(V)	Preliminary Specification
()		Final Specification

Module	19.0" SXGA Color TFT-LCD		
Model Name	M190EG01 V3		

Customer	Date
Approved by	
Note: This Specification is notice.	subject to change without

Checked & Approved by	Date				
<u>Debbie Chiu</u>	<u>Mar. 31, 2009</u>				
Prepared by					
<u>Maxshih</u>	<u>Mar. 23, 2009</u>				
Desktop Display Business Group / AU Optronics corporation					

document version 0.7 1/28

Product Specification AU OPTRONICS CORPORATION

M190EG01 V3

Record of Revision

Version & Date Page		Page	Old Description	New Description	Remark
0.1	2009/3/31	All	First Edition for Customer		
0.2	2009/4/22	וו	VDD= 5.0V, All White Pattern At 75Hz	VDD= 5.0V, All White Pattern At 60Hz	Revised

document version 0.7 2/28

Contents

1. Handling Precautions	
2. General Description	5
2.1 Display Characteristics	6
3. Functional Block Diagram	12
4. Absolute Maximum Ratings	13
4.1 Absolute Ratings of TFT LCD Module	
4.2 Absolute Ratings of Backlight Unit	13
4.3 Absolute Ratings of Environment	13
5. Electrical characteristics	15
5.1 TFT LCD Module	
5.2 Backlight Unit	16
6. Signal Characteristic	17
6.1 Pixel Format Image	17
6.2 The Input Data Format	18
6.4 Interface Timing	20
6.5 Power ON/OFF Sequence	22
7. Connector & Pin Assignment	23
7.1 TFT LCD Module	23
7.2 Backlight Unit	24
8. Reliability Test	25
9. Shipping Label	26
10. Mechanical Characteristic	27

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Cold cathode fluorescent lamp in LCD contains a small amount of mercury. Please follow local ordinances or regulations for disposal.
- 13) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 14) The LCD module is designed so that the CCFL in it is supplied by Limited Current Circuit (IEC60950 or UL1950). Do not connect the CCFL in Hazardous Voltage Circuit.

document version 0.7 4/28

M190EG01 V3

AU OPTRONICS CORPORATION

2. General Description

M190EG01 V3 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD panel, a driver circuit, and backlight system. The screen format is intended to support the SXGA (1280(H) x 1024(V)) screen and 16.7M colors 8-bits. All input signals are LVDS interface compatible. Inverter card of backlight is not included. M190EG01 V3 is designed for a general display unit.

document version 0.7 5/28

2.1 Display Characteristics

Items	Unit	Specifications
Screen Diagonal	[mm]	482.6 (19.0")
Active Area	[mm]	376.32 (H) x 301.056 (V)
Pixels H x V		1280(x3) x 1024
Pixel Pitch	[mm]	0.294 (per one triad) x 0.294
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally Black
White Luminance	[cd/m ²]	300 (center, Typ) @ 7.5mA
Contrast Ratio		1300 : 1 (Typ)
Optical ResponseTime	[msec]	8ms GTG (Avg. Typ.); 20 ms(Typ, on/off)
Nominal Input Voltage VDD	[Volt]	+5.0 V
Power Consumption	[Watt]	28 W (Typ) (w/o Inverter, All white pattern)
Weight	[Grams]	2500 (Typ) ; 2700 (Max)
Physical Size (H x V x D)	[mm]	396 (H) x 324 (V) x 17.5 (D) (Typ)
Electrical Interface		Dual channel LVDS
Surface Treatment		Hard-coating (3H), Non-Glare treatment
Support Color		16.7M colors 8-bits
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

document version 0.7 6/28

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item	Unit	Condi	Conditions		Тур.	Max.	Note	
Viewing Angle	[dograp]	Horizontal CR = 10	(Right) (Left)	75 75	89 89	-	1	
Viewing Angle	[degree]	Vertical CR = 10	(Up) (Down)	75 75	89 89	-	ı	
Luminance Uniformity	[%]	9 Points		75	80	-	2, 3	
		Rising			15	25	4,6	
Response time	[msec]	Falling			5	15	4,6	
Tresponse time	[IIISEC]	Rising + Falli	ing		20	40	4,6	
		Grey to Grey	(Avg.)	-	8	16	4,6	
		Red x	0.617	0.647	0.677	4		
		Red y	0.31	0.34	0.37			
		Green x	0.263	0.293	0.323			
Color / Chromaticity Coordinates		Green y	0.571	0.601	0.641			
(CIE 1931)		Blue x Blue y		0.112	0.142		0.172	
				0.037	0.067		0.099	
		White x	0.283	0.313	0.34			
		White y		0.299	0.329	0.359		
Black Luminance (At CCFL=7.5mA)	[cd/m ²]				0.15	0.5	4	
White Luminance (At CCFL= 7.5mA)	[cd/m ²]			240	300	-	4	
Contrast Ratio				1000	1300	-	4	
Cross Talk (At 75Hz)	[%]			-	-	1.5	5	
Flicker	[dB]			-	-	-20	7	
C.G.L		∆ u'v'		-	-	0.02	8	

Optical Equipment: BM-5A, PR880, SR3, CS1000 or equivalent.

document version 0.7 7/28

Note 1: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2: 9 points position

Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance

 $\delta_{W9} = \frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}}$

document version 0.7 8/28

AU OPTRONICS CORPORATION

Note 4: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 5: Definition of Cross Talk (CT) $CT = |YB - YA|/YA \times 100$ (%)

Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

document version 0.7 9/28

AU OPTRONICS CORPORATION

Note 6: Definition of response time:

Algorithm:

Level A - Level B | ≥ 16 then the average of Grey-to-Grey response time is 8ms. (F= 60 Hz).

 $Tr_R(rising\ time;\ from\ "All\ Black"\ to\ "All\ White") + Tr_F(Falling\ time;\ from\ "All\ White"\ to\ "All\ Black") = 20ms(typ).$

Note 7: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

document version 0.7 10/28

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at } 30 \text{ Hz)}}{DC \text{ Level}}$$

Note 8: Color Grayscale Linearity

- a. Test image: 100% full white pattern with a test pattern as below
- b. Test pattern: Squares,40mm by 40mm in size, filled with 255, 225,195,165,135 and 105 grays steps should be arranged at the center of the screen.
- c. Test method
 - -1st gray scale: Move a square of 255 gray level should be moved into the center of the screen and measure luminance and u' and v' coordinates.
 - Next gray step: Move a 225 gray square into the center and measure both lumince and coordinates, too.
- d. Test evaluation

$$\Delta u'v' = \sqrt{(u'_A - u'_B)^2 + (v'_A - v'_B)^2}$$

Where A,B: 2 gray levels found to have the largest color differences between them i.e. get largest $\Delta u'$ and $\Delta v'$ of each 6 pair of u' and v' and calculate $\Delta u'v'$

3. Functional Block Diagram

The following diagram shows the functional block of the 19.0 inches Color TFT-LCD Module:

document version 0.7 12/28

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min.	Max.	Unit	Conditions
Logic/LCD Drive Voltage	VDD	-0.3	+6	[Volt]	Note 1, 2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min.	Max.	Unit	Conditions
CCFL Current	ICFL	-	8	[mA] rms	Note 1, 2

4.3 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	
Operation Humidity	HOP	5	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	90	[%RH]	

document version 0.7 13/28

Note 1: With in Ta= 25°C

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

document version 0.7 14/28

AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows:

Symble	Parameter	Min.	Тур.	Max.	Unit	Condition
VDD	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	±10%
IDD	Input Current	-	1.50	1.80	[A]	VDD= 5.0V, All White Pattern At 60Hz
PDD	VDD Power	-	7.5	9.0	[Watt]	VDD= 5.0V, All White Pattern At 60Hz, Note 1
IRush	Inrush Current	_	2	3	[A]	Note 2

Note 1: The variance of VDD power consumption is ±10%.

Note 2: Measurement conditions:

document version 0.7 15/28

5.2 Backlight Unit

Parameter guideline for CCFL Inverter is under stable conditions at 25°C (Room Temperature):

Parameter	Min.	Тур.	Max.	Unit	Condition
CCFL Standard Current(ISCFL)	7.0	7.5	8.0	[mA] rms	Note 2
CCFL Operation Current(IRCFL)	3.0	7.5	8.0	[mA] rms	Note 2
CCFL Frequency(FCFL)	40	60	80	[KHz]	Note 3,4
CCFL Ignition Voltage(ViCFL, Ta= 0°C)	1690	-	-	[Volt] rms	Note 5
CCFL Ignition Voltage(ViCF, Ta= 25°C)	1300	-	-	[Volt] rms	Note 5
CCFL Operation Voltage (VCFL)	-	653 @7.5mA	796 @3mA	[Volt] rms	Note 6
CCFL Power Consumption(PCFL)	-	19.6	20.56	[Watt]	Note 6
CCFL Life Time(LTCFL)	40,000	50,000	-	[Hour]	Note 7

Note 1: Typ. are AUO recommended design points.

- *1 All of characteristics listed are measured under the condition using the AUO test inverter.
- *2 In case of using an inverter other than listed, it is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power may happen.
- *3 In designing an inverter, it is suggested to check safety circuit very carefully. Impedance of CCFL, for instance, becomes more than 1 [M ohm] when CCFL is damaged.
- *4 Generally, CCFL has some amount of delay time after applying kick-off voltage. It is recommended to keep on applying kick-off voltage for 1 [Sec] until discharge.
- *5 Reducing CCFL current increases CCFL discharge voltage and generally increases CCFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter.
- Note 2: CCFL standard current is measured at 25±2°C.
- Note 3: CCFL discharge frequency should be carefully determined to avoid interference between inverter and TFT LCD.
- Note 4: The frequency range will not affect to lamp life and reliability characteristics.
- Note 5: CCFL inverter should be able to give out a power that has a generating capacity of over 1,690 voltage. Lamp units need 1,690 voltage minimum for ignition.
- Note 6: The variance of CCFL power consumption is ±10%. Calculator value for reference (ISCFL × VCFL × 4 = PCFL
- Note 7: Definition of life: brightness becomes 50%. The typical life time of CCFL is on the condition at 7.5 mA lamp current.

document version 0.7 16/28

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		0			1			1	27	9	12	280)
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
		1											
		•					1						
		•					•					•	
							•						
		,			•		•					•	
		•			•		•					•	
													\dashv
1024th Line	R	G	В	R	G	В		R	G	В	R	G	В

document version 0.7 17/28

6.2 The Input Data Format

Note1: Normally, DE, VS, HS on EVEN channel are not used.

Note2: Please follow VESA.

Note3: 8-bit in

document version 0.7 18/28

6.3 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels

while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	VSS	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	VSS	Power Ground
15	RxEIN1-	Negative LVDS differential data input (Even data)
16	RxEIN1+	Positive LVDS differential data input (Even data)
17	VSS	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	VSS	Power Ground
25	VSS	Power Ground
26	NC	No Connection (for AUO test)
27	VSS	Power Ground
28	VCC	+5.0V Power Supply
29	VCC	+5.0V Power Supply
30	VCC	+5.0V Power Supply

document version 0.7 19/28

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

Note3: Please follow PSWG.

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

ı	tem	Symbol	Min	Тур	Max	Unit
Data CLK		Tclk	30	54	83	MHz
H-section	Period	Th	720	844	1024	Tclk
H-Section	Display Area	Tdisp(h)	640	640	640	Tclk
V-section	Period	Tv	1035	1066	2048	Th
v-section	Display Area	Tdisp(v)	1024	1024	1024	Th
Fran	ne Rate	F	50	60	75	Hz

Note: DE mode only

document version 0.7 20/28

6.4.2 Timing Digram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Parameter		Value	Unit	
Parameter	Min.	Тур.	Max.	Offit
T1	0.5	-	10	[ms]
T2	0	-	50	[ms]
Т3	200	-	-	[ms]
T4	200	-	-	[ms]
T5	0	16	50	[ms]
T6	-	-	10	[ms]
Т7	500	-	-	[ms]

Note: The values of the table are follow VESA.

document version 0.7 22/28

AU OPTRONICS CORPORATION

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

7.1.1 Connector

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	JAE or compatible
Type Part Number	FI-XB30SSL-HF15
Mating Housing Part Number	FI-X30HL

7.1.2 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	VSS	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	VSS
15	RxEIN1-	16	RxEIN1+
17	VSS	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	VSS
25	VSS	26	NC
27	VSS	28	VCC
29	VCC	30	VCC

document version 0.7 23/28

AU OPTRONICS CORPORATION

7.2 Backlight Unit

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	Lamp Connector / Backlight lamp
Manufacturer	JST
Type Part Number	BHSR-02VS-1
Mating Type Part Number	SM02B-BHSS-1-TB

7.2.1 Signal for Lamp connector

	Connector No.	Pin No.	Input	Color	Function
Upper CN2	1	Hot1	Pink	High Voltage	
	CIVI	2	Cold1	Black	Low Voltage
	1	Hot2	Blue	High Voltage	
	CN2	2	Cold2	White	Low Voltage

	Connector No.	Pin No.	Input	Color	Function
CN3	1	Hot1	Pink	High Voltage	
	2	Cold1	Black	Low Voltage	
Lower	CN4	1	Hot2	Blue	High Voltage
		GN4	2	Cold2	White

document version 0.7 24/28

8. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (ElectroStatic Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	_ 2
ESD (ElectroStatic Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	2
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

document version 0.7 25/28

9. Shipping Label

The shipping label format is shown as below.

document version 0.7 26/28

AU OPTRONICS CORPORATION

10. Mechanical Characteristic

document version 0.7 27/28

document version 0.7 28/28