QUANTUM ELECTRONICS

For atomic physics

Gaussian Beam

$$\nabla_t^2 \psi - 2ik \frac{\partial \psi}{\partial z} = 0,$$

$$\psi(x,y,z) = \exp\left\{-i\left(P(z) + \frac{k}{2q(z)}r^2\right)\right\} \left\{ \frac{1}{k} \right\}$$

complex beam parameter q
$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{n\pi\omega(z)^2}$$

$$\omega(z) = \omega_0 \left[1 + \left(\frac{z}{z_R} \right)^2 \right]^{1/2} \qquad z_R = \frac{n\pi\omega_0^2}{\lambda}$$

$$R(z) = z + \frac{z_R^2}{z_R^2}.$$

ABCD rule

$$q_1 = \frac{Aq_0 + B}{Cq_0 + D} \iff \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Ζ

SUMMARY – GEOMETRIC PROPERTIES OF OPTICAL CAVITY

Stability condition

$$q = \frac{Aq + B}{Cq + D}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{2}{R_1} & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{2}{R_2} & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$$

$$g_1 \equiv 1 - \frac{d}{R_1} \qquad g_2 \equiv 1 - \frac{d}{R_2}$$

$$\frac{1}{q} = \frac{g_1 - 1}{d} \pm \frac{i}{g_2 d} \sqrt{g_1 g_2 (1 - g_1 g_2)}$$

$$\frac{1}{q} = \frac{1}{R} - i \frac{\lambda}{n\pi\omega^2}$$

Stability criterion: $0 \le g_1 g_2 \le 1$

GEOMETRIC PROPERTIES OF OPTICAL CAVITY

$$\frac{1}{q} = \frac{g_1 - 1}{d} \pm \frac{i}{g_2 d} \sqrt{g_1 g_2 (1 - g_1 g_2)} \qquad \frac{1}{q} = \frac{1}{R} - i \frac{\lambda}{n \pi \omega^2}$$

$$q(z) = q_0 + z = i rac{n\pi\omega_0^2}{\lambda} + z = i \, z_R + z$$
, $\omega^2 = \left(rac{\lambda d}{n\pi}
ight) \sqrt{rac{g_2}{g_1(1-g_1g_2)}}$, $R = rac{d}{g_1-1} = -R_1$,

$$z_R = Im(q) = Im\left(\frac{1}{q^{-1}}\right) = Im\left(\frac{(q^{-1})^*}{q^{-1}(q^{-1})^*}\right) = \frac{-Im(q^{-1})}{|q^{-1}|^2} \qquad \omega_0^2 = \left(\frac{\lambda d}{n\pi}\right) \\ z_R = \left(\frac{\lambda d}{n\pi}\right) \\ \frac{\sqrt{g_1g_2(1-g_1g_2)}}{g_1+g_2-2g_1g_2} \\ \omega_0^2 = \left(\frac{\lambda d}{n\pi}\right) \\ z_R = \left($$

Distance from waist = $Re\{q(z)\}$ = $Re\{q^{-1}\}/|q^{-1}|^2$

$$z_1 = d \frac{g_2(g_1 - 1)}{g_1 + g_2 - 2g_1g_2}$$
 $z_2 = d \frac{g_1(1 - g_2)}{g_1 + g_2 - 2g_1g_2}$ $z_2 - z_1 = d$

Confocal cavity

$$d = R$$

$$\omega_0 = \left(\frac{\lambda d}{2n\pi}\right)^{1/2}$$

$$\omega_{mirror} = \left(\frac{\lambda d}{n\pi}\right)^{1/2} = \sqrt{2}\omega_0$$

2.5 HIGHER-ORDER MODES

$$\begin{split} u(x,y,z)_{nm} &= \\ &\frac{\omega_0}{\omega(z)} H_n(\sqrt{2}\frac{x}{\omega}) H_m(\sqrt{2}\frac{y}{\omega}) \\ &\times \exp\left\{-i(kz - \Phi(m,n;z)) - i\frac{k}{2q}(x^2 + y^2)\right\} \end{split}$$

$$u(x,y,z)_{nm} =$$

$$\frac{\omega_0}{\omega(z)} H_n(\sqrt{2}\frac{x}{\omega}) H_m(\sqrt{2}\frac{y}{\omega})$$

$$\times \exp\left\{-i(kz - \Phi(m, n; z)) - i\frac{k}{2q}(x^2 + y^2)\right\}$$

$$\frac{\omega_0}{\omega(z)} = \frac{1}{\sqrt{1 + (z/z_R)^2}}$$

same q independent of m,n Same ABCD rule

$$\Phi(n, m; z) = (n + m + 1) \tan^{-1}(z/z_R)$$

HERMIT GAUSSIAN MODES

• They are all characterized by the same complex beam parameter, q, defined by

$$\frac{1}{q(z)} = \frac{1}{R(z)} - i \frac{\lambda}{n\pi\omega^2(z)}.$$
 (2.28)

