Inferences for a Mean Vector

- * Suppose that X_1, \ldots, X_m are a random sample from a $\mathsf{N}_p(\mu, \Sigma)$ distribution.
- st Generally both μ and Σ are unknown.
- * In this section we would like to make inferences about μ so Σ is a nuisance parameter.
- * Among the inferences we would like to make are
 - Test $\mu = \mu_0$ for a known vector μ_0 .
 - ullet Construct a confidence region for μ .

Recap of Univariate Inference

- * Suppose that p = 1 and we wish to make inference about μ .
- * Inference is generally based on

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

- * W.S. Gosset (Student) showed that T has a t distribution with n-1 degrees of freedom.
- * This result allows us to test hypotheses about μ and construct confidence intervals.

Testing Hypotheses

* Suppose that we wish to test H_0 : $\mu = \mu_0$ then, when this hypothesis is true,

$$T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$

* If we let t_0 be the observed value of T_0 in our sample then a p-value of the test is

$$p = P(|T_0| > |t_0|) = P(T_0^2 > t_0^2)$$

* We reject H_0 if p is small.

Confidence Intervals

- * Suppose that we decide to reject H_0 if $p < \alpha$.
- * This is equivalent to saying we reject if

$$|t_0| = \left| \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \right| < t_{n-1}(\alpha/2)$$

where $t_{n-1}(\alpha/2)$ is the $1-\alpha/2$ quantile of the t_{n-1} distribution.

- * If we do NOT reject H_0 then we are saying that μ_0 is a plausible value of μ .
- * There will be many plausible values!

Confidence Intervals

* The collection of all plausible values is

$$\left\{\mu_0 \in \mathbb{R} : \left| \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \right| < t_{n-1}(\alpha/2) \right\}$$

* An alternative way of writing this is

$$\left\{\mu_0 \in \mathbb{R} : \overline{x} - t_{n-1}(\alpha/2) \frac{s}{\sqrt{n}} < \mu_0 < \overline{x} + t_{n-1}(\alpha/2) \frac{s}{\sqrt{n}} \right\}$$

* The interval

$$\left(\overline{x}-t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}}, \quad \overline{x}+t_{n-1}(\alpha/2)\frac{s}{\sqrt{n}}\right)$$

is a $100(1-\alpha)\%$ Confidence Interval For μ .

t and F Distributions

Theorem 17

Suppose that $Z \sim N(0,1)$, $X \sim \chi_k^2$ and Z and X are independent. Then

$$T = \frac{Z}{\sqrt{X/k}} \sim t_k$$

Theorem 18

Suppose that $X_1 \sim \chi^2_{k_1}$, $X_2 \sim \chi^2_{k_2}$ and X_1 and X_2 are independent. Then

$$F = \frac{X_1/k_1}{X_2/k_2} \sim F_{k_1,k_2}$$

Theorem 19

If $T \sim t_k$ then $F = T^2 \sim F_{1,k}$.

Extending to the Multivariate Setting

st An equivalent to the T statistic for two-sided inference is the statistic

$$T^2 = \frac{n(\overline{X} - \mu)^2}{S^2} \sim F_{1,n-1}$$

* We can write this as

$$T^2 = n(\overline{X} - \mu)S^{-1}(\overline{X} - \mu)$$

* An obvious generalization of this to multivariate setting is then

$$T^2 = n(\overline{X} - \mu)^t S^{-1}(\overline{X} - \mu)$$

* This statistic is known as the Hotelling's T^2 Statistic.

Distribution of T^2

- * The T^2 statistic given on the previous page is named named after Harold Hotelling, an American mathematical statistician.
- * In 1931, Hotelling examined this extension of the Student's t statistic and showed that the sampling distribution of T^2 is proportional to an F distribution.

$$T^2 \sim \frac{(n-1)p}{(n-p)}F_{p,n-p}$$

* Note that when p = 1 this reduces to the result given earlier.

Application To Multivariate Testing

- * Suppose that we wish to test H_0 : $\mu = \mu_0$ for some specified μ_0 .
- * Define the test statistic

$$T_0^2 = n(\overline{X} - \mu_0)^t S^{-1}(\overline{X} - \mu_0)$$

and let t_0^2 be the observed value.

