

Digital Signal Processing

Module 8: Image Processing

Module Overview:

- ► Module 8.1: Introduction to Images and Image Processing
- ► Module 8.2: Affine Transforms
- ► Module 8.3: 2D Fourier Analysis
- ► Module 8.4: Image Filters
- ► Module 8.5: Image Compression
- ▶ Module 8.6: The JPEG Compression Standard

8

Digital Signal Processing

Module 8.1: Image Processing

Overview:

- ▶ Images as multidimensional digital signals
- ▶ 2D signal representations
- ► Basic signals and operators

Overview:

- ► Images as multidimensional digital signals
- ▶ 2D signal representations
- ► Basic signals and operators

Overview:

- ► Images as multidimensional digital signals
- ▶ 2D signal representations
- ► Basic signals and operators

Please meet ...

- two-dimensional signal $x[n_1, n_2], n_1, n_2 \in \mathbb{Z}$
- \blacktriangleright indices locate a point on a grid \rightarrow pixel
- ▶ grid is usually regularly spaced
- ▶ values $x[n_1, n_2]$ refer to the pixel's appearance

- two-dimensional signal $x[n_1, n_2], n_1, n_2 \in \mathbb{Z}$
- \blacktriangleright indices locate a point on a grid \rightarrow pixel
- grid is usually regularly spaced
- ▶ values $x[n_1, n_2]$ refer to the pixel's appearance

- two-dimensional signal $x[n_1, n_2], n_1, n_2 \in \mathbb{Z}$
- \blacktriangleright indices locate a point on a grid \rightarrow pixel
- ► grid is usually regularly spaced
- ▶ values $x[n_1, n_2]$ refer to the pixel's appearance

- ▶ two-dimensional signal $x[n_1, n_2], n_1, n_2 \in \mathbb{Z}$
- lacktriangle indices locate a point on a grid ightarrow pixel
- grid is usually regularly spaced
- ▶ values $x[n_1, n_2]$ refer to the pixel's appearance

Digital images: grayscale vs color

- grayscale images: scalar pixel values
- ▶ color images: multidimensional pixel values in a color space (RGB, HSV, YUV, etc)
- we can consider the single components separately:

Digital images: grayscale vs color

- grayscale images: scalar pixel values
- ▶ color images: multidimensional pixel values in a color space (RGB, HSV, YUV, etc)

• we can consider the single components separately:

Digital images: grayscale vs color

- ▶ grayscale images: scalar pixel values
- ▶ color images: multidimensional pixel values in a color space (RGB, HSV, YUV, etc)
- ▶ we can consider the single components separately:

1

From one to two dimensions...

- something still works
- something breaks down
- something is new

From one to two dimensions...

- something still works
- something breaks down
- something is new

From one to two dimensions...

- something still works
- something breaks down
- something is new

What works:

- ▶ linearity, convolution
- ► Fourier transform
- ▶ interpolation, sampling

What works:

- ▶ linearity, convolution
- ► Fourier transform
- ▶ interpolation, sampling

What works:

- ▶ linearity, convolution
- ► Fourier transform
- ▶ interpolation, sampling

What breaks down:

- ► Fourier analysis less relevant
- ► filter design hard, IIRs rare
- ► linear operators only mildly useful

What breaks down:

- ► Fourier analysis less relevant
- ▶ filter design hard, IIRs rare
- ► linear operators only mildly useful

What breaks down:

- ► Fourier analysis less relevant
- ▶ filter design hard, IIRs rare
- ► linear operators only mildly useful

What's new:

- new manipulations: affine transforms
- images are finite-support signals
- lacktriangle images are (most often) available in their entirety o causality loses meaning
- ▶ images are very specialized signals, designed for a very specific processing system, i.e. the human brain! Lots of semantics that is extremely hard to deal with

What's new:

- ▶ new manipulations: affine transforms
- images are finite-support signals
- lacktriangle images are (most often) available in their entirety o causality loses meaning
- ▶ images are very specialized signals, designed for a very specific processing system, i.e. the human brain! Lots of semantics that is extremely hard to deal with

What's new:

- new manipulations: affine transforms
- images are finite-support signals
- lacktriangle images are (most often) available in their entirety o causality loses meaning
- images are very specialized signals, designed for a very specific processing system, i.e. the human brain! Lots of semantics that is extremely hard to deal with

What's new:

- new manipulations: affine transforms
- images are finite-support signals
- ightharpoonup images are (most often) available in their entirety ightarrow causality loses meaning
- ▶ images are very specialized signals, designed for a very specific processing system, i.e. the human brain! Lots of semantics that is extremely hard to deal with

2D signal processing: the basics

A two-dimensional discrete-space signal:

$$x[n_1, n_2], \qquad n_1, n_2 \in \mathbb{Z}$$

2D signals: Cartesian representation

2D signals: support representation

- just show coordinates of nonzero samples
- amplitude may be written along explicitly
- example:

$$\delta[n_1, n_2] = \begin{cases} 1 & \text{if } n_1 = n_2 = 0 \\ 0 & \text{otherwise.} \end{cases}$$

2D signals: image representation

- medium has a certain dynamic range (paper, screen)
- image values are quantized (usually to 8 bits, or 256 levels)
- the eye does the interpolation in space provided the pixel density is high enough

Why 2D?

