#### Prepared by group 3

## Predicting Loan Approval

Helping Financial Institutions Make Faster, Fairer, Data-Driven Decisions

27th June 2025

Team Members: Kalliopi Georgiou, Doga Hascelik, Sofia Fox, Wanling Cheng, Anahi Bautista

## Business Understanding (CRISP-DM)

**Key Message**: Loan approval is time-consuming, inconsistent, and prone to human bias. We aim to automate and improve it using machine learning.

- Problem: How can financial institutions predict loan approvals faster and more fairly?
- Business Goal: Improve efficiency, reduce errors, and support fairness in lending decisions.





## The Data Source

#### Where Did Our Data Come From?

- Source: <u>Kaggle Loan</u>
   <u>Approval Dataset</u>
- Size: 614 observations, 13
   features + 1 target variable
   (Loan\_Status)
- Key Features: Income, Loan
   Amount, Credit History,
   Employment Experience, etc.
- Target: Loan\_Status (1 = approved, 0 = rejected)

## Loan Approval Classification Dataset

Synthetic Data for binary classification on Loan Approval



#### 1. Data Source

This dataset is a synthetic version inspired by the original <u>Credit Risk dataset on Kaggle</u> and enriched with additional variables based on <u>Financial Risk for Loan Approval data</u>. SMOTENC was used to simulate new data points to enlarge the instances. The dataset is structured for both categorical and continuous features.

We used real-world-like data to reflect what financial institutions evaluate in applications.



## Our Process: Clean, Train, Predict



#### **Data Preprocessing**

- Removed age outliers (>100)
- Verified no missing values
- Clean structure with a mix of categorical and numerical variables
- Dataset reflects moderateincome applicants realistically



## CRISP-DM Phases: Data Preparation, Modeling, Evaluation

Objective: Predict loan approval to support faster, fairer, and more consistent decisions

Purpose: Help financial institutions reduce manual workload using a data-driven model

#### Benefits:

- Flag high-risk applicants
- Streamline approvals for reliable candidates
- Improve efficiency and reduce processing time

#### Impact:

- Minimize errors by reducing subjective judgment
- Promote fairness, objectivity, and credibility in loan decisions



## Model Selection



In order to solve this problem, we explored <u>different versions of Logistic</u> <u>Regression</u> to test how various features influence loan approval.

We started with a simple model using only loan amount, and progressively added more features to improve prediction accuracy.

Model C used just the loan amount Model A added a few financial indicators Model B included all 8 available features.

This allowed us to test how feature richness improves prediction accuracy.



#### A. Original Logistic Regression (3 features)

|                                                                                       | nt function<br>tions 7 | value: 0.468<br>Logit Regre                                                 |                                                                                        | ts                      |                  |                                                              |
|---------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------|
| Dep. Variable:<br>Model:<br>Method:<br>Date:<br>Time:<br>converged:<br>Covariance Typ | Thu,                   | loan_status<br>Logit<br>MLE<br>26 Jun 2025<br>21:54:41<br>True<br>nonrobust | No. Obser<br>Df Residu<br>Df Model:<br>Pseudo R-<br>Log-Likel<br>LL-Null:<br>LLR p-val | als:<br>squ.:<br>ihood: |                  | 31495<br>31491<br>3<br>0.1155<br>-14757.<br>-16684.<br>0.000 |
|                                                                                       | coef                   | std err                                                                     | z                                                                                      | P> z                    | [0.025           | 0.975]                                                       |
| const<br>person_income                                                                | -0.3414<br>-2.88e-05   | 0.183<br>6.04e-07                                                           | -1.868<br>-47.705                                                                      | 0.062                   | -0.700<br>-3e-05 | 0.017<br>-2.76e-05                                           |
| loan_amnt<br>credit_score                                                             | 0.0001                 | 2.69e-06<br>0.000                                                           | 43.063<br>-0.495                                                                       | 0.000                   | 0.000            | 0.000                                                        |

- Negative person\_income coefficient implies higher income increases the odds of loan approval
- Positive loan\_amt
   coefficient implies larger
   loans reduce the odds of
   approval

## B. More complex Logistic Regression with 8 features

| Dep. Variable:            | loan_status | No. Observations: |         | 31495   |           |         |
|---------------------------|-------------|-------------------|---------|---------|-----------|---------|
| Model:                    | Logit       | Of Residuals:     |         | 31486   |           |         |
| Method:                   | MLE         | Of Model:         |         | 8       |           |         |
| Date: Thu                 | 26 Jun 2025 | Pseudo R-squ.:    |         | 0.2615  |           |         |
| Time:                     | 22:23:39    | Log-Likelihood:   |         | -12321. |           |         |
| converged:                | True        | LL-Null:          |         | -16684. |           |         |
| Covariance Type:          | nonrobust   | LLR p-value:      |         | 0.000   |           |         |
|                           | coef        | std err           | z       | P> z    | [0.025    | 0.975   |
| const                     | -6.8629     | 0.311             | -22.062 | 0.000   | -7.473    | -6.25   |
| person_age                | 0.0221      | 0.010             | 2.170   | 0.030   | 0.002     | 0.04    |
| person_income             | 7.35e-07    | 4.37e-07          | 1.681   | 0.093   | -1.22e-07 | 1.59e-0 |
| person_emp_exp            | -0.0199     | 0.009             | -2.237  | 0.025   | -0.037    | -0.00   |
| loan_amnt                 | -0.0001     | 4.32e-06          | -25.675 | 0.000   | -0.000    | -0.00   |
| loan_int_rate             | 0.3349      | 0.006             | 54.707  | 0.000   | 0.323     | 0.34    |
| loan_percent_income       | 15.6056     | 0.306             | 50.951  | 0.000   | 15.005    | 16.20   |
| cb_person_cred_hist_lengt | h -0.0048   | 0.009             | -0.543  | 0.587   | -0.022    | 0.01    |
| credit_score              | -0.0003     | 0.000             | -0.993  | 0.320   | -0.001    | 0.00    |

- Adding features has improved model fit
- Some variables are very strong predictors
- "person\_income" lost significance in this model compared to the first
- "credit\_score" is consistently non-significant in both this model and the first

## C. Linear Regression Model using only loan amount as numerical feature

|             | errent functions 5 | tion val |          |                   | sults       |          |           |
|-------------|--------------------|----------|----------|-------------------|-------------|----------|-----------|
| Dep. Variat | ole:               | loa      | n_status | No. Ot            | servations: |          | 31495     |
| Model:      | el: Logit          |          | Logit    | Df Residuals:     |             | 31493    |           |
| Method:     |                    | MLE      |          | Df Model:         |             | 1        |           |
| Date:       |                    | Thu, 26  | Jun 2025 | 5 Pseudo R-squ.:  |             | 0.01061  |           |
| Time:       |                    |          | 21:22:40 | :22:40 Log-Likeli |             |          | -16507.   |
| converged:  |                    | True     |          | LL-Null:          |             | -16684.  |           |
| Covariance  | Type:              | n        | onrobust | LLR p-            | value:      |          | 5.537e-79 |
|             |                    |          |          |                   |             |          |           |
|             | coef               | std      | err      | Z                 | P> z        | [0.025   | 0.975]    |
|             |                    |          |          |                   |             |          |           |
| const       | -1.6407            | 0.       | 025 -6   | 5.125             | 0.000       | -1.690   | -1.591    |
| loan_amnt   | 3.874e-05          | 2.03e    | -06 1    | 9.055             | 0.000       | 3.48e-05 | 4.27e-85  |

- "loan\_amt" is a statistically significant feature, but very weak as a sole predictor
- This model is useful only as a baseline.
- For real-world predictions, we would want to use model B

#### **Model Comparison Conclusion**

| Metric                | Model C (loan_amt)            | Model A (person_income, loan_amt, credit_score) | Model B (8 features incl. income, age, rate, etc.) |  |
|-----------------------|-------------------------------|-------------------------------------------------|----------------------------------------------------|--|
| # Features            | 1                             | 3                                               | 8                                                  |  |
| Pseudo R <sup>2</sup> | 0.0106                        | 0.1155                                          | 0.2615                                             |  |
| Log-Likelihood        | -16507                        | -14757                                          | -12321                                             |  |
| LLR p-value           | 5.54e-79                      | 0.000                                           | 0.000                                              |  |
| Expected Accuracy     | Low – likely near<br>baseline | Moderate – likely decent improvement            | High – best<br>performance                         |  |
| Interpretability      | Very high (1 var)             | Medium                                          | Lower, but can<br>explain via SHAP or<br>similar   |  |

- Model C is useful only as a simple benchmark in comparison.
- Model A is a good trade-off between simplicity and predictive power
- Model B is the best in terms of fit and likely classification accuracy

## Conclusion & Business Value

**How Does This Help the Business?** 

- Speeds up the loan approval process
- Consistent, unbiased decision-making
- Identifies strong applicants faster
- Supports fairness in lending by relying on data, not opinion

You can use this tool to make confident lending decisions, reduce risk, and improve customer satisfaction.



## How We Can Improve It

#### What's Next?

- Add more real-world data (ex: location, past banking history)
- Address class imbalance more robustly
- Improve model explainability (ex: use SHAP values)
- Integrate with a real-time dashboard for decisionmakers

Our model is the foundation, with more data and feedback, it becomes even smarter



## Answers to Relevant Course Questions

••••

**Applied course concepts**: Followed full supervised learning pipeline: business framing  $\rightarrow$  data prep  $\rightarrow$  modeling  $\rightarrow$  evaluation.

#### Ethics and real-world impact:

- Discussed false positives/negatives and fairness risks.
- Emphasized the need for human oversight in finance ML applications

#### Visualization as a tool:

- Histograms, correlation heatmaps helped shape decisions.
- Showed how storytelling and visuals improve data interpretation.

#### Chose better metrics than accuracy:

- Dataset was imbalanced (only 22.2% approvals), so accuracy alone was misleading.
- Used Pseudo R², Log-Likelihood, and LLR p-values as taught in class.

# Thank you