МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

> Механико-математический факультет Кафедра вычислительных систем

Направление подготовки «Прикладная математика и информатика», бакалавриат

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Радустова Александра Вячеславовича

Численное моделирование ионно-звуковой волны, возникающей при отражении потока плазмы от проводящей стенки

«К защите допущена»

И. о. заведующего кафедрой

д.ф.-м.н., профессор РА

Марченко М. А

(Фамилия, И.О. ₹ СполицевиМП)

Научный руководитель

Ст. преп. кафедры ВС

Лисейкина Тикв.

(Фамилия И.О.) (подпись, МНТ)

2025г.

Дата защиты: «16.» ШЭЦЯ

Реферат

Название работы: Численное моделирование ионно-звуковой волны, возникающей при отражении потока плазмы от проводящей стенки.

При отражении неизотермического потока плазмы, в котором температура ионов много меньше температуры электронов, от проводящей стенки образуется взаимопроникающее течение противоположно направленных потоков. Их взаимодействие приводит к генерации ионно-звуковой волны 1. Поведение такой волны зависит от скорости набегающего потока. В работе численно исследована структура одномерной ионно-звуковой волны, в зависимости от скорости набегающего потока. Проведено сравнение результатов, полученных на основе двух физико-математических моделей. В первой модели поведение обеих компонент плазмы описывается кинетическим уравнением Власова, во второй предполагается, что электроны удовлетворяют распределению Больцмана. Для решения кинетического уравнения Власова используется метод частиц в ячейках [2], при этом движение частиц реализуется схемой второго порядка точности. Для решения уравнения Пуассона с Больцмановскими электронами применяется метод квазилинеаризации [3]. Проведено распараллеливание алгоритмов, показана эффективность работы параллельной программы на кластере ЦКП ССКЦ ИВМиМГ СО РАН на доступном числе узлов до 48.

Количество страниц: 29

Количество использованных источников: 6

Количество иллюстраций: 11

Количество таблиц: 3

Ключевые слова: ионно-звуковая волна, кинетическое уравнение Власова, Больцмановское распределение электронов, квазилинеаризация, переднее возмущение электростатического потенциала, метод частиц в ячей-ках, неизотермическая плазма, численное моделирование, система уравнений Власова-Максвелла.

Содержание

\mathbf{B}	вед	ЕНИЕ	4
1	ПО	СТАНОВКА ЗАДАЧИ	6
2	КИ	НЕТИЧЕСКАЯ МОДЕЛЬ С РАСПРЕДЕЛЕНИЕМ	<u>[</u>
	БО	ЛЬЦМАНА ДЛЯ ЭЛЕКТРОНОВ	6
	2.1	Описание модели	6
	2.2	Результаты численного моделирования	8
	2.3	Гидродинамические уравнения	11
	2.4	Формула скорости ионно-звукового солитона	14
3	ПО	ЛНОСТЬЮ КИНЕТИЧЕСКАЯ МОДЕЛЬ	17
	3.1	Описание модели	17
	3.2	Результаты численного моделирования	19
4	ME	ТОДЫ И АЛГОРИТМЫ	22
	4.1	Решение уравнения Власова	22
	4.2	Восстановление плотности заряда	22
	4.3	Решение уравнений движения частиц	23
	4.4	Метод квазилинеаризации для решения нелинейного уравне-	
		ния Пуассона	24
	4.5	Вычисление электрического поля в полностью кинетической	
		модели	25
5	PA	СПАРАЛЛЕЛИВАНИЕ	26
3	ЧК Л	ЮЧЕНИЕ	28
\mathbf{C}	пис	СОК ЛИТЕРАТУРЫ	29

ВВЕДЕНИЕ

В работе численно решается задача формирования и распространения ионно-звуковой волны в неизотермической плазме. Реализованы две физико-математические модели. Первая модель основана на кинетическом описании ионов в предположении Больцмановского распределения для электронов. Во второй модели для электронов используется кинетическое описание, причём соотношение масс ионов и электронов соответствует реальному.

Изученные в работе волны на больших временах представляют собой ионно-звуковые солитоны с волновым задним шлейфом. Они являются основой ударных волн, формирующихся при столкновении неизотермических потоков плазмы, в которых температура ионной компоненты намного превышает температуру электронов [6].

В рассмотренной задаче ионно-звуковая волна формируется в результате взаимодействия взаимопроникающих потоков плазмы, которые в свою очередь образуются в результате отражения неизотермического потока плазмы от проводящей стенки. Целью работы является численное исследование поведения такой волны от скорости набегающего потока плазмы.

В работе на основе системы уравнений Власова - Максвелла численно реализуются две модели: модель с Больцмановскими электронами и полностью кинетическая. В Больцмановской модели электроны имеют распределение Больцмана, уравнение Власова для ионов решается методом частиц в ячейках, а электростатический потенциал находится из решения уравнения Пуассона методом квазилинеаризации. В полностью кинетической модели уравнение Власова для обеих компонент плазмы решается методом частиц в ячейках.

Обе модели реализованы в одномерной постановке в отсутствие магнитного поля. Это позволило провести расчёты на достаточно мелкой сетке и проследить эволюцию волны на больших временах вплоть до образования изолированного возмущения (ионно-звукового солитона).

В модели с Больцмановскими электронами численно получена зависимость скорости распространения солитона от его амплитуды. Сравнение с выведенной в гидродинамическом приближении формулой такой зави-

симости [1] показало, что в определенном диапазоне параметров имеется хорошее соответствие результатов расчётов и теоретической оценки.

Работа состоит из Введения, пяти глав и Заключения. В Главе 1 приводится постановка задачи. Глава 2 посвящена описанию кинетической модели с распределением Больцмана для электронов. Воспроизводится вывод системы гидродинамических уравнений [6] для плотности и средней скорости ионов. На основе этих уравнений получена формула зависимости скорости ионно-звукового солитона от его амплитуды [1]. Приведено сравнение результатов расчётов с теоретической оценкой. В Главе 3 описывается физико-математическая модель, в которой для обеих компонент плазмы используется кинетическое приближение. Приводятся результаты численного моделирования. Глава 4 посвящена краткому описанию методов и алгоритмов, использованных для реализации моделей, описанных в Главах 2 и 3. А именно описываются решение уравнение Власова методом частиц в ячейках [2], восстановление плотности заряда, решение уравнений движения, метод квазилинеаризации для решения нелинейного уравнения Пуассона и вычисление электрического поля в полностью кинетической модели. В Главе 5 описаны алгоритмы распараллеливания моделей. Полученная зависимость скорости расчётов от числа использованных процессорных элементов позволяет сделать вывод об эффективности распараллеливания. Выводы и основные результаты работы приведены в Заключении.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим следующую задачу: имеется одномерный поток бесстолкновительной неизотермической плазмы, обладающий начальной скоростью $v_{\rm in}$, в котором температура ионов много меньше температуры электронов. При его отражении от проводящей стенки (на Рис. 1 справа) образуется взаимопроникающее течение противоположно направленных потоков. Их взаимодействие приводит к генерации ионно-звуковой волны, распространяющейся в направлении от стенки. Задача состоит в исследовании поведения такой волны от скорости набегающего потока.

Рис. 1 – Схематическая постановка задачи

2. КИНЕТИЧЕСКАЯ МОДЕЛЬ С РАСПРЕДЕЛЕНИЕМ БОЛЬЦМАНА ДЛЯ ЭЛЕКТРОНОВ

2.1. Описание модели

Рассмотрим физико-математическую модель, в которой для описания ионов используется кинетическое уравнение Власова, в то время как электронная плотность имеет распределение Больцмана. В одномерном случае в декартовой системе координат с осью x, направленной вдоль направления скорости потока плазмы, система уравнений Власова-Пуассона выглядит

следующим образом

$$\begin{cases} \frac{df_i}{dt} = \frac{\partial f_i}{\partial t} + v \frac{\partial f_i}{\partial x} + \frac{q}{m} E \frac{\partial f_i}{\partial v} = 0, \\ n_e = n_0 \exp(\frac{e\varphi}{KT_e}), \\ \frac{\partial E}{\partial x} = \left(4\pi (q \int f_i dv - en_e)\right), \end{cases}$$

где $f_i(x,v,t)$ - функция распределения ионов, t - время, n_e - плотность электронов, n_0 - начальная концентрация потока плазмы, e - заряд электрона, φ - электростатический потенциал, K - постоянная Больцмана, T_e - температура электронов, E - напряженность электрического поля, x - координаты ионов, v - скорости ионов, q - заряд ионов, m - масса ионов.

Выберем в качестве масштабов следующие величины: $\lambda_D = \sqrt{\frac{T_e}{4\pi n_0 e^2}}$ - дебаевская длина, $v_0 = \sqrt{\frac{KT_e}{m}}$ - скорость ионного звука, $t_0 = \frac{\lambda_D}{v_0}$ - характерное время, $\varphi_0 = \frac{KT_e}{e}$ и выпишем систему уравнений в безразмерном виде в переменных $x' = \frac{x}{\lambda_D}$, $v' = \frac{v}{v_0}$, $t' = \frac{t}{t_0}$, $\varphi' = \frac{\varphi}{\varphi_0}$, $n_i' = \frac{n_i}{n_0}$.

Получим

$$\frac{\partial f_i}{\partial t'} + v' \frac{\partial f_i}{\partial x'} - \frac{\partial \varphi'}{\partial x'} \frac{\partial f_i}{\partial v'} = 0, \tag{1}$$

$$\frac{\partial^2 \varphi'}{\partial x'^2} = \exp(\varphi') - n_i', \tag{2}$$

где для рассмотренного случая q=e (водородная плазма), $n_i'=\int f_i dv'$.

Уравнения (1), (2) будем решать в области $x' \in [0, x_{max}]$. Граничные условия

$$\varphi'|_{0} = 0, \quad \frac{\partial \varphi'}{\partial x'}\Big|_{x_{\text{max}}} = 0, \ f'_{i}|_{0} = const.$$
 (3)

Уравнение (1) является уравнением гиперболического типа и имеет две характеристики.

$$\frac{dx'}{dt'} = v', \frac{dv'}{dt'} = -\frac{\partial \varphi'}{\partial x'}.$$
 (4)

Для решения уравнения (1) используется метод частиц в ячейках [2], а для решения уравнения (2) с граничными условиями (3) - метод квазилинеаризации [3]. Краткое описание численных алгоритмов приведено в Главе 4.

На Рис. 2 представлена блок-схема вычислений.

Рис. 2 — Блок-схема вычислений: в начальный момент времени в расчётной области размещены частицы с координатами и скоростями $x|_{t=0}$, $v|_{t=0}$. По координатам частиц на каждом временном шаге вычисляется плотность частиц, затем решается уравнение Пуассона (2). По найденному распределению потенциала вычисляется электрическое поле в точках положения частиц. Координаты и скорости частиц на новом временном шаге находятся из уравнения (4).

2.2. Результаты численного моделирования

На рисунке 3 представлены графики распределения потенциала при разной скорости набегающего потока u_0 от $0.1v_0$ до $0.8v_0$ в последовательные моменты времени. При отражении потока плазмы от стенки формируется распространяющееся налево возмущение с осцилляторным шлейфом. Амплитуда переднего возмущения незначительно увеличивается со временем. Скорость переднего возмущения на больших временах почти постоянна. С увеличением скорости набегающего потока меняется профиль колебания потенциала от гладкого $u_0 = 0.1v_0$ - $u_0 = 0.3v_0$ к острому $u_0 > 0.3v_0$. На больших временах прослеживается тенденция отрыва переднего возмущения от шлейфа и формирование солитона.

На Рис. 4 представлены фазовые плоскости ионов для скоростей потока $u_0=0.1v_0$ и $u_0=0.8v_0$.

В то время как для $u_0 = 0.1v_0$ фазовая плоскость ионов имеет регулярную структуру, повторяющую распределение потенциала, Рис. 3 для

Рис. 3 — Распределение потенциала в последовательные моменты времени $t=30,60,90,120,150t_0$ для $u_0=0.1v_0$ - $u_0=0.8v_0$. Сетка имеет количество узлов $i_{max}=2501$. Длина области $x_{max}=250$, шаг по пространству h=0.1, шаг по времени $\tau=0.025$, количество частиц в ячейке $N_p=50$, количество частиц в начале расчёта N=125000.

Рис. 4 — Распределение ионов на фазовой плоскости для $u_0=0.1v_0$ и $u_0=0.8v_0$ при $t=90t_0$. Сетка имеет количество узлов $i_{\max}=2501$, длина области $x_{\max}=250$, шаг по пространству h=0.1, шаг по времени $\tau=0.025$, количество частиц в ячейке $N_p=50$, количество частиц в начале расчёта N=125000.

 $u_0 = 0.1v_0$, при большой скорости потока фазовая плоскость имеет сложную структуру. Видны частицы со скоростями, значительно превышающими как скорость звука v_0 , так и скорость переднего возмущения. Кроме того имеются частицы "запертые" в области между соседними пиками потенциала.

Проведенные расчёты позволяют найти зависимость скорости переднего возмущения потенциала от его амплитуды. Результаты представлены в таблице 1.

Таблица 1: Зависимость скорости переднего возмущения v_{comp} от амплитуды потенциала φ_{max} и скорости потока u_0 .

	$u_0 = 0.1$	0.2	0.3	0.4	0.5	0.6	0.7	0.8
v_{comp}	1.059	1.11	1.2	1.28	1.38	1.47	1.582	1.58
φ_{max}	0.147	0.33	0.52	0.71	0.895	1.06	1.26	1.27

Отметим, что скорость переднего возмущения относительно неподвижной плазмы вычисляется по формуле $v_{comp} = \frac{\Delta x}{\Delta t} + u_0$, где Δx - расстояние, пройденное возмущением за время Δt , так как в задаче возмущение потенциала распространяется в движущемся со скоростью u_0 потоке плазмы.

Для сравнения численных результатов с теорией воспроизведем вывод зависимости скорости ионно-звукового солитона от его амплитуды в гидродинамическом приближении.

2.3. Гидродинамические уравнения

Из уравнения Власова

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q}{m} E \frac{\partial f}{\partial v} = 0, \tag{5}$$

выведем уравнение для средней скорости

$$u = \frac{\int v f dv}{\int f dv} \tag{6}$$

и концентрации

$$n = \frac{N}{V} \int f dv \tag{7}$$

ионов плазмы. Здесь N - полное число ионов плазмы, V - занятый им объём. Для этого проинтегрируем уравнение Власова по пространству скоростей

$$\int_{-\infty}^{\infty} \left(\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q}{m} E \frac{\partial f}{\partial v}\right) dv = 0.$$
 (8)

Разобьём интеграл (8) по аддитивности, получим

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial t} dv + \int_{-\infty}^{\infty} v \frac{\partial f}{\partial x} dv + \int_{-\infty}^{\infty} \frac{q}{m} E \frac{\partial f}{\partial v} dv = 0.$$

Проанализируем каждое из трёх слагаемых

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial t} dv = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} f dv.$$

Теперь воспользуемся определением концентрации (7)

$$\frac{\partial}{\partial t} \int_{-\infty}^{\infty} f dv = \frac{\partial}{\partial t} \frac{nV}{N} = \frac{V}{N} \frac{\partial}{\partial t} n.$$

Преобразуем второе слагаемое, используя определение средней скорости (6)

$$\int_{-\infty}^{\infty} v \frac{\partial f}{\partial x} dv = \frac{\partial}{\partial x} \int_{-\infty}^{\infty} v f dv = \frac{\partial}{\partial x} u \int_{-\infty}^{\infty} f dv = \frac{\partial}{\partial x} \frac{u n V}{N}.$$

Последнее слагаемое равно нулю, так как

$$\int_{-\infty}^{\infty} \frac{q}{m} E \frac{\partial f}{\partial v} dv = \frac{q}{m} E[f(\infty) - f(-\infty)] = 0.$$

Теперь соберем все слагаемые вместе

$$\frac{V}{N}\frac{\partial}{\partial t}n + \frac{\partial}{\partial x}\frac{unV}{N} = 0. \tag{9}$$

Разделив (9) на $\frac{V}{N}$, получим

$$\frac{\partial n}{\partial t} + \frac{\partial (un)}{\partial x} = 0. ag{10}$$

Теперь умножим уравнение Власова на v и проинтегрируем по пространству скоростей:

$$\int_{-\infty}^{\infty} \left(\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + \frac{q}{m} E \frac{\partial f}{\partial v}\right) v dv = 0.$$
 (11)

