Math 357 Long quiz 01

2024–01–19 (F)

Your name:	

(a) Let R be a ring; let $a,b,c \in R$; and suppose that a is not a zero divisor. Prove the left-cancellation law: If ab = ac, then a = 0 or b = c.

Solution: Using the ring axioms, we have¹

$$ab = ac$$
 \Leftrightarrow $ab - ac = 0$ \Leftrightarrow $a(b - c) = 0$ (1)

Case 1: a = 0. The conclusion holds. Case 2: $a \neq 0$. By hypothesis, a is not a zero divisor, so in this case we must have b - c = 0, which is equivalent to b = c.

(b) Let R and S be commutative rings with (multiplicative) identity, let $a \in R$ be a zero divisor, and let $f : R \to S$ be a ring homomorphism such that $f(a) \in S^{\times}$. Show that f is not injective.

Solution: For clarity, let 0_R and 0_S denote the additive identities of R and S, respectively. Similarly, let 1_S denote the multiplicative identity of S.

By hypothesis, $a \in R$ is a zero divisor, so by definition there exists a $b \in R - \{0_R\}$ such that $ab = 0_R$. Applying the ring homomorphism f to this equation, we have²

$$0_S = f(0_R) = f(ab) = f(a)f(b)$$

By hypothesis, $f(a) \in S^{\times}$, so by definition there exists an $s \in S$ such that $sf(a) = 1_S$. Left-multiplying both sides of $0_S = f(a)f(b)$ by this s, we get³

$$0_S = s0_S = s(f(a)f(b)) = (sf(a))f(b) = 1_Sf(b) = f(b)$$

That is, $b \in \ker f$. Because $b \neq 0_R$, we conclude that f is not injective.

¹Justify each equivalence. Note that the second equivalence in (1) assumes that -(ac) = a(-c). Why is this true? Does this require that R have a (multiplicative) identity?

²Justify each equality.

³Justify each equality.