Ch 4. The Multivariate Normal Distribution

• Univariate normal density $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left[\frac{(x-\mu)}{\sigma}\right]^2} \qquad -\infty < x < \infty$$

- The term

$$\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu)$$

measures the square of the distance from x to μ in standard deviation units.

- This can be generalized for a $p \times 1$ vector x of observations on several variables as

$$(x-\mu)'\Sigma^{-1}(x-\mu),$$

where μ represents the $p \times 1$ vector of the expected value of the random vector X,

and Σ represents the $p \times p$ variance-covariance matrix of X.

- Assume that the symmetric matrix Σ is positive definite.
- Multivariate normal density $N_p(\mu, \Sigma)$

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-(x-\mu)' \Sigma^{-1}(x-\mu)/2} - \infty < x_i < \infty, i = 1, \dots, p.$$

- Example 4.1. Bivariate Normal Density
 - $\mu_1 = E(X_1)$, $\mu_2 = E(X_2)$, $\sigma_{11} = Var(X_1)$, $\sigma_{22} = Var(X_2)$, and $\rho_{12} = \sigma_{12} / (\sqrt{\sigma_{11}} \sqrt{\sigma_{22}}) = Corr(X_1, X_2)$.

- Since
$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$
, $\Sigma^{-1} = \frac{1}{\sigma_{11}\sigma_{22} - \sigma_{12}^2} \begin{bmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{21} & \sigma_{11} \end{bmatrix}$.

Since the correlation coefficient, ρ_{12} , is expressed as $\rho_{12} = \sigma_{12} / \sqrt{\sigma_{11}} \sqrt{\sigma_{22}}$,

$$\sigma_{11}\sigma_{22} - \sigma_{12}^2 = \sigma_{11}\sigma_{22}(1 - \rho_{12}^2)$$

Then, the squared distance becomes

$$\begin{aligned} (x-\mu)' \Sigma^{-1}(x-\mu) &= \left[x_1 - \mu_1, x_2 - \mu_2 \right] \frac{1}{\sigma_{11} \sigma_{22} (1 - \rho_{12}^2)} \begin{bmatrix} \sigma_{22} & -\rho_{12} \sqrt{\sigma_{11}} \sqrt{\sigma_{22}} \\ -\rho_{12} \sqrt{\sigma_{11}} \sqrt{\sigma_{22}} & \sigma_{11} \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} \\ &= \frac{\sigma_{22} (x_1 - \mu_1)^2 + \sigma_{11} (x_2 - \mu_2)^2 - 2\rho_{12} \sqrt{\sigma_{11}} \sqrt{\sigma_{22}} (x_1 - \mu_1) (x_2 - \mu_2)}{\sigma_{11} \sigma_{22} (1 - \rho_{12}^2)} \\ &= \frac{1}{1 - \rho_{12}^2} \left[\left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}} \right)^2 + \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}} \right)^2 - 2\rho_{12} \left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}} \right) \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}} \right) \right]. \end{aligned}$$

Therefore, the bivariate (p = 2) normal density is

$$f(x_1, x_2) = \frac{1}{2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^2)}} \exp\left\{-\frac{1}{2(1-\rho_{12}^2)} \left[\left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}}\right)^2 + \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}}\right)^2 - 2\rho_{12} \left(\frac{x_1 - \mu_1}{\sqrt{\sigma_{11}}}\right) \left(\frac{x_2 - \mu_2}{\sqrt{\sigma_{22}}}\right) \right] \right\}.$$

Figure 4.2 Two bivariate normal distributions. (a) $\sigma_{11}=\sigma_{22}$ and $\rho_{12}=0$. (b) $\sigma_{11}=\sigma_{22}$ and $\rho_{12}=.75$.

From the multivariate normal density,

$$f(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)},$$

it is clear that the paths of x values yielding a constant height for the density are ellipsoids.

- The multivariate normal density is constant on surfaces where the square of the distance $(x-\mu)'\Sigma^{-1}(x-\mu)$ is constant. These paths are called contours:

Constant probability density contour

= {all x such that
$$(x-\mu)' \Sigma^{-1}(x-\mu) = c^2$$
}

= surface of an ellipsoid centered at μ .

- The axes of each ellipsoid of constant density are in the direction of the eigenvectors of Σ^{-1} , and their lengths are proportional to the reciprocals of the square roots of the eigenvalues of Σ^{-1} .
- We can avoid the calculation of Σ^{-1} when determining the axes, since these ellipsoids are also determined by the eigenvalues and eigenvectors of Σ .

• Result 4.1. If Σ is positive definite, so that Σ^{-1} exists, then

$$\Sigma e = \lambda e$$
 implies $\Sigma^{-1}e = (1/\lambda)e$

so (λ, e) is an eigenvalue-eigenvector pair for Σ corresponding to the pair $(1/\lambda, e)$ for Σ^{-1} . Also, Σ^{-1} is positive definite.

$$\Sigma^{-1} = \frac{1}{\lambda_1} e_1 e_1' + \frac{1}{\lambda_2} e_2 e_2' + \dots + \frac{1}{\lambda_p} e_p e_p'$$

$$- x'\Sigma^{-1}x = x'\left(\frac{1}{\lambda_{1}}e_{1}e'_{1} + \frac{1}{\lambda_{2}}e_{2}e'_{2} + \dots + \frac{1}{\lambda_{p}}e_{p}e'_{p}\right)x$$

$$= x'\frac{1}{\lambda_{1}}e_{1}e'_{1}x + x'\frac{1}{\lambda_{2}}e_{2}e'_{2}x + \dots + x'\frac{1}{\lambda_{p}}e_{p}e'_{p}x$$

$$= \frac{1}{\lambda_{1}}x'e_{1}e'_{1}x + \frac{1}{\lambda_{2}}x'e_{2}e'_{2}x + \dots + \frac{1}{\lambda_{p}}x'e_{p}e'_{p}x$$

$$= \frac{1}{\lambda_1} (e_1' x)^2 + \frac{1}{\lambda_2} (e_2' x)^2 + \dots + \frac{1}{\lambda_p} (e_p' x)^2$$

$$= \frac{1}{\lambda_1} y_1^2 + \frac{1}{\lambda_2} y_2^2 + \dots + \frac{1}{\lambda_p} y_p^2$$

$$-\frac{1}{\lambda_1}y_1^2 + \frac{1}{\lambda_2}y_2^2 + \dots + \frac{1}{\lambda_p}y_p^2 = c^2 \text{ indicates an ellipsoid in } y_1 = e_1'x, y_2 = e_2'x, \dots, y_p = e_p'x.$$

