

《概率论与数理统计》

课时一 事件的运算及概率

考点	重要程度	分值	常见题型
1. 事件及运算	必考	6~10	选择、填空
2. 古典概型			
3. 几何概型	***	3 ~ 6	选择、填空

1. 事件及运算

1) 文氏图

包含事件

 $A \subset B$

并(和)事件

 $A \bigcup B = A + B$

差事件

A - B

交(积)事件

 $A \cap B = AB$

互斥(不相容)事件

 $AB = \emptyset$

对立(逆)事件

 $A \bigcup \overline{A} = S \quad A\overline{A} = \emptyset$

独立事件

P(AB) = P(A)P(B)

- (1) A = B 独立,则 $A = \overline{B}$, $\overline{A} = B$ 也相互独立
- (2) 若 A、B、C 相互独立
 - \Rightarrow ①两两独立 ②P(ABC) = P(A)P(B)P(C)
- (3) 两两独立 $\Rightarrow A, B, C$ 相互独立

2) 常用公式

- ① 德摩根律: $\overline{A \cup B} = \overline{A} \cdot \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (长杠变短杠,开口换方向)
- ② 加法公式: $P(A \cup B) = P(A) + P(B) P(AB)$ $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$
- ③ 减法公式: $P(A-B) = P(A\overline{B}) = P(A) P(AB)$
- ④ 对立事件: $P(\overline{A})=1-P(A)$
- 独立事件: $P(AB) = P(A) \cdot P(B)$

题 1. 事件 A、 B、 C 中至少有一个事件发生可以表示为 $A \cup B \cup C$ 。

题 2. 设 P(A) = 0.4, P(B) = 0.3, P(AB) = 0.1, 则 $P(A \cup B) =$ _______.

#: $P(A \cup B) = P(A) + P(B) - P(AB) = 0.4 + 0.3 - 0.1 = 0.6$

题 3. 已知 $P(A) = P(B) = P(C) = \frac{1}{7}$, $P(AB) = P(BC) = \frac{1}{14}$, P(AC) = 0则A、B、C中至少有一

个发生的概率 。

解: $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC)$ $= \frac{1}{7} + \frac{1}{7} + \frac{1}{7} - \frac{1}{14} - \frac{1}{14} - 0 - 0 = \frac{2}{7}$

题 4. 若 P(A) = 0.4, P(B) = 0.5,A、B 互斥,则 $P(\overline{A} \cdot \overline{B}) = \underline{\hspace{1cm}}$ 。

#: $P(\overline{A} \cdot \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB) = 1 - 0.4 - 0.5 + 0 = 0.1$

题 5. $A \setminus B$ 相互独立, P(A) = 0.3, $P(A \cup B) = 0.6$, P(B) =_______。

解: $P(A \cup B) = P(A) + P(B) - P(AB) = P(A) + P(B) - P(A)P(B) = 0.6$ 0.3 + P(B) - 0.3P(B) = 0.6 $\Rightarrow P(B) = \frac{3}{7}$

题 6. 若 P(B) = 0.3, $P(A \cup B) = 0.4$,则 $P(A \cdot \overline{B}) =$ ______。

解: $P(A \cup B) = P(A) + P(B) - P(AB) = 0.3 + P(A) - P(AB) = 0.4$ $P(A \cdot \overline{B}) = P(A) - P(AB) = 0.4 - 0.3 = 0.1$

题 7. 设 P(AB)=0,则()

2

A. A和B互不相容 B. A和B对立

 $C. P(A) = 0 \implies P(B) = 0$ D. P(A-B) = P(A)

解: A 错: 若 A 和 B 互不相容 \Rightarrow P(AB)=0 , 但 P(AB)=0 $\not\Rightarrow$ $AB=\varnothing$

B和 C 错: A、 B 独立, P(AB)=P(A)P(B) 不一定等于 0

D正确: P(A-B) = P(A) - P(AB) = P(A)

2. 古典概型

题 1. 在一箱子中共有7个球, 3个黑球4个白球, 求:

$$n! = n \times (n-1) \times \cdots \times 1$$

(1)从中无放回抽取3个球, 求A= "取得两黑一白"的概率;

$$0! = 1$$

(2)从中有放回抽取3个球、求B="取得两黑一白"的概率。

M:
$$P(A) = \frac{C_3^2 C_4^1}{C_2^3} = \frac{12}{35}$$

$$C_n^m = \frac{n \times (n-1) \times \cdots \times (n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

$$P(B) = C_3^2 \left(\frac{3}{7}\right)^2 \times \frac{4}{7} = 3 \times \left(\frac{3}{7}\right)^2 \times \frac{4}{7} = \frac{108}{343}$$

$$C_n^1 = C_n^{n-1} = n$$

题 2. 一箱产品有 a 个正品, b 个次品,甲先取一个(取后不放回),乙再取一个,问乙取到正 品的概率。

解: 若甲取的为正品,乙取得正品概率: $P_1 = \frac{a}{a+b} \cdot \frac{a-1}{a+b-1}$ 若甲取的为次品, 乙取得正品概率: $P_2 = \frac{b}{a+b} \cdot \frac{a}{a+b-1}$ $\Rightarrow P = P_1 + P_2 = \frac{a}{a+b} \cdot \frac{a-1}{a+b-1} + \frac{b}{a+b} \cdot \frac{a}{a+b-1} = \frac{a}{a+b}$

注:此类问题中,"一次取 出 k 个"和"逐次无放回 取出k个",第i次抽取的 时候和第一个人对应的概 率是一样的, 比如最典型

3. 几何概型

题 1. 设 x 的取值范围为 [1,6], 问 2 < x < 5 的概率为

M:
$$P(2 < x < 5) = \frac{3}{5}$$

题 2. 两个人相约 7 点至 8 点到某地点会面,先到者等另一人 20 分钟,过时就可以离去,试求 两个人能会面的概率。

解:设两人到达的时间分别为x,y,两个人会面的事件为A。

则
$$A = \{|x - y| \le 20\}$$

 $B(A) = 1$ $40 \times 40 = 5$

$$P(A)=1-\frac{40\times40}{60\times60}=\frac{5}{9}$$

3

课时一 练习题

- 1. 设事件 $A \setminus B$ 互不相容,已知 P(A) = 0.4, P(B) = 0.5,则 $P(\bar{A} \cdot \bar{B}) =$ ______ 若 A、 B 独立,则 $P(A \cup B) =$
- 2. 已知 $A \setminus B$ 是两个独立的事件,其中 P(A)=0.7,P(B)=0.3,则 $P(A \cap B)=$ ______
- 3. 已知P(A)=0.5, $P(A \cup B)=0.7$, 若 $A \setminus B$ 独立, 则P(B)=______
- $A \setminus B$ 为随机事件,若 $P(A \cup B) = 0.5$, P(A) = 0.3 ,则 P(B A) =
- 甲袋中有4只红球,有6只白球,乙袋中有6只红球,10只白球,现从两袋中各任取1球, 则2个球颜色相同的概率是()

 - A. $\frac{6}{40}$ B. $\frac{15}{40}$
- $C. \frac{21}{40}$ $D. \frac{19}{40}$
- 甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3和 0.4,则飞机至少被击中一炮的概率为
- 7. 掷2颗均匀的骰子,两个点数之和为7的概率为____
- 设随机变量 $A \ni x \in (-5,7)$ 上的均匀分布,则关于x的方程 $9x^2 + 6Ax + A + 6 = 0$ 有实根的 概率为_____

注: 练习题答案在文档最后

课时二 全概率公式、贝叶斯公式

考点	重要程度	分值	常见题型
1. 条件概率、乘法公式	以土	10 15	大 題
2. 全概率、贝叶斯公式	必 考	10 ~ 15	入風

1. 条件概率、乘法公式

题 1. 投一颗骰子,事件 A 为 "点数大于3",事件 B 为 "点数为5"。则 P(B|A) =_____

M:
$$P(AB) = P(B) = \frac{1}{6}$$
 $P(A) = \frac{1}{2}$

$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

区别: P(B) 样本空间为点数 $\{1,2,3,4,5,6\}$, $P(B)=\frac{1}{6}$

P(B|A) 样本空间为点数 $A = \{4,5,6\}$, $P(B|A) = \frac{1}{3}$

条件概率:

$$P(B|A) = \frac{P(AB)}{P(A)}$$

$$P(A|B) = \frac{P(AB)}{P(B)}$$

乘法公式:

$$P(AB) = P(A) \cdot P(B|A)$$
$$= P(B) \cdot P(A|B)$$

题 2. 已知 P(A) = 0.6, P(B|A) = 0.3,则 P(AB) =______。

#:
$$P(AB) = P(A) \cdot P(B|A) = 0.6 \times 0.3 = 0.18$$

题 3. 已知 $P(A \cup B) = 0.8$, P(B) = 0.4,则 $P(A \mid \overline{B}) =$ ______。

解:
$$P(A|\overline{B}) = \frac{P(A \cdot \overline{B})}{P(\overline{B})} = \frac{P(A) - P(AB)}{P(\overline{B})}$$

$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.4 + P(A) - P(AB) = 0.8$$

得
$$P(A) - P(AB) = 0.4$$

$$P(\overline{B}) = 1 - P(B) = 1 - 0.4 = 0.6$$

故
$$P(A|\bar{B}) = \frac{P(A) - P(AB)}{P(\bar{B})} = \frac{0.4}{0.6} = \frac{2}{3}$$

2. 全概率公式、贝叶斯公式

5

题 1. 甲、乙、丙三车间加工同一产品,加工量分别占总量 25%, 35%, 40%,次品率分别为 0.03, 0.02, 0.01,现从所有产品中抽取一个产品,试求:

(1)该产品是次品的概率?

(2)若检查该产品是次品,求该产品是乙车间生产的概率?

解: ①设事件 A 为该产品是次品

② B_1 为甲厂生产, B_2 为乙厂生产, B_3 为丙厂生产

③
$$P(B_1) = 0.25$$
 $P(B_2) = 0.35$ $P(B_3) = 0.4$ $P(A|B_1) = 0.03$ $P(A|B_2) = 0.02$ $P(A|B_3) = 0.01$

(5)
$$P(B_2|A) = \frac{P(B_2) \cdot P(A|B_2)}{P(A)} = \frac{0.35 \times 0.02}{0.0185} = \frac{14}{37}$$

全概率公式解题:

- ① 设 A 为发生的事件
- ② 找出完备事件组 B_i
- ③ 写出 $P(B_i)$ 及 $P(A|B_i)$
- ④ 代入全概率公式:

$$P(A) = \sum_{i=1}^{n} P(B_i) P(A | B_i)$$

贝叶斯(逆概)公式:

$$(5) \quad P(B_i | A) = \frac{P(B_i)P(A | B_i)}{P(A)}$$

题 2. 设工厂A和工厂B的产品的次品率分别为 1% 和 2%,现从由A和B的产品分别占 60% 和 40% 的产品中,随机抽取一件发现是次品,则该次品属于A厂生产的概率是多少?

解:设事件 A 为"抽取一件为次品"

 B_1 为从A 工厂生产, B_2 为从B 工厂生产

$$P(B_1) = 0.6$$
, $P(B_2) = 0.4$

$$P(A|B_1) = 0.01$$
, $P(A|B_2) = 0.02$

$$\mathbb{M} P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) = 0.6 \times 0.01 + 0.4 \times 0.02 = 0.014$$

$$P(B_1|A) = \frac{P(B_1) \cdot P(A|B_1)}{P(A)} = \frac{0.6 \times 0.01}{0.014} = \frac{3}{7}$$

题 3. 盒中有4个红球,6个黑球,今随机地取出一球,观察颜色后放回,并加上同色球2个,

再从盒中第二次抽取一球,求:

- (1)第二次取出的是黑球的概率:
- (2) 已知第二次取出的是黑球、求第一次取出的也是黑球的概率。

解: (1)设事件 A 为"第二次取出的是黑球"

B, 为第一次取出是红球, B, 为第一次取出是黑球

$$P(B_1) = \frac{4}{10}$$
 $P(B_2) = \frac{6}{10}$ $P(A|B_1) = \frac{6}{12}$ $P(A|B_2) = \frac{8}{12}$

$$P(B_2) = \frac{6}{10}$$

$$P(A|B_1) = \frac{6}{12}$$

$$P(A|B_2) = \frac{8}{12}$$

 $\mathbb{N} P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) = \frac{4}{10} \times \frac{6}{12} + \frac{6}{10} \times \frac{8}{12} = \frac{3}{5}$

(2)
$$P(B_2|A) = \frac{P(B_2) \cdot P(A|B_2)}{P(A)} = \frac{\frac{6}{10} \times \frac{8}{12}}{\frac{3}{5}} = \frac{2}{3}$$

课时二 练习题

- 1. 已知P(A) = 0.8, P(B) = 0.4, 且 $A \supset B$, 则P(B|A) =_____
- 2. 设A、B是两个随机事件,且 $0 < P(A) < 1, P(B) > 0, P(B|A) = P(B|\overline{A})$,则必有()

A.
$$P(A|B) = P(\overline{A}|B)$$
 B. $P(B|A) = P(\overline{A}|B)$

$$B. P(B|A) = P(\overline{A}|B)$$

C.
$$P(AB) = P(A)P(B)$$
 D. $P(AB) \neq P(A)P(B)$

$$D. P(AB) \neq P(A)P(B)$$

- 3. 设A, B满足P(B|A)=1则()

- A. A是必然事件 B. $P(\bar{B}|A)=0$ C. $A\supset B$ D. $P(A)\leq P(B)$
- 4. 仓库中有10箱同种规格的产品,其中2箱、3箱、5箱分别由甲、乙、丙三个厂生产,三 个厂的正品率分别为0.7,0.8,0.9, 现在从这10箱产品中任取一箱, 再从中任取一件
 - (1) 求取出的产品为正品的概率
 - (2) 如果取出的是正品, 求此件产品由乙厂生产的概率
- 5. 某保险公司把被保险人分为3类:"谨慎的"、"一般的"、"冒失的",统计资料表明,这3 种人在一年内发生事故的概率依次为0.05,0.15,0.30;如果"谨慎的"被保险人占20%, "一般的占50%,"冒失的"占30%,问:
 - (1)一个被保险人在一年内出事故的概率是多大?
 - (2) 若已知某被保险人出了事故,求他是"谨慎的"类型的概率。

课时三 一维随机变量

	考点	重要程度	分值	常见题型
离散型随机变量	1. 分布律、分布函数	***	3 ~ 6	选择、填空
芮耿空随700文里	2. 函数的分布	***	3~0	处件、模工
连续型随机变量	3. 概率密度、分布函数	必考	6~10	大 題
达沃空随机文里	4. 函数的分布	***	0~10	八咫

1. 离散型随机变量分布律、分布函数

题 1. 盒中有6个球, 其中4个白球, 2个黑球, 从中任取2个球, 求:

- (1) 抽到白球数 X 的分布律;(2) 随机变量 X 的分布函数

解: (1) X 可取 0 , 1 , 2

$$P\{X=0\} = \frac{C_4^0 \cdot C_2^2}{C_6^2} = \frac{1}{15} \qquad P\{X=1\} = \frac{C_4^1 \cdot C_2^1}{C_6^2} = \frac{8}{15} \qquad P\{X=2\} = \frac{C_4^2 \cdot C_2^0}{C_6^2} = \frac{6}{15}$$

$$P\{X=1\} = \frac{C_4^1 \cdot C_2^1}{C_6^2} = \frac{8}{15}$$

$$P\{X=2\} = \frac{C_4^2 \cdot C_2^0}{C_6^2} = \frac{6}{15}$$

X	0	1	2
P	1/15	8/ ₁₅	6/ /15

$$2 \le x$$
 时, $F(x) = 1$

分布函数:

$$F(x) = P\{X \le x\}$$

$$\bigcirc 0 \le F(x) \le 1$$

②
$$F(-\infty) = 0$$
, $F(+\infty) = 1$

④右连续
$$\lim_{x \to x_0^+} F(x) = F(x_0)$$

题 2. 设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0 & x < -1 \\ 0.4 & -1 \le x < 1 \\ 0.8 & 1 \le x < 3 \\ 1 & 3 \le x \end{cases}$, 求 X 的分布律和 $P\{-1 < X \le 3\}$

解:

8

X	-1	1	3
P	0.4	0.4	0.2

分布函数求分布律:

①先写分断点

②分段点处概率减去上一个概率

$$P\{-1 < X \le 3\} = P\{X = 1\} + P\{X = 3\} = 0.4 + 0.2 = 0.6$$

2. 离散型随机变量函数的分布

题 1. 设随机变量 X 的分布律如下:

X	-1	0	1	2
P	0.4	0.3	0.2	0.1

求: (1)U = X - 1的分布律。

 $(2)W = X^2$ 的分布律。

	/ \		
g = g	(X)	的分	·布律

①计算g(X)

②合并相同项

解:

P	0.4	0.3	0.2	0.1
X	-1	0	1	2
U = X - 1	-2	-1	0	1
$W = X^2$	1	0	1	4

(1)U = X - 1的分布律

U	-2	-1	0	1
P	0.4	0.3	0.2	0.1

(2) $W = X^2$ 的分布律

W	0	1	4
P	0.3	0.6	0.1

3. 连续型随机变量的概率密度、分布函数

概率密度 f(x) 的性质

$$(1) \int_{-\infty}^{+\infty} f(x) dx = 1$$

(2)
$$P\{a \le X \le b\} = F(b) - F(a) = \int_a^b f(x) dx$$

(3)
$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(x) dx$$

题 1. 设连续型随机变量 X 的概率密度函数 $\beta f(x) = \begin{cases} a + x^2, & 0 \le x \le 1 \\ 0, & \text{其他} \end{cases}$, 求:

求: (1)常数 a

(2)
$$P\{X \ge 0.5\}$$

$$(3)$$
分布函数 $F(x)$

解:
$$(1)\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{+\infty} f(x)dx$$

$$= \int_{-\infty}^{0} 0dx + \int_{0}^{1} (a+x^{2})dx + \int_{1}^{+\infty} 0dx$$

$$= \int_{0}^{1} (a+x^{2})dx = \left(ax + \frac{1}{3}x^{3}\right)\Big|_{0}^{1} = a + \frac{1}{3} = 1 \qquad \Rightarrow a = \frac{2}{3}$$

(2)
$$P\{X \ge 0.5\} = \int_{0.5}^{+\infty} f(x) dx = \int_{0.5}^{1} \left(\frac{2}{3} + x^2\right) dx + \int_{1}^{+\infty} 0 dx$$

$$= \int_{0.5}^{1} \left(\frac{2}{3} + x^2\right) dx = \left(\frac{2}{3}x + \frac{1}{3}x^3\right)\Big|_{0.5}^{1} = \frac{5}{8}$$

(3)
$$x < 0$$
 时, $F(x) = \int_{-\infty}^{x} 0 dx = 0$

$$0 \le x < 1$$
 H, $F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \left(\frac{2}{3} + x^{2}\right) dx = \frac{2}{3}x + \frac{1}{3}x^{3}$

$$1 \le x \text{ Hz}, \quad F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{1} \left(\frac{2}{3} + x^{2}\right) dx + \int_{1}^{x} 0 dx = \left(\frac{2}{3}x + \frac{1}{3}x^{3}\right)\Big|_{0}^{1} = 1$$

综上所述:

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{2}{3}x + \frac{1}{3}x^3 & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

题 2. 连续型随机变量 X 的分布函数 $F(x) = A + B \arctan x$, $-\infty < x < +\infty$, 求:

求: (1)系数A,B;

(2)
$$P\{-1 < X < 1\}$$
;

(3) X 的概率密度 f(x) 。

$$\mathbf{\mathscr{H}:} \quad \text{(1)} \begin{cases} F(-\infty) = A + B \arctan\left(-\infty\right) = A - \frac{\pi}{2}B = 0 \\ F(+\infty) = A + B \arctan\left(+\infty\right) = A + \frac{\pi}{2}B = 1 \end{cases} \Rightarrow \begin{cases} A = \frac{1}{2} \\ B = \frac{1}{\pi} \end{cases}$$

(2) $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$

$$P\{-1 < X < 1\} = F(1) - F(-1)$$

$$= \left(\frac{1}{2} + \frac{1}{\pi}\arctan 1\right) - \left(\frac{1}{2} + \frac{1}{\pi}\arctan \left(-1\right)\right)$$

$$=\frac{1}{2} + \frac{1}{\pi} \times \frac{\pi}{4} - \frac{1}{2} - \frac{1}{\pi} \times \left(-\frac{\pi}{4}\right) = \frac{1}{2}$$

(3)
$$f(x) = F'(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2} = \frac{1}{\pi(1+x^2)}$$
 $x \in (-\infty, +\infty)$

分布函数:

$$F(x) = P\{X \le x\}$$

$$\textcircled{1} \ 0 \le F(x) \le 1$$

$$② F'(x) = f(x)$$

$$\Im F(-\infty) = 0$$
, $F(+\infty) = 1$

④ F(x) 单调不减函数

⑤右连续: $\lim_{x \to x_0^+} F(x) = F(x_0)$

4. 连续型随机变量函数的分布

题 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{8}, & x \in (0,4), \\ 0, & x \leq 1 \end{cases}$,求 Y = 2X + 8 的概率密度。

M: ① $x \in (0,4)$, $y = 2x + 8 \in (8,16)$

②
$$x = \frac{y-8}{2}$$
, $x' = \frac{1}{2}$

$$(3) f_Y(y) = f_X\left(\frac{y-8}{2}\right) \cdot |x'| = \frac{1}{8} \left(\frac{y-8}{2}\right) \cdot \frac{1}{2} = \frac{y-8}{32}$$

$$f_{Y}(y) = \begin{cases} \frac{1}{32}(y-8) & y \in (8,16) \\ 0 & 其他 \end{cases}$$

$$g = g(X)$$
单调可导

①求出 g(X) 值域

②
$$x = h(y)$$
, $x' = h'(y)$

题 2. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \text{其他} \end{cases}$,求 $Y = X^2$ 的概率密度。

M: ① $x > 0 \Rightarrow y = x^2 > 0$

$$(3) f_Y(y) = F_Y'(y) = \left[F_X(\sqrt{y}) - F_X(0) \right]' = \left[F_X(\sqrt{y}) \right]'$$

$$= f_X(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}} e^{-\sqrt{y}}$$

综上:
$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} e^{-\sqrt{y}} & y > 0\\ 0 & 其他 \end{cases}$$

$$g = g(X)$$
 非单调可导

①求出 g(x) 的值域

课时三 练习题

1. 设随机变量 X 的分布律如下: 求: (1) X 的分布函数; (2) $P\{1 \le X < 3\}$

X	-1	1	2	3
P	0.2	0.3	0.1	0.4

- 2. 离散型随机变量 X 的分布函数 $F(x) = \begin{cases} 0, & x < -2 \\ 0.35, & -2 \le x < 0 \\ 0.6, & 0 \le x < 1 \end{cases}$, Y = |X + 1|, 求 Y 的分布律。
- 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2-x, & 1 \le x < 2 \\ 0, & 其他 \end{cases}$

求: (1) X 的分布函数 F(x) (2) 求 $P\left\{1 < X < \frac{3}{2}\right\}$

- 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < A \\ 0, & \text{其他} \end{cases}$

- 求: (1) 常数 A; (2) 分布函数 F(x); (3) $P\left\{-1 < X < \frac{1}{2}\right\}$
- 5. 设随机变量 X 的概率密度为 $f_x(x) = \begin{cases} 2e^{-2x}, & x > 0 \\ 0, & \pm t, \end{cases}$ 其他,若 $Y = 1 e^{-2X}$,求 Y 的概率密度 $f_Y(y)$ 。

课时四 五种重要分布

	考点	重要程度	分值	常见题型
离散型	1. 二项分布	***	3~6 基础知识	
芮耿空	2. 泊松分布			
	3. 均匀分布		3~6	一般不单独考
连续型	4. 指数分布		3~0	
	5. 正态分布	必 考	6~12	大题必考

1. 离散型—二项分布【记作: $X \sim b(n,p)$ 分布律: $P\{X = k\} = C_n^k p^k (1-p)^{n-k}$ 】

题 1. 一大楼有5台供水设备,设每台设备是否被使用相互独立,同一时刻每台被使用的概率

为0.1,问在某一时刻:

有时候也写成:

$$X \sim B(n,p)$$

- (1)恰有两台设备被使用的概率;
- (2)至少有两台设备被使用的概率。

解:
$$X \sim b(5,0.1)$$
 分布律 $P\{X=k\} = C_5^k (0.1)^k \cdot (0.9)^{5-k}$

(1)
$$P{X = 2} = C_5^2 (0.1)^2 \cdot (0.9)^3 = 0.0729$$

(2)
$$P\{X \ge 2\} = 1 - P\{X < 2\} = 1 - P\{X = 0\} - P\{X = 1\}$$

= $1 - C_5^0 (0.1)^0 \cdot (0.9)^5 - C_5^1 \cdot 0.1 \cdot (0.9)^4 = 1 - 0.91854 = 0.08146$

题 2. 设 $X \sim B(2, p)$, $Y \sim B(3, p)$, 若 $P\{X \ge 1\} = \frac{5}{9}$, 则 $P\{Y \ge 1\} = \underline{\hspace{1cm}}$ 。

$$M: X \sim B(2,p) \quad P\{X=k\} = C_2^k p^k (1-p)^{2-k}$$

$$P\{X \ge 1\} = 1 - P\{X < 1\} = 1 - P\{X = 0\} = 1 - C_2^0 p^0 (1 - p)^2$$
$$= 1 - (1 - p)^2 = \frac{5}{9} \implies p = \frac{1}{3}$$

$$Y \sim B\left(3, \frac{1}{3}\right) \quad P\{Y = k\} = C_3^k \left(\frac{1}{3}\right)^k \cdot \left(\frac{2}{3}\right)^{3-k}$$

$$P\{Y \ge 1\} = 1 - P\{Y < 1\} = 1 - P\{Y = 0\} = 1 - C_3^0 \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^3 = \frac{19}{27}$$

2. 离散型—泊松分布【记作: $X \sim \pi(\lambda)$ 分布律 $P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} (k = 0, 1, 2 \cdots)$ 】

题 1. 假设某地区年地震发生次数服从参数为λ=2的泊松分布,则未来一年,该地区至少发

生一次地震的概率

M:
$$\lambda = 2$$
 $P\{X = k\} = \frac{2^k}{k!}e^{-2}$

$$P\{X \ge 1\} = 1 - P\{X < 1\} = 1 - P\{X = 0\} = 1 - \frac{2^{0}}{0!} \cdot e^{-2} = 1 - e^{-2}$$

有时候也写成:

$$X \sim P(\lambda)$$

$$0! = 1$$

题 2. 设 X、 Y 相互独立,且 $X \sim \pi(\lambda_1)$, $Y \sim \pi(\lambda_2)$ 则 X + Y 服从 $\pi(\lambda_1 + \lambda_2)$ 。

3. 连续型—均匀分布【记作 $X \sim U(a,b)$, 密度函数 $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{其他} \end{cases}$

题 1. 随机变量 X 在区间 (0,1) 服从均匀分布,求 $Y = -3 \ln X$ 的概率密度。

解:
$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 其他 \end{cases}$$

$$x \in (0,1)$$
 $y = -3\ln x \in (0,+\infty)$ $x = e^{-\frac{1}{3}y}$ $|x'| = \left| -\frac{1}{3}e^{-\frac{1}{3}y} \right| = \frac{1}{3}e^{-\frac{1}{3}y}$

$$f_{Y}(y) = f_{X}\left(e^{-\frac{1}{3}y}\right) \cdot |x'| = 1 \cdot \left(\frac{1}{3}e^{-\frac{1}{3}y}\right) = \frac{1}{3}e^{-\frac{1}{3}y} \implies f_{Y}(y) = \begin{cases} \frac{1}{3}e^{-\frac{1}{3}y} & y > 0\\ 0 & \text{ #$d} \end{cases}$$

4. 连续型—指数分布【记作 $X \sim E(\lambda)$ 密度函数 $f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{其他} \end{cases}$ 】

题 1. 若 X 服从 $E(\lambda)$,且 $P\{X>3\}=e^{-6}$,则 $\lambda=$ _______; $P\{X>9\,|\,X>4\}=$ ______

解:
$$X \sim E(\lambda)$$
 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & 其他 \end{cases}$

指数函数的无记忆性
$$P\{X>s+t \mid X>s\} = P\{X>t\}$$

$$P\{X > 3\} = \int_{3}^{+\infty} f(x) dx = \int_{3}^{+\infty} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{3}^{+\infty} = -e^{-\infty} + e^{-3\lambda} = e^{-3\lambda} = e^{-6} \Rightarrow \lambda = 2$$

$$P\{X > 9 \mid X > 4\} = P\{X > 5\} = \int_{5}^{+\infty} f(x) dx = \int_{5}^{+\infty} 2e^{-2x} dx = -e^{-2x} \Big|_{5}^{+\infty} = e^{-10}$$

15

5. 连续型—正态分布【记作 $X \sim N(\mu, \sigma^2)$ 概率密度 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}$ 】

- (1) 图像关于μ对称
- (2) σ 越小,图像越陡

题 1. 设 $X \sim N(2,4)$, $P\{X < a\} = P\{X \ge a\}$, 则 $a = \underline{2}$.

 \mathbf{M} : u = 2

题 2. 设 $X \sim N(2, \sigma^2)$,已知 $P\{X \ge 2.5\} = a$,则 $P\{X < 1.5\} = _a_$ 。

解:

题 3. 设 $X \sim N(2, \sigma_1^2)$, $Y \sim N(-1, \sigma_2^2)$, 若 $P\{1 < X < 3\} > P\{-2 < Y < 0\}$, 则 $\sigma_1 \leq \sigma_2 > 0$

16

标准正态分布:

$$X \sim N(0,1)$$
, 概率密度 $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Phi(x) = P\{X \le x\} = \int_{-\infty}^{x} f(x) dx$

(1)
$$\mu = 0$$
, $\Phi(0) = \frac{1}{2}$

(2)
$$\Phi(-x) = 1 - \Phi(x)$$

(3) 若
$$X \sim N(\mu, \sigma^2)$$

$$P\{X < a\} = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

题 4. 设 $X \sim N(1.5,4)$,且Φ(1.25)= 0.89,Φ(1.75)= 0.96,则 $P\{-2 < X < 4\}$ =_____。

M:
$$P\{-2 < X < 4\} = \Phi\left(\frac{4-1.5}{2}\right) - \Phi\left(\frac{-2-1.5}{2}\right)$$

$$=\Phi(1.25)-\Phi(-1.75)$$

17

$$= \Phi(1.25) - \left[1 - \Phi(1.75)\right] = \Phi(1.25) + \Phi(1.75) - 1 = 0.96 + 0.89 - 1 = 0.85$$

题 5. 若 $X \sim N(2,4)$,则服从 N(0,1) 的随机变量是()。

$$A \cdot \frac{X}{4} B \cdot \frac{X}{2} C \cdot \frac{X-2}{4} D \cdot \frac{X-2}{2}$$

题 6. 若 $X \sim N(10,4)$,求 $P\{|X-10|<2\}=$ ____。 $\Phi(1.5)=0.9332$, $\Phi(1)=0.8413$ 。

解:
$$P\{|X-10|<2\} = P\{-2 < X-10 < 2\} = P\{8 < X < 12\} = \Phi\left(\frac{12-10}{2}\right) - \Phi\left(\frac{8-10}{2}\right)$$

$$= \Phi(1) - \Phi(-1) = \Phi(1) - \left\lceil 1 - \Phi(1) \right\rceil = 2\Phi(1) - 1 = 2 \times 0.8413 - 1 = 0.6826$$

课时四 练习题

- 1. 设随机变量 $X \sim b(3,0.1)$, 则 P(X > 2) = _______.
- 2. 设随机变量 X 服从 $N(27,0.2^2)$ 分布,则其渐近线在()处

$$A \cdot x = 27 B \cdot y = 27 C \cdot y = 0 D \cdot x = 0$$

3. 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上的均匀分布的概率密度, 若

$$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases} (a > 0, b > 0)$$
 为随机变量的概率密度,则 a, b 应满足()

$$A \cdot 2a + 3b = 4 B \cdot 3a + 2b = 4 C \cdot a + b = 1 D \cdot a + b = 2$$

- 4. 若 $X \sim U(0,a)$,则概率密度 $f(x) = \begin{cases} \frac{1}{a} & 0 < x < a \\ 0 & 其他 \end{cases}$,分布函数值 $F(a) = \underline{\qquad}$ 。
- 5. 设随机变量 X 服从 N(4,4) 分布,满足 $P\{X < a\} = P\{X \ge a\}$,则 a = () A. 0 B. 2 C. 4 D. 5
- 6. 设 $X \sim N(1,1)$, 且 $\Phi(1) = 0.8413$, 则 $P\{0 < X < 2\} =$ ______。
- 7. X = Y相互独立且都服从泊松分布 $\pi(\lambda)$,则X + Y服从的泊松分布为_____。

课时五 离散型二维随机变量

夫	京点		重要程度	分值	常见题型
	1.	分布律	基础知识		
放 #4 M	2.	边缘分布律	****		选择
离散性	3.	独立性	****	6~12	填空
二维随机变量 	4.	函数的分布	***		大题
	5.	条件分布	***		

题 1. 已知二维离散型随机变量(X,Y)的联合分布律如下

- (1) $P\{X = -1, Y = 2\} \neq P\{X \le Y\}$
- (2) X和Y的边缘分布律
- (3) X和Y是否独立
- (4) Z = X + Y, $W = \max\{X, Y\}$ 的分布律

X	-1	1	2
-1	0.1	0.2	0.3
2	0.2	0.1	0.1

(5) $P\{X=-1|Y=1\}$

$$\mathbf{M}$$
: (1) $P\{X = -1, Y = 2\} = 0.3$

$$P\{X \le Y\} = P\{X = -1, Y = -1\} + P\{X = -1, Y = 1\} + P\{X = -1, Y = 2\} + P\{X = 2, Y = 2\}$$
$$= 0.1 + 0.2 + 0.3 + 0.1 = 0.7$$

(2) X 的边缘分布律

$$P\{X = -1\} = P\{X = -1, Y = -1\} + P\{X = -1, Y = 1\} + P\{X = -1, Y = 2\} = 0.1 + 0.2 + 0.3 = 0.6$$

$$P\{X=2\} = P\{X=2, Y=-1\} + P\{X=2, Y=1\} + P\{X=2, Y=2\} = 0.2 + 0.1 + 0.1 = 0.4$$

X	-1	2
P	0.6	0.4

Y	-1	1	2
P	0.3	0.3	0.4

Y的边缘分布律

$$P{Y = -1} = 0.1 + 0.2 = 0.3$$

$$P{Y = 1} = 0.2 + 0.1 = 0.3$$

$$P{Y = 2} = 0.3 + 0.1 = 0.4$$

Y X	-1	1	2	$p\left\{X=x_i\right\}$
-1	0.1	0.2	0.3	0.6
2	0.2	0.1	0.1	0.4
$P\{Y=y_i\}$	0.3	0.3	0.4	1

(3) X和Y是否独立

$$P\{X=-1,Y=-1\}=0.1$$

$$P{X = -1} \cdot {Y = -1} = 0.6 \times 0.3 = 0.18$$

$$P\{X=-1,Y=-1\} \neq P\{X=-1\} \cdot \{Y=-1\}$$
 故 X 和 Y 不相互独立。

独立条件:

$$P\{X = x_i, Y = y_i\} = P\{X = x_i\} \cdot P\{Y = y_i\}$$

(4) Z = X + Y, $W = \max\{X,Y\}$ 的分布律

P_{ij}	0.1	0.2	0.3	0.2	0.1	0.1
(X,Y)	(-1,-1)	(-1,1)	(-1,2)	(2,-1)	(2,1)	(2,2)
Z = X + Y	-2	0	1	1	3	4
$W = \max\left\{X, Y\right\}$	-1	1	2	2	2	2

$$Z = X + Y$$
的分布律

\overline{Z}	-2	0	1	3	4
P	0.1	0.2	0.5	0.1	0.1

 $W = \max\{X,Y\}$ 的分布律

\overline{W}	-1	1	2
P	0.1	0.2	0.7

(5)
$$P\{X = -1|Y = 1\} = \frac{P\{X = -1, Y = 1\}}{P\{Y = 1\}} = \frac{0.2}{0.3} = \frac{2}{3}$$

题 2 设 X 和 Y 相互独立,下表是 X 与 Y 的联合分布律,试求出 a,b,c,d,e,f,g,h 填入表中

X Y	y_1	y_2	<i>y</i> ₃	$P\{X=x_i\}$
x_1	а	1/8	b	c
x_2	1/8	d	e	f
$P\{Y=y_i\}$	1/6	g	h	1

M:
$$a + \frac{1}{8} = \frac{1}{6} \Rightarrow a = \frac{1}{24}$$

解:
$$a + \frac{1}{8} = \frac{1}{6} \Rightarrow a = \frac{1}{24}$$
 X 和 Y 相 互 独 立 $a = \frac{1}{6} \times c \Rightarrow c = \frac{1}{4}$ $\frac{1}{8} = c \cdot g \Rightarrow g = \frac{1}{2}$

$$\frac{1}{8} = c \cdot g \Rightarrow g = \frac{1}{2}$$

$$c+f=1 \Rightarrow f=\frac{3}{4}$$

$$c + f = 1 \Rightarrow f = \frac{3}{4}$$
 $\frac{1}{6} + g + h = \frac{1}{6} + \frac{1}{2} + h = 1 \Rightarrow h = \frac{1}{3}$

$$b = c \cdot h = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$

$$b = c \cdot h = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$
 $d = g \cdot f = \frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$ $e = h \cdot f = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$

$$e = h \cdot f = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$

课时五 练习题

1. 已知二维随机变量(X, Y)的联合分布律: 要使 $X \times Y$ 相互独立,则 α , β 的值为

Y	1	2
0	0.5	0.25
1	α	β

2. 设二维随机变量(X,Y)的分布律,则P(X+Y=1)=()

A.0.3

B.0.1

C.0.2

D.0.4

Y	-1	0	1
0	0.1	0.2	0.2
1	0.3	0.1	0.1

3. 加油站有两套用来加油的设备,设备 A 是工作人员操作的,设备 B 是顾客自己操作的, A、B 均装有两根加油软管,任取一时间, A、B 正在使用的软管数分别为 X、Y, X、Y 的联合分布律为下表,求:

- (1) $P(X \le 1, Y \le 1)$
- (2) 至少有一根软管在使用的概率
- (3) P(X = Y)
- (4) $P\{X+Y=2\}$

Y	0	1	2
0	0.1	0.08	0.06
1	0.04	0.2	0.14
2	0.02	0.06	0.3

4. 二维随机变量(X,Y)的联合分布列见右表,求 $Z = \max(X,Y)$ 的分布列

X	1	2	3
1	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{6}$
2	$\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{9}$

5. 设 $A \setminus B$ 为 两 个 随 机 事 件 , $P\{A\} = 0.25, P\{B|A\} = 0.5, P\{A|B\} = 0.25$, 令 随 机 变 量

$$X = \begin{cases} 1 & A \text{ be} \\ 0 & A \text{ for } X \end{cases} Y = \begin{cases} 1 & B \text{ be} \\ 0 & B \text{ for } X \text{ for$$

(1) 求(X,Y) 的联合分布律

21

(2) R $P\{X^2 + Y^2 = 1\}$

课时六 连续型二维随机变量

	考点	ζ	重要程度	分值	常见题型
	1.	概率密度			
连续型	2.	边缘概率密度	 必考	10 15	上師
二维随机变量	3.	条件概率密度		10~15	大题
	4.	独立性			

题1.设二维随机变量(X, Y)的概率密度为 $f(x, y) = \begin{cases} cxy \\ 0 \end{cases}$

- (1) 常数 c 和 $P\{X+Y<1\}$
- (2)(X,Y)的边缘概率密度
- (3) $f_{X|Y}(x|y)$ 和 $f_{Y|X}(y|x)$ (4) 判定 X 和 Y 是否相互独立

M: (1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$\int_{0}^{1} dx \int_{0}^{1} cxy dy = \int_{0}^{1} \left[\frac{1}{2} cxy^{2} \right]_{0}^{1} dx$$

$$= \int_0^1 \frac{1}{2} cx dx = \frac{1}{4} cx^2 \Big|_0^1 = \frac{c}{4} = 1 \implies c = 4$$

$$P\{X+Y<1\} = \iint_{D} f(x,y)dxdy$$
$$= \int_{0}^{1} dx \int_{0}^{1-x} 4xydy = \int_{0}^{1} 2x (1-x)^{2} dx = \frac{1}{6}$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{1} 4xy dy = \begin{cases} 2x & 0 < x < 1 \\ 0 & \sharp \text{ the } \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} 4xy dx = \begin{cases} 2y & 0 < y < 1 \\ 0 & \text{ 其他} \end{cases}$$

(3)
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{4xy}{2y} = \begin{cases} 2x & 0 < x < 1 & 0 < y < 1 \\ 0 & \text{其他} \end{cases}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{4xy}{2x} = \begin{cases} 2y & 0 < x < 1 & 0 < y < 1 \\ 0 & \text{#th} \end{cases}$$

(4)
$$f(x, y) = 4xy = f_X(x) f_Y(y) = 2x \cdot 2y = 4xy$$

故X和Y相互独立

联合概率密度性质:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$P\{(X,Y) \in D\} = \iint_D f(x,y) dxdy$$

边缘概率密度:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

条件密度概率:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_Y(x)}$$

独立性:

题 2. 设(X,Y) 的联合概率密度为 $f(x,y) = \begin{cases} Axy & 0 \le y \le x & 0 \le x \le 1 \\ 0 & \text{其他} \end{cases}$

试求: (1) 系数 $A \rightarrow P\{X + Y < 1\}$

- (2) X和Y的边缘概率密度
- (3) X 与Y 是否独立,为什么

解: (1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$
$$\int_{0}^{1} dx \int_{0}^{x} Axy dy = \int_{0}^{1} \left[\frac{A}{2} x y^{2} \right]_{0}^{x} dx$$
$$= \int_{0}^{1} \frac{A}{2} x^{3} dx = \frac{A}{8} = 1 \quad \Rightarrow A = 8$$

$$P\{X+Y<1\} = \iint_{D} f(x,y)dxdy = \int_{0}^{\frac{1}{2}} dy \int_{y}^{1-y} 8xydx$$
$$= \int_{0}^{\frac{1}{2}} \left[4yx^{2}\right]_{y}^{1-y} dy = \int_{0}^{\frac{1}{2}} \left(4y-8y^{2}\right)dy$$
$$= \left(2y^{2} - \frac{8}{3}y^{3}\right)\Big|_{0}^{\frac{1}{2}} = \frac{1}{6}$$

(2) X的边缘概率密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{x} 8xy dy = \begin{cases} 4x^{3} & 0 \le x \le 1\\ 0 & \text{ i.i.} \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{1} 8xy dx = \begin{cases} 4y(1-y^{2}) & 0 \le y \le 1\\ 0 & \text{#th} \end{cases}$$

(3) $f(x,y) = 8xy \neq f_X(x) \cdot f_Y(y)$ 故 X 和 Y 不相互独立

课时六 练习题

題1. 设
$$(X,Y)$$
的联合概率密度是 $f(x,y) = \begin{cases} ke^{-(3x+4y)} & x>0 & y>0 \\ 0 &$ 其他

求: (1) 常数 k

- (2) X 与 Y 的边缘分布,并确定是否独立,为什么?
- (3) $P\{0 < X \le 1, 0 < Y \le 1\}$

题
$$2$$
. 设二维连续型随机变量 (X,Y) 的联合概率密度函数为: $f(x,y) = \begin{cases} 2 & 0 \le x \le 1 & x \le y \le 1 \\ 0 & \text{其他} \end{cases}$

求: (1) 关于 X 和 Y 的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$

- (2) R *P* {*X* + *Y* ≤ 1}
- (3) X与Y是否独立,为什么?

题 3. 设
$$X$$
 和 Y 相互独立, X 在 $(0,1)$ 上服从均匀分布, $f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}} & y > 0 \\ 0 &$ 其他

- (1) X和Y的联合概率密度
- (2) 二次方程 $a^2 + 2Xa + Y^2 = 0$ 有实根的概率

课时七 二维随机变量函数的分布

考点	重要程度	分值	常见题型
1. Z=X+Y分布	****		
2. Z = XY 分布	***	0.0	्राम्स
3. $Z = \max\{X,Y\}$ 分布	***	0~8	大题

题 1. 设 X 和 Y 是相互独立的随机变量,其概率密度如下

$$f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & \text{其他} \end{cases}$$

$$f_{Y}(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & 其他 \end{cases}$$

求随机变量 Z=X+Y的概率密度。

M: ①
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

②确定被积函数: f(x,z-x)

X和Y独立

$$f(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} e^{-x} & x > 0 & 0 \le y \le 1\\ 0 & 其他 \end{cases}$$

$$f(x,z-x) = e^{-x}$$
 $(x>0 \ 0 \le y \le 1)$

③确定 x 的积分范围

$$\begin{cases} x > 0 \\ 0 \le y \le 1 \end{cases} \Rightarrow \begin{cases} x > 0 \\ 0 \le z - x \le 1 \end{cases} \Rightarrow \begin{cases} x > 0 \\ z - 1 \le x \le z \end{cases}$$

Z = X + Y型求解:

1. 替换: Y=Z-X

- ① $f_z(z) = \int_{-\infty}^{+\infty} f(x, z x) dx$
- ② 确定被积函数: f(x,z-x)
- ③ 确定 x 的积分范围
- ④ 分情况,带入公式

2. 替换: X=Z-Y

- ① $f_z(z) = \int_{-\infty}^{+\infty} f(z-y,y)dy$
- ② 确定被积函数: f(z-y,y)
- ③ 确定 v 积分范围
- 分情况 化入八十

④分情况,带入公式

积分区间: $x:0 \rightarrow z$

$$f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$
$$= \int_0^z e^{-x} dx = 1 - e^{-z}$$

$$z - 1 \ge 0 \Longrightarrow 1 \le z$$

积分区间: $x:z-1 \rightarrow z$

$$f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$
$$= \int_{-\infty}^{z} e^{-x} dx = e^{1-z} - e^{-z}$$

题 2. 设随机变量(X,Y)的概率密度为f(x,y)= $\begin{cases} x+y & 0 < x < 1 & 0 < y < 1 \ 0 &$ 其他

度。

$$\mathbf{M}: \ \ \mathbf{1} f_z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx$$

②确定被积函数:
$$\frac{1}{|x|}f\left(x,\frac{z}{x}\right) = \frac{1}{x}(x+\frac{z}{x})$$

$$\mathfrak{S} \begin{cases} 0 < x < 1 \\ 0 < y < 1 \end{cases} \Rightarrow \begin{cases} 0 < x < 1 \\ 0 < \frac{z}{x} < 1 \end{cases} \Rightarrow \begin{cases} 0 < x < 1 \\ 0 < z < x \end{cases}$$

④分情况,代入公式

$$1 \le z$$
 时: $f_Z(z) = 0$

0 < z < 1时: 积分区间: $x:z \rightarrow 1$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{z}^{1} \frac{1}{x} \left(x + \frac{z}{x}\right) dx = \int_{z}^{1} \left(1 + \frac{z}{x^{2}}\right) dx = \left(x - \frac{z}{x}\right) \Big|_{z}^{1} = 2 - 2z$$

 $z \le 0$ 时,因为 0 < z < x,所以无意义,则 $f_{XY}(z) = 0$

综上:
$$f_z(z) = \begin{cases} 2-2z & 0 < z < 1 \\ 0 & 其他 \end{cases}$$

替换: $Y = \frac{Z}{X}$

①
$$f_z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx$$

- ② 确定被积函数: $\frac{1}{|x|}f\left(x,\frac{z}{x}\right)$
- ③ 确定 x 积分范围
- ④ 分情况,代入公式

题 3. 设随机变量 X 与 Y 相互独立且都服从概率密度为 $f_X(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$ 的分布,

$\vec{x} Z = \max\{X,Y\}$ 的概率密度

M: $F_X(x) = \int_{-\infty}^x f_X(x) dx = \int_0^x e^{-x} dx = 1 - e^{-x} \quad (x > 0)$

$$F_X(x) = \begin{cases} 1 - e^{-x} & x > 0 \\ 0 & x \le 0 \end{cases}$$

X和Y独立同分布

$$F_{\text{max}}(z) = [F_X(z)]^2 = \begin{cases} (1 - e^{-z})^2 & z > 0 \\ 0 & z \le 0 \end{cases}$$

$$f_{\max}(z) = F'_{\max}(z) = \begin{cases} 2e^{-z} (1 - e^{-z}) & z > 0 \\ 0 & z \le 0 \end{cases}$$

 $Z = \max\{X,Y\}$ 的分布

若X、Y独立同分布

题 4. 设 $X_1, X_2...X_n$ 相互独立且具有相同分布 F(x),则

- (1) $z = \max\{X_1, X_2...X_n\}$ 的分布函数为: $[F(z)]^n$
- (2) $z = \min\{X_1, X_2...X_n\}$ 的分布函数为: $1 [1 F(z)]^n$

课时七: 练习题

1. 设X和Y是相互独立的随机变量,其概率密度分别如下,求Z=X+Y的概率密度。

$$f_{X}(x) = \begin{cases} e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad f_{Y}(y) = \begin{cases} \frac{1}{2} & 0 \le y < 2 \\ 0 & \text{!!} \text{!!} \text{!!} \end{cases}$$

- 2. 设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 1 & 0 < x < 1, 0 < y < 1 \\ 0 & 其他 \end{cases}$, 求Z = XY的概率密度。
- 3. 设 X_1, X_2, X_3, X_4 相互独立且具有相同分布F(x),
- ① $Z = \max\{X_1, X_2, X_3, X_4\}$ 的分布函数为______;
- ② $Z = \min\{X_1, X_2, X_3, X_4\}$ 的分布函数为_____。

课时八数学期望、方差、协方差

考点	重要程度	分值	常见题型
1. 一维随机变量期望与方差	W **	10 15	冰松 神吟 「胆小女
2. 二维随机变量期望与方差	必考	10~15	选择、填空、大题必考

1. 一维随机变量期望与方差

题 1. 随机变量 X 的分布律如下

X	0	1	2	_
P	0.4	0.3	0.3	

$$\Re:$$
 (1) $E(X)$ (2) $Y = X^2$, $\Re E(Y)$ (3) $D(X)$

M:
$$E(X) = 0 \times 0.4 + 1 \times 0.3 + 2 \times 0.3 = 0.9$$

$$E(Y) = E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3 + 2^2 \times 0.3 = 1.5$$

$$D(X) = E(X^2) - E^2(X) = 1.5 - (0.9)^2 = 0.69$$

题 2. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{3}{8}x^2 & 0 < x < 2 \\ 0 & 其他 \end{cases}$

求: (1)
$$E(x)$$
 (2) $Y = X^2$, 求 $E(Y)$ (3) $D(X)$

M:
$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{0}^{2} x \cdot \frac{3}{8} x^{2} dx = \frac{3}{32} x^{4} \Big|_{0}^{2} = \frac{3}{2}$$

$$E(Y) = E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{2} x^{2} \cdot \frac{3}{8} x^{2} dx = \frac{3}{40} x^{5} \Big|_{0}^{2} = \frac{12}{5}$$

$$D(X) = E(X^2) - E^2(X) = \frac{12}{5} - \left(\frac{3}{2}\right)^2 = \frac{3}{20}$$

离散型:

$$E(X) = \sum_{i=1}^{n} x_i p_i$$

$$Y = g(X)$$

$$E(Y) = \sum_{i=1}^{n} g(x) p_{i}$$

连续型:

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$Y = g(X)$$

$$E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

方差:

$$D(X) = E(X^2) - E^2(X)$$

常用分布的数学期望和方差

分布	$分布列 p_k$ 或概率密度 $f(x)$	期望	方差
0~1分布	$P\{X=k\} = p^{k} (1-p)^{1-k}$	p	p(1-p)
二项分布 $B(n,p)$	$P\{X=k\} = C_n^k p^k (1-p)^{n-k}$	пр	np(1-p)
泊松分布 π(λ)	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$	λ	λ
几何分布 $G(p)$	$P\{X=k\} = (1-p)^{k-1} p$	1/p	$(1-p)/p^2$
正态分布 $N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2
均匀分布 U(a,b)	$f(x) = \frac{1}{b-a} a < x < b$	$\frac{a+b}{2}$	$\frac{\left(b-a\right)^2}{12}$
指数分布 E(λ)	$f(x) = \lambda e^{-\lambda x} x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\chi^2(n)$ 分布	不记	n	2 <i>n</i>

期望E(X)

$$\textcircled{1}E(c) = c$$
 $\textcircled{2}E(ax+c) = aE(X)+c$

④
$$X$$
和 Y 独立 $E(XY) = E(X)E(Y)$

方差D(X)

①
$$D(c) = 0$$
 ② $D(ax + b) = a^2 D(X)$

④
$$X$$
与 Y 相互独立: $D(X\pm Y) = D(X) + D(Y)$

题 3. $X \sim U(2,10), Y \sim P(2),$ 则 E(3X+2Y) =

M:
$$X \sim U(2,10)$$
 $E(X) = \frac{2+10}{2} = 6$ $Y \sim P(2)$ $E(Y) = 2$

$$Y \sim P(2)$$
 $E(Y) = 2$

$$E(3X + 2Y) = E(3X) + E(2Y) = 3E(X) + 2E(Y) = 3 \times 6 + 2 \times 2 = 22$$

题 4. X 服从二项分布, E(X)=2.4 D(X)=1.44 则 n= _____P= __

解:
$$\begin{cases} E(X) = np = 2.4 \\ D(X) = np(1-p) = 1.44 \end{cases} \Rightarrow \begin{cases} n = 6 \\ p = 0.4 \end{cases}$$

题 5. $X \sim U[-1,2]$, 则 $E(X^2) =$ _____

#:
$$E(X) = \frac{-1+2}{2} = \frac{1}{2}$$
 $D(X) = \frac{[2-(-1)]^2}{12} = \frac{3}{4}$

$$E(X^2) = D(X) + E^2(X) = \frac{3}{4} + \left(\frac{1}{2}\right)^2 = 1$$

题 6. $X \sim N(1,2), Y \sim P(3),$ 且 $X \rightarrow Y$ 相互独立,则Var(3X-2Y) =

#:
$$D(3X-2Y) = D(3X) + D(2Y) = 9D(X) + 4D(Y) = 9 \times 2 + 4 \times 3 = 30$$

2. 二维随机变量期望与方差

题 1. 设随机变量(X,Y)的联合分布律为

- 求: (1) E(X) (2) E(XY) (3) E(X+Y)
- 0 1 0.2 0.1 0.4 0.3

解: (1) X 的边缘分布律

X	0	1
p	0.3	0.7

$$E(X) = 0 \times 0.3 + 1 \times 0.7 = 0.7$$

(2)
$$E(XY) = 0 \times 0 \times 0.1 + 0 \times 1 \times 0.2 + 1 \times 0 \times 0.3 + 1 \times 1 \times 0.4 = 0.4$$

(3)
$$E(X+Y) = (0+0)\times 0.1 + (0+1)\times 0.2 + (1+0)\times 0.3 + (1+1)\times 0.4 = 1.3$$

题 2. 随机变量(X,Y)的概率密度为f(x,y) = $\begin{cases} 2x + 2y & 0 \le y \le x \le 1 \\ 0 & \text{其他} \end{cases}$, R(X), $E(X^2)$, E(XY)

$$\mathbf{M}: \quad E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x \cdot (2x + 2y) dy$$
$$= \int_{0}^{1} \left[2x^{2}y + xy^{2} \right]_{0}^{x} dx = \int_{0}^{1} \left(2x^{3} + x^{3} \right) dx = \frac{3}{4}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} \cdot f(x, y) dxdy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot (2x + 2y) dy = \int_{0}^{1} (2x^{4} + x^{4}) dx = \frac{3}{5}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \cdot f(x,y) dxdy = \int_{0}^{1} dx \int_{0}^{x} xy \cdot (2x + 2y) dy = \int_{0}^{1} \left(x^{4} + \frac{2}{3}x^{4}\right) dx = \frac{1}{3}$$

课时八 练习题

- 1. 设随机变量 X 服从均匀分布U(-3,4),则数学期望 E(2X+1)=_____
- 2. 设 X 的分布函数为 $F(x) = \begin{cases} 1 e^{-\frac{x}{4}} & x > 0 \\ 0 & \text{其它} \end{cases}$, 则 $E(X) = \underline{\qquad}$
- 3. 如果随机变量 X 服从()的均匀分布,必满足 E(X)=8, D(X)=3

- A [0,6] B [1,4] C [5,11] D [-1,9]
- 4. 设 X 服从参数为 λ 的指数分布,则 X 的方差Var(X)=(
- $B \quad \frac{1}{\lambda} \qquad C \quad \frac{1}{\lambda^2} \qquad D \quad \sqrt{\lambda}$
- 6. 设随机变量 X, Y 相互独立,且E(X)=2, E(Y)=1, D(X)=3,则E(X(X+Y-2))=__.
- 7. 若随机变量X,Y相互独立,则()

