

Tiskane pločice

- električko i mehaničko povezivanje komponenti elektroničkih sklopova i uređaja
- tehnološke mogućnosti povezivanja komponenti elektroničkih sklopova:
 - probne utične pločice (protoboard, breadboard)
 - omčasto povezivanje (wire-wrapping)
 - varenje (stitch weld)
 - tiskane pločice (printed circuit boards)
 - MCM (multi chip module)

Probna utična pločica (protoboard)

Omčasto povezivanje (wire wrapping)

Tiskana pločica (PCB)

Multi chip module (MCM)

Prednosti i nedostaci različitih tehnika povezivanja komponenti

Tehnologija	Značajke	
Protoboard	jednostavno povezivanje komponenti; ograničena složenost sklopovlja i frekvencijski raspon, pogodno za realizaciju jednostavnijih prototipa	
Wire-wrap	jednostavno povezivanje komponenti; veća složenost sklopovlja od protoboarda; frekvencijski raspon do oko 5-10 MHz; nepogodno za serijsku proizvodnju	
Stitch weld	slično kao i wire wrap, ali se spojevi ostvaruju varenjem; odlična otpornost na udarce i vibracije, frekvencijski raspon do oko 100 MHz; skupa proizvodnja	
PCB	optimalni izbor za nisko i visokoserijsku proizvodnju svih vrsta elektroničkih uređaja	
MCM	postavljanje više silicijskih pločica (čipova) izravno na podlogu (<i>chip bonding</i>); visoka gustoća komponenata i velike brzine rada; rjeđe se koristi od PCB u serijskoj proizvodnju zbog cijene	

Usporedba različitih tehnika povezivanja komponenti

Gustoća spojeva (broj veza po jedinici površine)

Tiskana pločica

- optimalno rješenje za fizičko povezivanje komponenti u proizvodnji elektroničkih uređaja u najvećem broju primjena
- građa tiskane pločice
 - nosiva izolacijska podloga
 - vodljivi sloj(evi)

Građa tiskane pločice – nosiva izolacijska podloga

- slojevita struktura laminat
- temeljni materijal + punilo (npr. epoksidne ili fenolne smole)
- vrste temeljnih materijala za podloge:
 - staklena vlakna: vitroplast, FR-4 i FR-5 (FR flame resistant)
 - papir: pertinaks, FR-2 i FR-3
- prednosti materijala temeljenih na staklenim vlaknima:
 - bolja dielektrična, kemijska, mehanička i temperaturna svojstva
 - nedostatak: cijena
- normirane debljine izolacijske podloge tiskanih pločica:

Građa tiskane pločice – vodljivi sloj

- tanka bakrena folija, lijepljenjem pričvršćena na nosivu izolacijsku podlogu pločice
- normirane debljine bakrenog sloja tiskanih pločica:

17,5 μm	35 μm	70 μm
---------	--------------	-------

- tiskanje vodova izrada vodljivih likova u vodljivom sloju na površini pločice
- tipovi postupaka realizacije vodljivih likova:
 - subtraktivni, aditivni, mješoviti
- tehnologije nanošenja predložaka za izradu vodljivih likova:
 - fotopostupak, sitotisak, tiskarske metode, izrezivanje likova mehaničkim alatima

Fotopostupak

primjer postupka za jednoslojne tiskane pločice:

 fotopostupak omogućuje preciznu izradu vrlo uskih, gusto raspoređenih likova

Tehnika sitotiska

• jeftiniji od fotopostupka (za serijsku proizvodnju), ali manje precizan

Ostale metode nanošenja predložaka vodljivih likova

- tiskarske metode
 - litotisak
 - litoofset tisak
 - koriste se u visokoserijskoj proizvodnji
- mehaničke metode
 - prešanje i isjecanje bakrenih likova
 - samo kod vrlo velikih serija, kada nije potrebno postići visoku preciznost vodljivih likova

Tipovi tiskanih pločica

- podjela tiskanih pločica prema broju vodljivih slojeva:
 - jednostrane tiskane pločice
 - dvostrane tiskane pločice
 - višeslojne tiskane pločice
- odabir broja vodljivih slojeva ovisi o:
 - složenosti sklopovlja
 - proizvodnoj cijeni
 - posebnim zahtjevima (npr. EMC, mogućnost kontroliranja karakteristične impedancije vodova, visokofrekvencijska svojstva itd.)

