

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- Dijkstra's algorithm demo (efficient implementation)

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- Dijkstra's algorithm demo (efficient implementation)

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

- Initialize $S \leftarrow \{s\}$ and $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$$

add v to S; set $d[v] \leftarrow \pi(v)$ and $pred[v] \leftarrow \text{argmin}$.

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm demo
- Dijkstra's algorithm demo (efficient implementation)

Initialization.

- For all $v \neq s$: $\pi[v] \leftarrow \infty$.
- For all $v \neq s$: $pred[v] \leftarrow null$.
- $S \leftarrow \emptyset$ and $\pi[s] \leftarrow 0$.

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

- Add *u* to *S*.
- For each edge e = (u, v) leaving u, if $\pi[v] > \pi[u] + \ell_e$ then:
 - $\pi[v] \leftarrow \pi[u] + \ell_e$
 - $pred[v] \leftarrow e$

Termination.

- $\pi[v]$ = length of a shortest $s \rightarrow v$ path.
- $pred[v] = last edge on a shortest s \rightarrow v path.$

