

Multiple Data Types (2주차)

Young-Gon Kim DLI Instructor

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Week 1 Review
- Recurrent Neural Network

WEEK 1 REVIEW

What's the problem in Week 1?

Architecture

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

Architecture

Re-use the same weight matrix at every time-step

Architecture

a	the	on	is	cat	park	play	swing	grass	sitting
0	1	2	3	4	5	6	7	8	9

A cat is on the grass.

RNNs learn by reducing the error between their predicted next word and the actual next word in a corpus. RNNs are structured to "remember" the words that led to their prediction.

Unrolled Recurrent Layer

- Architecture
 - One-hot encoding

- Architecture
 - Vanilla RNN
 - Input과 hidden state에 matrix연산 진행
 - Vanishing gradient

Computing gradient of h_o involves many factors of W (and repeated tanh) Largest singular value > 1:

Exploding gradients

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

- Architecture
 - Long Short Term Memory (LSTM)
 - Cell state를 통해 RNN의 vanishing gradient 해결
 - forget gate, input gate로 성능 향상

Uninterrupted gradient flow!

Backpropagation from c_t to c_{t-1} only elementwise multiplication by f (forget gate), no matrix multiply by W

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$
$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

- Architecture
 - Gated Recurrent Units (GRU)
 - LSTM의 간소화 버전
 - c_t 와 h_t 를 하나의 벡터 h_t 로 합침
 - 하나의 gate controller z_t 가 forget, input gate 모두 제어
 - Output gate가 없기 때문에 h_t 가 타임 스텝마다 출력

$$\begin{aligned} \mathbf{r}_t &= \sigma \left(\mathbf{W}_{xr}^T \cdot \mathbf{x}_t + \mathbf{W}_{hr}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_r \right) \\ \mathbf{z}_t &= \sigma \left(\mathbf{W}_{xz}^T \cdot \mathbf{x}_t + \mathbf{W}_{hz}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_z \right) \\ \mathbf{g}_t &= \tanh \left(\mathbf{W}_{xg}^T \cdot \mathbf{x}_t + \mathbf{W}_{hg}^T \cdot (\mathbf{r}_t \otimes \mathbf{h}_{t-1}) + \mathbf{b}_g \right) \\ \mathbf{h}_t &= \mathbf{z}_t \otimes \mathbf{h}_{t-1} + (1 - \mathbf{z}_t) \otimes \mathbf{g}_t \end{aligned}$$

Application

- Application
 - **Image Captioning**
 - 해당 Image를 설명하는 언어로 변환

Convolutional Neural Network

Recurrent Neural Network Image Captioning: Example Results

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

- Application
 - **Image Captioning**
 - with Attention

- Application
 - Visual Question Answering

Q: What endangered animal is featured on the truck?

- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.

Q: Where will the driver go if turning right?

- A: Onto 24 3/4 Rd.
- A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

Q: When was the picture taken?

- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church

Q: Who is under the umbrella?

- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

- **Application**
 - **Visual Question Answering**
 - RNNs with Attention

Zhu et al, "Visual 7W: Grounded Question Answering in Images", CVPR 2016 Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

What kind of animal is in the photo? A cat.

Why is the person holding a knife? To cut the cake with.

- Application (Extra)
 - **Transformer**
 - In NLP, Input을 더 이상 sequential로 처리 X
 - Attention mechanism
 - e.g.
 - BERT (J. Devlin et al., NAACL 2019.)
 - OpenAl GPT-2 (A. Radford et al., 2019.)

Reference

- http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture10.pdf
- https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/
- https://excelsior-cjh.tistory.com/185
- Attention is all you need: https://arxiv.org/pdf/1706.03762.pdf
- BERT: https://arxiv.org/pdf/1810.04805.pdf
- GPT-2: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

