JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Electrical Science-1 (15B11EC111)

TUTORIAL 2: Solution

Q1. Find the power supplied by the VCCS in Fig. 1.1.

Fig. 1.1

Solution:

$$v_c = -2 V$$
,

$$i_d = 4 v_c = -8 A$$
 and $v_d = 2.2 V$

id and vd adhere to the passive convention so

$$P = v_d i_d = -(2.2) (8) = -17.6 W$$

is the power received by the dependent source. The power supplied by the dependent source is 17.6 W.

- **Q.2** A current source and a voltage source are connected in parallel with a resistor as shown in Fig. 1.2. All of the elements connected in parallel have the same voltage v_s in this circuit. Suppose that $v_s = 15$ V, $i_s = 3$ A, and $R = 5\Omega$.
- (a) Calculate the current i in the resistor and the power absorbed by the resistor. (b) Change the current source current to $i_s=5\,$ A and recalculate the current i in the resistor and the power absorbed by the resistor.

Fig. 1.2

Solution:

(a)
$$i = v_s/R = 15/5 = 3A$$

 $P=R i^2 = 45W$

- (b) i and P do not depend on i_s . The values of i and P are 3A and 45 W, both when $i_s = 3$ A and when $i_s = 5$ A.
- **Q.3** Using Kirchhoff's laws, determine the values of i_2 , i_4 , v_2 , v_3 , and v_6 in Fig. 1.3.

Fig. 1.3

Solution:

Apply KCL at node a to get $2 = i_2 + 6 = 0 \implies i_2 = -4 \text{ A}$

$$2 = i_2 + 6 = 0 \implies i_2 = -4 \text{ A}$$

Apply KCL at node b to get

$$3 = i_4 + 6 \implies i_4 = -3 \text{ A}$$

Apply KVL to the loop consisting of elements A and B to get

$$-v_2 - 6 = 0 \implies v_2 = -6 \text{ V}$$

Apply KVL to the loop consisting of elements C, D, and A to get

$$-v_3 - (-2) - 6 = 0 \implies v_4 = -4 \text{ V}$$

Apply KVL to the loop consisting of elements E, F and D to get

$$4 - v_6 + (-2) = 0 \implies v_6 = 2 \text{ V}$$

Check: The sum of the power supplied by all branches is

$$-(6)(2) - (-6)(-4) - (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12 - 24 + 24 + 6 + 12 - 6 = 0$$

Q.4 Determine the voltage measured by the voltmeter in the circuit shown in Fig. 1.4.

Fig. 1.4

Solution:

$$v_m = \frac{25}{25 + 75}(-8) = -2V$$

Q.5 Consider the two similar voltage divider circuits shown in Fig. 1.5. Use voltage division to determine the values of the voltage v_2 in Fig. 1.5(a) and the voltage v_b in Fig. 1.5(b).

Fig. 1.5

Ans
$$v_2 = 6V$$
 and $v_b = -6V$

Solution:

• First, consider the circuit shown in Figure 1.5a. This circuit is an example of a single loop circuit like the circuit shown in Figure 1.5. The 100, 400, and 300Ω resistors are connected in series. The current in the loop is given by

$$i = \frac{12}{100+400+300} = 0.015 A = 15mA$$

• We can calculate the value of v_2 using voltage division:

$$v_2 = \frac{400}{100 + 400 + 300} (12) = 6V$$

- As a check, notice that $6 = v_2 = 400(i) = 400(0.015)$
- Next, consider the circuit shown in Figure 1.5b. This circuit is also an example of a single loop circuit. Again, the current in the loop is given by

$$i = \frac{12}{100 + 400 + 300} = 0.015 A = 15mA$$

• Notice that the voltage v_b in Figure 1.5b is the same voltage as the voltage v_2 in Figure 1.5a, except for polarity. Consequently

$$v_2 = -v_h$$

• Therefore

$$v_b = \frac{400}{100 + 400 + 300} (12) = -6V$$

Q.6 Use current division to determine the currents i_1 , i_2 , i_3 , and i_4 in the circuit shown in Fig. 1.6.

Fig. 1.6

Solution: Applying current divider rule:

$$i_{1} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1}} 4 = \frac{1}{1 + 2 + 3 + 6} 4 = \frac{1}{3} A$$

$$i_{2} = \frac{\frac{1}{3}}{\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1}} 4 = \frac{2}{3} A;$$

$$i_{3} = \frac{\frac{1}{2}}{\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1}} 4 = \underline{1} A$$

$$i_{4} = \frac{1}{\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + 1} 4 = \underline{2} A$$