CSC236 Worksheet 3

Hyungmo Gu

May 4, 2020

Question 1

Rough Work:

Predicate Logic: $\forall A \subseteq \mathbb{N}, \ A \neq \emptyset \Rightarrow (\exists a \in A, \ \forall x \in A, \ a \leq x)$

Given the statement to prove

P(x,y,z): There are no positive integers x,y,z such that $x^3+3y^3=9z^3$

I will prove P(x, y, z) using proof by contradiction.

Assume $\exists x, y, z \in \mathbb{N}^+, x^3 + 3y^3 = 9z^3$.

1. Show that the set $X = \{x \mid x \in \mathbb{N}^+, \ \exists y, z \in \mathbb{N}^+, \ x^3 + 3y^3 = 9z^3\}$ is not empty.

Then, we can write the set $X=\{x\mid x\in\mathbb{N}^+,\ \exists y,z\in\mathbb{N}^+,\ x^3+3y^3=9z^3\}$ is not empty.

2. Show that there is a minimum element in set satisfying $x^3 + 3y^3 = 9z^3$, using well-ordering principle

Then, by principle of well-ordering, we can conclude there exists values x_0, y_0, z_0 satisfying the equation $x^3 + 3y^3 = 9z^3$.

- 3. Find next elements x_1, y_1, z_1 satisfying $x^3 + 3y^3 = 9z^3$, and check to see if x_1, y_1, z_1 are all in \mathbb{N}^+
- 4. Repeat until finding a value not in \mathbb{N}^+ .

Notes:

- Proof By Contradiction: $\neg P \Rightarrow \neg Q \land Q$ (Assuming we are proving $P \Rightarrow Q$)
- Principle of Well-Ordering: Any nonempty subset A of \mathbb{N} contains a minimum element; i.e. for any $A \subseteq \mathbb{N}$ such that $A \neq \emptyset$, there is some $a \in A$ such that for all $a' \in A$, $a \leq a'$.
- examples of well-ordered sets
 - 1. $\mathbb{N} \cup \{0\}$
 - 2. $\mathbb{N} \cup \{1, 2\}$
 - $3. \{n \in \mathbb{N} : n > 5\}$
- examples of non-well-ordered sets
 - 1. \mathbb{R} and the open interval (0,2)
 - $2. \mathbb{Z}$

Question 2

Question 3