Formule

1 I/O

Conversione LBA/CHS

- Siano:
 - $-N_c$ = numero cilindri
 - $-N_h = \text{numero testine}$
 - $-N_s$ = numero settori
- $LBA = (C * N_h + H) * N_s + (S 1)$
- $C = LBA/(N_h * N_s)$
- $H = (LBA/N_s)\%N_h$
- $S = (LBA\%N_s) + 1$

Performance dischi

- \bullet Latenza rotazionale massima (in secondi) = 60 sec/RPM
- Latenza rotazionale media = latenza rotazionale massima/2
- Tempo di trasferimento medio = latenza rotazionale massima/media settori per traccia
- Tempo medio d'accesso = tempo medio di seek + latenza rotazionale media + tempo di trasferimento medio

1

Affidabilità dischi

- $MTTF_y = 1/AFR$
- $MTTF_h = 1/HFR = 24 * 365 * MTTF_u$

Formattazione a basso livello

Cylinder skew = [track-to-track seek time/sector interarrival time]
Maximum data rate = track size/max rotational latency

Sector interleaving = [in-memory sector transfer time/sector interarrival time]

Hard Disk Power Management

Break-even condition: $E_{sd} + P_s * (T_d - T_{sd} - T_{wu}) + E_{wu} = P_w * T_d$

Break-even point: $T_d = (E_{sd} + E_{wu} - P_s * (T_{sd} + T_{wu}))/(P_w - P_s)$

CPU Power Management

- $\bullet \ P = P_{dynamic} + P_{static}$
- $\bullet \ P = k * V^2 * f + P_{static}$
- $E_{nocut} = P_{dynamic} * T_{utilizzo} + P_{static} * T_{totale}$
- $E_{cut} = (P_{dynamic}/n^2) * T_{utilizzo} + P_{static} * T_{totale}$
- $\Delta E\% = 100 * \Delta E/E_{nocut}$

2 File system

Allocazione contigua

- Siano:
 - F' = dimensione stimata del file
 - F = dimensione attuale del file
 - B = dimensione blocco
- Numero dei blocchi allocati = $N = \lceil F'/B \rceil$
- Overhead = 0%
- Percentuale spazio sprecato = (1-F/(N*B))%

Allocazione basata su extents

- Siano:
 - F = dimensione del file
 - B = dimensione blocco
 - -P = dimensione puntatore a blocco
 - E = numero di blocchi dell'extent
- Numero degli extent allocati = $M = \lceil F/(E*B) \rceil$
- Numero di blocchi per allocare la tavola degli extent = $T = \lceil M * P/B \rceil$
- Numero di blocchi allocati = N = M*E + T
- Overhead = ((T*B)/(N*B))% = (T/N)%
- Percentuale spazio sprecato = (1-(M*P+F)/(N*B))%

Allocazione a liste concatenate

- Siano:
 - F = dimensione del file
 - B = dimensione blocco
 - P = dimensione puntatore a blocco
- Numero di blocchi allocati = $N = \lceil F/(B-P) \rceil$
- Overhead = ((N*P)/(N*B))% = (P/B)%
- Percentuale spazio sprecato = $(1-(N^*P+F)/(N^*B))\%$

Allocazione a cluster

- Siano:
 - F = dimensione del file
 - B = dimensione blocco
 - P = dimensione puntatore a blocco
 - C = numero di blocchi per cluster
- Numero di cluster allocati = $M = \lceil F/(C*B-P) \rceil$
- Numero di blocchi allocati = N = M*C
- Overhead = ((M*P)/(N*B))% = (P/(C*B))%
- Percentuale spazio sprecato = (1-(M*P+F)/(N*B))%

Allocazione con FAT

- Siano:
 - -D = dimensioni partizione
 - F = dimensione del file
 - B = dimensione blocco
 - -P = dimensione puntatore a blocco
- Numero entries nella FAT = M = |D/B|
- Dimensione FAT = S = M*P
- Numero di blocchi allocati = $N = \lceil F/B \rceil$
- Overhead = (S/D)%
- Percentuale spazio sprecato = (1-(F/(N*B)))%

Allocazione con index block

- Siano:
 - F = dimensione del file
 - B = dimensione blocco
 - P = dimensione puntatore a blocco
 - I = numero di blocchi allocati per l'index block
- Dimensione index block = S = I*B
- Numero di blocchi allocati (solo per i dati) = $M = \lceil F/B \rceil$
- $\bullet\,$ Numero di blocchi allocati per file = N = I+M
- Overhead = (S/(N*B))% = (I/N)%
- Percentuale spazio sprecato = (1-(P*M+F)/(N*B))%

Allocazione con i-node

- Siano:
 - N = puntatori diretti
 - -M = puntatori indiretti
 - L = lunghezza index-block
 - B = dimensioni index block
- Numero massimo di blocchi indirizzabili = $A = N + \sum_{i=1}^{M} L^{i}$
- Dimensione file massima = S = A*B

Blocchi liberi

Con lista collegata:

- Numero di puntatori a blocco per nodo = | dimensione blocco/dimensione puntatore | 1
- Numero di blocchi nel disco = | dimensione disco/dimensione blocco |
- Numero massimo di nodi nella lista = [blocchi su disco/numero di puntatori]
- Dimensione massima lista = numero nodi * dimensione blocco

Con bitmap:

- Numero di blocchi su disco = | dimensione disco/dimensione blocco |
- Dimensione bitmap = numero di blocchi di disco*8
- Numero di blocchi per allocare bitmap = [dimensione bitmap/dimensione blocco]