 - A. D(XY) = D(X)D(Y) B. D(2X + Y) = 2D(X) + D(Y)
 - C. D(2X+3Y)=4D(X)+9D(Y) D. D(X-Y)=D(X)-D(Y)
- 8. 已知随机变量 X 的分布律为 $P\{X=1\}=0.2, P\{X=3\}=5C, P\{X=5\}=3C$, 求:
 - 1) 求常数 C
- 2) X 的数学期望和方差
- 9. 设连续性随机变量 X 的概率密度为 $f(x) = \begin{cases} ax^2, & 0 < x < 1 \\ 0, & \pm c \end{cases}$
 - 1) 求常数 a
 - 2) 求数学期望 E(X)
 - 3) 求方差 D(X)

课时九 协方差、切比雪夫不等式

考点	重要程度	分值	常见题型
1. 协方差	必考	5~10	大题
2. 切比雪夫不等式	***	0~3	选择、填空

1. 协方差: Cov(X,Y)

协方差: Cov(X,Y) = E(XY) - E(X)E(Y)

相关系数: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$ $\rho_{XY} = 0$ 为 X 和 Y 不相关

- 1) 独立一定不相关 不相关不一定独立
- 2) 若 X 和 Y 是正太分布,则不相关和独立等价
- ① Cov(X,Y) = Cov(Y,X)
- \bigcirc Cov(X,X) = D(X)

题 1. 设 X,Y 为随机变量, D(X)=25,D(Y)=16 Cov(X,Y)=8; 则 $\rho_{XY}=$ ___

#:
$$\rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{8}{\sqrt{25} \times \sqrt{16}} = \frac{2}{5}$$

题 2. X 和 Y 方差分别 4 和 9,相关系数为 0.5,则 D(3X-2Y)=

M:
$$D(3X-2Y) = D(3X) + D(2Y) - 2Cov(3X,2Y)$$

$$=9D(X)+4D(Y)-12Cov(X,Y)$$

$$= 9 \times 4 + 4 \times 9 - 12 \cdot \rho \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)}$$

$$=72-12\times0.5\times2\times3=36$$

32

题 3. 若 $E(XY) = E(X) \cdot E(Y)$,则下列不正确的是()

A. X 与 Y 相互独立

B.
$$Cov(X,Y)=0$$

C. X 和 Y 不相关

D.
$$D(X+Y) = D(X) + D(Y)$$

解: A错误: $X 与 Y 独立 \Rightarrow E(XY) = E(X) \cdot E(Y)$ 但 $E(XY) = E(X) \cdot E(Y)$ 独立

$$E(XY) - E(X)E(Y) = 0 \Rightarrow Cov(X,Y) = 0$$

$$\therefore \rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = 0 \Rightarrow$$
不相关

$$D(X+Y) = D(X) + D(Y) + 2Cov(x, y) = D(X) + D(Y) + 0$$

故B、C、D正确

题 4. 已知二元离散型随机变量(X,Y)的联合分布如下,求:

- (1) X 和 Y 的边缘分布律
- (2) X 和 Y 的相关系数

Y	-1	1	2
-1	0.1	0.2	0.3
2	0.2	0.1	0.1

M:(1)X的边缘分布律

X	-1	2
P	0.6	0.4

Y的边缘分布律

Y	-1	1	2
P	0.3	0.3	0.4

(2) $E(X) = -1 \times 0.6 + 2 \times 0.4 = 0.2$

$$E(X^2) = (-1)^2 \times 0.6 + 2^2 \times 0.4 = 2.2$$

$$D(X) = E(X^2) - E^2(X) = 2.2 - (0.2)^2 = 2.16$$

$$E(Y) = -1 \times 0.3 + 1 \times 0.3 + 2 \times 0.4 = 0.8$$

$$E(Y^2) = (-1)^2 \times 0.3 + 1^2 \times 0.3 + 2^2 \times 0.4 = 2.2$$

$$D(Y) = E(Y^2) - E^2(Y) = 2.2 - (0.8)^2 = 1.56$$

$$E(XY) = 0.1 - 0.2 - 0.6 - 0.4 + 0.2 + 0.4 = -0.5$$

$$\rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

$$= \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

$$= \frac{-0.5 - 0.2 \times 0.8}{\sqrt{2.16}\sqrt{1.56}}$$

$$= -0.3595$$

33

题 5. 二维随机变量(X,Y)联合概率密度为 $f(x,y) = \begin{cases} 2 & 0 \le x \le 1 \\ 0 & \text{其他} \end{cases}$

- 求: (1) 关于 X 和 Y 的边缘概率密度 $f_X(x)$ 和 $f_Y(y)$
 - (2) X 和 Y 的相关系数

解: (1)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{1} 2 dy = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & 其他 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{y} 2 dx = \begin{cases} 2y & 0 < y < 1 \\ 0 & \text{ i.i. } \end{cases}$$

(2)
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} 2x dy = \frac{1}{3}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} 2x^{2} dy = \frac{1}{6}$$

$$D(X) = E(X^2) - E^2(X) = \frac{1}{6} - \frac{1}{9} = \frac{1}{18}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} 2y dy = \frac{2}{3}$$

$$E(Y^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^{2} \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} 2y^{2} dy = \frac{1}{2}$$

$$D(Y) = E(Y^2) - E^2(Y) = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \cdot f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} xy \cdot 2 dy = \frac{1}{4}$$

$$\rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{\frac{1}{4} - \frac{1}{3} \times \frac{2}{3}}{\sqrt{\frac{1}{18}} \cdot \sqrt{\frac{1}{18}}} = \frac{1}{2}$$

2. 切比雪夫不等式

题 1. 设 E(X) = 8, D(X) = 0.01 由切比雪夫不等式,则 $P\{|X - 8| \ge 0.2\} \le$

解: 由
$$P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$$

$$P\{|X - 8| \ge 0.2\} \le \frac{0.01}{0.2^2} = \frac{1}{4}$$

切比雪夫不等式 $P\{|X-E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$ $P\{|X-E(X)|<\varepsilon\} \ge 1-\frac{D(X)}{\varepsilon^2}$

题 2. 设 $E(X) = u, D(X) = 6^2$, 则 $P\{|X - u| < 36\} \ge$

解:
$$P\{|X-u|<36\} \ge 1 - \frac{D(X)}{(36)^2} = 1 - \frac{6^2}{36^2} = \frac{35}{36}$$

课时九 练习题

两个随机变量 X 和 Y 的协方差 Cov(X,Y)=()

A. E(X-EY)(Y-EX) B. E(X-EX)(Y-EY) $C. E(XY)^2-(EXEY)^2$ D. E(XY)+EXEY

- $DX = DY = 30, \rho_{XY} = 0.4$, MCov(X,Y) =_____
- 3. 设D(X) = 3, Y = 3X + 1,则 $\rho_{xy} =$ _____
- 4. 随机变量 X 和 Y 满足 D(X-Y)=D(X)+D(Y) 则下列说法哪个是不正确的()
- A. D(X+Y) = D(X) + D(Y) B. E(XY) = E(X)E(Y) C. X 与 Y 不相关 <math>D. X 与 Y 独立
- 设随机变量 X 服从期望为u,方差为 σ^2 ,则由切比雪夫不等式得 $P\{|X-u|\geq 3\sigma\}\leq$ ____
- 一个随机变量 X 的期望为10,方差为9根据切比雪夫不等式, $P\{|X-10|<4\}\geq$ _____
- 7. 已知(X,Y)的概率密度 $f(x,y) = \begin{cases} Ax & 0 < x < 1 & 0 < y < x \\ 0 & \text{ 其他} \end{cases}$, 求:
 - 1) 求常数 $A \rightarrow P\{X+Y<1\}$ 2) 边缘概率密度
 - 3) 判断 X 和 Y 是否相互独立

35

4) X 和Y 的相关系数 ρ_{xy}

课时十 大数定理及中心极限定理

考点	重要程度	分值	常见题型
1. 独立、同分布中心极限定理	A A A	10 15) HH
2. 二项分布中心极限定理	***	10 ~ 15	大题

1. 独立、同分布中心极限定理

定理: 随机变量 X_i 满足: ①独立 ②同分布 ③ $E(X_i)=u$ ④ $D(X_i)=\sigma^2$

$$X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i \sim \mathcal{N}\left(nu, n\sigma^2\right) \qquad P\left\{a < \sum_{i=1}^n X_i < b\right\} = \Phi\left(\frac{b - nu}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{a - nu}{\sqrt{n}\sigma}\right)$$

题 1. 生产线上组装每件成品的时间 X 服从指数分布,其数学期望为 1/5 ,假设各件产品的组

装时间互不影响,试求组装100件成品需要15到20小时的概率。 $\Phi(2.5)=0.9938$,

$\Phi(1.25) = 0.8944$

$$\mathbf{M}: E(X_i) = u = \frac{1}{5} \quad D(X_i) = \sigma^2 = \frac{1}{25} \qquad X_1 + X_2 + \dots + X_{100} = \sum_{i=1}^{100} X_i \sim N(nu, n\sigma^2)$$

$$P\left\{15 \le \sum_{i=1}^{100} X_i \le 20\right\} = \Phi\left(\frac{20 - nu}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{15 - nu}{\sqrt{n}\sigma}\right) = \Phi\left(\frac{20 - 100 \times \frac{1}{5}}{\sqrt{100} \times \frac{1}{5}}\right) - \Phi\left(\frac{15 - 100 \times \frac{1}{5}}{\sqrt{100} \times \frac{1}{5}}\right) - \Phi\left(\frac{15 - 100 \times \frac{1}{5}}{\sqrt{100} \times \frac{1}{5}}\right) = \Phi\left(0\right) - \Phi\left(-2.5\right) = \Phi\left(0\right) - \left(1 - \Phi\left(2.5\right)\right) = \Phi\left(0\right) + \Phi\left(2.5\right) - 1 = 0.5 + 0.9938 - 1 = 0.4938$$

题 2. 生产线生产的产品成箱包装,每箱质量随机,假设每箱平均重 50 千克,标准差为 5,若用载重为 5 吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于 0.977。 $\left(\Phi(2)=0.977\right)$

M:
$$X_1 + X_2 + \dots + X_n = \sum_{i=1}^n X_i \sim N(nu, n\sigma^2)$$
 $u = 50$ $\sigma = 5$

$$P\left\{\sum_{i=1}^{n} X_{i} \le 5000\right\} = \Phi\left(\frac{5000 - nu}{\sqrt{n}\sigma}\right) = \Phi\left(\frac{5000 - 50n}{5\sqrt{n}}\right) > 0.997 = \Phi(2)$$

2. 二项分布中心极限定理

定理: 若
$$X \sim B(n,p)$$
 近似于 $N(np,np(1-p))$

$$P\{a < X < b\} = \Phi\left(\frac{b-np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{a-np}{\sqrt{np(1-p)}}\right)$$

题 3. 设某系统有100个部件组成, 运行期间每个部件损坏的概率都是0.1, 且是否损坏相互独

立,以X表示系统完好的部件数,利用中心极限定理求 $P\{84 \le X \le 96\}$ $(\Phi(2) = 0.9772)$

解: $X \sim B(100,0.9)$ 近似于N(np,np(1-p)) n=100, p=0.9

$$P\{84 \le X \le 96\} = \Phi\left(\frac{96 - np}{\sqrt{np(1 - p)}}\right) - \Phi\left(\frac{84 - np}{\sqrt{np(1 - p)}}\right) = \Phi\left(\frac{96 - 100 \times 0.9}{\sqrt{100 \times 0.9 \times 0.1}}\right) - \Phi\left(\frac{84 - 100 \times 0.9}{\sqrt{100 \times 0.9 \times 0.1}}\right)$$
$$= \Phi(2) - \Phi(-2) = \Phi(2) - \left[1 - \Phi(2)\right] = 2\Phi(2) - 1 = 2 \times 0.9772 - 1 = 0.9544$$

课时十 练习题

- 1. 设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,标准方差为0.1kg,问5000只这样的零件,总重量超过2510kg的概率是多少? (可能用到的数据: $\Phi(1.4142) = 0.9214$, $\sqrt{50} \approx 7.0711$)
- 2. 某电话供电网有10000 盏电灯,夜晚每盏灯开灯的概率为0.7,且设开关时间彼此独立,试用中心极限定理求夜晚同时开灯盏数在6800 和7200 之间的概率的近似值(结果用 $\Phi(x)$ 的值表示)。

课时十一 抽样分布

考点	重要程度	分值	常见题型
1. 常用统计量及性质	****	0~3	选择、填空
2. 三种常见分布	***	0~3	业件、

1. 常用统计量及性质

题 1. 设 $X_1,X_2,...,X_n$ 为来自总体 $X\sim N\left(\mu,\sigma^2\right)$ 的简单随机样本, μ 已知, σ^2 未知,则下列样

本函数不是统计量的是(C)。

注: 统计量不含任何未知参数

$$A \cdot \frac{1}{n} \sum_{i=1}^{n} X_{i} B \cdot \max \{X_{1}, X_{2}, ..., X_{n}\}$$

$$C \cdot \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 D \cdot \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

题 2. 设 $X \sim b(n, p)$, $X_1, X_2, ..., X_n$ 为来自总体 X 的一

个样本,则 $E(ar{X})$ =____, $D(ar{X})$ =____, $E(S^2)$ =____。

M: E(X) = np D(X) = np(1-p)

$$E(\bar{X}) = \mu = np$$

$$D(\bar{X}) = \frac{D(X)}{n} = \frac{np(1-p)}{n} = p(1-p)$$

$$E(S^2) = D(X) = np(1-p)$$

题 3. 设总体 $X \sim N(\mu, \sigma^2)$, $X_1, X_2, ..., X_n$ 为从 X 中抽

取的简单随机样本, \bar{X} 为样本均值, S^2 为样本方差。

则 \overline{X} ~_________。

M:
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$

常用统计量:

①样本均值: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

②样本方差: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

常考性质:

1) 任何分布 (期望方差都存在)

$$E(\bar{X}) = \mu$$
 $D(\bar{X}) = \frac{D(X)}{n}$

$$E(S^2) = D(X)$$

2) 正太分布 $X \sim N(u, \sigma^2)$

$$\bar{X} \sim N(u, \frac{\sigma^2}{n})$$
 $\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$$

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

2. 三种常见分布

χ²分布: (卡方)

若 $X_1, X_2, ..., X_n$ 独立且都服从N(0,1),则 $X_1^2 + X_2^2 + ... + X_n^2 \sim \chi^2(n)$

性质: $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 则 $X + Y \sim \chi^2(n_1 + n_2)$

② *t* 分布:

若 $X \sim N(0,1)$, $Y \sim \chi^2(n)$,且 X,Y 相互独立,则 $\frac{X}{\sqrt{Y/n}} \sim t(n)$

③ F 分布:

$$X\sim\chi^2\left(n_1
ight)$$
, $Y\sim\chi^2\left(n_2
ight)$,且 X,Y 相互独立,则 $rac{X/n_1}{Y/n_2}\sim F\left(n_1,n_2
ight)$

性质: $F(n_1, n_2) = \frac{1}{F(n_2, n_1)}$ $F_{1-a}(n_1, n_2) = \frac{1}{F_a(n_2, n_1)}$

题 1. 设总体 X 服从正态分布 $N\left(0,1\right)$ 。若 X_{1} , X_{2} \cdots X_{6} 为来自 X 的样本,

 $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$,则 $c = ____$ 时, $cY \sim \chi^2$ 分布。

M:
$$Y_1 = (X_1 + X_2 + X_3)$$
 $Y_2 = (X_4 + X_5 + X_6)$

$$E(Y_1) = E(X_1 + X_2 + X_3) = 0$$
 $D(Y_1) = D(X_1) + D(X_2) + D(X_3) = 3$

$$\mathbb{M}\left(\frac{Y_{1}}{\sqrt{3}}\right)^{2} + \left(\frac{Y_{2}}{\sqrt{3}}\right)^{2} = \frac{1}{3}Y_{1}^{2} + \frac{1}{3}Y_{2}^{2} \sim \chi^{2}(2)$$

$$\mathbb{F}: \frac{1}{3}Y_1^2 + \frac{1}{3}Y_2^2 = \frac{1}{3}(X_1 + X_2 + X_3)^2 + \frac{1}{3}(X_4 + X_5 + X_6)^2 = \frac{1}{3}Y \sim \chi^2(2) \implies c = \frac{1}{3}$$

题 2. 假设总体 $X\sim N\left(0,3^2\right)$, $X_1,X_2,\cdots X_8$ 是来自总体 X 的简单随机样本,则统计量

$$Y = \frac{\left(X_1 + X_2 + X_3 + X_4\right)}{\sqrt{{X_5}^2 + {X_6}^2 + {X_7}^2 + {X_8}^2}}$$
 服从自由度为____的___分布。

题 3. 设随机变量 $T \sim t(n)$,则 $\frac{1}{T^2} \sim (\)$ 分布。

$$A \cdot \chi^{2}(n)$$
 $B \cdot F(n,1)$ $C \cdot F(1,n)$ $D \cdot F(n-1,1)$

$$\mathbf{M}: T = \frac{X}{\sqrt{Y/n}} \qquad X \sim N(0,1), \quad Y \sim \chi^2(n)$$

$$T^2 = \frac{X^2}{Y/n}$$
 $X^2 \sim \chi^2(1)$, $Y \sim \chi^2(n)$ $\frac{1}{T^2} = \frac{Y/n}{X^2/1} = \frac{\chi^2(n)/n}{\chi^2(1)/1} \sim F(n,1)$

课时十一练习题

- 1. 设 $X_1 \sim N(0,1)$, $X_2 \sim N(0,1)$ 且相互独立,则 $(X_1)^2 + (X_2)^2 \sim$ _____分布。
- 2. 设 $X \sim N(0,1)$, $Y \sim \chi^2(10)$, 且 X 与 Y 相互独立, $T = \frac{X}{\sqrt{Y/10}} \sim$ ______。
- 3. 设 $X \sim N(1,1)$, $X_1, X_2 \cdots X_{100}$ 为来自总体 X 的一个样本,则 $E(\bar{X}) =$ _____; $D(\bar{X}) =$ _____; $E(S^2) =$ _____。
- 4. 设总体 X 服从正态分布 N(1,1) , X_1, X_2, \cdots, X_{10} 为从 X 中抽取的简单随机样本, \bar{X} 为样本均值。则 $\sqrt{10}(\bar{X}-1)\sim$ _____。

课时十二参数估计

考点	重要程度	分值	常见题型
1. 矩估计	必考	10~15	大题
2. 最大似然估计	火 芍	10~13	人茂
3. 无偏估计	***	0~3	选择、填空

1. 矩估计

题 1. 设总体具有分布律如下,试求 θ 的矩估计量。若抽取一组样本,样本值为 1,2,2,3,2, 求 θ 的据估计值。

X	1	2	3
p	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

解:
$$\mu_1 = E(X) = 1 \times \theta^2 + 2 \times 2\theta (1 - \theta) + 3(1 - \theta)^2 = 3 - 2\theta$$

