

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

#### ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

#### ОТЧЕТ

по лабораторной работе № <u>1</u> Вариант 4

| Название:   | Диоды в источниках питания |
|-------------|----------------------------|
| Дисциплина: | <u>Электроника</u>         |

| Студент       | ИУ6-42Б  |                 | И.С.Марчук     |
|---------------|----------|-----------------|----------------|
|               | (Группа) | (Подпись, дата) | (И.О. Фамилия) |
|               |          |                 |                |
| Преподаватель |          |                 | Н.В. Аксенов   |
|               |          | (Подпись, дата) | (И.О. Фамилия) |

**Цель**: исследование характеристик и параметров выпрямительных схем и стабилизаторов напряжения.

#### Задание:

- 1. Исследовать работу однополупериодной и двухполупериодной схем выпрямителя для случаев:
- а) активной нагрузки;
- б) емкостной нагрузки.
- Зарисовать форму выходного напряжения, а также форму тока, протекающего через диод.
- 2. Определить с помощью осциллографа угол отсечки q и коэффициент пульсаций Кп для одно- и двухполупериодной схем.
- 3. Исследовать сглаживающее действие фильтра LC при одно- и двухполупериодном выпрямлении. Определить коэффициенты сглаживания.
- 4. Отснять нагрузочные характеристики выпрямителя и определить его выходное сопротивление.
- 5. Подключить к выпрямителю параметрический стабилизатор, снять нагрузочную характеристику стабилизатора и определить по ней его выходное сопротивление, определить коэффициент стабилизации (схема выпрямителя мостовая, фильтр LC отключен)



#### Однополупериодный выпрямитель без фильтра

Схема:



Рисунок 2 — Схема однополупериодного выпрямителя без фильтра

График входного и выходного напряжения:



Рисунок 3 — График входного и выходного напряжения

Рассчитаем постоянную составляющую напряжения:

$$U_0 = \sqrt{2} U_{rms} / \pi = 1.414 \cdot 12 / 3.14 = 5.404 \text{ B}$$

Постоянная составляющая согласно анализу Фурье:

$$U_0 = 5.091 \,\mathrm{B}$$

Скриншот результатов анализа Фурье:

#### 1 схема без конденсатора

|                              | -         | -         |            |            |             |  |
|------------------------------|-----------|-----------|------------|------------|-------------|--|
|                              |           |           |            |            |             |  |
| 1 Fourier analysis for V(1): |           |           |            |            |             |  |
| 2 DC component:              | 5.09083   |           |            |            |             |  |
| 3 No. Harmonics:             | 5         |           |            |            |             |  |
| 4 THD:                       | 45.1299 % |           |            |            |             |  |
| 5 Grid size:                 | 128       |           |            |            |             |  |
| 6 Interpolation Degree:      | 1         |           |            |            |             |  |
| 7                            |           |           |            |            |             |  |
| 8 Harmonic                   | Frequency | Magnitude | Phase      | Norm. Mag  | Norm. Phase |  |
| 9 1                          | 750       | 8.07446   | -0.0028477 | 1          | 0           |  |
| 10 2                         | 1500      | 3.57237   | -90.001    | 0.442429   | -89.998     |  |
| 11 3                         | 2250      | 0.12253   | -179.79    | 0.015175   | -179.78     |  |
| 12 4                         | 3000      | 0.704796  | -90.024    | 0.0872871  | -90.021     |  |
| 13 5                         | 3750      | 0.0716266 | 179.986    | 0.00887076 | 179.989     |  |







Рисунок 4 — Результаты анализа Фурье

 $U_{m1} = 8.074 \ \mathrm{B}$  — амплитуда первой гармоники.

Рассчитаем коэффициент пульсации для 2 значений постоянной составляющей:

1. При подсчете  $U_0$  аналитически (по формуле):

$$K_{\Pi} = U_{m1}/U_0 = 8.074/5.404 = 1.494$$

2. При получении  $U_0$  из анализа Фурье

$$K_{\pi} = U_{m1}/U_0 = 8.074/5.091 = 1.586$$

Среднее значение выпрямленного тока:

$$I_{\rm cp} = U_0/R = 5.404/500 = 10.808 \,\mathrm{mA}$$

Амплитудное значение выпрямленного тока:

$$I_m = U_m/R = \sqrt{2}\,U_{rms}/R = 1.414 \cdot 12/500 = 33.936$$
 мА



Рисунок 5 — График тока на диоде

#### Однополупериодный выпрямитель с фильтром

Схема:



Рисунок 6 — Схема однополупериодного выпрямителя с фильтром

Входное и выходное напряжение:



Рисунок 7 — График входного и выходного напряжения

Рассчитаем угол отсечки:

$$t_2=0.003~\mathrm{c}$$
 
$$t_1=0.0028~\mathrm{c}$$
 
$$\omega=2\pi\mathrm{f}=2\cdot3.14\cdot750=4710~\mathrm{pag/c}$$
 
$$\theta=\left(\omega(t_2-t_1)\right)/2=\left(4710(0.003-0.0028)\right)/2=0.471~\mathrm{pag}$$

Рассчитаем постоянную составляющую:

$$U_0 = U_m \cos \theta = \sqrt{2} U_{rms} \cos \theta = 1.414 \cdot 12 \cdot \cos 0.471 = 16.9674 \text{ B}$$

Проведем анализ Фурье:



Рисунок 8 — Результаты анализа Фурье

Рассчитаем коэффициент пульсации:

$${\rm K}_{\scriptscriptstyle \Pi} = U_{m1}/U_0 = 2.1894/16.9674 = 0.129$$
 - аналитически

$${\rm K}_{\scriptscriptstyle \Pi} = U_{m1}/U_0 = 2.1894/13.2932 = 0.1647$$
 - по анализу Фурье

График тока на диоде:

# 2 схема с конденсатором Transient Analysis (1.5055m, 298.6959m)

2m

Time (s)

3m

4m

@dd1[id]

Voltage (V)

500.0000m 400.0000m

300.0000m

200.0000m

100.0000m

-1.3878e-017

-100.0000m

Рисунок 9 — График тока на диоде

Амплитудное значение выпрямленного тока:  $I_m = 298.7 \text{ мA}$ 

1m

График обратного напряжения на диоде:



Рисунок 10 — График обратного напряжения на диоде

Обратное напряжение на диоде:

$$U_{\rm o6p} = 29.59 \,\text{A}$$

### Мостовой выпрямитель без фильтра

#### Схема:



Рисунок 11 — Схема мостового выпрямителя без фильтра

#### Входное и выходное напряжение:



Рисунок 12 — График входного и выходного напряжения

Рассчитаем постоянную составляющую напряжения:

$$U_0 = 2 U_{max}/\pi = 2\sqrt{2} U_{rms}/\pi = 2 \cdot 1.414 \cdot 12/3.14 = 10.808 \text{ B}$$

Проведем анализ Фурье:



Рисунок 13 — Результаты анализа Фурье

Рассчитаем коэффициент пульсации:

 $\mathrm{K}_{\scriptscriptstyle \Pi} = U_{m1}/U_0 = 7.0656/10.808 = 0.6537$ - аналитически

 $\mathrm{K}_{\scriptscriptstyle \Pi} = U_{m1}/U_0 = 7.0656/8.0283 = 0.88$  - по анализу Фурье

## 

Рисунок 13.1 — Форма обратных напряжений мостовой схемы без фильтра

Амплитудное значение тока:

$$I_m = \frac{U_{\text{вых\_макс}}}{R_{\text{H}}} = 31.32 \text{ MA}$$

V(1) V(3)-V(1) V(3)-V(4)

#### Мостовой выпрямитель с фильтром

Схема:



Рисунок 14 — Схема мостового выпрямителя с фильтром

График входного и выходного напряжений:



Рисунок 15 — График входного и выходного напряжения

Найдем угол отсечки:

$$t_2=0.0022~\mathrm{c}$$
  $t_1=0.00235~\mathrm{c}$   $\omega=2\pi\mathrm{f}=2\cdot3.14\cdot750=4710~\mathrm{pag/c}$   $\theta=\left(2\omega(t_2-t_1)\right)/2=4710(0.00235-0.0022)=0.7065~\mathrm{pag}$ 

Рассчитаем постоянную составляющую:

$$U_0 = U_m \cos \theta = \sqrt{2} U_{rms} \cos \theta = 1.414 \cdot 12 \cdot \cos 0.7065 = 16.9667 \text{ B}$$

Проведем анализ Фурье:

#### 3 схема мост с конденсатором

| 1 Fourier analysis for V(1 | ):        |           |         |           |             |  |
|----------------------------|-----------|-----------|---------|-----------|-------------|--|
| 2 DC component:            | 14.2297   |           |         |           |             |  |
| 3 No. Harmonics:           | 5         |           |         |           |             |  |
| 4 THD:                     | 47.2324 % |           |         |           |             |  |
| 5 Grid size:               | 128       |           |         |           |             |  |
| 6 Interpolation Degree:    | 1         |           |         |           |             |  |
| 7                          |           |           |         |           |             |  |
| 8 Harmonic                 | Frequency | Magnitude | Phase   | Norm. Mag | Norm. Phase |  |
| 9 1                        | 1500      | 1.13492   | -141.68 | 1         | 0           |  |
| 10 2                       | 3000      | 0.470605  | 74.3637 | 0.414659  | 216.043     |  |
| 11 3                       | 4500      | 0.226993  | -65.289 | 0.200008  | 76.39       |  |
| 12 4                       | 6000      | 0.107559  | 163.102 | 0.0947724 | 304.781     |  |
| 13 5                       | 7500      | 0.0527785 | 46.6445 | 0.0465041 | 188.324     |  |





Рисунок 16 — Результаты анализа Фурье

Найдем коэффициент пульсации:

$$\mathbf{K}_{\Pi}=U_{m1}/U_0=1.1349/16.9667=0.0669$$
 - аналитически  $\mathbf{K}_{\Pi}=U_{m1}/U_0=1.1349/14.2297=0.0798$  - по анализу Фурье



Рисунок 16.1 — Форма обратных напряжений мостовой схемы с фильтром

Обратное напряжение на диоде:

$$U_{\text{ofp}} = 16.28 \text{ A}$$



Рисунок 16.2 — Амплитуда тока мостовой схемы с фильтром

Амплитудное значение тока через диод:

$$I_m = 201.739$$
 мА

#### Однополупериодная схема с П-образным фильтром для получения графиков напряжений



Рисунок 17 — Однополупериодная схема с П-образным фильтром для получения графиков напряжений

#### Графики напряжений:

4 схема 1полупериод с LC для снятия форм напр Transient Analysis



Рисунок 18 — Графики напряжений

Анализ Фурье входного напряжения:



Рисунок 19 — Результаты анализа Фурье

 $K_{\text{п вх}} = U_{m1}/U_0 = 2.34958/13.386 = 0.1755$  — входной коэффициент пульсации.

Анализ Фурье выходного напряжения:



Рисунок 20 — Результаты анализа Фурье

 $K_{\text{п вых}} = U_{m1}/U_0 = 0.21152/13.2587 = 0.016$  — выходной коэффициент пульсации.

Найдем коэффициент сглаживания:

$$K_{C\Gamma \pi} = K_{\pi \text{ BX}} / K_{\pi \text{ BMX}} = 0.1755 / 0.16 = 1.0969$$

## **Мостовая схема с П-образным фильтром** для снятия форм напряжений Схема:



Рисунок 21 — Мостовая схема с П-образным фильтром для снятия форм напряжений

#### Графики напряжений:

4 схема 2полупериод мост с LC фильтром для снятия форм напр Transient Analysis



Рисунок 22 — График входного и выходного напряжения

Анализ Фурье входного напряжения:

#### 4 схема 2полупериод мост с LC фильтром для снятия форм напр

| 1 Fourier analysis for V(1): |           |           |         |           |             |
|------------------------------|-----------|-----------|---------|-----------|-------------|
| 2 DC component:              | 14.2448   |           |         |           |             |
| 3 No. Harmonics:             | 5         |           |         |           |             |
| 4 THD:                       | 46.5538 % |           |         |           |             |
| 5 Grid size:                 | 128       |           |         |           |             |
| 6 Interpolation Degree:      | 1         |           |         |           |             |
| 7                            |           |           |         |           |             |
| 8 Harmonic                   | Frequency | Magnitude | Phase   | Norm. Mag | Norm. Phase |
| 9 1                          | 1500      | 1.16451   | 38.5992 | 1         | 0           |
| 10 2                         | 3000      | 0.475468  | 78.4845 | 0.408299  | 39.8853     |
| 11 3                         | 4500      | 0.229835  | 121.859 | 0.197366  | 83.2594     |
| 12 4                         | 6000      | 0.109784  | 172.928 | 0.0942751 | 134.329     |
| 13 5                         | 7500      | 0.0543217 | -121.44 | 0.0466478 | -160.04     |





Рисунок 23 — Результаты анализа Фурье

 ${\rm K_{\Pi\,BX}}=U_{m1}/U_0=1.1645/14.2448=0.0817$  — коэффициент пульсации входного сигнала.

Анализ Фурье выходного напряжения:

#### 4 схема 2полупериод мост с LC фильтром для снятия форм напр

|                              | •         |             |           |           | -           |  |
|------------------------------|-----------|-------------|-----------|-----------|-------------|--|
|                              |           |             |           |           |             |  |
| 1 Fourier analysis for V(2): |           |             |           |           |             |  |
| 2 DC component:              | 14.2671   |             |           |           |             |  |
| No. Harmonics:               | 5         |             |           |           |             |  |
| 4 THD:                       | 13.682 %  |             |           |           |             |  |
| Grid size:                   | 128       |             |           |           |             |  |
| Interpolation Degree:        | 1         |             |           |           |             |  |
| 7                            |           |             |           |           |             |  |
| B Harmonic                   | Frequency | Magnitude   | Phase     | Norm. Mag | Norm. Phase |  |
| 9 1                          | 1500      | 0.0251301   | -132.92   | 1         | 0           |  |
| 0 2                          | 3000      | 0.0029559   | -70.07    | 0.117624  | 62.8462     |  |
| 1 3                          | 4500      | 0.00138575  | -21.34    | 0.0551431 | 111.577     |  |
| 2 4                          | 6000      | 0.000885666 | -0.047088 | 0.0352432 | 132.87      |  |
| 3 5                          | 7500      | 0.000616302 | 7.28142   | 0.0245244 | 140.198     |  |





Рисунок 24 — Результаты анализа Фурье

 ${\rm K}_{\rm п \; вых} = U_{m1}/U_0 = 0.0251/14.2671 = 0.0018$  — коэффициент пульсации выходного сигнала

Коэффициент сглаживания:

$$K_{\text{\tiny CFJ}} = K_{\text{\tiny II BX}}/K_{\text{\tiny II BMX}} = 0.0817/0.0018 = 45.39$$

## Однополупериодная схема с П-образным фильтром для снятия нагрузочной характеристики

#### Схема:



Рисунок 25 — Однополупериодная схема с П-образным фильтром для снятия нагрузочной характеристики

| I, A | 0.01 | 0.02 | 0.05 | 0.08 | 0.11 | 0.14 | 0.17 | 0.20 | 0.23 | 0.26 |
|------|------|------|------|------|------|------|------|------|------|------|
| U, B | 15.1 | 14   | 11   | 8.5  | 6.3  | 4.5  | 3    | 1.8  | 0.8  | 0.04 |



Рисунок 25.1 — Нагрузочная характеристика (зависимость напряжения от тока)

Найдем дифференциальное сопротивление:

- В начале характеристики:  $R_{\text{вых}} = \frac{\Delta U}{\Delta I} = 110 \text{ Ом}$
- В конце характеристики:  $R_{\text{вых}} = \frac{\Delta \overline{U}}{\Delta I} = 25.3 \text{ Ом}$

#### Мостовая схема с П-образным фильтром для снятия нагрузочной характеристики

#### Схема:



Рисунок 26 — Мостовая схема с П-образным фильтром для снятия нагрузочной характеристики



Рисунок 26.1 — Нагрузочная характеристика (зависимость напряжения от тока)

| I, A | 0.1  | 0.5 | 1   | 1.5 | 2   | 2.5 | 3   | 3.5 | 4   | 4.5 |
|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| U, B | 11.8 | 8.4 | 7.4 | 6.4 | 5.4 | 4.4 | 3.5 | 2.5 | 1.6 | 0.7 |

Найдем дифференциальное сопротивление:

— В начале характеристики:  $R_{\text{вых}} = \frac{\Delta U}{\Delta I} = 8.5 \text{ Ом}$ — В конце характеристики:  $R_{\text{вых}} = \frac{\Delta U}{\Delta I} = 1.8 \text{ Ом}$ 

#### Мостовая схема с фильтром и стабилизатором для снятия нагрузочной характеристики

#### Схема:



Рисунок 27 — Мостовая схема с фильтром и стабилизатором

#### График напряжений:

6 схема мост с конденсатором и стабилизатором с генератором нагр хар-ка
Transient Analysis



Рисунок 28 — График входного и выходного напряжения



Рисунок 28.1 — Мостовая схема с фильтром и стабилизатором для снятия нагрузочной характеристики

$$R_{
m 6a\pi} = 200~{
m OM}$$
  $U_{
m BMX~HOM} = 7~{
m A}$   $U_{
m BX~HOM} = 13.9~{
m A}$ 

#### Найдем нагрузочную характеристику

| І, мА | 65   | 55   | 45   | 35   | 25   | 15 | 5 | 1 |
|-------|------|------|------|------|------|----|---|---|
| U, B  | 0.48 | 2.23 | 4.59 | 6.43 | 6.98 | 7  | 7 | 7 |



Рисунок 29 — Нагрузочная характеристика (зависимость напряжения от тока)

Найдем дифференциальное сопротивление:  $r_{\text{дин}} = 55~\text{Ом}$  Найдем коэффициент стабилизации:  $K_{\text{ст}} = \left(\frac{R_{\text{бал}}}{r_{\text{дин}}} + 1\right) \frac{U_{\text{вых ном}}}{U_{\text{вх ном}}} = 4.14$ 

**Вывод:** в ходе лабораторной работы были изучены различные выпрямительные схемы и стабилизаторы напряжения, а также влияние фильтра на выходной сигнал таких схем.