- 41. A composition comprising a pharmaceutically acceptable carrier in combination with a compound according to claim 12 in an amount effective to inhibit proliferation of tumor cells.
- 42. A composition comprising a pharmaceutically acceptable carrier in combination with a compound selected from the group consisting of

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, and N-Ac-Sar-Gly-Val-D-allolle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, in an amount effective to inhibit proliferation of tumor cells.

- 1 Andorde A composition according to claim 42 wherein the compound is N-Ac-Sar-Gly-43. Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃
 - 44. A composition according to claim 42 wherein the compound is N-Ac-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃.
 - 45. A composition according to claim 42 wherein the compound is N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃
 - 46. A composition according to claim 42 wherein the compound is N-Ac-Sar-Gly-Val-D-alloIle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃.

Remarks

Upon entry of the amendment, claims 1-14, 16 and 18-46 will be pending in the application.

Page 1 of the specification (Cross-reference to Related Applications) has been amended to reflect the correct status of the present application.

Pages 54 and 69 of the specification have been amended to correct typographical errors in the titles of the Examples 2 and 31, respectively.

Claim 1 has been amended to clarify the recitation of various substituents as discussed further below.

Claims 7 and 10 have been amended to cancel a single variable from the claim, as discussed in more detail below.

Claim 12 has been amended to correct typographical errors in the second, twelfth and seventyninth compounds. Support for the amendments can be found at Examples 2, 13 and 68, respectively.

Claims 16 and 28-32 have been amended to recite the use of the compounds for the treatment of cancer.

Serial No: 09/447,226

Rejection under 35 USC § 112, first paragraph

Claims 14, 16 and 28-32 stand rejected under 35 USC § 112, first paragraph, as lacking enablement for the treatment of various diseases. While acknowledging that the compounds of the invention will inhibit endothelial migration *in vitro*, angiogenesis *in vitro* and *in vivo*, and tumor cell proliferation *in vivo*, the Examiner asserts that "undue experimentation" would be required in order to practice the claimed therapeutic efficacy. While Applicants appreciate the thorough analysis the Examiner has presented with respect to the utility of the compounds of the invention, especially for cancer, they must respectfully traverse the rejection.

Enclosed are a number of published reports (posters, abstracts and full publication) demonstrating the utility of the compounds of the invention for use in cancer. Exhibit 1 demonstrates that systemic administration of a compound of the invention blocked progression of an aggressive human bladder cancer and significantly inhibited lung metastases in a syngenic mouse melanoma model. A second abstract (Exhibit 2 (a)) and corresponding poster (Exhibit 2(b)) further demonstrate the utility of the compounds as inhibitors of angiogenesis. Inhibition of angiogenesis is demonstrated by a variety of means, most significantly, via inhibition of neovascularization in a mouse cornea model via sc or ip injection. A third abstract (Exhibit 3(a)) and corresponding poster (Exhibit 3(b)) demonstrate tumor inhibition in a variety of means utilizing two compounds of the invention. Finally and most significantly, a fourth abstract (Exhibit 4(a)) and poster (Exhibit 4(b)), demonstrate that compounds of the invention caused regression in naturally occurring cancers (including, carcinoma, sarcoma, lymphoma, melanoma) in companion animals (dog). In addition, one of the compounds is currently undergoing Phase II studies in human.

Thus, contrary to the Examiner's contention, compounds of the invention have demonstrated utility in treating a variety of spontaneous cancers. Withdrawal of the rejection is respectfully reuested.

Rejection under 35 USC § 112, second paragraph

Claims 1-11, 14 and 16 stand rejected under 35 USC § 112, second paragraph, as being indefinite with respect to (1) the recitation of L or D configuration in variable A_4 in claim 1; (2) the recitation of "cystyl" and tryptyl" in variable A_4 in claim 1; and (3) the recitation of "gamma-amino butyryl" in variable A_0 in claim 7.

The recitation of L or D configuration in variable A_4 in claim 1 has been clarified to recite those amino acyl residues for which the L or D configuration is applicable.

With respect to the use of the term "cystyl" and "tryptyl" Applicants respectfully traverse the rejection. The use of "cystyl" as representing a cysteine residue as well as the use of

Serial No: 09/447,226

"tryptyl" as representing a tryptophane residue would be clear to one skilled in the art, especially in light of the teachings of and use throughout the specification. See, e.g., page 14, Table 1, row 18, where it is indicated that "Cys" is defined as the prefix for cysteine and page 13, lines 13-26, wherein the it is clearly stated that "trp" shall designate tryptophane.

Finally, with respect to the recitation of "gamma-amino butyryl" in variable A_0 in claims 7 and 10, Applicants have amended claims 7 and 10 to cancel the term from these claims.

