Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2022/23 (4. přednáška)

Převoditelnost a úplnost

Jak ukazovat nerozhodnutelnost?

Chceme ukázat, že A je nerozhodnutelný jazyk.

- Vybereme si jiný nerozhodnutelný jazyk B
 - například B = L_u
- 2 Sporem předpokládáme: Máme algoritmus D_A , který rozhoduje A
- 3 Popíšeme algoritmus D_B , který rozhoduje B
 - D_B může volat D_A jako podprogram
- Ostáváme spor s nerozhodnutelností B
- 6 Ukázali jsme, že A není rozhodnutelný

Turingovská převoditelnost (princip)

$B \leq_T A = \text{"pomocí } A \text{ umíme rozhodnout } B$ "

Turingovská převoditelnost

Jazyk $B \subseteq \Sigma^*$ je Turingovsky převoditelný na jazyk $A \subseteq \Sigma^*$ ($B \leq_T A$), pokud existuje algoritmus (Turingův stroj) D_B , který

- rozhoduje B
- může pokládat dotazy typu "y ∈ A?"
 - pro libovolný řetězec y ∈ Σ*
- Tyto dotazy jsou okamžitě správně zodpovězeny (ano/ne)
- Počet dotazů není omezen
- A rozhodnutelný ⇒ B rozhodnutelný
- B nerozhodnutelný ⇒ A nerozhodnutelný
- $A \leq_T \overline{A}$ pro každý jazyk A

Problém zastavení

Problém zastavení (Halting Problem)

Instance: Kód Turingova stroje M a vstup x.

Otázka: Zastaví se výpočet Turingova stroje M nad vstupem x, tedv M(x)...?

• Odpovídá jazyku HALT = $\{\langle M, x \rangle \mid M(x) \downarrow \}$

Věta

Jazyk HALT je částečně rozhodnutelný, ale není rozhodnutelný.

Částečná rozhodnutelnost HALT

$$HALT = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

- Jazyk HALT je částečně rozhodnutelný
- Plyne z existence univerzálního stroje ${\mathcal U}$
- HALT je přijímán následujícím strojem ${\cal H}$

Výpočet \mathcal{H} se vstupem $\langle M, x \rangle$

- 1 Simuluj M(x)
- 2 Přijmi

Nerozhodnutelnost HALT

$$\mathrm{HALT} = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

- Jazyk HALT je nerozhodnutelný
- Sporem: Nechť H je stroj rozhodující HALT
 - HALT = $L(\mathcal{H})$ a
 - $\mathcal{H}(\langle M, x \rangle) \downarrow$ pro každý Turingův stroj M a vstup x
- Popíšeme Turingův stroj M_u, který rozhoduje

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

Stroj M_u rozhodující L_u s pomocí HALT

Výpočet stroje M_u se vstupem $\langle M, x \rangle$

1 Sestroj Turingův stroj M', který se řídí následujícím algoritmem

```
Výpočet M' se vstupem y
```

- 1 Pusť M(y)
- 2 if M zamítl then
- 3 vstup do nekonečné smyčky

```
// Položíme dotaz jazyku HALT 2 if \langle M', x \rangle \in \text{HALT then} 3 | přijmi 4 else 5 | odmítni
```

Nerozhodnutelnost HALT

Ukázali jsme, že $L_u \leq_T HALT$

 L_u není rozhodnutelný $\Longrightarrow \text{HALT}$ není rozhodnutelný

- Program M_u je velmi specifický
 - Orákula HALT se ptá jen jednou na konec
 - Odpověď dotazu HALT je přímo odpovědí M_u
- Program ukazuje, že L_u je m-převoditelný na HALT

m-převoditelnost (princip)

m-převoditelnost (definice)

Definice

Jazyk B je m-převoditelný na jazyk A, pokud existuje totální vyčíslitelná funkce f splňující

$$(\forall x \in \Sigma^*)[x \in B \Leftrightarrow f(x) \in A]$$

m-převoditelnost (definice)

Definice

Jazyk B je m-převoditelný na jazyk A ($B \le_m A$), pokud existuje totální vyčíslitelná funkce f splňující

$$(\forall x \in \Sigma^*)[x \in B \Leftrightarrow f(x) \in A]$$

- \leq_m je reflexivní a tranzitivní relace (kvaziuspořádání).
- Pokud A ≤_m B a B je (částečně) rozhodnutelný jazyk, pak totéž lze říct o A.

m-převoditelnost (reflexivita)

Lemma (Reflexivita *m*-převoditelnosti)

Pro každý jazyk A platí $A \leq_m A$

Důkaz.

- Identita id(x) = x je totální algoritmicky vyčíslitelná funkce
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \Leftrightarrow id(x) \in A$$

m-převoditelnost (tranzitivita)

Lemma (Tranzitivita *m*-převoditelnosti)

Pro každé jazyky A, B a C platí $A \leq_m B \wedge B \leq_m C \implies A \leq_m C$

Důkaz.

- $A \leq_m B$ pomocí funkce g
- $B \leq_m C$ pomocí funkce h
- Definujme funkci f(x) = h(g(x))
 - f je totální algoritmicky vyčíslitelná funkce
- Pro každý řetězec $x \in \Sigma^*$ platí

$$x \in A \underset{A \le_m B}{\longleftrightarrow} g(x) \in B \underset{B \le_m C}{\longleftrightarrow} h(g(x)) \in C \underset{f(x) = h(g(x))}{\longleftrightarrow} f(x) \in C$$

• $A \leq_m C$ pomocí funkce f

m-převoditelnost porovnává obtížnost

Lemma

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- **1** A rozhodnutelný \implies B je rozhodnutelný
- ② A částečně rozhodnutelný ⇒ B je částečně rozhodnutelný
 - Předpokládejme, že M_A je TS, který přijímá/rozhoduje A
 - Popíšeme TS M_B, který přijímá/rozhoduje B

```
Výpočet stroje M_B se vstupem x

1 y \leftarrow f(x) // f ukazuje, že B \leq_m A

2 Pusť M_A(y)

3 if M_A přijal then

4 | přijmi

5 else

6 | odmítni
```

m-převoditelnost a nerozhodnutelnost

Lemma

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- $oldsymbol{0} A$ je rozhodnutelný $\Longrightarrow B$ je rozhodnutelný
- 2 A je částečně rozhodnutelný \implies B je částečně rozhodnutelný

Důsledek

Nechť B a A jsou dva jazyky, pro něž platí, že $B \leq_m A$.

- **1** B je nerozhodnutelný \implies A je nerozhodnutelný
- 2 B není částečně rozhodnutelný $\implies A$ není částečně rozhodnutelný

Převod L_u na HALT

- $L_u = \{\langle M, x \rangle \mid x \in L(M)\}$
- HALT = $\{\langle M, x \rangle \mid M(x) \downarrow \}$

Lemma

$$L_u \leq_m HALT$$

Idea:

■ Definujeme $f(\langle M, x \rangle) = \langle M', x \rangle$ tak, aby platilo pro každý vstup $x \in \Sigma^*$

$$M$$
 přijme $x \iff M'(x) \downarrow$

- Popíšeme úpravu M na M'
- Algoritmus počítající f provede tuto transformaci

$$L_u \leq_m HALT$$

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

$$\mathrm{HALT} = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

Ke stroji M definujeme stroj M' takto

Výpočet M' se vstupem y

Pusť M(y)

 ${\it if}\ M$ zamítl ${\it then}$ vstup do nekonečné smyčky

Pro každý řetězec y ∈ Σ* platí:

$$y \in L(M) \iff M'(y) \downarrow$$

Pro každou dvojice M a x platí

$$\langle M, x \rangle \in L_u \iff x \in L(M) \iff M'(x) \downarrow \iff \langle M', x \rangle \in HALT$$

$L_u \leq_m HALT$

- Funkce $f(\langle M, x \rangle) = \langle M', x \rangle$
 - je totální algoritmicky vyčíslitelná a
 - ukazuje, že $L_u \leq_m \mathrm{HALT}$

Neprázdnost jazyka

Problém neprázdného jazyka

Instance: Kód Turingova stroje M

Otázka: Je $L(M) \neq \emptyset$?

$$NE = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

Věta

Jazyk NE je částečně rozhodnutelný ale není rozhodnutelný

- Částečnou rozhodnutelnost jsme již ukázali dříve
- Nerozhodnutelnost ukážeme tím, že $L_u \leq_m NE$

$$L_u \leq_m NE$$

$$L_u = \{ \langle M, x \rangle \mid x \in L(M) \}$$

$$\mathrm{NE} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$$

K dvojici M a x definujeme Turingův stroj M'

```
Výpočet M' se vstupem y

Pusť M(x) // M' ignoruje svůj vstup!

if M přijal then

| přijmi

else

L odmítni
```

