Proximal Neural Networks (PNNs)

J. Hertrich, S. Neumayer, and G. Steidl TU Berlin, Germany

Proximity Operators

By $\Gamma_0(\mathbb{R}^d)$, we denote the set of proper, convex, lower semi-continuous functions on \mathbb{R}^d mapping into $(-\infty, \infty]$. For $f \in \Gamma_0(\mathbb{R}^d)$ and $T \in \mathbb{R}^{n,d}$, the proximity operator $\operatorname{prox}_{f,T} \colon \mathbb{R}^d \to \mathbb{R}^d$ is defined by

$$\operatorname{prox}_{f,T}(x) \coloneqq \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} ||x - y||_T^2 + f(y) \right\}.$$

Here $\|\cdot\|_T^2 := \|Tx\|_2^2/\|T\|^2 + \|P_{\mathcal{N}(T)}x\|_2^2$.

Based on Moreau's characterization of proximity operators, we have shown in [2] that for any $T \in \mathbb{R}^{n,d}$, $b \in \mathbb{R}^n$ and $f \in \Gamma_0(\mathbb{R}^n)$

$$T^{\dagger} \operatorname{prox}_{f,I_n}(T \cdot +b) = \operatorname{prox}_{g,T}$$
 for some $g \in \Gamma_0(\mathbb{R}^d)$.

Averaged Operators

An operator $T: \mathbb{R}^d \to \mathbb{R}^d$ is *averaged*, if there exists a nonexpansive operator $R: \mathbb{R}^d \to \mathbb{R}^d$ such that

$$T = tR + (1 - t)I_d$$
 for some $t \in (0, 1)$.

Averaged operators with $t = \frac{1}{2}$ are also known as *firmly nonexpansive operators*. Proximity operators are firmly nonexpansive.

Properties of averaged operators:

- i) If $T: \mathbb{R}^d \to \mathbb{R}^d$ is Lipschitz continuous with Lipschitz constant L < 1, then A is averaged for every parameter $t \in [\frac{1}{2}(L+1), 1)$.
- ii) The concatenation of K averaged operators T_k with parameters $t_k \in (0,1)$ is an averaged operator with $t \leq \frac{K}{(K-1)+1/\max_k t_k}$.
- iii) If $T: \mathbb{R}^d \to \mathbb{R}^d$ is an averaged operator with nonempty fixed point set, then the sequence generated by $x^{(r+1)} = Ax^{(r)}$ converges for every starting point $x^{(0)}$ to a fixed point of T.

Plug-and-Play (PnP) Algorithms

Algorithm 1 FBS and FBS-PnP

Initialization: $y^{(0)} \in \mathbb{R}^n$, $\eta \in (0, \frac{2}{L})$ Iterations: For $r = 0, 1, \dots$ $y^{(r+1)} = x^{(r)} - \eta \nabla f(x^{(r)})$ $x^{(r+1)} = \operatorname{prox}_{\eta g} (y^{(r+1)})$ PnP Step: $x^{(r+1)} = \Psi(y^{(r+1)})$

Algorithm 2 ADMM and ADMM-PnP

Initialization: $y^{(0)} \in \mathbb{R}^{n}$, $p^{(0)} \in \mathbb{R}^{n}$, $\gamma > 0$ Iterations: For r = 0, 1, ... $x^{(r+1)} = \text{prox}_{\frac{1}{\gamma}f} \left(y^{(r)} - \frac{1}{\gamma} p^{(r)} \right)$ $y^{(r+1)} = \text{prox}_{\frac{1}{\gamma}g} \left(x^{(r+1)} + \frac{1}{\gamma} p^{(r)} \right)$ $\text{PnP Step: } y^{(r+1)} = \Psi \left(x^{(r+1)} + \frac{1}{\gamma} p^{(r)} \right)$ $p^{(r+1)} = p^{(r)} + \gamma (x^{(r+1)} - y^{(r+1)})$

Convergence of PnP-Algorithms:

- i) Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable with L-Lipschitz continuous gradient and let $\Psi: \mathbb{R}^d \to \mathbb{R}^d$ be averaged. Then, for any $0 < \tau < \frac{2}{L}$, the sequence $\{x^{(r)}\}_r$ generated by FBS-PnP algorithm converges.
- ii) Let $f \in \Gamma_0(\mathbb{R}^d)$ and $\Psi \colon \mathbb{R}^n \to \mathbb{R}^n$ be firmly nonexpansive, then the sequence $\{x^{(r)}\}_r$ generated by the ADMM-PnP converges.

