Sci-kit learn

- 1. from sklearn.model_selection import train_test_split # Import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Split data into training and testing sets
- 3. from sklearn.preprocessing import StandardScaler # Import StandardScaler
- 4. scaler = StandardScaler() # Create a StandardScaler object
- X_train_scaled = scaler.fit_transform(X_train) # Fit and transform the training data
- 6. X_test_scaled = scaler.transform(X_test) # Transform the testing data
- 7. from sklearn.linear_model import LinearRegression # Import LinearRegression
- 8. model = LinearRegression() # Create a LinearRegression model
- 9. model.fit(X_train, y_train) # Fit the model to the training data
- 10. y_pred = model.predict(X_test) # Predict on the test data
- from sklearn.metrics import mean_squared_error # Import mean_squared_error
- 12. mse = mean_squared_error(y_test, y_pred) # Calculate mean squared error
- 13. from sklearn.metrics import accuracy_score # Import accuracy_score
- 14. accuracy = accuracy_score(y_test, y_pred) # Calculate accuracy score
- 15. from sklearn.ensemble import RandomForestClassifier # Import RandomForestClassifier
- 16. clf = RandomForestClassifier() # Create a RandomForestClassifier model
- 17. clf.fit(X_train, y_train) # Fit the classifier to the training data
- 18. y_pred_class = clf.predict(X_test) # Predict on the test data
- 19. from sklearn.decomposition import PCA # Import PCA
- 20. pca = PCA(n_components=2) # Create a PCA object with 2 components

Sci-kit learn

- 21. X_pca = pca.fit_transform(X) # Fit and transform the data with PCA
- 22. from sklearn.cluster import KMeans # Import KMeans
- 23. kmeans = KMeans(n_clusters=3) # Create a KMeans object with 3 clusters
- 24. y_kmeans = kmeans.fit_predict(X) # Fit and predict clusters

Sci-kit learn 2