

Nůžky a páska (scissors)

Den 2
Jazyk čeština
Omezení na čas: 1 sekunda
Omezení na paměť: 1024 megabytů

Dostanete kus papíru ve tvaru jednoduchého mnohoúhelníku S a máte zadán jednoduchý mnohoúhelník T, který má stejný obsah jako S.

Vaším úkolem je z mnohoúhelníku S vyrobit mnohoúhelník T. Můžete k tomu používat dva nástroje: nůžky a lepící pásku. Nůžkami můžete rozstřihávat mnohoúhelníky na menší části. Pomocí lepící pásky můžete spojovat menší části do větších mnohoúhelníků. Nástroje můžete používat i vícekrát, a to v libovolném pořadí.

Zadané mnohoúhelníky mají celočíselné souřadnice, ale vy máte dovoleno vyrábět a vypisovat i tvary s neceločíselnými souřadnicemi.

Formálně je úloha zadána následovně.

Tvar $Q = (Q_0, \dots, Q_{n-1})$ je posloupnost tří nebo více bodů v rovině, pro kterou platí:

- Uzavřená lomená čára $Q_0Q_1Q_2\dots Q_{n-1}Q_0$ se nikdy sama sebe nedotýká ani samu sebe neprotíná. Tudíž tvoří okraj jednoduchého mnohoúhelníku.
- Tato lomená úsečka obchází okraj mnohoúhelníku proti směru hodinových ručiček.

Mnohoúhelník, jehož okraj má tvar Q, budeme značit P(Q).

Dva tvary nazýváme **ekvivalentní**, pokud můžeme jeden z nich posunout a/nebo otočit tak, aby byl shodný s druhým.

Povšimněte si, že zrcadlení tvaru není povoleno. Také si všimněte, že záleží na pořadí bodů: tvar $(Q_1, \dots, Q_{n-1}, Q_0)$ není nutně ekvivalentní s tvarem (Q_0, \dots, Q_{n-1}) .

Na obrázku vlevo jsou tvary U a V ekvivalentní. Tvar W s nimi ekvivalentní není, neboť má zadané body v jiném pořadí. Nezávisle na pořadí bodů není čtvrtý tvar ekvivalentní s žádným z předchozích, protože zrcadlení není povoleno.

Na vstupu i výstupu jsou tvary s n body zadány pomocí 2n+1 čísel oddělených mezerami. První z těchto čísel je n. Zbylá čísla jsou souřadnice bodů: $Q_{0,x}$, $Q_{0,y}$, $Q_{1,x}$, $Q_{1,y}$, ...

Tvary mají **identifikační čísla** (ID). Tvar S, který dostanete na vstupu má ID 0. Tvary, které vyrobíte ve vašem řešení dostanou postupně ID $1, 2, 3, \ldots$, v pořadí, ve kterém jsou vyrobeny.

Tvary B_1, \ldots, B_k tvoří **podrozdělení** tvaru A, pokud

- Sjednocení všech $P(B_i)$ je P(A).
- Pro každé $i \neq j$ je obsah průniku $P(B_i)$ a $P(B_i)$ nulový.

Operace scissors zničí existující tvar A a vyrobí jeden nebo více tvarů B_1, \ldots, B_k , které tvoří podrozdělení A.

Na obrázku vlevo je tvar A (čtverec) podrozdělen do tvarů $B_1,\ B_2,\ B_3$ (tří trojúhelníků). Jeden možný způsob, jak popsat jeden z trojúhelníků B_i , je "3 3 1 6 1 5.1 4".

Operace **tape** zničí jeden nebo více existujících tvarů A_1, \ldots, A_k a vyrobí jeden nový tvar B. K provedení této operace musíte nejdříve popsat tvary C_1, \ldots, C_k a až poté finální tvar B tak, aby splňovaly:

- Pro každé i je C_i ekvivalentní s A_i .
- Tvary C_1, \ldots, C_k tvoří podrozdělení tvaru B.

Neformálně řečeno vyberete tvar B a ukážete, jak posunout všechna existující A_i do správné polohy C_i uvnitř B. Povšimněte si, že pouze tvar B dostane nové ID, tvary C_i jej nedostanou.

Zničené tvary samozřejmě dále v konstrukci nemůžete používat.

Vstup

První řádka obsahuje výchozí tvar S.

Druhá řádka obsahuje cílový tvar T.

Oba tvary mají minimálně 3 a maximálně 10 bodů. Oba z nich jsou dány ve formátu popsaném výše.

Všechny souřadnice na vstupu jsou celá čísla mezi -10^6 a 10^6 (včetně).

V žádném ze zadaných tvarů neexistují tři body, které by tvořily úhel menší než 3 stupně. Tímto myslíme i body, které ve tvaru nejdou popořadě. Povšimněte si, že z této podmínky vyplývá, že žádné tři vrcholy neleží na jedné přímce. Tvary vytvořené v průběhu vaší konstrukce tuto podmínku splňovat nemusí.

Mnohoúhelníky P(S) a P(T) mají stejný obsah.

Výstup

Kdykoliv chcete použít nůžky (operaci scissors), vypište několik řádek ve formátu:

```
scissors
id(A) k
B_1
B_2
...
B_k
```

kde id(A) je ID tvaru, který chcete zničit, k je počet nových tvarů, které chcete vyrobit, a B_1, \ldots, B_k jsou tyto nové tvary.

Kdykoliv chcete použít lepící pásku (operaci tape), vypište několik řádek ve formátu:

```
tape
k id(A_1) ... id(A_k)
C_1
C_2
...
C_k
B
```

kde k je počet tvarů, které chcete slepit dohromady a zničit, $id(A_1), \ldots, id(A_k)$ jejich ID, C_1, \ldots, C_k jsou ekvivalentní tvary ukazující jejich pozici v B, a konečně B je finální tvar získaný pomocí slepení tvarů C_i dohromady.

Doporučujeme vypisovat souřadnice bodů na alespoň 10 desetinných míst.

Výstup musí splňovat následující podmínky:

- Všechny souřadnice bodů na výstupu musí být mezi -10^7 a 10^7 (včetně).
- Každý tvar na výstupu musí mít maximálně 100 bodů.
- V každé operaci musí být počet tvarů k minimálně 1 a maximálně 100.

- Počet operací nesmí přesáhnout 2000.
- Celkový počet bodů ve všech tvarech na výstupu nesmí přesáhnout 20 000.
- ullet Na konci musí existovat právě jeden tvar (který nebyl zničen) a tento tvar musí být ekvivalentní sT.
- Všechny operace musí podle testovače fungovat. Řešení s malými zaokrouhlovacími chybami budou přijaty (uvnitř testovače se každá podmínka porovnává s absolutní či relativní chybou do 10⁻³).

Další poznámky

- Instrukce jak vypisovat desetinná čísla naleznete v poznámkách k vámi používanému programovacímu jazyku.
- Můžete si stáhnout soubor scissors-checker, nastavit ho jako spustitelný (příkazem chmod a+x scissors-checker) a používat tento program k testování správnosti vašich výstupů (./scissors-checker input your_output).

Hodnocení

Tvar je **hezký obdélník**, je-li ve formátu ((0,0), (x,0), (x,y), (0,y)) pro nějaká přirozená čísla x a y.

Tvar je **hezký čtverec**, jestliže navíc platí x = y.

Tvar A nazýváme **ostře konvexním**, pokud jsou všechny vnitřní úhly mnohoúhelníku P(A) menší než 180 stupňů.

Podúloha 1 (5 bodů): S i T jsou hezké obdélníky. Všechny souřadnice všech bodů jsou celá čísla větší nebo rovna 0 a menší nebo rovna 10.

Podúloha 2 (13 bodů): S je hezký obdélník s x>y a T je hezký čtverec.

Podúloha 3 (12 bodů): S i T jsou hezké obdélníky.

Podúloha 4 (14 bodů): S je trojúhelník a T je hezký čtverec.

Podúloha 5 (10 bodů): S i T jsou trojúhelníky.

Podúloha 6 (16 bodů): S je ostře konvexní tvar a T je hezký obdélník.

Podúloha 7 (11 bodů): T je hezký obdélník

Podúloha 8 (19 bodů): žádná přidaná omezení

Příklady

standardní vstup	standardní výstup
6 0 0 6 0 6 4 5 4 5 9 0 9	scissors
4 0 0 7 0 7 7 0 7	0 5
	3 0 0 3 0 3 4
	3 3 4 0 4 0 0
	3 3 0 6 0 6 4
	3 6 4 3 4 3 0
	404545909
	tape
	5 1 2 5 3 4
	3 0 3 0 0 4 0
	3 4 0 7 0 7 4
	4 0 3 4 0 7 4 3 7
	3 7 4 7 7 3 7
	3 3 7 0 7 0 3
	400707707
4 0 0 3 0 3 3 0 3	scissors
4 7 -1 10 -1 11 2 8 2	0 2
	3 0 0 1 3 0 3
	4 1 3 0 0 3 0 3 3
	tape
	2 1 2
	3 110 -1 111 2 110 2
	4 108 2 107 -1 110 -1 110 2
	4 107 -1 110 -1 111 2 108 2

standardní vstup	standardní výstup
400909101	scissors
4 0 0 3 0 3 3 0 3	0 2
	4 1.47000000000 0 9 0 9 1 1.470000000 1
	4 0 0 1.470000000 0 1.470000000 1 0 1
	scissors
	1 2
	4 1.470000000 0 6 0 6 1 1.470000000 1
	4 9 0 9 1 6 1 6 0
	tape
	2 4 3
	4 3 2 3 1 6 1 6 2
	4 6 1 1.470000000 1 1.470000000 0 6 0
	6 1.470000000 0 6 0 6 2 3 2 3 1 1.47 1
	scissors
	5 4
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 3 0 4 0 4 2 3 2
	4 4 2 4 0 5 0 5 2
	4 5 0 6 0 6 2 5 2
	tape 5 2 6 7 8 9
	4 0 0 1.470000000 0 1.470000000 1 0 1
	4 1.470000000 0 1.470000000 1 0 1
	4 0 2 0 1 2 1 2 2
	4 0 2 2 2 2 3 0 3
	4 3 3 2 3 2 1 3 1
	4 0 0 3 0 3 3 0 3

Poznámky

Obrázek vlevo popisuje výstup prvního příkladu. Vlevo je původní tvar po rozstřihání, vpravo jsou vyobrazeny příslušející C_i , které takto slepíme zpět dohromady.

Ve výstupu druhého příkladu si povšimněte, že je postačující, aby byl finální tvar ekvivalentní cílovému – nemusí být shodné.

Obrázek níže ukazuje tři etapy postupu z výstupu u třetího příkladu. Nejdříve rozřežeme vstupní obdélník na dva menší obdélníky. Poté rozřežeme větší obdélník ještě na dva další. Stav po těchto dvou střiháních je vyobrazen v levé horní části obrázku.

Pokračujeme lepením těchto dvou nových obdélníku do šestistranného mnohoúhelníku, který následně rozstřiháme na tři 2×1 obdélníky a jeden další menší obdélník. Vzniklý stav je vyobrazen vlevo dole.

Nakonec vezmeme obdélník, který máme v zásobě již od prvního střihání, a tyto 4 obdélníky a uspořádáme je tak, aby vznikl 3×3 čtverec, který jsme chtěli vytvořit.

