

Robotics 2 - 27 May 2019

Boundary value problems (BVP) – standard forms

2 point BVP

$$\dot{x} = f(t, x)
r(x(t_0), x(t_{end})) = 0$$
(1)

Multipoint BVP:

$$\dot{x} = f(t, x)$$
 $r(x(t_0), x(t_1), \dots, x(t_{end})) = 0$
(2)

- Other special types of boundary conditions
 - **Linear 2 point boundary condition**
 - Linear separated boundary cond.

General separated boundary cond.

- $Ax(t_0) + Bx(t_{end}) = c_1$
- $A_i x(t_i) = c_i \quad i = 1, ..., k$
- $r(x(t_i)) = c_i \quad i = 1, ..., k$

Solution methods for boundary value problems

Solution method for BVP: Single Shooting

We consider again the 2 point BVP:

$$\dot{x} = f(t, x(t)) \qquad f \in C^2$$

$$r(x(t_0), x(t_{end})) = 0$$

- Basic idea dea of Shooting methods: Trace BVP back to underlying IVP
- Hence the name "initial value methods for the solution of BVP" for shooting methods
- solution of the BVP exists

Single Shooting

 A simple example with one variable and one end point condition

$$\dot{x}_1(t) = f(t, x_1(t))$$

$$r = x(t_{end}) = c$$

Single Shooting

 A simple example with one variable and one end condition

$$\dot{x}_1(t) = f(t, x_1(t))
r = x(t_{end}) = c$$

Single Shooting Algorithm

- 1. Select initial value (vector) S_0
- 2. Solve Initial value problem

$$\dot{x}(t) = f(t,x)$$

$$x(t_0) = s_0$$

Solution $\bar{x}(t;t_0,s_0)$

1. Is boundary condition satisfied?

$$r(s_0, x(t_{end}; t_0, s_0)) = 0$$

2. Otherwise: Solve nonlinear system of equations numerically:

$$F(s_0) = r(s_0, x(t_{end}; t_0, s_0)) = 0$$

Method of choice?

Newton's method

Numerical solution of nonlinear equations by Newton's method

Iterative solution

$$F(s_{0[k+1]}) = F(s_{0[k]}) + \nabla F(s_{0[k]}) \Delta s_{0[k]} \stackrel{!}{=} 0$$

$$\Delta s_{0[k]} = -\nabla F(s_{0[k]})^{-1} F(s_{0[k]})$$

$$s_{0[k+1]} = s_{0[k]} + \Delta s_{0[k]}$$

- Every step of this iteration requires a new
 - integration
 - evaluation of boundary conditions
 - computation of derivatives

Computation of ∇ F

$$\nabla F(s_{0[k]}) = \frac{\partial r}{\partial x_0}(s_{0[k]}, x(t_{end}; t_0, s_{0[k]})) + \frac{\partial r}{\partial x_{end}}(s_{0[k]}, x(t_{end}; t_0, s_{0[k]})) \cdot \frac{\partial x(t_{end}; t_0, s_{0[k]})}{\partial x_0}$$

This requires:

- Partial derivatives of boundary conditions with respect to initial and final values (in many cases analytical derivatives, see example)
- Computation of sensitivity matrix of end values of trajectory with respect to initial values, i.e. derivatives of integrated trajectory (more complex)

$$F = r(x_0, x_e) = x_0 - x_e = 0$$

$$\nabla F(s_0[k]) = 1 + (-1)$$

Sensitivities of trajectories

How do end values of integration change if initial values change?

How this is done will be discussed later today or next week

Single Shooting – what might happen?

Advantages and disadvantages of Single Shooting

Advantages:

- Simple concept
- Simple implementation possible; state of the art components can be used for solution of initial value problems and of nonlinear equations

Disadvantages:

- Even for well conditioned BVD, the corresponding IVP can be unstable
- For bad initial values there is no guarantee that the solution of the IVP exists on the whole interval $[t_0, t_{end}]$, i.e. (F(s0) may be only defined small neighborhood of s*)
- For bad starting data, Newton's method does not converge.

From single shooting to multiple shooting

Multiple Shooting

Addresses the disadvantages of Single Shooting which result from the long integration time

Idea:

Split the interval $\left[t_0,t_{end}\right]$ into m subintervals (= multiple shooting intervals)

$$[t_i, t_{i+1}], i = 0, \dots, m-1,$$
 $t_0 < t_1 < \dots < t_m = t_{end}$

Instead of s_0 only, introduce parameterized initial values for all intervals at the so called multiple shooting points.

$$s_i \in \mathbb{R}^n$$

Independent integrations ("shots") are performed from all these points

Multiple Shooting

- Integration and sensitivity generation are performed seperately on each interval
- In order to guarantee equivalence to the original problem, continuity conditions have to be satisfied at the interval borders

$$x(t_{i+1}; t_i, s_i) - s_{i+1} = 0, \quad i = 0, \dots, m-1$$

Multiple Shooting – Variables and constraints

- Compared to Single Shooting
 - n variables $s_0 \in \mathbb{R}^n$
 - n nonlinear equations $F(s_0) = r(s_0, x(t_{end}; t_0, s_0)) = 0$
- Multiple Shooting requires

$$s_i \in \mathbb{R}^n$$
 $i = 1, \dots, m$

- $n \cdot m$ additional variables
- $-n\cdot m$ additional constraints (the continuity conditions)
- The problem size has been considerably increased to $\ n \cdot (m+1)$ But we will see later that suitable numerical techniques avoid a big increase in computational complexity.

Multiple Shooting algorithm

- In analogy to Single Shooting, but
 - Integration of IVP + Sensitivity generation on all multiple shooting intervals i, starting from s_i. The integrations are completely independent, and can be easily parallelized.
 - Solution of Multiple Shooting system of equations:

$$F(s) = \begin{pmatrix} x(t_1;t_0,s_0) - s_1 \\ x(t_2;t_1,s_1) - s_2 \\ \vdots \\ x(t_m;t_{m-1},s_{m-1}) - s_m \end{pmatrix} = 0, \text{ with } s = \begin{pmatrix} s_0 \\ s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} \in \mathbb{R}^{n(m+1)}$$

nonlinear system of equations with $\ n \cdot (m+1)$ equations and unknowns

Multiple Shooting algorithm

This system can also be solved by Newton's method

• Newton iteration
$$s_{[k+1]} = s_{[k]} + \Delta s_{[k]}$$

where $\Delta s_{[k]}$ is a solution of the following system of equations:

with the Jacobian
$$\nabla F(s_{[k]} \cdot \Delta s_{[k]} = -F(s_{[k]})$$

$$G_{acobian} = \begin{pmatrix} A & 0 & \cdots & \cdots & 0 & B \\ G_0 & -I & 0 & \cdots & 0 & 0 \\ 0 & G_1 & -I & \vdots & 0 \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & G_{m-1} & -I \end{pmatrix}$$

$$A = \frac{\partial r(s_0, s_m)}{\partial s_0}$$

$$B = \frac{\partial r(s_0, s_m)}{\partial s_m}$$

$$G_i = \frac{\partial x(t_{i+1}; t_i, s_i)}{\partial s_i}$$

Excursion: Solution of linear systems of equations

- For the solution of linear systems of equations there are many standard direct methods, such as Gauss elimination (= LR decomposition) which are implemented in many libraries
- But the numerical cost for such algorithms is quite high, e.g in the case of Gauss elimination $\sim \frac{2}{3}z^3$ flops (z: dimension of system)

i.e. for the multiple shooting system it would be

$$\sim \frac{2}{3} \left(n(m+1) \right)^3$$
 flops

and therefore much higher than for the single shooting system:

$$\sim \frac{2}{3}n^3$$
 flops

• BUT: the Jacobian ∇F has got a special structure (= many zeroes at exactly known places), which can be exploited for the solution of the linear system

Condensing

Condensing (Block Gauss Decomposition)

 Goal: efficient structure expoiting decomposition of the nonlinear system of equations

$$\nabla F(s) \cdot \Delta s = -F(s)$$

$$\begin{pmatrix} A & 0 & 0 & \cdots & 0 & B \\ G_0 & -I & 0 & \cdots & \cdots & 0 \\ 0 & G_1 & -I & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & G_{m-1} & -I \end{pmatrix} \Delta s = -\begin{pmatrix} r \\ h_0 \\ h_1 \\ \vdots \\ h_{m-1} \end{pmatrix}$$

$$r = r(s_0, s_m), h_i := x(t_{i+1}; t_i, s_i) - s_{i+1} \text{ und } \Delta s^T = (\Delta s_0^T, \dots, \Delta s_m^T)$$

Condensing algorithm - 1

Multiply the last block row with B and add it to the first block row

$$\begin{pmatrix} A & 0 & \cdots & 0 & BG_{m-1} & 0 \\ G_0 & -I & 0 & \cdots & \cdots & 0 \\ 0 & G_1 & -I & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & G_{m-1} & -I \end{pmatrix} \Delta s = -\begin{pmatrix} r + Bh_{m-1} \\ h_0 \\ h_1 \\ \vdots \\ h_{m-1} \end{pmatrix}$$

ullet Multiply the second last block row with BG_{m-1} nd add it to the first block row

$$\begin{vmatrix} \begin{pmatrix} A & 0 & 0 & BG_{m-1}G_{m-2} & 0 & 0 \\ G_0 & -I & 0 & \cdots & \ddots & 0 \\ 0 & G_1 & -I & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & 0 \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & G_{m-1} & -I \end{pmatrix} \Delta s = - \begin{vmatrix} r + Bh_{m-1} + BG_{m-1}h_{m-2} \\ h_0 \\ h_1 \\ \vdots \\ h_{m-1} & O & B \\$$

