INF01 118

Técnicas Digitais para Computação

Portas complexas Transmission gates Alta impedância

Aula 5

Porta NAND CMOS

Portas CMOS Complexas

SCCG (Static CMOS Complex Gate)

Exemplo:

$$S = \overline{A + (B .(C+D))}$$

A lógica da porta pode definida pelos transistores de pull down.

E1 E2 E3			S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Portas CMOS Complexas

SCCG (Static CMOS Complex Gate)

Funções com até 2 transistores em série

Dimensionamento de Transistor MOS

Revisão de Resistência

$$\mathbf{R} = \rho \cdot \frac{L}{W \cdot T}$$

Lei de Ohm:

$$I = V / R$$

Associação de Transistores

Transistores em Paralelo

Transistores em Série

* Mais de 4 transistores em série devem ser evitados !!!

Lógica com chaves NMOS

Transistores N Sem consumo estático Vg alto varia em função da lógica O buffer "regenera" o sinal. Por que?

Chaves NMOS

 V_F não consegue atingir 5V, mas 5V - V_{Tn}

o transistor NMOS passa um 0 forte e um 1 fraco

Chaves CMOS

Símbolos:

OBS: o transistor PMOS passa um 0 fraco e um 1 forte

o transistor NMOS passa um 0 forte e um 1 fraco

Req de uma chave CMOS: cerca de $10~\mathrm{K}\Omega$

Desvantagem: temos que ter C e C

Lógica com chaves CMOS

XNOR e XOR

XNOR realizado com portas lógicas

XOR realizado com transistores de passagem

Alta Impedância (Z)

Inversor Tri-State (INVTR)

E	C	$\overline{\mathbf{C}}$	S
0	0	1	Z
1	0	1	Z
0	1	0	1
1	1	0	0

Outra opção... (controle negado)

E	C	S
0	0	1
1	0	0
0	1	Z
1	1	Z

Buffer Tri-State (BUFTR)

E	C	S
0	0	0
1	0	1
0	1	Z
1	1	Z

* PODE-SE PENSAR EM QUALQUER PORTA LÓGICA COM SAÍDA TRI-STATE OU ALTA-IMPEDÂNCIA (Z) !!!

OU

Uso de Porta Tri-State ...

* NÃO É PERMITIDO EM CMOS:

* CORRETO:

* BARRAMENTO DE SINAIS:

Consumo (Dissipação de Potência)

- Corrente de Carga: Iout
- Corrente de Curto-Circuito: Icc
- consumo estático ≈ 0
- consumo dinâmico (transição) = Iout + Icc
- consumo total = estático + dinâmico

* A variação de W e L afeta no tempo de transição dos sinais e no consumo da porta lógica.