

Int. Cl.<sup>7</sup>:

## BUNDESREPUBLIK DEUTSCHLAND



DEUTSCHES
PATENT- UND
MARKENAMT

# ® Offenlegungsschrift

<sub>®</sub> DE 100 59 742 A 1

② Aktenzeichen:

100 59 742.4

22) Anmeldetag:

1. 12. 2000

(3) Offenlegungstag:

13. 6.2002

A 61 B 17/32 H 02 K 7/06 H 02 K 33/00

- (fi) Anmelder: angiolas medical GmbH, 53177 Bonn, DE
- (i) Vertreter:
  BOEHMERT & BOEHMERT, 28209 Bremen
- @ Erfinder: Kagerer, Hermann Joseph, Salzburg, AT
- (56) Entgegenhaltungen:

DE 198 17 979 A1 DE 197 54 779 A1 DE 37 28 260 A1 US 60 22 313 A US 58 93 858 A

### Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (3) System zum Behandeln vaskulärer Verwachsungen
- Ein System zum Behandeln vaskulärer Verwachsungen, insbesondere zum Entfernen von Krampfadern, mit einer an einem Handstück lösbar angebrachten Sonde, an deren distalem Ende ein Behandlungsinstrument vorgesahen ist; einem elektrischen Motor, der das Behandlungsinstrument zumindest in Drehbewegungen um die Längsachse der Sonde versetzt, und einem Steuergerät (Figur 1), mit dem die Gaschwindigkelt, Beschleunigung und die Zeitdeuer der Drehbewegungen einstellbar ist, ist dadurch gekennzeichnet, daß ein elektrischer Antrieb vorgesahen ist, der das Behandlungsinstrument in eine Hinund Herbewegung entlang der Längsachse der Sonde versetzt, wobel der elektrische Antrieb wahlweise zuzuschalten ist und die Amplitude der Hin- und Herbewegung in Stufen oder stufenlos einstellbar ist.



#### Beschreibung

[0001] Die Erfindung betrifft ein System zu Behandeln vaskulärer Verwachsungen, insbesondere zum Entfernen von Krampfadern, mit den Merkmaken des Oberbegriffs von Anspruch 1.

[0002] Aus der DE 197 54 779 ist ein Venenstripper bekannı, der einen Hohlzylinder aufweist, der koaxial zu einem rohr- oder stabförmigen Stiel angeordnet ist, wobei der Stiel aus einem elastischen und formstabilen Material be- 10 steht. Eine Stirnseite des Hohlzylinders ist dabei als Schneidkante ausgebildet und kann gegebenenfalls wellenformig angeschliffen sein. Um eine Vene zu entfernen, wird das freie Ende der zu entfernenden Vene in den Hohlzylinder eingeführt und permanent unter Spannung gehalten. An- 15 schließend werden Drehbewegungen des Hohlzylinders um seine Längsachse durchgeführt und gleichzeitig der Hohlzylinder vorangetrieben. so daß die Vene vom umliegenden Gewebe separion wird. In einem Griff, an dem auch der Stiel angebracht ist, ist ein Motor untergebracht, der den 20 Stiel mit dem Hohlzylinder in Drehbewegung versetzt. Ein Steuergerät vermittelt die gewünschte Drehgeschwindigkeit Drehbeschleunigung und den Drehwinkel

[0003] Nachteilig hierbei ist, daß es eine hohe manuelle Geschicklichkeit erfordert, gleichzeitig mit den Drehbewe- 25 gungen des Hohlzylinders diesen durch einen dosierten Krafteinsatz so voranzutreiben, daß das Separieren der Vene vom Gewebe in gewünschter Weise erfolgt.

[0004] Es ist daher Aufgabe der Erfindung, ein System zum Behandeln vaskulärer Verwachsungen zu schaffen, das 30 insbesondere das Entfernen von Krampfadern erleichtert.

[0005] Die Aufgabe der Erfindung wird durch ein System zum Behandeln vaskulärer Verwachsungen nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

[0006] Ersindungsgemäß ist ein elektrischer Antrieb vorgeschen, der das Behandlungsinstrument in eine Hin- und Herbewegung entlang der Längsachse der Sonde versetzt, wobei der elektrische Antrieb wahlweise zuzuschalten ist und die Amplitude der Hin- und Herbewegung in Stufen 40 oder stufenlos einstellbar ist.

[0007] Bevorzugt besteht die Sonde aus einem elektrisch isolierenden Material oder ist mit einem elektrisch isolierenden Material beschichtet, wobei das Behandlungsinstrument an seiner Außenfläche einen heizbaren Ring aus elektrisch beitfähigem Material aufweist. Dieser Ring wird in der praktischen Ausführungsform mit hochfrequentem Strom beaufschlagt, um beispielsweise Seitenäste einer Vene, welche mittels des Behandlungsinstrumentes abgetrennt worden sind, sofort nach der Abtrennung zu koagulieren, so daß Nachblutungen, welche Hämatome und somit eine lange Abheilphase zur Folge haben, gar nicht erst entstehen kön-

[0008] Nach einer weiter bevorzugten Ausführungsform sind der elektrische Motor und der elektrische Antrieb im St Handstück angeordnet. Der elektrische Motor ist weiter bevorzugt ein Mikromotor. Er kann auch für die Hubbewegung der Sonde sorgen, jedoch ist es bei aufwendigeren Geräten sicherlich zweckmäßig, einen weiteren Mikromotor vorzusehen, damit nicht nur die Amplitude, sondern auch die Frequenz der Hubbewegung einstellbar wird.

[0009] Am Handstück kann eine spezielle Kupplung vorgesehen sein, die die Sonde direkt oder indirekt aufnimmt, und die vom Handstück aus gelöst werden kann.

[0010] Um die Bedingung zu vereinfachen, ist an das 65 Steuergerät ein Fußbedienteil anschließbar, das ein erstes Pedal zum Betätigen des elektrischen Motors aufweisen kann, weiter ein zweites Pedal als Doppelfunktionspedal

zum Binstellen des Drehwinkels der Drehbewegung der Sonde einerseits und zum Koagulieren des Gewebes andererseits, wobei das Steuergerät die Betätigungsdauer des Doppelfunktionspedals erfaßt und den Drehwinkel der Drehbewegung schrittweise erhöht, wenn die Betätigungsdauer einen vorgegebenen ersten Wert überschreitet, wohei ein weiter andauerndes Betätigen des Doppelfunktionspedals ein Zurücksetzen des Drehwinkels auf einen Minimalwert zur Folge hat, und Gewebe, das mit dem Ring in Kontakt steht, koaguliert wird, wenn die Betätigungsdauer einen vorgegebenen, zweiten Wert, der im allgemeinen viel geringer ist als der erste Wert, unterschreitet.

[0011] Weiter vorteilhaft weist das Fußbedienteil ein drittes Pedal zum Einstellen der Drehgeschwindigkeit des Behandlungsinstrumentes auf, wobei das Steuergerät die Betätigungsdauer des dritten Pedals erfaßt und die Drehgeschwindigkeit schrittweise erhöht, wenn die Betätigungsdauer eine vorgegebene Schaltzeit unterschreitet und die Drehgeschwindigkeit kontinuierlich reduziert, wenn die Betätigungsdauer die vorgegebene Schaltzeit überschreitet,

[0012] Es ist weiter vorteilhaft, wenn eine Lichtquelle so nahe wie möglich an die Operationsstelle herangebracht wird und beispielsweise an der Sonde angeordnet wird. Als Lichtquelle kann ein Glasfaserkabel dienen. Es ist auch möglich, an der Sonde eine Mikrokumera anzuordnen, deren Bilder auf einen Monitor übertragen werden.

[0013] Im folgenden wird die Erfindung anhand der beigefügten Zeichnungen erläutert, in denen

[0014] Fig. 1 schematisch in einer Seitenansicht eine Sonde für ein System gemäß der Erfindung zeigt;

[0015] Fig. 2 ein Handstück für eine Sonde zeigt; [0016] Fig. 3 in perspektivischer Darstellung ein Steuergerät zeigt, an das die Sonde angeschlossen wird; und

[0017] Fig. 4 in perspektivischer Darstellung ein Fußteil zeigt, das an das Steuergerät angeschlossen wird.

[0018] Fig. 4 den Griff des erfindungsgemäßen Venenstrippers mit einer Anschlußleitung und eingesetztem Stiel zeigt.

