EE101: Diode circuits

M. B. Patil
mbpatil@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

* A diode may be thought of as an electrical counterpart of a directional valve ("check valve").

- * A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.

- * A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.
- Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.

- A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.
- Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.
- * In the forward direction, the diode resistance $R_D = V/i$ would be a function of V. However, it is often a good approximation to treat it as a constant (small) resistance.

- A diode may be thought of as an electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.
- Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.
- * In the forward direction, the diode resistance $R_D = V/i$ would be a function of V. However, it is often a good approximation to treat it as a constant (small) resistance.
- * In the reverse direction, the diode resistance is much larger and may often be treated as infinite (i.e., the diode may be replaced by an open circuit).

Simple models: R_{on}/R_{off} model

Simple models: $R_{\rm on}/R_{\rm off}$ model

* Since the resistance is different in the forward and reverse directions, the i-V relationship is not symmetric.

Simple models: $R_{\rm on}/R_{\rm off}$ model

- * Since the resistance is different in the forward and reverse directions, the i-V relationship is not symmetric.
- * Examples:

Simple models: $R_{\rm on}/R_{\rm off}$ model

- st Since the resistance is different in the forward and reverse directions, the i-V relationship is not symmetric.
- * Examples:

* V > 0 Volts \rightarrow S is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V.

- * V > 0 Volts \rightarrow S is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V.
- V < 0 Volts → S is open (a perfect open circuit), and it can ideally block any reverse voltage. The current through the diode is 0 A.

- * V > 0 Volts \rightarrow S is closed (a perfect contact), and it can ideally carry any amount of current. The voltage drop across the diode is 0 V.
- V < 0 Volts → S is open (a perfect open circuit), and it can ideally block any reverse voltage. The current through the diode is 0 A.
- * The actual values of V and i for a diode in a circuit get determined by the i-V relationship of the diode and the constraints on V and i imposed by the circuit.

$$i = \mathit{I_s}\left[\exp\left(rac{\mathit{V}}{\mathit{V_T}}
ight) - 1
ight]$$
 , where $\mathit{V_T} = \mathit{k_BT/q}$.

$$\begin{split} k_B &= \text{Boltzmann's constant} = 1.38 \times 10^{-23} \ J/K. \\ q &= \text{electron charge} = 1.602 \times 10^{-19} \ \text{Coul}. \\ T &= \text{temperature in } ^\circ K. \end{split}$$

 $V_T \approx$ 25 mV at room temperature (27 $^{\circ}$ C).

$$i = I_s \left[\exp\left(\frac{V}{V_T}\right) - 1 \right]$$
, where $V_T = k_B T/q$. $k_B = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \ J/K$. $q = \text{electron charge} = 1.602 \times 10^{-19} \ \text{Coul}$. $T = \text{temperature in } {}^{\circ}K$. $V_T \approx 25 \ \text{mV}$ at room temperature (27 ${}^{\circ}\text{C}$).

* Is is called the "reverse saturation current."

$$i = I_s \left[\exp\left(\frac{V}{V_T} \right) - 1 \right]$$
, where $V_T = k_B T/q$. $k_B = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \ J/K$. $q = \text{electron charge} = 1.602 \times 10^{-19} \ \text{Coul}$. $T = \text{temperature in } {}^{\circ}K$.

 $V_T \approx 25 \text{ mV}$ at room temperature (27 °C).

- * Is is called the "reverse saturation current."
- * For a typical low-power silicon diode, I_s is of the order of 10^{-13} A.

$$i = I_s \left[\exp \left(\frac{V}{V_T} \right) - 1 \right]$$
, where $V_T = k_B T / q$.

 $k_B=$ Boltzmann's constant = $1.38\times 10^{-23}~J/K$. q= electron charge = $1.602\times 10^{-19}~$ Coul. T= temperature in $^{\circ}K$. $V_T\approx 25~$ mV at room temperature (27 $^{\circ}$ C).

