Signal vs. Noise

Jared Fisher

Lecture 0b

Announcements

- Practice Homework 0" has been posted. **This is not graded!**But it will give a chance to those who want to practice turning something in before turning in a "real" assignment. It also reviews pre-requisite material.
- ► Homework 0 is "due" January 27, but it's not graded so it's fine if it's late too. Again, it's for practice if you want.
- Must be submitted as a PDF on Gradescope.

Accomodations and Schedule Conflicts

Please let me know of any conflicts or accommodations (religious, DSP, or otherwise) as soon as possible.

and Regression

Parallels between Ideas behind Time Series

Regression

Regression

Regression = Signal + Noise

- $y_i = f(\mathbf{x_i}) + \epsilon_i$
- $ightharpoonup f(\mathbf{x_i}) \Rightarrow \text{"Signal"}$
- $ightharpoonup \epsilon_i \Rightarrow$ "Noise"
- ▶ Often $\epsilon_i \sim N(0, \sigma^2)$

Gaussian Errors

Histogram of e

But...

- ▶ In this class, we don't have data on n subjects at 1 point in time, we will have data on 1 subject at n points in time. . .
- So, instead think of the model as $y_t = f(t) + \epsilon_t$, and now view the ϵ 's over time
- ▶ Or, with no signal: $y_t = \epsilon_t$

Gaussian Errors, over time

We call this "Gaussian noise"

Definitions (TSA4e Example 1.8)

Random variables $X_1, ..., X_n$ will be denoted as

- ▶ White noise: if they have mean zero, variance σ^2 , and are uncorrelated
- ▶ IID noise: if they are white noise AND are independent and identically distributed (IID).
- ▶ Gaussian [white] noise: if they are IID noise AND are normally distributed, $X_i \sim N(0, \sigma^2)$

Gaussian Noise

IID Noise (T distribution)

But wait!

- ▶ Didn't we say that this class is about things that are correlated over time?
- ► White noise has no varying structure over time, so for most time series data it's not a good model
- ▶ BUT it is the basis for many time series models
- So how do we check to see if white noise is an appropriate model?

Tools we'll need

► Autocovariance (Definition 1.2):

$$\gamma_{x}(s,t) = cov(X_{s}, X_{t})$$

$$= E[(X_{s} - E[X_{s}])(X_{t} - E[X_{t}])]$$

- ▶ [mental aside: let s > t and h = s t. h is the number of "lags"]
- ► Sample autocovariance (Definition 1.14):

$$\hat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-h} (x_{t+h} - \bar{x})(x_t - \bar{x})$$

Tools we'll need

$$ho(s,t) = rac{\gamma_{\mathsf{x}}(s,t)}{\sqrt{\gamma_{\mathsf{x}}(s,s)\gamma_{\mathsf{x}}(t,t)}}$$

$$\rho(s,t) = \frac{\sqrt{\gamma_x(s,s)\gamma_x(t,t)}}{\sqrt{\gamma_x(s,s)\gamma_x(t,t)}}$$
$$= \frac{cov(X_s, X_t)}{\sqrt{var(X_s)var(X_t)}}$$

$$= \frac{cov(X_s, X_t)}{\sqrt{var(X_s)var(X_t)}}$$
Assorbed tion (Definition 1.15):

$$= \frac{cov(X_s, X_t)}{\sqrt{var(X_s)var(X_t)}}$$
 Sample autocorrelation (Definition 1.15):
$$r_h = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}$$

 $=\frac{\sum_{t=1}^{n-h}(x_t-\bar{x})(x_{t+h}-\bar{x})}{\sum_{t=1}^{n}(x_t-\bar{x})^2}$

$$= \frac{cov(X_s, X_t)}{\sqrt{var(X_s)var(X_t)}}$$

A note:

▶ The book uses $\hat{\rho}$. I'll accept either r or $\hat{\rho}$ for sample correlations.

Properties of White noise

- $E(X_t) = 0$
- $ightharpoonup var(X_t) = \sigma^2 \text{ (constant)}$
- ho(s,t)=0 for all $s\neq t$
- ho(t,t)=1 (by obvious)
- ► How do we check if white noise is a reasonable model for a time series?

Evaluating White noise

- ► How do we check if white noise is a reasonable model for a time series?
- ► Is the average effectively 0?
- ▶ Is the variance constant?
- $ightharpoonup r_k pprox
 ho(k) = 0$ for all $k \neq 0$?

ACF plot

```
x = rnorm(301)
acf(x[1:300],lwd=3)
```

Series x[1:300]

ACF plot - simple Moving Average

```
y = .5*(x[1:300] + x[2:301])
acf(y,lwd=3)
```

Series y

CI for Sample Correlations

► Wouldn't it be great if those dashed blue lines were the appropriate confidence interval?

Simplified Theorem A.7 (see Property 1.2)

▶ Under general conditions, if x_t is white noise, then for n large, and with arbitrary but fixed H, then the sample autocorrelations

$$r_1,...,r_H \stackrel{iid}{\sim} N(0,1/n)$$

► In other words

$$\sqrt{n} \begin{pmatrix} r_1 \\ \vdots \\ r_H \end{pmatrix} o N(0, I) \quad \text{as } n o \infty$$

• Key takeaway: $var(r_h) = 1/n$ (Equation 1.38)

Confidence Interval

► For white noise $r_1, ..., r_H \stackrel{iid}{\sim} N(0, 1/n)$, for

$$P\left(|r_h| > 1.96n^{-\frac{1}{2}}\right) \approx P\left(|N(0,1)| > 1.96\right) = 5\%$$

So for n = 100, $1.96n^{-\frac{1}{2}} = 1.96/\sqrt{100} = .196$

Gaussian Noise

ACF plot - Dashes at .196?

acf(rnorm(100),lwd=3)

Series rnorm(100)

AR(1) Process (we'll learn about later)

```
Xt = arima.sim(model=list(ar=.9),n=100)
plot.ts(Xt)
```


ACF Plot of AR(1)

acf(Xt)

Final Thought

- ► The ACF plot is called a "Correlogram".
- ▶ We will use the correlogram of the ACF as a diagnostic to evaluate whether or not a *stationary* process can be assumed to be white noise.
- ▶ We will define "stationary" next time.

Textbook Alignment

- ▶ Section 1.1 presents time series examples
- Section 1.2 overviews the semester
- Section 1.3 defines autocovariance, etc.
- ► Section 1.5 defines sample autocovariance, etc.
- ▶ Remember that the textbook is intended as a reference, the readings are supplementary/optional (but probably helpful!), and some parts of the sections are beyond the scope of this course. All needed information will be in the lecture slides, lab material, etc.