Request Form for Translation

Translations

U. S. Serial No):: 08 c	809463	2000-0456		
Requester's N Phone No.: Fax No.: Office Locat Art Unit/Org Group Direct Is this for Boa	308 ion: CG g.:	10-c-o1	PTO 200 S.T.I.C. Translation	ns Branch	
Date of Reque Date Needed E	st: <u>12-</u> 3y: <u>12-</u>	7-99- Recid	W13/99	Phone: Fax: Location:	308-0881 308-0989 Crystal Plaza 3/4 Room 2C01
SDE Simotone	Dequired for	- Ducu.	~		
Document Ide	ntification (S	most cost e	To assist us in providing the most cost effective service, please answer these questions:		
1	Patent	Document No. Janguage Country Code Publication Date		1 -	ccept an English Equivalent? (Yes No)
]	No. of Pages	(filled by	4 14 84 STIC)	Will you ac	cept an English
2	Article	Author Language Country		No	(Yes/160)
3	Other	Type of Document Country Language		with a tran	like a consultation slator to review the prior to having a
Document Del	ivery (Select	Preference):	11 11 96		ritten translation?
		CIC/Office Date: /			
		· · · · · · · · · · · · · · · · · · ·	(STIC Only) (STIC Only)	No	_(Yes(No)
STIC USE O	NLY		E4 B	U- <i>339</i> .	the :
Copy/Search			Translation PA	1711/6-47	~~
Processor:			Date logged in: /h/	A} !! " " Left?	1/99
Date assigned:		· · · · · · · · · · · · · · · · · · ·	PTO estimated wor		1166
Date filled:			Number of pages:		
Equivalent fou	ınd:	(Yes/No)	In-House Translation	on Available:	<u></u>
-1-		(2 35, 2 , 5)	In-House:	Contr	actor:
Doc. No.:			Translator:	Name	
Country:		· · · · · · · · · · · · · · · · · · ·	Assigned: /h. h	2.17 Prior	
Remarks:			Returned:	Sent:	· · · · · · · · · · · · · · · · · · ·
					

JP 359066166 A APR 1984

(54) OHMIC ELECTRODE OF N TYPE III-V GROUP COMPOUND SEMICONDUCTOR

(11) 59-66166 (A)

(43) <u>14.4.1984</u> (19) JP (22) 7.10.1982

(21) Appl. No. 57-177739

(71) MITSUBISHI DENKI K.K. (72) TAKASHI ISHIHARA

(51) Int. Cl3. H01L29/46

PURPOSE: To prevent the breakdown of a junction base on the diffusion of Ag by forming it of a germanium layer, a nickel layer, a titanium layer and a silver layer.

CONSTITUTION: When a Ge layer 2, an Ni layer 3, a Ti layer 7 and an Ag layer 8 are sequentially deposited in vacuum on an N type GaAs layer 6 formed on a P type GaAs substrate 5 to form electrodes and then sintered at high temperature, electrodes 9 are obtained. In the electrodes 9 of such structure, the layer 8 is used. Accordingly, diffusion to the layer 6 is less, and a junction breakdown due to diffusion into the semiconductor 1 of Au into the high temperature sintering process can be avoided. The adhesive force of the layer 8 is increased, thereby preventing the layer 8 from diffusing.

19 日本国特許庁 (JP)

①特許出願公開

2 公開特許公報(A)

昭59-66166

5) Int. Cl. 3 H 01 L 29 46 識別記号

庁内整理番号 7638-5F 43公開 昭和59年(1984)4月14日

発明の数 1 審査請求 有

(全 2 頁)

■N形Ⅲ-V族化合物半導体のオーム性電極

機株式会社エル・エス・アイ研 究所内

人 三菱電機株式会社

願 昭57(1982)10月7日

東京都千代田区丸の内2丁目2

70発 明 者 石原隆

②特②出

番3号

伊丹市瑞原 4 丁目 1 番地三菱電

分代 理 人 弁理士 葛野信一 外1名

PTO 2000-1112

S.T.I.C. Translations Branch

明細 書

1. 発明の名称

N 形 II ー V 族化合物半導体のオーム性収極

2. 特許請求の範囲

ゲルマニウム剤、ニンケル剤、チタン階および 鉄膚よりなることを特徴とするN形 I - V 変化合物半級体のオーム性質腫

3. 発明の詳細な説明

この名明は、半導体のオーム性電極の改良に係るもので特に機い接合を持つN形 II — V 族化合物 半導体に適したオーム性電極に関するものである。 従来、N 形 II — V 族化合物半導体の電源として は、金(Au) — 編(Sn)合金あるいはゲルマニク ム(Ge) — ニッケル(Ni) — 金(Au)合金などの Au 系電極が用いられている。

