

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬ	ТЕТ Специальное машиностроен	10	
ФАКУЛЬ	тет — специальное машиностроен	AIC .	
КАФЕДРА	А СМ1«Космические аппараты и ракеты-н	CM1«Космические аппараты и ракеты-носители»	
Домашнее задание №1			
	по курсу «Проектирование летательных аппаратов		
с жидкостными ракетными двигателями»			
Вариант №13			
Ι	Группа: СМ1-81		
(Студент: Новиков А.Р.		
.		(Подпись, дата)	
1	Преподаватель: Коровин В.В.		

(Подпись, дата)

Исходные данные

- Дальность полета: $L=3900\ {
 m km}$
- Масса полезной нагрузки: $M_{\Pi\Gamma}=2.2~\mathrm{T}$
- Топливо: АТ + НДМГ

В данном задании необходимо:

- Провести баллистический расчет
- Провести массовый расчет
- Провести объемно-габаритный расчет
- Построить эскиз вида общего

Решение

1 Баллистический расчет

Найдем дальность баллистического участка:

$$L_{\text{балл}} = \frac{L}{K_{\pi}} = 3543 \text{ км}$$
 (1.1)

где коэффициент дальности $K_{\rm д}$ находится по графику (рис. 1.1).

Рисунок 1.1 — Зависимость коэффициента дальности $K_{\mbox{\tiny \begin{subarray}{c}}\mbox{}}$ от дальности L

Для дальности $L=3900~{\rm km}$ он равен $K_{\rm д}=1.1002.$

Тогда угол, на котором разворачивается баллистический участок, равен

$$\beta = \frac{L_{\text{балл}}}{2R_3} = 15.94^{\circ} \tag{1.2}$$

где радиус Земли равен $R_{\rm 3}=6371~{\rm km}.$

Определим угол бросания φ_A по графику (рис. 1.2):

Рисунок 1.2 — Зависимость угла бросания φ_A от угла β

$$\varphi_A = 37.03^{\circ} \tag{1.3}$$

Запишем формулу, связывающую угол бросания, относительную скорость и угол β :

$$tg\beta = \nu_A \frac{tg\varphi_A}{1 - \nu_A + tg^2\varphi_A} \tag{1.4}$$

Получим $\nu_A = 0.431$.

Найдем высоту конца активного участка в первом приближении по зависимости (рис. 1.3).

Рисунок 1.3 — Зависимость высоты конца активного участка $h_{\rm akt}$ от дальности L

Для дальности $L=3900~{
m km}$ она равна $h_{
m akt}=125.6~{
m km}.$

Тогда геоцентрический радиус конца активного участка равен

$$r_A = R_3 + h_A = 6497 \text{ km}$$
 (1.5)

Тогда круговая скорость для точки А равна

$$v_{\text{круг}} = \sqrt{\frac{\mu}{r_{\text{A}}}} = 7833 \,\frac{\text{M}}{\text{c}} \tag{1.6}$$

Скорость в конце активного участка равна

$$v_A = \sqrt{\nu_A \cdot v_{\text{kpyr}}^2} = 5142 \, \frac{\text{M}}{\text{c}} \tag{1.7}$$

Проведем расчет второго приближения.

Найдем оптимальный угол бросания

$$tg\varphi_A^{\text{onr}} = \sqrt{\frac{\nu_A}{2} \cdot \frac{2R_3 - (r_A + R_3)\nu_A}{R_3\nu_A + 2(r_A - R_3)}} = 0.719$$
(1.8)

$$\varphi_A^{\text{OHT}} = 35.73^{\circ} \tag{1.9}$$

Уточним параметры, используя выражение

$$tg\beta = \frac{\nu_A \cdot tg\varphi_A^{\text{onr}}}{1 - \nu_A + tg^2\varphi_A^{\text{onr}}}$$
(1.10)

Откуда получим

$$\nu_A = 0.431 \tag{1.11}$$

Тогда скорость в конце активного участка равна

$$v_A = \sqrt{\nu_A \cdot v_{\text{круг}}^2} = 5144 \frac{\text{M}}{\text{c}} \tag{1.12}$$