Condensing algorithm - 2

• ... etc., until only the first block in the first row has non zero entries

$$\begin{pmatrix}
E & 0 & \cdots & \cdots & 0 \\
G_0 & -I & 0 & \cdots & \cdots & 0 \\
0 & G_1 & -I & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & G_{m-1} & -I
\end{pmatrix}
\Delta s = -
\begin{pmatrix}
u \\
h_0 \\
h_1 \\
\vdots \\
\vdots \\
h_{m-1}
\end{pmatrix}$$

$$E := A + BG_{m-1} \cdots G_0$$

$$u := r + Bh_{m-1} + BG_{m-1}h_{m-2} + \dots + BG_{m-1} \cdot \dots \cdot G_1h_0$$

 This system has got band structure / a block diagonal shape

Condensing algorithm - 3

Solve the first block row ("the condensed system")

$$E\Delta s_0 = -u$$

dense system of dimension n

.. then the second block row ...

$$G_0 \Delta s_0 - I \Delta s_1 = -h_0$$

$$\Delta s_1 = G_0 \Delta s_0 + h_0$$

• ... and the remaining block rows in the same way :

.

$$\Delta s_m = G_{m-1} \Delta s_{m-1} + h_{m-1}$$

Formulation as recursive algorithm

1. Backward recursion

a) Set
$$E := B, u = r$$

b) for
$$i=m,\ldots,1$$
:
$$u = u+EH_{i-1}$$

$$E = EG_{i-1}$$

- c) E = E + A
- 2. Solution of condensed system

$$E \Delta s_0 = -u \longrightarrow \Delta s_0$$

3. Forward recursion

for
$$i = 1, ..., m$$
:

Some remarks

If along the exact solution of a BVP the matrix

$$E^* = A + BG(T_{end}; t_0)|_{x^*}$$

is regular, then this property also holds in a neighborhood of the solution for

$$E = A + BG_{m-1} \cdot \cdot \cdot \cdot G_0$$

and the linear system in step 2 (see previous slide) can be solved.

- Computational cost is much lower than for solving uncondensed system
- Condensing can be generalized to multipoint BVPs

Multiple Shooting – Advantages & Disadvantages

Advantages:

- Adaptive ODE solvers can be used for integration (error control of dynamic process, does not modify multiple shooting grid)
- can use knowledge about x in initialization along all multiple shooting points, not only guess for first point (as in single shooting)
- Can treat unstable systems well
- Easy to parallelize

Disadvantages:

Integration of dynamic processes is costly
 (this is not a disadvantage with respect to single shooting where also an integration is required, but with respect to collocation that comes next)

A different method for the solution of BVP: Collocation

$$\dot{x} = f(t, x(t))$$

$$r(x(t_0), x(t_{end})) = 0$$

Basic idea of collocation:

- Choose approximate solution for BVP from a finite dimensional function space such that the differential equation is exactly satisfied at certain points – the so-called collocation points - but not at others
- Choice of finite dimensional functions, e.g.
 - Polynomials (increase order for higher accuracy, or better:)
 - Piecewise polynomials (reduce length of pieces for higher accuracy)

$$\Pi_N : t_0 < t_1 < \cdots < t_N = t_{end}$$

Collocation points on interval N:

$$\rho_1 \leq \rho_1 \leq \rho_2 \leq \cdots \leq \rho_k \leq 1$$
 $t_i + \rho_j(t_{i+1} - t_i), j = 1, \dots, k$

$$t_i + \rho_i(t_{i+1})$$

A different method for the solution of BVP: Collocation

Conditions:

Collocation points conditions:

$$\dot{x}_{\Pi}(t_{COL}) = f(t_{COL}, x(t_{COL}))$$
 $N \cdot k \cdot n$ equations

Continuity between polynomials

$$x_{\Pi_i}(t_{i+1}) = x_{\Pi_{i+1}}(t_{i+1}) \qquad (n-1) \cdot n \quad \text{equations}$$

Boundary conditions

Total:
$$n$$
 equations $N \cdot (k+n) \cdot n$ equations

Large and sparse system, can be solved by sparse solvers

Collocation – Advantages & Disadvantages

Advantages:

- Large but sparse system, general sparse solvers can be used
- Knowledge of state trajectory can be used in initialization
- Can treat unstable systems well
- No integration required (fast)

Disadvantages

- Adaptivity needs adjustments to grid, change in problem dimensions
- No error control of the whole dynamic process possible (as in the case of integrators) dynamics are only satisfied exactly in collocation points and not in other places > solution may be infeasible for a robot.

