#### In [18]:

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pyt
hon
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all fil
es under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 5GB to the current directory (/kaggle/working/) that gets preserv
ed as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside
of the current session
```

```
/kaggle/input/world-development-indicators/SeriesNotes.csv
/kaggle/input/world-development-indicators/Series.csv
/kaggle/input/world-development-indicators/Indicators.csv
/kaggle/input/world-development-indicators/Footnotes.csv
/kaggle/input/world-development-indicators/database.sqlite
/kaggle/input/world-development-indicators/hashes.txt
/kaggle/input/world-development-indicators/Country.csv
/kaggle/input/world-development-indicators/CountryNotes.csv
```

#### In [19]:

```
# Data Source: https://www.kaggle.com/worldbank/world-development-indicators # Folder: 'world-development-indicators'
```

## **World Development Indicators**



This week, we will be using an open dataset from <a href="Kaggle.com">Kaggle.com</a> (<a href="https://www.kaggle.com">https://www.kaggle.com</a>. It is <a href="The World Development Indicators">The World Development Indicators</a> (<a href="https://www.kaggle.com/worldbank/world-development-indicators">https://www.kaggle.com/worldbank/world-development-indicators</a>) dataset obtained from the World Bank containing over a thousand annual indicators of economic development from hundreds of countries around the world.

This is a slightly modified version of the original dataset from <a href="mailto:The-world-Bank">The World Bank (http://data.worldbank.org/data-catalog/world-development-indicators)</a>.

List of the available indicators (https://www.kaggle.com/benhamner/d/worldbank/world-development-indicators/indicators-in-data) and a list of the available countries (https://www.kaggle.com/benhamner/d/worldbank/world-development-indicators/countries-in-the-wdi-data).

# **Step 1: Initial exploration of the Dataset**

#### In [20]:

import pandas as pd
import numpy as np
import random

import matplotlib.pyplot as plt

%matplotlib inline

#### In [21]:

```
data = pd.read_csv('../input/world-development-indicators/Indicators.csv')
data.shape
```

#### Out[21]:

(5656458, 6)

This is a really large dataset, at least in terms of the number of rows. But with 6 columns, what does this hold?

#### In [22]:

data.head(10)

#### Out[22]:

|   | CountryName | CountryCode | IndicatorName                                     | IndicatorCode     | Year | Value        |
|---|-------------|-------------|---------------------------------------------------|-------------------|------|--------------|
| 0 | Arab World  | ARB         | Adolescent fertility rate (births per 1,000 wo    | SP.ADO.TFRT       | 1960 | 1.335609e+02 |
| 1 | Arab World  | ARB         | Age dependency ratio (% of workingage populat     | SP.POP.DPND       | 1960 | 8.779760e+01 |
| 2 | Arab World  | ARB         | Age dependency ratio, old (% of working-age po    | SP.POP.DPND.OL    | 1960 | 6.634579e+00 |
| 3 | Arab World  | ARB         | Age dependency ratio, young (% of working-age     | SP.POP.DPND.YG    | 1960 | 8.102333e+01 |
| 4 | Arab World  | ARB         | Arms exports<br>(SIPRI trend<br>indicator values) | MS.MIL.XPRT.KD    | 1960 | 3.000000e+06 |
| 5 | Arab World  | ARB         | Arms imports<br>(SIPRI trend<br>indicator values) | MS.MIL.MPRT.KD    | 1960 | 5.380000e+08 |
| 6 | Arab World  | ARB         | Birth rate, crude (per 1,000 people)              | SP.DYN.CBRT.IN    | 1960 | 4.769789e+01 |
| 7 | Arab World  | ARB         | CO2 emissions (kt)                                | EN.ATM.CO2E.KT    | 1960 | 5.956399e+04 |
| 8 | Arab World  | ARB         | CO2 emissions<br>(metric tons per<br>capita)      | EN.ATM.CO2E.PC    | 1960 | 6.439635e-01 |
| 9 | Arab World  | ARB         | CO2 emissions from gaseous fuel consumption (%    | EN.ATM.CO2E.GF.ZS | 1960 | 5.041292e+00 |

Looks like it has different indicators for different countries with the year and value of the indicator.

## How many UNIQUE country names are there?

```
In [23]:
```

```
countries = data['CountryName'].unique().tolist()
len(countries)
```

#### Out[23]:

247

### Are there same number of country codes?

```
In [24]:
```

```
# How many unique country codes are there ? (should be the same #)
countryCodes = data['CountryCode'].unique().tolist()
len(countryCodes)
```

#### Out[24]:

247

## Are there many indicators or few?

```
In [25]:
```

```
# How many unique indicators are there ? (should be the same #)
indicators = data['IndicatorName'].unique().tolist()
len(indicators)
```

#### Out[25]:

1344

## How many years of data do we have?