Рассчитаем требуемую характеристическую скорость

$$v_{\text{xap}} = v_A + \Sigma \Delta v_i = 6430 \,\frac{\text{M}}{\text{c}} \tag{1.13}$$

где суммарные потери характеристической скорости равны

$$\Sigma \Delta v_i = 0.25 v_A = 1286 \frac{\mathsf{M}}{\mathsf{c}} \tag{1.14}$$

Из формулы Циолковского

$$v_{\rm xap} = -J_{\rm II} \ln \mu_{\rm K} \tag{1.15}$$

выразим относительную конечную массу ракеты:

$$\mu_{\text{K}} = \exp(-\frac{v_{\text{Xap}}}{J_{\text{II}}}) = 0.134$$
 (1.16)

где для топливной пары АТ + НДМГ пустотный удельный импульс равен

$$J_{\Pi} = 3200 \, \frac{M}{c} \tag{1.17}$$

2 Массовый расчет

Запишем весовое уравнение для одноступенчатой ракеты с ЖРД:

$$G_{\kappa} = G_{\Pi\Gamma} + G_{TO} + G_{\Pi Y} + G_{\Pi p} \tag{2.1}$$

Разделим это выражение на стартовый вес G_0 :

$$\frac{G_{\kappa}}{G_0} = \frac{G_{\Pi\Gamma}}{G_0} + \frac{G_{TO}}{G_0} + \frac{G_{\Lambda V}}{G_0} + \frac{G_{np}}{G_0}$$
(2.2)

Заменим слагаемые на коэффициенты:

$$\mu_{\kappa} = \mu_{\Pi\Gamma} + a_{TO}(1 - \mu_{\kappa}) + \frac{\gamma_{\Pi Y}}{\nu_0} + \mu_{\Pi p}$$
 (2.3)

$$\frac{G_{\text{TO}}}{G_0} = a_{\text{TO}} \frac{G_{\text{T}}}{G_0} = a_{\text{TO}} \frac{G_0 - G_{\text{K}}}{G_0} = a_{\text{TO}} (1 - \mu_{\text{K}})$$
(2.4)

где $a_{\mathrm{TO}} = \frac{G_{\mathrm{TO}}}{G_{\mathrm{T}}}$ — весовой коэффициент топливного отсека.

$$\frac{G_{\text{ДУ}}}{G_0} = \gamma_{\text{ДУ}} \frac{P_0}{G_0} = \frac{\gamma_{\text{ДУ}}}{\nu_0} \frac{G_0}{G_0} = \frac{\gamma_{\text{ДУ}}}{\nu_0}$$
(2.5)

где $\gamma_{\rm ДУ}=\frac{G_{\rm ДУ}}{P_0}$ — весовой коэффициент двигательной установки, $\nu_0=\frac{G_0}{P_0}$ — стартовая нагрузка на тягу.

Из уравнения (2.3) получим:

$$\mu_{\Pi\Gamma} = \mu_{\kappa} (1 + a_{TO}) - a_{TO} - \frac{\gamma_{\Pi Y}}{\nu_0} - \mu_{\Pi p}$$
 (2.6)

где $\mu_{\Pi\Gamma}=rac{M_{\Pi\Gamma}}{M_0}.$

Найдем зависимости весовых коэффициентов от стартовой массы по эмпирическим зависимостям. Для топливной пары $AT + HДM\Gamma$ они имеют вид:

$$a_{\text{TO}} = 0.033(1 + 0.5 \exp(-0.014M_{\text{T}}))$$
 (2.7)

$$\gamma_{\text{JIV}} = 0.012(1 + 1.0 \exp(-0.0009 P_{\text{II}})) \tag{2.8}$$

$$\mu_{\rm np} = 0.013(1 + 0.59 \exp(-0.0048M_0)) + \frac{0.25}{M_0}$$
 (2.9)

Зависимость топлива от стартовой массы:

$$M_{\rm T} = M_0 (1 - \mu_{\rm K}) \tag{2.10}$$

Расчитаем время работы ДУ:

$$t_{\rm K} = \frac{J_{\rm II}\nu_0(1-\mu_{\rm K})}{k_{\rm II}g_0} = 147.373 \text{ c}$$
 (2.11)

где $k_{\rm ff}=1.15$ — коэффициент тяги в пустоте, $\nu_0=0.6$ — стартовая нагрузка на тягу.

