函數

沈威宇

November 2, 2024

第一章 函數

- \ Definition

A function is formed by three sets, the domain (定義域) X, the codomain (對應域) Y, and the graph, R that satisfy the three following conditions.

$$R \subseteq \{(x,y) \mid x \in X, y \in Y\}$$

$$\forall x \in X, \exists y \in Y, (x,y) \in R$$

$$(x,y) \in R \land (x,z) \in R \implies y = z$$

\equiv \ Denotation

A function f is defined by

$$\begin{split} R \subseteq \{(x,y) \mid x \in X, y \in Y\} \\ \forall x \in X, \exists y \in Y, (x,y) \in R \\ (x,y) \in R \land (x,z) \in R \implies y = z \end{split}$$

We denote X as D_f , define range (值域), denoted as R_f or f(X), as

$$R_f = f(X) = \{y \mid x \in X \land (x,y) \in R$$

and denote f as $f: D_f \to R_f$. If

$$x \in X \land (x,y) \in R$$

, we call x independent variable, call y dependent variable, denote y=f(x), and call f(x) functional value.

第二章 函數性質

一、 單射(Injection)/一對一(One-to-one)

函數
$$f:\,V \to W$$
 為單射函數 $\iff \forall x_1,\,x_2 \in V \text{ s.t. } f(x_1) = f(x_2):\,x_1 = x_2$

二、 多對一(Many-to-one)

函數
$$f: V \to W$$
 為多對一函數 $\iff \exists x_1, \, x_2 \in V \land x_1 \neq x_2 \text{ s.t. } f(x_1) = f(x_2)$

三、 滿射/蓋射(Surjection, Onto)

函數
$$f: V \to W$$
 為滿射函數 $\iff f(V) = W$

四、 對射 (Bijection)

函數 f 為對射函數 \iff 函數 f 為單射且滿射

五、 光滑(Smooth)

函數
$$f(x):V\to W$$
 為光滑函數,即 $C^\infty\iff \forall a\in V \forall n\in\mathbb{N}$ 日 $\frac{\partial^n f(x)}{\partial x^n}$

六、 遞增及遞減

函數
$$f$$
 為遞增(Increasing)函數 $\iff \forall x_1, x_2 \in D_f: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
函數 f 為遞減(Decreasing)函數 $\iff \forall x_1, x_2 \in D_f: x_1 < x_2 \implies f(x_1) \geq f(x_2)$
函數 f 為嚴格遞增(Strictly Increasing)函數 $\iff \forall x_1, x_2 \in D_f: x_1 < x_2 \implies f(x_1) < f(x_2)$
函數 f 為嚴格遞減(Strictly Decreasing)函數 $\iff \forall x_1, x_2 \in D_f: x_1 < x_2 \implies f(x_1) > f(x_2)$
函數 f 在 I 上遞增(Increasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
函數 f 在 I 上遞增(Increasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) \leq f(x_2)$
函數 f 在 f 上遞減(Decreasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) \geq f(x_2)$
函數 f 在 f 上嚴格遞增(Strictly Increasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) < f(x_2)$
函數 f 在 f 上嚴格遞增(Strictly Decreasing) $\iff \forall x_1, x_2 \in I \subset D_f: x_1 < x_2 \implies f(x_1) < f(x_2)$

七、 分段函數 (Piecewise Function)

分段函數 :
$$f(x) = \begin{cases} f_1(x), & \text{if } x \in A_1 \\ f_2(x), & \text{if } x \in A_2 \\ \vdots \\ f_n(x), & \text{if } x \in A_n \end{cases}$$

其中 A_1,A_2,\dots,A_n 是 D_f 的子集,且 $A_1\cup A_2\cup\dots\cup A_n=D_f$ °

八、 合成函數(Composite Function)

合成函數 $: (f \circ g)(x) = f(g(x))$

其中 g(x) 的定義域 D_q 與 f 的定義域 D_f 必須滿足 $g(D_q)\subseteq D_f$ 。

九、 反函數 (Inverse Function)

反函數
$$: f^{-1}(y) = x \iff f(x) = y$$

其中 f 必須是雙射,且反函數的定義域為 f 的值域,值域為 f 的定義域。