

ASSIGNMENT 1

Group 4

ABSTRACT

The overall objective of this assignment was to produce classification predictions and compare them; analyze pros and cons of algorithms and generate and communicate the insights.

AUTHORS:

Ifiok Charles (0300041771) Kalada Reagan Tuwotamuno (8489637) Stevy Kuimi (8845324) Gayatri (300095631)

SUPERVISOR:

Prof. Arya Rahgozar

GNG 5125 X

Contents

Introduction	3
Data preparation	3
Data	3
Data preparation, preprocessing and cleansing	3
Feature Engineering	4
Modelling	5
Models: Three models were used to perform the task: SVM, decision tree and K-NN	5
Performance:	5
Error Analysis	11

Figure 1 Performance measurement Formula	6
Figure 2 Confusion matrix for SVM with BOW	6
Figure 3 Performance measurement for SVM with BOW	6
Figure 4 Confusion matrix for SVM with TF-IDF	7
Figure 5 performance measurement for SVM with TF-IDF	7
Figure 6 Confusion matrix for decision tree with BOW	7
Figure 7 Performance measurement for decision tree with BOW	8
Figure 8 Confusion matrix for decision tree with TF-IDF	8
Figure 9 Performance measurement for decision tree with TF-IDF	8
Figure 10 Confusion matrix for K-NN with BOW	9
Figure 11 Performance measurement for K-NN with BOW	9
Figure 12 Confusion matrix for K-NN with TF-IDF	9
Figure 13 performance measurement for K-NN with TF-IDF	10
Figure 14 Ten Fold cross validation	10
Figure 15 Champion without bi-grams	11
Figure 16 performance measurement of the champion with bi-grams	11
Figure 17 prediction -vs- actual with bi-grams on the champion	12
Figure 18 Performance measurement with bigram on the champion	12
Figure 19 Challenger without Bi-grams	13
Figure 20 Error location	13
Figure 21 Author 1 document 353	14
Figure 22 word cloud for author 4 with multiple documents	14

Introduction

The overall objective of this assignment was to produce classification predictions and compare them; analyze pros and cons of algorithms and generate and communicate the insights.

Data preparation

Data

The task of this assignment is to classify segments of books by authors. This was done by choosing five random books from different genre from the Gutenberg online libraries. They were chosen in the categories of mythology, music, engineering, physics and poetry. The table below shows the names of the authors of each book chosen.

Genre	Authors
Mythology	Sir James George Frazer
Music	Magaret Blake-Alverson
Engineering	Charles M. Hortons
Physics	Amos Emerson Dolbear
Poetry	John Milton

Data preparation, preprocessing and cleansing

These are the steps we followed in writing our code:

- Upload the data to the data frame,
- Tokenize the data to make sure the characters are separated,
- Remove stop words to lower the dimensional space and help with the collocation
- Stemming: Basically, this convert words into their root form by reducing the difference between their inflected forms,
- create random samples of 200 documents of each book, each sample with a 150 words.
- Create a corpus, meaning putting all the document samples in the same data frame and proceed further cleaning, which involves only keeping letters of the alphabet from a-z.

Removing all numbers, white spaces and punctuations, and putting all the words into lower cases. This was necessary for the predictor to avoid confusion.

Feature Engineering

- BOW: Bags of Words. This is a representation of text that describes the occurrence of
 words within a document. This is the most popular technique used to convert categorical
 features to numerical ones.
- **TF-IDF:** Term Frequency-Inverse Document Frequency: this is another way or technique used for occurrence of words. TF-IDF measures relevance, not frequency. The TF part divides the number of occurrences of each word in the document by the total number of words in the document, while the IDF does the downscaling of weight for words that occur in many documents in the corpus. For example, if the words like 'the', 'and' appears in all documents, those will be systematically discounted. Each word's TF-IDF relevance is a normalized data format that also adds up to one.

	BAG OF WORDS	TF-IDF
Advantages	Easy to understand	suitable in comparing
	• Easy to implement	two documents
		• suitable for long
		document
Dis-advantages	Not suitable for long	Less informative for
	documents	assessing occurrence in
	• Do not consider the	long document
	semantic relation between	The dependence on
	words	BOW is a liability
	• Curse of dimensionality	

Modelling

Models: Three models were used to perform the task: SVM, decision tree and K-NN

- **SVM:** The Support Vector Machine is a classification technique that produces very high prediction accuracy. It distinctly classifies the data points to find hyperplane for n-dimensional space.
- **Decision tree:** Decision tree is one of the predictive modeling approaches used in statistics, data mining and machine learning. The goal is to predicts the value of target variable based on several input variables.
- **K-NN:** standing for K-Nearest Neighbors is a widely used classification technique in the industry mainly because it is easy to implement, easy to interpret results and has a low computational time. In this assignment, the optimal value of K was taken from the grid search after several trials and errors.

Performance:

to be able to compare the model's performance, the confusion matrices and the precision graphs showing the scores values were extracted. The performance measurements data are calculated automatically using the confusing matrices from the code, but for better explanation and understanding, it can be done using the formula shown on Figure 1 Performance measurement Formula.

The figures below show the confusion matrices and performance measurements for the different models used with each feature, SVM (Figure 2 Confusion matrix for SVM with BOW, Figure 3 Performance measurement for SVM with BOW, Figure 4 Confusion matrix for SVM with TF-IDF, Figure 5 performance measurement for SVM with TF-IDF), decision Tree (Figure 6 Confusion matrix for decision tree with BOW, Figure 7 Performance measurement for decision tree with BOW, Figure 8 Confusion matrix for decision tree with TF-IDF, Figure 9 Performance measurement for decision tree with TF-ID) and K-NN (Figure 10 Confusion matrix for K-NN with BOW Figure 11 Performance measurement for K-NN with BOW Figure 12 Confusion matrix for K-NN with TF-IDF Figure 13 performance measurement for K-NN with TF-IDF)

$$\text{Precision} = \frac{tp}{tp + fp}$$

$$\text{Recall} = \frac{tp}{tp + fn}$$

$${\tt Accuracy} = \frac{tp+tn}{tp+tn+fp+fn}$$

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

_	True Positive	class Negative	Measures
ive Positive	True positive TP	False positive FP	Positive predictive value (PPV)
Negative	False negative FN	True negative TN	Negative predictive value (NPV) TN FN+TN
Measures	Sensitivity TP TP+FN	Specificity TN FP+TN	Accuracy TP+TN TP+FP+FN+TN

Figure 1 Performance measurement Formula

	0	1	2	3	4
0	67	0	0	0	0
1	0	58	0	0	0
2	0	0	65	0	0
3	0	0	0	56	0
4	0	0	0	0	54

Figure 2 Confusion matrix for SVM with BOW

	precision	recall	f1-score	support
0	1.00	1.00	1.00	67
1	1.00	1.00	1.00	58
2	1.00	1.00	1.00	65
3	1.00	1.00	1.00	56
4	1.00	1.00	1.00	54
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

Figure 3 Performance measurement for SVM with BOW

	0	1	2	3	4
0	67	0	0	0	0
1	0	58	0	0	0
2	0	0	65	0	0
3	0	0	0	56	0
4	0	0	0	0	54

Figure 4 Confusion matrix for SVM with TF-IDF

	precision	recall	f1-score	support
0	1.00	1.00	1.00	67
1	1.00	1.00	1.00	58
2	1.00	1.00	1.00	65
3	1.00	1.00	1.00	56
4	1.00	1.00	1.00	54
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

Figure 5 performance measurement for SVM with TF-IDF

	0	1	2	3	4
0	61	1	0	0	5
1	0	58	0	0	0
2	1	0	64	0	0
3	2	0	0	54	0
4	5	0	0	0	49

Figure 6 Confusion matrix for decision tree with BOW

	precision	recall	f1-score	support
0	0.88	0.91	0.90	67
1	0.98	1.00	0.99	58
2	1.00	0.98	0.99	65
3	1.00	0.96	0.98	56
4	0.91	0.91	0.91	54
accuracy			0.95	300
macro avg	0.95	0.95	0.95	300
weighted avg	0.95	0.95	0.95	300

Figure 7 Performance measurement for decision tree with BOW

	0	1	2	3	4
0	60	1	2	0	4
1	2	55	0	0	1
2	0	0	64	1	0
3	1	0	0	55	0
4	2	0	0	3	49

Figure 8 Confusion matrix for decision tree with TF-IDF

	precision	recall	f1-score	support
0	0.92	0.90	0.91	67
1	0.98	0.95	0.96	58
2	0.97	0.98	0.98	65
3	0.93	0.98	0.96	56
4	0.91	0.91	0.91	54
accuracy			0.94	300
macro avg	0.94	0.94	0.94	300
weighted avg	0.94	0.94	0.94	300

 $Figure\ 9\ Performance\ measurement\ for\ decision\ tree\ with\ TF\text{-}IDF$

	0	1	2	3	4
0	43	23	0	0	1
1	0	58	0	0	0
2	0	1	64	0	0
3	0	0	0	56	0
4	0	0	0	0	54

Figure 10 Confusion matrix for K-NN with BOW

	precision	recall	f1-score	support
0	1.00	0.64	0.78	67
1	0.71	1.00	0.83	58
2	1.00	0.98	0.99	65
3	1.00	1.00	1.00	56
4	0.98	1.00	0.99	54
accuracy			0.92	300
macro avg	0.94	0.93	0.92	300
weighted avg	0.94	0.92	0.91	300

Figure 11 Performance measurement for K-NN with BOW

	0	1	2	3	4
0	67	0	0	0	0
1	0	58	0	0	0
2	0	0	65	0	0
3	0	0	0	56	0
4	0	0	0	0	54

Figure 12 Confusion matrix for K-NN with TF-IDF

	precision	recall	f1-score	support
0	1.00	1.00	1.00	67
1	1.00	1.00	1.00	58
2	1.00	1.00	1.00	65
3	1.00	1.00	1.00	56
4	1.00	1.00	1.00	54
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

Figure 13 performance measurement for K-NN with TF-IDF

Figure 14 Ten Fold cross validation

Based on the performance measurements data, it can be noted that SVM with both BOW and TF-IDF (Figure 3 Performance measurement for SVM with BOW, Figure 5 performance measurement for SVM with TF-IDF), and K-NN with TF-IDF (Figure 13 performance measurement for K-NN with TF-IDF) have a 100% accuracy compared to other models used. The tenfold graph above displays that even better. It can be observed that SVM and K-NN with TF-IDF have the highest accuracy compared to the decision tree and K-NN with Bow. Given the fact

that SVM with BOW was easier to implement and did not require an extra work to find the optimal parameter as needed to perform the SVM with TF-IDF, it can be confidently concluded that the champion model is SVM with BOW. The challenger will be the decision tree with TF-IDF.

Error Analysis

Initially, the champion had a very high accuracy without bi-grams as shown on Figure 15 Champion without bi-grams and Figure 16 performance measurement of the champion with bi-grams, giving no room for error analysis.

Figure 15 Champion without bi-grams

	precision	recall	f1-score	support
0	1.00	1.00	1.00	67
1	1.00	1.00	1.00	58
2	1.00	1.00	1.00	65
3	1.00	1.00	1.00	56
4	1.00	1.00	1.00	54
accuracy			1.00	300
macro avg	1.00	1.00	1.00	300
weighted avg	1.00	1.00	1.00	300

Figure 16 performance measurement of the champion with bi-grams

Then bi-grams were added and it reduced the accuracy drastically as shown on Figure 17 prediction -vs- actual with bi-grams on the championand Figure 18 Performance measurement

with bigram on the champion. Therefore, it was concluded that the program was better without bigrams because the accuracy was low with all three models.

Figure 17 prediction -vs- actual with bi-grams on the champion

	precision	recall	f1-score	support
а	0.00	0.00	0.00	67
b	0.77	0.40	0.52	58
C	1.00	0.11	0.19	65
d	0.08	0.02	0.03	56
e	0.20	0.94	0.33	54
accuracy			0.27	300
macro avg	0.41	0.29	0.22	300
weighted avg	0.42	0.27	0.21	300

Figure 18 Performance measurement with bigram on the champion

Error analysis was then performed without bi-grams on the challenger model to locate the possible collocations which threw off the predictor (Figure 20 Error location, Figure 21 Author 1 document 353, Figure 22 word cloud for author 4 with multiple documents).

Figure 19 Challenger without Bi-grams

Index	Document	Misclassification
0	353	'1' predicted as '4'
1	330	'1' predicted as '0'
2	956	'4' predicted as '3'
3	171	'0' predicted as '4'
4	19	'0' predicted as '2'
5	133	'0' predicted as '4'
6	41	'0' predicted as '1'
7	731	'3' predicted as '0'
8	832	'4' predicted as '3'
9	159	'0' predicted as '2'
10	103	'0' predicted as '4'
11	288	'1' predicted as '0'
12	917	'4' predicted as '3'
13	849	'4' predicted as '0'
14	501	'2' predicted as '3'
15	910	'4' predicted as '0'
16	12	'0' predicted as '4'

Figure 20 Error location

```
train visit go
th place hymn
th place hymn
among share tast
saw beganfire
univers
teach
done
behindlord
less
sage leav
```

Figure 21 Author 1 document 353

Figure 22 word cloud for author 4 with multiple documents

Figure 20 shows the document that was misclassified and also shows the wrong predictions. Figure 21 and 22 shows the collocations in the misclassified document which also occurs in multiple documents of the wrongly predicted author. For example, words like 'man', 'first' and 'less' occurred in the misclassified document and the multiple documents of the wrongly predicted author.