Lecture 3: Deep generative models

Minwoo Chae

Department of Industrial and Management Engineering Pohang University of Science and Technology

KMS-NIMS Summer School on AI, 2025

Outline

- 1 Introduction
- 2 Variational autoencoder
- 3 Normalizing flow
- 4 Generative adversarial networks
- 5 Diffusion models

Introduction

- Suppose that $\mathbf{X}_1, \ldots, \mathbf{X}_n \stackrel{\text{iid}}{\sim} P_0$.
 - D-dimensional observations
- The goal is to estimate P_0 or certain functionals of it, such as:
 - The density of P_0
 - The expectation under P_0
 - The support of P_0 (e.g., a manifold)
- Several approaches are available, including:
 - Kernel density estimation
 - Wavelet-based methods
 - Nonparametric Bayesian methods

Deep generative models

- A deep generative model refers to an indirect method for estimating P_0 (or related quantities), which involves:
 - 1 enabling efficient sampling from an estimated distribution \hat{P} instead of directly estimating P_0 ,
 - 2 parameterizing unknown functions using DNNs.
- Recently, deep generative models have achieved remarkable success in modeling high-dimensional data.

Functions parameterized by DNNs

- In deep generative models, the distribution P_0 is parameterized by a function.
- This function is, in turn, parameterized by a DNN.
- Common parameterization approaches include:
 - Generator-based methods
 - Score-based methods
 - Vector fields (defining probability flows)

Generator-based methods

• One can model X as

$$\mathbf{X} = \mathbf{g}(\mathbf{Z}),$$

where

- **Z**: a d-dimensional latent vector with a known distribution P_Z
- **g**: the generator, a map from \mathbb{R}^d to \mathbb{R}^D
- Two typical regimes:
 - -d < D (low-dimensional latent space)
 - d = D (dimension-preserving mapping)

Generator-based methods (cont.)

- Given a generator $\hat{\mathbf{g}}$, one can generate a sample by
 - 1 drawing **Z** from P_Z , and
 - 2 computing $\hat{\mathbf{g}}(\mathbf{Z})$.
- The distribution of $\hat{\mathbf{g}}(\mathbf{Z})$ serves as an estimator of P_0 .
- Popular approaches for estimating $\hat{\mathbf{g}}$ include:
 - Variational autoencoders (VAEs)
 - Normalizing flows (NFs)
 - Generative adversarial networks (GANs)

Score-based methods

- Suppose that P_0 possesses a Lebesgue density p_0 .
- The function $\mathbf{s}_0(\mathbf{x}) = \nabla(\log p_0)(\mathbf{x})$ is called the score function of p_0 .
- Score-based methods aim to estimate $s_0(x)$.
- Once an estimator $\hat{\mathbf{s}}$ is obtained, samples can be generated, for example, via Langevin diffusion.

Score-based methods (cont.)

• Langevin diffusion:

$$egin{aligned} \mathrm{d}\mathbf{X}_t &= rac{1}{2}
abla (\log p_0)(\mathbf{X}_t) \, \mathrm{d}t + \mathrm{d}\mathbf{B}_t, \ \mathrm{d}\hat{\mathbf{X}}_t &= rac{1}{2} \hat{\mathbf{s}}(\hat{\mathbf{X}}_t) \, \mathrm{d}t + \mathrm{d}\mathbf{B}_t, \end{aligned}$$

where \mathbf{B}_t denotes a standard Brownian motion.

- The distribution \hat{P} can be defined as the stationary distribution (limit law) of $\hat{\mathbf{X}}_t$.
- One can discretize the estimated Langevin diffusion as

$$\mathbf{X}_i = \mathbf{X}_{i-1} + \frac{\epsilon}{2}\hat{\mathbf{s}}(\mathbf{X}_{i-1}) + \sqrt{\epsilon}\mathbf{Z}_i,$$

where $\mathbf{Z}_i \sim \mathcal{N}(\mathbf{0}_D, \mathbb{I}_D)$.

Remark

- Compared to score-based methods, generator-based methods are much easier for sample generation.
- On the other hand, learning the generator function is generally more challenging than estimating the score function.
- We first study the generator-based methods, with a particular focus on VAE and GAN.
- Then, we turn to score-based methods.

Outline

- 1 Introduction
- 2 Variational autoencoder
- 3 Normalizing flow
- 4 Generative adversarial networks
- 5 Diffusion models

Notations

- Let $P_{\mathbf{g}}$ denote the law of $\mathbf{g}(\mathbf{Z})$ (i.e., the pushforward of $P_{\mathbf{Z}}$).
- Let $P_{\mathbf{g},\sigma}$ be the law of $\mathbf{g}(\mathbf{Z}) + \epsilon$ with $\epsilon \sim \mathcal{N}(\mathbf{0}_D, \sigma^2 \mathbb{I}_D)$, i.e.,

$$P_{\mathbf{g},\sigma} = P_{\mathbf{g}} * \mathcal{N}(\mathbf{0}_D, \sigma^2 \mathbb{I}_D).$$

• For $\sigma > 0$, $P_{\mathbf{g},\sigma}$ has the density

$$p_{\mathbf{g},\sigma}(\mathbf{x}) = \int \phi_{\sigma}(\mathbf{x} - \mathbf{z}) \, dP_{\mathbf{g}}(\mathbf{z})$$
$$= \int \phi_{\sigma}(\mathbf{x} - \mathbf{g}(\mathbf{z})) \, dP_{Z}(\mathbf{z}),$$

where ϕ_{σ} is the density of $\mathcal{N}(\mathbf{0}_D, \sigma^2 \mathbb{I}_D)$.

Variational autoencoders

ullet For a given class ${\cal G}$ of DNN functions, consider the model class

$$\mathcal{P} = \Big\{ P_{\mathbf{g},\sigma} : \mathbf{g} \in \mathcal{G}, \ \sigma \in [\sigma_{\min}, \sigma_{\max}] \Big\},$$

which is a Gaussian mixture model where the mixing distribution is parametrized by g.

• One may estimate **g** via maximum likelihood:

$$(\hat{\mathbf{g}}, \hat{\sigma}) = \underset{(\mathbf{g}, \sigma): P_{\mathbf{g}, \sigma} \in \mathcal{P}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{\mathbf{g}, \sigma}(\mathbf{X}_i).$$

- A variational autoencoder (VAE) is a specific algorithm for approximating the MLE.
 - It employs a variational inference approach.
- In VAE, the log-likelihood is replaced by the evidence lower bound (ELBO),
 - which is computationally more tractable.
- There exist several other computational methods for approximating the MLE,
 - e.g., expectation–maximization (EM) based methods.

Kingma, D. P. & Welling, M. "Auto-encoding variational Bayes". Proc. ICLR. 2014

- Suppose that **g** is parameterized by a DNN, and let θ denote the network parameters (possibly including σ).
- For simplicity, let $p_{\theta}(\cdot) := p_{\mathbf{g},\sigma}(\cdot)$.
- Let $q_{\psi}(\mathbf{z} \mid \mathbf{x})$ be a conditional density parameterized by ψ , and define

$$\mathcal{L}(\theta, \psi; \mathbf{x}) := \mathbb{E}_{q_{\psi}(\cdot \mid \mathbf{x})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{Z})}{q_{\psi}(\mathbf{Z} \mid \mathbf{x})} \right) \right],$$

where $p_{\theta}(\cdot, \cdot)$ denotes the joint density of (\mathbf{X}, \mathbf{Z}) .

• $\mathcal{L}(\theta, \psi; \mathbf{x})$ is often referred to as the ELBO (evidence lower bound) because

$$\log p_{\theta}(\mathbf{x}) = \mathcal{L}(\theta, \psi; \mathbf{x}) + K(q_{\psi}(\cdot \mid \mathbf{x}), p_{\theta}(\cdot \mid \mathbf{x}))$$

$$\geq \mathcal{L}(\theta, \psi; \mathbf{x}),$$

where $K(\cdot, \cdot)$ denotes the Kullback–Leibler divergence.

- If $q_{\psi}(\cdot \mid \mathbf{x})$ is sufficiently close to $p_{\theta}(\cdot \mid \mathbf{x})$, then the ELBO closely approximates $\log p_{\theta}(\mathbf{x})$.
- If the class $\{q_{\psi}(\cdot \mid \mathbf{x}) : \psi \in \Psi\}$ is rich enough to approximate $p_{\theta}(\cdot \mid \mathbf{x})$ for all $\theta \in \Theta$, then maximizing the ELBO yields an approximate MLE.

An approximate MLE can be obtained by

$$(\hat{\theta}, \hat{\psi}) = \underset{(\theta, \psi) \in \Theta \times \Psi}{\operatorname{argmax}} \sum_{i=1}^{n} \mathcal{L}(\theta, \psi; \mathbf{X}_i).$$

• In VAE, the variational distribution $q_{\psi}(\cdot \mid \mathbf{x})$ is typically modeled as a Gaussian:

$$q_{\psi}(\mathbf{z} \mid \mathbf{x}) = \phi_{\sigma_{\psi}(\mathbf{x})}(\mathbf{z} - \mu_{\psi}(\mathbf{x})),$$

where ϕ_{σ} denotes the density of a Gaussian distribution with standard deviation σ .

- Both μ_{ψ} and σ_{ψ} are implemented as DNNs in practice.

Computation of ELBO

- Gradient-based optimization of the ELBO is not straightforward.
- The key step is computing the gradient $\nabla_{(\theta,\psi)} \mathcal{L}(\theta,\psi;\mathbf{x})$.
- Observe that

$$\mathcal{L}(\theta, \psi; \mathbf{x}) = \mathbb{E}_{q_{\psi}(\cdot \mid \mathbf{x})} \log p_{\theta}(\mathbf{x} \mid \cdot) - K(q_{\psi}(\cdot \mid \mathbf{x}), p_{Z}),$$

where p_Z is the prior density of **Z**.

• When p_Z is a Gaussian density, the gradient of the KL term with respect to ψ can be computed analytically.

Computation of ELBO (cont.)

• Note that

$$\mathbb{E}_{q_{\psi}(\cdot \mid \mathbf{x})} \log p_{\theta}(\mathbf{x} \mid \cdot) = \mathbb{E}_{\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbb{I})} \log p_{\theta}(\mathbf{x} \mid \mu_{\psi}(\mathbf{x}) + \sigma_{\psi}(\mathbf{x}) \mathbf{Y}),$$

where Y is a standard Gaussian random variable.

• This reparameterization allows us to approximate the gradient of the expectation via Monte Carlo.

Remark

- The variational posterior $q_{\hat{\psi}}(\cdot \mid \mathbf{x})$ can be used for data compression.
- In practice, the design of the network architecture is as important as the optimization algorithm.
 - This aspect is not covered in this lecture.
- Once an estimator $(\hat{\mathbf{g}}, \hat{\sigma})$ (parametrized by θ in previous slides) is obtained, we define the implicit density and distribution estimators as

$$\hat{p} = p_{\hat{\mathbf{g}},\hat{\sigma}}, \quad \hat{P} = P_{\hat{\mathbf{g}}}.$$

 There is a minor notational inconsistency in this lecture regarding the use of uppercase vs lowercase letters.

Outline

- 1 Introduction
- 2 Variational autoencoder
- 3 Normalizing flow
- 4 Generative adversarial networks
- 5 Diffusion models

Normalizing flows

• For diffeomorphic **g** with an invertible Jacobian, $P_{\mathbf{g}}$ admits a density:

$$p_{\mathbf{g}}(\mathbf{x}) = p_{\mathbf{Z}}(\mathbf{g}^{-1}(\mathbf{x}))\det(\nabla \mathbf{g}^{-1}(\mathbf{x})).$$

• For a class G of such generators, the MLE is defined as

$$\hat{\mathbf{g}} = \underset{\mathbf{g} \in \mathcal{G}}{\operatorname{argmax}} \sum_{i=1}^{n} \log p_{\mathbf{g}}(\mathbf{X}_i).$$

• Normalizing flows (NF) refer to methods for modeling p_g in a computationally tractable way.

Normalizing flows (cont.)

- For MLE to be computationally tractable, it is essential that $det(\nabla \mathbf{g}^{-1}(\mathbf{x}))$ be easy to compute.
- This can be achieved by composing simple diffeomorphisms.
- If $\mathbf{g} = \mathbf{g}_2 \circ \mathbf{g}_1$ with diffeomorphic \mathbf{g}_1 and \mathbf{g}_2 , then

$$\det(\nabla \mathbf{g}^{-1}(\mathbf{x})) = \det(\nabla \mathbf{g}_1^{-1}(\mathbf{g}_2^{-1}(\mathbf{x})))\det(\nabla \mathbf{g}_2^{-1}(\mathbf{x})).$$

Normalizing flows (cont.)

- Commonly used simple flows include:
 - Radial flows
 - Coupling flows
 - Autoregressive flows
 - Residual flows
- A key advantage of (some) normalizing flows is that they allow explicit evaluation of the density $q_{\mathbf{g}}(\mathbf{x})$.

