Projeto de Doutorado

Técnicas de análise estatística aplicadas às galáxias do Projeto CALIFA Survey

Eduardo Alberto Duarte Lacerda

Orientador: Prof. Dr. Roberto Cid Fernandes

Co-orientador: Prof. Dr. Rosa M. González Delgado

Resumo

Coom o avanço das tecnologias na obtenção e armazenamento de dados, os grandes levantamento de informações astronômicas estão sendo elevados a um novo patamar na ciência. O Projeto CALIFA vem sendo pioneiro no mapeamento de galáxias utilizando Espectroscopia de Campo Integral (IFS), cada uma com um campo de visão de ~ 1.3 arcmin², produzindo cerca de 4000 espectros por galáxia. Devido ao grande número de informações que envolvem todo o processo, desde muitos espectros por galáxias até os métodos utilizados para a redução dos dados observacionais, é necessário cada vez mais a criação de técnicas e ferramentas mais especializadas. Utilizando o STARLIGHT para a síntese de populações estelares e o PyCASSO para a organização e análise dos resultados da síntese, desenvolvemos o PCALIFA, um programa em python que aplica a técnica de tomografia PCA nos cubos de espectros do CALIFA. Dando continuidade a esse projeto de desenvolvimento de técnicas e ferramentas matemático-estatísticas em astrofísica, procuramos aplicar essa análise nos cubos de espectros reduzidos com a nova versão do CALIFA Pipeline (v1.4). Buscamos também novas técnicas (e.g., wavelets, fourier, distâncias em diferentes espaços, clusterização), que aliadas a tomografia PCA possam nos ajudar na identificação de padrões espaciais e espectrais para finalidades de decomposição e filtragem dos espectros.

1 Introdução

Hoje temos disponível uma infinidade de informações físicas do nosso universo através dos grandes levantamentos astronômicos. Esses surveys, que são mapeamentos de regiões do céu utilizando telescópios com diversas tecnologias diferentes, abarcam quantidades de dados antes inimagináveis, servindo como base para toda a ciência em astrofísica. Nos últimos 15 anos entramos numa era de mega-surveys (e.g., SDSS, 2dFGRS, 2MASS; York et al., 2000; Colless, 1999; Skrutskie et al., 2006) com milhares de publicações e descobertas. Outros ainda estão em fase de projeto (LSST; Ivezic et al., 2008) ou por terminar (JPAS; Benítez et al., 2009) e participarão ativamente desse crescimento exponencial na quantidade de dados, fazendo com que precisemos cada vez mais de ferramentas matemáticas/estatísticas para análise dos dados. E é nessa direção que esse projeto pretende seguir.

Ferramentas mais clássicas buscam reproduzir os dados segundo algum modelo, e desse resultado extrair informações de valor físico. Um exemplo é o código STARLIGHT, desenvolvido por Cid Fernandes et al. (2005), que decompõe um espectro observado de uma galáxia (dados) em termos de populações estelares de distintas idades e metalicidades (modelos) em

um processo conhecido como síntese espectral. A aplicação desse método a quase um milhão de espectros de galáxias do *SDSS* gerou uma série de resultados (e.g., Asari et al., 2007; Vale Asari et al., 2009; Cid Fernandes et al., 2007; Mateus et al., 2007). O STARLIGHT, assim como várias outras ferramentas similares (Panter et al., 2003; Gallazzi et al., 2005; Ocvirk et al., 2006) propõe uma pergunta bem definida ("qual a história de formação das populações estelares de uma dada galáxia") e a procuram respondê-la através de parâmetros extraídos do ajuste dos dados (i.e., da síntese espectral). O mapeamento do espaço de observáveis em um espaço de parâmetros envolve uma série de questões matemáticas e estatísticas complexas, ou seja, a base do espaço é dada, e nem sempre é ortonormal, permitindo dependência entre as soluções, ou seja, multiplas soluções equivalentes. Mesmo assim, este método é essencialmente calcado em princípios físicos.

Projetos como o Calar Alto Legacy Integral Field spectroscopy Area survey¹ (CALIFA; Sánchez et al., 2012) recentemente estão mudando completamente a nossa maneira de pensar e interpretar as galáxias, através da Espectroscopia de Campo Integral (IFS - Integral Field Spectroscopy). Com os espectrógrafos de campo passamos a obter resolução espacial juntamente com espectral, assim resultando num conjunto de espectros, onde cada um representa uma diferentes posição em uma galáxia. O CALIFA produz cerca de 4000 espectros por galáxia observada transformando cada uma em uma amostra estatística per se. Com esses cubos de dados podemos então realizar a síntese espectral para diferentes partes da galáxia, de modo que o que era feito anteriormente para diversas galáxias possa ser feito para diferentes regiões da mesma galáxia. Este tipo de análise faz parte da linha de frente da ciência em Astrofísica e vem sendo realizado por pesquisadores do nosso Grupo de Astrofísica da Universidade Federal de Santa Catarina (GAS-UFSC; André Luiz de Amorim, Natália Vale Asari, Roberto Cid Fernandes) e do Instituto de Astrofísica de Andalucía, na Espanha (IAA; Enrique Pérez, Rosa González Delgado, Rubén García-Benito). Aspectos técnicos e incertezas são discutidos em Cid Fernandes et al. (2013) e Cid Fernandes et al. (2014), enquanto Pérez et al. (2013), e González Delgado et al. (2014) apresentam resultados astrofísicos dessa análise.

Um método bem mais popular e tradicional nessa mesma linha é a análise de componentes principais (PCA - Principal Component Analisys). A técnica de PCA é simples, não-paramétrica, e nos ajuda a extrair informações de conjuntos de dados com muitas variáveis. Resumidamente, a PCA parte de uma tabela de N linhas (objetos) por M colunas (contendo propriedades observadas para cada objeto). Essa tabela forma uma base que, como comentamos anteriormente, nem sempre é ortonormal. Com essa tabela então partimos para um processo de ortonormalização, ou seja, encontramos uma base matemática que converte o conjunto de observações em um conjunto de valores que são linearmente descorrelacionado, chamados de componentes principais. Esse processo é feito de forma que, além de descorrelacionadas na nova base, a primeira componente tenha a máxima variância possível, e as seguintes componentes tem a máxima variância sob a restrição de ser ortonormal às outras, e assim por diante. Como podemos estabelecer um limite para o quanto queremos de informação, em variância, podemos utilizar quantas componentes principais seja necessário para atingir esse determinado limite, reduzindo assim dimensionalidade do problema. A tabela pode conter quaisquer tipos de dados, como cores, tamanho, dispersão de velocidade, luminosidade, etc. No caso de espectros de diferentes galáxias (e.g., Francis et al., 1992; Sodré & Cuevas, 1994; Sodre & Cuevas, 1997), as propriedades são as medidas de fluxo para cada comprimento de onda: $F_{gl} = F_g(\lambda_l)$, com $l = 1 \dots M$ comprimentos de onda, para cada

¹http://www.caha.es/CALIFA/

galáxia $g = 1 \dots N$.

PCA é utilizada exaustivamente em várias áreas de conhecimento, principalmente em reconhecimento de padrões, computação visual, filtragem e compactação de dados (Kamruzzaman et al., 2010; Borcea et al., 2012). Podemos ver exemplos também em medicina (Balakrishnan et al., 2013). Na Astrofísica o PCA passeia por diversas ramificações da área. A luz de um objeto até nossos telescópios sofre influência de ruído e é afetada pela atenuação e avermelhamento por poeira, contaminação ótica através de objetos que estejam no mesmo campo, entre outros. Os próprios instrumentos também geram diversas assinaturas indesejadas. Por todos esses motivos fica claro que os dados geralmente necessitam de uma boa filtragem. Junto com outras técnicas (tomogramas, wavelets, Fourier), o PCA vem sendo muito utilizado para filtragem de dados, principalmente cubos de dados advindos de espectroscopia de campo integral (IFS - Integral Field Spectroscopy) que possuem muitas dessas assinaturas instrumentais (Riffel et al., 2011). Outro exemplo de uso de PCA aparece no artigo IV do grupo SEAGal/STARLIGHT (Mateus et al., 2007) auxiliando no estudo da dependência ambiental de algumas propriedades físicas (idade estelar média ponderada pela luz, massa estelar, metalicidade estelar e razão massa/luminosidade) em uma amostra de galáxias do SDSS/DR4. Em Chen et al. (2012) é criada uma biblioteca com 25 mil modelos de espectros de galáxias com diferentes idades, metalicidades, dispersão de velocidades, história de formação estelar (SFH - star formation history), extinção por poeira e aplicado PCA em cima dessa biblioteca (ver Figura 2). Usando uma minimização quadrática encontram quais os coeficientes e qual o número ótimo de PCs que melhor estimam os parâmetros físicos dos espectros modelo. Então projetam os espectros observados pelo SDSS/DR7 (Abazajian et al., 2009) e pelo Baryon Oscillation Spectroscopic Survey (BOSS; Ahn et al., 2012), atribuindo um sentido físico a cada PC. Os trabalhos de Ferreras et al. (2006); Wild et al. (2006); Rogers et al. (2007) exemplificam outras aplicações de PCA a espectros do SDSS.