Секундный массовый расход равен

$$\dot{m} = \frac{M_{\rm T}}{t_{\kappa}} = \frac{M_0(1 - \mu_{\kappa})}{t_{\kappa}}$$
 (2.12)

Тогда пустотная тяга равна

$$P_{\Pi} = \dot{m} J_{\Pi} = \frac{M_0 (1 - \mu_{K})}{t_{K}} J_{\Pi}$$
 (2.13)

Получим зависимость всех весовых коэффициентов от стартовой массы. Тогда весовое уравнение (2.6) примет вид

$$M_{0} = \frac{M_{\Pi\Gamma}}{\mu_{\kappa}(1 + a_{TO}(M_{0})) - a_{TO}(M_{0}) - \frac{\gamma_{\Pi Y}(M_{0})}{\nu_{0}} - \mu_{\pi p}(M_{0})}$$
(2.14)

Решая это уравнение, получим

$$M_0 = 49.142 \text{ T}$$
 (2.15)

Найдем составляющие массы ракеты:

• Масса топлива

$$M_{\rm T} = M_0(1 - \mu_{\rm K}) = 42.553 \,\text{T}$$
 (2.16)

• Масса горючего:

$$M_{\Gamma} = \frac{M_{\rm T}}{1 + k_M} = 11.198 \text{ T}$$
 (2.17)

где $k_M=2.8$ — коэффициент избытка окислителя для топливной пары AT + НДМГ.

• Масса окислителя:

$$M_{\text{OK}} = k_M M_{\Gamma} = 31.355 \text{ T}$$
 (2.18)

• Масса топливного отсека:

$$M_{\rm TO} = a_{\rm TO} M_{\rm T} = 1.791$$
 (2.19)

• Масса двигательной установки:

$$M_{\text{ДУ}} = \frac{\gamma_{\text{ДУ}}}{\nu_0} M_0 = 1.411 \text{ T}$$
 (2.20)

• Прочая масса:

$$M_{\text{nn}} = \mu_{\text{nn}} M_0 = 1.187 \text{ T}$$
 (2.21)

Выполним проверку:

$$M_{\Pi\Gamma} + M_{\Gamma} + M_{OK} + M_{TO} + M_{JJY} + M_{np} =$$

= 2.2 + 11.198 + 31.355 + 1.791 + 1.411 + 1.187 = 49.142 T = M_0 (2.22)

3 Объемно-габаритный расчет

Зададимся диаметром ракеты таким образом, чтобы ее удлинение $\lambda=\frac{L}{d}$ было в пределах $\lambda=8\dots 12.$ Выберем d=2 м.

Будем применять схему с межбаковым отсеком. Примем его длину, равную

$$L_{\text{меж}} = 0.1d = 0.2 \text{ M}$$
 (3.1)

3.1 Расчет тоннельной трубы

Найдем расход окислителя:

$$\dot{m}_{\text{OK}} = \dot{m} \frac{k_M}{1 + k_M} = 212.761 \, \frac{\text{K}\Gamma}{\text{c}}$$
 (3.2)

Тогда диаметр тоннельной трубы равен

$$d_{\rm rp} = \sqrt{\frac{\dot{m}_{\rm OK}}{\frac{\pi}{4}v\rho_{\rm OK}}} = 0.25 \text{ m}$$
 (3.3)

где $v=3~{\rm m\over c}$ — скорость движения окислителя по трубе, $\rho_{\rm OK}=1440~{\rm K\Gamma\over M^3}$ — плотность окислителя.