PNNs

Let σ_{α} be a *stable activation functions*, i.e., a function with $\sigma(0) = 0$ and $\sigma = \operatorname{prox}_f$ for some $f \in \Gamma_0(\mathbb{R})$, see [1]. A *proximal neural network* (PNN) is defined as

$$\Phi(x; u) = T_{K+1} T_K^{\mathrm{T}} \sigma_{\alpha_K} (T_K \cdots T_2^{\mathrm{T}} \sigma_{\alpha_2} (T_2 T_1^{\mathrm{T}} \sigma_{\alpha_1} (T_1 x + b_1) + b_2) \cdots) + b_{K+1},$$

with parameters $u = ((T'_k)_{k=1}^{K+1}, (b_k)_{k=1}^{K+1}, (\alpha_k)_{k=1}^{K})$ on the manifold

$$\mathcal{M}_k := \operatorname{St}(d, n_k) \times \mathbb{R}^{n_k} \times \mathbb{R}_{>0}, \quad k = 1, \dots, K.$$

Here $St(d, n) := \{T \in \mathbb{R}^{n,d} : T^TT = I_d\}$ denotes the (compact) *Stiefel manifold*. PNNs include OMDSM networks considered in [4]. Learning such networks by *stochastic gradient descent algorithm on the manifold*.

Convolutional PNNs

Use for T_k block matrices with circulant blocks

$$C = \begin{pmatrix} \operatorname{Circ}_{m}(a^{(1,1)}) & \cdots & \operatorname{Circ}_{m}(a^{(1,m_{2})}) \\ \vdots & & \vdots \\ \operatorname{Circ}_{m}(a^{(m_{1},1)}) & \cdots & \operatorname{Circ}_{m}(a^{(m_{1},m_{2})}) \end{pmatrix}$$

Convolutional PNNs with full filters: parameters (T_k, b_k, α_k) on a submanifold of \mathcal{M}_k ; use basically the same learning algorithm as above.

Convolutional PNNs with sparse filters: parameters are no longer in a manifold; approximate orthogonality property for learning and apply iSPRING algorithm [3].

Numerical Examples

Denoising on piecewise constant signals: Use a PNN with one, two or three layers and $n_1 = n_2 = n_3 = 1024$ neurons in each layer; we use the soft-shrinkage function as activation function and learn the threshold by SGD. As comparison we use Haar frame shrinkage with scale adapted threshold.

	Method	PSNR Loss		Optimal λ	
_	Haar frame	30.59	0.00307	0.0820	
	One layer PNN	32.50	0.00207	0.0514	
	Two layer PNN	33.05	0.00186	0.0250	
	Three layer PNN	33.22	0.00181	0.0164	

Stability under adversarial attacks: We train a PNN for MNIST classification. We observe increased stability under adversarial attacks compared to classification networks.

PnP-Denoising on piecewise constant signals: We train a PNN for denoising signals with noise level 0.1 and use it within FBS-PnP to denoise signals for various noise levels.

Noise level	0.05	0.1	0.2	0.3	0.5	0.75
PnP step size $ au$	1.929		0.479			
Noisy signals	31.64	25.61	10.59	16.07	11.63	08.11
Reconstruction PnP	39.05	33.52	28.13	25.05	21.35	18.63
Reconstruction PNN	1					

References

- [1] P. L. Combettes and J.-C. Pesquet. Deep neural network structures solving variational inequalities. *Set-Val. Var. Ana.* 2020.
- [2] M. Hasannasab, J. Hertrich, S. Neumayer, G. Plonka, S. Setzer, and G. Steidl. Parseval proximal neural networks. *J. Four. Ana.* 2020.
- [3] J. Hertrich and G. Steidl. Inertial stochastic PALM and its application for learning Student-*t* mixture models. *ArXiv* 2020.
- [4] L. Huang, X. Liu, B. Lang, A. W. Yu, Y. Wang, and B. Li. Orthogonal weight normalization: Solution to optimization over multiple dependent Stiefel manifolds in deep neural networks. In 32. AAAI Conf. 2018.
- [5] S. Sreehariand, S. V. Venkatakrishnan, and B. Wohlberg. Plug-and-play priors for bright field electron tomography and sparse interpolation. *IEEE Trans. Comput. Imag.* 2016.