Small Language Models

Michael Mollel, PhD **Sartify Company Limited**

Small Language Model (SLM)

SML - Compact, highly efficient versions of massive large language models

Key Characteristics:

- Fewer Parameters: Typically, under 10 billion (vs. Hundreds of billions in LLMs)
- Resource Efficient: Lower computational costs and energy usage
- Task-Focused: Trained on smaller, specialised datasets
- Balanced Performance: Maintains efficiency without sacrificing too much capability

The Problem: LLMs are resourceintensive and inaccessible to many

The Solution: SLMs provide:

Efficiency: Run on limited computational power

Don't need massive computational power

Perfect for smartphones, tablets, IoT devices

The Problem: LLMs are resource-intensive and inaccessible to many

The Solution: SLMs provide:

Q Accessibility: Affordable for smaller budgets

- Suitable for on-premise deployments
- - Enhanced privacy and data security
 - No constant cloud dependency

The Problem: LLMs are resource-intensive and inaccessible to many

The Solution: SLMs provide:

© Customisation: Easy to fine-tune for specific

tasks

Quick adaptation to niche tasks

Problem: LLMs are resourceintensive and inaccessible to many

The Solution: SLMs provide:

Speed: Faster inference and response times

Faster response times

How SLMs Work

- Next Word Prediction Analyse patterns from training text
- Predict the most likely next word in the sequence.
- Example: "The names are as follow Michael ..." → "Juma"

Transformer Architecture

- Self-attention mechanism
- Understands word relationships and context
- meaning Distinguishes based on context

Size-Performance Balance SLM Examples

- Fewer parameters less computational power
- Faster processing for real-time applications
- Specialized performance in focused domains

MODEL	Parameters	Features
Pawa-Min	2B (open)	Swahili, Scalable
Llama 3.1	8B	Balanced power & efficiency
TinyLlama	1.1B	Mobile & edge optimized

Training from Scratch

- Design compact architectures from the ground up
- Focus on efficient operations (depthwise convolutions, attention mechanisms)
- Optimise for target hardware constraints and use cases
- Requires extensive hyperparameter tuning and data preparation

Knowledge Distillation

- Transfer knowledge from a large "teacher" to a small "student" model
- Methods: Response-based, Feature-based, Relation-based
- Retains accuracy while reducing size

% Pruning

- Remove less essential neurons/parameters
- Trim unnecessary components
- Maintain performance while reducing size

🔢 Quantization

- Use fewer bits to store numbers (32-bit → 8-bit)
- Reduce memory usage and increase speed
- Minimal impact on accuracy

Reconstructed Weights (32-bit float)

1.84

1.65

2.12

LLMs vs SLMs - Task Complexity

OUT OF THE PARTY OF THE PARTY

- Complex, sophisticated, general tasks
- Deep understanding and reasoning
- Long content creation
- Better accuracy across diverse tasks
- Long-range context understanding

SLMs Excel At:

- Simpler, focused tasks
- Specialized applications
- Domain-specific expertise
- Quick, efficient responses
- Resource-constrained environments

LLMs vs SLMs - Resource Constraints

LLMs Requirements:

- Significant computational power and memory
- Specialized hardware (GPUs)
- Higher operational costs
- Longer training times

SLMs Advantages:

- Economical resource consumption
- Run on standard hardware
- Can operate on Raspberry Pi or smartphones
- Shorter training times
- Quick deployment capability

LLMs vs SLMs - Deployment Environment

LLMs Best For:

- Cloud environments with abundant resources
- High accuracy requirements
- Complex reasoning tasks
- Continuous internet connectivity

SLMs Best For:

- On-device Al applications
- Edge computing scenarios
- Offline functionality requirements
- Low-latency applications
- Privacy-sensitive environments

Choosing Between LLMs and SLMs

How sophisticated are your requirements? **Complex reasoning** and multistep tasks favour LLMs, while **focused**, **specific tasks** work well with SLMs.

Resource Availability

What's your computational budget? Consider **GPU** memory, processing power, and ongoing operational costs for your deployment scenario.

PDeployment Location

Cloud deployment enables powerful LLMs, while edge and on-device scenarios typically require SLMs for practical performance.

Internet Connectivity

Always online or offline capability needed? **Intermittent connectivity** scenarios favour local SLMs over cloud-dependent LLMs.

Privacy Concerns

Can data leave the device? **Sensitive** data processing often requires local SLMs, while cloud-based LLMs suit less sensitive applications.

LatencyRequirements

How fast do you need responses? Real-time applications often need SLMs, while batch processing can accommodate slower LLMs.

Test SLM Pawa Open Model 2B

Sartify HF:

https://huggingface.co/sartifyllc/pawa-min-alpha

○ Sartify GitHub:

https://github.com/Sartify/IndabaX_SLM

Google Colab:

• Run: <u>SLM Pawa.ipynb</u>

SLM

SLMs Make Al Accessible <a>Perfect for Specific Use

- Lower barriers to entry for AI adoption
- Democratize AI for smaller companies and developers
- Enable innovation without massive infrastructure

The Future is Hybrid

- SLMs and LLMs will coexist
- Different models for different needs
- Specialized vs. general-purpose Al

Cases

- Real-time applications
- Mobile and edge computing
- Privacy-sensitive environments
- Resource-constrained scenarios

Features

Documentation

Demo

Log In

Register

Experience the Power of PAWA, The Swahili Language Al Model

Unlock the potential of Swahili language understanding with our state-of-the-art Al model.

Jinsi ya kuandaa som

CREATE -

Conversational Interface:

Seamless interaction in Swahili.

API Acces

Easy integrations

Get Started

Your voice and action today define tomorrow's opportunities for millions. Join us in making this vision a reality!