- * Is is called the "reverse saturation current."
- * For a typical low-power silicon diode, I_s is of the order of 10^{-13} A.
- * Although I_s is very small, it gets multiplied by a large exponential factor, giving a diode current of several mA for $V \approx 0.7 \ V$.

$$i = \mathit{I}_{\mathsf{S}}\left[\exp\left(rac{\mathit{V}}{\mathit{V}_{\mathit{T}}}
ight) - 1
ight]$$
 , where $\mathit{V}_{\mathit{T}} = \mathit{k}_{\mathit{B}}\mathit{T}/\mathit{q}$.

 $k_B=$ Boltzmann's constant = $1.38\times 10^{-23}~J/K$. q= electron charge = $1.602\times 10^{-19}~$ Coul. T= temperature in $^{\circ}K$. $V_T\approx 25~$ mV at room temperature (27 $^{\circ}$ C).

* I_s is called the "reverse saturation current."

- * For a typical low-power silicon diode, I_s is of the order of 10^{-13} A.
- * Although I_s is very small, it gets multiplied by a large exponential factor, giving a diode current of several mA for $V \approx 0.7 \ V$.
- * The "turn-on" voltage (V_{on}) of a diode depends on the value of I_s. V_{on} may be defined as the voltage at which the diode starts carrying a substantial forward current (say, a few mA).

For a silicon diode, $V_{\rm on} \approx 0.7~V$.

For a GaAs diode, $V_{\rm on} \approx 1.1 \ V$.

$$i = I_s \left[\exp \left(\frac{V}{V_T} \right) - 1 \right]$$
, where $V_T = k_B T / q$.

Example: $I_s = 1 \times 10^{-13} \ A, \ V_T = 25 \ mV.$

$$i = I_s \left[\exp \left(\frac{V}{V_T} \right) - 1 \right]$$
, where $V_T = k_B T / q$.

Example: $I_s = 1 \times 10^{-13} A$, $V_T = 25 \text{ mV}$.

V	$x = V/V_T$	e ^x	i (Amp)
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	0.229×10^4	0.229×10^{-9}
0.3	11.6	0.110×10^{6}	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	0.251×10^9	0.251×10^{-4}
0.6	23.2	0.120×10^{11}	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	0.565×10^{11}	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	0.265×10^{12}	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

$$i = I_s \left[\exp\left(\frac{V}{V_T}\right) - 1 \right]$$
, where $V_T = k_B T/q$.

Example: $I_s = 1 \times 10^{-13} \ A$, $V_T = 25 \ \mathrm{mV}$.

V	$x = V/V_T$	e ^x	i (Amp)
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	0.229×10^4	0.229×10^{-9}
0.3	11.6	0.110×10^{6}	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	0.251×10^{9}	0.251×10^{-4}
0.6	23.2	0.120×10^{11}	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	0.565×10^{11}	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	0.265×10^{12}	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

$$\label{eq:interpolation} i = I_{\text{S}} \left[e^{\text{V/V}_{\text{T}}} - 1 \right] \, , I_{\text{S}} = 10^{-13} \, \, \text{A} \, , \, \, \text{V}_{\text{T}} = 25 \, \, \text{mV} \, .$$

 For many circuits, Model 1 is adequate since R_{on} is much smaller than other resistances in the circuit.

- * For many circuits, Model 1 is adequate since Ron is much smaller than other resistances in the circuit.
- * If V_{on} is much smaller than other relevant voltages in the circuit, we can use $V_{on} \approx 0 \ V$, and the diode model reduces to the ideal diode model seen earlier.

- For many circuits, Model 1 is adequate since R_{on} is much smaller than other resistances in the circuit.
- * If V_{on} is much smaller than other relevant voltages in the circuit, we can use $V_{\text{on}} \approx 0 \ V$, and the diode model reduces to the ideal diode model seen earlier.
- * Note that the "battery" shown in the above models is not a "source" of power! It can only absorb power (see the direction of the current), causing heat dissipation.

