GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. SEMESTER : VIII INFORMATION TECHNOLOGY

Subject Name: **DESIGN AND ANALYSIS OF ALGORITHM**

Sr. No.	Course Contents	Total Hrs
1.	Basics of Algorithms and Mathematics: What is an algorithm?, Mathematics for Algorithmic Sets, Functions and Relations, Vectors and Matrices, Linear Inequalities and Linear Equations.	04
2.	Analysis of Algorithm: The efficient algorithm, Average and worst case analysis, Elementary operation, Asymptotic Notation, Analyzing control statement, Amortized analysis, Sorting Algorithm, Binary Tree Search.	08
3.	Divide and Conquer Algorithm: Introduction, Multiplying large Integers Problem, Problem Solving using divide and conquer algorithm - Binary Search, Sorting (Merge Sort, Quick Sort), Matrix Multiplication, Exponential.	08
4.	Greedy Algorithm: General Characteristics of greedy algorithms, Problem solving using Greedy Algorithm - Activity selection problem, Elements of Greedy Strategy, Minimum Spanning trees (Kruskal's algorithm, Prim's algorithm), Graphs: Shortest paths, The Knapsack Problem, Job Scheduling Problem	10
5.	Dynamic Programming: Introduction, The Principle of Optimality, Problem Solving using Dynamic Programming – Calculating the Binomial Coefficient, Making Change Problem, Assembly Line- Scheduling, Knapsack problem, Shortest path, Matrix chain multiplication, Longest Common Subsequence.	10
6.	Exploring Graphs: An introduction using graphs and games, Traversing Trees – Preconditioning, Depth First Search - Undirected Graph, Directed Graph, Breath First Search, Backtracking – The Knapsack Problem, The Eight queens problem, General Template.	10
7.	String Matching: Introduction, The naive string matching algorithm, The Rabin-Karp algorithm, String Matching with finite automata.	06
8.	Introduction to NP-Completeness: The class P and NP, Polynomial reduction, NP-Completeness Problem, NP-Hard Problems.	04

Text Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, PHI.
- 2. Fundamental of Algorithms by Gills Brassard, Paul Bratley, PHI.

Reference Books:

- 1. Design and Analysis of Algorithms, Dave and Dave, Pearson.
- 2. Algorithm Design: Foundation, Analysis and Internet Examples, GoodRich, Tamassia, Wiley India
- 3. Introduction to Design and Analysis of Algorithms, Anany Levitin, Pearson.