

Comunicações móveis

Bluetooth

(WPAN)

- Redes Bluetooth
- Operação piconet
 - Investigação
 - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE

- Redes Bluetooth
- Operação piconet
 - Investigação
 - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE

Comparação entre tecnologias sem fio

Comparison Wireless technologies

Peak Data Rate vs Maximum Range

Ahmed, Mobyen & Björkman, Mats & Causevic, Aida & Fotouhi, Hossein & Lindén, Maria. (2015). Uma Visão Geral na Internet de Coisas para sistemas de monitoramento de saúde.

Tradeoff entre taxa de dados, alcance e energia

Redes de área pessoal

- Ambiente de implantação alvo: comunicação de dispositivos pessoais trabalhando juntos
 - Curto alcance
 - Baixo consumo de energia
 - Baixo custo
 - Pequeno número de dispositivos

Padrões PAN

- Bluetooth Consórcios industriais (SIG Bluetooth)
- IEEE 802.15.1 baseado em "Bluetooth"
- IEEE 802.15.2 Interoperabilidade e coexistência
- IEEE 802.15.3 WPAN de alta taxa de dados (UWB)
- IEEE 802.15.4 WPAN de baixa taxa de dados (Zigbee,...)
- IEEE 802.15.5 Redes Mesh
- IEEE 802.15.6 Rede de Área Corporal
- IEEE 802.15.7 Comunicação de Luz Visível

- Criado por Ericsson (1994)
- Mantido pelo Bluetooth SIG (https://www.bluetooth.com/)
- Originalmente para substituir "USB", não "Ethernet"
 - Tecnologia de substituição de cabos
 - Mais tarde também usado como conexão à Internet, telefone ou fone de ouvido
- FRIGIDEIRA Rede de área pessoal
 - Começou com conexões de 1 Mbps
 - Inclui conexões de voz síncronas, assíncronas
 - Roteamento piconet
- Rádios pequenos, de baixa potência, curto alcance, baratos e versáteis (3 classes)
- Configuração e agendamento mestre/escravo

Versões Bluetooth

Versão	Taxa de dados	Recurso	
1.1	1Mbps	Primeira versão amplamente adotada	
2.0 +EDR	3Mbps	Taxa de dados aprimorada (EDR)	
3,0 + HS	24Mbps	Alta velocidade	
4,0	24Mbps/ 1Mbps (BLE)	Bluetooth de baixa energia (BLE)	
4.1	25Mbps	Conexão indireta de dispositivos IoT	
4.2	25Mbps	Alcance >100m, protocolo IPv6 para conexão direta com a Internet	
5,0	50Mbps	Alcance 4x, velocidade 2x, mensagem 8x capacidade + IoT	
5.1	50Mbps	Usa mais antenas para identificar localização dos dispositivos conectados	
5.2	50Mbps	Maior alcance (400m)	

Agora na versão 5.4, com algumas melhorias adicionais

2020
Bluetooth v 5.2
Added Isochronous Channels (For audio streaming)
, LEPC, and EATT optional features

2019

WLAN versus Bluetooth

	Bluetooth	WLAN/Wi-Fi	
Autoridade de especificações	SIG Bluetooth	IEEE, Aliança WiFi	
Ano de desenvolvimento	1994	1991	
Largura de banda	Baixo (50 Mbps)	Muito alto (2 Gbps 802.11ax)	
Requisito de hardware	Adaptador Bluetooth em todos os dispositivos conectando um com o outro	Adaptadores wireless em todos os dispositivos da rede, um roteador wireless e/ou wireless pontos de acesso	
Custo	Baixo	Alto	
Consumo de energia	Baixo	Alto	
Frequência	2,4GHz	2,4/5 GHz	
Segurança	É menos seguro	É mais seguro	
Faixa	10 metros	100 metros	
Dispositivos primários	Telefones celulares, mouses, teclados, dispositivos de automação industrial e de escritório	Notebooks, computadores desktop, servidores	
Fácil de usar	Bastante simples de usar. Pode ser usado para conectar para 7 dispositivos por vez. É fácil alternar entre dispositivos ou encontrar e conectar-se a qualquer dispositivo.	É mais complexo e requer configuração de hardware e software	

Recursos Bluetooth (I)