Nos dois últimos anos iníciamos uma vertente de pesquisa em nosso grupo nessa área matemático-estatística através de um projeto que já resultou em minha dissertação de mestrado (Lacerda, 2014) e que certamente tem muito a ser explorado. Seguindo na linha de estudos de populações estelares, nesta dissertação procuramos correlações entre propriedades físicas advindos da síntese espectral dos cubos de dados de 8 galáxias do Projeto CALIFA Survey e seus respectivos tomogramas PCA (Steiner et al., 2009). Este tipo de análise foi feita, talvez, pela primeira vez em IFS de galáxias inteiras, mas com certeza pela primeira com os dados deste survey. Durante o tempo percorrido entre o início e o final desse trabalho de mestrado o Projeto CALIFA continuou evoluindo. Mais galáxias foram observadas e o pipeline de redução foi atualizado, gerando então outros novos cubos e novas versões dos cubos já observados anteriormente. Experimentos com a nova versão do pipeline (v1.4) mostram que os parâmetros de extinção são menores e as idades levemente maiores (ver Figura 1), fatores que anteriormente culminaram em alguns resultados não esperados da análise PCA. Pretendemos dar sequência no estudo de padrões nas componentes principais e seus tomogramas com diferentes observáveis (e.g., fluxos de linhas, janelas espectrais determinadas, quocientes de linhas espectrais de emissão ou absorção) e também os produtos da síntese espectral (e.g., $\langle \log t \rangle_L$, $\log \langle Z \rangle_L$, A_V , v_{\star} , σ_{\star}). Aliando a tomografia PCA a outras técnicas (wavelets, fourier, etc.) queremos também buscar padrões espaciais nos dados, servindo para fins de filtragem e mapeamento de diferentes estruturas espaciais.

Figura 1: Diferenças entre valores de idade média ponderada pela luz ($\langle \log t \rangle_L$) e extinção estelar (A_V^*) . Painel superior: Imagem SDSS para a galáxia NGC1167 (CALIFA 119), Hubble-type, massa em estrelas e redshift. Painéis do meio: Comparação entre os valores para idade estelar média ponderada pela luz ($\langle \log t \rangle_L$) obtidos pelo STARLIGHT usando os cubos de dados reduzidos com a versão 1.3c (esquerda) e 1.4a (direita). Painéis inferiores: O mesmo dos painéis do meio, mas para a extinção estelar (A_V^*)

Figura 2: De cima para baixo: O espectro médio da biblioteca de espectros modelos seguido dos sete primeiros autoespectros da análise PCA. Retirado de Chen et al. (2012).

2 Objetivos

O objetivo principal desse trabalho é avançar nossas análises estatísticas nos cubos de dados de galáxias do Projeto CALIFA Survey, procurando padrões tanto em dimensão espectral, quanto espacial. Pretendemos:

- Aplicar a tomografia PCA aos mais recentes cubos de espectros observados das galáxias do CALIFA, e nos anteriores agora em sua nova versão;
- Procurar sentido físico nas componentes principais e seus respectivos tomogramas, bem como procurar possíveis correlações entre resultados para diferentes tipos morfológicos, massas, etc;
- Análisar e comparar o efeito da aplicação da tomografia PCA nos cubos de espectros resultantes da síntese de populações estelares (espectros sintéticos) feita com o STARLIGHT.
- Modelar possíveis mensuráveis físicos através dessas análises não-paramétricas.
- Explorar as qualidades de filtro espectral e espacial da PCA, da tomografica PCA e de diferentes técnicas (wavelets, fourier, distâncias em diferentes espaços, clusterização, etc.).

3 Metodologia

Através de nossa parceria com os pesquisados do IAA, na Espanha, possuimos um ambiente perfeito para a conclusão desse projeto. Descrevemos aqui nossa metodologia proposta para tal fim.

