

Komunikasi Data dan Jaringan Komputer

D3 – Manajemen Informatika

Muhammad Iqbal, M.Kom, MTCNA, MTCRE, MTCWE, ACTR

ILMU KOMPUTER

Computer Hardware and Networking Laboratory
Jl. Prof. Dr. Ir Sumantri Brojonegoro No.1, Gedong Meneng,
Rajabasa, Bandarlampung, Lampung 35141

Email: muhammadiqbal@fmipa.unila.ac.id, iqdwita@gmail.com

Mobile: 081284387257

- MATA KULIAH : KOMUNIKASI DATA DAN JARINGAN KOMPUTER
- KODE MATA KULIAH: MIN516111
- SKS: 3(2-1)
- SEMESTER: 2

Outline

- Subnetting an IPv4 Network
- Addressing Schemes
- Design Considerations for IPv6
- Summary

Objectives

- Explain why routing is necessary for hosts on different networks to communicate.
- Describe IP as a communication protocol used to identify a single device on a network.
- Given a network and a subnet mask, calculate the number of host addresses available.
- Calculate the necessary subnet mask in order to accommodate the requirements of a network.
- Describe the benefits of variable length subnet masking (VLSM)
- Explain how IPv6 address assignments are implemented in a business network.

Reasons for Subnetting

Large networks need to be segmented into smaller sub-networks, creating smaller groups of devices and services in order to:

- Control traffic by containing broadcast traffic within subnetwork
- Reduce overall network traffic and improve network performance

Subnetting - process of segmenting a network into multiple smaller network spaces called subnetworks or **Subnets**.

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected to.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

IP Subnetting is FUNdamental

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Basic Subnetting

- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2^1 = 2$ subnets

Borrowing 1 Bit from the host portion creates 2 subnets with the same subnet mask

Subnet 0

Network 192.168.1.**0-127/25**

Mask: 255.255.255.**128**

Subnet 1

Network 192.168.1.128-255/25

Mask: 255.255.255.**128**

Subnets in Use

Address Range for 192.168.1.0/25 Subnet

Network 192.168.1.0-127/25

192.168.1.0/25 PC1 G0/0 PC2 G0/1 PC2 192.168.1.128/25

Subnet 1

Network 192.168.1.128-

255/25

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting Formulas

Calculate Number of Subnets

```
Subnets = 2^n
(where n = bits borrowed)
```


•Calculate Number of Hosts

```
Hosts = 2<sup>n</sup> (where n = host bits remaining)

192. 168. 1. 0 000 0000

7 bits remain in host field

2<sup>n</sup>7 = 128 hosts per subnet
```


Creating 4 Subnets

•Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Creating 8 Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

Net 0	Network	192.	168.	1.	000	0 0000	192.168.1.1
	Fist	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
Net 1	Network	192.	168.	1.	001	0 0000	192.168.1.32
	Fist	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	Fist	192.	168.	1.	010	0 0001	192.168.1.65
11012	Last	192.	168.	1.	010	1 1110	192.168.1.94
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.95
			100.		010		102: 100: 1:00
	Network	192.	168.	1.	010	0 0000	192.168.1.96
Net 3	Network Fist						
Net 3		192.	168.	1.	010	0 0000	192.168.1.96
Net 3	Fist	192. 192.	168. 168.	1.	010 010	0 0000 0 0001	192.168.1.96 192.168.1.97

Creating 8 Subnets(continued)

Net 4	Network	192.	168.	1.	100	0 0000	192.168.1.128
	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
11010	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
Net 7	Network	192.	168.	1.	111	0 0000	192.168.1.224
	Fist	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

Subnet Allocation

Subnetting Based on Host Requirements

There are two considerations when planning subnets:

- Number of Subnets required
- Number of Host addresses required
- Formula to determine number of useable hosts
 - -2^n-2
 - 2ⁿ (where n is the number the number of host bits remaining) is used to calculate the number of hosts
 - --2 Subnetwork ID and broadcast address cannot be used on each subnet

Determining the Subnet Mask Subnetting Network-Based Requirements

Calculate number of subnets

•Formula **2^n** (where **n** is the number of bits borrowed)

Subnet needed for each department in graphic

Determining the Subnet Mask

Subnetting To Meet Network Requirements

•It is important to balance the number of subnets needed and the number of hosts required for the largest subnet.

• Design the addressing scheme to accommodate the maximum number of

hosts for each subnet.

•Allow for growth in each subnet.

Determining the Subnet Mask Subnetting To Meet Network Requirements (cont)

Subnets and Addresses

```
10101100.00010000.00000000000000000 172.16.0.0/22
   10101100.00010000.00000000000000000 172.16.0.0/26
   10101100.00010000.0000000000.010000000 172.16.0.64/26
  10101100.00010000.000000000.10000000 172.16.0.128/26
   10101100.00010000.000000000.110000000 172.16.0.192/26
   10101100.00010000.000000001.00000000 172.16.1.0/26
   10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000001.10000000 172.16.1.128/26
                    Nets 7 – 14 not shown
15 10101100.00010000.000000<mark>11.10000000</mark> 172.16.3.128/26
16 10101100.00010000.000000 11.11 000000 172.16.3.192/26
                          2^4 = 16
                                   2^{6}-2=62
                          subnets
                                   Hosts per
                                   subnet
```


Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

- •Traditional subnetting same number of addresses is allocated for each subnet.
- •Subnets that require fewer addresses have unused (wasted) addresses. For example, WAN links only need 2 addresses.
- •Variable Length Subnet Mask (VLSM) or subnetting a subnet provides more efficient use of addresses.

Benefits of Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)

- •VLSM allows a network space to be divided in unequal parts.
- •Subnet mask will vary depending on how many bits have been borrowed for a particular subnet.
- •Network is first subnetted, and then the subnets are subnetted again.
- •Process repeated as necessary to create subnets of various sizes.

Benefits of Variable Length Subnet Masking Basic VLSM

VLSM Subnetting Scheme

```
11000000.10101000.00010100 .000 00000 192.168.20.0/24
  11000000.10101000.00010100 .000 00000 192.168.20.0/27
   11000000.10101000.00010100 .001 00000 192.168.20.32/27
                                                               LANs
  11000000.10101000.00010100.01000000 192.168.20.64/27
                                                               A, B, C, D
  11000000.10101000.00010100.01100000 192.168.20.96/27
   11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                              Unused/
   11000000.10101000.00010100 .101 00000 192.168.20.160/27
                                                              Available
   11000000.10101000.00010100 .110 00000 192.168.20.192/27
   11000000.10101000.00010100.11100000 192.168.20.224/27
  3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100.11100000 192.168.20.224/30
7:1 11000000.10101000.00010100 .111001 00 192.168.20.228/30
                                                              WANs
7:2 11000000.10101000.00010100 .111010 00 192.168.20.232/30
7:3 11000000.10101000.00010100 .11101100 192.168.20.236/30
7:4 11000000.10101000.00010100 .11110000 192.168.20.240/30
                                                               Unused/
7:5 11000000.10101000.00010100 .111101 00 192.168.20.244/30
                                                               Available
7:6 11000000.10101000.00010100 .111110 00 192.168.20.248/30
7;7 11000000.10101000.00010100 .111111100 192.168.20.252/30_
```


Benefits of Variable Length Subnet Masking

VLSM in Practice

- •Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- •Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets

Benefits of Variable Length Subnet Masking

VLSM Chart

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Blda A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

=

2

	/30 Network	Hosts	
WAN R1-R2	.224	.225226	
WAN R2-R3	.228	.229230	
WAN R3-R4	.232	.233234	
Unused	.236	.237238	
Unused	.240	.241242	
Unused	.244	.245246	
Unused	.248	.249250	
Unused	.252	.253254	

Structured Design Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Addresses for Clients - usually dynamically assigned using Dynamic Host Configuration Protocol (DHCP)

Network: 192.168.1.0/24

Sample Network Addressing Plan

Use	First	Last
Host Devices	.1	.229
Servers	.230	.239
Printers	.240	.249
Intermediary Devices	.250	.253
Gateway (router LAN interface)	.254	

Subnetting an IPv6 Network Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network


```
Address Block: 2001:0DB8:ACAD::/48
             2001:0DB8:ACAD:0000::/64
Increment
             2001:0DB8:ACAD:0001::/64
subnet ID to
             2001:0DB8:ACAD:0002::/64
create 65,536
             2001:0DB8:ACAD:0003::/64
subnets
             2001:0DB8:ACAD:0004::/64
             2001:0DB8:ACAD:0005::/64
             2001:0DB8:ACAD:0006::/64
             2001:0DB8:ACAD:0007::/64
             2001:0DB8:ACAD:0008::/64
             2001:0DB8:ACAD:0009::/64
             2001:0DB8:ACAD:000A::/64
             2001:0DB8:ACAD:000B::/64
             2001:0DB8:ACAD:000C::/64
                  Subnets 13 - 65,534 not shown
             2001:0DB8:ACAD:FFFF::/64
```


Subnetting an IPv6 Network

IPV6 Subnet Allocation

IPv6 Subnetting

Address Block: 2001:0DB8:ACAD::/48

5 subnets
allocated from
65,536 available
subnets

2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0008::/64

2001:0DB8:ACAD:FFFF::/64

IPv6 Subnet Allocation

Subnetting an IPv6 Network Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets

Subnetting on a Nibble Boundary

Summary

- Process of segmenting a network, by dividing it into to multiple smaller network spaces, is called subnetting.
- Subnetting a subnet, or using Variable Length Subnet Mask (VLSM) was designed to avoid wasting addresses.
- IPv6 address space is a huge address space so it is subnetted to support the hierarchical, logical design of the network not to conserve addresses.
- Size, location, use, and access requirements are all considerations in the address planning process.
- IP networks need to be tested to verify connectivity and operational performance.

Cisco | Networking Academy® Mind Wide Open™

Buku Referensi:

- William Stallings, Data and Computer Communications Sixth Edition, Prentice Hall. New Jersey, 2007.
- Onno W. Purbo, TCP/IP Standar Desain dan Implementasi. Elex Media Computindo, Jakarta, 1998.
- Cisco