Software Requirements Specification for SSP: Slope Stability Analysis Program

Henry Frankis and Brooks MacLachlan ${\rm May}\ 17,\, 2019$

1 Revision History

Date	Version	Notes
09/24/18	1.0	Removed RFEM
09/25/18	1.1	Traceability matrix work
09/26/18	1.2	Physical System Description expanded, Non-functional require-
		ments itemized
10/01/18	1.3	Various improvements throughout
10/02/18	1.4	Initial revision of the solution characteristics specification
10/03/18	1.5	Completed revision of the solution characteristics specification
		and other sections
10/04/18	1.6	Minor fixes throughout
10/12/18	1.7	Minor fixes based on feedback
10/17/18	1.8	More fixes based on feedback
12/05/18	1.9	Completed major revisions
12/09/18	1.10	Further minor updates for final submission
12/18/18	1.11	Fixed a broken reference

2 Reference Material

This section records information for easy reference.

2.1 Table of Units

The unit system used throughout is SI (Système International d'Unités). In addition to the basic units, several derived units are also used. For each unit, the table lists the symbol, a description and the SI name.

Symbol	Unit	SI
N	force	newton
m	length	meter
$Pa = N m^{-2}$	pressure	pascal
0	angle	degree

2.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units.

Symbol	Unit	Description
\overline{A}	m^2	area on which a force acts
b	m	width of the base of a slice in the x -direction
$const_f$		boolean decision on which form of f the user desires: constant if true, or a half-sine if false
c'	Pa	effective cohesion
$C_{\mathrm{num},i}$	N	expression used to calculate the numerator of the interslice normal to shear force proportion- ality constant
$C_{{ m den},i}$	N	expression used to calculate the denominator of the interslice normal to shear force proportion- ality constant
F	N	force
F_x	N	x-component of force
F_y	N	y-component of force
f		variation of the interslice normal to shear force ratio as a function of distance in the x -direction
$F_{ m S}$		factor of safety

$F_{ m S}^{ m Min}$		minimum factor of safety associated with the critical slip surface
G	${ m Nm^{-1}}$	interslice normal force per meter in the z -direction
Н	${ m Nm^{-1}}$	interslice water force per meter in the z -direction
h	m	height in the y -direction from the base of a slice to the slope surface, at the x -direction midpoint of the slice
$h_{ m z}$	m	height in the y -direction of the interslice normal force
$h_{ m z,w}$	m	height in the y -direction of the water table
i		index representing a single slice
$K_{ m c}$		horizontal seismic coefficient
M	N m	moment
N	${ m Nm^{-1}}$	normal force per meter in the z -direction
N'	${ m Nm^{-1}}$	effective normal force per meter in the z -direction
n		the total number of slices
P	$\rm Nm^{-1}$	resistive shear force per meter in the z -direction
Q	${ m Nm^{-1}}$	imposed surface load or external force per meter in the z -direction
R	${ m Nm^{-1}}$	resistive shear force without the influence of interslice forces per meter in the z -direction
r	m	position vector of a point where a force is applied, measured from the axis of rotation
r	m	length of the moment arm
S	${ m Nm^{-1}}$	mobilized shear force per meter in the z -direction
T	${ m Nm^{-1}}$	mobilized shear force without the influence of interslice forces per meter in the z -direction
$U_{ m b}$	${ m Nm^{-1}}$	base hydrostatic force per meter in the z -direction

$U_{ m t}$	${ m N}{ m m}^{-1}$	surface hydrostatic force per meter in the z -direction
u	Pa	pore pressure from water within the soil
V	m^3	volume
W	${ m Nm^{-1}}$	self-weight per meter in the z -direction
X	${ m N}{ m m}^{-1}$	interslice shear force per meter in the z -direction
x	m	x-ordinate in the Cartesian coordinate system
$x_{\rm cs}$	m	x-ordinate of a point on the critical slip surface
$x_{ m slip}$	m	x-ordinate of a point on a slip surface
$x_{\rm slip}^{ m maxExt}$	m	maximum potential x -ordinate of the exit point of a slip surface
$x_{ m slip}^{ m maxEtr}$	m	maximum potential x -ordinate of the entry point of a slip surface
$x_{ m slip}^{ m minExt}$	m	minimum potential x -ordinate of the exit point of a slip surface
$x_{ m slip}^{ m minEtr}$	m	minimum potential x -ordinate of the entry point of a slip surface
$x_{\rm slope}$	m	x-ordinate of a point on the slope
$x_{ m wt}$	m	x-ordinate of a point on the water table
y	m	y-ordinate in the Cartesian coordinate system
$y_{ m cs}$	m	y-ordinate of a point on the critical slip surface
$y_{ m slip}$	m	y-ordinate of a point on a slip surface
$y_{ m slip}^{ m max}$	m	maximum potential y -ordinate of a point on a slip surface
$y_{ m slip}^{ m min}$	m	minimum potential y -ordinate of a point on a slip surface
$y_{ m slope}$	m	y-ordinate of a point on the slope
$y_{ m wt}$	m	y-ordinate of a point on the water table
z	m	z-ordinate in the Cartesian coordinate system
α	0	angle between the base of a slice and the horizontal

β	0	angle between the surface of a slice and the horizontal
γ	${ m N}{ m m}^{-3}$	specific weight
$\gamma_{ m dry}$	${ m N}{ m m}^{-3}$	soil dry unit weight
$\gamma_{ m Sat}$	${ m Nm^{-3}}$	soil saturated unit weight
$\gamma_{ m w}$	${ m N}{ m m}^{-3}$	unit weight of water
λ		proportionality constant for the interslice normal to shear force ratio
σ	Pa	total stress on the soil mass
σ_N'	Pa	effective normal stress
σ'	Pa	effective stress provided by the soil skeleton
tau	${ m Nm}$	torque
au	Pa	shear strength
Υ		generic minimization function or algorithm
arphi'	0	effective angle of friction
Φ		first function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces
Ψ		second function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces
ω	0	angle between the imposed surface load and the vertical
$\ell_{ m b}$	m	base length of a slice in the direction parallel to the slope of the base

[The two symbols h_z and $h_{z,w}$ were originally z and z_w . You commented "Why use z?". The reason is because they are z in the literature. However, since z is also used for coordinates, I changed these symbols and reserved z for coordinates —BM]

2.3 Abbreviations and Acronyms

Symbol	Description
2D	Two-Dimensional
A	Assumption
DD	Data Definition
GD	General Definition
GS	Goal Statement
IM	Instance Model
LC	Likely Change
NFR	Non-Functional Requirement
PS	Physical System Description
R	Requirement
SRS	Software Requirements Specification
SSP	Slope Stability analysis Program
${ m T}$	Theoretical Model
TU	Typical Uncertainty
UC	Unlikely Change

Contents

1	Revision History	i
2	Reference Material 2.1 Table of Units	ii ii ii vi
3	Introduction 3.1 Purpose of Document	1 1 1 2
4	General System Description 4.1 System Context	2 3 3
5	5.2.5 Instance Models	3 3 4 6 6 6 7 9 19 29 37 38
6	6.1 Functional Requirements	39 40
7	Likely Changes	11
8	Unlikely Changes	11
9	Traceability Matrices and Graphs	11
10	References	17
11	11	1 7 47

3 Introduction

A slope of geological mass, composed of soil and rock and sometimes water, is subject to the influence of gravity on the mass. This can cause instability in the form of soil or rock movement. The effects of soil or rock movement can range from inconvenient to seriously hazardous, resulting in significant life and economic losses. Slope stability is of interest both when analysing natural slopes, and when designing an excavated slope. Slope stability analysis is the assessment of the safety of a slope, identifying the surface most likely to experience slip and an index of its relative stability known as the factor of safety.

The following section provides an overview of the Software Requirements Specification (SRS) for a slope stability analysis problem. The developed program will be referred to as the Slope Stability analysis Program (SSP). This section explains the purpose of this document, the scope of the system, the characteristics of the intended readers, and the organization of the document.

3.1 Purpose of Document

The primary purpose of this document is to record the requirements of SSP and the models that will be used to meet those requirements. Goals, assumptions, theoretical models, definitions, and other model derivation information are specified, allowing the reader to fully understand and verify the purpose and scientific basis of SSP. With the exception of system constraints in Section 4.3, this SRS will remain abstract, describing what problem is being solved, but not how to solve it.

This document will be used as a starting point for subsequent development phases, including writing the design specification and the software verification and validation plan. The design document will show how the requirements are to be realized, including decisions on the numerical algorithms and programming environment. The verification and validation plan will show the steps that will be used to increase confidence in the software documentation and the implementation. Although the SRS fits in a series of documents that follow the so-called waterfall model, the actual development process is not constrained in any way. Even when the waterfall model is not followed, as Parnas and Clements (February 1986) point out, the most logical way to present the documentation is still to "fake" a rational design process.

3.2 Scope of Requirements

The scope of the requirements is stability analysis of a 2-Dimensional (2D) soil mass, composed of a single homogeneous layer with constant material properties. The soil mass is assumed to extend infinitely in the third dimension. The analysis will be at an instant in time; factors that may change the slope properties over time will not be considered.

3.3 Characteristics of Intended Reader

Reviewers of this documentation should have an understanding of undergraduate Level 4 physics and should have completed a second year or higher level undergraduate course in solid mechanics. A course specifically in soil mechanics would be an asset. The users of SSP can have a lower level of expertise, as explained in Section 4.2.

3.4 Organization of Document

The organization of this document follows the template for an SRS for scientific computing software proposed by Koothoor (2013) and Smith and Lai (2005). The presentation follows the standard pattern of presenting goals, theories, definitions, and assumptions. For readers that would like a more bottom up approach, they can start reading the instance models in Section 5.2.5 and trace back to find any additional information they require. The goal statements (Section 5.1.3) are refined to the theoretical models, and the theoretical models (Section 5.2.2) to the instance models (Section 5.2.5). The instance models provide the set of algebraic equations that must be solved.

4 General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics, and lists the system constraints.

4.1 System Context

Figure 1 shows the system context. A circle represents an external entity outside the software. A rectangle represents the software system itself (SSP). Arrows are used to show the data flow between the system and its environment.

Figure 1: System context for SSP

The responsibilities of the user and the system are as follows:

- User Responsibilities:
 - Provide the input data related to the soil layer(s) and water table (if applicable), ensuring conformation to input data format required by SSP
 - Ensure that consistent units are used for input variables
 - Ensure required software assumptions (Section 5.2.1) are appropriate for the problem to which the user is applying the software
- SSP Responsibilities:
 - Detect data type mismatch, such as a string of characters input instead of a floating point number
 - Verify that the inputs satisfy the required physical constraints and other data constraints (Section 5.2.6)
 - Identify the critical slip surface within the possible input range

- Find the factor of safety for the slope
- Find the interslice normal and shear forces along the critical slip surface

4.2 User Characteristics

The end user of SSP should have an understanding of undergraduate Level 1 Calculus and Physics, and be familiar with soil and material properties, specifically cohesion, effective angle of friction, and unit weight.

4.3 System Constraints

The Morgenstern-Price method (Morgenstern and Price, January 1965), which involves dividing the slope into vertical slices, will be used to derive the equations for analysing the slope.

5 Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, definitions and finally the instance models.

5.1 Problem Description

SSP is a computer program developed to evaluate the factors of safety for a slope's slip surfaces and identify the critical slip surface of the slope, as well as the interslice normal and shear forces along the critical slip surface. It is intended to be used as an educational tool for introducing slope stability issues, and to facilitate the analysis and design of a safe slope.

5.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements.

- Factor of safety: The global stability metric of a slip surface of a slope, defined as the ratio of resistive shear force to mobile shear force
- Slip surface: A surface within a slope that has the potential to fail or displace due to load or other forces.
- Critical slip surface: Slip surface of the slope that has the lowest factor of safety, and is therefore most likely to experience failure.
- Water table: The upper boundary of a saturated zone in the ground.
- Stress: Force applied over an area.
- Strain: A measure of deformation of a body or plane under stress.
- Normal force: A force applied perpendicular to the plane of the material.

- Shear force: A force applied parallel to the plane of the material.
- Resistive shear force: Shear force in the direction opposite to the direction of potential motion, thus hindering motion along the plane.
- Mobile shear force: Shear force in the direction of potential motion, thus encouraging motion along the plane.
- Effective forces and stresses: The normal force or stress carried by the soil skeleton. The total normal force or stress is composed of the effective force or stress and the force or stress exerted by water.
- Cohesion: An attractive force between adjacent particles that holds the matter together.
- *Isotropic:* A condition where the value of a property is independent of the direction in which it is measured.
- Plane strain: A condition where the resultant stresses in one of the directions of a 3-dimensional body can be approximated as zero. Results when the length of one dimension of the body dominates the others, to the point where it can be assumed as infinite. Stresses in the direction of the dominant dimension can be approximated as zero.

5.1.2 Physical System Description

The Physical System (PS) of SSP, as shown in Figure 2, includes the following elements:

PS1: A slope comprised of one layer of soil.

PS2: A water table, which may or may not exist.

Figure 2: An example slope for analysis by SSP, where the dashed line represents the water table

Morgenstern-Price (Morgenstern and Price, January 1965) analysis of the slope involves representing the slope as a series of vertical slices. As shown in Figure 3, the index i is used to denote a

value for a single slice, and an interslice value at a given index i refers to the value between slice i and adjacent slice i + 1.

Figure 3: Index convention for slice and interslice values

A free body diagram of the forces acting on a slice is displayed in Figure 4. The specific forces and symbols will be discussed in detail in Sections 5.2.3 and 5.2.4.

Figure 4: Free body diagram of forces acting on a slice

5.1.3 Goal statements

Given the shape of a soil mass, the location of a water table, and the material properties of the soil, the goal statements are to:

- GS1: Identify the critical slip surface and the corresponding factor of safety.
- GS2: Determine the interslice normal force between each pair of vertical slices of the slope.
- GS3: Determine the interslice shear force between each pair of vertical slices of the slope.

5.2 Solution Characteristics Specification

The instance models that govern SSP are presented in Section 5.2.5. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

5.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical models by filling in the missing information for the physical system. The numbers given in the square brackets refer to the theoretical model [T], general definition [GD], data definition [DD], instance model [IM], or likely change [LC], in which the respective assumption is used.

- A1: The slip surface is concave with respect to the slope surface. The $(x_{\text{slip}}, y_{\text{slip}})$ coordinates of a slip surface follow a concave up function. [IM4]
- A2: The factor of safety is assumed to be constant across the entire slip surface. [GD4]
- A3: The soil mass is homogeneous, with consistent soil properties throughout. [GD3, DD1, LC1]
- A4: The soil properties are independent of dry or saturated conditions, with the exception of unit weight. [GD3]
- A5: The soil mass is treated as if the effective cohesion and effective angle of friction are isotropic properties. [GD3]
- A6: Following the assumption of Morgenstern and Price (January 1965), interslice normal and shear forces have a proportional relationship, depending on a proportionality constant (λ) and a function (f) describing variation depending on x position. [GD8, IM1, IM2]
- A7: The slope and slip surface extends far into and out of the geometry (z-coordinate). This implies plane strain conditions, making 2D analysis appropriate. [T2, GD3, GD5]
- A8: The effective normal stress is large enough that the resistive shear to effective normal stress relationship can be approximated as a linear relationship. [T3]
- A9: The surface and base of a slice are approximated as straight lines [DD1, DD2, DD3, DD5, DD6, DD8, DD??, DD9].
- A10: The interslice forces at the θ th and nth interslice interfaces are zero. [IM1, IM2, IM3].

A11: There is no seismic force acting on the slope. [IM1, IM2, LC2]

A12: There is no imposed surface load, and therefore no external force, acting on the slope. [IM1, IM2, LC3]

5.2.2 Theoretical Models

This section focuses on the general equations and laws that SSP is based on.

Number	T1	
Label	Factor of Safety	
Equation	$F_{\rm S} = \frac{P}{S}$	
Description	$F_{\rm S}$ is the factor of safety, or stability metric of the slope.	
	S is the mobile shear force per meter in the z-direction (N m ⁻¹).	
	P is the resistive shear force per meter in the z-direction (N m ⁻¹).	
Source	Fredlund and J.Krahn (4 April 1977)	
Ref. By	GD4	

Number	T2	
Label	Static Equilibrium	
Equation	$\sum F_{\mathbf{x}} = \sum F_{\mathbf{y}} = \sum M = 0$	
Description	For a body in static equilibrium the net forces and net moments acting on the body will cancel out. This equation assumes a 2D space (A7).	
	F_x is the x-component of the net force (N).	
	F_y is the y-component of the net force (N).	
	M is the net moment (N m).	
Source	Fredlund and J.Krahn (4 April 1977)	
Ref. By	GD1, GD2, GD10	

Number	T3		
Label	Mohr-Coulomb Shear Strength		
Equation	$\tau = \sigma_N' \cdot \tan\left(\varphi'\right) + c'$		
Description	The τ versus σ'_N relationship is not truly linear, but assuming the effective normal force is strong enough, it can be approximated with a linear fit (A8), where the cohesion c' represents the τ intercept of the fitted line.		
	τ is the shear strength (Pa).		
	σ'_N is the effective normal stress (Pa).		
	φ' is the effective angle of friction (°).		
	c' is the effective cohesion (Pa).		
Source	Fredlund and J.Krahn (4 April 1977)		
Ref. By	GD_3		

Number	T4	
Label	Effective Stress	
Equation	$\sigma' = \sigma - u$	
Description	σ is the total stress on the soil mass (Pa), defined in DD10.	
	σ' is the effective stress provided by the soil skeleton (Pa).	
	u is the pore pressure from water within the soil (Pa).	
Source	Fredlund and J.Krahn (4 April 1977)	
Ref. By	GD_{5}	

Number	T5	
Label	Newton's second law of motion	
Equation	$\mathbf{F} = m\mathbf{a}$	
Description	The net force \mathbf{F} (N) on a body is proportional to the acceleration \mathbf{a} (m s ⁻²) of the body, where m (kg) denotes the mass of the body as the constant of proportionality.	
Source		
Ref. By	GD9	

5.2.3 General Definitions

This section collects the laws and equations that will be used to build the instance models.

Number	GD1	
Label	Normal Force Equilibrium	
SI Units	$ m Nm^{-1}$	
Equation	$N_{i} = [W_{i} - X_{i-1} + X_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i})$	
Equation	$+ \left[-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \sin(\omega_{i}) \right] \sin(\alpha_{i})$	
Description	This equation satisfies T2 in the normal direction. Force equilibrium is derived from the free body diagram of Figure 4 in Section 5.1.2.	
	i is the index representing a single slice.	
	N is the normal force per meter in the z-direction (N m ⁻¹).	
	W is the weight per meter in the z-direction (N m ⁻¹), defined in DD1.	
	X is the interslice shear force per meter in the z-direction (N m ⁻¹).	
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.	
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.	
	Q is the external force per meter in the z-direction (N m ⁻¹).	
	ω is the angle between the imposed surface load acting into the surface and the vertical (°).	
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.	
	$K_{\rm c}$ is the seismic coefficient.	
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).	
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.	
Source	Zhu et al. (19 February 2005)	
Ref. By	IM <mark>1</mark>	

Number	GD2	
Label	Base Shear Force Equilibrium	
SI Units	$ m Nm^{-1}$	
	$S_{i} = \left[W_{i} - X_{i-1} + X_{i} + U_{t,i}\cos(\beta_{i}) + Q_{i}\cos(\omega_{i})\right]\sin(\alpha_{i})$	
Equation	$S_{i} = \begin{cases} [W_{i} - X_{i-1} + X_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \sin(\alpha_{i}) \\ -[-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i}) \end{cases}$	
Description	This equation satisfies T2 in the shear direction. Force equilibrium is derived from the free body diagram of Figure 4 in Section 5.1.2.	
	i is the index representing a single slice.	
	S is the mobile shear force per meter in the z-direction (N m ⁻¹).	
	W is the weight per meter in the z-direction $(N m^{-1})$, defined in DD1.	
	X is the interslice shear force per meter in the z-direction (N m ⁻¹).	
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.	
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.	
	Q is the external force per meter in the z-direction (N m ⁻¹).	
	ω is the angle between the imposed surface load acting into the surface and the vertical (°).	
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.	
	$K_{\rm c}$ is the seismic coefficient.	
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).	
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.	
Source	Zhu et al. (19 February 2005)	
Ref. By	IM <mark>1</mark>	

