

Arduino-basic [wk05]

LED III.

Learn how to code Arduino from scratch

Comsi, INJE University

2nd semester, 2019

Email: chaos21c@gmail.com

My ID (ARnn)

AR01	염현제				
AR02	강민수				
AR03	구병준				
AR04	김종민				
AR05	박성철				
AR06	이승현				
AR07	이창호				
AR08	변성 연 손성빈				
AR09					
AR10	안예찬				
AR11	유종인				
AR12	이석민				
AR13	이주원				
AR14	정재영				
AR15	차유신				

AR16	아태성
AR17	강현이
AR18	신종원
AR19	최진솔
AR20	김경미
AR21	김경영
AR22	김규년
AR23	김민재
AR24	김영록
AR25	송다은
AR26	정지환
AR27	김종건

[Review]

- ◆ [wk05]
- > Arduino LED-II.
- Complete your project
- Submit folder: ARnn_Rpt04

wk05: Practice-04: ARnn_Rpt04

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload all in github.

제출폴더명: ARnn_Rpt04

- 제출할 파일들
 - 1 ARnn_fnd.fzz
 - 2 ARnn_A.png
 - **3** ARnn_74595_E.png
 - 4 All *.ino

4. LED II

FND

4.5 FND 제어

	h	g	f	e	d	c	b	a	hex value
	0	0	1	1	1	1	1	1	3F
H	0	0	0	0	0	1	1	0	06
2	0	1	0	1	1	0	1	1	5B
3	0	1	0	0	1	1	1	1	4F
4	0	1	1	0	0	1	1	0	66
5	0	1	1	0	1	1	0	1	6D
6	0	1	1	1	1	1	0	1	7D
П	0	0	0	0	0	1	1	1	07
8	0	1	1	1	1	1	1	1	7F
9	0	1	1	0	1	1	1	1	6F
R	0	1	1	1	0	1	1	1	77
Ь	0	1	1	1	1	1	0	0	7C
E	0	0	1	1	1	0	0	1	39
8	0	1	0	1	1	1	1	0	5E
E	0	1	1	1	1	0	0	1	79
F	0	1	1	1	0	0	0	1	71

4.5.5 FND 제어 - DIY

EX 4.4 FND 제어 (3/3)

DIY 위의 예제를 0~F까지의 16진수를 표시하도록 스케치를 수정하여 보자.

(hint: LED 표시를 위한 상수에 A~F를 추가시켜서 불러와 사용하자)

'A'가 출력된 화면을 ARnn_A.png

로 저장해서 제출. (아두이노 회로를 포함해서 촬영)

4.6 FND 제어: 74595 IC (74HC595N)

74595 IC

- ✓ 직렬 신호로 입력된 데이터를 병렬 신호로 변환
- ✓ FND의 8개의 LED를 켜기위한 신호를 3개의 신호선으로 입력 받아 8개의 FND 신호로 출력
- ✓ shiftout() 명령어로 구현.
- ✓ DS, SHCP, STCP 세 핀으로 FND 제어
- ✓ 동작 순서
 - 1. STCP에 'LOW' 신호 입력
 - 2. SHCP의 클럭에 맞춰 DS로 데이터 전송
 - 3. 전송 후, STCP에 'HIGH' 신호를 주어 출력핀으로 신호를 출력
- ✓ Shiftout() 함수로 동작 시킴.

SHCP: shift register clock input

STCP: storage register clock input

DS: serial data input

4.6.2.2 FND 제어: 74595 IC

4.6.5 FND 제어: 74595 - DIY

EX 4.4.2 74595를 이용한 FND 제어 (3/3)

DIY 위의 예제를 0~F까지의 16진수를 표시하도록 스케치를 수정하여 보자.

(hint: LED 표시를 위한 상수에 A~F를 추가시켜서 불러와 사용하자)

'E'가 출력된 화면을 ARnn_74595_E.png

로 저장해서 제출. (아두이노 회로를 포함해서 촬영)

4. LEDIII

4-digits FND & DM

4.7 4-digit FND 제어

4-digit FND

- ✓ FND 네 개를 이용하여 네 자리 숫자를 표시하는 부품
- ✓ Common Cathode형과 Common Anode형
- ✓ FND와 핀 구조는 동일하지만 각 자릿수를 선택하는 핀 추가

그림 4.6 4-digit FND와 내부 회로, Common Cathode (a), Common Anode (b)

그림 4.7 실험에 사용할 4-digit FND

4.7.1 4-digit FND 제어

EX 4.5.1 4-digit FND로 0000~9999 숫자 표시하기 (1/3)

실습목표 Common Cathode 4-digit FND를 이용하여 0000~9999까지 1초 간격으로 증가하는 스케치를 작성해 보자.

Hardware

- 1. 4-digit FND는 4개의 FND를 연결한 부품이다.
- 2. 각각의 FND에는 DIG1~DIG4 네 개의 핀이 각각의 FND의 Common Cathode로 연결되어 있다.
- 3. A~G, DP핀은 하나의 FND를 동작시킬 때와 같이 330Ω저항을 통하여 Arduino 2~9번핀에 연결한다.
- 4. 맨 왼쪽 FND를 동작시키려면 DIG1에만 LOW신호를 준 상태에서 A~G, DP 핀에 원하는 숫자를 쓰기 위한 신호를 주어야 한다.
- 두번째 FND를 동작시키려면 DIG2에만 LOW신호를 준 상태에서 A~G, DP 핀에 원하는 숫자를 쓰기 위한 신호를 주어야 한다.
- 6. DIG1~DIG4에 모두 LOW신호를 주면 모두 같은 숫자가 표시된다.

4.7.2 4-digit FND 제어

A B C D E F G DOT
2 3 4 5 6 7 8 9

https://m.blog.naver.com/PostView.nhn?blogId=wnddh12&logNo=220606781604&proxyReferer=https%3A%2F%2Fwww.google.co.kr%2F

4.7.2 4-digit FND 제어 - circuit1

4.7.2 4-digit FND 제어 - circuit2

Fritzing 으로 회로를 디자인하고

ARnn_4digit.fzz 로 저장해서 제출.

4.7.2.1 4-digit FND 제어 (참고 회로)

4.7.3 4-digit FND 제어

EX 4.5.1 4-digit FND로 0000~9999 숫자 표시하기 (2/3)

Commands

};

• void 함수(변수1, 변수2, ···){

'함수(변수1, 변수2)' 를 이용하여 '{ }' 내의 명령을 호출하여 사용한다. '변수1'과 '변수2'등을 함께 선언하면 함수 내에서 그 변수를 사용할 수 있다. 반복되는 구문을 설정해 놓고 호출하여 사용하면 편리하다.

・ pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호' 에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업 사용시 'INPUT_PULLUP'을 적는다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력 (High or Low) 을 한다. '핀번호' 에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW' 를 설정하여 High 혹은 Low 출력을 한다.

• for(변수=시작 값 ; 조건 ; 변수의 증분){ }

변수의 시작 값부터 조건이 만족하는 경우 '{ }' 내의 명령을 수행한다. '변수의 증분'에서는 1회 명령이 수행될 때 마다 변수를 증가 혹은 감소시킨다.

4.7.4 4-digit FND 제어

EX 4.5.1 4-digit FND로 0000~9999 숫자 표시하기 (3/3)

- Sketch 구성
- 1. FND에 숫자를 표시할 때 어떤 LED를 점등할 지에 대한 정보를 담은 상수를 설정한다.
 - 2. FND동작에 필요한 핀을 출력으로 설정한다.
 - 3. DIG에 연결된 핀을 모두 LOW로 설정하여 모든 FND가 켜지도록 한다.
- 4. 예제 4.4에서 설정한 'fndDisplay(int displayValue)' 함수를 응용하여 각 FND를 지정하여 1초 간격으로 0~9까지의 숫자를 모든 FND에 표시한다.
- 실습 결과 4개의 FND의 숫자가 0~9까지 1111 단위로 약 1초 간격으로 변화한다.

4.7.4.1 4-digit FND 제어 - code

```
6 // 0~9까지 LED 표시를 위한 상수
7 const byte number[10] = {
   //dot_gfedcba
    B00111111. //0
   B00000110, //1
    B01011011, //2
11
    B01001111, //3
13
    B01100110. //4
    B01101101. //5
14
    B01111101, //6
15
    B00000111, //7
16
    B01111111. //8
17
    B01101111, //9
18
19|};
20
21 // 표시할 숫자 변수
22 | int count = 0;
24 void setup()
25 |
26 // 2~9번 핀을 a b c d e f g dot 의 순서로 사용한다.
27 <u>// 10~13번 핀을 Digit 1~4 의 순서로 사용한다.</u>
28 for(int i = 2; i \le 13; ++i){
     pinMode(i,OUTPUT);// 2~13번핀을 출력으로 설정한다
    // 4 digit와 연결된 10~13번핀에 모두 LOW 신호를 줘서
33 for(int i=10; i<=13; ++i){
     digitalWrite(i, LOW);
36|}
```

```
35 void loop()
36 {
37
   // count 변수값을 FND에 출력한다.
   fndDisplay(count);
38
39
   // count 변수값이 0~9의 범위를 갖도록한다
  if(count >=9) count = 0;
42 else ++count;
43
   delay(1000);
44
45|}
46
47 // LED 켜는 루틴
48 void fndDisplay(int displayValue){
   // bitValue 변수를 선언한다.
   boolean bitValue;
50
51
    // 2~9번핀에 모두 LOW 신호를 줘서 소등시킨다.
    for(int i=2; i<=9; ++i){
53
    digitalWrite(i, LOW);
54
55
    };
56
   for(int i=0; i<=7; ++i){
   .// number 상수의 하나의 비트값을 읽는다.
    bitValue = bitRead(number[displayValue].i);
59
   // 앞서 읽은 비트값을 2~9번핀에 출력시킨다.
   digitalWrite(i+2, bitYalue);
62
63|}
```


4.7.5 4-digit FND 제어 - DIY

DIY

'XXX1', 'XX2X', 'X3XX', '4XXX' 의 표시가 1초 간격으로 반복하는 스케치를 작성해 보자. (X:는 꺼짐을 나타낸다)

(hint: DIG1~4에 연결된 핀을 제어해보자.)

완성된 코드 를 ARnn_4digit.ino 로 저장해서 제출.

4.7.5 4-digit FND 제어 - DIY

DIY

'XXX1', 'XX2X', 'X3XX', '4XXX' 의 표시가 1초 간격으로 반복하는

Hint

스케치를 작성해 보자. (X:는 꺼짐을 나타낸다)

완성된 코드 를 ARnn_4digit.ino 로 저장해서 제출.

60 delay(100);

4.8.1 4-digit FND 제어 응용

EX 4.5.2 4-digit FND에 1초마다 증가하는 0~9999 숫자 표시하기 (1/3)

실습 목표 Common Cathode 4-digit FND를 이용하여 0~9999까지 1초 간격으로 증가하는 스케치를 작성해 보자.

Hardware

- 1. 4-digit FND는 4개의 FND를 연결한 부품이다.
- 2. 각각의 FND에는 DIG1~DIG4 네 개의 핀이 각각의 FND의 Common Cathode로 연결되어 있다.
- 3. A~G, DP핀은 하나의 FND를 동작시킬 때와 같이 330Ω저항을 통하여 Arduino 2~9번 핀에 연결한다.
- 4. 맨 왼쪽 FND를 동작시키려면 DIG1에만 LOW신호를 준 상태에서 A~G, DP 핀에 원하는 숫자를 쓰기 위한 신호를 주어야 한다.
- 5. 두번째 FND를 동작시키려면 DIG2에만 LOW신호를 준 상태에서 A~G, DP 핀에 원하는 숫자를 쓰기 위한 신호를 주어야 한다.
- 6. DIG3, DIG4에 대해서도 동작을 반복한다.
- 7. 각각의 FND를 선택하여 점등하는 동작을 빠른 속도로 반복하면 마치 모든 FND가 점등된 것으로 인식된다.

4.8.2 4-digit FND 제어 응용

4.8.3 4-digit FND 제어 응용

EX 4.5.2

4-digit FND에 1초마다 증가하는 0~9999 숫자 표시하기 (2/3)

Commands

• void 함수(변수1, 변수2, ···){

};

'함수(변수1, 변수2)' 를 이용하여 '{ }' 내의 명령을 호출하여 사용한다. '변수1'과 '변수2'등을 함께 선언하면 함수 내에서 그 변수를 사용할 수 있다. 반복되는 구문을 설정해 놓고 호출하여 사용하면 편리하다.

• pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호' 에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업사용시 'INPUT_PULLUP'을 적는다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력 (High or Low) 을 한다. '핀번호' 에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW' 를 설정하여 High 혹은 Low 출력을 한다.

millis()

현재 스케치가 시작된 이후로 경과된 시간 값을 가져온다. 밀리세컨즈(1/1000초) 단위의 값을 갖는다.

4.8.4 4-digit FND 제어 응용

- Sketch 구성 1. FND에 숫자를 표시할 때 어떤 LED를 켤지에 대한 정보를 담은 상수를 설정한다.
 - 2. FND동작에 필요한 핀을 출력으로 설정한다.
 - 3. DIG1~4중 하나만 점등 한 뒤 해당 DIG 핀에 연결된 자릿수의 표시를 예제 4.4에서 설정한 'fndDisplay(int displayValue)' 함수를 응용하여 표시한다.
 - 5. DIG1->DIG2->DIG3->DIG4 순서로 돌아가며 점등시킨다. 해당 DIG핀에 신호를 LOW 했을 때 해당 자릿수가 점등된다.
 - 6. 빠른 시간으로 4개의 DIG핀을 제어하면 시각적으로 모든 FND가 점등된 것 처럼 보인다.
 - 실습 결과 4개의 FND의 숫자가 0~9999까지 1단위로 약 1초 간격으로 변화한다.
 - 응용 문제 숫자가 증가하는 간격을 0.5초로 변경하여라.

delay()를 사용하지 않고 millis()로 실제 시간을 측정하여 1초가 경과되면 숫자를 1씩 증가시키고 표시한다.

4.8.4.1 4-digit FND 제어 응용 - code1

```
6 // 0~9까지 LED 표시를 위한 상수
7 const byte number[10] = {
8 //dot gfedcba
   B00111111, //0
10 B00000110, //1
   B01011011, //2
   B01001111. //3
   B01100110. //4
14 B01101101, //5
   B01111101, //6
16 B00000111, //7
17 B01111111, //8
18 B01101111, //9
19 };
20
21 // 4개의 digit에 연결된 핀 설정
22 const byte digitNumber[4] = \{13, 12, 11, 10\};
24 // 표시할 숫자 변수
25 int count = 0;
26
27 // 각 자릿수를 저장하기 위한 변수
28 int value[4];
30<u>// 4개의 digit에 각각</u> 다른 숫자를 표시하기 위해 사용하는 변수
31 int digitSelect = 1;
33 // 시간을 측정하는데 사용되는 변수
34 long sampleTime;
35 int count5ms;
```

```
37 void setup()
38 |
   -// 2~9번 핀을 a b c d e f g dot 의 순서로 사용한다.
   // 10~13번 핀을 Digit 1~4 의 순서로 사용한다.
   for(int i = 2; i \le 13; ++i){
    pinMode(i,OUTPUT);// 2~13번핀을 출력으로 설정한다.
   };
43
44
   // 4 digit와 연결된 10~13번핀에 모두 HIGH 신호를
   -// 줘서 소등시킨다.
  for(int i=10; i<=13; ++i){
    digitalWrite(i, HIGH);
48 l
49 | 1 }:
50|}
```


4.8.4.2 4-digit FND 제어 응용 - code2

```
51 void loop()
52 {
53 // 현재 시간을 저장한다.
54 sampleTime = millis();
55
   // count 변수값을 FND에 출력한다.
57 fndDisplay(digitSelect, value[digitSelect-1]);
58 ++digitSelect;
59 | if(digitSelect >= 5) | digitSelect = 1;
    // count 변수값이 0~9999의 범위를 갖도록한다.
    if(count >= 9999) count = 0;
    else(
63
     -// 앞서 저장한 시간에서 현재까지의 시간이 5ms일 경우에 다음 명령어를 실행한다
     while(millis()-sampleTime < 5);</pre>
67
      ++count5ms:
      if(count5ms > 200){ //
       // 5ms * 200 = 1 s 때 count를 하나 올려준다
70
       ++count;
72
       // 변수를 각 자릿수로 나눈다
       value[3] = count / 1000;
73
74
       value[2] = (count - (value[3]*1000)) / 100;
       value[1] = (count - (value[3]*1000) - (value[2]*100) ) / 10;
75
       value[0] = count - (value[3]*1000) - (value[2]*100) - (value[1]*10);
76
77
78
       count5ms = 0;
79
80
81 }
```

```
82 // LED 켜는 루틴
83 void fndDisplay(int digit, int displayValue){
   // bitValue 변수를 선언한다.
    boolean bitValue;
    // 4 digit와 연결된 10~13번판에 모두 HIGH 신호를 줘서 소등시킨다.
    for(int i=1; i<=4; ++i){
     digitalWrite(digitNumber[i-1], HIGH);
 90
 91
    // FND에 원하는 숫자를 표시한다.
     for(int i=0; i<=7; ++i){</pre>
    // number 상수의 하나의 비트값을 읽는다.
      bitValue = bitRead(number[displayValue],i);
    // 앞서 읽은 비트값을 2~9번핀에 출력시킨다.
      digitalWrite(i+2, bitValue);
 97
 98
    -};
 99
    // 4 digit중 표시를 원하는 digit만 켠다
    for(int i=1; i<=4; ++i){
101
102
      // 표시하기 원하는 자릿수는 LOW신호를 주어 켜고 나머진 OFF시킨다
103
     If(digit == i) digitalWrite(digitNumber[i-1], LOW);
     else digitalWrite(digitNumber[i-1], HIGH);
104
105
106 }
```

delay()를 사용하지 않고 millis()로 실제 시간을 측정하여 1초가 경과되면 숫자를 1씩 증가시키고 표시한다.

4.8.5 4-digit FND 제어 응용 - DIY

DIY 숫자가 증가하는 간격을 0.5초로 변경하여라.

4개의 숫자가 다르게 출력된 화면을 ARnn_4digit.png 로 저장해서 제출. (아두이노 회로를 포함해서 촬영)

4.9 Dot matrix 제어

8 X 8 Dot matrix

그림 4.8 실험에 사용할 도트매트릭스

4.9 Dot matrix 제어

8 X 8 Dot matrix

- ✓ 여러 개의 LED가 배열되어 문자나 기호를 표시하는 장치
- ✓ 8X8 Dot matrix는 64개의 LED를 이용
- ✓ LED를 빠르게 교차 출력하여 동시에 모든 LED가 제어되는 듯한 착시를 이용

그림 4.8 실험에 사용할 도트매트릭스

그림 4.9 행에 Anode(+연결)를 연결하고 열에 Cathode(-연결)를 연결한 형태(a)와 행에 Cathode(-연결)를 연 결하고 열에 Anode(+연결)한 형태(b).

4.9.1 Dot matrix 제어

EX 4.6

Dot matrix 제어 (1/3)

실습목표 8x8 Dot matrix로 변화하는 막대그래프를 표현해 보자.

Hardware

- 1. 행은 2~9번핀에 연결하고 열은 10, 11, 12, A1~A5 번핀에 연결한다. 행을 연결할 때는 330Ω저항을 함께 연결한다.
- 2. 실험에 사용할 8X8 Dot matrix는 행(column)에 Cathode, 열(row)에 Anode가 연결된 형태이다. 즉 행에 LOW신호, 열에 HIGH신호를 주어야 Dot LED가 켜진다.
- 3. 특정 부분의 Dot LED를 점등하려면 그 부분의 행에 LOW신호, 열에 HIGH신호를 준다.

4.9.2 Dot matrix 제어

4.9.2 Dot matrix 제어

4.9.3.1 Dot matrix 제어

EX 4.6 Dot matrix 제어 (2/3)

Commands

• void 함수(변수1, 변수2, ···){

};

'함수(변수1, 변수2)' 를 이용하여 '{ }' 내의 명령을 호출하여 사용한다. '변수1'과 '변수2'등을 함께 선언하면 함수 내에서 그 변수를 사용할 수 있다. 반복되는 구문을 설정해 놓고 호출하여 사용하면 편리하다.

