Quantum Physics 2024

The Theory/Framework Of <u>Almost</u> Everything <u>Today</u>

Course Overview

Course Structure And Goals

- Part 1: Mathematical Concepts And Tools
- Part 2: Classical Physics
- Part 3: Quantum Physics

We want to understand SchrEq

Today we will understand $|\Psi\rangle$.

Warm Up

Rate of Change Operator

$$i\hbar\partial_t|\Psi\rangle = \hat{H}|\Psi\rangle$$

Rate of change with respect to time

Function in — function out

$$x_t = \frac{at^2}{2}$$

$$\delta x = 5(t + \delta t)^2 - 5t^2 = 5t^2 + 10t\delta t + 5(\delta t)^2 - 5t^2 = 10t\delta t + 5(\delta t)^2$$

$$v_t = \partial_t x = \frac{\delta x}{\delta t} = 10t + 5\delta t \approx 10t$$

 $5\delta t$ is an important term, tells us about the error of real-world approximations, e.g. in numerical computations using machines, like computers.

Special Operator

Simple Yet Powerful Orthogonal Transformation

 \hat{J} performs <u>counter-clockwise</u> rotation of any arrow.

$$\vec{b} = \hat{J}\vec{a}$$

$$\vec{c} = \hat{J}\vec{b} = \hat{J}(\hat{J}\vec{a}) = (\hat{J} \circ \hat{J})\vec{a} = \hat{J}^2\vec{a} = -\vec{a}$$

$$\hat{J}^2 = -\hat{I}$$

$$\hat{J}^3 = -\hat{J}$$

$$\hat{J}^4 = \hat{I}$$

Dirac Notation

Vectors are Richer Than Just Arrows

Paul Adrien Maurice Dirac in 1939 introduced modern vector notation for quantum mechanics.

$$\vec{a} \leftrightarrow |a\rangle$$

$$\vec{r} \leftrightarrow |r\rangle$$
 $\vec{v} \leftrightarrow |v\rangle$

We can use it in "normal" physics too, if we want. Let's switch to Dirac notation as early as possible.

$\omega = \frac{2\pi}{T}$

Circular motion with constant angular speed ω

$$v = \frac{2\pi r}{T} = \omega r$$

Circular Motion

And Schrödinger Equation

$$t \rightarrow t + \delta t$$

$$|r\rangle \rightarrow |r\rangle + \delta |r\rangle$$

$$|v\rangle = \partial_t |r\rangle$$

$$|v\rangle \perp |r\rangle$$

Take $|r\rangle$, scale it down to unit length (dividing by its length r), then rotate with \hat{J} to make it perpendicular to $|r\rangle$. Finally, scale it up to the length of $|v\rangle$ given by $v = \omega r$

$$|v\rangle = v\hat{J}\left(\frac{1}{r}|r\rangle\right) = \omega\hat{J}|r\rangle$$

$$\partial_t | r \rangle = \omega \hat{J} | r \rangle$$

Now act with \hat{J} on both sides

$$\hat{J}\partial_t | r \rangle = -\omega | r \rangle$$

Compare to SchrEq

$$\hat{J}\hbar\partial_t|r\rangle = -\hbar\omega|r\rangle$$

$$i\hbar\partial_t|\Psi\rangle = \hat{H}|\Psi\rangle$$

Sidenote: Special Equation

Rate of change of F is proportional to F

$$\hat{J}\hbar\partial_{t}|r\rangle = -\hbar\omega|r\rangle \qquad \longleftarrow C$$

$$i\hbar\partial_{t}|\Psi\rangle = \hat{H}|\Psi\rangle \qquad \longleftarrow Q$$

$$i\hbar\partial_{t}|\Psi\rangle = \hat{H}|\Psi\rangle$$

Circular motion

Quantum "motion"

$$\partial_{t} | r \rangle = \hat{J}\omega | r \rangle$$

$$\partial_{t} | \Psi \rangle = -\frac{i}{\hbar} \hat{H} | \Psi \rangle$$

$$\partial_t f = Cf$$

Special case:

$$\partial_t f = f$$

"Mega"-function, one of the most powerful functions in applied math

HW: Review properties of a^x .

State

Physical Systems

Basic Notion of Physics

Physics studies the world. To simplify, parts of the world are isolated and studied separately.

System — part of the world that can be isolated and studied.

Goals of physics are

- Describe behavior of a system (D)
- *Explain* behavior of a system (E)
- *Predict* behavior of a system (P)

State — all *information*/knowledge we need to (D+P). A *complete* description of the system. All there is to know about a system at a given moment.

Describe: *x*, *v*

 $E_k = mv^2/2$

F = f(x, v)

a = F/m

L = mvx

State

State Evolution

Explanation needs rules that connect "forces" to acceleration — dynamical laws: $v = \partial_t x$, a = F/m

Predict: If we know everything about the system now (time t) then we can find everything about the system later (time $t + \Delta t$) or earlier ($t + \Delta t$). *Know state now* — *know state at any time*.

$$\partial_t S = \hat{D} S$$

$$i\hbar \partial_t |\Psi\rangle = \hat{H} |\Psi\rangle$$

Equation of state evolution or state dynamics (how state changes in time).

How state changes in time depends on "forces" (in \hat{D}) and state.

