Let's solve a few practice problems:

(1) (M(Q) flow many non-trivial polynomials Pexist such that (z2-ax+18)P(x)-(x2+3x)P(x-3)=0 Ya=R? (a) 0 (6) 1

(c) 2

(d) Infinitely many

Solution:

$$(x^2 - ax + 18) p(x) = x (x+3) p(x-3)$$

 $p(0) = 0$

$$(f \rho(j-3) = 0)$$

$$(j^2 - aj + 18) P(j) = j (j+3) P(j-3)$$

If
$$j \neq 0,3$$
, $p(j-3) = 0 \implies p(j) = 0$

We have
$$P(3) = 0$$
 ... $P(6) = 0$...

$$\rho(z) = 0$$
 identically. (a)

②
$$P(x)$$
 is a real-valued phynomial of degree 2020

Further, $P(n) = \frac{1}{n}$ for $n = 1, 2, ..., 2021$

Which of the following is true? (Multiple correct)

(a) $P(2022) = \frac{1}{2022}$ (e) $P(2022) = 1$

(b) $P(2022) = \frac{2}{2022}$ (f) $P(2022) = 0$

(c) $P(2023) = \frac{1}{2023}$ (g) $P(2023) = 1$

(d) $P(2023) = \frac{2}{2023}$ (h) $P(2023) = 0$

Solution:

 $P(n) = \frac{1}{n}$ for $i = 1... 2021$

The pohynomial $x P(x) - 1$ has roots $1, 2... 2021$ and is of degree 2021 .

 $x P(x) - 1 = k(x - 1)(x - 2)...(x - 2021)$

fut $x = 0$
 $-1 = k \times (-1) 2021! = 0 k = \frac{1}{2021} 2020 \times ... \times 1$
 $P(2022) = \frac{2}{2022} = \frac{1}{1011}$
 $2023 P(2023) - 1 = \frac{1}{2022} 2022 \times 2021 \times ... \times 2$
 $P(2023) = 1$

(b) (g)

Of which of the following degrees hoes there exist a polynomial p(x) s.t. $p(x_i) = y_i$ $\forall i = 0... 4$?

(a) 1 (a) 4

(b) 2 (e) 5

(c) 3 (f) 6

Solution: (b), (e), (f)