[0019] Fig. 1 zeigt eine Sonde 10, die, um das einfache Sterilisieren zu ermöglichen, lösbar in ein Anschlußstück 12 gesetzt ist. Die Sonde 10 besteht dabei aus einem sterilisierbaren und elektrisch isolierenden Material, Beim vorliegenden Ausführungsbeispiel ist die Sonde 10 als Venenstripper ausgestattet, ex konnen aber auch anders ausgebildete Sonden in das Anschlußstück 12 eingesetzt werden, wonn der Behandlungszweck dieses erfordert. Gemäß Fig. 1 weist die Sonde 10 einen langgestreckten Stiel 14 auf, der mit einem abyewinkelten Bereich 16 an den Außenumfang eines Hohlzylinders 18 mündet. Der Hohlzylinder 18 ist an seinem distalen, vom Anschlußstück 12 wegweisenden Ende in üblicher Weise mit einer Schneidkante verschen und ist koaxial zum langgestreckten Stiel 14 angeordnet. Der Hohlzylinder 18 weist an seiner Außenstäche einen Ring 19 aus elektrisch leitendem Material auf, an den eine durch den Stiel 14 und das Anschlußstück 12 verlaufende elektrische Leitung, in der Zeichnung nicht dargestellt, gelegt ist, die in einer Anschlußbuchse 13, welche das proximale Ende des Anschlußstückes bildet, münder. Mit Hilfe einer an einen Patienten angelegtea Neutralelektrode wird ein Stromkreis gebildet, so daß über den Ring 19 durchtrennte Seitenäste von Venen koaguliert werden können. Um das Lokalisieren beispielsweise von Seitenüsten einer Vene zu erleichtern, ist un der Übergangsstelle vom langgestreckten Stiel 14 zum abgewinkelten Abschnitt 16 eine Lichtquelle 15, beispielsweise eine Glasfaserleitung. angeordnet. Die Versorgung für die Glasfaserleitung ist ebenfalls durch den Stiel 14 und das Anschlußstück 12 zur Anschlußbuchse 13 geführt. Am Anschlußstück 12 ist weiterhin ein Wahlschalter 11 für den Hub der später noch zu erläuternden Hin- und Herbewegung

[0020] Fig. 2 zeigt ein Ausführungsbeispiel eines Handstückes 20, das bei dem System der vorliegenden Erfindung verwendet wird. Im Griff 22 sind ein elektrischer Motor, beispielsweise ein Mikromotor, für die Drehbewegung, der Sonde untergebracht, weiterhin ein elektrischer Antrieb für die Hubbewegung bzw. die Hin- und Herbewegung der Sonde, beide nicht durgestellt, untergebracht. Der elektrische Motor und der weitere elektrische Antrieb können auch 10 kombiniert sein. Die gewünschte Bewegung wird auf ein Kupplungsstück 21 aufgegeben, auf das das Anschlußstück 12 der Sonde 10 (Fig. 1) gesetzt wird. Dabei sind auch passende Gegenstücke für die Anschlußbuchse 13 (Fig. 1) vorgesehen. Die gesamten elektrischen Zuleitungen werden in 15 12 Anschlußstück ciner gemeinsamen Anschlußleitung 23 abgeführt und an das Steuergerät des erfindungsgemäßen Systems ange-

[0021] Fig. 3 zeigt das Steuergerät 30 in schematisierter perspektivischer Ansicht. Das Anschlußkabel 23 des Handstücks 20 (Fig. 2) wird in die Buchse 31 eingesteckt. Eine weitere Buchse 32 ist für ein Anschlußkabel für ein Fußpedal vorgesehen, das später im Zusammenhang mit Fig. 4 beschricben wird. Das Steuergerät wird durch Betätigen eines Ein/Aus-Schalters 34 in Betrieb genommen. Über Bedien- 25 felder 35, 36 und 37 können die Redingungen für die Drehbewegung der Sonde (Fig. 1) eingestellt werden. Im Regelfall werden Standardworte vorgegeben sein, die mit Hilfe von Drucktastern erhöht oder erniedrigt werden. Im vorliegenden Fall wird über das Bedienfeld 35 die Drehgeschwindigkeit erhöht oder erniedrigt, über das Bedienfeld 36 wird die Drehbeschleupigung erhöht oder emiedrigt, während mit dem Bedienfeld 37 eine Bocinflussung des Drehwinkels, also der Schwingweite, möglich ist. Über das Bedienfeld 38 wird der Hochfrequenzmodus eingestellt, d. h. die Stront- 35 40 Fußbedienteil versorgung für den Ring 19 der Sonde 10 (Fig. 1). Als Parameter für das Koagulieren können beispielsweise Stromstärke, Spannung oder Frequenz eingestellt werden. Auf der Rückseite des Steuergerütes befindet sich, durch die Bezugsviffer 39 angedeutet, der Anschluß für die Neutralelektrode, 40 die, wie weiter oben schon ungesprochen ist, für das Koagulicren im Hochfrequenzmodus notwendig ist.

