

Student ID	
------------	--

Semester 1 Assessment, 2016

School of Mathematics and Statistics

MAST10007 Linear Algebra

Writing time: 3 hours

Reading time: 15 minutes

This is NOT an open book exam

This paper consists of 13 pages (including this page)

Authorised materials:

• No materials are authorised.

Instructions to Students

- You must NOT remove this question paper at the conclusion of the examination.
- All answers should be appropriately justified.
- Some notation used in this exam:

 \mathcal{P}_n denotes the (real) vector space of all polynomials of degree at most n.

 $M_{m,n}$ denotes the (real) vector space of all $m \times n$ matrices.

 $\mathcal{F}(S,\mathbb{R})$ denotes the (real) vector space of functions from a set S to \mathbb{R} .

- There are 12 questions. You should attempt all questions.
- The total number of marks available is 100.

Instructions to Invigilators

• Students must NOT remove this question paper at the conclusion of the examination.

Question 1 (8 marks)

(a) Do the following planes have a common point of intersection?

$$2x - 2z = 2,$$

 $x + 2y + z = 1,$
 $-2y - 2z = 2.$

If so, find the point.

(b) Define

$$A = \left[\begin{array}{rrr} 2 & 0 & -2 \\ 1 & 2 & 1 \\ 0 & -2 & -2 \end{array} \right]$$

From your working in part (a), find $\det A$.

(c) Does A^{-1} exist? If so, find A^{-1} .

Question 2 (10 marks)

(a) What is the cosine of the angle between the vectors $\mathbf{u} = (-1, 1, 2)$ and $\mathbf{v} = (1, 0, -1)$? Are the vectors parallel? Are the vectors perpendicular? Is the angle acute (at most $\pi/2$) or obtuse (bigger than $\pi/2$)?

- (b) Write down the vector and Cartesian forms of the plane P that contains the vectors \mathbf{u} and \mathbf{v} as well as the point (1,0,3).
- (c) Does the line

$$L_1: (x, y, z) = (1, -1, 1) + t(1, -2, 0), \quad t \in \mathbb{R}$$

intersect with P? If so, write down the point of intersection.

(d) Write down the vector equation of the line

$$L_2: -\frac{x}{3} = y = \frac{z-1}{3}.$$

(e) For any two lines L_1, L_2 we can always find two parallel planes P_1, P_2 such that L_1 is in P_1 and L_2 is in P_2 . Find the cartesian equations for the planes P_1 and P_2 with L_1 from part (c) and (d). (Hint: You need to find a single vector that is normal to both planes — think cross product.)

Question 3 (8 marks)

(a) Use co-factor expansion to find the determinant of the matrix

$$A = \left[\begin{array}{ccc} 3 & 1 & 1 \\ 2 & 2 & -1 \\ 1 & 0 & 1 \end{array} \right].$$

- (b) Find A^{-1} if possible.
- (c) Express the following linear system as a matrix equation:

$$3x + y + z = 2$$
$$2x + 2y - z = 1$$
$$x + z = 0$$

What does part (b) tell you about the solution of this linear system?

(d) Write down all solutions to the linear system in part (c).

Question 4 (8 marks)

Define

$$B = \left[\begin{array}{rrrrr} 1 & 1 & 2 & -1 & 2 \\ 1 & 0 & 1 & 2 & 2 \\ 0 & 1 & 1 & 3 & 0 \end{array} \right]$$

- (a) Is $\{(1,1,0),(1,0,1),(2,1,1),(-1,2,3),(2,2,0)\}$ a linearly independent subset of \mathbb{R}^3 ?
- (b) What is the column space of B? Find a basis for it.
- (c) What is the row space of B? Find a basis for it.
- (d) What are the dimensions of the column space, row space and null space?
- (e) Find a basis for the null space of B.
- (f) Is (2,0,3,-1,0) in the null space of B? If so, express it as a linear combination of the basis vectors from part (e).

Question 5 (10 marks)

(a) Is the set $Q_1 = \{a_0 + a_1x + a_2x^2 : a_0 + a_1 + a_2 = -1, a_0, a_1, a_2 \in \mathbb{R}\}$ a subspace of \mathcal{P}_2 ? Why/why not?

- (b) Is the set $Q_2 = \{a_0 + a_1x + a_2x^2 : a_0 + a_1 + a_2 = 0, a_0, a_1, a_2 \in \mathbb{R}\}$ a subspace of \mathcal{P}_2 ? Why/why not?
- (c) Show that $C = \{1 + x 2x^2, 2 2x^2\}$ is a basis for Q_2 . You may want to use the fact that for any $a_0, a_1 \in \mathbb{R}$ we have

$$\begin{bmatrix} 1 & 2 & a_0 \\ 1 & 0 & a_1 \\ -2 & -2 & -a_0 - a_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & a_1 \\ 0 & 1 & \frac{a_0 - a_1}{2} \\ 0 & 0 & 0 \end{bmatrix}.$$

(d) Find the co-ordinate vector $[4 + x - 5x^2]_C$ where C is the basis from part (c).

Question 6 (8 marks)

Consider the figure

(a) If $\mathbf{v} = \mathbf{w} + \operatorname{Proj}_{\mathbf{u}} \mathbf{v}$ in the diagram above, then show that \mathbf{w} is perpendicular to \mathbf{u} with any inner product $\langle \cdot, \cdot \rangle$. (*Hint: Recall that* $\operatorname{Proj}_{\mathbf{u}} \mathbf{v} = \langle \hat{\mathbf{u}}, \mathbf{v} \rangle \hat{\mathbf{u}}$.)

- (b) If we have the points P=(0,1,3), Q=(1,1,2), R=(-1,3,3), find ${\bf u}$ and ${\bf v}.$
- (c) Calculate $\mathbf{u} \times \mathbf{v}$.
- (d) Using the cross product, what is the area of the parallelogram formed by the vectors \mathbf{u} and \mathbf{v} ?
- (e) Use the formula Area(parallelogram) = base \times height to confirm your answer from part (d).
- (f) Introduce a new point S = (1, 3, -1). Find the vector $\mathbf{z} = \overrightarrow{PS}$.
- (g) Find the volume of the parallelpiped formed by the vectors \mathbf{u}, \mathbf{v} and \mathbf{z} .

Question 7 (8 marks)

Let V be a real vector space and $P: V \to V$ a linear transformation such that $P \circ P = P$.

- (a) Show that the only possible eigenvalues of P are 0 or 1.
- (b) Show that every $v \in V$ is a sum of eigenvectors of P. (Hint: Consider the vectors w = P(v) and u = v w.)

Question 8 (8 marks)

Consider the function $T: \mathcal{P}_2 \to \mathbb{R}^3$ given by T(f) = (f(0), f(1), f(-1)).

- (a) Show that T is a linear transformation
- (b) Compute the matrix representation of T with respect to the standard bases of \mathcal{P}_2 and \mathbb{R}^3 .
- (c) Compute the rank and nullity of T.

Question 9 (8 marks)

Consider the ordered basis $\mathcal{B} = \{\mathbf{v}_1 = (1, 1, 1), \mathbf{v}_2 = (0, 1, 1), \mathbf{v}_3 = (0, 0, 1)\}$ of \mathbb{R}^3 . (You do not have to show this is a basis.)

- (a) Find a matrix A such that \mathbf{v}_1^T is an eigenvector with eigenvalue 0, \mathbf{v}_2^T is an eigenvector with eigenvalue 1 and \mathbf{v}_3^T is an eigenvector with eigenvalue -1 for A.
- (b) Compute the characteristic polynomial $\det(\lambda I A)$ of A and verify that 0, 1 and -1 are zeroes of this polynomial.
- (c) Find an invertible matrix B such that BAB^{-1} is diagonal.

Question 10 (8 marks)

- (a) State the definition of an inner product.
- (b) Verify that $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + 2x_2 y_2 x_1 y_2 x_2 y_1$ defines an inner product on \mathbb{R}^2 .
- (c) Find an orthonormal basis for \mathbb{R}^2 with respect to this inner product.

Question 11 (8 marks)

Consider the ordered bases $\mathcal{B} = \{(2,1,0), (0,1,0), (0,1,2)\}$ and $\mathcal{C} = \{(0,1,1), (0,1,0), (1,1,0)\}$ of \mathbb{R}^3 and the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (z,y,x)

- (a) Find the matrix representation $[T]_{\mathcal{C},\mathcal{B}}$.
- (b) Find the transition matrix $P_{\mathcal{B},\mathcal{C}}$
- (c) Using the matrices from parts (a) and (b) find $[T]_{\mathcal{B}}$.
- (d) Compute $[T]_{\mathcal{B}}$ directly to check your results.

Question 12 (8 marks)

Let $T: V \to W$ be an injective linear transformation between finite-dimensional vector spaces of the same dimension n. Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is an ordered basis of V.

- (a) Show that T is surjective.
- (b) Show that there is an ordered basis \mathcal{C} of W such that $[T]_{\mathcal{C},\mathcal{B}}$ is the $n \times n$ -identity matrix.

End of Exam—Total Available Marks = 100.

Library Course Work Collections

Author/s:

Mathematics and Statistics

Title:

Linear Algebra, 2016 Semester 1, MAST10007

Date:

2016

Persistent Link:

http://hdl.handle.net/11343/127806