選1図に Ge - Ni - Au 合金運帳構造を示す。 この図で、1は N 形 1 - V 族化合物半場体(以下 単に半導体という)であり、その表面に Ge 暦 2. Ni 暦 3, Au 沿 4 が順に真空無層されていっ。

上記合金塩種を単に半導体1に接着せしめるだ

けではオーム性電優は得られず、高盛シンタ処理を不応性気体もしくは違元性気体、あるいは真空中で行うことによりオーム性電優を得ることができる。

しかし、上記Au 系合金塩値では高価であるだけでなく、高価シンタ処理工程において、Au が半導体1中に拡散し、使い接合を持つ半導体1の場合においては、その拡散の先端は接合部にまでおよび接合の過格をもたらす。これは半導体1の波線を意味する。

この希明は、上述の欠点を解析するためになされたもので、Auの代りに I - V 痰化合物半導体への近数系数の小さい Agを用い、さらに Agと Niとの間に Tiを屈者することにより Agの付替力を増し、AgのI-V 痰化合物半導体への拡散を弱くマスクとしての役割を狙わせ、高温シンク処理工程における接合破棄を妨ぎ、かつオーム性電気を形成しようとするものである。以下この希明の一実施例を図面について説明する。

典2回は此化ガリウム(Ga As)ホモ接合太陽電

特開昭59-66166(2)

也の製作に、この発明を適用した場合の延便部分 を示す新園図である。この図で、P形 GaAs 島板 5上に形成された舞いN形 GaAs 甘 6を有するウ エハを併明の目的に合致するようにその厚み。大 きさの寸佐を决め整形する。このN形 GaAs 層 6 上にこの発明の方法により、 Ge 浴 2 – Ni 暦 3 - Ti 海 7 - Ag 潘 8 を順次真空蒸着する。 この実施例においては、Ge バ2 - Ni 勝3-Ti 滑了ーAg 層8からなる選集9は、N形CaAs 層 6 の一部に選択的に形成されているが、これはGe Mi 2 - Ni Mi3 - Ti Mi7 - Ag/ABBの真空高層の 僚、 叢者マスクを用いること、 あるいは写真製版 技術を用いることにより異現される。遺憾形成後、 例えば450℃で高温シンタ処理を行なうと電標 Ti 增了证例之过数百Å、Ag 应多过例之过数千 Åである。

このような構造の基価9においては、AB M68を用いるためN形GaAa M66への拡散は少なく、 第1回に示したようなGe ーNi-Au 合金電価

形成されたGe - Ni - Au 合金塩極を示す頭面 図、第2図はこの発明の一実施例を示す温極部の 断面図である。

図中、1はN形 I - V 族化合物半峰体、2はGe 随、3はNi 時、5はP形 Ga As 島板、6はN形 Ga As 層、7はTi 層、8はAg層、9は電極であ る。なお、図中の同一符号は同一または相当部分 を示す。

代理人 க 野 信 ー (外1名)

以上この発明の一実施例について説明したが、この発明は、他の任意のよ子のN形GaAs 層上の 電極としても用いることができる。また、さらに N形GaAs 層以外の任意のN形 I - V 族化合物半 導体にもこの治明は適用でき、上記実施例と同様 の効果を切ることが可能である。

以上説明したようにこの発明は、 年極材料として Ge - Ni - Ti - Ag を用いたので、 高温シンタ処理することにより機い接合を持つ I - V 族化合物半導体の N 形表面層に対してオーム性となり、かつ付着力の強い電極を得ることができる利点がある。

4. 図面の簡単な説明

類1図は従来のN形Ⅱ - V 族化合物半導体上に

第1図

第 2 図

PTO: 2000-339

Japanese Examined Patent Application No. 59-66166, Published April 4, 1984; Application Filing No. 57-177739, Filed October 7, 1982; Inventor: Takashi ISHIHARA; Assignee: Mitsubishi Electric Corp.

