Evaluating the Validity and Robustness of Instrumental-Variable Analyses

18 July 2024

Kai Cooper Penn
Guilherme Duarte Penn
Luke Keele Penn

Dean Knox Penn
Kennedy Mattes Harvard
Jonathan Mummolo Princeton

The Problem

- Is voting habit forming? (Davenport et al., 2010)
 - \circ Z: instrument (encouragement to vote at t = 1)
 - \circ A: treatment (voting at t = 1)
 - \circ *Y*: outcome (voting at t=2)
 - *U*: unobserved confounder (e.g. political interest)
- We want to investigate the effect of A on Y:

1. Exogeneity: $(Y(a), A(z)) \perp Z$:

 \circ Violation: Confounding between Z and Y

- 1. Exogeneity: $(Y(a), A(z)) \perp Z$:
 - \circ Violation: Confounding between Z and Y
- 2. Exclusion restriction: Y(a, z) = Y(a)
 - \circ Violation: Direct arrow from Z to Y

- 1. Exogeneity: $(Y(a), A(z)) \perp Z$:
 - \circ Violation: Confounding between Z and Y
- 2. Exclusion restriction: Y(a, z) = Y(a)
 - Violation: Direct arrow from Z to Y
- 3. No defiers: $A(Z = 1) \ge A(Z = 0)$
 - Violation: Units challenge their assignment

- 1. Exogeneity: $(Y(a), A(z)) \perp Z$:
 - \circ Violation: Confounding between Z and Y
- 2. Exclusion restriction: Y(a, z) = Y(a)
 - Violation: Direct arrow from Z to Y
- 3. No defiers: $A(Z = 1) \ge A(Z = 0)$
 - Violation: Units challenge their assignment
- LATE = $E[Y(a_1) Y(a_0)| compliers]$ is identifiable if one assumes 1, 2, and 3 (Imbens & Angrist, '94)

Are these assumptions testable?

"fundamentally untestable, and its validity has to be argued in the context of a particular application" (Imbens & Angrist, '94' on monotonicity/IV assumptions)

Are these assumptions testable?

"fundamentally untestable, and its validity has to be argued in the context of a particular application" (Imbens & Angrist,'94' on monotonicity/IV assumptions)

- Those assumptions indeed have observable implications (Pearl, '95; Balke & Pearl, '97)
 - These are useful for falsification tests

• Framework:

1. Define assumptions, collect available data, state an estimand

- 1. Define assumptions, collect available data, state an estimand
- 2. Test if data contradicts assumptions

- 1. Define assumptions, collect available data, state an estimand
- 2. Test if data contradicts assumptions
- 3. Derive sharp bounds for the estimand

- 1. Define assumptions, collect available data, state an estimand
- 2. Test if data contradicts assumptions
- 3. Derive sharp bounds for the estimand
- 4. Sensitivity: check how violations affect results

- 1. Define assumptions, collect available data, state an estimand
- 2. Test if data contradicts assumptions
- 3. Derive sharp bounds for the estimand
- 4. Sensitivity: check how violations affect results
- Based on automated partial identification (Duarte et al., '23; Duarte, '24)
 - When a quantity is not identified, we still get sharp bounds

- 1. Define assumptions, collect available data, state an estimand
- 2. Test if data contradicts assumptions
- 3. Derive sharp bounds for the estimand
- 4. Sensitivity: check how violations affect results
- Based on automated partial identification (Duarte et al., '23; Duarte, '24)
 - When a quantity is not identified, we still get sharp bounds
 - We can evaluate bounds when assumptions are relaxed

Evaluating IV Assumptions

Testing

```
egin{aligned} P(y_1,a_1|z_1) - P(y_1,a_1|z_0) &\geq 0 \ P(y_0,a_1|z_1) - P(y_0,a_1|z_0) &\geq 0 \ P(y_0,a_0|z_0) - P(y_0,a_0|z_1) &\geq 0 \ P(y_1,a_0|z_0) - P(y_1,a_0|z_1) &\geq 0 \ P(a_1|z_1) - P(a_1|z_0) &\geq 0 \end{aligned}
```

