EP2 - Comprimir e Conquistar

MAC0210 - Laboratório de Métodos Numéricos

Primeiro semestre de 2022

Este enunciado foi elaborado e escrito em 2016 por Ernesto G. Birgin (professor), Gustavo Estrela (monitor) e pelos alunos Nathan Benedetto, Rodrigo Enju, Victor da Matta, Victor Sprengel e Victor Molero. Agradecemos ao aluno Gabriel Capella por notar que a matriz do sistema bicúbico estava errada.

1 Introdução

Este exercício-programa tem como objetivo generalizar dois métodos de interpolação por polinômios para o caso bivariado. O experimento consiste em começar com uma imagem grande, fazer uma amostra pequena de seus pixels e depois reconstruí-la.

Você deve comparar os resultados de interpolação de duas maneiras. A primeira parte consistirá em observar os resultados desse experimento quando a imagem interpolada é gerada por uma função (o zoológico), e a outra em testá-lo com imagens reais (a selva).

2 Parte 0 - O Laboratório

Primeiro, vamos considerar que todo nosso trabalho de interpolação pode ser feito independentemente para cada uma das 3 cores da paleta RGB. Uma imagem de p^2 pixels fornece, então, 3 matrizes de pixels, as quais estamos interessados em estudar e interpolar. Para interpolar essa imagem, vamos imaginar que os pixels conhecidos foram amostrados de uma imagem original.

Seja (i,j) um pixel da imagem. Consideraremos que esse pixel é o valor de uma função $f: \mathbb{R}^2 \to \mathbb{R}$ avaliada em um ponto da forma:

$$\begin{array}{ll} (x_i,y_j), & \text{tal que} \\ x_i = \overline{x} + ih, & \overline{x} \in \mathbb{R} \\ y_j = \overline{y} + jh, & \overline{y} \in \mathbb{R} \end{array}$$

para algum $h \in \mathbb{R}$. Isto significa que estamos associando uma imagem quadrada de $p \times p$ pixels a um quadrado no \mathbb{R}^2 com canto inferior esquerdo em $(\overline{x}, \overline{y}) = (x_0, y_0)$ e canto superior direito em $(\overline{x} + (p-1)h, \overline{y} + (p-1)h) = (x_{p-1}, y_{p-1})$.

Nossa função interpolante deve ser capaz de, dado $(x,y) \in [\overline{x}, \overline{x} + (p-1)h] \times [\overline{y}, \overline{y} + (p-1)h]$, aproximar f(x,y). Iremos supor que (x,y) não é um dos pontos amostrados, isto é,

$$(x, y) \neq (x_i, y_i) \ \forall \ 0 \le i < p, 0 \le j < p.$$

Para aproximar f(x, y), considere os quatro pontos amostrados que definem um quadrado de lado h que contém o ponto (x, y).

Note que, da maneira que definimos, existe mais de um quadrado que contém o ponto (x, y) se ele estiver na fronteira de um quadrado. Você tem a liberdade de criar uma regra para definir qual quadrado será usado para interpolar o ponto nessas condições. Para este enunciado, chamaremos o quadrado com canto inferior esquerdo em (x_i, y_j) de quadrado Q_{ij} .

Nos dois métodos de interpolação que implementaremos nesse exercício programa, o valor interpolado em (x, y) dependerá apenas de informações dos vértices do quadrado de lado h como definimos. Isto é, para cada quadrado Q_{ij} vamos definir um polinômio p_{ij} que interpola pontos dentro deste quadrado.

2.1 Interpolação Bilinear Por Partes

Para interpolar f(x,y) para (x,y) do quadrado Q_{ij} , o método bilinear define $p_{ij}(x,y)$ tal que:

$$f(x,y) \approx p_{ij}(x,y) = a_0 + a_1(x-x_i) + a_2(y-y_i) + a_3(x-x_i)(y-y_i)$$

O polinômio p_{ij} deve satisfazer as restrições de igualdade que nos levam a determinar os coeficientes de p_{ij} . Veja:

•
$$f(x_i, y_j) = p_{ij}(x_i, y_j)$$

$$f(x_i, y_j) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

•
$$f(x_i, y_{j+1}) = p_{ij}(x_i, y_{j+1})$$

 $f(x_i, y_{j+1}) = \begin{bmatrix} 1 & 0 & h & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$

•
$$f(x_{i+1}, y_j) = p_{ij}(x_{i+1}, y_j)$$

 $f(x_{i+1}, y_j) = \begin{bmatrix} 1 & h & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$

•
$$f(x_{i+1}, y_{j+1}) = p_{ij}(x_{i+1}, y_{j+1})$$

 $f(x_i, y_j) = \begin{bmatrix} 1 & h & h & h^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$

Portanto, podemos escrever o sistema determinado:

$$\begin{bmatrix} f(x_i, y_j) \\ f(x_i, y_{j+1}) \\ f(x_{i+1}, y_j) \\ f(x_{i+1}, y_{j+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & h & 0 \\ 1 & h & 0 & 0 \\ 1 & h & h & h^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

Leia mais em:

https://en.wikipedia.org/wiki/Bilinear_interpolation

2.2 Interpolação Bicubica

Na interpolação bilinear cada ponto interpolado depende apenas dos valores dos 4 pontos mais próximos, como definimos anteriormente. Esse tipo de técnica pode causar uma aparência quadrada na imagem interpolada, como vemos abaixo.

Figure 1: Figura gerada por uma interpolação bilinear. Fica aparente na imagem como a falta de suavidade na interpolação "mostra" quadrados delimitados pelas bordas de cada interpolação. Fonte: http://www.codecogs.com/library/maths/approximation/interpolation/multivariate.php

Para diminuir esse efeito usamos a interpolação bicubica, que exige que a função interpoladora v(x,y) seja contínua e também que as primeiras derivadas em x e y e a derivada primeira mista sejam contínuas. Note que em nosso exemplo não faz sentido exigir que a imagem de entrada tenha informação das derivadas parciais (e será que faz sentido perguntar o valor da derivada parcial em um ponto da imagem?) portanto teremos que aproximar essas derivadas parciais.

Iremos calcular as derivadas parciais de forma aproximada, por diferenças finitas. Dado um ponto (x_i, y_j) , é interessante fazer nossa aproximação ao redor do ponto, de forma centralizada:

$$g'(x) \approx \frac{g(x+h) - g(x-h)}{2h}$$

As derivadas parciais são calculadas variando apenas um dos termos, e, portanto, podem ser calculadas da mesma forma que se calcula no caso de funções de \mathbb{R} pra \mathbb{R} . Assim, as fórmulas para as derivadas primeiras são:

$$\frac{\partial f}{\partial x}(x_i, y_j) \approx \frac{f(x_{i+1}, y_j) - f(x_{i-1}, y_j)}{2h}$$
$$\frac{\partial f}{\partial y}(x_i, y_j) \approx \frac{f(x_i, y_{j+1}) - f(x_i, y_{j-1})}{2h}$$

Resta então calcular as derivadas mistas. Isto será feito utilizando as já calculadas derivadas parciais. Ou seja, o método é equivalente a calcular a derivada parcial com relação à x na função dada pela derivada parcial com relação à y. Formalmente,

$$\frac{\partial^2 f}{\partial x \partial y}(x_i, y_j) \approx \frac{\frac{\partial f}{\partial y}(x_{i+1}, y_j) - \frac{\partial f}{\partial y}(x_{i-1}, y_j)}{2h}$$

É importante observar que o método da diferença centralizada não pode ser aplicado nos pontos das bordas. Para obter estes valores, será necessário calcular utilizando a diferença unilateral correspondente. Os casos de borda são

$$\frac{\partial f}{\partial x}(x_0, y_j) \approx \frac{f(x_1, y_j) - f(x_0, y_j)}{h}$$

$$\frac{\partial f}{\partial x}(x_{p-1}, y_j) \approx \frac{f(x_{p-1}, y_j) - f(x_{p-2}, y_j)}{h}$$

$$\frac{\partial f}{\partial y}(x_i, y_0) \approx \frac{f(x_i, y_1) - f(x_i, y_0)}{h}$$

$$\frac{\partial f}{\partial y}(x_i, y_{p-1}) \approx \frac{f(x_i, y_{p-1}) - f(x_i, y_{p-2})}{h}$$

Novamente, definimos a função interpoladora por partes, e chamamos o polinômio que interpola f no quadrado Q_{ij} de $p_{ij}(x,y)$. Teremos que:

$$p_{ij}(x,y) = \begin{bmatrix} 1 & (x-x_i) & (x-x_i)^2 & (x-x_i)^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ (y-y_j) \\ (y-y_j)^2 \\ (y-y_j)^3 \end{bmatrix}$$

Para determinar os dezesseis coeficientes de p_{ij} vamos impor que esse polinômio deve satisfazer dezesseis condições de igualdade, que garantem a continuidade de p_{ij} assim como de suas primeiras derivadas em x e y e derivada mista.

As restrições em p_{ij} são:

•
$$f(x_i, y_j) = p_{ij}(x_i, y_j)$$

$$f(x_i, y_j) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$f(x_i, y_{j+1}) = p_{ij}(x_i, y_{j+1})$$

• $f(x_i, y_{j+1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ h \\ h^2 \\ h^3 \end{bmatrix}$

•
$$f(x_{i+1}, y_j) = p_{ij}(x_{i+1}, y_j)$$

$$f(x_{i+1}, y_j) = \begin{bmatrix} 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

•
$$f(x_{i+1}, y_{j+1}) = p_{ij}(x_{i+1}, y_{j+1})$$

$$f(x_{i+1}, y_{j+1}) = \begin{bmatrix} 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ h \\ h^2 \\ h^3 \end{bmatrix}$$

Juntando as quatro útimas equações:

$$\begin{bmatrix} f(x_i, y_i) & f(x_i, y_{i+1}) \\ f(x_{i+1}, y_i) & f(x_{i+1}, y_{i+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & h \\ 0 & h^2 \\ 0 & h^3 \end{bmatrix}$$

Para $\frac{\partial p_{ij}}{\partial y}$ temos:

$$\begin{array}{c} \bullet \ \, \frac{\partial f}{\partial y}(x_i,y_j) = \frac{\partial p_{ij}}{\partial y}(x_i,y_j) \\ \\ \frac{\partial f}{\partial y}(x_i,y_j) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$$

$$\bullet \frac{\partial f}{\partial y}(x_i, y_{j+1}) = \begin{bmatrix} \frac{\partial p_{ij}}{\partial y}(x_i, y_{j+1}) \\ \frac{\partial f}{\partial y}(x_i, y_{j+1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2h \\ 3h^2 \end{bmatrix}$$

$$\bullet \begin{array}{l} \frac{\partial f}{\partial y}(x_{i+1}, y_j) = \frac{\partial p_{ij}}{\partial y}(x_{i+1}, y_j) \\ \\ \frac{\partial f}{\partial y}(x_{i+1}, y_j) = \begin{bmatrix} 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\bullet \begin{array}{l} \frac{\partial f}{\partial y}(x_{i+1},y_{j+1}) = \frac{\partial p_{ij}}{\partial y}(x_{i+1},y_{j+1}) \\ \\ \frac{\partial f}{\partial y}(x_{i+1},y_{j+1}) = \begin{bmatrix} 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2h \\ 3h^2 \end{bmatrix}$$

Juntando as quatro útimas equações:

$$\begin{bmatrix} \frac{\partial f}{\partial y}(x_i, y_i) & \frac{\partial f}{\partial y}(x_i, y_{i+1}) \\ \frac{\partial f}{\partial y}(x_{i+1}, y_i) & \frac{\partial f}{\partial y}(x_{i+1}, y_{i+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & h & h^2 & h^3 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 2h \\ 0 & 3h^2 \end{bmatrix}$$

Para $\frac{\partial p_{ij}}{\partial x}$ temos:

$$\bullet \frac{\partial f}{\partial x}(x_i, y_j) = \frac{\partial p_{ij}}{\partial x}(x_i, y_j)
\frac{\partial f}{\partial x}(x_i, y_j) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\bullet \begin{array}{l} \frac{\partial f}{\partial x}(x_{i+1},y_{j+1}) = \frac{\partial p_{ij}}{\partial x}(x_{i+1},y_{j+1}) \\ \\ \frac{\partial f}{\partial x}(x_{i+1},y_{j+1}) = \begin{bmatrix} 0 & 1 & 2h & 3h^2 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ h \\ h^2 \\ h^3 \end{bmatrix}$$

Juntando as quatro útimas equações:

$$\begin{bmatrix} \frac{\partial f}{\partial x}(x_i,y_i) & \frac{\partial f}{\partial x}(x_i,y_{i+1}) \\ \frac{\partial f}{\partial x}(x_{i+1},y_i) & \frac{\partial f}{\partial x}(x_{i+1},y_{i+1}) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 2h & 3h^2 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & h \\ 0 & h^2 \\ 0 & h^3 \end{bmatrix}$$

Para $\frac{\partial p_{ij}}{\partial x \partial y}$ temos:

$$\bullet \frac{\partial f}{\partial x \partial y}(x_i, y_j) = \frac{\partial p_{ij}}{\partial x \partial y}(x_i, y_j)
\frac{\partial f}{\partial x \partial y}(x_i, y_j) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} \bullet \ \, \frac{\partial f}{\partial x \partial y}(x_i,y_{j+1}) = \frac{\partial p_{ij}}{\partial x \partial y}(x_i,y_{j+1}) \\ \\ \frac{\partial f}{\partial x \partial y}(x_i,y_{j+1}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2h \\ 3h^2 \end{bmatrix}$$

Juntando as quatro útimas equações:

$$\begin{bmatrix} \frac{\partial f}{\partial x \partial y}(x_i, y_i) & \frac{\partial f}{\partial x \partial (x_i, y_{i+1})} \\ \frac{\partial f}{\partial x \partial y}(x_{i+1}, y_i) & \frac{\partial f}{\partial x \partial (x_{i+1}, y_{i+1})} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 2h & 3h^2 \end{bmatrix} \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 2h \\ 0 & 3h^2 \end{bmatrix}$$

Agora, juntando todas as últimas dezesseis equações, podemos escrever, equivalentemente:

$$\begin{bmatrix} f(x_i, y_j) & f(x_i, y_{j+1}) & \frac{\partial f}{\partial y}(x_i, y_j) & \frac{\partial f}{\partial y}(x_i, y_{j+1}) \\ f(x_{i+1}, y_j) & f(x_{i+1}, y_{j+1}) & \frac{\partial f}{\partial y}(x_{i+1}, y_j) & \frac{\partial f}{\partial y}(x_{i+1}, y_{j+1}) \\ \frac{\partial f}{\partial x}(x_i, y_j) & \frac{\partial f}{\partial x}(x_i, y_{j+1}) & \frac{\partial f}{\partial x \partial y}(x_i, y_j) & \frac{\partial f}{\partial x \partial y}(x_i, y_{j+1}) \\ \frac{\partial f}{\partial x}(x_{i+1}, y_j) & \frac{\partial f}{\partial x}(x_{i+1}, y_{j+1}) & \frac{\partial f}{\partial x \partial y}(x_{i+1}, y_j) & \frac{\partial f}{\partial x \partial y}(x_{i+1}, y_{j+1}) \end{bmatrix} = B \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} B^T$$

 $_{
m onde}$

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & h & h^2 & h^3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2h & 3h^2 \end{bmatrix}$$

Multiplicando a equação acima por B^{-1} pela esquerda e por $(B^T)^{-1}$, obtemos todos os coeficientes de p_{ij} e podemos interpolar qualquer ponto do quadrado Q_{ij} .

Leia mais em:

https://en.wikipedia.org/wiki/Bicubic_interpolation

3 O Programa

Você deve entregar três function files do Octave. Segue a descrição de cada um.

Dica: Para ler e escrever imagens leia a documentação do Octave para imread e imwrite. Estas duas funções bastam para o pedido. Tome cuidado para não comprimir suas imagens ao usar as funções de manipulação de imagens do Octave. O imwrite, por padrão comprime as imagens em 75%.

3.1 compress(originalImg, k)

Esta função deve comprimir uma imagem. Suponha que ela é quadrada e tem p^2 pixels e que $\exists n \in \mathbb{N}$ tal que p = n + (n-1)k. Comprima a imagem original para o tamanho $n \times n$ ao manter as linhas e colunas de índice i tais que i é da forma $i \equiv 0 \mod k + 1$; remova o resto dos pixels.

3.1.1 Parâmetros

- originalImg nome da imagem original que você irá comprimir
- k taxa de compressão, ou seja, número de linhas e colunas que serão removidas respectivamente.

3.1.2 Saída

Você deve gerar uma imagem chamada **compressed.png** como pedido acima.

3.2 decompress(compressedImg, method, k, h)

Esta função deve realizar o papel de decompressão. Você deve expandir uma imagem quadrada com tamanho de lado n (pixels) de modo que o lado final tenha tamanho n + (n-1)k. Faça isso adcionando k linhas e k columas entre cada uma das n linhas e columas.

Depois, para cada ponto que você precisar preencher, interpole três funções (uma para cada cor RGB) usando o método especificado em **method** e descrito nesta seção.

