Linear Algebra I: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set III of Linear Algebra I 2015 at Courant Institute of Mathematical Sciences.

Question 1.

Solution. We assume that $n \geq 2$ and $n \leq j \leq 1$, in order for the $\det(M)$ and $\det(A)$ values to be well-defined. From the lemma 4 on pg.51 of Lax's Linear Algebra, which has the proof, we have that

$$\det(M) = \det(M_{11}),$$

where M_{11} denotes the $(n-1) \times (n-1)$ submatrix formed by entries m_{ij} , i > 1, j > 1. Observe that the same argument can be made on the M_{11} , to assert that $\det(M_{11}) = \det(M_{22})$. Using this argument exactly j-th time, we obtain that

$$det(M) = det(M_{jj})
= det(A),$$

as desired.

Question 2.

Solution. Let A and B be square matrices. Assume that AB is invertible. As a determinant of an invertible matrix is nonzero, it follows that $\det(AB) \neq 0$. Since $\det(AB) = \det(A) \det(B)$, we obtain $\det(A) \det(B) \neq 0$, and thus $\det(A) \neq 0$ and $\det(B) \neq 0$. As a matrix with non-zero determinant is invertible, we have that A and B are invertible.

Question 3.

Solution. Let A be a square matrix. From the matrix multiplication rule, we have

$$(AA^T)_{ii} = \sum_k a_{ik} b_{ki},$$

where a_{ik} denotes the (i, k)th entry of the matrix A and b_{ki} denotes the (k, i)th entry of the matrix A^T . By definition of transpose, it follows that $a_{ik} = b_{ki}$, and we obtain

$$(AA^T)_{ii} = \sum_k a_{ik}^2.$$

Therefore, by definition of trace, we have

$$\operatorname{tr}(AA^T) = \sum_{i,k} a_{ik}^2.$$

Since $a_{ik}^2 \ge 0$ for all i, k, it follows that

$$\operatorname{tr}(AA^T) \geq 0.$$

Question 4.

Solution. Let λ be any eigenvalue of A and v be the corresponding eigenvector. It follows that

$$A^3v = \lambda^3v.$$

As $A^3 = I$, it follows that

$$v = \lambda^3 v$$
.

Hence, we have that $\lambda^3=1$. Therefore, we have shown that $\lambda^3=1$ is a necessary condition for λ being an eigenvalue of A. Therefore, from this, we deduce that the possible eigenvalues are 1, $e^{i\frac{2\pi}{3}}$ and $e^{i\frac{4\pi}{3}}$.

Ouestion 5.

Solution. Let A be a diagonalizable matrix, and D be the diagonal matrix, that is similar to A. From the theorem 12 from Lax's Linear Algebra in pg.73, which has a proof, we have that A and D have the same eigenvalues. Since the diagonal entires are precisely the set of eigenvalues for diagonal matrices, and the A matrix can only have one possible eigenvalue, D also can only have one posible eigenvalue, which we denote as λ . Hence, it follows that

$$D = \lambda I$$

$$A = SDS^{-1}$$

$$= SS^{-1}$$

$$= \lambda SS^{-1}$$

$$= \lambda I.$$

Hence, we have shown that A is a multiple of the identity matrix.

Question 6.

Solution. We are given that $\det(A) = \det(A^T)$. Let λ be an eigenvalue of A. It follows that $\det(A - \lambda I) = 0$. Since $\det(A) = \det(A^T)$, we have

$$det(A - \lambda I) = det((A - \lambda I)^T)$$
$$= det(A^T - \lambda I).$$

Hence, $\det(A^T-\lambda I)=0$ holds as well. Therefore, λ is an eigenvalue of A^T . Since λ was an arbitrary eigenvalue of A, we have shown that any eigenvalue of λ of A is also an eigenvalue of A^T . \Box