Polar Basic and Graphing Review Packet #2

Date Block

Plot the point with the given polar coordinates.

1)
$$\left(-1, \frac{3\pi}{4}\right)$$

$$2) \left(-4, -\frac{5\pi}{6}\right)$$

3)
$$\left(-2, -\frac{2\pi}{3}\right)$$

4)
$$\left(-1, -\frac{\pi}{3}\right)$$

Find all pairs of polar coordinates that describe the same point as the provided polar coordinates.

5)
$$\left(-4, \frac{\pi}{12}\right)$$

$$6) \left(2, -\frac{3\pi}{2}\right)$$

7)
$$\left(-4, -\frac{7\pi}{6}\right)$$

$$8) \left(2, \frac{23\pi}{12}\right)$$

Convert each pair of polar coordinates to rectangular coordinates.

9)
$$\left(4, -\frac{\pi}{4}\right)$$

$$10) \left(-1, -\frac{7\pi}{6}\right)$$

11)
$$\left(-1, -\frac{11\pi}{6}\right)$$

12)
$$\left(1, \frac{7\pi}{4}\right)$$

Convert each pair of rectangular coordinates to polar coordinates where r > 0 and $0 \le \theta < 2\pi$.

14)
$$(2, 2\sqrt{3})$$

$$15) \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

16)
$$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

Convert each equation from rectangular to polar form.

17)
$$y = 5x$$

18)
$$x^2 + (y-1)^2 = 1$$

19)
$$y = \frac{x^2}{5}$$

20)
$$y = 3x$$

Convert each equation from polar to rectangular form.

21)
$$r = \tan \theta \sec \theta$$

$$22) \ \theta = \frac{5\pi}{6}$$

23)
$$r = -6\cos\theta + 2\sin\theta$$

24)
$$r = 4\tan \theta \sec \theta$$

Consider each polar equation. Classify the curve; and sketch the graph.

25)
$$r = 5$$

26)
$$r = 6$$

27) $r = 7\cos\theta$

28) $r = -6\sin \theta$

29) $r = 4 + 3\sin \theta$

 $30) \ r = 2 + 2\sin \theta$

31) $r = 3 - 2\cos\theta$

32) $r = 2 + 4\cos\theta$

33) $r = 3 - 3\cos\theta$

34) $r = 2 + 4\sin \theta$

35) $r = 2 + \cos \theta$

36) $r = 5 - \cos \theta$

$37) \ r^2 = 25\sin\left(2\theta\right)$

$$38) \ r^2 = 36\cos\left(2\theta\right)$$

$$39) \ r = 5\cos\left(3\theta\right)$$

40)
$$r = 2\cos(2\theta)$$

41) $r = 4\sin(3\theta)$

42)
$$r = 5\sin(2\theta)$$

43)
$$r = 4\sin(5\theta)$$

44)
$$r = 4\cos(5\theta)$$

45)
$$r = 3\theta, \ \theta > 0$$

Polar Basic and Graphing Review Packet #2

Date_____ Block____

Plot the point with the given polar coordinates.

1)
$$\left(-1, \frac{3\pi}{4}\right)$$

$$2) \left(-4, -\frac{5\pi}{6}\right)$$

3)
$$\left(-2, -\frac{2\pi}{3}\right)$$

4)
$$\left(-1, -\frac{\pi}{3}\right)$$

Find all pairs of polar coordinates that describe the same point as the provided polar coordinates.

5)
$$\left(-4, \frac{\pi}{12}\right)$$

where *n* is an integer
$$\left(\frac{-48\pi}{2} \frac{12}{12} + 28\pi\right)$$

6)
$$\left(2, -\frac{3\pi}{2}\right)$$

where
$$n$$
 is an integer

7)
$$\left(-4, -\frac{7\pi}{6}\right)$$

8)
$$\left(2, \frac{23\pi}{12}\right)$$

$$\frac{4\pi}{3} \qquad \left(\frac{3\pi^4}{2}, -\frac{7\pi^{5\pi}}{6}, \frac{3\pi^2}{3} + 2n\pi\right) \text{ and } \left(4, -\frac{7\pi}{6} + (2n+1)\pi\right)$$
where *n* is an integer

 $\left(2\frac{3\pi}{212} + \frac{5\pi}{2n\pi}\right) \text{ and } \left(-2, \frac{23\pi}{12} + (2n+1)\pi\right)$ where n is an integer

Convert each pair of polar coordinates to rectangular coordinates.

9)
$$\left(4, -\frac{\pi}{4}\right)$$
 $\left(2\sqrt{2}, -2\sqrt{2}\right)$

10)
$$\left(-1, -\frac{7\pi}{6}\right)$$
 $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

11)
$$\left(-1, -\frac{11\pi}{6}\right)$$
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

12)
$$\left(1, \frac{7\pi}{4}\right)$$
 $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

 \circ 2019 Kuta Software LLC. All rights reserve 2d t. Made with Infinite Precalculus

Convert each pair of rectangular coordinates to polar coordinates where r > 0 and $0 \le \theta < 2\pi$.

(3, 0)

14)
$$(2, 2\sqrt{3})$$
 $(4, \frac{\pi}{3})$

15)
$$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
 $\left(1, \frac{3\pi}{4}\right)$

16)
$$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$
 $\left(1, \frac{5\pi}{3}\right)$

Convert each equation from rectangular to polar form.

17)
$$y = 5x$$

 $\tan \theta = 5$

18)
$$x^2 + (y-1)^2 = 1$$

$$r = 2\sin \theta$$

19)
$$y = \frac{x^2}{5}$$

 $r = 5 \tan \theta \sec \theta$

20)
$$y = 3x$$

 $\tan \theta = 3$

Convert each equation from polar to rectangular form.

21)
$$r = \tan \theta \sec \theta$$

 $y = x^2$

$$22) \ \theta = \frac{5\pi}{6}$$

$$y = -\frac{x\sqrt{3}}{3}$$

23)
$$r = -6\cos\theta + 2\sin\theta$$

 $(x+3)^2 + (y-1)^2 = 10$

24)
$$r = 4 \tan \theta \sec \theta$$

$$y = \frac{x^2}{4}$$

Consider each polar equation. Classify the curve; and sketch the graph.

25)
$$r = 5$$

26)
$$r = 6$$

27)
$$r = 7\cos\theta$$

28)
$$r = -6\sin \theta$$

29)
$$r = 4 + 3\sin \theta$$

Dimpled limaçon

30)
$$r = 2 + 2\sin \theta$$

Cardioid (Limaçon)

31)
$$r = 3 - 2\cos\theta$$

Dimpled limaçon

33)
$$r = 3 - 3\cos\theta$$

Cardioid (Limaçon)

34)
$$r = 2 + 4\sin \theta$$

Looped limaçon

35) $r = 2 + \cos \theta$

Convex limaçon

36) $r = 5 - \cos \theta$

Convex limaçon

$$37) \ r^2 = 25\sin\left(2\theta\right)$$

 $38) \ r^2 = 36\cos\left(2\theta\right)$

$$39) \ r = 5\cos(3\theta)$$

$$40) \ r = 2\cos\left(2\theta\right)$$

41)
$$r = 4\sin(3\theta)$$

42)
$$r = 5\sin(2\theta)$$

43)
$$r = 4\sin(5\theta)$$

$$44) \ r = 4\cos\left(5\theta\right)$$

45)
$$r = 3\theta, \ \theta > 0$$

Spiral of Archimedes