

**REF**: PEPPUS

Page: 1/8

| PROJECT: PEPPUS                                  |              | WP Number: WP-0000001 |
|--------------------------------------------------|--------------|-----------------------|
| TITLE Positioning Engine for Precise Point USers |              | Issue: 1.0            |
| LEAD CONTRACTOR                                  | GNSS Academy |                       |
| CUSTOMER                                         | ESA          | LEADER: Student       |
| ESTIMATED EFFORT                                 | 4 Months     |                       |

### **MISSION and SCOPE**

PEPPUS stands for Positioning Engine for Precise Point USers.

The PEPPUS main mission is the assessment of Receiver Performances from the computation of a PPP solution for a dual-frequency user. The solution will use precise satellite orbits coming from IGS SP3 files and satellite clock offsets coming from RINEX CLK files. The ionosphere delay will be removed by applying the lono-free combination.

PEPPUS is the Positioning Engine Module of a software-embedded. It removes the contributors to the Range Error down to cm accuracy and estimates the receiver PVT applying a Kalman Filter in which the floating ambiguities will be estimated. PEPPUS takes the following files as inputs:

- ✓ The Raw measurement observables: Code and Phase measurements.
- ✓ The SP3 files containing very precise satellite orbits every 10/15min.
- ✓ ANTEX files containing Antenna Phase Offsets to transform satellite Center of Mass Position to Center of Phase position.
- ✓ The RINEX CLK files containing very precise satellite clock biases every 30s (alternatively, files at a 300s timestep could be used, but the 30s timestep is preferred).
- ✓ Receiver Precise Coordinates.

The main outputs of PEPPUS are the Positioning Performances at User level.





REF: PEPPUS

Page: 2/8

## **PEPPUS** mission is described through the following requirements:

| PEPPUS REQ. ID       | TYPE | TITLE                                        | BODY                                                                                                                                                                                |
|----------------------|------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SBPT-PEPPUS-REQ-0010 | GEN  | PEPPUS mission                               | The PEPPUS shall be in charge of assessing the performances of a dual-frequency multi-constellation receiver performing a PPP solution that involves floating Ambiguity resolution. |
| SBPT-PEPPUS-REQ-0020 | GEN  | GPS Constellation                            | The PEPPUS shall handle GPS Constellation                                                                                                                                           |
| SBPT-PEPPUS-REQ-0030 | GEN  | Galileo<br>Constellation in DF               | The PEPPUS shall handle Galileo Constellation                                                                                                                                       |
| SBPT-PEPPUS-REQ-0040 | GEN  | Minimum scenario duration                    | The PEPPUS shall be able to run a scenario of at least 30 days long                                                                                                                 |
| SBPT-PEPPUS-REQ-0050 | GEN  | Daily analyses                               | The PEPPUS shall perform daily analyses for every receiver and scenario day                                                                                                         |
| SBPT-PEPPUS-REQ-0060 | OPS  | Call Command line                            | The PEPPUS shall have the capability to be executed from the command line.                                                                                                          |
| SBPT-PEPPUS-REQ-0070 | OPS  | Processing in Batch mode                     | The PEPPUS shall run in batch mode for several receivers and scenario days.                                                                                                         |
| SBPT-PEPPUS-REQ-0200 | PERF | Runtime in Mono-<br>constellation            | The PEPPUS shall run 24H analysis for one receiver in less than 5 minutes at 1Hz in Mono-constellation mode                                                                         |
| SBPT-PEPPUS-REQ-0210 | PERF | Runtime in Multi-<br>constellation           | The PEPPUS shall run 24H analysis for one receiver in less than 5 minutes at 1Hz in Multi-constellation mode                                                                        |
| SBPT-PEPPUS-REQ-0220 | IF   | Input arguments                              | The PEPPUS shall be invoked with the full scenario path with scenario name as a unique mandatory input argument.                                                                    |
| SBPT-PEPPUS-REQ-0240 | IF   | Input folders<br>arborescence                | The PEPPUS shall respect the following scenario arborescence as follows: SCENNAME/INP/OBS/ SCENNAME/INP/SP3/ SCENNAME/INP/ATX/ SCENNAME/INP/CLK/ SCENNAME/INP/RCVR/                 |
| SBPT-PEPPUS-REQ-0250 | IF   | Output folders arborescence                  | The PEPPUS shall produce the outputs on a predefined scenario arborescence as follows: SCENNAME/OUT/PPVE SCENNAME/OUT/CORR SCENNAME/OUT/USR/PVT SCENNAME/OUT/ USR/PERF              |
| SBPT-PEPPUS-REQ-0260 | IF   | INP: Reader of<br>RINEX<br>Observation files | The PEPPUS shall read and process RINEX Observation files                                                                                                                           |
| SBPT-PEPPUS-REQ-0270 | IF   | INP: Reader of<br>SP3 files                  | The PEPPUS shall read and process SP3 files format                                                                                                                                  |
| SBPT-PEPPUS-REQ-0280 | IF   | INP: Reader of ANTEX files                   | The PEPPUS shall read and process ANTEX files format                                                                                                                                |



**REF**: PEPPUS

Page: 3/8

| SBPT-PEPPUS-REQ-0290 | IF | INP: Reader of<br>RINEX CLK files     | The PEPPUS shall read and process RINEX CLK files format                                                                                                                                                                                                                                |
|----------------------|----|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SBPT-PEPPUS-REQ-0300 | IF | INP: RCVR<br>Positions<br>information | The PEPPUS shall be able to read and process input files containing the Receiver Position Coordinates information:  * Receiver Selection flag  * Receiver acronym  * Receiver Identifier  * Receiver longitude, latitude and Height  * Receiver Mask Angle  * Receiver Acquisition Time |

## **PEPPUS** shall produce the following MAIN outputs:

| REQ. ID              | TYPE | TITLE                        | BODY                                                                                                                                        |
|----------------------|------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| SBPT-PEPPUS-REQ-0310 | IF   | Satellites<br>Visible/Used   | The PEPPUS shall output and plot the instantaneous time-series of the visible satellites and used satellites                                |
| SBPT-PEPPUS-REQ-0340 | IF   | PDOP & TDOP time-series      | The PEPPUS shall output and plot the instantaneous time-series of the PDOP and TDOP                                                         |
| SBPT-PEPPUS-REQ-0350 | IF   | EPE, NPE, UPE<br>time-series | The PEPPUS shall output and plot the instantaneous time-series of the position error in the east (EPE), North (NPE) and Up (UPE) directions |
| SBPT-PEPPUS-REQ-0360 | IF   | HPE, VPE<br>histogram        | The PEPPUS shall output and plot Horizontal and Vertical position error, HPE and VPE histograms.                                            |
| SBPT-PEPPUS-REQ-0370 | IF   | H/VDOP histogram             | The PEPPUS shall output and plot Horizontal and Vertical DOP histograms.                                                                    |
| SBPT-PEPPUS-REQ-0380 | IF   | User Performances            | The PEPPUS shall output and plot User Performances                                                                                          |

### PEPPUS ARCHITECTURE

PEPPUS global architecture can be depicted as follows:



**REF**: PEPPUS

Page: 4/8



These modules are described in the table here-below:

| MODULE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [PPVE] | PPVE module is the Pre-processing Validation and Exclusion Module in charge of the producing the pre-processed measurement.  The main tasks are tasks are:  Implement the different Validation Checks in front of configuration thresholds.  Satellite Health and Geometry, Channels checks  Measurement Quality Checks (Jumps, Rates, Divergence, Cycle Slips, C/N0)  Build Iono-free combination                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| [CORR] | <ul> <li>CORR module is the Corrections Module in charge of correcting GNSS preprocessed measurements and compute the first pseudo range residuals.</li> <li>The main tasks are:         <ul> <li>Compute the Satellite Antenna Phase Center position at the transmission time and corrected from the Sagnac effect interpolating the SP3 file positions</li> <li>Compute the Satellite Clock Bias interpolating the biases coming from the RINEX CLK file and applying the Relativistic Correction (DTR)</li> <li>Estimate the Slant Troposphere delay (STD) using MOPS model (ZTD) and its mapping function.</li> <li>Correct the Pre-processed measurements from Geometrical Range, Satellite clock and Troposphere.</li> <li>Build the Corrected Measurements and Measurement Residuals</li> <li>Build the Sigma UERE</li> </ul> </li> </ul> |  |  |  |  |
| [KPVT] | KPVT module is the Kalman PVT navigation solution Module in charge of the PVT computation through a Kalman Filter (KF)  The main tasks are tasks are:  Update State Vector through the Process Matrix [F]  Update Covariance Matrix through the Process Noise Matrix [Q]  Build the Observation [G] and Weighting Matrices [W]  Build the [S] Matrix and DOP Matrix [D]  Build the Measurement Residuals Vector [rho]  Apply the Kalman Filter  Estimate the Receiver Position Coordinates and Clock                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |



**REF: PEPPUS** 

Page: 5/8

|        | <ul> <li>Estimate the Position Error (HPE, VPE)</li> <li>Estimate the DOPs (PDOP, GDOP, HDOP, VDOP)</li> </ul> |
|--------|----------------------------------------------------------------------------------------------------------------|
| [PERF] | <b>PERF</b> module is in charge of computing and displaying the final User Performances.                       |

#### PEPPUS MAIN PROCESSING LOGIC

This is PEPPUS Pseudo-Code to guide you through the process.

Note that this is not real code but it helps to understand the main processing logic and SW architecture.

### PEPPUS (CONF, OBS, SP3, ATX, CLK)

```
# First, Check input arguments:
# - Check Scenario Path and Name existence.
# - Check configuration file existence on the configuration folder
check_input_arguments(scen_path, scen_name)
# Read and process configuration file:
# - Read and load configuration parameters
conf = read_peppus_cfg(scen_path, scen_name)
# Read Receiver Positions
rec = read_receiver_pos(scen_path, scen_name)
# Loop over all selected receivers
for iRec in rec.NUM REC:
    # Loop over all the scenario days
    for iDay in Conf.NUMBER_OF_DAYS:
       # Read and load all input files information: RNB, NAV and OBS
       Obsinfo, SatPosInfo, SatApoInfo, SatClkInfo = readExternalFiles(conf,siRx,iDay)
        # Loop over all seconds of the current processing day
        for Time in INITIME: ENDTIME
             # [PPVE] Pre-processing and Validation at 1Hz
             PreproOutputs = runPreProcMeas(ObsInfo)
             # Rest of analyses are executed every configured sampling rate
             if Time % Conf.SAMPLING_RATE == 0
                 # [CORR] Correct Measurements and Estimate variances
                 CorrOutputs = runCorrectMeas(PreproOutputs, SatPosInfo, ...,)
                 # [KPVT] Compute the PVT Solution
                 PvtOutputs = runPvtSolution(CorrOutputs, ...)
                 # [PERF] Compute Daily Performances
                 PerfOutputs = computePerformances()
                 # [WRITE] Write Instantaneous Outputs
                 writeOutputsInFile(PreprocOutputs,
```



**REF**: PEPPUS

Page: 6/8

#### CorrecteOutputs, PvtOutputs)

# End of if Time % Conf.SAMPLING\_RATE == 0

# End of for Time in INITIME:ENDTIME
# End of for iDay in Conf.NUMBER\_OF\_DAYS:
#End of for siRec in Conf.NUM\_REC):

# END OF PEPPUS()

## INPUTS

Next table summarizes PEPPUS input files required:

| TYPE  | FORMAT                   | FOLDER | DESCRIPTION                                                                                                                                                              |
|-------|--------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OBS   | RINEX<br>v2.11,<br>v3.03 | OBS/   | RINEX Observation files containing the different observables (Code P/CA, Phase, Doppler, C/NO) for all the constellations (GPS/GAL/GEO) and frequencies (L1/L2/L5/E1/E5) |
| SP3   | SP3c                     | SP3/   | SP3 files containing GPS and/or Galileo coordinates w.r.t the Center of Masses, at a given sampling rate (typically, 10 or 15 minutes)                                   |
| ANTEX | ANTEX                    | ATX/   | ANTEX files containing the Antenna Phase Offsets for GPS and/or Galileo.                                                                                                 |
| CLK   | RINEX CLK                | CLK/   | CLK RINEX files containing GPS and/or Galileo Clock Offsets on L1L2 or L1L5 (GPS) or E1E5 (Galileo) at a given sampling rate (typically, 30s or 5 minutes).              |
| RCVR  | RCVR                     | RCVR/  | File containing the reference precise RCVR coordinates, mask angles, acquisition time and other RCVR-related information                                                 |

## OUTPUTS

PEPPUS shall produce the following files:

| TYPE   | FOLDER | DESCRIPTION                                                                        |
|--------|--------|------------------------------------------------------------------------------------|
| [PPVE] | PPVE/  | Daily Receiver Files with pre-processed Information                                |
| [CORR] | CORR/  | Daily Receiver Files with Corrected Measurements Information                       |
| [KPVT] | KPVT/  | Daily files containing the Receiver Position Computation instantaneous information |
| [PERF] | PERF/  | Daily files containing the Receiver Performance info.                              |

| WORK PACKAGES |                                         |  |
|---------------|-----------------------------------------|--|
| ID            | DESCRIPTION                             |  |
| WP1: PPVE     | Pre-processing & Validation & Exclusion |  |



**REF**: PEPPUS

Page: 7/8

This PPVE module aims at pre-processing, cleaning, validation, exclusion and computation of the combinations of the input receiver observables by implementing:

- Measurements Cleaning and Exclusion due to different criteria as follows:
  - o Minimum Masking angle
  - Maximum Number of channels
  - Minimum Carrier-To-Noise Ratio (CN0)
  - o Pseudo-Range Output of Range
  - o Maximum Pseudo-Range Rate
  - Maximum Pseudo-Range Rate Step
  - Maximum Carrier Phase Rate
  - Maximum Carrier Phase Rate Step
  - Data Gaps checks and handling
  - Cycle Slips detection
- Build Iono-free combination

#### WP2: CORR CORRECTIONS Module

CORR module is in charge of performing all the tasks at range level for every single valid and pre-processed Line-Of-Sigh that will be later used in the PVT solution.

The tasks are summarized as follows:

- Compute the Satellite Antenna Phase Center position at the transmission time and corrected from the Sagnac effect interpolating the SP3 file positions
- Compute the Satellite Clock Bias interpolating the biases coming from the RINEX CLK file and applying the Relativistic Correction (DTR)
- Estimate the Slant Troposphere delay (STD) using MOPS model (ZTD) and its mapping function.
- Correct the Pre-processed measurements from Geometrical Range, Satellite clock and Troposphere.
- Build the Corrected Measurements and Measurement Residuals
- Build the Sigma UERE

### WP3: KPVT/PERF Module

*KPVT* module is in charge of computing the PVT navigation solution through a Kalman Filter.

It performs the following tasks:

- Update State Vector through the Process Matrix [F]
- Update Covariance Matrix through the Process Noise Matrix [Q]
- Build the Observation [G] and Weighting Matrices [W]
- Build the [S] Matrix and DOP Matrix [D]



**REF**: PEPPUS

Page: 8/8

- Build the Measurement Residuals Vector [rho]
- Apply the Kalman Filter
- Estimate the Receiver Position Coordinates and Clock
- Estimate the Position Error (HPE, VPE)
- Estimate the DOPs (PDOP, GDOP, HDOP, VDOP)

PERF module is in charge of computing and displaying the final Receiver Performances as well as different statistics of other related indicators.

### WP4: DELIVERY

### **DELIVERY, REPORTING AND FINAL ACCEPTANCE**

Delivery of the following Products:

- PEPPUS SW Sources + Configuration files.
- Scenario Execution Outputs: files and figures
- A Technical Note:
  - √ Tool Mission and Scope
  - √ Technical Understanding and Main Requirements
  - ✓ Architecture, Design & I/O Interfaces
  - √ Algorithms Definition.
  - √ Validation results w.r.t the Reference Scenario data
  - √ Main Conclusions
  - √ Recommendations and Way forward