MATH 239 Winter 2013

Assignment 2 Solutions

The term "generating function" in this assignment is called a "generating series" in the notes.

- 1. Let S be a finite set.
 - (a) Let $w: S \to \mathbb{N}_{\geq 0}$ be a function. Let $\Phi_{S,w}(x)$ be the generating function of S with respect to weight function w. Define a new function w' on S by

$$w'(\sigma) = 2w(\sigma) + 3$$

for all $\sigma \in S$. Show that $\Phi_{S,w'}$, the generating function of S with respect to w', satisfies

$$\Phi_{S,w'}(x) = x^3 \Phi_{S,w}(x^2).$$

(b) Let $w_1, w_2 : S \to \mathbb{N}_{\geq 0}$ be weight functions on S. Let $\Phi_{S,w_1}, \Phi_{S,w_2}$ be their respective generating functions. Let $w_3 : S \to \mathbb{N}_{\geq 0}$ be the function defined by

$$w_3(\sigma) = w_1(\sigma) + w_2(\sigma).$$

Is it true that $\Phi_{S,w_3}(x) = \Phi_{S,w_1}(x)\Phi_{S,w_2}(x)$? If true, give a proof. If false, give a set S and weight functions w_1, w_2 for which it is not true.

Solution.

(a) Note

$$\Phi_{S,w}(x) = \sum_{\sigma \in S} x^{w(\sigma)}.$$

Then,

$$\Phi_{S,w'}(x) = \sum_{\sigma \in S} x^{w'(\sigma)} = \sum_{\sigma \in S} x^{3+2w(\sigma)} = x^3 \sum_{\sigma \in S} (x^2)^{w(\sigma)} = \Phi_{S,w}(x^2).$$

(b) This is false. Practically any example is a counterexample. For example, let $S = \{0, 1\}$ with $w_1(0) = w_2(0) = 0$, $w(1) = w_2(1) = 1$. Then

$$\Phi_{S,w_1} = 1 + x$$

$$\Phi_{S,w_2} = 1 + x$$

$$\Phi_{S,w_3} = 1 + x^2$$

while

$$\Phi_{S,w_1}\Phi_{S,w_1} = 1 + 2x + x^2$$

2. For a positive integer n, let N_n denote the set $\{1, 2, ..., n\}$, and let \mathcal{P}_n be the set of all subsets of N_n . Let $w : \mathcal{P}_n \to \mathbb{N}_{\geq 0}$ be the weight function taking a subset to its number of elements, that is, for $A \subseteq N_n$,

$$w(A) = |A|$$
.

For a pair of positive integers m, n with m < n, let $\mathcal{T}_{m,n}$ be the set of all subsets A of N_n such that $\max(A) > m$.

- (a) Give a formula for $\Phi_{\mathcal{P}_n}(x)$.
- (b) Explain why $\mathcal{T}_{m,n} = \mathcal{P}_n \setminus \mathcal{P}_m$, that is, the set of elements of \mathcal{P}_n that are not elements of \mathcal{P}_m .
- (c) Give a formula for $\Phi_{\mathcal{T}_{m,n}}(x)$ in terms of binomial coefficients.

Solution.

(a) We know that

$$\Phi_{\mathcal{P}_n}(x) = \sum_{A \subseteq N_n} x^{|A|} = \sum_{k=0}^n \left(\sum_{\substack{A \subseteq N_n \\ |A| = k}} 1 \right) x^k = \sum_{k=0}^n \binom{n}{k} x^k = (1+x)^n.$$

- (b) Let A be a subset of N_m . Since $N_m \subset N_n$, A is a subset of N_n . Note that the largest element of A is less than or equal to m. Conversely, a subset A of N_n whose largest is less than or equal to m is a subset of N_m . Consequently, $A \in \mathcal{P}_n \setminus \mathcal{P}_m$ is equivalent to $A \in \mathcal{P}_n$ and $\max(A) > m$.
- (c) Now, we have a disjoint union

$$\mathcal{P}_n = \mathcal{P}_m \cup \mathcal{T}_{m,n}$$
.