- ▶ images could be unrolled (printers, fax)
- but what about spatial correlation?

Why 2D?

- ▶ images could be unrolled (printers, fax)
- but what about spatial correlation?

2D vs raster scan

8.1 15

2D vs raster scan

8.1 15

2D vs raster scan

8.1 15

Basic 2D signals: the impulse

$$\delta[n_1, n_2] = \begin{cases} 1 & \text{if } n_1 = n_2 = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Basic 2D signals: the rect

$$\operatorname{rect}\left(rac{n_1}{2N_1},rac{n_2}{2N_2}
ight) = egin{cases} 1 & ext{if } |n_1| < N_1 \ & ext{and } |n_2| < N_2 \ 0 & ext{otherwise;} \end{cases}$$

Separability

 $x[n_1, n_2] = x_1[n_1]x_2[n_2]$

Separable signals

$$\delta[n_1,n_2] = \delta[n_1]\delta[n_2]$$

$$\operatorname{rect}\left(\frac{n_1}{2N_1}, \frac{n_2}{2N_2}\right) = \operatorname{rect}\left(\frac{n_1}{2N_1}\right) \operatorname{rect}\left(\frac{n_2}{2N_2}\right)$$

Separable signals

$$\delta[n_1,n_2] = \delta[n_1]\delta[n_2]$$

$$\operatorname{rect}\left(\frac{n_1}{2N_1}, \frac{n_2}{2N_2}\right) = \operatorname{rect}\left(\frac{n_1}{2N_1}\right)\operatorname{rect}\left(\frac{n_2}{2N_2}\right).$$

Nonseparable signal

$$x[n_1, n_2] = egin{cases} 1 & ext{if } |n_1| + |n_2| < N \ 0 & ext{otherwise} \end{cases}$$

Nonseparable signal

$$x[n_1, n_2] = \text{rect}\left(\frac{n_1}{2N_1}, \frac{n_2}{2N_2}\right) - \text{rect}\left(\frac{n_1}{2M_1}, \frac{n_2}{2M_2}\right)$$

2D convolution

$$x[n_1, n_2] * h[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2] h[n_1 - k_1, n_2 - k_2]$$

2D convolution for separable signals

If
$$h[n_1, n_2] = h_1[n_1]h_2[n_2]$$
:

$$x[n_1, n_2] * h[n_1, n_2] = \sum_{k_1 = -\infty}^{\infty} h_1[n_1 - k_1] \sum_{k_2 = -\infty}^{\infty} x[k_1, k_2] h_2[n_2 - k_2]$$
$$= h_1[n_1] * (h_2[n_2] * x[n_1, n_2]).$$

2D convolution for separable signals

If $h[n_1, n_2]$ is an $M_1 \times M_2$ finite-support signal:

- ightharpoonup non-separable convolution: M_1M_2 operations per output sample
- ightharpoonup separable convolution: $M_1 + M_2$ operations per output sample!

END OF MODULE 8.1

Digital Signal Processing

Module 8.2: Image Manipulations

Overview:

- ► Affine transforms
- ► Bilinear interpolation

Overview:

- ► Affine transforms
- ► Bilinear interpolation

Affine transforms

mapping $\mathbb{R}^2 \to \mathbb{R}^2$ that reshapes the coordinate system:

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} - \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \mathbf{A} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} - \mathbf{d}$$

Affine transforms

mapping $\mathbb{R}^2 \to \mathbb{R}^2$ that reshapes the coordinate system:

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} - \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

$$egin{bmatrix} t_1' \ t_2' \end{bmatrix} = \mathbf{A} egin{bmatrix} t_1 \ t_2 \end{bmatrix} - \mathbf{d}$$

Translation

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$
$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

Translation

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$
$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

Scaling

$$\mathbf{A} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$
$$\mathbf{d} = 0$$

if $a_1 = a_2$ the aspect ratio is preserved

Scaling

$$\mathbf{A} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$$
$$\mathbf{d} = 0$$

if $a_1 = a_2$ the aspect ratio is preserved

Rotation

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{d} = 0$$

Rotation

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{d} = 0$$

Rotation

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{d} = 0$$

Flips

Horizontal:

$$\mathbf{A} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

 $\mathbf{d} = 0$

$$\mathbf{A} = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$
 $\mathbf{d} = 0$

Flips

Horizontal:

$$\mathbf{A} = egin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$$

$$\mathbf{d} = 0$$

$$\mathbf{A} = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

$$\mathbf{d} = 0$$

Shear

Horizontal:

$$\mathbf{A} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{d} = 0$$

$$\mathbf{d} = 0$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$
$$\mathbf{d} = 0$$

$$\mathbf{d} = \mathbf{0}$$

Shear

Horizontal:

$$\mathbf{A} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{d} = 0$$

$${\bf d} = 0$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$
$$\mathbf{d} = 0$$

$$\mathbf{d} = \mathbf{0}$$

Affine transforms in discrete-space

$$\begin{bmatrix} t_1' \\ t_2' \end{bmatrix} = \mathbf{A} \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} - \mathbf{d} \quad \in \mathbb{R}^2 \neq \mathbb{Z}^2$$

Solution for images

▶ apply the *inverse* transform:

$$\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} m_1 + d_1 \\ m_2 + d_2 \end{bmatrix};$$

▶ interpolate from the original grid point to the "mid-point"

$$(t_1, t_2) = (\eta_1 + \tau_1, \eta_2 + \tau_2), \qquad \eta_{1,2} \in \mathbb{Z}, \quad 0 \le \tau_{1,2} < 1$$

Solution for images

▶ apply the *inverse* transform:

$$\begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \mathbf{A}^{-1} \begin{bmatrix} m_1 + d_1 \\ m_2 + d_2 \end{bmatrix};$$

▶ interpolate from the original grid point to the "mid-point"

$$(t_1, t_2) = (\eta_1 + \tau_1, \eta_2 + \tau_2), \qquad \eta_{1,2} \in \mathbb{Z}, \quad 0 \le \tau_{1,2} < 1$$

Bilinear Interpolation

If we use a first-order interpolator:

$$y[m_1, m_2] = (1 - \tau_1)(1 - \tau_2)x[\eta_1, \eta_2] + \tau_1(1 - \tau_2)x[\eta_1 + 1, \eta_2]$$

+ $(1 - \tau_1)\tau_2x[\eta_1, \eta_2 + 1] + \tau_1\tau_2x[\eta_1 + 1, \eta_2 + 1]$

Shearing

END OF MODULE 8.2

Digital Signal Processing

Module 8.3: Frequency Analysis

Overview:

- ▶ DFT
- ► Magnitude and phase

Overview:

- ▶ DFT
- Magnitude and phase

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

$$x[n_1, n_2] = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X[k_1, k_2] e^{j\frac{2\pi}{N_1} n_1 k_1} e^{j\frac{2\pi}{N_2} n_2 k_2}$$

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

$$x[n_1, n_2] = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X[k_1, k_2] e^{j\frac{2\pi}{N_1} n_1 k_1} e^{j\frac{2\pi}{N_2} n_2 k_2}$$

2D-DFT Basis Vectors

There are N_1N_2 orthogonal basis vectors for an $N_1 \times N_2$ image:

$$w_{k_1,k_2}[n_1,n_2] = e^{j\frac{2\pi}{N_1}n_1k_1}e^{j\frac{2\pi}{N_2}n_2k_2}$$

for
$$n_1, k_1 = 0, 1, \dots, N_1 - 1$$
 and $n_2, k_2 = 0, 1, \dots, N_2 - 1$

2D-DFT basis vectors for $k_1 = 1, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 0, k_2 = 1$ (real part)

2D-DFT basis vectors for $k_1 = 2, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 3, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 0, k_2 = 3$ (real part)

2D-DFT basis vectors for $k_1 = 30, k_2 = 0$ (real part)

2D-DFT basis vectors for $k_1 = 1, k_2 = 1$ (real part)

2D-DFT basis vectors for $k_1 = 2, k_2 = 7$ (real part)

2D-DFT basis vectors for $k_1 = 5, k_2 = 250$ (real part)

2D-DFT basis vectors for $k_1 = 3$, $k_2 = 230$ (real part)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

- ▶ 1D-DFT along n_2 (the columns)
- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2} n_2 k_2} \right] e^{-j\frac{2\pi}{N_1} n_1 k_1}$$

- ▶ 1D-DFT along n_2 (the columns)
- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

- ▶ 1D-DFT along n_2 (the columns)
- ▶ 1D-DFT along n_1 (the rows)

2D-DFT basis functions are separable, and so is the 2D-DFT:

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

- ▶ 1D-DFT along n_2 (the columns)
- ▶ 1D-DFT along n_1 (the rows)

- ▶ finite-support 2D signal can be written as a matrix **x**
- $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)
- recall also the $N \times N$ DFT matrix (Module 4.2):

$$\mathbf{W}_{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W_{N}^{1} & W_{N}^{2} & W^{3} & \dots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W^{4} & W_{N}^{6} & \dots & W_{N}^{2(N-1)} \\ & & & & \dots & & \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & W_{N}^{3(N-1)} & \dots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

