

MAINSTORMING - 2019 MATHEMATICS TEST- 4

Time Allowed: 3.00 Hrs

Maximum: 250 Marks

Units: PDE +Numerical Analysis + Mechanics and fluid Dynamics

Instructions

- 1. Question paper contains **8** questions out of this candidate need to answer **5** questions in the following pattern
- 2. Candidate should attempt question No's 1 and 5 compulsorily and any **three** of the remaining questions selecting **atleast one** question from each section.
- 3. The number of marks carried by each question is indicated at end of each question.
- 4. Assume suitable data if considered necessary and indicate the same clearly.
- Symbols/Notations carry their usual meanings, unless otherwise indicated.

Section- A

Q.1

- (a) Form PDE by eliminating a and b from $z = (x^2 + a)(y^2 + b)$. (10 marks)
- (b) Form PDE by eliminating arbitrary function f from $z = x^n f(y/x)$ (10 marks)
- (c) Solve (x a)p + (y b)q = z c. (10 marks)
- (d) Solve the equation $f(x) = xe^x \cos x = 0$ by regular falsi method. (10 marks)
- (e) Use Simpsons rule to evaluate $\int_0^{0.6} e^{-x^2} dx$ using Simpsons rule. (10 marks)

Q.2

- (a) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Trapeziodal rule, Simpsons $\frac{1}{3rd}$ rule and Simpsons $\frac{3}{8th}$ rule. (15 marks)
- (b) Solve the system of equations by Guass Siedel method 83x + 11y 4z = 95 7x + 52y + 13z = 104 3x + 8y + 29z = 71 (15 marks)
- (c) Using RK 4th order method solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2 and at x = 0.4 (20 marks)

Q.3

- (a) A string of length "l" is stretched between two fixed ends. Motion is started by displacing the string in the form of $y = y_0 \sin \frac{\pi x}{l}$ from which it's released at time t = 0. Find the displacement at any point at a distance 'x' from one end at time t. (20 marks)
- (b) A rod of length "l" with insulated sides is initially at a uniform temperature u_0 . Its ends are suddenly cooled to 0° C and are kept at that temperature. Find the temperature T(x,t). (20 marks)
- (c) Solve $(y + zx)p (x + yz)q = x^2 y^2$. (10 marks)

Q.4

- (a) Solve $cos(x + y) \cdot p + sin(x + y) \cdot q = z$ (10 marks)
- (b) Solve $(y+z+w)\frac{\partial w}{\partial x} + (z+x+w)\frac{\partial w}{\partial y} + (x+y+w)\frac{\partial w}{\partial z} = x + y + z$ (10 marks)

MATHS (OPT)- 2019-T4

- (c) Solve Find the integral surface of the linear PDE $x(y^2 + z)p y(x^2 + z)q = (x^2 y^2)z$, which contains the straight line x + y = 0, z = 1 (15 marks)
- (d) Solve Find the complete solution of px + qy = pq (15 marks)

Section-B

Q.5

- (a) Show that $u = \frac{-2xyz}{(x^2+y^2)^2}$, $v = \frac{(x^2-y^2)z}{(x^2+y^2)^2}$, $w = \frac{y}{(x^2+y^2)}$ are the velocity components of a possible liquid motion. (10 marks)
- (b) Show that the velocity potential $\emptyset = \frac{\alpha(x^2+y^2-2z^2)}{2}$ satisfies Laplace equation. Also determine the stream lines. (10marks)
- (c) Find the Vertocity components of a fluid particle when velocity distribution is $q = (k_1 x^2 y t)\hat{\imath} + (k_2 y^2 z t)\hat{\jmath} + (k_3 t^2 z)\hat{k}$ (10 marks)
- (d) Solve $p^2 + q^2 = m^2$ (10 marks)
- (e) Find the complete and singular solution of $4xyz = pq + 2px^2y + 2qxy^2$ (10 marks)

Q.6

- (a) Consider the velocity field given by $q = (1 + At)\hat{\imath} + x\hat{\jmath}$. Find the equation of the stream line at $t = t_0$ passing through the point (x_0, y_0) . Also obtain the equation of path line of a fluid element which comes to (x_0, y_0) at $t = t_0$. Show that, if A = 0 (ie steady flow), the stream lines and path lines coincide. (15 marks)
- (b) Determine whether the motion specified by $q = \frac{A(xj-yi)}{x^2+y^2}$, (A = constant) is a possible motion for an

incompressible fluid. If so, determine the equations of the stream lines. Also, show that the motion is of potential kind. Find the velocity potential. (15 marks)

- (c) Investigate the nature of liquid motion given by $u = \frac{ax by}{x^2 + y^2}$, $v = \frac{ay + bx}{x^2 + y^2}$, w = 0. Also determine the velocity potential. (15 marks)
- (d) The velocity q in 3D flow field for an incompressible fluid is given by
 q = 2xî yĵ zk̂. Determine the equations of the stream lines passing through the point (1,1,1). (5 marks)

Q.7

- (a) Solve $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$ (15 marks)
- (b) Solve $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$ (15 marks)
- (c) Find the surface passing through the parabolas z = 0, $y^2 = 4ax$ and z = 1, $y^2 = -4ax$ and satisfying the equation xr + 2p = 0. (15 marks)
- (d) Solve $[D^2D' 2DD'^2 3DD']z = 0$ (5 marks)

Q.8

- (a) Find the complete and singular solution of $p^3 + q^3 = 27z$. (15 marks)
- (b) Obtain temperature distribution T(x,t) in uniform bar of unit length whose one end is kept at $10^{\circ}C$ and the other end is insulated. It's given that $T(x,0) = 1 x \qquad 0 < x < 1 \qquad (20 \text{ marks})$

T(x,0) = 1 - x, 0 < x < 1. (20 marks)

(c) Find singular solution of z = px + qy + logpq. (5 marks)