Action Requested

Applicant submits that claims 1-14, 16 and 18-46 are in condition for allowance and request early notification to this effect. Should one or more issues remain unresolved, Applicant requests a personal or telephonic interview to discuss these issues with the Examiner.

23492

ABBOTT LABORATORIES Telephone: (847) 937-0042 Facsimile: (847) 938-2623 Respectfully submitted, Henkin, et al.

Gregory W. Steele Registration No. 33,796 Attorney for Applicants

Serial No: 09/447,226 6356.US.P3

VERSION OF THE SPECIFICATION WITH MARKINGS TO SHOW CHANGES

• Cross-Reference to Related Applications (Page 1)

This application [claims priority from the] is a continuation-in-part of [U.S. application] United States Patent Application Serial Number 09/316,888, filed May 21, 1999, pending, [which claims priority from U.S. application Ser No. 60/086,536, filed May 22, 1998, and U.S. application Ser. No. 60/126,546, filed March 26, 1999] and claims the benefit of United States Provisional Patent Applications 60/126,546, filed March 26, 1999 and 60/086,536 filed May 21, 1998, both of which are hereby incorporated by reference.

• Example 2 (Page 54)
N-Ac-pyroGlu-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro NHCH₂CH₃

• Example 31 (Page 69) N-Ac-Sar-Gly-Val-D-Hphe-Thr-Nva-Ile-Arg-ProNH[CH₂(CH₃)₂]CH₂CH₃

Serial No: 09/447,226

VERSION OF THE CLAIMS WITH MARKINGS TO SHOW CHANGES

1 (Amended three times). A compound of the formula:

or a pharmaceutically acceptable salt, ester, solvate or prodrug thereof, wherein: A_0 is an acyl group selected from:

- (1) R-(CH₂)_n-C(O)-; wherein n is an integer from 0 to 8 and R is selected from hydroxyl; methyl; N-acetylamino; methoxyl; carboxyl; cyclohexyl optionally containing one or two double bonds and optionally substituted with one to three hydroxyl groups; and a 5- or 6-membered aromatic or nonaromatic ring optionally containing one or two heteroatoms selected from nitrogen, oxygen, and sulfur, wherein the ring is optionally substituted with a moiety selected from alkyl, alkoxy, and halogen; and
- (2) R¹-CH₂CH₂-(OCH₂CH₂O)_p-CH₂-C(O)-; wherein R¹ is selected from hydrogen, alkyl, and N-acetylamino, and p is an integer from 1 to 8;

A₁ is an amino acyl residue selected from:

- (1) alanyl,
- (2) asparaginyl,
- (3) citrullyl,
- (4) glutaminyl,
- (5) glutamyl,
- (6) N-ethylglycyl,
- (7) methionyl,
- (8) N-methylalanyl,
- (9) prolyl,
- (10) pyro-glutamyl,
- (11) sarcosyl,
- (12) seryl,
- (13) threonyl,

- (14) -HN-(CH₂)_q-C(O)-, wherein q is 1 to 8, and
- (15) -HN-CH₂CH₂-(OCH₂CH₂O)_r-CH₂-C(O)-, wherein r is 1 to 8;

A₂ is an amino acyl residue selected from:

- (1) alanyl,
- (2) asparaginyl,
- (3) aspartyl,
- (4) glutaminyl,
- (5) glutamyl,
- (6) leucyl,
- (7) methionyl,
- (8) phenylalanyl,
- (9) prolyl,
- (10) seryl,
- (11) -HN- $(CH_2)_q$ -C(O)-, wherein q is 1 to 8,
- (12) -HN-CH₂CH₂-(OCH₂CH₂O)_r-CH₂-C(O)-, wherein r is 1 to 8, and
- (13) glycyl;

A₃ is an amino acyl residue selected from:

- (1) alanyl,
- (2) asparaginyl,
- (3) citrullyl,
- (4) cyclohexylalanyl,
- (5) cyclohexylglycyl,
- (6) glutaminyl,
- (7) glutamyl,
- (8) glycyl,
- (9) isoleucyl,
- (10) leucyl,
- (11) methionyl,
- (12) norvalyl,
- (13) phenylalanyl,
- (14) seryl,
- (15) t-butylglycyl,
- (16) threonyl,
- (17) valyl,
- (18) penicillaminyl, and
- (19) cystyl;

A₄ is an amino acyl residue [of L or D configuration] selected from:

