

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74AUP2G132

Low-power dual 2-input NAND Schmitt trigger Rev. 7 — 8 February 2013

Product data sheet

General description 1.

The 74AUP2G132 provides the dual 2-input NAND Schmitt trigger function which accepts standard input signals. They can transform slowly changing input signals into sharply defined, jitter-free output signals.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_H.

Features and benefits 2.

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - ◆ CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Applications

- Wave and pulse shaper
- Astable multivibrator
- Monostable multivibrator

4. Ordering information

Table 1. Ordering information

Type number	Package	Package								
	Temperature range	Name	Description	Version						
74AUP2G132DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1						
74AUP2G132GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1						
74AUP2G132GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089						
74AUP2G132GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 3 \times 2 \times 0.5 mm	SOT996-2						
74AUP2G132GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2						
74AUP2G132GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 \times 1.0 \times 0.35 mm	SOT1116						
74AUP2G132GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1.0 \times 0.35$ mm	SOT1203						

5. Marking

Table 2. Marking codes

Type number	Marking code ^[1]
74AUP2G132DC	aE2
74AUP2G132GT	aE2
74AUP2G132GF	aE
74AUP2G132GD	aE2
74AUP2G132GM	aE2
74AUP2G132GN	aE
74AUP2G132GS	aE

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

6. Functional diagram

74AUP2G132

All information provided in this document is subject to legal disclaimers.

Pinning information

7.1 Pinning

7.2 Pin description

Pin description Table 3.

Symbol	Pin		Description	
	SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2		
1A, 2A	1, 5	7, 3	data input	
1B, 2B	2, 6	6, 2	data input	
GND	4	4	ground (0 V)	
1Y, 2Y	7, 3	1, 5	data output	
V _{CC}	8	8	supply voltage	

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.

8. Functional description

Table 4. Function table[1]

Input		Output
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

^[1] H = HIGH voltage level; L = LOW voltage level.

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		[<u>1</u>] -0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	[<u>1</u>] -0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	250	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		8.0	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T_{amb}	ambient temperature		-40	+125	°C

^[2] For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K. For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V}$ to 3.6 V	V _{CC} - 0.1	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_O = 20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.31	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
l _l	input leakage current	$V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μΑ
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.2	μΑ
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.2	μΑ
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μΑ
Δl _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	<u>[1]</u> -	-	40	μА
Cı	input capacitance	$V_I = GND \text{ or } V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	1.1	-	рF
Co	output capacitance	$V_O = GND; V_{CC} = 0 V$	-	1.7	-	рF
T _{amb} = -	40 °C to +85 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	V _{CC} - 0.1	-	-	V
		$I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 \times V_{CC}$	-	-	٧
		$I_O = -1.7 \text{ mA}$; $V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_O = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_O = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_O = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
4AUP2G132		All information provided in this document is subject to legal discla	imers.		© NXP B.V. 2013. All rig	jhts reser

Table 7. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		$I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.35	٧
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
l _l	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.5	μΑ
l _{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$	-	-	±0.5	μΑ
Δl _{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.6	μΑ
lcc	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.9	μΑ
Δl _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	[1] -	-	50	μΑ
T _{amb} = −	40 °C to +125 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V}$ to 3.6 V	V _{CC} – 0.11	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		$I_O = 20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.11	V
		$I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	٧
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
	input leakage current	$V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μΑ
l _{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$	_	_	±0.75	μΑ

 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.75	μΑ
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μΑ
ΔI_{CC}	additional supply current	$V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	[1] -	-	75	μΑ

^[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

12. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 9.

