

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И

ПРОЦЕССЫ УПРАВЛЕНИЯ N 4, 2017

Электронный журнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal \\ e-mail: jodiff@mail.ru$

Общая теория управления

Глобальный аттрактор многозначной динамической системы, порожденной двухфазовой системой нагрева

Зырянов Д.А., Райтманн Ф.

Санкт-Петербургский государственный университет

Аннотация

В данной работе изучается асимптотическое поведение решений парной системы уравнений Максвелла и уравнения теплопроводности для задачи Стефана, описывающей процесс нагрева микроволнами в трехмерной области. Строится многозначная динамическая система для этой задачи и доказывается существование глобального аттрактора. Проводится численный эксперимент аппроксимации температуры.

Ключевые слова: двухфазовая система нагрева, задача Стефана, многозначная динамическая система, глобальный аттрактор.

Abstract

In this work we study the asymptotic behavior of solutions of Maxwell's equations coupled with the heat equation for the Stefan problem in 3-dimensional space describing a microwave heating process. For this problem, a multi-valued dynamical system is constructed and the existence of a global attractor is proved. A numerical experiment for the temperature approximation is carried out.

Keywords: two-phased system with heating, Stefan problem, multi-valued dynamical system, global attractor.

1 Введение

В данной работе трехмерная задача нагрева изучается с точки зрения многозначной диначеской системы. Асимптотическое поведение решений для одномерной задачи нагрева уже рассматривалось в работах [9] и [14]. Существование аттрактора для одномерной задачи рассматривалось в работе [5].

1.1 Постановка начально-краевой задачи

Процесс нагрева микроволнами можно описать с помощью системы уравнений Максвелла и уравнения теплопроводности. Пусть Ω – связная область в \mathbb{R}^3 с гладкой границей. Тогда систему уравнений, описывающую процесс нагрева микроволнами можно записать в следующем виде ([15]):

$$\epsilon(x)\frac{\partial E}{\partial t} + \sigma(x,\theta)E = \text{rot}H, \quad (x,t) \in Q_T = \Omega \times (0,T],$$
 (1)

$$\mu(x)\frac{\partial H}{\partial t} + \text{rot}E = 0, \quad (x,t) \in Q_T,$$
 (2)

$$A(\theta)_t - \nabla(k(x,\theta)\nabla\theta) = \sigma(x,\theta)|E|^2, \quad (x,t) \in Q_T, \tag{3}$$

$$\nu \times E(x,t) = 0, \ H \cdot \nu = 0, \ \theta(x,t) = 0, \ (x,t) \in S_T = \partial\Omega \times (0,T],$$
 (4)

$$E(x,0) = E_0(x), \ H(x,0) = H_0(x), \ x \in \Omega,$$
 (5)

$$\theta(x,0) = \theta_0(x), \quad x \in \Omega,$$
 (6)

где E=E(x,t) – вектор электрического поля, H=H(x,t) – вектор напряженности магнитного поля, $\epsilon=\epsilon(x)$ - диэлектрическая проницаемость, $\mu=\mu(x)$ – магнитная проницаемость, $\sigma=\sigma(x,\theta)$ – электрическая проводимость, $k=k(x,\theta)$ – кокоэффициент теплопроводности, ν – внешняя нормаль к гланице $\partial\Omega,\,E_0(x),H_0(x),\theta_0(x)$ – заданные функции, A – оператор энтальпии.

Считаем, что оператор энтальпии A вида

$$A(\theta) = \begin{cases} \theta - 1, & \text{если } \theta < m, \\ [m - 1, m], & \text{если } \theta = m, \\ \theta, & \text{если } \theta > m, \end{cases}$$

с температурой плавления (критической температурой) m.

Считаем, что коэффициент теплопроводности k вида

$$k(x, \theta) = \begin{cases} k_s(x, \theta), & \text{если } \theta < m, \\ k_l(x, \theta), & \text{если } \theta > m, \end{cases}$$

где $x \in \Omega$.

А также считаем, что σ – электрическая проводимость вида

$$\sigma(x,\theta) = \begin{cases} \sigma_s(x,\theta), & \text{если } \theta < m, \\ \sigma_l(x,\theta), & \text{если } \theta > m, \end{cases}$$

и значения функций σ , k в точке критической температуры определяются таким образом:

$$\sigma(x,m) \in [\sigma_0(x),\sigma_1(x)],$$

$$\sigma_0(x) = \min(\sigma_s(x,m+),\sigma_l(x,m-)), \ \sigma_1(x) = \max(\sigma_s(x,m+),\sigma_l(x,m-)),$$

$$k(x,m) \in [k_0(x),k_1(x)],$$

$$k_0(x) = \min(k_s(x,m+),k_l(x,m-)), \ k_1(x) = \max(k_s(x,m+),k_l(x,m-)),$$
 где $x \in \Omega$.

Введем границу фаз (границу перехода между твердым и жидким состоянием)

$$\Gamma_T = \{(x,t) \in Q_T \mid \theta(x,t) = m\},$$

где $Q_T = \Omega \times [0,T].$

Если Γ_T имеет положительную меру по Лебегу, то уравнение теплопроводности (3) надо понимать как дифференциальное включение

$$A(\theta)_t - \nabla(k(x,\theta)\nabla\theta) - \sigma(x,\theta)|E|^2 \ni 0.$$

Мы считаем, что Γ_T имеет нулевую меру, поэтому уравнение теплопроводности записано в виде (3).

1.2 Слабое решение задачи нагрева

Определим некоторые пространства, которые будут использоваться в дальнейшем ([2]). Пусть Ω – область в \mathbb{R}^3 с гладкой границей $\partial\Omega$. Тогда

$$H(\text{rot}, \Omega) = \{ v \in (L^2(\Omega))^3 : \text{rot } v \in (L^2(\Omega))^3 \},$$

 $H(\text{div}, \Omega) = \{ v \in (L^2(\Omega))^3 : \text{div } v \in L^2(\Omega) \},$

гильбертовы пространства со скалярными произведениями соответственно

$$(u, v)_{H(\text{rot},\Omega)} = (\text{rot } u, \text{rot } v)_{(L^2(\Omega))^3} + (u, v)_{(L^2(\Omega))^3},$$

$$(u, v)_{H(\text{div},\Omega)} = (\text{div } u, \text{div } v)_{L^2(\Omega)} + (u, v)_{(L^2(\Omega))^3},$$

где для скалярных функций скалярное проиведение вида

$$(u,v)_{L^2(\Omega)} = \int_{\Omega} u(x)v(x)dx,$$

а для векторных функций

$$(u,v)_{(L^2(\Omega))^3} = \int_{\Omega} u(x) \cdot v(x) dx,$$

где · означает евклидово скалярное произведение.

