НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

В. В. Комиссаров Н. В. Комиссарова

ЛЕКЦИИ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ АППРОКСИМАЦИЯ

Содержание

1	$3 { m a}$ д	цачи аппроксимации	4
	1.1	Аппроксимация функции методом наименьших	
		квадратов	4
	1.2	Построение производственной функции	12
	1.3	Решение систем линейных алгебраических уравне-	
		ний с помощью метода наименьших квадратов	15
	1.4	Задачи	20
$\mathbf{C}_{\mathbf{I}}$	писо	к литературы	26

1 Задачи аппроксимации

В качестве частного случая оптимизационных задач рассмотрим задачи аппроксимации.

Аппроксимация, или приближение, — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми.

Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности, приближения иррациональных чисел рациональными. В геометрии рассматриваются аппроксимации кривых ломаными. Некоторые разделы математики в сущности целиком посвящены аппроксимации, например, теория приближения функций, численные методы анализа.

1.1 Аппроксимация функции методом наименьших квадратов

Метод наименьших квадратов — один из методов теории ошибок для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. Применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. Метод наименьших квадратов предложен в конце XVIII века К. Гауссом и десятью годами позднее А. Лежандром. Первоначально он использовался для обработки результатов астрономических и геодезических наблюдений.

Постановка задачи

Пусть таблично задана некоторая функция (или множество

точек) $(x_i, y_i), i = \overline{0, N}$. Требуется построить функцию вида

$$P(x) = c_0 \cdot \varphi_0(x) + c_1 \cdot \varphi_1(x) + \ldots + c_M \cdot \varphi_M(x), M \le N,$$

такую, что

$$Q(c) = \sum_{i=0}^{N} (P(x_i) - y_i)^2 \to \min.$$
 (1)

Здесь $c=(c_0, c_1, \ldots, c_M), \varphi_k(x), k=\overline{0,M}$ — базисные функции, которые можно выбирать достаточно произвольно. Наиболее простой является полиномиальная аппроксимация. В этом случае $\varphi_k(x)=x^k, k=\overline{0,M}$, а функция P(x) принимает вид:

$$P(x) = c_0 + c_1 \cdot x + \ldots + c_M \cdot x^M, \ M \le N.$$
 (2)

Задачу нахождения функции P(x) можно рассматривать как задачу минимизации функции Q(c), зависящей от M+1 переменной $c_k,\ k=\overline{0,M}$.

При использовании необходимого условия существования экстремума для функции нескольких переменных эта задача может быть сведена к решению системы из M+1 линейного алгебраического уравнения с M+1 неизвестными:

$$\begin{cases}
c_{0} \cdot (N+1) + c_{1} \cdot \sum_{i=0}^{N} x_{i} + \dots + c_{M} \cdot \sum_{i=0}^{N} x_{i}^{M} = \sum_{i=0}^{N} y_{i}, \\
c_{0} \cdot \sum_{i=0}^{N} x_{i} + c_{1} \cdot \sum_{i=0}^{N} x_{i}^{2} + \dots + c_{M} \cdot \sum_{i=0}^{N} x_{i}^{M+1} = \sum_{i=0}^{N} x_{i} y_{i}, \\
\vdots \\
c_{0} \cdot \sum_{i=0}^{N} x_{i}^{M} + c_{1} \cdot \sum_{i=0}^{N} x_{i}^{M+1} + \dots + c_{M} \cdot \sum_{i=0}^{N} x_{i}^{2M} = \sum_{i=0}^{N} x_{i}^{M} y_{i}.
\end{cases} (3)$$

В матричном виде система (3) имеет вид $A_M^T A_M C = A_M^T Y$, где C — матрица-столбец коэффициентов функции c_k , $k = \overline{0, M}$, Y — матрица-столбец значений функции y_i , $i = \overline{0, N}$. Матрица A_M

состоит из M+1 столбца матрицы Вандермонда:

$$A_M = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^M \\ 1 & x_1 & x_1^2 & \dots & x_1^M \\ \dots & \dots & \dots & \dots \\ 1 & x_N & x_N^2 & \dots & x_N^M \end{pmatrix}.$$

Рассмотрим алгоритм аппроксимации методом наименьших квадратов (МНК) функции, заданной таблично, и его реализацию в MS Excel.

- 1. Ввод исходных данных.
- 2. Формирование матрицы A_{M} .
- 3. Формирование матрицы $A_M^T A_M$ и вектора правых частей системы $A_M^T Y$ (в MS Excel транспонирование метрицы осуществляется с помощью функции ТРАНСП, перемножение матриц функцией МУМНОЖ).
- 4. Нахождение обратной матрицы $A_M^T A_M^{-1}$ (в MS Excel обращение матрицы осуществляется с помощью функции МОБР).
- 5. Решение системы линейных алгебраических уравнений

$$C = A_M^T A_M^{-1} \cdot A_M^T Y.$$

Пример. Используя метод наименьших квадратов, аппроксимировать функцию, заданную таблично,

$$X = \begin{pmatrix} 0,5\\1,2\\1,7\\2,1\\3,0\\3,6 \end{pmatrix}, Y = \begin{pmatrix} 5,1\\1,9\\1,1\\3,7\\6,2\\9,3 \end{pmatrix}$$

алгебраическим полиномом второй степени: $P(x) = c_0 + c_1 \cdot x + c_2 \cdot x^2$.