Parameter	Conditions		T _{amb} = 25 °C		$T_{amb} = -40$ °C to +125 °C			Unit	
			Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
	'				•	•	'		•
propagation delay	nA or nB to nY; see Figure 8	[2]							
	V _{CC} = 0.8 V		-	22.5	-	-	-	-	ns
	$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		2.6	6.3	13.4	2.4	15.1	16.6	ns
	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.2	4.6	8.2	1.9	9.7	10.7	ns
	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.9	3.9	6.6	1.7	7.9	8.7	ns
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7	3.2	5.3	1.5	6.2	6.8	ns
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.6	2.9	4.7	1.4	5.6	6.2	ns
oF .									
propagation delay	nA or nB to nY; see Figure 8	[2]							
	V _{CC} = 0.8 V		-	26.1	-	-	-	-	ns
	$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.0	7.2	15.4	2.7	17.3	19.0	ns
	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.5	5.2	9.3	2.2	11.0	12.1	ns
	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.3	4.5	7.5	2.0	9.0	9.9	ns
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.1	3.8	6.1	1.8	7.2	7.9	ns
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	3.5	5.5	1.8	6.5	7.2	ns
oF .									
propagation delay	nA or nB to nY; see Figure 8	[2]							
	V _{CC} = 0.8 V		-	29.6	-	-	-	-	ns
	$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$		3.3	8.0	17.2	3.0	19.4	21.3	ns
	$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		2.8	5.8	10.4	2.5	12.3	13.5	ns
	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.6	5.0	8.3	2.3	10.0	11.0	ns
	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.3	4.2	6.7	2.1	7.9	8.7	ns
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.2	3.9	6.1	2.0	7.3	8.0	ns
	propagation delay F propagation delay	propagation delay $P_{CC} = 0.8 \text{ V}$ $P_{CC} = 0.8 \text{ V}$ $P_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$ $P_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $P_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $P_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $P_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ Propagation delay $P_{CC} = 0.8 \text{ V}$ $P_{CC} = 0.8 \text{ V}$ $P_{CC} = 0.8 \text{ V}$ $P_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$ $P_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$ $P_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $P_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $P_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $P_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$ Propagation delay $P_{CC} = 0.8 \text{ V}$	propagation delay $I = I = I = I = I = I = I = I = I = I $	$ \begin{tabular}{ c c c c c } \hline \textbf{Min} \\ \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \textbf{Mor} & \textbf{Min} \\ \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \textbf{Mor} & \textbf{Mor} & \textbf{Mor} \\ \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \textbf{Propagation delay} & \textbf{nA or nB to nY; see } & \textbf{Figure 8} \\ \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \textbf{Propagation delay} & \textbf{nA or nB to nY; see } & \textbf{Figure 8} \\ \hline \end{tabular} \begin{tabular}{ c c c c c c c } \hline \textbf{NA or nB to nY; see } & \textbf{Figure 8} \\ \hline \end{tabular} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Min Typ[1]	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Propagation delay nA or nB to nY; see Figure 8 12	Min Typ[1] Max Min Max (85 °C)	Min Typi Max Min Max Max

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 9.

Symbol	Parameter	Conditions		T _{amb} = 25	°C	T _{amb} =	–40 °C t	o +125 °C	Unit
			Mir	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
$C_{L} = 30 \; \mu$	oF .		·	'	'		•		
t _{pd}	propagation delay	nA or nB to nY; see Figure 8	[2]						
		$V_{CC} = 0.8 \text{ V}$	-	39.9	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	4.3	10.2	22.6	3.8	25.4	27.9	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	3.6	7.3	13.3	3.2	15.8	17.4	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	3.2	6.3	10.6	2.9	12.8	14.1	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	3.0	5.3	8.5	2.7	10.1	11.1	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.8	5.0	7.8	2.7	9.2	10.1	ns
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF							
C_{PD}	power dissipation	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$	[3]						
	capacitance	$V_{CC} = 0.8 \text{ V}$	-	2.6	-	-	-	-	pF
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	2.9	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	3.0	-	-	-	-	pF
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	3.2	-	-	-	-	pF
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	3.8	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	4.4	-	-	-	-	pF

^[1] All typical values are measured at nominal V_{CC}.

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

13. Waveforms

Fig 8. The data input (nA or nB) to output (nY) propagation delays

Table 9. Measurement points

Supply voltage	Output	Input						
V _{CC}	V _M	V _M	V _I	$t_r = t_f$				
0.8 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V_{CC}	≤ 3.0 ns				

Test data is given in <u>Table</u> 10.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 9. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load		V _{EXT}			
V _{CC}	C _L	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2\times V_{CC}$	

[1] $R_L = 5 \text{ k}\Omega$ when measuring enable and disable times. $R_L = 1 \text{ M}\Omega$ when measuring propagation delays, setup and hold times and pulse width.

74AUP2G132

14. Transfer characteristics

Table 11. Transfer characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 9.

Symbol	Parameter	Conditions	Tan	_{nb} = 25	°C	T _{amb} =	Unit		
				Тур	Max	Min	Max (85 °C)	Max (125 °C)	
V_{T+}	positive-going threshold voltage	see <u>Figure 10</u> and <u>Figure 11</u>							
		$V_{CC} = 0.8 \text{ V}$	0.30	-	0.60	0.30	0.60	0.62	V
		V _{CC} = 1.1 V	0.53	-	0.90	0.53	0.90	0.92	V
		V _{CC} = 1.4 V	0.74	-	1.11	0.74	1.11	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.29	0.91	1.29	1.31	V
		$V_{CC} = 2.3 \text{ V}$	1.37	-	1.77	1.37	1.77	1.80	V
		V _{CC} = 3.0 V	1.88	-	2.29	1.88	2.29	2.32	V
V _{T-}	V _{T-} negative-going threshold voltage	see <u>Figure 10</u> and <u>Figure 11</u>							
		$V_{CC} = 0.8 \text{ V}$	0.10	-	0.60	0.10	0.60	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	0.26	0.65	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	0.39	0.75	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	0.47	0.84	0.84	V
	$V_{CC} = 2.3 \text{ V}$	0.69	-	1.04	0.69	1.04	1.04	V	
		$V_{CC} = 3.0 \text{ V}$	0.88	-	1.24	0.88	1.24	1.24	V
V _H	hysteresis voltage	(V _{T+} – V _{T-}); see <u>Figure 10</u> , <u>Figure 11</u> , <u>Figure 12</u> and <u>Figure 13</u>							
		$V_{CC} = 0.8 \text{ V}$	0.07	-	0.50	0.07	0.50	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	0.08	0.46	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	0.18	0.56	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	0.27	0.66	0.66	V
		$V_{CC} = 2.3 \text{ V}$	0.53	-	0.92	0.53	0.92	0.92	V
		$V_{CC} = 3.0 \text{ V}$	0.79	-	1.31	0.79	1.31	1.31	V

15. Waveforms transfer characteristics

74AUP2G132

All information provided in this document is subject to legal disclaimers.

16. Application information

The slow input rise and fall times cause additional power dissipation which can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where:

 P_{add} = additional power dissipation (μW);

 $f_i = input frequency (MHz);$

 t_r = input rise time (ns); 10 % to 90 %;

 t_f = input fall time (ns); 90 % to 10 %;

 $\Delta I_{CC(AV)}$ = average additional supply current (μA).

Average $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Figure 14.

- (1) Positive-going edge.
- (2) Negative-going edge.

Linear change of $V_{\rm I}$ between 0.8 V and 2.0 V. All values given are typical, unless otherwise specified.

Fig 14. Average I_{CC} as a function of V_{CC}

17. Package outline

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	q	٧	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT765-1		MO-187			02-06-07

Fig 15. Package outline SOT765-1 (VSSOP8)

74AUP2G132

All information provided in this document is subject to legal disclaimers.

Fig 16. Package outline SOT833-1 (XSON8)

74AUP2G132 All information provided in this document is subject to legal disclaimers.

Fig 17. Package outline SOT1089 (XSON8)

74AUP2G132 All information provided in this document is subject to legal disclaimers.

Fig 18. Package outline SOT996-2 (XSON8)

74AUP2G132

Fig 19. Package outline SOT902-2 (XQFN8)

74AUP2G132

Fig 20. Package outline SOT1116 (XSON8)

74AUP2G132 All information provided in this document is subject to legal disclaimers.

Fig 21. Package outline SOT1203 (XSON8)

74AUP2G132

All information provided in this document is subject to legal disclaimers.

18. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

19. Revision history

Table 13. Revision history

	•			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP2G132 v.7	20130208	Product data sheet	-	74AUP2G132 v.6
Modifications:	 For type nu 	mber 74AUP2G132GD XS	ON8U has changed to X	(SON8.
74AUP2G132 v.6	20120803	Product data sheet	-	74AUP2G132 v.5
74AUP2G132 v.5	20111201	Product data sheet	-	74AUP2G132 v.4
74AUP2G132 v.4	20101104	Product data sheet	-	74AUP2G132 v.3
74AUP2G132 v.3	20081215	Product data sheet	-	74AUP2G132 v.2
74AUP2G132 v.2	20080314	Product data sheet	-	74AUP2G132 v.1
74AUP2G132 v.1	20061018	Product data sheet	-	-

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AUP2G132

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors 74AUP2G132

Low-power dual 2-input NAND Schmitt trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

22. Contents

1	General description
2	Features and benefits 1
3	Applications
4	Ordering information
5	Marking 2
6	Functional diagram 2
7	Pinning information 3
7.1	Pinning
7.2	Pin description
8	Functional description 4
9	Limiting values 4
10	Recommended operating conditions 4
11	Static characteristics 5
12	Dynamic characteristics 7
13	Waveforms
14	Transfer characteristics 10
15	Waveforms transfer characteristics 10
16	Application information
17	Package outline
18	Abbreviations
19	Revision history
20	Legal information
20.1	Data sheet status
20.2	Definitions
20.3	Disclaimers
20.4	Trademarks
21	Contact information 22
22	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.