Jednostrane tiskane pločice

- komponente na jednoj strani pločice, a vodljive veze na drugoj
- komponentna strana (top side) na njoj se nalaze elektroničke komponente
- lemna strana (bottom side) na njoj se realiziraju tiskane veze
- prednosti: niska proizvodna cijena (dovoljan samo postupak nagrizanja bakra (*etching*), ne treba raditi metalizaciju prospojnih rupa (*plating*))
- nedostaci: niža gustoća komponenti, lošija visokofrekvencijska svojstva

Dvostrane tiskane pločice

- vodljive veze nalaze se s obje strane tiskane pločice
- komponente: najčešće s jedne strane (mogu se postavljati na obje strane tiskane pločice)
- prednosti: veća gustoća pakiranja komponenti, bolja visokofrekvencijska svojstva, lakše povezivanje komponenti
- nedostaci: cijena (u odnosu na jednostrane), slabija električka svojstva i mogućnosti realizacije vrlo složenih sklopova (u odnosu na višeslojne)

Dvostrane tiskane pločice

Višeslojne tiskane pločice

- osim površinskih vodljivih slojeva, postoje i slojevi u unutrašnjosti podloge
- današnja tehnologija: do 70 vodljivih slojeva
- međutim, u praksi se zbog proizvodnih troškova najčešće koristi 4 - 8 slojeva, kada je god moguće
- prednosti: vrlo visoka gustoća pakiranja komponenti, odlična visokofrekvencijska svojstva, mogućnost kontroliranja impedancije vodova, najbolje rješenje za EMC
- nedostaci: proizvodna cijena!

Višeslojne tiskane pločice

primjer: presjek šesteroslojne tiskane pločice:

- tehnologija izrade tiskanih pločica mora omogućiti ostvarivanje:
 - vodljivih likova u bakrenom sloju
 - ostvarivanje prospojnih rupa s vodljivim bočnim stijenkama:
 - lemne rupe (plated through hole)
 - prospoji između vodljivih slojeva (via)
 - zaštitu vodljivih likova (poglavito od korozije)
- elementi vodljivih likova:
 - vodljive veze (track)
 - lemne točke (pad)

- računalom upravljana bušilica (N.C. drill)
- promjer svrdla: 70 100 μm veći od konačne rupe
- 3 5 pločica istovremeno
- svrdla s visokom brzinom vrtnje

(2) Kemijsko bakrenje

- po cijeloj površini pločice, redukcijski postupak
- debljina bakrenog sloja: 0,5 μm
- elektrolitičko nanošenje bakra još uvijek nije moguće (bočne stranice rupa još uvijek nisu vodljive)

(3) Elektrokemijsko bakrenje I

- elektrolitički postupak:
 - anoda: 99,5 %-tni čisti bakar
 - katoda: tiskana pločica
 - elektrolit: H₂SO₄ ili Cu₂SO₄
- debljina dodatnog bakrenog sloja: 5 μm

Presjek tiskane pločice nakon elektrokemijskog bakrenja l

(4) Fotopostupak

- fotoosjetljivi sloj suhi film
- strojno lijepljenje pod povišenim tlakom i tempraturom
- nakon razvijanja ostaje negativ maske vodljivih likova

(5) Elektrokemijsko bakrenje II

- selektivni rast bakrenog sloja elektrolitičkim postupkom
- $\sim 25 \, \mu \text{m}$

(6) Elektrokemijsko kositrenje

- nanošenje slitine kositar-olovo: Sn : Pb = 60 : 40
- debljina sloja: ~10 μm
- ujedno i pozitiv-maska za jetkanje suvišnog bakra u kasnijem postupku

(7) Jetkanje

- uklanjanje filma za fotopostupak (Sn/Pb je već nanešen kao pozitivmaska za jetkanje bakra)
- FeCl₂, CuCl₂, amonij-persulfat, kromsumporna kiselina
- nagrizanje viška bakra ostaju obrisi željenih vodljivih likova

(8) Uklanjanje kositra

- sloj Sn/Pb nanešen elektrolitičkim postupkom ima nejednolika površinska svojstva zbog načina nanošenja
- djelomično oštećen postupku jetkanja

