Deep Learning - Week 5

- 1. Which of the following is the most appropriate description of the method used in PCA to achieve dimensionality reduction?
 - (a) PCA achieves this by discarding a random subset of features in the dataset
 - (b) PCA achieves this by selecting those features in the dataset along which the variance of the dataset is maximised
 - (c) PCA achieves this by retaining the those features in the dataset along which the variance of the dataset is minimised
 - (d) PCA achieves this by looking for those directions in the feature space along which the variance of the dataset is maximised

Correct Answer: (d)

Solution: PCA looks for a new set of directions in feature space such that the first few directions capture the maximum variance in the data. It does this by re-orienting the feature axes, which can be thought of as rotating the axes in the feature space.

- 2. What is/are the limitations of PCA?
 - (a) It can only identify linear relationships in the data.
 - (b) It can be sensitive to outliers in the data.
 - (c) It is computationally less efficient than autoencoders
 - (d) It can only reduce the dimensionality of a dataset by a fixed amount.

Correct Answer: (a),(b)

Solution: PCA can be sensitive to outliers in the data, since the principal components are calculated based on the covariance matrix of the data. Outliers can have a large impact on the covariance matrix and can skew the results of the PCA. Also, it can only capture linear relationships in the data.

- 3. The following are possible numbers of linearly independent eigenvectors for a 7×7 matrix. Choose the incorrect option.
 - (a) 1
 - (b) 3
 - (c) 9
 - (d) 5
 - (e) 8

Correct Answer: (c),(e)

Solution: A $n \times n$ matrix can have between 1 and n linearly independent eigenvectors.

4. Find the singular values of the following matrix: $\begin{bmatrix} -4 & -6 \\ 3 & -8 \end{bmatrix}$

(a)
$$\sigma_1 = 10, \sigma_2 = 5$$

(b)
$$\sigma_1 = 1, \sigma_2 = 0$$

(c)
$$\sigma_1 = 100, \sigma_2 = 25$$

(d)
$$\sigma_1 = \sigma_2 = 0$$

Correct Answer: (a) Solution: Let $A = \begin{bmatrix} -4 & -6 \\ 3 & -8 \end{bmatrix}$. Then,

$$A^T A = \begin{bmatrix} 25 & 0 \\ 0 & 100 \end{bmatrix}.$$

The singular values of A are the positive square roots of the eigenvalues of $A^{T}A$. Therefore,

$$\sigma_1 = 10$$
 and $\sigma_2 = 5$.

- 5. PCA is performed on a mean-centred dataset in \mathbb{R}^3 If the first principal component is $\frac{1}{\sqrt{6}}(1,-1,2)$, which of the following could be the second principal component?
 - (a) (1, -1, 2)
 - (b) (0,0,0)
 - (c) $\frac{1}{\sqrt{5}}(0,1,2)$
 - (d) $\frac{1}{\sqrt{2}}(-1,-1,0)$

Correct Answer: (d)

Solution: The principal components are orthogonal eigenvectors of the covariance matrix. Since they are eigenvectors, (0,0,0) is ruled out, A zero vector cannot be a principal component because it has no direction. Since they have to be orthogonal, only the option d is correct.

Questions 6-9 are based on common data.

Consider the following data points x_1, x_2, x_3 to answer following questions: $x_1 =$ $\begin{bmatrix} -2\\2 \end{bmatrix}, x_2 = \begin{bmatrix} 2\\-2 \end{bmatrix}, x_3 = \begin{bmatrix} 1\\1 \end{bmatrix}$

- 6. What is the mean of the given data points x_1, x_2, x_3 ?
 - (a) $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
 - (b) $\begin{bmatrix} 1.67 \\ 1.67 \end{bmatrix}$

Correct Answer: d)

Solution: Mean of
$$x_1, x_2, x_3 = \frac{x_1 + x_2 + x_3}{3} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.33 \\ 0.33 \end{bmatrix}$$

7. The covariance matrix $C = \frac{1}{n} \sum_{i=1}^{n} (x - \bar{x})(x - \bar{x})^T$ is given by: (\bar{x}) is mean of the data

(a)
$$\begin{bmatrix} 8.66 & -7.33 \\ -7.33 & 8.66 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2.88 & -2.44 \\ -2.44 & 2.88 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0.22 & -0.22 \\ -0.22 & 0.22 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5.33 & -0.33 \\ -5.33 & 0.33 \end{bmatrix}$$

Correct Answer: b) Solution:
$$\bar{x} = \begin{bmatrix} 0.3333 \\ 0.333 \end{bmatrix} x_1 - \bar{x} = \begin{bmatrix} -2.33333 \\ 1.66667 \end{bmatrix} x_2 - \bar{x} = \begin{bmatrix} 1.66667 \\ -2.33333 \end{bmatrix} x_3 - \bar{x} = \begin{bmatrix} 0.666667 \\ 0.666667 \end{bmatrix}$$

Now, let's calculate $(x - \bar{x})(x - \bar{x})^T$ for each point:

For
$$x_1$$
: $\begin{bmatrix} -2.33333 \\ 1.66667 \end{bmatrix}$ $\begin{bmatrix} -2.33333 \\ 1.66667 \end{bmatrix}$ $= \begin{bmatrix} 5.44444 \\ -3.88889 \\ 2.77778 \end{bmatrix}$
For x_2 : $\begin{bmatrix} 1.66667 \\ -2.33333 \end{bmatrix}$ $\begin{bmatrix} 1.66667 \\ -2.33333 \end{bmatrix}$ $= \begin{bmatrix} 2.77778 \\ -3.88889 \\ 5.44444 \end{bmatrix}$

For
$$x_2$$
: $\begin{bmatrix} 1.66667 \\ -2.33333 \end{bmatrix}$ $\begin{bmatrix} 1.66667 & -2.33333 \end{bmatrix}$ = $\begin{bmatrix} 2.77778 & -3.88889 \\ -3.88889 & 5.44444 \end{bmatrix}$

For
$$x_3$$
:
$$\begin{bmatrix} 0.666667 \\ 0.666667 \end{bmatrix} \begin{bmatrix} 0.666667 & 0.666667 \end{bmatrix} = \begin{bmatrix} 0.444444 & 0.444444 \\ 0.444444 & 0.444444 \end{bmatrix}$$

Sum these matrices: $\sum_{i=1}^{n} (x - \bar{x})(x - \bar{x})^{T}$

Now, multiply by $\frac{1}{n} = \frac{1}{3}$:

$$C = \begin{bmatrix} 2.88889 & -2.44444 \\ -2.44444 & 2.88889 \end{bmatrix}$$

Therefore, the correct covariance matrix is $\begin{bmatrix} 2.88889 & -2.44444 \\ -2.44444 & 2.88889 \end{bmatrix}$

8. The maximum eigenvalue of the covariance matrix C is:

- (a) 1
- (b) 5.33
- (c) 0.44
- (d) 0.5

Correct Answer: b)
Solution:
$$C = \begin{bmatrix} 2.88889 & -2.44444 \\ -2.44444 & 2.88889 \end{bmatrix}$$

This gives us two eigenvalues: $\lambda_1 = 0.44445 \ \lambda_2 = 5.33333$

The maximum eigenvalue is $\lambda_2 = 5.33$.

- 9. The eigenvector corresponding to the maximum eigenvalue of the given matrix C is:
 - (a) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - (b) $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$
 - (c) $\begin{bmatrix} 0.67 \\ 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} -1.48 \\ 1 \end{bmatrix}$

Correct Answer: b)

Solution: Using the maximum eigenvalue found earlier, we solve the equation $(C - \lambda I)v = 0$ to find the eigenvector v. The eigenvector corresponding to the maximum eigenvalue is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

10. Given that A is a 2×2 matrix, what is the determinant of A, if its eigenvalues are 6 and 7?

Correct Answer: 42

Solution: The determinant of a matrix is defined as the product of its eigenvalues. Therefore, if a matrix has eigenvalues $\lambda 1$ and $\lambda 2$, its determinant is given by $det(A) = \lambda 1 * \lambda 2$.