

RAVELING SALESMAN P ROBLEM

RAVELING SALESMAN P ROBLEV

여행하는 세일즈맨의 문제

여러 개의 지점을 방문하고 다시 되돌아와야 한다는 전제 아래 가야 할 <mark>경로</mark>를 선택할 수 있습니다.

이동거리와 시간을 고려하여

좋은 순서를 찾아

최단 시간과 거리로 이루어진

최적의 경로 탐색

가야 할 지점의 개수 <

계산량 이 증가하여 제한 시간 안에 최적의 경로를 찾아낼 수 없거나

무한의 시간이 걸릴 가능성이 높아진다.

NP-HARD

NP-HARD PROBLEM

다항시간(Polynomail Time) 안에 해를 구하기 어려운 문제 경우의 수가 10의 171제곱인 바둑이 NP-HARD 문제에 해당

P-PROBLEM

다항시간(Polynomail Time) 안에 해를 구하기 쉬운 문제

제한된 시간안에 결과가

도출되어야 한다면?

관벽한 루트에 근접한 최선의 루트를 탐색

 \leftarrow

USE

META

HEURISTIC

WHAT IS META HEURISTIC ?

META HEURISTIC

META HEURISTIC ALGORITHM

완벽한 해답에 가까운 <u>최적의 해답</u>을 얻는 알고리즘 HOW?

기억 → 연산량 감소 → 최적 근사해

WHAT IS "HEURISTIC"?

Heuristicus + Heuriskein

찾아내다(find out) + 발견하다(discover)

META HEURISTIC

 \leftarrow

다양한 알고리즘이 존재 - SA, GA, ACO, TS 등

해당 프로젝트에서 사용된 META HEURISTIC 알고리즘

TSP

ACO (개미 군체 최적화 알고리즘)

VRP

G A (유전자 알고리즘)

LOCAL SEARCH (지역 탐색)

ACO

개미 군체 최적화 알고리즘 ANT COLONY OPTIMIZATION ALGORITHM

개미는 시각 신경이 발달되어 있지 않지만 호르몬을 분비함으로써 어두운 지하에서도 경로를 탐색할 수 있다.

길에 분비된 호르몬의 농도가 짙을수록 많은 개미가 다녀간 길이며,

그 왕래가 잦은 길은 좋은 길이다.

개미가 길을 찾는 원리를 이용하여 최적의 루트를 탐색합니다.

유전자 알고리즘

 \leftarrow

GENETIC ALGORITHM

염색체가 생성되고 다시 조합이 되는 과정을 본떠 만든 알고리즘

교차율과돌연변이율을통해서다양한 염색체를만들고

적 합 도 를 측정하여 좋은 염색체를 골라 자손에게 물려주는 방식으로 마지막에는 좋은 염색체의 조합으로 이루어진다.

유전자가 생성되고 좋은 유전자가 선택되는 과정을 반복하여 최적의 경로를 탐색합니다.

지역 탐색 LOCAL SEARCH

지역 탐색은 임의의 초기 루트에서 시작합니다.

이 초기 루트에 근접해 있는 이웃을 탐색

현재의 루트에서 개선이 될 수 있는

루트를 찾았다면 갱신하고, 이러한 반복은 이웃에게서

루트를 갱신할 수 없을 때까지 진행합니다.

근접한 이웃을 탐색하여 갱신이 가능한지를 목적함수를 통해 측정하며 이 과정을 반복하여 최적의 경로를 탐색합니다.

WHAT DID YOU DO?

1. 전체적인 구조를 설계

2.개미 군체 최적화 알고리즘(ACO)과 그의 **변형 알고리즘**인

RAS, MMAS, EAS를 사용하여 결과를 도출

3.총 4가지의 알고리즘에 대해서 수행 시간과 성능을 비교 및 분석하여 시각화

4.각 알고리즘을 조금씩 변형시켜서 사용하였음

알고리즘의 특성을 살리되 핵심이 되는 수식을 변형하거나

수식의 추가와 삭제를 통해서 조금 더 좋은 방향으로 결과가 도출될 수 있도록 함