3.1 Projeto CALIFA Survey

Como descrito anteriormente, o CALIFA foi concebido para que seu legado seja abrangente, possibilitando diversos tipos de estudos em diversas áreas. Para esta finalidades, está observando ~ 600 galáxias com um campo de visão de ~ 1.3 arcmin² em duas configurações que cobrem a janela espectral de 3650-7000 Å. Dessa forma, contribui diretamente para o avanço da ciência em todas as seções que são direta e indiretamente necessárias para seu avanço, como técnicas computacionais e observacionais, modelos físicos e estatísticos, entre outros. Sua amostra cobre o diagrama cor-magnitude 3 e diversos tipos morfológicos. Existem alguns poucos surveys de IFU e todos com, além de poucos objetos e campo de visão menor que o CALIFA, focos de estudo mais estreitos, dificultando o legado do survey para outras pequisas científicas mais abrangentes (SAURON; de Zeeuw et al., 2002, região central de 72 galáxias com z < 0.01.) (PINGS; Rosales-Ortega et al., 2010, algumas galáxias muito próximas ($\sim 10 \text{ Mpc}$) e o estudo atual de 70 (U)LIRGs com z < 0.26) (VENGA; Blanc et al., 2010, 30 galáxias espirais) (ATLAS^{3D}; Cappellari et al., 2011, 260 galáxias early-type próximas). Outros surveys IFU ainda estão por vir, como SAMI (Croom et al., 2012) e MaNGA². Devido a participação primordial e intensa dos pesquisadores do GAS-UFSC e dos pesquisadores do IAA, na Espanha, dentro do projeto CALIFA, essa parceria é o ambiente propício, com laboratórios próprios e hardware suficientes para o avanço de nosso projeto.

Figura 3: Distribuição das galáxias do CALIFA no diagrama cor magnitude u-z vs. M_z . Painel superior: Em pontos pretos estão as galáxias pertencente a amostra-mãe e em cores as galáxias presentes no CALIFA DR1. As diferentes cores representam os diferentes tipos morfológicos. Painel inferior: A fração de galáxias observadas pelo DR1 em relação a amostra-mãe. Retirado de Husemann et al. (2013).

Figura 4: Correlação entre a idade estelar média ponderada pela luz ($\langle \log t \rangle_L$) e o tomograma 1 para a galáxia NGC 2916 (CALIFA 277). Paineil superior esquerdo: Distribuição espacial da idade estelar média ponderada pela luz. Painel superior central: Tomograma da componente principal 1 (PC1). Painel superior direito: Correlação entre $\langle \log t \rangle_L$ e o tomograma 1. Destaque para o coeficiente de correlação de Spearman no canto inferior direito. Painel inferior: Componente principal 1 juntamente com o espectro médio (eixo direito).

3.2 Pycasso e PCALIFA

A sintese espectral de uma galáxia do CALIFA gera um número muito grande de resultados. Cada espectro de entrada para a síntese pertence a uma posição determinada (spaxel³) da galáxia, resultando assim em para as propriedades físicas e medidas de extinção estelares com dimensão espacial. Para organização desses resultados, que necessitam ser armazenadas com as informações originais dos cubos, André L. de Amorim, juntamente com outros colaboradores de nosso grupo e do projeto CALIFA, construiu o programa PyCASSO (Python CALIFA STARLIGHT Synthesis Organizer, descrito na sec. de Cid Fernandes et al. (2013)) para tal função. Organiza os dados da síntese de populações estelares e demais dados provenientes de outros programas pertencentes ao pipeline do CALIFA. Esses programas fazem a redução, organização dos espectros, máscaras espaciais e espectrais (remoção de objetos espúrios, marcação de spaxels problemáticos), entre outros. O PyCASSO facilita muito toda a ciência exploratória nos cubos de espectros do CALIFA.

Em minha dissertação de mestrado desenvolvemos um programa chamado de PCALIFA, que utiliza o PyCASSO como biblioteca e os cubos de espectros do CALIFA para o cáculo das componentes principais e dos tomogramas PCA. Encontramos diversas correlações entre a distribuição espacial das componentes e os tomogramas PCA. Um exemplo pode ser visto na Figura 4 onde encontramos a uma ótima correlação entre a idade estelar média ponderada pela luz ($\langle \log t \rangle_L$) e o tomograma 01. Essas correlações formam uma certa engenharia reversa no sentido de buscar os parâmetros mais "importantes" em variância (as PCs) que mapeiam propriedades físicas, de uma forma não-paramétrica.

