IMPERIAL COLLEGE LONDON

E4.03 AS5 SO10 **ISE4.3**

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2003**

MSc and EEE/ISE PART IV: M.Eng. and ACGI

MOBILE RADIO COMMUNICATION

Thursday, 8 May 10:00 am

Time allowed: 3:00 hours

There are FOUR questions on this paper.

Answer THREE questions.

Corrected Copy

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

M.K. Gurcan

Second Marker(s): D.B. Ward

Special Instructions for Invigilators: None

Information for candidates:

- 1. a) Assume that a receiver is located at a distance $d_0 = 1$ km from a base station transmitting at a power of 10 W. If the carrier frequency is 900 MHz, free space propagation is assumed and the transmitter and receiver gains are $G_T = 1$, and $G_R = 2$ respectively, at the receiver antenna find
 - i) the free-space power, $P_{FSR}(d_0)$, and [3]
 - ii) the magnitude of the electric field, $E_{FSR}(d_0)$.
 - b) Assume that in a mobile radio system, the area-mean-power, $P_{am}(R_1)$, at the cell boundary is 6.57×10^{-11} W, and $R_1 = 6$ km. The interference signal power, $6 P_{am}(D)$, in the radio cell is constant and equal to 9.1×10^{-13} W. A mobile user is located R_2 km away from the base station and the received signal is subjected to randomly fluctuating shadowing losses as the mobile moves. The standard deviation, σ , of the log-normal shadowing loss is $\sigma = 3$ dB. The probability that the local-mean-power, $P_{lm}(R_2)$, will exceed a certain value γ is calculated from the cumulative distribution function using

$$\Pr(P_{lm}(R_2) > \gamma) = 1 - \frac{1}{2\sqrt{\pi}} \exp \left\{ -\left(\frac{10\log_{10}\frac{P_{am}(R_2)}{\gamma}}{\sigma\sqrt{2}}\right)^2 \right\}.$$

Find the maximum transmitter-receiver separation, R_2 , that will ensure that a local-mean-power to interference-power ratio of 13 dB is provided for 95% of the time.

- c) Assume that in a narrow-band mobile radio system, the shadowing loss is 0 dB and the mobile is R_1 metres away from the base station and is moving at a steady speed of v m/s and receiving a signal with wavelength λ metres.
 - i) Describe how the statistical time varying nature of the received signal envelope can be expressed using the Rayleigh fading probability density function (PDF).
 - ii) Show how the actual signal power, $P_i(R_1)$, can be related to the area [3] mean power, $P_{am}(R_1)$, and the Rayleigh fading amplitude R.

Ouestion continued over

[2]

[4]

- [5]
- A narrow-band mobile radio system, subject to Rayleigh fading, uses differential binary phase-shift-keying modulation. As a function of the signal-to-noise ratio, X_a , the bit error probability, $P_e(X_a)$, is given by $P_e(X_a) = \frac{1}{2} \exp(-X_a)$. Show that the bit-error-probability is given by $P_e(X_R) = \frac{1}{2+2X_R}$ as a function of wanted-signal-area-mean power to total-interference-signal-power ratio, X_R .

- 2. a) Describe
 - i) how the performance of a slotted Aloha multiple access scheme is stabilised by controlling the re-transmission probabilities of back-logged users,

[2]

- ii) why it is necessary to estimate the number of backlogged users in order to stabilise slotted Aloha systems, and
- iii) how the offered load-drift, dG, given by $dG = \frac{dn G ds}{S_{k+1}}$ can be used to stabilise a slotted Aloha system at the optimum offered load. Assume that N_k and S_k respectively are the real and estimated numbers of backlogged users and that $G_k = \frac{N_k}{S_k}$. Assume also that the terms dn and ds correspond to the real and estimated drifts respectively.
- b) Assume that the joint-drift, dj, is related to the offered-load-drift by $dj = S_{k+1} \ dG$. State the limiting values of the joint drift equation dj(G) for G = 0 and $G = \infty$. Comment on the results if the control parameter u_c (i.e the number of corrections applied to the estimated number of users when there is a collision), satisfies the condition $u_c > \lambda$.
- c) If the joint drift equation dj(G) = 0 has three roots, discuss under what condition the largest root might result in an unstable Aloha system. Comment on the real number of users in the system for this case.
- d) In a mobile radio system a circular radio cell of radius 450m is used. There are 1600 mobile users in an area of 20000 m^2 and 12 percent of the mobile users are active during a one hour period. Determine
 - i) the call arrival rate per second for the access control scheme, and [2]
 - ii) the call arrival rate per slot, assuming a slotted Aloha system with packet duration of 100 ms is used. [2]

This page is intentionally left blank.

