Univerzita Karlova v Praze Pedagogická fakulta

SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY **POLYNOM**

$$f(x) = x^4 - 2x^3 + x^2 - 10x - 20$$

2001/2002 CIFRIK

Zadání:

Vyšetřete všemi probranými prostředky polynom $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$.

Vypracování:

Racionální kořeny

Podle věty:

Nechť
$$\frac{p}{q} \in Q$$
 je kořen polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$. Pak $p \mid a_n, q \mid a_0$.

určíme množinu M všech racionálních čísel, které mohou být kořeny: V našem případě je

$$p \in \{\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20\}$$

 $q \in \{\pm 1\}$

a proto

$$M = \{\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20\}.$$

Tuto množinu *M* ještě omezíme, neboť platí věta:

Nechť $\frac{p}{q} \in Q$ je kořen polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$, nechť $c \in Z$. Pak $(qc-p) \mid f(c), (qc+p) \mid f(-c)$ (používá se nejčastěji pro c=1, kdy dostáváme pro kořen $\frac{p}{q}$ podmínky $(q-p) \mid f(1), (q+p) \mid f(-1)$).

Nejprve zjistíme, že f(1) = -30, f(-1) = -6. Další výpočet zapíšeme do tabulky:

$\frac{p}{q}$	$q+p \mid -6$	q-p -30	výsledek	$\frac{p}{q}$	$q+p \mid -6$	q-p -30	výsledek
2	3	-1	ano	-5	-4	6	ne
-2	-1	3	ano	10	11	-9	ne
4	5	-3	ne	-10	-9	11	ne
-4	-3	5	ano	20	21	-19	ne
5	6	-4	ne	-20	-19	21	ne

Zjistili jsme, že $M_1 = \{2,-2,-4\}$. Hornerovým schématem vyšetříme, které prvky z M_1 jsou kořeny polynomu f:

	1	-2	1	-10	-20		1	-2	1	-10	-20		1	-2	1	-10	-20
2	0	2	0	2	-16	-2	0	-2	8	-18	56	4	0	4	8	36	104
	1	0	1	-8	-36		1	-4	9	-28	36		1	2	9	26	84

Z vypočítaných hodnot plyne závěr – polynom $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ nemá racionální kořeny.

Odhad počtu reálných kořenů a jejich polohy

Descartesova věta:

Počet kladných kořenů polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$ je buď roven počtu znaménkových změn v posloupnosti $a_0, a_1, ..., a_n$ jeho koeficientů, nebo je o sudý počet menší.

• V polynomu $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ jsou 3 znaménkové změny. Počet kladných kořenů je tedy buď 3 nebo 1.

Všechny reálné kořeny polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$ leží v intervalu $\langle -1 - A, 1 + A \rangle$, kde $A = \max(|a_0|, |a_1|, ..., |a_n|)$

• V našem případě je

$$A = \max(|1|, |-2|, |1|, |-10|, |-20|) = 20$$
 proto všechny reálné kořeny polynomu $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ leží v intervalu $\langle -21; 21 \rangle$

Další odhady polohy reálných kořenů polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$. Předpokládejme, že aspoň jeden z koeficientů polynomu f je záporný. Označme

a_i ... nejmenší záporný koeficient,

*a*_r ... první záporný koeficient

a_s ... největší kladný koeficient před prvním záporným koeficientem,

B ... největší z absolutních hodnot záporných koeficientů.

Pak pro každý reálný kořen α polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$ platí:

Maclaurinova věta $\alpha < 1 + \frac{|a_i|}{|a_0|}$,

Lagrangeova věta $\alpha < 1 + \sqrt[r]{B}$,

Tillotova věta $\alpha < 1 + r - s \sqrt{\frac{|a_i|}{a_s}}$

• Pro náš polynom $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ platí:

$$a_i = a_4 = -20$$

$$a_r = a_1 = -2$$

2

$$a_s = a_0 = 1$$

$$B = 20$$

Maclaurinova věta:
$$\alpha < 1 + \frac{|a_i|}{|a_0|}$$
 Tillotova věta:
$$\alpha < 1 + \frac{|-20|}{1}$$

$$\alpha < 1 + \frac{|-20|}{1}$$

$$\alpha < 21$$

$$\alpha < 21$$
 Lagrangeova věta:
$$\alpha < 1 + \sqrt[r]{B}$$

$$\alpha < 1 + \sqrt[r]{20}$$

$$\alpha < 21$$

Použití těchto vět nám původní odhad (-21;21) nezlepšilo.

Dolní odhady kořenů polynomu f získáme opakováním postupu pro polynom g, pro který platí

$$g(x) = f(-x)$$

(protože *n* je sudé, kdyby bylo liché, platilo by g(x) = -f(-x)). Polynom *g* tedy je

$$g(x) = f(-x) = x^4 + 2x^3 + x^2 + 10x - 20$$

a protože má jedenu znaménkovou změnu, má i jeden kladný kořen. Proto má polynom *f* jeden záporný kořen.

Pro polynom $g(x) = x^4 + 2x^3 + x^2 + 10x - 20$ platí:

$$a_i = a_4 = -20$$

 $a_r = a_4 = -20$
 $a_s = a_3 = 10$
 $a_s = 20$

Maclaurinova věta:
$$\alpha < 1 + \frac{|a_i|}{|a_0|}$$
 Tillotova věta:
$$\alpha < 1 + \frac{s}{\sqrt{\frac{|a_i|}{a_s}}}$$

$$\alpha < 1 + \frac{|-20|}{1}$$

$$\alpha < 21$$

$$\alpha < 3$$

Lagrangeova věta: $\alpha < 1 + \sqrt[r]{B}$

$$\alpha$$
 < 1 + $\sqrt[4]{20}$ < 3,115

Zjistili jsme, že reálné kořeny polynomu $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ leží v intervalu $\langle -3; 21 \rangle$. Jeden kořen je záporný a buď tři nebo jeden je kladný.

Separace kořenů

Separovat kořeny polynomu f znamená určit intervaly, v nichž leží právě jeden kořen polynomu f.

Sturmův řetězec:

Nechť $f \in R[x]$. Sturmovým řetězcem polynomu f nazýváme konečnou posloupnost polynomů f_i , i = 1, 2, ..., m, definovaných takto:

$$f_1(x) = f(x),$$
 $f_2(x) = f'(x),$
 $f_{j-1}(x) = q_{j-1}(x)f_j(x) - f_{j+1}(x),$ $j = 2, ..., m-1$
 $f_{m-1}(x) = q_{m-1}(x)f_m(x)$

(polynom – f_{j+1} je zbytek při dělení polynomu f_{j-1} polynomem f_j , f_m je D(f, f')).

Sturmova věta:

Buď $f \in R[x]$. Nechť je $\alpha < \beta$ a $f(\alpha)f(\beta) \neq 0$. Pak počet navzájem různých kořenů polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$ ležících v intervalu $\langle \alpha, \beta \rangle$ je roven číslu $\sigma(\alpha) - \sigma(\beta)$, kde $\sigma(x)$ je počet znaménkových změn ve Sturmově řetězci polynomu $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$.

(Pomocí této věty můžeme určit <u>přesný</u> počet kořenů daného polynomu v daném intervalu.)

Sturmův řetězec polynomu $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ má tyto členy:

$$f_1(x) = f(x) = x^4 - 2x^3 + x^2 - 10x - 20$$

$$f_2(x) = f'(x) = 4x^3 - 6x^2 + 2x - 10$$

$$f_3(x) = \frac{1}{4}x^2 + \frac{29}{4}x + \frac{85}{4}$$

$$f_4(x) = -3200x - 10360$$

$$f_5(x) = -\frac{79591}{32400}$$

(jednotlivé výpočty členů posloupnosti jsou uvedeny v dodatku).

Protože je st(D(f, f')) = 0, nemá polynom $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ vícenásobné kořeny (tj. má pouze jednoduché kořeny).

