HMMT Spring 2021

March 06, 2021

Geometry Round

1. A circle contains the points (0, 11) and (0, -11) on its circumference and contains all points (x, y) with $x^2 + y^2 < 1$ in its interior. Compute the largest possible radius of the circle.

Proposed by: Carl Schildkraut

Answer: 61

Solution: Such a circle will be centered at (t,0) for some t; without loss of generality, let t > 0. Our conditions are that

$$t^2 + 11^2 = r^2$$

and

$$r \ge t + 1$$
.

So, $t^2 \leq (r-1)^2$, which means

$$(r-1)^2 + 11^2 \ge r^2 \implies 122 \ge 2r$$

so our answer is 61 (r = 61 is attainable with t = 60).

2. Let X_0 be the interior of a triangle with side lengths 3, 4, and 5. For all positive integers n, define X_n to be the set of points within 1 unit of some point in X_{n-1} . The area of the region outside X_{20} but inside X_{21} can be written as $a\pi + b$, for integers a and b. Compute 100a + b.

Proposed by: Hahn Lheem

Answer: 4112

Solution:

 X_n is the set of points within n units of some point in X_0 . The diagram above shows X_0 , X_1 , X_2 , and X_3 . As seen above it can be verified that X_n is the union of

- $\bullet X_0$
- three rectangles of height n with the sides of X_0 as bases, and
- \bullet three sectors of radius n centered at the vertices and joining the rectangles

Therefore the total area of X_n is

$$[X_0] + n \cdot \operatorname{perimeter}(X_0) + n^2 \pi.$$

Since X_{n-1} is contained entirely within X_n , the area within X_n but not within X_{n-1} is

perimeter(
$$X_0$$
) + $(2n-1)\pi$.

Since X_0 is a (3,4,5) triangle, and n=21, this is $12+41\pi$.

3. Triangle ABC has a right angle at C, and D is the foot of the altitude from C to AB. Points L, M, and N are the midpoints of segments AD, DC, and CA, respectively. If CL = 7 and BM = 12, compute BN^2 .

Proposed by: Hahn Lheem

Answer: 193

Solution: Note that CL, BM, and BN are corresponding segments in the similar triangles $\triangle ACD \sim \triangle CBD \sim \triangle ABC$. So, we have

$$CL:BM:BN=AD:CD:AC.$$

Since $AD^2 + CD^2 = AC^2$, we also have $CL^2 + BM^2 = BN^2$, giving an answer of 49 + 144 = 193.

4. Let ABCD be a trapezoid with $AB \parallel CD$, AB = 5, BC = 9, CD = 10, and DA = 7. Lines BC and DA intersect at point E. Let M be the midpoint of CD, and let N be the intersection of the circumcircles of $\triangle BMC$ and $\triangle DMA$ (other than M). If $EN^2 = \frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.

Proposed by: Milan Haiman

Answer: 90011

Solution: From $\triangle EAB \sim \triangle EDC$ with length ratio 1:2, we have EA=7 and EB=9. This means that A,B,M are the midpoints of the sides of $\triangle ECD$. Let N' be the circumcenter of $\triangle ECD$. Since N' is on the perpendicular bisectors of EC and ECD, we have $\angle N'MC = \angle N'BC = 90^{\circ}$. Thus N' is on the circumcircle of $\triangle BMC$. Similarly, N' is on the circumcircle of $\triangle DMA$. As $N' \neq M$, we must have N' = N. So it suffices to compute R^2 , where R is the circumradius of $\triangle ECD$.

We can compute $K = [\triangle ECD]$ to be $21\sqrt{11}$ from Heron's formula, giving

$$R = \frac{10 \cdot 14 \cdot 18}{4K} = \frac{30}{\sqrt{11}}.$$

So $R^2 = \frac{900}{11}$, and the final answer is 90011.

5. Let AEF be a triangle with EF = 20 and AE = AF = 21. Let B and D be points chosen on segments AE and AF, respectively, such that BD is parallel to EF. Point C is chosen in the interior of triangle AEF such that ABCD is cyclic. If BC = 3 and CD = 4, then the ratio of areas $\frac{[ABCD]}{[AEF]}$ can be written as $\frac{a}{b}$ for relatively prime positive integers a, b. Compute 100a + b.

