

8.

Senzory magnetického pole

(Hallův jev, Magnetoodpor, Magnetodioda Magnetotranzistor, SQUID, SAW)

husak@fel.cvut.cz

http://micro.feld.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

Ing. Tomáš Teplý

Senzory magnetických veličin – rozdělení

A) Senzory s Hallovým jevem

Hallův senzor – princip činnosti

Princip činnosti

$$U_H = \frac{R_H}{a} \cdot B \cdot I$$

- **U_H** Hallovo napětí
- B magnetická indukce
- I proud čipem
- a tloušťka destičky
- R_H Hallova konstanta

Vyhodnocování signálu

Struktura GaAs čipu

Hallova konstanta R_H, Pohyblivost μ_e, Energetický pás E_g

Material	R _H in cm ³ /As	$\mu_{\rm e}$ in cm ² /Vs	$E_{\rm g}$ in eV
Metals	10-4	10	-
Ge	10+3	3900	0.75
Si	10+6	1500	1.16
InSb	380	77000	0.23
GaAs	10+4	8000	1.52

Hallův senzor – princip měření vzdálenosti a posuvu

Zkou ška

vzdálenost - d

posuv *S* **–** diferenciální

$$U_{H} = \frac{R_{H}}{a} \cdot B \cdot I$$

? Měření vzdálenosti a posuvy s Halovým senzorem: Nakreslete a vysvětlete princip měření vzdálenosti a posuvu

Hallův senzor – princip měření vzdálenosti d

Příklad: měření vzdálenosti

Hallův senzor – princip měření vzdálenosti d, chyba měření

Příklad: Diferenciální posuv

Vzdálenost **d**

$$\mathbf{A} = \mathbf{2}$$

$$(B) = 1.5$$

$$\mathbb{C} = 1$$

Hallův senzor – princip měření posuvu S a úhlu natočení

Příklad: Digitální senzor posunutí

Příklad: Měřič úhlu natočení - digitální senzor otáček

Hallův senzor – princip měření vzdálenosti a posuvu

Přiblížení feromagnetika

Posuv feromagnetika

Magnet

Příklad: Přiblížení feromagnetika

? Měření vzdálenosti s Hallovým senzorem v režimu s feromagnetikem: Nakreslete a vysvětlete princip činnosti Hallova senzoru v režimu využití feromagnetika pro měření vzdálenosti

Zkou

ška

Hallův senzor – princip měření otáček

Příklad: Digitální měřič otáček na principu posuvu feromagnetika

Hallův senzor – princip měření posuvu x

Příklad – měření posunutí x

$$U_H = \frac{R_H}{a} \cdot B \cdot I$$

Hallův senzor – princip měření posuvu x

Hallův senzor – měření velkého posuvu

Úpravy pro měření velkého posunutí

Hallův senzor – měření velkého posuvu

Úpravy pro měření velkého posunutí – lineární řada senzorů

Hallův senzor – vyhodnocování signálu ze senzoru

? Vyhodnocování signálu z Hallova senzoru: Nakreslete zjednodušeně princip zapojení senzoru pro vyhodnocování signálu (vyhodnocovací obvod) a vysvětlete jeho činnost

Vnitřní bloková struktura Hallova senzoru

Hallův senzor – vyhodnocování signálu ze senzoru

Analogové zpracování

Digitální zpracování

Hallův senzor – vyhodnocování signálu ze senzoru

Hallův senzor MH1SS1 – pro bezdotykové klávesnice

Hallův senzor – aplikace

firma Pewatron

Hallův senzor – měření proudu a výkonu

S proudovými transformátory

$$U_H = \frac{R_H}{a} \cdot B \cdot I$$

Měření příkonu spotřebiče

U_H je úměrné příkonu

Hallův senzor – měření proudu (Honeywell)

Princip otevřené smyčky

Hallův senzor - lineární závislost U_H=konst·B

Sestava - integrovaný Hallův generátor a 3 odpory na keramickém podkladu. Citlivost a teplotní kompenzace - se nastavuje úpravou dvou **R** laserem.

V senzoru je integrovaný i stabilizátor napětí a teplotně kompenzovaný měřicí zesilovač.

Výstupní napětí U_a proudového senzoru je úměrné primárnímu proudu I_p

Hallův senzor – měření proudu (Honeywell)

Princip uzavřené smyčky

- B od primárního proudu je kompenzováno opačným B z pomocného vinutí.
- Odchylka od nulového vyvážení B vytváří napětí na Hallovém senzoru.
- Kompenzační proud je řízen zesilovačem a napětím z Hallova senzoru.
- Na vnějším výkonovém odporu R lze získat výstupní napětí.

