University of British Columbia, Vancouver GEOG 300 - Microscale Weather and Climate Knox

Study Questions - Lecture 23

- 1. You measure a covariance $\overline{w'T'} = -0.031\,\mathrm{m\,s^{-1}\,K}$. Average air temperature is 10°C. Calculate Q_H . Is this a day-time or night-time situation?
- 2. You measure a covariance $\overline{w'\rho'_v} = 1.73 \times 10^{-4}\,\mathrm{kg\,m^{-2}\,s^{-1}}$. ρ_v is the water vapour density in $\mathrm{kg\,m^{-3}}$. Average air temperature is 30°C. Calculate Q_E .
- 3. Determine the Bowen ratio β if $\overline{w'T'}=0.121\,\mathrm{m\,s^{-1}\,K}$ and $\overline{w'\rho'_v}=1.21\times10^{-4}\,\mathrm{kg\,m^{-2}\,s^{-1}}$. Average air temperature is 20°C.
- 4. Given is $Q_E = 240 \text{ W m}^{-2}$ at 20°C air temperature. Determine the covariance $\overline{w'q'}$, where q is the specific humidity (in g water vapour per kg air ,i.e. g kg⁻¹).
- 5. Over a rice paddy you measure a covariance between vertical wind and methane concentration ρ_{CH_4} in $\mu \text{g m}^{-3}$ of $\overline{w' \rho'_{\text{CH}_4}} = 10 \, \text{m s}^{-1} \, \mu \text{g m}^{-3}$. Determine the mass flux density between surface and atmosphere.