

Bibliografia básica:

Arango HG. Bioestatística: teórica e computacional. 3ªed. Rio de Janeiro: Guanabara Koogan; 2011.

SPIEGEL, Murray Ralph; FARIA, Alfredo Alves De Probabilidade e estatística. São Paulo, SP: McGraw-Hill, 1978.

TESTES PARA DADOS AMOSTRAIS

Dados categorizados referem-se à contagem de frequência de uma variável classificada ou subdividida em categorias ou atributos.

TESTES PARA DADOS AMOSTRAIS

Dados amostrais são valores ou variáveis quantitativas.

TESTES PARA DADOS AMOSTRAIS

TESTES PARA DADOS AMOSTRAIS

TESTES PARAMÉTRICOS

TESTES PARA DADOS AMOSTRAIS

TESTES PARA DADOS AMOSTRAIS TESTES DE NORMALIDADE

TESTES PARAMÉTRICOS

TESTES PARA DADOS AMOSTRAIS

TESTES DE NORMALIDADE

TESTES PARAMÉTRICOS

→ Amostras Independentes

→ Amostras Pareadas

TESTES PARA DADOS AMOSTRAIS TESTES DE NORMALIDADE

TESTES PARAMÉTRICOS

- → Amostras Independentes
- → Amostras Pareadas

- → Amostras Pareadas
- → Amostras Independentes

TESTES PARA DADOS AMOSTRAIS TESTES DE NORMALIDADE

TESTES PARAMÉTRICOS

- → Amostras Independentes
- → Amostras Pareadas

- → Amostras Pareadas
- → Amostras Independentes

- → Amostras independentes
 - \rightarrow n > 40 \rightarrow Teste χ^2 Clássico.
 - → 20 < n < 40 → Teste χ^2 com Correção de Yates.
 - \rightarrow n < 20 \rightarrow Teste Exato de Fisher
- → Amostras pareadas → Teste McNemar

TESTES PARA DADOS AMOSTRAIS

TESTES DE NORMALIDADE

TESTES PARAMÉTRICOS → Teste de Student (t)

- → Amostras Independentes
 Populações Homocedásticas e Populações Heterocedásticas
- **→** Amostras Pareadas

- → Amostras Pareadas → Testes dos sinais
- → Amostras Independentes → Teste de wilcoxon-mann-whitney

- → TESTE DE STUDENT (t)
 - → Amostras Independentes
 - TESTE DE FISHER (F)
 - Populações Homocedásticas
 - Populações Heterocedásticas
 - → <u>Amostras Pareadas</u>

TESTES PARAMÉTRICOS

Conceitos

Os testes paramétricos servem para efetuar comparações entre dois ou mais grupos (categorias), usando os parâmetros amostrais (média e variância) como principais elementos de decisão.

É importante lembrar que a hipótese de normalidade deve ser testada, executando-se um teste de normalidade.

TESTES PARAMÉTRICOS PARA COMPARAÇÃO DE DUAS POPULAÇÕES

Teste de Student (t)

O teste de *Student* (teste t) é o método mais usado para se avaliar as diferenças entre as médias de dois grupos.

TESTES PARAMÉTRICOS PARA COMPARAÇÃO DE DUAS POPULAÇÕES

Teste de *Student* (t)

Também pode ser montada uma experiência aos pares e se efetuar o teste para o mesmo grupo em duas situações diferentes.

O teste t pode ser usado mesmo que as amostras sejam pequenas (n = 10) desde que seja admitido que as populações que deram origem às amostras tenham distribuição normal e variabilidades não significativamente diferentes.

A verificação da igualdade de variâncias pode ser feita por meio do teste de Fisher, ou pelo teste de Levene.

COMPARAÇÃO DE DUAS VARIÂNCIAS: TESTE DE FISHER (F)

O teste de comparação de duas variâncias serve para determinar se as populações A e B possuem variabilidades semelhantes ou se as variabilidades podem ser consideradas diferentes. No primeiro caso, as populações são chamadas de <u>Homocedásticas</u>, enquanto no segundo caso as populações são designadas <u>Heterocedásticas</u>.

