Logic Review

Laura Zielinski

Fall 2023

1 Size

Remark 1. Let A, B be sets. We say |A| = |B| if there is a bijection from A to B. We say $|A| \le |B|$ if there is an injection from A to B. We say $|A| \ge |B|$ if there is a surjection from A to B.

Remark 2. $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Proof. Let $\mathbb{N} \times \mathbb{N}$ be represented by lattice points in the first quadrant. Start at the origin and diagonally snake away outward.

Definition 1. A set is countable if it has the same size as \mathbb{N} .

Theorem 1. The union of (at most) countably many (at most) countable sets is (at most) countable.

Proof. We can find a bijection from this union to $\mathbb{N} \times \mathbb{N}$.

Definition 2. (Dedekind) A set is infinite if it can be put in bijection with a strict subset of itself.

Theorem 2. (Cantor) Let X be a set. Then $|X| < |\mathcal{P}(X)|$.

Proof. We get \leq from inclusion. Suppose there was a bijection $f: X \to \mathcal{P}(X)$. Let $A = \{x : x \notin f(x)\}$, and let $a = f^{-1}(A)$. Then $a \in A$ or $a \notin A$ gives us a contradiction, so we get <.

Corollary 1. We can find arbitrarily large sets by taking power sets.

Theorem 3. (Cantor-Schröder-Bernstein) If $|X| \leq |Y|$ and $|Y| \leq |X|$, then |X| = |Y|.

Proof. Let $f: X \to Y$ and $g: Y \to X$ be injections. Divide $X \cup Y$ into orbits, where each orbit is formed by starting at a point, applying f and g in the forward direction, and applying f^{-1} and g^{-1} in the backward direction. The set of orbits partitions $X \cup Y$, and each orbit is either a closed loop, continues infinitely and uniquely in both directions, or continues infinitely in the forward direction. Then we can form our bijection easily using these orbits.

Definition 3. We write AB to mean the set of functions from A to B. We write B^A to mean $|{}^AB|$. In general, $|\mathcal{P}(X)| = |{}^X2| = 2^{|X|}$.

Remark 3. $|\mathbb{N}| = |\mathbb{Q}| = |\mathbb{Z}| < |\mathbb{R}| = |(a, b)_{\mathbb{R}}| = |\mathcal{P}(\mathbb{N})| = |\mathbb{N}^2| = |\mathbb{N}|$.

Lemma 1. If |A| = |B| and |C| = |D|, then |A| = |B|D|.

Proof. Define bijections $A \to B$ and $C \to D$. Use them to injectively map functions from $A \to C$ to a function from $B \to D$ (and another injection the other way).

Lemma 2. $|B(^{C}A)| = |B \times ^{C}A|$.

Theorem 4. (Cantor) Transcendental numbers (real numbers which are not the root of a rational polynomial) exist.

Proof. The set of finite sequences of rationals is countable, so the set of rational polynomials is countable. Any polynomial has finitely many roots, so the set of non-transcendental numbers is countable. But $|\mathbb{N}| < |\mathbb{R}|$.

Theorem 5. Suppose A_0, A_1, B_0, B_1 are disjoint nonempty sets. Suppose that for i = 0, 1 there exists an injection from $A_i \to B_i$ but there does not exist a surjection. Let $A = A_0 \cup A_1$. Let $B = B_0 \times B_1$. Then there is an injection $A \to B$ but no surjection.

Proof. Let $f: A_0 \to B_0$, $g: A_1 \to B_1$ be injections, and define $h: A \to B$ where $h(a_0) = (f(a_0), b_1)$ and $h(a_1) = (b_0, g(a_1))$ where $b_0 \in B_0 \setminus f(A_0)$, $b_1 \in B_1 \setminus g(A_1)$.

Now suppose there were a surjection $h: A \to B$. Let $f: A_0 \to B_0$, $g: A_1 \to B_1$ be the projections. Pick $b_0 \in B_0 \setminus f(A_0)$, $b_1 \in B_1 \setminus g(A_1)$. Then h cannot map to (b_0, b_1) , a contradiction.

2 Order

Definition 4. An order (X, <) on a set X is linear if

- 1. $a \not< a$ for all $a \in X$,
- 2. for all $a, b, c \in X$, if a < b and b < c, then a < c,
- 3. for all $a, b \in X$, either a < b, b < a, or a = b.

Definition 5. A linear ordering (X,<) is a well-ordering if every nonempty subset of X has a least element.

Definition 6. Let (X, <) be a linear order. An initial segment $A \subseteq X$ is a set such that for $a \in A$, if $x \in X$ such that x < a, then $x \in A$. A strict initial segment is one which is not all of X.

Definition 7. An order isomorphism $f: X \to Y$ is a bijection such that x < y if and only if f(x) < f(y).

