Econ 722 - Advanced Econometrics IV, Part II

Francis J. DiTraglia

University of Pennsylvania

Lecture #1 – AIC-type Information Criteria

Kullback-Leibler Divergence

Bias of Maximized Sample Log-Likelihood

Review of Asymptotics for Mis-specified MLE

Deriving AIC and TIC

Corrected AIC (AIC_c)

Kullback-Leibler (KL) Divergence

Motivation

How well does a given density f(y) approximate an unknown true density g(y)? Use this to select between parametric models.

Definition

$$\mathsf{KL}(g;f) = \underbrace{\mathbb{E}_G\left[\log\left\{\frac{g(Y)}{f(Y)}\right\}\right]}_{\mathsf{True\ density\ on\ top}} = \underbrace{\mathbb{E}_G\left[\log g(Y)\right]}_{\mathsf{Depends\ only\ on\ truth}} - \underbrace{\mathbb{E}_G\left[\log f(Y)\right]}_{\mathsf{Expected\ log-likelihood}}$$

Properties

- Not symmetric: $KL(g; f) \neq KL(f; g)$
- ▶ By Jensen's Inequality: $KL(g; f) \ge 0$ (strict iff g = f a.e.)

KL Divergence and Mis-specified MLE

Pseudo-true Parameter Value θ_0

$$\widehat{\theta}_{\mathit{MLE}} \overset{p}{\to} \theta_0 \equiv \operatorname*{arg\,min}_{\theta \in \Theta} \mathsf{KL}(g; f_\theta) = \operatorname*{arg\,max}_{\theta \in \Theta} \mathbb{E}_G[\log f(Y|\theta)]$$

What if f_{θ} is correctly specified?

If $g = f_{\theta}$ for some θ then $KL(g; f_{\theta})$ is minimized at zero.

Goal: Compare Mis-specified Models

$$\mathbb{E}_G [\log f(Y|\theta_0)]$$
 versus $\mathbb{E}_G [\log h(Y|\gamma_0)]$

where θ_0 is the pseudo-true parameter value for f_θ and γ_0 is the pseudo-true parameter value for h_γ .

How to Estimate Expected Log Likelihood?

For simplicity: $Y_1, \ldots, Y_n \sim \text{ iid } g(y)$

Unbiased but Infeasible

$$\mathbb{E}_{G}\left[\frac{1}{T}\ell(\theta_{0})\right] = \mathbb{E}_{G}\left[\frac{1}{T}\sum_{t=1}^{T}\log f(Y_{t}|\theta_{0})\right] = \mathbb{E}_{G}\left[\log f(Y|\theta_{0})\right]$$

Biased but Feasible

 $T^{-1}\ell(\widehat{\theta}_{MLE})$ is a biased estimator of $\mathbb{E}_G[\log f(Y|\theta_0)]$.

Intuition for the Bias

 $T^{-1}\ell(\widehat{\theta}_{MLE}) > T^{-1}\ell(\theta_0)$ unless $\widehat{\theta}_{MLE} = \theta_0$. Maximized sample log-like. is an overly optimistic estimator of expected log-like.

What to do about this bias?

- General-purpose asymptotic approximation of "degree of over-optimism" of maximized sample log-likelihood.
 - Takeuchi's Information Criterion (TIC)
 - Akaike's Information Criterion (AIC)
- 2. Problem-specific finite sample approach, assuming $g \in f_{\theta}$.
 - ► Corrected AIC (AIC_c) of Hurvich and Tsai (1989)

Tradeoffs

TIC is most general and makes weakest assumptions, but requires very large T to work well. AIC is a good approximation to TIC that requires less data. Both AIC and TIC perform poorly when T is small relative to the number of parameters, hence AIC_C.

Recall: Asymptotics for Mis-specified ML Estimation

Model $f(y|\theta)$, pseudo-true parameter θ_0 . For simplicity $Y_1, \ldots, Y_T \sim \text{ iid } g(y)$.

Fundamental Expansion

$$\sqrt{T}(\widehat{\theta} - \theta_0) = J^{-1}\left(\sqrt{T}\,\overline{U}_T\right) + o_p(1)$$

$$J = -\mathbb{E}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta \partial \theta'} \right], \quad \bar{U}_T = \frac{1}{T} \sum_{t=1}^{I} \frac{\partial \log f(Y_t|\theta_0)}{\partial \theta}$$

Central Limit Theorem

$$\sqrt{T}\bar{U}_T \to_d U \sim N_p(0,K), \quad K = \operatorname{Var}_G \left[\frac{\partial \log f(Y|\theta_0)}{\partial \theta} \right]$$

$$\sqrt{T}(\widehat{\theta}-\theta_0)
ightarrow_d J^{-1}U \sim N_p(0,J^{-1}KJ^{-1})$$

Information Matrix Equality

If
$$g = f_{\theta}$$
 for some $\theta \in \Theta$ then $K = J \implies \mathsf{AVAR}(\widehat{\theta}) = J^{-1}$

Bias Relative to Infeasible Plug-in Estimator

Definition of Bias Term B

$$B = \underbrace{\frac{1}{T}\ell(\widehat{\theta})}_{\text{feasible overly-optimistic}} - \underbrace{\int g(y)\log f(y|\widehat{\theta}) \ dy}_{\text{uses data only once infeas. not overly-optimistic}}$$

Question to Answer

On average, over the sampling distribution of $\widehat{\theta}$, how large is B? AIC and TIC construct an asymptotic approximation of $\mathbb{E}[B]$.

Derivation of AIC/TIC

Step 1: Taylor Expansion

$$B = \bar{Z}_T + (\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) + o_p(T^{-1})$$

$$\bar{Z}_T = \frac{1}{T}\sum_{t=1}^T \{\log f(Y_t|\theta_0) - \mathbb{E}_G[\log f(Y|\theta_0)]\}$$

Step 2:
$$\mathbb{E}[\bar{Z}_T] = 0$$

$$\mathbb{E}[B] \approx \mathbb{E}\left[(\widehat{\theta} - \theta_0)' J(\widehat{\theta} - \theta_0) \right]$$

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \rightarrow_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \rightarrow_d U'J^{-1}U$$

Derivation of AIC/TIC Continued...

Step 3:
$$\sqrt{T}(\widehat{\theta} - \theta_0) \to_d J^{-1}U$$

$$T(\widehat{\theta} - \theta_0)'J(\widehat{\theta} - \theta_0) \to_d U'J^{-1}U$$

Step 4:
$$U \sim N_p(0, K)$$

$$\mathbb{E}[B] \approx \frac{1}{T} \mathbb{E}[U'J^{-1}U] = \frac{1}{T} \text{tr} \left\{ J^{-1}K \right\}$$

Final Result:

 $T^{-1} {\rm tr} \left\{ J^{-1} K \right\}$ is an asymp. unbiased estimator of the over-optimism of $T^{-1} \ell(\widehat{\theta})$ relative to $\int g(y) \log f(y|\widehat{\theta}) \ dy$.

TIC and AIC

Takeuchi's Information Criterion

Multiply by
$$2T$$
, estimate $J, K \Rightarrow \mathsf{TIC} = 2\left[\ell(\widehat{\theta}) - \mathsf{tr}\left\{\widehat{J}^{-1}\widehat{K}\right\}\right]$

Akaike's Information Criterion

If
$$g = f_{ heta}$$
 then $J = K \Rightarrow \operatorname{tr}\left\{J^{-1}K\right\} = p \Rightarrow \mathsf{AIC} = 2\left[\ell(\widehat{ heta}) - p\right]$

Contrasting AIC and TIC

Technically, AIC requires that all models under consideration are at least correctly specified while TIC doesn't. But $J^{-1}K$ is hard to estimate, and if a model is badly mis-specified, $\ell(\widehat{\theta})$ dominates.

Corrected AIC (AIC_c) – Hurvich & Tsai (1989)

Idea Behind AIC

Asymptotic approximation used for AIC/TIC works poorly if p is too large relative to T. Try exact, finite-sample approach instead.

Assumption: True DGP

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathit{N}(\mathbf{0}, \sigma_0^2 \mathbf{I}_T), \quad \textit{k} \; \mathsf{Regressors}$$

Can Show That

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

Where f is a normal regression model with parameters (β_1, σ_1^2) that might not be the true parameters.

But how can we use this?

$$\mathit{KL}(g,f) = rac{T}{2} \left[rac{\sigma_0^2}{\sigma_1^2} - \log \left(rac{\sigma_0^2}{\sigma_1^2}
ight) - 1
ight] + \left(rac{1}{2\sigma_1^2}
ight) (eta_0 - eta_1)' \mathbf{X}' \mathbf{X} (eta_0 - eta_1)$$

- 1. Would need to know (β_1, σ_1^2) for candidate model.
 - Easy: just use MLE $(\widehat{\boldsymbol{\beta}}_1,\widehat{\sigma}_1^2)$
- 2. Would need to know (β_0, σ_0^2) for true model.
 - Very hard! The whole problem is that we don't know these!

Hurvich & Tsai (1989) Assume:

- Every candidate model is at least correctly specified
- ▶ Implies any candidate estimator $(\widehat{\beta}, \widehat{\sigma}^2)$ is consistent for truth.

Deriving the Corrected AIC

Since $(\widehat{\beta}, \widehat{\sigma}^2)$ are random, look at $\mathbb{E}[\widehat{KL}]$, where

$$\widehat{\mathit{KL}} = \frac{\mathit{T}}{2} \left[\frac{\sigma_0^2}{\widehat{\sigma}^2} - \log \left(\frac{\sigma_0^2}{\widehat{\sigma}^2} \right) - 1 \right] + \left(\frac{1}{2\widehat{\sigma}^2} \right) (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)' \mathbf{X}' \mathbf{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

Finite-sample theory for correctly spec. normal regression model:

$$\mathbb{E}\left[\widehat{\mathit{KL}}\right] = \frac{T}{2} \left\{ \frac{T+k}{T-k-2} - \log(\sigma_0^2) + \mathbb{E}[\log \widehat{\sigma}^2] - 1 \right\}$$

Eliminate constants and scaling, unbiased estimator of $\mathbb{E}[\log \widehat{\sigma}^2]$:

$$AIC_c = \log \widehat{\sigma}^2 + \frac{T+k}{T-k-2}$$

a finite-sample unbiased estimator of KL for model comparison

Lecture #2 – More on "Classical" Model Selection

Mallow's C_p

Bayesian Model Comparison

Laplace Approximation

Bayesian Information Criterion (BIC)

Motivation: Predict **y** from **x** via Linear Regression

$$egin{aligned} \mathbf{y} &= \mathbf{X} & \boldsymbol{\beta} \\ (au imes \mathbf{1}) &= (au imes K)(K imes \mathbf{1}) \end{aligned} + oldsymbol{\epsilon} \ \mathbb{E}[oldsymbol{\epsilon}|\mathbf{X}] = 0, \quad \mathsf{Var}(oldsymbol{\epsilon}|\mathbf{X}) = \sigma^2 \mathbf{I} \end{aligned}$$

- If β were known, could never achieve lower MSE than by using all regressors to predict.
- ▶ But \(\beta\) is unknown so we have to estimate it from data \(\Rightarrow\) bias-variance tradeoff.
- Could make sense to exclude regressors with small coefficients: add small bias but reduce variance.

Operationalizing the Bias-Variance Tradeoff Idea

Mallow's C_p

Approximate the predictive MSE of each model relative to the infeasible optimum in which $oldsymbol{eta}$ is known.

Notation

- ▶ Model index m and regressor matrix X_m
- ▶ Corresponding OLS estimator $\widehat{\beta}_m$ padded out with zeros

In-sample versus Out-of-sample Prediction Error

Why not compare RSS(m)?

In-sample prediction error: $RSS(m) = (\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}_m)'(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}_m)$

From your Problem Set

RSS cannot decrease even if we add irrelevant regressors. Thus in-sample prediction error is an overly optimistic estimate of out-of-sample prediction error.

Bias-Variance Tradeoff

Out-of-sample performance of full model (using all regressors) could be very poor if there is a lot of estimation uncertainty associated with regressors that aren't very predictive.

