2009-2010 学年 第一学期末试卷(A)

字号	学号		生名	成绩
----	----	--	----	----

考试科目:《 矩阵理论 》(A)

考试日期: 2010年 1 月 14 日

注意事项: 1、考试7个题目共8页

2、考试时间 120 分钟

题目:

- 一、(本题 39 分)
- 二、(本题 20 分)
- 三、(本题 6 分)
- 四、(本题 9 分)
- 五、(本题 11 分)
- 六、(本题 8 分)
- 七、(本题 7分)
- 八、(附加题)

	-		
		-	
			-

Α

一. 填空(**39** 分) (注: 【代表单位阵, A^H表示 H 转置, det(A) 指行列式)

$$(1)e^{-tr(A)}\cdot \det(e^{A}) = \underline{\qquad}, \quad (e^{A})^{+}e^{-A} - e^{-A}(e^{A})^{-1} = \underline{\qquad}$$

(2)若 $A^2-3A+2I=0$,则A有一个无重根零化式为f(x)= (x-1)(x-1)

(2)若
$$\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{I} = 0$$
,则 \mathbf{A} 有一个无重根零化式为 $\mathbf{f}(\mathbf{x}) = \underbrace{\begin{pmatrix} \mathbf{Y} - \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{X} - \mathbf{X} \end{pmatrix} \mathbf{A}^{H}}_{\mathbf{A}^{H}} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}$ (3)若 $\mathbf{A} = \mathbf{A}^2 = \mathbf{A}^H$,则 $\mathbf{A}^+ = \underbrace{\mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \underbrace{\mathbf{A}^{H}}_{\mathbf{A}^{H}} \mathbf{A}^{H} = \underbrace{$

$$(5) A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}, A \otimes B$$
的特征根为 3 a, 3 b, 3 a, 3 b

$$\mathbf{tr}(A \otimes B) = \underbrace{\begin{pmatrix} 6(a+b) \\ b \end{pmatrix}}_{A \otimes A \otimes B}$$

(6)
$$\mathbf{A} = \begin{pmatrix} \frac{2}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{4} & \frac{2}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, \ \mathbf{x} = \begin{bmatrix} i \\ i \\ i \end{bmatrix}, \ i = \sqrt{-1}, \ \mathbf{M} = \mathbf{A} = \mathbf{A$$

 $\rho(A)$ 取值范围是 / ξ / , 且 $\|Ax\|_1 = \frac{\zeta}{\xi}$; $\|A\|_{\infty} =$

(8)
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
则 $Ax = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 的最佳极小二乘解是 $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $A^{+} = \begin{bmatrix} 1 \\ -1 & 1 \end{bmatrix}$...

(9)矩阵 A中各列都可用 B的列线性表示($\mathbf{R}(\mathbf{A})$ ⊂ $\mathbf{R}(\mathbf{B})$),则有矩阵 P 使 $\mathbf{B}\mathbf{P} = \triangle$

(10)n 阶阵 A 的特征根 λ ,谱半径 $\rho(A)$ 与范数 $\|A\|$ 的大小关系是 $\frac{|A|< 2(A)< |A|}{2}$

(11) n 阶阵 A(k 是自然数), $\rho(A^k)$, $\rho(A)^k$, $\|A^k\|$, $\|A\|^k$ 之间关系为

$$(12) \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & -2 & 3 \end{pmatrix}$$
的满秩分解为
$$A = bC = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & -2 & 3 \end{pmatrix}$$

(13)设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是R³的基, $A \in \mathbf{R}^{3 \times 3}$ 满足: $A \varepsilon_1 = \varepsilon_2, A \varepsilon_2 = \varepsilon_3, A \varepsilon_3 = 2 \varepsilon_2 - \varepsilon_3$.

则有矩阵 B 使得 $A(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) B$, $B = (0.5) \times (0.5)$

二.(20 分)计算下列各题

1. 设列满(高)阵 $A = A_{m \times n}$ 的 QR 分解为 A = QR , Q 为次酉阵 $(Q^H Q = I_n)$.

2.设
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, (1)求 A^2 , A^3 , (2)由 $e^{tA} \triangleq I + tA + \frac{(tA)^2}{2} + \frac{(tA)^3}{3!} + \cdots$ 直接计算 e^{tA} .

,并求 $(e^{tA})^+ = e^{-tA}$.

$$e^{th} = \overline{t} + tA + \frac{tA}{2}$$

$$= \overline{t} + \left[\begin{array}{c} t & 0 & 0 \\ t & 0 & 0 \end{array} \right] + \left[\begin{array}{c} t & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$= \left[\begin{array}{c} t & t \\ t & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} t & t \\ t & 1 \end{array} \right]$$

$$= \left[\begin{array}{c} t & t \\ t & 1 \end{array} \right]$$

3.设
$$A = \begin{pmatrix} 0.5 & 0.5 \\ 0 & 0.5 \end{pmatrix}$$
, 计算: $(I - A) \cdot \left(\sum_{k=0}^{\infty} A^{k}\right)^{2}$

$$C^{(A) = \cup S < I} = A^{k} \cdot A = (I + A)^{-1}$$

$$= \left(\sum_{i=0}^{\infty} A^{i}\right)^{-1}$$

m(x)=(x-2)3 形J.

5. (1)画出矩阵 A 的盖尔圆盘; (2)说明 A 有 3 个互异特征根.

$$A = \begin{pmatrix} 18 & 1 & 2 \\ 1 & 9 & 1 \\ 1 & i & 9i \end{pmatrix}. \qquad \begin{cases} 2-4\delta \mid \leq 5 \\ 2-4\delta \mid \leq 5 \end{cases}$$

- Ξ .(6分)设**A**是 n 阶正规矩阵, σ (A)= $\{\lambda_1, \dots, \lambda_n\}$ (全体特征根).
- (1)写出正规阵A的含有对角阵与两个U(酉)阵的乘积分解公式;
- (2)若 A是 2 阶正规矩阵, $\sigma(A) = \{1, i\}$, $X = \begin{pmatrix} i \\ 1 \end{pmatrix}$ 使得 AX = X,求一个 U(酉)阵
- Q, 将A写成Q,Q[†]与对角阵的乘积形式.

四.(任选3题共9分)简证下列各题

1.设 $\|\bullet\|$ 是 $\mathbb{C}^{n\times n}$ 上相容的矩阵范数,列向 $\alpha\in\mathbb{C}^n$, $\alpha\neq 0$.任取 $x\in\mathbb{C}^n$,令 $\|x\|$ 如下:

 $\|x\|$ 定义为 $\|x\alpha^H\|$, $x \in \mathbb{C}^n$. 证明: $\|Ax\| \le \|A\| \cdot \|x\|$, $(A \in \mathbb{C}^{n \times n})$.

/ 1

- 2.设 $\|\bullet\|$ 是矩阵范数, $x \in \mathbb{C}^n$, $x \neq 0$ 使得 $Ax=\lambda x$; 令 $B=(x,0,0,\cdots,0)_{n\times n}$

- 3. 设 $A \in \mathbb{C}^{n \times n}$, ||A|| 是相容的矩阵范数, 证明
- (1) $\|\mathbf{I}\| \ge 1$ (I 是单位矩阵); (2)若A可逆,则 $\|A^{-1}\| \ge \frac{1}{\|A\|}$ 以 $\|\mathbf{I}\|^{-1}$

4. 若 A 为 n 阶正规阵, $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$ (全体特征根),证明 $\sigma(A^H) = \{\overline{\lambda_1}, \dots, \overline{\lambda_n}\}$ (A^H 的全体特征根).

五.(11 分) 1.设
$$A_1 = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 & 1 & 0 & 1 \end{pmatrix}^T$, $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}_{4\times 5}$.

求 A^+ 与 Ax=b 的极小范数解或最佳极小二乘解

At =
$$\begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

At = $\begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

$$A^{\dagger} = \begin{pmatrix} A^{\dagger} & A^{\dagger} \end{pmatrix}$$

2.已知
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -1 \end{pmatrix}$$
 (1)求 A 的短音异值分解; (2)求音异值分解 $\begin{pmatrix} b & 2 \\ 2 & 3 \end{pmatrix}$ ($\sqrt{b} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} & \sqrt{c} \end{pmatrix}$ ($\sqrt{c} & \sqrt{c} &$

			•
		·	-
			-
			-

七.
$$(7 \, \beta)$$
设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 求一个矩阵 B (具有正的特征根), 使得 $B^2 = A$.

附加题(8分)

1.设
$$A \in \mathbb{C}^{m \times m}$$
, $B \in \mathbb{C}^{n \times n}$, $X = X(t) \in \mathbb{C}^{m \times n}$, 验证 $X = e^{At}Ce^{Bt}$ 是微分方程:
$$\frac{\mathrm{d}X}{\mathrm{d}t} = AX + XB$$
, $X(0) = C$ 的唯一解.

2.设单位列向量 $\varepsilon \in \mathbb{C}^3$ ($|\varepsilon|^2 = \varepsilon^H \varepsilon = 1$). 令 $A = \varepsilon \varepsilon^H$, $B = I - 2\varepsilon \varepsilon^H$)

(1)求 $A = \varepsilon \varepsilon^H$ 的特征多项式、验证 42

(2)求 B 的谱 $\sigma(B)$ 与谱半径 $\rho(B)$, 验证 $B^2 = I$. $\begin{pmatrix} \Box \\ \Box \\ \Box \end{pmatrix}$

(3) f(x)是解析函数,求谱分解公式 $f(B) = f(\lambda_1)G_1 + f(\lambda_2)G_2$ 中的谱阵 G_1, G_2

罪公式
$$f(B) = f(\lambda_1)G_1 + f(\lambda_2)G_2$$
 中的谱阵 G_1, G_2 を かまた $A(A-L)$ ない $A(A-L$

2009-2010 学年第一学期期末考试试卷

学長	<u>;</u>			姓名	· · · · · · · · · · · · · · · · · · ·	}}	龙绩		
	考	试	科目:	《知	阵理	论》	(B)		
考试日期:	:				Pf		T. 7	·	1 (1:4)
社息争坝:			8个题目共			•			
	۷,	与风户	时间 120 分钟		•		\mathcal{N}_{1}		n
题目:			(本題1:				191		<i>'</i> /
			(本题1:	5分)		1 4			

(本题10分) 四 (本题 15 分)

五 (本题 10 分)

(本题15分) 六

七 (本题15分)

(本题 5 分) 八

(2) 计算 $\|Ax\|_1$, $\|Ax\|_2$ 及 $\|Ax\|_\infty$; (3) 写出 A 的盖尔圆,A 是否可逆?

解:11) 11A1/1=11, 11A1/10=7+五.

12)
$$Ax = \begin{bmatrix} 5 \\ 2+3i \\ 4i \end{bmatrix}$$
 $||Ax||_1 = 5+\overline{1}B+\overline{1}D$ $||Ax||_2 = 4\overline{1}B$ $||Ax||_{\infty} = 5$

[3]. G1: |2-6| < |th. G2: |2-3-i| < 3. G3: | Z-41 < 2+1/2.

断 GUGUGG不包含 Es 与 A 非新 》A可异

二、设 $A \in \mathbb{C}^{8 \times 8}$,且 $\lambda I - A$ 等价于准对角阵

$$diag\left\{\begin{bmatrix} \lambda^2 - 1 & 1 \\ 0 & \lambda + 2 \end{bmatrix}, \begin{bmatrix} \lambda + 1 & 0 \\ \lambda - 1 & \lambda - 1 \end{bmatrix}, (\lambda + 2)^2, \lambda + 2, 1, 1 \right\}$$

(1)试求 $\lambda I - A$ 的初等因子,不变因子; (2)给出 $\lambda I - A$ 的 Smith 标准形

(3)写出 A 的最小多项式及 Jordan 标准形.

(1)
$$\begin{bmatrix} \lambda^{2} + 1 \\ 0 & \lambda + 2 \end{bmatrix} \sim \begin{bmatrix} 1 & \lambda^{2} - 1 \\ \lambda + 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & (\lambda + 1)(\lambda + 1)(\lambda + 2) \end{bmatrix}$$
$$\begin{bmatrix} \lambda^{4} & 0 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \sim \begin{bmatrix} \lambda^{2} & 1 - \lambda \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda_{1} & \lambda_{2} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & 0 \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{4} \end{bmatrix} \sim \begin{bmatrix} \lambda^{4} &$$

初了图: (21), (21), (21), (21), (21), (21), (21),

MA)= N+2)2(1)(1)(1) (1) (1) (1) (1) (1)

Xty CX

		-	-
			-

- 三、已知 $A \in \mathbb{C}^{n \times n}$. 证明 (1) $\left(e^A\right)^* = e^{-A}$;
- (2) $A^{\dagger} = A \Leftrightarrow A^2$ 是幂等的 Hermite 阵且秩 (A^2) =秩 A

四、设
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{bmatrix}$$
. (1) 证明 A 可对角化; (2)求 A 及 e^A 的谱分解;

(3)求谱半径 $\rho(A)$ 及 $\rho(e^A)$.

$$\widehat{\mathbf{M}}: ||| ||\lambda \mathbf{I} - \mathbf{A}|| = \begin{vmatrix} \lambda - 1 & -2 & 0 \\ 0 & \lambda - 2 & 0 \\ 2 & 2 & \lambda + 1 \end{vmatrix} = (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ 2 & \lambda + 1 \end{vmatrix} = (\lambda - 2) (\lambda - 1) (\lambda - 1) (\lambda + 1)$$

A=1, A=1, A=2. 3年特征任湖南村南化。

(2).
$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix} \qquad P' = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$E_{1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \qquad A = E_{1} - E_{2} + 2E_{3}$$

$$E_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \qquad E^{A} = eE_{1} + e^{2}E_{3} + e^{2}E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$E_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \qquad PA = E_{1} - E_{2} + 2E_{3}$$

$$PA = E_{2} - E_{3} + 2E_{3}$$

$$PA = E_{1} - E_{2} + 2E_{3}$$

$$PA = E_{2} - E_{3} + 2E_{3}$$

$$PA = E_{$$

五、已知
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 2 \\ 1 & 0 \end{bmatrix}$$
,试求 A 的奇异值分解.

Art $A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 2 & 0 \end{bmatrix}$

$$\begin{vmatrix} \lambda 1 - A & 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 2 \\ 0 &$$

六、己知
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 2 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. (1) 证明方程组 $A^T A x = A^T b$ 相容; (2) 求 $A^T A x = A^T b$ 的

通解及极小范数解.

解:
$$\gamma(A)$$
 = $\gamma(A)$ = $\gamma(A)$

YIATA i Pb) = YIATA) => ATAF ATB 相答.

$$(A^TA)^TA^TA = \frac{1}{5}\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

せ、已知
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
 (1) 计算 e^{At} ; (2) 诚求 $f(A) = \sum_{n=0}^{\infty} \frac{(n+1)}{n!} (A^2 + A)^n$.

| Al A] = $\begin{bmatrix} \lambda 1 & -3 \\ -2 & \lambda 2 \end{bmatrix}$ = $O = A$, = -1 , $\lambda_2 = 4$

| $\lambda_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ | $\lambda_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | $P = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ | $P = \begin{bmatrix} 5 \\$

八、 $A \in \mathbb{C}^{n \times n}$. 证明 $\lim_{m \to \infty} A^m = 0 \Leftrightarrow \rho(A) < 1$.

七.(7分)设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求一个矩阵 B (具有正的特征根),使得 $B^2 = A$.
$$\sqrt[6]{A} = \sqrt[6]{1 + 1} \qquad \text{Prish} = \sqrt[6]{1 + 1}$$

$$\sqrt[6]{A} = \sqrt[6]{A} = \sqrt[6]$$

附加题(8分)

1.设
$$A \in \mathbb{C}^{m \times m}$$
, $B \in \mathbb{C}^{n \times n}$, $X = X(t) \in \mathbb{C}^{m \times n}$, 验证 $X = e^{At} C e^{Bt}$ 是微分方程:
$$\frac{dX}{dt} = AX + XB, \quad X(0) = C \text{ 的唯一解}.$$

$$\frac{dX}{dt} = \frac{d}{dt} \left(e^{At} e^{\beta t} \right)^{dt}$$

$$= Ae^{At} C e^{\beta t} + e^{At} C e^{\beta t} B$$

$$= AY + XR$$

- 2.设单位列向量 $\varepsilon \in \mathbb{C}^3$ ($|\varepsilon|^2 = \varepsilon^H \varepsilon = 1$). 令 $A = \varepsilon \varepsilon^H$, $B = I 2\varepsilon \varepsilon^H$
- (1)求 $A = \varepsilon \varepsilon^H$ 的特征多项式,验证 $A^2 = A = A^H$,并且求 A 的极小式与 A^* ;
- (2)求B的谱 $\sigma(B)$ 与谱半径 $\rho(B)$,验证 $B^2=I$.
- (3) f(x)是解析函数,求谱分解公式 $f(B) = f(\lambda_1)G_1 + f(\lambda_2)G_2$ 中的谱阵 G_1, G_2

(1)
$$A^{2} = \xi \xi^{H} \xi \xi^{H} = \xi (\xi^{H} \xi) \xi^{H} = \xi \xi^{H} = A$$

$$A^{H} = (\xi \xi^{H})^{H} = \xi \xi^{H} = A$$

$$A^{2} = A = A^{H}$$

$$O(A) = \{1, 2, 0\}$$

$$A = \{0, 2, 0\}$$

(BT1)(B-1) =
$$(2-2\xi\xi^{H})(-2\xi\xi^{H})(-2\xi\xi^{H})$$

= $-4\xi\xi^{H} + 4\xi\xi^{H}\xi^{H}\xi^{H} = 0$
: $m(x) = (x+1)(x-1)$
 $G_{1} = \frac{B-1}{-1-1} = \frac{-2\xi\xi^{H}}{-2} = \xi\xi^{H}$
 $G_{2} = \frac{B+1}{-1-1} = \frac{21-2\xi\xi^{H}}{2} = 7-\xi\xi^{H}$

$$(A-1)A = A^{2}-A=0$$

$$A^{\dagger} = (EE^{H})^{\dagger} = (EE^{H})^{\dagger} = (E^{H}E)^{\dagger} (E^{H}E)^$$

2010-2011 学年 第一学期末试卷(B)

学	号_	 姓名	成绩
	-	 , — · · · · — — — — — — — — — — — — — —	

考试科目:《 矩阵理论 》(B)

考试日期: 2011年1月10日

注意事项: 1、考试7个题目共6页

2、考试时间 120 分钟

题目: 一 (本题 20 分)

二 (本题 15 分)

三 (本题 18分)

四 (本题14分)

五 (本题17分)

六 (本题 16 分)

七 (本题 16分)

注意: 六、七两题只需任选做一题

(注: I表示单位矩阵, A^H表示 H转置, det(A)代表行列式)

姓名:

В

$$-, (20 分) 设 A = \begin{pmatrix} 1 & 1/2 & 1/2 \\ 1 & 2 & 1/2 \\ 1/2 & 1 & 2i \end{pmatrix}, x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

(1)求列范数 $\|A\|_1$ 与行范数 $\|A\|_{\infty}$ (2)求向量范数 $\|Ax\|_1$, $\|Ax\|_2$ 及 $\|Ax\|_{\infty}$.

(3)画出A的盖尔园 (估计特征值范围),判断A是否可逆

二、(15 分)设
$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 2a_1 & 2a_2 & \cdots & 2a_n \\ \cdots & \cdots & \cdots \\ na_1 & na_2 & \cdots & na_n \end{pmatrix}$$
, $tr A \neq 0$, (1)求 A 的满秩分解

(2)计算 $A^2 - (\mathbf{tr}A)A$ 与 A^{100} ; (3) 证明 A 可对角化(A 为单阵).

三、(18 分)设 $A = \begin{pmatrix} 2 & 4 \\ 5 & 3 \end{pmatrix}$ (1)求A的谱分解: (2) 求 $e^{i \sin A}$ 的谱分解

(3)求谱半径 $\rho(e^A)$ 与行列式 $\det(e^{\sin A})$.

四.(14 分)设
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, (1) 用公式 \begin{pmatrix} D \\ 0 \end{pmatrix}^{+} = (D^{+}, 0) 或满秩分解求 A^{+};$$

(2)证明 Ax = b 相容,并求其极小范数解。

五、(17 分)设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 3 & -2 \end{pmatrix}$ (1)写出A的最小式,初等因子,不变因子;

(2)求 A 与 $\frac{A}{2}$ 的 Jordan 形; (3)考查 $\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{A}{2}\right)^n$ 的收敛性

注意: 以下的六、七两题只需任选做一题

六、(16 分)(1) 设矩阵 A 的最小式 $m(x)=(x-2)^2$ 且 f(A) 收敛,用台乐公式导出 f(A) 的计算公式,并计算 $\cos(\pi A)$

$$(2)$$
求 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix}$ 的正奇异值与奇异值分解,并写出 A^{+} 的简化奇异分解式

七、(16 分) 设
$$A = \begin{pmatrix} -3 & 4 & 2 \\ -2 & 3 & 1 \\ -2 & 2 & 2 \end{pmatrix}, b(t) = \begin{pmatrix} e' \\ 0 \\ e^{2t} \end{pmatrix}, x = x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}.$$

(i)求e^{At}

(2)求解齐次微分方程组 $\frac{dx}{dt} = Ax$,初始条件为 $x(0) = C = (0, 1, 0)^T$

(3)试推导出微分方程 $\frac{dx}{dt} = Ax + b(t)$ 满足条件 x(0) = C 的求解公

式: $x(t) = e^{At}C + e^{At} \int_0^t e^{-A\tau}b(\tau)d\tau$ (若求出具体解可得附加分).

(4) 分别写出 \hat{A} , A^+ 及(A^HA) 的 Schur(许尔)分解公式

- (2) 写出 A 的奇异值; 证明, 谱半径p(A)=||A||,
- 8. (任选 3 个小题 12 分)
- (1) 设有方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$, 证明 $\mathbf{A}^{\dagger}\mathbf{b} \perp \mathbf{y}$, 其中 $\mathbf{A}\mathbf{y} = \mathbf{0}$ ($\mathbf{A}^{\dagger}\mathbf{b}, \mathbf{y}$) = $\mathbf{y}^{\mathsf{H}}(\mathbf{A}^{\dagger}\mathbf{A}\mathbf{x}) = \mathbf{y}^{\mathsf{H}}(\mathbf{A}^{\dagger}\mathbf{A}\mathbf{x}) = \mathbf{y}^{\mathsf{H}}\mathbf{A}^{\mathsf{H}}\mathbf{a}^{\mathsf{$ $\sqrt{2}$ 若定义矩阵 $Y = (y_{ij})$ 的长度为 $||Y|| = \sqrt{\sum |y_{ij}|^2}$, 证明矩阵方程:

AYB = D 的最佳极小二乘解为 $Y = A^{\dagger}DB^{\dagger}$

(4) 证明: 若方阵A, B无公共特征值, $\mathbb{P}\begin{pmatrix} A & O \\ D & B \end{pmatrix}$ 与 $\begin{pmatrix} A & B \\ B \end{pmatrix}$ 相似 $\mathbb{P}\begin{pmatrix} \mathcal{I} & O \\ \mathcal{X} & \mathcal{I} \end{pmatrix}$ $\mathbb{P}^{-1}\begin{pmatrix} \mathcal{I} & b \\ \mathcal{X} & \mathcal{I} \end{pmatrix}$

补充题 设 $A \in \mathbb{C}^{m \times n}$, rank(A) = r, 奇异值分解为

$$A = U \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} V^H$$
, $S = \text{diag}\{\sigma_1, \dots, \sigma_r\}, (\sigma_1 > 0, \dots, \sigma_r > 0)$

其中U, V分别是m阶与n价酉矩阵. 再设

$$U = [\varepsilon_1, \dots, \varepsilon_m], V = [v_1, \dots, v_n].$$

(1) 证明:
$$A = \sum_{k=1}^{r} \sigma_k \varepsilon_k \mathbf{v}_k^H$$

(1) 证明: $A = \sum_{k=1}^{r} \sigma_{k} \varepsilon_{k} \mathbf{v}_{k}^{H}$ 以外 (2) 证明: $\{\varepsilon_{1}, \dots, \varepsilon_{r}\}$ 构成值域 \mathbf{R} (A) 的正交基 \mathcal{N} \mathcal{N} — \mathcal{N} (分 人

(2)计算 $\|Ax\|_{2}$ $\|Ax\|_{2}$ 及 $\|Ax\|_{\infty}$. (3)画出 A的盖尔圆, 4 是否可逆?

二设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 (1)计算, $\sin(At)$ (2)求 A 的谱分解, (3)求谱半径 $\rho(\sin A)$.

