

# **TRASANA**

TECHNICAL REPORT NO. 3-78



# FLIGHT PROFILE PERFORMANCE HANDBOOK

**VOLUME VIID - CH-47D (CHINOOK)** 

**APRIL 1979** 

THE SHOW THE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

**DDC** FILE COP

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

# DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position.

# WARNING

Information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing TRADOC position unless so specified.

DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

# TRASANA

TECHNICAL REPORT, NO. 3-78



DEPARTMENT OF THE ARMY
US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO 88002

409 764

elf

79 36 32 350

### **ACKNOWLEDGMENT**

At AVRADCOM, Mr. Harold Sell, Mr. James O'Malley and Mr. Dale Pitt provided and validated the data in the Handbook. They also assisted in devising the formats to assure clarity in the data presentation and discussion.

At TRASANA,  $M_{\text{\tiny I}}$ . Frank Gonzalez provided help and guidance during the preparation of the Handbook.

# TABLE OF CONTENTS

|                                                                        | PAGE |
|------------------------------------------------------------------------|------|
| Acknowledgement                                                        | iv   |
| Index of Tables and Figures                                            | vi   |
| Chapter 1 - Introduction                                               | 1    |
| Chapter 2 - Flight Profile Example                                     | 5    |
| Chapter 3 - Performance Data Table Descriptions                        | 11   |
| Chapter 4 - CH-47D Performance Data Tables                             | 25   |
| Appendix A - Functions for Calculating Basic Fuel Flow                 | 117  |
| Appendix B - Function for Calculating Delta Fuel Flow for Drag         | 123  |
| Appendix C - Function for Calculating Ground Idle Fuel Flow            | 127  |
| Appendix D - Functions for Calculating Gross Weight Limits for Takeoff | 131  |
| Appendix E - Short Description of CHINOOK (CH-47D) Data Source         | 135  |



# INDEX OF TABLES AND FIGURES

|                                                     | PAGE |
|-----------------------------------------------------|------|
| CH-47 (CHINOOK)                                     | vii  |
| Illustration 2-1 - Mission Example                  | 5    |
| Table 2-1 - Flight Plan Example                     | 6    |
| Table 2-2 - Ground Idle Fuel Flow Table             | 7    |
| Table 2-3 - Basic Fuel Flow                         | 8    |
| Table 2-4 - Completed Flight Plan Example           | 9    |
| Table 3-1 - Basic Fuel Flow                         | 13   |
| Table 3-2 - Delta Fuel Flow for Drag                | 14   |
| Figure 3-1 - Takeoff Criteria                       | 17   |
| Table 3-3 - Gross Weight Limit for Takeoff          | 18   |
| Table 3-4 - Gross Weight Limit for Takeoff          | 19   |
| Table 3-5 - Velocity Limits Table                   | 22   |
| Table 3-6 - Expanded Fiight Plan Example            | 23   |
| Tables 4-1 to 4-24 - Basic Fuel Flow Data           | 29   |
| Tables 4-25 to 4-48 - Delta Fuel Flow for Drag Data | 55   |
| Table 4-49 - Ground Idle Fuel Flow Data             | 81   |
| Tables 4-50 to 4-55 - Gross Weight Limits Data      | 85   |
| Tables 4-56 to 4-79 - Velocity Limits Data          | 93   |



CH-47 CHINOOK

#### CHAPTER 1

#### INTPODUCTION

#### PURPOSE

The purpose for preparing this handbook series is fourfold: (a) to validate CHINOOK performance data quickly, (b) to reduce the manpower and time to prepare accurate flight profiles, (c) to standardize performance data so that the analysis community can benefit from a single reference in conducting studies and (d) to provide a handbook that can be used for training in the mission profile planning area.

#### BACKGROUND

The CHINCOK performance data contained in this Flight Profile Performance Handbook (FPPH) series was originally acquired as a data base for the Aircraft Mission Processing Simulation (AMPS) model. AMPS is a computer program developed by the Aviation Systems Analysis Branch of the US Army TRADOC Systems Analysis Activity (TRASANA) to support Cost and Operational Effectiveness Analyses (COEAs). AMPS generates detailed flight profiles for a wide variety of helicopter missions. The data was provided TRASANA by the Army Aviation Research and Development Command (AVRADCOM) and was the most accurate data available to AVRADCOM at the time of handbook publication. In structuring the data base for AMPS it was noted that the data, when properly organized, could provide a method of doing quick and simple flight profile simulations. This volume presents the CHINOOK data and explains how it can be used.

#### 3. OBJECTIVES OF THE HANDBOOK

- a. Data Validation. This volume of the handbook contains tables with the precise performance data and format required to develop flight profiles for computer simulations. Using the handbooks as a reference, the individual project manager (PM) will be able to quickly validate or update as required all associated data contained in the different tables. If this procedure is followed by the various PMs, support of Helicopter COEAs and other analyses can be efficiently implemented.
- b. Flight Profile Development. Much of the manpower and time spent in preparing flight profiles for supporting aircraft COEAs is dedicated to look-up, correlation and validation of performance data. Once the procedure contained in this handbook is implemented, flight profiles can be easily prepared. What normally took one man 4 to 5 days to prepare can now be prepared in 3 to 4 hours.

- c. Standardization of Performance Data. Each of the PMs has been contacted by AVRADCOM to validate the performance data contained in each handbook in this series. Once each handbook is published, the data contained will be kept current as of the publication date. Since the requests for current information are constantly being forwarded to the PMs by analysis groups, this handbook can be a reference and assure a commonality in studies within the community.
- d. Training for Planning Missions and Flight Profiles. For training purposes each handbook can stand alone. It is only a matter of following the example provided and applying the proper data to fit the flight profile desired. Although the example shown is simplistic, the methodology may be expanded to apply to any flight profile no matter how complex.

#### 4. OTHER VOLUMES

This handbook is one of a series that covers the helicopters in the US Army inventory. The complete set of handbooks and their subjects are:

Volume I - FPPH Description

Voiume II - UH-60A (BLACKHAWK)

Volume III - AH-1G (COBRA)

Volume IV - AH-1S (COBRA)

Volume V - YAH-64 (Advanced Attack Helicopter [AAH])

Volume VI - OH-58C (KIOWA)

Volume VII - CH-47 (CHINCOK)

Volume VIII - CH-54 (TARHE)

Volume IX - UH-1H (HUEY)

## 5. GENERAL HANDBOOK DESCRIPTION

a. Performance Data. The data contained in these volumes is CHINOOK performance data compiled from the results of actual experiments. It is not engineering data and is not intended to serve as a base for future helicopter construction or acquisition. The more mature the helicopter becomes, the less likely there will be a change in the basic performance data.

- b. Handbook Organization. This volume is one of a series of volumes as identified in paragraph 4 above. Volume I is a description of the methodology used to develop the tables for each of the other volumes. This volume and all other volumes except Volume I provides a simplified flight profile example in Chapter 2. Chapter 3 provides an explanation of each of the five types of data tables contained in the handbook. The five types of tables deal with: (1) Basic Fuel Flow Data, (2) Delta Fuel Flow for Drag Data, (3) Ground Idle Fuel Flow Data, (4) Gross Weight Limits Data and, (5) Velocity Limits data. Chapter 4 contains the actual tables to be used for developing flight profiles.
- c. Volume VII Organization. The US Army has four different versions of the CH-47 CHINOOK. Due to the large amount of data for these four versions and to allow for easier reference, there is a separate section of Volume VII for each. Volume VIIA contains data for the CH-47A. In the same manner, Volume VIIB contains CH-47B data, Volume VIIC contains CH-47C data, and Volume VIID contains CH-47D data.

#### CHAPTER 2

#### FLIGHT PROFILE EXAMPLE

#### GENERAL

This chapter provides an example of how to develop a flight profile, albeit simple, that can be extended to cover any number of stops, loads and distances all depending on helicopter capability and fuel available.

#### 2. DISCUSSION

- a. The main question this example of a flight profile will answer is, "Do I have enough fuel to fly the proposed mission?"
- b. Suppose a pilot is to fly a simple resupply mission in a CH-47D CHINOOK helicopter that calls for flying (as shown in illustration 2-1) from point A (the air base), to point B (the pick up area) to point C (the drop off area) and return to A.



#### Illustration 2-1

c. The other information given is airspeed (AS) from A to B which is to be 70 knots (kts), from B to C 40 kts, and from C to A 70 kts. The CHINOOK helicopter is to be flown, at 4,000 ft for all legs at an ambient temperature of 15°C, and an idle altitude for take off, pick-up and drop off areas (ground level) of 2000 ft\*. The mission plan also shows 10 minutes idle at A before take off, 20 minutes idle at B while loading, 20 minutes idle at C while unloading and 10 minutes idle on return to A before shut down. The CHINOOK will be flown empty at a gross weight (GW) of 26,000 lbs from A to B and from C to A, while the cargo from B to C will be 20,000 lbs.

<sup>\*</sup>All altitudes are in reference to sea level.

d. The flight plan is prepared by drawing up a caple similar to Table 2-1 below. By filling in the blanks under fuel, it can be determined if the total is too large for the helicopter.

TABLE 2-1

Helicopter: CHINOOK (CH-47D)

Altitude: 4000 ft flight/2000 ft idle

Temperature: 15°C

| LEG      | DISTANCE | AS     | TIME   | GW (lbs) | FUEL |
|----------|----------|--------|--------|----------|------|
| Idle @ A | -        | -      | 10 min | -        |      |
| A-B      | 70 N.M.  | 70 kts | 1 hr   | 26,000   | ,    |
| Idle @ B | -        | -      | 20 min | -        |      |
| B-C      | 80 N.M.  | 40 kts | 2 hr   | 46,000   |      |
| Idle 0 C |          | -      | 20 min | -        |      |
| C-A      | 140 N.M. | 70 kts | 2 hr   | 26,000   |      |
| Idle @ A | -        | -      | 10 min | -        | ,    |

e. First fill in Idle @ A, Idle @ B, Idle @ C and 2nd Idle @ A since they will all come from Table 2-2. In each case the idle is at 2000 ft and a temperature of 15°C. Consulting the ground idle fuel shown in Table 2-2, the value of 1374 lbs/hr is at the intersection of 2000 ft and 15°C.

1st Idle @  $A = 1/6 \times 1374 = 229$  lbs

Idle  $@B = 1/3 \times 1374 = 458 \text{ lbs}$ 

Idle  $0 C = 1/3 \times 1374 = 458 \text{ lbs}$ 

2nd Idle @ A = 1/6 X 1374 = 229 lbs

TABLE 2-2
GROUND IDLE FUEL FLOW
AIRCRAFT - CH-47D
CHINOOK

|                                          | <del></del> |           | PRESSURE | PRESSURE ALTITUDE (FT) | (FT) |      |       |
|------------------------------------------|-------------|-----------|----------|------------------------|------|------|-------|
|                                          |             | SEA LEVEL | 2000     | 4000                   | 9009 | 8000 | 10000 |
| 10 00 00 00 00 00 00 00 00 00 00 00 00 0 | -25 C       | 1480      | 1400     | 1280                   | 1188 | h011 | 1040  |
| 1                                        | ⊃ S-        | 1468      | 1388     | 1268                   | 1176 | 1092 | 1028  |
|                                          | 15 C        | h5h l     | 1374     | 1254                   | 1162 | 1078 | h101  |
|                                          | 35 C        | 0 † † 1   | 1360     | 1240                   | 1148 | h901 | 1000  |

ENTRIES ARE AIRCRAFT FUEL FION RATES IN LBS/HR

TABLE 2-3 hasic fuel flow fuel flow rates for the given conditions in lbs/hr

TEMPERATURE: 15 C PRESSURE: 4000 FT

AIRCRAFT - CH-47D CHINOOK

| 23000   |         |      |      |        |         |        |            |      |      |      |
|---------|---------|------|------|--------|---------|--------|------------|------|------|------|
| MEIGHTS | •       |      |      | FLIGHT | HT MODE | E (KTS | ~ :<br>~ : |      |      |      |
| (182)   | 39 I H  | HOGE | NOE  | 0 17   | 09      | 80     | 100        | 120  | 140  | 160  |
| 22,000  | 1770    | 1879 | 1846 | 1814   | 1628    | 1606   | 1709       | 1923 | 2265 | 2929 |
| 26,000  | 8 6 6 1 | F602 | 2029 | 5961   | 1746    | 1706   | 1799       | 2005 | 2338 | 2974 |
| 30,020  | 2140    | 2330 | 2232 | 2133   | 1887    | 1822   | 1902       | 2096 | 2430 | 3041 |
| 34,300  | 2350    | 2590 | 2458 | 2325   | 2053    | 1954   | 2020       | 2203 | 2544 | 3162 |
| 36,000  | 2583    | 2881 | 2717 | 2552   | 2246    | 2103   | 2154       | 2333 | 2685 | 3369 |
| 42,000  | 28'.D   | 3214 | 3028 | 2842   | 2455    | 2279   | 2307       | 2490 | 2885 | 3677 |
| 46,000  | 3129    | 3595 | 3394 | 3193   | 2685    | 2484   | 2488       | 2591 | 3138 | 4139 |
| 50,00   | 9548    | 4021 | 3814 | 3607   | 2973    | 2708   | 2713       | 2964 | 3592 | 4892 |

Notice the conversion from minutes to hours. These values must be used because fuel flow is in lbs/hr.

- f. The fuel flow for the three legs of the mission are calculated next. The heading on Table 2-1 shows a need for the Basic Fuel Flow data chart for the CHINOOK helicopter flying at 4000 ft and at 15°C ambient temperature. Table 2-3 contains the necessary information.
- (1) Leg A-B is at 70 kts and 26,000 lbs. This is not one of the values given but 60 kts is 1746 lb/hr and 80 kts is 1706 lb/hr. Interpolation gives the value of 1726 lb/hr for a 70 kts airspeed. Since the leg is one hour long:

Leg A-B =  $1 \times 1726 = 1726 \text{ lbs}$ 

(2) Leg B-C is at 40 kts and 46,000 lbs. This value is in the table; 3193 lbs/hr. Since the leg is two hours long:

Leg B-C =  $2 \times 3193 = 6386 \text{ lbs}$ 

(3) Leg C-A is at 70 kts and 26,000 lbs. This fuel flow rate was computed above to be 1726 lbs/hr. Since the leg is two hours long:

Leg C-A =  $2 \times 1726 = 3452$  lbs.

g. The flight profile can be finished by filling in Table 2-1 as shown in Table 2-4.

TABLE 2-4

Helicopter: CHINOOK (CH-47D)

Altitude: 4000 ft flight/2000 ft Idle

Temperature: 15°C

| LEG      | DISTANCE                              | AS     | TIME          | GW (lbs) | FUEL      |
|----------|---------------------------------------|--------|---------------|----------|-----------|
| Idle 0 A | -                                     | -      | <b>10</b> min | -        | 229 1bs   |
| A-B      | 70 N.M.                               | 70 kts | 1 hr          | 26,000   | 1726 lbs  |
| Idle @ B | -                                     | -      | 20 min        |          | 458 1bs   |
| В-С      | 80 N.M.                               | 40 kts | 2 hr          | 46,000   | 6386 lbs  |
| Idle @ C | -                                     | -      | 20 min        | -        | 458 1bs   |
| C-A      | 140 N.M.                              | 70 kts | 2 hr          | 26,000   | 3452 1bs  |
| Idle @ A | -                                     | -      | 10 min        | -        | 229 1bs   |
|          | · · · · · · · · · · · · · · · · · · · |        |               | Total    | 12,9381bs |

- h. Although only two look-up tables were used for this example, each type of table has several conditions that are changed so that a wide band of performance parameters can be addressed. The discussion on each of the five types of tables is contained in Chapter 3. A succinct description of each of these five types of tables is:
- (1) Basic Fuel Flow Data: Gives the rate the aircraft uses fuel dependent on the given flight conditions.
- (2) Delta Fuel Flow for Drag Data: Gives the additional rate of fuel flow to be added to the basic rate for external drag.
- (3) Ground Idle Fuel Flow Data: Gives the rate fuel is used when the aircraft is on the ground with its engine running.
- (4) Gross Weight Limits Data: A check on whether or not the aircraft has enough lift to take off with a given weight.
- (5) Velocity Limits Data: Gives the optimum (long range) speed and maximum rates of speed.

#### CHAPTER 3

#### PERFORMANCE DATA TABLE DESCRIPTIONS

#### GENERAL

This chapter describes each of the five basic type tables used for developing flight profiles. The variables within each type of table are described as well as how the specific data required can be extracted.

#### 2. BASIC FUEL FLOW DATA

- a. The basic rate of fuel flow\* is determined by five variables:
- (1) Type of aircraft
- (2) Altitude (Air Pressure)\*\*
- (3) Temperature\*\*\*
- (4) Gross Weight\*\*\*\*
- (5) Flight Mode
- b. In each table (see Table 3-1) within the basic type, the first three variables are held constant for the whole table, i.e., (a) Type of Aircraft, (b) Altitude (Air Pressure) above sea level, and (c) Temperature. These variables are stated at the top of each table.
- c. There are eight rows of fixed gross weights: 22,000 lbs, thru 50,000 lbs inclusive at 4,000 lbs intervals. The ten columns are fixed flight modes.
- (1) The first column is Hover In Ground Effect (HIGE). HIGE is used for hovers at a height of 10 feet or less and a component of forward flight 10 kts or less.
- (2) The second column is Hover Out of Ground Effect (HOGE). This is used for hovers at a height of more than 10 feet.

\*\*\*\*Total vehicle weight in pounds.

4 1 1/2 . .

<sup>\*</sup>The basic fuel flow data represents a clean drag configuration with all doors closed, no wing stores, and no external sling loads.

<sup>\*\*</sup>All altitudes or air pressures are feet above sea level.

\*\*\*For simplicity, all temperatures are considered to be the average temperature in which the helicopter is operating (Degrees Centigrade).

- (3) The third column is Nap of the Earth (NOE). This is defined as all flight for variable speeds from 0 to 40 kt; and criable altitudes.
- (4) The remaining seven columns are for given airspeeds\* (in kts) as the flight mode.
- d. There are 24 of these basic fuel flow charts. Each chart is for a different combination of Air Pressure (Altitude) and temperature.
- e The Basic Fuel Flow Data is the main table used in simulating a flight profile. For example, assume a pilot's flight path will require 30 minutes of flight at 80 kts airspeed, 4000 ft. altitude, 15°C and a gross weight of 38,000 lbs in a CH-47D helicopter. Using Table 3-1 at a gross weight of 38,000 lbs and an airspeed of 80 kts, the helicopter will use 2103 lbs/hr fuel, i.e., for 30 minutes, 1052 lbs of fuel will be used.
- f. The gross weight values selected provide the basic range of load carrying capability for the ten flight modes of the CHINOOK helicopter. Within the gross weight band shown, linear interpolation\*\* is quite accurate for estimating the fuel flow rates.
- g. For example, using Table 3-1, if the helicopter's gross weight was 32,000 lbs and if the flight mode was 60 kts, the fuel flow cannot be found directly. But by interpolating between 60 kts, 30,000 lbs 1887 lbs/hr and 34,000 lbs 2053 lbs/hr, the basic fuel flow rate for 32,000 lbs is 1970 lbs/hr. In this example, if the helicopter flies in this mode for 30 minutes, 985 lbs of fuel will be used.
- h. As altitude and/or temperature changes occur, different tables are used to look up the aircraft's basic fuel flow rate for each leg of the flight path. Care must be taken that the proper table is used.
- i. Appendix A contains a set of functions that will give a good approximation of the basic rate of fuel flow.

#### 3. DELTA FUEL FLOW FOR DRAG DATA

- a. The delta fuel flow for drag is also determined by five variables:
- (1) Type of Aircraft
- (2) Altitude (Air Pressure)
- (3) Temperature
- (4) Drag Surface (Equivalent Square Footage)
- (5) Air Speed

<sup>\*</sup>All references to airspeeds are to true airspeeds.

<sup>\*\*</sup>All references to interpolation are linear interpolations. See FPPH, Volume I, Chapter 3 for a discussion on the accuracy of interpolation.

TABLE 3-1

AASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: 4000 ft temperature: 15 c

AIRCRAFT - CH-47D

CHINOOK

| 1                 | 7     | T      | 7      | 7      |                | _    | _      | 7      | 7       | -      | _      |
|-------------------|-------|--------|--------|--------|----------------|------|--------|--------|---------|--------|--------|
|                   | 091   | 1      | 1_     | - 1    | 3041           | 3162 | 3340   | 7355   | 7/95    | 4139   | 000    |
|                   | 140   | 1      |        | 220    | 1702 2076 2430 | 2544 | _1     | _      |         | 3138   | 1500   |
|                   | 120   | 上      | Ľ      |        | 4070           | 2203 |        |        |         |        | 7000   |
| 7.5               | 100   |        |        |        |                | 2020 |        | 2307   | 2007    | 8042   | 2717   |
| DE (KTS           | 85    | -      |        |        | 7781           | 1954 | 2103   | 2270   | 28      | 4047   | 270A   |
| FLIGHT MODE (KTS) | 09    | 1628   | 1746   | 1      |                | 2053 | 2246   | 2455   | 2 4 8 5 | 5002   | 1 2973 |
| FLI               | 40    | 1814   | 1965   | 2133   |                | 2325 | 2552   | 2842   | .1      |        | 2095   |
|                   | NOE   | 1846   | 2029   | 2232   | _              | 2458 | 2717   | 3028   | 3394    |        | 700    |
| -                 | HOGE  | 1879   | 2094   | 2330   |                | 7270 | 2881   | 3214   | 3595    |        | _      |
|                   | 391H  | 1770   | 1948   | 2140   | 2365           | 0667 | 2583   | 284D   | 3129    | 3454   | 0      |
| GROSS<br>WEIGHTS  | (LBS) | 22,000 | 26,000 | 30,000 | 14:000         | 2001 | 38,000 | 42,000 | 46,000  | 50,000 |        |

TABLE 3-2

CORRECTION FUR! FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 40nh FT TEMPERATURE: 15 C

AIRCRAFT - CH-470

CH1NOOK

|                                         |      |     | AIK |     | SPEED IN KIS | 15   |      |      |
|-----------------------------------------|------|-----|-----|-----|--------------|------|------|------|
|                                         |      | 0 h | 09  | 0 8 | 100          | 120  | 140  | 160  |
| 0846                                    | 20   | 12  | 4 1 | 16  | 161          | 331  | 543  | 872  |
| 2 2                                     | 100  | 7 4 | 82  | h61 | 382          | 670  | 1110 | 1793 |
| ti<br>Li                                | 151) | 37  | 123 | 292 | 574          | 6101 | 1717 | 2718 |
| - 1111111111111111111111111111111111111 | 200  | 6 h | 591 | 390 | 769          | 1376 | 2336 | 3643 |

- b. Like the basic fuel flow tables, there are 24 tables for delta fuel flow for drag.
- c. There are four fixed rows of equivalent square feet of drag: 50 equivalent sq ft thru 200 equivalent sq ft.
- d. The seven columns are for airspeeds in kts of: 40 kts, 60 kts, 80 kts, 100 kts, 120 kts, 140 kts, and i50 kts.
- e. When an external load is placed on the helicopter, the amount of fuel consumed per hour increases. The delta fuel flow for drag tables indicate how much extra fuel consumption to add to the basic fuel flow rate.
- f. In the example given earlier, a 30 minute flight at 80 kts airspeed, 4000 ft altitude, 15°C and a gross weight of 38,000 lbs was used. Using the basic fuel flow tables, the basic fuel flow rate was 2103 lbs/hr. Assuming for this new example that part of the load is external and inducing a 100 equivalent sq it external drag, the delta fuel flow for drag (Table 3-2) slows 194 lbs/hr should be added to the basic fuel flow rate. Thus the basic fuel flow rate becomes 2103 t 194 or 2297 lbs per hour and for a half-hour flight, 1149 lbs of fuel will be used instead of the 1052 lbs figured without an external load.
- g. Appendix B contains a function that will give a good approximation of the delta fuel flow for drag.

#### 4. GROUND IDLE FUEL FLOW DATA

- a. The ground idle fuel flow rate is determined by only three variables:
  - (1) Type of Aircraft
  - (2) Altitude (Air Pressure)
  - (3) Temperature
- b. There is only one ground idle fuel flow table (shown as Table 2-2). The table has four rows of temperatures:  $-25^{\circ}\text{C}$ ,  $-5^{\circ}\text{C}$ ,  $15^{\circ}\text{C}$  and  $35^{\circ}\text{C}$ , and six columns of altitudes: Sea Level, 2000 ft, 4000 ft., 6000 ft., 8000 ft., and 10000 ft.
- c. The ground idle fuel flow table is used as discussed in the example flight profile in Chapter 2 (Table 2-2). The CH-47D helicopter idling for 20 minutes at 2000 ft. altitude and 15°C, (across the row labeled 15°C and down the column labeled 2000) find the intersection at 1374. Thus, the CH-47D uses 1374 lbs/hr at these conditions and since it is idling for 20 minutes or 1/3 of an hour, it will use 458 lbs of fuel.

- d. If the helicopter had only been 1000 ft. above sea level, the consumption rate would be found by interpolating between the sea level rate of 1454 lbs/hr and the 2000 ft. rate of 1374 lbs/hr which would be 1414 lbs/hr. In 1/3 of an hour 471 lbs of fuel would be used.
- e. Appendix C contains a function that will give a good approximation of the ground idle fuel flow.

#### 5. GROSS WEIGHT LIMITS DATA

- a. Gross weight limits tables are intended to show whether or not the aircraft can safely take off for four sets of criteria. These criteria are defined in the following paragraphs:
- (1) Criteria #1 is based on the helicopter using 100% of Maximum Power for take off and having enough power to lift straight up and above ground effect (See Figure 3-1). Once it is in hovering above ground effect level the helicopter begins forward flight until it acquires, transitional lift and is able to climb at 450 ft/min (a desired standard rate of climb) to the desired altitude. This criteria has some risk since the pilot has no reserve power. It has less risk than Criteria #3 but more than Criteria #2 thus it is considered to be "Middle of the Road" risk.
- (2) Criteria #2 (Figure 3-1) is based on the helicopter using 95% of Maximum Power for take off and enough power to immediately begin to climb at a rate of 450 ft/min. This is the least risky criteria since the pilot has power in reserve and is still able to climb at a satisfactory rate.
- (3) Criteria #3 (Figure 3-1) has the most risk. Using 100% of Maximum Power the helicopter will only hover in ground effect. Therefore, at an altitude of 10 feet or less, the pilot must begin forward flight and gradually increase airspeed to acquire transitional lift to climb. The reasons for its high risk are readily apparent. First, there is no power in reserve. Second, the pilot must begin forward flight at a very low altitude.
- (4) Criteria #4. Structural Gross Weight Limits is the total upper limit of gross weight the helicopter can carry under any take off criteria.
  - b. Gross Weight Limits are determined by four variables:
  - (1) Type of Aircraft
  - (2) Criteria Chosen
  - (3) Altitude (Air Pressure)
  - (4) Temperature



CRITERIA #2 (LEAST RISKY)

95% OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN, HOGE



CRITERIA #3 (MOST RISKY)

100% MAX POWER, HIGE **FLIGHT** TRANSITIONAL LIFT HIGE GROUND NOTHING TO SPARE. Figure 3-1

TABLE 3-3 GROSS WEIGHT LIMITS FOR TAKEOFF CRITERIA #1

(DUE TO ENGINE)

188 OF MAXIMUM POWER (HOGE)

AIRCRAFT - CH-470

CHINOOK

|             |             | PRES      | PRESSURE ALTITUDE (FT) | (FT)  |       |       |       |
|-------------|-------------|-----------|------------------------|-------|-------|-------|-------|
|             |             | SEA LEVEL | 2000                   | 400 h | avas  | 3008  | 10004 |
| TEMPERATIOE | -25 C       | 05159     | 08509                  | 69295 | 52212 | 48388 | 44801 |
| DEGREES     | υ <b>ς.</b> | 62795     | 58385                  | 54227 | 91805 | 46632 | 42983 |
| NTIGE       | 15 C        | 57330     | 53307                  | 49511 | 45939 | 42334 | 39135 |
|             | 35 C        | 90905     | 47053                  | 43703 | 40221 | 37174 | 34312 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 5000 LBS

TABLE 3-4

GROSS WEIGHT LIMITS (DUE TO TRANSMISSION)

FOR TAKEOFF CRITERIA #1

100% OF MAXIMUM POWER (HOGE)

AIRCRAFT - CH-47D

CHINOOK

|                     |       | PRES      | PRESSURE ALTITUDE (FT) | TUDE (FT) |       |       |       |
|---------------------|-------|-----------|------------------------|-----------|-------|-------|-------|
|                     |       | SEA LEVEL | 2000                   | 40a'n     | 0009  | 8000  | 10000 |
| 3011+ 4 00 10 M 3 T | -25 C | 92129     | 55735                  | 54329     | 52928 | 51493 | 09005 |
|                     | J 5₌  | S#955     | 19245                  | 5288r     | h9h15 | 50053 | 48627 |
|                     | ,5 c  | 54278     | 52916                  | 51521     | 50127 | 48725 | 47247 |
|                     | 35 C  | 420ES     | 6,915                  | 5027a     | 48893 | 0444  | 46085 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: SCOUD LBS

- c. Additionally, Criteria #1, #2, and #3 differ due to engine power limits or transmission power limits of the aircraft. Thus there are six tables:
  - (1) Criteria #1 (Due to engine)
  - (2) Criteria #1 (Due to transmission)
  - (3) Criteria #2 (Due to engine)
  - (4) Criteria #2 (Due to transmission)
  - (5) Criteria #3 (Due to engine)
  - (6) Criteria #3 (Due to transmission)
- d. The structural gross weight limit is a single value for each helicopter and is only dependent on the type helicopter. The CH-47D structural gross weight limit is given as 50,000 lbs and is listed at the bottom of each table. As the name implies, it is simply not safe to expect the CH-47D structure to maneuver normally when the total weight is larger than that value.
- e. In simulating inflight profile, the gross weight limits tables are used to cherk whether the ircraft is going to be too heavy to take off under the given conditions. As an example, assume the pilot of a CH-47D planned a mission that called for using take off criteria #1 and the take off was to be at 8000 ft., 15°C, and a gross weight of 41,200. Three checks would be required: First, does this gross weight exceed the structural gross weight limit? Second, does it exceed Criteria #1 (due to transmission)? Third, does it exceed Criteria #1 (due to engine)? In the example given, the answer to all three questions is "No", the take off will not exceed aircraft limits. (Tables 3-3 and 3-4)
- f. If the assigned gross weight had been 44,000 lbs, it would have exceeded the value given for 8,000 ft. and 15°C at Criteria #1 (Due to engine). (Table 3-3) The mission could not be flown as planned. The plan could be changed, for example to take off at 6000 ft. (which might not be practical) or change to take off Criteria #3 (which is more risky but has higher limits).
- g. If the assigned gross weight had been 53,200 lbs., it would have exceeded the structural limits. To perform the mission the only choices would be to lighten the load or get another type helicopter.
- h. Appendix D contains a set of functions that will give a good approximation of the gross weight limits for takeoff.

#### 6. VELOCITY LIMITS DATA

- a. There are various types of data given in these tables but like the gross weight limits tables, they are primarily restraints on what can be expected of a helicopter in planning a mission profile. Velocity limits tables are influenced by five variables:
  - (1) Type of aircraft
  - (2) Air pressure (altitude)
  - (3) Temperature
  - (4) Gross weight
  - (5) Condition or limit
- b. Items (1) through (4) are self-explanatory. There are five types of information that can be listed under (5):
  - (1) Long range
  - (2) Maximum continuous power
  - (3) Maximum power (due to engine limits)
  - (4) Transmission limits
  - (5) V<sub>ne</sub>(velocity never exceed)
- c. For each aircraft, there are 24 Velocity Limits Tables depending on air pressure and temperature combination. Table 3-5 is an example of the content of the Velocity Limits Table.
- d. The two columns under Long Range (Table 3-5) give the optimum speed and fuel flow for each set of variables #1 through #4 above. Thus the CH-47D operating at 2000 ft., temperature 15°C, and having a gross weight of 38,000 lbs will fly a longer distance if the velocity is kept at 141 kts and will use 2825 lbs/hr of fuel at that velocity.
- e. Maximum continuous power gives the fastest speed at which a helicopter can fly for long periods (30 minutes or more) and the associated fuel flow rate. An example from Table 3-5 would be a CH-47D at 2000 ft. and 15° weighing 38,000 lbs could fly 156 kts with a fuel usage of 3288 lbs/hr.

TABLE 3-5

(INCLUDING FUE, FLOW RATES)
PRESSURE: 2000 FT TEMPERATURE: VELOCITY LIMITS TABLE

TEMPERATURE: 15 C

AIRCRALT - CH-470

CHINDOK

| -                         |              |               |                            |                    |                          |                   |              |                        |              |                          |
|---------------------------|--------------|---------------|----------------------------|--------------------|--------------------------|-------------------|--------------|------------------------|--------------|--------------------------|
|                           | 7 0K         | LONG<br>Range | MAX<br>CONTINUOUS<br>POWER | AX<br>NUOUS<br>KER | HAX<br>Power<br>(Engine) | AX<br>Wer<br>Ine) | TRANS!       | TRANSHISSION<br>LIMITS | VELOC<br>E   | VELOCITY NEVER<br>Exceed |
|                           | VEL<br>(KTS) | (LBS/HR)      | VEL<br>(KTS)               | (LES/HR)           | VEL<br>(KTS)             | (L85/HR)          | VEL<br>(KTS) | F.F.                   | VEL<br>(KTS) | F.F.                     |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |                            |                    |                          |                   |              |                        |              | 4                        |
| 22,000                    | 136          | 2321          | 163                        | 3288               | 185                      | 4271              | 184          | 4229                   | 091          | 3135                     |
| 26,000                    | 139          | 2450          | 162                        | 3288               | 185                      | 4271              | 184          | 4229                   | 160          | 3179                     |
| 30,000                    | 140          | 2575          | 161                        | 3288               | 185                      | 4271              | 1.84         | .229                   | 160          | 3231                     |
| 34,000                    | 141          | 2693          | 159                        | 3288               | 184                      | 4271              | 183          | 4229                   | 091          | 3316                     |
| 38,000                    | 141          | 2825          | 156                        | 3288               | 179                      | 4271              | 178          | 4229                   | 160          | 3466                     |
| 42,000                    | 1 1 1        | 2976          | 151                        | 3268               | 172                      | 4271              | 171          | 4229                   | 091          | 3701                     |
| 46,000                    | 141          | 3162          | 145                        | 3288               | 163                      | 4271              | 163          | 4229                   | 145          | 3278                     |
| 50,000                    | 137          | 3335          | 136                        | 3288               | 157                      | 4271              | 156          | 4229                   | 122          | 2966                     |

- f. Maximum power (engine and transmission limits) show the maximum speeds the aircraft can structurally attain for short periods of time (less than 30 minutes). Thus the CH-47D helicopter at 2000 ft and 15°C weighing 38,000 lbs has an engine that is capable of producing enough power to fly 179 kts but the transmission limits the aircraft to 178 kts. Between these two columns then, the flight cannot exceed 178 kts with a fuel flow rate of 4229 lbs/hrs.
- g. There is another limiting factor called V (velocity never exceed). This velocity limit is determined by helicopter structural considerations.  $V_{ne}$ 's are used in the same manner as maximum power limits described in paragraph f above. Since a value of 160 kts is listed for 2,000 ft., 15°C, and 38,000 lbs, this implies that the values in f cannot be reached.

## 7. DETAILED FLIGHT PROFILE USING ALL PERFORMANCE DATA TABLES

The example of a Flight Profile in Chapter 2 was intentionally simplified to assure clarity. The description of the various tables in this handbook, however, indicates a more complex set of considerations are normally encountered in developing the flight profile. With the description provided in this chapter, additional information should be included in the flight plan beyond that shown in the example and a suggested format is provided below in Table 3-6.

TABLE 3-6

Helicopter: Altitude: Temperature:

| LEG | DISTANCE | AS | CHECK<br>VELOCITY<br>LIMIT | TIME | GW (LBS) | DRAG | FUEL        |
|-----|----------|----|----------------------------|------|----------|------|-------------|
|     |          |    |                            |      |          |      |             |
|     |          |    |                            |      |          |      |             |
|     |          |    |                            |      |          |      | <del></del> |

Needed for each take off: Weight at take off: Type of take off: Check transmission limits: Check engine limits: Check structural gross weight limit: THIS PAGE LEFT BLANK INTENTIONALLY

# CHAPTER 4

# CHINOOK (CH-47D) PERFORMANCE DATA TABLES

# **GENERAL**

The following tables are the major information presented in this hand-book. If the procedure for using them is understood, a flight profile for the CHINOOK (CH-47D) helicopter can be prepared in a matter of a few hours. The performance data contained have been reviewed for accuracy and are corrected to the best of our knowledge. The tables are organized in the following manner:

| Tables 4-1 to 4-24  | Basic Fuel Flow Data          |
|---------------------|-------------------------------|
| Tables 4-25 to 4-48 | Delta Fuel Flow for Drag Data |
| Table 4.49          | Ground Idle Fuel Flow Data    |
| Tables 4-50 to 4-55 | Gross Weight Limits Data      |
| Tables 4-56 to 4-79 | Velocity Limits Data          |

BASIC FUEL FLOW DATA TABLES





TABLE 4-1

. BASIC FUEL FLOW

FUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE: -25 C

AIRCRAFT - CH-47D

CHINOOK

| GROSS            |      |      |      | FL!GHT | HT MODE | E (KTS) | )    |           |      |      |
|------------------|------|------|------|--------|---------|---------|------|-----------|------|------|
| WEIGHTS<br>(LBS) | 391H | HOGE | NO.  | 40     | 09      | 8.0     | 100  | 120       | 140  | 160  |
| 22,000           | 1799 | 1893 | 1899 | 1904   | 1732    | 1728    | 1887 | 2203      | 2727 | 3721 |
| 26,000           | 1952 | 2071 | 2053 | 2035   | 1820    | 1810    | 1961 | 2822      | 2730 | 3783 |
| 30,000           | 2117 | 2264 | 2219 | 2173   | 1921    | 1902    | 2054 | 2365      | 2864 | 3872 |
| 34,000           | 2222 | 2476 | 2398 | 2321   | 2042    | 2004    | 6412 | 2453      | 2950 | 3956 |
| 38,000           | 2478 | 2707 | 2594 | 2481   | 2175    | 2117    | 2522 | 2546      | 3051 | 4058 |
| 42,000           | 2677 | 2958 | 2808 | 2659   | 2327    | 1422    | 2366 | 2653      | 3167 | 4196 |
| 46,000           | 2895 | 3227 | 3043 | 2859   | 6642    | 2379    | 2492 | 2775      | 3302 | 4391 |
| 50,000           | 3131 | 3520 | 3306 | 3091   | 4692    | 2530    | 2632 | 2632 2917 | 3494 | 4660 |

TABLE 4-2

BASIC FUEL FLOW FUFL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: SEA LEVEL TEMPERATURE: "S C

AIRCRAFT - CH-47D

CHINDOK

|                  |      |      |      |        |          |        |      |      |      |      | • |
|------------------|------|------|------|--------|----------|--------|------|------|------|------|---|
| SKOSS<br>FF CHIC | •    |      | :    | FLIGHT | SHT MODE | E (KTS | _    |      |      |      | _ |
| (1.85)           | HIGE | HOGE | NOE  | 40     | 09       | 80     | 100  | 120  | 140  | 160  | _ |
| 22.000           | 1852 | 1949 | 1945 | 1461   | 1763     | 1752   | 1881 | 2171 | 2629 | 3500 | _ |
| 26,000           | 2012 | 9612 | 2106 | 2076   | 1858     | 1837   | 1972 | 2248 | 2690 | 3551 | _ |
| 30,000           | 2184 | 2340 | 2280 | 2220   | 1968     | 1933   | 2060 | 2330 | 2763 | 3601 | _ |
| 34,000           | 2366 | 1952 | 2470 | 2376   | 2095     | 2040   | 2157 | 2417 | 2849 | 3659 |   |
| 38,000           | 2561 | 2807 | 2677 | 2548   | 2241     | 2160   | 2265 | 2515 | 2951 | 3745 |   |
| 42,000           | 2772 | 3070 | 2906 | 2742   | 2408     | 2293   | 2385 | 2626 | 3072 | 3881 | _ |
| 46,000           | 3004 | 3357 | 3161 | 2965   | 2598     | 2440   | 2518 | 2757 | 3216 | 4127 |   |
| 50,000           | 3254 | 3676 | 3454 | 3231   | 2805     | 2607   | 2667 | 2910 | 3387 | 4435 |   |

TABLE 4-3

RASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR

PRESSURE: SEA LEVEL TEMPERATURE: 15 C AIRCRAFT - CH"47D

CHINDOK

|        |      |      | ,    |        |         |        |      |      |       |       |
|--------|------|------|------|--------|---------|--------|------|------|-------|-------|
| GROSS  |      | P    |      | FLIGHT | HT MODE | E (KTS |      |      |       |       |
| (1,85) | HIGE | HOGE | NOE  | 40     | 09      | 80     | 100  | 120  | 140   | 160   |
| 22.000 | 1907 | 2007 | 1994 | 0861   | 1799    | 1764   | 1907 | 2160 | 2570  | 3354  |
| 26,000 | 2072 | 2202 | 2161 | 2120   | 1900    | 1872   | 1990 | 2237 | 2631  | 3397  |
| 30,000 | 2251 | 2418 | 2345 | 2271   | 2018    | 1973   | 2081 | 2319 | 2706  | 3443  |
| 34,000 | 2442 | 2653 | 2545 | 2437   | 2157    | 2087   | 2183 | 2409 | 2704  | 3504  |
| 38,000 | 2647 | 2907 | 2765 | 2623   | 2317    | 2215   | 2297 | 2512 | 2904  | 35.11 |
| 42,000 | 2871 | 3185 | 3010 | 1      | 2501    | 2350   | 2425 | 2633 | 30.24 | 3784  |
| 46.000 | 3115 | 3496 | 3292 | 3089   | 2704    | 2519   | 2568 | 2776 | 3192  | 4040  |
| 50,000 | 3383 | 3845 | 3625 | 3406   | 2917    | 2706   | 2729 | 2945 | 3395  | 4391  |

TABLE 4-4

PUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: Sea Level Temperature: 35 c

AIRCRAFT - CH-47D CHINOOK

| WE SONS |         | ****  | ;<br>; |       | FLIGHT MODE | E IKTS         | _    |      |       |         |
|---------|---------|-------|--------|-------|-------------|----------------|------|------|-------|---------|
| (587)   | 35 I H  | HOGE  | NOF    | 2     | 4.5         | 8              |      |      |       |         |
|         | 100     |       |        | 1     |             | O <sub>O</sub> | 001  | 120  | 0 7 7 | 160     |
| 0000    | 7041    | 2000  | 7407   | 2022  | 1838        | 1820           | 1932 | 2163 | 2515  | 3246    |
| 26,000  | 2133    | 2270  | 2218   | 2166  | 1946        | 1012           | 2016 | 2240 | 25.00 | 7 0 0 5 |
| 30.000  |         |       |        |       |             |                | 7    |      | 1467  | 2503    |
| 20100   | 6187    | 7447  | 1142   | 2325  | 2074        | 2019           | 2112 | 2324 | 2677  | 2232    |
| 34,000  | 2518    | 2743  | 2623   | 25.03 | 2224        | 2: "2          | 0,00 |      |       | 2200    |
| 000     |         |       |        |       | 1777        | 0117           | 4177 | 6147 | 2774  | 3411    |
| 38,000  | 2736    | 3008  | 2857   | 2704  | 2400        | 2277           | 2341 | 2531 | 2800  | 3550    |
| 42,000  | 2972    | 3306  | 3124   | 2941  | 25.99       | 2// 33         | 2470 |      |       | 33.55   |
| 200.44  | - 5.6.5 | 17.17 |        |       |             | 7253           | 0,17 | 1007 | 3032  | 3770    |
| 000181  | 3230    | 3644  | 3445   | 3239  | 2808        | 2613           | 2633 | 2822 | 3215  | 4075    |
| 20,000  | 3521    | 4019  | 3804   | 35.00 |             |                |      |      |       |         |
|         | •       |       | )      | 7.00  | 1000 N      | 2817           | 2814 | 3022 | 7640  | 4538    |

TABLE 4-5

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 2000 FT TEMPERATURE: -25 C

| FLIGHT MODE (KTS) | HIGE HOGE NOE 40 60 80 100 120 140 160 | 2558 3 | +-     | 2097 1850 1820 1959 2245 2707 | 2058 2337 2801 | 2050 2168 2437 2912 | 2291 2556 3042 | 2694 3226 | 322 332      |
|-------------------|----------------------------------------|--------|--------|-------------------------------|----------------|---------------------|----------------|-----------|--------------|
|                   | HOGE                                   | 1827   | 2012   | 2214                          | 2438           | 2683                | 2947           | 3235      | 3131 3564 33 |
| GROSS             | (LBS)                                  | 22,000 | 26,000 | 30,000                        | 34,000         | 38,000              | 42,000         | 46,000    | 50,000       |

TABLE 4-6

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: -5 c

AIRCAAFT - CH-47C

| -        |         |       | _      | _      | _      | _      | _      | _      | -      | -      |
|----------|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
|          |         | 160   | 3274   | 3324   | 3377   | 3449   | 3566   | 3788   | 4082   | 4465   |
|          |         | 140   | 2467   | 2533   | 2613   | 2707   | 2823   | 2960   | 3126   | 3339   |
|          |         | 120   | 2048   | 2127   | 2211   | 2304   | 2411   | 2536   | 2685   | 2860   |
|          |         | 100   | 1788   | 1872   | 1965   | 5902   | 2185   | 2315   | 2461   | 2626   |
| 34.7. 30 |         | 80    | 1691   | 1750   | 1852   | 1967   | 2096   | 2239   | 2402   | 2592   |
| MOOF     |         | 09    | 1674   | 1775   | 1895   | 2033   | 2193   | 2377   | 2582   | 2799   |
| F1 1647  |         | 40    | 1856   | 1995   | 2145   | 2310   | 2496   | 2711   | 2969   | 3288   |
|          |         | NOF   | 1869   | 2036   | 2218   | 2418   | 2640   | 2888   | 3173   | 3513   |
|          |         | HOGE  | 18     | 2011   | 2622   | 2527   | 2783   | 3064   | 3377   | 3738   |
|          |         | HIGE  | 1782   | 1947   | 2125   | 2315   | 2520   | 2747   | 7994   | 3263   |
| GROSS    | WEIGHTS | (188) | 22,000 | 26,000 | 30,000 | 34,000 | 38,000 | 42,000 | 46,000 | 20,000 |

TABLE 4-7

RASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 2000 FT TEMPERATURE: 15 C

AIRCRAFT - CH-47D CHINOOK

|                  | 1                       |      |                    |        |         |         |      |      |      | į    |
|------------------|-------------------------|------|--------------------|--------|---------|---------|------|------|------|------|
| GROSS<br>WEIGHTS | the design define the W |      | والمراجعة المسابقة | FLIGHT | HT MODE | E (KTS) |      | 1    |      |      |
| (LBS)            | HIGE                    | HOGE | NOE                | 40     | 09      | 80      | 100  | 120  | 140  | 160  |
| 22,000           | !835                    | 1939 | 1916               | 1894   | 1710    | 1691    | 1804 | 2038 | 2412 | 3135 |
| 26,000           | 2007                    | 2144 | 1602               | 2038   | 1818    | 1785    | 1881 | 2117 | 2479 | 3179 |
| 30,000           | 2192                    | 2370 | 2284               | 2197   | 1947    | 1893    | 1981 | 2022 | 2561 | 3231 |
| 34,000           | 2391                    | 2616 | 2495               | 2374   | 2099    | 2015    | 2096 | 2300 | 2662 | 3316 |
| 38,000           | 2609                    | 2886 | 2732               | 2577   | 2275    | 2,53    | 2220 | 2415 | 2784 | 3466 |
| 42,000           | 2848                    | 3188 | 3003               | 2819   | 2474    | 2309    | 2359 | 2552 | 2935 | 3701 |
| 46,000           | 3111                    | 3530 | 3327               | 3125   | 2685    | 2492    | 2516 | 2715 | 3128 | 4033 |
| 50,000           | 3405                    | 3919 | 3700               | 3481   | 2922    | 2700    | 2703 | 2925 | 3422 | 4527 |

TABLE 4..8

BASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR

PRESSURE: 2000 FT TEMPERATURE: 35 C

AIRCRAFT - CH-47D

| GROSS<br>WFIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2      | ٠    |      | FLIGHT | HT MODE | E (KTS | ~ .  |      |      |      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|--------|---------|--------|------|------|------|------|---|
| (188)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - H1GE | HOGE | NOE  | 40     | 09      | 80     | 1 00 | 120  | 140  | 160  | _ |
| 22.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1888   | 1661 | 1965 | 1934   | 1749    | 1726   | 1828 | 2040 | 2380 | 3033 | - |
| 26,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2067   | 2122 | 2148 | 2085   | 1865    | 1825   | 1917 | 2120 | 2450 | 3074 | _ |
| 30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2259   | 6442 | 2351 | 2253   | 2004    | 1939   | 2018 | 2209 | 2538 | 3134 |   |
| 34,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2469   | 2707 | 2575 | 5444   | 2170    | 2070   | 2134 | 2314 | 2646 | 3246 |   |
| 38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5692   | 2992 | 2830 | 2668   | 2363    | 2218   | 2207 | 2440 | 2779 | 3439 |   |
| 4.2 • 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1552   | 3320 | 3135 | 2949   | 2570    | 2392   | 2417 | 2591 | 2950 | 3723 |   |
| 46,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3236   | 3690 | 3493 | 3296   | 2795    | 2593   | 2592 | 2782 | 3206 | 4150 |   |
| 50,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9556   | 4066 | 3894 | 3689   | 3074    | 2812   | 2809 | 3043 | 3631 | 4848 |   |
| The state of the s |        |      |      | •      | •       | •      | •    |      | •    | -    |   |

TABLE 4-9

PUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRFSSURE: 4000 FT TEMPERATURE: -25 C

300 FT TEMPERATURE: -25 C AIRCRAFT - CH-47D

KCRAFT - CH-4 CHINOOK

| GROSS<br>WEIGHTA |        | į    |        | FLIG | HT MOD | FLIGHT MODE (KTS | ~      |      |      |       | 1 |
|------------------|--------|------|--------|------|--------|------------------|--------|------|------|-------|---|
| 16881            | H1 GE. | HOGE | NOF    |      | 90     | A C              | 000    |      | Į.   |       | 7 |
| 22.000           | 3771   |      |        | L    |        | 2                | 2      | 7 20 | 1 41 | 100   | _ |
|                  | 8001   | 101  | 1755   | 1742 | 1561   | 1553             | 1689   | 1961 | 2401 | 3259  | _ |
| 26,000           | 1832   | 1960 | 1920   | 1880 | 1662   | 1644             | 1776   | 2044 | 2475 | 3345  |   |
| 20.00            | 2000   |      |        |      |        | т                |        | - 1  |      | 23.13 | _ |
| 2000             | 8002   | 717  | 2101   | 2028 | 1784   | 1747             | 1871   | 2133 | 2563 | 3430  | _ |
| 34,000           | 2197   | 2410 | 2302   | 2193 | 1021   | 106.             | . 07.7 |      |      |       |   |
| 200              | 0 0    |      |        |      |        | - 000            |        | 6667 | 1907 | 324   | - |
| 301000           | 4042   | 2667 | 2524   | 2380 | 2081   | 1993             | 2096   | 2342 | 2791 | 3700  | _ |
| 42,000           | 2633   | 2951 | 2775   | 2599 | 2267   | 2130             | 2230   |      |      |       | _ |
| 44.000           | 0 0    |      |        | T    |        | ,                | 0277   | 6713 | 4764 | 393/  | _ |
| 000.66           | 0887   | 32/2 | 3064   | 2857 | 2476   | 2304             | 2382   | 2632 | 3141 | 4364  |   |
| 50,000           | 3153   | 2442 | 3.41.5 | 20.0 | -      |                  |        |      | 3    | 3235  | _ |
|                  | 2      | - 00 | 2115   | 3182 | 2676   | 2500             | 2552   | 2815 | 3416 | 4683  |   |
|                  |        |      |        |      |        |                  |        |      |      | )     |   |

TABLE 4-10

RASIC FUEL FLOW
FUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 4300 FT TEMPERATURE: -5 C

| The same of the same of the same |                |      |      |      |             |         |      |      |       | <b>9</b> 4 |
|----------------------------------|----------------|------|------|------|-------------|---------|------|------|-------|------------|
| GROSS<br>WEIGHTS                 | and the second | Á    | ,    | FLIG | FLIGHT MODE | E (KTS) | ,    |      |       | ı          |
| (185)                            | 391H           | HOGE | NOE  | 0 h  | Q 9         | 80      | 100  | 120  | 0 1 1 | 160        |
| 22,000                           | 1718           | 1822 | 1800 | 1777 | 1593        | 1576    | 1693 | 1932 | 2315  | 3060       |
| 26,000                           | 1890           | 2026 | 1973 | 1261 | 1702        | 1671    | 1781 | 2014 | 2387  | 3111       |
| 30,000                           | 2074           | 2252 | 2165 | 2078 | 1831        | 1780    | 1879 | 2102 | 2476  | 3171       |
| 34,000                           | 2272           | 5466 | 2378 | 2256 | 1983        | 1903    | 1990 | 2203 | 2882  | 3268       |
| 38,000                           | 2492           | 2773 | 2617 | 2461 | 2159        | 2042    | 2115 | 2322 | 2712  | 3433       |
| 42,000                           | 2735           | 3077 | 2892 | 2706 | 2360        | 2200    | 2258 | 2465 | 2871  | 3732       |
| 46,000                           | 2999           | 3429 | 3223 | 3016 | 2575        | 2386    | 2420 | 2635 | 3074  | 4088       |
| 20,000                           | 3299           | 3832 | 3607 | 3382 | 2817        | 2599    | 2613 | 2854 | 3388  | 4631       |

TABLE 4-11

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 4000 FT TEMPERATURE: 15 C AIRCRAFT - CH-47D HASIC FUEL FLOW

| GROSS  |      |      |      | FLIGHT | -    | E (KYS |      |      |       |      | -        |
|--------|------|------|------|--------|------|--------|------|------|-------|------|----------|
| (LBS)  | Ŧ.   | HOGE | NOE  | 40     | 09   | 80     | 1 00 | 120  | 140   | 160  | 7        |
| 22,000 | 1770 | 1879 | 1846 | 1814   | 1628 | 1606   | 1709 | 1923 | 2265  | 2029 | 7        |
| 26,000 | 1948 | 2094 | 2029 | 1965   | 1746 | 1706   | 1799 | 2005 | 2338  | 2074 | <b>—</b> |
| 30,000 | 2140 | 2330 | 2232 | 2133   | 1887 | 1822   | 1902 | 2096 | 2410  | 3041 |          |
| 34,000 | 2350 | 2590 | 2458 | 2325   | 2053 | 1954   | 2020 | 2203 | 75.44 | 3162 | -        |
| 38,000 | 2583 | 2881 | 2717 | 2552   | 2246 | 2,03   | 2154 | 2111 | 3076  | 2010 | _        |
| 42,000 | 2840 | 3214 | 3028 | 2842   | 2455 | 2270   | 2207 | 2000 | 2004  | 3307 |          |
| 46,000 | 3129 | 3595 | 3394 | 3193   | 2685 | 2484   | 2488 | 2491 | 3178  | 4 30 | _        |
| 50,000 | 3456 | 4021 | 3814 | 3607   | 2973 | 2708   | 2713 | 2964 | 3592  | 4892 |          |
|        |      |      |      | A      | 7    |        |      |      |       | )    | _        |

TABLE 4-12

RASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 4000 FT TEMPERATURE: 35 C

| GROSS<br>WEIGHTS |      |      | 41.44 - 74 | F1.16 | HT MOD | FLIGHT MODE (KTS | •    |       |      |      |
|------------------|------|------|------------|-------|--------|------------------|------|-------|------|------|
| (LBS)            | HIGE | HOGE | NOE        | 40    | 09     | 80               | 100  | 120   | 140  | 160  |
| 22,000           | 1822 | 61   | 1895       | 1854  | 1667   | 1640             | 1731 | 1925  | 2236 | 2832 |
| 26,000           | 2007 | 2162 | 2087       | 2012  | 1794   | 1746             | 1826 | 2009  | 2314 | 2878 |
| 30,000           | 2208 | 2410 | 2301       | 2112  | 1947   | 1869             | 1935 | 2106  | 2412 | 2963 |
| 34,000           | 2431 | 2683 | 2542       | 2401  | 2130   | 2010             | 2060 | 2223  | 2535 | 3122 |
| 38,000           | 2675 | 2662 | 2829       | 2661  | 2334   | 2175             | 2205 | 2366  | 2692 | 3378 |
| 42,000           | 2952 | 3357 | 3176       | 2996  | 2552   | 2371             | 2373 | 25.45 | 2921 | 3760 |
| 46,000           | 3266 | 3759 | 3568       | 3376  | 2822   | 2587             | 2583 | 2794  | 3319 | 4412 |
| 50,000           | 3613 | 4215 | 4116       | 4017  | 3149   | 2833             | 2839 | 3114  | 3859 | 5360 |

TABLE 4-13

PUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR Pressure: 6000 ft temperature: -25 c

| 23000              |      |      |                                        |        |         |         |      |      |      |      |
|--------------------|------|------|----------------------------------------|--------|---------|---------|------|------|------|------|
| WELCHIS<br>WELCHIS |      |      | ************************************** | FLIGHT | HT MODE | E (KTS) |      |      |      |      |
|                    | HIGE | HOGE | NOE                                    | 0,5    | 09      | 80      | 100  | 120  | 140  | 1 60 |
| 22.000             | 1191 | 1714 | 1692                                   | 1670   | 1487    | 1476    | 1691 | 1852 | 2256 | 3049 |
| 26,000             | 1841 | 1916 | 1864                                   | 1812   | 1598    | 1572    | 1691 | 1937 | 2336 | 3142 |
| 30,00              | 1961 | 2142 | 2056                                   | 1968   | 1727    | 1683    | 1792 | 2029 | 2432 | 3238 |
| 34,000             | 2163 | 2393 | 2270                                   | 2147   | 1878    | 1807    | 1906 | 2136 | 2548 | 3376 |
| 38,300             | 2385 | 2667 | 1152                                   | 2356   | 2056    | 1948    | 2035 | 2262 | 2708 | 3587 |
| 42,000             | 2629 | 2977 | 2790                                   | 2603   | .2260   | 2108    | 2183 | 2414 | 2896 | 3896 |
| 46,000             | 2897 | 3341 | 3129                                   | 2917   | 2479    | 2299    | 2350 | 2593 | 3141 | 4299 |
| 50,000             | 3209 | 3742 | 3520                                   | 3299   | 2724    | 2518    | 2549 | 2820 | 3501 | 4861 |

TABLE 4-14

AASIC FUEL FLOW FUEL FLOW KATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 6000 FT TEMPERATURE: "5 C

|          |                   | 160   | 2859   | 2912   | 2989   | 3124      | 3388      | 3733      | 4234      | 5005           |
|----------|-------------------|-------|--------|--------|--------|-----------|-----------|-----------|-----------|----------------|
|          |                   | 0 + 1 | 2175   | 2254   | 2352   | 2473      | 2622      | 2813      | 3104      | 3620           |
|          |                   | 120   | 1824   | 1908   | 2003   | 2115      | 2250      | 2413      | 2824      | 2907           |
|          |                   | 100   | 1605   | 1697   | 1802   | 1849 1922 | 2059      | 2216      | 2404      | 2620 2638      |
|          | FLIGHT MODE (KTS) | 80    | 1498   | 1600   | 1717   | 1849      | 2001      | 2351 2180 | 2389      | 2620           |
|          | HT MOD            | 09    | 1519   | 1637   | 1778   | 1945      | 2140      | 2351      | 2588      | 2881           |
|          | FLIG              | 40    | 1704   | 1854   | 2022   | 2215      | 2447      | 2741      | 3100      | 3536           |
|          | 17.               | NO E  | 1737   | 1919   | 1212   | 2349      | 2778 2612 | 5959      | 3308      | 3372 3941 3738 |
|          | 4 4 7             | HOGE  | 1769   | 1983   | 2221   | 2484      | 2778      | 3118      | 3515 3308 | 3941           |
| •        | المراجعة المراجعة | 391H  | 1991   | 1838   | 2029   | 1422      | 2477      | 2736      | 3030      | 3372           |
| *** **** | GROSS<br>WEIGHTS  | (183) | 22,000 | 26.000 | 000100 | 34,000    | 38,000    | 42,000    | 46,000    | 20,000         |

TABLE 4-15

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR TEMPERATURE: 15 C RASIC FUEL FLOW PRESSURE: 6000 FT

AIRCRAFT - CH-47D CHINOOK

|      | 1     |      |       | FLIGHT | HT MODE | F 1 K+C | -    |      |      |      |
|------|-------|------|-------|--------|---------|---------|------|------|------|------|
|      |       |      |       | 2      |         |         |      |      |      | ,    |
| HIGE |       | HOGE | . NOE | 40     | 09      | 80      | 001  | 120  | 140  | 160  |
| 1711 |       | 1826 | 1783  | 1741   | 1555    | 1528    | 1620 | 1816 | 2129 | 2734 |
| 1896 | لحجيا | 2051 | 1975  | 1899   | 1683    | 1635    | 1716 | 1961 | 2210 | 2786 |
| 2097 |       | 2300 | 2190  | 2080   | 1837    | 1700    | 1827 | 2001 | 2314 | 2879 |
| 2321 |       | 2578 | 2435  | 2222   | 2021    | 1902    | 1955 | 2121 | 2443 | 3051 |
| 2570 | •     | 2897 | 2728  | 2559   | 2227    | 2069    | 2102 | 2270 | 2610 | 3327 |
| 2851 |       | 3267 | 3084  | 2901   | 2449    | 2268    | 2275 | 2458 | 2855 | 3747 |
| 3173 |       | 3688 | 3493  | 3297   | 2728    | 2490    | 2494 | 2721 | 3281 | 4455 |
| 3536 |       | 4145 | 4004  | 3993   | 3062    | 2744    | 2758 | 3051 | 3852 | 5437 |

TABLE 4-16

RASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 6000 FT TEMPERATURE: 35 C AIRCRAFT - CH-470

| 2034 1948 1733<br>2261 2143 1902<br>2528 2380 2101<br>2859 2693 2313 | MODE (KTS) 60 80 100 194 1562 1642 133 1676 1743 102 1808 1861 101 1963 1998 113 2150 2158 |      | 140<br>2104<br>2190<br>2301<br>2444<br>2643 | 160<br>2644<br>2704<br>2825<br>3044<br>3377 |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|---------------------------------------------|---------------------------------------------|
| 2975 3416 3238 3061 2568                                             | 2362 2358                                                                                  | 2545 | 2999                                        | 3962                                        |
| 3317 3865 3754 3643 2888                                             | 2603 2607                                                                                  | 2856 | 3524                                        | 4870                                        |
| 3702 4354 4533 4712 3249                                             | 2887 2895                                                                                  | 3217 | 4113                                        | 6028                                        |

TABLE 4-17

RASIC FUEL FLOW
FUEL FLOW KATES FOR THE GIVEN CUNDITIONS IN LBS/HR
PRESSURE: 8000 FT TENPERATURE: \*25 C

| GROSS   | •    | *    |      | FLIGHT | HT MODE | E (KTS | _      |      |      |       |
|---------|------|------|------|--------|---------|--------|--------|------|------|-------|
| 11.85)  | HIGE | HOGE | NOF  | 40     | 9       | 80     | 100    | 120  | 9,7  |       |
| 22,000  | 1550 | 1667 | 1635 | 1604   | 1419    | 1405   | 1519   | 1750 | 2121 | 2869  |
| 26,000  | 1736 | 1880 | 1816 | 1752   | 1540    | 1508   | 1614   | 1839 | 2208 | 2054  |
| 30,000  | 1927 | 2120 | 2020 | 1919   | 1681    | 1626   | 1722   | 1937 | 27.5 | 30.70 |
| 34,000  | 2141 | 2385 | 225n | 2115   | 078.    | 7, -   | 7 17 0 |      |      | 20,00 |
| 38,000  | 2370 | . 8  | 25.2 |        | 0 0     | 00/1   | 1015   | 9607 | 9442 | 3251  |
| 000 6 % |      |      |      | 1667   | 2046    | 1914   | 1987   | 2200 | 2637 | 3531  |
| 421000  | 0,47 | 5037 | 2843 | 2648   | 2262    | 2098   | 2149   | 2372 | 2867 | 3913  |
| 46,300  | 2946 | 3433 | 3228 | 3024   | 2501    | 2314   | 2344   | 2591 | 320R | 7777  |
| 50,000  | 3290 | 3857 | 3658 | 3458   | 1       | 2550   | 2585   | 2920 | 3736 | 5.550 |
|         |      |      | •    |        |         |        |        |      |      |       |