* In the reverse direction, an ideal diode presents a large resistance for *any* applied voltage.

- * In the reverse direction, an ideal diode presents a large resistance for *any* applied voltage.
- * A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" ($V_{\rm BR}$).

- * In the reverse direction, an ideal diode presents a large resistance for *any* applied voltage.
- * A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" ($V_{\rm BR}$).
- * When the reverse bias $V_{\rm R} > V_{\rm BR}$, the diode allows a large amount of current. If the current is not constrained by the external circuit, the diode would get damaged.

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.

Reverse breakdown

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).

Reverse breakdown

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
- * Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{\rm BR}$ rating for that diode.

Reverse breakdown

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
- * Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{\rm BR}$ rating for that diode.
- * "Zener" diodes typically have $V_{\rm BR}$ of a few Volts, which is denoted by $V_{\rm Z}$. They are often used to limit the voltage swing in electronic circuits.

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

Light-emitting diodes (LEDs) emit light when a forward bias is applied.
 Typically, LEDs are made of III-V semiconductors.

An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).

White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

- * Light-emitting diodes (LEDs) emit light when a forward bias is applied. Typically, LEDs are made of III-V semiconductors.
 An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).
 White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.
- Semiconductor lasers are essentially light-emitting diodes with structural modifications that establish conditions for coherent light.

Apart from their use as switches, diodes are also used for several other purposes. The choice of materials used, fabrication techniques, and packaging depend on the functionality expected from the device.

- * Light-emitting diodes (LEDs) emit light when a forward bias is applied.

 Typically, LEDs are made of III-V semiconductors.

 An LED emits light of a specific wavelength (e.g., red, green, yellow, blue).

 White LEDs combine individual LEDs that emit the three primary colors (red, green, blue) or use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.
- * Semiconductor lasers are essentially light-emitting diodes with structural modifications that establish conditions for coherent light.

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration.

A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration.

A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

* Solar cells are generally silicon diodes designed to generate current efficiently when solar radiation is incident on the device. A "solar panel" has a large number of individual solar cells connected in series/parallel configuration.

A solar cell can be modelled as a diode in parallel with a current source (representing the photocurrent). In addition, parasitic series and shunt resistances need to be considered.

 Photodiodes are used to detect optical signals (DC or time-varying) and to convert them into electrical signals which can be subsequently processed by electronic circuits. They are used in fibre-optic communication systems, image processing, etc.

A photodiode works on the same principle as a solar cell, i.e., it converts light into a current. However, its design is optimized for high-sensitivity, low-noise, or high-frequency operation, depending on the application.

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.

- * In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
- * In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.

- * In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
- * In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.
- In AC (small-signal) situations, the diode can be replaced by its small-signal model, and phasor analysis is used. We will illustrate this procedure for a BJT amplifier later.

- * In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
- * In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.
- In AC (small-signal) situations, the diode can be replaced by its small-signal model, and phasor analysis is used. We will illustrate this procedure for a BJT amplifier later.
- * Note that there are diode circuits in which the exponential nature of the diode I-V relationship is made use of. For these circuits, computer simulation would be required to solve the resulting non-linear equations.

Case 1: D is off.

Case 1: D is off.

$$V_{\mbox{\footnotesize AB}} = V_{\mbox{\footnotesize AC}} = \frac{3}{9} \times 36 = 12 \mbox{ V} \, , \label{eq:VAB}$$

which is not consistent with our assumption of D being off.

Case 1: D is off.

$$V_{\mbox{\footnotesize AB}} = V_{\mbox{\footnotesize AC}} = \frac{3}{9} \times 36 = 12 \mbox{ V}$$
 ,

which is not consistent with our assumption of D being off.

 $\rightarrow\! D$ must be on.

Case 1: D is off.

 $V_{AB} = V_{AC} = \frac{3}{9} \times 36 = 12 \text{ V}$, which is not consistent with our assumption of D being off.

 \rightarrow D must be on.

Case 1: D is off.

$$V_{AB} = V_{AC} = \frac{3}{9} \times 36 = 12 \text{ V},$$

which is not consistent with our assumption of D being off.

 \rightarrow D must be on.

Taking
$$V_C = 0 V$$
,

$$\begin{split} &\frac{V_{\mbox{A}}-36}{6~k} + \frac{V_{\mbox{A}}}{3~k} + \frac{V_{\mbox{A}}-0.7}{1~k} = 0 \,, \\ &\rightarrow &V_{\mbox{A}} = 4.47~V, \; i = 3.77~mA \,. \end{split}$$

Remark: Often, we can figure out by inspection if a diode is on or off.

- (a) Plot V_{0} versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V\,.$
- (b) Plot $V_0(t)$ for a triangular input: -5~V to +5~V, 500 Hz.

- (a) Plot V_{0} versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V\,.$
- (b) Plot $V_0(t)$ for a triangular input: -5~V to +5~V, 500 Hz .

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

- (a) Plot V_{0} versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V$.
- (b) Plot $V_{0}(t)$ for a triangular input: -5~V to +5~V, 500 Hz .

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off. Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

- (a) Plot V_0 versus V_i for $-5~V < V_i < 5~V$.
- (b) Plot $V_0(t)$ for a triangular input: -5 V to +5 V, 500 Hz.

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 \Rightarrow $V_{AB} > 1.7$ $V \Rightarrow D_2$ cannot conduct.

- (a) Plot V_0 versus V_i for $-5~V < V_i < 5~V$.
- (b) Plot $V_0(t)$ for a triangular input: -5 V to +5 V, 500 Hz.

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 \Rightarrow $V_{AB} > 1.7$ $V \Rightarrow D_2$ cannot conduct.

Similarly, if D_2 is on, $V_{BA} > 0.7 \ V$, i.e., $V_{AB} < -0.7 \ V \Rightarrow D_1$ cannot conduct.

- (a) Plot V_0 versus V_i for $-5~V < V_i < 5~V$.
- (b) Plot $V_0(t)$ for a triangular input: -5 V to +5 V, 500 Hz.

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 \Rightarrow $V_{AB} > 1.7$ $V \Rightarrow D_2$ cannot conduct.

Similarly, if D_2 is on, $V_{BA} > 0.7 \ V$, i.e., $V_{AB} < -0.7 \ V \Rightarrow D_1$ cannot conduct.

Clearly, D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

* For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)

- * For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)
- * For $V_i < -0.7 \ V$, D_2 conducts. $\rightarrow V_o = -0.7 i_2 R_2$. Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + R i_2 = 0$.

- * For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)
- * For $V_i < -0.7~V$, D_2 conducts. $\rightarrow V_o = -0.7 i_2 R_2$. Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + R i_2 = 0$.

* For $V_i > 1.7 \ V$, D_1 conducts. $\rightarrow V_o = 0.7 + 1 + i_1 R_1$. Use KVL to get i_1 : $-V_i + i_1 R + 0.7 + 1 + i_1 R_1 = 0$.

$$ightarrow i_1 = rac{V_i - 1.7}{R + R_1}$$
 , and $V_o = 1.7 + R_1 i_1 = rac{R_1}{R + R_1} \ V_i + 1.7 \ rac{R}{R + R_1}$. (3)

- * For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)
- * For $V_i < -0.7~V$, D_2 conducts. $\to V_o = -0.7 i_2 R_2$. Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + R i_2 = 0$.