Proposed by: Akash Das

Answer: 5300

Solution 1: Rotate $\triangle ABC$ around A to $\triangle AB'C'$, such that B' is on segment AF. Note that as $BD \parallel EF$, AB = AD. From this, AB' = AB = AD, and B' = D. Note that

$$\angle ADC' = \angle ABC = 180 - \angle ADC$$
,

because ABCD is cyclic. Therefore, C, D, and C' are collinear. Also, AC' = AC, and

$$\angle CAC' = \angle DAC + \angle C'AD = \angle DAC + \angle CAB = \angle EAF.$$

Thus, since AE = AF, $\triangle ACC' \sim \triangle AEF$. Now, we have

$$[ACC'] = [ACD] + [ADC'] = [ACD] + [ABC] = [ABCD].$$

But, $[ACC'] = \frac{CC'^2}{EF^2} \cdot [AEF]$, and we know that CC' = CD + DC' = 4 + 3 = 7. Thus,

$$\frac{[ABCD]}{[AEF]} = \frac{[ACC']}{[AEF]} = \frac{7^2}{20^2} = \frac{49}{400}.$$

The answer is $100 \cdot 49 + 400 = 5300$.

Solution 2:

Since BD is parallel to EF and AE = AF, we have AB = AD. Since ABCD is cyclic, $\angle ABC + \angle ADC = 180^{\circ}$. Thus we can glue $\triangle ABC$ and $\triangle ADC$ as shown in the diagram above to create a triangle that is similar to $\triangle AEF$ and has the same area as ABCD. The base of this triangle has length BC + CD = 3 + 4 = 7, so the desired ratio is

$$\frac{7^2}{20^2} = \frac{49}{400}.$$

6. In triangle ABC, let M be the midpoint of BC, H be the orthocenter, and O be the circumcenter. Let N be the reflection of M over H. Suppose that OA = ON = 11 and OH = 7. Compute BC^2 .

Proposed by: Milan Haiman

Answer: 288

Solution: Let ω be the circumcircle of $\triangle ABC$. Note that because ON = OA, N is on ω . Let P be the reflection of H over M. Then, P is also on ω . If Q is the midpoint of NP, note that because

$$NH = HM = MP$$
,

Q is also the midpoint of HM. Since $OQ \perp NP$, we know that $OQ \perp HM$. As Q is also the midpoint of HM,

$$OM = OH = 7.$$

With this,

$$BM = \sqrt{OB^2 - BM^2} = 6\sqrt{2},$$

and $BC = 2BM = 12\sqrt{2}$. Therefore, $BC^2 = 288$.

7. Let O and A be two points in the plane with OA = 30, and let Γ be a circle with center O and radius r. Suppose that there exist two points B and C on Γ with $\angle ABC = 90^{\circ}$ and AB = BC. Compute the minimum possible value of |r|.

Proposed by: Hahn Lheem, Milan Haiman

Answer: 12

Solution: Let f_1 denote a 45° counterclockwise rotation about point A followed by a dilation centered A with scale factor $1/\sqrt{2}$. Similarly, let f_2 denote a 45° clockwise rotation about point A followed by a dilation centered A with scale factor $1/\sqrt{2}$. For any point B in the plane, there exists a point C on Γ such that $\angle ABC = 90^\circ$ and AB = BC if and only if B lies on $f_1(\Gamma)$ or $f_2(\Gamma)$. Thus, such points B and C on Γ exist if and only if Γ intersects $f_1(\Gamma)$ or $f_2(\Gamma)$. So, the minimum possible value of r occurs when Γ is tangent to $f_1(\Gamma)$ and $f_2(\Gamma)$. This happens when $r/\sqrt{2} + r = 30/\sqrt{2}$, i.e., when $r = \frac{30}{\sqrt{2}+1} = 30\sqrt{2} - 30$. Therefore, the minimum possible value of $\lfloor r \rfloor$ is $\lfloor 30\sqrt{2} - 30 \rfloor = 12$.

8. Two circles with radii 71 and 100 are externally tangent. Compute the largest possible area of a right triangle whose vertices are each on at least one of the circles.

Proposed by: David Vulakh

Answer: 24200

Solution:

In general, let the radii of the circles be r < R, and let O be the center of the larger circle. If both endpoints of the hypotenuse are on the same circle, the largest area occurs when the hypotenuse is a diameter of the larger circle, with $[ABC] = R^2$.

If the endpoints of the hypotenuse are on different circles (as in the diagram above), then the distance from O to AB is half the distance from C to AB. Thus

$$[ABC] = 2[AOB] = AO \cdot OB \sin \angle AOB.$$

 $AO \cdot OB$ and $\sin \angle AOB$ are simultaneously maximized when $AO \cdot OB = (2r + R) \cdot R$ and $m \angle AOB = 90^{\circ}$, so the answer is $R^2 + 2Rr = 24200$.

9. Let ABCD be a trapezoid with $AB \parallel CD$ and AD = BD. Let M be the midpoint of AB, and let $P \neq C$ be the second intersection of the circumcircle of $\triangle BCD$ and the diagonal AC. Suppose that BC = 27, CD = 25, and AP = 10. If $MP = \frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.

Proposed by: Krit Boonsiriseth

Answer: 2705

Solution 1: As $\angle PBD = \angle PCD = \angle PAB$, DB is tangent to (ABP). As DA = DB, DA is also tangent to (ABP). Let CB intersect (ABP) again at $X \neq B$; it follows that XD is the X-symmedian of $\triangle AXB$. As $\angle AXC = \angle DAB = \angle ADC$, X also lies on (ACD). Therefore $\angle PXB = \angle PAB = \angle PCD = \angle AXD$, so XP is the median of $\triangle AXB$, i.e. XP passes through M.

Now we have $\triangle MPA \sim \triangle MBX$ and $\triangle ABX \sim \triangle BCD$. Therefore

$$\frac{MP}{AP} = \frac{MB}{XB} = \frac{AB}{2XB} = \frac{BC}{2DC} \implies MP = \frac{BC \cdot AP}{2DC} = \frac{27 \cdot 10}{2 \cdot 25} = \frac{27}{5}.$$

Solution 2: Let E be the point such that $\Box BDCE$ is a parallelogram. Then $\Box ADCE$ is an isosceles trapezoid, therefore $\angle PAB = \angle CAB = \angle BED = \angle CDE$; this angle is also equal to $\angle PBD = \angle PCD$. Now, $\angle ABP = \angle ABD - \angle PBD = \angle BEC - \angle BED = \angle DEC$, therefore $\triangle PAB \sim \triangle CDE$. Let E be the midpoint of E, which lies on E because E0 because E1 be a parallelogram. It follows that E1 be the midpoint of E2. Therefore

$$\frac{MP}{AP} = \frac{FC}{DC} = \frac{BC}{2DC},$$

and again this gives $MP = \frac{27}{5}$.

10. Acute triangle ABC has circumcircle Γ . Let M be the midpoint of BC. Points P and Q lie on Γ so that $\angle APM = 90^{\circ}$ and $Q \neq A$ lies on line AM. Segments PQ and BC intersect at S. Suppose that BS = 1, CS = 3, $PQ = 8\sqrt{\frac{7}{37}}$, and the radius of Γ is r. If the sum of all possible values of r^2 can be expressed as $\frac{a}{b}$ for relatively prime positive integers a and b, compute 100a + b.

Proposed by: Jeffrey Lu

Answer: 3703

Solution: Let A' be the A-antipode in Γ , let O be the center of Γ , and let $T := AA' \cap BC$. Note that A' lies on line PM. The key observation is that T is the reflection of S about M; this follows by the Butterfly Theorem on chords $\overline{PA'}$ and \overline{AQ} .

Let $\theta := \angle AMP$ and x = OT = OS. Observe that $\cos \theta = \frac{PM}{AM} = \frac{PQ}{AA'} = \frac{PQ}{2r}$. We find the area of $\triangle AMA'$ in two ways. First, we have

$$\begin{aligned} 2[AMA'] &= AM \cdot MA \cdot \sin \theta \\ &= AM \cdot \frac{MB \cdot MC}{PM} \cdot \sin \theta \\ &= 4 \tan \theta \\ &= 8r \sqrt{\frac{37}{448} - \frac{1}{4r^2}}. \end{aligned}$$

On the other hand,

$$\begin{aligned} 2[AMA'] &= MT \cdot AA' \cdot \sin \angle OTM \\ &= 2r\sqrt{1 - \frac{1}{x^2}}. \end{aligned}$$

Setting the two expressions equal and squaring yields $\frac{37}{28} - \frac{4}{r^2} = 1 - \frac{1}{x^2}$. By Power of a Point, $3 = BS \cdot SC = r^2 - x^2$, so $x^2 = r^2 - 3$. Substituting and solving the resulting quadratic in r^2 gives $r^2 = \frac{16}{3}$ and $r^2 = 7$. Thus $\frac{a}{b} = \frac{37}{3}$, so 100a + b = 3703.