Nesso tra Topologia di R e Successioni - Sommario

Argomenti che collegano gli argomenti della topologia della retta reale e le successioni.

O. Preambolo

Questo sommario-capitolo è interessante in quanto qui si richiedono la preliminare conoscenza dei seguenti tre macro argomenti:

- Topologia della retta reale Sommario
- Numeri Naturali Sommario, in particolare Successione e Sottosuccessione
- Limiti Sommario, in particolare Limite di Successione

A. Secondo teorema di Bolzano-Weierstraß

Secondo teorema di Bolzano-Weierstraß

Richiami al primo teorema di Bolzano-Weierstraß; interpretazione del medesimo teorema in termini di successioni; enunciato del teorema; dimostrazione del teorema.

O. Richiamo al primo teorema di B.W.

Richiamiamo il *primo teorema di Bolzano-Weierstraß* in Punti di aderenza e di accumulazione.

(#Richiamo)

Richiamo (Primo teorema di BW (richiamo)).

Sia $E\subseteq\mathbb{R},\,E$ un insieme infinito e limitato. (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore, **DEF 1.3.**)

Allora si verifica il seguente:

$$\exists \xi \in \mathbb{R} : \xi \in \mathcal{D}E$$

ovvero che esista un numero ξ che sia punto di accumulazione per E.

1. Enunciato del teorema

Idea. Abbiamo appena letto l'enunciato del *primo* teorema di Bolzano-Weierstraß, che viene anche detta come la "forma insiemistica" di tale teorema: ora la vogliamo interpretare con le nozioni di successione, successione convergente, e di sotto successione. (Successione e Sottosuccessione)

(#Teorema)

Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß).

Sia $(a_n)_n$ una *successione reale* e *limitata* (Successione e Sottosuccessione, **DEF 1.2.**, **DEF 1.3.**)

Allora deve esistere una sotto successione convergente $(a_{n_k})_k$ (Successione e Sottosuccessione, **DEF 2.1.**), ovvero deve esistere

$$\lim_k a_{n_k} = L \in \mathbb{R}$$

2. Dimostrazione

#Dimostrazione

Dimostrazione.@Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß)

Chiamo $E = \{a_n, n \in \mathbb{N}\}$ l'insieme dei *valori di a_n*, ovvero l'insieme immagine della successione $(a_n)_n$.

Ora ci sono due possibilità: che *E* sia o *finito* o *infinito*.

1. E è finito: esempi di questo caso può essere la successione costante $a_n=c,c\in\mathbb{R}$ oppure la successione pari-dispari $a_n=(-1)^n$.

Allora almeno un elemento in E è immagine di *infiniti* indici n; scelgo allora una sotto successione *opportuna* tale da risultare una successione costante, che è ovviamente convergente.

ESEMPIO 2.1. Ad esempio per $a_n=(-1)^n$ basta scegliere $(a_{2n})_n$ o $(a_{2n+1})_n$. L'idea è che abbiamo

$$1, -1, 1, -1, 1, -1, \dots$$

e scegliamo solo i termini pari o dispari: così abbiamo la successione estratta

$$1, 1, 1, \dots, 1 \text{ o } -1, -1, -1, \dots, -1$$

2. E è infinito: ma comunque la successione $(a_n)_n$, per ipotesi, è limitata. Allora E è un insieme limitato e infinito; qui applico il primo teorema di Bolzano-Weierstraß richiamatasi all'inizio. Chiamo dunque il punto di accumulazione (Punti di aderenza e di accumulazione, **DEF 2.1.**) per E : $\xi \in \mathbb{R}$.

Allora per definizione in *ogni intorno* di ξ ci sono *infiniti punti* di E. Ovvero in *ogni intorno di* ξ ci sono *infiniti punti-valori* a_n .

Ora ci chiediamo se è possibile costruire una sottosuccessione tale che

$$\lim_k a_{n_k} = \xi$$

Allora per avere una risposta consideriamo i seguenti:

- 0. Considero l'intorno $]\xi-1,\xi+1[$ e scelgo a_{n_0} in questo intorno.
 - 1. Stesso discorso per l'intorno $]\xi-\frac{1}{2},\xi+\frac{1}{2}[$, con a_{n_1} , ma anche tale che $n_1>n_0$ per conservare l'ordine. Posso farlo in quanto ci sono *infiniti* punti (ovvero valori a_n) attorno ξ .
 - 2. Vado avanti così fino all'infinito; ho allora

$$a_{n_k}\in (\xi-rac{1}{2^k},\xi+rac{1}{2^k})$$

Allora

$$|a_{n_k} - \xi| < rac{1}{2^k} \implies 0 < |a_{n_k} - \xi| < rac{1}{2^k}$$

Considerando che

$$\lim_n 0=0, \lim_n \frac{1}{2^k}=0$$

Allora per il teorema dei due carabinieri (Limite di Successione, OSS 1.1.) ho

$$\lim_k a_{n_k} - \xi = 0 \implies \left[\lim_k a_{n_k} = \xi
ight]$$
 $lacksquare$

Graficamente l'idea della dimostrazione è il seguente.

