

Depto de Matemática. Primer Cuatrimestre de 2022 Teoría de la Medida Práctica 3: Medida de Lebesque

Ejercicio 1. Sean R y R_j , $j=1,\ldots,M$, rectángulos de \mathbb{R}^d con $R\subset\bigcup_{j=1}^MR_j$. Probar que $|R|\leq\sum_{j=1}^N|R_j|$, donde |R| es el volumen del rectángulo R y $|R_j|$ es el volumen de cada rectángulo R_j para $j=1,2,\ldots,M$.

Ejercicio 2. Demostrar que $m_*(A) = 0$ cuando $A \subset \mathbb{R}^d$ es numerable.

Ejercicio 3. Mostrar que cualquier conjunto con medida exterior positiva contiene un conjunto acotado con medida exterior positiva.

Ejercicio 4. Probar que si $m_*(E) > 0$ y $0 < \alpha < 1$, entonces existe un cubo Q, tal que $m_*(E \cap Q) > \alpha m(Q)$.

Sugerencia: suponiendo primero que $0 < m_*(E) < \infty$, considerar un conjunto $U = \bigcup_{k=1}^{\infty} Q_k$, tal que $U \supset E$ y

 $\sum\limits_{k=1}^{\infty}m(Q_k)<lpha^{-1}m_*(E)$; entonces al menos uno de los cubos Q_k debe satisfacer la desigualdad del enunciado.

Ejercicio 5. En la teoría se demostró que el disco abierto de \mathbb{R}^2 definido por $x^2+y^2<1$ se puede escribir como una unión numerable de cubos casi-disjuntos. Demostrar que esta afirmación es falsa si consideramos el disco cerrado $x^2+y^2\leq 1$.

Ejercicio 6. Decimos que un conjunto $E \subset \mathbb{R}^d$ satisface la condición de Caratheodory si para cualquier conjunto $S \subset \mathbb{R}^d$ se verifica

$$m_*(S \cap E) + m_*(S - E) = m_*(S).$$

1. Probar que todo conjunto medible E satisface la condición de Caratheodory. Sugerencia: basta probar que para cualquier conjunto S se cumple

$$m_*(S \cap E) + m_*(S - E) \le m_*(S),$$

en vista de que la desigualdad opuesta se cumple en cualquier caso.

2. Probar que si E_1 y E_2 satisfacen la condición de Caratheodory, entonces la intersección de ambos conjuntos también la satisface.

Sugerencia: el conjunto $S-E_1\cap E_2$ es la unión de los conjuntos disjuntos $S\cap E_1-E_2$, $(S-E_1)\cap E_2$ y $\overline{(S-E_1)-E_2}$.

3. Probar que si E satisface la condición de Caratheodory, entonces E es medible. Sugerencia: en virtud de los incisos 1. y 2. se puede suponer que E es acotado.

La moraleja del problema es que "los conjuntos medibles son exactamente los que satisfacen la condición de Caratheodory."

Ejercicio 7. Para cualquier conjunto $E \subset \mathbb{R}^d$, probar que:

- 1. existe un conjunto H de clase G_{δ} , tal que $E \subset H$ y $m_*(E) = m(H)$.
- 2. existe un conjunto H de clase G_{δ} , tal que $E \subset H$ y para cualquier conjunto medible M se cumple

$$m_*(E \cap M) = m(H \cap M).$$

Sugerencia: suponiendo primero que $m_*(E) < \infty$, considérese un conjunto H de clase G_δ como en el inciso 17. El conjunto M satisface la condición de Caratheodory con respecto a E.

Ejercicio 8. Probar que si E_1 y E_2 son conjuntos medibles disjuntos, entonces para cualquier conjunto $S \subset \mathbb{R}^d$ se cumple

$$m_*(S \cap E_1) + m_*(S \cap E_2) = m_*(S \cap (E_1 \cup E_2)).$$

Generalizar a cualquier sucesión (E_k) de conjuntos medibles disjuntos.

Ejercicio 9. Si E y F son conjuntos medibles cualesquiera, entonces

$$m(E \cup F) + m(E \cap F) = m(E) + m(F).$$

Ejercicio 10. Probar que $G \in G_{\delta}$ si y sólo si $G^c \in F_{\sigma}$.

Ejercicio 11. Probar que para cualquier conjunto medible E vale la fórmula

$$m(E) = \sup\{m(K) : K \subset E\},\$$

donde el supremo se toma sobre todos los conjuntos compactos $K \subset E$.

Ejercicio 12. Sea (E_k) una sucesión de conjuntos medibles. Probar que

- 1. $m(\liminf E_k) \leq \liminf m(E_k)$;
- 2. si para algún j, $m\left(\bigcup_{k\geq j}E_k\right)<\infty$, luego $\limsup m(E_k)\leq m(\limsup E_k)$;
- 3. si la sucesión (E_k) tiende a un límite y todos los E_k son subconjuntos de un conjunto fijo A de medida finita, entonces $m(\lim E_k) = \lim m(E_k)$.
- 4. Exhibir una sucesión de conjuntos E_k en el intervalo unitario [0,1], tal que $m(\liminf E_k) < \liminf m(E_k) < \limsup m(E_k) < m(\limsup E_k)$ (todas las desigualdades estrictas).

Ejercicio 13. Mostrar que existe un conjunto H incluido en el intervalo unitario [0,1], de clase F_{σ} , de medida uno, formado exclusivamente por puntos irracionales.

Mostrar que H es unión numerable de conjuntos cerrados con interior vacío.

Ejercicio 14. * Demostrar que \mathscr{O} es σ -álgebra si:

$$\mathscr{O} = \{ Z \subset \Omega | m(Z) = 0 \text{ ó } m(Z^c) = 0 \}.$$

Ejercicio 15. Mostrar que el conjunto $\mathscr{O} = \{G | G \text{ es un conjunto abierto o cerrado de } \mathbb{R} \}$ no es una σ -álgebra.

Ejercicio 16. Si (A_k) es una sucesión de conjuntos en una σ -álgebra \mathcal{O} , entonces

- 1. $\limsup A_k = \bigcap_{k \geq 1} \left(\bigcup_{n \geq k} A_n \right)$ pertenece a \mathscr{O} .
- 2. * $\liminf A_k = \bigcup_{k \geq 1} \left(\bigcap_{n \geq k} A_n \right)$ pertenece a \mathscr{O} .

Ejercicio 17. Sea $f: A \rightarrow B$ una función.

1. Supóngase \mathcal{O}_2 es una σ -álgebra en B. Probar que el conjunto de imágenes inversas de los conjuntos en \mathcal{O}_2 forman una σ -álgebra en A.

2. Supóngase que \mathscr{O}_1 es una σ -álgebra en A. Probar que los conjuntos de B cuyas imágenes inversas pertenecen a \mathscr{O}_1 forman una σ -álgebra en B.

Probar que el conjunto de imágenes inversas de los conjuntos en $\mathscr O$ forman una σ -álgebra en A.

Ejercicio 18. Demostrar que si A, B son borelianos de \mathbb{R} entonces $A \times B$ es boreliano de \mathbb{R}^2 .

Ejercicio 19. ¿Cómo son los subconjuntos medibles del conjunto de Vitali?