Evaluating IV Assumptions

Testing

$$egin{aligned} P(y_1,a_1|z_1) - P(y_1,a_1|z_0) &\geq 0 \ P(y_0,a_1|z_1) - P(y_0,a_1|z_0) &\geq 0 \ P(y_0,a_0|z_0) - P(y_0,a_0|z_1) &\geq 0 \ P(y_1,a_0|z_0) - P(y_1,a_0|z_1) &\geq 0 \ P(a_1|z_1) - P(a_1|z_0) &\geq 0 \end{aligned}$$

Sensitivity

$$\theta \in [0, 0.2],$$

$$\psi \in [0, 0.01]$$

Evaluating IV Assumptions

Testing

$$egin{aligned} &P(y_1,a_1|z_1)-P(y_1,a_1|z_0)\geq 0\ &P(y_0,a_1|z_1)-P(y_0,a_1|z_0)\geq 0\ &P(y_0,a_0|z_0)-P(y_0,a_0|z_1)\geq 0\ &P(y_1,a_0|z_0)-P(y_1,a_0|z_1)\geq 0\ &P(a_1|z_1)-P(a_1|z_0)>0 \end{aligned}$$

Sensitivity

$$\theta \in [0, 0.2],$$
 $\psi \in [0, 0.01]$

Applications

Testing Assumptions

• In 1995, Pearl derived *Instrumental Inequalities* (Pearl, '95):

$$\max_{a} \sum_{y} [\max_{z} P(y, a|z)] \le 1, \text{ under assumptions } 1, 2$$

If inequalities are violated, then IV assumptions are invalid

• In 1995, Pearl derived *Instrumental Inequalities* (Pearl, '95):

$$\max_{a} \sum_{y} [\max_{z} P(y, a|z)] \le 1, \text{ under assumptions } 1, 2$$

- If inequalities are violated, then IV assumptions are invalid
- In practice, falsification tests can detect large violations

• In 1995, Pearl derived *Instrumental Inequalities* (Pearl, '95):

$$\max_{a} \sum_{y} [\max_{z} P(y, a|z)] \le 1, \text{ under assumptions } 1, 2$$

- If inequalities are violated, then IV assumptions are invalid
- In practice, falsification tests can detect large violations
- Smaller violations may go undetected

• In 1995, Pearl derived *Instrumental Inequalities* (Pearl, '95):

$$\max_{a} \sum_{y} [\max_{z} P(y, a|z)] \le 1, \text{ under assumptions } 1, 2$$

- If inequalities are violated, then IV assumptions are invalid
- In practice, falsification tests can detect large violations
- Smaller violations may go undetected
- Note: if exogeneity is satisfied (e.g. by random assignment),
 this is a test of the exclusion restriction

Generalized IV Falsification Test

• Kedagni and Mourifie (2020) proved that if a model satisfies exclusion restriction and exogeneity, then:

$$\max_{z} P(y_{1}, a|z) + \max_{z} P(y_{1}, a'|z) \leq 1$$

$$\max_{z} P(y_{1}, a|z) - \min_{z} P(y_{1}|z) - \min_{z} P(y_{1}, a|z) + P(y_{0}, a'|z) \leq 0$$

$$\max_{z} P(y_{0}, a|z) - \min_{z} P(y_{0}|z) - \min_{z} P(Y_{0}, a|z) - P(y_{1}, a'|z) \leq 0$$

$$\min_{z} P(y_{0}|z) + \min_{z} P(y_{1}|z) + \min_{z} P(y_{0}, a|z) + P(y_{1}, a'|z) \min_{z} P(y_{1}, a|z) + P(y_{0}, a'|z) \geq 1$$

Generalized IV Falsification Test

• Kedagni and Mourifie (2020) proved that if a model satisfies exclusion restriction and exogeneity, then:

$$\max_{z} P(y_{1}, a|z) + \max_{z} P(y_{1}, a'|z) \leq 1$$

$$\max_{z} P(y_{1}, a|z) - \min_{z} P(y_{1}|z) - \min_{z} P(y_{1}, a|z) + P(y_{0}, a'|z) \leq 0$$

$$\max_{z} P(y_{0}, a|z) - \min_{z} P(y_{0}|z) - \min_{z} P(Y_{0}, a|z) - P(y_{1}, a'|z) \leq 0$$

$$\min_{z} P(y_{0}|z) + \min_{z} P(y_{1}|z) + \min_{z} P(y_{0}, a|z) + P(y_{1}, a'|z) \min_{z} P(y_{1}, a|z) + P(y_{0}, a'|z) \geq 1$$

• There are no other observable implications (sharpness)

Monotonicity Falsification Test

If we also assume monotonicity (Balke & Pearl, '97'):

$$P(y_1, a_1|z_1) - P(y_1, a_1|z_0) \ge 0$$

$$P(y_0, a_1|z_1) - P(y_0, a_1|z_0) \ge 0$$

$$P(y_0, a_0|z_0) - P(y_0, a_0|z_1) \ge 0$$

$$P(y_1, a_0|z_0) - P(y_1, a_0|z_1) \ge 0$$

$$P(a_1|z_1) - P(a_1|z_0) \ge 0$$

Monotonicity Falsification Test

• If we also assume monotonicity (Balke & Pearl, '97'):

$$P(y_1, a_1|z_1) - P(y_1, a_1|z_0) \ge 0$$

$$P(y_0, a_1|z_1) - P(y_0, a_1|z_0) \ge 0$$

$$P(y_0, a_0|z_0) - P(y_0, a_0|z_1) \ge 0$$

$$P(y_1, a_0|z_0) - P(y_1, a_0|z_1) \ge 0$$

$$P(\mathbf{a_1}|\mathbf{z_1}) - P(\mathbf{a_1}|\mathbf{z_0}) \ge 0$$

ullet The ATE of Z on A being positive is a weak test

Monotonicity Falsification Test

If we also assume monotonicity (Balke & Pearl, '97'):

$$P(y_1, a_1|z_1) - P(y_1, a_1|z_0) \ge 0$$

$$P(y_0, a_1|z_1) - P(y_0, a_1|z_0) \ge 0$$

$$P(y_0, a_0|z_0) - P(y_0, a_0|z_1) \ge 0$$

$$P(y_1, a_0|z_0) - P(y_1, a_0|z_1) \ge 0$$

$$P(\mathbf{a_1}|\mathbf{z_1}) - P(\mathbf{a_1}|\mathbf{z_0}) \ge 0$$

- ullet The ATE of Z on A being positive is a weak test
- The test is sharp (Kitagawa, 2015)

• How much can these assumptions be violated before the data is uninformative?

- How much can these assumptions be violated before the data is uninformative?
- ullet Let heta be the proportion of defiers and ψ , of E.R. violators
 - How do bounds change in response to their values?

- How much can these assumptions be violated before the data is uninformative?
- Let θ be the proportion of defiers and ψ , of E.R. violators • How do bounds change in response to their values?
- Sensitivity function: bounds as function of violations / data
 - \circ E.g. what are LATE bounds given θ or ψ and P(Y,A,Z)?

- How much can these assumptions be violated before the data is uninformative?
- ullet Let heta be the proportion of defiers and ψ , of E.R. violators
 - How do bounds change in response to their values?
- Sensitivity function: bounds as function of violations / data
 - \circ E.g. what are LATE bounds given θ or ψ and P(Y,A,Z)?
- How can we derive sensitivity functions?
 - Use Autobounds (Duarte et al., '23) to get numerical approximations

