Capítulo 7

La Capa Física: parte 2

Application

Transport

Network

Link

Physical

- Ahora estudiamos métodos para convertir señales analógicas a digitales.
- Problema: ¿cómo convertir fuentes de información analógicas a forma digital para procesamiento posterior?
- Solución: pulse code modulation (PCM)
 - Funcionamiento de PCM
 - ➢ el nivel de una señal analógica es medido repetidamente en intervalos fijos de tiempo y convertido a forma digital.

Figure 6.14 The three steps used in pulse code modulation.

- Pasos usados en PCM:
 - 1. Muestreo (sampling)
 - Muestra = medición.
 - 2. Una muestra se cuantifica (quantization)
 - Convirtiéndola en un valor entero pequeño.
 - Uso de conjunto de ranuras para representar valores en el rango de una señal (típicamente es una potencia de 2).
 - 3. Luego se lo codifica en un formato específico.

Figure 6.15 An illustration of the sampling and quantization used in pulse code modulation.

- En la práctica variaciones leves de muestreo han sido inventadas.
- P. ej., para evitar una inexactitud causada por un breve pico/caída en la señal, usar el promedio
 - En lugar de confiar en una medida única para cada muestra, 3 medidas pueden ser tomadas cercanas entre sí y el promedio puede ser computado.

Medios de transmisión

- Los medios físicos se clasifican en:
 - medios guiados cable de cobre, fibra óptica.
 - medios no guiados radio
 - Medios magnéticos DVDs, Blu-ray, cintas magnéticas
- Hay 2 tipos de cable de cobre: cables de par trenzado de cobre y cable coaxial.
 - Estudiamos cada tipo.

Cable de par trenzado de cobre

Cable de par trenzado de cobre.

- 2 alambres de cobre de aprox. 1 mm de grueso se trenzan.
- Logran alcanzar algunos km sin amplificación, para distancias mayores, usar repetidores.
- Pueden usarse para transmitir señales digitales o señales analógicas.

• Evaluación:

- El ancho de banda depende en el ancho del cable y en la distancia recorrida.
 - Varios Mbps pueden ser alcanzados por unos pocos km.
- Debido a su comportamiento adecuado y bajo costo, los cables de par trenzado son ampliamente usados.

Cable de par trenzado de cobre

Tipo	Ancho de banda	Velocidad de copiado	otros
Categoría 3	100 KHz para 2000 m.1 MHz para 500 m.25 MHz para 100 m.	10 Mbps en Ethernet	4 pares en envoltura p. Ethernet. En telefonía de 2 líneas.
Categoría 5	100 MHz	100 Mbps y 1 Gbps en Ethernet LANs	4 pares en envoltura. En telefonía.
Categoría 6	250 MHz máximo.	10 Gbps en 10 Gigabit Ethernet LANs	4 pares en envoltura.
Categoría 7	600 MHz máximo.	10 Gbps en 10 Gigabit Ethernet LANs	4 pares en envoltura, cada par aislado.

Cable Coaxial

Cable coaxial.

 Con blindaje mejor que los pares trenzados, luego puede recorrer distancias más largas a velocidades mayores.

• Evaluación:

- La construcción y el blindaje del cable coaxial le confieren una buena combinación de ancho de banda alto y excelente inmunidad al ruido.
- Velocidad de propagación entre 66% y 90% de la velocidad de la luz.

Cable Coaxial

Tipo de cable	Usado en	Ancho de banda	velocidad
50 Ohm	Transmisión digital		10 Mbps en hasta 1 km de longitud
75 Ohm	Transmisión analógica, internet sobre cable.	Máximo 450 MHz	150 Mbps a 300 Mhz

- Con la tecnología de fibra óptica el ancho de banda alcanzable es de 50,000 Gbps (50 Tbps).
- El límite actual ronda los 100 Gbps y se debe a nuestra inabilidad de convertir entre señales eléctricas y ópticas más rápidamente.
 - Para construir enlaces de mayor capacidad, varios canales son transportados en paralelo sobre una sola fibra.

Veamos un poco de **física óptica** para entender por qué es posible el uso de la fibra óptica.

- (a) Refracción: 3 ejemplos de un rayo de luz desde el interior de una fibra de silicio refractándose en la frontera aire/silicio en ángulos diferentes. El grado de refracción depende de las propiedades de los medios.
- (b) Un rayo de luz que incide en un ángulo **mayor o igual al crítico** queda atrapado dentro de la fibra (Fig. 5-b) y se puede propagar por varios Km sin pérdida.

- (a) Vista de lado de una única fibra.
- (b) Vista de una cobertura con 3 fibras.
- Propósito: Comprender los distintos tipos de fibra óptica.
- Varios rayos estarán rebotando con ángulos distintos.
 - Se dice que cada rayo tiene un modo diferente y una fibra que tiene esta propiedad se llama fibra multimodo.
 - En las fibras multimodo el diámetro del núcleo de vidrio es de 50 micras el grosor de un cabello humano.

