Análisis de Datos y Aprendizaje Máquina con Tensorflow 2.0: Clasificación

2019/09/30

Clasificación K-nearest neighbors y GridSearch (parameter tuning)

Objetivo: Comprender otro tipo de clasificación básica y el ajuste de hiperparámetros.

En la clasificación k-NN, se asigna el elemento a clasificar a la clase donde la mayoría de sus elementos de entrenamiento (vecinos) pertenecen. Si $\mathbf{k}=1$, entonces el objeto simplemente se asigna a la clase de ese vecino más cercano, si $\mathbf{k}=3$, se asigna a la clase donde la mayoría de los tres elementos pertenecen. Este tipo de clasificación es muy común y cuenta con muchas variantes.

 $https://scikit-learn.org/stable/modules/neighbors.html \#unsupervised-nearest-neighbors \ https://scikit-learn.org/stable/modules/grid_search.html$

• Para ajustar el parámetro k con el menor error, así como otros parámetros (parameter tuning), se utiliza GridSearch de sklearn

```
In [1]: import sklearn
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
```

Análisis exploratorio

Etiquetas de clase a valor numérico

• Diagnosis (M = malignant, B = benign)

Out[2]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	
	id						
	842302	M	17.99	10.38	122.80	1001.0	
	842517	М	20.57	17.77	132.90	1326.0	
	84300903	М	19.69	21.25	130.00	1203.0	
	84348301	М	11.42	20.38	77.58	386.1	
	84358402	М	20.29	14.34	135.10	1297.0	

\

```
12.45
                                        15.70
                                                        82.57
                                                                   477.1
843786
                Μ
844359
                          18.25
                                       19.98
                                                       119.60
                                                                  1040.0
                М
84458202
                М
                          13.71
                                        20.83
                                                        90.20
                                                                   577.9
                                                                   519.8
844981
                Μ
                          13.00
                                        21.82
                                                        87.50
84501001
                          12.46
                                        24.04
                                                        83.97
                                                                   475.9
                М
          smoothness_mean compactness_mean concavity_mean \
id
                                    0.27760
                                                    0.30010
842302
                  0.11840
842517
                  0.08474
                                    0.07864
                                                    0.08690
84300903
                  0.10960
                                    0.15990
                                                    0.19740
84348301
                  0.14250
                                    0.28390
                                                    0.24140
84358402
                  0.10030
                                    0.13280
                                                    0.19800
843786
                  0.12780
                                    0.17000
                                                    0.15780
844359
                  0.09463
                                    0.10900
                                                    0.11270
84458202
                  0.11890
                                    0.16450
                                                    0.09366
844981
                  0.12730
                                    0.19320
                                                    0.18590
84501001
                  0.11860
                                    0.23960
                                                    0.22730
          concave points_mean symmetry_mean ... texture_worst \
id
842302
                      0.14710
                                      0.2419
                                              . . .
                                                           17.33
842517
                     0.07017
                                      0.1812 ...
                                                           23.41
                                      0.2069 ...
84300903
                     0.12790
                                                           25.53
                                                           26.50
84348301
                     0.10520
                                      0.2597 ...
84358402
                     0.10430
                                      0.1809 ...
                                                           16.67
                                      0.2087 ...
843786
                     0.08089
                                                           23.75
844359
                     0.07400
                                      0.1794 ...
                                                           27.66
                                                           28.14
84458202
                      0.05985
                                      0.2196
                                              . . .
844981
                      0.09353
                                      0.2350
                                                           30.73
                                             . . .
                                      0.2030 ...
84501001
                      0.08543
                                                           40.68
          perimeter_worst area_worst smoothness_worst compactness_worst \
id
842302
                   184.60
                               2019.0
                                                 0.1622
                                                                    0.6656
                                                 0.1238
                                                                    0.1866
842517
                   158.80
                               1956.0
                   152.50
84300903
                              1709.0
                                                 0.1444
                                                                    0.4245
84348301
                   98.87
                               567.7
                                                 0.2098
                                                                    0.8663
84358402
                  152.20
                              1575.0
                                                0.1374
                                                                    0.2050
843786
                  103.40
                               741.6
                                                0.1791
                                                                    0.5249
844359
                  153.20
                               1606.0
                                                 0.1442
                                                                    0.2576
84458202
                  110.60
                               897.0
                                                 0.1654
                                                                    0.3682
844981
                  106.20
                               739.3
                                                 0.1703
                                                                    0.5401
84501001
                   97.65
                                711.4
                                                 0.1853
                                                                    1.0580
          concavity_worst concave points_worst symmetry_worst \
id
                                                         0.4601
842302
                   0.7119
                                         0.2654
842517
                   0.2416
                                         0.1860
                                                         0.2750
```

84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
844359	0.3784	0.1932	0.3063
84458202	0.2678	0.1556	0.3196
844981	0.5390	0.2060	0.4378
84501001	1.1050	0.2210	0.4366

fractal_dimension_worst Unnamed: 32

	_	-	
id			
842302		0.11890	NaN
842517		0.08902	NaN
84300903		0.08758	NaN
84348301		0.17300	NaN
84358402		0.07678	NaN
843786		0.12440	NaN
844359		0.08368	NaN
84458202		0.11510	NaN
844981		0.10720	NaN
84501001		0.20750	NaN

[10 rows x 32 columns]

Análisis Exploratorio

• Verificar valores nulos

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 569 entries, 842302 to 92751

Data columns (total 32 columns):

		, •	
diagnosis	569	non-null	object
radius_mean	569	non-null	${\tt float64}$
texture_mean	569	non-null	${\tt float64}$
perimeter_mean	569	non-null	${\tt float64}$
area_mean	569	non-null	${\tt float64}$
smoothness_mean	569	non-null	${\tt float64}$
compactness_mean	569	non-null	${\tt float64}$
concavity_mean	569	non-null	float64
concave points_mean	569	non-null	float64
symmetry_mean	569	non-null	${\tt float64}$
fractal_dimension_mean	569	non-null	${\tt float64}$
radius_se	569	non-null	${\tt float64}$
texture_se	569	non-null	${\tt float64}$
perimeter_se	569	non-null	float64
area_se	569	non-null	float64
smoothness_se	569	non-null	float64
compactness se	569	non-null	float64

569 non-null float64 concavity_se 569 non-null float64 concave points_se 569 non-null float64 symmetry_se 569 non-null float64 fractal_dimension_se 569 non-null float64 radius_worst texture_worst 569 non-null float64 perimeter_worst 569 non-null float64 569 non-null float64 area_worst 569 non-null float64 smoothness_worst 569 non-null float64 compactness_worst 569 non-null float64 concavity_worst concave points_worst 569 non-null float64 569 non-null float64 symmetry_worst fractal_dimension_worst 569 non-null float64 Unnamed: 32 0 non-null float64

dtypes: float64(31), object(1)

memory usage: 146.7+ KB

In [4]: sns.heatmap(df.isnull(), cbar=False)

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb9e95cc1d0>

• Etiquetas a valor numérico

	di.Head()							
Out[5]:		diagnosis	radius_mean	texture_mea	an perimete	r_mean	area_mean	\
	id	J	_	_	-	_	_	
	842302	1	17.99	10.3	38	122.80	1001.0	
	842517	1	20.57	17.	77	132.90	1326.0	
	84300903	1	19.69	21.5		130.00	1203.0	
	84348301	1	11.42	20.3		77.58	386.1	
	84358402	1	20.29	14.3		135.10	1297.0	
		smoothness_	mean compa	ctness_mean	concavity_m	ean \		
	id							
	842302	0.1	1840	0.27760	0.3	001		
	842517		8474	0.07864		869		
	84300903	0.1	0960	0.15990	0.1	974		
	84348301	0.1	4250	0.28390	0.2	414		
	84358402	0.1	0030	0.13280	0.1	980		
					.		. \	
	id	concave poi	nts_mean sy	mmetry_mean		re_worst	; \	
	842302		0.14710	0.2419	• • •	17 25)	
						17.33		
	842517		0.07017	0.1812		23.41		
	84300903		0.12790	0.2069		25.53		
	84348301		0.10520	0.2597		26.50		
	84358402		0.10430	0.1809	• • •	16.67	•	
		perimeter_w	orst area_	vorst smootl	hness_worst	compact	ness_worst	; \
	id	_				-		
	842302	18	4.60 20	019.0	0.1622		0.6656	;
	842517	15	8.80	956.0	0.1238		0.1866	;
	84300903	15	2.50 17	709.0	0.1444		0.4245	,
	84348301	9	8.87	567.7	0.2098		0.8663	3
	84358402	15	2.20 1	575.0	0.1374		0.2050)
		concavity_w	orst conca	re points_wor	rst symmetr	y_worst	\	
	id	0	7110	0.00	CE 4	0 4004		
	842302		7119	0.26		0.4601		
	842517		2416	0.18		0.2750		
	84300903		4504	0.24		0.3613		
	84348301		6869	0.2		0.6638		
	84358402	0.	4000	0.10	625	0.2364		

fractal_dimension_worst Unnamed: 32

id

842302	0.11890	NaN
842517	0.08902	NaN
84300903	0.08758	NaN
84348301	0.17300	NaN
84358402	0.07678	NaN

[5 rows x 32 columns]

• Equilibrio de etiquetas

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb9e8dee090>

• Distribución de variable

In [8]: sns.jointplot("radius_worst", "perimeter_worst", data=df, kind='kde')

Out[8]: <seaborn.axisgrid.JointGrid at 0x7fb9e7fa5a50>

In [9]: sns.jointplot("radius_worst", "perimeter_worst", data=df, color="b").plot_joint(sns.kdepl
Out[9]: <seaborn.axisgrid.JointGrid at 0x7fb9e5ff8110>

Ajuste de parámetros de KNN con GridSearchCV

• GridSearchCV realiza una búsqueda por fuerza bruta sobre todos los posibles parámetros

• A diferencia del ejemplo de NaiveBayes, con grid search no se requiere 'for loop' para cada parámetro

• El ciclo indica que k=8 es el mejor parámetro con 'manhattan'

```
In [14]: acc[7]
Out[14]: 0.9239766081871345
```

• Para evaluar los demás parámetros se importa GridSearchCV

In [15]: from sklearn.model_selection import GridSearchCV

Se evalúan tres parámetros con GridSearchCV

• Además del parámetro 'k' se toma en cuenta 'weights' y 'metric'

```
In [16]: train, test, train_labels, test_labels = train_test_split(X, y,
                                                 test size = 0.15, random state = 22)
In [17]: import warnings
         warnings.filterwarnings("ignore")
In [18]: k \text{ vecinos} = list(range(1,20))
         weight_options = ["uniform", "distance"]
         metric_options = ["manhattan", 'minkowski']
         param_grid = dict(n_neighbors = k_vecinos, weights = weight_options,
                           metric = metric_options)
         knn = KNeighborsClassifier()
         grid = GridSearchCV(knn, param_grid, scoring = 'accuracy',cv = 10)
         grid.fit(train,train_labels)
Out[18]: GridSearchCV(cv=10, error_score='raise-deprecating',
                      estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30,
                                                      metric='minkowski',
                                                      metric_params=None, n_jobs=None,
                                                      n_neighbors=5, p=2,
                                                      weights='uniform'),
                      iid='warn', n_jobs=None,
                      param_grid={'metric': ['manhattan', 'minkowski'],
                                   'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
                                                   13, 14, 15, 16, 17, 18, 19],
                                   'weights': ['uniform', 'distance']},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring='accuracy', verbose=0)
```

Los mejores parámetros

```
In [19]: grid.best_score_
Out[19]: 0.94824016563147
In [20]: grid.best_estimator_
Out[20]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='manhattan', metric_params=None, n_jobs=None, n_neighbors=7, p=2, weights='uniform')
In [21]: grid.best_params_
Out[21]: {'metric': 'manhattan', 'n_neighbors': 7, 'weights': 'uniform'}
```

Evaluación de modelo

- Se obtienen las predicciones, informe de clasificación y matriz de confusión.
- Se crea modelo con los mejores parámetros
- Se obtienen las predicciones, informe de clasificación y matriz de confusión.

Predicciones:

Reporte de clasificación:

	precision	recall	f1-score	support
0	0.94	0.96	0.95	53
1	0.94	0.91	0.92	33
accuracy			0.94	86
macro avg	0.94	0.94	0.94	86
weighted avg	0.94	0.94	0.94	86

Confusion matrix

[[51 2] [3 30]]

- Ajustando los parámetros se obtiene un modelo mas potente
- Probar los clasificadores aprendidos con un diferente dataset
- Experimentar con parámetros y GridSearch