* For $V_i > 1.7 \ V$, D_1 conducts. $\rightarrow V_o = 0.7 + 1 + i_1 R_1$. Use KVL to get i_1 : $-V_i + i_1 R + 0.7 + 1 + i_1 R_1 = 0$.

$$ightarrow i_1 = rac{V_i - 1.7}{R + R_1}$$
 , and $V_o = 1.7 + R_1 i_1 = rac{R_1}{R + R_1} \ V_i + 1.7 rac{R}{R + R_1}$. (3)

* Using Eqs. (1)-(3), we plot V_o versus V_i . (SEQUEL file: ee101_diode_circuit_1.sqproj)

- * For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)
- * For $V_i < -0.7~V$, D_2 conducts. $\to V_o = -0.7 i_2 R_2$. Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + R i_2 = 0$.

* For $V_i > 1.7$ V, D_1 conducts. $\rightarrow V_o = 0.7 + 1 + i_1 R_1$. Use KVL to get i_1 : $-V_i + i_1 R + 0.7 + 1 + i_1 R_1 = 0$.

* Using Eqs. (1)-(3), we plot V_o versus V_i. (SEQUEL file: ee101_diode_circuit_1.sqproj)

Point-by-point construction of V_{O} versus t:

Two time points, t_1 and t_2 , are shown as examples.

Plot V_0 versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V\,.$

Plot V_0 versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V$.

Plot V_{0} versus V_{i} for $-5\ V < V_{i} < 5\ V$.

At what value of V_i will the diode turn on?

At what value of V_i will the diode turn on? In the off state, $V_D = \frac{R_1}{R_1 + R_2} \; V_i$.

Plot V_{0} versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V$.

At what value of V_i will the diode turn on?

In the off state,
$$V_D=rac{R_1}{R_1+R_2}\;V_i$$
 .

For D to change to the on state, $V_D = 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

At what value of V_i will the diode turn on?

In the off state,
$$V_D = \frac{R_1}{R_1 + R_2} V_i$$
 .

For D to change to the on state, $V_D = 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

(SEQUEL file: ee101_diode_circuit_2.sqproj)

Plot V_{0} versus $V_{\dot{1}}$ for $-5~V < V_{\dot{1}} < 5~V$.

At what value of V_i will the diode turn on?

In the off state, $V_D=rac{R_1}{R_1+R_2}\;V_i$.

For D to change to the on state, $V_D = 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

(SEQUEL file: ee101_diode_circuit_2.sqproj)

For a current to flow, we have two possibilities:

 D_1 on (forward), D_2 in reverse breakdown

$$V_o = i\,R_2 = \frac{V_i - 5.7}{R_1 + R_2}\,R_2$$

Since i > 0, this can happen only when $V_i > 5.7 \ V.$

For a current to flow, we have two possibilities:

D₁ on (forward), D₂ in reverse breakdown

$$V_0 = i R_2 = \frac{V_i - 5.7}{R_1 + R_2} R_2$$

Since i > 0, this can happen only when $V_i > 5.7 \text{ V}$.

 D_2 on (forward), D_1 in reverse breakdown

$$V_o = -i\,R_2 = \frac{V_i + \,5.7}{R_1 + R_2}\,R_2$$

Since i > 0, this can happen only when $V_{\dot{I}} <$ -5.7 V.

For a current to flow, we have two possibilities:

D₁ on (forward), D₂ in reverse breakdown

$$V_o = i \, R_2 = \frac{V_i - 5.7}{R_1 + R_2} \, R_2$$

Since i > 0, this can happen only when $V_i > 5.7 \text{ V}$.

 D_2 on (forward), D_1 in reverse breakdown

$$V_o = -i\,R_2 = \frac{V_i + \ 5.7}{R_1 + R_2}\,R_2$$

Since i > 0, this can happen only when $V_{\dot{I}} <$ -5.7 V.

For a current to flow, we have two possibilities:

D₁ on (forward), D₂ in reverse breakdown

Since i > 0, this can happen only when $V_i > 5.7 \text{ V}$.

 D_2 on (forward), D_1 in reverse breakdown

$$V_o = -i \, R_2 = \frac{V_i + 5.7}{R_1 + R_2} \, R_2$$

Since i > 0, this can happen only when $\mbox{V}_{\mbox{\scriptsize i}} <$ -5.7 V.

