

4.3 边沿触发器

4.3.1 边沿 D 触发器

电路组成及工作原理

1. 电路组成及逻辑符号

2. 工作原理

(1)接收信号:

$$CP = 1$$

主触发器接收输入信号

$$Q_{\rm M}^{n+1} = D$$
 主触发器跟随 D 变化

(2) 输出信号:

$$CP = 0$$

主触发器保持不变;

从触发器由CP到来之前的 Q_{M}^{n} 确定。

即: $Q^{n+1} = D$ 下降沿时刻有效

3. 异步输入端的作用

D — 同步输入端 受时钟 CP 同步控制 \overline{R}_{D} 、 \overline{S}_{D} — 异步输入端

不受时钟 CP 控制

4. 波形

触发器的初始 0 状态可利用异步复位端接低电平实现

二、集成边沿D触发器

1. CMOS 边沿 D 触发器

CC4013 (双 D 触发器)

2. TTL 边沿 D 触发器 7474 (双 D 触发器)

- 3. 主要特点
 - ① CP 的上升沿(正边沿)或下降沿(负边沿)触发;
 - ② 抗干扰能力极强;
 - ③ 只有置1、置0功能。

4.3.2 边沿 JK 触发器

一、电路组成及符号

二、工作原理

$$Q^{n+1} = D$$

$$= \overline{J} + Q^n + KQ^n$$

$$= (J + Q^n)(\overline{K} + \overline{Q^n})$$
冗余项 $J\overline{Q^n} + \overline{K}Q^n$

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$
 CP 下降沿有效

二、集成边沿JK触发器

1. CMOS 边沿 JK 触发器 CC4027

特性表

J	K	Q^n	R_{D}	$S_{\mathbf{D}}$	CP	Q^{n+1}	注
0	0	0	0	0	\uparrow	0	保持
l_0	0	_1	0	_0_		1	小
0	1	0	0	0	\uparrow	0	同步置0
0	1	1	0	0	<u> </u>	0	
1	0	0	0	0	\uparrow	1	口止四1
1	0	1	0	0	\uparrow	1	同步置1
1	1	0	0	0		1	sterr LL
1	1	1	0	0	\uparrow	0	翻转
×	×	0	0	0	\downarrow	0	不 变
×	×	1	0	0	\	1	
×	×	×	0	1	×	1	异步置1
×	×	×	1	0	×	0	异步置0
×	×	×	1	1	×	不用	不允许

- 2. TTL 边沿 JK 触发器 74LS112 (双 JK 触发器)
 - CP 下降沿触发
 - 异步复位端 \overline{R}_D 、异步置位端 \overline{S}_D 均为低电平有效
- 3. 主要特点
- ① CP 的上升沿或下降沿触发;
- ② 抗干扰能力极强,工作速度很高,在触发沿瞬间,按 $Q^{n+1} = JQ^n + KQ^n$ 的规定更新状态;
- ③功能齐全(保持、置1、置0、翻转),使用方便。

4. 波形图

4.3.3 边沿触发器功能分类、功能表示方法及转换

一、边沿触发器功能分类

1. JK 型触发器

定义 在CP作用下, J、K取值不同时, 具有保持、置0、 置1、翻转功能的电路,都叫做JK型时钟触发器。

符号

特性表

$oldsymbol{J}$	K	Q^{n+1}	功能
0	0	Q^n	保持
0	0	0	置0
1	0	1	置1
1	1	\overline{Q}^n	翻转

特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

CP下降沿 时刻有效

2. **D** 型触发器

定义 在CP作用下,D 取值不同时, 具有置0、置1 功能的电路,都叫做 D 型时钟触发器。

特性表

D	Q^{n+1}	功能
0	0	置 0
1	1	置1

特性方程

$$Q^{n+1} = D$$

CP 上升沿 时刻有效

3. T 型触发器

在CP作用下,当T = 0时保持状态不变,T = 1 时状态翻转的电路,叫T型时钟触发器。

T	Q^{n+1}	功能
0	Q^n	保持
1	\overline{Q}^n	翻转

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$
$$= T \oplus Q^n$$

CP下降沿时刻有效

4. T, 型触发器

每来一个CP就翻转一次的电路叫T'型时钟触发器.

Q^n	Q^{n+1}	功能
0	1	翻转
1	0	御打

$$Q^{n+1} = Q^n$$

CP下降沿时刻有效

二、边沿触发器逻辑功能表示方法

特性表、卡诺图、特性方程、状态图和时序图。

1. 特性表、卡诺图、特性方程

(1) 特性表(真值表)

D	Q^{n+1}	功能
0	0	置 0
1	1	置1

J	K	Q^n	Q^{n+1}	功能
0	0	0 1	Q^n	保持
0	1 1	0 1	0	置 0
1	0	0 1	1	置1
1 1	1 1	0 1	\overline{Q}^n	翻转

(2) 卡诺图

D 触发器: 单变量的函数,其卡诺图无意义。

$$JK$$
触发器: $Q^{n+1} = JQ^n + \overline{K}Q^n$

(3) 特性方程

$$D$$
 触发器: $Q^{n+1} = D$

$$JK$$
触发器: $Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$

2. 状态图和时序图

- (1) 状态图
- D 触发器: D=0

D=1

(2) 时序图

特点: 表述了*CP* 对输入和触发器状态在时间上的对应 关系和控制或触发作用。

D 触发器:

CP 上升 沿触发

JK 触发器: CP_

علم والمراح والم

CP 下降 沿触发

三、边沿触发器逻辑功能表示方法间的转换

- 1. 特性表 → 卡诺图、特性方程、状态图和时序图
- (1) 特性表→卡诺图、状态图

J	K	Q^{n+1}	功能
0	0	Q^n	保持
0	1	0	置0
1	0	1	置1
1	1	$\overline{\mathcal{Q}}^n$	翻转

(2) 特性表 → 特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

向时序图的转换(略)

2. 状态图 → 特性表、卡诺图、特性方程和时序图

状态图→时序图

[例 **4.3.1**] 已知 *CP、J、K 波* 形, 画输出波形。 假设初始状态为 **0**。