Результаты расчётов приведены на рис. 1, искомый полином имеет вид: $P(x) = 7,336-6,378 \cdot x + 1,953 \cdot x^2$.

Рис. 1. Решение задачи аппроксимации в MS Excel

Эту задачу можно решить не используя рассмотренный ранее алгоритм, а непосредственно минимизируя целевую функцию (1).

Заполним таблицу (рис. 2).

Здесь в блоке C2 : C7 вычисляются слагаемые суммы $\sum_{i=0}^N (P(x_i)-y_i)^2$. В ячейке C8 находится значение целевой функции Q. Блок E2 : E4 — опорные значения коэффициентов c_0 , c_1 ,

Рис. 2. Аппроксимация в MS Excel с помощью минимизации целевой функции

 c_2 , они могут задаваться произвольным образом.

Далее, используем команду Поиск решения... (рис. 3).

Рис. 3. Окно «Поиск решения...» при минимизации целевой функции

В результате найдены коэффициенты c_0 , c_1 , c_2 . Значения совпадают (рис. 4).

В случае M=1 аппроксимационная функция представляет собой прямую линию y=ax+b, для нахождения её коэффици-

™ Microsoft Excel - Книга1									
<u>Файл Правка Вид Вставка Формат Сервис</u> Данные Окно Справка Adobe PDF _ Б ×									
					_ 8				
<u></u>		<u>d</u> , 🗐 + [$\Sigma - A \downarrow A$	[] 🛍 🕜	= .0	0 =			
1	7								
	C8	▼	<i>f</i> _∗ =CYMN	(C2:C7)					
	Α	В	С	D	Е	Ţ			
1	Х	Υ	(P(X) - Y)2						
2	0,5	5,1	0,22		7,336				
3	1,2	1,9	0,35	C=	-6,378	=			
4	1,7	1,1	1,08		1,953				
5	2,1	3,7	1,31						
6	3	6,2	0,17						
7	3,6	9,3	0,15						
8		Q=	3,28						
9									
10 									
Гс				NUM		ui			

Рис. 4. Нахождение коэффициентов аппроксимационной функции

ентов имеем систему из двух уравнений с двумя неизвестными:

$$\begin{cases} b \cdot (N+1) + a \cdot \sum_{i=0}^{N} x_i = \sum_{i=0}^{N} y_i, \\ b \cdot \sum_{i=0}^{N} x_i + a \cdot \sum_{i=0}^{N} x_i^2 = \sum_{i=0}^{N} x_i y_i. \end{cases}$$

Очевидно, что решение задачи аппроксимации (построения такого рода преобразований) возможно в гораздо более общем случае. Именно, всякая неявная функция, заданная соотношением вида: $a\varphi(x) + b\psi(y) + c = 0$, где a, b, c — постоянные, будет изображаться прямой линией на функциональной сетке, где на оси Ox построена шкала функции $\varphi(x)$, а на оси Oy — шкала функции $\psi(y)$. Разумеется, функции $\varphi(x)$ и $\psi(y)$ должны удовлетворять условиям построения функциональных шкал (непрерывность и монотонность).

Особенно часто используются различные логарифмические сетки, с помощью которых можно «выпрямлять» графики степенных и показательных функций. Если зависимость между x и y задаётся уравнением $y=ae^{bx}$, то логарифмирование его даёт $\ln y=bx+\ln a$.

Полагая $\ln y = Y$, $\ln a = A$, b = B, получим линейную функцию: Y = A + Bx, — откуда: оставив равномерную шкалу на оси и построив на оси логарифмическую шкалу, мы изобразим аппроксимационную функцию прямой линией.

Описанная выше сетка называется полулогарифмической. Логарифмической называется функциональная сетка, у которой на каждой из осей Ox и Oy построена логарифмическая шкала. На такой сетке графики степенных функций представляют собой прямые линии.

Действительно, если $y = ax^b$, то $\ln y = \ln a + b \ln x$.

Полагая теперь $\ln y = Y, \ln a = A, \ln x = X,$ запишем уравнение в виде

$$Y = A + BX$$
.

