Aufgabe 1: X, Y, T, J & Muyen X, = X für ieI, Y, = Y für jef. $A) \left(\begin{array}{c} (X_i - X_i) \\ (X_i - X_i) \end{array} \right) = \left(\begin{array}{c} (X_i - X_i) \\ (X_i - X_i) \end{array} \right)$ Slweis: $\|E\|_{\mathcal{S}^{+}} = \|\mathcal{S}^{+} \times E(\bigcap_{i \in I} X_{i}) \cup (\bigcap_{j \in I} Y_{j}), \text{ So is } f \times E(\bigcap_{i \in I} X_{i})$ oder XE () Y; Wegen () X; = ((xi))eIxJ $|deun X_i \subseteq X_i \cup Y_j = fair alle i \in I, (i,j) \in IXJ$ and $(X_i, Y_j) \in (X_i, Y_j)$ folgt dann $(X_i, Y_j) \in [X_j]$ $X \in (X, V)$ $u = \int_{0}^{\pi} \int_{0}^{\pi} f(x) = \int_{0}^{\pi} \int_{$ für jedes $(i,j) \in I \times J - also bei fest gewählten$ $<math>j \in J$ gift $X \in X$. $V \mid f$ für alle $i \in I$, alle, XE ((iet X;) v Yj. Da dies für alle jef

gilt, ist $X \in (\bigcap X_{i}) \cup (\bigcap Y_{i})$. b) Für $C \in \mathcal{P}(X \cup Y)$, also $C = X \cup Y$ ist $(C_n X) = X$, $C_n Y = Y$. = "Wegen Cax = C und Cay = C folgt " (Cax) v (Cay) = C " Wegen C=P(XvY) gitt für XE C=XvY;

XE | CnX falls XEX

CnY falls XEY also $x \in (CnX) \cup (CnY)$. C) Reli: $X_1(\bigcup_{i \in I} X_i) = \bigcap_{i \in I} (X_i X_i)$ E"Sa' XEXI (IX;) so ist XE (X; esgiff also kein i E I mit XEX; obh. X; EXX; für jedes jedes i EI, obh. X E (XX;)

2 18+XE (XX;), olann ist XEXX; für jedes

i eI, obh. es gibt kein i e I mit XEX;

i eI, obh. es gibt kein i e I mit XEX;

weshalb x & DX; when x & X (DX;)

Aufgabe2: A = Der Hudeut gelet in die Uni Aussageu; B = Es ist Wodeeneude C = Es wird eine Rufung stattfinden D = Der Shedeut hat Augst. E = Der Student geht fliern F = Der Student hat 2u wenig gelent. $a) \quad S \Rightarrow / \neg A /$ Wenn Wodenende ist, gelet der Andent midet in die Uni Der Student hat genan dann Anget, wenn eine Prüfung stattfindet und er Zugleich zu wenig geleint hat. b) D (CAF) $C_1/(-7F)VB) \Rightarrow E$ Wenn der Student genug gelent hat oder Wochenende ist, gehrt er feien d) (B1C) => (-TE) Wenn Woshenende und Engleich eine Prüfung et,
gehrt der Student midst feiten.
e) $-1(-7A) \wedge (-7E)$ entspricht $A \vee E$, also:
Der Student gehrt in die Uni oder fleiern.

Aufgabe 3: a) $f: \mathbb{R} \longrightarrow \mathbb{R}$ · ist jujektiv, deun sind x, y \ Runt f(x)=x+22t=f(y)=y+22t so folgt clarde Substraktion von 22t; x=y · ist surjector, deun für y ER ist y = fly-2024).

· Als Truckson, die injector und surjector ist, ist for bijeletiv. $b) \not\downarrow 2 : \mathbb{R} \longrightarrow \mathbb{R}$ $X \longmapsto \begin{cases} X-1 & \text{fix } X>1 \\ 0 & \text{fix } X \in [-1,1] \end{cases}$ $X \mapsto \begin{cases} X+1 & \text{fix } X<-1 \end{cases}$ · jet midst jujektiv, alem 28, f(-1)=f(1)=0, $y \in J_0, \infty I \text{ st } y = f(y+1)$ y = 0 ist y = f(y+1) $y \in J_{-\infty}, 0 I \text{ ist } y = f(y+1)$ $widt injektiv \text{ ist, ist } f_2 \text{ and } widt$ bijektiv.· Ist surjektiv, denn fûr

 $C) f_3: \mathbb{R} \longrightarrow \mathbb{K}_{0xy}$ · ist wicht injelets 2B, f(4)=1=f(1) · ist wicht surjelets 2B, 1st $\chi^{2024} = \left(\chi^{10} / 102\right)^{2} \geq 0$ also $f_3(R) = [0, \infty] \neq R$ · midet bjektiv. b) $f: \mathbb{R} \longrightarrow \mathbb{R}$ · ist midet injelesiv, denn 28. f(-1)=0=f(1) · ist midet surjektiv, denn 2B. f(x) < 1 for $\chi \le 1$ f2(x) = x+1>1 fûr x>1 also ist 1 f f(R)