

Machine Learning

第10讲 半监督学习 Semi-supervised learning

刘峤

电子科技大学计算机科学与工程学院

10.1 Introduction to SSL(Semi-supervised learning)

Semi-supervised learning (SSL)

- Traditional supervised learning is limited to using labeled data.
- SSL also uses unlabeled data to learn.
- Let (x,y) be a labeled instance and (x,\emptyset) be an unlabeled instance.
 - * L: a set of *n* labaled instances.
 - **W** U: a set of **m** unlabeled instances.
 - $\times n << m$
- SSL tries to use $L \cup U$ to learn a predictive model.

Semi-supervised learning (SSL)

- Suitable when just a small proportion of the training data is labeled.
- These algorithms try to learn also from the unlabeled data.

Labeled data

Unlabeled data

(Image of cats and dogs without labeling)

labeled

unlabaled

Why semi-supervised learning helps?

The distribution of the unlabeled data tell us something.

Usually with some assumptions

Semi-supervised learning (SSL)

- Semi-supervised learning:

 - * Transductive learning: unlabeled data is the testing data
 - * Inductive learning: unlabeled data is not the testing data
- Why semi-supervised learning?
 - * Collecting data is easy, but collecting "labelled" data is expensive
 - * We do semi-supervised learning in our lives

10.2 Semi-supervised Learning for Generative Model

Supervised Generative Model

- Given labelled training examples $x^r \in \{C_1, C_2\}$
 - \times looking for most likely prior probability $P(C_i)$ and
 - \times class-dependent probability $P(X|C_i)$
 - \times $P(X|C_i)$ is a Gaussian parameterized by μ^i and Σ

$$% With $P(C_1)$, $P(C_2)$, μ^1, μ^2, Σ
$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$$$

Supervised Generative Model

- Given labelled training examples $x^r \in \{C_1, C_2\}$
 - \times looking for most likely prior probability $P(C_i)$ and
 - \times class-dependent probability $P(X|C_i)$
 - \times $P(X|C_i)$ is a Gaussian parameterized by μ^i and Σ

 \times The unlabeled data x^u help re-estimate $P(C_1), P(C_2), \mu^1, \mu^2, \Sigma$

Semi-supervised Generative Model

- Initialization: $\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$
- Step 1: compute the posterior probability of unlabeled data $P_{\theta}(C_1|x^u)$ \times Depending on model θ
- Step 2: update model
 N: total number of examples

$$P(C_1) = \frac{N_1 + \sum_{x^u} P(C_1|x^u)}{N}$$
 > N_1 : number of examples belonging to C_1

$$\mu^{1} = \frac{1}{N_{1}} \sum_{x^{r} \in C_{1}} x^{r} + \frac{1}{\sum_{x^{u}} P(C_{1}|x^{u})} \sum_{x^{u}} P(C_{1}|x^{u}) x^{u}$$

• Back to step 1, until the algorithm converges

The algorithm converges eventually, but the initialization influences the results.

Why?

$$\theta = \{ P(C_1), P(C_2), \mu^1, \mu^2, \Sigma \}$$

Maximum likelihood with labelled data closed-form solution

$$\log L(\theta) = \sum_{x^r} \log P_{\theta}(x^r, \hat{y}^r) \qquad P_{\theta}(x^r, \hat{y}^r) = P_{\theta}(x^r | \hat{y}^r) P(\hat{y}^r)$$

Maximum likelihood with labelled + unlabeled data Solved iteratively

$$\log L(\theta) = \sum_{x^r} \log P_{\theta}(x^r, \hat{y}^r) + \sum_{x^u} \log P_{\theta}(x^u)$$

$$P_{\theta}(x^{u}) = P_{\theta}(x^{u}|C_{1})P(C_{1}) + P_{\theta}(x^{u}|C_{2})P(C_{2})$$

 $(x^u \text{ can come from either } C_1 \text{ and } C_2)$

10.3 Low-density Separation Assumption

Outlook: Semi-supervised SVM

Thorsten Joachims, "Transductive Inference for Text Classification using Support Vector Machines", ICML, 1999

Self-training

Self-training

Given:

- \times labelled data set = $\{(x^r, \hat{y}^r)\}_{r=1}^R$
- \times unlabeled data set = $\{x^u\}_{u=1}^U$
- Repeat:

Regression?

Train model *f* * from labelled data set

You can use any model here.

- \times Apply f^* to the unlabeled data set
 - \triangleright Obtain $\{(x^u, y^u)\}_{u=1}^U$ Pseudo-label

You can also provide a weight to each data.

- * Remove a set of data from unlabeled data set
 - and add them into the labeled data set

How to choose the data set remains open

Self-training

- Similar to semi-supervised learning for generative model
 - **X** Hard label v.s. Soft label
- Considering using neural network
 - $\times \theta^*$ (network parameter) from labelled data

Entropy-based Regularization

Entropy of y^u

Evaluate how concentrate the distribution y^u is.

$$y^u \xrightarrow{\text{Good!}} \mathbf{E}(y^u) = \mathbf{0}$$

$$E(y^{u}) = -\sum_{m=1}^{5} y_{m}^{u} ln(y_{m}^{u})$$

$$y^u \qquad \qquad \underbrace{E(y^u) = 0}$$

$$y^{u} \xrightarrow{\text{Bad!}} \qquad E(y^{u})$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \qquad = -\ln\left(\frac{1}{5}\right)$$

$$= \ln 5$$

$$L = \sum_{x^r} C(y^r, \hat{y}^r) + \lambda \sum_{x^u} E(y^u)$$

labelled data unlabeled data

Self-learning 'improvements'

- Just add instances with the most confident predictions.
- Perform the procedure with batches of instances
 - * instead of one instance at a time.
- Re-assess previous predictions.