Outline

- 1 Introduction
- 2 Variational autoencoder
- 3 Normalizing flow
- 4 Generative adversarial networks
- 5 Diffusion models

Generative adversarial networks

- Let $\mathbf{Z}_1, \dots, \mathbf{Z}_n$ be an i.i.d. sample from P_Z .
- For a class \mathcal{F} of functions from \mathbb{R}^D to (0,1), generative adversarial networks (GANs) construct $\hat{\mathbf{g}}$ by solving :

$$\underset{\mathbf{g} \in \mathcal{G}}{\operatorname{minimize}} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left\{ \log f(\mathbf{X}_i) + \log \left(1 - f(\mathbf{g}(\mathbf{Z}_i)) \right) \right\}.$$

- In the GAN framework, G and F are referred to as the generator and discriminator classes, respectively.
 - In practice, both are parametrized by DNNs.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. & Bengio, Y. "Generative adversarial nets". Proc. NIPS. 2014

Generative adversarial networks (cont.)

• At the population level, GANs aim to solve

$$\begin{aligned} & \underset{\mathbf{g} \in \mathcal{G}}{\text{minimize}} \sup_{f \in \mathcal{F}} \mathbb{E} \left[\log f(\mathbf{X}) + \log \left(1 - f(\mathbf{g}(\mathbf{Z})) \right) \right] \\ \iff & \underset{\mathbf{g} \in \mathcal{G}}{\text{minimize}} \sup_{f \in \mathcal{F}} \left\{ \int \log f \, \mathrm{d}P_0 + \int \log (1 - f) \, \mathrm{d}P_\mathbf{g} \right\} \end{aligned}$$

 This objective is closely related to minimizing the Jensen–Shannon divergence:

$$\underset{\mathbf{g} \in \mathcal{G}}{\operatorname{minimize}} \operatorname{JS}(P_0, P_{\mathbf{g}}),$$

where

$$JS(P,Q) = \frac{1}{2} \left\{ K(P, (P+Q)/2) + K(Q, (P+Q)/2) \right\}.$$

Variations of GANs

 The adversarial training framework of GANs motivates several variations, which can be interpreted as solving the following problem at the population level:

$$\underset{\mathbf{g}\in\mathcal{G}}{\operatorname{minimize}}\,d(P_0,P_{\mathbf{g}}),$$

where d is a discrepancy measure of the form

$$d(P,Q) = \sup_{f \in \mathcal{F}} \left\{ \int f \, dP - \int h(f) \, dQ \right\},\,$$

with a fixed function $h : \mathbb{R} \to \mathbb{R}$.

f-GAN

• For a convex function ϕ , the f-divergence (also known as the Csiszár divergence or Ali–Silvey distance) is defined as

$$D_{\phi}(P,Q) = \int \phi\left(\frac{\mathrm{d}P}{\mathrm{d}Q}\right) \mathrm{d}Q.$$

- Examples:
 - Kullback–Leibler (KL) divergence (both directions)
 - Total variation distance
 - α -divergence (e.g., squared Hellinger, Pearson χ^2)
 - Jensen-Shannon (JS) divergence
- At the population level, f-GAN aims to solve

$$\underset{\mathbf{g}\in\mathcal{G}}{\operatorname{minimize}}\,D_{\phi}(P_0,P_{\mathbf{g}}).$$

f-GAN (cont.)

• It is well known that for any function class \mathcal{F} ,

$$D_{\phi}(P,Q) \ge \sup_{f \in \mathcal{F}} \left\{ \int f \, \mathrm{d}P - \int \phi^*(f) \, \mathrm{d}Q \right\},\,$$

where ϕ^* is the convex conjugate of ϕ , defined as

$$\phi^*(t) = \sup_{u \in \text{dom}(\phi)} \{ut - \phi(u)\}.$$

• Equality holds if and only if $\partial \phi(p/q) \cap \mathcal{F} \neq \emptyset$.

Nguyen, X., Wainwright, M. J. & Jordan, M. I. "Estimating divergence functionals and the likelihood ratio by convex risk minimization". *IEEE Trans. Inform. Theory.* 2010

f-GAN (cont.)

• The variational representation of *f*-divergence motivates the *f*-GAN objective:

$$\underset{\mathbf{g} \in \mathcal{G}}{\operatorname{minimize}} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left\{ f(\mathbf{X}_i) - \phi^*(f(\mathbf{g}(\mathbf{Z}_i))) \right\}.$$

• In practice, both \mathcal{G} and \mathcal{F} are parametrized by DNNs.

IPM GAN

• For a class \mathcal{F} of real-valued functions on \mathbb{R}^D , the \mathcal{F} -IPM (Integral Probability Metric) is defined as

$$d_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int f \, dP - \int f \, dQ \right|.$$

• IPM GAN aims to solve

$$\underset{\mathbf{g}\in\mathcal{G}}{\operatorname{minimize}}\,d_{\mathcal{F}}(P_0,P_{\mathbf{g}}).$$

• This leads to the following empirical objective:

$$\underset{\mathbf{g} \in \mathcal{G}}{\operatorname{minimize}} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left\{ f(\mathbf{X}_i) - f(\mathbf{g}(\mathbf{Z}_i)) \right\}.$$

IPM GAN (cont.)

- Example 1: Wasserstein GAN (WGAN)
 - \mathcal{F} = {f : Lip(f) ≤ 1} (1-Lipschitz functions).
- Example 2: Maximum Mean Discrepancy (MMD) GAN
 - $-\mathcal{F}$ is the unit ball of a reproducing kernel Hilbert space (RKHS).
- In practice, both G and F are parametrized by DNNs.
 However, different choices of F result in different optimization algorithms.
- A key advantage: IPMs are well-defined even when probability densities do not exist.

Arjovsky, M., Chintala, S. & Bottou, L. "Wasserstein generative adversarial networks". Proc. ICML. 2017

Dziugaite, G. K., Roy, D. M. & Ghahramani, Z. "Training generative neural networks via maximum mean discrepancy optimization". Proc. Conference on Uncertainty in Artificial Intelligence. 2015

Outline

- 1 Introduction
- 2 Variational autoencoder
- 3 Normalizing flow
- 4 Generative adversarial networks
- 5 Diffusion models

Introduction

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S. & Poole, B. "Score-based generative modeling through stochastic differential equations". *Proc. ICLR*, 2021

Score matching

- The estimation of the score function dates back to Hyvärinen (2005).
- For a function $\mathbf{s}: \mathbb{R}^D \to \mathbb{R}^D$, under mild regularity conditions,

$$\begin{split} \frac{1}{2}\mathbb{E}\Big[\|\boldsymbol{s}(\boldsymbol{X}) - \boldsymbol{s}_0(\boldsymbol{X})\|_2^2\Big] &= \mathbb{E}\left[\text{tr}\big(\nabla \boldsymbol{s}(\boldsymbol{X})\big) + \frac{1}{2}\|\boldsymbol{s}(\boldsymbol{X})\|_2^2\right] \\ &- \frac{1}{2}\mathbb{E}\|\boldsymbol{s}_0(\boldsymbol{X})\|_2^2. \end{split}$$

Hyvärinen, A. "Estimation of non-normalized statistical models by score matching". J. Mach. Learn. Res. 2005

Score matching (cont.)

• For $\mathbf{s}: \mathbb{R}^D \to \mathbb{R}^D$, the score matching loss is defined by

$$\ell_{\mathbf{s}}(\mathbf{x}) = \operatorname{tr}(\nabla \mathbf{s}(\mathbf{x})) + \frac{1}{2} \|\mathbf{s}(\mathbf{x})\|_{2}^{2},$$

which leads to an M-estimator (or ERM):

$$\hat{\mathbf{s}} = \underset{\mathbf{s} \in \mathcal{S}}{\operatorname{argmin}} \int \ell_{\mathbf{s}}(\mathbf{x}) \, \mathbb{P}_{n}(d\mathbf{x})$$
$$= \underset{\mathbf{s} \in \mathcal{S}}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} \ell_{\mathbf{s}}(\mathbf{X}_{i}) \right],$$

where S denotes a class of DNNs.

Score matching (cont.)

- The computation of $tr(\nabla \mathbf{s}(\mathbf{x}))$ is not scalable for large D.
- Several scalable alternatives have been proposed:
 - Sliced score matching (Song et al., 2020)
 - Denoising score matching (Vincent, 2011)

Song, Y., Garg, S., Shi, J. & Ermon, S. "Sliced score matching: A scalable approach to density and score estimation". Uncertainty in Artificial Intelligence. 2020

Remarks

- In real-world applications, noise is often injected at multiple levels, and the score functions of the resulting noise-perturbed distributions are jointly modeled and estimated.
- A variety of approaches have been proposed, many of which can be understood within a unified framework presented by Song et al. (2021).

