CLAIMS

What is claimed is:

1. A 2ⁿ×2ⁿ generalized divide-and-conquer network, n>1, comprising

5 $2^{\lfloor n/2 \rfloor} 2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$ input nodes,

 $2^{\lceil n/2 \rceil} 2^{\lfloor n/2 \rfloor} \times 2^{\lfloor n/2 \rfloor}$ output nodes, and

an interstage exchange connecting the input nodes to the output nodes.

- 2. The generalized divide-and-conquer network as recited in claim 1 wherein the interstage exchange is a bit-permuting exchange induced by a permutation σ on integers from 1 to n such that σ maps the numbers $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n, into the set $\{1, 2, \ldots, \lceil n/2 \rceil\}$ excluding the bit-permuting exchange equal to the $\lfloor n/2 \rfloor$ th power of SHUF⁽ⁿ⁾.
 - 3. The generalized divide-and-conquer network as recited in claim $\boldsymbol{2}$
- 15 wherein

each of the $2^{\lfloor n/2 \rfloor} 2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$ input nodes is a $2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$ generalized

divide-and-conquer network, and

each of the $2^{\lceil n/2 \rceil} 2^{\lfloor n/2 \rfloor} \times 2^{\lfloor n/2 \rfloor}$ input nodes is a $2^{\lfloor n/2 \rfloor} \times 2^{\lfloor n/2 \rfloor}$ generalized

divide-and-conquer network.

4. The generalized divide-and-conquer network as recited in claim 2 wherein the bit-permuting exchange is a $SWAP^{(n, r)}$ exchange.

5

5. A $2^n \times 2^n$ generalized divide-and-conquer network associated with a n-leaf balanced binary tree, n>1, the network comprising

$$2^{\lfloor n/2 \rfloor} 2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$$
 input nodes,

$$2^{\lceil n/2 \rceil} 2^{\lfloor n/2 \rfloor} \times 2^{\lfloor n/2 \rfloor}$$
 output nodes, and

10

an interstage exchange connecting the input nodes to the output nodes, wherein the interstage exchange is a bit-permuting exchange induced by a permutation σ on integers from 1 to n such that σ maps the numbers $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n, into the set $\{1, 2, ..., \lceil n/2 \rceil\}$ excluding the bit-permuting exchange equal to the $\lfloor n/2 \rfloor$ power of SHUF⁽ⁿ⁾.

15

6. A $2^n \times 2^n$ generalized divide-and-conquer network, n>1, achieving an optimal layout complexity under the 2-layer Manhattan model with reversed layers and optimal structural modularity among all $2^n \times 2^n$ banyan-type networks, the network comprising

$$2^{\lfloor n/2 \rfloor} 2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$$
 input nodes,

15

5

 $2^{\lceil n/2 \rceil} 2^{\lfloor n/2 \rfloor} \times 2^{\lfloor n/2 \rfloor}$ output nodes, and

an interstage exchange connecting the input nodes to the output nodes, wherein the interstage exchange is a bit-permuting exchange induced by a permutation σ on integers from 1 to n such that σ maps the numbers $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n, into the set $\{1, 2, ..., \lceil n/2 \rceil\}$ excluding the bit-permuting exchange equal to the $\lfloor n/2 \rfloor$ power of SHUF⁽ⁿ⁾.

- 7. A method for recursively constructing a 2ⁿ×2ⁿ generalized divide-and-conquer network, n>1, comprising
- forming the bit-permuting 2-stage tensor product between a generalized $2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$ divide-and-conquer network and a generalized $2^{\lceil n/2 \rceil} \times 2^{\lceil n/2 \rceil}$ divide-and-conquer network, and

recursively, each $2^k \times 2^k$ generalized divide-and-conquer network (k<n) is constructed by forming the bit-permuting 2-stage tensor product between a generalized $2^{\lceil k/2 \rceil} \times 2^{\lceil k/2 \rceil}$ divide-and-conquer network and a generalized $2^{\lfloor k/2 \rfloor} \times 2^{\lfloor k/2 \rfloor}$ divide-and-conquer network, until k=1, where a 2×2 generalized divide-and-conquer network is a single cell.

8. The method as recited in claim 7 wherein the forming includes configuring a first stage of input nodes where each of the input nodes is a

15

generalized $2^{\lceil k/2 \rceil} \times 2^{\lceil k/2 \rceil}$ divide-and-conquer network,

configuring a second stage of output nodes where each of the output nodes is a generalized $2^{\lfloor k/2 \rfloor} \times 2^{\lfloor k/2 \rfloor}$ divide-and-conquer network, and

interconnecting the first stage and the second stage by a bit-permuting

exchange induced by a permutation σ on integers from 1 to k such that σ maps the numbers $\lfloor k/2 \rfloor +1, \lfloor k/2 \rfloor +2, \ldots, k$, into the set $\{1, 2, \ldots, \lceil k/2 \rceil\}$ excluding the bit-permuting exchange equal to the $\lfloor k/2 \rfloor$ th power of SHUF⁽ⁿ⁾.

9. A method for recursively constructing a 2ⁿ×2ⁿ generalized divide-and-conquer network, n>1, in correspondence to an n-leaf balanced binary tree, the method comprising constructing, in correspondence to the root R of the tree, the generalized 2ⁿ×2ⁿ generalized divide-and-conquer network by forming the bit-permuting 2-stage tensor product between a generalized 2^p×2^p divide-and-conquer network which is associated with the left-son of R having a weight of p and a generalized 2^q×2^q divide-and-conquer network which is associated with the right-son of R having a weight of q, with |p-q|≤1 and wherein p= n/2 and q= n/2 a

until k=1 and wherein a 2×2 generalized divide-and-conquer network is a single cell.,

constructing a $2^k \times 2^k$ generalized divide-and-conquer network (k<n) by forming the bit-permuting 2-stage tensor product between a generalized $2^s \times 2^s$ divide-and-conquer network which is associated with the left-son of H having a weight of s and a generalized $2^t \times 2^t$ divide-and-conquer network which is associated with the right-son of H having a weight of t, with $|s-t| \le 1$ and wherein $s = \lfloor k/2 \rfloor$ and $t = \lfloor k/2 \rfloor$, or $s = \lfloor k/2 \rfloor$ and $t = \lceil k/2 \rceil$.