Криптосистеми на еліптичних кривих

Lecture 6: Classic Protocols

Грубіян Євген Олександрович

Криптосистеми на еліптичних кривих

- Мотивація: Стійкість сучасних криптосистем базується на складності задачі дискретного логарифму в групах точок еліптичних кривих.
- Основні протоколи:
 - Протокол обміну ключами (ECDH)
 - Шифрування Ель-Гамаля та інкапсуляція ключа
 - Підпис ECDSA
 - Схеми ідентифікації та підпису Шнорра
 - Криптографічні комітменти (Педерсен)

Вибір параметрів для протоколів

- Обираємо(але обережено, з деякими виключеннями) еліптичну криву над полем F_p : E/F_p , так що $|E(F_p)| = nl$, де n-велике просте число, l-малий кофактор.
- \bullet В якості основної групи G для протоколів беруть просту підгрупу порядку q
- Обираємо генератор групи деяку точку Р ∈ G

Обмін ключами ЕСДН

ЕСОН (обмін ключами):

- 1. Аліса і Боб обирають секрети (наприклад, а і b).
- 2. Обмінюються публічними значеннями: $Q_A = [a]P, Q_B = [b]P$.
- 3. Обчислюють спільний секрет: $S = [a]Q_B = [b]Q_A$

Можливі атаки третього посередині (Man-in-The-Middle), а також ССА (Static-Diffie-Hellman attack by Brown, Galant 2004), тому в такому вигляді застосовувати ЕСDH не можна.

Існують модифікації протоколу, які передбачають автентифікацію та захищають від ряду атак, зокрема ЗХDH від Signal:

 Аліса та Боб мають пари довгостроковий (ідентифікаційний) та короткостроковий (ефемерний) ключів:

$$(IK_A = [ik_a]P, EK_A = [ek_a]P) \rightarrow$$

$$\leftarrow (IK_B = [ik_B]P, EK_B = [ek_B]P)$$

• Спільний секрет $S = KDF([ik_a]EK_B, [ek_a]IK_B, [ek_a]EK_B)$

Інкапсуляція ключа ECDH-KEM

Проста KEM-схема на основі ЕСDH (RFC 5753):

- KeyGen(1 $^{\lambda}$) → (x_B, Q_B), x_B секретний ключ, Q_B = [x_B]Р відкритий ключ Боба
- Encap(Q_B) → (k, C), де k симетричний ключ для шифрування повідомлення, C - інкапсульований (зашифрований) ключ, Аліса:
 вибирає симетричний ключ k ← s яким потім шифрує повідомлення
 - (наприклад AES)
 - 2. генерує деякий ефемерний секрет x_A , відкритий ключ $Q_A = [x_A]P$
 - 3. обчислює спільний секрет з Бобом: $S = KDF([x_A]Q_B)$, де KDF функція виводу ключа, може бути взята як деяка криптографічна геш-функція
 - 4. інкапсулює(шифрує) симетричним алгоритмом у відповідному режимі значення k: $C_k = Wrap(S, k)$
 - 5. повертає $C = (k, (C_k, Q_A))$
- Decap(x_B , (C_k , Q_A)) $\rightarrow k$
 - 1. знаходимо ефемерний спільний секрет з Алісою: $S = KDF([x_B]Q_A)$
 - розшифровуємо (декапсульовуємо) та повертаємо ключ k = Unwrap(S, C_k), яким розшировуємо потім повідомлення

Схема шифрування Ель-Гамаля

- KeyGen(1 $^{\lambda}$) \rightarrow k, Q, Q = [k]P.
- Шифрування повідомлення М:

$$\operatorname{Enc}(M, Q) = C = ([r]P, M + [r]Q),$$

де r ←_{\$} — випадкове число.

- Розшифрування: M = Dec(C, k) = (M + [r]Q) [k]([r]P).
- Модель стійкості: Схема є IND-CPA-безпечною, але не є IND-CCA2 стійкою, тому використовуйте з обережністю
- Схема є гомоморфмною: $\operatorname{Enc}(M_1 + M_2, Q) = \operatorname{Enc}(M_1, Q) + \operatorname{Enc}(M_2, Q)$ що дає переваги при побудові деяких криптосистем

Підпис за ECDSA

KeyGen(1
$$^{\lambda}$$
) → d, Q, Q = [d]Р Підпис Sign(m, d) → σ

- 1. Обчислити хеш повідомлення: e = H(m), де H криптографічна геш-функція
- 2. Обрати випадкове k і обчислити $R = [k]P = (x_R, y_R)$; визначити $r = x_R \mod n$.
- 3. Обчислити $s = k^{-1}(e + dr) \mod n (де d приватний ключ).$
- **4**. Повернути підпис: $\sigma = (r, s)$.

Верифікація Verify $(\sigma, m) \rightarrow bool$:

- 1. Обчислити хеш повідомлення: e = H(m)
- 2. Обчислити $w = s^{-1} \mod n$, $u_1 = ew \mod n$, $u_2 = rw \mod n$.
- 3. Обчислити $R' = [u_1]P + [u_2]Q$ та перевірити $r \equiv x_{R'} \mod n$.

Моделі стійкості:

• ECDSA забезпечує стійкість до екзистинційних підробок підпису (EUF-CMA) в моделі з випадковим оракулом

Недоліки ECDSA та атаки

Малітабельність підпису:

- Якщо (r, s) є валідним підписом, то (r, -s mod n) також є валідним підписом для того ж повідомлення.
- Це створює проблему малітабельності, оскільки підпис можна «перевернути», не змінюючи повідомлення.

Атака на повторне використання r: Нехай два підписи (r, s_1) і (r, s_2) на різні повідомлення m_1, m_2 з однаковим значенням k:

$$\begin{split} s_1 & \equiv k^{-1}(e_1 + d\, r) \pmod{n}, \ s_2 \equiv k^{-1}(e_2 + d\, r) \pmod{n}, \\ s_1 - s_2 & \equiv k^{-1}(e_1 - e_2) \pmod{n} \Rightarrow k = (e_1 - e_2)/(s_1 - s_2) \mod{n} \end{split}$$

Далі зловмисник обчислює приватний ключ $d=r^{-1}(ks_1-e_1)$ Висновок: криптосистема ECDSA дуже чутлива до якості випадковості

Схема ідентифікації Шнорра та підпису Шнорра

Протокол ідентифікації Шнорра

Prover переконує Verifier що він знає деяке х не розкриваючи його

Prover: x, Q = [x]P
$$\xrightarrow{Q}$$
 Verifier: Q
 $r \in_{\$} \mathbb{Z}_{n}$, R = [r]P \xrightarrow{R}
 $\xleftarrow{c} c \in_{\$} \mathbb{Z}_{n}$
 $s = xc + r \mod n \xrightarrow{s} [s]P = R + [c]Q$

Схема ідентифікації Шнорра є доказом знання (PoK) дискретного логарифму з нульовим розголошенням в моделі з випадковим оракулом та є найпростішим Σ-протоколом.

Застосовуючи перетворення Фіат-Шаміра (перехід до неінтерактивного протоколу + додаємо в транскрипт повідомлення m, моделюємо випадковий оракул критографічною геш-функцією H): $c = H(R \parallel m)$ отримуємо схему підпису

Підпис Шнорра

- KeyGen(1 $^{\lambda}$) \rightarrow (x, Q), Q = [x]P
- $Sign(x, m) \rightarrow (R, s)$
 - 1. Підписувач обирає випадкове $r \in \mathfrak{s} \mathbb{Z}_n$ та обчислює $R = [r]P, \ e = H(R \parallel m)$
 - 2. Обчислює s = xe + r
 - 3. Публікує пару $\sigma = (e, s)$ (або альтернативно пару $\sigma = (R, s)$) як підпис повідомлення ш
- Verify $(\sigma, m) \to bool$: перевіряючий обчислює $R_v = [s]P [e]Q$ та перевіряє виконання рівності $e = H(R_v \parallel m)$ або $R_v = R$ в альтернативному варіанті
- Підпис Шнорра забезпечує сильну екзистенційну стійкість до підробок sEUF-CMA в моделі з випадковим оракулом.
- Підпис Шнорра дозволяє вкорочувати значення е, таким чином формуючи коротші підписи
- Дозволяє агрегувати відкриті ключі (в альтернативному варіанти) та формувати коротший підпис під одним і тим же повідомленням: $Sign(x_1, m) + Sign(x_2, m) = Sign(x_1 + x_2, m)$

Криптографічні комітменти (Педерсен)

Комітмент Педерсена:

- Для значення v (наприклад, суми) та випадкового r обираються генератори G та H.
- Комітмент задається як:

$$C = [v]G + [r]H$$
.

Властивості:

- Прихованість: Без знання г важко відновити v.
- Обов'язковість: Коммітер не може підмінити іншу пару (v, r) при відкритті коммітменту.
- Гомоморфізм: $C_1 + C_2 = [v_1 + v_2]G + [r_1 + r_2]H$.

Вибір параметрів

Практичні рекомендації:

- Для рівня стійкості 1^{λ} слід обрати еліптичну криву з розміром простої підгрупи 2λ біт.
- Якщо в протоколах підпису використовується неякісне джерело випадковості слід розглянути використання детерміністичного генератора PRNG, що ініціюється значеннями H(m), sk, наприклад схему, що описана в RFC7969.
- Слід уникати слабких кривих (в яких задача DLP вирішується
 ефективніше ніж класичні алгоритми), наприклад для яких
 п|p^r − 1, де l невелике число (так звана MOV-атака E(F_p) ⊆ F^{*}_{p^r}),
 багато суперсингулярних кривих також є слабкими.
- Приклади:
 - Стандарти NIST.SP800.186, ANSI X9.62, X9.63, ДСТУ4145-2002
 - Криві від спільноти: Curve25519, Brainpool та багато інших
 - -Ось невелика база з кривими
 $\operatorname{https://neuromancer.sk/std/}$

Підсумки лекції

- Еліптичні криві важливий будівельний блок дуже багатьох криптографічних протоколів.
- Більшість припущень стійкості класичних криптосистем зводяться до складності задачі дискретного логарифмування (ECDLP) (що в свою чергу зводиться до задачі знаходження прихованої підгрупи HSP).
- Еліптичні криві дають найменші ключі серед аналогічних протоколів в інших групах, достатньо працювати в 256-бітному порядку кривої для стійкості на рівні 128 біт.
- Окрім класичних існує ряд інших криптосистем на основі еліптичних кривих, з якими познайомимось на наступних лекціях