visualizations. Of the air quality analysis in tamil nadu

Understanding the pollutants briefly.

NO2: Nitrogen Dioxide and is emmitted mostly from combustion from power sources or transport.

SO2: Sulphur Dioxide and is emmitted mostly from coal burning, oil burning, manufacturing of Sulphuric acid.

spm: Suspended particulate matter and are known to be the deadliest form of air pollution. They are microscopic in nature and are found to be suspended in earth's atmosphere.

rspm: Respirable suspended particulate matter. A sub form of spm and are respnsible for respiratory diseases.

pm2_5: Suspended particulate matter with diameters less than 2.5 micrometres. They tend to remain suspended for longer durations and potentially very harmful.

```
import numpy as np # linear algebra
import pandas as pd # data processing,
CSV file I/O (e.g. pd.read_csv)
import os
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
print(os.listdir("../input"))
['india-air-quality-data']

aq=pd.read_csv('../input/india-air-quality-data/data.csv',encoding="ISO-8859-1")
ag.tail(5)
```

In this code, we first create a DataFrame with sample air quality data, including monitoring station, city, SO2, NO2, and RSPM/PM10 levels. We then calculate the average levels across different cities and create bar charts for SO2, NO2, and RSPM/PM10 levels.

4	435737	stn_code SAMP	sampling_date 24-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	22.0	no2	143.0	spm	Inside Rampal Industries,ULUBER
4	435738	SAMP	29-12-15	West Bengal	ULUBERIA	West Bengal State Pollution Control Board	RIRUO	20.0	46.0	171.0	NaN	Inside Rampal Industries,ULUBER
4	435739	NaN	NaN	andaman- and-nicobar- islands	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	435740	NaN	NaN	Lakshadweep	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	435741	NaN	NaN	Tripura	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In this code, we first create a DataFrame with sample air quality data, including monitoring station, city, SO2, NO2, and RSPM/PM10 levels. We then calculate the average levels across different cities and create bar charts for SO2, NO2, and RSPM/PM10 levels.

```
datacount =sns.countplot(x
="location",data = tn);
```

datacount.set_xticklabels(datacount.get_x
ticklabels(), rotation=90);

we are scaling the values according to the AQI calculation formula

$$AQI = AQI_{min} + rac{PM_{Obs} - PM_{Min}}{AQI_{Max} - AQI_{Min}}(PM_{Max} - PM_{Min})$$

Function to calculate so2 individual pollutant index(si)

Visualization of AQI across india (Year-wise)

<matplotlib.axes._subplots.AxesSubplot at 0x7f6df4739898>

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 year