Assignment 11

Nishan Dhoj Karki

11/27/2022

1 Consider the following language:

LCS = $\{\langle G_1, G_2, k \rangle \mid G_1 \text{ and } G_2 \text{ are graphs that have isomorphic subgraphs with k edges each } \}$

- (20 points) Prove that LCS \in NP.
- (30 points) Prove that LCS is NP-hard.

1.1 Proof: LCS \in NP..

Constructing a poly-time verifier V for LCS:

V= "On input $\langle \langle G_1, G_2, k \rangle, c \rangle$ here c is a certificate with graphs and mapping function between the vertices of the graphs:

- 1. Check if the certificate c comprises a description of two sub-graphs and a mapping function.
- 2. Check if graphs c_1 and c_2 in c have k edges and are subgraphs of G_1 and G_2 respectively.
- 3. For two graphs $c_1(V_1, E_1)$ and $c_2(V_2, E_2)$ (here V and E are vertices and edges):
 - Check if the mapping is a bijection i.e. Using mapping function (f) from c, Check if $f: V_1 \to V_2$ such that $(u, v) \in E_1 \iff (f((u), f(v)) \in E_2$
- 4. If all the above checks are passed, ACCEPT. Else, REJECT "

Here, we have constructed a verifier V that accepts if the certificate c has two sub-graphs with k edges and a mapping function for an isomorphic test. If the graphs c_1 and c_2 satisfy all the conditions mentioned above, then the verifier V accepts or rejects the certificate. The verification process for the graph to have k edges as well as the check for isomorphism can be done in polynomial time. The check for bijection as well as verifying that for every edge in c_1 there is an edge in c_2 mapped by the mapping function can be done in polynomial time. Thus, the verifier V verifies LCS in polynomial time. So, $LCS \in NP$

1.2 LCS is NP-hard.

Let us show a reduction from CLIQUE to LCS. CLIQUE = $\{\langle G, k \rangle \mid \text{graph G has a k-clique }\}$ Let F be the reduction function: F = "On input $\langle G, n \rangle$ where G is a graph with n vertices.

- 1. Construct G_1 as complete graph of n vertices.
- 2. Let k be the total edges in graph G_1 i.e. k = (n(n-1)/2).
- 3. Output $\langle G, G_1, k \rangle$ "

When the graph G has a n clique the n nodes are isomorphic to G_1 , this implies that whenever $\langle G, n \rangle \in CLIQUE$ then $\langle G, G_1, k \rangle \in LCS$. Similarly, when G contains a sub graph isomorphic to G_1 then, G_1 is n clique, so G must have n clique. So, $\langle G, G_1, k \rangle \in LCS \Rightarrow \langle G, n \rangle \in CLIQUE$.

This reduction takes place in polynomial time since the construction of the complete graph G_1 takes $O(n^2)$ time. So, we can say that $CLIQUE \leq_P LCS$. So, LCS is NP-hard.

2 Consider the following language:

IST = $\{\langle G, T \rangle \mid G \text{ is a graph with a spanning tree isomorphic to tree T } \}$

- (20 points) Prove that IST \in NP.
- (30 points) Prove that IST is NP-hard.

2.1 Proof: IST \in NP.

Constructing a poly-time verifier V for IST.

V = "On input $\langle \langle G, T \rangle, c \rangle$, where c is mapping function $f: V_T \to V_G$ which maps vertices of Tree T to graph G

- 1. Check if the mapping function given in c is bijective.
- 2. Check if tree T is connected.
- 3. Construct G_1 using c and T such that the mapping function f is validated i.e. $f: V_T \to V_G$
- 4. Check if G_1 is a subgraph of G and covers all the vertices of G.
- 5. If all test passes, ACCEPT. Else REJECT "

Here, We are trying to generate a spanning tree using the mapping function f provided by c and the tree T. If all the checks are passed the new graph G_1 generated will be a spanning tree isomorphic to tree T and will cover all vertices in G as the function f provided by c is a mapping function such that $f: V_T \to V_G$. Since we are generating a new graph using the mapping function f this can be processed in polynomial time. Also, the check for subgraph and coverage for all vertices can be done in polynomial time. Hence, by the construction of poly-time verifier V, IST \in NP.

2.2 Proof: IST is NP-hard.

Let's show a reduction from HAMPATH to IST. Let F be the reduction function: $F = \text{"On input } \langle G, s, t \rangle$ where Graph G has a Hamilton path from s to t:

- 1. Select s as marked
- 2. Mark all adjacent vertex till no vertex is unmarked.
- 3. Store all paths that end with no further unmarked vertices.
- 4. From all stored paths select paths that start at vertex s and end at vertex t.
- 5. For all selected paths, select a path with the total number of vertices equal to the total number of vertices in G
- 6. Construct a tree T from the selected path
- 7. Output $\langle G, T \rangle$ "

Here, we transverse through the graph searching for Hamilton paths that start at s and end at t. The constructed tree T will start from s and end at t covering all the vertices, so there will at least be one spanning tree isomorphic to T. If $\langle G, s, t \rangle \notin HAMPATH$ then it does not have a spanning tree isomorphic to T. Thus, $\langle G, s, t \rangle \in HAMPATH \iff \langle G, T \rangle \in IST$. The above reduction occurs in polynomial time as the path search, selection of a valid path and construction of tree T are done in polynomial time. Hence, HAMPATH \leq_p IST, and IST is NP-hard.