- How much can these assumptions be violated before the data is uninformative?
- Let heta be the proportion of defiers and ψ , of E.R. violators
 - How do bounds change in response to their values?
- Sensitivity function: bounds as function of violations / data
 - \circ E.g. what are LATE bounds given θ or ψ and P(Y,A,Z)?
- How can we derive sensitivity functions?
 - Use Autobounds (Duarte et al., '23) to get numerical approximations
 - Use Autobounds-Ext (Duarte, '24) to derive closed-form solutions

- How much can these assumptions be violated before the data is uninformative?
- Let heta be the proportion of defiers and ψ , of E.R. violators
 - How do bounds change in response to their values?
- Sensitivity function: bounds as function of violations / data
 - \circ E.g. what are LATE bounds given θ or ψ and P(Y,A,Z)?
- How can we derive sensitivity functions?
 - Use Autobounds (Duarte et al., '23) to get numerical approximations
 - Use Autobounds-Ext (Duarte, '24) to derive closed-form solutions
 - Both are based on the principles of automated partial id.

- How much can these assumptions be violated before the data is uninformative?
- ullet Let heta be the proportion of defiers and ψ , of E.R. violators
 - How do bounds change in response to their values?
- Sensitivity function: bounds as function of violations / data
 - \circ E.g. what are LATE bounds given θ or ψ and P(Y,A,Z)?
- How can we derive sensitivity functions?
 - Use Autobounds (Duarte et al., '23) to get numerical approximations
 - Use Autobounds-Ext (Duarte, '24) to derive closed-form solutions
 - Both are based on the principles of automated partial id.
 - One states a causal question, introduces data and assumptions, and gets sharp bounds on the estimand

Sensitivity Analysis

- Sensitivity functions depend on *exact* violations:
 - \circ θ , ψ take precise values

Sensitivity Analysis

- Sensitivity functions depend on exact violations:
 - \circ θ , ψ take precise values
- But we want to understand how bounds change across a range of violations:
 - \circ E.g. defiers are *at most* 0.2 of units, restrict $\theta \in [0, 0.2]$
 - \circ E.g. E.R. violation units are *at most* 0.01, restrict $\psi \in [0, 0.01]$

Sensitivity Analysis

- Sensitivity functions depend on exact violations:
 - \circ θ , ψ take precise values
- But we want to understand how bounds change across a range of violations:
 - \circ E.g. defiers are at most 0.2 of units, restrict $\theta \in [0, 0.2]$
 - \circ E.g. E.R. violation units are at most 0.01, restrict $\psi \in [0, 0.01]$
- Sensitivity analysis: optimize bounds over possible θ and ψ using Autobounds.

Empirical Applications

Simulation

- We simulate a scenario with $N=10^6$ units:
 - 10% of defiers and 31.5% of units violating exclusion restriction
 - 4.6% of units violate both assumptions at the same time

Simulation

- We simulate a scenario with $N=10^6$ units:
 - 10% of defiers and 31.5% of units violating exclusion restriction
 - 4.6% of units violate both assumptions at the same time
- Test the inequalities against the data
 - \circ Detection of no defiers and E.R. violations (p-value < 0.01)
 - $\circ E[A(z_1) A(z_0)] = 0.1$: naive ATE_A test fails to detect them

Simulation

- We simulate a scenario with $N=10^6$ units:
 - 10% of defiers and 31.5% of units violating exclusion restriction
 - 4.6% of units violate both assumptions at the same time
- Test the inequalities against the data
 - \circ Detection of no defiers and E.R. violations (p-value < 0.01)
 - $\circ E[A(z_1) A(z_0)] = 0.1$: naive ATE_A test fails to detect them
- Sensitivity Analysis:
 - Proportion of violating units is at least 0.03
 - LATE can be signed in (0.03, 0.07)
 - LATE can't be signed above 0.07

- Testing habit forming with turnout encouragement
 - \circ instrument Z: encouragement to vote
 - treatment A: voting in 2006 Michigan elections
 - \circ outcome Y: voting in subsequent elections

- Testing habit forming with turnout encouragement
 - \circ instrument Z: encouragement to vote
 - treatment A: voting in 2006 Michigan elections
 - outcome *Y*: voting in subsequent elections
- Are there defiers? Is the exclusion restriction violated?

