1 Énoncé

Notations

On désigne par \mathbb{C} le corps des nombres complexes.

Soit E un \mathbb{C} -espace vectoriel de dimension finie. On désigne par E^* l'espace vectoriel dual de E. On désigne par $\operatorname{End}(E)$ l'algèbre des endomorphismes de E et par $\operatorname{GL}(E)$ le groupe des endomorphismes inversibles de E. On note 1_E l'application identique de E.

Si u est un endomorphisme de E, on note tu l'endomorphisme de E^* transposé de u; si X est une partie de End (E), on note tX l'ensemble des transposés des éléments de X.

Soit u une application linéaire d'un espace vectoriel E dans un espace vectoriel E et soit x un vecteur de E. Pour alléger les notations, il nous arrivera d'écrire ux pour désigner l'image u(x) du vecteur x par l'application u.

Soit n un entier ≥ 1 ; on désigne par $\mathcal{M}_n(\mathbb{C})$ l'algèbre des matrices carrées complexes à n lignes et n colonnes. On note $E_{i,j}$ la matrice de $\mathcal{M}_n(\mathbb{C})$ dont tous les coefficients sont nuls excepté celui de la i-ème ligne et j-ème colonne qui est égal à 1. On note $\mathrm{GL}(n,\mathbb{C})$ le groupe des matrices inversibles et 1_n la matrice unité de $\mathcal{M}_n(\mathbb{C})$.

Soient \mathcal{A} et \mathcal{B} deux \mathbb{C} -algèbres possédant chacune un élément unité; un morphisme unitaire d'algèbres de \mathcal{A} dans \mathcal{B} est une application \mathbb{C} -linéaire qui préserve les produits et les éléments unités. Les deux premières parties sont indépendantes. La sixième partie est indépendante des précédentes.

Partie I

- 1. Soit W un \mathbb{C} -espace vectoriel de dimension finie. Soient p_1, \dots, p_n des endomorphismes de W. Pour $i=1,\dots,n$, on note W_i l'image de p_i . Démontrer que les conditions suivantes sont équivalentes :
 - (i) L'espace vectoriel W est somme directe des sous-espaces W_i et, pour $i=1,\cdots,n,\ p_i$ est le projecteur d'image W_i parallèlement à la somme directe des $W_j,\ j\neq i$.
 - (ii) Pour $i=1,\dots,n$, on a $p_i^2=p_i$; pour $j\neq i$, on a $p_ip_j=0$; et on a $p_1+\dots+p_n=1_W$.
- 2. Soit toujours W un \mathbb{C} -espace vectoriel de dimension finie, soit n un entier ≥ 1 et soit ρ : $M_n(\mathbb{C}) \to \operatorname{End}(W)$ un morphisme unitaire d'algèbres.
 - (a) Pour $i = 1, \dots, n$, on note p_i l'endomorphisme $\rho(E_{i,i})$. Démontrer que les endomorphismes p_i satisfont à la condition (ii) de la question **I.1.**
 - (b) Pour $i = 1, \dots, n$, on note W_i l'image de p_i . Démontrer que la restriction de $\rho(E_{i,i})$ à W_j induit un isomorphisme de W_j sur W_i .
 - (c) Dans la suite de cette question, ou fixe une base (w_1, \dots, w_r) de l'espace vectoriel W_1 . On pose

$$v_1 = w_1, \ v_2 = \rho(E_{2,1}) w_1, \cdots, \ v_n = \rho(E_{n,1}) w_1.$$

Démontrer que la famille (v_1, \dots, v_n) est libre et que, pour tous entiers s, t et k compris entre 1 et n, on a

$$\rho\left(E_{s,t}\right)v_{k} = \delta_{t,k}v_{s},$$

où le symbole de Kronecker $\delta_{t,k}$ vaut 1 lorsque t=k, et vaut 0 sinon.

(d) Plus généralement, pour $1 \leq j \leq r$, on note V_j le sous-espace vectoriel de W engendré par les vecteurs $\rho(E_{k,1}) w_j$, pour $k = 1, \dots, n$. Démontrer que W est somme directe des sous-espaces V_j , $1 \leq j \leq r$.

(e) Démontrer qu'il existe une base de l'espace vectoriel W dans laquelle, pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, la matrice de l'endomorphisme $\rho(M)$ est la matrice diagonale par blocs :

$$\operatorname{diag}(M,\cdots,M) = \begin{pmatrix} M & 0 & \cdots & 0 \\ 0 & M & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M \end{pmatrix}.$$

Partie II

Dans cette partie, on désigne par E un \mathbb{C} -espace vectoriel de dimension finie. On dit qu'une partie X de $\operatorname{End}(E)$ est $\operatorname{irréductible}$ si les seuls sous-espaces vectoriels de E stables par tous les éléments de X sont $\{0\}$ et E. On désigne par A une sous-algèbre irréductible de $\operatorname{End}(E)$ qui contient 1_E , et on se propose de démontrer qu'elle est égale à $\operatorname{End}(E)$.

- 1. Soient u et v des éléments de End (E) qui commutent entre eux. Démontrer que tout sous-espace propre de l'un est stable par l'autre.
- 2. Soit X une partie irréductible de $\operatorname{End}(E)$. Démontrer que l'ensemble des endomorphismes de E qui commutent à tous les éléments de X est l'ensemble des endomorphismes scalaires.
- 3. Rappelons que \mathcal{A} est une sous-algèbre irréductible de End (E) contenant 1_E . Démontrer que ${}^t\mathcal{A}$ est une sous-algèbre irréductible de End (E^*) .
- 4. Soit x un vecteur non nul de E. Préciser à quoi est égal le sous-espace vectoriel Ax de E.
- 5. Soit $u \in \text{End}(E)$ un endomorphisme de rang 1. Démontrer qu'il existe un vecteur y de E et une forme linéaire $\ell \in E^*$ tels que l'on ait $u(x) = \ell(x) y$ pour tout $x \in E$.
- 6. Démontrer que, si l'algèbre \mathcal{A} contient un endomorphisme de rang 1, alors elle les contient tous. En déduire que l'on a alors $\mathcal{A} = \operatorname{End}(E)$.
- 7. Dans cette question, on suppose que \mathcal{A} contient un endomorphisme u dont le rang r est ≥ 2 , et on se propose de démontrer qu'il existe un endomorphisme $u' \in \mathcal{A}$, non nul, dont le rang est strictement plus petit que r.
 - (a) Démontrer qu'il existe x et y dans E et v dans A tels que le couple de vecteurs (u(x), u(y)) soit libre et que l'on ait vu(x) = y.
 - (b) Démontrer qu'il existe alors $\lambda \in \mathbb{C}$ tel que la restriction de l'endomorphisme $uv \lambda 1_E$ à l'image u(E) de u ne soit ni injective ni nulle.
 - (c) Vérifier que l'endomorphisme $u' = uvu \lambda u$ convient.
- 8. Démontrer finalement que $\mathcal{A} = \text{End}(E)$.

Partie III

Soit n un entier ≥ 1 . On appelle dérivation de $\mathcal{M}_n(\mathbb{C})$ toute application linéaire d de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ telle que, pour tous X et $Y \in \mathcal{M}_n(\mathbb{C})$, on ait

$$d(XY) = d(X)Y + Xd(Y).$$

- 1. Soit $A \in \mathcal{M}_n(\mathbb{C})$; démontrer que l'application d_A de $\mathcal{M}M_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ définie par $d_A(X) = AX XA$ est une dérivation.
- 2. Dans cette question, on se propose de démontrer que toute dérivation de $\mathcal{M}_n(\mathbb{C})$ est de la forme ci-dessus.

(a) Soit $d: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ une dérivation. Démontrer que l'application ρ de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_{2n}(\mathbb{C})$ définie par :

$$\rho\left(X\right) = \left(\begin{array}{cc} X & d\left(X\right) \\ 0 & X \end{array}\right)$$

est un morphisme unitaire d'algèbres.

(b) Démontrer qu'il existe une matrice inversible $P = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ où A, B, C, D appartiennent à $\mathcal{M}_n(\mathbb{C})$, telle que l'on ait, pour tout $X \in \mathcal{M}_n(\mathbb{C})$:

$$P\rho\left(X\right) = \left(\begin{array}{cc} X & 0\\ 0 & X \end{array}\right)P.$$

(c) Conclure.

Partie IV

Soit n un entier ≥ 1 . Pour toute matrice $M \in \mathcal{M}_n(\mathbb{C})$, on note $\mathrm{Tr}(M)$ la trace de M, somme des coefficients diagonaux de M.

1.

(a) Démontrer que l'application ψ de $\mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_n(\mathbb{C})$ dans \mathbb{C} définie par :

$$\psi(X,Y) = \operatorname{Tr}(XY)$$
,

est une forme bilinéaire symétrique non dégénérée.

(b) Démontrer que, si (X_1, \dots, X_{n^2}) est une base de l'espace vectoriel $\mathcal{M}_n(\mathbb{C})$, il existe une autre base (X'_1, \dots, X'_{n^2}) de $\mathcal{M}_n(\mathbb{C})$ telle que, pour tous entiers i et j compris entre 1 et n^2 , on ait

$$\psi\left(X_{i}, X_{j}'\right) = \delta_{i,j}$$
 (symbole de Kronecker).

2. Démontrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{C})$, on a :

$$\sum_{1 \le i \le n^2} X_i A X_i' = \operatorname{Tr}(A) \mathbf{1}_n.$$

Partie V

On considère dans cette partie un sous-groupe G de $\mathrm{GL}\,(n,\mathbb{C})$ ayant la propriété suivante :

(P) il existe un entier $m \ge 1$ tel que l'on ait $g^m = \mathbf{1}_n$ pour tout $g \in G$.

On fixe l'entier m.

- 1. Démontrer que chaque élément g de G est diagonalisable. Que peut-on dire de ses valeurs propres ?
- 2. Démontrer que l'ensemble $\{Tr(g) \mid g \in G\}$ est fini.
- 3. On suppose, dans cette question, que l'ensemble G, considéré comme ensemble d'endomorphismes de \mathbb{C}^n (en identifiant $\mathcal{M}_n(\mathbb{C})$ et $\operatorname{End}(\mathbb{C}^n)$), est irréductible.
 - (a) Démontrer que l'ensemble G contient une base de l'espace vectoriel $\mathcal{M}_n\left(\mathbb{C}\right)$.

- (b) Démontrer que l'ensemble G est fini (on pourra utiliser les questions IV.1. et V.2.).
- 4. Dans cette question, on ne suppose plus que l'ensemble G soit irréductible.
 - (a) Démontrer qu'il existe des entiers non nuls p et q, avec p + q = n, et une base de l'espace vectoriel \mathbb{C}^n dans laquelle chaque élément q de G s'écrit par blocs :

$$\left(\begin{array}{cc} T\left(g\right) & U\left(g\right) \\ 0 & V\left(g\right) \end{array}\right)$$

où $T(g) \in M_p(\mathbb{C})$ et $V(g) \in M_q(\mathbb{C})$.

- (b) Posons $G_1 = \{g \in G \mid T(g) = \mathbf{1}_p\}$ et $G_2 = \{g \in G \mid V(g) = \mathbf{1}_q\}$. Démontrer que G_1 et G_2 sont des sous-groupes distingués de G. Déterminer $G_1 \cap G_2$.
- (c) Soient K un groupe et H un sous-groupe de K. L'indice de H dans K est le cardinal de l'ensemble quotient K/H. Etablir le résultat général suivant : Soient K un groupe, K_1 et K_2 des sous-groupes distingués de K, tous deux d'indice fini dans K; alors l'indice de $K_1 \cap K_2$ dans K est fini.
- (d) Conclure.

Partie VI

Soient n et m des entiers ≥ 1 . Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_m(\mathbb{C})$; on définit la matrice $A * B \in \mathcal{M}_{nm}(\mathbb{C})$ par :

$$A * B = \left(\begin{array}{ccc} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{array}\right).$$

1. Démontrer que l'application ϕ de $\mathcal{M}_n(\mathbb{C}) \times \mathcal{M}_m(\mathbb{C})$ dans $\mathcal{M}_{nm}(\mathbb{C})$ définie par $\phi(A, B) = A * B$ est bilinéaire et satisfait à :

$$(A*B)\,(A'*B') = AA'*BB'$$

pour toutes matrices $A, A' \in \mathcal{M}_n(\mathbb{C}), B, B' \in \mathcal{M}_m(\mathbb{C})$.

- 2. Démontrer que l'image de l'application ϕ engendre l'espace vectoriel $\mathcal{M}_{nm}\left(\mathbb{C}\right)$. On suppose désormais n=m.
- 3. Posons

$$P = \sum_{1 \le i, j \le n} E_{i,j} * E_{j,i}.$$

- (a) Démontrer que l'on a $P^2 = 1_{n^2}$.
- (b) Démontrer que, pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{C})$, on a :

$$P(A*B)P = B*A.$$

- 4. Soient A et $B \in M_n(\mathbb{C})$.
 - (a) Calculer la trace et le déterminant de la matrice A * B.
 - (b) Déterminer les valeurs propres de A * B en fonction de celles de A et de B.

2 Corrigé

Partie I

1. Supposons que $W = \bigoplus_{j=1}^{n} W_j$, chaque p_j étant le projecteur sur W_j parallèlement à $\bigoplus_{\substack{i=1\\i\neq j}}^{n} W_i$.

Comme chaque p_j est un projecteur, on a $p_j^2 = p_j$.

Tout $x \in W$ s'écrit de manière unique $x = \sum_{j=1}^{n} x_j$ avec $x_j = p_j(x) \in W_j$, ce qui se traduit aussi par:

$$\forall x \in W, \ \mathbf{1}_W(x) = \sum_{j=1}^n p_j(x)$$

ou encore par $1_W = \sum_{j=1}^n p_j$. Pour $j \neq i$, on a:

$$\forall x \in W, (p_i \circ p_i)(x) = p_i(p_i(x)) = p_i(x_i) = 0$$

par définition des projections p_i , ce qui se traduit par $p_i \circ p_j = 0$, ou encore par $W_j \subset \ker(p_i) =$ $\bigoplus W_k$.

