Name:	

Math 1152 Summer 2022 Midterm 1

Due: 11:59pm, May 31, 2022

Before Starting

- Complete Problems 1 and 2.
- Choose another **2** of the following problems to complete in addition to problems 1 and 2. You will not receive additional credit for completing additional problems beyond these two.
- This exam should reflect your work only and is not a group assignment.
- This exam is open-notes.
- This exam is due at 11:59pm, Tuesday May 31.
- Full work must be shown for all problems you submit.
- Fill in the circles below corresponding to the 2 additional problems you choose to have graded. Problems 1 and 2 have already been filled in for you.

I am submitting for grading:

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8

Question 1.

Let R be the region bounded by $y=4-x^2$ and y=0, and suppose that a is a constant with $0 \le a \le 4$.

Let R_1 be the portion of R that lies below the line y=a and R_2 be the portion of R that lies above the line y=a.

a. If the areas of R_1 and R_2 are equal, then what must be the value of a?

- **b.** Suppose that the density, d, of a point (x,y) in R is given by $d(x,y) = \frac{\sqrt{16-y^2}}{\sqrt{4-y}}$.
 - i. Set up an integral representing the mass of region R_1 , an integral representing the mass of region R_2 , and write down an equation equating them.

Mass of R_1 :	
Mass of R_2 :	
Equation relating masses:	

ii. What trigonometric substitution should you use to calculate $\int \sqrt{16-y^2} \, dy$?

Substitution: $y =$	
---------------------	--

iii. Find $\int \sqrt{16-y^2} \, dy$ in terms of the θ from your substitution.

 $\int \sqrt{16-y^2} \, dy$ in terms of θ :

iv. Find $\int \sqrt{16 - y^2} \, dy$ in terms of y.

 $\int \sqrt{16-y^2} \, dy$ in terms of y:

v. Find an equation whose solution gives the value of a for which region R_1 and region R_2 have the same mass.

Equation for a:

Question 2.

Find the length of the arc of the parabola $y=x^2$ from the point (0,0) in the xy-plane to the point (1,1).

Space for Question 2 continued.

Question 3. Suppose that a solid, S, has a base in the xy-plane bounded by the curves $y^2 - 4 = x$ and y = x/2 - 2, and that the cross-sections perpendicular to the y-axis are semi-circles.

a. With respect to which variable should the integral be taken?

b. If the integral(s) representing volume of the solid S above take the form

$$\int_{a}^{b} A(t) dt,$$

then the function A(t) should be which of the following?

(A) πt^2 (B) $2t + 4 - (t^2 - 4)$

 $\bigcirc \sqrt{x+4} - (x/2-2)$

None of the above

(Fill in the circle of the answer (A), (B), (C), or (D) above)

c. What should the bounds a and b be above?

 Question 4. Suppose that a solid, S, is formed by rotating the region bounded by the curves $y^4 + 3 = 2x$ and $y^2 = x - 1$ about the line y = -1.

Set up a single integral which can be integrated to give the volume of the resulting solid in the space below.

Then answer the questions on the following page.

9	Should	VO11	integrate	with	respect	to	ror	<i>.</i> .?
а.	onoma	VOU	ппьертале	WILLI	respect	1.():	E(0)	U:

\bigcirc x	B y
----------------	-----

b. What is the lower bound of integration?

♠ -2	⊕ -1	© 0	① 1	E 2	(F) None of the above

c. What is the upper bound of integration?

$$\bigcirc A - 2 \qquad \bigcirc B - 1 \qquad \bigcirc 0 \qquad \bigcirc 1 \qquad \bigcirc 2 \qquad \bigcirc None of the above$$

d. Which method do you use to find the volume?

e. The function r is

f. The function R is

 \mathbf{g} . The function h is

(A)
$$((y^2+1)-(y^4+3)/2)$$
 (B) $\sqrt{4}2x-3-\sqrt{x-1}$ (C) $y+1$ (D) None of the above or not part of the problem.

Question 5.

5.I. Calculate

$$\int_{-\pi}^{0} \sqrt{1 - \cos^2(\theta)} \, d\theta$$

a. What was the value of the integral?

- \bigcirc -2
- B -1
- \bigcirc 0
- ① 1
- **E** 2
- (F) None of the above

b. Which was the 1st identity or integration technique you used?

- (A) an algebraic identity
- (B) a trigonometric identity
- \bigcirc u-substitution

- ① integration by parts
- **(E)** trigonometric substitution

(5.I. continued)				
c. Which	h was the 2nd identity or integrati	on technique you used?		
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution		
① integration by parts	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(F) I didn't use any more		
d. Which	h was the 3rd identity or integration	on technique you used?		
(A) an algebraic identity	(B) a trigonometric identity	\bigcirc <i>u</i> -substitution		
① integration by parts	(E) trigonometric substitution	(F) I didn't use any more		
e. Which	h was the 4th identity or integration	on technique you used?		
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution		
① integration by parts	① trigonometric substitution	① I didn't use any more		
f. Which was the 5th identity or integration technique you used?				
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution		
① integration by parts	(E) trigonometric substitution	F I didn't use any more		

$$\int \frac{1}{(x^2 - 9)^{3/2}} \, dx.$$

a. Which was the 1st identity or integration technique you used?

- $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$
- **B** a trigonometric identity
- © *u*-substitution

- $\ \, \textcircled{\mathbb{D}}$ integration by parts
- E trigonometric substitution

(5.II. continued)

3.11. continued)				
b. Which was the 2nd identity or integration technique you used?				
(A) an algebraic identity	B a trigonometric identity	\bigcirc u-substitution		
① integration by parts	① trigonometric substitution	F I didn't use any more		
c. Which	was the 3rd identity or integration	n technique you used?		
(A) an algebraic identity	(B) a trigonometric identity	\bigcirc u-substitution		
① integration by parts	E trigonometric substitution	① I didn't use any more		
d. Which	was the 4th identity or integration	n technique you used?		
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution		
① integration by parts	① trigonometric substitution	(F) I didn't use any more		
e. Which was the 5th identity or integration technique you used?				
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution		
① integration by parts	① trigonometric substitution	F I didn't use any more		

5.III. Calculate

 $\int \sqrt{\cos(t)} \, dt.$

a. Which was the 1st identity or integration technique you used?

A an algebraic identity

 $\ensuremath{\textcircled{\sc B}}$ a trigonometric identity

 \bigcirc u-substitution

① integration by parts

(E) trigonometric substitution

5.111. continued)					
b. Which was the 2nd identity or integration technique you used?					
(A) an algebraic identity	B a trigonometric identity	© u-substitution			
① integration by parts	É trigonometric substitution	F I didn't use any more			
c. Which	was the 3rd identity or integration	n technique you used?			
(A) an algebraic identity	(B) a trigonometric identity	\bigcirc u-substitution			
① integration by parts	E trigonometric substitution	① I didn't use any more			
d. Which	was the 4th identity or integration	n technique you used?			
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution			
① integration by parts	① trigonometric substitution	⑤ I didn't use any more			
e. Which was the 5th identity or integration technique you used?					
(A) an algebraic identity	(B) a trigonometric identity	© u-substitution			
① integration by parts	(E) trigonometric substitution	F I didn't use any more			

Question 6. The region R is bounded above by $y = x^2 - 2x + 2$, below by $y = \frac{1}{2}(x^2 - 2x + 1)$, to the left by y = 2 + 4x, and to the right by x = 1/2.

a. Sketch these 4 curves, and the region R bounded above on four sides by them. Solve for their intersection points and list them in the boxes below.

First intersection point:

Second intersection point:

Third intersection point:

Fourth intersection point:

The sum of the three *x*-coordinates above which do not involve a radical is:

- **b**. How many integrals are needed to determine the area of R if integration is performed dx? Fill in the circle for your answer below.

(A) 1 (B) 2 (C) 3 (D) 4

c. How many integrals are needed to determine the area of R if integration is performed dy? Fill in the circle for your answer below.

(A) 1 (B) 2 (C) 3 (D) 4

d. Calculate the area of the region R using whichever method you prefer. What is the leading digit of the area?

(For example, the leading digit of 23.5 is 2 and the leading digit of 0.8 is 0). Fill in the circle for your answer below.

Question 7.

Calculate

$$\int \frac{1}{\sqrt{x^2 - 3x + 2}} \, dx.$$

Question 8.

Show that $\lim_{n\to\infty} \int_a^b f(t) \sin(nt) dt = 0$ if f' is continuous on [a,b].

Remember to go back to the front page and fill in the circle to indicate which problems you are submitting for grading.

Formulas:

• Pythagorean:

$$\cos^{2} \theta + \sin^{2} \theta = 1$$
$$1 + \tan^{2} \theta = \sec^{2} \theta$$
$$1 + \cot^{2} \theta = \csc^{2} \theta$$

• Double-Angle:

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1$$
$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

• Power-Reducing / Half-Angle:

$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$