[CS M51A F14] SOLUTION TO QUIZ 4

Date: 12/05/14

Quiz Problems (60 points total)

Problem 1 (20 points)

We would like to analyze the following sequential network. It has two input bits x_1 and x_0 , with a single output bit z.

1. (10 points) Write the minimal sum of product expressions for z, $y_1(t+1)$ and $y_0(t+1)$. Assume that a literal without a time label is equal to its value at time t, i. e. y_0 is short for $y_0(t)$. To obtain the expressions for $y_1(t+1)$ and $y_0(t+1)$, use the JK flip-flop characteristic expression shown here:

$$Q(t+1) = Q(t)K'(t) + Q'(t)J(t)$$

Solution From the given circuit, we can directly write the following:

$$z(t) = y_1'y_0'$$

$$J_1(t) = y_0x_0' + y_0'x_1x_0$$

$$K_1(t) = y_0'x_0'$$

$$J_0(t) = y_1'x_0'$$

$$K_0(t) = y_1x_1$$

Using the JK characteristic expression, we can derive:

$$y_{1}(t+1) = y_{1}K_{1}' + y_{1}'J_{1}$$

$$= y_{1}(y_{0}'x_{0}')' + y_{1}'(y_{0}x_{0}' + y_{0}'x_{1}x_{0})$$

$$= y_{1}(y_{0} + x_{0}) + (y_{1}'y_{0}x_{0}' + y_{1}'y_{0}'x_{1}x_{0})$$

$$= (y_{1}y_{0} + y_{1}x_{0}) + (y_{1}'y_{0}x_{0}' + y_{1}'y_{0}'x_{1}x_{0})$$

$$= y_{0}(y_{1} + y_{1}'x_{0}') + x_{0}(y_{1} + y_{1}'y_{0}'x_{1})$$

$$= y_{0}(y_{1} + x_{0}') + x_{0}(y_{1} + y_{0}'x_{1})$$

$$= y_{1}y_{0} + y_{0}x_{0}' + y_{1}x_{0} + y_{0}'x_{1}x_{0}$$

$$= y_{1}y_{0}(x_{0} + x_{0}') + y_{0}x_{0}' + y_{1}x_{0} + y_{0}'x_{1}x_{0}$$

$$= y_{1}y_{0}x_{0} + y_{1}y_{0}x_{0}' + y_{0}x_{0}' + y_{1}x_{0} + y_{0}'x_{1}x_{0}$$

$$= (y_{1}y_{0}x_{0} + y_{1}y_{0}x_{0}' + y_{0}x_{0}' + y_{0}x_{0}') + y_{0}'x_{1}x_{0}$$

$$= (y_{1}y_{0}x_{0} + y_{1}x_{0}) + (y_{1}y_{0}x_{0}' + y_{0}x_{0}') + y_{0}'x_{1}x_{0}$$

$$= y_{1}x_{0} + y_{0}x_{0}' + y_{0}'x_{1}x_{0}$$

$$= y_{0}(y_{1}x_{1})' + y_{0}'(y_{1}'x_{0}')$$

$$= y_{0}(y_{1}' + x_{1}') + y_{1}'y_{0}'x_{0}'$$

$$= y_{1}'y_{0} + y_{0}x_{1}' + y_{1}'y_{0}'x_{0}'$$

$$= y_{1}'(y_{0} + y_{0}'x_{0}') + y_{0}x_{1}'$$

$$= y_{1}'(y_{0} + x_{0}') + y_{0}x_{1}'$$

$$= y_{1}'y_{0} + y_{1}'x_{0}' + y_{0}x_{1}'$$

2. (10 points) Using the expressions, fill in the table below.

Solution From the expressions we can fill in the following:

PS	Input $x_1(t)x_0(t)$				Output	
$y_1(t)y_0(t)$	00	01	10	11	z	
00	01	00	01	10	1	
01	11	01	11	01	0	
10	00	10	00	10	0	
11	11	11	10	10	0	
	$y_1(t$	(t+1)				
		Λ				

The easiest approach to this is to find which locations each sum term turns to 1 and fill those with 1s, then any remaining slots are 0s. For example, from $y_1'y_0$ we can deduce that the whole row 01 is 1 for $y_0(t+1)$.

Problem 2 (10 points)

We wish to create an SR flip-flop using a T flip-flop. The transition table for the SR flip-flop is:

PS = Q(t)	S(t)R(t)				
	00	01	10	11	
0	0	0	1	-	
1	1	0	1	-	
	NS = Q(t+1)				

1. (5 points) Fill in the table below.

Solution From the given transition table, we can write:

PS = Q(t)	S(t)R(t)			S(t)R(t)				
	00	01	10	11	00	01	10	11
0	0	0	1	-	0	0	1	_
1	1	0	1	-	0	1	0	-
	N	S = 0	$\overline{Q(t+)}$	1)		7	Γ	

2. (5 points) Using the table, obtain the expression for T and draw the final circuit.

Solution From the completed table, we can get the following K-map:

and from this we get T = QR + Q'S.

The final circuit looks like:

Problem 3 (30 points)

Design a modulo-3 counter using JK flip-flops. Use a Moore machine. The counter specifications are as shown here:

Input: $x(t) \in \{0, 1\}$

Output: $z(t) \in \{0, 1, 2\}$

State: $s(t) \in \{S_0, S_1, S_2\}$

Initial state: $s(0) = S_0$

Function: In modulo-3, the system counts the number of 1's in the input sequence x(0, t-1)

1. (10 points) Draw the state transition diagram for the counter. Clearly show ALL transitions from each state. Show the output of each state.

Solution The state transition diagram is shown.

2. (10 points) Using the following unconventional encoding for the states, complete the table below.

	Q_1	Q_0
S_0	0	0
S_1	1	0
S_2	1	1

Solution

3. (10 points) Complete the K-maps and obtain the minimal expressions for J_1 , K_1 , J_0 and K_0 . Solution

$$K_1$$
 $Q_1^{Q_0X}$ X Q_1 Q_2 Q_3 Q_4 Q_5 Q_6 Q_6

From these we get:

$$J_1 = x$$

$$K_1 = Q_0 x$$

$$J_0 = Q_1 x$$

$$K_0 = x$$