合肥工业大学研究生考试试卷

一、计算题 (每小题 5 分, 满分共 30 分)

订

1. 已知近似值 x^* 的相对误差限是 0.03% , 问 x^* 至少有几位有效数字?

3. 证明: $\sum_{j=0}^n 2x_j^k l_j(x) \equiv 2x^k$, $k=0,1,\cdots,n$, 其中 $l_j(x)$ $(j=0,1,\cdots,n)$ 为 Lagrange 插值基函数。

4. 设 $S(x) = \begin{cases} S_0(x), & -1 \le x < 0; \\ S_1(x), & 0 \le x \le 1 \end{cases}$ 是函数 f(x) 在区间[-1, 1]上满足第一类边界条件的

三次样条,问 S(x) 在结点 x = 0 处的连续性条件是什么? 并求 f'(-1)、 f'(1).

- 5. 设函数 f(1.39) = 5.4706, f(1.40) = 5.7978, f(1.41) = 6.1653, 用三点数值微分公式计算 f'(1.40) 的近似值。 答案: 34.735.
- **6.** 设 $I = \int_0^3 f(x) dx$. 已知 f(1) + f(2) = 4,用 n = 3 (即将积分区间 [0, 3] 分成 3 段)的复化梯形求积公式计算 I 的结果与用 Simpson 求积公式计算 I 的结果相同,求 f(1.5).

二、(本题满分 10 分) 已知线性方程组

$$\begin{cases} -4x_1 + x_2 + 2x_3 = 2, \\ 2x_1 + 5x_2 - x_3 = 0, \\ 3x_1 - 2x_2 + 6x_3 = -1 \end{cases}$$

- (1) 分别写出求解上述方程组的 Jacobi 迭代格式和 Gauss–Seidel 迭代格式的迭代矩阵 $B_{_I}$ 和 $B_{_G}$.
- (2) 计算范数 $\|B_J\|_1$ 和 $\|B_G\|_1$,判断求解上述方程组的 Jacobi 迭代格式和 Gauss—Seidel 迭代格式 是否收敛?

四、(本题满分 10 分) 求拟合下列表中数据的线性最小二乘多项式 $p_{_{1}}(x)$,取权 $\rho_{_{i}}=1$, i=0,1,2,3,4 ,并计算总误差 Q .

i	0	1	2	3	4
X_{i}	1	2	3	4	5
y_i	1.3	2.5	3.9	5.1	6.4

三、(本題満分 10 分) 用下列表中的数据求次数不超过 3 次的插值多项式 $p_3(x)$,使之满足 $p_3(x_i)=f(x_i)$, i=0,1,2 , $p_3'(x_1)=f'(x_1)$. (要求写出差商表)

х.	0	1	2
$f(x_i)$	2	3	7
$f'(x_i)$		2	

五、(本題满分 10 分) 试确定 x_0, x_1, A_0, A_1 ,使数值求积公式

$$\int_0^1 \sqrt{x} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$

为 Gauss 型数值求积公式。

六、(本題满分 10 分) 设 x^* 是方程 f(x) = 0 的单根,由 Newton 迭代公式

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \quad (k = 0, 1, 2, \dots)$$

七、(本题满分 10 分) (1) 写出改进的 Euler 格式。 (2) 证明改进的 Euler 方法是收敛的。

产生的序列
$$\{x_{_k}\}$$
 收敛于 x^* . 证明: $\lim_{k \to \infty} \frac{x_{_k} - x_{_{k-1}}}{\left(x_{_{k-1}} - x_{_{k-2}}\right)^2} = -\frac{f''(x^*)}{2f'(x^*)}$.

八、(本题满分 10 分) 设 $f(x) = p_n(x)$ 是 n 次多项式, $k \le n$, 证明:

$$f[x_0, x_1, ..., x_{k-1}, x] = q_{n-k}(x),$$

其中 $q_{n-k}(x)$ 是n-k次多项式。