Balanis Quick Reference

Andrew Whelan

Contents

1	Time-Varying and Time-Harmonic Electromagnetic Fields	1
2	Electrical Properties of Matter	1
3	Wave Equation and its Solutions	2

1 Time-Varying and Time-Harmonic Electromagnetic Fields

- 1. Circuit theory is only valid when the physical dimensions of the circuit are small compared to the wavelength
- 2. Boundary conditions are derived by considering
 - (a) the integral curl equations on a tiny rectangle along the boundary and taking the limit as the height goes to zero, and
 - (b) the integral divergence equations on a cylinder along the boundary and taking the limit as the height goes to zero.
- 3. To get conservation of energy relations, consider
 - (a) a finite volume of space V,
 - (b) scalar multiplying each curl equation by the other field,
 - (c) subtracting the equations, and
 - (d) use vector identity for divergence of cross product
- 4. Poynting vector $\mathcal S$ and complex Poynting vector $\mathbf S$ are given by

$$\mathscr{S} \stackrel{\text{def}}{=} \mathscr{E} \times \mathscr{H} \tag{1}$$

$$\mathbf{S} \stackrel{\mathrm{def}}{=} \mathcal{F}(\mathscr{S}) \stackrel{(1)}{=} \mathcal{F}(\mathscr{E} \times \mathscr{H})$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \mathbf{E}(\omega') \times \mathbf{H}(\omega - \omega') d\omega'$$
 (2)

$$\langle \mathscr{S} \rangle \stackrel{\text{def}}{=} \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \mathscr{S}(t) dt = \mathbf{S}(\omega = 0)$$

$$\stackrel{(2)}{=} \frac{1}{2\pi} \int_{\mathbb{R}} \mathbf{E}(\omega') \times \mathbf{H}^*(\omega') d\omega' \tag{3}$$

2 Electrical Properties of Matter

- 1. Dielectric \implies no free charges \implies less resistance to electrical forces, and is quantified by ϵ . Think of bound charges storing elastic energy
- 2. Magnetic \implies less resistance to magnetic forces, and is quantified by μ .
- 3. Conductor \implies free charges and is quantified by σ . Think of free charges and dissipative energy
- 4. Media Properties:
 - (a) Linear: parameters are not functions of applied field (or are linearly mapped to them)

- (b) Homogeneous: parameters not function of position
- (c) Isotropic: parameters not function of field direction
- (d) Dispersive: parameters are function of frequency

3 Wave Equation and its Solutions

1. Assume a source-free, homogeneous medium, then we can derive the Helmholtz equations in the frequency domain: $\frac{1}{2}$

$$(\nabla^2 - \gamma^2)E = 0 \tag{4a}$$

$$(\nabla^2 - \gamma^2)H = 0 \tag{4b}$$