

氧化还原反应(二)

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

学习目标	

1. 掌握氧化还原反应配平的基本方法

2. 掌握氧化还原的计算方法

&

1. 氧化还原反应的配平

重难点

2. 氧化还原反应的计算

根深蒂固

- 、氧化还原反应的配平

1. 配平原则:还原剂失电子总数=氧化剂得电子总数, 即还原剂(元素)化合价升高的总价数=氧化剂(元素)化合价降低的总价数。

2. 氧化还原反应方程式配平的一般方法与步骤

- (1) 配平方法: 化合价升降法
- (2) 步骤: 标变价、列升降、求总数、配系数

$$C + HNO_3 \xrightarrow{\Delta} CO_2 + NO_2 + H_2O$$

①标变价

②列升降

③求总数(最小公倍数)

先配氧化还原体系(氧化剂、还原剂、氧化产物、还原产物)的系数,再根据元素守恒(离子方程式 还需要考虑电荷守恒) 配平其他物质

- (4) 氧化还原反应方程式的配平依据:
 - ①电子守恒(化合价升降总数守恒)即在反应中还原剂失去电子的总数与氧化剂得到的电子总数相等;
 - ②质量守恒,反应前后各元素的原子个数相等;
 - ③电荷守恒,在有离子参与的氧化反应中,反应前后离子所带的正负电荷总数相等。

3. 一些特殊的氧化还原反应方程式配平技巧

- (1) 逆向配平法(适用于:部分氧化还原反应、歧化反应)
 - ①部分氧化还原反应:氧化剂或还原剂只有一部分发生化合价变化

例:
$$_MnO_2 + _HCl \xrightarrow{\Delta} _MnCl_2 + _Cl_2 \uparrow + _H_2O$$

$$_\text{Cu} + _\text{HNO}_3 \xrightarrow{\quad \Delta \quad} _\text{Cu(NO}_3)_2 + _\text{NO} \uparrow + _\text{H}_2\text{O}$$

②歧化反应:氧化剂和还原为同一个物质,相同元素的化合价升降变化

例:
$$_{-}$$
Cl₂ + $_{-}$ NaOH $\xrightarrow{\Delta}$ $_{-}$ NaCl + $_{-}$ NaClO₃ + $_{-}$ H₂O

(2) 整体标价法

例:
$$=Cu_2S+=HNO_3 \rightarrow =H_2SO_4+=NO\uparrow+=Cu(NO_3)_2+=H_2O$$

①整体标价法

(3) 减少变价法

二、氧化还原反应的计算

1. 常见题型:

- (1) 求氧化剂与还原剂或氧化产物与还原产物的物质的量之比或质量比;
- (2) 计算参加反应的氧化剂或还原剂的量;
- (3) 确定反应前后某一元素价态的变化;
- (4) 电子转移数目的计算

2. 解题方法

- (1) 找出氧化剂和还原剂以及各自的还原产物和氧化产物;
- (2) 找准一个原子或离子得失电子数 (注意: 化学式中粒子的个数);
- (3) 根据得失电子守恒列等式: $n(氧化剂) \times 变价原子个数 \times 化合价变化值 = n(还原剂) \times 变价原子个数 \times 化合价变化值。$

枝繁叶茂

题型1: 氧化还原反应的配平

例 1: 下列化学方程式配平正确的是 (

- A. $2KMnO_4 + 11H_2S + 5H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 13S \downarrow + 16H_2O$
- B. $2KMnO_4 + 8H_2S + 4H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 9S \downarrow + 12H_2O$
- C. $2KMnO_4 + 5H_2S + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + S \downarrow + 4H_2O$
- D. $2KMnO_4 + 5H_2S + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S \downarrow + 8H_2O$

例 2: 配平下列氧化还原方程式

- (1) $\sqsubseteq Cu + \sqsubseteq HNO_3 \rightarrow \sqsubseteq Cu(NO_3)_2 + \sqsubseteq NO + \sqsubseteq H_2O$
- (2) $\Box AsH_3 + \Box HNO_3 \rightarrow \Box H_3AsO_4 + \Box NO_2 + \Box H_2O$
- (3) $\bot KMnO_4 + \bot H_2O_2 + \bot H_2SO_4 \rightarrow \bot K_2SO_4 + \bot MnSO_4 + \bot O_2 \uparrow + \bot H_2O$
- $(4) \quad \bot K_2 Cr_2 O_7 + \bot C + \bot H_2 SO_4 \rightarrow \bot K_2 SO_4 + \bot Cr_2 (SO_4)_3 + \bot CO_2 \uparrow + \bot H_2 O$