Theorem 6. Suppose (X, <) is a well-ordered set. Suppose $f: X \to X$ satisfies a < b implies f(a) < f(b). Then for every $x \in X$, $x \le f(x)$. Moreover, (X, <) is not order isomorphic to one of its strict initial segments.

Proof. Let $S = \{x \in X \mid f(x) < x\}$. If S is nonempty, we can find a least element x_0 . But then $f(x_0) < x_0$ so $f(f(x_0)) < f(x_0)$, so $f(x_0) \in S$. Hence, S is empty. Now let f be an order isomorphism from X to a strict initial segment, and extend the codomain to be all of X. Take a point a not in the strict initial segment. But then $a \le f(a)$, and f(a) is in the initial segment, a contradiction.

3 Ordinals

Definition 8. If X is a set of sets, we write $\bigcup X$ to mean the union of sets in X.

Definition 9. (von Neumann) An ordinal is a set which is transitive and strictly well-ordered by \in .

Definition 10. A transitive set α is one such that, equivalently:

1. if $x \in y \in \alpha$, then $x \in \alpha$,

- 2. if $x \in \alpha$, then $x \subseteq \alpha$,
- 3. $\bigcup \alpha \subseteq \alpha$.

Theorem 7. Every element of an ordinal is an ordinal.

Proof. Let α be an ordinal, and let $\beta \in \alpha$. Then $\beta \subseteq \alpha$ as α is transitive, so β is well-ordered and we can easily show transitivity.

Theorem 8. If α, β are ordinals, then $\alpha \subseteq \beta$ if and only if $\alpha \in \beta$ or $\alpha = \beta$.

Proof. Suppose $\alpha \subseteq \beta$ and choose the least element $\gamma \in \beta \setminus \alpha$. Now show $\gamma = \alpha$ by double inclusion, hence $\alpha \in \beta$.

Remark 4. If α is an ordinal, we call $\alpha + 1 = \alpha \cup \{\alpha\}$.

Theorem 9. If X is a nonempty set of ordinals, then $\bigcup X$ is the least ordinal greater than or equal to all ordinals in X.

Proof. Let $Y = \bigcup X$. Show that Y is transitive, that $\alpha \notin \alpha$ for all $\alpha \in Y$, that you can compare any two elements, and that \in is transitive. Show that Y is well-ordered by taking a nonempty subset and finding an ordinal with a nonempty intersection. Then the least element of that ordinal is the least element of the subset. Thus, Y is an ordinal.

Show Y is greater than or equal to all ordinals in X. If α is another ordinal greater than or equal to all ordinals in X, then $Y \subseteq \alpha$.

Remark 5. We call the union of all finite ordinals ω or ω_0 .

Remark 6. The class of all ordinals is called Ord.

Theorem 10. If α, β are ordinals, then either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

Proof. If $\beta \subseteq \alpha$, we are done. Otherwise, let $\gamma \in \beta \setminus \alpha$ be the least element. By choice of least, an element of γ is an element of α , so $\gamma \subseteq \alpha$. Then $\gamma \in \alpha$ (impossible) or $\gamma = \alpha$, so $\alpha \in \beta$ hence $\alpha \subseteq \beta$. \square

Theorem 11. Any set X of ordinals is well-ordered by \in .

Proof. We get that X has a linear order from the lemmas above. Let $Y \subseteq X$ be nonempty. Choose $\alpha \in Y$. If $\alpha \cap Y = \emptyset$, find another $\beta \in Y$. Then $\alpha \in \beta$ or $\beta \in \alpha$ (impossible as then $\beta \in \alpha \cap Y$). Hence, α is the least element of Y. If $\alpha \cap Y \neq \emptyset$, α is well-ordered so repeat above with least element.

Remark 7. Elements of an ordinal α are strict initial segments of α , and strict initial segments are elements.

Theorem 12. Every well-ordered set is order isomorphic to a unique ordinal.

Proof. Let A be well-ordered, and let B be the collection of ordinals that are order isomorphic to a strict initial segment of A. Then B is well-ordered as a set of ordinals and transitive. In fact, B is order isomorphic to an initial segment of A, which must be all of A.

4 Cardinals

Remark 8. We assume the well-ordering principle, so every set can be well-ordered. Moreover, every set is isomorphic to an ordinal.

Definition 11. A cardinal α is an ordinal which cannot be put in bijection with any smaller ordinal, i.e. if $\beta < \alpha$, then $|\beta| < |\alpha|$. Given an ordinal β , its cardinality $|\beta|$ is the greatest cardinal $\leq \beta$.

Definition 12. Given any set X, its cardinality |X| is the cardinal $|\alpha|$ where (X, <) is isomorphic to α under some well-ordering of X. No matter what the well-ordering is, we get the same cardinality.