OHMIC ELECTRODE FOR AN N-TYPE GROUP III-V COMPOUND SEMICONDUCTOR

CLAIM:

An ohmic electrode for an n-type group III-V compound semiconductor, characterized in being made from a germanium layer, a nickel layer, a titanium layer, and a silver layer.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is related to improvements for ohmic electrodes, and is especially related to ohmic electrodes that are applied for use in n-type group III-V compound semiconductors that have thin joints.

As for prior art ohmic electrodes for n-type group III-V compound semiconductors, gold-based electrodes of gold-tin alloys or germanium-nickel-gold alloys or the like have been used.

Figure 1 shows the structure of a germanium-nickel-gold alloy electrode. Within the figure, 1 is an n-type group III-V compound semiconductor (below, shortened to "semiconductor"); germanium layer 2, nickel layer 3, and gold layer 4 have been vacuum vapor-deposited in order on the surface thereof.

Simply attaching the above alloy electrode does not allow an ohmic electrode to be obtained; an ohmic electrode can be obtained by carrying out high-temperature sintering within an inert or reduction atmosphere, or in a vacuum.

However, not only is there a high cost associated with said gold alloy electrode, but within a high-temperature sintering process, the gold disperses into semiconductor 1; in a case such as

this wherein semiconductor 1 has thin joints, the edge of said dispersion causes a short circuit when it reaches the joint unit. This means the destruction of semiconductor 1.

The present invention addresses said disadvantage, and as such uses silver, which has a small expansion coefficient, for the group III-V compound semiconductor instead of gold; furthermore, titanium is vapor-deposited between gold and nickel, increasing the adhesive power of the silver, and acting as a mask that prevents the dispersion of silver into the group III-V compound semiconductor, so as to form an ohmic electrode. An embodiment of the present invention is explained using drawings below.

Figure 2 is a cutaway view showing the electrode portion of a case wherein the present invention has been applied for use in a gallium arsenide (GaAs) homo-jointed solar cell. Within the drawing, a wafer having thin n-type GaAs layer 6 formed atop p-type GaAs substrate 5 is properly formed so as to have thickness and dimensions that match the expected purpose. By means of the method of the present invention, germanium layer 2, nickel layer 3, titanium layer 7, and silver layer 8 are vapor-deposited in order atop said n-type GaAs layer 6.

Within the present embodiment, electrode 9 that is made from germanium layer 2, nickel layer 3, titanium layer 7, and silver layer 8 is selectively formed on a portion of n-type GaAS layer 6; this is accomplished when germanium layer 2, nickel layer 3, titanium layer 7, and silver layer 8 are vapor-deposited, by means of using a vapor-deposition mask or a photoplate technique. After forming the electrode, by effecting a high-temperature sintering process at, for example, 450 degrees C, electrode 9 is obtained. As for the thickness of electrode 9, germanium layer 2 and titanium layer 7 are several hundred angstroms or the like; silver layer 8 is several thousand angstroms or the like.

Within electrode 9 having this structure, because silver layer 8 is used, the dispersion into

GaAs layer 6 is small, and as shown in figure 1, joint destruction as generated in a Ge-Ni-Au alloy electrode by means of the dispersion of gold under high-temperature sintering into semiconductor 1 is not generated. Furthermore, by means of vacuum deposition of titanium between silver layer 8 and nickel layer 3, the adhesive power of silver layer 8 is increased, an electrode 9 with high tensile strength can be obtained, and furthermore the dispersion of silver layer 8 is prevented.

An embodiment of the present invention was explained above, but the present invention can be used as an electrode atop GaAs layers in other types of element as well. Furthermore, instead of n-type GaAs layers, the present invention can also be applied to other n-type III-V group compound semiconductors as well, and a similar effect as above can be obtained.

Because the present invention, as explained above, uses germanium, nickel, titanium, and silver as the electrode material, the n-type surface layer of a group III-V compound semiconductor that has thin joints formed by

means of a high-temperature sintering process is made so as to have ohmic properties, and has the advantage that an electrode with strong adhesive strength can be obtained.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a cutaway showing prior art Ge-Ni-Au alloy electrode; figure 2 is a cutaway view showing an embodiment of the present invention.

- 1 n-type group III-V semiconductor 2 Germanium layer
- 3 Nickel layer
- 5 p-type GaAs substrate 6 n-type GaAs layer 7 Titanium layer

- 8 Silver layer
- 9 Electrode

(The same numbers refer to the same structures in both drawings)

USPTO TRANSLATIONS BRANCH November 1999 Matthew Alt

PTO: 2000-239

Japanese Examined Patent Application No. 59-66166, Published April 4, 1984; Application Filing No. 57-177739, Filed October 7, 1982; Inventor: Takashi ISHIHARA; Assignee: Mitsubishi Electric Corp.