Распишем его по аддитивности

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial t} v dv + \int_{-\infty}^{\infty} v^2 \frac{\partial f}{\partial x} dv + \int_{-\infty}^{\infty} \frac{q}{m} E \frac{\partial f}{\partial v} v dv = 0.$$

Рассмотрим отдельно каждое слагаемое:

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial t} v dv = \frac{\partial}{\partial t} \int_{-\infty}^{\infty} f v dv = \frac{\partial}{\partial t} u \int_{-\infty}^{\infty} f dv = \frac{V}{N} \frac{\partial}{\partial t} (un),$$

$$\int_{-\infty}^{\infty} \frac{q}{m} E \frac{\partial f}{\partial v} v dv = \frac{q}{m} E(v f \big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f dv) = -\frac{q}{m} E n \frac{V}{N}.$$

Для преобразования второго слагаемого в (11) нам потребуется использовать определение давления

$$P = \frac{N}{V}m \int (v - u)^2 f dv = \frac{N}{V}m \int (v^2 - 2uv + u^2) f dv.$$

Пользуясь определениями средней скорости (6) и концентрации (7) распишем подынтегральную сумму

$$P = \frac{N}{V}m\int v^2 f dv - \frac{N}{V}m\int 2uv f dv + \frac{N}{V}m\int u^2 f dv.$$
 (12)

Применим оператор дифференцирования $\frac{\partial}{\partial x}$

$$\frac{\partial P}{\partial x} = \frac{\partial}{\partial x} \left(\frac{N}{V} m \int v^2 f dv - \frac{N}{V} m \int 2uv f dv + \frac{N}{V} m \int u^2 f dv \right).$$

Преобразуем

$$\frac{\partial P}{\partial x} = \frac{\partial}{\partial x} \left(\frac{N}{V} m \int v^2 f dv - 2mu^2 n + mu^2 n \right).$$

Из (12) выражаем слагаемое $\frac{\partial}{\partial x} \int v^2 f dv$

$$\frac{\partial}{\partial x} \int v^2 f dv = \frac{V}{Nm} \frac{\partial P}{\partial x} + \frac{V}{N} \frac{\partial}{\partial x} u^2 n.$$

В итоге получим

$$\frac{V}{N}\frac{\partial}{\partial t}(un) - \frac{q}{m}En\frac{V}{N} + \frac{V}{Nm}\frac{\partial P}{\partial x} + \frac{V}{N}\frac{\partial}{\partial x}u^2n = 0.$$

Разделим последнее уравнение на $\frac{V}{N}$ и домножим на m. Получим

$$m\frac{\partial}{\partial t}(un) - qEn + \frac{\partial P}{\partial x} + m\frac{\partial}{\partial x}u^2n = 0.$$

Распишем производную по времени

$$mu\frac{\partial n}{\partial t} + mn\frac{\partial u}{\partial t} - qEn + \frac{\partial P}{\partial x} + m\frac{\partial}{\partial x}u^2n = 0.$$
 (13)

Из (10) выразим $\frac{\partial n}{\partial t}$ и подставим в (13). Получим

$$\frac{\partial n}{\partial t} = -\frac{\partial (un)}{\partial x},$$

$$-mu\frac{\partial}{\partial x}(nu) + mn\frac{\partial u}{\partial t} - qEn + \frac{\partial P}{\partial x} + m\frac{\partial}{\partial x}u^2n = 0.$$

В первом слагаемом распишем частную производную по координате

$$-mun\frac{\partial}{\partial x}u-mu^2n\frac{\partial}{\partial x}n+mn\frac{\partial u}{\partial t}-qEn+\frac{\partial P}{\partial x}+m\frac{\partial}{\partial x}u^2n=0.$$

Раскроем производную по координате в последнем слагаемом суммы

$$-mun\frac{\partial}{\partial x}u - mu^2\frac{\partial}{\partial x}n + mn\frac{\partial u}{\partial t} - qEn + \frac{\partial P}{\partial x} + 2mun\frac{\partial}{\partial x}u + mu^2\frac{\partial}{\partial x}n = 0.$$

Приводим подобные слагаемые и получаем

$$mn\frac{\partial u}{\partial t} + mnu\frac{\partial u}{\partial x} = qnE - \frac{\partial P}{\partial x}.$$
 (14)

2.4. Формула скорости ионно-звукового солитона

Добавив к системе гидродинамических уравнений (10) и (14) уравнение Пуассона, и предположив, что $T_i \ll T_e$, получим следующую систему

$$\begin{cases}
\frac{\partial n}{\partial t} + \frac{\partial (un)}{\partial x} = 0, \\
mn\frac{\partial u}{\partial t} + mnu\frac{\partial u}{\partial x} = -qn\frac{\partial \varphi}{\partial x}, \\
\Delta \varphi = -4\pi \left(q(n - n_0 \exp(\frac{e\varphi}{KT_e})) \right).
\end{cases} (15)$$

Будем искать зависимость скорости изолированного возмущения потенциала от его амплитуды. Перейдем в систему координат, движущуюся со скоростью возмущения потенциала v. Для этого сделаем замену переменных $z=x-vt,\,t= au$ и перепишем систему уравнений (15) в новых переменных

$$\begin{cases}
-v\frac{\partial n}{\partial z} + \frac{\partial n}{\partial \tau} + \frac{\partial (un)}{\partial z} = 0, \\
-vmn\frac{\partial u}{\partial z} + mn\frac{\partial u}{\partial \tau} + mnu\frac{\partial u}{\partial z} = -qn\frac{\partial \varphi}{\partial z}, \\
\Delta \varphi = -4\pi \left(q(n - n_0 \exp(\frac{e\varphi}{KT_e})) \right).
\end{cases}$$

Будем искать стационарное решение, то есть $\frac{\partial}{\partial \tau} = 0$. Заметим, что из расчётов при малых скоростях потока форма переднего возмущения имеет вид, изображенный на Рис. 5.

