In []:

- 1 #problem stmt:To find the best fitmodel for the given dataset
- 2 #import libraries
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sb
- 5 **from** sklearn.model_selection **import** train_test_split
- 6 **from** sklearn.linear_model **import** LinearRegression

reading the dataframe

In [2]:

1 df=pd.read_csv(r"C:\Users\MY HOME\Desktop\rainfall in india 1901-2015.csv")

2 df

Out[2]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	00
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165
4116 r	4116 rows x 19 columns											

4116 rows × 19 columns

In [3]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
Column Non-Null Count Dty

#	Column	Non-Null Count	Dtype
0	SUBDIVISION	4116 non-null	object
1	YEAR	4116 non-null	int64
2	JAN	4112 non-null	float64
3	FEB	4113 non-null	float64
4	MAR	4110 non-null	float64
5	APR	4112 non-null	float64
6	MAY	4113 non-null	float64
7	JUN	4111 non-null	float64
8	JUL	4109 non-null	float64
9	AUG	4112 non-null	float64
10	SEP	4110 non-null	float64
11	OCT	4109 non-null	float64
12	NOV	4105 non-null	float64
13	DEC	4106 non-null	float64
14	ANNUAL	4090 non-null	float64
15	Jan-Feb	4110 non-null	float64
16	Mar-May	4107 non-null	float64
17	Jun-Sep	4106 non-null	float64
18	Oct-Dec	4103 non-null	float64
d+vn	as: flaa+6//1	7) $in+64(1)$ of	riact(1)

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

performing the basic pre-processing steps

In [4]:

1 df.describe()

Out[4]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.00
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.23
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.71
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.35
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.70
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.15
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.90
4							•

In [5]:

1 df.isna().any()

Out[5]:

SUBDIVISION False YEAR False JAN True FEB True MAR True APR True True MAY JUN True JUL True True AUG SEP True OCT True NOV True DEC True ANNUAL True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

In [6]:

1 df["SUBDIVISION"].value_counts()

Out[6]:

SUBDIVISION WEST MADHYA PRADESH 115 EAST RAJASTHAN 115 COASTAL KARNATAKA 115 TAMIL NADU 115 **RAYALSEEMA** 115 115 **TELANGANA** COASTAL ANDHRA PRADESH 115 **CHHATTISGARH** 115 **VIDARBHA** 115 **MATATHWADA** 115 MADHYA MAHARASHTRA 115 KONKAN & GOA 115 SAURASHTRA & KUTCH 115 **GUJARAT REGION** 115 EAST MADHYA PRADESH 115 **KERALA** 115 WEST RAJASTHAN 115 SOUTH INTERIOR KARNATAKA 115 JAMMU & KASHMIR 115 HIMACHAL PRADESH 115 115 **PUNJAB** HARYANA DELHI & CHANDIGARH 115 UTTARAKHAND 115 WEST UTTAR PRADESH 115 EAST UTTAR PRADESH 115 **BIHAR** 115 **JHARKHAND** 115 ORISSA 115 GANGETIC WEST BENGAL 115 SUB HIMALAYAN WEST BENGAL & SIKKIM 115 NAGA MANI MIZO TRIPURA 115 ASSAM & MEGHALAYA 115 NORTH INTERIOR KARNATAKA 115 LAKSHADWEEP 114 ANDAMAN & NICOBAR ISLANDS 110 ARUNACHAL PRADESH 97 Name: count, dtype: int64

dropping the columns

In [7]:

```
1 df.pop("SUBDIVISION")
```

Out[7]:

```
0 ANDAMAN & NICOBAR ISLANDS
1 ANDAMAN & NICOBAR ISLANDS
2 ANDAMAN & NICOBAR ISLANDS
3 ANDAMAN & NICOBAR ISLANDS
4 ANDAMAN & NICOBAR ISLANDS
4 LAKSHADWEEP
4111 LAKSHADWEEP
4113 LAKSHADWEEP
```

4115 LAKSHADWEEP
Name: SUBDIVISION, Length: 4116, dtype: object

LAKSHADWEEP

In [8]:

4114

```
1 df.pop("Jan-Feb")
```

Out[8]:

```
0
        136.3
1
        159.8
2
        156.7
3
         24.1
4
          1.3
4111
         7.9
4112
         19.3
4113
         60.6
         69.3
4114
4115
          2.7
```

Name: Jan-Feb, Length: 4116, dtype: float64

In [9]:

```
1 df.describe()
```

Out[9]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.00
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.23
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.71
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.35
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.70
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.15
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.90
4							>

```
In [10]:
 1 df.pop("Mar-May")
Out[10]:
0
        560.3
1
        458.3
        236.1
2
3
        506.9
        309.7
        . . .
4111
        196.2
4112
         99.6
4113
        131.1
4114
         76.7
4115
        223.9
Name: Mar-May, Length: 4116, dtype: float64
In [11]:
 1 df.pop("Jun-Sep")
Out[11]:
0
        1696.3
1
        2185.9
2
        1874.0
3
        1977.6
4
        1624.9
         . . .
4111
        1013.0
4112
        1119.5
4113
        1057.0
4114
         958.5
4115
         860.9
Name: Jun-Sep, Length: 4116, dtype: float64
In [12]:
   df.pop("Oct-Dec")
Out[12]:
        980.3
0
1
        716.7
2
        690.6
3
        571.0
        630.8
        . . .
4111
        316.6
4112
        167.1
        177.6
4113
4114
        290.5
4115
        555.4
Name: Oct-Dec, Length: 4116, dtype: float64
```

```
In [13]:
```

```
1 df.describe()
```

Out[13]:

	YEAR	JAN	FEB	MAR	APR	MAY	
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.00
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.23
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.71
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.40
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.35
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.70
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.15
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.90
4							>

filling the Nullvalues

```
In [14]:
```

```
1 df.fillna(method="bfill",inplace=True)
```

In [15]:

```
features=df.columns[0:12]
target=df.columns[-1]
```

In []:

```
1 x=df[features].values
2 y=df[target].values
```

In []:

```
1 #Building a Model
```

In [17]:

```
1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)
```

In [18]:

```
1 a=LinearRegression()
2 a.fit(x_train,y_train)
3 print(a.score(x_test,y_test))
```

0.9924756266920182

In [19]:

```
1 #k-Means
```

In [20]:

```
1 import numpy as np
```

- 2 | import matplotlib.pyplot as plt
- 3 %matplotlib inline

In [21]:

```
plt.scatter(df["JAN"],df["ANNUAL"])
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [22]:

1 **from** sklearn.cluster **import** KMeans

In [23]:

```
1 km=KMeans()
2 km
```

Out[23]:

KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [24]:

```
1 y_predicted=km.fit_predict(df[["JAN","ANNUAL"]])
2 y_predicted
```

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in
it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning
 warnings.warn(

Out[24]:

```
array([1, 7, 1, ..., 3, 2, 3])
```

In [25]:

```
1 df["cluster"]=y_predicted
2 df.head()
```

Out[25]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	AN
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	;
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	;
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	:
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	;
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [26]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="blue")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="green")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="orange")
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [27]:

1 **from** sklearn.preprocessing **import** MinMaxScaler

In [28]:

```
scaler=MinMaxScaler()
scaler.fit(df[["JAN"]])
s=scaler.transform(df[["JAN"]])
df.head()
```

Out[28]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AN
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	;
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	;
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	:
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	;
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [29]:

```
scaler.fit(df[["ANNUAL"]])
d=scaler.transform(df[["ANNUAL"]])
df.head()
```

Out[29]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	AN
0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	;
1	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	;
2	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	:
3	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	;
4	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	
4														•

In [30]:

```
1 km=KMeans()
2 km
3
```

Out[30]:

KMeans()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [31]:
```

```
1 y_predicted=km.fit_predict(df[["JAN","ANNUAL"]])
2 y_predicted
```

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages
\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in
it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic
itly to suppress the warning
 warnings.warn(

Out[31]:

```
array([1, 3, 1, ..., 2, 4, 2])
```

In [32]:

```
1 df["New cluster"]=y_predicted
```

2 y_predicted

Out[32]:

```
array([1, 3, 1, ..., 2, 4, 2])
```

In [33]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="blue")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="red")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="green")
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [34]:

```
1 km.cluster_centers_
```

Out[34]:

In [35]:

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["JAN"],df1["ANNUAL"],color="green")
plt.scatter(df2["JAN"],df2["ANNUAL"],color="violet")
plt.scatter(df3["JAN"],df3["ANNUAL"],color="orange")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="yellow",marker=
plt.xlabel("JAN")
plt.ylabel("ANNUAL")
plt.show()
```


In [36]:

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

C:\Users\MY HOME\AppData\Local\Programs\Python\Python311\Lib\site-packages \sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_in it` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explic itly to suppress the warning

warnings.warn(

In [37]:

```
plt.plot(p,sse)
plt.xlabel("K")
plt.ylabel("Sum of squared error")
```

Out[37]:

Text(0, 0.5, 'Sum of squared error')

In [38]:

1 #district wise#

In [39]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [40]:

```
1 df=pd.read_csv(r"C:\Users\MY HOME\Desktop\district wise rainfall normal.csv")
```

2 df

Out[40]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	00
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206
4												•

In [41]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64

memory usage: 95.3+ KB

dtypes: float64(17), object(2)

```
In [42]:
```

```
1 df.pop("STATE_UT_NAME")
Out[42]:
0
       ANDAMAN And NICOBAR ISLANDS
1
       ANDAMAN And NICOBAR ISLANDS
2
       ANDAMAN And NICOBAR ISLANDS
3
                  ARUNACHAL PRADESH
4
                  ARUNACHAL PRADESH
                             KERALA
636
637
                             KERALA
638
                             KERALA
639
                             KERALA
                        LAKSHADWEEP
640
Name: STATE_UT_NAME, Length: 641, dtype: object
In [43]:
   df.pop("DISTRICT")
Out[43]:
0
              NICOBAR
1
        SOUTH ANDAMAN
2
        N & M ANDAMAN
3
                 LOHIT
4
           EAST SIANG
636
                IDUKKI
637
             KASARGOD
638
       PATHANAMTHITTA
639
              WAYANAD
640
          LAKSHADWEEP
Name: DISTRICT, Length: 641, dtype: object
In [44]:
    df.pop("Jan-Feb")
Out[44]:
       165.2
0
1
        69.7
2
        48.6
3
       123.0
4
       112.8
       . . .
        35.5
636
637
         3.3
        65.0
638
        13.1
639
640
        35.5
Name: Jan-Feb, Length: 641, dtype: float64
```

```
In [45]:
```

```
1 df.pop("Mar-May")
Out[45]:
0
       540.7
1
       483.5
2
       405.6
3
       841.3
4
       645.4
       426.6
636
637
       272.9
       553.5
638
639
       275.4
       232.4
640
Name: Mar-May, Length: 641, dtype: float64
In [46]:
 1 df.pop("Jun-Sep")
Out[46]:
0
       1207.2
1
       1757.2
2
       1884.4
3
       1848.5
4
       3008.4
        . . .
636
       2276.2
637
       3007.5
638
       1715.7
639
       2632.1
640
        998.5
Name: Jun-Sep, Length: 641, dtype: float64
In [47]:
   df.pop("Oct-Dec")
Out[47]:
       892.1
0
1
       705.3
2
       574.7
3
       231.0
4
       268.1
       . . .
636
       564.2
637
       337.9
       624.2
638
639
       332.5
640
       333.6
Name: Oct-Dec, Length: 641, dtype: float64
```

In [48]:

```
1 df.describe()
```

Out[48]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000
4							•

In [53]:

- 1 features=df.columns[0:12]
- 2 target=df.columns[-1]

In [54]:

- 1 x=df[features].values
- 2 y=df[target].values

In [55]:

1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.5)

In [56]:

- 1 a=LinearRegression()
- 2 a.fit(x_train,y_train)
- 3 print(a.score(x_test,y_test))

1.0

In [57]:

1 #lasso 2

In [59]:

```
from sklearn.linear_model import Ridge,RidgeCV,Lasso
ridge=Ridge(alpha=10)
ridge.fit(x_train,y_train)
train_score_ridge=ridge.score(x_train,y_train)
test_score_ridge=ridge.score(x_test,y_test)
print(train_score_ridge)
print(test_score_ridge)
```

- 0.999999999939446
- 0.999999999874553

In [62]:

```
1 l=Lasso(alpha=10)
2 l.fit(x_train,y_train)
3 train_score_l=l.score(x_train,y_train)
4 test_score_l=l.score(x_test,y_test)
5 print(train_score_l)
6 print(test_score_l)
```

- 0.999999401432268
- 0.9999987435581194

In []:

1

In []:

1