6) Int. C1. 69日本分類 ①特許出願公告 19日本国特許庁 C 07 c 67/02 16 B 6 昭48—43329 C 07 c 69/00 16 B 602.2 C 07 c 69/14 C 07 c 69/24 16 B 61 @公告 昭和48年(1973)12月18日 16 B 621 C 07 c 69/34 16 C 6 C 07 c 69/76 発明の数 1 16 C 613 C 07 c 69/78 16 C 62 C 07 c 69/92 (全8頁) 16 C 624 С 07 b 29/00 16 A 6 B 01 j 11/00 13(9) G 421 B 01 j 11/82 13(9)G 1 16 B 64

1

のエステル交換法

②特 顧 昭45-29957

223世 願 昭45(1970)4月9日

720発 明 者 高橋邦之

鎌倉市津西1の31の17

百 波多剛

鎌倉市津西2の1の17

同 三宅昭久

鎌倉市津西2の2の26

切出 願 人 東レ株式会社

東京都中央区日本橋室町2の2

1917代理》 人名 弁理士 篠田巌

2

※発明の詳細な説明

本発明はエステルの交換法に関するものである。 更に詳しくはエステル残基がβ・γ-位にオレフ イン性二重結合を有する不飽和基であるカルポン 5 酸エステルと遊離のカルポン酸もしくはカルポン 酸無水物とを①パラジウム化合物もしくは白金化 合物及び②三価のリン化合物もしくはヒ素化合物 の存在下に反応せしめることを特徴とするエステ ル残基がβ·γー位にオレフイン性二重結合を有 10 する不飽和基であるカルボン酸エステルのエステ ル交換法である。

本発明を反応式で示すと次のようになる。

または

式中Rは炭化水素基、 R_1 は β ・ γ —位にオレ フイン性二重結合を持つ不飽和基、R2 は水素ま たは炭化水素基、 R_3 , R_4 は同種または異種の炭 30 ウム化合物または白金化合物の存在下で行なう方 化水素基であるがこれらの炭化水素基は適宜不活 性置換基を含んでいてよい。

本発明の反応は パラジウム化合物もしくは白金 化合物及び三価のリン化合物もしくはヒ素化合物 の存在下で行なわれる。

エステルの交換は、通常は酸またはアルカリの 存在下で行なわれる。本発明方法のようにパラジ 法は、従来全く知られていない新規な方法である。 本発明方法では、酸或は塩基を用いる必要がない。 すなわち、中性条件下で反応を行なうことができ るため、従来法に比べて、副反応が起りにくいと 35 いう、優れた点がある。かかる点においても、本

CH₃

発明方法は、有機合成をより円滑に行なうために ※いが、通常Rは、炭素数1~20の炭化水素基 大きく寄与するものである。

 $B-C-O-R_1$

 $\|$ 0

テルとは、特にその形態に制限されるものではな※ 体的には、

(但し、反応に不活性な置換基を含んでいても良 本発明方法では、一方の出発原料である一般式 い)、R₁ は炭素数 3~20のβ, r -位にオレ フィン性二重結合を有する基(但し、反応に不活 なるカルボン酸アルケニルエス 5 性な置換基を含んでいてもよい) であるカルボン 酸アルケニルエステルが好ましく用いられる。具

 $CH_3 COOCH_2 CH = CH_2$, $CH_3 CH_2 COOCH_2 CH = CH_2$, $C_6 H_5 COOCH_2 CH = CH_2$, $CH_3 COOCH_2 C(CH_3) = CH_2$, $C_6 H_5 COOCH_2 C(CH_3) = CH_2$,

 $CH_3 COOCH_2 - CH = CH - CH_3$, $CH_3 COOCH_2 - C = CHCH_3$, $CH_3 COOCH_2 - CH = C - CH_3$,

CH₃ COOCH₂-CH=C-CH₃, CH₃ COOCH₂ CH=CH(CH₂)₈ CH=CH₂, |

 $CH_3 COOCH(CH_2)_3 CH = CH_2$, $CH_3 CH_2 COOCH_2 CH = CH(CH_2)_3 CH = CH_2$,

 $CH = CH_2$

 $\mathrm{CH_3~CH_2~COOCH(~CH_2~)_3~CH=CH_2}$, $\mathrm{C_6~H_5~COOCH_2~CH=CH(~CH_2~)_3~CH=CH_2}$,

 $CH = CH_2$

 $C_0 H_5 COOCH (CH_2)_3 CH = CH_2$, $CH_3 COOCH_2 CH = C - CH_2 CH_2 CH = C - CH_3$,

 $CH = CH_2$

 $CH = CH_2$

 $CH_3 COOCH_2 CH = C (CH_2)_2 CH = C - (CH_2)_2 CH = C$

等を挙げることができるが、これらに限定される 35 基(但し、反応に不活性な置換基を含んでいても ものではないことはもちろんである。

もう一方の出発原料である一般式 R2 - COOH

R₃-C に不活性な置換基を含んでいてもよい ルポン酸無水物が好ましく用いられるなるカルボン酸或は一般式 O なる酸無 40 は、CH₃ COOH, CH₃ CH₂ COOH, R₄-C n-C₃ H₄ COOH, iso -C₄ H₄ COOH

水物とは、特にその形態に制限されるものではない $iso -C_3H_7COOH$, $n-C_5H_{11}COOH$,

よい) であるカルボン酸、 Rs , R4が炭素数 1 ~ 20の同種または異種の炭化水素基(但し、反応 に不活性な置換基を含んでいてもよい)であるカ ルポン酸無水物が好ましく用いられる。具体的に

CH₃

 $n-C_3H_7$ COOH, iso $-C_3H_7$ COOH, $C_1 - CH_2 COOH, n - C_4 H_9 COOH,$

5

 $C_2 H_5 OOC - CH_2 CH_2 COOH$, $HOOC - CH_2 CH_2 - COOH$, $C_6 H_5 COOH$,

 $(CH_3 CH_2 CO)_2$, $(n-C_3 H_5 CO)_2 O$, $(C_1-C_{12}C_0)_2O$, $(iso-C_3H_7C_0)_2O$, $(n-C_4 H_9 CO)_2 O$, $(n-C_5 H_{11} CO)_2 O$,

$$(C_6 H_5 CO)_2 O \cdot \left(O \right)_2 O \cdot \left(O \right)_2$$

(p-CH₃C₆H₄CO)₂O,

 $(p-C_1-C_6H_4CO)_2O$,

(p-C₂H₅OOC-C₆H₄CO)₂O 等の酸無水 物を挙げることができるが、これらに限定される ものでないことは言うまでもない。

カルボン酸、或はカルボン酸無水物の使用量は、 論量前後または過剰量である。

本発明はこれら二種の出発物質をバラジウム化 合物もしくは白金化合物、三価のリン化合物もし くはヒ素化合物 からなる触媒の存在に て反応させ るものである。

本発明で使用するパラジウム化合物の具体例を 示すとPdCl2,PdBr2,Pdl2,Pd(NO3)2, Pd(CNS), Pd(CN), 等の無機塩、

有機酸塩、H₂(PdCl₄),H₂(PdCl₆) 等の 酸、Na,PdCl4,K2PdCl4 の無機錯塩、 $\pi - C_3 H_5 PdC1(\pi - C_3 H_5)$ は $\pi - T リル基を$ 示す)Pd(CO)Cl2,

5 $Pd(O-C-CHCOCH_3)_2$,

 $(\pi - C_3 H_5)_2 Pd$, $(PdC1_2 (CH_2 = CH_2))_2$, $PdCl_2(C_6H_5-CH=CH_2)$,

$$PdCl_2(\bigcirc C = N)$$
,

 $PdCl_2(CH_2 = CHCH = CH_2)$,

PdC12(|)等の有機配位錯化合物,

15 PdCl₂ (NH₃)₂, Pd(NO₂)₂ (NH₃)₂,

ることができる。又、白金化合物としては、 20 PtI2, PtCl2, Pt(CN)2 等の無機塩、 H2PtCle・6H2O 等の酸、Na2PtCl4, K₂ Pt (CN)₄・3H₂ O等の無機錯塩、 $Pt(\pi - C_3H_5)_2$, $KPtCl_3(CH_2 - CH_2)$, K₂PtCl₃(CH₃CH=CH₂)₂ 等の有機配位子 25 錯体、Pt(OCOCH₈)₂,Pt(OCOC₂H₅)₂ 等 の有機酸塩、PtCl₂(NH₃)₂,

