Assignment 5

1 Q1

Suppose a relation R on a set A is antisymmetric, then

$$\forall a, b \in A, ((a, b) \in R \land (b, a) \in R) \implies (a = b)$$

Let $R' \subseteq R$, then for $(x, y) \in R'$ and $(y, x) \in R'$, we have also $(x, y) \in R$ and $(y, x) \in R$, by the definition of antisymmetric relation R, we have x = y. Therefore, the subset R' is also antisymmetric.

2 Q2

Since R is symmetric, we have if $(a, b) \in R$, then $(b, a) \in R$. Since $R^* = \bigcup_{k=1}^{\infty} R^k = R \cup R^2 \cup R^3 \cup ...$. Thus, $R \subseteq R^*$, i.e., if $(a, b) \in R \subseteq R^*$, then $(b, a) \in R \subseteq R^*$. Therefore, R^* is also symmetric.

3 Q3

Since *R* is reflexive, then $\forall a \in A$, we have $(a, a) \in R$. Thus, $(a, a) \in R^2 = R \circ R$. Suppose $(a, b) \in R$, then for $R^2 = R \circ R$, $(a, a) \circ (a, b) = (a, b)$ is also in R^2 . Therefore, $R \subseteq R^2$.

4 **O**4

Suppose R is symmetric while \overline{R} is not. Then for an arbitrary element $(a,b) \in \overline{R}$, it must exist at least an element (b,a) such that $(b,a) \notin \overline{R}$. Since $(b,a) \notin \overline{R}$, then it must be in R. Since R is symmetric, then $(a,b) \in R$. However, (a,b) is already in \overline{R} , which contradicts the assumption. Therefore, \overline{R} is also symmetric.

5 **O**5

1. It is reflexive.

First we need to prove that the sum of the same positive integers is no larger than their product.

- For only a value a, $a \le a$ is always true.
- For two values a, b, we can assume that $a \le b$ (if not, just exchange their role). Then $a \cdot b = \underbrace{b + b + ... + b}_{a} \ge \underbrace{a + b + ... + b}_{a} \ge a + b$
- Suppose it is true for k values a, b, c, ..., n, i.e., $\underbrace{a \cdot b \cdot c \cdot ... \cdot n}_{k} \ge \underbrace{a + b + c + ... + n}_{k}$. Then for k + 1 values, we have

$$\underbrace{a \cdot b \cdot c \cdot \dots \cdot n}_{k} \cdot m \ge \underbrace{(a + b + c + \dots + n)}_{k} \cdot m$$

Let $p = (\underbrace{a+b+c+...+n}_k)$, then it turns to prove $p \cdot m \ge p+m$. Since p and m are still arbitrary, it is still true.

Therefore, the sum of the same positive integers is no larger than their product.

Since the prime factors of a positive integer m are larger than 1, then the sum of them is less or equal than the product of them. So $m \le m$.

2. It is not.

 $21 \le 17$ since $3+7=10 \le 17$, and $17 \le 21$ since $17 \le 3 \cdot 7=21$. However, $21 \ne 17$. Therefore, it is not antisymmetric.

3. It is not.

 $17 \le 35$ since $17 \le 5 \cdot 7 = 35$, and $35 \le 13$ since $5 + 7 = 12 \le 13$. However, $17 \npreceq 13$ since 17 > 13. Therefore, it is not transitive.

6 Q6

Suppose relation $R = \{(A, C), (B, A), (C, D), (C, A)\}$ on the set $S = \{A, B, C, D\}$. Then we have

$$R^2 = \{(A, C), (B, A), (C, D), (C, A)\}$$
 $R^3 = \{(B, D), (B, C)\}$

And thus,

$$R \cup R^2 \cup R^3 = \{(A, C), (B, A), (C, D), (C, A), (A, C), (C, D), (C, A), (B, D)\}$$

$$R \cup R^2 = \{(A, C), (B, A), (C, D), (C, A), (A, C), (C, D), (C, A)\}$$

Therefore, $R^* = R \cup R^2 \cup R^3 \neq R \cup R^2$.

7 Q7

Suppose we have a set *S*, whose elements are all people. All the discussions below are on the set *S*.

- 1. It is equivalence relation.
 - Reflexive:

Since one and himself have the same sign of the zodiac, then $\forall x \in S, (x, x) \in S$. So it is reflexive.

Symmetric

Suppose *x* and *y* have the same sign of the zodiac, then obviously, *y* and *x* also have the same sign of the zodiac, due to commutative law of and.

• Transitive:

Suppose x and y have the same sign of the zodiac, and so do y and z. Since every sign of zodiac is distinct, x and z must have the same sign of the zodiac.

- 2. It is equivalence relation.
 - Reflexive:

Since one and himself were born in the same year, then $\forall x \in S, (x, x) \in S$. So it is reflexive.

• Symmetric:

Suppose *x* and *y* were born in the same year, then obviously, *y* and *x* were also born in the same year, due to commutative law of and.

• Transitive:

Suppose x and y were born in the same year, and so do y and z. Since every year is distinct, x and z must born in the same year.

- 3. It is not equivalence relation.
 - Not transitive:

Suppose x and y have been in the same city, and so do y and z. Since it can be that x and y have been in the city A while y and z have been in the city B, with different city, x and z can have not been in the same city.

8 Q8

Suppose $x, y, z \in \mathbb{Q}$.

• Reflexive:

Since $x - x = 0 \in \mathbb{Q}$, then $(x, x) \in \{(x, y) | x - y \in \mathbb{Q}\}$. So the relation is reflexive.

Symmetric:

Suppose $x - y = k \in \mathbb{Q}$, then we have $y - x = -k \in \mathbb{Q}$. So the relation is symmetric.

• Transitive:

Suppose $x - y = m \in \mathbb{Q}$ and $y - z = n \in \mathbb{Q}$, then we have $x - z = (x - y) - (y - z) = m - n \in \mathbb{Q}$. So the relation is transitive.

Therefore, the relation $\{(x, y)|x - y \in \mathbb{Q}\}$ is an equivalence relation.

Since the difference of two rational numbers is also rational but the difference of a rational number and an irrational number is irrational. Therefore,

$$[1] = \mathbb{Q}, \quad \left[\frac{1}{2}\right] = \mathbb{Q}, \quad [\pi] = \{\pi + q | q \in \mathbb{Q}\}$$

9 **O**9

First we have

Reflexive:

Since for all functions f from \mathbb{N}^+ to \mathbb{R} , we always have $f \leq Cf$ for some number C, i.e., f = O(f). So ∞ is reflexive.

• Transitive:

Suppose we have $f \propto g$ and $g \propto h$, i.e., $\exists C_1, C_2, f \leq C_1 g, g \leq C_2 h$. Then we have $f \leq C_1 C_2 h$. Let $C' = C_1 C_2$, then $f \leq C' h$, i.e., $f \propto h$. So \propto is transitive.

So we just need to focus on symmetry or antisymmetry.

1. \propto is not an equivalence relation.

Suppose \propto is symmetric, then we have $f \propto g$ and $g \propto f$, i.e., f = O(g) and g = O(f). So f and g must satisfy that $f = \Theta(g)$. This contradicts that f is randomly chosen from the functions from \mathbf{N}^+ to \mathbf{R} .

2. \propto is not a partial ordering.

Suppose
$$f: x \to x$$
 and $g: x \to 2x$, then $f = O(g)$ and $g = O(f)$, but $f \neq g$.

3. \propto is not a total ordering.

Since it is even not a partial ordering, it must not be a total ordering.

10 Q10

• Reflexive:

For $R \in R(S)$, it always has $R \subseteq R$. So it is reflexive.

Anti-symmetric:

Suppose we have $R_1, R_2 \in R(S)$ such that $R_1 \subseteq R_2$ and $R_2 \subseteq R_1$, then by the property of subset, we have $R_1 = R_2$. So it is anti-symmetric.

Transitive:

Suppose we have $R_1, R_2, R_3 \in R(S)$ such that $R_1 \subseteq R_2$ and $R_2 \subseteq R_3$, then by the transitivity of subset, we have $R_1 \subseteq R_2 \subseteq R_3$. So it is transitive.

Therefore, ∞ is a partial ordering. Thus, $(R(S), \infty)$ is a poset.

11 Q11

- 1. We can construct $R = \{\{0\}, \{0, 1\}, \{0, 1, 2\}, ...\}$ with infinite but countable set elements. The latter set element has one more element than the former set element and the augmenting element is 1 greater than the largest element in former set element. Since the former set element is always the subset of the latter one, this R has no maximal element.
- 2. We can construct R just as the reverse of R in (a). Let $R = \{..., \{0,1,2\}, \{0,1\}, \{0\}\}$. The former set element has one more element than the latter set element and the augmenting element is 1 greater than the largest element in latter set element. Since the latter set element is always the subset of the former one, this R has no minimal element.
- 3. We can construct $R = \{..., S_{k-1}, S_k, S_{k+1}, ...\}$. In each set element S_k , there are infinite elements in it. And $S_{k+1} = \{elementsinS_k and an element not in S_k\}$, $S_{k-1} = \{elementsinS_k except an element\}$. Since $S_{k-1} \subseteq S_k \subseteq S_{k+1}$, this R has neither minimal nor maximal elements.

12 Q12

- 1. maximal element: *n*
- 2. minimal elements: a, b, c
- 3. greatest element: *n*
- 4. no least element.
- 5. upper bounds of $\{a, b, c\}$: l, n
- 6. least upper bound of $\{a, b, c\}$: l
- 7. no lower bounds of $\{f, g, h\}$.
- 8. no greatest lower bound of $\{f, g, h\}$.