Lecture -1 Logic Gates & Boolean Algebra

Prepared By: Asif Mahfuz

Logic Gates

- Logic Gates are the basic building blocks of any digital system.
- A logic gate can have one or more than one input but only one output.
- The relationship between the input/s and the output is based on a certain logic.
- The gates are named based on the logic.

Basic Logic Gates

- NOT gate
- AND gate
- OR gate

Universal Logic Gates

- NAND gate
- NOR gate

Exclusive Logic Gates

- XOR gate
- XNOR gate

NOT Gate (Inverter)

• The output an inverter (NOT gate) is the opposite of its input.

Inverter truth table.

Input	Output
LOW (0)	HIGH (1)
HIGH (1)	LOW (0)

HIGH (1) LOW (0)
$$t_1$$
 t_2 HIGH (1) LOW (0) Input pulse Output pulse

AND Gate

The output an AND gate is HIGH only when both the inputs are HIGH.

Timer

Ignition on = HIGH for 30 s

OR Gate

The output an OR gate is HIGH when anyone or both the inputs are HIGH.

NAND Gate

• The output of a NAND gate is HIGH whenever one or more inputs are LOW.

NOR Gate

• The output of a NOR gate is LOW whenever one or more inputs are HIGH.

XOR Gate

• The output of a XOR gate is HIGH whenever the two inputs are different.

Truth table for an exclusive-OR gate.

Inputs		Output	Two circuits are supposed to work parallelly in a process.			
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}	If any of the circuit fails an indicator is activated.			
0	0	0	Circuit A HIGH			
0	1	1 /_	HIGH (indicates failure)			
1	0	1 1	Circuit B LOW			
1	1	0	Circuit B			

XNOR Gate

• The output of a XNOR gate is gate is HIGH whenever the two inputs are same.

	Inputs	Output
\boldsymbol{A}	\boldsymbol{B}	X
0	0	1
0	1	0
1	0	0
1	1	1

Boolean Algebra

Boolean Variable: These are variables which can either take the value 1 or 0.

Boolean Logic Expression: A Boolean logic expression is an expression constituted of only Boolean variables. The output of a Boolean logic expression is a Boolean value i.e. either True/False.

$$AB + A(B + C) + B(B + C)$$

Boolean Algebra: It is the mathematics of digital logic. Usually Boolean algebra is used to simplify Boolean expressions or Boolean Function.

Laws of Boolean Algebra

Commutative Law:

• The commutative law for addition can be written as A+B=B+A

• The commutative law for multiplication can be written as AB=BA

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$AB = \begin{bmatrix}
B & \\
A & \\
\end{array}$$

$$BA$$

Laws of Boolean Algebra

Associative Law:

• The associative law of addition for three variables is written as A+(B+C)=(A+B)+C

$$A = A + (B + C)$$

$$B = B$$

$$C = A + B$$

$$C$$

• The associative law of multiplication for three variables is written as A(BC)=(AB)C

Laws of Boolean Algebra

Distributive Law:

• The distributive law for three variables is written as A(B+C)=AB+AC

Rules of Boolean Algebra

Basic rules of Boolean algebra.

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot \overline{A} = 0$$

9.
$$\overline{\overline{A}} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{A}B = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

De Morgan's Theorem

The first theorem is stated as follows:

- The complement of a product of variables is equal to the sum of the complements of complements of the variable.
- The formula of this theorem for two variables is written as:

$$\overline{XY} = \overline{X} + \overline{Y}$$

Inputs		Ou	tput	
_	X	Y	\overline{XY}	$\overline{X} + \overline{Y}$
	0	0	1	1
	0	1	1	1
	1	0	1	1
	1	1	0	0

De Morgan's Theorem

The second theorem is stated as follows:

- The complement of a sum of variables is equal to the product of the complements of the variables.
- The formula of this theorem for two variables is written as:

$$\overline{\mathbf{X} + \mathbf{Y}} = \overline{\mathbf{X}}.\overline{\mathbf{Y}}$$

Inputs		Output		
X	Y	$\overline{X} + \overline{Y}$	$\overline{X}\overline{Y}$	
0	0	1	1	
0	1	0	0	
1	0	0	0	
1	1	0	0	

Application of De Morgan's Theorem

Apply DeMorgan's theorems to the expressions \overline{XYZ} and $\overline{X+Y+Z}$.

Solution

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{X + Y + Z} = \overline{X} \overline{Y} \overline{Z}$$

Apply DeMorgan's theorems to the expressions WXYZ and $\overline{W+X+Y+Z}$.

Solution

$$\overline{WXYZ} = \overline{W} + \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{W + X + Y + Z} = \overline{WX}\overline{Y}\overline{Z}$$

Apply DeMorgan's theorems to each expression:

(a)
$$\overline{(\overline{A+B})+\overline{C}}$$

(b)
$$\overline{(\overline{A} + B) + CD}$$

(c)
$$(A + B)\overline{C}\overline{D} + E + \overline{F}$$

(a)
$$\overline{(\overline{A} + B)} + \overline{\overline{C}} = (\overline{\overline{A} + B})\overline{\overline{C}} = (A + B)C$$

(b)
$$\overline{(\overline{A} + B) + CD} = (\overline{\overline{A} + B})\overline{CD} = (\overline{\overline{A}}\overline{B})(\overline{C} + \overline{D}) = A\overline{B}(\overline{C} + \overline{D})$$

(a)
$$\overline{(\overline{A} + \overline{B}) + \overline{C}} = (\overline{\overline{A} + \overline{B}})\overline{\overline{C}} = (A + B)C$$

(b) $\overline{(\overline{A} + B) + CD} = (\overline{\overline{A}} + B)\overline{CD} = (\overline{\overline{A}}\overline{B})(\overline{C} + \overline{D}) = A\overline{B}(\overline{C} + \overline{D})$
(c) $\overline{(A + B)\overline{C}\overline{D}} + E + \overline{F} = \overline{((A + B)\overline{C}\overline{D})}(E + \overline{F}) = (\overline{A}\overline{B} + C + D)\overline{E}F$

Application of De Morgan's Theorem

Apply DeMorgan's theorem to the expression $\overline{X} + \overline{Y} + \overline{Z}$.

Apply DeMorgan's theorem to the expression $\overline{W}\overline{X}\overline{Y}\overline{Z}$.

Apply DeMorgan's theorems to each of the following expressions:

(a)
$$\overline{(A + B + C)D}$$

(b)
$$\overline{ABC + DEF}$$

(c)
$$\overline{AB} + \overline{CD} + EF$$

The Boolean expression for an exclusive-OR gate is $A\overline{B} + \overline{AB}$. With this as a starting point, use DeMorgan's theorems and any other rules or laws that are applicable to develop an expression for the exclusive-NOR gate.

Starting with the expression for a 4-input NAND gate, use DeMorgan's theorems to develop an expression for a 4-input negative-OR gate.

Apply DeMorgan's theorems to the following expressions:

(a)
$$\overline{ABC} + (\overline{\overline{D} + E})$$
 (b) $\overline{(A + B)C}$ (c) $\overline{A + B + C} + \overline{\overline{D}E}$

Boolean Analysis of Logic Circuit

Boolean algebra provides a concise way to express the operation of a logic circuit formed by a combination of logic gates so that the output can be determined for various combinations of input values.

- A logic circuit can be expressed by Boolean expression and Boolean expression can be implemented by a logic circuit.
- The following Boolean expression can be implemented by the logic circuit below:

$$A(B + CD)$$

Constructing a Truth-table from a Boolean Expression

- Once we have the Boolean expression describing a process or a logical circuit, a truth-table to show the operation for all possible combination can be constructed.
- First, we need to determine the number of inputs in the expression.
- Then, we need to note down all possible combination of the inputs.
- Lastly, we will evaluation the expression for all possible combination.

$$A(B + CD)$$

	Inp	Output		
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	A(B + CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Logic Simplification

- We know that a Boolean expression can be implemented by a logical circuit.
- A large Boolean expression can often be simplified to a simpler and shorter expression.
- This is done by applying the laws and rules of Boolean algebra.
- Simplifying makes implementation simpler and thus requires lesser number of gates.
- Boolean algebra can be used to simplify the following expression:

$$AB + A(B + C) + B(B + C)$$

The simplified expression is:

$$\mathbf{B} + \mathbf{AC}$$

Logic Simplification

Simplify the Boolean expression $A\overline{B} + A(\overline{B+C}) + B(\overline{B+C})$.

Simplify the following Boolean expression:

$$[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$$

Simplify the following Boolean expression:

$$\overline{A}BC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C + ABC$$

Simplify the following Boolean expression:

$$\overline{AB + AC} + \overline{A}\overline{B}C$$

Simplify the Boolean expression $\overline{AB} + \overline{AC} + \overline{AB}\overline{C}$.

***Applying rules of Boolean algebra and DeMorgan's Theorem show that:

i)
$$MN + \overline{MO} + M\overline{NO}(MN + O) = 1$$

ii) $\overline{A}B\overline{C} + \overline{A}BC + AB\overline{C} + ABC = B$

1. Simplify the following Boolean expressions:

(a)
$$A + AB + A\overline{B}C$$
 (b) $(\overline{A} + B)C + ABC$ (c) $A\overline{B}C(BD + CDE) + A\overline{C}$

2. Implement each expression in Question 1 as originally stated with the appropriate logic gates. Then implement the simplified expression, and compare the number of gates.

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You

Lecture -2 Sum-of-Products, Product-of-Sum

Prepared By: Asif Mahfuz

Standardization

- All Boolean expression, regardless of their form, can be converted into either of the two standard forms.
- The two standard forms are: Sum-of-Products (SOP) and Product-of-Sum (POS).
- Standardization makes evaluation, simplification and implementation of Boolean expression much more systematic and easier.

Domain of a Boolean Expression

- The domain of a general Boolean expression is the set of variable contained in the Boolean expression in either complemented or uncomplemented form.
- For example, the domain of the expression $A\overline{B} + \overline{A}C$ is the set of variable A,B and C.
- And for example, the domain of the expression $A\overline{B}C + \overline{C}E + \overline{A}\overline{D}$ is the set of variables A,B,C,D and E.

Sum-of-Product (SOP)

• Sum of Products: A Product is defined as a term consisting of products of the literals. When two or more products are summed in a Boolean expression, it is called the Sum-of-Products (SOP).

$$A + \overline{A}B + B\overline{C}$$

• Standard SOP: It is an expression where all the variables are present in each product terms. The products in a SSOP are called min terms $(\mathbf{m_i})$.

$$\overline{ABC} + \overline{ABC} + \overline{ABC}$$

- Conversion of SOP to Standard SOP
 - Step1: Multiply each of the non-standard terms with a term made up of the sum of the missing variable and its complement. This do not change the function as we are just multiplying by 1.
 - Step2: Repeat step 1 until all the non-standard terms become standard terms.
- $oldsymbol{\circ}$ Sum-of-Products is used to describe when the function is 1. $oldsymbol{\circ}$

Product-of-Sum (POS)

Product of Sum: A Sum is defined as a term consisting of sum of the literals. When two
or more sum terms are multiplied in a Boolean Expression, it is called the Product-ofSum (POS).

$$(\mathbf{B} + \overline{\mathbf{C}})(\mathbf{A} + \overline{\mathbf{B}})$$

• Standard POS: It is an expression where all the variables are present in each sum terms Each sum terms are called max terms (M_i)

$$(\overline{A} + B + C)(A + \overline{B} + \overline{C})$$

- Conversion of POS to Standard POS
 - Step1: Add to each non-standard product terms a term made up of the product of the missing variable and its complement. This does not change the expression as we are just adding a 0.
 - Step2: Apply rule 12: $\mathbf{A} + \mathbf{BC} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$
 - Step3: Repeat step 1 until all the sum terms contain all the variable in the domain.
- Product-of-Sum is used to describe when the function is 0.

SOP & POS

Convert the following Boolean expression into standard SOP form:

$$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

Convert the expression $W\overline{X}Y + \overline{X}Y\overline{Z} + WX\overline{Y}$ to standard SOP form.

Convert the following Boolean expression into standard POS form:

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

Convert the expression $(A + \overline{B})(B + C)$ to standard POS form.

Min Terms and Max Terms

- Each variable in a Boolean expression is a literal. —
- Boolean variable can appear in normal (A) or complemented (\overline{A}) form.
- Each product of all variables in the domain is called Min-Term.
- Each sum of all variables in the domain is called Max-Term.

Α	В	С	Min-Terms	
0	0	0	$\overline{A}\overline{B}\overline{C}$	\mathbf{m}_0
0	0	1	$\overline{A}\overline{B}C$	$\mathbf{m_1}$
0	1	0	$\overline{A}B\overline{C}$	\mathbf{m}_2
0	1	1	Ā₿€	\mathbf{m}_3
1	0	0	$A\overline{B}\overline{C}$	$\mathbf{m_4}$
1	0	1	$A\overline{B}C$	$\mathbf{m_5}$
1	1	0	$AB\overline{C}$	m ₆
1	1	1	ABC	\mathbf{m}_7

A	В	С	Max-Terms	
0	0	0	A + B + C	M_0
0	0	1	$A + B + \bar{C}$	M_1
0	1	0	$A + \overline{B} + C$	\mathbf{M}_2
0	1	1	$A + \overline{B} + \overline{C}$	M_3
1	0	0	$\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C}$	$\mathbf{M_4}$
1	0	1	$\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}$	M_5
1	1	0	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C}$	M ₆
1	1	1	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$	M_7

For Min-Terms:

When $0 \rightarrow$ Complemented Form When $1 \rightarrow$ Normal Form

For Max-Terms:

When $1 \rightarrow$ Complemented Form When $0 \rightarrow$ Normal Form

Boolean Expression(SOP) to Truth-Table

- Truth-table can be formed for any Boolean expression.
- Converting a Boolean Expression to SSOP can make this task a lot easier.
- Find the truth-table for the following Boolean expression:

$$\begin{split} F(A,B,C) &= AB + \overline{B}\overline{C} \\ F(A,B,C) &= AB(C+\overline{C}) + (A+\overline{A})\overline{B}\overline{C} \\ F(A,B,C) &= ABC + AB\overline{C} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} \end{split}$$

Α	В	С	Min-Terms
0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	$\overline{A}\overline{B}C$
0	1	0	$\overline{A}B\overline{C}$
0	1	1	ĀBC
1	0	0	$A\overline{B}\overline{C}$
1	0	1	$A\overline{B}C$
1	1	0	$AB\overline{C}$
1	1	1	ABC

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Truth-Table to Function Implementation

Find and implement the function from the following truth-table.

Α	В	С	F		A	В	С	F
0	0	0	1		0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	0		0	0	1	
0	1	0	1		0	1	0	$\overline{A}B\overline{C}$
0	1	1	0		0	1	1	
1	0	0	0	,	1	0	0	
1	0	1	0		1	0	1	
1	1	0	1		1	1	0	$AB\overline{C}$
1	1	1	1		1	1	1	ABC

$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

$$F(A, B, C) = \overline{A}\overline{C} + AB$$

- For the function $F = \sum (2,3,5,7)$:
 - a) Construct the truth table.
 - b) Implement the function.

Boolean Expression(POS) to Truth-Table

Form a truth-table for the following Boolean expression.

$$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = (\mathbf{A} + \mathbf{B}) \cdot (\overline{\mathbf{B}} + \overline{\mathbf{C}})$$

• In the first step, we will convert the POS to SPOS:

$$F(A, B, C) = (A + B + C\overline{C}) \cdot (\overline{B} + \overline{C} + A\overline{A})$$

$$F(A, B, C) = (A + B + C) \cdot (A + B + \overline{C}) \cdot (\overline{B} + \overline{C} + A) \cdot (\overline{B} + \overline{C} + \overline{A})$$

• Once we have converted the expression to SPOS, now we can directly form the truth-table.

Α	В	С	Max-Terms
0	0	0	A + B + C
0	0	1	$A + B + \overline{C}$
0	1	0	$A + \overline{B} + C$
0	1	1	$A + \overline{B} + \overline{C}$
1	0	0	$\overline{\mathbf{A}} + \mathbf{B} + \mathbf{C}$
1	0	1	$\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}$
1	1	0	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C}$
1	1	1	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$

A	В	С	Max-Terms
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
. 1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Function Implementation using POS

- For the function $F = \prod (1,2,5,6)$:
 - a) Construct the truth table.
 - b) Implement the function.

Solution:

Step 1

	•		
A	В	С	Max-Terms
0	0	0	
0	0	1	0
0	1	0	0
0	1	1	
1	0	0	
1	0	1	0
1	1	0	0
	4	4	

Step 2

Α	В	С	Max-Terms
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Step 3
$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + ABC$$

Now that we have the Boolean expression, we can simplify it and implement it.

Connecting the Dots between SOP and POS

• From the truth table determine the standard SOP expression and the equivalent POS expression.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Standard SOP expression:

• Write down the sum of min terms of the combinations for which the function is 1.

$$F = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$$

Equivalent POS expression:

• Write down the product of max terms of the combinations for which the function is 0.

$$\mathbf{F} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) \cdot (\mathbf{A} + \mathbf{B} + \overline{\mathbf{C}}) \cdot (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C})$$

HOW DOES THIS EVEN WORK!!!!!!!

Connecting the Dots between SOP and POS

Α	В	С	F	A	В	С	F	F
0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	1	0	1
0	1	0	0	0	1	0	0	1
0	1	1	1	0	1	1	1	0
1	0	0	1	1	0	0	1	0
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	0	1	0
1	1	1	1	1	1	1	1	0

$$\mathbf{F} = \overline{\mathbf{A}}\mathbf{B}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\mathbf{B}\mathbf{C}$$

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

Now we have the SOP expression of the complement of the function:

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

- This means we have converted the 0s of the function 1s and vice versa.
- What if we turn the 0s back to 1, that is we convert \overline{F} to F

Connecting the Dots between SOP and POS

$$\overline{\mathbf{F}} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\mathbf{B}\overline{\mathbf{C}}$$

• Now to convert the 0s back to 1s we complement \overline{F} that is $\overline{\overline{F}}$.

$$\overline{F} = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C}$$

$$F = \overline{A}\overline{B}\overline{C} \cdot \overline{A}\overline{B}C \cdot \overline{A}B\overline{C}$$

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot (A + \overline{B} + C)$$

- So we have reached the same expression of POS as we did earlier.
- SOP is the positive logic definition of the function.
- POS is the negative logic definition of the function.

What is positive logic and what is negative logic????

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You