Никита Минеев 1

Методы оптимизации в ML, весна 2023. Домашнее задание 1

1. Выпуклые множества (1 балл)

- а) $X \cup Y$: Не сохраняет выпуклость; Контрпример: $X = \{x: 0 \leqslant x \leqslant 1\}$ отрезок от 0 до 1, $Y = \{y: 2 \leqslant x \leqslant 3\}$ отрезок от 2 до 3, Пусть x = 1, y = 2, тогда $z = \alpha \cdot 1 + (1 \alpha) \cdot 2 = 2 \alpha \notin X \cup Y$ при $\alpha = 0.5$
- b) $X \times Y$: Сохраняет выпуклость; Док-во: Пусть $a=(x_1,y_1)\in X\times Y,\, b=(x_2,y_2)\in X\times Y$ Тогда $\alpha a+(1-\alpha)b=(\alpha x_1+(1-\alpha)x_2,\alpha y_1+(1-\alpha)y_2)\in X\times Y,$ тк X и Y выпуклые.
- с) aX + bY: Сохраняет выпуклость; Док-во: Пусть $x_1, x_2 \in X, y_1, y_2 \in Y$. Тогда $x_3 = \alpha x_1 + (1-\alpha)x_2 \in X,$ $y_3 = \alpha y_1 + (1-\alpha)y_2 \in Y,$ $ax_1 + by_1 \in aX + bY,$ $ax_2 + by_2 \in aX + bY,$ $\alpha(ax_1 + by_1) + (1-\alpha)(ax_2 + by_2) = \alpha ax_1 + (1-\alpha)ax_2 + \alpha by_1 + (1-\alpha)by_2) = ax_3 + by_3 \in aX + bY.$
- d) aX: Сохраняет выпуклость; Док-во: как частный случай с) при b=0.
- е) X^c : Не сохраняет выпуклость; Контрпример: Пусть X=[0;1] отрезок от 0 до 1, Тогда $X^c=(-\inf;0)\cup(1;\inf),$ при $x=-1\in X^c,y=2\in X^c,$ $z=\alpha\cdot -1+(1-\alpha)\cdot 2=2-3\alpha\notin X^c$ при $\alpha=0.5$

2. Матрично-векторное дифференцирование (3 балла)

- 1. $f(x) = \log(x^TAx)$: $d(x^TAx) = \langle (A+A^T)x, dx \rangle$ док-во на лекции. $df(x) = d(\log(x^TAx)) = \frac{d(x^TAx)}{x^TAx} = \frac{\langle (A+A^T)x, dx \rangle}{x^TAx}$, $\nabla f(x) = \frac{(A+A^T)x}{x^TAx}$. Следовательно, правильный вариант b.
- 2. $f(x) = \frac{1}{p}||x||_2^p, p > 1$: $d||x||_2 = ||x||_2^{-1}\langle x, dx\rangle \text{док-во на лекции.}$ $df(x) = ||x||_2^{p-1}d||x||_2 = ||x||_2^{p-2}\langle x, dx\rangle,$

Никита Минеев 2

```
\begin{split} \nabla f(x) &= ||x||_2^{p-2} x. \\ d^2 f(x) &= d(||x||_2^{p-2} \langle x, dx_1 \rangle) = \\ \{\text{По правилу Лейбница}\} \\ &= d(||x||_2^{p-2}) \langle x, dx_1 \rangle + ||x||_2^{p-2} d(\langle x, dx_1 \rangle) = (p-2) ||x||_2^{p-3} ||x||_2^{-1} \langle x, dx_2 \rangle \langle x, dx_1 \rangle + \\ ||x||_2^{p-2} \langle dx_2, dx_1 \rangle &= \langle ((p-2)||x||_2^{p-4} xx^T + ||x||_2^{p-2} I_n) dx_1, dx_2 \rangle, \\ \nabla^2 f(x) &= ((p-2)||x||_2^{p-4} xx^T + ||x||_2^{p-2} I_n). \\ \text{Следовательно, правильные варианты: b, e.} \end{split}
```

3. $f(x) = \frac{1}{n} \sum \log(1 + e^{a_i^T x}) + \frac{\mu}{2} ||x||_2^2$: $\nabla \frac{\mu}{2} ||x||_2^2 = \mu \nabla \frac{1}{2} ||x||_2^2 = \mu I_n$ — как частный случай 2 при p = 2. $\sigma(x)$ — сигмоида, $\sigma'(x) = \sigma(x)(1 - \sigma(x))$. $d\langle a, x \rangle = \langle a, dx \rangle$ — док-во на лекции. $d \log(1 + e^{ax}) = \frac{d(1 + e^{ax})}{1 + e^{ax}} = \frac{e^{ax} \langle a, dx \rangle}{1 + e^{ax}} = \sigma(ax) \langle a, dx \rangle$. $d^2 \log(1 + e^{ax}) = d\sigma(ax) \langle a, dx_1 \rangle = \sigma(ax)(1 - \sigma(ax)) \langle a, dx_2 \rangle \langle a, dx_1 \rangle = \langle (\sigma(ax)(1 - \sigma(ax))aa^T)dx_1, dx_2 \rangle$, $\nabla^2 \log(1 + e^{ax}) = \sigma(ax)(1 - \sigma(ax))aa^T$. $\nabla^2 f(x) = \frac{1}{n} \sum \sigma(ax)aa^T - \sigma^2(ax)aa^T + \mu I_n = \frac{1}{n} \sum \frac{e^{ax}}{1 + e^{ax}}aa^T - \frac{e^{2ax}}{(1 + e^{ax})^2}aa^T + \mu I_n$. Следовательно, не верно.

3. Выпуклые функции (3 балла)

- (a) $f(x) = \sum e^{x_i}$; Док-во: e^x выпукла, тк $(e^x)'' = e^x > 0$. f(x) выпукла, как сумма выпуклых функций.
- (b) $f(x) = \frac{||Ax-b||^2}{1-||x||^2}, x \in \{x: ||x||^2 < 1\};$ Док-во: ||Ax-b|| выпукла как афинная подстановка в выпуклую функцию (норма выпукла, док-во на лекции), неотрицательна по свойству нормы, бесконечно дифференцируема. $1-||x||^2$ вогнута, тк норма выпукла, но после умножения на -1 ста-

новится вогнутой, положительна по условию.

f(x) — выпукла, как частный случай (с).

(c)
$$F(x) = \frac{f^2(x)}{g(x)}$$
,

f(x) – выпукла, неотрицательна, дважды дифф-ма,

g(x) – вогнута, положительна;

Док-во:

Док-во.
$$F(\alpha x + (1-\alpha)y) = \frac{(f(\alpha x + (1-\alpha)y))^2}{g(\alpha x + (1-\alpha)y)} \leqslant \frac{(\alpha f(x) + (1-\alpha)f(y))^2}{\alpha g(x) + (1-\alpha)g(y)}$$
 {По нер-ву Коши-Буняковского https://en.wikipedia.org/wiki/Sedrakyan% 27s_inequality}
$$\leqslant \alpha \frac{f^2(x)}{g(x)} + (1-\alpha) \frac{f^2(y)}{g(y)}, \text{ функция } F(x) \text{ выпукла.}$$

(d) aX:

Никита Минеев 3

(e) $f(x) = \sum w_i \ln(1 + e^{a_i^T x}) + \frac{\mu}{2} ||x||_2^2, \mu, w_i > 0$; Док-во: $(\ln(1 + e^x))'' = \frac{e^x}{(1 + e^x)^2} > 0$, следовательно функ-я выпукла. $a_i^T x$ — скалярное произведение выпукло(док-во на лекции). $\ln(1 + e^{a_i^T x})$ — выпукла как суперпозиция выпуклых функ-й. $||x||_2^2$ — выпукла (док-во на лекции). f(x) — выпукла как сумма выпуклых функций с полож. весами.

(f) $f(x) = \ln \sum e^{\max\{0,x_i\}^2}$; Док-во: $\max\{0,x_i\} - \text{выпукла как максимум выпуклых функ-й.}$ $x^2 - \text{выпукла, тк вторая производная неотрицательна.}$ $g(\alpha x + (1-\alpha)y) = \ln \sum e^{\alpha x_i + (1-\alpha)y_i} = \ln \sum (e^{x_i})^{\alpha} (e^{y_i})^{(1-\alpha)}$ По нер-ву Гельдера при $p = \frac{1}{\alpha}, q = \frac{1}{1-\alpha}$ $\leqslant \alpha \ln \sum e^{x_i} + (1-\alpha) \ln \sum e^{y_i} - g(x)$ выпукла. f(x) – выпукла как суперпозиция выпуклых функ-й.

4. (1 балл) Посчитайте субдифференциал функции $f(x) = |c^Tx|, x \in \mathbb{R}^n$

Аналогично примеру из лекции с функцией $f(x)=\sum_1^m|a^Tx-b|$: $f(x)=|c^Tx|=\max\{c^Tx,-c^Tx\}$ — выпуклая функ-я.

$$\partial f(x) = \begin{cases} \mathbf{c}, & \text{if } c^T x > 0. \\ -\mathbf{c}, & \text{if } c^T x < 0. \\ [-\mathbf{c}, \ \mathbf{c}] - \mathbf{в} \mathbf{b} \mathbf{n} \mathbf{y} \mathbf{k} \mathbf{n} \mathbf{a} \mathbf{s} \text{ оболочка -c } \mathbf{u} \ \mathbf{c} & \text{if } c^T x = 0. \end{cases} \tag{1}$$

5. (1 балл) Посчитайте субдифференциал функции $f(x) = ||x||_1, x \in \mathbb{R}^n$

Аналогично примеру из лекции с функцией $f(x) = \sum_{1}^{m} |a^{T}x - b|$: e_{i} – нулевой вектор с 1 на ім месте.

$$f(x) = ||x||_1 = \sum |x_i| = \sum |e_i^T x| = \sum \max\{e_i^T x, -e_i^T x\}$$
 – выпуклая функ-я.

$$\partial |e_i^T x| = \begin{cases} e_i, & i \in \{i : e_i^T x > 0\} = I_+(x). \\ -e_i, & i \in \{i : e_i^T x < 0\} = I_-(x). \end{cases}$$
(2)
[-e_i, e_i] – вып. оболочка $i \in \{i : e_i^T x = 0\} = I_0(x).$

$$\partial f(x) = \sum_{i \in I_{+}(x)} e_i - \sum_{i \in I_{-}(x)} e_i + \sum_{i \in I_{0}(x)} [-e_i, e_i].$$

6. (1 балл) Определите константы μ и L для функции $f(x) = ||x||_2^2$

$$f(x) = ||x||_2^2 = x^T x,$$

 $\nabla f(x) = 2x$ – док-во на лекции.

 $||\nabla f(x) - \nabla f(y)|| = 2||x - y||$ – получаем по определению L = 2.

Для определения μ используем Теорему 6 из лекции 2:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle = 2\langle x - y, x - y \rangle = 2||x - y||^2$$
 – получаем $\mu = 2$.