b) 用数据选择器 74151+门电路实现

结合 151 功能得到逻辑表达式:

$$S_2 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ \overline{A0}$$
 $S_1 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ \overline{A0} + A2 \ \overline{A1} \ A0 + A2 \ \overline{A1} \ \overline{A0}$
 $S_0 = \overline{A2} \ \overline{A1} \ A0 + \overline{A2} \ A1 \ A0 + A2 \ \overline{A1} \ A0 + A2 \ A1 \ A0$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

c) 用三八译码器 74138+门电路实现

结合 138 功能得到逻辑表达式:

$$S_2 = \cdot \overline{D_1 \cdot D_2 \cdot D_3 \cdot D_4}$$

$$S_1 = \overline{D_1 \cdot D_2 D_5 \cdot D_6}$$

$$S_2 = \overline{D_1 \cdot D_3 \cdot D_5 \cdot D_5}$$

根据表达式画出逻辑原理图:

预搭接硬件连接图 (实物连线拍照):

3、 人类有四种血型: A、B、AB 和 O 型。输血时,输血者与受血者必须符合下图的规定,否则有生命危险,利用数据选择器和最少数量的与非门,完成血型配对任务。

设 01 (或 10,00,目的最简) 代表 A 型血, 10 代表 B 型血, 00 代表 O 型血, 11 代表 AB 型血, A1B1 1 代表输血, A2B2 0 代表受血, Y 代表输出。列出真值表:

A1	B1	输血	A2	B2	受血	Υ
0	0	1	0	0	0	1
		1	0	1	0	1
		1	1	0	0	1
		1	1	1	0	1
0	1	1	0	0	0	0
		1	0	1	0	1
		1	1	0	0	0
		1	1	1	0	1
1	0	1	0	0	0	0
		1	0	1	0	0
		1	1	0	0	1
		1	1	1	0	1
1	1	1	0	0	0	0
		1	0	1	0	0
		1	1	0	0	0
		1	1	1	0	1

得到卡诺图,并降维化简:

14-41 ::	>1111:1 1=14:			
A1B1\A2B2	00	01	11	10
00 <	1	*		1
01		1	1	
11			1	
10			1	1
	_	_	~	

$$Y=\overline{A_1}~\overline{B_1}+A_2B_2+A_2\overline{B_1}+\overline{A_1}B_2$$

结合 74151 数据选择器的逻辑表达式:

$$Y=(A_2+\overline{A_1})B_2+(\overline{A_1}\ \overline{B_1}+A_2\overline{B_1})\overline{B_2}$$

其中 A₁B₁A₂ 对应 74151 的 421 接口

$$Y=(A_2+\overline{A_1})B_2\ (\overline{A_1}\ \overline{B_1}+A_2\overline{B_1})\overline{B_2}$$

对于 B2 对应的 74151

A1	B1	A2	74151 输出
0	0	0	1
0	0	1	1
0	1	0	1

0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

对于 B2 非对应的 74151

A1	B1	A2	74151 输出
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

逻辑原理图

4、选做实验 保险箱数字密码锁

设计一个保险箱的数字密码锁,该锁有规定的 4 位代码 A1, A2, A3, A4 的输入端和一个开箱钥匙孔信号 E 的输出端,锁的代码由实验者自编(例如 1011),当用钥匙开箱时(E=1),如果输入代码符合锁规定代码,保险箱被打开(Z1=1);如果不符,电路将发生报警信号(Z2=1)。要求使用最少数量的与非门实现电路,检测并记录实验结果

设置密码为 1011,根据要求列出真值表:

A1	A2	A3	A4	E	Z1	Z2
无意义	无意义	无意义	无意义	0	0	0
0	0	0	0	1	0	1
				1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	1	0	1
				1	0	1
1	1	1	1	1	0	1

卡诺图:

A1A2\A3A4	00	01	11	10
00				
01				
11				
10			1	

根据卡诺图得到表达式:

$$Z1 = EA1\overline{A2}A3A4$$

$$Z2 = EA1\overline{A2}A3A4E$$

根据表达式画出原理图:

