Appunti Fisica I

Luca Seggiani

18 Aprile 2024

1 Momento di inerzia rispetto ad un asse

Consideriamo una massa M in rotazione a distanza R dal suo asse. Potremo calcolare il suo momento di inerzia come:

$$I_0 = \sum m_i r_i^2 = MR^2$$

Momento di inerzia di una sbarretta sottile

Calcoliamo il momento di inerzia di una sbarretta sottile di massa M e lunghezza L in rotazione rispetto al suo punto medio. Dovremo conoscere la densità lineare di massa λ della sbarretta:

$$\lambda = \frac{M}{L} = \frac{dm}{dx}, \quad dm = \lambda dx$$

Potremo allora calcolare il momento di inerzia applicando la definizione:

$$I = dmd^2, \quad I = \int_{\frac{L}{2}}^{\frac{L}{2}} \lambda dx x^2 = \frac{2\lambda}{3} \left(\frac{L}{2}\right)^3 = \frac{ML^2}{12}$$

Momento di inerzia di un anello omogeneo

Calcoliamo il momento di inerzia di un'anello di massa M e raggio R, vuoto, in rotazino e rispetto al suo centro. Ragioniamo in modo analogo a prima. La densità lineare di massa sarà:

$$\lambda = \frac{M}{2\pi R}$$

mentre la variazione di lunghezza sull'anello dl sarà:

$$dm = \lambda dl, \quad dl = Rd\phi$$

da cui possiamo quindi calcolare la massa su dl:

$$dm = \lambda dl = \frac{M}{2\pi R} R d\phi = \frac{M}{2\pi} d\phi$$

Impostiamo allora il momento di inerzia dalla definizione:

$$I = \int_{anello} R^2 dm = R^2 \int_0^{2\pi} \frac{M}{2\pi} d\phi$$

Notiamo che l'integrale rappresenta semplicemente tutta la massa dell'anello. Avremo quindi che, come prima:

$$I = MR^2$$

Momento di inerzia di un disco omogeneo

Studiamo il caso analogo al precedente, ma dove l'anello è pieno. Avremo bisogno della densità superficiale di massa:

$$\rho = \frac{dm}{ds} = \frac{M}{\pi R^2}, \quad dm = \rho ds, \quad ds = 2\pi r dr$$

Calcoliamo allora il momento d'inerzia:

$$I = \int dm d^{2} = \int \rho ds r^{2} = \rho \int 2\pi r dr r^{2} = \rho 2\pi \frac{R^{4}}{M} = M \frac{R^{2}}{2}$$

Cubo di masse puntiformi

Calcoliamo il centro di massa di un cubo formato da un punto materiale per ogni suo vertice. Possiamo iniziare sull'asse x: 4 delle masse avranno coordinata x=0, e le altre 4 avranno coordinata x=l con l lato del cubo. Questo mi porta a dire:

$$x_{CM} = \frac{(4x_l + 4x_0)m}{8m} = \frac{l}{2}$$

Possiamo ripetere quest'operazione su tutti e tre gli assi, ottenendo:

$$\vec{r_{CM}} = \left(\frac{l}{2}, \frac{l}{2}, \frac{l}{2}\right)$$

Com'è abbastanza intuitivo.

Vediamo ora di calcolare il momento di inerzia dello stesso corpo. Sull'asse x si avrà che:

$$I_x = \sum m_i (y_i^2 + z_i^2)$$

Se abbiamo centrato la figura facendo corrispondere il centro di massa all'origine degli assi cartesiani, è vero che:

$$x = \pm \frac{l}{2}, \quad y = \pm \frac{l}{2}, \quad z = \pm \frac{l}{2}$$

Potrò sostituire queste coordinate nella formula precedente ottenendo:

$$I_x = 8m\left(\frac{l^2}{2}\right) = 4ml^2, \quad \vec{I_{CM}} = 4ml^2$$

Cubo omogeneo

Rifacciamo quanto appena fatto per un cubo omogeneo di massa M. Per quanto riguarda il centro di massa, avremo che il baricentro è dato da:

$$\vec{r_{CM}} = \frac{1}{M} \int dm \vec{r}$$

Con la densità volumetrica di massa:

$$dm = \rho dv, \quad \rho = \frac{dm}{dv} = \frac{M}{l^3}$$

Possiamo quindi impostare l'integrale:

$$x_{CM}^{-1} = \frac{\rho}{M} \int_0^l x dx \int_0^l dy \int_0^l dz = \frac{\rho}{M} \frac{l^4}{2} = \frac{l}{2}$$

Che è identico al caso discreto.

Calcoliamo allora il momento di inerzia:

$$I_x = \int dm(y^2 + z^2)$$

è perfettamente analogo al caso precedente, solo considerando variazioni continue di massa. Si riprende la densità volumetrica di massa:

$$dm = \rho dv, \quad \rho = \frac{dm}{dv} = \frac{M}{l^3}$$

e si imposta l'integrale:

$$I_x = \rho \int dx dy dz (y^2 + z^2) = \rho \int_{\frac{l}{2}}^{\frac{l}{2}} dx \int_{\frac{l}{2}}^{\frac{l}{2}} dy \int_{\frac{l}{2}}^{\frac{l}{2}} (y^2 + z^2) dz = \rho l \int_{\frac{l}{2}}^{\frac{l}{2}} (lx^2 + \frac{y^3}{3} \Big|_{\frac{l}{2}}^{\frac{l}{2}}) dx = [...]$$

che dà il risultato finale di:

$$I = \frac{Ml^2}{6}$$

Teorema degli assi paralleli

Il teorema degli assi paralleli, anche noto come teorema di Steiner, ci permette di calcolare in modo più agevole il momento d'inerzia di un corpo. Supponiamo di aver calcolato il momento di inerzia di un corpo rispetto al suo centro di massa. Poniamo però che il corpo stia adesso ruotando, ma non attorno al suo centro di massa, bensì attorno ad un asse che è parallelo a quello da cui eravamo partiti e sta da esso ad una certa distanza D. Possiamo allora dire che:

$$I' = I_{CM} + MD^2$$

Dimostriamo questo risultato. Se il momento d'inerzia era stato calcolato ad una distanza d' da dm, allora:

$$\vec{a'} = \vec{D} + \vec{d}$$

Da cui si imposta l'integrale:

$$I' = \int dm d'^2 = \int dm (\vec{D} + \vec{d}) \cdot (\vec{D} + \vec{d}) = \int dm (D^2 + 2\vec{d} \cdot \vec{D} + d^2)$$
$$= D^2 \int dm + 2\vec{D} \cdot \int dm d\vec{d} + \int dm d^2$$

Notiamo che:

$$2\vec{D} \cdot \int dm\vec{d} = 2D_x \int dmx + 2D_y \int dmy = 0$$

L'integrale allora potrà ridursi a:

$$I' = D^2 \int dm + \int dm (x^2 + y^2) = MD^2 + I_{CM}$$

Vediamo un applicazione.

Applicazione del teorema di Steiner

Supponiamo di avere un manubrio formato da due sfere di massa M e raggio R unite fra di loro da un asta lunga L e di massa m. Cerchiamo di calcolare il momento di inerzia del corpo rispetto a un asse passante per il centro dell'asta. Innanzitutto potremo calcolare il momento di inerzia dell'asta, rispetto all'asse che passa attravero il suo centro:

$$I_{asta} = I_{asta}^{CM} = \frac{mL^2}{12}$$

Si calcolerà poi il momento di inerzia di una sfera, applicando il teorema di Steiner:

$$I_{sfera} = I_{sfera}^{CM} + M(R + \frac{L}{2})^2 = \frac{2}{5}MR^2 + M(R + \frac{L}{2})^2$$

Il momento di inerzia totale a questo punto sarà dato da:

$$I_{tot} = I_{asta} + 2I_{sfera} = \frac{mL^2}{12} + 2(\frac{2}{5}MR^2 + M(R + \frac{L}{2})^2)$$

2 Momento angolare di un corpo rigido attorno ad un asse

Vediamo come descrivere il momento angolare di un corpo rigido formato da una distribuzione di massa continua di punti materiali. Avremo che, se il corpo ruota attorno ad un asse con ω velocità angolare costante, allora ogni suo punto ruoterà attorno a tale asse con velocità angolare costante, descrivendo una circonferenza ortogonale all'asse e di raggio tale alla distanza del punto dall'asse. Possiamo allora applicare la definizione di momento angolare:

$$\vec{L} = \sum m_i \vec{R_i} \times \vec{v_i}$$

Ricordiamo allora che $\vec{v_i} = \vec{\omega} \times \vec{R_i}$ per quanto riguarda il moto circolare uniforme. Allora:

$$\vec{L} = \sum m_i \vec{R_i} \times (\vec{\omega} \times \vec{R_i})$$

Questo può essere risolto applicando il prodotto vettoriale triplo (niente baci sui taxi!):

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \times (\vec{a} \cdot \vec{c}) - \vec{c} \times (\vec{a} \cdot \vec{b})$$

da cui:

$$\vec{L} = \sum m_i (R_i^2 \vec{\omega} - (\vec{R_i} \cdot \vec{\omega}) \vec{R_i}) = \sum m_i (R_i^2 \vec{\omega} - \omega R_i \vec{R_i} \cos \theta_i)$$

A questo punto conviene scomporre $\vec{R_i}$ in due componenti (e da qui la grande intuizione): una parallela alla velocità angolare $\vec{\omega}$ ($\hat{\omega}$), e una ortogonale ad essa (\hat{u}):

$$\vec{R_i} = \hat{\omega}R_i\cos\theta_i + \hat{u}R_i\sin\theta_i$$

Questo ci porta a riscrivere \vec{L} in due componenti, quella lungo $\hat{\omega}$ e quella lungo \hat{u} . Dai calcoli, si avrà che la componente lungo $\hat{\omega}$ (detta componente assiale) varrà:

$$\vec{L_z} = \sum m_i d_i^2 \omega = I_z \omega$$

Ovvero momento di inerzia per velocità angolare, come si era già trovato. Notiamo che siamo passati da R_i a d_i , ovvero $R_i \sin \theta_i$, la distanza del punto dall'asse di rotazione del corpo.

Particolare sarà invece la componente ortogonale \hat{u} , che però si osserverà solo nel caso l'asse di rotazione non sia coincidente con uno degli assi di simmetria della distribuzione di massa del corpo rigido:

$$L_u = \sum m_i \omega R_i^2 \sin \theta_i \cos \theta_i$$

Lo svolgimento completo dei calcoli si può trivare a pagina 68 di: https://github.com/Guray00/IngegneriaInformatica/blob/master/PRIMO%20ANNO/II%20SEMESTRE/Fisica%20Generale%20I/Dispense%20(A.A.%20corrente)/Lezione11-Moto_di_un_Corpo_RIgido.pdf