М.Л.Краснов, Г.И.Макаренко, А.И.Киселев

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

Задачи и упражнения

Главная редакция физико-математической литературы изд-ва «Наука», 1973.

Предлагаемый задачник посвящен важному разделу математики — вариационному исчислению.

По стилю и методике изложения предмета он непосредственно примыкает к ранее изданным книгам тех же авторов «Функции комплексного переменного. Операционное исчисление. Теория устойчивости» и «Интегральные уравнения».

В начале каждого раздела приводятся необходимые теоретические сведения (определения, теоремы, формулы) и подробно разбираются типовые примеры.

Задачник содержит свыше ста разобранных примеров и 230 задач для самостоятельного решения.

Задачи снабжены ответами, в ряде случаев даются указания к решению.

ОГЛАВЛЕНИЕ

V - V	
Предисловие	3
Предварительные замечания	5
Глава І. Экстремум функций многих переменных	7
§ 1. Безусловный экстремум	7
§ 2. Условный экстремум	15
Глава II. Экстремум функционалов	22
§ 3. Функционал. Вариация функционала и ее свойства	22
§ 4. Простейшая задача вариационного исчисления. Уравнение Эйлера	46
§ 5. Обобщения простейшей задачи вариационного исчисления	61
§ 6. Инвариантность уравнения Эйлера	73
§ 7. Поле экстремалей	76
§ 8. Достаточные условия экстремума функционала	88
§ 9. Условный экстремум	103
§ 10. Вариационные задачи с подвижными границами	119
§ 11. Разрывные задачи. Односторонние вариации	131
§ 12. Теория Гамильтона — Якоби. Вариационные принципы механики	140
Глава III. Прямые методы вариационного исчисления	155
§ 13. Конечно-разностный метод Эйлера	155
§ 14. Метод Ритца. Метод Канторовича	157
§ 15. Вариационные методы нахождения собственных значений и	164
собственных функций	
Ответы и указания	178
Литература	189

ПРЕДИСЛОВИЕ

Современному инженеру часто приходится иметь дело с задачами, которые требуют от него хорошей математической подготовки и твердых навыков в применении разнообразных математических методов. Расширение математического кругозора инженеров немало способствует новым достижениям техники.

Вариационное исчисление является одним из наиболее важных для приложений разделов классического математического анализа. В настоящее время в ряде втузов вариационное исчисление включено в обязательную программу курса высшей математики. Большое количество задач по вариационному исчислению содержится в известном сборнике задач Н. М. Гюнтера и Р. О. Кузьмина. Однако эти задачи, в большинстве своем довольно трудные, даны без указаний к их решению, поэтому начинающему они бывают часто не по силам. Много хороших задач рассеяно по многочисленным курсам вариационного исчисления, но некоторые из этих курсов стали библиографической редкостью.

Авторы задались целью дать некоторый минимум задач по основным разделам классического вариационного исчисления и сознательно не касались вопросов, связанных с теорией оптимального управления.

При составлении настоящего задачника авторы ориентировались в основном на книги Л. Э. Эльсгольца «Дифференциальные уравнения и вариационное исчисление» и Л. Я. Цлафа «Вариационное исчисление и интегральные уравнения» (справочное руководство).

Считаем своим приятным долгом горячо поблагодарить доцентов Н. Х. Розова и Л. Я. Цлафа за ряд ценных замечаний и советов, которые помогли нам в работе над книгой. Пользуемся случаем выразить признательность сотрудникам кафедры высшей математики МЭИ, которые также помогали нам при написании книги.

Все замечания и предложения, направленные на улучшение книги, нами будут приняты с благодарностью.

М. Л. Краснов, Г. И. Макаренко, А. И. Киселев

Москва — Дубна, 1972 г.

ПРЕДВАРИТЕЛЬНЫЕ ЗАМЕЧАНИЯ

1. Если A — произвольное множество элементов, то утверждение «элемент а принадлежит множеству А» символически записывается так: $a \in A$.

Запись $a \notin A$ (или $a \subseteq A$) означает, что элемент a не при-

надлежит множеству A.

Если A и B — множества, то утверждение «A является подмножеством множества B» (символически: $A \subset B$) означает, что всякий элемент x множества A принадлежит и множеству B_*

2. Объединение и пересечение двух множеств A и B опре-

деляются следующим образом:

Объединение $A \cup B = \{x \mid x \in A \text{ или } x \in B\}$ есть совокупность элементов x, принадлежащих хотя бы одному из множеств Aи В:

пересечение $A \cap B = \{x \mid x \in A, x \in B\}$ — совокупность эле-

ментов x, принадлежащих как A, так и B.

3. Если A — некоторое множество вещественных чисел, то верхней гранью (точной верхней гранью) А называется наименьшее вещественное число M, такое, что $a \le M$ для всех $a \in A$. Иными словами, M — верхняя грань A, если для любого $a \in A$ имеем $a \leqslant M$, но каково бы ни было $\epsilon > 0$, хотя бы и как угодно малое, найдется по крайней мере один элемент $b \in A$ такой, что $M - \varepsilon < b$.

Если такого числа не существует, то в качестве верхней

грани A принимается $+\infty$.

В обоих случаях верхняя грань множества A обозначается sup A. Аналогичное определение дается и для нижней грани мно-

жества A, обозначаемой inf A.

- 4. Линейным пространством называется множество R элементов x, y, z, \ldots произвольной природы, для которых определены операции сложения и умножения их на числа, причем выполнены следующие аксиомы:
 - 1) x + y = y + x;

2) (x+y)+z=x+(y+z);3) существует такой элемент 0 (нулевой элемент), что x + 0 = x для любого $x \in R$:

4) для каждого $x \in R$ существует такой элемент — x (противоположный элемент), что x + (-x) = 0;

5) $1 \cdot x = x$:

6) $\alpha(\beta x) = (\alpha \beta) x$;

7) $(\alpha + \beta) x = \alpha x + \beta x$;

8) $\alpha(x+y) = \alpha x + \alpha y$.

- 5. Линейное пространство R называется нормированным, если каждому элементу $x \in R$ поставлено- в соответствие неотрицательное действительное число | x | - норма этого элемента, причем:
 - 1) ||x|| = 0 только при x = 0;

2) $\|\alpha x\| = \|\alpha\| \cdot \|x\|$:

 $||x + y|| \le ||x|| + ||y||$ (аксиома треугольника для норм).

6. Множество M элементов x, y, z, \ldots любой природы называется метрическим пространством, если каждой паре элементов x, y из M поставлено в соответствие неотрицательное действительное число $\rho(x, y)$ такое, что

1) $\rho(x,y) = 0$ тогда и только тогда, когда x = y (аксиома

тождества):

2) $\rho(x,y) = \rho(y,x)$ (аксиома симметрии); 3) $\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$ (аксиома треугольника). Число $\rho(x,y)$ называется расстоянием между элементами

Всякое линейное нормированное пространство является

метрическим: достаточно положить $\rho(x, y) = ||x - y||$.

7. Пространство C[a, b] — пространство всех непрерывных на [a, b] функций u(x):

$$\|y\|_{C} = \max_{a \leq x \leq b} |y(x)|.$$

Пространство $C_1[a,b]$ — пространство всех функций y(x), непрерывных на [a,b] вместе со своей первой производной:

$$\parallel y \parallel_{C_1} = \max_{a \leqslant x \leqslant b} \mid y(x) \mid + \max_{a \leqslant x \leqslant b} \mid y'(x) \mid.$$

Пространство $C_n[a,b]$ — пространство всех функций y(x), непрерывных на [a, b] вместе с производными до n-го порядка включительно $(n - \phi u \kappa c u p o b a h h o e h a t v p a л ь h o e ч и с л o);$

$$||y||_{C_n} = \sum_{k=0}^n \max_{a \leqslant x \leqslant b} |y^{(k)}(x)|.$$

Иногда в $C_n[a,b]$ норму элемента y(x) определяют так:

$$||y|| = \max_{a \leqslant x \leqslant b} \{ |y(x)|, |y'(x)|, ..., |y^{(n)}(x)| \}.$$

ГЛАВА І

ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

§ 1. Безусловный экстремум

Пусть в некоторой области D евклидова n-мерного пространства E^n задана функция $f(x_1, x_2, \ldots, x_n)$ или, коротко, f(x).

Мы скажем, что в точке $x_0 \in D$ функция $\hat{f}(x)$ достигает своего наибольшего (наименьшего) значения, если какова бы ни была точка $x \in D$, имеем:

$$f(x) \leq f(x_0)$$
 $(f(x) \geq f(x_0)).$

Теорема Вейерштрасса. Всякая функция, непрерывная в замкнутой ограниченной области, достигает в ней своего наибольшего и наименьшего значений.

Определение 1. Пусть функция f(x) определена в области $D \subset E^n$. Точка $x^{(0)} = \left(x_1^0, \ldots, x_n^0\right) \in D$ называется точкой строгого максимума (соответственно точкой строгого минимума) функции f(x), если существует такая окрестность $\Omega(x^{(0)})$ точки $x^{(0)}$, что выполняется неравенство $f(x) < f(x^{(0)})$ (соответственно $f(x) > f(x^{(0)})$) для всех точек $x \in \Omega(x^{(0)}) \cap D$, $x \neq x^{(0)}$.

Точка строгого максимума (соответственно строгого минымума) характеризуется тем, что

$$\Delta f = f(x) - f(x^{(0)}) < 0$$
 (соответственно $\Delta f > 0$)

при всех $x \in \Omega(x^{(0)}) \cap D$, $x \neq x^{(0)}$.

Если же для точки $x^{(0)}$ существует такая окрестность $\Omega(x^{(0)})$, что для всех точек $x \in \Omega(x^{(0)}) \cap D$ выполняется условне $f(x) \leq f(x^{(0)})$ (соответственно $f(x) \geq f(x^{(0)})$), то точка $x^{(0)}$ называется просто точкой максимума (соответственно точкой минимума).

Определение 2. Точки максимума и минимума функции

f(x) называются точками экстремума этой функции.

1. Пользуясь определением, найти точки экстремума функций:

a)
$$f(x_1, x_2) = x_1^2 + x_2^2$$
;

6)
$$f(x_1, x_2) = \begin{cases} x_1^2 + x_2^2, & x_1^2 + x_2^2 \neq 0, \\ 1, & x_1^2 + x_2^2 = 0; \end{cases}$$

B) $f(x_1, x_2) = x_1^2 - x_2^3$

в области $D\{x_1^2 + x_2^2 \le 1\}$.

Теорем а 1 (необходимое условие экстремума). Пусть функция f(x), $x=(x_1,\ x_2,\dots,x_n)$, определена в некоторой окрестности точки $x^{(0)}=(x_1^0,\ x_2^0,\dots,x_n^0)$. Если эта точка является точкой экстремума функции f(x) и если в этой точке существуют производные $\frac{\partial f}{\partial x_i}$ $(j=1,\ 2,\ \dots,\ n)$, то они равны нулю

$$\frac{\partial f(x^{(0)})}{\partial x_i} = 0 \qquad (j = 1, 2, \dots, n).$$

Если функция f(x) дифференцируема в точке экстремума $x^{(0)}$, то ее дифференциал равен нулю в этой точке: $df(x^{(0)}) = 0$.

Пример 1. Найти точки экстремума функции $z=x^2+y^2$. Решение. Точки экстремума находятся среди точек, для которых dz=0. В нашем случае $dz=2x\,dx+2y\,dy$. Условие dz=0 выполняется в единственной точке x=0, y=0. В самом деле, если x=y=0, то dz=0. Обратно, пусть dz=0; пользуясь произвольностью dx и dy, выберем dy=0, тогда $0=dz=2x\,dx$ и в силу произвольности dx отсюда следует, что x=0. Аналогично получаем, что и y=0. В гочке (0,0) имеем z=0, во всех же других точках $z=x^2+y^2>0$. Поэтому точка (0,0) является точкой строгого минимума для функции $z=x^2+y^2$.

Если расширить класс функций, в котором ищется экстремум, включив функции не дифференцируемые в отдельных точках, приходим к следующему необходимому условию экстремума.

Если $x^{(0)}$ есть точка экстремума функции $f(x_1, x_2, ..., x_n)$, то в этой точке каждая частная производная $\frac{\partial f}{\partial x_i}$ (i=1,2,...,n)

либо равна нулю, либо не существует.

Пример 2. Рассмотрим верхнюю полость конуса $z^2 = x^2 + y^2$, $z \geqslant 0$. Очевидно, в точке 0(0,0) функция z имеет минимум. Но в этой точке $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ не существуют.

Определение 3. Точки, в которых выполняется необходимое условие экстремума функции f(x), называются критическими точками этой функции.

Точки $x^{(0)}$, в которых $df(x^{(0)}) = 0$, называются стационар-

ными точками функции f(x). Условие $df(x^{(0)}) = 0$ эквивалентно условию

$$\frac{\partial f(x^{(0)})}{\partial x_i} = 0 \qquad (i = 1, 2, ..., n).$$

Наличие критической точки еще не гарантирует наличие экся тремума функции. Например, для функции $z=x^2-y^2$ точка (0,0) есть стационарная точка, но экстремума функции z в этой точке нет: в любой как угодно малой окрестности точки (0,0) функция принимает как положительные, так и отрицательные значения.

1°. Достаточные условия строгого экстремума Определение 4. Квадратичная форма

$$A(x) = A(x_1, x_2, ..., x_n) = \sum_{i,j=1}^{n} a_{ij} x_i x_j,$$

$$a_{ij} = a_{ji}; i, j = 1, 2, ..., n,$$

называется положительно (соответственно отрицательно) определенной, если A(x)>0 (соответственно A(x)<0) для любой точки $x \in E^n$, $x \neq 0$, и обращается в нуль только при x = 0, т. е. при $x_1 = x_2 = \ldots = x_n = 0$.

Квадратичная форма называется неотрицательной, если она никогда не принимает отрицательных значений. Например, формы $x_1^2+x_2^2+\ldots+x_n^2$ и $(x_1+x_2+\ldots+x_n)^2$ являются неотрицательными формами. Первая из них является положительно определенной, так как она обращается в нуль только при $x_1=x_2=\ldots=x_n=0$; вторая форма уже не будет положи• тельно определенной, так как она обращается в нуль, например, при $x_1=1,\ x_2=-1,\ x_3=x_4=\ldots=x_n=0.$

Квадратичная форма, являющаяся положительно или отрицательно определенной, называется определенной квадратичной

формой.

Квадратичная форма, принимающая как положительные, так

и отрицательные значения, называется неопределенной. Теорема 2 (достаточные условия строгого экстремума), Пусть функция f(x) определена и имеет непрерывные производя ные второго порядка в некоторой окрестности точки $=(x_1^0, x_2^0, \ldots, x_n^0)$ и пусть $x^{(0)}$ является стационарной точкой функции f(x). Если квадратичная форма

$$A(dx_{1}, dx_{2}, ..., dx_{n}) = \sum_{i=1}^{n} \frac{\partial^{2} f(x^{(0)})}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}, \qquad (1)$$

au. е. второй дифференциал функции f в точке $x^{(0)}$, является no +ложительно определенной (отрицательно определенной) квадрая тичной формой, то точка $x^{(0)}$ является точкой строгого минимума (соответственно точкой строгого максимума); если квадратичная форма (1) является неопределенной, то в точке х(0) экстремума нет.

Критерий Сильвестра положительной определенности квадратичной формы. Для того чтобы квадратичная форма

$$A(x) = A(x_1, x_2, ..., x_n) = \sum_{i,j=1}^{n} a_{ij} x_i x_j,$$
 (2)

у которой $a_{ij}=a_{jl};\ i,\ j=1,\ 2,\ \ldots,\ n,\ была положительно определенной, необходимо и достаточно, чтобы$

$$\begin{vmatrix} a_{11} > 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \dots$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} > 0.$$

Для того чтобы квадратичная форма (2) была отрицательно определенной, необходимо и достаточно, чтобы

$$\begin{vmatrix} a_{11} < 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} < 0, \dots$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} (-1)^n > 0.$$

Случай n=2. Пусть функция f(x,y) определена и имеет непрерывные частные производные второго горядка в некоторой окрестности точки (x_0, y_0) и пусть (x_0, y_0) является стационарной точкой, т. е.

$$f_x'(x_0, y_0) = f_y'(x_0, y_0) = 0.$$
 (3)

Тогда, если в точке (x_0, y_0)

$$f_{xx}''f_{yy}'' - (f_{xy}'')^2 > 0, (4)$$

то она является точкой экстремума, а именно максимума, есл**и** в ней

$$f_{xx}'' < 0$$
 $(f_{uu}'' < 0)$,

и минимума, если

$$f_{xx}'' > 0$$
 $(f_{yy}'' > 0).$

Если же в точке (x_0, y_0)

$$f_{xx}''f_{yy}'' - (f_{xy}'')^2 < 0,$$

то экстремума в точке (x_0, y_0) нет. Наконец, когда

$$f_{xx}''f_{uu}'' - (f_{xu}'')^2 = 0$$

в точке (x_0, y_0) , то в ней экстремум может быть, а может и не быть. В этом последнем случае требуется дополнительное исследование.

Пример 3. Рассмотрим функции $z=x^4+y^4$, $z=-x^4-y^4$, $z=x^4-y^4$. Точка (0,0) является стационарной точкой для каждой из этих функций и в этой точке для каждой из них $z_{xx}^{\prime\prime}\cdot z_{yy}^{\prime\prime}-(z_{xy}^{\prime\prime})^2=0$.

Нетрудно видеть, что точка (0,0) является точкой минимума для первой функции, точкой максимума — для второй и не является точкой экстремума для третьей. В самом деле, во всех трех случаях z(0,0)=0, но в первом случае в любой окрестности точки (0,0), кроме самой точки, значения функци положительные, во втором — отрицательные, а в третьем случае функция $z=x^4-y^4$ в любой близости от начала координат принимает как положительные значения (например, при $x\neq 0$, y=0), так и отрицательные (например, при x=0, $y\neq 0$).

Пример 4. Найти экстремум функции трех переменных

$$f = x^2 + u^2 + z^2 - xu + x - 2z.$$

Решение. Найдем стационарные точки заданной функции f. Для этого составим систему уравнений

$$\frac{\partial f}{\partial x} = 2x - y + 1 = 0,$$

$$\frac{\partial f}{\partial y} = 2y - x = 0,$$

$$\frac{\partial f}{\partial z} = 2z - 2 = 0,$$

решая которую, получим $x_0 = -\frac{2}{3}$, $y_0 = -\frac{1}{3}$, $z_0 = 1$.

Составим квадратнчную форму (1) в точке $P_0\left(-\frac{2}{3}, -\frac{1}{3}, 1\right)$.

Им**е**ем

$$f''_{xx} = 2$$
, $f''_{xy} = -1$, $f''_{xz} = 0$,
 $f''_{yx} = -1$, $f''_{yy} = 2$, $f''_{yz} = 0$,
 $f''_{zx} = 0$, $f''_{zz} = 0$, $f''_{zz} = 2$.

В точке P_0 получим

$$a_{11} = 2$$
, $a_{12} = -1$, $a_{13} = 0$, $a_{21} = -1$, $a_{22} = 2$, $a_{23} = 0$, $a_{31} = 0$, $a_{32} = 0$, $a_{33} = 2$,

так что

$$a_{11} > 0,$$
 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3 > 0,$ $\begin{vmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = 6 > 0.$

Используя критерий Сильвестра, заключаем, что квадратичная форма— положительно определенная, а значит, согласно теореме 2, точка P_0 является точкой строгого минимума, причем $f(P_0) = -\frac{4}{3}$.

Пример 5. Найти экстремум функции двух переменных

$$z = x^3 y^2 (6 - x - y).$$

Решение. Найдем стационарные точки:

$$z'_x = 18x^2y^2 - 4x^3y^2 - 3x^2y^3 = 0, z'_y = 12x^3y - 2x^4y - 3x^3y^2 = 0,$$

откуда $x_1=0$, $y_1=0$ и $x_2=3$, $y_2=2$. Получили две стационарные точки $P_1(0,0)$ и $P_2(3,2)$.

Найдем вторые производные заданной функции

$$\begin{split} z_{xx}'' &= 36xy^2 - 12x^2y^2 - 6xy^3, \\ z_{yy}'' &= 12x^3 - 2x^4 - 6x^3y, \\ z_{xy}'' &= 36x^2y - 8x^3y - 9x^2y^2. \end{split}$$

В точке P_1 имеем $z''_{xx}=z''_{yy}=z''_{xy}=0$, так что $z''_{xx}\cdot z''_{yy}=-(z''_{xy})^2=0$, и вопрос о наличии экстремума в этой точке остается открытым. Для решения этого вопроса надо привлечь старшие производные.

В точке P_2 имеем $z''_{xx}=-144$, $z''_{yy}=-162$, $z''_{xy}=-108$. Очевидно, $z''_{xx}\cdot z''_{yy}-\left(z''_{xy}\right)^2>0$, а так как $z''_{xx}<0$, то в точке P_2 (3, 2) имеет место максимум, причем $z_{\max}=108$.

Исследовать на максимум и минимум следующие функции:

2.
$$f = (x-1)^2 - 2y^2$$
.

3.
$$f = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

4.
$$f = (x^2 + y^2) e^{-(x^2 + y^2)}$$
.

5.
$$f = \frac{1+x-y}{\sqrt{1+x^2+y^2}}$$
.

6.
$$f = x + \frac{y^2}{4x} + \frac{z^2}{y} + \frac{2}{z}$$
 $(x > 0, y > 0, z > 0)$.

7. $f = x^2 - xy + y^2 - 2x + y$. 8. $f = \sin x \cdot \sin y \cdot \sin (x + y)$ $(0 \le x \le \pi, 0 \le y \le \pi)$.

9.
$$f = x_1 \cdot x_2^2 \dots x_n^n (1 - x_1 - 2x_2 - \dots - nx_n)$$

 $(x_1 > 0, x_2 > 0, \dots, x_n > 0).$

10. Показать, что функция $z = (1 + e^y)\cos x$ — — yey имеет бесконечное множество максимумов и ни одного минимума.

11. Является ли достаточным для минимума функции f(x,y) в точке $M_0(x_0,y_0)$ условие, чтобы эта функция имела минимум вдоль каждой прямой, проходящей через точку M_0 ? Рассмотреть пример f(x,y) = $=(x-y^2)(2x-y^2).$

12. Показать, что в отличие от функции одной переменной уже для функции двух переменных существование в области D единственного экстремума максимума или минимума -- еще не означает, что этот экстремум обязательно доставляет наибольшее или наименьшее значение функции во всей области. Рассмотреть примеры:

a)
$$z = x^2 - y^2 + 2e^{-x^2}$$
,
 $-\infty < x < +\infty$, $-\infty < y < +\infty$;
6) $z = x^3 - 4x^2 + 2xy - y^2$,
 $D\{-5 \le x \le 5; -1 \le y \le 1\}$.

13. Пусть дана периодическая с периодом функция f(x). Среди всех тригонометрических многочленов п-го порядка

$$\frac{\alpha_0}{2} + \sum_{k=1}^n (\alpha_k \cos kx + \beta_k \sin kx)$$

путем подбора коэффициентов α_h , β_h требуется найти многочлен, для которого среднеквадратичное уклонение, определяемое равенством

$$\delta_n^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[f(x) - \frac{\alpha_0}{2} - \sum_{k=1}^{n} (\alpha_k \cos kx + \beta_k \sin kx) \right]^2 dx_0$$

имеет наименьшее значение.

2°. Метод наискорейшего (градиентного) спуска. Пусть ставится задача об отыскании минимума функции f(x), где x = 0 $=(x_1, x_2, \ldots, x_m)$. Возьмем некоторую точку $x^0 = (x_1^0, x_2^0, \ldots, x_m^0)$ и вычислим в этой точке градиент функции f(x)

$$\operatorname{grad} f(x^0) = \sum_{i=1}^m \frac{\partial f(x^0)}{\partial x_i} e_i,$$

где e_1, e_2, \ldots, e_n — ортонормированный базис в пространстве R^n . Если grad $f(x^0) \neq 0$, то полагаем

$$x_k^1 = x_k^0 - h_1(\operatorname{grad} f(x^0), e_k)$$
 $(k = 1, 2, ..., m),$

гле $h_1 > 0$ достаточно мало. Если grad $f(x^1) \neq 0$, то полагаем

$$x_k^2 = x_k^1 - h_2 (\text{grad } f(x^1), e_k), \qquad (h_2 > 0),$$

и вообще, если grad $f(x^{n-1}) \neq 0$, то

$$x_k^n = x_k^{n-1} - h_n (\operatorname{grad} f(x^{n-1}), e_k) \quad (k = 1, 2, ..., m), \quad (h_n > 0).$$

При определенных условиях (см. [18]) получаем монотонно убывающую последовательность $\{f(x^n)\}$. Если $x^n \to \tilde{x}$ и \tilde{x} — точка минимума функции f(x), то grad $f(x^n) \to 0$ при $n \to \infty$. Пример 6. Найти точку минимума функции $f(x) = x^2$.

Решение. Возьмем, например, точку $x^0 = 1$. Имеем

grad
$$f(x^0) = 2x^0i = 2i \neq 0$$
.

Поэтому

$$x^1 = x^0 - h \cdot 2 = 1 - 2h$$
, rate $h > 0$.

Далее,

$$\operatorname{grad} f(x^1) = 2(1-2h) i.$$

Если $h \neq \frac{1}{2}$, то grad $f(x^1) \neq 0$ и

$$x^2 = x^1 - 2h(1 - 2h) = (1 - 2h)^2$$
.

Продолжая этот процесс, находим

$$x^n = (1 - 2h)^n.$$

Ясно, что если 0 < h < 1, то $x^n \to 0$ при $n \to \infty$. Точка x = 0есть точка минимума функции $f(x) = x^2$. Если же $h = \frac{1}{3}$, $x^{1} = 0$, grad $f(x^{1}) = 0$, и мы получаем стационарную последова тельность {0}, предел которой есть нуль.

Пример 7. Найти точку минимума функции f(x, y) =

 $= x^2 + y^2.$

Решение. Возьмем, например, точку (1,1), т. е. $x^0 = 1$, $y^0 = 1$, Находим

grad
$$f(1, 1) = 2i + 2j$$
.

Так как grad $f(1, 1) \neq 0$, то полагаем

$$x^{1} = x^{0} - 2x^{0}h = 1 - 2h,$$

 $y^{1} = y^{0} - 2y^{0}h = 1 - 2h.$ $(h > 0)$

Имеем

grad
$$f(x^1, y^1) = 2(1-2h)i + 2(1-2h)j \neq 0$$
 $(h \neq \frac{1}{2})$

поэтому берем

$$x^{2} = x^{1} - 2x^{1} \cdot h = (1 - 2h)^{2},$$

$$y^{2} = y^{1} - 2y^{1} \cdot h = (1 - 2h)^{2},$$

$$\left(h > 0, \ h \neq \frac{1}{2}\right)$$

Продолжая этот процесс, получим

$$x^n = (1 - 2h)^n$$
,
 $y^n = (1 - 2h)^n$,

так что при 0 < h < 1 будем иметь последовательность точек $M_n(x^n,y^n)$, сходящуюся к точке минимума M(0,0) заданной функции. Очевидно, что

grad
$$f(x^n, y^n) = 2(1-2h)^n i + 2(1-2h)^n j \to 0$$
 при $n \to \infty$.

Итак, точка минимума функции $f(x,y)=x^2+y^2$ есть точка (0,0).

Методом градиентного спуска найти точку минимума функции $z = x^2 + y^2 - 2x + 4y + 5$.

§ 2. Условный экстремум

Пусть имеем функцию $z = f(x_1, x_2, \ldots, x_n)$ от n переменных, определенную в некоторой области D пространства E^n .

Пусть, кроме того, на x_1, x_2, \ldots, x_n наложено еще m дополнительных условий (m < n):

называемых уравнениями связи.

Пусть $x^{(0)} = (x_1^0, x_2^0, \dots, x_n^0)$ — внутренняя точка области D.

Говорят, что $f(x_1, x_2, \ldots, x_n)$ имеет в точке $(x_1^0, x_2^0, \ldots, x_n^0)$ условный максимум (соответственно условный минимум), если неравенство

$$f(x_1, x_2, ..., x_n) \leq f(x_1^0, x_2^0, ..., x_n^0)$$
 (2)

(соответственно $f(x_1, x_2, \ldots, x_n) \geqslant f(x_1^0, x_2^0, \ldots, x_n^0)$) выполняется в некоторой окрестности точки $(x_1^0, x_2^0, \ldots, x_n^0)$ при

условии что точки $(x_1, x_2, ..., x_n)$ и $(x_1^0, x_2^0, ..., x_n^0)$ удовле-

творяют уравнениям связи (1).

Пример 1. Функция $z=x^2+y^2$ имеет безусловный минимум в точке (0,0), равный нулю. Присоединим уравнение связи x+y-1=0, т. е. будем искать минимум аппликат точек поверхности $z=x^2+y^2$ лишь для тех значений x и y, которые удовлетворяют уравнению x+y-1=0. Условный минимум не может достигаться в точке (0,0), так как эта последняя не удовлетворяет уравнению связи. Разрешим уравнение связи х + +y-1=0 относительно у и подставим найденное значение y=1-x в уравнение поверхности. Получим $z=x^2+(1-x)^2-$ функцию одной переменной. Исследуя ее на экстремум, найдем $x_{\rm Kp} = \frac{1}{2}$, $z_{\rm min} = \frac{1}{2}$. В силу уравнения связи найдем

 $y_{\rm KP} = \frac{1}{2}$. Точка $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ есть вершина параболы, полученной в пересечении параболоида $z=x^2+y^2$ плоскостью x+y--1 = 0.

Аналогично можно поступить и в более общем случае.

Пусть ищется условный экстремум функции z=f(x,y) при наличии связи $\varphi(x,y) = 0$. Допустим, что при рассматриваемых значениях x и y уравнение $\varphi(x,y)=0$ определяет y как однозначную дифференцируемую функцию $y=\psi(x)$. Подставляя в функцию f(x, y) вместо y функцию $\psi(x)$, получаем функцию одного переменного x: $z = f(x, \psi(x)) = F(x)$. Экстремум (безусловный) функции F(x) является искомым условным экстремумом функции f(x,y) при наличии связи $\phi(x,y)=0$. Этот способ практически не всегда удобен, так как он требует фактического решения уравнения $\varphi(x,y) = 0$ относительно какой-либо переменной.

Для отыскания экстремальных значений функции $f(x_1, x_2, ..., x_n)$ при наличии связей (1) пользуются методом

неопределенных множителей Лагранжа.

Метод множителей Лагранжа. Предположим, что: 1) функции $f(x_1, x_2, ..., x_n)$ и $\varphi_1(x_1, x_2, ..., x_n)$ (i = 1, $(2, \ldots, m)$ имеют непрерывные частные производные первого порядка в области D;

2) m < n и ранг матрицы $\left\| \frac{\partial \varphi_i}{\partial x_j} \right\|$, $i = 1, 2, \ldots, m, j = 1, 2, \ldots$

≔ 1, 2, ..., n, в каждой гочке области D равен m. Составляется новая функция (функция Лагранжа)

$$\Phi = f + \sum_{i=1}^{m} \lambda_i \varphi_i, \tag{3}$$

где λ_i — неопределенные постоянные множители.

Функция $\Phi(x_1, x_2, ..., x_n)$ исследуется на безусловный экстремум, т. е. составляется система уравнений

$$\frac{\partial \Phi}{\partial x_1} = 0, \quad \frac{\partial \Phi}{\partial x_2} = 0, \quad \dots, \quad \frac{\partial \Phi}{\partial x_n} = 0,$$
 (4)

из которой и из т уравнений связи

$$\varphi_1 = 0, \quad \varphi_2 = 0, \quad \dots, \quad \varphi_m = 0$$

определяются значения параметров $\lambda_1, \lambda_2, \ldots, \lambda_m$ и координаты

 (x_1, x_2, \ldots, x_n) возможных точек экстремума.

Условия (4) являются необходимыми условиями экстремума как функции Лагранжа, так и исходной функции $z = f(x_1, x_2, \ldots, x_n)$.

Если точка $(x_1^0, x_2^0, \ldots, x_n^0)$ является точкой условного экстремума для функции $f(x_1, x_2, \ldots, x_n)$, то она является стационарной точкой для функции Лагранжа, т. е. в этой точке $\frac{\partial \Phi}{\partial x_i} = 0$ $(i = 1, 2, \ldots, n)$. Чтобы исследовать стационарную точку $(x_1^0, x_2^0, \ldots, x_n^0)$ функции Лагранжа $\Phi(x_1, x_2, \ldots, x_n)$ на условный экстремум, надо составить квадратичную форму

$$B(dx_1, dx_2, ..., dx_{n-m}) = \sum_{i,j=1}^{n-m} b_{ij} dx_i dx_j,$$
 (5)

т. е. второй дифференциал функции Лагранжа в этой точке с учетом условий

$$\frac{\partial \varphi_i}{\partial x_1} dx_1 + \frac{\partial \varphi_i}{\partial x_2} dx_2 + \ldots + \frac{\partial \varphi_i}{\partial x_n} dx_n = 0 \quad (i = 1, 2, \ldots, m).$$
 (6)

Если квадратичная форма (5) — определенная, то в точке $\begin{pmatrix} x_1^0, x_2^0, \dots, x_n^0 \end{pmatrix}$ будет строгий условный экстремум, а именно: строгий условный максимум, если квадратичная форма (5) — отрицательно определенная, и строгий условный минимум, если квадратичная форма (5) — положительно определенная.

Если же квадратичная форма (5) — неопределенная, то точка $\begin{pmatrix} x_1^0, x_2^0, \dots, x_n^0 \end{pmatrix}$ не является точкой условного экстремума.

Таким образом, наличие в точке $(x_1^0, x_2^0, \ldots, x_n^0)$ безусловного максимума (минимума) для функции Лагранжа (при найденных значениях $\lambda_1, \lambda_2, \ldots, \lambda_m$) влечет за собой наличие в этой точке условного максимума (минимума) для функции $z = f(x_1, x_2, \ldots, x_n)$ при наличии связей

$$\varphi_i(x_1, x_2, ..., x_n) = 0$$
 $(i = 1, 2, ..., m).$

Отсутствие безусловного экстремума для функции Лагранжа $\Phi(x_1, x_2, \ldots, x_n)$ еще не означает отсутствие условного экстремума для функции $f(x_1, x_2, \ldots, x_n)$.

Пример 2. Найти экстремум функции z = xy при усло-

Bun y-x=0.

Решение, Составляем функцию Лагранжа

$$\Phi\left(x,\ y\right) = xy + \lambda\left(y - x\right)$$

и выписываем соответствующую систему для определения λ и координат возможных точек экстремума:

$$\frac{\partial \Phi}{\partial x} = y - \lambda = 0,
\frac{\partial \Phi}{\partial y} = x + \lambda = 0,
y - x = 0.$$
(7)

Из первого уравнения находим $\lambda = y$. Подставляя во второе, получим x + y = 0. Итак,

$$\begin{cases}
 x + y = 0, \\
 y - x = 0,
\end{cases}$$

откуда x=y=0. При этом получаем $\lambda=0$. Таким образом, соответствующая функция Лагранжа имеет вид $\Phi(x,y)=xy$. В точке (0,0) $\Phi(x,y)$ не имеет безусловного экстремума, однако условный экстремум функции z=xy при условии y=x имеется. Действительно, в этом случае мы имеем $z=x^2$, откуда видно, что в точке (0,0) есть условный минимум.

Пример 3. Найти условный экстремум функции

$$f(x, y, z) = xyz \tag{8}$$

при условиях

$$\varphi_1(x, y, z) = x + y - z - 3 = 0,
\varphi_2(x, y, z) = x - y - z - 8 = 0.$$
(9)

Решение. Составим функцию Лагранжа

$$\Phi(x, y, z) = xyz + \lambda_1(x + y - z - 3) + \lambda_2(x - y - z - 8)$$

и выпишем систему уравнений для определения параметров λ_1 , λ_2 и координат возможных точек экстремума:

$$\frac{\partial \Phi}{\partial x} = yz + \lambda_1 + \lambda_2 = 0,$$

$$\frac{\partial \Phi}{\partial y} = xz + \lambda_1 - \lambda_2 = 0,$$

$$\frac{\partial \Phi}{\partial z} = xy - \lambda_1 - \lambda_2 = 0,$$

$$x + y - z - 3 = 0,$$

$$x - y - z - 8 = 0.$$
(10)

Решая систему уравнений (10), получим

$$\lambda_1 = \frac{11}{32}$$
, $\lambda_2 = -\frac{231}{32}$, $x = \frac{11}{4}$, $y = -\frac{5}{2}$, $z = -\frac{11}{4}$.

Второй дифференциал функции $\Phi(x, y, z)$ равен

$$d^{2}\Phi = \frac{\partial^{2}\Phi}{\partial x^{2}} dx^{2} + \frac{\partial^{2}\Phi}{\partial y^{2}} dy^{2} + \frac{\partial^{2}\Phi}{\partial z^{2}} dz^{2} + 2 \frac{\partial^{2}\Phi}{\partial x \partial y} dx dy + 2 \frac{\partial^{2}\Phi}{\partial x \partial z} dx dz + 2 \frac{\partial^{2}\Phi}{\partial y \partial z} dy dz.$$

В нашем случае

$$d^{2}\Phi = 2z \, dx \, dy + 2y \, dx \, dz + 2x \, dy \, dz. \tag{11}$$

Воспользовавшись условиями связи (9), получим

$$dx + dy - dz = 0, dx - dy - dz = 0,$$

откуда dx = dz, dy = 0. Подставляя это в (11), получим $B(dx) = 2y dx^2$.

В стационарной точке
$$B=-5~dx^2<0$$
, т. е. в точке $\left(\frac{11}{4},-\frac{5}{2},-\frac{11}{4}\right)$ имеем максимум, равный $f_{\rm max}=\frac{605}{32}$.

Пример 4. Найти экстремум функции $z=\cos^2 x + \cos^2 y$ при условии

$$y-x=\frac{\pi}{4}.$$

Решение. Составляем функцию Лагранжа

$$\Phi(x, y) = \cos^2 x + \cos^2 y + \lambda \left(y - x - \frac{\pi}{4}\right)$$

и выписываем систему уравнений для определения параметра д и координат возможных точек экстремума

$$\frac{\partial \Phi}{\partial x} = -2\cos x \sin x - \lambda = 0,$$

$$\frac{\partial \Phi}{\partial y} = -2\cos y \sin y + \lambda = 0,$$

$$y - x - \frac{\pi}{4} = 0$$

или

$$\sin 2x = -\lambda, \tag{12}$$

$$\sin 2y = \lambda,\tag{13}$$

$$y - x = \frac{\pi}{4}. \tag{14}$$

Из (12) и (13) имеем $\sin 2x + \sin 2y = 0$ или

$$2\sin(x+y)\cos(y-x) = 0.$$
 (15)

Согласно (14) имеем $\cos(y-x)=\frac{\sqrt{2}}{2}\neq 0$, а потому из (15) получаем, что $\sin(x+y)=0$, откуда

$$x + y = k\pi,$$
 $k = 0, \pm 1, \pm 2, ...$ (16)

Решая совместно уравнения (14) и (16), будем иметь

$$x = \frac{k\pi}{2} - \frac{\pi}{8}, \quad y = \frac{k\pi}{2} + \frac{\pi}{8}, \qquad k = 0, \pm 1, \pm 2, \dots$$
 (17)

Находим вторые производные функции $\Phi(x, y)$:

$$\frac{\partial^2 \Phi}{\partial x^2} = -2\cos 2x, \quad \frac{\partial^2 \Phi}{\partial x \partial y} = 0, \quad \frac{\partial^2 \Phi}{\partial y^2} = -2\cos 2y.$$

В точках $P_k\left(\frac{k\pi}{2}-\frac{\pi}{8},\frac{k\pi}{2}+\frac{\pi}{8}\right)$ имеем

$$\Phi_{xx}'' \cdot \Phi_{yy}'' - (\Phi_{xy}'')^2 = 4\cos\left(k\pi - \frac{\pi}{4}\right)\cos\left(k\pi + \frac{\pi}{4}\right) = 2\cos 2k\pi = 2 > 0.$$

Значит, в точках P_k есть условный экстремум. Далее, при k=2n

$$\left. \frac{\partial^2 \Phi}{\partial x^2} \right|_{P_{2n}} = -\sqrt{2} < 0,$$

а потому в точках P_{2n} — условный максимум

$$z_{\text{max}} = 1 + \frac{\sqrt{2}}{2}.$$

При k = 2n + 1 будет

$$\left. \frac{\partial^2 \Phi}{\partial x^2} \right|_{P_{2n+1}} = \sqrt{2} > 0,$$

то есть в точках P_{2n+1} — условный минимум

$$z_{\min}=1-\frac{\sqrt{2}}{2}.$$

В следующих задачах найти условный экстремум.

14. f = xy при $x^2 + y^2 = 1$.

15.
$$f = x^2 + y^2$$
 при $\frac{x}{2} + \frac{y}{3} = 1$.

16. f = xyz при условиях x + y + z = 5, xy + yz + zx = 8.

17. $f = e^{xy}$ при x + y = a.

18. f = 6 - 4x - 3y при $x^2 + y^2 = 1$.

19.
$$f = x - 2y + 2z$$
 при $x^2 + y^2 + z^2 = 9$.

20.
$$f = \sin x \sin y \sin z$$
 при $x + y + z = \frac{\pi}{2}$, $x > 0$, $y > 0$, $z > 0$.

21. Доказать неравенство

$$\frac{x^n+y^n}{2} \geqslant \left(\frac{x+y}{2}\right)^n, \quad n \geqslant 1, \quad x \geqslant 0, \quad y \geqslant 0.$$

22. Найти наибольшее значение произведения xyzt неотрицательных чисел x, y, z, t при условии, что их сумма сохраняет постоянную величину x+1, x+1

23. Найти кратчайшее расстояние от точки M(1,0)

до эллипса $4x^2 + 9y^2 = 36$.

24. Найти расстояние между параболой $y = x^2$ и прямой x - y = 5.

25. Найти стороны прямоугольника максимальной

площади, вписанного в круг $x^2 + y^2 = R^2$.

26. В шар радиуса R вписать цилиндр с наибольшей полной поверхностью.

глава п

ЭКСТРЕМУМ ФУНКЦИОНАЛОВ

§ 3. Функционал. Вариация функционала и ее свойства

1°. Определения функционала. Близость кривых. Пусть дан некоторый класс M функций y(x). Если каждой функции $y(x) \in M$ по некоторому закону поставлено в соответствие определенное число J, то говорят, что в классе M определен функционал J, и пишут J = J[y(x)].

Класс M функций y(x), на котором определен функционал

J[y(x)], называется областью задания функционала.

Пример 1. Пусть M = C[0, 1] — совокупность всех непрерывных функций y(x), заданных на отрезке [0, 1], и пусть

$$J[y(x)] = \int_{0}^{1} y(x) dx.$$
 (1)

Тогда J[y(x)] есть функционал от y(x): каждой функции $y(x) \in C[0,1]$ отвечает определенное значение J[y]. Подставляя в (1) вместо y(x) конкретные функции, мы будем получать соответствующие значения J[y]. Так, если y(x) = 1, то

$$J[1] = \int_{0}^{1} 1 \cdot dx = 1;$$

если $y(x) = e^x$, то

$$J[e^x] = \int_{0}^{1} e^x \, dx = e - 1;$$

если $y(x) = \cos \pi x$, то

$$J\left[\cos\pi x\right] = \int_{0}^{1} \cos\pi x \, dx = 0.$$

Пример 2. Пусть $M=C_1[a,\ b]$ — класс функций y(x), имеющих непрерывную производную на отрезке $[a,\ b]$, и пусть

$$J[y(x)] = y'(x_0), \quad \text{где} \quad x_0 \in [a, b].$$
 (2)

Ясно, что J[y(x)] есть функционал, определенный в указанном классе функций: каждой функции из этого класса ставится в соответствие определенное число — значение производной этой функции в фиксированной точке x_0 .

Если, например, a=1, b=3 и $x_0=2$, то для $y(x)=x^2$

имеем:

$$J[x^2] = 2x |_{x=2} = 4;$$

для $y(x)=x^2+1$ получим $J[x^2+1]=4$; для $y(x)=\ln{(1+x)}$ будем иметь $J[\ln{(1+x)}]=\frac{1}{1+x}\Big|_{x=2}=\frac{1}{3}$.

Пример 3. Пусть $M=C[-1,\ 1]$ — класс функций y(x), непрерывных на отрезке $[-1,\ 1]$, и пусть $\phi(x,\ y)$ — заданная функция, определенная и непрерывная для всех $-1\leqslant x\leqslant 1$ и для всех действительных y. Тогда

$$I[y(x)] = \int_{-1}^{1} \varphi[x, y(x)] dx$$
 (3)

будет функционалом, определенным на указанном классе функций. Например, если $\phi(x, y) = \frac{x}{1 + u^2}$, то для y(x) = x имеем

$$J[x] = \int_{-1}^{1} \frac{x \, dx}{1 + x^2} = 0, \text{ a при } y(x) = 1 + x \text{ имеем}$$

$$I[1+x] = \int_{-1}^{1} \frac{x \, dx}{1 + (1+x)^2} = \ln \sqrt{5} - \arctan 2.$$

Пример 4. Пусть $M=C_1[a,\ b]$ — класс функций y(x), имеющих непрерывную производную y'(x) на отрезке $[a,\ b]$. Тогда

$$J[y(x)] = \int_{a}^{b} \sqrt{1 + {y'}^{2}(x)} dx$$
 (4)

будет функционалом, определенным на этом классе функций Функционал (4) геометрически выражает длину дуги кривой u = u(x) с конпами в точках A(a, u(a)) и B(b, u(b)).

y=y(x) с концами в точках A(a,y(a)) и B(b,y(b)). Вариацией или приращением бу аргумента y(x) функционала J[y(x)] называется разность между двумя функциями y(x) и $y_0(x)$, принадлежащими выбранному классу M функций:

$$\delta y = y(x) - y_0(x). \tag{5}$$

Для класса k раз дифференцируемых функций имеем

$$(\delta y)^{(k)} = \delta y^{(k)}(x). \tag{6}$$

Говорят, что кривые y = y(x) и $y = y_1(x)$, заданные на отрезке [a, b], близки в смысле близости нулевого порядка, если $[y(x) - y_1(x)]$ мала на [a, b]. Геометрически это означает, что эти кривые на отрезке [a, b] близки по ординатам.

Будем говорить, что кривые y=y(x) и $y=y_1(x)$, заданные на отрезке [a,b], близки в смысле близости первого порядка, если $|y(x)-y_1(x)|$ и $|y'(x)-y_1'(x)|$ малы на [a,b]. Геометрически это означает, что кривые на отрезке [a,b] близки как по ординатам, так и по направлениям касательных в соответствующих точках.

Кривые y=y(x) и $y=y_1(x)$ близки в смысле близости k-го порядка, если модули

$$|y(x) - y_1(x)|, |y'(x) - y_1'(x)|, ..., |y^{(k)}(x) - y_1^{(k)}(x)|$$

малы на [*a*, *b*].

Если кривые близки в смысле близости k-го порядка, то они тем более близки в смысле близости любого меньшего порядка. Пример 5. Кривые $y(x) = \frac{\sin n^2 x}{n}$, где n достаточно ве-

Пример 5. Кривые $y(x) = \frac{\sin n}{n}$, где n достаточно велико, и $y_1(x) \equiv 0$ на $[0, \pi]$ близки в смысле близости нулевого порядка, так как модуль разности

$$|y(x)-y_1(x)|=\left|\frac{\sin n^2x}{n}\right|\leqslant \frac{1}{n}$$

т. е. на всем отрезке $[0, \pi]$ эта разность по модулю мала при достаточно большом n.

