Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка методики оценивания шансов на поступление в ЛЭТИ с учётом приоритезации

Автор: Минуллин Михаил, студент гр. 7381

Научный руководитель: Самойленко В.П., к.т.н., доцент каф. МОЭВМ

Консультант: Борисенко К. А., к.т.н., ст. преподаватель каф. МОЭВМ

Актуальность

Количество поданных заявлений на поступление

Цель и задачи

Цель:

Автоматизация процесса оценивания минимальных проходных баллов и шансов на поступление абитуриентов для проведения более прозрачной приёмной кампании

Задачи:

- Обработка данных приёмной комиссии
- Создание методик оценивания
- Асимптотическая оценка методик
- Проверка методик
- Создание демонстрационного приложения

Обработка данных приёмной комиссии

Создание методик оценивания

Параметр	Описание
$n_i, n = \max_i n_i$	Количество абитуриентов на направлении \emph{i}
$m_i, m = \max_i m_i$	Количество бюджетных мест на направлении \emph{i}
k	Количество используемых приоритетов
l	Количество волн зачисления
N_i	Номер последнего зачисленного абитуриента из ранжированного списка на направление \emph{i}
$p_i = \frac{m_i}{N_i}$	Параметр, определяющий заинтересованность направлением \emph{i} .

Создание методик оценивания. Схема Бернулли

• Шансы абитуриента на 1 выбранное направление:

$$P_{1}(x,m) = \begin{cases} \sum_{i=0}^{m-1} {x-1 \choose i} p^{i} (1-p)^{x-i-1}, x > m \\ 1, x \le m \end{cases}$$

• Шансы абитуриента на k выбранных направлений:

$$P(x, m, k) = \begin{cases} P_1(x_1, m_1), k = 1\\ (1 - P(x, m, k - 1))P_1(x_k, m_k), k > 1 \end{cases}$$

Создание методик оценивания. Метод Монте-Карло

ullet Шансы абитуриента на k выбранных направлений

$$P_{2}(x,k) = \begin{cases} \sum_{C' \in C} \prod_{x \in C'} P_{1}(x,k) \times P_{2}(x,k) \\ \frac{\sum_{C'' \in \mathcal{P}(A)} \prod_{x \in C''} P_{1}(x,k) \times P_{2}(x,k)}{\sum_{C'' \in \mathcal{P}(A)} \prod_{x \in C''} P_{1}(x,k) \times P_{2}(x,k)}, x > m \end{cases}$$

Параметр	Описание
$A = \{1; 2;; x\}$	Множество номеров абитуриентов
$C = \{B \in \mathcal{P}(A) \colon B \le m - 1\}$	Все подмножества абитуриентов с поданными согласиями на поступление

Асимптотические оценка методик

Схема Бернулли:

Метод Монте-Карло:

Операция	Сложность	Операция	Сложность
Предподсчёт:	O(nm)	Предподсчёт:	O(nm)
Один абитуриент:	$O(m \log n)$	Одна итерация:	$O(n^2k)$
Все абитуриенты:	$O(klm\log n)$	Все итерации:	$O(2^n n^2 k)$
Память:	O(nm)	Память:	O(nm)

Проверка методик

Факультет	Точность прогнозирования минимальных проходных баллов			
	2017	2018	2019	2020
ГФ	83.3%	92.4%	99.2%	9.8%
ФИБС	87.0%	86.5%	87.8%	27.7%
ФКТИ	89.5%	87.5%	81.3%	24.7%
ФРТ	80.0%	96.8%	80.2%	34.1%
ФЭА	79.4%	92.4%	89.3%	36.2%
ФЭЛ	84.4%	93.2%	86.4%	21.8%
Средняя точность:	82.9%	83.9%	81.9%	28 . 1 %

Создание демонстрационного приложения. UML-диаграмма классов (beta)

Апробация работы

Ссылка на исходный код:

https://github.com/Fikafusik/BachelorRecommender

Заключение

Выводы:

- Предложены методики оценивания шансов на поступление с помощью схемы Бернулли и методом Монте-Карло, оценены их вычислительные сложности и точность
- Создано демонстрационное приложение

Направление дальнейшего развития:

• Создания инструмента, интегрированного в раздел для поступления сайта ЛЭТИ, привязанного к существующей базе данных приёмной комиссии

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Благодарю за внимание!

Автор: Минуллин Михаил, студент гр. 7381

Научный руководитель: Самойленко В.П., к.т.н., доцент каф. МОЭВМ

Консультант: Борисенко К. А., к.т.н., ст. преподаватель каф. МОЭВМ

Даты приказов о зачислении

Волна			Дата приказа		
зачисления	2016	2017	2018	2019	2020
0	28.07	28.07	28.07	28.07	22.09
1	01.08	02.08	02.08	01.08	24.09
2	07.08	07.08	07.08	07.08	26.09

Порядки значений параметров

Параметр	Порядок, $[\log_{10} \min p$; $\log_{10} \max p]$
n	[3; 5]
m	[1; 3]
k	[0; 1]
l	[0; 1]