

Classifiez automatiquement des biens de consommation

Parcours Data Scientist | projet 6

Rim BAHROUN

Avril 2023

PROBLEMATIQUE MISSION

place de marché

Computers

Beauty care

Kitchen & dining

Home decor

Watches

Place de marché: marketplace e-commerce

Des vendeurs proposent des articles à des acheteurs.

Un article: une photo et une description.

Attribution manuelle de la catégorie d'un article.

- Etudier la faisabilité d'un moteur de classification automatique des articles en catégories en se basant sur une image et une description.
- Réaliser la classification supervisée des produits à partir des images.
- Tester la collecte de produits à base de 'champagne' via une API.

Objectifs

Faciliter l'expérience des utilisateurs Fiabiliser l'attribution de la catégorie Passage à l'échelle

PLAN DE LA PRESENTATION

- Préparation des données
- Faisabilité via données textuelles
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

Données à disposition : 1 fichiers .csv

1050 produits et 15 variables.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1050 entries, 0 to 1049 Data columns (total 15 columns).

dtypes: bool(1), float64(2), object(12)

рата	columns (total 15 columns):				
#	Column	Non-Null Count	Dtype		
0	uniq_id	1050 non-null	object		
1	crawl_timestamp	1050 non-null	object		
2	product_url	1050 non-null	object		
3	product_name	1050 non-null	object		
4	product_category_tree	1050 non-null	object		
5	pid	1050 non-null	object		
6	retail_price	1049 non-null	float64		
7	discounted_price	1049 non-null	float64		
8	image	1050 non-null	object		
9	is_FK_Advantage_product	1050 non-null	bool		
10	description	1050 non-null	object		
11	product_rating	1050 non-null	object		
12	overall_rating	1050 non-null	object		
13	brand	712 non-null	object		
14	product specifications	1049 non-null	object		

memory usage: 116.0+ KB

Préparation du jeu de données

place de marché

uniq_id	product_name	product_category_tree	image	description
0 55b85ea15a1536d46b7190ad6fff8ce7	Elegance Polyester Multicolor Abstract Eyelet	["Home Furnishing >> Curtains & Accessories >>	55b85ea15a1536d46b7190ad6fff8ce7.jpg	Key Features of Elegance Polyester Multicolor

55b85ea15a1536d46b7190ad6fff8ce7

Elegance Polyester Multicolor Abstract Eyelet Door Curtain

product category tree:

["Home Furnishing >> Curtains & Accessories >> Curtains >> Elegance Polyester Multicolor Abstract Eyelet Do..."]

55b85ea15a1536d46b7190ad6fff8ce7.jpg

description:

Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral Curtain, Elegance Polyester Multicolor Abstract Eyelet Door Curtain (213 cm in Height, Pack of 2) Price: Rs. 899 This curtain enhances the look of the interio rs.This curtain is made from 100% high quality polyester fabric.It features an eyelet style stitch with Metal Ring.It m akes the room environment romantic and loving. This curtain is ant- wrinkle and anti shrinkage and have elegant apparance e.Give your home a bright and modernistic appeal with these designs. The surreal attention is sure to steal hearts. The 🌄 se contemporary eyelet and valance curtains slide smoothly so when you draw them apart first thing in the morning to we lcome the bright sun rays you want to wish good morning to the whole world and when you draw them close in the evening, you create the most special moments of joyous beauty given by the soothing prints. Bring home the elegant curtain that softly filters light in your room so that you get the right amount of sunlight., Specifications of Elegance Polyester Mu lticolor Abstract Eyelet Door Curtain (213 cm in Height, Pack of 2) General Brand Elegance Designed For Door Type Eyele t Model Name Abstract Polyester Door Curtain Set Of 2 Model ID Duster25 Color Multicolor Dimensions Length 213 cm In th e Box Number of Contents in Sales Package Pack of 2 Sales Package 2 Curtains Body & Design Material Polyester

• Analyse des catégories

Arborescence complète d'un article.

product_category_tree:

["Home Furnishing >> Curtains & Accessories >> Curtains >> Elegance Polyester Multicolor Abstract Eyelet Do..."]

Home Decor & Festive Needs

Kitchen & Dining

'categorie_l1' le premier niveau de catégorie du produit
data['categorie_l1_'] = data.product_category_tree.apply(
 lambda x: x.strip('["').strip('"]').split('>>')[0].strip())

data.categorie l1 .value counts()

Home Furnishing	150
Baby Care	150
Watches	150
Home Decor & Festive Needs	150
Kitchen & Dining	150
Beauty and Personal Care	150
Computers	150
Name: categorie_l1_, dtype:	int64

Préparation du jeu

de données

place de marché

OXYGLOW

OPENCLASSROOMS

PLAN DE LA PRESENTATION

- **Préparation des données**
- Faisabilité via données textuelles
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

Faisabilité via les données textuelles

Prétraitement

Features extraction

Réduction de dimension

Classification & visualisation

Evaluation & faisabilité

Nettoyage

Tokeniser

Stemmer

Lemmatiser

Bag of word

Counter

Tf-idf

Word/sentences embedding

Word2Vec

BERT

USE

PCA

TSNE - 2D

K-means

visualisation - 2D

ARI score

uniq_idproduct_namedescriptionname_description_categorie_I1_0 55b85ea15a1536d46b7190ad6fff8ce7Elegance Polyester Multicolor Abstract Eyelet ...Key Features of Elegance Polyester Multicolor ...Elegance Polyester Multicolor Abstract Eyelet ...Home Furnishing

PRETRAITEMENT

Nettoyage: suppression de la ponctuation, mots de liaison, chiffres, mise en minuscules, ...

Tokeniser: découper un texte en entités plus petites appelées tokens

Stemmer: découper la fin des mots dans afin de ne conserver que la racine du mot.

Lemmatiser: consiste à sélectionner uniquement la forme canonique d'un mot

Faisabilité via les données textuelles

data.name_description_[0]

Elegance Polyester Multicolor Abstract Eyelet Door Curtain Key Features of Elegance Polyester Multicolor Abstract Eyelet Door Curtain Floral Curtain, Elegance Polyester Multicolor Abstract Eyelet Door Curtain (213 cm in Height, Pack of 2) Price: Rs. 899 This curtain enhances the look of the interiors. This curtain is made from 100% high quality polyester fabric. It features an eye let style stitch with Metal Ring. It makes the room environment romantic and loving. This curtain is ant- wrinkle and anti shrink age and have elegant apparance. Give your home a bright and modernistic appeal with these designs. The surreal attention is sure to steal hearts. These contemporary eyelet and valance curtains slide smoothly so when you draw them apart first thing in the m orning to welcome the bright sun rays you want to wish good morning to the whole world and when you draw them close in the even ing, you create the most special moments of joyous beauty given by the soothing prints. Bring home the elegant curtain that sof tly filters light in your room so that you get the right amount of sunlight. Specifications of Elegance Polyester Multicolor Ab stract Eyelet Door Curtain (213 cm in Height, Pack of 2) General Brand Elegance Designed For Door Type Eyelet Model Name Abstra ct Polyester Door Curtain Set Of 2 Model ID Duster25 Color Multicolor Dimensions Length 213 cm In the Box Number of Contents in Sales Package Pack of 2 Sales Package 2 Curtains Body & Design Material Polyester'

preprocess_text_lem_stem(data.name_description_[0])

'eleg polyest multicolor abstract eyelet door curtain key featur eleg polyest multicolor abstract eyelet door curtain floral curtain polyest multicolor abstract eyelet door curtain height pack price curtain enhanc look interior curtain made high qualiti polyest fabric featur eyelet style stitch metal ring make room environ romant love curtain ant wrinkl anti shrinkag eleg appar home bright modernist appeal design surreal attent sure steal heart contemporari eyelet valanc curtain slide smoothli draw apar t first thing morn welcom bright sun ray want wish good morn whole world draw close even creat special moment joyou beauti give n sooth print bring home eleg curtain softli filter light room get right amount sunlight eleg polyest multicolor abstract eyele t door curtain height pack gener brand eleg design door type eyelet model name abstract polyest door curtain set model color mu lticolor dimens length box number content sale packag pack sale packag curtain bodi design materi polyest'

Bag of word
Counter
Tf-idf

Nettoyage: suppression des mots qui apparaissent plus de 90% ou moins de 0,5% dans le corpus (name_description)

Faisabilité via les données textuelles

ARI-score 0,49

Nettoyage: suppression des mots qui apparaissent plus de 90% ou moins de 0,5% dans le corpus (name_description)

Faisabilité via les données textuelles

Bag of word Counter Tf-idf

Sparse matrix 1050 x 735

TfidfVectorizer

TSNE - 2D \longrightarrow K-means \longrightarrow 1050 x 2

Visualisation 2D

→ ARI score

ARI-score 0,52 Temps 10s

Word/sentences embedding

Word2Vec

BERT

USE

Word/sentences embedding

Word2Vec

BERT

USE

Word/sentences embedding

Word2Vec

BERT

USE

Faisabilité via les données textuelles

L'attribution des catégories des produits peut être automatisée à partir des données textuelles

OPENCLASSROOMS

PLAN DE LA PRESENTATION

- Préparation des données
- Faisabilité via données textuelles
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

Exemples d'images

uniq_id label_name label image_path

Faisabilité via les données visuelles

Prétraitement

Features extraction Réduction de dimension

Classification & visualisation

Evaluation & faisabilité

ARI score

Egalisation

Passage en gris

Filtrage du bruit

Bag of images

SIFT

OpenCV Transfer Learning

CNN-VGG16

TensorFlow

K Keras

PCA

TSNE - 2D

K-means

visualisation - 2D

PRETRAITEMENT

& DESCRIPTEURS SIFT

Redimensionnement

Egalisation

Passage en gris

Filtrage du bruit

Nombre de descripteurs : (368797, 128) temps de traitement SIFT descriptor :

44.20 secondes

Nombre de clusters estimés : 607 Création de 607 clusters de descripteurs ...

Faisabilité via les données visuelles

Descripteurs : (619, 128)

Bag of images

SIFT

Transfer Learning

CNN - VGG16

Faisabilité via les données visuelles

Fc3 (dense) (None, 1000)

Transfer Learning

CNN - VGG16

Faisabilité via les données visuelles

L'attribution des catégories des produits peut être automatisée à partir des données visuelles

USE

ARI-score 0,69

+

CNN - VGG16

ARI-score 0,46

PLAN DE LA PRESENTATION

- Préparation des données
- Faisabilité via données textuelles
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

Modèle: VGG16 transfert Learning

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
flatten (Flatten)	(None, 25088)	0
fc1 (Dense)	(None, 4096)	102764544
fc2 (Dense)	(None, 4096)	16781312
Fc3 (dense) (None	, 1000)	

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
global_average_pooling2d (G lobalAveragePooling2D)	i (None, 512)	0
dense (Dense)	(None, 256)	131328
dropout (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 7)	1799

Classification supervisée via les donnée visuelles

Classification supervisée via les donnée visuelles

Quatre approches pour la préparation d'images :

Approche 1

Une approche simple par préparation initiale de l'ensemble des images avant classification supervisée.

Approche 2

Une approche par data generator, permettant facilement la data augmentation. Les images sont directement récupérées à la volée dans le répertoire des images.

Approche 3

Une approche récente proposée par DataSet, sans data augmentation.

Approche 4

Une approche récente par DataSet, avec data augmentation intégrée au modèle : layer en début de modèle.

	label	label_name	image_path	uniq_id
2	4	Home Furnishing	./data/Images/55b85ea15a1536d46b7190ad6fff8ce7	55b85ea15a1536d46b7190ad6fff8ce7

Approche 1

Approche 2

Approche 3

Approche 4

Une approche simple par préparation initiale de l'ensemble des images avant classification supervisée

Classification supervisée via les donnée visuelles

Accuracy:

Training: 1 Validation: 0,81

Test: 0,79

Une approche par data generator, permettant facilement la data augmentation (rotation, translation, retournement). Les images sont directement récupérées à la volée dans le répertoire des images

Classification supervisée via les donnée visuelles

Approche 1

Approche 2

Approche 3

Approche 4

Accuracy:

Training: 0,97

Validation: 0,83

Test: 0,78

Réduction de l'overfitting avec la data augmentation.

Une approche récente proposée par Tensorflow.org par DataSet, sans data augmentation

Loss

Epochs

10

12

Classification supervisée via les donnée visuelles

Approche 1

Approche 2

Approche 3

Approche 4

Accuracy:

Training: 0,99

Validation: 0,80

Test: 0,80

Epochs

29

10

Une approche récente par DataSet, avec data augmentation intégrée au modèle (rotation, translation, zoom): layer en début de modèle

Classification supervisée via Jes donnée visuelles

Approche 1

Approche 2

Approche 3

Approche 4

Accuracy:

Training: 0,92 Validation: 0,87

Test: 0,86

Réduction de l'overfitting avec la data augmentation.