Выбор функциональных шкал, позволяющих линеаризовать аппроксимационную функцию $a\varphi(x)+b\psi(y)+c=0$, достаточно разнообразен. Различные виды функций и линеаризующие их преобразования приведены в таблице:

$N_0 \Pi/\Pi$	Функция	Y	X	A	B
1	y = a + b/x	y	1/x	a	b
2	y = 1/(a + bx)	1/y	x	a	b
3	y = x/(a+bx)	x/y	x	a	b
4	$y = ab^x$	$\ln y$	x	$\ln a$	$\ln b$
5	$y = ae^{bx}$	$\ln y$	x	$\ln a$	b
6	$y = 1/(a + be^{-x})$	1/y	e^{-x}	a	b
7	$y = ax^b$	$\ln y$	$\ln x$	$\ln a$	b
8	$y = a + b \ln x$	y	$\ln x$	a	b
9	y = a/(b+x)	1/y	x	b/a	1/a
10	y = ax/(b+x)	1/y	1/x	1/a	b/a
11	$y = ae^{b/x}$	$\ln y$	1/x	$\ln a$	b
12	$y = a + bx^n$	y	x^n	a	b

Пример. Используя метод наименьших квадратов аппроксимировать функцию, заданную таблично:

x	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0
y	23,88	9, 12	6,52	5,34	5,02	4,50	5,86	5,67	5,74	4,28

с помощью функций $P_1(x)=a+b\cdot x$ и $P_2(x)=a\cdot e^{b/x}$, для каждой из них вычислить сумму квадратов уклонений.

Воспользуемся алгоритмом, описанным на с. 6. Пример расчётов приведен на рис. 5.

В результате искомые функции равны: $P_1(x) = 14,37 - 1,23 \cdot x$, $P_2(x) = 2,20 \cdot e^{2,61/x}$. Суммы квадратов уклонений соответственно равны: 185,92 и 69,00. Очевидно, что функция $P_2(x)$ лучше аппроксимирует исходные данные.

	H17	•	<i>f</i> ≈ {=N	ЛУМНОЖ((МОБР(G14	:H15);I14:I1	5)}			
	Α	В	С	D	Е	F	G	Н	I	-
1	x	у			y = a + bx	:				ĥ
2	1	23,88		1	1		10	55	75,93	
3	2	9,12		1	2		55	385	315,98	
4	3	6,52		1	3					
5	4	5,34		1	4		a=	14,37		
6	5	5,02		1	5		b=	-1,23		
7	6	4,5		1	6					
8	7	5,86		1	7					
9	8	5,67		1	8					
10	9	5,74		1	9					
11	10	4,28		1	10					
12										=
13	X=1/x	Y=ln(y)			$y = a e^{b/x}$					=
14	1,00	3,17		1	1,00		10,00	2,93	15,55	
15	0,50	2,21		1	0,50		2,93	1,55	6,36	
16	0,33	1,87		1	0,33					
17	0,25	1,68		1	0,25		A=	0,79		
18	0,20	1,61		1	0,20		B=	2,61		
19	0,17	1,50		1	0,17		a=	2,20		
20	0,14	1,77		1	0,14		b=	2,61		
21	0,13	1,74		1	0,13					
22	0,11	1,75		1	0,11					
23	0,10	1,45		1	0,10					
24										
25	х	у	$P_1(x)$	$P_2(x)$	$(P_1(x)-y)^2$	$(P_2(x)-y)^2$				
26	1	23,88	13,14	30,09	115,42	38,60				
27	2	9,12	11,90	8,14	7,76	0,96				
28	3	6,52	10,67	5,27	17,25	1,57				
29	4	5,34	9,44	4,23	16,82	1,22				
30	5	5,02	8,21	3,72	10,17	1,70				
31	6	4,5	6,98	3,41	6,14	1,20				
32	7	5,86	5,75	3,20	0,01	7,08				
33	8	5,67	4,51	3,05	1,34	6,84				
34	9	5,74	3,28	2,95	6,05	7,81				
35	10	4,28	2,05	2,86	4,98	2,01				
36				Q=	185,92	69,00				

Рис. 5. Аппроксимация с помощью функций $P_1(x) = a + b \cdot x$ и $P_2(x) = a \cdot e^{b/x}$

1.2 Построение производственной функции

Производственная функция представляет собой математическую модель, характеризующую зависимость объёма выпускаемой продукции от объёма трудовых и материальных затрат. Модель может быть построена как для отдельной фирмы и отрасли, так и для всей национальной экономики.

Производственная функция характеризует техническую зависимость между ресурсами и выпуском и описывает всю совокуп-

ность технологически эффективных способов. Каждый способ может быть описан своей производственной функцией.

В микроэкономике используется большое количество самых разнообразных функций производства, но чаще всего двухфакторные функции вида Z = F(x,y), которые легче анализировать в силу возможности их графического представления.