3.3 Explorando as características de filtragem dos dados com tomografia pca e wavelets

Utilizando tomografia PCA pode-se reconstruir os espectros originais criando combinações dos elementos da base ortonormal, ordenados pela variância, resultante da técnica (componentes principais). O cubo de espectros pode ser reconstruído ($\mathbf{F}_{z\lambda}^{rec}$) usando os tomogramas (\mathbf{T}_{zk}), os autovetores ($\mathbf{E}_{\lambda k}$) e o espectro médio ($\langle \mathbf{F}_{\lambda} \rangle$) através da equação:

$$\mathbf{F}_{z\lambda}^{rec} = \mathbf{T}_{zk}(r \le k) \cdot [\mathbf{E}_{\lambda k}(r \le k)]^T + \langle \mathbf{F}_{\lambda} \rangle \tag{1}$$

onde utiliza-se $r \leq k$ autoespectros (k é o número total de autovetores). O índice z designa uma zona da galáxia.

Todo o processo de obtenção e redução dos dados com IFS adiciona "ruído" no sinal obtido. Padrões inseridos nos dados que podem atrapalhar na interpretação dos resultados de qualquer análise. Esses ruídos se espalham em padrões espectrais e padrões espaciais. Usando PCA dos espectros esses elementos geralmente são encontrados em componentes com variancia mais baixa. Como citado anteriormente, em Riffel et al. (2011) podemos ver o uso da Transformada Wavelet Discreta (Discrete wavelet transform - DWT) juntamente com tomografia PCA para filtragem de cubos de dados IFS. Para cada imagem em determinado comprimento de onda (cada comprimento de onda em um cubo de dados forma uma imagem) aplica-se a DWT e depois a tomografica PCA para cada wavelet, obtendo assim um filtro de características espaciais. Nesse caso os dados são do Gemini Near-infrared Integral Field Spectrograph (NIFS) para a galáxia NGC 591. Os campos de visão do Gemini e do CALIFA são completamente diferentes. Praticamente cada elemento de resolução do CALIFA é um

 $^{^3}$ Spaxel vem de Spectral pixel. Um spaxel é um píxel com três dimensões (x, y, λ)

campo inteiro do Gemini, fazendo com que nossa análisa seja pioneira para cubo de espectros para galáxias inteiras. Outras técnicas com medidas de distâncias em espaços multidimensionais, clusterização, entre outras, serão análisadas, a fim de se encontrar padrões pertinentes nos dados.

Referências

- Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Allende Prieto, C., An, D., Anderson, K. S. J., Anderson, S. F. et al. 2009, ApJS, 182, 543
- Ahn, C. P., Alexandroff, R., Allende Prieto, C., Anderson, S. F., Anderton, T., Andrews, B. H., Aubourg, É., Bailey, S. et al. 2012, ApJS, 203, 21
- Asari, N. V., Cid Fernandes, R., Stasińska, G., Torres-Papaqui, J. P., Mateus, A., Sodré, L., Schoenell, W., & Gomes, J. M. 2007, MNRAS, 381, 263
- Balakrishnan, G., Durand, F., & Guttag, J. 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 0, 3430
- Benítez, N., Gaztañaga, E., Miquel, R., Castander, F., Moles, M., Crocce, M., Fernández-Soto, A., Fosalba, P. et al. 2009, ApJ, 691, 241
- Blanc, G. A., Gebhardt, K., Heiderman, A., Evans, II, N. J., Jogee, S., van den Bosch, R., Marinova, I., Weinzirl, T. et al. 2010, in Astronomical Society of the Pacific Conference Series, Vol. 432, New Horizons in Astronomy: Frank N. Bash Symposium 2009, ed. L. M. Stanford, J. D. Green, L. Hao, & Y. Mao, 180
- Borcea, L., Callaghan, T., & Papanicolaou, G. 2012, CoRR, abs/1208.3700
- Cappellari, M., Emsellem, E., Krajnović, D., McDermid, R. M., Scott, N., Verdoes Kleijn, G. A., Young, L. M., Alatalo, K. et al. 2011, MNRAS, 413, 813
- Chen, Y.-M., Kauffmann, G., Tremonti, C. A., White, S., Heckman, T. M., Kovač, K., Bundy, K., Chisholm, J. et al. 2012, MNRAS, 421, 314
- Cid Fernandes, R., Asari, N. V., Sodré, L., Stasińska, G., Mateus, A., Torres-Papaqui, J. P., & Schoenell, W. 2007, MNRAS, 375, L16
- Cid Fernandes, R., González Delgado, R. M., García Benito, R., Pérez, E., de Amorim, A. L., Sánchez, S. F., Husemann, B., Falcón Barroso, J. et al. 2014, A&A, 561, A130
- Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363
- Cid Fernandes, R., Pérez, E., García Benito, R., González Delgado, R. M., de Amorim, A. L., Sánchez, S. F., Husemann, B., Falcón Barroso, J. et al. 2013, A&A, 557, A86
- Colless, M. 1999, in Large-Scale Structure in the Universe, ed. G. Efstathiou & et al., 105
- Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., Bryant, J. J., Fogarty, L., Richards, S., Goodwin, M., Farrell, T. et al. 2012, MNRAS, 421, 872

