Formule d'Intégration par partie

Présenté par : M. HAMMAD

1.0.1 Formule d'intégration par parties pour les processus d'Itô

Nous allons maintenant nous introduire une propriété généralisant "la formule d'intégration par partie" dans le cas des processus d'Itô.

Proposition 1.0.1.

Soient Y_t et Z_t deux processus d'Itô,

$$Y_t = Y_0 + \int_0^t K_s ds + \int_0^t H_s dB_s \ et \ Z_t = Z_0 + \int_0^t K_s' ds + \int_0^t H_s' dB_s.$$

Alors:

$$Y_t Z_t = Y_0 Z_0 + \int_0^t Y_s dZ_s + \int_0^t Z_s dY_s + \langle Y, Z \rangle_t$$

avec la convention:

$$\langle Y, Z \rangle_t = \int_0^t H_s H_s' ds.$$

Démonstration 1.0.1.

On a d'après la formule d'Itô:

$$(Y_t + Z_t)^2 = (Y_0 + Z_0)^2 + 2 \int_0^t (Y_s + Z_s) d(Y_s + Z_s) + \int_0^t (H_s + H_s')^2 ds$$

$$Y_t^2 = Y_0^2 + 2 \int_0^t Y_s dY_s + \int_0^t H_s^2 ds$$

$$Z_t^2 = Z_0^2 + 2 \int_0^t Z_s dZ_s + \int_0^t H_s'^2 ds.$$

en faisant la différence entre la première ligne et les deux suivantes :

$$Y_t Z_t = Y_0 Z_0 + \int_0^t Y_s dZ_s + \int_0^t Z_s dY_s + \int_0^t H_s H_s' ds.$$

1.0.2 Le processus d'Ornstein-Ulhenbeck

On considère l'équation : $\begin{cases} \mathrm{d}\mathbf{Y}_t = -cY_tdt + \sigma dB_t \\ \mathbf{Y}_0 = y_0 \end{cases}$ où, y_0, c et σ sont des constantes réelles.

Le processus d'Ornstein-Ulhenbeck est l'unique solution de cette équation, on peut l'expliciter. En effet, posont $Z_t = Y_t e^{ct}$ et écrivons la formule d'intégration par partie :

$$dZ_t = e^{ct}dY_t + Y_t d(e^{ct}) + \langle Y, e^c \rangle_t.$$

Mais

$$\langle Y, e^c \rangle_t = 0 \text{ car } d(e^{ct}) = ce^{ct}dt \text{ i.e. } K_t' = ce^{ct} \text{ et } H_t' = 0.$$

On en déduit que :

$$dZ_t = \sigma e^{ct} dB_t \ i.e. \ Z_t = Z_0 + \sigma \int_0^t e^{cs} dB_s,$$

puis que:

$$Y_t = Y_0 e^{-ct} + \sigma e^{-ct} \int_0^t e^{cs} dB_s.$$

On peut calculer la moyenne et la variance de Y_t :

$$\mathbf{IE}(Y_t) = Y_0 e^{-ct} + \sigma e^{-ct} \mathbf{IE} \left(\int_0^t e^{cs} dB_s \right) = Y_0 e^{-ct}.$$

(en effet $\mathbf{E}\left(\int_0^t (e^{cs})^2 ds\right) < +\infty$, et donc $\int_0^t e^{cs} dB_s$ est une martingale nulle à l'instant 0 donc de moyenne nulle). De même :

$$Var(Y_t) = \mathbf{E} \left((Y_t - \mathbf{E}(Y_t))^2 \right)$$

$$= \mathbf{E} \left(\left(\sigma e^{-ct} \int_0^t e^{cs} dB_s \right)^2 \right)$$

$$= \sigma^2 e^{-2ct} \mathbf{E} \left(\int_0^t e^{2cs} ds \right)$$

$$= \sigma^2 \frac{1 - e^{-2ct}}{2c}.$$