Predictive MSE of $\mathbf{X}\widehat{\boldsymbol{\beta}}_m$ relative to infeasible optimum $\mathbf{X}\boldsymbol{\beta}$

Step 1: Algebra

$$\mathbf{X}\widehat{\boldsymbol{\beta}}_{m} - \mathbf{X}\boldsymbol{\beta} = \mathbf{P}_{m}\mathbf{y} - \mathbf{X}\boldsymbol{\beta} = \mathbf{P}_{m}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) - (\mathbf{I} - \mathbf{P}_{m})\mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{P}_{m}\boldsymbol{\epsilon} - (\mathbf{I} - \mathbf{P}_{m})\mathbf{X}\boldsymbol{\beta}$$

Step 2: P_m and $(I - P_m)$ are symmetric, idempotent, and orthogonal

$$\begin{aligned} \left| \left| \mathbf{X} \widehat{\boldsymbol{\beta}}_{m} - \mathbf{X} \boldsymbol{\beta} \right| \right|^{2} &= \left\{ \mathbf{P}_{m} \boldsymbol{\epsilon} - (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right\}' \left\{ \mathbf{P}_{m} \boldsymbol{\epsilon} + (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right\} \\ &= \left. \boldsymbol{\epsilon}' \mathbf{P}'_{m} \mathbf{P}_{m} \boldsymbol{\epsilon} - \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m})' \mathbf{P}_{m} \boldsymbol{\epsilon} - \boldsymbol{\epsilon}' \mathbf{P}'_{m} (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right. \\ &+ \left. \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m}) (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \right. \\ &= \left. \boldsymbol{\epsilon}' \mathbf{P}_{m} \boldsymbol{\epsilon} + \boldsymbol{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_{m}) \mathbf{X} \boldsymbol{\beta} \end{aligned}$$

Predictive MSE of $\mathbf{X}\hat{\boldsymbol{\beta}}_m$ relative to infeasible optimum $\mathbf{X}\boldsymbol{\beta}$

Step 3: Expectation of Step 2 conditional on X

$$\begin{aligned} \mathsf{MSE}(m|\mathbf{X}) &= & \mathbb{E}\left[(\mathbf{X}\widehat{\boldsymbol{\beta}}_m - \mathbf{X}\boldsymbol{\beta})'(\mathbf{X}\widehat{\boldsymbol{\beta}}_m - \mathbf{X}\boldsymbol{\beta})|\mathbf{X}\right] \\ &= & \mathbb{E}\left[\epsilon'\mathbf{P}_m\boldsymbol{\epsilon}|\mathbf{X}\right] + \mathbb{E}\left[\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}|\mathbf{X}\right] \\ &= & \mathbb{E}\left[\mathsf{tr}\left\{\epsilon'\mathbf{P}_m\boldsymbol{\epsilon}\right\}|\mathbf{X}\right] + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \mathsf{tr}\left\{\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}'|\mathbf{X}]\mathbf{P}_m\right\} + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \mathsf{tr}\left\{\sigma^2\mathbf{P}_m\right\} + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \\ &= & \sigma^2k_m + \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I} - \mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} \end{aligned}$$

where k_m denotes the number of regressors in \mathbf{X}_m and $\operatorname{tr}(\mathbf{P}_m) = \operatorname{tr}\left\{\mathbf{X}_m \left(\mathbf{X}_m'\mathbf{X}_m\right)^{-1}\mathbf{X}_m'\right\} = \operatorname{tr}\left\{\mathbf{X}_m'\mathbf{X}_m \left(\mathbf{X}_m'\mathbf{X}_m\right)^{-1}\right\} = \operatorname{tr}(\mathbf{I}_m)$

Now we know the MSE of a given model...

$$MSE(m|\mathbf{X}) = \sigma^2 k_m + \beta' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \beta$$

Bias-Variance Tradeoff

- ▶ Smaller Model $\Rightarrow \sigma^2 k_m$ smaller: less estimation uncertainty.
- ▶ Bigger Model $\Rightarrow \mathbf{X}'(\mathbf{I} \mathbf{P}_m)\mathbf{X} = ||(\mathbf{I} \mathbf{P}_m)\mathbf{X}||^2$ is in general smaller: less (squared) bias.

Mallow's C_p

- ▶ Problem: MSE formula is infeasible since it involves β and σ^2 .
- ▶ Solution: Mallow's C_p constructs an unbiased estimator.
- ▶ Idea: what about plugging in $\widehat{\beta}$ to estimate second term?

What if we plug in $\hat{\beta}$ to estimate the second term?

For the missing algebra in Step 4, see the lecture notes.

