Alert! In \mathbb{Z}_n , I use m to refer to [m]. Also, I use $[g]_H$ or simply [g] refer to cosets in G/H.

Problem 2.

- (a) Prove that the relation given by $a \sim b \iff a b \in \mathbb{Z}$ is an equivalence relation on the additive group \mathbb{Q} .
- (b) Prove that \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

Proof.

(a) For any $a, b, c \in \mathbb{Q}$

$$[\mathbf{a} \sim \mathbf{a}]: \quad a - a = 0 \in \mathbb{Z} \implies a \sim a.$$

$$[\mathbf{a} \sim \mathbf{b} \implies \mathbf{b} \sim \mathbf{a}]: \quad a \sim b \implies a - b \in \mathbb{Z} \implies -(a - b) = b - a \in \mathbb{Z} \implies b \sim a.$$

$$[\mathbf{a} \sim \mathbf{b}, \mathbf{b} \sim \mathbf{c} \implies \mathbf{a} \sim \mathbf{c}]: \quad a \sim b, b \sim c \implies c \sim b \implies (a - b) - (c - b) = a - c \in \mathbb{Z} \implies a \sim c.$$

So \sim is an equivalence relation on $(\mathbb{Q}, +)$.

(b) $\mathbb{Q}/\mathbb{Z} = \{ [\frac{a}{b}] = \frac{a}{b} + \mathbb{Z} \mid a, b \in \mathbb{Z} \text{ and } b \nmid a \}$. Consider any $q_1, q_2 \in (0, 1)$. If $[q_1] = [q_2]$, then $[q_1] - [q_2] = \mathbb{Z}$ and so $q_1 - q_1 \in \mathbb{Z}$. Well, $q_1, q_2 \in (0, 1)$, so $q_1 - q_2 \in (-1, 1)$ and therefore $q_1 - q_2 = 0$. So $[q_1] = [q_2] \Longrightarrow q_1 = q_2$. On the other hand, $q_1 = q_2 \Longrightarrow [q_1] = [q_2]$ by definition. So then

$$q_1 = q_2 \iff [q_1] = [q_2], \forall q_1, q_2 \in (0, 1).$$

Since the rationals are dense in \mathbb{R} , there are infinitely many distinct rationals in (0,1) and infinitely many distinct cosets of the form [q] where $q \in (0,1)$. Therefore, \mathbb{Q}/\mathbb{Z} is infinite. Lastly, since \mathbb{Q} is Abelian, so is \mathbb{Q}/\mathbb{Z} since $[q_1] + [q_2] = [q_1 + q_2] = [q_2 + q_1] = [q_2] + [q_1]$.

Thus,

 \mathbb{Q}/\mathbb{Z} is an infinite Abelian group.

Problem 3. Let p be a prime number and let $Z(p^{\infty})$ be the following subset of the group \mathbb{Q}/\mathbb{Z} :

$$\mathbb{Z}(p^{\infty}) = \left\{ \left[\frac{a}{b} \right] \in \mathbb{Q}/\mathbb{Z} \;\middle|\; a,b \in \mathbb{Z},\; b = p^i \text{ for some } i \geq 0 \right\}.$$

Prove that $\mathbb{Z}(p^{\infty})$ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} .

Proof. Clearly, $\mathbb{Z}(p^{\infty}) \subset \mathbb{Q}/\mathbb{Z}$. Consider any integers $i, j \geq 0$ and let $a_i, a_j \in \mathbb{Z}$.

[Closure]:
$$\left[\frac{a_i}{p^i}\right] + \left[\frac{a_j}{p^i}\right] = \left[\frac{p^j(a_i) + p^i(a_j)}{p^{i+j}}\right] \in \mathbb{Z}(p^{\infty}).$$
[Inverses]: $\left[\frac{-a_i}{p^i}\right] + \left[\frac{a_i}{p^i}\right] = [0] \implies -\left[\frac{a_i}{p^i}\right] = \left[\frac{-a_i}{p^i}\right].$

So $\mathbb{Z}(p^{\infty}) \leq \mathbb{Q}/\mathbb{Z}$. Now consider some integers $i, j \in \mathbb{Z}^+$ and set a = 1. Notice that $\frac{1}{p^i}, \frac{1}{p^j} \in (0,1)$. Observe.

This result essentially follows from **Problem 2**. $\left[\frac{1}{p^i}\right] = \left[\frac{1}{p^j}\right] \implies \left[\frac{1}{p^i}\right] - \left[\frac{1}{p^j}\right] = \mathbb{Z} \implies \frac{1}{p^i} - \frac{1}{p^j} \in \mathbb{Z}$. Well, $\frac{1}{p^i}, \frac{1}{p^j} \in (0,1) \implies \frac{1}{p^i} - \frac{1}{p^j} \in (-1,1) \implies \frac{1}{p^i} - \frac{1}{p^j} = 0 \implies \frac{1}{p^i} = \frac{1}{p^i} \implies i = j$. On the other hand, $i = j \implies \frac{1}{p^i} = \frac{1}{p^j} \implies \left[\frac{1}{p^i}\right] = \left[\frac{1}{p^j}\right]$ by definition. So then,

$$i = j \iff \left[\frac{1}{p^i}\right] = \left[\frac{1}{p^j}\right], \, \forall i, j \in \mathbb{Z}^+.$$

There are infinitely many distinct positive integers so there must be infinitely many distinct cosets in $\mathbb{Z}(p^{\infty})$. Thus,

 $\mathbb{Z}(p^{\infty})$ is an infinite subgroup of \mathbb{Q}/\mathbb{Z} .

Problem 5. Let Q_8 be the multiplicative group generated by the complex matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Observe that $A^4 = B^4 = I_2$ and $BA = AB^3$. Prove that Q_8 is a group of order 8.

Proof. We will use the notation -M to denote $(-m_{ij})$ where $M=(m_{ij})$. To begin, notice that

$$A^{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I \implies A^{3} = A(-I) = -A.$$

We are given that $A^4 = I$, the identity. So |A| = 4. Similarly, notice that

$$B^{2} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = A^{2} = -I,$$

and then obviously $B^{-1} = B^3 = -B$ and we are given that $B^4 = I$, so |B| = 4.

So $\langle A \rangle$, $\langle B \rangle \leq Q_8$ are both cyclic subgroups of order 4. Observe.

$$\langle A \rangle \cap \langle B \rangle = \{I, -I\} \implies |\langle A \rangle \langle B \rangle| = \frac{|\langle A \rangle| |\langle B \rangle|}{|\langle A \rangle \cap \langle B \rangle|} = \frac{(4)(4)}{(2)} = 8.$$

Well, we are given that *A* and *B* generate all of Q_8 , which means $Q_8 = \langle A, B \rangle = \langle A \rangle \langle B \rangle$.

Thus,

$$|Q_8| = |\langle A, B \rangle| = |\langle A \rangle \langle B \rangle| = \frac{|\langle A \rangle||\langle B \rangle|}{|\langle A \rangle \cap \langle B \rangle|} = 8.$$

Problem 6. Let G be a group and let Aut(G) denote the set of all automorphisms of G.

- (a) Prove that Aut(G) is a group with composition of functions as the binary operation.
- (b) Prove that $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_6) \cong \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, $\operatorname{Aut}(\mathbb{Z}_p) \cong \mathbb{Z}_{p-1}$ (p prime).

Proof. Let *meow* □

Problem 8. Let G be the multiplicative group of 2×2 invertible matrices with rational entries. Show that

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

have finite orders but AB has infinite order.

Proof. s

Problem 10. Let H, K be subgroups of a group G. Prove that HK is a subgroup of G if and only if HK = KH.

Proof.

(⇒)
$$HK \le G$$
 ⇒ For all $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in HK$. Therefore, $HK = \{hk \mid h \in H, k \in K\} = \{k^{-1}h^{-1} \mid k \in K, h \in H\} = KH$.

(\Leftarrow) Note $HK = KH \implies \forall hk \in HK$, $\exists (h_k, k_h) \in H \times K$, such that $hk = k_h h_k \in KH = HK$. The same logic holds for 'flipped' elements $kh \in KH = HK$. Observe.

[Closure]:
$$(h_1k_1)(h_2k_2) = (h_1k_1)(k_{h_2}h_{k_2}) = h_1(k_1k_{h_2})h_{k_2} = (k_1k_{h_2})h_1h_{k_1k_{h_2}}h_{k_2} \in KH = HK.$$

[Inverses]: For any $hk \in HK$, $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK.$

So $HK \leq G$.

Thus,

$$HK < G \iff HK = KH$$
.

Problem 11. Let H, K be subgroups of finite index of a group G such that [G : H] and [G : K] are relatively prime. Prove that G = HK.

Proof. We begin by proving $(H \cap K) \le H, K \le G$.

[1-Step]:
$$\forall a,b \in (H \cap K), ab^{-1} \in H \text{ and } ab^{-1} \in K \implies ab^{-1} \in (H \cap K) \implies (H \cap K) \leq H, K \leq G.$$

Since $(H \cap K) \le H, K \le G$, by the Tower Rule for groups,

$$[G:(H\cap K)] = [G:H][H:H\cap K] = [G:K][K:H\cap K] \Longrightarrow [K:H\cap K] = \frac{[G:H][H:H\cap K]}{[G:K]}$$
 and $gcd([G:H],[G:K]) = 1 \Longrightarrow [G:K] \mid [H:H\cap K].$

Now consider $H_K = \{hK \mid h \in H\} \subseteq G/K$ and $H/(H \cap K) = \{h(H \cap K) \mid h \in H\}$. Well,

$$H \ni h_2 \in [h_1]_K \iff h_1 K = h_2 K \iff h_2^{-1} h_1 \in K \iff h_2^{-1} h_1 \in (H \cap K) \iff h_2 \in [h_1]_{(H \cap K)}$$
$$H \ni h_2 \in [h_1]_{(H \cap K)} \iff h_1 (H \cap K) = h_2 (H \cap K) \iff h_2^{-1} h_1 \in (H \cap K) \iff h_2^{-1} h_1 \in K \iff h_2 \in [h_1]_K$$

So $h_2 \in [h_1]_K \iff h_2 \in [h_1]_{(H \cap K)}$ and clearly $[h]_K \leftrightarrow [h]_{(H \cap K)}$ is a bijection from H_K to $H/(H \cap K)$.

 $(H_K \subseteq G/K) \iff (|H_k| \le [G:K])$ and then $(|H_k| \le [G:K])$ with $([G:K] \mid [H:H \cap K] = |H_K|)$ implies that $|H_K| = [G:K]$. Therefore, $H_k \not\subset G/K$ and we must have that $H_K = G/K$. Therefore, $\forall g \in G, \exists h_g \in H$ such that $gK = h_gK$. Finally, $h_g^{-1}g \in K \implies \exists k_g \in K$ such that $h_g^{-1}g = k_g \implies g = h_gk_g$. So we see that $\forall g \in G, \exists (h_g, k_g) \in H \times K$ such that $g = h_gk_g$.

Thus,

$$H, K \leq G$$
 and $gcd([G:H], [G:K]) = 1 \implies G = HK$.

Problem 12. Let H, K, N be subgroups of G such that $H \subseteq N$. Prove that $HK \cap N = H(K \cap N)$.

Proof. Notice that since $H \subseteq N$, HN = N. Therefore, we show $H(K \cap N) = HK \cap HN = HK \cap N$. $[\subseteq]: \forall a \in H(K \cap N), a = hg$ where $h \in H$ and $g \in (K \cap N)$. Well, $g \in K \implies a = hg \in HK$. Similarly, $g \in N \implies a = hg \in HN$. Therefore, $a \in HK \cap HN \implies H(K \cap N) \subseteq (HK \cap HN) = (HK \cap N)$.

 $[\supseteq]$: $\forall a \in HK \cap HN$, a = hg where $hg \in HK$ and $hg \in HN$. So then $g \in K$ and $g \in N$ and we have a = hg where $h \in H$ and $g \in K \cap N$. Therefore, $a \in H(K \cap N) \Longrightarrow H(K \cap N) \subseteq HK \cap HN = HK \cap N$.

Thus,

 $H, K, N \leq G$ and $H \subseteq N \implies HK \cap N = HK \cap HN = H(K \cap N)$.

Problem 13. Let H, K, N be subgroups of G such that $H \subseteq K$, $H \cap N = K \cap N$, HN = KN. Prove that H = K.

Proof. $H \subseteq K$ is given. We show $K \subseteq H$ to prove the statement.

[\supseteq]: $\forall k \in K$, $\exists h_k \in H$ such that $kN = h_kN$ and so $h_k^{-1}k \in N$. Well, $h_k^{-1} \in H \subseteq K$ and therefore by closure $h_k^{-1}k \in K \Longrightarrow h_k^{-1}k \in (K \cap N) = (H \cap N)$. Finally, $h_k^{-1}k \in H$ and so $\exists h_k \in H$ such that $h_kk = h_k \Longrightarrow k = h_kh_k \in H$. Therefore, $K \subseteq H$.

Thus,

$$H, K, N \leq G$$
 with $H \subseteq K, H \cap N = K \cap N$, and $HN = KN \implies H = K$.

