- **DFA**= $(Q, \Sigma, \delta, q_0, F)$
- Q skończony zbiór stanów
- Σ skończony alfabet wejściowy
- δ funkcja przejścia postaci $Q\times\Sigma\to Q$
- q_0 stan początkowy
- $F\subseteq Q\,$ zbi
ór stanów akceptujących

Minimalizacja DFA

- 1. forall p końcowy, q niekońcowy, oznacz (p,q)
- 2. forall $(p,q) \in (F \times F) \cup (Q \setminus F \times Q \setminus F), p \neq q$ if $\exists_{a \in \Sigma} (\delta(p,a), \delta(q,a))$ jest oznaczona, oznacz (p,q) (rekurencyjnie).
- 3. nieoznaczone scalamy.

PDA
$$M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q skończony zbiór stanów
- Σ alfabet wejściowy
- Γ alfabet stosowy
- $q_0 \in Q$ stan początkowy
- $Z_0 \in \Gamma$ symbol początkowy na stosie
- $F\subset Q$ zbiór stanów akceptujących (jeśli $F=\emptyset$ to akceptujemy przez pusty stos)
 - δ funkcja przejścia postaci $\delta:Q\times(\Sigma\cup\{\varepsilon\})\times\Gamma\to 2^{Q\times\Gamma^*}$

LOP Zał., że L regularny. Wtedy istnieje stała n, że jeśli $z \in L$ oraz $|z| \ge n$, to można podzielić z na z = uvw takie, że:

- 1. $|v| \geqslant 1$
- 2. $|uv| \leq n$
- 3. $\forall_{i \in \mathbb{N}} z' = uv^i w \in L$

Podział $\alpha = uvw$, $|uv| \leq n$ oraz $|v| \geq 1$. Wybieramy i dla którego $|uv^iw| \notin L$ a powinien.

LOP bezk. Zał., że L bezkontekstowy. Wtedy istnieje stała n, że jeśli $z \in L$ oraz $|z| \ge n$, to można podzielić z na z = uvwxy, takie, że:

- 1. $|vx| \geqslant 1$
- $2. |vwx| \leqslant n$
- 3. $\forall_{i \in \mathbb{N}} z' = uv^i w x^i y \in L$

Lemat Ogdena Niech L język bezkontekstowy. Wtedy istnieje stała n taka, że jeśli $z \in L$ oraz |z| >= n i oznaczymy w z n lub więcej pozycji jako wyróżnione, to można podzielić z na z = uvwxy takie, że:

- 1. vi x zawierają łącznie co najmniej jedną wyróżnioną pozycję
- 2. vwxzawiera co najwyżej \boldsymbol{n} wyróżnionych pozycji
- 3. $\forall i \in \mathbb{N} \ z' = uv^i w x^i y \in L$

Klasa języków regularnych jest domknięta na operację sumy, dopełnienia, przecięcia, złożenia i domknięcia Kleene'ego. Gramatyka bezkontekstowa G=(N,T,P,S)

- N skończony zbiór zmiennych (nieterminale)
- ${\bf T}$ skończony zbiór zmiennych końcowych (terminale, alfabet)
- P skończony zbi
ór produkcji postaci $A \to \alpha$ gdzie $A \in N$
i $\alpha \in (N \cup T)^*$

 $S \in N$ - symbol początkowy

Postać normalna Chomsky'ego postaci:

 $A \to BC$ albo $A \to a$ Konstrukcje:

- 1. If po prawej terminal a to zastępujemy go C_a i dopisujemy $C_a \to a$
- 2. If prawa strona dłuższa niz 1 to zastępujemy $A \to B_1 \dots B_n$ przez $A \to B_1 D_1, D_1 \to B_2 D_2, \dots, D_{n-2} \to B_{n-1} B_n$

FIRST(X) - dla symboli

- 1. X-terminal, to FIRST(X)=X
- 2. $X \rightarrow \varepsilon$ to do FIRST(X) dodajemy ε
- 3. X nieterminal i $X \to Y_1Y_2...Y_k$ to dodajemy a do FIRST(X) jeśli istnieje i takie, że $a \in FIRST(Y_i)$ oraz $\varepsilon \in FIRST(Y_j)$ dla każdego j < i. $\varepsilon \in FIRST(X)$ jeśli należy do wszystkich $FIRST(Y_i)$.
- 4. $FIRST(X\alpha) = FIRST(X)$ gdy $\varepsilon \notin FIRST(X)$
- 5. $FIRST(X\alpha) = FIRST(X) \cup FIRST(\alpha)$ gdy $\varepsilon \in FIRST(X)$

FOLLOW(A) - dla nieterminali

- 1. Dla początkowego S do FOLLOW(S) dodajemy \$
- 2. Jeśli mamy produkcję $A \to \alpha B\beta$ to do FOLLOW(B) dodajemy wszystkie symbole z $FIRST(\beta)$ poza ε
- 3. Jeśli $A \to \alpha B$ lub $A \to \alpha B\beta$, gdzie $\varepsilon \in FIRST(\beta)$ to do FOLLOW(B) dodajemy wszystkie symbole z FOLLOW(A)