- Rede de rádio, no2,4GHz, mundialmente
 - **ISM** (Industrial, Científico e Médico); Não licenciado, mas regulamentado
- FC (Salto de frequência)Espectro de propagação:
 - **79**canais de 1 MHz na faixa de 2,402 GHz a 2,480 GHz
- Define um**Mestre**
 - Sincroniza todos com seu padrão de salto
- TDD(Duplex por Divisão de Tempo)
 - Os dados são transmitidos em uma direção de cada vez, com a transmissão alternando entre duas direções (Mestre transmite em pares intervalos de tempo erecebe em ímpares)

Recursos Bluetooth (II)

- Define dois tipos de redes:
 - **Piconetes**(tem 1 Mestre)
 - Redes de dispersão (unindo múltiplas piconets via Master ou Slaves comuns)
- Máximo8 dispositivos ativospor piconet
 - 1 Mestre + 7 Escravos
- Dois tipos principais de conexões
 - SCO(Orientado para conexão síncrona), link de voz
 - FEC (correção direta de erros), sem retransmissão
 - ACL Conexão explicitamente configurada antes da transmissão
 - LCA(Conexão Assíncrona Menos), link de dados
 - Assíncrono, os pacotes devem ser reconhecidos

Espectro de propagação de salto de frequência (FHSS)

- Transmissão de sinal em séries pseudo-aleatórias de frequências
- O receptor salta entre frequências em sincronia com o transmissor (1600 saltos por segundo, a cada 625uS)
- O código de espalhamento determina a sequência de salto
 - Deve ser compartilhado pelo remetente e pelo destinatário (por exemplo, padronizado)
- Bisbilhoteiros ouvem sinais ininteligíveis
- O bloqueio em uma frequência afeta apenas alguns bits

Piconetas (I)

- Dispositivos Bluetooth conectados em uma célula "ad-hoc"
- Há um Master com até 7 Slaves ativos e várias centenas estacionados
 - Os escravos só se comunicam com o mestre
 - Os escravos devem esperar pela permissão do mestre
 - A comunicação pode ser de 1 para 1 a 1 para muitos
 - Nenhuma comunicação direta entre escravos
- Cada estação (Master ou Slave) possui um endereço de dispositivo fixo de 48 bits

M = Mestre

S = Escravo

P = Estacionado

SB = Espera

Piconetas (II)

- Mestre define parâmetros de rádio ("clock" e "deviceID")
 - Canal, sequência de salto, tempo,...
- Cada Piconet possui um padrão FH exclusivo (e um único ID)
- Cada piconet tem uma largura de banda máxima
- Um nó em umPiconetatambém pode fazer parte de outra Piconet, seja como Master ou como Slave, criando umaRede de dispersão

M = Mestre

S = Escravo

P = Estacionado

SB = **Espera**

- Redes Bluetooth
- Operação piconet
 - Investigação
 - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE

Operação piconet

- FHSS: todos os dispositivos devem compartilhar o mesmo padrão de salto:
 - M*áster*forneça relógio e deviceID de forma que:
 - O deviceID exclusivo (48 bits) define o padrão de salto

• O relógio define a fase dentro do padrão

 Se um dispositivo estiver dentro de uma piconet e n\u00e3o estiver conectado, ele dever\u00e1 estar emespera

- Existem dois tipos de endereços piconet
 - Endereço de membro ativo(AMA, 3 bits, 7 endereços)
 - Endereço de membro estacionado(PMA, 8 bits, 255 endereços)

Piconet antes da configuração

Piconeta em operação

Estados do dispositivo

Espera

 Fazer nada; esperando para entrar em uma piconet

Investigar

Procure outros dispositivos (nós de descoberta)

Página

• Conecte-se a um dispositivo específico

Conectado

• Ativo em uma piconet (Master ou Slave)

• Estacionar/farejar/esperar

• Estados conectados de baixa potência

Parque: liberar AMA, obter PMA Farejar: ouça

periodicamente, não em cada slot

Segurar: parar ACL, SCO ainda é possível, possivelmente participar de outra piconet

AMA: Endereço de membro ativo
AMP: Endereço do membro do parque

Operação de baixa potência no BT classic

• 3 modos (escravos):

1. Cheirar

- Modo de ciclo de trabalho baixo
- Acorda periodicamente para conversar com o mestre
- Intervalos de "cheirada" fixos

