

Name: Yahya Aman

Program: BCS

Section: B

Roll number: CIIT/SP20-032/LHR

Submitted to: Dr. Muhammad Sharjeel

Submission Date: 30/12/2022

IDS-FA22-Assignment

Submission: Please upload the PDF report and Python code (preferably iPython notebook) to GitHub.

Due Date: 30-12-2022

Solve the following two questions manually as well as implement the solution using Python. Submit both solutions.

Q1. Compute the BoW model, TF model, and IDF model for each of the terms in the following three sentences.

Then calculate the TF.IDF values.

S1 "sunshine state enjoy sunshine"

S2 "brown fox jump high, brown fox run"

S3 "sunshine state fox run fast"

Vocabulary: sunshine, state,t enjoy, brown, fox, jump, high, run, fast

Bag of Words

	Sunshine	State	Enjoy	Brown	Fox	Jump	High	Run	Fast	Total Length
S1	2	1	1	0	0	0	0	0	0	4
S2	0	0	0	2	2	1	1	1	0	7
S3	1	1	0	0	1	0	0	1	1	5

Vectors:

S1:[211000000]

S2: [0 0 0 2 2 1 1 1 0]

S3:[110010011]

Term Frequency

	Sunshine	State	Enjoy	Brown	Fox	Jump	High	Run	Fast
S1	2/4	1/4	1/4	0	0	0	0	0	0
S2	0	0	0	2/7	2/7	1/7	1/7	1/7	0
S3	1/5	1/5	0	0	1/5	0	0	1/5	1/5

Inverse Document Frequency

	Idf
Sunshine	0.18
State	0.18
Enjoy	0.48
Brown	0.48
Fox	0.18
Jump	0.48
High	0.48
Run	0.48
Fast	0.48

Term Frequency inverse document frequency

	S1	S2	S3
Sunshine	0.09	0	0.036
State	0.045	0	0.036
Enjoy	0.12	0	0
Brown	0	0.137	0
Fox	0	0.051	0.036
Jump	0	0.068	0
High	0	0.068	0
Run	0	0.068	0.096
Fast	0	0	0.096

Q2. Compute the cosine similarity between S1 and S3.

Vector S1: [2 1 1 0 0 0 0 0 0]

Vector S3: [1 1 0 0 1 0 0 1 1]

$$\cos(S1, S3) = \frac{(S1. S3)}{|S1| |S3|}$$

$$(S1.\ S3) = (2*1 + 1*1 + 1*0 + 0*0 + 0*1 + 0*0 + 0*0 + 0*1 + 0*1) = 3$$

$$|S1| = \sqrt{2 * 2 + 1 * 1 + 1 * 1 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0} = 2.45$$

$$|S3| = \sqrt{1*1+1*1+0*0+0*0+1*1+0*0+0*0+1*1+1*1} = 2.24$$

$$\cos(S1, S3) = \frac{3}{2.45 * 2.24} = 0.5466$$