Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

21 de junho de 2016

Plano de Aula

- Pensamento
- 2 Revisão
 - Pontes
 - Trilhas
- Florestas e Árvores
- Planaridade

Sumário

- Pensamento
- 2 Revisão
 - Pontes
 - Trilhas
- Florestas e Árvores
- Planaridade

Pensamento

Pensamento

Frase

Quando o machado entrou na floresta, as árvores disseram: - O cabo é dos nossos!!

Quem?

Provérbio Turco

Sumário

- Pensamento
- 2 Revisão
 - Pontes
 - Trilhas
- Florestas e Árvores
- Planaridade

Pontes

Definição

Uma ponte (bridge) em um grafo G é qualquer aresta e tal que

$$c(G-e)>c(G),$$

ou seja, G - e tem mais componentes que G.

Outros nomes

- istmo (isthmus), ou
- aresta de corte (cut edge).

Pontes

Corolário

Uma aresta a é ponte se e somente se o conjunto $\{a\}$ é um corte do um grafo.

Pontes × Circuitos

Em qualquer grafo, toda aresta é uma ponte ou pertence a um circuito, mas não ambos (E. 1.199).

Trilhas

Passeio

Um **passeio** (walk) em um grafo é qualquer sequência finita $(v_0, v_1, v_2, \ldots, v_{k-1}, v_k)$ de vértices tal que v_i é adjacente a v_{i-1} para todo i entre 1 e k.

Detalhe

Os vértices do passeio podem não ser distintos dois a dois.

Trilha

Uma trilha (trail) é um passeio sem arestas repetidas.

Trilhas

Passeio ou trilha fechados

- Um passeio é fechado se $v_0 = v_k$;
- Uma trilha é fechada se $v_0 = v_k$;

Expressões comuns

- v₀ é a origem do passeio;
- v_k é o **término** do passeio;
- o passeio vai de v_0 a v_k ;
- o passeio **liga** v_0 a v_k ;

Trilhas

Passeio simples

Um passeio é **simples** se os seus vértices são distintos dois a dois.

Ciclo

Um ciclo é uma trilha fechada.

Ciclo Euleriano

Um ciclo é **euleriano** se e somente se passa por todas as arestas do grafo.

Sumário

- Pensamento
- 2 Revisão
 - Pontes
 - Trilhas
- Florestas e Árvores
- Planaridade

Floresta

• Uma floresta (forest) é um grafo sem circuitos.

Floresta

- Uma floresta (forest) é um grafo sem circuitos.
- Também chamado de grafo acíclico.

Floresta

- Uma floresta (forest) é um grafo sem circuitos.
- Também chamado de grafo acíclico.
- Um grafo é uma floresta se cada uma de suas arestas é uma ponte.

Floresta

- Uma floresta (forest) é um grafo sem circuitos.
- Também chamado de grafo acíclico.
- Um grafo é uma floresta se cada uma de suas arestas é uma ponte.

Árvore

Uma árvore (tree) é uma floresta conexa.

Floresta

- Uma floresta (forest) é um grafo sem circuitos.
- Também chamado de grafo acíclico.
- Um grafo é uma floresta se cada uma de suas arestas é uma ponte.

Árvore

Uma árvore (tree) é uma floresta conexa.

Corolário 1

Cada componente de uma floresta é uma árvore.

Folha

Uma **folha** (*leaf*) de uma floresta é qualquer vértice da floresta que tenha grau 1.

Folha

Uma **folha** (*leaf*) de uma floresta é qualquer vértice da floresta que tenha grau 1.

Corolário 2

Um grafo G é uma floresta se e somente se m(G) = n(G) - c(G).

Sumário

- Pensamento
- Revisão
 - Pontes
 - Trilhas
- Florestas e Árvores
- Planaridade

Definição (informal)

Um grafo é **planar** se pode ser desenhado no plano sem que as linhas que representam arestas se cruzem.

Definição (informal)

Um grafo é **planar** se pode ser desenhado no plano sem que as linhas que representam arestas se cruzem.

Exercícios

• Todo caminho é planar? Todo circuito é planar?

Definição (informal)

Um grafo é **planar** se pode ser desenhado no plano sem que as linhas que representam arestas se cruzem.

Exercícios

- Todo caminho é planar? Todo circuito é planar?
- Toda grade é planar?

Definição (informal)

Um grafo é **planar** se pode ser desenhado no plano sem que as linhas que representam arestas se cruzem.

Exercícios

- Todo caminho é planar? Todo circuito é planar?
- Toda grade é planar?
- Todo K₄ é planar? Todo K₅ é planar?

Definição (informal)

Um grafo é **planar** se pode ser desenhado no plano sem que as linhas que representam arestas se cruzem.

Exercícios

- Todo caminho é planar? Todo circuito é planar?
- Toda grade é planar?
- Todo K₄ é planar? Todo K₅ é planar?
- Todo $K_{2,3}$ é planar? Todo $K_{3,3}$ é planar?

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

21 de junho de 2016

