

# 3.003 Principles of Engineering Practice Principles of Engineering Practice Principles of Engineering Practice

#### Engineering the Future of Solar Electricity

- Teams
  - Local power generation and use
    - Automobiles, irrigation pumps, telecommunications
  - Grid connected power generation and use
    - Solar farms, homes, manufacturing plants
- Project 1A
  - Solar Electricity Generation System Constraints
    - Rate limiting factor
  - due 4-6 (15min/team research update)

### 3.003 Project Purpose

- The Engineer
  - builds from a toolbox
  - designs for needs
- The Materials Engineer, additionally, must imagine limits
  - Define the limits of a technology platform
  - Design for technology scalability
  - Rate limit for learning curve
- 3.003 Final Project
  - Problem: Emergence of solar electricity
  - Constraints of application platforms
  - Scalability of platform
  - Long term solutions

### Solar Electricity Facts

- A 100x100 square mile solar cell array in Nevada
  - could provide 100% of US electrical power requirements
- A single 175W Si solar cell module
  - Generates 12,000 kW-hr of electricity over its 30 yr lifetime
  - Can produce electricity over 30yrs to offset 13,600 lbs of CO<sub>2</sub>
    - After subtracting C0<sub>2</sub> from mfg
- Each kW-hr of energy generated by a local solar installation
  - Is worth 3.3 kW-hr of utility power generation
  - Transmission losses and other inefficiencies
- 5 x 60W incandescent replaced by 12W fluorescent light bulbs
  - Offsets 440 lbs of coal + 860 lbs of CO<sub>2</sub> each year
- Green plants are 3% efficient
  - Converting sunlight + H<sub>2</sub>O + CO<sub>2</sub> into sugar



#### Engineering the Future of Solar Electricity Teams: local power; grid connected power

- Project 1A: due 4-6
  - Electricity Generation System Constraints
- Project 1B: due 4-13
  - Materials Selection
- Project 1C: due 4-27
  - Solar Cell Solar Cell Design
  - Module Manufacturing Platform
- Pentachart Summary Presentations: due 5-4
- Project 1D: due 5-6
  - Final Report and Presentation

## Project Planning

- Timeline
- Resources
- Problem Definition

## **Engineering Practice**

- 1. Problem Definition (B)
- 2. Constraints (I)
- 3. Options (R)
- 4. Analysis (A)
- 5. Solution (C)



## Project 1A: *due 4-6*Electricity Generation System Constraints

#### **Applications: FOM Comparisons**

- Strengths
  - Attributes of solar electricity
  - Optimization plot
    - x vs. y with maximum for solar attributes
- Weaknesses
  - Barriers
    - Crossover point to solar advantage
- Competition
  - Local power
    - Gasoline: energy/unit volume

## Walk the Big Dig

- Thursday, April 1
  - Meet at Inbound MBTA at 12:55p
- Learning
  - Big Infrastructure Engineering Challenges

## Infrastructure Change Issues

- New technology requires changing multiple components.
- Multi-vendor interoperability must be considered.
- Expected rewards in one area are sometimes accompanied by risks of disruption in other more critical application areas.
- Capital cost of infrastructure upgrade vs. sunk cost of existing.
- Missing or incomplete backward compatibility leading to replacing more equipment than will benefit from the upgrade.
- Incomplete value-chain availability, particularly in early stages of new technology.
- New skills availability and adoption.
- Changes in Economic Marketplace.

## The Solar Cell

- 1) Principles of operation
- 2) Relevant performance metrics
- 3) Design for performance
- 4) Design for manufacturing
- 5) Design for application
- 6) What scale of production is consistent with (6)?

### **Project Execution**

- One Project assignment is given and divided into parts for concurrent engineering by teams.
- One solution will be submitted per team. All members of the team receive the same project grade.
- Teams will complete four project stages during the term.
  - Plan; Initial Findings; Solution Consistency among Teams;
     Final Presentation to Panel of Experts
- The final deliverables are:
  - 20 minute presentation (5-10 slides), during which all workgroup members must speak.
  - Two days later, edited slides and a final two-page report.

## Principles of Engineering

- Understand ethical practice in terms of absolutes, context and the possible.
- Be able to communicate with a purpose targeted to an audience.
- Be aware of the constraints of public, private and academic practice.
- Be able to apply fundamental science to system applications.
- Be able to execute at all levels of design: problem definition, estimation, figure-of-merit, rules-of-thumb and 'sanity checks'.
- Be able to execute total system design for sustainability.
- Be aware of robust manufacturing design: performance, constraints, variation, process capability.
- Practice through team projects: problem definition, information acquisition, data analysis, tradeoff plots, optimization.

MIT OpenCourseWare http://ocw.mit.edu

3.003 Principles of Engineering Practice Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.