Probabilistic Robotics*

Markov Decision Process (MDP)

Mohan Sridharan

University of Birmingham, UK <u>m.sridharan@bham.ac.uk</u>

^{*}Revised original slides that accompany the book by Thrun, Burgard and Fox.

Motivation

- Robot perception not the ultimate goal:
 - Choose right sequence of actions to achieve goal.
- Planning/control applications:
 - Navigation, Surveillance, Monitoring, Collaboration etc.
 - Ground, air, sea, underground!
- Action selection non-trivial in real-world problems:
 - State non-observable.
 - Action non-deterministic.
 - Require dynamic performance.

Problem Classes

- Deterministic vs. stochastic actions.
 - Classical approaches assume known action outcomes.
 Actions typically non-deterministic. Can only predict likelihoods of outcomes.
- Full vs. partial observability.
 - State of the system completely observable never happens in real-world applications.
 - Build representation of the world by performing actions and observing outcomes.
- Current and anticipated uncertainty.

Deterministic, Fully Observable

Stochastic, Fully Observable

No noise in Motion models.

Noisy motion models.

Stochastic, Partially Observable

Markov Decision Process (MDP)

Markov Decision Process (MDP)

Given:

- States: $X = \{x_1, x_2, ..., x_N\}$
- Actions: $A = \{u_1, u_2, ..., u_N\}$
- Transition probabilities: $p(x_{t+1} = x' | x_t = x, u_t = u)$
- Reward / payoff function:

$$r(x,u,x') = E[r_{t+1} | x_t = x, u_t = u, x_{t+1} = x']$$

Wanted:

• Policy π that maximizes future expected reward.

Policies

- Policy (general case):
 - All past data mapped to control commands.

$$\pi: Z_{1:t-1}, u_{1:t-1} \to u_t$$

- Policy (fully observable case):
 - State mapped to control commands.

$$\pi: x_t \to u_t$$

Rewards

Expected cumulative payoff:

$$R_{t} = E \left[\sum_{\tau=0}^{T} \gamma^{\tau} r_{t+\tau+1} \right]$$

- Maximize sum of future payoffs!
- Discount factor $\gamma \in [0,1]$: future reward is worth less!
- T=1: greedy policy. Discount does not matter as long as $\gamma > 0$!
- 1<T<∞: finite horizon case, typically no discount.
- T= ∞ : infinite-horizon case, finite reward if $\gamma < 1$:

$$|r| < r_{\text{max}}, \quad R_{\infty} = r_{\text{max}} + \gamma r_{\text{max}} + \gamma^2 r_{\text{max}} + \dots = \frac{r_{\text{max}}}{1 - \gamma}$$

Optimal Policies

• Expected cumulative payoff of policy:

$$R_t^{\pi}(x_t) = E \left[\sum_{\tau=0}^{T} \gamma^{\tau} r_{t+\tau+1} | u_{t+\tau} = \pi(x_t) \right]$$

• Optimal policy: $\pi^* = \underset{\pi}{\operatorname{argmax}} R_t^{\pi}(x_t)$

- 1-step optimal policy: $\pi_1(x) = \underset{u}{\operatorname{argmax}} r(x, u)$
- Value function of 1-step optimal policy:

$$V_1(x) = \max_{u} r(x, u)$$

Value Functions

• Value function for specific policy (Bellman equation for V^{\uparrow})

$$V^{\pi}(x) = E_{\pi} \left[\sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+1} \mid x_{t} = x \right]$$

$$= E_{\pi} \left[r_{t+1} + \gamma \sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+2} \mid x_{t} = x \right]$$

$$= \sum_{u} \pi(x, u) \sum_{x'} p(x' \mid x, u) \left[r(x, u, x') + \gamma E_{\pi} \left\{ \sum_{\tau=0}^{\infty} \gamma^{\tau} r_{t+\tau+2} \mid x_{t+1} = x' \right\} \right]$$

$$= \sum_{u} \pi(x, u) \sum_{x'} p(x' \mid x, u) \left[r(x, u, x') + \gamma V^{\pi}(x') \right]$$

$$Q^{\pi}(x,u) = E_{\pi} \left[\sum_{\tau=1}^{\infty} \gamma^{\tau} r_{t+\tau} \mid x_{t} = x, u_{t} = u \right]$$

