MECHANICAL DRAWING

Introduction to Limits, Fits & Tolerances

CLASSIFICATION OF DRAWINGS

Machine Drawing-

- Pertaining to machine parts or components.
- presented through a number of orthographic views.
- Size & shape of component is fully understood.

CLASSIFICATION OF DRAWINGS

- Production Drawing –
- Referred as working drawing.
- Should furnish all dimensions, limits & special finishing processes such as heat treatment, honing, lapping, surface finish, etc.
- Title should also mention the material used for the product, number of parts required.

CLASSIFICATION OF DRAWINGS

Part Drawing-

- Detailed drawing of a component to facilitate its manufacture.
- Follows principles of orthographic projection

Assembly Drawing-

 A drawing that shows the various parts of a machine in their correct working locations.

Parts List

Part No.	Name	Material	Qty
1	Crank	Forged Steel	1
2	Crank Pin	45C	1
3	Nut	MS	1
4	Washer	MS	1

TERMINOLOGY

- BASIC SIZE: calculated by designer to withstand the expected loads without failure.
- STANDARD SIZE: for interchangeability . e.g. Bolts, nuts etc.

NATURAL VARIABILITY OF PROCESSES: Inherent

Variations in the size due to natural conditions like variations in material, environmental fluctuations, vibrations, human variability, measurements etc. It is an unavoidable process.

• **ACTUAL SIZE:** measured dimension of a part. Bound to have variations.

LIMITS

- There are two extreme possible sizes of a component.
- The largest permissible size for a component is called upper limit and smallest size is called lower limit.

TOLERANCE

- It is the difference between lower and upper limits
- Narrow range, specially for fitting parts.

DEVIATIONS

- Difference between actual manufactured size and Basic size.
- LOWER DEVIATION: It is the algebraic difference between the minimum limit of size and the basic size.
- <u>UPPER DEVIATION</u>: It is the algebraic difference between the maximum limit and the basic size.

ZERO LINE

• It is the straight line corresponding to the basic size. The deviations are measured from this line.

HOLE

SHAFT

Max Hole size – Basic Size = Upper Deviation

Min Hole size – Basic Size = Lower Deviation

Max shaft size - Basic Size = Upper Deviation

Min shaft size - Basic Size = Lower Deviation

Fundamental Deviation

• Upper or lower deviation whichever is closer to zero line.

Sum up:

Diagram illustrating basic size deviations and tolerances

POSITIONAL TOLERANCES

- Two types of positional tolerances are used:
- 1. Unilateral tolerances
- 2. Bilateral tolerances
- When tolerance is on one side of basic size, it is called unilateral and if it is both in plus and minus then it is known as bilateral tolerance.

Who decides Tolerances???

- Designer suggests the tolerance zone depending on the functionality/application.
- Largely decides the manufacturing processes to be used.
- Manufacturing $cost = \frac{1}{Tolerance\ Zone}$
- Size of the component also influences the tolerance.

International tolerances (IT) Grades

- Grouping of tolerance with almost same level of relative accuracy.
- 18 Grades

IT0 1	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT 9	IT 10	IT 11	IT 12	IT 13	IT 14	IT 15	IT 16
MOS	T PREC	CISE													MOS	Т СОА	RSE
HIGH				COST OF PRODUCTION										LOW			

IT Grades Vs Manufacturing Processes

Tolerance grade	Manufacturing process and applications	Machine required
IT01, IT0 IT1 to IT5	Super finishing process, such as lapping, diamond boring etc. Use: Gauges	Super finishing machines
IT6	Grinding	Grinding machines
IT7	Precision turning, broaching, honing	Boring machine, honing machine
IT8	Turning, boring and reaming	Lathes, capstan and automats
IT9	Boring	Boring machines
IT10	Milling, slotting, planing, rolling and extrusion	Milling machine, slotting machine, planing machine and extruders
IT11	Drilling, rough turning	Drilling machine, lathes
IT12, IT13, IT14	Metal forming processes	Presses
IT15	Die casting, stamping	Die casting machine, hammer machine
IT16	Sand casting	

IT Grades Vs Size

FUNDAMENTAL TOLEPANCES OF CRADES OF AND 1 TO 16

Diar	not	a P	Val	ues	of t	olera	ince	in	mi	cro	ns					(1 m	icron	= (0.001	mm)
step	s i									To	oler	estroles de la re	MITS RESTRICTION OF THE PARTY O	ades	DAMES CHARGE LIGHTON					
U	im.		01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14*	15*	16*
To and	inc	3	0.3	0.5	0.8	1.2	2	3	4	6	10	14	25	40	60	100	140	250	400	600
Over To and	inc	3 6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	30	48	75	120	180	300	480	750
Over To and	inc	6 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900
Over To and	inc	10 18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270	430	700	1100
Over To and	inc	18 30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330	520	840	1300
Over To and	inc	30 50	0.6	1	1.5	2.5	4	7	11	16	25	39	60	110	160	250	390	620	1000	1600
Over To and	inc	50	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900
Over To and	inc	80 120	1	1.5	2.5	4	6	10	15	22	35	54	87	140	220	350	540	870	1400	2200
Over To and	inc	120 180	1.2	2	3.5	5	8	12	18	25	40	63	100	160	250	400	630	1000	1600	2500
Over To and	inc	180 250	2	3	4.5	7	10	14	20	29	46	72	115	185	290	460	720	1150	1850	2900
Over To and	inc	250 315	2.5	4	6	8	12	16	23	32	52	81	130	210	320	520	810	1300	2100	3200
Over To and	inc	315 400	3	5	7	9	13	18	25	36	57	89	140	230	360	570	890	1400	2300	3600
Over To and	inc 23/20		4	6	8	10							155 niversi		400	630	970	1150	2500	4000

* Upto 1 mm, Grades 14 to 16 are not provided.

Representation of Tolerances

• Method 1 (Basic Size with Deviations):

Representation of Tolerances

• Method 2 (Maximum & Minimum Limits):

Representation of Tolerances

• Method 3 (Basic Size + Fundamental Deviation + Tolerance)

BASIC SIZE+ Alphabet + Number

Fundamental Deviation for Holes

Table 19.5 Fundamental deviations for holes

Upper · deviation in microns

Lower deviation in microns

Diam		A	В	С	D	E	F	G	H	JS	J	J	K	M	N	P	R	S		r u	V	X	Y	Z	ZA	ZB	zc
in mi	71					Grad	ae.												Gra	ıdes							
Over	Up to	All	All	All	All			All	All	All	6	7	7	>8	<8	>7	>7	>7		7 >7	>7	>7	>7	>7	>7	>7	>7
-	3	270	140	60	20	14	6	2	0	±1T/2	2	4	0	-2	-4	-6	-10	-14	_	-18	_	-20	-	-26	-32	-40	-60
3	6	270	140	70	30	20	10	4	0	±IT/2	5	6	3	-4	-8	-12	-15	-19	-	-23	-	-28	-	-35	-42	-50	-80
6	10	280	150	80	40	25	13	5	0	±IT/2	5	8	5	-6	-10	-15	-19	-23	-	-28	-	-34	-	-42	-52	-67	-97
10	14	290	150	95	50	32	16	6	0	±IT/2	6	10	6	-7	-12	-18	-23	-28	-	-33	-	-40	-	-50	-64	-90	-130
14	18	290	150	95	50	32	16	6	0	±IT/2	6	10	6	-7	-12	-18	-23	-28	-	-33	-39	-45	-60	-77	-108	-	150
18	24	300	160	110	65	40	20	7	0	±IT/2	8	. 12	6	-8	-15	-22	-28	-35	-	-41	-47	-54	-63	73	-98	-136	-188
24	30	300	160	110	65	40	20	7	0	±IT/2	8	12	6	-8	-15	-22	-28	-35	-41	-48	-55	-64	-75	-88	-118	-160	-218
30	40	310	170	120	80	50	25	9	0	±IT/2	10	14	7	-9	-17	-26	-34	-43	-48	-60	-68	-80	-94		-148		-274
40	50	320	180	130	80	50	25	9	0	±IT/2	10	14	7	-9		-26	-34	-43	-54	-70	-81	-97			-180		
50	65	340		140		60	30	10		±IT/2		18	9		-20		-4 1	-53	-66	-87					-226		
65	80	360		150		60		10		±IT/2		18					-4 3	59								-360	
	100	380		170		72		12		±IT/2					-23		-51	-71				-178	-214		-335		-585
	120	410		180		72		12		±IT/2					-23		-54								-400 470		-690
120		460		200		85	43			±IT/2 ±IT/2							-63 -65						-340			-620 -700	-900
140				210		85	43			±17/2		26 26			-27								-380		-600		-1000
	180			230			43			±11/2													-425				-1150
180						100				±IT/2													470				-1250
200	250	740 820		280			50			±IT/2																1050	
250						110				±IT/2																-1200	- 1
280		1050								±IT/2																-1300	- 1
315						125		1		±IT/2																-1500	
										±IT/2																-1650	
																											-2400
																											-2600