 $\theta = \frac{1}{2}(3 - \mu_1)$ $\Rightarrow \hat{\theta} = \frac{1}{2}(3 - \overline{X})$
 $\frac{1}{x} = \frac{1}{5}(1 + 2 + 2 + 3 + 2) = 2$
 $\Rightarrow \hat{\theta} = \frac{1}{2}(3 - 2) = \frac{1}{2}$

矩估计求解方法:

$$\widehat{\Im}\,\widehat{\theta} = f^{-1}(\overline{X})$$

2. 最大似然估计

题 1. 设总体 X 的概率密度函数为 $f(x,\theta) = \begin{cases} \theta \cdot x^{\theta-1} & 0 \le x \le 1 \\ 0 & \text{其他} \end{cases}$,其中 $\theta > 0$ 为未知参数,

 $X_1, X_2...X_n$ 为样本, 试求 θ 的矩估计量和最大似然估计量。

$$\mathbf{\mathscr{H}}: (1) \ \mu_{1} = E(X) = \int_{-\infty}^{+\infty} x f(x,\theta) dx = \int_{0}^{1} x \, \theta x^{\theta-1} dx = \int_{0}^{1} \theta \cdot x^{\theta} dx = \frac{\theta}{\theta+1} x^{\theta+1} \bigg|_{0}^{1} = \frac{\theta}{\theta+1}$$

$$\theta = \frac{\mu_1}{1 - \mu_1}$$
 矩估计量为 $\hat{\theta} = \frac{\overline{X}}{1 - \overline{X}}$

(2)
$$L(\theta) = \prod_{i=1}^{n} \theta \cdot x_i^{\theta-1} = \theta x_1^{\theta-1} \cdot \theta x_2^{\theta-1} \cdot \dots \cdot \theta x_n^{\theta-1}$$

$$= \theta^n \cdot x_1^{\theta-1} \cdot x_2^{\theta-1} \cdot \dots \cdot x_n^{\theta-1}$$

$$\ln L(\theta) = \ln \theta^n + \ln x_1^{(\theta-1)} + \ln x_2^{(\theta-1)} + \dots + \ln x_n^{(\theta-1)}$$

$$= n \ln \theta + (\theta - 1) \left(\ln x_1 + \ln x_2 + \dots + \ln x_n \right)$$

$$= n \ln \theta + (\theta - 1) \sum_{i=1}^{n} \ln x_i$$

$$\frac{d}{d\theta} \ln L(\theta) = \frac{n}{\theta} + \sum_{i=1}^{n} \ln x_i = 0$$

$$\Rightarrow \hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln X_i}$$

最大似然估计求解方法:

$$\textcircled{1} L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$$

②取对数
$$\ln L(\theta) = \ln \prod_{i=1}^{n} f(x_i, \theta)$$

③求导
$$\frac{d}{d\theta}$$
ln $L(\theta)=0$

④解出
$$\hat{\theta}=?$$

$$\ln B^A = A \ln B$$

$$\ln AB = \ln A + \ln B$$

3. 无偏估计

题 1. $X_1, X_2 \cdots X_n$ 是来自总体 X 的样本 $E(X) = \mu$, $D(X) = \sigma^2$ 则(

A. $X_1 + X_2 + X_3 + X_4$ 是 μ 的无偏估计

B. $\frac{\left(X_1+X_2+X_3+X_4\right)}{4}$ 是 μ 的无偏估计

C. X_i^2 是 σ^2 的无偏估计

无偏估计:

则△为□的无偏估计

D.
$$\left(\frac{X_1+X_2+X_3+X_4}{4}\right)^2$$
是 μ 的无偏估计

解: 答案: B

A.
$$E(X_1 + X_2 + X_3 + X_4) = \mu + \mu + \mu + \mu = 4\mu \neq \mu$$
 #

B.
$$E\frac{(X_1 + X_2 + X_3 + X_4)}{4} = \frac{1}{4} \times 4\mu = \mu$$
 正确

C.
$$E(X_1^2) = D(X_1) + E^2(X_1) = \sigma^2 + \mu^2 \neq \sigma^2$$
 错

D.
$$E\left[\left(\frac{X_1 + X_2 + X_3 + X_4}{4}\right)^2\right] = D\left(\frac{X_1 + X_2 + X_3 + X_4}{4}\right) + E^2\left(\frac{X_1 + X_2 + X_3 + X_4}{4}\right) \neq \mu$$
 (#

题 2. 设总体 $X: N(\mu, \sigma^2), X_1 \cdots X_n$ 为来自 X 简单的随机样本,则 $\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ 是 (B)

A. μ 的无偏估计 B. σ^2 的无偏估计 C. μ 的矩估计 D. σ^2 的矩估计

解:
$$E(S^2) = D(X)$$

解:
$$E(S^2) = D(X)$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \ \ \ \ \ \ \ D(X)$ 的无偏估计

①
$$E(\bar{X}) = \mu$$
 样本均值 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 为期望 μ 的无偏估计

②
$$E(S^2)=D(X)$$
 样本方差 $S^2 \to D(X)$ 的无偏估计

课时十二 练习题

1. 设总体 X 服从 $[0,2\theta]$ 上的均匀分布 $(\theta>0)$, X_1,\dots,X_n 是来自该总体的样本, \overline{X} 为样本均值, 则 θ 的矩估计 $\hat{\theta}=($)

A
$$2\overline{X}$$

B
$$\overline{X}$$

$$C \frac{\bar{X}}{2}$$

A
$$2\overline{X}$$
 B \overline{X} C $\frac{\overline{X}}{2}$ D $\frac{1}{2\overline{X}}$

2. 设总体
$$X$$
 , $E(X) = \mu$, $\hat{\mu}_1 = \frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$, $\hat{\mu}_2 = \frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$, 则它们中是 u 的无

偏估计量的为:____

- 3. 设总体 X 服从指数分布 $f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{其他} \end{cases}$, $\lambda > 0$, X_1 , X_2 … X_n 为简单的随机样本,求:
 - (1) λ的矩估计量
 - (2) 礼的最大似然估计量
- 4. 设总体 X 的概率分布如下表所示; 其中 θ 是未知参数 $(0 < \theta < 1)$, 从总体 X 中抽取容量为 T的一组样本,其样本值为0,1,1,1,1,0,1,求 θ 的矩估计值和最大似然估计值。

X	0	1
P	θ	$1-\theta$

5. 设总体 X 的密度函数 为 $f(x) = \begin{cases} \theta e^{-\theta(x-3)} & x > 3 \\ 0 & x \le 3 \end{cases}$,求 θ 的矩估计量和极大似然估计量。

43

课时十三 区间估计

考点	重要程度	分值	常见题型
置信区间	必 考	3~15	填空、大题

常考正态总体均值、方差的置信区间与单侧置信限(置信水平为 $1-\alpha$)

	待估参数	其他参数	置信区间	单侧置信限
单个	μ	σ ² 已知	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right)$	$\underline{\mu} = \overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha} \overline{\mu} = \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}$
正态	μ	σ ² 未知	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1)\right)$	$\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha} (n-1) \overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$
总 体	σ^2	μ未知	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$	$\underline{\sigma^2} = \frac{(n-1)S^2}{\chi_{\alpha}^2(n-1)} \overline{\sigma^2} = \frac{(n-1)S^2}{\chi_{1-\alpha}^2(n-1)}$

题 1. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 总体中抽取容量为 36 的一个样本, 样本均值 $\bar{X}=3.5$,

方差 $S^2 = 4$,求: $(z_{0.025} = 1.96, t_{0.025}(35) = 2.03, \chi^2_{0.025}(35) = 53.2, \chi^2_{0.975}(35) = 20.57$)。

- (1) 已知 $\sigma^2 = 1$, 求 μ 置信度为0.95的置信区间。
- (2) σ^2 未知,求 μ 置信度为0.95的置信区间。
- (3) 若 μ 未知,求 σ^2 置信度为 0.95 的置信区间。

置信区间求解:

- ①定类型,摆公式
- ②计算各分量
- ③代入公式

解: (1)
$$\sigma^2 = 1$$
 为已知, μ 的置信区间为 $\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}} \right)$ $\bar{X} = 3.5$, $\sigma = 1$, $n = 36$, $\alpha = 1 - 0.95 = 0.05$, $z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$

代入得
$$\mu$$
 的置信区间为 $\left(3.5 - \frac{1}{6} \times 1.96, 3.5 + \frac{1}{6} \times 1.96\right) = \left(3.17, 3.83\right)$

(2)
$$\sigma^2 \pm 2$$
, μ 的置信区间为 $\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1) \right)$
 $\bar{X} = 3.5$, $S = 2$, $n = 36$, $\alpha = 1 - 0.95 = 0.05$, $t_{a/2}(n-1) = t_{0.025}(35) = 2.03$

代入得
$$\mu$$
 的置信区间为 $\left(3.5 - \frac{2}{6} \times 2.03, 3.5 + \frac{2}{6} \times 2.03\right) = \left(2.82, 4.18\right)$

(3)
$$\mu$$
未知, σ^2 的置信区间为 $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right)$
 $n-1=35$, $S^2=4$, $\alpha=1-0.95=0.05$
 $\chi_{\frac{\alpha}{2}}^2(n-1)=\chi_{0.025}^2(35)=53.20$ $\chi_{1-\frac{\alpha}{2}}^2(n-1)=\chi_{0.975}^2(35)=20.57$

代入公式可得
$$\sigma^2$$
的置信区间为 $\left(\frac{35\times4}{53.20}, \frac{35\times4}{20.57}\right) = (2.63, 6.81)$

	待估 参数	其他参数	置信区间	单侧置信限
単	<u> </u>	σ^2 已知	$\left(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right)$	$\underline{\mu} = \overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha} \qquad \overline{\mu} = \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha}$
个正态总	μ	σ^2 未知	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{a/2} (n-1)\right)$	$\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$ $\overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$
体	σ^2	μ未知	$\left(\frac{(n-1)S^2}{\chi_{a/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-a/2}^2(n-1)}\right)$	$\underline{\sigma^2} = \frac{(n-1)S^2}{\chi_{\alpha}^2(n-1)} \qquad \overline{\sigma^2} = \frac{(n-1)S^2}{\chi_{1-\alpha}^2(n-1)}$
两	$\mu_1 - \mu_2$	$\sigma_{\!\scriptscriptstyle 1}^{\scriptscriptstyle 2},\sigma_{\!\scriptscriptstyle 2}^{\scriptscriptstyle 2}$ 已知	$\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$	$ \underline{\mu_1 - \mu_2} = \overline{X} - \overline{Y} - z_{\alpha} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}} $ $ \overline{\mu_1 - \mu_2} = \overline{X} - \overline{Y} + z_{\alpha} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}} $
个正态	$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2 = \sigma^2 未知$	$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2} (n_1 + n_2 - 2) S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right)$ $S_{\omega} = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}$	$\begin{split} \underline{\mu_{1} - \mu_{2}} &= \overline{X} - \overline{Y} - t_{\alpha} \left(n_{1} + n_{2} - 2 \right) S_{\omega} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \\ \overline{\mu_{1} - \mu_{2}} &= \overline{X} - \overline{Y} + t_{\alpha} \left(n_{1} + n_{2} - 2 \right) S_{\omega} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \end{split}$
总体	$rac{{\sigma_1}^2}{{\sigma_2}^2}$	$\mu_{\!\scriptscriptstyle 1},\mu_{\!\scriptscriptstyle 2}$ 未知	$ \left(\frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2}(n_1 - 1, n_2 - 1)}\right) $	$\frac{\frac{\sigma_1^2}{\sigma_2^2}}{\frac{\sigma_2^2}{\sigma_2^2}} = \frac{S_1^2}{S_2^2} \frac{1}{F_\alpha(n_1 - 1, n_2 - 1)}$ $\frac{\overline{\sigma_1^2}}{\sigma_2^2} = \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha}(n_1 - 1, n_2 - 1)}$

课时十三 练习题

- 1. 总体 X 服从 $N(\mu,100)$, $X_1,X_2\cdots X_{100}$ 是取自总体的简单随机样本且样本均值 $\overline{X}=10$,则 μ 的置信度为 0.95 的置信区间为多少。
- 2. 假设某校同学们概率统计成绩服从 $N(\mu,\sigma^2)$,现随机的抽取 25 位同学们测试得到的平均成绩为 78.5 分,方差为 9。(1)求 μ 的置信度为 0.95 的置信区间。(2)求 σ^2 的置信度为 0.95 的置信区间。($t_{0.025}(24)=2.6$ $\chi^2_{0.025}=39$ $\chi^2_{0.975}(24)=12$)
- 3. 设某种油漆的12样品,其干燥时间(以小时为单位): 10.1 10.3 10.4 10.5 10.2 9.7 9.8 10.1 10.0 9.9 9.8 10.3,假定干燥时间总体服从正态分布,试由此数据对该种油漆平均干燥时间置信水平为95%的区间估计。 $\left(t_{0.025}\left(11\right)=2.20\right)$

课时十四 假设检验

考点	重要程度	分值	常见题型
1. Z 检验			
2. t 检验	必考	10~12	 大
3. χ²检验	74. V		7070
4. 两类错误	***	0~3	选择、填空

常考的正态总体均值、方差的检验法(显著性水平为α)

		原假设 H_0	检验统计量	备择假设 <i>H</i> 1	拒绝域
		$\mu \le \mu_0$		$\mu > \mu_0$	$z \ge z_{\alpha}$
	(σ² 已知)	$\mu \ge \mu_0$	$Z = \frac{\overline{X} - u_0}{\sigma / \sqrt{n}}$	$\mu < \mu_0$	$z \le -z_{\alpha}$
检验均值		$\mu = \mu_0$		$\mu \neq \mu_0$	$ z \ge z_{\alpha/2}$
и		$\mu \leq \mu_0$		$\mu > \mu_0$	$t \ge t_{\alpha} (n-1)$
	(σ²未知)	$\mu \ge \mu_0$	$t = \frac{\overline{X} - u_0}{S / \sqrt{n}}$	$\mu < \mu_0$	$t \le -t_{\alpha} \left(n - 1 \right)$
		$\mu = \mu_0$		$\mu \neq \mu_0$	$ t \ge t_{\alpha/2} \left(n - 1 \right)$
		$\sigma^2 \le \sigma_0^1$		$\sigma^2 > \sigma_0^1$	$\chi^2 \ge \chi_\alpha^2 (n-1)$
检验方差 σ²	(μ未知)	$\sigma^2 \ge \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\sigma^2 < \sigma_0^2$	$\chi^2 \leq \chi^2_{1-\alpha} (n-1)$
		$\sigma^2 = \sigma_0^2$		$\sigma^2 eq \sigma_0^2$	$\begin{cases} \chi^2 \ge \chi^2_{\alpha/2} (n-1) \\ \\ \vec{叹} \chi^2 \le \chi^2_{1-\alpha/2} (n-1) \end{cases}$

1. Z 检验

某厂生产特种金属丝的折断力 $X \sim N\left(u,\sigma^2\right)$,已知 $\sigma=8N$,现从该厂生产的一大批特种金属丝中随机抽取16个样品,测得样本均值 $\overline{x}=572.2N$,问这批特种金属丝的平均折断力可否认为是 570N ?($\alpha=0.05$, $Z_{0.025}=1.96$)

解: ①假设 $H_0: u = u_0 = 570 H_1: u \neq u_0$

②检验统计量:
$$Z = \frac{\overline{X} - u_0}{\sigma / \sqrt{n}}$$
 拒绝域: $|Z| \ge Z_{\frac{\alpha}{2}}$

$$\Im \overline{x} = 572.2$$
 $u_0 = 570$ $\sigma = 8$ $n = 16$ $\alpha = 0.05$

$$|Z| = \left| \frac{\overline{x} - u_0}{\sigma / \sqrt{n}} \right| = \left| \frac{572.2 - 570}{8 / \sqrt{16}} \right| = 1.1$$

$$Z_{\frac{a}{2}} = Z_{0.025} = 1.96$$

假设检验:

- ①提出假设: H_0 和 H_1
- ②定类型,摆公式
- ③计算统计量和拒绝域
- ④定论、总结

④ $1.1 \not\succeq 1.96$,不在拒绝域内,故接受 H_0 ,即可以认为平均折断率力为570N。

2. t检验

某厂生产的某种电子元件的寿命 $X \sim N\left(u,\sigma^2\right)$,其中 u,σ^2 未知,取 25 个样本,得样本观察值 $x_1,x_2,...,x_{25}$, 计算得 $\overline{x}=1832$, $S^2=500^2$, 试问: 该厂的电子元件平均使用寿命在显著水平 $\alpha=0.02$ 下是否可以认为 u=2000(h) ? $\left(t_{0.01}\left(24\right)=2.49\right)$

解: ①假设 $H_0: u = u_0 = 2000 H_1: u \neq u_0$

②检验统计量:
$$t = \frac{\overline{X} - u_0}{S/\sqrt{n}}$$
 拒绝域: $|t| \ge t_{\frac{\alpha}{2}}(n-1)$

$$\Im \overline{x} = 1832$$
 $u_0 = 2000$ $S = 500$ $n = 25$ $\frac{\alpha}{2} = 0.01$

$$|t| = \left| \frac{1832 - 2000}{500 / \sqrt{25}} \right| = 1.68$$
 $t_{\frac{\alpha}{2}}(n-1) = t_{0.01}(24) = 2.49$

④ $1.68 \not\ge 2.49$,故不在拒绝域内,接受 H_0 ,即可以认为平均寿命为2000h。

3. χ² 检验

某厂生产电池寿命 $X \sim N(u,5000)$,现有一批电池,从它的生产情况来看,寿命波动有所改变,现随机取 26 节电池,测得其寿命方差 $S^2 = 9200$,问根据这一数据能否推断这批电池的寿命波动性较以往有显著的变化?($\alpha = 0.02$ $\chi^2_{001}(25) = 44.314$, $\chi^2_{0.99}(25) = 11.525$)

解: ①假设 H_0 : $\sigma^2 = \sigma_0^2 = 5000 H_1$: $\sigma^2 \neq \sigma_0^2$

②检验统计量:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
拒绝域: $\chi^2 \ge \chi_{\frac{\alpha}{2}}^2(n-1)$ 或 $\chi^2 \le \chi_{\frac{1-\alpha}{2}}^2(n-1)$

(3)
$$n-1=25$$
 $S^2=9200$ $\sigma_0^2=5000$ $\alpha=0.02$ $\frac{\alpha}{2}=0.01$ $\chi^2=\frac{25\times 9200}{5000}=46$ $\chi^2_{0.01}(25)=44.314$ $\chi^2_{0.99}(25)=11.525$

④ $46 \ge 44.314$,故在拒绝域内,拒绝 H_0 ,接受 H_1 ,即可以推断这批电池寿命波动性较以前有显著变化。

4. 两类错误

 H_0 为真,否定了 H_0 ,第一类错误:"弃真",概率为 α

 H_0 为假,接受了 H_0 ,第二类错误:"取伪",概率为 β

题 1. 在假设检验中, α , β 分别代表第一类和第二类错误概率,则当样本容量n一定时,下列说法正确的是(D)