We prove the following lemma to be used for **Problem 16.**

Lemma. Any subgroup H of a cyclic group G is cyclic, and if G has order $N \in \mathbb{Z}^+$ there exists exactly one subgroup $H_d \leq G$ of order d for each divisor d of |G| = N.

Proof. Let $G = \langle g \rangle$. If $H = \{g^0\} = \{e\}$ it is cyclic. If H is non-trivial, then it contains some $h \neq e$. Well, since $h \in H \leq G$, we have that $h = g^k$ for some $k \in \mathbb{Z} \setminus \{0\}$. So then there exists some minimal positive power $n = \min\{i \in \mathbb{Z}^+ \mid g^i \in H \setminus \{e\}\}$ of g present in $H \setminus \{e\}$. Observe.

By the division algorithm and since $n \le m$, $\forall m \in \{i \in \mathbb{Z}^+ \mid g^i \in H\}$, $\exists (q,r) \in (\mathbb{Z}^+)^2$ with $0 \le r < n$ such that

$$m = nq + r \implies g^m = g^{nq+r} = g^{nq}g^r \implies g^{m-nq} = g^r \in H.$$

But since n is the minimal positive power of g in H, r=0 otherwise we get a contradiction via 0 < r < n. So then for any $m \in \mathbb{Z}^+$, such that $g^m \in H$, by the division algorithm we have that $g^m = g^{nq+(0)} = (g^n)^q$ for some $q \in \mathbb{Z}^+$. Note that this accounts for all elements of H, since all negative powers of g in H are inverses of positive powers of g in H, which are multiples of n, and since $g^0 = e \in H < G$ by definition.

Next, if G is finite and of order N, consider any divisor d of |G| = N. Since $G = \langle g \rangle$, |g| = N. Well, since d|N, $\exists ! q \in \mathbb{Z}^+$ such that dq = N. So we see $g^{dq} = g^N \implies (g^q)^d = e$. Such a d is necessarily a minimal power that gives identity here since 0 < q, d and otherwise N = d'q < dq = N, which is nonsense. So $|g^q| = d$. So then there is only one power q of g that has order $|g^q| = d$ (otherwise the existence of $q' \neq q$ such that $|g^{q'}| = d \implies N = q'd \neq qd = N$... nonsense.) Since any d-ordered subgroup H_d of G is cyclic, it must be generated by some power of G, of which there is only one and so $H_d = \langle g^d \rangle$ is the only subgroup of order d which divides N.

Now we present the solution to 16 on the following page.

Problem 16. If H is a cyclic normal subgroup of a group G, then every subgroup of H is normal in G.

Proof. Suppose |H| = n. Since $K \le H = \langle h \rangle$ where |h| = n, K is cyclic by our lemma and there exists some minimal positive power $d \in \mathbb{Z}^+$ of h such that $K = \langle h^d \rangle$. So any $k \in K$ is of the form $k = (h^d)^q$ for some minimal power $q \in \mathbb{Z}^+$. Since $H \triangleleft G$,

 $\forall g \in G, gHg^{-1} = H \iff \forall (g, h^q) \in G \times H, \exists h^p \in H, \text{ such that } gh^qg^{-1} = h^p. \text{ for any powers } p, q \in \mathbb{Z}^+$

Observe.

$$(gh^{q}g^{-1})^{m} = \overbrace{(gh^{q}g^{-1})(gh^{q}g^{-1})\cdots(gh^{q}g^{-1})}^{m} = \overbrace{g(h^{2q}g^{-1})(gh^{q}g^{-1})\cdots(gh^{q}g^{-1})}^{m-1} = \cdots = gh^{mq}g^{-1} = h^{mp}.$$

So then for any $k \in K = \langle h^d \rangle$, where $k = (h^d)^q = (h^q)^d$ and any $g \in G$, $\exists h^p \in H$ such that

$$gh^qg^{-1} = h^p \implies gkg^{-1} = g(h^q)^dg^{-1} = (g(h^q)g^{-1})^d = (h^p)^d = (h^d)^p \in \langle h^d \rangle = K.$$

Note that since $gkg^{-1} = h^{dp}$ implies $gk = h^{dp}g$, there is only one power $(h^d)^p \in K$ for which the equality holds otherwise we get a contradiction. So for each $k_l \in K$, $\exists !k_r \in K$ such that $gk_lg^{-1} = k_r$. To avoid further nightmare indexing, note that we are taking the union of all conjugates $gk_lg^{-1} \in gKg$ on the left side and showing that since each conjugate is paired with some unique $k_r \in K$ on the right side. The union of all conjugates gk_lg^{-1} is equal to the union of all their unique partners k_r and since there are |K| conjugates and |K| unique partners, of course the right side must be all of K.