Близости первого порядка нет, так как

$$|y'(x)-y_1'(x)|=n|\cos n^2x|,$$

и, например, в точках $x=\frac{2\pi}{n^2}$ имеем $\left|y'(x)-y_1'(x)\right|=n$ и, значит, $\left|y'(x)-y_1'(x)\right|$ может быть сделан как угодно большим при n достаточно большом.

Пример 6. Кривые $y(x)=\frac{\sin nx}{n^2}$, где n достаточно велико, и $y_1(x)\equiv 0$ на $[0,\pi]$ близки в смысле близости первого порядка, ибо

$$|y(x)-y_1(x)|=\left|\frac{\sin nx}{n^2}\right|\leqslant \frac{1}{n^2}$$

 $|y'(x)-y_1'(x)|=\left|\frac{\cos nx}{n}\right|\leqslant \frac{1}{n}$

малы.

И

В следующих примерах установить порядок близости кривых.

27.
$$y(x) = \frac{\cos nx}{n^2 + 1}$$
, $y_1(x) \equiv 0$ Ha $[0, 2\pi]$.

28.
$$y(x) = \frac{\sin x}{n}$$
, $y_1(x) \equiv 0$ на $[0, \pi]$.

29.
$$y(x) = \sin \frac{x}{n}$$
, $y_1(x) \equiv 0$ на $[0, 1]$.

Расстоянием между кривыми y = f(x) и $y = f_1(x)$ ($a \le x \le b$), где f(x) и $f_1(x)$ непрерывные на [a, b] функции, называется не-

отрицательное число ρ , равное максимуму $|f_1(x) - f(x)|$ на отрезке $a \le x \le b$: $\rho = \rho [f_1(x), f(x)] = \max_{a \le x \le b} |f_1(x) - f(x)|$. (7)

Пример 7. Найти расстояние ρ между кривыми y = x и $y = x^2$ на отрезке [0, 1] (рис. 1).

Решение. По определению $\rho = \max_{0 \le x \le 1} |x^2 - x|$ или $\rho = \max_{0 \le x \le 1} (x - x^2)$. На $0 \le x \le 1$

Рис. 1.

концах отрезка [0, 1] функция $y = x - x^2$ обращается в нуль. Найдем максимум функции $y = x - x^2$ на отрезке [0, 1]. Имеем

$$y' = 1 - 2x;$$
 $y' = 0$ при $x = \frac{1}{2}$,

так что

$$\rho = \max_{0 \leqslant x \leqslant 1} y = (x - x^2) \big|_{x = \frac{1}{2}} = \frac{1}{4}.$$

В следующих примерах найти расстояния между данными кривыми на указанных интервалах.

30.
$$f(x) = xe^{-x}$$
, $f_1(x) = 0$, $[0, 2]$.

31.
$$f(x) = \sin 2x$$
, $f_1(x) = \sin x$, $\left[0, \frac{\pi}{2}\right]$.

32.
$$f(x) = x$$
, $f_1(x) = \ln x$, $[e^{-1}, e]$.

Пусть кривые y = f(x) и $y = f_1(x)$ имеют на отрезке [a, b] непрерывные производные n-го порядка,

Расстоянием n-го порядка между кривыми y = f(x) и $y = f_1(x)$ называется наибольший из максимумов следующих величин:

$$|f_1(x) - f(x)|, |f'_1(x) - f'(x)|, ..., |f_1^{(n)}(x) - f^{(n)}(x)|$$

на отрезке [а, b]. Будем обозначать это расстояние так:

$$\rho_n = \rho_n [f_1(x), f(x)] = \max_{0 \le k \le n} \max_{a \le x \le b} |f_1^{(k)}(x) - f_1^{(k)}(x)|. \tag{8}$$

Данное на стр. 25 определение расстояния между кривыми является в смысле нового определения расстоянием нулевого порядка.

Пример 8. Найти расстояние первого порядка между кривыми $f(x) = x^2$ и $f_1(x) = x^3$ на отрезке $0 \le x \le 1$.

Решение. Найдем производные данных функций f'(x) =

=2x, $f_1'(x)=3x^2$ и рассмотрим функции $y_1(x)=x^2-x^3$ и $y_2(x)=x^2-x^3$ и $y_2(x)=x^2-x^3$ и $y_2(x)=x^2-x^3$ и узиводине значения на отрезке [0, 1].

Рис. 2.

Имеем $y_1'=2x-3x^2$. Приравнивая эту производную нулю, находим стационарные точки функции $y_1(x)$: $x_1=0$, $x_2=\frac{2}{3}$. Далее, $y_1|_{x=0}=0$; $y_1|_{x=\frac{2}{3}}=\frac{4}{27}$; значение $y_1(x)$ на правом конце равно $y_1(1)=0$. Отсюда

$$\rho_0 = \max_{0 \leqslant x \leqslant 1} |x^3 - x^2| = \max_{0 \leqslant x \leqslant 1} (x^2 - x^3) = \frac{4}{27}.$$

Найдем теперь расстояние $\tilde{\rho}_0$ нулевого порядка между производными f'(x)=2x и $f'_1(x)=3x^2$:

$$\tilde{\rho}_0 = \max_{0 \leqslant x \leqslant 1} |y_2'(x)| = \max_{0 \leqslant x \leqslant 1} |2x - 3x^2|.$$

Построим график функции $y=\lfloor 2x-3x^2\rfloor$ (рис. 2). Из рисунка видно, что $\bar{\rho}_0=1$. Таким образом, расстояние ρ_1 первого порядка между кривыми $f(x)=x^2$ и $f_1(x)=x^3$ будет равно

$$\rho_1 = \max \left(\rho_0, \ \tilde{\rho}_0 \right) = 1.$$

33. Найти расстояние первого порядка между кривыми $f(x) = \ln x$, $f_1(x) = x$ на отрезке $[e^{-1}, e]$.

34. Найти расстояние второго порядка между кривыми f(x) = x, $f_1(x) = -\cos x$ на отрезке $\left[0, \frac{\pi}{3}\right]$.

35. Найти расстояние 1001-го порядка между кривыми $f(x) = e^x$, $f_1(x) = x$ на отрезке [0, 1].

є-окрестностью n-го порядка кривой y = f(x) ($a \le x \le b$) называется совокупность кривых $y = f_1(x)$, расстояния n-го порядка которых от кривой y = f(x) меньше ϵ :

$$\rho_n = \rho_n \left[f(x), f_1(x) \right] < \varepsilon. \tag{9}$$

е-окрестность нулевого порядка называют сильной ε -окрестностью финкции y=f(x).

Сильная ϵ -окрестность кривой y = f(x) состоит из кривых, расположенных в полоске ширины 2ϵ вокруг кривой y = f(x).

 ϵ -окрестность первого порядка называют слабой ϵ -окрестностью функции y=f(x).

 2° . Непрерывность функционала. Функционал I[y(x)], определенный в классе M функций y(x), называется непрерывным при $y=y_0(x)$ в смысле близости n-го порядка, если для любого числа $\varepsilon>0$ существует число $\eta>0$ такое, что для всех допустимых функций y=y(x), удовлетворяющих условиям

$$|y(x)-y_0(x)| < \eta, |y'(x)-y_0'(x)| < \eta, ..., |y^{(n)}(x)-y_0^{(n)}(x)| < \eta,$$

выполняется неравенство $|J[y(x)] - J[y_0(x)]| < \varepsilon$. Иными словами, $|J[y(x)] - J[y_0(x)]| < \varepsilon$, если

$$\rho_n[y(x), y_0(x)] < \eta_0$$

Функционал, не являющийся непрерывным в смысле близости *п*-го порядка, будем называть разрывным в смысле указанной близости. Полагая

$$y^{(k)}(x) = y_0^{(k)}(x) + \alpha \omega^{(k)}(x)$$
 $(k = 0, 1, 2, ..., n),$

где α — некоторый параметр, а $\omega(x)$ — произвольная функция из класса М. замечаем, что

$$\lim_{\alpha \to 0} y^{(k)}(x) = y_0^{(k)}(x) \qquad (k = 0, 1, 2, ..., n),$$

и определение непрерывности функционала при $y(x) = y_0(x)$ можно записать так:

$$\lim_{\alpha\to 0}J\left[y_0\left(x\right)+\alpha\omega\left(x\right)\right]=J\left[y_0\left(x\right)\right].$$

Пример 9. Показать, что функционал

$$J[y(x)] = \int_{0}^{1} [y(x) + 2y'(x)] dx,$$

определенный в пространстве $C_1[0, 1]$, непрерывен на функции $y_0(x) = x$ в смысле близости первого порядка.

Решение. Возьмем произвольное число в > 0. Покажем, что существует число $\eta > 0$ такое, что $|J[y(x)] - J[x]| < \varepsilon$, как только $|y(x) - x| < \eta$ и $|y'(x) - 1| < \eta$. Имеем

$$|J[y(x)] - J[x]| = \left| \int_{0}^{1} [y(x) + 2y'(x) - x - 2] dx \right| \le \int_{0}^{1} |y(x) - x| dx + 2 \int_{0}^{1} |y'(x) - 1| dx.$$

Выберем $\eta = \frac{\varepsilon}{3}$. Тогда для всех $y(x) \in C_1[0, 1]$, для которых

$$|y(x)-x|<\frac{\varepsilon}{3}$$
 $|y'(x)-1|<\frac{\varepsilon}{3}$,

будем иметь

$$|J[y(x)] - J[x]| < \varepsilon.$$

Итак, для всякого $\varepsilon > 0$ существует $\eta > 0$, например, $\eta = \frac{\varepsilon}{2}$, такое, что как только $\rho_1[y(x),x]<\eta$, то $|J[y(x)]-J[x]|<\epsilon$. Это и означает, согласно определению, что данный функционал непрерывен на функции $y_0 = x$ в смысле близости первого порядка. Легко видеть, что этот функционал непрерывен в смысле близости первого порядка на любой кривой $y(x) \in C_1[0, 1]$.

Пример 10. Рассмотрим функционал

$$J\left[f\left(x\right)\right]=f'\left(x_{0}\right),$$

где функции $f(x) \in C_1[a, b]$ и $x_0 \in [a, b]$.

Этот функционал разрывен на любой функции f(x) в смысле близости нулевого порядка. В самом деле, пусть $\phi(x)$ такова. что $\phi'(x_0)=1$ и $|\phi(x)|<\eta$ на отрезке [a,b]. Возьмем функцию $f(x)=f_0(x)+\phi(x)$, где $f_0(x)\in C_1[a,b]$. Тогда $f'(x_0)=f_0'(x_0)+1$. Очевидно, что $\rho[f(x),f_0(x)]<\eta$, т. е. кривые f(x) и $f_0(x)$ близки в смысле близости нулевого порядка. В то же время $J[f(x)]-J[f_0(x)]=1$, т. е. значения функционала не близки при любой близости нулевого порядка аргументов f(x) и $f_0(x)$.

Точнее, существует $\varepsilon > 0$ (именно $\varepsilon < 1$) такое, что каково

бы ни было $\eta > 0$, найдутся f(x) такие, что

$$\rho_0[f, f_0] < \eta$$
 и $|J[f] - J[f_0]| \ge \varepsilon$.

Это и означает разрывность функционала J[f] в смысле близости нулевого порядка.

Покажем, что этот функционал непрерывен в смысле близо-

сти первого порядка.

Возьмем любое $\varepsilon > 0$. Имеем

$$|J[f(x)] - J[f_0(x)]| = |f'(x_0) - f'_0(x_0)|.$$

Очевидно, что если взять $\eta=\epsilon$, то при $\rho_1[f(x),\ f_0(x)]<\eta$ бу-

$$|J[f(x)] - J[f_0(x)]| < \varepsilon$$

что и требовалось доказать. Этот пример показывает, что из непрерывности функционала в смысле близости *п*-го порядка не следует, вообще говоря, непрерывность функционала в смысле близости более низкого порядка.

Пример 11. Рассмотрим функционал

$$J[y(x)] = \int_{0}^{\pi} y'^{2}(x) dx,$$

определенный в пространстве $C_1[0,\pi]$. Покажем, что данный функционал на функции $y_0(x) = 0$ разрывен в смысле близости нулевого порядка.

Действительно, пусть $y_0(x) \equiv 0$ на $[0, \pi]$ и $y_n(x) = \frac{\sin nx}{n}$

Тогда $\rho_0[y_0(x), y_n(x)] = \frac{1}{n}$ и $\rho_0 \to 0$ при $n \to \infty$.

С другой стороны, разность

$$J[y_n(x)] - J[y_0(x)] = \int_0^{\pi} \frac{\cos^2 nx}{n} dx = \frac{\pi}{2}$$

не зависит от n. Таким образом, при $n \to \infty$ $J[y_n(x)]$ не стремится к $J[y_0(x)] = 0$, и следовательно, данный функционал разрывен в смысле близости нулевого порядка на функции $y_0(x) = 0$.

Предоставляем читателю доказать, что рассмотренный функционал непрерывен на функции $y_0(x)\equiv 0$ в смысле близости цервого порядка.

Исследовать на непрерывность следующие функционалы.

36. $J[y(x)] = y(x_0)$, где функции $y(x) \in C[a, b]$ и

 $x_0 \in [a, b]$, в смысле близости нулевого порядка.

37. $J[y(x)] = \max |y(x)|$, где функции y(x) непрерывны на отрезке [a,b] (в смысле близости нулевого порядка).

38.

$$J\left[y\left(x\right)\right] = \left\{ \begin{array}{l} 0, \; \text{если} \; y\left(x\right) \; \text{принимает хотя бы одно} \\ \text{отрицательное значение,} \\ \frac{1}{2}, \; \text{если} \; y\left(x\right) \equiv 0, \\ 1, \; \text{если} \; y\left(x\right) \geqslant 0, \; \text{причем} \; y\left(x\right) \not\equiv 0, \end{array} \right.$$

в смысле близости нулевого порядка.

39. $J[y(x)] = \int\limits_0^1 |y'(x)| dx$, где функции y(x) имеют непрерывные первые производные на отрезке [0, 1]: а) в смысле близости нулевого порядка; б) в смысле близости первого порядка.

40.
$$J[y(x)] = \int_{0}^{\pi} \sqrt{1 + {y'}^{2}(x)} dx$$
 на функции $y_{0}(x) \equiv 0$,

где функции $y(x) \subseteq C_1[0, \pi]$: а) в смысле близости нулевого порядка; б) в смысле близости первого порядка.

41.
$$J[y(x)] = \int_{0}^{\pi} (1 + 2y'^{2}(x)) dx$$
 на функции $y_{0}(x) \equiv 0$,

где функции $y(x) \in C_1[0, \pi]$, в смысле близости первого порядка.

Пример 12. Показать, что функционал

$$J[y(x)] = \int_{0}^{1} x^{3} \sqrt{1 + y^{2}(x)} dx,$$

определенный на множестве функций $y(x) \in C[0, 1]$, непрерывен на функции $y_0(x) = x^2$ в смысле близости нулевого порядка.

Решение. Положим $y(x)=x^2+\alpha\eta(x)$, где $\eta(x)\in C[0,1]$, α — как угодно мало,

$$J[y(x)] = J[x^{2} + \alpha \eta(x)] = \int_{0}^{1} x^{3} \sqrt{1 + (x^{2} + \alpha \eta(x))^{2}} dx =$$

$$= \int_{0}^{1} x^{3} \sqrt{1 + x^{4} + 2\alpha x^{2} \eta(x) + \alpha^{2} \eta^{2}(x)} dx.$$

Переходя к пределу при $\alpha \to 0$, получим из этого равенства

$$\lim_{\alpha \to 0} J[y(x)] = \int_{0}^{1} x^{3} \sqrt{1 + x^{4}} dx = J[x^{2}],$$

что и означает непрерывность функционала на функции $y_0 = x^2$.

Определение. Пусть M — линейное нормированное пространство функций y(x).

Функционал L[y(x)], определенный в пространстве M, называется линейным, если он удовлетворяет условиям:

1)
$$L[cy(x)] = c \cdot L[y(x)],$$

где c — произвольная постоянная,

2)
$$L[y_1(x) + y_2(x)] = L[y_1(x)] + L[y_2(x)],$$

где $y_1(x) \in M$ и $y_2(x) \in M$. Например, функционал

$$L[y(x)] = \int_{a}^{b} [y'(x) + y(x)] dx,$$

определенный в пространстве $C_1[a,b]$, очевидно, является линейным.

Другое определение линейности функционала:

Функционал L[y(x)] называется линейным, если он 1) непрерывен и 2) для любых $y_1(x) \in M$ и $y_2(x) \in M$ удовлетворяет условию

$$L[y_1(x) + y_2(x)] = L[y_1(x)] + L[y_2(x)].$$

42. Показать эквивалентность приведенных выше определений линейности функционала.

43. Показать, что функционал $L[y(x)] = y(x_0)$ —

линейный.

44. Показать, что если L[y(x)] — линейный функционал и отношение $\frac{L[y(x)]}{\|y(x)\|} \to 0$ при $\|y(x)\| \to 0$, то $L[y(x)] \equiv 0$.

3°. Вариация функционала. Пусть функционал J[y(x)] задан на множестве M функций y(x). Приращением функционала J[y(x)], отвечающим приращению $\delta y(x)$ аргумента, называется величина

$$\Delta J = \Delta J [y(x)] = J [y(x) + \delta y(x)] - J [y(x)]$$

$$(\delta y(x) = \tilde{y}(x) - y(x), \text{ rge } y(x) \in M, \ \tilde{y}(x) \in M).$$

$$(10)$$

Пример 13. Найти приращение функционала

$$J[y(x)] = \int_{0}^{1} y(x) y'(x) dx,$$

определенного в пространстве $C_1[a, b]$, если y(x)=x, $y_1(x)=x^2$. Решение. Имеем

$$\Delta J = J[x^2] - J[x] = \int_0^1 x^2 2x \, dx - \int_0^1 x \cdot 1 \cdot dx = \int_0^1 (2x^3 - x) \, dx = 0.$$

45. Найти приращение функционала, рассмотренного в примере 13, положив $y(x) = e^x$, $y_1(x) = 1$.

Определение. Если приращение функционала

$$\Delta J = J [y(x) + \delta y] - J [y(x)]$$

можно представить в виде

$$\Delta J = L[y(x), \delta y] + \beta(y(x), \delta y) \|\delta y\|,$$

46. Показать, что вариация δJ функционала J[y(x)] (если она существует) определяется единственным образом.

Пример 14. Показать, что функционал

$$J[y(x)] = \int_{a}^{b} y(x) dx,$$

заданный в пространстве C[a,b], дифференцируем в каждой точке y(x) этого пространства.

Решение.

$$\Delta J = J[y + \delta y] - J[y] =$$

$$= \int_{a}^{b} [y(x) + \delta y(x)] dx - \int_{a}^{b} y(x) dx = \int_{a}^{b} \delta y(x) dx.$$

Таким образом, $\Delta J = \int_{-\infty}^{0} \delta y(x) dx$. Это и есть линейный

функционал относительно $\delta y(x)$. В данном случае все приращение функционала свелось к линейному функционалу относительно $\delta y(x)$. Рассматриваемый функционал дифференцируем в каждой

точке y(x) и его вариация $\delta J = \int_{a}^{b} \delta y(x) dx$.

47. Показать, что всякий линейный непрерывный функционал J[y] всегда дифференцируем.

Пример 15. Показагь, что функционал

$$J[y] = \int_{0}^{b} y^{2}(x) dx,$$

определенный в пространстве C[a, b], дифференцируем в каждой точке y(x).

Решение. Имеем

$$\Delta J = \int_{a}^{b} [y(x) + \delta y(x)]^{2} dx - \int_{a}^{b} y^{2}(x) dx =$$

$$= \int_{a}^{b} 2y(x) \, \delta y(x) \, dx + \int_{a}^{b} (\delta y(x))^{2} dx. \tag{11}$$

Первый интеграл в правой части (11) при каждой фиксированной функции y(x) является линейным относительно $\delta y(x)$ функционалом. Оценим второй интеграл в правой части (11), Имеем

$$\int_{a}^{b} (\delta y(x))^{2} dx = \int_{a}^{b} |\delta y(x)|^{2} dx \le$$

$$\le (\max_{a \le x \le b} |\delta y(x)|)^{2} \int_{a}^{b} dx = (b-a) \|\delta y(x)\|^{2} =$$

$$= ((b-a) \|\delta y\|) \cdot \|\delta y\|.$$

При $\|\delta y\| \to 0$ величина

$$(b-a) \parallel \delta y \parallel \to 0.$$

Таким образом, приращение ΔJ функционала представимо в виде суммы $L[y, \delta y]$ и добавки, имеющей второй порядок малости относительно ||бу||. Согласно определению, данный функционал является дифференцируемым в точке y(x) и его вариация

$$\delta J = 2 \int_{a}^{b} y(x) \, \delta y(x) \, dx.$$

- 48. Для функционала $J[y(x)] = \int_{0}^{1} y^{2}(x) dx$ положить y = 2x, $\delta y = \alpha x^{2}$ и сравнить δJ с ΔJ при $\alpha = 1$; $-0.1^{\circ}0.01.$
- **49.** Для функционала $J[y(x)] = \int xy^3(x) dx$ положить $y=e^x$, $\delta y=\alpha x$. Сравнить ΔJ с δJ при $\alpha=1$; 0.1; 0.01.

50. Проверить дифференцируемость следующих функционалов:

- 1) J[y] = y(a) в пространстве C[a, b].
- 2) J[y] = y(a) в пространстве $C_1[a, b]$.
- 3) $J[y] = \sqrt{1 + {y'}^2(a)}$ в пространстве $C_1[a, b]$. 4) J[y] = |y(a)| в пространстве C[a, b].
- **51.** Показать, что функционал $J^2[y]$ дифференцируем, если дифференцируем J[y]. Написать вариацию $J^{2}[y].$
 - 52. Показать, что функционал

$$J[y] = \int_{a}^{b} f(x, y(x)) dx,$$

определенный в пространстве C[a, b], где f(x, y) — непрерывная функция своих аргументов, обладающая непрерывными частными производными до второго порядка включительно в области $a \leqslant x \leqslant b$,

 $-\infty < y < +\infty$, дифференцируем и его вариация имеет вид

$$\delta J = \int_{a}^{b} \frac{\partial f(x, y)}{\partial y} \, \delta y(x) \, dx.$$

Пример 16. Рассмотрим функционал

$$J[y] = \int_{a}^{b} f(x, y(x), y'(x)) dx,$$

определенный в пространстве $C_1[a, b]$ непрерывных функций y(x) на отрезке [a, b], обладающих непрерывными производными червого порядка. Функция f(x, y, y') непрерывна по совокупности своих аргументов и имеет непрерывные частные производные до 2-го порядка включительно в области

$$a \le x \le b$$
, $-\infty < y < +\infty$, $-\infty < y' < +\infty$.

Найдем приращение функционала ΔJ , отвечающее приращению $\delta y(x)$ аргумента, где $\delta y(x) \equiv C_1[a, b]$. Имеем

$$\Delta J[y(x)] = \int_{0}^{a} [f(x, y + \delta y, y' + \delta y') - f(x, y, y')] dx.$$
 (12)

По формуле Тейлора

$$f(x, y + \delta y, y' + \delta y') - f(x, y, y') =$$

$$= \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y' + R(x, y, y', \delta y, \delta y'), \quad (13)$$

где $R\left(x,\;y,\;y',\;\delta y,\;\delta y'\right)$ — остаточный член формулы Тейлора. Подставляя (13) в (12), получим

$$\Delta J[y(x)] = \int_{a}^{b} \left(\frac{\partial f}{\partial y} \, \delta y + \frac{\partial f}{\partial y'} \, \delta y'\right) dx +$$

$$+ \int_{a}^{b} R(x, y, y', \, \delta y, \, \delta y') \, dx. \qquad (14)$$

Первое слагаемое в правой части (14) линейно относительно δy и $\delta y'$. Пусть все вторые частные производные функции f(x, y, y') по y и y' не превосходят по абсолютной величине некоторой

ІГЛ. ІІ

константы M>0 в ограниченной по y и y' области. Тогда справедлива оценка

$$\int_{a}^{b} |R(x, y, y', \delta y, \delta y')| dx \leq 2M \int_{a}^{b} ||\delta y||^{2} dx = 2M(b-a) ||\delta y||^{2}.$$

Здесь $\|\delta y\| = \max_{a \leqslant x \leqslant b} (|\delta y|, |\delta y'|)$. Таким образом, второе

слагаемое в правой части (14) — второго порядка малости относительно $\|\delta y\|$. Следовательно, согласно определению, функционал J[y] дифференцируем в пространстве $C_1[a, b]$ и его вариация имеет вид

$$\delta J[y] = \int_{a}^{b} \left(\frac{\partial f}{\partial y} \, \delta y + \frac{\partial f}{\partial y'} \, \delta y' \right) dx. \tag{15}$$

Пример 17. Найти вариацию функционала

$$J[y] = \int_{-1}^{1} (y'e^y + xy^2) dx.$$

Решение. Функция $f(x, y, y') = y'e^y + xy^2$, очевидно, непрерывна по совокупности переменных x, y и y', имеет частные производные всех порядков по y и y', ограниченные в любой ограниченной области изменения переменных y и y'. Поэтому данный функционал дифференцируем в пространстве $C_1[-1, 1]$ и его вариация согласно формуле (15) равна

$$\delta J = \int_{-1}^{1} \left[\left(y'e^y + 2xy \right) \delta y + e^y \delta y' \right] dx.$$

53. Для функционала

$$J[y(x)] = \int_{1}^{e} (y'y + xy'^{2}) dx$$

положить $y = \ln x$, $\delta y = \frac{k(x-1)}{e-1}$ и сравнить $\Delta J[y(x)]$ с $\delta J[y(x)]$ при k = 1; 0,1; 0,01.

54. Для функционала

$$J[y(x)] = \int_{0}^{1} (x^{2}y'^{2} - y^{2}) dx$$

положить $y = x^2$, $\delta y = kx^3$; сравнить $\Delta J[y(x)]$ с $\delta J[y(x)]$ при k = 1; 0,1; 0,01.

55. Для функционала $J[y(x)] = \int_{0}^{\pi} {y'}^{2} \sin x dx$ поло-

жить $y = \sin x$, $\delta y = k \cos x$; сравнить $\Delta J[y(x)]$ с $\delta J[y(x)]$ для k = -1; 0,3; 0,03.

56. Показать, что если функция $f(x, z_1, z_2, ..., z_{m+1})$ имеет непрерывные производные 2-го порядка по всем аргументам в области $a \le x \le b, -\infty < z_k < +\infty$ (k=1, 2, ..., m+1), то функционал

$$J[y] = \int_{a}^{b} f[x, y(x), y'(x), ..., y^{(m)}(x)] dx$$

дифференцируем в пространстве $C_m[a, b]$ и его вариация имеет вид

$$\delta J = \int_{a}^{b} \left(\frac{\partial f}{\partial y} \, \delta y + \frac{\partial f}{\partial y'} \, \delta y' + \ldots + \frac{\partial f}{\partial y^{(m)}} \, \delta y^{(m)} \right) dx. \tag{16}$$

4°. Второе определение вариации функционала. Вариацией функционала I[y(x)] в точке y=y(x) называется значение производной функционала $I[y(x)+\alpha\delta y(x)]$ по параметру α , когда $\alpha=0$:

$$\delta J = \frac{\partial}{\partial \alpha} J \left[y(x) + \alpha \, \delta y(x) \right] \big|_{\alpha = 0}. \tag{17}$$

Если существует вариация функционала как главная линейная часть его приращения, т. е. в смысле первого определения, то существует и вариация как значение производной по параметру α при α = 0 и эти вариации совпадают.

Пример 18. Пользуясь вторым определением, найти ва-

риацию функционала

$$J[y(x)] = \int_{a}^{b} y^{2}(x) dx.$$

Решение. Вариация этого функционала в смысле первого определения равна

$$\delta y = 2 \int_{a}^{b} y(x) \, \delta y(x) \, dx$$

(см. пример 15). Найдем вариацию функционала J[y], пользуясь вторым определением вариации. Имеем

$$J[y(x) + \alpha \delta y(x)] = \int_a^b [y(x) + \alpha \delta y(x)]^2 dx.$$

Тогда

$$\frac{\partial}{\partial \alpha} J [y + \alpha \delta y] = 2 \int_{a}^{b} (y + \alpha \delta y) \delta y \, dx$$

и, следовательно,

$$\delta J = \frac{\partial}{\partial \alpha} J \left[y + \alpha \, \delta y \right] \Big|_{\alpha = 0} = 2 \int_{a}^{b} y \, \delta y \, dx.$$

 Вариации функционала в смысле первого и второго определений совпадают.

Для следующих функционалов найти вариацию в соответствующих пространствах в смысле второго определения.

57.
$$J[y] = \int_{a}^{b} (x+y) dx$$
.

58.
$$J[y] = \int_{a}^{b} (y^2 - y'^2) dx$$
.

59.
$$J[y] = y^2(0) + \int_0^1 (xy + y'^2) dx$$
.

60.
$$J[y] = \int_{0}^{\pi} y' \sin y \, dx.$$

61. Найти вариацию функционала

$$J[y_1, y_2, ..., y_n] = \int_{a}^{b} f(x, y_1(x), ..., y_n(x), y'_1(x), ..., y'_n(x)) dx,$$

где f — непрерывная функция своих аргументов, имеющая непрерывные частные производные по всем своим аргументам в некоторой ограниченной области G изменения последних.

Замечание. Второе определение вариации функционала несколько шире первого в том смысле, что существуют функционалы, из приращения которых нельзя выделить главной линейной части, но вариация в смысле второго определения существует. Покажем это на примере функций, для которых сформулированное утверждение равносильно тому, что существование производных по любому направлению недостаточно для существования дифференциала функции.

Пусть

$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}} = \frac{\rho}{2} \sin 2\alpha$$
 $(x^2 + y^2 \neq 0),$

где ρ и ϕ — полярные координаты точки (x, y). Частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ существуют в каждой точке и в начале координат равны нулю, но дифференциал df не существует в начале координат. В самом деле, при наличии df градиент функции f в начале координат равнялся бы в этом случае нулю, а потому равнялась бы нулю производная по любому направлению $\frac{df}{dt}(0,0)$. Между тем, как легко убедиться,

$$\frac{df(0, 0)}{dI} = \frac{1}{2} \sin 2\varphi,$$

что вообще отлично от нуля. Здесь φ — угол, образованный вектором \boldsymbol{l} с осью Ox.

 5° . Вторая вариация функционала. Функционал J[x, y], зависящий от двух элементов x и y (принадлежащих некоторому линейному пространству), называется билинейным, если при фиксированном x он представляет собой линейный функционал от y, а при фиксированном y — линейный функционал от x. Таким образом, функционал J[x, y] билинеен, если

$$I [\alpha_1 x_1 + \alpha_2 x_2, y] = \alpha_1 I [x_1, y] + \alpha_2 I [x_2, y],$$

$$J [x, \beta_1 y_1 + \beta_2 y_2] = \beta_1 J [x, y_1] + \beta_2 J [x, y_2]$$

Полагая в билинейном функционале y=x, получаем выражение I[x, x], называемое квадратичным функционалом.

Билинейный функционал в конечномерном пространстве называется билинейной формой.

Квадратичный функционал J[x, x] называется положительно определенным, если J[x, x] > 0 для любого ненулевого элемента x.

Например,

1) Выражение

$$J[x, y] = \int_{a}^{b} A(t) x(t) y(t) dt,$$

где A(t) — фиксированная непрерывная функция, представляет собой билинейный функционал, а $\int A(t) x^2(t) dt$ — квадратич-

ный функционал в пространстве C[a, b], причем если A(t) > 0 при всех $t \in [a, b]$, то этот квадратичный функционал будет положительно определенным.

2) Выражение

$$\int_{a}^{b} \left[A(t) x^{2}(t) + B(t) x(t) x'(t) + C(t) x'^{2}(t) \right] dt$$

представляет собой пример квадратичного функционала, определенного для всех функций из пространства $C_1[a, b]$.

3) Интеграл

$$\int_{a}^{b} \int_{a}^{b} K(s, t) x(s) y(t) ds dt,$$

где K(s, t) — фиксированная функция двух переменных, является билинейным функционалом в C[a, b].

О пределение. Пусть J[y] — функционал, определенный в

каком-либо линейном нормированном пространстве.

Мы скажем, что функционал J[y] имеет вторую вариацию, если его приращение $\Delta J = J[y + \delta y] - J[y]$ можно записать в виде

$$\Delta J = L_1 [\delta y] + \frac{1}{2} L_2 [\delta y] + \beta \| \delta y \|^2,$$
 (18)

где $L_1[\delta y]$ — линейный функционал, $L_2[\delta y]$ — квадратичный функционал, а $\beta \to 0$ при $\|\delta y\| \to 0$.

Квадратичный функционал $L_2[\delta y]$ будем называть второй вариацией (вторым дифференциалом) функционала J[y] и обозначать $\delta^2 J$.

Вторая вариация функционала (если она существует) определяется однозначно.

Пример 19. Найти вторую вариацию функционала

$$J[y] = \int_{0}^{1} (xy^{2} + y'^{3}) dx,$$

определенного в пространстве $C_1[0,\ 1]$ функций y(x).

Решение, Имеем

$$\Delta J = J [y + \delta y] - J [y] =$$

$$= \int_{0}^{1} [x (y + \delta y)^{2} + (y' + \delta y')^{3} - xy^{2} - y'^{3}] dx =$$

$$= \int_{0}^{1} [2xy \, \delta y + x (\delta y)^{2} + 3y'^{2} \, \delta y' + 3y' (\delta y')^{2} + (\delta y')^{3}] dx =$$

$$= \int_{0}^{1} (2xy \, \delta y + 3y'^{2} \, \delta y') dx +$$

$$+ \int_{0}^{1} [x (\delta y)^{2} + 3y' (\delta y')^{2}] dx + \int_{0}^{1} (\delta y')^{3} dx. \quad (19)$$

При фиксированном y(x) первое слагаемое правой части (19) есть линейный относительно $\delta y(x)$ функционал; второе слагаемое правой части есть квадратичный функционал. Наконец, последнее, третье слагаемое правой части допускает очевидную оценку

$$\left| \int_{0}^{1} (\delta y')^{3} dx \right| \leq (\max |\delta y'|)^{2} \int_{0}^{1} |\delta y'| dx \leq \int_{0}^{1} |\delta y'| dx \|\delta y\|^{2}$$

(норма в смысле пространства $C_1[0,\ 1]$), откуда видно, что это слагаемое представимо в виде $\beta\cdot\|\delta y\|^2$, где $\beta\to 0$ при $\|\delta y\|\to 0$. Согласно определению, данный функционал имеет вторую вариацию $\delta^2 J$ и она равна

$$\delta^2 J = 2 \int_0^1 \left[x \left(\delta y \right)^2 + 3 y' \left(\delta y' \right)^2 \right] dx.$$

62. Доказать, что квадратичный функционал дифференцируем, и найти его вторую вариацию.

63. Написать вторую вариацию функционала $e^{F(y)}$, где F(y)— дважды дифференцируемый функчионал.

64. Показать, что функционалы вида

$$J[y] = \int_a^b F(x, y, y') dx$$

в пространстве $C_1[a,b]$ являются дважды дифференцируемыми, если подынтегральная функция F обладает непрерывными производными до третьего порядка включительно, и найти выражение для второй вариации.

Введем функцию $\Phi(\alpha) = I[y + \alpha \delta y]$. Вторая вариация $\delta^2 I$ функционала I[y] определяется также через вторую производную функции $\Phi[\alpha]$ в точке $\alpha=0$:

$$\delta^2 J = \frac{d^2 \Phi(\alpha)}{d\alpha^2} \Big|_{\alpha=0}.$$

Для функционалов интегрального типа, которые мы будем преимущественно рассматривать, оба эти определения совпадают.

Найти вторые вариации

65.
$$J[y] = \int_{a}^{b} F(x, y, y', ..., y^{(m)}) dx.$$

66.
$$J[y] = \iint_G F(x, y, z, z_x, z_y) dx dy.$$

67.
$$J[y_1, \ldots, y_n] = \int_a^b F(x, y_1, \ldots, y_n, y'_1, \ldots, y'_n) dx.$$

6°. Экстремум функционала. Необходимое условие экстремума. Говорят, что функционал J[y(x)] достигает на кривой $y=y_0(x)$ максимума, если значения функционала J[y(x)] на любой близкой к $y=y_0(x)$ кривой не больше, чем $J[y_0(x)]$, т. е.

$$\Delta J = J \left[y \left(x \right) \right] - J \left[y_0 \left(x \right) \right] \leqslant 0.$$

Если $\Delta I \leqslant 0$, причем $\Delta I = 0$ только при $y(x) = y_0(x)$, то говорят, что на кривой $y = y_0(x)$ достигается строгий максимум.

Аналогично определяется кривая $y=y_0(x)$, на которой реализуется минимум. В этом случае $\Delta J\geqslant 0$ на всех кривых, близких к кривой $y=y_0(x)$.

Пример 20. Показать, что функционал

$$J[y(x)] = \int_{0}^{1} (x^{2} + y^{2}) dx$$

на кривой $y(x) \equiv 0$ достигает строгого минимума.

Решение. Для любой непрерывной на $[0,\ 1]$ функции y(x) имеем

$$\Delta J = J[y(x)] - J[0] = \int_{0}^{1} (x^{2} + y^{2}) dx - \int_{0}^{1} x^{2} dx = \int_{0}^{1} y^{2} dx \geqslant 0,$$

причем знак равенства достигается только при $y(x) \equiv 0$.

Сильный и слабый экстремумы. Говорят, что функционал I[y(x)] достигает на кривой $y=y_0(x)$ сильного относительного максимума, если для всех допустимых кривых y=y(x), расположенных в некоторой ε -окрестности нулевого порядка кривой $y=y_0(x)$, имеем

$$J[y(x)] \leqslant J[y_0(x)].$$

Аналогично определяется сильный относительный минимум функционала.

Говорят, что функционал J[y(x)] достигает на кривой $y=y_0(x)$ слабого относительного максимума, если для всех допустимых кривых y=y(x), расположенных в некоторой ε -окрестности первого порядка кривой $y=y_0(x)$, имеем

$$J[y(x)] \leqslant J[y_0(x)].$$

Аналогично определяется слабый относительный минимум функционала.

Максимумы и минимумы (сильные и слабые) функционала I[y] называют относительными экстремимами.

Всякий сильный экстремум есть в то же время и слабый, но

не наоборот.

Экстремум функционала J[y] на всей совокупности функций, на которых он определен, называется абсолютным экстремумом.

Всякий абсолютный экстремум является слабым и сильным относительным экстремумом, но не всякий относительный экстремум будет абсолютным.

Пример 21. Рассмотрим функционал

$$J[y(x)] = \int_{0}^{\pi} y^{2} (1 - y'^{2}) dx$$

в пространстве функций $y(x) \in C_1[0, \pi]$, удовлетворяющих условию $y(0)=y(\pi)=0$. Отрезок $[0,\pi]$ оси Ox дает слабый минимум J. В самом деле, для $y\equiv 0$ имеем J=0, а для кривых, расположенных в ε -окрестности первого порядка этого огрезка, где ε — любое положительное число, меньшее единицы, имеем |y'|<1, так что подынтегральное выражение положительно при $y\neq 0$ и, следовательно, функционал обращается в нуль лишь при y=0. Значит, на функции y=0 достигается слабый минимум.

Сильный же минимум не достигается, Достаточно положить

$$y(x) = \frac{1}{\sqrt{n}} \sin nx.$$

Тогда

$$J[y(x)] = \frac{1}{n} \int_{0}^{\pi} \sin^{2} nx (1 - n \cos^{2} nx) dx =$$

$$= \frac{1}{n} \int_{0}^{\pi} \sin^{2} nx dx - \frac{1}{4} \int_{0}^{\pi} \sin^{2} 2nx dx = \frac{\pi}{2n} - \frac{\pi}{8}$$

и при n достаточно большом для наших кривых J < 0. С другой стороны, все эти кривые при n достаточно большом лежат в сколь угодно малой окрестности нулевого порядка кривой y=0. Итак, сильный минимум не достигается при y=0.

Пример 22 (Вейерштрасс). Рассмотрим функционал

$$J[y] = \int_{-1}^{1} x^2 {y'}^2 dx, \quad y(-1) = -1, \quad y(1) = 1.$$

Имеем $J[y]\geqslant 0$ на отрезке $[-1,\ 1]$, причем J[y]=0 только при $y'(x)\equiv 0$, т. е. $y(x)\equiv C=\mathrm{const.}$ Функция $y(x)\equiv C$ принадлежит к классу $C_1[-1,\ 1]$ функций, имеющих на отрезке $[-1,\ 1]$ непрерывную производную первого порядка, но не удовлетворяет заданным краевым условиям. Следовательно, J[y]>0 для всех $y(x)\equiv C_1[-1,\ 1]$, удовлетворяющих условиям y(-1)=-1, y(1)=1. Таким образом, функционал имеет нижнюю грань, но она не достигается на кривых $y(x)\equiv C_1[-1,\ 1]$. В самом деле, рассмотрим однопараметрическое семейство кривых

$$y_{\alpha}(x) = \frac{\arctan \frac{x}{\alpha}}{\arctan \frac{1}{\alpha}}, \quad \alpha > 0.$$

Эти кривые удовлетворяют краевым условиям $y_{\alpha}(-1) = -1$, $y_{\alpha}(1) = 1$. В пределе при $\alpha \to 0$ получим функцию

$$\tilde{y}(x) = \begin{cases} -1, & \text{если} & -1 \le x < 0, \\ 0, & \text{если} & x = 0, \\ +1, & \text{если} & 0 < x \le 1, \end{cases}$$

или $\underline{\tilde{y}}(x) = \operatorname{sgn} x$ (рис. 3).

Эта функция принадлежит к классу функции, кусочно-дифференцируемых на отрезке [—1, 1].

Hincom
$$J[y_{\alpha}] = \int_{-1}^{1} \frac{\alpha x^2 dx}{(\alpha^2 + x^2) \operatorname{arctg}^2 \frac{1}{\alpha}} = \frac{2\alpha}{\operatorname{arctg}^2 \frac{1}{\alpha}} \int_{0}^{1} \frac{x^2 dx}{\alpha^2 + x^2} = \frac{2\alpha}{\operatorname{arctg}^2 \frac{1}{\alpha}} \left(1 - \alpha \operatorname{arctg} \frac{1}{\alpha}\right).$$

Ясно, что $J[y_{\alpha}] \to 0$ при $\alpha \to 0$. На предельной функции $\tilde{y}(x)$. удовлетворяющей краевым условиям $\tilde{y}(-1) = -1$, $\tilde{y}(1) = 1$. функционал J[y] принимает значение, равное нулю: $J[\tilde{y}] = 0$.

Рис. 3.

Таким образом, функционал J[y] достигает своего минимума на кривой $\tilde{y}(x) = \operatorname{sgn} x$, которая принадлежит к классу функций, кусочно-дифференцируемых на отрезке [-1, 1], но не принадлежит классу \hat{C}_1 [—1, 1].

Теорема (необходимое условие экстремума функционала). Eсли дифференцируемый функционал J[y(x)] достигает экстремума при $y = y_0(x)$, где $y_0(x)$ — внутренняя точка области определения функционала, то при $y = y_0(x)$ имеем

$$\delta J[y_0(x)] = 0. {(20)}$$

Функции, для которых $\delta J = 0$, будем называть стационарными функциями.

Используя необходимое условие экстремума (20) и основные леммы вариационного исчисления [15], найти функциональные уравнения для определения стационарных функций следующих функционалов:

68.
$$J[\varphi] = \int_{a}^{b} \int_{a}^{b} K(s, t) \varphi(s) \varphi(t) ds dt +$$

 $+ \int_{a}^{b} \varphi^{2}(s) ds - 2 \int_{a}^{b} \varphi(s) f(s) ds,$

где K(s,t)— заданная непрерывная симметрическая функция от s и t в области $D \begin{Bmatrix} a \leqslant s \leqslant b \\ a \leqslant t \leqslant b \end{Bmatrix}$; f(s)— заданная непрерывная функция на [a,b]; $\phi(s)$ — искомый непрерывный функциональный аргумент.

69.
$$J[\varphi] = \int_{-\infty}^{+\infty} [p(x) \varphi'^{2}(x) + 2\varphi(x+1) \varphi(x-1) - \varphi^{2}(x) - 2\varphi(x) f(x)] dx,$$

где функциональный аргумент $\varphi(x)$ непрерывен и имеет кусочно-непрерывные производные во всем интервале $-\infty < x < +\infty$; p(x) имеет непрерывную производную, f(x)— непрерывна.

70.
$$J[\varphi] = \int_{x_0}^{x_1} [p(x) \varphi'^2 + q(x) \varphi^2(x) - 2\varphi(x) f(x)] dx,$$

 $\varphi(x_0) = \varphi_0, \quad \varphi(x_1) = \varphi_1,$

где p(x) имеет непрерывную производную, q(x) и f(x) непрерывны и функциональный аргумент $\phi(x)$ дважды непрерывно дифференцируем.

§ 4. Простейшая задача вариационного исчисления. Уравнение Эйлера

Пусть функция F(x, y, y') имеет непрерывные частные производные по всем аргументам до второго порядка включительно. Среди всех функций y(x), имеющих непрерывную производную и удовлетворяющих граничным условиям

$$y(a) = A, \qquad y(b) = B, \tag{1}$$

найти ту функцию, которая доставляет слабый экстремум функционалу

$$J[y(x)] = \int_{a}^{b} F(x, y, y') dx.$$
 (2)

Другими словами, простейшая задача вариационного исчисления состоит в отыскании слабого экстремума функционала вида (2) на множестве всех гладких кривых, соединяющих две заданные точки $P_1(a,A)$ и $P_2(b,B)$.

Теорема 1. Для того чтобы функционал (2), определенный на множестве функций y = y(x), имеющих непрерывную первую производную и удовлетворяющих граничным условиям (1), достигал на данной функции y(x) экстремума, необходимо*), чтобы эта функция удовлетворяла уравнению Эйлера

$$F_{y} - \frac{d}{dx} F_{y'} = 0. \tag{3}$$

Интегральные кривые уравнения Эйлера называются экстремалями (лагранжевы кривые). Уравнение Эйлера в развернутом виде:

$$y''(x) F_{y'y'} + y'(x) F_{yy'} + F_{xy'} - F_y = 0$$
 $(F_{y'y'} \neq 0)$. (4)

Уравнение (4) представляет собой дифференциальное уравнение второго порядка, так что его общее решение должно зависеть от двух произвольных постоянных. Значения этих постоянных, вообще говоря, определяются из граничных условий (1).

Экстремум функционала (2) может реализоваться только на

тех экстремалях, которые удовлетворяют условиям (1).

Краевая задача

$$\begin{cases}
F_y - \frac{d}{dx} F_{y'} = 0, \\
y(a) = A, \quad y(b) = B
\end{cases} (5)$$

не всегда имеет решение, а если решение существует, то оно может быть не единственным.

Пример 1. На каких кривых может достигать экстремума функционал

$$J[y(x)] = \int_{1}^{2} (y'^{2} - 2xy) dx, \quad y(1) = 0, \quad y(2) = -1?$$

^{*)} Это условие необходимо для слабого экстремума. Так как всякий сильный экстремум является в то же время и слабым, то любое условие, необходимое для слабого экстремума, необходимо и для сильного.

Решение. Здесь $F(x, y, y') = y'^2 - 2xy$, так что уравнение Өйлера имеет вид y'' + x = 0. Общее решение уравнения Эйлера есть

$$y(x) = -\frac{x^3}{6} + C_1 x + C_2.$$

Граничные условия дают систему линейных уравнений для определения C_1 и C_2 :

 $C_1 + C_2 = \frac{1}{6},$ $2C_1 + C_2 = \frac{2}{6}.$

Отсюда $C_1 = \frac{1}{6}$, $C_2 = 0$. Следовательно, экстремум может достигаться лишь на кривой

$$y = \frac{x}{6} (1 - x^2).$$

Пример 2. Найти экстремали функционала

$$J[y(x)] = \int_{1}^{3} (3x - y) y \, dx,$$

удовлетворяющие граничным условиям y(1) = 1, $y(3) = 4\frac{1}{2}$.