Тогда диаметр магистральной трубы равен

$$d_{\text{тон}} = d_{\text{тр}} + 0.06 \text{ M} = 0.31 \text{ M} \tag{3.4}$$

3.2 Расчет баков

Объем окислителя:

$$V_{\rm OK} = \frac{M_{\rm OK}}{\rho_{\rm OK}} = 21.774 \,\mathrm{m}^3$$
 (3.5)

Объем горючего:

$$V_{\Gamma} = \frac{M_{\Gamma}}{\rho_{\Gamma}} = 14.175 \text{ m}^3 \tag{3.6}$$

где $\rho_{\Gamma}=790\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$ — плотность горючего.

Расчитаем объем баков с запасом:

$$V_{\text{EO}} = 1.1 V_{\text{OK}} = 23.952 \,\text{m}^3$$
 (3.7)

$$V_{\rm B\Gamma} = 1.1 V_{\Gamma} = 15.593 \,\mathrm{m}^3$$
 (3.8)

Расчитаем вылет баков:

$$h = 0.25d = 0.5 \text{ M} \tag{3.9}$$

Найдем радиус днищ баков:

$$R_{\text{дн}} = 1.25 \frac{d}{2} = 1.25 \text{ M}$$
 (3.10)

Тогда объем сегмента днища равен

$$V_{\text{дH}} = \frac{1}{3}\pi h^2 (3R_{\text{дH}} - h) = 0.851 \text{ m}^3$$
(3.11)

Объем цилиндрической части бака окислителя равен

$$L_{\text{IIO}} = V_{\text{BO}} - 2V_{\text{дH}} = 22.25 \text{ m}^3$$
 (3.12)

Тогда длина цилиндрической части бака окислителя равна

$$L_{\text{IIO}} = \frac{4V_{\text{IIO}}}{\pi d^2} = 7.082 \text{ m}$$
 (3.13)

Объем цилиндрической части бака горючего равен

$$V_{\text{Ц}\Gamma} = V_{\text{Б}\Gamma} - 2(V_{\text{дн}} - \frac{\pi d_{\text{тон}}^2}{4}h) = 13.967 \text{ m}^3$$
 (3.14)

Тогда длина цилиндрической части бака горючего равна

$$L_{\text{Ц}\Gamma} = \frac{V_{\text{Ц}\Gamma}}{\frac{\pi}{4}(d^2 - d_{\text{тон}}^2)} = 4.555 \text{ M}$$
 (3.15)

3.3 Расчет приборного отсека

Введем следующее допущение:

$$M_{\text{IIO}} = \frac{M_{\text{пр}}}{2} = 593.282 \text{ kg}$$
 (3.16)

Тогда объем приборного отсека равен

$$V_{\Pi O} = \frac{M_{\Pi O}}{\rho_{\Pi O}} = 1.825 \text{ m}^3 \tag{3.17}$$

где $\rho_{\Pi \rm O} = 325 \; \frac{{\rm K}\Gamma}{{\rm M}^3}$ — принятая плотность приборного отсека.

Тогда длина приборного отсека равна

$$L_{\Pi O} = \frac{4V_{\Pi O}}{\pi d^2} = 0.581 \text{ m}$$
 (3.18)

3.4 Расчет головной части

Зададимся углом раскрытия головной части, равным 40° . Тогда длина головной части рав-

на

$$L_{\Gamma Y} = \frac{d}{2tq20^{\circ}} = 2.747 \text{ M} \tag{3.19}$$

Тогда объем головной части равен

$$V_{\Gamma \Psi} = \frac{1}{3} \frac{\pi d^2}{4} L_{\Gamma \Psi} = 2.877 \text{ m}^3$$
 (3.20)

3.5 Расчет хвостового отсека

Для упрощения расчетов примем двигатель ракеты однокамерным.

Для топливной пары АТ + НДМГ расходный комплекс равен

$$\beta_{\rm T} = 170 \text{ c} = 1668 \frac{\rm M}{\rm c}$$
 (3.21)

Давление в камере сгорания примем равным

$$p_{\kappa} = 10 \text{ M}\Pi a \tag{3.22}$$

Давление на срезе сопла примем равным

$$p_a = 0.07 \text{ M}\Pi a \tag{3.23}$$

Показатель процесса расширения для топливной пары равен

$$n = 1.2 \tag{3.24}$$

Расчитаем площадь критического сечения:

$$S_{\rm kp} = \beta_{\rm T} \frac{P_{\rm II}}{p_{\rm k} J_{\rm II}} = 0.048 \text{ m}^2 \tag{3.25}$$

Диаметр критического сечения равен

$$d_{\rm kp} = \sqrt{\frac{4S_{\rm kp}}{\pi}} = 0.248 \text{ m} \tag{3.26}$$

Радиус критического сечения равен

$$r_{\rm kp} = \frac{d_{\rm kp}}{2} = 0.124 \text{ M}$$
 (3.27)

Тогда площадь выходного сечения сопла равна

$$S_{\rm a} = S_{\rm kp} \left(\frac{\frac{n-1}{2} \left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}}{\left(\frac{p_a}{p_{\rm k}}\right)^{\frac{2}{n}} - \left(\frac{p_a}{p_{\rm k}}\right)^{\frac{n+1}{n}}} \right) = 0.743 \text{ m}^2$$
 (3.28)

Тогда диаметр выходного сечения равен

$$d_a = \sqrt{\frac{4S_a}{\pi}} = 0.973 \text{ m} \tag{3.29}$$

Радиус выходного сечения равен

$$r_a = \frac{d_a}{2} = 0.486 \text{ M} \tag{3.30}$$

Проведем расчет закритической части сопла. В качестве первого приближения рассмотрим коническое сопло. Угол раскрытия сопла примем равным $2\beta=40^{\circ}$.

Тогда длина этого сопла равна

$$l_{\rm K} = \frac{r_a - r_{\rm KP}}{tq\beta} = 0.996 \text{ M} \tag{3.31}$$

В качестве второго приближения примем параболический профиль сопла. Длина его закритической части равна

$$l_{\text{3aKD}} = 0.8 l_{\text{K}} = 0.797 \text{ M}$$
 (3.32)

Рассчитаем докритическую часть сопла. Диаметр камеры примем равным

$$d_{\text{KAM}} = 2d_{\text{KD}} = 0.495 \text{ M} \tag{3.33}$$

Тогда радиус камеры сгорания равен

$$r_{\text{KAM}} = \frac{d_{\text{KAM}}}{2} = 0.248 \text{ M}$$
 (3.34)

Длину камеры сгорания примем равной

$$l_{\text{Kam}} = 3d_{\text{KD}} = 0.743 \text{ M}$$
 (3.35)

Примем угол сужения докритической части равным $2\beta_{\text{докр}} = 90^{\circ}.$

Тогда длина докритической части сопла равна

$$l_{\text{докр}} = \frac{r_{\text{кам}} - r_{\text{кр}}}{tg\beta_{\text{докр}}} = 0.124 \text{ M}$$
 (3.36)

Длина сопла равна

$$l_{\rm C} = l_{\rm докр} + l_{\rm 3akp} = 0.921 \text{ M}$$
 (3.37)

Длину двигательной установки примем равной

$$L_{\text{IIV}} = 2l_{\text{C}} = 1.842 \text{ M}$$
 (3.38)

Длину хвостового отсека примкем равной длине двигательной установки:

$$L_{\rm XO} = L_{\rm JIY} = 1.842 \,\mathrm{m}$$
 (3.39)

3.6 Расчет длины ракеты

Расчитаем полную длину ракеты:

$$L = L_{\Gamma \text{H}} + L_{\Pi \text{O}} + L_{\text{LIO}} + L_{\text{Mex}} + L_{\text{LI}\Gamma} + 4h + L_{\text{XO}} = 19.007 \text{ M}$$
 (3.40)

Расчитаем удлинение ракеты:

$$\lambda = \frac{L}{d} = 9.504 \tag{3.41}$$

Данное значение находится в допустимых пределах.