$$\bigcup_{k_l \in K} g k_l g^{-1} = g K g^{-1} = \bigcup_{g k_l g^{-1} = k_r \in K} k_r = K.$$

Thus.

$$K < H = \langle h \rangle \lhd G \implies K \lhd G.$$

Problem 21. If G is a finite group and H, K are subgroups of G, then

$$[G:H\cap K]\leq [G:H][G:K].$$

Proof. Since G is finite and $H, K \leq G$, we have the following

$$|HK| = \frac{|H||K|}{|H \cap K|} \le |G| \tag{1}$$

$$[G:H] = \frac{|G|}{|H|} \tag{2}$$

$$[G:K] = \frac{|G|}{|K|} \tag{3}$$

$$\Longrightarrow [G:H][G:K] = \frac{|G|^2}{|H||K|} \tag{4}$$

$$[G:H\cap K] = \frac{|G|}{|H\cap K|}\tag{5}$$

Observe.

$$|HK| = \frac{|H||K|}{|H \cap K|} \le |G| \implies (|G|) \frac{|H||K|}{|H \cap K|} \le |G|^2 \implies (\frac{|G|}{|H||K|}) \frac{|H||K|}{|H \cap K|} = \frac{|G|}{|H \cap K|} = [G:K] \le \frac{|G|^2}{|H||K|} = [G:H][G:K]$$

Problem 22. If H, K, L are subgroups of a finite group G such that $H \subseteq K$, then

$$[K:H] \ge [L \cap K:L \cap H].$$

Proof.

Consider elements in $K/H = \{kH \mid k \in K\}$ and $(L \cap K)/(L \cap H) = \{k(L \cap H) \mid k \in (L \cap K)\}$. Well,

$$k_2 \in [k_1]_{(L \cap H)} \implies k_1(L \cap H) = k_2(L \cap H) \implies k_2^{-1}k_1 \in (L \cap H) \implies k_2^{-1}k_1 \in H \implies k_2 \in [k_1]_H$$

Therefore $f:(L\cap K)/(L\cap H)\to K/H$ where $f([k]_{L\cap H})=[k]_H$ is well-defined. Observe.

 $\forall [k_1]_{(L\cap H)}, [k_2]_{(L\cap H)} \in (L\cap K)/(L\cap H), \text{ if } f([k_1]_{(L\cap H)}) = f([k_2]_{(L\cap H)}), \text{ then } [k_1]_H = [k_2]_H \text{ by definition.}$ So then $k_2^{-1}k_1 \in H$ and since $[k_1]_{(L\cap K)}, [k_2]_{(L\cap K)} \in (L\cap K)/(L\cap H),$ obviously $k_1, k_2 \in L$. So $k_2^{-1}k_1 \in L$ by closure and finally $k_2^{-1}k_1 \in (L\cap H) \Longrightarrow [k_1]_{(L\cap H)} = [k_2]_{(L\cap H)}.$ So f is injective.

Therefore, since G is finite and f is an injection from $(L \cap K)/(L \cap H)$ to K/H it must be the case that $|(L \cap K)/(L \cap H)| = [L \cap K : L \cap H] \le [K : H] = |K/H|$. Otherwise, the mapping either wouldn't be well-defined or wouldn't be injective by the Pigeonhole Principle, both contradictions.

Thus,

If H, K, L are subgroups of a finite group G such that $H \subseteq K$, then $[K : H] \ge [L \cap K : L \cap H]$.

Problem 23. Let H, K be subgroups of a group G. Assume that $H \cup K$ is a subgroup of G. Prove that either $H \subseteq K$ or $K \subseteq H$.

Proof. $H \cup K \leq G \implies \forall (h,k) \in H \times K$, we have $hk \in H \cup K$ by closure. Therefore,

 $H \cup K = \{g \mid g \in H \text{ or } g \in K\}$ so for each product $hk \in H \cup K$ either $hk = g \in H$ or $hk = g \in K$ or both.

So in fact the only certainty here is that $H \cup K \neq H \cup K$ otherwise $hk \notin H \cup K$ which is a subgroup of G. Therefore, necessarily $K \subset H$ or $H \subset K$ or H = K.

Thus,

$$H, K, H \cup K \leq G \implies H \subseteq K \text{ or } K \subseteq H.$$