Introduction to the Theory of Computation

CSC236H

### Alphabets and Strings

- Alphabet: a finite, non-empty set of atomic symbols. (denote by  $\Sigma$ ) Example: a, b, c, 0, 1, +
- To prevent ambiguity, compound symbols like ab are not allowed.
- String: A finite sequence of symbols is called a string.
- Empty sequence is also allowed and denoted by  $\epsilon$  (called **empty** or **null** string). To avoid confusion with empty string,  $\epsilon$  is not allowed as symbols in an alphabet. **Example:** 
  - a, ab, cccc are strings over  $\{a, b, c\}$ .
  - a + 00 is not a string over  $\{a, b, c\}$  but it is over  $\{0, 1, +, a, b, c\}$ .
- The set of all strings over alphabet  $\Sigma$  is denoted by  $\Sigma^*$ .
- A string on an alphabet  $\Sigma$  is a member of  $\Sigma^*$ .

### Formal Languages

Language: A set of strings.

A language can be empty, finite or infinite.

#### Example:

- $\{bab, bbabb, bbbabbb, \cdots\}$  is a language over  $\{a, b, c\}$ .
- $\{\epsilon\}$  is a language over any alphabet.
- {} is a language over any alphabet.
- $\{\}$  is different from  $\{\epsilon\}$ .
  - $\{\}$  contains NO string, but  $\{\epsilon\}$  contains ONE string (i.e., the empty string  $\epsilon$ ).

- Length of string s: the number of symbols in s. Denoted by |s|. Example:
  - |bba| = 3
  - |a| = 1
  - $|\epsilon| = 0$
- Strings s and t are equal iff |s|=|t| and  $s_i=t_i$ , for all  $1\leq i\leq n$  where n=|s| and  $v_i$  denotes i—th symbol in string v.
- Reversal of string s: a string obtained by reversing the order of symbols in s. Denoted by  $s^R$ .

#### Example:

- $-1011^R = 1101$
- $-aaa^R = aaa$
- $\ \epsilon^R = \epsilon$

- Concatenation of strings s and t: a string consists of every symbol of s followed by every symbol of t. Denoted by st or s o t.
  Example:
  - $-bba \circ bb = bbabb$
  - $-\epsilon \circ abc = abc$
- For string s, and natural number k,  $s^k$  denotes  $\underline{k}$  times concatenation of  $\underline{s}$  with itself. Example:
  - $-aba^2 = abaaba$
  - $-aaa^0 = \epsilon$
  - $-\epsilon^3 = \epsilon$ .

• For alphabet  $\Sigma$ ,  $\Sigma^n$  denotes set of all strings of length n over  $\Sigma$ , and  $\Sigma^*$  denotes the set of all strings over  $\Sigma$ .

#### Example:

$$- \{a, b, c\}^0 = \{\epsilon\}$$

$$-\ \{0,1\}^3=\{000,001,010,011,100,101,110,111\}$$

$$-\ \{1\}^* = \{\epsilon, 1, 11, 111, \ldots\} = \{1^k : k \in \mathbb{N}\}$$

• **Prefix:** A string x is a prefix of string y if there exist a string x' (possibly  $\epsilon$ ) such that xx'=y.

• Suffix: A string x is a suffix of string y if there exist a string x' (possibly  $\epsilon$ ) such that x'x=y.

Let L, L' be languages over alphabet  $\Sigma$ :

• Complementation:  $\overline{L} = \Sigma^* - L$ . Example:

- If 
$$L=\{0x:x\in\{0,1\}^*\}=\{0,00,01,000,001,\cdots\},$$
 then  $\overline{L}=\{\epsilon\}\cup\{1x:x\in\{0,1\}^*\}$ 

 $\bullet \quad \text{Union: } L \cup L' = \{x: x \in L \text{ or } x \in L'\}$ 

Let L, L' be languages over alphabet  $\Sigma$ :

• Intersection:  $L \cap L' = \{x : x \in L \text{ and } x \in L'\}$ 

- $\qquad \qquad \mathbf{Reversal:} \ Rev(L) = \{x^R : x \in L\}$ 
  - $\ Rev(\{a,ab,abb\}) = \{a,ba,bba\}$

Let L, L' be languages over alphabet  $\Sigma$ :

- Concatenation:  $L \circ L' = \{s \in \Sigma^* : s = r \circ t \text{ for } r \in L, t \in L'\}.$  Example:
  - $\ \{a,bc\} \circ \{bb,c\} = \{abb,ac,bcbb,bcc\}$
  - $\{a, aa, aaa, \dots\} \circ \{b, bb, bbb, \dots\} = \{ab, abb, abbb, \dots, aab, aabb, \dots\} = \{s \in (a)^*(b)^* : s \text{ contains some number of } a\text{'s followed by some number of } b\text{'s, with at least one of each}\}.$
  - For all L,  $L \circ \{\epsilon\} = L = \{\epsilon\} \circ L$ .
  - For all L,  $L \circ \{\} = \{\} = \{\} \circ L$ .

