MODERN FIZIKA LABORATÓRIUM

Spektroszkópia jegyzőkönyv

Mérést végezte: Kerekes Máté (T19I0R) Koroknai Botond (AT5M0G) Mérés időpontja: 2023.10.03

Jegyzőkönyv leadásának időpontja: 2023.10.16

Tartalomjegyzék:

1	A mérés célja és menete	2
2	A mérőeszközök	2
3	Mérés elve	2
4	Mérés kiértékelése 4.1 Az oldatok abropciós spektruma 4.2 Eltérő töménységű alapoldatok 4.3 Az oldat extinkciós állandója 4.4 A reakcióállandó hőmérsékletfüggése	4
5	Diszkusszió 5.1 Mérési hibák	6

1 A mérés célja és menete

Cél: A mérés során szalicilsav és vas-ammónium-szulfát reakciójának egyensúlyi állandóját és a képződő elegy extinkciós állandóját, illetve az egyensúlyi állandó hőmérsékletfüggését szerettük volna meghatározni.

Menete: Az első feladat során 10 különöző keverési arányú oldatot hoztunk létre, és a spektroszkópba helyezve különöző hullámhosszú fényekkel világítottuk őket meg és az oldaton áthaladt fény intenzítását vizsgáltuk. A második feladatban egy kiválasztott oldat intenzítását vizsgáltuk ismét, de most több különböző hőmérsékleten.

2 A mérőeszközök

- · Kémcsövek és küvetták
- Spektrofotométer
- Vas-ammónium-szulfát és szalicil sósav oldata

3 Mérés elve

A spektroszkópia lényege, hogy a mintára elektromágneses hullámot bocsátunk, és megmérjük az áthaladt sugárzás paramétereit. A mérés során 370 - 650 nanométer közötti hullámhosszokkal dolgoztunk. Az abszorbciós sávok meghatározását a Lambert-Beer törvény segítségével végeztük el

$$I = I_0 \cdot 10^{\frac{\varepsilon}{c}} \tag{1}$$

ahol I_0 a beeső fény intenzítása, c a vizsgált, ε az extinkciós együttható.

A méréshez használt anyagok együtt komplexet alkotnak:

$$F_e^{3+} + (sal^-) \rightleftharpoons F_e^{3+} + (sal^-)$$

Az asszociációs és disszociációs ráta egyenlő, a reakciókomponensek koncentrációja kapcsolatban áll. A Lambert-Beer törvényt felhasználva a reakcióállandó:

$$K = \frac{Ca_*}{(x - Ca_*)(y - Ca_*)} \tag{2}$$

x és y a vas, illetve a szalicil koncentrációja, $C=\frac{1}{l\varepsilon}$, itt l az optikai úthossz. A reakció hőmérsékletfüggő: endoterm esetben a hőmérséklet növelése elősegíti, míg exoterm esetben gátolja a komplexképződést. Ha ismerjük a reakcióállandó hőmérsékletfüggését, a reakcióhő a van't Hoff-összefüggés segítségével kiszámítható:

$$\left(\frac{d(\ln K)}{dT}\right)_{n} = \frac{Q}{kT^{2}} \tag{3}$$

ahol k a Boltzmann-állandó.

4 Mérés kiértékelése

4.1 Az oldatok abropciós spektruma

A maximumukat ábrázoltuk a keverési arány függvényében, majd illesztettünk rá egy

$$f(x, k, c) = \frac{k - \sqrt{k^2 - 1 + 4x^2}}{c}$$

alakú függvényt.

Fe-sav arány	keverési arány	a_*
1:9	-0.4	0.523
2:8	-0.3	0.925
3:7	-0.2	1.424
4:6	-0.1	1.855
5:5	0	2.156
6:4	0.1	2.161
7:3	0.2	1.611
8:2	0.3	0.959
9:1	0.4	0.871

k c érték: 1.024 0.369 hiba: 0.037 0.045 Ezen felül azokat is tudjuk, hogy

$$k = \frac{1+\kappa}{\kappa}$$

$$K = \frac{k}{c_0} = \frac{1}{(k-1)c_0}$$

ahol $c_0 = 2.5 mM$

A reakció állandó, így:

$$K = 16.666 \pm 0.602 \left[\frac{dm^3}{mM} \right]$$

A hibaszámítást a $\Delta K = K \cdot \left(\frac{\Delta k}{k}\right)$ képlettel végeztük, mivel c_0 hibája nem meghatározható.

4.2 Eltérő töménységű alapoldatok

A pontokra a mérés leírás alapján görbét illesztettünk, melynek paraméterei:

$$\begin{array}{c} \text{k} = 76.959 \pm 125.320 \\ \text{d} = 0.840 \pm 0.074 \\ \text{a} = 5.756 \pm 0.613 \end{array}$$

ahol a az a_* és z közti arányossági tényező. A d paraméter értéke kisebb mint 1, ebből arra következtethetünk, hogy a vas tömegegysége kisebb volt a savénál. Jelen estben k = κ , és $K = \frac{\kappa}{C_0}$, ezek alapján a reakcióállandó:

$$K=30.783\pm 50.128 \left[\frac{dm^3}{mM}\right]$$

Ahol a hiba szintén: $\Delta K = K \cdot \left(\frac{\Delta k}{k}\right)$

4.3 Az oldat extinkciós állandója

A mérés leírás alapján az extinkciós együttható értéke:

$$\varepsilon = \frac{a}{c_0 l}$$

ahol az optikai úthossz I = 1 cm volt. Ennek alapján:

$$\varepsilon = 2.302 \pm 0.245 \left[\frac{dm^3}{mM \cdot cm} \right]$$

A hibát a hibaterjedés képletével számoltuk:

$$\Delta \varepsilon = \varepsilon \cdot \left(\frac{\Delta a}{a}\right)$$

4.4 A reakcióállandó hőmérsékletfüggése

z számításához felhasználtuk a görbeillesztésből származó a paramétert.

$$z = \frac{a_- c_0}{a}$$

$$z = K(x - y)(y - z)$$

ahol x a vas, y pedig a szalicil koncentrációja. Ebből az egyensúlyi állandó:

$$K = \frac{z}{(x-z)(y-z)}$$

Fontos megjegyezni, hogy a vas koncentrációja 0.8 - szorosa a szalicilénak: $x=0.8\cdot y=0.8\cdot 0.5\cdot c_0=1mM$ A reakcióhőt a van't Hoff-összefüggés segítségével határoztuk volna meg, miszerint K $\sim e^{\frac{-Q}{kT}}$, ahol k a

T(K)	a_*	Z	K
303.15	2.248	0.976	11.142
308.15	2.246	0.975	10.724
313.15	2.223	0.965	7.854
318.15	2.221	0.964	7.658
323.15	2.247	0.975	10.724
328.15	2.270	0.985	17.401
333.15	2.260	0.981	13.888

Boltzmann-állandó . Ezek után az adtokra egy $f(T)=a\cdot e^{-b/T}$ alakú görbét kelett volna illesztettünk, melynek segítségével megkaptuk volna a reakció hőt.

5 Diszkusszió

A kiértékelés során kiszámolt adatok alapján azt láthatjuk, hogy voltak sikeres méréseink, viszont számos hiba is adódott, melynek megnyilvánulásai a nagy hiba értékek. Részünkről a hiba valószínűleg az oladtok keveréséből származott.

5.1 Mérési hibák

- Emberi hiba (oldat keverés)
- Mérőberendezés hibája (hőmérséklet függés)
- Illesztési hiba (eltérő tömegmennyiségű oldatok)