Chapitre 3 Racines de fonctions F(x)=0F : fonction non linéaire 44 45 Problème général Soit une fonction $f: \mathbb{R}^n \to \mathbb{R}^p$. Le problème est de trouver (en temps fini) par une méthode approchée, des solutions de l'équation f(x) = 0

 $f: R \square R$.

Théorème (zéro d'une fonction) Soit f une fonction continue $f\colon [a,\ b]\to R$ $si\ f(a)f(b)\leq 0, \qquad alors$

 $\exists \; \alpha \in \;]a,b[\; tel \; que \; f(\alpha) = 0$

Schéma général de l'approche pour la résolution

 $f: R \rightarrow R$.

On transforme la forme de l'équation:

 $f(x) = 0 \Leftrightarrow \varphi(x) = x$ on construit la suite :

$$X^{k+1} = \varphi(X^k)$$
 et $\lim_{k \to \infty} X^k = x$

on s'appuie sur le principe du point fixe : X^* tq : $\phi(X^*)$ = X^*

La solution est déterminée avec une précision $\boldsymbol{\epsilon}$ donnée :

$$|\phi(\mathbf{X}^{(k)}) - \mathbf{X}^{(k-1)}| \le \varepsilon$$

On passe par des méthodes itératives ; il faut avoir :

- un point de départ $x^{(0)} \rightarrow$ initialisation
- la fonction $\varphi(x) = x$ pour chaque méthode (règle de l'itération).
- définir les conditions d'arrêt de l'itération

LIE LIEGOO

47

Fonction d'itération
$$\begin{cases} x^{(1)} = \varphi(x^{(0)}) \\ x^{(2)} = \varphi(x^{(1)}) \text{ on suppose } x^{(k-1)} \operatorname{connu} \\ x^{(k)} = \varphi(x^{(k-1)}) \end{cases}$$

ightharpoonup Si la suite $x^{(k)}$ converge une limite x^* lorsque $k \rightarrow \infty$

Alors x^* est solution de l'équation $x = \varphi(x)$

ightharpoonup critère d'arrêt : $\mathbf{X}^{(k)}$ proche d'une solution de l'équation $x=\varphi(x)$.

- Par exemple :
- \checkmark la suite $X^{(n)}$ devient stationnaire : $\left|X^{(k)} X^{(k-1)}\right| \leq \epsilon$
- $\checkmark |f(X^{(k)})| \le \epsilon$

UE LIF063

48

* Récapitulatif

On considère l'équation (1) f(x)=0: f continue et dérivable.

Résoudre le problème (1) \Leftrightarrow répondre aux 3 points suivants :

- Définir une suite itérative $x^{(k+1)} = \varphi(x^{(k)})$ (trouver une méthode adaptée).
- Trouver un point de départ x⁽⁰⁾ (voir conditions de convergence).
- Déterminer un critère d'arrêt (précision).

Temps fini \Rightarrow la vitesse de convergence de la suite ($x^{(k)}$).

 $\underline{\textit{Remarques:}} \ \mathsf{Convergence} \ \boldsymbol{\rightarrow} \ \mathsf{existence} \ \mathsf{de} \ \mathsf{la} \ \mathsf{solution} \ + \ \mathsf{choix} \ \mathsf{de} \ \mathsf{x}^{(0)}.$

Propagation d'erreur peut entraîner une divergence

UE LIF063

 Condition d'existence : théorème des valeurs intermédiaires o Si : f est continue sur [x₁, x₂] et f(x₁)*f(x₂) ≤ 0 o Alors ∃ x₀ ∈ [x₁, x₂] : f(x₀) = 0 Méthode d'itération : Théorème du point fixe (f continue) : o f(x) = 0 ⇔ φ(x) = x → on construit la suite o x^(k+1) = φ (x^(k)) et lim x^(k) = x* ⇒ φ(x*) = x* Condition de convergence : application du théorème des accroissements finies Rappel du Théorème des accroissements finis f : [a, b] → R, continue sur [a, b], dérivable sur]a, b[, il existe c ∈]a, b[tel que f'(c) = f(b) - f(a)/b - a 				
UE UF063	50			
50	50			
• Cqce du Th. des accroissement finis : ϕ contractante ssi : $\circ \mid \phi(x) - \phi(y) \mid \leq c \mid x - y \mid$ $\circ x = x(k)$, $y = x(k-1) \Rightarrow \mid x(k+1) - x(k) \mid \leq c \mid x(k) - x(k-1) \mid \leq c^k \mid x(1) - x(0) \mid$				
• Si ϕ n'est définie que sur un domaine D, il faut choisir x(0) dans D et vérifier que $\phi(D) \subset D.$				
UE LIF063	51			
51				
 Ordre de convergence : Soit x^(*), un point fixe de φ si pour tout x^(k) dans le voisinage de x[*], on a la relation : 				
$ x^{(k+1)}-x^* \leq C\cdot x^{(k+1)}-x^* ^p$ pour tout $k\geq 0$, avec $C<1$ si $p\geq 1$; on dit que ϕ est d'ordre au moins p pour déterminer $x^{(*)}$.				