Optimal Value Functions

Optimal policy:

$$V^{*}(x) = \max_{\pi} V^{\pi}(x)$$

$$Q^{*}(x,u) = \max_{\pi} Q^{\pi}(x,u) = E[r_{t+1} + \gamma V^{*}(x_{t+1}) | x_{t} = x, u_{t} = u]$$

Bellman optimality equations.

$$V^{*}(x) = \max_{u \in u(x)} Q^{\pi^{*}}(x, u)$$

$$= \max_{u} E \left[r_{t+1} + \gamma V^{*}(x_{t+1}) \mid x_{t} = x, u_{t} = u \right]$$

$$= \max_{u} \sum_{x'} p(x' \mid x, u) \left[r(x, u, x') + \gamma V^{*}(x') \right]$$

$$Q^{*}(x, u) = E \left[r_{t+1} + \gamma \max_{u'} Q^{*}(x_{t+1}, u') \mid x_{t} = x, u_{t} = u \right]$$

$$= \sum_{x'} p(x' \mid x, u) \left[r(x, u, x') + \gamma \max_{u'} Q^{*}(x', u') \right]$$

Necessary and sufficient condition for optimal policy.

Value Iteration - Discrete Case

For all x do

$$V(x) \leftarrow r_{\min}$$

- EndFor
- Repeat until convergence
 - For all x do

$$V(x) \leftarrow \max_{u} \sum_{x'} p(x'|x,u) \left[r(x,u,x') + \gamma V(x') \right]$$

- EndFor
- EndRepeat
- Action choice:

$$\pi(x) = \underset{u}{\operatorname{argmax}} \sum_{x'} p(x'|x,u) [r(x,u,x') + \gamma V(x')]$$

Value Iteration

For all x do

$$V(x) \leftarrow r_{\min}$$

- EndFor
- Repeat until convergence
 - For all x do

$$V(x) \leftarrow \max_{u} \int p(x'|x,u) \left[r(x,u,x') + \gamma V(x') \right] dx'$$

- EndFor
- EndRepeat
- Action choice:

$$\pi(x) = \underset{u}{\operatorname{argmax}} \int p(x'|x,u) \left[r(x,u,x') + \gamma V(x') \right] dx'$$

Value Iteration for Motion Planning

Value Function and Policy Iteration

 Often the optimal policy has been reached long before the value function has converged.

 Policy iteration calculates a new policy based on the current value function and then calculates a new value function based on this policy.

This process often converges faster to the optimal policy.

Value-Iteration Game

Move from start state (color1) to end state (color2).

Maximize reward.

- Four actions.
- Twelve colors.
- Exploration and exploitation.

Value Iteration

Explore first and then exploit!

- One-step look ahead values?
- N-step look ahead?
- Optimal policy?

			5
-1	-1	-1	-1

11	12	13	14

0	0	0	0
0	0	0	0
0	0	0	0

21	22	23	24

1	2	10	10
2	3	4	5
-1	-1	-1	-1

21	22	30	30
22	23	24	25
11	12	13	14

0	0	0	0
0	0	0	0
0	0	0	0

11	12	20	20
12	13	14	15
1	2	3	4

31	32	40	40
32	33	34	35
21	22	23	24

-1	-1	10	10

0	0	0	0
0	0	0	0
0	0	0	0

-1	-1	10	10
-1	0	9	15
-1	-1	8	14

15	19	30	30
20	18	29	35
19	17	28	34

0	0	0	0
0	0	0	0
0	0	0	0

5	9	20	20
10	8	19	25
9	7	18	24

25	29	40	40
30	28	39	45
29	27	38	44

More Information

• Chapters 3-4 of Reinforcement Learning textbook by Sutton and Barto (second edition).

http://incompleteideas.net/book/the-book-2nd.html