12:24

TASK 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise.

Date: 01 Dec 2019, 13.00, Piacenza

Relative Humidity: 78%

Temprature: $8^{\circ}C$

Athmosphere Pressure: 1019 hPa = 101.9 kPa (The color chart is appropriate)

Absoloute humidity: 0.005 Wet-bulb temprature: 6°C

Mass of water vapuor:

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g} \longrightarrow P_g = P_{sat} 8 \, ^{\circ}C = 1.061 \, kPa$$

$$\phi = \frac{P_v}{P_g} \rightarrow P_V = \phi \times P_g = 0.78 * 1.061 = 0.82 \text{ kPa}$$

V of Aula A: 30*10*4

V=1200 m³

$$m_{v} = \frac{0.82 * (30 * 10 * 4)}{0.4615 * (273 + 8)}$$

$$m_{v} = 7.58 \text{ kg}$$

TASK 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Height: 2.5 m Floor area: 200 m2 Wall Area: 144 m2

Construction quality: good

One bedroom

Brindisi; two occupants

A- Internal Gains

$$\dot{Q}_{iq_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

B-Infiltration

Good quality
$$> A_{ul} = 1.4 \frac{cm^2}{m^2}$$

Exposed surface = Wall area +roof area

$$A_{es} = 200 + 144 = 344 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \ cm^2$$

Construction	Description	A_{ul} , cm ² /m ²		
Tight	Construction supervised by air-sealing specialist	0.7		
Good	Carefully sealed construction by knowledgeable builder	1.4		
Average	Typical current production housing	2.8		
Leaky	Typical pre-1970 houses	5.6		
Very leaky	Old houses in original condition	10.4		

$$A_L = A_{es} A_{ul}$$

where

 A_{es} = building exposed surface area, m²

 A_{ul} = unit leakage area, cm²/m² (from <u>Table 3</u>)

$$IDF_{heating} = 0.065 \frac{L}{s. cm^2}$$

$$IDF_{cooling} = 0.031 \frac{L}{s. cm^2}$$

$$\frac{\dot{V}_{infiltration_{heating}}}{c} = A_L \times IDF = 481.6 * 0.065 = 31.304 \frac{L}{s}$$

$$\frac{\dot{V}_{infiltration_{cooling}}}{V_{infiltration_{cooling}}} = A_L \times IDF = 481.6 * 0.031 = \frac{L}{S}$$

Н.			ting Do peratu		Cooling Design Temperature, °C						
m	-40	-30	-20	-10	0	10	30	35	40		
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040		
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043		
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049		
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055		
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061		
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068		
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074		

C- Ventilation

$$\begin{split} \dot{V}_{ventilation} &= 0.05\,A_{cf} + 3.5\;(N_{br} + 1) = 0.05*200 + 3.5*\;2 = 17\;\text{ L/S} \\ \dot{V}_{inf-ventilation_{heating}} &= 31.304 + 17 = 48.304\frac{L}{s} \\ \dot{V}_{inf-ventilation_{cooling}} &= 14.98 + 17 = 31.98\frac{L}{s} \end{split}$$
 where

$$\dot{V}_{inf-ventilation_{cooling}} = 14.98 + 17 = 31.98 \frac{L}{s}$$

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m²

$$\dot{V}_{inf-ventilation_{cooling}} = 14.98 + 17 = 31.98 \frac{L}{s}$$

where

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

$$C_{sensible} = 1.23$$
 , $C_{latent} = 3010$

$$\frac{\dot{Q}_{inf-ventilation_{cooling_{sensible}}}}{C_{sensible}} = C_{sensible} \dot{V} \Delta T_{cooling} = 1.23 * 31.98 * 11.1 = 436.62 W$$

$$\frac{\dot{Q}_{inf-ventilation_{cooling_{latent}}}}{2} = C_{latent} \dot{V} \Delta \omega_{cooling} = 3010 * 31.98 * 0.0039 = 375.41 W$$

$$\dot{Q}_{inf-ventilation_{heatingg_{sensible}}} = C_{sensible}\dot{V}\Delta T_{heating} = 1.23 * 48.304 * 15.9 = 944.68 W$$

BRINDISI, Italy WMO#: 163200 Lat: 40.65N Long: 17.95E 101.2 Time Zone: 1.00 (EUW) Period: **86-10** WBAN: 99999 to 99.6% DB MCWS PCWD HR 99% (b) 2.9 (d) -5.1 (e) 2.5 (g) -3.0 (j) 13.4 (f) 7.2 (h) 3.0 (i) 7.4 (k) 10.2 (n) 3.4 250 4.1 12.4 10.6 (1) MCWS/PCWD to 0.4% DB MCWS PCWD Hottest Month OB Range DB MCWB WB WB MCDB WB MCDB (b) **7.1** (c) 32.8 (d) 23.6 (e) 31.1 (f) 24.3 (g) 29.9 (h) 24.3 (i) 27.2 (j) **29.7** (k) 26.3 (1) 29.0 (m) 25.6 (n) 28.3 (p) 180 (2) Hours 8 to 4 & 12.8/20.6 MCDB (j) 86.0 (h) 19.7 26.3 21.8 29.2 28.5 30.1 82.2 1236

	Eve	omo Annual	MIC	Extreme	Extreme Annual DB				n-Year Return Period Values of Extreme DB								
	Extreme Annual WS		Max Mean		ean	Standard deviation		n=5 years		n=10 years		n=20 years		n=50 years			
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(0)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	