- Fibra monomodo: El diámetro de la fibra se reduce a unas cuantas longitudes de onda de luz, y la luz se propaga solo en línea recta.
 - Son más caras.
 - Se pueden usar en distancias mayores.
 - El grosor del núcleo de vidrio es de 8 a 10 micras.
 - Pueden transmitir datos a 100 Gbps por 100 km sin amplificación.

- Situación: los hosts no usan señales ópticas.
- Problema: cómo hacer para aprovechar la fibra óptica.
- Solución: usar un sistema de transmisión óptico con las siguientes 3 componentes:
 - 1. Fuentes de luz.
 - Un pulso de luz indica un bit 1 y la ausencia de luz indica un bit 0.
 - Se usan dos clases de fuente de luz para producir las señales:
 - LED diodos emisores de luz- y
 - láseres semiconductores
 - 2. El medio de transmisión es una fibra de vidrio ultra delgada.
 - 3. El detector genera un pulso eléctrico cuando la luz incide en él.

Motivación:

- Para los usuarios móviles los medios cableados no son de utilidad.
- Para ellos la comunicación inalámbrica es la respuesta.
- Estudiamos los conceptos, principios y leyes de la transmisión inalámbrica
- Ondas electromagnéticas.
 - Cuando los electrones se mueven crean ondas electromagnéticas que se pueden propagar por el espacio libre (aun en el vacío).
- **frecuencia** f de una onda electromagnética = cantidad de oscilaciones por segundo (se mide en Hz).
- **longitud de onda** λ = distancia entre dos puntos máximos o mínimos consecutivos.

- Principio: Al conectarse una antena del tamaño adecuado a un circuito eléctrico, las ondas electromagnéticas pueden ser difundidas de manera eficiente y ser captadas por un receptor a cierta distancia.
- En el vacío todas las ondas electromagnéticas viajan a la velocidad de la luz c y es de 30 cm por nanosegundo.
- En el cobre o la fibra óptica, la velocidad es aprox. 2/3 c y se vuelve ligeramente dependiente de la frecuencia.
 - La velocidad de la luz es el límite máximo de velocidad.
- Ley: La relación entre λ , f y c en el vacío es de $\lambda * f = c$.

- Cuando λ se expresa en m y f en MHz, $\lambda * f \cong 300$.
 - Ejemplo: las ondas de 100 MHz son de aproximadamente 3 m de longitud, las de 1000 MHz son de 0,3 m y las ondas de 0,1 m de longitud tienen una frecuencia de 3000 MHz.

Diferenciando f con respecto a λ:

$$df/d\lambda = - c/\lambda^2$$

 Si usamos diferencias finitas en lugar de diferenciales y solo consideramos los valores absolutos obtenemos:

$$\Delta f = c\Delta \lambda/\lambda^2$$

• Significado: dado el ancho de una banda de longitud de onda, $\Delta\lambda$ podemos calcular la banda de frecuencia correspondiente Δf y a partir de ella, la tasa de datos.

- **Ejercicio**: considere la banda de 1,3 micras que tiene un ancho de 0,17 micras y que se pueden transmitir 8 bits por Hz, ¿qué velocidad de transmisión tenemos?
- Solución: aquí tenemos $\lambda = 1.3 * 10^{-6}$ y $\Delta \lambda = 0.17 * 10^{-6}$ de manera que $\Delta f = c\Delta \lambda/\lambda^2 = c * 0.17 * 10^{-6} / 16.9 * 10^{-12} \cong 30$ THz. A 8 bits por Hz tenemos 240 Tbps.
- La mayoría de las transmisiones ocupa una banda de frecuencia estrecha; es decir, $\Delta f / f << 1$ a fin de obtener la mejor recepción (muchos watts por Hz).

Espectro electromagnético:

- Las ondas de radio están entre 10^4 y 10^7 Hz
- Las microondas están entre 10^9y 10^11 Hz
- Los rayos infrarrojos están entre 10^12 y 10^14 Hz
- La luz visible está entre 10^14 y 10^15 Hz

La red de telefonía pública conmutada

- (a) Red completamente interconectada.
- (b) Conmutador centralizado.
- (c) Jerarquía de dos niveles.

- Estudiamos cómo está estructurada la red de telefonía pública conmutada.
- Cuando apareció el teléfono, si un propietario de un teléfono deseaba comunicarse con otros n propietarios de teléfono, enlazaba alambres individuales a todas las n casas.
 - No funciona bien.
- Las oficinas de conmutación.
 - Para realizar una llamada el cliente debía dar vueltas a la manivela del teléfono para atraer la atención del operador, que a continuación conectaba manualmente a quien llamaba con el receptor de la llamada, por medio de un cable puenteador.

