제2교시

수학 영역

5지선다형

- ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 1 ④ 2

3. $\sin\left(\frac{\pi}{2} + \theta\right) = \frac{3}{5}$ 이고 $\sin\theta\cos\theta < 0$ 일 때, $\sin\theta + 2\cos\theta$ 의

- ① $-\frac{2}{5}$ ② $-\frac{1}{5}$ ③ 0 ④ $\frac{1}{5}$ ⑤ $\frac{2}{5}$

- ① 1 ② 2 ③ 3 ④ 4
 - ⑤ 5

4. 함수 y = f(x)의 그래프가 그림과 같다.

 $\lim_{x \to -1+} f(x) + \lim_{x \to 1-} f(x)$ 의 값은? [3점]

- $\bigcirc -1$ $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$ $\bigcirc 0$ $\bigcirc 3$ $\bigcirc 1$ $\bigcirc 4$ $\bigcirc 2$ $\bigcirc 5$ $\bigcirc 3$

5. 함수

$$f(x) = \begin{cases} 3x + a & (x \le 1) \\ 2x^3 + bx + 1 & (x > 1) \end{cases}$$

이 x=1에서 미분가능할 때, a+b의 값은? (단, a, b는 상수이다.) [3점]

- $\bigcirc -8$ $\bigcirc -6$ $\bigcirc -4$ $\bigcirc -2$

⑤ 0

6. 모든 항이 양수인 등비수열 $\{a_n\}$ 에 대하여

$$a_3^2 = a_6, \ a_2 - a_1 = 2$$

일 때, a_5 의 값은? [3점]

- ① 20
- 2 24
- ③ 28 ④ 32
- ⑤ 36

- 7. 함수 $f(x)=x^3+ax^2-9x+4$ 가 x=1에서 극값을 갖는다. 함수 f(x)의 극댓값은? (단, a는 상수이다.) [3점]
- ① 31
- ② 33 ③ 35
- **4** 37
- **⑤** 39

8. 수직선 위를 움직이는 점 P의 시각 $t (t \ge 0)$ 에서의 속도 v(t) 7}

 $v(t) = t^2 - 4t + 3$

이다. 점 P가 시각 t=1, t=a(a>1)에서 운동 방향을 바꿀 때, 점 P가 시각 t=0에서 t=a까지 움직인 거리는? [3점]

- ① $\frac{7}{3}$ ② $\frac{8}{3}$ ③ 3 ④ $\frac{10}{3}$ ⑤ $\frac{11}{3}$

 $\mathbf{9.}$ 2 이상의 자연수 n에 대하여 x에 대한 방정식

 $(x^n-8)(x^{2n}-8)=0$

의 모든 실근의 곱이 -4일 때, n의 값은? [4점]

- \bigcirc 2
- ② 3
- 3 4
- **4** 5
- ⑤ 6

- **10.** $0 \le x < 2\pi$ 일 때, 곡선 $y = |4\sin 3x + 2|$ 와 직선 y = 2가 만나는 서로 다른 점의 개수는? [4점]
 - ① 3
- 2 6
- 3 9
- **4** 12
- **⑤** 15

- $\mathbf{11}$. 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킨다.
 - (가) 모든 실수 x에 대하여 f(1+x)+f(1-x)=0이다.
 - (나) $\int_{-1}^{3} f'(x)dx = 12$

f(4)의 값은? [4점]

- ① 24
- ② 28
- 32
 - 4 36
- **⑤** 40

- $oxed{12}$. 모든 항이 정수이고 공차가 $oxed{5}$ 인 등차수열 $ig\{a_nig\}$ 과 자연수 m이 다음 조건을 만족시킨다.

 - $(7) \sum_{k=1}^{2m+1} a_k < 0$
 - (나) $\left|a_{m}\right|+\left|a_{m+1}\right|+\left|a_{m+2}\right|<13$

 $24 < a_{21} < 29$ 일 때, m의 값은? [4점]

- 10
- ② 12 ③ 14
- **4** 16
- **⑤** 18

13. 그림과 같이 평행사변형 ABCD가 있다. 점 A에서 선분 BD에 내린 수선의 발을 E라 하고, 직선 CE가 선분 AB와 만나는 점을 F라 하자.

 $\cos(\angle AFC) = \frac{\sqrt{10}}{10}$, $\overline{EC} = 10$ 이고 삼각형 CDE 의 외접원의 반지름의 길이가 $5\sqrt{2}$ 일 때, 삼각형 AFE 의 넓이는? [4점]

- ① $\frac{20}{3}$ ② 7 ③ $\frac{22}{3}$ ④ $\frac{23}{3}$ ⑤ 8

14. 최고차항의 계수가 1이고 f(-3)=f(0)인 삼차함수 f(x)에 대하여 함수 g(x)를

$$g(x) = \begin{cases} f(x) & (x < -3 \text{ } £ ± x \ge 0) \\ -f(x) & (-3 \le x < 0) \end{cases}$$

이라 하자. 함수 g(x)g(x-3)이 x=k에서 불연속인 실수 k의 값이 한 개일 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

- ㄱ. 함수 g(x)g(x-3)은 x=0에서 연속이다.
- $f(-6) \times f(3) = 0$
- ㄷ. 함수 g(x)g(x-3)이 x=k에서 불연속인 실수 k가 음수일 때 집합 $\{x | f(x) = 0, x$ 는 실수}의 모든 원소의 합이 -1이면 g(-1)=-48이다.

- ① 7 ② 7, L ③ 7, ⊏
- ④ ∟, ⊏
 ⑤ ¬, ∟, ⊏

 ${f 15.}$ 모든 항이 자연수인 수열 $\{a_n\}$ 이 다음 조건을 만족시킨다.

 $(7) a_1 < 300$

(나) 모든 자연수 n에 대하여

$$a_{n+1} = \left\{ \begin{array}{ll} \frac{1}{3}a_n & (\log_3 a_n \, \text{이 자연수인 경우}) \\ \\ a_n + 6 & (\log_3 a_n \, \text{이 자연수가 아닌 경우}) \\ \\ \end{array} \right.$$
 이다.

 $\sum_{k=4}^{7} a_k = 40$ 이 되도록 하는 모든 a_1 의 값의 합은? [4점]

① 315

② 321

③ 327

4 333

⑤ 339

단답형

16. 방정식 $\log_2(x-5) = \log_4(x+7)$ 을 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여 $f'(x)=9x^2-8x+1$ 이고 f(1)=10일 때, f(2)의 값을 구하시오. [3점]

18. 두 수열 $\left\{a_n
ight\}$, $\left\{b_n
ight\}$ 에 대하여

$$\sum_{k=1}^{10} (2a_k + 3) = 40, \sum_{k=1}^{10} (a_k - b_k) = -10$$

일 때, $\sum_{k=1}^{10} (b_k + 5)$ 의 값을 구하시오. [3점]

19. 곡선 $y=x^3-10$ 위의 점 P(-2, -18)에서의 접선과 곡선 $y=x^3+k$ 위의 점 Q에서의 접선이 일치할 때, 양수 k의 값을 구하시오. [3점]

20. 실수
$$t\left(\sqrt{3} < t < \frac{13}{4}\right)$$
에 대하여 두 함수

$$f(x) = |x^2 - 3| - 2x$$
, $g(x) = -x + t$

의 그래프가 만나는 서로 다른 네 점의 x좌표를 작은 수부터 크기순으로 $x_1,\ x_2,\ x_3,\ x_4$ 라 하자. $x_4-x_1=5$ 일 때, 단힌구간 $\left[x_3,\ x_4\right]$ 에서 두 함수 $y=f(x),\ y=g(x)$ 의 그래프로 둘러싸인 부분의 넓이는 $p-q\sqrt{3}$ 이다. $p\times q$ 의 값을 구하시오. (단, $p,\ q$ 는 유리수이다.) [4점]

21. 그림과 같이 곡선 y=2^{x-m}+n (m>0, n>0) 과
직선 y=3x가 서로 다른 두 점 A, B에서 만날 때,
점 B를 지나며 직선 y=3x에 수직인 직선이 y축과 만나는
점을 C라 하자. 직선 CA가 x축과 만나는 점을 D라 하면
점 D는 선분 CA를 5:3으로 외분하는 점이다.
삼각형 ABC의 넓이가 20일 때, m+n의 값을 구하시오.
(단, 점 A의 x좌표는 점 B의 x좌표보다 작다.) [4점]

22. 최고차항의 계수가 양수인 사차함수 f(x)가 있다. 실수 t에 대하여 함수 g(x)를

$$g(x) = f(x) - x - f(t) + t$$

라 할 때, 방정식 g(x)=0의 서로 다른 실근의 개수를 h(t)라 하자. 두 함수 f(x)와 h(t)가 다음 조건을 만족시킨다.

- $(7) \lim_{t \to -1} \{h(t) h(-1)\} = \lim_{t \to 1} \{h(t) h(1)\} = 2$
- (나) $\int_0^\alpha f(x)dx = \int_0^\alpha |f(x)|dx$ 를 만족시키는 실수 α 의 최솟값은 -1이다.
- (다) 모든 실수 x에 대하여 $\frac{d}{dx}\int_0^x\{f(u)-ku\}du\geq 0$ 이 되도록 하는 실수 k의 최댓값은 $f'(\sqrt{2})$ 이다.

f(6)의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(확률과 통계)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

수학 영역(기하)

