ps1

October 11, 2020

```
[25]: # importing libraries
import gurobipy as gpy
import numpy as np
import matplotlib.pyplot as plt
```

Dual problem presented in problem 1:

minimize $12\pi_1 + 8\pi_2$

subject to:

$$x_1: 4\pi_1 + \pi_2 \ge 1$$

 $x_2: \pi_1 + 2\pi_2 \ge 2$
 $x_3: 3\pi_1 - 2\pi_2 \ge -8$

0.0.1 Feasable region plot

Figure 1

0.0.2 Feasable solutions

Figure 2

As we can see in Figure 2, all feasable solutions lie in the feasable region's edge $x_2 : \pi_1 + 2\pi_2 = 2$. Such line segment has vertex (0,1), which is optimal. It has parametric equations:

$$(\pi_1^*, \pi_2^*) = (0, 1) + \lambda$$

Optimality condition 1: \mathbf{x}^* is primal feasable as it satisfies the inequalities in the primal problem

Optimality condition 2: π^* is dual feasable as it satisfies the inequalities in the dual problem

Optimality condition 3: Complementary slackness:

 $x_3: 3\pi_1 - 2\pi_2 \ge -8$ always holds

• therefore: $x_3 = 0$

Then we have:

$$4x_1 + x_2 = 12$$

$$x_1 + 2x_2 = 8$$

$$x_1 \ge 0, x_2 \ge 0$$

Solving for x_1 and x_2 :

$$x_2 = 12 - 4x_1$$

$$x_1 - 8x_1 + 24 = 8$$

$$-7x_1 = -16$$

Which results in:

$$\begin{array}{l} x_1 = \frac{16}{7} \\ x_2 = \frac{20}{7} \end{array}$$

$$x_2 = \frac{20}{7}$$

• therefore $\mathbf{x}^* = (\frac{16}{7}, \frac{20}{7}, 0)$

The reduced costs of the primal variables are computed as following:

$$\bar{c}_1 = 4\pi_1^* + \pi_2^* - 1 = 4\lambda + 1 - \frac{\lambda}{2} - 1 = \frac{7\lambda}{2}$$

$$\bar{c}_2 = \pi_1^* + 2\pi_2^* - 2 = \lambda + 2 - \lambda - 2 = 0$$

$$\bar{c}_2 = \pi_1^* + 2\pi_2^* - 2 = \lambda + 2 - \lambda - 2 = 0$$

$$\bar{c}_3 = 3\pi_1^* - 2\pi_2^* + 8 = 3\lambda - 2 - \lambda + 8 = 2\lambda + 6$$

Where π^* is a dual optimal solution - therefore, the reduced costs are not unique

primal problem:

maximize
$$x_1 + 2x_2 - 8x_3$$

subject to:

$$4x_1 + x_2 + 3x_3 = 12$$

$$x_1 + 2x_2 - 2x_3 = 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Let's consider $\pi^* = (\mathbf{0}, \mathbf{1})$ we have $x_3 = 0$ and then:

$$4x_1 + x_2 = 12 + \Delta b_1$$

$$x_1 + 2x_2 = 8 + \Delta b_2$$

Solving we get:

$$\hat{x}^* = (\frac{1}{7}(2\Delta b_1 - \Delta b_2 + 16), \frac{1}{7}(-\Delta b_1 + 4\Delta b_2 + 20), 0)$$

Imposing primal feasability returns:

$$2\Delta b_1 - \Delta b_2 \ge -16$$

$$-\Delta b_1 + 4\Delta b_2 \ge -20$$

As a result: if $\Delta b_1 = 0$ then $\Delta b_2 \in [-5, 16]$ and if $\Delta b_2 = 0$ then $\Delta b_1 \in [-8, 20]$

The primal problem only has one feasable solution, so the optimal solution \mathbf{x}^* remains optimal for the following modified problem:

maximize
$$(1 + \Delta r_1)x_1 + (2 + \Delta r_2)x_2 - (8 + \Delta r_3)x_3$$

subject to:

$$4x_1 + x_2 + 3x_3 = 12$$
$$x_1 + 2x_2 - 2x_3 = 8$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Following a standard analysis, we consider $\hat{\mathbf{x}}^* = (\frac{16}{7}, \frac{20}{7}, 0)$

By complementary slackness we formulate the following 2 systems of linear equations:

system 1:

$$4\pi_1 + \pi_2 = 1 + \Delta r_1$$

$$\pi_1 + 2\pi_2 = 2 + \Delta r_2$$

resulting in:

$$\hat{\pi}^* = (\frac{1}{7}(2\Delta r_1 - \Delta r_2), \frac{1}{7}(7 - \Delta r_1 + 4\Delta b_2))$$

Dual feasability means that:

$$3\hat{\pi}_1^* + 2\hat{\pi}_2^* + 8 - \Delta r_3 = \frac{1}{7}(42 + 8\Delta r_1 - 11\Delta r_2 - 7\Delta r_3)$$

and:

$$8\Delta r_1 - 11\Delta r_2 - 7\Delta r_3 \ge -42$$

So, if:

$$\Delta r_1 = 0, \Delta r_2 = 0$$
, then $\Delta r_3 \leq 6$

$$\Delta r_1 = 0, \Delta r_3 = 0, \text{ then } \Delta r_2 \leq \frac{42}{11}$$

$$\Delta r_2 = 0, \Delta r_3 = 0$$
, then $\Delta r_1 \ge \frac{-21}{4}$

system 2:

$$\pi_1 + 2\pi_2 = 2 + \Delta r_2$$
$$3\pi_1 - 2\pi_2 = -8 + \Delta r_3$$

resulting in:

$$\hat{\pi}^* = (\frac{1}{4}(-14 - 3\Delta r_2 + \Delta r_3), \frac{1}{4}(-20 - 2\frac{1}{2}\Delta r_2 + 2\frac{1}{2}\Delta r_3))$$

Dual feasability means that:

$$4\hat{\pi}_1^* + \hat{\pi}_2^* - 1 - \Delta r_1 = \frac{1}{4}(-98 - 4\Delta r_1 - 11\Delta r_2 + 9\Delta r_3)$$

and

$$-4\Delta r_1 - 11\Delta r_2 + 9\Delta r_3 \ge 98$$

So, if:

$$\Delta r_1 = 0, \Delta r_2 = 0$$
, then $\Delta r_3 \ge \frac{98}{9}$

$$\Delta r_1 = 0, \Delta r_3 = 0, \text{ then } \Delta r_2 \leq \frac{98}{11}$$

$$\Delta r_2 = 0, \Delta r_3 = 0, \text{ then } \Delta r_1 \le \frac{-49}{2}$$

Combining both cases we obtain that \mathbf{x}^* is optimal for any $\Delta r_j \in \mathbb{R}$

[]: