Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Разработка интернет приложений»

Отчет по лабораторной работе №6 «Анализ и прогнозирование временного ряда»

Выполнил:

студент группы ИУ5-62Б Заузолков Денис Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Описание задания:

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

Лабораторная работа №6: "Анализ и прогнозирование временного ряда".

```
In [2]:
          import numpy as np
          import pandas as pd
          from matplotlib import pyplot
          import matplotlib.pyplot as plt
          from statsmodels.tsa.seasonal import seasonal_decompose
          \label{thm:constraints} \textbf{from sklearn.metrics import mean\_absolute\_error, mean\_squared\_error, r2\_score \\ \textbf{from statsmodels.tsa.arima.model import } ARIMA
          from sklearn.model_selection import GridSearchCV
          from gplearn.genetic import SymbolicRegressor
          from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
        Использован датасет, содержащий данные об изменении численности населения: https://www.kaggle.com/datasets/census/population-time-series-data?
        datasetId=51748&sortBy=voteCount
In [4]:
         data = pd.read_csv('POP.csv')
          data.head()
Out[4]: realtime_start value date realtime_end
              2019-12-06 156309.0 1952-01-01
         1 2019-12-06 156527.0 1952-02-01 2019-12-06
         2 2019-12-06 156731.0 1952-03-01 2019-12-06
              2019-12-06 156943.0 1952-04-01
                                                2019-12-06
              2019-12-06 157140.0 1952-05-01 2019-12-06
        Проигнорируем данные о реальном времени, поскольку мы концентрируемся только на диапазоне дат, в котором меняется население.
In [5]:
          data = data.drop(['realtime_start','realtime_end'],axis=1)
In [6]:
          """Преобразование столбца даты в объект datetime и установка его в качестве индекса"""
data['date'] = pd.to_datetime(data['date'])
          data.set_index('date',inplace=True)
          data.head()
Out[6]:
                        value
               date
         1952-01-01 156309.0
         1952-02-01 156527.0
         1952-03-01 156731.0
         1952-04-01 156943.0
         1952-05-01 157140.0
In [7]: | data.describe()
Out[7]:
                        value
         count
          mean 243847.767826
            std 50519 140567
           min 156309.000000
          25% 201725.250000
          50% 239557.500000
          75% 289364.250000
           max 330309.946000
```

Визуализация временного ряда

```
In [8]:
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
    fig.suptitle('Временной ряд в виде графика')
    data.plot(ax=ax, legend=False)
    pyplot.show()
```

Временной ряд в виде графика


```
In [9]:
    for i in range(1, 5):
        fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,4))
        fig.suptitle(f', nr nopagka {i}')
        pd.plotting.lag_plot(data, lag=i, ax=ax)
        pyplot.show()
```

Лаг порядка 1

Лаг порядка 2

Лаг порядка 3

Лаг порядка 4 325000 - 300000 - 275000 - 255000 - 255000 - 200000 - 150000 150000 200000225000250000275000300000325000

```
In [10]:

fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Автокорреляционная диаграмма')
pd.plotting.autocorrelation_plot(data, ax=ax)
pyplot.show()
```

Автокорреляционная диаграмма 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 400 Lag 500 600 100 200 300 700 800

Автокорреляционная функция

In [42]: plot_acf(data, lags=100)
 plt.tight_layout()

Частичная автокорреляционная функция

In [40]: plot_pacf(data, lags=30)
 plt.tight_layout()

Декомпозиция временного ряда

```
In [14]:     decomposed = seasonal_decompose(data['value'], model = 'add')
fig = decomposed.plot()
```


Наблюдается положительная динамика с 1952 по 2019 год.

Разделение временного ряда на обучающую и тестовую выборку

```
In [15]:

data_2 = data.copy()

In [16]: # Целочисленная метка шкалы бремени xnum = list(range(data_2.shape[0])) # Paзделение выборки на обучающую и тестовую Y = data_2['value'].values train_size = int(len(Y) * 0.7) xnum_test = xnum[0:train_size], xnum[train_size:] train, test = Y[0:train_size], Y[train_size:] history_arima = [x for x in train]
```

Прогнозирование временного ряда авторегрессионным методом (ARIMA)

```
In [17]:
           # Параметры модели (p,d,q)
           arima_order = (2,1,0)
           # Формирование предсказаний
           predictions_arima = list()
           for t in range(len(test)):
                model_arima = ARIMA(history_arima, order=arima_order)
                model_arima_fit = model_arima.fit()
               yhat_arima = model_arima_fit.forecast()[0]
predictions_arima.append(yhat_arima)
                history_arima.append(test[t])
           # Вычисление метрики RMSE error_arima = mean_squared_error(test, predictions_arima, squared=False)
In [18]:
           # Ошибка прогноза
           np.mean(Y), error_arima
          (243847.7678259804, 24.173499535797916)
Out[18]:
In [19]:
           # Записываем предсказания в DataFrame
           data_2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima)
In [20]:
           fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
           fig.suptitle('Предсказания временного ряда')
           data_2.plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда


```
In [21]:
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
    fig.suptitle('Предсказания временного ряда (тестовая выборка)')
    data_2[train_size:].plot(ax=ax, legend=True)
    pyplot.show()
```

Предсказания временного ряда (тестовая выборка)

Прогнозирование временного ряда методом символьной регресии

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

y = column_or_id(y, warn=irue)						
	Populat:	ion Average		Best Individual	I	
Gen	Length	Fitness	Length	Fitness	00B Fitness	Time Left
0	263.65	2.43463e+63	23	7.14077e+09	N/A	2.77m
1	130.98	5.77055e+16	43	6.06688e+09	N/A	1.13m
2	53.10	4.58992e+15	34	3.54847e+09	N/A	39.70s
3	34.28	1.99853e+19	13	1.42699e+09	N/A	32.05s
4	35.05	2.10424e+16	38	1.04052e+09	N/A	31.71s
5	30.47	2.56729e+16	36	4.29436e+08	N/A	29.49s
6	31.30	3.00498e+16	50	6.39791e+07	N/A	30.52s
7	38.37	8.59782e+15	35	1.51165e+07	N/A	30.47s
8	43.37	5.29474e+15	47	4.76034e+06	N/A	30.80s
9	37.70	8.42452e+15	35	4.14545e+06	N/A	27.96s
10	40.68	5.69103e+15	32	3.65059e+06	N/A	30.63s
11	45.38	5.71108e+15	29	3.65015e+06	N/A	29.93s
12	41.36	5.72894e+15	29	3.65015e+06	N/A	29.92s
13	35.07	3.58233e+15	29	3.65015e+06	N/A	25.72s
14	33.33	8.46569e+15	35	3.53261e+06	N/A	25.03s
15	31.43	3.14997e+19	35	3.53261e+06	N/A	24.63s
16	30.19	1.42657e+16	35	3.53261e+06	N/A	22.80s
17	30.81	2.81228e+15	35	3.53261e+06	N/A	24.42s
18	33.31	5.72757e+15	35	3.53261e+06	N/A	23.06s
19	33.71	1.26632e+16	35	3.50395e+06	N/A	22.17s
20	34.95	1.70198e+16	35	3.50395e+06	N/A	22.53s
21	42.21	6.70957e+15	35	3.50395e+06	N/A	24.04s
22	54.68	6.78469e+15	35	3.50395e+06	N/A	24.09s
23	50.99	6.47928e+18	102	3.50387e+06	N/A	23.79s
24	42.69	8.57551e+15	71	3.50376e+06	N/A	20.67s
25	59.07	6.73374e+21	85	3.49756e+06	N/A	23.04s
26	89.07	1.51918e+25	85	3.49756e+06	N/A	26.59s
27	100.70	2.98833e+18	91	3.48956e+06	N/A	28.13s
28	120.58	7.92131e+23	91	3.48956e+06	N/A	31.64s
29	142.26	1.91023e+18	127	3.48498e+06	N/A	33.27s
30	116.37	6.9315e+21	54	3.46676e+06	N/A	35.69s