5지선다형

23. 두 벡터 $\stackrel{\rightarrow}{a}=(2,3)$, $\stackrel{\rightarrow}{b}=(4,-2)$ 에 대하여 벡터 $\stackrel{\rightarrow}{2a+b}$ 의 모든 성분의 합은? [2점]

- ① 10 ② 12 ③ 14 ④ 16 ⑤ 18

24. 타원 $\frac{x^2}{32} + \frac{y^2}{8} = 1$ 위의 점 중 제1사분면에 있는

점 (a, b)에서의 접선이 점 (8, 0)을 지날 때, a+b의 값은? [3점]

- ① 5 ② $\frac{11}{2}$ ③ 6 ④ $\frac{13}{2}$ ⑤ 7

- $\mathbf{25}$. 좌표평면에서 벡터 $\overset{
 ightarrow}{u}=(3,\;-1)$ 에 평행한 직선 l과 직선 $m: \frac{x-1}{7} = y-1$ 이 있다. 두 직선 l, m이 이루는 예각의 크기를 θ 라 할 때, $\cos\theta$ 의 값은? [3점]
 - ① $\frac{2\sqrt{3}}{5}$ ② $\frac{\sqrt{14}}{5}$ ③ $\frac{4}{5}$

- $4 \frac{3\sqrt{2}}{5}$ $5 \frac{2\sqrt{5}}{5}$

- 26. 포물선 $y^2 = 4px (p > 0)$ 의 초점 F를 지나는 직선이 포물선과 서로 다른 두 점 A, B에서 만날 때, 두 점 A, B에서 포물선의 준선에 내린 수선의 발을 각각 C, D라 하자. \overline{AC} : \overline{BD} =2:1이고 사각형 ACDB의 넓이가 $12\sqrt{2}$ 일 때, 선분 AB의 길이는? (단, 점 A는 제1사분면에 있다.) [3점]
- ① 6 ② 7 ③ 8 ④ 9
- **⑤** 10

27. 공간에 선분 AB를 포함하는 평면 α 가 있다. 평면 α 위에 있지 않은 점 C에서 평면 α 에 내린 수선의 발을 H라 할 때, 점 H가 다음 조건을 만족시킨다.

 $(7) \angle AHB = \frac{\pi}{2}$

(나) $\sin(\angle CAH) = \sin(\angle ABH) = \frac{\sqrt{3}}{3}$

평면 ABC와 평면 α 가 이루는 예각의 크기를 θ 라 할 때, $\cos\theta$ 의 값은? (단, 점 H는 선분 AB 위에 있지 않다.) [3점]

 $4 \frac{2\sqrt{7}}{7}$ $5 \frac{5\sqrt{7}}{14}$

28. 두 초점이 F(c, 0), F'(-c, 0)(c > 0)인 쌍곡선 $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ 과 점 A(0, 6)을 중심으로 하고 두 초점을

지나는 원이 있다. 원과 쌍곡선이 만나는 점 중 제1사분면에 있는 점 P와 두 직선 PF', AF가 만나는 점 Q가

 $\overline{PF}: \overline{PF'} = 3:4, \angle F'QF = \frac{\pi}{2}$

를 만족시킬 때, $b^2 - a^2$ 의 값은? (단, a, b는 양수이고, 점 Q는 제2사분면에 있다.) [4점]

① 30

② 35

3 40 45

 \bigcirc 50

단답형

29. 좌표평면 위에 길이가 6 인 선분 AB를 지름으로 하는 원이 있다. 원 위의 서로 다른 두 점 C, D가

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 27$$
, $\overrightarrow{AB} \cdot \overrightarrow{AD} = 9$, $\overrightarrow{CD} > 3$

을 만족시킨다. 선분 AC 위의 서로 다른 두 점 P, Q와 상수 k가 다음 조건을 만족시킨다.

$$(7) \quad \frac{3}{2}\overrightarrow{DP} - \overrightarrow{AB} = k\overrightarrow{BC}$$

(나)
$$\overrightarrow{QB} \cdot \overrightarrow{QD} = 3$$

 $k \times (\overrightarrow{AQ} \cdot \overrightarrow{DP})$ 의 값을 구하시오. [4점]

30. 공간에 중심이 O이고 반지름의 길이가 4인 구가 있다. 구 위의 서로 다른 세 점 A, B, C가

$$\overline{AB} = 8$$
, $\overline{BC} = 2\sqrt{2}$

를 만족시킨다. 평면 ABC 위에 있지 않은 구 위의 점 D에서 평면 ABC에 내린 수선의 발을 H라 할 때, 점 D가 다음 조건을 만족시킨다.

- (가) 두 직선 OC, OD가 서로 수직이다.
- (나) 두 직선 AD, OH가 서로 수직이다.

삼각형 DAH의 평면 DOC 위로의 정사영의 넓이를 S라 할 때, 8S의 값을 구하시오. (단, 점 H는 점 O가 아니다.) [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.