

NDL

NAVIGATION DOPPLER LIDAR

Farzin Amzajerdian
NASA Langley Research Center

AIAA Hampton Roads Section Technical Seminar

April 1, 2022

Navigation Doppler Lidar (NDL)

- > NDL is a laser sensor capable of providing precision vector velocity and altitude data
- ➤ Viable replacement for radars with an order of magnitude higher precision and much better data quality
 - Enables "precision navigation" to the designated landing location

Enables "well-controlled" descent, landing, and ascent maneuvers to within a few

cm/sec

Navigation Doppler Lidar (NDL)

- Utilizes FMCW technique to measure velocity and range along three laser beams
- Simultaneous line-of-sight measurements are used to estimate:
 - Velocity Vector (V)
 - Altitude relative to local ground (No external data required)

NDL from Concept to Lunar Landing **Demonstration**

GEN 2

GEN 3

Spaceflight Engineering Test Units (ETUs)

4 ETUs have been built and tested

- # 1 Aircraft flight tests and integrated tests with other avionics
- # 2 Suborbital flight test on Blue Origin New Shepard vehicle (2021)
- #3 Lunar Landing Demonstration onboard Intuitive Machines lander (2022)

4 – Lunar Landing Demonstration onboard Astrobotic lander (2022) Intuitive Machines

Comparison of NDL and Mars Landing Radar

6 antennas each 22 cm diameter, 4 cm thick

- > 10X higher precision
- > 3 orders of magnitude tighter beams
- 40% reduction in power, 50% in mass, and 60% in size

NDL ETU

	MSL and Mars 2020 Radar	NDL ETU
Mass (kg)	26	15
Power (W)	125	78

ETU Specifications

Not Including Vehicle Effects

<u> </u>		
Maximum LOS Range ^{1,2}		> 10 km
Maximum LOS Velocity		+/- 218 m/sec
LOS Velocity Error ²		0.2 cm/sec
LOS Range Error ²		12.5 cm
Data Rate		20 Hz
Dimensions	Electronic Chassis	15.6" x 11.3" x 5.7"
	Optical Head	10.8" x 8.5" x 4.9"
Mass	Electronic Chassis	13.0 kg
	Optical Head	2.2 kg
Power (28 VDC)		78 W

- 1. Dependent on atmosphere and surface albedo
- 2. Vehicle dynamics degrades maximum range and measurements precision

Maximum Velocity Measurement (Rocket-Sled Test)

High-Speed Rocket Sled Test

ETU Max Range and Precision are dominated by vehicle vibration

- ➤ Vibration broadens laser linewidth which in turn broadens the signal frequency spectra and lowers its peak intensity
 - Reduces maximum operational range
 - Increases measurement noise

Signal frequency broadening is proportional to vibration load and increases with range
Signal spectra broadening with vibration

Comprehensive Functional Test

Measured signal strength and spectral broadening at different vibration loads versus range

Maximum Operational Range

- Maximum operational range in Moon environment is extrapolated from measured data
 - Remove atmospheric effects
 - Correct for lunar surface albedo

Measurements Precision

➤ Estimated ETU range and velocity precision in 2.6 grms vibration environment:

$$\partial R = 1.59 + 2.21 \times 10^{-3} \times R$$
 m

$$\partial v_r = 1.62 \times 10^{-2} + 2.24 \times 10^{-5} \times R$$
 m/s

LOS Range	Range Noise	Velocity Noise
1000 m	3.80 m	3.86 cm/s
6000 m	14.85 m	15.06 cm/s

NDL Error Budget

- Dominant bias error source is beam pointing knowledge
- Dominant noise source is vehicle vibration

Beam Pointing Knowledge Error

- Major sources of beam pointing knowledge error:
 - Beam pointing registration error
 - Thermal expansion of Optical Head
 - Telescope displacement due to launch loads
 - Vehicle flexing and thermal effects
- Performed full Structural, Thermal, Optical, Performance (STOP) analysis

Measurement Errors Due to Beam Pointing Knowledge Error

- $\partial v_r = |V| \sin \theta \, \partial \theta$
 - where θ is angle between beam vector and velocity vector
- $\partial R_r = |Alt| \sin \beta \, \partial \beta$
 - where β is the angle between the beam vector and normal to the ground

$$\partial v_r = |436| \sin(60^o) \ 0.35 \times 10^{-3}$$
 $\partial v_r = 0.13 \ \text{m/s}$

$$\partial R_r = |6000| \sin(40^o) 0.35 \times 10^{-3}$$

 $\partial R_r = 1.34 \text{ m}$

ETU Specifications

➤ Projected ETU performance for 2022 lunar landing missions including effects of vehicle dynamics:

Parameter	Value
Maximum LOS Range	6.0 km
Minimum LOS Velocity	+/- 0.1 m/s
Maximum LOS Velocity	+/- 218 m/s
Data Rate	20 Hz
LOS Velocity Error (1-σ) @ 6 km	0.15 m/s (noise) + 0.13 m/s (bias)
and Max Velocity	
LOS Range Error (1-σ) @ 6 km	14.8 m (noise) + 1.3 m (bias)

Non-Space Applications

- > Aircraft navigation in GPS-deprived environment
- Assist helicopter landing in brownout conditions
- Autonomous ground and air vehicles
- Exploration of valuable resources on Earth and in space (oil, natural gas, metals, water, etc.)

Commercialization is well underway by Licensee for both space and non-space markets

Concluding Remarks

- ➤ NDL provides critical vehicle velocity and altitude data for precision soft landing on the Moon, Mars, and other solar system bodies
- > NDL will be demonstrated on two lunar landing vehicles in late 2022
 - NDL data will be used by vehicle GN&C system during descent and landing
- Performance of the NDL is dominated by the vehicle vibration and thermal environments
 - Vehicle vibration impacts maximum operational range and measurement precision
 - Thermal and vibration environments impacts measurement bias error
- > Conducted a series of tests and analyses to estimate the NDL performance for Moon and Mars landing
- ➤ Technology advancement is underway to reduce mass to 1/3 and power to 1/2 while reducing effects of vehicle vibration

Backup

Technology Advancement for Next Generation NDL

- Ongoing technology advancement efforts can drastically reduce size, mass, and power, expand its capabilities, and enhance its robustness
- Spacecraft landing and aircraft applications
 - Thin film Non-Mechanical Beam Steering (NMBS) reduces mass by 40%, power by 20% (ready for infusion in 2023)
 - Photonic Integrated Circuit (PIC) reduces mass by 30%, power by 10% (ready for infusion in 2024)
- PIC can enable miniature and low-cost NDL for short range autonomous ground vehicles

Ambiguity Removal

- Novel Ambiguity Removal algorithm utilizes 3 segments waveform to minimize:
 - False alarms due to zero-crossing
 - False alarms and data dropouts due to speckle

$$R = \left(\frac{TC}{2B}\right) \left(\frac{f_1 - f_2}{2}\right)$$

$$V = \left(\frac{\lambda}{2}\right) \left(\frac{f_1 + f_2}{2}\right)$$

$$V = \left(\frac{\lambda}{2}\right) (f_D)$$

Rocket-Sled Test: Maximum Velocity Measurement

Measured velocities to NDL limit of 218 m/sec at 4 km range

