

IIC1253 — Matemáticas Discretas — 1' 2018

PAUTA TAREA 3

Pregunta 1

Pregunta 1.1

La solución consistía en notar que no se cumple la antisimetría en este caso. Esto se demostrará con un contraejemplo. Un posible contraejemplo es tomar $A = \{a, b\}$ con $a \neq b$ y basta notar que:

- $\{(a,b)\} \leq \{(a,a)\}$ ya que $\{(a,b)\} \circ \{(b,a)\} = \{(a,a)\}$ y
- $\{(a,a)\} \leq \{(a,b)\}$ ya que $\{(a,a)\} \circ \{(a,b)\} = \{(a,b)\}$

De esta forma tomando $R = \{(a,b)\}$ y $S = \{(a,a)\}$ se tiene que $R \leq S$ y $S \leq R$ pero $R \neq S$. Por lo que no se cumple la antisimetría y (\mathcal{R}, \leq) no sería un orden parcial.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Por argumentar ser orden parcial o error grave.
- (3 puntos) Por argumentar no ser orden parcial y error leve.
- (4 puntos) Por argumentar no ser orden parcial.

Pregunta 1.2

La solución consistía en notar que la relación no es conexa. Esto se puede demostrar con un contraejemplo. Por ejemplo, tomando $A = \{a, b\}$ con $a \neq b$ basta notar que:

- $\{(a,a)\} \not\preceq \{(b,b)\}$, ya que para toda $T \in \mathcal{R}$ se cumple que $\{(a,a)\} \circ T \neq \{(b,b)\}$ y
- $\{(b,b)\} \not\preceq \{(a,a)\}$, ya que para toda $T \in \mathcal{R}$ se cumple que $\{(b,b)\} \circ T \neq \{(a,a)\}$.

De esta forma tomando $R = \{(a, a)\}$ y $S = \{(b, b)\}$ se tiene que $R \not\preceq S$ y $S \not\preceq R$, y (\mathcal{R}, \preceq) no es conexa.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Por argumentar conexa o error grave.
- (3 puntos) Por argumentar no ser conexa y error leve.
- (4 puntos) Por argumentar no ser conexa.

Pregunta 2

Pregunta 2.1

Para demostrar que R es refleja bastaba con notar que para todo $S \in A^{\dagger}$ y para todo $X \in S$, podemos tomar Y = X y la definición de R se cumple para $(S, S) \in R$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Por demostrar que R es refleja correctamente.
- (3 puntos) En casos de errores mínimos.
- (0 puntos) En otros casos.

Pregunta 2.2

Para demostrar que R es antisimétrica se debía tomar S y S' en A^{\dagger} tales que $(S,S') \in R$ y $(S',S) \in R$, y demostrar que S = S'. Para esto, basta demostrar que $S \subseteq S'$ (que $S' \subseteq S$ es análogo). Tomamos entonces un $X \in S$ y queremos demostrar que $X \in S'$. Dado que $(S,S') \in R$ tenemos que existe $Y \in S'$ tal que $X \subseteq Y$. Además, como $(S',S) \in R$, entonces existe $X' \in S$ tal que $Y \subseteq X'$. Finalmente, $X \subseteq Y \subseteq X'$ pero como $X,X' \in S$ se tiene X = X' por definición de A^{\dagger} . De esto se concluye que X = Y = X' y por lo tanto, $X \in S'$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Por demostrar que R es antisimétrica correctamente.
- (3 puntos) En casos de existir la noción correcta de la demostración, pero que hayan pasos poco claros.
- (0 puntos) En otros casos.

Pregunta 2.3

Para demostrar que R es transitiva tomábamos cualquier $S, S', S'' \in A^{\dagger}$ tales que $(S, S') \in R$ y $(S', S'') \in R$, y demostramos que $(S, S'') \in R$. Dado que $(S, S') \in R$ esto significa que para todo $X \in S$, existe $Y \in S'$ tal que $X \subseteq Y$. Además, como $(S', S'') \in R$ esto significa que para todo Y tenemos que existe $Z \in S''$ tal que $Y \subseteq Z$. Por lo tanto, tenemos que para todo X existe un Z tal que $X \subseteq Z$. Por definición de R, esto significa que $(S, S'') \in R$.

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Por demostrar que R es transitiva correctamente.
- (3 puntos) En caso de errores mínimos en la demostración.
- (0 puntos) En otros casos.