```
In [26]:
```

```
# How many years of data do we have ?
years = data['Year'].unique().tolist()
len(years)
```

#### Out[26]:

56

## What's the range of years?

```
In [27]:
```

```
print(min(years)," to ",max(years))
```

```
1960 to 2015
```

## **Indicators exploration**

• Filter indicators using key words related to eduation and employment (e.g., education, school, employment...)

#### In [28]:

```
indicators_interest = []
for ind in indicators:
    if ('education' in ind.lower() or 'school' in ind.lower()) and 'unemploy' in ind.lo
wer():
        print(ind)
        indicators_interest.append(ind)

print('\nNumber of indicators of interest: ', len(indicators_interest))

Unemployment with primary education (% of total unemployment)
Unemployment with primary education, female (% of female unemployment)
```

```
Unemployment with primary education, female (% of female unemployment)
Unemployment with primary education, male (% of male unemployment)
Unemployment with secondary education (% of total unemployment)
Unemployment with secondary education, female (% of female unemployment)
Unemployment with secondary education, male (% of male unemployment)
Unemployment with tertiary education (% of total unemployment)
Unemployment with tertiary education, female (% of female unemployment)
Unemployment with tertiary education, male (% of male unemployment)
```

Number of indicators of interest: 9

## **Step 2: Reasearch question**

- How the level of education influences unemployment? Evaluate how the situation evolved over time.
- Is there a difference between male and female? (in a selection of countries)

## Step 3: Data filtering

Subset a dataframe from data containing indicators of interest for slected countries and period of time.

#### In [29]:

```
countries_interest1 = ['France', 'Italy'] # 2 European countries
countries_interest2 = ['Egypt, Arab Rep.', 'Tunisia'] # 2 Arabic North African countrie
s
years_interest = [i for i in range(1975, 2016)]

# Creating a filter to extract the data for chosen indicators, countries and period of
time
condition1 = data['CountryName'].isin(countries_interest1 + countries_interest2)
condition2 = data['Year'].isin(years_interest)
condition3 = data['IndicatorName'].isin(indicators_interest)

filt = condition1 & condition2 & condition3

df = data[filt]

df.head(20)
```

## Out[29]:

|         | CountryName | CountryCode | IndicatorName                                           | IndicatorCode     | Year | Value     |
|---------|-------------|-------------|---------------------------------------------------------|-------------------|------|-----------|
| 1874139 | Tunisia     | TUN         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS    | 1989 | 51.200001 |
| 1874140 | Tunisia     | TUN         | Unemployment<br>with primary<br>education,<br>female (% | SL.UEM.PRIM.FE.ZS | 1989 | 45.700001 |
| 1874141 | Tunisia     | TUN         | Unemployment<br>with primary<br>education,<br>male (% o | SL.UEM.PRIM.MA.ZS | 1989 | 53.400002 |
| 1874142 | Tunisia     | TUN         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS    | 1989 | 25.799999 |
| 1874143 | Tunisia     | TUN         | Unemployment<br>with secondary<br>education,<br>female  | SL.UEM.SECO.FE.ZS | 1989 | 25.400000 |
| 1874144 | Tunisia     | TUN         | Unemployment<br>with secondary<br>education,<br>male (% | SL.UEM.SECO.MA.ZS | 1989 | 26.000000 |
| 1874145 | Tunisia     | TUN         | Unemployment<br>with tertiary<br>education (% of<br>tot | SL.UEM.TERT.ZS    | 1989 | 1.300000  |
| 1874146 | Tunisia     | TUN         | Unemployment<br>with tertiary<br>education,<br>female ( | SL.UEM.TERT.FE.ZS | 1989 | 1.500000  |
| 1874147 | Tunisia     | TUN         | Unemployment<br>with tertiary<br>education,<br>male (%  | SL.UEM.TERT.MA.ZS | 1989 | 1.300000  |
| 2176825 | Italy       | ITA         | Unemployment<br>with primary<br>education (% of<br>tota | SL.UEM.PRIM.ZS    | 1992 | 57.799999 |
| 2176826 | Italy       | ITA         | Unemployment<br>with primary<br>education,<br>female (% | SL.UEM.PRIM.FE.ZS | 1992 | 54.099998 |
| 2176827 | Italy       | ITA         | Unemployment with primary education, male (% o          | SL.UEM.PRIM.MA.ZS | 1992 | 62.200001 |
| 2176828 | Italy       | ITA         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS    | 1992 | 37.700001 |
| 2176829 | Italy       | ITA         | Unemployment<br>with secondary<br>education,<br>female  | SL.UEM.SECO.FE.ZS | 1992 | 41.299999 |

|         | CountryName | CountryCode | IndicatorName                                           | IndicatorCode     | Year | Value     |
|---------|-------------|-------------|---------------------------------------------------------|-------------------|------|-----------|
| 2176830 | Italy       | ITA         | Unemployment<br>with secondary<br>education,<br>male (% | SL.UEM.SECO.MA.ZS | 1992 | 33.400002 |
| 2176831 | Italy       | ITA         | Unemployment<br>with tertiary<br>education (% of<br>tot | SL.UEM.TERT.ZS    | 1992 | 4.500000  |
| 2176832 | Italy       | ITA         | Unemployment<br>with tertiary<br>education,<br>female ( | SL.UEM.TERT.FE.ZS | 1992 | 4.600000  |
| 2176833 | Italy       | ITA         | Unemployment with tertiary education, male (%           | SL.UEM.TERT.MA.ZS | 1992 | 4.400000  |
| 2299875 | Italy       | ITA         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS    | 1993 | 61.500000 |
| 2299876 | Italy       | ITA         | Unemployment with primary education, female (%          | SL.UEM.PRIM.FE.ZS | 1993 | 57.500000 |

Check quality of data (absence of missing values)

False

#### In [30]:

| <pre>print(df.isna().any())</pre> |       |  |  |
|-----------------------------------|-------|--|--|
| CountryName                       | False |  |  |
| CountryCode                       | False |  |  |
| IndicatorName                     | False |  |  |
| IndicatorCode                     | False |  |  |
| Vear                              | False |  |  |

dtype: bool

Value

# **Further filtering**

Building a filter to look at chosen indicator values for a given country (below is an example)

#### In [31]:

## Out[31]:

|         | CountryName         | CountryCode | IndicatorName                                           | IndicatorCode  | Year | Value     |
|---------|---------------------|-------------|---------------------------------------------------------|----------------|------|-----------|
| 4547018 | Egypt, Arab<br>Rep. | EGY         | Unemployment<br>with primary<br>education (% of<br>tota | SL.UEM.PRIM.ZS | 2008 | 3.000000  |
| 4726454 | Egypt, Arab<br>Rep. | EGY         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS | 2009 | 4.000000  |
| 4908399 | Egypt, Arab<br>Rep. | EGY         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS | 2010 | 3.500000  |
| 5091153 | Egypt, Arab<br>Rep. | EGY         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS | 2011 | 7.500000  |
| 5266942 | Egypt, Arab<br>Rep. | EGY         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS | 2012 | 8.700000  |
| 5435487 | Egypt, Arab<br>Rep. | EGY         | Unemployment with primary education (% of tota          | SL.UEM.PRIM.ZS | 2013 | 4.100000  |
| 4547021 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2008 | 62.299999 |
| 4726457 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2009 | 55.700001 |
| 4908402 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2010 | 53.200001 |
| 5091156 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2011 | 50.000000 |
| 5266943 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2012 | 51.900002 |
| 5435490 | Egypt, Arab<br>Rep. | EGY         | Unemployment with secondary education (% of to          | SL.UEM.SECO.ZS | 2013 | 47.099998 |
| 4547024 | Egypt, Arab<br>Rep. | EGY         | Unemployment with tertiary education (% of tot          | SL.UEM.TERT.ZS | 2008 | 31.700001 |
| 4726460 | Egypt, Arab<br>Rep. | EGY         | Unemployment<br>with tertiary<br>education (% of<br>tot | SL.UEM.TERT.ZS | 2009 | 35.500000 |

|         | CountryName         | CountryCode | IndicatorName                                  | IndicatorCode  | Year | Value     |
|---------|---------------------|-------------|------------------------------------------------|----------------|------|-----------|
| 4908405 | Egypt, Arab<br>Rep. | EGY         | Unemployment with tertiary education (% of tot | SL.UEM.TERT.ZS | 2010 | 39.700001 |
| 5091159 | Egypt, Arab<br>Rep. | EGY         | Unemployment with tertiary education (% of tot | SL.UEM.TERT.ZS | 2011 | 32.099998 |
| 5266944 | Egypt, Arab<br>Rep. | EGY         | Unemployment with tertiary education (% of tot | SL.UEM.TERT.ZS | 2012 | 33.200001 |
| 5435493 | Egypt, Arab<br>Rep. | EGY         | Unemployment with tertiary education (% of tot | SL.UEM.TERT.ZS | 2013 | 31.100000 |

## Step 4: Plotting data

A function is defined to plot the indicators as function of time. Matplotlib function "*plot*" is appropriate in this case to show the evolution of the indicator over the years.

Axis will be set identically for all graphs to facilitate comparisons.

#### In [32]:

