S1. Cost assumptions

Table S1: Overnight investment cost assumptions per technology and year. All costs are given in real 2015 money.

Technology	Unit	2020	2025	2030	2035	2040	2045	2050	source
Onshore Wind	€/kW	1118	1077	1035	1006	977	970	963	[1]
Offshore Wind	€/kW	1748	1660	1573	1510	1447	1431	1415	[1]
Solar PV (utility-scale)	€/kW	529	452	376	352	329	315	301	[1]
Solar PV (rooftop)	€/kW	1127	955	784	723	661	600	539	[2]
OCGT	€/kW	453	444	435	429	423	417	411	[1]
CCGT	€/kW	880	855	830	822	815	807	800	[1]
Coal power plant	$€/kW_{el}$	3845	3845	3845	3845	3845	3845	3845	[3]
Lignite	\in /kW $_{el}$	3845	3845	3845	3845	3845	3845	3845	[3]
Nuclear	$€/kW_{el}$	7940	7940	7940	7940	7940	7940	7940	[3]
Reservoir hydro	$€/kW_{el}$	2208	2208	2208	2208	2208	2208	2208	[4]
Run of river	$€/kW_{el}$	3312	3312	3312	3312	3312	3312	3312	[4]
PHS	$€/kW_{el}$	2208	2208	2208	2208	2208	2208	2208	[4]
Gas CHP	€/kW	590	575	560	550	540	530	520	[1]
Biomass CHP	\in /k W_{el}	3381	3295	3210	3135	3061	2986	2912	[1]
Coal CHP	€/kW	1900	1880	1860	1841	1822	1803	1783	[1]
Biomass central heat plant	\in /kW _{th}	875	854	832	812	792	773	753	[1]
Biomass power plant	$€/kW_{el}$	3381	3295	3210	3135	3061	2986	2912	[1]
HVDC overhead	€/MWkm	400	400	400	400	400	400	400	[5]
HVDC inverter pair	€/MW	150000	150000	150000	150000	150000	150000	150000	[5]
Battery storage	€/kWh	232	187	142	142	142	142	142	[1]
Battery inverter	€/kW	270	215	160	160	160	160	160	[1]
Electrolysis	\in /kW $_{el}$	600	575	550	537	525	512	500	[1]
Fuel cell	€/k W_{el}	1300	1200	1100	1025	950	875	800	[1]
H ₂ storage underground	€/kWh	3.0	2.5	2.0	1.8	1.5	1.4	1.2	[1]
H ₂ storage tank	€/kWh	57	50	44	35	27	24	21	[1]
DAC (direct-air capture)	€/(tCO ₂ /a)	250	250	250	250	250	250	250	[<mark>6</mark>]
Methanation	\in /kW $_{H_2}$	1000	1000	1000	1000	1000	1000	1000	[7]
Central gas boiler	\in /kW _{th}	60	55	50	50	50	50	50	[1]
Decentral gas boiler	$€/kW_{th}$	195	190	185	181	176	172	167	[1]
Central resistive heater	€/k W_{th}	70	65	60	60	60	60	60	[1]
Decentral resistive heater	\in /kWh _{th}	100	100	100	100	100	100	100	[7]
Central water tank storage	€/kWh	0.6	0.6	0.5	0.5	0.5	0.5	0.5	[1]
Decentral water tank storage	€/kWh	18	18	18	18	18	18	18	[1, 8]
Decentral air-sourced heat pump	$€/kW_{th}$	940	895	850	827	805	782	760	[1]
Central ground-sourced heat pump	€/k W_{th}	564	535	507	494	482	469	456	[1]
Decentral ground-sourced heat pump	$€/kW_{th}$	1500	1450	1400	1350	1300	1250	1200	[1]

Supplemental References

- [1] Technology Data for Generation of Electricity and District Heating, update November 2019, Tech. rep., Danish Energy Agency and Energinet.dk (2019).
- $\textbf{URL} \ \texttt{https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and-models/technology-data/technology-data-generation-electricity-and-models/technology-data-generation-electricity-and-mode$ [2] E. Vartiainen, G. Masson, C. Breyer, The true competitiveness of solar PV: a European case study, Tech. rep., European
- Technology and Innovation Platform for Photovoltaics (ETIP) (2017).
 - $\textbf{URL} \ \texttt{http://www.etip-pv.eu/fileadmin/Documents/ETIP_PV_Publications_2017-2018/LC0E_Report_March_2017.pdf} \\$
- [3] Lazard's Levelized Cost of Energy Analysis, version 13.0.
- URL https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf
 [4] A. Schröeder, F. Kunz, F. Meiss, R. Mendelevitch, C. von Hirschhausen, Current and prospective costs of electricity generation until 2050, Data Documentation, DIW 68. Berlin: Deutsches Institut. URL https://www.econstor.eu/handle/10419/80348
- [5] S. Hagspiel, C. Jägemann, D. Lindenberger, T. Brown, S. Cherevatskiy, E. Tröster, Cost-optimal power system extension under flow-based market coupling, Energy 66 (2014) 654-666. doi:10.1016/j.energy.2014.01.025. URL http://www.sciencedirect.com/science/article/pii/S0360544214000322
- [6] M. Fasihi, D. Bogdanov, C. Breyer, Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World, Sustainability 9 (2) (2017) 306. doi:10.3390/su9020306. URL https://www.mdpi.com/2071-1050/9/2/306

Table S2: Efficiency, lifetime and FOM cost per technology (values shown corresponds to 2020).

Technology	FOM ^a	Lifetime	Efficiency	Source	
	[%/a]	[a]			
Onshore Wind	1.2	27		[1]	
Offshore Wind	2.3	27		[1]	
Solar PV (utility-scale)	1.6	35		[1]	
Solar PV (rooftop)	1.2	30		[2]	
OCGT	1.8	25	0.4	[1]	
CCGT	3.3	25	0.56	[1]	
Coal power plant	1.6	40	0.33	[3]	
Lignite	1.6	40	0.33	[3]	
Nuclear	1.4	40	0.33	[3]	
Reservoir hydro	1.0	80	0.9	[4]	
Run of river	2.0	80	0.9	[4]	
PHS	1.0	80	0.75	[4]	
Gas CHP	3.3	25		[1]	
Biomass CHP	3.6	25		[1]	
Coal CHP	1.6	25	0.48	[1]	
Biomass central heat plant	5.8	25	1.03	[1]	
Biomass power plant	3.6	25	0.3	[1]	
HVDC overhead	2.0	40		[5]	
HVDC inverter pair	2.0	40		[5]	
Battery storage		20		[1]	
Battery inverter	0.2	20	0.95	[1]	
Electrolysis	5.0	25	0.64	[1]	
Fuel cell	5.0	10	0.5	[1]	
H ₂ storage underground	0.0	100	0.99	[1]	
H ₂ storage tank	1.0	25		[1]	
DAC (direct-air capture)	4.0	30		[6]	
Methanation	3.0	25	0.8	[7]	
Central gas boiler	3.2	25	1.03	[1]	
Decentral gas boiler	10.5	20	0.97	[1]	
Central resistive heater	1.5	20	0.99	[1]	
Decentral resistive heater	2.0	20	0.9	[7]	
Central water tank storage	0.5	20		[1]	
Decentral water tank storage	1.0	20		[1, 8]	
Water tank charger/discharger			0.84		
Decentral air-sourced heat pump	3.0	18		[1]	
Central ground-sourced heat pump	0.4	25		[1]	
Decentral ground-sourced heat pump	1.8	20		[1]	

^a Fixed Operation and Maintenance (FOM) costs are given as a percentage of the overnight cost per

b Hydroelectric facilities are not expanded in this model and are considered to be fully amortized.

Efficiency for Combined Heat and Power (CHP) plants depends on the electricity/heat output and it is modellied as described in the text.

d Coefficient of performance (COP) of heat pumps is modelled as a function of temperature, as described in the text.

e Investments in methanation and DAC are not allowed independently, only together as 'Methanation+DAC', see text.

Table S3: Costs and emissions coefficient of fuels.

Fuel		Source	Emissions $[tCO_2/MWh_{th}]$	Source
coal lignite gas oil	8.2 2.9 20.1 50.0	[9] [4] [9] [11]	0.34 0.41 0.2 0.27	[10] [10] [10] [10]
nuclear solid biomass	2.6 25.2	[3] [12, 13]	0 0	[]

^a Raw biomass fuel cost is assumed as the middle value of the range provided in the references for different European countries and types of sustainable biomass.

- [7] K. Schaber, Integration of Variable Renewable Energies in the European power system: a model-based analysis of transmission grid extensions and energy sector coupling, Ph.D. thesis, TU München (2013). URL https://d-nb.info/1058680781/34
- [8] N. Gerhardt, A. Scholz, F. Sandau, H. H., Interaktion EE-Strom, Wärme und Verkehr. Tech. rep. Fraunhofer IWES. URL http://www.energiesystemtechnik.iwes.fraunhofer.de/de/projekte/suche/2015/interaktion_strom_waerme_verkehr.html
- [9] BP Statistical Review of World Energy. URL https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf
- [10] Development of the specific carbon dioxide emissions of the German electricity mix in the years 1990 2018, German Environment Agency.
- [11] Word Energy Outlook 2017, International Energy Agency, Tech. rep.
- [12] W. Zappa, M. Junginger, M. van den Broek, Is a 100% renewable European power system feasible by 2050?, Applied Energy 233-234 (2019) 1027–1050. doi:10.1016/j.apenergy.2018.08.109. URL http://www.sciencedirect.com/science/article/pii/S0306261918312790
- [13] P. Ruiz, A. Sgobbi, W. Nijs, C. Thiel, F. Dalla, T. Kobert, B. Elbersen, G. H. Alterra, The JRC-EU-TIMES model. bioenergy potentials for EU and neighbouring countries.
 - URL https://setis.ec.europa.eu/sites/default/files/reports/biomass_potentials_in_europe.pdf