A Contrastive Divergence for Combining Variational Inference and MCMC

Francisco J. R. Ruiz* Michalis K. Titsias EMS 2019

Inference for Latent Variable Models

- ▶ Inference and learning in latent variable models
 - Probabilistic PCA
 - Matrix factorization
 - Variational autoencoders

-

Variational Inference

- Variational inference: Joint inference and learning
- ▶ Approximate the posterior $p_{\phi}(z \mid x) \approx q_{\theta}(z)$
- ▶ Factorization $q_{\theta}(z) = \prod_n q_{\theta}(z_n)$

Variational Inference

► Maximize the ELBO w.r.t. model and variational parameters

$$\mathcal{L}_{ ext{standard}} = \sum_n \mathbb{E}_{q_{\theta}(z_n)} \left[\log p_{\phi}(z_n, x_n) - \log q_{\theta}(z_n) \right]$$

▶ Equivalent to minimizing $\mathrm{KL}(q_{\theta}(z) \mid\mid p_{\phi}(z \mid x))$

Advantages of Variational Inference

- Amortization quickly forms an approximation of the posterior $p_{\phi}(z_n \mid x_n) \approx q_{\theta}(z_n \mid x_n)$
 - Reduces number of parameters
 - Improves scalability

Limitations of Variational Inference

- Approximation gap: $q_{\theta}(z_n | x_n)$ has parametric form (Gaussian)
- Amortization gap: the parameters of $q_{\theta}(z_n | x_n)$ are not optimal (they are a function of x_n)

This Work: Improve VI using MCMC

- ▶ VI: Scalable but might be inaccurate
- MCMC: Asymptotically unbiased but typically slower
- ► This work: Combine the advantages of both

Main Idea: Refine the Approximation with MCMC

- ► Goals:
 - Increase the expressiveness of the variational family
 - Improve a variational distribution $q_{\theta}(z)$
- ▶ Draw samples from $q_{\theta}(z)$ and refine them with MCMC
- Optimize $q_{\theta}(z)$ to provide a good initialization for MCMC
- ► For tractable inference: Replace the KL with the **VCD divergence**

Refine the Variational Distribution with MCMC

- Start from an *explicit* variational distribution, $q_{\theta}^{(0)}(z)$
- Improve the distribution with t MCMC steps,

$$z_0 \sim q_{\theta}^{(0)}(z), \qquad z \sim Q^{(t)}(z \,|\, z_0)$$

The MCMC sampler targets the posterior p(z|x)

Implicit distribution

$$q_{\theta}(z) = \int q_{\theta}^{(0)}(z_0) Q^{(t)}(z \mid z_0) dz_0$$

Challenges of Using MCMC in VI

$$\mathcal{L}_{\text{improved}}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}(z) \right]$$

- ► Challenge #1: The variational objective becomes intractable
- lacktriangle Challenge #2: The variational objective may depend weakly on heta

$$q_{\theta}(z) \xrightarrow{t \to \infty} p(z \mid x)$$

Alternative Divergence: VCD

- ▶ We would like an objective that avoids these challenges
- lacktriangle We call the objective Variational Contrastive Divergence, $\mathcal{L}_{\mathrm{VCD}}(heta)$
- Desired properties:
 - Non-negative for any θ
 - Zero only if $q_{\theta}^{(0)}(z) = p(z \mid x)$

Variational Contrastive Divergence

▶ Key idea: The improved distribution $q_{\theta}(z)$ decreases the KL

$$\mathrm{KL}(q_{ heta}^{(0)}(z)\mid\mid p(z\mid x))\geq \mathrm{KL}(q_{ heta}(z)\mid\mid p(z\mid x))$$
 (equality only if $q_{ heta}^{(0)}(z)=p(z\mid x)$)

► A first objective:

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$
 (it is a proper divergence)

12

Variational Contrastive Divergence

$$\mathcal{L}(\theta) = \mathrm{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \mathrm{KL}(q_{\theta}(z) \mid\mid p(z \mid x))$$