- Testing habit forming with turnout encouragement
 - instrument Z: encouragement to vote
 - treatment A: voting in 2006 Michigan elections
 - outcome Y: voting in subsequent elections
- Are there defiers? Is the exclusion restriction violated?
- Testing results:
 - Tests: cannot reject violations
 - \circ ATE: [-0.494, 0.423], with 95% CI of [-0.5, 0.425]
 - LATE: 0.124, with 95% Cl of [0.08, 0.17]

- Testing habit forming with turnout encouragement
 - instrument Z: encouragement to vote
 - treatment A: voting in 2006 Michigan elections
 - outcome Y: voting in subsequent elections
- Are there defiers? Is the exclusion restriction violated?
- Testing results:
 - Tests: cannot reject violations
 - \circ ATE: [-0.494, 0.423], with 95% CI of [-0.5, 0.425]
 - LATE: 0.124, with 95% CI of [0.08, 0.17]
- Just because we did not detect violations, it does not mean they are not there, so we proceed with sensitivity analysis

- Sensitivity Analysis:
 - How robust are those results to violations of no defiers?
 - ATE is not much affected
 - \circ LATE is positive if the proportion of defiers is < 1%
 - Violations cause nonlinear impact on the LATE

- Sensitivity Analysis:
 - How robust are those results to violations of E.R.?
 - ATE is not much affected
 - \circ LATE is positive if the proportion of violations is is < 1%
 - Violations cause linear impact on the LATE

More Complex Scenarios

Judge IV Design and Issues

- Use judge random assignment as natural experiment:
 - E.g. estimate the effect of pre-trial detention on conviction
 - \circ Z: judge random assignment
 - A: pre-trial detention
 - Y: conviction

Judge IV Design and Issues

- Use judge random assignment as natural experiment:
 - E.g. estimate the effect of pre-trial detention on conviction
 - \circ Z: judge random assignment
 - A: pre-trial detention
 - Y: conviction
- Complications:
 - Instrument is many valued
 - Who is a defier?
 - Exclusion restriction violated
 - Trial judge can read the case notes of arraignment judge

Judge IV Design and Issues

- Use judge random assignment as natural experiment:
 - E.g. estimate the effect of pre-trial detention on conviction
 - \circ Z: judge random assignment
 - A: pre-trial detention
 - Y: conviction
- Complications:
 - Instrument is many valued
 - Who is a defier?
 - Exclusion restriction violated
 - Trial judge can read the case notes of arraignment judge
- ullet Reanalysis of Stevenson (2018): positive effect of 0.13
- Our paper: derive results for many-valued instrument
- Today: compare two judges at a time (more severe to more lenient)

Reanalysis of Stevenson (2018)

- Comparison between the most extreme judges (z_0/z_n) :
 - \circ "No defiers" assumption is rejected (p-value < 0.01)
 - \circ The bounds cross in the region where θ is 0.0015, with LATE equal to -0.84
 - \circ High negative LATE contradicts the main result of the paper, suggesting small violations cause high bias to the LATE estimate, even when evaluated at the minimum θ

Reanalysis of Stevenson (2018)

- Comparison between somewhat extreme judges (z_2/z_n) :
 - "No defiers" is not rejected for this case
 - \circ No pre-existent violation, so LATE is identifiable at 0.044
 - \circ LATE is unsigned if we allow for small heta deviation (close to 0)

Conclusions

- IV assumptions often characterized as untestable
- We can empirically evaluate key assumptions
 - Falsify monotonicity/exclusion restriction
 - Sensitivity analysis for defiers and E.R. violations
- Show we can reject assumptions in practice
- In applications, IV results extremely sensitive to minor violations
- Extensions:
 - Characterize robustness in the IV literature
 - Use framework for other models, e.g. factorial experiments

Guilherme Duarte

gjduarte@upenn.edu