Fundamental Deviation for Shafts

Table 19.6 Fundamental deviations for shafts

		Upper									Low	er dev	iation	in m	icron	5									
Diameter	а	b	с	d	e	-f	g h	JS	j	j	k	m	n	p	,	· s	1	u	1	v x	у	z	za	zb	zc
in mm				Grade	05				<u> </u>	Grade:									G-	ades					\neg
Over Up to	All	All	All			All	All All	All	5,6			All	All	All	All	All	All	All	1000	iues I All	All	All	All	All	All
- 3	-270	-140	-60	-20	_14	-6	-2 0	+IT/2	2	-4	0	2	4	6	10	14		18		20		26	32	40	60
3 6		-140		-30		-10		±IT/2		- 4 -4	1	1	8	12	15	19	_	23	_	28		35	42	50	80
6 10	200.30.30	-150		-40			-5 0			- 5	2	6	10	4	19	23	_	28	_	34		42	52	67	97
10 14		-150						±IT/2	-2 -3	-6		7	12	18	23	28	_	33	_	40		50	64	90	130
14 18		-150					-6 0		-3	-6			12		23	28	_	33	39	45		60	77	108	150
18 24	1	-160						±IT/2	-4	-8	2	8	15		28	35	_	41	47	54	63	73	98	136	188
24 30	-300	-160	-110	-65				±IT/2	-4	-8	2		15		28	35	41	48	55	64	75	88	118	160	
30 40	-310	-170 -	-120	-80	-50	-25	-9 0	±IT/2	-5	-10			17		34	43	48	60	68	80	94	112	148	200	
40 50	-320	-180 -	-130	-80	-50	-25	-9 0	±IT/2		-16			17		34	43	54	70	81	97	114	136	180	242	
50 65	-340	-190 -	-140 -	-100	-60	-30 -	-10 0	±IT/2	-7	-12	2	11			41	53	66	87		122	144	172	226	300	
65 80	-360	-200 -	-150 -	-100	-60	-30 -	-10 0	±IT/2	-7	-12		11	20		43	59	75		120		174	210	274	360	
80 100	-380	-220 -	-170 -	-120	-72	-36 -	-12 0	±IT/2	-9	-15	3	13			51	71	91		146		214	258	335	445	
100 120	-410	-240 -	-180 -	-120	-72	-36 -	-12 0	±IT/2		-15					54	79			172		254	310	400		
120 140	-460	-260 -	-200 -	-145	-85	-43 -	-14 0	±IT/2	-11	-18	3	15	27	43	63	92	122		202		300	365	470		1000
140 160	−520 ·	-280 -	-210 -	-145	−85	-43 -	-14 0	±IT/2	-11	-18	3	15	27	43	65		134				340	415	535		***************************************
160 180	-580 -	-310 -	-230 -	-145	-85 -								,				146				380				1000
180 200	-660 -	-340 -	240 -	-170	-100 -	-50 -	-15 0	±IT/2	-13	-21	4	17	31	50			166					520			1150
200 225	-740 -	-380 -	260 -	-170	-100 -	-50 -	15 0	±IT/2	-13	-21	4	17	31	50		130			310						
225 250	-820 -	-420 -	280 -	170	-100 -	-50 -	15 0					17					196				520	640		, , ,	1250 1350
250 280	-920 -	-480 -	300 -	-190	-110 -	-56 -	17 0	±IT/2	-16	-26							218				580	710			1550
280 315	-1050 -	-540 -	330 -	-190	-110 -	-56 -	17 0	±IT/2	-16	-26	4	20	34	56	98	170	240				650		1000		
315 355	-1200	-600 -	-360 -	-210	-125 -	-62 -	18 0	±IT/2	-18	-28	4	21	37	62	108	190	268	390	475	500	730		1150		- 1
355 400 400 450	-1350	-680 -	-400 -	-210	-125 -	-62 -	-18 0	±IT/2	-18	-28	4	21	37	62	114	208	294	435	530	660		150 0000	1300		
450 500	1300	-760 -	-440 -	-230	-135	-68 -	-20 0	$\pm IT/2$	-20	-32	5	23	40	68	126	222	220	400	cac .	~					
•	1/23/20)21		230	-135	-08 -	-20 0	Dr. S.	–20 K. Sh	-32 arma	5 M	23 ED,	40 ha	68 j	132 Juive	252 Tsity	360	540	660 8	320 1	000 1	250 1	600 2	199 20	500

