Algoritma dan Struktur Data

Algoritma Pencarian (Searching Algorithm)

Umi Sa'adah Tita Karlita Entin Martiana Kusumaningtyas Arna Fariza 2021

Politeknik Elektronika Negeri Surabaya Departemen Teknik Informatika dan Komputer

Politeknik Elektronika Negeri Surabaya

Materi

- Pengenalan algoritma pencarian
- Algoritma sequential search
- Algoritma binary search

Pengenalan algoritma pencarian

- Algoritma yang digunakan untuk mencari sebuah data dan lokasinya pada kumpulan data yang telah ada.
- Data yang dicari disebut dengan kata kunci / key.
- Setelah proses pencarian dilaksanakan, akan diperoleh salah satu dari dua kemungkinan, yaitu data yag dicari:
 - ditemukan (successful)
 - tidak ditemukan (unsuccessful)

Find Key = "Surabaya"

Searching Concepts

Setiap record dalam list memiliki sebuah associated key. Pada contoh ini, key-nya = ID numbers.

Diberikan sebuah key, bagaimana cara menemukan recordnya dari list secara efektif?

Algoritma pencarian

- Ada dua macam teknik pencarian yaitu:
 - pencarian sekuensial (sequential search)
 - pencarian biner (binary search)
- Perbedaan dari dua teknik ini terletak pada keadaan data.
 - Pencarian sekuensial digunakan apabila data dalam keadaan acak (tidak terurut) atau data yang sudah terurut.
 - Sebaliknya, pencarian biner digunakan pada data yang sudah dalam keadaan urut.

Sequential Search

- Dimulai dari data awal.
- Cek seluruh data dalam array, baca satu persatu.
- Temukan data yang sesuai dengan key yang dicari.
- Proses searching berhenti karena salah satu alasan berikut:
 - Sukses key ditemukan
 - End of List Sudah tidak ada data yang dibandingkan
- Diaplikasikan pada data (sorted & unsorted)

Algoritma Sequential Search

```
i ← 0
ketemu ← false
Selama (tidak ketemu) dan (i < N) kerjakan baris 4</li>
Jika (Data[i] == key) maka
    ketemu ← true
    jika tidak
    i ← i + 1
Jika (ketemu) maka
    i adalah indeks dari data yang dicari
    jika tidak
    data tidak ditemukan
```


Ilustrasi Sequential Search

Politeknik Elektronika Negeri Surabaya

Ilustrasi Sequential Search

19 ketemu pada indeks ke 3

Sequential Search Analysis

• Jumlah operasi pencarian bergantung pada nilai n, yaitu jumlah elemen dalam list

Worst Case Time for Sequential Search

- Kondisi yang mengharuskan pengecekan terhadap semua elemen array (*n* data):
 - Data yang dicari berada pada posisi terakhir dari array
 - Setelah pengecekan seluruh elemen array, ternyata record yang dicari tidak berhasil ditemukan dalam array tersebut
- Untuk sebuah array dengan n elemen, maka worst case time untuk sequential search \rightarrow membutuhkan n kali akses data: O(n).

- Untuk sejumlah N data yang telah terurut
- Ulangi sampai selesai
 - Pilih data yang terletak di tengah (middle element)
 - Bandingkan nilai key dengan key terpilih (middle element)
 - Hasil perbandingan:
 - Key < middle element: Range = First half
 - Key > middle element : Range = Last half
 - Key = middle element : Success, Done

Pseudocode Binary Search

```
1. L \leftarrow 0
```

- 2. $R \leftarrow N 1$
- 3. ketemu \leftarrow false
- 4. Selama (L <= R) dan (tidak ketemu) kerjakan baris 5 sampai dengan 8
- 5. $m \leftarrow (L + R) / 2$
- 6. Jika (Data[m] == key) maka ketemu ← true
- 7. Jika (key < Data[m]) maka $R \leftarrow m 1$
- 8. Jika (key > Data[m]) maka L \leftarrow m + 1
- 9. Jika ketemu

```
maka m adalah indeks dari data yang dicari, jika tidak ketemu
```

data tidak ditemukan

3 4 5 6

- Studi Kasus 1

- Studi Kasus 1

- Studi Kasus 2

Pencarian data dengan key=7

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53
			<u></u>			

m = (0+6)/2 = 3

Pencarian data dengan key=7

Pencarian data dengan key=7

Pencarian data dengan key=7

Pencarian key pada area sebelum m

Pencarian data dengan key=7

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

Pencarian data dengan key=7

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

Apakah key == m ? NO.

Pencarian data dengan key=7

Apakah key < m ? NO.

Pencarian data dengan key=7

Apakah key > m ? YES.

Pencarian data dengan key=7

Pencarian target pada area setelah m

Pencarian data dengan key=7

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

Apakah key = m ? YES.

Searching algorithm: Time complexity

	Time Complexity		
Linear Search	O (n)		
Binary Search	O (log (n))		
Jump Search	O (√ n)		
Interpolation Search	O (log (log n))-Best O (n)-Worst		
Exponential Search	O (log (n))		
Sequential search	O (n)		
Depth-first search (DFS)	O (V + E)		
Breadth-first search (BFS)	O (V + E)		

Searching algorithm: Time complexity

Algorithm	Best Time Complexity	Average Time Complexity	Worst Time Complexity	Worst Space Complexity
Linear Search	O(1)	O(n)	O(n)	O(1)
Binary Search	O(1)	O(log n)	O(log n)	O(1)
Bubble Sort	O(n)	O(n^2)	O(n^2)	O(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	O(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	O(1)
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)	O(log n)
Heap Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
Bucket Sort	O(n+k)	O(n+k)	O(n^2)	O(n)
Radix Sort	O(nk)	O(nk)	O(nk)	O(n+k)
Tim Sort	O(n)	O(nlogn)	O(nlogn)	O(n)
Shell Sort	O(n)	O((nlog(n))^2)	O((nlog(n))^2)	O(1)

Politeknik Elektronika Negeri Surabaya

Kesimpulan

- Ada dua macam teknik pencarian yaitu pencarian:
 - sekuensial (sequential search)
 - pencarian biner (binary search)
- Algoritma yang digunakan untuk mencari lokasi dari sebuah data yang diberikan (disebut kata kunci) pada kumpulan data yang telah ada.
- Perbedaan dari dua teknik ini terletak pada keadaan data.
 - Pencarian sekuensial digunakan apabila data dalam keadaan acak atau tidak terurut.
 - Sebaliknya, pencarian biner digunakan pada data yang sudah dalam keadaan urut.
- Kompleksitas waktu
 - Sequensial search: O(n)
 - Binary search: O(log n)

Politeknik Elektronika Negeri Surabaya

Latihan Soal

- Dengan Pencarian Sekuensial, carilah data 9 dari data berikut
- 10 1 2 11 8 7 5 4 15 16
- Dengan Pencarian Biner, carilah data 9 dari data berikut
- 2 5 6 9 10 12 15 18 20 22

