LOI NORMALE

I. Obtention de la table normale centrée réduite ;

Sur certaines calculatrices graphiques casio et texas instruments (à partir du modèle 82), la fonction ϕ est préprogrammée.

1.1 Rappel.

Pour tout
$$u$$
 appartenant à \mathbb{R} , $\phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$.

1.2 Procédure.

Notée P(sur les casio, elle est accessible en mode calcul (menu run) en appuyant sur la touche OPTN (pour "Options").

Procédure:

Faire suivre $\boxed{\mathbf{P}}$ de la valeur de u_0 , fermer la parenthèse (facultatif), puis valider (touche $\mathbf{E}\mathbf{X}\mathbf{E}$) pour obtenir $\phi(u_0)$.

On obtient sans avoir recours à la relation $\phi(-u) = 1 - \phi(u)$, les valeurs de $\phi(u)$ quand u est négatif.

Les fonctions Q et R, d'un intérêt très limité, donnent respectivement :

Si
$$u \ge 0$$
: $\mathbf{Q}(u) = \phi(u) - 0.5$ soit $\mathbf{Q}(u) = \text{Prob}(0 \le U \le u)$
Si $u \le 0$: $\mathbf{Q}(u) = 0.5 - \phi(u)$ soit $\mathbf{Q}(u) = \text{Prob}(u \le U \le 0)$

$$\mathbf{R}(u) = 1 - \phi(u) \text{ soit } \mathbf{R}(u) = P(U > u)$$

1.3 Illustration graphique

**Attention sur les casio Graph 35+ la calculatrice doit obligatoirement être réglée de la manière suivante : Menu Run ; Shift ; Setup ; ligne Input/Output : linear.

Calcul de Prob $(U \le 1)$

Sélectionner le mode run (calcul) puis :

https://github.com/KELLERStephane/QCM-maths-physique-chimie

Calcul de $P(1) = Prob (\le U \le 1)$

Calcul de $\mathbf{Q}(1) = \text{Prob}(0 \le U \le 1)$

Calcul de $\mathbf{R}(1) = \text{Prob}(U > 1)$

Calcul de $\mathbf{R}(-1) = \text{Prob}(U > -1)$

1.4 Courbe de la fonction de répartition de la variable normale centrée réduite

Il faut d'abord choisir les échelles graphiques :

Shift; V-Windows; puis saisir les valeurs suivantes.

Xmin: -3; **max**: 3; **scale**: 1: **Ymin**: -0.1; **max**: 1; **scale**: 0.1.

Menu **GRAPH**; **Y1** par exemple; **OPTN**;

F6; **PROB**; **F6**; **P(**; **X**; **)**; **EXE**; **DRAW**

Puis avec le menu TABL.

On règle les échelles avec RANG ou SET;

Si l'on se positionne sur une valeur de X et que l'on saisit une nouvelle valeur, la valeur correspondante de Y1 est automatiquement recalculée.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

III. Compléments.

Dans le menu statistique **STAT**; et sans qu'il soit nécessaire de saisir la moindre donnée ; on peut accéder aux modèles de certaines distributions de probabilité dont le modèle normal.

Pour les casio : **DIST** ; **NORM**

Pour les texas instruments : 2^{nd} puis appuyer sur la touche **DISTR**.

Voici différentes fonctions disponibles sur ces calculatrices :

3.1 Fonction densité de probabilité de la loi normale.

Npd pour casio ou normalpdf sur texas instruments

Elles permettent d'obtenir les valeurs de la fonction densité de probabilité $f_{\mu,\sigma}$ de n'importe quelle loi Normale.

En considérant la loi normale centrée réduite $(\mu = 0 \text{ et } \sigma = 1)$, pour une valeur de x, on obtient une valeur approchée de $\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$.

Ainsi, pour x = 0.5, les casio renvoient :

3.2 Fonction de répartition de la loi normale.

Ncd pour casio ou normalcdf sur texas instruments

Elles permettent de calculer $\int_a^b f_{\mu\sigma}(x).dx = F(b) - F(a), \text{ où } F \text{ est la fonction}$ de répartition associée à la loi normale considérée.

On obtient donc directement $Prob(a \le X \le b)$.

Voici un exemple sur casio : déterminons $\operatorname{Prob}(2\,900 \le X \le 3\,100)$ où X est distribuée suivant la loi normale $\mathcal{N}(3\,000;50)$.

Si a est très petit (prendre par exemple -10^{99}), on obtient une "bonne" valeur approchée de $Prob(X \le b)$.

On obtient ainsi $Prob(X \le 1.96) = 0.975$.

https://github.com/KELLERStephane/QCM-maths-physique-chimie

```
D.C. normale
Data :Variable
Lower :-1:+99
Upper :1.96
o :1
p :0
Save Res:None Upone
```

```
D.C. normale
P =0.9750021
z:Low=-1e+99
z:Up =1.96
```

Si b est très grand (prendre par exemple 10^{99}), on obtient une "bonne" valeur approchée de $\text{Prob}(X \ge a)$. On obtient ainsi $\text{Prob}(X \ge 3100) = 0,02275013$.

```
D.C. normale
Data :Variable
Lower :31
Upper :1E+99
of :5
p :300
Save Res#None Using Page 1815
```

```
D.C. normale
P =0.02275013
z:Low=2
z:UP =2E+98
```

Cette fonctionnalité de la calculatrice permet le calcul de $\operatorname{Prob}(a \leq X \leq b)$, de $\operatorname{Prob}(X \leq b)$ et de $\operatorname{Prob}(X \geq a)$ sans recours à la loi normale centrée réduite!

3.3 Lecture inverse de la loi normale.

```
InvN pour casio ou invNorm pour texas instruments
```

Elles donnent la valeur de x telle que F(x) = A avec A est un réel compris entre 0 et 1 (fonction réciproque de la fonction de répartition F associée à une loi normale).

Considérons X distribuée suivant la loi normale centrée réduite $\mathcal{N}(0;1)$ et déterminons x tel que Prob $(X \le x) = 0.975$.

```
Normal inverse
Data :Variable
Tail :Left
Area :0.975

6 :1

P :0
Save Res:None U
```


Considérons *X* distribuée suivant la loi normale $\mathcal{N}(300;5)$.

Déterminons x tel que Prob $(X \le x) = 0.975$.

Déterminons x tel que Prob $(X \ge x) = 0.975$.

```
Normal inverse
Data :Variable
Tail :Risht
Area :0.975

6 :5

4 :300
Save Res:None 4
```


IV. Exercice

Dans une région céréalière, une partie de la production de maïs des exploitations agricoles est livrée à une usine de conditionnement d'aliments pour le bétail.

On choisit au hasard une exploitation et on note X la variable aléatoire prenant pour valeurs le rendement de maïs de ces exploitations en quintaux par hectare.

On admet que la loi de X est la loi normale de moyenne 75 et d'écart-type 15.

Déterminer, en utilisant la table de la loi normale centrée réduite :

```
Prob(X < 80); Prob(X \ge 95) et Prob(50 \le X \le 100).
```

Correction.

Distribution normale de paramètres $\mu = 75$ et $\sigma = 15$;

```
Menu STAT; DIST; NORM; Ncd;
```

$$ightharpoonup Prob(X < 80) = 0,63055$$

```
D.C. normale
Data :Variable
Lower :-1e+99
Upper :80
of :15
p :75
Save Rest None U
```

```
D.C. normale
Data :Variable
Lower :-1e+99
Upper :80
o :15
p :75
Save Res:None J
|None|JSJ
```

```
ightharpoonup Prob(X \ge 95) = 0.091211
```

```
D.C. normale
Data :Variable
Lower :95
Upper :1E+99
6 :15
P :75
Save RestNone 4
```

```
ightharpoonup Prob(50 \le X \le 100) = 0.90441
```

```
D.C. normale
Data :Variable
Lower :50
Upper :100
of :15
p :75
Save RestNone !
```

```
D.C. normale
p =0.90441929
z:Low=-1.6666667
z:Up =1.66666667
```

Malheureusement, ce type de réponse n'est pas satisfaisant puisque les élèves sont tenus de mettre en œuvre une démarche claire et cohérente, en ayant recours à des graphiques.