More 1D Experiments

Kristyn Pantoja

7/25/2019

I. intercept at 0

II. space in-between

V. less space in-between

VI. linear vs quadratic

Some Observations

▶ Just to show that it seems $G - Crit_{k\to\infty}\{MED_{G,k}\} = F - Crit\{MED_F\}$

I. intercept at 0

I. Proposed Linear Models

Comparing Evaluations for each N = 50 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE ×10e-3	27.105	28.693	28.57	28.757	28.749	27.492
Fast	335.26	209.63	208.43	208.1	208.06	208.15
1atT(k=4)	502.21	484.28	480.28	480.12	479.88	469.12
Mean(D)	0.59672	0.55135	0.55316	0.55152	0.55167	0.5767
sd(D)	0.28173	0.25876	0.25893	0.25844	0.25845	0.26824

Comparing Evaluations for each N = 75 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE x10e-3	66.27	66.737	66.912	66.844	67.018	66.905
Fast	373.54	451.94	402	400.01	399.65	401.03
1atT(k=4)	733.35	742.62	745.74	745.07	745.91	744.47
Mean(D)	0.5874	0.58103	0.58511	0.58596	0.58528	0.59326
sd(D)	0.28154	0.28039	0.27604	0.27536	0.2764	0.27154

II. space in-between

II. Proposed Linear Models

Comparing Evaluations for each N = 50 Design

=100 Fast
14.271 108.16
240.49
6 0.52515 3 0.31158

Comparing Evaluations for each N = 75 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE ×10e-3	36.335	37.069	37.248	37.135	37.135	37.067
Fast	302.5	210.13	210.08	209.66	209.66	209.51
1atT(k=4)	492.53	465.92	466.77	466.43	466.43	451.56
Mean(D)	0.52681	0.51185	0.48986	0.48604	0.48604	0.50762
sd(D)	0.30757	0.28924	0.2955	0.29894	0.29894	0.2923

V. less space in-between

V. Proposed Linear Models

Comparing Evaluations for each N = 50 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE ×10e-3	17.834	18.691	19.038	19.067	19.064	18.559
Fast	179.04	130.52	130.62	130.94	130.93	132.39
1atT(k=4)	328.02	318.2	317.77	317.62	317.56	317.09
Mean(D)	0.53486	0.48047	0.47149	0.47004	0.47008	0.5038
	0.30937	0.2875	0.28524	0.28363	0.28367	0.29313

Comparing Evaluations for each N = 75 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE x10e-3	44.825 377.04	45.667 257.68	46.168 256.01	46.274 255.9	46.273 255.9	45.291 256.54
1atT(k=4)	606.54	571.78	571.35	571.96	571.96	567.94
Mean(D) sd(D)	0.53962 0.30624	0.49804 0.29905	0.49274 0.30355	0.48676 0.31011	0.4868 0.31014	0.50897 0.30376

VI. linear vs quadratic

VI. Proposed Linear Models

Proposed Linear and Quadratic Models


```
## Warning in calculateEvals(D_oaat_lin6_N50_k1, N, mean_beta0, mean_beta1, :
## var_mean0 != var_mean1. posterior variance will be calculated wrt H1
```

^{##} Warning in calculateEvals(D_oaat_lin6_N50_k4, N, mean_beta0, mean_beta1, :
var mean0 != var mean1, posterior variance will be calculated wrt H1

Comparing Evaluations for each N = 50 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE ×10e-3	23.673	24.021	23.902	23.888	23.884	23.803
Fast	226.43	180.72	177.07	176.99	176.97	186.59
1atT(k=4)	426.78	414.73	409.09	408.43	408.23	413.16
Mean(D)	0.49045	0.49371	0.5053	0.4947	0.5053	0.49669
sd(D)	0.26054	0.27526	0.27563	0.27547	0.27544	0.26875

^{##} Warning in calculateEvals(D_oaat_lin6_N75_k1, N, mean_beta0, mean_beta1, :

^{##} var_mean0 != var_mean1. posterior variance will be calculated wrt H1

Comparing Evaluations for each N = 75 Design

	1atT,k=1	1atT,k=4	1atT,k=20	1atT,k=50	1atT,k=100	Fast
TPE x10e-3	57.335	57.565	57.528	57.483	57.485	57.841
Fast	424.36	348.11	341.87	339.98	339.98	344.89
1atT(k=4)	641.68	632.38	632.58	631.56	631.58	651.87
Mean(D) sd(D)	0.49943	0.4895	0.49999	0.5	0.5	0.50883
	0.2703	0.26168	0.26357	0.26268	0.26265	0.26129

