Latex math notations and Example R codes with PDF output

Shunkei Kakimoto

Section 1: Building blocks

Goal	How to get it	Notes
$\alpha, \beta, \omega, \Omega$	\alpha, \beta, \omega, \Omega	Spell names of Greek letters.
$ar{X},\hat{eta}, ilde{eta}$	\bar X, \hat\beta, \tilde\beta	Can't do stats without \bar{X} . Can't do econometrics without $\hat{\beta}!$
$\mathbf{X},oldsymbol{eta}$	\mathbf{X}, \boldsymbol{\beta}	Bold math symbols. To make Latin-letters bold, you can use \boldsymbolfrom "bm" package: \usepackage{bm}
σ^2	\sigma^2	Superscripts.
~	\sim	For example, $X \sim N(0, 1)$
≻,≿	\succ, \succsim	Preference relations in micro
$\xrightarrow{p}, \xrightarrow{d}$	\xrightarrow{p}, \xrightarrow{d}	Convergence in probability, and convergence in distribution
≥,≤,>,<	\ge, \leq, >, <	Inequality
X_i, σ_{ij}	<pre>X_i, \sigma_{ij}</pre>	Subscripts. When a sub(super)script has more than one symbol, like the ij , braces around it are needed to say where the sub(super)script ends.
$\frac{\sum_{i=1}^{n} X_i}{\prod_{i=1}^{n} X_i}$	\sum_{i=1}^n X_i	Summation.
$\prod_{i=1}^n X_i$	\prod_{i=1}^n X_i	Products.
$\int_{x=-\infty}^{\infty} x dx$	\int_{x=-\infty}^\infty xdx	Integrals.
$\frac{1}{1-\beta}$	\frac{1}{1 - \beta}	Fractions. Braces enclose numerator and denominator.
$\frac{\partial f(x,y)}{\partial x}$	\frac{\partial f(x,y)}{\partial x}	Partial derivative.
$\log(x), \exp(x)$	\log(x), \exp(x)	Named functions. Looks better if you don't omit the \.
$\sqrt{V+1}$	\sqrt{V+1}	Square root.
$ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} $	\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \end{pmatrix}	Matrices.
$\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$	<pre>\begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \end{bmatrix}</pre>	Matrices.

Section 2: Example math equations

Example 1: Aligning equations with expression after equal sign

Syntax:

```
\begin{align*}
\hat{\beta}
    &= \mathbf{(X^{\prime}X)^{-1} (X^{\prime}Y)} \\
    &= \mathbf{(X^{\prime}X)^{-1} (X^{\prime} (X \beta + \mathbf{e}))} \\
    &= \mathbf{(X^{\prime} X)^{-1} X^{\prime}{X} \beta
    + (X^{\prime} X)^{-1} X^{\prime} e}\\
    &= \beta + \mathbf{(X^{\prime} X)^{-1} X^{\prime} e}
\end{align*}
```

becomes:

$$\begin{split} \hat{\beta} &= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'(\mathbf{X}\beta + \mathbf{e})) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e} \\ &= \beta + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{e} \end{split}$$

Example 2: Writing equations within a curly brace

Syntax:

becomes:

$$F(x) = \begin{cases} 0 & x < 0 \\ x & 0 \ge x \ge 1 \\ 1 & x > 1 \end{cases}$$

Example 3: Including comments within equations

Syntax:

```
\begin{align*}
Z_n =
  \begin{cases}
  -n & \text{with probability $1/n$}\\
    0 & \text{with probability $1-2/n$}\\
    n & \text{with probability $1/n$}\\
    \end{cases}
\end{align*}
```

becomes:

$$Z_n = \begin{cases} -n & \text{with probability } 1/n \\ 0 & \text{with probability } 1-2/n \\ n & \text{with probability } 1/n \end{cases}$$

Sintax:

```
\begin{align*}
\overline{X}_n =
  \frac{1}{n}\sum{i=1}^{n}X_i \xrightarrow{p} E[X]
  \quad \text{ as } n \rightarrow \infty
\end{align*}
```

becomes:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} E[X]$$
 as $n \to \infty$

Example 4: Maximization problem

Syntax:

```
\begin{equation*}
\begin{aligned}
\max_{x_1, x_2} \quad & u(x_1, x_2) = \frac{1}{2}\log x_1 + \frac{1}{2}\ \\textrm{s.t.} \quad & w=p_1 x_1 + p_2 x_2 \\\end{aligned}
\end{equation*}
```

becomes:

$$\max_{x_1, x_2} \quad u(x_1, x_2) = \frac{1}{2} log x_1 + \frac{1}{2} log x_2$$

s.t. $w = p_1 x_1 + p_2 x_2$

Section 3: Write R codes

```
# === Load Packages === #
library(data.table)
library(ggplot2)

# === Data === #
#built-in dataset in R
data(iris)
# Convert the data into data.table
setDT(iris)
# Filter for the species "setosa"
virginica <- iris[Species == "virginica",]</pre>
```

```
# === Visualization === #
ggplot(virginica, aes(x=Sepal.Length, y=Petal.Length))+
geom_point()+
geom_smooth(method = lm, se = FALSE)+
labs(title = "Relationship between Sepal.Length and Petal.Length")+
theme(plot.title = element_text(hjust = 0.5))
```

Relationship between Sepal.Length and Petal.Length

Section 4: Insert a picture to a document

Below is an example R chunk code to insert a picture.

```
```{r, fig.cap='A caption', out.width = '80%'}
knitr::include_graphics("path to the file")
...
```