CS2230A

Edit Quiz

SAVE & EXIT

Enable Sharing **SOC-28285274**

Graph traversals

Align entire quiz to a standard

#1

Find a path from d to a.

Explanation:

Your answer could be any sequence of nodes following directed edges that starts with d and ends with a

For example, d, c, a or d,e,b,f,a

or several others!

Remember depth-first search of trees? What is the pre-order DFS from the root of this tree? Look at left before right.

ANSWER CHOICE

4, 2, 1, 6, 3, 11

В	4, 6, 11, 2, 3, 1
С	11, 6, 4, 6, 11, 3, 2, 3, 1
D	11, 6, 4, 3, 2, 1
Ε	11, 6, 3, 4, 2, 1

Explanation:

visit the root, then DFS the left tree, then DFS the right tree

What is the next step?

ANSWER CHOICE

- **A** f, b, c, e, d || a1 b1 c1 d1 e0 f1 g1
- **B** g, f, b, c, e, d || a1 b1 c1 d1 e0 f1 g0
- **C** f, b, c, e, d || a1 b1 c1 d1 e0 f1 g1
- **D** g, f, b, c, e, d || a1 b1 c1 d1 e0 f1 g1
- **E** g, f, b, c, e, d || a1 b1 c1 d1 e0 f0 g1

g d d

Fuenties	11.						
Frontier	Vertices						
	a	b	С	d	е	f	g
d	0	0	0	0	0	0	0
c, e, d	0	0	0	1	0	0	0
a, b, c, e, d	0	0	1	1	0	0	0
a, b, c, e, d	1	0	1	1	0	0	0
f, b, c, e, d	1	1	1	1	0	0	0
g, f, b, c, e, d	1	1	1	1	0	1	0
g, f, b, c, e, d	1	1	1	1	0	1	1
f, b, c, e, d	1	1	1	1	0	1	1
b, c, e, d	1	1	1	1	0	1	1
c, e, d	1	1	1	1	0	1	1
e, d	1	1	1	1	1	1	1
d	1	1	1	1	1	1	1
	1	1	1	1	1	1	1

C

#5

The pre-order DFS Write down the fro (with a 1) when you add visited nodes t

Here is the rest of the traversal.

Does your group have any questions about DFS or this example?

*Now, suppose you do DFS from node f. Which nodes will *not* be discovered?

ANSWER CHOICE

Α	c, d
В	c, d, b
С	c, d, b, e
D	c, d, b, e, g
Ε	none

Explanation:

DFS from f will visit f, then visit a, then visit g (assuming we pick the neighbor we visit first in alphabetical order).

Explanation:

visit the root at depth 1, then left to right visit everything at depth 2, then left to right visit everything at depth 3

#8

Perform a BFS traversal of this graph, starting at node d.

- do not write down the same node twice
- when picking which neighbor to visit first, go in alphabetical order

visit d, then visit everything new that is 1 hop from d (c,e), then visit everything new that is 2 hops from d (a,b,f), then visit everything new that is 3 hops from d (g).

Explanation:

Let h(d, X) be the hops from d to node X. When you visit a node X by dequeueing it from the frontier, for every *unvisited* neighbor Y, h(d,Y) = 1+h(d, X).

number of hops between you and Donald Trump (where an edge (X,Y) means X and Y are acquaintances).

Forgot E->F, too

#14

We can think of one product of a DFS traversal to be a "DFS tree". The nodes in this tree are the nodes discovered by the

traversal, and the edges in the tree are "discovery edges", or edges where the traversal found a new node.

In the image is an example of part of a DFS traversal starting at node A. Traversing edge A->B discovers the unvisited B, so A->B is a "discovery edge".

When we visit C, we draw a "back edge" to A. This "back edge" leads to a node we've already visited. Only discovery edges are in the DFS tree.

DFS Trees will be useful for many algorithms; first we'll do some exercises with them.

Do you understand the concepts of DFS trees, discovery edges, back edges?