La classification automatique des produits en catégories à partir des données visuelles est précise à 86%

PLAN DE LA PRESENTATION

- **Préparation des données**
- Faisabilité via données textuelles
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

Pourrais-tu tester la collecte de produits à base de "champagne" via l'API? Je souhaiterais que tu puisses nous fournir une extraction des 10 premiers produits dans un fichier ".csv", contenant pour chaque produit les données suivantes : foodId, label, category, foodContentsLabel, image.

Collecte de produits via API

```
import requests
import pandas as pd
url = "https://edamam-food-and-grocery-database.p.rapidapi.com/parser"
querystring = {"ingr":"champagne"}
headers = {
    "X-RapidAPI-Key": "bd8c2f188cmshf5d0f1a1c8718c6p1c7f46jsn370366720478",
    "X-RapidAPI-Host": "edamam-food-and-grocery-database.p.rapidapi.com"
# Appel à l'API
response = requests.request("GET", url, headers=headers, params=querystring)
# Extraction des 10 premiers produits et création d'un dataframe
products = response.json()["hints"][:10]
# Extract required data from each product
                                                                                                data = pd.read csv('products.csv'
data = []
for product in products:
    food = product['food']
    data.append({
        'foodId': food['foodId'],
        'label': food['label'],
        'category': food['category'],
        'foodContentsLabel': food.get('foodContentsLabel', ''),
        'image': food.get('image', '')
# Create a pandas dataframe from the extracted data
df = pd.DataFrame(data, columns=['foodId', 'label', 'category', 'foodContentsLabel', 'image'])
# Save the dataframe to a CSV file
df.to csv('products.csv', index=False)
```


	data = parricus_csv(produces.csv)				
	foodId	label	category	foodContentsLabel	image
0	food_a656mk2a5dmqb2adiamu6beihduu	Champagne	Generic foods	NaN	https://www.edamam.com/food- img/a71/a718cf3c52
1	food_b753ithamdb8psbt0w2k9aquo06c	Champagne Vinaigrette, Champagne	Packaged foods	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR	NaN
2	food_b3dyababjo54xobm6r8jzbghjgqe	Champagne Vinaigrette, Champagne	Packaged foods	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINE	https://www.edamam.com/food- img/d88/d88b64d973
3	food_a9e0ghsamvoc45bwa2ybsa3gken9	Champagne Vinaigrette, Champagne	Packaged foods	CANOLA AND SOYBEAN OIL; WHITE WINE (CONTAINS S	NaN
4	food_an4jjueaucpus2a3u1ni8auhe7q9	Champagne Vinaigrette, Champagne	Packaged foods	WATER; CANOLA AND SOYBEAN OIL; WHITE WINE (CON	NaN
5	food_bmu5dmkazwuvpaa5prh1daa8jxs0	Champagne Dressing, Champagne	Packaged foods	SOYBEAN OIL; WHITE WINE (PRESERVED WITH SULFIT	https://www.edamam.com/food- img/ab2/ab2459fc2a
6	food_alpl44taoyv11ra0lic1qa8xculi	Champagne Buttercream	Generic meals	sugar; butter; shortening; vanilla; champagne;	NaN
7	food_byap67hab6evc3a0f9w1oag3s0qf	Champagne Sorbet	Generic meals	Sugar; Lemon juice; brandy; Champagne; Peach	NaN
8	food_am5egz6aq3fpjlaf8xpkdbc2asis	Champagne Truffles	Generic meals	butter; cocoa; sweetened condensed milk; vanil	NaN
9	food_bcz8rhiajk1fuva0vkfmeakbouc0	Champagne Vinaigrette	Generic meals	champagne vinegar; olive oil; Dijon mustard; s	NaN

PLAN DE LA PRESENTATION

- **Préparation des données**
- **Paisabilité via données textuelles**
- Faisabilité via données visuelles
- 4 Classification via données visuelles
- 5 Collecte de produits via API
- 6 Conclusion

CONCLUSION

Beauty care

decor

- > Représenter graphiquement des données à grandes dimensions
- Mettre en œuvre des techniques de réduction de dimension
- Collecter des données en recensant une API
- > Elaboration un modèle d'apprentissage profond
- Évaluer la performance des modèles d'apprentissage profond
- Utiliser des techniques d'augmentation des données

