```
示例:

#!/bin/bash
# 字体颜色
for i in {31..37}; do
        echo -e "\033[$i;40mHello world!\033[0m"

done
# 背景颜色
for i in {41..47}; do
        echo -e "\033[47;${i}mHello world!\033[0m"

done
# 显示方式
for i in {1..8}; do
        echo -e "\033[$i;31;40mHello world!\033[0m"

done
```

\033[1;31;40m # 1 是显示方式,可选。31 是字体颜色。40m 是字体背景颜色。

#恢复终端默认颜色,即取消颜色设置。

[root@localhost ~]# bash test.sh Hello world! Hello world!

第三章 Shell 表达式与运算符

3.1 条件表达式

\033[0m

表达式	示例
[expression]	[1 -eq 1]
[[expression]]	[[1 -eq 1]]

test expression t	test :	1 -eq	1	,等同于[]
-------------------	--------	-------	---	--------

3.2 整数比较符

比较符	描述	示例
-eq, equal	等于	[1 -eq 1]为 true
-ne, not equal	不等于	[1-ne1]为false
-gt, greater than	大于	[2 -gt 1]为 true
-lt, lesser than	小于	[2 -lt 1]为 false
-ge, greater or equal	大于或等于	[2 -ge 1]为 true
-le, lesser or equal	小于或等于	[2-le1]为false

3.3 字符串比较符

运算符	描述	示例
==	等于	["a" == "a"]为 true
!=	不等于	["a" != "a"]为 false
>	大于,判断字符串时根据 ASCII 码表顺序,不常用	在[]表达式中: [2 \> 1]为 true 在[[]]表达式中: [[2 > 1]]为 true 在(())表达式中: ((3 > 2))为 true
<	小于,判断字符串时根据 ASCII 码表顺序,不常用	在[]表达式中: [2 \< 1]为 false 在[[]]表达式中: [[2 < 1]]为 false 在(())表达式中: ((3 < 2))为 false
>=	大于等于	在(())表达式中: ((3 >= 2))为 true
<=	小于等于	在(())表达式中: ((3 <= 2))为 false
-n	字符串长度不等于 0 为真	VAR1=1;VAR2="" [-n "\$VAR1"]为 true [-n "\$VAR2"]为 false
-z	字符串长度等于 0 为真	VAR1=1;VAR2="" [-z "\$VAR1"]为false [-z "\$VAR2"]为true

str 字符串存在为真

VAR1=1;VAR2="" [\$VAR1]为 true [\$VAR2]为 false

需要注意的是,使用-z或-n判断字符串长度时,变量要加双引号。举例说明:

```
# [ -z $a ] && echo yes || echo no
yes
# [ -n $a ] && echo yes || echo no
yes
# 加了双引号才能正常判断是否为空
# [ -z "$a" ] && echo yes || echo no
yes
# [ -n "$a" ] && echo yes || echo no
no
# 使用了双中括号就不用了双引号
# [[ -n $a ]] && echo yes || echo no
no
# [[ -z $a ]] && echo yes || echo no
yes
```

3.4 文件测试

测试符	描述	示例
-е	文件或目录存在为真	[-e path] path 存在为 true
-f	文件存在为真	[-f file_path] 文件存在为 true
-d	目录存在为真	[-d dir_path] 目录存在为 true
-r	有读权限为真	[-r file_path] file_path有读权限为 true
-w	有写权限为真	[-w file_path] file_path有写权限为 true
-x	有执行权限为真	[-x file_path] file_path有执行权限为 true
-s	文件存在并且大小大于 0 为真	[-s file_path] file_path 存在并且大小大于 0 为 true

3.5 布尔运算符

运算符	描述	示例
-----	----	----

!	非关系,条件结果取反	[!1-eq2]为true
-a	和关系,在[]表达式中使用	[1 -eq 1 -a 2 -eq 2]为 true
-o	或关系,在[]表达式中使用	[1 -eq 1 -o 2 -eq 1]为 true

3.6 逻辑判断符

判断符	描述	示例
&&	逻辑和,在[[]]和(())表达式中或判断表达式是否为真时使用	[[1 -eq 1 && 2 -eq 2]]为 true ((1 == 1 && 2 == 2))为 true [1 -eq 1] && echo yes 如果&&前 面表达式为 true 则执行后面的
	逻辑或,在[[]]和(())表达式中或判断表达式是否为真时使用	[[1 -eq 1 2 -eq 1]]为 true ((1 == 1 2 == 2))为 true [1 -eq 2] echo yes 如果 前 面表达式为 false 则执行后面的

3.7 整数运算

运算符	描述
+	加法
_	减法
*	乘法
/	除法
%	取余

运算表达式	示例
\$(())	\$((1+1))
\$[]	\$[1+1]

- 上面两个都不支持浮点运算。
- \$(())表达式还有一个用途,三目运算:
- # 如果条件为真返回1, 否则返回0
- # echo \$((1<0))

```
0
# echo $((1>0))
1
指定输出数字:
# echo $((1>0?1:2))
1
# echo $((1<0?1:2))
2
注意: 返回值不支持字符串
```

3.8 其他运算工具 (let/expr/bc)

除了 Shell 本身的算数运算表达式,还有几个命令支持复杂的算数运算:

命令	描述	示例
let	赋值并运算,支持++、	let VAR=(1+2)*3; echo \$VAR x=10; y=5 let x++; echo \$x 每执行一次 x 加 1 let y; echo \$y 每执行一次 y 减 1 let x+=2 每执行一次 x 加 2 let x-=2 每执行一次 x 减 2
expr	乘法*需要加反斜杠转义*	expr 1 * 2 运算符两边必须有空格 expr \(1 + 2 \) * 2 使用双括号时要转义
bc	计算器,支持浮点运算、 平方等	bc 本身就是一个计算器,可直接输入命令,进入解释器。 echo 1 + 2 bc 将管道符前面标准输出作为 bc 的标准输入 echo "1.2+2" bc echo "10^10" bc echo 'scale=2;10/3' bc 用 scale 保留两位小数点

由于 Shell 不支持浮点数比较,可以借助 bc 来完成需求:

```
# echo "1.2 < 2" | bc

1
# echo "1.2 > 2" | bc

0
# echo "1.2 == 2.2" | bc

0
# echo "1.2 != 2.2" | bc

1
看出规律了嘛? 运算如果为真返回 1, 否则返回 0, 写一个例子:
# [ $(echo "2.2 > 2" | bc) -eq 1 ] && echo yes || echo no
yes
# [ $(echo "2.2 < 2" | bc) -eq 1 ] && echo yes || echo no
no
```

expr 还可以对字符串操作:

获取字符串长度:

```
# expr length "string"
6
截取字符串:
# expr substr "string" 4 6
ing
获取字符在字符串中出现的位置:
# expr index "string" str
1
# expr index "string" i
4
获取字符串开始字符出现的长度:
# expr match "string" s.*
6
# expr match "string" str
3
```

3.9 Shell 括号用途总结

看到这里,想一想里面所讲的小括号、中括号的用途,是不是有点懵逼了。那我们总结一下!

()	用途 1: 在运算中,先计算小括号里面的内容 用途 2: 数组 用途 3: 匹配分组
(())	用途 1: 表达式,不支持-eq 这类的运算符。不支持-a 和-o,支持<=、>=、〈、〉这类比较符和&&、 用途 2: C 语言风格的 for(())表达式
\$()	执行 Shell 命令,与反撇号等效
\$(())	用途 1: 简单算数运算 用途 2: 支持三目运算符 \$((表达式?数字:数字))
[]	条件表达式,里面不支持逻辑判断符
[[]]	条件表达式,里面不支持-a和-o,不支持<=和>=比较符,支持-eq、〈、〉这类比较符。支持= [*] 模式匹配,也可以不用双引号也不会影响原意,比[]更加通用
\$[]	简单算数运算
{ }	对逗号(,)和点点()起作用,比如 touch {1,2}创建1和2文件,touch {13}创建1、2和3文件
\${}	用途 1: 引用变量 用途 2: 字符串处理