```
def unemployment plot(data edu unemploy, country list, indicator list, leg dict, line s
    '''Plotting function which shows the evolution of the indicator over time. It produ
ces several graphs in one run (with similar layout and look)
   Arguments:
    - data_edu_unemploy = dataframe with the data to plot
    - country_list = list of countries for which a plot is expected
    - indicator_list = list of indicators for which a plot is expected
    - leg_dict = dictionnary to allow short names for the plotted indicators
    - line stype = list of line styles to apply to the data series'''
    for i in range(len(country list)):
        fig, ax = plt.subplots()
        leg = []
        for j in range(len(indicator_list)):
            # Subset the data edu employ dataframe to extract data for a given country
 and a given indicator
            extract_conditions = ((data_edu_unemploy['CountryName'] == country_list[i])
&
                                  (data_edu_unemploy['IndicatorName'] == indicator_list
[j]))
            df ext = data edu unemploy[extract conditions]
            # Plot the data for the country (indicator value vs. time period)
            ax.plot(df ext['Year'], df ext['Value'], line style[j])
            # Set axis limits and labels
            ax.axis([1990, 2015,0,65])
            ax.set_xlabel('Year', fontsize=14)
            ax.set_ylabel('% of total unemployment', fontsize=14)
            # Set title
            ax.set_title(country_list[i], fontsize=18)
            # Set Legend
            leg.append(leg_dict[indicator_list[j]])
            ax.legend(leg, loc=3)
            # Turn grid on
            ax.grid(True)
```

# 1. Exploring evolution of Unemployment vs. Education (male & female)

The indicators to plot are:

- "Unemployment with primary education (% of total unemployment)"
- "Unemployment with secondary education (% of total unemployment)"
- "Unemployment with tertiary education (% of total unemployment)"

#### In [33]:









#### **Observations:**

#### In France and Italy:

- 1. Highly similar indicators
- 2. Population with *tertiary* education are less likely to be unemployed
- 3. However, from 2005 to 2015, the unemployment proportion of *tertiary* educated population tend to increase while the unemployment proportion of *primary* educated population tend to decrease. The unemployment proportion of people with *secondary* education remains nearly stable over time.

#### In Tunisia:

- 1. Similar trends as France and Italy are observed. However the amplitude of changes is larger.
- 2. From 2000 to 2015, the unemployment proportion of people with *tertiary* education has greatly increased (and to some extent the unemployment proportion of people with *seconday* education). Within the same period, the unemployment proportion of people with *primary* education has drastically decreased

#### In Egypt:

- 1. Less data is available (2008 to 2013)
- 2. Surprisingly, the sequence of the indicators is very different: the unemployment proportion of population with *secondary* education is the highest. But then it is followed by unemployment proportion of people with *tertiary* education. Finally, unemployment proportion of people with *primary* education is the lowest.

# 2. Exploring differences between male and female regarding Unemployment vs. Education

The indicators to plot are:

- Unemployment with primary education, female (% of female unemployment)
- Unemployment with primary education, male (% of male unemployment)
- Unemployment with secondary education, female (% of female unemployment)
- Unemployment with secondary education, male (% of male unemployment)
- Unemployment with tertiary education, female (% of female unemployment)
- Unemployment with tertiary education, male (% of male unemployment)

#### In [34]:

```
# Define line styles for the 6 indicators
line_style = ['r.-', 'b.-', 'g.-', 'r^--', 'b^--', 'g^--', ]

# Prepare list for the countries and the indicators
country_list = countries_interest1 + countries_interest2
pos = 1 # positional index for slicing indicators_interest list
indicator_list = indicators_interest[pos:len(indicators_interest):3] + indicators_interest[pos + 1:len(indicators_interest):3]

# Plotting the data
unemployment_plot(df, country_list, indicator_list, leg_dict, line_style)
```









#### In [35]:

```
# Define line styles for the 6 indicators
line_style = ['r.-', 'b.-', 'g.-', 'r^--', 'b^--', 'g^--', ]

# Prepare list for the countries and the indicators
country_list = countries_interest1 + countries_interest2
pos = 1 # positional index for slicing indicators_interest list
indicator_list = indicators_interest[pos:len(indicators_interest):3] + indicators_interest[pos + 1:len(indicators_interest):3]

# Plotting the data
unemployment_plot(df, country_list, indicator_list, leg_dict, line_style)
```









#### **Observations:**

#### In all countries:

- 1. Women with *secondary* or *tertiary* education are more affected by unemployment than men. Situation particularly visible for Italy and Tunisia
- 2. The situation is the opposite for *primary* educated population: in this population, higher proportion of men is affected by unemployment
- 3. In France, Italy and Tunisia, for *teriaty* educated population, the unemployment gap between male and female tend to increase