Lecture 9: Solution Methods Using Separation of Variables

- * Consider the case $\frac{\partial U}{\partial t} = Q(t)b(x)\Delta U$. We can vewrite this as $\frac{1}{a(t)}\frac{\partial U}{\partial t} = b(x)\Delta U$ when $a(t)\neq 0$.

 "splitting" the equation into parts depending on $t\neq x$.
- · In such cases, we use an ansatz N(t,x): $V(t)\Phi(x)$, Veducing. the PDE to some pair of PDEs. Using further Symmetries, we can separate spatial variables in higher dimensions, giving only ODEs. In either case, we simplify our equation of interese.

Helmholtz Equation

• The classical evolution equations on IRn have the form

(A) Ptu-Du=0

for Pt a first or second-order differential operator only in time.

e.g.) Heat, wave, Schrodinger

PF Substituting $u=v\phi$ into (A) gives $\phi P_{e}v-v\Delta\phi=0$. Assuming u is nonzero, $\frac{1}{v}P_{e}v=\frac{1}{\phi}\Delta\phi$ by dividing by u. Since the LHS is only in t a the PHS is only in x, both sides must be some constant t. \Box

- ·) The two equations are analogous to eigenvalue equations from linear algebra. (Pt & D are operators in this POV)
- .) The Spatial problem
- (B) $-\Delta \Phi = \lambda \Phi$ is called the Helmholtz equation, where a negative is added
 is called the Helmholtz equation, where a negative is added
 so $\Delta \geq 0$ for most common types of boundary conditions.
 This is the Laplace eigenvalue equation $\Phi = eigen function$

We focus only on one spatial variable for the moment.

Thm 5.2 For $\Phi \in C^2[0,L]$, the equation $-\frac{d^2\Phi}{dx^2} = 2\Phi$, $\Phi(0) = \Phi(L) = 0$, has nonzero solutions iff. $2n = \frac{\pi^2 n^2}{L^2}$. for $n \in IN$. Up to constant multiplication, the solutions are $\Phi(x) = \sin(x\sqrt{2n})$.

PF The PDE implies $2 \int_{0}^{L} |\Phi|^{2} d\alpha = -\int_{0}^{L} \frac{d^{2}\Phi}{dx^{2}} \overline{\Phi} dx$ (1012=0 $\overline{\Phi}$). Next, $-\int_{0}^{L} \frac{d^{2}\Phi}{dx^{2}} \overline{\Phi} dx = \int_{0}^{L} \frac{d\Phi}{dx} \frac{d\overline{\Phi}}{dx} dx$: $\int_{0}^{L} |d\Phi|^{2} dx$. If Φ ion't identically Φ , $\Delta \geq 0$. If $\Delta = 0$, $|d\Phi|^{2} = 0$ everywhere

So that ϕ is Constant, and $\phi = 0$. If $\lambda > 0$, $\phi'' + \lambda \phi = 0$ gives a general solution $\phi(x) = C_1 \sin(x \sqrt{\lambda}) + C_2 \cos(x \sqrt{\lambda})$. The boundary conditions give $\phi(x) = C_2 \sin(x \sqrt{\lambda})$ (1) and $\sin(L(\sqrt{\lambda})) = 0$ 30 that $L(\sqrt{\lambda}) \in \pi$.

• For the String model, recall that $C = \sqrt{T/p}$ and the equation is $\frac{\partial^2 \mathcal{U}}{\partial t^2} - C^2 \frac{\partial^3 \mathcal{U}}{\partial x^2} = 0$ $\mathcal{U}(t, 0) = \mathcal{U}(t, 0) = 0$

and $w_n : C\sqrt{2n} : \frac{c_n\pi}{c_n}$

A To make solutions real-valued, we need an = bn

Combining the Solutions

Un(t,x) = [an e wnt + bn e wnt] Sin(x√2n) for nGN

• These are called "pure tone" solutions b/c they made)

Oscillation as a single frequency who For light waves,

the frequency is a color! Thus, Eurs is often called

the frequency is a color! Thus, Eurs is often called

a "spectrum" (a general term for eigen values).

- From $W_n : C\pi n$, we can deduce the fundamental frequency of a String To convert to literts, $\frac{W_n}{2\pi} : \frac{cn}{2\epsilon} = \frac{n}{2\ell} \sqrt{\frac{\pi}{\rho}} \sim \frac{n}{2\epsilon} \sqrt{\frac{n}{\rho}} \sim \frac{n}{2\epsilon} \sqrt{$
- · The points at which the string stays stationary are Called maks

nth frequency has not mode throcks our lower frequencies-called touching a string at a node throcks our lower frequencies-called a harmonic

ex.) Les us use the 10 mare equation to model air pressure fluctuations in a clarinet

Max pressure occurs at the mouthpiece x=0. A local max is a critical point of $u(t, \cdot)$, so $\frac{\partial u}{\partial x}(t,0)=0$ is a B.C.

At the other end, pressure alreant fluctuare (open to air) and U(t,l)=0

Thus, the wave equation Separates into Helmholtz Problem $-\frac{d^2\theta}{dx^2} = 2\theta$, $\theta'(0) = 0$, $\theta(l) = 0$

giving solution $\Phi(x) = c_1 \sin(x \sqrt{x'}) + c_2 \cos(x \sqrt{x'})$

The first B.C. D'(n)=0 gives $\phi(x) = c_2 \cos(x\sqrt{x'})$ and $\Phi(l)=0$ gives $A_n = \frac{\pi^2}{\ell^2}(n-1_2)^2$ for some n (Na = $n \cdot \pi_2$ so $\alpha = \left(\frac{n\pi}{2\ell}\right)^2$, and we shift to account las * n=0)

eigen herctions for Cz=1

The Corresponding oscillation frequencies are Wn = CT (n-1/2) M) This predicts only add multiples at ell - imperfect madel.