Notation

Let $\widehat{\boldsymbol{\beta}}$ denote the full model estimator and ${\bf P}$ be the corresponding projection matrix: ${\bf X}\widehat{\boldsymbol{\beta}}={\bf P}{\bf y}.$

Crucial Fact

 $span(\mathbf{X}_m)$ is a subspace of $span(\mathbf{X})$, so $\mathbf{P}_m\mathbf{P} = \mathbf{P}\mathbf{P}_m = \mathbf{P}_m$.

Step 4: Algebra using the preceding fact

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right]=\cdots=\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}+\mathbb{E}\left[\boldsymbol{\epsilon}'(\mathbf{P}-\mathbf{P}_m)\boldsymbol{\epsilon}|\mathbf{X}\right]$$

Substituting $\widehat{\boldsymbol{\beta}}$ doesn't work...

Step 5: Use "Trace Trick" on second term from Step 4

$$\begin{split} \mathbb{E}[\epsilon'(\mathbf{P} - \mathbf{P}_m)\epsilon|\mathbf{X}] &= \mathbb{E}[\operatorname{tr}\left\{\epsilon'(\mathbf{P} - \mathbf{P}_m)\epsilon\right\}|\mathbf{X}] \\ &= \operatorname{tr}\left\{\mathbb{E}[\epsilon\epsilon'|\mathbf{X}](\mathbf{P} - \mathbf{P}_m)\right\} \\ &= \operatorname{tr}\left\{\sigma^2(\mathbf{P} - \mathbf{P}_m)\right\} \\ &= \sigma^2\left(\operatorname{trace}\left\{\mathbf{P}\right\} - \operatorname{trace}\left\{\mathbf{P}_m\right\}\right) \\ &= \sigma^2(K - k_m) \end{split}$$

where K is the total number of regressors in X

Bias of Plug-in Estimator

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right] = \underbrace{\boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta}}_{\text{Truth}} + \underbrace{\boldsymbol{\sigma}^2(\boldsymbol{K}-\boldsymbol{k}_m)}_{\text{Bias}}$$

Putting Everything Together: Mallow's C_p

Want An Unbiased Estimator of This:

$$\mathsf{MSE}(m|\mathbf{X}) = \sigma^2 k_m + \beta' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \boldsymbol{\beta}$$

Previous Slide:

$$\mathbb{E}\left[\widehat{\boldsymbol{\beta}}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\widehat{\boldsymbol{\beta}}|\mathbf{X}\right] = \boldsymbol{\beta}'\mathbf{X}'(\mathbf{I}-\mathbf{P}_m)\mathbf{X}\boldsymbol{\beta} + \sigma^2(K-k_m)$$

End Result:

$$MC(m) = \widehat{\sigma}^2 k_m + \left[\widehat{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \widehat{\beta} - \widehat{\sigma}^2 (K - k_m) \right]$$
$$= \widehat{\beta}' \mathbf{X}' (\mathbf{I} - \mathbf{P}_m) \mathbf{X} \widehat{\beta} + \widehat{\sigma}^2 (2k_m - K)$$

is an unbiased estimator of MSE, with $\hat{\sigma}^2 = \mathbf{y}'(\mathbf{I} - \mathbf{P})\mathbf{y}/(T - K)$

Why is this different from the textbook formula?

Just algebra, but tedious...

$$\begin{aligned} \mathsf{MC}(m) - 2\widehat{\sigma}^2 k_m &= \widehat{\beta}' X' (\mathbf{I} - P_M) X \widehat{\beta} - K \widehat{\sigma}^2 \\ \vdots &&\\ &= \mathbf{y}' (\mathbf{I} - P_M) \mathbf{y} - T \widehat{\sigma}^2 \\ &= \mathsf{RSS}(m) - T \widehat{\sigma}^2 \end{aligned}$$

Therefore:

$$MC(m) = RSS(m) + \widehat{\sigma}^2(2k_m - T)$$

Divide Through by $\widehat{\sigma}^2$:

$$C_p(m) = \frac{\mathsf{RSS}(m)}{\widehat{\sigma}^2} + 2k_m - T$$

Tells us how to adjust RSS for number of regressors...