三设线性方程组 Ax=b , $A\in\mathbb{C}^{m\times n}$, $b\in\mathbb{C}^m$ (1)若方程组相容,证明:方程

(2) 取 $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$. 求A的奇异值分解,并且写出 $\mathbf{R}(\mathbf{A})$ 的一组标准正交基

四、(15分) $A \in \mathbb{C}^{n \times n}$,证明

(1) 若 $A^H = A^2 = A$,则 $A^+ = A$

(2) 若 A 是正规矩阵,则 $(A^k)^+ = (A^+)^k$ (k 是任意自然数)

五、(15分) 设
$$A = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -2 \\ -3 \\ -2 \end{bmatrix}$$
 (1)求 A 的满秩分解; (2)计算 A^+ ;

(3)判断方程组 Ax = b 是否相容,并求其极小范数解或极小最小二乘解.

六、(15 分) 设
$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$
, $b(t) = \begin{bmatrix} e^t \\ 2e^t \\ e^t \end{bmatrix}$, $X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_2(t) \end{bmatrix}$, (1)计算 e^{At} ;

(2) 求微分方程 $\frac{dX(t)}{dt} = AX(t) + b(t)$ 满足条件 $X(0) = (-1,0,1)^T$ 的解. 补充题:

- (1) 证明 $\varphi:V\to V$ 是V 上的线性变换, 且 $\varphi''=0$ (零变换);
- (2) 求矩阵 Λ 使得 $\varphi(x) = Ax$; (3) 求核空间 $N(\varphi)$ 与秩数 $\mathrm{rank} \varphi = \mathrm{dim.R}(\varphi)$.

2 设
$$C = (c_{ij})_{m \times n}$$
, (1) 证明 $\operatorname{tr}(C^{(n)}C) = \operatorname{tr}(CC^{(n)}) = \sum_{i,j} |c_{ij}|^2$.

(2) 若
$$tr(C^{H}C) = 0$$
 则 $C = 0$.

3 若
$$M = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$
为正规矩阵,则 $C = 0$.

- 4 若 A 为正规阵且Q 为酉矩阵,证明 $Q^H AQ = Q^{-1}AQ$ 也是正规阵.
- 5 设正规阵 $A = A_{n\times n} \in \mathbb{C}^{n\times n}$,它的不变子空间为 $W \subset \mathbb{C}^n$,则 $W \in A^H$ 的不变子空

间,且 W^1 也是A的不变子空间.

(提示:利用3,4题即可;也可用A的谱分解公式).

2007年答案出品人。唐忠兴:2008年考案出品人。王灏宇
矩阵理论(B) (2007, 01). 核核、余快 版数: 57,08152.
(1) A = max 音(ai)=7 (列花数)
Allo = max 是(aij!)=7 (行花数)
(2) $(2i)$
$Ax = i-1 $ $ Ax _1 = \sum_{i=1}^{n} 3i = 8+J_2; Ax _2 = (\sum_{i=1}^{n} 2)^2 = 42 Ax _0 = max 3 = 6$
(3) z- 5 ≤ 2
[₹-(H2i)]≤2 4i
[Z-4i]≤3
特犯值范围中不包括
原外,即可促矩阵特征
有 · A非奇等 A可逆
= 10 NI-A = (AH) (A-3) (A-2) MA(A)= (AH) (A-3) (A-2)
MAUITE根,A可值。 [Z, Z, Z]
$\lambda = -1 \text{ lot } \eta_1 = (1, 0, 0)^T \qquad [1 \ 1 \ 0] \text{ at } [-3 \ 0] \qquad [Y_1]$ $\lambda = 2 \text{ lot } \eta_2 = (1, 0, 3)^T \qquad P = [0 \ 0] = \frac{1}{2} [P^2 = -\frac{1}{3}] \qquad 0 \qquad 0 \qquad -1 = [Y_2]$
$\lambda = 300 + \eta_3 = (0, 1, 0)^T$ $\begin{bmatrix} 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} $
$A = Policy \{-1, a, 3\} P^{-1}$; $f(At) = Policy \{f(-t), f(xt), f(xt)\} P^{-1}$ $f(At) = SinAt$ SinAt $(-1)^{-1}$
$\frac{9inAt = P}{9inAt} = \frac{9inAt}{9} = 9inA$
C) Anomalogical (4)
F (A(A) [12 0 -4] [0 0 -1] [0 0 3]
$E_{1} = \frac{(A(A))}{(A(\lambda))} = \frac{1}{12} \begin{bmatrix} 12 & 0 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} E_{2} = -\frac{1}{3} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 73 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$E_{3} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\} = \left\{ \begin{array}{ccccc} 0 & 0 & 0 \\$
$\frac{\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{j=1}^{3} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_$

		·.
		٠.
		-

```
E_{2} = \begin{bmatrix} 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} ; E_{3} = Z_{3}Y_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} .
         A=-E1+2E2+3E3
       (3) 增 ¥ 经 p(shA)
         由UN得 SinA 纷特征值:-Sin1 , Sin2 , Sin3;
        : Q(sinA)= max | sin1|, sin2, sin3 } = sin2.
       三证明:(1)方程相塞, 解催-⇔A训满秩: Amxn
        ← "(元分): 苦A到满秋, AT=(AHA) TAH
           育程通解形式: X=A+b+(I-A+A)y=A+b+[I-(A+A)+A]y=A+b
                 由At的唯一性 ⇒解唯一,且解X=Atb
       "→"以要性)、由通解形式: 25A+b+(I-A+A)Y.
        解作- ⇒ I-AtA=0 ⇒ AtA=In.
           mmkLAtA)=n < rank(A) < n : rank(A)=n (到流珠)
             (2) 方程在相容。最小乘解唯一(A)满秩、Amxn、
          最小二乘解通式电站:X=A+b+(I-A+A)y(与山形式相同):河田同(1)
      W.(1) [XI-A]= (2-1) (1-2) (1-6). MA(1)= (2-1) (1-2) (2-6)
                                                                 A可对角化.
                \eta = (0,0,1)^T
       λ=1
                )=)
                                                                      0
                                                                      et
       (2) f(A) = \sum_{n=0}^{\infty} \frac{1}{11!} (2A^{nH} - 3A^n) = 2Ae^A - 3e^A = (2A - 31)e^A
     (3) 通解形式: \chi(t) = e^{At} \chi(0) = \left[ \frac{3}{4}e^{2t} + 4e^{6t} \right] \left[ \frac{4}{4}e^{2t} - 4e^{6t} \right]
```

-Meding


```
I: (1) B=AA+ ⇒ BH= (AA+) H=AA+ = B B是Hermite 诗:
                                                                     B= LAA+)CAA+)=(AA+A)A+= AA+=B B是幂等阵
                                                                     :B晃琴Hermite阵.
                        13: B为幂等阵、B3-B=0 B(B-I)=0. (A)法(A-I)被最格域对整除:
                                                         : B的特征值为0或1 : P(B)=1
                       (3) ||B||5= |入1; 入1者 BHB 份最大特征值.
                                            BHB= B2=B : 1=1 ::11B16=1
   六.4)
              A=FG
                                                                                                                                                                                                                                                                                                                                                                                                                 18
            (2) At=GH(GGH) + (FHF) + FH = 16
             B) rank(A b)= rank(A)=2. 清鲜相客
                         根本花数解: X=A+b=[1,0,-1,1]T
            矩阵理论(B) (2008,01)
-(1)dia {\( \( \lambda \tau \) \( \lambda - 1 + \in ) \( \lambda - 1 - \in ), \( \lambda^2 \) \( \lambda - 1 - \in ), \( \lambda^2 \) \( \lambda - 1 - \in ), \( \lambda - 1 - \in ), \( \lambda^2 \) \( \lambda - 1 - \in ), \\  \lambda - 1 - \in ), \( \lambda - 1 - \in ), \\  \lambda - 1 - \in ), \( \lambda - 1 - \in ), \\  \lambda - 

\begin{array}{cccc}
\mathbf{a} & \mathbf{a} 
                                                         is Smith = diag
                                                           MA(A)= ()+1) (A-HE)(A+-6) A2
                                                                                                                                                                                                                                                                                                                                                 J2=[1-i] J3=[1+i]
                                                                                                           Ji= ['']
                                                                                                                J4=[0] PCA)= |Hi= 1/2.
```

-Medito[®] 3

=).
$$\angle A = \sum_{k=1}^{n} \nabla_k \mathcal{E}_k V_k^H$$

$$= (\mathcal{E}_1 \nabla_1, \dots \mathcal{E}_r \nabla_r, 0, \dots 0) \begin{pmatrix} v_1^H \\ v_2^H \end{pmatrix}$$

$$= \mathcal{E}_1 \nabla_1 V_1^H + \dots + \mathcal{E}_r \nabla_r V_r^H + 0 + 0$$

$$= \sum_{k=1}^{n} \nabla_k \mathcal{E}_k V_k^H$$

			4.	
		·		
				- .
				-

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$
 由A奇异值分解.

 $A = \begin{bmatrix} 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$ U^{H} $U^{*} = \Lambda_{T} A^{H} \Lambda^{H}$ by $U^{*} = \Lambda_{T} A^{H} \Lambda^{H}$ $U^{*} = \Lambda_{T} A^{H} \Lambda^{H}$ $U^{*} = \Lambda_{T} \Lambda^{H} \Lambda^{H} \Lambda^{H}$ $U^{*} = \Lambda_{T} \Lambda^{H} \Lambda^{H} \Lambda^{H} \Lambda^{H}$ $U^{*} = \Lambda_{T} \Lambda^{H} \Lambda^{H} \Lambda^{H} \Lambda^$

			. .	
				•
				-
				-

少新值分解。 A= [指花][好0 0] [洁荫荫] H

R(A) = { y | y = Ax, x 6C}

 $R(A) = span(a_1,a_2,a_3)$ · 题 $\binom{p}{p} > 5(0)$ 为 $span(a_1 a_2 a_3)$ 的一组标准基 $\binom{p}{p} \binom{p}{0} = 3$ 好准正基

证明:

u, 後At=X, 兄帯砂正 Uo. AXA=A; ピノXAX=X; B) (AX)H=AX.

显然AT=X=A满足以上赋。)AT=A.

己, 岩A为正规符, 品 AN = NA.

*A是正规阵: -) 3U为項阵使A= U(diag(x,--->n)) U^H.

= M* U diag (x,-->n*) U^Hの A^k= U diag(x,-->n*) U^H, ⇒ (A^k) = U diag(x*,-x**) U^H, ⇒ (A^k) = U diag(x**,-x**) U^H, ⇒ (A^k) = U diag(x**,-

 $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = FG$$

 $A^{\dagger} = G^{\dagger} (GG^{\dagger})^{\dagger} (F^{\dagger})^{\dagger} F^{\dagger}$ $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{bmatrix}$

Date - ·
附: 分限频答案纠错:
Pig6. 8. 若一个正规阵若和三角阵,则一定是对角阵.
记、用数的物质证明:(沙上)用阵动列)。
The airt $A = \left\{ \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right\} = \left\{ \begin{array}{ccc} a_{11} & a_{12} \\ a_{22} & a_{22} \end{array} \right\} = \left\{ \begin{array}{ccc} a_{11} & a_{22} \\ a_{22} & a_{22} \end{array} \right\}$
AAH=AMA: AAH=[anān+anan anān]: AHA=[anān anān]
$a_{22}\cdot \overline{a}_{12}$ $a_{22}\cdot \overline{a}_{22}$ $a_{22}\cdot a_{11}$ $a_{22}\cdot a_{22}$
· AAMEAMA; 由an. an. an. an. an. an. an. an. an. an.
$Q_{12} \cdot \bar{Q}_{12} = 0 \Rightarrow Q_{12} = 0$
$A = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \qquad b = \begin{bmatrix} b_{11} \\ b_{22} \end{bmatrix}$
Lo au
假度作品的成立
カート的す: A= Bank) . 日本)(以上) 見上三角阵 . AH (BH O) (以上) 日本) (WH
LO are
$AA^{H} = \begin{bmatrix} BB^{H} + \alpha \alpha^{H} & \alpha \bar{\Omega}_{Pk} \\ a_{Pk} & \alpha_{Pk} \bar{\Omega}_{Pk} \end{bmatrix} \qquad A^{H}A = \begin{bmatrix} B^{H}B & B^{H} \alpha \\ \alpha^{H}B & \alpha^{H}\bar{\Omega}_{Pk} \bar{\Omega}_{Pk} \end{bmatrix}$
apped " are app (d"B what app app)
AAH=AHA > ant-ant = xHX + art art art > x=0
⇒ BBH = BH B 电假设 not 1或2 ⇒ B是对角阵
·· A是对角阵

海车户16. 1000 与户目的

Y和Z都是线性空间X的子空间,又 $\dim Y = \dim Z, Y \subset Z$,证明Y = Z R^3 中、定义线性变换T为: 对任意 $x=(x_1,x_2,x_3)^T\in R^3$, $Tx=(x_1-x_2,x_2-x_3,2x_3)^T$ 二 (为 为 为) 区 水矩阵: 的谱分解式,又设1为实数,试求矩阵AI的正弦函数sin.41 读证: $H^* = H$ 的充要条件为: H^2 为幂等的(Hermite)矩阵,且 $\tan H^2 = \operatorname{rank} H$. 5、求矛盾 为程组 dx = b的最小范数最小二乘解,其中: $-\operatorname{rank} H$. [0] $A = \begin{bmatrix} 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \end{bmatrix}$ 0 矩度但满是 $R(X) \subset R(E)$

6化用盖氏圆盘定理证明矩阵:

至少有两个实特征机。

$$A = \begin{bmatrix} 9 & 1 & -2 & 1 \\ 0 & 8 & 1 & 1 \\ -1 & 0 & 4 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} 9 & -4 \\ 8 & -2 \\ 4 & -1 \\ 1 & -1 \end{array}$$

 $Z_{1} = \frac{8-4A}{4} = \frac{1}{4} \begin{bmatrix} 2 & \pi i & \pi i \\ \pi i & 1 & -i \\ -\pi \cdot i & 1 & -i \end{bmatrix}$

Shat=(Shat) &, - Shat &,

0 人用盖氏圆盘定理证明	 			名	
•		4	0.8	0.4	
	A =	0.2	6	8.0	
		0.2	0.2	8 !	