Среди двухфакторынх функций наибольшую известность получила функция Кобба—Дугласа. Впервые она была предложена Кнутом Викселлем. В 1928 году функция проверена на статистических данных Чарльзом Коббом (Charles Cobb) и Полом Дугласом (Paul Douglas), а результаты проверки изложены в статье «Теория производства», в ней была предпринята попытка эмпирическим путём определить влияние затрачиваемого капитала и труда на объём выпускаемой продукции в обрабатывающей промышленности США. Общий вид функции:

$$q = ax^{\alpha}y^{\beta},$$

здесь a, α , β — положительные константы, причём a — технологический коэффициент, α — коэффициент эластичности по труду, β — коэффициент эластичности по капиталу; q — объём выпускаемой продукции; x, y — количество используемых ресурсов (обычно рассматривают труд и капитал).

Если сумма показателей степени $(\alpha + \beta)$ равна единице, то функция Кобба—Дугласа является линейно однородной, то есть она демонстрирует постоянную отдачу при изменении масштабов производства. Если сумма показателей степени больше единицы, функция отражает возрастающую отдачу, а если меньше единицы, — убывающую. Изокванта, соответствующая функции Кобба—Дугласа, будет выпуклой и «гладкой». Впервые производственная функция была рассчитана в 1920-х годах для обрабатывающей промышленности США и представляло собой равенство

$$q \sim x^{0.73} y^{0.27}$$
.

Параметры функции a, α , β можно определить по заданным статистическим данным аналогично тому, как это делалось для функции одной переменной (п. 1.1).

Пусть известна исходная статистическая информация за ряд лет:

 $(q_i, x_i, y_i), i = \overline{1, N}$. Требуется определить параметры производственной функции a, α, β так, чтобы она наилучшим образом описывала статистические данные.

Прологарифмируем левую и правую части функции Кобба— Дугласа:

$$\ln q = \ln a + \alpha \ln x + \beta \ln y,$$

и обозначив $Q_i = \ln q_i$, $A = \ln a$, $X_i = \ln x_i$, $Y_i = \ln y_i$, получим:

$$Q_i = A + \alpha X_i + \beta Y_i, i = \overline{1, N}.$$

Далее потребуем, чтобы

$$S = \sum_{i=1}^{N} (A + \alpha X_i + \beta Y_i - Q_i)^2 \to \min.$$

В результате для определения параметров A, α, β получим систему из трёх уравнений с тремя неизвестными:

$$\begin{cases} A \cdot N + \alpha \cdot \sum_{i=1}^{N} X_i + \beta \cdot \sum_{i=1}^{N} Y_i = \sum_{i=1}^{N} Q_i, \\ A \cdot \sum_{i=1}^{N} X_i + \alpha \cdot \sum_{i=1}^{N} X_i^2 + \beta \cdot \sum_{i=1}^{N} X_i Y_i = \sum_{i=1}^{N} X_i Q_i, \\ A \cdot \sum_{i=1}^{N} Y_i + \alpha \cdot \sum_{i=1}^{N} X_i Y_i + \beta \cdot \sum_{i=1}^{N} Y_i^2 = \sum_{i=1}^{N} Y_i Q_i. \end{cases}$$

В матричном виде система уравнений может быть записана:

$$W^T \cdot W \cdot C = W^T \cdot Q$$
,

где

$$C = \begin{pmatrix} A \\ \alpha \\ \beta \end{pmatrix}, W = \begin{pmatrix} 1 & X_1 & Y_1 \\ 1 & X_2 & Y_2 \\ \dots & \dots & \dots \\ 1 & X_N & Y_N \end{pmatrix}, Q = \begin{pmatrix} Q_1 \\ Q_2 \\ \dots \\ Q_N \end{pmatrix}.$$

Пример. Имеется статистическаяй информация за ряд лет:

Год	q_i	x_i	y_i
2007	340,205	10,397	284,141
2008	339, 733	11,730	223,956
2009	374,022	11,436	298,007
2010	408, 768	10,950	403,415
2011	587,608	14,382	578,106

где q — товарооборот, млн руб.; x — численность работников, чел.; y — площадь торгового зала, м 2 . Определить параметры a, α , β производственной функции $q = ax^{\alpha}y^{\beta}$, наилучшим образом описывающей исходные данные.

На рис. 6 приведено решение этой задачи в MS Excel.

В результате функция Кобба-Дугласа имеет вид: $q(x,y)=5,320x^{0,793}y^{0,407}$.

1.3 Решение систем линейных алгебраических уравнений с помощью метода наименьших квадратов

Рассмотрим переопределённую система линейных уравнений вида FX=H, где F — матрица системы, H — матрица-столбец правых частей системы, X — матрица-столбец неизвестных. Причём количество уравнений M больше, чем число неизвестных N. Матрица F имеет размерность $M \times N$, т. е. M >> N.

Подобные системы уравнений могут возникать, например, при обработке экспериментальных данных: коэффициенты при неизвестных (матрица F) или (и) правая часть уравнений (матрица

™ Microsoft Excel - Khura1											
	<u>Ф</u> айл <u>П</u>	равка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат (С <u>е</u> рвис <u>Д</u> а	анные <u>О</u> к	но <u>С</u> прав	ка Ado <u>b</u> e	PDF	_ 6	×
	= 🖫 🗓	3 🚄 🔼	₩	6 🛅 🖺 +	🥩 🖒 🕶	(21 + 1 8	$\Sigma \cdot A \downarrow A \land A$	🔛 🛍 🤣	100%	· 🕡 📜 🗏	- "
_	B22		Se .								
\square	Α	В	С	D	Е	F	G	Н	1	J	
1	Год	q	X	у		Год	Q=ln q	X=ln x	Y=ln y		
2	2007	340,205	10,397	284,141		2007	5,830	2,342	5,649		
3	2008	339,733	11,730	223,956		2008	5,828	2,462	5,411		
4	2009	374,022	11,436	298,007		2009	5,924	2,437	5,697		
5	2010	408,768	10,950	403,415		2010	6,013	2,393	6,000		Ξ
6	2011	587,608	14,382	578,106		2011	6,376	2,666	6,360		
7											
8		1	2,342	5,649		5	12,3	29,118		29,971	
9	W=	1	2,462	5,411	$\mathbf{W}^{T}\mathbf{W} =$	12,3	30,318	71,75	$\mathbf{W}^{T}\mathbf{Q} =$	73,826	
10		1	2,437	5,697		29,118	71,75	170,1		174,85	
11		1	2,393	6,000							
12		1	2,666	6,360							
13											
14		A=	1,672		$a = e^{A}$	5,320					
15	C=	α=	0,793								
16		β=	0,407								+
14 4	→ н∖ли	ст1/Лист2	/Лист3/				*	!!!		- ·	lai.
Гото	во								NUM		

Рис. 6. Определение параметров функции Кобба-Дугласа в MS Excel

H) — результаты измерений, неизвестные (матрица X) — параметры модели. Причём значения измерений, как правило, имеют случайные ошибки.

В общем случае такая система линейных уравнений может оказаться несовместной, например ранг матрицы F равен N, а ранг расширенной матрицы равен N+1 (см. теорему Кронекера–Капелли [??]).

Рассмотрим в этом случае приближённое решение системы X^* . В общем случае $FX^* \neq H$. Это решение выберем так, чтобы норма вектора невязок $FX^* - H = G$ была минимальной. Под нормой будем понимать величину, вычисляемую по форму-

ле
$$\|G\| = \sum_{i=0}^M g_i^2$$
 или $\|G\| = \sum_{i=0}^M \left(\sum_{j=1}^N f_{ij} x_j - h_i\right)^2$, здесь $g_i, f_{ij}, x_j,$ h_i — элементы матриц G, F, X, H соответственно.

В результате решение поставленной задачи свелось к миними-

зации функционала:

$$\sum_{i=0}^{M} \left(\sum_{j=1}^{N} f_{ij} x_j - h_i \right)^2 \to \min. \tag{4}$$

Решение этой задачи находится из решения системы линейных алгебраических уравнений: $F^T F X^* = F^T H$ [6].

Эта система называется нормальной системой уравнений. Если столбцы матрицы F линейно независимы, то матрица $F^T F$ обратима и система имеет единственное решение: $X^* = (F^T F)^{-1} F^T H$.

Пример. Требуется найти приближённое решение системы линейных алгебраических уравнений AX = B, состоящей из 5 уравнений с 3 неизвестными. Матрицы равны:

$$A = \begin{pmatrix} 2, 5 & -3, 0 & 1, 2 \\ 3, 7 & -2, 0 & 4, 1 \\ 2, 6 & -1, 1 & 5, 9 \\ 4, 9 & 0, 0 & 3, 3 \\ 7, 4 & 1, 8 & 5, 7 \end{pmatrix}, B = \begin{pmatrix} 13, 2 \\ 10, 2 \\ 8, 7 \\ 5, 5 \\ 12, 2 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Матрица $A^{T}A$, правая часть $A^{T}B$, решение системы равны:

$$A^{T}A = \begin{pmatrix} 105, 47 & -4, 44 & 91, 86 \\ -4, 44 & 17, 45 & -8, 03 \\ 91, 86 & -8, 03 & 96, 44 \end{pmatrix}, A^{T}B = \begin{pmatrix} 210, 22 \\ -47, 41 \\ 196, 27 \end{pmatrix},$$

$$X^* = \begin{pmatrix} 1,683 \\ -2,173 \\ 0,251 \end{pmatrix}.$$

В этом можно убедиться, вычислив A^TA , A^TB и $(A^TA)^{-1}A^TB$, например, используя MS Excel.

Эту же задачу можно решать непосредственно минимизируя функционал (4) численно.

Аналог — решение с помощью MS Excel задачи аппроксимации (с. 7). Пример расчётов с помощью MS Excel приведён на рис. 7.

