2023年12月17日 星期日 上午12:07

Goal:
$$f(\lambda \times + (1-\lambda)y) \stackrel{(k)}{=} \lambda f(x) + (1-x)f(y)$$

We set $\lambda = \frac{k}{2^n}$, and $2^n \ge k \ge 0$. (k is integer)

and do mathmatic induction

Case $N=0 \Rightarrow \lambda = 0$ or I

Case $N=1 \Rightarrow \lambda = 0$ or I or $\frac{1}{2}$, o, I is trivial)

 $\lambda = \frac{1}{2}$, Suppose the result is proved for $N \in V$

and Consider $\lambda = \frac{k}{2^{n+1}}$, If k is even, say $k = 2I$

then $\frac{k}{2^{n+1}} = \frac{1}{2^n}$, suppose k is odd. Then $I \le k \le 2^{n+1} = 1$

and so the numbers $J = \frac{k-1}{2}$ and $M = \frac{k+1}{2}$ are integers

with $0 \le I$ of $M \le 2^n$, we now can write $\lambda = \frac{5+t}{2}$

where $S = \frac{k-1}{2^{n+1}} = \frac{T}{2^n}$ and $t = \frac{k+1}{2^{n+1}} = \frac{M}{2^n}$
 $\Rightarrow \lambda \times + (I-\lambda)y = \frac{Csx + (I-s)y7 + Ftx + (I-t)y7}{2}$

then we have

 $f(\lambda x + (I-\lambda)y) \le \frac{f(sx + (I-s)y) + f(tx + (I+t)y)}{2}$
 $= \frac{s+t}{2}f(x) + (I-\frac{s+t}{2})f(y)$
 $= \lambda f(x) + (I-\lambda)f(y)$

the induction complete Now for each fixed X and y \Rightarrow (*) is continue function of λ . Hence the set on which this inequalty hold (the inverse image of the closed set $[c_0,\infty)$ under the mapping $\lambda\mapsto \lambda f(x)+(1-\lambda)f(y)-f(\lambda x+(1-\lambda)y)$) is a closed set. Since it contains all points $\frac{k}{2^n}$, $0 \le k \le n$, $n = 1, 2, 3, \cdots$, it must contains the closure of this set of points, it must contain all of $[c_0,1]$ \Rightarrow f is convex