

Outline of Presentation

Presentation for Stakeholders

- Introduction
 - Business issue
 - -/ Use case
- Objectives of the study
- Methodology
- Results

Presentation for Data Science Peers

- Setting up the environment
- Extract, Transform, and Load (ELT)
- Exploratory Data Analysis (EDA)
 - Data Exploration
 - Data Visualization
- Feature Engineering
- Model algorithms (model definition & training)
- Model performance indicators
- Model evaluation
- Model tuning
- Random Forest algorithm
- References

Presentation for Stakeholders

Introduction

Business issues

- Heart failure a life-threatening issue and has higher negative impacts
- ☐ If one encounters heart failure, the heart cannot support vital blood to the body.
- A clear understanding of which factors cause heart failure will enhance the survival chance of patients in the future.

https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/syc-20373142#dialogld65548891

Use case

- ☐ Data from UC Irvine Machine Learning Repository
- ☐ It was derived from *Chicco and Jurman (2020)*
- ☐ Includes cases of 299 patients, and it was collected in 2015

Objectives

- to explore which machine learning algorithms are better suited to predict the event of deceased from heart failure
- to predict the probability of deceased from heart failure and which factors most affect on heart failure

Methodology

- > Apache Spark
- The target variable (DEATH_EVENT) includes a binary classification (Survived:**0** & Deceased:**1**)
- Logistic Regression, Random Forest, Gradient-Boosted Tree, and Artificial Neutral Network

Results

Comparison of model performance for three Machine Learning and one Deep Learning algorithms

Model	Algorithm	Evalua	Remark		
Model	Aigoillilli	Training accuracy	Test accuracy	Remark	
Logistic Regression	Machine	0.86	0.79		
Logistic Regression	learning	0.00	0.77		
Random Forest	Machine	0.95	0.85	The best fit algorithm	
Rundom Folesi	learning	0.75	0.05	The Dest in digoriffin	
Gradient-Boosted Tree	Machine	0.98	0.04		
(GBT)	learning	0.70	0.84		
Feed Forward Neutral	Doon loarning	0.97	0.70		
Network	Deep learning	0.87	0.79		

IBM Watson Studio Notebook permalinks GIST

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/a4eedece-d914-4691-872b-8cc8c3f1cc08/view?access token=09fa7105a248a3d7baf512bf4ad3a24578caf45a610e8116ae664a1cebb7dc71&context=cpdaas

Presentation for Data Science Peers

Architectural Choices

Component	Technology
Development platform	Apache Spark
	IBM Watson Studio
	PySpark 3.3
	Python 3.10 Jupyter Notebook
Data Format	CSV file

Extract, Transform, Load - ETL

- Load the data from the UC Irvine Machine Learning Repository

Out[12]:	age	anaemia	creatinine_pl	nosphokinase	diabetes	ejection_frac	tion high_blood_p	ressure	platelets	serum_creatinin	e serum_sc	odium	sex	smoking	time	DEATH_EV	ENT
	o 75.0	0		582	0		20	1	265000.00	1.	9	130	1	0	4		1
	1 55.0	0		7861	0		38	0	263358.03	1.	1	136	1	0	6	i	1
	2 65.0	0		146	0		20	0	162000.00	1.	3	129	1	1	7		1
	3 50.0	1		111	0		20	0	210000.00	1.	9	137	1	0	7		1
	4 65.0	1		160	1		20	0	327000.00	2.	7	116	0	0	8		1
	n [22]	from	k = Sparl	.sql impo kSession.	builder	.appName	('heart+fail								ma =	: True)	
	[]	from spar	pyspark k = Sparl	.sql impo kSession. .read.csv	builder	.appName									ma =	: True)	
	[]	from spar	pyspark k = Spark = spark printScl	.sql impo kSession. .read.csv hema()	builder ('heart	•appName _failure	('heart+fail	cords	_datase	t.csv', hea	der = T	rue,	inf	erSche			ENT
	[]	from spar	pyspark k = Spark = spark printScl age anaemi	.sql impo kSession. .read.csv hema() a creatinine_	builder ('heart	appName failure ase diabetes	('heart+fail _clinical_re 	cords	_datase	platelets serum 265000.0	der = T creatinine	rue,	info	erSche	ring ti	ime DEATH_EV	ENT + 1 1
	[]	from spar	pyspark k = Spark = spark .printScl age anaemi +	.sql impo kSession. .read.csv hema() a creatinine_ 	builder ('heart	ase diabetes	('heart+fail _clinical_re ejection_fraction 20 38 20	cords	_datase	platelets serum 	der = T creatinine 1.9 1.1 1.3	rue,	info sodium 130 136 129	sex smok 	ding ti	ime DEATH_EV + 4 6 7	ENT 1 1 1 1
	[]	from spar	pyspark k = Spark = spark .printScl age anaemi +	.sql impo kSession. .read.csv hema() a creatinine_ 	builder ('heart phosphokin	appName failure ase diabetes	('heart+fail _clinical_re ejection_fraction 20	cords	_datase	platelets serum 265000.0 263358.03	der = T creatinine	rue,	info sodium 130 136 129 137	erSche	sing ti	ime DEATH_EV + 4 6	ENT 1 1 1 1 1
	[]	from spar	pyspark k = Spark = spark printScl age anaemi 75.0 55.0 65.0 50.0 65.0	.sql impo kSession. .read.csv hema() a creatinine_ 	builder ('heart	ase diabetes	('heart+fail _clinical_re ejection_fraction 20 38 20	cords	_datase	platelets serum 265000.0 263358.03 162000.0 210000.0	der = T creatinine 1.9 1.1 1.3 1.9 2.7 2.1	rue,	info sodium 130 136 129 137 116	sex smok 	0 0 1 0 0	ime DEATH_EV + 4 6 7 7 8 8	ENT 1 1 1 1 1
		from spar	pyspark k = Spark = spark printScl age anaemi 75.0 55.0 65.0 50.0 65.0 90.0 75.0 60.0	.sql impo	builder ('heart	ase diabetes	('heart+fail _clinical_re ejection_fraction 20 38 20 20 20 40	cords	_datase	platelets serum 265000.0 263358.03 162000.0 210000.0 327000.0 204000.0	der = T creatinine 1.9 1.1 1.3 1.9 2.7	rue,	130 136 129 137 116 132 137 131	sex smok 	ing ti	ime DEATH_EV + 4 6 7 7 8	ENT 1 1 1 1 1 1 1

Exploratory Data Analysis (EDA)

Assessment of Data Quality

Data	Explanation
Dimension	299 observations * 13 features
Data type	(int64, float64)
Missing value	No

age	float64
anaemia	int64
creatinine_phosphokinase	int64
diabetes	int64
ejection_fraction	int64
high_blood_pressure	int64
platelets	float64
serum_creatinine	float64
serum_sodium	int64
sex	int64
smoking	int64
time	int64
DEATH_EVENT	int64
dtype: object	

Data Exploration

- The correlation between numerical features is weak (≤ 0.22)
- The data is fit to run further modeling

Data Visualization

Distribution of dependent variable (target)

Distribution of independent variable (input features)

