Marche aléatoire

Module n° 19

I. Présentation

1. Marche aléatoire

Une marche aléatoire est un déplacement constitué de pas successifs, aléatoires et indépendants. Les applications des marches aléatoires sont multiples dans des domaines variés.

Recherche à effectuer

- a. Faire une présentation du botaniste Robert Brown.
- b. Le mouvement brownien
 - Présenter la recherche de Robert Brown à l'origine de cette description
 - Préciser une utilisation de ce mouvement en physique, et une en mathématiques financières

2. Situation

Une puce se déplace sur un axe gradué; elle part de l'origine et, à chaque saut, elle se déplace de manière aléatoire de une unité, vers la gauche ou vers la droite.

II. Simulation de quatre sauts

Chaque suite de quatre sauts est appelée promenade de quatre sauts.

1. Simuler un saut

Proposer une façon de simuler un saut, puis une instruction à saisir dans la calculatrice.

- 2. Promenade de quatre sauts
 - a. Simuler cinq promenades de quatre sauts et indiquer la position d'arrivée pour chacune d'entre elles.
 - b. La puce peut-elle atteindre toutes les positions? Justifier la réponse.
- 3. Modélisation
 - a. A l'aide d'un arbre, obtenir toutes les promenades de quatre sauts et, pour chacune d'entre elles, indiquer la position d'arrivée correspondante.
 - b. Calculer la probabilité associée à chacune de ces positions d'arrivée.
 Présenter la loi de probabilité de cette expérience dans le tableau ci-dessous :

Position d'arrivée			
Probabilité			

c. Qu'observe-t-on?

III. Simulation de dix sauts

On considère maintenant des promenades de dix sauts.

- 1. Si on construisait un arbre pour représenter l'expérience et décrire ces promenades aléatoires, combien aurait-il de branches à son extrémité?
 - Observer les arbres représentant les promenades de deux sauts, de trois sauts, ...
- 2. Compte tenu du très grand nombre de résultats possibles, on se propose d'utiliser un algorithme pour simuler ces promenades de dix sauts, puis estimer une loi de probabilité à partir des fréquences obtenues.

Seconde Module

AVEC LE LOGICIEL ALGOBOX Marche aléatoire de dix sauts

```
1: VARIABLES
2: x EST_DU_TYPE NOMBRE
3: n EST_DU_TYPE NOMBRE
4: s EST_DU_TYPE NOMBRE
5: DEBUT_ALGORITHME
       x PREND_LA_VALEUR O
6:
       POUR n ALLANT_DE 1 A 10
7:
          DEBUT_POUR
8:
9:
          s PREND_LA_VALEUR ALGOBOX_ALEA_ENT(0,1)
10:
          SI (s==1) ALORS
11:
             DEBUT_SI
             x PREND_LA_VALEUR x+1
12:
             FIN_SI
13:
14:
          SINON
15:
             DEBUT_SINON
             x PREND_LA_VALEUR x-1
16:
17:
             FIN_SINON
          FIN_POUR
18:
       AFFICHER "La puce se trouve au point d'abscisse: "
19:
20:
       AFFICHER x
21: FIN_ALGORITHME
```

a. Réfléchir aux variables

Indiquer ce que représentent les variables x et s dans cet algorithme.

b. Réfléchir à la structure de l'algorithme

L'algorithme nécessite :

- une instruction itérative, appelée boucle, du type POUR ... ALLANT DE ... À ...
- une instruction alternative du type SI ... ALORS ... SINON ...

Repérer la boucle dans l'écriture de l'algorithme ci-dessus.

3. A l'aide de l'algorithme, effectuer la simulation de 50 promenades de 10 sauts et noter les positions d'arrivée.

Regrouper les résultats dans le tableau, ci-dessous.

Position d'arrivée						
Effectif						
Fréquence						

4. Le calcul des probabilités permet d'obtenir la loi ci-dessous :

Position d'arrivée	-10	-8	-6	-4	-2	0	2	4	6	8	10
Probabilité	0,001	0,01	0,044	0,117	0,205	0,246	0,205	0,117	0,044	0,01	0,001

Calculer la probabilité des événement suivants :

a. A: « la puce finit sa promenade au point d'abscisse 4 ou -4 »

b. B: « la puce finit sa promenade à plus de trois unités de l'origine »

c. C: « la puce s'est toujours déplacée dans le même sens »

Seconde Module