We claim:

DEAV 2003/0072

1. A compound of the formula I:

5

R4
R3
R5
$$O=S=O$$

$$(CH_2)n$$

$$R2$$

$$O$$

$$(CH_2)m$$

$$A$$

$$A$$

$$I$$

wherein

10 A

is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

15

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or a heterocycle;

n is 0 or 1;

20 m

is 0, 1, 2, 3, 4, 5 or 6;

R₁ is R8, (C_1-C_6) -alkylene-R8, (C_2-C_6) -alkenylene-R9, (SO_2) -R8, (SO_2) - (C_1-C_6) -alkylene-R9, (SO_2) -R8, (SO_2) - (C_1-C_6) -alkylene-R9, (SO_2) -R8, (SO_2) - (SO_2) - (SO_2) -R8, (SO_2) - (SO_2) - (SO_2) -R8, (SO_2) - (SO_2) -(C_6)-alkylene-R8, (SO₂)-(C_2 - C_6)-alkenylene-R9, (C=O)-R8, (C=O)-(C_1 - C_6)alkylene-R8, (C=O)NH-R8, (C=O)-(C_2 - C_6)-alkenylene-R9, (C=O)-NH-5 (C₁-C₆)-alkylene-R8, (C=O)-NH- (C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9, alkynylene-R9 or (C₁-C₄-alkyl)-heterocycle, wherein the alkylene component of said (C₁-C₆)alkylene-R8, (C2-C6)-alkenylene-R9, (SO2)-(C1-C6)-alkylene-R8, (SO2)-(C2- C_6)-alkenylene-R9, (C=O)-(C_1 - C_6)-alkylene-R8, (C=O)-(C_2 - C_6)-alkenylene-R9, (C=O)-NH-(C1-C6)-alkylene-R8, (C=O)-NH- (C2-C6)-alkenylene-R9, 10 COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9 and alkynylene-R9 groups is optionally substituted by F; R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)-15 cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF_3 , $O-(C_1-C_6)$ -alkyl, (C_1-C_6) -alkyl, NH_2 , CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂; 20 R2 is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, $N(C_1-C_6-alkyl)N^{\dagger}(C_1-C_4-alkyl)_3$ or a nitrogencontaining heterocycle, wherein said heterocycle is bonded via a nitrogen atom: 25 R3, R4, R5 are each independently H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)alkyl, O-(C1-C4)-alkoxy-(C1-C4)-alkyl, S-(C1-C6)-alkyl, (C1-C6)-alkyl, (C2- C_6)-alkenyl, (C_3-C_8) -cycloalkyl, $O-(C_3-C_8)$ -cycloalkyl; (C_3-C_8) -cycloalkenyl,

O- (C_3-C_8) -cycloalkenyl, (C_2-C_6) -alkynyl, aryl, O-aryl (C_1-C_8) -alkylene-aryl, O- (C_1-C_8) -alkylene-aryl, S-aryl, N((C_1-C_6) -alkyl)₂, SO₂-CH₃, COOH, COO-

 (C_1-C_6) -alkyl or CO-N((C_1-C_6) -alkyl)₂;

30

is H, F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, O-(C₁-C₄)-alkoxy-(C₁-C₄)-alkyl, S-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, (C₂-C₆)-alkenyl, (C₃-C₈)-cycloalkyl, O-(C₃-C₈)-cycloalkyl, (C₃-C₈)-cycloalkenyl, O-(C₃-C₈)-cycloalkenyl, (C₂-C₆)-alkynyl, (C₀-C₈)-alkylene-aryl, O-(C₀-C₈)-alkylene-aryl, S-aryl, N((C₁-C₆)-alkyl)₂, SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CO-N((C₁-C₆)-alkyl)₂;

and pharmaceutically acceptable salts thereof.

10 2. The compound of Claim 1 having the following structure Ia

$$R3$$
 $R5$
 $O=S=O$
 $R6$
 $R2$
 $O=S=O$
 $O=S=O$

wherein

is a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, and 12-membered mono-, bi- or spirobicyclic ring containing one or more heteroatoms selected from the group of N, O and S, and is optionally substituted with F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

20

5

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or a heterocycle;

