

TSEBRA

Integrating various extrinsic evidence sources for more accurate genome annotation with BRAKER

Plant and Animal Genomes XXIX January 9th 2022

> Lars Gabriel Katharina J. Hoff Hannah Thierfeldt Tomáš Brůna Mark Borodovsky Mario Stanke

Presenting author e-mail: lars.gabriel@uni-greifswald.de

BRAKER

Overview

1. BRAKER: Automated Whole-Genome Annotation

2. TSEBRA: Transcript Selector for BRAKER

3. Long-Read Integration Using GeneMarkS-T and TSEBRA

BRAKER - Overview

BRAKER

- Automated genome annotation of novel eukaryotic genomes
- Integrates extrinsic evidence from short-read RNA-Seq or homologous proteins

Gene Prediction Tools

- GeneMark: suite of self-training methods
- AUGUSTUS: highly accurate method that requires a training gene set

Hoff et al. 2016. Bioinformatics. 32(5):767–9. Brůna, Hoff et al. 2021. NAR Genomics and Bioinform. 3(1):lqaa108.

BRAKER

BRAKER - Genome Annotation Protocols

BRAKER1

RNASeq.bam genome.fa GeneMark ET genemark.gtf AUGUSTUS training **AUGUSTUS** prediction augustus.gtf

BRAKER2

BRAKER TSEBBA

ntegration

TSEBRA - Combiner for BRAKER

Goal

- BRAKER annotation with RNA-Seq and protein evidence
- Achieve higher accuracy than BRAKER1 and BRAKER2

Transcript set comparison for different gene predictions.

Long-Read

TSEBRA - Combiner for BRAKER

Goal

- BRAKER annotation with RNA-Seq and protein evidence
- Achieve higher accuracy than BRAKER1 and BRAKER2

Transcript set comparison for different gene predictions.

Long-Read

TSEBRA - Workflow

Input

- · Gene sets
- · Hints from extrinsic evidence
- Configuration

DITARLE

TSEBRA

ong-Read

TSEBRA - Workflow

2 kb | dm6 12,918,000 | 12,919,000 | 12,920,000 | 12,922,000 | 12,923,000 | 12,924,000 | 12,925,000 | RNA_seq_introns Profiting introdes BRAKER1 BRAKER2

TSEBRA - Workflow

TSEBRA
Long-Read
Integration

TSEBRA - Prediction Accuracy

Average prediction accuracy for A. thal., C. ele. and D. mel.

Gabriel et al. 2021. BMC Bioinformatics 22, 566.

TSEBRA - Comparison to EVidenceModeler

Average prediction accuracy for A. thal., C. ele. and D. mel.

Average runtime

EVM: 35.28 min
TSEBRA: 0.37 min
*executed in parallel on 28 multi-core processor

Haas et al. 2008. Genome biology 9.1: 1-22. Gabriel et al. 2021. BMC Bioinformatics 22, 566.

TSEBRA - Summary

Availability

- https://github.com/Gaius-Augustus/BRAKER
- https://github.com/Gaius-Augustus/TSEBRA

Long-Read Integration

GeneMarkS-T

· Identifies protein-coding regions in assembled transcripts

Tang et al. 2015. Nucleic acids research 43.12:e78-e78.

Preliminary Results: Model Species

Species: Drosophila melanogaster (fruit fly)

Preliminary Results: Novel Genome

Prunus cerasus (sour cherry)

- 2 subgenomes (P. avium, P. fruticosa)
- Extrinsic evidence:

short+long read RNA-Seq data protein database (OrthoDB + *Prunus fruticosa*)

Images used with kind permission of Thomas Wöhner

Preliminary Results: Novel Genome

Prunus cerasus (sour cherry)

• BUSCO: 99.3% completeness

Annotation: 63,132 genes; 110,062 transcripts

49,807 transcripts from PacBio long-reads

Hoff et al. 2019. Genomics, proteomics & bioinformatics 17.5: 546-549.

Summary

BRAKER Annotation with Extrinsic Evidence

BRAKER1: short-read RNA-Seq

• BRAKER2: homologous proteins

GMS-T Protocol: long-read RNA-Seq

TSEBRA: short(+long)-read RNA-Seq and

homologous proteins

Availability

- https://github.com/Gaius-Augustus/TSEBRA
- https://github.com/Gaius-Augustus/BRAKER
 - http://exon.gatech.edu/GeneMark/license_download.cgi
 - $\ \, \text{https://github.com/Gaius-Augustus/Augustus}$
 - https://github.com/gatech-genemark/ProtHint

Long-Read

Integration

Acknowledgements

Acknowledgements

Thomas Wöhner Alexandre Lomsadze

Funding

This research is supported by US National Institutes of Health grant GM128145 to Mark Borodovsky and Mario Stanke.

Co-Authors

Katharina J. Hoff Hannah Thierfeldt Tomáš Brůna Mark Borodovsky Mario Stanke

Availability

- https://github.com/Gaius-Augustus/TSEBRA
- https://github.com/Gaius-Augustus/BRAKER
 - http://exon.gatech.edu/GeneMark/license_download.cgi
 - $\ \, {\tt https://github.com/Gaius-Augustus/Augustus}$
 - https://github.com/gatech-genemark/ProtHint

Long-Read

Integration

References

Lomsadze et al. "Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm." Nucleic acids research 42.15 (2014): e119-e119.

Brûna et al. "GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins." NAR genomics and bioinformatics 2.2 (2020): Iqaa026.

Stanke et al. "Using native and syntenically mapped cDNA alignments to improve de novo gene finding." Bioinformatics 24.5 (2008): 637-644.

Hoff et al. "BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS." Bioinformatics 32.5 (2016): 767-769.

Brûna et al. "BRAKER2: Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database." NAR genomics and bioinformatics 3.1 (2021): Iqaa108.

Gabriel et al. "TSEBRA: Transcript Selector for BRAKER." BMC Bioinformatics 22: 566 (2021).

Tang et al. "Identification of protein coding regions in RNA transcripts." Nucleic acids research 43.12 (2015): e78-e78.

Wöhner et al. "The draft chromosome-level genome assembly of tetraploid ground cherry (Prunus fruticosa Pall.) from long reads." Genomics 113.6 (2021):4173-4183.

Evgenia et al. "OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs." Nucleic Acids Research 47.D1 (2019): D807–D811.

Haas, Brian J., et al. "Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments." Genome biology 9.1 (2008): 1-22.

Hoff et al. "MakeHub: fully automated generation of UCSC genome browser assembly hubs." Genomics, proteomics & bioinformatics 17.5 (2019): 546-549.

TSEBRA
Long-Read
Integration