Universidade Federal de Pernambuco (UFPE) Centro Acadêmico do Agreste Núcleo de Tecnologia Lista 3 de Álgebra Linear Prof. Fernando RL Contreras

Sejam os seguintes problemas

- 1. Sendo $u = (x_1, x_2)$ e $v = (y_1, y_2)$ são vetores genéricos do \mathbb{R}^2 , definamos $\langle u, v \rangle = \frac{x_1 y_1}{a^2} + \frac{x_2 y_2}{b^2}$ com $a, b \in \mathbb{R}$ fixos e não nulos. Provar que $\langle u, v \rangle$ define um produto interno sobre \mathbb{R}^2 .
- 2. Em $P_2(\mathbb{R})$ com produto interno dado por $< f(t), g(t) >= \int_0^1 dt$ calcule a norma de f(t) nos seguintes casos:
 - f(t) = t.
 - $f(t) = -t^2 + 1.$
- 3. Em $P_2(\mathbb{R})$ com o produto interno definido por: $\langle f(t), g(t) \rangle = \int_0^1 f(t)g(t)dt$
 - Ortonormalize a base $\{1, 1+t, 2t^2\}$.
 - Ache o complemento ortogonal do sub-espaço W = [5, 1+t]
- 4. Sejam U e V sub-espaços vetoriais de um espaço euclidiano de dimensão finita. Prove que $(U\cap V)^\perp=U^\perp+V^\perp.$
- 5. Consideremos o \mathbb{R}^4 munido do produto interno usual e seja $W = \{(x, y, z, t) \in \mathbb{R}^4 | x + y = 0 \text{ e } 2x y + z = 0\}$. Determine uma base ortonormal de W e uma base ortonormal de W^{\perp} .
- 6. Considere a seguinte transformação linear do \mathbb{R}^3 no \mathbb{R}^2 : F(x,y,z)=(x-y-z,2z-x). Determine uma base ortonormal de Ker(F) em relação ao produto interno usual.
- 7. Achar a projeção ortogonal de $(1,1,1,1) \in \mathbb{R}^4$ sobre o subespaço W = [(1,1,0,0),(0,0,1,1)], usando o produto interno usual do \mathbb{R}^4 .
- 8. Seja V um espaço euclidiano. Demostrar que a função $N:V\to\mathbb{R}$ definida por N(u)=< u,u>. Verifica que:
 - $N(\alpha u) = \alpha^2 N(u).$
 - N(u+v) N(u) N(v) = 2 < u, v >.
 - $-\frac{1}{4}N(u+v)-\frac{1}{4}N(u-v)=< u,v>.$
- 9. Considere o subespaço W de \mathbb{R}^3 gerado por $v_1=(1,0,0), v_2=(0,1,1)$ e $v_3=(1,-1,-1)$. Sendo <,> o produto interno usual (a) Ache W^{\perp} ; (b) Exiba uma transformação linear $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que Im(T)=W e $Ker(T)=W^{\perp}$.
- 10. Podemos definir uma "distancia" entre dois ponto $P = (x_1, y_1)$ e $Q = (x_2, y_2)$ do plano por $d(P, Q) = |x_2 x_1| + |y_2 y_1|$. Verifique se a aplicação dada por $<(x_1, y_1), (x_2, y_2) >= d(P, Q)$ define um produto interno no plano.
- 11. Seja E um espaço vetorial com produto interno. Prove que para quaisquer $u, v \in E$, tem-se $||u|| ||v||| \le ||u v||$.

1

- 12. Seja <,> um produto interno no espaço vetorial F. Dado um isomorfismo $A: E \to F$, ponha [u,v]=< A(u),A(v)> para quaisquer $u,v\in E$. Prove que [,] é um produto interno em E.
- 13. Seja $A = \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$ e $P(X) = X^2 1$. Diagonalizar P(A), se possível.
- 14. Seja $T:V\longrightarrow V$ a) Se $\lambda=0$ é autovalor de T, mostre que T não é injetora. b) A reciproca é verdadeira? Ou seja, se T não é injetora, $\lambda=0$ é autovalor de T.
- 15. Seja $A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ a) Ache os autovalores de A e A^{-1} . b) Quais são os autovetores correspondentes?
- 16. Suponha que $v \in V$ seja autovetor de $T: V \longrightarrow V$ e $S: V \longrightarrow V$, ao mesmo tempo com autovalores λ_1 e λ_2 respectivamente. Ache os autovalores e autovetores de a) S+T e b) $S \circ T$.
- 17. Ache os autovalores e autovetores correspondentes das transformações lineares dadas:
 - $T: P_2 \to P_2$ tal que $T(ax^2 + bx + c) = ax^2 + cx + b$.
 - $T : \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x, y, z, w) = (x, x + y, x + y + z, x + y + z + w).
- 18. Diz-se que um operador linear $T: V \to V$ é idempotente se $T^2 = T$ (isto é, se $T \circ T(v) = T(v)$ para todo $v \in V$). a) Seja T idenpotente. Ache seus autovalores. b) Mostre que um operador linear idenpotente é diagonalizável.
- 19. Seja A matriz 3X3 triangular superior, com todos os seus elementos acima da diagonal distintos e não nulos. $A = \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix}$ Quais são os autovalores e autovetores de A?.
- 20. Mostre que $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ é semelhante à matriz $B = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$.
- 21. Utilize a forma diagonal para encontrar A^n no seguinte caso $A = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$.