Bayesian Model Comparison: Marginal Likelihoods

Bayes' Rule for Model $m \in \mathcal{M}$

$$\underbrace{\frac{\pi(\boldsymbol{\theta}|\mathbf{y},m)}_{\mathsf{Posterior}} \propto \underbrace{\pi(\boldsymbol{\theta}|m)}_{\mathsf{Prior}} \underbrace{f(\mathbf{y}|\boldsymbol{\theta},m)}_{\mathsf{Likelihood}}}_{\mathsf{Likelihood}}$$

$$\underbrace{f(\mathbf{y}|m)}_{\mathsf{Marginal Likelihood}} = \int_{\Theta} \pi(\boldsymbol{\theta}|m) f(\mathbf{y}|\boldsymbol{\theta},m) \; \mathrm{d}\boldsymbol{\theta}$$

Posterior Model Probability for $m \in \mathcal{M}$

$$P(m|\mathbf{y}) = \frac{P(m)f(\mathbf{y}|m)}{f(\mathbf{y})} = \frac{\int_{\Theta} P(m)f(\mathbf{y}, \boldsymbol{\theta}|m) d\boldsymbol{\theta}}{f(\mathbf{y})} = \frac{P(m)}{f(\mathbf{y})} \int_{\Theta} \pi(\boldsymbol{\theta}|m)f(\mathbf{y}|\boldsymbol{\theta}, m) d\boldsymbol{\theta}$$

where P(m) is the prior model probability and f(y) is constant across models.

Laplace (aka Saddlepoint) Approximation

Suppress model index m for simplicity.

General Case: for T large...

$$\int_{\Theta} g(\boldsymbol{\theta}) \exp\{T \cdot h(\boldsymbol{\theta})\} \; \mathrm{d}\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\{T \cdot h(\boldsymbol{\theta}_0)\} g(\boldsymbol{\theta}_0) \left|H(\boldsymbol{\theta}_0)\right|^{-1/2}$$

$$p = \dim(\theta), \ \theta_0 = \arg\max_{\theta \in \Theta} h(\theta), \ H(\theta_0) = -\frac{\partial^2 h(\theta)}{\partial \theta \partial \theta'} \Big|_{\theta = \theta_0}$$

Use to Approximate Marginal Likelihood

$$h(\theta) = \frac{\ell(\theta)}{T} = \frac{1}{T} \sum_{t=1}^{T} \log f(Y_i | \theta), \quad H(\theta) = J_T(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^2 \log f(Y_i | \theta)}{\partial \theta \partial \theta'}, \quad g(\theta) = \pi(\theta)$$

and substitute $\widehat{\boldsymbol{\theta}}_{MF}$ for $\boldsymbol{\theta}_0$

Laplace Approximation to Marginal Likelihood

Suppress model index m for simplicity.

$$\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) d\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\left\{\ell(\widehat{\boldsymbol{\theta}}_{MLE})\right\} \pi(\widehat{\boldsymbol{\theta}}_{MLE}) \left|J_{T}(\widehat{\boldsymbol{\theta}}_{MLE})\right|^{-1/2}$$

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{T} \log f(Y_{i}|\boldsymbol{\theta}), \quad H(\boldsymbol{\theta}) = J_{T}(\boldsymbol{\theta}) = -\frac{1}{T} \sum_{i=1}^{T} \frac{\partial^{2} \log f(Y_{i}|\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

Bayesian Information Criterion

$$\int_{\Theta} \pi(\boldsymbol{\theta}) f(\mathbf{y}|\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta} \approx \left(\frac{2\pi}{T}\right)^{p/2} \exp\left\{\ell(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}})\right\} \pi(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}}) \left|J_{T}(\widehat{\boldsymbol{\theta}}_{\mathit{MLE}})\right|^{-1/2}$$

Take Logs and Multiply by 2

$$2\log f(\mathbf{y}|\boldsymbol{\theta}) \approx \underbrace{2\ell(\widehat{\boldsymbol{\theta}}_{MLE})}_{O_p(T)} - \underbrace{p\log(T)}_{O(\log T)} + \underbrace{p\log(2\pi) + \log \pi(\widehat{\boldsymbol{\theta}}) - \log|J_T(\widehat{\boldsymbol{\theta}})|}_{O_p(1)}$$

The BIC

Assume uniform prior over models and ignore lower order terms:

$$BIC(m) = 2 \log f(\mathbf{y}|\widehat{\boldsymbol{\theta}}, m) - p_m \log(T)$$

large-sample Frequentist approx. to Bayesian marginal likelihood