

escola britânica de artes criativas & tecnologia

Profissão: Cientista de Dados

Probabilidade

Introdução:

Variáveis Aleatórias e Amostragem

Probabilidade

Probabilidade

Amostragem tipo cross section

Probabilidade

Probabilidade

Amostragem de Processo Estocástico

Modelos discretos

Modelos discretos - Bernoulli

$$X = \begin{cases} 1 \text{ se o resultado do ensaio \'e "sucesso"} \\ 0 \text{ se o resultado do ensaio \'e "fracasso"} \end{cases}$$

Definimos: "cara" = "sucesso", "coroa" = "fracasso"

$$P(X=1)=0.5$$

$$P(X=1)=p$$

$$P(X = 0) = 0.5$$

$$P(X = 0) = 0.5$$
 $P(X = 0) = 1 - p$

Modelos discretos - Bernoulli

Modelos discretos - Binomial

Se retirarmos N bolas, com reposição, qual a probabilidade de retirarmos x bolas brancas?

Modelos discretos - Binomial

Qual a probabilidade de retirarmos 1 bola branca?

$$p * (1 - p) * (1 - p)$$
$$= p(1 - p)^{2}$$

Modelos discretos - Binomial

Qual a probabilidade de retirarmos 1 bola branca?

OBS: Considerando a ordem, podemos fazer isso de 3 formas diferentes:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Distribuição condicional e independência

Conjunta

Conjunta

$$P(X_1 = i, X_2 = j)$$

$$= P(X_1 = i).P(X_2 = j)$$

$$=\frac{1}{6}.\frac{1}{6}=\frac{1}{36}$$

Conjunta

Independência

$$P(X_1 = i, | X_2 = j) = P(X_1 = i)$$

Condicional

$$P(Y=i|X_1=6)=$$

$$\frac{1}{6} se i = 7$$

$$\frac{1}{6} se i = 8$$

$$\frac{1}{6} se i = 9$$

$$\frac{1}{6} se i = 10$$

$$\frac{1}{6} se i = 11$$

$$\frac{1}{6} se i = 12$$

$$0 caso contrário$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

$$P(-\infty \le X \le +\infty) = \int_{-\infty}^{+\infty} f(x) dx = 1$$

$$P(0 \le X \le +\infty) = \int_0^{+\infty} f(x)dx = 50\%$$

Quando a função é simétrica, a probabilidade para valores maiores que média é de 50%

Função Distribuição Acumulada de Probabilidade

Distribuição acumulada

$$F(x) = P(X < x)$$

$$F(+\infty) = 1$$

Distribuição acumulada

$$F(x) = \int_{-inf}^{x} f(x)dx = P(X < x)$$

$$F(+\infty) = 1$$

Distribuição Normal

Distribuição normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Distribuição normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$x^* = \frac{x - \mu}{\sigma}$$

$$f(x^*) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x)^2}$$

Vários caminhos levam ao meio

Conjunta, condicional e independência

Combinação linear

- Se $X_1 \sim N(\mu, \sigma^2)$
- $X_1^* = a + bX_1 \sim N(a + \mu, b^2 \sigma^2)$ com a e b constantes.
- Ou seja:
 - A média de X_1^* é $a + \mu$
 - A variância de X_1^* é b^2 . σ^2
 - O que significa que o desvio padrão de X_1^* é $b.\sigma$ (que é $\sqrt{b^2\sigma^2}$)
- POR ISSO QUE SE $X_1 \sim N(\mu, \sigma^2)$:
 - $X_1^* = \frac{X_1 \mu}{\sigma} \Rightarrow X_1^* \sim N(0, 1)$

Combinação linear

- Se $X_1 \sim N(\mu, \sigma^2)$ e $X_2 \sim N(\mu, \sigma^2)$
- E se X_1 e X_2 são independentes,

$$X_1 + X_2 \sim N(2\mu, 2\sigma^2)$$

Distribuição da média

- Dos dois resultados anteriores, temos a distribuição da média:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Ou seja:

Desvio Padrã
$$o(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Ou ainda:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Distribuição da média

Teorema Central do Limite

Se temos uma amostra $X_1, X_2, ..., X_n$ iid (independentes, identicamente distribuídas), então:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

Ou ainda:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx N(0, 1)$$

Teorema do Limite Central

Mas se o parâmetro de variância σ^2 não é conhecido, nos resta substituí-lo pela sua estimativa S^2 .

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} Xi \approx N\left(\mu, \frac{S^2}{n}\right)$$

Ou ainda:

$$\frac{\bar{X} - \mu}{S / \sqrt{n-1}} \approx t(n-1)$$

Média com Variância não conhecida

A distribuição t-student possui 'caudas mais pesadas'.

Isso significa que, com mesma média e desvio padrão, valores mais distantes da média são mais frequentes (têm maior probabilidade)

Média com Variância não conhecida

Um fato interessante da distribuição t-student é que ela se aproxima da distribuição normal conforme o número de graus de liberdade aumenta. Na prática, a partir de 20 a aproximação pela normal já é bem razoável.