學號:B03901149 系級: 電機四 姓名:陳咸嘉

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

模型架構:本次作業使用 Word Embedding 作為主要架構。詳細架構如圖,Embedding Layer 採用 50 維的 word vector,training data 和 testing data 中出現次數小於 50 次的 word 則不被訓練。Padding 的大小為 30,即長度超過或不足 30 者都會補足到 30。 LSTM 為雙向 100 個 units,Dropout 比例為 0.3。LSTM 後接上 DNN 來做訓練, activation function 為 ReLU。Loss 為 binary crossentropy,optimizer 為 adam。

訓練過程:

經過多次實驗發現,超過 30 個 epoch 容易會 overfitting,因此把 epoch 數量設在 30。 訓練過程中採用 semi-supervise 的方法(如第五題)。

準確率: 80.1% (Validation set), 80.3% (Kaggle)。

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 30, 50)	660350
lstm_1 (LSTM)	(None, 30, 100)	60400
lstm_2 (LSTM)	(None, 100)	80400
dense_1 (Dense)	(None, 256)	25856
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 64)	16448
dense_3 (Dense)	(None, 16)	1040
dense_4 (Dense)	(None, 1)	17
Total params: 844,511 Trainable params: 844,511 Non-trainable params: 0		========

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

模型架構:詳細架構如圖,因記憶體大小問題, training data 和 testing data 中出現次數排名前 500 的 word 才會被納入字典。轉換成每筆資料 500 維向量後,接上 DNN 來做訓練,activation function 為 ReLU。Loss 為 binary crossentropy,optimizer 為 adam。

訓練過程:

這種方法更容易 overfitting,所以把 epoch 數量設在 10。訓練過程中採用 semi-supervise 的方法(如第五題)。

準確率: 75.3% (Validation set)。

Layer (type)	Output Shape	Param #
======================================	(None, 256)	128256
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 128)	32896
dropout_2 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 64)	8256
dropout_3 (Dropout)	(None, 64)	0
dense_4 (Dense)	(None, 32)	2080
dense_5 (Dense)	(None, 16)	528
dense_6 (Dense)	(None, 1)	17
Total params: 172,033 Trainable params: 172,03 Non-trainable params: 0	3	

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。 (Collaborators: 無)

答:以下列出兩句話在兩種模型下的機率值

	Bag of word	RNN(Embedding)
good day but hot	0.7990	0.3657
hot but good day	0.7990	0.9510

因為 Bag of word 僅統計每個字的出現次數,所以兩句話轉成的 vector 一樣,預測機率值自然也會相同。RNN 方法,因為考慮前後文不同單字出現的關聯性,所以兩句話預測出來的機率值換成 label 剛好相反。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

(Collaborators: 無)

答:

針對第一題 RNN 模型進行訓練,僅改變有無分析標點符號。

	無分析標點(同第一題)	有分析標點
Validation 平均準確率	80.1%	80.9%
Kaggle 準確率	80.3%	80.7%

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators: 無)

答:

先將有標記 label 的 training data 做 RNN 的訓練之後(第一題的模型),對沒有 label 的 training data 做預測。每筆預測結果都有一個機率值,當此機率值低於 threshold 或高於 (1-threshold)時,會將該筆 data 給定標籤 0 或 1 。如,threshold 為 0.2 時,機率高於 0.8 的標為 1,低於 0.2 的標為 0,並將這些 data 串接到原本有 label 的 data 中。持續進行訓練,直到所有未標明 label 的 data 少於某個特定數量為止。

透過觀察 validation 的準確率,未加上未標明 label 的準確率約為 78~79%,加上約 80 萬筆以後,準確率依然維持在 78~79% 附近,且 epoch 越多也有 overfitting 的情形發生。推測原因為,採用文本內容的字典相近,故準確率沒有太大的變化。