Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

Answer:

Adjacency Matrix (A):

•		•		` '				
	1	2	3	4	5	6	7	8
1	0	1	0	0	0	0	0	1
2	1	0	1	0	0	0	0	1
3	0	1	0	1	0	0	1	0
4	0	0	1	0	1	1	0	0
5	0	0	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0
7	0	0	1	0	0	1	0	1
8	1	1	0	0	0	0	1	0

No of non-zero entries = 22; Sum of all entries = 22

Degree Matrix (D):

	1	2	3	4	5	6	7	8
1	2	0	0	0	0	0	0	0
2	0	3	0	0	0	0	0	0
3	0	0	3	0	0	0	0	0
4	0	0	0	3	0	0	0	0
5	0	0	0	0	2	0	0	0
6	0	0	0	0	0	3	0	0
7	0	0	0	0	0	0	3	0
8	0	0	0	0	0	0	0	3

No of non-zero entries = 8; Sum of all entries = 8

Laplacian Matrix is L = D - A

	1	2	3	4	5	6	7	8
1	2	-1	0	0	0	0	0	-1
2	-1	3	-1	0	0	0	0	-1
3	0	-1	3	-1	0	0	-1	0
4	0	0	-1	3	-1	-1	0	0
5	0	0	0	-1	2	-1	0	0
6	0	0	0	-1	-1	3	-1	0
7	0	0	-1	0	0	-1	3	-1
8	-1	-1	0	0	0	0	-1	3

No of non-zero entries = 30; Sum of all entries = 0

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

Answer:

From the given graph, $A = \{B, C, E\}$; $B = \{A, C, D, E\}$; $C = \{A, B, E\}$; $D = \{B, E\}$; $E = \{A, B, C, D\}$. Here B and E are having support more than A, C, D.

Bipartite subgraph of $K_{3,2}$ is:

Bipartite subgraph of $K_{2,2}$ is:

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for $p_{\mbox{\scriptsize A}}$ and $p_{\mbox{\scriptsize B}}.$

Answer:

Pa = Number of edges in the network / Total possible number of edges = 7/5c2 = 7/10. Pb = Number of edges in the network / Total possible number of edges = 9/6c2 = 9/15.