- (1) L- or D-allo-isoleucyl,
- (2) $\underline{\mathbf{L}}$ or $\underline{\mathbf{D}}$ -glycyl,
- (3) L- or D-isoleucyl,
- (4) $\underline{\mathbf{L}}$ or $\underline{\mathbf{D}}$ -prolyl,
- (5) L- or D-dehydroleucyl,
- (6) D-alanyl,
- (7) D-3-(naphth-1-yl)alanyl,
- (8) D-3-(naphth-2-yl)alanyl,
- (9) D-(3-pyridyl)-alanyl,
- (10) D-2-aminobutyryl,
- (11) D-allo-isoleucyl,
- (12) D-allo-threonyl,
- (13) D-allylglycyl,
- (14) D-asparaginyl,
- (15) D-aspartyl,
- (16) D-benzothienyl,
- (17) D-3-(4,4'-biphenyl)alanyl,
- (18) D-chlorophenylalanyl,
- (19) D-3-(3-trifluoromethylphenyl)alanyl,
- (20) D-3-(3-cyanophenyl)alanyl,
- (21) D-3-(3,4-difluorophenyl)alanyl,
- (22) D-citrullyl,
- (23) D-cyclohexylalanyl,
- (24) D-cyclohexylglycyl,
- (25) D-cystyl,
- (26) D-cystyl(S-t-butyl),
- (27) D-glutaminyl,
- (28) D-glutamyl,
- (29) D-histidyl,
- (30) D-homoisoleucyl,
- (31) D-homophenylalanyl,
- (32) D-homoseryl,
- (33) D-isoleucyl,
- (34) D-leucyl,
- (35) D-lysyl(N-epsilon-nicotinyl),

- (36) D-lysyl,
- (37) D-methionyl,
- (38) D-neopentylglycyl,
- (39) D-norleucyl,
- (40) D-norvalyl,
- (41) D-ornithyl,
- (42) D-penicillaminyl,
- (43) D-penicillaminyl(acetamidomethyl),
- (44) D-penicillaminyl(S-benzyl),
- (45) D-phenylalanyl,
- (46) D-3-(4-aminophenyl)alanyl,
- (47) D-3-(4-methylphenyl)alanyl,
- (48) D-3-(4-nitrophenyl)alanyl,
- (49) D-3-(3,4-dimethoxyphenyl)alanyl,
- (50) D-3-(3,4,5-trifluorophenyl)alanyl,
- (51) D-prolyl,
- (52) D-seryl,
- (53) D-seryl(*O*-benzyl),
- (54) D-t-butylglycyl,
- (55) D-thienylalanyl,
- (56) D-threonyl,
- (57) D-threonyl(O-benzyl),
- (58) D-tryptyl,
- (59) D-tyrosyl(*O*-benzyl),
- (60) D-tyrosyl(*O*-ethyl),
- (61) D-tyrosyl, and
- (62) D-valyl;

A₅ is an amino acyl residue of L or D configuration selected from:

- (1) alanyl,
- (2) (3-pyridyl)alanyl,
- (3) 3-(naphth-1-yl)alanyl,
- (4) 3-(naphth-2-yl)alanyl,
- (5) allo-threonyl,
- (6) allylglycyl,
- (7) glutaminyl,
- (8) glycyl,

- (9) histidyl,
- (10) homoseryl,
- (11) isoleucyl,
- (12) lysyl(N-epsilon-acetyl),
- (13) methionyl,
- (14) norvalyl,
- (15) octylglycyl,
- (16) ornithyl,
- (17) 3-(4-hydroxymethylphenyl)alanyl,
- (18) prolyl,
- (19) seryl,
- (20) threonyl,
- (21) tryptyl,
- (22) tyrosyl,
- (23) D-allo-threonyl,
- (24) D-homoseryl,
- (25) D-seryl,
- (26) D-threonyl,
- (27) penicillaminyl, and
- (28) cystyl;

A₆ is an amino acyl residue of L or D configuration selected from:

- (1) alanyl,
- (2) 3-(naphth-1-yl)alanyl,
- (3) 3-(naphth-2-yl)alanyl,
- (4) (3-pyridyl)alanyl,
- (5) 2-aminobutyryl,
- (6) allylglycyl,
- (7) arginyl,
- (8) asparaginyl,
- (9) aspartyl,
- (10) citrullyl,
- (11) cyclohexylalanyl,
- (12) glutaminyl,
- (13) glutamyl,
- (14) glycyl,
- (15) histidyl,

- (16) homoalanyl,
- (17) homoleucyl,
- (18) homoseryl,
- (19) isoleucyl,
- (20) leucyl,
- (21) lysyl(N-epsilon-acetyl),
- (22) lysyl(N-epsilon-isopropyl),
- (23) methionyl(sulfone),
- (24) methionyl(sulfoxide),
- (25) methionyl,
- (26) norleucyl,
- (27) norvalyl,
- (28) octylglycyl,
- (29) phenylalanyl,
- (30) 3-(4-carboxyamidephenyl)alanyl,
- (31) propargylglycyl,
- (32) seryl,
- (33) threonyl,
- (34) tryptyl,
- (35) tyrosyl,
- (36) valyl,
- (37) D-3-(naphth-1-yl)alanyl,
- (38) D-3-(naphth-2-yl)alanyl,
- (39) D-glutaminyl,
- (40) D-homoseryl,
- (41) D-leucyl,
- (42) D-norvalyl,
- (43) D-seryl,
- (44) penicillaminyl, and
- (45) cystyl;