La red de telefonía pública conmutada

- Problema: ¿Cómo hacer para permitir llamadas de larga distancia entre ciudades?
- Solución: Conectar oficinas de conmutación entre sí por medio de cables.
 - Oficinas de conmutación de segundo nivel.
 - También se las llama oficinas interurbanas

Estructura del sistema telefónico

- Cada teléfono tiene dos alambres de cobre que van a la oficina central local (end office) de la compañía telefónica.
 - La distancia va de 1 a 10 km.
- Circuito local = conexión entre el teléfono del suscriptor y la oficina central
- Las oficinas interurbanas (toll office) sirven de intermediarias entre oficinas centrales diferentes.
- Troncales de comunicación interurbanas: Unen oficinas centrales con oficinas interurbanas.

La red de telefonía pública conmutada

- Una oficina central tiene hasta 10.000 circuitos locales.
- Todas las oficinas tienen equipo que conmuta las llamadas.
- El circuito local es el único elemento de tecnología analógica.
- Entre las oficinas de conmutación se usa fibra óptica.
- Todas las troncales y los conmutadores son digitales.
 - Con la transmisión digital basta con distinguir entre un 0 y un 1.
 - Ventajas de la transmisión digital: mayor confiabilidad y mantenimiento más económico y sencillo.

La red de telefonía pública conmutada

- Vemos ahora cómo se puede usar la red de telefonía pública conmutada para enviar datos de una computadora a otra.
- Para enviar datos digitales de una PC sobre una línea analógica de acceso telefónico, es necesario convertir los datos a formato analógico.
 - Módem telefónico: hace esa conversión.
- Los datos se convierten a formato digital en la oficina central de la compañía telefónica para transmitirlos sobre las troncales.
 - Codec: es el dispositivo que hace esa conversión.
 - En el extremo receptor (del otro lado del troncal) el stream de bits es usado para reconstruir los datos analógicos.
- Para las troncales de largo alcance, la principal consideración es cómo reunir múltiples señales y enviarlas juntas por la misma fibra óptica.
 - Se usa multiplexado.

DSL

- Ahora estudiamos en qué consiste la comunicación de banda ancha (también llamado xDSL).
- Situación: el sistema telefónico está preparado desde un inicio para trabajar con canales de 4312 Hz cada uno donde se pueden mandar datos o llamadas.
- Problema: ¿Cómo hacer para aprovechar a full un cable de cobre para envío de datos y llamadas con un ancho de banda de 1,1 MHz?

Using discrete multitone modulation.

- Solución: DMT (multi-tono discreto) divide el espectro de 1,1 MHz en el circuito local en 256 canales de 4312 Hz cada uno.
 - Multiplexado OFDM es usado.
 - El canal 0 se usa para el servicio telefónico convencional.
 - Los canales 1 a 5 no se emplean, para evitar que las señales de voz y de datos interfieran entre sí.
 - De los 250 canales restantes 1 se usa para control del flujo ascendente
 y 1 para el control del flujo descendente.
 - El resto está disponible para datos del usuario.

- Ahora vemos cómo ADSL usa los canales y hace modulación.
- Situación: normalmente los usuarios usan más la internet para descargar datos que para subir datos.
- Problema: ¿Cómo asignar el uso de canales teniendo en cuenta este hecho?
- Solución: usar ADSL que consiste en usar más canales para descarga que para subida (p.ej. 80 o 90% para descarga).

- El proveedor determina cuántos canales se utilizarán para el flujo ascendente y cuántos para el flujo descendente.
 - La mayoría de los proveedores asigna entre 80 y 90% del ancho de banda al canal descendente.
 - Esta situación dio lugar a la A (asimétrica) de ADSL.
- Dentro de cada canal, modulación QAM es usada a una tasa de alrededor de 4000 symbols/sec.
- Los datos actuales se envían con modulación QAM con un máximo de 15 bits por baudio.

- Con 224 canales descendentes y 15 bits por baudio a 4000 baud, la velocidad del flujo descendente es de 13,44 Mbps.
 - En la práctica la relación señal a ruido nunca es suficientemente buena para alcanzar esa tasa,
 - pero en trayectorias cortas sobre circuitos de alta calidad es posible lograr 8 Mbps.
- La calidad de la línea en cada canal se monitorea de manera constante y la tasa de datos se ajusta cada vez que es necesario.

- Gráfica del ancho de banda potencial como una función de la distancia (Figura de arriba, se usan cables de cobre).
 - Se da por sentado que todos los demás factores son óptimos (cables nuevos, haces moderados de cables, etc.).
 - Implicaciones de figura.
 - Entre más baja sea la velocidad elegida, más amplio será el radio y podrán abarcarse más clientes.