Remark 9. We index the infinite cardinals by $\aleph_{\alpha} = \omega_{\alpha}$ where α is an ordinal. We view \aleph_{α} (ω_{α}) as the smallest cardinal (ordinal) greater than (not in bijection with) \aleph_{β} (ω_{β}) for $\beta < \alpha$.

Definition 13. A successor ordinal α can be written as $\beta + 1 = \beta \cup \{\beta\}$ where β is an ordinal. A limit ordinal cannot; i.e. $\alpha = \sup\{\beta : \beta < \alpha\}$. An infinite cardinal is a successor or limit cardinal if its index is a successor or limit ordinal.

Lemma 3. Infinite cardinals are limit ordinals.

Theorem 13. If \aleph_{α} is a limit cardinal, then $\aleph_{\alpha} = \bigcup_{\beta < \alpha} \aleph_{\beta}$. In particular, $\aleph_{\omega} = \bigcup_{n < \omega} \aleph_n$.

Proof. The union is an ordinal. Suppose there were a smaller ordinal in bijection with the union. Then that ordinal belongs to some \aleph_{β} and so its cardinality is strictly less than that of the union. Finally, use double inclusion to get the equality.

Remark 10. ω_0 is the set of finite ordinals. ω_1 is the set of countable ordinals.

Definition 14. If κ, λ are cardinals, then $\kappa + \lambda = |A \cup B|$ where $|A| = \kappa$, $|B| = \lambda$, and $A \cap B = \emptyset$.

Definition 15. If κ, λ are cardinals, then $\kappa \cdot \lambda = |A \times B|$ where $|A| = \kappa$, $|B| = \lambda$.

Definition 16. If κ, λ are cardinals, then $\kappa^{\lambda} = |A| B$ where $|A| = \kappa$, $|B| = \lambda$.

Theorem 14. (Fundamental theorem of cardinal arithmetic) If κ, λ are cardinals, neither is 0, and at least 1 is infinite, then $\kappa \cdot \lambda = \kappa + \lambda = \max\{\kappa, \lambda\}$.

Definition 17. If X is a well-ordered set, then $Y \subseteq X$ is cofinal in X if for all $x \in X$, there is $y \in Y$ such that $x \leq y$. The cofinality of X is the smallest size of a cofinal subset.

Theorem 15. Define a relation \prec on Ord \times Ord by $(\alpha, \beta) \prec (\gamma, \delta)$ precisely when one of the following holds: (i) $\max\{\alpha, \beta\} < \max\{\gamma, \delta\}$, (ii) $\max\{\alpha, \beta\} = \max\{\gamma, \delta\}$ and $\alpha < \gamma$, (iii) $\max\{\alpha, \beta\} = \max\{\gamma, \delta\}$ and $\alpha = \gamma$ and $\beta < \delta$. Then \prec is a well-ordering.

Theorem 16. If κ is an infinite cardinal, then $\kappa = \kappa \cdot \kappa$.

Proof. Suppose for the sake of contradiction there is a smallest infinite cardinal κ with $\kappa < \kappa \cdot \kappa$. Let f be the order isomorphism from $(\kappa \times \kappa, \preceq)$ to a unique ordinal α . Some element $(\beta, \gamma) \in \kappa \times \kappa$ is sent by f to κ itself, since $\kappa < \alpha$ and f is a surjection. There is an ordinal $\delta < \kappa$ such that $\beta < \delta$, $\gamma < \delta$, since κ is a limit ordinal. Then $|\delta \times \delta| \ge \kappa$, since $\kappa \in f(\delta \times \delta)$ and $|f(\delta \times \delta)| = |\delta \times \delta|$. By hypothesis, $|\delta \times \delta| = |\delta| \cdot |\delta| = |\delta| < \kappa$ (as $\delta < \kappa$ and κ is the least cardinal such that $\kappa < \kappa \cdot \kappa$). Then $\kappa \le |\delta \times \delta| < \kappa$, a contradiction.

Lemma 4. Let X be a collection of sets such that $|X| \leq \mu$ and for each $Y \in X$, we have $|Y| \leq \lambda$ for some cardinals μ, λ . Then $|\bigcup X| \leq \mu \cdot \lambda$.

Proof. Let $f: X \to \mu$ and, for each $Y \in X$, let $g_Y: Y \to \lambda$ where f, g are injections. We build an injection $h: \bigcup X \to \mu \times \lambda$. For each $y \in \bigcup X$, let $Y \in X$ have the least value f(Y) such that $y \in Y$ (as the collection of such f(Y) is well-ordered). Now, define $h(y) = (f(Y), g_Y(y))$.

Theorem 17. Say that an infinite cardinal κ has property (*) if κ cannot be written as the union of fewer than κ sets, each of which has size strictly less than κ . Then for any $n < \omega$, if $\kappa = \aleph_{n+1}$ then κ has property (*). Moreover, $\kappa = \aleph_{\omega}$ does not have property (*).