(9) Vruće kositrenje

- na očišćeni bakar nanosi se 10 μm debeli zaštitni sloj Sn/Pb provlačenjem kroz rastaljenu Sn/Pb slitinu, uz vruću zračnu struju
- HAL (hot-air leveling) kupke
- jednolika površinska svojstva Sn/Pb i izbjegavanje zapunjavanja spojnih rupa
- uloga sloja: zaštita bakrenog sloja (poglavito od korozije i oksidacije)

(10*) Elektrokemijsko pozlaćivanje

- dodatni postupak za dijelove nezaštićenih vodljivih likova izloženih repetitivnim mehaničkim naprezanjima (npr. utične jedinice, konektori, rubni (edge) konektori (npr. PCI kartica) i sl.)
- poboljšanje mehaničke tvrdoće i kemijske otpornosti
- na vodljivi lik najprije se nanosi podloga od nikla (5 –10 μm) elektrolitičkim postupkom
- nakon toga 1 4 μm sloja zlata (s 1% primjesa Co, Ni i Ro)

(11*) Sitotisak I

- nanošenje zaštitnog sloja preko cijele površine tiskane pločice, osim na dijelovima vodljivih likova predviđenima za lemljenje izvoda komponenti (lemne točke – pads)
- zaustavni lak (engl. solder mask)
- uloga:
 - zaštita vodljivih likova
 - olakšavanje postupka strojnog lemljenja

(12*) Sitotisak II

- nanošenje oznaka komponenti na zaustavni lak
- engl. silkscreen layer ili overlay (top ili bottom, ovisno o strani pločice na koju se nanosi)

Konačni presjek dvostrane tiskane pločice – slojevi

nosiva izolacijska podloga

nalijepljeni bakreni sloj

redukcijski + prvi elektrolitički bakreni sloj

drugi elektrolitički bakreni sloj

kositar-olovni sloj

Nacrt prospojne rupe

Izgled tiskane pločice

komponentna strana (top side)

lemna strana (bottom side)

Izgled tiskane pločice

Računalom podržano projektiranje elektroničkih uređaja

- jeftiniji postupak od tehnološki zahtjevnog procesa izrade dvostranih tiskanih pločica s vodljivim prospojnim rupama
- primjena: u razvoju i istraživanju (kada je potrebno realizirati jednostavnije prototipne tiskane pločice)
- takvim postupkom moguće je izraditi i dvostrane tiskane pločice (ako tolerancije vodljivih likova nisu prevelike)
- druge mogućnosti za jeftinu realizaciju prototipnih sklopova:
 - protoboard
 - wire wrap (uglavnom za digitalno sklopovlje na niskim frekvencijama)

(1) Priprema pločice

(1.1) Izrezivanje pločice

 5 – 10 mm veće dimenzije od konačnih, zbog bočnog prodiranja kemijskih spojeva u laminat

(1.2) Čišćenje pločice

- primjenom mehaničkih i kemijskih sredstava koja ne degradiraju naljepljeni bakreni sloj
- uklanjanje oksida i drugih nečistoća kako ne bi došlo do prekida vodljivih likova

(2) Fotopostupak

(2.1) Nanošenje fotoosjetljivog laka

- fotoosjetljivi lak s pozitivnim djelovanjem
- hladnu, suhu i očišćenu pločicu prskati jednoliko s udaljenosti od oko 20 cm
- vanjski uvjeti: što manje prašine i svjetla
- sušenje laka:
 - 10 − 15 min (na temperaturi 70 °C)
 - 24 h (na sobnoj temperaturi)

(2.2) Osvjetljavanje

- pozitiv film ispisan laserskim pisačem na foliji ili paus-papiru
- mora dobro nalijegati na pločicu
- strana folije na kojoj se nalazi toner mora nalijegati na pločicu:
 - zbog ogiba svjetlosti za postizanje dovoljne oštrine vodljivih likova
 - zato ispis maske vodljivih likova iz CAD programa za lemnu stranu pločice (bottom layer) mora biti zrcaljen!
- trajanje osvjetljavanja:
 - ultraljubičasta svjetiljka: 40 50 s
 - grafoskop (vidljivo svjetlo): 5 10 min

(2.3) Razvijanje

- 7%-tna otopina NaOH, na sobnoj temperaturi
- vrijeme razvijanja: oko 30 s (ovisno o koncentraciji lužine)
- nakon toga slijedi ispiranje vodom

(3) Jetkanje

(3.1) Jetkanje vodljivih likova

- sredstva za jetkanje: FeCl₂, CuCl₂, amonij-persulfat, kromsumporna kiselina itd.
- FeCl₂ mirna reakcija, dobro nagrizanje, brza reakcija, niska cijena
- jetkanje se može ubrzati strujanjem ili korištenjem pjenilice (na površini mjehura – visoka koncentracija FeCl₂)
- ograničiti trajanje jetkanja i paziti na podgrizanje vodljivih likova (efektivno smanjenje širine vodova i mogući prekid)
- predugo nagrizanje također nepovoljno djeluje na izolacijsku podlogu

(3.2) Ispiranje vodom

- uklanjanje zaostalog FeCl₂
- spriječavanje daljnjeg nagrizanja bakra

(4) Završna obrada

(4.1) Uklanjanje zaostalog fotolaka

- mehanički, otapalima (aceton) ili ponovnim osvjetljavanjem bez maske i razvijanjem u lužini
- (4.2) Obrezivanje rubova pločice na konačne dimenzije

(4.3) Bušenje rupa (ručno)

- prema planu bušenja (*drill drawing*)
- važno:
 - kod ručnog bušenja na maski za izradu vodljivih likova treba ostaviti rupe (radi lakšeg ručnog pozicioniranja vrha svrdla)
 - za strojno bušenje lemne točke ostavljaju se zapunjene (kako ne bi došlo do savijanja i pucanja svrdla)

lemne točke za ručno bušenje

lemne točke za strojno bušenje

(5) Ugradnja komponenata sa žičanim izvodima

- through-hole components komponente čiji izvodi prolaze kroz rupu u pločici
- SMD (surface mount device) komponente koje se leme onoj istoj strani gdje su postavljene

(5.1) Savijanje izvoda komponenata

- za komponente kao što su otpornici, kondenzatori, zavojnice, diode i sl.
- pravila za projektiranje položaja lemnih rupa

Ugradnja komponenata s žičanim izvodima

Pravilno smještanje komponenata i savijanje njihovih žičanih izvoda

(5.2) Ugradnja komponenata na tiskanu pločicu

- sortirati komponente prema visini (počevši od najnižih)
- iterativni postupak lemljenja prema grupama komponenata
- skraćivanje duljine izvoda komponenti radi spriječavanja nepotrebnog odvođenja topline (na 5 mm)
- voditi računa da komponente s većom disipacijom ne naliježu izravno na pločicu
- dozvoljeno temperaturno optrećenje podloge (trajno):
 - pertinaks do 110 °C
 - vitroplast do 130 °C

Ugradnja komponenata s žičanim izvodima

Pravilna a) i nepravilna b) ugradnja komponente koja se zagrijava tijekom rada

(6) Lemljenje

- metalurško povezivanje kovina (izvoda elektroničkih komponenti i vodljivih likova)
- lemna slitina: Sn : Pb = 60 : 40 (+ primjese Cu, Au...)
- **tinol** šuplja lem-žica u čijem se središtu nalaze aditivi (najčešće na bazi **kalofonija**) za čišćenje lemnih mjesta (oksida na površini bakra), ostvarivanje boljih spojeva, bolji prijenos topline itd.
- tehnologije strojnog lemljenja:
 - potapanjem u lemnu slitinu
 - lemni val
 - pretaljivanje (u lemnim pećima)
- kod ručnog lemljenja potrebno je voditi računa o temperaturi vrha lemilice, načinu odvođenja topline, trajanju lemljenja itd.

Lemljenje

Ovisnost temperature tališta slitine kositar-olovo (Sn/Pb) o postotnom sastavu

- kvaliteta lemljenja važna za ispravan rad sklopa
- ispravan lem:
 - srebrnkast sjaj, konveksni oblik lema
- hladni lem (nedovoljno zagrijavanje):
 - zagasit sjaj, konkavan oblik lema
 - slaba električka i mehanička veza, mogućnost pucanja spoja
- vrući lem (pretjerano zagrijavanje):
 - zlatni sjaj lema
 - opasnost od odvajanja vodljivih likova od podloge i pucanja bočnih stranica vodljivih stijenki

Lemljenje izvoda komponenti

Izgled pravilno zalemljenog lemnog mjesta na a) jednostranoj i b) dvostranoj tiskanoj pločici

Lemljenje izvoda komponenti

- izabrati vrh lemila prikladne veličine
- skratiti izvode komponenata kako bi se smanjilo nepotrebno odvođenje topline
- lemilom zagrijati lemno mjesto; potom dodati tinol koji se mora razliti i pravilno oblikovati te brzo podići lemilo
 - podloge na osnovi stakla dopustivo je na temperaturi 260°C
 zadržati do 20 sekundi, a one na osnovi papira do 5 sekundi
- pregledati lemni spoj
 - ako je nepravilan (hladni ili pregrijani lem, premalo ili previše lemne slitine) zagrijati ga, ukloniti lemnu slitinu pumpicom te ponoviti postupak lemljenja
- provesti postupak čišćenja tiskane pločice (uklanjanje zaostalih aditiva radi spriječavanja korozije)

Računalom podržano projektiranje elektroničkih uređaja

RoHS (Pb-free) tehologija

- Restriction of Hazardous Substances Directive (RoHS) EU zakonske smjernice vezane za uporabu i deponiranje otrovnih materijala u industriji (olovo, živa, kadmij itd.) (na snazi od srpnja 2006.)
- zabrana upotrebe Sn/Pb lemne slitine u elektroničkoj industriji i olova u elektroničkim komponentama (osim za određene klase uređaja, npr. biomedicinske)
- alternativne Pb-free lemne formulacije problemi:
 - više radne temperature procesa lemljenja (temperaturna izdržljivost komponenata i materijala za tiskane pločice)
 - nekompatibilnost sa standardnim postupkom lemljenja (posebna oprema)
 - skuplji materijali
 - lošija lemljivost
- još uvijek ne postoji univerzalno prihvaćena zamjena za standardni Sn/Pb proces

- tiskane veze realiziraju se na tankoj savitljivoj podlozi
- krute (rigid PCB) ↔ savitljive (flexible PCB) tiskane pločice
- jednostrane, dvostrane i višeslojne savitljive tiskane pločice
- primjene:
 - zamjena za višežilne kabele
 - ostvarenje sklopovlja visokog stupnja složenosti u malenom volumenu (mogućnost savijanja pločice u 3D i prilagodba obliku kućišta)
 - u mobilnim telefonima, kamerama, fotoaparatima, ručnim računalima, kalkulatorima, tvrdim diskovima itd.
- primjer: povezivanje poluvodičkog senzora slike (CCD ili CMOS) na fotoaparatu s ostalim sklopovljem (senzori slike imaju tipično i do nekoliko stotina izvoda)

prednosti:

 fleksibilnost, mogućnost savijanja u 3D, manja masa i dimenzije, visoka gustoća spojeva između komponenti u malenom volumenu, jeftnije i pouzdanije povezivanje više tiskanih pločica (u odnosu na klasično kabliranje), bolja električka svojstva spojeva

nedostaci:

 proizvodna cijena (posebno NRC), složen postupak projektiranja i proizvodnje (posebni alati), teško i skupo rukovanje i servisiranje (rework), mehanička osjetljivost, nestabilnost dimenzija

građa (primjer za jednostranu pločicu):

- krute tiskane pločice imaju prednost pred savitljivima u većini primjena
- savitljive pločice odabiru se samo onda kada postoji ili cjenovno opravdanje ili kada nije moguće drugačije izvesti rješenje za određenu primjenu

Zahtjev	Primjena
Visoka gustoća povezivanja komponenata unutar malenog volumena	Kamere, fotoaparati
Malena masa	Kalkulatori
Trodimenzijsko ožičenje	Prednje ploče u automobilima, kamere, prijenosna računala
Pouzdano ožičenje	Industrijske aplikacije, avioindustrija
Dugotrajna izdržljivost veza na savijanje	Pisači, tvrdi diskovi, CD uređaji, VCR