Рис. 5 – схематическое изображение изолированного переднего возмущения потенциала

$$\begin{cases}
-v\frac{\partial n}{\partial z} + \frac{\partial(un)}{\partial z} = 0, \\
-vmn\frac{\partial u}{\partial z} + mnu\frac{\partial u}{\partial z} = -qn\frac{\partial \varphi}{\partial z}, \\
\frac{\partial^2 \varphi}{\partial z^2} = -4\pi \left(q(n - n_0 \exp(\frac{e\varphi}{KT_e})) \right).
\end{cases}$$
(16)

Так как v = const, то проинтегрировав первое уравнение системы (16), получим

$$\begin{cases}
-nv + un = c_1, & c_1 = const, \\
mu(\frac{u}{2} - v) = -q\varphi + c_2, \\
\frac{\partial^2 \varphi}{\partial z^2} = -4\pi \left(q(n - n_0 \exp(\frac{e\varphi}{KT_e})) \right).
\end{cases}$$
(17)

Выразим u из первого уравнения системы (17). Получим $u=\frac{c_1}{n}+v$. Подставим его во второе уравнение

$$m(\frac{c_1}{n} + v)(\frac{\frac{c_1}{n} + v}{2} - v) = -q\varphi + c_2, \quad c_2 = const.$$

Приведем подобные

$$\frac{m}{2}(\frac{c_1^2}{n^2} - v^2) = -q\varphi + c_2,$$
$$\frac{c_1^2}{n^2} = v^2 - \frac{2}{m}q\varphi + \frac{2c_2}{m},$$

$$n = c_1 \sqrt{\frac{1}{v^2 - \frac{2}{m}q\varphi + \frac{2}{m}c_2}}.$$

Подставим полученное выражение для концентрации в уравнение Пуассона и определим константы c_1 и c_2

$$\frac{\partial^2 \varphi}{\partial z^2} = -4\pi q \left(c_1 \sqrt{\frac{1}{v^2 - \frac{2}{m} q \varphi + \frac{2}{m} c_2}} - n_0 \exp(\frac{e \varphi}{K T_e}) \right).$$

При $\varphi = 0$ $n = n_0$ для любых v. Поэтому $c_2 = 0$, $c_1 = n_0 v$. Тогда

$$\frac{\partial^2 \varphi}{\partial z^2} = -4\pi q n_0 \left(v \sqrt{\frac{1}{v^2 - \frac{2}{m} q \varphi}} - \exp(\frac{e\varphi}{KT_e}) \right).$$

Домножим на первую производную $\frac{\partial \varphi}{\partial z}$

$$\frac{\partial^2 \varphi}{\partial z^2} \frac{\partial \varphi}{\partial z} = -4\pi q n_0 \frac{\partial \varphi}{\partial z} \left(v \sqrt{\frac{1}{v^2 - \frac{2}{m} q \varphi}} - \exp(\frac{e\varphi}{KT_e}) \right)$$

и преобразуем

$$-\frac{1}{2}\frac{\partial}{\partial z}((\varphi')^2) = -4\pi q n_0 \frac{\partial \varphi}{\partial z} \left(v \sqrt{\frac{1}{v^2 - \frac{2}{m}q\varphi}} - n_0 \exp(\frac{e\varphi}{KT_e}) \right).$$

Проинтегрируем один раз

$$\left(\frac{\partial \varphi}{\partial z}\right)^2 = 8\pi n_0 v m \sqrt{\frac{mv^2 - 2q\varphi}{m}} + 8\pi n_0 K T_e \exp(\frac{q\varphi}{K T_e}) + C, \quad C = const.$$

Так как рассматривается изолированное возмущение (солитон) (Рис. 5), то при $\varphi=0,\, \frac{\partial \varphi}{\partial z}=0,\,$ значит

$$mv^2 + KT_e + C = 0.$$

Отсюда $C = (-KT_e - v^2m)8\pi n_0$.

Если профиль потенциала гладкий, то при $\varphi=\varphi_{max}$ и $\frac{\partial \varphi}{\partial z}=0$. Значит,

$$v^{2} = \frac{KT_{e}}{2m} \cdot \frac{\left(\exp\left(\frac{q\varphi_{max}}{KT_{e}}\right) - 1\right)^{2}}{\exp\left(\frac{q\varphi_{max}}{KT_{e}}\right) - 1 - \frac{q\varphi_{max}}{KT_{e}}}.$$
(18)

Заметим, что формула верна при $\frac{mv^2}{2} > q\varphi$. В таблице 2 приведено сравнение численной зависимости скорости переднего возмущения v_{comp} от амплитуды потенциала φ_{\max} (см. Таблицу 1) с теоретической оценкой v, сделанной по формуле (18).

Таблица 2: Скорость переднего возмущения потенциала и его амплитуда. Сравнение результатов расчётов с теоретической оценкой (18)

	-						,	,
u_0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
v_{comp}	1.059	1.11	1.2	1.28	1.38	1.47	1.582	1.58
φ_{max}	0.147	0.33	0.52	0.71	0.895	1.06	1.26	1.27
v	1.051	1.20	1.198	1.285	1.377	1.467	1.587	1.587

Скорость переднего возмущения численно вычисляется как $v_{comp} = \frac{\Delta x}{\Delta t} + u$. Полученный численный результат находится в хорошем соответствии с теоретической оценкой.