Hallův senzor – aplikace počítání předmětů

Kontrola na výrobní lince

Počítání Fe kuliček

Hallův senzor – spínač, hladinový spínač

sepnuto

rozepnuto

hladinový spínač

Hallův senzor – aplikace pro měření tlaku

B) Senzory s magnetoodporovým jevem

Magnetoodporový senzor – princip činnosti

Fyzikální princip

- Tenká magnetická vrstva
- ☐ Elektricky vodivé magnetické materiály představují tzv. anizotropní "magnetoodporový jev".
- V těchto materiálech vektor magnetizace vytváří směr, ve kterém teče proud.
- Působením vnějšího magnetického pole dochází ke stáčení magnetizačního vektoru ve vrstvě a tímto i "proudové cesty", což ve výsledku představuje změnu odporu vrstvy.
- Lorentzova síly uvnitř polovodiče "zužuje" proudovou cestu a tím zvyšuje R magnetoodporu.

? Senzory magnetického pole s magnetoodporovým principem: Nakreslete a vysvětlete princip činnosti magnetoodporového senzoru. Nakreslete jednoduché zapojení magnetoodporového senzoru do elektronického obvodu pro vyhodnocování magnetické indukce B.

Magnetoodporový senzor – materiály

Materiály

Polovodičová destička InSb nebo permalloy

- Polovodič Při přítomnosti B se zvyšuje elektrický odpor materiálu
- Permalloy Při přítomnosti B se snižuje elektrický odpor materiálu

Směrová citlivost

? Senzory magnetického pole s magnetoodporovým principem: Nakreslete převodní charakteristiky R=f(B) pro kovový a polovodičový typ senzoru.

Magnetoodporový senzor – materiály

- Odpor polovodiče je funkcí vnějšího magnetického pole.
- Kov např. 81% Ni a 19% Fe
- Si není příliš vhodný malá pohyblivost elektronů 1600 cm2/Vs.
- ☐ Si s přísadou NiSb nebo InSb pohyblivost 7000 cm2/Vs.
- Výstup je teplotně závislý nutná teplotní stabilizace.

Teplotně stabilizovaný obvod

Teplotně nestabilizovaný obvod

Magnetoodporový senzor – aplikace pro KMZ 10B

Parametry KMZ 10B - permalloy Vyhodnocování signálu - můstek

Typové označení	KMZ10B	
Odpor pásku <i>R</i> ₀	1700 Ω	
Citlivost E	4,0 1/T	
Teplotní koeficient	+0,3 %/K	
Maximální indukce	±3,75 . 10 ⁻³ T	
Materiál	permalloy	

Magnetoodporový senzor – aplikace

Měření posunutí

Měření velkého posunutí

Magnetoodporový senzor – aplikace

Měření velkého posunutí – senzorová řada

C) Magnetodiody

Magnetodiody

Nosiče jsou injektovány do polovodivé oblasti o rozměrech (l,w,d) z n+ a p+ oblasti působením elektrického pole.

Princip magnetodiodového jevu - mezi dvěma konci existuje rozdíl rekombinací, objevuje se dvojí injekce nosičů.

Nosiče jsou odchylovány působením Lorentzovy síly směrem k okrajům označeným 1 a 2, což vede k vytvoření gradientu koncentrace nosičů kolmého k elektrickému poli $E_{\rm x}$, následně k modulaci VA charakteristik diody.

Modulace VA charakteristik diody - závislá na poměrech rekombinací, geometrii a proudovém

? Magnetodioda: Nakreslete a vysvětlete princip činnosti zjednodušené struktury magnetodiody

Magnetodiody

SOS

Diference povrchových rekombinací může být vytvořena v **integrované magnetodiodě** použitím Si-Al₂O₃ (vyšší úroveň) a Si-SiO₂ (nižší úroveň).

Struktura bývá označována jako SOS (Saphire-On-Silicon)

Citlivost je *S=5 V/T*.

Nevýhody - obtížná realizace rekombinace na povrchu Si-Al₂O₃, citlivost je silně nelineární, velká teplotní závislost.

Magnetodiody

CMOS technologie

- Technologie kompatibilní s CMOS technologií
- Struktura podobná bipolárnímu tranzistoru, ale s opačnou polarizací p-n přechodu.
- B působící kolmo na bázový proud odchyluje proudové siločáry směrem ke kolektoru nebo od kolektoru.
- Při modulaci kolektorového proudu se mění odpor báze a tímto je modulované napětí na přechodu báze - emitor.
- Citlivost je větší než u SOS magnetodiod, S=25 V/T.

D) Magnetotranzistor

Magnetotranzistor

Magnetotranzistor (magnistor) se skládá z "proudového zdroje", tj. emitoru a několika kolektorů.

2 principy činnosti:

- a) Nosiče náboje jsou magnetickým polem odchylovány Lorentzovou silou způsobuje vznik nerovnováhy u kolektorových proudů.
- b) Modulace emitorové injekce jako u magnetodiod (Hallovo napětí v bázi moduluje pomocí emitoru proudovou injekci).

