

Goal: Predict the Value of a New Customer

- Data about Olist Store from Kaggle.com
 - Brazilian Ecommerce Site
 - Data on around 100k orders, their order dates with customer, product, other information

Steps Towards Predicting Customer Value

- Exploratory analysis
- Estimate CV of each historical customer
- Create a linear regression model to test variables (Customer State and Product Type)

Customers

- 27 different states in total
- Sao Paulo (SP) spends the most money in total

Customers

- 27 different states in total
- Sao Paulo (SP) spends the most money in total, has the most orders
- Paraíba (PB) spends the most per order

Products

- 71 different product types in total
- Bed/Bath/Table is ordered the most

Products

- 71 different product types in total
- Health/Beauty,
 Watches/Gifts,
 Bed/Bath/Table have
 the most money
 spent

Customer Value of Current Customers

- First six months of purchases per customer
- Sum up payments over that time period

96,095 customers

The Model

- **Linear Regression** Model
- **Predictors: Customer** State and Product Name

```
formula = 'total order payment ~ C(product name english) + C(customer state)
In [13]:
                fitted model = smf.ols(formula=formula, data=products bought).fit()
                fitted model.summary()
Out[13]:
           OLS Regression Results
               Dep. Variable: total_order_payment
                                                    R-squared:
                                                                     0.106
                                         OLS
                                                Adj. R-squared:
                     Model:
                                                                     0.105
                                  Least Squares
                    Method:
                                                    F-statistic:
                                                                     120.1
                               Sat, 07 Dec 2019 Prob (F-statistic):
                       Date:
                                                                      0.00
                      Time:
                                      12:44:35
                                                Log-Likelihood:
                                                               -6.6836e+05
            No. Observations:
                                        98845
                                                                 1.337e+06
                                                          BIC:
                                                                 1.338e+06
                Df Residuals:
                                        98747
                                           97
                   Df Model:
            Covariance Type:
```

nonrobust

Conclusions

 Only 10% of the behavior of Customer Value in relation to Customer State and the Product Type is explained by this model

These two variables alone aren't useful enough to predict Customer Value

Next Step

Accuracy:

• Test other ways of calculating CV for this dataset full of customers that only order once

```
formula = 'total order payment ~ C(product name english) + C(customer state) + C(customer city)'
In [54]:
                fitted model = smf.ols(formula=formula, data=products bought).fit()
                fitted model.summary()
Out[54]:
           OLS Regression Results
               Dep. Variable: total_order_payment
                                                    R-squared:
                                                                     0.144
                     Model:
                                          OLS
                                                Adj. R-squared:
                                                                     0.106
                    Method:
                                  Least Squares
                                                    F-statistic:
                                                                     3.799
                       Date:
                               Mon, 09 Dec 2019
                                               Prob (F-statistic):
                                                                      0.00
                      Time:
                                      05:37:28
                                                Log-Likelihood:
                                                               -6.6616e+05
            No. Observations:
                                        98845
                                                          AIC:
                                                                 1.341e+06
                Df Residuals:
                                        94639
                                                          BIC:
                                                                 1.381e+06
                   Df Model:
                                         4205
             Covariance Type:
                                     nonrobust
```