高显经典力学习题解答

数据风暴中的避风港

二〇二四年十月三十日

数据风暴中的避风港 社区成员共同编写,本习题解答及其 LATEX 代码符合 MIT 许可. 链接: HTTPS://GITHUB.COM/PHIYU/GAOXIAN. 编写成员均为物理专业或非物理专业的物理爱好者, 编写过程中难免有许多纰漏, 欢迎指出, 也欢迎加 入 数据风暴中的避风港 大家庭(QQ 群: 832100706). 2024年10月

目录

第一章 变分法	1
第二章 位形空间	5
第三章 相对论时空观	7
第四章 最小作用量原理	9
第五章 对称性与守恒律	11
第六章 辅助变量	13
第七章 达朗贝尔原理	15
第八章 两体问题	17
第九章 微扰展开	19
第十章 小振动	21
第十一章 转动理论	23
第十二章 刚体	25
第十三章 哈密顿正则方程	27
第十四章 泊松括号	29
第十五章 正则变换	31
第十六章 哈密顿-雅可比理论	33
第十七章 可积系统	35

第一章 变分法

1.1 给定 f(t) 的泛函

$$S[f] = -\int dt e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$$

其中 V 是 f 的任意函数. 求 S[f] 取极值时, f(x) 的欧拉-拉格朗日方程.

参考解答 1.1 记 $L = e^{-V(f(t))} \sqrt{1 - (f'(t))^2}$,则

$$\frac{\partial L}{\partial f} = V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - (f'(t))^2}, \qquad \frac{\partial L}{\partial f'} = \mathrm{e}^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}}$$

$$\delta S = \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} \delta f + e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \delta f' \right)$$

$$\simeq \int dt \left(V \frac{dV}{df} e^{-V(f(t))} \sqrt{1 - (f'(t))^2} - \frac{d}{dt} \left(e^{-V(f(t))} \frac{f'(t)}{\sqrt{1 - (f'(t))^2}} \right) \right) \delta f$$

因此, Euler-Lagrange 方程为

$$-\frac{\delta S}{\delta f} = -V \frac{\mathrm{d}V}{\mathrm{d}f} f' \mathrm{e}^{-V(f(t))} \frac{f'}{\sqrt{1 - f'^2}} + \mathrm{e}^{-V(f(t))} \frac{f'' + (1 - f')f'^2}{(1 - f'^2)^{3/2}} - V \frac{\mathrm{d}V}{\mathrm{d}f} \mathrm{e}^{-V(f(t))} \sqrt{1 - f'^2} = 0$$

1.2 给定
$$f(t)$$
 的泛函 $S[f] = \int dt L$, 其中 $L = (f'(t))^2 + f(t)f'(t) + \frac{1}{2}f(t)f''(t)$.

- (1) 求一阶泛函导数 $\frac{\delta S}{\delta f}$;
- (2) 将 L 改写成 $L=\tilde{L}+\frac{\mathrm{d}F}{\mathrm{d}t}$ 的形式, 要求 \tilde{L} 中不包含 f''(t), 求 \tilde{L} 和 F;
- (3) 求泛函 $\tilde{S}[f]=\int \mathrm{d}t\, \tilde{L}$ 的一阶泛函导数 $\frac{\delta \tilde{S}}{\delta f},$ 并比较其和 $\frac{\delta S}{\delta f}$ 的异同.

参考解答 1.2 (1)

$$\delta S = \int dt \, \delta L = \int dt \left(\left(f' + \frac{1}{2} f'' \right) \delta f + \left(2f' + f \right) \delta f' + \frac{1}{2} f \delta f'' \right)$$

$$\simeq \int dt \left(f' + \frac{1}{2} f'' - \frac{d}{dt} \left(2f' + f \right) + \frac{d^2}{dt^2} \left(\frac{1}{2} f \right) \right) \delta f$$

$$\frac{\delta S}{\delta f} = -f''$$

(2) 假设
$$F = \frac{1}{2}ff'$$
, 则 $\frac{dF}{dt} = \frac{1}{2}f'^2 + \frac{1}{2}ff''$, $\tilde{L} = ff' + \frac{1}{2}f'^2$ 满足题意.

$$\delta \tilde{S}[f] = \int dt \delta \tilde{L} = \int dt \left(f' \delta f + (f + f') \delta f' \right)$$

$$\simeq \int dt \left(f' - \frac{d}{dt} (f + f') \right) \delta f$$

$$\frac{\delta \tilde{S}}{\delta f} = -f''$$

注意到
$$\frac{\delta \tilde{S}}{\delta f} = \frac{\delta S}{\delta f}$$
.

1.3 给定两个函数 n(t) 和 a(t) 的泛函 $S[n,a] = \int_{t_1}^{t_2} \mathrm{d}t \, na^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2}\right)$, 其中 A,B 是 n(t) 的任意函数. 求泛函 S[n,a] 取极值时, n(t) 和 a(t) 的欧拉-拉格朗日方程.

参考解答 1.3

$$\delta S = \int \mathrm{d}t \left(a^3 \left(A(n) + 3B(n) \frac{a'^2}{n^2 a^2} \right) + na^3 \left(\frac{\mathrm{d}A}{\mathrm{d}n} + 3 \frac{\mathrm{d}B}{\mathrm{d}n} \frac{a'^2}{n^2 a^2} - \frac{3}{2} B(n) \frac{a'^2}{n^3 a^2} \right) \right) \delta n$$

$$-\frac{\delta S}{\delta n} = -a^3 A - 3B \frac{aa'^2}{n^2} - na^3 \frac{\mathrm{d}A}{\mathrm{d}n} - 3n \frac{\mathrm{d}B}{\mathrm{d}n} \frac{aa'^2}{n^2} + \frac{3}{2} nB \frac{aa'^2}{n^3} = 0$$

$$\delta S = \int \mathrm{d}t \left(6B \frac{aa'}{n} \delta a' + \left(3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a \right)$$

$$\simeq \int \mathrm{d}t \left(-\frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) + 3nAa^2 + 3B \frac{a'^2}{n} \right) \delta a$$

$$-\frac{\delta S}{\delta a} = \frac{\mathrm{d}}{\mathrm{d}t} \left(6B \frac{aa'}{n} \right) - 3nAa^2 - 3B \frac{a'^2}{n} = 0$$

1.4 给定二元函数 f(t,x) 的泛函 $S[f] = \iint \mathrm{d}t \mathrm{d}x \frac{1}{2} \left[\left(\frac{\partial f(t,x)}{\partial t} \right)^2 - \left(\frac{\partial f(t,x)}{\partial x} \right)^2 - m^2 f^2(t,x) \right],$ 其中 m 是常数. 求泛函 S[f] 取极值时 f(t,x) 的欧拉-拉格朗日方程.

参考解答 1.4 泛函 S[f] 的 Lagrange 函数为 $L(t,x,f,f_t,f_x) = \frac{1}{2}(f_t^2 - f_x^2 - m^2 f^2)$, 则

$$\delta S = \iint dt dx \delta L$$

$$\simeq \iint dt dx \left[\frac{\partial L}{\partial f} - \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial f_t} \right) - \frac{\partial}{\partial x} \left(\frac{\partial L}{\partial f_x} \right) \right]$$

$$= \iint dt dx \left(-m^2 f - f_{tt} + f_{xx} \right) \delta f$$

取极值有 $-\frac{\delta S}{\delta f} = 0$, 即 $f_{tt} - f_{xx} + -m^2 f = 0$

- **1.5** 考虑一条不可拉伸、质量均匀的柔软细绳, 长为 l, 质量为 m. 细绳两端点悬挂于相同高度, 水平距离为 a(a < l).
 - (1) 选择合适的坐标, 求细绳总的重力势能 V 作为细绳形状的泛函;
 - (2) 求细绳重力势能取极值时,细绳形状所满足的欧拉-拉格朗日方程.

参考解答 1.5 $\qquad (1)$ 取细绳所在平面建立笛卡尔系,设悬点为 $\pmb{x_1} = (0,0), \, \pmb{x_2} = (a,0), \,$ 竖直向下为 y 轴正方向,设细绳形状为 $y = y(x) \; (0 \le x \le a)$,可知细绳线密度为 $\lambda = \frac{m}{7}$,则

$$V[y] = \int -(\lambda dL)gy$$
$$= -\frac{mg}{l} \int_0^a y\sqrt{1 + y'^2} dx$$

(2) 泛函 V[y] 的 Lagrange 函数为 $L(x,y,y') = -\frac{mg}{l}y\sqrt{1+y'^2}$, 重力势能取极值有

$$\begin{split} -\frac{\delta S}{\delta y} &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial L}{\partial y'} \right) - \frac{\partial L}{\partial y} \\ &= -\frac{mg}{l} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{yy'}{\sqrt{1+y'^2}} \right) - \sqrt{1+y'^2} \right] \\ &= -\frac{mg}{l} \left(\frac{y'^2}{\sqrt{1+y'^2}} + \frac{yy''}{\sqrt{1+y'^2}} - \frac{yy'^2y''}{(1+y'^2)^{3/2}} - \sqrt{1+y'^2} \right) = 0 \end{split}$$

将最后一式化简得到: $yy'' - y'^2 - 1 = 0$, 此即著名的悬链线满足的微分方程.

- **1.6** 考虑 **3** 维欧氏空间中的任意 **2** 维曲面,取直角坐标,曲面方程为 z=z(x,y). 曲面上任意两固定点,由曲面上的任一曲线连接. 曲线方程为 $x=x(\lambda)$, $y=y(\lambda)$, 这里的 λ 是曲线的参数.
 - (1) 求曲线的长度 S 作为 $x(\lambda)$ 和 $y(\lambda)$ 的泛函 S[x,y];
 - (2) 求曲线长度 S 取极值时, $x(\lambda)$ 和 $y(\lambda)$ 的欧拉-拉格朗日方程;
 - (3) 当曲面为以下情况时, 求解 $x(\lambda)$ 和 $y(\lambda)$:
 - (3.1) 平面 z = ax + by + c (a, b, c 为常数);
 - (3.2) 球面 $z = \sqrt{R^2 x^2 y^2}$ (R 为常数);
 - (3.3) 锥面 $z = H\left(1 \frac{1}{R}\sqrt{x^2 + y^2}\right)$ (H, R 为常数).

参考解答 1.6 待施工

1.7 假设地球质量均匀分布, 密度为 ρ , 半径为 R. 如图 1.9 所示, 在地球内部钻一个光滑隧道, 隧道处于过球心的大圆平面内. 一个物体从 A 点静止滑入, 则最终将由 B 点滑出. 在轨道平面取极坐标 $\{r,\phi\}$, 求轨道形状 $r(\phi)$ 满足什么方程时物体穿过隧道的时间最短. (提示:地球内部距离中心 r 处质量为 m 的粒子的牛顿引力势能为 $U(r)=\frac{2}{3}\pi Gm\rho r^2$, 其中 G 为牛顿引力常数.)

参考解答 1.7 考察 A、B 与地球球心形成的平面,以球心为极点,设极坐标下 A 点坐标为 (R,ϕ_1) ,B 点为 (R,ϕ_2) . 对于一个从 A 静止释放的粒子,运动到 $r(\phi)$ 处速度为

$$v(r) = \sqrt{\frac{2T}{m}} = \sqrt{\frac{2\Delta U(r)}{m}} = \sqrt{\frac{4}{3}\pi G\rho(R^2-r^2)}$$

第一章 变分法 习题解答

考虑到极坐标下线元为 $\mathrm{d}s^2=\mathrm{d}r^2+(r\mathrm{d}\phi)^2$,则沿着轨道从 A 到 B 的运动总时间为 $r(\phi)$ 的泛函,表达式为

$$T[r] = \int \frac{ds}{v} = \int_{\phi_1}^{\phi_2} \frac{\sqrt{r'^2 + r^2}}{\sqrt{\frac{4}{3}\pi G\rho(R^2 - r^2)}} d\phi$$

该泛函的等效 Lagrange 函数为 $L(r,r')=\sqrt{\frac{r'^2+r^2}{R^2-r^2}}$, 取极值时满足欧拉-拉格朗日方程:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{\partial L}{\partial r'} \right) - \frac{\partial L}{\partial r} &= \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\frac{r'}{L(R^2 - r^2)} \right) - \frac{r(r'^2 + R^2)}{L(R^2 - r^2)^2} \\ &= \frac{r''}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{1/2}} - \frac{r'^2(r'' + r)}{(r'^2 + r^2)^{3/2} (R^2 - r^2)^{1/2}} - \frac{rR^2}{(r'^2 + r^2)^{1/2} (R^2 - r^2)^{3/2}} \\ &= 0 \end{split}$$

最后一式整理可得
$$r(R^2-r^2)r''+(r^2-2R^2)r'^2-R^2r^2=0$$

- **1.8** 数学上将面积取极值的曲面称作极小曲面. 如图 **1.10** 所示, $\{x,y\}$ -平面上给定的 A 点和 B 点之间有曲线 y(x),此曲线绕 x 轴旋转而成旋转曲面.
 - 1. 求此旋转曲面面积取极小值时 y(x) 满足的微分方程;
 - 2. 求 y(x) 的解.

参考解答 1.8 待施工

- 1.9 并不是所有的微分方程都是欧拉-拉格朗日方程.
- 1. 证明 $f''(t) + 2\lambda f'(t) + \omega^2 f(t) = 0$ (λ, ω 是常数) 在 $\lambda \neq 0$ 时不是欧拉-拉格朗日方程;
- 2. 引入新变量 $q = e^{\lambda t} f$, 求 q 所满足的方程;
- 3. 求 q 的方程作为欧拉-拉格朗日方程所对应的泛函 $\tilde{S}[q]$.

参考解答 1.9 待施工

第二章 位形空间

第二章 位形空间 习题解答

第三章 相对论时空观

第四章 最小作用量原理

第五章 对称性与守恒律

第六章 辅助变量

第六章 辅助变量 习题解答

第七章 达朗贝尔原理

第八章 两体问题

第八章 两体问题 习题解答

第九章 微扰展开

第九章 微扰展开 习题解答

第十章 小振动

10.1 已知 n 个函数 $\{u_1(t), \ldots, u_n(t)\}$ 线性无关的"充分"条件是其朗斯基行列式 (Wronskian) 非零, 定义为

$$\mathcal{W}(u_1, \dots, u_n) := \det \begin{pmatrix} u_1 & u_2 & \cdots & u_n \\ u'_1 & u'_2 & \cdots & u'_n \\ \vdots & \vdots & \ddots & \vdots \\ u_1^{(n-1)} & u_2^{(n-1)} & \cdots & u_n^{(n-1)} \end{pmatrix}$$

其中 $u^{(i)}$ 代表对 t 的 i 阶导数.

- (1) 证明 $e^{-i\omega t}$ 和其复共轭 $e^{+i\omega t}$ 是线性无关的, 即 $\mathcal{W}(e^{-i\omega t}, e^{+i\omega t}) \neq 0$;
- (2) 证明任意复函数 u(t) 及其复共轭的朗斯基行列式 $\mathcal{W}(u, u^*)$ 只有虚部, 并讨论起非零的条件.

参考解答 10.1 待施工

- **10.2** 某单自由度系统,广义坐标为 q,拉格朗日量为 $L=\frac{1}{2}G(t)\dot{q}^2-\frac{1}{2}W(t)q^2$,其中 G(t) 和 W(t) 都是时间的函数.
 - (1) 若 $q_1(t)$ 和 $q_2(t)$ 为系统运动方程的任意两个线性无关的特解,证明其朗斯基行列式 $\mathcal{W}(t) = W(q_1(t), q_2(t))$ 满足形式为 $\dot{\mathcal{W}} + f(t)\mathcal{W} = 0$ 的微分方程,并给出 f(t) 的表达式;
 - (2) 根据 (1) 的结果, 分析当 G(t) 和 W(t) 满足什么条件时 \mathcal{W} 为常数.

参考解答 10.2 (1) 易求得系统运动方程为

$$G(t)\ddot{q} - W(t)q = 0$$

Wronskian 为

$$\mathcal{W} = \begin{pmatrix} q_1 & q_2 \\ \dot{q_1} & \dot{q_2} \end{pmatrix} = q_1 \dot{q_2} - q_2 \dot{q_1}$$

现计算 W

$$\dot{W} = \dot{q}_1 \dot{q}_2 + q_1 \ddot{q}_2 - \dot{q}_1 \dot{q}_2 - q_2 \ddot{q}_1 =$$

未完工

(2)

第十章 小振动 习题解答

10.3 待施工

参考解答 10.3 待施工

10.4 求习题 9.5 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.4 待施工

10.5 求习题 9.6 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.5 待施工

10.6 求习题 9.7 中系统做小振动的特征频率与简正模式,并分析简正模式的物理意义.

参考解答 10.6 待施工

第十一章 转动理论

第十一章 转动理论 习题解答

第十二章 刚体

第十二章 刚体 习题解答

第十三章 哈密顿正则方程

第十四章 泊松括号

第十五章 正则变换

第十六章 哈密顿-雅可比理论

第十七章 可积系统