```
103.96
                     2.33782e+22
                                                  3.46676e+06
  31
                                         54
                                                                             N/A
                                                                                      34.645
                     2.82439e+18
                                         54
        107.16
                                                  3.46676e+06
                                                                             N/A
                                                                                       26.50s
                                                  3.45858e+06
  33
        110.56
                     4.95099e+26
                                        112
                                                                             N/A
                                                                                       25.78s
  34
         94.20
                     1.96986e+18
                                        114
                                                  3.45249e+06
                                                                             N/A
                                                                                       22.815
                      6.0703e+15
                                                  3.43034e+06
  35
         77.71
                                        133
                                                                             N/A
                                                                                      19.76s
        111.25
                     5.62717e+15
                                         79
                                                  3.42948e+06
                                                                             N/A
                                                                                      23.33s
  37
        142.44
                      1.4552e+18
                                        246
                                                  3.41658e+06
                                                                             N/A
                                                                                       24.405
  38
        171.28
                     3.11029e+19
                                        187
                                                  3.36822e+06
                                                                                       26.25s
                                                                             N/A
  39
        197.58
                      2.8446e+16
                                                  3.36419e+06
                                                                                      27.935
                                        187
                                                                             N/A
        213.08
                     1.12226e+16
                                                  3.35931e+06
  40
                                        212
                                                                             N/A
                                                                                      28.035
  41
        193.33
                     7.07447e+17
                                        181
                                                  3.35563e+06
                                                                             N/A
                                                                                       25.74s
        200.58
                     9.48793e+19
                                                  3.25166e+06
                                                                             N/A
                                                                                      25.51s
  42
                                        308
        203.16
                      6.9535e+17
                                        308
                                                  3.24914e+06
                                                                             N/A
                                                                                       24.905
  44
        271.65
                     2.48275e+15
                                                  3.17665e+06
                                                                             N/A
                                                                                      28.32s
                                        434
                     1.45248e+18
  45
        340.95
                                        434
                                                  3.17665e+06
                                                                             N/A
                                                                                       31.875
        407.23
                      2.9286e+14
                                        874
                                                                                       34.04s
  46
                                                  3.13466e+06
                                                                             N/A
        475.59
                     8.20919e+13
                                        857
                                                  3.13086e+06
                                                                             N/A
                                                                                       36.51s
                                                   3.1245e+06
  48
        698.39
                     6.58531e+17
                                       1124
                                                                             N/A
                                                                                      47.915
  49
        871.75
                     5.67064e+14
                                       1140
                                                   3.1232e+06
                                                                             N/A
                                                                                       54.965
       1008.67
                     1.44739e+18
                                       1126
                                                  3.11533e+06
                                                                             N/A
                                                                                       59.47s
  50
  51
       1040.20
                                                                                       57.75s
                     8.00984e+13
                                       1337
                                                   3.1087e+06
                                                                             N/A
  52
       1087.90
                      4.8939e+10
                                       1352
                                                  3.10262e+06
                                                                             N/A
                                                                                       56.91s
  53
       1212.74
                     6.88053e+18
                                       1338
                                                  3.09244e+06
                                                                             N/A
                                                                                       58.225
  54
       1332.59
                     9.76027e+14
                                       1324
                                                  3.09015e+06
                                                                                       59.02s
                                                                             N/A
                      4.2908e+14
  55
       1375.70
                                       1361
                                                  3.08045e+06
                                                                             N/A
                                                                                       57.03s
  56
       1400 24
                     4 211090+14
                                       1622
                                                  3 075790+06
                                                                             N/A
                                                                                       53 43c
  57
       1485.49
                     3.56926e+14
                                       1361
                                                   3.0712e+06