- de Zeeuw, P. T., Bureau, M., Emsellem, E., Bacon, R., Carollo, C. M., Copin, Y., Davies, R. L., Kuntschner, H. et al. 2002, MNRAS, 329, 513
- Ferreras, I., Pasquali, A., de Carvalho, R. R., de la Rosa, I. G., & Lahav, O. 2006, MNRAS, 370, 828
- Francis, P. J., Hewett, P. C., Foltz, C. B., & Chaffee, F. H. 1992, ApJ, 398, 476
- Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41
- González Delgado, R. M., Pérez, E., Cid Fernandes, R., García-Benito, R., de Amorim, A. L., Sánchez, S. F., Husemann, B., Cortijo-Ferrero, C. et al. 2014, A&A, 562, A47
- Husemann, B., Jahnke, K., Sánchez, S. F., Barrado, D., Bekerait*error*ė, S., Bomans, D. J., Castillo-Morales, A., Catalán-Torrecilla, C. et al. 2013, A&A, 549, A87
- Ivezic, Z., Tyson, J. A., Acosta, E., Allsman, R., Anderson, S. F., Andrew, J., Angel, R., Axelrod, T. et al. 2008, ArXiv e-prints
- Kamruzzaman, S. M., Siddiqi, F. A., Islam, M. S., Haque, M. E., & Alam, M. S. 2010, CoRR, abs/1009.4974
- Lacerda, E. A. D. 2014, Master's thesis, Curso de Pós-Graduação em Física da Universidade Federal de Santa Catarina.
- Mateus, A., Sodré, L., Cid Fernandes, R., & Stasińska, G. 2007, MNRAS, 374, 1457
- Ocvirk, P., Pichon, C., Lançon, A., & Thiébaut, E. 2006, MNRAS, 365, 74
- Panter, B., Heavens, A. F., & Jimenez, R. 2003, MNRAS, 343, 1145
- Pérez, E., Cid Fernandes, R., González Delgado, R. M., García-Benito, R., Sánchez, S. F., Husemann, B., Mast, D., Rodón, J. R. et al. 2013, ApJ, 764, L1
- Riffel, R., Riffel, R. A., Ferrari, F., & Storchi-Bergmann, T. 2011, MNRAS, 416, 493
- Rogers, B., Ferreras, I., Lahav, O., Bernardi, M., Kaviraj, S., & Yi, S. K. 2007, MNRAS, 382, 750
- Rosales-Ortega, F. F., Kennicutt, R. C., Sánchez, S. F., Díaz, A. I., Pasquali, A., Johnson, B. D., & Hao, C. N. 2010, MNRAS, 405, 735
- Sánchez, S. F., Kennicutt, R. C., Gil de Paz, A., van de Ven, G., Vílchez, J. M., Wisotzki, L., Walcher, C. J., Mast, D. et al. 2012, A&A, 538, A8
- Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpenter, J. M., Beichman, C., Capps, R. et al. 2006, AJ, 131, 1163
- Sodre, L. & Cuevas, H. 1997, MNRAS, 287, 137
- Sodré, Jr., L. & Cuevas, H. 1994, Vistas in Astronomy, 38, 287
- Steiner, J. E., Menezes, R. B., Ricci, T. V., & Oliveira, A. S. 2009, MNRAS, 395, 64

- Vale Asari, N., Stasińska, G., Cid Fernandes, R., Gomes, J. M., Schlickmann, M., Mateus, A., & Schoenell, W. 2009, MNRAS, 396, L71
- Wild, V., Hewett, P. C., & Pettini, M. 2006, MNRAS, 367, 211
- York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J., Bahcall, N. A., Bakken, J. A., Barkhouser, R. et al. 2000, AJ, 120, 1579