

Advanced Databases

Project Phase 2

Report

Academic Year: 2024/2025

Authors: Diogo Barreta 64560, Muhammed Jaabir Mohamed Zifri 64912, Josè

Dalla Torre 64672

Date: December 15, 2024

1. Dataset Description

The dataset studied was the "Financial Transactions Dataset: Analytics", obtained from Kaggle. This data set contains data related to transaction records, customer information, and card data from a bank during the 2010s. The dataset comprises three CSV files:

- cards_data.csv: Includes information about bank accounts. The file has 6146 rows and 13 columns:
 - Columns: id, client_id, card_brand, card_type, card_number, expires, cvv, has_chip, num_cards_issued, credit_limit, acct_open_date, year_pin_last_changed, and card_on_dark_web.
- users_data.csv: Contains information about clients. This file has 2000 rows and 14 columns:
 - Columns: id, current_age, retirement_age, birth_year, birth_month, gender, address, latitude, longitude, per_capita_income, yearly_income, total_debt, credit_score, and num_cards_issued.
- transactions_data.csv: Contains all transactions processed by the bank, including transaction features. This file has 13.3m rows and 12 columns:
 - Columns: id, date, client_id, card_id, amount, use_chip, merchant_id, merchant_state, and zip.

Due to the large size of transactions_data.csv, we worked with a subset of 50,000 rows for analysis. By associating the id value in users_data.csv with client_id in the other files and id value in cards_data.csv with client_id, we established a relationship between the three datasets.

2. Data Cleaning and Preprocessing

2.1. Handling Missing Values

- First, we used a countplot to analyze the presence of missing values.
- ullet The missing values in the numerical fields were replaced with 0.
- Categorical fields were imputed with the mode or 'Unknown'.

2.2. Data Type Conversions

Before the database population, we decided the following criteria:

- All columns that had amounts with the \$ sign were converted to int by removing the sign.
- Columns that had 'YES' & 'NO' were converted to the corresponding boolean value.
- All the columns values must have the same panda datatype.

3. Relational Schema

We decided to maintain the same structure since, after the data cleaning, the data set has all the property suitable to be a relational schema. We present our diagrams next.

- The user primary key is **id**. It has a (1,N) relationship with the others identity.
- The cards primary key is id with the user_id as a foreign key. It has a (1,1) relationship with user and (1,N) with transactions.
- The transaction primary key is **id** with the user_id and card_id as a foreign keys. It has a (1,1) relationship with the user and (1,1) with cards.

	id	client_id	card_brand	card_type	card_number	expires	cvv	has_chip	nums_cards_issued	credit_limit	acct_open_date	year_pin_last_changed	card_on_dark_web
	4524	825	Visa	Debit	4344676511950444	12/2022	623	YES	2	24295	09/2002	2008	No
	2731	825	Visa	Debit	4956965974959986	12/2020	393	YES	2	21968	04/2014	2014	No
ĺ	3701	825	Visa	Debit	4582313478255491	02/2024	719	YES	2	46414	07/2003	2004	No

	id	current_age	retirement_age	birth_year	birth_month	gender	address	latitude	longitude	per_capita_income	yearly_income	total_debt	credit_score	num_credit_cards
	825	53	66	1966	11	Female	462 Rose Lane	34.15	-117.76	29278	59696	127613	787	5
	1746	53	68	1966	12	Female	3606 Federal Boulevard	40.76	-73.74	37891	77254	191349	701	5
ĺ	1718	81	67	1938	11	Female	766 Third Drive	34.02	-117.89	22681	33483	33483	698	5

id	client_id	card_id	date	amount	use_chip	merchant_id	merchant_city	merchant_state	zip	mcc	errors
7475327	1556	2972	2010-01-01 00:01:00	-77.00	Swipe Transaction	59935	Beulah	ND	58523.0	5499	
7475328	561	4575	2010-01-01 00:02:00	14.57	Swipe Transaction	67570	Bettendorf	IA	52722.0	5311	
7475329	1129	102	2010-01-01 00:02:00	80.00	Swipe Transaction	27092	Vista	CA	92084.0	4829	

Figure 1: Relational Schema Diagram

4. ER Diagram

Figure 2: Entity-Relationship Diagram

5. MongoDB Collections structure

Figure 3: MongoDB collections structure

6. Database Setup and Upload Challenges

6.1. MySQL Implementation

- The schema for MySQL was created based on an Entity-Relationship model.
- Data were uploaded using Python's mysql.connector as seen in class.

6.2. MongoDB Implementation

- The data were uploaded to collections using Python's pymongo.
- Data were denormalized to optimize query performance.

7. Queries and Results

7.1. Simple Queries

1. Retrieve users with a credit score greater than 750.

2. Find transactions with non-null error messages.

7.2. Complex Queries

- 1. Calculate the total transaction amount by state for female users.
- 2. Find all cards flagged as (card_on_dark_web) used in transactions above \$1,000.

7.3. Performance Evaluation

As expected MongoDB has a better performance on almost everything except for the third query.

The results are provided in the notebook for further reading.

8. Discussion

8.1. Observations

- MongoDB outperformed MySQL for queries that require a large number of aggregation.
- No results were found in the last query. This is not due to an error of the query, but instead because there were no cards that fulfilled the conditions.

8.2. Limitations

• One of the complex queries was slower for MongoDB.

9. Conclusion and Next Steps

Phase 1 highlights the strengths and weaknesses of both database systems. Future steps include implementing indexing and query optimizations in Phase 2 to further enhance performance.

References

[1] Victor, C. Transactions Fraud Dataset. Kaggle. Available at: https://www.kaggle.com/datasets/computingvictor/transactions-fraud-datasets.

Phase 2: Database Optimization

10. Manual Data Modification for Performance Testing

To simulate real-world scenarios and estimate the time required to load and process data, we manually modified the card_on_dark_web column in the cards_df DataFrame for a subset of records. This modification was necessary to meet the requirements for a specific operation involving high-value transactions.

10.0.1 Procedure

1. From the transactions_df DataFrame, we identified high-value transactions where the amount exceeded \$1,000:

```
card_ids = transactions_df[transactions_df['amount'] > 1000].sample(10)['card_id'].unique()
```

- 2. We randomly selected 10 unique card_id values from this subset of high-value transactions
- 3. For these selected card_ids, we updated the card_on_dark_web column in the cards_df DataFrame from False to True:

```
cards_df.loc[cards_df['id'].isin(card_ids), 'card_on_dark_web'] = True
```

4. The updated DataFrame was then used to evaluate the time taken to load and process data where fraudulent activity (card_on_dark_web = True) is present.

10.0.2 Rationale

This manual modification ensured that a sufficient number of fraudulent cards were flagged (card_on_dark_web = True) to evaluate the performance of operations involving filtering, joining, and analyzing such data. By targeting cards with high-value transactions (amount > \$1,000), we aligned the test scenario with realistic fraud-detection criteria.

10.0.3 Impact on Results

The controlled modification allowed us to simulate the necessary conditions for our performance evaluation. It also enabled the testing of downstream operations, such as identifying high-value fraudulent transactions and updating card limits.

11. Development of complex operations

Our phase 1 complex queries did not meet the criteria pretended for this project. For this, changes were made so that the queries included "write" operations in addition to the "read" operations already established. The newly developed operations are:

- Calculate the total spending by female users grouped by merchant_state and insert the summarized data into the state spending summary table.
- Halve the credit limit of cards flagged as on dark web used in transactions over \$1,000.

These operations now include "insert" and "update" statements. A new table and collection were created for the first complex query.

12. Indexing

Indexing was implemented as an optimization technique to improve the performance of query execution. Indexes were created on the attributes used in the third and fourth queries across both MySQL tables and MongoDB collections.

The results demonstrated significant improvements for the fourth query, with a notable reduction in query time. However, for the third query, no substantial performance gains were observed, indicating that further optimization of the query itself may be required.

Figure 4: Time recorded for querying before and after indexing for both complex queries

13. Query Optimization

Our previous results indicated an unusually long processing time for the third query when working with MongoDB. To address this, we tested two optimization approaches: one focused

on refining the query itself, and the other on optimizing the collection schema.

The first optimization involved modifying the query to filter out users who had no transactions. By ensuring that only users with transactions were processed, unnecessary computation was avoided. This resulted in a significant reduction in processing time, cutting it down by approximately one-third, from 30 seconds to around 20 seconds.

The second optimization involved restructuring the collection schema. A new, more complex operation was introduced, which computed the total amount spent by female users from each state. This aggregated data was then inserted into a new table/collection. By storing the precomputed totals in this new collection, future queries could directly access the summarized data, further reducing the time required for retrieval and analysis.