See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/212931230

Chemoenzymatic Synthesis of Unnatural Amino Acids via Modified Claisen Rearrangement of Glycine Enolates. Approach to Morphine Synthesis

ARTICLE in THE JOURNAL OF ORGANIC CHEMISTRY · MARCH 1997

Impact Factor: 4.72 · DOI: 10.1021/jo962315w

CITATIONS READS
30 40

5 AUTHORS, INCLUDING:

David Gonzalez

University of the Republic, Uruguay

51 PUBLICATIONS 648 CITATIONS

SEE PROFILE

Valeria Schapiro

University of the Republic, Uruguay

21 PUBLICATIONS 138 CITATIONS

SEE PROFILE

Gustavo Seoane

University of the Republic, Facultad de Quími...

118 PUBLICATIONS 1,350 CITATIONS

SEE PROFILE

Khalil Abboud

University of Florida

582 PUBLICATIONS 12,683 CITATIONS

SEE PROFILE

Chemoenzymatic Synthesis of Unnatural Amino Acids via Modified Claisen **Rearrangement of Glycine Enolates. Approach to Morphine Synthesis**

David Gonzalez, Valeria Schapiro, Gustavo Seoane, Tomas Hudlicky,* and Khalil Abboud[‡]

Department of Chemistry, University of Florida, Gainesville, Florida 32611, and Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay

Received December 11, 1996

Enzymatic transformations of achiral molecules combined with modern techniques for the control of diastereoselectivity constitute a powerful tool for asymmetric synthesis1 and contribute greatly to the brevity of synthetic ventures.² We have made use of biotransformations as a synthetic tool for the preparation of many natural products,³ including the pursuit of a synthesis of morphine (1) and structurally related molecules by chemoenzymatic means.4

Of the five stereogenic centers in morphine, the most difficult to control in a relative sense are C-9 and C-14.5 A possible disconnection of the morphine skeleton, not attempted to date, indicates that the target alkaloid can be derived from a suitably functionalized α -cyclohexenyl amino acid such as 2, obtained via a [3,3]-sigmatropic rearrangement of a substituted glycine ester enolate derived from 3, in which the chirality is set by arene dioxygenase oxidation of an aromatic precursor (Scheme 1).

Arene *cis*-diols of the type **4** have been reasonably exploited in asymmetric synthesis as indicated by vigorous synthetic activity.^{2,6} As of this writing, no report exists on the application of Claisen rearrangement to either of the allylic systems in 4, even though this was suggested in our first publication in this area.⁷ The first synthesis of amino acids by Claisen rearrangement was described in 1975 by Steglich.⁸ Since 1982, when the

- † Universidad de la República.
- [‡] To whom inquires regarding X-ray data should be addressed. (1) Santaniello, E.; Ferraboschi, P.; Manzocchi, A. *Chem. Rev.* **1992**,
- (2) (a) Reed, J. W.; Hudlicky, T. in *Advances in Asymmetric Synthesis*; Hassner, A., Ed.; JAI Press, Inc.: Greenwich, CT, 1995; Vol. 1, p 271. (b) Hudlicky, T. *Chem. Rev.* **1996**, *96*, 3. (c) Hudlicky, T.; Thorpe, A. J. *J. Chem. Soc., Chem. Commun.* **1996**, 1993.
- (3) (a) Hudlicky, T.; Seoane, G.; Price, J. D.; Gadamassetti, K. D. Synlett **1990**, 433. (b) Hudlicky, T.; Luna, H.; Olivo, H.; Andersen, C.; Nugent, T.; Price, J. D. J. Chem. Soc., Perkin Trans. 1 1991, 2907. (c) Hudlicky, T.; Olivo, H. Tetrahedron Lett. 1991, 32, 6077. (d) Hudlicky, T.; Natchus, M. J. Org. Chem. 1992, 57, 4740. (e) Hudlicky, T.; Rouden, J.; Luna, H.; Allen, S. J. Am. Chem. Soc. 1994, 116, 5099. (f) Hudlicky, T.; Olivo, H.; McKibben, B. J. Am. Chem. Soc. 1994, 116, 5118. (g) Hudlicky, T.; Tian, X.; Königsberger, K. J. Am. Chem. Soc. 1995, 117,
- (4) (a) Hudlicky, T.; Boros C. H.; Boros, E. B. Synthesis 1992, 174. (b) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R.; Abboud, K. *Tetrahedron Lett.* **1996**, *37*, 8155. (c) Butora, G.; Gum,
- A. G.; Hudlicky, T.; Abboud, K. Synthesis, submitted.
 (5) Butora, G.; Hudlicky, T.; Fearnley, S. P.; Gum, A. G.; Stabile, M. R. In Studies in Natural Products Chemistry; Rahman, A., Ed.; VCH: Weinheim, 1995; pp 43–154.
- VCH: Weinheim, 1995; pp 43–154.
 (6) For recent reviews see ref 2 and: (a) Carless, H. A. J. Tetrahedron: Asymmetry 1992, 3, 795. (b) Brown, S. M.; Hulicky, T. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 2, p 113. (c) Hudlicky, T. In Green Chemistry: Designing Chemistry for the Environment; Anastas, P. T., Williamson, T., Eds.; Washington, DC, ACS Symposium Series No. 626; 1996. 1996; p 180.
- (7) Hudlicky, T.; Luna, H.; Barbieri, G.; Kwart, L. A. J. Am. Chem. Soc. 1988, 110, 4735

Scheme 1

Ireland-Claisen rearrangement of glycine allylic esters was reported by Bartlett and co-workers,9 this method has found ample application in amino acid synthesis. 10 In 1994, a variation of the Claisen rearrangement was reported by Kazmaier,11 in which the silylketene acetals were replaced by chelate-bridged metal enolates, claimed to be superior to ketene acetals both in terms of their selectivity (fixed configuration of the enolate) and reactivity (anion accelerated rearrangement).

In order to test Kazmaier's methodology to obtain synthon 2, we performed model studies on aminoesters 5a-d, prepared from the microbially derived diols 4a-d(Scheme 2).

Exploratory studies to find the conditions for the Claisen rearrangement involved the use of lithium enolates of glycine ester **5a** and zinc enolates of its *N*-methyl derivative, none of which led to rearranged products. The lithium enolate of 5a decomposed before any rearrangement could take place, whereas the zinc enolate of the *N*-methyl derivative gave no reaction, indicating perhaps that chelation is required for the rearrangement to occur.11a

When the four amino esters were subjected to Kazmaier's Claisen conditions the corresponding rearranged amino acids were obtained in fair to excellent yields (Scheme 2). The substrates were mixed with anhydrous ZnCl₂ in THF, LDA was added at -78 °C, and the reaction mixture was allowed to warm to room temperature over 12 h.

The ratio of the rearranged amino acids, epimeric at C-9 (morphine numbering), was determined by ¹H-NMR analysis of the crude mixtures. The relative and absolute stereochemistry of amino acids 6a,b and 7a,b was determined by transforming them to the corresponding lactone derivatives 8a,b and 9a,b (Scheme 3). The structure of lactone 8a was unambiguously established by X-ray structural analysis.¹⁶ In this way, the absolute stereochemistry of the amino acid 6a was assigned as shown. Comparison of spectral data for amino acids 6a-d and 7a-d, and their corresponding methyl esters, established their stereochemistry. In summary, the assigned stereochemistry of acids 6 and 7 is 2R,3R (2R,-3S in the case of the chloro compound **6c**) and 2S, 3R, respectively.

These results are somewhat surprising since the configuration at the α-amino position for the major product

⁽⁸⁾ Engel, N.; Küber, B.; Steglich, W.; Angew. Chem., Int. Ed. Engl. **1977**, 16, 394.

⁽⁹⁾ Bartlett, P. A.; Barstow, J. F. *J. Org. Chem.* **1982**, *47*, 3933. (10) (a) Cooper, J.; Knight, D. W.; Gallagher, P. T. *J. Chem. Soc.*, Chem. Commun. **1987**, 1220. (b) Baumann, H.; Duthaler, R. O. Helv. Chim. Acta **1988**, 71, 1025.

^{(11) (}a) Kazmaier, U. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1998. (b) Kazmaier, U. *Tetrahedron* **1994**, *50*, 12895. (c) Kazmaier, U.; Maier, Tetrahedron 1996, 52, 941. (d) Kazmaier, U.; Schneider, C. Synlett

Scheme 2

Scheme 3

is reversed from that reported for closely related compounds. 11b Because of the fixed enolate geometry arising from chelate formation, the stereochemical outcome of the rearrangement depends exclusively on the preference for either a chair- or a boatlike transition state. The observed selectivity is explained in terms of the rearrangement proceeding *via* a chairlike transition state. For six-membered ring substrates the preference for a boatlike transition state is generally accepted. 12 This is based on the presence of steric interactions in a chairlike transition state between the cyclohexenyl ring and the solvated metal, which are absent in a boatlike transition state (Chart 1). As Ireland and co-workers have pointed out for the rearrangement of the related silylketene acetals,13 with cyclohexene derivatives both chair- and boatlike transition states should be expected, depending on the size and position of the substituents on the ring. The effect of the bulky silyl ether may be considered negligible, as evidenced by many results of these rearrangements reported in the carbohydrate field in which no changes in selectivity were reported with bulky oxygenated substituents on the ring. 14 Conversely,

(12) (a) Wipf, P. In *Comprehensive Organic Synthesis*, Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p 827. (b) Ireland, R. E.; Majenfisch, P. *J. Org. Chem.* **1988**, 53, 640.

Maienfisch, P. J. Org. Chem. **1988**, 53, 640.
(13) Ireland, R. E.; Wipf, P.; Xiang, J. J. Org. Chem. **1991**, 56, 3572.
(14) Colombo, L.; Casiraghi, G.; Pittalis, A.; Rassu, G. J. Org. Chem. **1991**, 56, 3897.

the cyclohexenyl derivatives used in this study bear substituents at the α -position of the allylic carbon. These substituents may interact unfavorably with the solvated metal in a boatlike transition state as shown in Scheme 4.

As a result of the two opposing steric interactions, the cyclohexenyl ring destabilizes a chairlike transition state, and the substituents on the α -position of the allylic carbon destabilize a boatlike transition state. Consequently, the energy difference between both transition states is small. This is in accord with observed product selectivities ranging from 3:1 to 9:1 for 6a-c:7a-c, with a chairlike transition state always predominating, to afford acids of type 6. In the case of 6d the selectivity drops to 1:1, perhaps because the coordination between the oxygen atom in the methoxy group present in 6d and the Zn^{2+} ion decreases the energy of the boatlike transition state sufficiently to compete favorably with the chairlike transition state that predominates for the rest of the series.

The lack of stereoselectivity drew our attention to the possibility of epimerization of lactones **8** to their isomers 9, since the bulky protected amino group is situated on the concave face of the bicyclic system in **8**. Accordingly, **8b** epimerized to the more stable **9b** (80% after 37 h) when treated with DBU in THF at room temperature (Scheme 3). Lactones 9 contain the same relative stereochemistry as morphine at the crucial centers C-9 and C-14 and are ideally suited for further elaboration. The introduction of the ethylamino bridge by means of Pdcatalyzed allylic displacement and the closure of C-10 C-11 bond by Friedel-Crafts acylation of an activated dimethoxyphenyl derivative¹⁵ form the basis of our strategy. Studies on the generality and stereoselectivity of the rearrangement and application to morphine synthesis are ongoing and will be reported in due course.

Acknowledgment. We thank Dr. David Gibson for providing us with a sample of *E. coli* JM109 (pDTG601) and Mary Ann Endoma for her assistance in biooxidation techniques. Financial support by TDC Research Inc., National Science Foundation (CHE-9315684 and CHE-9521489), The University of Florida, CSIC-Uruguay, and CONICYT-Uruguay (Project 060/94) is gratefully acknowledged.

Supporting Information Available: Experimental procedures and compounds characterization data (56 pages).

JO962315W

⁽¹⁵⁾ Gonzalez, D.; Schapiro, V.; Seoane, G.; Hudlicky, T. *Tetrahedron: Asymmetry* submitted.

⁽¹⁶⁾ The author has deposited atomic coordinates for **8a** with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.