A Contact Selectivity Index for Multi-Contact Nerve Cuff Electrodes Guided by Feature Selection Algorithms Michael Balas^{1, 2}, Ryan Koh^{1, 2}, José Zariffa^{1, 2}

¹Institute of Biomaterials and Biomedical Engineering, University of Toronto; ²Toronto Rehabilitation Institute, University Health Network

Introduction

Decoding the bioelectric signals of the peripheral nervous system would enable us to extract motor commands and sensory feedback signals for a variety of neuroprosthetic devices. To achieve highly selective recordings, a Contact Information Metric (CIM) has been developed to quantify the information value of each contact location in a nerve cuff electrode [1]. This metric is unique because it remains unbiased by the number of contacts in multi-contact nerve cuff (MCC) configurations.

Objective: Design an enhanced CIM with greater discriminative ability as well as a validation system to compare between both metrics.

Methods

of Rat Sciatic Nerve

Model, Dataset & Feature Extraction

A Priori Contact Importance: The Enhanced CIM

A Posteriori Contact Importance: Feature Selection

Results

Classifier Performance

As expected, accuracy decreases with increasing noise levels and remains relatively stable with MCCs (excluding the 8-contact system). Accuracy is averaged among the three embedded methods.

Feature Selection Consistency

CIM Assessment

The top 50% of contacts selected by each metric is compared to the ground truth (1 = perfect similarity, 0.5 = rankings produced by chance).

The enhanced CIM demonstrates closer similarity to the ground truth rankings, especially with larger MCC configurations and noise levels.

Discussion

In this study, we define a new CIM that demonstrates improved discrimination in characterizing contact importance by incorporating the overall shape of an AP. We additionally present a novel paradigm of validating metric performance and obtaining true selectivity rankings through a holistic feature selection approach. This work will provide a valuable tool for optimizing our ability to extract information from neural activity and enabling finer control of assistive technologies.

References

1. Koh RG, Zariffa J. Effects of the choice of reference on the selectivity of a multi-contact nerve cuff electrode. In Engineering in Medicine and Biology Society (EMBC), 2016.

Acknowledgments

