Pattern Recognition Lab1:

Discriminant Functions

Francesco Tortorella

University of Cassino and Southern Latium Cassino, Italy

Consider two classes with Gaussian densities:

$$p(x|\omega_1) = N(\mu_1, \Sigma_1)$$
$$p(x|\omega_2) = N(\mu_2, \Sigma_2)$$

- First case $\Sigma_1 = \Sigma_2 = \Sigma$
 - Build two discriminant functions and evaluate the decision boundary for different values of P_2/P_1 {0.1,0.5,1,2,10}

Lab1.1

- Second case $\Sigma_1 \neq \Sigma_2$
 - Build two discriminant functions and evaluate the decision boundary for different values of P_2/P_1 {0.1,0.5,1,2,10}

• Hints:

- use the Matlab function mvnrnd(mu, Sigma, N) for plotting the samples of a Gaussian distribution,
- use the Matlab script ShowDF (provided on Classroom) for visualizing decision regions and boundary given two discriminant functions.

Lab 1.2

- Consider the two cases of Lab 1.1, but in a cost-sensitive framework
- Use the following cost-matrices:

$$\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 2 \\ 4 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 8 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 8 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} -1 & 4 \\ 1 & -4 \end{pmatrix} \qquad \begin{pmatrix} -4 & 4 \\ 1 & -1 \end{pmatrix}$$

Lab 1.3

- Class Distribution: (class value 1 is interpreted as "tested positive for diabetes")
 - Class Value Number of instances

0 500 1 268

Brief statistical analysis:

Attribute number	Mean.	Standard Deviation:
Authoric Hullingt.	IVICALI.	- Sianuaiu Devianon.

1. 3.8 3.4

2. 120.9 32.0

3. 69.1 19.4

4. 20.5 16.0

5. 79.8 115.2

6. 32.0 7.9

7. 0.5 0.3

8. 33.2 11.8

Pattern Recognition

F. Tortorella

University of Cassino and S.L.

- Read the file 'pima-indians-diabetes.data'
- Part the set into two subsets: assume one (PimaTr) as training set and the other one (PimaTest) as test set
- Starting from the training set, build a linear classifier and a quadratic classifier and compare the accuracies on the test set
- Consider different sizes of the training set (25%, 50%, 75%) and analyze how the accuracy changes.

