DM - Hausaufgaben zum 31. Oktober 2014 (Blatt 04)

31.10.2014

1

1. a)

- i) Es gibt keine injektive Funktion $f: A \mapsto B$, da |B| > |A|.
- ii) Ja, z.B.:
- f: f(1) = a
 - f(2) = b
 - f(3) = c
- iii) Nein, da es keine injektive Funktion $A\mapsto B$ gibt, existiert auch keine bijektive Funktion $A\mapsto B.$

1. b)

- i) Nein, da eine injektive Abbildung $A \mapsto B$ mit |A| = |B| immer auch bijektiv sein muss.
- ii) Ja, z.B.
- f: f(1) = a
 - f(2) = b, c
 - f(3) = c
- iii) Ja, z.B.
- f: f(1) = a
 - f(2) = b
 - f(3) = c

Tobias Knöppler 31.10.2014

1. c)

- i) Ja, z.B.
- f: f(1) = a
 - f(2) = b
 - f(3) = c
- ii) Ja, z.B.
- f: f(1) = a, b
 - f(2) = b, c
 - f(3) = d
- iii) Ja, z.B.
- f: f(1) = a, b
 - f(2) = c
 - f(3) = d

2

2. a)

f ist injektiv, da $\forall n (n \in \mathbb{Z} \Rightarrow 2n \in \mathbb{Z})$. Beweis:

- I Induktionsannahme: $\exists n \in \mathbb{Z} (2n \in \mathbb{Z})$ Beweis: $2 \cdot 1 = 2 \in \mathbb{Z}$
- II Induktionsschritt:

Behauptung: $2n \in \mathbb{Z} \Rightarrow 2(n+1) \in \mathbb{Z}$ Beweis:

$$2(x+1) = 2x + 2$$

$$(2 \in \mathbb{Z}) \land (2x \in \mathbb{Z}) \Rightarrow 2x + 2 \in \mathbb{Z} \square$$

f ist nicht surjektiv, da es z.B. kein n gibt, für das gilt f(n) = 5.

Beweis:

Angenommen, es gelte: $\exists n(f(n) = 5 \Rightarrow f(n) = 2 \cdot \frac{5}{2})$, dann wäre $n = \frac{5}{2} \notin \mathbb{Z}$, womit die Annahme, dass f surjektiv sei, zum Widerspruch geführt ist. \square

f ist nicht bijektiv, da f nicht surjektiv ist.

Tobias Knöppler 31.10.2014

2. b)

g ist injektiv, da $\forall n \in \mathbb{Z}(2n+5 \in \mathbb{Z})$. Beweis:

- I Induktionsannahme (IA): $\exists n \in \mathbb{Z}(2n+5 \in \mathbb{Z})$ $(n=1 \Leftrightarrow 2n+5=7) \land (7 \in \mathbb{Z}) \Rightarrow \text{IA ist erfüllt für } n=1.$
- II Induktionsschritt:

Behautptung: $(2n+5\in\mathbb{Z})\Rightarrow (2(x+1)+5\in\mathbb{Z})$ Beweis:

$$2(n+1) + 5 = 2n + 7 = 2n + 5 + 2$$

$$(2n+5\in\mathbb{Z})\wedge(2\in\mathbb{Z})\Rightarrow 2n+7\in\mathbb{Z}$$

III Induktionsschluss:

$$(I) \land (II) \Rightarrow \forall n \in \mathbb{Z}(2n+5 \in \mathbb{Z})$$

Daraus folgt, dass g injektiv ist. \Box

g ist nicht surjektiv, da $\exists n \notin \mathbb{Z}(2n+5 \in \mathbb{Z}).$

Beweis:

Angenommen, 2n + 5 = 6.

Dann gälte $n = \frac{6-5}{2} = \frac{1}{2} \notin \mathbb{Z} \Rightarrow \exists n \notin \mathbb{Z}(2n+5 \in \mathbb{Z}) \square$ g ist nicht bijektiv, da g nicht surjektiv ist.

2. c)

h ist nicht injektiv, da h(-2) = 9 = h(2).

h ist nicht surjektiv, da $n \notin \mathbb{Z}$ für $(2n^2 + 5 = 2)$.

Beweis:

$$n^2 + 5 = 2 \Leftrightarrow n^2 = -3 \Leftrightarrow n = \sqrt{3} \Rightarrow n \notin \mathbb{Z} \square.$$

h ist nicht bijektiv, da h weder injektiv noch surjektiv ist.

3

3. a)

Behauptung: f ist injektiv.

Beweis:

Angenommen, f wäre nicht injektiv. Dann gäbe es $m, n \in \mathbb{Z}$ mit $m \neq n$, für die gälte:

Tobias Knöppler 31.10.2014

$$f(m) = f(n)$$

$$\Rightarrow \text{If } m^2 - 5 = n^2 - 5 \Leftrightarrow m = \pm \sqrt{n^2} = \pm n = * - n$$

$$\text{IIf } (m^2 - 2)^2 = (n - 2)^2$$

$$\text{m in II } (-n - 2)^2 = (n - 2)^2$$

$$n^2 + 4n + 4 = n^2 - 4n + 4$$

$$4n = -4n \Leftrightarrow 4 = -4 \neq 4$$

Damit ist die Annahme, es gäbe $m, n \in \mathbb{Z}$ mit $m \neq n$, für die gilt: f(m) = f(n) zum Widerspruch geführt und bewiesen, dass f injektiv ist. \square

f ist nicht surjektiv, da es z.B. kein $m \in \mathbb{Z}$ gibt, für das gilt: f(m) = (-7, 4).

Beweis:

Angenommen, es gäbe ein $m \in \mathbb{Z}$, für das gilt: f(m) = (-7, 4).

Dann gälte:

I
$$m^2 - 5 = -7 \Leftrightarrow m = \pm \sqrt{-2}$$

II
$$(m-2)^2 = 4 \Leftrightarrow m=4$$

Da $m \neq 4\sqrt{-2}$, ist die Annahme widerlegt, es gäbe ein $m \in \mathbb{Z}$ mit f(m) = (-7,4) und bewiesen, dass f nicht surjektiv ist. \square

f ist nicht bijektiv, da f nicht surjektiv ist.

3. b)

g ist nicht injektiv, da g(2,2) = 10 = g(2,-2).

g ist surjektiv, da gilt: $\forall a \in \mathbb{Z} \exists n (q(0, n) = a)$.

Beweis:

Sei m = 0. Dann gilt für f(m, n) = -n.

Wegen $(n \in \mathbb{Z} \Rightarrow -n \in \mathbb{Z})$ folgt somit $\forall a \in \mathbb{Z} \exists m \exists n (f(m, n) = a)$.

Damit ist g surjektiv. \square

g ist nicht bijektiv, da g nicht injektiv ist.

3. c)

h ist nicht surjektiv, da es keine $m, n \in \mathbb{Z}$ gibt, für die gilt: f(m, n) = (2, -1).

Beweis:

Angenommen, es gäbe, $m, n \in \mathbb{Z}$, sodass h(m, n) = (2, 1), dann gälte:

I
$$3m - n = 2 \Leftrightarrow m = \frac{2-n}{3}$$

$$II -3m + n = 1$$

m in II
$$-3 \cdot \frac{2-n}{3} + n = 1 \Leftrightarrow -2 + n + n = 1 \Leftrightarrow n = 1$$

^{*} gilt wegen der Annahme, dass m \neq n seien.

Tobias Knöppler 31.10.2014

n in I $\frac{2-1}{3} = \frac{1}{3} \notin \mathbb{Z}$ lightning

Damit ist die Annahme, es existierten m, n, sodass h(m, n) = (2, 1), zum Widerspruch geführt und bewiesen, dass h nicht surjektiv ist.

h ist nicht bijektiv, da h weder injektiv noch surjektiv ist.

4

Behauptung: $\forall n \in \mathbb{N}(\sum_{i=1}^{n} (2i-1) = n^2)$

I Induktionsanfang:

Behauptung:
$$\exists n(\sum_{i=1}^{n}(2i-1)=n^2)$$

Beweis: Es sei
$$n=1$$
. Dann ist $\sum_{i=1}^{i} (2i-1=2\cdot 1-1=(n+1)^2$. \square

II Induktionsschritt:

Induktionsannahme:
$$(\sum_{i=1}^{n} (2i-1) = n^2 \Rightarrow \sum_{i=1}^{n+1} (2i-1) = (n+1)^2)$$

Beweis:
$$\sum_{i=1}^{n+1} (2i-1) \Leftrightarrow 2(n+1)-1+\sum_{i=1}^{n} (2i-1) \Leftrightarrow 2n+1+\sum_{i=1}^{n} (2i-1)=(n+1)^2=n^2+2n+1=n^2+2n+1 \Leftrightarrow \sum_{i=1}^{n} (2i-1)=n^2 \square.$$