- ▶ finite-support 2D signal can be written as a matrix **x**
- ▶ $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)
- recall also the $N \times N$ DFT matrix (Module 4.2):

$$\mathbf{W}_{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W_{N}^{1} & W_{N}^{2} & W^{3} & \dots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W^{4} & W_{N}^{6} & \dots & W_{N}^{2(N-1)} \\ & & & \dots & & \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & W_{N}^{3(N-1)} & \dots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

- ▶ finite-support 2D signal can be written as a matrix **x**
- ▶ $N_1 \times N_2$ image is an $N_2 \times N_1$ matrix (n_1 spans the columns, n_2 spans the rows)
- ▶ recall also the $N \times N$ DFT matrix (Module 4.2):

$$\mathbf{W}_{N} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W_{N}^{1} & W_{N}^{2} & W^{3} & \dots & W_{N}^{N-1} \\ 1 & W_{N}^{2} & W^{4} & W_{N}^{6} & \dots & W_{N}^{2(N-1)} \\ & & & \dots & & \\ 1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & W_{N}^{3(N-1)} & \dots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

$$X[k_1, k_2] = \sum_{n_1=0}^{N_1-1} \left[\sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \right] e^{-j\frac{2\pi}{N_1}n_1k_1}$$

$$X[k_1, k_2] = \begin{bmatrix} \sum_{n_1=0}^{N_1-1} \begin{bmatrix} \sum_{n_2=0}^{N_2-1} x[n_1, n_2] e^{-j\frac{2\pi}{N_2}n_2k_2} \end{bmatrix} e^{-j\frac{2\pi}{N_1}n_1k_1} \\ \mathbf{V} = \mathbf{W}_{N_2} \mathbf{x} \\ \mathbf{V} \in \mathbb{C}^{N_2 \times N_1} \\ \mathbf{X} = \mathbf{W}_{N_2} \mathbf{x} \mathbf{W}_{N_1} \end{bmatrix}$$

How does a 2D-DFT look like?

- try to show the magnitude as an image
- ▶ problem: the range is too big for the grayscale range of paper or screen
- ▶ try to normalize: $|X'[n_1, n_2]| = |X[n_1, n_2]| / \max |X[n_1, n_2]|$
- ▶ but it doesn't work...

DFT coefficients sorted by magnitude

Dealing with HDR images

if the image is high dynamic range we need to compress the levels

- ▶ remove flagrant outliers (e.g. $X[0,0] = \sum \sum x[n_1,n_2]$)
- use a nonlinear mapping: e.g. $y = x^{1/3}$ after normalization $(x \le 1)$

Dealing with HDR images

if the image is high dynamic range we need to compress the levels

- ▶ remove flagrant outliers (e.g. $X[0,0] = \sum \sum x[n_1, n_2]$)
- use a nonlinear mapping: e.g. $y = x^{1/3}$ after normalization $(x \le 1)$

How does a 2D-DFT look like?

8.3 56

DFT magnitude doesn't carry much information

DFT phase, on the other hand...

Image frequency analysis

- most of the information is contained in image's edges
- edges are points of abrupt change in signal's values
- lacktriangle edges are a "space-domain" feature ightarrow not captured by DFT's magnitude
- phase alignment is important for reproducing edges

END OF MODULE 8.3

Digital Signal Processing

Module 8.4: Filtering

Overview:

- ► Filters for image processing
- ► Classification
- Examples

Overview:

- ► Filters for image processing
- ► Classification
- Examples

Overview:

- ► Filters for image processing
- ► Classification
- Examples

Analogies with 1D filters

- ► linearity
- ► *space* invariance
- ▶ impulse response
- ► frequency response
- stability
- ▶ 2D CCDE

- ▶ interesting images contain lots of *semantics*: different information in different areas
- ▶ space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures
 - ..

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures
 - •

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures
 - ...

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures

...

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures
 - ...

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures

..

- ▶ interesting images contain lots of *semantics*: different information in different areas
- space-invariant filters process everything in the same way
- but we should process things differently
 - edges
 - gradients
 - textures
 - ...

