Scientific Calculations - Exploration of Arithmetic

Mateusz Pełechaty

23 October 2022

1 Exercise - Basic Exploration

1.1 Machine Epsilon

Machine epsilon (macheps) is the smallest number x such that 1+x>1 and rd(1+x)=1+x.

Find machine epsilon with Julia and compare results with the function eps and with values from float.h

Solution can be found in

- ./zad1/find_macheps.jl
- ./zad1/epsilons.c

Method and results

It was calculated by setting macheps := 1 and then if 1 + macheps > 1, then macheps is divided by 2.

Exercise 1.1	Macheps	Eps	Float.h
Float16	0.000977	0.000977	
Float32	1.1920e-7	1.1920e-7	1.1920e-07
Float64	2.2204e-16	2.2204e-16	2.2204e-16

Conclusion

Calculating macheps by me, eps(type) function and Float.h constants provide the same values

1.2 Eta

Eta (η) is the smallest number such that $\eta > 0$. Find η and compare it with nextfloat(0.0) and MIN_{sub} Tests should be made for **Float16**, **Float32**, **Float64**

Solution can be found in

./zad1/find_eta.jl

Method and results

It was calculated by setting $\eta := 1$ and then dividing by 2 until $\frac{\eta}{2} > 0$ MIN_{sub} values are taken from W. Kahan's book

Exercise 1.2	η	nextfloat	MIN_{sub}
Float16	6.0e-8	6.0e-8	
Float32	1.0e-45	1.0e-45	1.3e-45
Float64	5.0e-324	5.0e-324	4.9e-324

Conclusion

nextfloat(0.0) and my method of calculating η provide the same values. Values are almost the same as MIN_{sub}

1.3 Questions

Q: What is difference between macheps and arithmetic precision (ϵ) ? **A:** Macheps is the smallest number that meets condition: 1 + macheps > 1 and rd(1 + macheps) = 1 + macheps. We can also say that $macheps = \beta^{1-t}$. ϵ on the other hand is biggest relative error that can happen due to rounding in arithmetic. So it is the smallest number ϵ , that meets condition $\epsilon \geq \delta = \frac{|rd(x)-x|}{x}$ for some number x. It was calculated in the lecture that

$$\epsilon = \frac{1}{2}\beta^{1-t}$$

It follows from here that $\epsilon = \frac{macheps}{2}$ **Q:** What is difference between η and (MIN_{sub}) ?

A: MIN_{sub} is minimal subnormal number. η is defined by minimal number bigger than 0. They should be the same, but there are little differences between them

Q: What is the returned by floatmin and what is it's connection with MIN_{nor} **A:** They are the same value as seen in table below.

Values of MIN_{nor} are taken from W. Kahan's book

Values of floatmin are calculated in ./zad1/floatmin.jl

Q3	floatmin	MIN_{nor}
Float16	6.104e-5	
Float32	1.1755e-38	1.2E-38
Float64	2.2251e-308	2.2E-308

1.4 **FloatMax**

Calculate maximum possible number for Float16, Float32, Float64. Compare values with the ones returned by function *floatmax* and with data

Solution can be found in

./zad1/floatmax.jl

Method and results

It was calculated by max1 := 4, max2 := 2 and max3 := 1. Variables are doubled until max1 == max2. It means that they are infinity. Then I am returning max3

Exercise 1.4	my max	floatmax	W. Kahan's MAX
Float16	3.277e4	6.55e4	
Float32	1.701e38	3.403e38	3.4 E38
Float64	8.988e307	1.798e308	1.8 E308

Conclusion

We can see that floatmax is the same as W. Kahan's Max My method of calculating maximum gets me wrong because doubling number reaches infinity. So $mymax = \frac{1}{2} \cdot floatmax$

2 Exercise - Tricky Macheps Calculation

Check in Julia if $3 \cdot (4/3 - 1) - 1$ is Machine Epsilon. Conduct experiments for Float16, Float32 and Float64

Solution can be found in

./zad2/calculate_macheps.jl

Method and results

Macheps was calculated by nextfloat(1.0) and W Kahan's Macheps is calculated by specified above.

Exercise 2	Macheps	Kahan Macheps
Float16	0.000977	-0.000977
Float32	1.1920e-7	1.1920e-7
Float64	2.2204e-16	-2.2204e-16

Conclusion

We can see that $macheps = 3 \cdot (4/3 - 1) - 1$ with an accuracy of up to sign

3 Exercise - Number Distribution

Check experimentally that every number $x \in [1,2)$ is distributed evenly with step $\delta = 2^{-52}$ It also means it can be represented by $x = 1 + k\delta$ for $\delta = 2^{-52}$ and $k = 1, 2, ..., 2^{52} - 1$

Solution can be found in

./zad3/experiment.jl

Method and results

Experiment description:

- 1. Pick random number $x \in [1, 2)$.
- 2. Make next := next float(x)
- 3. Print their bitstrings

Example results below:

num : 1.3881779261232619
next(num): 1.388177926123262

Conclusion

We can see that mantissa of next(num) is β^{1-t} bigger than mantissa of num and exponent stays the same. Here t=53 and c=0 so difference is $\beta^{1-t}=\beta^{-52}$

We can say that $num = 2^c \cdot M$. Then $next(num) = 2^c \cdot (M + \beta^{1-t})$ Then difference is $next(num) - num = 2^c \cdot B^{1-t}$

Q: What is the distribution of floats in range $[\frac{1}{2}, 1)$? How can they be represented?

A: Distribution is with step $\delta=\beta^{-53}$ and they can be represented as $x=1+k\delta$ where $k=1,2,...,2^{52}-1$

Q: What is it in range [2,4)? How can they be represented?

A: Distribution is with step $\delta = \beta^{-51}$ and they can be represented as $x = 1 + k\delta$ where $k = 1, 2, ..., 2^{52} - 1$

4 Exercise Reciprocal of a number

Find smallest number x such that $x \cdot 1/x \neq 1$

Solution can be found in

./zad4/taskB.jl

Method and results

We start with x := 1 and we do x := nextfloat(x) until $x \cdot 1/x = 1$

Found: 1.00000057228997,

5 Exercise - Scalar Product

Calculate scalar product of x and y in float32 and float64 x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049] Add products of x_i and y_i in 4 ways.

- $1. \sum_{i=0}^{4} x_i \cdot y_i$
- $2. \sum_{i=0}^{4} x_{4-i} \cdot y_{4-i}$
- 3. Add sorted by absolute value of $x_i \cdot y_i$ decreasing
- 4. Add sorted by absolute value of $x_i \cdot y_i$ ascending

Solution can be found in

./zad5/solution.jl

Results

Real value: 1.0066e-11

	Float32	Float64
Front	-0.4999443	1.0252e-10
Back	-0.4543457	-1.5643e-10
BigToSmall	-0.5	0.0
SmallToBig	-0.5	0.0

Conclusion

Summation order matters and can change result by a lot

6 Exercise - Equivalent functions

Calculate in Julia in Float64 following functions

$$f(x) = \sqrt{x^2 + 1} - 1$$

$$g(x) = x^2/(\sqrt{x^2 + 1} + 1)$$

for $x = 8^{-k}$ for k = 1, 2, 3, ...

Why is computer giving different results even though f == g? Which one is giving better results?

Solution can be found in

./zad6/tests.jl

x	f(x)	g(x)
8^{-1}	0.0077822185373186414	0.0077822185373187065
8^{-2}	0.00012206286282867573	0.00012206286282875901
8^{-3}	1.9073468138230965e-6	1.907346813826566e-6
8^{-4}	2.9802321943606103e-8	2.9802321943606116e-8
8^{-5}	4.656612873077393e-10	4.6566128719931904e-10
8^{-6}	7.275957614183426e-12	7.275957614156956e-12
8^{-7}	1.1368683772161603e-13	1.1368683772160957e-13
8^{-8}	1.7763568394002505e-15	1.7763568394002489e-15
8^{-9}	0.0	2.7755575615628914e-17
8^{-10}	0.0	4.336808689942018e-19
8^{-11}	0.0	6.776263578034403e-21
8^{-12}	0.0	1.0587911840678754e-22

Conclusion

f(x) and g(x) are giving different results due to rounding errors.

 $\sqrt{x^2+1}$ cannot be calculated as accurate as we would like because step in range [1,2) is $\delta=2^{-52}$. Because of it, we cannot rely on this value. As accuracy in range [0,1) is much bigger, g(x) conserves it's accuracy for longer by making division with x^2

7 Exercise - Derivative

Compare approximations errors of function f(x) = sin(x) + cos(3x) for approximation $f'(x_0) \approx \overline{f'}(x_0) = \frac{f(x_0+h)-f(x_0)}{h}$ in point $x_0 = 1$ for $h = 2^{-n}$, for n = 1, 2, 3..., 54

Why at some point decreasing h doesn't improve approximation of derivative?

How does behave 1 + h?

Solution can be found in

./zad7/calculations.jl

f'(x) = 0.11694228168853815

n	approx derivative	error	1+h
0	2.0179892252685967	1.9010469435800585	2.0
1	1.8704413979316472	1.753499116243109	1.5
2	1.1077870952342974	0.9908448135457593	1.25
3	0.6232412792975817	0.5062989976090435	1.125
24	0.11694252118468285	2.394961446938737e-7	1.0000000596046448
25	0.116942398250103	1.1656156484463054e-7	1.0000000298023224
26	0.11694233864545822	5.6956920069239914e-8	1.0000000149011612
27	0.11694231629371643	3.460517827846843e-8	1.0000000074505806
28	0.11694228649139404	4.802855890773117e-9	1.0000000037252903
29	0.11694222688674927	5.480178888461751e-8	1.0000000018626451
30	0.11694216728210449	1.1440643366000813e-7	1.0000000009313226
31	0.11694216728210449	1.1440643366000813e-7	1.0000000004656613
51	0.0	0.11694228168853815	1.000000000000000004
52	-0.5	0.6169422816885382	1.0000000000000000000000000000000000000
53	0.0	0.11694228168853815	1.0
54	0.0	0.11694228168853815	1.0

Conclusion

We see that best accuracy is achieved for n=28 Accuracy of approximation decreases after that because as we are decreasing h, there is bigger rounding error for 1+h. It makes f(1+h) calculate with error