Теорема о корректности формальной арифметики

Два вида индукции

Определение

(Принцип математической индукции) Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.

Определение

(Принцип полной математической индукции) Какое бы ни было $\psi(x)$, если $\psi(0)$ и при всех x выполнено $(\forall t.x < t \to \psi(x)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема

Принципы математической индукции эквивалентны

Доказательство.

 (\Rightarrow) взяв $\varphi:=\psi$, имеем выполненность $\varphi(x) o \varphi(x')$, значит, $\forall x.\psi(x)$.

Два вида индукции

Определение

(Принцип математической индукции) Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.

Определение

(Принцип полной математической индукции) Какое бы ни было $\psi(x)$, если $\psi(0)$ и при всех x выполнено $(\forall t.x < t \to \psi(x)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема

Принципы математической индукции эквивалентны

Доказательство.

- (\Rightarrow) взяв $\varphi:=\psi$, имеем выполненность $\varphi(x) o \varphi(x')$, значит, $\forall x.\psi(x)$.
- (\Leftarrow) возьмём $\psi(x):=orall t.t \leq x
 ightarrow arphi(t)$

Трансфинитная индукция

Теорема

Принцип трансфинитной индукции. Если для $\varphi(x)$ — некоторого утверждения теории множеств — выполнено:

- 1. $\varphi(\varnothing)$
- 2. Если $\forall u.u \in v \to \varphi(u)$, то $\varphi(v)$ (где v это ординал) то $\forall u.\varphi(u)$

Индукция для натуральных чисел

Лемма

Свойство индукции выполнено для натуральных чисел: если $\varphi(0)$ и $\forall x \in \mathbb{N}_0.f(x) \to f(x')$, то $\forall x \in \mathbb{N}_0.f(x)$.

Доказательство.

Пусть $\varphi(\varnothing)$ и $\forall u.(u \in \omega) \to \varphi(u) \to \varphi(u')$. Рассмотрим $\tau(n) = \forall u.u \in n \to \varphi(u)$. Очевидно, что если $m \in n$, то $\tau(n) \to \tau(m)$. Значит, выполнены условия принципа трансфинитной индукции для ω , отсюда $\tau(\omega)$, отсюда $\forall u.(u \in \omega) \to \varphi(u)$.

Исчисление S_{∞}

- 1. Язык: связки \neg , \lor , \forall ; нелогические символы: (+), (\cdot) ,('),(-).
- 2. Аксиомы: все истинные формулы вида $\theta_1=\theta_2$; все истинные отрицания формул вида $\neg \theta_1=\theta_2$ (θ_i термы без переменных).
- 3. Структурные (слабые) правила:

$$\frac{\zeta \vee \alpha \vee \beta \vee \delta}{\zeta \vee \beta \vee \alpha \vee \delta} \qquad \frac{\alpha \vee \alpha \vee \delta}{\alpha \vee \delta}$$

сильные правила

$$\frac{\delta}{\alpha \vee \delta} \quad \frac{\neg \alpha \vee \delta \quad \neg \beta \vee \delta}{\neg (\alpha \vee \beta) \vee \delta} \quad \frac{\alpha \vee \delta}{\neg \neg \alpha \vee \delta} \quad \frac{\neg \alpha[x := \theta] \vee \delta}{(\neg \forall x . \alpha) \vee \delta}$$

и ещё два правила ...

Ещё правила S_{∞}

бесконечная индукция

$$\frac{\alpha[x := \overline{0}] \lor \delta \quad \alpha[x := \overline{1}] \lor \delta \quad \alpha[x := \overline{2}] \lor \delta \quad \dots}{(\forall x . \alpha) \lor \delta}$$

сечение

$$\frac{\zeta \vee \alpha \qquad \neg \alpha \vee \delta}{\zeta \vee \delta}$$

Здесь:

lpha — секущая формула

Число связок в $\neg \alpha$ — степень сечения.

Дерево доказательства

- 1. Доказательства образуют деревья.
- 2. Каждой формуле в дереве сопоставим порядковое число (ординал).
- 3. Порядковое число заключения любого неструктурного правила строго больше порядкового числа его посылок (больше или равно в случае структурного правила).

$$\frac{\overline{0=0}}{\overline{0=0}} \quad \frac{\overline{0=0}}{\overline{0'=0'}} \quad \frac{\overline{0'=0'}}{\overline{0''=0''}} \dots \\
(\forall a.a = a)_{\omega} \qquad \overline{0=0} \quad \overline{0'=0'} \quad \overline{0''=0''} \quad \dots$$

4. Существует конечная максимальная степень сечения в дереве (назовём её степенью вывода).

Любая теорема Φ .А. — теорема S_{∞}

Теорема

Если $\vdash_{\phi a} \alpha$, то $\vdash_{\infty} |\alpha|_{\infty}$

Теорема

Eсли Φ .A. противоречива, то противоречива и S_{∞}

Пример

Обратное неверно:

$$\frac{\neg \omega(\overline{0}, \lceil \sigma \rceil) \qquad \neg \omega(\overline{1}, \lceil \sigma \rceil) \qquad \neg \omega(\overline{2}, \lceil \sigma \rceil) \qquad \dots}{\forall x. \neg \omega(x, \lceil \sigma \rceil)}$$

Обратимость правил

Теорема

Если формула α доказана и имеет вид, похожий на заключение правил де Моргана, отрицания и бесконечной индукции — то посылки соответствующих правил могут быть получены из самой формулы α доказательством, причём доказательством с не большей степенью и не большим порядком.

Доказательство.

Например, формула вида $\neg\neg\alpha\lor\delta$.

Обратимость правил

Теорема

Если формула α доказана и имеет вид, похожий на заключение правил де Моргана, отрицания и бесконечной индукции — то посылки соответствующих правил могут быть получены из самой формулы α доказательством, причём доказательством c не большей степенью и не большим порядком.

Доказательство.

Например, формула вида $\neg\neg\alpha\lor\delta$.

Проследим историю α ; она получена:

- 1. ослаблением заменим $\neg\neg\alpha$ на α в этом узле и последующих.
- 2. отрицанием выбросим правило, заменим $\neg\neg\alpha$ на α в последующих.

Изменённый вывод — доказательство требуемого.

Устранение сечений

Теорема

Если α имеет вывод степени m>0 порядка t, то можно найти вывод степени строго меньшей m с порядком 2^t .

Доказательство.

Трансфинитная индукция по порядку t.

- 1. База. Если t=0, то неструктурных правил нет, отсюда m=0.
- 2. Переход. Рассмотрим заключительное правило.
 - 2.1 Не сечение.
 - 2.2 Сечение, секущая формула элементарная.
 - 2.3 Сечение, секущая формула $\neg \alpha$.
 - **2.4** Сечение, секущая формула $\alpha \lor \beta$.
 - 2.5 Сечение, секущая формула $\forall x.\alpha$.

Случай 1. Не сечение

$$\frac{\pi_{t_0} \quad \pi_{t_1} \quad \pi_{t_2} \quad \dots}{\alpha}$$

Заменим доказательства посылок π_i по индукционному предположению.

- 1. Если $m_i' < m_i$, то $\max m_i' < \max m_i$
- 2. Если $t_i \leq t$, то $2^{t_i} \leq 2^t$.

Случай 2.4. Сечение с формулой вида $\forall x.\alpha$

$$\frac{\zeta \vee \forall x.\alpha \qquad \neg(\forall x.\alpha) \vee \delta}{\zeta \vee \delta}$$

Причём степень и порядок выводов компонент, соответственно, (m_1, t_1) и (m_2, t_2) .

- 1. По индукции, вывод $\zeta \vee \forall x.\alpha$ можно упростить до $(m_1', 2^{t_1})$.
- 2. По обратимости, для постоянного θ можно построить вывод $\zeta \vee \alpha[x := \theta]$ за $(m'_1, 2^{t_1})$.
- 3. В формуле $(\neg \forall x.\alpha) \lor \delta$ формула $\neg \forall x.\alpha$ получена либо ослаблением, либо квантификацией из $\neg \alpha[x := \theta_k] \lor \delta_k$.
 - 3.1 Каждое правило квантификации заменим на:

$$\frac{\zeta \vee \alpha[\mathsf{x} := \theta_k] \quad (\neg \alpha[\mathsf{x} := \theta_k]) \vee \delta_k}{\zeta \vee \delta_k}$$

- 3.2 Остальные вхождения $\neg \forall x. \alpha$ заменим на ζ (в правилах ослабления).
- 4. В получившемся дереве меньше степень так как в $\neg \alpha[x := \theta]$ меньше связок, чем в $\neg \forall x.\alpha$.
- 5. Нумерацию можно также перестроить.

Теорема об устранении сечений

Определение

Итерационная экспонента

$$(a\uparrow)^m(t)=\left\{ egin{array}{ll} t, & m=0 \ a^{(a\uparrow)^{m-1}(t)}, & m>0 \end{array}
ight.$$

Теорема

Если $\vdash_\infty \sigma$ степени m порядка t, то найдётся доказательство без сечений порядка $(2\uparrow)^m(t)$

Доказательство.

В силу конечности m воспользуемся индукцией по m и теоремой об уменьшении степени.

Теорема \mathcal{S}_{∞} непротиворечива

Доказательство.

Теорема

Система S_{∞} непротиворечива

Доказательство.

Теорема

Система S_{∞} непротиворечива

Доказательство.

Рассмотрим формулу $\neg 0=0$. Если эта формула выводима в S_{∞} , то она выводима и в S_{∞} без сечений. Тогда какое заключительное правило?

1. Правило Де-Моргана?

Теорема

Система S_{∞} непротиворечива

Доказательство.

Рассмотрим формулу $\neg 0=0$. Если эта формула выводима в S_{∞} , то она выводима и в S_{∞} без сечений. Тогда какое заключительное правило?

1. Правило Де-Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание?

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания ($\neg \neg \alpha \lor \delta$).
- 3. Бесконечная индукция или квантификация?

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания $(\neg \neg \alpha \lor \delta)$.
- 3. Бесконечная индукция или квантификация? Нет квантора.

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания ($\neg \neg \alpha \lor \delta$).
- 3. Бесконечная индукция или квантификация? Нет квантора.
- 4. Ослабление?

Теорема

Система S_{∞} непротиворечива

Доказательство.

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции ($\neg(\alpha \lor \beta) \lor \delta$).
- 2. Отрицание? Нет двойного отрицания ($\neg \neg \alpha \lor \delta$).
- 3. Бесконечная индукция или квантификация? Нет квантора.
- **4**. Ослабление? Нет дизъюнкции ($\alpha \vee \delta$).

Теорема

Система S_{∞} непротиворечива

Доказательство.

Рассмотрим формулу $\neg 0=0$. Если эта формула выводима в S_{∞} , то она выводима и в S_{∞} без сечений. Тогда какое заключительное правило?

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания ($\neg \neg \alpha \lor \delta$).
- 3. Бесконечная индукция или квантификация? Нет квантора.
- **4**. Ослабление? Нет дизъюнкции $(\alpha \lor \delta)$.

То есть, неизбежно, $\neg 0 = 0$ — аксиома, что также неверно.