- ► IIR, FIR
- ► causal or noncausal
- ► highpass, lowpass, ...
 - lowpass → image smoothing
 - highpass → enhancement, edge detection

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
 - lowpass → image smoothing
 - highpass → enhancement, edge detection

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
 - ullet lowpass o image smoothing
 - $\bullet \ \ \mathsf{highpass} \to \mathsf{enhancement}, \ \mathsf{edge} \ \mathsf{detection}$

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
 - ullet lowpass o image smoothing
 - $\bullet \ \ \mathsf{highpass} \to \mathsf{enhancement}, \ \mathsf{edge} \ \mathsf{detection}$

- ► IIR, FIR
- causal or noncausal
- ▶ highpass, lowpass, ...
 - ullet lowpass o image smoothing
 - $\bullet \ \ \mathsf{highpass} \to \mathsf{enhancement}, \ \mathsf{edge} \ \mathsf{detection}$

- ► nonlinear phase (edges!)
- border effects
- ▶ stability: the fundamental theorem of algebra doesn't hold in multiple dimensions!

computability

- nonlinear phase (edges!)
- border effects
- ▶ stability: the fundamental theorem of algebra doesn't hold in multiple dimensions!

computability

- ► nonlinear phase (edges!)
- border effects
- ▶ stability: the fundamental theorem of algebra doesn't hold in multiple dimensions!

computability

- nonlinear phase (edges!)
- border effects
- ▶ stability: the fundamental theorem of algebra doesn't hold in multiple dimensions!
- computability

A noncomputable CCDE

 $y[n_1,n_2] = a_0y[n_1+1,n_2] + a_1y[n_1,n_2-1] + a_2y[n_1-1,n_2] + a_3y[n_1,n_2+1] + x[n_1,n_2];$

A noncomputable CCDE

 $y[n_1,n_2] = a_0y[n_1+1,n_2] + a_1y[n_1,n_2-1] + a_2y[n_1-1,n_2] + a_3y[n_1,n_2+1] + x[n_1,n_2];$

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - M₁M₂ for nonseparable impulse responses
 - $M_1 + M_2$ for separable impulse responses
- obviously always stable

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - M_1M_2 for nonseparable impulse responses
 - $M_1 + M_2$ for separable impulse responses
- obviously always stable

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - ullet M_1M_2 for nonseparable impulse responses
 - $M_1 + M_2$ for separable impulse responses
- obviously always stable

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - ullet M_1M_2 for nonseparable impulse responses
 - $M_1 + M_2$ for separable impulse responses

obviously always stable

- ▶ generally zero centered (causality not an issue) ⇒ odd number of taps in both directions
- per-sample complexity:
 - ullet M_1M_2 for nonseparable impulse responses
 - $M_1 + M_2$ for separable impulse responses
- obviously always stable

Moving Average

$$y[n_1, n_2] = \frac{1}{(2N+1)^2} \sum_{k_1=-N}^{N} \sum_{k_2=-N}^{N} x[n_1 - k_1, n_2 - k_2]$$

$$h[n_1, n_2] = \frac{1}{(2N+1)^2} \operatorname{rect}\left(\frac{n_1}{2N}, \frac{n_2}{2N}\right)$$

 ϵ

Moving Average

$$y[n_1, n_2] = \frac{1}{(2N+1)^2} \sum_{k_1=-N}^{N} \sum_{k_2=-N}^{N} x[n_1 - k_1, n_2 - k_2]$$

$$h[n_1, n_2] = \frac{1}{(2N+1)^2} \operatorname{rect}\left(\frac{n_1}{2N}, \frac{n_2}{2N}\right)$$

Moving Average

$$h[n_1, n_2] = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Moving Average

 $11 \times 11 \text{ MA}$

 $51 \times 51 \text{ MA}$

$$h[n_1, n_2] = \frac{1}{2\pi\sigma^2} e^{-\frac{n_1^2 + n_2^2}{2\sigma^2}}, \qquad |n_1, n_2| < N$$

with $N \approx 3\sigma$

 $\sigma = 1.8, 11 \times 11 \; \mathrm{blur}$

 $\sigma = 8.7,51 \times 51$ blur

approximation of the first derivative in the horizontal direction:

$$s_o[n_1, n_2] = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

separability and structure

$$s_o[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

approximation of the first derivative in the horizontal direction:

$$s_o[n_1, n_2] = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

separability and structure:

$$s_o[n_1, n_2] = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

approximation of the first derivative in the vertical direction:

$$s_{v}[n_{1}, n_{2}] = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

horizontal Sobel filter

vertical Sobel filter

Sobel operator

approximation for the square magnitude of the gradient:

$$|\nabla x[n_1, n_2]|^2 = |s_o[n_1, n_2] * x[n_1, n_2]|^2 + |s_v[n_1, n_2] * x[n_1, n_2]|^2$$

("operator" because it's nonlinear)

Gradient approximation for edge detection

Sobel operator

thresholeded Sobel operator

Laplacian operator

Laplacian of a function in continuous-space:

$$\Delta f(t_1, t_2) = \frac{\partial^2 f}{\partial t_1^2} + \frac{\partial^2 f}{\partial t_2^2}$$

Laplacian operator

approximating the Laplacian; start with a Taylor expansion

$$f(t+\tau) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t)}{n!} \tau^n$$

and compute the expansion in $(t + \tau)$ and $(t - \tau)$:

$$f(t+\tau) = f(t) + f'(t)\tau + \frac{1}{2}f''(t)\tau^2$$

$$f(t-\tau) = f(t) - f'(t)\tau + \frac{1}{2}f''(t)\tau^2$$

Laplacian operator

by rearranging terms:

$$f''(t) = \frac{1}{\tau^2}(f(t-\tau) - 2f(t) + f(t+\tau))$$

which, on the discrete grid, is the FIR $h[n] = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$

