Clustering of B Decay Kinematic Distributions

Kilian Lieret^{1,3}, Jason Aebischer^{2, 3}, Thomas Kuhr^{1,3}

¹Ludwig-Maximilian University ²Technical University of Munich ³Excellence Cluster Origins

March 15, 2019

Motivation

Phenomenology of NP models depends on free parameters (e.g. points in the space of Wilson coefficients) influencing the shape of kinematic distributions

Problems:

- Experimental analyses need to make assumptions on kinematic distributions to extract features of interest
 - ⇒ Need to re-run analysis for different NP models and their parameters
 - ⇒ Often only results under assumption of SM
- Difficult to present numeric results (e.g. exclusion limits)
 (there are no nice ways to visualize 3+ dimensions)

Motivation II

Example

BaBar's result for $R(D^{(*)})$ based on model assumption (2HDM with specific tan β parameter)

Motivation II

Example

BaBar's result for $R(D^{(*)})$ based on model assumption (2HDM with specific tan β parameter)

Results obtained from a 2D fit to $m_{
m miss}^2$ and $|ec{p}_\ell|$

Motivation II

Example

BaBar's result for $R(D^{(*)})$ based on model assumption (2HDM with specific tan β parameter)

In the three parts, the $m_{\text{miss}}^2 - |\vec{p}_\ell|$ behavior of the model has probably been different \Longrightarrow Would have been nice to categorize the parameter space by this behavior right away

Motivation III

Clustering of distributions in the parameter space boils down multi-dimensional problems to few benchmark points!

Algorithm

Quantify "similar" distributions:

 \longrightarrow similarity test, e.g. χ^2 test or Kolmogorov test

Build up groups (*clusters*) of similar distributions: Need a clustering algorithm, e.g. hierarchical clustering

Need to know how fine (or coarse) our clustering should be:

- ---- Add experimental error expectation
- --- Keep as many clusters as we can distinguish

Step 0: 7 points in the parameter space

Step 0: 7 points in the parameter space = 7 distributions

Step 1: Every point is its own cluster

Step 1: Distributions from cluster 6 and 7 were the most similar \Longrightarrow Merged!

Step 1: Cluster 4 and 5 were the next most similar clusters ⇒ Merged!

Step 1: 4 clusters remaining

Step 1: 3 clusters remaining

Step 1: 2 clusters remaining

Step 1: 1 cluster remaining

Software

Our project is **openly** and **actively** developed on **GitHub** https://github.com/RD-clustering/B_decays_clustering

Implemented in Python using

- numpy (fast numeric operations on arrays)
- pandas (dataframes)
- matplotlib (beautiful plots)
- learn scikit-learn (clustering tools)
- scipy (integration and clustering tools)
- jupyter (interactive notebooks)
- wcxf (specify Wilson coefficients in a variety of bases)
- Wilson (running of Wilson coefficients)
- Flavio (various observables with NP predictions)

Software

■ Up to date **documentation** on 🖺 Read the Docs:

■ Interactive tutorials using ippyter notebooks

Software

General steps:

- **II Scan**: Calculate binned distributions for your observable, e.g. $d\Gamma/dq^2$
 - An arbitrary python function can be specified
 - E.g. simply take an observable from flavio
 - Parallel processing supported
- (optional) Add errors: Easy interface to add various kinds of errors (Poisson, flat relative errors, errors given by covariance matrix, maximally correlated errors etc.)
- Cluster: Take the binned distributions and cluster them Clustering class is subclassed to support any clustering algorithm
- Benchmark point: Select one representative for each cluster
- 5 Plot: Various plotting methods are provided

Generate a sample of kinematic distributions (here $\mathrm{d}\Gamma/\,\mathrm{d}q^2$ for $B\longrightarrow D^*\tau\bar{\nu}_{\tau}$) using the Scanner class:

```
s = Scanner()
  s.set dfunction(
       bdlnu.dGa2.
3
       binning=np.linspace(bdlnu.q2min, bdlnu.q2max, 10),
       normalize=True
 5
    .set_wpoints_equidist(
8
           "CVL_bctaunutau": (-0.3, 0.3, 10),
9
           "CSL_bctaunutau": (-0.3, 0.3, 10),
10
           "CT_bctaunutau": (-0.4, 0.4, 10)
11
       },
12
       scale=5,
13
       eft='WET'.
14
       basis='flavio'
15
17 s.run()
18 s.write("output/scan", "tutorial")
```

Now we cluster it:

```
1 c = HierarchyCluster("output/scan", "tutorial")
2 c.build_hierarchy()
3 c.cluster(max_d=0.1)
```

And can directly plot it:

p.scatter(['CVL_bctaunutau', 'CSL_bctaunutau'])

p.fill(['CVL_bctaunutau', 'CSL_bctaunutau'])

Summary

Clustering of kinematic distributions in the Wilson parmameter space boils down multi-dimensional problems to few benchmark points!

Openly and actively developed project on

○ GitHub

https://github.com/RD-clustering/B_decays_clustering

Feedback and suggestions, as well as helping hands are very welcome!