В дальнейшем понадобятся пространства:

$$H_0(\operatorname{rot},\Omega) = \{v \in H(\operatorname{rot},\Omega) : \nu \times v = 0 \text{ на } \partial\Omega\},$$

 $H_0(\operatorname{div},\Omega) = \{v \in H(\operatorname{div},\Omega) : \nu \cdot v = 0 \text{ на } \partial\Omega\},$
 $H(\operatorname{div0},\Omega) = \{v \in (L^2(\Omega))^3 : \operatorname{div} v = 0\},$
 $H_0(\operatorname{div0},\Omega) = H_0(\operatorname{div},\Omega) \cap H(\operatorname{div0},\Omega),$

где ν - внешняя нормаль.

Замечание 1. Здесь и далее производные понимаются в слабом смысле.

Введем определение слабого решения начально-краевой задачи (1)-(6) в соответствии с ([3]).

Определение 1. Тройка функций $(E(x,t),H(x,t),\theta(x,t))$ называется слабым решением задачи (1)-(6), если:

$$E(\cdot, \cdot), H(\cdot, \cdot) \in C([0, T], (L^{2}(\Omega))^{3}),$$

$$\theta(\cdot, \cdot) \in L^{2}(0, T; H^{1}(\Omega)) \cap C([0, T]; (L^{2}(\Omega))^{3})$$

и выполнены следующие интегральные тождества:

$$\iint_{Q_{T}} (-\epsilon E \cdot \frac{\partial \Upsilon}{\partial t} + \sigma E \cdot \Upsilon) dx dt = \iint_{Q_{T}} (H \cdot \operatorname{rot}\Upsilon) dx dt + \int_{\Omega} \epsilon E_{0}(x) \cdot \Upsilon(x, 0) dx,
\iint_{Q_{T}} (-\mu H \cdot \frac{\partial \Xi}{\partial t} + E \cdot \operatorname{rot}\Xi) dx dt = \int_{\Omega} (\mu H_{0}(x) \cdot \Xi(x, 0)) dx,
\iint_{Q_{T}} (-A(\theta) \frac{\partial \eta}{\partial t} + k(x, \theta) \nabla \theta \cdot \nabla \eta) dx dt = \iint_{Q_{T}} \sigma(\theta) |E|^{2} \eta dx dt + \int_{\Omega} A(\theta_{0}) \eta dx,
\epsilon \partial \epsilon \Upsilon, \Xi \in L^{2}(0, T; H_{0}(\operatorname{rot}, \Omega)) \cap C([0, T], (L^{2}(\Omega))^{3}),
\eta \in H^{1}(0, T; H^{1}(\Omega)),
\Upsilon(x, T) = \Xi(x, T) = 0, \ \eta(x, T) = 0, \ x \in \Omega.$$

Для функциональных пространств используются стандартные обозначения, в соответствии с [4].

1.3 Существование слабого решения

Введем основные предположения:

(A1)
$$\epsilon(x), \mu(x) \in L^{\infty}(\Omega)$$

 $\exists 0 < r_0 < R_0 : 0 < r_0 \le \epsilon(x) \le R_0; \ 0 < r_0 \le \mu(x) \le R_0$ для п.в. $x \in \Omega$,
(A2) $\exists M > 0, \sigma_0 > 0, \sigma_1 > 0$:
 $\sigma_0 \le \sigma(x, \theta) \le \sigma_1, \ \theta \sigma(x, \theta) \le \overline{\sigma} \ \forall (x, \theta) \in \Omega \times [M, \infty),$
(A3) $k_l(\cdot, \cdot), k_s(\cdot, \cdot) \in C^{1+\alpha}(\Omega \times \mathbb{R}_+), \ \alpha \in (0, 1], \ \exists r'_0 > 0, R'_0 > 0$:
 $0 < r'_0 \le k_l(x, \theta) \le R'_0, \ 0 < r'_0 \le k_s(x, \theta) \le R'_0, \ \forall (x, \theta) \in \Omega \times [0, \infty),$
(A4) $\theta_0(\cdot) \in L^{\infty}(\Omega), \ E_0(\cdot), H_0(\cdot) \in (L^2(\Omega))^3$.

Замечание 2. При выполнении (**A**3) можно сделать замену переменных, которая сведет исходную систему к системе с $k \equiv 1$, поэтому далее везде считаем, что $k \equiv 1$ (см. [11])

Теорема 1. При выполнении предположений (A1)-(A4), для любого T>0 существует слабое решение задачи (1)-(6).

$$\mathcal{A}$$
оказательство. См. [11].

2 Асимптотическое поведение решений задачи нагрева

В данной главе рассмотрено асимптотическое поведение решений задачи нагрева для начальных данных из пространства D, которое будет введено ниже.

2.1 Определение пространства начальных данных

Введем следущие пространства:

$$\mathbb{H}_{1}(\Omega) = H(\text{rot}0, \Omega) \cap H_{0}(\text{div}0, \Omega), \tag{7}$$

$$\mathcal{D} = \{ (E, H, \theta) \in H_{0}(\text{rot}, \Omega) \times (H(\text{rot}, \Omega) \cap H_{0}(\text{div}, \Omega)) \times H_{0}^{1}(\Omega);$$

$$\mu H \in \mathbb{H}_{1}(\Omega)^{\perp} \cap H(\text{div}0, \Omega) \}, \tag{8}$$

где $\mathbb{H}_1(\Omega)^{\perp}$ – это ортогональное дополнение пространства $\mathbb{H}_1(\Omega)$ в $L^2(\Omega)^3$. Далее считаем, что \mathcal{D} - пространство начальных данных.

Теорема 2. Пусть начальные данные $(E_0, H_0, \theta_0) \in \mathcal{D}$, тогда для любого t > 0 решение $(E(\cdot, t), H(\cdot, t), \theta(\cdot, t))$ задачи (1)-(6) удовлетворяет $(E(\cdot, t), H(\cdot, t), \theta(\cdot, t)) \in \mathcal{D}$.