3. ПОЛНОСТЬЮ КИНЕТИЧЕСКАЯ МОДЕЛЬ

3.1. Описание модели

Рассмотрим физико-математическую модель, в которой для описания ионов и электронов используется кинетическое уравнение Власова. Будем рассматривать одномерный случай. Возьмём декартову систему координат с осью x, направленной вдоль направления скорости потока плазмы. Система уравнений Власова-Гаусса выглядит следующим образом

$$\begin{cases}
\frac{df_i}{dt} = \frac{\partial f_i}{\partial t} + v_i \frac{\partial f_i}{\partial x_i} + \frac{q}{m_i} E \frac{\partial f_i}{\partial v_i} = 0, \\
\frac{df_e}{dt} = \frac{\partial f_e}{\partial t} + v_e \frac{\partial f_e}{\partial x_e} - \frac{e}{m_e} E \frac{\partial f_e}{\partial v_e} = 0, \\
\frac{\partial E}{\partial x_i} = 4\pi (q \int f_i dv_i - e \int f_e dv_e),
\end{cases} (19)$$

где $f_i(x_i, v_i, t)$ - функция распределения ионов, $f_e(x_e, v_e, t)$ - функция распределения электронов, t - время, x_i - координаты ионов, x_e - координаты электронов, q - заряд ионов, e - заряд электронов, m_i - масса ионов, m_e - масса электронов, v_i - скорость ионов, v_e - скорость электронов, E - напряженность электрического поля.

Выберем в качестве масштаба следующие величины: $m_e, m_i = 1836 \cdot m_e, \lambda_D = \sqrt{\frac{T_e}{4\pi n_0 e^2}}$ - дебаевская длина, $t_0 = \frac{\lambda_D}{v_0}$ - характерное время, n_0 - начальная концентрация потока плазмы, $\varphi_0 = \frac{KT_e}{e}, E_0$ - начальное распределение электрического поля, $v_0 = \sqrt{\frac{KT_e}{m_e}}$ - тепловая скорость электронов. Выпишем систему уравнений (19) в безразмерных переменных $x_i' = \frac{x_i}{\lambda_D},$ $x_e' = \frac{x_e}{\lambda_D}, \ t' = \frac{t}{t_0}, \ n_i' = \frac{n_i}{n_0}, \ n_e' = \frac{n_e}{n_0}, \ v_i' = \frac{v_i}{v_0}, \ v_e' = \frac{v_e}{v_0}, \ \varphi' = \frac{\varphi}{\varphi_0}, \ E' = \frac{E}{E_0}.$ Получим $\begin{cases} \frac{\partial f_i}{\partial t'} + v_i' \frac{\partial f_i}{\partial x_i'} + E' \frac{\partial f_i}{\partial v_e'} = 0, \\ \frac{\partial f_e}{\partial t'} + v_e' \frac{\partial f_e'}{\partial x_e'} + E' \frac{\partial f_e'}{\partial v_e'} = 0, \\ \frac{\partial E'}{\partial x_i'} = n_i' - n_e', \end{cases}$

где для рассмотренного случая q=e (водородная плазма), $n'_e=\int f_e dv'_e$, $n'_i=\int f_i dv'_i$. Уравнения (20) рассматриваем в области $x'_i, x'_e\in [0,x_{\max}]$. Поставим граничное условие на проводящей стенке

$$E'|_{x_{\text{max}}} = 0. \tag{21}$$

Уравнения Власова системы (20) будем решать, используя метод частиц в ячейках [2]. Решение уравнения Гаусса системы (20) будем находить напрямую, используя распределения плотности ионов и электронов (см. Глава 4 Раздел 4.5).

На Рис. 6 представлена блок-схема вычислений.

Рис. 6 — Блок-схема вычислений: в начальный момент времени в расчётной области размещены частицы с координатами и скоростями $x|_{t=0}, v|_{t=0}$. По координатам частиц на каждом временном шаге вычисляется плотность ионов и электронов, после чего считается электрическое поле. По имеющемуся на сетке распределению электрического поля вычисляется с помощью линейной интерполяции сила в точке положения каждой частицы.

3.2. Результаты численного моделирования

На Рис. 7, 8, 9 представлены фазовые плоскости ионов при различных скоростях набегающего потока u_0 . Фазовые плоскости имеют сложную структуру. Можно заметить частицы, имеющие скорости, значительно превышающие как скорость звука v_0 , так и скорость переднего возмущения.

Рис. 7 — Распределение ионов на фазовой плоскости для $u_0 = 0.8v_0$ при $t = 1980t_0$. Сетка имеет количество узлов $i_{max} = 2501$. Длина области $x_{max} = 250$, шаг по пространству h = 0.1, шаг по времени $\tau = 0.025$, количество частиц в ячейке $N_p = 50$, количество частиц в начале расчёта N = 125000.

Рис. 8 — Распределение ионов на фазовой плоскости для $u_0=1.5v_0$ при $t=2500t_0$. Сетка имеет количество узлов $i_{max}=2501$. Длина области $x_{max}=250$, шаг по пространству h=0.1, шаг по времени $\tau=0.025$, количество частиц в ячейке $N_p=500$, количество частиц в начале расчёта N=1250000.

Рис. 9 — Распределение ионов на фазовой плоскости для $u_0=2v_0$ при $t=2000t_0$. Сетка имеет количество узлов $i_{max}=2501$. Длина области $x_{max}=250$, шаг по пространству h=0.1, шаг по времени $\tau=0.025$, количество частиц в ячейке $N_p=500$, количество частиц в начале расчёта N=1250000.

4. МЕТОДЫ И АЛГОРИТМЫ

4.1. Решение уравнения Власова

Для решения уравнения Власова (5) для функции распределения частиц (только ионов в модели, описанной в Главе 2, ионов и электронов в полностью кинетической модели, Глава 3) используется метод частиц в ячейках [2]. В этом методе плазма представляется набором большого числа модельных частиц, траектории которых являются характеристиками уравнения Власова (4). В рассмотренном одномерном случае частицы движутся в электрическом поле, которое удовлетворяет закону Гаусса, в котором плотность заряда выступает в качестве источника. Электрическое поле и электростатический потенциал вычисляются на расчётной сетке. В связи с этим, при реализации метода частиц необходимо уметь вычислять плотности заряда на этой расчётной сетке, а также интерполировать силы со стороны электрического поля из узлов сетки в точку положения частицы. Конкретные алгоритмы кратко описаны ниже.

4.2. Восстановление плотности заряда

Пусть модельная плазма состоит из N частиц, находящихся в некотором объёме V. Каждая частица имеет свою массу m и заряд q. Её положение характеризуется координатой x и скоростью v.

Непосредственное применение функции распределения точечных частиц

$$f(x, v, t) = \sum_{n=1}^{N} \delta(x - x_n) \delta(v - v_n)$$

привело бы к возникновению флуктуаций плотности из-за ограниченного числа частиц и расходимости электрического поля на малых расстояниях [2]. Для уменьшения флуктуаций в методе частиц используются функции распределения для частиц конечного размера

$$\overline{f}(x, v, t) = \int f(x', v, t) R(x, x') dx' = \sum_{n=1}^{N} R(x - x_n) \delta(v - v_n).$$
 (22)

Для одинаковых частиц с зарядом q распределение плотности заряда, вычисленное с использованием (22), имеет вид

$$\overline{\rho}(x,t) = q \sum_{n=1}^{N} R(x,x_n)$$

Функция R должна удовлетворять условию $\int_V R(x,x')dx=1$, означающему сохранению заряда каждой частицы. В данной работе используется следующая функция:

$$R(x, x') = \begin{cases} (2\Delta)^{-1}, |x - x'| \le \Delta. \\ 0, (|x - x'| > \Delta)). \end{cases}$$
 (23)

Плотность заряда $\overline{\rho}(x)$, восстановленная при помощи R из (23), будет разрывной кусочно-постоянной функцией. Значения плотности заряда на расчётной сетке вычисляются следующим образом

$$\rho_i = \frac{q}{h} \int_{x_i - h/2}^{x_i + h/2} \sum_{n=1}^{N} R(x - x_i) dx, \tag{24}$$

где ρ_i - значение плотности заряда в i - ом узле сетки, h - шаг сетки, $x_i=i\cdot h$. Для $\Delta=\frac{h}{2}$ формула (24) соответствует обратной линейной интерполяции заряда частицы между двумя ближайшими к ней узлами сетки. Для наглядности на Рис. 10 изображено восстановление плотности заряда в j - ом узле.

Рис. 10 – Обратная линейная интерполяция

4.3. Решение уравнений движения частиц

Для решения уравнения движения частиц (4) используется схема с перешагиванием. Она имеет второй порядок точности по времени. Это до-

стигается вычислением скоростей и координат в сдвинутых на полшага моментах времени.

$$x^{n+1} = x^n + \tau \cdot v^{n+1/2}, \quad v^{n+3/2} = v^{n+1/2} + \frac{\tau q}{m} \cdot E(x^{n+1}).$$
 (25)

Электрическое поле в правой части уравнения (25) для скорости должно быть вычислено в точке положения частицы x^{n+1} . Для этого значения полей в узлах сетки интерполируются в точку положения частицы при помощи линейной интерполяции из двух ближайших к ней узлов сетки следующим образом

$$E(x^{n+1}) = \frac{1}{h} \cdot \Big(E_{i-1}(x_i - x^{n+1}) + E_i(x^{n+1} - x_{i-1}) \Big), \quad x_{i-1} < x^{n+1} < x_i.$$

Здесь E_i и E_{i-1} - значения электрического поля в i - ом и i-1 - ом узле соответственно.

4.4. Метод квазилинеаризации для решения нелинейного уравнения Пуассона

Решение уравнения Пуассона (2) будем искать, используя метод квазилинеаризации [3]. Этот итерационный метод обладает очень быстрой сходимостью для данной задачи. Скорость сходимости обусловлена хорошим начальным приближением потенциала. Для аппроксимации второй производной в уравнении Пуассона используется конечно-разностная схема второго порядка. Итерационный алгоритм выглядит следующим образом

$$\frac{\varphi_{i-1}^{s+1} - 2\varphi_i^{s+1} + \varphi_{i+1}^{s+1}}{h^2} = \exp(\varphi_i^s)(1 - \varphi_i^s + \varphi_i^{s+1}) - n_i.$$

Здесь φ_i^s - значение сеточной функции на s - ой итерации, $\varphi_i^0 = \varphi_i^n$. Кроме того, φ_i^s должна удовлетворять граничным условиям (3). Для нахождения φ^{s+1} используется метод скалярной прогонки [4].

Для вычисления электрического поля используется уравнение

$$E = -\frac{\partial \varphi}{\partial x},$$

то есть

$$E_{i+1/2} = \frac{\varphi_i - \varphi_{i+1}}{h}.$$

Второй порядок аппроксимации достигается вычислением потенциала и поля в сдвинутых на полшага узлах расчётной сетки.

4.5. Вычисление электрического поля в полностью кинетической модели

В полностью кинетической модели нет необходимости вычислять электростатический потенциал, а можно вычислить поле напрямую из распределения плотности. Действительно, электрическое поле удовлетворяет закону Гаусса. В безразмерных переменных

$$\frac{\partial E}{\partial x} = n_i - n_e.$$

На правой границе расчётной области E=0. Плотности частиц вычисляются по координатам в серединах ячеек аналогично тому, как это показано в разделе 4.2. Тогда схема

$$E_{k+1} - E_k = h \cdot \tilde{n}_{k+1/2},$$

где $\tilde{n}_{k+1/2} = n_{i,k+1/2} - n_{e,k+1/2}$ с граничным условием $E_{i_{max}} = 0$ позволяет вычислить электрическое поле в узлах сетки со вторым порядком последовательно, начиная с крайней правой ячейки.

5. РАСПАРАЛЛЕЛИВАНИЕ

Проведено распараллеливание алгоритмов с использованием стандарта МРІ. Поскольку в методе частиц нет явной зависимости скоростей отдельных частиц от скоростей координат других частиц, то он легко распараллеливается путём распределения частиц по подобластям. В работе используется следующая реализация. Область моделирования делится на одинаковые подобласти, число которых равно числу процессорных элементов. Каждый процессорный элемент сохраняет характеристики только тех частиц, которые находятся в его подобласти. В процессе расчёта частицы могут перемещаться в область, принадлежащую соседнему процессорному элементу. Поэтому на каждом временном шаге нужно осуществлять пересылку частиц между процессорными элементами. Для того, чтобы пересылка была эффективной, нужно группировать частицы в три популяции: большая часть частиц остаётся на "своём"процессорном элементе, часть частиц должна быть переслана направо, оставшаяся часть налево в соседние процессорные элементы. На каждом временном шаге частицы сортируются по координатам при помощи процедуры быстрой сортировки, группируются и пересылаются между процессорными элементами за один вызов процедуры пересылки. Заметим, что крайний левый процессорный элемент может отправлять частицы только соседнему правому, а крайний правый наоборот, только соседнему левому. Остальные процессорные элементы могут передавать частицы соседним слева и справа.

Вычисление плотности заряда на каждом временном шаге осуществляется следующим образом. Каждый процессорный элемент вычисляет плотность по "своим"частицам. Затем все вычисленные значения собираются в общий массив, который передаётся всем процессорным элементам, при помощи MPI-процедуры MPI_Allreduce. Вычисление потенциала в модели с распределением Больцмана для электронов и вычисление электрического поля дублируются на всех процессорных элементах.

На Рис. 11 представлена блок-схема вычислений в полностью кинетической модели с использованием параллельных алгоритмов.

Рис. 11 – Блок-схема вычисления в модели, имеющей полностью кинетическое описание с использованием параллельных алгоритмов.

Исследована масштабируемость программы, коэффициенты ускорения для разного количества узлов представлены в таблице 3.

Количество процессорных элементов	Время расчёта в секундах	Ускорение
2	3356	1
5	1830	1.84
7	1302	2.58
10	1119	3
12	937	3.58
20	808	4.15
30	592	5.67
48	474	7.08

Таблица 3: Масштабируемость. Ускорение вычисляется по отношению к расчёту для двух процессорных элементов. В расчётах использовались следующие параметры: количество частиц в ячейке $N_p=20000$, сетка имеет $i_{\rm max}=1200$ ячеек, время расчёта $t=100t_0$, где $t_0=\frac{\lambda_D}{v_0},\,\lambda_D$ - дебаевская длина, v_0 - тепловая скорость электронов (см. Глава 3 Раздел 3.1)

ЗАКЛЮЧЕНИЕ

В работе были численно реализованы две физико-математические модели на основе системы уравнений Власова-Пуассона для исследования процесса формирования и распространения ионно-звукового возмущения в неизотермической плазме. Использованные алгоритмы протестированы, созданы программы на языке с++ для моделирования отражения потока плазмы от проводящей стенки. Проведенные расчёты для разных скоростей набегающего на стенку потока показали, что в результате взаимодействия разнонаправленных плазменных потоков формируется ионно-звуковое возмущение, представляющее собой распространяющийся от стенки горб потенциала с осцилляторным шлейфом. Результаты расчётов продемонстрировали, что структура волны зависит от скорости набегающего потока. Проведено сравнение зависимости скорости переднего возмущения потенциала от его амплитуды с теоретической формулой, полученной в гидродинамическом приближении [1]. Для диапазона параметров, использованного в расчётах, обнаружено хорошее соответствие с теорией. С целью проведения расчётов на мелкой сетке с большим количеством частиц до больших моментов времени было проведено распараллеливание алгоритмов и программ. Показана эффективность работы параллельной программы на кластере ЦКП ССКЦ ИВМиМГ СО РАН на доступном числе узлов до 48.

СПИСОК ЛИТЕРАТУРЫ

- 1. Арцимович Л. А., Сагдеев Р. 3. Физика плазмы для физиков. М.: Атомиздат. 1979.
- 2. Березин Ю. А., Вшивков В. А. Метод частиц в динамике разреженной плазмы. Новосибирск:Наука. 1980.
- 3. Беллман Р., Калаба Р. Квазилинеаризация и нелинейные краевые задачи. М.:Мир. 1969. С. 43-45
- 4. Калиткин Н.Н. Численные методы. М.:Наука. –1978.
- 5. Liseykina T.; Dudnikova G.; Vshivkov V.; Malkov M. Ion-acoustic shocks with reflected ions: modeling and PIC simulations// https://archive.org/details/arxiv-1503.07774/mode/2up, 2015
- 6. Krall N.A.; Trivelpiece A.W. Principles of Plasma Physics. –San Francisco Press. 1986.