CFD-Problem

FURKAN ALTUNAY

Alttaki şekilde, sabit termal kondüktiviteli (**7.5**-W/mK) malzemeden üretilen ve üniform ısı üretimli **15000**-kW/m³, **7.5**-cm kalınlıktaki büyük bir levha gösterilmiştir. A ve B yüzleri, sırayla **560**-K ve **660**-K'lik sıcaklıklardadırlar. y- ve z-yönlerindeki boyutların, sadece x-yönündeki sıcaklık gradyanları önemli olacak kadar büyük olduğunu kabul ederek; 10 eşit kontrol hacmi kullanarak sürekli rejim sıcaklık dağılımını hesaplayınız.

Nümerik sonucu analitik sonuçla kıyaslayınız.

(yüzde hatalarını kullanarak)

Yöneten denklem şudur ve bir kaynak terimi içermektedir:

$$\frac{d}{dx} * \left(k * \frac{dT}{dx} \right) + q = 0$$

$$\int_{\Delta V} \frac{d}{dx} * \left(k * \frac{dT}{dx}\right) * dV + \int_{\Delta V} q * dV = \int_{w}^{e} \left(k * \frac{dT}{dx}\right) * dA + \int_{\Delta V} q * dV$$
$$= \left(k * A * \frac{dT}{dx}\right)_{e} - \left(k * A * \frac{dT}{dx}\right)_{w} + q * \Delta V = 0$$

Şekilde ve soruda belirtilen bölge $\delta=0.0075 m$ olan 10 eşit kontrol hacmine bölünmüştür; bir birim alan y-z düzleminde düşünülmüştür.

İÇ HÜCRE: Bir kontrol hacmi boyunca yöneten denklemin integrasyonu şunu verir;

$$\int_{\Delta V} \frac{d}{dx} * \left(k * \frac{dT}{dx}\right) * dV + q * dV = 0$$

$$\left[\left(k * A * \frac{dT}{dx}\right)_{e} - \left(k * A * \frac{dT}{dx}\right)_{w} \right] + q * \Delta V = 0$$

$$\left[k_{e} * A * \left(\frac{T_{E} - T_{P}}{\delta x}\right) - k_{w} * A * \left(\frac{T_{P} - T_{W}}{\delta x}\right) \right] + q * A * \delta x = 0$$

$$\left(\frac{k_{e} * A}{\delta x} + \frac{k_{w} * A}{\delta x} \right) * T_{P} = \left(\frac{k_{e} * A}{\delta x} \right) * T_{W} + \left(\frac{k_{w} * A}{\delta x} \right) * T_{E} + q * A * \delta x$$

$$\left(\frac{k_{e} * A}{\delta x} + \frac{k_{w} * A}{\delta x} \right) * T_{P} - \left(\frac{k_{e} * A}{\delta x} \right) * T_{W} - \left(\frac{k_{w} * A}{\delta x} \right) * T_{E} = q * A * \delta x$$

Bu denklem aşağıdaki gibi genel formunda yazılabilir.

$$a_W * T_W + a_P * T_P + a_E * T_E = S_u$$

 $k_e = k_w = k$ olduğundan aşağıdaki katsayılara sahibiz:

a_W	a_E	a_P	S_P	S_u
k * A	k * A	$-(a_W + a_E - S_P)$	0	$q * A * \delta x$
$-\frac{\delta x}{\delta x}$	$-{\delta x}$			

^{*}iç hücre (2,3,4,5,6,7,8,9 düğüm noktalarındaki kontrol hacimleri için geçerlidir)

SOLDAKİ SINIR HÜCRE: 1 ve 10 düğüm noktalarındaki sınır şartlarını birleştirmek için bir sınır şartı ve bitişik düğüm noktası arasındaki sıcaklıklara ait lineer yaklaştırıma başvururuz. Batı tarafındaki düğüm 1 noktasındaki sıcaklık bilinmektedir. 1-düğüm noktasını çevreleyen kontrol hacmindeki denkleminin integrasyonu şunu verir;

$$\begin{split} &\left[\left(k*A*\frac{dT}{dx}\right)_{e}-\left(k*A*\frac{dT}{dx}\right)_{w}\right]+q*\Delta V=0\\ &\left[k_{e}*A*\left(\frac{T_{E}-T_{P}}{\delta x}\right)-k_{w}*A*\left(\frac{T_{P}-T_{W}}{\delta x}\right)\right]+q*A*\delta x=0 \end{split}$$

Yukarıdaki denklem $k_e = k_w = k$ kullanılarak, düğüm noktası 1'e ait yaklaştırılmış denklemi elde etmek için yeniden düzenlenebilir:

$$a_W * T_W + a_P * T_P + a_E * T_E = S_u$$

a_W	a_E	a_P	S_{P}	S_u
0	$-\frac{k*A}{\delta x}$	$-(a_W + a_E - S_P)$	$\frac{2*k*A}{\delta x}$	$q * A * \delta x + \frac{2 * k * A}{\delta x} * T_A$

SAĞDAKİ SINIR HÜCRE: Düğüm noktası 10'daki, kontrol hacminin doğu yüzeyindeki sıcaklık biliniyor. Bu düğüm noktası sınır düğüm noktası 1'e benzer şekilde ele alınabilir. Düğüm noktası 10'da şuna sahibiz;

$$\left[\left(k * A * \frac{dT}{dx} \right)_e - \left(k * A * \frac{dT}{dx} \right)_w \right] + q * \Delta V = 0$$

$$\left[k_B * A * \left(\frac{T_B - T_P}{\delta x / 2} \right) - k_w * A * \left(\frac{T_P - T_W}{\delta x} \right) \right] + q * A * \delta x = 0$$

Yukarıdaki denklem $k_e = k_w = k$ olduğuna dikkat ederek, düğüm noktası 10'a ait yaklaştırılmış denklemi elde etmek için yeniden düzenlenebilir:

$$a_W * T_W + a_P * T_P + a_E * T_E = S_u$$

$$\bar{S} * \Delta V = S_u + S_P * \phi_P$$

$$q * A * \delta x = S_u + S_P * T_P$$

a_W	a_E	a_P	S_P	S_u
$-\frac{k*A}{}$	0	$-(a_W + a_E - S_P)$	2*k*A	$q * A * \delta x + \frac{2 * k * A}{2} * T_B$
$-\frac{\delta x}{\delta x}$			δx	$q * A * \delta x + \frac{\delta x}{\delta x} * I_B$

 $A=1\,m^2, k=7.5\,W/mK$, $q=15000\,kW/m^3$, $\delta x=0.0075\,m$ nümerik değerlerinin her yerde yerine konulması, Tabloda özetlenen ayrıklaştırılmış denklemlerin katsayılarını verir.

Nokta	S_P	a_W	a_P	a_E	S_u
1	2000	0	3000	-1000	1232500
2	0	-1000	2000	-1000	112500
3	0	-1000	2000	-1000	112500
4	0	-1000	2000	-1000	112500
5	0	-1000	2000	-1000	112500
6	0	-1000	2000	-1000	112500
7	0	-1000	2000	-1000	112500
8	0	-1000	2000	-1000	112500
9	0	-1000	2000	-1000	112500
10	2000	-1000	3000	0	1432500

Doğrudan matris şeklinde verilen denklemler şunlardır:

$$=\begin{pmatrix} 1232500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 112500 \\ 132500 \\ 132500 \\ 1000$$

Analitik Çözüm ile Kıyaslama

Bu probleme ait analitik çözüm, yöneten denklemi x'e göre iki kez integre edilerek ve ardından sınır şartları uygulanarak bulunabilir. Bu şunu verir;

$$\left[\frac{T_B - T_A}{L} + \frac{q}{2 * k} * (L - x) \right] * x + T_A = 0$$

Sonlu hacim çözümü ve kesin çözüm arasındaki kıyaslama;

Aşağıdaki tablo ve şekilde görüldüğü üzere 10 düğüm noktalı bir ağ olmasına rağmen uyumun çok iyi olduğu görülebilir.

Analitik Çözüm;

$$\left[\frac{T_B - T_A}{L} + \frac{q}{2*k} * (L - x)\right] * x + T_A = [1333.33 + 1000000 * (0.075 - x)] * x + 100$$

Nokta	x (m)	Nümerik Sonuç (K)	Analitik Sonuç (K)	Yüzde Hata (%)
1	0.00375	846.25	832.1875	1.69
2	0.01125	1306.25	1292.1875	1.09
3	0.01875	1653.75	1639.6875	0.86
4	0.02625	1888.75	1874.6875	0.75
5	0.03375	2011.25	1997.1875	0.70
6	0.04125	2021.25	2007.1875	0.70
7	0.04875	1918.75	1904.6875	0.74
8	0.05625	1703.75	1689.6875	0.83
9	0.06375	1376.25	1362.1875	1.03
10	0.07125	936.25	922.1875	1.52

#Problemin tamamının çözümü için Python programlama dilinde kod yazılmıştır, kodun tamamı aşağıda gözükmektedir.

```
import math
from prettytable import PrettyTable
import numpy as np
import matplotlib.pyplot as plt
TA = 560
TB = 660
q= 15000000
k = 7.5
dx=0.075/10
A= 1
L=0.075
x = 0.075
table = PrettyTable()
table.field_names = ["x", "Analitik Sonuç (K)"]
T2 = []
for i in range(21):
    x = i/10*(L/2)
    t = (((TB-TA)/L) + ((q/(2*k))*(L-x)))*x+TA
    T2.append(float(t))
    table.add_row([x, t])
print(table)
print([T2[1], T2[3], T2[5], T2[7], T2[9], T2[11], T2[13], T2[15], T2[17],
T2[19]])
# Grafikte sıcaklık değerlerini gösterme
x2\_values = np.linspace(0, 0.075, 21)
plt.plot(x2_values, T2, label="Analitik")
plt.xlabel("Mesafe (m)")
plt.ylabel("Sicaklik (K)")
plt.title("Sicaklik Dağılımı")
plt.legend()
#iç hücre (2,3,4,5,6,7,8,9 düğüm noktalarındaki kontrol hacimleri için
geçerlidir)
aw1 = float((-k/dx)*A)
ae1= float((-k/dx)*A)
sp1= 0
ap1= float(-(aw1+ae1-sp1))
su1= float(q*A*dx)
#soldaki sınır hücre (1 düğüm noktaları için)
aw2= 0
```

```
ae2= float((-k/dx)*A)
sp2= float(2*((k/dx)*A))
ap2= float(-(aw2+ae2-sp2))
su2= float(q*A*dx + (2*((k/dx)*A))*TA)
#soldaki sınır hücre (10 düğüm noktaları için)
aw3 = float((-k/dx)*A)
ae3= 0
sp3= float(2*((k/dx)*A))
ap3= float(-(aw2+ae2-sp2))
su3= float(q*A*dx + (2*((k/dx)*A))*TB)
table = PrettyTable()
table.field_names = ["Hücre", "aw", "ae", "ap", "sp", "su"]
table.add_row(["1", aw2, ae2, ap2, sp2, su2])
for i in range(2, 10):
    table.add_row([str(i), aw1, ae1, ap1, sp1, su1])
table.add_row(["10", aw3, ae3, ap3, sp3, su3])
print(table)
# Katsayı matrisi A
A = np.array([[ap2, ae2, 0, 0, 0, 0, 0, 0, 0, 0],
              [aw1, ap1, ae1, 0, 0, 0, 0, 0, 0, 0],
              [0, aw1, ap1, ae1, 0, 0, 0, 0, 0, 0],
              [0, 0, aw1, ap1, ae1, 0, 0, 0, 0, 0],
              [0, 0, 0, aw1, ap1, ae1, 0, 0, 0, 0],
              [0, 0, 0, 0, aw1, ap1, ae1, 0, 0, 0],
              [0, 0, 0, 0, 0, aw1, ap1, ae1, 0, 0],
              [0, 0, 0, 0, 0, aw1, ap1, ae1, 0],
              [0, 0, 0, 0, 0, 0, aw1, ap1, ae1,],
              [0, 0, 0, 0, 0, 0, 0, aw3, ap3,]])
# Sabit terim matrisi C
C = np.array([[su2], [su1], [su1], [su1], [su1], [su1], [su1], [su1], [su1],
[su3]])
# Denklemi çözerek sıcaklık değerlerini bulma
T = np.linalg.inv(A) @ C
table = PrettyTable()
table.field names = ["Düğüm Noktası", "Sıcaklık (K)"]
for i, temp in enumerate(T):
    table.add_row([str(i+1), round(float(temp), 2)])
print(table)
#Yüzde hata hesaplama
T22 = ([T2[1], T2[3], T2[5], T2[7], T2[9], T2[11], T2[13], T2[15], T2[17],
T2[19]])
```

```
for i in range(1, 11):
    hata_yuzdesi = abs(T22[i-1] - T[i-1]) / T22[i-1] * 100
    print(f"{i}. ölçümün yüzde hatası: {hata_yuzdesi[0]:.2f}%")

# Grafikte sıcaklık değerlerini gösterme
x_values = np.linspace(0.00375, 0.07125, 10)

plt.scatter(x_values, T, color='red', label="Sayısal")
plt.scatter(0, TA, color='red')
plt.scatter(0.075, TB, color='red')
plt.xlabel("Mesafe, x (m)")
plt.ylabel("Sıcaklık, T (K)")
plt.title("Sıcaklık Dağılımı")
plt.legend()
plt.grid(True)
plt.show()
```

#Kod çalıştırıldığında çıkan sonuçlar aşağıda verilmiştir.

ida Çıkan Sonaçıan aş		
x	Analitik Sonuç (K)	
0.0	560.0	
0.00375	832.1875	
0.0075	1076.25	
0.01125	1292.1875	
0.015	1480.0	
0.01875	1639.6874999999998	
0.0225	1771.25	
0.02625	1874.6875	
0.03	1950.0	
0.03375	1997.1875	
0.0375	2016.25	
0.04125	2007.1874999999998	
0.045	1970.0	
0.04875	1904.6874999999998	
0.0525	1811.25	
0.05624999999999994	1689.6875	
0.06	1540.0	
0.06375	1362.1874999999998	
0.0675	1156.2499999999995	
0.07125	922.18750000000002	
0.075	660.0	
	+	

-	+				·
Hücre	aw	ae	ар	sp	su
1 1	t I 0	 -1000.0	3000.0	 2000.0	+ 1232500.0
2	-1000.0	-1000.0	2000.0	0	112500.0
3	-1000.0	-1000.0	2000.0	0	112500.0
4	-1000.0	-1000.0	2000.0	0	112500.0
5	-1000.0	-1000.0	2000.0	0	112500.0
6	-1000.0	-1000.0	2000.0	0	112500.0
7	-1000.0	-1000.0	2000.0	0	112500.0
8	-1000.0	-1000.0	2000.0	0	112500.0
9	-1000.0	-1000.0	2000.0	0	112500.0
10	-1000.0	0	3000.0	2000.0	1432500.0

+	+
Düğüm Noktası	Sıcaklık (K)
+	++
1	846.25
2	1306.25
3	1653.75
4	1888.75
5	2011.25
6	2021.25
7	1918.75
8	1703.75
9	1376.25
10	936.25

1. ölçümün yüzde hatası: 1.69%
2. ölçümün yüzde hatası: 1.09%
3. ölçümün yüzde hatası: 0.86%
4. ölçümün yüzde hatası: 0.70%
5. ölçümün yüzde hatası: 0.70%
6. ölçümün yüzde hatası: 0.70%
7. ölçümün yüzde hatası: 0.74%
8. ölçümün yüzde hatası: 0.83%
9. ölçümün yüzde hatası: 1.03%
10. ölçümün yüzde hatası: 1.52%

