Assignment 8

Manan Patel

Question 1: Data Structure, Recursion, Similarity, and Differences

a. Data Structure

To solve the Longest Common Substring problem using dynamic programming, we utilize a 2D array dp_table of size $(m + 1) \times (n + 1)$, where m and n are the lengths of the input strings str1 and str2. Each entry dp_table[i][j] represents the length of the longest common substring ending at indices str1[i-1] and str2[j-1].

b. Recursion

The recursive relationship is defined as:

$$\label{eq:dp_table[i][j]} \begin{split} \mathtt{dp_table[i-1][j-1]} + 1 & \text{if } \mathtt{str1[i-1]} = \mathtt{str2[j-1]} \\ 0 & \text{otherwise.} \end{split}$$

The maximum length is updated whenever dp_table[i][j] exceeds the current maximum.

c. Similarity

Both Longest Common Subsequence (LCS) and Longest Common Substring (LCSu) uses a 2D dynamic programming table and check for character matches between two strings.

d. Differences

- 1. Longest Common Subsequence (LCS): A subsequence allows discontinuous characters to form the common sequence.
- 2. Longest Common Substring (LCSu): A substring requires the matched characters to be continuous.

Question 2: Algorithm

Pseudocode

```
FUNCTION LongestCommonSubstringLength(str1, str2)
    len1 = LENGTH(str1)
    len2 = LENGTH(str2)
    INITIALIZE dp_table[len1+1][len2+1] TO 0
    max_length = 0
    end_index = 0
    FOR row FROM 1 TO len1
        FOR col FROM 1 TO len2
            IF str1[row-1] == str2[col-1] THEN
                dp_table[row][col] = dp_table[row-1][col-1] + 1
                IF dp_table[row][col] > max_length THEN
                    max_length = dp_table[row][col]
                    end_index = row
            ELSE
                dp_table[row][col] = 0
            END IF
        END FOR
    END FOR
    RETURN max_length, end_index, dp_table
END FUNCTION
FUNCTION ExtractLongestCommonSubstring(str1, end_index, max_length)
    RETURN SUBSTRING(str1, end_index - max_length, max_length)
END FUNCTION
```

Question 3: Time and Space Complexity

To analyze the time and space complexity, we will break it down by each function in the algorithm:

Function: longest_common_substring_length

• Initialization of DP Table:

- A 2D table, dp_table, of size $(m+1) \times (n+1)$ is initialized with zeros.
- This initialization takes $O(m \times n)$ time since all elements of the table must be set to 0.

• Nested Loops to Fill the Table:

- The algorithm iterates over each character of str1 (outer loop) and str2 (inner loop), comparing them.
- For each pair of indices (i, j), a constant amount of work is performed (comparison, assignment, and updating max_length and end_index).
- The total number of iterations is $m \times n$, where m is the length of str1 and n is the length of str2.
- Thus, the time complexity of this step is $O(m \times n)$.
- Combining the initialization and the nested loop, the total time complexity is $O(m \times n)$.

Function: extract_longest_common_substring

• Substring Extraction:

- The function extracts a substring from str1 using Python's slicing.
- Slicing takes O(k) time, where k is the length of the longest common substring. However, since $k \leq \min(m, n)$, this operation is bounded by $O(\min(m, n))$.

– Thus, the overall time complexity for algorithm is $O(m \times n)$.

• Space Complexity:

- The algorithm uses a 2D table, dp_table, of size $(m+1) \times (n+1)$ to store intermediate results.
- No additional space is used beyond a few variables (max_length, end_index), which are O(1).
- Thus, the overall space complexity is $O(m \times n)$.