[0022] Fig. 4 zeigt ein Fußbedienteil 40. mit dem die Funktionen der Sonde abgerufen werden können. Ein erstes Pedal 42 dient zum Starten des im Handgriff 20 (Fig. 2) un- 45 tergebrachten Motors, und solange das erste Pedal 42 gedrückt ist, läuft der Motor mit den in das Steuergerät (Fig. 13) eingegebenen Parametern. Ein zweites Pedal 41 besitzt eine Doppelfunktion. Durch relativ langes Drilcken des Pedals 41 über eine Dauer von beispielsweise mehr als 4 Se- 50 kunden wird der Drehwinkel des Gerätes langsum in kleinen Schritten erhöht. Ist der größtmögliche Winkel erreicht, wird auf den kleinstmöglichen Winkel zurückgesetzt, und das Herauffahren beginnt von Neuem. Durch kurzes Antippen des Pedals 41 über eine Zeitdauer von weniger als einer 55 Sekunde wird der Hochfrequenzmodus aktivien hzw. deaktiviert. Ein drittes Pedal 43 in Form eines Drucktasters dient zur Regulierung der Drehgeschwindigkeit, und es wird durch kurzes Antippen die Drehgeschwindigkeit in kleinen Schritten erhöht, ein dauerhaftes Gedrückthalten des Pedals 60 43 wird die Geschwindigkeit in kleinen Schritten reduzie-

[0023] Die Hubbewegung der Sonde ist bei dieser Ausführungsform nicht Bestandteil der elektronischen Steuerung und ist auch nicht über das Fußpedal betätigbar. Viel- 65 mehr wird diese mechanisch über den schon angesprochenen Wahlschalter 11 eingestellt. Bei einer einsachen Ausgestaltung sind beispiclsweise vier verschiedene Einstellungen

für den Hub möglich. Damit wird bei der Operation ein an die Gegebenheiten anpaßbarer Vorschub der Sonde und damit des Behandlungsinstrumentes möglich, so daß der Chirurg von komplizierten Manipulationen befreit ist

[0024] Die in der vorstehenden Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Vorwirklichung der Ersindung wesentlich sein.

#### BEZUGSZEICHENLISTE

10 Sonde

11 Wahlschalter

13 Anschlußbuchse

14 langgestrecktor Stiel

15 Position der Lichtquelle

16 abgowinkelter Ahschnitt

18 Hohlzylinder mit Schneidkante

19 elektrisch leitender Ring

20 Handstlick

21 Kupplung

22 Gri ((

23 Anschlußkabel

30 Steucrgerät

31 Anschlußbuchse für Anschlußkabel 23

32 Anschlußbuchse für Anschlußkabel 44

34 Ein/Aus-Schalter

35 Bedienfeld für die Drehgeschwindigkeit der Sonde

36 Bedienfeld für die Drehbeschleunigung der Sonde

37 Bedienfeld für den Drehwinkel der Sonde

38 Bedienseld filr den Hochfrequenz-Modus

39 Anschlußbuchse für Neutralclektrode

41 erstes Pedal

42 zweites Pedal (Doppelfunktionspedal)

43 drittes Pedal

44 Anschlußkabel

#### Patentansprüche

1. System zum Behandeln vaskulärer Verwachsungen, insbesondere zuπı Entfernen von Krampsadern, mit einer an einem Handstück (20) lösbar angebrachten Sonde (10), an deren distalem Ende ein Behandlungsinstrument (18) vorgeschen ist;

cinem elektrischen Motor, der das Behandlungsinstrument (18) zumindest in Drehbewegungen um die Längsachse der Sonde (10) versetzt, und

einem Steuergerät (Fig. 3), mit dem die Geschwindigkeit, Beschleunigung und die Zeitdauer der Drehbewegungen einstellbar ist,

dadurch gekennzeichnet, daß

cin elektrischer Antrich vorgesehen ist, der das Behandlungsinstrument (18) in eine Hin- und Herbowegung entlang der Längsachse des Sonde (21) versetzt, wobci der elektrische Antrich wahlweise zuzuschalten ist und die Amplitude der Hin- und Herbewegung in Stufen oder stufenlos einstellbar ist.

