Chapter 8

Prove the following statements.

Exercise (16). If A, B and C are sets, then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof: Observe the following sequence of equalities:

$$A \times (B \cup C) = \{(x, y) : (x \in A) \land (y \in B \cup C)\}$$
 (def. of \times)
$$= \{(x, y) : (x \in A) \land (y \in B) \lor (y \in C)\}$$
 (def. of \cup)
$$= \{(x, y) : (x \in A) \land (x \in A) \land (y \in B) \lor (y \in C)\}$$
 (A = A \lambda A)
$$= \{(x, y) : (x \in A) \land (y \in B) \lor (x \in A) \land (y \in C)\}$$
 (distrib, law for sets)
$$= \{(x, y) : (x \in A) \land (y \in B)\} \cup \{(x, y) : (x \in A) \land (y \in C)\}$$
 (def. of \cup)
$$= (A \times B) \cup (A \times C)$$
 (def. of \times)

Thus completes the proof.

Exercise (22). Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cap B = A$.

Proof: Suppose $A \subseteq B$. Then by definition, for an arbitrary $x \in A$, then $x \in B$. Since $x \in A$ and $x \in B$ then by definition of the intersection of sets, $x \in A \cap B$. Given that $x \in A \cap B$ and $x \in A$, it follows that $A \cap B \subseteq A$. Furthermore $A \subseteq A \cap B$ since all elements A are in $A \cap B$ as B is a superset of A. Thus if $A \subseteq B$ then $A \cap B = A$. Conversely if we suppose $A \cap B = A$, then there exists $x \in A$ and $x \in B$ such that all elements of A are in B. Thus $A \subseteq B$.

Exercise (26). Prove that $\{4k + 5 : k \in \mathbb{Z}\} = \{4k + 1 : k \in \mathbb{Z}\}.$

Proof: Suppose $x \in \{4k+5 : k \in \mathbb{Z}\}$. Then x = 4a+5 for some $a \in \mathbb{Z}$. From this we get x = 4(a+1)+1. So x = 4k+1 where k = (a+1) and $k \in \mathbb{Z}$ by closure properties of the integers. Hence $x \in \{4k+1 : k \in \mathbb{Z}\}$. Subsequentially this means $\{4k+5 : k \in \mathbb{Z}\} \subseteq \{4k+1 : k \in \mathbb{Z}\}$

Conversely, suppose $x \in \{4k+1 : k \in \mathbb{Z}\}$. Then x = 4a+1 for some $a \in \mathbb{Z}$. If we let a = b+1, where $b \in \mathbb{Z}$, then we get x = 4(b+1)+1 = 4b+5. So $x \in \{4k+5 : k \in \mathbb{Z}\}$.

MATH 265F Thus $\{4k + 1 : k \in \mathbb{Z}\} \subseteq \{4k + 5 : k \in \mathbb{Z}\}.$ Since we established that $\{4k+5: k \in \mathbb{Z}\} \subseteq \{4k+1: k \in \mathbb{Z}\}$ and $\{4k+1: k \in \mathbb{Z}\}\subseteq \{4k+1: k \in \mathbb{Z}\}$ $\{4k+5: k \in \mathbb{Z}\}$. By definition of equality $\{4k+5: k \in \mathbb{Z}\} = \{4k+1: k \in \mathbb{Z}\}$. Chapter 9 Each of the following statements is either true or false. If a statement is true, prove it. If a statement is false, disprove it. Exercise (3). If $n \in \mathbb{Z}$ and $n^5 - n$ is even, then n is even. *Proof:* Exercise (5). If A, B, C and D are sets, then $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$. *Proof:* Exercise (8). If A, B and C are sets, and $A - (B \cup C) = (A - B) \cup (A - C)$. *Proof:*

Exercise (9). If A and B are sets, then $\mathcal{P}(A) - \mathcal{P}(B) \subseteq \mathcal{P}(A \setminus B)$.

Proof:

Exercise (12). If $a, b, c \in \mathbb{N}$ and ab, bc and ac all have the same parity, then a, b and c all have the same parity.

Proof:

Exercise (30). There exist integers a and b for which 42a + 7b = 1.

Proof:

Exercise (34). If $X \subseteq A \cup B$, then $X \subseteq A$ or $X \subseteq B$.

Proof:

Exercise (Reflection Problem). Answer the following questions:

Proof:

• How long did it take you to complete each problem? Write your answer here.

 \bullet What was easy?

Write your answer here.

- What was challenging? What made it challenging? Write your answer here.
- Compare your answers to the odd numbered exercises to those in the back of the textbook. What did you learn from this comparison?

 Write your answer here.