

Pattern Recognition Homework 3 Announcement

Lastest update: 2023.04.12 12:00

Homework 3

- Deadline: Apr. 26, Wed. at 23:59
 - Code assignment (70%)
 - Implement <u>Decision Tree</u> and <u>Random forest</u> using only NumPy.
 - Questions (30%)
 - Write your answer in detail in the report.
- Question: <u>Link</u>
- Sample code: <u>Link</u>
- Dataset: <u>Link</u>

Dataset

- A real world dataset
 - Training set (800 data)
 - Validation set (800 data)
 - Testing set (800 data)
- 7 features, 7 labels

• The task is to determine whether to approve a loan for a customer.

• Find the feature that will split the data in a way that results in the most **pure** classes at the resulting nodes.

- How to measure "pure"?
 - Entropy: the smaller, the purer
 - Gini-index: the smaller, the purer

$$Entropy = -\sum_{j} p_{j} \log_{2} p_{j}$$

• If all classes are the same in one node

$$entropy = -1\log_2 1 = 0$$

If the classes are half-and-half

$$entropy = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$$

Until stopped

- a. Select a node
- b. Loop through all values of all features
 - 1) Partition the node and calculate the purity of the resulting data
 - 2) Find the feature value that yields the lowest value of Gini or Entropy
- c. Split the node using the feature value found in step b
- d. Move to the next node and repeat steps a to c

Stopping criteria

- The data in each leaf node belongs to the same class
- The depth of the tree reaches a pre-specified limit

 Decision tree can find a unique path for each data (over-fitting) if we don't pre-specified any limits, such as the depth of the node.

Questions for Decision Tree (30%)

Q1 (5%): Compute the Entropy and Gini Index of the following inputs.

```
ex1 = np.array(["+", "+", "+", "+", "+", "-"])
ex2 = np.array(["+", "+", "+", "-", "-", "-"])
ex3 = np.array(["+" ,"-", "-", "-", "-", "-"])
```

- Q2 (10%):
 - Fix criterion='gini', max_features=None
 - Try max_depth=3 and max_depth=10
- Q3 (10%):
 - Fix max_depth=3, max_features=None
 - Try criterion='gini' and criterion='entropy'

Questions for Decision Tree (30%)

- Q4 (5%):
 - Train your model using criterion='gini', max_depth=10, and max_features=None.
 - Plot the feature importance of your decision tree model by simply counting the number of times each feature is used to split the data.

Bagging

- Ensemble method of decision trees.
- Bagging (Bootstrap aggregating): Fit many deep trees to bootstrap-resampled versions of the training data, and classify data by majority voting

Random Forest Simplified

Random Forest

- Random forest combines multiple decision trees to make a better estimator than the individual decision trees.
- Use the Decision Tree you implemented as the weak estimator.

EXAMPLES

Random Forest

- Where does the randomness come from in a random forest algorithm?
 - Bootstrapped datasets
 - Random feature selection during the growth of each tree in the forest.
 - Specifically, each tree may grow using different subsets of the original data and features,
 which are randomly sampled during the construction process.

Random Forest

Algorithm 1 Random Forest

```
Precondition: A training set S := (x_1, y_1), \dots, (x_n, y_n), features F, and number
    of trees in forest B.
  1 function RANDOMFOREST(S, F)
       H \leftarrow \emptyset
        for i \in 1, \ldots, B do
            S^{(i)} \leftarrow A bootstrap sample from S
           h_i \leftarrow \text{RANDOMIZEDTREELEARN}(S^{(i)}, F)
       H \leftarrow H \cup \{h_i\}
        end for
        return H
 9 end function
 10 function RANDOMIZED TREELEARN (S, F)
        At each node:
 11
            f \leftarrow \text{very small subset of } F
 12
            Split on best feature in f
 13
        return The learned tree
 14
15 end function
```

Questions for Random Forest (20%)

- Q5 (10%):
 - Fix criterion='gini', max_features=sqrt(n_features), max_depth=None, and
 Bootstrap=True
 - Try n_estimator=10 and n_estimator=50.

- Q6 (10%):
 - Fix criterion='gini', max_depth=None, Bootstrap=True, and n_estimator=10
 - Try max_features=sqrt(n_features) and max_features=None.

Train your own model (20%)

- You can use nither Decision Tree or Random Forest that you implemented.
- Try different parameters and features to beat the baseline.
- Explain in detail how you choose the model, parameters, and features in the report. Otherwise, extra penalty.
- Predict the testing data and save the result into a CSV file.

Train your own model (20%)

- Evaluation is based on testing accuracy.
- Testing data distribution is guaranteed to be similar to validation data.

Points	Testing Accuracy
20 points	acc > 0.915
15 points	acc > 0.9
10 points	acc > 0.88
5 points	acc > 0.8
0 points	acc <= 0.8

Report

- Please write your report in English.
- Please follow the HW1 report template.
- You must type the answer and also screenshot at the same time for the coding part.
- Answer each question as clearly as possible. You will get an extra penalty for only the brief answer.

Submission

- Compress your .ipynb, .pdf, and .csv into a zip file and submit it on E3.
- Before submission:
 - Restart and run All
 - Save and submit the .ipynb (keep all cell outputs)
 - Get 0 points if you do not keep the cell outputs.
- STUDENT ID> HW3.zip
 - STUDENT ID> HW3.ipynb
 - STUDENT ID> HW3.pdf

Late policy

- We will deduct a late penalty of 20 points per additional late day.
- If you get 90 points but delay for two days, you get 90 (20 x 2) = 50 points!
- We only accept submissions that are up to 10 minutes late. Any submissions that are later than that will be considered late, regardless of the reason.

HW2

- We will announce the HW2 scores before Apr. 16.
- The criterion has been adjusted from the left table to the right table.

Points	Testing Accuracy
20	testing acc > 0.921
15	0.91 < testing acc <= 0.921
8	0.9 < testing acc <= 0.91
0	testing acc <= 0.9

Points	Testing Accuracy
20	testing acc > 0.921
15	testing acc > 0.91
10	testing acc > 0.8
5	testing acc > 0.6
0	testing acc <= 0.6