A₇ is an amino acyl residue of L or D configuration selected from:

- (1) alanyl,
- (2) allylglycyl,
- (3) aspartyl,
- (4) citrullyl,
- (5) cyclohexylglycyl,

- (6) glutamyl,
- (7) glycyl,
- (8) homoseryl,
- (9) isoleucyl,
- (10) allo-isoleucyl
- (11) leucyl,
- (12) lysyl(N-epsilon-acetyl),
- (13) methionyl,
- (14) 3-(naphth-1-yl)alanyl,
- (15) 3-(naphth-2-yl)alanyl,
- (16) norvalyl,
- (17) phenylalanyl,
- (18) prolyl,
- (19) seryl,
- (20) *t*-butylglycyl,
- (21) tryptyl,
- (22) tyrosyl,
- (23) valyl,
- (24) D-allo-isoleucyl,
- (25) D-isoleucyl,
- (26) penicillaminyl, and
- (27) cystyl;

A₈ is an amino acyl residue selected from:

- (1) 2-amino-4-[(2-amino)-pyrimidinyl]butanoyl,
- (2) alanyl(3-guanidino),
- (3) alanyl[3-pyrrolidinyl(2-N-amidino)],
- (4) alanyl[4-piperidinyl(N-amidino)],
- (5) arginyl,
- (6) arginyl(N^GN^{G'}diethyl),
- (7) citrullyl,
- (8) 3-(cyclohexyl)alanyl(4-N'-isopropyl),
- (9) glycyl[4-piperidinyl(N-amidino)],
- (10) histidyl,
- (11) homoarginyl,
- (12) lysyl,
- (13) lysyl(N-epsilon-isopropyl),

- (14) lysyl(N-epsilon-nicotinyl),
- (15) norarginyl,
- (16) ornithyl(N-delta-isopropyl),
- (17) ornithyl(N-delta-nicotinyl),
- (18) ornithyl[N-delta-(2-imidazolinyl)],
- (19) [(4-amino(N-isopropyl)methyl)phenyl]alanyl,
- (20) 3-(4-guanidinophenyl)alanyl, and
- (21) 3-(4-amino-N-isopropylphenyl)alanyl;

A₉ is an amino acyl residue of L or D configuration selected from:

- (1) 2-amino-butyryl,
- (2) 2-amino-isobutyryl,
- (3) homoprolyl,
- (4) hydroxyprolyl,
- (5) isoleucyl,
- (6) leucyl,
- (7) phenylalanyl,
- (8) prolyl,
- (9) seryl,
- (10) *t*-butylglycyl,
- (11) 1,2,3,4-tetrahydroisoquinoline-3-carbonyl,
- (12) threonyl,
- (13) valyl,
- (14) D-alanyl, and
- (15) D-prolyl; and

 A_{10} is a hydroxyl group or an amino acid amide is selected from:

azaglycylamide,

D-alanylamide,

D-alanylethylamide,

glycylamide,

glycylethylamide,

sarcosylamide,

serylamide,

D-serylamide,

a group represented by the formula

Serial No: 09/447,226 6356.US.P3

$$\begin{array}{c} R^2 \\ \text{-NH-(CH}_2)_s\text{-CHR}^3 \\ \text{, and} \end{array}$$

a group represented by the formula -NH-R⁴;

wherein:

s is an integer selected from 0 to 8,

R² is selected from hydrogen, alkyl, and a 5- to 6-membered cycloalkyl ring;

R³ is selected from hydrogen, hydroxy, alkyl, phenyl, alkoxy, and a 5- to 6-membered ring optionally containing from one to two heteroatoms selected from oxygen, nitrogen, and sulfur, provided that s is not zero when R³ is hydroxy or alkoxy; and R⁴ is selected from hydrogen, hydroxy, and a 5- to 6-membered cycloalkyl ring.

