ФГБОУ ВО Национальный Исследовательский Университет «МЭИ» Институт Автоматики и Вычислительной Техники Кафедра Прикладной Математики

Курсовой проект

по дисциплине «Параллельное программирование» на тему «Интегрирование функций»

Выполнила: Закладная С.В.

Группа: А-13м-16

Преподаватель: Кутепов В.П.

Содержание

Введение	3
Постановка задачи	4
Алгоритмы и методы	4
Инструментальные средства	6
Результаты	7
Пример 1	7
Пример 1а	9
Пример 2	10
Заключение	12
Список литературы	13
Приложение	14
Распределение по потокам	14
Рекурсивный алгоритм интегрирования	15
Итеративный алгоритм интегрирования	15
Метод прямоугольников	15
Метод трапеций	16
Корректировка разбиения	16

Введение

Задача интегрирования функций является одной из фундаментальных задач математического анализа и имеет множество приложений в различных областях науки и техники, в том числе в системах реального времени. По этой причине огромное значение имеют разработка и совершенствование вычислительных методов интегрирования с точки зрения оптимизации временных характеристик.

В данной работе рассматривается параллельная реализация различных методов интегрирования функций.

Постановка задачи

Разработать и исследовать на многоядерных компьютерах оптимальные алгоритмы интегрирования функций.

Алгоритмы и методы

Для исследования были выбраны следующие методы интегрирования:

• Метод прямоугольников:

Площадь элементарной криволинейной трапеции заменяется площадью прямоугольника, основанием которого является отрезок $[x_{i-1}, x_i]$, а высота равна значению $f_{i-1/2}$. Для случая постоянного шага квадратурная формула имеет вид:

$$\int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{n} f_{i-1/2}$$
 (1)
где $f_{i-1/2} = f\left(x_i - \frac{h}{2}\right)$. [1]

• Метод трапеций:

Площадь элементарной криволинейной трапеции заменяется площадью трапеции, построенной путём соединения отрезком точек (x_{i-1}, f_{i-1}) и (x_i, f_i) . Для равномерной сетки формула трапеций имеет вид:

$$\int_{a}^{b} f(x)dx \approx h\left(\frac{f_{0}+f_{n}}{2} + \sum_{i=1}^{n-1} f_{i}\right)$$
 (2) [1]

На одном потоке значение интеграла с точностью ε вычисляется по следующему алгоритму:

```
S_1 = I(a, b, N);

N = N * 2;

S_2 = I(a, b, N);

while (|S_1 - S_2| > \varepsilon)

\{

S_1 = S_2;

N = N * 2;

S_2 = I(a, b, N);

\}
```

Здесь I(a, b, N) – интегральная сумма, вычисленная по формуле (1) или (2). В качестве конечного результата принимается значение S2.

На K потоках значение интеграла представляет собой сумму интегралов по отрезкам $[a_k, b_k]$, вычисленных с точностью ${}^{\mathcal{E}}/_{K}$:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{K} \int_{a_{k}}^{b_{k}} f(x)dx$$
 (3)

Разбиение отрезка интегрирования между потоками может осуществляться двумя способами:

- Равномерно
 - В этом случае отрезок [a, b] делится поровну на К частей.
- Неравномерно

При неравномерном разбиении длины отрезков $[a_k,b_k]$, полученные в результате равномерного разбиения, корректируются в соответствии с величиной производной подынтегральной функции на данном участке. Производная оценивается через отношение приращения значения функции на отрезке к длине отрезка $\frac{\Delta y_k}{\Delta x_k}$. Корректировка выполняется по следующему алгоритму:

 \circ Шаг 1: выполняется поиск отрезка разбиения с максимальным абсолютным значением $\frac{\Delta y_k}{\Delta x_k}$, длина которого не менее $10\varepsilon_k$, где ε_k

– точность вычисления интеграла на данном отрезке.

- \circ Шаг 2: если такой отрезок найден, уменьшаем его длину вдвое, пока абсолютное значение $\frac{\Delta y_k}{\Delta x_k}$ не станет меньше выбранного пользователем параметра M, либо $10\varepsilon_k$; иначе завершаем работу алгоритма.
- Шаг 3: изменяем границы соседних с изменённым отрезков, чтобы они стыковались друг с другом, после чего переходим к шагу 2.

Код программной реализации описанных методов на языке C# - см. Приложение.

Инструментальные средства

В качестве средств реализации был выбран язык программирования С# и платформа .NET 4.5. Выбор сделан в пользу данных средств поскольку .Net Framework предоставляет достаточно удобный и эффективный инструментарий для создания многопоточных приложений. С подробной документацией средств работы с потоками можно ознакомиться в [2].

Результаты

Тестирование реализованных методов выполнялось на процессоре Intel(R) Core(TM) i5-3570 CPU (тактовая частота 3.40 GHz, ядер: 4).

Пример 1

Рассмотрим задачу вычисления интеграла:

$$\int_{10^{-6}}^{10} \frac{dx}{xe^x} \tag{4}$$

с точностью $\varepsilon = 10^{-5}$.

График подынтегральной функции изображен на рисунке 1:

Рисунок 1. График подынтегральной функции (пример 1)

Найдём значение интеграла (4) методом прямоугольников и методом трапеций, используя для каждого из них как равномерное, так и неравномерное разбиение отрезка интегрирования. Зависимость времени вычисления от количества потоков представлена на рисунках 2 и 3.

Рисунок 2. Пример 1 (метод прямоугольников)

Рисунок 3. Пример 1 (метод трапеций)

Пример 1а

Повторим эксперимент из примера 1 с равномерной сеткой для рекурсивной версии алгоритма. Зависимость времени вычисления от количества потоков представлена на рисунках 4 и 5.

Рисунок 4. Пример 1а (метод прямоугольников)

Рисунок 5. Пример 1а (метод трапеций)

Пример 2

Рассмотрим задачу вычисления интеграла:

$$\int_{1,000001}^{10} \frac{dx}{lnx} \tag{5}$$

с точностью $\varepsilon = 10^{-5}$.

График подынтегральной функции изображен на рисунке 6:

Рисунок 6. График подынтегральной функции (пример 2)

Найдём значение интеграла (5) методом прямоугольников и методом трапеций, используя для каждого из них как равномерное, так и неравномерное разбиение отрезка интегрирования. Зависимость времени вычисления от количества потоков представлена на рисунках 7 и 8.

Рисунок 7. Пример 2 (метод прямоугольников)

Рисунок 8. Пример 2 (метод трапеций)

Заключение

В данной работе была рассмотрена параллельная реализация двух методов численного интегрирования и исследованы их временные характеристики при выполнении на многоядерном процессоре.

Задача интегрирования при наличии у подынтегральной функции различных особенностей (точки разрыва, участки резкого возрастания/убывания и т.д.) становится весьма сложной. Распараллеливание вычисления интеграла даёт значительное снижение времени даже при равномерном разбиении отрезка. Введение переменного шага позволяет дополнительно улучшить эти результаты. Однако отрезок интегрирования и оптимальное количество потоков необходимо выбирать в зависимости от задачи, т.к. методы численного интегрирования весьма чувствительны к особенностям подынтегральной функции.

Список литературы

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров, Москва: Высшая школа, 1994.
- 2. «System.Threading Пространство имен,» [В Интернете]. Available: https://msdn.microsoft.com/ru-ru/library/system.threading(v=vs.110).aspx.

Приложение

```
Распределение по потокам
public void Distribute(Integral I,ref List<Integral> SubIntegrals,int
threadscount, bool regular)
        {
            if (threadscount < 1)</pre>
            {
                throw new Exception("Неверное число потоков");
            //Равномерная сетка
            if (regular)
            {
                Threads = new List<Thread>();
                //Делим отрезок интегрирования между потоками
                double h = (I.UpperLimit - I.LowerLimit) /
threadscount;
                for (int i = 0; i < threadscount; i++)</pre>
                    Integral intg = new Integral(I.LowerLimit + i * h,
I.LowerLimit + (i + 1) * h,I.F,I.Eps/threadscount,I.Method);
                    SubIntegrals.Add(intg);
                    //Создаём поток и добавляем в список
                    ThreadStart solver = new
ThreadStart(SubIntegrals[i].Solve);
                    Thread thread = new Thread(solver);
                    Threads.Add(thread);
                }
            }
            else
            {
                Threads = new List<Thread>();
                double h = (I.UpperLimit - I.LowerLimit) /
threadscount;
                for (int i = 0; i < threadscount; i++)</pre>
                    Integral intg = new Integral(I.LowerLimit + i * h,
I.LowerLimit + (i + 1) * h, I.F, I.Eps / threadscount, I.Method);
                    SubIntegrals.Add(intg);
                }
                if (threadscount > 1)
                    I.CorrectGrid(ref SubIntegrals, K);
                foreach(Integral sub in SubIntegrals)
                    ThreadStart solver = new ThreadStart(sub.Solve);
                    Thread thread = new Thread(solver);
                    Threads.Add(thread);
                }
```

```
}
        }
Рекурсивный алгоритм интегрирования
        public void SolveR()
        {
            if(k<1)
            {
                Value = 0;
                return;
            double h = (UpperLimit - LowerLimit) / k;
            Integral I = new Integral(LowerLimit + h, UpperLimit, F,
Eps, Method, n1, k - 1);
            ThreadStart solver = new ThreadStart(I.SolveR);
            Thread thread = new Thread(solver);
            thread.Start();
            Integral I0 = new Integral(LowerLimit, LowerLimit + h, F,
Eps/n1, Method);
            I0.Solve();
            thread.Join();
            Value = I.Value + I0.Value;
        }
Итеративный алгоритм интегрирования
     public void Solve()
        {
            double S = Method(LowerLimit, UpperLimit, N);
            N *= 2;
            Value = Method(LowerLimit, UpperLimit, N);
            while (Math.Abs(Value - S)>Eps)
            {
                S = Value;
                N *= 2;
                Value = Method(LowerLimit, UpperLimit, N);
            }
        }
Метод прямоугольников
private double Rectangle(double a, double b, int n)
{
     double S = 0; //результат
     double h = (b - a) / n; //war
     for (int i = 0; i < n; i++)
     {
           double xi = x(a,i, h);
           double xi1 = x(a,i + 1, h);
           S += F((xi + xi1) / 2) * (xi1 - xi);
     return S;
```

```
}
Метод трапеций
private double Trapezoid(double a, double b, int n)
     double S = 0; //результат
     double h = (b - a) / n; //war
     S = (F(x(a,0,h)) + F(x(a, n, h))) / 2;
     for (int i = 1; i < n; i++)
     {
           S += F(x(a, i, h));
     S *= h;
     return S;
}
Корректировка разбиения
public void CorrectGrid(ref List<Integral> Subs, double K0)
{
     if(Subs.Count<2)</pre>
     {
           return;
     bool found = true; //Найден отрезок с большой производной
     while(found)
     {
           found = false;
           //поиск отрезка с максимальной производной
           double maxTg = 0;
           int imax = -1;
           for (int i = 0; i < Subs.Count; i++)</pre>
                double atg = Math.Abs(Tg(Subs[i].LowerLimit,
                Subs[i].UpperLimit));
                if ((atg > maxTg) && ((Subs[i].UpperLimit -
                Subs[i].LowerLimit) > Subs[i].Eps))
                {
                      maxTg = atg;
                      imax = i;
                }
           //Сравниваем максимум с параметром корректировки
           if (imax >= 0)
                if ((maxTg > K0) && (Subs[imax].UpperLimit -
                Subs[imax].LowerLimit) > Subs[imax].Eps*10)
                {
                      found = true;
                      bool changed = false;
                      //Сжимаем отрезок с максимальной производной
```

```
while ((Math.Abs(Tg(Subs[imax].LowerLimit,
                      Subs[imax].UpperLimit)) > K0) &&
                      (Subs[imax].UpperLimit - Subs[imax].LowerLimit) >
                      Subs[imax].Eps*10)
                      {
                            double middle = (Subs[imax].UpperLimit +
                            Subs[imax].LowerLimit) / 2;
                            if (Math.Abs(Tg(Subs[imax].LowerLimit,
                            middle)) > Math.Abs(Tg(middle,
                            Subs[imax].UpperLimit)) && (imax <</pre>
                            Subs.Count-1))
                            {
                                 changed = true;
                                 Subs[imax].UpperLimit = middle;
                            else if(imax > 0)
                            {
                                 changed = true;
                                 Subs[imax].LowerLimit = middle;
                            }
                      }
                      if (changed)
                            //Пристыковываем соседние отрезки
                            if (imax > 0)
                            {
                                 Subs[imax - 1].UpperLimit =
                                 Subs[imax].LowerLimit;
                            }
                            if (imax < Subs.Count - 1)</pre>
                            {
                                 Subs[imax + 1].LowerLimit =
                                 Subs[imax].UpperLimit;
                            }
                      }
                }
          }
     }
}
```