Решение. Уравнение Эйлера имеет вид 3x-2y=0, откуда $y(x)=\frac{3}{2}x$.

Так как экстремаль $y = \frac{3}{2}x$ не удовлетворяет условию y(1) = 1, то данная вариационная задача решения не имеет. Пример 3. Найти экстремали функционала

$$J[y(x)] = \int_{0}^{2\pi} (y'^{2} - y^{2}) dx,$$

удовлетворяющие граничным условиям $y(0)=1,\ y(2\pi)=1.$ Решение. Уравнение Эйлера имеет вид y''+y=0; его общим решением является

$$y(x) = C_1 \cos x + C_2 \sin x$$
.

Используя граничные условия, получим

$$y(x) = \cos x + C \sin x,$$

где C - произвольная постоянная.

Таким образом, поставленная вариационная задача имеет бесчисленное множество решений.

Найти экстремали следующих функционалов:

71.
$$J[y] = \int_{-1}^{0} (12xy - y'^2) dx; \ y(-1) = 1, \ y(0) = 0.$$

72. $J[y] = \int_{1}^{2} (y'^2 + 2yy' + y^2) dx; \ y(1) = 1, \ y(2) = 0.$

73. $J[y] = \int_{0}^{1} V \overline{y(1 + y'^2)} dx; \ y(0) = y(1) = \frac{1}{\sqrt{2}}.$

74. $J[y] = \int_{0}^{1} yy'^2 dx; \ y(0) = 1, \ y(1) = \sqrt[3]{4}.$

75. $J[y] = \int_{0}^{\pi} (4y\cos x + y'^2 - y^2) dx;$

$$y(0) = 0, \ y(\pi) = 0.$$

76. $J[y] = \int_{0}^{1} (y'^2 - y^2 - y) e^{2x} dx;$

$$y(0) = 0, \ y(1) = e^{-1}.$$

77. $J[y] = \int_{-1}^{1} (y'^2 - 2xy) dx; \ y(-1) = -1, \ y(1) = 1.$

78.
$$J[y] = \int_{-1}^{0} (y'^2 - 2xy) dx$$
; $y(-1) = 0$, $y(0) = 2$.

79.
$$J[y] = \int_{1}^{3} (xy'^{2} + yy') dx$$
; $y(1) = 0$, $y(e) = 1$.

Уравнение Эйлера (3) для функционала (2) есть дифференциальное уравнение второго порядка, так что решение y=y(x) уравнения Эйлера должио иметь вторую производную y''(x). Однако бывают случаи, когда функция, на которой функционал

 $J[y] = \int_{a}^{b} F(x, y, y') dx$ достигает экстремума, не является дважды дифференцируемой.

Пример 4. Функционал

$$J[y(x)] = \int_{-1}^{1} y^{2}(x) (1 - y'(x))^{2} dx$$

при граничных условиях

$$y(-1) = 0, \quad y(1) = 1$$

достигает своего минимума, равного нулю, на функции

$$v(x) = \begin{cases} 0 & \text{при} \quad x \leq 0, \\ x & \text{при} \quad x > 0. \end{cases}$$

Хотя функция v(x) и не имеет второй производной, она удовлетворяет сответствующему уравнению Эйлера.

Действительно, так как $F(x, y, y') = y^2(1-y')^2$, то полагая y = v(x), получим уравнение Эйлера

$$2v(1-v')^2 + \frac{d}{dx}[2v^2(1-v')] = 0.$$
 (6)

Но согласно определению функции v(x) будем иметь на [-1,1]: $F_{v'} = -2v^2(1-v') \equiv 0$, а значит, и $\frac{d}{dr} F_{v'} = 0$, и хотя уравнение Эйлера (6) формально имеет второй порядок, а v''(x) не существует, подстановка v(x) в уравнение Эйлера обращает его в тождество.

Теорема 2. Пусть y = y(x) есть решение уравнения Эйлера

$$F_y - \frac{d}{dx} F_{y'} = 0.$$

Eсли функция F(x, y, y') имеет непрерывные частные производные до второго порядка включительно, то во всех точках (x, y), в которых

$$F_{u'v'}(x, y(x), y'(x)) \neq 0,$$
 (7)

функция у = у(х) имеет непрерывную вторую производную.

Следствие. Экстремаль y = y(x) может иметь излом только в тех точках, где $F_{y'y'} = 0$. Так, в примере 4 $F_{y'y'} = 2y^2$

обращается в нуль в точках оси Ox; экстремаль имеет излом в точке x = 0.

Теорема 3 (Бернштейн). Пусть имеем уравнение

$$y'' = F(x, y, y').$$
 (8)

Eсли функции $F,\ F_y,\ F_y$, непрерывны в каждой конечной точке (x,y) для любого конечного y' и если существуют такая константа k>0 и такие, ограниченные в каждой конечной части плоскости функции

$$\alpha = \alpha(x, y) \geqslant 0, \quad \beta = \beta(x, y) \geqslant 0,$$

410

$$F_{y}\left(x,\,y,\,y'\right)>k,\tag{9}$$

$$|F(x, y, y')| \leqslant \alpha y'^2 + \beta, \tag{10}$$

то через любые две точки плоскости (a,A) и (b,B), имеющие различные абсциссы $(a \neq b)$, проходит одна и только одна интегральная кривая $y = \varphi(x)$ уравнения (8).

Пример 5. Доказать, что через любые две точки плоскости с различными абсциссами проходит одна и только одна

экстремаль функционала

$$\int e^{-2y^2} (y'^2 - 1) dx.$$

Решение. Уравнение Эйлера для данного функционала имеет вид

$$y'' = 2y(1 + y'^2),$$

и теорема 3 применима. В самом деле, в данном случае

$$F(x, y, y') = 2y(1 + y'^2)$$
 $y F_y = 2(1 + y'^2) \ge 2 = k$.

Далее,

$$|F(x, y, y')| = |2y(1 + y'^{2})| \le 2|y|y'^{2} + 2|y|,$$

так что $\alpha = \beta = 2 \mid y \mid \geqslant 0$.

Пример 6. Показать, что не через всякие две точки плоскости с различными абсциссами можно провести экстремаль функционала

$$J[y] = \int (y^2 + \sqrt{1 + {y'}^2}) dx.$$

Решение. Уравнение Эйлера имеет вид

$$y'' = 2y \left(1 + {y'}^2\right)^{3/2},\tag{11}$$

и теорема 3 не применима, так как условие (10) не выполняется (F(x,y,y')) растет по y' быстрее, чем вторая степень y'). Однако отсюда еще не следует, что не через всякие две точки с различными абсциссами можно провести экстремаль.

Полагая в уравнении (11) y' = p, $y'' = p \frac{dp}{dy}$, получим

$$p \frac{dp}{du} = 2y \left(1 + p^2\right)^{3/2}$$

или

$$\frac{p \, dp}{(1+p^2)^{3/2}} = 2y \, dy.$$

Интегрируя, находим
$$-\frac{1}{\sqrt{1+p^2}}=y^2-C$$
 или $(C-u^2)\sqrt{1+{u'}^2}=1.$

Отсюда

$$\frac{dy}{dx} = \frac{\sqrt{1 - (y^2 - C)^2}}{y^2 - C},$$
 (12)

где C — вещественная постоянная.

Нетрудно проверить, что для всех значений y, удовлетворяющих, например, условиям $0 \leqslant y \leqslant b$, где $b > \sqrt{2}$, ни при каком допустимом значении постоянной C правая часть (12) не будет вещественной.

80. Показать, что через любые две точки плоскости проходит одна и только одна экстремаль функционала

$$J[y(x)] = \int \sqrt{1 + y^2 + {y'}^2} dx.$$

Пример 7. Доказать, что всякое уравнение

$$y''(x) = f(x, y, y')$$
 (13)

является уравнением Эйлера для некоторого функционала

$$J[y(x)] = \int F(x, y, y') dx.$$
 (14)

1) Как определяется функция F(x,y,y') по функции f(x,y,y')?

2) Найти все функционалы, для которых экстремалями являются прямые

 $y(x) = C_1 x + C_2.$

Решение. Будем искать функционал, для которого уравнение Эйлера

 $F_{u} - F_{u'x} - F_{u'u}y' - F_{u'u'}y'' = 0$ (15)

совпадает с уравнением (13). Это значит, что должно иметь место тождество по x, y, y':

$$F_y - F_{y'x} - F_{y'y} \cdot y' - F_{y'y'} \cdot f(x, y, y') = 0.$$

Дифференцируя это тождество по y', получим

$$F_{y'y'x} + F_{y'y'y} \cdot y' + F_{\tilde{y}'y'y'} \cdot f + F_{y'y'} \cdot f_{y'} = 0.$$

Положим $u = F_{y'y'}$, тогда для функции u получим уравнение в частных производных:

$$\frac{\partial u}{\partial x} + y' \frac{\partial u}{\partial u} + f \frac{\partial u}{\partial u'} + f_{\hat{y'}} \cdot u = 0. \tag{16}$$

Таким образом, нахождение функционала, т. е. нахождение функции F(x, y, y'), сводится к интегрированию линейного уравнения в частных производных (16) и к последующей квадратуре.

Рассмотрим второй вопрос. В этом случае уравнение Эйлера должно иметь вид y''=0 и для функции u получаем в силу (16)

уравнение

$$\frac{\partial u}{\partial x} + y' \frac{\partial u}{\partial y} = 0. \tag{17}$$

Проинтегрируем это уравнение.

Уравнение характеристик имеет вид

$$\frac{dx}{1} = \frac{dy}{y'} = \frac{dy'}{0}.$$

Интегрируя эту систему, получаем

$$y'=C_1, \qquad y=C_1x+C_2,$$

откуда $C_2 = y - xy'$. Поэтому общее решение уравнения (17) таково:

$$u(x, y, y') = \Phi(y', y - xy'),$$

где Ф -- произвольная дифференцируемая функция своих аргументов, Отсюда

$$F(x, y, z) = \alpha(x, y) + z\beta(x, y) + \int_{0}^{z} (z - t) \Phi(t, y - tx) dt, \quad (18)$$

где $\alpha(x,y)$ и $\beta(x,y)$ — произвольные функции своих аргументов, удовлетворяющие соотношению

$$\frac{\partial \alpha}{\partial y} = \frac{\partial \beta}{\partial x}.$$

Из решения видно, что существует бесконечное множество вариационных задач, для которых уравнение (13) является уравнением Эйлера.

и Онтера. Простейшие случаи интегрируемости уравнения Эйлера.

1°. F не зависит от y': F = F(x, y).

В этом случае уравнение Эйлера имеет вид

$$F_{y}\left(x,\,y\right) =0. \tag{19}$$

Решение этого конечного уравнения не содержит элементов произвола и поэтому, вообще говоря, не удовлетворяет граничным условиям y(a) = A, y(b) = B.

Лишь в исключительных случаях, когда кривая (19) проходит через граничные точки (a, A) и (b, B), существует кривая, на которой может достигаться экстремум.

Пример 8. Найти экстремали функционала

$$J[y(x)] = \int_{x}^{\pi/2} y(2x - y) dx, \quad y(0) = 0, \quad y(\frac{\pi}{2}) = \frac{\pi}{2}.$$

Решение. Уравнение Эйлера имеет вид 2x-2y=0, т. е. y=x. Так как граничные условия удовлетворяются, то на пря-

мой y=x интеграл $\int\limits_0^{x/2}y\left(2x-y\right)\,dx$ может достигать экстремума.

При других граничных условиях, например, y(0)=0, $y\left(\frac{\pi}{2}\right)=1$, экстремаль y=x не проходит через граничные точки (0,0) и $\left(\frac{\pi}{2},1\right)$, так что при этих граничных условиях вариационная задача не имеет решения.

 2° . F зависит от y' линейно, т. е.

$$F(x, y, y') = M(x, y) + N(x, y) y'.$$

Уравнение Эйлера в этом случае имеет вид

$$\frac{\partial M}{\partial u} - \frac{\partial N}{\partial x} = 0. \tag{20}$$

Полученное уравнение, как и в случае 1°, является конечным, а не дифференциальным уравнением. Кривая, определяемая уравнением $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0$, вообще говоря, не удовлетворяет граничным условиям, и, значит, вариационная задача, как правило, не имеет решения в классе непрерывных функций. Если в некоторой области D плоскости xOy $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \equiv 0$, то выражение F(x,y,y') = M(x,y)dx + N(x,y)dy является полным дифференциалом и функционал

$$J[y(x)] = \int_{a}^{b} F(x, y, y') dx = \int_{(a, A)}^{(b, B)} (M dx + N dy)$$

не зависит от пути интегрирования: значение функционала J[y(x)] — одно и то же на допустимых кривых. Вариационная задача теряет смысл.

Пример 9. Исследовать на экстремум функционал

$$J[y(x)] = \int_{a}^{b} (y^{2} + 2xyy') dx, \quad y(a) = A, \quad y(b) = B.$$

Pе шение. Здесь F линейно зависит от y'. Имеем

$$\frac{\partial M}{\partial y} = 2y, \quad \frac{\partial N}{\partial x} = 2y \quad \text{H} \quad \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0,$$

значит, подынтегральное выражение $(y^2+2xyy')\,dx$ есть полный дифференциал. Следовательно, интеграл не зависит от пути

интегрирования:
$$J [y (x)] = \int_{a}^{b} (y^2 dx + 2xy dy) = \int_{(a, A)}^{(b, B)} d (xy^2) =$$
$$= xy^2 \Big|_{x=a}^{x=b} = bB^2 - aA^2,$$

по какой бы кривой y(x), проходящей через точки (a,A) и (b, B), мы ни интегрировали. Вариационная задача не имеет смысла.

3°. F зависит лишь от y', т. е. F = F(y'). Уравнение Эйлера имеет вид $F_{u'u'}y''=0.$ (21)

В этом случае экстремалями являются всевозможные прямые линии

$$y = C_1 x + C_2,$$

где C_1 и C_2 — произвольные постоянные. Пример 10. Найти экстремали функционала

$$J[y(x)] = \int_{a}^{b} \sqrt{1 + {y'}^{2}(x)} dx, \quad y(a) = A, \quad y(b) = B.$$

Этот функционал определяет длину кривой, соединяющей точки (а, А) и (b, В). Геометрически задача сводится к разысканию кратчайшей линии, соединяющей данные точки.

Решение. Уравнение Эйлера имеет вид y''(x) = 0. Общее

решение

$$y\left(x\right) =C_{1}x+C_{2}.$$

Экстремаль, удовлетворяющая граничным условиям y(a) = A и y(b) = B, есть, очевидно, прямая, проходящая через точки (a, A) и (b, B):

$$y = \frac{B-A}{b-a}(x-a) + A.$$

4°. F не зависит от y, т. е. F = F(x, y').

В этом случае уравнение Эйлера $\frac{d}{dx}F_{y'}(x,y')=0$, откуда

$$F_{y'}(x, y') = C_1,$$
 (22)

где C_1 — произвольная постоянная.

Уравнение (22) есть дифференциальное уравнение первого порядка. Интегрируя его, находим экстремали задачи.

Пример 11. Среди кривых, соединяющих точки A (1, 3) и B (2, 5), найти ту, на которой может достигаться экстремум функционала

$$J[y(x)] = \int_{1}^{2} y'(x) (1 + x^{2}y'(x)) dx.$$

Решение. Так как F не зависит от y, то уравнение Эйлера имеет вид $\frac{d}{dx}\,F_{y'}\,(x,\,y')=0$, или $\frac{d}{dx}\,(1+2x^2y')=0$, откуда

$$1 + 2x^2y' = C_1,$$

Тогда $y'=\frac{C_1-1}{2x^2}$, так что $y\left(x\right)=\frac{C_1^*}{x}+C_2$, где $C_1^*=\frac{1-C_1}{2}$. Таким образом, экстремалями является семейство гипербол. Выделим экстремаль, проходящую через заданные точки. Для определения постоянных C_1^* и C_2 составляем систему

$$3 = C_1^* + C_2,$$

$$5 = \frac{C_1^*}{2} + C_2,$$

откуда $C_1^* = -4$, $C_2 = 7$. Искомая экстремаль $y(x) = 7 - \frac{4}{x}$.

5°. F не зависит явно от x, т. е. F = F(y, y'). В этом случае уравнение Эйлера принимает вид

$$F_{n} - F_{nn'} \cdot y' - F_{n'n'} \cdot y'' = 0.$$

Умножив обе части этого уравнения на y', в левой части получим точную производную, т. е. $\frac{d}{dx}\left(F-y' \cdot F_{y'}\right)=0$, откуда

$$F - y' \cdot F_{y'} = C_1, \tag{23}$$

где C_1 — произвольная постоянная. Это уравнение может быть проинтегрировано путем разрешения относительно y' и разделения переменных или путем введения параметра.

Пример 12. (Наименьшее сопротивление потоку.) Определить форму твердого тела, движущегося в потоке газа с наименьшим сопротивлением. Будем для простоты рассматривать тело вращения (рис. 4).

Решение. Считая, что плотность газа достаточно мала и молекулы отражаются от поверхности тела зеркально, для нормальной составляющей давления будем иметь следующее выражжение:

$$p = 2\rho v^2 \sin^2 \theta. \tag{24}$$

Здесь ρ — плотность газа, υ — скорость газа относительно тела, θ — угол между скоростью и ее тангенциальной составляющей. Давление перпендикулярно к поверхности, так что можно

Рис. 4.

записать составляющую силы по оси Ox, действующую на кольцо шириной $(1+{y'}^2)^{1/2} dx$ и радиусом y(x), в виде

$$dF = 2\rho v^2 \sin^2 \theta \left[2\pi y \left(1 + {y'}^2 \right)^{1/2} \right] \sin \theta \, dx. \tag{25}$$

Полная сила, действующая в положительном направлении оси Ox, равна

$$F = \int_{0}^{1} 4\pi \rho v^{2} \sin^{3}\theta y \left(1 + {y'}^{2}\right)^{1/2} dx. \tag{26}$$

Чтобы упростить задачу, предположим

$$\sin\theta = \frac{y'}{(1+{y'}^2)^{1/2}} \approx y'.$$

Тогда сила сопротивления будет равна

$$F = 4\pi \rho v^2 \int_0^l {y'}^3 y \ dx. \tag{27}$$

Задача состоит в том, чтобы найти такую функцию y(x), при которой F принимает наименьшее возможное значение, причем

$$y(0) = 0, y(l) = R.$$
 (28)

Уравнение Эйлера для функционала (27) имеет вид

$$y'^{3} - 3\frac{d}{dx}(yy'^{2}) = 0. (29)$$

Частное решение y=0 этого уравнения неприемлемо в силу граничных условий (28). Уравнение (29) можно переписать в виде

$$y'^3 + 3yy'y'' = 0. (30)$$

Умножая обе части (30) на y', замечаем, что левая часть есть $(y'^3y)'$. Интегрируя, найдем

$$y'^{3}y = \tilde{C}_{1}^{3}$$
.

Отсюда

$$y' = \frac{\widetilde{C}_1}{\sqrt[3]{y}} \quad \text{if} \quad y = (C_1 x + C_2)^{3/4}. \tag{31}$$

Используя граничные условия (28), получим

$$C_1 = \frac{R^{4/3}}{l}, \quad C_2 = 0,$$

откуда

$$y = R\left(\frac{x}{l}\right)^{3/4},$$

т. е. контур с заданными конечными точками, при котором сопротивление тела минимально, является параболой степени 3/4. Пример 13. Найти экстремаль функционала

$$J[y(x)] = \int_{a}^{b} \frac{\sqrt{1 + {y'}^{2}}}{y} dx,$$

проходящую через заданные точки (a,A) и (b,B), лежащие в верхней полуплоскости.

Решение. Так как подынтегральная функция не содержит явно x, то уравнение Эйлера согласно (23) дает

$$\frac{\sqrt{1+{y'}^2}}{y} - y' \frac{y'}{y\sqrt{1+{y'}^2}} = C_1.$$

После упрощений получим y $\sqrt{1+{y'}^2}=\widetilde{C}_1$, где $\widetilde{C}_1=\frac{1}{C_1}$. Интегрируя последнее уравнение, найдем $(x+C_2)^2+y^2=\widetilde{C}_1^2-$ семейство окружностей с центром на оси Ox. Искомой будет та экстремаль, которая проходит через заданные точки. Задача имеет единственное решение, так как через любые две точки,

лежащие в верхней полуплоскости, проходит одна и только одна

полуокружность с центром на оси Ox.

Замечание. Согласно принципу Ферма путь светового луча, распространяющегося в неоднородной двумерной среде со скоростью v(x, y), является экстремалью функционала

$$J[y] = \int_{x_0}^{x_1} \frac{\sqrt{1 + {y'}^2}}{v(x, y)} dx.$$

Если скорость света v пропорциональна y, то как видно из разобранного примера, световые лучи представляют собою дуги окружностей, центры которых лежат на оси Ox.

Пусть задана кривая q. Оптической длиной кривой q назовем время T(q), в течение которого проходится эта кривая при

движении по ней со скоростью света v(x, y).

Будем рассматривать верхнюю полуплоскость y > 0 как оптическую среду, в которой скорость света в каждой точке равна ординате этой точки v = y. Лучами света в этой среде будут, как мы видели, полуокружности с центрами на оси Ox. Можно показать, что часть AD полуокружности q, один из концов которой лежит на оси Ox, имеет бесконечную оптическую

Рис. 5.

длину (рис. 5). Точки оси Ox будем называть поэтому бесконечно удаленными. Будем считать полуокружности с центрами на оси Ox прямыми, оптические длины дуг таких полуокружностей — их длинами, углами между такими прямыми — углы между касательными к полуокружностям в точке их пересечения. Получим плоскую геометрию, в которой сохраняются многие положения обычной геометрии. Например, через две точки можно провести одну и только одну прямую (через две точки на полуплоскости можно провести только одну полуокружность с центром на оси Ox). Параллельными будем считать две прямые, окружности, касающиеся друг друга в точке B, лежащей на оси Ox). Тогда через данную точку A, не лежащую на прямой A,

можно провести две *прямые* q_1 и q_2 , параллельные q. Прямые, которые проходят через точку A и лежат в вертикальных углах I и III, пересекают *прямую* q; прямые, лежащие в углах II и IV, — ее не пересекают.

Рис. 6.

Мы получили так называемую модель Пуанкаре геометрии Лобачевского на плоскости (рис. 6).

Найти экстремали функционалов:

81.
$$J[y(x)] = \int_{a}^{b} [2xy + (x^{2} + e^{y}) y'] dx;$$

 $y(a) = A, \quad y(b) = B.$
82. $J[y(x)] = \int_{0}^{1} (e^{y} + xy') dx; \quad y(0) = 0, \quad y(1) = \alpha.$
83. $J[y(x)] = \int_{0}^{\pi/4} (y'^{2} - y^{2}) dx; \quad y(0) = 1, \quad y(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}.$
84. $J[y(x)] = \int_{0}^{\pi} (y'^{2} - y^{2}) dx; \quad y(0) = 1, \quad y(\pi) = -1.$
85. $J[y(x)] = \int_{0}^{1} (x + y'^{2}) dx; \quad y(0) = 1, \quad y(1) = 2.$
86. $J[y(x)] = \int_{0}^{1} (y^{2} + y'^{2}) dx; \quad y(0) = 0, \quad y(1) = 1.$

87.
$$J[y(x)] = \int_0^1 (y'^2 + 4y^2) dx$$
; $y(0) = e^2$, $y(1) = 1$.

88.
$$J[y(x)] = \int_{0}^{1} (2e^{y} - y^{2}) dx$$
; $y(0) = 1$, $y(1) = e$.

89.
$$J[y(x)] = \int_{a}^{b} (xy' + y'^2) dx$$
.

90.
$$J[y(x)] = \int_{a}^{b} \left(y + \frac{y^3}{3}\right) dx$$
.

91. Показать, что линейный функционал

$$J[y(x)] = \int_{a}^{b} [p(x)y' + q(x)y + r(x)] dx,$$

где $p(x) \in C_1[a, b], q(x) \in C[a, b], r(x) \in C[a, b],$ не имеет экстремумов.

92. Пусть дан функционал

$$J[y(x)] = \int_a^b F(x, y, y') dx$$

и граничные условия y(a) = A, y(b) = B.

Показать, что если к подынтегральному выражечнию F(x,y,y')dx добавить полный дифференциал лючбой функции u=u(x,y), то уравнение Эйлера остачнется прежним.

93.
$$J[y(x)] = \int_{a}^{b} (y^2 + y'^2 + 2ye^x) dx$$
.

94.
$$J[y(x)] = \int_{0}^{u} (y^2 - y'^2 - 8y \operatorname{ch} x) dx$$

$$y(0) = 2$$
, $y\left(\frac{\pi}{2}\right) = 2 \operatorname{ch} \frac{\pi}{2}$.

95. Найти экстремали функционала

$$J[y(x)] = \int_{a}^{b} x^{n} (y')^{2} dx$$

и показать, что при $n \geqslant 1$ две точки, лежащие по разные стороны от оси Oy, не могут быть соединены экстремалью.

Вариационные задачи в параметрической форме. В ряде задач более удобно, а порой и просто необходимо, пользоваться параметрическим заданием линий

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, \quad t_0 \leqslant t \leqslant t_1,$$

где функции $\phi(t)$ и $\psi(t)$ непрерывны и имеют кусочно-непрерывные производные, причем $\ddot{\phi}^2(t) + \dot{\psi}^2(t) \neq 0$.

Пусть дан функционал

$$I_C = \int_C F(t, x, y, \dot{x}, \dot{y}) dt = \int_{t_0}^{t_1} F(t, x, y, \dot{x}, \dot{y}) dt, \qquad (32)$$

где
$$\dot{x} = \frac{dx}{dt}$$
, $\dot{y} = \frac{dy}{dt}$.

Чтобы значения функционала (32) зависели от линии, а не от ее параметризации, которая может осуществляться различными способами, необходимо и достаточно, чтобы подынтегральная функция не содержала явно параметр t и была положительно однородной первой степени по аргументам \dot{x} , \dot{y} :

$$F(x, y, k\dot{x}, k\dot{y}) = kF(x, y, \dot{x}, \dot{y}), \quad k > 0.$$
 (33)

Например, в функционале

$$J_C = \int\limits_C x \, dy - y \, dx$$

подынтегральная функция положительно однородна первой степени. В самом деле, здесь

$$F(x, y, \dot{x}, \dot{y}) = x\dot{y} - y\dot{x}$$

и очевидно

$$F(x, y, k\dot{x}, k\dot{y}) = kF(x, y, \dot{x}, \dot{y}).$$

Если линия \widetilde{C} :

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, \quad t_0 \leqslant t \leqslant t_1,$$

доставляет функционалу I_C экстремум в классе линий C, соединяющих данные точки (x_0,y_0) и (x_1,y_1) , то функции $\phi(t)$ и $\psi(t)$

удовлетворяют уравнениям Эйлера

$$F_{\mathbf{x}} - \frac{d}{dt}(F_{\dot{\mathbf{x}}}) = 0,$$

$$F_{\mathbf{y}} - \frac{d}{dt}(F_{\dot{\mathbf{y}}}) = 0.$$
(34)

Одно из уравнений (34) есть следствие другого. Вейерштрассова форма уравнения Эйлера

$$\frac{1}{r} = \frac{F_{x\dot{y}} - F_{y\dot{x}}}{F_1 \cdot (\dot{x}^2 + \dot{y}^2)^{3/2}}.$$
 (35)

Здесь r — радиус кривизны экстремали, F_1 — общее значение отношений

$$F_1 = \frac{F_{\dot{x}\dot{x}}}{\dot{y}^2} = \frac{F_{\dot{y}\dot{y}}}{\dot{x}^2} = \frac{F_{\dot{x}\dot{y}}}{-\dot{x}\dot{y}}.$$

Пример 14. Найти экстремали функционала

$$J_C = \int_{(0,0)}^{(x_1, y_1)} y^2 y'^2 dx.$$

Решение. Поскольку возможны экстремали, которые пересекаются прямыми, параллельными оси Оу более, чем в одной точке, перейдем к рассмотрению задачи в параметрической форме.

Считая x = x(t), y = y(t), находим, что подынтегральная функция имеет вид $y^2 \cdot \frac{\dot{y}^2}{\dot{x}^2} \dot{x}$ и является положительно однородной первой степени относительно \dot{x} и \dot{y} .

Первое из уравнений (34) принимает вид

$$\frac{d}{dt}\left(y^2\,\frac{\dot{y}^2}{\dot{x}}\right)=0,$$

откуда

$$y^2 \left(\frac{dy}{dx}\right)^2 = C_1^2.$$

Интегрируя последнее уравнение, находим

$$y^2 = 2C_1x + C_2$$
.

Из условия прохождения экстремали через начало координат находим, что $C_2=0$. Второе граничное условие дает u_1^2

$$C_1 = \frac{y_1^2}{2x_1}$$
, так что окончательно

$$y^2 = \frac{y_1^2}{x_1} x.$$

Пример 15. Найти экстремали функционала

$$I_C = \int_{t_0}^{t_1} \left[V \overline{x^2 + \dot{y}^2} + a^2 (x \dot{y} - y \dot{x}) \right] dt.$$

Решение. Полагая

$$F(x, y, \dot{x}, \dot{y}) = \sqrt{\dot{x}^2 + \dot{y}^2} + a^2(x\dot{y} - y\dot{x}),$$

видим, что функция F положительно однородна первой степени относительно \dot{x} и \dot{y} .

Воспользуемся вейерштрассовой формой уравнения Эйлера,

Имеем

$$F_{x\dot{y}} = a^2$$
, $F_{y\dot{x}} = -a^2$; $F_1 = \frac{F_{\dot{x}\dot{x}}}{\dot{y}^2} = \frac{1}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$.

Поэтому уравнение (35) принимает в данном случае вид

$$\frac{1}{r} = 2a^2.$$

Таким образом, кривизна $\frac{1}{r}$ экстремали постоянна. Следовательно, экстремали — дуги окружности, в частности, полные окружности, если

 $\begin{cases}
x(t_0) = x(t_1), \\
y(t_0) = y(t_1).
\end{cases}$

Найти экстремали функционалов:

96.
$$J_C = \int_{(0,0)}^{(X_1,Y_2)} \frac{\dot{y}^2 - y^2 \dot{x}^2}{\dot{x}} dt$$
.
97. $J_C = \int_{(0,0)}^{(1,2)} \frac{\dot{y}^2 - 3e^{\dot{y}/\dot{x}}\dot{x}^2}{\dot{x}} dt$.
98. $J_C = \int_{(-1,0)}^{(1,0)} (K \cdot \sqrt{\dot{x}^2 + \dot{y}^2} - \dot{x}y) dt$, $K > 0 - \text{const.}$

§ 5. Обобщения простейшей задачи вариационного исчисления

1°. Функционалы, зависящие от производных высшего порядка. Пусть имеем функционал

$$J[y(x)] = \int_{x_0}^{x_1} F(x, y(x), y'(x), ..., y^{(n)}(x)) dx, \qquad (1)$$

где F — функция, дифференцируемая n+2 раза по всем аргументам, $y(x) \in C_n[x_0,x_1]$, а граничные условия имеют вид

$$y(x_0) = y_0, \quad y'(x_0) = y_0', \dots, \quad y^{(n-1)}(x_0) = y_0^{(n-1)},$$

$$y(x_1) = y_1, \quad y'(x_1) = y_1', \dots, \quad y^{(n-1)}(x_1) = y_1^{(n-1)}.$$
(2)

Экстремалями функционала (1) при условиях (2) являются интегральные кривые уравнения Эйлера — Пуассона:

$$F_y - \frac{d}{dx} F_{y'} + \frac{d^2}{dx^2} F_{y''} - \dots + (-1)^n \frac{d^n}{dx^n} F_{y(n)} = 0.$$
 (3)

Пример 1. Найти экстремаль функционала

$$J[y(x)] = \int_{0}^{1} (360x^{2}y - y''^{2}) dx,$$

$$y(0) = 0, \quad y'(0) = 1, \quad y(1) = 0, \quad y'(1) = 2.5.$$

Решение. Уравнение Эйлера — Пуассона имеет вид

$$360x^2 + \frac{d^2}{dx^2}(-2y'') = 0$$
 или $y^{1V}(x) = 180x^2$;

его общее решение -

$$y(x) = \frac{1}{2}x^6 + C_1x^3 + C_2x^2 + C_3x + C_4.$$

Используя граничные условия, получим

$$C_1 = \frac{3}{2}$$
, $C_2 = -3$, $C_3 = 1$, $C_4 = 0$.

Искомая экстремаль

$$y(x) = \frac{1}{2} x^6 + \frac{3}{2} x^3 - 3x^2 + x.$$

Рассмотрим задачу, в которой на границе заданы не все условия (2), а меньшее их число, так что в общем решении уравнения Эйлера после использования граничных условий еще остаются свободные постоянные. Для решения такой задачи необходимо найти вариацию функционала (1), преобразовать ее с учетом заданных граничных условий и, приравняв варнацию нулю, получить дополнительные условия на границе.

 Π ример 2. Найти кривую y=y(x), реализующую экстре-

мальное значение функционала

$$I[y] = \frac{1}{2} \int_{-\infty}^{b} (y'')^2 dx$$
 (4)

при условиях

$$y(a) = 0, \quad y(b) = 0.$$
 (5)

Решение. Уравнение Эйлера — Пуассона имеет вид

$$y^{(IV)}(x) = 0$$

Его общее решение

$$y(x) = C_1 + C_2 x + C_3 x^2 + C_4 x^3 \tag{6}$$

содержит четыре произвольных постоянных C_i (i=1,2,3,4), и для их определения заданных граничных условий (5) недостаточно. Поэтому, согласно вышесказанному, находим вариацию функционала (4). Получим

$$\delta J[y] = \int_{a}^{b} y''(\delta y'') dx. \tag{7}$$

Интегрируя (7) по частям дважды, будем иметь

$$\delta J[y] = y''(x) \, \delta y'(x) \big|_a^b - \int_a^b y'''(x) \, \delta y'(x) \, dx =$$

$$= y''(x) \, \delta y'(x) \big|_a^b - y'''(x) \, \delta y(x) \big|_a^b + \int_a^b y^{(\text{IV})}(x) \, \delta y(x) \, dx. \tag{8}$$

Выражение (8) должно обращаться в нуль на экстремали y(x) функционала (4). Из произвольности функции $\delta y(x)$ следует, что $y^{(\text{IV})}(x) = 0$; это есть уравнение Эйлера — Пуассона для функционала (4). Но если интеграл в правой части (8) обращается в нуль, то краевое выражение

$$[y''(x) \delta y'(x) - y'''(x) \delta y(x)]_a^b$$

также должно обращаться в нуль тождественно.

Так как $\delta y(a) = \delta y(b) = 0$ (концы закреплены), то получаем, что должно быть

$$y''(b) \delta y'(b) - y''(a) \delta y'(a) = 0.$$

В силу произвольности величин $\delta y'(b)$ и $\delta y'(a)$ необходимо получаем

y''(a) = 0, y''(b) = 0. (9)

Условия (9) вместе с условиями (5) однозначно выделяют экстремаль из семейства (6): $y(x) \equiv 0$.

2°. Функционалы, зависящие от m функций. Для функционала, зависящего от m функций $y_1(x),\ldots,y_m(x),$

$$I[y_1, y_2, ..., y_m] = \int_{x_2}^{x_1} F(x, y_1, y_2, ..., y_m, y_1', y_2', ..., y_m') dx$$
 (10)

§ 5]

при граничных условиях вида

$$y_k(x_0) = y_k^0, \quad y_k(x_1) = y_k^{(1)} \quad (k = 1, 2, ..., m),$$
 (11)

экстремали находятся из следующей системы дифференциальных уравнений второго порядка:

$$F_{y_b} - \frac{d}{dx} F_{y_b'} = 0$$
 $(k = 1, 2, ..., m),$ (12)

называемых системой уравнений Эйлера.

Пример 3. Найти экстремали функционала

$$J[y(x), z(x)] = \int_{1}^{2} (y'^{2} + z^{2} + z'^{2}) dx$$

при граничных условиях

$$y(1) = 1,$$
 $y(2) = 2;$ $z(1) = 0,$ $z(2) = 1.$

Решение. Система уравнений (12) в данном случае имеет вид

$$y'' = 0,$$

$$z - z'' = 0.$$

Решая эту систему, находим

$$y = C_1 x + C_2$$
, $z = C_3 e^x + C_4 e^{-x}$.

В силу граничных условий имеем

$$C_1 = 1$$
, $C_2 = 0$, $C_3 = \frac{1}{e^2 - 1}$, $C_4 = -\frac{e^2}{e^2 - 1}$,

так что искомая экстремаль:

$$y = x,$$

$$z = \frac{\sinh(x - 1)}{\sinh 1}$$

есть пространственная кривая, являющаяся пересечением двух цилиндрических поверхностей.

Пример 4. Найти экстремали функционала

$$J[y(x), z(x)] = \int_{0}^{\pi} (2yz - 2y^{2} + {y'}^{2} - {z'}^{2}) dx,$$

если

$$y(0) = 0$$
, $y(\pi) = 1$, $z(0) = 0$, $z(\pi) = -1$.

Решение. Система уравнений (12) имеет вид

$$y'' + 2y - z = 0, z'' + y = 0,$$

откуда, исключая функцию г, получим

$$y^{IV} + 2y'' + y = 0.$$

Общее решение этого уравнения имеет вид

$$y(x) = C_1 \cos x + C_2 \sin x + x (C_3 \cos x + C_4 \sin x).$$

В силу граничных условий $y\left(0\right)=0,\;y\left(\pi\right)=1$ получаем $C_{1}=0,\;C_{3}=-\frac{1}{\pi}$, и значит,

$$y(x) = C_2 \sin x + C_4 x \sin x - \frac{x}{\pi} \cos x.$$

Функцию z найдем из условия, что z = y'' + 2y. Имеем

$$z = C_2 \sin x + C_4 (2\cos x + x\sin x) + \frac{1}{\pi} (2\sin x - x\cos x).$$

Постоянные C_2 и C_4 находим из граничных условий $z\left(0\right)=0$, $z\left(\pi\right)=-1$, что дает $C_4=0$, C_2 — произвольно. Тогда

$$z = C_2 \sin x + \frac{1}{\pi} (2 \sin x - x \cos x).$$

Семейство экстремалей:

$$y = C_2 \sin x - \frac{x}{\pi} \cos x,$$

$$z = C_2 \sin x + \frac{1}{\pi} (2 \sin x - x \cos x),$$

где C_2 — произвольная постоянная.

3°. Функционалы, зависящие от функций нескольких независимых переменных. Рассмотрим функционал вида

$$J[z(x, y)] = \int_{D} \int F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) dx dy, \qquad (13)$$

где F — трижды дифференцируемая функция своих аргументов, и предположим, что ищется функция z=z(x,y), непрерывная вместе со своими производными до второго порядка включительно в области D, принимающая на границе Γ области D заданные значения и дающая экстремум функционалу (13).

Если на поверхности z=z(x,y) реализуется экстремум функционала (13), то функция z=z(x,y) удовлетворяет уравнению Эйлера — Остроградского

$$F_{z} - \frac{\partial}{\partial x} (F_{\rho}) - \frac{\partial}{\partial y} (F_{q}) = 0, \tag{14}$$

где $\frac{\partial}{\partial x}\{F_p\}$ и $\frac{\partial}{\partial y}\{F_q\}$ — полные частные производные по x и по y соответственно:

$$\frac{\partial}{\partial x} \{F_p\} = F_{px} + F_{pz} \frac{\partial z}{\partial x} + F_{pp} \frac{\partial p}{\partial x} + F_{pq} \frac{\partial q}{\partial x}, \qquad (15)$$

$$\frac{\partial}{\partial y} \{F_q\} = F_{qy} + F_{qz} \frac{\partial z}{\partial y} + F_{qp} \frac{\partial p}{\partial y} + F_{qq} \frac{\partial q}{\partial y}. \tag{16}$$

Здесь для краткости обозначено $\frac{\partial z}{\partial x} = p, \ \frac{\partial z}{\partial u} = q.$

Уравнение (14) представляет собой необходимое условие экстремума функционала (13). Оно является уравнением второго порядка в частных производных, причем ищегся решение z=z(x,y), принимающее на границе Γ заданные значения.

Пример 5. Написать уравнение Эйлера — Остроградского для функционала

$$J[z(x, y)] = \int_{D} \int \left[\left(\frac{\partial z}{\partial x} \right)^{2} - \left(\frac{\partial z}{\partial y} \right)^{2} \right] dx dy.$$

Решение. Имёем $F(x, y, z, p, q) = p^2 - q^2$, так что сотласно (14) получим $-\frac{\partial}{\partial x}(2p) - \frac{\partial}{\partial y}(-2q) = 0$ или $-\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$.

Для функционала

$$J[z(x_1, x_2, ..., x_n)] =$$

$$= \int \int ... \int F(x_1, x_2, ..., x_n, z, p_1, p_2, ..., p_n) dx_1 dx_2 ... dx_n, (17)$$

где $p_k = \frac{\partial z}{\partial x_k}$ $(k=1,\,2,\,\ldots,\,n)$, необходимое условие экстремума выражается следующим уравнением Эйлера — Остроградского:

$$F_z - \sum_{i=1}^n \frac{\partial}{\partial x_i} \left\{ F_{p_i} \right\} = 0 \tag{18}$$

или в развернутом виде

$$F_{z} - \sum_{i=1}^{n} \left(F_{x_{i}p_{i}} + F_{zp_{i}} \cdot p_{i} + \sum_{j=1}^{n} F_{p_{i}p_{j}} \frac{\partial p_{j}}{\partial x_{i}} \right) = 0.$$
 (19)

Решение этого уравнения — функция $z = z(x_1, x_2, ..., x_n)$ — на границе Г n-мерной области D должна удовлетворять заданным граничным условиям.

Пример 6. Найти условия, при которых функция $z(x_1, x_2, \ldots, x_n)$, принимающая заданные значения на границе Γ области Q, дает минимум интегралу Дирихле

$$D(z) = \int \int \dots \int \sum_{i=1}^{n} \left(\frac{\partial z}{\partial x_i}\right)^2 dx_1 dx_2 \dots dx_n.$$

Решение. В этом случае $F=\sum_{i=1}^n\left(\frac{\partial z}{\partial x_i}\right)^2$, т. е. F не за-

висит явно от $x_1, x_2, ..., x_n, z$. Следовательно,

$$F_z = F_{zp_i} = F_{x_ip_i} = 0, \quad F_{p_ip_j} = \begin{cases} 2 & \text{при } i = j, \\ 0 & \text{при } i \neq i, \end{cases}$$

и по формуле (19) получим

$$\sum_{i=1}^{n} \frac{\partial^{2} z}{\partial x_{j}^{2}} = 0 \quad \text{или} \quad \Delta z = 0$$

(п-мерное уравнение Лапласа).

Замечание. Если под знак интеграла входят производные функции z(x,y) до порядка n, то уравнение Эйлера — Остроградского имеет вид

$$F_{z} - \frac{\partial}{\partial x} \{F_{z_{x}}\} - \frac{\partial}{\partial y} \{F_{z_{y}}\} + \frac{\partial^{2}}{\partial x^{2}} \{F_{z_{xx}}\} + \frac{\partial^{2}}{\partial x \partial y} \{F_{z_{xy}}\} + \frac{\partial^{2}}{\partial y^{2}} \{F_{z_{yy}}\} - \dots + (-1)^{n} \frac{\partial^{n}}{\partial y^{n}} \{F_{z_{yy}} \dots y\} = 0.$$
 (20)

Пример 7. Написать уравнение Эйлера — Остроградского для функционала

$$J[z(x, y)] = \int_{D} \int \left[\left(\frac{\partial^{2}z}{\partial x^{2}} \right)^{2} + \left(\frac{\partial^{2}z}{\partial y^{2}} \right)^{2} + 2 \left(\frac{\partial^{2}z}{\partial x \partial y} \right)^{2} - 2zf(x, y) \right] dx dy.$$

Решение. Имеем

$$F = \left(\frac{\partial^2 z}{\partial x^2}\right)^2 + \left(\frac{\partial^2 z}{\partial y^2}\right)^2 + 2\left(\frac{\partial^2 z}{\partial x \partial y}\right)^2 - 2zf(x, y).$$

71

Согласно (20) находим

$$-2f(x, y) + \frac{\partial^{2}}{\partial x^{2}} \left(2 \frac{\partial^{2} z}{\partial x^{2}} \right) + \frac{\partial^{2}}{\partial y^{2}} \left(2 \frac{\partial^{2} z}{\partial y^{2}} \right) + \frac{\partial^{2}}{\partial x^{2} \partial y} \left(2 \frac{\partial^{2} z}{\partial x^{2} \partial y} \right) = 0$$

или

$$\frac{\partial^4 z}{\partial x^4} + 2 \frac{\partial^4 z}{\partial x^2 \partial y^2} + \frac{\partial^4 z}{\partial y^4} = f(x, y).$$

Последнее уравнение коротко записывается так:

$$\Delta \Delta z = f(x, y).$$

Найти экстремали следующих функционалов:

99.
$$J[y(x)] = \int_{0}^{1} (y^2 + 2y'^2 + y''^2) dx;$$

$$y(0) = 0$$
, $y(1) = 0$, $y'(0) = 1$, $y'(1) = -\sinh 1$.

100.
$$J[y(x)] = \int (240y - y'''^2) dx;$$

$$y(-1) = 1$$
, $y(0) = 0$, $y'(-1) = -4.5$, $y'(0) = 0$, $y''(-1) = 16$, $y''(0) = 0$.

101.
$$J[y(x)] = \int_{0}^{x} (y + y'') dx;$$

$$y(a) = y_0, \quad y(b) = y_1, \quad y'(a) = y_0', \quad y'(b) = y_1'.$$

102.
$$J[y(x)] = \int (y'^2 + yy'') dx;$$

$$y(a) = A_1, \quad y'(a) = A_2, \quad y(b) = B_1, \quad y'(b) = B_2.$$

103.
$$J[y(x)] = \int_{x}^{x} (y'^2 + y''^2) dx;$$

$$y(0) = 0$$
, $y(1) = \sinh 1$, $y'(0) = 1$, $y'(1) = \cosh 1$.

104. Найти экстремаль функционала

$$J[y] = \frac{1}{2} \int_{0}^{\pi} (y'')^2 dx$$

при условиях

$$y(0) = 0$$
, $y'(0) = 0$, $y'(1) = 1$.

105.
$$J[y(x), z(x)] = \int_{0}^{\pi/4} (2z - 4y^2 + {y'}^2 - {z'}^2) dx;$$

 $y(0) = 0, \quad y(\frac{\pi}{4}) = 1, \quad z(0) = 0, \quad z(\frac{\pi}{4}) = 1.$

106.
$$J[y(x), z(x)] = \int_{-1}^{1} \left(2xy - y'^2 + \frac{z'^3}{3}\right) dx;$$

 $y(1) = 0, \quad y(-1) = 2, \quad z(1) = 1, \quad z(-1) = -1.$

107.
$$J[y(x), z(x)] = \int_{0}^{\pi/2} (y'^2 + z'^2 - 2yz) dx;$$

 $y(0) = 0, \quad y(\frac{\pi}{2}) = 1, \quad z(0) = 0, \quad z(\frac{\pi}{2}) = 1.$

108.
$$J[y(x), z(x)] = \int_{0}^{x} (y'^{2} + z'^{2} + 2y) dx;$$

 $y(0) = 1, \quad y(1) = \frac{3}{2}, \quad z(0) = 0, \quad z(1) = 1.$

109. Показать, что уравнения Эйлера для функционала

$$J[y, z] = \int_{z}^{0} F(x, y, y', z, z') dx$$

допускают следующие первые интегралы:

- 1) $\frac{\partial F}{\partial u'} = C$, если F не содержит y;
 - 2) $F y' \frac{\partial F}{\partial y'} z' \frac{\partial F}{\partial z'} = C$, если F не содержит x.

Написать уравнения Эйлера — Остроградского для функционалов:

110.
$$J[z(x, y)] =$$

$$= \int_{D} \int \left[\left(\frac{\partial z}{\partial x} \right)^{4} + \left(\frac{\partial z}{\partial y} \right)^{4} + 12zf(x, y) \right] dx dy,$$

111.
$$J[z(x, y)] = \int_{D} \int \left(\frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial y^{2}}\right)^{2} dx dy$$
.
112. $J[z(x_{1}, x_{2}, ..., x_{n})] = \int_{D} \int \left[\sum_{j=1}^{n} a_{j}(x_{1}, ..., x_{n}) \left(\frac{\partial z}{\partial x_{j}}\right)^{2} - c(x_{1}, ..., x_{n})z^{2} + 2zf(x_{1}, ..., x_{n})dx_{1}dx_{2}...dx_{n}\right]$

113. Вывести дифференциальное уравнение минимальных поверхностей.

114. Найти экстремаль функционала

$$J[z(x, y)] = \int_{0}^{1} \int_{0}^{1} e^{zy} \sin z_{y} \, dx \, dy$$

при условиях z(x, 0) = 0, z(x, 1) = 1.

§ 6. Инвариантность уравнения Эйлера

Если функционал

$$J[y] = \int_{a}^{b} F(x, y, y') dx$$

преобразуется посредством замены независимой переменной или одновременной заменой искомой функции и независимой переменной, то экстремали функционала по-прежнему находятся из уравинения Эйлера, составленного для преобразованного подынтегрального выражения. В этом и состоит инвариантность уравнения Эйлера.

Пусть x = x(u, v), y = y(u, v), причем

$$\left|\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right| \neq 0.$$

Тогда

$$\int F(x, y, y') dx =$$

$$= \int F\left[x(u, v), y(u, v), \frac{y_u + y_v v'_u}{x_u + x_v v'_u}\right] (x_u + x_v v'_u) du =$$

$$= \int \Phi(u, v, v'_u) du$$

и экстремали исходного функционала определяются из уравнения Эйлера для функционала $\int \Phi\left(u,\,v,\,v_u'\right)du$:

$$\Phi_v - \frac{d}{du} \Phi_{v'} = 0.$$

Пример 1. Найти экстремали функционала

$$J[r] = \int\limits_{0}^{\varphi_1} \sqrt{r^2 + {r'}^2} \, d \varphi,$$
 где $r = r(\varphi).$

Решение. Уравнение Эйлера для этого функционала

$$\frac{r}{\sqrt{r^2 + {r'}^2}} - \frac{d}{d\varphi} \left(\frac{r'}{\sqrt{r^2 + {r'}^2}} \right) = 0.$$

Замена переменных $x = r \cos \varphi$, $y = r \sin \varphi$ дает

$$\sqrt{r^2 + {r'}^2} d\phi = \sqrt{1 + {y'}^2} dx$$

и мы приходим к функционалу вида

$$J[y] = \int_{a}^{b} \sqrt{1 + {y'}^2} \, dx,$$

для которого уравнение Эйлера есть y'' = 0, так что $y = C_1 x + C_2$,

Значит, экстремали исходного функционала даются уравнениями $r \sin \varphi = C_1 r \cos \varphi + C_2$,

где C_1 и C_2 — произвольные постоянные. Пример 2. Найти экстремали функционала

$$J[y] = \int_{0}^{\ln 2} (e^{-x}y'^{2} - e^{x}y^{2}) dx.$$

Решение. Уравнение Эйлера для данного функционала имеет вид

$$y'' - y' + e^{2x}y = 0.$$

Сделаем замену переменных

$$\begin{cases} x = \ln u, \\ y = v. \end{cases}$$

Тогда исходный функционал преобразуется к виду

$$J_1[v] = \int_1^2 \left(e^{-\ln u} u^2 v'^2 - e^{\ln u} v^2 \right) \frac{du}{u} = \int_1^2 \left(v'^2 - v^2 \right) du$$

и для него уравнение Эйлера v'' + v = 0 легко интегрируется:

$$v = C_1 \cos u + C_2 \sin u.$$

Переходя к первоначальным координатам x, y, получим уравнение экстремалей в виде

$$y = C_1 \cos e^x + C_2 \sin e^x$$
.

115. Найти экстремали функционала

$$J = \int_{0}^{\varphi_1} r \sin \varphi \sqrt{r^2 + {r'}^2} d\varphi.$$

116. Показать, что экстремали функционала

$$J = \int_{0}^{\varphi_1} f(r \sin \varphi) \sqrt{r^2 + {r'}^2} d\varphi$$

всегда находятся в квадратурах.

117. Найти экстремали функционала

$$J = \int_{0}^{b} V x^{2} + y^{2} V 1 + {y'}^{2} dx.$$

Как и для случая одного переменного, уравнение Эйлера — Остроградского инвариантно относительно преобразований координат.

Пример 3. Записать уравнение Лапласа

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial u^2} = 0 \tag{1}$$

в полярных координатах.

Решение. Рассмотрим функционал

$$D[z(x, y)] = \iint_{G} (z_{x}^{2} + z_{y}^{2}) dx dy.$$

Уравнение Эйлера — Остроградского для функционала есть как раз уравнение (1). Перейдем в функционале от декартовых

координат (x,y) к полярным координатам (ρ,ϕ) : $x=\rho\cos\phi$, $y=\rho\sin\phi$. Имеем

$$\frac{\partial \rho}{\partial x} = \cos \varphi, \quad \frac{\partial \rho}{\partial y} = \sin \varphi, \quad \frac{\partial \varphi}{\partial x} = -\frac{\sin \varphi}{\rho}, \quad \frac{\partial \varphi}{\partial y} = \frac{\cos \varphi}{\rho}.$$

Отсюда

$$\begin{split} D\left[z\left(\rho,\,\varphi\right)\right] &= \\ &= \int_{G} \int_{G} \left[\left(z_{\rho} \frac{\partial \rho}{\partial x} + z_{\varphi} \frac{\partial \varphi}{\partial x}\right)^{2} + \left(z_{\rho} \frac{\partial \rho}{\partial y} + z_{\varphi} \frac{\partial \varphi}{\partial y}\right)^{2} \right] \rho \, d\rho \, d\varphi = \\ &= \int_{G} \int_{G} \left(\rho z_{\rho}^{2} + \frac{1}{\rho} z_{\varphi}^{2}\right) d\rho \, d\varphi. \end{split}$$

Составляя уравнение Эйлера — Остроградского для последнего интеграла, придем к уравнению Лапласа в полярных координатах:

$$\frac{1}{\rho}z_{\varphi\varphi} + \rho z_{\rho\rho} + z_{\rho} = 0.$$

§ 7. Поле экстремалей

Семейство кривых y=y(x,c) образует собственное поле в заданной области D плоскости xOy, если через каждую точку (x,y) этой области проходит одна и только одна кривая семейства y=y(x,c).

Угловой коэффициент p(x,y) касательной к кривой семейства y = y(x,c), проходящей через точку (x,y), называется на-

клоном поля в точке (x, y).

Семейство кривых y=y(x,c) образует центральное поле в области D плоскости xOy, если эти кривые покрывают без самопересечений всю область D и исходят из одной точки (x_0,y_0) , лежащей вне области D. Точка (x_0,y_0) называется центром

пучка кривых.

Пример 1. Внутри круга $x^2+y^2\leqslant 1$ семейство кривых $y=Ce^x$, где C— произвольная постоянная, в частности, C=0 образует собственное поле, так как эти кривые нигде не пересекаются и через каждую точку (x,y) круга проходит одна и только одна кривая этого семейства (рис. 7). Наклон поля в произвольной точке (x,y) равен

$$p(x, y) = Ce^x = y$$
.

Пример 2. Семейство парабол $y=(x+C)^2$ внутри круга $x^2+y^2\leqslant 1$ собственного поля не образует, так как различные кривые семейства пересекаются внутри круга и не покрывают всю область (рис. 8).

 Π р и м е р 3. Семейство кривых y = Cx образует централь-

ное поле в области x > 0,

Рис. 7.

Рис. 8.

Образуют ли поле (собственное или центральное) следующие семейства кривых в указанных областях:

118.
$$y = C \cdot \lg x$$
; $0 \le x \le \frac{\pi}{4}$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

119. $y = C \cdot \cos x$;

a)
$$|x| < \frac{\pi}{4}$$
; 6) $\frac{\pi}{2} < x \le \pi$; B) $|x| \le \pi$.

120.
$$y = (x - C)^3$$
; $\frac{x^2}{4} + \frac{y^2}{9} \le 1$.

121. $y = C(x^2 - 2x)$;

a)
$$0 \le x < 1$$
; 6) $-1 \le x \le 3$; B) $\frac{1}{2} \le x \le \frac{3}{2}$.

122.
$$y = C \cdot \sin\left(x - \frac{\pi}{4}\right);$$

a)
$$\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{2}$$
; 6) $\frac{\pi}{3} \leqslant x \leqslant \pi$; B) $\frac{\pi}{8} \leqslant x \leqslant 2\pi$.

123.
$$y = e^{x+C}$$
; $x^2 + y^2 \le 1$.

Если поле (собственное или центральное) образовано семейством экстремалей некоторой вариационной задачи, то оно называется полем экстремалей.

Пример 4. Рассмотрим функционал

$$J[y] = \int_0^1 {y'}^2 dx.$$

Его экстремалями являются прямые $y=C_1x+C_2$. Семейство экстремалей $y=C_2$ образует собственное поле, а семейство экстремалей $y=C_1x$ образует центральное поле с центром в начале координат.

124. Для функционала

$$J[y] = \int_{0}^{a} (y'^{2} + y^{2}) dx, \quad \dot{a} > 0,$$

указать собственное и центральное поле экстремалей. 125. То же — для функционала

$$J[y] = \int_{0}^{\pi/4} (y'^{2} - y^{2} + x^{2} + 4) dx.$$

Пусть кривая y = y(x) является экстремалью функционала

$$J[y] = \int_{x_0}^{x_1} F(x, y, y') dx,$$

проходящей через точки $A(x_0, y_0)$ и $B(x_1, y_1)$.

Говорят, что экстремаль y=y(x) включена в собственное поле экстремалей, если найдено семейство экстремалей y=y(x,C), образующее поле, содержащее при некотором значении $C=C_0$ экстремаль y=y(x), причем эта экстремаль y=y(x) не лежит на границе области D, в которой семейство y=y(x,C) образует поле.

Если пучок экстремалей с центром в точке (x_0, y_0) в окрестности экстремали y = y(x), проходящей через ту же точку, образует поле, то говорят, что найдено центральное поле, включающее данную экстремаль y = y(x). За параметр семейства y = y(x, C) принимается угловой коэффициент касательной к кривым пучка в точке (x_0, y_0) .

Пример 5. Рассмотрим простейшую вариационную за-

дачу для функционала

$$J[y] = \int_{0}^{2} (y'^{3} + \sin^{2} x) dx.$$

а) Пусть y(0) = 1, y(2) = 1. Семейство экстрамалей данного функционала определяется уравнением $y = C_1x + C_2$. Заданным граничным условиям удовлетворяет экстремаль y = 1. Эта экстремаль включается в собственное поле экстремалей $y = C_2$, где C_2 — произвольная постоянная.

б) Пусть y(0) = 0, y(2) = 4. Экстремалью, отвечающей этим граничным условиям, является прямая y = 2x, ксторая включается в центральное поле экстремалей $y_1 = C_1x$ (C_1 — про-

извольная постоянная) с центром в точке O(0,0).

Пример 6. Рассмотрим простейшую вариационную задачу

$$J[y] = \int_{-1}^{1} y' \cdot \left(2x - \frac{1}{2} y'\right) dx,$$

$$y(-1) = 0, \ y(1) = \frac{1}{2}.$$

Решение уравнения Эйлера имеет вид $y=x^2+C_1x+C_2$. Экстремаль этой задачи $y=x^2+\frac{x}{4}-\frac{3}{4}$ можно включить в собственное поле экстремалей $y=x^2+\frac{x}{4}+C_2$ (рис. 9).

Показать, что экстремали следующих простейших вариационных задач можно включить в поле экстремалей (собственное или центральное).

Рис. 9.

126.
$$J[y] = \int_{0}^{1} (y'^{2} - 2xy) dx; \ y(0) = y(1) = 0.$$

127. $J[y] = \int_{0}^{1} (2e^{x}y + y'^{2}) dx; \ y(0) = 1, \ y(1) = e.$
128. $J[y] = \int_{0}^{a} (y^{2} - y'^{2}) dx \quad (a > 0, \ a \neq k\pi);$
 $y(0) = 0, \quad y(a) = 0.$
129. $J[y] = \int_{0}^{2} (y'^{2} + x^{2}) dx; \ y(0) = 1, \quad y(2) = 3.$

Определение, Пусть имеем семейство $\Phi(x,y,C)=0$ плоских кривых.

С-дискриминантом этого семейства называется геометриче-

ское место точек, определяемое системой уравнений

$$\frac{\Phi(x, y, C) = 0,}{\frac{\partial \Phi(x, y, C)}{\partial C} = 0.}$$
(1)

В общем случае в состав C-дискриминанта входят огибающие семейства, геометрическое место узловых точек и геометрическое

место точек заострения.

Огибающей семейства $\Phi(x,y,C)=0$ называется кривая, которая в каждой своей точке касается некоторой кривой данного семейства и каждого участка которой касается бесконечное множество кривых семейства.

Если имеем пучок кривых с центром в точке $A(x_0, y_0)$, то

центр пучка принадлежит С-дискриминанту.

Пример 7. Найти C-дискриминант семейства кривых $y=(x-C)^2$.

Решение. Уравнения (1) в данном случае имеют вид

откуда y=0. Нетрудно проверить, что линия y=0 есть огибающая данного семейства. В самом деле, в любой точке $x=x_0$ линия y=0 имеет общую касательную с соответствующей кривой семейства $y=(x-x_0)^2$. Далее, какой бы малый участок линии y=0 мы ни взяли, его касается бесконечное множество кривых данного семейства. В данном случае C-дискриминант состоит из одной огибающей.

В следующих примерах найти С-дискриминанты заланных семейств.

130.
$$y = Cx + C^2$$
.

131.
$$y(C-x)-C^2=0$$
.

132.
$$(x-C)^2 + y^2 = 1$$
.

Если дуга AB кривой y=y(x) имеет отличную от A общую точку A^* с C-дискриминантом пучка y=y(x,C) с центром в точке A, содержащего данную кривую, то точка A^* называется точкой сопряженной с точкой A.

Пример 8. Рассмотрим однопараметрическое семейство кривых $y=C\sin x$. C-дискриминант этого семейства опреде-

ляется уравнениями

$$y - C \sin x = 0,$$

$$-\sin x = 0,$$

т. е. представляет собой дискретное множество точек $(k\pi,0)$, $k=0,\pm 1,\pm 2$ (точки пересечения синусоиды с осью Ox). Взяв, например, C=2, получим кривую $y=2\sin x$, принадлежащую данному пучку синусоид с центром в точке O(0,0). Если другой конец B (рис. 10) дуги кривой $y=2\sin x$ имеет абсциссу

Рис. 10.

 $\tilde{x} \in (\pi, 2\pi)$, то дуга OB будет содержать еще одну точку (кроме точки O(0,0)), принадлежащую C-дискриминанту, а именно точку $O^*(\pi,0)$, которая будет сопряженной с точкой O(0,0). Если $0 < x < \pi$, то точек, сопряженных с точкой O(0,0), на дуге OB нет.

133. Дано семейство кривых $y = C \cdot (x-1)x$. Найти точку, сопряженную с точкой O(0,0).

134. Дано семейство кривых $y = C \cdot \sinh x$. Найти точку, сопряженную с точкой O(0,0).

1°. Достаточное условие Якоби возможности включения экстремали в центральное поле экстремалей. Для того чтобы дугу AB экстремали можно было включить в центральное поле экстремалей с центром в точке $A\left(x_{0},y_{0}\right)$, достаточно, чтобы точка A^{*} , сопряженная с точкой A, не лежала на дуге AB.

Пример 9. Рассмотрим функционал

$$J[y(x)] = \int_{0}^{a} (y'^{2} - 9y^{2} + e^{x^{2}} - 1) dx,$$

$$y(0) = 0, \quad y(a) = 0.$$

Проверить возможность включения экстремали y = 0 в центральное поле экстремалей с центром в точке O(0,0).

Решение. Уравнение Эйлера для данного функционала имеет вид y'' + 9y = 0. Его общее решение $y(x) = C_1 \sin 3x + C_2 \cos 3x$.

Если $a\neq\frac{k\pi}{3}$, k — целое число, то экстремалью, удовлетворяющей заданным граничным условиям, является прямая y=0. Если рассмотреть однопараметрическое семейство экстремалей $y_1=C_1\sin 3x$, то, как легко проверить, C-дискриминант этого семейства состоит из точек $\left(\frac{k\pi}{3},0\right)$, k — целое число; поэтому, если $a<\frac{\pi}{3}$, то точки, сопряженной с точкой O(0,0), на экстремали y=0 не будет, и тогда эту экстремаль, очевидно, можно включить в центральное поле экстремалей с центром в точке O(0,0). Если же $a\geqslant\frac{\pi}{3}$, то на экстремали y=0 будет содержаться по крайней мере одна точка, сопряженная с точкой O(0,0), и достаточное условие Якоби не выполняется.

В этом случае экстремали $y = C_1 \sin 3x$ поля не образуют. Аналитическая форма условия Якоби. Пусть имеем простей-

$$J[y(x)] = \int_{x_0}^{x_1} F(x, y, y') dx;$$

$$y(x_0) = y_0, \quad y(x_1) = y_1.$$

Если решение u = u(x) уравнения Якоби

$$\left(F_{yy} - \frac{d}{dx} F_{yy'}\right) u - \frac{d}{dx} \left(F_{y'y'}u'\right) = 0,$$
 (2)

удовлетворяющее условию $u(x_0)=0$, обращается в нуль еще в какой-нибудь точке интервала $x_0 < x < x_1$, то сопряженная с $A(x_0,y_0)$ точка A^* лежит на дуге AB экстремали (точка B

имеет координаты (x_1, y_1)).

шую вариационную задачу

Если существует решение u(x) уравнения Якоби, удовлетворяющее условию $u(x_0) = 0$ и не обращающееся в нуль ни в одной точке полуинтервала $x_0 < x \le x_1$, то на дуге AB нет точек, сопряженных с A. В этом случае дугу AB экстремали можно включить в центральное поле экстремалей с центром в точке $A(x_0, y_0)$.

В уравнении (2) в функции $F_{yy}(x,y,y')$, $F_{yy'}(y,x,y')$ и $F_{y'y'}(x,y,y')$ вместо y(x) надо подставить правую часть урав-

нения экстремали $y = y(x, C_0)$.

Пример 10. Выполнено ли условие Якоби для экстремали функционала

$$J[y(x)] = \int_{0}^{a} (y'^{2} + x^{2}) dx,$$

проходящей через точки O(0,0) и B(a,3)?

Решение. Уравнение Якоби в данном случае имеет вид u''=0. Его общее решение: $u(x)=C_1x+C_2$. Из условня u(0)=0 находим, что $C_2=0$, так что $u=C_1x$. Ни при каком значении a>0 эти решения $u=C_1x$ ($C_1\neq 0$) в нуль не обращаются. Значит, точки, сопряженной с точкой O(0,0), на дуге OB экстремали нет. Следовательно, ее можно включить в центральное поле экстремалей с центром в точке O(0,0). Нетрудно проверить, что искомой экстремалью является прямая $y=\frac{3}{a}x$, которая, очевидно, включается в центральное поле экстремалей $y=C_1x$.

Пример 11. Выполнено ли условие Якоби для экстремали

функционала

$$J[y] = \int_{0}^{a} (y'^{2} - 4y^{2} + e^{-x^{2}}) dx, \qquad \left(a \neq \left(n + \frac{1}{2}\right)\pi\right),$$

проходящей через точки A(0,0) и B(a,0)?

Решение. Уравнение Якоби имеет вид u'' + 4u = 0. Его общее решение

 $u(x) = C_1 \sin 2x + C_2 \cos 2x.$

Из условия u(0)=0 находим, что $C_2=0$, так что $u(x)=C_1\sin 2x$. Если $a<\frac{\pi}{2}$, то функция u(x) не обращается в нуль при $0< x\leqslant a$, и условие Якоби выполнено; если же $a>\frac{\pi}{2}$, то решение уравнения Якоби $u=C_1\sin 2x$ обращается в нуль в точке $x=\frac{\pi}{2}$, принадлежащей отрезку [0,a], и на дуге экстремали y=0 $(0\leqslant x\leqslant a)$ находится точка, сопряженияя с точкой A(0,0). Таким образом, при $a>\frac{\pi}{2}$ не существует центрального поля экстремалей, включающего данную экстремаль.

В следующих задачах проверить выполнимость условия Якоби.

135.
$$J[y] = \int_{-1}^{1} (12xy + y'^2 + x^2) dx;$$

 $y(-1) = -2, \quad y(1) = 0.$
136. $J[y] = \int_{0}^{a} (y'^2 + 9y^2 - 3x) dx; \quad y(0) = 0, \quad y(a) = 0.$
137. $J[y] = \int_{0}^{1} (1 + y'^2) dx; \quad y(0) = y(1) = 0.$

138.
$$J[y] = \int_{0}^{a} y'e^{y'} dx$$
; $y(0) = 1$, $y(a) = b$ $(a > 0)$.

139.
$$J[y] = \int_{0}^{2\pi} (y'^2 - y^2) dx; \quad y(0) = 0, \quad y(2\pi) = 1.$$

140. Показать, что если подынтегральная функция функционала

$$J[y] = \int_{a}^{b} F(x, y') dx$$

не содержит явно y, то каждая экстремаль всегда может быть включена в поле экстремалей.

Замечание. Условие Якоби является необходимым для достижения экстремума функционала J[y(x)], т. е. на экстремали AB, реализующей экстремум, сопряженная с A точка не может лежать в интервале $x_0 < x < x_1$. Например, для функционала

$$J[y] = \int_{0}^{a} (y'^{4} + 1) dx, \quad y(0) = y(a) = 0,$$

минимум достигается на экстремали $y(x)\equiv 0.$ На этой экстремали нет точек, сопряженных с точкой $O\left(0,0\right)$.

Пример 12. Для функционала

$$J[y] = \int_{0}^{\frac{5}{4}\pi} (y^2 - y'^2) dx, \quad y(0) = 0, \quad y\left(\frac{5}{4}\pi\right) = 0,$$

на экстремали $y(x) \equiv 0$ экстремум не достигается потому, что в интервале $\left(0,\frac{5}{4}\pi\right)$ лежит, сопряженная с точкой $O\left(0,0\right)$ точка $O^*(\pi,0)$ (ибо решением уравнения Якоби u''+u=0, обращающимся в нуль при x=0, является $u(x)=C_1\sin x$, и u(x) обращается в нуль также и в точке $x=\pi\in\left(0,\frac{5}{4}\pi\right)$).

В самом деле, в качестве «близкой» к y \equiv 0 кривой возьмем . 4

кривую
$$y_n\left(x\right) = \frac{\sin\frac{4}{5}\,nx}{n^2}$$
, для которой условия $y\left(0\right) = y\left(\frac{5\pi}{4}\right) = 0$

очевидно выполняются, а $y_n'(x) = \frac{4}{5n} \cos n \frac{4}{5} x$. Тогда получим J[0] = 0, а

$$J[0] = 0, a$$

$$J\left[\frac{\sin\frac{4}{5}nx}{n^2}\right] = \frac{\frac{5}{4}\pi}{\int_{0}^{\pi} \frac{\sin^2\left(\frac{4n}{5}x\right)}{n^4}dx - \int_{0}^{\frac{5}{4}\pi} \left(\frac{4}{5n}\right)^2\cos^2\left(\frac{4n}{5}x\right)dx = \frac{5\pi}{8n^2}\left(\frac{1}{n^2} - \frac{16}{25}\right) < 0$$

при любом целом $n\geqslant 2$. Следовательно, экстремаль $y(x)\equiv 0$ не доставляет минимум данному функционалу, так как существуют близкие к $y(x)\equiv 0$ кривые, на которых значения функционала отрицательны. Возьмем теперь семейство кривых $y_n(x)=\frac{1}{n}\sin\frac{4}{5}x$, обладающих близостью любого порядка по отношению к кривой $y(x)\equiv 0$. Легко видеть, что

$$J[y_n] = \int_{0}^{\frac{5}{4}\pi} \frac{\sin^2 \frac{4}{5}x}{n^2} dx - \int_{0}^{\frac{5}{4}\pi} \frac{16}{25n^2} \cos^2 \frac{4}{5}x dx = \frac{9\pi}{40n^2} > 0.$$

Следовательно, экстремаль $y(x) \equiv 0$ не доставляет и максимума данному функционалу.

141. Пусть в функционале

$$J[y] = \int_{a}^{b} F(x, y, y') dx$$

подынтегральная функция F имеет ограниченные частные производные третьего порядка по переменным y, y' во всякой ограниченной области изменения y и y'. Показать, что если y=y(x) и $y=y(x)+\eta(x)$ — две близкие экстремали, то с точностью до величины высшего порядка малости сравнительно с расстоянием первого порядка между этими экстремалями функция $\eta(x)$ удовлетворяет уравнению Якоби:

$$F_{yy}\eta + F_{yy'}\eta' - \frac{d}{dx}(F_{yy'}\eta + F_{y'y'}\eta') = 0.$$

2°. Достаточные условия Лежандра. Достаточным условнем для включения экстремали функционала

$$J[y] = \int_{x_1}^{x_1} F(x, y, y') dx;$$

$$y(x_0) = y_0, \quad y(x_1) = y_1$$

поле экстремалей является выполнение усиленного условия Лежандра.

Оно состоит в требовании выполнения неравенства

$$F_{y'y'} > 0$$

во всех точках рассматриваемой экстремали (т. е. при всех $x \in [x_0, x_1]$).

Пример 13. Дан функционал

$$J[y] = \int_{0}^{2} (y'^{4} + y'^{2}) dx;$$

$$y(0) = 1, \quad y(2) = 5.$$

Экстремали — прямые $y = C_1 x + C_2$. Искомой экстремалью, удовлетворяющей заданным граничным условиям, является прямая y = 2x + 1.

В данном случае $F_{y'y'}=12{y'}^2+2$ и во всех точках экстремали y=2x+1 имеем $F_{y'y'}=50>0$. Усиленное условие Лежандра выполнено и, следовательно, экстремаль y=2x+1 может быть включена в поле экстремалей.

Это видно и непосредственно. Экстремаль y = 2x + 1 содержится в однопараметрическом семействе экстремалей $y=2x+\alpha$ $(\alpha - параметр)$, образующих собственное поле.

Пример 14. Дан функционал

$$\int_{-1}^{1} (x^2 y'^2 + 12y^2) dx;$$

$$y(-1) = -1, \quad y(1) = 1.$$

Решение. Уравнение Эйлера для этого функционала имеет вид

$$x^2y'' + 2xy' - 12y = 0.$$

Его общее решение —

$$y = C_1 x^3 + C_2 x^{-4}.$$

Поставленным граничным уловиям удовлетворяет экстремаль

$$y=x^3$$
.

Ее нельзя включить в поле. Единственным однопараметрическим семейством экстремалей, содержащим ее, является семейство $y = \alpha x^3$. Последнее не покрывает области, содержащей точку с абсциссой x = 0 (через точки оси Oy с ординатами, отличными. от нуля, экстремали этого семейства не проходят).

 $\check{\mathrm{B}}$ данном случае $F_{u'u'}=2x^2$, и условие Лежандра не вы-

полняется при x = 0.

Проверить возможность включения экстремали в поле для следующих функционалов:

142.
$$J[y] = \int_{0}^{1} (y'^{2} - yy'^{3}) dx; \ y(0) = 0, \ y(1) = 0.$$

143. $J[y] = \int_{0}^{a} y'^{3} dx; \ y(0) = 0, \ y(a) = b > 0.$
144. $J[y] = \int_{x_{1}}^{x_{1}} n(y) \sqrt{1 + y'^{2}(x)} dx;$
 $y(x_{0}) = y_{0}, \quad y(x_{1}) = y_{1}, \ n(y) > 0.$
145. $J[y] = \int_{0}^{a} (6y'^{2} - y'^{4}) dx;$
 $y(0) = 0, \quad y(a) = b, \quad a > 0, \ b > 0.$

§ 8. Достаточные условия экстремума функционала

Рассматривается простейшая вариационная задача для функционала

$$J[y] = \int_{x_1}^{x_1} F(x, y, y') dx,$$
 (1)

$$y(x_0) = y_0, \quad y(x_1) = y_1.$$
 (2)

$$y(x_0) = y_0, \quad y(x_1) = y_1.$$
 (2)

1°. Достаточные условия Вейерштрасса. Функцией Вейер-штрасса E(x, y, p, y') называется функция, определяемая равен-CTROM

$$E(x, y, p, y') = F(x, y, y') - F(x, y, p) - (y' - p) F_p(x, y, p), \quad (3)$$

где p = p(x, y) — наклон поля экстремалей рассматриваемой вариационной задачи (1)—(2) в точке (x, y).

Достаточные условия слабого экстремума.

Кривая С доставляет слабый экстремум финкционалу (1). если:

1. Кривая С является экстремалью функционала (1), удовлетворяющей граничным условиям (2), т. е. является решением уравнения Эйлера для функционала (1), удовлетворяющим условиям (2).

2. Экстремаль С может быть включена в поле экстремалей;

в частности, это будет, если выполнено условие Якоби.

3. Функция Вейеріштрасса E(x, y, p, y') должна сохранять знак во всех точках (x, y), близких к экстремали C, и для близких к p(x, y) значений y'. Функционал I[y] будет иметь максимум на C, если $E \leq 0$, и минимум, если $E \geq 0$.

Достаточные условия сильного экстремума.

Кривая С доставляет сильный экстремум функционалу (1),

1. Кривая С является экстремалью функционала (1), удо-

влетворяющей граничным условиям (2).

2. Экстремаль C может быть включена в поле экстремалей. 3. Функция Вейерштрасса E(x, y, p, y') сохраняет энак во всех точках (x,y), близких к экстремали C, и для произвольных значений y'. При $E\leqslant 0$ будет максимум, а при $E\geqslant 0$ — мини-

MUM.

полнено.

Замечание. Условие Вейерштрасса необходимо для наличия экстремума в следующем смысле—если в точках экстремали для некоторых значений у функция Е имеет противоположные знаки, то сильный экстремум не достигается. Если это свойство имеет место при сколь угодно близких к р значениях у, то не достигается и слабый экстремум.

Пример 1. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{1} (y'^{3} + y') dx, \quad y(0) = 0, \quad y(1) = 2.$$

Решение. Уравнение Эйлера для данного функционала имеет вид y'y''=0, так что экстремалями являются прямые $y(x)=C_1x+C_2$. Экстремалью, удовлетворяющей заданным граничным условиям, является прямая y=2x. Наклон поля в точках этой экстремали p=2. Очевидно, данная экстремаль y=2x включается в центральное поле экстремалей y=Cx с центром в точке O(0,0). Нетрудно также проверить, что в данном случае выполнено условие Якоби. Уравнение Якоби в данном случае имеет вид $-\frac{d}{dx}\left(6y'u'\right)=0$, где в силу уравнения экстремали имеем y'=2. Следовательно, уравнение Якоби примет вид u''(x)=0, откуда $u(x)=C_1x+C_2$. Из условия u(0)=0 получаем $C_2=0$. Так как это решение $u=C_1x$ при $C_1\neq 0$, кроме точки x=0, нигле в нуль не обращается, то условие Якоби выточки x=0, нигле в нуль не обращается, то условие Якоби выточки x=0, нигле в нуль не обращается, то условие Якоби вы-

Составляем функцию Вейерштрасса:

$$E(x, y, p, y') = y'^{3} + y' - p^{3} - p - (y' - p)(3p^{2} + 1) = (y' - p)^{2}(y' + 2p).$$

Первый множитель всегда неотрицателен при любых y', а второй положителен при значениях у', близких к 2. Следовательно, выполнены все условия существования слабого минимума. Однако, как легко видеть, если y' < -4, то функция E будет уже отрицательной, и достаточное условие сильного экстремума не

выполняется, так как в условиях сильного экстремума требуется, чтобы функция Вейерштрасса E сохраняла знак при любых значениях y'. Учитывая замечание на стр. 89, заключаем, что сильного экстремума в данном случае нет.

Пример 2. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{1} \left(x + 2y + \frac{1}{2} y'^{2} \right) dx,$$

$$y(0) = 0, \qquad y(1) = 0.$$

Решение. Уравнение Эйлера для этого функционала

имеет вид y''=2. Экстремалями являются параболы *и* = $= x^2 + C_1 x + C_2$. Экстремаль, удовлетворяющая граничным условиям, есть $y = x^2 - x$. Составляем уравнение Якоби $\frac{d}{dr}(u') = 0 \quad \text{или} \quad u'' = 0.$ Его общее решение $u(x) = C_1x + C_2$. Условие u(0) = 0 дает $C_2 = 0$, а так как $u(x) = C_1 x$ при $C_1 \neq 0$ нигде

на отрезке [0, 1] в нуль не обращается, кроме точки x = 0, то условие Якоби выполняется, и значит, экстремаль $y = x^2 - x$ можно включить в центральное поле экстремалей с центром в точке O(0,0), а именно: $y=x^2+Cx$ (рис. 11). Функция Вейерштрасса имеет вид E(x,y,p,y')= $=\frac{1}{2}\,(y'-p)^2$. Отсюда видно, что для произвольных значений y'будет $E = \frac{1}{2} (y' - p)^2 \geqslant 0$. Следовательно, на экстремали y == x2 - x данный функционал достигает сильного минимума, который равен $J[x^2 - x] = \frac{1}{3}$.

Исследовать на экстремум следующие функционалы.

146.
$$J[y] = \int_{0}^{1} e^{x} \left(y^{2} + \frac{1}{2}y'^{2}\right) dx; \ y(0) = 1, \ y(1) = e.$$

147. $J[y] = \int_{0}^{1} e^{y} y'^{2} dx; \ y(0) = 0, \ y(1) = \ln 4.$

148. $J[y] = \int_{0}^{2} \frac{x^{3}}{y'^{2}} dx; \ y(1) = 1, \ y(2) = 4.$

149. $J[y] = \int_{0}^{2} \frac{dx}{y'}; \ y(0) = 0, \ y(a) = b, \ a > 0, \ b > 0.$

150. $J[y] = \int_{0}^{1} (1 + x) \ y'^{2} dx; \ y(0) = 0, \ y(1) = 1.$

151. $J[y] = \int_{0}^{1} (y^{2} - y'^{2}) dx; \ y(0) = 1, \ y\left(\frac{\pi}{2}\right) = 1.$

152. $J[y] = \int_{-1}^{2} y'(1 + x^{2}y') dx; \ y(-1) = 1, \ y(2) = 4.$

153. $J[y] = \int_{-1}^{1} (y'^3 + y'^2) dx; y(-1) = -1, y(1) = 3.$ 2°. Достаточные условия Лежандра. Пусть функция F(x, y, y')

имеет непрерывную частную производную $F_{y'y'}(x, y, y')$ и пусть

экстремаль C включена в поле экстремалей. Если на экстремали C имеем $F_{y'y'} > 0$, то на кривой C достигается слабый минимум; если $F_{y'y'} < 0$ на экстремали C, то на ней достигается слабый максимум функционала (1). Эти условия называются усиленными условиями Лежандра.

В том случае, когда $F_{y'y'}(x,y,y')\geqslant 0$ в точках (x,y). близких к экстремали C, при произвольных значениях y', то имеем сильный минимум, а в случае, когда для указнных значений аргументов $F_{y'y'}(x,y,y')\leqslant 0$, имеем сильный максимум.

Пример 3. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{1} (y'^{3} - \alpha y') dx, \quad y(0) = 0, \quad y(1) = -2.$$

(а - любое действительное число).

Решение. Так как подынтегральная функция зависит только от y', то экстремалями являются прямые $y=C_1x+C_2$. Эктремалью, удовлетворяющей граничным условиям, будет прямая y=-2x, которая может быть включена в центральное поле экстремалей y=Cx. На этой экстремали наклон поля p=-2. Далее находим $F_{y'y'}=6y'$. На данной экстремали имеем $F_{y'y'}=-12<0$, т. е. на линии y=-2x достигается слабый максимум функционала. При произвольных значениях y' знак $F_{y'y'}$ не сохраняется, следовательно, достаточные условия сильного максимума не выполняются.

Функция Вейерштрасса E(x, y, p, y') в даниом случае имеет

вид

$$E(x, y, p, y') = (y' - p)^2 (y' + 2p)$$

и при некоторых значениях y' она имеет противоположные знаки. Учитывая замечание на стр. 89, получим, что сильного максимума нет.

Пример 4. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{2} (e^{y'} + 3) dx, \quad y(0) = 0, \quad y(2) = 1.$$

Решение. Экстремалями являются прямые $y=C_1x+C_2$. Экстремалью, удовлетворяющей граничным условиям, является прямая $y=\frac{x}{2}$; она может быть включена в центральное поле экстремалей y=Cx. В данном случае $F_{y'y'}\left(x,\,y,\,y'\right)=e^{y'}>0$ при любых значениях y'. Следовательно, на экстремали $y=\frac{x}{2}$ функционал имеет сильный минимум.

Пример 5. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{a} \frac{\sqrt{1 + y'^{2}}}{\sqrt{y}} dx, \quad y(0) = 0, \quad y(a) = y_{1}.$$

Решение. Подынтегральная функция не зависит явно от x, следовательно, получаем $F-y'\cdot Fy'=C_1$ или в нашем случае

$$\frac{\sqrt{1+y'^2}}{\sqrt{y}} - \frac{y'^2}{\sqrt{y}\sqrt{1+y'^2}} = \tilde{c}_1,$$

откуда

$$\frac{1}{\sqrt{y}\sqrt{1+{y'}^2}} = \tilde{C}_1$$
 или $y(1+{y'}^2) = C_1$,

Итак,

где
$$C_1 = \frac{1}{\widetilde{C}_1}$$
. Положим $y' = \operatorname{ctg} \frac{t}{2}$. Будем иметь $y = C_1 \sin^2 \frac{t}{2} = \frac{C_1}{2} (1 - \cos t)$. Далее,
$$dx = \frac{dy}{\operatorname{ctg} \frac{t}{2}} = \frac{C_1 \sin t \, dt}{2 \operatorname{ctg} \frac{t}{2}} = C_1 \sin^2 \frac{t}{2} \, dt.$$

Интегрируя, получим

$$x = C_1 \int \frac{(1 - \cos t) dt}{2} = \frac{C_1}{2} (t - \sin t) + C_2,$$

$$x = \widetilde{C}_1 (t - \sin t) + C_2,$$

$$y = \widetilde{C}_1 (1 - \cos t)$$

— параметрические уравнения семейства циклоид. Из условия y(0)=0 находим, что $C_2=0$. Пучок циклоид

$$x = C (t - \sin t),$$

$$y = C (1 - \cos t)$$

образует центральное поле ${\bf c}$ центром в точке O(0,0), включающее экстремаль

$$x = R (t - \sin t),$$

$$y = R (1 - \cos t),$$

где R определено из условия прохождения циклоиды через вторую граничную точку $B(a,\ y_1)$, если $a<2\pi R$ (рис. 12).

Рис. 12.

Используем условие Лежандра, Имеем

$$F_{y'y'} = \frac{1}{\sqrt{y} (1 + y'^2)^{3/2}} > 0$$

при любых значениях y'. Значит, для $a < 2\pi R$ на циклоиде

$$x = R (t - \sin t), y = R (1 - \cos t)$$

данный функционал имеет сильный минимум.

Используя условие Лежандра, исследовать следующие функционалы на экстремум:

154.
$$J[y] = \int_0^1 (y'^2 + x^2) dx$$
; $y(0) = -1$, $y(1) = 1$.

155.
$$J[y] = \int_{3}^{3} \frac{x^3}{y'^2} dx$$
; $y(2) = 4$, $y(3) = 9$.

156.
$$J[y] = \int_{1}^{2} (xy'^4 - 2yy'^3) dx$$
; $y(1) = 0$, $y(2) = 1$.

157.
$$J[y] = \int_{0}^{\infty} (1 - e^{-y^2}) dx; y(0) = 0, y(a) = b(a > 0).$$

158.
$$J[y] = \int_{0}^{1} yy'^{2} dx$$
; $y(0) = p > 0$, $y(1) = q > 0$.

159. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{1} (\varepsilon y'^{2} + y^{2} + x^{2}) dx, \quad y(0) = 0, \quad y(1) = 1,$$

при различных значениях параметра є.

Пример 6. (Задача Эйлера). Стержень длиною l опирается своими концами и подвержен давлению P. При определенном значении P (критическая сила Эйлера) происходит продольный изгиб стержня. Требуется определить наименьшую величину силы P, дающую продольный изгиб.

Решение. Пусть E — модуль упругости, I — наименьший момент инерции поперечных сечений стержня, ρ — радиус кривизны, φ — угол касательной с осью.

Потенциальная энергия изгиба определяется формулой

$$U_1 = \frac{1}{2} EI \int_0^I \frac{dS}{\rho^2}.$$

При опускании конца стержня на величину

$$\sigma = \int_{0}^{l} (1 - \cos \varphi) \, dS$$

потенциальная энергия стержня уменьшается на

$$U_2 = P_{\sigma} = Pl - P \int_{0}^{l} \cos \varphi \, dS.$$

Если потенциальная энергия до деформации была равна нулю, то после деформации она выразится формулой

$$U = U_1 - U_2 = \int_0^1 \left(\frac{1}{2} EI \frac{1}{\varrho^2} + P \cos \varphi \right) dS - PI.$$

Так как $\rho = \frac{dS}{d\phi}$ и (в случае малых значений ϕ) $\cos \phi \approx 1 - \frac{\phi^2}{2}$,

$$U = \frac{1}{2} \int_{0}^{I} \left[EI \left(\frac{d\varphi}{dS} \right)^{2} - P\varphi^{2} \right] dS \approx \frac{1}{2} \int_{0}^{I} \left[EI \left(\frac{d\varphi}{dx} \right)^{2} - P\varphi^{2} \right] dx.$$

В случае равновесия потенциальная энергия принимает минимальное значение. Поэтому решение задачи сводится к определению минимума интеграла

$$J[\varphi] = \int_{0}^{l} \left[EI \left(\frac{d\varphi}{dx} \right)^{2} - P\varphi^{2} \right] dx.$$

В данном случае

$$F = EI \left(\frac{d\varphi}{dx}\right)^2 - P\varphi^2,$$

и уравнение Эйлера принимает вид

$$\phi'' + \alpha^2 \phi = 0$$
, где $\alpha^2 = \frac{P}{E/I}$.

Общий интеграл этого уравнения будет

$$\varphi = C_1 \sin \alpha x + C_2 \cos \alpha x.$$

Так как при малых значениях ϕ имеем $\operatorname{tg} \phi \approx \phi$ и, кроме того, $\operatorname{tg} \phi = y'$, то

$$y' = C_1 \sin \alpha x + C_2 \cos \alpha x$$

откуда

$$y(x) = -\frac{C_1 \cos \alpha x}{\alpha} + \frac{C_2 \sin \alpha x}{\alpha} + C.$$

Если нижний конец стержня находится в начале координат, то при x=0 будет y=0, а значит, $C_1=C=0$ и

$$y(x) = \frac{C_2}{\alpha} \sin \alpha x.$$

Проверим выполнение условий Лежандра и Якоби. Очевидно, что условие Лежандра выполнено:

$$\frac{\partial^2 F}{\partial {\sigma'}^2} = 2EI > 0.$$

Уравнение Якоби имеет вид

$$EIz'' + Pz = 0$$
 или $z'' + \alpha^2 z = 0$,

причем z(0) = 0. Поэтому решение уравнения Якоби будет

$$z == A \sin \alpha x$$
.

Функция z обращается в нуль при $x_k = \frac{k\pi}{a}$ ($k=1,\,2,\,\ldots$), так

что условие Якоби будет выполнено, если $l \geqslant \frac{\pi}{a}$. Отсюда

$$P \geqslant \frac{\pi^2}{I^2} EI$$
.

Наименьшее значение критической силы Эйлера будет

$$P_{\min} = \frac{\pi^2}{I^2} EI.$$

При этом

$$y = \frac{C_2}{\alpha} \sin \frac{\pi x}{l}$$

есть уравнение кривой изгиба.

3°. Фигуратриса. Пусть имеем функционал

$$J[y] = \int_{a}^{b} F(x, y, y') dx.$$

Будем считать x и y параметрами и рассмотрим функцию Y = F(x, y, y') как функцию аргумента y'. График этой функции на плоскости переменных (y', Y) называется фигуратрисой. Нетрудно проверить, что функция Вейерштрасса E(x, y, p, y') есть разность ординат фигуратрисы и касательной к ней, проведенной в точке с абсциссой y' = p. Знакопостоянство функции Вейерштрасса для неколорых значений y' означает, что фигуратриса

лежит над касательной или под ней для указанных значений y'. В этом случае имеет место слабый экстремум. Если фигуратриса лежит с одной стороны от касательной для всех значений y' и для значений параметров x и y, близких к точкам экстремали, то имеет место сильный экстремум.

Достаточное условие Лежандра в этих терминах выглядит так: если для всех точек (x, y), близких к экстремали, фигуратриса всюду выпукла или вогнута, то имеет место сильный экс-

тремум.

Пример 7. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{a} y'^{2} dx \quad (a > 0); \quad y(0) = 0, \quad y(a) = b, \quad b > 0.$$

Решение. Экстремалями являются прямые $y = C_1 x + C_2$. Искомая экстремаль определяется уравнением $y = \frac{b}{a} x$. Она

Рис. 13.

включается в центральное поле экстремалей. В данном случае фигуратрисой является парабола $Y={y'}^2$ (рис. 13). Легко видеть, что фигуратриса целиком лежит над касательной, проведенной к ней в точке $p=\frac{b}{a}$ при любых a и b, $a \not\in 0$. Следовательно, экстремаль $y=\frac{b}{a}x$ доставляет данному функционалу сильный минимум.

Пример 8. Исследовать на экстремум функционал

$$J[y] = \int_{0}^{a} y'^{3} dx; \quad y(0) = 0, \quad y(a) = b, \quad b > 0.$$

Решение. Искомой экстремалью является прямая $y=rac{b}{a}x$, которая включается в центральное поле экстремалей

Рис. 14.

y=Cx, с центром в точке O(0,0). Фигуратрисой является кубическая парабола $Y=y'^3$ (рис. 14). Для значений y', достаточно близких к значению $p=\frac{b}{a}$, фигуратриса лежит над касательной к ней, проведенной в точке с абсписсой $y'=\frac{b}{a}$. Из рис. 14 видно, что фигуратриса пересекает касательную в точке с абсписсой $y'=-\frac{2b}{a}$ и левее этой точки расположена над касательной. Значит, на экстремали $y=\frac{b}{a}x$ достигается слабый минимум.

Заметим, что если p=0 (это отвечает случаю b=0, экстремалью является отрезок оси Ox), то касательной к фигура-

трисе является ось Oy', а сама точка O(0,0) является точкой перегиба фигуратрисы. Учитывая замечание на стр. 89, видим, что в сколь угодно малой окрестности точки O(0,0) фигуратриса имеет положительные и отрицательные ординаты. Значит, функция Вейерштрасса E имеет противоположные знаки при сколь угодно близких к p=0 значениях y', и следовательно, в этом случае не достигается и слабый экстремум.