OHMIC ELECTRODE FOR AN N-TYPE GROUP III-V COMPOUND SEMICONDUCTOR

CLAIM:

An ohmic electrode for an n-type group III-V compound semiconductor, characterized in being made from a germanium layer, a nickel layer, a titanium layer, and a silver layer. DETAILED DESCRIPTION OF THE INVENTION

The present invention is related to improvements for ohmic electrodes, and is especially related to ohmic electrodes that are applied for use in n-type group III-V compound semiconductors that have thin joints.

As for prior art ohmic electrodes for n-type group III-V compound semiconductors, gold-based electrodes of gold-tin alloys or germanium-nickel-gold alloys or the like have been used.

Figure 1 shows the structure of a germanium-nickel-gold alloy electrode. Within the figure, 1 is an n-type group III-V compound semiconductor (below, shortened to "semiconductor"); germanium layer 2, nickel layer 3, and gold layer 4 have been vacuum vapor-deposited in order on the surface thereof.

Simply attaching the above alloy electrode does not allow an ohmic electrode to be obtained; an ohmic electrode

can be obtained by carrying out high-temperature sintering within an inert or reduction atmosphere, or in a vacuum.

However, not only is there a high cost associated with said gold alloy electrode, but within a high-temperature sintering process, the gold disperses into semiconductor 1; in a case such as this wherein semiconductor 1 has thin joints, the edge of said dispersion causes a short circuit when it reaches the joint unit. This means the destruction of semiconductor 1.

The present invention addresses said disadvantage, and as such uses silver, which has a small expansion coefficient, for the group III-V compound semiconductor instead of gold; furthermore, titanium is vapor-deposited between gold and nickel, increasing the adhesive power of the silver, and acting as a mask that prevents the dispersion of silver into the group III-V compound semiconductor, so as to form an ohmic electrode. An embodiment of the present invention is explained using drawings below.

Figure 2 is a cutaway view showing the electrode portion of a case wherein the present invention has been applied for use in a gallium arsenide (GaAs) homo-jointed solar cell. Within the drawing, a wafer having thin n-type GaAs layer 6 formed atop p-type GaAs substrate 5 is properly formed so as to have thickness and dimensions that match the expected purpose. By means of the method of the present invention, germanium layer 2, nickel layer 3, titanium layer

7, and silver layer 8 are vapor-deposited in order atop said n-type GaAs layer 6.

Within the present embodiment, electrode 9 that is made from germanium layer 2, nickel layer 3, titanium layer 7, and silver layer 8 is selectively formed on a portion of n-type GaAS layer 6; this is accomplished when germanium layer 2, nickel layer 3, titanium layer 7, and silver layer 8 are vapor-deposited, by means of using a vapor-deposition mask or a photoplate technique. After forming the electrode, by effecting a high-temperature sintering process at, for example, 450 degrees C, electrode 9 is obtained. As for the thickness of electrode 9, germanium layer 2 and titanium layer 7 are several hundred angstroms or the like; silver layer 8 is several thousand angstroms or the like.

Within electrode 9 having this structure, because silver layer 8 is used, the dispersion into GaAs layer 6 is small, and as shown in figure 1, joint destruction as generated in a Ge-Ni-Au alloy electrode by means of the dispersion of gold under high-temperature sintering into semiconductor 1 is not generated. Furthermore, by means of vacuum deposition of titanium between silver layer 8 and nickel layer 3, the adhesive power of silver layer 8 is increased, an electrode 9 with high tensile strength can be obtained, and furthermore the dispersion of silver layer 8 is prevented.

An embodiment of the present invention was explained above, but the present invention can be used as an electrode

atop GaAs layers in other types of element as well. Furthermore, instead of n-type GaAs layers, the present invention can also be applied to other n-type III-V group compound semiconductors as well, and a similar effect as above can be obtained.

Because the present invention, as explained above, uses germanium, nickel, titanium, and silver as the electrode material, the n-type surface layer of a group III-V compound semiconductor that has thin joints formed by

means of a high-temperature sintering process is made so as to have ohmic properties, and has the advantage that an electrode with strong adhesive strength can be obtained.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a cutaway showing prior art Ge-Ni-Au alloy electrode; figure 2 is a cutaway view showing an embodiment of the present invention.

- 1 n-type group III-V semiconductor
- 2 Germanium layer
- 3 Nickel layer
- 5 p-type GaAs substrate
- 6 n-type GaAs layer
- 7 Titanium layer
- 8 Silver layer
- 9 Electrode

(The same numbers refer to the same structures in both drawings)

USPTO TRANSLATIONS BRANCH

November 1999

Matthew Alt

JP 359066166 A APR 1984

(54) OHMIC ELECTRODE OF N TYPE III-V GROUP COMPOUND SEMICONDUCTOR

(11) 59-66166 (A)

(43) <u>14.4.1984</u> (19) JP (22) 7.10.1982

(21) Appl. No. 57-177739 (22) 7.10.1982 (71) MITSUBISHI DENKI K.K. (72) TAKASHI ISHIHARA

(51) Int. Cl3. H01L29/46

PURPOSE: To prevent the breakdown of a junction base on the diffusion of Ag by forming it of a germanium layer, a nickel layer, a titanium layer and a sil-

CONSTITUTION: When a Ge layer 2, an Ni layer 3, a Ti layer 7 and an Ag layer 8 are sequentially deposited in vacuum on an N type GaAs layer 6 formed on a P type GaAs substrate 5 to form electrodes and then sintered at high temperature, electrodes 9 are obtained. In the electrodes 9 of such structure, the layer 8 is used. Accordingly, diffusion to the layer 6 is less, and a junction breakdown due to diffusion into the semiconductor 1 of Au into the high temperature sintering process can be avoided. The adhesive force of the layer 8 is increased, thereby preventing the layer 8 from diffusing.

19 日本国特許庁 (JP)

1) 特許出願公開

②公開特許公報(A)

昭59—66166

⑤Int. Cl.³
H 01 L 29/46

識別記号

庁内整理番号 7638-5F 43公開 昭和59年(1984)4月14日

発明の数 1 審査請求 有

(全 2 頁)

NNⅢ-V族化合物半導体のオーム性電極

機株式会社エル・エス・アイ研

究所内

②特 顧 昭57-177739

乱出 願 人 三菱電機株式会社

願 昭57(1982)10月7日

東京都千代田区丸の内2丁目2

番3号

⑫発 明 者 石原隆

22出

伊丹市瑞原 4 丁目 1 番地三菱電

77代 理 人 弁理士 葛野信一 外1名

明 細 割

1. 発明の名称

N形Ⅱ-V族化合物半導体のオーム性電極

2. 特許請求の範囲

ゲルマニウム府、ニンケル府、チタン階および 鉄暦よりなることを特徴とするN形 I - V 族化合物半導体のオーム性電極。

3. 発明の辞細な説明

この発明は、半導体のオーム性磁像の改良に係るもので存に投い接合を持つN形 I - V 族化合物 半導体に適したオーム性電優に関するものである。 従来、N形 I - V 族化合物半導体の電優として は、金(Au) - 鎖(Sn)合金あるいはゲルマニウ ム(Ge) - ニッケル(Ni) - 金(Au)合金などの

Au 系載療が用いられている。 第1図にGe — Ni — Au 合金遺稿構造を示す。

この図で、1はN形I-V族化合物半導体(以下 単に半導体という)であり、その表面に Ge 潜 2.

Ni 増る,Au 潜るが順に真空蒸溜されている。

上記合金電極を単に半導体1に接着せしめるだ

けではポーム性電極は得られず、高温シンタ処理を不活性気体もしくは虚元性気体、あるいは真空中で行うことによりオーム性電極を得ることがで

しかし、上記Au 系合金塩では高価であるだけでなく、高温シンタ処理工程において、Au が半導体 1 中に拡散し、使い接合を持つ半導体 1 の場合においては、その拡散の先端は接合部にまでおよび接合の道路をもたらす。これは半導体 1 の彼癖を意味する。

この希明は、上述の欠点を解析するためになされたもので、Auの代りに I - V 族化合物半導体への拡散係数の小さい Agを用い、さらに Agと Niとの間に Tiを成者することにより Agの付替力を増し、AgのI-V 族化合物半導体への拡散を防ぐマスクとしての役割を担わせ、 A 温 ングタ処理工程における接合破滅を防ぎ、かつオーム性電極を形成しようとするものである。以下この希明の一実務例を図面について 説明する。

弗2図は砒化ガリワム(GaAs)ホモ接合太陽電

特問昭59-66166(2)

他の製作に、この発明を適用した場合の健康部分を示す新面図である。この図で、P形 GaAs 最低5 上に形成された得いN形 GaAs 借 6 を有するクェハを所関の目的に合致するようにその與み、大きさの寸法を決め整形する。このN形 GaAs 居 6 上にこの発明の方法により、Ge 暦 2 - Ni 居 3 - Ti 暦 7 - Ag № 8 からなる電源9は、N形 GaAs 居 6 17 - Ag № 8 からなる電源9は、N形 GaAs 居 16 7 - Ag № 8 からなる電源9は、N形 GaAs 居 16 7 - Ag № 8 からなる電源9は、N形 GaAs 居

このような構造の基態 9 においては、 Ag Mi 8 を用いるため N 形 Ga As Mi 6 への拡散は少なく、 第1図に示したような Ge — N i — Au 合金電帳

形成された Ge - Ni - Au 合金媒像を示す断面 図、第2図はこの発明の一実施例を示す進帳部の 断値図である。

図中、1はN形I-V族化合物半峰体、2はGe Mi、3はNi Mi、5はP形GaAs 遊板、6はN形 GaAs Mi、7はTi Mi、8はAs Mi、9は選帳であ る。なお、図中の同一符号は同一または相当部分 を示す。

代理人 医野信一 (外1名)

において名生したような、高温シンク処理中のAuの半導体1中への拡散による接合破壊は名生しない。また、Ag 減 8 と Ni 減 3 の間に Ti 離 7 を クス 空馬者したことにより、Ag 減 8 の付ねが増し、引つ張り強度の大きい 試 減 9 を得ることができ、さらに、Ag 減 8 の拡散を防ぐことができる。

以上この発明の一実施例について起明したが、この発明は、他の任意の素子のN形GaAs 層上の 電板としても用いることができる。また、さらに N形GaAs 層以外の任意のN形 I - V 族化合物学 再体に小この発明は適用でき、上起実施例と同様 の効果を切ることが可能である。

以上説明したようにこの発明は、電便材料としてGe - Ni - Ti - Ag を用いたので、高盛シンタ処理することにより微い接合を持つ I - V 族化合物半導体の N 形表面層に対してオーム性となり、かつ付着力の強い電値を得ることができる利点がある。

4. 図面の簡単な説明

類1図は従来のN形Ⅱ - Ⅴ 族化合物半導体上に

統 1 欧

第 2 図

PTO 2000,-539

Foreign Documents Division Request Form for U.S. Serial No. 08/809,463 (Appeal BRIEF)

Requester's FX. PHAT V. CAO Org. or Name Art Unit	2814 Office Local					
Phone 308-4917 Date of Request	10/21/99 Date Neede	ed By Nov/10/99				
PLEASE COMPLETE ONE REQUEST FORM DOCUMENT MUST BE ATTACHED FOR TR	FOR EACH DOCUMENT	. A COPY OF THE				
Service(s) Requested: Search	- کسکر	lation Abstrac				
Patent - Doc. No. 5906666 Doc. Serial No. 59-6616 Country/Code JP Language TADAN Pub/Date 4/14/84 Pages Will you accept an equivalent? Yes						
Article - Author	Langu	Yes No				
Other - Language	Count	iry				
Document Delivery Mode: In-house mail Date ///6/99 Still only Call for pickup Date Still only						
STIC US	E ONLY					
COPY/SEARCH .	TRANSLATION					
Processor:	Date logged in: 10 26 95 PTO estimated words: 166 Number of pages: Found In-House:					
No equivalent found Equivalent found Country and document no.:	In-house Translator MA Assgn. 10. 17. 19 Retnd.	Contract Name Priority Sent Retnd.				
REMARKS						
W 1						

```
DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat
(c) 1999 European Patent Office. All rts. reserv.
Basic Patent (No, Kind, Date): JP 59066166 A2 840414 <No. of Patents: 001>
Patent Family:
                                Applic No
   Patent No
                Kind Date
                                            Kind Date
    JP 59066166 A2 840414
                               JP 82177739 A 821007 (BASIC)
Priority Data (No, Kind, Date):
   JP 82177739 A 821007
PATENT FAMILY:
JAPAN (JP)
  Patent (No, Kind, Date): JP 59066166 A2 840414
   OHMIC ELECTRODE OF N TYPE III-V GROUP COMPOUND SEMICONDUCTOR (English)
    Patent Assignee: MITSUBISHI ELECTRIC CORP
   Author (Inventor): ISHIHARA TAKASHI
   Priority (No, Kind, Date): JP 82177739 A
                                             821007
   Applic (No, Kind, Date): JP 82177739 A 821007
   IPC: * H01L-029/46
   Derwent WPI Acc No: * C 84-130748
   JAPIO Reference No: * 080173E000056
   Language of Document: Japanese
DIALOG(R) File 351: DERWENT WPI
(c) 1999 Derwent Info Ltd. All rts. reserv.
WPI Acc No: 84-130748/%198421%
 Ohmic electrode for n-type III-V cpd. semiconductor - comprising
  germanium-, nickel-, titanium- and silver- layers NoAbstract Dwg 0/2
Patent Assignee: MITSUBISHI ELECTRIC CORP (MITQ )
Number of Countries: 001 Number of Patents: 001
Patent Family:
Patent No Kind Date Applicat No Kind Date
                                                Main IPC
                                                              Week
                                                              198421 B
JP 59066166 A 19840414 JP 82177739 A 19821007
Priority Applications (No Type Date): JP 82177739 A 19821007
Patent Details:
                                     Application Patent
Patent Kind Lan Pg Filing Notes
JP 59066166 A
                 17
Title Terms: OHM; ELECTRODE; N-TYPE; III-V; COMPOUND; SEMICONDUCTOR;
 COMPRISE; GERMANIUM; NICKEL; TITANIUM; SILVER; LAYER; NOABSTRACT
Derwent Class: L03; U12
International Patent Class (Additional): H01L-029/46
File Segment: CPI; EPI
Manual Codes (CPI/A-N): L03-D03D
```

JP 359066166 A APR 1984

(54) OHMIC ELECTRODE OF N TYPE III-V GROUP COMPOUND SEMICONDUCTOR

(43) <u>14.4.1984</u> (19) JP (22) 7.10.1982

(11) 59-66166 (A) (43) <u>14.4.1984</u> (19) JP (21) Appl. No. 57-177739 (22) 7.10.1982 (71) MITSUBISHI DENKI K.K. (72) TAKASHI ISHIHARA

(51) Int. Cl3. H01L29/46

PURPOSE: To prevent the breakdown of a junction base on the diffusion of Ag by forming it of a germanium layer, a nickel layer, a titanium layer and a sil-

CONSTITUTION: When a Ge layer 2, an Ni layer 3, a Ti layer 7 and an Ag layer 8 are sequentially deposited in vacuum on an N type GaAs layer 6 formed on a P type GaAs substrate 5 to form electrodes and then sintered at high temperature, electrodes 9 are obtained. In the electrodes 9 of such structure, the layer 8 is used. Accordingly, diffusion to the layer 6 is less, and a junction breakdown due to diffusion into the semiconductor 1 of Au into the high temperature sintering process can be avoided. The adhesive force of the layer 8 is increased, thereby preventing the layer 8 from diffusing.

№ 日本国特許庁 (JP)

û特許出願公開

⑫公開特許公報(A)

昭59—66166

5i Int. Cl.³ H 01 L 29 46 識別記号

庁内整理番号 7638-5F 43公開 昭和59年(1984)4月14日

発明の数 1 審査請求 有

(全 2 頁)

N形Ⅲ-V族化合物半導体のオーム性電極

機株式会社エル・エス・アイ研

究所内

②特 願 昭57-177739

乱出 願 人 三菱電機株式会社

願 昭57(1982)10月7日

東京都千代田区丸の内2丁目2

番3号

⑫発 明 者 石原隆

20出

存代 理 人 弁理士 葛野信一

- 外1名

伊丹市瑞原 4 丁目 1 番地三菱電

PTO 2000-339

S.T.I.C. Translations Branch

明 細 書

1. 発明の名称

N形Ⅱ-Ⅴ族化合物半導体のオーム性電極

2. 特許請求の範囲

グルマニワム府, ニッケル層, チタン溜および 鉄瀬よりなることを特徴とするN形Ⅱ - V 実化合 物半導体のオーム性電極。

3. 発明の詳細な説明

この発明は、半導体のオーム性電優の改良に係るもので特に茂い接合を持つN形 I - V 酸化合物 半導体に適したオーム性電優に関するものである。 従来、N形 I - V 酸化合物半導体の電響として は、金(Au) - 鼬(Sn) 合金あるいはゲルマニク ム(Ge) - ニッケル(Ni) - 金(Au) 合金などの Au 系雑価が用いられている。