- With $x = c\sqrt{\lambda_1}e_1$,

$$x'\Sigma^{-1}x = \frac{1}{\lambda_{1}}\left(c\sqrt{\lambda_{1}}e'_{1}e_{1}\right)^{2} + \frac{1}{\lambda_{2}}\left(c\sqrt{\lambda_{1}}e'_{2}e_{1}\right)^{2} + \dots + \frac{1}{\lambda_{p}}\left(c\sqrt{\lambda_{1}}e'_{p}e_{1}\right)^{2} = c^{2}$$

gives the appropriate distance in the e_1 direction.

- With $x = c\sqrt{\lambda_2}e_2$,

$$x'\Sigma^{-1}x = \frac{1}{\lambda_1} \left(c\sqrt{\lambda_2} e_1' e_2 \right)^2 + \frac{1}{\lambda_2} \left(c\sqrt{\lambda_2} e_2' e_2 \right)^2 + \dots + \frac{1}{\lambda_p} \left(c\sqrt{\lambda_2} e_p' e_2 \right)^2 = c^2$$

gives the appropriate distance in the e_2 direction.

:

- The points at distance c lie on an ellipsoid whose axes are given by the eigenvectors of Σ with lengths proportional to the square roots of the eigenvalues.

Contours of constant density for the *p*-dimensional normal distribution are ellipsoids defined by *x* such that

$$(x-\mu)'\Sigma^{-1}(x-\mu)=c^2.$$

These ellipsoids are centered at μ and have axes $\pm c\sqrt{\lambda_i}e_i$, where $\Sigma e_i = \lambda_i e_i$ for i = 1, 2, ..., p.

- Example 4.2. Contours of the bivariate normal density

Figure 4.3 A constant-density contour for a bivariate normal distribution with $\sigma_{11} = \sigma_{22}$ and $\sigma_{12} > 0$ (or $\rho_{12} > 0$).

• The choice $c^2 = \chi^2_p(\alpha)$, where $\chi^2_p(\alpha)$ is the upper (100α) th percentile of a chi-square distribution with p degrees of freedom, leads to contours that contain $(1 - \alpha) \times 100\%$ of the probability.

For a *p*-dimensional normal distribution, the solid ellipsoid of *x* values satisfying

$$(x-\mu)' \Sigma^{-1}(x-\mu) \leq \chi_p^2(\alpha)$$

has probability 1- α .

- See Figure 4.4 (p. 155).
- The *p*-variate normal density has a maximum value when the squared distance is zero that is, when $x = \mu$.
 - μ is the point of maximum density, or **mode**, as well as the expected value of X, **mean**.

Figure 4.4 The 50% and 90% contours for the bivariate normal distributions in Figure 4.2.

- The following are true for a random vector *X* having a multivariate normal distribution:
 - 1. Linear combinations of the components of *X* are normally distributed.
 - 2. All subsets of the components of *X* have a (multivariate) normal distribution.
 - 3. Zero covariance implies that the corresponding components are independently distributed.
 - 4. The conditional distributions of the components are (multivariate) normal.

- Result 4.2. If X is distributed as $N_p(\mu, \Sigma)$, then any linear combination of variables $a'X = a_1X_1 + a_2X_2 + \cdots + a_pX_p$ is distributed as $N(a'\mu, a'\Sigma a)$. Also, if a'X is distributed as $N(a'\mu, a'\Sigma a)$ for every a, then X must be $N_p(\mu, \Sigma)$.
- Example 4.3. The distribution of a linear combination of the components of a normal random vector

Consider the linear combination a'X of a multivariate normal random vector determined by the choice a' = [1,0,...,0].

• Result 4.3. If X is distributed as $N_p(\mu, \Sigma)$, the q linear combinations

$$A_{(q \times p)} X_{(p \times 1)} = \begin{bmatrix} a_{11} X_1 + \dots + a_{1p} X_p \\ a_{21} X_1 + \dots + a_{2p} X_p \\ \vdots \\ a_{q1} X_1 + \dots + a_{qp} X_p \end{bmatrix}$$

are distributed as $N_q(A\mu, A\Sigma A')$. Also, $X_{(p\times 1)} + d_{(p\times 1)}$, where d is a vector of constants, is distributed as $N_p(\mu + d, \Sigma)$.

• Result 4.4. All subsets of X are normally distributed. If we respectively partition X, its mean vector μ , and its covariance matrix Σ as

$$X_{(p \times 1)} = \begin{bmatrix} X_1 \\ \frac{(q \times 1)}{X_2} \\ \frac{((p-q) \times 1)}{X_2} \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_1 \\ \frac{(q \times 1)}{\mu_2} \\ \frac{((p-q) \times 1)}{X_2} \end{bmatrix}, \quad \text{and } \Sigma = \begin{bmatrix} \frac{\Sigma_{11}}{(q \times q)} & \frac{\Sigma_{21}}{((p-q) \times q)} \\ \frac{\Sigma_{21}}{(((p-q) \times q))} & \frac{\Sigma_{22}}{(((p-q) \times (p-q)))} \end{bmatrix}$$

then X_1 is distributed as $N_q(\mu_1, \Sigma_{11})$.

- Example 4.5. The distribution of a subset of a normal random vector
 - If X is distributed as $N_5(\mu, \Sigma)$, find the distribution of $\begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$.

Set
$$X_1 = \begin{bmatrix} X_2 \\ X_4 \end{bmatrix}$$
, $\mu_1 = \begin{bmatrix} \mu_2 \\ \mu_4 \end{bmatrix}$, $\Sigma_{11} = \begin{bmatrix} \sigma_{22} & \sigma_{24} \\ \sigma_{24} & \sigma_{44} \end{bmatrix}$.

Then,
$$\begin{bmatrix} X_2 \\ X_4 \\ X_1 \\ X_3 \\ X_5 \end{bmatrix}, \quad \mu = \begin{bmatrix} \mu_2 \\ \mu_4 \\ \mu_1 \\ \mu_3 \\ \mu_5 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_{22} & \sigma_{24} & \sigma_{12} & \sigma_{23} & \sigma_{25} \\ \sigma_{24} & \sigma_{44} & \sigma_{14} & \sigma_{34} & \sigma_{45} \\ \sigma_{12} & \sigma_{14} & \sigma_{11} & \sigma_{13} & \sigma_{15} \\ \sigma_{23} & \sigma_{34} & \sigma_{13} & \sigma_{33} & \sigma_{35} \\ \sigma_{25} & \sigma_{45} & \sigma_{15} & \sigma_{35} & \sigma_{55} \end{bmatrix},$$

so, we have the distribution

$$N_2(\mu_1, \Sigma_{11}) = N_2 \begin{bmatrix} \mu_2 \\ \mu_4 \end{bmatrix}, \begin{bmatrix} \sigma_{22} & \sigma_{24} \\ \sigma_{24} & \sigma_{44} \end{bmatrix}$$
.

- Result 4.5.
 - (a) If X_1 and X_2 are independent, then $Cov(X_1, X_2) = \mathbf{0}$, a $q_1 \times q_2$ matrix of zeros.
 - (b) If $\left[\frac{X_1}{X_2}\right]$ is $N_{q_1+q_2}\left(\left[\frac{\mu_1}{\mu_2}\right], \left[\frac{\Sigma_{11}}{\Sigma_{21}}\middle|\frac{\Sigma_{12}}{\Sigma_{22}}\right]\right)$, then X_1 and X_2 are independent if and only if $\Sigma_{12}=0$.
 - (c) If X_1 and X_2 are independent and are distributed as $N_{q_1}(\mu_1, \Sigma_{11})$ and $N_{q_2}(\mu_2, \Sigma_{22})$, respectively, then

$$\left[\frac{X_1}{X_2}\right]$$
 has the multivariate normal distribution $N_{q_1+q_2}\left(\left[\frac{\mu_1}{\mu_2}\right],\left[\frac{\Sigma_{11}}{0}\left|\frac{0}{\Sigma_{22}}\right]\right)$.

• Example 4.6. The equivalence of zero covariance and independence for normal variables

- Let *X* be
$$N_3(\mu, \Sigma)$$
 with $\Sigma = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Are X_1 and X_2 independent? What about (X_1, X_2) and X_3 ?

• Result 4.6.

Let
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 be distributed as $N_p(\mu, \Sigma)$ with $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$,

and $|\Sigma_{22}| > 0$. Then the conditional distribution of X_1 , given that $X_2 = x_2$, is normal and has

Mean =
$$\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)$$

and

Covariance =
$$\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$$
.

Note that the covariance does not depend on the value of x_2 of the conditioning variable.

Example 4.7. The conditional density of a bivariate normal distribution The conditional density of X_1 , given that $X_2 = x_2$, is defined by

$$f(x_1|x_2) = \{\text{conditional density of } X_1 \text{ given that } X_2 = x_2\} = \frac{f(x_1, x_2)}{f(x_2)},$$

where $f(x_2)$ is the marginal distribution of X_2 . If $f(x_1, x_2)$ is the bivariate normal density, show that $f(x_1|x_2)$ is

$$N\left(\mu_1 + \frac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2), \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}}\right).$$

Proof

Note that $\sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}} = \sigma_{11}(1 - \rho_{12}^2)$. The two terms involving $X_1 - \mu_1$ in the exponent of the bivariate normal density becomes, apart from the multiplicative constant $-\frac{1}{2}(1 - \rho_{12}^2)$,

$$\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{11}}-2\rho_{12}\frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}}=\frac{1}{\sigma_{11}}\left[x_{1}-\mu_{1}-\rho_{12}\frac{\sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}}\left(x_{2}-\mu_{2}\right)\right]^{2}-\frac{\rho_{12}^{2}}{\sigma_{22}}\left(x_{2}-\mu_{2}\right)^{2}.$$

on

• Example 4.7. The conditional density of a bivariate normal distribution *Proof* (continued)

Because
$$\rho_{12} = \frac{\sigma_{12}}{\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}}$$
, or $\rho_{12} \frac{\sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}} = \frac{\sigma_{12}}{\sigma_{22}}$, the complete exponent is
$$-\frac{1}{2(1-\rho_{12}^2)} \left(\frac{(x_1-\mu_1)^2}{\sigma_{11}} - 2\rho_{12} \frac{(x_1-\mu_1)(x_2-\mu_2)}{\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}} + \frac{(x_2-\mu_2)^2}{\sigma_{22}} \right)$$

$$= -\frac{1}{2\sigma_{11}(1-\rho_{12}^2)} \left[x_1 - \mu_1 - \rho_{12} \frac{\sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}} (x_2 - \mu_2) \right]^2 - \frac{1}{2(1-\rho_{12}^2)} \left(\frac{1}{\sigma_{22}} - \frac{\rho_{12}^2}{\sigma_{22}} \right) (x_2 - \mu_2)^2$$

$$1 \qquad \left[\sigma_{12} \left(\frac{1}{\sigma_{22}} - \frac{1}{\sigma_{22}} \right) \right]^2 - \frac{1}{2(1-\rho_{12}^2)} \left(\frac{1}{\sigma_{22}} - \frac{\rho_{12}^2}{\sigma_{22}} \right) (x_2 - \mu_2)^2$$

$$= -\frac{1}{2\sigma_{11}(1-\rho_{12}^2)} \left[x_1 - \mu_1 - \frac{\sigma_{12}}{\sigma_{22}} (x_2 - \mu_2) \right]^2 - \frac{1}{2} \frac{(x_2 - \mu_2)^2}{\sigma_{22}}$$

The constant term $2\pi\sqrt{\sigma_{11}\sigma_{22}(1-\rho_{12}^2)}$ also factors as

$$\sqrt{2\pi}\sqrt{\sigma_{22}}\sqrt{2\pi}\sqrt{\sigma_{11}(1-\rho_{12}^2)}$$
.

Dividing the joint density of X_1 and X_2 by the marginal density

$$f(x_2) = \frac{1}{\sqrt{2\pi}\sqrt{\sigma_{22}}} e^{-\frac{(x_2 - \mu_2)^2}{2\sigma_{22}}},$$

and canceling terms yields the conditional density

$$f(x_1|x_2) = \frac{f(x_1, x_2)}{f(x_2)} = \frac{1}{\sqrt{2\pi} \sqrt{\sigma_{11}(1-\rho_{12}^2)}} e^{\frac{\left[x_1 - \mu_1 - \frac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2)\right]}{2\sigma_{11}(1-\rho_{12}^2)}} - \infty < x_1 < \infty.$$

• Example 4.7. The conditional density of a bivariate normal distribution *Proof* (continued)

Thus the conditional distribution of X_1 , given that $X_2 = x_2$, is

$$N\left(\mu_1 + \frac{\sigma_{12}}{\sigma_{22}}(x_2 - \mu_2), \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}}\right).$$

Now,

$$\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} = \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}} = \sigma_{11} \left(1 - \rho_{12}^2 \right) \text{ and } \Sigma_{12} \Sigma_{22}^{-1} = \frac{\sigma_{12}}{\sigma_{22}}, \text{ agreeing with Result 4.6.}$$

- Result 4.7. Let X be distributed as $N_p(\mu, \Sigma)$ with $|\Sigma| > 0$. Then (a) $(X \mu) \Sigma^{-1}(X \mu)$ is distributed as χ^2_p , where χ^2_p denotes the chi-square distribution with p degrees of freedom.
 - (b) The $N_p(\mu, \Sigma)$ distribution assigns probability 1α to the solid ellipsoid $\{x : (x \mu)' \Sigma^{-1}(x \mu) \le \chi_p^2(\alpha)\}$, where χ_p^2 denotes the upper (100α) th percentile of the χ_p^2 distribution.

Proof of (a).

 χ_p^2 is defined as the distribution of the sum $Z_1^2 + Z_2^2 + \cdots + Z_p^2$, where Z_1, Z_2, \cdots, Z_p are independent N(0,1) random variables.

By the spectral decomposition, $\Sigma^{-1} = \sum_{i=1}^{p} \left(\frac{1}{\lambda_i}\right) e_i e_i'$, where $\Sigma e_i = \lambda_i e_i$, so $\Sigma^{-1} e_i = \left(\frac{1}{\lambda_i}\right) e_i$.

Consequently,
$$(X - \mu)' \Sigma^{-1}(X - \mu) = \sum_{i=1}^{p} \left(\frac{1}{\lambda_{i}}\right) (X - \mu)' e_{i} e'_{i}(X - \mu) = \sum_{i=1}^{p} \left(\frac{1}{\lambda_{i}}\right) (e'_{i}(X - \mu))^{2}$$

$$= \sum_{i=1}^{p} \left[\left(\frac{1}{\sqrt{\lambda_i}} \right) e_i'(X - \mu) \right]^2 = \sum_{i=1}^{p} Z_i^2, \text{ for instance.}$$

Result 4.7.

Result 4.7.

Proof. (continued)

Now,
$$Z = A(X - \mu)$$
, where $Z_{(p \times 1)} = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_p \end{bmatrix}$, $A_{(p \times p)} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} e_1' \\ \frac{1}{\sqrt{\lambda_2}} e_2' \\ \vdots \\ \frac{1}{\sqrt{\lambda_p}} e_p' \end{bmatrix}$

and X - μ is distributed as $N_p(0, \Sigma)$. Therefore, by Result 4.3, $Z = A(X - \mu)$ is distributed as $N_p(0, A\Sigma A')$, where

$$A_{(p \times p)(p \times p)(p \times p)} A'_{(p \times p)(p \times p)} = \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} e'_1 \\ \frac{1}{\sqrt{\lambda_2}} e'_2 \\ \vdots \\ \frac{1}{\sqrt{\lambda_n}} e'_p \end{bmatrix} \begin{bmatrix} \sum_{i=1}^p \lambda_i e_i e'_i \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} e_1 & \frac{1}{\sqrt{\lambda_2}} e_2 & \cdots & \frac{1}{\sqrt{\lambda_p}} e_p \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{\lambda_1} e'_1 \\ \sqrt{\lambda_2} e'_2 \\ \vdots \\ \sqrt{\lambda_p} e'_p \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{\lambda_1}} e_1 & \frac{1}{\sqrt{\lambda_2}} e_2 & \cdots & \frac{1}{\sqrt{\lambda_p}} e_p \end{bmatrix} = I.$$

• <u>Result 4.7</u>.

Proof. (continued)

By Result 4.5, Z_1 , Z_2 , ..., Z_p are *independent* standard normal variables. Therefore, $(X - \mu)' \Sigma^{-1} (X - \mu)$ has a χ^2_p distribution.

Proof of (b)

Note that $P[(X - \mu)' \Sigma^{-1} (X - \mu) \le c^2]$ is the probability assigned to the ellipsoid $(X - \mu)' \Sigma^{-1} (X - \mu) \le c^2$ by the density $N_p(\mu, \Sigma)$.

From (a), since $P\left[\left(X-\mu\right)'\Sigma^{-1}\left(X-\mu\right) \leq \chi_p^2(\alpha)\right] = 1-\alpha$, and (b) holds.