Доказательство. Фиксируем произвольное t > 0. Для краткости будем писать E, H, θ , вместо $E(\cdot, t), H(\cdot, t), \theta(\cdot, t)$ соответственно. Нужно доказать, что $\mu H \in \mathbb{H}_1(\Omega)^{\perp}$. Пусть $h \in \mathbb{H}_1(\Omega)$. Из (2) получаем:

$$\int_{\Omega} \mu(x)H_t \cdot hdx + \int_{\Omega} \operatorname{rot} E \cdot hdx = 0.$$

Использем формулу Грина:

$$\int_{\Omega} \operatorname{rot} E \cdot h dx = \int_{\Omega} E \cdot (\operatorname{rot} h) dx + \int_{\partial \Omega} (\nu \times E) \cdot h dS = 0.$$

Отсюда следует, что $(\mu H, h) = (\mu H_0, h) = 0$. Далее применяем оператор дивергенции к (2):

$$\operatorname{div}(\mu H_t) = \operatorname{div}(-\operatorname{rot} E) = 0.$$

Отсюда следует, что $\operatorname{div}(\mu H) = \operatorname{div}(\mu H_0) = 0$.

2.2 Ортогональное разложение

Фиксируем произвольное t>0. Пусть $(E(\cdot,t),H(\cdot,t),\theta(\cdot,t))$ - решение задачи (1)-(6) в точке t с начальными данными $(E_0,H_0,\theta_0)\in\mathcal{D}$. Для краткости, как и выше, пишем $E,\ H,\ \theta$, вместо $E(\cdot,t),\ H(\cdot,t),\ \theta(\cdot,t)$ соответственно. Из предыдущей теоремы следует, что $(E,H,\theta)\in\mathcal{D}$. Используя разложение Ходжа пространства $L^2(\Omega)^3$ ([6], [7], [13]) можно показать, что

$$\mu H = \nabla q + h_1 + \text{rot}\Psi,\tag{9}$$

где $q \in H^1(\Omega), h_1 \in \mathbb{H}_1(\Omega), \Psi \in H^1(\Omega)^3 \cap H_0(\mathrm{rot}, \Omega) \cap H(\mathrm{div}0, \Omega)$ и $\int_{\partial\Omega} \Psi \cdot \eta dS = 0.$

Если $\mu H \in \mathbb{H}_1(\Omega)^{\perp} \cap H_0(\mathrm{div}0,\Omega)$, получаем $h_1=0$ и $\nabla q=0$ ([6]). Таким образом

$$\mu H = \text{rot}\Psi. \tag{10}$$

Замечание 3. Можно показать ([6], [7]), что для любого $v \in H(\mathrm{Div}0,\Omega) \cap H_0(\mathrm{rot},\Omega)$ выполняется неравенство

$$||v||_{L^2(\Omega)^3} \le C||\text{rot } v||_{L^2(\Omega)^3},$$

 $\it rde\ C$ - $\it nonoжительная\ вещественная\ константа.\ B$ нашем $\it cnyuae$

$$||\Psi||_{L^2(\Omega)^3} \le C||\text{rot}\Psi||_{L^2(\Omega)^3} = C||\mu H||_{L^2(\Omega)^3}.$$
(11)

Теперь рассмотрим ортогональное разложение $L^2(\Omega)^3$ для электрического поля E. Как показано в статье [6]

$$E = -\nabla p + \Lambda, \tag{12}$$

где $p \in H_0^1(\Omega)$ и $\Lambda \in H(\mathrm{div}0,\Omega)$.

Из уравнения (2) и разложения (10) получаем

$$0 = \mu H_t + \text{rot}E = \text{rot}\Psi_t + \text{rot}E = \text{rot}(\Psi_t + \nabla p + E). \tag{13}$$

А также выполняется

$$\operatorname{div}(\Psi_t + \nabla p + E) = \operatorname{div}(\Psi_t) + \operatorname{div}(\Lambda) = 0, \tag{14}$$

T.K. $\Psi, \Lambda \in H(\text{div}0, \Omega)$.

Пользуясь последними двумя равенствами можем заключить, что

$$\Psi_t + \nabla p + E \in H(\text{div}0, \Omega) \cap H(\text{rot}0, \Omega).$$

используя то, что $\Psi_t \in H_0(\text{rot},\Omega), E \in H_0(\text{rot},\Omega), p \in H_0^1(\Omega)$, можно заключить, что $\nabla p \in H_0(\text{rot }0,\Omega)$ ([7]). Таким образом

$$\Psi_t + \nabla p + E \in \mathbb{H}_2(\Omega), \tag{15}$$

где $\mathbb{H}_2(\Omega) = H_0(\text{rot}0, \Omega) \cap H(\text{div}0, \Omega).$

Можно переписать (15) в виде

$$E = -\nabla p - \Psi_t + h_2,\tag{16}$$

где $h_2 \in \mathbb{H}_2(\Omega)$. В заключении получаем

$$||E||_{L^{2}(\Omega)^{3}}^{2} = ||\nabla p||_{L^{2}(\Omega)^{3}}^{2} + ||\Psi_{t}||_{L^{2}(\Omega)^{3}}^{2} + ||h_{2}||_{L^{2}(\Omega)^{3}}^{2}, \tag{17}$$

т.к. $\nabla p, \Psi_t$ и h_2 попарно ортогональны в $L^2(\Omega)^3$ ([13]).

2.3 Исследование асимптотического поведения с помощью функционала Ляпунова

Пусть $(E_0, H_0, \theta_0) \in \mathcal{D}$ и $(E(\cdot, t), H(\cdot, t), \theta(\cdot, t))$ решение системы (1)-(6) в момент времени t > 0. Введем функционал Ляпунова в виде

$$\Phi(t) = \frac{1}{2} \int_{\Omega} (\lambda \epsilon(x) |E(x,t)|^2 + \lambda \mu(x) |H(x,t)|^2 + \gamma A(\theta(x,t))^2) dx, \tag{18}$$

где $\lambda, \gamma > 0$. Пусть

$$E(x,t) = (E_1(x,t), E_2(x,t), E_3(x,t)),$$

$$H(x,t) = (H_1(x,t), H_2(x,t), H_3(x,t)).$$

Тогда

$$|E(x,t)|^2 = \sum_{i=1}^3 E_i(x,t)^2, \quad |H(x,t)|^2 = \sum_{i=1}^3 H_i(x,t)^2.$$

Для краткости в данной главе считаем, что $||\cdot|| = ||\cdot||_{(L^2(\Omega))^3}$ Продифференциируем функционал Ляпунова почти везде по t:

$$\frac{d}{dt}\Phi(t) = \int_{\Omega} (\lambda \epsilon E \cdot E_t + \lambda \mu H \cdot H_t + \gamma A(\theta) A(\theta)_t) dx =$$

$$= \int_{\Omega} (\lambda E \cdot (\text{rot}H - \sigma E) + \lambda H \cdot (-\text{rot}E) + \gamma A(\theta) (\sigma |E|^2 + \Delta \theta)) dx =$$

$$\int_{\Omega} (-\lambda \sigma |E|^2 + \gamma A(\theta) (\sigma |E|^2 + \Delta \theta)) dx.$$

