LTCC

Applied Bayesian Methods

Aims of course

- To introduce the Bayesian approach to statistical inference
- To develop relevant methodology, theory and computational techniques for its implementation

Why Bayesian?

- Can incorporate prior information (ie info. before seeing data), rather than only data, into statistical modelling and inference
- Can build complex models
- "The philosophy of statistics", Dennis V.
 Lindley, 2000, JRSS-D

Course content & schedule

- W1 §1 Introduction to Bayesian statistics
- W2 §2 Bayesian inference
- W3 §3 Prior distributions
- W4 §4 Graphical models &
 - §5 Hierarchical models
- W5 §6 Markov chain Monte Carlo (MCMC)

Texts

- 1. P.M. Lee, *Bayesian Statistics: An Intro-duction* (**Chapters 1-3**, 2004, 3rd Edition: Arnold).
- J. Whittaker, Graphical Models in Applied Multivariate Statistics (Chapters 1-3, 1990, John Wiley & Sons).
- 3. C.M. Bishop, *Pattern Recognition and Machine Learning* (**Chapter 8** "Graphical models", 2006, Springer).
- A. Gelman, J.B. Carlin, H.S. Stern & D.B. Rubin, Bayesian Data Analysis (Chapter 5 "Hierarchical models", 2003, 2nd Edition: Chapman and Hall/CRC).
- W.R. Gilks, S. Richardson & D.J. Spiegel-halter (eds), Markov Chain Monte Carlo in Practice (Chapters 1, 2 and 5, 1996, Chapman & Hall/CRC).

Lecturer

- Prof Petros Dellaportas
 @room 131A, 1-19 Torrington Place
- p.dellaportas@ucl.ac.uk
 (Your feedback on this course is welcome;
 the earlier the better!)

Outline

- 1. Bayes' theorem
- 2. Interpretation of probability
- 3. Bayesian inference
- 4. Predictive distributions

1. Thomas Bayes (?-1761) and Bayes' theorem (1764)

Recall the multiplication law of probability,

$$P(A \cap B) = P(B)P(A \mid B) = P(A)P(B \mid A) .$$

Bayes' theorem:

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)} .$$

In the case of probability distributions,

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)}.$$

Bayes' theorem:

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)} .$$

Alternative forms of Bayes' theorem

Using the law of total probability that

$$P(B) = \sum_{i} P(B \cap A_i) ,$$

where $\{A_i : i = 1, 2, ...\}$ is a set of mutually exclusive and exhaustive events (ie $A_i \cap A_j = \emptyset$, $\forall i \neq j$ and $P(\bigcup_i A_i) = \sum_i P(A_i) = 1$), we obtain

$$P(A_1 | B) = \frac{P(A_1)P(B | A_1)}{\sum_i P(B \cap A_i)}$$
$$= \frac{P(A_1)P(B | A_1)}{\sum_i \{P(A_i)P(B | A_i)\}}.$$

In the case of probability distributions,

$$p(\theta \mid y) = \frac{p(\theta) p(y \mid \theta)}{p(y)} = \frac{p(\theta) p(y \mid \theta)}{\int p(\theta) p(y \mid \theta) d\theta}.$$

Example 1.1: diagnostic testing

A diagnostic test for HIV is claimed to have:

- 95% sensitivity (\Rightarrow 95% of people who have HIV will test positive)
- 98% specificity (\Rightarrow 98% of people who do not have HIV will test negative)

In a population with prior knowledge that an HIV prevalence is 1/1000, what is the chance that someone testing positive actually has HIV?

Solution

Let Tr = 1 be the event that the individual is truly HIV-positive, Tr = 0 be truly HIV-negative.

Let Te=1 be the event that the individual tests positive, Te=0 be test-negative.

We have

•
$$P[Te=1 \mid Tr=1] = 0.95$$

•
$$P[Te=0 \mid Tr=0] = 0.98$$

•
$$P[Tr=1] = 0.001$$

We want $P[Tr=1 \mid Te=1]$.

Based on Bayes' theorem, $P[Tr=1 \mid Te=1]$

$$= \frac{P[Te=1 \mid Tr=1] P[Tr=1]}{P[Te=1]}$$

$$= \frac{P[Te=1 \mid Tr=1] P[Tr=1]}{P[Te=1 \mid Tr=1] P[Tr=1] + P[Te=1 \mid Tr=0] P[Tr=0]}$$

$$= \frac{0.95 \times 0.001}{0.95 \times 0.001 + 0.02 \times 0.999}$$

$$= 0.045$$

So, over 95% of those testing positive will, in fact, NOT have HIV.

1. Importance of the prior.

The disease prevalence can be regarded as a 'prior' probability (0.001, ie unlikely). Although the test result points to disease, our calculation says unlikely.

2. Importance of the data.

The test result can change our belief that this person is HIV-positive: Before observing the test result, we think the probability of HIV-positive is 0.001; after observing a positive result, we modify the probability to 0.045. The latter is our 'posterior' probability of HIV-positive.

2. Interpretation of probability

What does it actually mean to say that the probability of an event A is p, e.g. that the probability of heads in the toss of a fair coin is 0.5?

Frequentist interpretation

$$P[A] = \lim_{n \to \infty} \frac{m}{n} ,$$

where m is number of times the event A occurs in a sequence of n independent and identical 'experiments'.

Involves hypothetical notion of a long sequence of repeatable experiments. OK for dice, maybe also OK for sampling from a real population, but what does it mean to think of e.g. 'nuclear war in next five years' as a repeatable experiment?

 Frequentist interpretation is objective in the sense that it is based on (potentially) observable events. However, this is also a limitation, since we often wish to consider the probabilities of unobservable quantities (e.g. drug efficacy)

Bayesian interpretation: subjective judgement

Probability of an event A is a measure of someone's degree of belief that A has/will occur.

- Depends on their own partial knowledge of the process of interest
- To emphasize this, we might denote the subjective probability of event A by $P(A \mid \text{personal knowledge})$

Example

Let A be the event that "FTSE 100 index rises above 6100 next week":

 I have no knowledge of the stock market, so say that

$$P(A \mid \text{personal knowledge}) = 0.5$$

 A stock market trader has considerable knowledge of how the FTSE index behaves, so might believe that

$$P(A \mid \text{personal knowledge}) = 0.95$$

Can use any number we choose to specify a subjective probability?

- No. Probabilities must cohere, ie obey the axioms of probability.
- If we want to be taken seriously, our probabilities must have some relationship with reality.

3. Bayesian inference

The fundamental principle of Bayesian statistics is: Our knowledge about anything that is unknown can be described by a probability or probability distribution.

Suppose there are observed data y and unknown parameters θ .

1. Classical inference:

- Only the data y are regarded as random, while the parameters θ are treated as fixed but unknown.
- Inference about θ is not just conditional on the observed data y, but also on what might have been observed under repeated sampling.

2. Bayesian inference:

- Bayesians regard both y and θ as $ran-dom\ variables$.
- Posterior inference about θ is conditional on the particular, actually observed, realisation of y.

We posit a model which specifies the *likeli-hood* $p(y \mid \theta)$.

From a Bayesian point of view:

- θ should have a *prior probability distribution* $p(\theta)$ reflecting our uncertainty about it, before seeing the data y;
- after seeing y, we should update our uncertainty about θ , by using a *posterior* distribution $p(\theta \mid y)$.

Bayes' theorem tells us how to calculate this:

$$p(\theta \mid y) = \frac{p(\theta) \, p(y \mid \theta)}{p(y)}$$

$$\propto p(\theta) \, p(y \mid \theta).$$
prior likelihood

Three components of Bayesian inference!

Example 1.2: Drug efficacy

The positive response rate of a drug is θ . Our prior knowledge about θ is its mean m=0.4 with sd $\sqrt{v}=0.1$.

1) Prior: How to translate our knowledge into a prior distribution $p(\theta)$?

Suppose $\theta \sim \text{Beta}(a, b)$, i.e.

$$p(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}$$
$$\propto \theta^{a-1} (1-\theta)^{b-1}$$

How to find a and b if $\theta \sim \text{Beta}(a,b)$?

For Beta(a,b) distribution, we have

mean
$$m=a/(a+b)$$

variance $v=m(1-m)/(a+b+1)$
 $\Rightarrow a=m^2(1-m)/v-m$
 $b=m(1-m)^2/v-(1-m)$.

Solving gives a = 9.2, b = 13.8.

2) Likelihood: How to translate the observed data into likelihood?

Suppose we do an experiment and observe y = 15 positive responses in n = 20 trials (i.e. y successes in n independent trials): $Y \sim \text{Bin}(n, \theta)$

$$p(y \mid \theta) = \binom{n}{y} \theta^{y} (1 - \theta)^{n - y}$$
$$\propto \theta^{y} (1 - \theta)^{n - y}$$

3) Posterior:

$$p(\theta \mid y) \propto p(y \mid \theta)p(\theta)$$

$$\propto \theta^{y}(1-\theta)^{n-y}\theta^{a-1}(1-\theta)^{b-1}$$

$$= \theta^{y+a-1}(1-\theta)^{n-y+b-1}$$

So, $\theta \mid y \sim \text{Beta}(y + a, n - y + b)$.

