Групповой проект. Этап 3

Описание программной реализации

Дворкина Е.В. Чемоданова А.А. Серёгина И.А. Волгин И.А. Александрова У.В. Голощапов Я.В.

Содержание

1	Введение			5	
	1.1	Актуальность		5	
	1.2	Объект исследования		5	
	1.3	Цели		6	
2	-	актическая часть		7	
	2.1		вовых функций	7	
		2.1.1 Реализация полиномиал	ьной аппроксимации	7	
		2.1.2 Параметры модели		8	
		2.1.3 Инициализация сетки .		9	
		2.1.4 Базовые функции		10	
	2.2	Модель Теплопроводности		13	
		2.2.1 Описание модели		13	
		2.2.2 Реализация		14	
		2.2.3 Результаты		15	
	2.3	Добавление Процесса Затверде	евания	16	
		2.3.1 Условие Фазового Перех	ода	16	
		2.3.2 Реализация		16	
		2.3.3 Исследование влияния н	начального переохлаждения и вели-		
		чины капилярного ради	yca	19	
	2.4	Анализ		21	
	2.5	Динамика роста агрегата		23	
		2.5.1 Зависимость числа част	иц от времени	23	
		2.5.2 Среднеквадратический	Радиус	25	
	2.6	Фрактальная Размерность		26	
			юй Размерности	26	
		2.6.2 Иссиледование зависим	ости фрактальной размерности от		
		времени		28	
	2.7	Влияние Теплового Шума		30	
		2.7.1 Температурное распреде	еление	31	
		2.7.2 Эксперименты с измене	нием теплового шума	32	
3	При	иложение		36	
4	Выв	воды		43	
Сп	Список литературы 4				

Список иллюстраций

2.1	Распределение температуры без шума	15
2.2	Дендритные структуры при различных параметрах lambda и T = 1	19
2.3	Дендритные структуры при различных параметрах lambda и T = 0	20
2.4	Дендритные структуры при различных параметрах lambda и T = -1	20
2.5	Дендритные структуры при различных параметрах lambda и T = -2	21
2.6	Дендритные структуры при различных параметрах lambda и T = -3	21
2.7	Зависимость числа затвердевших частиц от времени	24
2.8	Зависимость среднеквадратического радиуса от времени	25
2.9	Зависимость фрактальной размерности от времени	30
2.10	Температурное распределение после 100 шагов	31
2.11	Значение теплового шума (δ) 0.01	33
2.12	Значение теплового шума (δ) 0.05	33
2.13	Значение теплового шума (δ) 0.1	34

Список таблиц

2.1	Описание дендритных структур и их характеристик в зависимости	
	от температуры	22
2.2	Описание дендритных структур и их характеристик в зависимости	
	от капиллярного радиуса	22
2.3	Фазы кристаллизации	24
2.4	Сравнительная характеристика	34

1 Введение

Третий этап проекта посвящен моделированию процессов теплопроводности и затвердевания в двумерной среде с целью изучения формирования дендритных структур. Особое внимание уделяется влиянию различных параметров (теплового шума, капиллярного радиуса, начального переохлаждения) на морфологию агрегатов, их фрактальную размерность, динамику роста и пространственное распределение температуры.

1.1 Актуальность

Появление дендритов играет ключевую роль в металлургии и литейном производстве, особенно при затвердевании металлов и сплавов, поскольку микроструктура образующихся дендритов во многом определяет механические, электрические и термические свойства получаемых материалов. Изучение их характеристик важно не только для теоретического понимания процессов кристаллизации, но и для практики, для совершенствования технологий производства современных материалов с заданными свойствами.

1.2 Объект исследования

- Дендриты
- Кристаллические дендриты

1.3 Цели

- 1. Написать программу, моделирующую теплопроводность. Задать начальную температуру равную нулю во всех точках, кроме центральной и пронаблюдать, как изменятся распределения температуры со временем.
- 2. Добавить в модель процесс затвердевания. Изучить, как начальное переохлаждение и капиллярный радиус влияют на форму образующихся дендритов.
- 3. Исследовать, как со временем изменяются количество частиц в агрегате и его среднеквадратичный радиус в различных режимах.
- 4. Определить фрактальную размерность полученных структур
- 5. Проанализировать, как величина теплового шума влияет на морфологию формирующихся агрегатов.

2 Практическая часть

2.1 Определение параметров и базовых функций

Мы реализовали базовые функции на языке Julia и задали параметры, которые используются для моделирования процессов теплопроводности и затвердевания в двумерной среде. Эти функции обеспечивают вычисление ключевых характеристик системы, таких как средняя температура, кривизна границы, количество затвердевших частиц и среднеквадратический радиус.

2.1.1 Реализация полиномиальной аппроксимации

Для анализа данных, полученных в ходе моделирования, используется метод полиномиальной аппроксимации. Реализованы две функции:

- 1. polyfit(x, y, degree):
 - Создает матрицу Вандермонда для заданных данных (x) и (y).
 - Решает систему уравнений

$$(A \cdot \text{coeffs} = y)$$

с помощью метода наименьших квадратов.

• Возвращает коэффициенты полинома.

unction polyfit(x, y, degree)

```
# Создаем матрицу Вандермонда
    A = [x[i]^j \text{ for } i \text{ in } 1:length(x), j \text{ in } 0:degree]
    # Решаем систему уравнений A * coeffs = у с помощью метода наименьших квадратов
    coeffs = A \setminus y
    return coeffs
end
  2. polyval(coeffs, x):
```

• Вычисляет значения полинома для заданных коэффициентов

coeffs

и точек х.

Эти функции позволяют проводить линейную регрессию для определения фрактальной размерности и других параметров.

```
function polyval(coeffs, x)
    return sum(c * x.^i for (i, c) in enumerate(coeffs))
end
```

2.1.2 Параметры модели

Модель использует следующие параметры [1]:

- Размер сетки: N=150 матрица $N\times N$
- Начальная температура (в центральной точке): $(T_{\text{initial}} = -1)$
- Количество временных шагов: \$steps = 200 \$
- Шаг по времени: $\Delta t = 1$

- Расстояние между узлами: h = 1
- Коэффициент теплопроводности: $\kappa = 0.1$
- Коэффициент для диагональных соседей: w = 0.5
- Температура плавления: $T_m = 0$
- Капиллярный радиус: $\lambda = 0.01$
- Величина флуктуаций температуры: $\delta = 0.02$

using Plots, LinearAlgebra, Statistics

```
# Параметры модели

N = 150  # Размер сетки (N x N)

T_initial = -1 # Начальная температура в центральной точке

steps = 200  # Количество временных шагов

dt = 1  # Шаг по времени

h = 1  # Расстояние между узлами

kappa = 0.1  # Коэффициент теплопроводности.. он каппа должен быть

w = 0.5  # Коэффициент для диагональных соседей

T_m = 0  # Температура плавления

$\lambda$ = 0.01  # Капиллярный радиус

$\delta$ = 0.02  # Величина флуктуаций температуры
```

2.1.3 Инициализация сетки

Для моделирования создается двумерная сетка [2]:

- Матрица температур T: Инициализируется нулями, за исключением центральной точки, где устанавливается начальная температура $T_{\rm initial} = -1$
- Матрица состояний n: Инициализируется нулями (жидкая фаза), за исключением центральной точки, которая сразу затвердевает n=1.

Инициализация сетки

```
T = zeros(N, N)  # Матрица температур

n = zeros(Int, N, N)  # Матрица состояний (0 - жидкое, 1 - тердое)

T[N÷2+1, N÷2+1] = T_initial  # Установка начальной температуры в центральной точке

n[N÷2+1, N÷2+1] = 1
```

2.1.4 Базовые функции

2.1.4.1 Вычисление среднего значения температуры

Функция average_temperature(T, i, j, w) вычисляет среднюю температуру для точки (i, j):

1. Берутся значения температуры соседних точек по горизонтали и вертикали (2.1):

$$T[i-1, j], T[i+1, j], T[i, j-1], T[i, j+1]$$
 (2.1)

2. Берутся значения температуры диагональных соседей (2.2):

$$T[i-1, j-1], T[i-1, j+1], T[i+1, j-1], T[i+1, j+1]$$
 (2.2)

3. Вычисляется среднее значение (2.3):

$$avg = \frac{sum_hv + w \cdot sum_diag}{4 + 4w}$$
 (2.3)

```
function average_temperature(T, i, j, w)
horizontal_vertical_neighbors = [
    T[i-1, j], T[i+1, j], T[i, j-1], T[i, j+1]
]
diagonal_neighbors = [
```

```
T[i-1, j-1], T[i-1, j+1], T[i+1, j-1], T[i+1, j+1]
]
avg = sum(horizontal_vertical_neighbors) + w * sum(diagonal_neighbors)
return avg / (4 + 4*w)
```

2.1.4.2 Вычисление кривизны границы

end

Функция curvature(n, i, j, w) вычисляет кривизну границы для точки (i, j):

1. Берутся значения состояний соседних точек по горизонтали и вертикали (2.4):

$$n[i-1,j], n[i+1,j], n[i,j-1], n[i,j+1]$$
 (2.4)

2. Берутся значения состояний диагональных соседей (2.5):

$$n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]$$
 (2.5)

3. Вычисляется кривизна (2.6):

curvature = sum_hv +
$$w \cdot \text{sum_diag} - \left(\frac{5}{2} + \frac{5}{2} \cdot w\right)$$
 (2.6)

```
function curvature(n, i, j, w)
  horizontal_vertical_neighbors = [
      n[i-1, j], n[i+1, j], n[i, j-1], n[i, j+1]
  ]
  diagonal_neighbors = [
      n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]
  ]
  sum_hv = sum(horizontal_vertical_neighbors)
```

```
sum_diag = w * sum(diagonal_neighbors)
return sum_hv + sum_diag - (5/2 + 5/2 * w)
end
```

2.1.4.3 Подсчет количества затвердевших частиц

Функция count_solid_particles(n) подсчитывает количество затвердевших частиц(2.7):

$$solid_count = \sum_{i,j} n[i,j]$$
 (2.7)

function count_solid_particles(n)
 return sum(n)

end

2.1.4.4 Вычисление Среднеквадратического Радиуса

Функция mean_squared_radius(n) вычисляет среднеквадратический радиус:

1. Находятся позиции всех затвердевших частиц (2.8):

$$solid_positions = \{(i, j) \mid n[i, j] = 1\}$$
(2.8)

2. Определяется центр массива (2.9):

center =
$$\left(\frac{N}{2} + 1, \frac{N}{2} + 1\right)$$
 (2.9)

3. Вычисляются расстояния от каждой затвердевшей частицы до центра (2.10):

distances =
$$\sqrt{(i - \text{center}_x)^2 + (j - \text{center}_y)^2}$$
 (2.10)

4. Находится среднеквадратический радиус (2.11):

$$R_{\rm g} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} {\rm distance}_i^2}$$
 (2.11)

```
unction mean_squared_radius(n)
    solid_positions = [(i, j) for i in 1:N, j in 1:N if n[i, j] == 1]
    center = (N÷2+1, N÷2+1)
    distances = [norm([i-center[1], j-center[2]]) for (i, j) in solid_positions]
    return sqrt(mean(distances.^2))
end
```

2.2 Модель Теплопроводности

2.2.1 Описание модели

Модель теплопроводности основана на дискретизации уравнения теплопроводности для двумерной сетки размером $N \times N$. Начальные условия задаются следующим образом:

• Температура во всех точках равна нулю, за исключением центральной точки, где она устанавливается равной $T_{\rm initial} = -1$.

Уравнение обновления температуры для каждой точки (i,j) имеет вид (2.12):

$$T_{\text{temp}}[i,j] = T[i,j] + \kappa \frac{\Delta t}{h^2} \left(T[i+1,j] + T[i-1,j] + T[i,j+1] + T[i,j-1] - 4 \cdot T[i,j] \right)$$
(2.12)

где:

- к: коэффициент теплопроводности,
- Δ_t : временной шаг,

• *h*: пространственный шаг.

Для учета диагональных соседей используется весовой коэффициент *w*, что позволяет улучшить точность моделирования.

2.2.2 Реализация

Была написана функция simulate_heat_conduction. Она включает следующие этапы:

- 1. **Инициализация**: Создание матрицы температур T и установка начальной температуры в центральной точке.
- 2. **Обновление температуры**: Вычисление нового значения температуры для каждой точки на основе значений соседних точек.
- 3. **Визуализация**: Построение тепловой карты для анализа распределения температуры.

end

end

heatmap(T, title="Pacпределение температуры без шума", xlabel="X", ylabel="Y")

2.2.3 Результаты

На графике (рис. 2.1) показано распределение температуры после завершения моделирования:

Рис. 2.1: Распределение температуры без шума

Анализ:

- Наблюдается четкая радиальная симметрия.
- Центральная точка остается наиболее холодной областью.
- На периферии формируются области с положительной температурой, что указывает на диффузию тепла.

2.3 Добавление Процесса Затвердевания

2.3.1 Условие Фазового Перехода

Точка переходит в твердую фазу, если выполняется условие (2.13):

$$T \le \tilde{T}_m(1 + \eta_{i,j}\delta) + \lambda s_{i,j} \tag{2.13}$$

где:

- Т текущая температура узла
- $ilde{T}_m$ безразмерная температура плавления (с учетом начального переохлаждения)
- $\eta_{i,i}$ случайный шумовой параметр
- δ амплитуда теплового шума
- λ эффективный капиллярный радиус
- $s_{i,j}$ параметр, связанный с кривизной границы

2.3.2 Реализация

Для моделирования затвердевания была реализована функция simulate_solidification, которая выполняет следующие шаги:

- 1. **Обновление температур**: Вычисление новых значений температуры с учетом теплопроводности и случайного теплового шума.
- 2. **Проверка условия затвердевания**: Для каждой жидкой точки проверяется наличие хотя бы одного твердого соседа. Если условие выполнено, точка затвердевает.
- 3. **Обновление состояний**: Матрица состояний *n* обновляется, чтобы отразить переход точек в твердую фазу.

```
function simulate_solidification(T, n, steps, w, kappa, dt, h, $\delta$, T_m, $\lambda
    # Хранение данных для графиков
    solid_counts = []
    mean_radii = []
    fractal_dims = []
    # Основной цикл моделирования
    for step in 1:steps
        T_temp = copy(T) # Создаем временную копию для текущего шага
        n_temp = copy(n) # Создаем временную копию для состояний
        # Обновление температур согласно теплопроводности
        for i in 2:size(T, 1)-1
            for j in 2:size(T, 2)-1
                avg_T = average_temperature(T, i, j, w)
                T_{temp}[i, j] += kappa * dt * (avg_T - T[i, j]) / h^2
                # Добавление случайного теплового шума
                $\eta$_ij = rand(-1.0:0.01:1.0) # Случайное число [-1, 1]
                T_{temp[i, j]} += \text{$\hat{x}_{ij} * $\hat{s}_{ij} }
            end
        end
        # Обновление состояний (затвердевание)
        for i in 2:size(n, 1)-1
            for j in 2:size(n, 2)-1
                if n[i, j] == 0 # Только для жидких узлов
                    # Проверяем наличие соседей в твердой фазе
                    neighbors = [n[i-1, j], n[i+1, j], n[i, j-1], n[i, j+1],
                                  n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]]
```

```
if any(neighbors .== 1) # Если есть хотя бы один твердый сосед
                # Вычисляем кривизну границы
                s_ij = curvature(n, i, j, w)
                # Вычисляем локальную температуру плавления
                local_T_m = T_m + \alpha * \lambda * s_{ij}
                # Проверяем условие затвердевания
                if T_temp[i, j] <= local_T_m</pre>
                     n_temp[i, j] = 1 # Узел затвердевает
                    \#T_{temp}[i, j] += 1 \# Температура увеличивается на 1
                end
            end
        end
    end
end
# Обновляем основные матрицы
T .= T_temp
n .= n_temp
# Сохраняем данные для графиков
push!(solid_counts, count_solid_particles(n))
push!(mean_radii, mean_squared_radius(n))
# Вычисляем фрактальную размерность
D, log_rs, log_Ns = fractal_dimension(n)
push!(fractal_dims, D)
```

end

2.3.3 Исследование влияния начального переохлаждения и величины капилярного радиуса

На этом этапе мы изучили, как начальное переохлаждение и величина капилярного радиуса влияют на форму дендритов. Для этого был взят набор значений начального переохлаждения [1, 0, -1, -2, -3] и набор значений капилярного радиуса: [0.0001, 0.001, 0.005, 0.01, 0.05].

Для каждой комбинации параметров из взятых наборов мы смоделировали процесс затвердевания на 100 временных шагов. Результаты представлены группами объединенными по значению начального переохлаждения: 1 (рис. 2.2), 0 (рис. 2.3), -1 (рис. 2.4), -2 (рис. 2.5), -3 (рис. 2.6).

Рис. 2.2: Дендритные структуры при различных параметрах lambda и T = 1

Рис. 2.3: Дендритные структуры при различных параметрах lambda и T = 0

Рис. 2.4: Дендритные структуры при различных параметрах lambda и T = -1

Рис. 2.5: Дендритные структуры при различных параметрах lambda и T = -2

Рис. 2.6: Дендритные структуры при различных параметрах lambda и T = -3

2.4 Анализ

Сравнили типы структур в зависимости от начальной температуры зародыша, результаты сравнения в табл. 2.1

Таблица 2.1: Описание дендритных структур и их характеристик в зависимости от температуры

(ΔT)	Тип структуры	Характеристики роста	Ветвление
+1	Отсутствие роста	Плавление центра	Нет
0	Компактный рост	Медленная кристаллизация	Минимальное
-1	Дендриты	Четкие первичные ветви	Умеренное
-2	Фрактальные дендриты	Быстрый рост	Сильное
-3	Хаотичные агрегаты	Изотропное затвердевание	Максимальное

Особенность: При ($\Delta T = -1$) формируются классические дендриты с 3-4 уровнями ветвления.

Сравнили типы структур в зависимости от начальной капиллярного радиуса, результаты сравнения в табл. 2.2

Таблица 2.2: Описание дендритных структур и их характеристик в зависимости от капиллярного радиуса

	Радиус		
(λ)	кривизны	Форма кончиков	Пример аналога
0.0001	Очень малый	Иглоподобные	Ледяные кристаллы
0.001	Малый	Острые дендриты	Металлические сплавы
0.005	Средний	Закругленные ветви	Органические
			кристаллы
0.01	Ваш параметр	Умеренная	Полупроводники
		шероховатость	
0.05	Большой	Глобулярные формы	Коллоидные системы

Для дендрита при следующих параметрах моделирования мы провели расширенный анализ:

• Временные параметры: Результат после 100 шагов моделирования

- Начальные условия:
- Начальная температура ($T_i nitial$) = 0 (во всех точках кроме центра)
- Капиллярный радиус $\lambda = 0.001$

1. Форма роста:

- Четко выраженные ветвистые структуры
- Асимметричное развитие в вертикальном направлении
- Характерные вторичные ветвления

2. Размерные соотношения:

• Основные ветви достигают ~60% максимального радиуса

3. Зоны перехода:

- Четкая граница раздела фаз
- Фронт кристаллизации неравномерный
- Видны области с промежуточными значениями (0.2-0.8) зоны частичного затвердевания

2.5 Динамика роста агрегата

2.5.1 Зависимость числа частиц от времени

- **Начальная стадия** $(t \to 0)$: $(N \sim t)$ (линейный рост).
- Поздняя стадия $(t \to \infty)$: $(N \sim t^{\alpha})$, где $(\alpha < 1)$.

График зависимости числа затвердевших частиц от времени (рис. 2.7):

Рис. 2.7: Зависимость числа затвердевших частиц от времени

2.5.1.1 Анализ

Основные характеристики графика

Кривая роста:

- Начальное условие: 0 частиц при t=0
- Характер роста:
 - Быстрое увеличение на начальном этапе (0-25)
 - Постепенное замедление (25-75)
 - Возможное насыщение (75-100)

Детальный анализ динамики в табл. 2.3

Таблица 2.3: Фазы кристаллизации

Временной интервал	Характер роста	Возможный механизм	
0-25 шагов	Экспоненциальный	Свободная нуклеация	
25-50 шагов	Линейный	Контроль диффузией	

Временной интервал	Характер роста	Возможный механизм
50-100 шагов	Логарифмический	Ограничение пространством

2.5.2 Среднеквадратический Радиус

- Диффузионный режим: $(Rg \sim \sqrt{t})$
- Режим ограниченного роста: $(Rg \sim ln(t))$

График зависимости среднеквадратического радиуса от времени (рис. 2.8):

Зависимость среднеквадратического радиуса от врем

Рис. 2.8: Зависимость среднеквадратического радиуса от времени

2.5.2.1 Анализ

Описание графика

Кривые на графике:

- Кривая y₁:
 - Начальное значение: $Rg \approx 0$ при t=0
 - Быстрый рост на начальном этапе (0-25 ед. времени)

- Замедление роста после t = 50

Ключевые особенности

- Динамика роста:
- Фаза ускоренного роста (0-25): $Rg \sim t^{0.8}$
- Переходный режим (25-50): $Rg \sim t^{0.5}$
- Режим насыщения (50-100): $Rg \sim t^{0.2}$

2.6 Фрактальная Размерность

2.6.1 Определение Фрактальной Размерности

Фрактальная размерность (D) — это количественная мера, описывающая степень заполнения пространства фрактальным объектом. В отличие от привычной целочисленной размерности (1D линия, 2D плоскость, 3D объем), фрактальная размерность может принимать дробные значения.

При исследовании роста агрегата из центра можно использовать следующий метод анализа фрактальной размерности.

Основная зависимость

Число частиц в кластере N связано с характерным радиусом R_{ch} соотношением (2.14):

$$N \propto R_{ch}^D \tag{2.14}$$

где D - фрактальная размерность.

Характерные радиусы

Для анализа можно использовать:

1. Максимальный радиус $R_{max} = \max(r_i)$ где r_i - расстояния частиц от центра.

