# MC833 - Projeto 1 Cliente e Servidor TCP

Luciano Zago - 182835 Vinicius Couto - 188115

# Introdução

O projeto tem como objetivo criar uma comunicação TCP, através de sockets, entre um cliente e servidor. A aplicação consiste em um sistema para armazenar perfis de diversos usuários, com as seguintes informações: email (chave), nome, sobrenome, foto da pessoa, residência, formação acadêmica, habilidades e experiência profissional. O servidor deve ser capaz de receber as requisições do cliente, localizado em uma máquina diferente, e transmitir todas as informações disponíveis. O cliente pode visualizar todas as informações disponíveis e adicionar novas experiências em um perfil.

#### Sistema

#### 1. Descrição Geral

O ambos o servidor eo cliente estão divididos em dois arquivos: ".h" e ".c". Para ambos, o ".h" define assinaturas de funções, inclui bibliotecas necessárias e define constantes essenciais para ambos os lados. Em relação às constantes, deve-se ressaltar a importância de "BUFFLEN" e "PORT". A primeira é responsável por padronizar o tamanho da mensagem, fazendo com que haja um mapeamento 1:1 entre um envio do servidor com sua recepção no cliente, e vice-versa. A segunda define a porta em que deve-se estabelecer a conexão. Ambas devem assumir os mesmo valores no servidor e no cliente. Outros componentes importantes nos *headers* são os *wrappers* para as funções *send* e *recv*. Os wrappers, além de capturar erros das *syscalls*, garantem que o tamanho da mensagem enviada/recebida seja sempre igual ao valor de "BUFFLEN", garantindo o mapeamento 1:1 citado anteriormente.

Os arquivos ".c" do servidor e do cliente são responsáveis por coordenar a troca de mensagens. O cliente executa essencialmente três operações: enviar mensagem, receber mensagem e receber arquivo. O servidor, analogamente, executa três operações: enviar mensagem, receber mensagem e enviar arquivo. Troca de mensagens refere-se a enviar/receber uma única *string* contendo um comando ou dado, já troca de arquivos trata-se de uma série de trocas de mensagens contadas: antes de começar o envio do arquivo, é enviada uma mensagem com o tamanho do arquivo para que o cliente saiba quantos bytes ele deve receber. Todo o fluxo de execução é controlado por duas estruturas *switch-case* que aguardam uma a outra para realizar a comunicação coordenamente. Nota-se que a conexão é mantida em aberto até que seja encerrado ou o processo cliente, ou o processo filho correspondente do servidor.

Os dados estão estruturados como arquivos. No servidor, a pasta "data/" armazena arquivos textos com os dados dos perfis e a pasta "imagem" que guarda as fotos dos

perfis. Os arquivos são nomeados de acordo com o email do perfil, e este email é utilizado como chave na busca de arquivos. Um arquivo "index.txt", utilizado para acessar os arquivos quando a opção selecionada não especifica um email, armazena todos as chaves (emails) presentes em dado momento no servidor. O cliente não armazena dados dos perfis, apenas exibe-os no terminal. Excetua-se as imagens, já que não há como exibi-las no terminal, estas são salvas na pasta "data/" presente no cliente.

#### 2. Casos de Uso

help - Mostra os comandos disponiveis

1 < curso> - Lista todas as pessoas formadas em um determinado curso

2 <cidade> - Lista as habilidades dos residentes da cidade3 <emai> <experiência> - Adiciona determinada experiência em um perfil

4 <email> - Lista todas as experiências de um perfil

5 - Lista todas as informações de todos os perfis

6 <email> - Lista todas as informações de um perfil

#### Estrutura de dados e armazenamento

Os dados do servidor estão todos armazenados dentro do diretório "server/data". As imagens de perfil estão armazenadas no diretório "server/data/images".

A estrutura de dados consiste em um arquivo "index.txt" para registrar as chaves (emails) cadastradas no sistema, e arquivos "[email].txt" para armazenar as informações relativas ao perfil do usuário. As fotos de perfil são armazenadas em arquivos "images/[email].jpg".

Cada tipo de informação do perfil é armazenada consistentemente em determinada linha do arquivo de texto, como no esquema a seguir:

Linha 1
Nome
Sobrenome
Cidade
Linha 3
Curso
Linha 5
Linha 5+i, i>=1
Nome
Sobrenome
Cidade
Curso
Habilidades
Experiência nº i

# Implementação do servidor TCP

O servidor foi implementado visando o armazenamento de dados de forma persistente e paralelismo entre conexões. A fim de garantir o paralelismo, o servidor TCP possui, inicialmente, um único processo pai que atua como *dispatcher* para novas conexões. O *dispatcher* é associado a porta "PORT" com protocolo IPv4 (AF\_INET) e, para que este *socket* seja associado a porta "PORT" de todas as interfaces de rede do computador, ele recebe o IP "INADDR\_ANY". Enquanto o dispatcher aguarda novas conexões com o uso da *syscall listen*, os clientes já conectados são distribuídos aos processos filhos que ficam responsáveis por atender as *requests* dos clientes associados a eles sem que o processo pai tenha que interromper a escuta por novas conexões [1]. Para fins de praticidade, supôs-se que todos os

comandos fornecidos pelo cliente eram válidos dentro do escopo de operações do servidor; também assumiu-se que as conexões são sempre estáveis. A finalidade das suposições é de evitar tratamento de erros, o que aumentaria a complexidade do servidor e divergiria do objetivo do projeto.

### Resultados

Os resultados correspondem à consultas realizadas em máquinas diferentes em uma rede local

O cálculo do erro com intervalo de confiança de 95% foi realizado como  $\sigma_M=1.96 \times \frac{\sigma}{\sqrt{N}}$  sendo  $\sigma$  o desvio padrão e N o número total de iterações. O valor 1.96 é a constante que representa o intervalo de confiança de 95% [2].

| Tempos de consulta/atualização do client |          |          |          |          |          |          |  |  |
|------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|
| Iterações                                | Opções   |          |          |          |          |          |  |  |
| *                                        | 1        | 2        | 3        | 4        | 5        | 6        |  |  |
| 1                                        | 0.004794 | 0.003919 | 0.002509 | 0.001589 | 0.221225 | 0.012490 |  |  |
| 2                                        | 0.007689 | 0.003065 | 0.008735 | 0.001537 | 0.134130 | 0.019630 |  |  |
| 3                                        | 0.002781 | 0.010434 | 0.009400 | 0.001992 | 0.058004 | 0.012356 |  |  |
| 4                                        | 0.006732 | 0.002593 | 0.001734 | 0.006122 | 0.132866 | 0.005631 |  |  |
| 5                                        | 0.009084 | 0.006894 | 0.005084 | 0.001806 | 0.134607 | 0.010563 |  |  |
| 6                                        | 0.002819 | 0.002858 | 0.001801 | 0.006181 | 0.059027 | 0.005422 |  |  |
| 7                                        | 0.002996 | 0.010462 | 0.001596 | 0.006709 | 0.143028 | 0.005518 |  |  |
| 8                                        | 0.002842 | 0.004602 | 0.001520 | 0.001462 | 0.124570 | 0.018680 |  |  |
| 9                                        | 0.003810 | 0.002857 | 0.008123 | 0.001301 | 0.067282 | 0.012661 |  |  |
| 10                                       | 0.002869 | 0.004574 | 0.009190 | 0.003714 | 0.077694 | 0.011924 |  |  |
| 11                                       | 0.003771 | 0.003283 | 0.001668 | 0.003749 | 0.131294 | 0.010087 |  |  |
| 12                                       | 0.004161 | 0.002416 | 0.004339 | 0.001521 | 0.130589 | 0.010135 |  |  |
| 13                                       | 0.005968 | 0.006822 | 0.009446 | 0.007507 | 0.058454 | 0.014661 |  |  |
| 14                                       | 0.002914 | 0.009027 | 0.001669 | 0.002127 | 0.128978 | 0.005602 |  |  |
| 15                                       | 0.002868 | 0.005429 | 0.006345 | 0.001476 | 0.125042 | 0.014367 |  |  |
| 16                                       | 0.002632 | 0.002389 | 0.009018 | 0.002354 | 0.061815 | 0.021045 |  |  |
| 17                                       | 0.002836 | 0.008559 | 0.002040 | 0.003829 | 0.130240 | 0.005791 |  |  |
| 18                                       | 0.007198 | 0.005819 | 0.001660 | 0.005413 | 0.131553 | 0.008406 |  |  |
| 19                                       | 0.006994 | 0.002259 | 0.003192 | 0.008710 | 0.059055 | 0.020794 |  |  |
| 20                                       | 0.005329 | 0.002357 | 0.004551 | 0.007007 | 0.129339 | 0.013668 |  |  |
| Média (s)                                | 0.004554 | 0.005031 | 0.004681 | 0.003805 | 0.111940 | 0.011972 |  |  |
| Erro (95%)                               | 0.000891 | 0.001220 | 0.001397 | 0.001077 | 0.018476 | 0.002261 |  |  |