TABLE 4-18

RASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LRS/HR
PRESSURE: 8000 FT TEMPERATURE: "5 C

| - |   |
|---|---|
| • |   |
| , | ¥ |
|   | 0 |
|   | 0 |
|   | Z |
| • | • |
|   | I |
|   | U |
|   |   |
|   |   |

| GROSS  |        |      |          | FLIC | FLIGHT MODE (KTS) | E (KTS  | 1.5  |      |         |      |
|--------|--------|------|----------|------|-------------------|---------|------|------|---------|------|
| (182)  | . H1GE | HOGE | NOE      | 40   | 9                 | 8       | 001  | 120  | 3       | 97.  |
| 22,000 | 1609   | 1723 | 1681     | 1638 | 1453              | -       | 1523 |      | 1       | 1,   |
| 26,000 | 1793   | 8461 | 1872     | 1796 | 1582              | 1536    | l    |      | 2134    | 277  |
| 30,000 | 1994   | 2200 | <u> </u> | 1976 | 1737              | 1662    | 1    |      | 2243    | 16/2 |
| 34,000 | 2221   | 2481 | 2337     | 2192 | 1921              | È       | 1864 | 2041 | 2 2 2 2 | 2007 |
| 38,000 | 2473   | 2806 | 2636     | 1    | 2:20              | 1       |      | 1,0  | 7381    | 205  |
| 42,000 | 2759   | 1_   | 3003     | 2000 | , , , ,           | 0 / 4 1 | 5102 | 6176 | 4558    | 3371 |
| 44.000 | 1000   |      | 300      | 5107 | 2328              | 2180    | 2175 | 2394 | 2819    | 3830 |
| 000.01 | 3075   | 3615 | 3424     | 3232 | 2643              | 2408    | 2423 | 2668 | 3307    | 4560 |
| 50,000 | 3463   | 4073 | 4012     | 1960 | 1662              | 2668    | 2696 | 3019 | 3905    | 5575 |
|        |        |      |          |      | 4                 |         | •    |      |         |      |

TABLE 4-19

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 8000 FT TEMPERATURE: 15 C AIRCRAFT - CH-470 BASIC FUEL FLOW

| GROSS           |      | ,    | 2    | FLIGHT | HT MODE | E (KTS) | (    |      |        |      |
|-----------------|------|------|------|--------|---------|---------|------|------|--------|------|
| WEIGHS<br>(LBS) | HIGE | HOGE | NOE  | 40     | 09      | 80      | 1 00 | 120  | 0 tr 1 | 1 60 |
| 22,000          | 1659 | 1780 | 1723 | 1675   | 1490    | 1457    | 1539 | 9121 | 2003   | £882 |
| 26,000          |      | 2017 | 1930 | 1843   | 1630    | 1573    | 1641 | 2081 | 2002   | 6192 |
| 30,000          | 2064 | 2280 | 2160 | 2039   | 1800    | 1707    | :761 | 8161 | 2212   | 1927 |
| 34,000          | 2303 | 2583 | 2433 | 2822   | 2002    | 1864    | 1061 | 2055 | 2363   | 8862 |
| 38,000          | 2574 | 2938 | 2771 | 5992   | 2215    | 2054    | 2002 | 2229 | 2577   | 3357 |
| 42,000          | 2887 | 3349 | 3166 | 2983   | 2480    | 1722    | 2273 | 2475 | 2960   | 3980 |
| 46,000          | 3245 | 3802 | 3713 | 3624   | 2808    | 2520    | 2533 | 2798 | 3520   | 4946 |
| 000 + 05        | 3639 | 4596 | 4514 | 4732   | 3185    | 2812    | 2829 | 3179 | 9114   | 6135 |

TABLE 4-20

FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 8000 FT TEMPERATURE: 35 C

| GROSS<br>WEIGHTS |      | 4.   |      | FLIGHT | HT MODE | E (KTS) | .:   |      |      |      |
|------------------|------|------|------|--------|---------|---------|------|------|------|------|
| (685)            | HIGE | HOGE | NOE  | 40     | 09      | 80      | 100  | 120  | 140  | 160  |
| 22,000           | 1708 | 8681 | 1776 | 1715   | 1530    | 1491    | 1951 | 1719 | 1982 | 2470 |
| 26,000           | 1909 | 2085 | 1990 | 1894   | 1683    | 1614    | 1669 | 1816 | 2080 | 2554 |
| 30,000           | 2135 | 2363 | 2236 | 2110   | 1869    | 1,58    | 1798 | 1937 | 2206 | 2727 |
| 34,000           | 2388 | 2692 | 2542 | 2393   | 2077    | 1932    | 6461 | 2089 | 2379 | 3012 |
| 38,000           | 2683 | 3071 | 2909 | 2748   | 2314    | 2139    | 2134 | 2297 | 2678 | 3508 |
| 42,000           | 3018 | 3509 | 3380 | 3251   | 2623    | 2371    | 2374 | 2593 | 3176 | 4351 |
| 46,000           | 3397 | 1668 | 4127 | 4262   | 2979    | 2650    | 2658 | 2949 | 3761 | 5481 |
| 50,000           | 3818 | 4514 | 4930 | 5345   | 3358    | 2940    | 2951 | 3328 | 4356 | 6544 |

TABLE 4-21

PASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TEMPE: ATURE: -25 C

|                                         | 091   | 5883   | 2786           | 2934   | 3175   | 3529   | 4025   | 4793   | 2847   |
|-----------------------------------------|-------|--------|----------------|--------|--------|--------|--------|--------|--------|
|                                         | 0 1 1 | 1661   | 2094           | 2213   | 2385   | 2597   | 2909   | 3416   | 4042   |
|                                         | 120   | 5591   | 1747           | 1857   | 1661   | 2155   | 2363   | 2678   | 3066   |
|                                         | 100   | 4441   | 1545           | 1660   | 1795   | 1952   | 2139   | 2374   | 7992   |
| E (KTS)                                 | 80.   | 1341   | 1451           | 1578   | 1724   | 1899   | 2,10   | 2343   | 2617   |
| FLIGHT MODE                             | 09    | 1362   | 1461           | 1646   | 1833   | 2046   | 2278   | 2572   | 5668   |
| FLIG                                    | 0 6   | 6651   | 1700           | 1882   | 2103   | 2379   | 2742   | 3164   | 3878   |
|                                         | NOE   | 1586   | 1777           | 1995   | 2247   | 2554   | 2930   | 3352   | 3935   |
| *************************************** | HOGE  | 8291   | <b>ខំនួ</b> 81 | 2108   | 1962   | 2729   | 3118   | 3539   | 3992   |
| \$ i A                                  | HIGE  | 1515   | 1691           | 1900   | 2130   | 2383   | 2679   | 3020   | 3389   |
| GROSS                                   | (182) | 22,000 | 26,000         | 30,000 | 34,000 | 38,000 | 42,000 | 46,000 | 20,000 |

TABLE 4-22

HASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TENPERATURE: "S C

CHINGOK

|       |           |       |          | 160         | 2004   |       | 2571   |       | 2720   |      | 20.17  | 100   | 100    | 2443 | 7007   | 0 10 1 | 0     | noDc | 5057 | - rane  |
|-------|-----------|-------|----------|-------------|--------|-------|--------|-------|--------|------|--------|-------|--------|------|--------|--------|-------|------|------|---------|
|       | -         |       | Ľ        | 140         | 1927   |       | 2025   |       | 2150   |      | 2311   | • • • | 25.30  |      | 2001   |        | 36.75 | 3/65 | 4101 | 1 4 1 . |
|       |           |       | L        | 371         | 1631   |       | 1725   |       | 1840   |      | 1985   |       | 2167   |      | 2425   | 4      | 2767  |      | 3170 | ,       |
|       | 2         |       | 100      |             | 1449   |       | 1204   |       | 9/91   |      | 1819   |       | 1989   |      | 2207   |        | 2475  |      | 2786 |         |
|       | E (KTS)   | - 3   | 80       | ,           | 1364   | 1 a . | 1041   | , , , | 010.   |      | 5//7   |       | 1970   |      | 2194   | T.     | 2450  |      | 2756 |         |
|       | HT MODE   |       | 90       | 000         | 1375   | 1534  |        | 1707  |        | 000  | 1011   |       | 6717   |      | 71012  |        | 2112  |      | 3134 | 1       |
|       | FL1GHT    |       | <b>Q</b> | 1570        | 1.00   | 1746  |        | 1945  |        | 2194 |        | 2522  | 7 4 7  | 2021 | 17/2   | 3501   | 1     | 4713 | 3    |         |
|       | ;         |       | NOE      | 1631        |        | 1834  | 3.5    | 2007  |        | 2345 |        | 269c  |        | 3102 |        | 3664   |       | 4471 |      |         |
|       | ,         | HOGE  | ı        | 1684        |        | 7761  | 2180   |       | 70"6   | 0/47 | T      | 2866  |        | 3282 |        | 3737   | 1     | 4229 |      |         |
|       |           | HIGH  |          | 1563        | 1,36   | 4011  | 1960   | ,     | 2213   | 6175 | 2//0=  | 1017  |        | 6813 |        | 6/15   |       | 3575 |      |         |
| GROSS | WEIGHTS - | (587) | 22.000   | 2 2 1 0 0 0 | 26,000 |       | 30,000 |       | 34,000 |      | 38,000 |       | 42.000 | 000  | 44.000 |        | 0000  |      |      |         |

TABLE 4-23

PASIC FUEL FLOW
FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR
PRESSURE: 10000 FT TEMPERATURE: 15 C
AIRCRAFT - CH-47D

| (183)  | ** ** *** ** ** | ÷    |      | FLIGHT | HT MODE | E (KTS | •    |      |      |      |
|--------|-----------------|------|------|--------|---------|--------|------|------|------|------|
|        | HIGE            | HOGE | NOE  | 40     | 9       | 80     | 100  | 120  | 140  | 160  |
| 22,000 | 1612            | 1742 | 1679 | 1617   | 1433    | 1394   | 1465 | 1624 | 1889 | 2386 |
| 26,000 | 1813            | 1990 | 1894 | 1797   | 1588    | 1518   | 1575 | 1724 | 1993 | 2478 |
| 30,000 | 2041            | 2274 | 2145 | 2016   | 1776    | 1664   | 1706 | 1848 | 2127 | 2666 |
| 34,000 | 2299            | 2609 | 2459 | 2309   | 1985    | 1842   | 1860 | 2007 | 2312 | 2981 |
| 38,000 | 2600            | 3006 | 2838 | 2671   | 2231    | 2053   | 2054 | 2229 | 2637 | 3518 |
| 42,000 | 2949            | 3451 | 3341 | 3231   | 2549    | 2294   | 2304 | 2539 | 3174 | 4423 |
| 46,000 | 3339            | 3939 | 4114 | 4289   | 2920    | 2581   | 2596 | 2914 | 3768 | 5586 |
| 50,000 | 3765            | 4457 | 4899 | 5341   | 3309    | 2880   | 2901 | 3308 | 4364 | 6752 |

TABLE 4-24

RASIC FUEL FLOW FUEL FLOW RATES FOR THE GIVEN CONDITIONS IN LBS/HR PRESSURE: 10000 FT TEMPERATURE: 35 C

CHINOOK

AIRCRAFT - CH-470

| 670VS  | ***** |      |      | FLIG | HT MOD | FLIGHT MODE (KTS) | ,    |      | :    | :    |
|--------|-------|------|------|------|--------|-------------------|------|------|------|------|
| (188)  | HIGE  | HOGE | NOE  | 0 #  | 09     | 80                | 1 00 | 120  | 1 40 | 160  |
| 22,000 | 1991  | 1800 | 1729 | 1658 | 1475   | 1428              | 1487 |      | 1872 | 2313 |
| 26,000 | 1874  | 2060 | 1956 | 1852 | 1644   | 561               | 1605 | 1736 | 1983 | 2435 |
| 30,000 | 2114  | 2365 | 2232 | 2100 | 1845   | 1720              | 1746 | 1874 | 2132 | 2670 |
| 34,000 | 2392  | 2727 | 1852 | 2436 | 2066   | 1917              | 1916 | 2056 | 2370 | 3067 |
| 38,000 | 2717  | 3147 | 3005 | 2864 | 2355   | 2140              | 2141 | 2329 | 2819 | 3814 |
| 42,000 | 3086  | 3620 | 3694 | 3769 | 2703   | 2410              | 2417 | 2675 | 3395 | 4886 |
| 46,000 | 3503  | 4141 | 4507 | 4873 | 3080   | 2701              | 2711 | 3053 | 3990 | 6909 |
| 50,000 | 3963  | 4661 | 2625 | 5923 | 3471   | 2998              | 3013 | 3444 | 4584 | 7215 |

DELTA FUEL FLOW FOR DRAG DATA TABLES

TABLE 4-25

CORRECTION FUE! FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: SLA LEVEL TEMPERATURE: -25 C

CHINOOK

|             |     |     | AIR | R SPEE | SPEED IN KTS | TS   |      |      |
|-------------|-----|-----|-----|--------|--------------|------|------|------|
|             |     | 0.6 | 09  | 80     | 1 0 n        | 120  | 140  | 160  |
| ORAG        | 5.0 | 91  | 54  | 128    | 757          | 443  | 741  | 1214 |
| Z Z         | 100 | 32  | 108 | 257    | 905          | 406  | 1541 | 2435 |
| SOUARE FFFT | 150 | 48  | 163 | 386    | 492          | 1380 | 2358 | 3657 |
|             | 200 | 92  | 217 | 915    | 1630         | 1887 | 3176 | 4878 |

\*PRECEDING PAGE NOT FILMED
BLANK

**TABLE 4-26** 

CORRECTION FU<sub>ei</sub>' Flow LBS/HR FOR EXTERNAL DRAG Pressure: Sea Level Temperature: "S c

AIRCRAFT - CH-47D GHINGOX

|                   |     |     | 1 V | R SPEE | AIR SPEED IN KTS | 15   |                    | *************************************** |
|-------------------|-----|-----|-----|--------|------------------|------|--------------------|-----------------------------------------|
|                   |     | 0 h | 09  | 80     | 100              | 120  | 140                | 160                                     |
| 0 4<br>0 0        | 50  | 15  | 50  | 119    | 235              | 404  |                    |                                         |
| ž z               | 001 | 30  | 101 | 239    | 47,              | 832  | -                  | 2248                                    |
|                   | 150 | 45  | 151 | 360    | 709              | ~    | 2153               |                                         |
| משו ששואר אול אול | 200 | 60  | 202 | 481    | 952              | 1717 | 952 1717 2919 4530 | 4530                                    |
|                   |     |     |     |        |                  |      |                    | ·                                       |

TABLE 4-27

CORRECTION FU<sub>ei</sub> flow LBS/HR for external drag pressure: Sea Level temperature: is c

|                 |     |                | AIR | R SPEE | SPEED IN KTS | 75   |      |      |
|-----------------|-----|----------------|-----|--------|--------------|------|------|------|
|                 |     | 0#             | 90  | 80     | apı          | 120  | 140  | 160  |
| 0 8 4 6         | 50  | <del>+</del> 1 | 47  | 111    | 220          | 383  | 625  | 1005 |
| 2 2             | 100 | 28             | ħ 6 | 422    | 44,          | 772  | 1278 | 2072 |
| 7.01.4 PF FFF F | 150 | 42             | 141 | 337    | 663          | 1175 | 1976 | 3143 |
|                 | 200 | 5.6            | 189 | 450    | 888          | 1586 | 2691 | 4214 |

TABLE 4-28

CORRECTION FU<sub>f</sub>i Flow LBS/HR FOR EXTERNAL DRAG Pressure: Sea Level temperature: 35 c

|                                        |     |     | AI         | R SPEE | AIR SPEED IN KTS | TS       |             |      |
|----------------------------------------|-----|-----|------------|--------|------------------|----------|-------------|------|
|                                        | ,   | 0 h | 09         | 80     | 101              | 120      | 140         | 160  |
| 2400                                   | 0.5 | 61  | <b>†</b> † | 104    | 208              | 360      | 581         | 919  |
| 2 2                                    | 100 | 2.7 | 88         | 210    | 415              | 724      | 1187        | 1912 |
|                                        | 150 | 40  | 133        | 316    | 624              | 624 1097 | 1821        | 2923 |
| - 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 200 | 53  | 177        | 422    | מ א מ            | - 400    | טאנ טאו אנא | 2023 |

TABLE 4-29

CORRECTION FU<sub>ff</sub> FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 2000 FT TEMPERATURE: -25 C

AIRCRAFT - CH-47D

|                  |     |    | AIR | R SPEE | SPEED IN KTS | .TS           |      |         |
|------------------|-----|----|-----|--------|--------------|---------------|------|---------|
|                  |     | 0+ | 90  | 80     | 100          | 120           | 140  | 160     |
| œ<br>œ<br>C      | 5.0 | 51 | 5.ó | 120    | 235          | 413           | 691  | 1129    |
| 7<br>2<br>2<br>5 | 100 | 30 | 101 | 240    | 471          | 843           | 1436 | 2265    |
| 1400             | 150 | 45 | 152 | 360    | 712          | 1288          | 2197 | 3400    |
| SKOANE TEE       | 200 | 09 | 202 | 480    | 040          | 940 1710 39E7 | 2967 | 4 5 3 C |

TABLE 4-30

CORRECTION FUri FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 2000 FT TEMPEKATURE: -5 C

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ·   | A     | R SPE | AIR SPEED IN KTS | <ts< th=""><th></th><th></th></ts<> |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-------|------------------|-------------------------------------|------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 40  | 69    | 80    | 100              | 120                                 | 146  | 160  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  | h 1 | 47    | Ξ     |                  |                                     |      |      |
| 9 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 | 28  | 46    | 223   | 438              | 775                                 | 1302 |      |
| F. 77 | 150 | 42  | 1 4 1 | 335   | 999              | 1180                                | 1    | 1    |
| JACKIE FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 | 56  | 188   | 448   | 887              | 1602                                | 1    | 4214 |

TABLE 4-31

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 2000 FT

TEMPERATURE: 15 C

AIRCRAFT - CH-47D

|                  |       |    | AIR    | SPEE | AIR SPEED IN KTS | S    |           |       | _ |
|------------------|-------|----|--------|------|------------------|------|-----------|-------|---|
|                  |       | ,  |        |      |                  |      |           |       | _ |
|                  |       | 2  | 60     | 80   | 07               | 120  | 140       | 160   | - |
|                  | E.0   | :  |        |      |                  |      |           | , ,   | - |
| DRAG             | 2.0   | ۲٦ | 7<br>7 | 104  | 205              | 356  | 583       | 936   |   |
|                  | 0     |    |        |      |                  |      | ,         | )     |   |
| Z                | 100   | 92 | 88     | 209  | 411              | 719  | 1101      | 1020  |   |
|                  | 0 2 1 |    |        |      |                  |      |           |       |   |
| SQUARE FRAT      | 000   | ^  | 132    | 314  | 617              | 1004 | 1843      | 2024  |   |
| - J - I : C) 7 ) | 200   |    |        |      | Т                |      |           |       |   |
|                  | 200   | 2  | 176    | 4.19 | 827              | 4478 | 1478 2508 | 20.20 |   |

**TABLE 4-32** 

CORRECTION FUri FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 20pg Ft Temperature: 35 c

|                    |     |    | AI  | R SPEF | AIR SPEFD IN KTS | TS   |           |      |
|--------------------|-----|----|-----|--------|------------------|------|-----------|------|
|                    | ,   | 40 | 09  | 90     | 100              | 120  | 140       | 160  |
| 2 4 9 0            | 5.0 | 12 | i h | 86     | 193              | 335  | 545       | 855  |
| 9<br>4 2<br>2<br>2 | 100 | 25 | 83  | 961    | 386              | 449  | 1106      | 1780 |
| # L U              | 150 | 37 | 124 | 295    | 185              | 1022 | 1698      | 2720 |
| SWUANE PEE         | 200 | 50 | 791 | 394    | 77.4             | 1378 | 1378 2321 | 3450 |

TABLE 4-33

CORRECTION FUEL FLOW LBS/HR FOR EXTERNAL DRAG JON FT TEMPERATURE: -25 AIRCRAFT - CH-47D PRESSURE: 4000 FT

|           |     |     | ATR   |     | SPEED IN KIS | 7    |      |      | _ |
|-----------|-----|-----|-------|-----|--------------|------|------|------|---|
|           |     |     |       |     |              |      |      |      | _ |
|           |     | 40  | 09    | 80  | 10 i         | 120  | 1 40 | 091  |   |
| a<br>a    | 50  | h I | 47    | 111 | 218          | 386  | 644  | 1050 |   |
| 2 2 2     | 100 | 87  | 46    | 223 | 438          | 785  | 1338 | 2104 |   |
| i<br>i    | 150 | 42  | 1 4 1 | 334 | 663          | 1202 | 2045 | 3159 |   |
| שמשה ובבו | 200 | 95  | 188   | 447 | 894          | 1641 | 2761 | 4213 |   |

TABLE 4-34

CORRECTION FU<sub>fl</sub> flow LBS/HR for External Drag PRESSURE: 40nh FT TEMPERATURE: +5 C

|                 |     |    | A I    | R SPEE | AIR SPEED IN KTS | .T.S |                   |       |
|-----------------|-----|----|--------|--------|------------------|------|-------------------|-------|
|                 |     | 40 | 60     | 80     | 100              | 120  | 140               | 160   |
| 0               | 50  | 13 | \$1 to | 104    | 203              | 355  | 588               | 959   |
| 9<br>% 2<br>% + | 100 | 26 | 88     | 208    | 408              | 722  | 1214              | 1945  |
|                 | 150 | 39 | 181    | 312    | 614              | 660: | 1870              | 2930  |
| SWOANE TEE.     | 200 | 52 | 176    | 717    |                  | 1011 | 700 0000 7000 700 | 30,00 |

TABLE 4-35

CORRECTION FU<sub>fl</sub> Flow LBS/HR FOR EXTERNAL DRAG Pressure: 4005 Ft temperature is c

|      |     |      | IV  | R SPEE | AIR SPEED IN KTS | 15       |               |      |
|------|-----|------|-----|--------|------------------|----------|---------------|------|
|      |     | 40   | 09  | 08     | 100              | 0-1      | 1 40          | 160  |
| 9880 | 50  | 12   | 41  | 16     | 191              | 331      | £ 43          | 872  |
| 2 2  | 100 | 54   | 82  | h61    | 382              | 019      | 670 1110      | 1793 |
|      | 150 | 37   | 123 | 292    | 574              | 5101 725 | 1717          | 2718 |
|      | 200 | 6 17 | 491 | 390    | 769              | 1376     | 769 1376 2336 | 3643 |