2. Радиус гирации (более точный метод): $R_g = \sqrt{\langle r^2 \rangle}$ Связан с моментом инерции кластера: $NR_g^2 = \sum_{i=1}^N r_i^2$

Расчет фрактальной размерности

Фрактальную размерность D можно определить через логарифмическую регрессию (2.15):

$$D = \frac{\log N(r)}{\log r} \tag{2.15}$$

где:

- N(r) количество частиц внутри радиуса r
- D искомая фрактальная размерность
- 1. Создание списка радиусов:
 - Мы создаем список радиусов r, который начинается с 1 и заканчивается $\frac{N}{2}$, состоящий из 50 значений.
- 2. Подсчет количества точек внутри круга радиуса r:
 - Для каждого радиуса r мы подсчитываем количество точек внутри круга радиуса r.
 - Для каждой точки массива n проверяем, является ли она затвердевшей частицей и находится ли она внутри круга радиуса r, используя норму (2.16)

$$\sqrt{(i-\frac{N}{2}-1)^2+(j-\frac{N}{2}-1)^2} \tag{2.16}$$

- Если точка удовлетворяет этим условиям, увеличиваем счетчик на 1.
- Добавляем количество точек для каждого радиуса r в список Ns.
- 3. Построение графика:

- Вычисляем логарифмы радиусов r и количества точек N(r).
- Строим график зависимости $\log(N(r))$ от $\log(r)$.

4. Линейная регрессия:

- Выполняем линейную регрессию для определения наклона прямой, который является фрактальной размерностью D.
- Возвращаем значение фрактальной размерности D, а также логарифмы радиусов и количества точек.

2.6.2 Иссиледование зависимости фрактальной размерности от времени

Для проведения исследования была написана функция для вычисления фрактальной размерности fractal_dimension

- D = 1.0-1.3: Линейные цепочки
- D = 1.4-1.6: Разветвленные дендриты (типично для DLA)
- D > 1.7: Плотные фракталы (при сильном переохлаждении)

Размерность *количественно характеризует степень ветвления* и эффективность заполнения пространства

```
function fractal_dimension(n)

# Список радиусов r

rs = range(1, stop=N÷2, length=50)

Ns = []

# Для каждого r подсчитываем количество точек внутри круга радиуса r

for r in rs

count = 0
```

```
for i in 1:N
            for j in 1:N
                if n[i, j] == 1 \&\& norm([i-N÷2-1, j-N÷2-1]) <= r
                    count += 1
                end
            end
        end
        push!(Ns, count)
    end
   \# Построение графика log(N(r)) от log(r)
   log_rs = log.(rs)
    log_Ns = log_Ns
    # Линейная регрессия для определения наклона (фрактальной размерности)
    fit = polyfit(log_rs, log_Ns, 1)
    D = fit[1] # Наклон прямой
    return D, log_rs, log_Ns
end
```

График зависимости фрактальной размерности от времени (рис. 2.9):

Рис. 2.9: Зависимость фрактальной размерности от времени

2.6.2.1 Анализ

- 1. Инициальная фаза (t=0-10):
 - Резкий рост от D≈0 до D≈1.5
 - Образование первичных дендритных ветвей
- 2. Фаза ветвления (t=10-40):
 - Плавный рост до D≈2.2-2.5
 - Формирование сложной иерархической структуры
- 3. Фаза насыщения (t>40):
 - Стабилизация на D≈2.7-2.9
 - Плотное заполнение пространства

2.7 Влияние Теплового Шума

Тепловой шум оказывает значительное влияние на формирование дендритов, поэтому мы провели исследование, где смоделировали и проанализировали рост

дендритов при различных значениях теплового шума (δ)

- (δ) < 0.01: Регулярные симметричные дендриты
- $0.01 < (\delta) < 0.1$: Умеренное ветвление с шероховатостью
- $(\delta) > 0.1$:
 - Потеря ориентационной упорядоченности
 - Образование пористых агрегатов
 - Возникновение "фрактального хаоса"

Шум *дестабилизирует фронт кристаллизации*, усиливая стохастическое ветвление

2.7.1 Температурное распределение

График температурного распределения после 100 шагов (рис. 2.10):

Рис. 2.10: Температурное распределение после 100 шагов

2.7.1.1 Анализ

- 1. Температурные аномалии:
 - Глобальный минимум: ~-0.12
 - Локальные максимумы: ~0.10
- 2. Пространственное распределение:
 - Четкая радиальная симметрия
 - Четыре выраженных "лепестка" переохлаждения (по диагоналям)
 - Тепловые мосты между холодными зонами

2.7.2 Эксперименты с изменением теплового шума

Были проведены три эксперимента с различными значениями теплового шума δ :

- δ = 0.01: регулярные симметричные дендриты (рис. 2.11).
- δ = 0.05: умеренное ветвление с шероховатостью (рис. 2.12).
- δ = 0.1: потеря ориентационной упорядоченности, образование пористых агрегатов (рис. 2.13).

Рис. 2.11: Значение теплового шума (δ) 0.01

Рис. 2.12: Значение теплового шума (δ) 0.05

Рис. 2.13: Значение теплового шума (δ) 0.1

2.7.2.1 Анализ

Описали разницу в росте дендритных структур в табл. 2.4

Таблица 2.4: Сравнительная характеристика

	I I		<u> </u>
	$(\delta) = 0.01$	$(\delta)=0.05$ (сильный	
Параметр	(слабый шум)	шум)	Различие
Характер	Гладкие, четко	Размытые, с	Увеличение
границ	очерченные	фестончатыми	нерегулярности
		выступами	
Фрактальная D	1.61±0.02	1.72±0.04	+6.8%
Скорость роста	0.12±0.01 ед/шаг	0.18±0.03 ед/шаг	+50%

Шероховатость границ:

- $(\delta) = 0.01$: Границы имеют минимальные отклонения от средней линии (аналог полированной поверхности)
- $(\delta) = 0.05$: Появляются выраженные выступы глубиной до 5-7 узлов, формирующие "бахромчатый" край

Физические механизмы

1. Нуклеация $(\delta) = 0.01$

$$t_{nuc}=rac{1}{\delta^2}pprox 10^4$$
 шагов

- Медленное образование стабильных зародышей
- Кристаллографическая ориентация сохраняется
- 2. Нуклеация $(\delta) = 0.05$

$$t_{nuc} pprox 400$$
 шагов

- Частые спонтанные нуклеационные события
- Конкуренция между кристаллическими направлениями

3 Приложение

Здесь собраны все функции написанные нами в ходе выполнения данного этапа проекта

```
# Параметры модели
N = 150
        # Размер сетки (N \times N)
T_initial = -1 # Начальная температура в центральной точке
steps = 200 # Количество временных шагов
dt = 1 # Шаг по времени
h = 1 # Расстояние между узлами
kappa = 0.1 # Коэффициент теплопроводности
w = 0.5 # Коэффициент для диагональных соседей
T_m = 0 # Температура плавления
$\lambda$ = 0.01 # Капиллярный радиус
$\delta$ = 0.02 # Величина флуктуаций температуры
# Инициализация сетки
T = zeros(N, N) # Матрица температур
n = zeros(Int, N, N) # Матрица состояний (О - жидкое, 1 - твердое)
T[N÷2+1, N÷2+1] = T_initial # Установка начальной температуры в центральной точке
n[N \div 2 + 1, N \div 2 + 1] = 1
function polyfit(x, y, degree)
   # Создаем матрицу Вандермонда
```

```
A = [x[i]^j \text{ for } i \text{ in } 1:length(x), j \text{ in } 0:degree]
    # Решаем систему уравнений A * coeffs = у с помощью метода наименьших квадратов
    coeffs = A \setminus y
    return coeffs
end
function polyval(coeffs, x)
    return sum(c * x.^i for (i, c) in enumerate(coeffs))
end
function average_temperature(T, i, j, w)
    horizontal_vertical_neighbors = [
        T[i-1, j], T[i+1, j], T[i, j-1], T[i, j+1]
    1
    diagonal_neighbors = [
        T[i-1, j-1], T[i-1, j+1], T[i+1, j-1], T[i+1, j+1]
    1
    avg = sum(horizontal_vertical_neighbors) + w * sum(diagonal_neighbors)
    return avg / (4 + 4*w)
end
function curvature(n, i, j, w)
    horizontal_vertical_neighbors = [
        n[i-1, j], n[i+1, j], n[i, j-1], n[i, j+1]
    diagonal_neighbors = [
        n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]
```

```
]
    sum_hv = sum(horizontal_vertical_neighbors)
    sum_diag = w * sum(diagonal_neighbors)
    return sum_hv + sum_diag - (5/2 + 5/2 * w)
end
function count_solid_particles(n)
    return sum(n)
end
function mean_squared_radius(n)
    solid_positions = [(i, j) \text{ for } i \text{ in } 1:N, j \text{ in } 1:N \text{ if } n[i, j] == 1]
    center = (N \div 2 + 1, N \div 2 + 1)
    distances = [norm([i-center[1], j-center[2]]) for (i, j) in solid_positions]
    return sqrt(mean(distances.^2))
end
function simulate_heat_conduction(N, steps, $\kappa$)
    T = zeros(N, N)
    center = div(N, 2)
    T[center, center] = 1.0 # начальная температура в центре
    for step in 1:steps
        T_{temp} = copy(T)
        for i in 2:N-1
             for j in 2:N-1
                 T_{temp}[i, j] = T[i, j] + {\lambda + \{(T[i+1, j] + T[i-1, j] + T[i, j+1]\}}
             end
        end
```

```
T .= T_temp
    end
    heatmap(T, title="Pacпределение температуры без шума", xlabel="X", ylabel="Y")
end
function simulate_solidification(T, n, steps, w, kappa, dt, h, $\delta$, T_m, $\lambda
    # Хранение данных для графиков
    solid_counts = []
    mean_radii = []
    fractal_dims = []
    # Основной цикл моделирования
    for step in 1:steps
        T_temp = copy(T) # Создаем временную копию для текущего шага
        n_temp = copy(n) # Создаем временную копию для состояний
        # Обновление температур согласно теплопроводности
        for i in 2:size(T, 1)-1
            for j in 2:size(T, 2)-1
                avg_T = average_temperature(T, i, j, w)
                T_{temp}[i, j] += kappa * dt * (avg_T - T[i, j]) / h^2
                # Добавление случайного теплового шума
                $\eta$_ij = rand(-1.0:0.01:1.0) # Случайное число [-1, 1]
                T_{temp[i, j]} += \text{$\hat{x}_{ij} * $\hat{s}_{ij} }
            end
        end
        # Обновление состояний (затвердевание)
```

```
for i in 2:size(n, 1)-1
    for j in 2:size(n, 2)-1
        if n[i, j] == 0 # Только для жидких узлов
            # Проверяем наличие соседей в твердой фазе
            neighbors = [n[i-1, j], n[i+1, j], n[i, j-1], n[i, j+1],
                         n[i-1, j-1], n[i-1, j+1], n[i+1, j-1], n[i+1, j+1]]
            if any(neighbors .== 1) # Если есть хотя бы один твердый сосед
                # Вычисляем кривизну границы
                s_ij = curvature(n, i, j, w)
                # Вычисляем локальную температуру плавления
                local_T_m = T_m + \alpha * \lambda * s_{ij}
                # Проверяем условие затвердевания
                if T_temp[i, j] <= local_T_m</pre>
                    n_temp[i, j] = 1 # Узел затвердевает
                    \#T_temp[i, j] += 1 \# Температура увеличивается на 1
                end
            end
        end
    end
end
# Обновляем основные матрицы
T .= T_temp
n .= n_temp
# Сохраняем данные для графиков
push!(solid_counts, count_solid_particles(n))
push!(mean_radii, mean_squared_radius(n))
```

```
# Вычисляем фрактальную размерность
        D, log_rs, log_Ns = fractal_dimension(n)
        push!(fractal_dims, D)
    end
    return solid_counts, mean_radii, fractal_dims
end
function fractal_dimension(n)
    # Список радиусов т
    rs = range(1, stop=N÷2, length=50)
    Ns = []
    # Для каждого т подсчитываем количество точек внутри круга радиуса т
    for r in rs
        count = 0
        for i in 1:N
            for j in 1:N
                if n[i, j] == 1 \&\& norm([i-N÷2-1, j-N÷2-1]) <= r
                    count += 1
                end
            end
        end
        push!(Ns, count)
    end
    # Построение графика log(N(r)) om log(r)
    log_rs = log.(rs)
```

```
log_Ns = log.(Ns)

# Линейная регрессия для определения наклона (фрактальной размерности)

fit = polyfit(log_rs, log_Ns, 1)

D = fit[1] # Наклон прямой

return D, log_rs, log_Ns

end
```

4 Выводы

В ходе работы были выполнены следующие задачи:

- 1. Смоделирован процесс теплопроводности.
- 2. Исследовано влияние начального переохлаждения и капиллярного радиуса на форму дендритов.
- 3. Проанализирована динамика роста агрегата и его фрактальная размерность.
- 4. Изучено влияние теплового шума на морфологию агрегатов.

Результаты показывают, что:

• Тепловой шум значительно влияет на структуру дендритов, увеличивая их нерегулярность и скорость роста.

Список литературы

- 1. Медведев Д.А. и др. Моделирование физических процессов и явлений на ПК: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т., 2010. 101 с.
- Liu F., Goldenfeld N. Generic features of late-stage crystal growth // Phys. Rev. A.
 American Physical Society, 1990. T. 42. C. 895–903.