有二个互居的特征值。(12 分)

证明数域差 比的线性空间 X 与它的任意子空间 S 有相同的零商量。(16 分) 记题 X 为数域差 上的线性空间、 \mathbb{I}_0 dim X=3 。 $T\in L(x,x)$ 。 $B_x=[\eta_x,\eta_y]$ 。 线性变换工在基底 B_y 下的矩阵表示为

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix}$$

试录 R(T). N(T) 及其维数。(12分)

则、设习为正规矩阵,W 为A 的不变子空间。试证 W^1 也为A 的不变子空间。(12 分) Q 是 设 $A \in \mathbb{C}^{50}$, 又知 AI = A 的初等因子组为 A = 1, A = 2, A = 3, A = 4, A = 5,试求 AI = A 的不变因子组,各阶行列式因子及A 的最小多项式,并证明矩阵A 可发行化。(12 分)证明,查 A^* 为正规矩阵,则 $A^*A = AA^*$, A^* A^*

が、设
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 6 \\ 1 & 0 & 2 \end{bmatrix}$$
 来 A 的谱分解。(15分)
(15分)
(15分)
(15分)
(15分)
(15分)

矩阵理论试题 (1997) りょん

$$T: C^{2\pi^2} \to C^{2\pi^2}$$

$$X \mapsto PX$$

$$\mathbb{R} C^{2\pi^2} \cap \mathbb{R} \to \mathbb{R} : B_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\},$$

$$B_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

、 │求了关于基底 B₄的矩阵表示 A;

 $\bigcup Z$ 在基底 B_1 下的坐标为 $(1,2,1,1)^T$,求 X 在基底 B_2 下的坐标。

Dolphy

② 1、设 $A = \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix}$. 试来 $f(A) = 2A^4 - 12A^3 + 19A^2 - 29A + 37I$. 现中 I 一路车位

92 用流氏圆盘短现估计矩阵

$$A = \begin{bmatrix} 1 & -0.5 & 0.5 & .0 \\ -0.5 & 1.5 & i & 0 \\ 0 & -0.5i & 5 & 0.5i \\ -1 & 0 & 0 & 5i \end{bmatrix}$$

的特征值分布的范围。并在复平而上作出示意图。

$$O(1 + 2)$$
 设 $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ 试求 A 的谱分解式。

$$\Theta$$
 \neq 沒 $t \in R$. $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$ 武求 A 的 譜分解式。 e^{-t}

設了是 R^3 中的线性変換、 $\forall x = (\xi_1, \xi_2, \xi_3)^T \in R^3$ 、 $Tx = (0, \xi_1, \xi_2)^T$ 、分別求 $R(f^2)$ 、

X(T')的基底和维致。

①、)设 $\{x_1, x_2, \cdots, x_n\}$ 为 n 维线性空间 F 的一组基础。 1. 试证 下列间量组, $u_1 = x_1$ 、 $u_2 = x_1^2 + x_2$, \cdots , $u_k = x_1 + x_2 + \cdots + x_k$ 。 $u_n = x_1 + x_2 + \dots + x_n$ 也是 V 的一组基底:

2. 求由基底 $\{x_1,x_2,\cdots,x_n\}$ 到基底 $\{u_1,u_2,\cdots,u_n\}$ 的过渡矩阵。

3. 试间 P 是否可对角化, 为什么?

ABA∈Casa, 证明: AMA=In i

1. $A^TA = I_n \Leftrightarrow \operatorname{rank} A = n$. $\Longrightarrow \bigvee$

2. $AA^* = I_m \Leftrightarrow \operatorname{rank} A = m$

 $\{\lambda_i\}$ 证明:幂等的正规矩阵 $A\in C^{***}$ 必为 Hermite 矩阵(即A''=A)

(仅 A 班做此题, B 班不做)

设 $A \in C^{***}$ 为正规矩阵, $W \subset C$ 为C 的子空间,试证者W 为A 的不变子空间,则 F^{\perp} 也是 A^H 的不变子空间。

上一、(仅 B 班做此题, A 班不做)

设X为R上的线性空间, $\{x_1,x_2,\cdots,x_n\}$ 为X的一组基底,试在X下足义一种内积。 使{x₁,x₂,···,x_n}在这样定义的内积之下成为一组标准正交基底。

F)F £13	tr: 5.	

实特征根几个虚特征根。

1、试河: (x | y) 为 R² 上的内积。

2、按 1 中的内积(十), $\left(R^2.(\pm)\right)$ 构成内积空间,试由 R^2 的自然基底 $c_i=(0.1)^i$ 积

 $e_2 = (1,0)' 用 G - S 过程求出标准正交告底。$

[P] 设 X 为复数域上的 4 维线性空间,给定 X 的基底 $B_X = \{x_1, x_2, x_3, x_4\}$, $T \in L(x,x)$. $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

$$T$$
 在 B_X 下 任 矩阵表示为 $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 6 & 1 & 1 & 0 \\ -1 & -1 & 0 & 1 \end{bmatrix}$ 、求

1、上的特征值及特征空间;

2. R(T) 和 N(T) 的维数:

3、判断 T 是否可对角化。

$$K$$
. 给定 $A = \begin{bmatrix} 0 & i & 2\sqrt{2} \\ -i & 0 & 0 \\ 2\sqrt{2} & 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 求 A 的谱分解, 并求 $Ax = b$ 的最小符数数本

浜斛。.

 \triangle 、设 $A \in C^{mn}$ 为正规矩阵,W 为 $\left(C^{n}, (\cdot | \cdot)\right)$,武证若W 为A 的不变子空间,则W 也为习

的不变子空间,其中内积(十) 取 C" 空间的标准内积。

$$\begin{array}{ll} \text{if } A \in C^{mnn}, & P \in C_{m}^{mnn}, & Q \in C_{n}^{mnn}, & B \in C^{mnn} \text{ if } PAQ = B & \text{if } \text{iff} \\ A\{1,2\} = \{G \mid G = QB^{(1,2)}P, B^{(1,2)} \in B\{1,2\}\} \end{array}$$

0 ... 0 0 0 0

,计算矩阵函数 e^{a} 的值。

A= 1, P,+ 1, P+ 1, P, A= 10 B-(A)(A-3)

0化 画出矩阵

外来在公司户心

研究生《矩阵论》试题

班级 姓名 成绩 一、给定 $P = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, 忍定 X 会性变势 $X \in \mathbb{R}$ 一 $X \in \mathbb{R}$ — X

O 长用差尔斯県林国金尼亚估计是序

$$i = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & i & 0 \\ 0 & -\frac{i}{2} & 5 & \frac{i}{2} \\ -1 & 0 & 0 & 5i \end{bmatrix}$$

定京坂時函交。"的有限形式。 OR. 求方程智

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}, |\lambda^{1} - \lambda| = \begin{bmatrix} 1 & -2 & -2 & -1 \\ -1 & \lambda^{-3} & -1 & -1$$

 $\begin{cases} z_1 + 2z_2 - z_3 = 1 = \lambda^3 - 7\lambda + 11\lambda - 5 \\ -z_1 + 2z_2 = 2 \\ -x_1 + 2z_2 = 2 \end{cases} (\lambda - 5) (\lambda - 1)^2$

Ax D A [1.4]

的及小瓶数解. 大文使T 展 R'中的战性变换 (T)的蓝底和堆胶. 七、设(云,工,...,工)为 n 经线性空间 V 的一组苦庇, 1. 试证下列向 近姐 "一二、" 2. 來由番底(工,工,一,工)到蒌底(山,工,工,1)的过去矩阵 3. 运同户是否可对危化,为什么1 也是V的一组去底, "。I的过去矩阵 P. 处 A 在反应 5. B 三 不 员) 2. 4 € C ** 为正规矩阵,以 C C 为 C 的 于 空间,试证, 营 W 为 A 的 不 定 子 空 间, 则 W 也 是此"的不变于空间。" 十一、(仅 3 莊散此惡 . 4 班不做) 设 X 为 R 上的最佳空间,(=1,=, =, =, =) 方 X 的一起基底,试在 X 中是又一种内容,但 ……」主这帮定义的内包之下,成为以的一旦标准正交后点 我到底(大). TEC T (E, L, E,)= (U, O, E) ... Te: = Ce, + 0 = +0e, +(c, 0) = cf, +0e, +ve, TES= 62,707,725 (6,6,0)=08,+02,+02, P(7)= = = + (0,0,1) N(T)= 5/4 (0 10), (0.01)

Dolphin

矩阵论期终试题 (2002年秋季)

一、选择填空,在下列各题中选择一个正确的答案填入空白处。	į.
1. 设 V 是数域 F 上的线性空间 $_{i}$ 、 x_{i} 、 x_{i} \cdots , x_{s} 是 V 中的一纸向量,如果存	
在一组 B 的数 $\alpha_1, \alpha_2, \cdots \alpha_n$,使得 $\alpha_1 x_1 + \alpha_2 x_2 + \cdots \alpha_n x_n = 0$,则称 x_1, x_2, \cdots	i i
x。为空间 V 的线性相关向重组.	<u>.</u>
A. 不全为零 B. 不全为零的 F 中	and the second
C. 至少含有一个零的 F 中 $D.$ 至多有一个不为零的 F 中	2 1 2 1
2. 设 V 是数域 F 上的线性空间, x_1, x_2, \cdots, x_n 是 V 中的向量,如果 $n > dim V$,	er de la company
则 x, z, …, x, 些	e i
A. 线性无关 B. 全为零向量 C. 线性相关 D. 有一个为零向量	1
3. n维线性空间中的向量。 另一有 n个分量。 向 为 6. 元 《 》 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	
A. 不一定 B. 一定 C. 肯定设 D. A. B. C都不对	
4。设义是数域 F。上的影性空间,S是 X的真子空间。 x, z, ···, z, 是 X的 ·	. 7. 4
基底,则 S的基底	
A. 一定是x,x, ···,x,中的某些向量	3
B. 不一定是 x ₁ , x ₂ , …, x ₂ , 的子集	
C、一定不是 x,, x, …, x, 的子集	į
D. 中每个向量均必不可由x,,x2, …,x,线性表出	
5. 设 V 为数域 F 上的线性空间, B,={ z, x, ···, x, }为 V 的一个基底,	
高泽铁 B∈F,***, 水n, 如果 V 中向量 y ₁ , y ₂ , …, y, 满足[y ₁ , y ₂ , …, y ₁]=[x ₁ , x ₂ , …, x ₄]B,	
w A?	
	: :
A. y ₁ , y ₂ , ···, y _r 线性相关 B. y ₁ , y ₂ , ···, y _r 线性无关	
C. [y ₁ , y ₂ , ···, y _n]是列漪秩的F ^{***} 中的矩阵	秋村はこので
D. [y ₁ , y ₂ , ···, y ₃]是行满获的F ^{**} 中的矩阵	
9.43 = 0 A 3 %	yKK Y SSI:
6. 设 $T \in L(X, X)$, X 为数域 F 上的线性空间, B_x 为 X 中给定的基底,则 T	52 d=c
在基底 B, 之下的矩阵表示是。	段先足。