TABLE 4-36

CORRECTION FU<sub>fi</sub> Flow Lbs/Hr For External Drag Pressure: 400 p. t. temperature: 35 c

|                                            |     |                | ν.  | AIR SPEED | O IN KTS | <ts< th=""><th></th><th></th></ts<> |      |      |
|--------------------------------------------|-----|----------------|-----|-----------|----------|-------------------------------------|------|------|
|                                            |     | 0 <del>h</del> | 09  | 80        | 100      | 120                                 | 140  | 160  |
| DAAG                                       | 05  | 12             | 38  | 16        | 179      | 312                                 | 505  | 196  |
| )<br>: Z                                   | 100 | 23             | 77  | 183       | 359      | 627                                 | 1030 | 1656 |
| SQ 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 150 | 38             | 116 | 275       | 540      | 952                                 | 1583 | 2529 |
|                                            | 200 | 91             | 155 | 367       | 722      | 1283                                | 2162 | 3401 |

TABLE 4-37

CORRECTION FU<sub>pl</sub> Flow LBS/HR FOR EXTERNAL DRAG

PRESSURE: 6000 FT TEMPERATURE: -25 C

AIRCRAFT - CH-47D

|                   |     |    | AI  | AIR SPEE | SPEED IN KTS | 15   |      |      |
|-------------------|-----|----|-----|----------|--------------|------|------|------|
|                   |     | 40 | Ū9  | 80       | 10i          | 120  | 140  | 160  |
| 0                 | 50  | 13 | h h | 103      | 202          | 359  | 6,00 | 414  |
| 9<br>4 2<br>2     | 100 | 26 | 87  | 207      | 408          | 731  | 1246 | 1953 |
| 7 1 2 2 3 4 1 C 2 | 150 | 39 | 131 | 311      | 618          | 1121 | 1902 | 2931 |
| 1                 | 200 | 52 | 175 | 415      | 832          | 1529 | 2557 | 3909 |

TABLE 4-38

CORRECTION FU<sub>e</sub>l Flow LBS/HR FOR EXTERNAL DRAG

PRESSURE: 600n FT TEMPERATURE: -5 C

AIRCRAFT . CH-470

|             |     |    | AIR  | R SPEE | SPEED IN KTS | 15   |      |       |
|-------------|-----|----|------|--------|--------------|------|------|-------|
|             |     | 40 | 09   | 80     | 100          | 120  | 140  | 160   |
|             | 20  | 12 | 1 #  | 96     | 189          | 330  | 548  | 892   |
| 9<br>4 3    | 100 | 54 | 8 !  | 193    | 379          | 672  | 1132 | 1807  |
|             | 150 | 36 | 122  | 290    | 571          | 1023 | 1741 | 2721  |
| ひばしななに でただし | 200 | 87 | 1.63 | 387    | 7.60         | 1301 | 2367 | 34.35 |

TABLE 4~39

CORRECTION FUFL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 600n ft temperature: 1s c

|                             |     |     | 1 A 1   | R SPEE | AIR SPEED IN KTS | TS   |       |      |
|-----------------------------|-----|-----|---------|--------|------------------|------|-------|------|
|                             |     |     |         |        |                  |      |       |      |
|                             |     | 40  | ون<br>9 | 80     | 001              | 120  | 140   | 160  |
| _                           |     |     |         |        |                  |      |       |      |
| 8                           | 20  |     | 38      | 90     | 177              | 308  | 506   | 812  |
| 9 4 4 4                     |     |     |         |        |                  | ,    |       | •    |
| 2                           | 100 | 23  | 7.6     | 181    | 356              | 623  | 1014  | 1444 |
| •                           | 0   |     |         |        |                  |      |       | 0001 |
| + 1 1 1 1 1 1 1 1 1 1 1 1 1 | 150 | 346 | 5       | 272    | 534              | 876  | 1500  | 2535 |
| これない ひとせつから                 |     |     |         |        |                  |      | , , , | 6262 |
| 4.5                         | 200 | 4.5 | 153     | 362    | 717              | :201 | 2124  | 1201 |
|                             |     |     |         |        |                  |      |       |      |

TABLE 4-40

CORRECTION FUR! FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 6000 FT TEMPERATURE: 35 C

AIRCRAFT - CH-47D CHINDOK

|      |     |     | AI  | R SPEE | AIR SPEED IN KTS | TS  |      |      |
|------|-----|-----|-----|--------|------------------|-----|------|------|
|      |     | 0 % | 09  | ០គ     | 100              | 120 | 140  | 160  |
| SVAC | 50  | 11  | 98  | 58     | 167              | 289 | 470  | 741  |
| Z Z  | 100 | 12  | 7.2 | 170    | 334              | 583 | 959  | 1540 |
|      | 150 | 32  | 108 | 256    | 502              | 885 | 1476 | 2350 |
| -    | 200 | 43  | 751 | 341    | 671              | 104 | 2013 | 3160 |

TABLE 4-41

CORRECTION FUFL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 80nn FT TEMPERATURE: -25 C

AIRCRAFT - CH-47D

|             |     |     | Thirty wastern |      |                  | -    |      |      |
|-------------|-----|-----|----------------|------|------------------|------|------|------|
|             |     |     | A I            | SPEE | AIR SPEED IN KTS | 15   |      |      |
|             |     | 0.5 | 09             | 80   | 100              | 120  | 140  | 160  |
| 9 4 0 0     | 50  | 12  | 40             | 96   | 18A              | 335  | 559  | 903  |
| 9<br>C Z    | 100 | 24  | 8 1            | 192  | 379              | 681  | 1160 | 1810 |
| SQUARE FEFT | 150 | 36  | 121            | 288  | 575              | 1045 | 1768 | 2717 |
|             | 200 | 48  | 162            | 386  | 774              | 1424 | 2375 | 3623 |

TABLE 4-42

CORRECTION FUFL FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 8000 ft temperature: -5 c

AIRCRAFT - CH-47D

|             |     |     | A   | R SPE  | AIR SPEFU IN KTS | 7.10  |      |        |
|-------------|-----|-----|-----|--------|------------------|-------|------|--------|
|             |     | 40  |     |        |                  |       |      |        |
|             |     |     | Do  | 80     | 1001             | 120   |      | T      |
| 2890        | 20  | 11  | 3.5 | 3      |                  |       | 0.   | 160    |
| 200         |     |     | מי  | ت<br>۲ | 175              | 307   | 5.0  | 0.30   |
| 2           | 200 | 22  | 7,  | - 30   |                  | 1     |      | 827    |
| L.,         | 0.1 |     | 0   | 1/4    | 352              | 626   | 1005 | 1, 3.1 |
| SQUARE FFFT | 200 | 3.4 | 112 | 240    |                  |       |      | 101    |
| -<br>-<br>1 | 200 |     |     |        | 531              | 953   | 1620 | 2524   |
|             |     | 15  | 15. | 359    | 716              |       |      | T      |
|             |     |     |     | 1      |                  | 15,40 | 2187 | 3371   |
|             |     |     |     |        |                  |       |      |        |

TABLE 4-43

CORRECTION FUFL FLOW LBS/HR FOR EXTERNAL DRAG JOO FT TEMPERATURE: 15 C AIRCRAFT - CH-47D PRESSURE: 8000 FT

|            |     |    | A I | AIR SPEF | SPEED IN KTS | <ts< th=""><th></th><th></th></ts<> |       |      |
|------------|-----|----|-----|----------|--------------|-------------------------------------|-------|------|
|            |     | 40 | 09  | 80       | 100          | 120                                 | 140   | 160  |
| 9 A        | 5.0 | 11 | 35  | 84       | 164          | 286                                 | 471   | 756  |
| 2 2        | 100 | 12 | 7.1 | 168      | 329          | 580                                 | 496   | 1548 |
|            | 150 | 35 | 106 | 252      | 446          | 882                                 | -     | 2344 |
| JEUANG PEE | 200 | 42 | 143 | 114      | 1            | . 103                               | .   6 |      |

TABLE 4-44

CORRECTION FU<sub>fi</sub> flow LBS/HR for external drag pressure: 800Å ft temperature; 35 c

AIRCRAFT - CH-470

|             |     |     | AIR  |     | SPEED IN KTS | TS   |      |      |
|-------------|-----|-----|------|-----|--------------|------|------|------|
|             |     | 0 h | 09   | 80  | 100          | 120  | 140  | 160  |
| DRAG        | 0.5 | 01  | 33   | 79  | 155          | 268  | 438  | 169  |
| Z           | 100 | 0.2 | 29   | 158 | 310          | 542  | 893  | 1433 |
| SOUARE FFFT | 150 | 0 € | 1 00 | 238 | 994          | 824  | 1376 | 2184 |
|             | 200 | 04  | 134  | 317 | 624          | 1.10 | 1874 | 2934 |

TARLE 4-45

CORRECTION FUFL FLOW LBS/HR FOR EXTERNAL DRAG PRESSURE: 100,00 FT TEMPERATURE: -25 C AIRCRAFT - CH-470

|             |     |     | AIR | R SPEF | SPEED IN KTS | TS   |      |      |
|-------------|-----|-----|-----|--------|--------------|------|------|------|
|             |     | 40  | 09  | 80     | 001          | 120  | 140  | 160  |
| 0 4         | 9.0 | 1.1 | 37  | 68     | 175          | 312  | 522  | 837  |
| 9<br>K<br>L | 100 | 23  | 75  | 178    | 353          | 634  | 1079 | 1676 |
| ~           | 150 | 34  | 113 | 268    | 535          | 675  | 1642 | 2515 |
| 3404ペピ っただっ | 200 | 45  | 150 | 358    | 721          | 1325 | 2294 | 3355 |

TABLE 4-46

CORRECTION FUFI FLOW LBS/HR FOR EXTERNAL DRAG Pressure: 10000 Ft temperature: -5 c

AIRCRAFT - CH-470

|         |           |     | AI     | R SPEF | AIR SPEFD IN KTS | (75   |      |      |
|---------|-----------|-----|--------|--------|------------------|-------|------|------|
|         | - Control | 40  | 09     | 80     | 100              | 120   | 1 40 | 160  |
| 0 4 8 6 | 5.0       | 10  | 38     | 83     | 162              | 286   | 474  | 77.1 |
| )<br>(  | 100       | 2.1 | 07     | 991    | 326              | 582   | 983  | 1555 |
| 5001486 | 150       | 3.1 | 105    | 249    | 494              | 887   | 1507 | 2340 |
| 1341    | 200       | 42  | 1 40 1 | 333    | 665              | 12101 | 2032 | 3124 |

TABLE 4-47

CORRECTION FU<sub>pl</sub> Flow LBS/HR FOR EXTERNAL DRAG Pressure: 100,0 ft temperature: 15 c Aircraft - CH-470

CHINOOK

|             |     |     | A I | R SPEF | AIR SPEFD IN KTS | TS    |      |      |
|-------------|-----|-----|-----|--------|------------------|-------|------|------|
|             |     | 40  | 69  | 08     | 001              | 120   | 1 40 | 160  |
| DRAG        | ១ទ  | 0 1 | 33  | 7.8    | 751              | 797   | 439  | 705  |
| Z           | 001 | 20  | 99  | 951    | 308              | 0 7 3 | 899  | 1439 |
| SQUARE FEET | 150 | 29  | 66  | 234    | 465              | 820   | 1387 | 2175 |
| !           | 200 | 39  | 131 | 312    | 619              | 1111  | 1880 | 2912 |

) 1

TABLE 4-48

CORRECTION FUF! FLOW LBS/HR FOR EXTERNAL DRAG

PRESSURE: 10000 FT TEMPERATURE: 35 C

AIRCRAFT - CH-47D

|                       |     |    | AIF | SPEE | AIR SPEED IN KTS | Ts   |       |      |
|-----------------------|-----|----|-----|------|------------------|------|-------|------|
| •                     |     | 40 | 09  | 08   | 100              | 120  | 0 h ş | 160  |
|                       | 2.0 | 6  | 1 € | ٤2   | 143              | 545  | 418   | 949  |
| 9<br>4<br>4<br>7<br>1 | 100 | 18 | 62  | 147  | 287              | 504  | 831   | 1335 |
| Z                     | 150 | 28 | 93  | 220  | 432              | 766  | 1283  | 2030 |
| SQUARE FEE            | 200 | 37 | 124 | 462  | 580              | 1033 | 1745  | 2724 |

GROUND IDLE FUEL FLOW DATA TABLE

GROUND IDLE FUEL FLOW AIRCRAFT - CH-47D

CHINOOK

|             |       |           | PRESSURE | PRESSURE ALTITUDE (FT) | (FT) |      |      |
|-------------|-------|-----------|----------|------------------------|------|------|------|
|             | ,     | SEA LEVEL | 2000     | 400                    | 6000 | 8000 | 0000 |
| TEMPERATURE | -25 C | 1480      | 1400     | 1280                   | 1188 | 1104 | 1040 |
|             | . 5-  | 1468      | 1368     | 1268                   | 1176 | 1092 | 1028 |
| 9 T L N     | 15 C  | 1454      | 1374     | 1254                   | 1162 | 1078 | 1014 |
|             | 35 C  | 0++1      | 1360     | 124n                   | 1148 | 1064 | 1000 |

ENTRIES ARE AIRCRAFT FUTL FTOW RATES IN LBS/HR

PRECEDING PAGE NOT FILMED
BLANK

GROSS WEIGHT LIMITS DATA TABLES

TRECEDING PAGE NOT FILMED

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #1

1008 OF MAXIMUM POWER (HOGF)

AIRCRAFT - CH-470

CHINDOK

|             |                    | PRES      | PRESSURE ALTITUDE (FT) | (UDE (FT) |       |       |       |
|-------------|--------------------|-----------|------------------------|-----------|-------|-------|-------|
|             |                    | SEA LEVEL | 2000                   | JOOh      | 9009  | 8000  | 10001 |
| TEMPERATURE | 5 5Z÷              | 65150     | 60,580                 | 56269     | 52212 | 48388 | 44801 |
| DEGREFS     | ວ <b>૬</b> ₌       | 62795     | 58385                  | 54227     | 50316 | 46632 | 42983 |
| NTIGR       | 15 C               | 57330     | 53307                  | 49511     | 45939 | 42334 | 39135 |
|             | ວ ຮ <sub>ິ</sub> ເ | 90905     | 47653                  | 43703     | 40221 | 37174 | 34312 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 5,000 LBS

TABLE 4-51

GROSS WEIGHT LIMITS

(DUE TO TRANSMISSION)

FUR. TAKEOFF CRITERIA #1

1DDS OF MAXIMUM POWER (HOGE)

AIRCRAFT - CH-47D

CHINOOK

|                                            |       | PRES      | PRESSURE ALTITUNE (FT) | TUNE (FT) |       |       |         |
|--------------------------------------------|-------|-----------|------------------------|-----------|-------|-------|---------|
|                                            |       | SEA (EVEL | 2000                   | 400 ب     | 0009  | 8000  | 1000    |
| 15 A S T S A S T S T S T S T S T S T S T S | -25 C | 57126     | 55735                  | 54329     | 52928 | 51493 | 5,0060  |
|                                            | J 5-  | 55645     | 19245                  | 5288F     | 49415 | 50053 | 48627   |
|                                            | 15 C  | 54278     | 52916                  | 51521     | 5 127 | 48725 | · 47247 |
|                                            | 35 C  | 53024     | 51649                  | 5027ñ     | 48893 | 47440 | 46085   |

ENTRIES ARE AIRCRAFT GRUSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: SCOUD LBS

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #2

958 OF RATED POWER. VERTICAL RATE OF CLIMB 450 FT/MIN. OGE

AIRCAAFT - CH-470

|             |       | PRES      | PRESSURE ALTITUDE (FT) | TUDE (FT) |       |       |       |
|-------------|-------|-----------|------------------------|-----------|-------|-------|-------|
|             |       | SEA LEVEL | 2000                   | 4000      | 0009  | 0008  | 10000 |
| TEMPFRATURE | -25 C | 60179     | 56516                  | 52494     | 48710 | 45142 | 4114  |
| - L         | J 5_  | 58985     | 54545                  | 50661     | 47008 | 43565 | 40149 |
| CENTIGRADE  | 15 C  | 53518     | 49762                  | 46219     | 42885 | 39512 | 36525 |
|             | 35 C  | 47168     | 95824                  | 46704     | 37479 | 34637 | 31967 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: SCOOD LBS

GROSS WEIGHT LIMITS

(DUE TO TRANSMISSION)

FOR TAKEOFF CRITERIA #2

13 C TRANSMISSION POWER LIMIT. VERTICAL RATE OF CLIMB 450 FT/MIN.

AIRCRAFT - CH-470

CHINDOK

|                                                                  | PRESSUR      | R ALTIT | PRESSURE ALTITUDE (FT) |       |       |        |
|------------------------------------------------------------------|--------------|---------|------------------------|-------|-------|--------|
| EMPERATURE -25 C 54936 53697 52409 DEGREES 15 C 5361 51103 49836 | SEA LEVEL    | 2000    | 4004                   | 9009  | ១៦០១  | 1 0000 |
| EMPERATURE -5 53617 52345 51070 DEGREES 15 52361 51103 49836     |              | 53697   | 52409                  | 51114 | 49811 | 48471  |
| EGREES 15 52361 51103 49836                                      | <del> </del> | 52345   | 5107i                  | 49785 | 48465 | 47159  |
| NI 160 ADE                                                       | <u> </u>     | 51103   | 49836                  | 48535 | 47246 | 45912  |
| 35 C 51201 49953 4867n                                           | 51201        | 49953   | 4867                   | 47396 | 46089 | 14715  |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL RROSS WEIGHT LIMIT: SPOUD LBS

GROSS WEIGHT LIMITS

(DUE TO ENGINE)

FOR TAKEOFF CRITERIA #3

1008 OF MAXIMUM POWER (HIGE)

AIRCRAFT - CH-47D

|             |                            | 2 0       |                        |           |       |       |       |
|-------------|----------------------------|-----------|------------------------|-----------|-------|-------|-------|
|             |                            | PRES      | PRESSURE ALTITUDE (FT) | TUDE (FT) |       |       |       |
|             | 7. 6. 6 mm 9. 400 4111. yr | SEA LEVEL | 2000                   | ,00°      | 0004  | 0000  |       |
|             | ,                          |           |                        |           | 2000  | 0000  | 00001 |
| TEMPERATION | ر د د د                    | 73037     | 67914                  | 63080     | 58533 | 74645 | E022E |
| X - X       |                            |           |                        |           |       |       | 2000  |
|             | 2                          | 70402     | 65458                  | 60794     | 26411 | 1000  | 00.0  |
| 1001        |                            |           |                        | 2         |       | 10776 | 40170 |
| CFNTIGBARE  | 15 0                       | 64272     | 59762                  | 55504     | 61500 | 07020 | 207   |
| 7. 7        | ľ                          | 1         |                        |           | 3,22  | 001/1 | 47004 |
|             | ) Se                       | 56732     | 52748                  | 48997     | 45089 | 76717 | 30445 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT; SAGOO LBS

GROSS WEIGHT LIMITS
(DUE TO TRANSMISSION)
FOR TAKEOFF CRITERIA #3
100% OF MAXIMUM POWER (HIGF)
AIRCRAFT \_ CH=47D
CHINOOK

|             |              | PRES      | PRESSURE ALTITUDE | TUDE (FT) |       |       |       |
|-------------|--------------|-----------|-------------------|-----------|-------|-------|-------|
|             |              | SEA LEVEL | 2000              | 400 i     | 0009  | 8000  | 1000  |
| TEMPTRATION | -25 C        | 24045     | 62480             | 50609     | 59337 | 57732 | 56110 |
| DEGREES     | ⊃ <b>5</b> - | 62380     | 60828             | 59283     | 57700 | 56102 | 54489 |
| NT 160      | 15 C         | 60847     | 59323             | 57764     | 56187 | 54598 | 52970 |
|             | 35 C         | 64443     | 57907             | 5635ñ     | 54786 | 53181 | 51681 |

ENTRIES ARE AIRCRAFT GROSS WEIGHTS IN LBS

STRUCTURAL GROSS WEIGHT LIMIT: 50000 LBS

VELOCITY LIMITS DATA TABLES

VELOCITY LIMITY TABLE

(INCLUDING FUEL FLOW RATES)

PRESSURE: SEA LEVEL TEMPERATURE: -25 C

AIRC - A 1 - CH-470

CHINOOK

| ~        | EED                                      | L<br>L  | (L85/HR)          | -                | 3721  | 1783   |      | 3872   | 3956   | 4008   | 5    | 4196  | 4391   | 2404   |        |
|----------|------------------------------------------|---------|-------------------|------------------|-------|--------|------|--------|--------|--------|------|-------|--------|--------|--------|
| VFLOCI   | ΕΧ                                       | 13"     | > ×<br>3 +<br>1 N | ,                | 160   | 107    | no l | 160    | 7071   | 0,7    | 001  | 160   | 1 60   | 07     |        |
| NOISOL   | 175                                      | 1       | (LBS/HR)          |                  | 4143  |        | 4143 | 4143   |        | St.1.  | 4143 | 4143  | 4147   |        | 5112   |
| MONTOF   | IN I | •       | (KTS)             |                  | 271   |        | 166  | 164    |        | 791    | 191  | 159   | * 7.5  | 001    | 153    |
| ,        | 7 X X X X X X X X X X X X X X X X X X X  |         | F.F.              |                  | 0300  | 9541   | 4958 | 4058   | 22.    | 4958   | 4958 | 4958  |        | 1958   | 4958   |
|          | (                                        | 1 5 1 1 | X YEL<br>S Y S    |                  |       | 180    | 179  | :      | 1      | 176    | 175  | 173   |        | 196    | 164    |
| <u> </u> | MAX                                      | EX      | F.F.              |                  | -     | 4539   | 4539 |        | 4539   | 4539   | 4539 | 07.34 | 1361   | 4539   | 4539   |
|          | A E HOOO                                 | a.      | VEL<br>(KTS)      |                  |       | 173    | 172  |        | 171    | 691    | 891  |       | 001    | 162    | 158    |
|          | LONG<br>RANGE                            |         | F.F.              |                  |       | 2333   | 2465 |        | 2609   | 2735   | 2856 |       | 3001   | 3140   | 3256   |
|          | RA                                       |         | VEL<br>(KTS)      |                  |       | 126    | 120  |        | 131    | 132    |      |       | 134    | 135    | 133    |
|          |                                          |         |                   | GROSS<br>WEIGHTS | (188) | 22,000 | 000  | 000102 | 30,000 | 34,000 | 000  | 20100 | 42.000 | 46,000 | Social |