3. a) Explain

- i) why equalisers are required in wideband radio transmission systems, and [2]
- ii) how the equaliser coefficients are calculated using training sequences employed in a GSM radio system. You may assume that the channel introduces intersymbol interference and suffers from additive white Gaussian noise.
- b) Discuss the advantages and disadvantages of using
 - i) linear equalisers, [2]
 - ii) decision feedback equalisers and [2]
 - iii) maximum likelihood sequence detectors. [2] in wideband mobile radio systems.
- The cell radius of a mobile radio system is $R_1 = 1000 \,\mathrm{m}$. When a narrow-band radio system is used the system operates with the required signal-to-noise ratio $X_R(R_1) = 875$ and provides 20 simultaneous conversations in each cell. The narrow-band system will be replaced with a wide-band system that is time-shared between eight users and covers eight times the transmission bandwidth of the narrow-band system. Both the wide-band and the narrow-band systems have the same transmitter powers, the same transmitter and receiver antenna gains of unity, and the same desired signal-to-noise ratios $X_D(R_2) = 13 \,\mathrm{dB}$. Assuming that the wideband system achieves the desired signal-to-noise ratio at $R_2 = 970 \,\mathrm{m}$ when the equaliser gain, c_0 , is 0.8 find
 - i) the total number of channels available with the narrow-band system, [2]
 - ii) the number of simultaneous conversations the wide-band system can provide for the same total number of physical channels.

In a wide-band mobile radio system, the base-station transmits uncorrelated data signals. A channel, with an impulse response $h = [0.845 \ 0.507 \ 0.169]^T$, introduces intersymbol interference for the received signal. The ratio of areamean-power-to-total-interference-power is equal to 13 dB at the cell boundary. A minimum-mean-square-error decision-feedback-equaliser (DFE) is used to equalise the received signal. The equaliser feedforward and feedback coefficients are $c = [-0.0094 \ 0.0477 \ 1.081]^T$ and $b = [-0.5561 \ -0.1827]^T$ respectively. Find the signal-to-noise ratio at the output of the equaliser and the corresponding equaliser gain c_0 .

4)	a)	In connection with the Global Systems Mobile (GSM) radio system, describe			
	1	i)	the framing structure for the control channels,	[2]	
		ii)	how the network switching subsystem is modified to handle packet	[2]	
			transmission for use in the General Packet Radio Service (GPRS).		
	b)	Describe how new sets of logical channels are used as part of GPRS in the phase-			
		two GSM specifications in the case of			
		i)	the packet common control channel,	[1] [1]	
		ii)	the packet broadcast control channel,		
	•	iii)	the packet data traffic channel.	[1]	
	c)	For the third generation wideband UTRA/FDD radio system, outline			
		i)	the orthogonal variable spreading factor codes,	[1]	
		ii)	the physical layer structure, paying particular attention to:		
		•	how the uplink modulation and scrambling are organised to minimise the	[2]	
			audible interference from the terminal transmission,		
		• the transport channels:			
			• the dedicated transport channel,	[1]	
			• the downlink shared common transport channel.	[1]	
		iii)	The downlink frame structure, paying particular attention to the DPCCH /	101	
			DPDCH structure.	[2]	
		iv)	the downlink multiplexing and channel coding, paying particular attention		
			to		
			• the transport block concatenation,	[1]	
			• the downlink channel coding,	[1]	
			• the frame equalisation,	[1]	
			• the interleaving,	[1]	
			• the radio frame segmentation,	[1]	
			• the rate matching.	[1]	