Wenxias Yang.

Math 482: Linear Programming, Fall 2020 Due Monday, September 21, 6PM CST

Homework 3

- 1. Let $P \subseteq \mathbb{R}^3$ be the convex polyhedron with only the following four extreme points: (0,0,0), (0,1,1), (1,0,1), and (1,1,0).
 - (a) Write down a set of four linear inequalities describing P.
 - (b) Show directly from the definition that the point $(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ is not an extreme point of P.
- 2. Use the two-phase simplex method to solve the following linear program:

$$\begin{array}{ll} \underset{x_1, x_2, x_3 \in \mathbb{R}}{\text{maximize}} & x_1 + x_2 + 3x_3 \\ \text{subject to} & 2x_1 + x_3 = 2 \\ & x_2 + x_3 = 3 \\ & 4x_1 + x_2 + 3x_3 = 7 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

3. Use lexicographic pivoting to solve the following linear program:

4. Consider the following linear program:

- (a) Starting with basic variables $\mathcal{B} = (x_1, x_2)$, compute the inverse matrix $A_{\mathcal{B}}^{-1}$ and the basic feasible solution corresponding to \mathcal{B} .
- (b) Perform one iteration of the revised simplex method from the basic feasible solution you found in part (a). Use Bland's rule for pivoting.

Your answer should give the new basis \mathcal{B} , the new inverse matrix $A_{\mathcal{B}}^{-1}$, and the new basic feasible solution.

5. (Only 4-credit students need to do this problem.)

Your friend was solving a linear program with two inequality constraints on the variables x and y, as well as the nonnegativity constraints $x, y \ge 0$. After adding slack variables s_1, s_2 to deal with the

constraints, your friend used the simplex method to arrive at the following tableau:

Show that your friend must have made a mistake: there is no linear program of the form described which can result in this final tableau.

min
$$X_{1}^{a} + X_{2}^{a} + X_{3}^{a} = Z^{a}$$
 $X_{2}, X_{1}^{a} \in \mathbb{R}$

Sit. $2X_{1} + X_{2} + X_{3}^{a} = 2$
 $X_{2} + X_{3} + X_{4}^{a} = 3$
 $4X_{1} + X_{2} + 3X_{3} + X_{3}^{a} = 7$
 $X_{1}, X_{2}, X_{3}, X_{1}^{a}, X_{2}^{a}, X_{3}^{a} \ge 0$

X_{\perp}	χ	Хз	Χa	χa	χ₃a			χ,	χ,	Хз	Χa	χa	X3			
X9 2								xia 2	0	/	/	0	0	2		
Xia O	/	/	0	/	0	3		Xia O	/	/	0	/	0	3		
x3 4	/	3	0	0	/	7	<u>ニ</u> ノ	x3 4	/	3	0	0	/	7	_	
-7 /								-7 /	/	3	0	0	0	0		
-Zª0	0	0	/	1	/	0		- Zª-6	-2	さ	0	0	0	-/2		

Pivot on X,, remove X,	Pivot on X2 remove X2°
χ_1 χ_2 χ_3 χ_4 χ_4 χ_5	X_1 X_2 X_3 X_4 X_2 X_3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\chi_{1} / 0 \frac{1}{2} \frac{1}{2} 0 0 /$
x; 0 / 1 -2 0 / 3	x3 0 0 0 -2 -1 / 0
-Z 0 / \(\frac{2}{2} - \frac{1}{2} \) 0 0 -1 -Z^4 0 -2 -2 3 0 0 -6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

=) basic feesible solution: $(X_1, X_2, X_3, X_4^a, X_5^a) = (1, 3.0, 0.0.0)$

	$ \chi_i $	Xz	X3	Piv	10t ON X3 remove	χ,	$ \chi_i $	X2	Χ₃	
χ_i	1	0	<u> </u>	/	=>	χ ₃	2	0	/	2
X2	0	/	/	3		X ₂	-2	/	0	
- 2	0	0	3	-4		-7	1-3	0	0	-7

=)
$$\max Z = 7$$
 when $(x_1, x_2, x_3) = (0, 1, 2)$

3. Let / >> E, >> E, >> E;

max
$$x-y$$

 $x,y, S_1,S_2,S_3 \in \mathbb{R}$
Sit. $x-2y+S_1=E_1$
 $x-3y+S_2=E_2$

y + S3 = E3+3

Pivot on y remove
$$S_1$$
 $\frac{X}{y}$ $\frac{X}{S_1}$ $\frac{S_2}{S_3}$ $\frac{S_3}{S_4}$ $\frac{S_4}{S_5}$ $\frac{S_5}{S_5}$ $\frac{S_5}{S_5$

$$(X, y) = (6, 3).$$

4.
$$\begin{array}{ll} \underset{\text{subject to}}{\text{maximize}} & x_{1} + 2x_{2} + 3x_{3} + 4x_{4} + 2x_{5} - x_{6} + 4x_{7} + 4x_{8} + 2x_{9} - x_{10} \\ & x_{1} + x_{2} - x_{3} + 2x_{4} - x_{5} + 3x_{6} + 2x_{7} - x_{8} + x_{9} + 2x_{10} = 3 \\ & 3x_{1} + 4x_{2} + 2x_{3} + 7x_{4} + 5x_{5} + 6x_{6} - 2x_{7} + 9x_{8} + 8x_{9} + 9x_{10} = 10 \\ & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} \geq 0. \end{array}$$

$$C^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 2 & -1 & 4 & 4 & 2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 & -1 & 3 & 2 & -1 & 2 \\ 3 & 4 & 2 & 7 & 5 & 6 - 2 & 9 & 8 & 9 \end{bmatrix}$$

$$b = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix}^{T}$$

$$(a) \quad \mathcal{B} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 1 \\ 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 & 3 & 4 & 2 & -1 \end{bmatrix} =$$

$$\mathcal{B}' = (X_1, X_4)$$

$$\begin{bmatrix} A_{\mathcal{B}}^{-1} \mid Q_4 \mid P \end{bmatrix} = \begin{bmatrix} 4 - 1 & 1 & 2 \\ -3 & 1 & 1 \end{bmatrix}$$

$$= 2 \left[\frac{7 - 2 \cdot 0}{3 \cdot 1 \cdot 1} \right] = \left[A_{B'}^{-1} / A_{4} / P' \right]$$

$$A_{\mathcal{B}'}^{-1} = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} \qquad P' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

now basic feasible solution: $\chi_{4=1}$ $\chi_{5=0, i=2.3.5.6.717110}$