- 9. Assume that a WVG is described by $\Gamma = (q; w_1, \dots, w_n)$. Analyze the computational complexity of the problemS
 - Compute the smallest number of players that can form a wining coalition in Γ .
 - Compute the biggest number of players that can form a losing coalition in Γ .
- 10. **The diameter game.** Consider a cooperative game which is defined on an undirected connected graph G = (V, E). The players are the edges in the graph. For $X \subseteq E$, let $G_X = (V, X)$ be the graph formed by V and the edges in X. The valuation function is the following

$$v(X) = \begin{cases} 2|X| - diam(G_X) & \text{if } G_X \text{ is connected} \\ \frac{|X|}{2} & \text{otherwise,} \end{cases}$$

where diam(H) is the diameter of the graph H.

- (a) Is the valuation function monotone? supperadditive? supermodular?
- (b) Are there connected graphs such that the core of the associated diameter game is non-empty?
- 11. **Games on social networks** One of the criticism to simple games is the fact of assuming that any coalition can be formed. In the context in which the players participate in a social networks, a natural restriction on a coalition to take effect is that the members of a should at least be able to establish some level of communication among themselves.

For simplicity you can assume that a simple game $\Gamma = (N, \mathcal{W})$ is defined and that the social network is an undirected graph H = (N, E).

On top of that we can came out with different combinations for defining winning coalitions in an associated *social game*, Γ_s on N. Consider the following options:

- (a) A coalition X is winning in Γ_s iff X wins in Γ and H[X] has no isolated vertices.
- (b) A coalition X is winning in Γ_s iff X wins in Γ and H[X] is connected.
- (c) A coalition X is winning in Γ_s iff there is $Y \subseteq X$, so that Y wins in Γ and H[Y] is connected.

Under which of the options (a), (b) or (c) is Γ_s a simple game?

For those cases in which a simple game is defined, assuming that you have access to a polynomial time algorithm that given X decides whether $X \in \mathcal{W}$, analyze the computational complexity of the problem of deciding whether Γ_s has an empty core.

- 12. Vertex cover games For a given undirected graph G = (V, E), the associated vertex cover game has N = V and in it a coalition wins iff and only if X is a vertex cover in G.
 - (a) Show that vertex cover games are simple games.
 - (b) Are there games in which the core is non-empty?
 - (c) Analyze the computational complexity of the IsProper and IsStrong problem on vertex cover games
- 13. Show that Kemeney, Copeland and Maximin are Condorcet consistent and that Borda is not.
- 14. A voting system is said to be *partition consistent* if whenever some alternative wins in all the subelections that results in partitioning the voters into two disjoints groups, this alternative also wins the election as a whole. Here we assume that the voters keep their preferences in all the subelections.

Show that Plurality is partition consistent but that Borda and Copeland are not.

15. A partial election is an election in which the preferences of the voters over alternatives are partial orders. In this context we consider the following proble.

Possible Condorcer Winner: Given an election (A, N, P) where P is a profile of partial orders over A, and an alternative c. Is it possible to extend every partial vote in P so that c is a condorcet winner?

- For a profile T of linear orders over A and for any two alternatives $x, y \in A$, let $D_T(x, y)$ denote the number of voters that prefer x to y minus the number of voters that prefer y to x.
- For a profile P of partial orders over A and for any two alternatives $x, y \in A$, let $D_R^{\max}(x, y)$ denote the maximum value of $D_T(x, y)$, taken over all total extensions T of the partial order P.
- (a) Show that, for a profile P of partial orders over A and any two alternatives $x, y \in A$,

$$D_R^{\max}(x,y) = |\{i \mid \ \mathrm{not}(y>_{P_i} x\}| - |\{\{i \mid (y>_{P_i} x\}\}|.$$

- (b) Show that $x \in A$ is a possible Condorcet winner for P iff, for all $y \neq x$, $D_R^{\max}(x,y) > 0$.
- (c) Show that Possible Condorcet Winner can be solved in polynomial time.
- 16. In a weighthed election each layer i has been assigned a weight w_i . This weight is used as a multiplying factor to the number of points that player i assigns to an alternative. In this way any voting rule assigning points can be extended to the weighted case.

The E-COALITIONAL-WEIGHTED-MANIPULATION problem E-CWMis defined as follows. The input is a weighthed election (A, N, w) where player i has weight w_i , a set $M \subset V$, a preference P_i , for each player $i \not h n M$, and an alternative $d \in A$. The question is whether it is possible to find preferences for the palyers in M so that in the joint preference profile c is a winner.

Given a Partition instance (k_1, \ldots, k_n) with $\sum_{i=1}^n = 2K$, we construct the following instance of the Copeland-CWM problem.

- ullet $A = \{a, b, c, d\}$ and d is the distinguished alternative that we want to make a winner.
- ullet The weights and preference of the 4 voters not in M are

Weight	Preference
2K+2	d > a > b > c
2K+2	d > a > b > c c > d > b > a a > b > c > d b > a > c > d
K+1	a > b > c > d
K+1	b > a > c > d

• M has n palyers, player $m_i \in M$ has weight k_i .

Using this construction show that Copeland-CWM is NP-complete.