MAC0315-2018 EP: Simplex

Luciano Antonio Siqueira NUSP: 8535467

O problema de otimização

$$\min \int_0^T |a(s)| ds \tag{1}$$

sujeito a

$$v(t) = v(0) + \int_0^t a(s)ds, \forall t \in [0, T]$$
 (2)

$$x(t) = x(0) + \int_0^t v(s)ds, \forall t \in [0, T]$$
 (3)

$$v(0) = 0, v(T) = 0, x(0) = 0, x(T) = 1$$
(4)

pode ser discretizado dividindo o intervalo T em subintervalos, de modo que o cálculo das integrais é substituído por aproximações em cada um desses subintervalos.

1 Discretização

Tomando $d \geq 2$ como o número de subintervalos, a função em (1) pode ser substituída por

$$min\sum_{i=0}^{d} |a_i| \tag{5}$$

e as restrições (2), (3) e (4) podem ser substituídas por

$$v_{i+1} = v_i + \rho a_i, \forall i \in \{0, \cdots, d-1\}$$
 (6)

$$x_{i+1} = x_i + \rho v_i, \forall i \in \{0, \cdots, d-1\}$$
 (7)

$$v_0 = 0, v_d = 0, x_0 = 0, x_d = 1$$
 (8)

onde ρ é o tamanho do subintervalo, definido por $\rho = \frac{T}{d}$.

A princípio, o problema possui três grupos de variáveis: a_i , v_i e x_i , mas apenas as variáveis a_i possuem coeficientes não nulos na função objetivo. As variáveis v_i e x_i atuam apenas nas restrições do problema.

A matriz de restrições correspondente a (6), (7) e (8) possuirá 2d+4 linhas e 3d+2 colunas. Por exemplo, para um número de subintervalos d=2, a forma matricial das restrições é dada por

$$\begin{pmatrix}
\rho & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & \rho & 0 & 0 & 1 & -1 & 0 \\
0 & \rho & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & \rho & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
a_0 \\
a_1 \\
v_0 \\
v_1 \\
v_2 \\
x_0 \\
x_1 \\
x_2
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{pmatrix}$$
(9)

A variável a_d não aparece nas restrições. Seu valor é considerado nulo, pois não interfere na solução de interesse: a minimização da aceleração antes de chegar no instante final T.

1.1 Tratamento do módulo e variáveis irrestritas

Para lidar com a minimização dos valores absolutos na função objetivo, as variáveis $|a_i|$ são substituídas por um número correspondente de variáveis z_i :

$$\min \sum_{i=0}^{d} z_i$$

e duas novas restrições são incluídas para cada $i=1,\cdots,d$:

$$z_i \geq a_i$$

$$z_i \ge -a_i$$

sendo $z_i \geq 0$. Já as variáveis a_i são irrestritas e por isso serão substituídas pelas variáveis $a_i^+ \geq 0$ e $a_i^- \geq 0$, tal que $a_i = a_i^+ - a_i^-$. Desse modo, as restrições para o problema ficam dadas por:

$$v_{i+1} = v_i + \rho(a_i^+ - a_i^-), \forall i \in \{0, \dots, d-1\}$$
$$x_{i+1} = x_i + \rho v_i, \forall i \in \{0, \dots, d-1\}$$
$$v_0 = 0, v_d = 0, x_0 = 0, x_d = 1$$

$$z_{i} \ge (a_{i}^{+} - a_{i}^{-}), \forall i \in \{0, \dots, d - 1\}$$

$$z_{i} \ge -(a_{i}^{+} - a_{i}^{-}), \forall i \in \{0, \dots, d - 1\}$$

$$a_{i}^{+}, a_{i}^{-}, v_{i}, x_{i}, z_{i} \ge 0, \forall i \in \{0, \dots, d\}$$

A nova forma matricial é obtida estendendo a forma exemplificada em (9) para adequar-se às novas restrições, resultando numa matriz com 4d+4 linhas e 5d+2 colunas. Por fim, são incluídas as variáveis de folga para cada restrição de desigualdade, aumentando o número de colunas da matriz de restrição para 7d+2.

2 Implementação

O programa foi implementado em linguagem *Python*. O arquivo ep.py contém os procedimentos para construir o problema e o arquivo simplex.py contém a implementação do algoritmo de duas fases dos Simplex, invocado automaticamente quando ep.py é executado.

A quantidade de intervalos d utilizada na discretização do problema é informada como parâmetro do comando ep.py. Por exemplo, se o comando for invocado na forma ./ep.py 8, então o tempo será discretizado em 8 partes.

A saída do programa é dividida em 4 colunas, separadas por um caractere de tabulação. Na primeira coluna estão os tempos discretizados e nas colunas seguintes estão a(t), v(t) e x(t) correspondentes a cada intervalo de tempo na primeira coluna. Na última linha da saída é exibido o valor ótimo para a discretização solicitada. A saída produzida pelo comando ./ep.py 8 será:

t	a(t)	v(t)	x(t)	
0,00	0,091429		0,000000	0,000000
1,25	0,000000		0,114286	0,000000
2,50	0,000000		0,114286	0,142857
3,75	0,000000		0,114286	0,285714
5,00	0,000000		0,114286	0,428571
6,25	0,000000		0,114286	0,571429
7,50	0,000000)	0,114286	0,714286
8,75	-0,091429		0,114286	0,857143
10,00	0,000000)	0,000000	1,000000

Valor ótimo: 0.182857

3 Resultados

Foram feitas diversas discretizações, cujos resultados estão ilustrados nos gráficos a seguir. As soluções ficaram dentro do esperado, pois observa-se que uma aceleração é aplicada no início para impulsionar o foguete e uma aceleração negativa equivalente é aplicada no fim, parando o foguete.

Apesar do valor ótimo ser melhor quando é utilizado um número menor de subintervalos de discretização, é esperado que o erro na aproximação das integrais seja grande quando são utilizados subintervalos de tempo muito grandes. Por isso, valores mais confiáveis são obtidos quanto maior for o número de subintervalos utilizados na discretização.

Discretização em 3 intervalos Gasto ótimo: 0,090

Discretização em 4 intervalos Gasto ótimo: 0,107

Discretização em 5 intervalos Gasto ótimo: 0,125

Discretização em 6 intervalos Gasto ótimo: 0,144

Discretização em 7 intervalos Gasto ótimo: 0,163

Discretização em 8 intervalos Gasto ótimo: 0,183

Discretização em 9 intervalos Gasto ótimo: 0,203

Discretização em 10 intervalos Gasto ótimo: 0,222

Discretização em 11 intervalos Gasto ótimo: 0,242

Discretização em 12 intervalos Gasto ótimo: 0,262

Discretização em 13 intervalos Gasto ótimo: 0,282

Discretização em 14 intervalos Gasto ótimo: 0,302

Discretização em 15 intervalos Gasto ótimo: 0,321

Discretização em 16 intervalos Gasto ótimo: 0,341

Discretização em 17 intervalos Gasto ótimo: 0,361

Discretização em 18 intervalos Gasto ótimo: 0,381

Discretização em 19 intervalos Gasto ótimo: 0,401

Discretização em 20 intervalos

Discretização em 21 intervalos Gasto ótimo: 0,441

Tempo discretizado

Discretização em 22 intervalos Gasto ótimo: 0,461

Discretização em 23 intervalos Gasto ótimo: 0,481

Discretização em 24 intervalos Gasto ótimo: 0,501

Tempo discretizado

Discretização em 25 intervalos Gasto ótimo: 0,521

Discretização em 26 intervalos Gasto ótimo: 0,541

Discretização em 27 intervalos Gasto ótimo: 0,561

Discretização em 28 intervalos Gasto ótimo: 0,581

Discretização em 29 intervalos

Gasto ótimo: 0,601

Tempo discretizado

Discretização em 30 intervalos Gasto ótimo: 0,621

Tempo discretizado

Discretização em 31 intervalos Gasto ótimo: 0,641

Discretização em 32 intervalos Gasto ótimo: 0,661

Discretização em 33 intervalos Gasto ótimo: 0,681

Tempo discretizado