

Distributed blinding for distributed ElGamal re-encryption

Alejandro Anzola Ávila October 16, 2019

Boise State University

Definitions

Motivation

This paper shows a protocol for interacting distributed services that emphasizes on **step flexibility** rather than evaluate on quantitative measures, such as number of messages exchanged or total computing time.

ElGamal public key encryption i

Is based on large prime numbers p and q such that

$$p = 2q + 1$$

Let \mathcal{G}_p be a cyclic subgroup (of order q) of $\mathbb{Z}_p^* = \{i \mid 1 \leq i \leq p-1\}$, where g is a generator of \mathcal{G}_p .

Any $k\in\mathbb{Z}_q^*$ can be an ElGamal private key and K=(p,q,g,y) is the public key, and $y=g^k\mod p$.

2

ElGamal public key encryption ii

An ElGamal ciphertext E(m) for plaintext $m \in \mathcal{G}_p$ is a pair (g^r, my^r) with r uniformly and randomly chosen from \mathbb{Z}_q^* . Ciphertext E(m) = (a, b) is decrypted by computing b/a^k .

$$b/a^k = my^r/(g^r)^k = m(g^k)^r/(g^r)^k = m$$

When E(m,r) is shown, the value of r is made explicit. Therefore $\mathcal{E}(m)$ is the set $\{E(m,r)\mid r\in\mathbb{Z}_q^*\}$ of all possible ciphertexts for m.

3

ElGamal public key encryption properties

Given
$$E(m_1) = (a_1, b_1)$$
, $E(m_2) = (a_2, b_2)$ and $E(m) = (a, b)$, we have

- $E(m)^{-1} = (a^{-1}, b^{-1})$
- $m' \cdot E(m) = (a, m', b)$
- $E(m_1) \cdot E(m_2) = (a_1 a_2, b_1 b_2)$

The following properties hold

ElGamal Inverse ElGamal Juxtaposition ElGamal Multiplication¹

$$E(m)^{-1} \in \mathcal{E}(m^{-1})$$

 $m' \cdot E(m, r) = E(m'm)$
If $r_1 + r_2 \in \mathbb{Z}_q^*$ then $E(m_1, r_1) \times E(m_2, r_2) \in \mathcal{E}(m_1 m_2)$

¹Homomorphic property

Blinding protocols

Re-encryption and Distributed

Re-encryption protocol

The basic re-encryption protocol is

- 1. Pick a random² $\rho \in \mathcal{G}_p$, then compute $E_A(\rho)$ and $E_B(\rho)$
- 2. Compute blinded ciphertext $E_A(m\rho) := E_A(m) \times E_A(\rho)$
- 3. Employ threshold decryption to obtain blinded plaintext $m\rho$ from blinded ciphertext $E_A(m\rho)$.
- 4. Compute $E_B(m) := m\rho \cdot E_B(\rho)^{-1}$

²The possibility of compromised servers makes computing ρ , $E_A(\rho)$, and $E_B(\rho)$ trickier.

Distributed blinding protocol i

Given two related public keys K_A and K_B , the distributed blinding protocol must satisfy the following correctness requirements:

- Randomness-Confidentiality: Blinding factor $\rho \in \mathcal{G}_p$ is chosen randomly and kept confidential from the adversary.
- Consistency: The protocol outputs a pair of ciphertexts $E_A(\rho)$ and $E_B(\rho)$.

They make an assumption about "Compromised servers":

Failstop adversaries

Compromised servers are limited to disclosing locally stored information or halting prematurely.

Distributed blinding protocol ii

To compute a confidential blinding factor ρ , its sufficient to calculate:

$$\prod_{i\in I}\rho_i$$

where I is the set of at least f+1 servers. And each server $i \in I$ generates a random ρ_i .

7

Failstop adversary distributed blinding protocol i

- 1. Coordinator C_j initiates protocol by sending to every server in B an init message.
- 2. Upon receipt of an init message from C_j , a server i:
 - 2.1 Generates an independent random number ρ_i
 - 2.2 Computes encrypted contribution $(E_A(\rho_i), E_B(\rho))$
 - 2.3 Sends contribution to coordinator C_i
- 3. Upon receipt of contribute messages from a set I comprising f+1 servers in B
 - 3.1 C_i computes:

$$E_A(\rho) = \bigotimes_{i \in I} E_A(\rho_i)$$

$$E_B(\rho) = \bigotimes_{i \in I} E_B(\rho_i)$$

3.2 Send $(E_A(\rho), E_B(\rho))$ to service A

$$E_x(\rho) = X_{i \in I} E_x(\rho_i, r_i)$$
 requires that $\sum_{i \in I} r_i \in \mathbb{Z}_q^*$ holds.

Failstop adversary distributed blinding protocol ii

To cope with faulty coordinators and guarantee protocol termination, f+1 coordinators are used, that way at least one will complete the protocol.

Defending against malicious attacks

Defending against malicious attacks

Three forms of misbehaviour become possible:

- 1. Servers choose contributions that are not independent
- 2. The encrypted contribution from each server i not being of the form $(E_A(\rho_i), E_B(\rho_i'))$, where $\rho_i = \rho_i'$
- Servers and coordinators not following the protocol in other ways

Randomness-Confidentiality

Problem

Suppose $\{(E_A(\rho_i), E_B(\rho_i)) \mid 1 \leq i \leq f\}$. After receiving these, a compromised server generates two ciphertexts $E_A(\hat{\rho}_i)$ and $E_B(\hat{\rho}_i)$ and constructs it in a way that does:

$$(E_A(\hat{\rho}_i) \times (\times_{i=1}^f E_A(\rho_i))^{-1}, E_B(\hat{\rho}_i) \times (\times_{i=1}^f E_B(\rho_i))^{-1})$$

Solution

Instead of sending an encrypted message to the coordinator, each server sends a *commitment*, which is a cryptographic hash of that encrypted contribution. And only after the coordinator has received 2f+1 commitments does it solicit encrypted contributions from the servers. Then it needs to receive f+1 encrypted contributions.

Encrypted contribution consistency

Problem

The encrypted contribution from each server i **not** being of the form $(E_A(\rho_i), E_B(\rho_i'))$, where $\rho_i = \rho_i'$

Solution

They use a cryptographic block called *verifiable dual encryption* and it is based on the *non-interactive zero-knowledge proof*, for the equality of two discrete logarithms.