

BIS Bezpečnost informačních systémů

Petr Hanáček

Faculty of Information Technology

Technical University of Brno

Božetěchova 2

612 66 Brno

tel. 5 4114 1216

e-mail: hanacek@fit.vutbr.cz

Kritéria hodnocení bezpečnosti IS

© Petr Hanáček

Pro koho jsou kritéria určena

Uživatelé

Vývojáři

Hodnotitelé

• Jiní ...

Kritéria se nezabývají:

- ...administrativními opatřeními
- …fyzickými aspekty bezpečnosti IT
- ...metodologií hodnocení
- …dohodami o vzájemném uznávání
- …kryptografickými algoritmy
- …akreditací

© Petr Hanáček

Orange Book

Rainbow series

- Orange
 - Trusted Computer System Evaluation Criteria (TCSEC)
- Yellow
 - Guidance for Applying the Orange Book
- Red
 - Trusted Network Interpretation (TNE)
- Lavender (levandule)
 - Trusted Database Interpretation

Požadavky úrovní

- C1: Discretionary Protection
 - Identifikace
 - Autentizace
 - Nepovinné řízení přístupu
- C2: Controlled Access Protection
 - Opětné použití a audit
- B1: Labeled security protection
 - Povinné řízení přístupu pro některé objekty
 - Neformální model bezpečnostní politiky
- B2: Structured Protections
 - Důvěryhodná cesta pro přihlášení
 - Princip nejmenších privilegií
 - Formální model bezpečnostní politiky
 - Analýza skrytých kanálů
 - Správa konfigurace
- B3: Security Domains
 - Mechanismus validace referencí (referenci monitor)
 - Omezení při vytváření kódu
 - Požadavky na dokumentaci a testování
- A1: Verified Protection
 - Formální metody pro analýzu a verifikaci
 - Důvěryhodná distribuce

Oblasti TCSEC

- Bezpečnostní politika
- Účtovatelnost
- Zaručitelnost
- Dokumentace
- Analýza skrytých kanálů
- Architektura systému
- Specifikace a verifikace návrhu

Bezpečnostní politika

	C1	C2	B 1	B2	B3	A 1
Nepovinné řízení přístupu (DAC)	+	+	nc	nc	+	nc
Opětné použití	0	+	nc	nc	nc	nc
Klasifikace dat (Labels)	0	0	+	+	nc	nc
Integrita klasifikace	0	0	+	nc	nc	nc
Export klasifikace	0	0	+	nc	nc	nc
Klasifikace neelektronických výstupů	0	0	+	nc	nc	nc
Povinné řízení přístupu (MAC)	0	0	+	+	nc	nc
Úroveň prověření uživatelů	0	0	0	+	nc	nc
Klasifikace zařízení	0	0	0	+	nc	nc

0 Žádné požadavky+ Dodatečné

+ Dodatečné požadavky nc Beze změny

© Petr Hanáček

Účtovatelnost

	Ci	C 2	DІ	DZ	DJ	Αı
Identifikace a autentizace	+	+	+	nc	nc	nc
Audit	0	+	+	+	+	nc
Důvěryhodná cesta	0	0	0	+	+	nc

0 **Žádné požadavky** + **Dodatečné**

+ Dodatečné požadavky nc Beze změny

© Petr Hanáček

Zaručitelnost

	C 1	C2	B 1	B2	B3	A1
Architektura systému	+	+	+	+	+	nc
Integrita systému	+	nc	nc	nc	nc	nc
Testování	+	+	+	+	+	+
Specifikace a verifikace návrhu	0	0	+	+	+	+
Analýza skrytých kanálů	0	0	0	+	+	+
Správa důvěryhodných zařízení	0	0	0	+	+	nc
Správa konfigurace	0	0	0	+	nc	+
Důvěryhodné zotavení	0	0	0	0	+	nc
Důvěryhodná distribuce	0	0	0	0	0	+

0 Žádné požadavky+ Dodatečné

+ Dodatečné požadavky nc Beze změny

© Petr Hanáček

Dokumentace

	C1	C2	B 1	B2	B 3	A 1
Uživatelská dokumentace	+	nc	nc	nc	nc	nc
"Manuál důvěryhodných zařízení"	+	+	+	+	+	nc
Dokumentace k testům	+	nc	nc	+	nc	+
Dokumentace k návrhu	+	nc	+	+	+	+

0 Žádné požadavky+ Dodatečné

+ Dodatečné požadavky nc Beze změny

Analýza skrytých kanálů

- B1 Bez požadavků
- B2 Paměťové skryté kanály
- B3 Všechny (paměťové i časové) skryté kanály
- A1 Formální metody

© Petr Hanáček BIS Slide 15

Architektura systému

- C1 DVB musí být schopna ochránit sama sebe
- C2 DVB musí izolovat jednotlivé prostředky, o které se stará
- B1 DVB musí zajistit dokonalou izolaci procesů
- B2 DVB musí být strukturovaná do nezávislých, dobře definovaných modulů
- B3 Návrh DVB musí využívat principy vrstevnatosti, abstrakce a skrývání dat
- A1 Žádné dodatečné požadavky

