Constructed Functions

Definitions

Definition 1.7.1 (Fixed Cost)

A fixed cost is a cost which remains the same, no matter how much of a product is produced.

Definition 1.7.2 (Variable Cost)

A variable cost is a cost which changes depending on the number of units produced.

Definition 1.7.3 (Total Cost)

The total cost is the sum of the fixed cost and variable cost.

Definition 1.7.4 (Revenue)

Revenue is the _____

Definition 1.7.5 (Profit)

Profit is _____

Definition 1.7.6 (Break-Even Point)

The break-even point is the point when _____

Chapter 1.7 47

Function Operations

There are five operations which we will need to be familiar with in order to move on.

	, if the output units of f and g are
• Subtraction:	, if the output units of f and g are
	, if the output units of f and g ar
	, if the output units of f and g are
• Composition:	\cdots , if \cdots

Addition creates total cost from fixed and variable costs by adding the two; profit is created using subtraction. Variable cost (and revenue) are created by multiplication, and division gives us average cost \overline{C} .

Examples

Example 1.7.7. The number of student tickets sold for a home basketball game at OU is represented by S(w) hundred tickets when w is the winning percentage of the team. The number of non student tickets sold for the same game is represented by N(w) hundred tickets where w is the winning percentage of the team. Combine the functions to construct a new function giving the total number of tickets sold for a home basketball game at OU.

48 Chapter 1.7

Example 1.7.8. Sales of 12-ounce bottles of sparkling water are modeled as $D(x) = 287.411(0.266^x)$ million bottles, when the price is x dollars per bottle. Write a model for the revenue from the sale of 12-ounce bottles of sparkling water.

Example 1.7.9. The profit from the supply of a certain commodity is modeled as $P(q) = 30 + 60 \ln q$ thousand dollars, where q is the number of units produced in millions. Write a model for the average profit when q units are produced.

Chapter 1.7 49

Example 1.7.10. A travel agency offers spring break cruise packages. The agency advertises a cruise to Cancun for \$1200 per person. To promote the cruise among student organizations on campus, the agency offers a discount for student groups selling the cruise to over 50 of their members. The price per student will be discounted by \$10 for each student in excess of 50 (for example, if an organization had 55 members go on the cruise, each of those students would pay \$1150). Write a model for the travel agency's revenue that depends on the number of students from a student organization.

Example 1.7.11. The sales of a certain brand of backpack is modeled by f(s) = 1.56s + 4.3 million dollars, when s is the number of stores that sell the brand of backpack. The number of stores that sell the brand of backpack is modeled by s(t) = 3t + 5.4 stores, t months since the beginning of 2000. Write a model for the sales of a certain brand of backpack with respect to time.

50 Chapter 1.7

Example 1.7.12. The level of contamination in groundsoil is $f(p) = \sqrt{p}$ parts per million when the population of the surrounding community if p people. The population of the surrounding community in year t is modeled as $p(t) = 400t^2 + 2500$ people, t years since 2000.

(a) Why can we use function composition?

(b) Find a model for the contamination of the groundsoil.

Example 1.7.13. It costs a company \$19.50 to produce 150 glass bottles. Write a model for $\overline{C}(q)$, the average cost of producing a bottle when q units are produced.

Chapter 1.7 51

Example 1.7.14. Write the following functions as composite functions, and then evaluate the composite at an input of 2.

(a)
$$f(t) = 3e^t$$
, $t(p) = 4p^2$

(b)
$$h(p) = \frac{4}{p}$$
, $p(t) = 1 + 3e^{-0.5t}$

(c)
$$g(x) = \sqrt{7x^2}$$
, $x(w) = 4e^w$

(d)
$$c(x) = 3x^2 - 2x + 5$$
, $x(t) = 2e^t$