Posterior is a Beta(15+9.2, 20-15+13.8) = Beta(24.2, 18.8) with mean and sd: $m^* = (y+a)/(n+a+b) = 24.2/43 = 0.56, \\ \sqrt{m^*(1-m^*)/(a+y+b+n-y+1)} = 0.075.$

How the mean and sd are revised?

Frequentist inference vs. Bayesian inference

• Classical (frequentist) inference:

What does the data y tell us about the unknown quantity θ ?

• Bayesian inference:

How should the data y change someone's opinion about θ ?

(More on this in next weeks)

4. Predictive distributions

Aim: to use the observed data y to predict an unknown observable \tilde{Y} from the same process (determined by unknown parameter θ).

How?

We shall use the predictive distribution, ie the distribution $p(\tilde{Y} \mid Y = y)$:

$$p(\tilde{Y} = \tilde{y} \mid Y = y) = \int p(\tilde{y}, \theta \mid y) d\theta$$
$$= \int p(\tilde{y} \mid \theta, y) \ p(\theta \mid y) \ d\theta$$
$$= \int p(\tilde{y} \mid \theta) \ p(\theta \mid y) \ d\theta$$

- 1st '=': law of total probability
- 2nd '=': multiplication law of prob.
- 3rd '=': $p(\tilde{y} \mid \theta, y) = p(\tilde{y} \mid \theta)$ ie \tilde{Y} and Y are conditional independent, given θ

Example 1.3: Prediction

Recall Example 1.2. Suppose we wish to predict the outcome \tilde{Y} of treating a new patient with the drug, given what we've observed

Recall that $\theta \mid y \sim \text{Beta}(24.2, 18.8)$

For continuous θ we have

$$p(\tilde{Y} = 1 \mid Y = y) = \int p(\tilde{Y} = 1 \mid \theta) p(\theta \mid y) d\theta$$

$$= \int \theta p(\theta \mid y) d\theta$$

$$= E(\theta \mid y)$$

$$= \frac{24.2}{24.2 + 18.8}$$

$$= 0.56$$

Sequential learning

Suppose we obtain data y_1 and form the posterior $p(\theta \mid y_1)$ and then we obtain further data y_2 (indep. of y_1 from the same process determined by θ , ie $p(y_2 \mid \theta, y_1) = p(y_2 \mid \theta)$).

A key aspect of Bayesian analysis is the ease with which sequential analysis can be performed. The posterior given y_1 and y_2 is:

$$p(\theta \mid y_2, y_1) \propto p(y_2 \mid \theta) \times p(\theta \mid y_1)$$
.

'Today's posterior is tomorrow's prior'!

Why? Because:

$$p(\theta \mid y_2, y_1) \propto p(y_2, y_1 \mid \theta) \times p(\theta)$$
,

and y_1 and y_2 are conditional indep., we have

$$p(y_2, y_1 \mid \theta)p(\theta) = p(y_2 \mid \theta)p(y_1 \mid \theta)p(\theta)$$

$$\propto p(y_2 \mid \theta)p(\theta \mid y_1)$$

Example 1.4: Sequential updating

Recall Example 1.2 (p18), in which we've already observed y=15 positives in 20 trials. Suppose another trial is carried out in which we observe z=4 positives in 12 trials.

1. Simultaneous analysis

Prior: $\theta \sim \text{Beta}(9.2, 13.8)$ Likelih: $p(y, z \mid \theta) = \theta^{19} (1 - \theta)^{32 - 19}$ Posterior: $\theta \mid y, z \sim \text{Beta}(19 + 9.2, 13 + 13.8)$ = Beta(28.2, 26.8)

2. Sequential analysis

Prior: $\theta \mid y \sim \text{Beta}(24.2, 18.8)$ Likelih: $p(z \mid \theta) \propto \theta^4 (1 - \theta)^{12 - 4}$ Posterior: $\theta \mid y, z \sim \text{Beta}(4 + 24.2, 8 + 18.8)$ = Beta(28.2, 26.8)

Outline revisited

- 1. Bayes' theorem
- 2. Interpretation of probability
- 3. Bayesian inference
- 4. Predictive distributions

Next week: Bayesian Inference