

Introduction to

Algorithm Design and Analysis

[13] Undirected Graph

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

In the Last Class...

- Directed Acyclic Graph
 - o Topological Order
 - o Critical Path Analysis
- Strongly Connected Component
 - o Strong Component and Condensation
 - o Finding SCC based on DFS

DFS on Undirected Graph

Undirected Graph

- o Symmetric Digraph
- o Undirected Graph DFS Skeleton
- Biconnected Components □
 - o Articulation Points and 2-point connectedness
 - o *Bridge* and 2-edge connectedness
- Other undirected graph problems
 - o Orientation of an undirected graph
 - o Warm up: Minimum Spanning Tree based on DFS

What is Different for "Undirected"

- Characteristics of undirected graph traversal
 - o One edge may be traversed for two times in opposite directions.
- For an undirected graph, DFS provides an orientation for each of its edges
 - o Oriented in the direction in which they are first encountered.

Edges in DFS

- Cross edge
 - Not existing
- Back edge
 - Back to the direct parent:
 second encounter
 - Otherwise: firstencounter
- Forward edge
 - Always second
 encounter, and first time
 as back edge

Modifications to the DFS Skeleton

- All the second encounter are bypassed.
- So, the *only substantial modification* is for the possible back edges leading to an ancestor, but not direct parent.
- We need know the *parent*, that is, the direct ancestor, for the vertex to be processed.

DFS Skeleton for Undirected Graph

- int dfsSweep(IntList[] adjVertices,int n, ...)
- int ans;
- <Allocate color array and initialize to white>
- For each vertex *v* of G, in some order
- if (color[v]==white)
- int vAns=dfs(adjVertices, color, v,(-1,)...);
- <Process vAns>
- // Continue loop

return ans;

Recording the parent

DFS Skeleton for Undirected Graph

```
int dfs(IntList[] adjVertices, int[] color, int v, int p, ...)
  int w; IntList remAdj; int ans;
  color[v]=gray;
  <Pre><Pre>reorder processing of vertex v>
  remAdj=adjVertices[v];
  while (remAdj≠nil)
    w=first(remAdj);
    if (color[w]==white)
       <Exploratory processing for tree edge vw>
      int wAns=dfs(adjVertices, color, w, v ...);
       < Backtrack processing for tree edge vw , using wAns>
    else if (color[w]==gray \&\& w\neq p)
       <Checking for nontree edge vw>
    remAdj=rest(remAdj);
  <Postorder processing of vertex v, including final computation of ans>
  color[v]=black;
  return ans:
```


Complexity of Undirected DFS

- $\Theta(m+n)$
 - If each inserted statement for specialized application runs in constant time
 - o The same with directed graph DFS
- Extra space $\Theta(n)$
 - o For array *color*, or activation frames of recursion.

Biconnected Graph

- Being connected
 - o Tree: acyclic, least (cost) connected
 - o Node/edge connected: fault tolerant connection
- **Articulation point** (2-node connected) \square
 - o *v* is an articulation point if deleting *v* leads to disconnection
- Bridge (2-edge connected)
 - o *uv* is a bridge if deleting *uv* leads to disconnection

Biconnected Graph

Articulation point

o *v* is an articulation point if there **exist** nodes *w* and *x*, such that *v* is in **every** path from *w* to *x* (*w* and *x* are vertices different from *v*)

Bridge

o *uv* is a bridge if node *u* and *v* are connected only by edge *uv*

Bicomponent

o Maximal biconnected subgraph

Articulation Point Algorithm

v is an articulation point iff no back edges linking any vertex in **some** w-rooted subtree and any ancestor of v.

If *v* is the articulation point farthest away from the root on *the* branch, then one bicomponent is detected.

Subtree rooted at w

Back edge

Updating the value of back

- v first discovered
 back=discoverTime(v)
- Trying to explore, but a back edge vw from v encountered

back=min(back, discoverTime(w))

• Backtracking from w to v back=min(back, wback)

The back value of v is the smallest discover time a back edge "sees" from any subtree of v.

second back edge encountered

Keeping the Track of Backing

Tracking data

 For each vertex v, a local variable back is used to store the required information, as the value of discover Time of some vertex.

Testing for bicomponent

- At backtracking from w to v, the condition implying a bicomponent is:
 - wBack ≥ discoverTime(v)
 (where wBack is the returned back value for w)

when back is no less than the discover time of v, there is at least one subtree of v connected to other part of the graph only by v.

9/5 Backtracking from B to E: bBack=discoverTime(E), so, the second bicomponent is detect 6/4 14/1 3/1 16/2 Backtracking from E to F: eBack>discoverTime(F), so, the third bicomponent is detect

Articulation Point Algorithm

```
int bicompDFS(v)
  color[v]=gray; time++; discoverTime[v]=time;
  back=discoverTime[v]:
  while (there is an untraversed edge vw)
    <push vw into edgeStack>
    if (vw is a tree edge)
      wBack=bicompDFS(w);
      if (wBack≥discoverTime[v])
        Output a new bicomponent
           by popping edgeStack down through vw;
      back=min(back, wBack);
    else if (vw is a back edge)
      back=min(discoverTime[w], back);
  time++; finishTime[v]=time; color[v]=black;
return back;
```


Outline of

core procedure

Correctness

We have seen that:

o If v is the articulation point farthest away from the root on the branch, then one bicomponent is detected.

• So, we need only prove that:

 In a DFS tree, a vertex(not root) v is an articulation point if and only if (1) v is not a leaf; (2) some subtree of v has no back edge incident with a proper ancestor of v.

Characteristics of Articulation Point

- In a DFS tree, a vertex(not root) v is an articulation point if and only if (1)v is not a leaf; (2) some subtree of v has no back edge incident with a proper ancestor of v.
- ← Trivial
- ⇒
 - o By definition, v is on **every** path between some x,y(different from v).
 - At least one of x,y is a proper descendent of v(otherwise, $x \leftrightarrow root \leftrightarrow y$ not containing v).
 - o By contradiction, suppose that **every** subtree of v has a back edge to a proper ancestor of v, we can find a xy-path not containing v for all possible cases(only 2 cases)

Case 1

Case 1.1: another is not an ancestor of *v*

Case 1.2: another is an ancestor of *v*

every subtree of v has a back edge to a proper ancestor of v, and, exactly one of x, y is a descendant of v.

Case 2

suppose that **every**subtree of *v* has a back
edge to a proper ancestor
of *v*, and, both *x*, *y* are
descendants of *v*.

Finding the Bridge

Finding the Bridge

- Edge *uv* is a bridge iff
 - o (assuming that *u* is the parent and *v* is the child)
- a) Edge *uv* is a tree edge in DFS
- b) There is no subtree rooted at v to a proper ancestor of v (including u)

Edge Finding Algorithm

\bigcirc

Orientation for Undirected Graphs

Orientation

- o Give each edge a direction
- o Satisfying pre-specified constraints
 - E.g., the "in-degree of each vertex is at least 1"

Possible or not?

o If possible, how to?

• As for "in-degree ≥ 1"

- o Orientation possible iff. the graph has at least a circle
 - Find the end point of some back edge
 - A second DFS from this end point

Warm Up for MST

• Get MST in O(m+n) time

MST: Minimum Spanning Tree

- o Given that edges weights are only 1 and 2
- Graph traversal is sufficient
 - o DFS over "weight 1 edges" only
 - o DFS over "weight 2 edges" only

Thank you!

2 & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

