IKERKETA OPERATIBOA LAN TALDEA

ZIGORTZE METODOA ETA PROBLEMA DUALA

Jon Martin, Mikel Idoyaga, Igor Uriarte eta Ena Verhorst

AURKIBIDEA

- <u>Lehenengo atala</u>(Zigortze metodoa)
 - Hasierako soluzio bideragarria
 - Iterazioak
 - o <u>Soluzioa</u>
- <u>Hirugarren atala</u> (Dual metodoa)
 - o <u>Forma kanonikoa</u>
 - o <u>Dualera</u>
 - Aldagaien balioa lortu
 - Soluzioa

Enuntziatua (6.ariketa, a atala)

Zigortze metodoa erabiliz ebatzi.

Min
$$z = x_1 + 3x_2 + 2x_3$$

 $x_1 - x_2 - 2x_3 \le 4$
 $3x_1 - 2x_2 + 4x_3 = 3$
 $x_1 + 2x_2 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

1.pausua

Forma estandarrera pasatu:

Min
$$z = x_1 + 3x_2 + 2x_3$$

 $x_1 - x_2 - 2x_3 + x_4 = 4$
 $3x_1 - 2x_2 + 4x_3 = 3$
 $x_1 + 2x_2 + x_3 - x_5 = 5$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Aldagai artifizialak sartu eta h.f. zigortu:

Min
$$z = x_1 + 3x_2 + 2x_3 + Mq_1 + Mq_2$$

 $x_1 - x_2 - 2x_3 + x_4 = 4$
 $3x_1 - 2x_2 + 4x_3 + q_1 = 3$
 $x_1 + 2x_2 + x_3 - x_5 + q_2 = 5$
 $x_1, x_2, x_3, x_4, x_5, q_1, q_2 \ge 0$

Hasierako soluzio bideragarria

$$A = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & q_1 & q_2 \\ 1 & -1 & -2 & 1 & 0 & 0 & 0 \\ 3 & -2 & 4 & 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Hasierako soluzio bideragarria:

$$X_B = (x_4, q_1, q_2) = (4,3,5)$$

 $X_N = (x_1, x_2, x_3, x_5) = (0,0,0,0)$

Lehenengo iterazioa

Ondoren lehenengo Simplex Taula egingo dugu:

			1	3	2	0	0	M	M
Coin	Aoin	B-1 * b	x ₁	x ₂	Х3	X4	X5	q_1	q_2
0	X4	4	1	-1	-2	1	0	0	0
М	q_1	3	3	-2	4*	0	0	1	0
М	q_2	5	1	2	1	0	-1	0	1
Z=8M		Zj	4M	0	5M	0	-M	М	М
		Wj	4M-1	-3	5M-2	0	-M	0	0

^{*=}pibotea

∃Wj>0 ⇒ jarraitu

BIGARREN TAULARAKO IRIZPIDEAK

Sartze irizpidea = $Max\{Wj\}=Max\{4M-1,5M-2\}=5m-2 \Rightarrow x_3$ sartu

Irtetze irizpidea= Min {
$$\frac{Xbk}{yjk}$$
 / yjk>0}=Min { $\frac{3}{4}$, $\frac{5}{1}$ = $\frac{3}{4}$ $\Rightarrow q_1$ irten

Bigarren iterazioa

Taula berria lortzeko egin beharreko aldaketak:

			1	3	2	0	0	М	M
Coin	Aoin	B-1 * b	x ₁	X2	Х3	X4	X5	<i>q</i> ₁	q 2
0	x4	11/2	5/2	-2	0	1	0	-1/2	0
2	x3	3/4	3/4	-1/2	1	0	0	1/4	0
М	q2	17/4	1/4	5/2*	0	0	-1	-1/4	1
$Z = \frac{3}{2} + \frac{17M}{4}$		71	6 , M	5 <i>M</i>	2	0	-M	1 M	М
		Zi	$\frac{6}{4} + \frac{M}{4}$	$\frac{5M}{2}-1$	2	0	-141	$\frac{1}{2} - \frac{M}{4}$	M
		Wi	$\frac{1}{2} + \frac{M}{4}$	$\frac{5M}{2}$ - 4	0	0	-M	$\frac{1}{2} - \frac{5M}{4}$	0

^{*=}pibotea

∃Wj>0 ⇒ jarraitu

Hirugarren taularako irizpideak

Sartze irizpidea = $Max\{Wj\}=Max\{M/4+\frac{1}{2},5M/2-4\}=5M/2-4 \Rightarrow x_2$ sartu

Irtetze irizpidea = Min
$$\{\frac{Xbk}{yjk}\}$$
 yjk>0 $\}$ =Min $\{(17/4)/(5/2)\}$ =17/10 \Rightarrow q_2 irten

Hirugarren iterazioa

Taula berria lortzeko egin beharreko aldaketak:

			1	3	2	0	0	М	М
Coin	Aoin	B-1 * b	X1	X2	Х3	X4	X5	q_1	q_2
0	x4	89/10	27/10	0	0	1	-4/5	-7/10	4/5
2	х3	8/5	4/5*	0	1	0	-1/5	1/5	1/5
3	x2	17/10	1/10	1	0	0	-2/5	-1/10	2/5
Z=83/10							5 6		
		Zj	19/10	3	2	0	-8/5	1/10	8/5
		Wj	9/10	0	0	0	-8/5	1/10-M	8/5-M

^{*=}pibotea

AZKENENGO TAULARAKO IRIZPIDEAK

Sartze irizpidea = $Max\{Wj\}=9/10 \Rightarrow x_1$ sartu

<u>Irtetze irizpidea</u>= Min { $\frac{Xbk}{yjk}$ \neq yjk>0}=Min {89/27,8/4,17/1}=2⇒x₃ irten

Azken iterazioa

Taula berria lortzeko egin beharreko aldaketak:

			1	3	2	0	0	M	M
Coin	Aoin	B-1 * b	x ₁	x ₂	X3	X4	X5	q_1	q_2
0	x4	7/2	0	0	-27/8	1	-1/8	-11/8	1/8
1	x1	2	1	0	5/4	0	-1/4	1/4	1/4
3	x2	3/2	0	1	-1/8	0	-3/8	-1/8	3/8
Z=13/2	- 23								
	•	Zj	1	3	7/8	0	-5/8	-1/8	-7/8
		Wj	0	0	-4/8	0	-5/8	-½-M	-7∕8-M

Soluzioa

Soluzio optimoa bakarra da, oinarrizko aldagaiak ez diren kostu murriztuak ezberdin 0 direlako.

Gainera aldagai artifizialak ez daude oinarrian, beraz bideragarria da.

$$X_1^*=2$$
; $X_2^*=3/2$; $X_3^*=0$; $X_4^*=7/2$; $X_5^*=0$; $q_1^*=0$; $q_2^*=0$ $Z^*=13/2$

Enuntziatua (6.ariketa, c atala)

Problema duala idatzi eta osagarrizko lasaitasuna erabiliz ebatzi.

Min
$$z = x_1 + 3x_2 + 2x_3$$

 $x_1 - x_2 - 2x_3 \le 4$
 $3x_1 - 2x_2 + 4x_3 = 3$
 $x_1 + 2x_2 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

Forma kanonikora pasatu

MATRIZEA IRAULI (A^T)

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & -2 & 4 \\ 1 & 2 & 1 \end{pmatrix} \longrightarrow A^{T} = \begin{pmatrix} -1 & 3 & 1 \\ 1 & -2 & 2 \\ \hline 2 & 4 & 1 \end{pmatrix}$$

Dualera pasatu taula erabiliz

Helburu funtzioa: max	⇔	Helburu funtzioa: min
i. murrizketa ≤	⇔	i. aldagaia ≥ 0
i. murrizketa =	⇔	i. aldagaia ez-murriztua
i. murrizketa ≥	\Leftrightarrow	i. aldagaia ≤ 0
i. aldagaia ≥ 0	\Leftrightarrow	i. murrizketa ≥
i. aldagaia ez-murriztua	⇔	i. murrizketa =
i. aldagaia ≤ 0	⇔	i. murrizketa ≤

Lasaiera aldagaiak sartu

```
Max z' = -4u_1 + 3u_2 + 5u_3

-u_1 + 3u_2 + u_3 + u_4 = 1

u_1 - 2u_2 + 2u_3 + u_5 = 3

2u_1 + 4u_2 + u_3 + u_6 = 2

u_1, u_3, u_4, u_5, u_6 \ge 0

u_2 ez-murriztua
```

Biderketa eskalarra

$$x_1*u_4=0 \rightarrow (x_1\neq 0)u_4=0$$

$$x_2*u_5=0 \rightarrow (x_2 \neq 0)u_5=0$$

$$x_3*u_6=0$$

$$x_4*u_1=0 \rightarrow (x_4\neq 0)u_1=0$$

$$x_5*u_2=0$$

$$0 * u_3 = 0$$

Aldagaien balioa lortu

$$\begin{aligned} &\mathbf{3u_2} + \mathbf{u_3} = 1 \ \} \rightarrow \mathbf{u_3} = 1 - 3\mathbf{u_2} \rightarrow \mathbf{u_3} = \mathbf{11/8} \\ &- 2\mathbf{u_2} + 2\mathbf{u_3} = 3 \ \} \rightarrow - 2\mathbf{u_2} + 2(1 - 3\mathbf{u_2}) = 3 \rightarrow - 2\mathbf{u_2} + 2 - 6\mathbf{u_2} = 3 \rightarrow - 8\mathbf{u_2} = 1 \rightarrow \mathbf{u_2} = -\frac{1}{8} \\ &\mathbf{4u_2} + \mathbf{u_3} + \mathbf{u_6} = 2 \ \} \rightarrow 4(-1/8) + (11/8) + \mathbf{u_6} = 2 \rightarrow (-4/8) + (11/8) + \mathbf{u_6} = 2 \rightarrow (\frac{7}{8}) + \mathbf{u_6} = 2 \rightarrow \frac{1}{8} \\ &\rightarrow \mathbf{u_6} = \frac{9}{8} \end{aligned}$$

Soluzioa

Azkenengo soluzioa:

$$u_1^*=0$$
; $u_2^*=-1/8$; $u_3^*=11/8$; $u_4^*=0$; $u_5^*=0$; $u_6^*=9/8$; $Z^*=13/2$

ESKERRIK ASKO