Proof. Suppose that κ does not have property (*). Then we could write $\kappa = \bigcup X$ where $|X| \leq \aleph_n$ and for each $Y \in X$, we have $|Y| \leq \aleph_n$. But $|\bigcup X| \leq \aleph_n \cdot \aleph_n \leq \aleph_n < \kappa$, a contradiction.

5 Transfinite induction

Definition 18. (Transfinite induction) Suppose \mathcal{P} is a class of ordinals such that $0 \in \mathcal{P}$, and if $\alpha \in \mathcal{P}$ then $\alpha + 1 \in \mathcal{P}$. Moreover, if α is a limit ordinal and $\beta \in \mathcal{P}$ for all $\beta < \alpha$, then $\alpha \in \mathcal{P}$. Then $\mathcal{P} = \text{Ord}$.

6 Ultrafilters

Definition 19. If X is a set, then $\mathcal{F} \subseteq \mathcal{P}(X)$ is a filter if

- 1. $X \in \mathcal{F}$,
- $2. \emptyset \notin \mathcal{F},$
- 3. if $A, B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$ (finite intersection),
- 4. if $A \in \mathcal{F}$ and $A \subseteq B \subseteq \mathcal{F}$, then $B \in \mathcal{F}$ (upward closed).

Definition 20. A collection of sets has finite intersection property (FIP) if the intersection of finitely many sets in the collection is nonempty.

Definition 21. A filter \mathcal{F} over X is an ultrafilter if for all $A \subseteq X$, either $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$.

Remark 11. We might have said an ultrafilter is a "maximal filter", i.e. there is no filter which strictly contains an ultrafilter.

Proof. Given an ultrafilter \mathcal{D} , if a set is not in \mathcal{D} then its complement is in \mathcal{D} so it is maximal. Given a maximal filter \mathcal{F} , if \mathcal{F} is not decisive about a set, we can apply the lemma below to get a larger filter, a contradiction.

Lemma 5. If $F \subseteq \mathcal{P}(X)$ has FIP and $A \subseteq X$, then one of $\mathcal{F} \cup \{A\}$ and $\mathcal{F} \cup \{X \setminus A\}$ has FIP.

Proof. If both $\mathcal{F} \cup \{A\}$ and $\mathcal{F} \cup \{X \setminus A\}$ fail FIP, then we can find sets $X_1 \cap \cdots \cap X_n \cap A = \emptyset$ and $Y_1 \cap \cdots \cap Y_m \cap X \setminus A = \emptyset$. But then $X_1 \cap \cdots \cap X_n \cap Y_1 \cap \cdots \cap Y_m = \emptyset$.

Remark 12. Given a collection \mathcal{F} with FIP, we can talk about the filter generated by \mathcal{F} , $\langle \mathcal{F} \rangle$, which is closed under finite intersection and upward closed.

Definition 22. A principal ultrafilter \mathcal{F} is $\{Y \subseteq X : a \in Y\}$ where $a \in X$.

Lemma 6. Let \mathcal{D} be an ultrafilter. Then \mathcal{D} is principal if and only if \mathcal{D} contains a finite set. Equivalently, \mathcal{D} is nonprincipal if and only if \mathcal{D} contains all cofinite sets.

Lemma 7. If X is finite, the only ultrafilters on X are principal.

Lemma 8. If we have $\{\mathcal{F}_{\beta} : \beta < \alpha\}$ where each $\mathcal{F}_{\beta} \subseteq \mathcal{P}(X)$ and has FIP, and if $\beta < \beta' < \alpha$ then $\mathcal{F}_{\beta} \subseteq \mathcal{F}_{\beta'}$, then $\bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$ has FIP.

Theorem 18. Let X be an infinite set. Then there exists a nonprincipal ultrafilter on X.

Proof. Let $\kappa = |X|$. Denote the subsets of X as A_{β} where $\beta < 2^{\kappa}$. We build by induction on $\beta < 2^{\kappa}$ a sequence $\{\mathcal{F}_{\beta} : \beta < 2^{\kappa}\}$ such that each $\mathcal{F}_{\beta} \subseteq \mathcal{P}(X)$ and has FIP. Let F_0 be the collection of cofinite sets. For each $\beta < 2^{\kappa}$, let $\mathcal{F}_{\beta+1}$ be \mathcal{F}_{β} but including $A_{\beta+1}$ or $X \setminus A_{\beta+1}$. If β is a limit ordinal, let $\mathcal{F}_{\beta} = \bigcup_{\gamma < \beta} \mathcal{F}_{\gamma}$. Then by the lemma above, $\mathcal{F}_{2^{\kappa}}$ is a nonprincipal ultrafilter on X.