Interpretação Geométrica

O coeficiente angular de uma reta tangente ao gráfico de y = f(x) no ponto $P(x_0, y_0) = P(x_0, f(x_0))$ é igual a derivada aplicada em um ponto em que $x = x_0$, ou seja:

$$m_t = f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Diferenciabilidade

Dizemos que f é diferenciável nos pontos em que existe uma única reta tangente, ou seja, nos ponto em que existe

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Uma função f não é diferenciável em x_0 nos pontos em que apresenta:

Uma função contínua em $x=x_0$ é sempre diferenciável em neste ponto?

Exemplo: Estude a diferenciabilidade da função f(x) = |x| em $x_0 = 0$.

Geometricamente, f tem um pico em $x_0 = 0$.

$$\lim_{x\to 0} f(x) = 0 = f(0) \implies f \text{ \'e uma função contínua em } x = 0.$$

Pela definição de módulo, temos que:
$$f(x) = |x| = \begin{cases} x, & se \ x \ge 0 \\ -x, & se \ x < 0 \end{cases}$$

Pela definição de derivadas, em $x_0 = 0$, temos que:

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\Delta x) - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

$$\begin{cases} f'_{+}(0) = \lim_{\Delta x \to 0^{+}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{+}} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0^{+}} 1 = 1 \\ f'_{-}(0) = \lim_{\Delta x \to 0^{-}} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{-\Delta x}{\Delta x} = \lim_{\Delta x \to 0^{-}} (-1) = -1 \end{cases}$$

Conclusão:

Como $f'_{+}(0) \neq f'_{-}(0)$, então f'(0) não existe.

Logo, uma função ser contínua num ponto não implica que ela será diferenciável neste ponto.

Se as derivadas laterais iguais em $x=x_0$, então a função é diferenciável em $x=x_0$?

Para responder ao questionamento, consideremos a função:

$$f(x) = \begin{cases} x^2, & se \ x \ge 1 \\ 2x, & se \ x < 1 \end{cases}$$

Usando a definição de derivadas, concluiu-se que:

$$f'(x) = \begin{cases} 2x, & se \ x > 1 \\ 2, & se \ x < 1 \end{cases} \Rightarrow \begin{cases} f'_{+}(1) = 2 \\ f'_{-}(1) = 2 \end{cases}$$

Observe que as derivadas laterais são iguais, porém f'(1) não existe, pois a função não é continua em x=1, pois existe uma descontinuidade do tipo salto em x=1:

Portanto, esse é um contra exemplo. Ou seja, derivadas laterais iguais não implica que a função seja derivável.

Em outras palavras, as derivadas laterais serem iguais é uma condição necessária, não suficiente para que função seja derivável.

Uma função diferenciável em $x=x_0$ é sempre contínua em neste ponto?

Teorema:

Se f é uma função diferenciável em $x=x_0$, então f é contínua em $x=x_0$.

Demonstração:

$$\overline{Devemos\ most}rar\ que\ \lim_{x\to x_0}f\left(x\right)=f\left(x_0\right),\ ou\ seja,\ que\ \lim_{x\to x_0}\left(f\left(x\right)-f\left(x_0\right)\right)=0.$$

Note que:

$$\lim_{\Delta x \to 0} \left(f\left(x_0 + \Delta x\right) - f\left(x_0\right) \right) = \lim_{\Delta x \to 0} \left(\frac{f\left(x_0 + \Delta x\right) - f\left(x_0\right)}{\Delta x} . \Delta x \right)$$

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta x.$$

 $Por\ hipótese,\ f\ \'e\ deriv\'avel\ ent\~ao \lim_{\Delta x\to 0} \frac{f\left(x_0+\Delta x\right)-f\left(x_0\right)}{\Delta x}\ existe\ e\ \'e\ igual\ a\ f'\left(x_0\right).$

Dessa forma, $\lim_{\Delta x \to 0} \left(f\left(x_0 + \Delta x\right) - f\left(x_0\right) \right) = \theta$.

Por propriedades de limites, tem-se que: $\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0)$.

 $\textit{Definindo } x = x_{0} + \Delta x. \quad \textit{Se } \Delta x \rightarrow 0, \; \textit{então } x \rightarrow x_{0}. \; \; \textit{Portanto}, \; \; \lim_{x \rightarrow x_{0}} f\left(x\right) = f\left(x_{0}\right).$

Exemplo. Seja f a função definida por $f(x) = \begin{cases} 3x^2, & se \ x \le 2 \\ ax + b, se \ x > 2 \end{cases}$. Determine, se possível, os valores das constantes a e b para que f seja uma função diferenciável em x = 2.

Objetivo: Determinar a e b para que f'(2) exista.

Para que f seja diferenciável em x=2 é necessário que $f'_+(2)=f'_-(2)$.

Usando a definição de derivadas (ou pelas as regras de derivação), temos que:

$$f'(x) = \begin{cases} 6x, & se \ x < 2 \\ a, & se \ x > 2 \end{cases} \Rightarrow \begin{cases} f'_{-}(2) = 6.2 = 12 \\ f'_{+}(2) = a \end{cases} \Rightarrow f'_{-}(2) = f'_{+}(2) \Leftrightarrow \boxed{a = 12}$$

Observe que a=12 é uma condição necessária que que f'(2) exista, mas não é o suficiente.

Por teorema, sabemos que se f é derivável em x_0 , então f também é contínua em x_0 .

Assim sendo, ainda precisamos estudar a continuidade de f em x=2.

Pela definição de continuidade, temos que: $\lim_{x\to 2} f(x) = f(2)$

Assumindo que a=2, segue que a função f é dada por: $f(x)=\begin{cases} 3x^2, & se\ x\leq 2\\ 12x+b, se\ x>2 \end{cases}$

Assim, temos que:

$$i) f(2) = 3(2^2) = 3.4 = 12$$

 $ii) \lim_{x\to 2} f(x)$ existe?

Analisando os limites laterais, temos que:

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x^2) = 12$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} (12x + b) = 24 + b$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} f(x) \iff 12 = 24 + b \implies \boxed{b = -12}$$

Conclusão: f'(2) existe se, e somente se, a = 12 e b = -12.

