Universidad de la República Facultad de Ingeniería IMERL: Matemática Discreta 2, semipresencial

Segundo parcial (cuarta prueba) 29 de noviembre de 2018 Duración: 3 horas

Nombre y Apellido	Cédula de identidad

Para cada pregunta o ejercicio, deben presentar claramente el razonamiento y cálculos realizados para obtener su respuesta final. Si una implicancia es válida debido a algún teorema, proposición o propiedad, deben especificarlo. Presentar una respuesta final a la pregunta sin justificación carece de validez.

Ejercicio 1. (A puntos)

- a. Probar que, si para todo $d \neq \varphi(n)$ tal que $d|\varphi(n)$, se tiene que $g^d \not\equiv 1 \pmod n$ entonces g es una raíz primitiva módulo n.
- **b**. Probar que g=2 es raíz primitiva en U(67).
- c. Describir el método de Diffie-Helmann.
- d. Calcular 34²⁹ (mód 67) por exponenciación rápida.
 - Calcular la clave en común que generan Ana y Bernardo, si toman p = 67 (como primo), g = 2 (como raíz primitiva), y m = 29, n = 65 (como parámetros de exponenciación).

Ejercicio 2. (B puntos) En U(41),

a. Probar que o(3) = 8 y hallar los elementos de $H = \langle 3 \rangle$.

(Recordar para lo que sigue que si $y \notin H$ entonces $o(y) \nmid 8$.)

- **b**. Elegir un $y \notin H$. Verificar que $y^8 \neq 1 \pmod{41}$ y hallar o(y).
- c. Hallar $q = 3^r y^s$ una raíz primitiva módulo 41.

Ejercicio 3. (C puntos) Sean $f: G_1 \to G_2 \text{ y } g: G_2 \to G_3 \text{ morfismos de grupos.}$

- **a.** Probar que $g \circ f$ es morfismo de grupos.
 - ¿Qué relación tienen $\operatorname{Im}(g \circ f)$ e $\operatorname{Im}(g)$? Justificar.

Supongamos que $|G_1| = m$, $|G_2| = n$ y $|G_3| = r$, con $m, n, r \in \mathbb{Z}$.

- **b**. Probar que |Im(f)| divide a mcd(m, n).
 - Probar que $|Im(g \circ f)|$ divide a mcd(m, n, r).
- c. Resolver (encontrar todas las soluciones) en U(29) de la ecuación $x^2 1 = 0$. ¿Qué orden tienen las soluciones halladas?
- d. Sean $G_1 = D_7$, el grupo dihedral de orden 14, $G_2 = S_5$ el grupo de permutaciones de 5 elementos, $G_3 = \mathbb{Z}_{15}$, y $G_4 = U(29)$.
 - Hallar todos los morfismos de dominio G_1 y codominio G_3 que factorizan por G_2 .
 - Hallar todos los morfismos de dominio G_1 y codominio G_4 que factorizan por G_2 .