$(5) \bot KMnO_4 + \bot HCl \rightarrow \bot MnCl_2 + \bot Cl_2 \uparrow + \bot KCl + \bot H_2$	(5)	-KMnO₄	+ H Cl -	→ <u>M</u> nCl,	+cCl,	1+	-KCl-	+-Н,(
--	-----	--------	-----------------	-----------------	-------	----	-------	-------

(6)
$$\sqsubseteq KMnO_4 + \sqsubseteq KNO_2 + \sqsubseteq$$
 $\rightarrow \sqsubseteq MnSO_4 + \sqsubseteq K_2SO_4 \uparrow + \sqsubseteq KNO_3 + \sqsubseteq H_2O$

(7)
$$\bot Fe_3C + \bot HNO_3 \rightarrow \bot CO_2 + \bot NO \uparrow + \bot Fe(NO_3)_3 + \bot H_2O$$

(8)
$$\bot FeS_2 + \bot O_2 \rightarrow \bot Fe_2O_3 + \bot SO_2$$

题型 2: 氧化还原反应的计算

例 3: 在 $5KI + KIO_3 + 3H_2SO_4 \rightarrow 3K_2SO_4 + 3I_2 + 3H_2O$ 的反应中,氧化剂与还原剂物质的量之比为(

- A. 1:3
- B. 1:4
- C. 1:5
- D. 5:1

变式 1: 氨气与一氧化氮在一定条件下的化学方程式: $4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$ 。反应中,被氧化与被还原的氮原子数之比为 ()

- A. 5:4
- B. 4:5
- C. 2:3
- D. 3:2

例 4: 3mol SO_3^{2-} 恰好将 2mol XO_4^- 还原, SO_3^{2-} 被氧化为 SO_4^{2-} ,则 X 元素在还原产物中的化合价是(

- A. +1
- B. +2
- C. +3
- D. +4

变式 1: 现有 24mL 浓度为 0.05mol·L·l 的 Na_2SO_3 溶液恰好与 20mL 浓度为 0.02mol·L·l 的 $K_2Cr_2O_7$ 溶液完全反

应。已知 Na_2SO_3 可被 $K_2Cr_2O_7$ 氧化为 Na_2SO_4 ,则元素 Cr 在还原产物中的化合价为

- A. +2
- B. +3
- C. +4
- D. +5

例 5: 已知 H_2S 能被下列物质氧化,各物质发生下列变化: $Fe^{3+} \to Fe^{2+}$; $Cr_2O_7^{2-} \to 2Cr^{3+}$; $Br_2 \to 2Br^-$; $HNO_3 \to NO$ 。如果氧化等物质的量的 H_2S 气体得到 S 单质,需要上述离子或物质的物质的量最小的是

- A. Fe³⁺
- B. $Cr_{2}O_{7}^{2-}$
- C. Br,
- D. HNO₃

的物质的量之比为	性溶液中可被 NaClO 氧化 1:16,则 <i>x</i> 的值为 ()			a ₂ S _x 与 NaClO
A. 2	B. 3	C. 4	D	5	
题型3:氧化还原	原反应的配平和计算综	合			
例 6: 2KMnO ₄ +1	$6HCl \rightarrow 2KCl + 2MnCl_2 +$	$5Cl_2 \uparrow +8H_2O$			
(3)参加反应的盐 (4)若有158gKM	8的方向和数目。 元素被还原,还原剂是酸中,被氧化的 HCl 和是 InO4参加反应,则被氧化 E生成 Cl ₂ 22.4L,则参加及	未被氧化(显酸性 .的 HCl 有)的 HCl 的比值 _g。		
变式 1: 在 K ₂ Cr ₂ O	$_7 + 14HCl \rightarrow 2KCl + 2CrC$	$l_3 + 3Cl_2 \uparrow +7H_2O \not$	的反应中		
	·氧化剂,	S原剂,	_被还原,	发生氧化反应	Ÿ,
是氧化产物。	5 子 - 5 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
(2) 标出电子转移 (3) 若有 219g 氢	7万四和数百。 化氢被氧化,则生成氯气	g			
	化氢参加反应,则生成氯				
J					
例 7: 在 KClO ₃ + 6	$HCl \rightarrow KCl + 3Cl_2 \uparrow +3H_2$	O的反应中			
(3)参加反应的盐	8的方向和数目。 元素被还原,还原剂是 上酸中,被氧化的 HCl 和是 5生成 Cl ₂ 16.8L,则参加反	未被氧化(显酸性))的 HCl 的比值		ıol,转移的电
变式 1: 关于反应]	$K^{35}ClO_3 + 6H^{37}Cl \rightarrow KCl \rightarrow KCl$	+3Cl ₂ ↑+3H ₂ O的7	有 关叙述 中,正码	确的是 ()
A.KCl 中含ィ	∃ ³⁵ C1				
	的相对分子质量为73.3				
	多的电子数为 6e				
D. 氧化剂和油	还原剂的物质的量之比为	1:6			
例 8: KClO ₃ 和浓盐	上酸在一定温度下反应会生	主成黄绿色的易爆织	物二氧化氯。其	变化可表述为:	
	$\square KClO_3 + \square HCl(3)$	浓) →□KCl+□ClO ₂	$\uparrow + \Box Cl_2 \uparrow + \Box$		
(2) 浓盐酸再反应 a. 只有还原 (3) 产生 0.1molC	之方程式并配平(未知物系 在中显示出来的性质是 (性 b. 还原性和酸性 归2,则转移的电子的物质 量的氧化性。因此,常被用)(填写编 ^{-{} 生 c. 只有氧d 的量为	号) 比性 d. á mol。		数表示) 是 Cl₂

变式 1:	某强酸性反应体系中,	反应物和生成物共六种物质:	O_2 ,	MnO_4^-	H_2O .	Mn^{2+} 、	H_2O_2 .	H^{+} ,	己知
该反应口	中,H ₂ O ₂ 只发生了如下	过程: $H_2O_2 \rightarrow O_2$							

(1)	该反应中发生还原反应的过程是:→	o		
(2)	写出该反应配平的离子方程式:			
(3)	如果上述反应中有 6.72L (标况下) 气体生成,	转移的电子数为	mol∘	

一、氧化还原反应的配平

- 1. 配平原则
- 2. 氧化还原反应方程式配平的一般方法与步骤
- (1) 配平方法: 化合价升降法
- (2) 步骤: 标变价、列升降、求总数、配系数
- (4)氧化还原反应方程式的配平依据: ①电子守恒;②质量守恒;③电荷守恒。
- 3. 一些特殊的氧化还原反应方程式配平技巧
- (1) 逆向配平法(适用于:部分氧化还原反应、歧化反应)
- (2) 整体标价法
- (3) 减少变价法

二、氧化还原反应的计算

- 1. 常见题型:
- (1) 求氧化剂与还原剂或氧化产物还原产物的物质的量之比或质量比;
- (2) 计算参加反应的氧化剂或还原剂的量;
- (3) 确定反应前后某一元素价态的变化;
- (4) 电子转移数目的计算

2. 解题方法

- (1) 找出氧化剂和还原剂以及各自的还原产物和氧化产物;
- (2) 找准一个原子或离子得失电子数(注意: 化学式中粒子的个数);
- (3) 根据得失电子守恒列等式:

n(氧化剂)×变价原子个数×化合价变化值=n(还原剂)×变价原子个数×化合价变化值。

瓜熟蒂落

1.	在反	$\dot{\mathbb{Z}}$	SNH.	₄ Cl+N ₂ 中,被氧化	的复	風和未被氧化的氨的	质量	量比是 ()
	Α.	3:1	В.	1:3	C.	1:1	D.	3:8
2.	在反	.应 3Cl ₂ + 6KOH(浓	$) \rightarrow :$	$5KCl + KClO_3 + 3H_2$	Ο,	氧化剂与还原剂的	物质	的量之比为 ()
	Α.	5:1	В.	4:1	C.	1:5	D.	1:4
3.	将 9	.60×10 ⁻⁴ mol XO ₄ 在沿	容液	中还原到较低价态,	需	用 24mL0.100mol・	L-1 自	的 H ₂ O ₂ 溶液,则 X 元素的化合价
变力		() +1	В.	+2	C.	+3	D.	+4
4.	实验	全室将 NaClO ₃ 和 Na	₂ SO ₃	按物质的量比 2:1 位	到入	烧瓶中,用水浴加	热,	同时滴入 H ₂ SO ₄ 溶液,产生棕黄
色的	的气化	本 X,反应后测得 N	NaCl	O ₃ 和 Na ₂ SO ₃ 恰好完	至是	反应,则 X 为 ()
	Α.	Cl ₂	В、	Cl ₂ O	C,	ClO ₂	D,	Cl ₂ O ₃
5.	实验	室常用浓盐酸与二	氧化	锰反应: MnO ₂ + 4	HCl	($)$ $ → MnCl2 + C$		`+2H ₂ O制取氯气,该反应中还原
剂上			(B.	73:87	C.	87:146	D.	87:73
6.	在4	$Zn + 10HNO_3 \rightarrow 4Z$	n(N	$(O_3)_2 + NH_4NO_3 + 3H_4$	H ₂ O	反应中,被还原的	硝酸	和未被还原的硝酸的物质的量之
比		() 4:1	В.	1:4	C.	9:1	D.	1:9
		的氧化物和一氧化 之比为 1:2,则该领			分反)	这应,生成氮气和二	氧化	之碳。若测得氮气和二氧化碳的物
	Α.	N_2O	В.	NO	C.	NO_2	D.	N_2O_5
8.	硫代	硫酸钠可作为脱硫	剎,	己知 25.0mL0.100n	nol/I	L Na ₂ S ₂ O ₃ 溶液恰好	把 2	224mL(标准状况) Cl ₂ 完全转化
为(CI À	写子,则 S ₂ O ₃ ²⁻ 将转付	化为	()				
	A.	S^{2-}	В.	S	C.	SO ₃ ²⁻	D,	SO_4^{2-}

9.	在某温度下氯气和氢氧化钠溶液反应,在其产物中 NaClO 、NaClO ₃ 、NaCl 、H ₂ O 经过分析,ClO ⁻ 、ClO ₃
物质	质的量之比为 1:3,则被氧化的氯和被还原的氯的物质的量之比为 () A. 1:1 B. 4:1 C. 1:4 D. 5:1
10	.【双选】K35C1O3晶体与H37C1的溶液反应后,生成氯气、氯化钾和水,方程式如下:
K^3	5 ClO ₃ + 6H 37 Cl → KCl + 3Cl ₂ ↑ +3H ₂ O ,则下列说法正确的是 ()
	A. 被还原的 K ³⁵ C1O ₃ 和被氧化的 H ³⁷ C1 的物质的量之比为 1: 5 B. 生成的氯气其相对分子质量为 72 C. 氯化钾既不是氧化产物,也不是还原产物 D. 每生成标准状况下的氯气 11.2L,转移电子数为 6.02×10 ²³
11.	高锰酸钾与浓盐酸反应,可以产生氯气,反应式为:
	$2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 5Cl_2 \uparrow + 8H_2O$
	在该反应中,锰元素的化合价由价变为价,若参加反应的 HCl 是 146g,那么被氧化的 HCl 是g(标出电子转移的方向和数目)。
12.	(1) 2KMnO ₄ +16HCl→2KCl+2MnCl ₂ +5Cl ₂ ↑+8H ₂ O,反应中氧化剂和还原剂的物质的量比为。
	(2) $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O$,反应中生成 11.2L(标况下)NO 时,消耗还原剂的质
量)	为g,电子转移mol,反应中被还原的HNO ₃ 与未被还原的HNO ₃ 的质量之比为
13.	Cl ₂ 在 70℃的 NaOH 溶液中,能同时发生两个自身氧化还原反应,反应的化学方程式为:
	(1)产物中有 NaClO:;
	(2)产物中有 NaClO ₃ :;
	反应完全后溶液中 NaClO 和 NaClO ₃ 的数目之比为 4:1,则 NaCl 和 NaClO 的物质的量之比为。
14.	氧化还原反应中实际上包含氧化和还原两个过程。下面是一个还原过程的反应式:
	$NO_3^- + 4H^+ + 3e \rightarrow NO + 2H_2O$
KN	${ m MnO_4}$ 、 ${ m Na_2CO_3}$ 、 ${ m Cu_2O}$ 、 ${ m Fe_2(SO_4)_3}$ 四种物质中的一种物质(甲)能使上述还原过程发生。
(1)写出并配平该氧化还原反应的化学方程式:。
	2)反应中硝酸体现了性质。
(3	5)反应中若产生 0.2mol 气体,则转移电子的物质的量是mol。

