Auxiliary Sections > Integral Transforms > Tables of Fourier Cosine Transforms > Fourier Cosine Transforms: Expressions with Trigonometric Functions

Fourier Cosine Transforms: Expressions with Trigonometric Functions

No	Original function, $f(x)$	Cosine transform, $\check{f}_{c}(u) = \int_{0}^{\infty} f(x) \cos(ux) dx$
1	$x^{\nu-1}\sin(ax), a > 0, \ \nu < 1$	$\pi \frac{(u+a)^{-\nu} - u+a ^{-\nu} \operatorname{sign}(u-a)}{4\Gamma(1-\nu)\cos(\frac{1}{2}\pi\nu)}$
2	$e^{-bx}\sin(ax), a, b > 0$	$\frac{1}{2} \left[\frac{a+u}{(a+u)^2 + b^2} + \frac{a-u}{(a-u)^2 + b^2} \right]$
3	$\frac{1}{x}\sin^2(ax), a > 0$	$\frac{1}{4}\ln\left 1-4\frac{a^2}{u^2}\right $
4	$\frac{1}{x^2}\sin^2(ax), a > 0$	$\begin{cases} \frac{1}{4}\pi(2a-u) & \text{if } u < 2a, \\ 0 & \text{if } u > 2a \end{cases}$
5	$\frac{1}{x}\sin\left(\frac{a}{x}\right), a > 0$	$\frac{\pi}{2}J_0(2\sqrt{au})$
6	$\frac{1}{\sqrt{x}}\sin(a\sqrt{x})\sin(b\sqrt{x}), \ a, b > 0$	$\sqrt{\frac{\pi}{u}} \sin\left(\frac{ab}{2u}\right) \sin\left(\frac{a^2+b^2}{4u} - \frac{\pi}{4}\right)$
7	$\sin(ax^2), a > 0$	$\sqrt{\frac{\pi}{8a}} \left[\cos\left(\frac{u^2}{4a}\right) - \sin\left(\frac{u^2}{4a}\right) \right]$
8	$\frac{1 - \cos(ax)}{x}, a > 0$	$\frac{1}{2}\ln\left 1-\frac{a^2}{u^2}\right $
9	$x^{\nu-1}\cos(ax), a > 0, \ 0 < \nu < 1$	$\frac{1}{2}\Gamma(\nu)\cos\left(\frac{1}{2}\pi\nu\right)\left[\left u-a\right ^{-\nu}+\left(u+a\right)^{-\nu}\right]$
10	$e^{-bx}\cos(ax), a,b>0$	$\frac{b}{2} \left[\frac{1}{(a+u)^2 + b^2} + \frac{1}{(a-u)^2 + b^2} \right]$
11	$\frac{1}{\sqrt{x}}\cos(a\sqrt{x})$	$\sqrt{\frac{\pi}{u}}\sin\!\left(\frac{a^2}{4u} + \frac{\pi}{4}\right)$
12	$\frac{1}{\sqrt{x}}\cos(a\sqrt{x})\cos(b\sqrt{x})$	$\sqrt{\frac{\pi}{u}}\cos\left(\frac{ab}{2u}\right)\sin\left(\frac{a^2+b^2}{4u}+\frac{\pi}{4}\right)$
13	$\cos(ax^2), a > 0$	$\sqrt{\frac{\pi}{8a}} \left[\cos\left(\frac{1}{4}a^{-1}u^2\right) + \sin\left(\frac{1}{4}a^{-1}u^2\right) \right]$

Notation: $J_0(z)$ is the Bessel function of the first kind, $\Gamma(z)$ is the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Fourier Cosine Transforms: Expressions with Trigonometric Functions