Diferenciabilidade de uma função real de duas variáveis

Definição

Sejam $D \subset \mathbb{R}^2$, $(a, b) \in \operatorname{int}(D)$ e

$$f: D \to \mathbb{R}$$
.

Diz-se que f é diferenciável em (a, b) se existir uma aplicação linear

$$\lambda: \mathbb{R}^2 \to \mathbb{R}$$

tal que

$$\lim_{(h,k)\to(0,0)} \frac{|f(a+h,b+k)-f(a,b)-\lambda(h,k)|}{\|(h,k)\|} = 0.$$

Derivada

À aplicação linear λ chama-se derivada de f em (a, b) e representa-se por Df(a, b).

Existência das derivadas parciais

Teorema

Sejam $D \subset \mathbb{R}^2$ e $f: D \to \mathbb{R}$. Se f for diferenciável em (a, b), então

$$\frac{\partial f}{\partial x}(a,b), \quad \frac{\partial f}{\partial y}(a,b)$$

existem e fixando a base canónica em \mathbb{R}^2 , Df(a,b) é representada pela matriz jacobiana de f no ponto (a,b)

$$Jf(a,b) = \begin{bmatrix} \frac{\partial f}{\partial x}(a,b) & \frac{\partial f}{\partial y}(a,b) \end{bmatrix}$$

Como provar que f é diferenciável em (a, b)?

1. Calcular

$$\nabla f(a,b) = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right).$$

Se uma das derivadas parciais não existir, pelo teorema, f não é diferenciável.

2. Verificar que

$$\lim_{(h,k)\to(0,0)} \frac{|f(a+h,b+k)-f(a,b)-\nabla f(a,b)\cdot (h,k)|}{\|(h,k)\|} = \lim_{(h,k)\to(0,0)} \frac{|f(a+h,b+k)-f(a,b)-\nabla f(a,b)\cdot (h,k)|}{\sqrt{h^2+k^2}} = 0.$$

Exemplo

Exemplo

Considere a função

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{\sqrt{x^2 + y^2}}, & \text{se } (x,y) \neq (0,0) \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

Mostre que f é diferenciável em (0,0). Resolução:

Continuidade de uma função diferenciável

Teorema Sejam $D \subset \mathbb{R}^2$, $(a, b) \in \text{int}(D)$ e

$$f:D\to\mathbb{R}$$
.

Se f for diferenciável em (a, b), então f é contínua em (a, b). Demonstração:

Diferenciabilidade de uma função de classe C¹

Teorema

Seja $D \subset \mathbb{R}^2$ um conjunto aberto. Se $f \in C^1(D)$, então f é diferenciável em qualquer ponto de D.

Exemplo

Verifique que a função $f(x,y) = \frac{\cos x}{x^2 + 1}$ é diferenciável em \mathbb{R}^2 .

Resolução:

Aproximação linear de 1ª ordem - Plano tangente

Se f for diferenciável em (a, b), então

$$f(a+h,b+k) \approx f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k$$
a aproximação à 1^a ordem de f em (a,b)

$$f(x,y) \approx \underbrace{f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)}_{\text{a aproximação à 1a ordem de } f \text{ em } (a,b)}$$

Equação do plano tangente ao gráfico de f no ponto (a, b, f(a, b)):

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

Funções vetoriais

Seja $D \subset \mathbb{R}^n$. Uma função

$$f: D \to \mathbb{R}^m \quad (m \in \mathbb{N}, \quad m > 1),$$

fica definida por m funções reais de n variáveis

$$f(x_1,\ldots,x_n)=(y_1,\ldots,y_m)$$

em que

$$y_1 = f_1(x_1, \dots, x_n),$$

 \vdots
 $y_m = f_m(x_1, \dots, x_n)$

e

$$f_i: D \to \mathbb{R}, \quad i = 1, \ldots, m.$$

A f_i chama-se função coordenada de f.

Diferenciabilidade de funções vetoriais

Definição

Sejam $D \subset \mathbb{R}^n$, $A \in int(D)$ e

$$f:D\to\mathbb{R}^m$$
.

Diz-se que f é diferenciável em A se existir uma aplicação linear

$$\lambda: \mathbb{R}^n \to \mathbb{R}^m$$

tal que

$$\lim_{H \to O} \frac{\|f(A+H) - f(A) - \lambda(H)\|_m}{\|H\|_n} = 0.$$

Diferencial

À aplicação linear λ chama-se derivada de f em A e representa-se por Df(A).

Diferenciabilidade de uma função vetorial e das suas funções coordenadas

Teorema

Sejam $D \subset \mathbb{R}^n$, $A \in int(D)$ e

$$f = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$$
.

A função f é diferenciável em A se, e só se, as funções coordenadas

$$f_i: D \to \mathbb{R}, \quad i \in \{1, \ldots, m\},$$

forem diferenciáveis em A.

Derivada e matriz Jacobiana

Teorema

Sejam $D \subset \mathbb{R}^n$, $A \in \text{int}(D)$ e

$$f = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$$
.

Se f for diferenciável em A então todas as derivadas parciais

$$\frac{\partial f_i}{\partial x_i}(A)$$
 $i \in \{1,\ldots,m\}, j \in \{1,\ldots,n\}$

existem e a derivada f em A é a aplicação linear representada pela matriz jacobiana f em A (fixadas as bases canónicas em \mathbb{R}^m e em \mathbb{R}^n)

$$Jf(A) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(A) & \dots & \frac{\partial f_1}{\partial x_n}(A) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_n}(A) & \dots & \frac{\partial f_m}{\partial x}(A) \end{bmatrix}$$

Exemplo

Exemplo

Considere a função

$$f(x, y, z) = (x^2 + 3y + e^z, \sin x + \ln(yz)).$$

- (a) Verifique que a função é diferenciável no ponto (0,1,e).
- (b) Calcule a matriz Jacobiana da função no ponto (0,1,e).