(SEQUEL file: ee101_diode_circuit_3.sqproj)

For a current to flow, we have two possibilities:

 D_1 on (forward), D_2 in reverse breakdown

For a current to flow, we have two possibilities:

 D_1 on (forward), D_2 in reverse breakdown

 D_2 on (forward), D_1 in reverse breakdown

For a current to flow, we have two possibilities:

D₁ on (forward), D₂ in reverse breakdown

 D_2 on (forward), D_1 in reverse breakdown

In the range, $-5.7~\text{V} < \text{V}_{\hat{i}} < 5.7~\text{V},$ no current flows, and $\text{V}_{\text{O}} = \text{V}_{\hat{i}}.$

For a current to flow, we have two possibilities:

D₁ on (forward), D₂ in reverse breakdown

 D_2 on (forward), D_1 in reverse breakdown

Let $V_o(t)=0$ V at t=0, and assume the diode to be ideal, with $V_{
m on}=0$ V.

Let $V_o(t) = 0$ V at t = 0, and assume the diode to be ideal, with $V_{on} = 0$ V. For 0 < t < T/4, V_i rises from 0 to V_m . As a result, the capacitor charges.

Let $V_o(t) = 0$ V at t = 0, and assume the diode to be ideal, with $V_{on} = 0$ V.

For 0 < t < T/4, V_i rises from 0 to V_m . As a result, the capacitor charges.

Since the on resistance of the diode is small, time constant $\tau \ll T/4$; therefore the charging process is instantaneous $\Rightarrow V_o(t) = V_i(t)$.

Let $V_o(t) = 0$ V at t = 0, and assume the diode to be ideal, with $V_{on} = 0$ V.

For 0 < t < T/4, V_i rises from 0 to V_m . As a result, the capacitor charges.

Since the on resistance of the diode is small, time constant $\tau \ll T/4$; therefore the charging process is instantaneous $\Rightarrow V_o(t) = V_i(t)$.

For t > T/4, V_i starts falling. The capacitor holds the charge it had at t = T/4 since the diode prevents discharging.

Let $V_o(t) = 0$ V at t = 0, and assume the diode to be ideal, with $V_{on} = 0$ V.

For 0 < t < T/4, V_i rises from 0 to V_m . As a result, the capacitor charges.

Since the on resistance of the diode is small, time constant $\tau \ll T/4$; therefore the charging process is instantaneous $\Rightarrow V_o(t) = V_i(t)$.

For t > T/4, V_i starts falling. The capacitor holds the charge it had at t = T/4 since the diode prevents discharging.

SEQUEL file: ee101_diode_circuit_5.sqproj

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

When $V_i > V_o$, the capacitor charges again. The time constant for the charging process is $\tau = R_{\text{Th}} C$, where $R_{\text{Th}} = R \parallel R_{\text{on}}$ is the Thevenin resistance seen by the capacitor, R_{on} being the on resistance of the diode.

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

When $V_i > V_o$, the capacitor charges again. The time constant for the charging process is $\tau = R_{\text{Th}} C$, where $R_{\text{Th}} = R \parallel R_{\text{on}}$ is the Thevenin resistance seen by the capacitor, R_{on} being the on resistance of the diode.

Since $\tau \ll T$, the charging process is instantaneous.

If a resistor is added in parallel, a discharging path is provided for the capacitor, and the capacitor voltage falls after reaching the peak.

When $V_i > V_o$, the capacitor charges again. The time constant for the charging process is $\tau = R_{\text{Th}} C$, where $R_{\text{Th}} = R \parallel R_{\text{on}}$ is the Thevenin resistance seen by the capacitor, R_{on} being the on resistance of the diode.

Since $\tau \ll T$, the charging process is instantaneous.

