### Variables de contrôle et matching

Pratiques de la Recherche en Économie

Florentine Oliveira 2025-02-18

# Reminder

L'objectif est d'estimer l'effet d'un  ${f traitement}\ D$  sur une variable d' ${f outcome}\ Y$ .

• par exemple l'effet d'avoir un master sur le salaire

L'objectif est d'estimer l'effet d'un **traitement** D sur une variable d'**outcome** Y.

• par exemple l'effet d'avoir un master sur le salaire

Peut-on en déduire l'effet du traitement en comparant l'outcome des individus traités à celui des individus non traités?

• par exemple peut-on quantifier l'effet d'avoir un master sur le salaire en comparant les individus qui ont un master à ceux qui n'en ont pas?

L'objectif est d'estimer l'effet d'un **traitement** D sur une variable d'**outcome** Y.

• par exemple l'effet d'avoir un master sur le salaire

Peut-on en déduire l'effet du traitement en comparant l'outcome des individus traités à celui des individus non traités?

• par exemple peut-on quantifier l'effet d'avoir un master sur le salaire en comparant les individus qui ont un master à ceux qui n'en ont pas?

#### Dans 99,99999% des cas, NON!: le groupe des traités et celui des contrôles ne sont en général pas comparables

• par exemple, les femmes et les enfants issus de milieux sociaux favorisés sont plus susceptibles de faire de hautes études, et ces caractéristiques peuvent aussi influencer le salaire

L'objectif est d'estimer l'effet d'un **traitement** D sur une variable d'**outcome** Y.

• par exemple l'effet d'avoir un master sur le salaire

Peut-on en déduire l'effet du traitement en comparant l'outcome des individus traités à celui des individus non traités?

• par exemple peut-on quantifier l'effet d'avoir un master sur le salaire en comparant les individus qui ont un master à ceux qui n'en ont pas?

#### Dans 99,99999% des cas, NON!: le groupe des traités et celui des contrôles ne sont en général pas comparables

• par exemple, les femmes et les enfants issus de milieux sociaux favorisés sont plus susceptibles de faire de hautes études, et ces caractéristiques peuvent aussi influencer le salaire

Dans 0,00001% des cas, il est possible de comparer l'outcome moyen des individus traités et des individus témoins si le traitement est distribué de façon aléatoire (RCT; mais cela est très onéreux, pose des questions éthiques, etc.).

### Cette séance

- 1. Modèle de régression linéaire multivarié
  - 1.1. Biais de variable omise (OVB)
  - 1.2. Hypothèses
  - 1.3. Estimateur
  - 1.4. Bonnes et mauvaises variables de contrôle
  - 1.5. Coefficient de détermination (R2)
- 2. Matching
  - 2.1. Intuition
  - 2.2. Méthodes
- 3. Causalité

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

Supposons qu'il existe une variable  $W_i$ , par exemple une variable binaire égale à 1 si i est une Femme.

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

Supposons qu'il existe une variable  $W_i$ , par exemple une variable binaire égale à 1 si i est une Femme.

 $W_i$  est implicitement contenue dans le terme d'erreur dans le modèle (1).

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

Supposons qu'il existe une variable  $W_i$ , par exemple une variable binaire égale à 1 si i est une Femme.

 $W_i$  est implicitement contenue dans le terme d'erreur dans le modèle (1).

Or, les femmes sont en moyenne davantage éduquées que les hommes.

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

Supposons qu'il existe une variable  $W_i$ , par exemple une variable binaire égale à 1 si i est une Femme.

 $W_i$  est implicitement contenue dans le terme d'erreur dans le modèle (1).

Or, les femmes sont en moyenne davantage éduquées que les hommes.

Donc  $D_i$  est corrêlé à  $arepsilon_i$ , ou dit autrement  $\mathbb{E}(arepsilon_i|D_i) 
eq 0$ 

#### 1.1. Biais de variable omise (OVB)

Notre modèle de base s'écrit

$$Y_i = \alpha + \beta D_i + \varepsilon_i \tag{1}$$

Par exemple,  $Y_i$  désigne le salaire de l'individu i,  $D_i$  une dummy qui représente le fait d'avoir un master ou non, et  $\varepsilon_i$  le terme d'erreur.

Supposons qu'il existe une variable  $W_i$ , par exemple une variable binaire égale à 1 si i est une Femme.

 $W_i$  est implicitement contenue dans le terme d'erreur dans le modèle (1).

Or, les femmes sont en moyenne davantage éduquées que les hommes.

Donc  $D_i$  est corrêlé à  $arepsilon_i$ , ou dit autrement  $\mathbb{E}(arepsilon_i|D_i) 
eq 0$ 

= Biais de variable omise

#### 1.1. Biais de variable omise (OVB)

On a le modèle

$$Y_i = \alpha + \beta D_i + \varepsilon_i$$

où la (ou les) variable  $W_i$  est omise (donc appartient à  $\varepsilon_i$ ).

La modèle *multivarié* s'écrit

$$Y_i = \gamma + \frac{\delta}{\delta}D_i + \phi W_i + \nu_i$$

On a donc la relation:

$$eta = \underbrace{\delta}_{"vrai"estimateur} + \underbrace{\phi\pi}_{OVB}$$

où  $\pi$  est le coefficient de la régression de  $W_i$  sur  $D_i$  (  $W_i = \lambda + \pi D_i$  )

#### 1.1. Biais de variable omise (OVB)

#### Exemple tiré du DM

|                                      | Log(Wage) | Women    | Log(Wage) |
|--------------------------------------|-----------|----------|-----------|
| (Intercept)                          | 7.282***  | 0.442*** | 7.433***  |
|                                      | (0.004)   | (0.004)  | (0.004)   |
| At least Bac                         | 0.481***  | 0.097*** | 0.514***  |
|                                      | (0.006)   | (0.006)  | (0.006)   |
| Women                                |           |          | -0.341*** |
|                                      |           |          | (0.006)   |
| Num.Obs.                             | 31835     | 31835    | 31835     |
| R2 Adj.                              | 0.173     | 0.009    | 0.260     |
| * p < 0.1, ** p < 0.05, *** p < 0.01 |           |          |           |

#### 1.2. Hypothèses du modèle multivarié

 $H_1$  Linéarité: le modèle est linéaire dans les paramètres:  $rac{\partial y_i}{\partial x_{ik}}=eta_k$ ,  $orall k=1,\ldots,K$ 

 $H_2$  Échantillon Aléatoire: l'échantillon est aléatoire et représentatif de la population.

 $H_3$  Exogeneité conditionnelle: Conditionnellement aux contrôles W, D est exogène

Formellement,  $\mathbb{E}(arepsilon_i | D, W) = 0$ 

 $H_4$  Variation: il y a suffisamment de variation dans X où  $X=\begin{pmatrix} 1 & D & W \end{pmatrix}$ 

- Dit autrement, chaque variable explicative apporte une information qui lui est propre
- Formellement, les explicatives ne sont pas colinéaires (cas multivarié: (X'X) est inversible)

 $H_5$  Les erreurs  $arepsilon_i$  sont sphériques:  $H_{5a}$  homoscédasticité &  $H_{5b}$  Absence d'autocorrélation

#### 1.2. Hypothèses du modèle multivarié

L'hypothèse d'indépendance conditionnelle, ou *Conditional Independance Assumption (CIA)*, aussi appelée sélection sur les observables, indique que:

- ullet conditionellement à des variables explicatives  $W_i$ , les outcomes potentiels  $\{Y_{0i},Y_{1i}\}$  sont indépendants du traitement  $D_i$
- dit autrement, en contrôlant par les variables  $W_i$ , le traitement  $D_i$  est as-good-as random

Formellement, dans le framework des outcomes potentiels, l'hypothèse d'identification devient:

$$\{Y_{0i},Y_{1i}\}\perp D_i|W_i$$

On a donc:

$$egin{aligned} ext{Biais de S\'election} &= \mathbb{E}(Y_{0i}|oldsymbol{W_i}, D_i = 1) - \mathbb{E}(Y_{0i}|oldsymbol{W_i}, D_i = 0) \ &= \mathbb{E}(Y_{0i}|oldsymbol{W_i}) - \mathbb{E}(Y_{0i}|oldsymbol{W_i}) \ &= 0 \end{aligned}$$

#### 1.3. Estimateur dans le cas multivarié

L'estimateur MCO dans le cas multivarié s'écrit:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Maths

C'est toujours l'estimateur BLUE: Best Linear Unbiased Estimator

#### 1.4 Bonnes et mauvaises variables de contrôle

Une bonne variable de contrôle doit:

- contribuer à expliquer la variable dépendante
- par une information qui lui est propre
- ne pas être impactée par le traitement d'intérêt

Si elles satisfont ces conditions, les variables de contrôle permettent:

- d'atténuer le risque de biais de variable omise
- gagner en précision

#### 1.4 Bonnes et mauvaises variables de contrôle

Une mauvaise variable de contrôle est:

Une variable non pertinente est une variable qui ne contribue pas à expliquer l'outcome.

- le paramètre estimé sera donc nul 😐
- ullet l'estimateur reste sans biais tant que la variable non pertinente n'est pas corrélée à  $arepsilon_i$   $\overset{ullet}{=}$
- l'estimateur est moins précis 🥹

Une variable redondante si l'information qu'elle contient est déjà contenue dans une autre variable

- lorsque deux variables sont très corrélées, difficile de distinguer l'effet "propre" de chacune, donc les estimateurs de ces deux variables seront très imprécis
- dans le cas extrême de colinéarité, le modèle n'est pas identifiable 🥹

Un mauvais contrôle (bad control) est une variable qui est également affectée par le traitement

• l'estimateur peut être biaisé 🥲

### 1.5 Coefficient de détermination (R2)

Le coefficient de détermination, ou  $\mathbb{R}^2$ , informe sur la qualité de la régression linéaire, i.e. la part de la variance de l'outcome expliquée par les X.

Formellement,

$$R^2 = rac{SCE}{SCT} = rac{\sum_i (\hat{y_i} - ar{y}_i)^2}{\sum_i (y_i - ar{y}_i)^2} \ = 1 - rac{SCR}{SCT} = 1 - rac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - ar{y}_i)^2}$$

NB: le  $R^2$ 

- augmente **mécaniquement** avec le nombre de varibales explicatives
  - $\circ$  comparer les  $R^2$  ajustés lorsqu'on compare différents modèles

$$\circ \ R_{adj}^2 = 1 - (1 - R^2) rac{N-1}{N-K-1}$$

- est spécifique à un sample
- est très informatif pour faire de la prédiction mais n'informe en rien sur la causalité

#### 2.1. Intuition



#### 2.2. Méthodes de matching

Les estimateurs de *matching* construisent artificiellement un **groupe** d'individus non traîtés qui a les mêmes caractéristiques que le groupe d'individus traités

• Assure un support commun des variables explicatives

Différents méthodes/algorithmes de matching:

- Matching exact: on cherche les individus strictement identiques (très restrictif!)
- Propensity score matching: on assigne à chaque individu une probabilité d'être traîté et on matche ceux avec des scores proches
- Plus proches voisins (*Nearest neighboors*): on cherche l'individu non-traîté le plus proche d'un individu traité selon certaines métriques
- ... NB: des combinaisons de méthodes sont possibles!

#### Inconvénients:

• certaines observations n'ont pas de match: on estime l'effet de traitement lorsque c'est "faisable"

# 3. Causalité

### 3. Causalité

Les méthodes de **matching** sont des méthodes d'identification qui reposent sur la CIA, c'est à dire que la sélection dans le traitement est uniquement liée à des variables **observables** X.

L'hypothèse d'indépendance conditionnelle revient à dire qu'en contrôlant (i.e. en "tenant compte de") par un ensemble de variables  $X_i$ , D est as good as random.

Sous l'hypothèse d'indépendance conditionnelle, l'effet estimé est l'**effet moyen du traitement conditionnel** (**Conditional ATE** - CATE)

En réalité, il s'agit d'une hypothèse d'identification très forte:

- ullet elle suppose d'inclure toutes les variables explicatives X qui expliquent la corrélation entre  $arepsilon_i$  et  $D_i$ 
  - Problème: nombre de ces variables sont **inobservables**

### Recap: OLS

#### Hypothèse d'identification: CIA

- ullet Intuition: conditionnellement aux catactéristiques W par lesquelles on "contrôle", le traitement est aléatoire
- ullet Formellement:,  $\mathbb{E}(arepsilon_i|D_i,W_i)=0$

**Comparaison**: parmi les individus qui ont les mêmes caractéristiques par lesquelles on contrôle, on compare les individus traîtés à ceux qui ne le sont pas.

Modèle: 
$$Y=X\beta+arepsilon$$
, où  $X=(1DW)$ 

Estimateur: 
$$\hat{eta} = (X'X)^{-1}X'Y$$

#### Implémentation sur R:

- lm pour estimer les paramètres du modèle
- summary pour afficher le résultat de l'estimation
- coeftest, argument vcov = vcovHC(fit, type = 'HCO') pour obtenir des se robustes à l'hétéroscédasticité
- ullet stargazer ou modelsummary pour exporter les résultats en une table  $L\!\!\!/T_F\!\!\!/X$

### Sources

<u>Causal inference: The Mixtape, Scott Cunningham</u>

# Annexe

### Estimateur MCO dans le cas multivarié

Le modèle multivarié s'écrit:

$$y_i = eta_1 + eta_2 D_i + \sum_{k=1}^K w_{ik} \gamma_k + arepsilon_i$$

On peut l'écrire sous forme matricielle:  $Y=eta_1+eta_2D+W\gamma+arepsilon$ 

$$Y = \beta_1 + \beta_2 D + W \gamma + \varepsilon$$

où W est une matrice contenant les K variables de contrôle.

On peut finalement réécrire le modèle:

$$Y = X\beta + \varepsilon$$

ΩÙ

$$X = egin{bmatrix} 1 & D_1 & W_{1,1} & \cdots & W_{1,K} \ 1 & D_2 & W_{2,1} & \cdots & W_{2,K} \ dots & dots & dots & \ddots & dots \ 1 & D_n & W_{n,1} & \cdots & W_{n,K} \end{bmatrix} \quad eta = egin{bmatrix} eta_1 \ eta_2 \ \gamma_1 \ dots \ \gamma_K \end{bmatrix} \quad arepsilon = egin{bmatrix} arepsilon_1 \ eta_2 \ dots \ \gamma_K \end{bmatrix}$$

### Estimateur MCO dans le cas multivarié

L'estimateur des MCO est celui qui minimise la somme des carrés des résidus:

$$\min_{eta} \, arepsilon' arepsilon = (Y - X eta)' (Y - X eta) = Y'Y - 2 eta' X'Y + eta' X'X eta$$

La condition du premier ordre est:

$$rac{\partial (Y'Y-2eta'X'Y+eta'X'Xeta)}{\partial eta}=-2X'Y+2X'Xeta=0$$

Si (X'X) est inversible (cf H4), alors

$$(X'X)\beta = X'Y \implies \beta = (X'X)^{-1}X'Y$$

Back