Introduction to sequencing technologies

Katarzyna Sikora

Overview

- advantages/disadvantages of scRNAseq
- modern single cell sequencing technologies
- balanced experimental design

Advantages and disadvantages of scRNAseq

- evaluate gene expression heterogeneity
- discover rare cell types
- calculate cell differentiation trajectories
- single cell omics
- spatial transcriptomics
- RNA splicing velocity
- whole organism single cell atlases

- low input material
- high dropout rates
- cell duplets
- computational artefacts in pseudotime,
 RNA velocity, UMAP projections, trajectory
 calculations etc.
- limited power to differentiate closely related cell types given only gene expression

Cell-type-specific gene expression

Bulk RNA sequencing

No change of expression of Gene X

Single-cell RNA sequencing

Expression of Gene X is affected in cell type b only

Modern single cell technologies

Platform Name	Separation Method	Amplification Method	Using UMI	Amplification Range	Advantages	Disadvantages	Release Date	References
VASA-seq	FANS	PCR	YES	All transcripts	Low cost and accurate dosing	1	2022	[<u>10</u>]
Smart-seq3	Microfluidics	PCR	YES	5' end	High sensitivity	Time-consuming	2020	[11,12]
DNBelabC4	Microfluidics	PCR	YES	All transcripts	Precise quantification	1	2019	[<u>13</u>]
Seq-Well	Microfluidics	PCR	YES	3' end	Low cost and precise quantification	Unsuitable for variable splicing and allelic expression	2017	[<u>14</u>]
MATQ-seq	FACS	PCR	YES	All transcripts	Precise quantification	Low cell throughput	2017	[15]
10× Genomics	Microfluidics	PCR	YES	3' end	High cell capture efficiency, fast cycle time, high cell suitability, and reproducibility	Sequencing can be performed only for the 3' end	2016	[<u>16]</u>

Balanced experimental design

