==實驗 12==

閉迴路直流馬達速度控制系統之時域與頻域響應分析

利用閉迴路直流馬達速度控制系統當作系統轉移函數電路,以正弦波信號為輸入測試信號,量測速度控制系統之頻率響應與繪製波德圖,並以軟體 Matlab/Simulink 模擬與驗證。

₹ 學習目標

- 1. 瞭解閉迴路直流馬達速度控制系統如何測得頻率響應。
- 2. 量測閉迴路直流馬達速度控制系統之頻率響應與繪製波德圖。
- 3. 以軟體 Matlab/Simulink 模擬與驗證。

₹ 相關理論

1. 直流馬達速度控制系統與PID(詳細過程可參閱實驗 4):

以PID控制器應用於控制系統,若受控體為直流馬達,以速度作為負回授信號,稱為PID 直流馬達速度控制系統,如圖 14-1 所示

圖 12-1 PID 直流馬達速度控制系統方塊圖

圖 12-1 中, C(s)為 PID 控制器, 其轉移函數為

$$C(s) = k_p + \frac{k_I}{s} + k_D s \tag{12-1}$$

2. 加入控制器後的轉移函數($\Diamond k_w = k_m k_{tacho}$)

P控制器:

$$\frac{\Omega(s)}{R(s)} = \frac{\frac{k_p k_w}{1 + k_p k_w}}{1 + \frac{\tau}{1 + k_n k_w} s}$$
(12-2)

頻率響應下, $S 用 i \omega$ 代入,此時系統仍為一階系統

增益:
$$\frac{\frac{k_p k_w}{1 + k_p k_w}}{\sqrt{1^2 + (\frac{\tau \omega}{1 + k_p k_w})^2}}$$
 (12-3)

相位:
$$-tan^{-1}(\frac{\tau\omega}{1+k_pk_w})$$
 (12-4)

PD 控制器:

$$\frac{\Omega(s)}{R(s)} = \frac{\frac{(k_p + k_D s)k_w}{1 + k_p k_w}}{1 + \frac{\tau + k_D k_w}{1 + k_p k_w} s}$$
(12-5)

頻率響應下, $S 用 j \omega$ 代入,此時系統仍為一階系統

增益:
$$\frac{\sqrt{(\frac{k_p k_w}{1+k_p k_w})^2 + (\frac{k_D k_w \omega}{1+k_p k_w})^2}}{\sqrt{1^2 + (\frac{(\tau + k_D k_w)\omega}{1+k_p k_w})^2}}$$
(12-6)

相位:
$$tan^{-1}(\frac{k_D\omega}{k_p}) - tan^{-1}(\frac{(\tau + k_Dk_w)\omega}{1 + k_Dk_w})$$
 (12-7)

3. 波德圖繪製方法:

以正弦波為輸入信號,在某一特定頻率時,其輸入信號與輸出響應信號之關係如圖 14-2,可得:

增益為: $|G(j\omega_0)| = B/A$

相位為: $\angle G(j\omega_0) = \theta = \frac{-180^{\circ}}{\omega} \frac{T_2}{T_1}$

以同樣方法,改變正弦波輸入信號的頻率,可得另一組增益與相位,以此類推,如此取足夠頻率可畫出實際系統波德圖。

圖 12-2、正弦波輸入信號與輸出響應信號之關係圖

ξ 實驗 12-1【閉迴路直流馬達速度控制系統之時 域與頻域響應(P控制器)】

1. 步驟

- (1) 依圖 12-3,請完成直流馬達速度控制系統頻率響應接線。
- (2) 輸入信號為步階,步階之振幅可用 P3 衰減器調整至(±5V),其頻率大小可由機構單元 面板右下角的旋鈕及切換開關來控制,調整 P1 旋鈕為 100%。
- (3) 輸入信號為正弦波,正弦波之振幅可用 P3 衰減器調整至(±5V),其頻率大小可由機構單元 面板右下角的旋鈕及切換開關來控制,調整 P1 旋鈕為 100%。

圖 12-3 閉迴路直流馬達速度控制系統之接線圖

2. 請完成

- (1) 輸入信號為步階(+5V)、P1=100%(P 控制器, $k_p=1$),存取示波器顯示之響應波形,並記錄其上升時間於下表 12-1。
- (2) 輸入信號為正弦波($\pm 5V$)、P1=100%(P控制器, $k_p=1$),觀察示波器顯示之響應波形,將相關數據記錄於表 12-3,繪製波德圖。

表 12-1、控制器與上升時間

控制器參數	$k_p = 1$
上升時間[s]	

頻率(f)	0.1Hz	0.3Hz	0.5Hz	0.6Hz	0.7Hz	0.75Hz	0.8Hz	0.9Hz	1Hz	3Hz	5Hz
$\omega = 2\pi f$ [rad/s]											
A [V]											
B [V]											
T_1 [sec]											
T_2 [sec]											
增益 $ G(j\omega) = \frac{B}{A}$											
增益(dB 值) G(jω) _{dB}											
$\theta = \frac{\text{相位}}{-180^{\circ}} \frac{T_2}{\omega} \frac{T_1}{T_1}$											

表 12-2、加入 P 控制器 $(k_p=1$ 、之增益與相位)。

ξ 實驗 12-2【閉迴路直流馬達速度控制系統之時 時域與頻域響應(PD 控制器)】

3. 步驟

- (1) 依圖 14-4,請完成直流馬達速度控制系統頻率響應接線。
- (2) 輸入信號為步階,步階之振幅可用 P3 衰減器調整至(±5V),其頻率大小可由機構單元 面板右下角的旋鈕及切換開關來控制,調整 P1 旋鈕為 100%。
- (3) 輸入信號為正弦波,正弦波之振幅可用 P3 衰減器調整至(±5V),其頻率大小可由機構單元 面板右下角的旋鈕及切換開關來控制,調整 P1 旋鈕為 100%。

圖 12-4 閉迴路直流馬達速度控制系統之接線圖

4. 請完成

- (1) 輸入信號為步階(+5V)、P1=100%,此時 P4 為 100%(PD 控制器, $k_p=1$ 、 $k_D=0.2$),存取示波器顯示之響應波形,並記錄其上升時間於下表 12-4。
- (2) 輸入信號為正弦波($\pm 5V$)、P1=100%,此時 P4 為 10% (PD 控制器, $k_p=1$ 、 $k_D=0.2$),觀察示波器顯示之響應波形,將相關數據記錄於表 12-6,繪製波德圖。

表 12-3、控制器與上升時間

控制器參數	$k_p = 1 \cdot k_D = 0.2$
上升時間[s]	

頻率(f)	0.1Hz	0.3Hz	0.5Hz	0.6Hz	0.7Hz	0.75Hz	0.8Hz	0.9Hz	1Hz	3Hz	5Hz
$\omega = 2\pi f$ [rad/s]											
A [V]											
B [V]											
T_1 [sec]											
T_2 [sec]											
增益 $ G(j\omega) = \frac{B}{A}$											
增益(dB 值) G(jω) _{dB}											
$ heta=rac{ au d au}{ au} rac{T_2}{T_1}$											

表 12-4、加入 PD 控制器 $(k_p=1\cdot k_D=0.2)$ 之增益與相位