 $k=1 \\ k \neq i$

Réciproquement supposons les conditions (ii) vérifiées.

La condition $p_j^2 = p_j$, pour j compris entre 1 et n, nous dit que p_j est un projecteur sur $W_j = \operatorname{Im}(p_j)$ et la condition $p_i \circ p_j = 0$ pour $i \neq j$, nous dit que $W_j \subset \ker(p_i)$. De:

$$x = \mathbf{1}_W(x) = p_1(x) + \dots + p_n(x)$$

pour tout $x \in W$, on en déduit que $W = W_1 + \cdots + W_n$. Si $\sum_{i=1}^n x_i = 0$, avec $x_i \in W_j$ pour j

compris entre 1 et n, on a alors $p_i(x_j) = p_i \circ p_j(x_j) = 0$ pour $i \neq j$ et $p_i\left(\sum_{i=1}^n x_j\right) = \sum_{i=1}^n p_i(x_j) = 0$

 $p_i(x_i) = x_i = 0$ pour tout i compris entre 1 et n. La somme $W = \sum_{i=1}^n W_i$ est donc directe.

Enfin avec $W_j \subset \ker(p_i)$ pour $j \neq i$, on déduit que $\sum_{\substack{j=1 \ j \neq i}}^n W_j \subset \ker(p_i)$ et avec :

$$\dim (\ker (p_i)) = \dim (W) - \dim (W_i) = \sum_{\substack{j=1\\j\neq i}}^n \dim (W_j)$$

on déduit que $\sum_{j=1}^{n} W_j \subset \ker(p_i)$ et p_i est le projecteur sur W_i parallèlement à $\bigoplus_{\substack{j=1\\j\neq i}}^{n} W_j$.

2. Faisons tout d'abord quelques remarques sur les matrices E_{ij} .

En notant $(e_i)_{1\leq i\leq n}$ la base canonique de \mathbb{C}^n , $(E_{ij})_{1\leq i,j\leq n}$ est celle de $\mathcal{M}_n(\mathbb{C})$. La matrice E_{ij} est définie par :

$$\forall k \in \{1, \dots, n\}, \ E_{ij}e_k = \left\{ \begin{array}{l} 0 \text{ si } k \neq j, \\ e_i \text{ si } k = j. \end{array} \right.$$

(la colonne $k \neq j$ de E_{ij} est nulle et la colonne j a tous ses termes nuls sauf celui en ligne i qui vaut 1), ou encore:

$$E_{ij} = (0, \cdots, 0, e_i, 0, \cdots, e_n)$$

$$\uparrow$$

$$j$$

5

le vecteur e_i étant placé en colonne j. Pour i, j, p, q dans $\{1, \dots, n\}$ on a :

$$E_{i,j} \cdot E_{p,q} = \begin{cases} 0 & \text{si } j \neq p \\ E_{i,q} & \text{si } j = p \end{cases}$$

En effet, pour k compris entre 1 et n, on a :

$$E_{i,j} \cdot E_{p,q} e_k = E_{ij} \left(E_{pq} e_k \right) = \begin{cases} E_{ij} \left(0 \right) = 0 \text{ si } k \neq q \\ E_{ij} \left(e_p \right) \text{ si } k = q \end{cases}$$
$$= \begin{cases} 0 & \text{si } j \neq p \\ E_{i,q} \left(e_k \right) & \text{si } j = p \end{cases}$$

- (a) Des égalités $E_{i,i}^2 = E_{i,i}$ pour tout i, $E_{i,i} \cdot E_{j,j} = 0$, pour $i \neq j$ et $1_n = \sum_{j=1}^n E_{j,j}$, on déduit que $p_i^2 = p_i$, $p_i \circ p_j = 0$ et $1_W = p_1 + ... + p_n$. Donc les conditions (ii) et (i) sont vérifiées.
- (b) Pour tout $x \in W$, on a :

$$\rho\left(E_{i,j}\right)\left(x\right) = \rho\left(E_{i,i}E_{i,j}\right)\left(x\right) = \rho\left(E_{i,i}\right)\left[\rho\left(E_{i,j}\right)\left(x\right)\right] \in \operatorname{Im}\rho\left(E_{i,i}\right) = W_{i},$$

donc Im $\rho(E_{i,j}) \subset W_i$ et la restriction $p_{i,j}$ de $\rho(E_{i,j})$ à W_j est une application linéaire de W_j dans W_i . Avec :

$$\forall x \in W_j, \ p_{j,i} \circ p_{i,j}(x) = \rho(E_{j,i}E_{i,j})(x) = \rho(E_{j,j})(x) = p_j(x) = x$$

 $(p_j = \rho(E_{j,j}))$ est le projecteur sur W_j parallèlement à $\bigoplus_{k \neq j} W_k$), on déduit que $p_{i,j}$ est injective et avec $p_{i,j} \circ p_{j,i}(x) = x$ pour tout $x \in W_i$, on déduit que $p_{i,j}$ est surjective. Donc $p_{i,j}$ est un isomorphisme de W_j sur W_i d'inverse $p_{j,i}$.

(c) On a $v_1 = w_1 \in W_1$ et pour j compris entre 2 et $n, v_j = \rho\left(E_{j,1}\right) w_1 \in W_j$. Si $\lambda_1, ..., \lambda_n$ sont des complexes tels que $\sum_{j=1}^n \lambda_j v_j = 0$, on a alors $\lambda_j v_j = 0$ pour tout j puisque $W = \bigoplus_{j=1}^n W_j$. On a donc $\lambda_1 w_1 = 0$ avec $w_1 \neq 0$, donc $\lambda_1 = 0$ et pour j compris entre 2 et $n, \rho\left(E_{j,1}\right)(\lambda_j w_1) = 0$, l'application linéaire $\rho\left(E_{j,1}\right)$ étant bijective de W_1 sur W_j , ce entraı̂ne $\lambda_j w_1 = 0$ et $\lambda_j = 0$. La famille (v_1, \dots, v_n) est donc libre.

Pour s, t et k compris entre 1 et n, on a :

$$\rho(E_{s,t}) v_k = \rho(E_{s,t}) \rho(E_{k,1}) w_1$$

=
$$\rho(E_{s,t} E_{k,1}) w_1 = \delta_{t,k} v_s,$$

avec $E_{s,t}E_{k,1} = \delta_{t,k}E_{s,1}$, ce qui donne :

$$\rho\left(E_{s\,t}\right)v_{k} = \delta_{t\,k}\rho\left(E_{s\,1}\right)w_{1} = \delta_{t\,k}v_{s}.$$

(d) On a $W = \bigoplus_{k=1}^{n} W_k$ et pour tout k compris entre 1 et n, $(\rho(E_{k,1}) w_j)_{1 \leq j \leq r}$ est une base de W_k puisque la restriction de $\rho(E_{k,1})$ à W_1 réalise un isomorphisme de W_1 sur W_k . Donc tout $x \in W$ s'écrit de manière unique, $x = \sum_{k=1}^{n} x_k$ avec $x_k \in W_k$ qui s'écrit de manière unique $x_k = \sum_{j=1}^{r} \lambda_{k,j} \rho(E_{k,1}) w_j$. Donc tout $x \in W$ s'écrit de manière unique :

$$x = \sum_{\substack{1 \le k \le n \\ 1 \le j \le r}} \lambda_{k,j} \rho\left(E_{k,1}\right) w_j.$$

ce qui signifie que la famille

$$\mathcal{B} = (\rho(E_{k,1}) w_j)_{1 \le k \le n, 1 \le j \le r}$$

$$= (\rho(E_{1,1}) w_1, \rho(E_{2,1}) w_1, \cdots, \rho(E_{n,1}) w_1, \cdots, \rho(E_{1,1}) w_r, \rho(E_{2,1}) w_r, \cdots, \rho(E_{n,1}) w_r)$$

$$= (w_1, \rho(E_{2,1}) w_1, \cdots, \rho(E_{n,1}) w_1, \cdots, w_r, \rho(E_{2,1}) w_r, \cdots, \rho(E_{n,1}) w_r)$$

 $(p_1 = \rho(E_{1,1}))$ est un projecteur sur W_1 de base (w_1, \dots, w_r) est une base de W. Et de :

$$V_{j} = \text{Vect} \{ \rho (E_{k,1}) w_{j} \mid k = 1, \cdots, n \}$$

on déduit que $W = \bigoplus_{j=1}^{r} V_j (\mathcal{B}_j = (\rho(E_{k,1}) w_j)_{1 \leq k \leq n}$ est une base de V_j et \mathcal{B} est la réunion de ces bases).

On peut remarquer que dim $(W) = \sum_{j=1}^{r} \dim (V_j) = r \cdot n$.

(e) Comme ρ est un morphisme d'algèbre et $(E_{i,j})_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{C})$, il nous suffit de vérifier le résultat pour chaque $M = E_{i,j}$. De :

$$\rho(E_{i,j}) (\rho(E_{k,1}) w_p) = \rho(E_{i,j} E_{k,1}) (w_p) = \delta_{j,k} \rho(E_{i,1}) w_p = \begin{cases} 0 \text{ si } k \neq j \\ \rho(E_{i,1}) w_p \text{ si } k = j \end{cases}$$

pour $1 \leq k \leq n$ et $1 \leq p \leq r$, on déduit que chaque espace V_p est stable par $\rho(E_{i,j})$ (puisque $\mathcal{B}_p = (\rho(E_{k,1}) w_p)_{1 \leq k \leq n}$ est une base de V_p) et la matrice de la restriction $\rho(E_{i,j})$ à V_j dans la base \mathcal{B} est :

$$(0, \dots, 0, e_i, 0, \dots, e_n) = E_{i,j}$$

$$\uparrow k = j$$

Il en résulte que la matrice de $\rho(E_{i,j})$ dans la base \mathcal{B} est diag $(E_{i,j}, \dots, E_{i,j})$.

Partie II

1. Pour tout $u \in \text{End}(E)$ et toute valeur propre $\lambda \in \mathbb{C}$, on note $E_u(\lambda)$ le sous-espace propre de u associé à λ .

On a alors, pour u, v dans $\operatorname{End}(E)$ qui commutent :

$$\forall x \in E_u(\lambda), \ u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x)$$

ce qui signifie que $v(x) \in E_u(\lambda)$. On a donc $v(E_u(\lambda)) \subset E_u(\lambda)$, ce qui prouve que tout sous-espace propre de u est stable par v. Comme u et v jouent des rôles symétriques, tout sous-espace propre de v est aussi stable par u.

2. Soient $u \in \text{End}(E)$ commutant avec tous les éléments de X et λ une valeur propre complexe de u. La question précédente nous dit que l'espace propre $E_u(\lambda)$ est stable par tous les éléments de X. Comme $E_u(\lambda) \neq \{0\}$ et X est irréductible, on a nécessairement $E_u(\lambda) = E$ et u est l'homothétie de rapport λ .

Réciproquement si u est une homothétie, elle commute avec tout endomorphisme et en particulier avec tous les éléments de X.

3. On rappelle que pour tout $v \in \text{End}(E)$, ${}^tu \in \text{End}(E^*)$ est défini par ${}^tu(\ell)(x) = \ell \circ u(x)$, que pour toute partie X, X^{\perp} est la partie de E^* formée des formes linéaires qui s'annule sur X (c'est un sous-espace vectoriel de E^*) et pour toute partie Y de E^* , Y° est l'ensemble des éléments de E annulés par les formes linéaires qui sont dans Y (c'est un sous-espace vectoriel de E).

Il est facile de vérifier que ${}^t\mathcal{A} = \{ {}^tu \mid u \in \mathcal{A} \}$ est une sous-algèbre de End (E^*) . En effet :

- $t\mathcal{A} \neq \emptyset$ puisque $t1_E = 1_{E^*} \in \mathcal{A}$;
- pour tu , tv dans ${}^t\mathcal{A}$ et $\lambda \in \mathbb{C}$, $u + \lambda v$ est dans \mathcal{A} et ${}^tu + \lambda {}^tv = {}^t(u + \lambda v) \in {}^t\mathcal{A}$;
- pour tu , tv dans ${}^t\mathcal{A}$, on a $v \circ u$ est dans \mathcal{A} et ${}^tu \circ {}^tv = {}^t(v \circ u) \in {}^t\mathcal{A}$.

Il reste à montrer que ${}^{t}\mathcal{A}$ est irréductible.

Si G est un sous-espace de E^* stable par tous les éléments de ${}^t\mathcal{A}$, alors G^o est un sous-espace vectoriel de E stable par tous les éléments de \mathcal{A} . En effet pour $x \in G^o$ et $u \in \mathcal{A}$, pour tout $\ell \in G$, on a $\ell(u(x)) = {}^tu(\ell)(x) = 0$ puisque ${}^tu(\ell) \in G$, ce qui signifie que $u(x) \in G^o$. Comme \mathcal{A} est irréductible, on a nécessairement $G^o = \{0\}$ ou $G^o = E$ et $G = (G^o)^{\perp} = \{0_E\}^{\perp} = E^*$ ou $G = (G^o)^{\perp} = E^{\perp} = \{0_{E^*}\}$.

- 4. $Ax = \{v(x) \mid v \in A\}$ est un sous-espace vectoriel de E stable par A non réduit à $\{0\}$ puisque $1_E \in A$ et $Ax \ni 1_E(x) = x \neq 0$. Il en résulte que Ax = E puisque A est irréductible.
- 5. Dire que $u \in \operatorname{End}(E)$ est de rang 1 signifie que $\operatorname{Im} u$ est de dimension 1. Il existe donc un vecteur non nul $y \in E$ tel que $\operatorname{Im} u = \mathbb{C} y$ et pour tout $x \in E$ il existe un unique scalaire $\ell(x)$ tel que $u(x) = \ell(x) y$. De la linéarité de u, on déduit facilement que ℓ est une forme linéaire. En effet, pour x, x' dans E et λ dans \mathbb{C} , on a :

$$u(x + \lambda x') = \ell(x + \lambda x') y$$

et:

$$u(x + \lambda x') = u(x) + \lambda u(x')$$

= $\ell(x) y + \lambda \ell(x') y = (\ell(x) + \lambda \ell(x')) y$

ce qui implique $\ell(x + \lambda x') = \ell(x) + \lambda \ell(x')$ puisque $y \neq 0$.

6. Si \mathcal{A} contient un endomorphisme u de rang 1, il existe alors un vecteur $y \in E \setminus \{0\}$ et une forme linéaire $\ell \in E^* \setminus \{0\}$ tels que $u(x) = \ell(x)y$ pour tout $x \in E$. Si $u' \in \text{End}(E)$ est de rang 1, il s'écrit $u'(x) = \ell'(x)y'$ avec $y' \in E \setminus \{0\}$ et $\ell' \in E^* \setminus \{0\}$. Comme $\mathcal{A}y = E$ (question II.4.), il existe $v \in \mathcal{A}$ tel que y' = v(y) et comme ${}^t\mathcal{A}$ est une sous-algèbre unitaire de End (E^*) (question II.3.), on a aussi $E^* = {}^t\mathcal{A}\ell$ (question II.4. pour l'espace E^*) et il existe $v \in \mathcal{A}$ tel que $v \in$

$$u'(x) = \ell'(x) y' = \ell(w(x)) v(y) = v(\ell(w(x)) y)$$
$$= v(u(w(x))) = v \circ u \circ w(x)$$

et $u' = v \circ u \circ w \in \mathcal{A}$. Donc \mathcal{A} contient tous les endomorphismes de E de rang 1. D'autre part, on a $\mathcal{A} \subset \operatorname{End}(E)$ et en remarquant que tout $u \in \operatorname{End}(E)$ est somme d'endomorphismes de rang 1 (en choisissant une base $(e_i)_{1 \leq i \leq n}$, on a $u(x) = \sum_{i=1}^n e_i^*(x) e_i = \sum_{i=1}^n u_i(x)$, les u_i étant de rang 1), on déduit que $\mathcal{A} = \operatorname{End}(E)$.

7.

- (a) Comme $\operatorname{rg}(u) \geq 2$, il existe $x, y \in E$ tels que (u(x), u(y)) soit libre. On a nécessairement $u(x) \neq 0$ et **II.4.** nous dit que $\mathcal{A}u(x) = E$, ce qui entraı̂ne l'existence de $v \in \mathcal{A}$ tel que y = vu(x).
- (b) Comme $uv\left(\operatorname{Im}(u)\right)\subset\operatorname{Im}(u)$, la restriction $uv|_{\operatorname{Im}u}$ de uv à $\operatorname{Im}(u)$ est un endomorphisme de $\operatorname{Im}(u)$. Si $\lambda\in\mathbb{C}$ est une valeur propre de $uv|_{\operatorname{Im}u}$, l'endomorphisme $(uv-\lambda\mathbf{1}_E)|_{\operatorname{Im}u}$ n'est pas injectif et avec :

$$(uv - \lambda \mathbf{1}_E)|_{\operatorname{Im} u}(u(x)) = uvu(x) - \lambda u(x) = u(y) - \lambda u(x) \neq 0$$

(puisque (u(x), u(y)) est libre), on déduit que $(uv - \lambda \mathbf{1}_E)|_{\text{Im }u}$ n'est pas l'application nulle.

(c) Comme $u'(x) = (uvu - \lambda u)(x) = u(y) - \lambda u(x) \neq 0$, on a $u' \neq 0$. On a Im $(u') = \text{Im}((uv - \lambda \mathbf{1}_E)u) = \text{Im}((uv - \lambda \mathbf{1}_E)|_{\text{Im}\,u})$ avec $(uv - \lambda \mathbf{1}_E)|_{\text{Im}\,u} : \text{Im}\,u \rightarrow \text{Im}\,u$ non injectif, donc

$$\operatorname{rg}(u') = \dim(\operatorname{Im}(uv - \lambda \mathbf{1}_{E})|_{\operatorname{Im}u}) < \dim(\operatorname{Im}u) = \operatorname{rg}(u).$$

8. Comme \mathcal{A} contient 1_E , on a $\mathcal{A} \neq \{0\}$. La question II.7. nous dit que \mathcal{A} contient un endomorphisme de rang 1 et II.6. nous dit alors que $\mathcal{A} = \operatorname{End}(E)$.

Partie III

1. Il est clair que $d_A : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est linéaire. En effet, pour X, Y dans $\mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$, on a :

$$d_A(X + \lambda Y) = A(X + \lambda Y) - (X + \lambda Y) A$$

= $(AX - XA) + \lambda (AY - YA)$
= $d_A(X) + \lambda d_A(Y)$,

De plus, on a:

$$d_A(XY) = AXY - XYA$$

$$= (AX - XA)Y + X(AY - YA)$$

$$= d_A(X)Y + Xd_A(Y)$$

pour tous X, Y dans $\mathcal{M}_n(\mathbb{C})$. d_A est donc une dérivation.

2.

(a) La linéarité de ρ se déduit de celle de d. De $d(\mathbf{1}_n) = d(\mathbf{1}_n \mathbf{1}_n) = 2d(\mathbf{1}_n)$, on déduit que $d(\mathbf{1}_n) = 0$ et $\rho(\mathbf{1}_n) = 1_{2n}$. Pour X, Y dans $\mathcal{M}_n(\mathbb{C})$ et $\lambda \in \mathbb{C}$, on a :

$$\rho(X) \rho(Y) = \begin{pmatrix} X & d(X) \\ 0 & X \end{pmatrix} \begin{pmatrix} Y & d(Y) \\ 0 & Y \end{pmatrix}$$
$$= \begin{pmatrix} XY & Xd(Y) + d(X)Y \\ 0 & XY \end{pmatrix}$$
$$= \begin{pmatrix} XY & d(XY) \\ 0 & XY \end{pmatrix} = \rho(XY)$$

Donc ρ est un morphisme unitaire d'algèbres.

(b) La question **I.2.e.** nous dit qu'on peut trouver une base de \mathbb{C}^{2n} dans laquelle, pour toute $X \in \mathcal{M}_n(\mathbb{C})$, la matrice de l'endomorphisme $\rho(X)$ est de la forme :

$$\operatorname{diag}\left(X,X\right) = \left(\begin{array}{cc} X & 0\\ 0 & X \end{array}\right).$$

Il existe donc une matrice inversible $P \in \mathcal{M}_{2n}(\mathbb{C})$ (l'inverse de la matrice de changement de bases) telle que :

$$\forall X \in \mathcal{M}_n(\mathbb{C}), \ \rho(X) = P^{-1} \operatorname{diag}(X, X) P,$$

soit $P\rho(X) = \operatorname{diag}(X, X) P$.

(c) Pour tout $X \in \mathcal{M}_n(\mathbb{C})$, on a:

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \left(\begin{array}{cc} X & d\left(X\right) \\ 0 & X \end{array}\right) = \left(\begin{array}{cc} X & 0 \\ 0 & X \end{array}\right) \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

donc

$$\begin{cases}
AX = XA \\
Ad(X) + BX = XB \\
CX = XC \\
Cd(X) + DX = XD.
\end{cases}$$

La matrice A commute donc avec toutes les matrices $\mathcal{M}_n(\mathbb{C})$ et en conséquence c'est une homothétie, c'est-à-dire qu'il existe $a \in \mathbb{C}$ tel que $A = aI_n$.(question II.2. appliquée à $\mathcal{A} = \mathcal{M}_n(\mathbb{C}) \simeq \operatorname{End}(\mathbb{C}^n)$). De même $C = cI_n$ avec $c \in \mathbb{C}$. Comme P est bijective, on a $A \neq 0$ ou $C \neq 0$. En supposant $A \neq 0$ (le cas $C \neq 0$ cas se traite de même), on a pour tout $X \in \mathcal{M}_n(\mathbb{C})$:

$$d(X) = A^{-1}(XB - BX) = \frac{1}{a}(XB - BX) = HX - XH$$

où
$$H = -\frac{1}{a}B$$
, soit $d = d_H$.

Partie IV

1.

(a) De la bilinéarité du produit de matrice et la linéarité de la trace, on déduit que l'application ψ est bilinéaire et avec $\operatorname{Tr}(XY) = \operatorname{Tr}(YX)$ pour toutes matrices X, Y, on déduit que ψ est symétrique. Si $X = ((x_{ij}))_{1 \leq i \leq n} \in \mathcal{M}_n(\mathbb{C})$ est telle que $\psi(X, Y) = \operatorname{Tr}(XY) = 0$ pour toute matrice

Si $X = ((x_{ij}))_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ est telle que $\psi(X,Y) = \operatorname{Tr}(XY) = 0$ pour toute matrice $Y \in \mathcal{M}_n(\mathbb{C})$, on a alors pour tous i,j compris entre 1 et $n, x_{ij} = \operatorname{Tr}(XE_{ji}) = 0$ et X = 0. L'application ψ est donc non dégénérée.

On peut aussi dire, pour la non dégénérescence que Tr $(XX^*) = \sum_{1 \le i,j \le n} |x_{ij}|^2 = 0$ $(X^* = {}^t\overline{X})$ est la matrice adjointe de X) et X = 0.

(b) Dire que ψ est non dégénérée équivaut à dire que l'application $\widetilde{\psi}$ qui associe à toute matrice $X \in \mathcal{M}_n(\mathbb{C})$ la forme linéaire $\widetilde{\psi}(X): Y \mapsto \psi(X,Y) = \text{Tr}(XY)$ réalise un isomorphisme de $\mathcal{M}_n(\mathbb{C})$ sur son dual $\mathcal{M}_n(\mathbb{C})$.

En désignant par $(X_k^*)_{1 \le k \le n^2}$ la base duale de $(X_k)_{1 \le k \le n^2}$, la famille de matrices $(X_k')_{1 \le k \le n^2}$ définie par $X_k' = \widetilde{\psi}^{-1}(X_k^*)$ est une base de $\mathcal{M}_n(\mathbb{C})$ et pour i, j compris entre 1 et n^2 , on a :

$$\delta_{ij} = X_j^* \left(X_i \right) = \widetilde{\psi} \left(X_j' \right) \left(X_i \right) = \psi \left(X_j', X_i \right) = \psi \left(X_i, X_j' \right).$$

2. Soit $A' = \sum_{i=1}^{n^2} X_i A X_i'$. Nous allons d'abord montrer que A' est une matrice scalaire, en vérifiant qu'elle commute à toute matrice $X \in \mathcal{M}_n(\mathbb{C})$.

Comme $(X'_k)_{1 \leq k \leq n^2}$ est une base de $\mathcal{M}_n(\mathbb{C})$, toute matrice $X \in \mathcal{M}_n(\mathbb{C})$ s'écrit $X = \sum_{i=1}^{n^2} \lambda_i X'_i$ et avec $\psi(X_i, X'_i) = \delta_{ij}$, on déduit que $\lambda_i = \psi(X, X_i)$ pour tout i, soit :

$$X = \sum_{i=1}^{n^2} \psi(X, X_i) X_i' = \sum_{i=1}^{n^2} \text{Tr}(XX_i) X_i'.$$

Le même raisonnement avec la base $(X_k)_{1 \le k \le n^2}$ nous donne aussi :

$$X = \sum_{i=1}^{n^2} \psi(X, X_i') X_i = \sum_{i=1}^{n^2} \text{Tr}(X X_i') X_i.$$

On a alors:

$$A'X = \sum_{i=1}^{n^2} X_i A X_i' X$$

avec:

$$X_i'X = \sum_{j=1}^{n^2} \text{Tr}((X_i'X) X_j) X_j'$$

ce qui donne:

$$A'X = \sum_{i=1}^{n^2} X_i A \left(\sum_{j=1}^{n^2} \text{Tr} \left((X_i'X) X_j \right) X_j' \right)$$

$$= \sum_{1 \le i, j \le n^2}^{n^2} X_i A \text{Tr} \left((X_i'X) X_j \right) X_j' = \sum_{1 \le i, j \le n^2}^{n^2} \text{Tr} \left((X_i'X) X_j \right) X_i A X_j'$$

$$= \sum_{j=1}^{n^2} \left(\sum_{i=1}^{n^2} \text{Tr} \left(X_i'XX_j \right) X_i \right) A X_j'$$

avec $\operatorname{Tr}(X_i'XX_j) = \operatorname{Tr}(XX_jX_i')$ et donc :

$$A'X = \sum_{j=1}^{n^2} \left(\sum_{i=1}^{n^2} \text{Tr} (XX_j X_i') X_i \right) AX_j'$$
$$= \sum_{j=1}^{n^2} XX_j AX_j' = X \sum_{j=1}^{n^2} X_j AX_j' = XA'$$

(on a utilisé $XX_j = \sum_{i=1}^{n^2} \operatorname{Tr}(XX_jX_i')X_i$).

Il existe donc une constante λ_A telle que $A' = \lambda_A I_n$ et on a :

$$n\lambda_{A} = \operatorname{Tr}(\lambda_{A}I_{n}) = \operatorname{Tr}(A') = \sum_{i=1}^{n^{2}} \operatorname{Tr}(X_{i}AX'_{i}) = \sum_{i=1}^{n^{2}} \operatorname{Tr}(X'_{i}X_{i}A)$$
$$= \sum_{i=1}^{n^{2}} \operatorname{Tr}(AX'_{i}X_{i}) = \operatorname{Tr}\left(A\sum_{i=1}^{n^{2}} X'_{i}X_{i}\right)$$
$$= \operatorname{Tr}(AI'_{n}) = \operatorname{Tr}(A\lambda_{I_{n}}I_{n}) = \lambda_{I_{n}} \operatorname{Tr}(A)$$

soit $\lambda_A = \frac{\lambda_{I_n}}{n} \operatorname{Tr}(A)$ pour toute matrice A. Prenant $A = I_n$, on a:

$$n\lambda_{I_n} = \operatorname{Tr}(I'_n) = \sum_{i=1}^{n^2} \operatorname{Tr}(X_i X'_i) = n^2$$

(puisque Tr $(X_iX_i') = \psi(X_i, X_i') = 1$ pour tout i) et $\lambda_{I_n} = n$.

On a donc en définitive $\lambda_A = \text{Tr}(A)$ et $A' = \sum_{i=1}^{n^2} X_i A X_i' = \text{Tr}(A) I_n$.

Partie V

- 1. Comme $g^m \mathbf{1}_n = 0$, l'endomorphisme g est annulé par le polynôme $X^m 1$ qui est scindé et à racines simples et il est en conséquence diagonalisable. Ses valeurs propres étant racines de $X^m - 1$, ce sont des racines m-èmes de l'unité.
- 2. Pour $g \in G$, Tr(g) est une somme de n racines m-èmes de l'unité, et comme il a m racines m-èmes de l'unité, l'ensemble $\{\text{Tr}(g) \mid g \in G\}$ est fini de cardinal au plus égal à m^n .

3.

- (a) Le sous-espace vectoriel V_G engendré par G est une sous-algèbre unitaire de $\mathcal{M}_n(\mathbb{C})$ puisque G contient $\mathbf{1}_n$ et est stable pour le produit. Cette algèbre est irréductible puisque G l'est et on a $G = \mathcal{M}_n(\mathbb{C})$ (identifié à End (\mathbb{C}^n)) d'après **II.8.** Donc G engendre $\mathcal{M}_n(\mathbb{C})$ et on peut en extraire une base $(X_k)_{1 \le k \le n^2}$.
- (b) Soit $(X_k')_{1 \le k \le n^2}$ la base de $\mathcal{M}_n(\mathbb{C})$ déduite de $(X_k)_{1 \le k \le n^2}$ comme en **IV.1.b.** On alors pour tout $g \in G$:

$$g = \sum_{i=1}^{n^2} \operatorname{Tr}(X_i g) X_i'$$

(question IV.2.) et G est fini puisque les Tr $(X_i g)$ sont dans $\{\text{Tr}(h) \mid h \in G\}$ qui est fini.

4.

(a) On suppose que G n'est pas irréductible. Il existe alors un sous-espace F de \mathbb{C}^n de dimension $p \in \{1, \cdots, n-1\}$ stable par toutes les applications de G. On se donne une base $(\nu_k)_{1 \leq k \leq p}$ de F que l'on complète en une base $\mathcal{B} = (\nu_k)_{1 \leq k \leq n}$ de \mathbb{C}^n et dans cette base, la matrice de $g \in G$ est de la forme :

$$\left(\begin{array}{cc} T\left(g\right) & U\left(g\right) \\ 0 & V\left(g\right) \end{array}\right).$$

avec $T(g) \in \mathcal{M}_p(\mathbb{C})$ et $V(g) \in \mathcal{M}_q(\mathbb{C})$, où q = n - p.

(b) Comme $g \in G$ est inversible, on a $\det(T(g)) \times \det(V(g)) = \det(g) \neq 0$ et les matrices T(g) et V(g) sont inversibles. Pour g_1, g_2 dans G, on a le produit par blocs :

$$g_{1}g_{2} = \begin{pmatrix} T(g_{1}) & U(g_{1}) \\ 0 & V(g_{1}) \end{pmatrix} \begin{pmatrix} T(g_{2}) & U(g_{2}) \\ 0 & V(g_{2}) \end{pmatrix}$$
$$= \begin{pmatrix} T(g_{1})T(g_{2}) & T(g_{1})U(g_{2}) + U(g_{1})V(g_{2}) \\ 0 & V(g_{1})V(g_{2}) \end{pmatrix}$$

et donc:

$$T(g_1) T(g_2) = T(g_1g_2)$$
 et $V(g_1) V(g_2) = V(g_1g_2)$.

ce qui signifie que les applications $T: G \to \mathrm{GL}(p,\mathbb{C})$ et $V: G \to \mathrm{GL}(q,\mathbb{C})$ sont des morphismes de groupes et G_1 , G_2 qui sont les noyaux respectifs de ces morphismes sont des sous-groupes distingués de G.

Pour $g \in G_1 \cap G_2$, on a $T(g) = 1_p$, $V(g) = 1_q$ et :

$$g^{m} = \begin{pmatrix} \mathbf{1}_{p} & mU(g) \\ 0 & \mathbf{1}_{q} \end{pmatrix} = \mathbf{1}_{n},$$

ce qui entraı̂ne U(g) = 0. On a donc $G_1 \cap G_2 = \{\mathbf{1}_n\}$.

(c) L'application:

$$\Phi: K \to K/K_1 \times K/K_2$$
$$x \mapsto (\dot{x}, \overline{x})$$

est un morphisme de groupes de noyau $\operatorname{Ker}(\Phi) = K_1 \cap K_2$. Par décomposition canonique de Φ , on obtient un morphisme injectif de groupes :

$$\widetilde{\Phi}: K/K_1 \cap K_2 \to K/K_1 \times K/K_2.$$

Les groupes quotients K/K_1 et K/K_2 étant finis, il en est de même de $K/(K_1 \cap K_2)$ qui est isomorphe à un sous-groupe de $K/K_1 \times K/K_2$. L'indice dans K de $K_1 \cap K_2$ est donc fini.

(d) On déduit de ce qui précède que tout sous groupe G de $GL(n, \mathbb{C})$ qui vérifie la propriété (P) est fini. Pour ce faire, on raisonne par récurrence sur $n \geq 1$.

Pour n=1, tout $g \in G \subset GL(1,\mathbb{C})$ est uniquement déterminée par $g(\overrightarrow{i}) = \lambda \overrightarrow{i}$ et comme $g^m=1$, λ est une racine m-ème de l'unité et en conséquence ne peut prendre qu'un nombre fini de valeurs. Le groupe G est donc fini de cardinal au plus égal à m.

Supposons le résultat acquis jusqu'au rang n-1 et soit G un sous-groupe de $\mathrm{GL}\,(n,\mathbb{C})$ qui vérifiant la propriété (P).

Si G est irréductible, le résultat de la question V.3. nous dit que G est fini.

Sinon on construit des sous-groupes G_1 et G_2 comme en $\mathbf{V.4.b.}$ et en utilisant la décomposition canonique de $T: G \to \mathrm{GL}\,(p,\mathbb{C})$, on déduit que G/G_1 est isomorphe à un sous-groupe de $\mathrm{GL}\,(p,\mathbb{C})$ qui vérifie la condition (P) avec p < n et G/G_1 est un groupe fini. Donc G_1 est d'indice fini dans G.

De même G_2 est d'indice fini dans G, et avec **V.4.c.** on déduit que $G/(G_1 \cap G_2)$ est fini. Enfin avec $G_1 \cap G_2 = \{\mathbf{1}_n\}$ (question **V.4.b.**), on déduit que G est fini.