Laplacian

summing the horizontal and vertical components:

$$h[n_1, n_2] = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Laplacian

If we use the diagonals too:

$$h[n_1, n_2] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Laplacian for Edge Detection

Laplacian operator

thresholeded Laplacian operator

END OF MODULE 8.4

Digital Signal Processing

Module 8.5: Image Compression

Overview:

- ► Redundancy in natural images
- ► Image coding ingredients

Overview:

- ► Redundancy in natural images
- ► Image coding ingredients

85

- ightharpoonup consider all possible 256 imes 256, 8bpp images
- ▶ each image is 524,288 bits
- ▶ total number of possible images: $2^{524,288} \approx 10^{157,826}$
- ▶ number of atoms in the universe: 10⁸²

86

- ▶ consider all possible 256 × 256, 8bpp images
- ▶ each image is 524,288 bits
- ▶ total number of possible images: $2^{524,288} \approx 10^{157,826}$
- \triangleright number of atoms in the universe: 10^{82}

- ▶ consider all possible 256 × 256, 8bpp images
- ▶ each image is 524,288 bits
- ▶ total number of possible images: $2^{524,288} \approx 10^{157,826}$
- ▶ number of atoms in the universe: 10⁸²

- ▶ consider all possible 256 × 256, 8bpp images
- ▶ each image is 524,288 bits
- ▶ total number of possible images: $2^{524,288} \approx 10^{157,826}$
- ▶ number of atoms in the universe: 10⁸²

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- to indicate an image, simply give its number
- \triangleright on the Internet: M = 50 billion
- ▶ raw encoding: 524,288 bits per image
- enumeration-based encoding: $\log_2 M \approx 36$ bits per image
- ▶ (of course, side information is HUGE)

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ▶ to indicate an image, simply give its number
- \triangleright on the Internet: M = 50 billion
- ► raw encoding: 524,288 bits per image
- ightharpoonup enumeration-based encoding: $\log_2 M \approx$ 36 bits per image
- ▶ (of course, side information is HUGE)

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ▶ to indicate an image, simply give its number
- ▶ on the Internet: M = 50 billion
- ▶ raw encoding: 524,288 bits per image
- ▶ enumeration-based encoding: $\log_2 M \approx 36$ bits per image
- ▶ (of course, side information is HUGE)

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ▶ to indicate an image, simply give its number
- ▶ on the Internet: M = 50 billion
- ▶ raw encoding: 524,288 bits per image
- \blacktriangleright enumeration-based encoding: $\log_2 M \approx$ 36 bits per image
- ▶ (of course, side information is HUGE)

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ▶ to indicate an image, simply give its number
- ▶ on the Internet: M = 50 billion
- ▶ raw encoding: 524,288 bits per image
- ▶ enumeration-based encoding: $\log_2 M \approx 36$ bits per image
- ▶ (of course, side information is HUGE)

Another thought experiment

- ▶ take all images in the world and list them in an "encyclopedia of images"
- ▶ to indicate an image, simply give its number
- on the Internet: M = 50 billion
- ▶ raw encoding: 524,288 bits per image
- ▶ enumeration-based encoding: $\log_2 M \approx 36$ bits per image
- ▶ (of course, side information is HUGE)

Compression

Another approach:

- exploit "physical" redundancy
- ▶ allocate bits for things that matter (e.g. edges)
- use psychovisual experiments to find out what matters
- ▶ some information is discarded: *lossy* compression

88

Compression

Another approach:

- exploit "physical" redundancy
- ▶ allocate bits for things that matter (e.g. edges)
- use psychovisual experiments to find out what matters
- ▶ some information is discarded: *lossy* compression

88

Compression

Another approach:

- exploit "physical" redundancy
- ▶ allocate bits for things that matter (e.g. edges)
- use psychovisual experiments to find out what matters
- some information is discarded: lossy compression

Compression

Another approach:

- exploit "physical" redundancy
- ▶ allocate bits for things that matter (e.g. edges)
- use psychovisual experiments to find out what matters
- some information is discarded: lossy compression

88

- compressing at block level
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

- compressing at block level
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

- compressing at block level
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

- compressing at block level
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

Compressing at pixel level

- reduce number bits per pixel
- equivalent to coarser quantization
- ▶ in the limit, 1bpp

Compressing at pixel level

- ► reduce number bits per pixel
- equivalent to coarser quantization
- ▶ in the limit, 1bpp

Compressing at pixel level

- reduce number bits per pixel
- equivalent to coarser quantization
- ▶ in the limit, 1bpp

