Abstract Algebra Homework 9

Michael Nelson

Problem 1

Let $f(X) = X^5 - 3$ and let $g(X) = X^4 + X^3 + X^2 + X + 1$. Also let α be a complex root of f and let f be a complex root of g. Observe that f is irreducible over \mathbb{Q} since it is Eisenstein at 3 and g is irreducible over \mathbb{Q} since

$$g(X+5) = (X+1)^4 + (X+1)^3 + (X+1)^2 + (X+1) + 1$$

= $X^4 + 5X^3 + 10X^2 + 10X + 5$

is Eisenstein at 5 (also *g* is the 5th cyclotomic polynomial).

Let $\zeta_5 = e^{2\pi i/5}$. We can factor f over $\mathbb C$ as

$$f(X) = (X - \sqrt[5]{3})(X - \zeta_5\sqrt[5]{3})(X - \zeta_5^2\sqrt[5]{3})(X - \zeta_5^3\sqrt[5]{3})(X - \zeta_5^4\sqrt[5]{3}). \tag{1}$$

Indeed, $\zeta_5^b \sqrt[5]{3}$ is a root of f for all $b \in \mathbb{Z}/5\mathbb{Z}$ (you'll see in a second why I'm writing $b \in \mathbb{Z}/5\mathbb{Z}$ and not simply just $0 \le b \le 4$). Since these five roots are distinct from each other and since $\deg f = 5$, they must exhaust all the roots of f. In particular, $\alpha = \zeta_5^b \sqrt[5]{3}$ for some $b \in \mathbb{Z}/5\mathbb{Z}$. Similarly, we can factor g over \mathbb{C} as

$$g(X) = (X - \zeta_5)(X - \zeta_5^2)(X - \zeta_5^3)(X - \zeta_5^4). \tag{2}$$

Indeed, ζ_5^a is a root of g for all $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ (again, you'll see in a second why I'm writing $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ and not simply just $1 \le a \le 4$). Since these four roots are distinct from each other and since $\deg g = 4$, they must exhaust all the roots of g (alternatively, one can see this from the fact that g is the 5th cyclotomic polynomial). In particular, $\beta = \zeta_5^a$ for some $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$.

Problem 1.a

Exercise 1. Find $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ and show that this extension is not Galois.

Solution 1. As shown above, f is irreducible over \mathbb{Q} with $\deg f = 5$. Thus $[\mathbb{Q}(\alpha):\mathbb{Q}] = 5$. To see why $\mathbb{Q}(\alpha)/\mathbb{Q}$ is not Galois, it suffices to show that $\mathbb{Q}(\sqrt[5]{3})/\mathbb{Q}$ is not Galois (since there is a \mathbb{Q} -isomorphism taking $\mathbb{Q}(\alpha)$ to $\mathbb{Q}(\sqrt[5]{3})$). A \mathbb{Q} -automorphism of $\mathbb{Q}(\sqrt[5]{3})$ must send $\sqrt[5]{3}$ to $\zeta_5^b\sqrt[5]{3}$ for some $b \in \mathbb{Z}/5\mathbb{Z}$, but $\zeta_5^b\sqrt[5]{3}$ is not a real number if $b \neq 0$, so it can't belong to $\mathbb{Q}(\sqrt[5]{3})$, so the only possibility is $\sqrt[5]{3} \mapsto \sqrt[5]{3}$. Thus $\mathbb{A}\mathrm{ut}(\mathbb{Q}(\sqrt[5]{3})/\mathbb{Q})$ is trivial. Thus $\mathbb{Q}(\sqrt[5]{3})/\mathbb{Q}$ is not Galois, which implies $\mathbb{Q}(\alpha)/\mathbb{Q}$ is not Galois.

Problem 1.b

Exercise 2. Show that *g* is irreducible over $\mathbb{Q}(\alpha)$.

Solution 2. We showed above that g is irreducible over \mathbb{Q} , but now we want to show it is irreducible over $\mathbb{Q}(\alpha)$. Since f and g are monic irreducible polynomials over \mathbb{Q} which kill α and β respectively, we see that f is the minimal polynomial for α and g is the minimal polynomial for β . Since $\deg f = 5$ and $\deg g = 4$, we have $[\mathbb{Q}(\alpha):\mathbb{Q}] = 5$ and $[\mathbb{Q}(\beta):\mathbb{Q}] = 4$. Since $\gcd(4,5) = 1$, it follows that $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = 4 \cdot 5 = 20$ (by a previous HW problem). This also implies g is the minimal polynomial for β over $\mathbb{Q}(\alpha)$. Indeed, if h(X) is an irreducible monic polynomial with coefficients in $\mathbb{Q}(\alpha)$ which kills β , then $20 = 4 \cdot \deg h$, which implies $\deg h = 5$, but g is also a monic polynomial with coefficients in $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ which kills β , thus $h \mid g$. Since $\deg h = \deg g$ and both g and h are monic, we must have g = h. Thus g is the minimal polynomial for β over $\mathbb{Q}(\alpha)$. In particular, it is irreducible over $\mathbb{Q}(\alpha)$.