	Лicrosoft I <u>Ф</u> айл правка	Excel - An <u>П</u> равка Ado <u>b</u> e PI	<u>В</u> ид В	ация Вст <u>а</u> вка	Фор <u>м</u> ат	С <u>е</u> рвис <u>Д</u>	анные <u>О</u> кно _ - -	×	
				, 📭 🖺	L = 10 +	Σ · A↓			
	G7	-		=СУММ(
	Α	В	С	D	E	F	G		
1		\boldsymbol{A}		В		$a_{ij} x_j$	$(a_{ij} x_j - b_i)^2$		
2	2,5	-3	1,2	13,2		11,0278	4,71857		
3	3,7	-2	4,1	10,1		11,603	2,25889	Ξ	
4	2,6	-1,1	5,9	8,7		8,24859	0,20377		
5	4,9	0	3,3	5,5		9,07506	12,78105		
6	7,4	1,8	5,7	12,2		9,97371	4,95635		
7	X						24,91863	_	
8	1,683								
9	-2,173								
10	0,251								
н									
Гото							UM		

Рис. 7. Решение переопределённой системы уравнений средствами MS Excel

Начальные значения неизвестных в этом случае могут быть выбраны произвольно.

Замечание. Суть метода наименьших квадратов состоит в минимизации суммы квадратов уклонений (1), (4).

Минимизируемые функции в этом случае дифференцируемы, что позволяет рассматриваемые задачи свести к решению системы линейных уравнений. Если же для отыскания оптимального решения воспользоваться численными методами, критерий может быть иным. Например:

$$Q(c) = \sum_{i=0}^{N} |P(x_i) - y_i| \to \min$$

ИЛИ

$$Q(c) = \max_{i} |P(x_i) - y_i| \to \min.$$

На рис. 8 показано решение переопределённой системы уравнений из предыдущего примера в случае минимизации суммы модулей уклонений и минимизации максимума модуля уклонений.

	L8	•	f _x	=MAKC(l	_3:L7)							
	Α	В	С	D	Е	F	G	Н	1	J	K	L
1		Миним	изация	суммы	модулей	уклонений		Миним	изация м	иаксиму	ма модул	я уклонений
2		A		В	$a_{ij} x_j$	$a_{ij} x_j - b_i$		A		В	$a_{ij} x_j$	$ a_{ij} x_j - b_i $
3	2,5	-3	1,2	13,2	11,283	1,91702	2,5	-3	1,2	13,2	10,2318	2,96818
4	3,7	-2	4,1	10,1	12,2768	2,17676	3,7	-2	4,1	10,1	10,4543	0,35430
5	2,6	-1,1	5,9	8,7	8,69968	0,00032	2,6	-1,1	5,9	8,7	6,92764	1,77236
6	4,9	0	3,3	5,5	10,3902	4,89018	4,9	0	3,3	5,5	8,46818	2,96818
7	7,4	1,8	5,7	12,2	12,2	0,00000	7,4	1,8	5,7	12,2	9,26818	2,93182
8			X		Σ=	8,98428			X		max=	2,96818
9			1,966						1,687			
10			-2,031						-1,980			
11			0,230						0,062			

Рис. 8. Решение переопределённой системы уравнений

1.4 Задачи

1. Аппроксимировать функцию, заданную таблично с помощью функций: y=a+b/x; $y=ax^b$; $y=ae^{b/x}$; y=a+bx. Выбрать среди них наилучшую. Построить графики аппроксимационных функций и исходной функции.

	\overline{a}		b		c		d	ϵ	2
X	Y	X	Y	X	Y	X	Y	X	Y
1	9,22	1	10,54	1	23,88	1	$6,\!22$	2	6,942
2	6,72	2	25,05	2	9,12	2	8,28	3,5	5,555
3	5,48	3	39,99	3	6,52	3	9,48	5	4,587
4	4,88	4	57,64	4	5,34	4	11,26	6,5	4,046
5	4,72	5	71,47	5	5,02	5	12,78	8	4,146
6	4,44	6	90,81	6	4,50	6	$13,\!51$	9,5	4,483
7	4,18	7	106,87	7	5,86	7	15,33	11	3,745
8	4,63	8	125,55	8	5,67	8	16,69	12,5	3,481
9	4,19	9	141,48	9	5,74	9	18,61	14	3,655
10	3,79	10	161,89	10	4,28	10	19,33	15,5	4,199

j	ţ	g	7	P	i		i		\overline{j}
X	Y	X	Y	X	Y	X	Y	X	Y
2	23,18	2	10,00	2	7,84	0,5	15,749	0,5	4,94
3,5	49,37	3,5	5,39	3,5	9,65	1,5	7,882	1,5	16,82
5	69,22	5	6,20	5	12,31	2,5	5,901	2,5	33,12
6,5	94,59	6,5	5,24	6,5	14,39	3,5	5,393	3,5	47,39
8	122,70	8	4,49	8	16,33	4,5	5,199	4,5	62,76
9,5	152,60	9,5	4,88	9,5	18,57	5,5	4,62	5,5	79,14
11	179,90	11	3,76	11	21,11	6,5	4,093	6,5	94,53
12,5	208,50	12,5	4,34	12,5	22,87	7,5	4,69	7,5	115,10
14	238,50	14	5,39	14	25,83	8,5	3,876	8,5	134,60
15,5	272,00	15,5	4,65	15,5	28,63	9,5	3,50	9,5	149,30

2. По показателям работы торговой организации за пять лет найти параметры $a, \alpha \beta$, производственной функции $q = ax^{\alpha}y^{\beta}$, наилучшим образом описывающей табличные данные.

a)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	3325,916	10,328	178,290
	2008	7456,660	11,049	457,400
	2009	5972,977	12,779	311,712
	2010	9307,309	11,969	565,618
	2011	7935,696	12,021	463,173

b)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	1695,135	10,054	325,503
	2008	1418,926	11,733	236,428
	2009	1657,533	11,598	285,322
	2010	1133,045	10,564	197,178
	2011	2308,818	14,025	363,235

c)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	5611,238	10,585	360,045
	2008	3939,846	11,191	218,389
	2009	5801,396	11,679	342,347
	2010	8050,955	10,978	549,398
	2011	5432,970	12,108	304,544

d)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	860,977	10,587	259,183
	2008	1230,323	12,626	391,441
	2009	1163,283	11,969	380,064
	2010	1135,407	12,614	338,585
	2011	1221,822	10,583	491,550

e)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	3644,123	10,463	250,034
	2008	5753,890	10,890	448,471
	2009	6665,193	13,515	443,004
	2010	7083,088	14,284	455,768
	2011	6196,282	12,651	428,020

f)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	127,267	10,607	226,443
	2008	130,757	11,697	211,804
	2009	183,183	12,669	389,869
	2010	135,821	11,234	242,107
	2011	165,273	13,621	286,813

g)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	998,413	10,671	396,205
	2008	921,302	11,109	331,514
	2009	990,338	13,511	316,146
	2010	1135,277	11,996	447,902
	2011	972,091	11,530	352,690

h)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	657,705	10,117	386,040
	2008	596,551	11,442	298,210
	2009	820,542	11,128	490,277
	2010	569,862	11,617	274,937
	2011	926,283	13,302	497,280

i)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	761,852	9,933	299,346
	2008	782,683	12,584	220,896
	2009	886,515	13,542	254,456
	2010	976,940	10,704	442,624
	2011	1007,238	11,059	448,203

j)	Год	Товарооборот,	Числ. работников,	Площадь торг.
		млн руб.	тыс. чел.	зала, тыс. м ²
	2007	1352,722	10,634	187,040
	2008	2037,230	11,773	333,737
	2009	1769,832	13,199	224,608
	2010	2841,208	13,711	487,258
	2011	2247,151	13,280	337,760

3. Найти приближённое решение переопределённой системы линейных алгебраических уравнений AX=B.

a)
$$A = \begin{pmatrix} 2 & 3,5 & -4,1 & 7 \\ 3 & -2 & 5 & 3 \\ 3,5 & 5,1 & -6,2 & 2,5 \\ -2,1 & 5,4 & -7,9 & 4 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,1 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 12,4 \\ 0,5 \\ 7,3 \\ 2,4 \\ 6 \\ 0,1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 2 & 3,5 & -4,1 & 7 \\ 3 & -2 & 5 & 3 \\ 3,5 & 5,1 & -6,2 & 2,5 \\ -2,1 & 5,4 & -7,9 & 4 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,1 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 12,5 \\ 0,7 \\ 7,2 \\ 2,5 \\ 6 \\ -0,1 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 2 & 3,4 & -4,1 & 7 \\ 3 & -2,1 & 5 & 3 \\ 3,5 & 5,1 & -6,2 & 2,5 \\ -2,1 & 5,4 & -7,7 & 4 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,1 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 11,4 \\ 0,2 \\ 6,3 \\ 1,8 \\ 6 \\ 0,4 \end{pmatrix}$$

d)
$$A = \begin{pmatrix} 2,1 & 3,2 & -4,1 & 7 \\ 3 & -2 & 5,2 & 3 \\ 3,5 & 5,1 & -6,4 & 2,5 \\ -2,1 & 5,4 & -7,2 & 4 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,1 & 2,2 \end{pmatrix}, B = \begin{pmatrix} 10,4 \\ 0,1 \\ 5,3 \\ 2,9 \\ 6,4 \\ 0,8 \end{pmatrix}$$

$$A = \begin{pmatrix} 2,3 & 3,5 & -4,2 & 7 \\ 3 & -2 & 5 & 3,1 \\ 3,5 & 5,1 & -6,4 & 2,5 \\ -2,1 & 5,4 & -7,5 & 4 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,2 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 12,4 \\ 0,5 \\ 7,3 \\ 2,4 \\ 6 \\ 0,1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1,2 & 3,3 & -4,7 & 7 \\ 3,3 & -2,8 & 5,4 & 3,2 \\ 3,1 & 5,4 & -6,1 & 2,4 \\ -2,7 & 5,5 & -7,9 & 4,2 \\ 3,1 & -1,4 & 5,3 & 2,7 \\ 3,4 & -2,6 & 5,3 & 2,1 \end{pmatrix}, B = \begin{pmatrix} 13,6 \\ -0,5 \\ 5,4 \\ 2,4 \\ 6,3 \\ 0,7 \end{pmatrix}$$

$$A = \begin{pmatrix} 2,7 & 3,5 & -4,1 & 7 \\ 3,2 & -2 & 5 & 3 \\ 3,5 & 5,1 & -6,2 & 2,5 \\ -2,6 & 5,4 & -7,9 & 4 \\ 3,1 & -1,9 & 5 & 2,7 \\ 3,9 & -2,1 & 5,1 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 9,5 \\ 0,6 \\ 7,2 \\ 2,4 \\ 6,2 \\ -0,1 \end{pmatrix}$$

h)
$$A = \begin{pmatrix} 2 & 3,8 & -4,1 & 7 \\ 3 & -2,3 & 5 & 3 \\ 3,5 & 5,4 & -6,2 & 2,5 \\ -2,1 & 5,1 & -7,7 & 4 \\ 3,5 & -1,7 & 5 & 2,7 \\ 3 & -2,2 & 5,1 & 2,8 \end{pmatrix}, B = \begin{pmatrix} 11,3 \\ 0,7 \\ 6,9 \\ 1,4 \\ 6,1 \\ 0,5 \end{pmatrix}$$

i)
$$A = \begin{pmatrix} 2,1 & 3,2 & -4,3 & 7 \\ 3 & -2 & 5,9 & 3 \\ 3,5 & 5,1 & -6,3 & 2,5 \\ -2,1 & 5,4 & -7,6 & 4 \\ 3,5 & -1,9 & 5,2 & 2,7 \\ 3 & -2,1 & 5,1 & 2,2 \end{pmatrix}, B = \begin{pmatrix} 10,4 \\ 0,5 \\ 5,4 \\ 3,9 \\ 5,4 \\ 0,4 \end{pmatrix}$$

$$A = \begin{pmatrix} 2,3 & 3,5 & -4,2 & 7,4 \\ 3 & -2 & 5 & 3,3 \\ 3,5 & 5,1 & -6,4 & 2,2 \\ -2,1 & 5,4 & -7,5 & 4,3 \\ 3,5 & -1,9 & 5 & 2,7 \\ 3 & -2,1 & 5,2 & 2,5 \end{pmatrix}, B = \begin{pmatrix} 12,4 \\ 0,5 \\ 7,3 \\ 2,4 \\ 6 \\ 0,1 \end{pmatrix}$$

Список литературы

- 1. *Аркашов Н. С.* Введение в экономико-математические методы: учеб. пособие / Н. С. Аркашов, А. П. Ковалевский. Новосибирск: Изд-во НГТУ, 2011. 142 с.
- 2. Аттетков A. B. Введение в методы оптимизации : учеб. пособие для вузов / А. В. Аттетков, В. С. Зарубин, А. Н. Канатников. М. : Финансы и статистика, 2008. 272 с.
- 3. *Гончаров В. А.* Методы оптимизации : учеб. пособие для вузов / В. А. Гончаров. М.: Высшее образование, 2009. 191 с.
- 4. Летова Т. А. Методы оптимизации в примерах и задачах : учеб. пособие для вузов /Т. А. Летова, А. В. Пантелеев. 3-е изд., испр., стереотип. М. : Высшая школа, 2008. 544 с.
- 5. Kypuu кий Б. Я. Поиск оптимальных решений средствами Excel 7.0 / Б. Я. Курицкий. СПб. : ВНV—Санкт-Петербург, 1997. 348 с.: ил.
- 6. $My\partial pos\ A.\ E.$ Численные методы для ПЭВМ на языках Бейсик, Фортран, Паскаль / А. Е. Мудров. Томск: РАСКО, 1991. 272 с.
- 7. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т 1. / Г. М. Фихтенгольц. М.: Физматлит, 2001.-680 с.
- 8. Лемешко Б. Ю. Методы оптимизации : конспект лекций / Б. Ю. Лемешко. Новосибирск : Изд-во НГТУ, 2009. 156 с.
- 9. http://www.mathelp.spb.ru/lp.htm
- 10. http://math.immf.ru/
- 11. http://matmetod-popova.narod.ru/Index1.htm