Partie VI

1. Pour i, j comprise ntre 1 et n, l'application

$$\varphi_{ij}: \mathcal{M}_n(\mathbb{C}) \times M_m(\mathbb{C}) \to M_m(\mathbb{C})
(A, B) \mapsto a_{ij}B$$

étant bilinéaire, on en déduit la bilinéarité de ϕ .

En effectuant les produits de matrices par blocs, on a :

$$(A * B) (A' * B') = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \cdots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{pmatrix} \begin{pmatrix} a'_{11}B' & \cdots & a'_{1n}B' \\ \vdots & \cdots & \vdots \\ a'_{n1}B' & \cdots & a'_{nn}B' \end{pmatrix}$$

$$= \begin{pmatrix} \left(\sum_{k=1}^{n} a_{1k}a'_{k1}\right)BB' & \cdots & \left(\sum_{k=1}^{n} a_{1k}a'_{kn}\right)BB' \\ \vdots & \cdots & \vdots \\ \left(\sum_{k=1}^{n} a_{nk}a'_{k1}\right)BB' & \cdots & \left(\sum_{k=1}^{n} a_{nk}a'_{kn}\right)BB' \end{pmatrix} = AA' * BB'$$

2. On note respectivement $(E_{i,j})_{1 \leq i,j \leq n}$, $(E'_{i,j})_{1 \leq i,j \leq m}$ et $(E''_{i,j})_{1 \leq i,j \leq nm}$ les bases canoniques de $\mathcal{M}_n(\mathbb{C})$, $M_m(\mathbb{C})$ et $M_{nm}(\mathbb{C})$. La matrice :

$$\phi(E_{i,j}, E'_{k,\ell}) = E_{i,j} * E'_{k,\ell} = (\delta_{i,j} E'_{k,\ell})_{1 \le i,j \le n}$$

a tous ses coefficients nuls sauf celui qui est placé en (m(i-1)+k)-ème ligne et $(m(j-1)+\ell)$ -ème colonne, ce qui signifie que :

$$E_{i,j} * E'_{k,\ell} = E''_{m(i-1)+k,m(j-1)+\ell}$$

et toutes les matrices $E_{i,j}''$ de la base canonique de $M_{nm}(\mathbb{C})$ appartiennent à l'image de ϕ (tout couple d'entiers (p,q) où $1 \leq p,q \leq nm$ peut s'écrire $(m(i-1)+k,m(j-1)+\ell)$). On a donc $\mathrm{Im}(\phi) = M_{nm}(\mathbb{C})$.

3.

(a) On a, en utilisant le résultat de VI.1. :

$$P^{2} = \left(\sum_{1 \leq i,j \leq n} E_{i,j} * E_{j,i}\right) \left(\sum_{1 \leq k,\ell \leq n} E_{k,\ell} * E_{\ell,k}\right)$$

$$= \sum_{i,j,k,\ell} E_{i,j} E_{k,\ell} * E_{j,i} E_{\ell,k} = \sum_{i,j,k,\ell} \delta_{j,k} E_{i,\ell} * \delta_{i,\ell} * E_{j,k}$$

$$= \sum_{1 \leq i,j \leq n} E_{i,i} * E_{j,j} = \sum_{p=1}^{n^{2}} E''_{p,p} = \mathbf{1}_{n^{2}}.$$

(b) Par bilinéarité, il suffit de montrer le résultat pour les matrices de base. Pour $A=E_{p,q}$ et $B=E_{r,s}$, on a :

$$P(A * B) = \sum_{1 \le i,j \le n} (E_{i,j} * E_{j,i}) (E_{p,q} * E_{r,s})$$

$$= \sum_{1 \le i,j \le n} (E_{i,j} E_{p,q} * E_{j,i} E_{r,s}) = \sum_{1 \le i,j \le n} (\delta_{j,p} E_{i,q} * \delta_{i,r} E_{j,s})$$

$$= E_{r,q} * E_{p,s}$$

et:

$$P(A * B) P = \sum_{1 \le i,j \le n} (E_{r,q} * E_{p,s}) (E_{i,j} * E_{j,i})$$

$$= \sum_{1 \le i,j \le n} (E_{r,q} E_{i,j} * E_{p,s} E_{j,i}) = \sum_{1 \le i,j \le n} (\delta_{q,i} E_{r,j} * \delta_{s,j} E_{p,i})$$

$$= E_{r,s} * E_{p,q} = B * A.$$

4.

(a) On a

$$\operatorname{Tr}(A * B) = \sum_{i=1}^{n} \operatorname{Tr}(a_{ii}B) = \left(\sum_{i=1}^{n} a_{ii}\right) \operatorname{Tr}(B) = \operatorname{Tr}(A) \operatorname{Tr}(B)$$

et

$$\det (A * B) = \det (A * \mathbf{1}_n) (\mathbf{1}_n * B) = \det (A * \mathbf{1}_n) \times \det (\mathbf{1}_n * B).$$

La matrice $1_n * B$ est carrée d'ordre n^2 , diagonale par blocs avec n blocs égaux à B situés sur la diagonale principale, soit :

$$\mathbf{1}_n * B = \begin{pmatrix} B & 0 & \cdots & 0 \\ 0 & B & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & B \end{pmatrix}$$

donc det $(\mathbf{1}_n * B) = (\det B)^n$. La question **VI.3.** nous dit qu'il existe une matrice involutive P telle que P(A * B) P = B * A, ce qui entraîne :

$$\det (A * \mathbf{1}_n) = \det P \times \det (\mathbf{1}_n * A) \times \det P = (\det A)^n$$

et $\det(A * B) = (\det A)^n (\det B)^n$.

(b) Une matrice carrée à coefficient dans \mathbb{C} étant trigonalisable, il existe des matrices triangulaires supérieures :

$$T = \begin{pmatrix} \lambda_1 & t_{12} & \cdots & t_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & t_{n-1,n} \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}, S = \begin{pmatrix} \mu_1 & s_{12} & \cdots & s_{1n} \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & s_{n-1,n} \\ 0 & \cdots & 0 & \mu_n \end{pmatrix}$$

et des matrices inversibles Q et R telles que $A = Q^{-1}TQ$ et $B = R^{-1}SR$ où $\lambda_1, \dots, \lambda_n$ sont les valeurs propres de A et μ_1, \dots, μ_n celles de B. On a alors :

$$A*B = \left(Q^{-1}TQ\right)*\left(R^{-1}SR\right) = \left(Q^{-1}*R^{-1}\right)\left(T*S\right)\left(Q*R\right).$$

Avec:

$$(Q^{-1} * R^{-1}) (Q * R) = (Q^{-1}Q) * (R^{-1}R) = \mathbf{1}_n * \mathbf{1}_n = \mathbf{1}_{n^2}$$

on déduit que $Q^{-1} * R^{-1} = (Q * R)^{-1}$ et :

$$A * B = (Q * R)^{-1} (T * S) (Q * R)$$

ce qui signifie que A*B est semblable à T*S et en conséquence ces valeurs propres sont celles de T*S. Enfin, comme T*S est triangulaire supérieure de termes diagonaux $\lambda_i \mu_j$ avec $1 \le i \le n$ et $1 \le j \le n$, on déduit que les valeurs propres de A*B sont ces $\lambda_i \mu_j$.