18MAA242 Lecture 17	
Isomorphisms continued	
Recall: Groups G, G' . A map q: G-> G'	
is called an isomorphism if:	
- it is a bijection (one-to-one + onto)	
- Y X, Y & G we have	
$\varphi(xy) = \varphi(x)\varphi(y)$.	
If there is an isomorphism $\varphi: q \rightarrow q'$ we say	
q and q' are isomorphic and write $q \cong q'$.	
Let's prove some properties of isomorphisms.	
Proposition: If Q: 9-39' is an isomorphism	
i) $\varphi(e) = e'$ (e'= ident: ty of	9)
(0, (-1)) = (0, (-1))	

and more generally $\varphi(x^k) = \varphi(x)^k \forall k \in \mathbb{Z}$ $\operatorname{ord}(\varphi(x)) = \operatorname{ord}(x^k)$

isomorphism.

Proof: i) Let $\varphi(e) = g e g'$

Then since e=e.e we have

 $g = \varphi(e) = \varphi(e \cdot e) = \varphi(e) \varphi(e) = g^2$

Multiply both sides by gi; get

g'g = g-1g2, which is the same as

 $e' = g^{-1}(g \cdot g) = (g^{-1}g)g = e'g = g$ associativity

So g = e' as required.

ii) Let's show $\varphi(x) \varphi(x') = e'$: this proves

that $\varphi(x') = \varphi(x)^{-1}$

Now $\varphi(x)\varphi(x') = \varphi(e) = e'$

(Similarly $\varphi(x')\varphi(x) = e'$)

So $\varphi(si) = \varphi(si)'$ as daimed.

Also $\varphi(x^2) = \varphi(x \cdot x) = \varphi(x) \varphi(x) = \varphi(x)^2$

By induction can prove the general case

 $\varphi(x^n) = \varphi(x)^n \quad (n \in \mathbb{Z})$

Orders: recall ord(x) = n means that

or = e and n is the smallest such number.

Let $\varphi(x) = y$. Then

 $y'' = \varphi(x)'' = \varphi(x'') = \varphi(e) = e'.$

Suppose ym = e' for some men.

Then $\varphi(oc^m) = \varphi(x)^m = y^m = e'$.

Since 9 is a bijection and (p(e) = e'

this means 2m = e. Contradicts the

assumption that and(x) = n.

So ord (y) = n, as required.

iii) p is a bijection => p' is a bijection.

To prove it satisfies (*): Let a, b & q'.

Went to show: (p'(ab) = p'(a) p'(b)

Now $a = \varphi(x)$ and $b = \varphi(y)$

forsome x, y e q (since q is onto.)

$$50 \varphi'(ab) = \varphi^{-1}(\varphi(x)\varphi(y))$$

$$= \varphi^{-1}(\varphi(xy))$$

$$= xy = \varphi'(a)\varphi'(b).$$

Exemples of Isomorphisms

i) Any cyclic group of order n is isomorphic to

7/2n - proved in Lecture 16

ii) Dihedral group D3 in Lecture 16
II? J proved lest time
Symmetric group S3

Recall the isomorphism:

e +> id

$$S_1 \mapsto (23)$$

 $S_2 \mapsto (13)$
 $S_3 \mapsto (12)$

[23) (13) iii) $(R, +) \cong (R_{>0}, \times)$ multiplication (5) his x Hoses is a isomorphism - it is a bijection, with inverse return 1 1 1 20 - $\varphi(x+y) = e^{x+y} = e^x e^y = \varphi(x)\varphi(y)$

=> (*) is satisfied.

How to prove two given groups are not isomorphic? This is the case if, for example, cry of the following is true: i) 191 # 191 (since on isomorphism is a bijection = sets must have some cardinality) ii) $\exists x \in G \text{ with ord}(x) = n \text{ (some } n)$ but there is no y & G' with ord(y) = n

(since we proved $ord(\varphi(x)) = ord(x)$)

such that p(x) = 2.

Then
$$2 = \varphi(x) = \varphi(\frac{x}{2} + \frac{x}{2})$$

$$= \varphi(\frac{x}{2}) \varphi(\frac{x}{2})$$

So if
$$y = \varphi(\frac{x}{2})$$
, then y satisfies $y^2 = 2$.

But this is impossible by definition ye are but there is no retional number whose square equals 2.

[i]