

Article

# **Responsible Machine Learning**

## with Interpretable Models, Post-hoc Explanation, and Disparate Impact Testing

Navdeep Gill 1,‡, Patrick Hall 1,‡,\*, Kim Montgomery 1,‡, and Nicholas Schmidt 2,‡

- <sup>1</sup> H2O.ai
- <sup>2</sup> BLDS, LLC
- \* Correspondence: phall@h2o.ai; nschmidt@bldsllc.com
- † These authors contributed equally to this work.

Version November 5, 2019 submitted to Information

- Abstract: This text outlines a viable approach for training and evaluating machine learning systems
- for high-stakes, human-centered, or regulated applications using common Python programming
- tools. The accuracy and intrinsic interpretability of two types of constrained models, monotonic
- gradient boosting machines (M-GBM) and explainable neural networks (XNN), a deep learning
- architecture well-suited for structured data, are assessed on simulated data with known feature
- importance and sociological bias characteristics and on realistic, publicly available lending data. For
- maximum transparency and the potential generation of personalized adverse action notices, the
- constrained models are analyzed using post-hoc explanation techniques including plots of partial
- dependence and individual conditional expectation (ICE) and global and local gradient-based or
- Shapley feature importance. The constrained model predictions are also tested for disparate impact
- and other types of sociological bias using straightforward group fairness measures. By combining
- innovations in interpretable models, post-hoc explanation, and bias testing with accessible software
- tools, this text aims to provide a template workflow for important machine learning applications that
- require high accuracy and interpretability and low disparate impact.
- 15 Keywords: Machine Learning; Neural Network; Gradient Boosting Machine; Interpretable;
- Explanation; Fairness; Disparate Impact; Python

## 17 0. Introduction

#### 18 1. Materials and Methods

- 1.1. Notation
- To facilitate descriptions of data, modeling, explanatory, and social bias techniques, notation for input and output spaces, datasets, and models is defined.
- 22 1.1.1. Spaces
- Input features come from the set  $\mathcal{X}$  contained in a P-dimensional input space,  $\mathcal{X} \subset \mathbb{R}^P$ . An arbitrary, potentially unobserved, or future instance of  $\mathcal{X}$  is denoted  $\mathbf{x}, \mathbf{x} \in \mathcal{X}$ .
- Labels corresponding to instances of  $\mathcal{X}$  come from the set  $\mathcal{Y}$ .
  - Learned output responses come from the set  $\hat{\mathcal{Y}}$ .
- 27 1.1.2. Datasets
- The input dataset X is composed of observed instances of the set  $\mathcal{X}$  with a corresponding dataset of labels Y, observed instances of the set  $\mathcal{Y}$ .

- Each *i*-th observation of **X** is denoted as  $\mathbf{x}^{(i)} = [x_0^{(i)}, x_1^{(i)}, \dots, x_{P-1}^{(i)}]$ , with corresponding *i*-th labels in  $\mathbf{Y}, \mathbf{y}^{(i)}$ , and corresponding predictions in  $\mathbf{\hat{Y}}, \mathbf{\hat{y}}^{(i)}$ .
- **X** and **Y** consist of *N* tuples of observations:  $[(\mathbf{x}^{(0)}, \mathbf{y}^{(0)}), (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(N-1)}, \mathbf{y}^{(N-1)})]$ . Each *j*-th input column vector of **X** is denoted as  $X_j = [x_j^{(0)}, x_j^{(1)}, \dots, x_j^{(N-1)}]^T$ .

#### 1.1.3. Models

32 33

38

60

61

- A type of machine learning model g, selected from a hypothesis set  $\mathcal{H}$ , is trained to represent an unknown signal-generating function f observed as X with labels Y using a training algorithm A:  $X, Y \xrightarrow{A} g$ , such that  $g \approx f$ .
- g generates learned output responses on the input dataset  $g(\mathbf{X}) = \mathbf{\hat{Y}}$ , and on the general input space  $g(\mathcal{X}) = \hat{\mathcal{Y}}$ .
- The model to be explained and tested for unwanted social bias is denoted as *g*.
- 1.2. Data Description
- 1.3. Model Description

## 1.3.1. Explainable Neural Network

Explainable neural networks (XNNs) are an alternative formulation of additive index models in which the ridge functions are neural networks [1]. XNNs also bare a strong resemblance to generalized additive models (GAMs) and so-called explainable boosting machines (EBMs or GA<sup>2</sup>M), i.e. GAMs which consider main effects and a small number of 2-way interactions and incorporate boosting in their training [2], [3]. Hence, XNNs enable users to tailor interpretable neural network architectures to a given prediction problem and to visualize model behavior by plotting ridge functions. XNNs are composed of a global bias term,  $\mu_0$ , K individually specified neural networks,  $n_k$  with scale parameters  $\gamma_k$ , and the inputs to each  $n_k$  are themselves a linear combination of modeling inputs,  $\sum_{i=0}^{J} \beta_{k,i} x_i$ .

$$g^{\text{XNN}}(\mathbf{x}) = \mu_0 + \sum_{k=1}^{K} \gamma_k n_k (\sum_{j=1}^{J} \beta_{k,j} x_j)$$
 (1)

 $g^{XNN}$  is comprised of 3 meta-layers:

- 1. The first and deepest meta-layer, composed of *K* linear  $\sum_{i} \beta_{k,j} x_{j}$  hidden units, is known as the projection layer and is fully connected to each input feature,  $X_i$ .
- 2. The second meta-layer contains K hidden and separate  $n_k$  ridge functions, or *subnetworks*. Each  $n_k$  is a neural network, which can be parameterized to suite a given modeling task. To facilitate direct visualization, the input to each subnetwork is the 1-dimensional output of its associated projection layer hidden unit,  $\sum_{i} \beta_{k,j} x_{j}$ .
- 3. The output meta-layer, called the *combination layer*, is another linear unit comprised of a global bias term,  $\mu_0$ , and the K weighted 1-dimensional outputs of each subnetwork,  $\gamma_k n_k(\sum_i \beta_{k,i} x_i)$ . Again, subnetwork output is restricted to 1-dimension for visualization purposes.

 $g^{XNN}$  is typically trained by mini-batch stochastic gradient descent (SGD).  $L_1$  regularization is often applied to both the projection and combination layers to induce a sparse and interpretable model, where each  $n_k$  subnetwork and corresponding combination layer  $\gamma_k$  are ideally associated with an important  $X_i$  or combination thereof.

#### 1.3.2. Monotonically Constrained Gradient Boosting Machine

Monotonic gradient boosting machines (M-GBMs) constrain typical GBM training to consider only tree splits that obey user-defined positive and negative monotonicity constraints. The M-GBM remains an additive combination of B trees trained by gradient boosting,  $T_h$ , but each tree learns a set of splitting rules that respect monotonicity constraints,  $\Theta_h^{\text{mono}}$ .

$$g^{\text{mono}}(\mathbf{x}) = \sum_{b=1}^{B} T_b(\mathbf{x}; \Theta_b^{\text{mono}})$$
 (2)

As in unconstrained GBM,  $\Theta_h^{\text{mono}}$  is selected in a greedy, additive fashion by minimizing a regularized loss function that considers known target labels, y, the predictions of all subsequently trained trees in the M-GBM,  $g_{b-1}^{\text{mono}}(\mathbf{X})$ , and a regularization term that penalizes complexity in the current tree,  $\Omega(T_b)$ . For the *b*-th iteration, the loss function,  $\mathcal{L}_b$ , can generally be defined as:

$$\mathcal{L}_{b} = \sum_{i=0}^{N-1} l(y^{(i)}, g_{b-1}^{\text{mono}}(\mathbf{x}^{(i)}), T_{b}(\mathbf{x}^{(i)}; \Theta_{b}^{\text{mono}})) + \Omega(T_{b})$$
(3)

In addition to  $\mathcal{L}_{b}$ ,  $g^{mono}$  training is characterized by additional splitting rules and constraints on tree node weights. Each binary splitting rule,  $\theta_{b,j,k} \in \Theta_b$ , is associated with a feature,  $X_i$ , is the k-th split associated with  $X_i$  in  $T_b$ , and results in left and right child nodes with a numeric weights,  $\{w_{b,j,k,L}, w_{b,j,kR}\}$ . For terminal nodes,  $\{w_{b,j,k,L}, w_{b,j,kR}\}$  can be direct numeric components of some  $g^{\text{mono}}$  prediction. For two values of some feature  $X_i$ ,  $x_i^{\alpha} \leq x_i^{\beta}$ , where the prediction for each value results in  $T_b(x_i^{\alpha}; \Theta_b) = w_{\alpha}$  and  $T_b(x_i^{\beta}; \Theta_b) = w_{\beta}$ ,  $\Theta_b$  is restricted to be positive monotonic w.r.t.  $X_j$  by the following rules and constraints. 81

- 1. For the first and highest split in  $T_b$  involving  $X_i$ , any  $\theta_{b,i,0}$  resulting in the left child weight being greater than the right child weight,  $T(x_i; \theta_{b,i,0}) = \{w_{b,i,0,L}, w_{i,0,R}\}$  where  $w_{b,i,0,L} > w_{b,i,0,R}$ , is not considered.
- 2. For any subsequent left child node involving  $X_j$ , any  $\theta_{b,j,k\geq 1}$  resulting in  $T(x_j;\theta_{b,j,k\geq 1})=0$  $\{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\}$  where  $w_{b,j,k\geq 1,L} > w_{b,j,k\geq 1,R}$ , is not considered.
- 3. Moreover, for any subsequent left child node involving  $X_j$ ,  $T(x_j; \theta_{b,j,k \ge 1}) = \{w_{b,j,k \ge 1,L}, w_{b,j,k \ge 1,R}\}$ ,  $\{w_{b,j,k\geq 1,L}, w_{b,j,k\geq 1,R}\}$  are bound by the parent set of node weights,  $\{w_{b,j,k-1,L}, w_{b,j,k-1,R}\}$ , such
- that  $\{w_{b,j,k\geq 1,L},w_{b,j,k\geq 1,R}\}\leq \frac{w_{b,j,k-1,L}+w_{b,j,k-1,R}}{2}$ .

  4. (1) and (2) are also applied to all right child nodes, except that for right child nodes  $\{w_{b,j,k\geq 1,L},w_{b,j,k\geq 1,R}\}\geq \frac{w_{b,j,k-1,L}+w_{b,j,k-1,R}}{2}$ .

Note that for any one  $X_i$  and  $T_b \in g^{\text{mono}}$  left subtrees will alway produce lower predictions than right subtrees, and that any  $g^{\text{mono}}(\mathbf{x})$  is an addition of each  $T_b$  output, with the application of a monotonic logit or softmax link function for classification problems. Moreover, each tree's root node corresponds to some constant node weight that by definition obeys monotonicity constraints,  $T(x_i^{\alpha}; \theta_{b,0}) = T(x_i^{\beta}; \theta_{b,j,0}) = w_{b,0}$ . Together these additional splitting rules and node weight constraints ensure that  $g^{\text{mono}}(x_i^{\alpha}) \leq g^{\text{mono}}(x_i^{\beta}) \ \forall \ x_i^{\alpha} \leq x_j^{\beta} \in X_j$ . For a negative monotonic constraint, i.e.  $g^{\text{mono}}(x_i^{\alpha}) \ge g^{\text{mono}}(x_i^{\beta}) \ \forall \ x_i^{\alpha} \le x_i^{\beta} \in X_i$ , left and right splitting rules and node weight constraints are switched.

### 1.4. Explanatory Method Description

90 91

100

101

102

103

104

107

#### 1.4.1. Partial Dependence and Individual Conditional Expectation

Partial dependence (PD) plots are a widely-used method for describing the average predictions of a complex model g across some partition of data X for some interesting input feature  $X_i$  [2]. Individual conditional expectation (ICE) plots are a newer method that describes the local behavior of g for a single instance  $x \in \mathcal{X}$ . Partial dependence and ICE can be combined in the same plot to compensate for known weaknesses of partial dependence, to identify interactions modeled by g, and to create a holistic portrait of the predictions of a complex model for some  $X_i$  [4].

Following Friedman *et al.* [2] a single feature  $X_j \in \mathbf{X}$  and its complement set  $\mathbf{X}_{(-j)} \in \mathbf{X}$  (where  $X_j \cup \mathbf{X}_{(-j)} = \mathbf{X}$ ) is considered. PD( $X_j, g$ ) for a given feature  $X_j$  is estimated as the average output of the learned function  $g(\mathbf{X})$  when all the observations of  $X_j$  are set to a constant  $x \in \mathcal{X}$  and  $\mathbf{X}_{(-j)}$  is left unchanged. ICE( $x_j, \mathbf{x}, g$ ) for a given instance  $\mathbf{x}$  and feature  $x_j$  is estimated as the output of  $g(\mathbf{x})$  when  $x_j$  is set to a constant  $x \in \mathcal{X}$  and all other features  $\mathbf{x} \in \mathbf{X}_{(-j)}$  are left untouched. Partial dependence and ICE curves are usually plotted over some set of constants  $x \in \mathcal{X}$ .

#### 1.4.2. Shapley Values

114

115

116

120

121

124

125

Shapley explanations, including Tree SHAP (SHapley Additive exPlanations), are a class of additive, locally accurate feature contribution measures with long-standing theoretical support [5]. Shapley explanations are the only possible locally accurate and globally consistent feature contribution values, meaning that Shapley explanation values for input features always sum to  $g(\mathbf{x})$  and that Shapley explanation values can never decrease for some  $x_j$  when g is changed such that  $x_j$  truly makes a stronger contribution to  $g(\mathbf{x})$  [5].

For some observation  $\mathbf{x} \in \mathcal{X}$ , Shapley explanations take the form:

$$g(\mathbf{x}) = \phi_0 + \sum_{j=0}^{j=\mathcal{P}-1} \phi_j \mathbf{z}_j$$
 (4)

In Equation 4,  $\mathbf{z} \in \{0,1\}^{\mathcal{P}}$  is a binary representation of  $\mathbf{x}$  where 0 indicates missingness. Each  $\phi_j$  is the local feature contribution value associated with  $x_i$  and  $\phi_0$  is the average of  $g(\mathbf{X})$ .

Shapley values can be estimated in different ways. Tree SHAP is a specific implementation of Shapley explanations that relies on traversing internal tree structures to estimate the impact of each  $x_j$  for some  $g(\mathbf{x})$  of interest [6].

$$\phi_{j} = \sum_{S \subseteq \mathcal{P} \setminus \{j\}} \frac{|S|!(\mathcal{P} - |S| - 1)!}{\mathcal{P}!} [g_{x}(S \cup \{j\}) - g_{x}(S)]$$
(5)

1.5. Social Bias Test Description

1.6. Software Resources

#### 2. Results

30 2.1. Simulated Data Results

2.2. Loan Data Results

3. Discussion

#### 4. Conclusions

Author Contributions: , N.G.; , P.H.; , K.M.; , N.S.

Funding: This research received no external funding.

136 Acknowledgments: Wen Phan for work in formalizing our notation.

Conflicts of Interest:

#### 38 Abbreviations

The following abbreviations are used in this manuscript:

#### References

141

- Vaughan, J.; Sudjianto, A.; Brahimi, E.; Chen, J.; Nair, V.N. Explainable Neural Networks Based on Additive
   Index Models. arXiv preprint arXiv:1806.01933 2018. URL: https://arxiv.org/pdf/1806.01933.pdf.
- Friedman, J.; Hastie, T.; Tibshirani, R. *The Elements of Statistical Learning*; Springer: New York, 2001. URL: https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII\_print12.pdf.
- Lou, Y.; Caruana, R.; Gehrke, J.; Hooker, G. Accurate Intelligible Models with Pairwise Interactions.

  Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
  Mining. ACM, 2013, pp. 623–631. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.

  7682&rep=rep1&type=pdf.
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. *Journal of Computational and Graphical Statistics* **2015**, 24. URL: https://arxiv.org/pdf/1309.6392.pdf.
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In *Advances in Neural Information Processing Systems 30*; Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds.; Curran Associates, Inc., 2017; pp. 4765–4774. URL: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.
- Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent Individualized Feature Attribution for Tree Ensembles. In *Proceedings of the 2017 ICML Workshop on Human Interpretability in Machine Learning (WHI 2017)*; Kim, B.; Malioutov, D.M.; Varshney, K.R.; Weller, A., Eds.; ICML WHI 2017, 2017; pp. 15–21. URL: https://openreview.net/pdf?id=ByTKSo-m-.
- © 2019 by the authors. Submitted to *Information* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).