Pattern Recognition

Krystian Mikolajczyk

Blackboard

Model Fitting

Data Representation

- Non-parametric representation
 - Collection of samples, data points

Data Representation

Data Representation

Parametric representation of a model

RANSAC (Fischler and Bolles 1981)

- The RANSAC is an algorithm for robust fitting of models in the presence of many data outliers.
 - Given a fitting problem with parameters, estimate the model parameters from the data.
- Assumptions:
 - The model parameters can be estimated from m data items out of total M>>m items
 - Fit/non-fit can be established for every data item
 - The probability of a randomly selected data item being part of a good model is p_q
 - The probability that the algorithm will exit without finding a good fit (if one exists) is p_{fail} .

Example: find parameters of a line going through the points

$$ax + by + c = 0$$
 $y = ux + v$

Need 2 points to uniquely define a line (m=2)

$$P_1(x_1, y_1), P_2(x_2, y_2)$$
 $u = \frac{y_1 - y_2}{x_1 - x_2}$ $v = \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}$

- 1. selects m data items at random
- 2. estimates parameters *X=[a,b,...]*
- 3. finds how many data items K out of M fit the model with parameter vector X within a user given tolerance
- 4. if K is big enough, accept fit and exit with success
- 5. repeat 1..4 L times
- 6. failed, if you got here

$$\mathrm{d}(ax+by+c=0,(x_0,y_0))=rac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$

$$\mathrm{d}(P_1,P_2,(x_0,y_0)) = rac{|(y_2-y_1)x_0-(x_2-x_1)y_0+x_2y_1-y_2x_1|}{\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}}$$

 T_T = tolerance threshold maximum distance between a point and the line

If
$$d < T_T$$
 => point fits the model $Q > T_O$ = stopping criteria e.g. 0.5

• Select sample of m points at random

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function *d* for each data point

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis, estimate Q

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis, estimate Q
- Repeat sampling

- Select sample of m points at random
- Calculate model parameters that fit the data in the sample
- Calculate error function for each data point
- Select data that support current hypothesis, estimate Q
- Repeat sampling

ALL-INLIER SAMPLE

RANSAC time complexity $O(m k m_S t_m M)$ m ... number of data items to estimate model parameters k ... number of iterations t_m ... time to compute a single model

 m_{S} ... average number of models per sample M... total number of items

- How big Q has to be depends on what percentage of the data you think belongs to the structure being fit and how many structures you have in the data.
 - If there are multiple structures then, after a successful fit, remove the fit data and redo RANSAC.
- You can find the number of iterations L by:

$$p_{fail}$$
 = probability of L consecutive failures

- p_{fail} = (prob that a given trial is a failure)^L
- $p_{fail} = (1 \text{prob that a given trial is a success})^{\perp}$

-
$$p_1$$
 = prob that a random data item fits the model $p_1 = \left(\frac{\#inliers}{M}\right)$

$$-p_g$$
 = (prob that a given trial is a success) $p_g = (p_1)^m$

-
$$p_{fail} = (1 - (\text{prob that a random data item fits the model})^m)^L$$
 $p_{fail} = (1 - (p_1)^m)^L$

$$L = \frac{\log(p_{preset\ fail})}{\log(1 - (p_1)^m)}$$

$$p_{preset\ fail} = 1 - p_{success}$$
Usually set very low e.g. 0.01

- Image with line structures
 - Point coordinates P(x,y) given by white pixels

- A method to find model parameters that fits the data
 - It was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972).

- Origin: Detection of straight lines in clutter
 - Basic idea: each candidate point votes for all lines that it is consistent with.
 - Votes are accumulated in quantized array
 - Local maxima correspond to candidate lines
- Representation of a line
 - Usual form y = a x + b = > b = y a x

Representation of a line

- Usual form y = a x + b => b = y a x has a singularity around 90°
- Better parameterization: $x \cos(\theta) + y \sin(\theta) = \rho$

- Each curve in the figure represents the familiy of lines that pass through a particular point (x_i, y_i) in the xy-plane.
- The intersection point (ρ',θ')
 corresponds to the lines that
 passes through two points (x_i,y_i)
 and (x_i,y_i)
- A horizontal line will have θ =0 and ρ equal to the intercept with the yaxis.
- A vertical line will have θ =90 and ρ equal to the intercept with the x-axis.

