR = Q3 - Q1$$
  
= 123.88 - 112.43  
= 11.45

We determine the outlier boundaries.

lower boundary = Q1 
$$-$$
 1.5  $\times$  IQR = 112.43  $-$  1.5  $\times$  11.45 = 95.255

upper boundary = Q3 + 1.5 
$$\times$$
 IQR  
= 123.88 + 1.5  $\times$  11.45  
= 141.055

We determine the outliers.

outliers = 
$$\{152.26\}$$

We identify the ends of the whiskers: 103.31 and 134.74. We plot the boxplot.



## 2. Solution

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

| Quartile | Formula for <i>i</i>           | i  | X     |
|----------|--------------------------------|----|-------|
| Q1       | $\lceil 0.25 \times 24 \rceil$ | 6  | 76.61 |
| Q2       | $\lceil 0.5 \times 24 \rceil$  | 12 | 78    |
| Q3       | $\lceil 0.75 \times 24 \rceil$ | 18 | 78.98 |

We determine the IQR.

$$IQR = Q3 - Q1$$
  
=  $78.98 - 76.61$   
=  $2.37$ 

We determine the outlier boundaries.

lower boundary = Q1 
$$- 1.5 \times IQR$$
  
=  $76.61 - 1.5 \times 2.37$   
=  $73.055$   
upper boundary = Q3 +  $1.5 \times IQR$   
=  $78.98 + 1.5 \times 2.37$   
=  $82.535$ 

We determine the outliers.

outliers = 
$$\{\}$$

We identify the ends of the whiskers: 73.17 and 79.89. We plot the boxplot.

