DATA STRUCTURE (DS)

Course Details

COURSE NAME: DATA STRUCTURE using C

What background knowledge is necessary?

Basic knowledge on C is required.

Course Overview

- ✓ Starts from recursive function, pointer as implementation is based these concepts
- ✓ Pseudo-codes, objectives questions and answer at end of every chapter
- ✓ Hands on goes on parallel (with individual laptop)
- ✓ Explains every algorithm simply and implements it in class. Implementation is more important than only understanding it or getting the codes
- ✓ Provides a great practise session
- ✓ Discusses time complexity and space complexity for every implementation
- ✓ Discussion of frequently asked coding question

DATA STRUCTURE: Course Details	
Course Duration	50 hrs
Course Fee	3,500
Mode of Teaching	Live online class
Class Timing	10.30am – 12.30pm
Batch Size	40-50
Educator	1.Mr. Dambarudhar Mohanty (M- 8249431423) 2.Mr. Sudhansu Dalai (M- 9777036556)

Data Structure: Detailed Syllabus

- 1. Introduction to Data Structure
- 2. Algorithm
- 3. Performance Analysis
 - ✓ Time complexity
 - ✓ Space complexity
- 4. Asymptotic Notations-

 - ✓ Big O ✓ Omega
 - ✓ Theta notations
- 5. Stacks
 - ✓ Stack Operations
 - ✓ push()
 - ✓ pop()
 - ✓ isEmpty()
 - ✓ isFull()
 - ✓ Stack implementation using arrays
 - ✓ Applications
 - ✓ String reverse
 - ✓ Stack and Recursion
 - **Balanced Parentheses**
- 6. Stack Implementation using pointer (Dynamic)

DATA STRUCTURE (DS)

Course Details

- 7. Arithmetic Expression
 - ✓ Introduction to Notations
 - Importance of Notations in expression evaluation
 - ✓ Conversion Algorithms
 - ✓ Infix to prefix
 - ✓ Infix to postfix
 - ✓ Evaluation of Postfix expression
 - ✓ Implementation of all the conversions (7+)
 - ✓ MCQs/Pseudo Code
- 8. Queues
 - ✓ Operations on Queue enqueue(), dequeue()
 - ✓ Queue implementation using static arrays
 - ✓ Applications
 - ✓ Queues Implementations using pointer (dynamic)
 - ✓ MCQs/Pseudo Code
- 9. Circular queues
- 10. Double Ended queue (Deques)
- 11. Single linked list
 - ✓ Introduction
 - ✓ Construction
 - ✓ Length
 - ✓ Insertion
 - ✓ Deletion
 - ✓ Sort
 - ✓ Reverse list
 - ✓ Swap nodes
 - ✓ Applications
- 12. Stack implementation using linked list
- 13. Queue implementation using linked list
- 14. Doubly linked list
- 15. Circular linked list
- 16. Binary Tree

 - ✓ Terminology✓ Differences between Tree and Binary Tree
 - ✓ Binary Tree Representations
 - ✓ Expression Trees
 - ✓ Traversals
 - ✓ In-order
 - ✓ pre-order
 - ✓ post-order
- 17. Binary Search Tree
 - ✓ Introduction to BST
 - ✓ Insertion
 - ✓ Deletion
 - ✓ Search
 - ✓ Implementation
 - ✓ *Program* (25 +)
 - ✓ MCQs/Pseudo Code
- 18. AVL Trees
 - ✓ Introduction
 - ✓ BST v/s AVL
 - ✓ Rotations
 - ✓ L-L-Rotation
 - ✓ R-R-Rotation

DATA STRUCTURE (DS)

Course Details

- ✓ L-R-Rotation
- ✓ R-L-Rotation
- ✓ Insertion
- ✓ Deletion
- ✓ Implementation
- ✓ Traversal
- ✓ MCQs/Pseudo Code
- 19. B trees
 - ✓ M-way Search Tree
 - ✓ Search
 - ✓ Insertion
 - ✓ Deletion
- 20. Searching Algorithms
 - ✓ Linear search
 - ✓ Binary search
- 21. Sorting Algorithms
 - ✓ Bubble sort
 - ✓ Selection sort
 - ✓ Insertion sort
 - ✓ Heap sort
 - ✓ Merge sort
 - ✓ Quick sort
 - ✓ Count sort
 - ✓ Radix sort
 - ✓ MCQs/Pseudo Code
- 22. Graph
 - ✓ Introduction & Terminology
 - ✓ Graph Representations
 - ✓ Dijkstra's Algorithm
 - ✓ Kruskal's Algorithm
 - ✓ Traversal
 - ✓ BFS (Breadth First Search)
 - ✓ DFS (Depth First Search)
 - ✓ MST
 - ✓ MCQs/Pseudo Code
- 23. Hashing
 - ✓ Hash Table representation
 - ✓ Hash function-Division Method
 - ✓ Collision
 - ✓ Collision Resolution Techniques
 - ✓ Separate Chaining
 - ✓ Open addressing
 - ✓ Linear probing
 - ✓ Quadratic probing
 - ✓ Double hashing
 - ✓ Rehashing
 - ✓ Programs(5+)

Educator:

- **1.** Mr. Dambarudhar Mohanty (M- 8249431423)
- 2. Mr. Sudhansu Dalai (M- 9777036556)