Raport 3

Paweł Matławski album 249732

13 marca 2021

Spis treści

1	Kla	syfikacja na bazie modelu regresji liniowej	1
	1.1	Wybór danych	1
	1.2	Podział danych na zbiór uczący i testowy	3
	1.3	Konstrukcja klasyfikatora i wyznaczenie prognoz	4
	1.4	Ocena jakości modelu	7
	1.5	Budowa modelu liniowego dla rozszerzonej przestrzeni cech	
2	Por	ównanie metod klasyfikacji	13
	2.1	Wybór danych	13
	2.2	Podział danych na zbiór uczący i testowy	18
	2.3	Metoda k-najbliższych sąsiadów	20
	2.4	Drzewa klasyfikacyjne	24
	2.5	Naiwny klasyfikator Bayesowski	30
	2.6	Wnioski	31

1 Klasyfikacja na bazie modelu regresji liniowej

1.1 Wybór danych

Zadanie wykonamy dla ramki danych **iris** z pakietu **datasets**. Przyjrzyjmy się jej:

```
library("datasets")
data("iris")
attach(iris)

#liczba kolumn
ncol(iris)

## [1] 5

#liczba wierszy
nrow(iris)

## [1] 150
```

```
#brakujące dane
sum(is.na(iris))

## [1] 0

#etykietki klas
etykietki.klas <- iris$Species

#liczba obiektów
(n <- length(etykietki.klas))

## [1] 150

#liczba klas
(K <- length(levels(etykietki.klas)))

## [1] 3</pre>
```

plot(etykietki.klas)

Rysunek 1: Przynależność do poszczególnych gatunków

```
plot(as.numeric(etykietki.klas))
```


Rysunek 2: Przynależność do poszczególnych gatunków

Wnioski:

- Obiekty są uporządkowane ze względu na przynależność do poszczególnych gatunków po 50 z każdego.
- Mamy 3 klasy i 150 obiektów.

1.2 Podział danych na zbiór uczący i testowy

Podzielimy dane w proporcji:

- $\frac{2}{3}$ -zbiór uczący
- $\frac{1}{3}$ -zbiór testowy.

```
#losowanie obiektów
learning.indx <- sample(1:n,2/3*n)

#zbiór uczący
learning.set <- iris[learning.indx,]

#zbiór testowy
test.set <- iris[-learning.indx,]</pre>
```

1.3 Konstrukcja klasyfikatora i wyznaczenie prognoz

```
#etykietki klas
etykietki.klas.ucz <- learning.set$Species
etykietki.klas.test <- test.set$Species

#liczba obiektów
n.ucz <- length(etykietki.klas.ucz)
n.test <- length(etykietki.klas.test)

#liczba klas
k.ucz <- length(levels(etykietki.klas.ucz))
k.test <- length(levels(etykietki.klas.test))</pre>
```

Wyznaczamy macierze eksperymentu X.ucz oraz X.test, które zawierają wartości poszczególnych zmiennych. W pierwszych kolumnach umieszczamy jedynki, by uwzględnić wyrazy wolne:

```
X.ucz <- cbind(rep(1,100), learning.set[,1:4])
X.ucz <- as.matrix(X.ucz)
X.test <- cbind(rep(1,50), test.set[,1:4])
X.test <- as.matrix(X.test)</pre>
```

```
print(xtable(head(X.ucz), caption="Początkowy fragment macierzy X.ucz"))
```

	rep(1, 100)	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
148	1.00	6.50	3.00	5.20	2.00
93	1.00	5.80	2.60	4.00	1.20
105	1.00	6.50	3.00	5.80	2.20
138	1.00	6.40	3.10	5.50	1.80
95	1.00	5.60	2.70	4.20	1.30
127	1.00	6.20	2.80	4.80	1.80

Tabela 1: Początkowy fragment macierzy X.ucz

```
print(xtable(head(X.test), caption="Początkowy fragment macierzy X.test"))
```

Tworzymy macierze Y.ucz oraz Y.test, które zawierają zmienne binarne kodujące poszczególne klasy.

```
Y.ucz <- matrix(0, nrow=n.ucz, ncol=k.ucz)
Y.test <- matrix(0, nrow=n.test, ncol=k.test)

etykietki.num.ucz <- as.numeric(etykietki.klas.ucz)
etykietki.num.test <- as.numeric(etykietki.klas.test)
```

	rep(1, 50)	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	1.00	5.10	3.50	1.40	0.20
3	1.00	4.70	3.20	1.30	0.20
4	1.00	4.60	3.10	1.50	0.20
7	1.00	4.60	3.40	1.40	0.30
8	1.00	5.00	3.40	1.50	0.20
12	1.00	4.80	3.40	1.60	0.20

Tabela 2: Początkowy fragment macierzy X.test

```
for (k in 1:k.ucz)
  Y.ucz[etykietki.num.ucz==k, k] <- 1
for (k in 1:k.test)
  Y.test[etykietki.num.test==k, k] <- 1</pre>
```

Następnie wyznaczymy prognozowane prawdopodobieństwa przynależności do poszczególnych klas.

```
# Macierz estymowanych współczynników
B <- solve(t(X.ucz)%*%X.ucz) %*% t(X.ucz) %*% Y.ucz

# Prognozowane prawdopodobieństwa przynależności do poszczególnych klas
Y.ucz.hat <- X.ucz%*%B
Y.test.hat <- X.test%*%B
```

```
print(xtable(head(Y.ucz.hat), caption="Wartości prognozowane"))
```

	1	2	3
148	-0.00	0.24	0.76
93	0.17	0.57	0.26
105	-0.14	0.26	0.88
138	-0.04	0.35	0.68
95	0.13	0.52	0.35
127	0.03	0.35	0.62

Tabela 3: Wartości prognozowane

Graficzna prezentacja wyników dla obu zbiorów:

```
par(mar = c(4, 4, 4, 1))
matplot(Y.ucz.hat, main="Zbiór uczący",xlab="id", ylim=c(-.5,2))
abline(h=c(0.3,0.7), lty=2, col="gray")
legend(x="topright", legend=paste(1:3,levels(learning.set$Species)), col=1:3, text.col=1
```

Zbiór uczacy

Rysunek 3: Prognozy dla zbioru uczącego

```
par(mar = c(4, 4, 4, 1))
matplot(Y.test.hat, main="Zbiór testowy",xlab="id", ylim=c(-.5,2))
abline(h=c(0.3,0.7), lty=2, col="gray")
legend(x="topright", legend=paste(1:3,levels(test.set$Species)), col=1:3, text.col=1:3,
```

Zbiór testowy

Rysunek 4: Prognozy dla zbioru testowego

1.4 Ocena jakości modelu

```
print(xtable(macierz.pomylek.ucz, caption="Macierz pomyłek - zbiór uczący"))
```

	setosa	versicolor	virginica
setosa	32	0	0
versicolor	0	24	9
virginica	0	4	31

Tabela 4: Macierz pomyłek - zbiór uczący

```
# dokładność klasyfikacji - zbiór uczący
sum(diag(macierz.pomylek.ucz))/n.ucz
## [1] 0.87
```

```
print(xtable(macierz.pomylek.test, caption="Macierz pomylek - zbiór testowy"))
```

	setosa	versicolor	virginica
setosa	18	0	0
versicolor	0	8	9
virginica	0	1	14

Tabela 5: Macierz pomyłek - zbiór testowy

```
# dokładność klasyfikacji - zbiór testowy
sum(diag(macierz.pomylek.test))/n.test
## [1] 0.8
```

Wnioski:

- Dokładność klasyfikacji stoi na przyzwoitym poziomie, choć z pewnością wciąż jest miejsce na poprawę.
- Gatunek setosa jest dobrze wydzielony od reszty, co widać zarówno na wykresie, jak i w macierzy pomyłek.
- W tym przypadku występuje problem maskowania klas, o którym była mowa na wykładzie.

1.5 Budowa modelu liniowego dla rozszerzonej przestrzeni cech

Tworzymy nowy model regresji uzupełniony o składniki wielomianowe stopnia 2 (tzn. PL^2 , PW^2 , SL^2 , SW^2 , PL*PW, PL*SW, PL*SL, PW*SL, PW*SW, SL*SW). Powtarzamy wszystkie kroki tak, jak w poprzednim przypadku.

```
iris3 <- iris[,1:4]
names(iris3)[1] <- "SL"
names(iris3)[2] <- "SW"
names(iris3)[3] <- "PL"</pre>
```

```
names(iris3)[4] <- "PW"</pre>
iris2 <- iris
Species <- iris2$Species
iris2 <- iris2[,1:4]</pre>
iris2$Sepal.Length <- iris2$Sepal.Length*iris2$Sepal.Length</pre>
iris2$Sepal.Width <- iris2$Sepal.Width*iris2$Sepal.Width
iris2$Petal.Length <- iris2$Petal.Length*iris2$Petal.Length</pre>
iris2$Petal.Width <- iris2$Petal.Width*iris2$Petal.Width</pre>
names(iris2)[1] <- "SL^2"</pre>
names(iris2)[2] <- "SW^2"</pre>
names(iris2)[3] <- "PL^2"</pre>
names(iris2)[4] <- "PW^2"</pre>
attach(iris2)
SL.SW <- iris$Sepal.Length*iris$Sepal.Width
SL.PL <- iris$Sepal.Length*iris$Petal.Length
SL.PW <- iris$Sepal.Length*iris$Petal.Width
SW.PL <- iris$Sepal.Width*iris$Petal.Length</pre>
SW.PW <- iris$Sepal.Width*iris$Petal.Width</pre>
PL.PW <- iris$Petal.Length*iris$Petal.Width
iris.new <- cbind(iris3,iris2, SL.SW, SL.PL, SL.PW, SW.PL, SW.PW, PL.PW, Species)
n.new <- dim(iris.new)[1]</pre>
#losowanie obiektów
learning.indx.new <- sample(1:n.new,2/3*n.new)</pre>
#zbiór uczący
learning.set.new <- iris.new[learning.indx.new,]</pre>
#zbiór testowy
test.set.new <- iris.new[-learning.indx.new,]</pre>
#etykietki klas
etykietki.klas.ucz.new <- learning.set.new$Species</pre>
etykietki.klas.test.new <- test.set.new$Species</pre>
#liczba obiektów
n.ucz.new <- length(etykietki.klas.ucz.new)</pre>
n.test.new <- length(etykietki.klas.test.new)</pre>
#liczba klas
```

```
k.ucz.new <- length(levels(etykietki.klas.ucz.new))</pre>
k.test.new <- length(levels(etykietki.klas.test.new))</pre>
X.ucz.new <- cbind(rep(1,100), learning.set.new[,1:14])</pre>
X.ucz.new <- as.matrix(X.ucz.new)</pre>
X.test.new <- cbind(rep(1,50), test.set.new[,1:14])</pre>
X.test.new <- as.matrix(X.test.new)</pre>
Y.ucz.new <- matrix(0, nrow=n.ucz.new, ncol=k.ucz.new)
Y.test.new <- matrix(0, nrow=n.test.new, ncol=k.test.new)
etykietki.num.ucz.new <- as.numeric(etykietki.klas.ucz.new)</pre>
etykietki.num.test.new <- as.numeric(etykietki.klas.test.new)</pre>
for (k in 1:k.ucz.new)
  Y.ucz.new[etykietki.num.ucz.new==k, k] <- 1
for (k in 1:k.test.new)
  Y.test.new[etykietki.num.test.new==k, k] <- 1
# Macierz estymowanych współczynników
B.new <- solve(t(X.ucz.new)%*%X.ucz.new) %*% t(X.ucz.new) %*% Y.ucz.new
# Prognozowane prawdopodobieństwa przynależności do poszczególnych klas
Y.ucz.hat.new <- X.ucz.new%*%B.new
Y.test.hat.new <- X.test.new%*%B.new
klasy.ucz.new <- levels(learning.set.new$Species)</pre>
klasy.test.new <- levels(test.set.new$Species)</pre>
maks.ind.ucz.new <- apply(Y.ucz.hat.new, 1, FUN=function(x) which.max(x))</pre>
maks.ind.test.new <- apply(Y.test.hat.new, 1, FUN=function(x) which.max(x))</pre>
prognozowane.etykietki.ucz.new <- klasy.ucz.new[maks.ind.ucz.new]</pre>
prognozowane.etykietki.test.new <- klasy.test.new[maks.ind.test.new]</pre>
rzeczywiste.etykietki.ucz.new <- etykietki.klas.ucz.new</pre>
rzeczywiste.etykietki.test.new <- etykietki.klas.test.new</pre>
# macierze pomyłek
macierz.pomylek.ucz.new <- table(rzeczywiste.etykietki.ucz.new, prognozowane.etykietki.u
macierz.pomylek.test.new <- table(rzeczywiste.etykietki.test.new, prognozowane.etykietki
print(xtable(head(Y.ucz.hat.new), caption="Wartości prognozowane - nowy zbiór"))
```

	1	2	3
144	0.02	-0.17	1.15
130	-0.04	0.44	0.60
9	0.91	0.15	-0.06
83	0.05	0.93	0.02
105	0.02	-0.23	1.20
46	0.92	0.11	-0.03

Tabela 6: Wartości prognozowane - nowy zbiór

```
par(mar = c(4, 4, 4, 1))
matplot(Y.ucz.hat.new, main="Nowy zbiór uczący",xlab="id", ylim=c(-.5,2))
abline(h=c(0.2,0.8), lty=2, col="gray")
legend(x="topright", legend=paste(1:3,levels(learning.set.new$Species)), col=1:3, text.org
```

Nowy zbiór uczacy

Rysunek 5: Prognozy dla nowego zbioru uczącego

```
par(mar = c(4, 4, 4, 1))
matplot(Y.test.hat.new, main="Nowy zbiór testowy",xlab="id", ylim=c(-.5,2))
abline(h=c(0.2,0.8), lty=2, col="gray")
legend(x="topright", legend=paste(1:3,levels(test.set.new$Species)), col=1:3, text.col=1
```

Nowy zbiór testowy

Rysunek 6: Prognozy dla nowego zbioru testowego

print(xtable(macierz.pomylek.ucz.new, caption="Macierz pomyłek - nowy zbiór uczący"))

	setosa	versicolor	virginica
setosa	27	0	0
versicolor	0	35	0
virginica	0	2	36

Tabela 7: Macierz pomyłek - nowy zbiór uczący

```
# dokładność klasyfikacji - nowy zbiór uczący
sum(diag(macierz.pomylek.ucz.new))/n.ucz.new
## [1] 0.98
```

print(xtable(macierz.pomylek.test.new, caption="Macierz pomyłek - nowy zbiór testowy"))

```
# dokładność klasyfikacji - nowy zbiór testowy
sum(diag(macierz.pomylek.test.new))/n.test.new
## [1] 0.98
```

Wnioski:

	setosa	versicolor	virginica
setosa	23	0	0
versicolor	0	14	1
virginica	0	0	12

Tabela 8: Macierz pomyłek - nowy zbiór testowy

- Dokładność klasyfikacji w nowym, uzupełnionym modelu jest wyraźnie wyższa niż w pierwotnym.
- W tym przypadku nie występuje już problem maskowania klas.

2 Porównanie metod klasyfikacji

2.1 Wybór danych

Zadanie wykonamy z użyciem ramki danych **Vehicle** z biblioteki **mlbench**. Dane zawierają informacje na temat czterech typów pojazdów: dwupiętrowego autobusu, vana marki Chevrolet, Saaba 9000 oraz Opla Manty 400. Celem stworzenia tej ramki była klasyfikacja sylwetek aut za pomocą różnych obserwacji. W teorii rozróżnienie autobusu oraz vana powinno być łatwe, w przeciwieństwie do odróżnienia od siebie dwóch różnych modeli aut.

```
library("mlbench")
data("Vehicle")
attach(Vehicle)

#liczba kolumn
ncol(Vehicle)

## [1] 19

#liczba wierszy
nrow(Vehicle)

## [1] 846

#brakujące dane
sum(is.na(Vehicle))

## [1] 0
```

Jak widać w ramce nie brakuje żadnych wartości (nie są one również kodowane w niestandardowy sposób).

```
etykietki.veh <- Vehicle$Class
plot(etykietki.veh)</pre>
```


Rysunek 7: Przynależność do poszczególnych klas

Zbadajmy zmienność poszczególnych cech:

boxplot(Vehicle, las=2, col = 1:18)

Rysunek 8: Boxploty - badanie zmienności cech

Wariancje poszczególnych cech bardzo wyraźnie się od siebie różnią. Niezbędne będzie zatem zastosowanie standaryzacji.

```
veh1 <- scale(Vehicle[1:18])
boxplot(veh1, las=2, col = 1:18)</pre>
```


Rysunek 9: Boxploty po standaryzacji

Postaramy się teraz wybrać cechy o najlepszej zdolności dyskryminacyjnej.

```
veh1 <- data.frame(veh1)
attach(veh1)
par(mfrow=c(3,2))
par(mar=c(3, 4, 1, 1))
boxplot(Comp~Vehicle$Class, col=1:4)
boxplot(Circ~Vehicle$Class, col=1:4)
boxplot(D.Circ~Vehicle$Class, col=1:4)
boxplot(Rad.Ra~Vehicle$Class, col=1:4)
boxplot(Pr.Axis.Ra~Vehicle$Class, col=1:4)
boxplot(Max.L.Ra~Vehicle$Class, col=1:4)</pre>
```


Rysunek 10: Zdolności dyskryminacyjne

```
par(mfrow=c(3,2))
par(mar=c(3, 4, 1, 1))
boxplot(Scat.Ra~Vehicle$Class, col=1:4)
boxplot(Elong~Vehicle$Class, col=1:4)
boxplot(Pr.Axis.Rect~Vehicle$Class, col=1:4)
boxplot(Max.L.Rect~Vehicle$Class, col=1:4)
boxplot(Sc.Var.Maxis~Vehicle$Class, col=1:4)
boxplot(Sc.Var.maxis~Vehicle$Class, col=1:4)
```


Rysunek 11: Zdolności dyskryminacyjne

```
par(mfrow=c(3,2))
par(mar=c(3, 4, 1, 1))
boxplot(Ra.Gyr~Vehicle$Class, col=1:4)
boxplot(Skew.Maxis~Vehicle$Class, col=1:4)
boxplot(Skew.maxis~Vehicle$Class, col=1:4)
boxplot(Kurt.Maxis~Vehicle$Class, col=1:4)
boxplot(Kurt.maxis~Vehicle$Class, col=1:4)
boxplot(Holl.Ra~Vehicle$Class, col=1:4)
```


Rysunek 12: Zdolności dyskryminacyjne

Wybór zmiennej o największej zdolności dyskryminacyjnej nie jest w tym przypadku jednoznaczny. Zdecydowaliśmy, że "najbardziej obiecująca" będzie kombinacja zmiennych Elong oraz Holl.Ra (w pierwszej wyróżnia się van, a w drugiej bus). Już na tym etapie zauważamy, że różnice między Oplem a Saabem rzeczywiście nie są wyraźne.

2.2 Podział danych na zbiór uczący i testowy

Podobnie jak w zadaniu pierwszym tworzymy dwa zbiory. Ponadto robimy to samo dla wcześniej wyselekcjonowanych przez nas zmiennych.

```
etykietki.veh <- data.frame(etykietki.veh)
veh2 <- cbind(veh1, etykietki.veh)

n.veh <- dim(veh2)[1]
learning.indx.veh <- sample(1:n.veh,2/3*n.veh)
learning.set.veh <- veh2[learning.indx.veh,]
test.set.veh <- veh2[-learning.indx.veh,]

veh3 <- cbind(veh1$Elong, veh1$Holl.Ra, etykietki.veh)

etykietki.learning.veh <- learning.set.veh$etykietki.veh
etykietki.test.veh <- test.set.veh$etykietki.veh

n.wybrane <- dim(veh3)[1]
learning.indx.wybrane <- sample(1:n.wybrane,2/3*n.wybrane)</pre>
```

```
learning.set.wybrane <- veh3[learning.indx.wybrane,]
test.set.wybrane <- veh3[-learning.indx.wybrane,]
etykietki.learning.wybrane <- learning.set.wybrane$etykietki.veh
etykietki.test.wybrane <- test.set.wybrane$etykietki.veh</pre>
```

2.3 Metoda k-najbliższych sąsiadów

```
#zbiór uczący - wszystkie cechy
blad.klasyf(etykietki.prog.learning.veh, etykietki.learning.veh)
## $macierz.pomylek
##
                etykietki
## etykietki.prog bus opel saab van
            bus 140
                      0
##
            opel 1
                      85
                          26
##
            saab 0 46 113
                      11
                            7 121
##
            van
##
## $blad.klasyf
## [1] 0.1861702
#zbiór testowy - wszystkie cechy
blad.klasyf(etykietki.prog.test.veh, etykietki.test.veh)
## $macierz.pomylek
                etykietki
## etykietki.prog bus opel saab van
            bus
                  71
                     2
                           1
##
            opel 1
                      31
                           26
            saab 0 32 34
##
            van
                3 5 6 64
##
## $blad.klasyf
## [1] 0.2907801
```

Jak widać metoda k-najbliższych sąsiadów daj niezłe rezultaty. Zobaczmy jakie efekty da metoda cross-validation:

```
my.predict <- function(model, newdata) predict(model, newdata=newdata, type="class")</pre>
my.ipredknn <- function(formula1, data1, ile.sasiadow) ipredknn(formula=formula1,data=da
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="cv", est.para=control.errorest(k = 10), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "cv",
       est.para = control.errorest(k = 10), ile.sasiadow = 5)
##
##
     10-fold cross-validation estimator of misclassification error
##
##
## Misclassification error: 0.2754
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="boot", est.para=control.errorest(nboot = 50), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "boot",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 5)
    Bootstrap estimator of misclassification error
##
     with 50 bootstrap replications
##
## Misclassification error: 0.3095
## Standard deviation: 0.0027
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="632plus", est.para=control.errorest(nboot = 50), ile.sasiadow=5)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 5)
##
##
     .632+ Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
##
## Misclassification error: 0.2704
```

Przetestujmy teraz tę metodę dla różnej liczby sąsiadów:

```
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="632plus", est.para=control.errorest(nboot = 50), ile.sasiadow=1)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 1)
##
##
##
     .632+ Bootstrap estimator of misclassification error
     with 50 bootstrap replications
##
##
## Misclassification error: 0.2309
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="632plus", est.para=control.errorest(nboot = 50), ile.sasiadow=10)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 10)
##
##
     .632+ Bootstrap estimator of misclassification error
    with 50 bootstrap replications
##
##
## Misclassification error: 0.2748
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="632plus", est.para=control.errorest(nboot = 50), ile.sasiadow=15)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
       est.para = control.errorest(nboot = 50), ile.sasiadow = 15)
##
##
    .632+ Bootstrap estimator of misclassification error
##
     with 50 bootstrap replications
##
## Misclassification error: 0.2907
errorest(etykietki.veh ~., veh2, model=my.ipredknn, predict=my.predict,
         estimator="632plus", est.para=control.errorest(nboot = 50), ile.sasiadow=20)
##
## Call:
## errorest.data.frame(formula = etykietki.veh ~ ., data = veh2,
       model = my.ipredknn, predict = my.predict, estimator = "632plus",
```

```
## est.para = control.errorest(nboot = 50), ile.sasiadow = 20)
##

## .632+ Bootstrap estimator of misclassification error
## with 50 bootstrap replications
##

## Misclassification error: 0.3033
```

Jak widać w naszym przypadku wraz ze wzrostem liczby sąsiadów rośnie też błąd klasyfikacyjny.

2.4 Drzewa klasyfikacyjne

```
library(rpart)
library(rpart.plot)
model <- etykietki.veh~ .
veh.tree.simple <- rpart(model, data=learning.set.veh)
veh.tree.simple.wybrane <-rpart(model, data=learning.set.wybrane)

# prognozy dla zbioru uczącego
pred.labels.learning <- predict(veh.tree.simple, newdata=learning.set.veh, type = "class"
pred.labels.learning.wybrane <- predict(veh.tree.simple.wybrane, newdata=learning.set.wy

# prognozy dla zbioru testowego
pred.labels.test <- predict(veh.tree.simple, newdata=test.set.veh, type = "class")
pred.labels.test.wybrane <- predict(veh.tree.simple.wybrane, newdata=test.set.wybrane, type="class")
pred.probs.test <- predict(veh.tree.simple, newdata=test.set.veh, type = "prob")
pred.probs.test <- predict(veh.tree.simple, newdata=test.set.veh, type = "prob")
pred.probs.test.wybrane <- predict(veh.tree.simple.wybrane, newdata=test.set.wybrane, type="prob")</pre>
```


Rysunek 13: Drzewo klasyfikacyjne - wszystkie cechy

rpart.plot(veh.tree.simple.wybrane)

Rysunek 14: Drzewo klasyfikacyjne - wybrane cechy

```
# zbiór uczący - wszystkie
conf.mat.learning <- table(pred.labels.learning, learning.set.veh$etykietki.veh)</pre>
conf.mat.learning
##
## pred.labels.learning bus opel saab van
##
                    bus
                         136
                               4
                                     14
                                          1
##
                           4
                               63
                                     30
                                          2
                    opel
##
                               67
                                     96
                                          0
                    saab
                           0
##
                           3
                                     10 126
                                8
                    van
(error.rate.learning <- (nrow(learning.set.veh) - sum(diag(conf.mat.learning))) / nrow(]</pre>
## [1] 0.2535461
#zbiór testowy - wszystkie
conf.mat.test <- table(pred.labels.test, test.set.veh$etykietki.veh)</pre>
conf.mat.test
##
## pred.labels.test bus opel saab van
               bus 63 7 7
```

```
##
                       8
                           25
                                 20
                opel
                                      0
##
                saab
                       1
                           34
                                 32
                       3
                             4
                                  8
                                     60
##
                van
(error.rate.test <- (nrow(test.set.veh) - sum(diag(conf.mat.test))) / nrow(test.set.veh)
## [1] 0.3617021
# zbiór uczący - wybrane
conf.mat.learning.wybrane <- table(pred.labels.learning.wybrane, learning.set.wybrane$et
conf.mat.learning.wybrane
##
## pred.labels.learning.wybrane bus opel saab van
                                   81
                                         5
                             bus
##
                                    8
                                        48
                                              11
                                                   2
                             opel
##
                                   29
                                        53
                                              90
                                                   3
                             saab
##
                             van
                                   30
                                        37
                                              32 130
(error.rate.learning.wybrane <- (nrow(learning.set.wybrane) - sum(diag(conf.mat.learning
## [1] 0.3812057
# zbiór testowy - wybrane
conf.mat.test.wybrane <- table(pred.labels.test.wybrane, test.set.wybrane$etykietki.veh)</pre>
conf.mat.test.wybrane
##
## pred.labels.test.wybrane bus opel saab van
##
                        bus
                               34
                                     3
                                          5
                                               0
##
                        opel
                                6
                                    17
                                         11
                                               1
##
                              18
                                    34
                                         44
                                               0
                        saab
##
                        van
                               12
                                    15
                                         19
(error.rate.test.wybrane <- (nrow(test.set.wybrane) - sum(diag(conf.mat.test.wybrane)))</pre>
## [1] 0.4397163
```

W przypadku drzew klasyfikacynych zbiory złożone ze wszystkich cech sprawdzają się lepiej od tych zawierające jedynie wybrane wcześniej cechy.

```
# Zmiana parametrów -- konstruujemy złożone drzewo
veh.tree.complex <- rpart(model, data=learning.set.veh, control=rpart.control(cp=.01, n
# Wybór parametru złożoności (cp)
printcp(veh.tree.complex)
##
## Classification tree:</pre>
```

```
## rpart(formula = model, data = learning.set.veh, control = rpart.control(cp = 0.01,
     minsplit = 5, maxdepth = 20))
##
## Variables actually used in tree construction:
## [1] Comp
                   D.Circ
                                Elong
                                             Max.L.Ra Max.L.Rect
## [6] Sc. Var. maxis Scat. Ra
                                Skew.maxis
## Root node error: 414/564 = 0.73404
##
## n= 564
##
          CP nsplit rel error xerror
## 1 0.212560
                  0 1.00000 1.07488 0.023405
## 2 0.118357
                  1 0.78744 0.79952 0.028246
## 3 0.097826
                  2
                     0.66908 0.75121 0.028530
## 4 0.055556
                  4 0.47343 0.50483 0.027704
## 5 0.019324
                 5 0.41787 0.48792 0.027504
## 6 0.013285
                  6 0.39855 0.45894 0.027113
## 7 0.012077
                 9 0.35749 0.43720 0.026779
## 8 0.010000
                     0.34541 0.43478 0.026740
                 10
bestcp <- veh.tree.complex$cptable[which.min(veh.tree.complex$cptable[,"xerror"]),"CP"]</pre>
bestcp # najmniejszy błąd
## [1] 0.01
```

plotcp(veh.tree.complex)

Rysunek 15: Wybór parametru złożoności

```
cp.opt <- 0.02
# Przycinanie drzew na podstawie kryterium kosztu-złożoności
veh.tree.complex.pruned <- prune(veh.tree.complex, cp = cp.opt)</pre>
```

```
par(mfrow=c(2,1))
rpart.plot(veh.tree.complex, main="Oryginalne drzewo")
rpart.plot(veh.tree.complex.pruned, main="Przyciete drzewo")
```


Rysunek 16: Drzewo oryginalne i przycięte

2.5 Naiwny klasyfikator Bayesowski

```
library(MASS)
library(klaR)
library("e1071")
model.NB <- naiveBayes(learning.set.veh$etykietki.veh~., data = learning.set.veh)
model.NB.wybrane <- naiveBayes(learning.set.wybrane$etykietki.veh~., data=learning.set.w
etykietki.prog.learning.veh <- predict(model.NB, learning.set.veh)</pre>
etykietki.prog.learning.wybrane <- predict(model.NB.wybrane, learning.set.wybrane)
etykietki.prog.test.veh <- predict(model.NB, test.set.veh)</pre>
etykietki.prog.test.wybrane <- predict(model.NB.wybrane, test.set.wybrane)</pre>
#zbiór uczący - wszystkie cechy
blad.klasyf(etykietki.prog.learning.veh, etykietki.learning.veh)
## $macierz.pomylek
##
                 etykietki
## etykietki.prog bus opel saab van
##
            bus
                   26
                       2
                             3
                                  0
##
             opel 13
                        37 10
```

```
saab 17 61 99
##
                               6
            van
                 87 42 38 115
##
##
## $blad.klasyf
## [1] 0.5088652
#zbiór testowy - wszystkie cechy
blad.klasyf(etykietki.prog.test.veh, etykietki.test.veh)
## $macierz.pomylek
##
               etykietki
## etykietki.prog bus opel saab van
##
           bus 15
                      0
                          1 5
            opel 9 13
##
                           3
                               1
            saab 9 36 36 3
##
                 42 21 27 61
##
            van
##
## $blad.klasyf
## [1] 0.5567376
#zbiór uczący - wybrane cechy
blad.klasyf(etykietki.prog.learning.wybrane, etykietki.learning.wybrane)
```

```
## $macierz.pomylek
##
                  etykietki
## etykietki.prog bus opel saab van
##
             bus
                    84
                         11
                               11
                                   16
##
              opel
                    15
                          58
                               42
                                   10
                    27
                                    7
##
              saab
                          38
                               60
                    22
                         36
                               25 102
##
              van
##
## $blad.klasyf
## [1] 0.4609929
#zbiór testowy - wybrane cechy
blad.klasyf(etykietki.prog.test.wybrane, etykietki.test.wybrane)
## $macierz.pomylek
##
                  etykietki
## etykietki.prog bus opel saab van
             bus
                    37
                          4
                                4
##
                                   11
                     6
                          28
                                    4
##
              opel
                               28
                                    6
##
              saab
                    19
                          23
                               27
                     8
##
              van
                          14
                               20
                                   43
##
## $blad.klasyf
## [1] 0.5212766
```

Naiwny klasyfikator Bayesowski w naszym przypadku sprawdza się słabo - błąd klasyfikacyjny oscylujący wokół 50% cięzko uznać choćby za zadowalający. Zbiory z wybranymi cechami dają zbliżone rezultaty do tych ze wszystkimi.

2.6 Wnioski

- W naszym przypadku najlepsza okazała się metoda k-najbliższych sąsiadów.
- Zadowalające wyniki udało się uzyskać również dzięki metodzie drzew klasyfikacyjnych.
- Zdecydowanie najsłabiej wypadł naiwny klasyfikator Bayesa.