Feature Engineering

- ❖ Five categorical integer features transform one-hot vectors using the OneHotEncoder function
- ❖ All input features transform into a single vector feature using the VectorAssembler function
- Then those input features normalize using the MinMaxScaler function
- Finally, two columns keep remained and it is ready for Machine Learning Models

```
llabel
                   features
    1|[1.0,1.0,0.0,0.0,...
    1|[1.0,1.0,1.0,0.0,...
    1|[1.0,1.0,1.0,0.0,...
    1|[0.0,1.0,1.0,0.0,...
    1|[0.0,0.0,1.0,1.0,...
    1|[0.0,1.0,0.0,0.0,...
    1|[0.0,1.0,1.0,0.0,...
    1|[0.0,0.0,1.0,0.0,...
    1|[1.0,1.0,1.0,1.0,...
    1|[0.0,1.0,0.0,0.0,...
    1|[0.0,1.0,0.0,0.0,...
    1|[1.0,1.0,0.0,0.0,...
    1|[0.0,1.0,1.0,0.0,...
    1|[0.0,1.0,0.0,0.0,...
    0|[0.0,1.0,0.0,1.0,...
    1|[0.0,1.0,1.0,0.0,...
    1|[0.0,1.0,1.0,0.0,...
    1|[1.0,1.0,1.0,0.0,...
    1|[0.0,1.0,0.0,1.0,...
    1|[0.0,0.0,1.0,1.0,...|
only showing top 20 rows
```

Model algorithms (Model definition and training)

- ➤ Labeled feature data Supervised Machine Learning
- The target a binary categorical variable
- Classifier model

Machine Learning

- Supervised Machine Learning classifiers
 - 1. Logistic Regression
 - 2. Random Forest (RF) bagging
 - 3. Gradient-Boosted Tree (GBT) boosting

Deep Learning

- Feed Forward Neutral Network/ Artificial Neutral Network (ANN)
- Multi-layer Perceptron

Good for Classification and regression

Model performance indicators

☐ Accuracy score was used as a model performance indicator

Model accuracy for Logistic Regression – 79%

```
In [33]: from pyspark.ml.classification import LogisticRegression
lr = LogisticRegression().fit(dt_train)
lr_smr = lr.summary

*5.1.1 Model Evaluation for Logistic Regression*

In [34]: ## Training data accuracy
lr_smr.accuracy

Out[34]: 0.8565400843881856
```

```
In [37]: ## Model accuracy (Test data accuracy)
    model_predictions = lr.transform(dt_test)
    model_predictions = lr.evaluate(dt_test)
    model_predictions.accuracy
Out[37]: 0.7903225806451613
```

Model accuracy for Random Forest– **98**%

It seems overfitting in RF

Model accuracy for Gradient-Boosted Tree – 100%

It has overfitting in GBT

Let's check model performance using Hyperparameter optimization (K-fold Cross Validation) for RF and GBT

Model accuracy for Feed Forward Neutral Network – 79%

Model tuning

Random Forest accuracy after 5-fold CV – 85%

Gradient-Boosted Tree accuracy after 5-fold CV – 84%

```
In [92]: # Use test set here so we can measure the accuracy of our model on new data
gbtpredictions1 = best_gbt.transform(dt_test)

## Let's see the accuracy for test
print("GBT Validation Accuracy for CrossValidation")
print("-----")
eval_gbt.evaluate(gbtpredictions1)

GBT Validation Accuracy for CrossValidation

Out[92]: 0.840277777777778
```

Random Forest Algorithm

After modeling three Machine Learning and one Deep Learning

Random Forest model performs better than other algorithms

References

Project GIST link (Jupyter Notebook)

IBM Watson Studio Notebook permalinks GIST

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/a4eedece-d914-4691-872b-8cc8c3f1cc08/view?access_token=09fa7105a248a3d7baf512bf4ad3a24578caf45a610e8116ae664a1cebb7dc71&context=cpdaas

Github link for the project

https://github.com/Zawmin2004/Advanced-Data-Science-with-IBM---Capstone-Project/blob/main/Capstone_Project_for_IBM_Advanced_Data_Science.ipynb

Architectural Decisions Document (ADD)

https://github.com/Zawmin2004/Advanced-Data-Science-with-IBM---Capstone-Project/blob/main/Architectural%20Decisions%20Design%20(ADD).pdf

Original paper

Chicco, D., Jurman, G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak 20, 16 (2020). https://doi.org/10.1186/s12911-020-1023-5

Thank you for your kind attention!