Perfect Secrecy

For all m possible plaintext (i.e., all m in M) and any c ciphertext (i.e., all c in C) such that Pr[C=c]>0, it holds:

 $Pr[M=m \mid C=c] = Pr[M=m]$

The key k:

- is as long as the plaintext m and the ciphertext c
- is uniformly random chosen in ${\mathcal K}$
- must be used only once

Theorem (key length bounding):

Let (Enc, Dec) be a perfectly-secret encryption scheme over a plaintext space \mathcal{M} and a key space \mathcal{K} . Then it holds that $|\mathcal{K}| \geqslant |\mathcal{M}|$ (i.e., the length of the key is larger or equal to the length of the message).

Examples

$k: 0 1 1 0 1 1 0 0 \oplus$	k: G F N O M $igoplus$
<i>m</i> : 10111001	m: P A G E S (mod 26)
c: 1 1 0 1 0 1 0 1	<i>c</i> :V F T S E

Easy, fast encryption and decryption

Long key length

Multiple use of the same key k

$$c_1 = k \oplus m_1$$
, $c_2 = k \oplus m_2$, ...

Attack 1. \mathcal{A} knows the ciphertexts c_1 , c_2

 \mathcal{A} finds a relation between the plaintexts: $m_1 \oplus m_2 = c_1 \oplus c_2$

Attack 2: \mathcal{A} knows (at least) the pair (m_1, c_1)

 \mathcal{A} finds the key $k = m_1 \oplus c_1$, then decrypts $m_2 = k \oplus c_2$

nttps://pagesonsecurity.blogs