## Date-A-Scientist

By Ian De Bie

# Table of Contents

- Exploring the Dataset
- Statement of Question
- Column Creation
- Regression Comparison
- Conclusion

### Conclusion

- I ended up dropping NAN's from the dataset due to continually getting error when trying to fit the model.
- I don't believe the model was successful and would have been nice to not have so many NAN's
- This class was really complicated for me, but I am glad I took it in order to get a taste of what Machine Learning is all about

### Exploring the Dataset

The first thing I did after creating Dataframe was to run head, describe, and value\_count on religion. I noticed that the religion column wasn't grouped very well and if I wanted to use it then I would need to add a column revising it somewhat. Looking at the other columns gave me an idea what to start with.

| 0           | age<br>22<br>35 | body_type<br>a little extra<br>average | diet<br>strictly anything<br>mostly other | <br>smokes<br>sometimes<br>no | speaks<br>english<br>english (fluently), spanish (poorly), french ( | status<br>single<br>single    |
|-------------|-----------------|----------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------------------------------|-------------------------------|
| 2<br>3<br>4 | 38<br>23<br>29  | thin<br>thin<br>athletic               | anything<br>vegetarian<br>NaN             | <br>no<br>no<br>no            |                                                                     | available<br>single<br>single |

|       | age          | height       | income         |
|-------|--------------|--------------|----------------|
| count | 59946.000000 | 59943.000000 | 59946.000000   |
| mean  | 32.340290    | 68.295281    | 20033.222534   |
| std   | 9.452779     | 3.994803     | 97346.192104   |
| min   | 18.000000    | 1.000000     | -1.000000      |
| 25%   | 26.000000    | 66.000000    | -1.000000      |
| 50%   | 30.000000    | 68.000000    | -1.000000      |
| 75%   | 37.000000    | 71.000000    | -1.000000      |
| max   | 110.000000   | 95.000000    | 1000000.000000 |

| agnosticism<br>other                      | 2724<br>2691 |
|-------------------------------------------|--------------|
| agnosticism but not too serious about it  | 2636         |
| agnosticism and laughing about it         | 2496         |
| catholicism but not too serious about it  | 2318         |
| atheism                                   | 2175         |
| other and laughing about it               | 2119         |
| atheism and laughing about it             | 2074         |
| christianity                              | 1957         |
| christianity but not too serious about it | 1952         |
| other but not too serious about it        | 1554         |
| judaism but not too serious about it      | 1517         |
| atheism but not too serious about it      | 1318         |
| catholicism                               | 1064         |

# Predict Religion?

- Can religion be predicted based off ethnicity, or off a combination of other columns?
- Try first just based off ethnicity, and then add diet, drugs, drinking, and smoking
- Need to modify religion, diet, and ethnicity to group them into simple categories
- Create numerical data from each of the columns to use as features

#### Column Creation

Religion, Diet, and Ethnicity columns contained many records with NAN. So I first wanted to change all of those to 'Other', with the reason being they didn't fill it out so it basically is other. The next challenge was to take all the different phrases and group it by the main category. For that part, I created a split function to take either the first or last word of each record depending on what I wanted to group by. After that, I took those 3 columns, plus drinks, drugs, and the smokes columns and converted those to a numeric code similar to the example in the Capstone.

```
df.religion = df.religion.fillna('other')
df.diet = df.diet.fillna('other')
df.ethnicity = df.ethnicity.fillna('other')

def split_col(data, index=0):
    output = str(data).split()
    return str(output[index]).strip(',')

df['diet_cat'] = df['diet'].apply(lambda x: split_col(x, -1))
df['religion_cat'] = df['religion'].apply(lambda x: split_col(x, 0))
df['eth_cat'] = df['ethnicity'].apply(lambda x: split_col(x, 0))
```

```
religion_mapping = {'other': 0, 'atheism': 1, 'agnosticism': 2, 'islam': 3, 'hinduism': 4, \
  'buddhism': 5, 'judaism': 6, 'catholicism': 7, 'christianity': 8}
diet mapping = {'other': 0, 'halal': 1, 'kosher': 2, 'vegan': 3, 'vegetarian': 4, 'anything': 5}
eth_mapping = {'other': 0, 'native': 1, 'pacific': 2, 'middle': 3, 'indian': 4, 'black': 5, \
  'hispanic': 6, 'asian': 7, 'white': 8}
drinks_mapping = {'not at all': 0, 'rarely': 1, 'socially': 2, 'often': 3, 'very often': 4, \
 'desperately': 5}
drugs_mapping = {'never': 0, 'sometimes': 1, 'often': 2}
smokes_mapping = {'no': 0, 'sometimes': 1, 'when drinking': 2, 'trying to quit': 3, 'yes': 4}
df['religion_num'] = df.religion_cat.map(religion_mapping)
df['diet num'] = df.diet cat.map(diet mapping)
df['eth_num'] = df.eth_cat.map(eth_mapping)
df['drinks_num'] = df.drinks.map(drinks_mapping)
df['drugs_num'] = df.drugs.map(drugs_mapping)
df['smokes num'] = df.smokes.map(smokes mapping)
```

## Multiple Linear Regression

