

Advanced methods for Information Representation

Vector spaces-I

Riccardo Leonardi Università degli Studi di Brescia

Department of Information Engineering Faculty of Engineering University of Brescia Via Branze, 38 – 25231 Brescia - ITALY

Group: definition

Group (G,*)

- 1. associative, i.e. \forall a,b,c \in G, (a * b) * c = a * (b * c)
- 2. **∃** a neutral element with respect to "*", i.e.

$$\forall$$
 a \in G, $\exists e_* \in$ G, a * $e_* = e_*$ * a = a

3. Every element of G has an inverse with respect to "*", i.e.

$$\forall$$
 a \in G, \exists b \in G, a * b = b * a = e_{*}

• If \forall a,b \in G, a * b = b * a, (G,*) is said to be commutative (or abelian)

Field: definition

- (K,+,.): algebraic structure over which 2 operations are defined, "+" and "." such that:
 - (K,+) forms an abelian group;
 - $(K\setminus\{e_+\},.)$ forms a group with neutral element e
 - "." is distributive with respect to +, i.e. \forall a,b,c ∈ K, a.(b+c) = a.b+a.c
- (\mathbb{C} ,+,.) represents the field of complex numbers, with "+" and "." being the addition/multiplication on complex numbers
- (\mathbb{R} ,+,.) represents the field of real numbers, with "+" and "." being the addition/multiplication on real numbers

Vector spaces: definition

V forms a vector space on the field of complex numbers $\mathbb C$ if \blacksquare

- (V, +) forms a commutative group, where + identifies the "sum" operation between the elements of V. Its neutral element is $0 = e_{+}$.
- \exists an external product "." between the elements of V and \mathbb{C} , for which
 - complex number multiplication "." is interchangeable with respect to ".", i.e. a)

$$\forall a,b, \in \mathbb{C}, \underline{v} \in V, (a.b),\underline{v} = a,(b,\underline{v})$$

- $1 \in \mathbb{C}$ is a neutral element for ".", i.e. $\forall \underline{v} \in V$, $1.\underline{v} = \underline{v}$ b)
- "." is distributive with respect to the sum "+" of the elements in V, i.e. C)

$$\forall a \in \mathbb{C}, \underline{x},\underline{y} \in V, a.(\underline{x+y}) = (a.\underline{x}) + (a.\underline{y})$$

d) "⋅" is (sort of) distributive" with respect to the sum "+" defined over ℂ, i.e.

$$\forall$$
 a, b \in \mathbb{C} , \underline{x} \in V , $(a+b) \cdot \underline{x} = (a \cdot \underline{x}) + (b \cdot \underline{y})$

The elements of *V* are called "vectors".

Vector spaces: examples

• Space $\mathbb{C}^N / \mathbb{R}^N$ of complex-/(real-)valued finite dimensional evectors

$$\mathbb{C}^{N}/\mathbb{R}^{N} = \{ \underline{x} = [x_{0} x_{1} ... x_{N-1}]^{T} | x_{n} \in \mathbb{C}/\mathbb{R}, n = 0, 1, ..., N-1 \}$$

$$\underline{x} + \underline{y} \triangleq [x_{0} + y_{0} x_{1} + y_{1} ... x_{N-1} + y_{N-1}]^{T}$$

$$a.\underline{x} \triangleq [a.x_{0} a.x_{1} ... a.x_{N-1}]^{T}$$

• Space $\mathbb{C}^{\mathbb{Z}}$ / $\mathbb{R}^{\mathbb{Z}}$ of complex-/(real-)valued infinite sequences

$$\mathbb{C}^{\mathbb{Z}}/\mathbb{R}^{\mathbb{Z}} = \{ \underline{\mathbf{x}} = [\dots \mathbf{x}_{-1} \mathbf{x}_0 \mathbf{x}_1 \dots]^{\mathsf{T}} \mid \mathbf{x}_n \in \mathbb{C}/\mathbb{R}, \mathbf{n} \in \mathbb{Z} \}$$

$$\underline{\mathbf{x}} + \underline{\mathbf{y}} \triangleq [\dots \mathbf{x}_{-1} + \mathbf{y}_{-1} \mathbf{x}_0 + \mathbf{y}_0 \mathbf{x}_1 + \mathbf{y}_1 \dots]^{\mathsf{T}}$$

$$\mathbf{a} \cdot \underline{\mathbf{x}} \triangleq [\dots \mathbf{a} \cdot \mathbf{x}_{-1} \mathbf{a} \cdot \mathbf{x}_0 \mathbf{a} \cdot \mathbf{x}_1 \dots \mathbf{a} \cdot \mathbf{x}_{\mathsf{N}-1}]^{\mathsf{T}}$$

