Paper / Subject Code: 52706 / Data Warehouse and Mining

Q.P. Code:21512

(Time: 03 Hours) (Total Marks: 80)

Note: 1. Question 1 is compulsory

- 2. Answer any three out of remaining questions.
- Q1 a) Information requirements are recorded for "Hotel occupancy" considering [10] dimensions like Hotel, Room and Time. Few Facts recorded are vacant rooms, occupied rooms, number of occupants, etc.

Answer the following questions for this problem:

- i. Design the star schema.
- ii. Can you convert this star schema to a snowflake schema? If yes, justify and draw the snowflake schema.
- b) Explain Data mining as a step in KDD .Illustrate the architecture of typical data [10] mining system.
- Q2 a) The college wants to record the Marks for the courses completed by students using [10] the dimensions: I) Course, II) Student, III) Time & a measure Aggregate marks.

 Create a Cube and perform following OLAP operations:
 - i) Rollup
- ii) Drill down
- iii) Slice
- iv) Dice
- v) Pivot.

[10]

b) Apply the Naive Bayes classifier algorithm to classify an unknown sample X (outlook = sunny, temperature = cool, humidity = high, windy = false)

X (outlook = sunny, temperature = cool, humidity = high, windy = false). The sample data set is as follows:

Outlook	Temperature	Humidity	Windy	Class
Sunny	Hot	High	False	N
Sunny	Hot	High	True	N
Overcast	Hot	High	False	P
Rain	Mild	High	False	P
Rain	Cool	Normal	False	P
Rain	Cool	Normal	True	N
Overcast	Cool	Normal	True	P
Sunny	Mild	High	False	N
Sunny	Cool	Normal	False	P
Rain	Mild	Normal	False	P
Sunny	Mild	Normal	True	P
Overcast	Mild	High	True	P
Overcast	Hot	Normal	False	P
Rain	Mild	High	True	N

Q3 a) Discuss Data Warehouse design strategies in detail?

[10]

b) Discuss the types of attributes and data visualization for data exploration.

[10]

Q.P. Code:21512

Q4 a) Discuss various OLAP models and their architecture.

[10]

b) Find clusters using k-means clustering algorithm, if we have several objects [10] (4 types of medicines) and each object have two attributes or features as shown in table below. The intention is to group these objects into k = 2 group of medicine based on the two features (pH and weight index).

Object	Attribute 1 (X) Weight Index	Attribute 2 (Y) pH
Medicine A	1	
Medicine B	2	
Medicine C	4	2223 - TAX
Medicine D	5	\$\$\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \

- Q5 a) Discuss the process of extraction, transformation and loading with a neat [10] and labelled diagram.
 - b) A database has five transactions. Let minimum support = 40% and minimum [10] confidence = 60%
 - i) Find all frequent patterns using Apriori Algorithm.
 - ii) List strong association rules.

Transaction-Id	Items	
A	1, 3, 4, 6	
B	2, 3, 5, 7	
C 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 2, 3, 5, 8	
D	2, 5, 9, 10	
E	1,4	

Q6 Write short note on the following (Answer any FOUR)

[20]

- i) Applications of Data Mining (minimum two in detail)
- ii) Data pre-processing
- iii) FP Tree
- iv) Updates to dimension tables
- v) Meta data with example

* * *