Лекция 12 от 28.11.2016 Степенные ряды

Определение 1. Степенной ряд — это функциональный ряд вида $\sum_{n=0}^{\infty} c_n (x-x_0)^n$, где $\{c_n\}$ — последовательность коэффициентов, а $x_0 \in \mathbb{R}$ — центр ряда.

Отметим, что ряд начинается с n=0. Это будет важно в дальнейшем, давая возможность представлять рядами функции, в нуле (точнее, в x_0) не равные нулю.

В процессе всех дальнейших рассуждений в рамках этой лекции будем полагать, что $x_0 = 0$. Это не умаляет общности, так как фактически это сдвиг по оси (иными словами, замена переменной).

Теорема 1 (Абеля I). Пусть ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда $\forall x: |x| < |x_1|$ этот ряд сходится абсолютно. Более того, $\forall x_2 \in (0,|x_1|)$ сходимость на $[-x_2,x_2]$ — равномерная.

Доказательство. Так как ряд $\sum_{n=0}^{\infty} c_n x_1^n$ сходится, то его члены стремятся к нулю, а значит, $\exists C \ \forall n \in \mathbb{N}: \ |c_n x_1^n| < C.$

Тогда $\forall x: |x| < |x_1|$ верно, что

$$|c_n x^n| \le |c_n x_1^n| \cdot \left| \frac{x}{x_1} \right|^n \le C \left| \frac{x}{x_1} \right|^n.$$

Вместе с тем, несложно заметить, что ряд $\sum\limits_{n=0}^{\infty} C \left| \frac{x}{x_1} \right|^n$ сходится как геометрическая прогрессия с $q=|x/x_1|<1$, а значит, по признаку сравнения сходится и ряд $\sum\limits_{n=0}^{\infty} |c_n x^n|$, то есть ряд $\sum\limits_{n=0}^{\infty} c_n x^n$ сходится абсолютно.

Для доказательства равномерной сходимости воспользуемся признаком Вейерштрасса:

$$\forall n \in \mathbb{N} \ \forall x \in [-x_2; x_2]: \ |c_n x^n| \leqslant C \left| \frac{x}{x_1} \right|^n < C \left| \frac{x_2}{x_1} \right|^n.$$

Так как ряд $\sum_{n=0}^{\infty} C \left| \frac{x_2}{x_1} \right|^n$ сходится, то ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится равномерно на $[-x_2; x_2]$.

Определение 2. Радиусом сходимости R степенного ряда $\sum_{n=0}^{\infty} c_n x^n$ называется точная верхняя грань множества модулей точек, в которых ряд сходится.

Определение 3. Интервал (-R,R) называется интервалом сходимости степенного ряда.

Следствие 1. Ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится абсолютно в произвольной точке интервала сходимости, расходится в любой точке $x \notin (-R,R)$, и более того, $\forall r \in (0,R)$ сходимость на [-r,r] равномерная.

Пусть теперь $x \in (-R,R)$. Так как x не равен точной верхней грани множества точек сходимости, то существует такая точка x_1 , что $\sum_{n=0}^{\infty} c_n x_1^n$ сходится, и при этом $|x_1| > |x|$. Аналогично для $r \in (0,R)$.

Теперь осталось просто воспользоваться теоремой Абеля.

Нахождение радиуса сходимости

Факт существования у рядов радиуса сходимости — это прекрасно, но хотелось бы уметь его находить.

Теорема 2 (Формула Коши–Адамара). Пусть $\sum\limits_{n=0}^{\infty}c_nx^n-c$ тепенной ряд. Тогда радиус сходимости этого ряда $R=\frac{1}{\overline{\lim\limits_{n\to\infty}\sqrt[n]{|c_n|}}}$ (полагая при $\overline{\lim\limits_{n\to\infty}\sqrt[n]{|c_n|}}=\infty$ что R=0 и при $\overline{\lim\limits_{n\to\infty}\sqrt[n]{|c_n|}}=0$ что $R=\infty$).

Доказательство. Заметим, что если $b_n \to b$, то $\overline{\lim}_{n \to \infty} a_n b_n = b \overline{\lim}_{n \to \infty} a_n$.

