Foundation of ML

Week 2

Assessment - 1

- You can access from:
 - "Content->Assessment->Assessment 1"
 - Menu Assessment->Assignments->Assignment Task 1 Submission Folder"
- Open and use the ".ipynb" file to create your solution
- If you are confused you can ask question
- You should do:
 - Think for the possible solution based on the given data and questions.
 - Propose the solution and the results.
 - Unleash your ideas rather than searching for specific solution.
 - Keep in mind there is not a single solution for a problem or there is not a single ML model that can solve all our problems.

Revising knowledge of Linear Algebra and Probability

- Linear Algebra
 - Vector & their operations
 - Matrix & their operations
 - Feature vectors and matrices
- Probability Concepts
 - Random experiment & Event
 - Joint probability
 - Conditional probability
 - Bayes Rules
- Random variable
 - Distribution of random variables

Vector

 In machine learning algorithms a data instance is represented by a vector, more precisely, by a feature vector

Vector operations

- Three main operations in vectors -
 - Transpose
 - Addition
 - Inner product
- Let's take two simple matrices x and y: $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ $Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$
- Transpose: $X^T = [x_1 \quad x_2 \quad \dots \quad x_n]$

Vector operations...

Addition:

$$X + Y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

Inner product:

$$X^TY = [x_1y_1 + x_2y_2 + ... + x_ny_n]$$

- Magnitude of length of a vector:
- Above length known as 2-norm of vector:
- generalised to define a p-norm of a vector:

length(X) =
$$\sqrt{x_1^2 + x_2^2 + ... + x_n^2}$$

$$||X||_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2}}$$
$$||X||_{2} = (x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2})^{\frac{1}{2}}$$

$$||X||_p = (|x_1|^p + |x_2|^p + ... + |x_n|^p)^{\frac{1}{p}}$$

Distances between vectors

 Cosine similarity - measures the cosine of the angle between two vectors

measure of similarity between two vectors of an inner product

space

Matrix

Matrix has number of rows and columns

Matrix types

- Rectangular and Square Matrices
 - If a matrix A has size mxn such that m=n, then it is called a square matrix; otherwise it is a rectangular matrix

$$\begin{bmatrix} 1 & 6 \\ 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 5 \\ 6 & 2 & 4 \end{bmatrix}$$

square matrix

rectangular matrix

Matrix types

- Symmetric Matrices
 - a matrix is symmetric if it is equal to its transpose, that is $A = A^T$

Symmetric matrices are always square.

Matrix types

Diagonal Matrix

- A matrix A is called a diagonal matrix if A(i,j)=0 for all i≠j.
- Diagonal matrix is always a square matrix.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Identity Matrix

- A matrix / is called an identity matrix if it is a diagonal matrix and /(i,i)=1
- I_{nxn} denotes nxn identity matrix. $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Transpose of a Matrix
 - putting all the matrix elements on rows on its columns. Lets say B is transpose of A, then B(i,j)=A(j,i)

$$\begin{bmatrix} 1 & 6 & 7 \\ 2 & 3 & 8 \end{bmatrix} \qquad \text{transpose} \qquad \begin{bmatrix} 1 & 2 \\ 6 & 3 \\ 7 & 8 \end{bmatrix}$$

- Matrix Addition/Subtraction
 - two matrices of same size
- Scalar Multiplication/Division
 - to multiply a matrix A with scalar c, multiply each element of A with c
- Element wise Matrix Multiplication
 - matrices have the same size

$$X + Y = \begin{bmatrix} 2 & 4 \\ 3 & 1 \\ 8 & 5 \end{bmatrix} + \begin{bmatrix} 6 & 7 \\ 4 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 11 \\ 7 & 5 \\ 9 & 8 \end{bmatrix}$$

$$3x \begin{bmatrix} 6 & 7 \\ 4 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 18 & 21 \\ 12 & 12 \\ 3 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ 3 & 1 \\ 8 & 5 \end{bmatrix} \odot \begin{bmatrix} 6 & 7 \\ 4 & 4 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 12 & 28 \\ 12 & 4 \\ 8 & 15 \end{bmatrix}$$

- Matrix to Matrix Multiplication
 - number of columns in the first matrix is equal to the number of rows in the second matrix
 - Consider AB=C. Now C(i,j) is computed by dot product of A(i,:) and B(:,j)

$$\begin{bmatrix} 2 & 4 \\ 5 & 6 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 16 \\ 11 & 28 \\ 8 & 23 \end{bmatrix}$$

 Matrix multiplication is NOT commutative. Multiplication order matters. In general AB≠BA.