 Π р и м е р 9. Показать, что экстремаль y=0 вариационной

задачи

$$J[y] = \int_{0}^{1} (y'^{2} - yy'^{3}) dx; \qquad y(0) = y(1) = 0$$

доставляет слабый минимум функционалу.

Решение. Условие Лежандра в данном случае дает

$$F_{y'y'}|_{y=0} = (2 - 6yy')|_{y=0} = 2 > 0,$$

т. е. на экстремали y=0 достигается слабый минимум. Покажем, что на ней сильный минимум не достигается. Построим фигуратрису $Y={y'}^2-y{y'}^3$ для значений y>0 (рис. 15). Из

Рис. 15.

рис. 15 видно, что касательная к фигуратрисе, проведенная в точке с абсциссой p=0, пересекает фигуратрису в точке $y'=\frac{1}{y}$. Таким образом, для точек (x,y), где y>0, близких к точкам экстремали y=0, функция Вейерштрасса E при значениях y', меньших $\frac{1}{y}$, положительна, а при $y'>\frac{1}{y}$ отрицательна. Согласно замечанию на стр. 89, сильного минимума нет. Аналогичное явление имеет место и для y<0.

Этот пример характерен тем, что из выполнения условия $F_{y'y'} > 0$ на экстремали для любых y' не следует наличия силь-

ного экстремума.

С помощью фигуратрисы исследовать на экстремум следующие функционалы:

160.
$$J[y] = \int_{0}^{1} (1+x) y'^{2} dx; \quad y(0) = 0, \quad y(1) = -2.$$
161. $J[y] = \int_{-1}^{2} y'(1+x^{2}y') dx; \quad y(-1) = y(2) = 1.$

162.
$$J[y] = \int_{0}^{-1} (1 - e^{-y^{4}}) dx;$$

$$y(0) = 0, \ y(a) = b \quad (a > 0, \ b > 0).$$

$$163. \ J[y] = \int_{0}^{a} (6y'^{2} - y'^{4} + yy') dx;$$

$$y(0) = 0, \ y(a) = b \quad (a > 0, \ b > 0).$$

Замечание. Достаточное условие экстремума по второй

вариации.

Неотрицательность второй вариации необходима, но не достаточна для того, чтобы функционал $J\left[y\right]$ достигал на данной кривой минимума.

Пример 10. Рассмотрим функционал

$$J[y] = \int_{0}^{1} y^{2}(x) [x - y(x)] dx$$

в пространстве C(0,1). Уравнение Эйлера имеет вид $F_y=0$ или y=0. Вторая вариация функционала на экстремали y=0, $0\leqslant x\leqslant 1$

$$\delta^2 J[0, \delta y] = \int_0^1 x (\delta y)^2 dx$$

положительна для каждой $\delta y \neq 0$. Однако функционал J[y] принимает в любой окрестности нуля и отрицательные значения; достаточно при заданном $\varepsilon > 0$ взять функцию

$$y_{\varepsilon}(x) = \begin{cases} -x + \varepsilon, & 0 \leq x < \varepsilon, \\ 0, & x \geq \varepsilon. \end{cases}$$

Тогда
$$I[y_{\varepsilon}] = -\frac{\varepsilon^4}{6} < 0$$
 для любого $\varepsilon > 0$.

Определение. Квадратичный функционал $L_2(h)$, задянный в некотором нормированном пространстве, называется $\epsilon u x v + n o$ положительным, если существует такое постоянное k > 0, что

$$L_2(h) \geqslant k \parallel h \parallel^2$$

для всех h.

Достаточное условие минимума. Для того чтобы функционал J[y], определенный в нормированном пространстве, имел в стационарной точке $y=y_0$ минимум, достаточно, чтобы при $y=y_0$ его вторая вариация была сильно положительна, т. е. чтобы выполнялось условие

$$\delta^2 J[y_0, \delta y] \geqslant k \parallel \delta y \parallel^2$$

 $e\partial e \ k = \text{const}, \ k > 0.$

4°. Пусть ищется экстремум функционала

$$J[y_1, y_2, ..., y_n] = \int_{x_1}^{x_1} F(x, y_1, y_2, ..., y_n, y'_1, y'_2, ..., y'_n) dx,$$
(4)

зависящего от n функций $y_1\left(x\right),\ y_2\left(x\right),\ \ldots,\ y_n\left(x\right)$ при граничных условиях

$$y_k(x_0) = y_{k0}, \ y_k(x_1) = y_{k1} \quad (k = 1, 2, ..., n).$$
 (5)

 ${\it Усиленным}$ условием ${\it Лежандра}$ называется требование выполнения неравенств

$$\begin{vmatrix} F_{y'y'} > 0, \\ F_{y_1y_1} & F_{y_1y_2} \\ F_{y_2y_1} & F_{y_2y_2} \end{vmatrix} > 0, \dots, \begin{vmatrix} F_{y_1y_1} & F_{y_1y_2} & F_{y_1y_2} \\ F_{y_2y_1} & F_{y_2y_2} & F_{y_2y_2} \\ \vdots & \vdots & \vdots \\ F_{y_ny_1} & F_{y_ny_2} & F_{y_ny_n} \end{vmatrix} > 0 \quad (6)$$

во всех точках рассматриваемой экстремали функционала (4). Усиленным условием Якоби называется требование, чтобы отрезок $[x_0, x_1]$ не содержал точки, сопряженной с точкой x_0 .

Усиленное условие Лежандра (6) в соединении с усиленным условием Якоби обеспечивают существование по крайней мере слабого минимума функционала (4).

Пример 11. Исследовать на экстремум функционал

$$J[y, z] = \int_{0}^{1} (y'^{2} + z'^{2}) dx, \qquad (7)$$

$$y(0) = 0, z(0) = 0, y(1) = 1, z(1) = 2.$$
 (8)

Решение. Уравнения Эйлера для функционала (7):

$$y''=0, \qquad z''=0,$$

так что

$$y(x) = C_1 + C_2 x,$$

 $z(x) = C_3 + C_4 x.$

Используя условия (8), получим

$$C_1 = 0$$
, $C_2 = 1$, $C_3 = 0$, $C_4 = 2$.

Искомая экстремаль

$$\begin{cases} y(x) = x, \\ z(x) = 2x \end{cases}$$
 (9)

есть прямая, проходящая через начало координат.

Имеем

$$F_{y'y'} = 2$$
, $F_{y'z'} = 0$, $F_{z'y'} = 0$, $F_{z'z'} = 2$.

Усиленное условие Лежандра выполняется:

$$F_{y'y'} = 2 > 0, \quad \begin{vmatrix} F_{y'y'} & F_{y'z'} \\ F_{z'y'} & F_{z'z'} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4 > 0. \quad (10)$$

Проверим теперь выполнимость усиленного условия Якоби.

Одно из определений сопряженной точки таково (см. [3]). Пусть имеем семейство экстремалей функционала (4), выходящих из начальной точки $(x_0, y_{10}, \ldots, y_{n0})$ под близкими между собой, но линейно независимыми направленнями.

Точка $x^* \in [x_0, x_1]$ называется сопряженной с точкой x_0 , если существует последовательность экстремалей, выходящих из начальной точки и как угодно близких к данной экстремали, такая, что каждая из этих экстремалей пересекает данную экстремаль

и абсциссы точек пересечения сходятся к точке x^* .

В данном примере экстремалями являются прямые (9). Все экстремали, выходящие из точки (0,0,0), пересекают экстремаль (9) только в этой точке. Следовательно, отрезок [0,1] изменения x не содержит точки, сопряженной с точкой $x_0=0$. Таким образом, выполнены и усиленное условие Лежандра и усиленное условие Якоби, так что экстремаль (9) доставляет функционалу (7) слабый минимум,

Исследовать на экстремум следующие функционалы:

164.
$$J[y(x), z(x)] = \int_{0}^{1} \sqrt{1 + {y'}^{2} + {z'}^{2}} dx$$
, $y(0) = 0$, $y(1) = 2$, $z(0) = 0$, $z(1) = 4$.
165. $J[y(x), z(x)] = \int_{0}^{1} ({y'}^{2} + {z'}^{2} + 4z) dx$, $y(0) = 0$, $y(1) = 1$, $z(0) = 0$, $z(1) = 0$.

§ 9. Условный экстремум

1°. Изопериметрическая задача. Пусть даны две функции F(x, y, y') и G(x, y, y'). Среди всех кривых $y = y(x) \in C_1[x_0, x_1]$, вдоль которых

$$K[y] = \int_{x_1}^{x_1} G(x, y, y') dx$$

принимает заданное значение l, определить ту, для которой функционал

$$J[y] = \int_{x_0}^{x_1} F(x, y, y') dx$$

принимает экстремальное значение.

Относительно функций F и G предполагаем, что они имеют непрерывные частные производные первого и второго порядков при $x_0 \leqslant x \leqslant x_1$ и при произвольных значениях переменных y, y'.

Теорема Эйлера. Если кривая y = y(x) дает экстре-

мум функционалу

$$J[y] = \int_{x_0}^{x_1} F(x, y, y') dx$$
 (1)

при условиях

функционал

$$K[y] = \int_{x_0}^{x_1} G(x, y, y') dx = l, \ y(x_0) = y_0, \ y(x_1) = y_1, \quad (2)$$

u если y=y(x) не является экстремалью функционала K, то существует константа λ такая, что кривая y=y(x) есть

экстремаль функционала

$$L = \int_{x_0}^{x_1} [F(x, y, y') + \lambda G(x, y, y')] dx.$$
 (3)

Пример 1. (Задача Дидоны.) Среди замкнутых кривых длины 21 найти ту, которая ограничивает наибольшую площадь.

Решение. Заметим прежде всего, что рассматриваемая кривая должна быть выпуклой. В самом деле, в противном случае существовала бы прямая L (рис. 16) такая, что если зержально отразить в ней кусок границы BCD, то получим область большей площади, чем первоначальная, при той же длине границы.

Рис. 16.

Далее заметим, что всякая прямая, которая делит пополам замкнутую кривую, ограничивающую наибольшую площадь, будет делить пополам и саму эту площадь. В самом деле, допустим противное и пусть прямая L_1 не обладает этим свойством. Отразив тогда зеркально около L_1 ту часть фигуры, которая имеет большую площадь, мы получили бы кривую той же длины, но ограничивающую большую площадь.

Выбирая за ось Ох любую из прямых, делящих кривую по-

полам, приходим к следующей постановке задачи.

Найти линию y=y(x), y(-a)=y(a)=0, которая при заданной длине $\ell>2a$ ограничивает вместе с отрезком $-a\leqslant x\leqslant a$ оси Ox наибольшую площадь. Таким образом, задача свелась х разысканию экстремума функционала

$$I[y(x)] = \int_{-a}^{a} y(x) dx, \quad y(-a) = y(a) = 0, \quad (4)$$

ври дополнительном условии, что

$$K[y(x)] = \int_{-a}^{a} \sqrt{1 + {y'}^{2}(x)} \, dx = 1 \qquad (l > 2a). \tag{5}$$

Составляем вспомогательную функцию

$$H = F + \lambda G = y(x) + \lambda \sqrt{1 + y'^2(x)}$$
 (6)

и рассматриваем вспомогательный функционал

$$L = \int_{-a}^{a} H(x, y, y') dx.$$
 (7)

Уравнение Эйлера для функционала (7) имеет вид

$$\frac{d}{dx}\left(\frac{\lambda y'}{\sqrt{1+{y'}^2}}\right)=1,$$

откуда

$$\frac{\lambda y'}{\sqrt{1+{y'}^2}} = x + C_1.$$

Разрешая последнее уравнение относительно y', находим

$$\frac{dy}{dx} = \frac{x + C_1}{\sqrt{\lambda^2 - (x + C_1)^2}}.$$
 (8)

Интегрируя уравнение (8), получим

$$(x + C_1)^2 + (y + C_2)^2 = \lambda^2$$

— окружность радиуса λ с центром в точке (— C_1 , — C_2). Постоянные C_1 , C_2 и параметр λ определяем из граничных условий y(-a)=y(a)=0 и изопериметрического условия (5). Имеем

$$C_2^2 = \lambda^2 - (C_1 - a)^2,$$

 $C_2^2 = \lambda^2 - (C_1 + a)^2,$

откуда

$$C_1=0, \quad C_2=\sqrt{\lambda^2-a^2},$$

так что

$$y = \sqrt{\lambda^2 - x^2} - \sqrt{\lambda^2 - a^2} \quad \text{if} \quad y' = -\frac{x}{\sqrt{\lambda^2 - x^2}}.$$

Тогда условие (5) дает

$$l = \int_{-\infty}^{a} \frac{\lambda \, dx}{\sqrt{\lambda^2 - x^2}} = \lambda \arcsin \frac{x}{\lambda} \Big|_{x=-a}^{x=a} = 2\lambda \arcsin \frac{a}{\lambda}$$

или

$$\frac{a}{\lambda} = \sin \frac{l}{2\lambda}$$
.

Решая это трансцендентное относительно λ уравнение, находим $\lambda = \lambda_0$, а затем находим величину $C_2 =$ некоторое значение $=\sqrt{\lambda_0^2-a^2}$.

Нетрудно заметить, что уравнение $\frac{a}{\lambda} = \sin \frac{l}{2\lambda}$ всегда имеет решение. Действительно, полагая $\frac{l}{2\lambda} = t$, сведем это уравнение виду $\sin t = \frac{2a}{I}t$, где в силу условия задачи $\frac{2a}{I} = a < 1$. Функция $y = \sin t$ имеет в точке t = 0 наклон касательной $\frac{\pi}{4}$, а функция $y=\alpha t$ имеет меньший наклон. Следовательно, графики этих функций имеют, кроме точки $O\left(0,0\right)$, еще по крайней мере одну точку пересечения.

Закон взаимности изопериметрических задач.

функционала

$$J[y(x)] = \int_{x_{-}}^{x_{1}} F(x, y, y') dx$$

при дополнительном условии

$$K[y(x)] = \int_{x_0}^{x_1} G(x, y, y') dx = \text{const}$$

совпадают с экстремалями функционала K[y(x)] при условии J[u(x)] = const.

С помощью закона взаимности из задачи Дидоны получаем следующий результат: среди всех замкнутых линий, ограничивающих заданную площадь, линией минимальной длины является окружность.

Этот результат легко получить непосредственно, если воспользоваться параметрической формой вариационной задачи.

Пусть

$$x = x(t), [x(t_0) = x(t_1)],$$

 $y = y(t), [y(t_0) = y(t_1)],$
 $t_0 \le t \le t_1$

есть уравнения произвольной замкнутой линии. Вопрос сводится к разысканию экстремума функционала

$$\int (\dot{x}^2 + \dot{y}^2)^{1/2} dt$$

при условии

$$\int (\dot{x}^2 + \dot{y}^2)^{1/2} dt$$

$$\int (x\dot{y} - y\dot{x}) dx = C.$$

Вводя в рассмотрение функцию

$$F = (\dot{x}^2 + \dot{y}^2)^{1/2} + \lambda (x\dot{y} - y\dot{x}),$$

получаем (см. стр. 64), что для кривой, дающей экстремум, кривизна $\frac{1}{r}$ постоянна:

$$\frac{1}{r} = \lambda$$
.

Значит, искомая экстремаль - окружность.

С помощью закона взаимности могут быть решены без всяких вычислений некоторые «вариационные» задачи элементарной геометрии.

Пример 2. Показать, что: 1) из всех треугольников, имеющих заданное основание и заданный периметр, наибольшую площадь имеет равнобедренный треугольник; 2) при заданной площади и заданном основании равнобедренный треугольник имеет наименьший периметр.

Решение. 1) Возьмем эллипс, фокусами которого служат концы основания рассматриваемых треугольников (рис. 17). Из

Рис. 17.

свойства эллипса заключаем, что все треугольники ACB имеют один и тот же периметр. Очевидно, что наибольшую площадь будет иметь треугольник с наибольшей высотой, что отвечает случаю, когда вершина треугольника совпадает с вершиной C_0 эллипса. Треугольник AC_0B в этом случае — равнобедренный.

2) Согласно закону взаимности наименьший периметр при заданной площади и заданиом основании имеет равнобедренный

треугольник.

Пример 3. Найти минимум интеграла

$$J[y] = \int_{0}^{\pi} y'^{2}(x) dx$$

при условии
$$\int_{0}^{\pi} y^{2}(x) dx = 1$$
, $y(0) = y(\pi) = 0$.

Решение. Составим вспомогательный функционал

$$L[y] = \int_{0}^{\pi} (y'^{2} + \lambda y^{2}) dx$$

и выпишем для него уравнение Эйлера

$$2\lambda y - \frac{d}{dx}(2y') = 0 \quad \text{или} \quad y'' - \lambda y = 0.$$
 (9)

$$\int\limits_0^\pi C_1^2 \sin^2 kx \ dx = 1,$$

откуда $C_1 = \pm \sqrt{\frac{2}{\pi}}$. Значит, $y(x) = \pm \sqrt{\frac{2}{\pi}} \sin kx$. Но среди экстремалей $y = \pm \sqrt{\frac{2}{\pi}} \sin kx$, проходящих через точки (0, 0) и (π , 0), условию Якоби удовлетворяют только две, а именно $y(x) = \pm \sqrt{\frac{2}{\pi}} \sin x$. На этих экстремалях

$$J[y] = \int_{0}^{\pi} y'^{2}(x) dx = \int_{0}^{\pi} \frac{2}{\pi} \cos^{2} x dx = 1.$$

Пример 4. (Задача Кельвина.) Пусть плоскость XOY покрыта массой с непрерывной плотностью $\mu(x,y)$ и пусть на плоскости дана кусочно-гладкая кривая C и на ней две точки P_1 и P_2 .

Среди всех кривых заданной длины l, соединяющих точки P_1 и P_2 , найти ту, которая вместе с дугой P_1P_2 кривой C ограчничивает область D с максимальной массой. Точки P_1 и P_2 моч гут совпадать.

Решение. Введем функцию

$$V(x, y) = \int \mu(x, y) dx.$$

Тогда, согласно формуле Грина

$$\iint_{D} \mu(x, y) dx dy = \iint_{D} \frac{\partial V}{\partial x} dx dy = \oint_{\Gamma} V dy,$$

где контур Γ состоит из кривой L и участка P_2P_1 данной кривой C. Интеграл вдоль этого последнего участка имеет известное значение, которое мы обозначим через K. Поэтому, считая, что кривая L задана параметрически

$$x = x(t), y = y(t),$$

$$t_0 \leqslant t \leqslant t_1,$$

получаем

$$\iint\limits_{D} \mu(x, y) \, dx \, dy = \int\limits_{t_0}^{t_1} V(x, y) \, \dot{y} \, dt + K_{\bullet}$$

Задача свелась, таким образом, к нахождению максимума функционала

$$J_{L} = \int_{t_{0}}^{t_{1}} V(x, y) \dot{y} dt$$

при условии, что

$$\int_{t_{1}}^{t_{1}} \sqrt{\dot{x}^{2} + \dot{y}^{2}} dt = 1.$$

Введем вспомогательную функцию

$$F = V\dot{y} + \lambda \sqrt{\dot{x}^2 + \dot{y}^2}$$

и воспользуемся вейерштрассовой формой уравнения Эйлера, Имеем

$$F_{x\dot{y}} = \frac{\partial V}{\partial x}$$
, $F_{y\dot{x}} = 0$, $F_1 = \frac{F_{\dot{x}\dot{x}}}{\dot{y}^2} = \frac{\lambda}{(\dot{x}^2 + \dot{y}^2)^{3/2}}$,

так что уравнение Эйлера в форме Вейерштрасса будет иметь вид

$$\frac{1}{r} = \frac{1}{\lambda} \frac{\partial V}{\partial x},$$

или, учитывая выражение для функции V(x, y),

$$\frac{1}{r} = \frac{\mu(x, y)}{\lambda},$$

где r -- радиус кривизны искомой кривой.

В случае, когда $\mu(x,y)=$ const, получаем, что кривизна искомой кривой постоянна и, следовательно, экстремалями являются окружности. Ясно, что они доставляют функционалу $I_{\mathcal{L}}$ максимум.

Изо́периметрическими задачами называют также такне вариационные задачи, в которых требуется определить экстремум

функционала

$$I[y] = \int_{x_0}^{x_1} F(x, y_1, y_2, \dots, y_n, y_1', y_2', \dots, y_n') dx$$
 (10)

при наличии так называемых изопериметрических условий

$$\int_{x_0}^{x_1} G_i(x, y_1, y_2, \dots, y_n, y_1', y_2', \dots, y_n') dx = l_i$$

$$(i = 1, 2, \dots, m),$$
(11)

где l_i — постоянные.

Для получения основного необходимого условия в изопериметрической задаче о нахождении экстремума функционала (10) при налични связей (11) надо составить вспомогательный функционал

$$\Phi[y] = \int_{x_0}^{x_i} \left(F + \sum_{i=1}^m \lambda_i G_i \right) dx, \tag{12}$$

где λ_1 — постоянные, и написать для него уравнения Эйлера. Произвольные постоянные C_1, C_2, \ldots, C_{2n} в общем решении системы уравнений Эйлера и постоянные $\lambda_1, \lambda_2, \ldots, \lambda_m$ определяются из граничных условий

$$y_k(x_0) = y_{k0}, \ y_k(x_1) = y_{k1} \qquad (k = 1, 2, ..., n)$$

и из изопериметрических условий (11):

$$\int_{a}^{x_i} G_i dx = l_i \qquad (i = 1, 2, ..., m).$$

Пример 5. Найти экстремаль в изопериметрической задаче об экстремуме функционала

$$J[y(x), z(x)] = \int_{0}^{1} (y'^{2} + z'^{2} - 4xz' - 4z) dx,$$

$$y(0) = 0, \quad z(0) = 0, \quad y(1) = 1, \quad z(1) = 1,$$

при условии

$$\int_{0}^{1} (y'^{2} - xy' - z'^{2}) dx = 2.$$
 (13)

Решение. Составляем вспомогательный функционал

$$\Phi = \int_{0}^{1} \left[{y'}^{2} + {z'}^{2} - 4xz' - 4z + \lambda \left({y'}^{2} - xy' - {z'}^{2} \right) \right] dx$$

и выписываем для него систему уравнений Эйлера

$$-\frac{d}{dx}(2y'+2\lambda y'-\lambda x)=0,$$

$$-4-\frac{d}{dx}(2z'-4x-2\lambda z')=0,$$

решая которую, получим

$$y(x) = \frac{\lambda x^2 + 2C_1 x}{4(1+\lambda)} + C_2,$$

$$z(x) = \frac{C_3 x}{2(1-\lambda)} + C_4.$$

Граничные условия дают

$$C_1 = \frac{3\lambda + 4}{2}$$
, $C_2 = 0$, $C_3 = 2(1 - \lambda)$, $C_4 = 0$,

так что

$$y(x) = \frac{\lambda x^2 + (3\lambda + 4) x}{4(1 + \lambda)},$$

$$z(x) = x.$$

Для нахождения λ воспользуемся изопериметрическим условием (13). Так как $y'(x)=\frac{2\lambda x+3\lambda+4}{4(1+\lambda)}$, а z'(x)=1, то получаем

$$\int_{0}^{1} \left[\frac{(2\lambda x + 3\lambda + 4)^{2}}{16(1+\lambda)^{2}} - \frac{(2\lambda x + 3\lambda + 4)x}{4(1+\lambda)} - 1 \right] dx = 2,$$

откуда после простых, но громоздких выкладок будем иметь уравнение для определения λ :

$$\frac{1}{3}(23\lambda^2 + 46\lambda + 24) = 48(\lambda^2 + 2\lambda + 1).$$

Отсюда $\lambda_1 = -\frac{10}{11}$ и $\lambda_2 = -\frac{12}{11}$. Подстановкой в (13) убеждаемся, что $\lambda_2 = -\frac{12}{11}$ изопериметрическому условию не удовлетворяет, а $\lambda_1 = -\frac{10}{11}$ удовлетворяет.

Искомая экстремаль определяется уравненнями

$$y(x) = \frac{7x - 5x^2}{2},$$

$$z(x) = x.$$

Пример 6. Пусть стержень длины l заделан в точках (x_0,y_0) и (x_1,y_1) . Из теории упругости известно, что потенциальная энергия стержня в деформированном состоянии пропорциональна интегралу, взятому вдоль стержня, от квадрата его кривизны. Примем за независимую переменную длину стержня s, отсчитываемую от точки (x_0,y_0) , и обозначим через $\theta(s)$ угол, образованный касательной к стержню с осью Ox. Кривизна будет выражаться производной $\theta'(s)$ и интеграл, экстремум которого ищется, имеет вид

$$J = \int_{0}^{l} [\theta'(s)]^{2} ds.$$

Известно, что

$$dx = \cos \theta \, ds$$
, $dy = \sin \theta \, ds$,

значит, мы имеем следующие уравнения связи:

$$\int_{0}^{l} \cos \theta \, ds = x_{1} - x_{0}, \quad \int_{0}^{l} \sin \theta \, ds = y_{1} - y_{0}. \tag{14}$$

Кроме того, заделанность стержня равносильна заданию функции $\theta(s)$ при s=0 и s=l:

$$\theta(0) = a, \qquad \theta(l) = b. \tag{15}$$

Составим функцию Лагранжа

$$\Phi(\theta, \theta') = [\theta'(s)]^2 + \lambda_1 \cos \theta + \lambda_2 \sin \theta.$$

Функция Ф не содержит независимой переменной s, а потому можно сразу выписать первый интеграл уравнения Эйлера:

$$\theta'^2 = C + \lambda_1 \cos \theta + \lambda_2 \sin \theta. \tag{16}$$

Введем новые постоянные

$$h = C + V \overline{\lambda_1^2 + \lambda_2^2}, \quad k^2 = \frac{2 \sqrt{\lambda_1^2 + \lambda_2^2}}{C + V \lambda_1^2 + \lambda_2^2}$$

и вместо в введем новую переменную

$$\phi = \frac{\theta - \theta_0}{2}$$
, где $\theta_0 = \operatorname{arctg} \frac{\lambda_2}{\lambda_1}$.

Теперь (16) приводится к виду

$$\frac{d\varphi}{ds} = \frac{\sqrt{h}}{2} \sqrt{1 - k^2 \sin^2 \varphi},$$

откуда получаем

$$s = \frac{2}{\sqrt{h}} \int \frac{d\varphi}{\sqrt{1 - k^2 \sin^2 \varphi}} + s_0.$$

Постоянные $h,\ k^2,\ \theta_0$ и s_0 должны определиться из условий (14) и (15).

Декартовы координаты точек стержня находятся так: $dx = \cos \theta \, ds = \cos (2\phi + \theta_0) \, ds$, $dy = \sin \theta \, ds = \sin (2\phi + \theta_0) \, ds$,

или в силу того, что

$$ds = \frac{2d\varphi}{\sqrt{h}\sqrt{1-k^2\sin^2\varphi}},$$

получим

$$dx = \frac{2\cos(2\varphi + \theta_0)}{\sqrt{h(1 - k^2\sin^2\varphi)}} d\varphi, \quad dy = \frac{2\sin(2\varphi + \theta_0)}{\sqrt{h(1 - k^2\sin^2\varphi)}} d\varphi,$$

откуда х и у определяются при помощи квадратур.

Найти экстремали в следующих изопериметрических задачах.

166. Задача о положении равновесия тяжелой однородной нити под действием силы тяжести.

Среди всех плоских линий длины l, концы которых лежат взаданных гочках M_0 (x_0 , y_0) и M_1 (x_1 , y_1), найти ту, у которой ордината центра тяжести минимальна.

167.
$$J[y(x)] = \int_{0}^{1} y'^{2}(x) dx$$
, $y(0) = 1$, $y(1) = 6$, при условии $\int_{0}^{1} y(x) dx = 3$.

168. $J[y(x)] = \int_{0}^{1} (x^{2} + y'^{2}(x)) dx$, $y(0) = 0$, $y(1) = 0$,

при условии $\int_{0}^{1} y^{2}(x) dx = 2$.

169.
$$J[y(x)] = \int_0^1 {y'}^2(x) dx$$
, $y(0) = 0$, $y(1) = \frac{1}{4}$, при условии $\int_0^1 \left[y(x) - {y'}^2(x) \right] dx = \frac{1}{12}$.

 2° . Вариационной задачей на условный экстремум является также задача Лагранжа нахождения экстремума функционала $J\left[y_1,\ldots,y_n\right]$ при условии, что на функции, от которых зависит функционал J, наложены некоторые связи.

Задача ставится так. Найти экстремум функционала

$$J = \int_{x_1}^{x_1} F(x, y_1, \dots, y_n, y_1', \dots, y_n') dx,$$

$$y_i(x_0) = y_{i0}, \quad y_i(x_1) = y_{i1} \quad (i = 1, \dots, n),$$
(17)

при налнчии условий

$$\varphi_i(x, y_1, ..., y_n) = 0$$
 $(i = 1, ..., m; m < n),$ (18)

которые считаются независимыми.

 \hat{T} е о р е м а. Функции y_1, y_2, \ldots, y_n , реализующие экстремум функционала (17) при наличии условий (18), удовлетворяют при соответствующем выборе множителей $\lambda_i(x)$ ($i=1,2,\ldots,m$) уравнениям Эйлера, составленным для функционала

$$J^* = \int_{x_0}^{x_1} \left[F + \sum_{i=1}^m \lambda_i \varphi_i \right] dx.$$

Обозначим для краткости $F+\sum_{i=1}^m \lambda_i \varphi_i = \Phi\left(x,\ y_1,\ \ldots,\ y_n\right)$.

Тогда функции $\lambda_i\left(x\right)$ и $y_i\left(x\right)$ определяются из уравнений Эйлера

$$\Phi'_{y_j} - \frac{d}{dx} \Phi'_{y_j} = 0$$
 $(j = 1, ..., n)$

И

$$\varphi_i(x, y_1, ..., y_n) = 0$$
 $(i = 1, ..., m).$

Уравнения $\phi_i = 0$ можно считать уравнениями Эйлера для функционала J, если аргументами функционала считать не только функции y_1, y_2, \ldots, y_n , но и функции $\lambda_1(x), \lambda_2(x), \ldots, \lambda_m(x)$.

функции y_1, y_2, \ldots, y_n , но и функции $\lambda_1(x), \lambda_2(x), \ldots, \lambda_m(x),$ Пример 7. Найти кратчайшее расстояние между точками A(1,-1,0) и B(2,1,-1), лежащими на поверхности 15x-7y+z-22=0.

Решение. Известно, что расстояние между двумя точками $A(x_0, y_0, z_0)$ и $B(x_1, y_1, z_1)$ на поверхности $\phi(x, y, z) = 0$ определяется по формуле

$$l = \int_{x_1}^{x_1} \sqrt{1 + {y'}^2 + {z'}^2} \, dx,$$

гле y = y(x), z = z(x).

Надо найти минимум l при условии $\phi(x, y, z) = 0$. В нашем случае

$$x_0 = 1$$
, $x_1 = 2$, $\varphi(x, y, z) = 15x - 7y + z - 22$,

Составим вспомогательный функционал

$$J^* = \int_{1}^{2} \left[\sqrt{1 + {y'}^2 + {z'}^2} + \lambda (x) (15x - 7y + z - 22) \right] dx$$

и выпишем уравнения Эйлера для него:

$$\lambda(x) \cdot (-7) - \frac{d}{dx} \left(\frac{y'}{\sqrt{1 + {u'}^2 + {z'}^2}} \right) = 0, \tag{19}$$

$$\lambda(x) \cdot 1 - \frac{d}{dx} \left(\frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right) = 0.$$
 (20)

Решим систему уравнений (19) — (20), используя условие связи

$$15x - 7y + z - 22 = 0. (21)$$

Искомые функции $y=y\left(x\right)$ и $z=z\left(x\right)$ удовлетворяют следующим граничным условиям:

$$y(1) = -1, \quad y(2) = 1; \quad z(1) = 0, \quad z(2) = -1.$$
 (22)

Умножая уравнение (20) на 7 и складывая с (19), получим

$$\frac{d}{dx} \left(\frac{y' + 7z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right) = 0,$$

откуда

$$\frac{y' + 7z'}{\sqrt{1 + {y'}^2 + {z'}^2}} = C_1. \tag{23}$$

Из (21) имеем

$$z' = 7y' - 15. (24)$$

Подставляя это значение z' в (23) и решая полученное дифференциальное уравнение, найдем $y(x)=\tilde{C}_1x+C_2$. Граничные условия (22) дают $\tilde{C}_1=2$, $C_2=-3$, так что

$$y(x) = 2x - 3. (25)$$

Из (24) с учетом (25) находим

$$z\left(x\right) = 1 - x\tag{26}$$

(граничные условия для функции (26), очевидно, выполняются). Из (19) или (20) получаем $\lambda(x) \equiv 0$. Искомое расстояние:

$$l = \int_{1}^{2} \sqrt{1 + y'^{2} + z'^{2}} dx = \sqrt{6}.$$

Этот результат сразу получается из очевидных геометрических соображений.

3°. Геодезические линии. Пусть поверхность задана векторным уравнением

$$\mathbf{r} = \mathbf{r} (u, v). \tag{27}$$

Геодезической линией называется линия наименьшей длины, лежащая на данной поверхности и соединяющая две данные точки поверхности.

Уравнения геодезических линий можно получить как уравнения Эйлера, соответствующие вариационной задаче о нахождении кратчайшего расстояния на поверхности между ее двумя заданными точками.

Линия, лежащая на поверхности r = r(u, v), может быть задана параметрическими уравнениями

$$u = u(t), \qquad v = v(t). \tag{28}$$

Длина ее отрезка между точками, соответствующими значениям t_0 и t_1 параметра t, равна

$$J[u, v] = \int_{t_0}^{t_1} \sqrt{Eu'^2 + 2Fu'v' + Gv'^2} dt, \qquad (29)$$

где $E,\ F,\ G$ — коэффициенты первой квадратичной формы поверхности (27), т. е.

$$E = \left(\frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial u}\right), \quad F = \left(\frac{\partial \mathbf{r}}{\partial u}, \frac{\partial \mathbf{r}}{\partial v}\right), \quad G = \left(\frac{\partial \mathbf{r}}{\partial v}, \frac{\partial \mathbf{r}}{\partial v}\right). \quad (30)$$

Здесь (a, b) — скалярное произведение векторов a и b. Для функционала (29) система уравнений Эйлера имеет вид

$$\frac{E_{u}u'^{2} + 2F_{u}u'v' + G_{u}v'^{2}}{VEu'^{2} + 2F_{u}u'v' + G_{v}v'^{2}} - \frac{d}{dt} \frac{2(Eu' + Fv')}{VEu'^{2} + 2Fu'v' + Gv'^{2}} = 0,$$

$$\frac{E_{v}u'^{2} + 2F_{v}u'v' + G_{v}v'^{2}}{VEu'^{2} + 2Fu'v' + Gv'^{2}} - \frac{d}{dt} \frac{Fu' + Gv'}{VEu'^{2} + 2Fu'v' + Gv'^{2}} = 0.$$

$$\begin{cases} 31) \end{cases}$$

Пример 8. Среди всех кривых на сфере раднуса R, соединяющих данные ее две точки, найти кривую кратчайшей длины (геодезическую кривую).

Решение. Пусть φ — долгота, θ — широта точки на сфере, а $\varphi = \varphi(\theta)$ — уравнение искомой кривой. В данном случае имеем $r = r(\varphi, \theta) = x(\varphi, \theta) i + y(\varphi, \theta) j + z(\varphi, \theta) k$.

Поэтому

$$E = (\mathbf{r}_{\phi}, \mathbf{r}_{\phi}) = R^2 \sin^2 \theta; \quad G = (\mathbf{r}_{\theta}, \mathbf{r}_{\theta}) = R^2; \quad F = (\mathbf{r}_{\theta}, \mathbf{r}_{\phi}) = 0.$$

Отсюда по формуле (29) имеем

$$J[\varphi,\theta] = R \int_{\theta_0}^{\theta_1} \sqrt{d\theta^2 + \sin^2\theta \, d\varphi^2} = R \int_{\theta_0}^{\theta_1} \sqrt{1 + \sin^2\theta \cdot {\varphi'}^2(\theta)} \, d\theta.$$

Подынтегральное выражение не содержит искомой функции $\phi(\theta)$, поэтому уравнение Эйлера будет

$$\frac{d}{d\theta} f_{\phi'} = 0$$
, где $f_{\phi'} = \frac{\sin^2 \theta \cdot \phi'(\theta)}{\sqrt{1 + \sin^2 \theta \cdot {\phi'}^2(\theta)}}$,

так что

$$\frac{\sin^2\theta\cdot\varphi'(\theta)}{\sqrt{1+\sin^2\theta\cdot\varphi'^2(\theta)}}=C_1.$$

Отсюда

$$\varphi'(\theta) = \frac{C_1}{\sin \theta} \frac{C_1}{\sqrt{\sin^2 \theta - C_1^2}} = \frac{C_1}{\sin^2 \theta} \frac{C_1}{\sqrt{1 - \frac{C_1^2}{\sin^2 \theta}}} = \frac{C_1}{\sin^2 \theta} \frac{C_1}{\sqrt{(1 - C_1^2) - C_1^2 \cot^2 \theta}} = \frac{C_1 d(\cot \theta)}{\sqrt{(1 - C_1^2) - C_1^2 \cot^2 \theta}}.$$

Интегрируя, получим

$$\varphi(\theta) = \arccos \frac{C_1 \operatorname{ctg} \theta}{\sqrt{1 - C_1^2}} + C_2$$

или

$$\varphi(\theta) = \arccos(C \cdot \operatorname{ctg} \theta) + C_2, \quad \text{где} \quad C = \frac{C_1}{\sqrt{1 - C_1^2}}.$$

Отсюда

$$C \cdot \operatorname{ctg} \theta = \cos \left[\varphi \left(\theta \right) - C_2 \right]$$

или

$$\operatorname{ctg} \theta = A \cos \varphi (\theta) + B \sin \varphi (\theta), \tag{32}$$

где

$$A = \frac{\cos C_2}{C}, \quad B = \frac{\sin C_2}{C}.$$

Умножая обе части (32) на R sin θ , получим

$$R \cos \theta = AR \cos \varphi \sin \theta + BR \sin \varphi \sin \theta$$

или, переходя к декартовым координатам,

$$z = Ax + By$$
.

Это — уравнение плоскости, проходящей через центр сферы и пересекающей сферу по большому кругу. Таким образом, кратчайшая линия (геодезическая) есть дуга большого круга.
Пример 9. Показать, что в каждой точке любой геодези-

Пример 9. Показать, что в каждой точке любой геодезической на поверхности вращения произведение радиуса параллели на синус угла между геодезической и меридианом есть ве-

личина постоянная (теорема Клеро).

Рещение. Уравнение поверхности вращения в цилиндрических координатах имеет вид

 $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $z = f(\rho)$. Найдем коэффициенты E, F и G2

 $E=1+f'^2, F=0, G=\mathfrak{o}^2,$ так что дифференциал длины дуги dS на поверхности вращения имеет вид

$$dS = \sqrt{\rho^2 + (1 + f_{\rho}^{\prime 2}) {\rho'}^2} d\varphi.$$

Геодезические линии на поверхности вращения являются экстремалями функционала

$$\int\limits_{\phi_0}^{\phi_1} \sqrt{\rho^2 + \left(1 + f_\rho^{\prime^2}\right) {\rho^\prime}^2} \; d\phi.$$

Подынтегральная функция не содержит явно ф и потому мысразу получаем

$$\frac{\rho^2}{\sqrt{\rho^2 + \left(1 + f_\rho^{\prime 2}\right){\rho^{\prime}}^2}} = const$$

или $\rho^2 \frac{d\varphi}{dS} = {\rm const.}$ Замечая, что $\rho \frac{d\varphi}{dS} = {\rm sin}\, \omega$ (рис. 18), получаем $\rho \sin \omega = {\rm const.}$ что и требовалось доказать.

170. Найти кратчайшее расстояние между точками A(1, 0, -1) и B(0, -1, 1), лежащими на поверхности x + y + z = 0.

171. Найти геодезические линии круглого цилиндра r = R.

§ 10. Вариационные задачи с подвижными границами

1°. Простейшая задача с подвижными границами. Пусть F = F(x, y, y') — трижды дифференцируемая функция своих аргументов и пусть в плоскости XOY заданы две кривые

$$y = \varphi(x)$$
 и $y = \psi(x)$, (1)

где $\varphi(x) \in C_1[a, b]$ и $\psi(x) \in C_1[a, b]$.

Рассмотрим функционал

$$J[y] = \int_{\mathcal{X}} F(x, y, y') dx, \qquad (2)$$

определенный на гладких кривых y=y(x), концы которых $A(x_0, y_0)$ и $B(x_1, y_1)$ лежат на заданных линиях (1), так что $y_0=\phi(x_0),\ y_1=\psi(x_1).$ Требуется найти экстремум функционала (2).

Teopema. Пусть кривая γ : y=y(x) дает экстремум функ-

ционалу

$$J[\gamma] = \int_{\gamma} F(x, y, y') dx$$

среди всех кривых класса C_1 , соединяющих две произвольные точки двух данных кривых $y=\varphi(x),\ y=\psi(x).$ Тогда кривая у является экстремалью и в концах $A(x_0,\ y_0)$ и $B(x_1,\ y_1)$ кривой у выполняются условия трансверсальности

$$\begin{bmatrix} F + (\varphi' - y') F_{y'} \end{bmatrix} \Big|_{x = x_0} = 0,
[F + (\psi' - y') F_{y'}] \Big|_{x = x_1} = 0.$$
(3)

Таким образом, для решения простейшей задачи с подвижными границами надо:

1) Написать и решить соответствующее уравнение Эйлера. В результате получим семейство экстремалей $y=f(x,\ C_1,\ C_2)$ зависящее от двух параметров C_1 и C_2 .

2) Из условий трансверсальности (3) и из уравнений

$$\begin{cases}
f(x_0, C_1, C_2) = \varphi(x_0), \\
f(x_1, C_1, C_2) = \psi(x_1)
\end{cases}$$
(4)

определить постоянные C_1 , C_2 , x_0 , x_1 .

3) Вычислить экстремум функционала (2).

Пример 1. Найти условие трансверсальности для функционала

$$J[y] = \int_{x_0}^{x_1} f(x, y) e^{\arctan y'} \sqrt{1 + {y'}^2} dx, \qquad (5)$$
$$f(x, y) \neq 0.$$

Решение. Пусть левый конец экстремали закреплен в точке $A(x_0, y_0)$, а правый конец $B(x_1, y_1)$ может перемещаться по кривой $y = \psi(x)$. Тогда получим

$$[F + (\psi' - y') F_{y'}] |_{x=x} = 0.$$

В нашем случае

$$F = f(x, y) e^{\operatorname{arctg} y'} \sqrt{1 + {y'}^2}, \quad F_{y'} = f(x, y) e^{\operatorname{arctg} y'} \frac{1 + y'}{\sqrt{1 + {y'}^2}}.$$

Условне трансверсальности запишется так:

$$\left[f(x, y) e^{\operatorname{arctg} y'} \sqrt{1 + y'^{2}} + (\psi' - y') f(x, y) e^{\operatorname{arctg} y'} \frac{1 + y'}{\sqrt{1 + y'^{2}}} \right]_{x = x} = 0.$$

Отсюда, в силу условия $f(x, y) \neq 0$, получаем

$$\frac{\psi' - y'}{1 + \psi' y'} = -1. \tag{6}$$

Геометрически условие (6) означает, что экстремали y=y(x) должны пересекать кривую $y=\psi(x)$, по которой скользит граничная точка $B(x_1,y_1)$, под углом $\frac{\pi}{4}$.

Рис. 19.

В самом деле, соотношение (6) можно представить так: положим, что касательная к экстремали в точке $B(x_1,y_1)$, лежащей на кривой $y=\psi(x)$, пересекает ось Ox под углом α , а касательная к заданной кривой $y=\psi(x)$ —под углом β (рис. 19). Тогда $tg\ \alpha=y'$, $tg\ \beta=\psi'$ и левая часть формулы (6) дает $tg\ (\beta-\alpha)$; но $-1=tg\ \left(-\frac{\pi}{4}\right)$, поэтому $\beta-\alpha=-\frac{\pi}{4}$, откуда $\alpha=\beta+\frac{\pi}{4}$, что и требовалось показать.

Пример 2. Найти расстояние между параболой $y=x^2$ и прямой x-y=5.

Решение. Задача сводится к нахождению экстремального значения интеграла

$$J = \int_{x_0}^{x_1} \sqrt{1 + {y'}^2} \, dx \tag{7}$$

при условии, что левый конец экстремали может перемещаться по кривой $y=x^2$, а правый — по прямой y=x-5. Таким образом, в нашем случае имеем $\phi(x)=x^2$, $\psi(x)=x-5$. Общее решение уравнения Эйлера будет: $y=C_1x+C_2$, где C_1 и C_2 произвольные постоянные, которые предстоит определить.

Условия трансверсальности (3) имеют вид

$$\left[\sqrt{1 + {y'}^2} + (2x - y') \frac{y'}{\sqrt{1 + {y'}^2}} \right] \Big|_{x = x_t} = 0,$$

$$\left[\sqrt{1 + {y'}^2} + (1 - y') \frac{y'}{\sqrt{1 + {y'}^2}} \right] \Big|_{x = x_t} = 0,$$

где $y' = C_i$. Уравнения (4) в нашем случае принимают вид

$$C_1x_0 + C_2 = x_0^2, C_1x_1 + C_2 = x_1 - 5.$$

Итак, имеем систему четырех уравнений относительно четырех неизвестных C_1 , C_2 , x_0 , x_1 :

$$\sqrt{1+C_1^2} + (2x_0 - C_1) \frac{C_1}{\sqrt{1+C_1^2}} = 0,$$

$$\sqrt{1+C_1^2} + (1-C_1) \frac{C_1}{\sqrt{1+C_1^2}} = 0,$$

$$C_1x_0 + C_2 = x_0^2,$$

$$C_1x_1 + C_2 = x_1 - 5,$$
(8)

решая которую, получим:

$$C_1 = -1$$
, $C_2 = \frac{3}{4}$, $x_0 = \frac{1}{2}$, $x_1 = \frac{23}{8}$.

Значит, уравнение экстремали есть $y = -x + \frac{3}{4}$ и расстояние между заданными параболой и прямой равно

$$l = \int_{\frac{1}{2}}^{\frac{23}{8}} \sqrt{1 + (-1)^2} \, dx = \sqrt{2} \, x \bigg|_{\frac{1}{2}}^{\frac{23}{8}} = \frac{19\sqrt{2}}{8}.$$

172. Найти кратчайшее расстояние от точки A(1, 0) до эллипса $4x^2 + 9y^2 = 36$.

173. Найти кратчайшее расстояние от точки

A(-1,5) до параболы $y^2 = x$.

174. Найти кратчайшее расстояние между окружностью $x^2 + y^2 = 1$ и прямой x + y = 4.

175. Найти кратчайшее расстояние от точки A(-1,3) до прямой y=1-3x.

176. Доказать, что для функционала вида

$$J[y] = \int_{x_1}^{x_1} h(x, y) \sqrt{1 + {y'}^2} \, dx,$$

где $h(x, y) \neq 0$ в граничных точках, условия трансверсальности имеют вид

$$y'(x) = -\frac{1}{\phi'(x)}$$
 if $y'(x) = -\frac{1}{\phi'(x)}$,

т. е. условия трансверсальности сводятся к условиям ортогональности.

2°. Задача с подвижными границами для функционалов вида

$$J[y, z] = \int_{x_0}^{x_1} F(x \ y, z, y', z') \ dx. \tag{9}$$

При исследовании на экстремум функционала (9) считаем, что хотя бы одна из граничных точек $A(x_0, y_0, z_0)$ или $B(x_1, y_1, z_1)$ перемещается по заданной кривой.

Экстремум J[y,z] может достигаться лишь на интегральных

кривых системы уравнений Эйлера

$$F_{y} - \frac{d}{dx} F_{y'} = 0,$$

$$F_{z} - \frac{d}{dx} F_{z'} = 0.$$
(10)

Пусть точка $A(x_0,y_0,z_0)$ закреплена, а другая граничная точка $B(x_1,y_1,z_1)$ может перемещаться по некоторой кривой, заданной уравнениями

$$y = \varphi(x), z = \psi(x).$$
 (11)

Условие трансверсальности в этом случае принимает вид

$$[F + (\varphi' - y') F_{y'} + (\psi' - z') F_{z'}]|_{x=x_1} = 0.$$
 (12)

Аналогично выписывается условие трансверсальности и для левого конца (если он тоже перемещается вдоль некоторой кривой $y = \tilde{\phi}(x)$): $z = \tilde{\psi}(x)$

$$[F + (\tilde{\varphi}' - y') F_{y'} + (\tilde{\psi}' - z') F_{z'}]|_{x = x_0} = 0.$$

 $m{\Pi}$ ример 3. Найти кратчайшее расстояние от точки $m{M}(m{x}_0,\ m{y}_0,\ m{z}_0)$ до прямой

y = mx + p, z = nx + q.

Решение. Задача сводится к нахождению экстремума (минимума) интеграла

$$J[y, z] = \int_{x_0}^{x_1} \sqrt{1 + {y'}^2 + {z'}^2} dx$$
 (13)

при условии, что правый конец экстремали может перемещаться по прямой

т. е. в нашем случае функции ϕ и ψ имеют соответственно вид $\phi(x) = mx + p, \qquad \psi(x) = nx + q.$

Общее решение соответствующей системы уравнений Эйлера будет

$$y = C_1 y + C_2, z = C_3 x + C_4,$$
 (15)

где C_i (i=1, 2, 3, 4) подлежат определению.

Условие трансверсальности (на правом конце) выглядит так:

$$\left[\sqrt{1 + {y'}^2 + {z'}^2} + (m - y') \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + (n - z') \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0,$$

откуда, в силу того, что $y' = C_1$, $z' = C_3$, получим $1 + mC_1 + nC_3 = 0$. (16)

Соотношение (16) выражает условие перпендикулярности искомой прямой (15) к заданной прямой (14).

Воспользуемся тем, что искомая прямая (15) проходит через точку $M(x_0, y_0, z_0)$:

$$y_0 = C_1 x_0 + C_2, z_0 = C_3 x_0 + C_4,$$
 (17)

а также тем, что правый конец перемещается по прямой (14):

$$C_1 x_1 + C_2 = m x_1 + p, C_3 x_1 + C_4 = n x_1 + q.$$
 (18)

Из пяти уравнений (16), (17) и (18) надо определить C_1 , C_2 , C_3 , C_4 и x_1 (x_0 , y_0 , z_0 , m, n, p, q—заданные числа). Для нахождения интеграла (13) достаточно знать x_1 , C_1 и C_3 . Имеем

$$\begin{split} x_1 &= \frac{x_0 + m (y_0 - p) + n (z_0 - q)}{1 + n^2 + m^2}, \\ C_1 &= \frac{m x_0 + m n (z_0 - q) - (1 + n^2) (y_0 - p)}{m (y_0 - p) + n (z_0 - q) - (m^2 + n^2) x_0}, \\ C_3 &= \frac{n x_0 + m n (y_0 - p) - (1 + m^2) (z_0 - q)}{m (y_0 - p) + n (z_0 - q) - (m^2 + n^2) x_0}. \end{split}$$

Подставляя эти величины в (13), получим $h = \min J[u, z] =$

$$= \sqrt{x_0^2 + (y_0 - p)^2 + (z_0 - q)^2 - \frac{[x_0 + m(y_0 - p) + n(z_0 - q)]^2}{1 + n^2 + m^2}}.$$

Если граничная точка $A(x_0, y_0, z_0)$ неподвижна, а другая граничная точка $B(x_1, y_1, z_1)$ может перемещаться по некоторой поверхности $z = \varphi(x, y)$, то условия трансверсальности будут:

$$\begin{aligned}
[F - y'F_{y'} + (\varphi_x' - z')F_{z'}]\Big|_{x = x_1} &= 0, \\
[F_{y'} + F_{z'}\varphi_y']\Big|_{x = x_1} &= 0.
\end{aligned} (19)$$

Условия (19) совместно с уравнением $z = \varphi(x,y)$, вообще говоря, дают возможность определить две произвольные постоянные в общем решении системы уравнений Эйлера (две другие постоянные определяются из условия прохождения экстремали через неподвижную точку $A(x_0,y_0,z_0)$).

Если подвижной точкой является граничная точка $A(x_0, y_0, z_0)$, то при $x = x_0$ получаем условия, совершенно аналогичные условиям (19)

 Π р и м е р 4. Найти кратчайшее расстояние от точки A (1, 1, 1) до сферы

$$x^2 + y^2 + z^2 = 1. (20)$$

Решение. Задача сводится к исследованию на экстремум функционала

$$J[y, z] = \int_{x_1}^{1} \sqrt{1 + {y'}^2(x) + {z'}^2(x)} dx, \qquad (21)$$

где точка $B(x_1, y_1, z_1)$ должна находиться на сфере (20). Экстремалями функционала (21) являются прямые

$$y = C_1 x + C_2, z = C_3 x + C_4.$$
 (22)

Из условия прохождения экстремали (22) через точку A (1, 1, 1) получаем

$$\begin{pmatrix}
 C_1 + C_2 = 1, \\
 C_3 + C_4 = 1,
 \end{pmatrix}
 \tag{23}$$

Условия трансверсальности (19) с учетом (22) имеют вид

$$\left[\left. \frac{\sqrt{1 + {y'}^2 + {z'}^2}}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'^2}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 - {x^2} - {y^2}}} - z' \right) \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 - {x^2} - {y^2}}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{z'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \cdot \frac{(-y)}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} + \frac{y'}{\sqrt{1 + {y'}^2 + {z'}^2}} \right]_{x = x_1} = 0, \\
\left[\frac{y'}{\sqrt{1$$

откуда после несложных преобразований будем иметь

где x_1, y_1, z_1 — координаты искомой точки B.

Из условия прохождения экстремали (22) через точку $B(x_1,y_1,z_1)$ имеем

$$\begin{cases}
 y_1 = C_1 x_1 + C_2, \\
 z_1 = C_2 x_1 + C_4.
 \end{cases}
 \tag{25}$$

Из (23), (24) и (25) находим

$$C_1 = 1$$
, $C_2 = 0$, $C_3 = 1$, $C_4 = 0$

так что уравнение экстремали

$$\begin{cases} y = x, \\ z = x. \end{cases}$$
 (25)

Так как точка $B(x_1, y_1, z_1)$ должна лежать на сфере (20), то с учетом (26) получаем, что $x_1^2 + x_1^2 + x_1^2 = 1$, т. є. $x_1 = \pm \frac{1}{\sqrt{3}}$.

Таким образом, получаем две точки

$$B_1\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
 H $B_2\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$.

Нетрудно видеть из геометрических соображений, что экстремаль (26), соединяющая точку A с точкой B_1 , дает функционалу (21) минимум, равный

$$I_{\min} = \int_{\frac{1}{\sqrt{3}}}^{1} \sqrt{1 + 1 + 1} \ dx = \sqrt{3} - 1,$$

а экстремаль (26), соединяющая точку A с точкой B_2 , дает максим ум

$$J_{\text{max}} = \int_{-\frac{1}{\sqrt{3}}}^{1} \sqrt{3} \, dx = \sqrt{3} + 1.$$

Замечание 1. При выводе условий трансверсальности (24) мы брали $\varphi(x, y) \equiv \sqrt{1 - x^2 - y^2}$. Нетрудно проверить, что условия (24) сохраняются, если $\phi(x,y) \equiv -\sqrt{1-x^2-y^2}$. Замечание 2. Из геометрических соображений видно,

что экстремаль (26) ортогональна сфере $x^2 + y^2 + z^2 = 1$. Пример 5. Рассмотрим ту же задачу об экстремуме функ-

ционала (21), но в качестве A возьмем центр сферы O(0, 0, 0). Решение. Экстремалями функционала являются прямые (22), и условие прохождения экстремали через точку $O(\hat{0},0,0)$ сразу дает $C_2 = C_4 = 0$.

Условия трансверсальности будут прежними:

а условия на подвижном конце будут

$$\begin{cases} y_1 = C_1 x_1, \\ z_1 = C_2 x_1, \end{cases}$$
 (28)

Наконец.

$$x_1^2 + y_1^2 + z_1^2 = 1. (29)$$

Для определения пяти величин C_1 , C_3 , x_1 , y_1 и z_1 мы имеем пять соотношений (27), (28), (29), из которых независимыми являются только три:

$$y_{1} = C_{1}x_{1}, z_{1} = C_{3}x_{1}, x_{1}^{2} + y_{1}^{2} + z_{1}^{2} = 1.$$
(30)

Используя соотношения (30), находим

$$x_1 = \pm \frac{1}{V_1 + C_1^2 + C_3^2}, \quad y_1 = \pm \frac{1}{V_1 + C_1^2 + C_3^2},$$

$$z_1 = \pm \frac{1}{V_1 + C_1^2 + C_3^2},$$

где C_1 , C_2 — произвольные постоянные.

Этот произвол ясен из геометрических соображений: расстояние от точки O(0,0,0) до сферы (20) одинаково по любому направлению, т. е. при любых значениях C_1 и C_2 .

Значение функционала J[y,z] на экстремалях

$$\begin{cases}
y = C_1 x, \\
z = C_3 x
\end{cases}$$

равно

$$J[y, z] = \int_{0}^{\frac{1}{\sqrt{1 + C_1^2 + C_3^2}}} \sqrt{1 + C_1^2 + C_3^2} dx = 1.$$

Пример 6. Найти условие трансверсальности для функционала

$$J[y, z] = \int_{x_0}^{x_1} f(x, y, z) \sqrt{1 + {y'}^2 + {z'}^2} dx, \qquad (31)$$

если точка $A(x_0, y_0, z_0)$ закреплена, а точка $B(x_1, y_1, z_1)$ лежит на поверхности $z = \varphi(x, y)$.

Решение. В данном случае условия трансверсальности будут

$$\left. \begin{array}{l} \left. \left(1 + \phi_x' \cdot z' \right) \right|_{x = x_1} = 0, \\ \left. \left(y' + \phi_y' \cdot z' \right) \right|_{x = x_1} = 0 \end{array} \right\}$$

или

$$\left. \frac{1}{\varphi_x'} \right|_{x=x_1} = \frac{y'}{\varphi_y'} \right|_{x=x_1} = \frac{z'}{-1} \bigg|_{x=x_1}.$$

Это есть условия параллельности касательного вектора $\tau(1,y',z')$ к искомой экстремали в точке $B(x_1,y_1,z_1)$ с вектором $\bar{n}\left\{\phi_x',\phi_y',-1\right\}$ нормали к поверхности $z=\phi(x,y)$ в той же точке. Таким образом, для функционалов вида (31) условия трансверсальности сводятся к условиям ортогональности.

177. Показать, что если условие трансверсальности совпадает при всех начальных данных с условием ортогональности, то подынтегральная функция F имеет следующую структуру:

$$F = f(x, y, z) \sqrt{1 + {y'}^2 + {z'}^2},$$

где f(x, y, z) есть произвольная дифференцируемая функция x, y, z.

178. Найти кратчайшее расстояние от точки

M(0, 0, 3) до поверхности $z = \dot{x^2} + y^2$.

кратчайшее расстояние **179.** Найти от точки

M(2, 0, 5) до поверхности $z = x^2 + y^2$.

180. Найти кратчайшее расстояние между поверхностями

$$\frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9} = 1 \quad \text{if} \quad x^2 + y^2 + z^2 = 4.$$

181. Исследовать на экстремум функционал

$$J[y, z] = \int_{0}^{x_{1}} (y'^{2} + z'^{2} + 2yz) dx$$

при условиях: y(0) = 0, z(0) = 0 и точка $B(x_1, y_1, z_1)$ перемещается по плоскости $x = x_1$.

3°. Геодезическое расстояние. Величину интеграла

$$J[y] = \int_{A}^{B} F(x, y, y') dx,$$
 (32)

взятого вдоль линии γ от точки A до точки B, называют J- $\partial \Lambda u$ ной линии γ . Если γ — экстремаль, то J[y] называют геодезическим расстоянием между точками A и B, или же J-расстоянием, а саму экстремаль — *J-прямой*.
Пример 7. Найти геодезическое расстояние от точки

A(0, 0) до точки B(1, 1), если это расстояние определяется с по-

мощью функционала

$$J[y] = \int_{A}^{B} y^2 y'^2 dx.$$

 ${f P}$ е ${f m}$ е ${f n}$ и е. ${f \Gamma}$ еодезическое расстояние от точки ${f A}$ до точки ${f B}$ есть значение данного функционала на экстремали, соединяющей эти точки. Уравнение Эйлера

$$2y{y'}^2 - \frac{d}{dx}(2y^2y') = 0$$
 или $yy'' + {y'}^2 = 0$.

Легко видеть, что

$$yy'' + y'^2 = \frac{d}{dx} (yy'),$$

так что $2yy'=C_1$ и $y^2=C_1x+C_2$. Используя граничные условия $y|_{x=0}=0$, $y|_{x=1}=1$, получаем $C_1=1$, $C_2=0$. Таким образом, экстремалью, соединяющей точки A и B, будет парабола

$$u^2 = x$$
.

Далее, 2yy'=1, $yy'=\frac{1}{2}$, и следовательно, $(yy')^2=\frac{1}{4}$. Геодезическое расстояние между точками A и B, согласно определению, равно

$$J(A, B) = \int_{0}^{1} \frac{1}{4} dx = \frac{1}{4}.$$

Пусть дана линия \mathcal{Q} : $\varphi(x,y)=0$.

Геодезическим расстоянием точки B, лежащей вне \mathcal{L} , до этой линии, называют геодезическое расстояние точки B до точки $A \in \mathcal{L}$ такое, что функционал (32) вычисляется вдоль экстремали γ , соединяющей точки B и A, причем γ пересекает линию \mathcal{L} в точке A трансверсально.

J-окружностью (геодезической окружностью) называют линию, все точки которой находятся на одинаковом геодезическом расстоянии от заданной точки. Аналогично вводятся понятия

 \hat{J} -эллипса, J-гиперболы.

Пример 8. Найти *J*-окружность с центром в точке O(0,0) радиуса R, если геодезическое расстояние определяется с помощью функционала

$$J[y] = \int_{A}^{B} y^2 y'^2 dx.$$

Решение. Экстремали функционала пересекают геодезическую окружность трансверсально. Для экстремалей имеем (см. предыдущий пример)

$$u^2 = C_1 x, \qquad 2uu' = C_1$$

и, следовательно,

$$y' = \frac{y}{2x}.$$

Из условия трансверсальности

$$y^2y'(2\varphi'-y')=0$$

находим, что угловой коэффициент касательной к J-окружности $\phi'=rac{y'}{2}$ и, значит, дифференциальное уравнение J-окружности

есть $y'=\frac{y}{4x}$, откуда уравнение J-окружности: $y^4=Cx$. Для нахождения величины C заметим, что на геодезической окружности лежит точка (C^3,C) , а уравнение геодезического радиуса (т. е. экстремали), проходящего через эту точку, есть $y^2=\frac{x}{C}$.

Отсюда $yy' = \frac{1}{2C}$ и, значит,

$$R = \int_{0}^{C^{3}} (yy')^{2} dx = \int_{0}^{C^{3}} \frac{1}{4C^{2}} dx = \frac{C}{4}.$$

Следовательно, C=4R и геодезическая окружность радиуса R с центром в начале координат имеет уравнение $y^4=4Rx$.

Пример 9. Найти J-окружность радиуса R с центром в точке O(0,0), если геодезическое расстояние определяется функционалом

$$J[y] = \int_{A}^{B} \sqrt{1 + {y'}^{2}(x)} dx.$$

Решение. Экстремалями функционала являются прямые $y=C_1x+C_2$. Из условия прохождения экстремалей через точку $O\left(0,0\right)$ находим, что $C_2=0$, так что $y=C_1x$, и значит, $y'=\frac{y}{x}$.

Условие трансверсальности в данном случае совпадает с условием ортогональности, и потому угловой коэффициент касательной к J-окружности — $\phi'=-\frac{1}{y'}$. Следовательно, диффе

ренциальное уравнение *J*-окружности: $y'=-\frac{x}{y}$. Отсюда уравнение *J*-окружности: $x^2+y^2=C^2$. На этой окружности лежит точка (C,0). Уравнение геодезического радиуса, проходящего через эту точку, есть y=0, так что y'=0 и

$$R = \int_{0}^{C} dx = C.$$

Таким образом, C=R и уравнение искомой геодезической окружности радиуса R есть обычное уравнение окружности $x^2+y^2=R^2$.

Замечание. Введенные понятия позволяют говорить о неевклидовой геометрии с дифференциалом дуги

$$ds = F(x, y, y') dx$$
.

Если $F = \sqrt{1 + {y'}^2(x)}$, то, как мы видели, *J*-прямые превращаются в обычные прямые и наша геометрия переходит в обыч-

ную евклидову геометрию.

При произвольной функции F, удовлетворяющей лишь обычным условиям непрерывности и диффереицируемости по всем трем аргументам, введенная геометрия мало похожа на обычную геометрию: через две точки не всегда можно провести J-прямую, и может случиться, что через две точки проходит несколько J-прямых и, следовательно, J-расстояние между двумя точками не есть однозначная функция координат.

182. Найти геодезическое расстояние от точки A(0, 0) до точки B(1, 2), если это расстояние определяется с помощью функционала

$$J[y] = \int (y^2 + {y'}^2) dx.$$

183. Найти геодезическое расстояние от точки A(0, 1) до точки B(1, 1), если это расстояние определяется функционалом

$$J[y] = \int (12xy + y'^2) dx.$$

184. Найти *J*-окружность радиуса R=8 с центром в точке O(0, 0), если геодезическое расстояние определяется функционалом

$$J[y] = \int y'^3 dx.$$

§ 11. Разрывные задачи. Односторонние вариации

1°. Разрывные задачи. Экстремаль y = y(x) функционала

$$J[y] = \int_{x_0}^{x_1} F(x, y, y') dx$$
 (1)

является дважды неврерызно дифференцируемой функцией, если производная $F_{y'y'}(x,y(\pmb{x}),y'(y))$ не обращается в нуль. Встречаются, однако, вариационные задачи, в которых экстремум достигается на кривой, являющейся лишь кусочно-гладкой.

а) Разрывные задачи первого рода. Рассмотрим задачу о нахождении экстремума функционала (1), считая, что допустимые кривые удовлетворяют граничным условиям

$$y(x_0) = y_0, \quad y(x_1) = y_1$$
 (2)

и могут иметь излом в некоторой точке с абсциссой c ($x_0 < c < < x_1$). Этот излом возможен лишь там, где $F_{y'y'} = 0$. В точке излома экстремаль должна удовлетворять условиям Вейерштрасса — Эрдмана

$$F_{y'}|_{x=c-0} - F_{y'}|_{x=c+0} = 0,$$

$$(F - y'F_{y'})|_{x=c-0} - (F - y' \cdot F_{y'})|_{x=c+0} = 0.$$
(3)

Вместе с условиями непрерывности искомой экстремали они по-

зволяют определить координаты точки излома.

На каждом из двух отрезков $[x_0, c]$ и $[c, x_1]$ экстремаль должна удовлетворять уравнению Эйлера, т. е. дифференциальному уравнению 2-го порядка. При решении этих двух уравнений получаются четыре произвольные постоянные, которые, вообще говоря, находятся из граничных условий (2) и условий (3) в точке излома.

Пример 1. Найти ломаные экстремали (если они суще-

ствуют) функционала

$$J[y] = \int_{0}^{a} (y'^{2} - y^{2}) dx.$$

Решение. Запишем первое из условий (3), которое должно выполняться в точке излома:

$$F_{y'}|_{x=c-0} = F_{y'}|_{x=c+0}$$
 (0 < c < a).

В данном случае оно имеет вид

$$y'(c-0) = y'(c+0)$$

и означает, что производная y'(x) при x=c непрерывна. Следовательно, точек излома нет. Это видно и из того, что в данном случае $F_{y'y'}=2>0$ всюду. Поэтому в рассматриваемой задаче экстремум может достигаться лишь на гладких кривых.

Пример 2. Найти ломаные экстремали функционала

$$J[y] = \int_{0}^{2} (y'^{4} - 6y'^{2}) dx, \quad y(0) = 0, \quad y(2) = 0,$$

допуская, что y' может иметь одну точку разрыва, отвечающую абсциссе x=c.

Решение. В данном случае $F_{y'y'}=12{y'}^2-12$ может обращаться в нуль и поэтому возможно наличие изломов экстре-

мали. Так как подынтегральная функция зависит только от y', то экстремалями являются прямые

$$y = C_1 x + C_2$$

Положим

$$y_{-} = mx + n \quad (0 \le x < c), \qquad y_{+} = px + q \quad (c \le x \le 2).$$

Из граничных условий находим n=0, q=-2p, так что

$$y_{-} = mx, \quad y_{+} = p(x-2).$$
 (4)

Условие непрерывности экстремали дает

$$mc = p (c - 2), \tag{5}$$

Выпишем условия Вейерштрасса — Эрдмана. Имеем

$$F_{y'} = 4{y'}^{3} - 12y',$$

$$F - y' \cdot F_{y'} = -3{y'}^{4} + 6{y'}^{2}.$$

Поскольку $y'_{-} = m, y'_{+} = p,$ получаем

$$4m3 - 12m = 4p3 - 12p,
-3m4 + 6m2 = -3p4 + 6p2$$

или

$$(m-p)(m^2+mp+p^2-3)=0,$$

 $(m^2-p^2)(m^2+p^2-2)=0.$ (6)

Второе уравнение в (6) сразу дает m=p или m=-p или

$$m^2 + p^2 - 2 = 0.$$

Решение m=p должно быть отброшено: при нем экстремаль имеет непрерывную производную, а из условия (5) получаем, что m=0, т. е. экстремаль — отрезок оси Ox.

Таким образом, решение системы (6) сводится к решению

следующих систем уравнений:

$$m = -p, m^2 + mp + p^2 = 3$$
 (7)

И

$$m^{2} + p^{2} = 2, m^{2} + mp + p^{2} = 3.$$
 (8)

Решение системы (7): $m=\sqrt{3}$, $p=-\sqrt{3}$ и $m=-\sqrt{3}$, $p=\sqrt{3}$. Решение системы (8) дает m=p и должно быть отброшено. Итак, m=-p и условие непрерывности (5) дает c=1.

И

Следовательно, искомые экстремали:

$$y = \begin{cases} \sqrt{3} x, & 0 \le x < 1, \\ -\sqrt{3} (x - 2), & 1 \le x \le 2, \end{cases}$$
$$y = \begin{cases} -\sqrt{3} x, & 0 \le x < 1, \\ \sqrt{3} (x - 2), & 1 \le x \le 2. \end{cases}$$

185. Найти экстремали с угловой точкой для функционала

$$J[y] = \int_{0}^{2} y'^{2} (y'-1)^{2} dx, \quad y(0) = 0, \quad y(2) = 1.$$

186. Найти решение с одной угловой точкой в задаче о минимуме функционала

$$J[y] = \int_{0}^{4} (y'-1)^{2} (y'+1)^{2} dx$$
, $y(0) = 0$, $y(4) = 2$.

187. Существуют ли решения с угловыми точками в задаче об экстремуме функционала

$$J[y] = \int_{0}^{x_{1}} (y'^{2} + 2xy - y^{2}) dx, \quad y(x_{0}) = y_{0}, \quad y(x_{1}) = y_{1}.$$

188. Найти решение с угловой точкой в задаче об экстремуме функционала

$$J[y] = \int_{-1}^{1} y^2 (1 - y'^2) dx, \quad y(-1) = 0, \quad y(1) = 1.$$

189. Найти решение с угловой точкой в задаче о минимуме функционала

$$\int_{y_{1}}^{y_{2}} (y'^{4} - 2y'^{2}) dx.$$

190. В задаче об экстремуме функционала

$$\int_{(0,0)}^{(x_1,y_1)} \sin y' \, dx$$

найти непрерывное решение, а также решение с угловой точкой.

Замечание. Условия (3) Вейерштрасса — Эрдмана допускают следующую геометрическую интерпретацию.

Построим фигуратрису, т. е. кривую Y = F(x, y, y') как

функцию от y'.

Тогда условия (3) означают, что при значениях параметров $x=c,\ y=c_1$, отвечающих угловой точке, фигуратриса должна иметь общую касательную в точках с абсциссами $y'_-=y'$ (c-0) и $y'_+=y'$ (c+0).

Одновременно получается наглядная интерпретация условия $F_{y'y'} \neq 0$, исключающего возможность излома экстремалей. Действительно, если, например, $F_{y'y'} > 0$, то фигуратриса вы-

пукла, и касательные к ней, проведенные в двух разных точках, не могут совпадать. Так что экстремаль в этом случае не может иметь излома.

Рассмотрим опять задачу об отыскании ломаных экстремалей функционала (см. пример 2 этого параграфа). Имеем

$$J[y] = \int_{0}^{2} (y'^{4} - 6y'^{2}) dx,$$

$$y(0) = 0, \qquad y(2) = 0.$$

Экстремалями являются прямые. Фигуратриса $Y = {y'}^4 - 6{y'}^2$ в данном случае не зависит от точки

Рис. 20.

Y=y-oy в данном случае не зависит от точки (x,y). Она имеет общую касательную в точках с абсциссами $y'=\pm \sqrt{3}$ (рис. 20). Поэтому условия Вейерштрасса — Эрдмана будут выполнены, если в качестве ломаных экстремалей брать ломаные, звенья которых образуют угол $\pm \frac{\pi}{3}$ с осью Ox.

На ломаной y_1 с одной угловой точкой (рис. 21) функционал имеет значение $J[y_1] \equiv -18$. То же значение J[y] будет иметь на

ломаной y_2 с двумя угловыми точками (рис. 22), на ломаной y_3 с тремя угловыми точками (рис. 23) и т. д.

Рис. 21.

Рис. 23.

б) Разрывные задачи второго рода. Разрывными задачами второго рода называют задачи на отыскание экстремума функционала

$$I[y] = \int_{x_1}^{x_2} F(x, y, y') dx,$$
 (9)

$$y(x_1) = y_1, \quad y(x_2) = y_2,$$
 (10)

(10)

в котором подынтегральная функция разрывна,

Пусть, например, F(x,y,y') терпит разрыв вдоль линии $y=\Phi(x)$ и пусть F(x,y,y') равна $F_1(x,y,y')$ по одну сторону

линии $y = \Phi(x)$ и равна $F_2(x, y, y')$ по другую.

В случае существования ломаной экстремали последняя состоит из кусков экстремалей $y=y_1(x)$ и $y=y_2(x)$, имеющих общую точку $(c,\Phi(c))$ на линии разрыва, где $c \in (x_1,x_2)$. Для определения ломаной экстремали получаем два дифференциальных уравнения Эйлера, общие решения которых содержат четыре произвольных постоянных C_1 , C_2 , C_3 , C_4 . Для нахождения этих постоянных, а также абсписсы c точки встречи экстремали с кривой $y=\Phi(x)$ имеем: 1) два граничных условия (10), 2) два условия, требующие, чтобы ординаты концов экстремалей в точке стыка были равны ординате кривой $y=\Phi(x)$ и, наконец, 3) условие на стыке

$$F_1 + (\Phi' - y') F_{1y'}|_{x=c-0} = F_2 + (\Phi' - y') F_{2y'}|_{x=c+0}$$
 (11)

Этих условий, вообще говоря, достаточно для нахождения ло-

маной экстремали.

Пример 3. (Задача о преломлении луча света.) В среде I свет распространяется с постоянной скоростью v_1 , в среде II — с постоянной скоростью v_2 . Среда I отделена от среды II кривой $y = \Phi(x)$.

Вывести закон преломления луча света, идущего из точки A среды I в точку B среды II, зная, что луч проходит этот путь

в наименьший промежуток времени.

Решение. Задача сводится к нахождению минимума интеграла

$$J = \int_{a}^{c} \frac{\sqrt{1 + {y'}^{2}}}{v_{1}} dx + \int_{c}^{b} \frac{\sqrt{1 + {y'}^{2}}}{v_{2}} dx, \tag{12}$$

так как первый и второй интегралы в (12) дают время, нужное для перехода луча из точки A до линии раздела и от линии раздела до точки B.

Имеем разрывную задачу второго рода: здесь

$$F_1 = \frac{\sqrt{1 + {y'}^2}}{v_1}; \quad F_2 = \frac{\sqrt{1 + {y'}^2}}{v_2}.$$

Нахождение кусков экстремалей сводится к разысканию экстремалей функционала

$$\int \sqrt{1+{y'}^2}\,dx,$$

которые, как известно, есть прямые. Следовательно,

$$y_1 = mx + n, \quad y_2 = px + q.$$

Запишем условие (11). Имеем

$$\begin{split} F_1 - y_1' \frac{\partial F}{\partial y_1'} &= \frac{\sqrt{1 + {y_1'}^2}}{v_1} - \frac{{y_1'}^2}{v_1 \sqrt{1 + {y_1'}^2}} = \frac{1}{v_1 \sqrt{1 + {y_1'}^2}}; \\ F_2 - y_2' \frac{\partial F_2}{\partial y_2'} &= \frac{1}{v_2 \sqrt{1 + {y_2'}^2}}. \end{split}$$

Подставляя эти выражения в (11), найдем

$$\frac{1 + \Phi' y_1'}{v_1 \sqrt{1 + y_1'^2}} = \frac{1 + \Phi' y_2'}{v_2 \sqrt{1 + y_2'^2}}.$$
 (13)

Пусть у — угол, образованный касательной к линии раздела в точке c с осью Ox, α — угол левого луча с осью Ox, β — угол правого луча. Тогда $\Phi'=\operatorname{tg} \gamma,\ y_1'=\operatorname{tg} \alpha,\ y_2'=\operatorname{tg} \beta$ и условие (13) примет вид

$$\frac{1 + \lg \alpha \lg \gamma}{v_1 \sqrt{1 + \lg^2 \alpha}} = \frac{1 + \lg \beta \lg \gamma}{v_2 \sqrt{1 + \lg^2 \beta}}$$

или

$$\frac{\cos(\gamma-\alpha)}{v_1}=\frac{\cos(\gamma-\beta)}{v_2},$$

где $\gamma - \alpha$ и $\gamma - \beta$ — углы между лучами и касательной к линии раздела. Вводя вместо них углы ф и в между нормалью к линии раздела и лучами, падающим и преломленным, получаем

$$\frac{\sin \varphi}{\sin \theta} = \frac{v_1}{v_2} = \text{const},$$

т. е. известный закон преломления луча света.

Односторонние вариации. Ищется экстремум функционала

$$J[y] = \int_{x_1}^{x_2} F(x, y, y') dx,$$
 (14)
$$y(x_1) = y_1, \quad y(x_2) = y_2$$
 (15)

$$y(x_1) = y_1, \quad y(x_2) = y_2$$
 (15)

при условии

$$y - \varphi(x) \geqslant 0$$
 (или $y - \varphi(x) \leqslant 0$) (16)

(ограничивающие условия могут быть и более сложного вида). В этом случае искомая экстремаль может состоять из кусков экстремалей, лежащих в области (16), и кусков границы y == $\phi(x)$ этой области. В точках стыка указанных кусков искомая экстремаль может быть гладкой, но может иметь и угловые точки.

Условие в точке стыка имеет вид

$$[F(x, y, y') - F(x, y, \varphi') - (\varphi' - y') F_{y'}(x, y, y')]|_{x = \bar{x}} = 0.$$

Если $F_{u'u'} \neq 0$, то в точке стыка $M(\bar{x}, \bar{y})$ экстремаль касается границы $y = \varphi(x)$ области.

Пример 4. Найти кратчайший путь из точки A(-2, 3) в

точку B(2,3), расположенный в области $y \leq x^2$.

Решение. Задача сводится к нахождению экстремума функционала

$$J[y] = \int_{-2}^{2} \sqrt{1 + {y'}^{2}(x)} \, dx \tag{17}$$

при условиях

$$y \le x^2$$
, $y(-2) = 3$, $y(2) = 3$.

Экстремалями функционала (17) являются прямые

$$y = C_1 + C_2 x.$$

В данном случае

$$F_{y'y'} = \frac{1}{\left[1 + y'^{2}(x)\right]^{3/2}} \neq 0$$

и искомая экстремаль будет состоять из кусков прямых АМ и NB, касательных к параболе $y=x^2$, и куска MON этой пара-

болы (рис. 24). Обозначим абсциссы точек касания через \bar{x} и $-\bar{x}$ (используем симметрию задачи). В точке касания совпадают ординаты и угловые коэффициенты прямой и каса- 4(-23) лельной параболы, так что будем иметь

$$\begin{array}{c}
C_1 + C_2 \bar{x} = \bar{x}^2, \\
C_2 = 2\bar{x}.
\end{array}$$
(18)

С другой стороны, касательная должна проходить через точку B(2,3), следовательно,

$$C_1 + 2C_2 = 3. (19)$$

Исключая C_1 и C_2 из (18), (19), находим $\bar{x}^2 - 4\bar{x} + 3 = 0$, откуда $\bar{x}_1=1$ и $\bar{x}_2=+3$. Второе значение \bar{x} не подходит. Итак, $\bar{x}=1$. Отсюда $C_1=-1$, $C_2=2$. Искомая экстремаль

(единственная) есть

$$y = \begin{cases} -2x - 1, & \text{если} & -2 \leqslant x \leqslant -1, \\ x^2, & \text{если} & -1 \leqslant x \leqslant 1, \\ 2x - 1, & \text{если} & 1 \leqslant x \leqslant 2. \end{cases}$$

Ясно, что она доставляет функционалу (17) минимум.

191. Найти кривые, на которых может достигаться экстремум функционала

$$J[y] = \int_{0}^{10} y'^3 dx$$
, $y(0) = 0$, $y(10) = 0$

при условии, что допустимые кривые не могут проходить внутри круга, ограниченного окружностью $(x-5)^2+y^2=9$.

192. Среди кривых, соединяющих точки $A(a, y_0)$ и $B(b, y_1)$, найти ту, которая дает экстремальное значение функционалу

$$J[y] = \int_{a}^{b} y \sqrt{1 - y^{2} y'^{2}} \, dx$$

при условиях $y \ge 0$, $1 - y^2 y'^2 \ge 0$.

§ 12. Теория Гамильтона—Якоби. Вариационные принципы механики

1°. Каноническая (гамильтонова) форма уравнений Эйлера. Уравнения Эйлера для функционала

$$I[y_1, y_2, ..., y_n] = \int_{x_1}^{x_2} F(x, y_1, y_2, ..., y_n, y_1', y_2', ..., y_n') dx$$
 (1)

имеют вид

$$F_{y_k} - \frac{d}{dx} (F_{y'_k}) = 0$$
 (k = 1, 2, ..., n). (2)

В случае, когда определитель

$$\begin{vmatrix} F_{y_1y_1} & F_{y_1y_2} & \dots & F_{y_1y_n} \\ F_{y_2y_1} & F_{y_2y_2} & \dots & F_{y_2y_n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ F_{y_ny_1} & F_{y_ny_2} & \dots & F_{y_ny_n} \end{vmatrix} \neq 0,$$
 (3)

положим

$$F_{y_h}' = p_k \qquad (k = 1, 2, ..., n).$$
 (4)

Из уравнений (4) можно выразить y_k' через x, y_1 , y_2 , ..., y_n , p_1 , p_2 , ..., p_n :

$$y'_k = \varphi_k(x, y_1, y_2, \dots, y_n, p_1, p_2, \dots, p_n).$$
 (5)

Функция H от переменных $x, y_1, y_2, \ldots, y_n, p_1, p_2, \ldots, p_n,$ определяемая равенством

$$H = \left[-F\left(x, y_{1}, y_{2}, \dots, y_{n}, y'_{1}, y'_{2}, \dots, y'_{n}\right) + \sum_{k=1}^{n} y'_{k} F_{y'_{k}}\left(x, y_{1}, \dots, y_{n}, y'_{1}, \dots, y'_{n}\right) \right] \Big|_{y'_{b} = \Phi_{b}},$$
(6)

называется гамильтонианом для функционала (1).

Гамильтониан удовлетворяет следующим соотношениям:

$$\frac{\partial H}{\partial p_k} = \frac{dy_k}{dx}; \qquad \frac{\partial H}{\partial y_k} = -\frac{dp_k}{dx} \qquad (k = 1, 2, ..., n). \tag{7}$$

Уравнения (7) называются канонической или гамильтоновой системой уравнений Эйлера (2); переменные $y_1, y_2, ..., y_n$,

 p_1, p_2, \ldots, p_n называются каноническими переменными. Замечание 1. Условие (3) для функционала J[y] =

$$=\int F(x, y, y') dx$$
 дает $F_{y'y'} \neq 0$ на $[x_1, x_2]$.

 x_1 Замечание 2. Уравнения (4) разрешимы относительно y'_k в целом на отрезке $[x_1, x_2]$, вообще говоря, не однозначно. При выполнении условий теоремы существования неявной функции имеет место локальная однозначная разрешимость уравнений (4).

Пример 1. Составить каноническую систему уравнений

Эйлера для функционала

$$J[y_1, y_2] = \int_0^{\pi} \left(2y_1y_2 - 2y_1^2 + {y_1'}^2 - {y_2'}^2\right) dx.$$

Решение. В нашем случае

$$F = F(x, y_1, y_2, y_1', y_2') = 2y_1y_2 - 2y_1^2 + y_1'^2 - y_2'^2$$

Полагаем

$$F_{y_1'} = p_1, \quad F_{y_2'} = p_2.$$

Тогда

$$p_1 = 2y_1', \qquad p_2 = -2y_2'.$$

Здесь определитель

$$\begin{vmatrix} F_{y_1y_1'} & F_{y_1y_2'} \\ F_{y_2y_1'} & F_{y_2y_2'} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4 \neq 0.$$

Разрешая полученные соотношения относительно $y_1',\ y_2',\$ найдем

$$y_1' = \frac{p_1}{2}, \quad y_2' = -\frac{p_2}{2}.$$

Находим гамильтониан данного функционала:

$$\begin{split} H &= \left(-F + y_1' F_{y_1'} + y_2' F_{y_2'} \right) \bigg|_{\substack{y_1' = \frac{p_1}{2}, \\ y_2' = -\frac{p_2}{2}}} = \\ &= \left(-2y_1 y_2 + 2y_1^2 + {y_1'}^2 - {y_2'}^2 \right) \bigg|_{\substack{y_1' = \frac{p_1}{2}, \\ y_2' = -\frac{p_2}{2}}} = 2y_1^2 - 2y_1 y_2 + \frac{p_1^2}{4} - \frac{p_2^2}{4}. \end{split}$$

Используя соотношения (7), получим каноническую систему уравнений Эйлера:

$$\frac{dy_1}{dx} = \frac{p_1}{2}; \qquad \frac{dy_2}{dx} = -\frac{p_2}{2},$$

$$\frac{dp_1}{dx} = -4y_1 + 2y_2; \qquad \frac{dp_2}{dx} = 2y_1.$$

Здесь $y_1 = y_1(x)$, $y_2 = y_2(x)$, $p_1 = p_1(x)$, $p_2 = p_2(x)$ являются неизвестными функциями от x.

Пример 2. Составить каноническую систему уравнений Эйлера для функционала

$$J[y_1, y_2] = \int y_1^2 y_2^2 (x^2 + y_1' + y_2') dx.$$

Решение. Здесь

$$F = y_1^2 y_2^2 (x^2 + y_1' + y_2').$$

Находим частные производные

$$F_{y_1'} = y_1^2 y_2^2, \qquad F_{y_2'} = y_1^2 y_2^2.$$

Подагаем

$$p_1 = y_1^2 y_2^2$$
, $p_2 = y_1^2 y_2^2$.

Эти соотношения не содержат производных y_1' , y_2' неизвестных функций y_1 и y_2 , поэтому y_1' и y_2' нельзя выразить через переменные p_1 и p_2 . Следовательно, для этого функционала нельзя составить гамильтониана. В этом примере условие (3) не выполняется

$$\begin{vmatrix} F_{y_1'y_1'} & F_{y_1'y_2'} \\ F_{y_1'y_1'} & F_{y_2'y_2'} \\ F_{y_2'y_1'} & F_{y_2'y_2'} \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} \equiv 0.$$

Пример 3. Составить каноническую систему уравнений Эйлера для функционала

$$J[y] = \int xyy'^3 dx.$$

Решение. Имеем

$$F = xyy'^3$$
, $F_{u'} = 3xyy'^2$.

Положим $p = 3xyy'^2$. Отсюда

$$y' = -\sqrt{\frac{p}{3xy}}, \quad y' = \sqrt{\frac{p}{3xy}}.$$

Данный функционал имеет два гамильтониана:

$$H_{1} = (-F + y'F_{y'})\Big|_{y'=-\sqrt{\frac{\rho}{3xy}}} =$$

$$= 2xyy'^{3}\Big|_{y'=-\sqrt{\frac{\rho}{3xy}}} = -\frac{2}{3\sqrt{3}}\sqrt{\frac{\rho^{3}}{xy}}.$$

$$H_2 = (-F + y'F_{y'})\Big|_{y'=\sqrt{\frac{p}{3xy}}} = \frac{2}{3\sqrt{3}}\sqrt{\frac{p^3}{xy}}.$$

В соответствии с этим мы получим две канонические системы уравнений Эйлера:

$$\frac{dy}{dx} = \frac{\partial H_1}{\partial p} = -\sqrt{\frac{p}{3xy}},$$

$$\frac{dp}{dx} = -\frac{\partial H_1}{\partial y} = -\frac{1}{3}\sqrt{\frac{p^3}{3xy^3}},$$

$$\frac{dy}{dx} = \sqrt{\frac{p}{3xy}},$$

$$\frac{dp}{dx} = \frac{1}{3}\sqrt{\frac{p^3}{3xy^3}}.$$

Составить канонические системы уравнений Эйлера для следующих функционалов:

193.
$$J = \int xy \sqrt{y'} dx$$
.
194. $J = \int xyy'^2 dx$.
195. $J = \int V x^2 + y^2 V 1 + y'^2 dx$.
196. $J = \int_1^2 (y_1'^2 + y_2^2 + y_2'^2) dx$.
197. $J = \int (x^2 + y_1y_1'^2 + y_2y_2'^2) dx$.
198. $J = \int (2xy_1 - y_1'^2 + \frac{y_2'^3}{3}) dx$.

2°. Уравнение Гамильтона — Якоби. Теорема Якоби. Каноническая система уравнений Эйлера (7) является системой уравнений Эйлера для функционала

$$J = \int_{x_1}^{x_2} \left[\sum_{k=1}^n p_k y_k' - H(x, y_1, ..., y_n, p_1, ..., p_n) \right] dx,$$

если $y_1, \ldots, y_n, p_1, \ldots, p_n$ рассматривать как неизвестные функции от x.

Данный функционал J является решением уравнения в частных производных первого порядка вида

$$\frac{\partial W}{\partial x} + H\left(x, y_1, \dots, y_n, \frac{\partial W}{\partial y_1}, \frac{\partial W}{\partial y_2}, \dots, \frac{\partial W}{\partial y_n}\right) = 0,$$

которое называется уравнением Гамильтона — Якоби,

Теорем а Якоби. Пусть W является полным интегралом (см. [5]) уравнения Гамильтона— Якоби, удовлетворяющим условию

$$\begin{vmatrix} \frac{\partial^{2}W}{\partial y_{1} \partial C_{1}} & \frac{\partial^{2}W}{\partial y_{1} \partial C_{2}} & \cdots & \frac{\partial^{2}W}{\partial y_{1} \partial C_{n}} \\ \frac{\partial^{2}W}{\partial y_{2} \partial C_{1}} & \frac{\partial^{2}W}{\partial y_{2} \partial C_{2}} & \cdots & \frac{\partial^{2}W}{\partial y_{2} \partial C_{n}} \end{vmatrix} \neq 0.$$

$$\frac{\partial^{2}W}{\partial y_{n} \partial C_{1}} & \frac{\partial^{2}W}{\partial y_{n} \partial C_{2}} & \cdots & \frac{\partial^{2}W}{\partial y_{n} \partial C_{n}} \end{vmatrix}$$

Тогда равенства

$$\frac{\partial W}{\partial C_b} = B_k, \quad \frac{\partial W}{\partial y_b} = p_k \qquad (k = 1, 2, ..., n),$$

еде C_k и B_k — произвольные постоянные, дают решение канонической системы (7), которое зависит от 2n произвольных постоянных.

Пример 4. Найти экстремали функционала

$$J = \int_{x_1}^{x_2} \sqrt{x^2 + y^2} \sqrt{1 + {y'}^2} \, dx$$

при помощи решения уравнения Гамильтона — Якоби.

Решение. Для получения уравнения Гамильтона — Якоби находим гамильтониан данного функционала, Имеем

$$H = -\sqrt{x^2 + y^2 - p^2}$$

Уравнение Гамильтона — Якоби имеет вид

$$\frac{\partial W}{\partial x} - \sqrt{x^2 + y^2 - \left(\frac{\partial W}{\partial y}\right)^2} = 0$$

$$\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2 = x^2 + y^2. \tag{8}$$

или .

Перепишем уравнение (8) в виде

$$\left(\frac{\partial W}{\partial x}\right)^2 - x^2 + \left(\frac{\partial W}{\partial y}\right)^2 - y^2 = 0$$

и применим метод разделения переменных. Ясно, что если потребовать, чтобы

$$\left(\frac{\partial W}{\partial x}\right)^2 - x^2 = -C, \quad \left(\frac{\partial W}{\partial y}\right)^2 - y^2 = C,$$

где С - произвольная постоянная, то уравнение (8) будет удовлетворяться. Отсюда находим

$$\frac{\partial W}{\partial x} = \sqrt{x^2 - C}, \qquad \frac{\partial W}{\partial y} = \sqrt{y^2 + C}.$$

Полный интеграл уравнения (8) будет:

$$W = \int V \overline{x^2 - C} \, dx + \int V \overline{y^2 + C} \, dy =$$

$$= \frac{1}{2} x V \overline{x^2 - C} - \frac{C}{2} \ln|x + V \overline{x^2 - C}| + \frac{1}{2} y V \overline{y^2 + C} +$$

$$+ \frac{C}{2} \ln|y + V \overline{y^2 + C}| + C_0,$$

где C и C_0 — произвольные постоянные. Общее решение уравнения Эйлера данного функционала найдем из соотношения $\frac{\partial W}{\partial C} = \frac{\widetilde{A}}{2}$, где \widetilde{A} — произвольная постоянная. Имеем

$$-\frac{x}{4\sqrt{x^{2}-C}} - \frac{1}{2} |x+\sqrt{x^{2}-C}| + \frac{C}{4\sqrt{x^{2}-C}} + \frac{1}{4\sqrt{y^{2}+C}} + \frac{C}{4\sqrt{y^{2}+C}} + \frac{1}{2} \ln|y+\sqrt{y^{2}+C}| + \frac{C}{4\sqrt{y^{2}+C}} + \frac{1}{4\sqrt{y^{2}+C}} + \frac{\widetilde{A}}{2}.$$

После несложных упрощений получим

$$\ln \left| \frac{y + \sqrt{y^2 + C}}{x + \sqrt{x^2 - C}} \right| = \widetilde{A} \text{ или } \frac{y + \sqrt{y^2 + C}}{x + \sqrt{x^2 - C}} = A \quad \left(A = \pm e^{\widetilde{A}} \right),$$

откуда окончательно будем иметь

$$x^{2} - \frac{1 - A^{2}}{A} xy - y^{2} = C \left(\frac{A^{2} + 1}{2A} \right)^{2}.$$

Это - семейство гипербол.