| Tempos de operação do servidor |          |          |          |          |          |          |  |  |
|--------------------------------|----------|----------|----------|----------|----------|----------|--|--|
| Iterações                      | Opções   |          |          |          |          |          |  |  |
| -                              | 1        | 2        | 3        | 4        | 5        | 6        |  |  |
| 1                              | 0.001977 | 0.002880 | 0.00191  | 0.000344 | 0.186221 | 0.001653 |  |  |
| 2                              | 0.001850 | 0.001890 | 0.000915 | 0.000340 | 0.028249 | 0.001089 |  |  |
| 3                              | 0.001678 | 0.001591 | 0.001647 | 0.000276 | 0.008397 | 0.001279 |  |  |
| 4                              | 0.001767 | 0.001742 | 0.000912 | 0.000366 | 0.024919 | 0.001271 |  |  |
| 5                              | 0.001913 | 0.001689 | 0.000810 | 0.000352 | 0.006030 | 0.001169 |  |  |
| 6                              | 0.001562 | 0.001704 | 0.000836 | 0.000347 | 0.008940 | 0.001217 |  |  |
| 7                              | 0.001688 | 0.001605 | 0.000806 | 0.000211 | 0.009018 | 0.001271 |  |  |
| 8                              | 0.001694 | 0.001439 | 0.000823 | 0.000203 | 0.008587 | 0.000514 |  |  |
| 9                              | 0.001499 | 0.001620 | 0.000828 | 0.000151 | 0.008561 | 0.001278 |  |  |
| 10                             | 0.001763 | 0.001194 | 0.001366 | 0.000350 | 0.008726 | 0.001126 |  |  |
| 11                             | 0.001715 | 0.001496 | 0.000837 | 0.000292 | 0.008184 | 0.001186 |  |  |
| 12                             | 0.001572 | 0.001418 | 0.000858 | 0.000281 | 0.008231 | 0.001181 |  |  |
| 13                             | 0.003371 | 0.001527 | 0.001659 | 0.000351 | 0.008163 | 0.001136 |  |  |
| 14                             | 0.001771 | 0.001313 | 0.000854 | 0.000354 | 0.009661 | 0.000539 |  |  |
| 15                             | 0.001790 | 0.001421 | 0.000721 | 0.000293 | 0.008591 | 0.001203 |  |  |
| 16                             | 0.001617 | 0.001270 | 0.002531 | 0.000235 | 0.007548 | 0.001032 |  |  |
| 17                             | 0.001733 | 0.001417 | 0.001297 | 0.000338 | 0.008140 | 0.001275 |  |  |
| 18                             | 0.001484 | 0.001495 | 0.000865 | 0.000350 | 0.008094 | 0.001159 |  |  |
| 19                             | 0.001722 | 0.001413 | 0.000863 | 0.000389 | 0.008520 | 0.001170 |  |  |
| 20                             | 0.001316 | 0.001571 | 0.001057 | 0.000287 | 0.008299 | 0.001140 |  |  |
| Média (s)                      | 0.001774 | 0.001585 | 0.001120 | 0.000306 | 0.019054 | 0.001144 |  |  |
| Erro (95%)                     | 0.000178 | 0.000153 | 0.000209 | 0.000028 | 0.017423 | 0.000107 |  |  |

|            | Tempos de comunicação |          |          |          |          |          |  |  |
|------------|-----------------------|----------|----------|----------|----------|----------|--|--|
| Iterações  | Opções                |          |          |          |          |          |  |  |
|            | 1                     | 2        | 3        | 4        | 5        | 6        |  |  |
| 1          | 0.002817              | 0.001039 | 0.000599 | 0.001245 | 0.035004 | 0.010837 |  |  |
| 2          | 0.005839              | 0.001175 | 0.007820 | 0.001197 | 0.105881 | 0.018541 |  |  |
| 3          | 0.001103              | 0.008843 | 0.007753 | 0.001716 | 0.049607 | 0.011077 |  |  |
| 4          | 0.004965              | 0.000851 | 0.000822 | 0.005756 | 0.107947 | 0.004360 |  |  |
| 5          | 0.007171              | 0.005205 | 0.004274 | 0.001454 | 0.128577 | 0.009394 |  |  |
| 6          | 0.001257              | 0.001154 | 0.000965 | 0.005834 | 0.050087 | 0.004205 |  |  |
| 7          | 0.001308              | 0.008857 | 0.000790 | 0.006498 | 0.134010 | 0.004247 |  |  |
| 8          | 0.001148              | 0.003163 | 0.000697 | 0.001259 | 0.115983 | 0.018166 |  |  |
| 9          | 0.002311              | 0.001237 | 0.007295 | 0.001150 | 0.058721 | 0.011383 |  |  |
| 10         | 0.001106              | 0.003380 | 0.007824 | 0.003364 | 0.068968 | 0.010798 |  |  |
| 11         | 0.002056              | 0.001787 | 0.000831 | 0.003457 | 0.123110 | 0.008901 |  |  |
| 12         | 0.002589              | 0.000998 | 0.003481 | 0.001240 | 0.122358 | 0.008954 |  |  |
| 13         | 0.002597              | 0.005295 | 0.007787 | 0.007156 | 0.050291 | 0.013525 |  |  |
| 14         | 0.001143              | 0.007714 | 0.000815 | 0.001773 | 0.119317 | 0.005063 |  |  |
| 15         | 0.001078              | 0.004008 | 0.005624 | 0.001183 | 0.116451 | 0.013164 |  |  |
| 16         | 0.001015              | 0.001119 | 0.006487 | 0.002119 | 0.054267 | 0.020013 |  |  |
| 17         | 0.001103              | 0.007142 | 0.000743 | 0.003491 | 0.122100 | 0.004516 |  |  |
| 18         | 0.005714              | 0.004324 | 0.000795 | 0.005063 | 0.123459 | 0.007247 |  |  |
| 19         | 0.005272              | 0.000846 | 0.002329 | 0.008321 | 0.050535 | 0.019624 |  |  |
| 20         | 0.004013              | 0.000786 | 0.003494 | 0.006720 | 0.121040 | 0.012528 |  |  |
| Média (s)  | 0.002780              | 0.003446 | 0.003561 | 0.003500 | 0.092886 | 0.010827 |  |  |
| Erro (95%) | 0.000870              | 0.001247 | 0.001311 | 0.001067 | 0.015382 | 0.002282 |  |  |



