Chapitre 1 Référentiels et repères

1. Référentiels

1. Définition

Un référentiel est un système d'axes permettant un repérage des espaces muni d'horloges synchronisées permettant un repérage des instants ou des durées.

2. Exemples

• Le référentiel de Copernic

Origine : centre du système solaire (voisin du centre d'inertie du soleil)

Axes dirigés vers des étoiles situées dans des directions fixes par rapport au Soleil

Propriété : supposé galiléen

• Le référentiel géocentrique

Origine : centre de la Terre

Axes dirigés parallèlement à ceux du référentiel de Copernic

Convient pour des phénomènes se produisant au voisinage de la Terre et dont la durée est inférieure à 365 jours

• Le référentiel terrestre

Origine : point de la surface de la Terre

Axes fixes par rapport à la Terre

Convient pour des phénomènes se produisant sur ou au voisinage de la Terre et dont la durée est inférieure à 24 heures

Remarques:

- Tout mouvement est défini par rapport à un référentiel donné. Un mouvement absolu est un mouvement relatif au référentiel de Copernic.
- Dans le cadre de la mécanique classique (vitesses << c), les longueurs sont les mêmes quel que soit le référentiel considéré et le temps s'écoule de la même façon dans tous les référentiels.

2. Repérage du temps

Le temps est repéré à l'aide d'horloges synchronisées.

On note le temps t et l'origine du temps est t = 0.

3. Repères d'espace

1. Définition

Repère = système d'axes lié à un référentiel.

Extrait du site : www.physagreg.fr

On distingue deux grands types de repères :

Les repères fixes par rapport au référentiel choisi

Les repères mobiles par rapport au référentiel choisi

2. Exemple

Le repère cartésien

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$

Le repère est fixe par rapport au référentiel

repère
$$(O, \vec{i}, \vec{j}, \vec{k})$$
 direct

Chapitre 2 Cinématique du point

Étude du mouvement du point indépendamment des causes qui le produisent.

Le mouvement est déterminé par la donnée de sa position au cours du temps.

$$\overrightarrow{OM} = \overrightarrow{r}(t)$$

La courbe décrite par *M* au cours du temps constitue la trajectoire.

1. La vitesse

1. Définition

La vitesse du point M par rapport à \Re est donnée par la dérivée du vecteur position du point M par rapport au temps :

$$\vec{v}_{M/\Re} = \frac{d \, \overrightarrow{OM}}{dt}$$

avec
$$[v] = \text{m.s}^{-1}$$

2. Expression de la vitesse dans un repère cartésien

Les vecteurs unitaires d'un repère cartésien sont fixes.

$$\vec{v}_{M/\Re} = \frac{d\vec{OM}}{dt} = \frac{d\left(x\vec{i} + y\vec{j} + z\vec{k}\right)}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

Où x, y et z sont des fonctions du temps. On note : $dx/dt = \dot{x}$

$$\vec{v}_{M/\Re} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$$

3. Propriétés de la vitesse

Le vecteur vitesse est tangent à la trajectoire en M.

On peut l'écrire : $\vec{v} = v \cdot \vec{u}_t$ Ω trajectoire du point M

X

4. Expression de la vitesse dans la base de Frenet

La base de Frenet est définie par les trois vecteurs unitaires \vec{u}_t , \vec{u}_n , \vec{u}_b . \vec{u}_t est tangent à la trajectoire, \vec{u}_n est normal à la trajectoire et $\vec{u}_b = \vec{u}_t \wedge \vec{u}_n$. Cette base se déplace avec le point M.

$$\vec{v}_{M/\Re} = \frac{dOM(t)}{dt} = \frac{dOM}{ds} \frac{ds}{dt} = \frac{ds}{dt} \vec{u}_t = \dot{s}\vec{u}_t = v\vec{u}_t$$

2. L'accélération

1. Définition

L'accélération du point M par rapport à \Re est donnée par la dérivée du vecteur vitesse du point M par rapport au temps :

$$\vec{a}_{M/\Re} = \frac{d\vec{v}_{M/\Re}}{dt} = \frac{d}{dt} \left(\frac{d\vec{OM}}{dt} \right) = \frac{d^2 \vec{OM}}{dt^2}$$
 avec $[a] = \text{m.s}^{-2}$

L'accélération est aussi la dérivée seconde de la position par rapport au temps.

2. Expression de l'accélération dans un repère cartésien

$$\vec{a}_{M/\Re} = \frac{d\vec{v}_{M/\Re}}{dt} = \frac{d^2 \overrightarrow{OM}}{dt^2} = \ddot{x}\vec{i} + \ddot{y}\vec{j} + \ddot{z}\vec{k}$$
avec
$$\ddot{x} = \frac{d^2x}{dt^2}$$

2. Expression de l'accélération dans la base de Frenet

$$\frac{d\vec{u}_{t}}{dt} = \frac{d\alpha}{dt} \frac{d\vec{u}_{t}}{d\alpha} = \dot{\alpha} \vec{u}_{n} = \frac{1}{R} \dot{s} \vec{u}_{n} = \frac{v}{R} \vec{u}_{n}$$

$$\vec{a}_{M/\Re} = \frac{dv}{dt} \vec{u}_{t} + \frac{v^{2}}{R} \vec{u}_{n} = \vec{a}_{t} + \vec{a}_{n}$$

3. Relations entre position, vitesse et accélération

1. De la position à la vitesse et à l'accélération

La vitesse et l'accélération sont obtenues à partir du vecteur position par dérivations successives.

2. De la vitesse à la position et à l'accélération

L'accélération est obtenue en dérivant la vitesse.

La position est obtenue en intégrant la vitesse.

Exemple: cas d'un solide en translation

On considère un solide se déplaçant suivant l'axe Ox (orienté suivant le mouvement du solide) à une vitesse $v(t) = \dot{x}(t)$.

$$\Rightarrow a(t) = \frac{dv}{dt} \qquad x(t) = x(t_0) + \int_{t_0}^{t} v(t')dt'$$

3. De l'accélération à la vitesse et à la position

La vitesse puis la position sont obtenues par intégrations.

Exemple : cas d'un solide en translation

On considère un solide se déplaçant suivant l'axe Ox. Son accélération a(t) est imposée. Vitesse et position à un instant t sont données par :

$$v(t) = v(t_0) + \int_{t_0}^t a(t')dt'$$
$$x(t) = x(t_0) + \int_{t_0}^t v(t')dt'$$

$$x(t) = x(t_0) + \int_{t_0}^{t} v(t')dt$$

Chapitre 3 Exemples de mouvements

Nous allons étudier quelques exemples de mouvements particuliers.

1. Mouvement rectiligne uniforme

1. Définition

Le mouvement d'un point matériel est dit rectiligne uniforme si le point se déplace à vecteur vitesse constant.

Le vecteur vitesse étant constant, le mouvement est rectiligne car la vitesse est tangente à la trajectoire. La droite sur laquelle se déplace le point est assimilée à l'axe des x.

2. Équations du mouvement

L'équation différentielle du mouvement s'écrit : $\vec{v} = \dot{x}\vec{i}$ avec $\dot{x} = cte = v$

On en déduit l'équation horaire : $x = vt + x_0$

2. Mouvement rectiligne uniformément varié

1. Définition

Le mouvement est dit rectiligne uniformément varié si le vecteur accélération est constant et la trajectoire rectiligne.

mouvement rectiligne uniformément varié $\Leftrightarrow \vec{a} = cte$ et trajectoire rectiligne

2. Équations du mouvement

Par commodité, on assimile la droite sur laquelle se déplace le point à l'axe des x. On a donc :

$$\overrightarrow{OM} = x\overrightarrow{i} \implies \overrightarrow{v} = \dot{x}\overrightarrow{i} \implies \overrightarrow{a} = \ddot{x}\overrightarrow{i}$$

avec $\ddot{x} = cte = a$ et $\dot{x} = v$

La vitesse du point s'obtient par intégration : $v = at + v_0$

L'équation horaire du mouvement est obtenue par une nouvelle intégration :

$$x = \frac{1}{2}at^2 + v_0t + x_0$$

Les constantes v_0 et x_0 sont respectivement la vitesse initiale et la position initiale du point M. Elles sont déterminées par les conditions initiales.

Remarque:

L'étude du signe du produit de la vitesse par l'accélération permet de préciser si le mouvement est accéléré ou retardé.

$$\vec{v} \cdot \frac{d\vec{v}}{dt} > 0 \Leftrightarrow \text{mouvement accéléré}$$

$$\vec{v} \cdot \frac{d\vec{v}}{dt} < 0 \Leftrightarrow \text{mouvement retardé}$$