$$P tC1_2 (N_3)_2, P t (NO_2)_2 (NH_3)_2$$

30 等のN-配位錯体を挙げることができる。もちろ んこれらに限定されるものではない。 パラジウム 化合物もしくは白金化合物の使用量はカルポン酸 ・アルケニルエステルのモル比で1/20~ 1/50000、好ましくは1/50~ 通常はカルポン酸アルケニルエステルに対して量 35 1/5000である。リンおよびヒ素化合物とし ては、三価の化合物であればいずれも触媒組成と しての働きを示すが、活性の高い触媒を用いるた めには一般式 R₁ R₂ R₃ M (MはPまたはAs,

,Hおよびハロゲンから選ばれた基であ

 R_1 , $R_2 \approx L \circ R_3 \Leftrightarrow R^1$, OR^2 ,

り、R¹,R²,R³ およびR⁴ は炭素数1~16

素基を示す)を用いるのが望ましい。具体的化合 ※(CeH5)2PH ,(CeH5)(o-CH3CeH4) PH , 物としては、 $P(CH_3)_8$, $P(C_2H_5)_3$, $P(n-C_3H_7)_3$, $P(i-C_3H_7)_3$, $P(n-C_4H_9)_3$, $(C_6H_5)_2AsH$, PCl_3 , CH_3PCl_2 , $P(i-C_4H_9)_3$, $P(sec-C_4H_9)_3$, $P(n-C_6H_{13})_3$, $P(n-C_5H_{11})_3$, $(CH_2=CH)_3P$, $P(C_8H_{17})_3$, $P(C_{10}H_{21})_3$, $P(C_{12}H_{25})_3$, As(CH₃)₃, As(C₂H₅)₃, $As(CH = CH_2)_3$, $As(n - C_3H_7)_3$, $CH_2 = CHAs(C_4H_9)_2$, $As(C_8H_{17})_3$, $P(\text{cyclo}-C_5H_9)_3$, $P(\text{cyclo}-C_6H_{11})_3$, $P(\text{cyclo}-C_8H_{15})_3$, (cyclo- $C_6H_{11})_2PCH_3$, As $(\text{cyclo} - C_6H_{11})_3$, $P(C_6H_5)_3$, $P(C_6H_4CH_3-m), P(C_6H_4CH_3-0),$ $P(C_6H_4CH_3-p), P(C_6H_4C1-p),$ $P(\alpha-\tau)_3, P(C_6H_4-C_6H_5-p)_3,$ $P(C_6H_4-O-C_6H_5-p)_3$, As $(C_6H_5)_3$, $As(C_6H_4-CH_3-m), As(C_6H_4-CH_3-p),$ $(C_6H_5)_2PCH_2CH_3$, $(C_6H_5)_2PC_6H_{13}$, $C_6H_5CH_2P(C_3H_7)(C_4H_9)$, $C_6H_5P(CH_2CH_3)_2$, $(C_6H_5)_2A_8C_2H_5$, $(\text{cyclo} - \text{C}_6\text{H}_{11})_2 - \text{POC}_6\text{H}_{13}$, $(C_{10}H_{21})_2POC_{10}H_{21}$, $C_6H_5CH_2P(OC_8H_{17})_2$, $C_6H_5(C_4H_9)AsOC_2H_5$, $(CH_3)_2AsOC_6H_5$, $P(OCH_3)_2$, $P(OC_2H_5)_2$, $P(OC_4H_9)_3$, $P(OC_6H_5)_3$, $(C_6H_5O)_2POC_3H_7$, $P(OC_6H_4NO_2-p)_3$, $P(O-C_6H_4CH_5-0)_3$, $P(O-C_6H_4-CH_3-m)_3$, $P(OC_6H_4,CH_3-p)_3$, $P(O-C_6H_4C_{1-0}), P(O-C_6H_4C_{1-p})_3,$ $P(OCH_2-C_6H_5)_3$, As $(OCH_3)_3$, $As(OC_2H_5)_3$, $As(OC_3H_7)_3$, $As(OC_6H_5)_3$,30 MはPまたはAs、 R^1 , R^2 , R^3 , R^4 、は炭素数 $(C_2H_5)_2PH$, $CH_3(C_4H_9)PH$, $(\operatorname{cyclo} - \operatorname{C}_6\operatorname{H}_{11})_2\operatorname{PH}, \operatorname{C}_6\operatorname{H}_5\operatorname{PH}_2,$ *¥35*

 $C_2H_5A_8H_2$, $(CH_3)_2A_8H$, $(C_2H_5)_2A_8H$, $C_2H_5PC1_2$, $CH_3(C_2H_5)PC1$, $C_4H_9PBr_2$, 5 (cyclo- C_6H_{11})₂PC1, (n- C_6H_{13})₂PC1, $C_6H_5PC1_2$, $(C_6H_5)_2PC1$, $(CH_3)_2AsC1$, $(CH_3)_2AsBr$, $n-C_3H_7AsCl_2$, $i - C_3H_7AsCl_2$, $(CH_3)_2AsBr$, $n-C_3H_7A_8Cl_2$, $i-C_3H_7A_8Cl_2$, 10 $C_6H_5AsI_2$, $(C_6H_5)_2AsC1$, $(C_2H_5O)_2PC1$, $C_2H_5PCI_2$, $(C_2H_5O)_2PBr$, $(n-C_4H_9O)_2PCI$, $(n-C_8H_{17}O)_2PCI$, $(C_6H_5O)_2PC1$, $(C_6H_5O)_2PBr$, $C_6H_5OPC1_2$, $(p-C1-C_6H_4O)_2PC1$, $15 (o-C1-C_6H_4O)_2PC1$, $(p-CH_3-C_6H_4O)_2PC1, C_2H_5OAsC1_2,$ $C_4H_9OAsCl_2$, $(C_4H_9O)_2AsCl_1$ $(C_6H_5O)_2AsC1$, $C_2H_5O(C_3H_7O)AsC1$, $((CH_3)_2N)_2PC_1, (CH_3)_2NP(OCH_3)_2,$ 20 $(CH_3)_2NP - (OC_6H_{13})_2$, $(CH_3)_2NP(OC_6H_5)_2$, $((C_2H_5)_2N)_2PC1(C_2H_5)_2NP(C_2H_5)OC_8H_{17}$, $P(N(CH_3)_2)_3, P(N(C_4H_9)_2)_3,$ $P(N(i-C_3H_7)_2)_3, P(N(C_6H_5)_2)_3,$ $((CH_3)_2N)_2AsOC_6H_5, ((C_2H_5)_2N)_2AsC1,$ 25 [(C₂H₅)₂N]₃As,[(C₆H₁₃)₂N]₃As,等が挙 げられる。

1~16の脂肪族基、脂環族基、芳香族基からな る炭化水素基、R5は二価の炭化水素基を示す)で 示されるジホスフイン化合物或はジアルシン化合 物も好ましく用いられ、具体的には

 $(CH_3)_2 PCH_2 CH_2 P (CH_3)_2$, $(C_2 H_5)_2 P (CH_2)_3 P (C_2 H_5)_2$, $(\text{cyclo} - C_6 H_{11})_2 PCH_2 CH_2 P (\text{cyclo} - C_6 H_{11})_2, (\text{n} - C_4 H_9)_2 PCH_2 P (\text{n} - C_4 H_9)_2,$ $(C_6 H_5)_2 PCH_2 P - (C_6 H_5)_2$, $(C_6 H_5)_2 PCH_2 CH_2 P (C_6 H_5)_2$, $(C_6 H_5)_2 P (CH_2)_3 P (C_6 H_5)_2$, $(C_6 H_6)_2 P (CH_2)_4 P - (C_6 H_5)_2$,

9

10

 $(CH_3)_2 AsCH_2 CH_2 As (CH_3)_2$, $(n-C_4H_9)_2 As (CH_2)_3 As (n-C_4H_9)_2$, $(cyclo-C_6H_{11})_2 AsCH_2 CH_2 As (cyclo-C_6H_{11})_2$, $(C_6H_5)_2 AsCH_2 As (C_6H_5)_2$, $(C_6H_5)_2 AsCH_2 CH_2 As (C_6H_5)_2$, $(C_6H_5)_2 As (CH_2)_3 As (C_6H_5)_2$,

 $(C_6 H_5)_2 As (CH_2)_4 As (C_6 H_5)_2$,

またゼロ価のパラジウムのリンおよびヒ素錯体も※

As $(n-C_4H_9)_2$ As $(n-C_4H_9)_2$

等のジアルシン化合物を挙げることができる。 必物と錯体を形成するものは、一旦錯体を生成せし パラジウム化合物もしくは白金化合物に対する め、かかる錯体を触媒組成として用いることが、 三価のリンおよびヒ素のモル比は 1~20、好ま 10 触媒活性の面から特に好ましい。このようなパラ しくは 2~4 である。これらの三価のリンおよび ジウム化合物と三価のリンおよびヒ素化合物の錯 ヒ素のうち、パラジウム化合物もしくは白金化合 & 体としては例えば、

PdC1₂(PC1₃)₂, PdC1₂(P(OCH₃)₈)₂, PdC1₂(P(C₆H₅)₈)₂, PdBr₂(P(C₂H₅)₃)₂,
PdC1₂(P(n-C₄H₉)₂)₂, PdI₂(P(n-C₄H₉)₃)₂, PdC1(n-C₃H₅),
P(C₆H₅)₃, PdBr₂(P(cyclo-C₆H₁₁)₃)₂, Pd(NO₃)₂(P(C₆H₅)₃)₂,
Pd(CNS)₂(P(C₄H₉)₃)₂, PdC1₂(As(C₄H₉)₃)₂,
Pd(OCOCH₃)₂(P(C₆H₅)₃)₂,
Pd(OCOCH₃)₂(P(C₆H₅)₃)₂,
Pd(OCOC₂H₃)₂(P(C₆H₅)₃)₂, Pd(OCOC₆H₅)₂(P(C₆H₅)₃)₂,
PdC1₂(As(C₆H₅)₃)₂, CH₃COPdC1(P(C₂H₅)₃)₂, C₆H₅COPdC1(P(C₂H₅)₃)₂,
CH₃PdBr(P(C₂H₅)₃)₂, (CH₃)₂Pd(P(C₂H₅)₃)₂
等の一配位座リンおよびヒ素の錯体、
PdC1₂((C₆H₅)₂P(CH₂)₂P(CH₅)₂

 Pd I2 ((C₆ H₅)₂ As (CH₂)₂ As (C₆ H₅)₂)₂ , PdBr₂((CH₃)₂ As (CH₂)₃As (CH₃)₂)₂

 等の二配位座リンおよびヒ素錯体が挙げられる。
 ※ 触媒として用いることができる。具体的には、

 $Pd(P(C_{6} H_{5})_{3})_{4}, Pd(P(C_{6} H_{5})_{3})_{2}, \qquad Pd(P(C_{6} H_{5})_{3})_{2}, \qquad HCCO_{2} Me$ $+ CCO_{2} Me$

Pd(P(C₀ H₅)₃)₂ · \parallel O · Pd(P(OC₀ H₅)₃)₄, $((p-C1-C_0 H_4)_3 P)_2 Pd$,

HC C

 1 I

12

合物からなる錯体の具体例としては、

 $(Pt(P(C_6H_5)_3)_4)(PtCl_4), (Pt(P(C_6H_5)_3)_4)Cl_2, PtCl_2(As(C_6H_5)_3)_4,$ $(Pt(P(OC_6H_5)_3)_4)Cl_2, Pt(P(C_6H_5)_3)_4, Pt(P(C_6H_5)_3)_3,$ $Pt((C_6 H_5)_2 PCH_2 CH_2 P(C_6 H_5)_2)_2, PtCl_2((C_6 H_5)_2 PCH_2 CH_2 P(C_6 H_5)_2)_2$

$$\begin{array}{c} CH-C \\ Pt(P(C_6H_5)_3)_2 \cdot \| \\ CH-C \\ O \end{array}, Pt(P(C_6H_5)_3)_2 \cdot \begin{array}{c} O \\ \\ O \end{array}, Pt(P(OC_6H_5)_3)_4 \end{array},$$

15

30

 $PtCl_{2}((C_{6}H_{5})_{3})_{2}, HPtCl(P(C_{6}H_{5})_{3})_{2},$ $PtC1(\pi - C_3H_5) \cdot P(C_6H_5)_3 C_2H_5PtC1[P(C_6H_5)_3]_2$