52

p = 1 : convergence linéaire
 p = 2 : convergence quadratique

Algorithme : méthode de dichotomie

$$a^{(0)}=a,\,b^{(0)}=b,\,{\rm et}\,\,x^{(0)}={a^{(0)}+b^{(0)}\over 2}.$$

Pour $k \geq 0$ et tant que $|I_k| = |b^{(k)} - a^{(k)}| > \epsilon$

- Si $f(x^{(k)}) = 0$ alors $x^{(k)}$ est la racine α .
- Si $f(x^{(k)})f(a^{(k)}) < 0$
 - $\bullet \ a^{(k+1)} = a^{(k)}, \, b^{(k+1)} = x^{(k)}$
- $\bullet \ \operatorname{Si} f(x^{(k)})f(b^{(k)})<0$
 - $\bullet \ a^{(k+1)} = x^{(k)}, \, b^{(k+1)} = b^{(k)}$
- $x^{(k+1)} = \frac{a^{(k)} + b^{(k)}}{2}$

UE LIF063

54

Méthode de la corde (ou la sécante)

$$f(x_n) + \frac{f(b) - f(a)}{b - a}(x_{n+1} - x_n) = 0$$

On peut exprimer la suite recherchée par:

$$\varphi(x_n) = x_{n+1} = x_n - \frac{b-a}{f(b)-f(a)}f(x_n)$$

56

La méthode de la corde peut être écrite sous la forme d'itération de point fixe $x_{n+1}=\varphi(x_n)$ où

$$\phi(x) = x - \frac{b-a}{f(b) - f(a)} f(x)$$

Puisque

$$\phi'(x)=1-\frac{b-a}{f(b)-f(a)}f'(x)$$

la condition de convergence locale $|\phi'(\alpha)|<1$ est équivalente à

$$0<\frac{b-a}{f(b)-f(a)}f'(\alpha)<2$$

Sauf le cas exceptionnel où $\phi'(\alpha)=0$, la convergence est linéaire.

UE LIF06

57

Méthode de fausse position (Regula falsi)

Cette méthode combine les possibilités de la dichotomie et la méthode de la sécante. On considère un intervalle [a, b] qui contient un zéro de la fonction f. (f(a).f(b) < 0; f continue

Ce qui donne :

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

UE LIF063

Méthode de Newton (-Raphson)

Convergence locale: si $x^{(0)}$ est assez proche de α et $f'(\alpha) \neq 0$, la méthode converge avec un ordre p=2.

UE LIF06

59

Méthode de Newton : expression de la suite (x_n)

Pour la méthode de Newton on utilise le développement de Taylor à l'ordre 1 au voisinage de (x_n) on obtient : $f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n)f'(x_n)$

D'où, si on cherche le point (x_{n+1}) tel que $f(x_{n+1})=0)$ Obtient :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad avec \ f'(x_n) \neq 0$$
$$donc \ ici \ \varphi(x) = x - \frac{f(x)}{f'(x)} \ f'(x) \neq 0$$

UE LIF063

60

Pour la convergence

En supposant $f'(\alpha) \neq 0$ on obtient

$$\phi'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} \Rightarrow \phi'(\alpha) = 0$$

La méthode est convergente localement. On peut montrer qu'elle est convergente d'ordre $p=2.\,$

61

A propos de la convergence

- $\bullet |I_0| = |b a|$
- $|I_k|=|b^{(k)}-a^{(k)}|=\frac{|I_0|}{2^k}=\frac{|b-a|}{2^k}$ pour $k\geq 0$
- En notant $e^{(k)} = \alpha x^{(k)}$ l' erreur absolue à l'étape k, on déduit que

$$|e^{(k)}|=|\alpha-x^{(k)}|\leq \frac{|I_k|}{2}=\frac{|b-a|}{2^{k+1}}\quad \text{pour } k\geq 0$$

ce qui entraîne

$$\lim_{k\to\infty}|e^{(k)}|=0$$

Donc la méthode de la bissection est globalement convergente.

UE LIFO