ASSIGNMENT 4.1

We want to solve the algebraic equation $x^2 + \varepsilon x - 1 = 0$ using regular perturbation, assuming ε is small.

Step 1: Assume a Perturbation Expansion

Assume the solution x can be written as a series expansion in ε :

$$x = x \quad 0 + \varepsilon \quad x \quad 1 + \varepsilon^2 \quad x \quad 2 + \dots$$

Step 2: Substitute the Series into the Equation

Substitute the series expansion into the original equation:

$$(x_0 + \epsilon x_1 + \epsilon^2 x_2)^2 + \epsilon (x_0 + \epsilon x_1 + \epsilon^2 x_2) - 1 = 0$$

Step 3: Expand the Equation

Expand the equation by multiplying out the terms:

$$x_0^2 + 2\epsilon x_0 x_1 + \epsilon^2 (2x_0x_2 + x_1^2) + \epsilon x_0 + \epsilon^2 x_1 + \epsilon^3 x_2 - 1 = 0$$

Step 4: Group Terms by Powers of ε

Group the terms by powers of ε :

 ε^0 terms: $x \cdot 0^2 - 1$

 ϵ^1 terms: 2x + 0x + 1 + x + 0

 ϵ^2 terms: 2x 0 x 2 + x 1² + x 1

Step 5: Solve for x = 0, x = 1, and x = 2

Solve for x_0 , x_1 , and x_2 from the equations obtained for each power of ϵ .

Step 5.1: Solve for x 0 (Constant Term, ε^0)

The equation for ε ^0 is:

$$x 0^2 - 1 = 0$$

Solve for x = 0:

$$x 0 = \pm 1$$

Step 5.2: Solve for x_1 (First-Order Term, ϵ^1)

The equation for ε^1 is:

$$2x \ 0x \ 1 + x \ 0 = 0$$

Solve for x = 1:

$$x_1 = -x_0/2$$

Substitute the values of x_0:

If
$$x_0 = 1$$
, then $x_1 = -1/2$.

If
$$x_0 = -1$$
, then $x_1 = 1/2$.

Step 5.3: Solve for x_2 (Second-Order Term, ϵ^2)

The equation for ε^2 is:

$$2x 0x 2 + x 1^2 + x 1 = 0$$

Substitute the values of x_0 and x_1 :

$$x_2 = -(x_1^2 + x_1) / (2x_0)$$

Substitute the values for x = 0 and x = 1:

For x
$$0 = 1$$
 and x $1 = -1/2$:

$$x 2 = 1/8$$

For
$$x_0 = -1$$
 and $x_1 = 1/2$:

$$x_2 = 3/8$$

Step 6: Write the Final Solution

Substitute x_0 , x_1 , and x_2 back into the perturbation expansion:

For x
$$0 = 1$$
:

$$x \approx 1 - \epsilon/2 + \epsilon^2/8$$

For
$$x_0 = -1$$
:

$$x \approx -1 + \epsilon/2 + 3\epsilon^2/8$$

HINTS WITH SYNTAX

Hint 1: Define Variables

Start by defining the necessary variables using 'sympy'. You need variables for 'x', ' ϵ ', and the coefficients 'x 0', 'x 1', and 'x 2'.

Use 'sp.symbols' to define these symbols.

Hint 2: Set Up the Perturbation Series

- Write the perturbation series as 'x perturbation = $x0 + \varepsilon * x1 + \varepsilon * *2 * x2$ '.
- This series represents the approximate solution we're seeking.

Hint 3: Substitute into the Original Equation

- Substitute 'x perturbation' into the original equation $x^2 + \epsilon x 1 = 0$.
- Use 'sp.expand' to expand the equation, which will allow you to separate it into different powers of 'epsilon'.

Hint 4: Collect Terms by Powers of Epsilon

- Use 'sp.collect' to group the terms in the expanded equation by powers of ε .
- This step will help you identify the equations for 'x 0', 'x 1', and 'x 2' separately.

Hint 5: Solve for x 0 (Zeroth-Order Term)

- Solve the equation involving the zeroth-order term (constant term) using 'sp.solve'.
- The solution will give you the values of `x_0`.

Hint 6: Solve for x 1 (First-Order Term)

- The first-order term will involve `x_0` and `x_1`.
- Substitute the value(s) of x_0 you found in the previous step into the first-order equation, and solve for x_1 .

Hint 7: Solve for x 2 (Second-Order Term)

- The second-order term will involve `x_0`, `x_1`, and `x_2`.
- Substitute the values of 'x 0' and 'x 1' into the second-order equation and solve for 'x 2'.

Hint 8: Combine the Solutions

- Combine the values of 'x_0', 'x_1', and 'x_2' into the perturbation series.
- This will give you the final expression for 'x' in terms of ε .

Hint 9: Simplify and Display the Final Solution

- Simplify the final expressions using `sp.simplify`.
- Display the solutions for 'x' to see the final perturbative approximation in terms of ε .

Hint 10: Construct and Simplify the Approximate Solutions

- What to Do: Combine the solutions x_0, x_1, and x_2 into the perturbation series. Use sp.simplify() to simplify the expression.
- Why: This yields the final approximate solutions for x in terms of ϵ .

Hint 11: Display the Results

• What to Do: Use print() to display the results for x_0, x_1, x_2, and the final approximate solutions.

Bonus Hint: Explore 'sympy' Functions

- Explore other useful `sympy` functions like `sp.factor`, `sp.expand`, and `sp.solve` to manipulate and solve the equations.

SYNTAX	WORK
sp.expand()	To expand an expression, you can use the
	sp.expand() function.
sp.collect()	To collect terms by powers of a particular
	variable, use the sp.collect() function.
sp.coeff()	The sp.coeff() function in SymPy is used to extract
	the coefficient of a specified term in an
	expression.

Step 1: Outer Solution (Leading-Order Approximation)

Consider the original equation: $\varepsilon^2 * x^2 + x - 1 = 0$

For the outer solution, we set epsilon = 0 (leading-order approximation):

$$0 * x^2 + x - 1 = 0$$

This simplifies to: x - 1 = 0

Therefore, the outer solution is: x outer = 1

This solution is valid away from regions where the small $\varepsilon ^2 *x^2$ term dominates.

Step 2: Inner Solution (Boundary Layer Analysis)

In regions where the small $\varepsilon ^2 * x^2$ term is important,

we introduce a boundary layer variable:

Let $x = \varepsilon * xi$, where xi is the new variable.

Substitute into the original equation: $\varepsilon^2 * (\varepsilon * xi)^2 + \varepsilon * xi - 1 = 0$

Simplifying, we get: $\varepsilon^4 * xi^2 + \varepsilon * xi - 1 = 0$

Dividing the equation by ε , we obtain: $\varepsilon^3 * xi^2 + xi - 1/\varepsilon = 0$

As - $\varepsilon > 0$, the dominant balance is given by: xi - $1/\varepsilon = 0$

Therefore, the inner solution is: xi inner = $1/\epsilon$

Converting back to x, we get: x inner = 1

Step 3: Matching the Solutions

We check if the inner and outer solutions match in an overlapping region:

As xi -> ∞ (which means x -> 0), the inner solution approaches: x inner = 1

The outer solution was also $x_{outer} = 1$, so the solutions match.

No further modification is necessary as the solutions are consistent across regions.

Step 4: Uniform Approximation (If Needed)

In some singular perturbation problems, we might combine the inner and outer solutions.

For this specific example, both inner and outer solutions are x = 1, so the

uniform solution is simply: x_uniform = 1

This solution is valid across the entire domain.

SYNTAX AND PSEUDO CODE

Step 1: Define Variables

Define the small parameter epsilon and the variable x.

Example: epsilon, x = symbols('epsilon x')

Step 2: Define the Original Equation

Write down the equation to be analyzed.

Example: equation = epsilon $^2 * x^2 + x - 1$

Step 3: Outer Solution (Leading-Order Approximation)

Set epsilon to 0 in the equation and solve for x.

Example: outer equation = equation.subs(epsilon, 0)

outer_solution = solve(outer_equation, x)

Step 4: Inner Solution (Boundary Layer Analysis)

Introduce a new variable xi for the boundary layer.

Example: xi = symbols('xi')

x inner = epsilon * xi # Boundary layer scaling

Substitute x = epsilon * xi into the original equation.

Example: inner equation = equation.subs(x, x inner)

Simplify the inner equation and divide by epsilon to obtain leading order.

Example: inner_equation_simplified = simplify(inner_equation / epsilon)

Solve the inner equation for xi.

Example: inner solution = solve(inner equation simplified, xi)

Step 5: Matching the Inner and Outer Solutions

Analyze the inner solution in the limit as xi -> infinity and compare with the outer solution.

Example: matching inner to outer = [sol.subs(xi, 1/x).simplify()] for sol in inner solution

Check if the solutions match or if further adjustment is needed.

Step 6: (Optional) Uniform Approximation

Combine the inner and outer solutions if necessary to create a uniform solution.

Example: uniform solution = x outer + inner correction term

Step 7: Output the Solutions

Print or return the outer solution, inner solution, and uniform approximation if applicable.

Example: print("Outer Solution:", outer_solution)

print("Inner Solution:", inner_solution)

print("Uniform Solution:", uniform_solution if defined)