Name: Student University Roll No.:

Printed Pages: 02

School of Engineering

Second Sessional Examination, Odd Semester (AS: 2023-24)

B. Tech: CSE (1A,1B,1C,1D,1E,1F,1G,1H,1I,1J)

[Year: First]

Course Title: Engineering Physics

Course Code: NBS 4102

[Semester: I]

Max Marks: 60

Time: 3hrs

	ructions if any: Read the question Carefully. SECTION 'A'	Course	Mar
O.N	.1. Attempt all parts of the following:	Objective	ks
a)	Two independent sources could not produce interference, why?	CO1	1
b)	Define specific rotation.	CO1	1
c)	What are eigen function and Eigen values?	CO2	1
<u>d</u>)	What are the characteristics of a wave function?	CO2	1
e)	What is equation of continuity?	CO3	1
f)	What is the basic principle of optical fiber?	CO3	1
g)	What do you mean by proper length?	CO4	1
h)	Show that rest mass of photon is zero.	CO4	1
/	SECTION 'B'	Course	Mar
O.N	1.2. Attempt any two parts of the following:	Objective	ks
a)	A thin film of soap solution is illuminated by white light at an angle of incidence, $i = \sin^{-1}(4/5)$. In reflected light, two dark consecutive overlapping fringes are observed corresponding to wavelength 6.1 x 10^{-7} m and 6.0×10^{-7} m. The refractive index for soap solution is $4/3$. Calculate the thickness of the film.	3 CO1	6
b)_	An electron has a speed of 4×10^5 m/s within the accuracy of 0.01%. Calculate the uncertainty in position of electron.	CO2	6
c)	Assuming that all energy radiating from a 1000 Watt lamp is radiating uniformly, calculate the average value of intensities of electric and magnetic field of radiation at a distance of 2 m from the lamp.	CO2	1
	The mass of a moving electron is 11 times its rest	CO3	6

	SECTION (C)		T = -	10
	SECTION 'C'	Course	Mar	(3)
		Objective	ks	
Q.N	3. Attempt any two parts of the following:			
	Describe the formation Newton's ring in reflected	DX:		
a)	monochromatic light. Prove that the diameters of dark	CO1	5	
-	rings are proportional to the square root of natural numbers.			
	Describe the Rayleigh's criterion for resolution.			
b)	Deduce an expression for resolving power of grating.	CO1	5	
c)	Describe construction and working of Nicol prism.	604	_	7
	How will you use it as polarizer and analyzer?	CO1	5	Core
Q.N	N.4. Attempt any two parts of the following:	A		
a)-	Derive time dependent Schrodinger wave equation.	CO2	5	
b)	Describe Bragg's spectrometer and explain how it is	CO2	5	
0)	used to study the structure of a crystal by an example.	CO2		
c)_	What are group velocity and phase velocity? Show	CO2	5	Goggiv
	that $v_p \times v_g = c^2$	602	,	- act
Q.I	N.5. Attempt any two parts of the following:			w031
1	Define the acceptance angle and numerical aperture?	\mathcal{F}		
a)	Derive the expression for them.	CO3	5	
	Prove that the velocity of plane electromagnetic wave			
b)	in vacuum is given by $c = 1/(\mu_0 \epsilon_0)^{1/2}$	CO3	5	
-,	. (2000)	603		
	What is Poynting vector? Derive the Poynting theorem	COA		Act of the second
c)	and explain its significance.	CO3	5	
Q.N	N.6. Attempt any two parts of the following:			
a)-	Establish Einstein's mass energy relation.	CO4	5	
	Derive an expression for time dilation using Lorentz			
b)	transformation equations. Show that time dilation is a	CO4	5	
	real effect.	N.		
c)_	Describe Michelson Morley experiment. Give the	CO4	5	
	significance of negative results.	001		1.

Ta	ble 1: Mapping between COs a	nd questions	
COs	Questions Numbers	Total Marks	1 1
COI	1a,1b, 2a, 3a,3b,3c	23	Kning
CO2	1c,1d,2b,4a,4b,4c	23	
CO3	1e,1f,2c,5a,5b,5c	23	
CO4	1g,1h,2d,6a,6b,6c	23	1.1
CO4		23 Pun P	REA