Universidade Federal de Santa Catarina EEL5105: Circuitos e Técnicas Digitais Semestre: 2017/1 - Projeto

Test Drive

O projeto final consiste na implementação de um circuito na placa de desenvolvimento DE1 fazendo uso das estruturas e conhecimentos obtidos durante o curso. O circuito vai implementar a um jogo interativo similar a um jogo de teste de condução. O comportamento do jogo está definido a seguir:

- O usuário inicia no estado *Init* e da inicio ao jogo pressionando o botão de pressão enter (KEY1). Uma vez no estado *Setup* o usuário deve escolher um dos quatro mapas de obstáculos (nível de jogo) com os *Switches* 8 e 7 (*SW*8..7).
- Uma vez seleccionado o nível de jogo o usuário pulsa enter de novo (botão de pressão KEY1) e começa o jogo (estado Game).
- Uma vez no estado Game o usuário inicia a condução na posição coluna-0 e fila-7 à velocidade 0. O usuário pode mover o veiculo para cima (↑) e para baixo (↓) usando os switches SW0 e SW1, respectivamente. Para modificar a velocidade o usuário pode usar os botões de pressão KEY3 e KEY2 para frenar e acelerar, respectivamente. A velocidade do veículo vai de 0 (Stop) a velocidade 5 (Max).
- As posições por onde o usuário pode transitar é uma matriz (mapa de bits de 16×32), e deve dar duas voltas ao circuito de obstáculos para chegar ao objectivo. Assim, o usuário deve passar 64 colunas para chegar ao final. A linha de horizonte de obstáculos será mostrado nos LEDs LED9.. 0 onde o LED9 mostrará sempre o veiculo piscando a 5Hz.
- Durante o modo *Game* painel de controle do veículo será mostrado nos displays HEX5.. 0 com dois modos de selecção usando o switch SW9. Quando *SW*9 = 0 HEX5 e HEX4 mostram a letra *E* de estados e o numero de estado da maquina de controle, respectivamente. HEX3 e HEX2 mostra a letra b de *Bonus* e o numero bonus (número de vezes que o usuário pode bater na corrida). A contagem descendente de 99 a 0 será mostrada no Displays HEX1 e HEX0.
- Quando SW9 = 1 HEX5 e HEX4 mostram a letra S de Speed e a velocidade atual, respectivamente. O HEX3 indica a letra P de Position e HEX2.. 0 mostraram a posição do veiculo em formato hexadecimal (fila no HEX2 e coluna no HEX1.. 0). Por exemplo se o veículo se encontra na segunda volta na fila 5 e coluna A, os displays HEX3.. 0 mostraram os caracteres P52A.
- O usuário deve evitar os obstáculos no tempo de jogo usando os Switches SW0 e SW1 e os botões de pressão KEY3 e KEY2. O numero de vezes que o usuário pode bater com um obstáculo depende do numero de bónus. A contagem de bónus ira diminuindo com cada batida. Caso o numero de bónus ou o tempo acabe antes de chegar ao objectivo o jogo terminara (estado End) e será mostrado nos Displays os pontos obtidos. Nos displays HEX3... 0, onde HEX3 e HEX2 indicam as letras Pt de Point e HEX1 e HEX0 indicam os pontos obtidos. Em este estado End os displays HEX5 e HEX4 indicaram os caracteres E3 (Estado 3). Em Após estado End o jogo voltará ao estado Init.
- Um usuário pode em qualquer momento parar o jogo usando o botão de pressão KEY0 zerando a contagem de alvos, para assim re-iniciar de novo.

O esquema geral do projeto é mostrado na Figura 1 e inclui sete blocos diferenciados:

- Mapas: Quatro unidades onde se declaram os mapa de bits referentes aos mapas de obstáculos.
- Contadores: Circuitos sequenciais encarregados de gerar três contagens: i) contagem decrescente em segundos de dois números em decimal 99 → 0, ii) Contagem descendente de bónus e iii) Contagem ascendente de posição.
- Comparadores e somador: Circuitos combinatórios encarregados de gerar bits que determinam se o jogo acabou. O somador é encarregado de fazer a soma de pontos no final do jogo (posição horizontal no final do jogo mais 2× bonus).
- Registradores: Circuitos sequenciais encarregados de gerar os arrays que definem a velocidade de jogo, posição do veiculo e horizonte visível do mapa de obstáculos.
- $\bullet \ \ Controlador :$ Maquina de controle do jogo.
- Selectores: Multiplexadores que fornecem sinais de para outros blocos e as saídas para os LEDs e Displays.
- Debouncer: Visando evitar problemas de temporização em função do aperto de um KEY por um ser humano durar muitos ciclos de clock, o Button Press Synchronizer (ButtonSync) será fornecido em conjunto com o projeto deve ser utilizado.

Figura 1: Diagrama de blocos do jogo test drive.

TESTES No moodle da disciplina são fornecidas as unidades que fazem os mapas de obstaculos (MAP1.vhd, MAP2.vhd, MAP3.vhd, MAP4.vhd). Duas delas estão sem preencher e os alunos podem anotar a posição dos obstaculos. O exemplo de mapa de obstáculos (MAP1) é mostrado na Figura 2.

