

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	15
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-15
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Termodynamika par
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Př.: Kolik tepla Q je třeba přivést m = 2,3 kg kyslíku o tlaku p_1 = 0,8 MPa a teplotě t_1 = 37°C , aby vykonal při nezměněném tlaku absolutní práci W = 85 kJ? Jaký bude konečný V_2 , t_2 ?

$$r = 64,06 \frac{J}{kg \cdot K}$$
, $c_p = 917 \frac{J}{kg \cdot K}$.

Základní zákon ideálního plynu:

$$p_1 \cdot V_1 = m \cdot r \cdot T_1 \rightarrow V_1 = \frac{m \cdot r \cdot T_1}{p_1} = \frac{2,3 \cdot 64,06 \cdot \cancel{310}}{0.8 \cdot 10^6} = 0,057 \ m^3$$

$$W = p_1 \cdot (V_2 - V_1) \rightarrow V_2 = \frac{W}{p_1} + V_1 = \frac{85000}{0.8 \cdot 10^6} + 0.057 = 0.163 \text{ m}^3$$

$$\frac{V_1}{V_2} = \frac{T_1}{T_2} \rightarrow T_2 = \frac{T_1 \cdot V_2}{V_1} = \frac{310 \cdot 0,163}{0,057} = 886 \text{ K}$$

$$Q = m \cdot c_p \cdot (T_2 - T_1) = 2.3 \cdot 917 \cdot (886 - 310) = 1214842 J$$

Termodynamika par

Základní pojmy

 T_o – teplota ohřevu; T_V – teplota varu;

T_{PP} – teplota přehřáté páry; Tb – trojný bod;

Kb – kritický bod.

Přivádíme–li vodě (stav 1) určité teploty teplo, poroste její teplota ($\Delta Q = m \cdot c \cdot \Delta t$) až do stavu 2', který nazýváme **sytou kapalinou**. Při dalším přívodu tepla za stálého tlaku dojde ke změně skupenství, voda se změní v páru. Stav na konci odpařování 2" označujeme jako **suchou sytou páru**. Vztah mezi začátkem a koncem odpařování 2' – 2" označujeme jako **mokrou páru**. Důležitým pojmem mokré páry je tzv. **suchost páry**. Označuje se:

$$x = \frac{m_p}{m_v + m_p}$$

 m_p – množství syté páry (plynu);

 $m_v + m_p$ – množství mokré páry (voda + plyn).

Suchost nám vyjadřuje, z kolika procent je voda přeměněna v páru. x = 0 je pro sytou kapalinu, x =1 je pro sytou páru.

Mokrá pára se suchostí x = 0,9 je někdy označována jako **vlhká pára**. Při dalším přívodu tepla poroste teplota suché syté páry podle vztahu $\Delta Q = m \cdot c_{p(v)} \cdot \Delta t$. Tento stav nazýváme **přehřátou parou**.

Stavové veličiny syté kapaliny jsou označovány jednou čárkou: E´, v´, i´, u´

Stavové veličiny **mokré páry** jsou označovány indexem **x**: t_x , v_x , \dot{t}_x ...

Stavové veličiny suché syté páry jsou označovány dvěma čárkami: v", u", i"...

Stavové veličiny **přehřáté páry** nejsou označeny nijak.

Plyny jsou vlastně vysoce přehřáté páry.

Diagramy vodní páry

Činnost různých strojů založených na využití par se znázorňuje v diagramech. Zde bývají znázorněny křivky konstantního tlaku, objemu, teploty a konst. suchosti. Jakýkoliv stav páry se dá najít jako průsečík stavových veličin.

a) **p – V diagram**: plocha vyjadřuje množství vykonané nebo spotřebované práce.

k – kapalina;

 m_p – mokrá kapalina;

 p_p – přehřátá kapalina;

p - plyn;

Kb pro vodu:

 $T_{\scriptscriptstyle KB}=374^{\circ}C~;$

 $p_{KB} = 21,1 MPa.$

b) T – s diagram: plocha pod křivkou změny stavu vyjadřuje množství tepla.

Výrobní teplo páry: $q_V = q_K + l_v + q_p$

 $q_{\rm K}$ – kapalinové teplo, $l_{\rm v}$ – výparné teplo, $q_{\rm p}$ – přehřívací teplo.

c) i - s diagram:

V tomto i – s diagramu odečítáme množství tepla potřebného k určité změně stavu odečítáníme jako rozdíl entalpií.

$$q = i_2 - i_1 = \Delta i$$

Použití u turbín.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.