Sestrojme nyní tabulku znamének polynomu ze Sturmova řetězce v intervalu $\langle -3; 21 \rangle$, k výpočtu znamének hodnot v jednotlivých bodech můžeme využít také Hornerovo schéma (ukázka v dodatku):

X	$f_I(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$\sigma(x)$
-3	+	_	+	_	_	3
-2	+	1	+	_	_	3
-1	_	_	+	_	_	2
0	_	1	+	_	_	2
1	-	1	+	_	_	2
2	-	+	+	_	_	2
3	_	+	+	_	_	2
4	+	+	+	_	_	1
5	+	+	+	_	_	1
	::	:	:	:	:	
20	+	+	+	_	_	1

Z tabulky vidíme, že polynom f má jeden jednoduchý kořen v intervalu (-2,-1) a jeden jednoduchý kořen v intervalu (3,4).

Iterakční metody hledání reálných kořenů polynomu $f \in R[x]$

Metoda půlení intervalu:

Hledáme kořen α polynomu f s přesností $\varepsilon > 0$. Buď $\langle c_1, c_2 \rangle$ takový interval, že znaménka čísel $f(c_1), f(c_2)$ jsou různá (pak v intervalu (c_1, c_2) leží aspoň jeden kořen polynomu f. Označme $c_3 = \frac{1}{2}(c_1 + c_2)$. Pak buď $f(c_3) = 0$ a $\alpha = c_3$, nebo $f(c_3) \neq 0$. Ke konstrukci bodu c_4 použijeme ten z intervalů $\langle c_1, c_3 \rangle, \langle c_3, c_2 \rangle$, pro který platí $f(c_i)f(c_3) < 0$ (tj. ten interval, v jehož krajních bodech má funkce f opačná znaménka). Popsaným způsobem pokračujeme tak dlouho, až nalezneme buď přímo kořen α , nebo až platí $|c_{i-1}-c_i| < \varepsilon$.

Metoda tečen (Newtonova metoda):

Předpokládejme, že polynom $f \in R[x]$ má jednoduché kořeny. Nechť $\langle \alpha, \beta \rangle$ je takový interval, uvnitř kterého leží jediný kořen α polynomu f, a nechť na celém intervalu $\langle \alpha, \beta \rangle$ je $f'(x) \neq 0$, $f''(x) \neq 0$. Označme c_1 to z čísel α, β , pro něž platí $f(c_1)f''(c_2) > 0$, d_1 druhé z čísel α, β , tj. číslo, pro něž platí $f(d_1)f''(d_2) < 0$. Utvořme posloupnosti

$$c_{1}, c_{2} = c_{1} - \frac{f(c_{1})}{f'(c_{1})}, c_{3} = c_{2} - \frac{f(c_{2})}{f'(c_{2})}, \dots,$$

$$d_{1}, d_{2} = d_{1} - \frac{f(d_{1})}{f'(c_{1})}, d_{3} = d_{2} - \frac{f(d_{2})}{f'(c_{2})}, \dots$$

Potom jedna z posloupností je klesající, druhá rostoucí a obě posloupnosti konvergují ke kořenu α polynomu f.

Metoda sečen (metoda regula falsi):

Předpokládejme, že polynom $f \in R[x]$ má jednoduché kořeny. Nechť $\langle \alpha, \beta \rangle$ je takový interval, uvnitř kterého leží jediný kořen α polynomu f, a nechť na celém intervalu $\langle \alpha, \beta \rangle$ je $f'(x) \neq 0$, $f''(x) \neq 0$. Označme

$$c_1 = \frac{\alpha f(\beta) - \beta f(\alpha)}{f(\beta) - f(\alpha)}.$$

Sestrojme posloupnost $\{c_n\}$ předpisem

$$c_n = \frac{c_{n-1}f(\beta) - \beta f(c_{n-1})}{f(\beta) - f(c_{n-1})}, n = 2,3,....$$

Pak posloupnost $\{c_n\}$ konverguje ke kořenu α polynomu f.

Aproximace kořenů

Platí $f'(x) = 4x^3 - 6x^2 + 2x - 10$, $f''(x) = 12x^2 - 12x + 2$. Uvažujme nejprve interval (-2,-1). Protože f(-2) > 0, f(-1) < 0, f'(x) < 0, f''(x) > 0, můžeme použít kteroukoli z uvedených iterakčních metod. Použijme například Newtonovu metodu:

$$c_{1} = -2 \qquad f(c_{1}) = 36 \qquad f'(c_{1}) = -70$$

$$c_{2} = c_{1} - \frac{f(c_{1})}{f'(c_{1})} = -1,48571 \qquad f(c_{2}) = 8,49584 \qquad f'(c_{2}) = -39,333458$$

$$c_{3} = c_{2} - \frac{f(c_{2})}{f'(c_{2})} = -1,26972 \qquad f(c_{3}) = 1,002566 \qquad f'(c_{3}) = -30,400648$$

$$c_{4} = c_{3} - \frac{f(c_{3})}{f'(c_{3})} = -1,23674 \qquad f(c_{4}) = 0,0196407 \qquad f'(c_{4}) = -29,217155$$

$$c_{5} = c_{4} - \frac{f(c_{4})}{f'(c_{4})} = -1,23607$$

$$d_{1} = -1 \qquad f(d_{1}) = -6$$

$$d_{2} = d_{1} - \frac{f(d_{1})}{f'(c_{1})} = -1,118779 \qquad f(d_{2}) = -4,014943$$

$$d_{3} = d_{2} - \frac{f(d_{2})}{f'(c_{2})} = -1,23283 \qquad f(d_{3}) = -1,369229$$

$$d_{4} = d_{3} - \frac{f(d_{3})}{f'(c_{3})} = -1,23606 \qquad f(d_{4}) = -0,09439$$

Víme, že posloupnost $\{c_n\}$ je rostoucí, posloupnost $\{d_n\}$ klesající a $x_1 = \lim_{n \to \infty} c_n = \lim_{n \to \infty} d_n$. Proto

$$x_1 \in (c_5, d_4) = (-1,23607, -1,23606)$$

I v druhém intervalu (3, 4) můžeme použít Newtonovu metodu, protože f(3) < 0, f(4) > 0, f'(x) > 0, f''(x) > 0.

$$c_{1} = 4 f(c_{1}) = 84 f'(c_{1}) = 158$$

$$c_{2} = c_{1} - \frac{f(c_{1})}{f'(c_{1})} = 3,468354 f(c_{2}) = 18,609368 f'(c_{2}) = 91,64985$$

$$c_{3} = c_{2} - \frac{f(c_{2})}{f'(c_{2})} = 3,265306 f(c_{3}) = 2,06131675 f'(c_{3}) = 71,81895$$

$$c_{4} = c_{3} - \frac{f(c_{3})}{f'(c_{3})} = 3,236604 f(c_{4}) = 0,03712353 f'(c_{4}) = 69,24115$$

$$c_{5} = c_{4} - \frac{f(c_{4})}{f'(c_{4})} = 3,236068$$

$$d_{1} = 3 f(d_{1}) = -14$$

$$d_{2} = d_{1} - \frac{f(d_{1})}{f'(c_{1})} = 3,088608 f(d_{2}) = -9,2721034$$

$$d_{3} = d_{2} - \frac{f(d_{2})}{f'(c_{2})} = 3,189776 f(d_{3}) = -3,1089784$$

$$d_{4} = d_{3} - \frac{f(d_{3})}{f'(c_{3})} = 3,233065 f(d_{4}) = -0,2073528$$

$$d_{5} = d_{4} - \frac{f(d_{4})}{f'(c_{4})} = 3,23606$$

Víme, že posloupnost $\{c_n\}$ je klesající, posloupnost $\{d_n\}$ rostoucí a $x_2 = \lim_{n \to \infty} c_n = \lim_{n \to \infty} d_n$. Proto

$$x_2 \in (d_5, c_4) = (3,23606; 3,236068)$$

Závěr:

Polynom $f(x) = x^4 - 2x^3 + x^2 - 10x - 20$ má dva reálné jednoduché kořeny. První z nich v intervalu $x_1 \in (-1,23607,-1,23606)$ a druhý v intervalu $x_2 \in (3,23606;3,236068)$. Polynom je stupně 4, proto má další dva komplexní kořeny.

