Response to Final Office Action mailed December 19, 2006 Page 2 of 13

IN THE CLAIMS:

1. (Previously Amended) A method for increasing accuracy of optical fiber system measurements including calculation of a true mean differential group delay $\langle \tau \rangle$ of at least one length of optical fiber comprising the steps of:

measuring a mean square differential group delay $\langle \tau^2 \rangle_B$ averaged over a finite bandwidth B of a source using a polarization mode dispersion measurement apparatus;

calculating an approximation of the true mean differential group delay $\langle \tau \rangle$ in accordance with $\sqrt{\frac{8}{3\pi} {\langle \tau^2 \rangle}_s}$; and

applying a systematic correction factor ϵ to said approximation in accordance with

 $\sqrt{\frac{8}{3\pi}\langle \tau^2 \rangle_s} + e$ to calculate $\langle \tau \rangle$, the application of ϵ minimizing a systematic error caused by the finite bandwidth B of the source, where τ is in units of seconds, and B in units of radians/second.

- 2. (Cancelled).
- 3. (Previously Amended) The method of Claim 1, wherein the finite bandwidth B is much greater than the inverse of a root mean square differential group delay $\sqrt{\langle \tau^2 \rangle_g}$:

$$B >> \frac{1}{\sqrt{\left\langle \tau^2 \right\rangle_B}}.$$

further wherein ϵ is defined by the following equation:

$$\varepsilon = \frac{8}{9\sqrt{2}} \frac{1}{B} \tag{16b}.$$

Response to Final Office Action mailed December 19, 2006

Page 3 of 13

4. (Original) The method of Claim 1, wherein the polarization mode dispersion measurement apparatus used to measure the mean square differential group delay $\langle \tau^2 \rangle_B$ comprises a time-domain measurement apparatus.

- (Original) The method of Claim 4, wherein the time-domain measurement apparatus is an interferometric device.
- 6. (Original) The method of Claim 1, wherein the polarization mode dispersion measurement apparatus used to measure the mean square differential group delay $\left\langle \tau^2 \right\rangle_{\mathcal{B}}$ comprises a frequency-domain measurement apparatus.
- 7. (Original) The method of Claim 6, wherein the frequency-domain measurement apparatus is a polarimeter.
- 8. (Previously Amended) The method of Claim 7, further comprising the step of applying one of a Jones Matrix Eigenanalysis, Poincaré Sphere Analysis, and Müller Matrix Method to calculate the true mean differential group delay $\langle \tau \rangle$.
- 9. (Original) The method of Claim 1, wherein the at least one length of optical fiber is an optical fiber link in an optical telecommunication network.
- 10. (Original) The method of Claim 1, wherein the at least one length of fiber is an optical fiber route in an optical telecommunication network.
- 11. (Withdrawn) A method for measuring a mean differential group delay $\langle \tau \rangle$ of at least one length of optical fiber, comprising the steps of:

characterizing a polarization mode dispersion vector as a function of frequency using a frequency-domain polarization mode dispersion measurement apparatus;

Applicants: Boroditsky, et al. Application Serial No.: 10/747,804 Filing Date: December 29, 2003

Docket No.: 1209-49 (2003-0089)

Response to Final Office Action mailed December 19, 2006

Page 4 of 13

calculating a second-order polarization mode dispersion vector $\vec{\tau}_w$ as a function of frequency by calculating a derivative with respect to frequency of the polarization mode dispersion vector;

calculating a mean of a square root of a magnitude of the second-order polarization mode dispersion vector \vec{r}_w to obtain a first result, according to $\langle |\vec{r}_w|^{\frac{1}{2}} \rangle$, wherein $|\vec{r}_w|$ represents the magnitude of the second-order polarization mode dispersion vector; and

multiplying a proportionality coefficient A_2 of the second-order polarization mode dispersion vector $\vec{\tau}_{\omega}$ by the first result to calculate the mean differential group delay $\langle \tau \rangle$ in accordance with the following equation:

$$A_2 \left\langle \left| \tilde{\tau}_w \right|^{1/2} \right\rangle = \left\langle \tau \right\rangle, \tag{21}$$

where τ and $\langle \tau \rangle$ are in units of second², $|\tau_{\omega}|$ is in units of second, ω is in units of radian/second, and A_2 is dimensionless.

- 12. (Withdrawn) The method of Claim 11, wherein A_2 is substantially equal to 1.37.
- 13. (Withdrawn) The method of Claim 11, wherein the frequency-domain polarization mode dispersion measurement apparatus is one of a polarimetric device and a Fixed Analyzer device.
- 14. (Withdrawn) The method of Claim 11, wherein the at least one length of fiber is a single fiber link.
- 15. (Withdrawn) The method of Claim 11, wherein the at least one length of fiber is a fiber route.

Response to Final Office Action mailed December 19, 2006

Page 5 of 13

16. (Withdrawn) A method for measuring a mean differential group delay $\langle \tau \rangle$ of at least one length of fiber, comprising the steps of:

measuring a magnitude of a polarization mode dispersion vector $|\tau_w|$ as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus, the magnitude of the polarization mode dispersion vector $|\tau_w|$ being a scalar differential group delay;

calculating a frequency derivative of the scalar differential group delay from the magnitude of the polarization mode dispersion vector, the frequency derivative of the scalar differential group delay $\frac{d|\vec{r}|}{d\omega}$ being a scalar second-order polarization mode dispersion function;

calculating a first result, according to $\left\langle \frac{\left|d\left|\vec{\tau}\right|}{\left|d\omega\right|}\right|^{\frac{1}{2}}\right\rangle$, where $\left|\tau\right|$ is in units of second and ω is a frequency in units of radian/second; and

multiplying a proportionality coefficient B_2 by the first result to calculate the mean differential group delay, in accordance with the following equation:

$$B_{2}\left\langle \left| \frac{d|\vec{\tau}|}{d\omega} \right|^{\frac{1}{2}} \right\rangle = \left\langle \tau \right\rangle, \tag{26}$$

where B_2 is dimensionless, τ and $\langle \tau \rangle$ are in units of second, ω is in units of radian/second, and $\frac{d|\vec{\tau}|}{d\omega}$ is in units of second².

17. (Withdrawn) The method of Claim 16, wherein B_2 is substantially equal to 2.64.

Response to Final Office Action mailed December 19, 2006

Page 6 of 13

- 18. (Withdrawn) The method of Claim 16, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 19. (Withdrawn) The method of Claim 16, wherein the at least one length of optical fiber is a single optical fiber link.
- 20. (Withdrawn) The method of Claim 16, wherein the at least one length of optical fiber is an optical fiber route.
- 21. (Withdrawn) A method for measuring a mean square differential group delay τ^2_{RMS} of at least one length of optical fiber, comprising the steps of:

measuring a polarization mode dispersion vector as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus;

calculating a second-order polarization mode dispersion vector $\vec{\tau}_w$ as a function of frequency by calculating a derivative of the polarization mode dispersion vector with respect to frequency ω ;

calculating the mean of the magnitude of the second-order polarization mode dispersion vector $|\vec{r}_{\omega}|$ to obtain a first result, according to $\langle |\vec{r}_{\omega}| \rangle$; and

multiplying a proportionality coefficient A_I by the first result to calculate the mean square differential group delay, in accordance with the following equation:

$$A_{1}\langle |\hat{\tau}_{o}| \rangle = \tau_{RMS}^{2}, \tag{20}$$

where A_I is dimensionless, $|\vec{\tau}_{\omega}|$ is in units of second² and $\tau^2_{\rm BMS}$ is in units of second².

Response to Final Office Action mailed December 19, 2006 Page 7 of 13

- 22. (Withdrawn) The method of Claim 21, wherein A_i is substantially equal to 2.02.
- 23. (Withdrawn) The method of Claim 21, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 24. (Withdrawn) The method of Claim 21, wherein the at least one length of optical fiber is a single optical fiber link.
- 25. (Withdrawn) The method of Claim 21, wherein the at least one length of optical fiber is an optical fiber route.
- 26. (Withdrawn) A method for measuring a mean square differential group delay τ^2_{RMS} of at least one length of optical fiber, comprising the steps of:

measuring a magnitude of a polarization mode dispersion vector as a function of frequency using a frequency-domain polarization mode dispersion measurement apparatus, the magnitude of the polarization mode dispersion vector being a scalar differential group delay;

calculating a frequency derivative of the scalar differential group delay from the magnitude of the polarization mode dispersion vector, the frequency derivative of the scalar differential group delay $\frac{d|\vec{\tau}|}{d\omega}$ being a scalar second-order polarization mode dispersion function;

calculating a first result, according to
$$\left\langle \left| \frac{d |\vec{r}|}{d \omega} \right| \right\rangle$$
; and

multiplying a proportionality coefficient B_I by the first result to calculate the mean square differential group delay, in accordance with the following equation:

Response to Final Office Action mailed December 19, 2006

Page 8 of 13

$$B\left\langle \left| \frac{d|\vec{\tau}|}{d\omega} \right| \right\rangle = \tau_{\text{max}}^2, \tag{25}$$

where B_1 is dimensionless, and $\frac{d|\vec{r}|}{d\omega}$ is in units of second².

- 27. (Withdrawn) The method of Claim 26, wherein B_l is substantially equal to 6.80.
- 28. (Withdrawn) The method of Claim 26, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 29. (Withdrawn) The method of Claim 26, wherein the at least one length of optical fiber is a single optical fiber link.
- 30. (Withdrawn) The method of Claim 26, wherein the at least one length of optical fiber is an optical fiber route.
- 31. (Withdrawn) A method for measuring a mean polarization mode dispersion of at least one length of optical fiber, using a source of bandwidth *B*, comprising the steps of:

collecting polarization mode dispersion data as a function of frequency from a frequency-domain polarization mode dispersion measurement apparatus;

extracting one of a vector and a scalar frequency-dependent function from the polarization mode dispersion data, by applying a frequency-domain polarization mode dispersion technique, the one of the vector and the scalar function being one of a first-order and a second-order polarization mode dispersion function;

applying a systematic correction to the one of the vector and the scalar frequencydependent function, the systematic correction minimizing a systematic error caused by bandwidth B; and wherein

Response to Final Office Action mailed December 19, 2006

Page 9 of 13

applying the systematic correction results in a derivation of one of a mean differential group delay $\langle \tau \rangle$ and a mean square differential group delay $|\tau|^2_{BMS}$.

32. (Withdrawn) A method of measuring a mean differential group delay $\langle \tau \rangle$ of a length of optical fiber comprising the steps of:

deriving a first mean $\langle \tau \rangle$ in accordance with equation (21) and Claim 11;

deriving a second mean $\langle \tau \rangle$ in accordance with equation (26) and Claim 16;

deriving a linear equation of the first mean $\langle \tau \rangle$ and the second mean $\langle \tau \rangle$ to calculate a combined mean $\langle \tau \rangle$, wherein a sum of coefficients of the linear equation is substantially equal to one.

33. (Withdrawn) A method of measuring a mean square differential group delay τ^2_{RMS} of a length of optical fiber comprising the steps of:

deriving a first mean square differential group delay τ^2_{mass} in accordance with equation (20) and Claim 21;

deriving a second mean square differential group delay τ^2_{PMS} in accordance with equation (25) and Claim 26;

deriving a linear equation of the first mean square differential group delay τ^2_{RMS} and the second mean square differential group delay τ^2_{RMS} to calculate a combined mean square differential group delay τ^2_{RMS} , wherein a sum of coefficients of the linear equation is substantially equal to one.

34. (Currently Amended) A computer-readable medium carrying at least one sequence of instructions, wherein execution of said at least one sequence of instructions by one or more

Applicants: Boroditsky, et al.

Application Serial No.: 10/747,804 Filing Date: December 29, 2003 Docket No.: 1209-49 (2003-0089)

Response to Final Office Action mailed December 19, 2006

Page 10 of 13

processors causes said at least one sequence of instructions to calculate method of calculating a true mean differential group delay $\langle \tau \rangle$ of at least one length of optical fiber by comprising performing the steps of:

receiving a measurement of a mean square differential group delay $\langle \tau^2 \rangle_B$ averaged over a finite bandwidth B of a source using a polarization mode dispersion measurement apparatus;

calculating an approximation of the true mean differential group delay $\langle \tau \rangle$ in accordance with $\sqrt{\frac{8}{3\pi}\langle \tau^2 \rangle_s}$; and

applying a systematic correction factor ϵ to said approximation in accordance with $\sqrt{\frac{8}{3\pi}\langle \tau^2\rangle_s} + \epsilon \text{ to calculate } \langle \tau\rangle, \text{ the application of } \epsilon \text{ minimizing a systematic error}$ caused by the finite bandwidth B of the source, where τ is in units of seconds, and B in units of radians/second.

35. (Currently Amended) The <u>method</u> computer-readable medium of Claim 34, wherein the finite bandwidth B is much greater than the inverse of a root mean square differential group delay $\sqrt{\langle \tau^2 \rangle_B}$:

$$B >> \frac{1}{\sqrt{\left\langle \tau^2 \right\rangle_B}}$$

further wherein ε is defined by the following equation:

$$\varepsilon = \frac{8}{9\sqrt{2}} \frac{1}{B}.$$

Response to Final Office Action mailed December 19, 2006

Page 11 of 13

36. (Currently Amended) The <u>method computer-readable medium</u> of Claim 34, further comprising the step of applying one of a Jones Matrix Eigenanalysis, Poincaré Sphere Analysis, and Müller Matrix Method to calculate the true mean differential group delay $\langle \tau \rangle$.

- 37. (Original) The method of Claim 34, wherein the at least one length of optical fiber is an optical fiber link in an optical telecommunication network.
- 38. (Original) The method of Claim 34, wherein the at least one length of optical fiber is an optical fiber route in an optical telecommunication network.