Funkcje sklejane

Krystian Madej, 09.04.2024

1. Treść zadania

Dla funkcji $e^{-k\cdot sin(mx)}$, k=m=3, na przedziale $[a=-2\pi;b=\pi]$ wyznaczyć interpolacyjną funkcję sklejaną trzeciego oraz drugiego stopnia. Dla obu rodzajów funkcji należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Określić dokładność interpolacji – dla różnej liczby **przedziałów** i dla różnych **warunków brzegowych**.

Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interesujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

2. Środowisko obliczeń

Obliczenia zostały wykonane przy pomocy języka **C++20** na systemie **Windows 11**, kompilacja 22631.3296, procesorze **64-bitowym** Intel Core i5-11400H 2.70GHz, kod kompilowany kompilatorem **MSVC** (wersja 19.39).

3. Użyte biblioteki i programy pomocnicze

Do instalacji bibliotek C++ użyto programu conan, wersja 2.1.

Najważniejsze użyte biblioteki:

- <format> łatwe formatowanie
- <numbers> stałe matematyczne
- CvPlot tworzenie wykresów
- <future> obiekty std::future oraz std::async
- <ranges> operacje na obiektach iterowalnych

4. Sposób obliczeń

4.1 Funkcja sklejana 2-go stopnia

Równanie funkcji sklejanej 2-go stopnia można zapisać w postaci:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2$$
, $i \in [1, ..., n - 1]$

Gdzie funkcja sklejana składa się z n-1 segmentów $s_i(x)$ określonych na przedziałach $[x_i,x_{i+1}]$ (n węzłów interpolacji $[x_1,...,x_{n-1}]$).

Aby funkcja była funkcją sklejaną musi spełniać kilka warunków:

- 1. równość funkcji interpolowanej na węzłach $s_i(x_i) = f(x_i) = y_i$
- 2. równość kolejnych segmentów na węzłach $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$
- 3. równość pierwszych pochodnych kolejnych segmentów na węzłach $s_i'(x_{i+1})=s_{i+1}'(x_{i+1})$

Należy teraz wyznaczyć współczynniki a_i , b_i , c_i .

Łatwo zauważyć, że:

$$s_i(x_i) = a_i + b_i(x_i - x_i) + c_i(x_i - x_i)^2 = a_i = y_i$$

zatem $a_i = y_i$.

Po zróżniczkowaniu $s_i(x)$ mamy:

$$s_i'(x) = b_i + 2c_i(x - x_i)$$

podstawiając do warunku 3-go:

$$b_{i} + 2c_{i}(x_{i+1} - x_{i}) = b_{i+1} + 2c_{i+1}(x_{i+1} - x_{i+1})$$

$$2c_{i}(x_{i+1} - x_{i}) = b_{i+1} - b_{i}$$

$$c_{i} = \frac{b_{i+1} - b_{i}}{2(x_{i+1} - x_{i})}$$

podstawiając do warunku 2-go:

$$s_{i}(x_{i+1}) = s_{i+1}(x_{i+1})$$

$$a_{i} + b_{i}(x_{i+1} - x_{i}) + c_{i}(x_{i+1} - x_{i})^{2} = a_{i+1} + b_{i+1}(x_{i+1} - x_{i+1}) + c_{i+1}(x_{i+1} - x_{i+1})^{2}$$

$$y_{i} + b_{i}(x_{i+1} - x_{i}) + \frac{b_{i+1} - b_{i}}{2(x_{i+1} - x_{i})}(x_{i+1} - x_{i})^{2} = y_{i+1}$$

$$y_{i} + b_{i}(x_{i+1} - x_{i}) + \frac{b_{i+1} - b_{i}}{2}(x_{i+1} - x_{i}) = y_{i+1}$$

$$y_{i} + \frac{b_{i+1} + b_{i}}{2}(x_{i+1} - x_{i}) = y_{i+1}$$

$$b_{i+1} = 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i} - b_i$$

$$b_{i+1} = 2\Delta_i - b_i, \quad \Delta_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}, i \in [1, ..., n]$$

Jak można zauważyć mamy dokładne wzory:

- $a_i = y_i = f(x_i)$ $c_i = \frac{b_{i+1} b_i}{2(x_{i+1} x_i)}$

Oraz wzór iteracyjny $b_{i+1} = 2\Delta_i - b_i$

Mamy zatem do rozwiązania układ równań:

$$\begin{cases} b_1 + b_2 = 2\Delta_1 \\ b_2 + b_3 = 2\Delta_2 \\ & \dots \\ b_{n-1} + b_n = 2\Delta_{n-1} \end{cases}$$

Wiedząc, że istnieją wzory na wszystkie niewiadome, oprócz jednej b_1 , należy skorzystać z jakiegoś warunku brzegowego.

4.1.1 Natural spline/free boundary

Jednym z możliwych warunków brzegowych jest natural spline/free boundary dany wzorem:

$$s'(x_1) = s_1'(x_1) = 0$$

co oznacza, że:

$$b_1 + 2c_1(x_1 - x_1) = 0$$
$$b_1 = 0$$

Mając taki warunek brzegowy jesteśmy w stanie wyliczyć każdy współczynnik a_i , b_i , c_i .

4.1.2 Clamped boundary

Drugim z możliwych warunków brzegowych jest clamped boundary dany zależnością:

$$s'(x_1) = s'_1(x_1) = f'(x_1)$$

która daje:

$$b_1 + 2c_1(x_1 - x_1) = f'(x_1)$$

jeżeli dokładna wartość pochodnej w punkcie x_{0} nie jest znana, można użyć przybliżenia ilorazem różnicowym:

$$f'(x_1) \approx \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1} = \Delta_1$$

 $b_1 \approx \Delta_1$

Mając taki warunek brzegowy jesteśmy w stanie wyliczyć każdy współczynnik $a_i,\,b_i,\,c_i$.

4.2 Funkcja sklejana 3-go stopnia

Równanie funkcji sklejanej 3-go stopnia można zapisać w postaci:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3, i \in [1, ..., n - 1]$$

Gdzie funkcja sklejana składa się z n-1 segmentów $s_i(x)$ określonych na przedziałach $[x_i,x_{i+1}]$ (n węzłów interpolacji $[x_1,...,x_{n-1}]$).

Aby funkcja była funkcją sklejaną musi spełniać kilka warunków:

- 1. równość funkcji interpolowanej na węzłach $s_i(x_i) = f(x_i) = y_i$
- 2. równość kolejnych segmentów na węzłach $s_i(x_{i+1}) = s_{i+1}(x_{i+1})$
- równość pierwszych i drugich pochodnych kolejnych segmentów na węzłach
 - 1. $s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1})$
 - 2. $s_i''(x_{i+1}) = s_{i+1}''(x_{i+1})$

Skoro $s_i(x)$ jest funkcją sześcienną, to $s_i''(x)$ jest funkcją liniową na przedziale $[x_i,x_{i+1}]$. Wprowadzając $h_i=x_{i+1}-x_i$, $s_i''(x)$ można zapisać jako funkcję liniową:

$$s_i''(x) = s_i''(x_i) \frac{x_{i+1} - x}{h_i} + s_i''(x_{i+1}) \frac{x - x_i}{h_i}$$

po dwukrotnym zcałkowaniu:

$$s_i(x) = \frac{s_i''(x_i)}{6h_i}(x_{i+1} - x)^3 + \frac{s_i''(x_{i+1})}{6h_i}(x - x_i)^3 + C \cdot (x - x_i) + D \cdot (x_{i+1} - x)$$

gdzie C, D - stałe całkowania

Korzystając z własności $s_i(x_i)=y_i$ i $s_i(x_{i+1})=s_{i+1}(x_{i+1})=y_{i+1}$, oraz podstawiając x_i i x_{i+1} mamy:

$$s_{i}(x_{i}) = y_{i} = \frac{s_{i}''(x_{i})}{6h_{i}}(x_{i+1} - x_{i})^{3} + \frac{s_{i}''(x_{i+1})}{6h_{i}}(x_{i} - x_{i})^{3} + C \cdot (x_{i} - x_{i}) + D \cdot (x_{i+1} - x_{i})$$

$$D = \frac{y_{i}}{h_{i}} - \frac{s_{i}''(x_{i})}{6}h_{i}$$

oraz

$$\begin{aligned} s_{i+1}(x_{i+1}) &= y_{i+1} = \\ &= \frac{s_i''(x_i)}{6h_i} (x_{i+1} - x_{i+1})^3 + \frac{s_i''(x_{i+1})}{6h_i} (x_{i+1} - x_i)^3 + C \cdot (x_{i+1} - x_i) + D \cdot (x_{i+1} - x_{i+1}) \end{aligned}$$

$$C \cdot (x_{i+1} - x_i) = y_{i+1} - \frac{s_i''(x_{i+1})}{6h_i} (x_{i+1} - x_i)^3$$

$$C = \frac{y_{i+1}}{h_i} - \frac{s_i''(x_{i+1})}{6h_i} (x_{i+1} - x_i)^3$$

co daje:

$$s_{i}(x) = \frac{s_{i}''(x_{i})}{6h_{i}}(x_{i+1} - x)^{3} + \frac{s_{i}''(x_{i+1})}{6h_{i}}(x - x_{i})^{3} + \left(\frac{y_{i+1}}{h_{i}} - \frac{s_{i}''(x_{i+1})}{6h_{i}}(x_{i+1} - x_{i})^{3}\right)(x - x_{i}) + \left(\frac{y_{i}}{h_{i}} - \frac{s_{i}''(x_{i})}{6}h_{i}\right)(x_{i+1} - x)$$

W tym wzorze $s_i''(x)$ jest nieznane. Można je wyliczyć korzystając z warunku ciągłości pierwszej pochodnej. Różniczkując $s_i(x)$ mamy:

$$s_{i}'(x) = -3\frac{s_{i}''(x_{i})}{6h_{i}}(x_{i+1} - x)^{2} + 3\frac{s_{i}''(x_{i+1})}{6h_{i}}(x - x_{i})^{2} + \frac{y_{i+1}}{h_{i}} - \frac{s_{i}''(x_{i+1})h_{i}}{6} - \frac{y_{i}}{h_{i}} + \frac{s_{i}''(x_{i})h_{i}}{6}$$

$$s_{i}'(x_{i}) = -\frac{s_{i}''(x_{i})h_{i}}{3} + \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{s_{i}''(x_{i+1})h_{i}}{6}$$

$$s_{i-1}'(x_{i}) = \frac{s_{i-1}''(x_{i})h_{i-1}}{3} + \frac{y_{i} - y_{i-1}}{h_{i-1}} + \frac{s_{i-1}''(x_{i-1})h_{i-1}}{6}$$

wprowadzając oznaczenia $\sigma_i = \frac{s''(x_i)}{6}$ i $\Delta_i = \frac{y_{i+1} - y_i}{h_i}$ otrzymujemy:

$$s'_{i}(x_{i}) = \Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$

$$s'_{i-1}(x_{i}) = \Delta_{i-1} + h_{i-1}(\sigma_{i-1} + 2\sigma_{i})$$

korzystając z warunku 3.1:

$$\Delta_{i-1} + h_{i-1}(\sigma_{i-1} + 2\sigma_i) = \Delta_i - h_i(\sigma_{i+1} + 2\sigma_i)$$
$$h_{i-1}\sigma_{i-1} + h_i\sigma_{i+1} + 2\sigma_i(h_i - h_{i-1}) = \Delta_i - \Delta_{i-1}; i \in [2, ..., n-1]$$

Otrzymujemy n-2 równań, a musimy znaleźć n niewiadomych, co oznacza, że są potrzebne warunki brzegowe.

4.2.1 Natural spline/free boundary

$$s''(x_1) = s''(x_n) = 0$$

skoro $\sigma_i = \frac{s_i''(x_i)}{6}$, to:

$$s''(x_1) = s_1''(x_1) = 0 \Leftrightarrow \sigma_1 = 0$$

$$s''(x_n) = s_n''(x_n) = 0 \Leftrightarrow \sigma_n = 0$$

Mając n-2 równań i 2 warunki brzegowe otrzymujemy układ równań:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

4.2.2 Clamped Boundary

$$s'(x_1) = f'(x_1)$$

$$s'(x_n) = f'(x_n)$$

korzystając z warunku 3.1, mamy:

$$s'(x_1) = s_1'(x_1) = \Delta_1 - h_1(\sigma_2 + 2\sigma_1) = f'(x_1)$$

$$s'(x_n) = s_{n-1}'(x_n) = \Delta_{n-1} + h_{n-1}(2\sigma_n + \sigma_{n-1}) = f'(x_n)$$

po przekształceniach:

$$2\sigma_1 + \sigma_2 = \frac{\Delta_1 - f'(x_1)}{h_1}$$
$$\sigma_{n-1} + 2\sigma_n = \frac{f'(x_n) - \Delta_{n-1}}{h_{n-1}}$$

Pierwsze pochodne $f'(x_1)$ i $f'(x_n)$ można przybliżyć przy pomocy ilorazów różnicowych (odpowiednio granice prawo i lewostronne):

$$f'(x_1) \approx \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \Delta_1$$

$$f'(x_n) \approx \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = \Delta_{n-1}$$

co daje ostatecznie:

$$2\sigma_1 + \sigma_2 = \frac{\Delta_1 - \Delta_1}{h_1} = 0$$

$$\sigma_{n-1} + 2\sigma_n = \frac{\Delta_{n-1} - \Delta_{n-1}}{h_{n-1}} = 0$$

Mając n-2 równań i 2 warunki brzegowe otrzymujemy układ równań:

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

4.2.3 Cubic spline

 $\mathcal{C}_1(x)$ – funkcja sześcienna przez pierwsze 4 węzły

 $\mathcal{C}_n(x)$ – funkcja sześcienna przez ostatnie 4 węzły

$$s'''(x_1) = C_1''' \qquad s'''(x_n) = C_n'''$$

Stałe C_1''' i C_n''' mogą być wyznaczone bez znajomości $C_1(x)$ i $C_n(x)$.

Przybliżenie pierwszej pochodnej:

$$\Delta_{i} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}}$$

$$\Delta_{i}^{(2)} = \frac{\Delta_{i+1} - \Delta_{i}}{x_{i+2} - x_{i}}; \quad 2\Delta_{i}^{(2)} \approx f''$$

$$\Delta_{i}^{(3)} = \frac{\Delta_{i+1}^{(2)} - \Delta_{i}^{(2)}}{x_{i+2} - x_{i}}; \quad 6\Delta_{i}^{(3)} \approx f'''$$

oraz w ogólności:

$$\begin{split} \Delta_0^{(0)} &= f[x_0] = f(x_0) \\ \Delta_0^{(1)} &= f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} \\ \Delta_0^{(3)} &= f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} \\ \Delta_0^{(n)} &= f[x_0, x_1, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0} \end{split}$$

Rożniczkując $s_i''(x)=s_i''(x_i)\frac{x_{i+1}-x}{h_i}+s_i''(x_{i+1})\frac{x-x_i}{h_i}$ w przedziale $[x_i,x_{i+1}]$ otrzymujemy:

$$s_i'''(x) = \frac{s_i''(x_{i+1})}{h_i} - \frac{s_i''(x_i)}{h_i} = \frac{6\sigma_{i+1}}{h_i} - \frac{6\sigma_i}{h_i}$$

wtedy:

$$s'''(x_1) = c_1'''(x_1) \Longrightarrow \frac{6}{h_1} (\sigma_2 - \sigma_1) = 6\Delta_1^{(3)}$$
$$s'''(x_n) = c_n'''(x_1) \Longrightarrow \frac{6}{h_{n-1}} (\sigma_n - \sigma_{n-1}) = 6\Delta_{n-3}^{(3)}$$

Mnożąc wyrażenia przez odpowiednio h_1^2 i h_{n-1}^2 mamy (cel = symetria):

$$-h_1\sigma_1 + h_1\sigma_2 = h_1^2 \Delta_1^{(3)}$$

$$h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_n = -h_{n-1}^2 \Delta_{n-3}^{(3)}$$

Mając n-2 równań i 2 warunki brzegowe otrzymujemy układ równań:

$$\begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & 0 & 0 & 0 \\ 0 & h_2 & 2(h_2+h_3) & h_3 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \dots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \dots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{bmatrix}$$

4.3 Ocena dokładności

Dokładność interpolacji można ocenić porównując następujące wartości:

- Błąd bezwględny |f(x) s(x)|
- Błąd maksymalny $\max_i \{ |f(x_i) s(x_i)| \}$
- Suma kwadratów

$$\sum_{i=0}^{n} \left(f(x_i) - s(x_i) \right)^2$$

5.1. Implementacja obliczeń

Wszystkie obliczenia były wykonywane przy użyciu 64-bitowego typu zmiennoprzecinkowego **double** (w kodzie zaliasowany jako **flt**)

W celu wygenerowania węzłów użyto funkcji generującej, zaimplementowanej w poprzednim ćwiczeniu:

nodes::uniform (węzły równoodległe), korzystającą ze wzoru $x_i = a + \frac{b-a}{n-1}i$

Następnie zaimplementowano funkcje interpolation::_<condition>_<deg>(), gdzie <condition> oznacza rodzaj warunku brzegowego:

- natural_spline korzystająca z warunku Natural Spline
- cubic korzystająca z warunku Cubic Spline (tylko dla 3go stopnia)
- clamped korzystająca z warunku Clamped Boundary

a <deg> oznacza stopień funkcji sklejanej i ma wartość 2 lub 3.

Funkcje interpolation::_<condition>_<deg> przyjmują tablicę wartości funkcji na węzłach i tablicę wartości węzłów, a zwracają obiekt wywoływalny odpowiadający funkcji sklejanej. Istnieją też funkcje Funkcje interpolation::<condition>_<deg> przyjmujące funkcję interpolowaną, funkcję generującą węzły, liczbę węzłów oraz przedział interpolacji, generujące węzły i wartości funkcji na tych węzłach i przekazujące je do interpolation::_<condition>_<deg>, zwracając rezultat.

Ze względu na przechowywanie segmentów funkcji sklejanej w drzewie binarnym struktury std::map, każde obliczenie wartości funkcji sklejanej ma złożoność rzędu $O(\log_2(n))$, gdzie n oznacza zadaną ilość węzłów.

Układy równań rozwiązuje funkcja matrix::solve_tridiag(), przyjmująca macierz układu równań i prawy wektor, zwracająca krotkę zawierającą wektor wyliczonych wartości, przekształconą macierz i przekształcony prawy wektor. Korzysta ona z funkcji pomocniczych matrix::gauss_elim_tridiag() i matrix::back_subst(). Pierwsza przyjmuje to samo co matrix::solve_tridiag(), a zwraca krotkę z przekształconą macierzą i wektorem prawym. Wykonuje ona eliminację gaussa. Ze względu na trójdiagonalność macierzy wejściowej, dla każdego wiersza wykonuje tylko jedno odejmowanie w dół. Funkcja

matrix::back_subst() przyjmuje i zwraca to samo co matrix::solve_tridiag(). Wykonuje operację podstawienia wstecznego, sprowadzając macierz wejściową do postaci jednostkowej. Wszystkie operacje wykonywane na macierzy przez funkcje pomocnicze wykonują się też na prawym wektorze.

Użyto też funkcje obliczające błędy interpolacji, zaimplementowane w poprzednim ćwiczeniu:

- error::abs przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów, zwracająca tablicę błędów bezwzględnych
- error::max w 2 wersjach: pierwsza, przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów i obliczająca wcześniej błąd bezwzględny, i druga, przyjmująca tablicę błędów bezwzględnych, obie zwracają wartość maksymalną z tablicy błędów bezwzględnych
- error::sum_squared w 2 wersjach: pierwsza, przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów i obliczająca wcześniej błąd bezwzględny, i druga, przyjmująca tablicę błędów bezwzględnych, obie zwracają sumę kwadratów błędów bezwzględnych

W funkcji main prowadzone są obliczenia dla kolejnych ilości węzłów. Wartości funkcji interpolowanej, jak i interpolacji są zapisywane w plikach

interpolation_results/result_<ilość węzłów>.txt
Wartości błędów bezwzględnych w plikach
interpolation_results/error_<ilość węzłów>.txt
Wartości maksymalne błędów bezwzględnych w pliku
interpolation_results/max_abs.txt
Sumy kwadratów błędów bezwzględnych w pliku
interpolation_results/sum_squared.txt

W folderze interpolation_images/ są zapisywane wykresy funkcji interpolowanej, interpolacji i wartości błędów.

6. Wyniki obliczeń

6.1 Dla 6 węzłów

Dla 6 węzłów widać wyraźnie różnice pomiędzy warunkami brzegowymi. Głównie dla funkcji 2go stopnia oraz na krańcach przediału dla funkcji 3go stopnia. Funkcje 2go i 3go stopnia przyjmują podobny kształt

	Stopień funkcji i warunek brzegowy					
Natural Spline Clamped Boundary Nat				Clamped Boundary	Cubic spline	
Błąd względny	2		3			
Max	20.63223183	21.84022545	19.37398615	19.42769936	19.205394	
Suma	74898.31104	74832.71554	75150.05963	75491.45296	74197.3921	

Tabela 1. Błędy interpolacji dla 6 węzłów

6.2 Dla 8 węzłów

Dla 8 węzłów widać wyraźnie różnice pomiędzy warunkami brzegowymi. Głównie dla funkcji 2go stopnia oraz na krańcach przediału dla funkcji 3go stopnia.

Wykres 6.

	Stopień funkcji i warunek brzegowy					
	Natural Spline Clamped Boundary I		Natural Spline Clamped Boundary Cubic s		Cubic spline	
Błąd względny	2		3			
Max	26.34204628	24.36931626	18.22812553	18.27757548	18.1005335	
Suma	73601.47592	69166.79941	49060.44855	47514.03608	53093.4106	

Tabela 2. Błędy interpolacji dla 8 węzłów

6.3 Dla 19 węzłów

Dla 19 równoodległych węzłów im dalej od początku przedziału, tym większe oscylacje widać dla funkcji 2go stopnia. Funkcje 3go stopnia coraz lepiej przybliżają funkcję interpolowaną.

Wykres 10.

	Stopień funkcji i warunek brzegowy				
	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline
Błąd względny	2		3		
Max	72.23367861	72.47123184	4.331967872	4.312586766	4.40242126
Suma	225576.2702	226765.279	14792.70045	14555.30636	15655.6239

Tabela 3. Błędy interpolacji dla 19 węzłów

6.4 Dla 30 węzłów

Dla 30 węzłów oscylacje funkcji 2go stopnia zaczynają maleć, a przybliżenie funkcjami 3go stopnia staje się coraz dokładniejsze.

	Stopień funkcji i warunek brzegowy					
	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline	
Błąd względny	2		3			
Max	14.57928888	14.80841386	2.461047548	2.461047571	2.46104751	
Suma	43553.10835	44305.55383	5106.945535	5126.283949	5077.52669	

Tabela 4. Błędy interpolacji dla 30 węzłów

6.5 Dla 40 węzłów

Dla 40 węzłów, oscylacje funkcji 2go stopnia, są już niewielkie, nie licząc większych pośrodku przedziału interpolacji.

	Stopień funkcji i warunek brzegowy					
	Natural Spline Clamped Boundary		Natural Spline	ne Clamped Boundary Cubic		
Błąd względny	2		3			
Max	3.062011035	3.277809742	1.231506232	1.231494139	1.23153153	
Suma	7019.661897	6428.027088	1815.775544	1828.583533	1789.59522	

Tabela 5. Błędy interpolacji dla 40 węzłów

6.6 Dla 50 węzłów

Dla 50 węzłów oscylacje funkcji 2go stopnia są coraz mniejsze.

	Stopień funkcji i warunek brzegowy				
	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline
Błąd względny	2		3		
Max	1.584089885	1.384070413	0.301634945	0.301634229	0.30163645
Suma	4761.244306	3644.714673	474.5740049	484.1782447	454.409056

Tabela 6. Błędy interpolacji dla 50 węzłów

6.7 Dla 100 węzłów

Dla 100 węzłów w obu przypadkacyh przybliżenie zdaje się być bardzo dobre.

	Stopień funkcji i warunek brzegowy					
	Natural Spline	Clamped Boundary	Natural Spline	Clamped Boundary	Cubic spline	
Błąd względny	2		3			
Max	0.239146758	0.096514894	0.034049041	0.047953825	0.01500578	
Suma	1273.277242	377.865181	18.33274015	20.57886189	14.0106972	

Tabela 7. Błędy interpolacji dla 100 węzłów

6.8. Wyniki pozostałych obliczeń

	Warunek brzegowy i stopnień funkcji						
	Natural spline	Clamped boundary	Natural spline	Clamped boundary	Cubic spline		
Liczba węzłów		2		3			
2	19.08553683	19.08553683	19.08553683	19.08553683	nan		
3	20.31730363	20.15302299	19.97055429	19.95232355	nan		
4	19.08553683	19.08553683	19.08553683	19.08553683	19.08553683		
5	20.42192532	20.20460213	20.05450125	20.06057742	20.04231485		
6	20.63223183	21.84022545	19.37398615	19.42769936	19.20539405		
7	43.43499292	38.74723748	21.40366394	21.51857975	21.12057221		
8	26.34204628	24.36931626	18.22812553	18.27757548	18.10053349		
9	50.4153828	49.90668463	19.36109594	19.19961539	19.82941122		
10	19.08553683	19.08553683	19.08553683	19.08553683	19.08553683		
11	45.53457295	45.38350431	14.65427736	14.75217803	14.39762589		
12	24.6254838	24.42486362	11.05659583	11.05040885	11.07432617		
13	27.57690855	27.35687934	12.33799815	12.3327028	12.35356665		
14	18.65076798	18.42203057	9.48225263	9.487660822	9.892353648		
15	19.85426524	19.62236612	13.7918198	13.79281784	13.78891798		
16	18.73276055	18.49759762	13.20789322	13.18396859	13.27292369		
17	22.22629396	21.99529537	9.578485896	9.576312013	9.577581031		
18	25.98581118	26.2214841	10.17948778	10.17954486	10.1792656		
19	72.23367861	72.47123184	4.331967872	4.312586766	4.402421264		
20	20.56468574	20.80211019	8.324590456	8.32456486	8.324684649		
30	14.57928888	14.80841386	2.461047548	2.461047571	2.461047508		
40	3.062011035	3.277809742	1.231506232	1.231494139	1.231531534		
50	1.584089885	1.384070413	0.301634945	0.301634229	0.301636447		
100	0.239146758	0.096514894	0.034049041	0.047953825	0.015005783		
150	0.145180951	0.03729417	0.015523825	0.023182541	0.002303141		
200	0.106970335	0.020551387	0.008798925	0.013584552	0.000698865		
250	0.085201641	0.013184192	0.005645111	0.008902136	0.000276552		
300	0.070865502	0.009204826	0.003927496	0.006285137	0.00013006		
350	0.060698522	0.006811105	0.002885886	0.004667949	6.94E-05		
400	0.05308873	0.005246896	0.002211326	0.003606226	4.09E-05		
450	0.047178053	0.00416828	0.001747475	0.002868163	2.57E-05		
500	0.042451944	0.003392258	0.001414837	0.002334274	1.69E-05		
550	0.038590217	0.002815126	0.001168589	0.001936296	1.15E-05		
600	0.03537146	0.002374351	0.000982991	0.001634613	8.17E-06		
650	0.032649681	0.002029858	0.000836211	0.001394792	5.92E-06		
700	0.03031658	0.0017553	0.000721791	0.001207096	4.42E-06		
750	0.02829442	0.00153271	0.000629029	0.001054374	3.35E-06		
800	0.026524691	0.001350079	0.000551089	0.000925591	2.58E-06		
850	0.02496216	0.001198523	0.000488623	0.000822124	2.03E-06		
900	0.023577133	0.001071197	0.000436755	0.00073602	1.62E-06		
950	0.02233498	0.000962986	0.000391973	0.000661492	1.30E-06		
1000	0.021218343	0.000870474	0.000353	0.000596485	1.05E-06		