Vector spaces: examples

• Space $\mathbb{C}^{\mathbb{R}}$ / $\mathbb{R}^{\mathbb{R}}$ of complex-/(real-)valued functions over \mathbb{R}

$$\mathbb{C}^{\mathbb{R}} / \mathbb{R}^{\mathbb{R}} = \{ \underline{\mathbf{x}} = \mathbf{x}(t) \mid \mathbf{x}(t) \in \mathbb{C} / \mathbb{R}, t \in \mathbb{R} \}$$

$$\underline{x} + \underline{y} \triangleq (x+y)(t)$$
 sum of functions

$$a \cdot \underline{x}$$
 \triangleq $(a \cdot x)(t)$ external multiplication between a scalar and a function

- Space $\mathbb{C}^{\mathbb{R}^+}$ of complex-valued functions defined over \mathbb{R}^+
- Space $\mathbb{C}^{[a,b]}$ of complex-valued functions defined over [a,b]
- Space of polynomial functions of order N-1: $\underline{x} = \sum_{n=0}^{N-1} \alpha_n . t^n$

Subspace: definition/examples

• A non-empty subset *S* of a vector space *V* is called a <u>subspace</u> of *V*, when it is closed with respect to the operations of vector addition "+" and scalar multiplication ". ":

1.
$$\forall \underline{x},\underline{y} \in S, \underline{x} + \underline{y} \in S$$

2.
$$\forall$$
 a \in \mathbb{C} , x \in S, a.x \in S

(alternatively, \forall a,b \in \mathbb{C} , $\underline{x},\underline{y}$ \in S, a. \underline{x} + b. \underline{y} \in S)

Examples of subspaces

$$- S_1 = \{ \underline{\mathbf{x}} = \mathbf{a} \cdot \underline{\mathbf{x}}_0 \mid \text{fixed } \underline{\mathbf{x}}_0 \in V, \ \forall \mathbf{a} \in \mathbb{C} \}$$

- $S_2 = \{ \underline{\mathbf{x}} \in \mathbb{C}^{\mathbb{Z}} \mid \mathbf{x}_n = 0, \forall n \neq 1,2,3 \}$, subspace of sequences having 0 value for indices n ≠1,2,3
- $S_3 = \{ \underline{x} \in \mathbb{C}^{\mathbb{R}} \mid x(t) = -x(-t) \}$, subspace of odd complex-valued functions

Affine subspace: definition/examples

• A non-empty subset T of a vector space V is called an <u>affine</u> subspace of V, when there exists a vector $\underline{v}_0 \subseteq V$, and a subspace S of V such that $\forall \underline{t} \subseteq T$, $\exists \underline{s} \subseteq S$, $\underline{t} = \underline{s} + \underline{v}_0$

- Property
 - An affine subspace is a subspace of a vector space V only if it contains <u>0</u>
- Note: An affine subspace generalize the concept of a plane in Euclidean geometry.
- Examples
 - $-T_1 = \{ \underline{x} = a \cdot \underline{x}_0 + \underline{y}_0 \mid \text{ fixed } \underline{x}_0, \underline{y}_0 \in V, \ \forall a \in \mathbb{C} \}, \text{ it is a subspace iff } \underline{y}_0 = \underline{0} \}$
 - $T_2 = \{ \underline{\mathbf{x}} \in \mathbb{C}^{\mathbb{Z}} \mid \mathbf{x}_n = 1, \forall n \neq 1,2,3 \}$, affine subspace of $\mathbb{C}^{\mathbb{Z}}$, it is not a subspace of $\mathbb{C}^{\mathbb{Z}}$ since the sequence of all "0" $\notin T_2$

