

Universidad Tecnológica de la Mixteca 00016

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Diseño y Análisis de Experimentos		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primero	172014	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proveer al estudiante de las técnicas elementales para el diseño de experimentos y el análisis de datos experimentales, además constituir una disciplina para la redacción de informes científicos.

TEMAS Y SUBTEMAS

1. Introducción a la Medición.

- 1.1. La importancia de la experimentación.
- 1.2. El concepto de medir.
- 1.3. Sistemas de unidades (SI, CGS, inglés).
- 1.4. Prefijos.
- 1.5. Conversiones.

2. Incertidumbres.

- 2.1. Tipos de errores.
- 2.2. Incertidumbre en medidas reproducibles.
- 2.3. Incertidumbre en medidas no reproducibles.
- 2.4. Incertidumbre absoluta, relativa y porcentual.
- 2.5. Cifras significativas.
- 2.6. Operaciones con cifras significativas.
- 2.7. Redondeo (simétrico y estadístico).

3. Diseño de Experimentos y Redacción de Informes.

- 3.1. Observaciones y modelos.
- 3.2. Planeación de experimentos.
- 3.3. Comparación entre modelos existentes y sistemas.
- 3.4. Experimentos sin control sobre las variables de entrada.
- 3.5. La importancia de la redacción.
- 3.6. Partes más importantes de un informe.

4. Propagación de Incertidumbres.

- 4.1. Mediciones indirectas.
- 4.2. Suma de incertidumbres.
- 4.3. Resta de incertidumbres.
- 4.4. Multiplicación de incertidumbres.
- 4.5. División de incertidumbres.
- 4.6. Potenciación de incertidumbres.

5. Relaciones Lineales.

- 5.1. Ecuación de la recta.
- 5.2. Incertidumbre en la pendiente.
- 5.3. Incertidumbre en la ordenada al origen.
- 5.4. Intervalo de validez.
- 5.5. Interpolación y extrapolación.
- 5.6. Ajuste por el método de Mínimos Cuadrados.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

6. Relaciones Exponenciales y de potencias.

- 6.1. Cambio de variable.
- 6.2. Graficas de tipo logarítmico y papel logarítmico.
- 6.3. Ejemplos físicos de relaciones potenciales.
- 6.4. Transformación de una ecuación exponencial en lineal.
- 6.5. Gráficas en papel semi-logarítmico.
- 6.6. Ejemplos físicos de relaciones exponenciales.
- 6.7. Relaciones entre tres variables.
- 6.8. Moda, mediana y media aritmética.
- 6.9. Distribución normal y desviación estándar.

7. Miscelánea de experimentos.

7.1. Se proponen experimentos a realizar en el laboratorio de Física, estas propuestas deben ser planteado por los alumnos y profesor, con material reciclable, se formarán parejas de alumnos para que presenten su diseño de experimento, expliquen el objetivo y se discutan los resultados.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, todo el semestre se tendrá actividades en el laboratorio de Física, para realizar al menos seis prácticas aplicando la teoría estadística.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final. Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1. Experimentation and Uncertainty Analysis for Engineers, Coleman, H. W. y Steele, W. G., John Wiley, 2009.
- 2. Experimentation: An Introduction to Measurement Theory and Experiment Design, Baird, D. C., Prentice 3. The Uncertainty in Physical Measurements, An Introduction to Data Analysis in the Physics
- Laboratory, Fornasini, Paolo. Springer Science, 2008. 4. Introducción al Análisis Gráfico de Datos Experimentales, Oda, B., Facultad de Ciencias, UNAM, 1997.

- 1. An Introduction to Error Analysis, Taylor J. R., University Science Book, Sausalito California, 1997.
- Introducción al Análisis de Datos Experimentales, Serrano, R., Universitat Jaume I, 2003.
- 3. Experimentation Measurements: Precision, Error, and Truth, Barford, N. C., Addison-Wesley, 1967.
- 4. Probabilidad y Estadística: Aplicaciones y Métodos, Canavos, G. C., McGraw Hill, 1988.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Física, Ciencia de 19 atoriales, Optoelectrónica, Química o cualquier Ingeniería.

DR. SALOMÓN GONZÁLEZ MARTENEZ A C >

JEFE DE CARRERA

INGENIERIA EN **FÍSICA APLICADA** DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA