

Mark Scheme (Results)

June 2021

Pearson Edexcel International Advanced Level In Physics (WPH16) Paper 1 Practical Skills in Physics II

Question number	Answer		Mark	
1 (a)	Measure (the number of divisions) between the same points on the pulses [Accept clearly labelled on diagram]	(1)		
	Multiply the number of divisions by the time per division.	(1)		
	Measure between the first and last pulse and divide by two Or	(4)		
	Measure between successive pulses and determine a mean	(1)	3	
	[Accept distance for number of divisions]			
1 (b)	Use of $T = 2\pi/\omega$ and $v = \omega r$	(1)		
	T = 35.9 ms [Accept 36 ms]	(1)		
	Correct value of time per division calculated from time period and screen width Or			
	Correct value of (maximum) time period on screen calculated using time scale and screen width	(1)		
	Valid time scale based on comparison of values	(1)	4	
	[Accept calculation based on a screen width of between 5 and 10 divisions, or $2T$]			
	Example of calculation			
	$\omega = v / r = 22.2 \text{ m s}^{-1} / 0.127 \text{ m} = 175 \text{ rad s}^{-1}$			
	$T = 2\pi / \omega = 2\pi / 175 \text{ rad s}^{-1} = 35.9 \times 10^{-3} \text{ s} = 35.9 \text{ ms}$			
	The screen is 10 divisions wide, so each division would need to be at least 3.59 ms			
	Therefore use setting of 5 ms per division as 2 ms per division is too small			
	Total mark for Question 1 = 7			

Question number	Answer				Mark
2(a)	Correct circuit diagram and ammeter [Accept voltmeter and ammeter	joulemeter or wattme		(1)	
	Example of circuit diag	gram [Accept circuit dray	vn on diagram]		
	Wait until the water be	gins to boil		(1)	
	Record values of mass	m		(1)	
	at times t with a stopw. Or	atch			
	at energies E with a join	ulemeter		(1)	
	Plot appropriate graph	for the measurements	made	(1)	
	Correct gradient for the	- 1		(1)	
	[Accept a labelled sket	3 1 -			
	Examples of appropria		7.		6
	$\frac{y}{m}$	$\frac{x}{t}$	gradient VI/L or P/L		
	m	VIt or Pt or E	1/L		
	m	Vt	I/L		
	m	It	V/L		
2 (b)	A significant source of	error is energy transfe	er to the surroundings	(1)	
	Decreases the energy to	ransferred to the water	(per second)		
	Hence the value of <i>L</i> w MP2]	vill be too large	[dependent MP1 or	(1)	
	[Accept a reasonable se	ource of error related	to the experiment]	(1)	3
			Total mark for	Questio	on $2=9$

Question number	Answer		Mark
3(a)(i)	Place a (timing) marker on the bench [Accept labelled diagram]	(1)	
	(Marker) directly below a specific point on the trolley when (undisplaced from) the equilibrium	(1)	2
3 (a)(ii)	Max TWO from		
	Time multiple oscillations and divide by the number of oscillations	(1)	
	Repeat and calculate a mean	(1)	
	Start timing after several oscillations have completed	(1)	2
	[Credit reference to a stationary timing marker in (a)(i)]		
3(b)(i)	log T values correct and consistent to 2 d.p. [Accept 3 d.p]	(1)	
	log M values correct and consistent to 2 d.p. [Accept 3 d.p]	(1)	
	Axes labelled: y as $\log(T/s)$ and x as $\log(M/kg)$	(1)	
	Most appropriate scales for both axes	(1)	
	Plots accurate to ± 1mm	(1)	
	Best fit line with even spread of plots	(1)	6
3 (b)(ii)	$\log T = \log (2\pi/\sqrt{k}) + \frac{1}{2}\log M$	(1)	
	is in the form $y = c + mx$ with a gradient of 0.5 [dependent MP1]	(1)	
	Correct calculation of gradient using large triangle shown	(1)	
	Value of gradient in range 0.47 to 0.54, to 2 or 3 s.f., no unit	(1)	
	Valid conclusion based on gradient value	(1)	5
	Example of calculation		
	gradient = (0.1450.10)/(0.40.08) = 0.245/0.48 = 0.51		
	As the gradient is approximately 0.5 the prediction is valid		
	[Credit gradient calculation given in (b)(iii) or on graph]		

		,	
3 (b)(iii)	Correct value of y-intercept read from graph shown	(1)	
	Calculation using antilog to determine $2\pi/\sqrt{k}$ shown	(1)	
	Value of k in range 50 to 54 to 2 or 3 s.f. with unit of kg s ⁻²	(1)	
	[Accept N m ⁻¹]		
	Example of calculation		
	$c = -0.06 = \log(2\pi/\sqrt{k})$		
	$(2\pi/\sqrt{k}) = 10^{-0.06} = 0.87$		
	$k = (2\pi/0.87)^2 = 52 \text{ kg s}^{-2}$		
	Or		
	Correct value of y-intercept using coordinates from point on best fit line with gradient shown [e.c.f. (b)(ii)]	(1)	
	Calculation using antilog to determine $2\pi\sqrt{k}$ shown	(1)	
	Value of k in range 50 to 54 to 2 or 3 s.f. with unit of kg s ⁻²	(1)	
	[Accept N m ⁻¹]		
	Example of calculation		
	From best fit line, $y = 0.095$, $x = 0.3$		
	$c = y - mx = 0.095 - (0.51' \ 0.3) = 0.095 - 0.153 = -0.058$		
	$(2\pi/\sqrt{k}) = 10^{-0.058} = 0.875$		
	$k = (2\pi/0.875)^2 = 52 \text{ kg s}^{-2}$		
	Or		
	Correct antilog of coordinates from point on best fit line shown	(1)	
	Use of $T = 2\pi\sqrt{(M/k)}$ shown	(1)	
	Value of k in range 50 to 54 to 2 or 3 s.f. with unit of kg s ⁻²	(1)	3
	[Accept N m ⁻¹]		
	Example of calculation		
	From best fit line, $y = 0.095$, $x = 0.3$		
	$T = 10^{0.095} = 1.24, M = 10^{0.3} = 2.00$		
	$k = 4\pi^2 M / T^2 = 4\pi^2 ' 2 / 1.24^2 = 79 / 1.54 = 51 \text{ kg s}^{-2}$		

