Editorial - Knuckles Range

There are \mathbf{n} mountain peaks located in a straight line. Use dynamic programming to calculate the maximum number of peaks that can be selected.

$$dp[i] = max(dp[j]) + 1$$
 such that $abs(h_i - h_j) >= H$ and $j < i$.

To calculate max(dp [j]) you can use a <u>segment tree</u>. But the mountain peak heights are in the range $1 \le h_i \le 10^{15}$ where it is not possible to create a segment tree of that size. But there are a maximum of 10^{5} such mountain peaks and you do not need to store every possible height value. You can normalize the heights using another array of size **n** and binary search that array to get the required position of the segment tree for a h_i value.

Time Complexity: n * log(n)Space Complexity: 2 * n