 $\mathbf{LL}(\mathbf{1}) - A \rightarrow \alpha$

Tabela: nazwy kolumn terminale i \$!!!↑
nazwy wierszy nieterminale ⇔

- 1. \forall produkcji $A \rightarrow \alpha$ z gramatyki wykonaj 2 i 3
- 2. for each $a \in T$ if $a \in FIRST(\alpha)$ to wpisz $A \to \alpha$ do M[A,a]
- 3. if $\varepsilon \in FIRST(\alpha)$ to dla każdego $b \in FOLLOW(A)$ wpisz $A \to \alpha$ do M[A, b] Jeżeli $\varepsilon \in FIRST(\alpha)$ oraz $\$ \in FOLLOW(A)$, dodaj $A \to \alpha$ do M[A, \$]
- 4. PROTIP: nie ma w tabeli ε !

SLR Tabela:

nazwy kolumn AKCJE (terminale i \$!!!) i PRZEJŚCIA (nieterminale) nazwy wierszy stany

- 1. zbiory sytuacji $C = I_0, ..., I_n$ Zaczynamy od $I_0 = domkniecie([S' \to .S])$
- 2. tabelka + redukcje (zaznaczyć ew. konflikty) konstrukcja tabelki: w częsci akcji s_x (shift) i r_x (reduce), a w części przejść (nieterminale) x (liczba) ACC dla $S' \to S$.
- 3. redukcja do FOLLOW(A) (if redukcja była z $A \to \beta$.) tzn. jak jest kropka na końcu to do tabeli dodajemy r_x , gdzie x to numer produkcji

LR(1)

- 1. zbiory sytuacji z PODGLĄDEM
- 2. podgląd początkowy \$

- 3. podgląd przy domknięciu: mamy $[A \to \alpha \bullet B\beta, a] \in I$ dla każdej produkcji z $B \to \gamma$ dodaj $[B \to \gamma, FIRST(\beta a)]$
- 4. tabelka jak SLR ale zamiast redukcja do FOLLOW(A) (if redukcja była z $A \to \beta .)$ to redukcja do elementów z podglądu

LALR

- 1. generujemy rodzinę $C = I_0, \dots, I_n$ jak w LR(1)
- 2. sklejamy jądra nie patrząc na podgląd, a podglądy łączymy tabelka analogicznie do LR(1)

LEADING(A)-pierwsze term. z A

- 1. $a \in LEADING(A)$ jeśli mamy produkcję $A \to Ba\beta$ lub $A \to a\beta$
- 2. if exists prod. $A \to B\alpha$ i $a \in LEADING(B)$ to $a \in LEADING(A)$
- 3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

TRAILING(A)-ostatnie term. z A

- 1. $a \in TRAILING(A)$ jeśli mamy produkcję $A \to \beta aB$ lub $A \to \beta a$
- 2. if exists prod. $A \to \alpha B$ i $a \in TRAILING(B)$ to $a \in TRAILING(A)$
- 3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

Tab. priorytetów $\doteq \lessdot \gt$

 $TT \ T \doteq T$

 $TNT \ T \doteq T$

- TN for each $a \in LEADING(N)$ do T < a (wiersze) \Leftrightarrow
- NT for each $a \in TRAILING(N)$ do a > T (kolumny) \updownarrow
 - \$ zawsze gorszy

Zbiory sytuacji

- 1. Wzbogacenie $S' \to S$
- 2. Ponumerować produkcje (do redukcji!!!).
- 3. Idziemy od góry z wygenerowanych, jeśli mamy jakąś sytuację $A \to \alpha \cdot S\beta$ (kropka nie na końcu) to generujemy d (I_{teraz}, S)
- $E \to \varepsilon \Rightarrow E \to .$
- 4. W ostateczności musimy dojść z każdą produkcją z kropką na koniec

Rekurencja

- 1. $A \to A\alpha | \beta$
- 2. $A \rightarrow \beta A'$
 - $A' \to \alpha A' | \varepsilon$

Faktoryzacja

- 1. $A \to \alpha \beta_1 | \dots | \alpha \beta_k$
- 2. $A \to \alpha A'$

 $A' \to \beta_1 | \dots | \beta_k$

lem	slowo	notes
reg	dwa te same sym obok	
Ogd	$21^{n}0^{n}221^{n}0^{n}2$	
reg	konczy sie tym czym zaczyna	
Ogd	dwa warunki to za mało	
Ogd	nie bezkontekstowy	
lop/ogd	nie bezkontekstowy	
lop	bezkontekstowy	
	bezkontekstowy	
	nie jest bezkontekstowy	
	Nie bezkontekstowe, ale dopełnienie bezkontekstowe	
	bezkontekstowy, hybryda	
Ogden	$a^nb^ncb^na^n$	
LOP	ab^nab^n	i = 0
reg	$len \geqslant 4$	dobrać krótsze
LOP	$a^{13n}b^{13n}b^{13n}a^{13n}$	ozn.
reg	mini	
reg	2 obok	
LOP	$a^n c^n c^n a^n$	
Ogd	$a^mbca^mcba^m$	śr. ozn.
bezk.		
LOP	$a^nb^nc^n$	
Ogd	$a^{m+m!}b^ma^{m+m!}$	ozn b.
LOP	$a^nb^nc^n$	i=0
LOP	$a^{n+1}b^nc^{n+1}$	
LOP	$0^n 1^n 0^n 1^n 0^n 1^n$	i=0
LOP	$0^{n}1^{n}1^{n}0^{n}0^{n}1^{n}$	i=0
Ogd	$a^{n!+n}c^nb^{n!+n}$	
	reg Ogd reg Ogd Ogd lop/ogd lop Ogden LOP reg LOP reg LOP Ogd bezk. LOP Ogd LOP LOP LOP LOP LOP LOP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $L = \{w \in \{0,1,2\}^*w = palindrom \ i \ |w|_0 = |w|_2 mod 13\}$ - hybryda palindromów (da sie zrobic automat) oraz przejście po stanach

 $\mathcal{L} = \{w \in \{a, b\}^* | w|_a = |w|_b + 5\} < \text{bezkontekstowy}$

 $L = \{w \in \{a, b\}^* | w|_a = |w|_b = 2mod5 < \text{regularny} \}$

Majac $L = \{w \in \{a, b, c\}^* i | w|_a \neq |w|_b lub|w|_a \neq |w|_c lub|w|_b \neq |w|_c \}$ mamy niedeterministyczny automat ze stosem ktory zgaduje poprawny wynik.

```
L_1 = \{w : w \in \{a, b, c\}^* \land |w|_a \neq |w|_b \neq |w|_c\}
```

Niech n stała z lematu Ogdena. Niech m > n. Wybieramy słowo $z = a^{m+m!}b^mc^{m+m!}$ i oznaczamy m liter b jako wyróżnione.

- 1. nie możemy pompować samego a ani samego c (brak wyróżnionych).
- 2. nie możemy pompować jednocześnie a oraz c (pomiędzy nimi jest więcej niż n wyróżnionych liter).

Pozostają nam do rozpatrzenia podziały, w których:

1. pompujemy b:

```
wyznaczamy i: |vx|_b = p

m + m! = m + (i - 1)p

m! = ip - p

i = \frac{m!}{p} + 1
```

 $|z'|_b = |z|_b + (i-1)|vx|_b = m + (\frac{m!}{p} + 1 - 1)p = m + m!$

Długość b jest taka sama jak długość reszty więc wyszliśmy z języka.

2. pompowanie a i b. Równamy ilość b do ilości c. pomowanie b i c. Równamy ilość b do ilości a.

FIRST

- 1. Szukamy produkcji gdzie na początku stoi terminal i ten terminal dodajemy do zbioru FIRST od nieterminala przed strzałką.
- 2. Szukamy produkcji z eps i dodajemy ten eps do zbioru FIRST od nieterminala przed strzałką.
- 3. Szukamy produkcji gdzie na początku stoi nieterminal i FIRST od tego nieterminala dodajemy do FIRST od nieterminala stojącego przed strzałką (bez epsilona). Jeżeli w kopiowanym zbiorze jest epsilon to dodajemy FIRST od następnego symbolu. (Jeśli w każdym symbolu jest epsilon to na końcu dodajemy epsilon).

FOLLOW

- 1. Do zbioru FOLLOW od symbolu początkowego dodajemy \$
- 2. Szukamy produkcji gdzie za nieterminalem będzie stał jakiś symbol i do FOLLOW od tego nieterminala dodajemy FIRST od następnego symbolu (pomijając eps). Jeśli w dodawanym zbiorze był eps to sprawdzamy kolejny symbol.
- 3. Szukamy produkcji gdzie na końcu znajduje się nieterminal i do FOLLOW od tego nieterminala kopiujemy zawartość FOLLOW od nieterminala przed strzałką.
- 4. Szukamy produkcji gdzie za jakimś nieterminalem cała prawa strona będzie się zerowała (czyli w FIRST od całej strony będzie epsilon). Wtedy do FOLLOW od tego nieterminala dodajemy FOLLOW od nieterminala przed strzałką. Powtarzaj 3 i 4 dopóki są zmiany.

LL FIRST(alfa) - FIRST od pierwszego znaku eps, jeśli jest epsilon to wchodzimy do kolejnego bin(n)bin(n+1), n>0 - nie jest bezkontekstowe

 $\mathrm{bin}(\mathbf{n})\mathrm{bin}(\mathbf{n+1})^R, n>0-bezkontekstowe$

 $bin(n)hex(n)^R, n > 0 > korzystamyzodpowiednioscibin >> hexiucieczkaodzernapoczatku$