Number	GD3
Label	Resistive Shear Force
SI Units	$ m Nm^{-1}$
Equation	$P_i = N_i' \cdot \tan(\varphi') + c' \cdot \ell_{b,i}$
Description	
	i is the index representing a single slice.
	P is the resistive shear force per meter in the z-direction (N m ⁻¹).
	N' is the effective normal force per meter in the z-direction (N m ⁻¹).
	φ' is the effective angle of friction (°).
	c' is the effective cohesion (Pa).
	$\ell_{\rm b}$ is the width of the base of a slice in the x direction (m), defined in DD8.
Source	Zhu et al. (19 February 2005)
Ref. By	GD4

Number	GD4
Label	Mobile Shear Force
SI Units	$ m Nm^{-1}$
Equation	$S_i = \frac{P_i}{F_S} = \frac{N'_i \cdot \tan(\varphi') + c' \cdot \ell_{b,i}}{F_S}$
Description	Mobile shear force as derived from the definition of the factor of safety in $T1$, and the definition of P in $GD3$. The factor of safety F_S is not indexed by i because it is assumed to be constant for the entire slip surface $(A2)$.
	i is the index representing a single slice.
	S is the mobile shear force per meter in the z-direction (N m ⁻¹).
	P is the resistive shear force per meter in the z-direction (N m ⁻¹).
	N' is the effective normal force per meter in the z-direction (N m ⁻¹).
	φ' is the effective angle of friction (°).
	c' is the effective cohesion (Pa).
	$\ell_{\rm b}$ is the width of the base of a slice in the x direction (m), defined in DD8.
	$F_{\rm S}$ is the factor of safety.
Source	Zhu et al. (19 February 2005)
Ref. By	IM1

Number	GD5	
Label	Effective Normal Force	
SI Units	$ m Nm^{-1}$	
Equation	$N_i' = N_i - U_{b,i}$	
Description	Derived by substituting DD10 into T4 and multiplying both sides of the equation by the area of the slice in the shear- z plane. Since the slope is assumed to extend infinitely in the z -direction (A7), the resulting forces are expressed per meter in the z -direction.	
	i is the index representing a single slice.	
	N' is the effective normal force per meter in the z-direction (N m ⁻¹).	
	N is the normal force per meter in the z-direction (N m ⁻¹).	
	$U_{\rm b}$ is the base hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD ₂ .	
Source	Zhu et al. (19 February 2005)	
Ref. By	IM <mark>1</mark>	

Number	GD6	
Label	Resistive Shear, Without Interslice Normal and Shear Forces	
Equation	$R_{i} = \begin{pmatrix} \left[W_{i} + U_{t,i}\cos\left(\beta_{i}\right)\right]\cos\left(\alpha_{i}\right) \\ + \left[-H_{i} + H_{i-1} + U_{t,i}\sin\left(\beta_{i}\right)\right]\sin\left(\alpha_{i}\right) - U_{b,i} \end{pmatrix} \cdot (\tan\left(\varphi'\right) + c' \cdot \ell_{b,i})$	
Description	This equation for R arises as part of the derivation for IM1, so that derivation should be consulted for information relating to the derivation of R .	
	i is the index representing a single slice.	
	R is the resistive shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹).	
	W is the weight per meter in the z-direction (N m ⁻¹), defined in DD1.	
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.	
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.	
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.	
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.	
	$U_{\rm b}$ is the base hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD2.	
	φ' is the effective angle of friction (°).	
	c' is the effective cohesion (Pa).	
	$\ell_{\rm b}$ is the base length of a slice in the direction parallel to the slope of the base (m), defined in DD8.	
Sources	Zhu et al. (19 February 2005), Karchewski et al. (2012)	
Ref. By	IM1, IM3	

[You had a comment that the symbol for R should be R' because it is an effective force value. However, even though the effective normal force is used in this equation, does that mean that R itself is effective? Our two primary sources (Brandon's paper and the Zhu et al. paper) do not refer to R or T as effective. If we do decide to define R as the effective resistive shear, then we should also define T as effective mobile shear, right? —BM]

Number	GD7
Label	Mobile Shear, Without Interslice Normal and Shear Forces
Equation	$T_i = (W_i + U_{t,i}\cos(\beta_i))\sin(\alpha_i) - (-H_i + H_{i-1} + U_{t,i}\sin(\beta_i))\cos(\alpha_i)$
Description	This equation for T arises as part of the derivation for IM1, so that derivation should be consulted for information relating to the derivation of T .
	i is the index representing a single slice.
	T is the mobilized shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹).
	W is the weight per meter in the z-direction $(N m^{-1})$, defined in DD1.
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.
Sources	Zhu et al. (19 February 2005), Karchewski et al. (2012)
Ref. By	IM1, IM3

Number	GD8
Label	Interslice Normal and Shear Force Proportionality
Equation	$X = \lambda \cdot f \cdot G$
Description	Mathematical representation of the primary assumption for the Morgenstern-Price method (A6).
	X is the interslice shear force per meter in the z-direction (N m ⁻¹).
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).
	λ is the proportionality constant.
	f is the variation of the interslice normal to shear force ratio as a function of distance in the x -direction, defined in DD11.
Source	Zhu et al. (19 February 2005)
Ref. By	IM1, IM2

Number	GD9
Label	Weight
Equation	$W = \gamma V$
Description	W is the weight (N).
	γ is the specific weight (N m ⁻³).
	V is the volume (m ³).
Source	
Ref. By	GD10

Number	GD10
Label	Moment Equilibrium
	$-G_{i}\left[h_{z,i} + \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right] + G_{i-1}\left[h_{z,i-1} - \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right] - H_{i}\left[\frac{1}{3}h_{z,w,i} + \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right]$
Equation	$0 = +H_{i-1} \left[\frac{1}{3} h_{z,w,i-1} - \frac{b_i}{2} \tan(\alpha_i) \right] + \frac{b_i}{2} \left(X_i + X_{i-1} \right) - K_c W_i \frac{h_i}{2} + U_{t,i} \sin(\beta_i) h_i$
	$+Q_i\sin(\omega_i)h_i$
Description	This equation satisfies T2 for the net moment. Force equilibrium is derived from the free body diagram of Figure 4 in Section 5.1.2.
	i is the index representing a single slice.
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).
	$h_{\rm z}$ is the height in the y-direction from the base of a slice to the center of the slice (m).
	b is the width of the base of a slice in the x-direction (m), defined in DD7.
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.
	$h_{z,w}$ is the height in the y-direction of the water table (m).
	X is the interslice shear force per meter in the z-direction (N m ⁻¹).
	$K_{\rm c}$ is the seismic coefficient.
	W is the weight per meter in the z-direction $(N m^{-1})$, defined in DD1.
	h is the height in the y-direction from the base of a slice to the slope surface, at the x-direction midpoint of the slice (m), defined in DD9.
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.
	Q is the external force per meter in the z-direction (N m ⁻¹).
	ω is the angle between the imposed surface load acting into the surface and the vertical (°).
Source	Zhu et al. (19 February 2005)
Ref. By	IM2

Derivation of Moment Equilibrium

Moment is equal to torque, so the equation from $\mathrm{DD}11$ will be used to calculate moments:

$$au = \mathbf{r} \times \mathbf{F}$$

Considering one dimension, with moments in the clockwise direction as positive and moments in the counterclockwise direction as negative, and replacing the torque symbol with the moment symbol, the equation simplifies to:

$$M = F \cdot r$$

where F is the force and r is the moment arm, or the distance between the force and the axis about which the rotation acts. To represent the moment equilibrium, the moments from each force acting on a slice must be considered and added together. The forces acting on a slice are all shown in Figure 4. The point at the midpoint of the base of a slice is considered as the axis of rotation, from which the length of the moment arm is measured. Considering first the interslice normal force acting on slice interface i, the moment is negative because the force tends to rotate the slice in a counter-clockwise direction, and the moment arm is the height of the force plus the difference in height between the base at slice interface i and the base at the midpoint of slice i. Thus, the moment is expressed as:

$$-G_i(h_{z,i} + \frac{b_i}{2}tan(\alpha_i))$$

For the i-1th slice interface, the moment is similar but in the opposite direction:

$$G_{i-1}(h_{z,i-1}-\frac{b_i}{2}tan(\alpha_i))$$

Next, the interslice water force is considered. This force is zero at the height of the water table, then increases linearly towards the base of the slice due to the increasing water pressure. For such a triangular distribution, the resultant force acts at one-third of the height. Thus, for the interslice water force acting on slice interface i, the moment is:

$$-H_i(\frac{1}{3}h_{\mathbf{z},\mathbf{w},i} + \frac{b_i}{2}tan(\alpha_i))$$

The moment for the interslice water force acting on slice interface i-1 is:

$$H_{i-1}(\frac{1}{3}h_{\mathbf{z},\mathbf{w},i-1} - \frac{b_i}{2}tan(\alpha_i))$$

The interslice shear force at slice interface i tends to rotate in the clockwise direction, and the length of the moment arm is half of the length from the slice edge to the slice midpoint, equivalent to half of the width of the slice, so the moment is:

$$X_i \frac{b_i}{2}$$

The interslice shear force at slice interface i-1 also tends to rotate in the clockwise direction, and has the same length of the moment arm, so the moment is:

$$X_{i-1}\frac{b_i}{2}$$

Seismic forces act over the entire height of the slice. For each horizontal segment of the slice, the seismic force is K_cW_i where W_i can be expressed as $\gamma b_i dy$ using GD9 where dy is the height of

the segment under consideration. The corresponding moment arm is y, the height from the base of the slice to the segment under consideration. The resultant moment from these forces with an equivalent resultant moment arm is determined by taking the integral over the slice height. The forces tend to rotate in the counter-clockwise direction, so the moment is negative.

$$-\int_0^{h_i} K_{\rm c} \gamma b_i y \, \mathrm{d}y$$

Solving the definite integral yields:

$$-K_{\rm c}\gamma b_i \frac{h_i^2}{2}$$

Using GD9 again to express $\gamma b_i h_i$ as W_i , the moment is:

$$-K_{\rm c}W_i\frac{h_i}{2}$$

The surface hydrostatic force acts into the midpoint of the surface of the slice. Thus, the vertical component of the force acts directly towards the point of rotation, and has a moment of zero. The horizontal component of the force tends to rotate in a clockwise direction, and the length of the moment arm is the entire height of the slice. Thus, the moment is:

$$U_{t,i}sin(\beta_i)h_i$$

The external force again acts into the midpoint of the slice surface, so the vertical component does not contribute to the moment, and the length of the moment arm is again the entire height of the slice. The moment is:

$$Q_i sin(\omega_i) h_i$$

The base hydrostatic force and slice weight both act in the direction of the point of rotation, therefore both have moments of zero. Thus, all of the moments have been determined. The moment equilibrium is then represented by the sum of all moments:

$$-G_{i}\left[h_{z,i} + \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right] + G_{i-1}\left[h_{z,i-1} - \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right] - H_{i}\left[\frac{1}{3}h_{z,w,i} + \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right]$$

$$0 = +H_{i-1}\left[\frac{1}{3}h_{z,w,i-1} - \frac{b_{i}}{2}\tan\left(\alpha_{i}\right)\right] + \frac{b_{i}}{2}\left(X_{i} + X_{i-1}\right) - K_{c}W_{i}\frac{h_{i}}{2} + U_{t,i}\sin\left(\beta_{i}\right)h_{i}$$

$$+Q_{i}\sin\left(\omega_{i}\right)h_{i}$$

5.2.4 Data Definition

This section collects and defines all the data needed to support the general definitions of 5.2.3 or build the instance models of 5.2.5. The dimension of each quantity is also given.