	m	is 0, 1, 2, 3, 4, 5 or 6;
5	R1	is R8, (C_1-C_6) -alkylene-R8, (C_2-C_6) -alkenylene-R9, (SO_2) -R8, (SO_2) - (C_1-C_6) -alkylene-R8, (SO_2) - (C_2-C_6) -alkenylene-R9, $(C=O)$ -R8, $(C=O)$ - (C_1-C_6) -
		alkylene-R8, (C=O)NH-R8, (C=O)-(C ₂ -C ₆)-alkenylene-R9, (C=O)-NH-
		(C ₁ -C ₆)-alkylene-R8, (C=O)-NH- (C ₂ -C ₆)-alkenylene-R9, COO-R8, COO-
		(C ₁ -C ₆)-alkylene-R8, COO-(C ₂ -C ₆)-alkenylene-R9, alkynylene-R9 or (C ₁ -
		C ₄ -alkyl)-heterocycle;
10	R8, R9	are each independently H, F, Cl, Br, I, OH, CF ₃ , aryl, heterocycle or (C ₃ -C ₈)-cycloalkyl, wherein said aryl, heterocycle and (C ₃ -C ₈)-cycloalkyl groups are
		optionally mono-, di- or tri-substituted by F, Cl, Br, I, OH, CF ₃ , NO ₂ , CN,
		OCF ₃ , O-(C ₁ -C ₆)-alkyl, (C ₁ -C ₆)-alkyl, NH ₂ , CON(R11)(R12), N(R13)(R14),
15		SO ₂ -CH ₃ , COOH, COO-(C ₁ -C ₆)-alkyl or CONH ₂ ;
	R2	is NH ₂ , NO ₂ , N(R13)(R14), NH-SO ₂ -CH ₃ , NH-SO ₂ -R12, NR11-SO ₂ -R12,
		N(CO)R11, NHCONR11, N(C ₁ -C ₆ -alkyl)N ⁺ (C ₁ -C ₄ -alkyl) ₃ or a nitrogen-
		containing heterocycle, wherein said heterocycle is bonded via a nitrogen
20		atom;
	R3, R4, R5	are each independently H. E. Cl. D. J. O.H. CE. NO. CN. O.C. O. (C. C.)
	NJ, N4, NJ	are each independently H, F, Cl, Br, I, OH, CF ₃ , NO ₂ , CN, OCF ₃ , O-(C ₁ -C ₆)-alkyl, O-(C ₁ -C ₄)-alkoxy-(C ₁ -C ₄)-alkyl, S-(C ₁ -C ₆)-alkyl, (C ₂ -
		C ₆)-alkenyl, (C ₃ -C ₈)-cycloalkyl, O-(C ₃ -C ₈)-cycloalkyl, (C ₃ -C ₈)-cycloalkenyl,
25		
23		O-(C ₃ -C ₈)-cycloalkenyl, (C ₂ -C ₆)-alkynyl, aryl, O-aryl (C ₁ -C ₈)-alkylene-aryl,
		O-(C ₁ -C ₈)-alkylene-aryl, S-aryl, N((C ₁ -C ₆)-alkyl) ₂ , SO ₂ -CH ₃ , COOH, COO-
		(C_1-C_6) -alkyl or CO-N((C_1-C_6) -alkyl) ₂ ;
	R6	is H, F, Cl, Br, I, OH, CF ₃ , NO ₂ , CN, OCF ₃ , O-(C ₁ -C ₆)-alkyl, O-(C ₁ -C ₄)-
30		alkoxy- (C_1-C_4) -alkyl, S- (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl,
		(C_3-C_8) -cycloalkyl, $O-(C_3-C_8)$ -cycloalkyl, (C_3-C_8) -cycloalkyl, $O-(C_3-C_8)$ -cycloalkyl, $O-(C_3-C_8)$ -cycloalkyl, $O-(C_3-C_8)$ -
		(C3-C8)-Cycloalky1, O-(C3-C8)-Cycloalky1, (C3-C8)-Cycloalkelly1, O-(C3-C8)-

cycloalkenyl, (C_2 - C_6)-alkynyl, aryl, O-aryl, (C_1 - C_8)-alkylene-aryl, O-(C_1 -

 C_8)-alkylene-aryl, S-aryl, $N((C_1-C_6)-alkyl)_2$, SO_2-CH_3 , COOH, $COO-(C_1-C_6)-alkyl$ or $CO-N((C_1-C_6)-alkyl)_2$;

and pharmaceutically acceptable salts thereof.

5

3. The compound of Claim 2 wherein

A is aryl wherein said aryl is optionally substituted by F, Cl, Br, NO₂, CF₃,
OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;

R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or heterocycle;

m is 1;

15

R1

is R8, (C₁-C₆)-alkylene-R8, (C₂-C₆)-alkenylene-R9, (SO₂)-R8, (SO₂)-(C₁-C₆)-alkylene-R8, (SO₂)-(C₂-C₆)-alkenylene-R9, (C=O)-R8, (C=O)-(C₁-C₆)-alkylene-R8, (C=O)NH-R8, (C=O)-(C₂-C₆)-alkenylene-R9, (C=O)-NH-(C₁-C₆)-alkylene-R8, (C=O)-NH-(C₂-C₆)-alkenylene-R9, COO-R8, COO-(C₁-C₆)-alkylene-R8, COO-(C₂-C₆)-alkenylene-R9, alkynylene-R9 or (C₁-C₄-alkyl)-heterocycle;

20

R8, R9 are each independently H, F, Cl, Br, I, OH, CF₃, aryl, heterocycle or (C₃-C₈)-cycloalkyl, wherein said aryl, heterocycle and (C₃-C₈)-cycloalkyl groups are optionally mono-, di-, or tri-substituted by F, Cl, Br, I, OH, CF₃, NO₂, CN, OCF₃, O-(C₁-C₆)-alkyl, (C₁-C₆)-alkyl, NH₂, CON(R11)(R12), N(R13)(R14), SO₂-CH₃, COOH, COO-(C₁-C₆)-alkyl or CONH₂;

30 R2

is NH₂, NO₂, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N $^{+}$ (C₁-C₄-alkyl)₃ or a nitrogen-

containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H

R4, R5 are each independently H, F, Cl, Br, OH, CF₃, OCF₃, O-(C₁-C₆)-alkyl or (C₁-C₆)-alkyl;

R6 is H;

10

5

and pharmaceutically acceptable salts thereof.

- 4. The compound of Claim 3 wherein
- is aryl, wherein said aryl group is optionally substituted by F, Cl, Br, NO₂, CF₃, OCF₃, CN, (C₁-C₆)-alkyl, aryl, CON(R11)(R12), N(R13)(R14), OH, O-(C₁-C₆)-alkyl, S-(C₁-C₆)-alkyl, N(R15)CO(C₁-C₆)-alkyl or COO-(C₁-C₆)-alkyl;
- 20 R11, R12, R13, R14, R15 are each independently H, (C₁-C₆)-alkyl or heterocycle;

m is 1;

R1 is (C_1-C_6) -alkyl or (C_1-C_6) -alkylene-R8;

25 P8 P0

R8, R9 are each independently F, Cl, Br, I, OH or CF₃;

is NH₂, NO₂, CN, N(R13)(R14), NH-SO₂-CH₃, NH-SO₂-R12, NR11-SO₂-R12, N(CO)R11, NHCONR11, N(C₁-C₆-alkyl)N⁺(C₁-C₄-alkyl)₃ or a nitrogen-containing heterocycle, wherein said heterocycle is bonded via a nitrogen atom,

R3 is H;

R4 is F, Cl, Br, OH, CF₃, OCF₃, O- (C_1-C_6) -alkyl or (C_1-C_6) -alkyl;

R5 is H, F, Cl, Br, OH, CF₃, OCF₃, O- (C_1-C_6) -alkyl or (C_1-C_6) -alkyl;

5 R6 is H;

and pharmaceutically acceptable salts thereof.

- 5. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 6. The pharmaceutical composition of Claim 5 further comprising one or more anorectic active ingredients.
- 15 7. The pharmaceutical composition of Claim 5 further comprising one or more statins.
- 8. The pharmaceutical composition of claim 5 further comprising one or more antidiabetics, hypoglycemic active ingredients, HMGCoA reductase inhibitors, cholesterol absorption inhibitors, PPAR gamma agonists, PPAR alpha agonists, PPAR alpha/gamma 20 agonists, fibrates, MTP inhibitors, bile acid adsorption inhibitors, CETP inhibitors, polymeric bile acid adsorbents, LDL receptor inducers, ACAT inhibitors, antioxidants, lipoprotein lipase inhibitors, ATP-citrate lyase inhibitors, squalene synthetase inhibitors, lipoprotein(a) antagonists, lipase inhibitors, insulins, sulfonylureas, biguanides, meglitinides, thiazolidinediones, α-glucosidase inhibitors, active ingredients acting on the 25 ATP-dependent potassium channel of beta cells, CART agonists, NPY agonists, MC4 agonists, orexin agonists, H3 agonists, TNF agonists, CRF agonists, CRF BP-antagonists, urocortin agonists, β3 agonists, MSH (melanocyte-stimulating hormone) agonists, CCK agonists, serotonin reuptake inhibitors, mixed sertoninergic and noradrenergic compounds, 5HT agonists, bombesin agonists, galanin antagonists, growth hormones, growth hormone-30 releasing compounds, TRH agonists, uncoupling protein 2 or 3 modulators, leptin agonists,

DA agonists (bromocriptine, Doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators or $TR-\beta$ agonists or amphetamines.

- 9. A method of treating obesity comprising administering to a patient in need thereof a5 compound of Claim 1.
 - 10. A method of treating obesity comprising administering to a patient in need thereof a compound of Claim 1 in combination with at least one further anorectic active ingredient.
- 10 11. A method of treating type II diabetes comprising administering to a patient in need thereof a compound of Claim 1.
 - 12. A method of treating type II diabetes comprising administering to a patient in need thereof a compound of Claim 1 in combination with at least one further anorectic active ingredient.
 - 13. A method of reducing weight in mammals comprising administering to a patient in need thereof a compound of Claim 1.
- 20 14. A method of treating metabolic syndrome comprising administering to a patient in need thereof a compound of Claim 1.
 - 15. A method of treating female and male sexual disorders comprising administering to a patient in need thereof a compound of Claim 1.

25

15