Technische Grundlagen der Informatik – Kapitel 2

Prof. Dr. Andreas Koch Fachbereich Informatik TU Darmstadt

Kapitel 2: Kombinatorische Logik

- Einleitung
- Boole'sche Gleichungen
- Boole'sche Algebra
- Von Logik zu Gattern
- Mehrstufige kombinatorische Logik
- X's und Z's
- Karnaugh Diagramme
- Kombinatorische Grundelemente
- Zeitverhalten

Einleitung

Eine logische Schaltung ist zusammengesetzt aus

- Eingängen
- Ausgängen
- Spezifikation der Funktion
- Spezifikation des Zeitverhaltens

Schaltungen

- Verbindungsknoten (node)
 - Eingangs-Terminals: A, B, C
 - Ausgangs-Terminals: Y, Z
 - Interne Knoten: n1
- Schaltungselemente
 - E1, E2, E3
 - Jedes wiederum eine Schaltung (Hierarchie!)

Arten von logischen Schaltungen

- Kombinatorische Logik
 - Zustandslos
 - Ausgänge hängen nur von aktuellen Eingangswerten ab
- Sequentielle Logik
 - Speichert einen Zustand
 - Ausgänge hängen ab von aktuellen Eingangswerten und gespeichertem Zustand
 - Also damit auch von vorherigen Eingangswerten

Regeln für kombinatorische Zusammensetzung

- Jedes Schaltungselement ist selbst kombinatorisch
- Jeder Verbindungsknoten der Schaltung ist entweder
 - ... ein Eingang in die Schaltung
 - ... oder an genau ein Ausgangsterminal eines Schaltungselements angeschlossen
- Die Schaltung enthält keine Zyklen
 - Jeder Pfad durch die Schaltung besucht jeden Verbindungsknoten maximal einmal
- Beispiel

Boole'sche Gleichungen

- Beschreiben Ausgänge als Funktion der Eingänge
- Beispiel:

$$S = F(A, B, C_{in})$$

$$C_{out} = F(A, B, C_{in})$$

$$\begin{array}{c|c}
A & & \\
B & & \\
C_{in} & & \\
\end{array}$$

$$\begin{array}{c|c}
C_{out} & \\
\end{array}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Grundlegende Definitionen

- Komplement: Boole'sche Variable mit einem Balken (invertiert) \overline{A} , \overline{B} , \overline{C}
- Literal: Variable oder ihr Komplement
 A, A, B, B, C, C
- Implikant: Produkt von Literalen ABC, AC, BC
- Minterm: Produkt (UND, Konjunktion) über alle Eingangsvariablen ABC, ABC, ABC
- Maxterm: Summe (ODER, Disjunktion) über alle Eingangsvariablen $(A+\overline{B}+\overline{C})$, $(A+B+\overline{C})$, $(\overline{A}+\overline{B}+\overline{C})$

Disjunktive Normalform (DNF)

- Sum-of-products (SOP) form
- Alle Boole'schen Funktionen können in DNF formuliert werden
- Jede Zeile der Wahrheitstabelle enthält einen Minterm
 - Jeder Minterm ist die Konjunktion (Produkt, UND) der Literale
- Der Minterm ist WAHR genau für diese eine Zeile
- Die Funktion wird beschrieben durch Disjunktion (Summe, ODER) der Minterme, die am Ausgang WAHR liefern
- Schema: Summe aus Produkten (SOP)

	Α	В	Y	minterm	
•	0	0	0	$\overline{A} \ \overline{B}$	
	0	1	1	\overline{A} B	Y = F(A, B) =
	1	0	0	\overline{A}	(, ,
	1	1	1	ΑВ	

Disjunktive Normalform (DNF)

- Sum-of-products (SOP) form
- Alle Boole'schen Funktionen können in DNF formuliert werden
- Jede Zeile der Wahrheitstabelle enthält einen Minterm
 - Jeder Minterm ist die Konjunktion (Produkt, UND) der Literale
- Der Minterm ist WAHR genau für diese eine Zeile
- Die Funktion wird beschrieben durch Disjunktion (Summe, ODER) der Minterme, die am Ausgang WAHR liefern
- Schema: Summe aus Produkten (SOP)

Α	В	Y	minterm	
0	0	0	$\overline{A} \ \overline{B}$	
0	1	1	A B	Y = F(A, B) =
1	0	0	$\overline{A} \ \overline{B}$,
1	1	1	A B	

Disjunktive Normalform (DNF)

- Sum-of-products (SOP) form
- Alle Boole'schen Funktionen k\u00f6nnen in DNF formuliert werden
- Jede Zeile der Wahrheitstabelle enthält einen Minterm
 - Jeder Minterm ist die Konjunktion (Produkt, UND) der Literale
- Der Minterm ist WAHR genau für diese eine Zeile
- Die Funktion wird beschrieben durch Disjunktion (Summe, ODER) der Minterme, die am Ausgang WAHR liefern
- Schema: Summe aus Produkten (SOP)

A	В	Y	minterm	
0	0	0	$\overline{A} \overline{B}$	
0	1	1	A B	$Y = F(A, B) = \overline{A}B + AB$
1	0	0	$\overline{A} \ \overline{B}$	$I = I(A, D) = AD \cdot AD$
1	1	1	A B	

Konjunktive Normalform (KNF)

- Products-of-sums form (POS)
- Alle Boole'schen Funktionen können in KNF formuliert werden
- Jede Zeile der Wahrheitstabelle enthält einen Maxterm
 - Jeder Maxterm ist die Disjunktion (Summe, ODER) von Literalen
- Der Maxterm ist FALSCH genau für diese eine Zeile
- Die Funktion wird beschrieben durch Konjunktion (Produkt, UND) der Maxterme, die am Ausgang FALSCH liefern
- Schema: Produkt aus Summen (POS)

A	В	Y	maxterm	
0	0	0	A + B	
0	1	1	$A + \overline{B}$	
1	0	0	$\overline{A} + B$	
1	1	1	$\overline{A} + \overline{B}$	

$$Y = F(A, B) = (A + B)(\overline{A} + B)$$

Beispiel für Boole'sche Funktion

- Sie prüfen das Mittagsangebot der Mensa
 - Sie werden dort nicht essen gehen $\overline{(E)}$
 - Wenn nicht mehr geöffnet ist (O) oder
 - Es nur Corned Beef-Variationen gibt (*C*)
- Stellen Sie eine Wahrheitstabelle auf, ob Sie in die Mensa gehen

0	С	E
0	0	
0	1	
1	0	
1	1	

Beispiel für Boole'sche Funktion

- Sie prüfen das Mittagsangebot der Mensa
 - Sie werden dort nicht essen gehen (E)
 - Wenn nicht mehr geöffnet ist (O) oder
 - Es nur Corned Beef-Variationen gibt (*C*)
- Stellen Sie eine Wahrheitstabelle auf, ob Sie in die Mensa gehen

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

DNF (SOP) und KNF (POS) Formen

■ DNF – Disjunktive Normalform (*sum-of-products*, *SOP*)

0	С	E	minterm
0	0	0	O C
0	1	0	O C
1	0	1	$O\overline{C}$
1	1	0	ОС

■ KNF – Konjunktive Normalform (*product-of-sums, POS*)

0	С	Y	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

DNF (SOP) und KNF (POS) Formen

■ DNF – Disjunktive Normalform (*sum-of-products*, *SOP*)

0	С	Ε	minterm
0	0	0	O C
0	1	0	O C
1	0	1	0 <u>C</u>
1	1	0	O C

$$E = OC$$

■ KNF – Konjunktive Normalform (*product-of-sums, POS*)

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

Boole'sche Algebra

- Axiome und Sätze, hier zum Ziel der Vereinfachung boole'scher Gleichungen
- Wie die übliche Algebra
 - Teilweise einfacher, da hier nur zwei Werte
- Axiome und Sätze haben jeweils duale Entsprechung:
 - Tausche AND/OR, tausche 0/1

Axiome und Sätze der Boole'schen Algebra

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Dualitätsgesetz
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

	Satz		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Neutralitätsgesetz
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Extremalgesetz
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotenzgesetz
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Komplementärgeset

T1: Neutralitätsgesetz

- B 1 =
- B + 0 =

T1: Neutralitätsgesetz

$$- B + 0 = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Extremalgesetz

- B 0 =
- B + 1 =

T2: Extremalgesetz

■ B •
$$0 = 0$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

T3: Idempotenzgesetz

- B B =
- B + B =

T3: Idempotenzgesetz

$$\begin{bmatrix} B \\ B \end{bmatrix} = B$$

T4: Involution (Selbstinversion)

T4: Involution (Selbstinversion)

T5: Komplementärgesetz

- B B =
- B + B =

T5: Komplementärgesetz

$$\frac{B}{B}$$
 \bigcirc 0

$$\frac{B}{B}$$
 \longrightarrow 1

Sätze der Boole'schen Algebra mit einer Variablen

	Satz		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Neutralitätsgesetz
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Extremalgesetz
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotenzgesetz
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Komplementärgesetz

Sätze der Boole'schen Algebra mit mehreren Variablen

	Satz		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Kommutativgesetz
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Assoziativgesetz
T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivgesetz
T9	$B \bullet (B + C) = B$	T9′	$B + (B \cdot C) = B$	Absorptionsgesetz
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Zusammenfassen
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Konsensusregeln
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2 \dots$	T12'	$B_0 + B_1 + B_2$	De Morgansche
	$=(\overline{B_0}+\overline{B_1}+\overline{B_2})$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Gesetze

Beispiel 1: Vereinfachen von Boole'schen Ausdrücken

$$Y = AB + \overline{AB}$$

Beispiel 1: Vereinfachen von Boole'schen Ausdrücken

■
$$Y = AB + \overline{AB}$$

= $B(A + \overline{A})$ T8 Distributivgesetz
= $B(1)$ T5' Komplementärgesetz
= B T1 Identitätsgesetz

Beispiel 2: Vereinfachen von Boole'schen Ausdrücken

$$\blacksquare$$
 Y = $A(AB + ABC)$

Beispiel 2: Vereinfachen von Boole'schen Ausdrücken

$$\bullet Y = A(AB + ABC)$$

$$= A(AB(1 + C))$$

$$= A(AB(1))$$

$$= A(AB)$$

$$= (AA)B$$

$$= AB$$

T8 Distributivgesetz

T2' Extremalgesetz

T1 Identitätsgesetz

T7 Assoziativgesetz

T3 Idempotenzgesetz

De Morgan'sche Gesetze

•
$$Y = \overline{AB} = \overline{A} + \overline{B}$$

•
$$Y = \overline{A + B} = \overline{A} \bullet \overline{B}$$

Invertierungsblasen verschieben (bubble pushing)

- Verschiebe Blasen rückwärts (vom Ausgang) oder vorwärts (vom Eingang)
- Art des Gatters ändert sich von AND nach OR (oder umgekehrt)
- Beim Verschieben rückwärts entstehen Blasen an allen Eingängen

■ Beim Verschieben vorwärts müssen Blasen an allen Eingängen gewesen sein

Invertierungsblasen verschieben

Was ist die boole'sche Funktion dieser Schaltung?

Invertierungsblasen verschieben

Was ist die boole'sche Funktion dieser Schaltung?

$$Y = AB + CD$$

Regeln für das Verschieben von Invertierungsblasen

- Beginne am Ausgang, vorarbeiten Richtung Eingänge
- Schiebe Blasen am Ausgang Richtung Eingang
- Tausche Art des Gatters aus (AND/OR)
- Versuche Blasen auszulöschen (zwei Blasen auf einer Leitung)
 - Wenn Eingang Blase hat, versuche Ausgang mit Blase zu versehen
 - ... und umgekehrt

Von Logik zu Gattern

Zweistufige Logik: ANDs gefolgt von ORs

■ Beispiel: $Y = \overline{ABC} + A\overline{BC} + A\overline{BC}$

Lesbare Schaltpläne

- Eingänge sind auf der linken (oder oberen) Seite des Schaltplans
- Ausgänge sind auf der rechten (oder unteren) Seite des Schaltplans
- Gatter sollten von links nach rechts angeordnet werden
 - In seltenen Fällen: Von oben nach unten
- Gerade Verbindungen sind leichter lesbar als abknickende
 - Gegebenenfalls gerade lange Verbindung statt kurzer abgeknickter

Regeln für Schaltpläne

- Drähte an T-Kreuzung sind verbunden
- Sich überkreuzende Drähte werden durch Punkt als verbunden markiert
- Sich überkreuzende Drähte ohne Punkt sind nicht verbunden

Schaltungen mit mehreren Ausgängen

 Ausgang entsprechend dem höchstwertigen gesetzten Eingangsbit wird auf TRUE gesetzt

A_3	A_2	A_1	A_o	Υ ₃	Y ₂	Y 1	Y_0
0	0	0	0				
O	0	0	1				
O	0	1	0				
O	0	1	1				
O	1	0	0				
0	1	0	1				
O	1	1	0				
O	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Schaltungen mit mehreren Ausgängen

 Ausgang entsprechend dem höchstwertigen gesetzten Eingangsbit wird auf TRUE gesetzt

A_3	A_2	A_1	A_o	Y_3	Y_2	Y_1	Y_o
0	0	0	0		0 0	0	0
0	0	0 0 1	1	0	0	0 0 1	1
0 0 0 0	O	1	0 1 0 1 0	0 0 0 0	0	1	0
0	0	1	1	0	0	1	0
	1	0	O		0 0 1 1	0	0
0 0 0 1	1	0	1	0 0 0 1		1 0 0 0 0	0
0	1	0 1	O	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0 1 0 1 0	1	0	0	0
1	0	0	1	1	0	0	0
1	O	1	0	1	0	0	0
1	0	1	1	1	0 0 0	0 0 0 0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0 0	0

Aufbau des Prioritäts-Encoders

A_3	A_2	A_1	A_o	Υ ₃	Y ₂	Y 1	Y_{o}
0	0	0			0	0	0
0	0 0	0	1	0	0	0 0 1	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0 0 0 0 0 0 0 0	1	0	1	0000000	0 0 0 1 1 1	0	0
0	1	1	0	0	1	0	0
0	1	1	1		1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0 0 0 0	1	0	1	0	0	0
1	0	0 0 1 1 0 0 1 1 0 0 1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0 1 0 1 0 1 0 1 0 1 0 1	1	0 0 0 0 0	1 0 0 0 0 0 0 0 0	0100000000000000
1	1	1	1	1	0	0	0

Ignorierbare Bits ("Don't Cares")

				1			
A_3	A_2	A_1	A_o	Υ ₃	Y ₂	Y_1	Yo
0	0	0				0	0
0	0	Ο	1	0	0	0	1
0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 1	0 0 1 1 0	0 1 0 1 0 1 0 1 0 1	0 0 0 0 0	0 0 0 0 1 1	0 0 1 1 0 0 0 0 0 0	0
0	0	1	1	0	0	1	0
0	1	Ο	0	0	1	0	0
0	1	Ö	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1 1 0 0 1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0 0 0 0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0 1	1	0 0 0 0 0	0	010000000000000
1	1	1	1	1	0	0	0

_	A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y ₁	Y_0
	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1
	0	0	1	Χ	0	0	1	0
	0	1	X	Χ	0	1	0	0
	1	Χ	Χ	Χ	0 0 0 0 1	0	0	0

Konkurrierende Treiber: X

- Konflikt: Schaltung treibt eine Leitung/Ausgang gleichzeitig auf 0 und 1
 - Analogwert liegt irgendwo dazwischen (Spannungsteilung)
 - Kann 0 oder 1 sein, oder im verbotenen Bereich liegen
 - Kann auch mit Betriebsspannung, Temperatur, Rauschen etc. variieren
 - Verursacht hohen Energieverbrauch (Kurzschluss)

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

- Treiberkonflikt ist fast immer ein Entwurfsfehler
 - Beheben!
- Vorsicht: X steht für "don't care" und Treiberkonflikt
 - Nicht das gleiche!
 - Kontext anschauen, um korrekte Bedeutung zu ermitteln

Hochohmiger Ausgang: Z

- Auch genannt:
 - Offen, ungetrieben
 - Floating, open, high-impedance
- Kann 0 oder 1 sein, oder irgendwo dazwischen liegen
 - Leitung hat keinen aktiven Treiber

Tristate Buffer

E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate-Busse

- Hochohmige Knoten können zu Tristate-Bussen verschaltet werden
 - Viele verschiedene Treiber
 - Aber zu jedem Zeitpunkt ist genau einer aktiv
 - Der Rest ist hochohmig (Z)

Karnaugh Diagramme (Karnaugh maps)

- Boole'sche Ausdrücke können durch Zusammenfassen minimiert werden
- Karnaugh-Diagramme stellen Zusammenhänge graphisch dar
 - Bilden Ausgangspunkt für eine Minimierung
- Idee: $PA + \overline{PA} = P$

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB							
C	00	01	11	10			
0	1	0	0	0			
1	1	0	0	0			

Y A	R			
C	00	01	11	10
0	ĀBC	ĀBĒ	ABĈ	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Minimierung mit Karnaugh Diagrammen

- Markiere 1en in benachbarten Plätzen und bilde viereckigen Bereich
 - Jeder Platz steht für einen Implikanten
- Lasse markierte Literale
 - ... die normal und als Komplement auftauchen, weg

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$Y = \overline{ABC} + \overline{ABC} = \overline{AB}$$

Karnaugh Diagramm mit drei Eingängen

Truth Tal	ble
-----------	-----

			1
_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

Karnaugh Diagramm mit drei Eingängen

Truth Table

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + B\overline{C}$$

Karnaugh Diagramme: Definitionen

Komplement: Variable mit Balken (invertierter Wert)

$$\overline{A}$$
, \overline{B} , \overline{C}

Literal: Variable oder ihr Komplement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

Implikant: Produkt (UND) von Literalen

Primimplikant

Implikant der größten zusammenhängenden viereckigen Fläche im Karnaugh-Diagramm

Minimierungsregeln für Karnaugh-Diagramme

- Jede 1 in einem K-Diagramm muss mindestens einmal markiert werden
 - Ist damit Bestandteil eines oder mehrerer viereckiger Bereiche
- Jeder viereckige Bereich hat als Seitenlänge eine Zweierpotenz an Flächen
 - 1,2,4,8,16,... Flächen Seitenlänge
 - Beide Seiten dürfen aber unterschiedlich lang sein
- Jeder Bereich muss so groß wie möglich sein (Primimplikant)
- Ein Bereich darf um die Ränder des K-Diagrammes herum reichen
- Ein "don't care" (X) darf markiert werden, wenn es die Fläche größer macht
- Ziel: Möglichst wenige Primimplikanten zur Abdeckung aller 1en

Karnaugh-Diagramm mit vier Eingängen

Α	В	С	D	Y
0	0		0	1
0	0	0 0	1	0
0	0	1	0	1
0	0	1 1 0 0	1	1
0	1	0	0	0
0	1 1	0	1	1
0	1	1	0	1
0	1	1		1
1	0	1 0 0 1 1 0	1 0	1
1	0	0	1	1
1	0	1	0	1
1	0	1		0
1	1	0	1 0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	1	0

Y CD A	B 00	01	11	10
00				
01				
11				
10				

Karnaugh-Diagramm mit vier Eingängen

Α	В	С	D	Y
0	0	0	0	1
0 0 0 0 0 0 0 1 1 1 1 1	0	0	1	1 0 1 0 1 1 1 1 0 0 0
0	0	1	0	1
0	0	1	1	1
0	1	1 0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1 1 0	1	1
1	0		0	1
1	0	0	1	1
1	0	1	0	1
1	0	1 0	1	0
1	1		0	0
1	1	0	1 0	0
1	1	1	0	0
1	1	1	1	0

Y	_			
CD^{A}	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Karnaugh-Diagramm mit vier Eingängen

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0 0 0	0	1	0	
0	0	1		1
	1	0	1 0	0
0 0 0	1	0	1	1 0 1 1 1 1 1 0 0
0	1	1	1 0	1
0	1	1	1	1
1	0	0	1 0	1
1	0	0	1 0	1
1 1	0	1	0	1
1	0	1 0	1 0	0
1 1 1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

Karnaugh-Diagramm mit "don't cares"

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	1 0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Y CD A	B 00	01	11	10
00				
01				
11				
10				

Karnaugh-Diagramm mit "don't cares"

Α	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	
0	1	0	0	1 0
0	1	0	1	X
0	1	1	0	X 1 1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Y	D			
CD^{A}	00	01	11	10
00	1	0	X	1
01	0	X	X	1
11	1	1	X	Х
10	1	1	X	Х

Karnaugh-Diagramm mit "don't cares"

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	0	
0	0	1	1	1 1 0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X 1 1 1 X X X X
1	1	1	0	X
1	1	1	1	X

$$Y = A + \overline{B}\overline{D} + C$$

Kombinatorische Grundelemente

- Multiplexer
- Dekodierer (*Decoders*)

Multiplexer (Mux)

- Wählt einen von N Eingängen aus und verbindet ihn auf den Ausgang
- log₂*N*-bit Selektor-Eingang (*select input*), Steuereingang
- Beispiel: 2:1 Mux

S	D_1	D_0	Υ
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer (Mux)

- Wählt einen von N Eingängen aus und verbindet ihn auf den Ausgang
- log₂*N*-bit Selektor-Eingang (*select input*), Steuereingang
- Beispiel: 2:1 Mux

S	D_1	D_0	Y		S	Y
0	0	0	0		0	D_0
0	0	1	1		1	D_0
0	1	0	0			•
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	1			
	0 0 0 0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0	0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0	0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0

Implementierung von Multiplexern

- Aus Logikgattern
 - Disjunktive Normal Form (SOP)

- Aus Tristate-Buffern
 - Benutze *N* Tristates für *N*-Eingangs-Mux
 - Schalte zu jeder Zeit genau einen Tristate-Buffer durch, Rest ist Z

Logikfunktionen aufgebaut aus Multiplexern

Verwende Mux als Wertetabelle (look-up table)

10

Logikfunktionen aufgebaut aus Multiplexern

Reduziere Größe des Multiplexers

Dekodierer (Decoder)

- *N* Eingänge, 2^N Ausgänge
- Ausgänge sind "one-hot": Zu jedem Zeitpunkt ist genau ein Ausgang 1

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0		1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Implementierung von Dekodierern

Logik aufgebaut aus Dekodierern

Verknüpfe Minterme mit ODER

Zeitverhalten (*Timing*)

- Verzögerung (delay) zwischen Änderung am Eingang bis zur Änderung des Ausgangs
- Wie können schnelle Schaltungen aufgebaut werden?

Ausbreitungs- und Kontaminationsverzögerung (propagation) (contamination delay)

- Ausbreitungsverzögerung: t_{pd} = max. Zeit vom Eingang zum Ausgang
- Kontaminationsverzögerung: t_{cd} = min. Zeit vom Eingang zum Ausgang

Ausbreitungs- und Kontaminationsverzögerung

- Ursachen für Verzögerung
 - Kapazitäten, Induktivitäten und Widerstände in der Schaltung
 - Lichtgeschwindigkeit als maximale Ausbreitungsgeschwindigkeit
- Warum können t_{pd} und t_{cd} unterschiedlich sein?
 - Unterschiedliche Verzögerungen für steigende und fallende Flanken
 - Mehrere Ein- und Ausgänge
 - Mit unterschiedlich langen Verzögerungen
 - Schaltungen werden
 - ... langsamer bei Erwärmung
 - ... schneller bei Abkühlung

Kritische (lange) und kurze Pfade

Kritischer (langer) Pfad:
$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

Kurzer Pfad: $t_{cd} = t_{cd_AND}$

Störimpulse (glitches)

Störimpulse

- Eine Änderung eines Eingangs verursacht mehrere Änderungen des Ausgangs
- Können durch geeignete Entwurfsdisziplin entschärft werden
 - Können noch auftreten, richten aber keinen Schaden an
 - Synchroner Entwurf, kommt noch ...
 - Kann Ausnahmen geben
- Sollten aber im Vorfeld erkannt werden
 - Sichtbar im Timing-Diagram

Beispiel für Störimpulse

■ Was passiert, wenn A = 0, C = 1, und B fällt von 1→0?

$$Y = \overline{A}\overline{B} + BC$$

Beispiel für Störimpulse (Fortsetzung)

Störimpuls beseitigen

Warum Störimpulse beachten?

- Störimpulse verursachen keine Probleme bei synchronem Entwurf
 - In der Regel, auch da Fehlerquellen
 - → Kapitel 3
- Sollten aber erkannt werden
 - Beim Debugging einer Schaltung im Simulator oder mit dem Oszilloskop
- Nicht alle Störimpulse können beseitigt werden
 - Z.b. bei gleichzeitigem Schalten mehrerer Eingänge