Therefore, by the sum lemma,

$$\Phi_{\mathcal{P}_n}(x) = \Phi_{\mathcal{P}_m}(x) + \Phi_{\mathcal{T}_{m,n}}(x)$$
$$\sum_{k=0}^n \binom{n}{k} x^k = \sum_{k=0}^m \binom{m}{k} x^k + \Phi_{\mathcal{T}_{m,n}}.$$

Consequently,

$$\Phi_{\mathcal{T}_{m,n}} = \sum_{k=0}^{n} \left(\binom{n}{k} - \binom{m}{k} \right) x^{k}$$

where we use the convention that $\binom{n}{k} = 0$ if k > n.

3. Let N be a non-negative integer. Consider the set of all 3-tuples (n_1, n_2, n_3) of non-negative integers satisfying

$$n_1 + 5n_2 + 10n_3 = N$$
.

Write down a formal power series $\Phi(x)$ such that $[x^N]\Phi(x)$ is the number of solutions (n_1, n_2, n_3) of the above equation. You do not need to find a closed formula for the number of solutions. Hint: Use the product lemma.

Solution. Consider the set $\mathbb{N}_{\geq 0}$ equipped with functions $w_1, w_2, w_3 : \mathbb{N}_{\geq 0} \to \mathbb{N}_{\geq 0}$ given by

$$w_1(n) = n$$

$$w_2(n) = 5n$$

$$w_3(n) = 10n$$

Now, the generating functions are

$$\Phi_{\mathbb{N}_{\geq 0}, w_{1}}(x) = 1 + x + x^{2} + x^{3} + \dots = \frac{1}{1 - x}$$

$$\Phi_{\mathbb{N}_{\geq 0}, w_{2}}(x) = 1 + x^{5} + x^{10} + x^{15} + \dots = \frac{1}{1 - x^{5}}$$

$$\Phi_{\mathbb{N}_{\geq 0}, w_{3}}(x) = 1 + x^{10} + x^{20} + x^{30} + \dots = \frac{1}{1 - x^{10}}$$

Now, consider the set $S = \mathbb{N}_{\geq 0} \times \mathbb{N}_{\geq 0} \times \mathbb{N}_{\geq 0}$ with function $w: S \to \mathbb{N}_{\geq 0}$ given by

$$w(n_1, n_2, n_3) = n_1 + 5n_2 + 10n_3.$$

Then the generating function of S with respect to w is given by

$$\Phi_{S,w}(x) = \sum_{(n_1, n_2, n_3) \in S} x^{n_1 + 5n_2 + 10n_3}.$$

Consequently, the coefficient of x^N in $\Phi_{S,w}(x)$ is the number of triples (n_1, n_2, n_3) satisfying $n_1 + 5n_2 + 10n_3 = N$. Because $w(n_1, n_2, n_3) = w_1(n_1) + w_2(n_2) + w_3(n_3)$, by the product lemma, we have

$$\Phi_{S,w}(x) = \Phi_{\mathbb{N}_{\geq 0},w_1}(x)\Phi_{\mathbb{N}_{\geq 0},w_2}(x)\Phi_{\mathbb{N}_{\geq 0},w_3}(x) = \frac{1}{(1-x)(1-x^5)(1-x^{10})}.$$

4. Let $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$ be the power series that satisfies

$$A(x) = \sum_{n=0}^{\infty} (x + x^2)^n.$$

Prove that $a_0 = 1$, $a_1 = 1$, and for $n \ge 2$, $a_n = a_{n-1} + a_{n-2}$.

Hint: Recall that if B(x) is a power series with no constant term then

$$\frac{1}{1 - B(x)} = \sum_{n=0}^{\infty} B(x)^{n}.$$

Solution. Observe that by the hint, we have

$$\frac{1}{1-x-x^2} = \sum_{n=0}^{\infty} (x+x^2)^n.$$

We solve for $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...$ by writing

$$(1-x-x^2)(a_0+a_1x+a_2x^2+a_3x^3+\dots)=1.$$

Expanding the left side and grouping like powers, we get

$$a_0 + (a_1 - a_0)x + (a_2 - a_1 - a_0)x^2 + \dots + (a_n - a_{n-1} + a_{n-2})x^n + \dots + (a_n - a_n)x^n + \dots + (a_n - a$$

Equating coefficients, we get a linear system in infinitely many variables given by

$$a_{0} = 1$$

$$a_{1} - a_{0} = 0$$

$$a_{2} - a_{1} - a_{0} = 0$$

$$\vdots$$

$$a_{n} - a_{n-1} - a_{n-2} = 0$$

$$\vdots$$

Consequently $a_0 = 1$, $a_1 = 1$, and $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.

