A REVISED Solution to Assignment 1

- **1.** (a). We have to show two things: (i) if $L=L^+$, then $L^2 \subseteq L$ and (ii) if $L^2 \subseteq L$, then $L=L^+$.
 - (i) Suppose L=L⁺. Since L = L⁺ = L \cup L² \cup ..., it is obvious that L² \subseteq L⁺ and hence L² \subseteq L.
 - (ii) Suppose $L^2 \subseteq L$. We need to show (1) $L \subseteq L^+$ and (2) $L^+ \subseteq L$. It is obvious that (1) holds. To show (2), we will simply use the definition of \subseteq and show that for any string w, whenever w is in L^+ , w is in L as well. Suppose w is in L^+ . Then there is an integer n such that w is in L^n . This means, there are n strings $x_1,...,x_n$ in L such that $w=x_1...x_n$. We will show the result using the proof by induction method on n, the number of strings that form w. For the basis case (n=1), we have that $w=x_1 \in L^+$, which means $x_1 \in L$, and hence $w \in L$. Induction: suppose the statement holds for some integer n, that is, if $s = x_1...x_n$ is in $s = x_1...x_n$ is in $s = x_1...x_n$. It then we L and also $s = x_1 \in L$, for $s = x_1...x_n$. Let y be any string in $s = x_1...x_n$. It then follows from the basis and the inductive hypothesis that both t and $s = x_1...s_n$. It then follows from the basis and the inductive hypothesis that both t and $s = x_1...s_n$ are present in both $s = x_1...x_n$ and $s = x_1...s_n$ in turn implies that y (which consists of two strings in L) is in $s = x_1...s_n$ from which we can conclude that $s = x_1...s_n$ for $s = x_1...s_n$.
 - (b). Suppose $L_1 \subseteq L_2$ but $\min\{|x|: x \in L_1\} < \min\{|y|: y \in L_2\}$. This means, there is a string $w \in L_1$ such that $|w| < \min\{|y|: y \in L_2\}$. However, this implies that $w \notin L_2$, which is a contradiction to our assumption that $L_1 \subseteq L_2$.
- **2.** (a). Possible cases: (1) $L_1 = \emptyset$; (2) $L_2 = \{\lambda\}$; (3) $L_2 = \Sigma^*$ and $\lambda \in L_1$; (4) $L_2 = \Sigma^+$ and $\lambda \in L_1$.
 - (5). $L_1=L_2=L_k=\{w\in\Sigma^*: |w|=n^*k, \text{ for all } n\geq 0\}, \text{ for any fixed integer } k\geq 0.$
 - (b). Possible cases: (1) $L = \emptyset$; (2) $L = \Sigma^*$; (3) $L = \Sigma^+$.
- **3.** (a).

Page 1 of 5

3. (b).

3. (c).

Page **2** of **5**

3. (d).

4. If r1, r2, and r3 are regular expressions for L1, and L2, and L3, then (r1+r2)r3 would be a desired regular expression. Below we give are regular expressions r1 to r3 obtained using the state elimination/reduction technique discussed in the lectures.

$$r1 = (a + ba + bba)^*(\lambda + b + bb)$$

$$r2 = abb^*ab^*a(\lambda+b+ab^*ab^*a)^*$$

$$r3 = aa(a+b)^*aa + ab(a+b)^*ab + ba(a+b)^*ba + bb(a+b)^*bb$$

- **5.** To answer this question, it is important to note that every string in L satisfies two conditions, one related to the order of symbols (pattern) and the other related to their counts. So for every string x in L, all the a's appear before the b's AND the number of a's is 1 less than the number of b's. From this, we can say that $w \in \overline{L}$, if w has "ba" as a substring or $n_q(w) \neq n_b(w) + 1$. The latter can also be expressed as $n_a(w) \geq n_b(w)$ or $n_b(w) > n_a(w) + 1$.
- **6.** For this, we can use the DFAs M_1 and M_3 we gave for L_1 and L_3 in question 3, and modify them as follows. Change the final states in M_3 to non-final and vice versa. This yields a DFA N_3 for $\overline{L3}$ shown in Fig. 7-1. We then construct an NFA S for $L_1 \cup \overline{L3}$ by creating a new initial state and connecting it to the initial states of M_1 and N_3 using λ -transitions (Fig. 7-2). As the last step, we use the subset construction technique to convert S into an equivalent DFA, shown in Fig. 7-3.

Fig. 7-1- A DFA $N_{\rm 3}$ for the complement of $L_{\rm 3}$

Fig. 7-2- An NFA for $(L_1 \cup \overline{L3}\,)$