Span/Linear independence: definition

 The span of a set of vectors S is the set of all <u>finite</u> linear combinations of vectors in S

$$S = \left\{ \underline{\varphi}_k, k = 1, 2, \dots \right\}$$

$$span(S) = span\left\{\underline{\varphi}_{k}\right\} = \left\{\sum_{k=1}^{N} \alpha_{k} \cdot \underline{\varphi}_{k} \middle| \alpha_{k} \in C, \underline{\varphi}_{k} \in S, N < \infty\right\}$$

• A set of vectors $S = \{\underline{\varphi}_k, k=1, 2, ...\}$ is said linearly independent when the system of linear equations $\sum_k \alpha_k \cdot \underline{\varphi}_k = \underline{0}$ admits as unique solution $\alpha_k = 0$ $\forall k=1,2,...$

Dimension: definition

• A vector space *V* is said to have dimension N when it contains a linear independent set of cardinality N and any other set of higher cardinality is linearly dependent. If no finite N exists, the vector space is infinite dimensional.

Examples

- 1. \mathbb{R}^{N} has dimension N
- 2. The vector space of polynomial functions of degree N has dimensione N+1
- 3. $\mathbb{C}^{\mathbb{Z}}$, $\mathbb{C}^{[a,b]}$ are infinite dimensional vector spaces

Inner product: definition

An inner product on a vector space V over \mathbb{C} (or \mathbb{R}) is a complex-(real-)valued function defined on VxV satisfying the following properties $\forall \underline{x},\underline{y},\underline{z} \in V$ and $\alpha \in \mathbb{C}$:

a)
$$\langle \underline{x} + \underline{y}, \underline{z} \rangle = \langle \underline{x}, \underline{z} \rangle + \langle \underline{y}, \underline{z} \rangle$$

b)
$$\langle \alpha \underline{x}, \underline{y} \rangle = \alpha . \langle \underline{x}, \underline{y} \rangle$$

c)
$$\langle \underline{x}, \underline{y} \rangle = \langle \underline{y}, \underline{x} \rangle^*$$

d)
$$\langle \underline{x}, \underline{x} \rangle \ge 0$$
 and $\langle \underline{x}, \underline{x} \rangle = 0$ iff $\underline{x} = \underline{0}$ [positive definiteness]

homogeneity

$$[! < \underline{\mathbf{x}}, \alpha \cdot \underline{\mathbf{y}} > = \alpha^* \cdot < \underline{\mathbf{x}}, \underline{\mathbf{y}} >]$$

[Hermitian symmetry]

• Examples for $\forall (x,y) \in \mathbb{C}^2$

1.
$$\langle \underline{x}, \underline{y} \rangle = x_0 y_0^* + 5 x_1 y_1^*$$
 OK

2.
$$\langle \underline{x}, \underline{y} \rangle = x_0^* y_0 + x_1^* y_1$$
 NO: violation of (c)

3.
$$\langle \underline{x}, \underline{y} \rangle = x_0 y_0^*$$
 NO: violation of (d) $(\langle [0 \ 1]^T, [0 \ 1]^T \rangle = 0)$

Inner product: standard definitions/orthogonality

$$\langle \underline{\mathbf{x}}, \underline{\mathbf{y}} \rangle = \sum_{n=1}^{N-1} x_n \cdot y_n^* \quad (\underline{\mathbf{x}}, \underline{\mathbf{y}}) \in C^N$$

$$\left\langle \underline{\mathbf{x}},\underline{\mathbf{y}}\right\rangle = \sum_{n\in\mathbb{Z}} x_n.y_n^* \quad (\underline{\mathbf{x}},\underline{\mathbf{y}}) \in C^{\mathbb{Z}}$$

Subspace of $\mathbb{C}^{\mathbb{R}}$ leading to the existence of the integral

$$\langle \underline{\mathbf{x}}, \underline{\mathbf{y}} \rangle = \int_{R} x(t).y^{*}(t).dt \quad (\underline{\mathbf{x}}, \underline{\mathbf{y}}) \in C^{R}$$

