最优化测习题一

- 一、设函数 $f: \mathbb{R}^n \to \mathbb{R}$. 矩阵 $A \in \mathbb{R}^{n \times n}$ 对称, 向量 $b \in \mathbb{R}^n$.
- (1) 写出函数 f 是凸函数的定义, 并列出至少两个判定函数 f 是凸函数的充要条件.
- (2) 设 $f(x_1, x_2) = 10 2(x_2 x_1^2)^2$, $S = \{(x_1, x_2) | -11 \le x_1 \le 1, -1 \le x_2 \le 1\}$. 判断函数 $f(x_1, x_2)$ 是否为 S 上的凸函数? 说明理由.
- (3) 证明 $f(x) = \frac{1}{2}x^T Ax + b^T x$, 为严格凸函数的充要条件是其 Hessian 阵 A 正定.
- 二、设 $S \subseteq \mathbb{R}^n$, 函数 $f: S \to \mathbb{R}$ 二阶连续可微. 考虑约束优化问题 (P1):

$$min f(x)
s.t. x \in S.$$

- (1) 约束优化问题 (P1) 在什么条件下是凸规划? 对于凸规划, 你知道有什么好的性质?
- (2) 考虑如下优化问题 (P2):

$$\begin{aligned} & \text{min} & x_2^2 + 4x_1 - 7x_2 \\ & \text{s.t.} & x_1 - x_2 \le 4 \\ & x_2 \le 3 \\ & 6x_1 - x_1^2 + x_2 \ge 8. \end{aligned}$$

- (P2) 是否是凸规划? 说明理由. 根据最优性条件求 (P2) 的最优解.
- 三、用最速下降法,求解下列问题:

$$\min \ x_1^2 - 2x_1x_2 + 4x_2^2 + x_1 - 3x_2.$$

取初始点 $x^{(1)} = (1,1)^T$, 迭代两次.

四、设 $Q \in \mathbb{R}^{n \times n}$ 对称正定, $b \in \mathbb{R}^n$ 且 $b \neq 0$, 考虑非线性规划问题 (P3):

$$\min \quad \frac{1}{2}x^T Q x,$$

s.t. $x \geqslant b.$

- (1) 写出 (P3) 的 Lagrange 对偶规划.
- (2) 设 x^* 是 (P3) 的最优解, 证明 x^* 与 $x^* b$ 关于 Q 共轭.
- 五、考虑线性规划问题 (P4):

$$\max \quad 8x_1 - 9x_2 + 12x_3 + 4x_4 + 11x_5$$
 s.t.
$$2x_1 - 3x_2 + 4x_3 + x_4 + 3x_5 \le 1$$

$$x_1 + 7x_2 + 3x_3 - 2x_4 + x_5 \le 1$$

$$5x_1 + 4x_2 - 6x_3 + 2x_4 + 3x_5 \le 22$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0.$$

- (1) 写出 (P4) 的对偶规划.
- (2) 利用对偶理论判断 $x^* = (0, 2, 0, 7, 0)$ 是否是 (P4) 的最优解, 说明理由.

六、考虑下列问题 (P5):

min
$$x_1x_2$$

s.t. $g(x) = 2x_1 - x_2 - 3 \ge 0$.

- (1) 用二阶最优性条件证明点 $\bar{x} = \left(\frac{3}{4}, -\frac{3}{2}\right)^T$ 是局部最优解. 并说明它是否为全局最优解.
- (2) 定义障碍函数

$$G(x,r) = x_1 x_2 - r \ln g(x),$$

试用内点法求解 (P5), 并说明内点法产生的序列趋向点 \bar{x} .

七、用单纯形法求解标准的线性规划问题得到下面的最优表:

	x_1	x_2	x_3	x_4	
	0	0	\bar{c}_3	\bar{c}_4	
x_2	0	1	-1	α	1
x_1	1	0	4	β	3

设 $\bar{c}_3 = 0$, 求另一个不同于表中的最优解.