SIT744 Assignment 2 — HD Written Submission Investigating Neural Collapse & Layer Rotation on CIFAR-10

Bhavesh Hiraram Choudhary (ID: 224085988) s224085988@deakin.edu.au

Abstract

This report reproduces, at small scale, the core claim from Layer rotation: a surprisingly powerful indicator of generalization in deep networks and proposes a distinct, geometry-aware CIFAR-10 pipeline. Using a tiny CNN trained on a 2k/1k subset with SGD, Adam, and a simplified Layca, I track mean layer rotation (angle from initialization), within-class scatter S_w , and the mean cosine between class means (a neural-collapse probe; the equiangular tight frame (ETF) target for K=10 is -1/9). Results partially reproduce the paper's trend: larger rotation often coincides with tighter class clusters (lower S_w), but the best Macro-F1 is delivered by Adam despite lower rotation than SGD. Collapse indicators remain far from ETF at this scale. I conclude with concrete failure cases (under-rotation, scale/time limits, per-layer heterogeneity) and targeted follow-ups to push toward stronger collapse and more robust generalization.

1 Background & Objectives

Neural collapse (NC) describes a late-training geometry where (i) within-class variance collapses and (ii) class means become equiangular (ETF). Layer rotation measures the angular deviation of weights from initialization; larger rotation has been associated with better generalization.

Goals.

- 1. Reproduce the rotation–generalization connection with a minimal, CPU-friendly setup.
- 2. Propose a distinct CIFAR solution (not the paper's models/schedules) that emphasizes geometry diagnostics (rotation, S_w , mean-cosine) alongside standard metrics (Accuracy, Precision, Recall, Macro-F1, Macro-AUC).
- 3. Identify failure cases and research gaps.

2 Methods

2.1 Data & Transforms

Dataset: CIFAR-10 subset for speed: 2,000 train / 1,000 test.

Train transforms: RandomCrop(32, pad=4), RandomHorizontalFlip, Normalize (CIFAR-10

mean/std).

Test transforms: Normalize only.

2.2 Model (distinct from the article)

A tiny CNN: $Conv(3\rightarrow32,3) \rightarrow ReLU \rightarrow MaxPool / Conv(32\rightarrow64,3) \rightarrow ReLU \rightarrow MaxPool / FC(64·8·8\rightarrow128) \rightarrow ReLU \rightarrow Logits(128\rightarrow10)$. The penultimate embedding is the ReLU(FC-128) output.

2.3 Optimizers & Schedule

• SGD: lr=0.05, momentum=0.9, weight_decay=5e-4

• Adam: lr=1e-3, weight_decay=5e-4

• Layca (simplified): orthogonalized update to weight vector, target rotation 0.500° per step, lr=1.0, no weight decay.

Note: This is a minimal Layca (no layer-wise normalization/scheduling as in the paper).

2.4 Training & Evaluation

Epochs: 8; **Batch:** 128 (train) / 256 (test).

Determinism: fixed seeds for Python/NumPy/PyTorch and deterministic DataLoader shuffling.

Metrics: Accuracy, Precision, Recall, Macro-F1, Macro-AUC (OvR).

2.5 Probes for Rotation & Collapse

Mean rotation (deg): average angle between current and initial weights over all 2D+ parameter tensors.

NC probes on penultimate embeddings Z:

- S_w : trace of within-class scatter $\sum_c \operatorname{tr}((Z_c \mu_c)^{\top}(Z_c \mu_c))$ normalized by N (lower is better).
- Mean cosine among class means (cosine of normalized μ_c). **ETF target for** K=10: $-1/9 \approx -0.111$.

3 Results — Reproduction Attempt

3.1 Final metrics (2k/1k, 8 epochs; deterministic run)

Optimizer	Acc	Prec	Recall	Macro-F1	Macro-AUC	Mean rot (°)
Adam SGD Layca (simpl.)	0.458 0.414 0.386	0.443 0.445 0.376	0.459 0.412 0.385	0.437 0.403 0.347	0.877 0.858 0.829	28.400 33.3 9.300

Table 1: Test-set metrics and mean layer rotation. Adam attains the best Macro-F1/AUC; SGD rotates the most.

3.2 Per-layer rotation (final epoch)

Optimizer	conv1 (°)	conv2 (°)	fc1 (°)	fc2 (°)
SGD	23.800	32.300	36.500	40.600
Adam	8.000	21.300	60.1	24.100
Layca (simpl.)	12.900	10.200	7.300	6.900

Table 2: Per-layer rotation heterogeneity. Adam concentrates rotation in the penultimate FC layer.

3.3 Neural-collapse probes over time

Figure 1: NC probes tracked during training; collapse signals remain far from ETF at this scale.

Key observations.

- Rotation vs generalization (partial reproduction). SGD shows the largest rotation and tends to achieve lower S_w (tighter clusters), consistent with the paper. However, Adam delivers the best Macro-F1/AUC despite lower mean rotation than SGD. Rotation aligns with geometry but does not strictly predict final F1 in this small setup.
- No strong collapse. Mean cosine remains positive (≈ 0.59 –0.86); ETF target is -0.111. S_w does not approach near-zero.
- Per-layer heterogeneity. Adam exhibits extreme rotation in fc1 vs. modest rotation earlier; Layca (simplified) under-rotates across all layers.

4 Distinct CIFAR Solution (Design, Protocol, Metrics)

Motivation. Deliver a *lightweight*, *reproducible* pipeline that surfaces optimization/representation geometry under compute constraints—clearly distinct from the paper's larger architectures and full Layca.

Differences from the article.

- Small CNN instead of VGG/ResNet.
- Geometry diagnostics throughout training: per-layer rotation + $S_w(t)$ + mean-cosine(t).
- Expanded evaluation: Macro-AUC in addition to Accuracy/Precision/Recall/Macro-F1.

Protocol. Data/transforms as above; 8 epochs; optimizers as listed; metrics per §2.4; probes per §2.5; deterministic seeds.

Findings.

- SGD: largest rotation, lowest S_w ; Macro-F1 below Adam.
- Adam: best Macro-F1/AUC, but higher mean-cosine (class means more aligned, less ETF-like).
- Layca (simplified): under-rotates and under-performs, highlighting the importance of the full Layca formulation.

5 Critical Observations & Connections to Unit Content

• Optimization geometry matters. Mean rotation and orthogonalized updates influence generalization; rotation is a useful diagnostic, not a guarantee.

- Representation geometry matters. S_w and class-mean angles expose feature quality beyond accuracy. Evaluating Macro-F1 and Macro-AUC alongside geometry aligns with unit themes on balanced metrics and explainable diagnostics.
- Scale & schedule strongly affect collapse. ETF-like behaviour generally emerges with larger models, full data, and longer training.

6 Research Gaps & Failure Cases

- 1. Under-rotation with naïve Layca. Implement full Layca (layer-wise normalization + target-degree schedule); sweep target degrees (e.g., 1.000° to 3.000°).
- 2. Scale/time limitations. Move to full CIFAR-10 and 100.000 to 120.000 epochs with cosine LR + weight decay to elicit late-phase geometry.
- 3. **Per-layer heterogeneity.** Try per-layer target-degree schedules, layer-wise LR, or weight-norm constraints.
- 4. Geometry vs metrics divergence. Cases where S_w improves but Macro-F1 does not motivate multi-objective tuning and early-stopping on Macro-F1 (used here) rather than accuracy only.
- 5. **Augmentation/BN effects.** Ablate stronger augmentation and BN placement; both influence rotation and collapse.
- 6. **Evaluation breadth.** Add linear-probe and k-NN on frozen embeddings; sweep class imbalance to connect geometry with robustness.

7 Reproducibility

Environment: PyTorch (CPU), torchvision, scikit-learn, NumPy.

Determinism: fixed seeds; deterministic DataLoader shuffling; CuDNN deterministic flags.

Artifacts: training logs, saved final models, and plots of $S_w(t)$ and mean-cosine(t).

References (short)

- Li et al. Layer rotation: a surprisingly powerful indicator of generalization in deep networks?
- Papyan, Han, Donoho. Prevalence of Neural Collapse during the terminal phase of deep learning training.
- Krizhevsky. CIFAR-10 dataset.

Conclusion. With a compact CNN and a simplified Layca, I partially reproduce the rotation-generalization link: more rotation (SGD) tracks tighter within-class clusters (S_w) , but Macro-F1/AUC peak with Adam at this small scale. ETF-like geometry does not emerge under 2k/1k data and 8 epochs. Implementing full Layca, scaling data/epochs, and using per-layer rotation schedules are the most actionable steps to sharpen collapse signals and clarify when rotation predicts generalization versus when it merely correlates.