RateMyAntibody

Samad Shahid, Shashwat Goyal, Srijan Garg, Vaibhav Soni, Abhimanyu Lakra, Abhishek Soni

Group No: 5

Prediction of antibody sequence effectiveness and its neutralising abilities against covid-19 and how it can further be used for effective diagnosis of patients and improved drug manufacturing.

Background Rationale

As we know Antibodies are the main line of defense against pathogens in human body. According to ([1]) The exposure to a pathogen produces B cells than can recognise and neutralize the pathogen. However not all antibodies are able to effectively bind/neutralise the antigen and hence they can't prevent the disease from spreading. This goes to show the importance for the study of antibodies in order to correctly recognize and experiment upon a disease.

Source ([21]) performs comprehensive analysis of antibody response in 229 samples collected frequently from hospitalized COVID-19 patients. The result of this experiment shows that The majority of the hospitalized patients developed hACE2-blocking antibodies as well as neutralizing antibodies.

The findings from these sources motivated our project in which we will analyze data of antibodies received from recovered/expired Covid-19 patients and create a model which will predict antibody sequence and its binding and neutralizing effectiveness.

Methodology

- 1.) Data importing
- 2.) Data Preprocessing
- 3.) P-Feature generation & Amino acid Composition Feature
- 4.) 1st order dipeptide feature generation
- 5.) Machine Learning Model fitting

1) Data import

Importing Libraries

We have imported all the necessary libraries like numpy, pandas, sklearn, etc.

```
import numpy as np
import pandas as pd
import re
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import RandomOverSampler
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn import svm
```

2) Dataset Preprocessing

Data was collected of various antibodies from http://opig.stats.ox.ac.uk/webapps/covabdab/ produced in response to COVID-19 from multiple patients. To ensure that these antibodies are antibodies associated with COVID-19, we have picked the antibodies binding to Sars-Cov-2. Finally we obtained 1583 rows with 23 columns.

	Name Ab or		Binds to	Doesn't Bind to	Neutralising Vs	Not Neutralising Vs	Prote
0	0304-2F8	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	
1	0304-3H3	Ab	SARS-CoV2	NaN	SARS-CoV2	NaN	
2	0304-4A10	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
3	0304-4A2	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	2
4	0317-A1	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
5	0317-A2	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
6	0317-A3	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	
7	0317-A7	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	5
8	0317-A8	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	5
9	0317-A9	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	
10	0317-B1	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	
11	0317-C4	Ab	SARS-CoV2 (weak)	NaN	NaN	SARS-CoV2	
12	0317-C9	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
13	10C10	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
14	1M-1D2	Ab	SARS-CoV2	NaN	SARS-CoV2	NaN	
15	2M-10B11	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
16	2M-12D7	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
17	2M-13A3	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
18	2M-13D11	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
19	2M-14B2	Ab	SARS-CoV2	NaN	NaN	SARS-CoV2	
Data	shape: (1583,	23)					

After removing the unnecessary columns, Neutralizing column only SARS-COV2 as 1 all else 0, removed the weak antibody rows, Removing rows containing ND values, and considering only VH or VHH and VL sequences, we get the following.

	neutralizing	seq1	seq2
0	1	${\tt EVQLVESGPGLVKPSETLSLTCTASGGSISTYYWSWIRQPPGKGLE}$	DIVMTQSPATLSVSPEERATLSCRASQSVSSNLAWYQQKPGQAPRL
1	0	${\tt EVQLVESGGGLVQPGGSLRLSCAASGFTFSTYAMHWVRQAPGKGLE}$	EIVLTQSPDSLAVSLGERATINCRSSQSVLYSSNNKNYLAWYQQKP
2	0	${\tt EVQLVESGPGLVKPSETLSLTCAVSGDSTSSSSYWDWIRQPPGKG}$	EIVLTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKP
3	0	${\tt QVQLVQSGGGVVQPGRSLRLSCAAPGFTFSSYGMHWVRQAPGKGLE}$	DIVMTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRL
4	0	${\tt QVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLE}$	DIVMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQEPGKAPKL
-	***		
1165	1	${\tt QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLE}$	${\tt QSVLTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAP}$
1167	0	QVQLVQSGAEVKKPGASVKVSCKASGYTFTNYFIHWVRQAPGQGLE	QSVLTQPPSASGTPGQRVTISCSGSTSNIGSNAVNWYQQLPGTAPK
1168	1	${\tt EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLE}$	${\tt SYELTQPPSVSVSPGQTARITCSGDALPRHYSYWYQQKPGQAPVLL}$
1171	1	${\tt EVQLVESGGGLVQPGGSLRLSCAASGFTVRSNYMSWVRQAPGKGLE}$	DIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKL
1172	1	${\tt EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYVMSWVRQAPGKGLE}$	QSALTQPASVSGSPGQSITISCTGTSSDVGGYDYVSWYQQHPGKAP

1087 rows × 3 columns

3) PFeature Generation & Amino acid Composition Feature

```
# Generating PFeatures
# List of 21 amino acids
aminoAcids = ['A','R','N','D','C','Q','E','G','H','I','L','K','M','F','P','S','T','W','Y','V','X']
# Dipeptide array generation
di peptide array = []
for i in range(len(aminoAcids)):
  for j in range(len(aminoAcids)):
    di peptide arrav.append(aminoAcids[i]+""+aminoAcids[i])
# Computing aminoacids composition features
# train = data
for aminoAcid in aminoAcids:
  list column = []
  for sequence in train['seq1']:
    num = sequence.count(aminoAcid)
    den = len(sequence)
    temp = num/den
    list column.append(temp)
  train[aminoAcid+"a1"]=list column
for aminoAcid in aminoAcids:
  list column = []
  for sequence in train['seq2']:
    num = sequence.count(aminoAcid)
    den = len(sequence)
    temp = num/den
    list_column.append(temp)
  train[aminoAcid+"a2"]=list column
```

We have considered 21 amino acids, generated feature columns using amino acids and dipeptides and done oversampling of the data to increase samples.

4)1st order dipeptide Feature Generation

After applying the 1st order feature generation using dipeptide array, we get the the following matrix with multiple new features generated.

	neutralizing	Aa1	Ra1	Na1		XW_z2	XY_z2	XV_z2	XX_z2
0	1	0.048387	0.040323	0.024194		0.0	0.0	0.0	0.0
1	0	0.068376	0.059829	0.034188		0.0	0.0	0.0	0.0
2	0	0.056452	0.024194	0.016129		0.0	0.0	0.0	0.0
3	0	0.062016	0.046512	0.031008		0.0	0.0	0.0	0.0
4	0	0.074074	0.029630	0.029630	• • •	0.0	0.0	0.0	0.0
1165	1	0.071429	0.039683	0.023810		0.0	0.0	0.0	0.0
1167	0	0.065041	0.048780	0.024390		0.0	0.0	0.0	0.0
1168	1	0.072581	0.048387	0.032258	• • •	0.0	0.0	0.0	0.0
1171	1	0.068376	0.059829	0.034188		0.0	0.0	0.0	0.0
1172	1	0.073171	0.040650	0.032520		0.0	0.0	0.0	0.0

[1087 rows x 925 columns]

5)ML models applied

```
# Applying Random Forest
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=0,n_estimators=1000)
clf.fit(X, Y)
print(clf.score(X,Y))
```

```
clf = svm.SVC(kernel='rbf', C=50, random_state=42)
scores = cross_val_score(clf, X, Y, cv=4)
print(scores)
[0.80053191 0.80053191 0.81333333 0.85866667]
```

```
clf = LogisticRegression(random_state=0)

X_train = X[0:733]
X_test = X[733:1223]

Y_train = Y[0:733]
Y_test = Y[733:1223]

clf.fit(X_train, Y_train)
print(clf.score(X_test,Y_test))
```

We used and evaluated our data using multiple machine learning models like Random Forest, Logistic regression, support vector machine and many more from the sklearn library. We used cross validation score to evaluate our data taking CV=4.

Results

- Our project outputs the prediction percentage of an antibody sequence ability to neutralize Sars-Covid-2.
- Prediction of whether antibodies for Covid-19 are able to neutralize the pathogen effectively or not and associate it with the clinical outcome of the patients. Difference between the effective and non-effective antibodies can help in better understanding of disease and development of efficacious vaccines. This can further be used for effective drug manufacturing.

Graphs

Sequence char count for the respective VHH and VL sequence.

Conclusion

From the sequence of the antibody of a person, we can determine whether their antibodies will effectively neutralize Covid-19 or not.

Our project could be applied on the ongoing trials for effectiveness of the monoclonal antibodies against the sars-cov2.

https://www.antibodysociety.org/covid-19-biologics-tracker/

https://chineseantibody.org/covid-19-track/

Contribution

Vaibhav Soni and Samad Shahid collected data and did exploratory data analysis

Abhishek Soni and **Abhimanyu Lakra** did feature generation and trained the Machine Learning Model

Srijan Garg and **Shashwat Goyal** did the preprocessing and generated gene features

Thank You!