Distributed Representation

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Representation Learning

- 1. Greedy Layer-Wise Unsupervised Pretraining
- 2. Transfer Learning and Domain Adaptation
- 3. Semi-supervised Disentangling of Causal Factors
- 4. Distributed Representation
- 5. Exponential Gains from depth
- Providing Clues to Discover Underlying Causes

Distributed Representation of Concepts

- Representation composed of many elements that can be set separately from each other
- They are one of the most important tools for representation learning
- They are powerful because they can use n features with k values to describe k^n different concepts

Neural nets use distributed rep.

- Neural networks with multiple hidden units and probabilistic models with multiple latent variables both make use of the strategy of distributed representation
- Many deep models are motivated by hidden units can learn to represent causal factors that explain the data
 - Each direction in representation space can correspond to the value of a different underlying configuration variable

Ex: distributed representation

- A vector of n binary features that can take 2^n configurations
- Each potentially corresponding to a different region of input space
- Can be compared to a symbolic representation where the input is associated with a single symbol or category

Distributed representation

Input space is broken into regions

Non-distributed Representations

- Following learning algorithms are based on non-distributed representations
 - K-means
 - K nearest neighbor
 - Decision trees
 - GMMs
 - Kernel machines
 - NLP based on n-grams

Nearest Neighbor input space

Nearest neighbor is non-distributed

Distributed vs Symbolic Rep.

- Important concept that distinguishes a distributed representation from a symbolic one:
 - Generalization arises due to shared attributes between different concepts
 - As pure symbols cat and dog are as far from each other as any two symbols
 - If one associates them with meaningful distributed representation then many things that can be said about cats can generalize to cats
 - Distributed representation may contain entries "has_fur" or "no of legs" that have the same value

 Learning about each of them without having to see all the configurations of all others

 Generative model can learn a representation of images of faces with separate directions in representation space capturing different underlying factors of variation

Disentangling gender and glasses

 One direction in representation space is gender, another is whether wearing glasses