Rozdělení podle směru hlavního toku proudu vůči Si povrchu:

- a) Laterální směr proudu citlivost na kolmé magnetické pole
- b) Vertikální směr proudu citlivost na laterální magnetické pole

Magnetotranzistor - laterální

Laterální magnetotranzistor

- Emitorový proud l_p se odchyluje působením magnetického pole na p+ typech kolektorů C1 a C2 vzniká proudový rozdíl.
- Přiložením kladného napětí mezi bázové kontakty b1 a b2 způsobí chování podobné Hallovu jevu a tímto vzniká Hallovo napětí.
- Vzniklé Hallovo napětí pomáhá odchylovat proudové siločáry a tím dále zvyšuje proudové rozdíly na kolektorech.
- Kombinací těchto dvou jevů vzniká výsledný rozdíl proudů
- Laterální magnetotranzistory mohou být realizovány jako bipolární nebo CMOS
- Rozlišitelnost do 10⁻⁷ T

? Magnetotranzistor: Nakreslete zjednodušeně základní strukturu bipolárního laterálního magnetotranzistoru, vysvětlete stručně činnost a význam jednotlivých veličin v nákresu.

Magnetotranzistor – laterální unipolární (MAGFET)

Magnetotranzistor – vertikální

Vertikální struktura magnetotranzistorů

Proud je kolmý na Si povrch a B má laterální směr vůči povrchu Si.

2 základní typy struktury:

a) Diferenciálně zesilující magnetický senzor - DAMS

DAMS struktura je složena ze dvou vertikálních pnp tranzistorů se společnou bázovou oblastí. Kolmé **B** vytváří Hallovo napětí mezi emitorovými plochami, toto napětí modifikuje injektované proudy a tímto i kolektorové proudy. Výhoda této struktury spočívá v přímém zesilování malé úrovně Hallova signálu.

b) Magnetotranzistor s dvojitým kolektorem.

Proud teče opět kolmo na povrch Si, senzor je citlivý na laterální B. Struktura je složena ze dvou pnp tranzistorů, ale na rozdíl od předchozí struktury jsou báze a emitor společné k oběma tranzistorům. Laterální B odchyluje elektrony směrem k jednomu n+ kolektoru a tímto vzniká proudový rozdíl na kolektorech

E) Nosičově doménové mikrosenzory magnetického pole

Nosičově doménové mikrosenzory magnetického pole

- Mnohonásobná struktura pnpn.
- Centrální část kruhové vertikální pnp a laterální npn tranzistory.
- Kolektory p-typu, které obtáčejí střed působí jako přídavné kolektory laterálních npn tranzistorů a detekují rotaci proudové domény.
 - Proud působí v malé doméně, která rotuje při přítomnosti magnetického pole. Činnost tranzistoru je podmíněna prahovým magnetickým polem
- Výstup je silně teplotně závislý.
- Struktura má velkou proudovou citlivost 3 mA/T.

F) SQUID

Senzory slabého magnetického pole

Senzor magnetického pole - SQUID

Zkou ška

Princip

- SQUID (supravodivé kvantové interferenční zařízení) pro měření velmi malých magnet. polí.
- Základem SQUID je smyčka se dvěma Josephsonovými přechody
- Celkový stejnosměrný proud |=|a+|b je součet proudů v obou větvích, při sčítání vzniká interference
- Fázový rozdíl je I_a a I_b přímo úměrný Φ , který prochází smyčkou (vysoká <u>p</u>řesnost měření)

Josephsonův jev (džouzefsnův)

je vznik elektrického proudu mezi dvěma supravodiči oddělenými vrstvou izolantu tenčí než μm. Jedná se o speciální případ kvantového tunelového jevu, kdy částice procházejí zdánlivě neprostupnou bariérou..

SQUID (Superconducting Quantum Interference Devices)

- •Je využíváno k měření velmi malých magnetických polí až na hranici řádu 5×10⁻¹⁸ T (magnetické pole Země je 10⁹ x silnější).
- •Hlavní složka zařízení použit niob ochlazený pomocí tekutého hélia (nejpřesnější ale drahé).
- Vysokoteplotní slitiny, např. YBa2Cu3O7-x s chlazením tekutým N₂ (menší přesnost, lacinější),

Poznámka: Tepelná vodivost tekutého hélia je 3.10⁶x větší než u Cu při 25 °C

? SQUID: Nakreslete zjednodušeně a vysvětlete princip činnosti struktury SQUID. Jaké nejmenší magnetické pole může tato struktura měřit. Jaké plyny se používají k dosažení kryogenních teplot.