Noisy Line

Problem: Finding the true maximum

Noise Input

Problem: Lots of spurious maxima

A square (left) and a circle (right)

Example images

- Given data points find model parameters to fit to the data
 - Define model and its parameters
 - 2. Derive a formula to obtain parameter values given a data point
 - 3. Define quantization steps and limits of the parameter space
 - 4. Build accumulative array for the parameter space (Hough space)
 - 5. Compute parameter values for a data sample and increment the cell in the array that corresponds to these values
 - 6. Repeat point 5 for every data sample
 - 7. Perform non maxima suppression in the array
 - 8. Recover the parameter values that correspond to the maxima.

Generalized Hough Transform

- Finding free form shapes which cannot be parameterised with a small number of parameters
 - 1. A reference point is chosen inside
 - 2. A line is constructed joining the reference point and the boundary
 - 3. The boundary direction is found at the point of intersection of line and boundary
 - 4. A reference table is constructed

ф	(r_1,α_1)	
φ ₁	(r_1,α_1)	 (r_1,α_1)
:	:	 :
ϕ_{k}	(r_k, α_k)	 (r_k, α_k)

Generalized Hough Transform

- Find location of the shape in the image
 - 1. Construct 2D accumulative array for x,y location of reference point
 - Determine edge orientation at every edge point
 - Given one point use reference table to get corresponding (r,α) values
 - 4. Calculate position of the reference point

$$x_r = x_{\phi} + r_{\phi} \cos(\alpha_{\phi})$$
 $y_r = y_{\phi} + r_{\phi} \sin(\alpha_{\phi})$

ф	(r_1,α_1)	
φ ₁	(r_1,α_1)	 (r_1,α_1)
:	:	 :
ϕ_{k}	(r_k,α_k)	 (r_k, α_k)

Generalized Hough Transform

- Generalization for an arbitrary contour or shape
 - Choose reference point for the contour (e.g. center)

For each point on the contour remember where it is located w.r.t. to the reference

point

- E.g. if the center is the reference point: remember radius r and angle relative to the tangent of the contour
- Recognition: whenever you find a contour point, calculate the tangent angle and 'vote' for all possible reference points

- Instead of reference point, can also vote for transformation
- ⇒ The same idea can be used with local features!

When is the Hough transform useful?

- Textbooks wrongly imply that it is useful mostly for finding lines
 - In fact, it can be very effective for recognizing arbitrary shapes or objects
- The key to efficiency is to have each feature (token) determine as many parameters as possible
 - For example, lines can be detected much more efficiently from small edge elements (or points with local gradients) than from just points
 - For object recognition, each token should predict location, scale, and orientation (4D array)
- Bottom line: The Hough transform can extract feature groupings from clutter in linear time!

Comparison

- Gen. Hough Transform
- Advantages
- Can be very effective for recognizing arbitrary patterns
- Can handle high percentage of outliers (>95%)
- Extracts groupings from clutter in linear time
- Disadvantages
- Quantization issues
- Only practical for small number of dimensions (up to 4)
- Handles missing and occluded data very gracefully.
- Can be adapted to many types of forms, not just lines
- Improvements available
- Probabilistic Extension
- Continuous Voting Space

- Advantages
- -General method suited to large range of problems
- Conceptually simple and easy to implement
- Independent of number of dimensions
- Disadvantages
- —Only handles moderate number of outliers (<50%)</p>
- Many variants available, e.g.
- –PROSAC: Progressive RANSAC [Chum05]
- -Preemptive RANSAC [Nister05]

Applications

- Sony Aibo (Evolution Robotics)
 - Recognize docking station
 - Communicate
 with visual cards

Example: Finding Feature Matches

• Find best stereo match within a square search window (here 300 pixels²)

from Hartley & Zisserman

Example: Finding Feature Matches

• Find best stereo match within a square search window (here 300 pixels²)

before RANSAC

after RANSAC

from Hartley & Zisserman