CSE317 DESIGN & ANALYSIS OF ALGORITHMS

First Term Examination – Fall'17

Max Marks: 25 Duration: 3 hours

Answer <u>all</u> questions. Use seperate answer sheet. Be to the point. Show your work.

Please give clear and rigorous answers.

Name:	ERP:
-------	------

(a) [4 marks] Consider the following directed graph pictured below right.

- i. Perform DFS search starting from vertex S. Indicate pre/post number of each vertex and draw non-tree edges as dotted lines.
- ii. Perform BFS search starting from vertex S. Indicate dist value of each vertex and draw non-tree edges as dotted lines.

(b) [2 marks] Modify DFS algorithm to check whether a given graph contains a cycle of odd length or not.

(a) [4 marks] For each pair of expressions T(n) and f(n) below, indicate whether T(n) is O, Ω , or Θ of f(n).

T(n)	f(n)	$T(n) \stackrel{?}{=} O(f(n))$	$T(n) \stackrel{?}{=} \Omega(f(n))$	$T(n) \stackrel{?}{=} \Theta(f(n))$
	$\log 10$			
$n \log n$				
$n2^n$	3^n			
n!	n^n			

- (b) [2 marks] Prove that $n^2 = O(2^n)$.
- (c) [2 marks] Why can we write $O(m \log n)$ instead of $O(m \log m)$, if n and m denotes the number of nodes and edges, respectively, in a graph?

(a) [3 marks]

Find shortest path tree rooted at S in the weighted graph shown on the right using Dijkstra algorithm. Give a table showing the vertex removed in each iteration and dist[] values after the iteration is completed. Also draw the shortest-path tree.

(b) [2 marks] Give an example of weighted graph where Dijkstra algorithm fails, i.e., the resulting dist values are incorrect.

(a) [2 marks]

Find a linear ordering (also called topological sorting) of directed acyclic graph shown on right using the algorithm discussed in class.

- (b) [2 marks] Given a directed acyclic graph G, describe a linear-time algorithm to determine whether there exists a vertex that can be reached by every other vertex.
- (c) [2 marks] True of False? Briefly justify your answer.
 - i. A shortest path in a graph remains shortest after incrementing weight of each edge by 1.
 - ii. Given a connected graph G = (V, E), if a vertex v is visited during level k of a breadth-first search from source vertex s, then every path from s to v has length at most k.