Departamento de Matemática

Universidade do Minho

Álgebra

2° teste - 13 dez 2019

Número _

Lic. em Matemática - 2º ano

conveniente:

duração: duas horas

1. Sem justificar, diga se é verdadeira (V) ou falsa (F) cada uma das seguintes proposições, assinalando a opção

(a) Dados $n \in \mathbb{N}$ e $\sigma \in \mathcal{S}_n$, $o(\sigma) \leq n$.

 \mathbf{V} \mathbf{F}

(b) Se $\sigma \in \mathcal{S}_8$ tem ordem 5, então, $<\sigma>=<\sigma^4>$.

V F

(c) Se A é um anel e $a, b \in A$, então, $a^2 - b^2 = (a + b)(a - b)$.

V F

(d) Existe pelo menos um domínio de integridade de característica 10.

- $V ext{ } extbf{F}$
- (e) Sejam $\varphi:A\to A'$ um morfismo de anéis e I um ideal de A. Então, $\varphi(I)$ é um ideal de A'.
- \mathbf{V} \mathbf{F}

(f) O anel $\mathbb{Z}_3 \times \mathbb{Z}_7$ é domínio de integridade.

 \mathbf{V} \mathbf{F}

(g) Nenhum elemento invertível de um anel com identidade é divisor de zero.

- V F
- (h) Dados I e J ideais próprios de um anel A, se $I \cap J$ é ideal maximal de A, então I = J.
- V F

2. Considere os seguintes anéis comutativos com identidade:

$$A_1 = \mathbb{Z}_{10}$$
 $A_2 = \mathbb{Z}_3 \times \mathbb{Z}_7$ $A_3 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{Z} \right\}$

- (a) Indique, sem justificar:
 - i. a identidade de cada anel:

$$1_{A_1} = \underline{\hspace{1cm}} 1_{A_2} = \underline{\hspace{1cm}} 1_{A_3} = \underline{\hspace{1cm}}$$

ii. a característica de cada anel:

$$c(A_1) = \underline{\hspace{1cm}} c(A_2) = \underline{\hspace{1cm}} c(A_3) = \underline{\hspace{1cm}}$$

iii. um elemento $x \in \mathcal{U}_A \setminus \{1_A\}$ para:

$$A = A_1 : \underline{\hspace{1cm}} A = A_2 : \underline{\hspace{1cm}} A = A_3 : \underline{\hspace{1cm}}$$

(b) Quais dos anéis têm divisores de zero não nulos? Indique, caso existam, um divisor de zero não nulo de cada um desses anéis. Justifique.

3. Considere, em \mathcal{S}_9 , as permutações

- (a) Escreva $\sigma\tau^{-1}$ como produto de ciclos disjuntos.
- (b) Determine $o(\sigma)$.
- (c) Indique, justificando, os elementos de $< au^3>$.
- (d) Sem efetuar cálculos com composição de funções, mostre que não existe $\delta \in \mathcal{S}_9$ tal que $\delta^2 \tau = \sigma$.

- 4. (a) Mostre que $\varphi: \mathbb{Z} \to \mathbb{Z}_{10}$ definida por $\varphi(n) = [6n]_{10}$, para todo $n \in \mathbb{Z}$, é um homomorfismo de anéis e determine o seu núcleo.
 - (b) Seja ${\cal A}$ um anel comutativo com identidade tal que

$$\forall x \in A, \ \exists n \in \mathbb{N} \backslash \{1\} : x^n = x.$$

Mostre que todo o ideal primo de A é um ideal maximal de A.

- 5. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-5}]$. Recorde que $\mathcal{U}_{\mathbb{Z}[\sqrt{-5}]}=\{-1,1\}.$
 - (a) Mostre que $1+\sqrt{-5}$ é irredutível em $\mathbb{Z}[\sqrt{-5}].$
 - (b) Mostre que $1+\sqrt{-5}$ não é um elemento primo em $\mathbb{Z}[\sqrt{-5}].$
 - (c) Determine $[1 + \sqrt{-5}, 12]$.