Problem 1.c

Exercise 3. Let \overline{F} be the field obtained by adjoining all of the roots of f to \mathbb{Q} . Find the Galois group $\operatorname{Gal}(\overline{F}/\mathbb{Q})$.

Solution 3. From the polynomial factorization (1), we see that $\overline{F} = \mathbb{Q}(\zeta_5, \sqrt[5]{3})$. Indeed, since $\zeta_5 = \zeta_5 \sqrt[5]{3}/\sqrt[5]{3}$, we have $\zeta_5 \in \overline{F}$, and hence $\mathbb{Q}(\zeta_5, \sqrt[5]{3}) \subseteq \overline{F}$. Conversely, $\zeta_5^b \sqrt[5]{3}$ is clearly in $\mathbb{Q}(\zeta_5, \sqrt[5]{3})$ for all $b \in \mathbb{Z}/5\mathbb{Z}$. Thus $\mathbb{Q}(\zeta_5, \sqrt[5]{3}) \supseteq \overline{F}$.

Any Q-automorphism of $\mathbb{Q}(\zeta_5, \sqrt[5]{3})$ is completely determined by where it sends ζ_5 and where it sends $\sqrt[5]{3}$. There are 4 places to send ζ_5 , namely ζ_5 , ζ_5^2 , ζ_5^3 , and ζ_5^4 . Similarly, there are 5 places to send $\sqrt[5]{3}$, namely $\sqrt[5]{3}$, $\zeta_5\sqrt[5]{3}$, $\zeta_5\sqrt[3]{3}$, $\zeta_5\sqrt[3]{3}$, and $\zeta_5\sqrt[4]{3}$. In total, there are $4 \cdot 5 = 20$ possible automorphisms. In fact all such possibilities are realized since $[\mathbb{Q}(\zeta_5,\alpha):\mathbb{Q}]=20$. Let us describe them now:

For $a \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/5\mathbb{Z}$, let $\sigma_{a,b} \colon \mathbb{Q}(\zeta_5, \sqrt[5]{3}) \to \mathbb{Q}(\zeta_5, \sqrt[5]{3})$ be the Q-automorphism which sends ζ_5 to ζ_5^a and $\sqrt[5]{3}$ to $\zeta_5^b \sqrt[5]{3}$ (any Q-automorphism has a unique expression of this form). By a direct calculation, we have

$$\sigma_{a,b}\sigma_{a',b'} = \sigma_{aa',ab'+b} \tag{3}$$

for all $a, a' \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ and $b, b' \in \mathbb{Z}/5\mathbb{Z}$, where multiplication and addition in the subscripts are taken modulo 5. The multiplication rule (3) behaves just like matrix multiplication:

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}.$$

So we have an isomorphism from

$$\operatorname{Aff}(\mathbb{Z}/5\mathbb{Z}) \cong \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/5\mathbb{Z})^{\times}, \ b \in \mathbb{Z}/5\mathbb{Z} \right\}$$

to Gal($\mathbb{Q}(\zeta_5, \sqrt[5]{3})/\mathbb{Q}$) given by $\sigma_{a,b} \mapsto \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$.

Problem 1.d

Exercise 4. Find an explicit formula for the roots of f(X).

Solution 4. This was done above.

Problem 2

Let *F* be the field obtained by adjoining all roots of the polynomial $f(X) = X^6 - 3X^3 + 1$. From the quadratic formula, we can factor *f* as

$$f(X) = \left(X^3 - \left(\frac{3 - \sqrt{5}}{2}\right)\right) \left(X^3 - \left(\frac{3 + \sqrt{5}}{2}\right)\right). \tag{4}$$

Let $\zeta_3 = e^{2\pi i/3}$, $\alpha = \sqrt[3]{\frac{3-\sqrt{5}}{2}}$, and $\beta = \sqrt[3]{\frac{3+\sqrt{5}}{2}}$ (by cubed root here we mean the real cube root). Then we can factor (4) even further as

$$f(X) = (X - \alpha)(X - \zeta_3 \alpha)(X - \zeta_3^2 \alpha)(X - \beta)(X - \zeta_3 \beta)(X - \zeta_3^2 \beta).$$
 (5)

In particular, $F = \mathbb{Q}(\zeta_3, \alpha)$. To see this, note that $\zeta_3 \in F$ since $\zeta_3 = \zeta_3 \alpha / \alpha$, so $F \supseteq \mathbb{Q}(\zeta_3, \alpha)$. Conversely, observe that

$$(\alpha\beta)^3 = \left(\frac{3-\sqrt{5}}{2}\right) \left(\frac{3+\sqrt{5}}{2}\right)$$
$$= \frac{9-5}{4}$$

implies $(\alpha\beta)^3 = 1$. Since both α and β are *real* numbers, we must have $\alpha\beta = 1$. Thus $\beta = \alpha^{-1}$, which implies $\beta \in \mathbb{Q}(\zeta_3, \alpha)$. Clearly now, all the other roots of f are in $\mathbb{Q}(\zeta_3, \alpha)$ as well. Thus we may rewrite (5) as

$$f(X) = (X - \alpha)(X - \zeta_3 \alpha)(X - \zeta_3^2 \alpha)(X - \alpha^{-1})(X - \zeta_3 \alpha^{-1})(X - \zeta_3^2 \alpha^{-1}).$$
 (6)

Problem 2.a

Exercise 5. Show that complex conjugation is a nontrivial automorphism of *F*.

Solution 5. Note that complex conjugation is an automorphism of F which fixes \mathbb{Q} since it is an automorphism of \mathbb{C} which fixes \mathbb{Q} and F/\mathbb{Q} is Galois. That complex conjugation is nontrivial follows from the fact that F contains a nonreal complex number, namely ζ_3 . So complex conjugation will send ζ_3 to $\overline{\zeta_3}$, and $\zeta_3 \neq \overline{\zeta_3}$.

Problem 2.b

Exercise 6. If γ is a real root of this polynomial, show that the map induced by $\gamma \mapsto \gamma^{-1}$ gives rise to an automorphism of $\mathbb{Q}(\gamma)$.

Solution 6. From the polynomial factorization (6), we see that the real roots of f are given by α and α^{-1} . Without loss of generality, assume $\gamma = \alpha$. Then $\alpha \mapsto \alpha^{-1}$ induces the automorphism $\varphi \colon \mathbb{Q}[\alpha] \to \mathbb{Q}[\alpha^{-1}] = \mathbb{Q}[\alpha]$ given by

$$\varphi(\pi(\alpha)) = \pi(\alpha^{-1})$$

for all $\pi(\alpha) \in \mathbb{Q}[\alpha]$.

Problem 2.c

Exercise 7. Show that $[\mathbb{Q}(\zeta_3, \alpha) : \mathbb{Q}] = 12$.

Solution 7. Since $[\mathbb{Q}(\zeta_3):\mathbb{Q}]=2$ and $[\mathbb{Q}(\alpha):\mathbb{Q}]=6$, we know from a previous HW that $[\mathbb{Q}(\zeta_3,\alpha):\mathbb{Q}]\leq 12$. Therefore

$$12 \ge [\mathbb{Q}(\zeta_3, \alpha) : \mathbb{Q}]$$

$$= [\mathbb{Q}(\zeta_3, \alpha) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}]$$

$$= [\mathbb{Q}(\zeta_3, \alpha) : \mathbb{Q}(\alpha)] \cdot 6$$

$$\ge 12,$$

where the last inequality follows from the fact that ζ_3 is a nonreal complex number and $\mathbb{Q}(\alpha)$ consists of real numbers (so $[\mathbb{Q}(\zeta_3,\alpha):\mathbb{Q}(\alpha)]\geq 2$). It follows that $[\mathbb{Q}(\zeta_3,\alpha):\mathbb{Q}]=12$.

Problem 2.d

Exercise 8. Find Gal($\mathbb{Q}(\zeta_3, \alpha)/\mathbb{Q}$).

Solution 8. Any Q-automorphism of $Q(\zeta_3, \alpha)$ is completely determined by where it sends ζ_3 and where it sends α . There are 2 places to send ζ_3 , namely ζ_3 and ζ_3^2 . Similarly, there are 6 places to send α , namely α , $\zeta_3\alpha$, $\zeta_3^2\alpha$, α^{-1} , $\zeta_3\alpha^{-1}$ and $\zeta_3^2\alpha^{-1}$. In total, there are $2 \cdot 6 = 12$ possible automorphisms. In fact all such possibilities are realized since $[Q(\zeta_3, \alpha) : Q] = 12$. Let us describe them now:

For $a \in (\mathbb{Z}/3\mathbb{Z})^{\times}$ and $b \in \mathbb{Z}/3\mathbb{Z}$, let $\sigma_{a,b}^{\pm} \colon \mathbb{Q}(\zeta_3, \alpha) \to \mathbb{Q}(\zeta_3, \alpha)$ be the Q-automorphism which sends ζ_3 to ζ_3^a and α to $\zeta_3^b \alpha^{\pm}$ (any such Q-automorphism has a unique expression of this form). By a direct calculation, we have

$$\sigma_{a,b}^{+}\sigma_{a',b'}^{+} = \sigma_{aa',b+ab'}^{+}
\sigma_{a,b}^{-}\sigma_{a',b'}^{+} = \sigma_{aa',b+ab'}^{-}
\sigma_{a,b}^{+}\sigma_{a',b'}^{-} = \sigma_{aa',b+ab'}^{-}
\sigma_{a,b}^{-}\sigma_{a',b'}^{-} = \sigma_{aa',b+ab'}^{+}$$

The multiplication rules above behaves just like matrix multiplication (with a sign involved):

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

$$- \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = - \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} - \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} \end{pmatrix} = - \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} - \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} - \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} - \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} - \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} aa' & ab' + b \\ 0 & 1 \end{pmatrix}$$

So we have an isomorphism from

$$\mathbb{Z}_2 \times \operatorname{Aff}(\mathbb{Z}_3) \cong \left\{ \pm \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/3\mathbb{Z})^{\times}, \ b \in \mathbb{Z}/3\mathbb{Z} \right\}$$

to $Gal(\mathbb{Q}(\zeta_3,\alpha)/\mathbb{Q})$ given by $\sigma_{a,b}^{\pm} \mapsto \pm \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$.

Problem 2.e

Exercise 9. Find an explicit formula for the roots of f(X).

Solution 9. This was done above.

Problem 3

Let $f(X) = X^6 - X^3 + 1$ and let F be the splitting field of F over \mathbb{Q} . Observe that $f(-X) = X^6 + X^3 + 1$. This is just the 9th cyclotomic polynomial. Thus if we let $\zeta_9 = e^{2\pi i/9}$, then we have

$$f(-X) = X^6 + X^3 + 1$$

= $(X - \zeta_9)(X - \zeta_9^2)(X - \zeta_9^4)(X - \zeta_9^5)(X - \zeta_9^7)(X - \zeta_9^8).$

In other words,

$$f(X) = (-X - \zeta_9)(X - \zeta_9^2)(-X - \zeta_9^4)(-X - \zeta_9^5)(-X - \zeta_9^7)(-X - \zeta_9^8)$$

= $(X + \zeta_9)(X + \zeta_9^2)(X + \zeta_9^4)(X + \zeta_9^5)(X + \zeta_9^7)(X + \zeta_9^8)$

In particular, $F = \mathbb{Q}(\zeta_9)$.

Problem 3.a

Exercise 10. Show that there is an intermediate field *E* such that $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\zeta_9)$ with $[E:\mathbb{Q}]=2$.

Solution 10. Observe that $\zeta_3 \in \mathbb{Q}(\zeta_9)$ since $\zeta_9^2 = \zeta_3$. Thus $\mathbb{Q}(\zeta_9)$ contains $\mathbb{Q}(\zeta_3)$, which is a degree 2 extension over \mathbb{Q} .

Problem 3.b

Exercise 11. Find the Galois group of $(\mathbb{Q}(\zeta_9)/\mathbb{Q})$ and list all of the intermediate fields.

Solution 11. Any Q-automorphism of $\mathbb{Q}(\zeta_9)$ is completely determined by where it sends ζ_9 . There are 6 places to send ζ_9 (namely ζ_9^a where $a \in (\mathbb{Z}/9\mathbb{Z})^{\times}$). So in total, there are 6 possible automorphisms. In fact all such possibilities are realized since $[\mathbb{Q}(\zeta_9):\mathbb{Q}]=6$. Let us describe them now:

For $a \in (\mathbb{Z}/9\mathbb{Z})^{\times}$, let $\sigma_a \colon \mathbb{Q}(\zeta_9) \to \mathbb{Q}(\zeta_9)$ be the Q-automorphism which sends ζ_9 to ζ_9^a . By a direct calculation, we have

$$\sigma_a \sigma_{a'} = \sigma_{aa}$$

for all $a, a' \in (\mathbb{Z}/9\mathbb{Z})^{\times}$, where the multiplication in the subscript is taken modulo 9. Thus we have an isomorphism from $(\mathbb{Z}/9\mathbb{Z})^{\times}$ to $Gal(\mathbb{Q}(\zeta_9)/\mathbb{Q})$ given by $\sigma_a \mapsto a$. Below is the lattice of subgroups of $(\mathbb{Z}/9\mathbb{Z})^{\times}$

These correspond to the squares in $(\mathbb{Z}/9\mathbb{Z})^{\times}$ and the cubes in $(\mathbb{Z}/9\mathbb{Z})^{\times}$ respectively. The corresponding lattice of fields is given by

Problem 3.c

Exercise 12. Find an explicit formula for the roots of f(X).

Solution 12. This was done above.