Senzor magnetického pole - SQUID

Supravodivé kvantové - kruhová struktura vyrobená ze supravodivého materiálu (YBa2CuO(7-x)) přerušeného Josephonsovými přechody

Integrace - tenkovrstvový "SQUID čtverec", působí jako zemnicí destička pro vstupní cívku pro zlepšení induktivní vrstvy mezi spirálovou vstupní cívkou a "SQUID čtvercem".

Citlivost je v praxi omezena bílým a 1/f šumem.

<u>John Clarke</u>, <u>Alex I. Braginski</u>. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems: Fundamentals and Technology of SQUIDs and SQUID Systems v. 1 (Physics) Hardcover 2004

Senzor magnetického pole - SQUID

Aplikace

- Lékařství: Měření mozkových signálů, které vyvolávají magnetická pole v řádech 10⁻¹³ T.
 - Magnetoencefalografie (MEG) měří neurální aktivitu mozku
 - magnetokardiografie (MCG) měří aktivitu srdečního svalu
- •Geologie: Průzkum ložisek materiálu

Vyšetření srdce snímkováním magnetického pole s využitím technologie **SQUID** (většinu objemu zařízení tvoří kryogenika)

G) SAW mikrosenzory magnetického pole

Mikrosenzor magnetického pole - SAW

Princip:

 Působením B na tenkou magnetickou vrstvu, kterou se šíří povrchově akustická vlna, dochází k modulaci akustických parametrů magnetoelastických materiálů.

Digitální tvar výstupního signálu

? SAW mikrosenzor magnetického pole: Nakreslete zjednodušeně a vysvětlete základní princip činnosti senzoru. Popište způsob vyhodnocování výstupního signálu

Mikrosenzory magnetického pole - porovnání

Typ mikrosenzoru	Rozsah [T]	Citlivost	Poznámka
Hallova sonda	10 ⁻³ - 10 ⁻⁹ 0 - 1	5 - 10 %/T 200 V/T	Si citlivější než InSb,
(komerční)			linearita KSY10
			Siemens, lin. ± 0.7
			%
Magnetoodpor	10 ⁻¹ - 10 ⁻¹⁰ 0 - 1	500 %/T 700 %/T	Citlivější, menší
(komerční)			linearita F830L100E
			Siemens, nelin., tepl.
			záv.
Magnetodiody	ત્સ10 ⁻³	5 V/T25 V/T	SOS CMOS
Magnetotranzistory	લ્સ10 ⁻³	0,5 - 2 %/T 7 %/T 2-	Laterální driftový
		5 %/T	pnp, tepl. záv.
			Lateální injekční pnp,
			tepl. záv. Vertikální
			npn, tepl. záv.
Nosičově - doménové	-	100 kHz/T	Laterální kruhový
			npn, vývoj
SQUID	10 ⁻⁶ - 10 ⁻¹⁴	φ0	Extrémní citlivost,
			potřebuje
1 Petropol II			supervodivou teplotu

Otázky

- Senzor magnetického pole s Halovým jevem: Nakreslete a vysvětlete princip činnosti Hallova senzoru,
 Napište základní rovnici pro výpočet Hallova napětí
- 2. Měření vzdálenosti a posuvy s Halovým senzorem: Nakreslete a vysvětlete princip měření vzdálenosti a posuvu
- 3. Měření vzdálenosti s Hallovým senzorem v režimu s feromagnetikem: Nakreslete a vysvětlete princip činnosti Hallova senzoru v režimu využití feromagnetika pro měření vzdálenosti
- 4. Vyhodnocování signálu z Hallova senzoru: Nakreslete zjednodušeně princip zapojení senzoru pro vyhodnocování signálu (vyhodnocovací obvod) a vysvětlete jeho činnost
- 5. Senzory magnetického pole s magnetoodporovým principem: Nakreslete a vysvětlete princip činnosti magnetoodporového senzoru. Nakreslete jednoduché zapojení magnetoodporového senzoru do elektronického obvodu pro vyhodnocování magnetické indukce B
- 6. Senzory magnetického pole s magnetoodporovým principem: Nakreslete převodní charakteristiky R=f(B) pro kovový a polovodičový typ senzoru
- 7. Magnetodioda: Nakreslete a vysvětlete princip činnosti zjednodušené struktury magnetodiody
- 8. Magnetotranzistor: Nakreslete zjednodušeně základní strukturu bipolárního laterálního magnetotranzistoru, vysvětlete stručně činnost a význam jednotlivých veličin v nákresu
- 9. SQUID: Nakreslete zjednodušeně a vysvětlete princip činnosti struktury SQUID. Jaké nejmenší magnetické pole může tato struktura měřit. Jaké plyny se používají k dosažení kryogenních teplot
- 10. SAW mikrosenzor magnetického pole: Nakreslete zjednodušeně a vysvětlete základní princip činnosti senzoru. Popište způsob vyhodnocování výstupního signálu