- 1. 2 vectors $\underline{\mathbf{x}}$ and $\underline{\mathbf{y}} \in V$ are said to be orthogonal $(\underline{\mathbf{x}} \perp \underline{\mathbf{y}})$ if $\langle x, y \rangle = 0$
- 2. A set of vectors S is said orthogonal whenever $x \perp y \forall x,y \in S$ with $x \neq y$

Inner product: orthogonality

3. A set of vectors *S* is said orthonormal whenever it is orthogonal and $\forall \underline{x} \in S$, $\langle \underline{x}, \underline{x} \rangle = 1$

- 4. A vector $\underline{\mathbf{x}}$ is said to be orthogonal to a set of vectors $S(\underline{\mathbf{x}} \perp S)$ when $(\underline{\mathbf{x}} \perp \underline{\mathbf{s}}) \forall \underline{\mathbf{s}} \in S$
- 5. Two sets of vectors S_0 and S_1 are said to be orthogonal $(S_0 \perp S_1)$ whenever $\underline{x}_0 \perp S_1 \ \forall \underline{x}_0 \in S_0$
- 6. Given a subspace S of a vector space V, the orthogonal complement of S, denoted S^{\perp} , is the set $\{\underline{x} \in V \mid \underline{x} \perp S\}$
- Properties
 - $-S^{\perp}$ is a subspace of V
 - An orthonormal set $\{\underline{\varphi}_k\}$ is a linearly independent set (proof: expand $\underline{0}$ in $<\underline{0},\underline{\varphi}_i>=0$)

Inner product examples / Inner product space

Example of an orthonormal set

$$\varphi_0(t) = 1$$
 $t \in [-1/2, 1/2]$ $\varphi_k(t) = 2^{1/2} \cos(2k\pi t)$ $t \in [-1/2, 1/2]$ $k = 1, 2...$

- $\{\varphi_k(t), k = 0, 1, ...\}$ is orthogonal to the set of odd functions S_{odd}
- Definition

A vector space equipped with an inner product is called an inner product space

Norm: definition

• A norm on a vector space V over \mathbb{C} (or \mathbb{R}) is a real-valued function ||.|| defined on V satisfying the following properties $\forall x,y \in V \text{ and } \alpha \in \mathbb{C}(\text{or } \mathbb{R})$:

a)
$$||\underline{x}|| \ge 0$$
 and $||\underline{x}|| = 0$ iff $\underline{x} = \underline{0}$ [positive definiteness]

b)
$$||\alpha \cdot \underline{x}|| = |\alpha| \cdot ||\underline{x}||$$
 [homogeneity]

- c) $||\underline{x} + \underline{y}|| \le ||\underline{x}|| + ||\underline{y}||$ [triangle inequality] geometric interpretation: the length of any side of a triangle \leq the sum of the lengths of the other two sides
- An inner product may be used to define a norm; in such a case the norm is said to be <u>induced</u> by the inner product
- Examples for $\forall x \in \mathbb{C}^2$

1.
$$||\underline{\mathbf{x}}|| = (|\mathbf{x}_0|^2 + 5|\mathbf{x}_1|^2)^{1/2}$$
 OK 3. $||\underline{\mathbf{x}}|| = |\mathbf{x}_0|$ NO: violation of (a)

3.
$$||\underline{x}|| = |x_0|$$
 NO: violat

2.
$$||\underline{\mathbf{x}}|| = |\mathbf{x}_0| + |\mathbf{x}_1|$$

2.
$$||\underline{x}|| = |x_0| + |x_1|$$
 OK 4. $||\underline{x}|| = \max(|x_0|, |x_1|)$ OK

Norm: standard definitions

• Euclidean norm in \mathbb{C}^N : $\|\underline{\mathbf{x}}\|_2 = \sqrt{\sum_{n=0}^{N-1} |x_n|^2} \quad \underline{\mathbf{x}} \in \mathbb{C}^N$

$$\|\underline{\mathbf{x}}\|_2 = \sqrt{\sum_{n \in \mathbb{Z}} |x_n|^2} \quad \underline{\mathbf{x}} \in C^{\mathbb{Z}}$$

• Euclidean norm in subspace of $\mathbb{C}^{\mathbb{R}}$ for which the inner product exists

$$\|\underline{x}\|_2 = \sqrt{\int_R |x(t)|^2 \cdot dt} \quad \underline{x} \in C^R$$

Or more generally

$$\left\|\underline{x}\right\|_{2}^{2} = \left\langle\underline{x},\underline{x}\right\rangle$$

Inner product induced norms: properties

Pythagorean theorem

$$\forall \underline{x}, \underline{y} \in V$$
, such that $\underline{x} \perp \underline{y} \| \underline{x} + \underline{y} \|^2 = \|\underline{x}\|^2 + \|\underline{y}\|^2$ proof: inner product properties +express $\langle \underline{x} + \underline{y}, \underline{x} + \underline{y} \rangle$ more generally $\{\underline{x}_k\}_{k \in K}$ being an orthogonal set $\|\sum_{k \in K} \underline{x}_k\|^2 = \sum_{k \in K} \|\underline{x}_k\|^2$

Parallelogram law

$$\forall \underline{x}, \underline{y} \in V \quad \|\underline{x} + \underline{y}\|^2 + \|\underline{x} - \underline{y}\|^2 = 2(\|\underline{x}\|^2 + \|\underline{y}\|^2)$$

The parallelogram law is a necessary and sufficient condition for the norm to be induced by an inner product

Inner product induced norms: properties

Cauchy-Schwarz inequality

$$\forall \underline{x}, \underline{y} \in V, |\langle \underline{x}, \underline{y} \rangle| \leq ||\underline{x}||.||\underline{y}||$$

- Equality holds when $\underline{x} = \alpha \cdot \underline{y}$
- proof: use non-negativity of $||\mathbf{k} \cdot \mathbf{x} + \mathbf{y}||^2$

$$0 \le \|k.\underline{x} + \underline{y}\|_{2}^{2} = |k|^{2} \|\underline{x}\|_{2}^{2} + \|\underline{y}\|_{2}^{2} + 2.\operatorname{Re}\{\langle k.\underline{x}, \underline{y}\rangle\}$$
$$= |k|^{2} \|\underline{x}\|_{2}^{2} + \|y\|_{2}^{2} + 2.\operatorname{Re}\{k\langle \underline{x}, y\rangle\}$$

Choosing
$$k = -\langle \underline{x}, \underline{y} \rangle^* / ||\underline{x}||^2$$
 leads to

Choosing
$$k = -\langle \underline{x}, \underline{y} \rangle^* / ||\underline{x}||^2 \text{ leads to } \frac{\left|\langle \underline{x}, \underline{y} \rangle^*\right|^2}{\left\|\underline{x}\right\|_2^2} + \left\|\underline{y}\right\|_2^2 + 2.\text{Re}\left\{-\frac{\left|\langle \underline{x}, \underline{y} \rangle\right|^2}{\left\|\underline{x}\right\|_2^2}\right\} \ge 0$$

$$\frac{\left|\left\langle \underline{x}, \underline{y} \right\rangle\right|^2}{\left\|\underline{x}\right\|_2^2} \le \left\|\underline{y}\right\|_2^2$$
 CVD

Normed vector space

Normed vector space: A vector space equipped with a norm is called a normed vector space

 Note: caution is necessary to limit the subspace of V for which the norm exists

Metric: definition

- In a normed vector space V over \mathbb{C} (or \mathbb{R}), the metric or distance between 2 vectors \underline{x} and \underline{y} is defined as the norm of the difference vector: $d(\underline{x},\underline{y}) = ||\underline{x}-\underline{y}||$
- Given a vector space V over $\mathbb{C}(\text{or }\mathbb{R})$, a distance may be more generally defined even in the absence of a norm as the real-valued function defined on VxV satisfying the following properties $\forall \underline{x},\underline{y},\underline{z} \in V$

1.
$$d(\underline{x},\underline{y}) \ge 0$$
 [positivity]

2.
$$d(\underline{x},\underline{y}) = 0 \Leftrightarrow \underline{x} = \underline{y}$$

3.
$$d(\underline{x},\underline{y}) = d(\underline{y},\underline{x})$$
 [symmetric measure]

4.
$$d(\underline{x},\underline{y}) \le d(\underline{x},\underline{z}) + d(\underline{z},\underline{y})$$
 [triangular inequality]

• Example of a distance not induced by a norm in $\mathbb R$

$$d(x,y) = | atan(x) - atan(y) |$$

Standard spaces

Standard inner product spaces

- Space of square-summable sequences: $I^2(\mathbb{Z}) \subset \mathbb{C}^{\mathbb{Z}}$ (infinite dimensional)
- Space of square-integrable functions: $\mathcal{L}^2(\mathbb{R}) \subset \mathbb{C}^{\mathbb{R}}$ (infinite dimensional)
- Space of square-integrable functions over $[a,b]: \mathcal{L}^2([a,b]) \subset \mathbb{C}^{[a,b]}$
- Space of continuous functions $C[a,b] \subset \mathbb{C}^{[a,b]}$
- Space of continuous functions with q continuous derivatives

$$C^{q}[a,b] \subset C^{q-1}[a,b] \subset ... \subset C^{0}[a,b]=C[a,b]$$

Note: C^q[a,b] is not a complete space

- − Space of polynomial functions $\subset C^{\infty}[a,b]$
- Space of random variables (RVs): inner product $\langle \underline{X}, \underline{Y} \rangle = E[XY^*]$
 - The space of RVs with finite 2nd order moments is a normed vector space

Standard spaces

Standard normed spaces

• p-norm:
$$\left\|\underline{\mathbf{x}}\right\|_{p} = \left(\sum_{n=0}^{N-1} \left|x_{n}\right|^{p}\right)^{1/p} \quad \underline{\mathbf{x}} \in C^{N}$$

- p=1: Manhattan norm
- p=2: Euclidean norm - p= ∞ : $\|\underline{\mathbf{x}}\|_{\infty} = \lim_{p \to \infty} \left(\sum_{n=0}^{N-1} |x_n|^p \right)^{1/p} = \max(|x_0|, |x_1|, ..., |x_{N-1}|) \quad \underline{\mathbf{x}} \in C^N$
- p∈[0,1): does not lead to a norm, but provides useful interpretation

$$\left\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\|_{1/2} = (1+1)^2 = 4 > 2 = 1+1 = \left\| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\|_{1/2} + \left\| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\|_{1/2}$$

- p=0, $||\underline{x}||_0$ accounts for the number of non zero components in \underline{x}
- Any two norms bound each other within constant factor
- Only for p=2, the set of unit-norm vectors is invariant to a rotation of the coordinate system

I^p norms

• Set of unit-norm vectors in \mathbb{R}^2 for different I^p -measures

$I^p(\mathbb{Z})$ spaces

• I^p norm: $p \in [1, \infty)$

- for p∈[1,∞), the normed vector space $I^p(\mathbb{Z}) \subset \mathbb{C}^{\mathbb{Z}}$ correspond to the subspace formed by vectors in $\mathbb{C}^{\mathbb{Z}}$ with finite I^p norm

- Property: $p < q \Rightarrow l^p(\mathbb{Z}) \subset l^q(\mathbb{Z})$
 - Corollary: If a sequence has finite l¹-norm, it has finite l²-norm (the opposite is not necessary true)
 - Example: $x_n=1/n$ n=1,2,... and $x_n=0$ $n\le 0$ $||\underline{x}||_2 = \pi^2/6$ whereas $||\underline{x}||_1$ diverges

$\mathcal{L}^{2}(\mathbb{R})$ spaces

• \mathcal{L}^p norm: $p \in [1, \infty)$

$$\|\underline{\mathbf{x}}\|_p = \left(\int_R |x(t)|^p\right)^{1/p} \quad \underline{\mathbf{x}} \in C^R$$

- $\mathcal{L}^{\infty} \text{ norm: } \|\underline{\mathbf{x}}\|_{\infty} = \underset{t \in R}{\operatorname{ess}} \sup |x(t)| \quad \underline{\mathbf{x}} \in C^{R}$
- for p∈[1,∞), the normed vector space $\mathcal{L}^p(\mathbb{R}) \subset \mathbb{C}^\mathbb{R}$ correspond to the subspace formed by vectors in $\mathbb{C}^\mathbb{R}$ with finite I^p norm
- It is possible to define similarly other \mathcal{L}^p norm for other continuous time vector spaces such as $\mathbb{C}^{[a,b]}$