CHM 102A QUIZ 2

Total Marks: 20 Duration: 30 minutes

Name:

Roll Number:

Section:

Instructions:

- 1. Please write answers in the space provided (boxes).
- 2. Please write in ink. (Answers written in pencil will not be re-graded)

hydrogen 1 H 1,0079																		He 4.0026
lithium	beryllium	1										- 1	boron	carbon	nitrogen	oxygen	fluorine	neon
3	4												5	6	7	8	9	10
Li	Be												В	С	N	0	F	Ne l
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												ΑI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt 27	nickel	copper	zine 30	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26		28	29		31	32	33	34	35	36
K	∣ Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.966	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium 37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	inclium 49	50	antimony 51	tellurium 52	iodine 53	xenon 54
																	55	
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	ı	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
	_							_								_		
Cs	∣Ba	*	Lu	Hf	Та	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	∣Rn∣
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium	radium	00.400	lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnillum	unununlum	ununbium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
87	88	89-102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Nh	FI	Мс	Lv	Ts	Og
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]	[284]	[289]	[288]	[293]	[294]	[294]

*Lanthanide series

* * Actinide series

ı	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
-1	57	58	59	60	61	62	63	64	65	66	67	68	69	70
1	La	Ce	Pr	Nd	Pm	Sm	Fu	Gd	Th	Dy	Ho	Er	Tm	Yb
- 1									15					
ı	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
- 1	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkellum	californium	einsteinium	fermium	mendelevium	nobelium
-1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
-1	Λ-	TL	D-		NI	D	Λ	C	DI	~4	E	Г	NA al	NI-
-1	Ac	Th	Pa	U	Np	Pu	AIII	Cm	DK	Cf	_ ES	ГШ	Md	NO
ı	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Q. No.	1	2	3	4	5	6	7	Total
Marks								

Q1. Co(III) forms octahedral complexes with the general empirical formula $CoCl_m \cdot nNH_3$.

a) What values of n and m are possible?

(1+1=2 marks)

Answer:

m	3
n	3, 4, 5, 6

1 mark each for m and n. All values of n must be correct to get 1 mark.

Co(III) must have six ligands to form an octahedral complex. Also, it must have enough chloride ions to neutralize its 3+ charge. So, m must equal 3. With that known, it must have enough ammonia groups to achieve its octahedral structure, regardless of how many chloride ions are present. So, n can equal 6, 5, or 4 or 3.

In other words, for the given information, the complex could be any of the following: $[CoCl_3(NH_3)_3]$; $[CoCl_2(NH_3)_4]Cl$; $[CoCl(NH_3)_5]Cl_2$; $[Co(NH_3)_6]Cl_3$

b) Upon the addition of excess AgNO₃, one of the complexes precipitates 1 mole of AgCl for every mole of Co. What are the values of n and m for this complex? (1+1 = 2 marks)

Answer:

m	3
n	4

1 mark each for correct value(s) of m and n.

Only the free CI- ions will precipitate with AgCl added. The other two CI⁻ will be bound to the Co and will not precipitate. With this additional information, the identity of this complex would be [CoCl₂(NH₃)₄]CI.

Q2. Fill in the missing ligands below to complete the structures of *fac*- and *mer*- $Co(NH_3)_3Cl_3$. (1+1 = marks)

Answer:

1 mark each for the right answer.

- **Q3.** Assuming that the following complexes obey the 18 electron rule, answer the questions below:
 - a) Determine the identity of the 3d-transition metal M in $\left[(\eta^3-C_3H_5)M(CN)_4\right]^{2^-}. \tag{1 mark}$

Answer:

1 mark for the correct metal.

The complex has overall charge of -2 and it has one negatively charged ligand $(\eta^3-C_3H_5)$. Therefore, the metal is in the +3 oxidation state.

The allyl anion contributes 4 electrons while the 4 cyanides donate a total of 8 electrons. Since the complex is electron precise, the number of electrons donated by M = 18 - (12) = 6.

Hence, M is a transition metal which has 6 electrons in its +3 oxidation state. So the answer is M = Co.

b) Deduce the number of metal-metal bonds that exist in $[(\eta^5 - Cp)Co(CO)]_2(\mu\text{-}CO) \ . \tag{1 mark)}$

Answer:

1 mark for the correct number of Co-Co bond.

Counting the electrons for each Co:

Co(I)	8 electrons
Cp ⁻	6 electrons
CO	2 electrons
μ-CO	1 electron
TOTAL	17 electrons

To fulfil the 18 electron rule, each Co needs one electron which can be obtained by 1 Co-Co bond.

Q4.

a) Among the four metal ions given below, identify the two which form perfect octahedral complexes. (both metal ions have to be correct to get marks. No partial marking)

(1 mark)

Answer:

I	Cr (III)
II	Ni (II)

1 mark for correct answers. Both answers have to correct to get 1 mark. No partial marking.

Octahedral complexes of Cr(III) will have $t_{2g}{}^3e_g{}^0$ configuration which will not shot JT distortion. Ni(II) in octahedral complexes has the configuration $t_{2g}{}^6e_g{}^2$ which will also not show JT distortion.

b) Among the four metal ions given in part (a) above, identify which one shows the most prominent Jahn-Teller distortion. (1 mark)

Answer:

Metal ion with most	
prominent J-T	Cu (II)
distortion =	

1 mark for the correct answer.

Cu(II) has degeneracy in the e_g level so it will show most prominent JT distortion. Ti(III) has degeneracy in the t_{2g} level so distortion will be less prominent.

Q5. For each of the following pair of complexes, identify the one that has the larger crystal field stabilization energy (CFSE). (1+1 = 2 marks)

a)
$$[Cr(OH_2)_6]^{2+}$$
 or $[Mn(OH_2)_6]^{2+}$

Answer:

Complex with higher CFSE =	[Cr(OH ₂) ₆] ²⁺
-------------------------------	--

1 mark for right answer.

Both are high-spin complexes. While Mn^{2+} is a d^5 ion and hence CFSE = 0, Cr^{2+} is a d^4 ion and hence $[Cr(OH_2)_6]^{2+}$ has $t_{2g}^3 e_g^1$ configuration and CFSE = $[(-0.4 \times 3) + (0.6 \times 1)]\Delta o = -0.6 \Delta_o$. Thus, $[Cr(OH_2)_6]^{2+}$ has the larger CFSE.

b) $[Ru(CN)_6]^{3-}$ or $[Fe(CN)_6]^{3-}$

Answer:

[Ru(CN) ₆] ³⁻

1 mark for right answer.

Both Ru³+ and Fe³+ are d⁶ ions that belong to the same group. Both complexes are low spin and hence have t_{2g}^{6} electron configuration. However, Δ_{0} increases down the group and hence the ruthenium complex will have the higher CFSE.

Q6. Consider the complexes $[Co(H_2O)_6]^{2+}$ and $[CoCl_4]^{2-}$ and answer the questions below: (1 + 1 + 1 + 1 = 4 marks)

a) What are the geometries of these complexes?

Answer:

Complex	Geometry
$[Co(H_2O)_6]^{2+}$	Octahedral
[CoCl ₄] ²⁻	Tetrahedral

b) What are the oxidation states of Co in these complexes?

Answer:

Complex	Oxidation State of Metal
$[Co(H_2O)_6]^{2+}$	+2
[CoCl ₄] ²⁻	+2

c) Which of these complexes will have a higher magnetic moment?

Answer:

Complex with higher	[Co(H ₂ O) ₆] ²⁺
magnetic moment =	

Both complexes have same number of unpaired electrons but orbital contribution is possible in $\left[Co(H_2O)_6\right]^{2+}$ which has electronic configuration $t_{2g}^5 e_g^2$ whereas in $\left[CoCl_4\right]^{2-}$, the electronic configuration is $e^4 t_2^3$ which cannot have orbital contribution.

d) Which of these complexes will show more intense colour?

Answer:

Complex which shows	[CoCl ₄] ²⁻
more intense color =	[00014]

Q7. $[Ni(CN)_4]^{2^-}$ is diamagnetic while the observed magnetic moment for $[NiCl_4]^{2^-}$ complex is **2.8 B.M**. Assuming there is no significant orbital contribution, answer the following questions.

a) What are the geometries of the two complexes? (1 + 1 = 2 marks)

$$(1 + 1 = 2 \text{ marks})$$

Answer:

Complex	Geometry
[Ni(CN) ₄] ²⁻	Square planar
[NiCl ₄] ²⁻	Tetrahedral

b) Using principles of Crystal Field Theory, draw the d-orbital splitting diagram and show the electron distribution for both complexes. (Answer has to be completely correct to get 1 mark each. No partial marking.)

$$(1 + 1 = 2 marks)$$

Answer:

Orbital splitting diagram and d-	Orbital splitting diagram and d-
electron distribution for $[Ni(CN)_4]^{2^{-1}}$	electron distribution for $[NiCl_4]^{2}$

Answer:

For $[NiCl_4]^{2^-}$, $\mu = [n(n+2)]^{1/2}$ so n=2. For a 4-coordinate complex, possible structures are tetrahedral or square planar and this is a Ni^{2^+} d⁸ ion. For a d⁸ ion, a square planar geometry would result in no unpaired electrons (diamagnetic) and hence $[Ni(CN)_4]^{2^-}$ is square planar. For d8 ion, a tetrahedral geometry would result in 2 unpaired electrons and hence $[Ni(CI)_4]^{2^-}$ turns out to be tetrahedral.

1 mark for each correct answer.