- 7 (Amended). A compound according to Claim 3 wherein A₀ is selected from: (1) acetyl, (2) butyryl, (3) caproyl, (4) (4-N-acetylamino)butyryl, (5) N-acetyl-beta-alanyl, (6) (6-N-acetylamino)caproyl, (7) chloronicotinyl, (8) cyclohexylacetyl, (9) furoyl, [(10) gamma-aminobutyryl, (11)] (10) 2-methoxyacetyl, [(12)] (11) methylnicotinyl, [(13)] (12) nicotinyl, [(14)] (13) (8-N-acetylamino)-3,6-dioxooctanoyl, [(15)] (14) phenylacetyl, [(16)] (15) propionyl, [(17)] (16) shikimyl, [(18)] (17) succinyl, and [(19)] (18) tetrahydrofuroyl.
- 10 (Amended). A compound according to Claim 9 wherein A₀ is selected from: (1) acetyl, (2) butyryl, (3) caproyl, (4) (4-N-acetylamino)butyryl, (5) N-acetyl-beta-alanyl, (6) (6-N-acetylamino)caproyl, (7) chloronicotinyl, (8) cyclohexylacetyl, (9) furoyl, [(10) gamma-aminobutyryl, (11)] (10) 2-methoxyacetyl, [(12)] (11) methylnicotinyl, [(13)] (12) nicotinyl, [(14)] (13) (8-N-acetylamino)-3,6-dioxooctanoyl, [(15)] (14) phenylacetyl, [(16)] (15) propionyl, [(17)] (16) shikimyl, [(18)] (17) succinyl, and [(19)] (18) tetrahydrofuroyl.

12 (Amended two times). A compound, or a pharmaceutically acceptable salt, ester, solvate or prodrug thereof, selected from:

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-pyroGlu-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

```
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH<sub>3</sub>,
```

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂-(1-pyrrolidine),

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHethylpiperidine,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHmethylcyclopropyl,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH(ethyl-1-(R)-cyclohexyl),

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH2OCH3,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₂cyclohexyl,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH[CH(CH₃)₂]CH₂CH₂CH₃,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-Gly-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Val-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Met-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Nle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Phe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Tyr-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-4,4'-Biphenylala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Cha-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Chg-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-4-ClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Hphe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-Dehydroleu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-3-CF₃Phe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-pentaFPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-3,4-diClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-3-ClPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-2-Thienylala-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-3-CNPhe-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-DNva-Ile-Arg-ProNHCH2CH3,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Cha-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Gly-Ile-Arg-ProNHCH₂CH₃,

```
N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
```

N-Ac-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Abu-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Allylgly-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Octylgly-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Met-Ile-Arg-ProNHCH₂CH₃,

N-Cyclohexylacetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Nicotinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3,

N-Propionyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-(MeO)acetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Butyryl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-[2-THFcarbonyl]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

 $N-[CH_3C(O)NH-(CH_2)_2-O-(CH_2)_2-O-CH_2-C(O)]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,$

N-[6-N-acetyl-(CH₂)₅C(O)]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Hexanoyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-[4-N-Acetylaminobutyryl]-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

H-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Asn-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

 $N-[CH_3C(O)NH-(CH_2)_2-O-(CH_2)_2-O-CH_2-C(O)]-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH_2CH_3,$

N-Ac-Pro-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Gly-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Ala-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-NEtGly-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Ser-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-D-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-AbuNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Phe-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Tic-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Hyp-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Aib-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-D-Ala-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pip-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Tyr(Et)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys(tBu)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys(Acm)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Tyr(Bzl)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ser(Bzl)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-1Nal-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-tButylgly-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Orn-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr(Bzl)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-2Nal-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(4-Me)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4-diMeO)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(4-NO₂)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen(Acm)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Abu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Phe(4-NH₂)-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ala-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Met-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Phe-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Tyr-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Nva-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Asp-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Gly-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Lys(Ac)-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Leu-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-2Nal-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-1Nal-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Allylgly-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Cit-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ala-Nva-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

N-Ac-Sar-Gly-Val-D-Leu-Pro-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Trp-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Tyr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-Leu-Nva-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-Leu-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Lys(Ac)-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-2Nal-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-1Nal-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Octylgly-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Gln-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Met-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Allylgly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ile-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-D-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ile-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nle-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Cit-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Met(O₂)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Arg-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Tyr-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Glu-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-Ile-Thr-Lys(Ac)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Propargylgly-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Bala-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Phenylacetyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Sar-NHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-SerNH₂, N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Ala-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Leu-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Phe-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Glu-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

N-Ac-Sar-Pro-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Asn-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Asp-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Asn-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Gln-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Ser-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Cit-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Glu-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Gaba-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Bala-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Gln-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Gly-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Glu-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Thr-Asp-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Asp-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Asn-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Met(O)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Thr-Asn-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ser-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Hser-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Gln-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Asn-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cit-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Hcit-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Hle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Neopentylgly-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Phe(4-CONH₂)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-His-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Lys(Isp)-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Lys(Nic)-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orn(Nic)-ProNHCH₂CH₃,

Serial No: 09/447,226

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orn(Isp)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe(4-NIsp)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Cha(4-NIsp)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Harg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Norarg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Cit-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Lys-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Phe(4-CH₂OH)-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe(4-guanidino)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Aminopyrimidinylbutanoyl-Pro-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Phe(4-CH2NHIsp)-ProNHCH2CH3.

