No. of Pages	1
No.of Questions	4

Department of Computer Science and Engineering Solution: MIDTERM EXAMINATION Spring 2019

CSE260: Digital Logic Design

Total Marks: 40 Time Allowed: 1 Hour

Answer ALL questions (Understanding the question is a part of the exam.)

Question No. 1

a) The price of $(2)_3$ pens is $(A)_{16}$ taka. (How many)₂ pens can Lina buy with $(23)_{10}$ takas? If we convert all the numbers into decimal base:

The price of 2 pens is 10 taka. How many pens can Lina buy with 23 takas?

Price of 1 pen= 10/2 = 5 takas

So, Lina can buy 23/5 = 4 pens with 23 takas ;[as fractional number of pens is not possible]

So the answer is $(100)_2$

b) How much money has she got left after buying the pens? Use a 6 bit 2s complement system to find that out.

She initially had 23 takas She used 20 takas to buy 4 pens

So, we have to do 23-20 in 6 bit 2s complement system

23-20

=23+(2s com of 20)

=010111 + (2s com of 010100)

=010111 + 101100

=1000011

There is an end carry, which we have to ignore

So, the result is = 000011; which equals to 3 takas

Question No. 2

F(x,y,z)=x'z+y+x

a) Convert the above boolean equation into POS format. $F(x,y,z)=(x+y+z)=\prod (0)$

b) Draw the equivalent circuit of the given equation using only NAND gates

Question No. 3

F(a,b,c,d)=a'bc+ab'c+abc'+abd+abcd+b'cd Simplify the above equation using K-map and draw the simplified logic circuits using basic gates only.

 $F(a,b,c,d)=\sum (3,6,7,10,11,12,13,15)$

		Мар		
	$\overline{C}\overline{D}$	Ē.D	CD	$C\overline{D}$
$\overline{A}.\overline{B}$		0	1	0
Ā.B		0	1	1
A.B		1	_	0
A.B	0	0	1	1
	Ma	p Lay	out	
	$\overline{C}.\overline{D}$	C.D	C.D	$C.\overline{D}$
$\overline{A}.\overline{B}$	0	1	3	2
Ā.B	4	5	7	6
A.B	12	13	15	14
A.B	8	9	11	10
	Gro	ups		
_	11,15 5,7)		.D 3.C	
_	0,11)	2000	3.C	
	2,13)	A.I		
(12	2,13)	A.1	J.C	

Page 2 of 3

Ouestion No. 4

$F(A,B,C)=\sum (1,2,3,7)+d(4,5)$

Simplify the above equation using Quine-McCluskey method.

Prime Implicants

```
(3, 2) 01-
(5, 4) 10-
```

Coverage Table

	=1	01-	10-
0	3		
2		•	
3	X	X	
0	(3)		

Essential Prime Implicants

