полагая

 $u = \ln \sqrt{x^2 + y^2}$, $v = \operatorname{arctg} z$, w = x + y + z, repe w = w (u, v).

3479. Преобразовать выражение

$$A=\frac{\partial z}{\partial x}:\frac{\partial z}{\partial y},$$

полагая $u = xe^2$, $v = ye^x$, $w = ze^x$, где w = w(u, v). 3480. В уравнения

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = u + \frac{xy}{z}$$

положить: $\xi = \frac{x}{z}$, $\eta = \frac{y}{z}$, $\zeta = z$, $w = \frac{u}{z}$, где $w = \omega$ (ξ , η , ζ).

Преобразовать к полярным координатам r и φ , полагая $x = r \cos \varphi$, $y = r \sin \varphi$, следующие выражения

3481.
$$w = x \frac{\partial u}{\partial y} - y \frac{\partial u}{\partial x}$$
. 3482. $w = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
3483. $w = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$. 3484. $w = \frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^2}$.
3485. $w = x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
3486. $w = y^2 \frac{\partial^2 z}{\partial x^3} - 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} - \left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}\right)$.

3487. В выражении

$$I = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$$

положить $x = r \cos \varphi$, $y = r \sin \varphi$.

3488. Решить уравнение $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$, введя новые

независимые переменные

$$\xi = x - at$$
, $\eta = x + at$.

Приняв u и v за новые независимые переменные, преобразовать следующие уравнения: