Universidade do Minho

20 de dezembro de 2016

$2^{\underline{\mathrm{o}}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

- 1. Seja h a função obtida por recursão primitiva das funções $f: x \mapsto x^2$ e $g: (x, y, z) \mapsto y + z$.
 - a) Calcule h(5,1).
 - **b)** Identifique a função h.
 - c) Mostre que h é uma função recursiva primitiva.
 - d) Determine a função M_g de minimização de g.
- **2**. Seja $A: \mathbb{N}_0^2 \to \mathbb{N}_0$ a função de Ackermann que, recorde, é definida por:
- i) A(0,y) = y+1; ii) A(x+1,0) = A(x,1); iii) A(x+1,y+1) = A(x,A(x+1,y)).
- a) Determine A(2,1).
- **b)** Sabendo que A(x,y) > y para quaisquer $x,y \in \mathbb{N}_0$, prove que A(x,y+1) > A(x,y) para todos os $x, y \in \mathbb{N}_0$. [Sugestão: fixe y e use indução sobre x.]
- **3**. Mostre que n^2 não é $\mathcal{O}(n)$.
- 4. Seja $A = \{1\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

- a) Indique a sequência de configurações que podem ser computadas a partir de $(0, \underline{\Delta}11111, \underline{\Delta})$.
- **b)** Identifique a função $g: \mathbb{N}_0 \to \mathbb{N}_0$ calculada por \mathcal{T} .
- c) Determine a função $tc_{\mathcal{T}}$, de complexidade temporal da máquina \mathcal{T} .
- d) Mostre que a função g é computável em tempo polinomial.
- **5**. Considere duas linguagens $L_1 \subseteq A_1^*$ e $L_2 \subseteq A_2^*$.
 - a) Mostre que, se $L_1 \notin P$ e $L_2 \in P$, então $L_1 \nleq_p L_2$.
 - b) Considere as linguagens $L_1 = a^*ba^*$ e $L_2 = \{a^nba^n : n \ge 0\}$ sobre o alfabeto $A = \{a, b\}$. Prove que $L_1 \leq_p L_2$.

$$\text{Cotação:} \begin{cases} \textbf{1.} & 5.5 \text{ valores } (1.25+1.5+1.25+1.5) \\ \textbf{2.} & 3.25 \text{ valores } (1.25+2) \\ \textbf{3.} & 1.75 \text{ valores} \\ \textbf{4.} & 6 \text{ valores } (1.25+1.5+1.75+1.5) \\ \textbf{5.} & 3.5 \text{ valores } (1.25+2.25) \end{cases}$$