15. 高铁酸钾(K_2FeO_4)是一种新型、高效、多功能水处理剂,无二次污染的绿色水处理剂。工业上是先制得高铁酸钠,然后在低温下,在高铁酸钠溶液中加入 KOH 至饱和就可析出高铁酸钾。制备方法有:①湿法:次氯酸盐氧化法②干法:高温过氧化物法。
(1)湿法制备的的主要反应方程为:
$\underline{\hspace{1cm}} Fe(OH)_3 + \underline{\hspace{1cm}} NaClO + \underline{\hspace{1cm}} NaOH \rightarrow \underline{\hspace{1cm}} Na_2 FeO_4 + \underline{\hspace{1cm}} NaCl + \underline{\hspace{1cm}} H_2O$
在空格中填写适当物质,并配平反应化学方程式。
(2) 干法制备中牵涉到的物质有: FeSO ₄ 、Na ₂ FeO ₄ 、Na ₂ SO ₄ 、Na ₂ O ₂ ;
发生氧化反应的过程是:
(3) 制备相同质量 Na_2FeO_4 时转移的电子数,湿法制备干法制备(填 ">" "<" 或 "=")。
(4) 高铁酸钾和二氧化氯都是高效杀菌消毒剂,但消毒效率(单位质量转移的电子数)是不相同的,则高铁
酸钾的效率是二氧化氯的倍。
16. 黄铜矿(主要成分 $CuFeS_2$)是提取铜的主要原料:
(1) 取 12.5g 黄铜矿样品,经测定含 3.60g 硫(杂质不含硫),矿样中 $CuFeS_2$ 含量为;
(2) 已知 $2\text{CuFeS}_2 + 4\text{O}_2 \xrightarrow{800^{\circ}\text{C}} \text{Cu}_2\text{S} + 3\text{SO}_2 + 2\text{FeO}(炉渣)$
产物 Cu ₂ S 在 1200℃高温下继续反应: 2Cu ₂ S+3O ₂ >2Cu ₂ O+2SO ₂ ;
$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$;
假定各步反应都完全,完成下列计算:
①由 6molCuFeS ₂ 生成 6molCu, 求消耗 O ₂ 的物质的量;
②6molCuFeS ₂ 和 14.25molO ₂ 反应,理论上可得到molCu;
③6molCuFeS ₂ 和 15.75molO ₂ 反应,理论上可得到molCu。
17. 二氧化硒(SeO ₂)是一种氧化剂,其被还原后的单质硒可能成为环境污染物,通过与浓 HNO ₃ 或浓 H ₂ SO ₄
反应生成 SeO ₂ 以回收 Se。完成下列填空:
(1) Se 和浓 HNO ₃ 反应的还原产物为 NO 和 NO ₂ , 且 NO 和 NO ₂ 的物质的量之比为 1: 1, 写出 Se 和浓 HNO ₃
的反应方程式;
(2) 己知: Se+2H ₂ SO ₄ (浓) →2SO ₂ ↑+SeO ₂ +2H ₂ O; 2SO ₂ +SeO ₂ +2H ₂ O→Se+2SO ₄ ² -+4H ⁺ 则 SeO ₂ 、H ₂ SO ₄ (浓)、
SO ₂ 的氧化性由强到弱的顺序是。