|         | Solution                                      |
|---------|-----------------------------------------------|
|         | Tutorial sheet - 10                           |
|         | Electrical Science-1 Page                     |
| Q1.     | solution: w                                   |
|         | Griven E1 = 2300V, E2 = 230 V                 |
|         |                                               |
|         | F = 50 Hz, A = 0.05 m²                        |
|         | B= 1.1 wb/m2 mg                               |
|         | B = 0m = 0 0m = B.A                           |
|         | A 008.88 = 1.1 x 0.05                         |
|         | 100 Ful x 2 2 7 7 2 0.05 5 wb                 |
|         |                                               |
| 23 mp/m | Emt 664521435819 = 8 05                       |
|         | E, = 4.44 f Øm N,                             |
|         | on the land of the life                       |
|         | 2300 = 4.44 × 50 × 0.055 × N,                 |
|         | N₁ = 2300 = 188.37 × 188                      |
|         | 12.21 = = = = = = = = = = = = = = = = = = =   |
|         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,       |
|         | E2 = 4.44 F Øm N2                             |
|         | 2.5 x 5 x 6                                   |
|         | 230 = 4.44 F Øm N2                            |
|         | 10000 110                                     |
|         | $N_2 = \frac{230}{12.21} = 18.837 \approx 19$ |
|         |                                               |
| 100     | solution                                      |
| 47.     | 1 = 1 = 180 × 1 = 98 7 1 1 = 1                |
| AVX     | Given N1 = 400, N2 = 1000                     |
|         | A= 60 cm2 = 60x10-4 m2                        |
|         | F = 50 Hz , E1 = 520 V.                       |
|         | N I XX Pull- inad, UA X P. F.                 |
| 0)      | B = Øm                                        |
|         | A                                             |
|         | Gregori                                       |
|         |                                               |



|    | Dote                                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
|    | putting all values                                                                                                                    |
|    | $\frac{98}{100} = \frac{1 \times 10 \times 10^{3} \times 1}{1 \times 10 \times 10^{3} \times 1 + \text{Pi} + 120}$                    |
|    | $0.98 = 10^{4}$ $10^{4} + Pi + 120$                                                                                                   |
|    | Pi = 84.08 W                                                                                                                          |
| 31 | 5 condition                                                                                                                           |
|    | $y = \frac{1}{2} \times 10 \times 10^{3} \times 0.8$                                                                                  |
|    | $\frac{1}{2} \times 10 \times 10^{3} \times 0.8 + 84.08 + (\frac{1}{2})^{2} \times 120$                                               |
|    | n = 97.237.                                                                                                                           |
| 24 | <u>Solution</u> W8.85.89 = 39                                                                                                         |
|    | Given Full-load VA = 400 X 103 VA<br>1 = 98.77, X = 1, PF = 0.8                                                                       |
|    | Case-I<br>N = xx full-Load VAXP.F<br>xx full-load VAXP.F + Pi+ x2Pc                                                                   |
|    | $\frac{98.77}{100} = \frac{1 \times 400 \times 10^{3} \times 0.8}{1 \times 400 \times 10^{3} \times 0.8} + \frac{1}{1} + \frac{1}{1}$ |
|    | 3.2 × 40 <sup>5</sup> + Pi + Pc = 3.2 × 10 <sup>5</sup><br>Sangano 0.9877                                                             |

|     | Date                                                              |
|-----|-------------------------------------------------------------------|
|     | Page                                                              |
|     | Pi+ Pc = 3985 - (i)                                               |
|     | Case-II   X EDIXOIXI = 80                                         |
|     | $M = 99.13 \%$ , $\mathcal{X} = \frac{1}{2}$ , $P \cdot F = 1$    |
|     | $\frac{99.13}{2} = \frac{1}{2} \times 400 \times 10^{3} \times 1$ |
|     | 100 2<br>100 x 103 x 1 + Pi + (1)2 Pc                             |
|     | $2 \times 10^{5} + Pi + Pc = 2 \times 10^{5}$                     |
| 05  | Pi + 0.25 Pc = 1755 - (ii)                                        |
|     | Solving eq (i) & (ii)                                             |
|     | Pi = 1011.6 W                                                     |
|     | Pc = 2973.3W modulo2 ND                                           |
| Q5  | Solution had had novino                                           |
|     | Griven Io = 0.6 A Colle = 0.65<br>V1 = 440V                       |
| 39; | The iron-loss component                                           |
|     | Iw= Iox cos po                                                    |
|     | = 0.6 x, 6.65                                                     |
|     | Jw = 0.39 A                                                       |
|     |                                                                   |