\*PRECEDING PAGE NOT FILMED BLANK

, The Commence of the control of the

93

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

BRESSURE: SEA LEVEL TEMPERATURE: -5 C

|                           | <b>⊣</b> α   | ONG<br>ANGE | M LNCO | MAX<br>CONTINUOUS<br>POWER | E P G | MAX<br>Power<br>(engine) | TRANS        | TRANSMISSION<br>LIMITS | VELOC<br>E   | VELOCITY NEVER<br>Exceed |
|---------------------------|--------------|-------------|--------|----------------------------|-------|--------------------------|--------------|------------------------|--------------|--------------------------|
|                           | VEL<br>(KTS) | F.F.        |        | F.F.<br>(LBS/HR)           | -5    | F.F.                     | VEL<br>(KTS) | F.F.                   | VEL<br>(KTS) | F.F.<br>(LBS/HR)         |
| GR055<br>WE1GHTS<br>(LBS) |              |             |        |                            |       |                          |              |                        |              |                          |
| 22,000                    | 16.          | 2393        | 171    | 4047                       | 187   | 4962                     | 173          | 4206                   | 091          | 3500                     |
| 26,000                    | 133          | 2526        | 170    | 4067                       | 981   | 4962                     | 172          | 4206                   | 091          | 3551                     |
| 30,000                    | 135          | 2650        | 691    | 4067                       | 186   | 4962                     | 172          | 4206                   | 091          | 3601                     |
| 34,000                    | 136          | 2761        | 168    | 4067                       | 186   | 4962                     | 121          | 4206                   | 091          | 3659                     |
| 38,000                    | 137          | 2886        | 167    | 4067                       | 185   | 4962                     | 170          | 4206                   | 160          | 3745                     |
| 42.000                    | 138          | 3017        | 163    | 4067                       | 182   | 4962                     | 191          | 4206                   | 160          | 3881                     |
| 46,000                    | 138          | 3157        | 159    | 4067                       | 175   | 4962                     | 191          | 4206                   | 160          | 4127                     |
| 50,000                    | 138          | 3337        | 155    | 4067                       | 168   | 4962                     | 151          | 4206                   | 1 40         | 3387                     |

TABLE 4-58

VELOCIȚY LIMITS TABLE IINCLUDING FUEL FLOW RATES) PRESSURE: SEA LEVEL TEMPERATURE: 15 C AIRCRAFT - CH+47D

|                           | ~1 CC | LONG     | MAX<br>CONTINUOU<br>POWFR | AX<br>NUGUS | Σ O C   | P S A X X X X X X X X X X X X X X X X X X | TRANS                                 | TRANSMISSION<br>LIMITS | VELOC                           | VELOCITY NEVER                          |
|---------------------------|-------|----------|---------------------------|-------------|---------|-------------------------------------------|---------------------------------------|------------------------|---------------------------------|-----------------------------------------|
|                           | VEL   | L.       | VEL                       | F . F .     |         | ·L                                        |                                       |                        |                                 |                                         |
|                           | (KTS) | 1.85/HRX | (KTS)                     | (LBS/HR)    | (KTS)   | (18c/Hp)                                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | F 6 F 6                | \<br>\<br>\<br>\<br>\<br>\<br>\ | F + F +                                 |
| GROSS<br>WEIGHTS<br>(LBS) |       |          |                           |             |         | 5                                         |                                       |                        |                                 | 1 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 |
| 22,000                    | 135   | 2452     |                           |             |         |                                           |                                       |                        |                                 |                                         |
|                           |       |          | 103                       | 3536        | 186     | 4593                                      | 179                                   | 4267                   | 091                             | 3354                                    |
| 40,000                    | 137   | 8952     | 163                       | 3536        | 185     | 4593                                      | 179                                   | 4267                   | 0.7                             | 1301                                    |
| 30,000                    | 1 40  | 2708     | 53.                       | 1           |         |                                           | 1                                     |                        | 201                             | 337/                                    |
| 300                       |       |          | 70.                       | 3530        | 1 G S 1 | 4593                                      | 178                                   | 4267                   | 160                             | 3443                                    |
| 27,000                    | 1 4 1 | 2819     | 191                       | 3536        | 185     | 4593                                      | 178                                   | 4267                   | 97.                             | 3507                                    |
| 38,000                    | 141   | 2942     | 158                       | 3536        | 183     | 4593                                      | 145                                   | 4367                   | 2                               | 3300                                    |
| 42,000                    | 141   | 3078     | 155                       | 3536        | 178     | 45.03                                     |                                       | 1031                   | no I                            | 1100                                    |
| 46,000                    | 1 7 1 | 3276     | 15                        |             |         | 5,6                                       |                                       | 1697                   | 160                             | 3784                                    |
|                           | †     |          | ne i                      | 3536        | 170     | 4593                                      | 162                                   | 4267                   | 160                             | 4040                                    |
| 000.00                    | 141   | 3428     | 7 4 4                     | 3536        | 163     | 4591                                      | 0 3 1                                 | 2767                   | 0                               |                                         |
|                           |       |          |                           |             | - > ; - | 3.0                                       | - 00                                  | 1071                   |                                 | 40                                      |

(INCLUDING FUEL FLOW RATES) VELOCITY LIMITS TABLE

PRESSURE: SEA LEVEL TEMPERATURE: 35 C

CH I NOOK

| -                         |      |      |              |                            |       |                         |       |                                         |                   |                                         |
|---------------------------|------|------|--------------|----------------------------|-------|-------------------------|-------|-----------------------------------------|-------------------|-----------------------------------------|
|                           | 4E,  | LONG | CONTE        | MAX<br>CONTINUOUS<br>POWER | E O S | PAX<br>POWER<br>ENGINE! | TRANS | TRANSMISSION<br>LIMITS                  | EXCEE<br>LITOOTEA | ITY NEVER                               |
|                           | VEL  | F.F. | VEL<br>(KTS) | F.F.                       | 1     | F.F.                    | VEL   | F.F.                                    | VEL               | + 14 + 14 + 14 + 14 + 14 + 14 + 14 + 14 |
| GROSS<br>WEIGHTS<br>(LBS) | ,    | -    |              |                            | •     | רלאי                    |       | 1 C C C C C C C C C C C C C C C C C C C |                   | ( C B 3 / HR )                          |
| 22,000                    | 138  | 5464 | 157          | 3090                       | 179   | 4079                    | 185   | 4327                                    | 160               | 3246                                    |
| 26,000                    | 141  | 2625 | 155          | 3090                       | 179   | 4079                    | 185   | 4327                                    | 160               | 3285                                    |
| 30,000                    | 142  | 2741 | 154          | 3090                       | 179   | 4079                    | 185   | 4327                                    | 1.60              | 3332                                    |
| 34,009                    | 144  | 2870 | 151          | 3090                       | 178   | 4024                    | 184   | 4327                                    | 091               | 3411                                    |
| 38,000                    | 149  | 9000 | 147          | 3090                       | 174   | 4679                    | 180   | 4327                                    | 091               | 3550                                    |
| 42,000                    | 144  | 3144 | 142          | 30%0                       | 167   | 404                     | 173   | 4327                                    | 160               | 3770                                    |
| 46,000                    | 143  | 3314 | 135          | 3090                       | 160   | 4079                    | 164   | 4327                                    | 941               | 3410                                    |
| 50,000                    | 1 40 | 3509 | 125          | 3090                       | 153   | 4079                    | 157   | 4327                                    | 124               | 3085                                    |

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

DRESSURE: 2000 FT TEMPERATURE: -25 C

AINCRAFF - CH-470

CHINGOK

|                           | 1æ.          | LONG<br>Range | CONT!        | MAX<br>CONTINUOUS<br>POWER | PAAX<br>POWER<br>(ENGINE) | N N N N N N N N N N N N N N N N N N N | TRANS | TRANSMISSION<br>LIMITS | VELOC | VELOCITY NEVER |
|---------------------------|--------------|---------------|--------------|----------------------------|---------------------------|---------------------------------------|-------|------------------------|-------|----------------|
|                           | VEL<br>(KTS) | F.F.          | VEL<br>(KTS) | F.F.                       | VEL                       | F.F.                                  | VEL   | F • F •                | VEL   | F • F •        |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |              |                            |                           |                                       |       |                        |       |                |
| 22,000                    | 127          | 2216          | 173          | 4220                       | 180                       | 4610                                  | 171   | 4108                   | 160   | 3483           |
| 26,000                    | 130          | 2363          | 172          | 4220                       | 179                       | 4610                                  | 170   | 4108                   | 091   | 3546           |
| 30,000                    | 132          | 1642          | 170          | 4220                       | 176                       | 4610                                  | 168   | 4108                   | 1 60  | 3643           |
| 34,000                    | 133          | 2621          | 168          | 4220                       | 175                       | 4610                                  | 166   | 4108                   | 1 60  | 37.16          |
| 38,000                    | 134          | 2750          | 166          | 4220                       | 22                        | 4610                                  | 164   | 4108                   | 091   | 3861           |
| 42,000                    | 135          | 2882          | 163          | 4220                       | 170                       | 4610                                  | 161   | 4108                   | 160   | 4040           |
| 46.000                    | 133          | 3009          | 159          | 4220                       | 165                       | 4,610                                 | 157   | 4108                   | 160   | 4296           |
| 50,000                    | 133          | 3170          | 155          | 4220                       | 1 60                      | 4410                                  | 16.3  | 43.00                  | 0 77  | 00.00          |

VELOCIȚY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: 2000 Ft TEMPERATURE: -5 C

AIRCRALT - CH-470

|                           |              |               |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٠                                     |        |                        |                                 |                |
|---------------------------|--------------|---------------|-------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|------------------------|---------------------------------|----------------|
|                           | ud (E        | LONG<br>RANGE | Σ - Q O O O O O O O O O O O O O O O O O O | MAX<br>47 INUOUS<br>POWER | E P C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C E N C | POWER<br>POWER                        | TRANS  | TRANSMISSION<br>LIMITS | VELOC                           | VELOCITY NEVER |
|                           | VEL<br>(K7S) | (LBS/HR)      | VEL<br>(KTS)                              | F.F.                      | 1 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F F F F F F F F F F F F F F F F F F F | VEL.   | F 6 F 6                | VEL                             | Fere           |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | n<br>V |                        | ^<br>-<br>-<br>-<br>-<br>-<br>- | (LB3/HR)       |
| 22,000                    | 132          | 2274          | 170                                       | 3781                      | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4614                                  | 178    | 4170                   | 07.                             | 3274           |
| 26,000                    | 135          | 2414          | 169                                       | 3781                      | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7174                                  | 1.3.3  | 4170                   |                                 |                |
| 30,000                    | 136          | 2522          | 169                                       | 3781                      | 186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #17#                                  | 177    | 0717                   | na I                            | 1355           |
| 34,000                    | 137          | 2643          | 167                                       | 3781                      | 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4614                                  | 74.1   | 4170                   | 201                             | 33//           |
| 38,000                    | 138          | 2769          | 164                                       | 3781                      | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4414                                  | 1 2 3  | 4170                   | 201                             | 7.26           |
| 42,000                    | 138          | 2904          | 160                                       | 3781                      | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4414                                  |        | 7 32 7                 | 200                             | 0000           |
| 46,000                    | 138          | 3079          | 156                                       | 3781                      | 1691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 777                                   | ò      | 0/15                   | 001                             | 2075           |
| 50,000                    | 138          | 3274          | 150                                       | 1781                      | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7777                                  |        | 11/0                   | 0 0 1                           | 4082           |
|                           |              | 7             |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 10.                                 | 120    | 0/14                   |                                 | 7575           |

TABLE 4-62

VELOCITY LIMITS TABLE
(INCLUDING FUE, FLOW RATES)

RESSURE: 2000 FT TEMPERATURE: 15 C
AIKCRAIT - CH"47b

|        | 10           | LONG<br>NOT | MALTINOS     | MAX              | POWER.       | × m:     | TRANSH       | TRANSHISSION<br>LIMITS | VELOC: | VELOCITY NEVER<br>Exceed |
|--------|--------------|-------------|--------------|------------------|--------------|----------|--------------|------------------------|--------|--------------------------|
|        |              |             | PO           | *ER              | LENGI        | NE       |              |                        | 10.7   | 1                        |
|        | VEL<br>(KTS) | (LBS/HR)    | VEL<br>(KTS) | F.F.<br>(LBS/HR) | VEL<br>(KTS) | (LBS/HR) | VEL<br>(KTS) | (LBS/HR)               | (XTS)  | (LBS/HR)                 |
| GROSS  |              |             |              |                  |              |          |              |                        |        |                          |
| LBS)   |              |             |              |                  |              | 457.     | 707          | 4229                   | 160    | 3135                     |
| 22,000 | 136          | 2321        | 163          | 3288             | 185          | 1771     |              | 0001                   | 071    | 3179                     |
| 26,000 | 139          | 2450        | 162          | 3288             | 185          | 4271     | 184          | 1667                   |        |                          |
|        | 77           | 2575        | 141          | 1288             | 185          | 4271     | 184          | 4229                   | 160    | 3231                     |
| 30,000 | 1.10         |             |              | 280              | 78.          | 4271     | 183          | 4229                   | 160    | 3316                     |
| 34,000 | 111          | 2073        | 461          | 3628             |              | 4271     | 178          | 4229                   | 160    | 3466                     |
| 38,000 | 14.1         | 2825        | 156          | 3208             |              | 1.23     | 15           | 4229                   | 160    | 3701                     |
| 42,000 | 141          | 2976        | 151          | 3288             | *            | 1771     |              | 000                    | . 45   | 3278                     |
| 46,000 | 141          | 3162        | 145          | 3288             | 163          | 4271     | 163          | 7227                   | . 2.2  | 2946                     |
| 50,000 | 137          | 3335        | 136          | 3288             | 157          | 4271     | 158          | 4224                   | 1,7,   |                          |

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) BRESSURE: 2000 FT TEMPERATURE: 35 C

CH' NOOK

|                  | 70°   | LONG<br>RANGE | CONTI    | MAX<br>471NUOUS<br>POWER | P P R X X X X X X X X X X X X X X X X X | A X X X X X X X X X X X X X X X X X X X | TRANS | TRANSMISSION<br>LIMITS | VELOCITY NE | TY NEVER |
|------------------|-------|---------------|----------|--------------------------|-----------------------------------------|-----------------------------------------|-------|------------------------|-------------|----------|
|                  | VEL   | F.F.          | > 2      | FeFe                     | VEL                                     | F . F .                                 | VEL   | FoFe                   | VEL         | Fofo     |
| Ros              | 2     |               | <u> </u> | (LBS/HK)                 | (KTS)                                   | (LBS/HR)                                |       | (LBS/HR)               | (KTS)       | (LBS/HR) |
| WEIGHTS<br>(LBS) |       |               |          |                          |                                         |                                         |       |                        |             |          |
| 22,000           | 1 40  | 2382          | 156      | 2873                     | 179                                     | 3791                                    | 101   | " 0 0 7                |             |          |
| 26,000           | 142   | 2492          | 15.6     | 2073                     | 0.                                      |                                         |       | 6071                   | 100         | 2033     |
|                  |       |               |          | 6007                     | 1//                                     | 3773                                    | 192   | 4284                   | 160         | 3074     |
| 30,000           | 143   | 2615          | 153      | 2873                     | 179                                     | 3793                                    | 192   | 4284                   | 091         | 3134     |
| 34,000           | 144   | 2750          | 641      | 2873                     | 175                                     | 3793                                    | 081   | 4284                   | . 7 0       | 3244     |
| 38,000           | 144   | 2885          | 144      | 2873                     | 1691                                    | 3793                                    |       | 4284                   | 221         | 34.36    |
| 42,000           | 143   | 3047          | 137      | 2873                     | 191                                     | 3793                                    | : 22  | 4284                   | 3 3         | 1000     |
| 46,000           | 1 # 1 | 3237          | 126      | 2873                     | 154                                     | 3793                                    |       | 4204                   | 100         | 5307     |
| 50,000           | 134   | 3412          | 109      | 2873                     | 777                                     | 3797                                    | 707   | 1021                   | 7.0         | 2053     |
|                  |       |               |          |                          | 1                                       | 2,                                      | 7 201 | 4071                   | 007         | 502      |

TABLE 4-64

(INCLUDING FUEL FLOW RATES) VELOCITY LIMITS TABLE GRESSURE: 4000 FT

Air Carlot Township

TEMPERATURE: -25 C

|                           | אַר          | LONG<br>RANGE    | CONTIN | MAX<br>ONTINUOUS | PAK<br>POWER<br>FNCINES | X MX | TRANSP       | TRANSMISSION<br>LIMITS | VELOC<br>E   | VELOCITY NEVER<br>EXCEED |
|---------------------------|--------------|------------------|--------|------------------|-------------------------|------|--------------|------------------------|--------------|--------------------------|
|                           | VEL<br>(KTS) | F.F.<br>(LBS/HR) | _      | F.F.             | VEL<br>(KTS)            | F.F. | VEL<br>(KTS) | F.F. (L85/HR)          | VEL<br>(KTS) | F.F. (LBS/HR)            |
| GRCSS<br>WEIGHTS<br>(LBS) |              |                  |        |                  |                         |      |              |                        |              |                          |
| 22,000                    | 128          | 2112             | 173    | 3921             | 621                     | 4282 | 176          | 4078                   | 160          | 3259                     |
| 26,000                    | 131          | 2256             | 171    | 3921             | 177                     | 4282 | 173          | 4078                   | 160          | 3345                     |
| 30,000                    | 133          | 2382             | 169    | 3921             | 176                     | 4282 | 172          | 4078                   | 160          | 3430                     |
| 34,000                    | 134          | 2508             | 167    | 3921             | 1 4 4 1                 | 4282 | 170          | 4078                   | 160          | 3541                     |
| 38,900                    | 135          | 1592             | 164    | 3921             | 171                     | 4282 | 167          | 4078                   | 160          | 3700                     |
| 42,000                    | 133          | 2769             | 160    | 3921             | 991                     | 4282 | 162          | 4078                   | 160          | 3937                     |
| 46,000                    | 133          | 2925             | 155    | 3921             | 160                     | 4282 | 158          | 4078                   | 160          | 4266                     |
| 50,000                    | 132          | 3123             | 150    | 3921             | 156                     | 4282 | 153          | 4078                   | 140          | 3416                     |

TABLE 4-65

VELOCITY LIMITS TABLE

(INCLUDING FUE, FLOW RATES)

BRESSURE: 4000 FT TEMPERATURE: -5 C

Alicant a comple

| -                         |              |               |                           |                    |               |                                         |       |                        |                   |                                         |
|---------------------------|--------------|---------------|---------------------------|--------------------|---------------|-----------------------------------------|-------|------------------------|-------------------|-----------------------------------------|
|                           | <b>α</b>     | LONG<br>RANGE | MAX<br>CONTINUOL<br>POWER | AX<br>Nuous<br>Wer | E S           | P X A X X X X X X X X X X X X X X X X X | TRANS | TRANSMISSION<br>LIMITS | VELOCITY<br>Excee | ITY NEVER<br>XCEED                      |
|                           | VEL<br>(KTS) | F.F.          | VEL<br>(KTS)              | F.F.               | VEL<br>X TS J | F • F •                                 | VEL   | F + F +                | 7 × ×             | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |                           |                    |               |                                         | •     |                        |                   |                                         |
| 22,000                    | 133          | 2165          | 170                       | 3512               | 186           | 4285                                    | 183   | 4134                   | 091               | 3040                                    |
| 26,000                    | 135          | 2291          | 169                       | 3512               | 186           | 4285                                    | 183   | 4136                   | 091               | 1117                                    |
| 30,000                    | 137          | 2403          | 168                       | 3512               | 186           | 4285                                    | 192   | 4134                   | 1 40              |                                         |
| 34,000                    | 138          | 2530          | 166                       | 3512               | 184           | 4285                                    | 181   | 4136                   | 091               | 1268                                    |
| 38,000                    | 138          | 2658          | 162                       | 3512               | 179           | 4285                                    | 176   | 4136                   | 1.60              | 1411                                    |
| 42,000                    | 138          | 2826          | 157                       | 3512               | 170           | 4285                                    | 168   | 4136                   | 1 40              | 37.22                                   |
| 46,000                    | 138          | 3021          | 150                       | 3512               | 163           | 4285                                    | 191   | 4134                   | 7 7 7             | 1224                                    |
| 50,000                    | 134          | 3211          | 143                       | 3512               | 156           | 4285                                    | 153   | 4136                   | 122               | 2808                                    |
|                           |              |               |                           |                    |               |                                         | - ) ) | -<br>)   -             | - 1 3 ~           | 200                                     |

TABLE 4-66

TEMPERATURE: 15 C (INCLUDING FUEL FLOW RATES) VELOCITY LIMITS TABLE PRESSURE: 4000 FT

AIRCPALT - CH-4/D

|                  | ه تـ         | L ONG<br>NGE | CONT         | MAX<br>ONTINUOUS | ΣĊ           | Z O S S S S S S S S S S S S S S S S S S | TRANSA       | TRANSMISSION<br>LIMITS | ∨<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1 | VELOCITY NEVER<br>EXCEED |
|------------------|--------------|--------------|--------------|------------------|--------------|-----------------------------------------|--------------|------------------------|----------------------------------------------------------|--------------------------|
|                  | . '          |              | 04           | KER              | SNB          | INE /                                   | +            |                        |                                                          |                          |
|                  | VEL<br>(KTS) | (LBS/HR)     | VEL<br>(KTS) | (LBS/HR)         | VEL<br>(KTS) | (LBS/HR)                                | VEL<br>(KTS) | F.F.<br>(1, BS/HR)     | K T S L                                                  | (LBS/HR)                 |
| GROSS<br>WEIGHTS |              |              |              |                  |              |                                         |              |                        |                                                          |                          |
| 15037            |              | 2203         | 143          | 4500             | 1.55         | 3967                                    | 061          | 2516                   | 160                                                      | 2929                     |
| 22,000           | 13           | 2022         |              |                  | 28           | 3067                                    | 50           | 4192                   | 160                                                      | 29.74                    |
| 26,000           | 140          | 2340         | 701          | 3054             |              | T                                       |              | 4192                   | 160                                                      | 3041                     |
| 30,000           | 141          | 2453         | 160          | 3054             | 185          | 3901                                    | 2            | 3, 1,                  | 07.                                                      | 2117                     |
| 34,000           | 1+1          | 2579         | 157          | 3054             | 181          | 3967                                    | 187          | 4172                   | 201                                                      | 0.66                     |
| 38.000           | 141          | 2723         | 152          | 3054             | 174          | 3967                                    | 179          | 4192                   | 160                                                      | 3367                     |
| 42.000           | 1.4.1        | 2901         | 146          | 3054             | 991          | 3967                                    | 170          | 4192                   | 150                                                      | 3172                     |
|                  | . 10         | 3085         | 137          | 1054             | 157          | 3967                                    | 151          | 4192                   | 127                                                      | 2816                     |
| 10,000           |              | 1363         | 125          | 2054             | 147          | 3967                                    | 151          | 4192                   | 105                                                      | 2747                     |
| 50,000           | 132          | 2303         | 153          | 77.7             |              |                                         |              |                        |                                                          |                          |

TABLE 4-67

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES) pressure: 4000 ft temperature: 35 c

Almchaft - Ch-470

| ER                                      | 1                                       | œ                         | T      | 1      | 1      | 1      | 1      | T      | 1      | 1      |
|-----------------------------------------|-----------------------------------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| VELOCITY NEVER                          | • Le • Le                               | (LBS/H                    | 20.00  | 7507   | 8/97   | 2763   | 3126   | 1176   | 2173   | 2670   |
| VELOC                                   | VEL                                     | × -                       | 07.    | 200    | 001    | 001    | 100    | 007    | 13.1   |        |
| TRANSMISSION<br>LIMITS                  | 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. |                           | 4247   | 2000   | 727    | 127    | 1277   | "2""   | 757    | 75.37  |
| TRANS                                   | VEL                                     | 0                         | 100    | 2001   | 001    | 32.    | 900    |        | 101    | 128    |
| 4 × × × × × × × × × × × × × × × × × × × | F . F .                                 |                           | 3521   | 35.23  | 3623   | 36.23  | 3523   | 36.23  | 35.33  | 2563   |
| £0.2                                    | 1-3                                     |                           | 179    | 179    |        | - 22   | 163    | . 5.4  | 201    |        |
| MAX<br>CONTINUOUS<br>POWFR              | F • F •                                 |                           | 2669   | 2669   | 2669   | 2669   | 2669   | 2669   | 2469   |        |
| E LNO D                                 |                                         | •                         | 15.5   | 154    | 151    | 146    | 139    | 126    | 677    | •      |
| ONG<br>ANGE                             | F.F.                                    |                           | 2254   | 2370   | 2500   | 2636   | 2784   | 2970   | 3137   | 3300   |
| <b>⊣</b> α:                             | VEL<br>(KTS)                            |                           | 141    | 142    | 144    | 77.7   | 143    | 142    | 134    | 130    |
|                                         |                                         | GROSS<br>WEIGHTS<br>(LBS) | 22,000 | 26,000 | 30,000 | 34,000 | 38,000 | 42,000 | 46,000 | 50,000 |

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

300 FT TEMPERATURE: -25 C ARESSURE: 6000 FT

|                           | JK           | LONG<br>RANGE | CONT! | MAX<br>ONTINUOUS<br>POWER | A S S S S S S S S S S S S S S S S S S S | A X X X X X X X X X X X X X X X X X X X | TRANS | TRANSMISSION<br>LIMITS | VELOC   | VELOCITY NEVER |
|---------------------------|--------------|---------------|-------|---------------------------|-----------------------------------------|-----------------------------------------|-------|------------------------|---------|----------------|
|                           | VEL<br>(KTS) | F.F.          | -=    | F 0 F 0                   |                                         | F. F.                                   | VEL   | F • F •                |         | 6 9 c          |
| GROSS<br>WEIGHTS<br>(LBS) |              | •             | -     | (                         |                                         | (LBS/HR)                                | •     |                        | (x + S) | (LBS/HR)       |
| 22,000                    | 130          | 2021          | 172   | 3638                      | 179                                     | 3074                                    |       |                        |         |                |
| 26,000                    | 132          | 2151          | 170   | 8575                      | 76                                      | 36.38                                   | 00    | lent.                  | 201     | 3049           |
| 30,000                    | 133          | 2273          | 168   | 26.30                     | 37.                                     | 1,40                                    | 9/1   | 150.                   | 091     | 3142           |
| 34,000                    | 134          | 2417          | 165   | 1638                      |                                         | 367                                     | 7071  | 1507                   | 160     | 3238           |
| 38,000                    | 134          | 2535          | 191   | 3638                      | 1 68                                    | 3074                                    |       | 1601                   | 091     | 3376           |
| 42,000                    | 133          | 2685          | 156   | 3638                      | 191                                     | 3074                                    | _     | 1 601                  | 700     | 3587           |
| 46,000                    | 132          | 2882          | 150   | 3638                      | 156                                     | 3074                                    | 167   | 100                    | 0 1     | 3070           |
| 50,000                    | 126          | 2983          | 143   | 3638                      | 149                                     | 3974                                    | 751   | 160                    | C C C . | 1355           |
|                           |              |               |       |                           |                                         |                                         |       |                        | 777     | 9/07           |

VELOCITY LIMITS TABLE

TEMPERATURE: -5 C (INCLUDING FUEL FLOW RATES)
DRESSURE: 6000 FT TEMPERATURE:

AIRCRAFT - CH-470

|                           | <b>1</b> 8   | ONG<br>ANGE   | CONTE        | MAX<br>Continuous<br>Power | EOU<br>U.Z.<br>W | MAX<br>POWER<br>ENGINE) | TRANS | TRANSMISSION<br>LIMITS | VELOC | VELOCITY NEVER<br>Exceed |
|---------------------------|--------------|---------------|--------------|----------------------------|------------------|-------------------------|-------|------------------------|-------|--------------------------|
|                           | VEL<br>(KTS) | F.F. (LBS/HR) | VEL<br>(KTS) | F.F.                       | VEL<br>(KTS)     | F.F.                    | VEL   | F • F •                | YEL   | F • F •                  |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |              |                            |                  |                         |       |                        | 2     |                          |
| 22,000                    | 135          | 2067          | 170          | 3258                       | 186              | 3577                    | 189   | 4107                   | 1 60  | 2859                     |
| 26,000                    | 136          | 2177          | 169          | 3258                       | 186              | 3977                    | 189   | 4107                   | 160   | 2912                     |
| 30,000                    | 137          | 2299          | 167          | 3258                       | 185              | 3977                    | 188   | 4107                   | 1 60  | 2989                     |
| 34,000                    | 138          | 2429          | 163          | 3258                       | 181              | 3977                    | 185   | 4107                   | 160   | 3124                     |
| 38,000                    | 138          | 2578          | 158          | 3258                       | 172              | 3977                    | 175   | 4107                   | 160   | 3388                     |
| 42,000                    | 138          | 2770          | 152          | 3258                       | 163              | 3977                    | 166   | 4107                   | 149   | 3108                     |
| 46,000                    | 135          | 2957          | 144          | 3258                       | 156              | 3977                    | 158   | 4107                   | 126   | 2743                     |
| 50,000                    | 130          | 3174          | 132          | 3258                       | 147              | 3977                    | 149   | 4107                   | 104   | 2667                     |
|                           |              |               |              |                            |                  |                         |       |                        | `     |                          |

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

PRESSURE: 6000 FT TEMPERATURE: 15 C

Aint. 1:1 - CH-410

|   | CITY NEVER<br>Exceed       | 6 6 6                                   | 85/HR                     |        | 2/34   | 2/86   | 6282   | 3051   | 1/00   | 1907   | 2007 |
|---|----------------------------|-----------------------------------------|---------------------------|--------|--------|--------|--------|--------|--------|--------|------|
|   | VELOC1TY<br>EXCE           | VEL                                     |                           |        | 1      |        |        | 160    |        |        | 2    |
|   | TRANSHISSION<br>LIMITS     | F 6 F 6                                 | (                         | 4140   | noir   | 00;    | 1100   | 0011   | 2011   | 0011   | 0011 |
|   | TRANSH                     | VEL                                     |                           | 10.7   |        | 170    | 1,41   | 481    |        | 100    | 1.2. |
|   | × iii<br>Siiii             | FF                                      | 1 c 2 / u x               | 3481   | 20,2   | 3,8    | 1007   | 3481   | I      | 3481   | 20   |
|   | AAX<br>POWER               | VEL                                     | 2                         | 185    | 1 8 6  | 2 6    | 1,5    | 891    | ┺      |        | 1    |
|   | HAX<br>CONTINUOUS<br>POWER | F - F - F - F - F - F - F - F - F - F - |                           | 2834   | 2834   | 2834   | 2834   | 2834   | 2834   | 2834   | 1    |
|   | CONTIN                     | VEL                                     |                           | 162    | ١٥٥    | 159    | 154    | 1 48   | 139    | 126    |      |
|   | LONG                       | F.F.                                    |                           | 2097   | 2223   | 2342   | 2479   | 2645   | 2849   | 3547   |      |
|   | אָר                        | VEL<br>(KTS)                            | •                         | 138    | 141    | 141    | - F 2  | 141    | D # 1  | 133    |      |
| L |                            |                                         | GROSS<br>WEIGHTS<br>(LBS) | 22,000 | 26,000 | 30,000 | 34,000 | 38,000 | 42,000 | 46,000 | 2000 |

VELOCIȚY LIMITS TABLE (INCLUDING FUEL FLOW RATES) PRESSURE: 6000 FT TEMPERATURE: 35 C

AINCAAFT - CH-470

|                           | 7165         | LONG<br>RANGE | CONT | MAX<br>ONTINUOUS<br>POWER | ¥ 0 v | PAXX<br>POWER<br>NATIONAL | TRANS | TRANSMISSION<br>LIMITS | VELOC                                   | VELDCITY NEVER |
|---------------------------|--------------|---------------|------|---------------------------|-------|---------------------------|-------|------------------------|-----------------------------------------|----------------|
|                           | VEL<br>(KTS) | F.F.          | VEL  | F • F •                   | 7 >   | F . F                     | VEL   | L                      | 1                                       | 6.6.           |
| GROSS<br>WEIGHTS<br>(LBS) |              |               | 2    | ( L B S / H K /           | •     |                           | _     | (L. 85/HR)             | (KTS)                                   | (LBS/HR)       |
| 22,000                    | 141          | 2136          | 154  | 2453                      | 178   | 1937                      |       |                        |                                         |                |
| 26,000                    | 143          | 2258          | 152  | 2453                      |       | 3536                      | 607   | 7212                   | 007                                     | 7644           |
| 30,000                    | 144          | 2393          | 147  | ı                         | 0 :   | 32.30                     | 707   | 4212                   | 160                                     | 2704           |
| 34,000                    | 144          | 2532          | 140  | H                         | 27.   | 3236                      | 203   | 4212                   | 160                                     | 2825           |
| 38,000                    | 142          | 2708          | 130  | 2452                      | 603   | 3236                      | 191   | 4212                   | 160                                     | 3044           |
| 42,000                    | 135          | 2868          | 112  | 2451                      |       | 3636                      | 178   | 4212                   | 139                                     | 2616           |
| 46,000                    | 130          | 3131          | 0    |                           | 1     | 3536                      | 164   | 4212                   | 116                                     | 2493           |
| 50,000                    | 124          | 3357          | D    |                           | 12    | 3536                      | 1.85  | 3212                   | * * * * * * * * * * * * * * * * * * * * | 2580           |
|                           |              |               |      |                           |       | 277                       |       |                        |                                         | 0 / 0 0        |

TABLE 4-72

VELOCIȚY LIMITS TABLE (INCLUDING FUEL FLOW RATES) BRESSURE: 8000 FF TEMPERATURE: -25 C

AIRCRAFT - CH-470

|                           | <b>10</b> 0  | DNG  | CONTI        | MAX<br>DNTINUOUS<br>POWER | TON<br>TON | P X X X X X X X X X X X X X X X X X X X | TRANSHIS | MISSION | VELOC | VELOCITY NEVER<br>EXCEED |
|---------------------------|--------------|------|--------------|---------------------------|------------|-----------------------------------------|----------|---------|-------|--------------------------|
|                           | VEL<br>(KTS) | F.F. | VEL<br>(KTS) | F.F.                      | -=         | F.F.                                    | VEL      | F.F.    | VEL   | F • F • 1                |
| GROSS<br>WEIGHTS<br>(LBS) |              |      |              |                           |            | 1                                       | •        |         |       |                          |
| 22,000                    | 131          | 1929 | 171          | 3371                      | 177        | 3683                                    | 185      | 4024    | 091   | 2869                     |
| 26,000                    | 133          | 2055 | 169          | 3371                      | 176        | 3683                                    | 183      | 4054    | 091   | 2955                     |
| 30,000                    | 134          | 2184 | 167          | 3371                      | 1, 1       | 3683                                    | 181      | 4024    | 091   | 3070                     |
| 34,000                    | 135          | 2326 | 162          | 3371                      | 169        | 3683                                    | 177      | 4024    | 160   | 3251                     |
| 38,000                    | 133          | 2451 | 157          | 3371                      | 162        | 3683                                    | 169      | 4054    | 091   | 3531                     |
| 42,000                    | 133          | 2647 | 151          | 3371                      | 157        | 3683                                    | 161      | 4024    | 641   | 3256                     |
| 46,000                    | 126          | 2756 | 144          | 3371                      | 6 # 1      | 3683                                    | 155      | 4024    | 127   | 2754                     |
| 50,000                    | 123          | 3036 | 133          | 3371                      | 139        | 3483                                    | 1 4 5    | 4024    | 70.   | 2621                     |
|                           |              |      |              |                           |            |                                         |          |         | 4     |                          |

TABLE 4-73

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

000 FT TEMPERATURE: -5 C AIRCLAFT - CH-470 RESSURE: 8000 FT

|                           |              |                |              |                           |                   | ,                    |              |                        |                                 | 0 - 1 - 1                                 |
|---------------------------|--------------|----------------|--------------|---------------------------|-------------------|----------------------|--------------|------------------------|---------------------------------|-------------------------------------------|
|                           | <b></b>      | PANGE<br>RANGE | CONTIN       | MAX<br>ONTINUOUS<br>POWER | POWER<br>(ENGINE) | AX<br>AX<br>BX<br>BX | TRANS        | TRANSMISSION<br>Limits | 3<br>7<br>8<br>7<br>8<br>7<br>8 | VELUCITI NEVER<br>EXCEED                  |
|                           | VEL<br>(KTS) | (LBS/HR)       | VEL<br>(KTS) | F.F.<br>(LBS/HR)          |                   | F.F.                 | VEL<br>(KTS) | F.F.                   | VEL<br>(KTS)                    | (LBS/HR)                                  |
| GROSS<br>WEIGHTS<br>(LBS) |              |                |              |                           |                   |                      |              |                        |                                 | 10 mm |
| 22,000                    | 135          | 1960           | 691          | 3020                      | 186               | 3685                 | 196          | 4079                   | 160                             | 2670                                      |
| 26,000                    | 137          | 2072           | 168          | 3020                      | 186               | 3685                 | 961          | 4079                   | 160                             | 2731                                      |
| 30,000                    | 138          | 2200           | 165          | 3020                      | 183               | 3685                 | 194          | 4079                   | 091                             | 2835                                      |
| 34,000                    | 138          | 2338           | 159          | 3020                      | 175               | 3685                 | 184          | 4079                   | 091                             | 3054                                      |
| 38,000                    | 138          | 2521           | 155          | 3020                      | 166               | 3685                 | 174          | 4079                   | 153                             | 3019                                      |
| 42,000                    | 136          | 2708           | 146          | 3020                      | 158               | 3685                 | 164          | 4019                   | 131                             | 2590                                      |
| 46,000                    | 130          | 2926           | 133          | 3020                      | 148               | 3685                 | 154          | 4079                   | 108                             | 2493                                      |
| 50,000                    | 124          | 3142           | 120          | 3020                      | 130               | 3885                 | 143          | 4079                   | 98                              | 2647                                      |

TABLE 4-74

VELOCITY LIMITS TABLE (INCLUDING FUEL FLOW RATES)

GRESSURE: 8000 FT TEMPERATURE: 15 C

Alachet - CAMAZD

| <b>.</b> | c |
|----------|---|
| (        |   |
| 2        |   |
| _        |   |
| Č        |   |
|          |   |

|          | 78,                                     | LONG<br>Range | CONTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAX<br>NUOUS<br>OWERUS | E P                                   | P M A X<br>P O W R R<br>R O I N R D | TRANS | TRANSHISSION<br>LIMITS                  | 3     | VELOCITY NEVER<br>EXCEED |
|----------|-----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|-------------------------------------|-------|-----------------------------------------|-------|--------------------------|
|          | VEL<br>KTS)                             | (LBS/HR)      | VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F.F.                   | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | . r.                                | VEL   | F . F .                                 | VEL   | F • F •                  |
|          |                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 2                                     |                                     | •     | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |       | 240/2041                 |
|          | 140                                     | 2002          | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260;                   | 185                                   | 3385                                | 206   | 4131                                    | 159   | 25.77                    |
| _        | 141                                     | 2115          | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2601                   | 184                                   | 3385                                | 206   | 4131                                    | 159   | 2595                     |
| _        | ======================================= | 2244          | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2601                   | 179                                   | 3385                                | 201   | 4131                                    | 159   | 2727                     |
| <b>-</b> | 141                                     | 2396          | 641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2601                   | 170                                   | 3385                                | 189   | 4131                                    | . 5.9 | 2958                     |
| _        | 141                                     | 2552          | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2601                   | 160                                   | 3385                                | 176   | 4131                                    | 137   | 2503                     |
| ~        | 134                                     | 2774          | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2601                   | 150                                   | 3385                                | 162   | 4131                                    | 4     | 2301                     |
|          | 26                                      | 2962          | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2601                   | 137                                   | 3385                                | 151   | 4 3 .                                   | 92    | 2407                     |
| -        | 23                                      | 3292          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2601                   | 126                                   | 3785                                | 7 2 2 | 413                                     | 07    | 2020                     |
| į        |                                         |               | The state of the last of the l |                        | -                                     |                                     | 2     | `                                       | -     |                          |

TABLE 4-75

VELOCITY LIMITS TABLE

TEMPERATURE: 35 C (INCLUDING FUEL FLOW RATES) BRESSURE: 8000 FT TEMPERATURE:

AIRCRAFT - CH-47D

|                           | · · ·        | LONG<br>RANGE | CONTI        | MAX<br>CONTINUOUS<br>POWER | E O E        | POAX<br>POAK<br>FOSER | TRANS | TRANSMISSION<br>LIMITS | VELOCIT)   | TTY NEVER |
|---------------------------|--------------|---------------|--------------|----------------------------|--------------|-----------------------|-------|------------------------|------------|-----------|
|                           | VEL<br>(KTS) | (LBS/HR)      | VEL<br>(KTS) | F.F.                       | VEL<br>(KTS) | F.F.                  | VEL   | F • F •                | VEL<br>100 | F • F •   |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |              |                            |              |                       | •     |                        | 2          |           |
| 22,000                    | 142          | 2027          | 153          | 2267                       | 178          | 2989                  | 216   | 4182                   | 777        | 2056      |
| 26,000                    | 144          | 2156          | 149          | 2267                       | 176          | 2989                  | 215   | 4182                   | 777        | 2153      |
| 30,000                    | 144          | 2292          | 143          | 2267                       | 169          | 2989                  | 205   | 4182                   | 777        | 228E      |
| 34,000                    | 143          | 2454          | 134          | 2267                       | 159          | 2989                  | 189   | 4182                   | 77         | 2460      |
| 38,000                    | 138          | 2623          | 117          | 2267                       | 150          | 2989                  | 173   | 4182                   | 122        | 2317      |
| 42,000                    | 131          | 2859          | 0            | 2267                       | 135          | 2989                  | 158   | 4182                   | 66         | 2349      |
| 46,000                    | 124          | 3084          | 0            | 2267                       | 122          | 2989                  | 1 47  | 4182                   | 77         | 2473      |
| 50,000                    | 123          | 3435          | C            | 2267                       | 106          | 2989                  | 12.1  | 4182                   | C          |           |
|                           |              |               |              | A                          |              |                       |       | 7                      | 3          | -         |

TABLE 4-76

VELOCITY LIMITS TABLE

(INCLUDING FUEL FLOW RATES)