	Warunek brzegowy i stopnień funkcji					
	Natural spline			Clamped boundary	Cubic spline	
Liczba węzłów		2		3		
2	39748.87464	39748.87464	39748.87464	39748.87464	nan	
3	41175.49443	40706.4763	40459.87588	40404.00703	nan	
4	39748.87464	39748.87464	39748.87464	39748.87464	39748.87464	
5	41101.59413	40879.18645	40832.80361	40845.6434	40811.72628	
6	74898.31104	74832.71554	75150.05963	75491.45296	74197.39209	
7	130771.1039	113460.5065	79227.06394	76586.90999	85734.51516	
8	73601.47592	69166.79941	49060.44855	47514.03608	53093.41058	
9	136763.0714	135509.2844	48798.94731	47613.87818	52235.73372	
10	39748.87464	39748.87464	39748.87464	39748.87464	39748.87464	
11	145554.5732	144605.3708	30785.9111	30802.72385	31922.02677	
12	75213.00412	73952.46942	29118.03808	27966.00083	33058.40325	
13	82628.43649	81416.52919	34550.76484	32954.05459	39622.50989	
14	49646.49977	49193.49172	32872.23871	31640.04834	36904.81266	
15	47513.02527	46600.53308	28497.4325	27836.61218	30921.8029	
16	38290.7777	37889.29224	26803.12622	26654.44578	27783.00403	
17	67823.2963	67335.40029	23203.36821	23228.85631	23213.93976	
18	83617.91704	84562.22267	22202.64816	22047.86267	22805.54167	
19	225576.2702	226765.279	14792.70045	14555.30636	15655.6239	
20	62902.40499	63544.17821	17062.35779	16844.46096	17864.24319	
30	43553.10835	44305.55383	5106.945535	5126.283949	5077.526686	
40	7019.661897	6428.027088	1815.775544	1828.583533	1789.595216	
50	4761.244306	3644.714673	474.5740049	484.1782447	454.4090563	
100	1273.277242	377.865181	18.33274015	20.57886189	14.01069724	
150	872.7514889	193.9555228	3.726240284	4.54838889	2.250861086	
200	660.5283528	116.8626761	1.304957848	1.689517279	0.647564147	
250	530.4955091	77.83217328	0.598621916	0.807861091	0.253089239	
300	442.9597432	55.47412963	0.321378655	0.447446437	0.11845075	
350	380.132472	41.51286298	0.191568737	0.273215853	0.062696373	
400	332.8157357	32.21586977	0.12309727	0.178981753	0.036245518	
450	295.9475887	25.72160713	0.083584309	0.123457299	0.022389144	
500	266.4403681	21.00998609	0.059307947	0.088754827	0.014580348	
550	242.2677384	17.48215776	0.04358471	0.065959592	0.009894149	
600	222.1060262	14.77276488	0.032918021	0.050295669	0.006945382	
650	205.04058	12.64767432	0.025482537	0.039259248	0.005022672	
700	190.4065495	10.94968196	0.020115337	0.031215483	0.003721258	
750	177.7213126	9.571881158	0.016150307	0.025222847	0.002815248	
800	166.6178941	8.438566479	0.013146784	0.020647137	0.002169181	
850	156.822639	7.495323127	0.010859548	0.017142608	0.001698203	
900	148.1106701	6.70156527	0.009073494	0.014389345	0.001348618	
950	140.3148928	6.027556484	0.007635629	0.012157635	0.00108437	
1000	133.30158	5.450417362	0.006515	0.010414117	0.000881733	

7. Wnioski

Jak łatwo zauważyć, funkcje interpolujące 3go stopnia praktycznie zawsze wykazują się większą dokładnością interpolacji niż funkcji 2go stopnia. Różnica jest tym bardziej widoczna, im bardziej zwiększymy liczbę węzłów.

Dla niewielkiej liczby węzłów istotnym czynnikiem był rodzaj warunku brzegowego. Różnice w interpolacji były widoczne w całym przedziale interpolacji, jednak dla funkcji 3go stopnia efekt był mniej widoczny bliżej środka przedziału.

Dla niewielkiej liczby węzłów zwiększenie ich liczby nie zawsze powodowało zwiększenie dokładności. Jednak od 20 da się zauważyć stały trend zwiększanie jej.

Dla funkcji 3go stopnia, od około 30 węzłów, warunek clamped boundary osiąga gorsze przybliżenie na krańcach przedziału, podobne wizualnie do efektu Runge'go, jednak błędy są nieporównywalnie mniejsze.