Love in the time of machine learning

Carlos Cotrini

The formula for everlasting love

Figure: Robyn Dawes

- American psychologist.
- 27 couples. 23 "happy", 3 "unhappy" and 1 "inconclusive".
- He proposed a simple predictor for marital happiness:

The formula for everlasting love

frequency of intimacy - frequency of quarrels

The formula for everlasting love

The formula for everlasting love is linear! More formally:

A linear model is powerful enough to predict marriage success!

How about predicting the amount of years a marriage will last?

Predicting number of years a marriage will last

- Define which features you think define the number of years a marriage will last (e.g., frequency of quarrels, frequency of intimacy, etc...).

Formalization

Assume given $X \in \mathbb{R}^{N \times D}$ and $y \in \mathbb{R}^N$ such that:

- $x_i = (x_{i1}, x_{i2}, \dots, x_{iD})$ denotes X's i-th row.
- x_i represents all D features of marriage $i \leq N$ (e.g. frequency of lovemaking, frequency of quarrels, age difference, salary difference, etc...).
- y_i is the number of years of marriage i.

Objective

Find factors $\beta_1, \ldots, \beta_D \in \mathbb{R}$ such that for any marriage $x_i = (x_{i1}, \ldots, x_{iD})$, the value $\beta_1 x_{i1} + \ldots + \beta_D x_{iD}$ is very close to y_i . In other words, find $\beta = (\beta_1, \ldots, \beta_D) \in \mathbb{R}^D$ such that for any marriage x_i , the value $x_i^{\top} \beta$ is very close to y_i . More precisely,

$$\arg \min_{\beta \in \mathbb{R}^D} \quad \sum_{i \leq N} \left(x_i^\top \beta - y_i \right)^2.$$

Advertising the formula...

The formula doesn't sell well if it's too complex. Moreover, it risks "memorizing" the dataset.

How can we search for a simple one?

$$\arg\min_{\beta\in\mathbb{R}^D}\lambda\left(\#\text{ of non-zero entries in }\beta\right)+\sum_{i\leq N}\left(x_i^\top\beta-y_i\right)^2.$$

But we want something more mathematical...

$$\arg \min_{\beta \in \mathbb{R}^D} \lambda \|\beta\|_1 + \sum_{i \leq N} \left(x_i^\top \beta - y_i \right)^2.$$

Tibishirani proved that when λ is sufficiently high, then a minimizer of this is *sparse*.

But we would like something that we can optimize using only standard calculus...

$$\arg\min_{\beta\in\mathbb{R}^D}\lambda\left\|\beta\right\|_2^2 + \sum_{i\leq N}\left(x_i^\top\beta - y_i\right)^2.$$

It is not guaranteed that the minimizer is sparse, but this regularization term is a good balance between a sparse minimizer and a minimizer that is easy to compute.

Commercials

If you are interested in a master thesis on ML for spring 2020,

https://inf.ethz.ch/personal/ccarlos/projects.html

Love personalities and clustering

(a) Helen Fisher

(b) Helene Fischer

Four love personalities

When you enter to chemistry.com you need to answer 60 questions like:

	Strongly	Disagree	Agree	Strongly
	dis-			agree
	agree			
I am always looking for new ex-				
periences.				
I think consistent routines keep				
life orderly and relaxing.				
I am more analytical and ratio-				
nal than most people.				
I am very sensitive to peoples				
feelings and needs.				

So for Helen Fisher, you are just a point in \mathbb{R}^{60} .

Four love personalities

When you enter to chemistry.com you need to answer 60 questions like:

	Strongly	Disagree	Agree	Strongly
	dis-			agree
	agree			
I am always looking for new experiences.				
I think consistent routines keep life orderly and relaxing.				
I am more analytical and rational than most people.				
I am very sensitive to peoples feelings and needs.				

She observed four clusters: explorers, builders, directors, and negotiators.

A model for love personalities

Assume given the dataset from chemistry.com as a matrix $X \in \mathbb{R}^{N \times D}$, where $x_i \in \mathbb{R}^D$ contains the answers for person $i \leq N$. How can we model the sampling of x_i for person i?

- Let $\mu_c \in \mathbb{R}^D$, with $c \le C = 4$, be the expected answers given by an explorer, a builder, a director, and a negotiator.
- ② Draw person *i*'s personality type c with probability π_c . We model this personality type with a vector $M_i \in \{0,1\}^C$ such that $M_{ic} = 1$ and all other entries are zero.
- **3** Draw person *i*'s vector of answers x_i by drawing from $\mathcal{N}(\mu_c, \Sigma_c)$, where Σ_c is a covariance matrix.

Objective

Discover, from the dataset X from chemistry.com, what are the values of μ_c , Σ_c , and π_c , for $c \leq C = 4$.

Maximum-likelihood approach

Let
$$\theta := \{\mu_1, \dots, \mu_C, \Sigma_1, \dots, \Sigma_C, \pi_1, \dots, \pi_c\}.$$

Our **objective** can be then formalized as

$$\arg\max_{\theta} P(X \mid \theta).$$

For the sake of numerical stability, we optimize instead

$$\underset{\theta}{\operatorname{arg\,max}} \quad \log P(X \mid \theta). \qquad \operatorname{Incomplete-data \, log \, likelihood}.$$

For the sake of comparison, we will also consider

$$\underset{\theta}{\operatorname{arg max}} \quad \log P(X, M \mid \theta).$$
 Complete-data log likelihood.

An important independence assumption

Any two different people in X are *independent*. Even when we know their personality types!

Does it make sense? What if there are twins? relatives? **We can't model everything...**

Maximum-likelihood approach

We can show that

$$\log P(X \mid \theta) = \sum_{i \leq N} \log \left(\sum_{c \leq C} \pi_c \mathcal{N} \left(x_i \mid \mu_c, \Sigma_c \right) \right).$$

However, analytically maximizing this incomplete-data log likelihood is quite challenging. In contrast,

$$\log P(X, M \mid \theta) = \sum_{i < N} \sum_{c < C} M_{ic} \log (\pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)).$$

Analytical maximization of the complete-data log likelihood is much more manageable.

This happens often in mixtures from the exponential family.

The EM algorithm is a useful tool for maximizing incomplete-data log likelihoods. It leverages the fact that maximizing the complete-data log likelihood is relatively easy.

The EM algorithm

EM-algorithm

```
Init Initialize \theta^o with random values.
```

E-step Compute
$$P(M | X, \theta^o)$$
.

M-step
$$\theta \leftarrow \arg \max_{\theta} \mathbb{E}_{P(M|X,\theta^o)} [\log P(X, M \mid \theta)].$$

Repeat If θ^o and θ are close enough, finish; otherwise, set $\theta^o \leftarrow \theta$ and go to [E-step].

This also works for mixtures of distributions from the exponential family.