Ziegler-Nichols:

	Proportional Gain,	Integral Time,	Derivativ Time,
Controller Type	K' _c	τ'_{I}	$ au_D'$
Proportional-only, P	<u>K_{cu}</u> 2	_	_
Proportional-integral, PI	$\frac{K_{cu}}{2.2}$	$\frac{T_u}{1.2}$	_
Proportional-integral- derivative, PID	$\frac{K_{cu}}{1.7}$	$\frac{T_u}{2}$	$\frac{T_u}{8}$

Fórmula del PID:

$$G_c(s) = \frac{M(s)}{E(s)} = K_c \left(1 + \frac{1}{\tau_l s} + \tau_D s\right)$$

Controller Type	Proportional Gain, K'_c	Integral Time, τ'_I	Derivative Time, τ'_D
Proportional-only, P	$\frac{1}{K} \left(\frac{t_0}{\tau} \right)^{-1}$	_	_
Proportional-integral, PI	$\frac{0.9}{K} = 0 \tau_0^{-1}$	$3.33t_{0}$	_
Proportional-integral- derivative, PID	$\frac{1.2}{K} \left(\frac{t_0}{\tau}\right)^{-1}$	$2.0t_0$	$\frac{1}{2}$ to

Inversa de una matriz de 2x2:

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Reglas para root locus:

Rule 2: symmetrical about the real axis

Rule 3: real-axis segments are to the left of an odd number of real-axis finite poles/zeros

Rule 4: RL begins at poles, ends at zeros

Rule 5: Asymptotes: real-axis intercept $\sigma_{a}, angles \; \theta_{a}$

$$\sigma_a = \frac{\sum \text{finite poles} - \sum \text{finite zeros}}{\# \text{finite poles} - \# \text{finite zeros}}$$

$$\theta_a = \frac{(2m+1)\pi}{\# \text{finite poles} - \# \text{finite zeros}}$$

Found by setting
$$K(\sigma) = -\frac{1}{G(\sigma)H(\sigma)}$$
 (σ real) and solving $\frac{\mathrm{d}K(\sigma)}{\mathrm{d}\sigma} = 0$ for real σ .

$$g_m = \frac{1}{|L(i\omega_{\rm pc})|}$$

$$\varphi_m = \pi + \arg L(i\omega_{\rm gc})$$

Theorem 9.2 (Nyquist's stability theorem). Consider a closed loop system with the loop transfer function L(s) that has P poles in the region enclosed by the Nyquist contour. Let N be the net number of clockwise encirclements of -1 by L(s) when s encircles the Nyquist contour Γ in the clockwise direction. The closed loop system then has Z = N + P poles in the right half-plane.

Recall 2^{nd} -order underdamped sustem

$$\frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega^2}.$$

From the geometry,

$$\tan \theta = \frac{\sqrt{1-\zeta^2}}{\zeta} \Rightarrow \cos \theta = \zeta.$$

 $T_s \approx 4/(\zeta \omega_n);$

$$\omega_d = \sqrt{1 - \zeta^2} \omega_n$$

$$\%OS = \exp\left(-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right)$$

$f(t) \qquad (t \ge 0)$	$\mathcal{L}\left[f(t) ight]$	Region of Convergence
1	$\frac{1}{s}$	$\sigma > 0$
$\delta_D(t)$	1	$ \sigma < \infty$
t	$\frac{1}{s^2}$	$\sigma > 0$
t^n $n \in \mathbb{Z}^+$	$\frac{n!}{s^{n+1}}$	$\sigma > 0$
$e^{\alpha t}$ $\alpha \in \mathbb{C}$	$\frac{1}{s-\alpha}$	$\sigma > \Re\{\alpha\}$
$te^{\alpha t} \qquad \alpha \in \mathbb{C}$	$\frac{1}{(s-\alpha)^2}$	$\sigma > \Re\{\alpha\}$
$\cos(\omega_o t)$	$\frac{s}{s^2 + \omega_o^2}$	$\sigma > 0$
$\sin(\omega_o t)$	$\frac{\omega_o}{s^2 + \omega_o^2}$	$\sigma > 0$
$e^{\alpha t}\sin(\omega_o t + \beta)$	$\frac{(\sin \beta)s + \omega_o^2 \cos \beta - \alpha \sin \beta}{(s - \alpha)^2 + \omega_o^2}$	$\sigma > \Re\{\alpha\}$
$t \sin(\omega_o t)$	$\frac{2\omega_o s}{(s^2 + \omega_o^2)^2}$	$\sigma > 0$
$t\cos(\omega_o t)$	$\frac{s^2 - \omega_o^2}{(s^2 + \omega_o^2)^2}$	$\sigma > 0$
$\mu(t) - \mu(t - \tau)$	$\frac{1 - e^{-s\tau}}{s}$	$ \sigma < \infty$

f(t)	$\mathcal{L}\left[f(t) ight]$	Names
$\sum_{i=1}^{l} a_i f_i(t)$	$\sum_{i=1}^{l} a_i F_i(s)$	Linear combination
$\frac{dy(t)}{dt}$	$sY(s) - y(0^-)$	Derivative Law
$\frac{d^k y(t)}{dt^k}$	$s^{k}Y(s) - \sum_{i=1}^{k} s^{k-i} \frac{d^{i-1}y(t)}{dt^{i-1}}\Big _{t=0}$	High order derivative
$\int_{0^-}^t y(\tau) d\tau$	$\frac{1}{s}Y(s)$	Integral Law
$y(t-\tau)\mu(t-\tau)$	$e^{-s\tau}Y(s)$	Delay
ty(t)	$-\frac{dY(s)}{ds}$	
$t^k y(t)$	$(-1)^k \frac{d^k Y(s)}{ds^k}$	
$\int_{0^{-}}^{t} f_1(\tau) f_2(t-\tau) d\tau$	$F_1(s)F_2(s)$	Convolution
$\lim_{t\to\infty}y(t)$	$\lim_{s \to 0} sY(s)$	Final Value Theorem
$\lim_{t \to 0^+} y(t)$	$\lim_{s\to\infty} sY(s)$	Initial Value Theorem
$f_1(t)f_2(t)$	$\frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F_1(\zeta) F_2(s - \zeta) d\zeta$	Time domain product
$e^{at}f_1(t)$	$F_1(s-a)$	Frequency Shift