Self-study: Linear Algebra

- Denis Voskov
- Stephan de Hoop (TA)

Linear equations and geometry

What is a system of equations?

 Set of equations which should be solved simultaneously! This means that a solution to the system must satisfy all the equations in the system, otherwise it is not a solution to the system.

Ex.:

Solves the first equation
$$\textcircled{9}$$
! Second equation: $-3 \neq 3$ $2x_1 - x_2 = 0$ \longrightarrow $(-1,-2)$ However, NOT a solution to the system $\textcircled{9}$! Solves both the first and second equation $\textcircled{9}$!

The row picture

$$2x_1 - x_2 = 0$$
$$-x_1 + 2x_2 = 3$$

The vector notation

First element == LHS of first equation

$$\begin{array}{c|c}
2x_1 - x_2 = 0 \\
-x_1 + 2x_2 = 3
\end{array}$$

$$\begin{array}{c|c}
2x_1 - x_2 \\
-x_1 + 2x_2
\end{array}
= \begin{bmatrix}
0 \\
3
\end{bmatrix}$$

Some notations:

Second element == LHS of second equation

$$c\mathbf{v}_1 = c \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} cv_1 \\ cv_2 \\ cv_3 \end{bmatrix} \qquad \mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \\ v_3 + u_3 \end{bmatrix}$$

Leads to:

$$\begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ -x_1 \end{bmatrix} + \begin{bmatrix} -x_2 \\ 2x_2 \end{bmatrix} = x_1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Matrix-Vector form

$$\begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ -x_1 \end{bmatrix} + \begin{bmatrix} -x_2 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} x_2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$x_{1} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_{2} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2x_{1} - x_{2} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Matrix-Vector form

$$\begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ -x_1 \end{bmatrix} + \begin{bmatrix} -x_2 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} x_2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$x_{1} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_{2} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2x_{1} - x_{2} \\ -x_{1} + 2x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
 Matrix-Vector form

$$A\mathbf{x} = \mathbf{b}$$

Algebraic form

Matrix-Vector form

rows/equations
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$A\mathbf{X} = \mathbf{b}$$

$$2x_1 - x_2 = 0$$

$$-x_1 + 2x_2 = 3$$

$$A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Matrix: Array of ordered numbers. In this course, they represent the constant coefficients of the linear system.

m denotes the number of equations, where i refers to the i-th equations.

n refers to the number of variables, where j denotes the j-th variables.

The column picture

$$2x_{1} - x_{2} = 0$$

$$-x_{1} + 2x_{2} = 3$$

$$x_{1}\begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_{2}\begin{bmatrix} -1 \\ 2 \end{bmatrix} = 1\begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2\begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Solution was: (1,2)

Solution at the right hand side (RHS) of the equations is simply a linear combination of the two vectors!

Subtracting equations from another

Scale one:

Scale two:

Subtracting equations from another

Scale one:

Scale two:

How to solve a linear system?

$$2x_1 - x_2 = 0$$
$$-x_1 + 2x_2 = 3$$

- Subtracting one equation from the other, in order to eliminate a variable from the resulting equation → Fundamental process of Gaussian Elimination
- EX.: Add half of equation one to equation two

"Stick RHS of equation on to the matrix"

Augment matrix with RHS:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Add half of equation one to equation two:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Divide equation two by 1.5:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Add equation two to equation one:

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Divide equation one by 2:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Augment matrix with RHS:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Return back to normal system:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Reduced Row Echelon Form (rref)

So solution is:
$$x_1 = 1$$

$$x_2 = 2$$

Augment matrix with RHS:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Add half of equation one to equation two:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Divide equation two by 1.5:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Add equation two to equation one:

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Divide equation one by 2:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Augment matrix with RHS:

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Add half of equation one to equation two:

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1.5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Upper Triangular Matrix

$$x_2 = 3/1.5 = 2$$
 $2x_1 - x_2 = 2x_1 - 2 = 0$ $x_1 = 1$

Backwards substitution

Matrix-Vector operations

Addition/Subtraction:

$$\mathbf{v} + \mathbf{u} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ v_2 + u_2 \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Multiplication of matrix and vector:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

Multiplication of matrices:

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Matrix-Vector operations

Matrix and vector transpose

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \quad \mathbf{v}^{T} = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}^{T} = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix}$$

• Vector multiplication:

$$\mathbf{v} \cdot \mathbf{u} = \mathbf{v}^T \mathbf{u} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = v_1 u_1 + v_2 u_2 \quad \leftarrow \text{Dot product}$$

$$\mathbf{Rank \ one \ matrix} \rightarrow \quad \mathbf{u} \mathbf{v}^T = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} u_1 v_1 & u_1 v_2 \\ u_2 v_1 & u_2 v_2 \end{bmatrix}$$

• Matrix inverse:
$$\begin{bmatrix} \mathbf{A} & | \mathbf{I} \end{bmatrix} \sim \begin{bmatrix} \mathbf{I} & | \mathbf{A}^{-1} \end{bmatrix} \qquad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Is there always a solution?

$$\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$$

- Not necessarily!
 - Ex.:

Row Picture:

$2x_1 - x_2 = 0 \times 2$ $-4x_1 + 2x_2 = -2 \times 1$

$0x_1 + 0x_2 = -2$

Is there always a solution?

Row Picture:

Is there always a solution?

$$x_2 = x_2 \rightarrow free$$

Column Picture:

Solution to Ax=b is then:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/2x_2 + 1/2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix} + \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{pmatrix} 1/2 \\ 0 \end{pmatrix} + x_2 \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$x_2 \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_2 \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $x_2 \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ No matter what value for x_2 , solution doesn't change \rightarrow Vector in Nullspace of A

Summary of solutions

- There exists three cases:
 - No solution

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Infinitely many solutions

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Exactly one solution

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Column Picture:

Linear combination

- Matrix-vector multiplication: $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2$
- Multiplication of Ax is a linear combination of the columns of A (a₁ and a₂) with coefficient x₁ and x₂ (elements of vector x)

Linear combination

- Matrix-vector multiplication: $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \mathbf{x} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2$
- Multiplication of Ax is a linear combination of the columns of A (a₁ and a₂) with coefficient x₁ and x₂ (elements of vector x)
- All combinations of a₁ and a₂ is called the span(A) or span({a₁, a₂})

Linear (in)dependence

Linear independent:

$$\begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{-1}$$
 exists $\odot! \rightarrow det(A) \neq 0$

Linear dependent:

$$\begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & -2 \\ 0 & 0 \end{bmatrix}$$

$$A^{-1}$$
 doesn't exists \otimes ! \rightarrow det(A)=0

$$Ax = b \rightarrow A^{-1}Ax = A^{-1}b \rightarrow x = A^{-1}b$$

Generalize to higher dimensions

Row picture: Planes in R³

• Additivity: $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$

• Homogeneity:
$$L(c\mathbf{v}) = cL(\mathbf{v})$$
 $c \in \mathbb{R}$

• Example:
$$L(\bullet) = \frac{d}{dx}(\bullet)$$

$$L(cf) = \frac{d}{dx}(cf) = c\frac{d}{dx}(f)$$

$$L(f+g) = \frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$$

• Additivity: $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$

- Homogeneity: $L(c\mathbf{v}) = cL(\mathbf{v})$ $c \in \mathbb{R}$
- **Example:** $f = x^2$ g = x c = 2

$$\frac{d}{dx}(cf) = \frac{d}{dx}(2x^2) = 4x = 2\frac{d}{dx}(x^2)$$

$$\frac{d}{dx}(f+g) = \frac{d}{dx}(x^2+x) = 2x+1 = \frac{d}{dx}(x^2) + \frac{d}{dx}(x)$$

- Additivity: $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$
- Homogeneity: $L(c\mathbf{v}) = cL(\mathbf{v})$ $c \in \mathbb{R}$
- Example: $L = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ $\theta = \frac{\pi}{2}$ $L = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$L\mathbf{v} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• Additivity: $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$

- Homogeneity: $L(c\mathbf{v}) = cL(\mathbf{v})$ $c \in \mathbb{R}$
- Example: $L = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ c = 2 $L(c\mathbf{v}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \left(2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

• Additivity: $L(\mathbf{u} + \mathbf{v}) = L(\mathbf{u}) + L(\mathbf{v})$

• Homogeneity:
$$L(c\mathbf{v}) = cL(\mathbf{v})$$
 $c \in \mathbb{R}$

• Example:
$$L = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $c = 2$

$$L(\mathbf{v} + \mathbf{u}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

Applications

- Application of (linear) systems/algebra:
 - Conservation of Charge
 - Differential Equations
 - Statistics: linear regression, least squares estimates, principal component analysis
 - Numerical methods for solving differential equations
 - Various others such as large data transformations, neural networks, image processing

End of second part (theory) Start with Python ©!

Course contents

- Introduce elementary concepts of programming:
 - Logic behind programming and algorithms;
 - Basic coding flows;
 - Guidelines (commandments) of programming.
- After successfully completing this course you should be able to:
 - Write structured and readable code;
 - Complete the laboratory/computer assignments of AESM1305 using Python;
 - Debug yours and other peoples code;
 - Have a basic understanding of linear algebra, calculus, statistics and numerical methods.