- ▶ divide the image in blocks
- code the average value with 8 bits
- ▶ 3 × 3 blocks at 8 bits per block gives less than 1bpp

- ► divide the image in blocks
- code the average value with 8 bits
- ▶ 3 × 3 blocks at 8 bits per block gives less than 1bpp

- ▶ divide the image in blocks
- ▶ code the average value with 8 bits
- ightharpoonup 3 imes 3 blocks at 8 bits per block gives less than 1bpp

- exploit the local spatial correlation
- compress remote regions independently

- exploit the local spatial correlation
- compress remote regions independently

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

- ▶ take a DT signal, assume R bits per sample
- ▶ storing the signal requires *NR* bits
- now you take the DFT and it looks like this
- ▶ in theory, we can just code the two nonzero DFT coefficients!

Ideally, we would like a transform that:

- ▶ captures the important features of an image block in a few coefficients
- ▶ is efficient to compute
- answer: the Discrete Cosine Transform

Ideally, we would like a transform that:

- ▶ captures the important features of an image block in a few coefficients
- ▶ is efficient to compute

▶ answer: the Discrete Cosine Transform

Ideally, we would like a transform that:

- ▶ captures the important features of an image block in a few coefficients
- ▶ is efficient to compute

answer: the Discrete Cosine Transform

2D-DCT

$$C[k_1, k_2] = \sum_{n=0}^{N-1} \sum_{n=0}^{N-1} x[n_1, n_2] \cos \left[\frac{\pi}{N} \left(n_1 + \frac{1}{2} \right) k_1 \right] \cos \left[\frac{\pi}{N} \left(n_2 + \frac{1}{2} \right) k_2 \right]$$

95

DCT basis vectors for an 8×8 image

Smart quantization

- ▶ deadzone
- ▶ variable step (fine to coarse)

Smart quantization

- ▶ deadzone
- variable step (fine to coarse)

Quantization

Standard quantization:

$$\hat{x} = floor(x) + 0.5$$

Quantization

Deadzone quantization:

$$\hat{x} = \text{round}(x)$$

- ▶ minimize the effort to encode a certain amount of information
- associate short symbols to frequent values and vice-versa
- ▶ if it sounds familiar it's because it is...

- ▶ minimize the effort to encode a certain amount of information
- ▶ associate short symbols to frequent values and vice-versa

▶ if it sounds familiar it's because it is...

- ▶ minimize the effort to encode a certain amount of information
- ▶ associate short symbols to frequent values and vice-versa

▶ if it sounds familiar it's because it is...

END OF MODULE 8.5

Digital Signal Processing

Module 8.6: The JPEG Compression Algorithm

- compressing at block level
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

- ▶ split image into 8 × 8 non-overlapping blocks
- using a suitable transform (i.e., a change of basis)
- smart quantization
- entropy coding

- ▶ split image into 8 × 8 non-overlapping blocks
- ► compute the DCT of each block
- smart quantization
- entropy coding

- ▶ split image into 8 × 8 non-overlapping blocks
- ► compute the DCT of each block
- quantize DCT coefficients according to psycovisually-tuned tables

entropy coding

Key ingredients

- ▶ split image into 8 × 8 non-overlapping blocks
- ► compute the DCT of each block
- quantize DCT coefficients according to psycovisually-tuned tables
- ► run-length encoding and Huffman coding

DCT coefficients of image blocks (detail)

DCT coefficients of image blocks (detail)

- ightharpoonup most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- ▶ find out the critical coefficients by experimentation
- allocate more bits (or, equivalently, finer quantization levels) to the most important coefficients

- lacktriangledown most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- ▶ find out the critical coefficients by experimentation
- ▶ allocate more bits (or, equivalently, finer quantization levels) to the most important coefficients

- lacktriangledown most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- find out the critical coefficients by experimentation
- allocate more bits (or, equivalently, finer quantization levels) to the most important coefficients

- lacktriangledown most coefficients are negligible ightarrow captured by the deadzone
- some coefficients are more important than others
- find out the critical coefficients by experimentation
- ▶ allocate more bits (or, equivalently, finer quantization levels) to the most important coefficients

Psychovisually-tuned quantization table

$$\hat{c}[k_1, k_2] = \text{round}(c[k_1, k_2]/Q[k_1, k_2])$$

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

Advantages of nonuniform bit allocation

uniform tuned

Advantages of nonuniform bit allocation (detail)

uniform tuned

Efficient coding

- ▶ most coefficients are small, decreasing with index
- use zigzag scan to maximize ordering
- quantization will create long series of zeros

Efficient coding

- most coefficients are small, decreasing with index
- use zigzag scan to maximize ordering
- quantization will create long series of zeros

Efficient coding

- most coefficients are small, decreasing with index
- use zigzag scan to maximize ordering
- quantization will create long series of zeros

