CSC 4356 / ME 4573 Interactive Computer Graphics

Transformation

The Basic 3D Graphics Pipeline

Model-View-Projection

The MVP is a *composition of transformations* that takes an object and puts it on the screen.

Model Place an object within a scene.

View Place a camera within a scene.

Projection Set the camera zoom.

Let's introduce transformations...

Homogeneous Vectors

3D graphics uses a 4D vector space.

$$\boldsymbol{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ v_w \end{bmatrix}$$

Homogeneous Vectors

This is a generalization of the 3D vector, admitting

- Infinity
- Translation
- Perspective

$$\begin{bmatrix} v_x \\ v_y \\ v_z \\ v_w \end{bmatrix} = \begin{bmatrix} v_x/v_w \\ v_y/v_w \\ v_z/v_w \\ 1 \end{bmatrix}$$

in the form of matrix multiplication.

Matrix notation

$$M = \left[\begin{array}{cccc} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{array} \right]$$

This abnormal element numbering coincides with the use of C language arrays by the OpenGL API.

Vector Transformation

$$\boldsymbol{w} = M \cdot \boldsymbol{v}$$

$$\begin{bmatrix} w_x \\ w_y \\ w_z \\ w_w \end{bmatrix} = \begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ v_w \end{bmatrix}$$

Identity

glLoadIdentity();

$$I = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Scaling

glScalef(x, y, z);

Scaling

$$S = \left[\begin{array}{cccc} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Translation

glTranslatef(x, y, z);

Translation

$$T = \left[\begin{array}{cccc} 1 & 0 & 0 & \mathbf{x} \\ 0 & 1 & 0 & \mathbf{y} \\ 0 & 0 & 1 & \mathbf{z} \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Rotation

The instructor sticks out his thumb.

Rotation

```
glRotatef(a, 1.0f, 0.0f, 0.0f);
glRotatef(a, 0.0f, 1.0f, 0.0f);
glRotatef(a, 0.0f, 0.0f, 1.0f);
```

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & t & 0 \\ 0 & s & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_{y} = \begin{bmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ t & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_{z} = \begin{bmatrix} c & t & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$c = \cos a$$
 $s = \sin a$ $t = -\sin a$

Matrix multiplication

$$M = A \cdot B$$

$$\begin{bmatrix} m_0 & m_4 & m_8 & m_{12} \\ m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \end{bmatrix} = \begin{bmatrix} a_0 & a_4 & a_8 & a_{12} \\ a_1 & a_5 & a_9 & a_{13} \\ a_2 & a_6 & a_{10} & a_{14} \\ a_3 & a_7 & a_{11} & a_{15} \end{bmatrix} \cdot \begin{bmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \end{bmatrix}$$

$$m_0 = a_0 \cdot b_0 + a_4 \cdot b_1 + a_8 \cdot b_2 + a_{12} \cdot b_3$$

Matrix multiplication

Matrix multiplication is *not* commutative.

$$A \cdot B \neq B \cdot A$$

$$M = A \cdot B$$
 ... $m_0 = a_0 \cdot b_0 + a_4 \cdot b_1 + a_8 \cdot b_2 + a_{12} \cdot b_3$
 $M = B \cdot A$... $m_0 = a_0 \cdot b_0 + a_1 \cdot b_4 + a_2 \cdot b_8 + a_3 \cdot b_{12}$

Matrix multiplication

Matrix multiplication is associative.

$$(A \cdot (B \cdot C)) = ((A \cdot B) \cdot C)$$

The transformation "order of application" is $\emph{right-to-left}$.

$$A \cdot B \cdot C \cdot v = A \cdot (B \cdot (C \cdot v))$$

 $A \cdot B \cdot C \cdot v \neq C \cdot (B \cdot (A \cdot v))$

Transform composition

- We compose transforms by multiplying matrices.
- Because matrix multiplication is not commutative, transform composition order *matters*.
- Because the order of application is right-to-left, the *last* transform specified happens *first*.

OPENGL code seems upside-down

Rotate, then translate:

OpenGL transformation functions *compose* transformations, they do not *perform* transformations.

Translate, then rotate:

glTranslatef(...); glRotatef(...);
glRotatef(...); glTranslatef(...);
glutSolidTeapot(1.0); glutSolidTeapot(1.0);

Composing Rotation and Translation

Composing Scaling and Translation

Transform Composition

Remember that transformation occurs in the *world* coordinate system, not the object's coordinate system.

- All scaling is radially centered on the world origin.
- All rotation is about the world origin.
- All translation is along the world axes.

Matrix Inverse

The *inverse* undoes a transform.

$$M \cdot M^{-1} = I$$

Inverse matrices compose on the *left*.

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

Matrix Transpose

The *transpose* is flipped.

$$M^{T} = \begin{bmatrix} m_0 & m_1 & m_2 & m_3 \\ m_4 & m_5 & m_6 & m_7 \\ m_8 & m_9 & m_{10} & m_{11} \\ m_{12} & m_{13} & m_{14} & m_{15} \end{bmatrix} (M^{T})^{T} = M$$

Transposes also compose on the left.

$$(A \cdot B)^T = B^T \cdot A^T$$

Normal Transformation is Different

$$\mathbf{w} = M \cdot \mathbf{v}$$
$$\mathbf{m} = (M^{-1})^T \cdot \mathbf{n}$$

OpenGL composes the transposed inverse for you as you apply transformations.

One note: $(R^{-1})^T = R$.

Object Instances

- A car's wheels are attached to its body.
- The wheels spin independently of the car.
- All four wheels are identical.

There is thus a *hierarchical* relationship: a tree structure.

The OPENGL Matrix Stack

The matrix stack lets you perform rendering hierarchically, getting matrix composition under control.

- glPushMatrix();
- glPopMatrix();

The OPENGL Matrix Stack

```
glTranslate(...);
                       // Translate relative to the world.
glRotate(...);
                       // Rotate about the car's axis.
draw_model(body);
                       // Draw the body of the car.
for (i = 0; i < 4; ++i)
   glPushMatrix(); // Remember the current transform.
   glTranslate(...); // Translate relative to the car.
   glRotate(...); // Rotate about the wheel's axis.
   draw_model(wheel); // Draw one wheel.
                 // Recall the previous transform.
   glPopMatrix();
```

Transform Quiz

This is the default orientation of the 3D Example Cube.

Transform Quiz #1

What rotation has occurred?

Transform Quiz #1 Answer

glRotate(-90, 0, 1, 0)

Transform Quiz #2

What rotation has occurred?

Transform Quiz #2 Answer

glRotate(+90, 1, 0, 0) glRotate(-90, 0, 1, 0)

(not unique)

Transform Quiz #3

What rotation has occurred?

Transform Quiz #3 Answer

glRotate(-90, 1, 0, 0) glRotate(+90, 0, 0, 1)

(not unique)

M is for Model

Through compositions of transformations in the form of multiplications of matrices, implemented using glScale, glTranslate, glRotate, controlled using the matrix stack, we construct the *Model* matrix.

This positions objects within the scene.

V is for View

Now we wish to *View* the scene, placing a "camera" within it in the same fashion as we placed objects.

- But to move the camera to the right is to move the world to the left.
- Translate-Rotate is now Rotate-Translate.
- We must compose *inverse* transforms in *reverse*.

V is for View

It may be best for your sanity *not* to think about moving a camera around in the scene. Instead, imagine the camera is *always* at the origin, looking down -z, and move the scene into position to be viewed from there.

OpenGL behaves this way.

P is for Projection

It maps 3D geometry onto the 2D plane of the screen.

Perspective Projection from Above

Perspective Projection from Above

Perspective Projection in 3D

glFrustum(l, r, b, t, n, f);

General Perspective Matrix

$$P = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$l \dots \text{ left}$$

$$r \dots \text{ right}$$

$$t \dots \text{ top}$$

$$b \dots \text{ botto}$$

$$n \dots \text{ near}$$

$$f \dots \text{ far}$$

 $b \dots$ bottom

A simple example perspective

$$t=0.5 \longrightarrow b=-0.5 \longrightarrow n=1 \quad f=2$$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ w_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_e \\ y_e \\ z_e \\ w_e \end{bmatrix}$$

$$x_c = x_e$$
 $w_c = -z_e$

$$x_d = \frac{x_c}{w_c} = \frac{x_e}{-z_e} = \frac{n x}{-z_e}$$

What happened to Z?

$$z_d = \frac{z_e(f+n) + 2fn}{z_e(f-n)}$$
 is our *depth* value.

Normalized device coordinates

Normalized device coordinates are *normalized*. Really.

- The x, y, and z are all in [-1, +1].
- The entire visible scene fits in the unit cube.
- This makes *clipping* easy.

Window transform

After all this, it's finally time to map vertices into the frame buffer using a simple scaling with translation.

$$W = \begin{bmatrix} w/2 & 0 & 0 & w/2 \\ 0 & h/2 & 0 & h/2 \\ 0 & 0 & d/2 & d/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For example: w = 1024 h = 768 d = 65535.

The path from model to screen

\boldsymbol{v}_o			Object coordinates
$oldsymbol{v}_{\scriptscriptstyle \mathcal{W}}$	=	$M\cdot oldsymbol{v}_o$	World coordinates
v_e	=	$V \cdot oldsymbol{v}_w$	Eye coordinates
\boldsymbol{v}_c	=	$P \cdot v_e$	Clip coordinates
\boldsymbol{v}_d	=	v_c / v_{cw}	Normalized device coordinates
\boldsymbol{v}_{s}	=	$W\cdot oldsymbol{v}_d$	Window coordinates

Let's summarize some of the many ways you can inadvertently wind up thinking shakerd:

- 1. OpenGL specification order versus application order.
- 2. Transforming normals with a vertex matrix, or vice versa.
- 3. View transformation versus model transformation.

Coming up...

Viewing. The many ways of computing V.