Obliczanie kilometrażu rzek na przykładzie sieci rzecznej Bugu w okolicach powiatu bialskiego województwa lubelskiego

Raport z projektu zaliczeniowego z przedmiotu "Podstawy programowania aplikacji GIS"

Wykonali: Eryk Srebrny i Mateusz Miazek

Wprowadzenie i opis zagadnienia

Obliczanie kilometrażu rzek jest kluczowe w hydrologii, zarządzaniu zasobami wodnymi oraz ochronie środowiska. Dokładne określenie długości rzek i ich odcinków pozwala na analizę zmian hydrograficznych, planowanie infrastruktury wodnej i monitorowanie wpływu działalności człowieka na ekosystemy rzeczne. Do obliczania kilometrażu rzek w sposób automatyczny postanowiliśmy wykorzystać skrypt napisany w języku Python, który wykorzystuje bibliotekę ArcPy opracowaną przez ESRI. Program dodatkowo umożliwia wygenerowanie losowych punktów referencyjnych na rzekach, w celu sprawdzenia poprawności dokonanych pomiarów. Wynikiem jest dodatkowa tabela z kilometrażem globalnym orz lokalnym¹.

¹ Patrz: zarządzenie Generalnego Dyrektora Dróg Krajowych i Autostrad

Dane i metodologia

Dane

Nazwa pliku	Тур	Opis	Źródło
rivers.shp	Shapefile (Linie)	Sieć rzeczna	OSM
random_points.shp	Shapefile (Punkty)	Losowe punkty na rzece	Wygenerowane za pomocą skryptu
pour_points.shp	Shapefile (Punkty)	Punkty ujścia rzek	Pozyskane manualnie

Metodologia

- 1. Pobranie danych z OSM i ich przygotowanie (agregacja po nazwie i usunięcie obiektów rozłącznych)
- 2. Dokonanie zmiany orientacji rzek punkt końcowy rzeki powinien być jej wierzchołkiem wiszącym²
- 3. Wygenerowanie losowych punktów referencyjnych wzdłuż rzek³
- 4. Wyznaczenie punktów ujścia dla rzek głównych
- 5. Wygenerowanie punktów przecięcia się rzek z ich dopływami⁴
- 6. Obliczenie kilometrażu lokalnego dla punktów przecięcia i punktów referencyjnych⁵

⁴ Patrz: załącznik nr 4 ⁵ Patrz: załącznik nr 5

² Patrz: <u>załącznik nr 2</u>

³ Patrz: <u>GitHub</u>

- 7. Dodanie do każdego punktu na rzece kilometraży lokalnych punktów przecięcia aż do rzeki głównej w celu uzyskania kilometrażu globalnego⁶.
- 8. Sprawdzenie działania algorytmu poprzez wygenerowanie punktów z tabeli z kilometrażem lokalnym⁷.

Wyniki

Po uruchomieniu skryptu uzyskano następujące wyniki:

- Sklasyfikowaną i skorygowaną sieć rzeczną (*rivers.shp*):
 - Korekcja kierunku program sprawdza i koryguje kierunek przepływu rzek, aby płynęły od źródła do ujścia. Każda linia rzeki jest poprawnie zorientowana, co pozwala na precyzyjne obliczenia.
 - Klasyfikacja rzek (ranking rzek) każdej rzece przypisywana jest wartość w polu "Rank" z rangą. Dla rzeki głównej jest to 1 i od jej dopływózaczyna się przydzielanie wartości.
- Kilometraż losowo wygenerowanych punktów na rzekach (*distance_table.dbf*):
 - o Distance odległość punktu od początku rzeki (w metrach).
 - FullDist całkowita odległość punktu od ujścia rzeki głównej (w metrach).
 - Path ścieżka z id rzek, przez które trzeba przejść, aby dojść z punktu do ujścia.

Tabela z otrzymanym kilometrażem

Distance	LINE_FID	POINT_FID	FullDist	Path
20770,716918	0	0	236058,234879	0,29,28
17469,273852	0	1	232756,791813	0,29,28
9178,275211	0	2	224465,793172	0,29,28
7990,437196	0	3	223277,955157	0,29,28
20181,774513	0	4	235469,292474	0,29,28
40958,085042	1	5	201561,823361	1,28
85165,359187	1	6	245769,097506	1,28
54310,349711	1	7	214914,08803	1,28
10877,715461	1	8	171481,45378	1,28
62925,319379	1	9	223529,057698	1,28
24453,997303	2	10	272410,264709	2,26,29,28
23663,539076	2	11	271619,806482	2,26,29,28
13243,20481	2	12	261199,472216	2,26,29,28
7523,356748	2	13	255479,624154	2,26,29,28
4488,540003	2	14	252444,80741	2,26,29,28
14395,262296	3	15	214309,004521	3,29,28
15824,751879	3	16	215738,494105	3,29,28
11032,323347	3	17	210946,065573	3,29,28
7886,261494	3	18	207800,00372	3,29,28
9681,979374	3	19	209595,7216	3,29,28
15519,718445	4	20	259061,75613	4,29,28

Distance	LINE_FID	POINT_FID
5243,957819	4	21
1622,95577	4	22
15123,34173	4	23
10355,163259	4	24
18192,643851	5	25
24203,530079	5	26
34007,736565	5	27
17830,873281	5	28
29529,397858	5	29
8866,447285	6	30
24792,990269	6	31
18939,120362	6	32
14573,374127	6	33
5984,25109	6	34
11950,670804	7	35
37646,332815	7	36
20992,328295	7	37
7801,831535	7	38
24534,091772	7	39
9324,096848	8	40
467,057955	8	41

⁷ Patrz: GitHub

_

⁶ Patrz: <u>załącznik nr 6</u>

• Punkty pozyskane z otrzymanego kilometrażu w celu weryfikacji algorytmu (*mileage_points.shp*):

Podsumowanie

Przedstawiona metoda umożliwia precyzyjne określenie kilometrażu rzek przy wykorzystaniu narzędzi programistycznych GIS. Kod źródłowy jest dostępny <u>tutaj</u> w postaci repozytorium na platformie GitHub, co pozwala na jego dalszą modyfikację i zastosowanie w różnych projektach hydrograficznych.

Literatura

Zarządzenie nr 18 Generalnego Dyerktora Dróg Krajowych i Autostrad z dnia 1
czerwca 2012 r. w sprawie zasad ustalania i prowadzenia kilometrażu dróg

Załączniki

- Obliczanie długości pomiędzy dwoma punktami w układzie kartezjańskim -"Points_Distance.png"
- 2. Skorygowanie kierunku linii (wierzchołki wiszące punktami końcowymi geometrii) "Order_Lines.png"
- 3. Klasyfikacja rzek (nadanie rang) "Rank_Rivers.png"
- 4. Wyodrębnienie punktów przecięcia warstwy liniowej "Lines_Intersections.png"
- 5. Obliczenie długości po linii od punktów do punktu początkowego geometrii "Distance_From_Begining.png"
- 6. Obliczanie kilometrażu punktów na rzekach "Mileage_Calculation.png"