As hipóteses para o teste de duas variâncias são:

Hipótese de nulidade,
$$H_0 \rightarrow \sigma_A^2 = \sigma_B^2$$

Hipótese alternativa,
$$H_1 \rightarrow \sigma_A^2 \neq \sigma_B^2$$

AMOSTRAS INDEPENDENTES

Populações Homocedásticas

Dadas duas amostras extraídas das populações $A \in B$, o número t indica a diferença entre as amostras

$$t = \frac{|\bar{x}_A - \bar{x}_B|}{s_{A,B} \cdot \sqrt{\frac{1}{n} + \frac{1}{n}}} \qquad \text{com} \qquad s_{A,B} = \sqrt{\frac{s_A^2 \cdot (n_A - 1) + s_B^2 \cdot (n_B - 1)}{n_A + n_B - 2}}$$

AMOSTRAS INDEPENDENTES

Populações Heterocedásticas

$$t = \frac{\left|\overline{x}_A - \overline{x}_B\right|}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}}$$

Em qualquer dos casos, o valor obtido de t deve ser comparado, no teste clássico, com o valor limite de t (Tabela 2, Apêndice, pág. 372) associado a um determinado nível de significância e a um número de graus de liberdade que depende da comparação das variâncias, como é mostrado a seguir.

AMOSTRAS INDEPENDENTES

Graus de Liberdade para Populações Homocedásticas

$$gl = n_A + n_B - 2$$

Graus de Liberdade para Populações Heterocedásticas

$$gl = \frac{\left(\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}\right)^2}{\left(\frac{S_A^2}{n_A}\right)^2 + \left(\frac{S_B^2}{n_B}\right)^2} = \frac{\left(\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}\right)^2}{n_A - 1}$$

Os dados da Tabela 11.1 mostram os pesos, em gramas, das refeições de dez homens e dez mulheres tomados casualmente de um restaurante "a quilo":

Tabela 11.1 Peso de refeições de homens e mulheres										
Caso	1	2	3	4	5	6	7	8	9	10
Homens	680	750	620	540	580	660	450	560	860	660
Mulheres	450	560	400	480	320	520	680	520	300	420

Avaliar se o peso médio das refeições está relacionado com o sexo.

- → Dados amostrais
- → Amostras independentes

1º PASSO: Teste de Normalidade

Tem o objetivo de escolher entre teste paramétrico ou não-paramétrico

Hipóteses:

H₀: a amostra provém de uma população Normal

→ Teste Paramétrico

H₁: a amostra não provém de uma população Normal

→ Teste Não-paramétrico

Aceita H₀ Teste Paramétrico

Ao executar o Teste de Student, o BioEstat já realiza o Teste de Fisher e informa se as populações são homocedásticas (variâncias semelhantes) ou heterocedásticas (variâncias diferentes).

2º PASSO: Hipóteses para o teste de *Student*:

$$H_o \rightarrow \mu_M = \mu_H$$

 $H_1 \rightarrow \mu_M \neq \mu_H$

$$H_1 \rightarrow \mu_M \neq \mu_H$$

3º PASSO: Decisão

Como p < 5% - Rejeita-se H_o

Como p < 1% - Existe uma diferença altamente significante

4º PASSO: Conclusão

Pode-se concluir que o peso médio das refeições masculinas difere do peso médio das refeições femininas, a um nível de significância de p = 0,0036 (p < 1%).

	- 1 -	- 2 -
	Homens	Mulheres
1	3300.000	2600.000
2	3000.000	1800.000
3	3200.000	1500.000
4	2700.000	2300.000
5	3100.000	2900.000
6	2800.000	1700.000
7	2800.000	2200.000
8	2600.000	3200.000
9	3100.000	2600.000
10	2800.000	2200.000
11	2600.000	3400.000
12	3200.000	1600.000

Um estudo tem a finalidade de comparar o consumo diário de calorias entre homens e mulheres. Para isso, foram anotados os consumos em kcal de 24 indivíduos de ambos os sexos, como mostra a tabela ao lado:

Determinar se o consumo calórico está relacionado com o sexo.