- They all satisfy the same ABCD rule as (lowest order) Gaussian beams. The *mode* numbers, m and n are preserved under all of the transformations discussed in this book.
- The mode shape is independent of z and scales with $\omega(z)$.
- The mode of index m has a half-width, x_m , (in one transverse coordinate), where

$$x_m \approx \sqrt{m} \times \omega.$$
 (2.29)

Thus, ω is no longer the beam size in higher-order modes. A focused spot has its size degraded by \sqrt{m} .

• The maximum mode number (m_{max}) at a waist which will "fit" into an aperture of radius a is:

$$m_{max} \approx (a/\omega_0)^2. \tag{2.30}$$

This spatial filtering behavior of small apertures allows one to filter out modes whose mode number (in either coordinate) is greater than m_{max} .

2.6 RESONANT FREQUENCIES

$$R_1$$
 R_2

$$\exp \left\{ -i(kz - \Phi(m, n; z)) - i\frac{k}{2q}(x^2 + y^2) \right\}$$

$$\Phi(n, m; z) = (n + m + 1) \tan^{-1}(z/z_R)$$

$$\delta = 2kd - 2(n+m+1)(\tan^{-1}(z_2/z_R) - \tan^{-1}(z_1/z_R))$$

$$\delta = q(2\pi) \Longrightarrow \frac{\omega d}{c} - (n+m+1)\cos^{-1} \pm \sqrt{g_1g_2} = q\pi$$

$$\nu_{nmq} = \left(q + (n+m+1)\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi}\right) \frac{c}{2d}$$

Free spectral range

$$\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi} \approx \begin{cases} 0 : g_1, g_2 \to 1 \text{ (near-planar)} \\ 1/2 : g_1, g_2 \to 0 \text{ (near-confocal)} \\ 1 : g_1, g_2 \to -1 \text{ (near-spherical)} \end{cases}$$

$$\nu_{nmq} = \left(q + (n+m+1)\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi}\right) \frac{c}{2d}$$

Free spectral range

$$\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi} \approx \begin{cases} 0 : g_1, g_2 \to 1 \text{ (near-planar)} \\ 1/2 : g_1, g_2 \to 0 \text{ (near-confocal)} \\ 1 : g_1, g_2 \to -1 \text{ (near-spherical)} \end{cases}$$

2.7 THE TRAVELING WAVE(RING) CAVITY

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 + 2d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_3 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 + 2d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_3 \\ 0 & 1 \end{pmatrix}$$

$$g_1 = 1 - \frac{d_1 + 2d_2}{R} \qquad g_2 = 1 - \frac{d_3}{R},$$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & R(1 - g_1) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-2}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & R(1 - g_2) \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2g_1 - 1 & R(-2g_1g_2 + g_1 + g_2) \\ \frac{-4g_1}{R} & 4g_1g_2 - 2g_1 - 1 \end{pmatrix}.$$

$$|A+D| \le 2 \Longrightarrow |4g_1g_1-2| \le 2 \Longrightarrow 0 \le g_1g_2 \le 1$$

Stability:
$$R \le d_3 \le \frac{R(d_1 + 2d_2)}{d_1 + 2d_2 - R}$$

Range:
$$\Delta d_3 \approx \frac{R^2}{d_1 + 2d_2}$$
 when $d_1 + 2d_2 \gg R$.

Property	Standing wave	Symmetric ring
g_1	$1-rac{d}{R_1}$	$1 - \frac{d_1 + 2d_2}{R}$
g_2	$1 - \frac{d}{R_2}$	$1 - \frac{d_3}{R}$
Path length	2d	$L = d_1 + 2d_2 + d_3$
Waist(s)	$\omega^2 = \left(\frac{\lambda d}{n\pi}\right) \frac{\sqrt{g_1 g_2 (1 - g_1 g_2)}}{g_1 + g_2 - 2g_1 g_2}$	$\omega_0^2 = \left(\frac{\lambda R}{2n\pi}\right) \frac{\sqrt{g_1 g_2 (1 - g_1 g_2)}}{g_1}$ $\omega_0'^2 = \left(\frac{\lambda R}{2n\pi}\right) \frac{\sqrt{g_1 g_2 (1 - g_1 g_2)}}{g_2}$
		${\omega_0'}^2 = \left(\frac{\lambda R}{2n\pi}\right) \frac{\sqrt{g_1 g_2 (1 - g_1 g_2)}}{g_2}$
$ u_{nmq}$	$\left(q + (n+m+1)\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi}\right) \frac{c}{2d}$	$\left(q + (n+m+1)\frac{\cos^{-1} \pm \sqrt{g_1 g_2}}{\pi}\right) \frac{c}{L}$
FSR	$rac{c}{2d}$	$rac{c}{L}$

Homework: Drive the marked equations

Homework: Find and draw the beam radius and Radius of curvature everywhere inside the cavities with R = 6 cm, $d_3 = 7$ cm, $d_1 + 2d_2 = 18$ cm, $\lambda = 0.74$ um.

2.8 ASTIGMATISM IN A RING CAVITY

$$M_T = \begin{pmatrix} 1 & 0 \\ \frac{-2}{R\cos\theta} & 1 \end{pmatrix}, \qquad M_S = \begin{pmatrix} 1 & 0 \\ \frac{-2\cos\theta}{R} & 1 \end{pmatrix}$$

2.8 ASTIGMATISM IN A RING CAVITY

$$M_T = \begin{pmatrix} 1 & 0 \\ \frac{-2}{R\cos\theta} & 1 \end{pmatrix}, \qquad M_S = \begin{pmatrix} 1 & 0 \\ \frac{-2\cos\theta}{R} & 1 \end{pmatrix}$$

2.8 ASTIGMATISM IN A RING CAVITY

$$M_T = \begin{pmatrix} 1 & l/n^3 \\ 0 & 1 \end{pmatrix}$$
$$M_S = \begin{pmatrix} 1 & l/n \\ 0 & 1 \end{pmatrix}.$$

$$M_S = \begin{pmatrix} 1 & l/n \\ 0 & 1 \end{pmatrix}.$$

2.9 MODE MATCHING

$$f_0 = n\pi\omega_1\omega_2/\lambda = \sqrt{z_{R1}z_{R2}}$$

$$d_{1} = f \pm \frac{\omega_{1}}{\omega_{2}} \sqrt{f^{2} - f_{0}^{2}}$$
$$d_{2} = f \pm \frac{\omega_{2}}{\omega_{1}} \sqrt{f^{2} - f_{0}^{2}}$$

Homework: drive the equation for d1 and d2

2.9 MODE MATCHING

$$\frac{1}{q_1} = -i\frac{\lambda}{n\pi\omega_1^2} = \frac{-i}{z_{R1}}$$

$$q_1 = i z_{R1}$$

$$q_2 = \frac{Aq_1 + B}{Cq_1 + D} = iz_{R2} = \frac{Aiz_{R1} + B}{Ciz_{R1} + D}$$

$$\frac{1}{q_2} = -i\frac{\lambda}{n\pi\omega_2^2} = \frac{-i}{z_{R2}}$$

$$q_2 = iz_{R2}$$

$$B + z_{R1}z_{R2}C = 0$$
, $z_{R1}A - z_{R2}D = 0$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - d_2/f & d_1 + d_2 - d_1d_2/f \\ -1/f & 1 - d_1/f \end{pmatrix}$$

Then solve the equations.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f_2} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-1}{f_1} & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 \\ 0 & 1 \end{pmatrix}$$

$$q_2 = \frac{Aq_1 + B}{Cq_1 + D} + d_2$$

$$R_2 = 1/Re\{1/q_2\}$$
 and $\omega_2 = \sqrt{\frac{-\lambda}{n\pi Im\{1/q_2\}}}$

Procedure

- 1. Determine ω_0 and z_R from the cavity equations.
- 2. Given d_0 , the distance from waist to lens 2, determine ω_2 using $\omega_2 = \omega_0 \sqrt{1 + (d_0/z_R)^2}$.
- 3. Given input spot size (ω_1) , find two lenses whose focal lengths are in ratio ω_1/ω_2 .
- 4. Separate lenses by slightly more than $f_1 + f_2$ so waist is at center of cavity.

Homework: Problem 2.7

Example

(Confocal)
$$d_c = 10$$
 cm,
 $\lambda = 1 \mu \text{m}, \, \omega_0 = 126 \mu \text{m},$
 $z_R = 5 \text{ cm}$

$$d_0 = 10 \text{ cm},$$

 $\omega_2 = 282 \ \mu\text{m}$

$$\omega_1 = .05 \text{ cm}, \text{ ratio } \approx 1.8,$$

 $f_1 = 1.8 \text{ cm}, f_2 = 1 \text{ cm}$

$$f_1 + f_2 = 2.8 \text{ cm}$$