• pinMode(핀번호, 설정)

핀의 입출력 모드를 설정한다. '핀번호' 에는 설정하고자 하는 핀의 번호와 '설정'에는 입력으로 사용하기 위해선 'INPUT', 출력으로 사용하기 위해선 'OUTPUT', 입력이며 풀업사용시 'INPUT_PULLUP'을 설정한다.

• digitalWrite(핀번호, 값)

핀에 디지털 출력 (High or Low) 을 한다. '핀번호' 에는 출력하고자 하는 핀의 번호를, '값'에는 'HIGH' 혹은 'LOW' 를 설정하여 High 혹은 Low 출력을 한다.

• for(변수=시작 값 ; 조건 ; 변수의 증분){ }

변수의 시작 값부터 조건이 만족하는 경우 '{ }' 내의 명령을 수행한다. '변수의 증분'에서는 1회 명령이 수행될 때 마다 변수를 증가 혹은 감소시킨다.

4.9.3.2 Dot matrix 제어

Dot matrix 제어 (3/3) **EX 4.6**

- Sketch 구성 1. 8X8 Dot matrix는 그림 4.5의 (b) 그림의 행에 Cathode, 열에 Anode가 연결된 형태를 사용할 것이다.
 - 2. 행과 열에 출력에 사용할 핀을 모두 출력으로 설정한다.
 - 3. 점등하고자 하는 행에 LOW 신호를 준 뒤 열에 HIGH 신호를 주어 LED를 점등시킨다.
 - 4. 행을 하나씩 증가하여 점등시킨다.

실습 결과 C8 부터 C1로 한 칸씩 이동하면서 쌓이는 막대그래프가 출력된다.

응용 문제 Dot가 한 개씩 이동하는 스케치를 만들어보자.

4.9.3.3 Dot matrix 제어 - code

```
ex_4_6_start
 6 const int colPins[] = { 2, 3, 4, 5, 6, 7, 8, 9};
 7 / / /
                       C8, C7, C6, C5, C4, C3, C2, C1
 8 \mid const \mid int \mid rowPins[] = \{ 10.11.12.15.16.17.18.19\};
 9//
                      R8, R7, R6, R5, R4, R3, R2, R1
10
11 void setup() {
    for (int i = 0; i < 8; i++)
131
      // 행을 출력으로 설정한다
14
      pinMode(colPins[i], OUTPUT);
       // 열을 출력으로 설정한다
161
      pinMode(rowPins[i], OUTPUT);
18
19|}
20
```

```
21 void loop() {
22
    for (int column = 0; column < 8; column++)</pre>
23
24
25
     // 행을 모두 초기화 한다
26
      colClear();
     // 현재의 행만 켠다
27
    digitalWrite(colPins[column], LOW);
28
29
    ■ for(int row = 0; row < 8; row++)</pre>
31
32
       // 열을 하나씩 켠다
      digitalWrite(rowPins[row], HIGH);
       delay(100);
34
35
     // 열을 모두 초기화 한다
36
      rowClear();
37
38
    // 모든 행을 반복했으면 열을 모두 소등한다
    rowClear();
41 }
42
43 // 행을 모두 초기화하는 루틴
44 void colClear(){
45 for(int i = 0; i < 8; i++){
   digitalWrite(colPins[i], HIGH);
47
48 }
49
50 // 열을 모두 초기화하는 루틴
51 void rowClear(){
   for(int i = 0; i < 8; i++){
   digitalWrite(rowPins[i], LOW);
53
54
55 }
```


4.9.4 Dot matrix module 제어

https://circuitdigest.com/microcontroller-projects/arduino-8x8-led-matrix

4.9.4.1 Dot matrix module 제어

http://forum.fritzing.org/t/max7219-dot-matrix-led-modul/1914

Fritzing 으로 회로를 디자인하고

ARnn_dm_module.fzz 로 저장.

MAX7219 Dot Matrix Led Module 부품을 Fritzing에 연결

4.9.4.2 Dot matrix 제어 - code1

```
ex_4_7_dm_start

1 #include "LedControlMS.h"

2 
3 // pin 4 is connected to the DataIn

4 // pin 3 is connected to the CLK

5 // pin 2 is connected to LOAD

6 
7 #define NBR_MTX 1 //number of matrices attached is one

8 LedControl Ic=LedControl(4,3,2, NBR_MTX)://

9
```



```
void setup()
11 |{
     for (int i=0; i< NBR_MTX; i++)
13
     ! Ic.shutdown(i,false);
14
     /* Set the brightness to a medium values */
15
16
     i Ic.setIntensity(i,8);
17
     ! /* and clear the display */
     lc.clearDisplay(i);
18
19
       delay(100);
20
21
22|}
23
24 void loop()
25 | {
    //sending characters to display
   lc.writeString(0,"Hello COMSI, AR00.");
    //clearing the display
29
     lc.clearAll();
30
    delay(3000);
32|}
```


4.9.4.3 Dot matrix 제어 - code2.1

```
ex_dm_project
 1 #include "LedControlMS.h"
 3 #define NBR MTX 1 //number of matrices attached is one
   7 unsigned long delayTime=1200; // Delay between Frames
9 // Put values in arrays
10 byte invader1a[] =
     B00011000. 1/
13
     B00111100,
     B01111110.
14
15 B11011011,
16
    B11111111.
17
     B00100100.
18
     B01011010,
    B10100101
20 };
22 byte invader1b[] =
23 {
24
    B00011000, // Ser
    B00111100.
    B01111110.
    B11011011,
    B11111111.
    B00100100.
    B01011010,
    B01000010
32 };
```

```
34 byte invader2a[] =
35 |
36
    B00100100, // First frame of invader #2
37
     B00100100.
     B01111110.
     B11011011.
    B11111111.
41
    B11111111.
42
    B10100101.
    B00100100
43
44 };
45
46 byte invader2b[] =
47 {
    B00100100, // Second frame of invader #2
49
    B10100101,
    B11111111,
51
     B11011011.
     B11111111.
     B01111110.
54
    B00100100.
     B01000010
56|};
```


4.9.4.3 Dot matrix 제어 - code2.2

```
58 void setup()
   lc.shutdown(0,false); // Wake up displays
61 // lc.shutdown(1,false);
    Ic.setIntensity(0,5); // Set intensity levels
63 1/ Ic.setIntensity(1,5);
64 | Ic.clearDisplay(0); // Clear Displays
65 V/ lc.clearDisplay(1);
69 // Take values in Arrays and Display them
70 void sinvader1a()
71 |
   for (int i = 0; i < 8; i++)
73 l
      lc.setRow(0,i,invader1a[i]);
78 void sinvader1b()
   for (int i = 0; i < 8; i++)
      lc.setRow(0,i,invader1b[i]);
84 }
```

```
102 void loop()
103 (
104 // Put #1 frame on both Display
105 | sinvader1a();
106 | delay(delayTime);
         sinvader2a();
107 | / /
108 | / /
         delay(delayTime);
109
110
111 // Put #2 frame on both Display
112 | sinvader1b();
113 ! delay(delayTime);
         sinvader2b();
114 //
115 //
         delay(delayTime);
116
117|}
```


4.9.4.4 Dot matrix 제어 - DIY

DIY dot matrix에 ♡ 를 그리는 코드와

♡ 사진을 제출하시오.

완성된 코드 를 ARnn_heart.ino & ARnn_heart.png 로 저장해서 제출.

4.9.5 Dot matrix module 응용 - DM 연결

fritzing

https://www.brainy-bits.com/how-to-control-max7219-led-matrix/

[Practice]

- ◆ [wk09]
- > Arduino LED III: 4-FND & DM
- Complete your project
- Submit folder : Arnn_Rpt05

wk09: Practice-05: ARnn_Rpt05

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload all in github.

제출폴더명: ARnn_Rpt05

- 제출할 파일들
 - ① ARnn_4digit.fzz
 - 2 ARnn_4digit.ino
 - 3 ARnn_4digit.png
 - **4** ARnn_dm_module.fzz
 - **5** ARnn_heart.ino
 - **6** ARnn_heart.png

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.github.com GitHub
- http://www.google.com Googling
- ✓ https://www.youtube.com Youtube

Github.com/Redwoods/Arduino

Github.com/Redwoods/Arduino

주교재

Uno team

아두이노 키트(Kit)

http://arduinostory.com/goods/goods_view.php?goodsNo=1000000306

아두이노 키트(Kit): Part-1

아두이노 키트(Kit): Part-2