* Then we can test H_0 by calculating the p-value

$$p = P\left(T_0^2 > t_0^2\right)$$

* Rejecting for $p < \alpha$ is equivalent to rejecting for

$$t_0^2 > \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$$

where $F_{p,n-p}(\alpha)$ is the $1-\alpha$ quantile of the $F_{p,n-p}$ distribution.

Properties of the Test

- * If we reject H_0 then this means that At least one of the components of μ is not equal to the corresponding component of μ_0 .
- The validity of the test does rely on the multivariate normality assumption so this should always be checked before applying the test.
- * An interesting result is that if we let Y = AX + b for a non-singular $p \times p$ matrix A and constant vector $b \in \mathbb{R}^p$ then the statistic for testing $\mu_Y = A\mu_0 + b$ based on Y_1, \ldots, Y_n is exactly the same as that for testing $\mu = \mu_0$ based on the original sample X_1, \ldots, X_n .

Likelihood Ratio Tests

- * A general way of testing composite hypotheses.
- * Suppose that $\theta \in \Theta$ is the parameter of the distribution and the likelihood based on a random sample is

$$L(\theta; x_1, \dots, x_n) = \prod_{i=1}^n f_X(x_i; \theta)$$

* Then the likelihood ratio test statistic of $H_0: \theta \in \Theta_0$ is

$$\Lambda = \frac{\max\limits_{\boldsymbol{\theta} \in \Theta_0} L(\boldsymbol{\theta}; \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)}{\max\limits_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}; \boldsymbol{x}_1, \dots, \boldsymbol{x}_n)}$$

* The likelihood ratio test procedure is then to reject H_0 if $\Lambda < c$ where c is chosen so that

$$P(\Lambda < c; \theta \in \Theta_0) = \alpha$$

Application to the Normal Mean

* In this case we have $heta=(\mu,\Sigma)$ and we know from earlier work that

$$\max_{\mu,\Sigma} L(\mu,\Sigma) = L(\overline{x},\widehat{\Sigma}) = \frac{1}{(2\pi)^{np/2} |\widehat{\Sigma}|^{n/2}} e^{-np/2}$$

* Similarly we can see that

$$\max_{\mu = \mu_0} L(\mu, \Sigma) = \max_{\Sigma} L(\mu_0, \Sigma)$$

$$= L(\mu_0, \widehat{\Sigma}_0)$$

$$= \frac{1}{(2\pi)^{np/2} |\widehat{\Sigma}_0|^{n/2}} e^{-np/2}$$

where

$$\hat{\Sigma}_0 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0) (x_i - \mu_0)^t$$

Application to the Normal Mean

* Using these results we see that the likelihood ratio statistic can be written as

$$\Lambda = \left(\frac{\left|\widehat{\Sigma}\right|}{\left|\widehat{\Sigma}_{0}\right|}\right)^{n/2} = \Lambda_{1}^{n/2}$$

- * The quantity $\Lambda_1 = |\widehat{\Sigma}|/|\widehat{\Sigma}_0|$ is known as Wilk's Lambda.
- * Obviously rejecting when Λ is small is equivalent to rejecting when Λ_1 is small so it suffices to consider Λ_1 as the test statistic.

Relationship with Hotelling's Test

Theorem 20

Let X_1, \ldots, X_n be a random sample from a $\mathsf{N}_p(\pmb{\mu}, \pmb{\Sigma})$ distribution. Let

$$T_0^2 = n(\overline{X} - \mu_0)^t S^{-1}(\overline{X} - \mu_0)$$

be the Hotelling's T^2 statistic for testing $\mu=\mu_0$ and let

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Then

$$\Lambda_1 = \left(1 + \frac{T^2}{n-1}\right)^{-1}.$$

Relationship with Hotelling's Test

- * The previous theorem implies that rejecting for small values of Λ_1 is exactly equivalent to rejecting for large values of T_0^2 and so the two tests are equivalent.
- * It also shows that we do not need to invert S to get T^2 since we can simply use the determinants

$$T_0^2 = (n-1) \left(\frac{\left| \sum_{i=1}^n (x_i - \mu_0)(x_i - \mu_0)^t \right|}{\left| \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})^t \right|} - 1 \right)$$

Confidence Ellipsoids for μ

- * Based on the Hotelling's T^2 we can find a confidence region for μ .
- * We do not reject H_0 : $\mu=\mu_0$ at a significance level α if

$$n(\overline{x} - \mu_0)^t S^{-1}(\overline{x} - \mu_0) < \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$$

* Hence we can use the confidence ellipsoid

$$n(\overline{x}-\mu)^t S^{-1}(\overline{x}-\mu) < \frac{(n-1)p}{(n-p)} F_{p,n-p}(\alpha)$$

as a set of plausible values of μ with confidence level $100(1-\alpha)$ %.

