

Sequential Enrichment Designs for Early Phase Clinical Trials

Xin Zhang, Satrajit Roychoudhury Pfizer Inc. New York, United States

1. Background

Early phase clinical trials in oncology

- Single-arm design with limited sample size
- Subgroup identifications are typically done via post-hoc-analysis
- Exact binomial test and Simon two-stage design Goal are commonly used
- Need evidence-based and clinically meaningful quantitative framework to facilitate patient subpopulation for further development

Objective

- Developing a robust GO/NO-GO decisionmaking framework by considering both statistical significance and clinical relevance
- Identify the right population to increase likelihood of success

We propose a Bayesian adaptive enrichment strategy and dual criterion design for subpopulation selection in early phase trials.

2. Example

Study objective

• PoC study of Drug A to evaluate its anti-tumor activity in gastric cancer

Endpoint

• Objective response rate (ORR)

Study population

• All patients irrespective of status for biomarker of interest Y

Study design

Single-arm with biomarker of interest Y

3. Dual Criteria Design

- Formal inclusion of statistical significance and clinical relevance in design:
- Decide GO
 - Strong evidence: effect \geq no effect or null value (NV)
 - Estimated effect \geq decision value (DV)
- DV: minimum effect with clinical relevance; not classical alternative hypothesis
 - Need discussion with nonstatisticians
- Sample size requires consideration of DV
 - Adequate sample size is required to ensure statistical significance when clinical relevance observed
- Need simulation to calculate design operating characteristics (e.g., type-I error, power)

4. Subpopulation Selection in Early Phase 6. Design Characteristics (single-stage)

Demand for a new design

• A competitor Drug B failed for all-comers but show promising efficacy in patients with Y+ in post-hoc subgroup analysis

- Assess activity of Drug A for all patients irrespective of biomarker status
- If it is not active for all patients, assess activity of Drug A for Y+ patients

5. Single-stage Design with Population Selection

Study populations

All-comers (F) = Y + patients + Y - patients

- Bayesian triplet criterion for all-comers
- 1. $Pr(ORR(F) \ge 16\% \mid data) \ge 0.975$
- 2. Posterior median (F) $\geq 24\%$
- 3. $Pr(ORR (Y-) \ge 16\% \mid data) \ge 0.75$

(activity assurance in Y- patients)

The third criteria ensures that the effect of Drug A in F is not solely driven by Y+

- Bayesian dual criteria for Y+ patients
- 1. $Pr(ORR(Y+) \ge 16\% \mid data) \ge 0.95$
- 2. Posterior median $(Y+) \ge 24\%$
- Minimum sample size (SS_{min})

All-comers: 87 (with number of responders ≥ 21) Y+ patients: 58 (with number of responders ≥14) Sample size bigger than SS_{min} ensures statistical significance when clinical relevance is observed

Figure 1. Grid Search for Minimum Sample Size

Figure 6.1: Flow Chart for Single-stage Enrichment Design

8. Design Characteristics (two-stage)

Figure 8.2: Interim OC for Sequential Enrichment Design

Scenario	Probability of crossing interim boundary in all-comers (%)	Probability of crossing interim boundary in Y+ patients (%)	Probability of early stop for futility (%)
ORR (Y+) = ORR (Y-) = 16%	24.7	16.0	59.3
ORR $(Y+) = 32\%$ ORR $(Y-) = 16\%$	60.4	35.5	4.1
ORR $(Y+) = 16\%$ ORR $(Y-) = 32\%$	71.3	1.6	27.1
ORR (Y+) = ORR (Y-) = 32%	96.1	2.6	1.3

Figure 8.1: Flow Chart for Sequential Enrichment Design

Scenario	Probability of crossing efficacy boundary in all-comers (%)	Probability of crossing efficacy boundary in Y+ patients (%)
ORR $(Y+) = ORR (Y-) = 16\%$	1.1	4.1
ORR $(Y+) = 32\%$, ORR $(Y-) = 16\%$	16.0	74.8
ORR $(Y+) = 16\%$, ORR $(Y-) = 32\%$	29.8	0.5
ORR $(Y+) = ORR (Y-) = 32\%$	90.1	6.6

Figure 8.3: Final OC for Sequential Enrichment Design

Scenario	Probability of crossing efficacy boundary in all-comers (%)	Probability of crossing efficacy boundary in Y+ patients (%)
ORR $(Y+) = ORR (Y-) = 16\%$	1.0	3.8
ORR $(Y+) = 32\%$, ORR $(Y-) = 16\%$	15.2	73.9
ORR $(Y+) = 16\%$, ORR $(Y-) = 32\%$	28.6	0.5
ORR $(Y+) = ORR (Y-) = 32\%$	88.5	7.4

7. Two-stage Design with Adaptive **Population Enrichment**

Sequential enrichment

Use probability of success (POS) at interim to allow early stopping for futility.

Use POS for interim decision making

POS(F): PP(posterior median $(F) \ge 24\%$ at final analysis | interim data); PP=predictive probability POS(Y+): PP(posterior median (Y+) \geq 24% at final analysis | interim data)

POS(Y-): $PP(Pr(ORR(Y-) \ge 16\% \mid data) \ge 0.75 at$ final analysis | interim data)

Interim decision rules

Continue with F: $POS(F) \ge 10\%$ and $POS(Y-) \ge 10\%$ Continue with Y+: $POS(F) \ge 10\%$ but POS(Y-) < 10%and $POS(Y+) \ge 10\% OR$ POS(F) < 10% but $POS(Y+) \ge 10\%$

Otherwise stop for futility

9. Conclusions/Discussions

- We have provided an evidence-based approach for subgroup selection in single arm trial
- Complement statistical—clinical criterion and intrinsic population selection algorithm in the interim analysis
- Can be extended to single-arm studies with other endpoints, such as time-to-event endpoints (e.g., 1-year PFS rate)

10. References

1. Roychoudhury, S., Scheuer, N., & Neuenschwander, B. (2018). Beyond p-values: A phase II dual-criterion design with statistical significance and clinical relevance. Clinical Trials, 15(5), 452–461.