	1	2	3	4	5	6	Σ	_
								J
m JMBAG	IME I PREZIME							

Teorija brojeva

1. kolokvij, 6.5.2022.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Odmah se č**itljivo** potpišite. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Odredite g = nzd(a, b) i nađite cijele brojeve x, y takve da je ax + by = g, ako je a = 11286, b = 4080.

2. Riješite sustav kongruencija

$$x \equiv 45 \pmod{52},$$

$$x \equiv 6 \pmod{65},$$

$$x \equiv 11 \pmod{70}$$
.

3. Nađite sva rješenja jednadžbe $\varphi(n)=232.$

4. Riješite kongruenciju

$$x^4 + x^2 - 3x - 1 \equiv 0 \pmod{7^4}.$$

- 5. (a) Nađite najmanja dva primitivna korijena modulo 53.
 - (b) Riješite (pomoću indeksa) kongruenciju: $3x^5 \equiv 5 \pmod{53}$.

- 6. (a) Izračunajte sljedeće Legendreove simbole: $\left(\frac{1000}{677}\right)$, $\left(\frac{251}{397}\right)$.
 - (b) Odredite sve proste brojeve p takve da je 3 kvadratni ostatak modulo p.

Rješenja:

1.
$$g = 6 = 201 \cdot 11286 + (-556) \cdot 4080$$

2.
$$x \equiv 1761 \pmod{1820}$$

3.
$$n = 233, 295, 466, 472, 590, 708$$

4.
$$x \equiv 634 \pmod{2401}$$

5. (a) 2,3 (b)
$$x \equiv 11 \pmod{53}$$

5. (a) 2,3 (b)
$$x \equiv 11 \pmod{53}$$

6. (a) $\left(\frac{1000}{677}\right) = 1$, $\left(\frac{251}{397}\right) = -1$, (b) $p \equiv 1, 11 \pmod{12}$, $p = 2$