Simulation result

1) Centralized optimization

Complete formulation:

$$\min \sum_{t=1}^{5} \left[5x^t + 3y^t + 4w_d^t + 50(\Delta n^t)^2 + 100a^t + 200(b^t)^2 \right]$$
 (1)

Subject to:

$$x^{t} + y^{t} + 5n^{t} + w_{d}^{t} = \hat{l} + w_{c}^{t}$$

$$\Delta n^{t} = n^{t} - n^{t-1}; \quad n^{0} = 0$$

$$q^{t} = q^{t-1} + 0.05(w_{c}^{t} - 5w_{d}^{t}); \quad q^{0} = 0.8$$
 remove this 5
$$0 \le w_{c}^{t} \le 10\beta_{c}^{t}$$

$$0 \le w_{d}^{t} \le 10\beta_{d}^{t}$$

$$\beta_{c}^{t} + \beta_{d}^{t} \le 1.5; \quad \beta_{c}^{t}, \beta_{d}^{t} \in \{0,1\}$$

$$a^{t} = \hat{y} - y^{t}$$

$$b^{t} = 0.8 - q^{t}$$

$$0 \le y^{t} \le \hat{y}$$

$$0 \le n^{t} \le 8$$

$$x^{t} \ge 0$$

$$0.4 \le q^{t} \le 1$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(9)$$

$$(10)$$

$$(12)$$

$$(13)$$

Where \hat{y} and \hat{l} are parameter vector with values of $\hat{y} = [2, 4, 8, 7, 10]$ and $\hat{l} = [25, 40, 35, 50, 55]$.

a. Relaxed integer

The obtained objective value is **784.705** and the result can be seen as follows:

Variables	t				
Variables -	1	2	3	4	5
x	10.35	24.75	12	25.5	26.21
y	2	4	8	7	10
а	0	0	0	0	0
W_{C}	0	0	0	0	0
w_d	6.4	0	0	0	0.04
q	0.8	0.8	0.8	0.8	0.81
qq	0	0	0	0	-0.01
n	1.25	2.25	3	3.5	3.75
Δn	1.25	1	0.75	0.5	0.25
eta_c	0	0	0	0	0
eta_d	0.64	0	0	0	0.004

b. With integer

The obtained objective value is **806**. **58** and the result can be seen as follows:

Variables -					
	1	2	3	4	5
x	11.6	26	12	28	29.96
y	2	4	8	7	10
a	0	0	0	0	0

w_c	0	0	0	0	0
w_d	6.4	0	0	0	0.04
q	0.8	0.8	0.8	0.8	0.81
qq	0	0	0	0	-0.01
n	1	2	3	3	3
Δn	1	1	1	0	0
eta_c	0	0	0	0	0
eta_d	1	1	1	1	1

2) Distributed optimization

The data exchange between entity:

Variable	Between entity:		
у	Entity 1 and 2		
W_c, W_d	Entity 1 and 3		

With formulation for the three entities is:

a. First entity. In this part, it has information about variables $x, y, n, \Delta n, w_c, w_d, \beta_c$, and β_d

$$\min \sum_{t=1}^{5} [5x^{t} + 3y^{t} + 4w_{d} + 50(\Delta n^{t})^{2}]$$

$$eqn(16-19) \text{ is unknown to}$$

$$e^{t} + w_{d}^{t} = \hat{l} + w_{c}^{t}$$

$$eqn(16-19) \text{ is unknown to}$$

$$first \text{ entity}$$

$$eqn(16-18) \text{ is}$$

 $x^{t} + y^{t} + 5n^{t} + w_{d}^{t} = \hat{l} + w_{c}^{t}$ $\Delta n^{t} = n^{t} - n^{t-1}; \quad n^{0} = 0$ $0 \le w_{c}^{t} \le 10\beta_{c}^{t}$ $0 \le w_{d}^{t} \le 10\beta_{d}^{t}$ $\beta_{c}^{t} + \beta_{d}^{t} \le 1.5; \quad \beta_{c}^{t}, \beta_{d}^{t} \in \{0,1\}$ $0 \le y^{t} \le \hat{y}$ $0 \le n^{t} \le 8$ $x^{t} \ge 0$ (14)
(15)
eqn(16-18) is
known only
to third entity
(18)
(19)
eqn(19) is
known only to second entity

b. Second entity. This part has information about y only, which is replaced with auxiliary variable z

$$\min \sum_{t=1}^{5} [100a^t]$$

Subject to:

Subject to:

$$a^{t} = \hat{y} - z^{t}$$

$$0 \le z^{t} \le \hat{y}$$

$$(22)$$

$$(23)$$

Third entity. This part has information about q, w_c , and w_d , which w_c and w_d are replaced with auxiliary variables u_c and u_d . It does not know the upper bounds of w_c and w_d .

$$\min \sum_{t=1}^{5} [200(b^t)^2]$$

Subject to:

$$q^{t} = q^{t-1} + 0.05(u_c^{t} - 5u_d^{t}); \quad q^{0} = 0.8$$
 (24)

$$0 \le u_c^t \tag{25}$$

$$q^{t} = q^{t-1} + 0.05(u_{c}^{t} - 5u_{d}^{t}); \quad q^{0} = 0.8$$

$$0 \le u_{c}^{t}$$

$$0 \le u_{d}^{t}$$

$$b^{t} = 0.8 - q^{t}$$

$$0.4 \le q^{t} \le 1$$

$$(24)$$

$$(25)$$

$$(26)$$

$$(27)$$

$$b^t = 0.8 - q^t \tag{27}$$

$$0.4 \le q^t \le 1 \tag{28}$$

There are four cases that differs the penalty parameter in each simulation of the ADMM $\rho = [0.1, 1, 10, 100]$. The tolerance for the convergence is 10^{-5} . The convergence can be seen below.

a. Relaxed integer

The simulation with the $\rho = 1, 10$, and 100 converges, but $\rho = 0.1$ has not reached convergence in 1000 iterations. The sum of objective values of all entities with penalty $\rho = 10$ produce objective value of **784**. **705048**

b. With integer

The simulation with the $\rho=1,10$, and 100 converges, but $\rho=0.1$ has not reached convergence in 1000 iterations. The sum of objective values of all entities with penalty $\rho=10$ produce objective value of **806.580048**

Summary:

Difference of objective values between centralized and distributed:

Integer type	Centralized	Distributed	Approx. Error (%)
Relaxed	784.705	784. 705048	0.00000613
Integer	806.58	806. 580048	0.00000596