Platí

$$L(M') = \begin{cases} \Sigma^* & x \in L(M) \\ \emptyset & x \notin L(M) \end{cases}$$

$L_u \leq_m NE$

Pro každý kód dvojice (M, x) platí

$$\langle M, x \rangle \in L_u \iff x \in L(M) \iff L(M') \neq \emptyset \iff \langle M' \rangle \in NE$$

- Funkce $f(\langle M, x \rangle) = \langle M' \rangle$
 - je totální algoritmicky vyčíslitelná a
 - ukazuje, že $L_u \leq_m NE$

m-úplné problémy

Definice

Jazyk A je m-úplný, pokud

- 1 A je částečně rozhodnutelný a
- 2 pro každý částečně rozhodnutelný jazyk B platí, že $B \leq_m A$
 - Ty "nejtěžší" z částečně rozhodnutelných jazyků
 - *m*-úplnost implikuje nerozhodnutelnost
 - Pokud A ≤_m B, B je částečně rozhodnutelný jazyk a A je m-úplný jazyk, pak B je též m-úplný
 - Plyne z tranzitivity m-převoditelnosti

m-úplnost univerzálního jazyka

Věta

Jazyk $L_u = \{\langle M, x \rangle \mid x \in L(M)\}$ je m-úplný.

Důkaz.

- Částečná rozhodnutelnost plyne z existence univerzálního TS
- Nechť A je libovolný částečně rozhodnutelný jazyk
- Existuje Turingův stroj M přijímající A (A = L(M))
- Funkce $f(x) = \langle M, x \rangle$ je totální algoritmicky vyčíslitelná a platí

$$x \in A \iff x \in L(M) \iff \langle M, x \rangle \in L_u \iff f(x) \in L_u$$

• Funkce f tedy ukazuje $A \leq_m L_u$

Další úplné jazyky

Důsledek

Jazyky

$$\begin{aligned} \text{HALT} &= \{ \langle M, x \rangle \mid M(x) \downarrow \} \\ \text{NE} &= \{ \langle M \rangle \mid L(M) \neq \emptyset \} \end{aligned}$$

jsou m-úplné

Důkaz.

- Oba jazyky jsou částečně rozhodnutelné
- Ukázali jsme, že $L_u \leq_m \mathrm{HALT}$ a $L_u \leq_m \mathrm{NE}$
- m-úplnost plyne z tranzitivity m-převoditelnosti

Riceova věta

Riceova věta

Věta (Riceova věta)

Nechť C je třída částečně rozhodnutelných jazyků a položme

$$L_C = \{ \langle M \rangle \mid L(M) \in C \}$$

Jazyk L_C rozhodnutelný, právě když je třída C triviální, tedy buď je prázdná nebo obsahuje všechny částečně rozhodnutelné jazyky.

Problém, v němž se ptáme, zda daný program přijímá jazyk s danou netriviální vlastností P, je nerozhodnutelný.

Riceova věta (důsledky)

Nerozhodnutelnost následujících jazyků plyne z Riceovy věty

- NE = $\{\langle M \rangle \mid L(M) \neq \emptyset\}$
 - C je třída neprázdných částečně rozhodnutelných jazyků
- Fin = {⟨M⟩ | L(M) je konečný jazyk}
 - C je třída konečných jazyků
- Inf = {⟨M⟩ | L(M) je nekonečný jazyk}
 - C je třída nekonečných částečně rozhodnutelných jazyků
- $Dec = \{\langle M \rangle \mid L(M) \text{ je rozhodnutelný jazyk}\}$
 - C je třída rozhodnutelných jazyků
- Reg = {⟨M⟩ | L(M) je regulární jazyk}
 - C je třída regulárních jazyků
- Primality = $\{\langle M \rangle \mid L(M) = PRIME\}$
 - PRIME = $\{\langle p \rangle \mid p \text{ je prvočíslo}\}$
 - $C = \{PRIME\}$
- Hello = $\{\langle M \rangle \mid M \text{ přijímá řetězec Hello}\}$

Riceova věta (nepoužitelnost)

Věta (Riceova věta)

Nechť C je třída částečně rozhodnutelných jazyků a položme

$$L_C = \{ \langle M \rangle \mid L(M) \in C \}$$

Jazyk L_C rozhodnutelný, právě když je třída C triviální, tedy buď je prázdná nebo obsahuje všechny částečně rozhodnutelné jazyky.

