Cycloconverter: AC to AC converter

Dr. D. S. More

Department of Electrical engg

W. C. E. Sangli

E-mail => dsm.wce@gmail.com

Classification of AC to DC Converter

Based on quadrant operation

Single quadrant

Two quadrant

Four quadrant

Single phase half controlled converter

RL load with continuous conduction

Range of $\alpha = 0$ to 180° O/P voltage = V_m/π (1+cos α) Conduction period of diodes >thyristors

Single phase half controlled converter –Symmetrical configuration

Freewheeling diode across the load to avoid the half waving effect

Single phase full controlled converter

Rectifier operation

LOAD CURRENT IS CONSTANT & RIPPLE FREE

IN THE +VE HALF T1,T2 ARE F.B. & -VE HALF T3 T4 ARE F.B.

T1,T2 CONTINUE TO CONDUCT TILL T3 T4
ARE TRIGGERED
(Load current IS CONTINUOUS)

Single phase full controlled converter Inverter Operation

Inverter operation- Requirements

Firing angle > 90 degree,
Continuous Conduction
Active source on dc side to maintain DC current
and sufficient L for continuous conduction

O/P voltage = $(2 V_m \cos \alpha) / \pi$

- ⇒ In a 2-quadrant converter,
 'V' can be reversed, but not 'i'.
- ⇒ use one more bridge.
- ⇒ Dual converter connect them back to back.
- ⇒ 'i' can be reversed and flows back to the source through the 2nd bridge.
- ⇒ All 4 quadrant operation.

- Two full controlled converters connected antiparallel with load
- Range of α variation => 0 to 180°
- $\alpha_1 + \alpha_2 = 180^0$
- It consists of positive group and negative group

 One group works in rectifier mode other group works in inverter mode

Four quadrant converter

Assume that both bridges are ON Let α_1 be the triggering angle for bridge-1 Let α_2 be the triggering angle for bridge-2

$$\therefore V_{01} = \frac{2V_{m}}{\pi} \cos \alpha_{1}$$

$$V_{02} = \frac{2V_{m}}{\pi} \cos \alpha_{2}$$

$$KVL$$
 gives $V_{01} + V_{02} = 0$

$$[\because (L \frac{di}{dt})_{avg} = 0]$$

$$\therefore \alpha_2 = \pi - \alpha_1$$

- Circulating current mode
- Both converter are ON
- One works in rectifier mode other works in inverter mode

- Circuit diagram
- Each device conducts for 1200
- Four quadrant operation
- DC O/P voltage

$$V_{dc} = (3 \sqrt{3} V_{mp} \cos \alpha)/2\pi$$

where V_{mp} peak value of phase to neutral voltage

- Circuit diagram
- Two full controlled converters connected antiparallel across load
 +Ide +/- Vde -Ide
- Four quadrant operation

O/P DC Voltage

$$V_{dc} = 3 Vml Cos \alpha / \pi$$

where V_{ml} is peak value of line voltage

Cycloconverter

- Block diagram
- Direct AC to AC conversion
- Power flow is bidirectional
- O/P frequency is lower than i/p frequency

Cycloconverter

- Similarity between dual converter and 1¢ Cycloconverter
- Power circuit diagram is same as dual converter but control is different
- It consists of +ve group and -ve groups connected anti parallel with load

Control of Cycloconverter

- Variation of α_1 and α_2
- $\alpha_1 + \alpha_2 = \pi$
- Dual converter

Cycloconverter

Control of Cycloconverter

- Dual Converter
- For a particular dc o/p voltage α_1 and α_2 remains constant. (not changing with time)
- For example, for 100 DC, $\alpha_1 = 30^0$ and $\alpha_2 = 150^0$ remains constant. (not changing with time)
- Cycloconverter
- For a particular AC o/p voltage α_1 and α_2 are continuously changing with time.
- For obtaining 1 cycle of AC O/P, α_1 variation
- 90-0-90-180-90

O/P Voltage Control

- Two cases of α variation
 A & B are shown.
- Case A variation90-10-90-170-90
- Case B variation90-60-90-120-90
- Case A variation provides more AC O/P than B case

Range of variation of α around 90° decides the magnitude of O/P voltage O/P frequency is same

O/P Frequency Control

- For both cases α_{\min} and α_{\max} are the same hence O/P voltage is same(equal)
- Where as T period of cyclic variation of α determines the O/P frequency

■ For case A O/P frequency is 20 Hz where as for case B O/P frequency is 33.33 Hz

Cycloconverter- Operation

- + ve converter provides +ve current to the load
- -Ve converter provides -ve current to the load
- Depending upon V₀ I₀ requirement both converter operates in rectification and inversion mode

Cycloconverter- Operation

Power flow from load to supply

- It consists of 2 pulse full controlled converter as +ve and –Ve group Circuit diagram
- The AC output voltage is given by

$$V_{ac} = (\sqrt{2} \ V_{m}/\pi) \cos \alpha_{1min}$$

- V_m => Peak value supply voltage
- V_{ac} => RMS value
 of o/p voltage

- 3 pulse configuration
- α variation is 90, 60,30,0, 30,
 60, 90, 120, 150, 180, 150,
 120 and 90 in cyclic manner
- AC o/p voltage is given by
- $V_{ac} = (3 \sqrt{3} V_{mp} \cos \alpha_{1min}) / \sqrt{2} 2\pi$

- 6 pulse converter groups
- Firing angle of the converter are continuously varied to obtain low frequency ac at the o/p.
- Cyclic variation of α is

$$90^{\circ} \longrightarrow 0^{\circ} \longrightarrow 90^{\circ} \longrightarrow 180^{\circ} \longrightarrow 90^{\circ}$$

AC o/p voltage is given by

$$V_{ac} = \frac{3 V_{ml}}{\sqrt{2} \pi} \cos \alpha_{1min}$$

o/p voltage waveform

-Ve group o/p voltage

- 3φ to 3φ Cycloconverter consists of 3 numbers of 3φ to 1φ Cycloconverter.
- 3 numbers of 3φ to 1φ Cycloconverter produces
 3 ac o/p which has 120⁰ phase shift
- Two circuit configurations for 3¢ to 3¢ Cycloconverter
- +ve /-ve group using 3 pulse converter group
- +ve /-ve group using 6 pulse converter group

Using 3 pulse converter

 Using 6 pulse converter with non circulating current mode

Circulating current Mode

- Both converter groups are simultaneously ON.
- Average voltage provided by both groups is same but instantaneous voltages are different
- To reduce circulating current IGR is required

 Using 6 pulse converter with circulating current mode

O/P Voltage : Circulating CurrentMode

Load o/p voltage

Circulating Current Mode

- Advantages as compared to non circulating current mode
- O/P voltage has less harmonics.
- Frequency range is higher
- Less sub harmonics in the load
- Control is simple
- Less harmonics are injected into the supply
- Line displacement power factor can be controlled

Circulating Current Mode

- Disadvantages as compared to non circulating current mode
- Bulky IGR increases losses and cost
- Circulating current increases additional loading to Thyristors and increase in losses in the devices
- Overdesign increases cost

Non circulating current mode

- Positive group provides +ve current to the load
- Negative group provides –ve current to the load

Cycloconverter Applications

- Multi megawatt low speed IM and synchronous motor drives for following applications
- Cement and Ball mill drives
- Rolling mill drives
- Slip power recovery scherbius drives
- Variable speed constant frequency power generation for aircraft

Any Questions?