Dica: O aluno pode conferir o mapa da Figura 2 com a unidade MAP1.vhd e descrever as unidades MAP3 e MAP4 de forma similar.

Figura 2: Exemplo de test drive para preenchimento das memorias.

 ${f REGISTRADORES}$ Os registradores correspondem com 2 FSMs e 16 registradores com deslocamento para esquerda e rotação (ROL).

A primeira FSM corresponde com a FSM de controle de posição, o diagrama de estados é mostrado na Figura 3(a). O aluno pode implementar de forma estrutural (como mostrado na Figura 1) ou comportamental a partir do diagrama de estados.

A segunda FSM corresponde com a FSM de controle de velocidade, o diagrama de estados é mostrado na Figura 3(b). O aluno pode implementar de forma estrutural (como mostrado na Figura 1) ou comportamental a partir do diagrama de estados.

As restantes unidades fornecem o horizonte de mapa de obstáculos, elas podem ser implementadas usando uma operação de deslocamento à esquerda mais rotação (Operação ROL).

Dica: Para a implementação da operação de deslocamento e rotação o aluno pode usar as dicas fornecidas na aula 9.

COMPARADORES E SOMADORES

Circuitos combinatórios encarregado de gerar sinais de controle quando o tempo de jogo/bónus chegar ao fim (sinais END_TIME/END_BONUS) ou foi atingido a posição da coluna 64 (sinal TARGET). Os comparadores deveram gerar um '1' lógico quando sejam ativados ditos sinais.

O somador é encarregado de fazer a soma de pontos no final do jogo (posição horizontal no final do jogo mais $2 \times$ bonus). Para fazer a multiplicação $\times 2$ o aluno deverá usar as dicas fornecidas na aula 9.

Dica: Para a implementação do comparador sugere-se usar uma abordagem estrutural, baseada em portas ANDs.

CONTADORES

Neste bloco há uma FSM encarregada de gerar cinco clocks: CLK1 = 1Hz, CLK2 = 2Hz, CLK3 = 3Hz, CLK4 = 4Hz e CLK5 = 5Hz a partir do clock interno de 50MHz da placa DE1. O CLK1 será utilizado para o contador descendente $99 \rightarrow 0$ (implementado também neste bloco).

A contagem decrescente de tempo de jogo 99 \rightarrow 0 deverá ser mostrada nos Displays HEX1.. 0 (SW9 = 0) em formato decimal a partir do sinal CNT D.

A contagem decrescente de bónus de jogo deverá ser mostrada nos Display HEX2 (SW9 = 0) a partir do sinal CNT B.

DIAGRAMA DE ESTADOS FSM $_{
m Position}$

Figura 3: Diagrama de estados do para a selecção de a) posição e b) velocidade.

A contagem crescente de posição $0 \to 2F$ deverá ser mostrada nos Displays HEX3.. 0 (SW9 = 1) a partir do sinal CNT U.

Dicas: Recomenda-se aplicar os conceitos aprendidos na aula 7b sobre o conversor de frequência $50MHz \rightarrow 1Hz$.

SELETORES E DECODIFICADORES

Esta unidade consiste em 21 multiplexadores, um de 16:1, um de 8:1, 17 de 4:1 e dois de 2:1. Os multiplexadores deverão atuar para seleccionar o que é esperado nos Displays e LEDs para cada estado e fornecer sinais para outros blocos.

O aluno de incluir mais um bit de entrada no decodificador de 7 segmentos desenvolvido na aula 5 e incluir até 16 caracteres adicionais mostrados na Figura 4(a) e alguns exemplos de caracteres para sete segmentos são mostrados na Figura 4(b).

Figura 4: Tabela de verdade para obtenção de decodificador de 7 segmentos.

Dicas: Recomenda-se aplicar os conceitos aprendidos na aula 4 sobre o Multiplexador e aula 5 de decodificador.

CONTROLADOR

Este bloco é responsável por gerar os sinais de controle para os outros blocos. O controlador deve implementar o diagrama de estados mostrado na Figura 5. O aluno deve explicar no trabalho o funcionamento da FSM de controle apresentada.

Figura 5: Diagrama de estados para o controlador.

Dica: É de salientar que o diagrama de estados mostrado não é único, e o aluno possui a liberdade de pode projetar outro diagrama de estados com a mesma funcionalidade.

DEBOUNCER

Visando evitar problemas de temporização em função do aperto de um KEY por um ser humano durar muitos ciclos de clock, o Button Press Synchronizer (ButtonSync) será fornecido em conjunto com o projeto deve ser utilizado. O ButtonSync converte apertos das KEYS em pulsos com período de um ciclo de clock. Assim, em seu projeto, as KEYS devem ser ligadas nas estradas do ButtonSync, e as saídas BTN0 a BTN3 do ButtonSync deverão ser utilizadas para controlar o projeto.

Orientações Gerais:

- Na apresentação, todos os membros do grupo deverão estar presentes:
- tolerados, resultando em nota zero.

Atrasos não serão

• Os alunos devem levar a planilha impressa dos mapas de obstáculos na apresentação do trabalho.