Basic Idea

Basic Idea

$$x_{t+\delta t} = x_t + v_t \delta t$$
$$v_{t+\delta t} = v_t + a_t \delta t$$

$$v_{t+\delta t} = v_t + a_t \delta t$$

Basic Idea

Use (x, v) to calculate everything important **now** (time t):

$$E_k = mv^2/2, F = f(x, v), a = F/m, L = mvx$$

Use
$$(x, v)$$
 at t to calculate (x, v) at $t + \delta t$ and, consequently, at $t + \Delta t$

$$S_{t+\Delta t}$$

$$x_{t+\delta t} = x_t + v_t \delta$$

$$x_{t+\delta t} = x_t + v_t \delta t$$
$$v_{t+\delta t} = v_t + a_t \delta t$$

$$a_{t+\delta t} = a_t + b_t \delta t \quad ma_t = F_t$$

$$ma_t = F_t$$
 and $F = f(x, v)$

$$F = kx$$
 — Hooke's law

$$F = \frac{A}{x^2}$$
 - Newton's gravitation or Coulomb's law

$$F = Bv$$
 — Lorentz force

Basic Idea

Use (x, v) to calculate everything important **now** (time t):

$$E_k = mv^2/2, F = f(x, v), a = F/m, L = mvx$$

Use
$$(x, v)$$
 at t to calculate (x, v) at $t + \delta t$ and, consequently, at $t + \Delta t$

$$x_{t+\delta t} = x_t + v_t \delta t$$

$$x_{t+\delta t} = x_t + v_t \delta t$$
$$v_{t+\delta t} = v_t + a_t \delta t$$

$$a_{t+\delta t} = a_t + b_t \delta t \quad ma_t =$$

$$ma_t = F_t$$
 and $F = f(x, v)$

$$F = kx$$
 — Hooke's law

$$F = \frac{A}{x^2}$$
 - Newton's Gravitation or Coulomb's law

$$F = Bv$$
 — Lorentz force

State in Newtonian mechanics: $S_t = (x, v)$

Harmonic Oscillator Example

State in Newtonian mechanics: $S_t = (x, v)$

$$x_{t+\delta t} = x_t + v_t \delta t$$

$$v_{t+\delta t} = v_t + a_t \delta t$$

$$x_0 \rightarrow x_t$$

$$v_0 \rightarrow v_t$$

$$S_0 \rightarrow S_1$$

$$\frac{\partial_t x = v}{\partial_t v = F/m} \xrightarrow{\partial_t S = ?}$$

How to combine two equations into one for state *S*?

One solution: Make x and v parts/components of some vector $|\xi\rangle = (x, v)$

Study the script with numerical calculations.

Determinism

General Concept

Given initial state S_0 all later states S_t are uniquely determined. Nothing random.

The equation $\partial_t S = \hat{D} S_t$ is a symbolic expression of a *deterministic* evolution of state.

$$S_{t+\delta t} = S_t + \delta t \cdot (\partial_t S) = S_t + \delta t \hat{D} S_t$$

$$S_{t+\delta t} = (\hat{I} + \delta t \hat{D}) S_t$$

$$S_{t+2\delta t} = (\hat{I} + \delta t \hat{D}) S_{t+\delta t} = (\hat{I} + \delta t \hat{D})^2 S_t$$

$$S_{t+\Delta t} = (\hat{I} + \delta t \hat{D})^N S_t \qquad N = \Delta t/\delta t$$

Self-Test

Answer These Questions 1hr After Class

- 1. What is an operator and why ∂_t is an operator?
- 2. What is Dirac notation?
- 3. What do circular motion and Schrödinger equation have in common?
- 4. What is a system?
- 5. What is a state?
- 6. What are three main goals of physics?
- 7. What is determinism?
- 8. How is the equation for rate of change of state in time called?

Homework Problems

Mathematical Concepts and Notation Day 3

- Review the properties of the function a^x .
- Solve the equation $x^3 + x^2 + x + 1 = 0$ in terms of real numbers.
- Evaluate $\hat{J}^3 + \hat{J}^2 + \hat{J} + \hat{I}$.
- Consider the "flipping" operator $\hat{F} = -\hat{I}$. Evaluate $\hat{F}^3 + \hat{F}^2 + \hat{F} + \hat{I}$.
- Consider the operator of 90-degree rotation clock-wise: \hat{G} . How is it related to \hat{J} and \hat{F} ?
- Evaluate $\hat{G}^3 + \hat{G}^2 + \hat{G} + \hat{I}$
- . Challenge and fun: Express $\frac{1}{1-\hat{J}/2}$ in terms of \hat{I} and \hat{J} .
- Play with the script: Add friction, change computation method to use energy conservation, use non-linear formulas for δx .

Quantum Theory

In a Nutshell

II. POSTULATES FOR QUANTUM MECHANICS

In this paper, all state vectors are supposed to be normalized, and mixed states are represented by density operators i.e., positive operators with unit trace. Let A be an observable with a nondegenerate purely discrete spectrum. Let ϕ_1, ϕ_2, \ldots be a complete orthonormal sequence of eigenvectors of A and a_1, a_2, \ldots the corresponding eigenvalues; by assumption, all different from each other.

According to the standard formulation of quantum mechanics, on the result of a measurement of the observable A the following postulates are posed:

- (A1) If the system is in the state ψ at the time of measurement, the eigenvalue a_n is obtained as the outcome of measurement with the probability $|\langle \phi_n | \psi \rangle|^2$
- (A2) If the outcome of measurement is the eigenvalue a_n , the system is left in the corresponding eigenstate ϕ_n at the time just after measurement.

The postulate (A1) is called the *statistical formula*, and (A2) the *measurement axiom*. The state change $\psi \mapsto \phi_n$ described by the measurement axiom is called the *state reduction*.

You will understand this paragraph in the end of the course.