usn	

RV COLLEGE OF ENGINEERING Autonomous Institution affiliated to VTU I Semester B.E. February -2024 Examinations DEPARTMENT OF MATHEMATICS FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS

(2022 SCHEME)

(Non-Integrated Course)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, and 9 and 10.

PART-A (Objective type for one or two marks)

(True & false and match the following questions are not permitted)

		(True & false and match the following questions are not permitted)			
1	1.1	Product of the eigen values of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & -1 \\ 3 & 6 & 4 \end{bmatrix}$ is	1		
	1.2	Rank of the matrix $A = \begin{bmatrix} 1 & 4 & 3 \\ 0 & 2 & 1 \\ 0 & 6 & 3 \end{bmatrix}$ is	1		
1.3 Curvature of a straight line $y = 3x + 2$ is					
•	1.4	Given $y(1) = 2.5$, $y(3) = 5.6$, $y(5) = 7.2$, $y(7) = 8.5$, then $\Delta y(3) = $	1		
•	1.5	Maclaurin series expansion of $y = e^{-\frac{x}{2}}$ is	1		
If two characteristic roots of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ are 3 and 6, then the characteristic root is					
	The angle between the radius vector and tangent for the curve $r = ae^{\theta \cot x}$ is	2			
	1.7	If $z = (\cos x)^y$, then $\frac{\partial z}{\partial y} =$	2		
	1.8	Given that $z = 2xy - 3x^2y$ and x increases at the rate of 2cm/sec. Find the rate at which y changes at the instant when $x = 3$ cm and $y = 1$ cm in order that the z shall be neither increasing nor decreasing.	2		
	1.9	Evaluate $\int_0^2 \int_1^3 x^2 y dy dx$.	2		
	1.10	Sketch the region of integration $\int_0^{\frac{\pi}{2}} \int_0^{2 \cos \theta} r^2 \sin \theta \ dr \ d\theta$.	2		
	1.11	The value of $\nabla^4[(x-2)(2x-3)(3x-4)]$ with $h=5$ is	2		
	1.13	If $f(0) = 1$, $f(0.25) = 1.03$, $f(0.5) = 1.39$, $f(0.75) = 1.97$ and $f(1) = 2.56$, then $\int_0^1 f(x) dx =$	2		

PART-B

		UNIT-I					
2	a	Compute the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$.	4				
	b	The currents i_1 , i_2 , i_3 in the paths of an electrical network follow the linear equations $i_1 - i_2 + i_3 = 0$, $3i_1 + 2i_2 = 7$, $2i_2 + 4i_3 = 8$. Determine i_1 , i_2 , i_3 using Gauss-Jordan elimination method.					
	С	Determine the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$. Choose the initial vector as $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Perform 5 iterations.	6				

	UNIT-II				
3	$f = 1$ Expand $y = \log_{\theta} \sec x$ in ascending powers of x up to and including the term in [
	x^6 and hence deduce the expansion of $\tan x$.				
	b	For the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that ρ at any point is equal to $\frac{(CD)^3}{ab}$ where C is the centre of the ellipse and D is an extremity of the diameter conjugate to CP .			
	the centre of the ellipse and D is an extremity of the diameter conjugate to CP .				
		OR			
4	a	Find the radius of curvature of Folium $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.	8		
		Show that the angle of intersection of the Lemniscate $r^2 = a^2 \cos 2\theta$ and Cardioid	8		
	b	$r = a(1 + \cos \theta)$ intersect at angle $3\sin^{-1}\left(\frac{3}{4}\right)^{\frac{1}{4}}$.			

		UNIT-III					
5	If $u = f(\frac{y-x}{xy}, \frac{z-x}{xz})$, find the value of $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}$.						
	b	Show that by Lagrange's method of undetermined multipliers the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.	8				
		OR					
6	a	In robotics, the functions representing robotic arm from cartesian to any system (x, y) are given by $x = e^u \cos v$ and $y = e^u \sin v$. As the Jacobian represents transformation factor between different systems, verify $\frac{\partial(x,y)}{\partial(u,v)} \times \frac{\partial(u,v)}{\partial(x,y)} = 1$.	8				
	b	If $z = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$, verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.	8				

	UNIT-IV					
7	a	By changing the order of integration and hence evaluate				
		$\int_0^3 \int_1^{\sqrt{4-y}} (x+y) dx dy .$	8			
	b	Find the volume of the tetrahedron $x \ge 0$, $y \ge 0$, $z \ge 0$, $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \le 1$.	8			
	OR					

8	a	Transform to polar coordinates and hence evaluate $\int_0^2 \int_1^{\sqrt{4-y^2}} y \sqrt{x^2 + y^2} dx dy$.	8
	b	Determine the centre of gravity of the triangular lamina bounded by the coordinate axis and the line $x + y = 1$.	8

	UNIT-V										
9	a	Using Lagrange's interpolation, find the polynomial of lowest degree which agrees with the point (x, y) given in the following table. Hence find $y(2.5)$.									
		X	3	2	1	0	-1				
		y(x)	8	26	32	14	-40				8
	b	The follow degree cen minutes).	_	_					_		8
		t	1	3	5	7	9				
		T	85.3	74.5	67.0	60.5	54.3				
		(i) Estimate the temperature at $t = 1.5$.									
		(ii) Estimate the approximate rate of cooling at $t = 3$.									
10	OR										
10	a	The table gives the distance in nautical miles of the visible horizon for the given heights in feet, above the earth's surface.									
		Height	100	150	200	250	300	350	400		8
		Distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27		
		Find the distances when the heights are $160 ft$ and $410 ft$.									
	b	Estimate the value of the integral $\int_{1}^{4} \sqrt{x}e^{-x} dx$ using Simpson's 1/3, Simpson's 3/8 and Weddle's rules, by diving the interval [1,4] into six equal sub intervals.									

Signature of Scrutinizer:	Signature of Chairman
Name:	Name: