Structural Equation Modeling

M&S Lecture 1, 2017:

Confirmatory Factor Analysis

Ellen Hamaker (E.L.Hamaker@uu.nl)
Methodology and Statistics
Faculty of Social and Behavioural Sciences

Outline

- One-factor model:
 - covariance structure
 - representation: path diagram, set of equations, matrices
 - scaling
- Mplus
- Nested models

Structural Equation Modeling

SEM consists of analyzing:

- covariance structure
- mean structure (only when there are multiple groups or longitudinal data)

SEM in a nutshell:

- based on substantive theory we expect certain relationships between the observed variables
- these expectations can be translated into a model
- this model can be fit to the data
- through **evaluating model fit**, we determine whether our theory makes sense

3

Example: Negative affect

525 psychology students indicated on a 7-point scale how much the following words described them in general:

- afraid
- distress
- upset
- scared
- nervous

Correlations

		afraid	distress	upset	scared	nervous
afraid	Pearson Correlation	1.000	.485**	.550**	.742**	.528**
	Sig. (2-tailed)		.000	.000	.000	.000
	N	525	524	524	524	524
distress	Pearson Correlation	.485**	1.000	.584**	.542**	.494**
	Sig. (2-tailed)	.000		.000	.000	.000
	N	524	524	524	524	524
upset	Pearson Correlation	.550**	.584**	1.000	.612**	.510**
	Sig. (2-tailed)	.000	.000		.000	.000
	N	524	524	524	524	524
scared	Pearson Correlation	.742**	.542**	.612**	1.000	.555**
	Sig. (2-tailed)	.000	.000	.000		.000
	N	524	524	524	524	524
nervous	Pearson Correlation	.528**	.494**	.510**	.555**	1.000
	Sig. (2-tailed)	.000	.000	.000	.000	
	N	524	524	524	524	524

^{**.} Correlation is significant at the 0.01 level (2-tailed).

NOTE: Correlations are standardized covariances, that is

$$Cor(x, y) = \frac{Cov(x, y)}{\sqrt{var(x)}\sqrt{var(y)}}$$

Observed covariance structure

If we have **5 observed variables**, we have (5*6)/2 = 15 unique elements in the covariance matrix: 5 variances and (5*4)/2=10 covariances.

Our theory is that these observed variables measure a **single underlying construct**: Negative Affect (NA).

Hence, we are interested in fitting a **one factor model**.

We compare this to the **saturated model**, where everything covaries with everything:

Model representation 1: Path diagram

The one factor model can be represented as the following path diagram:

Model representation 2: Set of equations

The path diagram is **the same** as the set of equations:

$$afraid_{i} = \lambda_{1}NA_{i} + e_{1i}$$

$$distress_{i} = \lambda_{2}NA_{i} + e_{2i}$$

$$\cdots$$

$$nervous_{i} = \lambda_{5}NA_{i} + e_{5i}$$

Model representation 3: Matrix notation

...which can **also** be expressed using matrix notation as:

$$\begin{bmatrix} afraid_i \\ distress_i \\ upset_i \\ scared_i \\ nervous_i \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_5 \end{bmatrix} NA_i + \begin{bmatrix} e_{1i} \\ e_{2i} \\ e_{3i} \\ e_{4i} \\ e_{5i} \end{bmatrix}$$

A general matrix notation for factor models is the measurement equation:

$$\mathbf{y}_i = \Lambda \, \eta_i + \varepsilon_i$$

where Λ is the **matrix with factor loadings** and η is a vector with **latent variables** (=factors).

Covariance matrix

We do not need to estimate all the individual η 's and ϵ 's.

$$\Sigma = E[(y_i - \mu)(y_i - \mu)^T] = E[y_i y_i^T]$$

$$= E[(\Lambda \eta_i + \varepsilon_i)(\eta_i^T \Lambda^T + \varepsilon_i^T)]$$

$$= E[\Lambda \eta_i \eta_i^T \Lambda^T + \Lambda \eta_i \varepsilon_i^T + \varepsilon_i \eta_i^T \Lambda^T + \varepsilon_i \varepsilon_i^T]$$

$$= E[\Lambda \eta_i \eta_i^T \Lambda^T] + E[\Lambda \eta_i \varepsilon_i^T] + E[\varepsilon_i \eta_i^T \Lambda^T] + E[\varepsilon_i \varepsilon_i^T]$$

$$= \Lambda E[\eta_i \eta_i^T] \Lambda^T + \Lambda E[\eta_i \varepsilon_i^T] + E[\varepsilon_i \eta_i^T] \Lambda^T + E[\varepsilon_i \varepsilon_i^T]$$

$$= \Lambda \Psi \Lambda^T + 0 + 0 + \Theta$$

Modeled covariance structure

From the general notation in matrices, a **general expression of the covariance structure** can be derived.

Σ is the modeled covariance matrix for the observed variables, that is:

$$\Sigma = \Lambda \Psi \Lambda^T + \Theta$$

where

- Λ is the matrix with factor loadings
- Ψ is the covariance matrix of the latent variables (i.e., the factors)
- O is the covariance matrix of the residuals (i.e., measurement errors)

Note that these three matrices contain **unknown parameters** we need to estimate.

Parameters in our model matrices

$$oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\lambda}_1 \ oldsymbol{\lambda}_2 \ oldsymbol{\lambda}_3 \ oldsymbol{\lambda}_4 \ oldsymbol{\lambda}_5 \end{bmatrix}$$

5 factor loadings

$$\Theta = \begin{bmatrix} \theta_{11} \\ 0 & \theta_{22} \\ 0 & 0 & \theta_{33} \\ 0 & 0 & 0 & \theta_{44} \\ 0 & 0 & 0 & 0 & \theta_{55} \end{bmatrix}$$

5 residual variances (i.e., variances of measurement errors)

$$\Psi = \left[\psi_{11} \right]$$

1 factor variance

DIY

Write down Σ for this model using $\Sigma = \Lambda \Psi \Lambda^T + \Theta$

Obtaining analytical expressions

Instead of using matrix algebra, you can also determine the elements of Σ separately.

For instance, the variance of y_1 can be obtained through:

$$Var(y_{1i}) = E[y_{1i}^{2}] = E[\{\lambda_{1}\eta_{i} + \varepsilon_{1i}\}^{2}]$$

$$= E[\{\lambda_{1}\eta_{i}\}^{2}] + E[\varepsilon_{1i}^{2}] + 2E[\lambda_{1}\eta_{i}\varepsilon_{1i}]$$

$$= \lambda_{1}^{2}E[\eta_{i}^{2}] + E[\varepsilon_{1i}^{2}] + 2\lambda_{1}E[\eta_{i}\varepsilon_{1i}]$$

$$= \lambda_{1}^{2}\psi_{11} + \theta_{11}$$

DIY

Obtain an analytical expression for the covariance between y_1 and y_2 in the same way.

Means

SEM also allows for the modeling of the **mean structure**.

Here we have 5 observed means: m.

If we do not specify a mean structure (as is the case here), Mplus will:

- estimated 5 intercepts for the 5 observed variables: v
- fix the latent mean to zero: $E(\eta) = \alpha = 0$

Then we have:
$$\mathbf{y}_i = \nu + \Lambda \eta_i + \varepsilon_i$$

with covariance matrix:
$$\Sigma = \Lambda \Psi \Lambda^T + \Theta$$

and mean vector:
$$\mu = \nu$$

Likelihood estimation

The unknown parameters in the model matrices Λ , Ψ , Θ , ν , and α , are collected in the parameter vector $\boldsymbol{\omega}_{\bullet}$

To **estimate** ω and to determine the **model fit**, we make use of the likelihood function (based on multivariate normal density of the data):

$$\log L = c - \frac{N}{2} \log \left| \Sigma_{\omega} \right| - \frac{N}{2} tr \left(S \Sigma_{\omega}^{-1} \right) - \frac{N}{2} (m - \mu_{\omega})^{T} \Sigma_{\omega}^{-1} (m - \mu_{\omega})$$

Hence, in the likelihood function the modeled covariance matrix Σ_{ω} and modeled means μ_{ω} are compared to the observed covariance matrix S and observed means m.

Scaling in a factor model

The model defined above is **not identified**, i.e., there is **no unique** solution.

The problem is that the latent variable is not observed, and therefore its scale is not known.

$$afraid_{i} = v_{1} + \lambda_{1}NA_{i} + e_{1i}$$
$$= v_{1} + (k \times \lambda_{1})\frac{NA_{i}}{k} + e_{1i}$$

To ensure the model is identified, we need to **scale the factor**: we either fix one of the factor loadings to 1, or the variance of the factor to 1.

Outline

- One-factor model
- Mplus:
 - input
 - model fit
 - modification indices
 - parameter estimates
 - Tech1 output
- Nested models

Specifying the model in Mplus

Sample statistics, free parameters and df

Data:

- observed covariance matrix S has 5*6/2=15 unique elements
- observed mean vector m has 5 elements

TOTAL: 20 sample statistics

Parameter to be estimated:

- 5 factor loadings (in Λ)
- 5 residual variance (in O)
- 1 variance of the factor (in Ψ)
- 5 means (in v, as we are not modeling the mean structure)

NOTE: Mplus will scale the factor by fixing the first factor loading to 1

TOTAL: 15 free parameters

Thus: 20 - 15 = 5 degrees of freedom for this model

Model fit: Log likelihood

MODEL FIT INFORMATION

Number of Free Parameters

15

Loglikelihood

H0 Value

-3704.358

-3676.246

H0 is the model we specified (the one factor model);

H1 is the saturated model (allowing everything to correlate with everything);

NOTE: All models are a special case of the saturated model, i.e., every model is nested under H1.

Model fit: Chi-square

Chi-Square	Test	of	Model	Fit
------------	------	----	-------	-----

Value	56.224
Degrees of Freedom	5
P-Value	0.0000

Chi-square statistic is:

$$-2\log L_0 + 2\log L_1 = 2*3704.358 - 2*3676.246 =$$
56.224

Chi-square (df=5)

Hence, H0 (our model) needs to be **rejected** in favor of H1 (saturated model).

Thus, our model does not fit the data well.

Model fit: Chi-square

While the chi-square test is the traditional test in SEM, and is most frequently used, it is also criticized for being (too) dependent on sample size:

- small samples: model fits well (no power to reject H0)
- large samples: small deviations from truth result in significant test, and thus rejection of H0 (our model)

Therefore, many alternative measures of model fit have been developed.

Model fit: RMSEA

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.140
90 Percent C.I. 0.109 0.174
Probability RMSEA <= .05 0.000

RMSEA is based on the chi-square, the df and sample size.

Rules of thumb: should be smaller than .08; <.05 implies good model fit.

NOTE: can be misleading when the df are small and sample size is not large

Our model has an RMSEA of .14, which implies the model does not fit well.

Model fit: CFI andTLI

CFI/TLI

CFI 0.957
TLI 0.914

Comparative Fit Index (CFI) and Tucker Lewis index (TLI) compare chi-square of fitted model to chi-square of baseline model.

Rules of thumb: should be larger than .90; larger than .95 implies good model fit.

NOTE: if the observations have low correlations, both CFI and TLI will be low too.

Our model has TLI>.9 and CFI>.95, which indicates good model fit.

Model fit: CFI and TLI

Chi-Square Test of Model Fit for the Baseline Model

Value 1196.676
Degrees of Freedom 10
P-Value 0.0000

Baseline model or independence model is the model in which the variables are modeled as independent of each other.

This model is **nested under** our specified model.

The baseline model and the saturated models form two extremes.

Model fit: SRMR

SRMR (Standardized Root Mean Square Residual)

Value 0.035

SRMR is based on difference between the observed covariance matrix and the modeled covariance matrix (i.e., $S-\Sigma_0$).

Rule of thumb: should be smaller than .08.

NOTE: This measure tends to be smaller as sample size increases and as the number of parameters in the model increases.

Our model has an SRMR<.08, which indicates good model fit.

What now?

Some measures (CFI, TLI, SRMR) indicate the model fits well, while other measure (chi-square test and RMSEA) indicate the model does not fit well.

If we are willing to take a **more exploratory approach**, we can look at the **modification indices** to see how our model can be improved.

Researchers do this all the time, to improve their model fit.

But.... **BEWARE!!!**

Once you go from confirmatory research to an exploratory approach, you allow **coincidence** to play a much bigger role in your results.

Also: don't forget to use your brain!

Modification indices

Minimum	M.I.	value	for	printing	the	modifica	tion index	10.000	
				M.I.		E.P.C.	Std E.P.C.	StdYX E.P.	c.
WITH Sta	temen	its							
DISTRESS	WITH	AFRAI	D	12.47	3	-0.142	-0.142	-0.210	
UPSET	WITH	AFRAI	D	12.71	.8	-0.138	-0.138	-0.236	
UPSET	WITH	DISTR	ESS	35.59	5	0.244	0.244	0.317	
SCARED	WITH	AFRAI	D	51.52	26	0.330	0.330	0.689	
SCARED	WITH	DISTR	ESS	11.70	8	-0.145	-0.145	-0.230	

Modification indices indicate how much the chi-square statistic will go down, if you included this parameter in the model.

Here, we see WITH statements, which imply covariances.

The largest MI is for *scared* and *afraid*: 51.526.

This makes sense from a **substantive perspective**.

scared WITH afraid (note it is the residuals!!)

Although Mplus uses the names of the **observed variables**, she actually means to say the **measurement errors**, that is:

Specifying the modified model in Mplus

Model fit modified model: Part 1

MODEL FIT INFORMATION

Number o	£	Free	Parameters
----------	---	------	------------

16

Loglikelihood

H0 Value	-3681.196
H1 Value	-3676.246

Information Criteria

Akaike (AIC)	7394.393
Bayesian (BIC)	7462.515
Sample-Size Adjusted BIC	7411.728
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

Value	9.900
Degrees of Freedom	4
P-Value	0.0421

Model fit modified model: Part 2

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.053	
90 Percent C.I.	0.009	0.096
Probability RMSEA <= .05	0.385	

CFI/TLI

CFI	0.995
TLI	0.988

Chi-Square Test of Model Fit for the Baseline Model

Value	1196.676
Degrees of Freedom	10
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.016

Model results: 1

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
NA BY				
AFRAID	1.000	0.000	999.000	999.000
DISTRESS	1.040	0.076	13.759	0.000
UPSET	1.097	0.074	14.854	0.000
SCARED	1.133	0.056	20.353	0.000
NERVOUS	0.996	0.072	13.856	0.000

Model results: θ_{41} and means

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
AFRAID WITH				
SCARED	0.304	0.050	6.104	0.000
Intercepts				
AFRAID	2.400	0.054	44.826	0.000
DISTRESS	2.971	0.055	54.013	0.000
UPSET	2.374	0.053	45.117	0.000
SCARED	2.448	0.056	43.551	0.000
NERVOUS	2.851	0.055	51.763	0.000

Model results Ψ and Θ

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Variances				
NA	0.752	0.089	8.420	0.000
Residual Variances				
AFRAID	0.745	0.060	12.341	0.000
DISTRESS	0.767	0.060	12.701	0.000
UPSET	0.541	0.051	10.673	0.000
SCARED	0.685	0.061	11.290	0.000
NERVOUS	0.837	0.063	13.269	0.000

TECH1 output

PARAMETER SPECIFICATION

NU AFRAID

1 1

DISTRESS	
2	

UPSET

3

SCARED

4

NERVOUS

5

	LAMBDA NA	
AFRAID		0
DISTRESS		6
UPSET		7
SCARED		8
NERVOUS		9

NOTE: Mplus does not estimate the first factor loading; this was used for **scaling**.

TECH1 output

	THETA				
	AFRAID	DISTRESS	UPSET	SCARED	NERVOUS
AFRAID	10				
DISTRESS	0	11			
UPSET	0	0	12		
SCARED	13	0	0	14	
NERVOUS	0	0	0	0	15

ALPHA

NA

1 0

BETA

NA

NA 0

PSI

NA

NA 16

Outline

- One-factor model
- Mplus
- Nested models

Comparing nested models

Often when using SEM, we will be comparing multiple models.

These models represent different theories.

If the models are **nested**, we can use the **chi-square difference test** to compare them (otherwise use AIC or BIC).

Models are nested if one is a **special case** of the other.

For instance, we may compare a **two-factor** model with a **one-factor model**: The one factor model is nested under the two-factor model, because it implies the correlation between the two factors is 1.

Two-factor model for NA and PA

DIY

We have: $\mathbf{y}_i = \mathbf{v} + \Lambda \eta_i + \varepsilon_i$ Write down Λ , Ψ , Θ and ν .

$$y_{1i} \\ y_{2i} \\ y_{3i} \\ y_{4i} \\ y_{5i} \\ y_{6i} \\ y_{7i} \\ y_{8i} \\ y_{9i} \\ y_{10i} \\$$

$$oldsymbol{\eta}_i = egin{bmatrix} oldsymbol{\eta}_{1i} \ oldsymbol{\eta}_{2i} \end{bmatrix}$$

Sample statistics, free parameters and df

Data:

- observed covariance matrix **S** has 10*11/2=55 unique elements
- observed mean vector **m** has 10 elements

TOTAL: 65 sample statistics

Parameter to be estimated:

- 10 factor loadings (in Λ); 2 fixed to 1 for scaling, so 8 factor loadings to be estimated
- 10 residual variances (in **O**)
- 1 covariance between the residuals (in Θ)
- 2 variances of the factors (in Ψ)
- 1 covariance between the factors (in Ψ)
- 10 means (in v, as we are not modeling the mean structure)

TOTAL: 32 free parameters

Thus: 65 - 32 = 33 degrees of freedom for this model

Mplus input for 2-factor model

Model fit: Two-factor model

32

MODEL FIT INFORMATION

|--|

Loglikelihood

ΗO	Value	-7323.654
н1	Value	-7275.520

Information Criteria

Akaike (AIC)	14711.308
Bayesian (BIC)	14847.554
Sample-Size Adjusted BIC	14745.978
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

Value	96.269
Degrees of Freedom	33
P-Value	0.0000

Model fit: Two-factor model

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.061	
90 Percent C.I.	0.047	0.075
Probability RMSEA <= .05	0.101	

CFI/TLI

CFI	0.962
TLI	0.948

Chi-Square Test of Model Fit for the Baseline Model

Value	1698.761
Degrees of Freedom	45
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.054

One-factor model for NA and PA

DIY

Write down Λ , Ψ , Θ and ν for this one-factor model.

DIY

How can you show that this one-factor model is a special case of the previous two-factor model?

Sample statistics, free parameters and df

Data:

- observed covariance matrix **S** has 10*11/2=55 unique elements
- observed mean vector **m** has 10 elements

TOTAL: 65 sample statistics

Parameter to be estimated:

- 10 factor loadings (in Λ); 1 fixed to 1 for scaling, so 9 factor loadings to be estimated
- 10 residual variances (in **O**)
- 1 covariance between the residuals (in Θ)
- 1 variance of the factor (in Ψ)
- 10 means (in v, as we are not modeling the mean structure)

TOTAL: 31 free parameters

Thus: 65 - 31 = 34 degrees of freedom for this model

Model fit: One-factor model

Number of	Free	Parameters
-----------	------	------------

31

Loglikelihood

H0 Value	-7488.452
H1 Value	-7275.520

Information Criteria

Akaike (AIC)	15038.905
Bayesian (BIC)	15170.892
Sample-Size Adjusted BIC	15072.491
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

Value	425.865
Degrees of Freedom	34
P-Value	0.0000

Chi-square difference test

The one-factor model is **nested under** the two-factor model.

We can compare these models using their chi-squares and dfs:

Chi-square difference: 425.865 - 96.269 = 329.596

Df difference: 34 - 33 = 1

This test is significant. Hence, we have to **reject H0**, which is the **more parsimonious model** (i.e., the one-factor model) in favor of H1, the more general model (i.e., the two-factor model).

Nesting

Nested models can be compared using the **chi-square difference test**.

When models are **not nested**, you **cannot use** this test.

Other ways of comparing models (nested of non-nested) are by use of the **AIC** or **BIC**: lower values point to better models.

Note that it is **not always easy** to see that two models are nested.

Take home message

- SEM is concerned with analyzing the covariance structure (and sometimes the mean structure – Lecture 2).
- Confirmatory factor analysis is a special case of SEM.
- All CFA models can be expressed using the measurement equation, which relates observed variables y to latent variables η.
- Latent variables always need to be scaled.
- The measurement equation is defined using Λ, Ψ and Θ; using these, we obtain the modeled covariance matrix Σ.
- **Σ** is compared to the **observed covariance matrix S**.
- There are many diverse fit indices.
- Models are nested when one is a special case of another; they can be compared with the chi-square difference test.
- All models can be compared with AlC or BlC (if they are based on the same dataset! Lecture 3)

Mplus website:

http://www.statmodel.com/

Mplus demo version:

http://www.statmodel.com/demo.shtml

(restricted to 6 observed variables, and 2 latent variables)

User's guide:

http://www.statmodel.com/ugexcerpts.shtml

(chapters 1-14 on diverse modeling options in Mplus)

Mplus 7 manual as pdf:

https://www.statmodel.com/download/usersguide/MplusUserGuideVer_7.pdf

(also includes chapters 15-20, which treat the diverse Mplus modeling commands)

Online Chi-square calculator: