Experimental Designs

James Dann

September 3, 2021

• Weigh 8 different items with unreliable pan scales

- Weigh 8 different items with unreliable pan scales
- As few instances of measuring as possible
- As high an accuracy as possible

Unreliable?

ullet Each trial gives us a (independent) random variable w_i

Unreliable?

- Each trial gives us a (independent) random variable w_i
- Let the true mass of object i be θ_i

Unreliable?

- Each trial gives us a (independent) random variable w_i
- Let the true mass of object i be θ_i
- Let the estimate of the mass of object i be $\hat{\theta}_i$

Naive Scheme

Left	Right	Result
1	-	<i>w</i> ₁
2	-	W_2
3	-	W ₃
4	-	W ₄
5	-	<i>W</i> ₅
6	-	<i>W</i> ₆
7	-	W ₇
8	-	<i>w</i> ₈

4/17

Naive Scheme

Left	Right	Result
1	-	w_1
2	-	W_2
3	-	W ₃
4	-	W4
5	-	W ₅
6	-	w ₆
7	-	W ₇
8	-	<i>W</i> ₈

- 8 trials total
- $\hat{\theta}_i = w_i$
- $\mu(\hat{\theta}_i) = \theta_i$ $Var(\hat{\theta}_i) = \sigma^2$

Still Naive Scheme

valve ocheme				
Left	Right	Result		
1	-	w_1		
2	-	W_2		
2 3 4	-	W ₃		
4	-	W ₄		
5	-	<i>W</i> ₅		
6	-	w ₆		
7	-	W_7		
8	-	<i>W</i> 8		
1	-	v_1		
2	-	<i>V</i> 2		
3	-	<i>V</i> 3		
4	-	<i>V</i> ₄		
5	-	<i>V</i> ₅		
6	-	<i>v</i> ₆		
7	-	<i>V</i> 7		
8	-	<i>V</i> 8		

- 16 trials total
- $\hat{\theta}_i = \frac{w_i + v_i}{2}$
- $\mu(\hat{\theta}_i) = \theta_i$ $Var(\hat{\theta}_i) = \frac{\sigma^2}{2}$

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

• It can be verified that each triple occurs in exactly one cell

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

• It can be verified that each triple occurs in exactly one cell

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	13 45
7138	2456

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

1248	3567
2358	1467
3468	1257
4578	1236
5618	2347
6728	1345
7138	2456

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once
- Each pair occurs in the same cell in exactly 3 rows

$$S = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

- It can be verified that each triple occurs in exactly one cell
- Each pair occurs in exactly three cells
- It is clear that each row contains each number once
- Each pair occurs in the same cell in exactly 3 rows
- Each pair occurs in different cells in exactly 4 rows

Left	Right	Result
12345678	-	w_0
1248	3567	w_1
2358	1467	W_2
3468	1257	W ₃
4578	1236	W ₄
5618	2347	W ₅
6728	1345	W ₆
7138	2456	W ₇

- 8 trials total
- $\hat{\theta}_i = ???$ $Var(\hat{\theta}_i) = ???$

-	-		
	Left	Right	Result
	12345678	-	w ₀
	1248	3567	w_1
	2358	1467	<i>W</i> ₂
	3468	1257	W ₃
	4578	1236	W_4
	5618	2347	W ₅
	6728	1345	<i>W</i> ₆
	7138	2456	W ₇

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

Left	Right	Result
12345678	-	w_0
1248	3567	w_1
2358	1467	<i>W</i> 2
3468	1257	<i>W</i> ₃
4578	1236	W_4
5618	2347	W ₅
6728	1345	<i>W</i> ₆
7138	2456	W ₇

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

Left	Right	Result
12345678	-	<i>w</i> ₀
1248	3567	w_1
2358	1467	<i>W</i> 2
3468	1257	W_3
4578	1236	W_4
5618	2347	W ₅
6728	1345	w ₆
7138	2456	W ₇

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

$$\mu(\hat{\theta}_3) = \frac{1}{8}(\mu(w_0) - \mu(w_1) + \dots)$$

$$= \frac{1}{8}(\theta_3 + \dots - (-\theta_3 + \dots) + \dots)$$

$$= \frac{8\theta_3 + \dots}{8} = \theta_3$$

Left	Right	Result
12345678	-	w ₀
1248	3567	w_1
2358	1467	W_2
3468	1257	W_3
4578	1236	W_4
5618	2347	<i>W</i> ₅
6728	1345	w_6
7138	2456	w_7

Let
$$\hat{\theta}_3 = \frac{1}{8}(w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)$$

$$Var(\hat{\theta}_2) = Var((w_0 - w_1 + w_2 + w_3 - w_4 - w_5 - w_6 + w_7)/8)$$

$$= \frac{1}{64} \sum_{i=0}^{7} Var(w_i)$$

$$= \frac{\sigma^2}{8}$$

Left	Right	Result
12345678	-	w ₀
1248	3567	w_1
2358	1467	<i>W</i> ₂
3468	1257	W3
4578	1236	W4
5618	2347	W ₅
6728	1345	<i>w</i> ₆
7138	2456	W ₇

- 8 trials total
- $\hat{\theta}_i = \frac{1}{8} \sum_j \text{left}(i,j) w_j$
- $\bullet \ \mu(\hat{\theta}_i) = \theta_i$
- $Var(\hat{\theta_i}) = \sigma^2/8$

So what, I have linear algebra

• Matrix inverses exist and I don't like combinatorics

So what, I have linear algebra

- Matrix inverses exist and I don't like combinatorics
- You are just solving $A\theta + \varepsilon = \omega$, which can be solved with $\hat{\theta} = A^{-1}\omega$
- We can randomly fill the scales and take an inverse

• Combinatorics provides a unique optimal solution in general

- Combinatorics provides a unique optimal solution in general
- If $A^{-1}=(b_{ij})$, then $\mathsf{Var}(\hat{ heta}_i)=\sigma^2\sum_{j=0}^7 b_{ij}^2$

- Combinatorics provides a unique optimal solution in general
- If $A^{-1}=(b_{ij})$, then $\mathsf{Var}(\hat{ heta}_i)=\sigma^2\sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{i=0}^{7} |b_{ij}| \geq 1$

- Combinatorics provides a unique optimal solution in general
- If $A^{-1}=(b_{ij})$, then $\mathsf{Var}(\hat{ heta}_i)=\sigma^2\sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{j=0}^{7} |b_{ij}| \geq 1$
- ullet The variance is minimised when all $b_{ij}=\pmrac{1}{8}$

- Combinatorics provides a unique optimal solution in general
- If $A^{-1}=(b_{ij})$, then $\mathsf{Var}(\hat{ heta}_i)=\sigma^2\sum_{j=0}^7 b_{ij}^2$
- Since A has entries in $\{-1,1\}$, we must have $\sum_{j=0}^{7} |b_{ij}| \geq 1$
- ullet The variance is minimised when all $b_{ij}=\pmrac{1}{8}$
- This is exactly the combinatorial solution

 \bullet The Hadamard conjecture implies this can be done for any 4n

- The Hadamard conjecture implies this can be done for any 4n
- Can construct a scheme for any 4n such that 4n-1 is a prime power
- Can construct a scheme for any product of integers that work

• Efficiently testing samples for a hypothetical virus

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected
- Assume that there are at most d infected samples

- Efficiently testing samples for a hypothetical virus
- AIDS, Zika, SARS, spanish flu, bubonic plague
- Negative test implies all samples are uninfected
- Assume that there are at most d infected samples
- Testing scheme doesn't change depending on results

More Magic Numbers

$$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

0	Ι	2	
	4		
6	7	8	
0	4	8	
	5		
2	3	7	
	7		
	8	3	
2			
0	3	6	
1	4	7	
2	5	8	

- Easy to check that each pair occurs in exactly one cell
- The intersection of any two cells has at most one element

Tests
0 1 2
3 4 5
678
0 4 8
156
2 3 7
075
183
264
0 3 6
1 4 7
258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

Sample	Tests
а	0 1 2
b	3 4 5
С	678
d	0 4 8
е	156
f	2 3 7
g	075
h	183
i	2 6 4
j	0 3 6
k	1 4 7
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

Sample	Tests
а	0 1 2
b	3 4 5
С	678
d	0 4 8
е	156
f	2 3 7
g	075
h	183
i	2 6 4
j	0 3 6
k	1 4 7
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

Sample	Tests
a	0 1 2
b	3 4 5
С	678
d	0 4 8
е	1 5 6
f	2 3 7
g	075
h	183
i	2 6 4
j	0 3 6
k	1 4 7
	2 5 8

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples

Sample	Tests
а	0 1 2
b	3 4 5
С	678
d	0 4 8
е	156
f	2 3 7
g	075
h	183
i	264
j	0 3 6
k	1 4 7
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples
- Can detect if 3 or more samples are positive

Group Testing Counterexample

Sample	Tests
a	0 1 2
b	3 4 5
С	678
d	0 4 8
е	1 5 6
f	2 3 7
g	075
h	183
i	264
j	0 3 6
k	1 4 7
	258

- 9 tests in total
- 12 samples tested
- Assume there are 2 or less positive samples
- Can detect if 3 or more samples are positive

• Can test $q^2 + q$ samples with q^2 tests, assuming a max of q - 1 positive samples.

- Can test $q^2 + q$ samples with q^2 tests, assuming a max of q 1 positive samples.
- Can test n(1+6n) or $\frac{(6n+3)(6n+2)}{6}$ samples with 6n+1 or 6n+3 tests, assuming a max of 2 positive samples.

- Can test $q^2 + q$ samples with q^2 tests, assuming a max of q 1 positive samples.
- Can test n(1+6n) or $\frac{(6n+3)(6n+2)}{6}$ samples with 6n+1 or 6n+3 tests, assuming a max of 2 positive samples.
- In general, any (v, k, 1) design implies the existence of a group test of $\frac{v(v-1)}{k(k-1)}$ samples over v tests if there are at most k-1 positive samples.