Série 4 : Résolution d'équations non linéaires

Analyse numérique, 3A,3B

A.U 16/17

Exercice 1

On se propose de résoudre numériquement l'équation :

$$(E): f(x) = x^3 + x - 1 \ dans \]0, 1[$$

- **1.** Monter que l'équation (E) admet une solution unique $\overline{x} \in]0,1[$
- 2. Estimer le nombre d'itérations nécessaires pour calculer \overline{x} avec une précision $\varepsilon = 10^{-3}$ en utilisant la méthode de dichotomie.
- 3. Décrire la méthode de Newton pour calculer la solution \overline{x} de (E) et déterminer x_0 pour assurer la convergence de la méthode de Newton.
- 4. Donner une solution approchée de la solution \overline{x} de (E) avec une précision $\varepsilon=10^{-3}$, en appliquant la méthode de Newton.

Exercice 2

On se propose de résoudre, par la méthode de Newton, l'équation :

$$f(x) = 1 - xe^x = 0$$

- 1) Montrer que f(x) admet une unique solution α dans l'intervalle [0,1].
- 2) Combien faut-il d'itérations pour déterminer par la méthode de dichotomie cette solution avec une précision de 10^{-3} .
- 3) Application de la méthode de Newton :
 - a) Ecrire le schéma itératif de la méthode de Newton.
 - b) Etudier la convergence de la méthode de Newton.
 - c) Choisir \boldsymbol{x}_0 pour assurer la convergence de la méthode.
 - d) Donner une valeur approchée de la racine α avec une précision de 10^{-2} .