Number	DD1
Label	Weight
Symbol	W
SI Units	$ m Nm^{-1}$
Equation	$W_{i,1} = b_i \begin{cases} (y_{\text{slope},i} - y_{\text{slip},i}) \gamma_{\text{Sat}} & y_{\text{wt},i} \geq y_{\text{slope},i} \\ (y_{\text{slope},i} - y_{\text{wt},i}) \gamma_{\text{dry}} + (y_{\text{wt},i} - y_{\text{slip},i}) \gamma_{\text{Sat}} & y_{\text{slope},i} > y_{\text{wt},i} > y_{\text{slip},i} \\ (y_{\text{slope},i} - y_{\text{slip},i}) \gamma_{\text{dry}} & y_{\text{wt},i} \leq y_{\text{slip},i} \end{cases}$ $W_{i,2} = b_i \begin{cases} (y_{\text{slope},i-1} - y_{\text{slip},i-1}) \gamma_{\text{Sat}} & y_{\text{wt},i-1} \geq y_{\text{slope},i-1} \\ (y_{\text{slope},i-1} - y_{\text{wt},i-1}) \gamma_{\text{dry}} + (y_{\text{wt},i-1} - y_{\text{slip},i-1}) \gamma_{\text{Sat}} & y_{\text{wt},i-1} \geq y_{\text{slope},i-1} \\ (y_{\text{slope},i-1} - y_{\text{slip},i-1}) \gamma_{\text{dry}} + (y_{\text{wt},i-1} - y_{\text{slip},i-1}) \gamma_{\text{Sat}} & y_{\text{wt},i-1} \leq y_{\text{slip},i-1} \end{cases}$ $W_i = 0.5(W_{i,1} + W_{i,2})$
Description	This equation is based on the assumption that the surface and base of a slice are straight lines (A9). The soil dry unit weight $\gamma_{\rm dry}$ and the soil saturated unit weight $\gamma_{\rm Sat}$ are not indexed by i because the soil is assumed to be homogeneous, with constant soil properties throughout (A3).
	i is the index representing a single slice.
	W is the weight per meter in the z-direction (N m ⁻¹).
	b is the width of the base of a slice in the x-direction (m), defined in DD7.
	y_{slope} is the y-ordinate of a point on the slope (m).
	y_{slip} is the y-ordinate of a point on a slip surface (m).
	$\gamma_{\rm Sat}$ is the soil saturated unit weight (N m ⁻³).
	y_{wt} is the y-ordinate of a point on the water table (m).
	$\gamma_{\rm dry}$ is the soil dry unit weight (N m ⁻³).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD1, GD2, GD6, GD7, GD10

Number	DD2
Label	Base Water Force
Symbol	$U_{ m b}$
SI Units	$ m Nm^{-1}$
Equation	$U_{b,i,1} = b_i \begin{cases} (y_{\text{wt},i} - y_{\text{slip},i}) \gamma_{\text{w}} & y_{\text{wt},i} > y_{\text{slip},i} \\ 0 & y_{\text{wt},i} \le y_{\text{slip},i} \end{cases}$ $U_{b,i,2} = b_i \begin{cases} (y_{\text{wt},i-1} - y_{\text{slip},i-1}) \gamma_{\text{w}} & y_{\text{wt},i-1} > y_{\text{slip},i-1} \\ 0 & y_{\text{wt},i-1} \le y_{\text{slip},i-1} \end{cases}$
	$U_{b,i,2} = b_i \begin{cases} (y_{\text{wt},i-1} - y_{\text{slip},i-1}) \gamma_{\text{w}} & y_{\text{wt},i-1} > y_{\text{slip},i-1} \\ 0 & y_{\text{wt},i-1} \le y_{\text{slip},i-1} \end{cases}$
	$U_{b,i} = 0.5(U_{b,i,1} + U_{b,i,2})$
Description	This equation is based on the assumption that the base of a slice is a straight line (A9).
	i is the index representing a single slice.
	$U_{\rm b}$ is the base hydrostatic force per meter in the z-direction (N m ⁻¹).
	b_i is the width of the base of a slice in the x-direction (m), defined in DD7.
	y_{wt} is the y-ordinate of a point on the water table (m).
	$y_{\rm slip}$ is the y-ordinate of a point on a slip surface (m).
	$\gamma_{\rm w}$ is the unit weight of water (N m ⁻³).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD5, GD6

Number	DD3
Label	Surface Hydrostatic Force
Symbol	$oxed{U_{ m t}}$
SI Units	$ m Nm^{-1}$
Equation	$U_{t,i,1} = b_i \begin{cases} (y_{\text{wt},i} - y_{\text{slope},i}) \gamma_{\text{w}} & y_{\text{wt},i} > y_{\text{slope},i} \\ 0 & y_{\text{wt},i} \leq y_{\text{slope},i} \end{cases}$ $U_{t,i,2} = b_i \begin{cases} (y_{\text{wt},i-1} - y_{\text{slope},i-1}) \gamma_{\text{w}} & y_{\text{wt},i-1} > y_{\text{slope},i-1} \\ 0 & y_{\text{wt},i-1} \leq y_{\text{slope},i-1} \end{cases}$
	$U_{t,i,2} = b_i \begin{cases} (y_{\text{wt},i-1} - y_{\text{slope},i-1}) \gamma_{\text{w}} & y_{\text{wt},i-1} > y_{\text{slope},i-1} \\ 0 & \text{where } i \end{cases}$
	$U_{t,i} = 0.5(U_{t,i,1} + U_{t,i,2})$ $U_{t,i} = 0.5(U_{t,i,1} + U_{t,i,2})$
Description	This equation is based on the assumption that the surface of a slice is a straight line (A9).
	i is the index representing a single slice.
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹).
	b_i is the width of the base of a slice in the x-direction (m), defined in DD7.
	y_{wt} is the y-ordinate of a point on the water table (m).
	y_{slope} is the y-ordinate of a point on the slope (m).
	$\gamma_{\rm w}$ is the unit weight of water (N m ⁻³).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD1, GD2, GD6, GD7, GD10, IM2

[I think DD2 and DD3 should be multiplied by b, not by ℓ , however this matches the original code by Brandon so I'm keeping it for now. But do you agree that it makes no sense to multiply by ℓ here and not b? —BM]

[Updated DD2 and DD3 according to above comment —BM]

Number	DD4	
Label	Interslice Water Force	
Symbol	H	
SI Units	$ m Nm^{-1}$	
	$H_{i} = \begin{cases} \frac{\left[y_{\text{slope},i} - y_{\text{slip},i}\right]^{2}}{2} \gamma_{\text{w}} + \left[y_{\text{wt},i} - y_{\text{slope},i}\right]^{2} \gamma_{\text{w}} \\ \frac{\left[y_{\text{wt},i} - y_{\text{slip},i}\right]^{2}}{2} \gamma_{\text{w}} \end{cases}$	$y_{\mathrm{wt},i} \ge y_{\mathrm{slope},i}$
Equation	$H_i = \left\langle \frac{\left[y_{\mathrm{wt},i} - y_{\mathrm{slip},i} \right]^2}{2} \gamma_{\mathrm{w}} \right\rangle$	$y_{\text{slope},i} > y_{\text{wt},i} > y_{\text{slip},i}$
	(0	$y_{\mathrm{wt},i} \leq y_{\mathrm{slip},i}$
Description	i is the index representing a single slice.	
	H is the interslice water force per meter in the	ne z-direction $(N m^{-1})$.
	y_{slope} is the y-ordinate of a point on the slope	e (m).
	$y_{\rm slip}$ is the y-ordinate of a point on a slip surf	ace (m).
	$\gamma_{\rm w}$ is the unit weight of water. (N m ⁻³).	
	$y_{\rm wt}$ is the y-ordinate of a point on the water	table (m).
Sources	Fredlund and J.Krahn (4 April 1977)	
Ref. By	GD1, GD2, GD6, GD7, GD10, IM2	

Number	DD5
Label	Base Angle
Symbol	α
SI Units	0
Equation	$\alpha_i = \arctan\left(\frac{y_{\text{slip},i} - y_{\text{slip},i-1}}{x_{\text{slip},i} - x_{\text{slip},i-1}}\right)$
Description	This equation is based on the assumption that the base of a slice is a straight line (A9).
	i is the index representing a single slice.
	α is the angle between the base of a slice and the horizontal (°).
	y_{slip} is the y-ordinate of a point on a slip surface (m).
	x_{slip} is the x-ordinate of a point on a slip surface (m).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD1, GD2, GD6, GD7, GD10, DD8, IM2

Number	DD6
Label	Surface Angle
Symbol	β
SI Units	0
Equation	$\beta_i = \arctan\left(\frac{y_{\text{slope},i} - y_{\text{slope},i-1}}{x_{\text{slope},i} - x_{\text{slope},i-1}}\right)$
Description	This equation is based on the assumption that the surface of a slice is a straight line (A9).
	i is the index representing a single slice.
	β is the angle between the surface of a slice and the horizontal (°).
	y_{slope} is the y-ordinate of a point on the slope (m).
	x_{slope} is the x-ordinate of a point on the slope (m).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD1, GD2, GD6, GD7, GD10, DD??, IM2