Zigzag scan

Example

Example

$$[(r,s), c]$$

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- c is the actual value
- \triangleright (0,0) indicates that from now on it's only zeros (end of block)

$$[(r,s), c]$$

- r is the *runlength* i.e. the number of zeros before the current value
- s is the size i.e. the number of bits needed to encode the value
- c is the actual value
- \triangleright (0,0) indicates that from now on it's only zeros (end of block)

$$[(r,s), c]$$

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- c is the actual value
- \triangleright (0,0) indicates that from now on it's only zeros (end of block)

$$[(r,s), c]$$

- r is the *runlength* i.e. the number of zeros before the current value
- ▶ s is the size i.e. the number of bits needed to encode the value
- c is the actual value
- \blacktriangleright (0,0) indicates that from now on it's only zeros (end of block)

Example

$$[(0,7), 100], [(0,6), -60], [(4,3), 6], [(3,4), 13], [(8,1), -1], [(0,0)]$$

Example

$$[(0,7), 100], [(0,6), -60], [(4,3), 6], [(3,4), 13], [(8,1), -1], [(0,0)]$$

- ▶ by design, $(r, s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- some pairs are much more common than others!
- ▶ a lot of space can be saved by being smart

- ▶ by design, $(r,s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- ▶ some pairs are much more common than others!
- ▶ a lot of space can be saved by being smart

- ▶ by design, $(r, s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- some pairs are much more common than others!
- ▶ a lot of space can be saved by being smart

- ▶ by design, $(r, s) \in A$ with |A| = 256
- ▶ in theory, 8 bits per pair
- some pairs are much more common than others!
- ▶ a lot of space can be saved by being smart

great idea: shorter binary sequences for common symbols

however: if symbols have different lengths, we must know how to parse them!

- $\blacktriangleright \ \ \text{in English, spaces separate words} \to \text{extra symbol (wasteful)}$
- ▶ in Morse code, pauses separate letters and words (wasteful)
- can we do away with separators?

however: if symbols have different lengths, we must know how to parse them!

- lacktriangledown in English, spaces separate words ightarrow extra symbol (wasteful)
- ▶ in Morse code, pauses separate letters and words (wasteful)
- can we do away with separators?

however: if symbols have different lengths, we must know how to parse them!

- ightharpoonup in English, spaces separate words ightharpoonup extra symbol (wasteful)
- ▶ in Morse code, pauses separate letters and words (wasteful)
- can we do away with separators?

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- ▶ can parse a bitstream sequentially with no look-ahead
- extremely easy to understand graphically...

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- ▶ can parse a bitstream sequentially with no look-ahead
- extremely easy to understand graphically...

Prefix-free codes

- ▶ no valid sequence can be the beginning of another valid sequence
- ▶ can parse a bitstream sequentially with no look-ahead
- extremely easy to understand graphically...

Prefix-free code

001100110101100

Prefix-free code

001100110101100

Prefix-free code

001100110101100

Α

001100110101100

AA

001100110101100

 AAB

001100110101100

AABA

001100110101100

AABAA

0011001101100

AABAAB

001100110101100

AABAABA

001100110101100

AABAABAD

001100110101100

AABAABADC

Entropy coding

goal: minimize message length

- assign short sequences to more frequent symbols
- ▶ the Huffman algorithm builds the optimal code for a set of symbol probabilities
- ▶ in JPEG, you can use a "general-purpose" Huffman code or build your own (but then you pay a "side-information" price)

Entropy coding

goal: minimize message length

- assign short sequences to more frequent symbols
- ▶ the Huffman algorithm builds the optimal code for a set of symbol probabilities
- ▶ in JPEG, you can use a "general-purpose" Huffman code or build your own (but then you pay a "side-information" price)

Entropy coding

goal: minimize message length

- assign short sequences to more frequent symbols
- ▶ the Huffman algorithm builds the optimal code for a set of symbol probabilities
- ▶ in JPEG, you can use a "general-purpose" Huffman code or build your own (but then you pay a "side-information" price)

Example

- ▶ four symbols: A, B, C, D
- probability table:

$$p(A) = 0.38$$

$$p(B) = 0.32$$

$$p(C) = 0.1$$

$$p(D) = 0.2$$

Example

- ▶ four symbols: A, B, C, D
- probability table:

$$p(A) = 0.38$$

$$p(B) = 0.32$$

$$p(C)=0.1$$

$$p(D) = 0.2$$

Building the Huffman code

$$p(A) = 0.38$$
 $p(B) = 0.32$ $p(C) = 0.1$ $p(D) = 0.2$

Building the Huffman code

$$p(A) = 0.38$$
 $p(B) = 0.32$ $p(C + D) = 0.3$

Huffman Coding

$$p(A) = 0.38$$
 $p(B + C + D) = 0.62$

END OF MODULE 8.6

END OF MODULE 8