FIGURA 2.1. (Idea della dimostrazione)

[GRAFICO DA FARE]

B. Insiemi compatti in R

Insiemi compatti in R

Definizione di insiemi compatti in R; R come spazio metrico; teorema di caratterizzazione dei compatti in R; lemma di caratterizzazione della chiusura tramite la successione; dimostrazione del teorema.

O. Preambolo - Spazi metrici e topologici

OSS 0.a. Osserviamo che dal titolo leggiamo che stiamo *in specifica* prendendo l'insieme \mathbb{R} , in quanto questo è un insieme su cui possiamo definire una *distanza* (Intorni, **DEF 1.1.**). Infatti si dice che \mathbb{R} è uno *spazio metrico*, come lo è pure $\mathbb{R}^2, \ldots, \mathbb{R}^n$. Altrimenti un insieme su cui non può essere definita una *distanza* si dice *spazio topologico*.

Per approfondire questo tema rivolgersi alla dispensa di *D.D.S.*, capitolo 10.2, p. 33.

1. Definizione di insieme compatto in R

(#Definizione)

Teorema 1.1. (Insieme compatto in R per successioni).

Sia $E \subseteq \mathbb{R}$. E si dice **compatto per successione** (d'ora in poi diremo compatto e basta) se vale la seguente proprietà: se da ogni successione a valori in E posso estrarre una sottosuccessione convergente ad un punto $x \in E$.

OSS 1.1. Con questa definizione, un insieme compatto sembra un ente di cui è quasi impossibile da verificare: infatti diventa interessante trovare una *caratterizzazione alternativa* con un teorema.

2. Teorema di caratterizzazione dei compatti

(#Teorema)

Teorema 2.1. (Teorema di caratterizzazione dei compatti in R).

Sia $E \subseteq \mathbb{R}$.

Tesi. Allora E è compatto se e solo se E è chiuso e limitato.

Lemma di caratterizzazione della chiusura

Prima di poter procedere alla dimostrazione, ci serve il seguente lemma.

Lemma 2.1. (Caratterizzazione della chiusura tramite le successioni).

Sia $E\subseteq\mathbb{R}$.

Allora E è *chiuso* (Insiemi aperti e chiusi, **DEF 2.1.**) se e solo se vale la seguente proprietà:

(*) Se una successione a valori in E è convergente, allora il limite appartiene all'insieme E.

#Dimostrazione

Dimostrazione.@Lemma 2.1. (Caratterizzazione della chiusura tramite le successioni)

Questo è un teorema del tipo \iff , quindi si procede in due passi distinti.

1. " \Longrightarrow ": Sia E chiuso; ora supponiamo (per assurdo) che sia falsa la proprietà (*). Ovvero supponiamo che esiste una successione a valori in E tale che il suo punto di convergenza \bar{a} appartiene ad un punto fuori da E (ovvero al suo complementare $\mathcal{C}_{\mathbb{R}}E$).

Però E è chiuso, di conseguenza $\mathcal{C}_{\mathbb{R}}E$ è aperto: quindi abbiamo i seguenti.

$$ar{a} \in \mathcal{C}_{\mathbb{R}}E \implies \exists arepsilon > 0, |ar{a} - arepsilon, ar{a} + arepsilon |\subseteq \mathcal{C}_{\mathbb{R}}E$$

Però allo stesso tempo abbiamo, per definizione

$$\lim_n a_n = ar{a} \implies egin{array}{c} orall arepsilon > 0, \exists ar{n} : orall n \in E \ n > ar{n} \implies a_n \in \]ar{a} - arepsilon, ar{a} + arepsilon[\end{array}$$

Tuttavia questo è un *assurdo* in quanto sappiamo che se a_n appartiene a E e invece l'intorno $]\bar{a} - \varepsilon, \bar{a} + \varepsilon[$ contiene *solo* elementi di $\mathcal{C}_{\mathbb{R}}E$, questo è impossibile. Allora la proprietà (*) è vera.