Resolução:

Derivada da função composta - Regra da cadeia

Teorema

$$f: D \subset \mathbb{R}^n \to \mathbb{R}^m, \quad g: f(D) \subset \mathbb{R}^m \to \mathbb{R}^p$$

е

$$A \in \operatorname{int}(D), \quad B = f(A) \in \operatorname{int}(f(D)).$$

Se f for diferenciável em A e g for diferenciável em B, então a função composta

$$h = g \circ f : D \to \mathbb{R}^p$$

é diferenciável em A e

$$Dh(A) = Dg(B) \circ Df(A), \quad Jh(A) = Jg(B) \cdot Jf(A).$$

Funções de uma variável

Se x = x(t) for diferenciável em t_0 e y = y(x) for diferenciável em $x_0 = x(t_0)$, então a função composta

$$y(t) = y(x(t))$$

é diferenciável em to e

$$\frac{dy}{dt}(t_0) = \frac{dy}{dx}(x(t_0)) \cdot \frac{dx}{dt}(t_0).$$

Regra da cadeia - Casos particulares

Se x = x(t) e y = y(t) forem diferenciáveis em t_0 e se z = z(x, y) for diferenciável no ponto $(x_0, y_0) = (x(t_0), y(t_0))$, então a função composta

$$z(t) = z(x(t), y(t))$$

é diferenciável em to e

(continuação)

$$\frac{dz}{dt}(t_0) = \underbrace{\frac{\partial z}{\partial x}(x(t_0), y(t_0)) \cdot \frac{dx}{dt}(t_0)}_{\text{1° ramo}} + \underbrace{\frac{\partial z}{\partial y}(x(t_0), y(t_0)) \cdot \frac{dy}{dt}(t_0)}_{\text{2° ramo}}.$$

Exemplo

Exemplo

Seja

$$z = \sqrt{xy + y}$$
, $x = \cos \theta$, $y = \sin \theta$.

Use a regra da cadeia para determinar $\frac{dz}{d\theta}(\pi/2)$.

Resolução:

Regra da cadeia - Casos particulares

Se x = x(u, v) e y = y(u, v) forem diferenciáveis no ponto (u_0, v_0) e se z = z(x, y) for diferenciável no ponto

$$(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0)),$$

então a função composta

$$z(u,v) = z(x(u,v),y(u,v))$$

é diferenciável no ponto (u_0, v_0) e

Derivada em ordem a **u**

$$\frac{\partial z}{\partial u}(u_0, v_0) = \underbrace{\frac{\partial z}{\partial x}(x(u_0, v_0), y(u_0, v_0)) \cdot \frac{\partial x}{\partial u}(u_0, v_0)}_{1^{\circ} \text{ ramo}} + \underbrace{\frac{\partial z}{\partial y}(x(u_0, v_0), y(u_0, v_0)) \cdot \frac{\partial y}{\partial u}(u_0, v_0)}_{2^{\circ} \text{ ramo}},$$

Derivada em ordem a v

$$\frac{\partial z}{\partial v}(u_0, v_0) = \underbrace{\frac{\partial z}{\partial x}(x(u_0, v_0), y(u_0, v_0)) \cdot \frac{\partial x}{\partial v}(u_0, v_0)}_{1^{\circ} \text{ ramo}} + \underbrace{\frac{\partial z}{\partial y}(x(u_0, v_0), y(u_0, v_0)) \cdot \frac{\partial y}{\partial v}(u_0, v_0)}_{2^{\circ} \text{ ramo}},$$

Regra da cadeia - Casos particulares

Se

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v)$$

forem funções diferenciáveis no ponto (u_0, v_0) e w = w(x, y, z) for diferenciável no ponto

$$(x_0, y_0, z_0) = (x(u_0, v_0), y(u_0, v_0), z(u_0, v_0)),$$

então a função composta

$$w(u,v) = w(x(u,v),y(u,v),z(u,v))$$

é diferenciável no ponto (u_0, v_0) e

$$\frac{\partial w}{\partial u}(u_0, v_0) = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial u},
\frac{\partial w}{\partial v}(u_0, v_0) = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial v} + \frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial v}$$

onde

$$\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}$$
 e $\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}$ são calculadas em (u_0, v_0) e

$$\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \frac{\partial w}{\partial z}$$
 são calculadas em $(x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$.

Exemplo

Exemplo

Seja

$$u = x^4y + y^2z^3$$

onde

$$x = rse^t$$
, $y = rs^2e^{-t}$, $z = r^2s\sin t$.

Calcule $\frac{\partial u}{\partial s}(r, s, t)$ para (r, s, t) = (2, 1, 0).

Resolução:

Exemplo

Exemplo

Sejam

$$f(x,y) = (u(x,y), v(x,y)) = (x+y, x-y)$$

е

$$g(u,v) = (uv, u^2 - v^2, v)$$

Seja $h = g \circ f$.

- (a) Justifique que h é diferenciável no ponto (1,1).
- (b) Calcule a matriz Jacobiana de h em (1,1).

Resolução: