5 What we claim is:

1. A compound of Formula (I):

or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is selected from the group:

 $-B(Y^1)(Y^2)$,

15 -C(=0)C(=0)-Q,

-C(=O)C(=O)NH-Q

-C(=0)C(=0)-0-Q,

 $-C(=O)CF_2C(=O)NH-Q;$

 $-C(=0)CF_3$,

-C(=0)CF₂CF₃, and

-C(=0)H;

 \mathbf{Y}^1 and \mathbf{Y}^2 are independently selected from:

a)-OH,

25 b)-F,

c) $-NR^4R^5$,

d) C_1-C_8 alkoxy, and

when taken together with B, Y^1 and Y^2 form:

- e) a cyclic boronic ester where said cyclic boronic
 ester contains from 2 to 20 carbon atoms, and,
 optionally, 1, 2, or 3 heteroatoms which can be N,
 S, or O;
- f) a cyclic boronic amide where said cyclic boronic amide contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or

- g) a cyclic boronic amide-ester where said cyclic boronic amide-ester contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;
- 10 Q is selected from $-(CR^6R^{6c})_p-Q^1$, $-(CR^6R^{6c})_p-Q^2$, C_2-C_4 alkenyl substituted with Q^1 , C_2-C_4 alkynyl substituted with Q^1 , and an amino acid residue;
- 15 p is 1, 2, 3 or 4;
 - Q¹ is selected from the group: $-CO_2R^7, \ -SO_2R^7, \ -SO_3R^7, \ -P(O)_2R^7, \ -P(O)_3R^7,$ aryl substituted with 0-4 Q^{1a}, and
- 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic ring system is substituted with 0-4 Ola;
- Q^{1a} is H, F, Cl, Br, I, $-NO_2$, -CN, -NCS, $-CF_3$, $-OCF_3$, $-CO_2R^8$, $-C(=O)NR^8R^9$, $-NHC(=O)R^8$, $-SO_2R^8$, $-SO_2NR^8R^9$, $-NR^8R^9$, $-OR^8$, $-SR^8$, C_1-C_4 alkyl, C_1-C_4 haloalkyl, or C_1-C_4 haloalkoxy;
 - Q^2 is $-X^1-NR^{10}-Z$, $-NR^{10}-X^2-Z$, or $-X^1-NR^{10}-X^2-Z$;
- X^1 and X^2 are independently selected from: -C(=O)-, -S-, -S(=O)-, -S(=O)₂-, -P(O)-, -P(O)₂-, and -P(O)₃-;
 - Z is C_1-C_4 haloalkyl, $C_1-C_4 \text{ alkyl substituted with 0-3 } Z^a,$ $C_2-C_4 \text{ alkenyl substituted with 0-3 } Z^a,$

C2-C4 alkynyl substituted with 0-3 Za,
C3-C10 cycloalkyl substituted with 0-5 Zb,
C3-C10 carbocyle substituted with 0-5 Zb,
6-10 membered aryl substituted with 0-5 Zb, or
5-10 membered heterocyclic ring system consisting of
carbon atoms and 1-4 heteroatoms selected from the
group: O, S, and N; optionally saturated, partially
unsaturated or unsaturated; and said 5-10 membered
heterocyclic ring system is substituted with 0-4
Zb;

15

25

35

Za is H, F, Cl, Br, I, $-NO_2$, -CN, -NCS, $-CF_3$, $-OCF_3$, $-CO_2R^8$, $-C(=O)NR^8R^9$, $-NHC(=O)R^8$, $-NR^8R^9$, $-OR^8$, $-SR^8$, $-S(=O)R^8$, $-SO_2R^8$, $-SO_2NR^8R^9$, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy,

20 C_3 - C_7 cycloalkyl substituted with 0-5 Z^b ,

 C_3 - C_{10} carbocyle substituted with 0-5 Z^b ,

6-10 membered aryl substituted with 0-5 Z^{b} , or

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic ring system is substituted with 0-4 Z^b;

30 Z^b is H, F, Cl, Br, I, $-NO_2$, -CN, -NCS, $-CF_3$, $-OCF_3$, $-CO_2R^8$, $-C(=O)NR^8R^9$, $-NHC(=O)R^8$, $-NR^8R^9$, $-OR^8$, $-SR^8$, $-S(=O)R^8$, $-SO_2R^8$, $-SO_2NR^8R^9$, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 haloalkoxy,

 C_3 - C_7 cycloalkyl substituted with 0-5 Z^c ,

 C_3 - C_{10} carbocycle substituted with 0-5 Z^c ,

6-10 membered aryl substituted with 0-5 Zc, or

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially

5 unsaturated or unsaturated; and said 5-10 membered heterocyclic ring system is substituted with 0-4 \mathbf{Z}^{c} ;

Z^c is H, F, Cl, Br, I, $-NO_2$, -CN, -NCS, $-CF_3$, $-OCF_3$, $-CO_2R^8$, $-C(=O)NR^8R^9$, $-NHC(=O)R^8$, $-NR^8R^9$, $-OR^8$, $-SR^8$, $-S(=O)R^8$, $-SO_2R^8$, $-SO_2NR^8R^9$, C_1-C_4 alkyl, C_1-C_4 haloalkyl, or C_1-C_4 haloalkoxy;

A is A^2-A^3 , $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, $A^2-A^3-A^4-A^5-A^6$, or $A^2-A^3-A^4-A^5-A^6-A^7;$

 ${\rm A}^2$ is a natural amino acid, a modified amino acid, an unnatural amino acid, or

wherein said amino acid is of either D or L configuration;

 R^{X} is H, F, C1, Br, I, $-CF_{3}$, $-OCF_{3}$, $-(CH_{2})_{m}-R^{16}-(CH_{2})_{n}-R^{12}$, or $-CO_{2}R^{12}$;

m and n are independently selected from 0, 1, 2, and 3;

A³, A⁴, A⁵, A⁶, and A⁷ are independently selected from an amino acid residue; wherein said amino acid residue, at each occurence, is independently selected from a natural amino acid, a modified amino acid, or an unnatural amino acid; wherein said natural, modified or unnatural amino acid is of either D or L configuration;

10

 R^{1a} is

R^{1b} is selected at each occurrence from the group: H, C_1 - C_4 alkyl, F, Cl, Br, I, -OH, C_1 - C_4 alkoxy, phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d}, -NR^{1d}R^{1d}, -CF₃, -OCF₃, C_3 - C_6 cycloalkyl, and aryl substituted by 0-3 R^{1c};

20 R^{1c} is selected at each occurrence from the group: methyl, ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, -NO₂, -C(=0)OR^{1d}, NR^{1d}R^{1d}, -CF₃, and -OCF₃;

 R^{1d} is H, C_1 - C_4 alkyl, phenyl or benzyl;

25

 R^2 is H, C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl)-, or C_3 - C_6 cycloalkyl;

R³ is H, C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl)-, -C(=0)R¹¹, $-CO_2R^{11}, -C(=0)NHR^{11}, -S(=0)R^{11}, -S(=0)_2R^{11}, \text{ or}$ an NH₂-blocking group;

 R^4 and R^5 , are independently selected from: H, C_1 - C_4 alkyl, aryl(C_1 - C_4 alkyl)-, and C_3 - C_7 cycloalkyl;

35

20

30

35

- 5 R^6 is selected from the group: H, $-CO_2R^7$, $-NR^7R^7$, and C_1-C_6 alkyl substituted with 0-1 R^{6a} ;
 - R^{6a} is selected from the group: halo, $-NO_2$, -CN, $-CF_3$, $-CO_2R^7$, $-NR^7R^7$, $-OR^7$, $-SR^7$, $-C(=NH)NH_2$, and aryl substituted with 0-1 R^{6b} ;
 - R^{6b} is selected from the group: $-CO_2H$, $-NH_2$, -OH, -SH, and -C (=NH) NH_2 ;
- 15 R^{6c} is H or C_1 - C_4 alkyl;
 - R^7 at each occurrence is independently selected from the group: H, C_1 - C_4 alkyl, aryl, and aryl(C_1 - C_4 alkyl)-, wherein aryl is optionally substituted with 0-3 substituents selected from -CH₃, -NO₂, -CN, -OH, -OCH₃, -SO₂CH₃, -CF₃, Cl, Br, I, and F;
- alternatively, -NR⁷R⁷ may optionally form a 5-6 membered heterocycle consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;
 - R^8 and R^9 are independently selected from H, C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl)-, and C_3 - C_7 cycloalkyl;
 - alternatively, NR⁸R⁹ may form a 5-6 membered heterocycle consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;
 - R^{10} is selected from the group: H, C_1-C_4 alkyl substituted with 0-3 R^{13} , C_3-C_{10} carbocycle substituted with 0-3 R^{13} , 6-10 membered aryl substituted with 0-3 R^{13} , and

20

25

30

5	5-10 membered heterocyclic ring system consisting of
	carbon atoms and 1-4 heteroatoms selected from the
	group: O, S, and N; optionally saturated, partially
	unsaturated or unsaturated; said 5-10 membered
	heterocyclic ring system is substituted with 0-3
10	R ¹³ ;

 R^{11} is C_1 - C_4 alkyl substituted with 0-1 R^{11a} , 6-10 membered aryl substituted with 0-2 R^{11b} , or 5-10 membered heterocyclic ring system consisting of

carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{11b};

 R^{11a} is C_1 - C_4 alkyl, halogen, $-OR^{14}$, $-SR^{14}$, $-NR^{14}R^{15}$, aryl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

R^{11b} is -NO₂, -NH₂, -SO₃H, -SO₂CH₃, -CO₂H, -CF₃, -OH, -SH, -OCF₃, Cl, Br, I, F, =0, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ thioalkoxy, aryl, or aryl(C₁-C₄ alkyl)-, wherein aryl is optionally substituted with 0-3 substituents selected from -CH₃, -NO₂, -CN, -OH, -OCH₃, -SO₂CH₃, -CF₃, Cl, Br, I, and F;

R¹² is selected from the group: H;

C₁-C₆ alkyl substituted with 0-3 R^{12a};

C₂-C₆ alkenyl substituted with 0-3 R^{12a};

C₂-C₆ alkynyl substituted with 0-3 R^{12a};

C₃-C₇ cycloalkyl substituted with 0-3 R^{12a};

C₄-C₁₀ (cycloalkyl-alkyl) substituted with 0-3 R^{12a};

6-10 membered aryl substituted with 0-3 R^{12a}; and

5 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};

 R^{12a} is independently selected from the group: C_1-C_6 alkoxy; lower thioalkyl; sulfonyl; -NO2; halogen; haloalkyl; carboxy1; carboxy(lower alky1); -OR¹⁴; -SR¹⁴; -NR¹⁴R¹⁵; $-C(=0)NR^{14}R^{15}$; $-NR^{14}C(=0)R^{15}$; $-S(=0)_2R^{14}$; 15 C_1 - C_6 alkyl substituted with 0-3 R^{12b} ; C_2 - C_6 alkenyl substituted with 0-3 R^{12b} ; C_2 - C_6 alkynyl substituted with 0-3 R^{12b} ; C₃-C₇ cycloalkyl substituted with 0-3 R^{12b}; C_4-C_{10} (alkylcycloalkyl) substituted with 0-3 R^{12b} ; 20 6-10 membered aryl substituted with 0-3 R^{12b}; and 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially 25 unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12b};

R^{12b} is independently selected from the group: C₁-C₆ alkyl;

C₃-C₇ cycloalkyl; C₁-C₆ alkoxy; halogen; -OR¹⁴; -SR¹⁴;

-NR¹⁴R¹⁵; -C(=0)NR¹⁴R¹⁵; -NR¹⁴C(=0)R¹⁵; -S(=0)₂R¹⁴;

-NO₂; haloalkyl; carboxyl; carboxy(lower alkyl); aryl; and 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with C₁-C₆ alkyl;

- 5 R¹³ at each occurrence is independently selected from the group: H, $-NO_2$, $-SO_2OH$, $-SO_2CH_3$, $-CF_3$, Cl, Br, I, F, $-NH_2$, -NH(CH₃), -N(CH₃)₂, -NH(CH₂CH₃), -N(CH₂CH₃)₂, and C₁-C₄ alkyl;
- 10 R^{14} and R^{15} are independently selected from the group: H, C_1-C_4 alkyl, aryl, aryl(C_1-C_4 alkyl)-, and C_3-C_7 cycloalkyl;

 R^{16} is a bond, -0-, -S- or $-NR^{17}-$; and

15

- R^{17} is H, C_1-C_4 alkyl, aryl, aryl(C_1-C_4 alkyl)-, or C_3-C_6 cycloalkyl.
- 2. A compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is $-B(Y^1)(Y^2)$ or -C(=0)C(=0)NH-Q;

- 25 Y^1 and Y^2 are independently selected from:
 - a)-OH,
 - b)-F,
 - $c)-NR^4R^5$,
 - d) C_1-C_8 alkoxy, and
- 30 when taken together with B, Y^1 and Y^2 form:
 - e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

35

Q is selected from $-(CR^6R^{6c})_p-Q^1$, C_2-C_4 alkenyl substituted with Q^1 , C_2-C_4 alkynyl substituted with Q^1 , and an amino acid residue;

40

30

5 p is 1, 2 or 3;

 ${\rm Q}^1$ is selected from the group: $-{\rm CO}_2{\rm R}^7,\ -{\rm SO}_2{\rm R}^7,\ -{\rm SO}_3{\rm R}^7,$

aryl substituted with 0-4 Q^{1a} , and

- 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic ring system is substituted with 0-4 Q^{1a};
 - Q^{1a} is H, F, Cl, Br, I, -NO₂, -CN, -NCS, -CF₃, -OCF₃, $-CO_{2}R^{8}, -C(=O)NR^{8}R^{9}, -NHC(=O)R^{8}, -SO_{2}R^{8}, -SO_{2}NR^{8}R^{9},$ $-NR^{8}R^{9}, -OR^{8}, -SR^{8}, C_{1}-C_{4} \text{ alkyl}, C_{1}-C_{4} \text{ haloalkyl}, or C_{1}-C_{4} \text{ haloalkoxy};$

A is A^2-A^3 , $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

A² is a natural amino acid, a modified amino acid, an unnatural amino acid, or

wherein said amino acid is of either D or L configuration;

 R^{X} is H or $-(CH_2)_m - R^{16} - (CH_2)_n - R^{12}$;

m and n are independently selected from 0, 1, or 2;

 A^3 , A^4 , A^5 , and A^6 are independently selected from an amino acid residue wherein said amino acid residue, at each

occurence, is independently selected from a natural amino acid, a modified amino acid, or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration;

R^{la} is

15

20

30

 R^{1b} is selected at each occurrence from the group: H, C_1 - C_4 alkyl, F, Cl, Br, I, -OH, C_1 - C_4 alkoxy, phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d}, -NR^{1d}R^{1d}, -CF₃, -OCF₃, C_3 - C_6 cycloalkyl, and aryl substituted by 0-3 R^{1c} ;

25 R^{1c} is selected at each occurrence from the group: methyl, ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, -NO₂, -C(=0)OR^{1d}, NR^{1d}R^{1d}, -CF₃, and -OCF₃;

 R^{1d} is H, C_1-C_4 alkyl, phenyl or benzyl;

 R^2 is H, C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl)-, or C_3 - C_6 cycloalkyl;

R³ is H, C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl)-, -C(=0)R¹¹, -CO₂R¹¹, -C(=0)NHR¹¹, -S(=0)R¹¹, -S(=0)₂R¹¹, or an NH₂-blocking group;

15

20

25

30

_												
	R^4	and	\mathbb{R}^5 ,	are	independer	ntly	select	ed	from:	Η,	C_1-C_4	alkyl
		a	rvl(C1 -C4	alkvl)-,	and	C3-C7	cvc	loalky	1;		

- R^6 is selected from the group: H, $-CO_2R^7$, $-NR^7R^7$, and C_1-C_6 10 alkyl substituted with 0-1 R^{6a} ;
 - $\rm R^{6a}$ is selected from the group: halo, -NO₂, -CN, -CF₃, $-{\rm CO_2R^7}, \ -{\rm NR^7R^7}, \ -{\rm OR^7}, \ -{\rm SR^7}, \ -{\rm C(=NH)\,NH_2}, \ {\rm and} \ {\rm aryl}$ substituted with 0-1 $\rm R^{6b};$
- R^{6b} is selected from the group: $-CO_2H$, $-NH_2$, -OH, -SH, and -C(=NH)NH₂;

 R^{6c} is H or C_1 - C_4 alkyl;

- \mbox{R}^7 at each occurrence is independently selected from the group: H, $\mbox{C}_1\mbox{-}\mbox{C}_4$ alkyl, aryl, and aryl($\mbox{C}_1\mbox{-}\mbox{C}_4$ alkyl)-, wherein aryl is optionally substituted with 0-3 substituents selected from -CH_3, -NO_2, -CN, -OH, -OCH_3, -SO_2CH_3, -CF_3, Cl, Br, I, and F;
- alternatively, -NR⁷R⁷ may optionally form a 5-6 membered heterocycle consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;
 - R^8 and R^9 are independently selected from H, C_1-C_4 alkyl, $aryl(C_1-C_4 \ alkyl)-$, and C_3-C_7 cycloalkyl;
- alternatively, NR⁸R⁹ may form a 5-6 membered heterocycle consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

5 R¹¹ is C₁-C₄ alkyl substituted with 0-1 R^{11a},
6-10 membered aryl substituted with 0-2 R^{11b}, or
5-10 membered heterocyclic ring system consisting of
carbon atoms and 1-4 heteroatoms selected from the
group: O, S, and N; optionally saturated, partially
unsaturated or unsaturated; said 5-10 membered
heterocyclic ring system is substituted with 0-2
R^{11b};

 R^{11a} is C_1 - C_4 alkyl, halogen, $-OR^{14}$, $-SR^{14}$, $-NR^{14}R^{15}$, aryl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

R^{11b} is -NO₂, -NH₂, -SO₃H, -SO₂CH₃, -CO₂H, -CF₃, -OH, -SH,

-OCF₃, Cl, Br, I, F, =O, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ thioalkoxy, aryl, or aryl(C₁-C₄ alkyl)-, wherein aryl is optionally substituted with 0-3 substituents selected from -CH₃, -NO₂, -CN, -OH, -OCH₃, -SO₂CH₃,

-CF₃, Cl, Br, I, and F;

25

R¹² is selected from the group: H;

C₁-C₆ alkyl substituted with 0-3 R^{12a};

C₂-C₆ alkenyl substituted with 0-3 R^{12a};

C₂-C₆ alkynyl substituted with 0-3 R^{12a};

C₃-C₇ cycloalkyl substituted with 0-3 R^{12a};

C₄-C₁₀ (cycloalkyl-alkyl) substituted with 0-3 R^{12a};

6-10 membered aryl substituted with 0-3 R^{12a}; and

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};

```
5
     R^{12a} is independently selected from the group: C_1-C_6 alkoxy;
            lower thioalkyl; sulfonyl; -NO2; halogen; haloalkyl;
            carboxy1; carboxy(lower alkyl); -OR<sup>14</sup>; -SR<sup>14</sup>; -NR<sup>14</sup>R<sup>15</sup>;
            -C(=0)NR^{14}R^{15}; -NR^{14}C(=0)R^{15}; -S(=0)_2R^{14};
            C<sub>1</sub>-C<sub>6</sub> alkyl substituted with 0-3 R<sup>12b</sup>;
            C_2-C_6 alkenyl substituted with 0-3 R^{12b};
10
            C_2-C_6 alkynyl substituted with 0-3 R^{12b};
            C<sub>3</sub>-C<sub>7</sub> cycloalkyl substituted with 0-3 R<sup>12b</sup>;
            C<sub>4</sub>-C<sub>10</sub> (alkylcycloalkyl) substituted with 0-3 R<sup>12b</sup>;
            6-10 membered aryl substituted with 0-3 R<sup>12b</sup>; and
15
            5-10 membered heterocyclic ring system consisting of
               carbon atoms and 1-4 heteroatoms selected from the
               group: O, S, and N; optionally saturated, partially
               unsaturated or unsaturated; said 5-10 membered
               heterocyclic ring system is substituted with 0-2
               R<sup>12b</sup>:
20
```

R^{12b} is independently selected from the group: C₁-C₆ alkyl;
C₃-C₇ cycloalkyl; C₁-C₆ alkoxy; halogen; -OR¹⁴; -SR¹⁴;
-NR¹⁴R¹⁵; -C(=0)NR¹⁴R¹⁵; -NR¹⁴C(=0)R¹⁵; -S(=0)₂R¹⁴;
-NO₂; haloalkyl; carboxyl; carboxy(lower alkyl); aryl; and 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with C₁-C₆ alkyl;

 R^{14} and R^{15} are independently selected from the group: H, C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl)-, and C_3 - C_7 cycloalkyl;

5 C₃-C₆ cycloalkyl.

3. A compound of Claim 2, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

10

20

W is $-B(Y^1)(Y^2)$;

 Y^1 and Y^2 are independently selected from:

- a)-OH,
- 15 b)-F,
 - c) C_1-C_8 alkoxy, and

when taken together with B, Y^1 and Y^2 form:

d) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 16 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

A is A^2-A^3 , $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

25 A² is Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His,
Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr,
Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa,
Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe),
Glu(OMe), Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu),
Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl),

Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclopropylglycine, t-butylglycine, phenylglycine, 3,3-diphenylalanine, or

35

35

5 A³, A⁴, A⁵, and A⁶ are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group:
Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp,
Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp,
Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla,
Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe),
Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu),
Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl),
cyclohexylglycine, cyclohexylalanine,
cyclopropylglycine, t-butylglycine, phenylglycine, and
3,3-diphenylalanine;

 R^{X} is H or $-(CH_{2})_{m}-R^{16}-(CH_{2})_{n}-R^{12}$;

20 m and n are independently selected from 0, 1, or 2;

 $\mathbf{R^1} \text{ is-CH}_2\mathbf{CH}_2-\mathbf{R^{1a}}, \text{ -CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2-\mathbf{R^{1a}}, \text{ or -CH}_2\mathbf{CH}_2\mathbf{CH}_2\mathbf{CH}_2-\mathbf{R^{1a}}.$

R^{1a} is

 R^{1b} is selected at each occurrence from the group: H, C_1 - C_4 alkyl, F, Cl, Br, I, -OH, C_1 - C_4 alkoxy, phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d}, -NR^{1d}R^{1d}, -CF₃, -OCF₃, C_3 - C_6 cycloalkyl, and aryl

 $-NR^{1d}R^{1d}$, $-CF_3$, $-OCF_3$, C_3-C_6 cycloalkyl, and aryl substituted by 0-3 R^{1c} ;

R^{1c} is selected at each occurrence from the group: methyl, ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, -NO₂, -C(=0)OR^{1d}, NR^{1d}R^{1d}, -CF₃, and -OCF₃;

 R^{1d} is H, C_1-C_4 alkyl, phenyl or benzyl;

```
5 R^2 is H, C_1-C_4 alkyl, phenyl or benzyl;
```

 R^3 is H, C_1 - C_4 alkyl, aryl, aryl(C_1 - C_4 alkyl)-, -C(=0) R^{11} , -C0 $_2$ R^{11} , -C(=0)NH R^{11} , or an NH $_2$ -blocking group;

10

- ${\bf R}^{11}$ is ${\bf C}_1-{\bf C}_4$ alkyl substituted with 0-1 ${\bf R}^{11a}$,
 - 6-10 membered aryl substituted with 0-2 R^{11b}, or
- 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{11b};
- 20 R^{11a} is C_1 - C_4 alkyl, halogen, $-OR^{14}$, $-SR^{14}$, $-NR^{14}R^{15}$, aryl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;
- 25 R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, I, F, =O, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 thioalkoxy, aryl, or aryl(C_1-C_4 alkyl)-, wherein aryl is optionally substituted with 0-3 substituents selected from $-CH_3$, $-NO_2$, -CN, -OH, $-OCH_3$, $-SO_2CH_3$, $-CF_3$, Cl, Br, I, and F;
- R¹² is selected from the group: H;

 C₁-C₆ alkyl substituted with 0-3 R^{12a};

 C₂-C₆ alkenyl substituted with 0-3 R^{12a};

 C₂-C₆ alkynyl substituted with 0-3 R^{12a};

 C₃-C₇ cycloalkyl substituted with 0-3 R^{12a};

 C₄-C₁₀ (cycloalkyl-alkyl) substituted with 0-3 R^{12a};

 6-10 membered aryl substituted with 0-3 R^{12a}; and

20

25

 R^{12b} ;

```
5 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R<sup>12a</sup>;
```

R^{12a} is independently selected from the group: C₁-C₆ alkoxy; lower thioalkyl; sulfonyl; -NO₂; halogen; haloalkyl; carboxyl; carboxy(lower alkyl); -OR¹⁴; -SR¹⁴; -NR¹⁴R¹⁵; -C(=0)NR¹⁴R¹⁵; -NR¹⁴C(=0)R¹⁵; -S(=0)₂R¹⁴; C₁-C₆ alkyl substituted with 0-3 R^{12b}; C₂-C₆ alkenyl substituted with 0-3 R^{12b}; C₂-C₆ alkynyl substituted with 0-3 R^{12b}; C₃-C₇ cycloalkyl substituted with 0-3 R^{12b}; C₄-C₁₀ (alkylcycloalkyl) substituted with 0-3 R^{12b}; 6-10 membered aryl substituted with 0-3 R^{12b}; and 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2

R^{12b} is independently selected from the group: C₁-C₆ alkyl;

C₃-C₇ cycloalkyl; C₁-C₆ alkoxy; halogen; -OR¹⁴; -SR¹⁴;

-NR¹⁴R¹⁵; -C(=O)NR¹⁴R¹⁵; -NR¹⁴C(=O)R¹⁵; -S(=O)₂R¹⁴;

-NO₂; haloalkyl; carboxyl; carboxy(lower alkyl); and

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with C₁-C₆ alkyl;

```
5 R^{14} and R^{15} are independently selected from the group: H, C_1-C_4 alkyl, aryl, aryl(C_1-C_4 alkyl)-, and C_3-C_7 cycloalkyl;
```

 R^{16} is a bond, -O-, -S- or -NR¹⁷-; and

10

15

 R^{17} is H, C_1 - C_4 alkyl, aryl or aryl(C_1 - C_4 alkyl).

4. A compound of Claim 3, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is $-B(Y^1)(Y^2)$;

a) -OH,

 Y^1 and Y^2 are independently selected from:

20

b) C_1-C_6 alkoxy, or

3,3-diphenylalanine, or

when taken together with B, Y^1 and Y^2 form:

d) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 16 carbon atoms;

25

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

A² is Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His,
Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr,
Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa,
Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe),
Glu(OMe), Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu),
Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl),
cyclohexylglycine, cyclohexylalanine,
cyclopropylglycine, t-butylglycine, phenylglycine,

10

15

A³, A⁴, A⁵, and A⁶ are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group:
Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclopropylglycine, t-butylglycine, phenylglycine, and 3,3-diphenylalanine;

20 R^{X} is H or $-(CH_{2})_{m}-R^{16}-(CH_{2})_{n}-R^{12}$;

m and n are independently selected from 0, 1, or 2;

 R^1 is- $CH_2CH_2-R^{1a}$, $-CH_2CH_2CH_2CH_2-R^{1a}$, or $-CH_2CH_2CH_2CH_2CH_2-R^{1a}$.

R^{1a} is

25

R^{1b} is selected at each occurrence from the group:

H, C₁-C₄ alkyl, F, Cl, Br, I, -OH, C₁-C₄ alkoxy,

phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d},

-NR^{1d}R^{1d}, -CF₃, -OCF₃, C₃-C₆ cycloalkyl, and aryl

substituted by 0-3 R^{1c};

30

35

```
group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};
```

- 10 R^{12a} is independently selected from the group: $-NO_2$; halogen; haloalkyl; carboxyl; carboxy(lower alkyl); $-OR^{14}$; $-SR^{14}$; $-NR^{14}R^{15}$; $-C(=O)NR^{14}R^{15}$; $-NR^{14}C(=O)R^{15}$; C_1-C_4 alkyl substituted with 0-2 R^{12b} ; phenyl substituted with 0-3 R^{12b} ; and
- 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-6 membered heterocyclic ring system is substituted with 0-2 R^{12b};
 - R^{12b} is independently selected from the group: C_1 - C_4 alkyl; C_3 - C_6 cycloalkyl; F; Cl; Br; I; $-OR^{14}$; $-SR^{14}$; $-NR^{14}R^{15}$; $-C(=O)NR^{14}R^{15}$; $-NR^{14}C(=O)R^{15}$; $-S(=O)_2R^{14}$; $-NO_2$; haloalkyl; carboxyl; carboxy(lower alkyl); and 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-6 membered heterocyclic ring system is substituted with C_1 - C_6 alkyl;
 - R^{14} and R^{15} are independently selected from the group: H, C_1-C_4 alkyl, phenyl and benzyl;
 - R^{16} is a bond, -O-, -S- or -NR¹⁷-; and
 - ${\bf R}^{17}$ is H, methyl, ethyl, propyl, butyl, phenyl or benzyl.

25

30

5	
	${ m R}^{1c}$ is selected at each occurrence from the group: methyl
	ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, - NO_2 ,
	$-C(=0)OR^{1d}$, $NR^{1d}R^{1d}$, $-CF_3$, and $-OCF_3$;

10 R^{1d} is H, C_1-C_4 alkyl, phenyl or benzyl;

 \mathbb{R}^2 is H, methyl, ethyl, propyl, or butyl;

R³ is H, C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl)-, -C(=0)R¹¹, -CO₂R¹¹, -C(=0)NHR¹¹ or acetyl;

R¹¹ is C₁-C₄ alkyl substituted with 0-1 R^{11a},

phenyl substituted with 0-2 R^{11b}, or

5-6 membered heterocyclic ring system consisting of

carbon atoms and 1-4 heteroatoms selected from the

group: O, S, and N; optionally saturated, partially

unsaturated or unsaturated; said 5-6 membered

heterocyclic ring system is substituted with 0-2

R^{11b};

 R^{11a} is C_1 - C_4 alkyl, halogen, $-OR^{14}$, $-SR^{14}$, $-NR^{14}R^{15}$, phenyl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

 R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, I, F, =O, methyl, ethyl, propyl, butyl, $-OCH_3$, $-OCH_2CH_3$, $-SCH_3$, $-SCH_2CH_3$, phenyl, or benzyl;

35 R¹² is selected from the group: H;

C₁-C₄ alkyl substituted with 0-2 R^{12a};

6-10 membered substituted with 0-3 R^{12a}; and

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the

5 5. A compound of Claim 4, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is $-B(Y^1)(Y^2)$;

10

 Y^1 and Y^2 are independently selected from:

- a)-OH,
- b) C_1-C_6 alkoxy, or

when taken together with B, Y^1 and Y^2 form:

d) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 14 carbon atoms;

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

A² is Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclopropylglycine, t-butylglycine, phenylglycine, 3,3-diphenylalanine, or

30

35

A³, A⁴, A⁵, and A⁶ are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group:
Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp,

Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(O^tBu), Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclohexylglycine, t-butylglycine, phenylglycine, and 3,3-diphenylalanine;

 R^{X} is H or $-(CH_{2})_{m}-R^{16}-(CH_{2})_{n}-R^{12}$;

15 m and n are independently selected from 0 or 1;

 R^1 is- $CH_2CH_2-R^{1a}$ or $-CH_2CH_2CH_2CH_2-R^{1a}$;

 R^{1a} is

20

 R^{1b} is selected at each occurrence from the group: H, C_1 - C_4 alkyl, F, Cl, Br, I, -OH, C_1 - C_4 alkoxy, phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d}, -NR^{1d}R^{1d}, -CF₃, -OCF₃, C_3 - C_6 cycloalkyl, and aryl substituted by 0-3 R^{1c} ;

30

25

 R^{1c} is selected at each occurrence from the methyl, ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, -NO₂, -C(=O)OR^{1d}, NR^{1d}R^{1d}, -CF₃, and -OCF₃;

n1d :.

 \mathbb{R}^{1d} is H, methyl, ethyl, propyl, butyl, phenyl or benzyl;

 \mathbb{R}^2 is H or methyl;

35

 R^3 is H, methyl, ethyl, propyl, butyl, phenyl, benzyl, $-C(=0)R^{11}$, $-CO_2R^{11}$, $-C(=0)NHR^{11}$ or acetyl;

R¹¹ is C₁-C₄ alkyl substituted with 0-1 R^{11a},

phenyl substituted with 0-2 R^{11b}, or

5-6 membered heterocyclic ring system consisting of

carbon atoms and 1-4 heteroatoms selected from the

group: O, S, and N; optionally saturated, partially

unsaturated or unsaturated; said 5-6 membered

heterocyclic ring system is substituted with 0-2

R^{11b};

15 R^{11a} is methyl, ethyl propyl, butyl, F, Cl, Br, Cl, -OH, -OCH₃, -SH, -SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, phenyl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, I, F, =O, methyl, ethyl, propyl, butyl, $-OCH_3$, $-OCH_2CH_3$, $-SCH_3$, $-SCH_2CH_3$, phenyl, or benzyl;

25 R¹² is selected from the group: H;

C₁-C₄ alkyl substituted with 0-2 R^{12a};

6-10 membered aryl substituted with 0-3 R^{12a}; and

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};

35 R^{12a} is independently selected from the group: $-NO_2$; halogen; haloalkyl; carboxyl; carboxy(lower alkyl); $-OR^{14}$; $-SR^{14}$; $-NR^{14}R^{15}$; $-C(=O)NR^{14}R^{15}$; $-NR^{14}C(=O)R^{15}$; C_1-C_4 alkyl substituted with 0-3 R^{12b} ; and

40

- 5 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;
- 10 R^{12b} is independently selected from the group: C_1 - C_4 alkyl; C_3 - C_6 cycloalkyl; F; Cl; Br; I; $-OR^{14}$; $-SR^{14}$; $-NR^{14}R^{15}$; -C(=0) $NR^{14}R^{15}$; $-NR^{14}C$ (=0) R^{15} ; -S(=0) $_2R^{14}$; $-NO_2$; haloalkyl; carboxyl; carboxy(lower alkyl); and 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially
- R^{14} and R^{15} are independently selected from the group: H, methyl, ethyl, propyl, butyl, phenyl, and benzyl;

 R^{16} is a bond, -O-, -S- or $-NR^{17}-$; and

unsaturated or unsaturated;

 \mathbb{R}^{17} is H, methyl, ethyl, propyl, butyl, phenyl, or benzyl.

- 6. A compound of Claim 5, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:
- 30 W is $-B(Y^1)(Y^2)$;
 - Y^1 and Y^2 are independently selected from:
 - a)-OH,
 - b) C_1-C_6 alkoxy, or
- 35 when taken together with B, Y^1 and Y^2 form:
 - c) a cyclic boronic ester where said cyclic boronic ester is formed from the group: pinanediol, pinacol, 1,2-ethanediol, 1,3-propanediol, 1,2propanediol, 2,3-butanediol, 1,2disopropylethanediol, 5,6-decanediol, 1,2-

dicyclohexylethanediol, diethanolamine, and 1,2diphenyl-1,2-ethanediol;

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

10 A² is Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe), Hyp(OMe), $Asp(O^tBu)$, $Glu(O^tBu)$, $Hyp(O^tBu)$, 15 Thr(OtBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclopropylglycine, t-butylglycine, phenylglycine, 3,3-diphenylalanine, or

20

 ${\rm A}^3$, ${\rm A}^4$, ${\rm A}^5$, and ${\rm A}^6$ are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group: 25 Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Orn, Phe, Pro, Sar, Ser, Thr, Trp, Tyr, Val, Abu, Alg, Ape, Cha, Cpa, Cpg, Dfb, Dpa, Gla, Irg, HomoLys, Phe(4-fluoro), Tpa, Asp(OMe), Glu(OMe), Hyp (OMe), Asp (O^tBu), Glu (O^tBu), Hyp (O^tBu), Thr (O^tBu), 30 Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclopropylglycine, t-butylglycine, phenylglycine, and 3,3-diphenylalanine;

 R^{X} is H, or $-(CH_{2})_{m}-R^{16}-(CH_{2})_{n}-R^{12}$; 35

m and n are independently selected from 0 or 1;

 R^1 is- $CH_2CH_2-R^{1a}$ or $-CH_2CH_2CH_2CH_2-R^{1a}$;

R^{1a} is

10

 R^{1b} is selected at each occurrence from the group: H, C_1 - C_4 alkyl, F, Cl, Br, I, -OH, C_1 - C_4 alkoxy, phenoxy, benzyloxy, -SH, -CN, -NO₂, -C(=0)OR^{1d}, -NR^{1d}R^{1d}, -CF₃, -OCF₃, C_3 - C_6 cycloalkyl, and aryl substituted by 0-3 R^{1c} ;

 R^{1c} is selected at each occurrence from the methyl, ethyl, Cl, F, Br, I, OH, methoxy, ethoxy, -CN, -NO₂, -C(=0)OR^{1d}, NR^{1d}R^{1d}, -CF₃, and -OCF₃;

20

15

 R^{1d} is H, methyl, ethyl, propyl, butyl, phenyl or benzyl; R^2 is H or methyl;

_

25 R^3 is H, methyl, ethyl propyl, butyl, phenyl, benzyl, $-C(=0)R^{11}$, $-CO_2R^{11}$, $-C(=0)NHR^{11}$ or acetyl;

 $\rm R^{11}$ is $\rm C_1-C_4$ alkyl substituted with 0-1 $\rm R^{11a},$ phenyl substituted with 0-2 $\rm R^{11b},$ or

5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-6 membered heterocyclic ring system is substituted with 0-2

35 R^{11b};

5 R^{11a} is methyl, ethyl propyl, butyl, F, Cl, Br, Cl, -OH, -OCH₃, -SH, -SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, phenyl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

10

- R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, I, F, =O, methyl, ethyl, propyl, butyl, $-OCH_3$, $-OCH_2CH_3$, $-SCH_3$, $-SCH_2CH_3$, phenyl, or benzyl;
- 15 R^{12} is selected from the group: H; $C_{1}-C_{4} \text{ alkyl substituted with } 0-2 \ R^{12a};$
 - 6-10 member aryl substituted with 0-3 R^{12a} ; and
 - 5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};
- 25 R^{12a} is independently selected from the group: $-NO_2$; halogen; haloalkyl; carboxyl; carboxy(lower alkyl); $-OR^{14}; -SR^{14}; -NR^{14}R^{15}; -C(=0)NR^{14}R^{15}; -NR^{14}C(=0)R^{15};$ C_1-C_4 alkyl; phenyl; and
- 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;
- R^{14} and R^{15} are independently selected from the group: H, methyl, and ethyl; and

 R^{16} is a bond, -0- or -S-.

7. A compound of Claim 6, or a stereoisomer or a 5 pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is pinanediol boronic ester;

10

15

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

A² is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Abu, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(OtBu), $Glu(O^{t}Bu)$, $Hyp(O^{t}Bu)$, $Thr(O^{t}Bu)$, Asp(OBz1), Glu(OBz1), Hyp(OBz1), Thr(OBz1), cyclohexylalanine, or

20

25

 A^3 , A^4 , A^5 , and A^6 are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group: Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(OtBu), Gla; $Glu(O^{t}Bu)$, $Hyp(O^{t}Bu)$, $Thr(O^{t}Bu)$, Asp(OBz1), Glu(OBz1), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclohexylglycine, cyclopropylglycine, t-butylglycine, phenylglycine, and 30 3,3-diphenylalanine;

 R^1 is- $CH_2CH_2-R^{1a}$ or $-CH_2CH_2CH_2-R^{1a}$;

```
5 R<sup>1a</sup> is selected from the group: phenyl, 2-naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-(1,1'-biphenyl)-, 2,5-dimethylphenyl, 2,4-dimethylphenyl, 3-CF<sub>3</sub>-phenyl, 4-CF<sub>3</sub>-phenyl, 2-F-phenyl, 3-F-phenyl, 4-F-phenyl, 4-Cl-phenyl, 4-Br-phenyl, 4-phenoxyphenyl, 4-isopropylphenyl, 4-cyclohexylphenyl, 4-tBu-phenyl, 4-methoxyphenyl, 2,6-diF-phenyl, 4-hydroxy-phenyl, (4-methyoxyphenoxy)phenyl, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, and cyclobutyl;
```

15 R^{X} is H or $-(CH_2)_{m}-R^{16}-(CH_2)_{n}-R^{12}$;

m and n are independently selected from 0 or 1;

 R^2 is H or methyl;

20

25

30

35

 R^3 is H, methyl, ethyl propyl, butyl, phenyl, benzyl, $-C(=O)\,R^{11},\ -CO_2R^{11},\ -C(=O)\,NHR^{11} \ or \ acetyl;$

R¹¹ is C₁-C₄ alkyl substituted with 0-1 R^{11a},

phenyl substituted with 0-2 R^{11b}, or

5-6 membered heterocyclic ring system consisting of

carbon atoms and 1-4 heteroatoms selected from the

group: O, S, and N; optionally saturated, partially

unsaturated or unsaturated; said 5-6 membered

heterocyclic ring system is substituted with 0-2

R^{11b};

R^{11a} is methyl, ethyl propyl, butyl, F, Cl, Br, Cl, -OH, -OCH₃, -SH, -SCH₃, -NH₂, -NHCH₃, -N(CH₃)₂, phenyl, or a 5-6 membered heterocyclic ring system containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulfur;

 R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH,

25

35

5 -OCF₃, Cl, Br, I, F, =0, methyl, ethyl, propyl, butyl, -OCH₃, -OCH₂CH₃, -SCH₃, -SCH₂CH₃, phenyl, or benzyl;

 ${\it R}^{12}$ is selected from the group: H; ${\it C}_{1}{\it -C}_{4} \mbox{ alkyl substituted with 0-2 } {\it R}^{12a};$

6-10 member aryl substituted with 0-3 R^{12a}; and
5-10 membered heterocyclic ring system consisting of
carbon atoms and 1-4 heteroatoms selected from the
group: 0, S, and N; optionally saturated, partially
unsaturated or unsaturated; said 5-10 membered
heterocyclic ring system is substituted with 0-2
R^{12a};

R^{12a} is independently selected from the group: -NO₂;
halogen; haloalkyl; carboxyl; carboxy(lower alkyl);
-OR¹⁴; -SR¹⁴; -NR¹⁴R¹⁵; -C(=O)NR¹⁴R¹⁵; -NR¹⁴C(=O)R¹⁵;
C₁-C₄ alkyl; phenyl; and
5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;

 ${\bf R}^{14}$ and ${\bf R}^{15}$ are independently selected from the group: H, methyl, and ethyl; and

30 R^{16} is a bond, -O- or -S-.

8. A compound of Claim 7, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is pinanediol boronic ester;

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

5 A² is Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Hyp,
Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val,
Abu, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(O^tBu),
Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu), Asp(OBzl), Glu(OBzl),
Hyp(OBzl), Thr(OBzl), cyclohexylalanine, or

A³, A⁴, A⁵, and A⁶ are independently selected from an amino acid residue wherein said amino acid residue, at each occurence, is independently selected from the group:
Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val, Asp(OMe), Glu(OMe), Hyp(OMe), Asp(O^tBu), Gla; Glu(O^tBu), Hyp(O^tBu), Thr(O^tBu), Asp(OBzl), Glu(OBzl), Hyp(OBzl), Thr(OBzl), cyclohexylglycine, cyclohexylalanine, cyclohexylglycine, cyclopropylglycine, t-butylglycine, phenylglycine, and 3,3-diphenylalanine;

 R^1 is- $CH_2CH_2-R^{1a}$ or $-CH_2CH_2CH_2-R^{1a}$;

Rla is selected from the group: phenyl, 2-naphthyl, 2methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-(1,1'biphenyl)-, 2,5-dimethylphenyl, 2,4-dimethylphenyl,

3-CF₃-phenyl, 4-CF₃-phenyl, 2-F-phenyl, 3-F-phenyl,

4-F-phenyl, 4-Cl-phenyl, 4-Br-phenyl, 4-phenoxyphenyl,

4-isopropylphenyl, 4-cyclohexylphenyl, 4-tBu-phenyl,

4-methoxyphenyl, 2,6-diF-phenyl, 4-hydroxy-phenyl,

(4-methyoxyphenoxy)phenyl, methyl, ethyl, propyl,

i-propyl, n-butyl, i-butyl, and cyclobutyl;

5 RX is H or benzoxy;

 R^2 is H;

 R^3 is H, $-C(=0)R^{11}$ or acetyl;

10

15

20

R¹¹ is 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-6 membered heterocyclic ring system is substituted with 0-2 R^{11b}; and

 R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, F, methyl, ethyl, propyl, butyl, $-OCH_3$, or $-OCH_2CH_3$.

9. A compound of Claim 7, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

25

W is pinanediol boronic ester;

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

30 A² is Pro, Leu, Asp, Abu, Val, cyclohexylalanine, or

A³ is Val, Glu, Ile, Thr, cyclohexylglycine, or cyclohexylalanine;

```
A4 is Val, Ile, Leu, cyclohexylglycine, cyclopropylglycine,
5
          t-butylglycine, phenylglycine, or 3,3-diphenylalanine;
    A<sup>5</sup> is Asp, Glu, Val, Ile, t-butylglycine or Gla;
    A<sup>6</sup> is Asp or Glu;
10
     R^1 is-CH_2CH_2-R^{1a} or -CH_2CH_2CH_2CH_2-R^{1a};
     R<sup>1a</sup> is selected from the group: phenyl, 2-naphthyl, 2-
          methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-(1,1'-
15
          biphenyl)-, 2,5-dimethylphenyl, 2,4-dimethylphenyl,
           3-CF<sub>3</sub>-phenyl, 4-CF<sub>3</sub>-phenyl, 2-F-phenyl, 3-F-phenyl,
           4-F-phenyl, 4-Cl-phenyl, 4-Br-phenyl, 4-phenoxyphenyl,
           4-isopropylphenyl, 4-cyclohexylphenyl, 4-tBu-phenyl,
           4-methoxyphenyl, 2,6-diF-phenyl, 4-hydroxy-phenyl,
20
           (4-methyoxyphenoxy)phenyl, methyl, ethyl, propyl,
           i-propyl, n-butyl, i-butyl, and cyclobutyl;
     R^{X} is H or -(CH_2)_m - R^{16} - (CH_2)_n - R^{12};
25
     m and n are independently selected from 0 or 1;
     R^2 is H or methyl;
     R<sup>3</sup> is H, methyl, ethyl propyl, butyl, phenyl, benzyl,
30
           -C(=0)R^{11}, -CO_2R^{11}, -C(=0)NHR^{11} or acetyl;
     R^{11} is C_1-C_4 alkyl substituted with 0-1 R^{11a},
```

phenyl substituted with 0-2 R^{11b}, or

5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: 0, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-6 membered heterocyclic ring system is substituted with 0-2

R^{11b};

2	
	\mathbb{R}^{11a} is methyl, ethyl propyl, butyl, F, Cl, Br, Cl, -OH,
	$-OCH_3$, $-SH$, $-SCH_3$, $-NH_2$, $-NHCH_3$, $-N(CH_3)_2$, phenyl, or a
	5-6 membered heterocyclic ring system containing 1, 2
	or 3 heteroatoms selected from nitrogen, oxygen and
10	sulfur;

 R^{11b} is $-NO_2$, $-NH_2$, $-SO_3H$, $-SO_2CH_3$, $-CO_2H$, $-CF_3$, -OH, -SH, $-OCF_3$, Cl, Br, I, F, =O, methyl, ethyl, propyl, butyl, $-OCH_3$, $-OCH_2CH_3$, $-SCH_3$, $-SCH_2CH_3$, phenyl, or benzyl;

15

20

R¹² is selected from the group: H;

C₁-C₄ alkyl substituted with 0-2 R^{12a};

6-10 member aryl substituted with 0-3 R^{12a}; and

5-10 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; said 5-10 membered heterocyclic ring system is substituted with 0-2 R^{12a};

25

- R^{12a} is independently selected from the group: $-NO_2$; halogen; haloalkyl; carboxyl; carboxy(lower alkyl); $-OR^{14}; -SR^{14}; -NR^{14}R^{15}; -C(=0)NR^{14}R^{15}; -NR^{14}C(=0)R^{15};$ C_1-C_4 alkyl; phenyl; and
- 5-6 membered heterocyclic ring system consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated;
- 35 R^{14} and R^{15} are independently selected from H, methyl, or ethyl; and

 R^{16} is a bond, -0- or -S-.

5 10. A compound of Claim 9, or a stereoisomer or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

W is pinanediol boronic ester;

10

A is $A^2-A^3-A^4$, $A^2-A^3-A^4-A^5$, or $A^2-A^3-A^4-A^5-A^6$;

 ${\tt A}^2$ is Pro, Leu, Asp, Abu, Val, cyclohexylalanine, or

15

A³ is Val, Glu, Ile, Thr, cyclohexylglycine, or cyclohexylalanine;

20 A⁴ is Val, Ile, Leu, cyclohexylglycine, cyclopropylglycine, t-butylglycine, phenylglycine, or 3,3-diphenylalanine;

A⁵ is Asp, Glu, Val, Ile, t-butylglycine or Gla;

25 A^6 is Asp or Glu;

 R^1 is- $CH_2CH_2-R^{1a}$ or $-CH_2CH_2CH_2CH_2-R^{1a}$;

Rla is selected from the group: phenyl, 2-naphthyl, 2methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-(1,1'biphenyl)-, 2,5-dimethylphenyl, 2,4-dimethylphenyl,
3-CF₃-phenyl, 4-CF₃-phenyl, 2-F-phenyl, 3-F-phenyl,
4-F-phenyl, 4-Cl-phenyl, 4-Br-phenyl, 4-phenoxyphenyl,
4-isopropylphenyl, 4-cyclohexylphenyl, 4-tBu-phenyl,
4-methoxyphenyl, 2,6-diF-phenyl, 4-hydroxy-phenyl,
(4-methyoxyphenoxy)phenyl, methyl, ethyl, propyl,

```
5
          i-propyl, n-butyl, i-butyl, and cyclobutyl;
    RX is H or benzoxy;
    R^2 is H;
10
    R^3 is H, -C(=0)R^{11} or acetyl;
    R^{11} is 5-6 membered heterocyclic ring system consisting of
          carbon atoms and 1-4 heteroatoms selected from the
15
          group: 0, S, and N; optionally saturated, partially
          unsaturated or unsaturated; said 5-6 membered
          heterocyclic ring system is substituted with 0-2 R<sup>11b</sup>;
          and
    R^{11b} is -NO_2, -NH_2, -SO_3H, -SO_2CH_3, -CO_2H, -CF_3, -OH, -SH,
20
          -OCF3, Cl, Br, F, methyl, ethyl, propyl, butyl, -OCH3,
          or -OCH<sub>2</sub>CH<sub>3</sub>.
    11. A compound of Claim 1, or a stereoisomer or a
25
          pharmaceutically acceptable salt form or prodrug
          thereof, selected from:
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-phenylpropylboronic
       acid (+)-pinanediol ester;
30
       H-Asp-Glu-Val-Pro-(1R)-1-amino-4-phenylbutylboronic
       acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-5-phenylpentylboronic
35
       acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2-
       naphthyl)propylboronic acid (+)-pinanediol ester;
40
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2-
```

methyl)phenylpropylboronic acid (+)-pinanediol ester;

```
5
      H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(3-
      methyl)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       methyl)phenylpropylboronic acid (+)-pinanediol ester;
10
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(1,1'-biphenyl)-4-
       ylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2,5-
15
       dimethyl)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2,4-
       dimethyl)phenylpropylboronic acid (+)-pinanediol ester;
20
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       trifluoromethyl)phenylpropylboronic acid (+)-pinanediol
       ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(3-
25
       trifluoromethyl)phenylpropylboronic acid (+)-pinanediol
       ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       fluoro)phenylpropylboronic acid (+)-pinanediol ester;
30
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       phenoxy)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
35
       isopropyl)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       cyclohexyl)phenylpropylboronic acid (+)-pinanediol
40
       ester:
```

```
5
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-tert-
       butyl)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       methoxy) phenylpropylboronic acid (+)-pinanediol ester;
10
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       chloro)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
15
       bromo)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2-
       fluoro)phenylpropylboronic acid (+)-pinanediol ester;
20
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(3-
       fluoro)phenylpropylboronic acid (+)-pinanediol ester;
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(2,6-
       difluoro)phenylpropylboronic acid (+)-pinanediol ester;
25
       H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-3-(4-
       hydroxy) phenylpropylboronic acid (+) -pinanediol ester;
      H-Asp-Glu-Val-Val-Pro-(1R)-1-aminohexylboronic acid (+)-
30
      pinanediol ester;
      H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-5-methylhexylboronic
       acid (+)-pinanediol ester;
35
      H-Asp-Glu-Val-Pro-(1R)-1-aminoheptylboronic acid
       (+)-pinanediol ester;
      H-Asp-Glu-Val-Val-Pro-(1R)-1-amino-4-
      cyclobutylbutylboronic acid (+)-pinanediol ester; and
40
```

20

30

35

40

- 5 H-Asp-Glu-Val-Pro-(1R)-1-amino-5-ethylheptylboronic acid (+)-pinanediol ester.
 - 12. A compound of Claim 1 selected from:
- 10 Ac-Val-Pro-(1R)-1-amino-3-phenylpropylboronic acid (+)-pinanediol ester;

Ac-Val-Pro-(1R)-1-amino-3-(4-trifluoromethyl)phenyl propylboronic acid (+)-pinanediol ester;

Ac-Val-Pro-(1R)-1-amino-3-(4-phenoxy)phenylpropylboronic acid (+)-pinanediol ester;

Ac-Val-Pro-(1R)-1-amino-3-(4-hydroxy)phenylpropylboronic acid (+)-pinanediol ester;

Ac-Val-Pro-(1R)-1-amino-3-(4-(4-methoxyphenoxy)phenyl) propylboronic acid (+)-pinanediol ester;

- 25 Ac-Val-Pro-(1R)-1-amino-3-(4-(4-methylphenoxy)phenyl) propylboronic acid (+)-pinanediol ester; and
 - (2-pyrazinecarbonyl) -Val-Val-Hyp(OBn) (1R) -1-amino-3-(4-trifluoromethyl)phenylpropylboronic acid (+)-pinanediol ester.
 - 13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of one of Claim 1 or a pharmaceutically acceptable salt form or prodrug thereof.
 - 14. A method of treating a viral infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of one of Claim 1 or a pharmaceutically acceptable salt form or prodrug thereof.

15. A method of treating HCV infection which comprises administering to a host in need of such treatment a therapeutically effective amount of a compound of one of Claim 1 or a pharmaceutically acceptable salt form or prodrug thereof.