∽ Corrigé du brevet des collèges 29 juin 2017 ∾ Métropole - La Réunion - Antilles-Guyane

4 points EXERCICE 1

1. Cette expérience aléatoire n'a que deux issues : boule verte et boule bleue. La somme des probabilités des issues d'une expérience aléatoire est égale à

Donc, p(obtenir une boule bleue) = 1 - p(obtenir une boule verte) = $1 - \frac{2}{5}$ =

 $\frac{5}{5} - \frac{2}{5} = \frac{3}{5} = 0, 6.$

- 2. Chaque tirage est indépendant du précédent, les probabilités des différentes issues ne sont pas modifiées, Paul aura toujours 3 chances sur 5 d'obtenir une boule bleue.
- 3. Méthode 1:

 $\frac{2}{5}$ du nombre total de boules représente 8 boules, je calcule donc 5 $\frac{8}{2} \times 3 = 4 \times 3 = 12$.

Il y a 12 boules bleues dans l'urne.

Méthode 2 :

Methode 2:
$$\frac{2}{5} = \frac{2 \times 4}{5 \times 4} = \frac{8}{20}$$
 et $20 - 8 = 12...$

EXERCICE 2 6 points

- 1. Les coordonnées du point de départ du tracé sont (-200; -100).
- 2. Le script permet de dessiner 5 triangles.
- 3. a. La longueur du côté du deuxième triangle tracé est de 80 pixels.
 - **b.** La figure obtenue :

4. Il faut placer le bloc « tournez le bloc de 60° » après l'instruction n° 9 du script initial pour obtenir cette nouvelle figure.

EXERCICE 3 4 points

- 1. Ce n'est pas une situation de proportionnalité car le graphique montrant l'évolution de la tension en fonction du temps n'est pas une droite.
- 2. La tension mesurée au bout de 0,2 s, la tension mesurée est de 4,4 V.
- **3.** Je calcule 60 % de la tension maximale : $\frac{60}{100} \times 5 = 0, 6 \times 5 = 3$.

60 % de la tension maximale correspond à 3 V.

Par lecture graphique, on détermine que cette tension est atteinte au bout d'environ 0,09 s.

1. Mai 2015 correspond à la période du 01/04/15 au 30/06/15. Pour une puissance de 28 kW, le prix d'achat du kWh en centimes d'euros est 13,95, soit 0,1395 €.

Je calcule ainsi le prix de 31 420 kWh:

$$31420 \times 0,1395 = 4383,09.$$

Le prix d'achat de 31 420 kWh est d'environ 4 383 €.

2. ABC est un triangle rectangle en B tel que BC = 4.5 m et AC = 7 - 4.8 = 2.2 m.

On a donc :
$$\tan \widehat{ABC} = \frac{AC}{BC}$$
, c'est-à-dire

$$\tan \widehat{ABC} = \frac{2.2}{4.5}$$
. La calculatrice donne $\widehat{ABC} \approx 26^{\circ}$.

Le pan sud du toit forme un angle d'environ 26° avec l'horizontale.

3. a. ABC est un triangle rectangle en B, donc d'après le théorème de Pythagore, on a :

$$AB^2 = AC^2 + BC^2$$

$$AB^2 = 2, 2^2 + 4, 5^2,$$

$$AB^2 = 4,84 + 20,25$$

$$AB^2 = 25,09$$

Donc AB =
$$\sqrt{25,09} \approx 5 \text{ m}$$
.

b. 1 carré de 1 m de côté a une aire de 1 m^2 . 20 panneaux occupent alors une surface de 20 m^2 .

$$7.5 \times 5 = 37.5 \text{ m}^2$$
 Le pan sud du toit a une aire d'environ 37.5 m^2 .

$$\frac{20}{37.5} \times 100 \approx 53.$$

Environ 53% du pan sud du toit sera donc recouvert par les panneaux solaires.

c. Si on enlève l'espace utilisé pour les bordures, celui disponible pour disposer les 20 panneaux est un rectangle de dimensions :

longueur =
$$7.5 - 2 \times 0.3 = 7.5 - 0.6 = 6.9$$
 (m);

largeur =
$$5 - 2 \times 0$$
, $3 = 5 - 0$, $6 = 4$, 4 m.

Le propriétaire peut donc installer jusqu'à $6 \times 4 = 24$ panneaux de 1 m de côté. Il pourra donc aisément installer ses 20 panneaux solaires.

