Fundação Getúlio Vargas

Matemática Aplicada Monitores: Cleyton e Jeann

Exercício 1

Seja (x_n) sequência limitada com um único valor de aderência. Mostre que (x_n) é convergente.

Solução

Seja p o (único) valor de aderência de (x_n) . Então, suponha que (x_n) não converge para p. Ou seja, existe $\varepsilon > 0$ tal que há infinitos pontos $x_n \notin (p - \varepsilon, p + \varepsilon)$. Como (x_n) é limitada, temos que o conjunto dos pontos x_n tais que $x_n \notin (p - \varepsilon, p + \varepsilon)$ é limitado e, consequentemente, por Bolzano-Weierstrass, admite uma subsequência convergente para um ponto q. Mas, desde que este pontos são tais que $|x_n - p| \ge \varepsilon$, segue que $|p - q| \ge \varepsilon$ e, portanto, $p \ne q$, o que nos daria ao menos dois valores de aderência para (x_n) (absurdo!). Portanto, concluímos o resultado.

Exercício 2

Considere $f:(a,b) \to \mathbb{R}$ contínua, derivável em $(a,c) \cup (c,b)$ (a < c < b). Se $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = A$, então f é derivável em c e f'(c) = A.

Solução

Sejam (a_n) e (b_n) sequências em (a,b) tais que $a_n,b_n\to c$ e $a_n\le c\le b_n, \forall n\in\mathbb{N}$. Então, pelo Teorema do Valor Médio, para cada $n\in\mathbb{N}$, existem $c_n\in(a_n,c)$ e $d_n\in(c,b_n)$ tais que

$$f'(c_n)=rac{f(c)-f(a_n)}{c-a_n} \quad ext{e} \quad f'(d_n)=rac{f(b_n)-f(c)}{b_n-c}$$

Passando o limite quando $n\to\infty$ em ambas as igualdades, obtemos a expressão dos limites laterais à esquerda e à direita de um lado e a definição das derivadas laterais em c do outro. Ou seja,

$$A=\lim_{n o\infty}f'(c_n)=\lim_{n o\infty}rac{f(c)-f(a_n)}{c-a_n} \ A=\lim_{n o\infty}f'(d_n)=\lim_{n o\infty}rac{f(b_n)-f(c)}{b_n-c}$$

Segue, portanto, do fato de que isto vale para todas as sequências laterais (a_n) e (b_n) em (a,b) que convergem para c, que f é derivável em c, com f'(c) = A

Exercício 3

Seja $f:\mathbb{R} \to \mathbb{R}$ derivável 3 vezes com derivadas contínuas. Mostre que

$$f(x)-f(0)-xf'(x)=rac{1}{2}\int_{0}^{x}t^{2}f'''(t)dt-rac{x^{2}}{2}f''(x)$$

Solução

Basta aplicar a integração por partes duas vezes:

$$egin{split} rac{1}{2}\int_0^x t^2 f'''(t)dt &= rac{1}{2}\left(\left[t^2 f''(t)
ight]_0^x - \int_0^x 2t f''(t)dt
ight) = rac{x^2}{2}f''(x) - rac{1}{2}\int_0^x 2t f''(t)dt \ &= rac{x^2}{2}f''(x) - \int_0^x t f''(t)dt \end{split}$$

$$\int_0^x tf''(t)dt = \left[tf'(t)
ight]_0^x - \int_0^x f'(t)dt = xf'(x) - \int_0^x f'(t)dt$$

Como $\int\limits_0^x f'(t) = f(x) - f(0)$, segue que

$$rac{1}{2}\int_0^x t^2 f'''(t) dt = rac{x^2}{2} f''(x) - x f'(x) + f(x) - f(0)$$

Reorganizando os termos na igualdade, chegamos na igualdade proposta.

Comentário: Esta é a fórmula de Taylor com Resto Integral para a terceira derivada da f.

Exercício 4

Considere funções contínuas $h_n:[0,1] o\mathbb{R}$ e $h:[0,1] o\mathbb{R}$ de modo que $h_n o h$ uniformemente. Mostre que $\lim_{n o\infty}\int\limits_0^1h_n(t)dt=\int\limits_0^1f(t)dt.$

 $(h_n o h$ uniformemente quando, dado $\varepsilon > 0$ qualquer, existe algum $N \in \mathbb{N}$ de modo que se $n \geq N$, então $|h_n(x) - h(x)| < \varepsilon$ para todo $x \in [0,1]$).

Solução

Dado $\varepsilon>0$, existe $N\in N$ tal que $|h_n(x)-h(x)|<arepsilon.$ Portanto, temos

$$\left|\int_0^1 h_n(t)dt - \int_0^1 h(t)dt
ight| = \left|\int_0^1 h_n(t) - h(t)dt
ight| \leq \int_0^1 |h_n(t) - h(t)|dt < \int_0^1 arepsilon dt = arepsilon$$

Logo, $\int\limits_0^1 h_n(t)dt o \int\limits_0^1 h(t)dt$ quando $n o \infty.$