2. Parque:

- Estado de energia muito baixo
- Costumava admitir mais de 7 escravos na piconet
 - Slave desiste de seu endereço de membro ativo (AMA)
 - Recebe endereço de membro "estacionado" (PMA)
- Acorda periodicamente ouvindo transmissões que podem ser usadas para "desestacionar" o nó

3. Segure

- O nó dorme por um intervalo especificado
- O mestre pode colocar os escravos em espera enquanto procura novos membros, participa de outra piconet, etc.
- Nenhum pacote ACL (*Sem conexão assíncrona*) → pacotes de dados gerais
 - Mas SCO (*Orientado para conexão síncrona*) possível → Áudio

Descoberta de dispositivos ilustrada

Após o procedimento de investigação, A tem conhecimento de outras pessoas dentro do alcance

O dispositivo A deseja procurar estações

- O dispositivo A deseja procurar estações
- A faz uma consulta (página com ID 000)
 - Os dispositivos B, C, D estão fazendo uma varredura de consulta

- O dispositivo A deseja procurar estações
- A faz uma consulta (página com ID 000)
- B responde com pacote FHS
 - Contém*ID de dispositivo*e *Relógio*

- O dispositivo A deseja procurar estações
- A faz uma consulta (página com ID 000)
- B responde com pacote FHS
 - Contém DeviceID e relógio
- A faz uma pergunta novamente

- A quer procurar estações
- ...
- A faz uma pergunta novamente
- C e D respondem ao mesmo tempo com pacote FHS
 - Os pacotes estão corrompidos
 - A não responde
 - C e D esperarão um número aleatório de slots

- A quer procurar estações
- ...
- A faz uma pergunta novamente

- A quer procurar estações
- •
- A faz uma pergunta novamente
- C responde com pacote FHS

- A quer procurar estações
- A faz uma pergunta novamente

- A quer procurar estações
- ...
- A faz uma pergunta novamente
- D responde com pacote FHS

 A tem todas as informações necessárias sobre as unidades da célula

Verificação de consulta: resumo

- A verificação de consultas tem um endereço comum
 - E um padrão de frequência comum (de 32 frequências)
- Todos os dispositivos podem paginar este endereço (e se tornarem mestres)
- Todas as máquinas que ouvirem uma consulta responderão à solicitação de consulta
- Existe um detector (correlator hit) nos escravos, que detecta consultas, antes de responder com uma ESF fornecendo:
 - ID do dispositivo e relógio
- Uma máquina com baixo consumo de energia espera um tempo aleatório antes de responder novamente a uma varredura
- Se houver uma colisão ao responder a uma varredura, eles também aguardarão um período aleatório antes de responder novamente

Paginação: Você se conectará a mim?

- Muito semelhante a perguntar
- Ainda não sincronizou relógios ou frequências
- Estabelece uma conexão Piconet real com um dispositivo que ele conhece
- O processo de conexão envolve 6 etapas de comunicação entre o mestre e o escravo

			Saltitar	Fonte do padrão
Etapa	Mensagem	Direção	Padrão	e relógio
1	ID do escravo	Mestre para Escravo	Página	Escravo
2	ID do escravo	Escravo do Mestre	Resposta da página	Escravo
3	ESF	Mestre para Escravo	Página	Escravo
4	ID do escravo	Escravo do Mestre	Resposta da página	Escravo
5	1º Pacote Mestre	Mestre para Escravo	Canal	Mestre
6	1º Pacote Escravo	Escravo do Mestre	Canal	Mestre

- Paginação:
 - Supõe que o mestre tenha C*ID de dispositivo*e *Relógio*

- Paginação:
 - Supõe que o mestre tenha C deviceID e Clock
 - A pagina C com o deviceID de C

- Paginação: master possui o ID do dispositivo e o relógio
 - A pagina C com o deviceID de C
 - C responde A com seu deviceID

- Paginação: o mestre possui o ID do dispositivo e o relógio
 - A pagina C com o deviceID de C
 - C responde A com seu deviceID
 - A envia para C seu deviceID e Clock (pacote FHS)

- Paginação: o mestre possui o ID do dispositivo e o relógio
 - A pagina C com o deviceID de C
 - C responde A com seu deviceID
 - A envia C seu deviceID e Clock (pacote FHS)
 - A torna-se mestre de C

- Redes Bluetooth
- Operação piconet
 - Investigação
 - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE