

Marketing has embraced the causal revolution through experimentation

Unfortunately, experimentation is not always possible

NETFLIX

Mix Marketing Modeling, estimating a lot with very few

Objective

Optimize the commercial strategy maximizing the sales volume Model the contributions/uplifts of each marketing activity

Estimate the ITE of each marketing campaign on the sales revenue

Mix Marketing Modeling, estimating a lot with very few

Objective

Optimize the commercial strategy maximizing the sales volume Model the contributions/uplifts of each marketing activity

Estimate the ITE of each marketing campaign on the sales revenue

The observed marketing plan is the result of an unmeasurable human decision To increase effects and maximize sales, many levers are exploited together

Continuous treatments

Many marketing activities are measured with investment Most effects are non-linear (saturation, synergies, ...)

No method yet for non-linear effects of continuous treatment

Mix Marketing Modeling, estimating a lot with very few

Objective

Optimize the commercial strategy maximizing the sales volume Model the contributions/uplifts of each marketing activity

Estimate the ITE of each marketing campaign on the sales revenue

The observed marketing plan is the result of an unmeasurable human decision To increase effects and maximize sales, many levers are exploited together

Distinguishing the effects of combined campaigns is challenging

Continuous treatments

Many marketing activities are measured with investment Most effects are non-linear (saturation, synergies, ...)

No method yet for non-linear effects of continuous treatment

Limitations of existing methods

Presence of hidden confounders Mixture of categorical and continuous variables

HTE estimators do not give satisfying results

MMM is hence a complex mixture of statistical analysis and business expert assumptions

MMM is hence a complex mixture of statistical analysis and business expert assumptions

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^d P_{obs}(X_i | Pa(X_i))$$

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph G + Density P_{obs}

Hybrid Causal Discovery to mitigate data and human biases

Data-driven Causal Discovery

Expert-driven Causal Discovery

Wrong knowledge
Non-instantaneous reasoning
Human biases
Personal interest

Hybrid Causal Discovery to mitigate data and human biases

Output: DAG aligned with data & experts

Data-driven Causal Discovery

Expert-driven Causal Discovery

Wrong knowledge
Non-instantaneous reasoning
Human biases
Personal interest

Experts alert on data issues

Hybrid Causal Discovery to mitigate data and human biases

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, \dots, X_d) = \prod_{i=1}^d P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph G + Density P_{obs}

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, \dots, X_d) = \prod_{i=1}^d P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph G + Density P_{obs}

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph
$$G$$
 + Density P_{obs} = Data $\{X_k\}_{k \in [1,N]}$ + Estimator

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph
$$G$$
 + Density P_{obs} = Data $\{X_k\}_{k \in [1,N]}$ + Estimator

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph
$$G$$
 + Density P_{obs}

$$= \text{Data}\{X_k\}_{k \in [1,N]} + \text{Estimator}$$

$$\longrightarrow \text{Method ADMGDA}$$

ADMGDA, a useful method under some assumptions

Experiments

Data Simulated with random SCMs

Scenarios

Non-linear data generation Small-data

Intermediate dimension

Highly dependent variables

High aleatoric uncertainty

Noisy acquisition

Inadequate parametrization

Evaluation metrics

Similarity: KL-div, Wasserstein

Diversity: Average relative difference in variance

Efficiency: XGB error (MAPE, R2 score)

Results

Observations

Pros

Improve XGB predictions
Independent of the causal generation process

→ mechanisms, noise, graph topology

Cons

Highly sensitive to its hyperparameter value Unsuitable for small-data regimes

→ 300 samples / 10 variables

Sensitive to outliers

Conclusions

Provide more refined data distribution in dense areas Does not increase diversity Need to be carefully parametrized

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph
$$G$$
 + Density P_{obs}

$$= \text{Data}\{X_k\}_{k \in [1,N]} + \text{Estimator}$$

$$\longrightarrow \text{Method ADMGDA}$$

Definition. Causal Data Augmentation

For a set of variables $(X_1, ..., X_d)$ distributed according to P_{obs} and a DAG G encoding the causal dependencies that the variables must follow, **Causal Data Augmentation** consists in sampling M data points from the distribution P_{spl} defined as the Markov factorization of P_{obs} given by the graph G.

$$P_{spl}(X_1, ..., X_d) = \prod_{i=1}^{d} P_{obs}(X_i | Pa(X_i))$$

Causal Data Augmentation = Graph
$$G$$
 + Density P_{obs}

$$= \text{Data} \{X_k\}_{k \in [1,N]} + \text{Estimator}$$

$$\longrightarrow \text{Method ADMGDA}$$

CausalDA, a promising approach that now needs to be trialed

Statistical KPIs matching business dynamics

CausalDA, a promising approach that now needs to be trialed

Build a causal graph

Data reveal human biases Experts alert on data issues

Statistical KPIs matching business dynamics

CausalDA, a promising approach that now needs to be trialed

Build a causal graph

Data reveal human biases Experts alert on data issues

Apply Causal Data Augmentation

ADMGDA is a possible solution
Any other conditional density estimator might work

Statistical KPIs matching business dynamics

CausalDA, a promising approach that now needs to be trialed

business dynamics

Statistical KPIs matching

Build a causal graph

Data reveal human biases Experts alert on data issues

Apply Causal Data Augmentation

ADMGDA is a possible solution Any other conditional density estimator might work

Analyze the new dataset

Use the whole dataset to fit the models Compute Marketing KPIs on observed data only