Лемма 1. Пусть $G(t) = \Phi(t) - \delta F(t)$, где

$$F(t) = \int_{\Omega} \epsilon E \cdot \Psi dx,$$

 $a \ \Psi$ - это функция из разложения (10) и δ - положительная константа. Тогда выполняется следующее:

$$\frac{d}{dt}F(t) = \int_{\Omega} (\mu|H|^2 - \epsilon|\Psi_t|^2 - \sigma E \cdot \Psi) dx \tag{19}$$

и существует $\delta > 0$ такое, что для любого t > 0 выполняется

$$\frac{1}{2}\Phi(t) \le G(t) \le 2\Phi(t). \tag{20}$$

Доказательство. Пользуясь (1), (17) и тем, что $\Psi \in H_0(\mathrm{rot},\Omega) \cap$

 $H(\mathrm{div}0,\Omega), p\in H^1_0(\Omega), h_2\in\mathbb{H}_2(\Omega),$ продифференциируем почти везде по t

$$\frac{d}{dt}F(t) = \int_{\Omega} \epsilon E \cdot \Psi_t dx + \int_{\Omega} \epsilon E_t \cdot \Psi dx =$$

$$= \int_{\Omega} \epsilon (-\nabla p - \Psi_t + h_2) \cdot \Psi_t dx + \int_{\Omega} (\operatorname{rot} H - \sigma E) \Psi dx =$$

$$= -\int_{\Omega} \epsilon |\Psi_t|^2 dx + \int_{\Omega} (\operatorname{rot} H) \cdot \Psi dx - \int_{\Omega} \sigma E \cdot \Psi dx =$$

$$= -\int_{\Omega} \epsilon |\Psi_t|^2 dx + \int_{\Omega} \mu H \cdot (\operatorname{rot} \Psi) dx - \int_{\Omega} \sigma E \cdot \Psi dx =$$

$$= -\int_{\Omega} \epsilon |\Psi_t|^2 dx + \int_{\Omega} \mu |H|^2 dx - \int_{\Omega} \sigma E \cdot \Psi dx.$$

Чтобы доказать (20), воспользуемся неравенством Коши-Шварца, ограниченностью Ψ (11) и предположением (**A1**):

$$|G(t) - \Phi(t)| = \delta |F(t)| \le \delta ||\epsilon E|| ||\Psi|| \le$$

$$\le \frac{\delta}{2} (||\epsilon E||^2 + ||\Psi||^2) \le \frac{\delta}{2} (||\epsilon E||^2 + C^2||\mu H||^2) =$$

$$= \frac{\delta}{2\lambda} (\int_{\Omega} \lambda \epsilon^2 |E|^2 dx + C^2 \int_{\Omega} \lambda \mu^2 |H|^2 dx) \le$$

$$\le \frac{\delta R_0}{2\lambda} (\int_{\Omega} \lambda \epsilon |E|^2 dx + C^2 \int_{\Omega} \lambda \mu |H|^2 dx) \le$$

$$\le \delta C_1 \Phi(t),$$

где $C_1 = \max(\frac{R_0}{2\lambda}, \frac{R_0C^2}{2\lambda}).$

Выбираем δ так, чтобы

$$\delta C_1 \le \frac{1}{2},\tag{21}$$

тогда (20) выполняется.

Теорема 3. Пусть $(E_0, H_0, \theta_0) \in \mathcal{D}$, тогда функционал Ляпунова для системы (1) - (6), определенный выше, учитывая предположения $(\mathbf{A}\mathbf{1}) - (\mathbf{A}\mathbf{4})$, удовлетворяет неравенству

$$\Phi(t) \le \beta \Phi(0) \exp(-\alpha t),$$

для любого t>0, где α и β положительные константы.

Доказательство. Из леммы 1 имеем представление

$$\frac{d}{dt}G(t) = -\lambda \int_{\Omega} \sigma |E|^2 dx + \gamma \int_{\Omega} A(\theta)(\sigma |E|^2 + \Delta \theta) dx$$
$$-\delta \int_{\Omega} \mu |H|^2 dx + \delta \int_{\Omega} \sigma E \cdot \Psi dx + \delta \int_{\Omega} \epsilon |\Psi_t|^2 dx.$$

Воспользуемся неравенством Пуанкаре

$$\int_{\Omega} A(\theta) \triangle \theta dx = -\int_{\Omega} \nabla A(\theta) \cdot \nabla \theta dx = -\int_{\Omega} A_{\theta}(\theta) \cdot |\nabla \theta|^{2}$$

$$\leq -\int_{\Omega} a_{0} |\nabla \theta|^{2} dx \leq -\int_{\Omega} a_{0} C_{0} |\theta|^{2} dx \tag{22}$$

Пользуясь (11), (17), (22) и предположениями $({\bf A1})-({\bf A4})$, получаем

$$\frac{d}{dt}G(t) \leq -\frac{\sigma_0}{R_0} \int_{\Omega} \lambda \epsilon |E|^2 dx - C_0 a_0 \int_{\Omega} \gamma |\theta|^2 dx + \gamma \int_{\Omega} A(\theta) \sigma |E|^2 dx
-\frac{\delta}{\lambda} \int_{\Omega} \lambda \mu |H|^2 dx + \frac{\delta}{2} (\frac{\sigma_1^2}{k} ||E||^2 + C^2 k ||\mu H||^2) + \delta \frac{R_0}{r_0} \int_{\Omega} |E|^2 dx =
\leq -(\frac{\sigma_0}{R_0} - \gamma M - \delta (\frac{\sigma_1^2}{2kR_0\lambda} + \frac{1}{\lambda})) \int_{\Omega} \lambda \epsilon |E|^2 dx - C_0 a_0 \int_{\Omega} \gamma |\theta|^2 dx
-\delta (\frac{1}{\lambda} - \frac{1}{2\lambda} C^2 R_0 k) \int_{\Omega} \lambda \mu |H|^2 dx.$$

Выбираем k > 0 такое, чтобы

$$C_2 \equiv \frac{1}{\lambda} - \frac{1}{2\lambda} C^2 R_0 k > 0$$

и $\delta > 0, \gamma > 0$ малые такие, чтобы

$$C_3 \equiv \frac{\sigma_0}{R_0} - \gamma M - \delta(\frac{\sigma_1^2}{2kR_0\lambda} + \frac{1}{\lambda}) > 0$$

и выполнялось (21). Тогда

$$\frac{d}{dt}G(t) \le -C_3 \int_{\Omega} \lambda \epsilon |E|^2 dx - \delta C_2 \int_{\Omega} \lambda \mu |H|^2 dx - C_0 a_0 \int_{\Omega} \gamma |\theta|^2 dx \le -C_4 \Phi(t),$$

где $C_4 = \min(2C_3, 2\delta C_2, 2C_0 a_0)$. Таким образом получаем

$$\frac{d}{dt}G(t) \le -\frac{C_4}{2}G(t) \qquad G(t) \le G(0)\exp(-\frac{C_4}{2}t).$$

Итого можем заключить, что

$$\Phi(t) \le 2G(t) \le 4\Phi(0)\exp(-\frac{C_4}{2}t).$$
(23)

Замечание 4. Исходя из вида функционала $\Phi(t)$, существует такая константа C > 0, что

$$||E(\cdot,t)||^2_{(L^2(\Omega))^3} + ||H(\cdot,t)||^2_{(L^2(\Omega))^3} + ||\theta(\cdot,t)||^2_{L^2(\Omega)} \le C\Phi(t).$$

Пользуясь предыдущей теоремой получаем асимптотическое стремление к нулю решения по норме:

$$||E(\cdot,t)||_{(L^2(\Omega))^3}^2 + ||H(\cdot,t)||_{(L^2(\Omega))^3}^2 + ||\theta(\cdot,t)||_{L^2(\Omega)}^2 \to 0 \quad npu \quad t \to \infty$$

Таким образом решение можно продолжить на $\mathbb{R}_+ = \{t \in \mathbb{R} | t \geq 0\}.$

3 Аттрактор в многозначной динамической системе для системы нагрева

3.1 Основы теории многозначных динамических систем

Пусть \mathcal{M} - полное метрическое пространство с метрикой ρ , \mathbb{T} - нетривиальная подгруппа аддитивной группы \mathbb{R} .

Определение 2. Пусть $\varphi^t : \mathcal{M} \to 2^{\mathcal{M}}, \forall t \in \mathbb{T}$, тогда $(\{\varphi^t\}_{t \in \mathbb{T}}, (\mathcal{M}, \rho))$ будем называть многозначной динамической системой, если выполняются свойства:

1)
$$\varphi^0(p) = \{p\}, \forall p \in \mathcal{M},$$

2)
$$\varphi^{t_1+t_2}(p) \subset \varphi^{t_1}(\varphi^{t_2}(p)), \forall t_1, t_2 \in \mathbb{T}, \forall p \in \mathcal{M}.$$

Далее считаем, что $\mathbb{T} = \mathbb{R}_+$.

Определение 3. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - многозначная динамическая система и существуют поледовательности $\{t_n\} \subset \mathbb{R}_+, \{p_{n0}\} \subset \mathcal{M}$, такие, что $t_n \to t$, $p_{n0} \to p_0$ при $n \to \infty$ для некоторых $t \in \mathbb{R}_+$, $p_0 \in \mathcal{M}$. Допустим, что для любого $n \in \mathbb{N}$ существует $\tilde{p}_n \in \mathcal{M}$ со свойствами:

$$\tilde{p}_n \in \varphi^{t_n}(p_{n0})$$
 $\tilde{p}_n \to \tilde{p}, \quad npu \quad n \to \infty.$

Тогда непрерывность многозначной динамической системы $(\{\varphi^t\}_{t\in\mathbb{R}_+},(\mathcal{M},\rho))$ относительно начальных данных означает, что $\tilde{p}\in\varphi^t(p_0)$.

Определение 4. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - многозначная динамическая система. Пусть $\mathcal{Z} \subset \mathcal{M}$. Тогда \mathcal{Z} называется притягиващим множеством, если выполняется следующее свойство:

$$\operatorname{dist}(\varphi^{t}(p), \mathcal{Z}) \to 0 \quad npu \quad t \to \infty, \quad \forall p \in \mathcal{M}$$

$$i \partial e \quad \operatorname{dist}(\mathcal{W}, \mathcal{W}') = \inf_{p \in \mathcal{W}, q \in \mathcal{W}'} \rho(p, q), \quad \mathcal{W}, \mathcal{W}' \subset \mathcal{M}.$$

Определение 5. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - многозначная динамическая система. Пусть $\mathcal{Z} \subset \mathcal{M}$. Тогда \mathcal{Z} называется поглощающим множеством, если выполняется следующее свойство:

$$\forall p \in \mathcal{M} \ \exists T \in \mathbb{R}_+ : \forall t > T, t \in \mathbb{R}_+ \ \varphi^t(p) \subset \mathcal{Z}.$$

Определение 6. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - многозначная динамическая система. Множество \mathcal{Z} называется инвариантным, если

$$\varphi^t(\mathcal{Z}) = \mathcal{Z}, \ \forall t \in \mathbb{R}_+.$$

Определение 7. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - многозначная динамическая система. Непустое множество $\mathcal{A} \subset \mathcal{M}$ называется глобальным аттрактором для динамической системы $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$, если выполняются следующие свойства:

- ullet А ограничено и замкнуто,
- А инвариантно,
- А является притягиващим множеством.

Теорема 4. Пусть $(\{\varphi^t\}_{t\in\mathbb{R}_+}, (\mathcal{M}, \rho))$ - непрерывная многозначная динамическая система с компактным поглощающим множеством \mathcal{K} . Тогда существует глобальный аттрактор \mathcal{A} для этой динамической системы u

$$\mathcal{A} = \bigcap_{s \ge 0} \overline{\bigcup_{t \ge s} \varphi^t(\mathcal{K})}.$$

Доказательство. Доказательство аналогично доказательству теоремы о существовании аттрактора в работе Юмагузина Н. Ю. ([5]), только в других обозначениях.

3.2 Существование аттрактора для системы нагрева

В этом разделе будет рассмотрена задача нагрева (1)-(6) с точки зрения динамической системы.