BRESSURE: 10000 FT TEMPERATURE: -25 C

AIRCRAFT - CH-47D

|                  | <b>-</b> | LONG<br>RANGE                         | CONTE | MAX<br>ONTINUOUS<br>POWER | T O S | AAX<br>POWER<br>CAST                    | TRANS | TRANSMISSION<br>LIMITS | VELOC | VELOCITY NEVER |
|------------------|----------|---------------------------------------|-------|---------------------------|-------|-----------------------------------------|-------|------------------------|-------|----------------|
|                  | VEL      | # # # # # # # # # # # # # # # # # # # | VEL   | F . F .                   | 1     | F.F.                                    | 1     | •                      |       | 2              |
|                  | 7        | ירמילוטע                              | (K15) | (LBS/HR)                  | _     | (LBS/HR)                                | (KTS) | (1 BS/HR)              | (KTS) | (LBS/Hp)       |
| WEIGHTS<br>(LBS) |          |                                       | •     |                           |       |                                         |       |                        |       |                |
| 22.000           |          |                                       |       |                           |       | *************************************** |       |                        | ı     |                |
| 000025           | 132      | 1836                                  | 170   | 3121                      | 177   | 3410                                    | 190   | 4000                   | 1 40  | 2400           |
| 26,000           | 133      | 6561                                  | 168   | 1216                      | 175   | 2010                                    | 000   |                        | 2     | 1907           |
| 30.000           | . 26     | 2103                                  |       |                           |       | 21.0                                    | 181   | 1000                   | 160   | 2786           |
|                  | 122      | 7017                                  | 164   | 3121                      | 171   | 3410                                    | 200   | 4000                   | 071   | 20.0           |
| 34,000           | 133      | 2224                                  | 159   | 3121                      | 165   | 3410                                    |       | 200                    | 201   | 6737           |
| 38,000           | 133      | 2391                                  | 153   | 1715                      | 9     |                                         | 0/1   | 0001                   | 1001  | 3175           |
| 42,000           | 128      | 2544                                  | 177   |                           |       | 0142                                    | 167   | 4000                   | 154   | 3158           |
| 000              |          |                                       |       | 3161                      | 151   | 3410                                    | 160   | 4000                   | 131   | 2620           |
| 10,000           | 124      | 2787                                  | 134   | 3121                      | 1 40  | 3410                                    | 0     | 000                    |       |                |
| 50,000           | 122      | 3131                                  | 122   | 31.21                     | 96.   | 2                                       | 1.50  | 0001                   | 10,   | 2457           |
|                  |          |                                       |       | 3121                      | 127   | 0410                                    | 139   | 4000                   | 98    | 2508           |

TABLE 4-77

VELOCITY LIMITS TABLE
(INCLUDING FUEL FLOW RATES)
DRESSURE: 100000 FT TEMPERATURE: -5 C
AIRCRAFT - CH-470

| - |   |
|---|---|
| , |   |
| • | × |
|   | 0 |
| 1 | C |
|   | z |
| - | - |
| L | I |
| : | U |
|   |   |
| , |   |
|   |   |

|                           | -J&          | ANGE | COZ+3 | MAX<br>DNTINUOUS<br>POWER               | POWER<br>POWER | AX<br>XEN<br>NE | TRANSMIS | MISSION | VELOCITY<br>Excee | 1TY NEVER<br>XCEED |
|---------------------------|--------------|------|-------|-----------------------------------------|----------------|-----------------|----------|---------|-------------------|--------------------|
|                           | VEL<br>(KTS) | FOF. | VEL   | F + F + C + C + C + C + C + C + C + C + | '              | ï.              | VEL      | F.F.    |                   | F . F .            |
| GROSS<br>WEIGHTS<br>(LBS) |              |      |       |                                         |                | L BS/HR)        | (KTS)    |         | S<br>F<br>X       | (LBS/HR)           |
| 22,000                    | 136          | 1859 | 168   | 2774                                    | 185            | 339             | 204      | 4053    | 80.               | 20110              |
| 26,000                    | 137          | 1980 | 164   | 2774                                    | 184            | 3301            | 200      | 5000    | 251               | 6717               |
| 30,000                    | 138          | 2107 | 161   | 2774                                    | 179            | 3291            | 407      | 2001    | 155               | 9057               |
| 34,000                    | 138          | 2276 | 155   | 2774                                    | 168            | 3391            | 200      | 2007    | 000               | 2050               |
| 38,000                    | 137          | 2467 | 147   | 2774                                    | 159            | 3301            | 507      | 2001    | 051               | +242               |
| 42,000                    | 131          | 2676 | 134   | 2774                                    | 1 49           | 3301            | 7/1      | 2001    | 30                | 2432               |
| 46,000                    | 124          | 2883 | 120   | 2774                                    | 137            | 3301            | 61       | 1033    | 2 3               | 2322               |
| 50,000                    | 122          | 3261 | 9.8   | 2774                                    | 126            | 3391            | 0 0 0    | 600     | 7,                | 2431               |
|                           |              |      |       |                                         |                |                 | 2        | 7001    | 00                | 2885               |

TABLE 4-78

VELOCIȚY LIMITS TABLE (INCLUDING FUE, FLOW RATES) BRESSURE: 10000 FT TEMPERATURE: 15 C AIRCRAFT - CH-470

|                           | -1 ex        | LONG<br>RANGE | E NO D       | MAX<br>ONTINUOUS<br>POWER | FA POWER (ENGINE) | A X X X X X X X X X X X X X X X X X X X | TRANSP       | TRANSMISSION<br>LIMITS | VELOC        | VELOCITY NEVER<br>Exceed |
|---------------------------|--------------|---------------|--------------|---------------------------|-------------------|-----------------------------------------|--------------|------------------------|--------------|--------------------------|
|                           | VEL<br>(KTS) | F.F. (L85/HR) | VEL<br>(KTS) | (LBS/HR)                  |                   | F.F.<br>(LBS/HR)                        | VEL<br>(KTS) | F.F. (185 HR)          | VEL<br>(KTS) | F.F.<br>(LBS/HR)         |
| GROSS<br>WEIGHTS<br>(LBS) |              |               |              |                           |                   |                                         |              |                        |              |                          |
| 22,000                    | 140          | 1898          | 160          | 2400                      | 184               | 3128                                    | 215          | 4104                   | 142          | 1921                     |
| 26,000                    | 141          | 2018          | 157          | 2400                      | 182               | 3128                                    | 214          | 4104                   | 142          | 2024                     |
| 30,000                    | 141          | 2158          | 152          | 2 4 0 0                   | 174               | 3128                                    | 202          | 4104                   | 142          | 2161                     |
| 34,000                    | 141          | 2337          | b b 1        | 2400                      | 163               | 3128                                    | 187          | 4104                   | 142          | 2350                     |
| 38,000                    | 135          | 2510          | 130          | 2400                      | 153               | 3128                                    | 171          | 4104                   | 611          | 2219                     |
| 42,000                    | 127          | 2721          | 111          | 2400                      | 139               | 3128                                    | 156          | 4104                   | 16           | 2287                     |
| 46,000                    | 123          | 3019          | C            | 2400                      | 127               | 3128                                    | 1 45         | 4104                   | 74.          | 2621                     |
| 20,000                    | 122          | 3406          | 0            | 2400                      | 113               | 3,28                                    | 136          | 4104                   | 0            | 0                        |

TABLE 4-79

VELOCITY LIMITS TABLE
(INCLUDING FUEL FLOW RATES)

ARESSURE: 10040 FT TEMPERATURE: 35 C

AIRCRAFT - CH-47

|                           |              |       |          | *************************************** |                                                                            |           |       |                        |        |                          |
|---------------------------|--------------|-------|----------|-----------------------------------------|----------------------------------------------------------------------------|-----------|-------|------------------------|--------|--------------------------|
|                           |              | RANGE | CONTI    | MAX<br>VTINUOUS<br>POWER                | POS<br>PNOS<br>NOS<br>NOS<br>NOS<br>NOS<br>NOS<br>NOS<br>NOS<br>NOS<br>NOS | AX<br>NER | TRANS | TRANSMISSION<br>LIMITS | VEL OC | VELOCITY NEVER<br>EXCEED |
|                           | VEL<br>(KTS) | F.F.  | > 7      | FeFe                                    | VEL                                                                        | . F. F.   | VEL   |                        | VEL    | Fer                      |
| GROSS<br>WEIGHTS<br>(LBS) |              |       | <u> </u> | (LBS/HR)                                | (×+ ×)                                                                     |           | (KŢS) | (LBS/HR)               | (×1S)  | (LBS/HR)                 |
| 22,000                    | 143          | 1927  | 151      | 1 600                                   | 177                                                                        | 2757      |       |                        |        |                          |
| 26,000                    | 551          | 2002  | 146      | 2091                                    | 172                                                                        | 2757      | 077   | 7611                   | 12/    | 1697                     |
| 30,000                    | 143          | 2205  | 138      | 2091                                    | 142                                                                        | 2767      | 127   | 7152                   | 12/    | 1803                     |
| 34,000                    | 141          | 2393  | 124      | 2091                                    | 153                                                                        | 2757      | 507   | 1152                   | 121    | 1941                     |
| 38,000                    | 132          | 2598  | c        | 2091                                    | 138                                                                        | 2757      | 791   | 4152                   | 771    | 2139                     |
| 42,000                    | 125          | 1182  | 0        | 2091                                    | 124                                                                        | 2757      | 15.2  | 4152                   | 101    | 2002                     |
| 46,000                    | 123          | 3152  | 0        | 2091                                    | 107                                                                        | 2757      | 143   | 4152                   | , 0    | 20. 2                    |
| 50,000                    | 122          | 3540  | Q        | 2091                                    | 0                                                                          | 2757      | 134   | 4152                   |        |                          |
|                           |              |       |          |                                         |                                                                            |           |       | 7/1                    | -<br>> | <b>-</b>                 |

### APPENDIX A FUNCTIONS FOR CALCULATING BASIC FUEL FLOW

There are four functions that can be used to calculate the basic fuel flow for the CH-47D helicopter. In order to use the functions the following data is needed:

- 1. Flight Mode
- 2. Temperature
- Pressure (altitude)
- 4. Gross weight

Which of the four functions will be used depends on the flight mode. The first function is for HIGE (Hover In Ground Effect).

The second function is for HOGE (Hover Out of Ground Effect).

The third function is for NOE (Nap of the Earth).

The fourth function is for Forward Flight.

The equation for FF (HIGE) is:

Where ALT is the altitude, TEMP is the temperature and GW is the gross weight and the constants have the following values:

 $A = -8.51641241 \times 10^{-2}$   $E = 2.22266624 \times 10^{-6}$ 

 $B = -4.86896008 \times 10^{-1}$   $F = 1.29911285 \times 10^{-4}$ 

 $C = 4.92503187 \times 10^{-2}$   $G = 1.24717819 \times 10^{-8}$ 

 $D = -3.35153592 \times 10^{-4}$   $K = 7.26439148 \times 10^{2}$ 

The equation for FF (HOGE) is exactly the same form as FF (HIGE). A new set of values for the constants is used. These values are:

 $A = -1.01110599 \times 10^{-1}$ 

 $E = 3.00206256 \times 10^{-6}$ 

B = -1.7357367

 $F = 1.87549233 \times 10^{-4}$ 

 $C = 6.12140894 \times 10^{-2}$ 

 $G = 1.28728674 \times 10^{-8}$ 

 $D = -3.09985186 \times 10^{-4}$ 

 $K = 5.33657318 \times 10^2$ 

The equation for FF (NOE) is once again the same as FF (HIGE). The new values for the constants are:

 $A = -1.50587233 \times 10^{-1}$ 

 $E = 4.526434 \times 10^{-6}$ 

B = -1.10246739

 $F = 1.42132223 \times 10^{-4}$ 

 $C = 5.06138727 \times 10^{-?}$ 

 $G = 5.7886576 \times 10^{-8}$ 

 $D = -1.5675871 \times 10^{-3}$ 

 $K = 7.81281219 \times 10^2$ 

For the Forward Flight modes the form of the equation is:

 $FF = A(AS) + B(AS^2) + C(AS^3) + D(TEMP) + E(GW) + F(ALT) + G(AS^3)(TEMP)$ 

 $+ H(AS^2)(TEMP) + I(AS)(TEMP) + J(AS^3)(GW) + K(AS^2)(GW)$ 

 $+ L(AS)(GW) + M(AS^3)(ALT) + N(AS^2)(ALT) + O(AS)(ALT) + P(TEMP)(GW)$ 

+ Q(TEMP)(ALT) + R(GW)(ALT) + S(TEMP)(GW)(ALT) + T

Where AS is the air speed in kts and the values of the constants are:

 $A = 3.51982651 \times 10$ 

 $K = 1.0347238 \times 10^{-5}$ 

 $B = -3.09267398 \times 10^{-1}$ 

 $L = -1.63565576 \times 10^{-3}$ 

 $C = 1.27171353 \times 10^{-3}$ 

 $M = -7.65445449 \times 10^{-8}$ 

D = 1.98561735

 $N = 2.07648868 \times 10^{-5}$ 

 $E = 1.02072795 \times 10^{-1}$ 

 $0 = -2.16791593 \times 10^{-3}$ 

 $F = -1.32065834 \times 10^{-2}$ 

 $P = 1.68798098 \times 10^{-4}$ 

 $G = -1.02795551 \times 10^{-5}$ 

 $Q = 6.69514942 \times 10^{-4}$ 

 $H = 2.09566369 \times 10^{-3}$ 

 $R = 1.99734092 \times 10^{-6}$ 

n = 2.09300309 x 10

 $S = -1.95552146 \times 10^{-8}$ 

 $I = -1.66309357 \times 10^{-1}$ 

 $S = -1.95552146 \times 10^{\circ}$ 

 $J = -1.75265003 \times 10^{-8}$ 

 $T = -3.73753448 \times 10^2$ 

These functions allow anyone with a simple calculator to figure the fuel flow of the aircraft and bypass both looking up the values and interpolating for points in between the data points in the tables.

The above equations calculate the basic fuel flow for the CH-47D helicopter with the following accuracies:

FF (HIGE) - 98.70%

FF (HOGE) - 98.59%

FF (NOE) - 95.89%

FF (Forward Flight) - 97.70%

APPENDIX B FUNCTION FOR CALCULATING DELTA FUEL FLOW FOR DRAG

PRECEDING PAGE NOT FILMED

The function below will calculate the delta fuel flow for drag for the CH-47D helicopter. Recall from the discussion in chapter three that this value is added to the basic fuel flow value whenever drag is increasing the rate of fuel flow.\*

In order to use the function the following data is needed:

- Air Speed (AS)
- Equivalent Square Footage of Drag (SQ)
- 3. Temperature (TEMP) in degrees centigrade
- 4. Altitude (ALT) in feet above sea leve!

### That is:

$$FF$$
 (Drag) =  $f(AS, SQ, TEMP, ALT)$ 

The equation for FF (Drag) is:

$$FF (Drag) = A(AS) + B(AS^{2}) + C(AS^{3}) + D(TEMP) + E(SQ) + F(ALT)$$

$$+ G(AS^3)(TEMP) + H(AS^2)(TEMP) + I(AS)(TEMP) + J(AS^3)(SQ) + K(AS^2)(SQ)$$

$$+ L(AS)(SQ) + M(AS^3)(ALT) + N(AS^2)(ALT) + O(AS)(ALT) + P(TEMP)(SQ)$$

+ 
$$Q(TEMP)(ALT) + R(SQ)(ALT) + S(SQ)(ALT)(TEMP) + T$$

Where the constants have the following values:

$$A = 6.4792161 K = -4.31542183 \times 10^{-4}$$

$$B = -8.06591017 \times 10^{-2}$$
  $L = 2.06394196 \times 10^{-2}$ 

$$C = 3.90497546 \times 10^{-4}$$
  $M = -4.42317369 \times 10^{-8}$ 

$$D = 1.44406068 \qquad N = 6.22385613 \times 10^{-6}$$

$$E = 1.01491532$$
  $0 = -4.48688865 \times 10^{-4}$ 

$$F = 3.9021607 \times 10^{-2}$$
  $P = -2.76944218 \times 10^{-2}$ 

$$G = -7.57192623 \times 10^{-7}$$
  $Q = 3.27169391 \times 10^{-6}$ 

$$H = -4.94291693 \times 10^{-4}$$
  $R = -2.37633436 \times 10^{-4}$ 

$$I = 5.3072691 \times 10^{-2}$$
  $S = 8.83288891 \times 10^{-7}$ 

$$J = 6.51110946 \times 10^{-6}$$
  $T = -3.13400497 \times 10^{2}$ 

\*PRECEDING PAGE NOT FILMED BLANK

<sup>\*</sup>There is no delta fuel flow for drag for HIGE, HOGE or NOE flight.

This equation calculates the delta fuel flow for drag value with an accuracy of 99.66%. It should be noted that in some instances the computed value will be negative. If this occurs, zero ( $\emptyset$ ) should be used as the value for delta fuel flow.

APPENDIX C
FUNCTION FOR CALCULATING GROUND IDLE FUEL FLOW

The function below will calculate the ground idle fuel flow rate for the CH-47D helicopter. In order to use the function the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade.
- 2. Altitude (ALT) in feet above sea level.

That is:

The equation, for FF (Idle) is:

FF (Idle) = 
$$A(TEMP) + B(ALT) + C(TEMP)(ALT) + D(TEMP^2) + E(ALT^2) + F$$

Where the constants have the following values:

$$A = -6.5749985 \times 10^{-1}$$
  $D = -1.24999922 \times 10^{-3}$   $B = -5.5428531 \times 10^{-2}$   $E = 9.99996317 \times 10^{-7}$ 

$$C = -3.00133252 \times 10^{-11}$$
 F = 1.47358652 x  $10^3$ 

This equation calculates the ground idle fuel flow rate with an accuracy of 99.67%.



# APPENDIX D FUNCTIONS FOR CALCULATING GROSS WEIGHT LIMITS FOR TAKEOFF



The functions given below will calculate the gross weight limits for take off for the CH-47D helicopter. Each of the functions is of the same basic form with the values of the constants changing depending on which take off criteria is being used. In all cases the Structural Gross Weight Limit of the CH-47D helicopter is 50,000 lbs.

In order to use the functions the following data is needed:

- 1. Temperature (TEMP) in degrees centigrade
- 2. Altitude (ALT) in feet above sea level

That is:

The basic equation for GW (Limit) is:

$$GW (Limit) = A(TEMP) + B(ALT) + C(TEMP)(ALT) + D$$

For take off criteria #1 the equation must be used twice, once using the engine limit constants and once using the transmission limit constants. For take off criteria #1 the constants for engine limits are:

$$A = -2.42597382 \times 10^2$$
  $C = 6.7236441 \times 10^{-3}$ 

$$B = -1.90027168$$

 $D = 5.98530454 \times 10^4$ 

For take off criteria #1 the constants for transmission limits are:

$$A = -6.83533344 \times 10$$

 $C = 1.63000381 \times 10^{-4}$ 

$$B = -7.02272102 \times 10^{-1}$$

 $D = 5.53813848 \times 10^4$ 

For take off criteria #2 two checks must also be made. The constants for engine limits, take off criteria #2 are:

$$A = -2.27169994 \times 10^2$$

 $A = -2.27169994 \times 10^2$   $C = 6.27400016 \times 10^{-3}$ 

$$B = -1.77408421$$

 $D = 5.58615874 \times 10^4$ 

For take off criteria #2 the constants for transmission limits are:

$$A = -6.22573853 \times 10$$

 $C = 3.14355532 \times 10^{-6}$ 

$$B = -6.46108568 \times 10^{-1}$$

 $D = 5.3370751 \times 10^4$ 

Also for take off criteria #3 two checks must be made. The constants for engine limits, take off criteria #3 are:

 $A = -2.71991199 \times 10^2$ 

 $C = 7.53757352 \times 10^{-3}$ 

B = -2.13035914

 $D = 6.71003945 \times 10^4$ 

For take off criteria #3 the constants for transmission limits are:

 $A = -7.67364283 \times 10$ 

 $C = 2.02785825 \times 10^{-4}$ 

 $B = -7.88074605 \times 10^{-1}$ 

 $D = 6.20866934 \times 10^4$ 

This equation with the various sets of constants gives results that are 98.36% accurate or better.

## APPENDIX E SHORT DESCRIPTION OF CHINOOK (CH-47D) DATA SOURCE

\*PRECEDING PAGE NOT FILMED
BLANK

DRDAV-EQA(A)

SUBJECT: Short Description of CH-47D Performance Data Provided to TRADOC Systems Analysis Activity (TRASANA)

MFR:

#### 1. References:

- a. DF to CH-47 MOD PM, from DRDAV-EQ, HOGE performance increase due to equipping the CH-47C with Fiberglass Rotor Blades (FRB) and T55-L-712 Engines-June 1978.
- b. Estimated performance data for the CH-47C Helicopter equipped with Fiberglass Rotor Blade and Lycoming T55-L-712 Engines (D210-11345-1) Feb 78.
- c. Determination of the Effects of Rotor Blade Compressibility on the Performance of the UH-1F; FTC-TR-65-17..
- 2. The performance data presented to TRASANA is the result of combining the helicopter power required, engine power available and engine fuel flow characteristics. The CH-47D power required was calculated from a non-dimensional representation of engine power required (coefficient of power) v.s. gross weight (coefficient of thrust) and true airspeed (advance ratio) The non-dimensional power required was obtained from reference la and lb. All performance in ground effect represents a 10 foot skid height. A temperature dependent correction, based on the method outlined in reference lc, was made to the power required to account for compressibility which could not be accounted for in the non-dimensional representation.
- 3. The T55-L-712 engine power available to the CH-47D (which was used in combination with the power required to find helicopter take-off and speed limits) was calculated for the various altitude and temperature combinations by the use of the Lycoming T55-L-712 engine specification computer program.
- 4. The engine fuel flow at a particular altitude and temperature combination was derived from a representative referred fuel flow as a function of referred engine power. The referred fuel flow curve for the T55-L-712 engine was taken from reference 1b and verified by the use of the Lycoming T55-L-712 engine specification computer program. The calculated fuel flows reflect 5% conservatism. A referred parameter is one which is divided by temperature and pressure ratios in order to represent all atmospheric conditions by one function.
- 5. The never exceed speeds (Vn.e.) were calculated from those shown graphically in reference 1b.
- 6. The Structural Gross Weight limit of the CH-47D is 50000 lbs.

fam. A (Malley III struc & Aeromech Br