HW2

Ry Wiese wiese176@umn.edu

October 4, 2019

1 Problem 1

Proof. Let $P = \{ \mathbf{x} \mid A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$. We want to show that $\forall \mathbf{x}, \mathbf{y} \in P, \forall \lambda \in (0,1), \lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in P$. Let $\mathbf{x}, \mathbf{y} \in P$ and $\lambda \in (0,1)$ be given. Since $\mathbf{x}, \mathbf{y} \in P$, $A\mathbf{x} = \mathbf{b} = A\mathbf{y}$. $A(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) = \lambda A\mathbf{x} + (1-\lambda)A\mathbf{y} = \lambda \mathbf{b} + (1-\lambda)\mathbf{b} = (\lambda+1-\lambda)\mathbf{b} = \mathbf{b}$. Since $\mathbf{x}, \mathbf{y} \in P, \mathbf{x}, \mathbf{y} \geq \mathbf{0}$. Since $0 < \lambda < 1, \lambda \mathbf{x} \geq \mathbf{0}$. Since $0 < (1-\lambda) < 1, (1-\lambda)\mathbf{y} \geq \mathbf{0}$. Thus, $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} \geq \mathbf{0}$. $A(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) = \mathbf{b}$ and $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} \geq \mathbf{0}$, so $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in P$.

2 Problem 2

2.1 Part 1

False. Consider the LP defined by

where $A \in \mathbb{R}^{1\times 3}$. The optimal BFS is $\mathbf{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$, which has only 1 positive

variable. However, $\mathbf{x} = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix}$ is also an optimal solution with 2 positive variables.

2.2 Part 2

True.

Proof. Suppose **s** and **t** are unique optimal solutions. Let v be the optimal value, such that $\mathbf{c}^T\mathbf{s} = v = \mathbf{c}^T\mathbf{t}$. Let $V = \{\mathbf{x} \in P \mid \mathbf{c}^T\mathbf{x} = v\}$ be the set of all optimal solutions.

Claim: $\forall \lambda \in (0,1), \lambda \mathbf{s} + (1-\lambda)\mathbf{t} \in V$.

Proof of claim. Let $\lambda \in (0,1)$ be given. $\mathbf{s}, \mathbf{t} \in P$, therefore $\lambda \mathbf{s} + (1-\lambda)\mathbf{t} \in P$, since P is convex. $\mathbf{c}^T(\lambda \mathbf{s} + (1-\lambda)\mathbf{t}) = \lambda \mathbf{c}^T \mathbf{s} + (1-\lambda)\mathbf{c}^T \mathbf{t} = \lambda v + (1-\lambda)v = v$. Thus $\lambda \mathbf{s} + (1-\lambda)\mathbf{t} \in V$.

Define $f:(0,1)\to V$ by $f(\lambda)=\lambda \mathbf{s}+(1-\lambda)\mathbf{t}$. f is clearly injective, so $|V|\geq |(0,1)|$, and therefore V is uncountable.

3 Problem 3

Here is a list of all extreme points of the form (x_1, x_2) and their objective values of the form $f(x_1, x_2)$.

$$f(4,2.5) = 6.5$$

$$f(3,3) = 6$$

$$f(4,0) = 4$$

$$f(.5,3) = 3.5$$

$$f(0,2.5) = 2.5$$

$$f(0,0) = 0$$

The optimal solution is at (4, 2.5) with an optimal value of 6.5. The active constraints at this optimal solution are $x_1 \le 4$ and $x_1 + 2x_2 \le 9$.

4 Problem 4

4.1 Part 1

$$\begin{array}{rcl} \min & \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & A \mathbf{x} & = & \mathbf{b} \ ; \\ & \mathbf{x} & \geq & \mathbf{0} \end{array}$$

where

$$\mathbf{c} = \begin{pmatrix} 1 \\ 4 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \ A = \begin{pmatrix} 2 & 2 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 & -1 \end{pmatrix},$$

Figure 1: Graph of problem 3.

4.2 Part 2

Proof. Columns 4 and 5 of A are clearly linearly independent, therefore rank(A) = 2 and the image of $A\mathbf{x}$ is \mathbb{R}^2 . Thus, there must exist some \mathbf{x} such that $A\mathbf{x} = \mathbf{b} \in \mathbb{R}^2$. In other words, there exists a feasible solution to the LP. Since the rows of A are linearly independent and the full row rank of A is 2, the existence of a feasible solution implies the existence of a basic feasible solution, by the LP fundamental theorem.

Since rank(A)=2, the basic partition of $A\in\mathbb{R}^{2\times 5}$ consists of B and N with |B|=2 and |N|=3. Then, the basic feasible solution \mathbf{x} is obtained as

$$A\mathbf{x} = \left(\begin{array}{cc} A_B & | & A_N \end{array}\right) \left(\begin{array}{c} \mathbf{x}_B \\ \mathbf{x}_N \end{array}\right) = \mathbf{b}$$

with $|\mathbf{x}_B| = 2$, and $\mathbf{x}_N = \mathbf{0}_3$. Thus the only possible non-zero entries in \mathbf{x}

are the entries of \mathbf{x}_B , of which there are only 2.

4.3 Part 3

The basic solutions for each partition are as follows.

$$B = \{1, 2\}: \qquad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$B = \{1, 3\}: \qquad \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ \frac{2}{3} \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} \frac{9}{3} \\ \frac{2}{3} \\ 0 \\ 0 \end{pmatrix}$$

$$B = \{1, 4\}: \qquad \begin{pmatrix} x_1 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

$$B = \{1, 5\}: \qquad \begin{pmatrix} x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$B = \{2,3\}: \qquad \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} \\ -1 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 0 \\ \frac{5}{2} \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

$$B = \{2, 5\}: \qquad \begin{pmatrix} x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

$$B = \{3,4\}: \qquad \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 5 \\ 0 \end{pmatrix}$$

$$B = \{3, 5\}: \qquad \begin{pmatrix} x_3 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 4 \\ 0 \\ -5 \end{pmatrix}$$

$$B = \{4, 5\}: \qquad \begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ -1 \end{pmatrix}$$

The basic feasible solutions are

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} \frac{5}{3} \\ 0 \\ \frac{2}{3} \\ 0 \\ 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

4.4 Part 4

Let $f: \mathbb{R}^5 \to \mathbb{R}$ be the objective function, defined as $f(\mathbf{x}) = \begin{pmatrix} 1 & 4 & 1 & 0 & 0 \end{pmatrix} \mathbf{x}$.

$$B = \{1, 2\}: \qquad f\left(\begin{pmatrix} 1\\1\\0\\0\\0\end{pmatrix}\right) = 5$$

$$B = \{1, 3\}: \qquad f\left(\begin{pmatrix} \frac{5}{3} \\ 0 \\ \frac{2}{3} \\ 0 \\ 0 \end{pmatrix}\right) = \frac{7}{3}$$

$$B = \{1, 4\}:$$
 $f(\begin{pmatrix} 1\\0\\0\\2\\0 \end{pmatrix}) = 1$

$$B = \{1, 5\}:$$
 $f(\begin{pmatrix} 1\\0\\0\\2\\0 \end{pmatrix}) = 2$

Thus the optimal solution is $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ with an optimal value of 5.

Problem 5

Let
$$A = \begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & -1 \\ 1 & -1 \end{pmatrix}$$
 and $b = \begin{pmatrix} 6 \\ 18 \\ -1 \\ 7 \end{pmatrix}$.

Formulate the LP as

max
$$r$$

s.t. $A\mathbf{y} \leq \mathbf{b}$;
 $\mathbf{0}_{2} \leq \mathbf{y} \leq \begin{pmatrix} 11 \\ 10 \end{pmatrix}$;
 $\forall i \in \{1, ..., 4\}, 0 \leq r \leq d_{i}$;
 $\forall i \in \{1, ..., 4\}, d_{i} \leq \frac{1}{\sqrt{2}}(b_{i} - A(i, :)\mathbf{y})$;

where $\mathbf{y} \in \mathbb{R}^2, r \in \mathbb{R}$, and $\mathbf{d} \in \mathbb{R}^4$. This gave me an optimal solution of r = 4.5962 (r is also the optimal value) as the maximum radius for a fountain centered at $\mathbf{y} = \begin{pmatrix} 5.0418 \\ 4.5418 \end{pmatrix}$ (with $\mathbf{d} =$

$$\begin{pmatrix} 4.5962 \\ 5.2737 \\ 5.3329 \\ 4.5962 \end{pmatrix}$$
).