Let L, L' be languages over alphabet  $\Sigma$ :

- $\begin{tabular}{ll} {\bf Exponentiation:} & $L^k = L \circ L \circ \cdots \circ L$. \\ {\bf Example:} & \end{tabular}$ 
  - $-\ \{1,11,111\}^0=\{\epsilon\}.$
  - $-\ \{\epsilon\}^5=\{\epsilon\}.$
  - $\{\}^4 = \{\}.$
  - $\{\}^0 = \{\epsilon\}.$

Let L,L' be languages over alphabet  $\Sigma$ :

• Kleene star:  $L^\circledast=L^0\cup L^1\cup L^2\cup \cdots=\{s:s\in L^k,k\in \mathbb{N}\}.$  Example:

$$-\ \{ab\}^\circledast=\{\epsilon,ab,abab,ababab,\cdots\}.$$

$$-\ \{\epsilon\}^\circledast=\{\epsilon\}.$$

$$\text{- }\{\}^\circledast=\{\epsilon\}.$$

## Regular Languages

The set of **regular languages** over an alphabet  $\Sigma$  is defined recursively as follows:

- {} is a regular language.
- $\{\epsilon\}$  is a regular language.
- For any symbol  $a \in \Sigma$ ,  $\{a\}$  is a regular language.
- If L,M are regular languages, then so are  $L\cup M,L\circ M$ , and  $L^\circledast.$

### Language Recognition

Many Problems can be reduced to languages.

#### **Examples:**

- Logical Formulas.
- Program Compilation.
- Natural Language Processing.

### Language Recognition

Many Problems can be reduced to languages.

#### Examples:

- Logical Formulas.
- Program Compilation.
- Natural Language Processing.

#### Language Recognition Problem:

• Given language L and string s, does s belong to L?

### Language Recognition

Many Problems can be reduced to languages.

#### Examples:

- Logical Formulas.
- Program Compilation.
- Natural Language Processing.

#### Language Recognition Problem:

• Given language L and string s, does s belong to L?

#### Regular Languages may be describe by

- Procedurally (E.g., Finite State Automata)
- Descriptive Generators (E.g., Regular Expressions)

# Language Recognition – An analogy

Bird Recognition: Is the given object, X, a bird?



# Language Recognition – Example

Let  $L=\{s\in\{a,b,c\}^*:s$  includes at least one  $a\}.$  Among the following strings, determine those that are members of L.

- bbbccc
- bbbaccc
- *abb*
- b1aa

### Finite State Automata (FSA)

Very informally, a Finite State Automaton consists of

- a set of states;
- a set of rules (called transition rules) for transition between states based on the input.
- A designated initial state.
- A set of designated accepting states.

# Deterministic Finite State Automata (DFA) – Example

Let  $L = \{0s : s \in \{0,1\}^*\}$ . Give a DFA which **only accepts** strings in L.

### Deterministic Finite State Automata (DFA)

A deterministic finite automaton (DFA)  $\mathcal D$  is a quintuple  $\mathcal D=\langle Q,\Sigma,\delta,s,F\rangle$  where:

- Q is the set of states in  $\mathcal{D}$ ;
- $\Sigma$  is the **alphabet** of symbols used by  $\mathcal{D}$ ;
- $\delta: Q \times \Sigma \to Q$  is the transition function;
- $s \in Q$  is the **initial state** of  $\mathcal{D}$ ;
- $F \subseteq Q$  is the set of accepting states of  $\mathcal{D}$ .

# Deterministic Finite State Automata (DFA) – Example

Let  $L = \{0s1 : s \in \{0, 1\}^*\}.$ 

Give a DFA which **only accepts** strings in L.

## Deterministic Finite State Automata (DFA) – Example

Describe the language that the following DFA accepts



### Deterministic Finite State Automata (DFA)

- DFAs read strings one letter at a time, from left to right.
- At a particular state, there is exactly one transition rule for each symbol in the alphabet.
- Inputs to DFAs can be any length.
- DFAs cannot go back and reread previous letters.
- DFAs have a finite amount of memory, since they have a finite number of states.
   In other words, DFAs have limited memory.

## Some problem to think about (optional)

Design a DFA for controlling a vending machine that accepts only nickels (5¢), dimes (10¢) and quarters (25¢), and everything that it sells costs exactly 30¢.