Analisando os resultados, nota-se que o tempo de comunicação corresponde a uma parte significativa do tempo de consulta/atualização, sendo responsável por mais de noventa por cento do tempo na maioria dos casos. Como as tarefas executadas pela máquina são simples, é esperado que o tempo de processamento do servidor (representado pela diferença entre o tempo de consulta/atualização e o tempo de comunicação) fosse mínimo. Um fator que pode ter colaborado com o aumento do tempo de relativo de comunicação é o tamanho do buffer que fora utilizado, uma vez que são transmitidos apenas duzentos e cinquenta e seis bytes por syscall, tanto para recv quanto para send.

Os maiores tempos de processamento no servidor em relação ao tempo de consulta/atualização do cliente, são das opções um, dois e cinco. Justifica-se essa observação pelo fato que estas operações iteram por todos os arquivos do servidor com a finalidade de buscar os resultados desejados, aumentando a relação do tempo de processamento pelo de comunicação. O processamento necessário para abrir, ler e enviar um perfil, como é feito no caso seis, é menor do que os casos citados, uma vez que a tal opção recebe o email (chave) como parâmetro, encontrando o os arquivos desejados facilmente, e so requer a abertura e leitura de um único perfil.

As operações cinco e seis são as que apresentam os maiores tempos totais, uma vez que ambas operações requerem o envio de todas as informações do perfil. O tempo de comunicação nestes casos é fortemente ampliado pela quantidade de mensagens necessárias para enviar os arquivos de imagem, algo que não ocorre nos outros casos. A operação cinco, em particular, apresenta os maiores tempos medidos: consulta/atualização, processamento e comunicação. Tal resultado é coerente, pois esta é a única opção que envolve abrir, ler e enviar absolutamente todos os dados contidos no servidor e, além disso, fazer a busca de perfis pelo arquivo "index.txt". Devido a escala da opção cinco, os tempos de operação e comunicação ficam muito acima de todas as outras operações.

#### Conclusão

O projeto criou uma comunicação TCP entre um cliente e servidor, localizados em máquinas deferentes em uma rede local, para atender os requisitos das seis operações citadas e as condições de paralelismo e persistência.

Analisando-se os resultados, nota-se que os tempos de comunicação foram sempre menores do que os tempos de consulta/atualização, o que é consistente com o esperado, pois o tempo de comunicação está contido no tempo total de consulta. As operações um, dois, três e quatro apresentaram tempos menores do que as operações cinco e seis, pois as últimas requerem o envio de todas as informações do perfil.

Dessa forma, o projeto atendeu os requisitos para um servidor TCP concorrente e apresentou uma performance coerente com o esperado. A persistência e confiança na transmissão de arquivos foi garantida em ambos servidor e cliente pelo protocolo TCP e a interação adequada dos programas com o protocolo através de wrappers.

## Referências

- 1. Beej's Guide to Network Programming (<a href="http://beej.us/guide/bgnet/html/single/bgnet.html">http://beej.us/guide/bgnet/html/single/bgnet.html</a>)
- 2. Confidence Interval on the Mean (<a href="http://onlinestatbook.com/2/estimation/mean.html">http://onlinestatbook.com/2/estimation/mean.html</a>)