                                                                             N/A
                                                                                       56.32s
  58
                     5.99454e+17
                                       1379
                                                  3.06568e+06
                                                                             N/A
                                                                                       58.10s
  59
       1519.96
                     1.18494e+10
                                       1452
                                                  3.05779e+06
                                                                             N/A
                                                                                       44.295
  60
       1441.96
                     3.61367e+14
                                       1452
                                                  3.05779e+06
                                                                             N/A
                                                                                       37.90s
       1484.91
                     3.60553e+14
                                       1441
                                                  3.04915e+06
                                                                                       36.405
  61
                                                                             N/A
  62
       1502.33
                     8.71965e+13
                                       1441
                                                  3.04637e+06
  63
       1499.87
                     5.11657e+12
                                       1470
                                                  3.04262e+06
                                                                             N/A
                                                                                       27.78s
                                                  3.03789e+06
  64
       1457.59
                     3.97956e+14
                                       1453
                                                                             N/A
                                                                                       21.465
  65
       1514.59
                     3.44098e+14
                                       1735
                                                  3.03427e+06
                                                                                       20.765
                                                                             N/A
       1597.79
                     6.70466e+14
                                       1728
                                                  3.02874e+06
                                                                             N/A
                                                                                       14.12s
  67
       1652.89
                     3.52673e+14
                                       1753
                                                  3.02842e+06
                                                                             N/A
                                                                                       9.835
  68
       1696.85
                     3.44312e+14
                                       1728
                                                  3.02504e+06
                                                                             N/A
                                                                                        4.995
  69
       1756.59
                     5.96419e+17
                                       1817
                                                  3.01702e+06
                                                                                        0.005
SymbolicRegressor(const_range=(-100, 100),
```

Outrasi. Symb

function_set=['add', 'sub', 'mul', 'div', 'sin'],
generations=70, init_depth=(4, 10), metric='mse',
population_size=500, random_state=0, stopping_criteria=0.01,

In [24]:

print(SR._program)

dd(add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))), sin(mul(sub(sub(sub(sub(add(X0, X0), Sin(mul(sub(-36.019, -77.64 tal(add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0)), add(X0, X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), add(X0, X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), add(X0, X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)), sin(mul(sub(-36.019, -77.644), add(add(add(add(x0, X0), X0)), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(x0, X0), X0)))), sin(mul(sub(-36.019, -77.644), add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), ad 0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0)), add(x0, X0)), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, sub(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X0), add(add(add(X0, X0), sin(X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(add(add(x0, X0), X0)), add(x0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0), x0)), add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0), x0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0), x0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(x0, X0), X0)), add(x0, X0))))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(x0, X0), X0)), add(x0, X0))))))))))))) -77.644), add(add(add(X0, X0)), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0))))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(x0, X0))))))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(x0, X0)))))))))))))))))) 1.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(X0, sub(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X0), add(add(Add(X0, X0), X0), sin(X0))))), <math>sin(mul(sub(-36.019, -77.644), add(add(Add(X0, X0), X0), x0), sin(X0)))), sin(mul(sub(-36.019, -77.644), add(add(Add(X0, X0), X0), x0), sin(X0))))0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), add(add(X0, X0), X0), X0)), add(add(X0, X0), X0)), add(x0, X0), X0) 9), 31.362), adu(adu(x8, x8)), adu(x8, x8)), adu(x8, x8)), adu(x8, x8)), adu(x8, x8)), adu(x8, x8), adu(adu(x8, x8), adu(adu(x8, x8), adu(adu(x8, x8), adu(adu(x8, x8), adu(adu(x8, x8)), adu(x8, x8)))), sin(x8))))), sin(x8))))), sin(x8)))), sin(x8)), sin(x8 (add(add(add(x0, X0)), add(x0, X0)), add(x0, X0), add(add(add(x0, X0)), add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0)), add(x0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0)), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0)), add(x0, X0)))), add(x0, X0)), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)))), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, 51.302), add(add(x0, X0), X0)), add(x0, X0)))), add(x0, X0)), add(x0, X0))), add(x0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(add(x0, 51.302), add(add(x0, X0), X0))), add(x0, X0)))), add(x0, X0))))), add(x0, X0))))), add(x0, X0))))), add(x0, X0))))), add(x0, X0)))), add(x0, X0))))), add(x0, X0)))))), add(x0, X0))))), add(x0, X0)))))), add(x0, X0)))))), add(x0, X0)))))), add(x0, X0))))), add(x0, X0))))), add(x0, X0))))), add(x 0)))))), 51.302), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0), add(X0, 0)))), sin(mul(sub(-36.019, -77.644), add(add(sin(X0), add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, 51.30 2), add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, S0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, S0), X0), X0), add(add(add(X0, S0), X0), X0)), add(add(add(X0, S0), X0), X0)), add(add(add(X0, S0), X0), X0)), add(x0, X0), x0)), x0)), add(x0, X0), x0)), x0)) in(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), 0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, sub(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X 77.644), adu(add(X0, X0), X0), X0), xin(X0))))), 51.302), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(sin(X0), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0))), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(x0, X0)))))), sin(mul(sub(-36.019, -77.644), add(x0, X0)))))), sin(mul(sub(-36.019

Предсказания временного ряда (тестовая выборка)


```
In [28]: error_SR = mean_squared_error(test, y_sr, squared=False)

In [29]: # Ошибка прогноза пр.mean(Y), error_SR

Out[29]: (243847.7678259804, 6510.330169456957)
```

Качество прогноза моделей

```
In [31]: print("ARIMA")
    print_metrics(test, predictions_arima)
    print("\nGPLEARN")
    print_metrics(test, y_sr)
```

ARIMA
R^2: 0.9999973075905872
MSE: 24.173499535797916
MAE: 16.034435631401305

GPLEARN R^2: 0.8047153645391025 MSE: 6510.330169456957 MAE: 6443.710113418146

Вывод: Обе модели, ARIMA и GPLEARN, показали хороший результат. Лучшей по всем используемым метрикам оказалась модель ARIMA.