EXERCICE 5 8 points

1. On a $\frac{50}{24,07} \approx 2,08$ (m/s). Pernille Blume nage à environ 2,08 m par seconde.

$$6 \text{ (km/h} = \frac{6000 \text{ m}}{3600 \text{ (s)}} \approx 1,67 \text{ (m/s)}.$$

Marcher à 6 km/h correspond à parcourir environ 1,67 m/s.

Pernille Blume se déplace plus rapidement en nageant que le marcheur.

2. a.
$$E = (3x + 8)^2 - 64$$

$$E = (3x)^2 + 2 \times 3x \times 8 + 8^2 - 64$$

$$E = 9x^2 + 48x + 64 - 64$$

$$E = 9x^2 + 48x$$

Méthode 1

b.

$$E = (3x + 8)^2 - 64$$

$$E = (3x + 8)^2 - 8^2$$

$$E = 9x^2 + 48x$$

$$E = [(3x+8)-8][(3x+8)+8]$$

$$E = 3x \times 3x + 3x \times 16$$

$$E = 3x(3x + 16)$$

$$E = 3x(3x + 16)$$

c. Résoudre l'équation $(3x+8)^2 - 64 = 0$ revient à résoudre l'équation 3x(3x+16) = 0.

Un produit de facteurs est nul si au moins l'un de ses facteurs est nul.

Soit
$$3x = 0$$
 donc $x = 0$,

soit
$$3x + 16 = 0$$
 ou $3x = -16$ ou $x = -\frac{16}{3}$.

Les solutions de l'équation $(3x+8)^2 - 64 = 0$ sont $-\frac{16}{3}$ et 0.

3. Je cherche V tel que : 15 = 0, $14 \times V^2$, c'est-à-dire $V^2 = \frac{15}{0,14}$.

Ainsi,
$$V = \sqrt{\frac{15}{0,14}} \approx 10,35 \text{ (m/s)}.$$

La vitesse d'un véhicule dont la distance de freinage est de 15 m sur route mouillée est d'environ 10,35 m/s.

EXERCICE 6 4 points

- 1. a. Il y a 3 personnes sur 6 en situation de surpoids ou d'obésité.
 - **b.** La formule écrite en B3 et recopiée à droite est =B2/(B1*B1).

2. **a.**
$$m = \frac{9 \times 20 + 12 \times 22 + 6 \times 23 + 8 \times 24 - +2 \times 25 + 29 + 30 + 2 \times 33}{41} = \frac{949}{41} \approx 23$$

L'IMC moyen des employés de cette entreprise est d'environ 23.

b. L'effectif de cette entreprise est de 41, la médiane est donc la 21^e valeur de la série ordonnée, c'est-à-dire 22.

L'IMC médian est donc de 22, cela signifie qu'au moins 50 % des salariés ont un IMC inférieur ou égal à (respectivement supérieur ou égal à) 22.

c. 2+1+1+2=6.

Il y a 6 personnes en situation de surpoids ou d'obésité dans cette entreprise.

$$\frac{6}{41} \times 100 = 15 > 5.$$

Environ 15 % des employés de cette entreprise sont en situation de surpoids ou d'obésité, donc plus de 5 %. L'affirmation du magazine est vraie pour cette entreprise.

EXERCICE 7 7 points

1. Je calcule: $700 \times 1.8 = 1260$.

Avec 1,8 kg de fraises, il faut 1260 g ou 1,260 kg de sucre.

2. $2.7 L = 2700 cm^3$.

Il faut répartir 2700 cm³ de confiture dans les pots.

$$V = \pi \times 3^2 \times 11 = 99\pi \text{ cm}^3.$$

Chaque pot contient un volume 99π cm³ de confiture.

$$\frac{2700}{99\pi} \approx 8,7.$$

Il pourra remplir 9 pots dont 8 entièrement.

- 3. a. La longueur de l'étiquette correspond au périmètre de la base du cylindre. $P = 6 \times \pi \approx 18.8$ cm.
 - **b.** Les dimensions de l'étiquette sont : 12 cm sur environ 18,8 cm.

Je calcule les dimensions de l'étiquette à l'échelle $\frac{1}{3}$.

$$\frac{1}{3} \times 12 = 4$$
 (cm).
 $\frac{1}{3} \times 18,8 = 6,3$ cm.

Il faut donc dessiner un rectangle de dimensions 4 cm sur environ 6,3 cm.