

支配树算法

- □ 直接支配节点(immediate dominance, idom)
 - 对于a≠b, a直接支配b: a dom b 且不存在c≠a并且c≠b的 节点c, 使得a dom c且c dom b。
- □ 计算直接支配节点算法
 - **Lengauer-Tarjan** Algorithm (before 2017, LLVM)
 - <u>Semi-NCA</u> Algorithm (2017至今, LLVM)
 - □ 相关源码
 - include/llvm/IR/Dominators.h
 - include/llvm/Support/GenericDomTree.h
 - include/llvm/Support/GenericDomTreeConstruction.h

[Lengauer-Tarjan Algorithm] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1):121–41, 1979.

[Semi-NCA Algorithm] Loukas Georgiadis, Renato F. Werneck, Robert E. Tarjan, Spyridon Triantafyllis, David I. August. Finding dominators in practice. European Symposium on Algorithms 2004: 677–688, 2004.

□ 深度优先先序遍历 ⇒ DFS Tree D

- 按照遍历顺序,对节点进行编号
- v < w: 遍历v在遍历w之前

□ 半必经路径 SDOM-PATH

$$P = (v_0 = v, v_1, v_2, ..., v_k = w)$$

且对于 $1 \le i \le k-1$, $v_i > w$, $v_0 < w$

如图所示对于节点5的半必经路径有:

4->5

注: $(v_0 = v, v_1, v_2, ..., v_{k-1})$ 为DFS上的路径 v_{k-1} 为 v_k 在图上的前驱

□ 半必经节点semidominators

 $sdom(w) = min\{v | \exists SDOM - path from v to w\}$

取w半必经路径中首点的最小值利用sdom(w)逼近idom(w)

如图所示对于节点5的半必经路径有:

4->5

$$sdom(5) = min\{2,4\} = 2$$

□ 单个半必经节点查找算法

- 对节点v进行以下操作
 - 1、找到所有前驱节点中序号最小的节点
 - 2、对序号大于v的前驱节点序号q若sdom(q) > v,设q=sdom(q),递归第2步查找若sdom(q) < v,返回q。
 - 3、求步骤1和2的最小值。

注意: 前驱节点对应于控制流图 SDOM-PATH 对应于 DFS Tree

Step 1: Initialisation

Number the vertices is depth first search order from 1 to n.

For each vertex v from 1 to n set:

```
parent[v] := DFS tree parent of v
succs[v] := list of successors
preds[v] := list of predecessors

semi[v] := v
idom[v] := 0
ancestor[v] := 0
best[v] := v
bucket[v] := 0
```

Steps 2 and 3

```
FOR w = n TO 2 BY -1 DO
       LET p = parent[w]
step2: FOR each v in preds[w] DO
       \{ LET u = EVAL(v) \}
         IF semi[w] > semi[u] DO
            semi[w] := semi[u]
       LINK(p, w)
```

http://www.cse.unt.edu/~sweany/CSCE5934/HANDOUTS/LengaurTarjanOverheads.pdf


```
LET EVAL(v) = VALOF
{ LET a = ancestor[v]
  WHILE ancestor[a] DO
  { IF semi[v] > semi[a] D0 v := a
    a := ancestor[a]
  // v is now a vertex
     with smallest semidominator
  // of any in the ancestor chain.
  RESULTIS v
LET LINK(v, w) BE ancestor[w] := v
```

Steps 2 and 3

http://www.cse.unt.edu/~sweany/CSCE5934/HANDOUTS/LengaurTarjanOverheads.pdf

1、初始化、DFS树建立

vertex	parent	ancestor	Sdom
0	-	_	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	Ø	6
7	6	Ø	7

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	Ø	6
7	6	Ø	7

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	Ø	6
7	6	Ø	7

v = pred[7]=6	w = 7;	DO	reds[w]	n pı	each v i	FOR e	step2:
l(6)=6	u = eva		1)	AL($\Gamma u = EV$	{ LET	
> semi[6]	semi[7]	DO	semi[u]	>	semi[w]	IF	
$[7] = \mathbf{semi}[6] = 6$	semi		semi[u]	:=	semi[w]		
						}	

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	Ø	6
7	6	Ø	6

LET LINK(v, w) BE ancestor[w] := v ancestor[7] = 6

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	Ø	6
7	6	6	6

v = pred[6]=2	w = 6;	DO	reds[w]	n pı	each v i	FOR 6	step2:
l(2)=2	u = eva		1)	AL($\Gamma u = EV$	{ LE	
> semi[2]	semi[6]	DO	semi[u]	>	semi[w]	IF	
[6] = semi[2] = 2	semi		semi[u]	:=	semi[w]		
						}	

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	5
6	2	2	2
7	6	6	6

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	4
6	2	2	2
7	6	6	6

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	4
6	2	2	2
7	6	6	6


```
LET EVAL(v) = VALOF
{ LET a = ancestor[v]

WHILE ancestor[a] D0
{ IF semi[v] > semi[a] D0 v := a
   a := ancestor[a]
}
```

v = 7; $a = ancestor[7] = 6$
While ancestor[6] do
semi[7]>semi[6] v=6
a = ancestor[6]=2
ancestor[2]= \emptyset ,退出返回 $v = 6$

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	4
6	2	2	2
7	6	6	6

pred[5] = $4/7$; $v = 7$	w = 5;	00	reds[w]]	n pi	each v i	FOR e	step2:
$\mathbf{al}(7) = 6$	u = eva	{ LET $u = EVAL(v)$					
> semi[6]	semi[5]	DO	semi[u]	>	semi[w]	IF	
i[5] = semi[6] = 2	Semi		semi[u]	:=	semi[w]		
						}	

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	Ø	2
6	2	2	2
7	6	6	6

LET LINK(v, w) BE ancestor[w] := v ancestor[5] = 4

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	Ø	1
2	1	Ø	2
3	2	Ø	3
4	3	Ø	4
5	4	4	2
6	2	2	2
7	6	6	6

5、类似方法处理4、3、2、1节点

vertex	parent	ancestor	Sdom
0	-	-	0
1	0	0	0
2	1	1	1
3	2	2	1
4	3	3	3
5	4	4	2
6	2	2	2
7	6	6	6

算法

- 先序构建深度优先树T
- 按照深度优先树节点编号逆序遍历,计算节点的sdom
- 按照先序遍历,计算节点的idom,同时建立支配树D $idom(v) = NCA_D(parent_T(v), sdom(w))$

Algorithm 6 Semi-NCA

- 1: Create a DFS tree T.
- 2: Calculate semidominator for w
- 3: Create a tree D and initialize it with r as the root.
- 4: for $w \in V \{r\}$ in preorder by the DFS do
- 5: Ascend the path $r \stackrel{*}{\to}_D parent_T(v)$ and find the deepest vertex which number is smaller than or equal to sdom(v). set this vertex as parent for v in D.
- 6: end for

Algorithms for Finding Dominators in Directed Graphs