- Interpretation of statistical distance
 - When X is distributed as $N_p(\mu, \Sigma)$, $(X \mu)^{'} \Sigma^{-1} (X \mu)$ is the squared statistical distance from X to the population mean vector μ .
 - If one component has a much larger variance than another, it will contribute less to the squared distance.
 - Two highly correlated random variables will contribute less than two variables that are nearly uncorrelated.
 - The use of the inverse of the covariance matrix (1) standardizes all of the variables and (2) eliminates the effects of correlation.
 - From the proof of Result 4.7, $(X \mu)' \Sigma^{-1} (X \mu) = Z_1^2 + Z_2^2 + \dots + Z_p^2$. In terms of $\Sigma^{-1/2}$, $Z = \Sigma^{-1/2} (X \mu)$ has a $N_p(0, I_p)$ distribution, and $(X \mu)' \Sigma^{-1} (X \mu) = (X \mu)' \Sigma^{-1/2} \Sigma^{-1/2} (X \mu) = Z'Z = Z_1^2 + Z_2^2 + \dots + Z_p^2$.
 - The squared statistical distance is calculated as if the random vector *X* were transformed to *p* independent standard normal random variables and then the usual squared distance, the sum of the squares of the variables, were applied.

• Result 4.8. Let $X_1, X_2, ..., X_n$ be mutually independent with X_j distributed as $N_p(\mu_j, \Sigma)$. (Note that each X_j has the same covariance matrix Σ). Then

$$V_1 = c_1 X_1 + c_2 X_2 + \dots + c_n X_n$$

is distributed as
$$N_p \left(\sum_{j=1}^n c_j \mu_j, \left(\sum_{j=1}^n c_j^2 \right) \Sigma \right)$$
.

Moreover, V_1 and $V_2 = b_1 X_1 + b_2 X_2 + ... + b_n X_n$ are jointly multivariate normal with covariance matrix

$$egin{aligned} \left[\left(\sum_{j=1}^n c_j^2
ight) & \left(b'c
ight) \Sigma \ \left(b'c
ight) & \left(\sum_{j=1}^n b_j^2
ight) \Sigma \end{aligned}
ight]. \end{aligned}$$

Consequently, V_1 and V_2 are independent if $b'c = \sum_{j=1}^{n} c_j b_j = 0$.

4.3. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation

- The $p \times 1$ vectors $X_1, X_2, ..., X_n$ represent a random sample from a multivariate normal population with mean vector μ and covariance matrix Σ .
 - The joint density function of all the observations is the product of the marginal normal densities:

$$\begin{cases} \text{Joint density} \\ \text{of } X_1, X_2, \dots, X_n \end{cases} = \prod_{j=1}^n \left\{ \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x_j - \mu)' \Sigma^{-1}(x_j - \mu)} \right\}$$

$$= \frac{1}{(2\pi)^{\frac{np}{2}} |\Sigma|^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{j=1}^n (x_j - \mu)' \Sigma^{-1}(x_j - \mu)}.$$

- This function of μ and Σ for the fixed set of observations $x_1, x_2, ..., x_n$ is called the **likelihood**.
- Maximum likelihood estimation selects a value of population parameters that maximize the joint density evaluated at the observations.
 - The maximizing parameter values are called **maximum likelihood estimates**.

4.3. Sampling from a Multivariate Normal Distribution and Maximum Likelihood Estimation

- Result 4.9. Let A be a $k \times k$ symmetric matrix and x be a $k \times 1$ vector. Then (a) $x'Ax = \operatorname{tr}(x'Ax) = \operatorname{tr}(Axx')$
 - (b) $\operatorname{tr}(A) = \sum_{i=1}^{k} \lambda_i$, where the λ_i are the eigenvalues of A.
- The exponent in the joint normal density can be simplified as

$$\sum_{j=1}^{n} (x_{j} - \mu)' \Sigma^{-1} (x_{j} - \mu) = \sum_{j=1}^{n} \operatorname{tr} \left[(x_{j} - \mu)' \Sigma^{-1} (x_{j} - \mu) \right] = \sum_{j=1}^{n} \operatorname{tr} \left[\Sigma^{-1} (x_{j} - \mu)(x_{j} - \mu)' \right] = \operatorname{tr} \left[\Sigma^{-1} \left(\sum_{j=1}^{n} (x_{j} - \mu)(x_{j} - \mu)' \right) \right] = \operatorname{tr} \left[\Sigma^{-1} \left(\sum_{j=1}^{n} (x_{j} - \overline{x})(x_{j} - \overline{x})' + n(\overline{x} - \mu)(\overline{x} - \mu)' \right) \right].$$

The likelihood function

$$L(\mu, \Sigma) = (2\pi)^{-\frac{np}{2}} |\Sigma|^{-\frac{n}{2}} e^{\left\{-\frac{1}{2}\operatorname{tr}\left[\sum^{-1}\left(\sum_{j=1}^{n}(x_{j}-\overline{x})(x_{j}-\overline{x})+n(\overline{x}-\mu)(\overline{x}-\mu)'\right)\right]\right\}}$$

• Result 4.10. Given a $p \times p$ symmetric positive definite matrix B and a scalar b > 0, it follows that

$$\frac{1}{\left|\Sigma\right|^{b}}e^{-\frac{1}{2}\operatorname{tr}\left(\Sigma^{-1}B\right)} \leq \frac{1}{\left|B\right|^{b}}\left(2b\right)^{pb}e^{-bp}$$

for all positive definite Σ , with equality holding only for $\Sigma = (1/2b)B$.

Proof.

Let $B^{1/2}$ be the symmetric square root of B, so $B^{1/2}B^{1/2} = B$, $B^{1/2}B^{-1/2} = I$, and $B^{-1/2}B^{-1/2} = B^{-1}$. Then, $\operatorname{tr}(\Sigma^{-1}B) = \operatorname{tr}(\Sigma^{-1}B^{1/2}B^{1/2}) = \operatorname{tr}[(\Sigma^{-1}B^{1/2})B^{1/2}] = \operatorname{tr}[B^{1/2}(\Sigma^{-1}B^{1/2})]$.

Let η be an eigenvalue of $B^{1/2}\Sigma^{-1}B^{1/2}$. This matrix is positive definite because $y'B^{1/2}\Sigma^{-1}B^{1/2}y = (B^{1/2}y)'\Sigma^{-1}(B^{1/2}y) > 0$ if $B^{1/2}y \neq 0$ or, equivalently, $y \neq 0$. Thus, the eigenvalues η_i of $B^{1/2}\Sigma^{-1}B^{1/2}$ are positive.

Result 4.9(b) then gives

$$tr(\Sigma^{-1}B) = tr(B^{1/2}\Sigma^{-1}B^{1/2}) = \sum_{i=1}^{p} \eta_{i} \text{ and } |B^{1/2}\Sigma^{-1}B^{1/2}| = \prod_{i=1}^{p} \eta_{i}.$$

$$Then |B^{1/2}\Sigma^{-1}B^{1/2}| = |B^{1/2}||\Sigma^{-1}||B^{1/2}|| = |\Sigma^{-1}||B^{1/2}||B^{1/2}|| = |\Sigma^{-1}||B|| = \frac{1}{|\Sigma|}|B|$$

$$or \frac{1}{|\Sigma|} = \frac{|B^{1/2}\Sigma^{-1}B^{1/2}|}{|B|} = \frac{\prod_{i=1}^{p} \eta_{i}}{|B|}.$$

• Result 4.10. *Proof.* (continued)

Combining the results for the trace and the determinant yields

$$\frac{1}{\left|\Sigma\right|^{b}}e^{-\frac{1}{2}\operatorname{tr}\left(\Sigma^{-1}B\right)} = \frac{\left(\prod_{i=1}^{p}\eta_{i}\right)^{b}}{\left|B\right|^{b}}e^{-\frac{1}{2}\sum_{i=1}^{p}\eta_{i}} = \frac{1}{\left|B\right|^{b}}\prod_{i=1}^{p}\eta_{i}^{b}e^{-\frac{\eta_{i}}{2}}.$$

The function $\eta^b e^{-\eta/2}$ has a maximum, with respect to η , of $(2b)^b e^{-b}$, occurring at $\eta = 2b$. The choice $\eta_i = 2b$, for each i, therefore gives

$$\frac{1}{\left|\Sigma\right|^{b}}e^{-\frac{1}{2}\operatorname{tr}\left(\Sigma^{-1}B\right)} \leq \frac{1}{\left|B\right|^{b}}\left(2b\right)^{pb}e^{-bp}.$$

The upper bound is uniquely attained when $\Sigma = (1/2b)B$, since, for this choice,

$$B^{1/2}\Sigma^{-1}B^{1/2} = B^{1/2}(2b)B^{-1}B^{1/2} = (2b)I_{(p\times p)}$$

and
$$tr(\Sigma^{-1}B) = tr(B^{1/2}\Sigma^{-1}B^{1/2}) = tr((2b)I) = 2bp$$
.

Moreover,

$$\frac{1}{|\Sigma|} = \frac{\left|B^{1/2} \Sigma^{-1} B^{1/2}\right|}{|B|} = \frac{\left|(2b)I\right|}{|B|} = \frac{(2b)^p}{|B|}.$$

Straightforward substitution for $tr[\Sigma^{-1}B]$ and $1/|\Sigma|^b$ yields the bound asserted.

• Result 4.11. Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with mean μ and covariance Σ . Then

$$\hat{\mu} = \overline{X}$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (X_j - \overline{X})(X_j - \overline{X})' = \frac{(n-1)}{n} S$

are the **maximum likelihood estimators** of μ and Σ , respectively. Their observed values, \overline{x} and $\frac{1}{n}\sum_{j=1}^{n}(x_{j}-\overline{x})(x_{j}-\overline{x})'$, are called the **maximum** likelihood estimates of μ and Σ .

Proof.

The exponent in the likelihood function, apart from the multiplicative factor -1/2, is

$$tr\left[\Sigma^{-1}\left(\sum_{j=1}^{n}\left(x_{j}-\overline{x}\right)\left(x_{j}-\overline{x}\right)'\right)\right]+n(\overline{x}-\mu)'\Sigma^{-1}(\overline{x}-\mu).$$

By Result 4.1, Σ^{-1} is positive definite, so the distance $(\bar{x} - \mu)' \Sigma^{-1} (\bar{x} - \mu) > 0$ unless $\mu = \bar{x}$. Thus, the likelihood is maximized with respect to μ at $\hat{\mu} = \bar{x}$. It remains to maximize

$$L(\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{np}{2}} |\Sigma|^{\frac{n}{2}}} e^{-\frac{1}{2}tr\left[\sum_{j=1}^{n} (x_j - \overline{x})(x_j - \overline{x})^{\frac{n}{2}}\right]}$$

over Σ .

• Result 4.11. *Proof.* (continued)

By Result 4.10 with
$$b = n/2$$
 and $B = \sum_{j=1}^{n} (x_j - \overline{x})(x_j - \overline{x})'$, the maximum occurs at $\hat{\Sigma} = \frac{1}{n} \sum_{j=1}^{n} (x_j - \overline{x})(x_j - \overline{x})'$, as stated.

The maximum likelihood estimators are random quantities. They are obtained by replacing the observations $x_1, x_2, ..., x_n$ in the expressions for $\hat{\mu}$ and $\hat{\Sigma}$ with the corresponding random vectors, $X_1, X_2, ..., X_n$.

- The maximum likelihood estimator \overline{X} is a random vector and the maximum likelihood estimator $\hat{\Sigma}$ is a random matrix.
 - The maximum likelihood estimates are their particular values for the given data set.
 - The maximum of the likelihood is

$$L(\hat{\mu},\hat{\Sigma}) = \frac{1}{(2\pi)^{np/2}} e^{-np/2} \frac{1}{\left|\hat{\Sigma}\right|^{n/2}}$$

or since
$$|\hat{\Sigma}| = [(n-1)/n]^p |S|$$
,

$$L(\hat{\mu}, \hat{\Sigma}) = \text{constant} \times (\text{generalized variance})^{-n/2}$$

- The generalized variance determines the "peakedness" of the likelihood function, and consequently, is a natural measure of variability when the parent population is multivariate normal.

Invariance property

- $\hat{\theta}$: the maximum likelihood estimator of θ
- The maximum likelihood estimate of $h(\theta)$, a function of θ , is given by $h(\hat{\theta})$.

- Example.

- 1. The maximum likelihood estimator of $\mu' \Sigma^{-1} \mu$ is $\hat{\mu}' \hat{\Sigma}^{-1} \hat{\mu}$, where $\hat{\mu} = \overline{X}$ and $\hat{\Sigma} = ((n-1)/n)S$ are the maximum likelihood estimators of μ and Σ , respectively.
- 2. The maximum likelihood estimator of $\sqrt{\sigma_{ii}}$ is $\sqrt{\hat{\sigma}_{ii}}$, where

$$\hat{\sigma}_{ii} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{ij} - \overline{X}_{i} \right)^{2}$$

is the maximum likelihood estimator of $\sigma_{ii} = Var(X_i)$.

Sufficient Statistics

- For a random sample, $X_1, X_2, ..., X_n$, from a multivariate normal population with mean μ and covariance Σ , \overline{X} and S are *sufficient statistics*.
 - The joint density depends on the whole set of observations $x_1, x_2, ..., x_n$ only through the sample mean \overline{x} and the sum-of-squares-and-cross-product matrix $\sum_{j=1}^{n} (X_j \overline{X})(X_j \overline{X})' = (n-1)S$.

Then, \overline{x} and (n-1)S (or S) are sufficient statistics.

- This is generally not true for nonnormal populations. If the data cannot be regarded as multivariate normal, techniques that depend solely on \bar{x} and S may be ignoring other useful sample information.

4.4. The Sampling Distribution of \overline{X} and S

- In the univariate case (p = 1), \overline{X} is normal with mean $\mu =$ (population mean) and variance $\frac{1}{n}\sigma^2 = \frac{\text{population variance}}{\text{sample size}}$.
- For the multivariate case $(p \ge 2)$, \overline{X} has a normal distribution with mean vector μ and covariance matrix $(1/n)\Sigma$.
- In the univariate case, recall $(n-1)s^2 = \sum_{j=1}^n (X_j \overline{X})^2$ is distributed as σ^2 times a chi-square variable having n-1 degrees of freedom (d.f.).
 - This chi-square is the distribution of a sum of squares of independent standard normal random variables.
 - $(n-1)s^2$ is distributed as $\sigma^2(Z_1^2 + \dots + Z_{n-1}^2) = (\sigma Z_1)^2 + \dots + (\sigma Z_{n-1})^2$.
 - The individual terms σZ_i are independently distributed as $N(0, \sigma^2)$.

4.4. The Sampling Distribution of \overline{X} and S

 The sampling distribution of the sample covariance matrix is called the Wishart distribution:

$$W_m(\cdot|\Sigma)$$
 = Wishart distribution with m d.f.

= distribution of
$$\sum_{j=1}^{m} Z_j Z'_j$$
,

where the Z_j are each independently distributed as $N_p(0, \Sigma)$.

- Let $X_1, X_2, ..., X_n$ be a random sample of size n from a p-variate normal distribution with mean μ and covariance matrix Σ . Then
 - 1. X is distributed as $N_p(\mu, (1/n)\Sigma)$.
 - 2. (n-1)S is distributed as a Wishart random matrix with n-1 d.f.
 - 3. \overline{X} and S are independent.
 - Because Σ is unknown, the distribution of \overline{X} cannot be used directly to make inference about μ . However, S provides independent information about Σ , and the distribution of S does not depend on μ .

4.4. The Sampling Distribution of \overline{X} and S

- Properties of the Wishart Distribution
 - 1. If A_1 is distributed as $W_{m_1}(A_1|\Sigma)$ independently of A_2 , which is distributed as $W_{m_2}(A_2|\Sigma)$, then $A_1 + A_2$ is distributed as $W_{m_1+m_2}(A_1 + A_2|\Sigma)$. That is, the degrees of freedom add.
 - 2. If A is distributed as $W_m(A|\Sigma)$, then CAC' is distributed as $W_m(CAC'|C\Sigma C')$.
- The probability density function of the Wishart distribution at the positive definite matrix *A* is

$$w_{n-1}(A|\Sigma) = \frac{|A|^{(n-p-2)/2} e^{-\operatorname{tr}[A\Sigma^{-1}]/2}}{2^{p(n-1)/2} \pi^{p(p-1)/4} |\Sigma|^{(n-1)/2} \prod_{i=1}^{p} \Gamma(\frac{1}{2}(n-i))},$$

where $\Gamma(\cdot)$ is the gamma function.

• Suppose the quantity X is determined by a large number of independent causes $V_1, V_2, ..., V_n$, where the random variable V_i representing the causes have approximately the same variability. If X is the sum

$$X = V_1 + V_2 + \dots + V_n,$$

then the central limit theorem applies, and conclude that X has a distribution that is nearly normal. This is true for virtually any parent distribution of the V_i 's, provided that n is large enough.

- The univariate central limit theorem also tells us that the sampling distribution of the sample mean, \overline{X} , for a large sample size is nearly normal, whatever the form of the underlying population distribution is.
- Certain multivariate statistics, like \overline{X} and S, have large sample properties analogous to their univariate counterparts.

• Result 4.12 (Law of large numbers). Let $Y_1, Y_2, ..., Y_n$ be independent observations from a population with mean $E(Y_i) = \mu$. Then

$$\overline{Y} = \frac{Y_1 + Y_2 + \dots + Y_n}{Y_n}$$

converges in probability to μ as n increases without bound. That is, for any prescribed accuracy $\varepsilon > 0$, $P[-\varepsilon < \overline{Y} - \mu < \varepsilon]$ approaches unity as $n \to \infty$.

- The law of large numbers says that each \overline{X}_i converges in probability to μ_i , i = 1, 2, ..., p. Therefore, \overline{X} converges in probability to μ .
- Similarly, since each sample covarianace s_{ik} converges in probability to σ_{ik} , i, k = 1, 2, ..., p, S (or $\hat{\Sigma} = S_n$) converges in probability to Σ , since

$$(n-1)s_{ik} = \sum_{j=1}^{n} (X_{ji} - \overline{X}_{i})(X_{jk} - \overline{X}_{k}) = \sum_{j=1}^{n} (X_{ji} - \mu_{i} + \mu_{i} - \overline{X}_{i})(X_{jk} - \mu_{k} + \mu_{k} - \overline{X}_{k})$$
$$= \sum_{j=1}^{n} (X_{ji} - \mu_{i})(X_{jk} - \mu_{k}) + n(\overline{X}_{i} - \mu_{i})(\overline{X}_{k} - \mu_{k})$$

and the first term converges to σ_{ik} and the second term converges to zero, by applying the law of large numbers.

- Result 4.13. (The central limit theorem). Let $X_1, X_2, ..., X_n$ be independent observations from any population with mean vector μ and finite covariance Σ . Then $\sqrt{n}(\overline{X} \mu)$ has an approximate $N_p(0, \Sigma)$ distribution for large sample sizes. Here n should also be large relative to p.
- The approximation provided by the central limit theorem applies to discrete, as well as continuous, multivariate populations.
 - \overline{X} is exactly normally distributed when the underlying population is normal. Therefore, the central limit theorem approximation would be quite good for moderate n when the parent population is nearly normal.
- $n(\overline{X} \mu)' \Sigma^{-1}(\overline{X} \mu)$ has a χ^2_p distribution when \overline{X} is distributed as $N_p(\mu, (1/n)\Sigma)$, or, equivalently, when $\sqrt{n}(\overline{X} \mu)$ has an $N_p(0, \Sigma)$ distribution. The χ^2_p distribution is *approximately* the sampling distribution of $n(\overline{X} \mu)' \Sigma^{-1}(\overline{X} \mu)$ when \overline{X} is approximately normally distributed. Replacing Σ^{-1} by S^{-1} does not seriously affect this approximation for n large and much greater than p.

• Let $X_1, X_2, ..., X_n$ be independent observations from a population with mean μ and finite (nonsingular) covariance Σ . Then

$$\sqrt{n}(\overline{X} - \mu)$$
 is approximately $N_p(0, \Sigma)$

and

$$n(\overline{X} - \mu)' S^{-1}(\overline{X} - \mu)$$
 is approximately χ^2_p for $n - p$ large.

4.6 Assessing the Assumption of Normality

• Many statistical techniques assume that each vector observation X_j comes from a multivariate normal distribution.

• Evaluating the Normality of the Univariate Marginal Distributions

- Dot diagram for smaller n and histograms for n > 25 help reveal situations where one tail of a univariate distribution is much longer than the other.
- Can check further by counting the number of observations in certain interval based on a univariate normal distribution.
- Q-Q plots can be used to assess the assumption of normality.
- The Q-Q plot
 - 1. Order the original observations to get $x_{(1)}, x_{(2)}, ..., x_{(n)}$ and their corresponding probability values (1 0.5)/n, (2 0.5)/n, ..., (n 0.5)/n;
 - 2. Calculate the standard normal quantiles $q_{(1)}, q_{(2)}, \ldots, q_{(n)}$,

$$P[Z \le q_{(j)}] = \int_{-\infty}^{q_{(j)}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz = \frac{j - 0.5}{n};$$

- 3. Plot the pairs of observations $(q_{(1)}, x_{(1)}), (q_{(2)}, x_{(2)}), ..., (q_{(n)}, x_{(n)})$, and examine the "straightness" of the outcome.
- If data arise from a normal population, the pairs $(q_{(j)}, x_{(j)})$ will be approximately linearly related.

4.6 Assessing the Assumption of Normality

• The straightness of the Q-Q plot can be measured by calculating the correlation coefficient of the points in the plot:

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \overline{x}) (q_{(j)} - \overline{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \overline{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \overline{q})^{2}}}.$$

4.6 Assessing the Assumption of Normality

• Evaluating the Multivariate Normality

- A somewhat more formal method for judging the joint normality of a data set is based on the squared generalized distances

$$d_{j}^{2} = (x_{j} - \overline{x})' S^{-1}(x_{j} - \overline{x}), \quad j = 1, 2, ..., n,$$

where $x_1, x_2, ..., x_n$ are the sample observations.

- When the parent population is multivariate normal and both n and n-p are greater than 25 or 30, each of the squared distances $d_1^2, d_2^2, \ldots, d_n^2$ should behave like a chi-square random variable.
- The chi-square plot
 - 1. Order the squared distances $d_1^2, d_2^2, \dots, d_n^2$ from smallest to largest as $d_{(1)}^2, d_{(2)}^2, \dots, d_{(n)}^2$.
 - 2. Graph the pairs $(q_{c,p}((j-0.5)/n), d_{(j)}^2)$, where $q_{c,p}((j-0.5)/n)$ is the 100(j-0.5)/n quantile of the chi-square distribution with p degrees of freedom.
 - The plot should resemble a straight line through the origin having slope 1.

4.7 Detecting Outliers and Cleaning Data

- Steps for detecting outliers
 - 1. Make a dot plot for each variable.
 - 2. Make a scatter plot for each pair of variables.
 - 3. Calculate the standardized values

$$z_{jk} = \frac{\left(x_{jk} - \overline{x}_{k}\right)}{\sqrt{s_{kk}}}$$

for j = 1, 2, ..., n and for each column k = 1, 2, ..., p. Examine these standardized values for large or small values.

4. Calculate the generalized squared distances $(x_j - \overline{x})' S^{-1}(x_j - \overline{x})$. Examine these distances for unusually large values. In a chi-square plot, these would be the points farthest from the origin.

4.8 Transformations to Near Normality

• If normality is not a viable assumption, one alternative is to make nonnormal data more "normal looking" by considering **transformations** of the data.

- Normal-theory analysis can then be carried out with the suitably transformed data.
- Helpful Transformations To Near Normality

Original Scale	Transformed Scale
Counts, y	\sqrt{y}
Proportions, \hat{p}	$\operatorname{logit}(\hat{p}) = \frac{1}{2} \log \left(\frac{\hat{p}}{1 - \hat{p}} \right)$
Correlations, r	Fisher's $z(r) = \frac{1}{2} \log \left(\frac{1+r}{1-r} \right)$

Box-Cox Transformations

$$x^{(\lambda)} = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \lambda \neq 0\\ \log x & \lambda = 0 \end{cases}$$

- With multivariate observations, a power transformation must be selected for each of the variables.