L'idea della contraddizione sarebbe

FIGURA 2.1.a. (La contraddizione)

[DA FARE]

2. " \Leftarrow ": Sia vera la proprietà (*), allora dimostro che $\mathcal{C}_{\mathbb{R}}E$ sia aperto. Per assurdo suppongo che $\mathcal{C}_{\mathbb{R}}E$ non sia aperto: allora facciamo la negazione di

$$egin{aligned} \neg(orall x \in \mathcal{C}_{\mathbb{R}}E, \exists arepsilon > 0: \]x - arepsilon, x + arepsilon[\subseteq \mathcal{C}_{\mathbb{R}}E) \ \exists x \in \mathcal{C}_{\mathbb{R}}E: orall arepsilon > 0, \]x - arepsilon, x + arepsilon[\ \cap E
eq \emptyset \end{aligned}$$

Allora il gioco è fatto; quindi prendo l'intorno $\varepsilon = \frac{1}{n}$ posso individuare

una successione x_n

$$egin{aligned} arepsilon &= rac{1}{n} \implies \exists ar{x} \in \mathcal{C}_{\mathbb{R}}E : orall n, \ ert ar{x} - rac{1}{n}, ar{x} + rac{1}{n} [\ \cap E
eq \emptyset \ &orall n, \exists x_n \in E : |x_n - ar{x}| < rac{1}{n} \implies \lim_n x_n = ar{x} \in \mathcal{C}_{\mathbb{R}}E \end{aligned}$$

Quindi ho trovato una successione $(x_n)_n$ a valori in E che converge ad un punto fuori di E, che è impossibile in quanto violerebbe la l'ipotesi iniziale.

FIGURA 2.1.b. (*La seconda contraddizione*) [DA FARE]

Dimostrazione del teorema

Ora siamo pronti per dimostrare il teorema di caratterizzazione dei compatti.

#Dimostrazione

Dimostrazione.@Teorema 2.1. (Teorema di caratterizzazione dei compatti in R)

Questo è un teorema del tipo *se e solo se*, quindi dimostriamo entrambi i lati delle implicazioni.

1. " \Longrightarrow ": Suppongo che E sia compatto, allora devo dimostrare che E è chiuso è limitato.

Per assurdo suppongo che E non sia limitato: ora se considero una successione a valori in E divergente, allora per ipotesi questa deve avere una sottosuccessione convergente. Per esempio se E è superiormente illimitato (Insiemi limitati, maggioranti, massimo e teorema dell'estremo superiore) ho la seguente implicazione

$$\forall n \in \mathbb{N}, \exists x_n \in E : x_n > n \implies \lim_n x_n = +\infty$$

allora $(x_n)_n$ non avrebbe sottosuccessioni convergenti ad un punto in E.

Per assurdo suppongo che E sia non chiuso; allora non vale la proprietà (*) del Lemma 2.1. (Caratterizzazione della chiusura tramite le successioni) ovvero

$$eg [orall (a_n)_n ext{ è convergente in } E, \lim_n a_n \in E]
onumber \ \exists (a_n)_n ext{ convergente in } E: \lim_n a_n
otin E$$

Perciò tutte le sottosuccessioni di $(a_n)_n$ convergono ad un punto $\bar{a}
otin E$

Però essendo E per ipotesi *compatto*, la successione $(a_n)_n$ dovrebbe

avere almeno una successione che converge ad un punto in E, dandoci un assurdo.

Come si può vedere E deve essere necessariamente sia *limitato* che chiuso.

2. " \Leftarrow ": Sia E chiuso e limitato, proviamo che E è compatto.

Prendo una successione $(a_n)_n$ in E.

Se E è limitato allora per il Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß) deve esistere una sottosuccessione convergente e la indichiamo con

$$(a_{n_k})_k: \lim_k a_{n_k} = ar{a}$$

però E è anche *chiuso*, e per la proprietà (*) del **LEMMA 2.1.** deve valere che il valore per cui converge il limite della sottosuccessione appartiene a E; ovvero

$$(a_{n_k})_k: \lim_k a_{n_k} = ar{a} \in E$$

Pertanto E è compatto in quanto abbiamo individuato una sottosuccessione convergente ad un punto in E.

C. Successioni di Cauchy

Successioni di Cauchy

Definizione di successione di Cauchy; teorema sulla successione di Cauchy; teorema di completezza di R; esiti della dimostrazione del teorema di completezza di R.

1. Definizione di Successione di Cauchy

#Definizione

Definizione 1 (Successione di Cauchy).

Sia $(a_n)_n$ una successione reale (Successione e Sottosuccessione, **DEF** 1.2.), allora definiamo $(a_n)_n$ come successione di Cauchy se vale la seguente:

$$orall arepsilon > 0, \exists ar{n}: n,m > ar{n} \implies |a_n - a_m| < arepsilon$$

OSS 1.1. Osserviamo che questa definizione è ben *diversa* dalla nozione di *convergenza*: con la *convergenza* abbiamo *un punto* che si avvicina ad un certo valore, invece qui abbiamo *due punti* a_n e a_m che si "avvicinano" tra di loro.

Tuttavia in \mathbb{R} è possibile dire che questi sono *equivalenti* in quanto ci troviamo in uno *spazio metrico*. Dimostreremo questa affermazione con due teoremi.

#Teorema

Teorema 2.

Se una successione in $\mathbb R$ è convergente, allora è di Cauchy.

#Dimostrazione

Dimostrazione.@Teorema 2

Sia $(a_n)_n$ convergente, allora

$$\lim_n a_n = ar{a} \in \mathbb{N}$$

Cioè

$$egin{aligned} orall arepsilon > 0, \exists ar{n} : orall n \ n > ar{n} \implies |a_n - ar{n}| < rac{arepsilon}{2} < arepsilon \end{aligned}$$

Allora se $m, n > \bar{n}$ abbiamo i seguenti:

$$egin{aligned} orall arepsilon > 0, \exists ar{n} : orall n, m \ n > ar{n} \implies |a_n - ar{a}| < rac{arepsilon}{2} \ m > ar{n} \implies |a_m - ar{a}| < rac{arepsilon}{2} \end{aligned}$$

Allora sommandoli abbiamo

$$||a_n-a_m|\leq |a_n-ar{a}+a_m-ar{a}|\leq |a_n-ar{a}|+|a_m-ar{a}|<2rac{arepsilon}{2}=arepsilon$$

Dunque abbiamo verificato

$$orall arepsilon > 0, \exists ar{n}: n,m > ar{n} \implies |a_n - a_m| < arepsilon$$

che è la definizione della successione di Cauchy.

Completezza di R

(#Teorema)

Teorema 3 (Completezza di R).

In \mathbb{R} le successioni di Cauchy sono convergenti.

#Dimostrazione

Dimostrazione.@Teorema 3 (Completezza di R)

La dimostrazione si articola in tre parti, ad ognuna con un suo esito.

1. Una successione di Cauchy è limitata. Infatti $(a_n)_n$ di Cauchy significa

$$\forall \varepsilon > 0, \exists \bar{n} : n, m > \bar{n} \implies |a_m - a_n| < \varepsilon$$

Fissando $\varepsilon = 1$ ottengo

$$\exists \bar{n}: n, m > \bar{n} \implies |a_n - a_m| < 1$$

Quindi

$$m>ar{n}\implies |a_{ar{n}+1}-a_m|< 1$$

Analogamente

$$|n>ar{n}\implies |a_n-a_{ar{n}+1}|<1$$

Quindi

$$a_n \in (a_{ar{n}+1}-1, a_{ar{n}+1}+1)$$

Allora $(a_n)_n$:

- 1. Fino a \bar{n} si comporta come vuole;
- 2. Da $\bar{n}+1$ in poi tutti i suoi valori immagine $a_n, n > \bar{n}$ sono *tutti* dentro un intervallo fissato. Ovvero è questa successione è limitata.
- 2. Per il Teorema 1.1. (Secondo teorema di Bolzano-Weierstraß), se $(a_n)_n$ è di *Cauchy* ed è *limitata* allora esiste una successione estratta convergente.
- "Se una successione di Cauchy ha una sottosuccessione convergente, allora la successione originaria è convergente.": infatti teniamo in conto i seguenti:

• (*) $(a_n)_n$ è di Cauchy vuol dire

$$egin{aligned} orall arepsilon > 0, \exists ar{n} : orall n, m \ n, m > ar{n} \implies |a_m - a_n| < rac{arepsilon}{2} \end{aligned}$$

• (**) $(a_{n_k})_k$ è convergente a $ar{a}$ vuol dire

$$\lim_k a_{n_k} = ar{a} \iff egin{aligned} orall arepsilon > 0, \exists ar{k} : orall k \ k > ar{k} \implies |a_{n_k} - ar{a}| < rac{arepsilon}{2} \end{aligned}$$

Ora per far valere $m>\bar{n}\wedge k>m \implies k>\bar{n}$ prendiamo e $k>\max\{\bar{n},\bar{k}\}$. Ora li "combiniamo" e valuto $|a_n-\bar{a}|$. Ora vale $a_{n_k}>a_m$; allora $\forall n>\bar{n},k>\max\{\bar{n},\bar{k}\}$

$$||a_n-ar{a}|\leq |a_n-a_m+a_{n_k}-ar{a}|<|a_n-a_{n_k}|+|a_{n_k}-ar{a}|<2rac{arepsilon}{2}=arepsilon$$

e abbiamo esattamente la definizione di

$$\lim_n a_n = \bar{a} \blacksquare$$