- Estudiamos ahora cómo se configuran los equipos que usan ADSL.
- Situación: en el cable de cobre se pueden recibir llamadas y mensajes de internet al mismo tiempo.
- Problema: ¿cómo diseñar los equipos para hacer/recibir llamadas telefónicas y usar la internet al mismo tiempo?

A typical ADSL equipment configuration.

- Solución: ADSL común en el hogar.
 - Instalación de NID (dispositivo de interfaz de red).
 - Cerca del NID (y en ocasiones en combinación con él) hay un divisor.
 - Divisor = filtro analógico que separa la banda de 0-4000 Hz utilizada por la voz de los datos
 - La señal POTS se enruta hacia el teléfono y la señal de datos se enruta a un módem.

- El módem ADSL funciona como 250 módems QAM operando en paralelo a diferentes frecuencias (implementa OFDM).
 - La computadora se conecta con él a alta velocidad.
 - Esto se hace usando Ethernet, 802.11 o un cable USB.
- Situación: se dispone de un sistema telefónico para llamadas
- Problema: ¿cómo diseñar una oficina central de conmutación para aprovechar ese sistema telefónico de llamadas existente y además introducir el uso de banda ancha de internet?

Voice Telephone switch Codec **ADSI** Splitter Telephone Splitter line NID Computer DSLAM Ethernet **ADSL** modem To ISP Telephone company end office Customer premises

A typical ADSL equipment configuration.

- Solución: esquema de ADSL común en la oficina central:
 - Divisor: filtra la porción de voz de la señal y se envía al conmutador de voz normal.
 - Las señales por arriba de 26 KHz se envían hacia un dispositivo
 DSLAM (multiplexor de acceso de línea digital de suscriptor).
 - Una vez que la señal digital se extrae de un flujo de bits, se elaboran paquetes y se envían al ISP.

- Estudiamos la arquitectura de los sistemas de internet por cable.
- Hay segmentos de cable coaxial, a cada uno de ellos se conectan varias casas.
- Sistema HFC (red híbrida de fibra óptica y cable coaxial).
 - Los convertidores electroópticos se llaman nodos de fibra.
 - Como el ancho de banda de la fibra es mucho mayor que el del cable coaxial, un nodo de fibra puede alimentar múltiples cables coaxiales
 - Modem-head end antes de nodo de fibra.

- Problema: cuando en los vecindarios muchas casas comparten un solo cable.
 - La velocidad de transmisión es baja si todas las casas están usando la internet en forma continua.
 - ¿Cómo resolver esta situación?
- Solución: dividir los cables largos y conectarlos directamente al nodo de fibra.
 - El ancho de banda que el modem head end proporciona a cada nodo de fibra es grandísimo;
 - por lo tanto, siempre y cuando no haya demasiados suscriptores en cada segmento del cable, la cantidad de tráfico será manejable.
 - Los cables típicos tienen entre 500 y 2000 casas.

- Propósito: Comprender cómo es el sistema de alojamiento de frecuencias en un sistema de internet por cable.
- Situación: En un cable de TV por cable usualmente no se usa todo el ancho de banda que puede dar.
- Problema: ¿Cómo aprovechar el cable de TV por cable para poder usarlo también para envío de datos?

- Solución: Normalmente la TV y la internet coexisten en un mismo cable.
 - Los canales de TV en USA ocupan la región de 54 a 550 MHz; estos canales tienen 6 MHz de ancho de banda.
 - Los cables modernos pueden operar más arriba con frecuencias de hasta 750 MHz o incluso más.
 - Se introducen canales ascendentes en la franja 5-42 MHz y se usan frecuencias en extremo superior para el flujo descendente.

Typical details of the upstream and downstream channels in North America.

- Propósito: comprender cómo son los módems de internet por cable.
- Conexión Modem-computador: Ethernet u ocasionalmente USB.
- **El otro extremo** es más complicado y usa FDM, TDM y CDMA para compartir el ancho de banda del cable entre los suscriptores.
- En el cable se necesita la modulación analógica.
 - Para el flujo descendente cada canal descendente de 6 MHz se lo modula con:
 - QAM-64 (casi 36 Mbps de la cual se aprovecha 27 Mbps de carga útil), o
 - si la calidad del cable es muy buena, QAM-256 (carga útil de 39 Mbps).
 - Para el flujo ascendente se varía de QPSK o QAM-128...

- Propósito: Comprender cómo se hace multiplexado en un cable coaxial
- El uso de canales para flujo descendiente de 6 MHz o de 8 MHz es la parte **FDM**.
- TDM se usa para compartir ancho de banda en el flujo ascendente entre varios suscriptores.
 - El tiempo se divide en miniranuras y diferentes suscriptores envían en las diferentes miniranuras.
 - Varios módem pueden compartir la misma miniranura, usando CDMA enviando simultáneamente, pero a una tasa reducida.