Business Case: Delhivery - Feature Engineering

About Delhivery:

Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

Problem Statement:

The company wants to understand and process the data coming out of data engineering pipelines :

- Clean, sanitize and manipulate data to get useful features out of raw fields.
- Make sense out of the raw data and help the data science team to build forecasting models on it.

Column Profiling:

- data tells whether the data is testing or training data
- trip_creation_time Timestamp of trip creation
- route_schedule_uuid Unique Id for a particular route schedule
- route_type Transportation type
 - FTL Full Truck Load: FTL shipments get to the destination sooner, as the truck is making no other pickups or drop-offs along the way
 - Carting: Handling system consisting of small vehicles (carts)
- trip_uuid Unique ID given to a particular trip (A trip may include different source and destination centers)
- source_center Source ID of trip origin
- source_name Source Name of trip origin
- destination_cente Destination ID
- destination_name Destination Name
- od_start_time Trip start time

- od_end_time Trip end time
- start_scan_to_end_scan Time taken to deliver from source to destination
- is_cutoff Unknown field
- cutoff factor Unknown field
- cutoff_timestamp Unknown field
- actual_distance_to_destination Distance in Kms between source and destination warehouse
- actual_time Actual time taken to complete the delivery (Cumulative)
- osrm_time An open-source routing engine time calculator which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) and gives the time (Cumulative)
- osrm_distance An open-source routing engine which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) (Cumulative)
- factor Unknown field
- segment_actual_time This is a segment time. Time taken by the subset of the package delivery
- segment_osrm_time This is the OSRM segment time. Time taken by the subset of the package delivery
- segment_osrm_distance This is the OSRM distance. Distance covered by subset of the package delivery
- segment_factor Unknown field

Importing Libraries and dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

data=pd.read_csv("https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/551/
```

Basic Cleaning and Exploration

#	Column	Non-Null Count	Dtype
0	data	144867 non-null	object
1	<pre>trip_creation_time</pre>	144867 non-null	object
2	route_schedule_uuid	144867 non-null	object
3	route_type	144867 non-null	object
4	trip_uuid	144867 non-null	object
5	source_center	144867 non-null	object
6	source_name	144574 non-null	object
7	destination_center	144867 non-null	object
8	destination_name	144606 non-null	object
9	od_start_time	144867 non-null	object
10	od_end_time	144867 non-null	object
11	start_scan_to_end_scan	144867 non-null	float64
12	is_cutoff	144867 non-null	bool
13	cutoff_factor	144867 non-null	int64
14	cutoff_timestamp	144867 non-null	object
15	<pre>actual_distance_to_destination</pre>	144867 non-null	float64
16	actual_time	144867 non-null	float64
17	osrm_time	144867 non-null	float64
18	osrm_distance	144867 non-null	float64
19	factor	144867 non-null	float64
20	segment_actual_time	144867 non-null	float64
21	segment_osrm_time	144867 non-null	float64
22	segment_osrm_distance	144867 non-null	float64
23	segment_factor	144867 non-null	float64
dtyp	es: bool(1), float64(10), int64(1), object(12)	
memo	ry usage: 25.6+ MB		

data.describe()

→		start_scan_to_end_scan	cutoff_factor	actual_distance_to_destination	actua
	count	144867.000000	144867.000000	144867.000000	144867.
	mean	961.262986	232.926567	234.073372	416.
	std	1037.012769	344.755577	344.990009	598.
	min	20.000000	9.000000	9.000045	9.1
	25%	161.000000	22.000000	23.355874	51.
	50%	449.000000	66.000000	66.126571	132.
	75%	1634.000000	286.000000	286.708875	513.
	max	7898.000000	1927.000000	1927.447705	4532.

data.nunique()

	_
data	2
trip_creation_time	14817
route_schedule_uuid	1504
route_type	2
trip_uuid	14817
source_center	1508
source_name	1498
destination_center	1481
destination_name	1468
od_start_time	26369
od_end_time	26369
start_scan_to_end_scan	1915
is_cutoff	2
cutoff_factor	501
cutoff_timestamp	93180
actual_distance_to_destination	144515
actual_time	3182
osrm_time	1531
	100046
osrm_distance	138046
osrm_distance factor	45641
factor	45641
factor segment_actual_time	45641 747
factor segment_actual_time segment_osrm_time	45641 747 214

dtype: int64

pd.set_option('display.max_columns', None)
to display all columns

data.head()

$\overline{}$	
\rightarrow	

7		data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

data.shape

→ (144867, 24)

data.ndim

→ 2

data.head(5)

trip_uuid	route_type	route_schedule_uuid	<pre>trip_creation_time</pre>	data	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	0
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	1
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	2
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	3
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	4

	0
data	0
trip_creation_time	0
route_schedule_uuid	0
route_type	0
trip_uuid	0
source_center	0
source_name	293
destination_center	0
destination_name	261
od_start_time	0
od_end_time	0
start_scan_to_end_scan	0
is_cutoff	0
cutoff_factor	0
cutoff_timestamp	0
actual_distance_to_destination	0
actual_time	0
osrm_time	0
osrm_distance	0
factor	0
segment_actual_time	0
segment_osrm_time	0
segment_osrm_distance	0
segment_factor	0

dtype: int64

Function to create a data frame with number and percentage of missing data in a data fr
def missing_values(data):

