EDUCATION

University of Illinois, Urbana Champaign, IL

Computer Science Ph.D.

Start Aug. 2021

Advisor: Prof. Tianyin Xu

Northwestern University, Evanston, IL

M.S. Computer Science, B.S. Electrical Engineering

Graduated June 2021

GPA: 4.0/4.0 (Summa Cum Laude)

Publications

- 1. [ASPLOS 2022] Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan Chai, Zhen Huang, Aaron Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos Hardavellas, Simone Campanoni, and Peter Dinda. "CARAT CAKE: replacing paging via compiler/kernel cooperation". In Proceedings of Architectural Support for Programming Languages and Operating Systems.
- 2. [Radiology] Ramsey M Wehbe, Jiayue Sheng, Shinjan Dutta, Siyuan Chai, Amil Dravid, Semih Barutcu, Yunan Wu, Donald R. Cantrell, Nicholas Xiao, Hatice Savas, Rishi Agrawal, Nishant Parekh, Aggelos K. Katsaggelos. "DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set." Radiological Society of North America.

RESEARCH EXPERIENCE

UIUC Xlab, Prof. Tianyin Xu

Aug. 2021 to Present

Support Linux Kernel for Elastic Cuckoo Page Table

- Adapting Linux kernel, primarily the memory management portion, to have a more versatile support for non tree page table designs like Elastic Cuckoo Page Table (ECPT), a hash page table with memory-level parallelism
- Analyzed and addressed the adaptation challenges at kernel level including page table management interface, transparent huge pages, and page table isolation
- Extensively modified address translation portion of QEMU to simulate ECPT's hardware behavior

NU Compilers Group, Prof. Simone Campanoni Jan. 2021 to July 2021

Enhance Parallelism by Utilizing Commutative Loop Iterations

 Coded a LLVM pass to transform serial code to parallel by telling the commutativity of <load, ALU operation, store> triplet across loop iterations

NU Parallelism Group, Prof. Peter Dinda

June 2020 to May 2021

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

- Designed and implemented CARAT CAKE, an allocation level address space which aims to replace virtual memory and paging with protection checks inserted at compile time and allocations tracked in runtime
- Implemented a competitive paging address space with support for red black tree and splay tree data structures to track VA-PA mapping, transparent huge pages, and PCID; performance measured with performance monitoring counter
- Designed runtime protection check with address mapping data structures

Image & Video Processing Lab, Prof. Aggelos Katsaggelos June 2019 to July 2021 Deep COVID-XR

- Designed and implemented a CNN model to flag out positive COVID cases based on patients' chest X-ray images
- \bullet Outperformed experienced radiologists with an accuracy of 85% compared to 76 82% and AUC of 0.935 compared to 0.819 0.856

WORK Experience

Software Engineering Intern, Google Cloud Infrastructure May 2022 to Aug. 2022 *Machine Model Population Pipeline*

- Designed a distributed pipeline to collect data of all Google's server machines (4M+) to model their physical topology. It implements batch reads from Bigtable and capacitor or makes RPC calls with rate limitation
- Validated mac address of machines with as-maintained models across three data sources. Results will be stored in Spanner

Research Intern, Tencent Network Group

June 2021 to Aug. 2021

Service Driven Network Verification tool

- Contributed to design a network verification tool for routing configurations (e,g. BGP, OSPF); it supports quantitative query and covers all data plane with global formal modeling and local simulation
- Designed easy-to-use geo-based intent language for network verification

Projects

CPU-GPU Simulator for Collaborative Workloads Modeling

- Analyzed pros and cons of state-of-art simulators (gem5, gem5-GPU, and UVMSmart) when modeling memory performance of CPU-GPU collaborative workloads
- Designed and prototyped a CPU-GPU memory subsystem simulator for workloads running on CPU-GPU unified virtual memory.
- Integrated gem5 and UVMSmart with IPC to model performance of CPU, GPU and on-demand page migration between them

Log-Structured Merge-Trees (LSM-trees) Optimization with eBPF

- Conducted a comprehensive study of optimizing LSM-trees with eBPF
- Developed two designs to offload the LSM compaction to eBPF with hook point at FS layer or NVMe driver layer

Distributed Machine Learning Inference Framework

- Developed a fault-tolerant resource-fair ML inference framework from scratch
- Coded a totally ordered KV distributed file system with quorum consensus to support the ML model inference and data storage
- Designed and implemented failure detection with a ring-based membership protocol

C-style Language Compiler, CS 322 Compiler Construction

- Created, from scratch, a compiler to translate C-style language to x86_64 assembly
- Implemented features including graph-coloring register allocation, liveness analysis, instruction selection with tiling, control flow graph, and memory access checking

Middle End Analysis for a C-based API, CS 323 Code Analysis & Transformation

• Coded a LLVM pass to reduce calls to a custom C-based API by implementing analysis like reaching-definition, constant propagation and folding, alias analysis, function inlining, and dead code elimination.

SKILLS

Programming languages:

C/C++, Assembly, Python, Java, Go, JavaScript, MATLAB

System-level Development:

Linux Kernel Development, QEMU, Docker, GDB, Make, Linker, LLVM, OpenMP Artificial Intelligence:

CUDA, PyTorch, Tensorflow, Keras, Image Processing, Computer Vision

Hardware:

Raspberry Pi, Arduino, VHDL, Verilog

Web Development:

HTML, CSS, Flask, Django, React

Professional Activities

OSDI/ATC 2022: Artifact Evaluation Committee

SOSP 2021: Artifact Evaluation Committee, Slack Co-chair

Teaching Teaching Assistant - University of Illinois Urbana-Champaign EXPERIENCE Fall 2022 CS 423: Operating System Design with Prof. Tianyin Xu Spring 2022 CS 598XU: Reliability of Cloud-Scale Systems with Prof. Tianyin Xu Peer Mentor (Undergraduate TA) - Northwestern University Spring 2021 CS 336 - Design & Analysis of Algorithms with Prof. Jason Hartline Winter 2021 CS 343 - Operating Systems with Prof. Peter Dinda Winter 2020 CS 336 - Design & Analysis of Algorithms with Prof. Konstantin Makarychev Fall 2019 CS 336 - Design & Analysis of Algorithms with Prof. Jason Hartline CS 336 - Design & Analysis of Algorithms with Prof. Jason Hartline Spring 2019 Teaching Assistant - Washington University in St. Louis

Spring 2018 ESE 205 Introduction to Engineering Design with Prof. James Feher