1. $\frac{d}{dx}(\sqrt{x}+x^2+5)$

- (1) $\frac{1}{2x} + 2x$ (2) $\frac{1}{2\sqrt{x}} + 2x$
- (3) $\frac{1}{2\sqrt{x}} + 2x + 1$ (4) $\frac{1}{\sqrt{x}} + 2x$

$$2. \qquad \frac{d}{dx} \left(\frac{1}{x} + x^3 \right)$$

- (1) $-\frac{1}{x^2} + 3x^2$ (2) $-\frac{1}{x} + x^2$
- (3) $-\frac{1}{x^2} + x^2$ (4) Zero

$$3. \qquad \frac{d}{dx}(x^{5/2})$$

- (1) $\frac{5}{2}x$ (2) $\frac{5}{2}x^{3/2}$
- $(3) \quad \frac{5}{2}\sqrt{x}$

4.
$$\frac{d}{dx}(\sin 30^\circ)$$
 is equal to

- (1) $\cos 30^{\circ}$ (2) $\csc 30^{\circ}$
- (3) 0
- (4) $\sin 30^{\circ}$

5. If
$$y = 4x^2 - 2x + 4$$
 then find $\frac{dy}{dx}$

- (1) 8x 2x
- (2) 8x-2
- (3) 8x 2 + 4 (4) 4x + 4

6. If
$$y = x^2 + 4x^3 - 8x + 4$$
, then find $\frac{dy}{dx}$

- (1) $2x + 4x^2 x$ (2) $2x + 12x^2 8$ (3) $2x + 4x^3 8$ (4) $2x + 12x^2 x$

7.
$$\frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$
 is equal to:

- (1) $1 + \frac{1}{x^2}$ (2) $-1 + \frac{1}{x^2}$
- (3) $1 \frac{1}{r^2}$ (4) $x^2 1$

8.
$$y = (1 - x^2)^{10}$$
, then find $\frac{dy}{dx}$.

- (1) $10(1-x^2)^9$, (2) $10(1-x^2)^9 x^2$ (3) $-20x (1-x^2)^9$ (4) Not differentiable

9. If
$$y = (2 - x^2)^4$$
, then find $\frac{dy}{dx}$

- (1) $4(2-x^2)^3 \times (2x)$ (2) $4(2-x^2)^3$ (3) $4(2-x^2) \times 2x$ (4) $-8x(2-x^2)^3$

10.
$$y = (x+3)^{1/2}$$
 then find $\frac{dy}{dx}$

- (1) $\frac{1}{2\sqrt{x+3}}$ (2) $\frac{1}{4\sqrt{x+3}}$
- (3) $\frac{1}{2\sqrt{x-8}}$ (4) None of these

Note: Kindly find the Video Solution of DPPs Questions in the DPPs Section.

Answer Key

I.	(2)

2. (1)

3. (2)

4. (3)

5. (2)

6. (2)

7. (3)

8. (3)

9. (4)

10. (1)

