Тесты 1.

No		A	В	С	D
1.	Из города А в город В ведут пять дорог, а из города В в город С — три дороги. Сколько путей, проходящих через В, ведут из А в С?	15	16	12	18
2.	Из двух спортивных обществ, насчитывающих по 100 фехтовальщиков каждое, надо выделить по одному фехтовальщику для участия в состязании. Сколькими способами может быть сделан этот выбор?	10000	9000	6000	1200
3.	У одного человека есть 7 книг по математике, а у другого — 9 книг. Сколькими способами они могут обменять книгу одного на книгу другого?	63	23	45	85
4.	У одного человека есть 7 книг по математике, а у другого — 9 книг. Сколькими способами они могут обменять две книги одного на две книги другого?	756	630	740	665
5.	На собрании должны выступить 5 человек: А, Б, В, Г и Д. Сколькими способами можно расположить их в списке ораторов при условии, что А должен выступить непосредственно перед Б?	24	56	45	14
6.	Сколько словарей надо издать, чтобы можно было непосредственно выполнять переводы с любого из пяти языков: русского, английского, французского, немецкого, итальянского, на любой другой из этих пяти языков?	20	12	25	50
7.	Из состава конференции, на которой присутствует 52 человека, надо избрать делегацию, состоящую из 5 человек. Сколькими способами это можно сделать?	2598960	258014	360000	456310
8.	У отца есть 5 попарно различных апельсинов, которые он выдает своим восьми сыновьям так, что каждый получает либо один апельсин, либо ничего. Сколькими способами можно это сделать?	6720	1256	8500	1256
9.	У мамы 2 яблока и 3 груши. Каждый день в течение пяти дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?	10	3	2	45
10.	Из 3 экземпляров учебника алгебры, 7 экземпляров учебника геометрии и 7 экземпляров учебника тригонометрии надо выбрать по одному экземпляру каждого учебника. Сколькими способами это можно сделать?	147	125	159	157

Тесты 2.

№		A	В	С	D
11.	Катя забыла последнюю цифру номера телефона знакомой девочки. Какова вероятность того,		0,05	0,2	0,07

	что Катя набрала телефон знакомой девочки?				
12.	Какова вероятность, что ребенок родится 7 числа?	0,03333	0,03	0,285	0,275
13.	В коробке лежат 4 голубых, 3 красных, 9 зеленых, 6 желтых шариков. Какова вероятность того, что выбранный шарик будет не зеленым?	0,591	0,615	0,75	0,5
14.	В лотерее 1000 билетов, среди которых 20 выигрышных. Приобретается один билет. Какова вероятность того, что этот билет невыигрышный?	0,98	0,78	0,5	0,72
15.	В магазин привезли 30 холодильников. Обнаружили, что из них 5 бракованные. Наудаче выбрали один холодильник. Какова вероятность того, выбранный холодильник будет небракованным?	0,86666	0,125	0,25	0,96
16.	Бросают два игральных кубика. Какова вероятность того, что выпадут две четные цифры?	0,25	0,175	0,35	0,125
17.	В корзине лежат грибы, среди которых 10% белых и 40% рыжих. Какова вероятность того, что выбранный гриб белый или рыжий?	0,5	0,4	0,04	0,3
18.	Завод выпускает 15% продукции высшего сорта, 25% - первого сорта, 40% - второго сорта, а все остальное — брак. Найти вероятность того, что выбранное изделие не будет бракованным.	0,8	0,1	0,85	0,35
19.	В ящике находится 45 шариков, из которых 17 белых. Потеряли 2 не белых шарика. Какова вероятность того, что выбранный наугад шарик будет белым?	0,3953	0,4532	0,2563	0,3712
20.	В круг наудачу брошена точка. Найти вероятность того, что точка окажется внутри правильного треугольника вписанного в круг.	$\frac{3\sqrt{3}}{4\pi}$	$\frac{4\pi}{17}$	$\frac{3}{4\pi}$	$\frac{\sqrt{3}}{2\pi}$

Тесты 3.

№		A	В	С	D
21.	Вероятность того, что в течение смены станок выйдет из строя равно 0,4. Найти вероятность того, что в течение смены из 6 станков выйдут из строя 2 станка.	0,31104	0,4216	0,25424	0,23396
22.	Бросают три монеты. Какова вероятность того, что выпадут два орла и одна решка?	0,375	0,25	0,125	0,450
23.	Вероятность хотя бы одного попадания в цель при трех выстрелах равна 0,936. Найти вероятность попадания в цель при одном выстреле.	0,4	0,3	0,2	0,1
24.	В семье 4 детей. Найти вероятность того, что среди этих детей не более двух мальчиков. Вероятность рождения мальчика принят равным 0,5	0,6875	0,6555	0,5655	0,7125
25.	Вероятность того, что спортсмен выполнить норму мастера спорта равна 0,8 для первого спортсмена, 0,6 для второго. Найти вероятность того, что из двух спортсменов только один выполнить норму мастера спорта.	0,44	0,54	0,34	0,24
26.	Вероятность покупки покупателя равно $p = 0,2$. Найти вероятность того, что, из трёх покупателей покупает только один.	0,384	0,36	0,44	0,128
27.	Каждый из трех стрелков стреляет в мишень по одному разу, причем попадания первого стрелка составляет 90%, второго – 80%, третьего – 70%. Найдите вероятность того, что все три стрелка попадут в мишень?	0,504	0,06	0,6	0,3
28.	Вступительный экзамен в лицей состоит из трех туров. Вероятность отсева в 1 туре составляет 60%, во втором - 40%, в третьем – 30%. Какова вероятность поступления в лицей?	0,168	0,12	0,14	0,272
29.	Какова вероятность выиграть у равносильного противника 2 партии из 4?	0,375	0,5	0,33	0,25
30.	Вероятность хотя бы одного попадания в цель при трех выстрелах равна 0,973. Найти вероятность попадания в цель при одном	0,3	0,5	0,2	0,4

выстреле.

Тесты 5.

No		A	В	С	D
31.	Непрерывная случайная величина X задана своей плотностью вероятности Если, $x<1$ и $x>=1$ то $f(x)=0$; Если, $1<=x<=2$ то $f(x)=C(x-1)**2$. Найти $P(1,5.$	0,875	0,925	0,625	0,5
32.	Непрерывная случайная величина X задана своей функцией распределения Если, $x<1$, то $F(x)=0$; Если, $x>=3$, то $F(x)=1$. Если, $1<=x<=3$, то $F(x)=0,5x-0,5$. Найти $P(0,5.$	0,5	0,4	0,3	0,55
33.	Какое свойство для функции распределения случайных величин неверно?	для x1 <x2 f(x1)="">= F(x1)</x2>	$0 \le F(x) \le 1$	F(минус бесконечность) =0	F(плюс бесконечност ь)=1
34.	Какое свойство для плотности функции распределения случайной величины X неверно?	P(a < x < b)	$F(x) = \int_{-\infty}^{x} p(x) dx$	p(x) = F'(x)	$\int_{-\infty}^{\infty} p(x) dx = 1$
35.	Для каких распределений не существует плотность распределения.	Биномиал ьное распредел ение	Нормальное	Показательно е	Равномерное
36.	Дана функция Если, $x<0$, то $f(x)=0$; Если, $x>=0$, то $f(x)=C$ *exp(-x). При каком значении С эта функция является плотностью распределения некоторой непрерывной случайной величины X ?	-1	2	3	1
37.	Непрерывная случайная величина X задана $f(x)=C(2x+3x**2)$ в интервале $(0, 1)$, вне этого интервала $f(x)=0$. Найти параметр C .	0,5	0,8	0,9	1,5

38.	Непрерывная случайная величина X задана $f(x)$ = $C(2x-x**2)$ в интервале $(0, 1)$, вне этого интервала $f(x)$ = 0 . Найти параметр C .	3/2	3/4	5/2	9/2
39.	Непрерывная случайная величина X задана $f(x)=C(x+x**2)$ в интервале $(0, 1)$, вне этого интервала $f(x)=0$. Найти вероятность того, что X примет значение, принадлежащее интервалу $(0; 0,5)$.	6/5	9/5	3/5	1/5
40.	Непрерывная случайная велич X задана $f(x)=C(x-2x^**2)$ интервале $(0, 1)$, вне эт интервала $f(x)=0$.		-5/6	-1/3	-1/5

№		A	В	С	D
41.	Какие свойства дисперсии случайной величины неверны? X,Y- независимые, С- постоянное число	$D(CX)= \\ CD(X)$	D(C)=0	D(X-Y)= $D(X)+D(Y)$	D(CX)= D(X)C**2
42.	Какое соотношение не всегда верно:	M(XY)= MX MY	M(X+Y)= MX+MY	M(CY)= C MX	M(X-Y) =MX-MY
43.	Найти дисперсию закона распределения случайной величины X: 1; 2; 5 P: 0,1; 0,6; 0,3	2,16	3,16	2, 6	2,56
44.	Найти дисперсию закона распределения случайной величины X: 2; 4; 5 P: 0,2; 0,5; 0,3	10,9	9,9	8,9	7,9
45.	Найти математическое ожидание случайной величины Z=8X-5Y+7, если	21	23	18	16

	известно, что M(X)=3, M(X)=3				
46.	Найти математическое ожидание случайной величины $Z=3X-2Y$, если известно, что $M(X)=3$, $M(X)=3$	3	5	2	4
47.	Найти дисперсию случайной величины Z=8X-5Y+7, если известно,	123	125	250	150
	что случайные величины X , Y независимы и $D(X)=2$, $D(Y)=1$				
48.	Найти дисперсию случайной величины $Z=2X+5Y-6$, если известно, что случайные величины X , Y независимы и $D(X)=0,5$, $D(Y)=1$	27	32	16	45
49.	Найти математическое ожидание для случайной величины X- M(X)	0	2	3	-1
50.	Найти дисперсию закона распределения случайной величины X: 2; 3; 5 P: 0,6; 0,1; 0,3	8,1	6,1	5,1	9,1

Тесты 7.

№		A	В	C	D
51.	Какие параметры имеет плотность нормального закона?	среднее квадратиче ское отклонение и математиче ское	математическ ое ожидание	дисперсия	границы множества значений
52.	Непрерывная случайная величина X задана $\varphi(x) = \frac{3}{2}(2x - x^2)$ в интервале $(0, 2)$, вне этого интервала $\varphi(x) = 0$. Найти математическое ожидание	6	7	8	4

	случайной величины Х.				
	•	0,7	0,8	1,2	0,4
53.	величина Х задана				
	$\varphi(x) = \frac{6}{5}(x+x^2)$				
	интервале (0, 1), вне этого				
	интервала $\varphi(x) = 0$. Найти				
	математическое ожидание величины X.				
	Непрерывная случай	0,028	0,08	0,009	0,07
54.	величина Х зад				
	$\varphi(x) = -\frac{1}{6}(x - 2x^2)$ в интерв				
	(0, 1), вне этого интерв				
	$\varphi(x) = 0$. Ha				
	математическое ожида				
	случайной величины Х.				
	-				
	Непрерывная случайная величина X задана	1	2	4	3
55.					
	$\varphi(x) = \frac{3}{2} \left(2x - x^2 \right)$ B				
	интервале (0, 1), вне этого				
	интервала $\varphi(x) = 0$.				
	математическое ожидание				
	случайной величины Х.	0.05	0.00	0.2	0.04
56.	Непрерывная случайная величина X задана	0,03	0,08	0,2	0,04
	$\varphi(x) = \frac{6}{5}(x+x^2)$				
	интервале (0, 1), вне этого				
	интервала $\varphi(x) = 0$. Найти				
	дисперсию величины Х.	0.001	0.004	0.05	0.50
57.	Непрерывная случай		0,084	0,95	0,58
)) /.	величина Х зад				
	$\varphi(x) = -\frac{1}{6}(x - 2x^2)$ в интерв				
	(0, 1), вне этого интерв				
	$\varphi(x) = 0$. Найти дисперо				
	случайной величины X.				
	Непрерывная случайная	17/24	11/24	13/24	19/24
	величина Х задана				
58.	$\varphi(x) = 0.5(2x + 3x^2)$				
	интервале (0, 1), вне этого				
	интервала $\varphi(x) = 0$. Найти				

	математическое ожидание случайной величины X.				
59.	Непрерывная случайная величина X задана $\varphi(x) = 0.5(2x + 3x^2)$ в интервале $(0, 1)$, вне этого интервала $\varphi(x) = 0$. Найти вероятность того, что X примет значение, принадлежащее интервалу $(0; 0,5)$.	3/16	5/16	7/16	9/16
60.	Непрерывная случай величина X зад $\varphi(x) = 0.5(2x + 3x^2)$ интервале $(0, 1)$, вне эт интервала $\varphi(x) = 0$. На дисперсиюнсь. случай величины X .		12/20	11/16	14/19

№		A	В	С	D
1.	Найти среднее арифметическое выборки 2,2,2,2,2,2	2	1,5	1	2,5
2.	Найти выборочное среднее выборки 2,3,2,3,2,3	2,5	1,5	3	0,5
3.	Найти дисперсию выборки 2,3,3,3,4,4,4	0,489	0,469	0,555	0,455
4.	Найти выборочное среднее выборки 2,2,2,2,2	2	1,5	1	0,5
5.	Статистическим аналогом математического ожидания является	выборочно е среднее значение	относительна я частота	абсолютная частота	выборочная дисперсия
6.	Статистическим аналогом закона распределения одной непрерывной случайной величины является	гистограмм а непрерывн ой случайной величины	полигон частот	корреляционна я таблица	функция распределени я
7.	Найти выборочную среднюю выборки	3,111	2,975	2,545	2,125

	2,3,4,2,3,5,4,3,2.				
8.	2,2,3,3,3,4,4,5 найти дисперсию вариационного ряда.	0,9375	0,9275	0,9075	0,8675
9.	Найти дисперсию выборки 2,3,3,3,5,5,5	3,8	4,8	2,8	5,8
10.	Найти дисперсию выборки 3,4,4,4,6,6	1,35	2,3	2,95	0,35

No		A	В	С	D
1.	Определите несмещенную оценку неизвестного параметра	Оценка в которой, что математиче ское ожидание равно оцениваем ому параметру	Оценка в которой, что математическ ое ожидание не равно оцениваемому параметру	Оценка в которой, что имеет наименьшую возможную дисперсию	Оценка в которой, что при п в бесконечност и по вероятности стремится к оцениваемому параметру
2.	Определите состоятельную оценку неизвестного параметра	Оценка в которой, что при п в бесконечно сти по вероятност и стремится к оцениваем ому параметру	Оценка в которой, что имеет наименьшую возможную дисперсию	Оценка в которой, что математическ ое ожидание равно оцениваемому параметру	Оценка в которой, что математическ ое ожидание не равно оцениваемому параметру
3.	Определите эффективную оценку неизвестного параметра	Оценка в которой, что имеет наименьшу ю возможную дисперсию	Оценка в которой, что математическ ое ожидание равно оцениваемому параметру	Оценка в которой, что математическ ое ожидание не равно оцениваемому параметру	Оценка в которой, что при п в бесконечност и по вероятности стремится к оцениваемому параметру
4.	Оценка не может обладать свойством:	асимптотич еской показатель ности	эффективност и	состоятельнос ти	несмещенност и
	Выборочное среднее равно	(18, 20)	(17, 20)	(17, 19)	(10, 11)

5.	19. Интервальная оценка для математического ожидания М может иметь вид				
6.	Доверительный интервал, это	интервал содержащи й неизвестны й параметр распределе ния выборки	интервал содержащий закон рас- пределения	интервал содержащий плотность распределения	интервал содержащий неизвестную дисперсию
7.	Для каких выборок доверительный интервал для математического ожидания находиться точно?	для нормально распределе нных выборок	для показа- тельных	для равномерно распределенн ых	Нет правильного ответа
8.	Выборочное среднее равно 28. Интервальная оценка для математического ожидания М может иметь вид	(25,31)	(24, 28)	(24, 29)	(21, 31)

№		A	В	С	D
1.	Если при изменении	корреляцио нная	функциональ ная	статистическа я зависимость	линейная зависимость
1.	значений одной величины, меняется условная средняя второй величины, то это	зависимост ь между сл. величинам	зависимость	л зависимоств	Sabhenmoetb
		И			
	Если при изменении		корреляционн	функциональ	линейная
	значений одной величины,	статистиче	ая	ная	зависимость
2.	меняется закон	ская	зависимость	зависимость	
	распределения второй величины, то это	зависимост ь между сл. величинам			
		И			
	Метод наименьших	регрессион	регрессионны	словесные) логические
3.	квадратов позволяет	ные	е модели	модели	модели.
	построить:	модели			
	График регрессионной	трендом	систематизац	формализацие	моделировани

4.	модели называется:		ией	й	ем.
5.	Зависимость между величинами, каждая из которых подвергается неконтролируемому разбросу?	функциона льная	корреляционн ая	графическая	логическая
6.	Какое значение принимает коэффициент при слабой корреляции:	близко к нулю	по модулю близко к единице	больше 1	меньше -1
7.	Регрессионные модели служат:	для прогнозиро вания	для оптимального планирования	для приближенно го решения уравне	для приближенно го решения уравнений
8.	Если значение коэффициента корреляции по модулю близко к 1, то имеет место корреляция:	средняя	сильная	слабая	Чистая
9.	Если значение коэффициента корреляции по модулю близко к 0, то имеет место корреляция:	сильная;	слабая;	средняя.	Чистая
10.	Зависимость между величинами, какждая из которых подвергается не контролирумому полностью разбросу, называются	• Экстрап оляцион ной зависим остью	• Пропорцио нальной зависимост ью	• Корреляци онной зависимост ью	• Функциона льной зависимост ью

№		A	В	C	D
	Найти множество значений	[-1; 1]	(0; 1)	(-1; 1)	(-1; 0)
1.	коэффициента корреляции				
	двух случайных величин				
	Как называются	ковариация	коэффициент	коэффициент	коэффициент
	математические ожидание		корреляция	асимметрии	регрессии
2.	произведения отклонений				
	от математических				
	ожиданий двух случайных				
	величин.				

	Из того, что нет регрессии	K=0	величины	нет регрессии	Нет
3.	Y на X вытекает, что		независимы	X	правильного
					ответа
				на Ү	
	Из того, что случайные	K=1	плотность	нет регрессии	K=0
4.	величины Y и X		распределени	X на Y	
	функционально зависит		я системы		
	вытекает, что		равна нулю		
	Прямая регрессии У на Х	-1	-0,2	0	-0,5
_	имеет уравнение: х+у=2.				
5.	Какое из перечисленных				
	значений может принимать				
	коэффициент корреляции?				
	Выборочный коэффициент	прямо	нелинейная	обратно	нет
6.	корреляции двух	пропорцио	зависимость	пропорциональ	правильного
	случайных величин равен 0.	нальны		ная	ответа
	Тогда эти случайные			зависимость	
	величины:				
	Прямая регрессии Y на X	-1/2	1/2	-1/3	0
7.	имеет уравнение: x+2y=2.				
	Какое из перечисленных				
	значений может принимать				
	·				
	коэффициент корреляции?				
	Прямая регрессии У на Х	-1	-0,1	0	-0,3
	имеет уравнение:		,,,		,5
8.	y = -5(x+2) . Какое из				
	перечисленных значений				
	может принимать				
	коэффициент корреляции?				
	1 1	Tagras	10	ı	

No		A	В	С	D
	По критерию Пирсона	17	16	15	10
1.	проверяем гипотезу о				
	равномерном				
	распределении с				
	параметрами a=1, b=3. В				
	гистограмме – 20 столбцов.				
	Сколько степеней свободы?				
	Гипотеза Но:	М не равно	M<20	M>20	M=18
	математическое ожидание	20			
2.	М равно 20. За				
	альтернативу можно				
	принять				

3.	Вычислить: 6! -0!	719	720	710	100
4.	Какие ошибки возможны при принятии решения?	2 видов	1 вида	3 видов	Нет правильного ответа
5.	Когда увеличивается мощность критерия?	при уменьшени и ошибки 2-рода	при уменьше- нии ошибки 1-рода	при увеличении ошибки 2-рода	при увеличении ошибки 1- рода
6.	Гипотеза называется простой, если она содержит	1 распределе ние	2 распреде- ления	3 распределени я	Бесконечное число распределени й
7.	Гипотеза называется сложной, если она содержит	более1 распределе ния	1 распреде- ление	0 распределени й	Все ответы правильны
8.	По критерию Пирсона проверяем гипотезу о нормальном распределении с параметрами $a=1$, сигма=4. В гистограмме – 9 столбцов. Сколько степеней свободы?	6	8	4	7
9.	По критерию Пирсона проверяем гипотезу о показательном распределении с параметром лямбда. В гистограмме — 10 столбцов. Сколько степеней свободы?	8	9	5	10
10.	По критерию Пирсона проверяем гипотезу о распределении Пуассона с параметром лямбда. В гистограмме – 8столбцов. Сколько степеней свободы?	6	5	8	7