Program DERIVE všechny kořeny vypočetl takto:

$$x_1 = 1 + \sqrt{5}$$

$$x_2 = 1 - \sqrt{5}$$

$$x_3 = i\sqrt{5}$$

$$x_4 = -i\sqrt{5}$$

DODATKY

Hornerovo schéma ve vybraných bodech

	1	-2 -2	1	-10	-20			1	-2	1	-10 -4	-20
-2	0	-2	8	-18	56	-	-1	0	-1	3	-4	14
	1	-4	9	-28	36	ľ		1	-3	4	-14	-6
	1	-2 3	1	-10	-20			1	-2	1	-10 36	-20
3	0	3	3	12	6	_	4	0	4	8	36	104
-	1	1	4	2	-14			1	2	9	26	84

Výpočty polynomů Sturmova řetězce

$$f_1(x) = f(x) = x^4 - 2x^3 + x^2 - 10x - 20$$

 $f_2(x) = f'(x) = 4x^3 - 6x^2 + 2x - 10$

$$f_{1}(x): f_{2}(x)$$

$$(x^{4} - 2x^{3} + x^{2} - 10x - 20) : (4x^{3} - 6x^{2} + 2x - 10) = \frac{1}{4}x - \frac{1}{8}$$

$$-(x^{4} - \frac{3}{2}x^{3} + \frac{1}{2}x^{2} - \frac{5}{2}x)$$

$$-\frac{1}{2}x^{3} + \frac{1}{2}x^{2} - \frac{15}{2}x - 20$$

$$-(-\frac{1}{2}x^{3} + \frac{3}{4}x^{2} - \frac{1}{4}x + \frac{5}{4})$$

$$-\frac{1}{4}x^{2} - \frac{29}{4}x - \frac{85}{4}$$

$$x^{4} - 2x^{3} + x^{2} - 10x - 20 = \left(\frac{1}{4}x - \frac{1}{8}\right)(4x^{3} - 6x^{2} + 2x - 10) - \left(\frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4}\right)$$

$$f_{3}(x) = \frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4}$$

$$f_{2}(x): f_{3}(x)$$

$$(4x^{3} - 6x^{2} + 2x - 10): (\frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4}) =$$

$$= (16x^{3} - 24x^{2} + 8x - 40) : (x^{2} + 29x + 85) = 16x - 488$$

$$- (16x^{3} + 464x^{2} + 1360x)$$

$$- 488x^{2} - 1352x - 40$$

$$- (-488x^{2} - 14152x - 41480)$$

$$12800x + 41440$$

$$4x^{3} - 6x^{2} + 2x - 10 = (16x - 488) \left(\frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4}\right) - (-3200x - 10360)$$

$$f_{4}(x) = \underline{-3200x - 10360}$$

$$f_{3}(x): f_{4}(x)$$

$$(\frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4}): (-3600x - 10360) = -\frac{1}{14400}x - \frac{2351}{1296000}$$

$$-(\frac{1}{4}x^{2} + \frac{259}{360}x + \frac{85}{4})$$

$$-(\frac{2351}{360}x + \frac{85}{4})$$

$$-(\frac{2351}{360}x + \frac{608909}{32400})$$

$$\frac{79591}{32400}$$

$$\frac{1}{4}x^{2} + \frac{29}{4}x + \frac{85}{4} = \left(-\frac{1}{14400}x - \frac{2351}{1296000}\right)(-3600x - 10360) - \left(-\frac{79591}{32400}\right)$$

$$f_{5}(x) = -\frac{79591}{32400}$$

LITERATURA

- NOVOTNÁ, J. TRCH, M.: Algebra a teoretická aritmetika. Polynomická algebra. Univerzita Karlova v Praze Pedagogická fakulta, Praha 2000.
- ŠISLER, M. ANDRYS, J.: O řešení algebraických rovnic. Mladá fronta, Praha 1966.

OBSAH

Racionální kořeny	1
Odhad počtu reálných kořenů a jejich polohy	
Separace kořenů	
Iterakční metody hledání reálných kořenů polynomu $f \in R[x]$	
DODATKY	9
LITERATURA	10
ORSAH	