Lagrangian density

$$-r_{5} \partial_{i} \omega^{\kappa \lambda}_{\kappa} \partial^{i} \omega_{\lambda}^{\alpha} - \frac{2}{3} r_{1} \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{2}{3} r_{1} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{2}{3} r_{1} \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_{1} \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} + \frac{2}{3} r_{1} \partial^{\beta} \omega_{i}^{\alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{i} - \frac{8}{3} r_{1} \partial^{\beta} \omega_{i}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{i} + r_{5} \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - r_{5} \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$$

Quadratic pole

Polarisations: 2

Pole residue:

Added source term:	$\omega^{lphaeta\chi}$	$\sigma_{\alpha\beta\chi}$

Total #:	$\sigma_{2+}^{\#1\alpha\beta} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\sigma_{1^{-}}^{\#2\alpha} == 0$	$\sigma_{0+}^{*1} == 0$	$\sigma_{0^{-}}^{\#1} == 0$	SO(3) irreps	Source constraints
13	5	3	3	1	1	#	traints

 $r_1(r_1+r_5)(2r_1+r_5)$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$\omega_{1^-lpha}^{\#1}$	$\omega_{1}^{#2}$ α
$\omega_1^{\#1} \dagger^{\alpha\beta}$	$k^2 (2 r_1 + r_5)$	0	0	0
$\omega_1^{\#2} \dagger^{\alpha\beta}$	0	0	0	0
$\omega_1^{\#_1} \dagger^{\alpha}$	0	0	$k^2 \left(r_1 + r_5 \right)$	0
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	0

$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{\#1} \dagger^{lpha}$	$\sigma_{1+}^{\#2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	$\frac{1}{k^2(2r_1+r_5)}$	$\sigma_{1^{+}lphaeta}^{\#1}$
0	0	0	0	$\sigma_{1^{+}lphaeta}^{\#2}$
0	$\frac{1}{k^2 (r_1 + r_5)}$	0	0	$\sigma_{1^-\alpha}^{\#1}$
0	0	0	0	$\sigma_{1^-\alpha}^{\#2}$

Unitarity conditions

$$r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$$

(No massive particles)