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Gly[4-Pip(N-amidino)]-Pro-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Ala[4-Pip(N-amidino)]-Pro-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Ala(3-guanidino)-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Ala(3-pyrrolidinylamidino)-Pro-NHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Orn(2-imidazo)-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂,

N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂,

N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂,

N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-SarNH₂,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-SarNH₂,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-SarNH₂,

N-Ac-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-SarNH₂,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-Pro-D-AlaNH₂,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-ProNHCH(CH₃)₂,

N-Ac-Sar-Gly-Val-D-allolle-Thr-Ser-Ile-Arg-ProNHCH₂CH₃,

N-Ac-Sar-Gly-Val-D-Ile-Thr-Orn(Ac)-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-Pro-AzaglyNH₂, N-Ac-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-AzaglyNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-Pro-NHCH₂CH₃, N-(2-THFcarbonyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(2-THFcarbonyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-NHCH₂CH₃, N-(2-THFcarbonyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-THFcarbonyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-NHCH(CH₃)₂, N-(6-Ac-Aca)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-(6-Ac-Aca)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-(6-Ac-Aca)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-(6-Ac-Aca)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(6-Ac-Aca)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(6-Ac-Aca)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(4-Ac-Gaba)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH2CH3, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-NHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(2-Furoyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(2-Furoyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-Pro-D-AlaNH2, N-(2-Furoyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(Shikimyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(Shikimyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH₂, N-(Shikimyl)-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-NHCH₂CH₃, N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

```
N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-NHCH<sub>2</sub>CH<sub>3</sub>,
N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-(2-Me-Nicotinyl)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-NHCH(CH<sub>3</sub>)<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-alloIle-Thr-Leu-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH(CH<sub>3</sub>)<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-allolle-Thr-Leu-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH(CH<sub>3</sub>)<sub>2</sub>,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH2CH3,
N-Succinyl-Sar-Gly-Val-D-allolle-Thr-Leu-Ile-Arg-ProNHCH2CH3.
N-Succinyl-Sar-Gly-Val-D-alloIle-Thr-Leu-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-Pro-AzaglyNH<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHethyl-(1-pyrrolidine),
N-Ac-Sar-Gly-Val-D-alloIle-Thr-Nva-Ile-Arg-ProNH(ethyl-1-cyclohexyl),
N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHethyl-(1-pyrrolidine),
N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNH(ethyl-1-cyclohexyl),
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNH(ethyl-1-cyclohexyl),
N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Ser-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Leu-Ile-Arg-ProNHCH2CH2OCH3,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH2OCH3,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH2CH2OCH3,
N-Succinyl-Sar-Gly-Val-D-alloIle-Thr-Gln-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH2CH2OCH3,
N-Ac-Sar-Gly-Val-D-allolle-Thr-Allygly-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-ProNHCH(CH<sub>3</sub>)<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-allolle-Thr-Allygly-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Allygly-Ile-Arg-Pro-D-AlaNH<sub>2</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Ser-Allygly-Ile-Arg-Pro-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Leu-Ser-Allygly-Ile-Arg-Pro-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-SarNH<sub>2</sub>,
```

Serial No: 09/447,226

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHOH, N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloIle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Hser-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Gln-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Nva-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ile-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Phe-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Leu-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ser-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Thr-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃. N-Ac-Sar-Gly-Val-D-alloIle-Thr-Ala-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Ala-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Ala-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Ala-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Ala-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloIle-Thr-Val-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Thr-Val-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Val-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Val-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Val-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Thr-D-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-D-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Thr-D-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-alloIle-Thr-D-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-D-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-D-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-D-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂,

N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Gln-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-allolle-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-allolle-Ser-Leu-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-allolle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-allolle-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Leu-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloIle-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Tyr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-allolle-Tyr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Leu-Tyr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Tyr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloIle-Tyr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ser-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Gln-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Asn-Thr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-Arg-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-3-Pal-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Glu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Asp-Thr-Nva-Ile-Arg-ProNHCH2CH3. N-Ac-Sar-Gly-Val-D-His-Thr-Nva-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

N-Ac-Sar-Gly-Val-D-Hser-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloThr-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-D-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ser-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloThr-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ser-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloThr-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-alloThr-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Thr-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-(6-Ac-Aca)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(6-Ac-Aca)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(4-Ac-Gaba)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Furoyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(Shikimyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Me-nicotinyl)-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(2-Me-nicotinyl)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-DIIe-Thr-Ser-IIe-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Leu-Ser-Ser-Ile-Arg-ProNHethyl-1-(R)-cyclohexyl, N-Ac-Sar-Gly-Val-DIle-Thr-Nva-Ile-Arg-ProNHethyl-1-(S)-cyclohexyl, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Ser-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Ac-Sar-Gly-Val-D-Pen-Ser-Gln-Ile-Arg-ProNHCH₂CH₃,

