Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Sujet

Mécanique MECA1 - Projections

TD1

Projections

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Sujet

Exercice 1: Projections simples

Soit un vecteur u tel que:

 $\vec{u} = u \vec{x_1}$

Pour chacun des deux cas proposés :

Question 1: Mettre en place le paramétrage angulaire $heta_{10}$

Question 2: Exprimer le vecteur $oldsymbol{u}$ dans la base $oldsymbol{0}$

On prend u = 1.

Question 3: Exprimer les composantes de \vec{u} dans la base 0 pour $\theta = \left(0; \frac{\pi}{4}; \frac{3\pi}{4}; -\frac{\pi}{4}\right)$

Exercice 2: Projection dans plusieurs bases

Soient deux bases 1 et 2 en rotation l'une par rapport à l'autre et une base 0. Il existe donc deux rotations distincte θ_{10} et θ_{21}

Le vecteur \vec{U} est fixe dans la base 2. On définit un angle non orienté α inférieur à 180° entre \vec{U} et $\overrightarrow{y_2}$.

Question 1: Proposer le paramétrage angulaire $(\theta_{10}, \theta_{21}, \alpha)$

Question 2: Exprimer le vecteur \overrightarrow{U} dans la base 2 Question 3: Exprimer le vecteur \overrightarrow{U} dans la base 1 Question 4: Exprimer le vecteur \overrightarrow{U} dans la base 0

Dernière mise à jour	MECA1	Denis DEFAUCHY
29/08/2022	Projections	TD1 - Sujet

Exercice 3: Somme de vecteurs

 $\overrightarrow{U_1} = U_1 \overrightarrow{u_1} \ ; \ \overrightarrow{U_2} = U_2 \overrightarrow{u_2} \ ; \ \overrightarrow{U_3} = U_3 \overrightarrow{u_3} \ ; \ \overrightarrow{U_4} = U_4 \overrightarrow{u_4} \ ; \ \overrightarrow{U_5} = U_5 \overrightarrow{u_5} \ ; \ \overrightarrow{U_6} = U_6 \overrightarrow{u_6} \ ; \ \overrightarrow{U_7} = U_7 \overrightarrow{u_7}$ $||\overrightarrow{u_1}|| = ||\overrightarrow{u_2}|| = ||\overrightarrow{u_3}|| = ||\overrightarrow{u_4}|| = ||\overrightarrow{u_5}|| = ||\overrightarrow{u_6}|| = ||\overrightarrow{u_7}|| = 1$

$$\overrightarrow{U} = \overrightarrow{U_1} + \overrightarrow{U_2} + \overrightarrow{U_3} + \overrightarrow{U_4} + \overrightarrow{U_5} + \overrightarrow{U_6} + \overrightarrow{U_7}$$

Question 1: Donner l'expression de \overrightarrow{U} dans la base 0.

Exercice 4: Produit scalaire et vectoriel

Question 1: Expliciter l'angle orienté $(\widehat{x_2}, \widehat{y_1})$ en fonction des angles proposés

Question 2: En utilisant la formule de définition, calculer $\vec{u}.\vec{v}$

Question 3: En utilisant la formule de définition, calculer $\vec{u} \wedge \vec{v}$

Question 4: Projeter \vec{v} dans la base 2

Question 5: En faisant intervenir des vecteurs de la même base, calculer $\vec{u}.\vec{v}$ Question 6: En faisant intervenir des vecteurs de la même base, calculer $\vec{u}.\vec{v}$

Question 7: En utilisant la notation verticale, calculer $\vec{u}.\vec{v}$ Question 8: En utilisant la notation verticale, calculer $\vec{u} \cdot \vec{v}$