List of important distributions – Probability Theory (235A), Fall 2011

Name	Notation	Formula		$\mathbf{E}(X)$	$\mathbf{V}(X)$	$\mathbf{E}(X^k)$
Discrete uniform	$X \sim U\{1,\ldots,n\}$	$\mathbf{P}(X=k) = \frac{1}{n}$	$(1 \le k \le n)$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	
Bernoulli	$X \sim \text{Bernoulli}(p)$	$\mathbf{P}(X=0) = 1 - p, \ \mathbf{P}(X=1) = p$		p	p(1 - p)	p
Binomial	$X \sim \text{Binomial}(n, p)$	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	$(0 \le k \le n)$	np	np(1-p)	
Geometric (from 0)	$X \sim \text{Geom}_0(p)$	$P(X=k) = p(1-p)^k$	$(k \ge 0)$	$\frac{1}{p} - 1$	$\frac{1-p}{p^2}$	
Geometric (from 1)	$X \sim \text{Geom}(p)$	$P(X=k) = p(1-p)^{k-1}$	$(k \ge 1)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
Poisson	$X \sim \text{Poisson}(\lambda)$	$\mathbf{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$	$(k \ge 0)$	λ	λ	Bell numbers (for $\lambda = 1$)
Negative binomial	$X \sim \mathrm{NB}(m,p)$	$\mathbf{P}(X=k) = \binom{k+m-1}{m-1} p^m (1-p)^k$	$(k \ge 0)$	$\frac{m(1-p)}{p}$	$rac{m(1-p)}{p^2}$	
Uniform	$X \sim U(a,b)$	$f_X(x) = \frac{1}{b-a}$	(a < x < b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{b^{k+1} - a^{k+1}}{(k+1)(b-a)}$
Exponential	$X \sim \text{Exp}(\lambda)$	$f_X(x) = \lambda e^{-\lambda x}$	(x > 0)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda^{-k}k!$
Standard normal	$X \sim N(0,1)$	$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$	$(x \in \mathbb{R})$	0	1	$\begin{cases} \frac{k!}{(k/2)!2^{k/2}} & k \text{ even} \\ 0 & k \text{ odd} \end{cases}$
Normal	$X \sim N(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$	$(x \in \mathbb{R})$	μ	σ^2	
Gamma	$X \sim \text{Gamma}(\alpha, \lambda)$	$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} e^{-\lambda x} x^{\alpha - 1}$	(x > 0)	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\lambda^{-k} \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}$
Cauchy	$X \sim \text{Cauchy}$	$f_X(x) = \frac{1}{\pi} \frac{1}{1+x^2}$	$(x \in \mathbb{R})$	N/A	N/A	N/A
Beta	$X \sim \text{Beta}(a, b)$	$f_X(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$	(0 < x < 1)	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$rac{B(a+k,b)}{B(a,b)}$
Chi-squared	$X \sim \chi^2_{(n)}$	$f_X(x) = \frac{1}{2^{n/2}\Gamma(n/2)}e^{-x/2}x^{\frac{n}{2}-1}$	(x > 0)	n	2n	

Useful facts: ("*" denotes convolution, i.e., sum of independent samples; "=" denotes equality of distributions)

$$\begin{aligned} & \operatorname{Binomial}(n,p) * \operatorname{Binomial}(m,p) = \operatorname{Binomial}(n+m,p) & \operatorname{Gamma}(\alpha,\lambda) * \operatorname{Gamma}(\beta,\lambda) = \operatorname{Gamma}(\alpha+\beta,\lambda) \\ & \operatorname{Poisson}(\lambda) * \operatorname{Poisson}(\mu) = \operatorname{Poisson}(\lambda+\mu) & N(\mu_1,\sigma_1^2) * N(\mu_2,\sigma_2^2) = N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) \\ & \operatorname{Geom}_0(p) = \operatorname{NB}(1,p) & \operatorname{Exp}(\lambda) = \operatorname{Gamma}(1,\lambda) \\ & \operatorname{NB}(n,p) * \operatorname{NB}(m,p) = \operatorname{NB}(n+m,p) & (\alpha \operatorname{Cauchy}) * ((1-\alpha) \operatorname{Cauchy}) = \operatorname{Cauchy} & (0 \leq \alpha \leq 1) \\ & N(0,1)^2 = \operatorname{Gamma}(1/2,1/2) = \chi_{(1)}^2 & \chi_{(n)}^2 = \operatorname{Gamma}(n/2,1/2) \end{aligned}$$

The Euler gamma and beta functions

Definitions:
$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx \qquad (t > 0)$$

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx \qquad (t > 0)$$

$$B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx \qquad (a, b > 0)$$

Functional equation:
$$\Gamma(t+1) = t \Gamma(t)$$

$$\Gamma(n+1) = n! \quad (n=0,1,2,...)$$

Special values:
$$\Gamma(1/2) = \sqrt{\pi}$$

$$B(n,m) = \frac{(n-1)!(m-1)!}{(n+m-1)!} \quad (n,m=0,1,2,\ldots)$$

Relation between
$$\Gamma$$
 and B :
$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$