- SSL is not always guaranteed to work!
 - * Performance may also degrade due to noisy instances.
- Remember: garbage in, garbage out!

10.4 Smoothness Assumption

Smoothness Assumption

- Assumption: "similar" x has the same \hat{y}
- More precisely:
 - * x is not uniform.
 - \times If x^1 and x^2 are close in
 - * a high density region,
 - $\times \hat{y}^1$ and \hat{y}^2 are the same.

connected by a high density path

- x^1 and x^2 have the same label
- x^2 and x^3 have different labels

Source of image: http://hips.seas.harvard.edu/files/pinwheel.png

Smoothness Assumption

"indirectly" similar with stepping stones

(The example is from the tutorial slides of Xiaojin Zhu.)

Source of image: http://www.moehui.com/5833.html/5/

Cluster and then Label

Using all the data to learn a classifier as usual

- How to know x^1 and x^2 are close in a high density region?
 - connected by a high density path
- Represented the data points as a graph
 - * Graph representation is nature sometimes.
 - > E.g. Hyperlink of webpages,
 - > E.g. citation of papers
 - Sometimes you have to
 construct the graph yourself.

Graph-based Approach: Graph Construction

- Define the similarity $s(x^i, x^j)$ between x^i and x^j
- Add edge:

 - % e-Neighborhood

X Gaussian Radial Basis Function:

The images are from the tutorial slides of Amarnag Subramanya and Partha Pratim Talukdar

Smoothness Assumption

- The labelled data influence their neighbors.
 - * Propagate through the graph

• Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2$$

For all data (no matter labelled or not)

$y^{1} = 1$ $y^{2} = 1$ $y^{2} = 1$ S = 0.5 $y^{4} = 0$

Smaller means smoother

Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = \mathbf{y}^T L \mathbf{y}$$

$$\times$$
 y: (R+U)-dim vector: $\mathbf{y} = \left[\cdots y^i \cdots y^j \cdots\right]^T$

 \times L: (R+U) x (R+U) matrix -- Graph Laplacian

$$D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = y^T L y$$
 Depending on model parameters

$$L = \sum_{r} C(y^r, \hat{y}^r) + \lambda S$$
 As a regularization term

J. Weston, F. Ratle, and R. Collobert, "Deep learning via semi-supervised embedding," ICML, 2008

10.5 Better Representation

Looking for Better Representation

- Find a better (simpler) representations from the unlabeled data
 - * Find the latent factors behind the observation
 - * The latent factors (usually simpler) are better representations

- Reference
 - Semi-supervised learning
 - % http://olivier.chapelle.cc/ssl-book/

- Sometimes, an observation can be represented by
 - * two independent sets of features or 'views'.
 - * For example a webpage can be characterized by
 - > its content but also by the links' text pointing to it.
 - * This view redundance can be used for semi-supervised learning!
- Multi-view learning
 - * Conventional algorithms 'concatenate' all views.
 - * This approach might cause overfitting with small training sets.
 - ※ Not physically meaningful since each view has specific statistical properties.

- Multi-view learning takes advantage of all views
 - * to jointly optimize and exploit the redundant views
 - * of the same input data to improve performance.

- Co-Training (Blum, A., & Mitchell, T.)
 - * is a type of semi-supervised algorithm.
 - * Two classifiers work together to enlarge the training set L and increase performance.

Co-training algorithm

Given:

- a set L of labeled training examples
- \bullet a set U of unlabeled examples

Create a pool U' of examples by choosing u examples at random from U Loop for k iterations:

Use L to train a classifier h_1 that considers only the x_1 portion of x Use L to train a classifier h_2 that considers only the x_2 portion of x Allow h_1 to label p positive and n negative examples from U' Allow h_2 to label p positive and n negative examples from U' Add these self-labeled examples to L

Some implementations use independent L for each view.

Randomly choose 2p + 2n examples from U to replenish U'

Co-training algorithm

- Assumptions
 - * A feature split into two views exists.
 - * Each feature split (view) is sufficient to train a good classifier.
 - * The views are conditionally independent given the class.
- How to combine the results?
 - * Multiply output probabilities.
 - * Choose the class with maximum probability among the two models.
 - * Train a single model after the last iteration.

- 协同训练过程虽简单,但令人惊讶的是:
 - ※ 若两个视图充分且条件独立,则可利用未标记样本
 - ※ 通过协同训练将弱分类器的泛化性能提升到任意高
 - ※ 理论证明参见: [Blum and Mitchell, 1998].
- Multi-view的条件独立性在现实任务中通常很难满足
 - ※ 因此性能提升幅度不会那么大
 - ※ 虽然如此, 协同训练仍可有效地提升弱分类器的性能
- 总体说来:理论基础相对坚实、适用范围较为广泛

Next chapter: Deep Learning