Logistics Regression

Learning Objectives

Probability, Odds, Log Odds

Overview

Example:

One want to go jogging when there is **no rain**.

According to the weather forecast, the **probability** for rain is 30%.

The **odds** for no-rain are 0.7 / 0.3 = 2.3 = 2.3 : 1.

The **log odds** are the logarithm of the odds = log(2.3) = 0.36.

Probability, Odds, Log Odds

$$odds = \frac{p}{(1-p)} \qquad \log(odds) = \log\left(\frac{p}{1-p}\right)$$

Logit and Sigmoid

Logit Function

Get real numbers from probability.

$$odds = rac{p}{1-p}$$

$$log(odds) = log(rac{p}{1-p}) = logit\ function$$

Sigmoid Function

Get probability from real numbers.

$$f(x)=rac{1}{1+e^{-x}}$$

e... Euler's number (exp)

Logistic Regression

Plug-in linear regression equation!

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Logistic Regression

Maximum Likelihood Estimation

Probability of Variables

Sigmoid Function

$$f(x) = \frac{1}{1+e^{-x}}$$

Logistic Regression Model

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Loss Function

Try to estimate beta such as the product of all probabilities for classes labeled as "1" is largest and for classes labeled as "0" is smallest.

Likelihood Function

Goal: Find Beta to **maximize** this function.

$$L(\beta) = \prod_{s \text{ in } y_i = 1} p(x_i) * \prod_{s \text{ in } y_i = 0} (1 - p(x_i))$$

Likelihood Function

Goal: Find beta so that this function gets maximized.

$$l(\beta) = \sum_{i=1}^{n} y_i \beta x_i - \log \left(1 + e^{\beta x_i}\right)$$

Beta Coefficient

Coefficient of Linear Regression

The coefficient β associated with a variable X is the **expected change in log odds** of having the outcome Y per unit change in X.

$$p(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

x 1	x2	хр	
20	2		0.234
-14	1		0.987
191	2		0.456

$$\log(odds) = \log\left(\frac{p}{1-p}\right)$$

Case 1: Input Variable is Numeric

An increase of 1 minute in departure delay multiplies the odds of arrival_delay by 1.19.

An increase of 1 minute in departure delay is associated with an increase of 19% in the odds of arrival_delay.

departure_delay_minutes	arrival_delay_15
12	0.234
35	0.987
16	0.456

ARRESTA		00000000	*****	****	****	****		******		
Dep. Variable:			v			servations:		30		
Model:			1.	ripo	Df Nes	iduals:		28		
Method: Date: Mon. Vime: converged:			MLE	Df Mod	el:					
		Mon.	17 Oct.	2022	Paeudo	R-squ. t	0.381			
			11:10:32 True		Log-Likelihood: LL-Null:		-11.32			
							-10.32			
Covariance Type:			nonrobust		LLR p-	valuer		0.0001833		
	- a	oef.	std err		z	P>(z)	[0.025	0.975]		
const	-2.4	786	0.798	-3	.107	0.002	-4.042	-0.915		
x1	0.1		0.060		.895	0.004	0.056	0.290		

$$e^{\beta} = e^{0.1728} = 1.19$$

$$odds = \frac{p}{(1-p)}$$

Case 2: Input Variable is Numeric

Changing from one ordinal level to the next multiplies the odds of arrival delay by 1.19.

Going 1 level up of departure delay s associated with an increase of 19% in the odds of arrival delay.

departure_delay_bin	arrival_delay_15
1	0.234
3	0.987
2	0.456

****		WHEN SHARE	CCCCCCC	*****	****	******	****		
Dep. Variab	le:		У		No. Observations:		30		
Hodel:			Logit	Df Nes	iduales		2		
Hethod:			HLE	Df Mod	lel:				
Dates	26	on, 17 Oc	1 2022	Pseudo	R-squ.t		0.3816		
Times		23	11:10:32		Log-Likelihood:		-11.32		
converged:			True	LL-Nul	11		-18.326		
Covariance 1	type:	nor	robust	LLR p-	valuer		0.0001833		
	goef	std er	T.	2	b> x	[0.025	0.975		
			****	******	****				
const	-2.4786	0.75	- 88	3.107	0.002	-4.042	-0.915		
x1	0.1728	0.06	0	2.895	0.004	0.056	0.290		

$$e^{\beta} = e^{0.1728} = 1.19$$

$$odds = \frac{p}{(1-p)}$$

One Hot Encoder

Same interpretation as binary for each column.

departure_del ay_reason	arrival_delay_15
2	0.234
1	0.987
3	0.456

reason_1	reason_2	arrival_delay _15
0	1	0.234
1	0	0.987
0	0	0.456
		•••

Standard Error

97.5% Confidence Interval for coefficients: $\beta \pm 1,95996 \times SE = 0.1728 \pm 1,95996 \times 0.06 = [0.056, 0.29].$

97.5% Confidence Interval for odds = $e^{(\beta \pm 1.95996 \times SE)}$ = $e^{(0.1728 \pm 1.95996 \times 0.06)}$ = [**1.06**, **1.34**].

departure_delay_15	arrival_delay_15
0	0.234
1	0.987
1	0.456

Dep. Variab	le:				У	No. O	bservations:		30	
Model:				Lo	git	Df Re	siduals:		28	
Method:					MLE	Df Mo	del:		1	
Date:		Mon,	17	Oct 2	022	Pseud	o R-squ.:		0.3818	
Time:				11:10	:32	Log-L	ikelihood:		-11.328	
converged:				T	rue	LL-Nu	11:		-18.326	
Covariance Type:			nonrobust		ust	LLR p	-value:		0.0001833	
	coe	E	std	err		z	P> z	[0.025	0.975	
const	-2.478	5	0.	798	-3	.107	0.002	-4.042	-0.915	
x1	0.172	3	0.	.060	2	.895	0.004	0.056	0.290	

Significance

Same as linear regression (decision threshold to reject the null hypothesis that the coefficient has no effect on Y).

Don't judge on p alone - take a thorough look at the data and conduct an exploratory data analysis!

departure_delay_15	arrival_delay_15
0	0.234
1	0.987
1	0.456

					100000000000000000000000000000000000000			
Dep. Variab	le:			У	No. Ob	servations:		30
Model:				Logit	Df Res	iduals:		28
Method:				MLE	Df Mod	lel:		1
Date:		Mon,	17 Oct	2022	Pseudo	R-squ.:		0.3818
Time:			11:	10:32	Log-Li	kelihood:		-11.328
converged:				True	LL-Nul	1:		-18.326
Covariance Type:		nonrobust		LLR p-	value:		0.0001833	
	coes	£ 8	td err		z	P> z	[0.025	0.975]
const	-2.478)	0.798	-	3.107	0.002	-4.042	-0.915
x1	0.1728	3	0.060		2.895	0.004	0.056	0.290

Thank you

