Math 143 Set 2

- 1. Find the degree 5 Taylor polynomial for:
 - a. $\cos x$ at x = 0.

b.
$$1 - 3x^2 + 2x^3 + x^7 + 4x^{10}$$
 at $x = 0$.

c.
$$(x-1)^2 + (x-1)^3 + (x-1)^{1000}$$
 at $x=1$.

d.
$$\frac{1}{\sqrt{1-x}}$$
 at $x = 0$.

e.
$$(1+x)^{\pi}$$
 at $x=-1$.

f.
$$\sin(4x)$$
 at $x = \pi/2$.

g. e^{ax} at x = 0 where a is any number.

h.
$$(1-x)^{-3}$$
 at $x=0$.

- **2.** Find the degree 5 Taylor for $\sqrt{1+x}$ at x=0. This polynomial is the best degree 5 approximation for $\sqrt{1+x}$ at x=0. Evaluate your polynomial at x=1 to approximate the value of $\sqrt{1+1}=\sqrt{2}$. Use a calculator to determine the (absolute) error in using this approximation.
- **3.** Find the degree *n* Taylor polynomial for $\arctan x$ at x = 0.