Микроконтроллеры семейства STM32F3xx компании STMicroelectronics: от управления электроприводами до обработки звука

Андрей Самоделов

МИКРОКОНТРОЛЛЕРЫ STM32F3XX

Блок прямого доступа к памяти (DMA)

Гибкий блок DMA общего назначения позволяет управлять потоками данных память-память, периферия-память и память-периферия. Контроллер DMA поддерживает управление буфером, предотвращающее генерацию прерывания от модуля управления памятью (MMU) при достижении конца буфера. Блок-схема контроллера DMA STM32F30х показана на рис. 6. Микросхемы STM32F37х и STM32F38х имеют еще более сложную структуру контроллера DMA.

Каждый из 12 каналов DMA подключен к соответствующему аппаратному блоку запросов на DMA с независимым программным запуском для каждого из каналов. Конфигурация контроллера DMA осуществляется программным способом. Размер буфера-источника и буфера-приемника является независимым.

Контроллер DMA имеет два независимых канала. Это позволяет вести одновременный обмен данными по двум маршрутам.

Блок DMA можно использовать с основными периферийными модулями: SPI, I²C, USART, а также с таймерами общего назначения, ЦАП и АЦП.

Универсальный синхронно-асинхронный приемопередатчик (USART)

Микросхемы STM32F30х имеют три встроенных USART: USART1, USART2 и USART3. Каждый USART-интерфейс поддерживает скорость обмена данными до 9 Мбит/с.

Обеспечиваются аппаратное управление сигналами CTS и RTS, поддержка IrDA SIR ENDEC, режим мультипроцессорного обмена данными, режим однопроводного полудуплексного обмена данными и совместимость с протоколом LIN Master/Slave. Интерфейс модуля USART может обслуживаться контроллером DMA.

Универсальный асинхронный приемопередатчик (UART)

В микросхемах STM32F30х есть два встроенных модуля UART (UART4 и UART5) с поддержкой IrDA SIR ENDEC, режима многопроцессорного обмена данными и режима однопроводного полудуплексного обмена данными. Интерфейс модуля UART также может обслуживаться контроллером DMA.

В таблице 5 приведено описание функций всех интерфейсов U(S)ART.

Для повышения надежности обмена данными по последовательным интерфейсам обычно используют специальные функции от передаваемых данных — контрольные суммы (CRC). В зависимости от типа протокола применяются различные типы контрольных сумм. Например, для протокола Ethernet используется контрольная сумма CRC32, а для протокола MODBUS

Рис. 6. Блок-схема контроллера DMA STM32F30x

Таблица 5. Список функций U(S)ART-интерфейсов					
Режимы/функции U(S)ART	USART1	USART2	USART3	UART4	UART5
Аппаратный контроль потока данных	Х	Х	Х		
Непрерывный обмен данными через DMA	Х	Х	Х	Х	Х
Мультипроцессорный обмен данными	Х	Х	Х	Х	Х
Синхронный режим	Х	Х	Х		
Режим смарт-карты	Х	Х	Х		
Однопроводной полудуплексный обмен данными	Х	Х	Х	Х	Х
Блок IrDA SIR ENDEC	Х	Х	Х	Х	Х
Режим LIN	Х	Х	Х	Х	Х
Двойное тактирование и вывод из режима Stop	Х	Х	Х	Х	Х
Прерывание по тайм-ауту при приеме	Х	Х	Х	Х	Х
Поддержка приемопередатчика MODBUS	Х	Х	Х	Х	Х
Автоматическое определение скорости обмена данными	х	Х	х		
Управление выводом разрешения (Enable) передающего драйвера	х	х	х		

RTU — CRC16. Для ускоренного вычисления контрольных сумм в STM32F3xx есть специальный аппаратный модуль.

Блок аппаратного вычисления контрольной суммы (CRC)

Блок вычисления контрольных сумм (Cyclic Redundancy Check, CRC) служит для получения контрольной суммы блока данных на основе полинома с настраиваемыми коэффициентами и размером.

Наряду с другими, основанные на CRC методы используются для проверки целостности передаваемых или хранимых данных. В соответствии со стандартом EN/IEC 60335-1 они необходимы для проверки целостности информации, хранящейся во Flash-памяти. Блок вычисления CRC позволяет проверять сигнатуру программного обеспечения во время его исполнения путем сравнения ее с сигнатурой, вычисленной в процессе компоновки программы и записанной в заданную область памяти.

Модуль CAN (bxCAN)

Шина CAN, разработанная фирмой BOSH, широко используется для обмена данными в современных автомобилях. Особенностью протокола CAN является то, что на шине отсутствует адресация. Вместо этого используется парадигма функций, согласно которой одна и та же команда, переданная по шине, может исполняться несколькими блоками в зависимости от их настроек. Такой подход позволяет значительно сократить время передачи команды и уменьшить объем трафика. Для определения списка исполняемых команд каждый из блоков на шине содержит собственный фильтр.

Модуль CAN STM32F30x совместим со спецификациями CAN 2.0A и CAN 2.0B и обеспечивает обмен данны-

ми со скоростью до 1 Мбит/с. Он может передавать и принимать стандартные фреймы как с 11-битной идентификацией, так и расширенные фреймы с 29-битной идентификацией. Модуль имеет три почтовых ящика для передачи сообщений, два приемных буфера FIFO с тремя уровнями и 14 масштабируемых банка для фильтрации сообщений.

ОСОБЕННОСТИ МИКРОКОНТРОЛЛЕРОВ STM32F37X

Микроконтроллеры STM32F37х имеют ряд уникальных функциональных блоков, обеспечивающих работу с сигналами с расширенным динамическим диапазоном. Одним из таких блоков является 16-разрядный ΔΣ-АЦП.

16-разрядный аналого-цифровой преобразователь (SDADC)

В микроконтроллерах STM32F37х есть до трех 16-разрядных $\Delta\Sigma$ -преобразователей. Они имеют два отдельных напряжения питания, что позволяет пре-

образовывать аналоговые сигналы в диапазоне напряжений, который не зависит от диапазона напряжения питания STM32F37х. Число входных линий — 21, их можно сконфигурировать в любой комбинации с однополярным (до 21) или дифференциальным (до 11) включением. Пример смешанного использования каналов SDADC показан на рис. 7.

Скорость преобразования достигает 16.6 ksps для каждого SDADC при многоканальном преобразовании и до 50 ksps для SDADC, если используется один канал преобразования. Имеется два режима преобразования: одиночного и непрерывного преобразования, который совместим с последовательным автоматическим сканированием любого количества каналов. Данные преобразования автоматически заносятся в память буфера системного ОЗУ (RAM), что уменьшает накладные расходы на программное обеспечение.

Для управления началом преобразования SDADC и/или быстродействующих 12-разрядных АЦП можно использовать систему запуска от таймера. Такое управление от таймеров является очень гибким и позволяет организовать режим, напоминающий режим непрерывного преобразования, или устанавливать программируемую задержку между АЦП.

Для выбора источника опорного напряжения и тонкой подстройки диапазона входного напряжения SDADC можно использовать два внешних вывода (VREFSD+, VREFSD-) и внутренний ИОН с напряжением 1.2/1.8 В совместно с усилителем с программируемым коэффициентом усиления ($\times 0.5...\times 32$).

Интерфейс HDMI-CEC

Микросхемы имеют встроенный контроллер HDMI-CEC (High-Definition Multimedia Interface — Consumer Elec-

Рис. 7. Смешанное использование каналов 16-разрядного SDADC

tronics Control), который обеспечивает аппаратную поддержку протокола СЕС, определенного в разделе Supplement 1 стандарта HDMI. Стандарт HDMI определяет протокол, который обеспечивает высокоуровневые функции управления между различными аудиовизуальными устройствами пользовательского окружения. Протокол разработан таким образом, чтобы создавать минимальную нагрузку на ядро и оперативную память управляющего микроконтроллера. Блоксхема контроллера HDMI-СЕС микросхем STM32F37х показана на рис. 8.

Контроллер HDMI-CEC обеспечивает аппаратную поддержку этого протокола, что еще больше уменьшает нагрузку на ядро микроконтроллера.

Тактирование HDMI-CEC контроллера осуществляется независимо от тактирования СРИ, что позволяет блоку HDMI-CEC выводить MCU из режима Stop при приеме команды или данных.

Протокол СЕС разработан для низкоскоростного обмена данных при минимальном использовании процессора и памяти и обеспечивает высокоуровневые функции управления между всеми бытовыми аудиовизуальными устройствами.

Микроконтроллеры STM32F3xx имеют ядро Cortex-M4F, система команд которого расширена набором инструкций для цифровой обработки сигналов, что позволяет выполнять эффективную цифровую фильтрацию сигналов. Поэтому вполне естественным выглядит наличие в рассматриваемых микроконтроллерах цифро-аналоговых преобразователей.

Связка «быстродействующий 12-разрядный АЦП — команды ЦОС — 12-разрядный ЦАП» позволяет создавать на базе микросхем STM32F3xx эффективные системы цифровой фильтрации и другой обработки аналоговых сигналов. Поскольку внутренняя обработка происходит в 32-разрядном режиме, то операции цифровой обработки, в том числе ДПФ, выполняются без накопления погрешности (без потери точности).

МИКРОКОНТРОЛЛЕРЫ STM32F3XX

Цифро-аналоговый преобразователь (DAC1 и DAC2)

В микросхеме есть два 12-разрядных буферизованных ЦАП с тремя выходными каналами, которые можно использовать для преобразования трех цифровых сигналов в три аналоговых сигнала с потенциальным выходом. ЦАП построен на базе резисторной матрицы R-2R и инвертирующего усилителя. Напряжение на выходе каналов пропорционально цифровому коду, подаваемому на вход ЦАП.

ЦАП DAC1 имеет два выходных канала, а ЦАП DAC2 — один. Возможны режимы 8-, 10- и 12-разрядного преобразования. В режиме 12-разрядного преобразования допустимо выравнивание данных как влево, так и вправо. ЦАП поддерживает функцию синхронного обновления входных данных и режимы генерации шума и треугольного сигнала.

Каналы сдвоенного ЦАП DAC1 поддерживают режим не только независимого, но и одновременного преобразования. Преобразование можно запускать внешним сигналом. Для разгрузки ядра микроконтроллера каждый из каналов ЦАП поддерживает режим DMA.

Многие современные устройства управляются с помощью сенсорных панелей. Это могут быть как двумерные сенсорные экраны, которыми снабжаются ЖК-индикаторы, так и отдельные кнопки, полосы прокрутки и секторные регуляторы. Микроконтроллеры компании STMicroelectronics давно уже снабжаются модулями обслуживания сенсорных датчиков, не является исключением и семейство STM32F3xx.

устройство

Контроллер емкостных

Вывод с функцией

СЕС-микроконтроллера

сенсорных датчиков (TSC) Микроконтроллеры STM32F3xx позволяют с минимальными затратами Контроллер STM32 HDM**I**_CEC Прерывание от СЕС Cortex-M0 3.3 B 3.3 B APB 23 KOM HSI/255 clk RCC удаленное 32 кГц CEC Kernel Сигнальная линия СЕС

Рис. 8. Блок-схема контроллера HDMI-CEC

«Пробуждающее

Управление

добавить в любое приложение функциональность сенсорных кнопок. Все имеющиеся 24 канала интерфейса емкостных датчиков распределены на восемь аналоговых групп I/O.

Технология емкостного датчика позволяет обнаружить наличие пальца вблизи датчика, защищенного диэлектрической пластиной (стеклянной, пластиковой и т.п.). Изменение емкости датчика, вызванное приближением к электроду пальца (или любого проводящего объекта), измеряется с использованием принципа сбора поверхностного заряда. Этот принцип построен на заряде емкости датчика и передаче части собранного заряда в эталонный конденсатор до тех пор, пока напряжение на конденсаторе не достигнет порогового значения. Чтобы ограничить нагрузку на СРИ, управление датчиками осуществляют с помощью аппаратного контроллера сенсорных кнопок, для нормальной работы которого необходимо несколько внешних элементов.

Таблица 6. Линии GPIO микросхем
STM32F3xx, доступные
для использования в качестве
выводов для управления

Группа	Имя сигнала емкостного датчика	Номер вывода	
	TSC_G1_IO1	PA0	
1	TSC_G1_IO2	PA1	
	TSC_G1_IO3	PA2	
	TSC_G1_IO4	PA3	
	TSC_G2_IO1	PA4	
2	TSC_G2_IO2	PA5	
2	TSC_G2_IO3	PA6	
	TSC_G2_IO4	PA7	
	TSC_G3_IO1	PC5	
3	TSC_G3_IO2	PB0	
3	TSC_G3_IO3	PB1	
	TSC_G3_IO4	PB2	
	TSC_G4_IO1	PA9	
4	TSC_G4_IO2	PA10	
4	TSC_G4_IO3	PA13	
	TSC_G4_IO4	PA14	
	TSC_G5_IO1	PB3	
5	TSC_G5_IO2	PB4	
3	TSC_G5_IO3	PB6	
	TSC_G5_IO4	PB7	
	TSC_G6_IO1	PB11	
6	TSC_G6_IO2	PB12	
0	TSC_G6_IO3	PB13	
	TSC_G6_IO4	PB14	
	TSC_G7_IO1	PE2	
7	TSC_G7_IO2	PE3	
/	TSC_G7_IO3	PE4	
	TSC_G7_IO4	PE5	
	TSC_G8_IO1	PD12	
8	TSC_G8_IO2	PD13	
U	TSC_G8_IO3	PD14	
	TSC_G8_IO4	PD15	

Таблица 7. Количество каналов емкостных датчиков, доступное в микросхемах STM32F302xx/			
	Количество каналов емкостных датчиков		
Группа аналоговых линий I/O	STM32F30xVx	STM32F30xRx	STM32F30xCx
G1	3	3	3
G2	3	3	3
G3	3	3	2
G4	3	3	3
G5	3	3	3
G6	3	3	3
G7	3	0	0
G8	3	0	0
Общее количество линий управления	24	18	17

В таблицах 6 и 7 приведено описание интерфейса емкостных сенсорных датчиков.

Сейчас для локального обмена данными часто используется USB-интерфейс. В микроконтроллерах STM32F37х есть встроенный модуль USB, поддерживающий работу в режиме USB-device.

Полноскоростной USB-device интерфейс (USB)

В STM32F37х встроен USB-device периферийный модуль, поддерживающий режим работы USB full-speed со скоростью обмена данными 12 Мбит/с. Он имеет программно-конфигурируемую настройку конечной точки (endpoint) и поддержку режимов suspend/resume. Требуемая для работы интерфейса так-

Рис. 9. Внутреннее соединение таймеров ТІМ16 и ТІМ17 в ІRТІМ-интерфейсе

товая частота 48 МГц генерируется основным PLL. При необходимости использования USB-интерфейса тактирование микроконтроллера должно осуществляться от высокочастотного кварцевого генератора (HSE).

В ряде приложений, таких как мультимедийная бытовая техника, удобно использовать пульты дистанционного управления, работающие в инфракрасном диапазоне. Для поддержки протокола обмена по ИК-каналу в STM32F30х имеется специальный интерфейс.

Инфракрасный интерфейс (IRTIM)

Микросхемы STM32F30х обеспечивают аппаратную поддержку стандарта передачи данных по ИК-каналу. Решение основано на организации внутреннего соединения таймеров ТІМ16 и ТІМ17, как показано на рис. 9.

Чтобы сгенерировать правильный сигнал дистанционного ИК-управления, канал 1 таймера ТІМ16 и канал 1 таймера ТІМ17 необходимо специальным образом сконфигурировать для формирования правильного сигнала. Таймер ТІМ17 используется для формирования сигнала несущей частоты, а таймер ТІМ16 обеспечивает передачу информации. Сформированный сигнал мож-

но снять с вывода PB9 или PA13. Все стандартные режимы импульсной ИК-модуляции можно получить, если должным образом программировать выходы каналов сравнения этих двух таймеров.

Для надежной работы всего микроконтроллера необходимы надежные стабилизаторы напряжения и система мониторинга напряжения питания.

БЛОК УПРАВЛЕНИЯ ЭЛЕКТРОПИТАНИЕМ (PWR)

PWR: схематика источника питания

Для нормальной работы микроконтроллеров STM32F3хх необходимы три напряжения питания (табл. 8).

PWR: супервизор напряжения питания

Микроконтроллеры имеют встроенные схемы сброса при подаче (Power-On Reset, POR) и снятии напряжения питания (Power-Down Reset, PDR). Эти схемы всегда активны и обеспечивают правильное поведение микроконтроллера при достижении напряжением питания порогового значения 2 В.

MUKPOKOHTPOAAEPЫ CHIP NEWS YKPANHA

Микросхема всегда остается в состоянии сброса, если напряжение питания ниже заданного порогового значения (V_{POR/PDR}), поэтому нет надобности в использовании внешних схем сброса.

Монитор блока POR следит только за напряжением питания V_{DD} . В момент запуска микроконтроллера необходимо, чтобы напряжение питания аналоговых цепей V_{DDA} нарастало первым и было больше напряжения питания цифровых цепей V_{DD} или равно ему.

Монитор блока PDR отслеживает изменения как напряжения питания $V_{\rm DD}$, так и $V_{\rm DDA}$. Если структура приложения гарантирует, что напряжение $V_{\rm DDA}$ всегда больше или равно $V_{\rm DD}$, то для уменьшения энергопотребления супервизор напряжения питания $V_{\rm DDA}$ можно отключить (программирование соответствующего Option-бита).

Микроконтроллеры имеют встроенный программируемый детектор напряжения (PVD), который отслеживает значение напряжения питания V_{DD} и сравнивает его с пороговым значением V_{PVD} . Если значение V_{DD} падает ниже порогового значения V_{PVD} и/или значение V_{DD} превышает пороговое значение V_{PVD} , генерируется прерывание. Обработчик прерывания может генерировать предупреждающее сообщение и/или переводить МСU в безопасное состояние. Включение/выключение PVD осуществляется программным путем.

PWR: стабилизатор напряжения

Стабилизатор имеет три режима работы: основной (main, MR), низкого энергопотребления (low power, LPR) и выключенное состояние (power-down).

- Режим MR используется при работе микроконтроллера в режиме Run.
- Режим LPR используется при работе микроконтроллера в режиме Stop.
- Режим power-down используется при работе микроконтроллера в режиме Standby: выход стабилизатора переходит в состояние с высоким импедансом, и ядро MCU оказывается полностью обесточенным, что обеспечивает нулевое энергопотребление.

После сброса стабилизатор напряжения всегда включен и отключается только в режиме Standby.

PWR: режимы пониженного энергопотребления

Микроконтроллеры STM32F3xx поддерживают три режима пониженного

Таблица 8. Напряжения питания микроконтроллеров STM32F3xx			
Обозначение	Значение	Примечание	
V _{SS} , V _{DD}	2-3.6 B	Внешнее напряжение питания для линий I/O и внутреннего стабилизатора. Внешний источник питания подключается к выводам V _{DD}	
$V_{SSA'}V_{DDA}$	2-3.6 B	Внешнее напряжение питания для аналоговых блоков: АЦП, ЦАП, компараторов, ОУ, блоков сброса, RC-генераторов и PLL. (При использовании ОУ и ЦАП минимальное напряжение питания V _{DDA} должно быть 2.4 В.) Напряжение питания VDDA всегда должно быть равно или больше напряжения питания VDD, и его нужно подавать первым	
V _{BAT}	1.65-3.6 B	Напряжение питания для RTC, внешнего кварцевого генератора на 32 кГц и регистров резервного хранения данных (через переключатель напряжения) при отсутствии основного напряжения питания V _{DD}	

Таблица	Таблица 9. Режимы пониженного энергопотребления STM32F3xx		
Режим	Описание		
Sleep	В режиме Sleep останавливается только CPU. Все периферийные модули продолжают работать и могут пробудить CPU при возникновении прерывания /события		
Stop	Режим Stop характеризуется минимальным энергопотреблением, при котором сохраняется содержимое SRAM и регистров. Тактирование всех блоков, питающихся напряжением 1.8 В, останавливается, работа PLL, HSI RC и HSE кварцевого генератора запрещена. Стабилизаторы напряжения также могут работать как в нормальном режиме, так и в режиме пониженного энергопотребления. Вывести микроконтроллер из режима Stop можно по любой линии EXTI. В кочестве источника сигнала EXTI может выступать одна из 16 внешних линий, выход PVD, сигнал пробуждения от модуля USB, будильник RTC, сигналы от модулей COMPx, I ² Cx или U(S)ARTx		
Standby	Режим Standby используется для достижения минимального энергопотребления. Внутренний стабилизатор напряжения выключается и со всех узлов снимается напряжение питания 1.8 В. PLL, HSI RC-генератор и HSE кварцевый генератор также выключаются. После перехода в режим Standby теряется содержимое SRAM и регистров, за исключением регистров блока резервного хранения и схемы управления режимом Standby. Выход из режима Standby осуществляется по сигналу внешнего сброса (вывод NRST), сигналу сброса IWDG от сторожевого таймера, нарастающему фронту на выводе WKUP или сигналу будильника RTC		

энергопотребления, которые позволяют получить компромиссное решение между низким энергопотреблением, малым временем запуска и доступными источниками выхода из этих режимов. Очень часто ядро микроконтроллера переводится в режим пониженного энергопотребления при преобразовании аналогового сигнала АЦП с высоким разрешением. Это позволяет добиться повышенной точности результатов измерения и избежать их усреднения.

В таблице 9 приведено описание режимов пониженного энергопотребления STM32F3xx.

В ряде прикладных задач, таких как защита и идентификация информации, передающий узел сети сбора данных должен сообщать центру сбора и обработки данных уникальную последовательность байтов. Для решения этих задач в каждую микросхему STM32F3xx заводомизготовителем записывается уникальный идентификатор, или сигнатура.

Электронная сигнатура микросхемы

Электронная сигнатура микросхемы хранится в системной области памяти модуля Flash-памяти, и ее может использовать как отладочный интерфейс, так и СРU. Системная область содержит программируемые при изготовлении микросхемы калибровочные и идентификационные данные, которые позволяют пользовательскому ПО (firmware) или

другим, внешним устройствам автоматически получать индивидуальные характеристики конкретных экземпляров микросхем STM32F3xx.

ЗАКЛЮЧЕНИЕ

Встатье были рассмотрены некоторые архитектурные особенности микроконтроллеров STM32F3хх с ядром Согtex-M4F и даны некоторые комментарии по их использованию, позволяющие оценить возможности семейства для применения в различных приложениях. Несмотря на умеренное быстродействие (72 МГц), микроконтроллеры обладают большой гибкостью в настройке периферийных модулей и могут найти применение как в бытовых, так и в промышленных устройствах.

Литература:

- 1. STM32F3 Series.. http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1576 2. STM32F302/303/313. http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1576/LN1531
- 3. STM32F372/373/383. http://www.st. com/web/catalog/mmc/FM141/SC1169/ SS1576/LN10
- Окончание. Начало см. «СНІР NEWS Украина», № 4,2013 г.
- ** Статья перепечатана из журнала «Компоненты и технологии», № 5, 2013 г. с разрешения редакции, тел. +7 (812) 438-15-38, www.kit-e.ru