第1図にGe − Ni − Au 合金電振構造を示す。 この図で、1はN形 I − V 族化合物半導体(以下 単に半導体という)であり、その表面にGe 増 2. Ni Ni Ni 3, Au 消 4 が順に真空点層されている。

上記合金塩便を準に半導体1に接着せしめるだ

けではオーム性電便は得られず、高温シンタ処理を不括性気体もしくは虚元性気体、あるいは真空中で行うことによりオーム性電信を得ることができる。

しかし、上記Au 系合金塩低では高価であるだけでなく、高温シンタ処理工程において、Au が半導体1中に拡散し、使い接合を持つ半導体1の場合においては、その拡散の先達は接合形にまでおよび接合の道路をもたらす。これは半導体1の紡績を食味する。

この発明は、上述の欠点を解係するためになされたもので、Au の代りに I ー V 族化合物半導体への拡散係数の小さい Ag を用い、さらに Ag を Ni との間に Ti を 成者することに より Ag の付 を 力を 増し、 Ag の II ー V 族化合物半導体への拡散を 妨ぐマスクとしての 役割を 担わせ、 馬 温 シンク処理 工程における 張合破 滅を 妨ぎ、 かつオーム 性 戦極を 形成しようとする ものである。 以下この 発明の一実 施例を 図面について 説明 する。

弟2図は妣化ガリワム(GaAs)ホモ接合太婦覧

特問昭59-66166(2)

也の製作に、この発明を適用した場合の 関係部分 を示す新娘図である。この図で、P形 CaAs 島板 5上に形成された舞いN形 GaAs 46を有するク エハを所別の目的に合致するようにその呼み、大 きさの寸法を決め整形する。このN形 GaAs 脂 6 上にこの発明の方法により、Ge 新2-Ni暦3 - Ti 滑7 - Ag 潜8を順次真空蒸着する。 この実施的においては、Ge バ2-NiR3-Ti 用1-Ag Malaからなる選集9は、N形GaAs Mi 6 の一部に選択的に形成されているが、これはGe ME 2 - Ni ME 3 - Ti 層 7 - Ag層8 の真空蒸磨の **点。 逝者マスクを用いること、あるいは写真製版** 技術を用いることにより実現される。嵯峨形成後、 例えば450℃で高温シンタ処理を行なうと電係 **9 が得られる。返悔9の厚さは、Ge 暦2、Ni** Ti 層では例えば数百Å、Ag 应名は例えば数千 Åである。

このような構造の基盤9においては、 Ag MS 8 を用いるためN形 Ga A s MS 6 への拡散は少なく、 第1凶に示したような G e - N i - A u 合金電艦

形成されたGe - Ni - Au 合金収集を示す所面 図、第2図はこの発明の一実施例を示す復極部の 断値図である。

図中、1はN形 I - V 炭化合物半峰体、2はGe Mi、3はNi Mi、5はP形 GaAs 遊板、6はN形 GaAs Mi、7はTi Mi、8はAg層、9は磁便であ る。なお、図中の同一符号は同一または相当部分 を示す。

代理人 55 野 信 一 (外1名)

において発生したような、高盛シンク処理中のAuの半導体1中への拡散による形合鉄壊は発生しない。また、Ag はるとNi 好3の間にTi 層7を 真空無着したことにより、Ag はるの付着が増し、 引つ張り強度の大きい違振9を得ることができ、 さらに、Ag はるの拡散を紡ぐことができる。

以上この発明の一実施例について説明したが、この発明は、他の任意のよ子のN形GaAs 増上の 遺標としても用いることができる。また、さらに N形GaAs 対以外の任意のN形 I - V 族化合物学 呼体にくこの発明は延用でき、上起実施例と同様 の効果を対ることが可能である。

以上説明したようにこの発明は、電便材料としてGe - Ni - Ti - Ag を用いたので、属型シンタ処理することにより微い接合を持つ I - V 族化合物半導体の N 形表面層に対してオーム性となり、かつ付着力の強い電低を得ることができる利点がある。

4. 図面の簡単な説明

類 1 図は従来の N 形 II - V 族化合物半導体上に

第 1 区

第 2 区