等を挙げることができる。これ等に限定されない ことは勿論である。

二価のパラジウム化合物もしくは白金化合物特 にハロゲン化パラジウム化合物もしくは白金化合 物を用いるときは塩基性アルカリ金属化合物の存 在下で反応を行なうと反応がすみやかに進行する。 これらのアルカリ金属化合物としては LiH, NaH, KH, RbH, NaBH, LiAlH, 等の金属 水素化物、Li₂O,Na₂O,K₂O,Rb₂O 等の アルカリ金属酸化物、Na₂CO₃, Rb₂CO₃, K₂CO₃ 等のアルカリ金属炭酸塩、LiOH, KOH, Na OH等のアルカリ金属水酸化物、 NaNH₂, KNH₂, LiNH₂, NaN₃ 等のアルカリ 金属窒素化物、CH₃ONa,C₂H₅ONa, C₂H₅ORb , C₂H₅OCs , CH₂= CHCH₂ONa , n-C4HaONa 等のアルカリ金属アルコキシド、 CH3COONa, CH3COOK, C2H5COONa, C₆H₅COONa 等のアルカリ金属カルボン酸塩、 C_6H_5Li , $n-C_4H_9Li$, NaCH($CO_2C_2H_5$)₂, NaCH(COCH₃)CO₂CH₃,

Na CH(CN) CO₂C₂H₅ 等のアルカリ金属原子と 炭素原子とが結合した化合物、C₆H₅ONa, C_6H_5OLi , C_6H_5OK , $p-Ci\cdot C_6H_5ONa$, $m-C1\cdot C_6H_4ONa$, $p-CH_3\cdot C_6H_4ONa$, $m-CH_3 \cdot C_6H_4OK$, $o-CH_3 \cdot C_6H_4ONa$, $p - NO_2 \cdot C_6H_4ONa$, $p - C_6H_5 \cdot C_6H_4ONa$,

$$_{p}-HD\cdot C_{0}H_{4}OK$$
, ONa

ONa

金属塩等が好ましく用いられる。アルカリ金属化 合物の使用量はパラジウム化合物もしくは白金化 20 合物に対しモル比で0.1~200、好ましくは2 ~15である。零価のパラジウム錯体もしくは白 金錯体はあらかじめ単離したものを使用すること は必ずしも必要でなく、パラジウム化合物もしく は白金化合物を三価のリンまたはヒ素化合物の存 25 在で適当な還元剤を作用させることにより得られ る混合物をそのまま使用してもよい。この場合の 還元剤としては水素化ナトリウム、水素化リチウ ム、水素化リチウムアルミニウム、水素化リチウ ムホウ素、ヒドラジン等が挙げられる。

反応温度は0~180℃好ましくは40~ 120℃である。また本発明方法では、特に溶媒 を必要としないが反応に不活性な溶媒、例えばべ ンセン、トルエン、アセトン、ヘキサン、クロル ベンゼン、ジメチルホルムアミド、 iso ープロバ 35 ノール、tープタノール等を適宜用いることによ り、反応を円滑に進行させることができる場合も ある。

前述の如く本発明の方法により、極めて容易な 手段でエステルの交換を可能にすることができる。 40 次に本発明の実施例について説明する。

以下に述べる生成物の構造確認、定量はガスク ロマトグラフイー、IR,NMR、元素分析、分 子量測定等の手段によつた。

电场例

13

14

酢酸アリル2.5% (0.025モル)、ブロピオ 必実施例 2~6 ン酸 5 cc、ジメチルホルムアミド(以下の実施例 では DMFと略記する) 5 cc、Pd(OCOCH₃)₂ 0.0 1 1 **タ**(0.0 5 モル) および (C_eH₅)₃P 0.0529 (0.2ミリモル)の混合液を85℃で、5 下表の結果を得た。但し、表中 Aは、アリル基、 15時間かくはんする。プロピオン酸アリル27 8が得られた。

実施例1に於いて、プロピオン酸の代りに下表 のカルポン酸或はカルポン酸無水物 0.05 モルを 使用し、他は実施例1と同じ条件で反応させて、 -CH₂-CH = CH₂を示す。

実施例 %	カルボン酸或はカ ルボン酸無水物	生成物(収量・チ)
2	C ₆ H ₅ COOH	C ₆ H ₅ COOA (3.1)
3	(CH₃CH₂CO)₂O	CH ₃ CH ₂ COOA (2.4)
4	(C ₆ H₅CO)₂O	C ₆ H ₅ COOA (2.9)
5	р -СН 30 - С6Н4СООН	p-CH ₅ OC ₆ H ₄ COOA (3.3)
6	$ \begin{array}{c c} CH_2-C & O \\ CH_2-C & O \end{array} $	CH ₂ -COOA CH ₂ -COOA CH ₃ -COO
		(0.5)

実施例 7

プロピオン酸オクタジエニル $(CH_3CH_2COOCH-(CH_2)_3-CH=CH_2)$ が3.1 · CH=CH₂

%、

CH₃CH₂COOCH₂CH=CH(CH₂)₃CH=CH₂ が69%の混合物) 4.558(0.025モル)、 無水酢酸 5.1 g (0.0 5 モル)、 DMF 5 cc 、 Pd(OCOCH₃)₂ 0.0 1 1 **f**(0.0 5 ミリモル)、35 実施例7と同じ条件で反応させて下表の結果を得 (C₆H₅)₃P0.0528(0.2ミリモル)の混合液

を85℃で15時間かくはんして、酢酸オクタジ

 $(CH_3COOCH(CH_2)_3CH = CH_2)$ エニル が23 $CH - CH_2$

30 %, CH₃COOCH₂CH = CH(CH₂)₃CH=CH₂ is 77%の混合物を3.8 4得た。

実施例 8~16

実施例 7 に於いて、Pd(OCOCH₃), および (C₈H₅)₃P の代りに下表の触媒を使用し、他は た。

76		
	•	_

実施例	触 媒 (mm ol)	酢酸オクタジエニルの収量 (9)
. 8	Pd((C ₆ H ₅) ₃ P) ₄ (0.05)	3. 5
9	$Pd((C_6H_5)_3As)_4$ (0.05)	2. 7
1 0	Pd((C ₆ H ₅ O) ₃ P) ₄ (0.05)	2. 1
1 1	$PdCl_{2}((C_{6}H_{5})_{3}P) - C_{6}H_{5}ONa$ (0.05) (0.5)	3. 6
1 2	Pd ((C ₆ H ₅) ₂ PCH ₂ CH ₂ P(C ₆ H ₅) ₂) ₂ (0.0 5)	3. 5
1 3	$Pd(NO_3)_2[(C_6H_5)_3P)_2$	3. 3
1 4	$PtCl_2((C_6H_5)_3P)_2-C_6H_5ONa$ (0.05) (0.5)	1. 7
1 5	Pt((C ₆ H ₅) ₃ P) ₄ (0.05)	1.8
1 6	Pd(OCOCH ₃) ₂ -($n-C_4H_9$) ₃ P (0.05) (0.2)	3. 0

実施例 17

酢酸オクタジエニル

$$CH = CH_2$$

25%、

 $(CH_3COOCH(CH_2)_3CH = CH_2)$ $CH_3COOCH_2CH = CH(CH_2)_3CH = CH_2$ 7 5 %の混合物) 4.2 8 (0.0 2 5 モル)、無水安息 香酸11.38(0.05モル)、DMF、5℃ モル)、C₆H₅ONa 0.0 5 8 **タ**(0.5 ミリモル) の混合液を85℃で15時間反応させて、安息香 酸オクタジエニル 4.3 8を得た。安息香酸オクタ $C_6H_5COOCH(CH_2)_3CH=CH_2$

ジェニルは、

 $CH = CH_2$

(沸点:79℃/0.1 mm Hg; n D 1.5081) が19%、

 $C_6H_5COOCH_2CH = CH - (CH_2)_3 - CH - CH_2$ 25 (沸点:143-4℃/5 mmHg; n D 1.5136)が81%の混合物である。

団特許請求の範囲

1 エステル残基がβ・rー位にオレフイン性二 重結合を有する不飽和基であるカルボン酸エステ PdCl₂[(C₆H₅)₃P)₂ 0.035 **f**(0.05 ミリ₃₀ ルと遊離のカルボン酸もしくはカルボン酸無水物 とを①パラジウム化合物もしくは白金化合物及び ②三価のリン化合物もしくはヒ素化合物の存在下 に反応せしめることを特徴とするエステル残基が β・τー位にオレフイン性二重結合を有する不飽 35 和基であるカルポン酸エステルのエステル交換法。