SEQUEL file: ee101_diode_circuit_5a.sqproj

With $V_{\text{on}} = 0.7 \text{ V}$, the capacitor charges up to $(V_m - 0.7 \text{ V})$.

With $V_{\rm on}=0.7~V$, the capacitor charges up to $(V_m-0.7~V)$. Apart from that, the circuit operation is similar.

With $V_{\text{on}} = 0.7 \ V$, the capacitor charges up to $(V_m - 0.7 \ V)$.

Apart from that, the circuit operation is similar.

SEQUEL file: ee101_diode_circuit_5a.sqproj

* Assume $V_{\rm on}=0$ V for the diode. When D conducts, $V_D=-V_o=0 \Rightarrow V_C+V_i=0$, i.e., $V_C=-V_i$.

- * Assume $V_{\rm on}=0$ V for the diode. When D conducts, $V_D=-V_o=0 \Rightarrow V_C+V_i=0$, i.e., $V_C=-V_i$.
- * V_C can only increase with time (or remain constant) since i_D can only be positive.

- * Assume $V_{on}=0$ V for the diode. When D conducts, $V_D=-V_o=0 \Rightarrow V_C+V_i=0$, i.e., $V_C=-V_i$.
- V_C can only increase with time (or remain constant) since i_D can only be positive.
- * The net result is that the capacitor gets charged to a voltage $V_C = -V_i$, corresponding to the maxmimum negative value of V_i , and holds that voltage thereafter. Let us call this voltage V_C^0 (a constant).

- * Assume $V_{on}=0$ V for the diode. When D conducts, $V_D=-V_o=0 \Rightarrow V_C+V_i=0$, i.e., $V_C=-V_i$.
- V_C can only increase with time (or remain constant) since i_D can only be positive.
- * The net result is that the capacitor gets charged to a voltage $V_C = -V_i$, corresponding to the maxmimum negative value of V_i , and holds that voltage thereafter. Let us call this voltage V_C^0 (a constant).
- * $V_o(t) = V_C(t) + V_i(t) = V_C^0 + V_i(t)$, which is a "level-shifted" version of V_i .

- * Assume $V_{on}=0$ V for the diode. When D conducts, $V_D=-V_o=0 \Rightarrow V_C+V_i=0$, i.e., $V_C=-V_i$.
- V_C can only increase with time (or remain constant) since i_D can only be positive.
- * The net result is that the capacitor gets charged to a voltage $V_C = -V_i$, corresponding to the maxmimum negative value of V_i , and holds that voltage thereafter. Let us call this voltage V_C^0 (a constant).
- * $V_o(t) = V_C(t) + V_i(t) = V_C^0 + V_i(t)$, which is a "level-shifted" version of V_i .

(SEQUEL file: ee101_diode_circuit_6.sqproj)

* The diode clamp shifts V_A up by V_m (the amplitude of the AC source), making V_B go from 0 to 2 V_m .

- * The diode clamp shifts V_A up by V_m (the amplitude of the AC source), making V_B go from 0 to 2 V_m .
- * The peak detector detects the peak of V_B (2 V_m w.r.t. ground), and holds it constant.

- * The diode clamp shifts V_A up by V_m (the amplitude of the AC source), making V_B go from 0 to 2 V_m .
- * The peak detector detects the peak of V_B (2 V_m w.r.t. ground), and holds it constant.
- * Note that it takes a few cycles to reach steady state. Plot V_{C1} , i_{D1} , i_{D2} versus t and explain the initial behaviour of the circuit.

- * The diode clamp shifts V_A up by V_m (the amplitude of the AC source), making V_B go from 0 to 2 V_m .
- * The peak detector detects the peak of V_B (2 V_m w.r.t. ground), and holds it constant.
- * Note that it takes a few cycles to reach steady state. Plot V_{C1} , i_{D1} , i_{D2} versus t and explain the initial behaviour of the circuit.

(SEQUEL file: ee101_voltage_doubler.sqproj)