Delphin

```
A. 唯一的 B. 不唯一的 C. 任意的
                         7. 设X为数域F上的线性空间,T \in L(X,X),又设A是T在基底B_X之下的
                             A. dim R(T) + dim N(T) = dim X. \coprod X = R(T) + N(T).
                             B. dimR(A)+dimN(A)=dimX, 且 X 是 R(T)+N(T)的补空间。
N(A) = { 24 = 1 Ad = 0 }
                             C. dimR(A)+dimN(A)=dimX, 且 R(A)与 N(A)均为 X 的子空间。
  X = 3,2
                            D. dimR(A)+dimN(A)=dimX,且 R(T)与 N(T)均为 T 的不变子空间。
The TAXL = C
                        8. 设V为数域F上的线性空间,S_1、S_2均为V的子空间,又设dimS_1=m
                    dimS_2=n, dim(S_1 \cap S_2)=k, \emptyset dim(S_1 \cap S_2)=\emptyset
                            A. m+n B. m-n+k
                           10. 设 A∈C<sup>N</sup>, 而λI-A 的初等因于组为λ-1, λ-1, (λ-2), (λ-3), 则 A 3, Δ<sup>(2)</sup>
                                          J_{2} = \begin{cases} J_{4} & J_{6} = (\lambda + 1) & f_{5} = -f_{5} = 1 \\ J_{4} & J_{4} = [1], J_{2} = [1], J_{5} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, J_{4} = [3]. \end{cases}
                                                      |, 其中 J_1=[1], J_2=[1], J_3=\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, J_4=[3].
                                                      | 其中J_i=[1], J_i=[1], J_j=\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},
```


2007-2008 学年 第一学期期末试卷

学号	姓名	成绩

考试日期: 2008年1月21日

考试科目:《矩阵理论》(A)

注意事项: 1、考试8个题目共7页

2、考试时间 120 分钟

题目:

- 一、(本题 18 分)
- 二、(本题 10 分)
- 三、(本题 20 分)
- 四、(本题 5 分)
- 五、(本题 5 分)
- 六、(本题 15 分)
- 七、(本题 15 分)
- 八、(本题 12 分)

1. (18分)填空

$$(1)$$
设 $A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{3} \\ 0 & \frac{2}{3} \end{pmatrix}, \quad \text{则} \quad \sum_{k=0}^{\infty} A^k = \left(\begin{pmatrix} 2 & -2 \\ 0 & 3 \end{pmatrix} \right)$

(2) 设
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, 则 $e^{tA} = \begin{pmatrix} \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$

(4)
$$A = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, x = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

(5)
$$A = \begin{pmatrix} 1 & 1 & -3 \\ -1 & -1 & 3 \end{pmatrix}$$
, $M = \begin{pmatrix} 1 & 1 & 1 \\ 22 & -3 & 3 \end{pmatrix}$

(6)
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, \mathbb{Q} $Ae^{\frac{\pi}{2}A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

2. (10分) 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
, (1)求A的满秩分解; (2)求A⁺

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{\dagger} = C^{\dagger} B^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} CC^{\dagger} \end{bmatrix}^{\dagger} \begin{pmatrix} B^{\dagger} B \end{pmatrix}^{\dagger} B^{\dagger} \\ \vdots & 0 & \vdots \\ -1 & 0 \\ \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix} \begin{pmatrix} \frac{1}{2} & 0 & \frac{2}{2} \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ \vdots & 0 & \frac{1}{2} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix}_{6 \times 6}$$

$$=\left(\begin{array}{c} 1\\1\\1\end{array}\right)$$
 (2) 分别判断 A,B,D 能否对角化;计算行列式: $\left|e^{A}\otimes e^{B}\right|$.

(3) f(x)是解析函数,写出 f(A)与 f(B)的谱分解或广义谱分解公式, A-1= (4) 求 $\cos(\frac{\pi}{2}A)$ 与 $\cos(\frac{\pi}{2}B)$

) (01-00=
$$\overline{0}(A) = \{S_1, 1\}$$

 $(A-S_1)(A-1) = \{\frac{-3}{1}, \frac{2}{1}, \frac{1}{2}\} = 0$
 $\lim_{x \to \infty} m(x) = (x-S)(x-1)$

$$J(B) = \{2,2,2\}$$

$$(A-21)(A-21) = \begin{pmatrix} 0 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & | & 0 & | & 0 \end{pmatrix} = 0$$

$$\int_{1}^{3} \left(\frac{1}{2} \right)^{2} e^{-2\pi i \beta + \beta + \beta} = \frac{3}{3} + \frac{3}{2} +$$

口河对南化.

$$\begin{aligned}
& \mathcal{J}(e^{A} \otimes e^{B}) = \{\lambda_{i}\lambda_{j}\} \\
& |e^{A} \otimes e^{B}| = \frac{1}{12}\lambda_{i} \\
& \mathcal{J}(e^{A}) = \{e^{S} e e^{J}\} \quad \mathcal{O}(e^{B}) = \{e^{2} e^{2} e^{2}\} \\
& \mathcal{J}(e^{A} \otimes e^{B}) = \{e^{T} e^{J} e^{J}$$

(3)
$$f(A) = f(5) G_1 + f(1) G_2$$

$$G_1 = \frac{A-1}{5-1} = \frac{\binom{1}{2}}{1} G_2 = \frac{A-51}{1-2} = \frac{\binom{3}{2}-2}{1-2}$$

$$f(B) = f(2)G_1 + f(3)G_2$$

 $f(M) = f(3)G_1 + f(3)G_2$
 $f(M) = f(3)G_1 + f(3)G_2$

$$\cos(\frac{\pi}{2}A) = f(5) G_1 + f(0) G_2 = 0$$

$$\cos(\frac{\pi}{2}B) = f(2) G_1 + f(2) G_2 = -1$$

4. (5分) 证明

$$(2)$$
 若 A 是反对称矩阵,求 $det(e^{\sqrt{-1}A})$

$$(2) 若 A 是反对称实矩阵,证明 e^{A} 为酉阵
$$A^{H} = A$$

$$det(e^{iA}) = \sqrt{e^{iA}e^{iA}}$$

$$e^{A}(e^{iA}) = \sqrt{e^{iA}e^{iA}}$$$$

- 5. (5分) 设n价方阵A与单位阵1,证明
- (1) 若 $A^2-3A+2I=0$,则 A相似于对角阵

7. (15 分) 设 A 是 n 阶 正规矩阵。 λ_1 , λ_2 , \cdots , λ_n 是它的特征值

- (1) 分别写出 A, A, 及(A, A) 的 Schur(许尔)分解公式

(4) \$ A L J = A M A = A

(A^t-A)-A(A^t I) = (A-A)- A(A-I)

=- A +A = A-A=0

(3) 证明,(A³)+=(A+)³ (上()(3)(年)

(4) 若 $A^H = A^2 = A$, 计算 $(A^+ - A) - A(A^+ - I)$

$$A^{\dagger} = P^{\dagger} \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix} P$$

$$A^{\dagger} = P^{\dagger} \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix} P$$

$$A^{\dagger} = P^{\dagger} \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{pmatrix} P$$

12) A的特性的 环, 河2, ... 瓜

$$(A^{3})^{\frac{1}{2}} = (\lambda_{1}^{\frac{1}{2}})^{\frac{1}{2}} = (\lambda_{1}^{\frac{1}{2$$

8. (任选3个小题, 12分)

- (1) 设有方程组 Ax=b, 证明 A+b Ly, 其中Ay=0
- (2) 若定义矩阵 $Y = (y_{ij})$ 的长度为 $||Y|| = \sqrt{\sum |y_{ij}||^2}$, 证明矩阵方程:

AYB = D 的最佳极小二乘解为 $Y = A^{\dagger}DB^{\dagger}$

(3) 求方程 $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$ $Y \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 的最佳极小二乘解

(4) 证明: 若方阵A, B无公共特征值,则 $\begin{pmatrix} A & O \\ D & B \end{pmatrix}$ 与 $\begin{pmatrix} A & \\ & B \end{pmatrix}$ 相似

- (ATANY = XH ATAY =0 i Ath Ly

[2]

$$Y = A^{\dagger} D B^{\dagger} = \begin{pmatrix} 4 & -4 \\ \frac{1}{4} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{4} & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\$$

CABIXA = (ABX B)

参考题(5分) 设 $A \in \mathbb{C}^{m \times n}$, rank(A) = r, 奇异值分解为

$$A = U \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} V^H$$
, $S = \text{diag}\{\sigma_1, \dots, \sigma_r\}, (\sigma_1 > 0, \dots, \sigma_r > 0)$

其中U, V分别是m阶与n价酉矩阵. 再设

$$U = [\varepsilon_1, \dots, \varepsilon_m]$$
, $V = [v_1, \dots, v_n]$.

(1)证明:
$$A = \sum_{k=1}^{r} \sigma_k \varepsilon_k \mathbf{v}_k^H$$

(2) 证明: $\{\varepsilon_1, \cdots, \varepsilon_r\}$ 构成值域 \mathbf{R} (\mathbf{A}) 的正交基

2009-2010 学年 第一学期末试卷(A)

示个	口	批勾	计结
7-	['] フ	灶台	八级

考试科目:《矩阵理论》(A)

考试日期: 2010年 1 月 14 日

注意事项: 1、考试7个题目共8页

2、考试时间 120 分钟

题目:

一、(本题 39 分)

二、(本题 20 分)

三、(本题 6 分)

四、(本题 9 分)

五、(本题 11 分)

六、(本题 8 分)

七、(本题 7分)

八、(附加题)

一. 填空(39分) (注: I代表单位阵, AH表示 H转置, det(A)指行列式)

$$(1)e^{-tr(A)} \cdot \det(e^{A}) = 4, \quad (e^{A})^{+}e^{-A} - e^{-A}(e^{A})^{-1} = 4$$

(2)若 $A^2 - 3A + 2I = 0$,则A有一个无重根零化式为 $f(x) = \frac{(\lambda - 1)(\lambda - 2)}{2}$

(3)若
$$A = A^2 = A^H$$
 ,则 $A^+ = 1$

$$(5) A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}, A \otimes B$$
的特征根为 30、35、30、36

$$\mathbf{tr}(A \otimes B) = (6a + b)$$

$$(7) A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \text{III} \quad e^{tA} = \begin{pmatrix} \frac{(\omega + 1)}{(\sin t)} & -\sin t \\ \frac{(\sin t)}{(\sin t)} & \cos t \end{pmatrix}, \quad e^{\pi A} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -1 \end{pmatrix}$$

$$(8) \mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} 则 \mathbf{A} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{n}$$
 的最佳极小二乘解是 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$; $\mathbf{A}^+ = \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{pmatrix}$.

(9)矩阵 A中各列都可用 B 的列线性表示($R(A) \subset R(B)$),则有矩阵 P 使 $BP = \bigwedge$

(10)n 阶阵 A 的特征根 λ ,谱半径 $\rho(A)$ 与范数 $\|A\|$ 的大小关系是 $\rho(A)$

(11)n 阶阵A(k 是自然数), $\rho(A^k)$, $\rho(A)^k$, $\|A^k\|$, $\|A^k\|$ 之间关系为 $\rho(A^k) = \rho(A)^k \leq \|A^k\| \leq \|A^k\|$

$$(12)_{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} 的满秩分解为 \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}}_{};$$

(13)设 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 是R³的基, $A \in \mathbf{R}^{3 \times 3}$ 满足: $A\varepsilon_1 = \varepsilon_2, A\varepsilon_2 = \varepsilon_3, A\varepsilon_3 = 2\varepsilon_2 - \varepsilon_3$. 则有矩阵B使得 $A(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3)\mathbf{B}$, $\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$.

二.(20 分)计算下列各题

1. 设列满(高)阵 $A=A_{m\times n}$ 的 QR 分解为 A=QR , Q 为次酉阵 $(Q^HQ=I_n)$.

验证: $X = R^{-1}Q^{H}$ 满足 A^{+} 的 4 个条件.

(ANH = (QRRB")"=In = AX

2.设
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, (1)求 A^2 , A^3 , (2)由 $e^{tA} \triangleq I + tA + \frac{(u)^2}{2} + \frac{(u)^3}{3!} + \cdots$ 直接计算 e^{tA}

$$ie^{tA} = 1 + tA + \frac{tA}{2} + \frac{tA}{31} = 1 + \left[t \cdot 0 \cdot 0 \right] + \left[t \cdot 0 \cdot 0 \cdot 0 \right] = \left[t \cdot 1 \cdot 0 \cdot 0 \right]$$

4. 已知 8 阶阵 A 适合: rank(A-2I)=4, $rank(A-2I)^2=1$, $(A-2I)^3=0$.求 A 的 Jordan

5. (1)画出矩阵 A 的盖尔圆盘; (2)说明 A 有 3 个互异特征根.

·A有对码制证根

31美尔南部

- 三.(6分)设**A**是 n 阶正规矩阵, σ (A)= $\{\lambda_1, \dots, \lambda_n\}$ (全体特征根).
- (1)写出正规阵A的含有对角阵与两个U(酉)阵的乘积分解公式;
- (2)若 A是 2 阶正规矩阵, $\sigma(A) = \{1, i\}$, $X = \begin{pmatrix} i \\ 1 \end{pmatrix}$ 使得 AX = X, 求一个 $U(\underline{\sigma})$ 阵

四.(任选3题共9分)简证下列各题

1.设 ||●|| 是 $\mathbb{C}^{n\times n}$ 上相容的矩阵范数, 列向 $\alpha \in \mathbb{C}^n$, $\alpha \neq 0$. 任取 $x \in \mathbb{C}^n$,令 || x || 如下:

- 2.设 $\|\bullet\|$ 是矩阵范数, $x \in \mathbb{C}^n$, $x \neq 0$ 使得 $Ax = \lambda x$;令 $B = (x,0,0,\cdots,0)_{n \times n}$
- $|\lambda| \cdot ||B|| \le ||A|| \cdot ||B||$ (由此你能否推出一个结论?).

$$AB=A(x.0,-0)=(Ax,-0)$$
 $=(Ax.0,-0)$
 $=(Ax.0,-0)$
 $=(Ax.0,-0)$
 $=(Ax.0,-0)$
 $=(Ax.0,-0)$

- 3. 设 $A \in \mathbb{C}^{n \times n}$, $\|A\|$ 是相容的矩阵范数, 证明
- (1) $\|\mathbf{I}\| \ge 1$ (I 是单位矩阵); (2)若A可逆, 则 $\|A^{-1}\| \ge \frac{1}{\|A\|}$ (1) $\rho(A)^{-1} \le \|\mathbf{I}\|$ [2) $\|\mathbf{I}\| = \|\mathbf{A}\mathbf{A}^{-1}\| \le \|\mathbf{A}\mathbf{A}\| \|\mathbf{A}^{-1}\|$

4. 若 A 为 n 阶正规阵, $\sigma(A)=\{\lambda_1,\dots,\lambda_n\}$ (全体特征根),

证明 $\sigma(A^H) = \{\overline{\lambda_1}, \dots, \overline{\lambda_n}\} (A^H$ 的全体特征根).

At the
$$AA^{H} = A^{H}A$$

Solution $AA^{H} = A^{H}A$

$$AB = AB = \{\lambda_{1}, \lambda_{2}\}$$

$$AB =$$

五.(11 分) 1.设 $A_1 = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 2 & 1 & 0 & 1 \end{pmatrix}^T$, $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}_{4 \times 5}$.

$$A^{\dagger} = \begin{pmatrix} A_1^{\dagger} \\ A_2^{\dagger} \end{pmatrix}$$

$$|A_1 = A_2^{\dagger} - A_2^{\dagger} - A_2^{\dagger} - A_2^{\dagger} = A_2^{\dagger}$$

$$A_{z}^{+} = (A_{z}^{H}A_{z})^{T}A_{z}^{H} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

2. 已知
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -1 \end{pmatrix}$$
, (1) 東 A (1) 東 A (1) 東 A (1) A

=) 63=0

$$2. \exists \exists A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 2 & -1 \end{pmatrix}, \quad (1) 來 A 的短奇异值分解; (2) 來 奇异值分解.$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left\{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right\}}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

$$\sqrt{\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)}$$

```
设的教育M 2=spani
      N_{\rm c} 设 Y 、 Z 是这形空间 X 的于空间, \mathbb R dim Y=\dim Z, \ \ Y\subset Z 。试证: Y=Z .
      2. 在 R^3 中意义设置要换 T 为: 对话图 \mathbf{x} = (x_1, x_2, x_3) \in R^3, \mathsf{Tx} = (x_1 - x_2, x_2 - x_3, 2x_3)^7.
                                   Te = (1,0,0) = e,1
        回答下列问题:
        2) 来了的特征复及各特征值的几何重复和代数重复,了几二二(一、2、0)。二个人一片几。2
        b) 试判断 T 是否是可对争化的最佳变换。
                                  Te3=(0, 1,2) = & e1(1) te3 3
        c) 求dim R(T)及dim N(T).
                                 · Tie, e, e, ]=[e, e, e][0 + -1]
    4、 资 J ∈ C*** 为正规矩阵,证若存在正差页 K ≥ 2,使 A<sup>K</sup> = 0,则必有 A=0。
    了生 74. 78. 78. 在代表
                             4. A美A极势. 与 A要拟于 对新路. 第7 4.5.1.
       R(X) \subset R(E).
                                   A = u[\lambda i]_{\lambda} u^{H} \perp u^{H} = u^{-1}
      3 P | | X+Y| - | | X-Y| = | (XTY XTY) - (X-Y) | (X-Y)
             = (XX + X/Y+/X+X/Y)-[x/X-Y/Y-x/Y+Y/Y]
:: EX EX EX EX :: X/Y=Y/X
                        : 11 11-11 11=4 x/x of (x/x= = 1)
```

6. it ATA =AFT REARLEYAM -AATT A1=(A1A)1A11 $A^{\dagger} = A^{\dagger\dagger} (AA^{\dagger})^{\dagger}$ -ATATOTA (GA) H-GA - ((AMA) + AMA) H = (AMA) [(AMA)] = (A"A) ((A"A) TT THE ATT ATT AAM(AAM) = A.At. 8. Ex Ex Heronit は 1年 it X E E f 2, 3, 47 (二) X 年 Heronit は R(X) C R(E) 记 ELHENTEN 接着则以不知处 R(X) CKE) NE =EHE=EEH=[E=EH] * XEE \$2,3,77. RY XEX=X. X = X X EX = X (Xe) IX (EX) =EX (XE)"=XE =XENXHX=XEXHX =XEEH KHX X=XEX=EMXHX=EXEX=EX AT M. V JERKY DIX. S. + J-XX = EXX (REA) XH=(EX)H=EX=X: Xellentely K(X)CK(E). X=X XH=X.N ANT St X=FY XEX = EYEEY = EYEY = X2 X. . . XE E {2} EX = EEY = EY = X = XH = (EX)H $6X \in E\{5\}$ YE = XHE = XHEHE = FEATE =E = XH = X = (XE) 18 E X (Eft, 3, 4)

fu)= det(UA)= AUIN(M が) 入1=0.1=-5.255 を P,い)=いけら)はか) Pr = P(A) = (A+51)(A-61) = 12 = P.A) = A(A-5) P2+6) = -5(-5-5) 2. \$ 64t. \$ for = \(\lambda_{-1} \) i'a 9(2) = 40(t) +4(t) / +4=(t) / $\begin{cases} a(t) + a(t) \cdot 1 + a(t) = St \\ a_{r(t)} + a_{r(t)} = St \\ a(t) + a_{r(t)} (-5) + a(t) = St \\ a(t) + a_{r(t)} \sqrt{5} + a_{r(t)} = St \\ a(t) + a_{r(t)} + a_{r(t)} + a_{r(t)} = St \\ a(t) + a_{r(t)} + a$:. f(4)= g(A)= est-swit) + 2 witA + (west-ort) A2

99 年考题

$$A \cong \mathbb{R}^p = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
,观定义线性变换 T: $C^{bal} \to C^{bal}$, $X \in PX$

$$\overline{\mathcal{L}} \quad C^{2-2} \quad \Phi \quad \Theta \quad \Xi \quad \mathcal{E} \quad \beta_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ r & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad .$$

$$\beta_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

- 2) $\Re x \in \mathcal{B}_{\alpha}$ Thus $\Re (1,2,1,1)^{\gamma}$. $\Re x \in \mathcal{B}_{\alpha}$ Thus $\Re (1,2,1,1)^{\gamma}$. $\Re x \in \mathcal{B}_{\alpha}$ Thus $\Re (1,2,1,1)^{\gamma}$.

$$f(A) = \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix}$$
. 来 $f(A) = 2A^4 - 12A^3 + 19A^2 - 29A + 37I$. 其中 I 为单位矩阵。

1) 房是氏圈盘定率输定矩阵 $A = \begin{bmatrix} 1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & i & 0 \\ 0 & -\frac{1}{2} & 5 & \frac{i}{2} \end{bmatrix}$ 的特征值分布范围,并在

大 设
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
. 求 A 的语分解。

5. 求
$$\begin{cases} x_1 \div 2x_2 - x_3 = 1 \\ -x_2 + 2x_3 = 1 \end{cases}$$
 的最小范敦辉。 独身代大 $\begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $= \begin{bmatrix} 1 \\ x_1 \\ x_3 \end{bmatrix}$

- i) 定下列商量程: $u_1=x_1,u_2=x_1+x_2,\cdots,u_s=x_1+x_2+\cdots+x_s$ 是 V 的一组 范底:
- 2) 录(x, x, ··· x,) 到(u, u, ···, u,) 的运渡矩阵 p;
- 3) P是否可对危化?为什么?
- 8、 设 A ∈ C^{***}. 证明:

ALEMB. ABHINT Cagical, A等 A:4月引.: diagchile thrum は はなか ひる C か 方正規矩阵 O C C 为 C 的子空间。证: 若 O 为 A 的不变子空

同, W也是 A"的产生同。 My Why Why A BA 医 B 可以 D 对 X . Pox EW A = 至小月

设义为R上线往空间。{x,,x,...,x,}为X的一组亚底,试在X中定义一种

内积、使^(x₁,x₂,···,x_e)这种定义的内积下成为 X 的一标正交益底。

* Y x = Bx d (2=61, d, -2)) 40 Vy = Bx B (p=(B1, B3. - B))) 这X(不)+) = 正对论则为证例的特别的数义. 10/x = 0 (is)

A= = 2 1 62 \$xtw, =) Ax= = li lax Ew : Gitew

(x Ay)= (Ay) +X= y+ A+X. $= y^{H} \geq \overline{\lambda} v \, (\pi v^{X})$ $= \geq \overline{\lambda} v \, y^{H} \, (\pi v^{X})$ $= \langle v, Ay \rangle = v$ $\langle v, Ay \rangle = v$ $\langle v, Ay \rangle = v$

2000 年考题

1. 画出芝降 $A = \begin{bmatrix} 7-2i & i & \frac{i}{2} & 0 \\ \frac{3}{5} + \frac{4}{5} & 4 + \frac{3}{2} & \frac{1}{4} & -\frac{1}{8} \\ 0 & 1 - \frac{1}{2} & 1 \div 4i & 1 \\ i & 0 & -2 & -4 \div 3i \end{bmatrix}$ 的五氏因母,何矩阵 A 有几个实持

日知矩阵 $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. 在 R^2 中的二元函数 \mathbf{x} y 定义为 $(\mathbf{x} \mid \mathbf{y}) = \mathbf{y}^T A \mathbf{x}$ 和 \mathbf{x} 和 $\epsilon_1 = (1,0)^T$, $\epsilon_2 = (0,1)^T$ 周一个 G—S 过程求 R^2 标准正交圣。

4、 X 为C'的设在空间。其一论基层为 $B_r=\{x_1,x_2,x_3,x_4\},T\in L(x,x)$ 为C'上的线性文

- b) 束 R(T) 和 N(T) 的 基底和维致: AN = P(A) = 4 P(T) = 0
- c) 判断下是否可对条化. 不是女性便见证是以名称表,行政协议。
- AT=A. Almite =>A da => THSM.
- 6、 设 A & C*** 为正规矩阵,W 为 C**的子空图 = 表 W 为 A 的不变子空间丿则 W [±] 也 是 A 的不要子意间。其中的积(•)•)取 C*的标准存积。

Are A A OU /

g.

0.8 有三个互异的 OBES Xto,=x. ATY XEX. X= ENGRERY: 说明与新美国大学大政 , 试录 R(T), N(T)及其集数 线性变换 T 三基底 B, 下的矩阵表示 A = TX= TZ: -di (12分). 5. 沒 $A \in C^{**}$. 又知AI - A的初等因子组为I - 1, I - 1, I + 2, I - 2, I - 5. 试求 $\mathcal{U} = A$ 的不变因于组、各阶行列式因于及 λ 的最小多项式。并还明矩阵 λ 可对 角化 (12分)。 6. 证明: 如果 A 是正规矩阵 则 $A^*A = AA^*$, $\left(A^*\right) = \left(A^*\right)$. 其中 n 是正型数 (12 4.健p ib:ALAD文A可符络。 A= Whili hishelmagnethe. A"=(\(\bar{\bar{L}}\) \(\bar{\bar{L}}\) = \(\bar{\bar{L}}\) \(\bar{L}\) 计算e气(15分) AVXEW. : P.WILABS GAT LWEABLARESSIO. FR PIUXEW. P Pidi)PixtW. PiUi)交游王琳毅 . Pow-1. Pow-Parking DINI=1. DU)=1. 1 BOV=1. DAO)= 17 Ps = (1) (1/2) (1-2) (1-1) Bal= a-Patz) (1-4)

矩阵论期咎试题 (2002年秋季)

姓	名	늦 号		_		
:= 177 F	- 	- 1	arrange (m.), arrange (n.).			
			答案填入空白处.	a. L. 63		
			··, x, 是 V 中的一组向过			
			r,+c, x,+…a, x,=), 则常	h =1. ==		
	的线性指关向量					
	不全为某	_	全为零的 F 中			
			多有一个不为等的。			
			,北是《中的向量,证》	₹ n≥dimir*.		
##.# <u>.</u> ".	-, <u>-</u> <u>A</u> ¶	那				
	CETA 3.	宝沙美国第一个人	/ 設定相 差 D. マーハ とき			
:- 4 A		主一里一千八个	975			
			記 D. A. S.			
	走到本,正的是 第基层		的其子空间,与,与。***,	A, 752 A - 2		
44 一定是和 5 m, 4中的某些角量 3. 不一定是和 5 m, 4的子集						
			v.	•		
D. 一定不是 _{4.45} 一.5.拍于 条 D. 中等个角量均必不可自 3.55 一.3.设性表出						
			, 云	- 个基底。		
			, 記 _列 , 25. 円, 25円 45. 45			
		evava iyolida	-0000 - 100 cm m			
. E	-			:		
A. 7		推关 3. y,	55. 一. 35. 钱世元共			
) <u></u>	4.5对是到	演奏的 F*** 中的景				
D. (j	5.25 刘是行	满表的F ^{**} 中的类	Ģ			
\sim			啊, <i>B</i> ,为 X 中始定的图	罐、熟了		
三连属以之	下的是李表示是	·•				
			0			

A.

- A. 唯一的 B. 不唯一的 C. 任意的 D. 可逆的
- 7. 设X为数域F上的线性空间,TeL(X,X),又设A是T在基底 B_x 之下的矩阵表示,M
 - A. dimR(T)+dimN(T)=dimX. EX=R(T)+N(T).
 - B. dimR(A)+dimN(A)=dimX, 且X是R(T)+N(T)的补空间。
 - C/dimR(A)+dimN(A)=dimX. 且 R(A)与 N(A)均为 X 的子空间...
 - D. dimR(A)+dimN(A)=dimX, ER(T)与 N(T)均为 T 的不变子空间。
- 8. 设 V 为数域 F 上的线性空间,S₁、S.均为 V 的于空间,又设 dimS₁=m,

 $dimS_2=n$. $dim(S_1 \cap S_2)=k$. $M dim(S_1 \cap S_2)=$ A. m+n B. m-n+k C. m-n-k D. m+n-k

$$A = \begin{pmatrix} 100 & 2^{100} \\ 0 & 4^{100} \end{pmatrix} \qquad \begin{pmatrix} 1 & 2^{200} & -1 \\ 0 & 2^{100} \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2^{200} & -1 \\ 0 & 2^{100} \end{pmatrix}$$

- D. A、B、C 全不对。
- 10. 设 A ∈ C'', 而 \(\lambda \text{A} \) 的 初等 巨 子 是 为 \(\lambda \text{1}, \(\lambda 2 \)', \((\lambda 3 \)', \(\mathred \) 以 \(\text{A} \)

$$A_{s}, J = \begin{bmatrix} J_{1} & & & \\ & J_{2} & & \\ & & J_{4} \end{bmatrix}, \ \breve{\Xi} = J_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ J_{1} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \ J_{2} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ J_{3} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

B.
$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & J_3 & \\ & & & J_4 \end{bmatrix}$$
, $Z = J_4(1)$, $J_4 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. And $J_4 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

C.
$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & J_3 & \\ & & & J_4 \end{bmatrix}$$
, $\Xi = J_1 = [1]$, $J_2 = [1]$, $J_3 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

$$J_{i} = \begin{bmatrix} 3 & i \\ 0 & 3 \end{bmatrix}$$

$$D = \begin{bmatrix} J_{1} & & & \\ & J_{2} & & \\ & & J_{4} \end{bmatrix}, \quad \not\exists \vdash J_{i} = \{1\}, \quad J_{2} = \{1\}, \quad J_{3} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix},$$

$$J_{4} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

$$= \frac{1}{2} A = \begin{bmatrix} 9 & 1 & -2 & 1 \\ 0 & 3 & 1 & 1 \\ -1 & 0 & 4 & 6 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

"(1)函出 1 的所有重点图盘,并推出 1 的特征值注乎重点图量中的分布等 元。

2) 说明 4 三少有两个实特征值。

七、己曰 $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$,试来 sinds.

八、给定设性方程组

$$\begin{cases} 3r_1 + r_2 - r_3 = 1 \\ 2r_1 + 2r_2 - 2r_3 = 2 \\ 2r_2 + 2r_3 - 2r_3 = 1 \end{cases}$$

世家英国小二元章 大声数望。

九、设力=4", 试证门上是一人工: ① 工力= (M) = A M

十一、 $设 A \in C^{-1}$, 且 $C \subseteq R(A) + N(A)$, 证明: $rankA^2 = rankA$ 的克曼条件是 $C \subseteq R(A) + N(A)$.

 $(x_1|x_1) = (\frac{1}{2}, 0) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ $(t_2 = (0,1)^{\frac{1}{2}} - (\frac{1}{4}, 0)^{\frac{1}{2}} = (-\frac{1}{4}, 1)^{\frac{1}{2}} \end{bmatrix}$ $||(t_2)| = (-\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$ $||(t_2)| = (-\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$ $||(t_2)| = (\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$ $||(t_2)| = (\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$ $||(t_2)| = (\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$ $||(t_2)| = (\frac{1}{4}, 1) \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} (-\frac{1}{4}, 1)^{\frac{1}{2}}$

姓名

院系

$$-. \quad \mathcal{U} A = \begin{pmatrix} 1 & 4 & -1 \\ -1 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 求。 (1) A的最小多项式, (2) A的若当标准形。
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

$$= \mathcal{B}A = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}, \quad \Re e^{At} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ -2 & 8 & -1 \\ -2 & 8 & -1 \\ -2 & 8 & -1 \end{pmatrix}$$

$$+ \frac{1}{49} \begin{bmatrix} 1 & 2 & 4 \\ -2 & 8 & -1 \\ -2 & 8 & -1 \\ -2 & 1 & -2 & 5 \end{bmatrix}$$

$$+ \frac{1}{49} \begin{bmatrix} 1 & 0 & 0 & 1 \\ -2 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 &$$

四、设
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -2 & 0 \end{pmatrix}$$
, 求A的广义逆 A 与奇异值分解。

$$A^{\dagger} = \frac{1}{1+4+4+1} \begin{bmatrix} 1 & -1 \\ 2 & -2 \\ 0 & 0 \end{bmatrix} \qquad \begin{cases} -1 & -1 \\ -1 & 1 \end{cases} \qquad \begin{cases} -1 & -1 \\ 1 & 1 \end{cases} \qquad \begin{cases} -1 & -1 \\$$

[0 章 点 [00] 方 方] XF1 12=3 五. 设 $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, (1) 求 A 的奇异值分解, (2) 求 A 的广义逆 A \uparrow $A^{\dagger} = (A^{\dagger}A^{\dagger}A^{\dagger})$ $A^{\dagger} = (A^{\dagger}A^{\dagger}A^{\dagger})$ $A^{\dagger} = (A^{\dagger}A^{\dagger}A^{\dagger})$ $A^{\dagger} = (A^{\dagger}A^{\dagger}A^{\dagger})$ B = (A) $A = (B^{\dagger}B)^{\dagger}B^{\dagger}$ $A^{\dagger} = (A^{\dagger}A^{\dagger})^{\dagger}A^{\dagger}$ $A^{\dagger} = ($ (3) 求方程AX = b极小范数解,或极小最小二乘解。 ATOTY A - CAMAPIAH 设A = $(a_{i,j})$ 是n 阶方阵,定义 $||A||_G = n \cdot \max_{1 \le i,j \le n} |a_{i,j}|$ 验证 $||A||_G$ 是 $R^{n \times n}$ 中与向量 2 范数相容的矩阵范数 ii-IlAxIla? (2) 若 n 阶方阵 $A \neq O$,且有整数 $k \geq 2$ 使得 $A^k = O$,则 A 不可对角化。 (2) At=0 = 1/2 0 marks 7 market. (1) (2) (1) (2) (1) (2) $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \, \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \right]$ $\vec{z} \left[\vec{z} \, \vec{u} \, \vec{j} \, \vec{z} \, \vec{n} \, \vec{j} \, \vec{n} \, \vec{n}$ 1/1/1/2 1 A有河水河和持位的、羽角化。 Go $|A-4| \leq \frac{26}{77}$, $|A+1| \leq \frac{26}{77}$, |A+1x + art br-x = ar-b

矩阵理论 A 复习 (2007.01)

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} A^{-1} \\ A^{-1} \end{bmatrix}$$

$$A^{-$$

7. (6分) 求矩阵 A 的盖尔圆(讨论特征值的分布); 并证明行列式

A


```
设Y的基本(大一大) Y=spane-] 对YafeY 有不三国fordy
      以 \mathbb{R}^{N}、 \mathbb{R}^{N} 是 \mathbb
       他们是APANGUNES 菜丁的管理是从各种企业的设定变换,不对那么 Te3=(0, +,2) = 白,e,(1) te; 3
                                                                                                                                                                                                         : Tien, ex, es]=[e,,e,e]] o + -1
                                                11L (1) 市一组基底(25示。农民)的一组基层讨论之)。 ... 了路路路表了为A
                                         AAND = (7)

AAND = (7)

AHEARS, 47 CHEMISS, 1)

E 方面等 Hermite 际、证 X = E[2,3,4]的元票条件是 X 为证等 Hermite 际 正语是
                                                                                                                                                                              = 4. ALLAR .⇒ ABBNJ 对解. $7 4.5.f.
                                                                                                                                                                                      | 三少有所个交特征値. ib = 以「人」
     = ESHRT A
                                                                  R(X) \subseteq R(E).
                                                             、 三氢云图型发星证明 /=
                                                                                                                         \int_{1}^{2} \left| \left( x + y + x + y \right) - \left( x - y \right) \right| (x - y)
                                                                                                                                          = (XX+xX+XX+XX)-1 xX=x1x-x1x+XX)
                                                                                                                  果被集团,不到11.
```

```
ATA") A - ATA") " ATA
                                              = INATATA
16th JAMSON to
                                           AAT=AAA(AAAT)
EADTICA) LA = ((AMA) + AMA TH = (AMA) TEATH TH
1 1
                        = (4"A) (A"A)" | (AA+)A"A | = (A*A)" | (A*A)" |
pot - Act on + taking
  =N4 B+ + 15 65B
                                         = (APA) (APAH
  = AtA
                                         = AAH LANH = AAT.
     .8. Ex El Hermit 1. 184. 38
                               XEF2,3,47 (二) X 等 thinte B
         记。正义他心好。据集则以不到效
              NE = EHE = EEH = [E = EH]
             $ XEE {2,3,4} ay
                                 (EX)":EX
           X = X XEX = X (XE) X
                      = X = M X H X = X E X H X
                              =XEEHKHX
                             X=XEX = EMXMX = EEMXMX = EXEX = EX
            STEE. Y JERIX) DIX.S.T J-XX=EXX EXEM)
                 · KK) CRE)
             XH=(EX)H=EX=X : XE/kenteff
        * R(X) CR(E) X1=X XH=X M
          AND I Y. St X=EY
```

 $XEX = EYEEY = EYEY = X^2 = X . . . XEE Significant
EX = EEY = EY = X = XH=(EX)H XEE Significant
XE = XHE = XHEHE = EXTENSE

[IE = YHEHE (E)]

[IE = YHEHE (E)]

[IE = YHEHEE (E)]$

182 X 74 Para

99年考题

100 / (P/W)=U+SEXQ-SE) P2(A)=X(X-FE) P3(A)=X(A+FE) $P_{i} = \frac{P_{i}(A)}{P_{i}(0)} = \frac{(A + \sqrt{51})(A - \sqrt{51})}{(0 + \sqrt{5})(0 - \sqrt{5})} = \frac{A^{2} - \sqrt{1}}{A^{2}} = \frac{100}{100} = \frac{0}{100} = \frac{1}{100} = \frac{1$ 強 により 1000 コーナ 1 1 - ユーニー 2. \$ SAt. \$ fa) = \(\lambda_{-1}\right) i'a 9(1) = ao(t) + q(t) 1 + q(t) 1 (a(t)+a(t). 1+a(t)=st (. $a(t) + a(t) \cdot 1 + a(t) = st$ a(t) + a(t) + 2a(t) = st a(t) + a(t)(-5) + 2a(t) = st: f(A)= p(A)= Rst-Swat)]+ 12 sat A + (Vicat-ort)A2

如下列有胜祖: 以三孔·为三孔十江: 如三孔十九十二十五星 V的一面 & bytert better . Floriun=0. 图X: Xn时校主, k kmo. bat Part than bitlet tenso = bitle = enso the my EVm-田東流 1) $A^{(i)}_{A} = 1$, $\bigcirc ranki = n$ $A^{(i)}_{A} = 1$, $\bigcirc ranki = n$ Aib. A3九 => 1情解 A- 五行 只用一层山。 2 Themille 179 化为PLEMIE X为下上线性空间。(A、Xzenia)为X的一组基底,试在X中定义一种(ATX = ZiALFix 中的、使体,x2,1,x2 这种定义的内积下成为 X 的一标正交差的 (相)社》 Xt Y x = Bx d (d=61, d, -21)]

 $\begin{array}{l}
\lambda \forall x = \beta_x d \cdot (d = (d_1, d_1 - d_1)^T) \\
\lambda \forall y = \beta_x \beta \cdot (\beta = (\beta_1, \beta_2, -\beta_1)^T) \\
\lambda (x|y) = \sum_i di\beta_i \text{ Politically fly physix.} \\
\lambda (x|x) = 0 \quad (i \neq j)
\end{array}$

三. 证明· 方程组 Az = b 有解的等价条件是 证明: 卷AMB=B含X=AB RIM

四. 设
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $b = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, (1) 求

$$=\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad A$$

 $\lambda_1 = 2$ $\lambda_2 = 1$

$$I = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{cases} 0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (2) At:

AERTIKAR AT AF AF AAT

RERTIKT BY REALTH The transport of the tr

1. 画出松辉石, 1997 7. 江 2 的盖式雕工,这是所被的特别的 **价量转运**

发. 独身影响空间火. 战平稳的影响空间的发系作员: 花XEV.且X+X=X、则X=L(的时的零件)

b) 按a)中给定的内积定义(·1·)构成一个内积空间,试由飞的自然基态 & (1·0)了 ez=(0,1)で、用-1G-S过程すど称作正交も d=ex をきまった。リール=(1.0)ではまた(2.1)

a) 求T的特征值和特征的

b)求R(T)与MTI)的基础和徐数 [1] [1] 日本日本了特殊对角似

6 设AECTXTTE规阵,W为C的空间。证:若W为A的不变空间则W世界A的 不变3空间,其中的积(·1·)取C个的标准的积

7. 波AECMXM. PECMXM QEGAXM BECMX IPAQ=BX=N(A)) 亚 A{1,2}={6|6=0B""P, B""=)eB{1,2}{

(8)240n附和降A=「00101007 text的值

#1/2 [C+C2-C4, C+C1-Q4, C3,Q0] 4 (b) dimk(T)=4

C) T不肯的角化

5. (MA)=f(0) L+ f(3) L+ f(3) L) $A = 3 - \frac{A(A+3I)}{3 \cdot 6} + (-3) + \frac{A \cdot (A-3I)}{-3 \cdot -6} = 3 \cdot \frac{A(A+3I)}{18} + (-3) \frac{A(A-3I)}{18}$

 $A = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & i & -\lambda \overline{D}i \end{bmatrix} = BC \quad A^{+} = C(CO)^{-}(E'3)^{-}E'$

AGA=AQB"=PAQB">PAQB">PAQB">PAQB">PAQB">PAQB">PBQ=A GAG=QE(12)PAQB(12)P=QB(14)BB(1-1P=0B)P=G

用盖改造是产生证明的作品。公司有三位并为纪念、汉观 LO2 02 8

位。这职数域后的发明的对对的时候这些海和高的图片。(101)

3. [2] B积X是数域EL的线性图,且如从号、TELO、19、成型9、16、19 线性变换T在基底及下的矩阵表示A=11211.域术及[[19M]]及其循环

《设入是正规阵、W是A的环变的空间,证明W中是A的环变的间(12)

方、设AECPUS, B知以了一A的初季田子组为入一、入一、入十、入十2、入之、入方 过水水工—AE环变图3组、多所行列式图3及AED最小的观点、并证明A可对角化、//2/

证明:如果A是正规矩阵、R! A+A=AAt. (A*)+=(A*)* 其中n是正整故(12*)

7.设入=[2 1 1] 求A的增分解 15") 1=2 b=2标

1. D= 18-4K12 D 12-6151 D, 12-81504 3 dimk(T)= kankT = RankA = 3: is alimn(T)=0 = >N(T)=0

KITI=[6+6-6. 6+20 6+8]

Dr=á-リルコメノナンハナ 方、行列太田で Di=1 B=1 Ds=1 Du=(A-1) AN=(1-1) (1-2)(1+2)(1+5) 不受国的组 见从二段从二段从二 华山上(1) ma(A)=(1)(1-1)(1+2)(1-2)(1-5)

MAKE根 AADXAA 6. 证明: A正规 即有 A=U[o]uH 7=[]: [] $A^{+} = U \begin{bmatrix} T^{+} & O \end{bmatrix} u^{+} \qquad A^{+} = U \begin{bmatrix} Ir & O \end{bmatrix} u^{+} = AA^{+}$ $(A^n)^{+} = u \begin{bmatrix} (7^n)^{+} & 0 \\ 0 & 0 \end{bmatrix} u^{+} = u \begin{bmatrix} (7^{+})^n & 0 \\ 0 & 0 \end{bmatrix} u^{+} = (A^{+})^n$

 $A = 2 \cdot \frac{\left[A - (2 + \overline{b})I\right] \left[A - (2 + \overline{b})I\right]}{\left(2 - (2 + \overline{b})\right) \left(2 - (2 + \overline{b})\right)} + (2 + \overline{b}) \cdot \frac{\left(A - 2I\sqrt{A} - (2 + \overline{b})I\right)}{\left(2 + \overline{b} - 2\right) \left(2 + \overline{b} - 2\right) \left(2 + \overline{b} - 2\right) \left(2 - \overline{b} - 2\right) \left(2$ $= + \cdot (A^2 - 4A + 2I) + \frac{2\pi \sqrt{2}}{4} \left[A^2 - (4\pi \sqrt{2})A + (4-2\pi) \right] + \frac{2\pi \sqrt{2}}{4} \left[A^2 - (4\pi \sqrt{2})A + (4+2\pi) \right]$

2 SCX、改自为S中的建筑、及为X中的建筑 在5克河中在3万男子,有2+00=2 在X室部的第三人有区十02=区、刚日十02=01 N有2+0,+0=2+0 ⇒ 2+0=2+01

?5.7 於矩阵 三.(2).

0

一选择(单成) / 设义是数域FLF的成件分子、从从一次是V中的一组同果、探存在一组员的数众。Ga 的标情况。 10401 使得在为十九九十一十九八十一,则称为五一次为空间中的我性概题是 1001 的 说明图解微镜(A. 不全为0\BA全地里的F中_C至给有一个里的F中 D至约一个浴里的中 三、PRIA-11 和良义对的函数为(AIH)=39A)、实证和内况上的个形成 2. 放烧数域FI的我性空间、扩展中的质易、交票n7dinv、Ring 1-140.C. (2) 进作家的状变的状态的比较多种种的。 A. 结性形 B.全为墨尼男 \chistophend 从相关 D有一个为重的名 HIP 放P是C中的正文设置集员的明对C中特定局别从有CPAIN=IPNI、其中(151为CP) 上本在作为新、花板川·I提出此为和源多用的超级=(PKIPK)=PK)*PK)=KPK=(PKIK) 3. n维维性度间中的原则_B有所引息 31/2 eres A不定 B · R C 能改 D · ABC解初 you es es D) 放TEL(R'. R'). 且对伊克XER3.若XE(8、多、8). 刚TX=445.+5、28、13至-25、 8、+445、)". DE 设X是数域产品的结件空间、S是X的集产空间、X...X·X是X中的数、则S的数。 A. 定是水龙、水砂米鱼鸡 (BA-克是水龙、冰的猪 Cyccile)水瓜、冰的猪 武术DRITI NITIR其基底 ②求的IMRITI和dimNITI DT是的对插心并说明理由 (3.) 波以是数域压的结件空间, B={X, X. 别是V的信益, B∈F***, Y<1) 娛火中 : A= = = (3]-A)(A+2) + = (A-2)(3-A) + = (A-2)2 (L) 270 A=[2] #SMAt. FIA)= f(1) L+ f(1) L2 = f(1) (A-I) +ZSLL 09 y ner ner XXX·X结构相关 BXX·X线性联 (1) 给足线性が飛組 | 3×1+2×2-2×3=1 | SinAt = 1 | tast(A-I) | (1) 给足线性が飛組 | 2×1+2×2-2×3=1 | A=[3 2 2-2] | A=[3 2 2 2 C [X. X.·Y]是刘满琳的F***的矩阵、 又[X.·X]是行病状的F***的矩阵 (6)放TELIX.XI.X为数域FL的线性图的 Br为X中给定的基础 刚T电影 Bx 不的矩阵部 NIE- BAR-CAR DIED 了)波x为数域FL的线性的间,TELIXX)x该A是T在基础Bx27的矩阵影影一 文果A是一位规阵、W是A的一个不受的空间。这证W的正交并W型是A的不变的空间 A dimR(T) +dimN(T) = dimX A x = R(T) + N(T) (B) dim R(A)+dimN(A)=dimX. 且X类R(T)+N(T)的补电间入 ((限用坡分解理》)加明) $A(A^2) = R(A)^2$ C. dimR(A)+dimN(A)=dimX,且R(A)与N(A)均为X的设的 7-FA- 设AEC**、且O'=R(A)+N(A)、证明: rankA'=rankA的充要知识。O'=R(A)+N(A) y dim R(A)+dimir(A)=dimx 且RMIANTI的推動不動於例 8. 设V为数域FL的线性定的。S. S. 约为V的设图,及发dimsi=n. dimsi=1. clin(sins) 未. いるアメガ南の Ry dim (sivs) = D. 9, AIR > A=U[0] U" T=[X1 (V-SPATION) A, m+n B m-n+k C m-n-k of m+n-k. A= 1 224 $A^{+}=\mathcal{U}\left[\begin{array}{ccc} T^{-1} & O \\ O & O \end{array}\right] \mathcal{U}^{H} \quad \therefore A^{+}A = \mathcal{U}\left[\begin{array}{ccc} Z & O \\ O & O \end{array}\right] \mathcal{U}^{H} = AA^{+}$ 29. that = 20 that =P # BAX + + (N)=N+ = 1 P1= - 5 (A-4I) 2) $A^{+}A^{2} = u \begin{bmatrix} T & O \end{bmatrix} u^{H} = A^{2}A^{+}$: +(A)= +(+) Pi+ +(4) P2 取りERA MARCA TONKA MARCA TONKA MARCA TONKA MARCA TONKA MARCA TONKA MARCATO KYEN TONKA TONKA MARCATO KYEN TONKA MARCATO KYEN TONKA MARCATO AND ARACKATO AND ARACKATOR AND ARACKA 10. 拨AEC**** 南江A的初集图3组为从一人一(1-2)3 (从一),则A的特殊作为(1-1)11 A. $J = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix}$ $J_1 = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix}$ $J_2 = \begin{bmatrix} J_2 \\ J_3 \end{bmatrix}$ $J_4 = \begin{bmatrix} J_1 \\ J_4 \end{bmatrix}$ B. $J_{1}=[1]$ $J_{2}=[1]$ $J_{3}=[021]$ $J_{4}=[3]$ 文要性: "YankA"=YankA = NIA) CN(A) => MIA"= NIA) $C/J_{1}=[1] J_{2}=[1] J_{3}=\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} J_{4}=\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ 改(E(RIAIN MA)) 即AY=O且AX=Y =A2X=O 即AEN=1 \$ (4100-那从XENIA) > AX=O =>Y=O 即O=FAI+NIAI 不. 若重根程1, 运司和从用Lagarange有限战技能分解划 f(A)=f(1)Li+f(1)Li+f(2)L3