Voltage Regulators

Mark Colton

Department of Mechanical Engineering
Brigham Young University

Voltage Regulators

- Most circuits need a dependable, constant voltage source
- Using internal feedback, voltage regulators "regulate" the output voltage, given a nonideal input voltage

Voltage Regulators

 Come in a number of voltages, packages, current capabilities, precisions, operating temperatures, dropout voltages, etc.

"Introduction to Mechatronic Design," Carryer, Ohline, Kenny, 2011

Voltage Regulators: Other Considerations

 Sometimes (see text for guidelines) you should add a heat sink for applications with considerable current needs

"Introduction to Mechatronic Design," Carryer, Ohline, Kenny, 2011

- Dropout voltage:
 - The minimum difference between the input voltage and the output voltage to achieve the desired output voltage
 - Example: If a regulator has a dropout voltage of 0.5 V, and we want a 5 V output, then the input needs to be at least 5.5 V

Some Examples...

Take a look at Digi-Key

Take a look at the LM7805 data sheet

Linear vs. Switching Regulators

- The LM7805 and LM317 are linear regulators
 - There is a linear amplifier in the feedback circuit
- There are also switching regulators
 - Flexibility in output voltages (even lower than input voltage or of opposite polarity)
 - Higher efficiency
 - Lower temperature
 - Higher currents
 - Higher ripple
 - Increased complexity
- We'll focus on linear regulators