Total mark for Question 3 = 18

Examples of completed tables and graphs

<i>M</i> / kg	T/s	log (M/kg)	log (T/s)
0.800	0.78	-0.10	-0.11
1.300	1.01	0.11	0.00
1.800	1.18	0.26	0.07
2.300	1.34	0.36	0.13
2.800	1.49	0.45	0.17
3.300	1.60	0.52	0.20

<i>M</i> / kg	T/s	ln (M/kg)	ln (<i>T</i> /s)
0.800	0.78	-0.22	-0.25
1.300	1.01	0.26	0.01
1.800	1.18	0.59	0.17
2.300	1.34	0.83	0.29
2.800	1.49	1.03	0.40
3.300	1.60	1.19	0.47

Question number	Answer		Mark
4 (a)(i)	Vernier calipers as the range of the micrometer is too small	(1)	1
	[Accept clear reference to range of micrometer as 25 mm]		
4 (a)(ii)	There may be a <u>systematic error</u> Or		
	there may be zero error (on the Vernier calipers)	(1)	
	(Therefore) the values may not be close to the true value		
	Or (therefore) there may be a constant value added to the measurements	(1)	2
4(b)	Mean $x = 2.12$ (mm)	(1)	
	Uncertainty of <u>0.02</u> (mm) from calculation of half range	(1)	2
	[Accept furthest from the mean]		
	Example of calculation mean $x = (2.11+2.10+2.13+2.14+2.11)$ mm/5 = 2.118 = 2.12		
	mm		
	Uncertainty = $(2.14-2.10) \text{ mm/2} = 0.02 \text{ mm}$		
4(c)(i)	Use of $n = 1 + \frac{d^2 + (t - x)^2}{8f(t - x)}$	(1)	
	Correct value of n to 2 or 3 s.f. [e.c.f (b)]	(1)	2
	Example of calculation		
	$n = 1 + \frac{d^2 + (t - x)^2}{8f(t - x)} = 1 + \frac{5.10^2 + (0.830 - 0.212)^2}{8 \times 9.8 \times (0.830 - 0.212)} = 1 + \frac{26.01 + 0.618^2}{48.45}$		
	= 1.54		
4(c)(ii)	Addition of U in t and U in x shown	(1)	
	Conversion to %U to minimum 2 s.f. [e.c.f (b)]	(1)	2
	Example of calculation		
	$U = 0.01 + 0.02 = 0.03$ $0.11 - 0.03 / (8.30 - 2.13) \times 1000 = 0.40.0$		
	%U = 0.03 / (8.30 – 2.12) × 100% = 0.49 %		

4(a)(!!!)	II CO WILL I CO WILL S	(1)	
4(c)(iii)	Use of $2 \times \%$ U in d or $2 \times \%$ U $(t-x)$ shown [e.c.f (b)]	(1)	
	Calculation of U in d^2 or U in $(t-x)^2$ shown	(1)	
	Addition of U in d^2 and U in $(t-x)^2$ shown	(1)	4
	Correct value of U to minimum 3 s.f. [do not penalise if square root of final value is taken]	(1)	4
	Example of calculation		
	%U in $d^2 = 2 \times (0.01/5.1 \times 100) = 0.392\%$		
	U in $d^2 = 5.1^2 \times 0.392/100 = 0.102$		
	%U in $(t - x)^2 = 2 \times 0.49 = 0.98$ %		
	U in $(t - x)^2 = 0.618^2 \times 0.98/100 = 0.004$		
	U = 0.102 + 0.004 = 0.106		
4 (c)(iv)	Correct calculation of %U in n shown [e.c.f. (c)(ii) and (iii)]	(1)	
	Calculation of relevant limit shown $[e.c.f(c)(i)]$	(1)	
	Valid conclusion based on comparison of calculated values	(1)	
	[MP3 dependent on MP2]	(-)	
	Example of calculation		
	$%U = (0.106/26.4 \times 100) + 0.485 + (0.3/9.8 \times 100) = 0.402 + 0.485 + 3.06$		
	= 3.95%		
	Upper limit = $1.54 \times 1.04 = 1.60$		
	Lower limit = $1.54 \times 0.96 = 1.48$		
	The lens is most likely to be made of crown glass as it is the only value to fall within the range		
	Or		
	Correct calculation of %U in n shown [e.c.f. (c)(ii) and (iii)]	(1)	
	Correct calculation of relevant %D shown [e.c.f (c)(i)]	(1)	
	Valid conclusion based on comparison of calculated values	(1)	3
	[MP3 dependent on MP2]		

Example of calculation

$$%U = (0.106/26.4 \times 100) + 0.485 + (0.3/9.8 \times 100) = 0.402 + 0.485 + 3.06$$

Crown glass %D = $(1.54-1.52)/1.52 \times 100 = 1.32$ %

Flint glass %D =
$$(1.66-1.54)/1.66 \times 100 = 7.23$$
 %

The lens is most likely to be made of crown glass as the %D is less than the %U whereas %D is larger than %U for flint glass.

Total mark for Question 4 = 16