Serial No: 09/447,226

N-Ac-Sar-Gly-Val-D-Pen-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Pen-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Pen-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Pen-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Pen-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Cys-Thr-Nva-Ile-Arg- ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH₂CH₃. N-Ac-Sar-Gly-Val-D-Cys-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val- D-Cys-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Cys-Ser-Nva-Ile-Arg-Pro-D-AlaNH2, N-Ac-Sar-Gly-Val-D-Cys-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Gly-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Thr-Ser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Thr-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Cys-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Ser-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Gly-Val-D-Cys-Ser-Leu-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-Dlle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Cys-Dlle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-Pro-D-AlaNH₂, N-Succinyl-Gly-Pen-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-Succinyl-Sar-Gly-Pen-D-Ile-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-Ac-Sar-Gly-Val-D-Leu-Pen-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Pen-Nva-Ile-Arg-ProNHCH₂CH₃,

 $\hbox{N--Ac-Sar-Gly-Val-D-alloIle-Pen-Nva-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}Pen\hbox{-}Gln\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,}\\$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}Pen\hbox{-}Ser\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Pen-Leu-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}Pen\hbox{-}Nva\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH(CH_3)_2,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Pen-Nva-Ile-Arg-Pro-D-AlaNH}_2,$ $N\hbox{-}Succinyl\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}Pen\hbox{-}Nva\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,}\\$ $N\hbox{-Succinyl-Sar-Gly-Val-D-Ile-Pen-Gln-Ile-Arg-ProNHCH}_2CH_3,$ $N\hbox{-}Succinyl\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Ile\hbox{-}Pen\hbox{-}Gln\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH(CH_3)_2,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}alloIle\hbox{-}Thr\hbox{-}Pen\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,}\\$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Gly\hbox{-}Val\hbox{-}D\hbox{-}Leu\hbox{-}Thr\hbox{-}Pen\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,$ N-Ac-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-Pro-D-AlaNH2, $N\hbox{-Succinyl-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-ProNHCH}_2CH_3,$ $\hbox{N-Ac-Sar-Gly-Val-D-Ile-Thr-Pen-Ile-Arg-ProNHCH} (CH_3)_2,$ $\hbox{N-Ac-Sar-Gly-Val-D-Leu-Ser-Pen-Ile-Arg-ProNHCH$_2$CH$_3$,}\\$ N-Ac-Sar-Gly-Val-D-Leu-Gly-Pen-Ile-Arg-ProNHCH2CH3, $N-Succinyl-Sar-Gly-Val-D-Leu-Ser-Pen-Ile-Arg-ProNHCH_2CH_3,\\$ $N-Ac-Sar-Gly-Val-D-Phe (3,4,5-triF)-Thr-Gln-Ile-Arg-ProNHCH_2CH_3,\\$ N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Gly-Nva-Ile-Arg-ProNHCH₂CH₃, $N\text{-}Ac\text{-}Sar\text{-}Gly\text{-}Val\text{-}D\text{-}Phe (3,4,5\text{-}triF)\text{-}Ser\text{-}Leu\text{-}Ile\text{-}Arg\text{-}ProNHCH}_2CH_3,$ $N\text{-}Ac\text{-}Sar\text{-}Gly\text{-}Val\text{-}D\text{-}Phe (3,4,5\text{-}triF)\text{-}Ser\text{-}Nva\text{-}Ile\text{-}Arg\text{-}Pro\text{-}D\text{-}AlaNH_2,}$ $N-Succinyl-Sar-Gly-Val-D-Phe (3,4,5-triF)-Thr-Gln-Ile-Arg-ProNHCH_2CH_3,\\$ $N-Succinyl-Sar-Gly-Val-D-Phe (3,4,5-triF)-Ser-Gln-Ile-Arg-ProNHCH_2CH_3,\\$ $N-Succinyl-Sar-Gly-Val-D-Phe (3,4,5-triF)-Thr-Gln-Ile-Arg-ProNH-CH (CH_3)_2,\\$ N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Ser-Gln-Ile-Arg-ProNHCH2CH3, $\hbox{N-Ac-Sar-Gly-Val-D-Phe} (3,4,5-triF)-\hbox{Ser-Ser-Ile-Arg-Pro} \hbox{N+CH}_2 \hbox{CH}_3,$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Ala\hbox{-}Val\hbox{-}D\hbox{-}allo Ile\hbox{-}Thr\hbox{-}Nva\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,$ $N\hbox{-}Ac\hbox{-}Sar\hbox{-}Ala\hbox{-}Val\hbox{-}D\hbox{-}Leu\hbox{-}Thr\hbox{-}Nva\hbox{-}Ile\hbox{-}Arg\hbox{-}ProNHCH$_2CH$_3,$ $\hbox{N-Ac-Sar-Ala-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $\hbox{N-Ac-Sar-Ala-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH}_2\hbox{CH}_3,$ $\hbox{N-Ac-Sar-Ala-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH$_2$CH$_3$,}\\$ $N\hbox{-Succinyl-Sar-Ala-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH}_2CH_3,$ N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-ProNHCH2CH3, N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-ProNHCH(CH₃)₂,

