UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

SEMINARIO DE ANÁLISIS MATEMÁTICO B Ejemplo: Operadores lineales en espacios de Hilbert

SEMESTRE: Séptimo u octavo

CLAVE: **0706**

	HORAS A LA SEMANA/SEMESTRE			
TEÓRICAS	PRÁCTICAS	CRÉDITOS		
5/80	0	10		

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Moderna I, Análisis Matemáti-

co II, Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Ninguna.

OBJETIVO(S): Que el alumno conozca los problemas que aborda esta rama del Análisis y los principales métodos para resolverlos.

NUM. HORAS	UNIDADES TEMÁTICAS	
15	1. Espacios de Hilbert	
15	5 2. Funcionales lineales y operadores lineales acotados	
	2.1 Funcionales lineales.	
	2.2 El teorema de Riesz.	
	2.3 Operadores lineales acotados.	
	2.4 Funcionales bilineales.	
	2.5 Operador adjunto.	
	2.6 Operador completamente continuo.	
20	3. Conceptos generales en la teoría de operadores lineales	
	3.1 El operador proyección.	
	3.2 Operadores unitarios.	
	3.3 Operadores isométricos.	
	3.4 Operadores cerrados.	
	3.5 Espectro de un operador auto-adjunto.	
	3.6 El resolvente.	
	3.7 Operadores simétricos.	
	3.8 Representación matricial de operadores simétricos.	

20	4. Espectro de operadores completamente continuos	
	4.1 Propiedades de los valores propios de operadores completamente	
	continuos en \mathbb{R} .	
	4.2 Existencia de vectores propios de operadores auto-adjuntos com-	
	pletamente continuos.	
	4.3 Espectro de operadores auto-adjuntos completamente continuos	
	en \mathbb{R} .	
10	5. Espectro de operadores auto-adjuntos	

BIBLIOGRAFÍA BÁSICA:

- 1. Akhiezer, N. I., Glazman, I. M., Theory of Linear Operators in Hilbert Spaces, New York: Dover Publications, 1993.
- 2. Kreyszig, E., *Introductory Functional Analysis with Applications*, Malabar, Florida: Krieger, 1989.
- 3. Rudin, W., Functional Analysis, New York: McGraw-Hill, 1991.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. Jost, J., Postmodern Analysis, New York: Springer-Verlag, 1998.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.