Homework 1: Logic

- 10. Find a counterexample to these universally quantified statements
 - a. $\forall x \exists y (x = 1/y)$
 - i. x = 2 is a counterexample
 - ii. In order for this statement to be true, y must equal ½, but ½ is not in the domain (integers).
 - b. $\forall x \exists y (y^2 x < 100)$
 - i. x = -101 is a counterexample
 - ii. If x = -101, this statement can never be true for any value of y. y^2 will always be positive, and as a result, $y^2 + 101$ will always be greater than 100
 - c. $\forall x \forall y (x^2 \neq y^3)$
 - i. x = 1 and y = 1 is a counterexample
 - ii. $\forall x \ \forall y \ \text{states}$ that every value of x and every value of y, including instances where x = y, must satisfy the condition in order for the statement to be true.
 - iii. When x = 1 and y = 1, $x^2 = y^3$, this making this statement false.
- 11. $\exists x \ \forall y \ (x \le y^2)$
 - a. Domain consists of all positive integers
 - i. True because of x = 1
 - ii. If x = 1, all values of y in the domain will yield a number greater than or equal to 1 when put into y^2
 - b. Domain consists of all integers
 - i. True because of x = 0
 - ii. If x = 0, all values of y in the domain will yield a number greater than or equal to 0 when put into y^2
 - c. Domain consists of all nonzero real numbers
 - i. True because of x = -1

I. $\forall x (\neg R(x) \rightarrow P(x))$

ii. y² will always yield a number greater than zero (zero is not in the domain)

Universal Generalization (k)

12. If $\forall x \ (P(x) \lor Q(x))$ and $\forall x \ ((\neg P(x) \land Q(x)) \to R(x))$ are true, then $\forall x (\neg R(x) \to P(x))$ is true

a.	$\forall x (P(x) \lor Q(x))$	Hypothesis
b.	c is an arbitrary element in the domain	Hypothesis
C.	$P(c) \vee Q(c)$	Universal Instantiation (a, b)
d.	$\forall x \; ((\neg P(x) \land Q(x)) \rightarrow R(x))$	Hypothesis
e.	$(\neg P(c) \land Q(c)) \rightarrow R(c)$	Universal Instantiation (b, d)
f.	$\neg(\neg P(c) \land Q(c)) \lor R(c)$	Conditional Identity (e)
g.	$P(c) \vee \neg Q(c) \vee R(c)$	De Morgan's Law (f)
h.	$P(c) \vee P(c) \vee R(c)$	Resolution (c, g)
i.	$P(c) \vee R(c)$	Idempotent Law (h)
j.	$R(c) \vee P(c)$	Commutative Law (i)
k.	$\neg R(c) \rightarrow P(c)$	Conditional Identity (j)

13. "Logic is difficult or not many students like logic." L $\lor \neg S$ "If mathematics is easy, then logic is not difficult." $M \rightarrow \neg L$

Define the following propositional variables:

L indicates that logic is difficult

S indicates that many students like logic

M indicates that mathematics is easy

a. That mathematics is not easy, if many students like logic.

i. Convert to variables: $S \rightarrow \neg M$. This is our desired conclusion.

L v ¬S ii. Hypothesis iii. $M \rightarrow \neg L$ Hypothesis $\neg L \to \ \neg S$ iv. Conditional Identity $M \rightarrow \neg S$ V. Hypothetical Syllogism $\neg M \lor \neg S$ vi. Conditional Identity vii. $\neg S \lor \neg M$ Commutative Law

ix. This is a valid conclusion

 $S \rightarrow \neg M$

viii.

b. That mathematics is not easy or logic is difficult.

i. Convert to variables: ¬M ∨ L. This is our desired conclusion.

ii. L $\vee \neg S$ Hypothesis iii. M $\rightarrow \neg L$ Hypothesis

iv. ¬M v ¬L Conditional Identity

v. This is not a valid conclusion, since $M \to \neg L$ implies $\neg M \lor \neg L$, which differs from the desired conclusion of $\neg M \lor L$.

Conditional Identity

c. That if not many students like logic, then either mathematics is not easy or logic is not difficult.

i. Convert to variables: $\neg S \rightarrow (\neg M \lor \neg L)$. This is our desired conclusion.

ii. $L \vee \neg S$ Hypothesis iii. $M \rightarrow \neg L$ Hypothesis

viii. This is not a valid conclusion (?)

- 14. p_1 , p_2 , p_3 , and p_4 equivalent if $p_1 \leftrightarrow p_4$, $p_2 \leftrightarrow p_3$, and $p_1 \leftrightarrow p_3$.
 - a. p₁ and p₄ must have the same truth value in order to be true.
 - b. Similarly, p_2 and p_3 must have the same truth value in order to be true.
 - c. If p_1 and p_3 have the same truth value, then you can guarantee that all propositions are equivalent, since p_1 's value matches p_2 's value, and p_3 's value matches p_4 's value.
- 15. Every positive integer can be written as the sum of the squares of 3 integers
 - a. 19 is a counterexample
 - b. $0^2 = 0$, $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 16$
 - c. In order for 19 to be true, it must be written as a sum consisting of only three numbers in the set 0, 1, 4, 9, 16.
 - d. This is not possible with only three integers the closest you can get is 1, 1, and 16, which only yields 18.