Axes of the Confidence Ellipsoid

- * From the work we did earlier we can see that the axes of the confidence ellipsoid are parallel to the eigenvectors of S.
- * Furthermore the length of the j^{th} axis is proportional to the j^{th} -largest eigenvalue λ_j .
- * The j^{th} principal axis is then

$$\overline{x} \pm \sqrt{\frac{(n-1)p}{n(n-p)}} F_{p,n-p}(\alpha) e_j$$

Inference for a Linear Combination

- * We are often interested in making inference about $a^t \mu$ for some vector $a \in \mathbb{R}^p$.
- * When we are truly only interested in a single linear combination $a^t \mu$ we can use the univariate statistic

$$T = \frac{\sqrt{n}(a^t \overline{x} - a^t \mu)}{\sqrt{a^t S a}} \sim t_{n-1}$$

* Hence we get the $100(1-\alpha)\%$ confidence interval

$$a^t \overline{x} \pm t_{n-1}(\alpha/2) \sqrt{\frac{a^t S a}{n}}$$

* Usually, however, we are interested in many different linear combinations.

Simultaneous Inference

- * Suppose that we may be interested in any linear combination.
- * Individually intervals can be based on

$$T^2(a) = \frac{n(a^t\overline{x} - a^t\mu)^2}{a^tSa} \leqslant c^2$$

where c^2 is chosen such that

$$P(T^2(a) \leq c^2 \text{ for any } a) = P(\max_{a \in \mathbb{R}^p} T^2(a)) = 1 - \alpha$$

- * It is possible to show that the Hotelling's T^2 maximizes $T^2(a)$ over all $a \in \mathbb{R}^p$.
- * Hence we get the simultaneous intervals

$$a^t \overline{x} \pm \sqrt{\frac{(n-1)p}{n(n-p)}} F_{p,n-p}(\alpha) a^t S a$$

Some Useful Linear Combinations

* For an individual component, μ_j of μ we get

$$\overline{x}_j \pm \sqrt{\frac{(n-1)p}{n(n-p)}F_{p,n-p}(\alpha)s_{jj}}$$

* For $\mu_j - \mu_k$ we get the interval

$$\overline{x}_j - \overline{x}_k \pm \sqrt{\frac{(n-1)p}{n(n-p)}F_{p,n-p}(\alpha)\left(s_{jj} + s_{kk} - 2s_{jk}\right)}$$

The Bonferroni Method

- * In many situations we are not interested in all possible linear combinations.
- * We may only be interested in a small subset of linear combinations of a specific type.
- * For example maybe we are only interested in intervals for the p components of μ .
- * In such cases, the simultaneous intervals given are too wide since they are designed to give the correct coverage over all possible a.

The Bonferroni Method

- * Suppose that we are only interested in m (pre-specified) linear combinations.
- * To get an overall coverage of at least $1-\alpha$ for these intervals we can use the univariate intervals but adjust the critical value used.
- * The Bonferroni Correction for Multiple Inference says that instead of using $\alpha/2$ for each univariate interval we should use $\alpha_k/2$ where $\sum \alpha_k = \alpha$
- * Typically we take $\alpha_k = \alpha/m$ for $k = 1, \ldots, m$.
- * Hence we get the intervals

$$a_k^t \overline{x} \pm t_{n-1}(\alpha/(2m)) \sqrt{\frac{a_k^t S a_k}{n}}$$

Large Sample Inferences

* Large sample testing can be based on the result that

$$T_0^2 = n(\overline{X} - \mu_0)^t S^{-1}(\overline{X} - \mu_0) \stackrel{d}{\longrightarrow} \chi_p^2$$

when $\mu = \mu_0$.

* From this we can get the confidence ellipsoid

$$n(\overline{x}-\mu)^t S^{-1}(\overline{x}-\mu) < \chi_p^2(\alpha)$$

- * Simultaneous confidence intervals can be similarly defined.
- * Univariate results (including Bonferroni corrected ones) come from replacing t quantiles with standard normal quantiles.
- * These results will hold provided n and n-p are large.