Найти экстремали следующих функционалов:

$$199. \ J = \int_{x_1}^{x_2} xy \sqrt{y'} \ dx.$$

200.
$$J = \int xyy'^2 dx$$
; $y(1) = 0$, $y(e) = 1$.

201.
$$J = \int_{x_1}^{x_2} G(y) \sqrt{1 + {y'}^2} dx$$
.

202. Найти минимум функционала

$$J = \int_{0}^{1} \left(\frac{1}{2} y'^{2} + y y' + y' + y \right) dx,$$

если значения на концах интервала не даны.

203. Найти функцию поля p(x, y) и само поле экстремалей, проходящих через начало координат, функционала

$$J = \int_{0}^{(x, y)} \frac{\sqrt{1 + {y'}^2}}{y} dx \qquad (y > 0).$$

204. Среди линий, соединяющих прямую x=0 с точкой $M_1(x_1, y_1)$, где $x_1>0$, $y_1>0$, найти ту, которая дает минимум функционалу

$$J = \int_{0}^{x_{1}} \frac{\sqrt{1 + y'^{2}}}{y} dx \qquad (y > 0).$$

Пусть имеется функционал

$$J[y] = \int_{x_{-}}^{x_{2}} F(x, y, y') dx$$

и дано его поле экстремалей $y = \varphi(x, C)$. Тогда в каждой точке поля известно направление трансверсали поля, проходящей через эту точку. Все трансверсали поля получаются как решения дифференциального уравнения первого порядка:

$$F_{y'}[x, \varphi(x, C), \varphi'_{x}(x, C)] \frac{dy}{dx} = H[x, \varphi(x, C), \varphi'_{x}(x, C)],$$

где вместо параметра C, определяющего экстремали поля, надо подставить его выражение через координаты точек поля. Здесь H(x,y,p) — гамильтониан. Пример 5. Найти трансверсали для поля экстремалей

y = Cx функционала

$$J = \int_{x_1}^{x_2} {y'}^2 dx.$$

Решение. Находим гамильтониан данного функционала. Имеем

$$F = {y'}^2$$
, $F_{y'} = 2y'$ $(F_{y'y'} = 2 \neq 0)$.

Полагая $p = F_{y'}$, найдем $y' = \frac{p}{2}$. Тогда

$$H = (-y'^2 + 2y' \cdot y')\Big|_{y' = \frac{p}{2}} = \frac{p^2}{4}.$$

Трансверсали получим, решая дифференциальное уравнение

$$F_{y'}\Big|_{y=Cx}\frac{dy}{dx}=H\Big|_{p=2y'=2C'}$$

где вместо C надо подставить его выражение через координаты точек поля $C=\frac{y}{r}$. Имеем

$$2y' \left| \frac{dy}{dx} = \frac{p^2}{4} \right|_{x=2C} \quad \text{или} \quad 2C \frac{dy}{dx} = C^2.$$

Так как $C \neq 0$, то $2\frac{dy}{dx} = C$ или $2\frac{dy}{dx} = \frac{y}{x}$. Отсюда находим, что семейство трансверсалей $y^2 = \widetilde{C}x -$ параболы.

205. Найти трансверсали для поля экстремалей y = Cx функционала

$$J = \int_{x_1}^{x_2} F(y') dx.$$

206. Найти трансверсали для поля экстремалей y = x + C функционала

$$J = \int_{x_1}^{x_2} (xy'^4 - 2yy'^3) \, dx.$$

207. Найти трансверсали для поля экстремалей $y = x - \frac{x^2}{C}$ функционала

$$J = \int_{x}^{x_2} V \overline{y(1 - {y'}^2)} dx \qquad (C > 0, \ x > 0, \ y \geqslant 0).$$

Зная уравнение Гамильтона — Якоби

$$\frac{\partial W}{\partial x} + H\left(x, y, \frac{\partial W}{\partial y}\right) = 0$$

для функционала

$$J = \int_{x_1}^{x_2} F(x, y, y') dx,$$

можно восстановить подынтегральную функцию F(x, y, y'). Последняя является решением дифференциального уравнения первого порядка

> $F - zF'_{z} = -H(x, y, F'_{z}),$ (9)

где H(x, y, p) — гамильтониан искомого функционала; F(x, y, z) искомая функция (x и y рассматриваются как параметры). После нахождения F(x,y,z) в нее надо подставить вместо zпроизводную у'.

Замечание. Уравнение (9) является уравнением Клеро, Общее решение уравнения Клеро, как правило, отбрасывается, так как в этом случае подынтегральная функция F(x,y,y') будет линейна относительно y' и вариационная задача не всегда разрешима (см. § 4). Поэтому берется только особое решение уравнения Клеро, которое будет являться искомой функцией F(x,y,z). Пример 6. Уравнение Гамильтона — Якоби для задачи об

экстремуме функционала $J = \int_{0}^{x_2} F(x, y, y') dx$ имеет вид

$$\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2 = x^2 + y^2.$$

Найти функцию F(x, y, y'). Решение. Разрешим данное уравнение относительно производной $\frac{\partial W}{\partial x}$. Имеем

$$\frac{\partial W}{\partial x} = \sqrt{x^2 + y^2 - \left(\frac{\partial W}{\partial y}\right)^2}$$

или

$$\frac{\partial W}{\partial x} - \sqrt{x^2 + y^2 - \left(\frac{\partial W}{\partial y}\right)^2} = 0.$$

Следовательно, гамильтониан

$$H = -\sqrt{x^2 + y^2 - p^2}$$

ІГЛ. ІІ

Уравнение (9) для нахождения искомой функции F имеет вчл

$$F - z \frac{dF}{dz} = \sqrt{x^2 + y^2 - \left(\frac{dF}{dz}\right)^2}.$$
 (10)

Продифференцируем по г обе части уравнения (10):

$$\frac{dF}{dz} - \frac{dF}{dz} - z \frac{d^2F}{dz^2} = -\frac{\frac{dF}{dz} \frac{d^2F}{dz^2}}{\sqrt{x^2 + y^2 - \left(\frac{dF}{dz}\right)^2}}.$$

Отбрасывая случай, когда $\frac{d^2F}{dz^2}=0$ (он дает общее решение).

$$z = \frac{\frac{dF}{dz}}{\sqrt{x^2 + y^2 - \left(\frac{dF}{dz}\right)^2}}.$$

Разрешая это соотношение относительно производной $\frac{dF}{dz}$,

$$\frac{dF}{dz} = \frac{z\sqrt{x^2 + y^2}}{\sqrt{1 + z^2}}.$$
 (11)

Подставляя (11) в (10), будем иметь

$$F = z \frac{z\sqrt{x^2 + y^2}}{\sqrt{1 + z^2}} + \sqrt{x^2 + y^2 - \frac{z^2(x^2 + y^2)}{\sqrt{1 + z^2}}} = \frac{\sqrt{x^2 + y^2}\sqrt{1 + z^2}}{\sqrt{1 + z^2}}$$

Таким образом, искомая подынтегральная функция имеет вид

$$F = \sqrt{x^2 + y^2} \sqrt{1 + {y'}^2}.$$

В следующих примерах найти функционалы, если известны их уравнения Гамильтона — Якоби:

208.
$$\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2 = 1$$
.

209.
$$4 \frac{\partial W}{\partial x} \cdot \frac{\partial W}{\partial y} = x^2 y^2$$
.

210.
$$4xy \frac{\partial W}{\partial x} + \left(\frac{\partial W}{\partial y}\right)^2 = 0.$$

211. $\left(x \frac{\partial W}{\partial x}\right)^2 + \left(y \frac{\partial W}{\partial y}\right)^2 = x^2 + y^2.$

3°. Вариационные принципы механики.

а) Принцип Гамильтона — Остроградского. Пусть имеется система n материальных точек $M_k(x_k,y_k,z_k)$ $(k=1,2,\ldots,n)$, массы которых соответственно равны m_k $(k=1,2,\ldots,n)$. Положим, что движение системы подчинено связям

$$\varphi_i(x, y, z, t) = 0$$
 $(j = 1, 2, ..., m)$, $rac{12}{}$

и происходит под действием сил $F_k(X_k, Y_k, Z_k)$ (k = 1, 2, ..., n), имеющих потенциал (силовую функцию) $U = U(x_k, y_k, z_k, t)$:

$$X_k = \frac{\partial U}{\partial x_k}, \quad Y_k = \frac{\partial U}{\partial y_k}, \quad Z_k = \frac{\partial U}{\partial z_k}.$$

Кинетическая энергия этой системы будет равна

$$T = \frac{1}{2} \sum_{k=1}^{n} m_k \left(\dot{x}_k^2 + \dot{y}_k^2 + \dot{z}_k^2 \right).$$

Пусть из некоторого положения A, соответствующего моменту времени $t=t_0$, эта система переместилась к моменту времени $t=t_1$ в положение B. Из всех возможных перемещений системы из A в B выбирается класс допустимых движений, а именно тех движений, которые совместимы с заданными связями и в заданный промежуток времени $[t_0,t_1]$ переводят систему из A в B.

Действительное движение системы из положения A в положение B удовлетворяет необходимому условию $\delta J=0$ экстре-

мума интеграла

$$J = \int_{t_0}^{t_1} (T + U) dt. \tag{13}$$

Каждому допустимому движению системы соответствует 3n функций $x_k(t)$, $y_k(t)$, $z_k(t)$ ($k=1,\ 2,\ \ldots,\ n$), определенных в промежутке $[t_0,t_1]$, удовлетворяющих уравнениям (12) и имеющих заданные значения на концах промежутка $[t_0,t_1]$. Таким образом, имеем вариационную задачу со связями (12) и закрепленными границами.

Для <u>р</u>ешения этой задачи составляется вспомогательная

Функция Лагранжа

$$F = T + U + \sum_{j=1}^{m} \lambda_{j}(t) \varphi_{j}$$

и для нее выписывается система уравнений Эйлера — Остроградского:

$$m_{k}\ddot{x}_{k} - X_{k} - \sum_{j=1}^{m} \lambda_{j}(t) \frac{\partial \varphi_{j}}{\partial x_{k}} = 0,$$

$$m_{k}\ddot{y}_{k} - Y_{k} - \sum_{j=1}^{m} \lambda_{j}(t) \frac{\partial \varphi_{j}}{\partial y_{k}} = 0,$$

$$m_{k}\ddot{z}_{k} - Z_{k} - \sum_{j=1}^{m} \lambda_{j}(t) \frac{\partial \varphi_{j}}{\partial z_{k}} = 0.$$

$$(14)$$

Уравнения (14) совпадают с дифференциальными уравнениями действительного движения системы.

6) Принцип наименьшего действия в форме Лагранжа. Пусть связи φ_j и потенциал U не зависят от времени t. В этом случае имеет место интеграл энергии T-U=h= const. Интеграл

$$J = \int_{t_1}^{t_1} T \ dt$$

называется действием. Из интеграла (13) следует, что

$$\int_{t_1}^{t_1} (T+U) dt = 2 \int_{t_0}^{t_1} T dt - \int_{t_0}^{t_1} h dt.$$

Для действительного движения, по принципу Гамильтона — Остроградского, интеграл действия должен иметь минимальное значение:

$$J = \int_{t_1}^{t_1} T \ dt = \min.$$

Принципу наименьшего действия можно придать форму Якоби:

$$\int_{V} \sqrt{2(U+h)} \, ds = \min$$

(ds — дифференциал дуги ү), в которой исключено время.

Замечание 1. Здесь считаются допустимыми движениями такие, которые удовлетворяют уравнениям связи $\phi_i(x,y,z)=0$ $(j=1,2,\ldots,m)$ и уравнению T-U=h с тем же самым значением h, что и для действительного движения, и которые имеют

фиксированное начальное и конечное положения и фиксированный начальный момент времени t_0 . Конечный момент времени для них не фиксирован.

Замечание 2. Потенциальная энергия входит не в интеграл, а в дополнительное условие T-U=h. Составляем вспо-

могательную функцию Лагранжа

$$F = \frac{1}{2}T + \frac{1}{2}(U+h) + \sum_{i=1}^{m} \lambda_{i} \varphi_{i}.$$

Затем пишем уравнения Эйлера — Остроградского нашей задачи, которые являются уравнениями действительного движения:

$$\begin{split} m_k \ddot{x}_k &= \frac{\partial U}{\partial x_k} + 2 \sum_{j=1}^m \lambda_j \, \frac{\partial \varphi_j}{\partial x_k}, \\ m_k \ddot{y}_k &= \frac{\partial U}{\partial y_k} + 2 \sum_{j=1}^m \lambda_j \, \frac{\partial \varphi_j}{\partial y_k}, \\ m_k \ddot{z}_k &= \frac{\partial U}{\partial z_k} + 2 \sum_{j=1}^m \lambda_j \, \frac{\partial \varphi_j}{\partial z_k}. \end{split}$$

Пример 7. Исходя из принципа наименьшего действия, найти траекторию материальной точки (единичной массы), движущейся под действием силы тяжести.

Решение. Направим ось Оу вверх, тогда потенциал силы

тяжести будет равен

$$U = -gy. (15)$$

Согласно принципу наименьшего действия на искомой траекторин γ интеграл

$$J = \int_{\mathcal{V}} \sqrt{2(U+h)} \, ds \tag{16}$$

должен иметь минимальное значение. Следовательно, траектория точки будет экстремалью функционала (16). Подставляя (15) в (16), получим

$$J = \int_{x_1}^{x_2} \sqrt{2(h - gy)} \sqrt{1 + {y'}^2} dx.$$
 (17)

Уравнение Гамильтона — Якоби имеет вид

$$\frac{\partial W}{\partial x} - \sqrt{2h - 2gy - \left(\frac{\partial W}{\partial y}\right)^2} = 0$$

или

$$\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2 = 2 (h - gy).$$

Его полный интеграл будет

$$W = Ax + \int V \frac{2h - 2gy - A^2}{2gy - A^2} dy =$$

$$= Ax - \frac{1}{3g} (2h - 2gy - A^2)^{3/2} + B,$$

где A и B — произвольные постоянные. Находим экстремали функционала (17):

$$x + \frac{A}{g} (2h - 2gy - A^2)^{1/2} = C$$

или

$$y = \frac{h}{g} - \frac{A^2}{2g} - \frac{g}{2A^2} (x - C)^2;$$
 A if $C = \text{const.}$

В частности, экстремали, проходящие через начало координат, найдем из условия y(0)=0. Получаем однопараметрическое семейство парабол

$$y = -\frac{g}{2A^2} x^2 + \frac{\sqrt{2h - A^2}}{A} x.$$

212. Найти траекторию движения точки в плоскости под действием силы отталкивания от оси Ox, пропорциональной расстоянию точки до этой прямой и направленной параллельно оси Oy при условии, что интеграл живой силы имеет вид $\frac{v^2}{2} - \frac{y^2}{2} = 0$, исходя из интеграла действия

$$J = \int_{x_1}^{x_2} y \sqrt{1 + {y'}^2} \, dx \qquad (y > 0).$$

- 213. Материальная точка описывает окружность $\rho=2R\cos\varphi$ (ρ , ϕ —полярные координаты) радиуса R под действием центральной силы $\frac{k}{\rho^5}$, обратно пропорциональной пятой степени расстояния от центра, находящегося в начале координат. Показать, что на любой дуге этой окружности $\left(-\frac{\pi}{2} < \phi_1 \leqslant \phi \leqslant \phi_2 < \frac{\pi}{2}\right)$ интеграл действия достигает сильного минимума.
- 214. Изучить движение материальной точки под действием притягивающей центральной силы, пропорциональной расстоянию от центра О, исходя из принципа наименьшего действия и применяя метод Гамильтона Якоби.

ГЛАВА III

ПРЯМЫЕ МЕТОДЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

§ 13. Конечно-разностный метод Эйлера

Пусть дана простейшая вариационная задача: найти экстремум функционала

$$J[y(x)] = \int_{a}^{b} F(x, y, y') dx; \quad y(a) = A, \quad y(b) = B.$$
 (1)

В методе Эйлера значения функционала (1) рассматриваются не на произвольных, допустимых в данной вариационной задаче кривых, а лишь на ломаных, составленных из заданного числа n прямолинейных звеньев, c заданными асбциссами вершин

$$a + \Delta x$$
, $a + 2 \Delta x$, ..., $a + (n-1) \Delta x$, right $\Delta x = \frac{b-a}{n}$.

На этих ломаных функционал J[y(x)] превращается в функцию $\Phi(y_1, y_2, \ldots, y_{n-1})$ ординат $y_1, y_2, \ldots, y_{n-1}$ вершин ломаной. Ординаты $y_1, y_2, \ldots, y_{n-1}$ выбираются так, чтобы функция $\Phi(y_1, y_2, \ldots, y_{n-1})$ достигала экстремума, т. е. они определяются из системы уравнений

$$\frac{\partial \Phi}{\partial y_1} = 0, \quad \frac{\partial \Phi}{\partial y_2} = 0, \dots, \quad \frac{\partial \Phi}{\partial y_{n-1}} = 0.$$
 (2)

Полученная ломаная является приближенным решением вариационной задачи (1).

Пример. Найти приближенное решение задачи о минимуме функционала

$$J[y(x)] = \int_{0}^{1} (y'^{2} + 2y) dx; \quad y(0) = y(1) = 0.$$

Решение. Возьмем
$$\Delta x = \frac{1-0}{5} = 0.2$$
 и положим $y_0 = y(0) = 0$. $y_1 = y(0.2)$, $y_2 = y(0.4)$, $y_3 = y(0.6)$, $y_4 = y(0.8)$, $y_5 = y(1) = 0$.

Значения производных приближенно заменим по формуле

$$y'_k = y'(x_k) \approx \frac{y_{k+1} - y_k}{\Lambda r}$$
.

Тогда

$$y'(0) = \frac{y_1 - 0}{0.2}$$
, $y'(0.2) = \frac{y_2 - y_1}{0.2}$, $y'(0.4) = \frac{y_3 - y_2}{0.2}$, $y'(0.6) = \frac{y_4 - y_3}{0.2}$, $y'(0.8) = \frac{0 - y_4}{0.2}$.

Данный интеграл заменяем суммой по формуле прямоугольников

$$\int_{a}^{b} f(x) dx \approx [f(a) + f(x_1) + f(x_2) + \dots + f(x_{n-1})] \Delta x.$$

Будем иметь

$$\Phi (y_1, y_2, y_3, y_4) = \left[\left(\frac{y_1}{0,2} \right)^2 + \left(\frac{y_2 - y_1}{0,2} \right)^2 + 2y_1 + \left(\frac{y_3 - y_2}{0,2} \right)^2 + 2y_2 + \left(\frac{y_4 - y_3}{0,2} \right)^2 + 2y_3 + \left(-\frac{y_4}{0,2} \right)^2 + 2y_4 \right] \cdot 0.2.$$

Составляем систему уравнений для определения ординат y_1 , y_2 , y_3 , y_4 искомой ломаной:

$$\frac{1}{0,2} \cdot \frac{\partial \Phi}{\partial y_1} = \frac{y_1}{0,02} - \frac{y_2 - y_1}{0,02} + 2 = 0,$$

$$\frac{1}{0,2} \cdot \frac{\partial \Phi}{\partial y_2} = \frac{y_2 - y_1}{0,02} - \frac{y_3 - y_2}{0,02} + 2 = 0,$$

$$\frac{1}{0,2} \cdot \frac{\partial \Phi}{\partial y_3} = \frac{y_3 - y_2}{0,02} - \frac{y_4 - y_3}{0,02} + 2 = 0,$$

$$\frac{1}{0,2} \cdot \frac{\partial \Phi}{\partial y_4} = \frac{y_4 - y_3}{0,02} + \frac{y_4}{0,02} + 2 = 0$$

ИЛИ

$$2y_1 - y_2 = -0.04,$$

$$-y_1 + 2y_2 - y_3 = -0.04,$$

$$-y_2 + 2y_3 - y_4 = -0.04,$$

$$-y_3 + 2y_4 = -0.04.$$

Решение этой системы $y_1 = -0.08$, $y_2 = -0.12$, $y_3 = -0.12$, $y_4 = -0.08$. Значения точного решения $y = \frac{x^2 - x}{2}$ в соответствующих точках совпадают со значениями приближенного решения.

Найти приближенные решения задач о минимуме функционалов:

215.
$$J[y] = \int_{0}^{1} (y'^{2} + y^{2} + 2xy) dx; \quad y(0) = y(1) = 0.$$

Указание. Взять $\Delta x = 0.2$.

216.
$$J[y] = \int_0^1 (y'^2 + 1) dx;$$

a)
$$y(0) = 0$$
, $y(1) = 0$,

6)
$$y(0) = 0$$
, $y(1) = 1$.

§ 14. Метод Ритца. Метод Канторовича

1°. Метод Ритца. Идея метода состоит в том, что при разыскании экстремума функционала $J\left[y\left(x\right)\right]$ рассматривается не все пространство допустимых функций, а лишь всевозможные линейные комбинации допустимых функций вида

$$y_n(x) = \sum_{i=1}^n \alpha_i \varphi_i(x), \tag{1}$$

где α_i — постоянные, а система $\{\phi_i(x)\}$, называемая системой координатных функций, такова, что функции $\phi_i(x)$ линейно независимы и образуют в рассматриваемом пространстве полную

систему функций.

Требование, чтобы $y_n(x)$ были допустимыми функциями, вообще говоря, накладывает на координатные функции $\varphi_i(x)$ некоторые дополнительные условия типа условий гладкости или удовлетворения граничным условиям. На таких линейных комбинациях функционал J[y(x)] обращается в функцию аргументов $\alpha_1, \alpha_2, \ldots, \alpha_n$:

$$J[y_n(x)] = \Phi(\alpha_1, \alpha_2, \ldots, \alpha_n). \tag{2}$$

Находим те значения $\alpha_1, \alpha_2, \ldots, \alpha_n$, которые доставляют функции $\Phi(\alpha_1, \alpha_2, \ldots, \alpha_n)$ экстремум; для этого решаем систему, вообще говоря, нелинейных относительно $\alpha_1, \alpha_2, \ldots, \alpha_n$ уравнений

$$\frac{\partial \Phi}{\partial \alpha_i} = 0 \qquad (i = 1, 2, ..., n), \tag{3}$$

и найденные значения α_i подставляем в (1). Полученная таким образом последовательность $\{y_n(x)\}$ является минимизирующей последовательностью, т. е. такой, для которой последовательность значений функционала $\{J[y_n(x)]\}$ сходится к минимуму или к нижней грани значений функционала J[y]. Однако из того, что

$$\lim_{n\to\infty}J\left[y_{n}\left(x\right)\right]=\min J\left[y\left(x\right)\right],$$

еще не следует, что $\lim_{n\to\infty} y_n(x) = y(x)$. Минимизирующая последовательность может и не стремиться к функции, реализующей экстремум в классе допустимых функций.

Можно указать условия, обеспечивающие существование абсолютного минимума функционала и его достижение на функ-

циях $\{y_n(x)\}.$

В случае, когда ищется экстремум функционала

$$J[y(x)] = \int_{x_1}^{x_2} F(x, y, y') dx,$$

$$y(x_1) = y_1, \quad y(x_2) = y_2,$$

эти условия таковы:

1. Функция F(x, y, z) непрерывна по совокупности своих аргументов при любом z и при $(x, y) \in D$, где D— замкнутая область плоскости XOY, в которой лежат линии $y_n(x)$.

2. Существуют константы $\alpha > 0$, p > 1, β , для которых

$$F(x, y, z) \geqslant \alpha |z|^p + \beta$$

каково бы ни было z и для любой точки $(x,y) \in D$.

3. Функция F(x,y,z) имеет непрерывную частную производную $F_z(x,y,z)$, причем эта производная для любой точки $(x,y) \in D$ есть неубывающая функция от $z \ (-\infty < z < +\infty)$.

Сформулированные выше условия выполняются, в частности,

для функционалов вида

$$J[y] = \int_{x_1}^{x_2} [p(x) y'^2 + q(x) y^2 + 2r(x) y] dx,$$

$$y(x_1) = a, \quad y(x_2) = b,$$

где p(x), q(x), r(x) — заданные непрерывные на $[x_1, x_2]$ функции, причем p(x) имеет непрерывную производную p'(x) и p(x) > 0, $q(x) \geqslant 0$.

Если таким методом определяется абсолютный экстремум функционала, то приближенное значение минимума функционала получается с избытком, а максимума — с недостатком. От удачного выбора системы координатных функций $\{\phi_i(x)\}$ в значительной степени зависит успех применения этого метода.

Во многих случаях досгаточно взять линейную комбинацию двух-трех функций $\phi_i(x)$ для того, чтобы получить вполне удо-

влетворительное приближение к точному решению,

В случае, когда приходится находить приближенно экстремум функционалов $J[z(x_1, x_2, \ldots, x_n)]$, зависящих от функций нескольких независимых переменных, выбирается координатная система функций

$$\varphi_1(x_1, x_2, \ldots, x_n), \varphi_2(x_1, x_2, \ldots, x_n), \ldots, \varphi_m(x_1, x_2, \ldots, x_n), \ldots$$

и приближенное решение вариационной задачи ищется в виде

$$z_m = \sum_{k=1}^{m} \alpha_k \varphi_k (x_1, x_2, ..., x_n),$$

где коэффициенты α_k — некоторые постоянные числа. Для определения их аналогично предыдущему составляем систему уравафо

нений $\frac{\partial \Phi}{\partial \alpha_k} = 0$ (k = 1, 2, ..., n), где $\Phi(\alpha_1, \alpha_2, ..., \alpha_n)$ — ре-

зультат подстановки z_m в функционал J[z].

Пример 1. Найти приближенное решение задачи о минимуме функционала

$$J[y] = \int_{0}^{1} (y'^{2} - y^{2} + 2xy) dx, \tag{4}$$

$$y(0) = y(1) = 0 (5)$$

и сравнить с точным решением.

Решение. Систему координатных функций $\phi_k(x)$ выберем так:

$$\varphi_k(x) = (1-x) x^k \qquad (k=1, 2, \ldots).$$

Функции $\phi_h(x)$, очевидно, удовлетворяют краевым условиям $\phi_h(0) = \phi_h(1) = 0$, являются линейно независимыми и представляют в пространстве $C_1[0, 1]$ полную систему.

При k=1 получаем $y_1(x)=\alpha_1(x-x^2)$. Подставляя это

выражение для $y_1(x)$ в функционал (4), получим

$$J[y_1(x)] = \int_0^1 \left[\alpha_1^2 (1 - 2x)^2 - \alpha_1^2 (x - x^2)^2 + 2\alpha_1 x (x - x^2) \right] dx =$$

$$= \int_0^1 \left[\alpha_1^2 (1 - 4x + 4x^2 - x^2 + 2x^3 - x^4) + 2\alpha_1 (x^2 - x^3) \right] dx =$$

$$= \frac{3}{10} \alpha_1^2 + \frac{1}{6} \alpha_1 = \Phi(\alpha_1).$$

Коэффициент α1 находим из уравнения

$$\frac{\partial \Phi}{\partial a_1} = \frac{3}{5} a_1 + \frac{1}{6} = 0,$$

о ткуда $a_1 = -\frac{5}{18}$. Следовательно,

$$y_1(x) = -\frac{5}{18}x + \frac{5}{18}x^2.$$

Точное решение. Уравнение Эйлера для данного функционала:

$$y'' + y = x$$
.

Решая это неоднородное линейное уравнение, находим

$$y(x) = C_1 \cos x + C_2 \sin x + x.$$

Используя граничные условия $y\left(0\right)=y\left(1\right)=0$, получим окончательно:

$$y(x) = x - \frac{\sin x}{\sin 1}.$$

Сравним точное решение с приближенным:

x	Точное решение	Приближенное решение
0,00	0	0
0,25	-0,044	-0.052
0,50	-0,070	-0,069
0,75	-0,060	-0,052
1,00	0	0

Пример 2. Найти приближенное решение нелинейного уравнення

$$y'' = \frac{3}{2} y^2,$$

удовлетворяющее условиям y(0) = 4, y(1) = 1.

Решение. Этой краевой задаче отвечает вариационная задача

$$J[y] = \int_{0}^{1} (y'^{2} + y^{3}) dx; \quad y(0) = 4, \quad y(1) = 1.$$

Будем искать решение в виде

$$y_1(x) = 4 - 3x + \alpha_1(x - x^2),$$

где, очевидно, $y_1(x)$ при любом значении α_1 удовлетворяет заданным краевым условиям.

Имеем

$$J[y_1] = \int_0^1 \{ [a_1(1-2x)-3]^2 + [4-3x+a_1(x-x^2)]^3 \} dx,$$

откуда

$$\frac{\partial J[y_1]}{\partial \alpha_1} = \int_0^1 \{(1-2x) \cdot 2 \left[\alpha_1 \left(1-2x\right) - 3\right] + 3 \left(x-x^2\right) \left[4-3x+\alpha_1 \left(x-x^2\right)\right]^2\} dx.$$

Условие
$$\frac{\partial J[y_1]}{\partial a_1} = 0$$
 принимает вид $9a_1^2 + 490a_1 + 1407 = 0$,

так что для $\alpha_1 = -3.0413$ получаем всюду положительное решение задачи

$$y_1(x) = 3,0413x^2 - 6,0413x + 4.$$

Найти приближенные решения следующих задач о минимуме функционалов. Сравнить с точным решением.

217.
$$J[y(x)] = \int_{0}^{1} (y'^{2} + 2y) dx$$
; $y(0) = y(1) = 0$.

218.
$$J[y(x)] = \int_{0}^{2} (2xy + y^{2} + y'^{2}) dx$$
; $y(0) = y(2) = 0$.

219. Найти приближенное решение задачи о минимуме интеграла

$$J[y(x)] = \int_{-1}^{1} (y'^{2} - k^{2}y^{2}) dx; \quad y(-1) = y(1) = 0,$$

при дополнительном условии $\int_{1}^{1} y^{2}(x) dx = 1.$

 Π р и м е р 3. Найти приближенное решение задачи об экстремуме функционала

$$J[z(x, y)] = \int_{D} \left[\left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial y} \right)^{2} - 2z \right] dx dy,$$

где D — квадрат: — $a\leqslant x\leqslant a$, — $a\leqslant y\leqslant a$ и на границе квадрата z=0.

Решение. Приближенное решение будем искать в виде

$$z_0(x, y) = \alpha_0(x^2 - a^2)(y^2 - a^2).$$

Далее,

Очевидно, так построенная функция $z_0(x, y)$ удовлетворяет поставленным граничным условиям. Подставляя $z_0(x, y)$, $z_{0x}'(x, y)$ и $z_{0y}'(x, y)$ в функционал, получим после интегрирования

$$I[z_0] = \frac{256}{45} \alpha_0^2 a^8 - \frac{32}{9} \alpha_0 a^6 = \Phi(\alpha_0).$$

$$\frac{\partial \Phi}{\partial \alpha_0} = \frac{512}{45} \alpha_0 a^8 - \frac{32}{9} a^6 = 0,$$

откуда
$$\alpha_0 = \frac{5}{16a^2}$$
, так что $z_0 (x, y) = \frac{5}{16a^2} (x^2 - a^2) (y^2 - a^2)$.

220. Найти приближенное решение задачи об экстремуме функционала

$$J[z(x, y)] = \int_{D} \left[\left(\frac{\partial z}{\partial x} - y \right)^{2} + \left(\frac{\partial z}{\partial y} + x \right)^{2} \right] dx dy,$$

где D — область, ограниченная эллипсом $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$.

221. Найти приближенное решение $z_3(x, y)$ задачи о минимуме функционала

$$J[z(x, y)] = \int_{D} \int \left[\left(\frac{\partial z}{\partial x} \right)^{2} + \left(\frac{\partial z}{\partial y} \right)^{2} \right] dx dy,$$

где область D: x > 0, y > 0, x + y < 1, и функция z(x, y) удовлетворяет на границе $\Gamma: x = 0$, y = 0, x + y = 1, условию $z|_{\Gamma} = x^2 + y^2$.

2°. Метод Канторовича. Этот метод занимает промежуточное положение между точным решением задачи и методом Ритца и применяется для исследования на экстремум функционалов

$$I[z(x_1, x_2, ..., x_n)], (6)$$

зависящих от функций нескольких независимых переменных $(n \ge 2)$. Как и в случае метода Ритца, выбираем координатную систему функций $\{ \phi_k(x_1, x_2, \ldots, x_n) \}$ и приближенное решение ищем в виде

$$z_{m} = \sum_{k=1}^{m} \alpha_{k} (x_{j}) \varphi_{k} (x_{1}, x_{2}, ..., x_{n}), \tag{7}$$

но теперь коэффициенты $\alpha_h(x_j)$ являются неизвестными функциями одной из независимых переменных.

Функционал (6) на функциях вида (7) превращается в функционал $\widetilde{I}[\alpha_1(x_j), \alpha_2(x_j), \ldots, \alpha_m(x_j)]$, зависящей от m функций

 $\alpha_1(x_j), \ \alpha_2(x_j), \ \dots, \ \alpha_m(x_j).$ Эти функции выбираются так, чтобы функционал \widetilde{J} достигал экстремума, и определяются из необходимых условий экстремума функционала \widetilde{J} .

Используя метод Канторовича, получаем приближенное решение, вообще говоря, более точное, чем в методе Ритца при тех же координатных функциях $\{\varphi_h(x_1, x_2, \ldots, x_n)\}$ и с тем же числом m членов приближения.

Пример 4. Найти приближенное решение уравнения Пуассона

$$\Delta z = -1$$
 в прямоугольнике $D: \begin{cases} -a \leqslant x \leqslant a, \\ -b \leqslant y \leqslant b \end{cases}$ (8)

при условии z = 0 на контуре.

 \dot{P} е ш е н и е. Уравнение $\Delta z = -1$ является уравнением Эйлера — Остроградского для функционала

$$J[y] = \int \int \left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 - 2z \right] dx dy.$$
 (9)

Решение ищем в виде

$$z_1(x, y) = (b^2 - y^2) \alpha(x)$$

функция $z_1(x,y)$, очевидно, удовлетворяет граничным условиям (8) на прямых $y=\pm b$.

Подставляя это значение z_1 в функционал (9), находим

$$J[z_1] = \int_{-a}^{a} \left(\frac{16}{15} b^5 {\alpha'}^2 + \frac{8}{3} b^3 \alpha^2 - \frac{8}{3} b^3 \alpha \right) dx. \tag{10}$$

Уравнение Эйлера для функционала (10)

$$\alpha'' - \frac{5}{2h^2}\alpha = -\frac{5}{4h^2}.$$
 (11)

Уравнение (11) есть линейное однородное уравнение с постоянными коэффициентами и его общее решение:

$$\alpha(x) = C_1 \text{ ch } \sqrt{\frac{5}{2}} \frac{x}{b} + C_2 \text{ sh } \sqrt{\frac{5}{2}} \frac{x}{b} + \frac{1}{2}.$$

Постоянные C_1 и C_2 находим из граничных условий

$$\alpha(-a) = \alpha(a) = 0.$$

что дает $C_2 = 0$, $C_1 = -\frac{1}{2 \text{ ch } \sqrt{\frac{5}{2} \frac{a}{h}}}$, так что

$$\alpha(x) = \frac{1}{2} \left[1 - \frac{\operatorname{ch} \sqrt{\frac{5}{2}} \frac{x}{b}}{\operatorname{ch} \sqrt{\frac{5}{2}} \frac{a}{b}} \right].$$

Таким образом, получаем

164

$$z_{1}(x, y) = \frac{b^{2} - y^{2}}{2} \left[1 - \frac{\operatorname{ch} \sqrt{\frac{5}{2}} \frac{x}{b}}{\operatorname{ch} \sqrt{\frac{5}{2}} \frac{a}{b}} \right].$$

Для получения более точного приближения можно искать решение задачи в виде

$$z_2(x, y) = (b^2 - y^2) \alpha_1(x) + (b^2 - y^2)^2 \alpha_2(x).$$

222. Найти приближенное решение уравнения Пуассона $\Delta z = -1$ в области D, являющейся равносторонним треугольником, ограниченным прямыми $y = \pm \frac{\sqrt{3}}{3} x$ и x = b, обращающееся в нуль на границе этой области.

223. Найти приближенное решение уравнения $\Delta z = -1$ в области D, являющейся равнобочной трапецией, ограниченной прямыми $y = \pm \frac{\sqrt{3}}{3} x$ и x = 1, x = 3, обращающееся в нуль на границе этой области.

§ 15. Вариационные методы нахождения собственных значений и собственных функций

Уравнение Штурма — Лиувилля

$$-\frac{d}{dx}(p(x)y') + q(x)y = \lambda y, \tag{1}$$

где p(x)>0 имеет непрерывную производную, q(x) — непрерывна, при условиях

$$y(a) = 0, y(b) = 0$$
 (2)

для любого действительного или комплексного λ всегда имеет нулевое (тривиальное) решение $y \equiv 0$.

Совокупность уравнения (1) и граничных условий (2) назы-

вают краевой задачей Штурма — Лиувилля (1) — (2).

Те значения параметра λ , при которых краевая задача (1)—(2) имеет нетривиальные решения $y(x) \not\equiv 0$, называются собственными значениями, а сами эти решения— собственными функциями данной краевой задачи.

Уравнение (1) есть уравнение Эйлера, отвечающее следующей задаче на условный экстремум: найти минимум функцио-

нала

$$J[y] = \int_{a}^{b} (\rho y'^{2} + q y^{2}) dx$$
 (3)

при условиях (2) и условии

$$\int_{a}^{b} y^{2}(x) dx = 1.$$
(4)

Если некоторая функция y(x) будет решением этой вариационной задачи, то она будет и решением задачи (1) — (2), отличным от тождественного нуля в силу условия (4). Поэтому собственные значения и собственные функции краевой задачи Штурма — Лиувилля называют также собственными значениями и собственными функциями функционала (3) при условиях (2)

Собственная функция y(x) называется нормированной, если

$$\int_{a} y^{2}(x) dx = 1.$$

Пример 1. Найти собственные значения и собственные функции функционала

$$J[y] = \int_{0}^{3} \left[(2x+3)^{2} y'^{2} - y^{2} \right] dx \tag{5}$$

при условиях

$$y(0) = 0, y(3) = 0,$$
 (6)

$$y(0) = 0,$$
 $y(3) = 0,$ (6)
$$\int_{0}^{3} y^{2}(x) dx = 1.$$
 (7)

Решение. Уравнение Штурма — Лиувилля имеет вид

$$-y - \frac{d}{dx}[(2x+3)^2y'] = \lambda y$$

или

$$(2x+3)^2 y'' + 4 (2x+3) y' + (\lambda+1) y = 0.$$
 (8)

Уравнение (8) подстановкой $2x + 3 = e^t$ сводится к линейному уравнению ([11], стр. 143) с постоянными коэффициентами

$$4\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + (\lambda + 1) y = 0.$$
 (9)

Его характеристическое уравнение

$$4k^2 + 4k + \lambda + 1 = 0 \tag{10}$$

имеет корни

$$k_{1,2} = -\frac{1}{2} \pm \frac{1}{2} \sqrt{-\lambda}$$
.

Рассмотрим три случая.

1) $\lambda < 0$. Тогда общее решение уравнения (9) будет

$$y(t) = C_1 e^{k_1 t} + C_2 e^{k_2 t},$$

где k_1 и k_2 — действительные числа, а значит, общее решение уравнения (8):

$$y(x) = C_1 (2x+3)^{k_1} + C_2 (2x+3)^{k_2}$$

Граничные условия (6) дают

$$C_1 \cdot 3^{k_1} + C_2 3^{k_2} = 0,$$

$$C_1 \cdot 9^{k_1} + C_2 9^{k_2} = 0,$$

откуда $C_1 = 0$, $C_2 = 0$ и y(x) = 0. 2) $\lambda = 0$. Тогда

$$y(t) = (C_1 + C_2 t) e^{-\frac{t}{2}},$$

а значит.

$$y(x) = [C_1 + C_2 \ln [(2x+3)] \frac{1}{\sqrt{2x+3}}$$

Из граничных условий получаем

$$C_1 + C_2 \ln 3 = 0,$$

 $C_1 + C_2 \ln 9 = 0,$

откуда $C_1 = 0$, $C_2 = 0$, а значит, y(x) = 0.

3) $\lambda > 0$. Тогда $k_{1, 2} = -\frac{1}{2} \pm i \frac{\sqrt{\lambda}}{2}$ и общее решение уравнения (9):

$$y(t) = e^{-\frac{t}{2}} \left(C_1 \cos \frac{\sqrt{\lambda}}{2} t + C_2 \sin \frac{\sqrt{\lambda}}{2} t \right).$$

Переходя к переменной x, получим

$$y(x) = \frac{C_1 \cos\left[\frac{\sqrt{\lambda}}{2} \ln(2x+3)\right] + C_2 \sin\left[\frac{\sqrt{\lambda}}{2} \ln(2x+3)\right]}{\sqrt{2x+3}}.$$
 (11)

Граничные условия (6) дают

$$C_{1} \cos\left(\frac{\sqrt{\lambda}}{2} \ln 3\right) + C_{2} \sin\left(\frac{\sqrt{\lambda}}{2} \ln 3\right) = 0,$$

$$C_{1} \cos\left(\frac{\sqrt{\lambda}}{2} \ln 9\right) + C_{2} \sin\left(\frac{\sqrt{\lambda}}{2} \ln 9\right) = 0.$$
(12)

Система (12) будет иметь нетривиальные решения, когда ее определитель равен нулю:

$$\begin{vmatrix} \cos\left(\frac{\sqrt{\lambda}}{2} \ln 3\right) \sin\left(\frac{\sqrt{\lambda}}{2} \ln 3\right) \\ \cos\left(\frac{\sqrt{\lambda}}{2} \ln 9\right) \sin\left(\frac{\sqrt{\lambda}}{2} \ln 9\right) \end{vmatrix} = 0$$

или $\sin\left(\sqrt{\lambda} \ln 3 - \frac{\sqrt{\lambda}}{2} \ln 3\right) = 0$, т. е. $\sin\left(\frac{\sqrt{\lambda}}{2} \ln 3\right) = 0$, от-

куда $\frac{\sqrt[3]{\lambda}}{2} \ln 3 = n\pi$. Собственные значения будут:

$$\lambda_n = \frac{4n^2\pi^2}{\ln^2 3}$$
 $(n = 1, 2, ...).$

Беря любое уравнение системы (12), например первое, и подставляя в него λ_n вместо λ , получим

$$C_1 \cos n\pi + C_2 \sin n\pi = 0$$

или $C_1(-1)^n=0$, откуда $C_1=0$. Положив в (11) $C_1=0$ и $\lambda_n=\frac{4n^2\pi^2}{\ln^2 3}$, получим собственные функции данной задачи

$$y_n(x) = C_n \frac{\sin\left[\frac{n\pi \ln(2x+3)}{\ln 3}\right]}{\sqrt{2x+3}}$$
 $(n = 1, 2, ...).$

Коэффициенты C_n находим из условия нормировки

$$\int\limits_{0}^{3}y_{n}^{2}\left(x\right) dx=1,$$

что дает

$$C_n = \pm \frac{2}{\sqrt{\ln 3}},$$

а значит,

$$y_n(x) = \pm \frac{2}{V \ln 3} \frac{\sin \left[\frac{n\pi \ln (2x+3)}{\ln 3} \right]}{V \cdot 2x+3}$$
 $(n = 1, 2, ...).$

В следующих задачах найти собственные значения и собственные функции:

224.
$$J[y] = \int_{0}^{1} (y^{2} + y'^{2}) dx$$
,
 $y(0) = y(1) = 0$, $\int_{0}^{1} y^{2} dx = 1$.

225.
$$J[y] = \int_{1}^{2} x^{2}y'^{2} dx$$
, $y(1) = y(2) = 0$, $\int_{1}^{2} y^{2} dx = 1$.
226. $J[y] = \int_{1}^{e} (6y^{2} + x^{2}y'^{2}) dx$, $y(1) = y(e) = 0$, $\int_{1}^{e} y^{2} dx = 1$.
227. $J[y] = \int_{\pi}^{2\pi} (y^{2} - y'^{2}) dx$, $y(\pi) = y(2\pi) = 0$, $\int_{\pi}^{2\pi} y^{2} dx = 1$.
228. $J[y] = \int_{0}^{1} [3y^{2} - (x + 1)^{2}y'^{2}] dx$, $y(0) = y(1) = 0$, $\int_{1}^{1} y^{2} dx = 1$.

Собственные значения и собственные функции вариационной

задачи (3), (2), (4) обладают рядом важных свойств.

1) Если λ_m и λ_n — два различных собственных значения функционала (3), при условиях (2) и (4), а $y_m(x)$ и $y_n(x)$ — соответствующие им собственные функции, то эти функции $y_m(x)$ и $y_n(x)$ ортогональны, т. е.

$$\int_{a}^{b} y_{m}(x) y_{n}(x) dx = 0 \qquad (m \neq n).$$

2) Все собственные значения λ_n функционала (3) вещественны.

3) Если λ_n есть собственное значение функционала (3), а $y_n(x)$ — соответствующая нормированная собственная функция, то

$$J\left[y_n\left(x\right)\right] = \lambda_n.$$

 Наименьшее из собственных значений совпадает с минимумом функционала (3) при условиях (2) и (4). Пример 2. Доказать неравенство

$$\int_{0}^{\pi} y'^{2}(x) dx \geqslant \int_{0}^{\pi} y^{2}(x) dx, \quad y(0) = y(\pi) = 0.$$

Решение. Найдем min $\int_{0}^{\pi} y'^{2}(x) dx$ при условия $\int_{0}^{\pi} y^{2}(x) dx = 1, \quad y(0) = y(\pi) = 0.$

Уравнение Эйлера для функционала

$$J[y] = \int_{0}^{\pi} [y'^{2}(x) - \lambda y^{2}(x)] dx$$

имеет вид

$$y'' + \lambda y = 0;$$
 $y(0) = 0,$ $y(\pi) = 0.$

Собственные функции последней задачи суть $y_n(x) = \sin nx$, а собственные значения $\lambda_n = n^2$.

Наименьшее собственное значение есть $\lambda_1 = 1$. Поэтому, согласно свойству 4)

$$\min \int_{0}^{\pi} y'^{2}(x) dx = 1.$$

Следовательно, для любой функции y(x), для которой $\int y^2(x) dx = 1, \text{ имеем}$

$$\int_{0}^{\pi} y'^{2}(x) dx \geqslant \int_{0}^{\pi} y^{2}(x) dx.$$

Это неравенство улучшить нельзя, так как при $y_1(x) = \frac{\sin x}{\sqrt{x}}$ имеем

$$\int_{0}^{\pi} y_{1}^{\prime^{2}}(x) dx = \int_{0}^{\pi} y_{1}^{2}(x) dx = 1.$$

3 амечание. Если $\int\limits_{0}^{\pi}y^{2}\left(x\right) dx=k^{2}\neq1$, то задача сво-

дится к предыдущей путем введения функции $z\left(x\right)=\frac{y\left(x\right)}{k}$.

Пользуясь экстремальным определением собственных значений, укажем способы их приближенного вычисления с использованием метода Ритца. При этом следует иметь в виду, что метод Ритца дает для собственного значения приближение с избытком.

Пример 3. Найти приближенно первое собственное значе-

ние задачи

$$y'' + \lambda^2 y = 0,$$

 $y(-1) = y(1) = 0.$

Решение. Задача о минимуме функционала

$$\int_{1}^{1} y'^{2} dx$$

при условиях

$$y(-1) = y(1) = 0$$
 H
$$\int_{-1}^{1} y^{2}(x) dx = 1$$

является изопериметрической задачей и сводится к задаче о минимуме функционала

$$J=\int\limits_{-1}^{1}\left({{{y}'}^{2}}-\lambda ^{2}y^{2}\right) dx,$$

для которой уравнение Эйлера совпадает с заданным дифференциальным уравнением $y'' + \lambda^2 y = 0$; y(-1) = y(1) = 0.

Общее решение уравнения есть $y(x) = C_1 \cos \lambda x + C_2 \sin \lambda x$. Из граничных условий находим

$$\left.\begin{array}{l}
C_1 \cos \lambda - C_2 \sin \lambda = 0, \\
C_1 \cos \lambda + C_2 \sin \lambda = 0,
\end{array}\right\} \tag{13}$$

так что условием существования ненулевого решення системы (13) является условие $\sin 2\lambda = 0$ или $\lambda = \frac{n\pi}{2}$.

Таким образом, для первого собственного значения имеем $\lambda_1^2 = \left(\frac{\pi}{2}\right)^2$ и основной тон струны точно дается решением $y = \cos\frac{\pi x}{2}$, $\lambda = \frac{\pi}{2}$; первый обертон $y = \sin\pi x$, $\lambda = \pi$; второй обертон $y = \cos\frac{3\pi x}{2}$, $\lambda = \frac{3}{2}\pi$ и т. д.

Будем искать для сравнения приближенно четные решения (четные тона струны) в виде многочлена, расположенного по четным степеням x. Возьмем координатные функции в виде $\phi_h(x) = x^{2h-2} - x^{2h}$ ($k=1,\ 2,\ \ldots$) и будем минимизировать функ-

ционал J на функциях $y_m\left(x\right)=\sum_{k=1}^m c_k \varphi_k\left(x\right)$. Ограничиваясь

 $y_1(x)=c_1\phi_1(x)$, будем иметь $J=c_1^2\Big(rac{8}{3}-rac{16}{15}\,\lambda^2\Big)$, так что для определения c_1 получаем

$$\frac{\partial I}{\partial c_1} = 2c_1 \left(\frac{8}{3} - \frac{16}{15} \lambda^2 \right) = 0.$$

И так как должно быть $c_1 \neq 0$, то $\lambda^2 = 2.5$. Беря в качестве $y = c_1 \varphi_1(x) + c_2 \varphi_2(x)$.

найдем

$$J = c_1^2 \left(\frac{8}{3} - \frac{16}{15} \lambda^2 \right) + 2c_1 c_2 \left(\frac{8}{15} - \frac{16}{105} \lambda^2 \right) + c_2^2 \left(\frac{88}{105} - \frac{16}{315} \lambda^2 \right),$$

и для определения с1 и с2 получаем систему

$$\frac{\partial I}{\partial c_1} = c_1 \left(\frac{16}{3} - \frac{32}{15} \lambda^2 \right) + c_2 \left(\frac{16}{15} - \frac{32}{105} \lambda^2 \right) = 0,$$

$$\frac{\partial I}{\partial c_2} = c_1 \left(\frac{16}{15} - \frac{32}{105} \lambda^2 \right) + c_2 \left(\frac{176}{105} - \frac{32}{315} \lambda^2 \right) = 0.$$

Условнем существования ненулевых решений c_1 и c_2 последней системы является равенство нулю определителя системы, что дает $\lambda^4-28\lambda^2+63=0$, откуда $\lambda_1^2=2,46744$, $\lambda_2^2=25,53256$. Сравним найденные приближенные значения λ_1^2 и λ_2^2 с точным. Точное значение λ_1^2 есть $\left(\frac{\pi}{2}\right)^2\approx 2,46740$, точное значение λ_2^2 есть $\left(\frac{3\pi}{2}\right)^2\approx 22,20661$, так что полученное приближение для λ_1^2 весьма точно, в то время как для второго собственного значения получено грубое приближение.

Пример 4. Найти первое собственное значение задачи

$$y'' + \lambda (1 + x^2) y = 0$$
, $y(-1) = y(1) = 0$.

Решение. Возьмем в качестве координатных функций функции $\phi_h(x) = 1 - x^{2h}$ ($k = 1, 2, \ldots$), очевидно удовлетворяющие граничным условиям. Принимая

$$y(x) = c_1(1-x^2) + c_2(1-x^4),$$

поставим задачу о минимизации функционала

$$J[y] = \int_{-1}^{1} [y'^{2} - \lambda (1 + x^{2}) y^{2}] dx,$$

для которого данное уравнение есть уравнение Эйлера. иметь

$$J = c_1^2 \left(\frac{8}{3} - \frac{128}{105} \lambda \right) + 2c_1c_2 \left(\frac{16}{5} - \frac{64}{45} \lambda \right) + c_2^2 \left(\frac{32}{7} - \frac{5888}{3465} \lambda \right).$$

Для определения c_1 и c_2 получаем систему

$$\frac{\partial J}{\partial c_1} = 2c_1 \left(\frac{8}{3} - \frac{128}{105} \lambda \right) + 2c_2 \left(\frac{16}{5} - \frac{64}{45} \lambda \right) = 0,$$

$$\frac{\partial J}{\partial c_2} = 2c_1 \left(\frac{16}{5} - \frac{64}{45} \lambda \right) + 2c_2 \left(\frac{32}{7} - \frac{5888}{3465} \lambda \right) = 0.$$

Условие существования ненулевого решения последней системы лает

$$52\lambda^2 - 1068\lambda + 2079 = 0$$

откуда, взяв меньший корень, находим $\lambda_1 = 2,1775$. Принцип Рэлея. Пусть имеем задачу о собственных значениях

$$L(y) = -\frac{d}{dx} \left(p(x) \frac{dy}{dx} \right) + q(x) y = \lambda r(x) y, \qquad (14)$$

$$\alpha_{1}y(a) + \beta_{1}y'(a) = 0, \quad \alpha_{1}^{2} + \beta_{1}^{2} > 0,
\alpha_{2}y(b) + \beta_{2}y'(b) = 0, \quad \alpha_{2}^{2} + \beta_{2}^{2} > 0,$$
(15)

где p(x), p'(x), q(x), r(x) непрерывны на [a, b]; p(x) > 0 на Φ ункцию y(x) назовем допустимой ($y \in D$), если дважды непрерывно дифференцируема и удовлетворяет краевым условиям (15).

Предположим, что для каждой допустимой функции y(x) вы-

полняется условие:

$$\int_{a}^{b} yL(y) dx \geqslant 0.$$

В этом случае краевая задача (14) - 15) имеет лишь действительные собственные значения λ.

Задаче о собственных значениях можно поставить в соответствие следующую вариационную задачу:

среди всех допустимых функций y(x) таких, что

$$\int_{a}^{b} r(x) \ y^2 \ dx > 0, \tag{16}$$
 найти такую, для которой $\frac{\int_{a}^{b} y L(y) \ dx}{\int_{a}^{b}} = \min$

Пусть $y = \psi_1(x)$ есть решение этой задачи. Если λ1 есть минимальное значение, т. е. если

$$\lambda_{1} = \min_{y \in D} \frac{\int\limits_{a}^{b} yL(y) dx}{\int\limits_{a}^{b} r(x) y^{2} dx} = \frac{\int\limits_{a}^{b} \psi_{1}L(\psi_{1}) dx}{\int\limits_{a}^{b} r\psi_{1}^{2} dx},$$

то λ₁ является наименьшим положительным собственным значением, а $\psi_1(x)$ — соответствующей ему собственной функцией.

Если на допустимые функции, кроме условия (16), наложить еще одно условие

$$\int_{a}^{b} r \psi_1 y \ dx = 0$$

(условие ортогональности), то задача

$$\int_{a}^{b} yL(y) dx$$

$$\int_{a}^{b} ry^{2} dx$$
= min

снова будет иметь некоторое решение $\psi_2(x)$.

Если λ_2 — соответствующее минимальное значение, то λ_2 будет следующим по величине ($\lambda_2 \geqslant \lambda_1$) собственным значением, а $\psi_2(x)$ — соответствующей ему собственной функцией, ортогональной к $\psi_1(x)$. Вообще, если уже известны первые k положительных собственных значений

$$\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_k$$

и соответствующая им ортогональная система собственных функций

$$\psi_1(x), \quad \psi_2(x), \ldots, \quad \psi_k(x),$$

то следующее собственное значение равно

$$\lambda_{k+1} = \min_{y \in D} \frac{\int_{a}^{b} yL(y) dx}{\int_{a}^{b} ry^{2} dx},$$

причем теперь рассматриваются те допустимые функции y(x), для которых, кроме (16), выполнены следующие дополнительные условия:

$$\int_{a}^{b} r(x) \psi_{v}(x) y(x) dx = 0 \qquad (v = 1, 2, ..., k).$$

Если в уравнении (14) функция r(x) > 0 на [a,b], то для оценки сверху наименьшего положительного собственного значения λ_1 часто используют следующее неравенство (принцип Рэлея):

$$\lambda_1 \leqslant \frac{\int\limits_a^b yL(y) dx}{\int\limits_a^b ry^2 dx}.$$

Пример 5. С помощью принципа Рэлея оценить λ_1 для следующей краевой задачи:

$$-y'' = \lambda y$$
, $y'(0) = 0$, $y(1) = 0$.

Решение. В нашем случае $L\left(y\right)=-y''$, т. е. $p\left(x\right)\equiv 1>0$, $q\left(x\right)\equiv 0$ н $r\left(x\right)\equiv 1>0$ на $\left[0,1\right]$. О евидно, $\alpha_{1}=0$, $\beta_{1}=1$, $\alpha_{2}=1$, $\beta_{2}=0$, так что $\alpha_{1}^{2}+\beta_{1}^{2}=1>0$, $\alpha_{2}^{2}+\beta_{2}^{2}=1>0$. В качестве допустимой функции возьмем $y\left(x\right)=1-x^{2}$; согласно

принципу Рэлея будем иметь

$$\lambda_1 \leqslant \frac{\int\limits_0^1 yL(y) \, dx}{\int\limits_0^1 ry^2 \, dx} = \frac{\int\limits_0^1 2(1-x^2) \, dx}{\int\limits_0^1 (1-x^2) \, dx} = \frac{\frac{4}{3}}{\frac{8}{15}} = 2.5.$$

Отметим, что точное значение $\lambda_1 = \frac{\pi^2}{4} \approx 2,4674$.

В следующих задачах оценить наименьшие собственные значения:

229.
$$-y'' = \lambda (10 - x^2) y$$
; $y(-1) = y(1) = 0$.
230. $-y'' = \lambda y$; $y(0) = y(1) = 0$.

Метод Канторовича (метод приведения к обыкновенным дифференциальным уравнениям) также может быть использован в задаче разыскания собственных значений и функций. Пусть, например, имеем уравнение

$$\Delta z + \lambda z = 0$$

в области D и пусть

$$z|_{\Gamma}=0$$
,

где **Г** — граница области *D*. Будем искать решение в виде

$$z_{m} = \sum_{k=1}^{m} \alpha_{k}(x) \varphi_{k}(x, y) + \varphi_{0}(x, y),$$

причем координатные функции $\phi_k(x,y)$ и неизвестные пока функции $\alpha_k(x)$ выберем так, чтобы $z_m(x,y)$ обращались в нуль всюду на Γ . Функции $\alpha_1(x)$, $\alpha_2(x)$, ..., $\alpha_m(x)$ должны удовлетворять системе уравнений

$$\int_{D_x} [\Delta z_m + \lambda z_m] \, \varphi_k(x, y) \, dy = 0 \qquad (k = 1, 2, \dots, m) \quad (17)$$

и обращаться в нуль при крайних значениях аргумента. Здесь D_x — сечение области D прямой x= const.

Те значения D_{x} , при которых система (17) имеет нетривиальное решение, дадут приближенную величину собственных значений, а сами решения дадут приближение к собственным функциям.

Пример 6. Найти приближенно первое собственное значение и первую собственную функцию задачи

$$\Delta z + \lambda z = 0, \qquad z \mid_{\Gamma} = 0,$$

где область D — прямоугольник: $-a \leqslant x \leqslant a$, $-b \leqslant y \leqslant b$. Решение. Ищем решение задачи в виде

$$z_1(x, y) = (y^2 - b^2) \alpha_1(x).$$

Уравнение (17) в этом случае примет вид

$$\int_{-b}^{b} \left[2\alpha_1 + (y^2 - b^2) \alpha_1'' + \lambda (y^2 - b^2) \alpha_1 \right] (y^2 - b^2) dy = 0$$

или

$$\frac{16}{15} b^5 \alpha_1'' + \left(\frac{16}{15} b^5 \lambda - \frac{8}{3} b^3\right) \alpha_1 = 0,$$

$$\alpha_1 (-a) = \alpha_1 (a) = 0.$$
(18)

Общее решение (18) есть

$$\alpha(x) = C_1 \sin \sqrt{\lambda - \frac{5}{2b^2}} \cdot x + C_2 \cos \sqrt{\lambda - \frac{5}{2b^2}} \cdot x.$$

Учитывая симметрию задачи и выбирая частное решение, получаем

$$C_1 = 0$$
, $C_2 \cos \sqrt{\lambda - \frac{5}{2b^2}} a = 0$,

откуда ясно, что нетривиальное решение получится только, если

$$\sqrt{\lambda - \frac{5}{2b^2}} a = (2k - 1) \frac{\pi}{2};$$

$$\lambda = \frac{(2k - 1)^2 \pi^2}{(2a)^2} + \frac{5}{2b^2}.$$

В частности, для k = 1 находим

$$\lambda = \frac{\pi^2}{(2a)^2} + \frac{10}{(2b)^2}$$

вместо точного значения

$$\lambda = \frac{\pi^2}{(2a)^2} + \frac{\pi^2}{(2b)^2}.$$

Ошнбка меньше 1,3%.

Для первой собственной функции получаем приближение

$$z_1(x, y) = (y^2 - b^2) \cos \frac{\pi x}{2a}$$
.

В следующих задачах найти приближенно первое собственное значение:

231.
$$y'' + \lambda^2 y = 0$$
, $y(0) = y(1) = 0$.

232.
$$y'' + \lambda (2 + \cos x) y = 0$$
, $y(0) = y(\pi) = 0$.

233. Найти приближенно первое собственное значение задачи

$$\Delta z + \lambda z = 0$$
, $z|_{\Gamma} = 0$,

где область D — круг единичного радиуса с центром в начале координат.

ответы и указания

 $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}, \mathbf{y}) + p(\mathbf{y}, \mathbf{y}$

1. a) $f_{\min}=0$ в точке (0,0); б) $f_{\max}=1$ в точке (0,0); в) экстремума нет. 2. Экстремума нет. 3. $f_{\min}=-8$ в точках $(\sqrt{2}, -\sqrt{2})$ и $(-\sqrt{2}, \sqrt{2})$; в точке (0, 0) экстремума нет. 4. $f_{\min} = 0$ в точке (0, 0); в точках окружности $x^2 + y^2 = 1$ имеет место нестрогий максимум. 5. $f_{\text{max}} = \sqrt{3}$ в точке (1, -1). 6. $f_{\text{min}} = 4$ в точке $(\frac{1}{2}, 1, 1)$. 7. $f_{\min} = -1$ в точке (1, 0). 8. $f_{\min} =$ $=-\frac{3\sqrt{3}}{8}$ b touke $(\frac{2\pi}{3}, \frac{2\pi}{3})$; $f_{\text{max}}=\frac{3\sqrt{3}}{8}$ b touke $(\frac{\pi}{3}, \frac{\pi}{3})$. 9. $f_{\text{max}} = \left(\frac{1}{n^2 + n + 2}\right)^{\frac{n^2 + n + 2}{2}} \text{ npu } x_1 = x_2 = \dots = x_n = \frac{2}{n^2 + n + 2}$ 11. Нет. 13. Числа α_k и β_k должны быть коэффициентами Фурье функции f(x). 14. $f_{\min} = -\frac{1}{2}$ в точках $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ и $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; $f_{\text{max}} = \frac{1}{2}$ B TOYKAX $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ H $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $-\frac{1}{\sqrt{2}}$). 15. $f_{\min} = \frac{36}{13}$ в точке $\left(\frac{18}{13}, \frac{12}{13}\right)$. 16. $f_{\min} = 4$ в точках (2, 2, 1), (1, 2, 2) и (2, 1, 2); $f_{\text{max}} = 4 \frac{4}{27}$ в точках $\left(\frac{4}{3}, \frac{4}{3}, \frac{7}{3}\right)$, $\left(\frac{7}{3}, \frac{4}{3}, \frac{4}{3}\right)$ H $\left(\frac{4}{3}, \frac{7}{3}, \frac{4}{3}\right)$. 17. $f_{\text{max}} = e^{\frac{a^2}{4}}$. 18. $f_{\text{min}} = 1$ в точке $\left(\frac{4}{5}; \frac{3}{5}\right)$; $f_{\text{max}} = 11$ в точке $\left(-\frac{4}{5}, -\frac{3}{5}\right)$. 19. $f_{\text{min}} = -9$ в точке (-1, 2, -2); $f_{\text{max}} = 9$ в точке (1, -2, 2). 20. $f_{\text{max}} = \frac{1}{8}$ в точке $\left(\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{6}\right)$. 21. Указание. Искать минимум функции $z = \frac{1}{2} (x^n + y^n)$ при условии x + y = S. 22. c^4 . 23. $\frac{4\sqrt{5}}{5}$. 24. $\frac{19\sqrt{2}}{8}$. 25. Квадрат со стороной $a = R\sqrt{2}$.

основания цилиндра
$$r = \frac{R}{2} \sqrt{\frac{2+\frac{2}{\sqrt{5}}}{2+\frac{2}{\sqrt{5}}}}$$
, высота $h=R \sqrt{2-\frac{2}{\sqrt{5}}}$.

27. Первый. 28. Близость любого порядка. 29. Близость любого порядка. 30. $\rho=e^{-1}$. 31. $\rho=1$. 32. $\rho=e-1$. 33. $\rho_1=e-1$.

34. $\rho_2 = \frac{2\pi + 3}{6}$. 35. $\rho_{1001} = e$. 36 Непрерывен. 37. Непрерывен.

38. Разрывен (рассмотреть последовательность $y_n(x) = \frac{\sin nx}{n}$).

39. а) Разрывен; б) непрерывен. 40. а) Разрывен; б) непрерывен. 41. Непрерывен. 45. $\Delta J = \frac{1-e^2}{2}$.

48.

49.
$$\Delta J = \frac{3(e^2 - 1)}{4} \alpha + 6(3 - e) \alpha^2 + \frac{\alpha^3}{5}$$
; $\delta J = \frac{3(e^2 - 1)}{4} \alpha$

1 4.7919 6.6821

50. 1) Да; 2) да; 3) да; 4) нет. 51. $\delta J^2[y] = 2J[y] \cdot \delta J[y]$.

δI

0.0167

53.
$$\Delta J = 3k + \frac{e}{e-1}k^2$$
; $\delta J = 3k$

54.
$$\Delta I = \frac{5}{3} k + \frac{8}{7} k^2$$
; $\delta J = \frac{5}{3} k$

0.01 0.0168

55.
$$\Delta J = \frac{4}{3} k^2$$
; $\delta J = 0$;

57.
$$\delta J = \int_{a}^{b} \delta y \, dx$$
. 58. $\delta J = 2 \int_{a}^{b} (y \, \delta y - y' \, \delta y') \, dx$.

59. $\delta J = 2y \, (0) \cdot \delta y \, (0) + \int_{0}^{1} (x \, \delta y + 2y' \, \delta y') \, dx$.

60. $\delta J = \int_{0}^{\pi} (y' \cos y \, \delta y + \sin y \, \delta y') \, dx$.

61. $\delta J = \int_{a}^{b} \left(\frac{\partial f}{\partial y_{1}} \, \delta y_{1} + \frac{\partial f}{\partial y_{2}} \, \delta y_{2} + \dots + \frac{\partial f}{\partial y'_{n}} \, \delta y'_{n} \right) dx$.

62. $\delta^{2} J \, [y, y] = 2J \, [\delta y, \, \delta y]$.

63. $\delta^{2} e^{F \, (y)} = e^{F \, (y)} \left((\delta F)^{2} + \delta^{2} F \right)$.

65. $\delta^{2} J = \int_{a}^{b} \sum_{k, l=0}^{m} \frac{\partial^{2} F}{\partial y^{(k)} \, \partial y^{(l)}} \, \delta y^{(k)} \, \delta y^{(l)} \, dx$.

66. $\delta^{2} J = \int_{G}^{b} \left[F''_{zz} (\delta z)^{2} + F''_{zz'_{x}} \, \delta z \, \delta z'_{x} + \dots + F''_{z'_{y}z'_{y}} \left(\delta z'_{y} \right)^{2} \right] dx \, dy$.

67. $\delta^{2} J = \int_{a}^{b} \left[\sum_{k=1}^{n} F''_{y_{i}y_{k}} \, \delta y_{i} \, \delta y_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y_{i} \, \delta y'_{k} + \sum_{i,k=1}^{n} F''_{y_{i}y'_{k}} \, \delta y'_{i} \, \delta y'_{i$

68. Ввести в рассмотрение функционал

$$J\left[\varphi + \alpha \eta\right] = \Phi\left(\alpha\right)$$

и воспользоваться вторым определением вариации. Требование $\delta J = 0$ приводит к интегральному уравнению

$$\int_{a}^{b} K(s, t) \varphi(s) ds + \varphi(t) - f(t) = 0.$$

69. Поступая аналогично тому, как сделано в предыдущем примере, находим, что функциональное уравнение Эйлера, выра-

жающее обращение в нуль первой вариации, имеет следующий вид:

$$(p\varphi')' - \varphi(x+2) - \varphi(x-2) + \varphi(x) + f(x) = 0.$$

Это - смешанное дифференциально-разностное уравнение.

70.
$$-(p\phi')' + q\phi = f(x)$$
. 71. $y = -x^3$. 72. $y = \frac{\sin(2-x)}{\sin x}$.

73. Две экстремали

$$y = \frac{1 + (3 \pm 2\sqrt{2})(2x - 1)^2}{4(\sqrt{2} \pm 1)}.$$

74. Две экстремали $y = \sqrt[3]{(x+1)^2}$, $y = \sqrt[3]{(3x-1)^2}$. 75. $y = (C+x)\sin x$, где C — произвольная постоянная. 76. $y = \frac{1}{2}\left[e^{-x} + (1+e)xe^{-x} - 1\right]$. 77. $y = \frac{7}{6}x - \frac{1}{6}x^3$. 78. $y = \frac{13}{6}x - \frac{1}{6}x^3 + 2$. 79. $y = \ln x$. 81. Интеграл не зависит от пути интегрирования; вариационная задача не имеет смысла. 82. y = 0, если $\alpha = 0$; при $\alpha \neq 0$ гладкой экстремали не существует. 83. $y = \cos x$. 84. $y = \cos x + C \sin x$, где C — произвольная постоянная. 85. y = x + 1. 86. $y = \frac{\sin x}{\sin x}$. 87. $y = e^{2(1-x)}$. 88. Нет экстремалей; уравнение Эйлера не имеет решений. 89. $y = C_1 + C_2x - \frac{x^2}{4}$. 90. Нет экстремалей. 93. $y = C_1e^x + C_2e^{-x} + \frac{1}{2}xe^x$. 94. $y = 2 \operatorname{ch} x$. 96. $y = \frac{y_1 \sin x}{\sin x_1}$. 97. y = 2x. 98. Окружность $\frac{1}{r} = K$. 99. $y = (1-x) \operatorname{sh} x$. 100. $y = \frac{x^3}{6}(x^3 + 6x + 1)$. 101. Экстремума нет. 102. Варнационная задача не имеет смысла, так как под знаком интеграла стоит полный дифференциал. 103. $y(x) = \operatorname{sh} x$.

104.
$$y = \frac{1}{2} x^2$$
. 105.
$$\begin{cases} y(x) = \sin 2x, \\ z(x) = -\frac{x^2}{2} + \frac{32 + \pi^2}{8\pi} x. \end{cases}$$
106.
$$\begin{cases} y(x) = -\frac{1}{6} (x^3 + 5x - 6), \\ z(x) = x. \end{cases}$$
107.
$$\begin{cases} y(x) = \sin x, \\ z(x) = \sin x. \end{cases}$$
108.
$$\begin{cases} y(x) = \frac{x^2}{2} + 1, \\ z(x) = 1. \end{cases}$$
110.
$$\left(\frac{\partial z}{\partial x}\right)^2 \frac{\partial^2 z}{\partial x^2} + \left(\frac{\partial z}{\partial y}\right)^2 \frac{\partial^2 z}{\partial y^2} = f(x, y).$$
 111. $\Delta \Delta r = 0$.

112.
$$\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{j} \left(x_{1}, \ldots, x_{n} \right) \frac{\partial z}{\partial x_{j}} \right) + c \left(x_{1}, \ldots, x_{n} \right) z =$$

 $=f(x_1,\ldots,x_n).$

113. Решение. Задача ставится так. Среди поверхностей z=f(x,y), расположенных над областью D плоскости xOy и проходящих через заданную замкнутую пространственную кривую, имеющую своей проекцией граничную кривую Γ области D_{\star} найти такую, площадь которой

$$S = \int \int \int \sqrt{1 + \varphi_x^2 + \varphi_y^2} \, dx \, dy$$

минимальна (задача Плато). Для этой задачи дифференциальное уравнение Эйлера есть

$$\frac{\partial}{\partial x} \frac{\varphi_x}{\sqrt{1 + \varphi_x^2 + \varphi_y^2}} + \frac{\partial}{\partial x} \frac{\varphi_y}{\sqrt{1 + \varphi_x^2 + \varphi_y^2}} = 0$$

или в развернутом виде

$$\varphi_{xx}(1+\varphi_y^2)-2\varphi_{xy}\varphi_x\varphi_y+\varphi_{yy}(1+\varphi_x^2)=0.$$

Это и есть искомое дифференциальное уравнение минимальных поверхностей. Физическое осуществление минимальной поверхности дает, например, мыльная пленка, натянутая на проволочную петлю.

114. z(x,y)=y. Задача имеет единственное решение, хотя граничные условия заданы не на всей границе.

115.
$$r \cos \varphi + C_2 = C_1 \ln \left| r \sin \varphi + \sqrt{r^2 \sin^2 \varphi - C_1^2} \right|$$

117.
$$x^2 \cos C_2 - y^2 \cos C_2 - 2xy \sin C_2 = C_1$$
.

118. Центральное поле. 119. а) Собственное поле; б) центральное поле; в) поля не образуют. 120. Собственное поле. 121. а) Центральное поле; б) поля не образуют; в)—собственное поле. 122. а) Центральное поле; б) собственное поле; в) поля не образуют. 123. Поля не образуют так как это семейство кривых покрывает не всю область D. 124. $y=C_1$ ch x образуют собственное поле экстремалей; $y=C_2$ sh x образуют центральное поле экстремалей; y=C sin x образуют центральное поле экстремалей; y=C sin x образуют центральное поле экстремалей.

лей. 126. Экстремаль $y=\frac{x}{6} (1-x^2)$ включается в центральное

поле экстремалей $y = C_1 x - \frac{x^3}{6}$ с центром в точке O(0,0).

127. Экстремаль $y=e^x$ можно включить в собственное поле экстремалей $y=e^x+C$. 128. Если $a<\pi$, то экстремаль y=0 можно включить в центральное поле экстремалей $y=C\sin x$

с центром в точке O(0,0). При $a>\pi$ семейство кривых $y=C\sin x$ поля не образует. 129. Экстремаль y=x+1 включается в собственное поле y = x + C. 130. $y = -\frac{x^2}{4}$.

131. $y\left(\frac{y}{4}-x\right)=0.132.$ $y^2-1=0.$ 133. $O^*(1,0)$. 134. Сопряженной точки нет. 135. Выполняется. 136. Выполняется при любом а. 137. Условие Якоби выполнено. Экстремаль y=0 можно включить и в центральное и в собственное поле экстремалей. 138. Усло-Якоби выполнено. Экстремаль $y = \frac{b-1}{a} x + 1$ можно вие включить в центральное поле экстремалей с центром в точке A(0, 1). 139. Условие Якоби не выполнено. 142. Да. 143. Да. 144. Да. 145. Да, но условие Лежандра выполнено лишь при $\frac{b}{a}$ < 1. 146. На функции $y = e^x$ достигается сильный минимум. 147. На функции $y=2\ln(x+1)$ достигается сильный минимум. 148. На функции $y = x^2$ достигается слабый минимум, 149. На прямой $y = \frac{b}{a} x$ достигается слабый минимум. 150. На кривой $y = \frac{\ln{(1+x)}}{\ln{2}}$ достигается сильный минимум. 151. На кривой

 $y = \cos x + \sin x$ достигается сильный максимум. 152. Экстремум на непрерывных кривых не достигается, 153. На прямой у == = 2x + 1 достигается слабый минимум. Сильного экстремума нет. 154. На экстремали y=2x-1 достигается сильный минимум. 155. На экстремали $y=x^2$ достигается сильный минимум. 156. На экстремали y=x-1 достигается слабый минимум.

157. При $|b| < \frac{a}{\sqrt{2}}$ на экстремали $y = \frac{b}{a}x$ достигается слабый минимум, а при $|b| > \frac{a}{\sqrt{2}}$ — слабый максимум. При $|b| = \frac{a}{\sqrt{2}}$ экстремум не достигается. 158. На экстремали $y = \sqrt[3]{[(q^{3/2} - p^{3/2}) \ x + p^{3/2}]^2}$ при $p \neq q$ достигается слабый минимум; при p = q экстремалью является прямая y = p, доставляющая слабый минимум.

159. а) При $\varepsilon>0$ экстремаль $y=\frac{\sinh\frac{x}{\sqrt{\varepsilon}}}{\sinh\frac{1}{\sqrt{s}}}$ доставляет функ-

ционалу сильный минимум. 6) При $\varepsilon < 0$, $|\varepsilon| > \frac{1}{\pi^2}$ экстремаль

 $y = \frac{\sin \frac{x}{V \mid \epsilon \mid}}{\sin \frac{1}{V \mid \epsilon \mid}}$ доставляет функционалу сильный максимум.

в) При в = 0 решение экстремальной задачи в классе непрерывных функций не существует.

Рассмотрим функцию $y_{\epsilon}(x)=e^{\frac{x-1}{V\epsilon}}$ ($\epsilon>0$), являющуюся решением уравнения Эйлера $\epsilon y''-y=0$ для данного функционала. Функция $y_{\epsilon}(x)$ удовлетворяет граничному условию y(1)=1 точно, а второму граничному условию y(0)=0 она не удовлетворяет. Однако $\lim_{\epsilon\to 0} y_{\epsilon}(0)=0$. При $\epsilon\to 0$ получаем из $y_{\epsilon}(x)$ «предельное решение»

$$y(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1. \end{cases}$$

160. Экстремаль $y=-\frac{2\ln{(1+x)}}{\ln{2}}$ дает сильный минимум. 161. На экстремали y(x)=1 имеем сильный минимум. 162. На экстремали $y(x)=\frac{b}{a}x$ при $\frac{b}{a}<\frac{\sqrt{3}}{2}$ достигается слабый минимум, при $\frac{b}{a}>\frac{\sqrt{3}}{2}$ достигается слабый миксимум, при $\frac{b}{a}=\frac{\sqrt{3}}{2}$ достигается слабый максимум, при $\frac{b}{a}=\frac{\sqrt{3}}{2}$ даже слабый экстремум не достигается. 163. На прямой $y=\frac{b}{a}x$ при b< a достигается слабый минимум; при b>a- слабыймаксимум; при b>a- слабыймаксимум, а при $b< a\sqrt{3}$ нет ни сильного минимума, ни сильного максимум, а при $b< a\sqrt{3}$ нет ни сильного минимума, ни сильного максимум, 164. На экстремали y=2x, z=4x достигается слабый минимум.

165. Экстремалью является парабола $z=x^2-x$ $\left. \begin{array}{l} y=x \\ z=x^2-x \end{array} \right\}$, которая включается в центральное поле экстремалей

$$\begin{cases}
y = \alpha x, \\
z = x^2 + \beta x
\end{cases}$$
(S)

 $(\alpha, \beta - \text{параметры})$, с центром в точке (0, 0, 0). Выполнение усиленных условий Лежандра очевидно. Покажем, что на отрезке $0 \leqslant x \leqslant 1$ не содержится точки x^* , сопряженной с точкой x = 0. Для этого достаточно убедиться, что экстремали семейства (S) не пересекаются с данной экстремалью при $x \in [0, 1]$. В самом деле, допустим, что в точке $x^* \in (0, 1]$ пересекаются какие-нибудь две экстремали семейства (S). Тогда будем иметь

$$\left.\begin{array}{l} \alpha_{1}x^{*} = \alpha_{2}x^{*}, \\ x^{*^{2}} + \beta_{1}x^{*} = x^{*^{2}} + \beta_{2}x^{*}. \end{array}\right\}$$

Отсюда вытекает, что $\alpha_1 = \alpha_2$ и $\beta_1 = \beta_2$. Следовательно, никакие две разные экстремали не могут пересекаться. Таким образом, усиленное условие Якоби выполняется на отрезке [0, 1] и вообще на любом отрезке конечной длины.

166. Семейство экстремалей $y\left(x\right)=C_1 \ch \frac{x-C_2}{C_1}-\lambda$. Про- извольные постоянные C_1 , C_2 и параметр λ определяются из условий

$$y_0 = C_1 \operatorname{ch} \frac{x_0 - C_2}{C_1} - \lambda, \quad y_1 = C_1 \operatorname{ch} \frac{x_1 - C_2}{C_1} - \lambda,$$

$$\int_{x_1}^{x_1} \sqrt{1 + {y'}^2} \, dx = C_1 \left(\operatorname{sh} \frac{x_1 - C_2}{C_1} - \operatorname{sh} \frac{x_0 - C_2}{C_1} \right) = I.$$

167.
$$y(x) = 3x^2 + 2x + 1$$
. 168 $y(x) = \pm 2 \sin n \pi x$, где $n - 1 = 1$ пелое число. 169. $y(x) = \frac{1}{4}(2x - x^2)$. 170. $\sqrt{6}$. 171. $r = R$, $z = C_1 + C_2 \varphi$. 172. $\frac{4}{\sqrt{5}}$. 173. $\sqrt{20}$. 174. $2\sqrt{2} - 1$. 175. $\frac{\sqrt{10}}{10}$. 178. $\frac{\sqrt{11}}{2}$. 179. $\sqrt{17 + 4\sqrt{6}}\left(\frac{5}{2} - \sqrt{6}\right)$. 180. 1. 181. Если $\cos x_1 \neq 0$, то экстремум может достигаться лишь на прямой $y = 0$, $z = 0$. Если же $\cos x_1 = 0$, т. е. $x_1 = \frac{\pi}{2} + n\pi$, где $n = 1$ пелое число, то $y = C_4 \sin x$, $z = -C_4 \sin x$, где $C_4 = 1$ произвольная постоянная. 182. $J(A, B) = 4 \coth 1$. 183. $J(A, B) = \frac{26}{5}$. 184. $y = 2x^{\frac{2}{3}}$. 185. Ломаные линии, составленные из отрезков прямых $y = x$ и $y = 1$ или из отрезков прямых $y = 0$ и $y = x - 1$, дают абсолютный минимум. Прямая $y = \frac{1}{2}x$ дает слабый максимум. 186. $y = -x$ при $0 \leqslant x \leqslant 1$; $y = x - 2$ при $1 < x \leqslant 4$ и $y = x$ при $0 \leqslant x \leqslant 3$; $y = -x + 6$ при $3 < x \leqslant 4$. На той и другой ломаной функционал достигает абсолютного минимума. 187. Не существуют. 188. $y = \begin{cases} 0, & x \leqslant 0, \\ x, & x > 0. \end{cases}$ 189. Экстремали — прямые линии.

Если $\left| \frac{y_2-y_1}{x_2-x_1} \right| < 1$, то существуют два разрывных решения — ломаные линии, параллельные биссектрисам координатных углов. 190. Прямая y=x tg ϕ , соединяющая заданные точки, дает слабый максимум, если 0 < tg $\phi < \pi$, слабый минимум, если $\pi <$ tg $\phi < 2\pi$, и т. д. Ломаная линия, составленная из отрезков прямых, тангенс углов наклона которых равен $\frac{4n-1}{2}\pi$ (n—целое число), дает сильный минимум.

191.

$$y(x) = \begin{cases} \pm \frac{3}{4}x, & 0 \le x \le \frac{16}{5}, \\ \pm \sqrt{9 - (x - 5)^2}, & \frac{16}{5} < x \le \frac{34}{5}, \\ \mp \frac{3(x - 10)}{4}, & \frac{34}{5} < x \le 10. \end{cases}$$

192. Экстремали - эллипсы

$$\frac{(x+C_1)^2}{C_2^4} + \frac{y^2}{C_2^2} = 1 \tag{I}$$

с центрами на оси Ox. Граница допустимой области опредсляется уравнениями y=0 и $y^2=\pm 2(x-C_3)$ (последнее есть решение уравнения $1-y^2y'^2=0$). Параметры C_1 и C_2 подбираются так, чтобы эллипс (1) проходил через заданные точки A и B. На дуге эллипса функционал достигает максимума. Если путь от точки A до точки B выбрать по дугам двух парабол (и, возможно, по отрезку прямой y=0), то получим разрывное решение, на котором функционал достигает минимума ($\min J=0$).

193.
$$\frac{dy}{dx} = \frac{x^2y^2}{4p^2}$$
, $\frac{dp}{dx} = \frac{x^2y}{2p}$. 194. $\frac{dy}{dx} = \frac{p}{2xy}$, $\frac{dp}{dx} = \frac{p^2}{4xy^2}$.

195. $\frac{dy}{dx} = \frac{p}{\sqrt{x^2 + y^2 - p^2}}$, $\frac{dp}{dx} = \frac{y}{\sqrt{x^2 + y^2 - p^2}}$.

196. $\frac{dy_1}{dx} = \frac{p_1}{2}$, $\frac{dp_1}{dx} = 0$, $\frac{dy_2}{dx} = \frac{p_2}{2}$, $\frac{dp_2}{dx} = 2y_2$. 197. $\frac{dy_1}{dx} = \frac{p_1}{2y_1}$, $\frac{dy_2}{dx} = \frac{p_2}{2y_2}$, $\frac{dp_1}{dx} = \frac{p_1^2}{4y_1^2}$, $\frac{dp_2}{dx} = \frac{p_2^2}{4y_2^2}$.

198.
$$\frac{dy_1}{dx} = -\frac{p_1}{2}$$
, $\frac{dy_2}{dx} = -V\overline{p_2}$, $\frac{dp_1}{dx} = 2x$, $\frac{dp_2}{dx} = 0$; $\frac{dy_1}{dx} = -\frac{p_1}{2}$, $\frac{dy_2}{dx} = V\overline{p_2}$, $\frac{dp_1}{dx} = 2x$, $\frac{dp_2}{dx} = 0$.

199.
$$y^3 = C_1 x^3 + C_2$$
. 200. $y^3 = \ln^2 x$. 201. $x = C_1 \times \sqrt{\frac{dy}{VG^2(y) - C_1^2}} + C_2$. 202. На экстремали $y = \frac{x^2 - x - 1}{2}$

достигается сильный минимум: min $J=-\frac{5}{4}$. 203. $\rho(x,y)=\frac{y^2-x^2}{2xy}$. Экстремали — полуокружности $y=\sqrt{C_1^2-(x-C_2)^2}$

с центрами на оси Ox; $y = \sqrt{2C_1x - x^2} -$ экстремали, проходящие через начало O(0, 0); поле — верхняя полуплоскость. **204.** Дуга окружности с центром в точке O(0,0), проходящая через точку $M_1(x_1, y_1)$ дает сильный минимум. 205. $xF(\frac{y}{r}) = C$. **206.** Эллипсы $3x^2 - 8xy + 6y^2 = C$. **207.** $x^3 + 2y^3 - 3xy^2 - 2x^2y = C$. 208. $f = \sqrt{1 + {y'}^2}$. 209. $f = xy \sqrt{y'}$. 210. $f = xyy'^2$. 211. $f = \sqrt{\left(\frac{1}{x^2} + \frac{1}{y^2}\right)(x^2{y'}^2 + y^2)}$. 212. Цепная линия. 213. Указание. Интеграл действия $J=\int\sqrt{rac{k}{a^4}+2h} imes$ $\times \sqrt{\rho^2 + {\rho'}^2} d\varphi$. 214. Траектории — эллипсы $\frac{x^2}{C} + \frac{2y^2}{2h - C}$ — $\frac{2\cos\beta}{\sqrt{C(2h-C)}} xy = \frac{\sin^2\beta}{k}$. 215. Точное решение $y = \frac{\sinh x}{\sinh 1} - x$. **216.** Точные решения, а) $y \equiv 0$, б) y = x. 217. Точное решение $y = \frac{1}{2} (x^2 - x)$. 218. Точное решение $y = \frac{2 \sinh x}{\sinh 2} - x$. 219. Ук азание: приближенное рещение искать в виде $y_n(x) =$ $= (1-x^2) \sum a_k x^{2k}$. Точное решение $y = \cos \frac{\pi x}{2}$. 220. Указание: в качестве координатной функции взять ху; тогда $z_1 = rac{b^2 - a^2}{b^2 + a^2} \, xy.$ 221. Указание: в качестве координатных функций взять $\varphi_0(x,y)=x^2+y^2, \quad \varphi_1(x,y)=xy\,(1-x-y), \quad \varphi_2(x,y)=x^2y\,(1-x-y), \dots, \quad \varphi_n(x,y)=x^ny\,(1-x-y).$ Тогда $z_3(x,y)=x^2+y^2+xy\,(1-x-y)\,[3,0401-0,0562\,(x+x^2)].$ 222. Указание: первое приближение искать в виде $z_1(x,y)=$ $= \left(y^2 - \frac{x^2}{3}\right) \alpha(x). \quad \text{Тогда} \quad z_1(x, y) = -\frac{3}{4} \left(1 - \frac{x}{6}\right) \left(y^2 - \frac{x^2}{3}\right).$ $z_1(x, y) = \frac{3}{4} \left(y^2 - \frac{1}{3} x^2 \right) \left(\frac{1 - 3^5}{1 - 3^6} x - \frac{2 \cdot 3^5}{1 - 3^6} x^{-5} - 1 \right).$ 224. $\lambda_n = 1 + n^2 \pi^2$, $y_n(x) = \pm \sqrt{2} \sin n\pi x$ (n = 1, 2, ...). 225. $\lambda_n = \frac{\ln^2 2 + 4n^2\pi^2}{4 \ln^2 2}$, $y_n(x) = \pm \frac{\sin\left(\frac{n\pi}{\ln 2} \ln x\right)}{\sqrt{\ln \sqrt{2} \sqrt{x}}}$. 226. $\lambda_n = \frac{1}{\sqrt{2}}$ $= \frac{25 + 4n^2\pi^2}{4}, \quad y_n(x) = \pm \frac{\sqrt{2} \sin(n\pi \ln x)}{\sqrt{x}} \quad (n = 1, 2, ...)$ 227. $\lambda_n = 1 - n^2$, $y_n(x) = \pm \sqrt{\frac{2}{\pi}} \sin nx$ (n = 1, 2, ...).

228.

$$\lambda_n = -\frac{13 \ln^2 2 + 4n^2 \pi^2}{4 \ln^2 2}, \quad y_n(x) = \pm \frac{\sin \left[\frac{n\pi \ln (1+x)}{\ln 2}\right]}{\sqrt{\ln \sqrt{2}} \sqrt{1+x}}$$

$$(n = 1, 2, ...)$$

229. Берем $y=1-x^2$, получим $\lambda_1\leqslant \frac{35}{138}$. Точное значение $\lambda_1=\frac{1}{4}$. 230. Берем y=x (1-x), получим $\lambda_1\leqslant 10$. Точное значение $\lambda_1=\pi^2$. 231. $\lambda_1^2=10$; точное значение $\lambda_1^2=\pi^2$. 232. $\lambda_1=0$,493. 233. $\lambda_1=6$; $z_1(x,y)=\alpha$ (x^2+y^2-1) .

ЛИТЕРАТУРА

- Ахиезер Н. И., Лекции по вариационному исчислению. Гостехиздат, 1955.
- 2. Бернштейн С. Н., Об уравнениях вариационного исчисления УМН VIII (1941).
- 3. Гельфанд И. М., Фомин С. В., Вариационное исчисление, «Наука», 1969.
- 4. Гурса Э., Курс математического анализа, т. III, ч. 2, ОНТИ. 1934.
- 5. Гюнтер Н. М., Интегрирование уравнений с частными производными первого порядка, ГТТИ, 1934.
- 6. Гюнтер Н. М., Курс вариационного исчисления, Гостехиздат, 1941.
- 7. Гюнтер Н. М., Кузьмин Р. О., Сборник задач по высшей математике, т. III, Гостехиздат, 1947.
- 8. Демидович Б. П., Сборник задач и упражнений по математическому анализу, «Наука», 1972.
- 9. Канторович Л. В., Крылов В. И., Смирнов В. И., Вариационное исчисление, М., «Кубуч», 1933.
- Канторович Л. В., Крылов В. И., Приближенные методы высшего анализа, Физматгиз, 1962.
- Киселев А. И., Краснов М. Л., Макаренко Г. И., Сборник задач по обыкновенным дифференциальным уравнениям, «Высшая школа», 1967.
- Коллатц Л., Численные методы решения дифференциальных уравнений, ИЛ, 1953.
- ных уравления, тит, тоод.

 13. Кудрявцев Л. Д., Математический анализ, т. II, «Высшая школа», 1970.
- 14. Қурант Р., Гильберт Д., Методы математической физики, т. I, II, Гостехиздат, 1951.
- Лаврентьев М. А., Люстерник Л. А., Курс вариационного исчисления, Гостехиздат, 1950.

- Михлин С. Г., Прямые методы в математической физике, Гостехиздат, 1950.
- Мышкис А. Д., Лекции по высшей математике, «Наука», 1969.
- 18. Рож дественский Б. Л., Лекции по математическому анализу, «Наука», 1972.
- Смирнов В. И., Курс высшей математики, т. IV, Физматгиз, 1958.
- 20. Толстов Г. П., Курс математического анализа, т. II, «Наука», 1966.
- 21. Цлаф Л. Я., Вариационное исчисление и интегральные уравнения, «Наука», 1970.
- 22. Шилов Г. Е., Математический анализ (Специальный курс), «Наука», 1970.
- 23. Эльсгольц Л. Э., Дифференциальные уравнения и вариационное исчисление, «Наука», 1969.

ОГЛАВЛЕНИЕ

Предисловие	•	5
Глава І. Экстремум функций многих переменных	. ,.	7
§ 1. Безусловный экстремум	•	7 15
Глава II. Экстремум функционалов		. 22
 § 3. Функционал. Вариация функционала и ее свой § 4. Простейшая задача вариационного исчисле 		22
Уравнение Эйлера		46
§ 5. Обобщения простейшей задачи вариационного числения		64
	• •	73
 § 6. Инвариантность уравнения Эйлера § 7. Поле экстремалей § 8. Достаточные условия экстремума функционала § 9. Условный экстремум § 10. Вариационные задачи с подвижными границам § 11. Разрывные задачи. Односторонние вариации § 12. Теория Гамильтона — Якоби, Вариационные при 	: :	76
§ 8. Достаточные условия экстремума функционала		- 88
§ 9. Условный экстремум		103
§ 10. Вариационные задачи с подвижными границам	и.	119
§ 11. Разрывные задачи. Односторонние вариации .		131
	нци-	
пы механики		140
Глава III. Прямые методы вариационного исчисления	•	. 155
§ 13. Конечно-разностный метод Эйлера		155
§ 14. Метод Ритца. Метод Канторовича		157
чений и собственных функций		164
Ответы и указания		178
Литература		189
• • • •		