NELZE použít na jazyky

$$L_{u} = \{ \langle M, x \rangle \mid x \in L(M) \}$$

$$HALT = \{ \langle M, x \rangle \mid M(x) \downarrow \}$$

$$DIAG = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$$

Věta (Riceova věta)

Nechť C je třída částečně rozhodnutelných jazyků a položme

$$L_C = \{ \langle M \rangle \mid L(M) \in C \}$$

Jazyk L_C rozhodnutelný, právě když je třída C triviální, tedy buď je prázdná nebo obsahuje všechny částečně rozhodnutelné jazyky.

- Nechť třída C je prázdná
 - $\implies L_C = \emptyset$
 - $\implies L_C$ je rozhodnutelný
- Nechť třída C obsahuje všechny částečně rozhodnutelné jazyky
 - $\Longrightarrow L_C = \Sigma^*$
 - $\implies L_C$ je rozhodnutelný

- Dále předpokládáme, že C je netriviální
- Ukážeme, že
 - $L_u \leq_m L_C$ pokud C neobsahuje prázdný jazyk
 - $L_u \leq_m \overline{L_C}$ pokud C obsahuje prázdný jazyk

- Předpokládejme, že C neobsahuje prázdný jazyk
 - tedy ∅ ∉ C
- Zvolíme Turingův stroj M_1 takový, že $L(M_1) \in C$
 - Speciálně $L(M_1) \neq \emptyset$
- Popíšeme totální vyčíslitelnou funkci $f(\langle M, x \rangle) = \langle M' \rangle$ splňující

$$L(M') = \begin{cases} L(M_1) & x \in L(M) \\ \emptyset & x \notin L(M) \end{cases}$$

Platí tedy

$$x \in L(M) \iff L(M') \in C \iff f(\langle M, x \rangle) = \langle M' \rangle \in L_C$$

• Funkce f ukazuje, že $L_u \leq_m L_C$

K dvojici M a x definujeme Turingův stroj M'

K dvojici M a x definujeme Turingův stroj M'

Riceova věta (důkaz, $x \in L(M)$)

Předpokládejme $x \in L(M)$

Riceova věta (důkaz, $x \in L(M)$)

Předpokládejme $x \in L(M)$

Riceova věta (důkaz, $x \in L(M)$)

Předpokládejme $x \in L(M)$

Riceova věta (důkaz, $x \notin L(M)$)

Předpokládejme $x \notin L(M)$

Riceova věta (důkaz, $x \notin L(M)$)

Předpokládejme $x \notin L(M)$

Riceova věta (důkaz, $x \notin L(M)$)

Předpokládejme $x \notin L(M)$

y

Riceova věta (důkaz, dokončení)

- $x \in L(M) \implies L(M') = L(M_1) \in C \implies \langle M' \rangle \in L_C$
- $x \notin L(M) \implies L(M') = \emptyset \notin C \implies \langle M' \rangle \notin L_C$
- Funkce $f(\langle M, x \rangle) = \langle M' \rangle$ je totální algoritmicky vyčíslitelná a platí

$$\langle M, x \rangle \in L_u \iff x \in L(M) \iff f(\langle M, x \rangle) = \langle M' \rangle \in L_C$$

- Dostáváme $L_u \leq_m L_C$
- Pokud $\emptyset \in C$
 - stačí vyměnit role C a doplňku C
 - tím ukážeme $L_u \leq_m \overline{L_C}$

Riceova věta (funkce)

Pomocí f_M označíme funkci, kterou počítá Turingův stroj M.

Věta (Riceova věta (funkce))

Nechť C je třída algoritmicky vyčíslitelných funkcí a položme

$$A_C = \{ \langle M \rangle \mid f_M \in C \}$$

Jazyk A_C rozhodnutelný, právě když je třída C triviální, tedy buď je prázdná nebo obsahuje všechny algoritmicky vyčíslitelné funkce.

Důkaz analogický verzi pro jazyky

Riceova věta (důsledky)

Následující jazyky jsou nerozhodnutelné dle Riceovy věty

- Tot = $\{\langle M \rangle \mid f_M \text{ je totální, tedy } \text{dom } f_M = \Sigma^* \}$
- Sum = {⟨M⟩ | M počítá součet dvou čísel}
- Inc = $\{\langle M \rangle \mid f_M \text{ je rostoucí}\}$
- Zero = $\{\langle M \rangle \mid f_M(0) \downarrow = 0\}$
- ToUpper = $\{\langle M \rangle \mid M \text{ změní ve vstupu malá písmena na velká}\}$
- $HW = \{\langle M \rangle \mid M \text{ vypíše Hello, world} \}$ jako prvních 12 znaků výstupu $\}$

Postův korespondenční problém

Postův korespondenční problém

Instance: Množina "dominových kostek" P:

$$P = \left\{ \left[\frac{t_1}{b_1} \right], \left[\frac{t_2}{b_2} \right], \dots, \left[\frac{t_k}{b_k} \right] \right\}$$

kde $t_1, \ldots, t_k, b_1, \ldots, b_k \in \Sigma^*$ jsou řetězce.

Otázka: Existuje párovací posloupnost $i_1, i_2, ..., i_l$, kde $l \ge 1$ a $t_i, t_i, ..., t_l = b_i, b_i, ..., b_i$?

Věta (Bez důkazu)

Postův korespondenční problém je nerozhodnutelný.

Základní třídy složitosti

Rozhodovací problémy

V rozhodovacím problému se ptáme, zda daná instance *x* splňuje danou podmínku.

- Odpověď je typu ano/ne.
- Rozhodovací problém formalizujeme jako jazyk $L \in \Sigma^*$ kladných instancí a otázku, zda $x \in L$.
- Příklady rozhodovacích problémů:
 - Je daný graf souvislý?
 - Má daná logická formule model?
 - Má daný lineární program přípustné řešení.
 - Je dané číslo prvočíslem?

Úlohy

V úloze pro danou instanci x hledáme y, které splňuje určitou podmínku

- Odpovědí je zde y nebo informace o tom, že žádné vhodné y neexistuje
- Úlohu formalizujeme jako relaci $R \subseteq \Sigma^* \times \Sigma^*$
 - K dané instanci x hledáme y tak, že $(x, y) \in R$
- Příklady úloh:
 - Nalezení silně souvislých komponent orientovaného grafu
 - Nalezení splňujícího ohodnocení logické formule
 - Nalezení přípustného řešení lineárního programu

Časová a prostorová složitost Turingova stroje

Definice

Nechť M je (deterministický) Turingův stroj a nechť $f: \mathbb{N} \to \mathbb{N}$ je funkce, která je definovaná pro každý vstup.

- M pracuje v čase f(n), pokud výpočet M nad libovolným vstupem x délky |x| = n skončí po provedení nejvýše f(n) kroků.
- M pracuje v prostoru f(n), pokud výpočet M nad libovolným vstupem x délky |x| = n skončí a využije nejvýš f(n) buněk pracovní pásky.

Základní deterministické třídy složitosti

Definice

Nechť $f : \mathbb{N} \to \mathbb{N}$ je funkce, potom definujeme třídy:

- $\mathrm{TIME}(f(n))$ třída jazyků přijímaných Turingovými stroji, které pracují v čase O(f(n))
- SPACE(f(n)) třída jazyků přijímaných Turingovými stroji, které pracují v prostoru O(f(n))

 $\text{TIME}(f(n)) \subseteq \text{SPACE}(f(n))$ pro každou funkci $f: \mathbb{N} \to \mathbb{N}$.

- V jednom kroku pohne Turingův stroj hlavou jen o jednu buňku vpravo nebo vlevo
- Stroj použije v každém kroku nejvýš jednu buňku navíc

Význačné deterministické třídy složitosti

Třída problémů řešitelných v polynomiálním čase

$$P = \bigcup_{k \in \mathbb{N}} \mathrm{TIME}(n^k)$$

Třída problémů řešitelných v polynomiálním prostoru

$$PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^k).$$

Třída problémů řešitelných v exponenciálním čase

EXPTIME =
$$\bigcup_{k \in \mathbb{N}} \text{TIME}(2^{n^k}).$$

Proč polynomy?

Silnější verze Churchovy-Turingovy teze

Reálné výpočetní modely lze simulovat na Turingovu stroji s polynomiálním zpomalením/nárůstem prostoru.

- Polynomy jsou uzavřeny na skládání.
- Polynomy (obvykle) nerostou příliš rychle.
- Definice třídy P nezávisí na zvoleném výpočetním modelu.

Cobhamova-Edmondsova teze, 1965

P odpovídá třídě prakticky řešitelných problémů na počítači.