- $A. \alpha$ 减小, β 也减小 $B. \alpha$ 增大, β 也增大
- C.A和B同时成立 $D.\alpha$ 和 β 一个减小,另一个往往增大

题 2. 在假设检验中, H_0 表示原假设, H_1 为备择假设,则犯第一类错误的是(A)

- $A.H_0$ 为真, 拒绝了 $H_0B.H_0$ 为假, 拒绝了 H_0
- $C.H_0$ 为真,接受了 $H_0D.H_0$ 为假,接受了 H_0

	原假设 H_0	检验统计量	备择假设 <i>H</i> 1	拒绝域
u检	$\mu \le \mu_0$ $\mu \ge \mu_0$ $\mu = \mu_0$ $(\sigma^2 已知)$	$Z = \frac{\overline{X} - u_0}{\sigma / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z \ge z_{\alpha/2}$
<u>验</u>	μ≤μ ₀ μ≥μ ₀ μ=μ ₀ (σ²未知)	$t = \frac{\overline{X} - u_0}{S / \sqrt{n}}$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$t \ge t_{\alpha}(n-1)$ $t \le -t_{\alpha}(n-1)$ $ t \ge t_{\alpha/2}(n-1)$
σ检 验	$\sigma^{2} \leq \sigma_{0}^{1}$ $\sigma^{2} \geq \sigma_{0}^{2}$ $\sigma^{2} = \sigma_{0}^{2}$ (μ 未知)	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\sigma^2 > \sigma_0^1 \sigma^2 \neq \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$\chi^{2} \ge \chi_{\alpha}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\alpha}^{2}(n-1)$ $\chi^{2} \ge \chi_{\alpha/2}^{2}(n-1)$ 或 $\chi^{2} \le \chi_{1-\alpha/2}^{2}(n-1)$
4	$\mu_{1} - \mu_{2} \le \delta$ $\mu_{1} - \mu_{2} \ge \delta$ $\mu_{1} - \mu_{2} = \delta$ $(\sigma_{1}^{2}, \sigma_{2}^{2} 已知)$	$Z = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\mu_{1} - \mu_{2} > \delta$ $\mu_{1} - \mu_{2} < \delta$ $\mu_{1} - \mu_{2} \neq \delta$	$z \ge z_{\alpha}$ $z \le -z_{\alpha}$ $ z \ge z_{\alpha/2}$
5	$\mu_{1} - \mu_{2} \le \delta$ $\mu_{1} - \mu_{2} \ge \delta$ $\mu_{1} - \mu_{2} = \delta$ $(\sigma_{1}^{2} = \sigma_{2}^{2} = \sigma^{2} 未知)$	$t = \frac{\overline{X} - \overline{Y} - \delta}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_{\omega}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$\mu_{1} - \mu_{2} > \delta$ $\mu_{1} - \mu_{2} < \delta$ $\mu_{1} - \mu_{2} \neq \delta$	$t \ge t_{\alpha} \left(n_1 + n_2 - 2 \right)$ $t \le -t_{\alpha} \left(n_1 + n_2 - 2 \right)$ $ t \ge t_{\alpha/2} \left(n_1 + n_2 - 2 \right)$
6	$\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$ $\sigma_1^2 = \sigma_2^2$ $(\mu_1, \mu_2 未知)$	$F = \frac{S_1^2}{S_2^2}$	$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$	$F \ge F_{\alpha} \left(n_1 - 1, n_2 - 1 \right)$ $F \le F_{1-\alpha} \left(n_1 - 1, n_2 - 1 \right)$ $F \ge F_{\alpha/2} \left(n_1 - 1, n_2 - 1 \right)$ $F \le F_{1-\alpha/2} \left(n_1 - 1, n_2 - 1 \right)$
7	μ _D ≤ 0 μ _D ≥ 0 μ _D = 0 (成对数据)	$t = \frac{\overline{D} - 0}{S_D / \sqrt{n}}$	$\mu_D > 0$ $\mu_D < 0$ $\mu_D \neq 0$	$t \ge t_{\alpha} (n-1)$ $t \le -t_{\alpha} (n-1)$ $ t \ge t_{\alpha/2} (n-1)$

课时十四 练习题

- 1. 已知某炼铁厂铁水含碳量服从正态分布 $N(4.55,0.108^2)$,现在测定了 9 炉铁水,其平均含碳量为 4.84 ,如果方差没有变化,可否认为现在生产之铁水平均含碳量仍为 4.55 ? $(\alpha=0.05 \quad z_{0.025}=1.96)$
- 2. 自动包装机加工袋装食盐,每袋盐的净重 $X \sim N\left(\mu, \sigma^2\right)$ (μ, σ 未知) 按规定每袋盐的标准 重量为 500 克,某天为检查机器的工作情况,随机的抽取 9 袋,测得样品均值 \bar{X} = 499 克,样 品标准差为 16 克,问:包装机的工作是否正常 (α = 0.05, $t_{\alpha/2}$ (8) = 2.306)
- 3. 在以 H_0 为原假设的假设检验中,犯第二类错误指的是()

- D. 当 H_0 为假时,接受了 H_0

课时一练习题答案

1. 设事件 $A \setminus B$ 互不相容,已知P(A) = 0.4,P(B) = 0.5,则 $P(\bar{A} \cdot \bar{B}) =$ _____,若 $A \setminus B$ 独立,

则 $P(A \cup B) = \underline{\hspace{1cm}}$

解: $P(\overline{A} \cdot \overline{B}) = P(\overline{A \cup B})$: A = B 五不相容 $\Rightarrow P(AB) = 0$

$$\therefore P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - P(A) - P(B) + P(AB) = 1 - 0.4 - 0.5 + 0 = 0.1$$

若 A 与 B 相互独立 $\Rightarrow P(AB) = P(A) \cdot P(B)$

$$P(A \cup B) = P(A) + P(B) - P(AB) = P(A) + P(B) - P(A) \cdot P(B) = 0.4 + 0.5 - 0.4 \times 0.5 = 0.7$$

2. 已知A、B是两个独立的事件,其中P(A)=0.7,P(B)=0.3,则 $P(A \cap B)$ =_____

解: :: A 与 B 相互独立 $:: P(A \cap B) = P(A)P(B) = 0.7 \times 0.3 = 0.21$

3. 已知 P(A)=0.5, P(A∪B)=0.7, 若 A、B 独立, 则 P(B)=_

解: $: A \ni B$ 相互独立 $\Rightarrow P(AB) = P(A)P(B)$

$$P(A \cup B) = P(A) + P(B) - P(AB) = P(A) + P(B) - P(A)P(B) = 0.5 + P(B) - 0.5P(B) = 0.7$$

 $\Rightarrow P(B) = 0.4$

4. A、B 为随机事件,若 P(A∪B)=0.5 , P(A)=0.3 , 则 P(B-A)=_____

M: $P(A \cup B) = P(A) + P(B) - P(AB) = 0.5$

$$P(B) - P(AB) = 0.5 - P(A) = 0.5 - 0.3 = 0.2$$

$$\therefore P(B-A) = P(B) - P(AB) = 0.2$$

5. 甲袋中有4只红球,有6只白球,乙袋中有6只红球,10只白球,现从两袋中各任取1球,

则2个球颜色相同的概率是(C)

$$A. \frac{6}{40}$$
 $B. \frac{15}{40}$ $C. \frac{21}{40}$ $D. \frac{19}{40}$

解:分别从两袋中各任取一个球,有 $C_{10}^1 \cdot C_{16}^1$ 种方法

取得都是红球,有4×6种取法

$$\therefore P = \frac{4 \times 6 + 6 \times 10}{C_{10}^{1} \cdot C_{16}^{1}} = \frac{84}{160} = \frac{21}{40}$$

取得都是白球,有6×10种取法

- 6. 甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为 0.3 和 0.4 ,则飞机至少被击中一炮的概率为?
- 解: 该事件的对立事件是没有被炮弹击中

设事件为A,则 $P(A)=1-P(\overline{A})$

$$P(\overline{A}) = (1-0.3) \times (1-0.4) = 0.7 \times 0.6 = 0.42$$

$$\therefore P(A) = 1 - 0.42 = 0.58$$

7. 掷 2 颗均匀的骰子,两个点数之和为 7 的概率为

解: 掷两颗均匀的骰子, 一共有6×6=36种排法

两个点数之和为7有:(1,6);(6,1);(5,2);(2,5);(3,4);(4,3)的6种排法

$$P = \frac{6}{6 \times 6} = \frac{1}{6}$$

8. 设随机变量 $A \ni x \in (-5,7)$ 上的均匀分布,则关于 x 的方程 $9x^2 + 6Ax + A + 6 = 0$ 有实根的概率为?

解:
$$\Delta = (6A)^2 - 4 \times 9 \times (A+6) \ge 0$$

 $\Rightarrow A \le -2$ 或 $A \ge 3$
 $\therefore P\{-5 < A \le -2, 3 \le A < 7\} = \frac{7}{12}$

课时二 练习题答案

已知P(A) = 0.8, P(B) = 0.4, 且 $A \supset B$, 则P(B|A) =______

#:
$$: B \subset A : P(AB) = P(B)$$
 $P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(B)}{P(A)} = \frac{0.4}{0.8} = \frac{1}{2}$

设A、B是两个随机事件,且 $0 < P(A) < 1, P(B) > 0, P(B|A) = P(B|\overline{A})$,则必有()

$$A. \quad P(A|B) = P(\overline{A}|B)$$

$$B. \quad P(B|A) = P(\overline{A}|B)$$

$$C. P(AB) = P(A)P(B)$$

C.
$$P(AB) = P(A)P(B)$$
 D. $P(AB) \neq P(A)P(B)$

答案:
$$C$$

$$P(B|A) = \frac{P(AB)}{P(A)} = P(B|\overline{A}) = \frac{P(\overline{AB})}{P(\overline{A})} = \frac{P(B) - P(AB)}{1 - P(A)}$$
$$\frac{P(AB)}{P(A)} = \frac{P(B) - P(AB)}{1 - P(A)} \Rightarrow P(AB) = P(A)P(B)$$

3. 设A,B满足P(B|A)=1则()

(A)
$$A$$
 是必然事件 (B) $P(B|\overline{A}) = 0$ (C) $A \supset B$ (D) $P(A) \le P(B)$

(C)
$$A\supset B$$

(D)
$$P(A) \leq P(B)$$

解:
$$P(B|A) = \frac{P(AB)}{P(A)} = 1 \Rightarrow P(AB) = P(A) \Rightarrow A \subset B \Rightarrow P(A) \le P(B)$$
 答案为 D

仓库中有10箱同种规格的产品,其中2箱、3箱、5箱分别由甲、乙、丙三个厂生产,三 个厂的正品率分别为0.7,0.8,0.9, 现在从这10箱产品中任取一箱, 再从中任取一件

- (1) 求取出的产品为正品的概率
- (2)如果取出的是正品,求此件产品由乙厂生产的概率

解: (1)设事件 A 为取出正品, B_1 为甲厂生产, B_2 为乙厂生产, B_3 为丙厂生产

$$P(B_1) = 0.2$$
 $P(B_2) = 0.3$ $P(B_3) = 0.5$

$$P(B_2) = 0.3$$

$$P(B_3) = 0.5$$

$$P(A|B_1) = 0.7$$

$$P(A|B_1) = 0.7$$
 $P(A|B_2) = 0.8$ $P(A|B_3) = 0.9$

$$P(A|B_3) = 0.9$$

$$\therefore P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$$

$$=0.2\times0.7+0.3\times0.8+0.5\times0.9=0.83$$

(2)
$$P(B_2|A) = \frac{P(B_2)P(A|B_2)}{P(A)} = \frac{0.3 \times 0.8}{0.83} = \frac{24}{83}$$

5. 某保险公司把被保险人分为3类:"谨慎的"、"一般的"、"冒失的",统计资料表明,这3

种人在一年内发生事故的概率依次为0.05,0.15,0.30;如果"谨慎的"被保险人占20%,

"一般的占50%,"冒失的"占30%,问:

- (1)一个被保险人在一年内出事故的概率是多大?
- (2) 若已知某被保险人出了事故,求他是"谨慎的"类型的概率。

解: (1)设事件 A 为一个被保险人在一年内发生事故

 B_1 为被保险人是"谨慎的", B_2 为被保险人是"一般的", B_3 为被保人是"冒失的"

$$P(B_1) = 20\%$$
 $P(B_2) = 50\%$ $P(B_3) = 30\%$

$$P(A|B_1) = 0.05$$
 $P(A|B_2) = 0.15$ $P(A|B_3) = 0.3$

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)$$
$$= 20\% \times 0.05 + 50\% \times 0.15 + 30\% \times 0.3 = 0.175$$

(2)
$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{P(A)} = \frac{20\% \times 0.05}{17.5\%} = \frac{2}{35}$$

课时三 练习题答案

设随机变量 X 的分布律如下: 求: (1) X 的分布函数; (2) $P\{1 \le X < 3\}$

解: (1)当x < -1时,F(x) = 0

$$\underline{ } \underline{ } -1 \le x < 1$$
 时, $F(x) = 0.2$

X	-1	1	2	3
P	0.2	0.3	0.1	0.4

当
$$2 \le x < 3$$
 时, $F(x) = 0.2 + 0.3 + 0.1 = 0.6$

当
$$x$$
≥3时, $F(x)$ =1

$$\Rightarrow F(x) = \begin{cases} 0 & x < -1 \\ 0.2 & -1 \le x < 1 \\ 0.5 & 1 \le x < 2 \\ 0.6 & 2 \le x < 3 \\ 1 & x \ge 3 \end{cases}$$

(2)
$$P\{1 \le X < 3\} = P\{X = 1\} + P\{X = 2\} = 0.3 + 0.1 = 0.4$$

2. 离散型随机变量
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < -2 \\ 0.35, & -2 \le x < 0 \\ 0.6, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$, $Y = |X + 1|$, 求 Y 的分布律。

M: X 的分布律

X	-2	0	1	Y= X+1	Y	1	1	2	合并 、	Y	1	2
<i>P</i>	0.35	0.25	0.4	,	P	0.35	0.25	0.4	─	P	0.6	0.4

3. 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} x & 0 \le x < 1 \\ 2 - x & 1 \le x < 2 \\ 0 & 其他 \end{cases}$

求: (1)
$$X$$
 的分布函数 $F(x)$

(2)
$$RP\left\{1 < X < \frac{3}{2}\right\}$$

解: (1) 当 x < 0 时, F(x) = 0

当
$$0 \le x < 1$$
 时, $F(x) = \int_0^x x dx = \frac{x^2}{2}$

当 $1 \le x < 2$ 时, $F(x) = \int_0^1 x dx + \int_1^x (2-x) dx = 2x - \frac{x^2}{2} - 1$

⇒ $F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{2} & 0 \le x < 1 \\ 2x - \frac{x^2}{2} - 1 & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$

当 $x \ge 2$ 时,F(x) = 1

(2)
$$P\left\{1 < X < \frac{3}{2}\right\} = F\left(\frac{3}{2}\right) - F\left(1\right) = \frac{7}{8} - \frac{1}{2} = \frac{3}{8}$$

4. 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{x}{2} & 0 < x < A \\ 0 &$ 其他

- (1)常数 A
- (2) 分布函数 F(x) (3) $P\left\{-1 < X < \frac{1}{2}\right\}$

解: (1)
$$\int_0^A f(x) dx = \int_0^A \frac{x}{2} dx = \left[\frac{x^2}{4}\right]_0^A = \frac{A^2}{4} = 1$$
 $\Rightarrow A = 2$ 或 $A = -2$ (含去)

(2) 当 $x \le 0$ 时, F(x) = 0

当
$$0 \le x < 2$$
 时, $F(x) = \int_0^x \frac{x}{2} dx = \frac{x^2}{4}$

当
$$0 \le x < 2$$
 时, $F(x) = \int_0^x \frac{x}{2} dx = \frac{x^2}{4}$ $\Rightarrow F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{4} & 0 < x < 2 \\ 1 & x \ge 2 \end{cases}$

$$x \ge 2$$
 时, $F(x) = 1$

(3)
$$P\left\{-1 < X < \frac{1}{2}\right\} = F\left(\frac{1}{2}\right) - F\left(-1\right) = \frac{1}{16} - 0 = \frac{1}{16}$$

5. 设随机变量
$$X$$
 的概率密度为 $f_x(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0 &$ 其他 ,若 $Y = 1 - e^{-2x}$,求 Y 的概率密度 $f_Y(y)$ 。

M:
$$x > 0 \Rightarrow y = 1 - e^{-2x} \in (0,1)$$

$$x = -\frac{1}{2}\ln(1-y)$$
 $x' = \frac{1}{2(1-y)}$

$$f_Y(y) = f_X\left(-\frac{1}{2}\ln(1-y)\right) \cdot \frac{1}{2(1-y)} = 2e^{-2\times\left[-\frac{1}{2}\ln(1-y)\right]} \cdot \frac{1}{2(1-y)}$$

$$=2e^{\ln(1-y)}\cdot\frac{1}{2(1-y)}=2(1-y)\cdot\frac{1}{2(1-y)}=1$$

$$e^{\ln A} = A$$

$$\therefore f_Y(y) = \begin{cases} 1 & (0 < y < 1) \\ 0 & 其他 \end{cases}$$

练习题答案 课时四

1. 设随机变量 $X \sim b(3,0.1)$, 则 P(X > 2) = 0.001。

解:
$$P\{X > 2\} = 1 - P\{X \le 2\} = 1 - P\{X = 0\} - P\{X = 1\} - P\{X = 2\}$$

= $1 - \left[C_3^0 \left(0.9\right)^3 \left(0.1\right)^0 + C_3^1 \left(0.9\right)^2 \left(0.1\right)^1 + C_3^2 \left(0.9\right)^1 \left(0.1\right)^2\right]$
= $1 - 0.999 = 0.001$

2. 设随机变量 X 服从 $N(27,0.2^2)$ 分布,则其渐近线在(C)处

$$A. x = 27 B. y = 27 C. y = 0 D. x = 0$$

解:如图,明显看出渐近线为y=0。

3. 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上的均匀分布的概率密度,

$$f(x) = \begin{cases} af_1(x), & x \le 0 \\ bf_2(x), & x > 0 \end{cases}$$
 (a > 0,b > 0) 为随机变量的概率密度,则 a,b 应满足(A)

$$A \cdot 2a + 3b = 4$$
 $B \cdot 3a + 2b = 4$

$$R 3a + 2b = 4$$

$$C \cdot a + b = 1$$

$$D \cdot a + b = 2$$

解:
$$f_1(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \left(-\infty < x < +\infty\right) f_2(x) = \begin{cases} \frac{1}{4}, & -1 \le x \le 3\\ 0, & 其他 \end{cases}$$

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} a f_1(x) dx + \int_{0}^{+\infty} b f_2(x) dx = 1$$

$$\Rightarrow a \int_{-\infty}^{0} f_1(x) dx + b \int_{0}^{3} \frac{1}{4} dx = \frac{1}{2} a + \frac{3}{4} b = 1 \Rightarrow 2a + 3b = 4$$

4. 若 $X \sim U(0,a)$,则概率密度 $f(x) = \begin{cases} \frac{1}{a} & 0 < x < a \\ 0 & \text{其他} \end{cases}$,分布函数值 $F(a) = \underline{1}$ _。

解: ①当x < 0时, F(x) = 0

- ③当 $x \ge a$ 时, F(x) = 1 : F(a) = 1
- 5. 设随机变量 X 服从 N(4,4) 分布,满足 $P\{X < a\} = P\{X \ge a\}$,则 a = (C)
 - A.0 B.2
- C.4
- D.5

解:提示:画图,关于 u 对称

6. 设 $X \sim N(1,1)$, 且 $\Phi(1) = 0.8413$, 则 $P\{0 < X < 2\} = 0.6826$ 。

解:
$$P{0 < X < 2} = \Phi\left(\frac{2-1}{1}\right) - \Phi\left(\frac{0-1}{1}\right) = \Phi(1) - \Phi(-1)$$

= $\Phi(1) - \left[1 - \Phi(1)\right] = 2\Phi(1) - 1$
= $2 \times 0.8413 - 1 = 0.6826$

7. X = Y 相互独立且都服从泊松分布 $\pi(\lambda)$,则 X + Y 服从的分布为 $\pi(2\lambda)$ 。

解:参考讲义泊松分布题 2

课时五 练习题答案

1. 已知二维随机变量(X, Y)的联合分布律: 要使 $X \times Y$ 相互独立,则 α , β 的值为

#: $\alpha + \beta + \frac{1}{2} + \frac{1}{4} = 1$

Y	1	2	
0	0.5	0.25	0.75
1	α	β	

:: X、Y 相互独立

$$\Rightarrow P\{X = 0, Y = 1\} = P\{X = 0\} P\{Y = 1\}$$

$$\alpha + 0.5$$

$$=0.75 \cdot (\alpha + 0.5) = 0.5$$

② 由①②解得:
$$\alpha = \frac{1}{6}$$
, $\beta = \frac{1}{12}$

2. 设二位随机变量(X,Y)的分布律,则P(X+Y=1)=()

A.0.3

B.0.1

C.0.2

D.0.4

Y	-1	0	1
0	0.1	0.2	0.2
1	0.3	0.1	0.1

解:
$$P\{X+Y=1\}=P\{X=0,Y=1\}+P\{X=1,Y=0\}=0.2+0.1=0.3$$
 选A

- 3. 加油站有两套用来加油的设备,设备 A 是工作人员操作的,设备 B 是顾客自已操作的, A、B 均装有两根加油软管,任取一时间, A、B 正在使用的软管数分别为 X、Y, X、Y 的联合分布律为下表,求:
 - (1) $P(X \le 1, Y \le 1)$
 - (2)至少有一根软管在使用的概率 P

(3)
$$P\{X = Y\}$$

60

(4)
$$P\{X+Y=2\}$$

Y	0	1	2
0	0.1	0.08	0.06
1	0.04	0.2	0.14
2	0.02	0.06	0.3

解: (1)
$$P(X \le 1, Y \le 1) = P\{X = 0, Y = 0\} + P\{X = 0, Y = 1\} + P\{X = 1, Y = 0\} + P\{X = 1, Y = 1\}$$

= 0.1+0.08+0.04+0.2 = 0.42

(2)
$$P = 1 - P\{X = 0, Y = 0\} = 1 - 0.1 = 0.9$$

(3)
$$P\{X = Y\} = P\{X = Y = 0\} + P\{X = Y = 1\} + P\{X = Y = 2\}$$

= 0.1 + 0.2 + 0.3 = 0.6

(4)
$$P\{X+Y=2\} = \{X=0, Y=2\} + \{X=2, Y=0\} + \{X=1, Y=1\}$$

$$= 0.06 + 0.02 + 0.2 = 0.28$$

二维随机变量(X,Y)的联合分布列见右表,求 $Z = \max(X,Y)$ 的分布列

X	1	2	3
1	$\frac{1}{9}$	$\frac{1}{6}$	$\frac{1}{6}$
2	$\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{9}$

$$\mathbf{M}: P\{Z = \max\{X,Y\} = 1\} = \frac{1}{9}$$

$$P\{Z=2\} = P\{X=2, Y=1\} + P\{X=2, Y=2\} + P\{X=1, Y=2\} = \frac{1}{9} + \frac{1}{3} + \frac{1}{6} = \frac{11}{18}$$

$$P{Z=3} = P{X=1,Y=3} + P{X=2,Y=3} = \frac{1}{6} + \frac{1}{9} = \frac{5}{18}$$

Z	1	2	3
P	$\frac{1}{9}$	$\frac{11}{18}$	$\frac{5}{18}$

5. 设 A、B 为 两 个 随 机 事 件 , $P\{A\} = 0.25, P\{B|A\} = 0.5, P\{A|B\} = 0.25$,令 随 机 变 量

$$X = \begin{cases} 1 & A$$
 发生 $Y = \begin{cases} 1 & B$ 发生 $0 & B$ 不发生

(1) 求
$$(X,Y)$$
的联合分布律 (2) 求 $P\{X^2+Y^2=1\}$

#:
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(AB)}{0.25} = 0.5 \Rightarrow P(AB) = \frac{1}{8}$$

$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{\frac{1}{8}}{P(B)} = \frac{1}{4} \Rightarrow P(B) = \frac{1}{2}$$

(1)
$$P\{X=0,Y=0\} = P(\overline{A} \cdot \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - \frac{1}{4} - \frac{1}{2} + \frac{1}{8} = \frac{3}{8}$$

$$P\{X = 0, Y = 1\} = P(\overline{AB}) = P(B) - P(AB) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}$$

$$P\{X=1,Y=0\} = P(A\overline{B}) = P(A) - P(AB) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}$$

$$P\{X=1,Y=1\}=P(AB)=\frac{1}{8}$$

(2)
$$P\{X^2 + Y^2 = 1\} = P\{X = 0, Y = 1\} + P\{X = 1, Y = 0\}$$

$$=\frac{3}{8}+\frac{1}{8}=\frac{4}{8}=\frac{1}{2}$$

Y	0	1
0	$\frac{3}{8}$	$\frac{3}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$

课时六 练习题答案

题1. 设
$$(X,Y)$$
的联合概率密度是 $f(x,y) = \begin{cases} ke^{-(3x+4y)} & x>0 & y>0 \\ 0 & \text{其他} \end{cases}$

- (2) X 与 Y 的边缘分布,并确定是否独立,为什么?
- (3) $P\{0 < X \le 1, 0 < Y \le 1\}$

(3)
$$P\{0 < X \le 1, 0 < Y \le 1\}$$

 \mathbf{M} : (1) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$

$$\int_{0}^{+\infty} dx \int_{0}^{+\infty} k e^{-(3x+4y)} dy = \int_{0}^{+\infty} \left[-\frac{1}{4} k e^{-(3x+4y)} \right]_{0}^{+\infty} dx$$

$$= \int_0^{+\infty} \frac{1}{4} k e^{-3x} dx = -\frac{1}{12} k e^{-3x} \Big|_0^{+\infty}$$
$$= \frac{1}{12} k = 1 \qquad \Rightarrow k = 12$$

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{+\infty} 12e^{-3x-4y} dy = \begin{cases} 3e^{-3x} & x > 0\\ 0 & x \le 0 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{+\infty} 12e^{-3x-4y} dx = \begin{cases} 4e^{-4y} & y > 0\\ 0 & y \le 0 \end{cases}$$

$$\therefore f_X(x)f_Y(y) = f(x,y)$$
 $\therefore X 与 Y$ 相互独立

(3)
$$P\{0 < x \le 1, 0 < y \le 1\} = \int_0^1 3e^{-3x} dx \int_0^1 4e^{-4y} dy = (1 - e^{-3})(1 - e^{-4})$$

题 2. 设二维连续型随机变量(X,Y)的联合概率密度函数为: $f(x,y) = \begin{cases} 2 & 0 \le x \le 1 & x \le y \le 1 \\ 0 & \text{其他} \end{cases}$

求: (1) 关于 X 和 Y 的边缘密度函数 $f_X(x)$ 和 $f_Y(y)$

- (2) R $P\{X + Y \le 1\}$
- (3) X与Y是否独立,为什么?

解: (1) $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{x}^{1} 2 dy = \begin{cases} 2(1-x) & 0 \le x \le 1\\ 0 & 其他 \end{cases}$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{y} 2 dx = \begin{cases} 2y & 0 \le y \le 1 \\ 0 & \text{ 其他} \end{cases}$$

题 3. 设 X 和 Y 相互独立, X 在 (0,1) 上服从均匀分布, $f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}} & y > 0 \\ 0 & \text{其他} \end{cases}$

- (1) X和Y的联合概率密度
- (2) 二次方程 $a^2 + 2Xa + Y^2 = 0$ 有实根的概率

解: (1)
$$f_X(x) = \begin{cases} 1 & (0 < x < 1) \\ 0 & 其他 \end{cases}$$
 $f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}} & y > 0 \\ 0 & y \le 0 \end{cases}$

$$:: X 与 Y 相互独立 \Rightarrow f(x,y) = f_X(x) f_Y(y) = \begin{cases} \frac{1}{2} e^{-\frac{y}{2}} & (0 < x < 1, y > 0) \\ 0 & 其他 \end{cases}$$

(2)
$$\Delta = (2X)^2 - 4Y^2 \ge 0 \Rightarrow X^2 \ge Y^2$$

$$P\left\{Y^{2} \le X^{2}\right\} = \int_{0}^{1} dx \int_{0}^{x} \frac{1}{2} e^{-\frac{y}{2}} dy = \int_{0}^{1} \left(1 - e^{-\frac{x}{2}}\right) dx = 1 - \left(2 - 2e^{-\frac{1}{2}}\right) = 2e^{-\frac{1}{2}} - 1$$

课时七 练习题答案

别如下,求Z = X + Y的概率密度。 设X和Y是相互独立的随机变量

$$f_{X}(x) = \begin{cases} e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad f_{Y}(y) = \begin{cases} \frac{1}{2} & 0 \le y < 2 \\ 0 & \text{其他} \end{cases}$$

M:
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

$$X$$
 与 Y 独立 \Rightarrow $f(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{2}e^{-2x} & x > 0 \ 0 \le y < 2 \\ 0 & 其他 \end{cases}$

$$f(x,z-x) = \frac{1}{2}e^{-2x}$$
 $(x>0 \ 0 \le y < 2)$

$$\begin{cases} x > 0 \\ 0 \le y < 2 \end{cases} \Rightarrow \begin{cases} x > 0 \\ 0 \le z - x < 2 \end{cases} \Rightarrow \begin{cases} x > 0 \\ z - 2 < x \le z \end{cases}$$

$$z-2$$
 $z = 0$

$$z \le 0 \quad f_Z(z) = 0$$

$$z-2 \ 0 \ z$$

$$\begin{cases} z > 0 \\ z - 2 < 0 \end{cases} \Rightarrow 0 < z < 2 \text{ 时,积分区间 } x : 0 \to z$$

$$f_{z}(z) = \int_{0}^{z} \frac{1}{z} e^{-2x} dx = \frac{1}{z} (1 - e^{-2z})$$

$$f_z(z) = \int_0^z \frac{1}{2} e^{-2x} dx = \frac{1}{4} (1 - e^{-2z})$$

$$z-2 \ge 0 \Rightarrow z \ge 2$$
 时,积分区间 $x: z-2 \to z$

$$f_Z(z) = \int_{z-2}^{z} \frac{1}{2} e^{-2x} dx = \frac{1}{4} (e^{4-2z} - e^{-2z})$$

综上:
$$f_z(z) = \begin{cases} 0 & z \le 0 \\ \frac{1}{4}(1 - e^{-2z}) & 0 < z < 2 \\ \frac{1}{4}(e^{4-2z} - e^{-2z}) & z \ge 2 \end{cases}$$

2. 设随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 1 & 0 < x < 1 & 0 < y < 1 \\ 0 & 其他 \end{cases}$, 求Z = XY的概率密度。

M:
$$f_{XY}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx$$
 $\frac{1}{|x|} f\left(x, \frac{z}{x}\right) = \frac{1}{x}$

$$\begin{cases} 0 < x < 1 \\ 0 < y < 1 \end{cases} \Rightarrow \begin{cases} 0 < x < 1 \\ 0 < \frac{z}{x} < 1 \end{cases} \Rightarrow \begin{cases} 0 < x < 1 \\ 0 < z < x \end{cases}$$

$$z \ge 1$$
时, $f_Z(z) = 0$

$$0 < z < 1$$
 时,积分区间 $x: z \to 1$

$$f_Z(z) = \int_z^1 \frac{1}{x} dx = -\ln z$$

$$z \le 0$$
, $f_Z(z) = 0$

综上:
$$f_z(z) = \begin{cases} -\ln z & 0 < z < 1 \\ 0 & 其他 \end{cases}$$

3. 设 X_1, X_2, X_3, X_4 相互独立且具有相同分布F(x),

①
$$Z = \max\{X_1, X_2, X_3, X_4\}$$
 的分布函数为 $\left[F(z)\right]^4$;

②
$$Z = \min\{X_1, X_2, X_3, X_4\}$$
的分布函数为 $1 - [1 - F(z)]^4$ 。

M: ①
$$F_Z(z) = P\{Z \le z\} = P\{\max\{X_1, X_2, X_3, X_4\} \le z\} = P\{X_1 \le z, X_2 \le z, X_3 \le z, X_4 \le z\}$$

 $:: X_1, X_2, X_3, X_4$ 相互独立

$$\therefore F_{Z}(z) = F_{X_{1}}(z) \cdot F_{X_{2}}(z) \cdot F_{X_{3}}(z) \cdot F_{X_{4}}(z) = [F(z)]^{4}$$

课时八 练习题答案

1. 设随机变量 X 服从均匀分布 U(-3,4),则数学期望 E(2X+1) =____

#:
$$X \sim U(-3,4)$$
 $E(X) = \frac{-3+4}{2} = \frac{1}{2}$ $E(2X+1) = 2E(X)+1 = 2 \times \frac{1}{2}+1 = 2$

2. 设
$$X$$
 的分布函数为 $F(x) = \begin{cases} 1 - e^{-\frac{x}{4}} & x > 0 \\ 0 & \text{其它} \end{cases}$, 则 $E(X) = \underline{\qquad}$

解:
$$f(x) = F'(X) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}} & x > 0 \\ 0 &$$
其它
$$X \sim E\left(\frac{1}{4}\right) & E(X) = 4 \end{cases}$$

3. 如果随机变量 X 服从()的均匀分布,必满足 E(X)=8,D(X)=3

$$A [0,6]$$
 B [1,4] C [5,11] D [-1,9]

解:
$$\begin{cases} E(X) = \frac{a+b}{2} = 8 \\ D(X) = \frac{(b-a)^2}{12} = 3 \end{cases} \Rightarrow \begin{cases} a=5 \\ b=11 \end{cases}$$
 答案选 C

4. 设 X 服从参数为 λ 的指数分布,则 X 的方差Var(X) = ()

$$A \lambda \qquad B \frac{1}{\lambda} \qquad C \frac{1}{\lambda^2} \qquad D \sqrt{\lambda}$$

解: 答案
$$C$$
 $X \sim E(\lambda)$ $E(X) = \frac{1}{\lambda}$ $D(X) = \frac{1}{\lambda^2}$

5. 若 DX = DY = 2 且 X 与 Y 相互独立,则 D(X-3Y) = ___

M:
$$D(X-3Y) = D(X) + 9D(Y) = 2 + 9 \times 2 = 20$$

6. 设随机变量 X, Y 相互独立,且E(X)=2, E(Y)=1, D(X)=3,则E(X(X+Y-2))=__.

解:
$$E(X(X+Y-2)) = E(X^2 + XY - 2X) = E(X^2) + E(XY) - E(2X)$$

= $D(X) + E^2(X) + E(X)E(Y) - 2E(X)$
= $3 + 4 + 2 \times 1 - 2 \times 2 = 5$

7. 若随机变量X, Y相互独立,则()

A.
$$D(XY) = D(X)D(Y)$$

B.
$$D(2X+Y) = 2D(X) + D(Y)$$

C.
$$D(2X+3Y)=4D(X)+9D(Y)$$
 D. $D(X-Y)=D(X)-D(Y)$

$$D. D(X-Y) = D(X) - D(Y)$$

解: 造 C 。 X , Y 独立 Cov(X,Y) = 0 , $D(aX + bY) = a^2D(X) + b^2D(Y)$

已知随机变量 X 的分布律为 $P\{X=1\}=0.2, P\{X=3\}=5C, P\{X=5\}=3C$, 求:

- 1) 求常数 C
- 2) X 的数学期望和方差

解: 由
$$0.2+5c+3c=1$$
 得 $c=0.1$

$$E(X) = 1 \times 0.2 + 3 \times 0.5 + 5 \times 0.3 = 3.2$$

X	1	3	5
P	0.2	0.5	0.3

$$E(X^2) = 1 \times 0.2 + 9 \times 0.5 + 25 \times 0.3 = 12.2$$

$$D(X) = E(X^2) - E^2(X) = 12.2 - 3.2^2 = 1.96$$

- 9. 设连续性随机变量 X 的概率密度为 $f(x) = \begin{cases} ax^2, & 0 < x < 1 \\ 0, & \pm c \end{cases}$
 - 1) 求常数 a
 - 2) 求数学期望E(X)
 - 3) 求方差 D(X)

解: (1)
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_0^1 ax^2 dx = \frac{1}{3} ax^3 \Big|_0^1 = \frac{a}{3} = 1 \Rightarrow a = 3$$

(2)
$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{0}^{1} x \cdot 3x^{2} dx = \frac{3}{4}x^{4} \Big|_{0}^{1} = \frac{3}{4}$$

(3)
$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{0}^{1} x^2 \cdot 3x^2 dx = \frac{3}{5} x^5 \Big|_{0}^{1} = \frac{3}{5}$$

$$D(X) = E(X^2) - E^2(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$$

课时九 练习题答案

1. 两个随机变量 X 和 Y 的协方差 Cov(X,Y)=(

A. E(X - EY)(Y - EX) B. E(X - EX)(Y - EY) $C. E(XY)^2 - (EXEY)^2$ D. E(XY) + EXEY 解: 选 B. Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)

2. $DX = DY = 30, \rho_{XY} = 0.4$, M Cov(X,Y) =_____

#:
$$Cov(X,Y) = p \cdot \sqrt{D(X)} \cdot \sqrt{D(Y)} = 0.4 \times \sqrt{30} \times \sqrt{30} = 12$$

3. 设D(X) = 3, Y = 3X + 1,则 $\rho_{XY} =$ _____

$$Y = aX + B$$

$$\begin{cases} a > 0 & \rho_{XY} = 1 \\ a < 0 & \rho_{YY} = -1 \end{cases}$$
 记住就行

4. 随机变量 X 和 Y 满足 D(X-Y)=D(X)+D(Y) 则下列说法哪个是不正确的()

A. D(X+Y)=D(X)+D(Y) B. E(XY)=E(X)E(Y) C. X 与 Y 不相关 D. X 与 Y 独立解: 选 D.

$$D(X-Y) = D(X) + D(Y) - 2Cov(X,Y)$$
 依题知 $Cov(X,Y) = 0$ A 对

$$Cov(X,Y) = E(XY) - E(X)E(Y) = 0 E(XY) = E(X)E(Y)$$
 B

$$\rho = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = 0$$
 不相关 C 对

不相关 ≠ 独立 D错

5. 设随机变量 X 服从期望为u,方差为 σ^2 ,则由切比雪夫不等式得 $P\{|X-u|\geq 3\sigma\}\leq$ ___

解: 由公式
$$P\{|X-u| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$$
 得 $P\{|X-u| \ge 3\sigma\} \le \frac{\sigma^2}{(3\sigma)^2} = \frac{1}{9}$

6. 一个随机变量 X 的期望为 10 方差为 9 根据切比雪夫不等式, $P\{|X-10|<4\}\geq$ _____

解: 由
$$P\{|X-u|<\varepsilon\} \ge 1 - \frac{D(X)}{\varepsilon^2}$$
得 $P\{|X-u|<4\} \ge 1 - \frac{9}{16} = \frac{7}{16}$

7. 已知(X,Y)的概率密度 $f(x,y) = \begin{cases} Ax & 0 < x < 1 & 0 < y < x \\ 0 &$ 其他 , 求:

- 1) 求常数 A 和 $P{X+Y<1}$
- 2) 边缘概率密度
- 3) 判断 X 和 Y 是否相互独立
- 4) X 和Y 的相关系数 ρ_{vv}

$$\mathbf{M} \mathbf{1} \mathbf{1} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

$$\int_0^1 dx \int_0^x Ax dy = \int_0^1 \left[Axy \right]_0^x dx = \int_0^1 Ax^2 dx = \frac{A}{3} x^3 \Big|_0^1 = \frac{A}{3} = 1 \qquad \Rightarrow A = 3$$

$$P\{X+Y<1\} = \iint_D f(x,y) dxdy = \int_0^{\frac{1}{2}} dy \int_y^{1-y} 3xdx = \int_0^{\frac{1}{2}} \left[\frac{3}{2}x^2\right]_y^{1-y} dy = \int_0^{\frac{1}{2}} \left(\frac{3}{2}-3y\right) dy = \frac{3}{8}$$

2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{0}^{x} 3x dy = 3xy\Big|_{0}^{x} = 3x^2$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{1} 3x dx = \frac{3}{2} x^2 \Big|_{y}^{1} = \frac{3}{2} (1 - y^2)$$

3) $f(x,y) \neq f_X(x) f_Y(y)$ 故不相互独立

4)
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xf(x,y)dxdy = \int_{0}^{1} dx \int_{0}^{x} x \cdot 3xdy = \int_{0}^{1} \left[3x^{2}y\right]_{0}^{x} dx = \int_{0}^{1} 3x^{3}dx = \frac{3}{4}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{2} f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} x^{2} \cdot 3x dy = \int_{0}^{1} \left[3x^{3} y \right]_{0}^{x} dx = \int_{0}^{1} 3x^{4} dx = \frac{3}{5}$$

$$D(X) = E(X^2) - E^2(X) = \frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$$

$$E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} yf(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} y \cdot 3x dy = \int_{0}^{1} \left[\frac{3}{2} x y^{2} \right]_{0}^{x} dx = \int_{0}^{1} \frac{3}{2} x^{3} dx = \frac{3}{8}$$

$$E(Y^{2}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^{2} f(x, y) dx dy = \int_{0}^{1} dx \int_{0}^{x} y^{2} \cdot 3x dy = \int_{0}^{1} \left[xy^{3} \right]_{0}^{x} dx = \int_{0}^{1} x^{4} dx = \frac{1}{5}$$

$$D(Y) = E(Y^2) - E^2(Y) = \frac{1}{5} - \left(\frac{3}{8}\right)^2 = \frac{19}{320}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x,y) dxdy = \int_{0}^{1} dx \int_{0}^{x} xy \cdot 3x dy = \int_{0}^{1} \left[\frac{3}{2} x^{2} y^{2} \right]_{0}^{x} dx = \int_{0}^{1} \frac{3}{2} x^{4} dx = \frac{3}{10}$$

$$\rho = \frac{\text{cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{E(XY) - E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{\frac{3}{10} - \frac{3}{4} \times \frac{3}{8}}{\sqrt{\frac{3}{80}} \cdot \sqrt{\frac{19}{320}}} = 0.4$$

课时十 练习题答案

1. 设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为 0.5kg,

标准方差为0.1kg,问5000只这样的零件,总重量超过2510kg的概率是多少?(可能用到的

数据: $\Phi(1.4142) = 0.9214$, $\sqrt{50} \approx 7.0711$)

M:
$$E(X_i) = 0.5$$
, $D(X_i) = (0.1)^2$

$$X = X_1 + X_2 + \dots + X_{5000} = \sum_{i=1}^{5000} X_i \sim N(5000 \times 0.5, 5000 \times (0.1)^2)$$

$$P\left\{\sum_{i=1}^{5000} X_i > 2510\right\} = 1 - P\left\{\sum_{i=1}^{5000} X_i \le 2510\right\} = 1 - \Phi\left(\frac{2510 - nu}{\sqrt{n\sigma}}\right) = 1 - \Phi\left(\frac{2510 - 5000 \times 0.5}{\sqrt{5000} \times 0.1}\right) = 1 - \Phi\left(1.4142\right) = 1 - 0.9214 = 0.0786$$

 某电话供电网有10000盏电灯,夜晚每盏灯开灯的概率为0.7,且设开关时间彼此独立, 试用中心极限定理求夜晚同时开灯盏数在6800和7200之间的概率的近似值(结果用Φ(x)的值表示)。

解: $X \sim B(10000, 0.7)$, 近似于N(np, np(1-p)) n = 10000, p = 0.7

$$P\{6800 \le X \le 7200\} = \Phi\left(\frac{7200 - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{6800 - np}{\sqrt{np(1-p)}}\right)$$
$$= \Phi\left(\frac{7200 - 10000 \times 0.7}{\sqrt{10000 \times 0.7 \times 0.3}}\right) - \Phi\left(\frac{6800 - 10000 \times 0.7}{\sqrt{10000 \times 0.7 \times 0.3}}\right)$$
$$= \Phi\left(\frac{20}{\sqrt{21}}\right) - \Phi\left(-\frac{20}{\sqrt{21}}\right) = 2\Phi\left(\frac{20}{\sqrt{21}}\right) - 1$$

课时十一练习题答案

1. 设 $X_1 \sim N(0,1)$, $X_2 \sim N(0,1)$ 且相互独立,则 $(X_1)^2 + (X_2)^2 \sim \chi^2(2)$ 分布。

解: X_1, X_2 都服从标准正态分布N(0,1)

∴根据 χ^2 分布定义: $(X_1)^2 + (X_2)^2 \sim \chi^2(2)$ 分布

2. 设 $X \sim N(0,1)$, $Y \sim \chi^2(10)$, 且 X 与 Y相互独立, $T = \frac{X}{\sqrt{Y/10}} \sim \underline{t(10)}$ 。

解: $X 服从 N(0,1) 分布, Y 服从 <math>\chi^2(n)$ 分布

$$\because \frac{X}{\sqrt{Y/n}} \sim t(n) \quad \text{PP} \frac{X}{\sqrt{Y/10}} \sim t(10)$$

3. 设 $X \sim N(1,1)$, X_1, X_2, \dots, X_{100} 为来自总体 X 的一个样本,则 $E(\bar{X}) = \underline{1}$; $D(\bar{X}) = \frac{1}{100}$

 $E(S^2) = \underline{1}$ •

#:
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $\therefore \bar{X} \sim N\left(1, \frac{1}{100}\right)$ $E(S^2) = \sigma^2 = 1$

4. 设总体 X 服从正态分布 N(1,1) , X_1,X_2,\cdots,X_{10} 为从 X 中抽取的简单随机样本, $ar{X}$ 为样本均

值。则 $\sqrt{10}(\bar{X}-1)\sim N(0,1)$ 。

课时十二 练习题答案

1. 设总体 X 服从 $[0,2\theta]$ 上的均匀分布 $(\theta>0)$, X_1,\cdots,X_n 是来自该总体的样本, \bar{X} 为样本均值,

则 θ 的矩估计 $\hat{\theta} = (B)$

A.
$$2\bar{X}$$

B.
$$\bar{X}$$

A.
$$2\overline{X}$$
 B. \overline{X} C. $\frac{\overline{X}}{2}$ D. $\frac{1}{2\overline{X}}$

$$D. \quad \frac{1}{2\bar{X}}$$

解:
$$X \sim U(0, 2\theta)$$

M:
$$X \sim U(0, 2\theta)$$
 $u_1 = E(X) = \frac{2\theta + 0}{2} = \theta$

$$\therefore \theta = u_1 \qquad \text{ if } \hat{\theta} = \overline{X}$$

2. 设总体
$$X$$
 , $E(X) = \mu$, $\hat{\mu}_1 = \frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$, $\hat{\mu}_2 = \frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3$,则它们中是 μ 的无

偏估计量的为: $\hat{\mu}_2$

$$\mathbf{M}: \quad E(\hat{\mu}_1) = E\left(\frac{1}{4}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3\right) = \frac{1}{4}E(X_1) + \frac{1}{4}E(X_2) + \frac{1}{4}E(X_3) = \frac{3}{4}\mu \neq \mu$$

$$E(\hat{\mu}_2) = E\left(\frac{1}{5}X_1 + \frac{2}{5}X_2 + \frac{2}{5}X_3\right) = \frac{1}{5}E(X_1) + \frac{2}{5}E(X_2) + \frac{2}{5}E(X_3) = \frac{5}{5}\mu = \mu$$

3. 设总体
$$X$$
 服从指数分布 $f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 &$ 其他 \end{cases} , $\lambda > 0$, X_1 , X_2 … X_n 为简单的随机样本,求:

(1) A的矩估计量;(2) A的最大似然估计量

解: (1)
$$X \sim E(\lambda)$$
 $u_1 = E(X) = \frac{1}{\lambda}$ 即 $\lambda = \frac{1}{u_1}$ $\Rightarrow \hat{\lambda} = \frac{1}{X}$

$$\mathbb{P} \lambda = \frac{1}{u_1} \qquad \Rightarrow \hat{\lambda} = \frac{1}{\overline{X}}$$

(2) 似然函数
$$L(\lambda) = \prod_{i=1}^{n} f(x) = \lambda e^{-\lambda x_1} \cdot \lambda e^{-\lambda x_2} \cdot \dots \cdot \lambda e^{-\lambda x_n} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}$$

$$\ln L(\lambda) = \ln \lambda^n + \ln e^{\left(-\lambda \sum_{i=1}^n x_i\right)} = n \ln \lambda - \lambda \sum_{i=1}^n x_i$$

所以极大似然估计量 $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} X_{i}}$

8 4 小时速成课程

4. 设总体 X 的概率分布如下表所示; 其中 θ 是未知参数 $(0 < \theta < 1)$,从总体 X 中抽取容量为 7

的一组样本,其样本值为0,1,1,1,1,0,1,求 θ 的矩估计值和最大似然估计值。

\overline{X}	0	1
P	θ	$1-\theta$

解: (1) 求钜估计: $u_1 = E(X) = 0 \times \theta + 1 \times (1 - \theta) = 1 - \theta$

$$\theta = 1 - u_1$$
 钜估计量: $\hat{\theta} = 1 - \bar{X}$

$$\bar{X} = \frac{1}{7}(0+1+1+1+1+0+1) = \frac{5}{7}$$
 所以据估计值为: $\hat{\theta} = 1 - \bar{X} = 1 - \frac{5}{7} = \frac{2}{7}$

(2) 最大似然估计:

$$L(\theta) = \theta^2 \cdot (1 - \theta)^5$$

$$0$$
 出现两次: θ^2 1出现五次: $(1-\theta)^5$

取对数: $\ln L(\theta) = 2\ln \theta + 5\ln(1-\theta)$

求导:
$$\frac{d \ln L(\theta)}{d \theta} = \frac{2}{\theta} - \frac{5}{1-\theta} = 0$$

得最大似然估计值 $\hat{\theta} = \frac{2}{7}$

5. 设总体 X 的密度函数为 $f(x) = \begin{cases} \theta e^{-\theta(x-3)} & x > 3 \\ 0 & x \le 3 \end{cases}$,求 θ 的矩估计量和极大似然估计量。

M:
$$u_1 = E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{3}^{+\infty} \theta x e^{-\theta(x-3)} dx = 3 + \frac{1}{\theta}$$

$$\theta = \frac{1}{u_0 - 3}$$
 矩估计量 $\hat{\theta} = \frac{1}{\overline{X} - 3}$

似然函数:
$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \theta e^{-\theta(x_1-3)} \cdot \theta e^{-\theta(x_2-3)} \cdot \dots \cdot \theta e^{-\theta(x_n-3)} = \theta^n e^{3n\theta-\theta\sum_{i=1}^{n} x_i}$$

取对数:
$$\ln L(\theta) = n \ln \theta + 3n\theta - \theta \sum_{i=1}^{n} x_i$$

求导,令
$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + 3n - \sum_{i=1}^{n} x_i = 0$$

极大似然估计量
$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} X_i - 3n}$$

课时十三 练习题答案

1. 总体 X 服从 $N(\mu,100), X_1, X_2 \cdots X_{100}$ 是取自总体的简单随机样本且样本均值 $\overline{X}=10$,则 μ 的置信度为 0.95 的置信区间为多少。

解:
$$\sigma^2 = 100$$
 为已知, μ 的置信区间为 $\left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}} \right)$ $\bar{X} = 10$, $\sigma = 10$, $n = 100$, $\alpha = 1 - 0.95 = 0.05$, $z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$ 代入得 μ 的置信区间为 $\left(10 - \frac{10}{\sqrt{100}} \times 1.96, 10 + \frac{10}{\sqrt{100}} \times 1.96 \right) = (8.04, 11.96)$

2. 假设某校同学们概率统计成绩服从 $N(\mu,\sigma^2)$, 现随机的抽取 25 位同学们测试得到的平均成

绩为78.5分,方差为9。(1) 求 μ 的置信度为0.95的置信区间。(2) 求 σ^2 的置信度为0.95的

置信区间。(
$$t_{0.025}(24) = 2.6$$
 $\chi_{0.025}^2(24) = 39$ $\chi_{0.975}^2(24) = 12$)

解: (1)
$$\sigma^2$$
未知, μ 的置信区间为 $\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$

$$\overline{X} = 78.5$$
, $S = 3$, $n = 25$, $\alpha = 1 - 0.95 = 0.05$, $t_{0.025}\left(24\right) = 2.6$

代入得
$$\mu$$
 的置信区间为 $\left(78.5 - \frac{3}{\sqrt{25}} \times 2.6, 78.5 + \frac{3}{\sqrt{25}} \times 2.6\right) = (76.94, 80.06)$

(2)
$$\mu$$
未知, σ^2 的置信区间为 $\left(\frac{(n-1)S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right)$

$$n-1=24$$
, $S^2=9$, $\alpha=1-0.95=0.05$

$$\chi_{\frac{\alpha}{2}}^{2}(n-1) = \chi_{0.025}^{2}(24) = 39$$
 $\chi_{1-\frac{\alpha}{2}}^{2}(n-1) = \chi_{0.975}^{2}(24) = 12$

代入公式可得
$$\sigma^2$$
的置信区间为 $\left(\frac{24\times9}{39}, \frac{24\times9}{12}\right) = (5.54,18)$

3. 设某种油漆的12样品, 其干燥时间(以小时为单位): 10.1 10.3 10.4 10.5 10.2

9.7 9.8 10.1 10.0 9.9 9.8 10.3,假定干燥时间总体服从正态分布,试由此数据对

该种油漆平均干燥时间置信水平为95%的区间估计。 $(t_{0.025}(11) = 2.20)$

解:
$$\sigma^2$$
未知, μ 的置信区间为 $\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right)$

$$\overline{X} = \frac{1}{12} (10.1 + 10.3 + \dots + 10.3) = 10.09$$

$$S^{2} = \frac{1}{12 - 1} \left[\left(10.1 - 10.09 \right)^{2} + \left(10.09 - 10.3 \right)^{2} + \dots + \left(10.09 - 10.3 \right)^{2} \right] = 0.0372$$

$$S = \sqrt{S^2} = 0.1929$$

$$n = 12$$
 , $\alpha = 1 - 0.95 = 0.05$, $t_{0.025}(11) = 2.2$

代入得
$$\mu$$
 的置信区间为 $\left(10.09 - \frac{0.1929}{\sqrt{12}} \times 2.2, 10.09 + \frac{0.1929}{\sqrt{12}} \times 2.2\right) = (9.988, 10.102)$

课时十四 练习题答案

1. 已知某炼铁厂铁水含碳量服从正态分布 N(4.55,0.108²), 现在测定了9炉铁水, 其平均含碳量为4.84, 如果方差没有变化, 可否认为现在生产之铁水平均含碳量仍为4.55?

$$(\alpha = 0.05 \quad z_{0.025} = 1.96)$$

解: ①假设 $H_0: u = u_0 = 4.55 H_1: u \neq u_0$

②检验统计量:
$$Z = \frac{\overline{X} - u_0}{\sigma/\sqrt{n}}$$
 拒绝域: $|Z| \ge Z_{\frac{\alpha}{2}}$

$$\Im \overline{x} = 4.84$$
 $u_0 = 4.55$ $\sigma = 0.108$ $n = 9$ $\alpha = 0.05$

$$|Z| = \left| \frac{\overline{x} - u_0}{\sigma / \sqrt{n}} \right| = \left| \frac{4.84 - 4.55}{0.108 / \sqrt{9}} \right| = 8.06$$
 $Z_{\frac{a}{2}} = Z_{0.025} = 1.96$

④ $8.06 \ge 1.96$,在拒绝域内,故拒绝 H_0 ,接受 H_1 ,不能认为现在平均含碳量仍为4.55

2. 自动包装机加工袋装食盐,每袋盐的净重 $X \sim N\left(\mu,\sigma^2
ight)$ (μ,σ 未知)按规定每袋盐的标准

重量为 500 克,某天为检查机器的工作情况,随机的抽取 9 袋,测得样品均值 $\overline{X}=499$ 克,样品标准差为 16 克,问:包装机的工作是否正常 $\left(\alpha=0.05,t_{\alpha/2}\left(8\right)=2.306\right)$

解: ①假设 $H_0: u = u_0 = 500 H_1: u \neq u_0$

②检验统计量:
$$t = \frac{\overline{X} - u_0}{S/\sqrt{n}}$$
 拒绝域: $|t| \ge z_{\frac{\alpha}{2}}(n-1)$

$$\Im \overline{x} = 499$$
 $u_0 = 500$ $S = 16$ $n = 9$ $\frac{\alpha}{2} = 0.025$

$$|t| = \left| \frac{499 - 500}{16/\sqrt{9}} \right| = 0.1875$$
 $t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(8) = 2.306$

 $④0.1875 \not\geq 2.306$,故不在拒绝域内,接受 H_0 ,即可以认为包装机工作正常

3. 在以 H_0 为原假设的假设检验中,犯第二类错误指的是(D)

C. 当 H_0 为真时,接受了 H_0

D. 当 H_0 为假时,接受了 H_0