- 5. Find an expression for each of the coefficients of the following formal power series (your expressions may be sums of binomial coefficients; you may want to break some expressions into cases)
 - (a) $[x^n](1-x)^{-2}(1+2x^3)$
 - (b) $[x^n](1-2x^2)^{-3}$
 - (c) $[x^n](1-x)^{-2}(1-x^3)^2$

Solution.

(a) We know from class that

$$(1-x)^{-2} = \sum_{n=0}^{\infty} {n+1 \choose 1} x^n = \sum_{n=0}^{\infty} (n+1)x^n.$$

Consequently,

$$(1-x)^{-2}(1+2x^3) = (1+2x^3) \left(\sum_{n=0}^{\infty} (n+1)x^n \right)$$
$$= \sum_{n=0}^{\infty} (n+1)x^n + 2\sum_{n=0}^{\infty} (n+1)x^{n+3}$$
$$= \sum_{n=0}^{\infty} (n+1)x^n + 2\sum_{n=3}^{\infty} (n-2)x^n$$

Therefore,

$$[x^n](1-x)^{-2}(1+2x^3) = \begin{cases} n+1 & \text{if } 0 \le n \le 2\\ 3n-3 & \text{if } 3 \le n \end{cases}$$

(b) We know

$$(1-x)^{-3} = \sum_{n=0}^{\infty} \binom{n+2}{2} x^n.$$

Consequently,

$$(1 - 2x^2)^{-3} = \sum_{n=0}^{\infty} {n+2 \choose 2} (2x^2)^n = \sum_{n=0}^{\infty} 2^n {n+2 \choose 2} x^{2n}$$

Therefore,

$$[x^n](1-2x^2)^{-3} = \begin{cases} 2^{\frac{n}{2}} {\frac{n}{2} + 2 \choose 2} & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

(c) We have

$$\frac{(1-x^3)^2}{(1-x)^2} = \left(\frac{1-x^3}{1-x}\right)^2 = (1+x+x^2)^2 = 1+2x+3x^2+2x+1$$

The coefficients can be read from this expression.

6. Let S be a set with weight function $w: S \to \mathbb{N}_{\geq 0}$ Let $\Phi_{S,w}(x)$ be the generating function. Write $c_n = [x^n]\Phi_{S,w}(x)$ so that c_n is equal to the number of elements of S with weight equal to n. Let A(x) be the formal power series given by $A(x) = \frac{\Phi_{S,w}(x)}{1-x^2}$. Write $a_n = [x^n]A(x)$. Prove that

$$a_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} c_{n-2k}.$$

Solution. Note that

$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + x^8 + \dots$$

Consequently,

$$[x^{n}] \frac{\Phi_{S,w}(x)}{1-x^{2}} = [x^{n}] \left((1+x^{2}+x^{4}+x^{6}+\dots)\Phi_{S,w}(x) \right)$$

$$= [x^{n}] \Phi_{S,w}(x) + [x^{n}](x^{2}\Phi_{S,w}(x)) + [x^{n}](x^{4}\Phi_{S,w}(x)) + \dots$$

$$= [x^{n}] \Phi_{S,w}(x) + [x^{n-2}] \Phi_{S,w}(x) + [x^{n-4}] \Phi_{S,w}(x) + \dots$$

$$= c_{n} + c_{n-2} + c_{n-4} + \dots$$

where we used $[x^n](x^kC(x)) = [x^{n-k}]C(x)$ for the third equality. Translated into Σ -notation, this last quantity is

$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} c_{n-2k}.$$