Number	DD7
Label	Base x-Direction Width of a Slice
Symbol	b
SI Units	m
Equation	$b_i = x_{\text{slip},i} - x_{\text{slip},i-1}$
Description	i is the index representing a single slice.
	b is the width of the base of a slice in the x -direction (m).
	x_{slip} is the x-ordinate of a point on a slip surface (m).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD10, DD1, DD8, DD??, IM2

Number	DD8
Label	Total Base Length of a Slice
Symbol	$\ell_{ m b}$
SI Units	m
Equation	$\ell_{\mathbf{b},i} = b_i \sec\left(\alpha_i\right)$
Description	This equation is based on the assumption that the base of a slice is a straight line (A9).
	i is the index representing a single slice.
	ℓ_b is the base length of a slice in the direction parallel to the slope of the base (m).
	b is the width of the base of a slice in the x-direction (m), defined in DD7.
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD3, GD4, GD6, DD2

Number	DD9
Label	y-Direction Height of a Slice
Symbol	h
SI Units	m
Equation	$h_i = 0.5((y_{\text{slope},i} - y_{\text{slip},i}) + (y_{\text{slope},i-1} - y_{\text{slip},i-1}))$
Description	This equation is based on the assumption that the surface and base of a slice are straight lines $(A9)$.
	i is the index representing a single slice.
	h is the height in the y-direction from the base of a slice to the slope surface, at the x-direction midpoint of the slice (m).
	y_{slope} is the y-ordinate of a point on the slope (m).
	$y_{\rm slip}$ is the y-ordinate of a point on a slip surface (m).
Sources	Fredlund and J.Krahn (4 April 1977)
Ref. By	GD10, IM2

Number	DD10
Label	Stress
Symbol	σ
SI Units	Pa
Equation	$\sigma = \frac{F}{A}$
Description	σ is the total stress on the soil mass (Pa).
	F is the force (N).
	A is the area on which a force acts (m^2) .
Sources	Huston and Josephs (2008)
Ref. By	GD3, GD5

Number	DD11	
Label	Interslice Normal to Shear Force Ratio Variation Function	
Symbol	f	
SI Units	unitless	
Equation	$\int_{f} \int_{f} 1$ const_f	
Equation	$f_i = \begin{cases} 1 & const_f \\ \sin\left(\pi \frac{x_{\text{slip},i} - x_{\text{slip},0}}{x_{\text{slip},n} - x_{\text{slip},0}}\right) & \neg const_f \end{cases}$	
Description	i is the index representing a single slice.	
	f is the variation of the interslice normal to shear force ratio as a function of distance in the x -direction.	
	$const_f$ is a boolean decision on which form of f the user desires: constant if true, or half-sine if false.	
	x_{slip} is the x-ordinate of a point on a slip surface (m).	
Sources	Fredlund and J.Krahn (4 April 1977)	
Ref. By	GD8, DD12, DD13, IM2	

Number	DD12
Label	First Function for Incorporating Interslice Forces into Shear Force
Symbol	Φ
SI Units	unitless
Equation	$\Phi_{i} = \left[\lambda \cdot f_{i} \cos\left(\alpha_{i}\right) - \sin\left(\alpha_{i}\right)\right] \left[\tan\left(\varphi'\right)\right] - \left[\lambda \cdot f_{i} \sin\left(\alpha_{i}\right) + \cos\left(\alpha_{i}\right)\right] \left(F_{S}\right)$
Description	The equation for Φ arises as part of the derivation for IM1, so that derivation should be consulted for information relating to the derivation of Φ .
	i is the index representing a single slice.
	Φ is the first function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces.
	λ is the proportionality constant for the interslice normal to shear force ratio.
	f is the variation of the interslice normal to shear force ratio as a function of distance in the x -direction.
	α is the angle between the base of a slice and the horizontal (°).
	φ' is the effective angle of friction (°).
	$F_{\rm S}$ is the factor of safety.
Sources	Zhu et al. (19 February 2005), Karchewski et al. (2012)
Ref. By	IM1, IM3

Number	DD13
Label	Second Function for Incorporating Interslice Forces into Shear Force
Symbol	Ψ
SI Units	unitless
Equation	$\Psi_{i-1} = \frac{[\lambda \cdot f_{i-1} \cos(\alpha_i) - \sin(\alpha_i)][\tan(\varphi')] - [\lambda \cdot f_{i-1} \sin(\alpha_i) + \cos(\alpha_i)](F_S)}{\Phi_{i-1}}$
Description	The equation for Ψ arises as part of the derivation for IM1, so that derivation should be consulted for information relating to the derivation of Ψ .
	i is the index representing a single slice.
	Ψ is the second function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces.
	λ is the proportionality constant for the interslice normal to shear force ratio.
	f is the variation of the interslice normal to shear force ratio as a function of distance in the x -direction.
	α is the angle between the base of a slice and the horizontal (°).
	φ' is the effective angle of friction (°).
	$F_{\rm S}$ is the factor of safety.
	Φ is the first function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces.
Sources	Zhu et al. (19 February 2005), Karchewski et al. (2012)
Ref. By	IM1, IM3

Number	DD11
Label	Torque
Symbol	au
Units	N m
Equation	$oldsymbol{ au} = \mathbf{r} imes \mathbf{F}$
Description	The torque τ on a body measures the tendency of a force to rotate the body around an axis or pivot.
	au is the torque on the body (N m).
	F is the force applied to the lever arm (N).
	r is a position vector of the point where the force is applied, measured from the axis of rotation (m).
Source	
Ref. By	GD <mark>10</mark>

5.2.5 Instance Models

This section transforms the problem defined in the Section 5.1 into one which is expressed in mathematical terms. It uses concrete symbols defined in Section 5.2.4 to replace the abstract symbols in the models identified in the Sections 5.2.2 and 5.2.3.

The goals GS1, GS2, and GS3 are met by the simultaneous solution of IM1, IM2, and IM3. The goal GS1 is also contributed to by IM4.

The Morgenstern-Price Method is a vertical slice, limit equilibrium slope stability analysis method. Analysis is performed by breaking the assumed slip surface into a series of vertical slices of mass. Static equilibrium analysis is performed, using two force equations and one moment equation as in T2. The problem is statically indeterminate with only these 3 equations and one constitutive equation (the Mohr-Coulomb shear strength of T3), so the assumption A6 and corresponding equation GD8 are used. The force equilibrium equations can be modified to be expressed only in terms of known physical values, as done in GD6 and GD7.

Number	IM1							
Label	Factor of Safety							
Input	$\{(x_{\text{slope}}, y_{\text{slope}})\}, \{(x_{\text{wt}}, y_{\text{wt}})\}, c', \varphi', \gamma_{\text{dry}}, \gamma_{\text{Sat}}, \gamma_{\text{w}}, \{(x_{\text{slip}}, y_{\text{slip}})\}, const_f$							
Output	$F_{S} = \frac{\sum_{i=1}^{n-1} \left[R_{i} \prod_{c=i}^{n-1} \Psi_{c} \right] + R_{n}}{\sum_{i=1}^{n-1} \left[T_{i} \prod_{c=i}^{n-1} \Psi_{c} \right] + T_{n}}$							
Description	i is the index representing a single slice.							
	n is the total number of slices.							
	$F_{\rm S}$ is the factor of safety.							
	R is the resistive shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹), defined in GD6.							
	Ψ is the second function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces, defined in GD13.							
	T is the mobile shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹), defined in GD7.							
Sources	Zhu et al. (19 February 2005), Karchewski et al. (2012)							
Ref. By	IM2, IM3							

Factor of Safety Derivation

The mobile shear force defined in GD2 can be substituted into the definition of mobile shear force based on the factor of safety, from GD4, yielding Equation 1 below.

$$\begin{pmatrix}
[W_{i} - X_{i-1} + X_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \sin(\alpha_{i}) \\
- [-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i})
\end{pmatrix} = \frac{N'_{i} \cdot \tan(\varphi') + c' \cdot \ell_{b,i}}{F_{S}}$$
(1)

An expression for the effective normal force, N'_i , can be derived by substituting the normal force equilibrium from GD1 into the definition for effective normal force from GD5. This results in Equation 2.

$$[W_{i} - X_{i-1} + X_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i})$$

$$N'_{i} = + [-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \sin(\omega_{i})] \sin(\alpha_{i})$$

$$-U_{b,i}$$
(2)

Substituting Equation 2 into Equation 1 gives

$$\frac{\left(W_{i} - X_{i-1} + X_{i} + U_{\text{t},i} \cos\left(\beta_{i}\right) + Q_{i} \cos\left(\omega_{i}\right) \right] \sin\left(\alpha_{i}\right)}{-\left[-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{\text{t},i} \sin\left(\beta_{i}\right) + Q_{i} \cos\left(\omega_{i}\right) \right] \cos\left(\alpha_{i}\right)} = \\ \frac{\left(W_{i} - X_{i-1} + X_{i} + U_{\text{t},i} \cos\left(\beta_{i}\right) + Q_{i} \cos\left(\omega_{i}\right) \right] \cos\left(\alpha_{i}\right)}{+\left[-K_{c} W_{i} - G_{i} + G_{i-1} - H_{i} + H_{i-1} + U_{\text{t},i} \sin\left(\beta_{i}\right) + Q_{i} \sin\left(\omega_{i}\right) \right] \sin\left(\alpha_{i}\right) - U_{\text{b},i}}{F_{\text{S}}} \right) \cdot \tan(\varphi') + c' \cdot \ell_{b,i}}$$

Since the interslice shear force X and interslice normal force G are unknown, they are separated from the other terms as follows:

$$\begin{pmatrix}
[W_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \sin(\alpha_{i}) + (-X_{i-1} + X_{i}) \sin(\alpha_{i}) \\
- [-K_{c} W_{i} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i}) - (-G_{i} + G_{i-1}) \cos(\alpha_{i})
\end{pmatrix} = \\
\begin{pmatrix}
[W_{i} + U_{t,i} \cos(\beta_{i}) + Q_{i} \cos(\omega_{i})] \cos(\alpha_{i}) + (-X_{i-1} + X_{i}) \cos(\alpha_{i}) \\
+ [-K_{c} W_{i} - H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i}) + Q_{i} \sin(\omega_{i})] \sin(\alpha_{i}) + (-G_{i} + G_{i-1}) \sin(\alpha_{i})
\end{pmatrix} \cdot \tan(\varphi') + e' \cdot \ell_{b,i}$$

Applying assumptions A11 and A12, which state that the seismic coefficient and the external force, respectively, are zero, allows for further simplification as shown below.

$$\begin{pmatrix}
[W_{i} + U_{t,i} \cos(\beta_{i})] \sin(\alpha_{i}) + (-X_{i-1} + X_{i}) \sin(\alpha_{i}) \\
- [-H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i})] \cos(\alpha_{i}) - (-G_{i} + G_{i-1}) \cos(\alpha_{i})
\end{pmatrix} = \\
\begin{pmatrix}
[W_{i} + U_{t,i} \cos(\beta_{i})] \cos(\alpha_{i}) + (-X_{i-1} + X_{i}) \cos(\alpha_{i}) \\
+ [-H_{i} + H_{i-1} + U_{t,i} \sin(\beta_{i})] \sin(\alpha_{i}) + (-G_{i} + G_{i-1}) \sin(\alpha_{i}) - U_{b,i}
\end{pmatrix} \cdot \tan(\varphi') + c' \cdot \ell_{b,i}}$$

F_S

The definitions of GD6 and GD7 are present in this equation, and can thus be replaced by R_i and T_i , respectively.

$$(T_i + (-X_{i-1} + X_i)\sin(\alpha_i) - (-G_i + G_{i-1})\cos(\alpha_i)) = \frac{R_i + ((-X_{i-1} + X_i)\cos(\alpha_i) + (-G_i + G_{i-1})\sin(\alpha_i))\cdot\tan(\varphi')}{F_{\mathcal{S}}}$$

The interslice shear force X can be expressed in terms of the interslice normal force G using A6 and GD8, resulting in

$$\begin{array}{l} \left(T_i + \left(-\lambda f_{i-1}G_{i-1} + \lambda f_iG_i\right)\sin\left(\alpha_i\right) - \left(-G_i + G_{i-1}\right)\cos\left(\alpha_i\right)\right) = \\ \frac{R_i + \left(\left(-\lambda f_{i-1}G_{i-1} + \lambda f_iG_i\right)\cos(\alpha_i) + \left(-G_i + G_{i-1}\right)\sin(\alpha_i)\right)\cdot\tan(\varphi')}{F_{\mathrm{S}}} \end{array}$$

Rearranging yields the following:

$$G_{i}\left[\begin{array}{c} \left[\lambda \cdot f_{i}\cos\left(\alpha_{i}\right)-\sin\left(\alpha_{i}\right)\right]\tan\left(\varphi'\right) \\ -\left[\lambda \cdot f_{i}\sin\left(\alpha_{i}\right)+\cos\left(\alpha_{i}\right)\right]\left(F_{\mathrm{S}}\right) \end{array}\right] = G_{i-1}\left[\begin{array}{c} \left[\lambda \cdot f_{i-1}\cos\left(\alpha_{i}\right)-\sin\left(\alpha_{i}\right)\right]\tan\left(\varphi'\right) \\ -\left[\lambda \cdot f_{i-1}\sin\left(\alpha_{i}\right)+\cos\left(\alpha_{i}\right)\right]\left(F_{\mathrm{S}}\right) \end{array}\right] + \left(F_{\mathrm{S}}\right) \cdot T_{i} - R_{i}$$

The definitions for Φ and Ψ from DD12 and DD13 simplify the above to Equation 3.

$$G_i \Phi_i = \Psi_{i-1} G_{i-1} \Phi_{i-1} + F_S T_i - R_i$$
(3)

Versions of Equation 3 instantiated for slices 1 to n are shown below.

$$G_1\Phi_1 = \Psi_0G_0\Phi_0 + F_ST_1 - R_1$$

$$G_2\Phi_2 = \Psi_1 G_1 \Phi_1 + F_S T_2 - R_2 \tag{4}$$

$$G_3\Phi_3 = \Psi_2 G_2 \Phi_2 + F_S T_3 - R_3 \tag{5}$$

...

$$G_{n-2}\Phi_{n-2} = \Psi_{n-3}G_{n-3}\Phi_{n-3} + F_ST_{n-2} - R_{n-2}$$
(6)

$$G_{n-1}\Phi_{n-1} = \Psi_{n-2}G_{n-2}\Phi_{n-2} + F_ST_{n-1} - R_{n-1}$$
(7)

$$G_{\rm n}\Phi_{\rm n} = \Psi_{\rm n-1}G_{\rm n-1}\Phi_{\rm n-1} + F_{\rm S}T_{\rm n} - R_{\rm n}$$

Applying A10, which says that G_0 and G_n are zero, results in the following special cases: Equation 8 for the first slice and Equation 9 for the nth slice.

$$G_1 \Phi_1 = F_{\rm S} T_1 - R_1 \tag{8}$$

$$-\frac{F_{\rm S}T_{\rm n} - R_{\rm n}}{\Psi_{\rm n-1}} = G_{\rm n-1}\Phi_{\rm n-1} \tag{9}$$

Substituting Equation 8 into Equation 4 yields Equation 10, which can be substituted into Equation 5 to get Equation 11, and so on until Equation 12 is obtained from Equation 7.

$$G_2\Phi_2 = \Psi_1 \left(F_S T_1 - R_1 \right) + F_S T_2 - R_2 \tag{10}$$

$$G_3\Phi_3 = \Psi_2 \left(\Psi_1 \left(F_S T_1 - R_1 \right) + F_S T_2 - R_2 \right) + F_S T_3 - R_3 \tag{11}$$

. . .

$$G_{\text{n-1}}\Phi_{\text{n-1}} = \Psi_{\text{n-2}} \left(\Psi_{\text{n-3}} \left(\dots \left(\Psi_{1} \left(F_{\text{S}} T_{1} - R_{1} \right) + F_{\text{S}} T_{2} - R_{2} \right) \dots \right) + F_{\text{S}} T_{\text{n-2}} - R_{\text{n-2}} \right) + F_{\text{S}} T_{\text{n-1}} - R_{\text{n-1}}$$

$$(12)$$

Equation 9 can then be substituted into the left-hand side of Equation 12, resulting in:

$$-\frac{F_{S}T_{n}-R_{n}}{\Psi_{n-1}} = \Psi_{n-2} \left(\Psi_{n-3} \left(\dots \left(\Psi_{1} \left(F_{S}T_{1}-R_{1} \right) + F_{S}T_{2}-R_{2} \right) \dots \right) + F_{S}T_{n-2}-R_{n-2} \right) + F_{S}T_{n-1}-R_{n-1}$$

This can be rearranged by multiplying both sides by Ψ_{n-1} and then distributing the multiplication of each Ψ over addition to obtain:

$$-(F_{S}T_{n}-R_{n}) = \Psi_{n-1}\Psi_{n-2}\dots\Psi_{1}(F_{S}T_{1}-R_{1}) + \Psi_{n-1}\Psi_{n-2}\dots\Psi_{2}(F_{S}T_{2}-R_{2}) + \dots + \Psi_{n-1}(F_{S}T_{n-1}-R_{n-1})$$

The multiplication of the Ψ terms can be further distributed over the subtractions, resulting in the equation having terms that each either contain an R or a T. The equation can then be rearranged so terms containing an R are on one side of the equality, and terms containing a T are on the other. The multiplication by the factor of safety is common to all of the T terms, and thus can be factored out, resulting in:

$$F_{S} (\Psi_{n-1}\Psi_{n-2}\dots\Psi_{1}T_{1} + \Psi_{n-1}\Psi_{n-2}\dots\Psi_{2}T_{2} + \dots \Psi_{n-1}T_{n-1} + T_{n}) = \Psi_{n-1}\Psi_{n-2}\dots\Psi_{1}R_{1} + \Psi_{n-1}\Psi_{n-2}\dots\Psi_{2}R_{2} + \dots + \Psi_{n-1}R_{n-1} + R_{n}$$

Isolating the factor of safety on the left-hand side and using compact notation for the products and sums yields Equation 13, which can also be seen in IM1. $F_{\rm S}$ depends on the unknowns λ (IM2) and G (IM3).

$$F_{S} = \frac{\sum_{i=1}^{n-1} \left[R_{i} \prod_{c=i}^{n-1} \Psi_{c} \right] + R_{n}}{\sum_{i=1}^{n-1} \left[T_{i} \prod_{c=i}^{n-1} \Psi_{c} \right] + T_{n}}$$
(13)

Number	IM2								
Label	Normal and Shear Force Proportionality Constant								
Input	$\{(x_{\text{slope}}, y_{\text{slope}})\}, \{(x_{\text{wt}}, y_{\text{wt}})\}, \gamma_{\text{w}}, \{(x_{\text{slip}}, y_{\text{slip}})\}, const_{-}f$								
Output	$C_{\text{num},i} = \begin{cases} b_1 [G_1 + H_1] \tan(\alpha_1) & i = 1 \\ b_i [(G_i + G_{i-1}) + (H_i + H_{i-1})] \tan(\alpha_i) \\ + h_i (-2 U_{t,i} \sin(\beta_i)) & 2 \le i \le n - 1 \end{cases}$								
	$b_n [G_{n-1} + H_{n-1}] \tan (\alpha_{n-1}) \qquad i = n$								
	$ \int b_1 G_1 f_1 \qquad i = 1 $								
	$C_{\text{den},i} = \begin{cases} b_i \left(f_i G_i + f_{i-1} G_{i-1} \right) & 2 \le i \le n-1 \end{cases}$								
	$ \int_{n} b_{n}G_{n-1}f_{n-1} \qquad i = n $								
	$C_{\text{num},i} = \begin{cases} b_1 \left[G_1 + H_1 \right] \tan \left(\alpha_1 \right) & i = 1 \\ b_i \left[\left(G_i + G_{i-1} \right) + \left(H_i + H_{i-1} \right) \right] \tan \left(\alpha_i \right) & 2 \le i \le n - 1 \\ + h_i \left(-2 U_{t,i} \sin \left(\beta_i \right) \right) & i = n \end{cases}$ $C_{\text{den},i} = \begin{cases} b_1 G_1 f_1 & i = 1 \\ b_i \left(f_i G_i + f_{i-1} G_{i-1} \right) & 2 \le i \le n - 1 \\ b_n G_{n-1} f_{n-1} & i = n \end{cases}$ $\lambda = \frac{\sum_{i=1}^{n} C_{\text{num},i}}{\sum_{i=1}^{n} C_{\text{den},i}}$								
Description	i is the index representing a single slice.								
	n is the total number of slices.								
	b is the width of the base of a slice in the x-direction (m), defined in DD7.								
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).								
	H is the interslice water force per meter in the z-direction (N m ⁻¹), defined in DD4.								
	α is the angle between the base of a slice and the horizontal (°), defined in DD5.								
	h is the height in the y-direction from the base of a slice to the slope surface, at the x-direction midpoint of the slice (m), defined in DD9.								
	$U_{\rm t}$ is the surface hydrostatic force per meter in the z-direction (N m ⁻¹), defined in DD3.								
	β is the angle between the surface of a slice and the horizontal (°), defined in DD6.								
	f is the variation of the interslice normal to shear force ratio as a function of distance in the x -direction, defined in DD11.								
	λ is the proportionality constant.								
Sources	Zhu et al. (19 February 2005)								
Ref. By	IM <mark>1</mark> , IM <mark>3</mark>								

Normal/Shear Force Ratio Derivation

From the moment equilibrium of GD10, with the primary assumption for the Morgenstern-Price method of A6 and associated definition GD8, Equation (14) can be derived.

$$-G_{i} \left[h_{z,i} + \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] + G_{i-1} \left[h_{z,i-1} - \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] - H_{i} \left[\frac{1}{3} h_{z,w,i} + \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right]$$

$$0 = +H_{i-1} \left[\frac{1}{3} h_{z,w,i-1} - \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] + \lambda \frac{b_{i}}{2} \left(G_{i} f_{i} + G_{i-1} f_{i-1} \right) - K_{c} W_{i} \frac{h_{i}}{2} + U_{t,i} \sin \left(\beta_{i} \right) h_{i} + Q_{i} \sin \left(\omega_{i} \right) h_{i}$$

$$(14)$$

Rearranging the equation in terms of λ leads to Equation (15).

$$-G_{i} \left[h_{z,i} + \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] + G_{i-1} \left[h_{z,i-1} - \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] - H_{i} \left[\frac{1}{3} h_{z,w,i} + \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right]
\lambda = \frac{+H_{i-1} \left[\frac{1}{3} h_{z,w,i-1} - \frac{b_{i}}{2} \tan \left(\alpha_{i} \right) \right] - K_{c} W_{i} \frac{h_{i}}{2} + U_{t,i} \sin \left(\beta_{i} \right) h_{i} + Q_{i} \sin \left(\omega_{i} \right) h_{i}}{-\frac{b_{i}}{2} \left[G_{i} f_{i} + G_{i-1} f_{i-1} \right]} \tag{15}$$

This equation can be simplified by applying assumptions A11 and A12, which state that the seismic and external forces, respectively are zero.

$$\lambda = \frac{-G_i \left[h_{\mathrm{z},i} + \frac{b_i}{2} \mathrm{tan}\left(\alpha_i\right)\right] + G_{i-1} \left[h_{\mathrm{z},i-1} - \frac{b_i}{2} \mathrm{tan}\left(\alpha_i\right)\right] - H_i \left[\frac{1}{3} h_{\mathrm{z,w},i} + \frac{b_i}{2} \mathrm{tan}\left(\alpha_i\right)\right]}{+H_{i-1} \left[\frac{1}{3} h_{\mathrm{z,w},i-1} - \frac{b_i}{2} \mathrm{tan}\left(\alpha_i\right)\right] + U_{\mathrm{t},i} \sin\left(\beta_i\right) h_i}{-\frac{b_i}{2} \left[G_i f_i + G_{i-1} f_{i-1}\right]}$$

Taking the summation of all slices, and applying A10 to set G_0 , G_n , H_0 , and H_n equal to zero, a general equation for the constant λ is developed in Equation (16), also found in IM2.

$$\lambda = \frac{\sum_{i=1}^{n} b_i \left[(G_i + G_{i-1}) + (H_i + H_{i-1}) \right] \tan(\alpha_i) + h_i \left[-2 \ U_{t,i} \sin(\beta_i) \right]}{\sum_{i=1}^{n} b_i \left[f_i G_i + f_{i-1} G_{i-1} \right]}$$
(16)

Equation (16) for λ is a function of the unknown interslice normal force, G (IM3), which itself depends on the unknown factor of safety, $F_{\rm S}$ (IM1).

Number	IM3
Label	Interslice Normal Forces
Input	$\{(x_{\text{slope}}, y_{\text{slope}})\}, \{(x_{\text{wt}}, y_{\text{wt}})\}, c', \varphi', \gamma_{\text{dry}}, \gamma_{\text{Sat}}, \gamma_{\text{w}}, \{(x_{\text{slip}}, y_{\text{slip}})\}, const_f$
Output	$G_{i} = \begin{cases} \frac{(F_{S})T_{1} - R_{1}}{\Phi_{i}} & i = 1\\ \frac{\Psi_{i-1} \cdot G_{i-1} + (F_{S}) \cdot T_{i} - R_{i}}{\Phi_{i}} & 2 \leq i \leq n - 1\\ 0 & i = 0 \lor i = n \end{cases}$
Description	i is the index representing a single slice.
	n is the total number of slices.
	G is the interslice normal force per meter in the z-direction (N m ⁻¹).
	$F_{\rm S}$ is the factor of safety.
	T is the mobile shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹), defined in DD7.
	R is the resistive shear force without the influence of interslice forces per meter in the z-direction (N m ⁻¹), defined in DD6.
	Φ is the first function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces, defined in DD12.
	Ψ is the second function used to convert shear without the influence of interslice forces to shear with the influence of interslice forces, defined in DD13.
Sources	Zhu et al. (19 February 2005)
Ref. By	IM1, IM2

Interslice Force Derivation

This derivation is identical to the derivation for IM1 up until Equation 3, shown again below.

$$G_i \Phi_i = \Psi_{i-1} G_{i-1} \Phi_{i-1} + F_S T_i - R_i$$

A simple rearrangement of Equation 3 leads to Equation 17, also seen in IM3.

$$G_i = \frac{\Psi_{i-1} G_{i-1} + F_{\rm S} T_i - R_i}{\Phi_i} \tag{17}$$

The cases shown in IM3 for when i = 0, i = 1, or i = n are derived by applying A10, which says that G_0 and G_n are zero, to Equation 17. G depends on the unknowns F_S (IM1) and λ (IM2).

Number	IM4
Label	Critical Slip Surface Identification
Input	$\{(x_{\text{slope}}, y_{\text{slope}})\}, \{(x_{\text{wt}}, y_{\text{wt}})\}, c', \varphi', \gamma_{\text{dry}}, \gamma_{\text{Sat}}, \gamma_{\text{w}}, \textit{const-f}$
Output	$(F_{\rm S}^{\rm Min}, \{(x_{\rm cs}, y_{\rm cs})\}) =$
Output	$\Upsilon(\{(x_{\text{slope}}, y_{\text{slope}})\}, \{(x_{\text{wt}}, y_{\text{wt}})\}, c', \varphi', \gamma_{\text{dry}}, \gamma_{\text{Sat}}, \gamma_{\text{w}}, \textit{const_f})$
Description	The minimization algorithm must enforce the constraints on the critical slip surface expressed in A1 and Table 2.
	$F_{ m S}^{ m Min}$ is the minimum factor of safety associated with the critical slip surface.
	$x_{\rm cs}$ is the x-ordinate of a point on the critical slip surface (m).
	$x_{\rm cs}$ is the y-ordinate of a point on the critical slip surface (m).
	Υ is a minimization algorithm or function.
	x_{slope} is the x-ordinate of a point on the slope (m).
	y_{slope} is the y-ordinate of a point on the slope (m).
	$x_{\rm wt}$ is the x-ordinate of a point on the water table (m).
	y_{wt} is the y-ordinate of a point on the water table (m).
	c' is the effective cohesion (Pa).
	φ' is the effective angle of friction (°).
	$\gamma_{\rm dry}$ is the soil dry unit weight (N m ⁻³).
	$\gamma_{\rm Sat}$ is the soil saturated unit weight (N m ⁻³).
	$\gamma_{\rm w}$ is the unit weight of water (N m ⁻³).
	$const_f$ is a boolean decision on which form of f the user desires: constant if true, or half-sine if false.
Sources	Li et al. (25 June 2010)

[Should this IM exist? It doesn't arise from any T—BM]

[We need something to explain that we pick the slip surface with the minimum factor of safety. I'll give this some further thought on whether this is the best way to say it. —SS]

5.2.6 Data Constraints

Tables 1 and 2 show the data constraints on the input and output variables, respectively. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the

user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario.

Var	Physical Constraints	Typical Uncertainty Value		
$\{(x_{\mathrm{wt}}, y_{\mathrm{wt}})\} \ (*)$	At least two ordered pairs must be specified. First and last x values must be the same as the soil mass. x values must be monotonically increasing.	N/A	10%	
$\{(x_{\text{slope}}, y_{\text{slope}})\}$	At least two ordered pairs must be specified. x values must be monotonically increasing.	N/A	10%	
$x_{ m slip}^{ m maxExt}, x_{ m slip}^{ m minExt}, \ x_{ m slip}^{ m minEtr}, \ x_{ m slip}^{ m minEtr}$	must be between or equal to the minimum and maximum x_{slope} values.	N/A	10%	
$y_{ m slip}^{ m min}$	Cannot be above the maximum y_{slope} value.	N/A	10%	
$y_{ m slip}^{ m max}$	Cannot be below the minimum y_{slope} value.	N/A	10%	
c'	c > 0	10000	10%	
arphi'	$0 < \varphi < 90$	25	10%	
$\gamma_{ m dry}$	$\gamma_{\rm dry} > 0$	20000	10%	
$\gamma_{ m Sat}$	$\gamma_{ m Sat} > 0$	20000	10%	
$\gamma_{ m w}$	$\gamma_{ m w} > 0$	9800	10%	

Table 1: Input variables for SSP

(*) Optional input.

5.2.7 Properties of a Correct Solution

Not applicable for SSP.

Var	Physical Constraints
$F_{\rm S} $ $\{(x_{\rm cs}, y_{\rm cs})\}$	$F_{\rm S}>0$ All x values must be between $x_{\rm slip}^{\rm minEtr}$ and $x_{\rm slip}^{\rm maxExt}$. y values must not be below $y_{\rm slip}^{\rm min}$. For any given vertex, the $y_{\rm cs}$ value must not exceed the $y_{\rm slope}$ value corresponding to the same $x_{\rm cs}$ value. The first and last vertices must each be
	equal to one of the vertices in $\{(x_{\text{slope}}, y_{\text{slope}})\}$. The slope between consecutive vertices must be always increasing as x increases. The internal angle between consecutive vertices should not be below 110 degrees.

Table 2: Output variables for SSP

6 Requirements

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

6.1 Functional Requirements

R1: Read the inputs, shown in the table below, and store the data.

Symbol	Unit	Description
(x,y)	m	x and y -coordinates for vertices of the soil mass, for the water table if one exists, and for potential entry and exit points of a slip surface.
c'	Pa	Cohesion for each slope layer.
φ'	0	Effective angle of friction for each slope layer.
$\gamma_{ m dry}$	${ m Nm^{-3}}$	Unit weight of dry soil for each slope layer.
$\gamma_{ m Sat}$	${ m Nm^{-3}}$	Unit weight of saturated soil for each slope layer.
$\gamma_{ m w}$	${ m N}{ m m}^{-3}$	Unit weight of water.
const_f	N/A	Boolean decision on which form of f the user desires: constant if true, or half-sine if false.

R2: Verify that the input data lies within physical constraints shown in Table 1.

R3: Generate potential critical slip surfaces for the input slope (using IM4).

R4: Calculate the factors of safety for each of the potential critical slip surfaces (using IM1, IM2, and IM3).

R5: Compare the factor of safety for each potential critical slip surface to determine the minimum factor of safety, corresponding to the critical slip surface (using IM4).

[R3-R5 have never sat well with me because they read too much like an algorithm. I always end up leaving them because I like how they separate the calculation of factor of safety from the minimization of the factor of safety. I still wonder if I should replace them with one all-encompassing requirement like "Determine the critical slip surface corresponding to the minimum factor of safety". What do you think? —BM]

R6: Verify that the factor of safety and critical slip surface satisfy the physical constraints shown in Table 2.

R7: Display as output the user-supplied inputs listed in the table below:

Symbol	Description
$x_{\rm slip}^{ m maxExt}$	Maximum potential x -ordinate of the exit point of a slip surface
$x_{ m slip}^{ m minExt}$	Minimum potential x -ordinate of the exit point of a slip surface
$x_{ m slip}^{ m maxEtr}$	Maximum potential x -ordinate of the entry point of a slip surface
$x_{ m slip}^{ m minEtr}$	Minimum potential x -ordinate of the entry point of a slip surface
$y_{ m slip}^{ m max}$	Maximum potential y -ordinate of a point on a slip surface
$y_{ m slip}^{ m min}$	Minimum potential y -ordinate of a point on a slip surface
$const_f$	Boolean decision on which form of f the user desires: constant if true, or half-sine if false.

R8: Display the critical slip surface of the 2D slope, as determined from IM4, graphically.

R9: Display the value of the factor of safety for the critical slip surface, as determined from IM1, IM2, and IM3.

R10: Using IM1, IM2, and IM3, calculate and graphically display the interslice normal forces.

R11: Using IM1, IM2, and IM3, calculate and graphically display the interslice shear forces.

6.2 Nonfunctional Requirements

SSP is intended to be an educational tool, therefore accuracy and performance speed are secondary program priorities. Instead, the following non-functional requirements are prioritized:

NFR1: Correctness, achieved if the outputs of the code have the properties described in 5.2.7.

NFR2: Understandability, achieved if the code is modularized with complete module guide and module interface specification.

NFR3: Reusability, achieved if the code is modularized.

NFR4: Maintainability, achieved if the traceability between requirements, assumptions, theoretical models, general definitions, data definitions, instance models, likely changes, and modules is completely recorded in traceability matrices in the SRS and module guide.

7 Likely Changes

- LC1: The system currently assumes the soil mass is homogeneous (A3). In the future, implementation can be added for inconsistent soil properties throughout.
- LC2: The system currently assumes no seismic force (A11). In the future, implementation can be added for the presence of seismic force.
- LC3: The system currently assumes no external force (A12). In the future, implementation can be added for an imposed surface load on the slope.

8 Unlikely Changes

If changes were to be made with regard to the following, a different algorithm would be needed.

- UC1: Changes related to A6 are not possible due to the dependency of the calculations on the proportional relationship between interslice normal and shear forces.
- UC2: A7 allows for 2D analysis with these models only because stress along z-direction is zero. These models do not take into account stress in the z-direction, and therefore cannot be used without manipulation to attempt 3-dimensional analysis.

[This section is not on the template, not sure if it should be kept —BM]
[I'm going to think about adding this section to the template. It is a way to show that some of the assumptions are critical to the identity of the problem. —SS]

9 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" may have to be modified as well. Tables 5 and 6 show the dependencies of theoretical models, general definitions, data definitions, and instance models with each other. Table 4 shows the dependencies of instance models, requirements, and data constraints on each other. Table 3 shows the dependencies of theoretical models, general definitions, data definitions, instance models, and likely changes on the assumptions.

The purpose of the traceability graphs is also to provide easy references on what has to be additionally modified if a certain component is changed. The arrows in the graphs represent dependencies. The component at the tail of an arrow is depended on by the component at the head of that arrow. Therefore, if a component is changed, the components that it points to should also be changed. Figure 5 shows the dependencies of theoretical models, general definitions, data definitions, instance models, likely changes, and assumptions on each other. Figure 6 shows the dependencies of instance models, requirements, and data constraints on each other.

	A1	A2	A3	A4	A5	A ₆	A7	A8	A9	A10	A11	A12
T1												
T2							X					
T3								X				
T4												
GD1												
GD2												
GD <mark>3</mark>			X	X	X							
GD4		X	X	X	X							
GD_{5}								X				
GD8						X						
GD <mark>10</mark>												
DD1												
DD2									X			
DD3									X			
DD4												
DD_{5}									X			
DD6									X			
DD7												
DD8									X			
DD??									X			
GD6			X	X	X						X	X
GD7			X	X	X						X	X
IM <mark>1</mark>		X				X				X	X	X
IM2						X				X	X	X
IM <mark>3</mark>		X				X				X	X	X
IM4	X											
LC1			X									
LC2											X	
LC3												X

Table 3: Traceability matrix showing the connections between assumptions and other items

	IM1	IM2	IM3	IM4	5.2.6	R1
IM1						X
IM2						X
IM3						X
IM4						X
R1						
R2					X	
R3				X		
R4	X	X	X			
R5				X		
R6					X	
R7						X
R8					X	
R9	X	X	X			
R10	X	X	X			
R11	X	X	X			

Table 4: Traceability matrix showing the connections between requirements and instance models

Figure 5: Traceability matrix showing the connections between items of different sections

Figure 6: Traceability matrix showing the connections between requirements, instance models, and data constraints

	T1	T2	T3	T4	GD1	GD2	GD3	GD4	GD_{5}	GD8	GD <mark>10</mark>
T1											
T2											
T3											
T4											
GD1		X									
GD2		X									
GD3			X	X							
GD4	X		X	X			X				
GD_{5}				X							
GD8											
GD10		X									
DD1											
DD2											
DD_3											
DD4											
DD_{5}											
DD_6											
DD7											
DD8											
DD??											
GD <mark>6</mark>			X	X	X	X	X	X	X		
GD7			X	X	X	X	X				
IM <mark>1</mark>	X			X						X	
IM2		X		X						X	X
IM <mark>3</mark>				X	X	X		X		X	
IM4											

Table 5: Traceability matrix showing the connections between items of different sections with theory models and general definitions

	DD1	DD2	DD_3	DD4	DD5	DD6	DD7	DD8	DD??	GD6	GD7	IM1	IM2	IM3	IM4
T1															
T2															
T3															
T4															
GD1	X		X	X	X	X									
GD2	X		X	X	X	X									
GD3								X							
GD4								X							
GD_{5}															
GD8															
GD <mark>10</mark>	X		X	X	X	X	X								
DD1															
DD2								X							
DD_3									X						
DD4															
DD_{5}															
DD <mark>6</mark>															
DD7															
DD8					X		X								
DD??						X	X								
GD <mark>6</mark>	X	X	X	X	X	X	X								
GD7	X		X	X	X	X	X								
IM <mark>1</mark>	X	X	X	X	X	X	X			X	X		X	X	
IM2	X	X	X	X	X	X	X					X		X	
IM <mark>3</mark>	X	X	X	X	X	X	X			X		X	X		
IM4															

Table 6: Traceability matrix showing the connections between items of different sections with data definitions and instance models

10 References

- D.G. Fredlund and J.Krahn. Comparison of slope stability methods of analysis. *Can. Geotech. J.*, (14):429–439, 4 April 1977.
- R. Huston and H. Josephs. *Practical stress analysis in engineering design*. CRC Press, 3 edition, 2008.
- Brandon Karchewski, Peijun Guo, and Dieter Stolle. Influence of inherent anisotropy of soil strength on limit equilibrium slope stability analysis. In *Proceedings of the 65th annual Canadian Geotechnical Conference*, Winnipeg, MB, CA, 2012. Canadian Geotechnical Society.
- Nirmitha Koothoor. A document drive approach to certifying scientific computing software. Master's thesis, McMaster University, Hamilton, Ontario, Canada, 2013.
- Yu-Chao Li, Yun-Min Chen, Tony L.T Zhan, Dao-Sheng Ling, and Peter John Cleall. An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm. Can. Geotech. J., (47):806–820, 25 June 2010.
- N. R. Morgenstern and V. E. Price. The analysis of the stability of general slip surfaces. *Géotechnique*, (15):79–93, January 1965.
- David L. Parnas and P.C. Clements. A rational design process: How and why to fake it. *IEEE Transactions on Software Engineering*, 12(2):251–257, February 1986.
- W. Spencer Smith and Lei Lai. A new requirements template for scientific computing. In J. Ralyté, P. Ágerfalk, and N. Kraiem, editors, *Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05*, pages 107–121, Paris, France, 2005. In conjunction with 13th IEEE International Requirements Engineering Conference.
- D.Y. Zhu, C.F. Lee, Q.H. Qian, and G.R. Chen. A concise algorithm for computing the factor of safety using the morgenstern–price method. Can. Geotech. J., (42):272–278, 19 February 2005.

11 Appendix

11.1 Symbolic Parameters

There are no symbolic parameters.