Page 52 of 55

Serial No: 09/447,226 6356.US.P3 N-Succinyl-Sar-Ala-Val-D-Ile-Thr-Gln-Nva-Ile-Arg-Pro-D-AlaNH₂, N-(3-Ac-Bala)-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-DAlaNH₂, N-(3-Ac-Bala)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-Pro-DAlaNH2, N-(3-Ac-Bala)-Sar-Gly-Val-D-allolle-Thr-Gln-Ile-Arg-ProNHCH(CH₃)₂, N-(3-Ac-Bala)-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH2CH3, N-(3-Ac-Bala)-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Gly-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-alloIle-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-Ile-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-Leu-Ser-Nva-Ile-Arg-ProNHCH₂CH₃, N-(3-Ac-Bala)-Sar-Ala-Val-D-Leu-Ser-Gln-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Leu-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Pen-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Phe(3,4,5-triF)-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Leu-Ser-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Ala-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Val-D-Ile-Ser-Gln-Ile-Arg-Pro-OH, N-Succinyl-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-Pro-OH, N-Succinyl-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-Pro-OH, N-Ac-Sar-Gly-Asp-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Ala-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Cha-D-Leu-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Met-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Cit-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3, N-Ac-Sar-Gly-Val-D-Ile-Thr-Hser-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-Dallolle-His-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-n-Butyl, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-iso-Butyl, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-iso-Amyl,

Serial No: 09/447,226

```
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-n-hexyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-(3,3-dimethyl)butyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-(2-ethoxy)ethyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-(2-isopropoxy)ethyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-(3-methoxy)propyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-(cyclopentyl)methyl,
N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNH-cyclohexyl,
N-Ac-Sar-Gly-Val-allo-Ile-Thr-Nva-Ile-Arg-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Lys-Thr-Nva-Ile-Arg-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Trp-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-3,3-Dipheylala-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-3-Benzothienylala-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-3,4-diF-Phe-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Pen(Bzl)-Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH(CH<sub>3</sub>)<sub>2</sub>,
H-Sar-Gly-Val-D-Leu-Thr-Gln-Ile-Arg-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Leu -Thr-Nva-Gln-Arg-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Leu -Thr-Nva-Pro-Arg-ProNHCH2CH3,
N-Ac-Sar-Gly-Val-D-Leu -Thr-Nva-Ser-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Leu -Thr-Nva-Trp-Arg-ProNHCH<sub>2</sub>CH<sub>3</sub>,
N-Ac-Sar-Gly-Val-D-Ile -Thr-Nva-Ile-Arg-ProNHCH<sub>2</sub>CH<sub>2</sub>OH,
N-Ac-Sar-Ser-Val-D-Ile -Thr-Nva-Ile-Arg-ProNHCH2CH2OH, and
N-Ac-Sar-Gly-Val-D-Ile -Thr-Leu-Ile-Arg-ProNH((R)-1-cyclohexylethyl).
```

16 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising a peptide defined in claim 1 in combination with a pharmaceutically acceptable carrier.

28 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising a compound, or a pharmaceutically acceptable salt, ester, solvate, or prodrug thereof, selected from the group consisting of

N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, and

Serial No: 09/447,226 Page 54 of 55

N-Ac-Sar-Gly-Val-D-alloIle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, and a pharmaceutically acceptable carrier.

29 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising N-Ac-Sar-Gly-Val-D-Ile-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, or a pharmaceutically acceptable salt, ester, solvate, or prodrug thereof, and a pharmaceutically acceptable carrier.

30 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising N-Ac-Sar-Gly-Val-D-allolle-Thr-Nva-Ile-Arg-ProNHCH₂CH₃, or a pharmaceutically acceptable salt, ester, solvate, or prodrug thereof, and a pharmaceutically acceptable carrier.

31 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising N-Ac-Sar-Gly-Val-D-Ile-Thr-Gln-Ile-Arg-ProNHCH₂CH₃, or a pharmaceutically acceptable salt, ester, solvate, or prodrug thereof, and a pharmaceutically acceptable carrier.

32 (Amended). A composition for the treatment of [a disease selected from] cancer [, arthritis, psoriasis, angiogenesis of the eye associated with infection or surgical intervention, macular degeneration, and diabetic retinopathy] comprising N-Ac-Sar-Gly-Val-D-allolle-Ser-Ser-Ile-Arg-ProNHCH₂CH₃, or a pharmaceutically acceptable salt, ester, solvate, or prodrug thereof, and a pharmaceutically acceptable carrier.

Serial No: 09/447,226 6356.US.P3