Вспомним радикальный признак Коши: пусть $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n x^n|} = A$, тогда если A < 1, то ряд $\sum_{n=0}^{\infty} |c_n x^n|$ сходится, а если A > 1, то расходится. Но вместе с тем, $\sqrt[n]{|x_n x^n|} = |x| \sqrt[n]{|c_n|}$.

Следовательно, если $|x|<1/\overline{\lim_{n\to\infty}}\sqrt[n]{|c_n|}=R$, то ряд сходится, а если |x|>R — расходится. \square

Зная эту формулу, можно легко придумать ряд с любым радиусом сходимости.

Утверждение 1. Пусть существует предел $\lim \left| \frac{c_{n+1}}{c_n} \right| = A$. Тогда радиус сходимости ряда $\sum_{n=0}^{\infty} c_n x^n$ равен $\frac{1}{A}$.

Доказательство. Для $x \neq 0$ рассмотрим предел $\lim_{n \to \infty} \frac{|c_{n+1}x^{n+1}|}{|c_nx^n|} = A|x|$. Тогда, по признаку Д'Аламбера, если A|x| < 1, то ряд сходится, а если A|x| > 1, то расходится.

Поведение в концах интервала сходимости

В концах интервала сходимости может происходить разное. Простые примеры:

 $\sum\limits_{n=0}^{\infty}x^{n}$ — радиус сходимости равен 1, при $x=\pm 1$ ряд расходится.

 $\sum\limits_{n=0}^{\infty}\frac{1}{n}x^{n}$ — радиус сходимости равен 1, при x=1 ряд расходится, при x=-1 ряд сходится условно.

 $\sum_{n=0}^{\infty} \frac{1}{n^2} x^n$ — радиус сходимости равен 1, при $x=\pm 1$ ряд сходится абсолютно.

Теорема 3 (Абеля II). Пусть ряд $\sum_{n=0}^{\infty} c_n x^n$ сходится в точке x_1 . Тогда он равномерно сходится на отрезке с концами 0 и x_1 .

Доказательство. Рассмотрим x из отрезка с концами 0 и x_1 . Представим исходный ряд в уже знакомом нам виде $\sum_{n=0}^{\infty} c_n x_1^n = \sum_{n=0}^{\infty} c_n x_1^n \left| \frac{x}{x_1} \right|^n$.

Посмотрим на это как на произведение рядов. Ряд $\sum_{n=0}^{\infty} c_n x_1^n$ сходится, а последовательность $\{|x/x_1|^n\}$ либо монотонно убывает к нулю, либо стационарна (когда $x=x_1$), и ограничена единицей. Следовательно, по признаку Абеля ряд $\sum_{n=0}^{\infty} c_n x_1^n \left| \frac{x}{x_1} \right|^n$ равномерно сходится, то есть равномерно сходится ряд $\sum_{n=0}^{\infty} c_n x^n$ на $[0,x_1]$.

Следствие 2. Сумма степенного ряда непрерывна на всём множестве сходимости.

Доказательство. Согласно первой теореме Абеля, ряд равномерно сходится на $[-r,r] \subset (-R,R)$, однако про весь интервал это точно утверждать нельзя, так как на интервале (-R,R) ряд может сходиться и неравномерно. Пусть $x_0 \in (-R,R)$. Выберем такое r, что $x_0 < r < R$. Так как x_0 — внутренняя точка отрезка [-r,r] и на [-r,r] ряд сходится равномерно, то, по теореме о непрерывности суммы равномерно сходящегося ряда непрерывных функций, сумма ряда является непрерывной функцией на [-r,r], включая точку x_0 . Таким образом, сумма ряда непрерывна во всех точках интервала (-R,R).

Однако, множество сходимости может включать в себя точки $\pm R$. В этом случае нам поможет вторая теорема Абеля. Согласно ей, ряд сходится равномерно на отрезке [0,R] (или [-R,0]). А значит, по всё той же теореме о непрерывности суммы равномерно сходящегося ряда непрерывных функций, сумма ряда непрерывна и в точках $\pm R$, если множество сходимости их в себя включает.

Следствие 3. Степенной ряд сходится равномерно на каждом отрезке, лежащем в его множестве сходимости.