- ▶ Still intractable: $\log q_{\theta}(z)$ in the second term
- Add regularizer,

$$\mathcal{L}_{\text{VCD}}(\theta) = \underbrace{\text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x))}_{\geq 0} + \underbrace{\text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))}_{\geq 0}$$

(still a proper divergence)

Variational Contrastive Divergence

$$\mathcal{L}_{\text{VCD}}(\theta) = \text{KL}(q_{\theta}^{(0)}(z) \mid\mid p(z \mid x)) - \text{KL}(q_{\theta}(z) \mid\mid p(z \mid x)) + \text{KL}(q_{\theta}(z) \mid\mid q_{\theta}^{(0)}(z))$$

- Addresses Challenge #1 (intractability):
 - ► The intractable term $\log q_{\theta}(z)$ cancels out
- Addresses Challenge #2 (weak dependence):

Taking Gradients of the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- The first component is the (negative) standard ELBO
 - ▶ Use reparameterization or score-function gradients
- ▶ The second component is the new part,

$$\nabla_{\theta} \mathbb{E}_{q_{\theta}(z)}[g_{\theta}(z)] = -\mathbb{E}_{q_{\theta}(z)} \left[\nabla_{\theta} \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}^{(0)}(z_0)} \left[\mathbb{E}_{Q^{(t)}(z \mid z_0)}[g_{\theta}(z)] \nabla_{\theta} \log q_{\theta}^{(0)}(z_0) \right]$$
(can be approximated via Monte Carlo)

Algorithm to Optimize the VCD

$$\mathcal{L}_{\text{VCD}}(\theta) = -\mathbb{E}_{q_{\theta}^{(0)}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right] + \mathbb{E}_{q_{\theta}(z)} \left[\log p(x, z) - \log q_{\theta}^{(0)}(z) \right]$$

- 1. Sample $z_0 \sim q_{\theta}^{(0)}(z)$ (reparameterization)
- 2. Sample $z \sim Q^{(t)}(z \,|\, z_0)$ (run t MCMC steps)
- 3. Estimate the gradient $\nabla_{\theta} \mathcal{L}_{VCD}(\theta)$
- 4. Take gradient step w.r.t. θ

Toy Experiments

Optimizing the VCD leads to a distribution $q_{\theta}^{(0)}(z)$ with higher variance

$$\mathcal{L}_{\mathrm{VCD}}(\theta) \xrightarrow{t \to \infty} \mathrm{KL}_{\mathrm{sym}}(q_{\theta}^{(0)}(z)\;,\; p(z \,|\, x))$$

Experiments: Latent Variable Models

- ▶ Model is $p_{\phi}(x,z) = \prod_{n} p(z_n) p_{\phi}(x_n \mid z_n)$
- ► Amortized distribution $q_{\theta}(z_n | x_n) = \int Q^{(t)}(z_n | z_0) q_{\theta}^{(0)}(z_0 | x_n) dz_0$
- ▶ Goal: Find model parameters ϕ and variational parameters θ

method	average test log-likelihood MNIST Fashion-MNIST	
Explicit + KL Implicit + KL (Hoffman, 2017) VCD (this talk)	-111.20 -103.61 -101.26	-127.43 -121.86 - 121.11

(a) Logistic matrix factorization

	average test log-likelihood		
method	MNIST	Fashion-MNIST	
Explicit + KL	-98.46	-124.63	
Implicit + KL (Hoffman, 2017)	-96.23	-117.74	
VCD (this talk)	-95.86	-117.65	
(L) \/A F			

Impact of Number of MCMC Steps

▶ More MCMC steps: Models with better predictive performance

More MCMC steps: Higher computational cost

Conclusion

- **Expand** the variational family $q_{\theta}(z)$
- ► Key ideas: Define an *implicit* distribution
 - Improve the variational approximation with a few MCMC steps
 - Tractable inference by optimizing the VCD divergence
- Better predictive performance in latent variable models

This project is funded by the European Commission's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 706760