Diagonalizability

• Which matrices are diagonalizable?

Proposition. If an $n \times n$ matrix A has n linearly independent eigenvectors, then it is diagonalizable. The matrix S (such that $S^{-1}AS$ is a diagonal matrix Λ) is the matrix whose columns are the n eigenvectors.

Proposition. If the eigenvectors x_1, \ldots, x_k correspond to different eigenvalues $\lambda_1, \ldots, \lambda_n$, then they are linearly independent.

Remark 1. If the matrix A has no repeated eigenvalues, then it can be diagonalized.

Remark 2. The diagonalizing matrix S is not unique.

Remark 3. $AS = S\Lambda$ holds only if the columns of S are eigenvectors of A.

Example of a non-diagonalizable matrix:

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

 $\lambda_1 = \lambda_2 = 0$, 1D eigenspace.

Other examples (with non-zero e-values):

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} \text{ and } A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$

Example of a diagonalizable matrix with a zero eigenvalue:

$$A = \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right]$$

We have

$$\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- diagonalizability n independent eigenvectors
- invertibility no zero eigenvalues

Remark. Diagonalizability can fail only if there are repeated eigenvalues. However, matrices with repeated eigenvalues may still be diagonalizable (ex: identity matrix, situations when we have a p dimensional eigenspace corresponding to an eigenvalue with multiplicity p).

Imaginary eigenvalues.

$$K = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

 $\lambda_1 = i, \ \lambda_2 = -i;$ the eigenvectors are complex as well:

$$x_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}$

1

Powers and Products.

Proposition.

- (i) If λ is an eigenvalue for A, then λ^k is an eigenvalue for A^k .
- (ii) Each eigenvector of A is an eigenvector for A^k .
- (iii) If A is diagonalizable and S diagonalizes A, S also diagonalizes A^k .

Remark. If A is invertible, the proposition holds for k = -1 as well.

No such general result for products of two matrices! Only when A and B share the *same* eigenvector, we can say that AB has the eigenvalue $\lambda\mu$ if λ is an eigenvalue for A and μ is an eigenvalue is an eigenvalue for B.

Proposition. If A and B are diagonalizable, they share the same eigenvector matrix if and only if AB = BA.