## Modelling and

### Numerical Methods





Saskia Goes



Stephen Neethling



Matthew Piggott

#### Aims

• Part 1: introduce mathematical essentials and physical equations for modelling a range of dynamic processes

• Part 2: provides complementary background on numerical methods that can be used to solve the equations of these physical systems

## Example: compressible flow of deformable solids

$$\frac{D\rho}{Dt} = -\rho \nabla .\mathbf{u}$$

$$\rho \frac{D\mathbf{u}}{Dt} = \mathbf{f} - \nabla p + \nabla \cdot \bar{s}$$

$$\rho \frac{DE}{Dt} = -p \nabla \cdot \mathbf{u} + \text{tr}(\bar{s} \cdot \nabla \mathbf{u})$$

# Example: compressible flow of deformable solids







Canup, R.M., 2004. Simulations of a late lunar-forming impact. Icarus 168, 433–456. https://doi.org/10.1016/j.icarus.2003.09.028

#### Structure of course

- ➤ Week 1 Mathematical background: vectors, tensors, conservation principles in continuum mechanics and some analytical solutions
- ➤ Week 2-3 Numerical methods and solutions: Examples and numerical methods to solve fluid mechanical problems including common types of ODEs, PDEs.
- ➤ **Assessment** In week 3: (1) in-class analytical timed assessment, (2) numerical assessment

Some of you may already be familiar with the basic background that will be covered in part of the lectures, but may have been taught to you in different way, review will be useful, and everyone will have same background for other course(s).

#### Outline of course

- ➤ Part 1: Analytical background
  - **1.** Intro vector/tensor calculus (SG)
  - **2.** Stress tensor (SG)
  - **3.** Kinematics and strain (*SG*)
  - **4.** Conservation equations (*SG*)
  - **5.** Dimensional Analysis (*SN*)
- ➤ Part 2: Numerical techniques (advanced)
  - **6.** Interpolation and quadrature (MP)
  - **7.** Ordinary differential equations (*MP*)
  - **8.** Partial differential equations and finite difference (*MP*)

- ➤ Part 3: Numerical solutions
  - **9.** Potential flow (*SN*)
  - **10.** Navier-Stokes (SN)
  - **11.** Nonlinear rheology and turbulence (*SN*)
  - **12.** Finite Element Method (*MP*)

#### Schedule & Assessment

#### Lectures

- Morning (09:00—12:00)
- In person and streamed/recorded
- Using ppt and/or Jupyter notebooks

#### Workshops

- Afternoon (14:00—17:00)
- In person with GTA assistance
- 2 Assessments Each worth 50%
  - Coursework 1 (analytical): *In-Class Test*, Wednesday 25 January 2023, 10:00—11:30 am.
  - Coursework 2 (numerical): *Jupyter Notebook*, released Wednesday 25 January 2023, due 5 pm Friday 27 January 2023.

### Course Schedule

| Monday              | Tuesday             | Wednesday                                             | Thursday            | Friday              |
|---------------------|---------------------|-------------------------------------------------------|---------------------|---------------------|
| 09-Jan              | 10-Jan              | 11-Jan                                                | 12-Jan              | 13-Jan              |
| lecture<br>workshop | lecture<br>workshop | lecture                                               | lecture<br>workshop | lecture<br>workshop |
| 16-Jan              | 17-Jan              | 18-Jan                                                | 19-Jan              | 20-Jan              |
| lecture<br>workshop | lecture<br>workshop | lecture                                               | lecture<br>workshop | lecture<br>workshop |
| 23-Jan              | 24-Jan              | 25-Jan                                                | 26-Jan              | 27-Jan              |
| lecture<br>workshop | lecture<br>workshop | <ul><li>cw1 (in class)</li><li>cw2 released</li></ul> | work on cw2         | cw2 due 5<br>pm     |

**lectures** will be live and recorded. **workshops** will be GTA assisted. there are two pieces of **coursework**, **cw1**: analytical in-class, **cw2**: numerical/notebook