```
# Number and percentage of missing data in data set for each column
total_missing_data = data.isnull().sum().sort_values(ascending =False)
percent_missing_data = (data.isnull().sum()/data.isnull().count()*100).sort_values(as
missing_values_data = pd.concat([total_missing_data, percent_missing_data], axis=1, k
```

missing_data=missing_values(data)
missing_data

-	_	_
		•
	→	$\overline{}$
	*	

	Total	Percent
source_name	293	0.202254
destination_name	261	0.180165
data	0	0.000000
cutoff_factor	0	0.000000
segment_osrm_distance	0	0.000000
segment_osrm_time	0	0.000000
segment_actual_time	0	0.000000
factor	0	0.000000
osrm_distance	0	0.000000
osrm_time	0	0.000000
actual_time	0	0.000000
actual_distance_to_destination	0	0.000000
cutoff_timestamp	0	0.000000
is_cutoff	0	0.000000
trip_creation_time	0	0.000000
start_scan_to_end_scan	0	0.000000
od_end_time	0	0.000000
od_start_time	0	0.000000
destination_center	0	0.000000
source_center	0	0.000000
trip_uuid	0	0.000000
route_type	0	0.000000
route_schedule_uuid	0	0.000000
segment_factor	0	0.000000

data.dropna(inplace=True)

data.isnull().sum().sum()

Understanding the flow

data_copy=data.copy()

data_copy_grouped=data_copy.groupby(['trip_uuid','source_center','destination_center']).c data_copy_grouped

→		trip_uuid	source_center	destination_center	data	trip_creation_ti
	0	trip- 153671041653548748	IND209304AAA	IND000000ACB	18	
	1	trip- 153671041653548748	IND462022AAA	IND209304AAA	21	
	2	trip- 153671042288605164	IND561203AAB	IND562101AAA	3	
	3	trip- 153671042288605164	IND572101AAA	IND561203AAB	6	
	4	trip- 153671043369099517	IND00000ACB	IND160002AAC	12	
	•••					
	26217	trip- 153861115439069069	IND628204AAA	IND627657AAA	4	
	26218	trip- 153861115439069069	IND628613AAA	IND627005AAA	4	
	26219	trip- 153861115439069069	IND628801AAA	IND628204AAA	2	
	26220	trip- 153861118270144424	IND583119AAA	IND583101AAA	2	
	26221	trip- 153861118270144424	IND583201AAA	IND583119AAA	2	
	26222 ***	way 24 aalumma				

26222 rows × 24 columns

data_copy[data_copy['trip_uuid']=='trip-153671041653548748']

		r		7	
124981	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124982	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124983	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124984	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124985	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124986	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124987	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124988	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124989	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124990	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124991	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124992	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124993	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124994	training	2018-09-12 00:00:16.535741	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	FTL	15367104165
124995	training	2018-09-12	thanos::sroute:d7c989ba- a29h-4a0h-h2f4-	FTI	

data trip_creation_time route_schedule_uuid route_type

Converting the datatype to datetime format

```
#changing datatype of date like columns from object to timestamp
data_copy[["od_start_time", "od_end_time", 'trip_creation_time']] = data_copy[["od_start_t
data_copy.info()
 <<class 'pandas.core.frame.DataFrame'>
              Index: 144316 entries, 0 to 144866
              Data columns (total 24 columns):
                 # Column
                                                                                                                        Non-Null Count Dtype
               --- ----
                                                                                                                         -----
                        data
                                                                                                                        144316 non-null object
                 0
                                                                                                                        144316 non-null datetime64[ns]
                 1 trip_creation_time
                 2 route_schedule_uuid
                                                                                                                    144316 non-null object
                                                                                                                    144316 non-null object
                 3 route_type
                 4 trip_uuid
                                                                                                                    144316 non-null object
                 5 source_center
                                                                                                                    144316 non-null object
                                                                                                                    144316 non-null object
                 6 source_name
                destination_center

destination_name

destinatio
                 15 actual_distance_to_destination 144316 non-null float64
                 16 actual_time
                                                                                                                        144316 non-null float64
                                                                                                                     144316 non-null float64
                 17 osrm_time
                 18 osrm_distance
                                                                                                                    144316 non-null float64
                144316 non-null float64
20 segment_actual_time 144316 non-null float64
21 segment_osrm_time 144316 non-null float64
22 segment_osrm_distance 144316 non-null float64
23 segment_factor 144316 non-null float64
                 19 factor
                                                                                                                    144316 non-null float64
              dtypes: bool(1), datetime64[ns](3), float64(10), int64(1), object(9)
              memory usage: 26.6+ MB
```

thanas::arauta:d7a000ha

Extracting and Creating New Columns

thanos: sroute:d7c989ha-

```
#extracting day, month & year from trip_creation_time
data_copy['trip_creation_month']=data_copy['trip_creation_time'].dt.month
data_copy['trip_creation_year']=data_copy['trip_creation_time'].dt.year
data_copy['trip_creation_day']=data_copy['trip_creation_time'].dt.day
data_copy.head(1)
```

→		data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	trip_uuid
	0 t	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

#difference between od_start & od_end time in hours
data_copy['Timediff_start_end_H']=round((data_copy['od_end_time']-data_copy['od_start_tim
data_copy.head(1)

→		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	145	วบาว แล	!!!!!!9 ∩∩·∩∩·16 53	857 <i>1</i> 1 azyu-4auu	-UZ14-	「IL 1536710 <i>4</i> 165

Analyzing a single trip and its flow.

∠00CUCU...

data_copy[data_copy['trip_uuid']=='trip-153741093647649320']

data	trip_creation_time	route_schedule_uuid	route_type
------	--------------------	---------------------	------------

trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	0
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	1
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	2
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	3
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	4
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	5
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	6
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	7
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	8
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	9

trip_uuid

Creating Features

#as below mentioned columns are comprising of segment related details we will do a cum. s
data_copy['agg_segment_actual_time']=data_copy.groupby(['trip_uuid','source_center','dest
data_copy['agg_segment_osrm_time']=data_copy.groupby(['trip_uuid','source_center','destin
data_copy['agg_segment_osrm_distance']=data_copy.groupby(['trip_uuid','source_center','de

-		_
_	4	÷
_		~
- 1	_	_

trip_uuid	route_type	route_schedule_uuid	<pre>trip_creation_time</pre>	data	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	0
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	1
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	2
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	3
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	4

#After finding out the cum. sum of above columns we will pick their max
data_copy['agg_segment_actual_time1']=data_copy.groupby(['trip_uuid','source_center','des
data_copy['agg_segment_osrm_time1']=data_copy.groupby(['trip_uuid','source_center','desti
data_copy['agg_segment_osrm_distance1']=data_copy.groupby(['trip_uuid','source_center','desti)

data_copy.head()

→		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

[#] aggregation of below mentioned based on their Trip_uuid, Source ID and Destination ID
as they are mentioned as a cumsum in data dictionary we will take max
data_copy['agg_distance_to_destination']=data_copy.groupby(['trip_uuid','source_center','
data_copy['agg_actual_time']=data_copy.groupby(['trip_uuid','source_center','destination_

data_copy['agg_osrm_time']=data_copy.groupby(['trip_uuid','source_center','destination_ce
data_copy['agg_osrm_distance']=data_copy.groupby(['trip_uuid','source_center','destinatic
data_copy.head()

→		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
	-		2018-09-20 uz:35:36.47684u	thanos::sroute:eb7bfc78- . c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

#creating column with city, place, state from source centre & destination centre
data_copy[['Source_City','Source_Place','Source_Code/State']]=data_copy['source_name'].st
data_copy.head()

→		data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

data_copy[['destination_City','destination_Place','destination_Code/State']]=data_copy['d
data_copy.head()

	data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	trip_uuid
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320

#creating Source Code, Source state column, Destination Code, Destination state column fr
data_copy[['Source_Code','Source_State']]=data_copy['Source_Code/State'].str.rsplit('(',n
data_copy[['destination_Code','destination_State']]=data_copy['destination_Code/State'].s
data_copy.head()

trip_uuid	route_type	route_schedule_uuid	trip_creation_time	data		→
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	0	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	1	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	2	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	3	
trip- 153741093647649320	Carting	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	2018-09-20 02:35:36.476840	training	4	

data_copy['Source_State'] = data_copy['Source_State'].str.rstrip(')')
data_copy['destination_State'] = data_copy['destination_State'].str.rstrip(')')
data_copy.head()

→		data	<pre>trip_creation_time</pre>	route_schedule_uuid	route_type	trip_uuid
	0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
	4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320
<pre>#dropping the existing columns as we have already got engineered features from them data_copy.drop(columns=['od_end_time','od_start_time','trip_creation_time','source_name', print('Rows:', data_copy.shape[0],'\n' 'Columns: ',data_copy.shape[1]) Rows: 144316 Columns: 43 data_copy.drop(columns=['segment_factor','data','factor','is_cutoff', 'cutoff_factor','cu</pre>						
print	<pre>'route_schedule_uuid'], axis=1, inplace=True) print('Rows:', data_copy.shape[0],'\n' 'Columns: ',data_copy.shape[1])</pre>					

The data's were not duplicated as the original columns have

unique values. Lets create a new dataframe which includes the
newly created features column.

Rows: 144316 Columns: 36

→ 0

data_copy.duplicated().sum()

data_merged.duplicated().sum()

→ 118093

data_merged.head()

→	r	oute_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	trip
	0	Carting	trip- 153741093647649320	86.0	9	
	1	Carting	trip- 153741093647649320	86.0	9	
	2	Carting	trip- 153741093647649320	86.0	9	
	3	Carting	trip- 153741093647649320	86.0	9	
	4	Carting	trip- 153741093647649320	86.0	9	

data_merged[data_merged['trip_uuid']=='trip-153741093647649320']

- 6		_
	•	_
		$\overline{}$

route_type		<pre>trip_uuid start_scan_to_end_scan</pre>		trip_creation_month	trip	
0	Carting	trip- 153741093647649320	86.0	9		
1	Carting	trip- 153741093647649320	86.0	9		
2	Carting	trip- 153741093647649320	86.0	9		
3	Carting	trip- 153741093647649320	86.0	9		
4	Carting	trip- 153741093647649320	86.0	9		
5	Carting	trip- 153741093647649320	109.0	9		
6	Carting	trip- 153741093647649320	109.0	9		
7	Carting	trip- 153741093647649320	109.0	9		
8	Carting	trip- 153741093647649320	109.0	9		
9	Carting	trip- 153741093647649320	109.0	9		

data_merged.shape

→ (144316, 20)

data_merged.duplicated().sum()

→ 118093

data_merged.drop_duplicates(inplace=True)
data_merged.head()

→	route_type trip_uuid		start_scan_to_end_scan trip_creation_month t			
	0	Carting	trip- 153741093647649320	86.0	9	
	5	Carting	trip- 153741093647649320	109.0	9	
	10	FTL	trip- 153768492602129387	302.0	9	
	15	Carting	trip- 153693976643699843	108.0	9	
	17	FTL	trip- 153687145942424248	195.0	9	

data_merged[data_merged['trip_uuid']=='trip-153741093647649320']

→	route_type		trip_uuid	start_scan_to_end_scan	trip_creation_month	trip	
	0	Carting	trip- 153741093647649320	86.0	9		
	5 Carting		trip- 153741093647649320	109.0	9		

data_merged.duplicated().sum()

→ 0

data_merged.shape

→ (26223, 20)

data_merged.columns

data_merged.head()

→ ▼		route_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	tri
	0	Carting	trip- 153741093647649320	86.0	9	
	5	Carting	trip- 153741093647649320	109.0	9	
	10	FTL	trip- 153768492602129387	302.0	9	
	15	Carting	trip- 153693976643699843	108.0	9	
	17	FTL	trip- 153687145942424248	195.0	9	

Lets create a dataframe having unique rows for trips by combining, Summing the rows of subset package of the trips

```
data_uuid=data_merged.copy()
```

```
# aggregation of below mentioned based on their Trip_uuid, Source ID and Destination ID
# as they are mentioned as a cum. sum in data dictionary we will take max
data_uuid['start_scan_to_end_scan11']=data_uuid.groupby(['trip_uuid'])['start_scan_to_end
data_uuid['Timediff_start_end_H11']=data_uuid.groupby(['trip_uuid'])['Timediff_start_end_
data_uuid['agg_segment_actual_time11']=data_uuid.groupby(['trip_uuid'])['agg_segment_actu
data_uuid['agg_segment_osrm_time11']=data_uuid.groupby(['trip_uuid'])['agg_segment_osrm_t
```

data_uuid['agg_segment_osrm_distance11']=data_uuid.groupby(['trip_uuid'])['agg_segment_os
data_uuid['agg_distance_to_destination11']=data_uuid.groupby(['trip_uuid'])['agg_distance
data_uuid['agg_actual_time11']=data_uuid.groupby(['trip_uuid'])['agg_actual_time'].transf
data_uuid['agg_osrm_time11']=data_uuid.groupby(['trip_uuid'])['agg_osrm_time'].transform(
data_uuid['agg_osrm_distance11']=data_uuid.groupby(['trip_uuid'])['agg_osrm_distance'].tr

data_uuid.head()

→		route_type	trip_uuid	start_scan_to_end_scan	trip_creation_month	tri
	0	Carting	trip- 153741093647649320	86.0	9	
	5	Carting	trip- 153741093647649320	109.0	9	
	10	FTL	trip- 153768492602129387	302.0	9	
	15	Carting	trip- 153693976643699843	108.0	9	
	17	FTL	trip- 153687145942424248	195.0	9	

data_uuid['Source_City11']=data_uuid.groupby(['trip_uuid'])['Source_City'].transform('fir
data_uuid['Source_Place11']=data_uuid.groupby(['trip_uuid'])['Source_Place'].transform('f
data_uuid['Source_Code/State11']=data_uuid.groupby(['trip_uuid'])['Source_Code/State'].tr
data_uuid['destination_City11']=data_uuid.groupby(['trip_uuid'])['destination_City'].tran
data_uuid['destination_Place11']=data_uuid.groupby(['trip_uuid'])['destination_Place'].tr
data_uuid['destination_Code/State11']=data_uuid.groupby(['trip_uuid'])['destination_Code/

data_uuid.head()

→	route_type		trip_uuid	start_scan_to_end_scan	trip_creation_month	tri
	0	Carting	trip- 153741093647649320	86.0	9	
	5 Carting		trip- 153741093647649320	109.0	9	
	10 FTL 1537		trip- 153768492602129387	302.0	9	
	15	Carting	trip- 153693976643699843	108.0	9	
	17	FTL	trip- 153687145942424248	195.0	9	

Creating a new DataFrame for eliminating the duplicates and
having only one row detail for one trip which comprises all the details of the trip.

```
'start_scan_to_end_scan11', 'Timediff_start_end_H11',
       'agg_segment_actual_time11', 'agg_segment_osrm_time11',
       'agg_segment_osrm_distance11', 'agg_distance_to_destination11',
       'agg_actual_time11', 'agg_osrm_time11', 'agg_osrm_distance11',
       'Source_City11', 'Source_Place11', 'Source_Code/State11',
       'destination_City11', 'destination_Place11',
       'destination_Code/State11']]
data final.duplicated().sum()
→ 11436
data_final[data_final['trip_uuid']=='trip-153741093647649320']
\rightarrow
         route_type
                               trip_uuid trip_creation_month trip_creation_year trip_crea
                                     trip-
             Carting
                                                                              2018
                     153741093647649320
                                     trip-
      5
             Carting
                                                                              2018
                     153741093647649320
data_final.drop_duplicates(inplace=True)
data_final.duplicated().sum()
data_final.shape
→ (14787, 20)
data_final[data_final['trip_uuid'] == 'trip-153741093647649320']
\overline{2}
         route type
                               trip_uuid trip_creation_month trip_creation_year trip_cre
```

Hypothesis/ Visual Analysis

0

Carting

Comparison between Timediff_start_end_H11(od_start_time and od_end_time) and start_scan_to_end_scan

trip-

153741093647649320

9

2018

```
import pandas as pd
import numpy as np
from numpy import NaN, nan, NAN
import matplotlib.pyplot as plt
import seaborn as sns
import math, random
from scipy import stats
from statsmodels.stats.weightstats import ztest
from statsmodels.distributions.empirical_distribution import ECDF
from statsmodels.graphics.gofplots import qqplot, qqplot_2samples
import statsmodels.api as sm
import warnings
warnings.filterwarnings("ignore")
plt.figure(figsize=(17,4))
plt.subplot(131)
plt.hist(data_final['Timediff_start_end_H11'],bins=100,label='Timediff_start_end_H')
plt.hist(data_final['start_scan_to_end_scan11'],bins=100,label='start_scan_to_end_scan')
plt.legend()
plt.subplot(132)
sns.kdeplot(data_final['Timediff_start_end_H11'],label='Timediff_start_end_H')
sns.kdeplot(data_final['start_scan_to_end_scan11'],label='start_scan_to_end_scan')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['Timediff_start_end_H11'], data_final['start_scan_to_end_scan1
plt.show()
\rightarrow
      3000
                      Timediff_start_end_H
                                                    Timediff_start_end_H
                                  0.00175
                                                                  7000
                                  0.00150
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for Timediff_start_end_H & start_scan_to_end_scan are same

Ha: The mean for start_scan_to_end_scan and start_scan_to_end_scan are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['Timediff_start_end_H11'],data_final['start_s
print("t_stat : ",t_stat)
print("p_value : ",p_value)
print('P_value One_side :',(p_value/2))

if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')

else:
    print('Fail to Reject NULL HYPOTHESIS')

    t_stat : 0.11551867533202027
    p_value : 0.9080348031420551
    P_value One_side : 0.45401740157102755
    Fail to Reject NULL HYPOTHESIS</pre>
```

The pvalue is not less than alpha, hence the mean between Timediff_start_end_H11 and start_scan_to_end_scan11 are same.

Comparision Between Aggregate Actual time & Aggregate OSRM

Time

```
plt.figure(figsize=(17,4))
plt.subplot(131)
plt.hist(data_final['agg_actual_time11'],bins=10,label='agg_actual_time')
plt.hist(data_final['agg_osrm_time11'],bins=10,label='agg_osrm_time')
plt.legend()
plt.subplot(132)
sns.kdeplot(data_final['agg_actual_time11'],label='agg_actual_time')
sns.kdeplot(data_final['agg_osrm_time11'],label='agg_osrm_time')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_actual_time11'],data_final['agg_osrm_time11'], line="r",plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for agg_actual_time & agg_osrm_time are same

Ha: The mean for agg_actual_time and agg_osrm_time are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['agg_actual_time11'],data_final['agg_osrm_tim
print('t_stat :', t_stat)
print('P-value :', p_value)
if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')
else:
    print('Fail to Reject NULL HYPOTHESIS')

**T_stat : 37.924611689639825
    P-value : 2.358932823082838e-307
    Reject NULL HYPOTHESIS</pre>
```

The pvalue is less than alpha, hence the mean between agg_actual_time11 and agg_osrm_time11 are not same.

Comparision Between Aggregate Actual time & Aggregate segment_actual_time

```
plt.figure(figsize=(17,4))
plt.subplot(131)
sns.kdeplot(data_final['agg_actual_time11'],label='agg_actual_time')
sns.kdeplot(data_final['agg_segment_actual_time11'],label='agg_segment_act_time')
plt.legend()
plt.subplot(132)
plt.hist(data_final['agg_actual_time11'],bins=10,label='agg_actual_time')
plt.hist(data_final['agg_segment_actual_time11'],bins=10,label='agg_segment_actual_time')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_actual_time11'],data_final['agg_segment_actual_time11'],
plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for agg_Actual_time & agg_segment_actual_time are same

Ha: The mean for agg_Actual_time and agg_segment_actual_time are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

```
t_stat,p_value = stats.ttest_ind(data_final['agg_actual_time11'],data_final['agg_segment_
print('t_stat :', t_stat)
print('P-value :',(p_value))

if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')

else:
    print('Fail to Reject NULL HYPOTHESIS')

**\frac{1}{2} t_stat : 0.4978641813349065
    P-value : 0.6185834771383849
    Fail to Reject NULL HYPOTHESIS'</pre>
```

The pvalue is not less than alpha, hence the mean between agg_actual_time11 and agg_segment_actual_time11 are same.

Double-click (or enter) to edit

Comparision Between Aggregate OSRM distance & Aggregate
Segment osrm distance

```
plt.figure(figsize=(17,4))
plt.subplot(1,3,1)
plt.hist(data_final['agg_osrm_distance11'],bins=10,label='agg_osrm_distance')
plt.hist(data_final['agg_segment_osrm_distance11'],bins=10,label='agg_segment_osrm_distan
plt.legend()
plt.subplot(1,3,2)
sns.kdeplot(data_final['agg_osrm_distance11'],label='agg_osrm_distance')
sns.kdeplot(data_final['agg_segment_osrm_distance11'],label='agg_segment_osrm_distance')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_osrm_distance11'],data_final['agg_segment_osrm_distance11
plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for Agg_osrm_distance & agg_segment_osrm_distance are same

Ha: The mean for Agg_osrm_distance and agg_segment_osrm_distance are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

```
import scipy.stats as stats
t_stat,p_value = stats.ttest_ind(data_final['agg_osrm_distance11'],data_final['agg_segmen
print('t_stat :', t_stat)
print('P-value :',(p_value))

if p_value < 0.05:
    print('Reject NULL HYPOTHESIS')
else:
    print('Fail to Reject NULL HYPOTHESIS')

$\frac{1}{2}$ t_stat : -3.9379741183399783
    P-value : 8.236076174381012e-05
    Reject NULL HYPOTHESIS</pre>
```

The pvalue is less than alpha, hence the mean between agg_osrm_distance11 and agg_segment_osrm_distance11 are not same.

Comparision Between Aggregate OSRM time & Aggregate Segment OSRM Time

```
plt.figure(figsize=(16,5))
plt.subplot(131)
sns.kdeplot(data_final['agg_osrm_time11'],label='agg_osrm_time')
sns.kdeplot(data_final['agg_segment_osrm_time11'],label='agg_segment_osrm_time')
plt.legend()
plt.subplot(132)
plt.hist(data_final['agg_osrm_time11'],bins=10,label='agg_osrm_time')
plt.hist(data_final['agg_segment_osrm_time11'],bins=10,label='agg_segment_osrm_time')
plt.legend()
# Quantile-Quantile plot for 2samples
qqplot_2samples(data_final['agg_osrm_time11'],data_final['agg_segment_osrm_time11'], line
plt.show()
```


Step-1: Defining Null & Alternate Hypothesis

H0: The mean for Agg_osrm_distance & agg_segment_osrm_distance are same

Ha: The mean for Agg_osrm_distance and agg_segment_osrm_distance are difference.

Step-2: Choosing Appropriate test

Here we are using Two Sample T-Test

Step-3: Choosing Significance level

Here we are aiming for 95% confidence, hence alpha=0.05

Step-4: Perform the test and determine the pvalue

The pvalue is less than alpha, hence the mean between agg_osrm_time11 and agg_segment_osrm_time11 are not same.

Exploratory Data Analysis

Univariate Data Analysis

```
num_cols = data_final.select_dtypes('float64').columns.values
cat_cols = data_final.select_dtypes('object').columns.values

for i in num_cols:
    print('###########"')
    print(data_final[i].value_counts())
    sns.histplot(data_final[i],kde=True)
    plt.show()
```

```
start_scan_to_end_scan11
             51
    148.0
    115.0
             51
    87.0
             50
    113.0
             49
    128.0
             49
    1895.0
              1
    1634.0
              1
    1199.0
              1
    1205.0
              1
    2429.0
    Name: count, Length: 2203, dtype: int64
       1600
```


Timediff_start_end_H11 319.61 4 286.63 4 122.43 4 147.10 4 86.20 227.87 1 924.06 1 658.28 1 3732.37 1 427.69 1

Name: count, Length: 13573, dtype: int64

1400 -

• The data's are heavily right skewed.

```
for i in cat_cols:
    print('#########")
    print(data_final[i].value_counts())
route_type
     Carting
                8906
                5881
     FTL
     Name: count, dtype: int64
     ##############
     trip_uuid
     trip-153741093647649320
                                1
     trip-153836648611826977
                                1
     trip-153681920064110379
     trip-153744931166370622
                                1
     trip-153764628243892763
                                1
     trip-153741177166786003
                                1
     trip-153801210039247977
                                1
     trip-153737819969505360
                                1
     trip-153739632610417618
                                1
     trip-153746066843555182
     Name: count, Length: 14787, dtype: int64
     #############
     Source_City11
                              1014
     Bengaluru
     Gurgaon
                              1011
     Bhiwandi
                               811
                               731
     Bangalore
     Delhi
                               617
     Parvathipuram_Central
                                 1
                                 1
     Koraput
                                 1
     Jasai
                                 1
     Baripada
     Ashta
     Name: count, Length: 706, dtype: int64
     ##############
     Source_Place11
     Bilaspur
                         959
     Mankoli
                         811
     Nelmngla
                         732
     Н
                         643
     Ι
                         571
     Ymunpurm
                           1
                           1
     Shahdara (Delhi)
     KalikDPP
                           1
     PuranDPP
                           1
     ShantiNg
     Name: count, Length: 672, dtype: int64
     #############
     Source_Code/State11
                           937
     HB (Haryana)
                           811
     HB (Maharashtra)
     HB (Karnataka)
                           757
                           751
     H (Karnataka)
     H (Punjab)
                           370
```

. . .

I

2	(Andhra	Pradesh)	1
1	(Andhra	Pradesh)	1
2	(Karnata	aka)	1

Busiest Route

1185.0 1 data_copy_grouped.head()

→		trip_uuid	source_center	destination_center	data	trip_creation_time	1
	0	trip- 153671041653548748	IND209304AAA	IND00000ACB	18	18	
	1	trip- 153671041653548748	IND462022AAA	IND209304AAA	21	21	
	2	trip- 153671042288605164	IND561203AAB	IND562101AAA	3	3	
	3	trip- 153671042288605164	IND572101AAA	IND561203AAB	6	6	
	4	trip- 153671043369099517	IND000000ACB	IND160002AAC	12	12	
		555 III.\				I	

data_copy_grouped.route_type.max()

→ 81

0 500 1000 1500 2000 25

find trip uuid of max count
data_copy_grouped[data_copy_grouped['route_type']==81]

→		trip_uuid	source_center	destination_center	data	trip_creation_ti
	12201	trip- 153755502932196495	IND160002AAC	IND562132AAA	81	

data[data['trip_uuid']=='trip-153755502932196495']

\rightarrow				
Z	data	trip_creation_time	route_schedule_uuid	route_ty

nedule_uuid	route_type	trip_ı

					• =
61008	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
61009	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
61010	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
61011	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
61012	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
•••					
61084	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
61085	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	153755502932196
61086	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	153755502932196
61087	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	153755502932196
61088	training	2018-09-21 18:37:09.322207	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	15375550293219(
81 rows × 24 columns					
	. I III \				

___ I **!!!**

 $\overline{\Rightarrow}$

agg_segment_actual_time11 agg_segment_osrm_time11 agg_segment_osrm_distance

61008 3751.0 1864.0 2500.21

€ 134

Bussiest Route is from source Chandigarh_Mehmdpur_H (Punjab) to Bangalore_Nelmngla_H (Karnataka) Average_distance between them is

1927 kms & average time taken is 3784 mins

```
2331.0
                 1
temp=['start_scan_to_end_scan11',
       'trip_creation_day', 'Timediff_start_end_H11', 'agg_segment_actual_time11',
       'agg_segment_osrm_time11', 'agg_segment_osrm_distance11',
       'agg_distance_to_destination11', 'agg_actual_time11', 'agg_osrm_time11',
       'agg_osrm_distance11']
              temp
     ['start_scan_to_end_scan11',
      'trip_creation_day',
       'Timediff_start_end_H11',
       'agg_segment_actual_time11',
      'agg_segment_osrm_time11',
      'agg_segment_osrm_distance11',
      'agg_distance_to_destination11',
      'agg_actual_time11',
      'agg_osrm_time11',
       'agg_osrm_distance11']
                                                                               I
Data Visualization
for i in temp:
  sns.histplot(data_final[i], bins=25, kde=True, color='orchid')
  plt.show()
```


Outlier Detection & their Treatment

```
I
def uni(d):
   f,ax = plt.subplots(nrows=1,ncols=2,figsize=(12,3))
   sns.histplot(d, kde=True, ax=ax[0])
   ax[0].axvline(d.mean(), color='y', linestyle='--',linewidth=2)
   ax[0].axvline(d.median(), color='r', linestyle='dashed', linewidth=2)
   ax[0].axvline(d.mode()[0],color='g',linestyle='solid',linewidth=2)
   ax[0].legend({'Mean':d.mean(),'Median':d.median(),'Mode':d.mode()})
   sns.boxplot(x=d, showmeans=True, ax=ax[1])
   plt.tight_layout()
        T0000 J
                                                                              ı
num_cols = data.select_dtypes('float64').columns.values
               for f in num_cols:
   uni(data[f])
plt.show()
```


#treating outliers:
def treat_outlier(variable):

```
#Takes two parameters: dataframe & variable of interest as string
   q1,q3=np.percentile(variable,[25,75])
   iqr = q3-q1
   lo_range = q1-(1.5*iqr)
   up\_range = q3+(1.5*iqr)
   return lo_range,up_range
       4000 1
                                              for col in num_cols:
   ir,ur=treat_outlier(data[col])
   data[col]=np.where(data[col]>ur,ur,data[col])
   data[col]=np.where(data[col]<ir,ir,data[col])</pre>
      5000
                                       Here I have found the outliers and replaced them with max and min of whisker's value.
                                              ....
#Lets check where outliers are removed or not:
for f in num_cols:
   uni(data[f])
plt.show()
```


· The outliers are removed

```
fig1, ax1 = plt.subplots(figsize=(10,5))
ax1.pie(data_final['route_type'].value_counts(), labels=data_final['route_type'].unique()
plt.legend()
plt.show()
```


• Therefore by analyzing the given data, it has been found that 60% of the route type used for delivery were Carting and the remaining were FTL.

```
sns.countplot(y=data_final['trip_creation_day'])
plt.xticks(rotation=90)
plt.show()
```


- The start and end date of the months the trips were lesser.
- More trips were during mid of the month, but there is not huge difference. The trips were similar across the month.
- No trips were found from 4th till 11th of the month.

```
f,ax = plt.subplots(nrows=1,ncols=2,figsize=(12,8))
sns.countplot(y=data_copy['Source_State'],ax=ax[0])
sns.countplot(y=data_copy['destination_State'],ax=ax[1])
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
```


• The top 3 states that contributes to overall trips were Haryana, Maharastra and Karnataka.

Bivariate Analysis

Since most of the features were numerical, instead of using other plots I have used heatmap to know the overall relation between each features

'destination_Code/State11'],

dtype='object')