Inverse Matrix

- Matrix A is called as inverse of matrix B, if and only if BA=AB=I.
- Since AB=BA, both A and B need to be a square matrix
- If A is inverse of B, we denote it as $A = B^{-1}$
- Inverse of a matrix A exists only if it's determinant is nonzero

Revising knowledge of Linear Algebra and Probability

- Linear Algebra
 - Vector & their operations
 - Matrix & their operations
 - Feature vectors and matrices
- Probability Concepts
 - Random experiment & Event
 - Joint probability
 - Conditional probability
 - Bayes Rules
- Random variable
 - Distribution of random variables

Feature Vectors

- Vector space model is representation of set of documents as vectors.
- It is a fundamental step in information retrieval operations
- Text data representation as Feature Vectors

Feature matrix

- We can extend the concept of the feature vector towards a feature matrix by stacking feature vectors as a matrix X
 - We create a vocabulary of features for all the instances in the dataset
 - Represent each instance as a vector on features listed in the vocabulary
 - If our dataset has N instances, we create N vectors x1,x2,...,xN
 - Each of these vectors is called a feature vector
 - We stack these vectors as a matrix X and call it a feature matrix

Feature matrix

Example of steps mentioned earlier

Revising knowledge of Linear Algebra and Probability

- Linear Algebra
 - Vector & their operations
 - Matrix & their operations
 - Feature vectors and matrices
- Probability Concepts
 - Random experiment & Event
 - Joint probability
 - Conditional probability
 - Bayes Rules
- Random variable
 - Distribution of random variables

Random experiment

- Probability plays a major role in many machine learning algorithms
- Random experiment: an experiment or a process for which the outcome cannot be predicted with certainty.
 - toss of a coin
 - roll of a dice
 - counting the number of phone calls received on a mobile phone in a given duration
 - daily temperature
 - how many times a specific word appears in each document of a corpus

Event

- Event: a set of outcomes of a random experiment
 - For a coin toss experiment, sample space Ω={head,tail}. And event A could be either {head} or {tail}
 - For a dice roll experiment, sample space Ω={1,2,3,4,5,6} and event A={{1},{2},{3},{4},{5},{6}}

Probability

- Probability is defined for an event and is the measure of the likelihood that an event will occur. It is quantified as a number between 0 and 1
- The probability of an event A occurring is denoted as P(A)
- The probability of an event A not occurring is denoted as

$$P(\bar{A}) = 1 - P(A)$$

Joint Probability

- Probability can be defined jointly for more than one event.
 Consider a random experiment where we toss two coins
- In this case the probability of seeing "head for coin-1" and "head for coin-2" is an example of two events. If two events, A and B are independent then the joint probability is
- Assuming fair coins with probability of head as 1/2. So the probability of head for the first coin and also head for the second coin is:

$$P(A \text{ and } B) = P(A)P(B)$$

$$P(\{head - first\} \text{and} \{head - second\}) = \frac{1}{2} * \frac{1}{2}$$

Conditional Probability

- is the probability of some event A, given the occurrence of another event B.
- Condition probability P(A|B), read as the probability of A given
 B is defined as
- Provided P(B) is not zero

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Byes Rule

- essence of most of Bayesian approaches
- mathematical rule explaining how you should change your existing beliefs in the light of new occurrence
- Bayes rule describes the probability of an event A based on another event B that is related to A
- if cancer is related to age, using Bayes' rule information about a person's age can be used to more accurately assess the probability that the person has cancer.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \text{ in which } P(B) \neq 0$$

Revising knowledge of Linear Algebra and Probability

- Linear Algebra
 - Vector & their operations
 - Matrix & their operations
 - Feature vectors and matrices
- Probability Concepts
 - Random experiment & Event
 - Joint probability
 - Conditional probability
 - Bayes Rules
- Random variable
 - Distribution of random variables

Random Variable

- is a variable whose possible values are the generated outcomes of a random phenomenon
- is a function that can assign probabilities to events of interest in a random experiment
- if we toss a coin the possible outcomes are head or tail. Let us define a random variable X so that X=1 means head and X=0 means tail.
- The function is nothing but the mapping X=1 to head or X=0 to tail.
- let's say P(head)=0.6, P(tail)=0.4. Then we can say P(X=1)=0.6, P(X=0)=0.4
- This way a random variable can assign a probability to all possible outcomes of a random experiment

Random Variable...

- Two type of random variables
- Discrete Random Variable
 - countable number of values (i.e., faces of a dice, number of emails received in an hour)
- Continuous Random Variable
 - can take values on a infinite continuum (i.e., height of a person, time to failure)

Discrete Random Variable

- Discrete Random Variable
 - defined using a Probability Mass Functions (PMF), denoted as π(x)
 - The PMF assigns a probability to each possible value of the random variable as $\pi(x)=P(X=x)$ summing them to 1, i.e.

$$\sum_{x}\Pi\left(x\right) =1$$

Rolling a dice is a perfect example of random variables. But what if someone asks about the probability of rolling a dice and getting a number less than 5?

Discrete Random Variable...

- In such cases we have to work with Cumulative Distribution Function (CDF).
- The cumulative distribution function gives us the cumulative probability associated with a function. it is defined as:

$$F(X) = P(X \le x) = \sum_{x_i \le x} P(X = x_i)$$

Discrete Random Variable...

• In the figure, it is discontinuous at points x_i 's and constant in between

- The probability of seeing a number equal or less than five is
- probability of seeing a number greater than five is

$$P(X \le 5) = \frac{5}{6}$$

$$P(X > 5) = 1 - \frac{5}{6} = \frac{1}{6}$$

Continuous Random Variable

- Continuous random variables are defined using Probability Density Functions (PDF, statistical expression), denoted as f(x)
- PDF assigns a probability to a range of values of the random variable as $f(x)d(x) = P(x \le X \le x + dx)$ integrating to 1
- So we can say: $\int_{-\infty}^{+\infty} f(x) dx = 1$
- Probability assigned at any exact value is zero (in the continues space). But we can talk about probabilities over a range such as

$$P(X \ge a), P(X < b)$$
or $P(c \le X \le d)$

Distribution of Random Variable

 Probability distribution is a function that links each outcome of a statistical experiment with its probability of occurrence

Bernoulli distribution

- discrete distribution and defined for a binary random variable with values X=0 and X=1
- **SO** $\pi(0) = P(X = 0) = p \text{ and } \pi(1) = P(X = 1) = 1 p$
- B means Bernoulli in notation $\pi(x) = B(x||p)$ or $x \sim B(x||p)$
- For example
 - we can say a distribution over the outcome of an exam is Bernoulli. We may pass (x=1) or fail (x=0)

Distribution of Random Variable...

Uniform distribution

- can be defined for both discrete and continuous random variables. For a discrete random variable
- For discrete

$$\pi(x_i) = P(X = x_i) = \frac{1}{N}, i = 1..N$$

U means uniform in notation

$$\pi(x) = U(x||N) \lor x \sim U(x||N)$$

For a continuous random variable

$$f(x) = \frac{1}{b-a}, a \le x \le b$$
$$f(x) = U(x||a,b) \lor x \sim U(x||a,b)$$

Rolling a fair dice follows a uniform distribution (discrete space)

Distribution of Random Variable...

Normal distribution

- is defined for continuous random variables
- most popular distribution
- defined as $N(x||\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{2}}} exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$
- where N means normal
- popular because natural phenomena are approximately following a normal distribution

Distribution of Random Variable...

Central limit theorem

- if you have a population with mean μ and standard deviation σ and take sufficiently large random samples from the existing population, then the distribution of the sample means will be approximately normally distributed
- So, the distribution of the sum of N i.i.d.(independent and identically distributed) random variables becomes increasingly normal (Gaussian) as N grows

$$Y = X_1 + X_2 + \ldots + X_N$$

N uniform [0,1] random variables, following central limit theorem

Thank You

