

Motivation

Probability theory reminders

$$\mathbb{P}(C|B) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)}$$

Théorème de Bayes

$\mathbb{P}(B|C)\mathbb{P}(C)$ En appliquant deux fois:

"Probabilité de C sachant B" =

"La probabilité de B et C mais restreinte à B: comme si B était devenu tout l'espace"

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soient $B, C \in \mathcal{A}$, alors:

Ensemble de tous les événements possibles

Théorème de Bayes

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soient $B, C \in \mathcal{A}$, alors:

$$\mathbb{P}(C|B) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)}$$

 $B \cap C \subset \Omega$

"Probabilité de C sachant B" =

"La probabilité de B et C mais restreinte à B: comme si B était devenu tout l'espace"

Ensemble de tous les événements possibles

En appliquant deux fois:

$$\mathbb{P}(C|B) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|C)\mathbb{P}(C)}{\mathbb{P}(B)}$$

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

Théorème de Bayes

Soit $(\Omega, \mathcal{P}, \mathcal{A})$ un espace probabilisé. Soient $B, C \in \mathcal{A}$, alors:

$$\mathbb{P}(C|B) = \frac{\mathbb{P}(B \cap C)}{\mathbb{P}(B)}$$

On a:
$$\mathbb{P}(C|B) = \frac{\mathbb{P}(B\cap C)}{\mathbb{P}(B)}$$
 Et: $\mathbb{P}(B|C) = \frac{\mathbb{P}(B\cap C)}{\mathbb{P}(C)}$

It:
$$\mathbb{P}(B|C) = \frac{\mathbb{P}(B \cap C')}{\mathbb{P}(C)}$$

