Etaloniniai modeliai

- Etaloninis modelis skirtas aprašyti atviros sistemos bendradarbiavimą su kitomis sistemomis
- OSI (angl. Open Systems Inteconnection) modelis sukurtas ISO (angl. International Organization for Standartization) tarptautinių standartų sukūrimui
- TCP/IP modelis

Etaloniniai modeliai

- OSI Modelis susideda iš 7 lygių, kurių išskyrimo principai:
 - 1. Kiekvienas lygis atitinka skirtingą abstrakcijos lygį;
 - 2. Kiekvienas lygis atlieka iš anksto apibrėžtą funkciją;
 - 3. Kiekvieno sluoksnio funkcija pasirinkta su tikslu sukurti tarptautinį standartą;
 - 4. Lygio ribos yra nustatytos tokios, siekiant sumažinti informacijos srautą tarp sąsajų;
 - 5. Lygių skaičius turi būti pakankamai didelis, kad nereikėtų apjungti skirtingų funkcijų viename lygyje, ir tuo pačiu pakankamai mažas, kad architektūra nebūtų sudėtinga.

OSI modelis

- 1. Fizinis
- 2. Kanalinis (ryšio)
- 3. Tinklo
- 4. Transporto
- 5. Sesijos
- 6. Atvaizdavimo
- 7. Taikymo

OSI modelis

OSI modelis. Fizinis lygis

- Fizinis lygis atsako už bitų sekos perdavimą ryšio kanalu
- Sprendžiami mechanikos, elektros ar radio bangų klausimai
- Siuntėjui išsiuntus 1 gavėjas turi gauti 1 o ne 0

OSI modelis. Kanalinis (ryšio) lygis

- Kanalinis lygis atsako už patikimą duomenų perdavimą tarp fizinio ir tinklinio lygio;
- Skaido baitų srautą į duomenų kadrus (angl. data frames);
- Nustato ir atpažįsta kadrų ribas;
- Taiso fizinio lygio klaidas;
- Esant reikalui dublikuoja kadrus ir naikina besikartojančius kadrus;
- Reguliuoja priėjimą prie transliacinio kanalo.

OSI modelis. Tinklo lygis

- Tinklo lygis atsako už transporto terpės funkcionalumą.
- Operuoja paketais (angl. packets)
- Maršrutizuoja paketus tarp siuntėjo ir gavėjo
 - Maršrutai gali būti nustatomi prieš siunčiant arba siuntimo metu (dinamiškai) priklausomai nuo tinklo būsenos;
 - Transliaciniuose tinkluose maršrutizavimo problemos beveik nėra;
- Paketų talpinimas į eilę

OSI modelis. Tinklo lygis

- Nusako kokį serviso tipą perduoti aukštesniam lygiui:
 - Kanalas "taškas su tašku";
 - Datagramų persiuntimas;
 - Multicast
- Serviso tipas nustatomas kuriant transporto ryšį

OSI modelis. Transporto lygis

- Pagrindinė transporto lygio funkcija suskaldyti (jei reikia) sesijos lygio duomenis į mažesnes dalis, ir užtikrinti, kad paketų gavėjas juos susidėtų teisinga tvarka;
- Transporto lygis yra pilnai dviejų komunikuojančių mazgų protokolas;

OSI modelis. Transporto lygis

- Transporto lygis ir aukštesni lygiai naudoja susijungimą "taškas su tašku";
- Abonentų mazgai yra multiprograminiai, todėl transporto lygis turi priimti daug prisijungimų vienu metu;
- Transporto lygis pateikia srauto valdymo mechanizmą;
- Srauto valdymas tarp galutinių tinklo mazgų ir maršrutizatorių skiriasi.

OSI modelis. Sesijos lygis

- Sesijos lygio tikslas užmegzti sesijas tarp skirtingų tinklo mazgų;
- Sesijos lygis pateikia sudėtingą servisą atliekantį:
 - Perdavimo krypties valdymą (dialogo kontrolę);
 - Markerio valdymą;
 - Sinchronizaciją (atskaitos taškai)

OSI modelis. Atvaizdavimo lygis

- Atvaizdavimo lygio tikslas pręsti sintaksės bei semantines duomenų problemas;
 - Nustato duomenų formatą esamai sistemai;
 - Keičia kodavimą.

OSI modelis. Taikymo lygis

- Taikomasis lygis pateikia dažnai naudojamus protokolus naudotojui
 - HTTP
 - Telnet
 - SMTP
- Siunčiama užklausa, gaunamas atsakymas naudotojui suprantama forma

Etaloninis TCP/IP modelis

- Protokolų stekas ARPANET tinklui;
- Paketų komutacija, tinklinio lygio servisas be sujungimų;
- Modelyje yra keturi lygiai
 - 1. Abonentas-tinklas (susijungimo)
 - 2. Tinklo (Interneto)
 - 3. Transporto
 - 4. Taikymo

Etaloninis TCP/IP modelis

Etaloninis TCP/IP modelis. Tinklo lygis

- Dar vadinamas Interneto lygiu;
- Savyje aprašo visą architektūrą;
- Nusako IP (angl. Internet Protocol) protokolą bei paketą, kuriais yra komunikuojama;
- Naudojamas paketų komutavimas nekontaktiniame tinkle;
- Tikslas leisti abonentams įterpti paketus į bet kokį tinklą ir išsiųsti juos skirtingais maršrutais ir tvarka.

Etaloninis TCP/IP modelis. Transporto lygis

- Skirtas palaikyti bendravimą tarp galutinių tinklo mazgų;
- Du transporto protokolai yra aprašomi transporto lygyje:
 - TCP (angl. Transmission Control Protocol) patikimas protokolas su susijungimu. Paima baitų srautą, jį fragmentuoja į atskirus paketus ir perduoda tinklo lygiui.
 - UDP (angl. User Datagram Protocol) nepatikimas protokolas be sujungimo, taikomosioms programoms, kurios turi savus srauto valdymo mechanizmus.

Etaloninis TCP/IP modelis. Taikymo lygis

- TCP/IP Taikymo lygis atitinka OSI Taikymo lygi;
- Sąsaja tarp naudotojo ir transporto lygmens.

Etaloninis TCP/IP modelis. Susijungimo lygis

- Tikslas išsiųsti IP paketą gavėjui, prisijungus prie tinklo kokiu nors protokolu;
- TCP/IP daug nepasako apie šį modelį. Aišku tik tiek, kad protokolo veikimas yra skirtingas šiais atvejais:
 - Paketas perduodamas iš abonento abonentui
 - Paketas perduodamas iš tinklo į tinklą

Etaloninis TCP/IP modelis

• Protokolai ir tinklai naudojami TCP/IP modelyje

OSI ir TCP/IP modelių palyginimas

- OSI modelyje apibrėžtos sąvokos:
 - servisas apibrėžia, ką daro lygis, bet nesako kaip;
 - sąsaja apibrėžia serviso pasiekimo būdą aukštesniam lygiui;
 - protokolas apibrėžia serviso realizaciją
- TCP/IP modelyje nėra apibrėžtų sąvokų
- Skirtingas lygių skaičius

OSI modelio trūkumai

- Ne laiku pristatytas modelis
- Neteisinga technologija
- Sudėtinga realizacija
- Neteisinga politika

OSI modelio trūkumai

OSI modelio trūkumai

- Nėra gerai apgalvota iš techninės pusės:
 - Funkcionalumas tarp lygių paskirstytas netolygiai
 - Modelio protokolų aprašymas labai sudėtingas
 - Kai kurios funkcijos yra kiekviename lygyje
 - Nepaminėta apsauga
 - Nekontaktiniai servisai nėra gerai apgalvotas

TCP/IP modelio trūkumai

- Modelyje nėra serviso, protokolo bei sąsajos apibrėžimų;
- Tinka tik TCP/IP stekui aprašyti;
- Apatinis lygis nėra lygis, greičiau sąsaja;
- Fizinis ir kanalinis lygis yra viename;
- Taikomojo lygio protokolai nėra gerai apgalvoti
- Nėra saugumo
- IP paketo struktūra yra labai sudėtinga

Hibridinis modelis

5	Application
4	Transport
3	Network
2	Link
1	Physical

Tinklų pavyzdžiai

- Internetas (ARPANET)
- Kontaktiniai tinklai (X.25,ATM,Frame Relay)
- Ethernet
- Bevieliai vidiniai tinklai

ARPANET

Internetas

Kontaktiniai tinklai

- Dažnai naudojamas telefono kompanijų
- Lengva naudojimosi apskaita
- Pilnai išnaudojamas ryšio kanalas

Ethernet tinklai

- IEEE 802.2 standartas
- Naudojamas lokaliuose tinkluose
- Nebrangi technologija
- Galinti pasiekti iki 10Gbps

Bevieliai tinklai

- IEEE 802.11 standartas
- Du veikimo būdai
 - Esant bazinei stočiai (angl. access point)
 - Nesant bazinei stočiai (Ad hoc)
- Galimos problemos, kurias reikėjo spręsti:
 - Kraštinės stotys nemato viena kitos
 - Pasikartojantis radio signalas (atspindžiai nuo objektų)
 - Mobilumo problema