Fundamental Deviation for Shafts

Examples:

Cumulative & No Cumulative Tolerances

Example 1 Figure 19.S1 shows overall limits on length as 100.0 and 99.5. Two holes are drilled at equal distance from center line at distance of 30 mm. Calculate the limits for size A. The same tolerance as of A is applied for the vertical distance between the center lines of the circles. Calculate the limits for size B.

Solution Size A is maximum when size 100 is maximum and tolerance on size 30 is minimum. Hence:

 $2A (Maximum) = 100 - 2 \times (29.98) = 100 - 59.96 = 40.04$. Hence maximum A = 20.02

Size A is minimum when size 100 is minimum and tolerance on size 30 is maximum. Hence:

 $2A \text{ (Minimum)} = 99.5 - 2 \times (30.02) = 99.5 - 60.04 = 39.46$. Hence minimum A = 19.73

Therefore maximum size of A is 20.02 and minimum size is 19.73. or $A = 20_{0.27}^{0.02}$

Since B = 3A, hence maximum size of B = 60.06 and minimum size = 59.19. or B = $60^{-0.06}$

Example 2 A schematic representation of 80 mm basic size is shown by zero line in Fig. 19.S2. The deviation is shown in microns by shaded area for 5 cases from A to E. Calculate the following for each case:

a. Lower deviation

b. Upper deviation

c. Upper limit size

d. Lower limit size

FITS

• The degree of tightness or looseness between two mating parts is called a fit.

TYPES OF FITS

1. CLEARANCE FIT:

There is a clearance or looseness in this type of fits. These fits maybe slide fit, easy sliding fit, running fit etc.

Transition Fit –

This fit may result in either an interference or a clearance, depending upon the actual values of the tolerance of individual parts.

3. Interference Fit -

If the difference between the hole and shaft sizes is negative before assembly; an interference fit is obtained.

To obtain different types of fits, it is general practice to vary tolerance zone of one of the mating parts

HOLE BASED SYSTEM-

Size of hole is kept constant, shaft size is varied to get different fits.

SHAFT BASED SYSTEM-

Size of shaft is kept constant, hole size is varied to get different fits.