CausalDA, a promising approach that now needs to be trialed

Statistical KPIs matching **business dynamics**

Build a causal graph

Data reveal human biases Experts alert on data issues

Apply Causal Data Augmentation

ADMGDA is a possible solution Any other conditional density estimator might work

Analyze the new dataset

Use the whole dataset to fit the models Compute Marketing KPIs on observed data only

Questions

References

Takeshi Teshima and Masashi Sugiyama. *Incorporating causal graphical prior knowledge into predictive modeling via simple data augmentation*. In Uncertainty in Artificial Intelligence, pp. 86–96, 2021

Audrey Poinsot and Alessandro Leite. A Guide for Practical Use of ADMG Causal Data Augmentation. In ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy ML, 2023. https://openreview.net/forum?id=kBcAZcKypug

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. *Causal Discovery Toolbox: uncovering causal relationships in Python.* The Journal of Machine Learning Research, 21(1):1406–1410, 2020. https://jmlr.org/papers/v21/19-187.html

Netflix Research. Experimentation & Causal Inference. https://research.netflix.com/research-area/experimentation-and-causal-inference

Netflix Technology Blog. A survey of Causal Inference Applications at Netflix. Netflix TechBlog. 2021. https://netflixtechblog.com/a-survey-of-causal-inference-applications-at-netflix-b62d25175e6f

Christina Katsimerou. *There's more to experimentation than A/B.* Booking.com Data Science. 2020. https://booking.ai/theres-more-to-experimentation-than-a-b-223fba846876

Kenneth Tay and Xiaofeng Wang. *Ocelot: Scaling observational causal inference at LinkedIn*. LinkedIn Engineering. 2022. https://engineering.linkedin.com/blog/2022/ocelot--scaling-observational-causal-inference-at-linkedin

Appendix 1 – ADMGDA evaluation

Random SCMs:

- 1. Random DAG Erdös-Rényi model
- 2. Random mechanisms from parametric functions
- 3. GMMs as root causes
- 4. Gaussian additive noise

Causal Discovery Toolbox https://github.com/FenTechSolutions/CausalDiscoveryToolbox

Parameter	Value
Network architecture	2-layers fully-connected neural network with hyperbolic tangent activa- tion function and 20 neurons initialized through the Glorot uniform
Number of variables	10
Causal graph expected degree	3
Additive noise amplitude	0.4
Probability threshold	10^{-2}
Fraction of outliers	0
Number of repetitions	20
Kernels function	Gaussian Kernels with Silverman bandwidth

Default experiments parameters

Scenarios parameters

- **Non-linear data generation setting**: by varying the family functions of the mechanism included linear, polynomial, sigmoid, Gaussian process, and neural networks.
- Small-data regime: by varying the number of observations from a few samples to a hundred samples (i.e., [30, 40, 60, 80, 100, 300, 500, 700])
- **High-dimension scenario**: by varying the number of variables in a dataset from seven to twenty-five (i.e., [7, 8, 9, 10, 15, 20, 25])
- Highly dependent input variables setting: by varying the expected degree of the causal graph in [0, 1, 2, 3, 4, 5, 6, 7]
- **High aleatoric uncertainty setting**: by varying the additive noise amplitude in [0.1, 0.2, 0.4, 0.6, 0.8, 1]
- **Noisy acquisition procedure** (i.e., outliers): by varying the fraction of outliers in [0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15]
- Inadequate parametrization scenario: by varying the probability threshold θ defined in Section 2. $\theta \in [10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}]$

XGBs evaluation:

- Train-Test split 70%-30%
- Augment data from Train
- For each variable as the target variable
 - Train two XGBs on the train and the augmented sets
 - Evaluate both XGBs on the test set

XGBs hyperparameters:

- Cross-Valisation
 - n_estimators in [10, 50, 200]
 - rag_lambda in [1, 10, 100]
- Other parameters as default values

Appendix 2 - ADMGDA method

Algorithm

Input: $D_{train} = \{X_k\}_{k \in [1,n]}, \mathcal{G}, \theta, L, \{K^j\}_{j \in [1,d]} \triangleright \text{assuming that the variables in the training set and kernel functions are ordered according to the topological order of the graph <math>\mathcal{G}$

$$\begin{split} W_{aug} &\leftarrow \{\frac{1}{n}\}^n \\ Z_{aug} &\leftarrow \{X_k^1\}_{k \in [1,n]} \\ \text{for } j \in [2,d] \text{ do} \\ Z_{aug}^{new} &\leftarrow \{\} \\ W_{aug}^{new} &\leftarrow \{\} \\ \text{for } Z_i, w_i \in Z_{aug}, W_{aug} \text{ do} \\ \text{for } i_j \in [1,n] \text{ do} \\ w_i^{new} &\leftarrow w_i \cdot \frac{K^j(Z_i^{a(j)} - X_{i_j}^{a(j)})}{\sum_{k=1}^n K^j(Z_i^{a(j)} - X_k^{a(j)})} \\ Z_i^{new} &\leftarrow \{Z_i; X_{i_j}^j\} \\ \text{if } w_i^{new} &> \theta \text{ then} \\ Z_{aug}^{new} &\leftarrow Z_{aug}^{new} \cup Z_i^{new} \\ W_{aug} &\leftarrow W_{aug}^{new} \cup w_i^{new} \\ Z_{aug} &\leftarrow Z_{aug}^{new} \\ W_{aug} &\leftarrow W_{aug}^{new} \\ W_{aug} &\leftarrow W_{aug}^{new} \\ \end{split}$$

Output:
$$\hat{f} \in \arg\min_{f} \sum_{(w_i, Z_i)_{i \in (W_{aug}, Z_{aug})}} w_i L(f, Z_i), \quad D_{aug} = (W_{aug}, Z_{aug})$$