Specifikace a verifikace návrhu

- C2 Žádné požadavky
- B1 Neformální nebo formální model bezpečnostní politiky
- B2 Formální model bezpečnostní politiky u kterého je dokázaná konzistence
 - DTLS (descriptive top-level specification) modulu DVB
- B3 DTLS musí být prokazatelně konzistentní s modelem
- A1 FTLS (formal top-level specification) modulu DVB
 FTLS musí být prokazatelně konzistentní s modelem
 DTLS musí být prokazatelně konzistentní s modelem

Neoficiální pohled na úrovně

- C1, C2
 - Prosté vylepšení existujících systémů. Neohrožuje aplikace.
- B1
 - Závažnější rozšíření existujících systémů (především MAC).
 Některé aplikace vyžadují úpravy.
- B2
 - Zásadní změny oproti stávajícím systémům. Většina aplikací beze změn nebude fungovat.
- B3
 - Typicky systémy, které nezvládly A1
- A1
 - Systém musí být navržen a implementován od základu. Nutné využití entradičníc metod.

Nedostatky TCSEC

- Směšuje v jednom dokumentu různé úrovně abstrakce
- Málo se zabývá integritou dat
 - Vojenský původ
- Kombinuje funkčnost a zaručitelnost do jedné lineární stupnice
- Nezná komunikaci a počítačovou síť
 - Publikace Trusted Network Interpretation (TNE) je nepoužitelná

Funkčnost a zaručitelnost

- TCSC nerozlišuje funkčnost a zaručitelnost
- Funkčnost (functionality)
 - Co je implementováno
- Zaručitelnost (assurance)
 - Jaká je míra důvěry, že je to správně
 - Lineární stupnice

© Petr Hanáček

Příklady ohodnocených produktù

- A1 Secure Communications Processor (SCOMP), Release 2.1, Honeywell
- B2 Multics MR11.0, Honeywell
- B1 UNIX System V/MLS, Release 1.1.2
 AT&T
- C2 VAX/VMS Version 4.3 DEC
- C2 SunOS, instalovaný pro C2 Sun Microsystems

UNIX ve třídě C2

Oproti standardnímu UNIXU je třeba změnit:

- opětné použití objektů
 - » disk, paměť, obrazovka
- NCSC prohlásilo, že řízení přístupu vyhovuje C2
- audit
 - » všechna přihlášení a odhlášení uživatelů
 - » všechny akce prováděné správcem
 - » maximální ochrana auditních dat
 - » oddělení auditních záznamů
- zašifrovaná hesla nesmí být přístupná (shadow)
- použitý procesor musí zajistit oddělení procesů
- 3 bezpečnostní příručky (uživatel, administrátor, technický popis)

NCSC - National Computer Security Center

Index rizika

- prostředek pro vyjádření požadované úrovně bezpečnosti
 - R_{min} minimální úroveň prověření uživatele
 - R_{max} maximální úroveň citlivosti dat
 - Index rizika = R_{max} R_{min}

prověření uživatele	R_{min}
Neprověřený	0
Příst. k citlivým inf.	1
Prověřen pro důvěrné	2
Prověřen pro tajné	3
Prověřen pro přísně tajné	4

citlivost dat	R _{max}
Neklasifikovaná	0
Neklasifikovaná, citlivá	1
Důvěrná	2
Tajná	3
Přísně tajná	4

Index rizika (pokr.)

 minimální třída bezpečnosti systému pro daný index rizika:

Index rizika	otevřené prostředí	uzavřené prostředí
0	C2	C2
1	B1	B1
2	B2	B2
3	В3	B2
4	A 1	В3
5	-	A 1

ITSEC

© Petr Hanáček

ITSEC

- ITSEC: IT Security Evaluation Criteria
- Vytvořena z národních kritérií UK, Německa, Francie a Holandska
- Výstupy
 - ITSEC: 1991
 - ITSEM: 1993 (IT Security Evaluation Manual)
 - UK IT Security Evaluation & Certification scheme: 1994

ITSEC - Metodologie

funkčnost

- Založené na systematickém a dokumentovaném přístupu k hodnocení
- Rozlišují produkty a systémy
- Dva rozměry
 - Funkčnost
 - Zaručitelnost

ITSEC – Třídy funkčnosti

- Přístup 1:
 - F-C1, F-C2, F-B1, F-B2, F-B3
 - Třídy odpovídající stejnojmenným úrovním TCSES
- Přístup 2:
 - F-IN
 - » Systémy se zvýšenými nároky na integritu
 - F-AV
 - » Systémy se zvýšenými nároky na dostupnost
 - F-DI
 - » Systémy se zvýšenými nároky na integritu přenosu dat
 - F-DC
 - » Systémy se zvýšenými nároky na důvěrnost přenosu dat

— ...

ITSEC - Zaručitelnost

- E1: Security target defined, tested
 - Must have informal architecture description
- E2: Informal description of design
 - Configuration control, distribution control
- E3: Correspondence between code and security target
- E4: Formal model of security policy
 - Structured approach to design
 - Design level vulnerability analysis
- E5: Correspondence between design and code
 - Source code vulnerability analysis
- E6: Formal methods for architecture
 - Formal mapping of design to security policy
 - Mapping of executable to source code

ITSEC - síla mechanismů

- Síla mechanismů je podle ITSEC (odstavce 3.6-3.8):
 - základní
 - střední
 - vysoká
- Význam:
 - a) základní mechanismus chrání proti náhodným poruchám, avšak může být narušen kvalifikovanými útočníky.
 - b) <u>střední</u> mechanismus chrání proti útočníkům s omezenými příležitostmi a prostředky.
 - c) vysoká mechanismus může být narušen pouze útočníky, disponujícími vysokou úrovní znalostí, příležitostmi a prostředky rovněž na vysoké úrovni a úspěšný útok se vymyká běžné praxi.
- Vágní definice v praxi nepoužitelná

ITSEM - síla mechanismů

- Síla mechanismů bere v úvahu
 - znalosti
 - prostředky
 - příležitost útočníka
- Znalosti
 - vyjadřují míru vědění, kterou musí mít osoba, aby byla schopna zaútočit na HP.
 - Začátečník je ten, kdo nemá žádné zvláštní znalosti.
 - Zkušený je seznámený s interní činností HP.
 - Expert je seznámený s principy a algoritmy, použitými v HP.
- Prostředky
 - objem prostředků, které musí útočník vynaložit k úspěšnému útoku na systém. Jsou dvojí - čas a vybavení.
 - » <u>Čas</u> doba, kterou útočník potřebuje na provedení útoku
 - v minutách do deseti minut
 - · ve dnech do jednoho měsíce
 - v měsících útok trvá více než měsíc
 - » <u>Vybavení</u> počítače, elektronická zařízení, technické prostředky a programy.
 - bez vybavení není potřebné žádné speciální vybavení
 - <u>běžné vybavení</u> vybavení, které je běžně dostupné v provozním prostředí HP
 - speciální vybavení speciální jednoúčelové vybavení

Příležitost

- zahrnuje faktory, které obecně není schopen útočník ovlivnit
 - » požadavek na asistenci jiné osoby (komplot)
 - » pravděpodobnost výskytu jisté speciální kombinace okolností (šance)
 - » pravděpodobnost a následky odhalení útočníka (detekce)
- formy komplotu:
 - » samostatný, pokud žádný komplot není potřeba
 - » <u>s uživatelem</u>, pokud je pro úspěch útoku třeba komplot mezi útočníkem a (nedůvěryhodným) uživatelem HP
 - » se správcem, pokud je třeba komplot s vysoce důvěryhodným u ivatelem HP
- Tato definice komplotu předpokládá, že útočník není autorizovaným uživatelem HP

Tabulka pro čas a komplot

	samostatný	s uživatelem	se správcem
v minutách	0	12	24
ve dnech	5	12	24
v měsících	16	16	24

Tabulka pro znalosti a vybavení

	bez	běžné	speciální
	vybavení	vybavení	vybavení
začátečník	1	_	_
zkušený	4	4	_
expert	6	8	12

Je třeba sečíst hodnoty, získané z tabulek:

v=1	síla není ani základní.
1 <v<12< td=""><td>síla je základní.</td></v<12<>	síla je základní.
12 <v<24< td=""><td>síla je střední.</td></v<24<>	síla je střední.
24 <v< td=""><td>síla je vysoká.</td></v<>	síla je vysoká.

Hodnocení bezpečnosti IT podle normy ISO/IEC 15408 (Common Criteria)

Petr Hanáček
Fakulta informačních technologií

VUT Brno
hanacek@fit.vutbr.cz

Struktura ISO 15408 / CC

Část 3 Požadavky zaručitelnosti bezpečnosti

Část 2 Bezpečnostní funkční požadavky

Část 1 Úvod a použitý model

- Popis přístupu
- Pojmy a model
- Požadavky na profily ochrany bezpečnostní cíl

- Třídy funkcí
- Rodiny funkcí
- Komponenty
- Detailní požadavky

- Třídy zaručitelnosti
- Rodiny zaručitelnossti
- Komponenty zaručitelnosti
- Detailní požadavky
- Úrovnně zaručitelnosti EAL

Část 4
Registr
profilů ochrany

© Petr Hanáček BIS Slide 36

Profil ochrany a bezpečnostní cíl

- PO Pro kategorii produktů
- BC Pro konkrétní typ produktu

© Petr Hanáček

Část 2 - Třídy funkčních požadavků

- Třída FAU: Bezpečnostní audit (35 komponent)
- Třída FCO: Komunikace (4)
- Třída FCS: Kryptografická podpora (40)
- Třída FDP: Ochrana uživatelských dat (46)
- Třída FIA: Identifikace a autentizace (27)
- Třída FMT: Správa bezpečnosti
- Třída FPR: Soukromí (8)
- Třída FPT: Ochrana bezpečnostní funkcionality (43)
- Třída FRU: Využití zdrojů (8)
- Třída FTA: Přihlášení do HP (11)
- Třída FTP: Důvěryhodné cesty/kanály (2)

Hierarchie pojmů

- Třída (např. FDP Ochrana uživatelských dat): seskupení rodin, které jsou stejně zaměřeny
- Rodina (např. FDP_ACC Politika řízení přístupu): seskupení komponent, které mají stejný bezpečnostní cíl ale různou sílu nebo přísnost
- Komponenta (např. FDP_ACC.1 Řízení přístupu k podmnožinám): nejmenší volitelná sada prvků, která může být použita v BC nebo PO

BIS Slide 39

Část 2 - Hierarchie funkčních požadavků

BIS Slide 40

Zaručitelnost - Assurance

- Slovníková definice: (Oxford)
 - a positive declaration that a thing is true
 - a promise or guarantee
 - certainty
- Definice podle CC:
 - grounds for confidence that an IT product or system meets its security objectives
- Je ochranou proti:
 - špatnému návrhu
 - implementačním chybám
 - neefektivním opatřením nebo mechanismům

52

Část 3 - Evaluation Assurance Levels (EALs)

EAL	Jméno	*TCSEC
EAL1	funkčně testovaný	
EAL2	strukturálně testovaný	C1
EAL3	metodicky testovaný a kontrolovaný	C2
EAL4	metodicky navrhovaný, testovaný a přezkoumávaný	B 1
EAL5	semiformálně navrhovaný a testovaný	B2
EAL6	testovaný se semiformálně ověřovaným návrhem	В3
EAL7	testovaný s formálně ověřovaným návrhem	A1

*TCSEC = "Trusted Computer Security Evaluation Criteria" --"Orange Book"

EAL

- <u>EAL1</u> (nová)
 - Nejnižší úroveň pro hodnocení
- <u>EAL2</u> (odpovídá C1 E1)
 - Nejlepší, čeho lze dosáhnout bez dodatečné práce vývojáře
- EAL3 (odpovídá C2 E2)
 - Dovoluje uvědomělému vývojáři získat bezpečný návrh bez zavažných změn vývojových postupů
- <u>EAL4</u> (odpovídá B1 E3)
 - Nejlepší, čeho lze dosáhnout bez zavažných změn vývojových postupů
- EAL5 (odpovídá B2 E4)
 - Nejlepší, čeho lze dosáhnout pomocí plánovaného a kvalitního vývoje bez extrémně vysokých nákladů
- <u>EAL6</u> (odpovídá B3 E5)
 - "high tech" úroveň pro typicky vojenské použití
- <u>EAL7</u> (A1 E6)
 - Nejvyšší dosažitelná bezpečnost, hranice současné technologie

Třídy požadavků zaručitelnosti

- ACM: Správa konfigurace
 - Automatizace správy konfigurace, Akceptační procedury
- ADO: Dodávka a provoz
 - Detekce modifikace, Procedury pro instalaci, generování a start
- AGD: Dokumentace
 - Dokumentace pro uživatele a správce
- ALC: Podpora životního cyklu
 - Definovaný model životního cyklu, Definované vývojové nástroje
- AVA: Analýza zranitelnosti
 - Analýza síly bezpečnostních funkcí, Nezávislá analýza zranitelnosti
- ADV: Vývoj
 - Model Bezpečnostní politiky, Funkční specifikace, Model architektury, Detailní model, Důkaz korespondence
- ATE: Testování
 - Testování podle Funkční specifikace, Modelu architektury, Analýza pokrytí testů

Uplatnění tříd záruky

Vývoj

Provozní prostředí

Dokumentace Dodávka a provoz

Vývojové prostředí

Správa konfigurace Životní cyklus

Úroveň záruky EAL 4

- Podle definice "metodicky navrhovaný, testovaný a přezkoumávaný produkt nebo systém IT"
- Umožňuje svědomitému vývojáři dosáhnout maximálně možnou zaručitelnost bezpečnosti, založenou na dobrých komerčních vývojových praktikách, které nepožadují mimořádně velké odborné znalosti, dovednosti a jiné zdroje
- Používá některé formální postupy
- Nejvyšší úroveň pro běžně vyráběné produkty

© Petr Hanáček BIS Slide 46

Neformální, poloformální, formální

Neformální model/specifikace

- zapsána v přirozeném jazyce
- nepodléhá žádným speciálním omezením

Poloformální model/specifikace

- vyžaduje užití některé omezující notace (nebo notací) spolu s množinou konvencí
- může mít buď grafickou podobu, nebo může být založen na omezeném užití přirozeného jazyka
- např. grafy toku dat, diagramy vzájemných vztahů mezi entitami a relacemi, grafy datových struktur, grafy struktury procesu nebo programu, notace SDL doporučená CCITT.

Formální model/specifikace

- zapsána ve formální notaci, která využívá dobře definovaných matematických pojmů
- např. metoda VDM, Z notace, RAISE Specification Language, Gypsy Specification Language, ISO Protocol Specification Language

Jednotlivé modely při vývoji

- Model bezpečnostní politiky
 - popisuje komponenty bezpečnostní politiky, které jsou zabezpečeny bezpečnostními funkcemi
- Funkční specifikace
 - popis bezpečnostních funkcí a externích rozhraní
- Model architektury (high-level design)
 - popis posloupnosti akcí, které jsou provedeny v každém subsystému na základě stimulu na jeho rozhraní
- Detailní model (low-level design)
 - popis realizace posloupnosti akcí, které jsou provedeny v každém subsystému na základě stimulu na jeho rozhraní
 - musí obsahovat všechny identifikovatelné komponenty (např. funkce, procedury atd.)
- Implementace

Vývoj

© Petr Hanáček

CEM - Common Evaluation Methodology

- Doplněk k CC
- Popisuje aktivity hodnotitele
- Důležitá pro vzájemné uznávání
- Část 1: Úvod a obecný model
 - Terminologie a principy hodnocení
- Část 2: Metodologie hodnocení
 - PO a BC
 - EAL 1-4
 - EAL 5-7
- Část 3: Rozšíření metodologie

Management bezpečnosti

Celková bezpečnostní politika (CBP)

- Globální popis cílů organizace, jejího IS a zabezpečení
- Cíl
 - ochrana majetku, pověsti a činnosti instituce
- Dokument
 - nadčasový, nezávislý na použité technologii, (horizont 5-10 let)
 - přijatý vedením organizace jako vnitroinstitucionální norma
 - závazný dokument, veřejný dokument
- Stanovuje
 - citlivé informace, ostatní citlivá aktiva a jejich klasifikaci
 - jednoznačné (hierarchické) zodpovědnosti & práva & pravomoci
 - minimální sílu použitých bezpečnostních mechanismů
- Stručný a srozumitelný, úplný dokument
 - otázky a konflikty lze vyřešit odkazem na paragrafy CBP

Příklad struktury CBP

- Popis organizace, jejího poslání a koncepcí IT organizace
- Rámcový plán a harmonogram vybudování celkové bezpečnostní politiky
- Cíle CBP
- Specifikace potřebné struktury zodpovědnosti a pravomocí
- Identifikace (kritických) aktiv, zvláště pak citlivých dat
- Identifikace obecných hrozeb
- Výsledky orientační analýzy rizik
- Popis stávajícího stavu zabezpečení
- Doporučení, jak dosáhnout bezpečnostních cílů
- Cíle a strategie havarijních plánů
- Omezení respektovaná bezpečnostní politikou
 - návaznosti na relevantní zákony, vyhlášky a předpisy
- Časové plány implementace a pravidelných akcí, revizí/oprav
- Návrh a koncepce programu školení a osvěty

Systémová bezpečnostní politika (SBP)

- Systémová bezpečnostní politika
 - Definuje způsob implementace celkové bezpečnostní politiky IT v konkrétním prostředí
 - Stanovuje soubor principů a pravidel pro ochranu IS
 - Zabývá se volbou konkrétních technických, procedurálních, logických a administrativních bezpečnostních opatření
 - Částečně i volbou fyzických a personálních bezpečnostních opatření, pokud tyto mohou ovlivnit bezpečnost IS
 - Implicitně se zabývá bezpečností elektronické (počítačové) části
 - Pokud je IS příliš rozsáhlý a různorodý, je vhodné vypracovat samostatně systémovou bezpečnostní politiku pro různé oblasti nebo subsystémy

Tvorba bezpečnostní politiky

- BP nikdy nevzniká jednorázovou akcí
- životní cyklus tvorby BP lze zjednodušeně vyjádřit následujícími (opakovaně) prováděnými kroky
 - 1. posouzení vstupních vlivů
 - 2. analýza rizik
 - 3. vypracování BP
 - 4. implementace BP
 - 5. nasazení BP, kontrola její účinnosti a vyslovování závěrů

© Petr Hanáček ——

Normy a standardy

- TR 13335 Guidelines for the Management of IT Security
 - ČSN ISO/IEC TR 13335 Informační technologie Směrnice pro řízení bezpečnosti IT 1-3
- BS7799 Code of Practice for Information Security Management
 - ČSN ISO/IEC 17799 Informační technologie Soubor postupů pro řízení informační bezpečnosti
- ISO 27001
 - nová mezinárodní norma pro Systém správy informační bezpečnosti (Information Security Management System, ISMS)

TR 13335

- Part 1: Concepts and Models for IT Security
- Part 2: Managing and Planning IT Security
- Part 3: Techniques for the Management of IT Security
- Part 4: Selection of Safeguards
- Part 5: Safeguards for External Connections

© Petr Hanáček

TR 13335 - Proces bezpečnosti IT

© Petr Hanáček

BS7799 - Code of Practice for Information Security Management

- Britský standard, který je používán i v jiných evropských zemích
- Určen jako referenční dokument pro osoby zodpovědné za implemementaci a udržování informační bezpečnosti v organizaci
- Certifikační schéma, zvané c:cure, podobné ISO 9000
- Přijato jako norma ISO/IEC 17799:2000
 - ČSN ISO/IEC 17799 Informační technologie Soubor postupů pro řízení informační bezpečnosti
- 1. ISO 17799 definuje 10 řídicích principů
- 2. BS 7799-2:1999 obsahuje:
 - 36 cílů
 - 127 opatření

Principy BS 7799

Compliance

Information Security Policy

Security
Organisation

Continuity Planning

System Development

Access Controls Patient Records
Trust Records
Health Records

Communications Management

Asset
Classification
Controls

Personnel Security

Physical Security

Bezpečnostní politika

- Určuje směr zabezpečení a zajišťuje manažerskou podporu
 - Existence BP v organizaci
 - Správa a aktualizace BP

Organizace bezpečnosti

- Správa bezpečnosti v organizaci
- Bezpečnostní infrastruktura
 - Definice rolí, povinností a odpovědností
 - Koordinace
 - Allocation of information security responsibilities
- Outsourcing

Klasifikace a správa aktiv

- Klasifikace hodnoty a kritičnosti aktiv
- "Kritická aktiva"

Personální bezpečnost

- Je namířena přímo na osoby (nikoli prostřednictvím IS)
- Je převážně preventivní
- Je založena na
 - » důvěryhodnosti pracovníka
 - » spolehlivosti pracovníka

© Petr Hanáček

Fyzická bezpečnost

- Fyzická bezp. opatření fyzickým způsobem omezují přístup ke komponentám informačního systému
- Zabraňují hrozbám pro fyzické komponenty systému

Komunikace a provoz

- Především administrativní bezpečnostní opatření
- Bezpečnostní procedury, prováděné lidmi

Řízení přístupu

- Povolit pouze oprávněný přístup k informacím, službám a dalším prostředkům
 - Ochrana před ztrátou, prozrazením, modifikací nebo podvržení informací

Vývoj a údržba systému

 Zajištění bezpečnosti životního cyklu systému

Zajištění kontinuity

- Cíl: zabránit přerušení obchodních aktivit a ochránit kritické procesy před výpadky
- Havarijní plány

Shoda

 Jde především o shodu se zákony a jinými normami

© Petr Hanáček

Implementace BS 7799

© Petr Hanáček

ISO 27001

- ISO 27001 je nová mezinárodní norma pro Systém správy informační bezpečnosti (Information Security Management System, ISMS)
- Postupně nahradí BS7799-2
 - Specifikuje požadavky na zavedení ISMS
- ISO 27001 je první normou v nové sérii mezinárodních norem pro správu bezpečnosti
- Je harmonizována s:
 - ISO9001:2000 (Quality Management System)
 - ISO14001:1996 (Environmental Management System)

ISO 27001 - Oblasti

- Security policy
 - Bezpečnostní politika
- Organisation of information security
 - Organizace informační bezpečnosti
- Asset management
 - Správa aktiv
- Human resources security
 - Personální bezpečnost
- Physical and environmental security
 - Fyzická bezpečnost
- Communications and operations management
 - Bezpečnost komunikací a provozu

ISO 27001 - Oblasti

- Access control
 - Řízení přístupu
- Information systems acquisition, development and maintenance
 - Pořizování, vývoj a údržba
- Information security incident management
 - Správa bezpečnostních incidentů
- Business continuity management
 - Správa kontinuity
- Compliance
 - Shoda

Modely bezpečnosti

© Petr Hanáček

Modely bezpečnosti

Formální vyjádření části bezpečnostní politiky

- podle řízení přístupu
 - povinné řízení přístupu
 - nepovinné řízení přístupu
- podle klasifikace informace
 - jednoúrovňovéX víceúrovňové
- podle cílů, které zajišťují
 - modely důvěrnosti
 - modely integrity
 - modely dostupnosti
- entity
 - uživatel, proces, objekt, subjekt

Monitor

- Definován v Orange Book
- Prostředek pro <u>lokalizaci</u> bezpečnostních funkcí do jednoho místa
- Požadavky
 - nelze jej obejít
 - je odolný proti útoku (schopen zajistit vlastní integritu)
 - malý, aby mohl být podroben analýze správnosti

© Petr Hanáček

Víceúrovňové modely

- Stupeň utajení neklasifikovaná < důvěrná < tajná < přísně tajná
- Kategorie osobní, obchodní,
- Bezpečnostní atributy
 <stupeň utajení, kategorie>
- Relace <=
 - O<=S jen tehdy, pokud stupeň-utajení_o <= stupeň-utajení_s a kategorie_o ⊆ kategorie_s

Svazový model pro více úrovní

- neklasifikované ◆ osobní
- tajné

▲ obchodní

- transitivita
 - if a<=b and b<=c then a<=c</p>
- antisymetrie
 - if a<=b and b<=a then a=b</p>
- nejvyšší prvek
 - <tajné, {osobní, obchodní}>
- nejnižší prvek
 - <neklasifikované, {}>
- některé prvky jsou neporovnatelné
 - <tajné, osobní> <tajné, obchodní>

Bell-LaPadulův model důvěrnosti

- Ohodnocení subjektu a objektu
 - stupeň důvěry v subjekt C(s)
 - úroveň důvěrnosti objektu C(o)
- Jednoduchá ochrana (1)
 - subjekt s může číst objekt o, pokud C(s) >= C(o)
- Omezující vlastnost (*-vlastnost) (2)
 - pokud subjekt s může číst objekt o, pak může modifikovat objekt p, pokud C(p) >= C(o)

© Petr Hanáček

Bibův model integrity

- Je duálním modelem k Bell-LaPadulovu modelu
 - stupeň důvěry v subjekt *l(s)*
 - úroveň integrity objektu *l(o)*
- Jednoduchá ochrana (1)
 - subjekt s může modifikovat objekt o, pokud
 l(s) >= l(o)
- Omezující vlastnost (*-vlastnost) (2)
 - pokud subjekt s může číst objekt o, pak může modifikovat objekt p, pokud l(o) >= l(p)

Clark-Wilsonův model integrity

- DD důvěryhodná data
- ND nedůvěryhodná data
- VI verifikace integrity
- E1 DD je měněno autorizovanou transakcí
- E2 uživatel je autentizován
- E3 uživatel je autorizován
- E4 autorizaci mění pouze správce

- C1 VI zkontroluje, že DD jsou bezpečná
- C2 TP zachovává bezpečnost dat
- C3 oddělení pravomocí
- C4 transakce změní ND na DD

Modely dostupnosti

Systém kvót

- každý uživatel má omezeno množství prostředkù, které mu lze přidělit
 - » prostor na disku, prostor v paměti, čas procesoru, délka relace, počet tiskových stran....

Amorosův model

- každý uživatel má prioritu p a prostředek kritičnost c
- funkce prevent(p,c) říká, zda se má prostředek uživateli poskytnout

Yu-Gligorův model

- spravedlnost uživatel nebude blokován navždy, pokud je možnost, aby pokračoval
- simultánnost uživatel někdy dostane všechny možnosti, jak pokračovat
- dohoda uživatelů současné požadavky uživatelů na službu jsou uspořádány podle analýzy všech ostatních požadavků

Analýza rizik

© Petr Hanáček BIS Slide 79

Model incidentu

© Petr Hanáček

Proces analýzy rizik

- Identifikace aktiv
- Stanovení zranitelných míst a hrozeb
- Stanovení rizik
- Výpočet očekávané roční ztráty (ALE, Annual Loss Expectations)
- Volba bezpečnostních opatření
- Určení ročních úspor

© Petr Hanáček

Výpočet ALE

- Riziko
 - škodlivý efekt uskutečnění hrozby
 - škodlivý efekt využití zranitelného místa
- Riziko závisí na :
 - P pravděpodobnost výskytu bezpečnostního incidentu (např. v jednotkách výskytů za rok)
 - C průměrná škoda vzniklá tímto incidentem
- Riziko se vypočte jako

 $R = P \cdot C$

Příklad: Organizace má problémy s neoprávněným přístupem k počítačové síti. Panuje obava, že útočník může získat přístup k důvěrným informacím nebo neoprávněně používat výpočetní prostředky organizace.

Rizika:

- Neautorizovaný přístup k datům
 - » Pravděpodobnost výskytu události 1/tři roky
 - » Vzniklá škoda 600 000
 - » Celkem 200 000
- Neautorizovaný přístup k výpočetním prostředkům
 - » Pravděpodobnost výskytu události 50/rok
 - » Vzniklá škoda 6 000
 - » Celkem 30 000
- ALE 230 000
- Efektivnost systému pro řízení přístupu: 90% -207 000
 - Cena systému pro řízení přístupu:
 - » Hardware (50 000, amortizace 5 let) 10 000
 - » Software (30 000, amortizace 5 let) 6 000
 - » Roční náklady na údržbu 50 000
 - » Celková cena 66 000
 - ALE (po aplikaci systému pro řízení přístupu)
 - » 230 000 207 000 + 66 000 = 89 000
 - » Roč<u>ní úspory (230 000 89 000) = 141 000</u>

Generace analýzy rizik

- 1972... Metody "Checklist"
 - Výběr z několika řešení na základě dotazníku
- 1981... Mechanistické inženýrské metody
 - Dělení složitých řešení na podúlohy a části
- 1988... Logické transformační
 - Abstrakce problému a řešení
- 1994... Organizačně řízené
 - Hledá se řešení i v netechnických oblastech

1. Generace

- Vlastnosti metod první generace
- Předpoklady:
 - oblast možných řešení je silně omezena
 - každé z řešení je značně univerzální
 - vliv bezpečnostních opatření je vyjádřen jako snížení pravděpodobnosti výskytu hrozby nebo snížení vlivu hrozby

BIS Slide 85

VULAN

- Oblast zranitelnosti
- · Míra příležitosti útočníka
- · Míra znalostí útočníka
- · Čas potřebný pro útok
- Vybavení potřebné pro útok

Výsledkem je zjištěná míra zranitelnosti komponenty.

2. Generace

- Druhá generace Mechanistické inženýrské metody
- Vlastnosti:
 - zobrazují problém do velkého množství částečných řešení
- Vývojové prostředky:
 - návrh shora dolů
- Bezpečnostní prostředky:
 - Zjišťují odděleně:
 - » Aktiva
 - » Hrozby
 - » Zranitelná místa

Model analýzy rizik

- Volbu různých alternativ bezpečnostních opatření může výrazně usnadnit automatizovaný přístup založený na vhodném modelu
- Struktura
 - Model systému
 - Model chování

© Petr Hanáček

Struktura aktiv

Data Asset

- End User Service
 - Non-Network Hosts, Network Hosts
 - Location
 - Non-Network Workstations, Network Workstations
 -
 - Local Storage Facility, Network Storage Device
 - Local Print Facility, Network Print Server
 - Network Distribution Component
 - Network Gateway
 - Network Management/Operation Host
 - Network Interface
 - Network Service
 - Communications Protocols.
- Application Software
 - » Hosts and Workstations
 - Location
- Media
 - » Location

Vytváření a ohodnocení aktiv

- Operace
 - Vytváření struktury aktiv a seskupování
 - Ohodnocení zranitelných míst a hrozeb
 - Export modelu do expertního systému

© Petr Hanáček BIS Slide 90

Dotazník pro zjištění hrozeb

Threat: Masquerading of User Identity by Insiders

Threat Questionaire

1 How many attempts have been made by insiders, during the last three years, to gain

unauthorised access to information on the system/network by using another user's account?

Possible Answers

a	None	0
b	Once or twice	10
c	On average once a year	20
d	On average more than once a year	30
e	Unknown	10

What is the trend of attempts to gain unauthorised access to the system / network in this

manner?

Possible Answers

a	Increasing	10
b	Remaining constant	0
c	Decreasing	-10

3 Does the system / network hold information which would motivate insiders to gain unauthor

access to the information e.g. personnel files

Possible Answers

a	Yes	5
b	No	0

4 Have there been any discovered attempts to subvert insiders by outsiders?

Possible Answers

a	Yes	10
b	No	0

Komunikace s modelem

- Dotazování
 - Uživatel klade systému dotazy a ten se snaží na základě aktuální báze znalostí odvodit správnou odpověď
- Prohlížení znalostí
 - Umožňuje uživateli zobrazit bázi aktuálních znalostí
- Editace stávající báze znalostí
 - Umožňuje uživateli modifikovat bázi znalostí

Aktivní doména-Line 1 Col1protiopatreni> protiopatreni •OD: viru Je pravda, že jsou ohrozena data? ano •OD: vne.isi narusite Je pravda, že je ohrozeni od zamestnancu firmy/podniku? •OD: vnitrni narusit ⊣Úaše volba−stenych d ano Je pravda, že je zranitelne misto Modifikace OS? ano OK Zdůvodnění Získané řešení: Pocitačová hesla ODEN: Neautorizovan Získané řešení: Odvolani pristupovych prav po ukonceni p •ODIN: Neautorizovan racovniho pomeru ODEN: Nedostatecne ODIN: Nedostatecne Získané řešení: Kontroly neautorizovaneho prihlaseni/spu ODU: Modifikace uti steni ODEN: Modifikace ut ODIN: Modifikace ut Získané řešení: Omezeni poctu chybnych pokusu o prihlase ODV: Modifikace and •ODEN: Modifikace ap ODIN: Modifikace ap Získané řešení: Procedury modifikace/verifikace ODU: Modifikace OS ODEN: Modifikace OS ODIN: Modifikace OS zvolte kategorii z aktivní domény ('?' zobrazí možné volby)

CRAMM

- Vytvořen původně v roce 1985, stále aktualizován
- CRAMM Risk Analysis Methodology je balík, obsahující:
 - Správu procesu analýzy rizik
 - Sovisející dokumentaci (např. reporty, výsledky a závěry)
 - Školení
 - Podpůrné softwarové nástroje

© Petr Hanáček

Analýza a řízení rizik pomocí CRAMM

© Petr Hanáček BIS Slide 95

3. Generace

- Třetí generace Logicko-transformační metody
- Vychází z toho, že model pro analýzu rizik musí znt nejenom strukturu systému, ale i jeho funkčnost
- Např. SSADM-CRAMM

© Petr Hanáček BIS Slide 96

Námitky proti analýze rizik

Nepřesná

 Odhady bývají nepřesné a výsledku různých metodologií se často liší

Vyvolává falešný dojem přesnosti

Špatná interpretace výsledků není chybou metodologie ale chybou uživatele

Neměnnost

 Uživatelé často provedou analýzu rizik jednou a nikdy ji neopakují. Analýza rizik by měla být opakována při každé významné změně vnějších okolností.

Nemá vědecký základ

Většina metodologií má vědecký základ.

KONEC

© Petr Hanáček