3.2.1 Parâmetros

- compressedImg nome do arquivo da imagem que comprimida
- method método de interpolação a ser usado
 - **1** Bilinear
 - 2 Bicubico
- k Taxa de decompressão, como especificada na compressão e acima
- h O tamanho do lado do quadrado que interpola os pontos, como definido anteriormente. Se F imagem a ser decomprimida, então assumimos que $(x_i, y_j) = (\overline{x} + ih, \overline{y} + jh)$.

3.2.2 Saída

Gere uma imagem chamada **decompressed.png**. Esta é a imagem gerada pela sua matriz de tamanho n + (n-1)k após a interpolação das entradas criadas.

3.3 calculateError(originalImg, decompressedImg)

Este programa deve calcular o erro entre a imagem original e a imagem descomprimida do seguinte modo: Considere origR a matriz correspondente a cor RED da imagem original, e análogo para B e G. Considere também decR a matriz correspondente a cor RED da sua imagem descomprimida, e análogo para G e B. Então definimos o erro err como

$$err = \frac{errR + errG + errB}{3}$$

onde

$$errR = \frac{\|origR - decR\|_2}{\|origR\|_2}$$

e análogo para G e B.

3.3.1 Parâmetros

- \bullet original Im
g - nome do arquivo que contém a imagem original
- decompressedImg nome do arquivo que contém a imagem depois de comprimida e descomprimida

3.3.2 Saída

Imprima apenas um número na saída padrão: o erro calculado.

4 Parte 1 - O Zoológico

Nesta parte você deve usar uma função $f: \mathbb{R}^2 \to \mathbb{R}^3$ de classe C^2 para gerar uma imagem grande em RGB, no formato especificado na parte "Programa", para testar nosso método de compressão, isto é, comprimir, descomprimir e calcular o erro.

Teste com exemplos próprios, mas certifique-se de testar pelo menos com a função:

$$f(x,y) = (sen(x), \frac{sen(y) + sen(x)}{2}, sen(x))$$

Faça experimentos e responda questões como:

- Funciona bem para imagens preto e branco?
- Funciona bem para imagens coloridas?
- Funciona bem para todas as funções de classe C^2 ?
- E para funções que não são de classe C^2 ?
- \bullet Como o valor de h muda a interpolação?
- Como se comporta o erro?

Responda também a esta questão:

Considere uma imagem de tamanho p^2 . Comprima-a com k=7. Para obter a descompressão, podemos rodar **decompress** com k=7. Experimente alternativamente usar **decompress** $tr\hat{e}s$ vezes com k=1 nas três. Compare os resultados. Escreva no relatório suas conclusões.

5 Parte 2 - A Selva

Agora, na selva, sua tarefa é realizar algo muito parecido com a parte 1, mas com uma imagem real (foto ou desenho). Note que agora a existência de uma f de classe C^2 é uma suposição muito provavelmente falsa. Responda no relatório todas as questões ainda pertinentes da Parte 1, e outras que você julgar boas.

6 Para entregar

Entregue um arquivo .tar com nome **ep2.tar**. Ao descompactá-lo devemos encontrar uma pasta **ep2** com os seguintes conteúdos:

- decompress.m, o programa em Octave como function file
- compress.m, o programa em Octave como function file
- calculateError.m, o programa em Octave como function file
- relatorio.pdf, um relatório completo do EP, em pdf, incluindo:
 - Decisões de projeto quanto à implementação dos métodos
 - Observações pedidas quanto aos experimentos
 - Exemplos ilustrativos dos resultados

Interpolação Balinear

· média ponderada des pixels originais ao redor de nove pixel

· equação bilinear:

$$f(x', y') = (1 - dx) \cdot (1 - dy) \cdot f(x, y) + dx \cdot (1 - dy) \cdot f(x + 1, y) + (1 - dx) \cdot dy \cdot f(x, y + 1) + dx \cdot dy \cdot f(x + 1, y + 1)$$

• valor de n p = n + (n-1)k.

$$K = 7$$
; $N = 5$

$$21 = 2n - 1$$
 $\Rightarrow n = 22/2 = 11$ (funciona)

da para comprimir para 11 × 11

· indias a columns de india i

 $i \in da$ forma $i \equiv 0 \mod k + 1$;

médule de conquência. A = B mod C

i é congruente com D mod K+1

(divisivel versio)