Computational Microelectronics L10

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Unstructured mesh for 2D/3D structures

Structured mesh

- Build directional meshes.
 - For example, x_0 , x_1 , x_2 , ...
 - -Then,

$$\mathbf{r}_{i,j,k} = \mathbf{a}_{x} x_i + \mathbf{a}_{y} y_j + \mathbf{a}_{z} z_k$$

Its inefficiency

- Consider a PN junction.
 - How can we describe this structure with a structured mesh?

3D structured mesh (L. Wang et al., ULIS, 2014)

Unstructured mesh

• Instead of a lattice point, $\mathbf{r}_{i,j,k}$,

-A vertex can be placed on any position, \mathbf{r}_i . (Here, i is not an index for

the *x* direction.)

-Triangles for 2D

- Tetrahedra for 3D

3D unstructured mesh (S.-W. Jung et al., SISPAD, 2024)

Mesh generator

- A computer program
 - It can create meshes from the boundary shape.

Triangular mesh for Lake Superior

(https://www.cs.cmu.edu/~quake/triangle.demo.html)

Structure file

A simple structure file for a resistor

- Vertex file
 - It specifies vertices with (x, y).

- We must read each line. Each line defines a unique vertex.

Draw points.

- 10 points
 - We need also triangles.

Element file

- It specifies triangles.
 - Numbers present vertex indices.

1-based indexing

Homework#10

• Due: AM08:00, October 17

• Problem#1

Draw the structure by using "bjt.vertex" and "bjt.element" in our
GitHub repository. (There are several triangles. You cannot draw them

manually.)

Thank you for your attention!