- 2. System auch Anspruch 1, dadurch gekennzeichnet, deß die Sonde (10) aus einem elektrisch isolierenden Material bestcht oder mit einem elektrisch isolierenden Material beschichtet ist, wobei das Behandlungsinstrument (18) auf seiner Außenfläche einen heizbaren Ring (19) aus clektrisch leitfähigem Material aufweist.
- 3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der elektrische Motor und der elektrische

Antrieb im Handsrück (20) angeordnet sind.

4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine Kupplung (21) zur Aufnahme der Sonde (10) vorgesehen ist, die vom Handstück (20) aus entkoppelbar ist.

5. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß an das Steuergerüt (30) ein Fußbedienteil (40) anschließbar ist, das ein erstes Pedal (41) zum Betätigen des elektrischen Motors aufweist.

6. System nach Anspruch 5, dadurch gekennzeichnet, 10 daß das Fußbedienteil (40) ein zweites Pedal (42) zum Einstellen des Drehwinkels der Drehbewegung und zum Koagulieren von Gewebe aufweist, wobei das Steuergerät (30) die Betätigungsdauer des zweiten Pedals (42)erfaßt und

a) den Drehwinkel der Drehbewegung schrittweise bis zu einem Maximalwert erhöht, wenn die Betätigungsdauer einen vorgegebenen, ersten Wert überschreitet, wobei ein weiter andauemdes Betätigen des zweiten Pedals (42) ein Zurücksetzen des Drehwinkels auf einen Minimalwert zur Folge hat, und

b) Gewebe, das mit dem Ring (19) in Kontakt steht, konguliert wird, wenn die Betätigungsdauer einen vorgegebenen, zweiten Wert, der kleiner ist 25 als der erste Wert, unterschreitet.

7. System nach Anspruch 5 oder 6. dadurch gekennzeichnet, daß das Fußbedienteil (40) ein drittes Pedal (43) zum Einstellen der Drehgeschwindigkeit des Behandlungsinstrumentes (18) aufweist, wobei das Steuergerät (30) die Betätigungsdauer des dritten Pedals (43) erfaßt und

a) die Drehgeschwindigkeit schrittweise erhöht, wenn die Beiäugungsdauer eine vorgegebene Schaltzeit unterschreitet und

b) die Drehgeschwindigkeit kontinuierlich reduziert, wenn die Betätigungsdauer die vorgegebene Schaltzeit überschreitet.

8. System nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß an der Sonde (10) eine Licht- 40 quelle (4) angeordnet ist.

9. System nach Anspruch 8, dadurch gekennzeichnet, daß die Lichtquelle (4) ein Glasfaserkabel ist.

 System nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß an der Sonde (10) eine Kamera 45 angeordnet ist, deren Bilder auf einen Monitor übertragbar sind.

Hierzu 2 Seite(n) Zeichnungen

50

55

60



Fig. 1



Fig. 2

Nummer: Int. Cl.<sup>7</sup>: Offenlegungstag: DE 100 59 742 A1 A 61 B 17/32 13. Juni 2002





#### **→ NON-CERTIFIED, UNFORMATTED TRANSLATION FROM INTERLINGUA**

(19) Federal Republic

(12) Offenlegungsschrift

(51) Int. Cl.<sup>7</sup>:

of Germany

(10) **DE 100 59 742 A1** 

A 61 B 17/32 H 02 K 7/06

H 02 K 7/06 H 02 K 33/00

German Patent

(21) File No.:

100 59 742.4

and Trademark Office (22) Application Date:

12/1/2000

(43) Disclosure Date:

6/13/2002

(71) Applicant:

angiolas medical GmbH, 53177 Bonn, DE

(72) Inventors:

Kagerer, Hermann Joseph, Salzburg AT

(74) Representative:

**BOEHMERT & BOEHMERT, 28209 Bremen** 

(56) Prior Arts: DE

198 17 979 A1

DE

197 54 779 A1 37 28 260 A1

DE US

60 22 313 A

US

58 93 858 A

The following information has been taken from documents filed by the applicant.

Application for examination according to §44 of the Patent Law has been filed.

(54) Title of the Invention:

SYSTEM FOR TREATING VASCULAR ADHESIONS

#### (57) Abstract:

A system for treating vascular adhesions, especially for the removal of varicose veins, with a probe mounted detachably on a handpiece, on the distal end of which probe a treatment instrument is provided; with an electric motor, which at least causes the treatment instrument to rotate around the longitudinal axis of the probe; and with a control unit (Figure 1), by means of which the speed, acceleration, and duration of the rotational movement can be adjusted, is characterized in that an electric drive is provided, which causes the treatment instrument to move back and forth along the longitudinal axis of the probe, where the electric drive can be activated as desired and the amplitude of the reciprocating movement can be adjusted, either in steps or in a continuously variable manner.

#### Specification

[0001] The invention pertains to a system for treating vascular adhesions, especially for the removal of varicose veins, with the features of the introductory clause of Claim 1.

[0002] DE 197-54,779 describes a vein stripper with a hollow cylinder, which is coaxial to a tubular or rod-shaped stem, the stem being made of an elastic and dimensionally stable material. An end surface of the hollow cylinder is designed as a cutting edge and can, if desired, be ground with serrations. To remove a vein, the free end of the vein to be removed is introduced into the hollow cylinder and kept under permanent tension. Then the hollow cylinder is rotated around its longitudinal axis, and the hollow cylinder is simultaneously pushed forward, so that the vein is separated from the surrounding tissue. A motor is housed in a handle, to which the stem is

#### → NON-CERTIFIED. UNFORMATTED TRANSLATION FROM INTERLINGUA

also attached. The motor causes the stem and the hollow cylinder to rotate. A control unit is used to adjust the desired rotational speed, rotational acceleration, and rotational angle.

[0003] The disadvantage is that, to separate the vein from the tissue in the desired manner, a high degree of manual skill is required to push the hollow cylinder forward with a carefully measured amount of force while the cylinder is rotating at the same time.

[0004] Therefore, it is the task of the invention to create a system for treating vascular adhesions, which makes it easier to remove varicose veins in particular.

[0005] The task of the invention is accomplished by a system for the treatment of vascular adhesions according to Claim 1. Advantageous embodiments of the invention are the objects of the sub-claims.

[0006] According to the invention, an electric drive is provided, which causes the treatment instrument to move back and forth along the longitudinal axis of the probe, where the electric drive can be activated whenever desired, and where the amplitude of the reciprocating motion can be adjusted, either in stages or in a continuously variable manner.

[0007] The probe preferably consists of an electrically insulating material, or is coated with an electrically insulating material, whereas the treatment instrument carries a heatable ring of electrically conductive material on its outside surface. In a practical embodiment, this ring is supplied with high-frequency current to coagulate the lateral branches of a vein, for example, as soon as they have been cut by the treatment instrument. This has the effect of preventing any subsequent bleeding, which could lead to hematomas and, thus, to a prolongation of the healing phase.

[0008] According to another preferred embodiment, the electric motor and the electric drive are mounted in the handpiece. The electric motor is also preferably a micromotor. Although it can also be used to produce the reciprocating movement, it is certainly advisable, in the case of more complicated devices, to provide an additional micromotor for this purpose, so that not only the amplitude but also the frequency of the reciprocations can be adjusted.

[0009] The handpiece can also be provided with a special coupling, which holds the probe either directly or indirectly, and which can be detached from the handpiece.

[0010] To simplify the operation of the instrument, a foot controller can be connected to the control unit. This controller can have a first pedal, which actuates the electric motor, and also a second pedal, which serves a double function, namely, to adjust the rotational angle of the rotational movement of the probe, and also to coagulate the tissue. The control unit detects how long the double-function pedal is actuated and increases the rotational angle of the rotational movement in a stepwise manner, when the actuation time exceeds a predetermined first value. A subsequent prolonged actuation of the double-function pedal causes the rotational angle to be set back to a minimum value. The tissue that is in contact with the ring is coagulated, when the actuating time is below a predetermined second value, which is usually much smaller than the first value.

[0011] In addition, it is advantageous for the foot controller to have a third pedal, which can be used to adjust the rotational speed of the treatment instrument. In this case, the control unit detects the actuation time of the third pedal and increases the rotational speed in steps, when the actuation time is below a predetermined switching time, and continuously reduces the rotational speed when the actuating time exceeds the predetermined switching time.

[0012] It is also advantageous to install a light source, as close as possible to the site of the operation; it can be mounted, for example, on the probe. A fiber optic cable can be used as the light source. It is also possible to mount a microcamera on the probe. The images from the camera can be transmitted to a monitor.

- [0013] In the following, the invention is explained on the basis of the attached drawings, in which:
- [0014] Figure 1 shows a schematic side view of a probe for a system according to the invention;
- [0015] Figure 2 shows a handpiece for a probe;
- [0016] Figure 3 shows a perspective view of a control unit, to which the probe is connected;
- [0017] Figure 4 shows a perspective view of a foot part, which is connected to the control unit; and
- [0018] Figure 5 shows the handle of the inventive vein stripper, with a connecting line and an inserted stem.

#### NON-CERTIFIED, UNFORMATTED TRANSLATION FROM INTERLINGUA

[0019] Figure 1 shows a probe 10, which is mounted detachably in a connector piece 12, so that it can be easily sterilized. The probe 10 consists of a material that is sterilizable and electrically insulating. In the case of the present exemplary embodiment, the probe 10 is equipped to serve as a vein stripper, but probes of other designs can also be inserted into the connector piece 12, as appropriate, for the purpose of the particular treatment. According to Figure 1, the probe 10 has an elongated stem 14 with an angled section 16, which leads to the outside circumference of a hollow cylinder 18. The hollow cylinder 18 has, on its outside surface, a ring 19 of electrically conductive material, to which an electric line (not shown), passing through the stem 14 and the connector piece 12, is connected. This line leads to a connecting bush 13, which forms the proximal end of the connector piece. A circuit is formed with the help of a neutral electrode attached to the patient, so that the lateral branches of the veins, which have been cut, can be coagulated by the ring. To facilitate the localization of, for example, the lateral branches of a vein, a light source 15, such as a fiber optic cable, can be provided at the transition between the elongated stem 14 and the angled section 16. The feed for the fiber optic cable is also guided through the stem 14 and the connector piece 12 to the connector bush 13. On the connector piece 12, there is also a selector switch 11 for changing the stroke of the reciprocating movement, as will be explained further below.

[0020] Figure 2 shows an exemplary embodiment of a handpiece 20, which is used in the system of the present invention. An electric motor (not shown), such as a micromotor, for the rotational movement of the probe and an electric drive (not shown either) for the reciprocating movement, i.e., the back-and-forth movement, are housed in the handle 22. The electric motor and the additional electric drive can also be combined into a single unit. The desired movement is transmitted to a coupler piece 21, onto which the connector piece 12 of the probe 10 (Figure 1) is mounted. Suitable matching parts for the connecting bush 13 (Figure 1) are also provided. All of the electrical feed lines are led away through a common connecting cable 23 and connected to the control unit of the inventive system.

[0021] Figure 3 shows the control unit 30 in a schematic, perspective view. The connecting cable 23 coming from the handpiece 20 (Figure 2) is inserted into the socket 31. Another socket 32 is provided for a connecting cable from a foot pedal, which will be described later in conjunction with Figure 4. The control unit is put into operation by actuation of an on/off switch 34. The conditions for the rotational movement of the probe (Figure 1) can be set by the use of control panels 35, 36, and 37. In the normal case, standard values will be pre-entered, and these will then be raised or lowered as desired through the use of pushbuttons. In the present case, the control panel 35 is used to raise or lower the rotational speed; the control panel 36 is used to raise or lower the rotational acceleration; and the control panel 37 is used to adjust the rotational angle, that is, the amplitude. The control panel 38 is used to set the high-frequency mode, that is, the mode of the power supply, to the ring 19 of the probe 10 (Figure 1). Either the amperage, voltage, or frequency can be selected, for example, as the parameter for the coagulation. On the back of the control unit, as indicated by the reference number 39, there is a connection for the neutral electrode, which, as already mentioned above, is necessary for performing the coagulation in high-frequency mode.

[0022] Figure 4 shows a foot controller 40, by means of which the functions of the probe can be called up. A first pedal 42 is used to start the motor housed in the handle 20 (Figure 2) and, as long as the first pedal 42 is being held down, the motor runs with the parameters that have been entered into the control unit (Figure 3). A second pedal 41 has a double function. By pressing the pedal 41 down for a relatively long time, i.e., for a period of more than 4 seconds, the rotational angle of the device is increased slowly in small steps. Once the largest possible angle is reached, the angle is set back to the smallest value, and the process of increasing the angle starts again from the beginning. The high-frequency mode is activated and deactivated by tapping the pedal 41 briefly, for a duration of less than 1 second. A third pedal 43 in the form of a pushbutton is used to regulate the rotational speed. The speed is increased in small steps by tapping on it briefly, whereas holding the pedal 43 down continuously has the effect of reducing the speed in small steps.

[0023] The reciprocating movement of the probe in this embodiment is not a component of the electronic control, nor can it be actuated by way of the foot pedal. Instead, this parameter is adjusted mechanically, by means of the previously mentioned selector switch 11. In a simple embodiment, the stroke can be set to one of four different values, for example. Thus, during the operation, the probe and the treatment instrument attached to it can be advanced in a manner that suits the circumstances, and the surgeon is freed of the burden of performing complicated manipulations.

[0024] The features of the invention disclosed in the preceding description, in the drawing, and in the claims, can be essential, both individually and in any desired combination, to the realization of the invention.

#### NON-CERTIFIED, UNFORMATTED TRANSLATION FROM INTERLINGUA

#### LIST OF REFERENCE NUMBERS

- 10 probe
- 11 selector switch
- 12 connector piece
- 13 connector bush
- 14 elongated stem
- position of the light source
- angled section
- 18 hollow cylinder with cutting edge
- 19 electrically conductive ring
- 20 handpiece
- 21 coupling
- 22 handle
- 23 connecting cable
- 30 control unit
- 31 socket for connecting cable 23
- 32 socket for connecting cable 44
- 34 on/off switch
- 35 control panel for the rotational speed of the probe
- 36 control panel for the rotational acceleration of the probe
- control panel for the rotational angle of the probe
- 38 control field for high-frequency mode
- 39 connection socket for the neutral electrode
- 40 foot controller
- 41 first pedal
- second pedal (double-function pedal)
- 43 third pedal
- 44 connecting cable

#### Claims

- 1. System for treating vascular adhesions, especially for the removal of varicose veins,
  - with a probe (10) mounted detachably on a handpiece (20), on the distal end of which probe a treatment instrument (18) is provided;
  - with an electric motor, which causes the treatment instrument (18) at least to rotate around the longitudinal axis of the probe (10); and
  - with a control unit (Figure 3), by means of which the speed, acceleration, and duration of the rotational movements can be adjusted,

#### characterized in that

an electric drive is provided, which causes the treatment instrument (18) to perform a back-and-forth movement along the longitudinal axis of the probe (21) [Sic  $\rightarrow$  (10) – Translator], where the electric drive can be activated when desired, and where the amplitude of the back-and-forth movement can be adjusted either in stages or in a continuously variable manner.

- 2. System according to Claim 1, characterized in that the probe (10) consists of an electrically insulating material, or is coated with an electrically insulating material, where the treatment instrument (18) has a heatable ring (19) of electrically conductive material.
- 3. System according to Claim 1 or Claim 2, characterized in that the electric motor and electric drive are mounted in the handpiece (20).
- 4. System according to one of Claims 1-3, characterized in that a coupling (21), which can be disconnected from the handpiece (20), is provided to hold the probe (10).
- 5. System according to one of Claims 1-4, characterized in that a foot controller (40), which has a first pedal (41) for actuating the electric motor, can be connected to the control unit (30).

NON-CERTIFIED, UNFORMATTED TRANSLATION FROM INTERLINGUA

- 6. System according to Claim 5, characterized in that the foot controller (40) has a second pedal (42) for adjusting the rotational angle of the rotational movement and for coagulating tissue, where the control unit (30) detects the actuation time of the second pedal (42) and:
  - (a) increases the rotational angle of the rotational movement in steps up to a maximum value when the actuating time exceeds a preset first value, whereas a more prolonged actuation of the second pedal (42) results in a resetting of the rotational angle back to the minimum value; and
  - (b) coagulates the tissue that is in contact with the ring (19) when the actuating time is below a preset second value, which is smaller than the first value.
- 7. System according to Claim 5 or Claim 6, characterized in that the foot controller (40) has a third pedal (43) for adjusting the rotational speed of the treatment instrument (18), where the control unit (30) detects the actuating time of the third pedal (43) and:
  - (a) increases the rotational speed in steps, when the actuating time is below a preset switching time and
  - (b) continuously reduces the rotational speed, when the actuating time exceeds the preset switching time.
- 8. System according to one of Claims 1-7, characterized in that a light source (4) is mounted on the probe (10).
- 9. System according to Claim 8, characterized in that the light source (4) is a fiber optic cable.
- 10. System according to one of Claims 1-9, characterized in that a camera is mounted on the probe(10), and the images from the camera are transmitted to a monitor.

Two pages of drawings attached.