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S. & Poole, B. "Score-based generative modeling through stochastic differential equations". *Proc. ICLR*. 2021

Score-based methods through SDE

• Consider the Ornstein-Uhlenbeck (OU) process

$$\mathrm{d}\mathbf{X}_t = -\frac{1}{2}\mathbf{X}_t\mathrm{d}t + \mathrm{d}\mathbf{B}_t, \quad t \ge 0,$$

with initial distribution $\mathbf{X}_0 \sim P_0$.

• For the OU process, the transition kernels are explicitly given by

$$\mathbf{X}_{t+s} \mid \mathbf{X}_s = \mathbf{x} \sim \mathcal{N}\left(\mu_t \mathbf{x}, \sigma_t^2 \mathbb{I}_D\right),$$

where
$$\mu_t = e^{-t/2}$$
 and $\sigma_t^2 = 1 - \mu_t^2$.

• Let $p_t(\cdot \mid \cdot)$ be the transition kernel density of a diffusion process, and define

$$p_t(\mathbf{x}) = \int p_t(\mathbf{x} \mid \mathbf{X}_0 = \mathbf{x}_0) dP_0(\mathbf{x}_0)$$

as the marginal density of X_t .

- p_t converges rapidly to the standard Gaussian density as $t \to \infty$.
- With slight abuse of notation, define the score function of p_t by

$$\mathbf{s}_0(t,\mathbf{x}) = \nabla(\log p_t)(\mathbf{x}).$$

- For a large enough T > 0, define the reverse process $\mathbf{Y}_t := \mathbf{X}_{T-t}$.
- Under mild regularity conditions, the reverse process satisfies the SDE (Anderson, 1982)

$$d\mathbf{Y}_t = \frac{1}{2}\mathbf{Y}_t dt + \mathbf{s}_0(T - t, \mathbf{Y}_t) dt + d\widetilde{\mathbf{B}}_t.$$

• Once an estimator $\hat{\mathbf{s}}(\cdot,\cdot)$ for $\mathbf{s}_0(\cdot,\cdot)$ is obtained, one can simulate the reverse process starting from a standard Gaussian sample.

- The function $s_0(\cdot, \cdot)$ can be estimated via score matching.
- Alternatively, one may estimate the conditional expectation

$$\mathbf{m}_0(t,\mathbf{x}) = \mathbb{E}[\mathbf{X}_0 \mid \mathbf{X}_t = \mathbf{x}]$$

using (weighted) least squares regression.

 These two approaches are equivalent under reparametrization, since

$$\mathbf{s}_0(t,\mathbf{x}) = -\frac{\mathbf{x} - \mu_t \mathbf{m}_0(t,\mathbf{x})}{\sigma_t^2}.$$

• For any weight function $\lambda(\cdot)$,

$$\mathbf{m}_0 = \underset{\mathbf{m}}{\operatorname{argmin}} \mathbb{E} \left[\int_0^T \lambda(t) \|\mathbf{X}_0 - \mathbf{m}(t, \mathbf{X}_t)\|^2 dt \right].$$

- By modeling **m** using a DNN, an estimator $\hat{\mathbf{m}}$ can be constructed via empirical risk minimization.
- Let $\hat{\mathbf{s}}(\cdot,\cdot)$ be the corresponding estimator of the score function.

• Recall that the reverse process $\mathbf{Y}_t = \mathbf{X}_{T-t}$ satisfies

$$d\mathbf{Y}_t = \frac{1}{2}\mathbf{Y}_t dt + \mathbf{s}_0(T - t, \mathbf{Y}_t) dt + d\widetilde{\mathbf{B}}_t, \quad \mathbf{Y}_0 \sim P_T.$$

• Define a process $(\hat{\mathbf{Y}}_t)$ using the estimated score $\hat{\mathbf{s}}$ as

$$d\hat{\mathbf{Y}}_t = \frac{1}{2}\hat{\mathbf{Y}}_t dt + \hat{\mathbf{s}}(T - t, \hat{\mathbf{Y}}_t) dt + d\widetilde{\mathbf{B}}_t, \quad \hat{\mathbf{Y}}_0 \sim \mathcal{N}(\mathbf{0}_D, \mathbb{I}_D).$$

- Define \hat{P} (or \hat{p}) as the distribution (or density) of $\hat{\mathbf{Y}}_T$.
 - Algorithmic issues are not discussed in this talk.

Remarks

- Score-based generative models represent the current state of the art in generative modeling.
- Various approaches are available for estimating the score function.
- A key practical concern is the computational cost of sample generation.

Thank you for attention!