Total No. of Questions: 6 Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 EE5CO05 / EE5CP05 Advance Control Systems

Programme: M.Tech. Branch/Specialisation: EE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

		questions are compulsory. Integrate Qs) should be written in full instead	rnal choices, if any, are indicated. ead of only a, b, c or d.	Answers of		
Q.1	i.	Which compensator improves	1			
			b) Lag Compensator			
		(c) Both (a) and (b)	d) None of these			
	ii.	Which compensator increases t	the system bandwidth?	1		
		(a) Lead Compensator (b) Lag Compensator			
		(c) Proportional Controller (d) None of these			
	iii.	Controller design is possible for	or systems which are-	1		
(a) Controllable						
		(b) Observable				
	servable					
		(d) None of these				
	iv.	Number of state variables is eq	ual to-	1		
		(a) System order				
		(b) Number of energy storing e	elements in the system			
		(c) Number of integrators in the system				
		(d) All of these				
	v.	Designing of state feedback co	ntroller requires-	1		
		(a) All state variables to be mea	asurable			
		(b) System to be controllable				
(c) Both (a) and (b)						
		(d) None of these				
	vi.	Full order observer is designed	when-	1		
		(a) Only output is measurable				
		(b) Half of the state variables a	re measurable			
		(c) All the state variables are m	neasurable			
		(d) The system is controllable				
				P.T.O.		

vii.	Finite capability of actuator to transmit the control input is known as-	1				
	(a) Saturation (b) Hysteresis					
	(c) Dead zone (d) Backlesh					
viii.	If the Lyapunov function is globally positive definite and radially	1				
	unbounded, and the time derivative of the Lyapunov function is					
	globally negative definite then the equilibrium is-					
	(a) Globally asymptotically stable					
	(b) Locally asymptotically stable					
	(c) Regionally asymptotically stable					
	(d) Unstable					
ix.	An algorithm that provides estimates of some unknown variables given	1				
	the measurements observed over time is known as-					
	(a) Controller (b) Lyapunov function					
	(c) Kalman Filter (d) None of these					
х.	Algebraic Riccati equation is encountered in the designing of-	1				
	(a) Infinite-horizon, continuous-time LQR					
	(b) Finite-horizon, continuous-time LQR					
	(c) Both (a) and (b)					
	(d) None of these					
i.	Draw Bode plot of Lag compensator.	2				
ii.	What are the characteristics of lead compensator?					
iii.	For the system with transfer function	5				
	C(s) = 4					
	$G(s) = \frac{4}{s(s+2)}$					
	Design a lead network to meet the following performance requirements					
	(a) Velocity error coefficient = 20					
	(b) Phase margin > 50					
iv.	Explain the designing of RC based Lag Compensator.	5				
i.	Determine the Eigen values of the following system matrix and	2				
	comment on stability-					
	$\begin{bmatrix} 0 & 1 \end{bmatrix}$					
$A = \begin{vmatrix} 0 & 1 \\ -2 & -3 \end{vmatrix}$						

Q.2

OR

Q.3

ii. Define Controllability. Check the controllability of the system with- $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

OR iii. Define Observability. Check the observability of the system with- $A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Q.4 i. What is the difference between state regulator problem and servo 3 problem

i. For the linear system with following dynamics:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}; B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

7

7

7

5

Design a state feedback controller to relocate the closed loop poles at -5 and -6.

OR iii. Explain the designing of full order observer.

Q5. i Explain saturation nonlinearity and its effects on system performance. 3

ii Explain Lyapunov stability method and analyze the stability of 7 following system using Lyapunov method:

$$A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$$

iii Explain Popov criterion.

Q6. Attempt any two:

i State and explain the principle of optimality.

ii Explain the working of Kalman filter.

iii Explain the designing of infinite horizon, continuous time linear quadratic regulator.

Marking Scheme EE5CP05 Advance Control Systems

Q.1

- i) B
- ii) A
- iii) A
- iv) D
- v) C
- vi) A
- vii) A
- viii) A
- ix) C
- x) A
- Q.2
- i) Diagram

2 Marks

$$C(s) = \frac{1}{a} \left(\frac{1 + aTs}{1 + Ts} \right) \qquad [a < 1]$$

ii) Characteristics.

1*3=3 Marks

iii) 1 Marks for K calculation 2 Marks for existing phase margin calculation and 2 marks for phase lead network transfer function.

iv) Diagram

2 Marks

Designing procedure.

3 Marks

i)	Eigen Value is -1 and -2	1 Marks	
	System is stable	1 Marks	
ii)	Definition	4 Marks	
	Rank is Full system is controllable	4 Marks	*
iii)	Definition	4 Marks	
	Rank is not Full system is Unobservable	4 Marks	
Q.4	cind Waveloom		
i)	Difference Between State problem and servo pro	blem	3 Marks
ii)	Calculations		5 Marks
	Controller Gain K1=14, K2=57		2 Marks
iii)	Designing procedure		7 Marks
Q.5	क्रांबद (तेन पुदरावित नाम्यु कर्मान्य एक प्राप्तात		
i)	Explanation	2 Mar	ks
	Effects on system performance	1 Mar	ks
ii)	Explanation of Lyapunov Stability	4 Mar	ks
	Analysis system stability (System is Stable)	3 Mar	ks
iii)	Explanation Popov Criterion	7 Marks	
Q.6			
i)	Statement of optimality	3 Mar	ks
	Explanation	2 Mar	ks
ii)	Explanation of Working	5 Mar	ks
iii)	Explanation of designing	5 Mar	ks