Please check the examination d	etails below before enter	ring your candidate information
Candidate surname		Other names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Monday 20 J	lanuary	2020
Morning (Time: 2 hours)	Paper Re	eference 4PM1/02R
Further Pure N Paper 2R	/lathemat	tics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

P60476A
©2020 Pearson Education Ltd.
1/1/1/1/

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Series

Arithmetic series

Sum to *n* terms,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows the sector AOB of a circle with centre O. The radius of the circle is 13 cm and angle AOB = 2 radians.

(a) Find the length of the arc AE	(a)	Find	the	length	of	the	arc	AB
-----------------------------------	-----	------	-----	--------	----	-----	-----	----

(1)

(b) Find the area of the sector <i>AOB</i> .	
	(2)

(Total for Question 1 is 3 marks)

Figure 2 shows the shaded region R bounded by the line l_1 , the line l_2 and the y-axis.

The points with coordinates (0, 8) and (4, 0) lie on l_1

The points with coordinates (0, 4) and (6, 0) lie on l_2

- (a) Find, in the form ax + by = c, where a, b and c integers, an equation of
 - (i) l_1
 - (ii) l_2

(3)

(b) Hence write down three inequalities that define the region R.

(3)

4

Question 2 continued	
	(Total for Question 2 is 6 marks)

3	In triangle ABC , $AB = 11$ cm and $BC = 12$ cm.			
	The area of triangle $ABC = 33 \mathrm{cm}^2$			
	Find, in cm to 3 significant figures, the two possible lengths of AC.			
		(5)		

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a triangular pyramid ABCX.

The base ABC of the pyramid is an equilateral triangle where AB = BC = CA = 8 cm. The vertex X of the pyramid is such that AX is perpendicular to the base of the pyramid and AX = h cm.

The volume of the pyramid is $48\sqrt{3}$ cm³

(a) Show that h = 9

(3)

(b) Find, in degrees to one decimal place, the size of angle BXC.

(3)

(c) Find, in degrees to one decimal place, the size of the angle between the plane BCX and the base ABC of the pyramid.

(3)

Question 4 continued		

Question 4 continued	

5	(a) Show that $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \alpha^3 + \beta^3$	(2)
	The roots of the equation $2x^2 + 3x + 6 = 0$ are α and β	
	Without solving the equation,	
	(b) find the value of $\alpha^3 + \beta^3$	
		(2)
	(c) Show that $(\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = \alpha^4 + \beta^4$	(2)
		(2)
	(d) Form a quadratic equation with integer coefficients that has roots $(\alpha^3 - \beta)$ and $(\beta^3 - \beta)$	α) (6)

Question 5 continued		

Question 5 continued	

Figure 4 shows a hollow right circular cone fixed with its axis of symmetry vertical.

The cone is inverted and contains liquid, which is dripping out of a small hole at the vertex A of the cone at a constant rate of $0.9 \,\mathrm{cm}^3/\mathrm{s}$.

At time t seconds after the liquid starts to drip from the cone, the height of the liquid is h cm above A. The volume of liquid in the cone at time t seconds is $V \text{ cm}^3$

The vertical angle of the cone is 60°

(a) Show that
$$V = \frac{1}{9}\pi h^3$$

(2)

(b) Find, in cm/s to 3 significant figures, the rate at which the height of the liquid is decreasing when the height of the liquid in the cone above the vertex is 1.2 cm.

/	- 4	ı	\	
(4	Į.	1	

Question 6 continued		

Question 6 continued	

	Question 6 continued
THIS AREA	
XXXXXXX	
WRITE	
DO NOT WRITE IN	
Δ	
REA	
THIS A	
NOT WRITE IN THIS AREA	
WOTO	
ă	
Y.	
HIS ARE	
DO NOT WRITE IN THIS AREA	
NOT WR	
00	
	(Total for Question 6 is 6 marks)

7 The geometric series G has first term a, common ratio r and nth term u_n

Given that $u_4 = e^{x+2}$ and that $u_7 = e^{\frac{2x+1}{2}}$

(a) show that $r = e^{-\frac{1}{2}}$

(3)

(b) Hence find a in terms of e and x.

(3)

Given that the sum to infinity of *G* can be written as $\frac{e^p}{e^{\frac{1}{2}}-1}$

(c) find an expression for p in terms of x.

(3)

Given that $u_{18} > 1.6$ and that x is an integer,

(d) find the least value of x.

(4)

	Question 7 continued
	Question / continued
DO NOT WRITE IN THIS AREA	
<u>ac</u>	
S	
T	
9	
a	
۵	
4	
000	
do not write in this area	
至	
<u>O</u>	
<u> </u>	
DO NOT WRITE IN THIS AREA	
<u>0</u>	
ă	

Question 7 continued	

8 (a) Write down the value of k such that $\sin 2A = k \sin A \cos A$

 $g(A) = 2 + 3\cos A - \sin A - 3\sin 2A - 2\cos^2 A$

Given that g(A) can be written in the form $(p\cos A - \sin A)(q - r\sin A)$ where p, q and r are integers,

(b) find the value of p, the value of q and the value of r.

(3)

(1)

(c) Hence solve, in radians to 3 significant figures where appropriate, the equation

$$g(2\theta) = 0$$
 for $0 \leqslant \theta < \pi$

(6)

Question 8 continued		

Question 8 continued	

- 9 Given that $\frac{1}{(2-x)^3}$ can be written as $p(1-qx)^{-3}$
 - (a) find the value of p and the value of q.

(2)

(b) Expand $\frac{1}{(2-x)^3}$ in ascending powers of x up to and including the term in x^3 and express each coefficient as an exact fraction in its lowest terms.

(3)

$$f(x) = \frac{a + bx}{(2 - x)^3}$$
 where a and b are integers

The first three terms of the expansion of f(x) are $\frac{3}{8} - \frac{43}{16}x + cx^2$

(c) Find the value of a and the value of b.

(3)

(d) Find the exact value of c.

(2)

Question 9 continued		

Question 9 continued	

10	The equation of a curve C is $y = f(x)$ where $f'(x) = 3x^2 - 4x - p$ and $p \neq 0$	
	The points with coordinates $(2, 0)$ and $(-1, 9)$ lie on C .	
	(a) Show that C has equation $y = x^3 - 2x^2 - 4x + 8$	
	(a) Show that C has equation $y = x + 2x + 4x + 6$	(6)
	The straight line I has equation $y = 8 - 4x$	
	The straight line l has equation $y = 8 - 4x$	
	(b) Use algebraic integration to find the exact area of the finite region bounded by C	
	and l .	(6)
		(0)

Question 10 continued		

Question 10 continued	
	•••••••

- 11 The curve C has equation $y = \frac{3x-2}{x+1}$
 - (a) Write down an equation of the asymptote to C which is parallel to the
 - (i) x-axis
- (ii) y-axis

(2)

- (b) Find the coordinates of the point where C crosses the
 - (i) x-axis
- (ii) y-axis

(2)

(c) Sketch C, showing clearly the asymptotes and the coordinates of the points where C crosses the coordinate axes.

(3)

The straight line l has equation y = mx + 4

Given that there are **no** points of intersection between l and C,

(d) show algebraically that the range of possible values of m can be written as

$$a - 2\sqrt{b} < m < a + 2\sqrt{b}$$

where a and b are integers whose values need to be found.

(7)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
|
 |
| | | | | | | | | | | |
|
 |
|
 |
| | | | | | | | | | | |

Question 11 continued		

Question 11 continued	

Question 11 continued		

Question 11 continued	
	(Total for Question 11 is 14 marks) TOTAL FOR PAPER IS 100 MARKS