VCM F25 W8

- Emne:
 - Tidsserieanalyse

Læringsmål:

- Forstå og beregne et centeret gennemsnit. Udarbejde et forecast på data
 Forberedelse:
- Læs kapitel 12 i "Data Forecasting and Segmentation Using Microsoft Excel"
 Estimeret forberedelsestid:
 - 3 timer

Øvelser i klassen:

o Øvelser i Excel vedrørende tidsserier

- Introduktion til TS
 - Forecasting
- Kan Schulstad bruges?
 - Løvbjerg vs REMA
 - MinMax
 - Øvelse
- Trending Component
 - Eksemplet fra bogen
 - Eksempel med SMK
 - Eksempel med APPL

Predicting values with a **time series** requires that we have **historical** data to analyze whether past values have a **relationship** with present ones and whether this relationship can be useful to predict future values.

To validate this, we have to test the **autocorrelation** of the data.

- 1. Visualizing seasonal trends
- 2. Researching **autocorrelation** past values' influence over presentvalues
- 3. Performing the **Durbin-Watson** autocorrelation test
- 4. Go On with

Resultatet fra ARIMA modellen forutsier en vekst i 4. kvartal 2023 før et fall i de neste tre kvartalene før det igjen har en stor vekst i 4. kvartal 2024.

Min-max-skalering for Schulstad

Øvelse: Find to andre kæder og lav en min-max-normaliseret graf

OPSKRIFTEN I

- 1. Calculating the **moving average** for the given period of time
- 2. Getting the **CMA** of your data. This is the middle of the calculating period.
- 3. Dividing the data by the CMA to get the **seasonal irregular** component. This is the distance from the data to the moving average line.
- 4. Calculating **the seasonal component** by getting the average of all the periods of the season irregular data acquired in the last step.
- 5. Getting the regression line of the data or **the trend line**
- 6. Multiplying the season component by the regression line to produce **the forecast**. The season component helps with the time-series peakscaused by the changing seasonal sales demand.

OPSKRIFTEN II

DATA

t	Year	Quarterly	Sales
1	Year 1	1	112
2		2	118
3		3	132
4		4	129
5	Year 2	1	121
6		2	135
7		3	148
8		4	148
9	Year 3	1	136

126,75

119

		Е	F	
	MA		СМА	
12				
18				
32		122,75	123	
29		125	127	75
21		129,25	13	25
35		133,25	135	25
48		138	139	25
48		141,75	13	38
36		137,75	13	75
50		137,73	13	

Moving Average → Centered MA → Season irregular component

	F	(
	СМА	1,065 1,014 0,921 0,995 1,058	
		123,875 1,065 127,125 1,014 131,25 0,921 135,625 0,995 139,875 1,058	
75	123,875	1,065	
25	127,125	1,014	
25	131,25	0,921	
25	135,625	0,995	
38	139,875	1,058	
75	139,75	1,059	
75	132,25	1,028	

	G	
	SIT	Tre
		11
		11
75	1,06559031	11
25	1,01474926	11
25	0,92190476	11
25	0,99539171	
75	1,05808758	12
75	1,05903399	12

The Trendline

Seasonal Trend 8 108,300589 110,55116 Season 5 116,618974 3 120,076504 2 116,389021 7 118,656341 8 125,015131 7 128,568738 5 124,477452

The seasonal Trend

The season Component Seasonal Component Season 1 0,97770989 2 0,97973458 3 1,01490695

4 1,02652054

	Trend t	
	110,769658	10
	112,837866	1
31	114,906075	11
26	116,974283	12
76	119,042492	11
71	121,1107	11
8	123,178908	12
99	125,247117	12
39	127,315325	12
57	129,383534	12

Eksemplet med SMK

- 1. Hent data fra github.com/cphstud/VCMF25W8
- 2. Visualiser besøg pr dag
- 3. Kør regression på besøg ~ Date
- 4. Fortsæt med Observation, Predicted og Residuals (Et)
 - 1. Lav Et^2, Et-E(t-1), Et-E(t-1)^2
 - 2. Lav sum(Et-E(t-1)^2, sum(Et^2) og divider
 - 3. Slå op i en tabel for at tjekke DW
- 5. Fortsæt med MA, CMA, SIT, SC og Trend med SC

Α	В	С	D	Е		F	G		Н	1	J	K	L
Column1	↑ Column2	Column3	Column4	idx		MA	CMA	•	SIT	Trend lin	Trend Sea ▼	Noise	▼ Seasonal ▼
2019.01.0	1 0	74	tirsdag		1								
2019.01.0	972	37	onsdag		2								
2019.01.0	3 718	41	torsdag		3								
2019.01.0	539	64	fredag		4								
2019.01.0	5 965	63	lørdag		5								
2019.01.0	908	38	søndag		6								
2019.01.0	8 527	62	tirsdag		8								
2019.01.0	9 654	28	onsdag		9								
2019.01.1	.0 528	14	torsdag		10								
2019.01.1	.1 476	76	fredag		11								
2019.01.1	.2 908	58	lørdag		12								
2019.01.1	.3 895	82	søndag		13								
2019.01.1	.5 498	73	tirsdag		15								
	T	T		T			T		I	T	T	I	