- → Dados amostrais
- → Amostras independentes

1º PASSO: Teste de Normalidade

Hipóteses:

H₀: a amostra provém de uma população Normal

→ Teste Paramétrico

H₁: a amostra não provém de uma população Normal

→ Teste Não-paramétrico

Teste de Normalidade

Aceita Ho Teste Paramétrico

2º PASSO: Hipóteses para o teste de Student:

$$H_o \rightarrow \mu_M = \mu_H$$

$$H_1 \rightarrow \mu_M \neq \mu_H$$

3º PASSO: Decisão

Como p < 5%, rejeita-se H_o Como p < 1%, Existe uma diferença altamente significante

4º PASSO: Conclusão

A hipótese de que o consumo calórico de homens e mulheres é igual deve ser rejeitada, ao nível de significância de 5%. Portanto o consumo diário calórico está relacionado com o sexo para p < 5%

AMOSTRAS DEPENDENTES, PAREADAS OU AOS PARES

Uma amostra pareada corresponde ao levantamento de dados da mesma amostra em duas situações nas quais tenha interferido algum fator cujo efeito se quer avaliar.

Uma amostra pareada de k observações, antes e depois da intervenção de um fator, pode ser representada como no Quadro:

Antes do fator (A)	Depois do fator (D)	Diferença entre as situações (d)
x_{AI}	x_{DI}	$d_I = x_{AI} - x_{DI}$
x_{A2}	x_{D2}	d_2
:	:	:
x_{Ak}	x_{Dk}	d_k

AMOSTRAS DEPENDENTES

A estimativa da diferença entre as situações pode ser avaliada calculando-se a média da diferença entre cada observação individual

$$\overline{d} = \frac{\sum_{i=1}^{n} d_i}{n}$$

Por outro lado, é necessário obter uma estimativa da variabilidade desses resultados. Esse valor pode ser conseguido calculando-se a variância das diferenças entre as observações individuais,

$$s_d^2 = \frac{\sum_{i=1}^n \left(d_i - \overline{d}\right)^2}{n-1}$$

AMOSTRAS DEPENDENTES

Dados os valores, *t* é calculado:

$$t = \frac{\overline{d}}{\sqrt{\frac{S_d^2}{n}}}$$

Decisão estatística:

- Com um programa de cálculo de funções de probabilidade: o valor de t, associado a n-1 graus de liberdade, fornece o nível de significância do teste, p, que deve ser avaliado como de costume.
- Com a Tabela 2 (pág. 372, Apêndice): obter o valor tabelado de t para o nível de significância desejado (p. ex., 5%) e comparar como valor calculado de t pela expressão anterior (H_0 rejeitada se $t_t < t_c$).

Para verificar os efeitos de um produto denominado "Creme redutor" foram medidos os diâmetros abdominais de 10 indivíduos, antes de começar o tratamento e uma semana após a aplicação diária do produto.

n	Antes	Depois
1	80	76
2	77	75
3	74	74
4	86	82
5	72	74
6	66	60
7	78	77
8	62	65
9	82	80
10	94	90

A comparação dos resultados antes e depois do uso do creme pode ser feita usando um teste de *Student* para amostras pareadas.

- → Dados amostrais
- → Amostras pareadas

1º PASSO: Teste de Normalidade

Hipóteses:

H_o: a amostra provém de uma população Normal

→ Teste Paramétrico

H₁: a amostra não provém de uma população Normal

→ Teste Não-paramétrico

Teste de Normalidade

Aceita Ho Teste Paramétrico

2º PASSO: Hipóteses para o teste de *Student*.

$$H_o \rightarrow \mu_{antes} = \mu_{depois}$$
 $H_1 \rightarrow \mu_{antes} \neq \mu_{depois}$

$$H_1 \rightarrow \mu_{antes} \neq \mu_{depois}$$

3º PASSO: Decisão

Como p > 5%, aceita-se H_o

4º PASSO: Conclusão

Não é possível rejeitar a hipótese de nulidade ao nível de significância de 5%. Assim, não é possível afirmar que o creme redutor provoca alterações no diâmetro abdominal uma semana após o seu uso, ao nível de significância de 5%.

Rosimara Salgado

Professora Coordenadora do NEaD

rosimara@inatel.br

