•	RELATÓRIO 8	Data: /	/					
Inatel Instituto Nacional de Telecomunicações	Disciplina: E209							
	Prof: João Pedro Magalhães de Paula Paiva							
	Monitores: Thalita Domingos, João Henrique Delfino, Pedro Fraga							
Conteúdo: Microcontrolador ATMega328p								
Tema: Interrupção Externa com PCINT								
Nome:	Matrícula:	Curso:						

OBJETIVOS:

- Utilizar ferramentas de simulação para desenvolver programas para o ATmega328p.
- Desenvolver um programa que faça uso da interrupção externa com baixa prioridade.
- Utilizar as entradas e saídas do ATmega328p com circuitos de aplicação.

Parte Teórica

<u>Interrupção com PCINT</u>: É um recurso no qual **o ciclo de execução natural do programa é paralisado** para **executar um bloco específico**. A principal diferença entre o INT e PCINT, é que o PCINT está em quase todos os pinos, e não é possível configurar qual mudança de nível lógico irá interromper, será sempre "qualquer mudança".

Seu funcionamento não é individual, mas sim em grupos, definidos como grupos de interrupção. Ou seja, ao gerar uma interrupção em um dos pinos de um PORTAL, o serviço da rotina de interrupção associado ao PORTAL é executado, para diferenciar entre os pinos, é necessário fazer uma leitura do PORTAL logo que o programa entra na rotina de interrupção, pois o microcontrolador não é capaz de tratar disso por conta própria.

Figura 2. Exemplo que representa o funcionamento do PCINT

No caso do PCINT, existem dois registradores que são configurados para que seja possível gerar uma interrupção. Estes são:

PCICR – Pin Change Interrupt Control Register

Este registrador é responsável por **habilitar a interrupção** em um determinado **PORT** quando o respectivo **bit PCIEx for alterado para 1.**

PCICR – Pin Change Interrupt Control Register

PCMSK – Pin Change Mask Register

Este registrador é responsável por habilitar a interrupção de um pino em um determinado PORT. Logo, existem 3 registradores desse tipo **PCMSK0**, **PCMSK1** e **PCMSK2** referentes aos **PORTS B, C e D respectivamente.**

PCMSK0 – Pin Change Mask Register 0

Bit	7	6	5	4	3	2	1	0	_
(0x6B)	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	PCMSK0
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PCMSK1 - Pin Change Mask Register 1

Bit	7	6	5	4	3	2	1	0	
(0x6C)	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	PCMSK1
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

PCMSK2 - Pin Change Mask Register 2

Bit	7	6	5	4	3	2	1	0	
(0x6D)	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	PCMSK2
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

Para fazer uso de qualquer interrupção no ATMega328p é necessário habilitar o bit de interrupção global. A linha de código utilizada para isso é: "sei();". Essa linha acessa o registrador SREG e seta o bit responsável por habilitar o periférico de interrupções como 1, habilitando todas as interrupções no MCU.

Para diferenciar os grupos de interrupção configurados em **PCMSK0**, **PCMSK1** e **PCMSK2**, são utilizados os vetores **PCINT0_vect**, **PCINT1_vect** e **PCINT2_vect** respectivamente.

Exercícios:

1) Escreva um programa que use a interrupção externa PCINT como canais de interrupção. O programa deverá piscar um LED no pino 5 (PD5) a cada 0,250 segundos no super loop e a cada vez que acontecer um pedido de interrupção, um LED no pino 7 (PD7) acende por 1 segundo quando o PCINTO for acionado, outro LED no pino 6 (PD6) acende por 0.5 segundos quando o PCINT2 for acionado, e outro LED no pino 15 (PB1) acende por 2 segundos quando o PCINT20 for acionado.

```
// Na interrupção PCINT0
ISR(PCINT0_vect)
    /* CÓDIGO QUE VAI RODAR
    NA INTERRUPÇÃO DO PCINTO */
}
// Na interrupção PCINT1
ISR(PCINT1_vect)
{
    /* CÓDIGO QUE VAI RODAR
    NA INTERRUPÇÃO DO PCINT1 */
}
// Na interrupção PCINT2
ISR(PCINT2_vect)
{
    /* CÓDIGO QUE VAI RODAR
    NA INTERRUPÇÃO DO PCINT2 */
}
int main(void)
    // Habilita interrupção no grupo PCINT2
    PCICR |= 0b00000100;
    // Habilita PCINT no pino PD4 -> PCINT20
    PCMSK2 |= 0b00010000;
    // Habilita Interrupções globais
    sei();
    for (;;)
    {
        /* CÓDIGO QUE VAI RODAR
        SEMPRE / SUPER-LOOP */
    }
}
```