- 1. (a) $n! = n(n-1)(n-2) \dots 2 \cdot 1$ so $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$. What are the prime factors of 12!.
 - (b) Show $2|(n^2 n)$.
 - (c) Show the numbers 6k + 5 and 7k + 6 are co-prime for every $k \ge 1$.

Answer: a: So

$$12! = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2
= 3 \cdot 2^{2} \cdot 11 \cdot 2 \cdot 5 \cdot 3^{2} \cdot 2^{3} \cdot 7 \cdot 2 \cdot 3 \cdot 5 \cdot 2^{2} \cdot 3 \cdot 2
= 3^{5} \cdot 2^{8} \cdot 5^{2} \cdot 7 \cdot 11$$
(1)

b: Well $n^2 - n = n(n-1)$ and one of those has to be even. c: Say a|6k+5 so 6k+5=ra for some r and hence

$$7k + 6 = k + 1 + ra (2)$$

So a|7k+6 only if a|k+1, now a|6k+5 and a|k+1 means a|k which in turn means a|1. There might be a more elegant way of doing this, but this way is one way.

- 2. Let p be an odd prime. Find the values of x so that it is its own inverse modulo p. **Answer**: If x is its own inverse $x^2 \equiv 1$ or $x^2 1 \equiv 0$. Hence $p|x^2 1$ or p|(x+1)(x-1), since p is prime that means p|(x+1) or p|(x-1) giving x=1 or x=p-1.
- 3. Use Euler's theorem to compute
 - (a) $3^{340} \pmod{341}$
 - (b) $7^{8^9} \pmod{100}$
 - (c) $2^{10000} \pmod{121}$

Answer: Now

$$341 = 11 \cdot 31 \tag{3}$$

so $\phi(341) = 300$ and hence

$$3^{340} \equiv 3^{40} \tag{4}$$

which is still a little too big for a calculator and so we need to beat it down a bit further. $3^6 = 729 \equiv 47$ so

$$3^{40} = (3^6)^6 3^4 \equiv 47^6 3^4 \tag{5}$$

Now $47^2 = \equiv 163$ so we get

$$29^6 3^4 \equiv 163^3 3^4 = 3(3*163)^3 = 3(148)^3 = 56 \tag{6}$$

Next, $\phi(100)=40$ so we actually need to find $8^9\pmod{40}$ first, since $8^3\equiv 32\pmod{40}$ this gives

$$32^3 = 2^{15} = 2^6 2^9 \equiv 2^{11} = 2^2 2^9 \equiv 2^2 2^5 \equiv 8 \tag{7}$$

all mod 40, so now we want $7^8 \pmod{100}$ and this is one. Finally $\phi(121) = 110$ so we want 10000 mod 110 which is 100. Now $2^7 \equiv 7 \mod{121}$. hence

$$2^{100} = (2^7)^{14} 4 \equiv 7^{14} 2^2 \equiv 101^4 14^2 \equiv 67.$$
 (8)

4. A subgroup of a group is a subset of the group that is a group, the main thing to check is that the subset is closed. Now, using the notation in the lecture notes $\{e, a\}$ in the Z_4 group is not a subgroup since $a^2 = c$ so it isn't closed. Can you find a Z_2 subgroup of Z_4 ? What about V_4 ? It has three Z_2 subgroups.

Answer: Unlike a, the element $c^2 = e$ so $\{e, c\}$ is a Z_2 subgroup. In V_4 all the elements square to the identity, so $\{e, a\}$, $\{e, b\}$ and $\{e, c\}$ are all Z_2 subgroups.