

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - · How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- · Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- · Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Family CarType Luxury
Sports

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

{Sports, Luxury} (CarType) {Family}

OR

{Family, CarType {Sports}

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.

Need to find optimal partitioning.

{Small, Medium} {Large}

What about this split?

{Medium, Size | Small}

{Small, Large} {Medium}

Splitting Based on Continuous Attributes

C0: 5 C1: 5

Non-homogeneous, High degree of impurity

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 9 C1: 1

Homogeneous,
Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

= 0

C1	0	P(C1) = 0/6 = 0	P(C2) = 6/6 = 1
(2	6	Gini = $1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1$	

C1 1 P(C1) =
$$1/6$$
 P(C2) = $5/6$ Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

C1 2
$$P(C1) = 2/6$$
 $P(C2) = 4/6$ $C2$ 4 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Splitting Based on GINI

 When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)$$

C1	0
S	6

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

P(C1) = 1/6 P(C2) = 5/6

Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

P(C1) = 2/6 P(C2) = 4/6

Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Decision Tree Based Classification

- · Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets