Fundamentos de Grafos

Prof. Martín Vigil Adaptado de prof. Ricardo Moraes

Definição de Grafo

- Formalmente um grafo é dado por G (V, A), onde:
 - □ V conjunto não-vazio: vértices ou nodos;
 - □ A conjunto de pares ordenados de elementos distintos de V: arestas
 - a=(v,w), onde v e w € V

O que é um grafo?

- G1
- V = {Maria, Pedro, Joana, Luiz}
- A = {(Maria,Pedro),(Joana, Maria),(Pedro, Luiz),(Joana, Pedro)}

Exercício 02

- Cinco turistas se encontram em um bar de Araranguá e começam a conversar, cada um falando de cada vez, com um só companheiro da mesa. O conhecimento de línguas dos turistas é mostrado na tabela a seguir.
- Construa um grafo que represente todas as possibilidades de cada turista dirigir a palavra a outro, sendo compreendido.

Turista	Inglês	Francês	Português	Alemão	Espanhol
1	X	X	X		X
2	X	X		X	
3		X	X	X	
4	3		X	X	X
5		X		X	X

Exercício 02

Turista	Inglês	Francês	Português	Alemão	Espanhol
1	X	X	X		X
2	X	X		X	C
3		X	X	X	
4			X	X	X
5		X		X	X

Revisão

- O que é um Grafo?
- O que é um Vértice?
- O que é uma Aresta?
- Para que serve um Grafo?

Dígrafo ou Grafo Orientado ou Grafo Dirigido

- Vimos grafos simples: arestas sem orientação
- Dígrafo: arestas têm orientação
- Considere, agora, o grafo definido por:
 - □ V = {p | p é uma pessoa da família Castro}
 - $\square A = \{ (v,w) \mid < v \text{ \'e pai/mãe de } w > \}$

Dígrafo - Exemplo

- V = { Emerson, Isadora, Renata, Antonio, Rosane, Cecília, Alfredo }
- A = {(Isadora, Emerson), (Antonio, Renata), (Alfredo, Emerson), (Cecília, Antonio), (Alfredo, Antonio)}
- A relação definida por A não é simétrica pois se <v é pai/mãe de w>, não é o caso de <w é pai/mãe de v>.

Ordem

A ordem de um grafo G é dada pela cardinalidade do conjunto de vértices, ou seja, pelo número de vértices de G.

Ordem(G1)=4

ordem(G2)=6

Cecília

٠.

Adjacência

- Em um grafo simples (a exemplo de G1) dois vértices v e w são adjacentes (ou vizinhos) se há uma aresta e=(v,w) em G.
- Esta aresta é dita ser incidente a ambos, v e w.
- É o caso dos vértices Maria e Pedro:

Adjacência

- No caso do grafo ser dirigido, a adjacência (vizinhança) é especializada em:
 - Sucessor: um vértice w é sucessor de v se há um arco que parte de v e chega em w.
 - □ Antecessor: um vértice v é antecessor de w se há um arco que parte de v e chega em w.

Adjacência

Emerson e Antonio são sucessores de Alfredo.

Alfredo e Cecília são antecessores de

Antonio.

Grau

O grau de um vértice é dado pelo número de arestas que lhe são incidentes. Por exemplo:

- Grau(Pedro)=3
- Grau(Maria)=2

100

Grau – Grafo Orientado

Grau de emissão: o grau de emissão de um vértice v corresponde ao número de arcos que partem de v.

Grau de recepção: o grau de recepção de um vértice v corresponde ao número de arcos que chegam a v.

Grau - Grafo Orientado

- GrauDeEmissão(Antonio) = 1
- GrauDeEmissao(Alfredo) = 2
- GrauDeEmissao(Renata) = 0

Grau - Grafo Orientado

- GrauDeRecepção(Antonio) = 2
- GrauDeRecepção(Alfredo) = 0
- GrauDeRecepção(Renata) = 1

Laço

- Um laço é uma aresta ou arco do tipo e=(v,v), ou seja, que relaciona um vértice a ele próprio.
- No exemplo há três ocorrências de laços para um grafo não orientado.

