

Chloroform-methanol protein precipitation from microalgae and Pierce BCA assay

COMMENTS 0

DOI

dx.doi.org/10.17504/protocols.io.yxmvm2e25g3p/v1

Ying-Yu Hu¹, Christopher Lord¹, Zoe V Finkel¹

¹Dalhousie University

Marine Microbial Macroecology Lab Tech. support email: ruby.hu@dal.ca

Ying-Yu Hu

<u>Dalhousie University</u>

ABSTRACT

Chlorophyll, phospholipids, sucrose, glycerol and some detergent in crude protein extracted from microalgae can interfere the Pierce BCA protein assay. In order to remove these interference, bead miller extracted protein is precipitated by chloroform-methanol prior to BCA assay. The resulting precipitation is dissolved into Sarcosine-Tris solution. Low limit of detection is about 5 ug/mL.

DOI

dx.doi.org/10.17504/protocols.io.yxmvm2e25g3p/v1

PROTOCOL CITATION

WORKS FOR ME

Ying-Yu Hu, Christopher Lord, Zoe V Finkel 2022. Chloroform-methanol protein precipitation from microalgae and Pierce BCA assay. **protocols.io** https://dx.doi.org/10.17504/protocols.io.yxmvm2e25g3p/v1

FUNDERS ACKNOWLEDGEMENT

-

Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems
Grant ID: 549937

Ocean Processes and Ecology

Grant ID: 723789

KEYWORDS

Protein, Microalgae, Chloroform-methanol precipitation, Pierce BCA assay

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 28, 2022

1

LAST MODIFIED

Dec 12, 2022

PROTOCOL INTEGER ID

73284

SAFETY WARNINGS

Use fume-hood when handling methanol and chloroform.

All waste containing methanol and chloroform shall be collected in waste container for halogenated organic solvents.

2

Equipment	
SHAKING INCUBATOR	NAME
71L	TYPE
Corning® LSE™	BRAND
6753	SKU

- 6 Prepare ice-bath
- Well mix the extract and then transfer Δ 100 μ L of extract to 2 mL microtube (Abdos tubes give better precipitation results), in replicate.

30s

30s

30s

30m

10m

- Gently vortex for 00:00:30 by using a tube insert
- Gently vortex for 00:00:30 by using a tube insert
- 14 Incubate 8 On ice for 00:30:00
- 15 ② 20000 rcf, 4°C, 00:10:00
- In the fume hood, remove upper phase by leaving about $\ \underline{\ \ }\ 250\ \mu L$ liquid

protocols.io

Note

4

17	In the fume hood, add 🔼 300 µL methanol	
18	Gently mix the liquid until bottom layer disappear and the solution is homogenous.	
	Note	
19	3 20000 rcf, 4°C, 00:10:00	10m
20	In the fume hood, remove all solvent.	
	Note	
21	If pellet tends to be aspired with solvent, add another $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	10m
22	In the fume hood, remove most solvent by using 1000 uL pipet tip, and then remove the rest by using 100 uL pipet tip. Do not remove pellet with solvent.	
23	Dry pellet in vacuum desiccator for at least 00:30:00 at Room temperature	30m
	Note	
nroto	ocols.io 5	

BCA assay

Add \bot 5 μ L 20% sarcosine and \bot 95 μ L [M] 5 mM (pH 8.0) Tris buffer to dry protein pellet, incubate at \blacksquare 37 °C for 15 to 30 min.

30m

- Use tube insert, vortex all tubes for 15 to 30 min until pellet is completely re-dissolved.
- 26 BSA standard solutions

Thermo Scientific™ Pierce™ Bovine Serum Albumin Standard 2 mg/mL (50 mL) **Thermo**Scientific Catalog #Thermo Scientific™ 0023210

Standard	20% sarcosine (uL)	5 mM Tris (uL)	2 mg/mL BSA (uL)	Final Conc. (mg/mL)
SD1	5	95	0	0
SD2	25	470	5	0.02
SD3	25	463	12	0.048
SD4	25	450	25	0.1
SD5	25	425	50	0.2
SD6	25	375	100	0.4
SD7	25	275	200	0.8
SD8	25	225	250	1

- Vortex and then use reverse pipetting: transfer Δ 100 μL standard solutions into the corresponding tubes, except for SD1 (it has already been 100 uL).
- Use the following formula to determine the total volume of working reagent (WR) required. Consider leaving several mL of extra volume:

(# standards + # samples) X (\pm 800 μ L) = total volume WR required

Prepare WR by mixing 50 parts of BCA reagent A with 1 part of BCA Reagent B in a 50 mL falcon tube

protocols.io

6

30 Use one tip and reverse pipetting: Add \perp 800 μ L WR into each tube, make sure that the tip doesn't have contact with the solution, so that samples are not cross-contaminated. Note 31 Vortex each tube, shake and incubate at \$\ 37 \cdot \text{for} \ \cdot 00:30:00 32 Remove samples from the incubator. 33 Load samples into microplate in duplicate: Note

Equipment	
96-Well Microplates	NAME
Polystyrene, Clear,	ТҮРЕ
Greiner Bio-One	BRAND
82050-760	SKU

34 Shake for 5 s at 600 rpm in a continuous and high force mode Read endpoint 562 nm with a measurement time 100 ms

Equipment	
Varioskan LUX Multimode Microplate Reader	NAME
Thermo Fisher	BRAND
VL0L00D0	SKU

Calculation

- 35 Subtract the average 562 nm absorbance measurement of the blank standard replicates from the 562 nm measurements of all other individual **standard**.
- 36 Subtract the average 562 nm absorbance measurement of the blank sample (filter) replicates from the 562 nm measurements of all other individual **sample**.
- Prepare a standard curve by plotting the average Blank-corrected 562 nm measurement for each BSA standard versus its concentration in mg/ml. The standard curve is quadratic.

For the calculation convenience, plot BSA concentration (Conc) versus Corrected absorbance (Abs) to obtain a standard curve as following:

Conc_mg/mL = $a \times Abs^2 + b \times Abs + c$

Use the corrected measured absorbance of samples (Abs) to calculate the total protein concentration (Conc_mg/mL) from each sample.

Protein_mg/filter = Conc_mg/mL X PEB_mL

Where PEB is the volume of protein extraction buffer used to extract protein from microalgae sample.