

로봇공학입문설계

5주차 모바일 로봇(3)

로봇공학과

Contents

- Report
- Encoder

- Interrupt
- Distance Keeping Robot

모바일 로봇 프로젝트(1)

□ 개별 레포트

- 1. 이론 : 모터, 엔코더, 인터럽트
 - ▶ 원리 및 종류 등에 대하여 핵심사항만 정리
- 2. 역할 분담
 - ▶ 팀원 별 역할 수행 내용
 - ▷ 기여도 : 점수 총합 100점 기준으로 자신 이외의 다른 팀원에 대한 점수 부여 (필수 사항 아님)
- 3. 실험 내용
 - ▶ 실험 목표
 - ▶ 로봇 구성 : 사용한 부품 및 하드웨어 구성
 - ▶ 알고리즘 : 가급적 순서도 혹은 그림으로 설명
- 4. 실험 결과 및 분석
 - ▶ 하드웨어 구성(실험2)
 - ▶ 소스코드 분석
 - ▶ 시행착오, 개선사항, 한계점
- 5. 소스코드
- ※ 이론, 실험 결과 및 분석은 팀 내 공유 금지
- □ 제출기한 : 4월 13일

모바일 로봇 프로젝트(1)

실험 1. Distance Keeping

실험 2. Autonomous Parking

실험 영상: rlagywjd802@naver.com 으로 조별로 전송(개인별 전송 아님)

메일 제목 : [로봇공학과][1조][Distance Keeping]

제출 기한 : 4월 13일

□ 구동 원리

☐ Encoder Specification (RA-35GM 11TYPE (12V) with 2channel Encoder)

- Reduction ratio: 1/30

- Encoder: 26P/R

□ Enocoder란?

○ 모터의 회전 방향과 회전 속도 측정

□ 회전 방향

□ 회전 속도

- 26P/R, 2채널 : 1회전시, ChA, ChB에서 각각 13pulse씩 출력
- 4체배 적용 : 1회전시, 총 13[pulse] x 4 = 52번 pulse 체크
- 1회전 하는데 걸리는 시간을 측정하여 회전 속도[RPM]계산

□ 구동 원리

역방향

Ch B	LOW	HIGH
L→H	역방향	정방향
H→L	정방향	역방향

Ch A	LOW	HIGH
L→H	정방향	역방향
H→L	역방향	정방향

□ 구동 원리

- O RPM계산
 - ▶ 52번 pulse 체크(=1회전)하는 동안 걸리는 시간을 측정한다.
 - ▶ 기어비 1/30이므로, 모터 축이 회전하는 속도는 1/30배를 해주어야 한다.

$$RPM = \frac{1$$
회전}{걸린시간[min]} × 기어비 = $\frac{1,000,000}{dt[\mu s]} \times \frac{1}{30} \times 60 = \frac{2,000,000}{dt}$

□ Edge를 detect하기 위해서는...?

Interrupt 이용!

Interrupt는 edge detecting을 할 수 있을 뿐만 아니라 특정 순간(rising edge, falling edge 등)에 원하는 일을 수행할 수 있도록 한다.

□ Interrupt 란?

○ 인터럽트는 특정 핀의 입력 상태가 바뀔 때, 아두이노가 이를 자동으로 감지하여 모든 동작을 잠시 멈춘 다음, ISR이라 부르는 함수를 실행하고 다시 원래 작업으로 복귀하는 기능을 뜻한다.

□ Interrupt 관련 함수

<u>attatchInterrupt(digitalPinToInterrupt(interruptPin), ISR, mode)</u>

digitalPinToInterrupt(interruptPin): interrupt 번호

Board	int.0	int.1	int.2	int.3	int.4	int.5
Uno, Ethernet	2	3				
Mega2560	2	3	21	20	19	18
32u4 based (e.g Leonardo, Micro)	3	2	0	1	7	
Due, Zero, MKR1000, 101	interrupt number = pin number					

ISR: interrupt가 발생할 때 부르는 함수 명(interrupt service routine)

mode: interrupt가 trigger되는 시점을 정의

- CHANGE : LOW→HIGH, HIGH→LOW

- RISING : LOW→HIGH

- FALLING : HIGH→LOW

□ Interrupt 관련 함수

<u>attatchInterrupt(digitalPinToInterrupt(interruptPin), ISR, mode)</u>

Board	int.0	int.1	int.2	int.3	int.4	int.5
Uno, Ethernet	2	3				
Mega2560	2	3	21	20	19	18
32u4 based (e.g Leonardo, Micro)	3	2	0	1	7	
Due, Zero, MKR1000, 101		int	errupt numb	er = pin numl	ber	

<u>적용예시</u>

```
#define EA_CHA 2
#define EA_CHB 3

void setup() {
   pinMode(EA_CHA, INPUT);
   pinMode(EA_CHB, INPUT);
   attachInterrupt(digitalPinToInterrupt(EA_CHA), enAchA_ISR, CHANGE);
   attachInterrupt(digitalPinToInterrupt(EA_CHB), enAchB_ISR, CHANGE);
}
```

attachInterrupt(0, enAchA_ISR, CHANGE);
attachInterrupt(1, enAchB_ISR, CHANGE);

[예제5] 엔코더로 모터의 회전속도 읽기

[예제5] 엔코더로 모터의 회전속도 읽기

```
#define EA CHA 2
#define EA CHB 3
#define MA DIR 12
#define MA PWM 10
// Encoder
int enAPos = 0;
unsigned long current=0;
unsigned long previous=0;
long dt;
int rpm;
void setup() {
 pinMode(EA CHA, INPUT);
 pinMode(EA CHB, INPUT);
 pinMode(MA DIR, OUTPUT);
 pinMode(MA PWM, OUTPUT);
 attachInterrupt(digitalPinToInterrupt(EA CHA), enAchA ISR,
CHANGE);
 attachInterrupt(digitalPinToInterrupt(EA CHB), enAchB ISR,
CHANGE);
 Serial.begin (115200);
```

[예제5] 엔코더로 모터의 회전속도 읽기

[예제6] 가변저항을 이용한 DC Motor 속도조절 값 출력

[예제6] 가변저항을 이용한 DC Motor 속도조절 값 출력

```
#define EA CHA 2
#define EA CHB 3
#define MA DIR 12
#define MA PWM 10
#define POT PIN A0
// Encoder
int enAPos = 0:
unsigned long current=0;
unsigned long previous=0;
long dt;
int rpm;
int potValue;
int velocity;
void setup() {
 pinMode(EA CHA, INPUT);
 pinMode(EA CHB, INPUT);
 pinMode(POT PIN, INPUT);
 pinMode(MA DIR, OUTPUT);
 pinMode(MA PWM, OUTPUT);
 attachInterrupt(digitalPinToInterrupt(EA CHA), enAchA ISR, CHANGE);
 attachInterrupt(digitalPinToInterrupt(EA CHB), enAchB ISR, CHANGE);
 Serial.begin(115200);
```

```
void loop(){
potValue = analogRead(POT PIN);
velocity = map(potValue, 0, 1023, 0, 255);
 if(enAPos = = (13*4)){}
                         //13pulse*4=52pulse
  current=micros();
  dt=current-previous; //us
  rpm = 2000000/dt;
                        //1000000*(1/30)*(60)=2000000
  Serial.print("VEL:");
  Serial.print(velocity);
  Serial.print(",
                        RPM:");
  Serial.println(rpm);
  enAPos=0;
  previous=current;
digitalWrite(MA DIR, HIGH);
analogWrite(MA PWM, velocity);
}
void enAchA ISR(){...}
void enAchB ISR(){...}
```