Определим норму на \mathcal{D} , где \mathcal{D} из (2.1), следующим образом:

$$||(E, H, \theta)||_{\mathcal{D}} = \max\{||E||_{L^2(\Omega)^3}, ||H||_{L^2(\Omega)^3}, ||\theta||_{L^2(\Omega)}\}.$$

Пусть $\mathbb{R}_+ = \{t \in \mathbb{R} : t \geq 0\}$. Введем функцию

$$\varphi: \mathbb{R}_{+} \times \mathcal{D} \to 2^{\mathcal{D}}$$

$$\varphi^{t}(E_{0}, H_{0}, \theta_{0}) = \{(\tilde{E}, \tilde{H}, \tilde{\theta}) \in \mathcal{D}: \exists (E, H, \theta) \text{ решение задачи}$$

$$(1) - (6) \text{ для начальных данных } E_{0}, H_{0}, \theta_{0} \text{ и}$$

$$E(\cdot, t) = \tilde{E}, H(\cdot, t) = \tilde{H}, \theta(\cdot, t) = \tilde{\theta}\}. \tag{24}$$

Ясно, что выполняется свойство

$$\varphi^t(p) = \{p\}, \ \forall p \in \mathcal{D}$$

а также выполняется

$$\varphi^{s+t}(E_0, H_0, \theta_0) \subset \varphi^s(\varphi^t(E_0, H_0, \theta_0))$$

для любых s,t>0. ([12]). Таким образом выполняются все свойства многозначной динамической системы.

Теорема 5. Для динамической системы (24) выполняется свойство непрерывности относительно начальных данных.

Доказательство. Пусть есть последовательности времен $\{t_n\} \subset \mathbb{R}_+$ и начальных данных $\{(E_{n0}, H_{n0}, \theta_{n0})\} \subset \mathcal{D}$. Пусть для любого $n \in \mathbb{N}$ существует тройка $(\tilde{E}_n, \tilde{H}_n, \tilde{\theta}_n)$ со свойствами:

$$(\tilde{E}_n, \tilde{H}_n, \tilde{\theta}_n) \in \varphi^{t_n}(E_{n0}, H_{n0}, \theta_{n0}). \tag{25}$$

$$(\tilde{E}_n, \tilde{H}_n, \tilde{\theta}_n) \to (\tilde{E}, \tilde{H}, \tilde{\theta}) \in \mathcal{D}$$
 при $n \to \infty$. (26)

Кроме того выполняется

$$t_n \to t \in \mathbb{R}_+,\tag{27}$$

$$(E_{n0}, H_{n0}, \theta_{n0}) \to (E_0, H_0, \theta_0) \in \mathcal{D}.$$
 (28)

Последовательность $\{t_n\}$ является ограниченной. Пускай T>0 такое, что $t_n < T$ для любого n.

Нужно доказать, что при таких условиях $(\tilde{E}, \tilde{H}, \tilde{\theta}) \in \varphi^t(E_0, H_0, \theta_0)$.

Обозначим для любого $n \in \mathbb{N}$ через (E_n, H_n, θ_n) некоторое решение задачи, соответствующее начальным данным $E_{n0}, H_{n0}, \theta_{n0}$, такое, что

$$E_n(\cdot,t_n) = \tilde{E}_n, H_n(\cdot,t_n) = \tilde{H}_n, \theta_n(\cdot,t_n) = \tilde{\theta}_n,$$

что возможно в силу (25).

Для начала нужно показать, что существует такое решение задачи (E,H,θ) с начальными данными E_0,H_0,θ_0 , что

$$E_n \to E, H_n \to H$$
 в $C([0,T]; (L^2(\Omega))^3)$ и $\theta_n \to \theta$ в $C([0,T]; L^2(\Omega))$ при $n \to \infty$.

Для этого получим равномерные по n оценки по норме для E_n, H_n и θ_n . Для этого нам понадобятся следующие леммы.

Лемма 2. Пусть (E, H, θ) - слабое решение задачи (1)–(6), тогда существует константа $C_1 > 0$, зависящая только от начальных данных, такая, что $\forall n \in \mathbb{N}$ выполняется

$$\sup_{0 \le t \le T} \int_{\Omega} (|E_n|^2 + |H_n|^2) dx \le C_1.$$

Доказательство. См. [15].

Лемма 3. Пусть (E, H, θ) - слабое решение задачи (1)–(6), тогда существуют константы $C_1 > 0, C_2 > 0$, зависящие только от начальных данных, такие, что $\forall n \in \mathbb{N}$ выполняется

$$\sup_{0 \le t \le T} C_1 \int_{\Omega} |\theta_n|^2 dx + \iint_{Q_T} |\nabla \theta_n|^2 dx dt \le C_2.$$

Доказательство. См. [15].

Пользуясь предыдущими леммами получаем, что для любого $n \in \mathbb{N}$ выполняется

$$\sup_{0 \le t \le T} \int_{\Omega} |E_n|^2 + |H_n|^2 dx \le C_3 \quad \text{id} \tag{29}$$

$$\sup_{0 \le t \le T} \int_{\Omega} |\theta_n|^2 dx \le C_3,\tag{30}$$

где константа C_3 не зависит от n.

Таким образом, используя (29), (30), и то, что пространства $C([0,T];(L^2(\Omega))^3),C([0,T];L^2(\Omega))$ - банаховы, получаем, что существуют такие функции $E,H\in C([0,T];(L^2(\Omega))^3),\theta\in C([0,T];L^2(\Omega)),$ что при $n\to\infty$

$$E_n \to E, H_n \to H$$
 в $C([0, T]; L^2(\Omega)^3)$ и (31)

$$\theta_n \to \theta$$
 в $C([0,T]; L^2(\Omega)).$ (32)

Далее покажем, что (E, H, θ) является решением задачи с начальными данными E_0, H_0, θ_0 .

Рассмотрим интегральное тождество из определения слабого решения для решения (E_n, H_n, θ_n)

$$\int_{0}^{T} \int_{\Omega} (-\mu H_n \cdot \frac{\partial \Xi}{\partial t} + E_n \cdot \text{rot}\Xi) dx dt = \int_{\Omega} (\mu H_{n0}(x) \cdot \Xi(x, 0)) dx, \tag{33}$$

где $\Xi \in L^2(0,T; H_0(\text{rot},\Omega)) \cap C([0,T],(L^2(\Omega))^3), \Xi(x,T) = 0, x \in \Omega.$

Воспользуемся теоремой Арцела, как это было показано в ([5]), и получим

$$\int_0^T \int_{\Omega} (-\mu H \cdot \frac{\partial \Xi}{\partial t} + E \cdot \text{rot}\Xi) dx dt = \int_{\Omega} (\mu H_0(x) \cdot \Xi(x,0)) dx.$$

Проделываем подобные рассуждения для двух оставшихся интегральных тождеств и тем самым получаем, что (E,H,θ) является решением задачи с начальными данными E_0,H_0,θ_0 .

Далее, покажем непосредственно свойство непрерывности относительно начальных данных. Рассмотрим непрерывность по компоненте E решения (E,H,θ) .

Пусть $\epsilon > 0$. Так как $E \in C([0,T];(L^2(\Omega))^3)$ и $t_n \to t$, при $n \to \infty$, то существует $n_1 > 0$ такое, что

$$||E(\cdot, t_n) - E(\cdot, t)||_{(L^2(\Omega))^3} \le \epsilon, \ \forall n \ge n_1.$$
(34)

Кроме того, в силу (31), существует $n_2 > 0$ такое, что

$$||E_n - E||_{C([0,T];(L^2(\Omega))^3)} \le \epsilon, \ \forall n \ge n_2.$$
 (35)

А также, в силу (26), существует $n_3 > 0$ такое, что

$$||\tilde{E}_n - \tilde{E}||_{(L^2(\Omega))^3} \le \epsilon, \ \forall n \ge n_3.$$
 (36)

Учитывая полученные выше неравенства, получаем

$$||\tilde{E}(\cdot) - E(\cdot, t)||_{(L^{2}(\Omega))^{3}} \leq$$

$$||\tilde{E}_{n}(\cdot) - \tilde{E}(\cdot)||_{(L^{2}(\Omega))^{3}} + ||\tilde{E}_{n}(\cdot) - E(\cdot, t_{n})||_{(L^{2}(\Omega))^{3}} +$$

$$+||E(\cdot, t_{n}) - E(\cdot, t)||_{(L^{2}(\Omega))^{3}} =$$

$$= ||\tilde{E}_{n}(\cdot) - \tilde{E}(\cdot)||_{(L^{2}(\Omega))^{3}} + ||E_{n}(\cdot, t_{n}) - E(\cdot, t_{n})||_{(L^{2}(\Omega))^{3}} +$$

$$+||E(\cdot, t_{n}) - E(\cdot, t)||_{(L^{2}(\Omega))^{3}} \leq$$

$$\leq ||\tilde{E}_{n}(\cdot) - \tilde{E}(\cdot)||_{(L^{2}(\Omega))^{3}} + ||E_{n} - E||_{C([0,T];(L^{2}(\Omega))^{3}} +$$

$$+||E(\cdot, t_{n}) - E(\cdot, t)||_{(L^{2}(\Omega))^{3}} \leq$$

$$\leq 3\epsilon, \forall n \geq \max\{n_{1}, n_{2}, n_{3}\}.$$

Таким образом $\tilde{E}(\cdot) = E(\cdot,t)$. Аналогичным образом можно показать, что $\tilde{H}(\cdot) = H(\cdot,t), \; \tilde{\theta}(\cdot) = \theta(\cdot,t)$. Тем самым теорема доказана.

Далее мы построим аттрактор для многозначной динамической системы (24). Для этого нам понадобятся ещё одна лемма.

Лемма 4. Динамическая система (24) имеет компактное поглащающее множество.

Доказательство. Пусть (E, H, θ) есть решение задачи (1) – (6) с начальными данными $(E_0, H_0, \theta_0) \in \mathcal{D}$. Обозначим $\mathcal{D}' = \{(\tilde{E}, \tilde{H}, \tilde{\theta}) \in \mathcal{D} : ||(\tilde{E}, \tilde{H}, \tilde{\theta})||_D \le \delta\}$, где $\delta > 0$. В силу (4), существует такое $\tilde{t} > 0$, что

$$(E(\cdot,t),H(\cdot,t),\theta(\cdot,t))\in\mathcal{D}', \text{ при } t\geq \tilde{t}.$$

Теперь возьмем произвольное $t_1 > \tilde{t}$ и положим $t_0 = t_1 + \tilde{t}, \mathcal{B}_0 = \overline{conv}(\varphi^{t_1}(\mathcal{D}'))$, где $\overline{conv}(\mathcal{Z})$ – замыкание выпуклой оболочки множества $\mathcal{Z} \subset \mathcal{D}$.

Множество \mathcal{B}_0 компактно, т.к. $\varphi^{t_1}(\mathcal{D}')$ - предкомпактно.

Осталось показать, что $\varphi^t(\mathcal{D}') \subset \mathcal{B}_0$ для любого $t \geq t_0$. Так как $\varphi^{t+s}(\mathcal{D}') = \varphi^t(\varphi^s(\mathcal{D}'))$ для t,s>0 и $\varphi^t(\mathcal{D}') \subset \mathcal{D}'$, при $t>\tilde{t}$, получаем что

$$\varphi^{t+t_1}(\mathcal{D}') = \varphi^{t_1}(\varphi^t(\mathcal{D}')) \subset \varphi^{t_1}(\mathcal{D}') \subset \mathcal{B}_0,$$

для любого $t \geq \tilde{t}$. Из чего следует, что $\varphi^t(\mathcal{D}') \subset \mathcal{B}_0$, для любого $t \geq t_0$. Тем самым мы нашли компактное поглощающее множество \mathcal{B}_0 .

Теперь всё готово для того, чтобы доказать существование аттрактора для динамической системы нагрева.

Теорема 6. Многозначная динамическая система (24) имеет глобальный аттрактор

$$\mathcal{A} = \bigcap_{s \geq 0} \bigcup_{t \geq s} \varphi^t(\mathcal{B}_0),$$

где \mathcal{B}_0 - компактное поглощающее множество из предыдущей леммы.

 \mathcal{A} оказательство. В силу теоремы 5 и леммы 4 выполняются условия из теоремы о существовании аттрактора для диссипативной динамической системы (4).

4 Численная аппроксимация температурного профиля

Решение задачи (1)-(6) с начальными данными из D, где D из (2.1), рассматривалось на основе разностного метода. Метод заключается в построении конечной четырехмерной сетки для решения (трехмерное пространство и одномерное время). Каждый новый временной слой решения строится через предыдущий.

Пусть $\Omega=(0,1)^3$, т.е. куб со стороной 1. Пусть также коэффициент теплопроводности не зависит от x, т.е. материал однородный. Шаг по каждой из пространственных координат $h=\frac{1}{n}$, шаг по времени $\Delta t=\frac{T}{m}$.

Введем обозначения:

$$x_{ijk} = (i \cdot h, j \cdot h, k \cdot h), \quad i, j, k \in \{0, 1, ..., n\},$$

$$t_q = q \cdot \Delta t, \quad q \in \{0, 1, ...m\},$$

$$\theta_{ijk}^q = \theta(x_{ijk}, t_q), \quad E_{ijk}^q = E(x_{ijk}, t_q), \quad H_{ijk}^q = H(x_{ijk}, t_q).$$

Пусть $F(x,y,z)=(F^x(x,y,z),F^y(x,y,z),F^z(x,y,z))$ - векторное поле. Тогда введем следующее обозначение:

$$\operatorname{rot}_{ijk}F = \left(\frac{F_{ij+1k}^z - F_{ij-1k}^z}{2h} - \frac{F_{ijk+1}^y - F_{ijk-1}^y}{2h}, \frac{F_{ijk+1}^x - F_{ijk-1}^x}{2h} - \frac{F_{i+1jk}^z - F_{i-1jk}^z}{2h}, \frac{F_{i+1jk}^y - F_{i-1jk}^y}{2h} - \frac{F_{ij+1k}^x - F_{ij-1k}^x}{2h}\right).$$

Тогда разностная схема для уравнения запишется таким образом:

$$\epsilon(x_{ijk})(\frac{E_{ijk}^{q+1} - E_{ijk}^{q}}{dt}) + \sigma(x_{ijk}, \theta_{ijk}^{q})E_{ijk}^{q} = \operatorname{rot}_{ijk}H^{q},$$

$$\nu(x_{ijk})(\frac{H_{ijk}^{q+1} - H_{ijk}^{q}}{dt}) + \operatorname{rot}_{ijk}E^{q} = 0,$$

$$\frac{\theta_{ijk}^{q+1} - \theta_{ijk}^{q}}{dt} - \sigma(x_{ijk}, \theta_{ijk}^{q})|E_{ijk}^{q}|^{2} =$$

$$= k(\theta_{ijk}^{q})\frac{\theta_{i+1jk}^{q} - \theta_{i-1jk}^{q} + \theta_{ij+1k}^{q} + \theta_{ij-1k}^{q} + \theta_{ijk+1}^{q} + \theta_{ijk-1}^{q} - 6\theta_{ijk}^{q}}{h^{2}},$$

где
$$i, j, k \in \{1, 2, ..., n-1\}$$
, а $q \in \{1, 2, ..., m-1\}$.

Так как начальные данные берутся из \mathcal{D} , то граничные условия сразу выполняются и граничные точки сетки можно не менять.

Для данного примера коэффициенты теплопроводности были выбраны следующим образом: $k_{solid}=0.33$, а $k_{liquid}=0.11$, начальная температура равна 37 градусам. Диэлектрическая проницаемость $\epsilon=42$, магнитная проницаемость $\mu=1$, а начальные функции

$$E_{0}(x,y,z) = (x(1-x)y(1-y)z(1-z), \quad x(1-x)y(1-y)z(1-z),$$

$$x(1-x)y(1-y)z(1-z)) \cdot 1850,$$

$$H_{0}(x,y,z) =$$

$$= (\sin(xyz(x-1)(y-1)(z-1)) \cdot x(x-1)(2y^{2}z-y^{2}-2yz^{2}+y+z^{2}-z),$$

$$-\sin(xyz(x-1)(y-1)(z-1)) \cdot y(y-1)(2x^{2}z-x^{2}-2xz^{2}+x+z^{2}-z),$$

$$\sin(xyz(x-1)(y-1)(z-1)) \cdot z(z-1)(2x^{2}y-x^{2}-2xy^{2}+x+y^{2}-y)) \cdot 1850.$$

График изменения температуры на прямой y=0.5, z=0.5 в течение 1000 секунд (Рис. 1) иллюстрирует асимптотическое стремление к нулю температуры, доказанное ранее. Также представлен график изменения температуры для центральной точки куба x=0.5, y=0.5, z=0.5 в течение 300 секунд (Рис. 2). Более подробную информацию о программе, производившей расчеты, можно найти в приложении. Таким образом численное решение находиться в соответствии с интерпритацией задачи с помощью многозначной динамической системы.

Рис. 1: График изменения температуры на прямой $x \in (0,1), y = 0.5, z = 0.5$

Рис. 2: График изменения температуры в центральной точке куба

Список литературы

- [1] Будак Б.М., Васильев Ф.П., Успенский А.Б. Разностные методы решения некоторых краевых задач типа Стефана // Численные методы в газовой динамике: Сб. М., Изд-во МГУ, 1965, с. 139-182.
- [2] Дюво Г., Лионс Ж-Л. Неравенства в механике и физике. М.: Наука, 1982. 602~c.
- [3] Каменномостская С. Л. О задаче Стефана // Математический сборник. 1961. Т. 53(93) № 4, с. 489-514
- [4] Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 стр.
- [5] Юмагузин Н.Ю., Асимптотическое поведение решений двухфазовой проблемы микроволнового нагрева в одномерном случае // Санкт-Петербургский государственный университет. Диссертационная работа. 2012. 96 стр.
- [6] Dautray R., Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. Spectral Theory and Applications. Berlin: Springer-Verlag. 1990. P. 515
- [7] Girault V., Raviart P. A., Finite Element Methods for Navier-Stokes Equations // Berlin: Springer-Verlag. 1986. P. 376
- [8] Grundas S. Advances in induction and microwave heating of mineral and organic materials. Rijeca: InTech. 2011. P. 752
- [9] Kalinin Y., Reitmann V., Yumaguzin N., Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect // Discrete and Cont. Dyn. Sys. 2011. Vol. 2. P. 754-762
- [10] Kumar S., Katiyar V. K., Numerical study on phase change heat transfer during combined hyperthermia and cryosurgical treatment of lung cancer // Int. J. of Appl. Math and Mech. 2007. Vol. 3. P. 1-17
- [11] Manoranjan V. S., Yin H.-M. On two-phase Stefan problem arising from a microwave heating process // Discrete and Cont. Dyn. Sys. - Series A. 2006. Vol. 4, P. 1155-1168

- [12] Melnik V. S., Valero J. On attractors of multivalued semi-flows and differential inclusions // Set-Valued Analysis. 1998. Vol. 6. P. 83-111
- [13] Phung K.D. Controle et Stabilization D'Ondes Electromagnetiques // ESAIM Control Optim. Calc. Var. 2000. P. 87-137
- [14] Reitmann V., Yumaguzin N., Stability analysis for Maxwell's equations with a thermal effect in one-space dimension // Journal of Mathematical Sciences. 2012. Vol 46. P. 1-12
- [15] Yin H.-M. On Maxwells equations in an electromagnetic field with the temperature effect // SIAM J. of Mathematical Analysis. 1998. Vol. 29, P. 637-651