М.

Grafo Regular

- Um grafo é dito ser regular quando todos os seus vértices tem o mesmo grau.
- O G3, é dito ser um grafo regular-3 pois todos os seus vértices tem grau 3.

Grafo Completo

- Um grafo é dito ser completo quando há uma aresta entre cada par de seus vértices.
- Estes grafos são designados por Kn, onde n é a ordem do grafo.

Grafo Bipartido

- Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V1 e V2, tais que toda aresta de G une um vértice de V1 a outro de V2.
- Exemplo:
 - □ Sejam os conjuntos
 - H={h | h é um homem} e
 - M={m | h é um mulher}

Grafo Bipartido

Grafo G(V,A) onde:

V = H U M

 $A = \{(v,w) \mid (v \in H e w \in M)\}$ ou $(v \in M e w \in H) e$ <v foi namorado de w>}

Grafo Valorado ou Ponderado

Um grafo G(V,A) é dito ser valorado quando existe uma ou mais funções relacionando V e/ou A com um conjunto de números.

Grafo Valorado ou Ponderado

- V = {v | v é uma cidade com aeroporto}
- A = {(v,w,t) | <há linha aérea ligando v a w, sendo t o tempo esperado de voo>}

Multigrafo

Um grafo G(V,A) é dito ser um multigrafo quando existem múltiplas arestas entre pares de vértices de G.

G8 = há duas arestas entre os vértices A e C e entre os vértices A e B, caracterizando-o como um multigrafo.

Subgrafo

■ Um grafo Gs(Vs, Es) é dito ser subgrafo de um grafo G(V,E) quando Vs⊂V e As ⊂ A.

OG9 é subrafo de G8.

м.

Exercício 03

- O grafo a seguir representa as respostas colhidas em uma turma de crianças de escola na faixa de 7 anos, face à pergunta: "Quais são os colegas de quem você mais gosta?"
- Expresse, usando a notação conveniente, os seguintes fenômenos observáveis no grafo:
 - a) posições de liderança;
 - b) amizades recíprocas;
 - c) criança com problemas de relacionamento;
 - □ d) criança arredia.

Exercício 03 (cont)

Representação de grafos

- Alternativas
 - Matriz de Adjacência
 - □ Listas de Adjacência
 - Matriz de Incidência

Matriz de Adjacência

- Ou Matriz Quadrada (n X n)
- É a matriz mais comumente usada

$$a_{ij} = 1 \Leftrightarrow \exists (x_i, x_j)$$

 $a_{ij} = 0 \Leftrightarrow \not\exists (x_i, x_j)$

Matriz de Adjacência: exemplo

	X1	X2	X3
X1	0	1	1
X2	0	0	1
X3	0	0	1

Matriz de adjacência: exemplo

Lista de adjacência

- Adequada para grafos esparsos
- Consiste em um array Adj de |V| listas
- Para cada u ∈ V, Adj[u] é uma lista contendo os vértices adjacentes a u.
- A ordem das listas é arbitrária

Lista de adjacência: exemplo

www.kodefork.com

Lista vs. matrix

Listas são mais eficientes para grafos esparsos

Lista vs. matrix

Matrizes podem ser mais eficientes para grafos não direcionados

Caminho em um grafo G(V,A)

O caminho entre vértices x, y ∈ V é uma sequência de vértices adjacentes v₁, v₂, ..., v_n ∈ V, onde v₁ = x e v_n = y.

Caminho em um grafo G(V,A)

 Se G ponderado, o peso do caminho é o somatório dos pesos das arestas do caminho

Grafo G(V,A) conexo

 Existe um caminho entre qualquer par de vértices de G

Grafo G(V,A) desconexo

Pelo menos um par de vértices sem caminho.

