1 pages

```
Source | Model | Option
| Model Option | Help on fd methods | Archived Tests
```

fd_explicit_cir1d_zcbond

Input parameters:

 \bullet Time StepNumber M

Output parameters:

• Price

The stochastic differential equation representing the short rate is given by

$$dr_t = k(\theta - r_t)dt + \sigma\sqrt{r_t}dW(t)$$

The price of the zero-coupon bond is solution of the following PDE

$$u_t + \frac{1}{2}\sigma^2 r u_{rr} + [k(\theta - r)]u_r - ru = 0u(r, T, T) = 1$$

that we solve using explicit scheme of Hull-White[1]. The pricing procedure is in two steps: in the first step(INITPROBA) we compute probabilities associated to the explicit scheme; this is done simply matching the first and the second moment of the change in r over time step Δt . The branching in the lattice is modified at boundary points $r = r_m in$ and $r = r_m ax$ to ensure that the probabilities associated with all three branches remain positive. For this purpose Hull-White[1] propose alternative branching procedures in the explicit finite difference method.

The second step is standard dynamic programming backward pricing algorithm.

References

[1] J.Hull and A.WHITE. Valuing derivative securities using the explicit finite difference method. *Journal of Financial and Quantitative Analysis*, 25:87–100, 1990. 1