Субдифференциал и субградиент. Основная часть

Задача 1. (2 балла) Пусть функция $f: \mathbb{R} \to \mathbb{R}$ задана следующим образом $f(x) = \max\{-x, x, x^2\}$. Найдите субдифференциал данной функции $\partial f(x)$.

Задача 2. (1 балл) Найти $\partial f(x)$, если $f(x) = \text{ReLU}(x) = \max\{0, x\}$.

Задача 3. (3 балла) Пусть $f(x) = ||x||_{\infty}$. Докажите, что

$$\partial f(0) = \mathbf{conv}\{\pm e_1, \dots, \pm e_n\},\$$

где e_i это i-тый вектор канонического базиса (т.е. столбец единичной матрицы).

Задача 4. (2 балла) Пусть функция $f: \mathbb{R} \to \mathbb{R}$ задана следующим образом f(x) = |x-2| + |x+2| + |x-1|. Найдите субдифференциал данной функции $\partial f(x)$.

Задача 5. (2 балла) Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ задана следующим образом $f(x) = \exp(\|Ax - b\|_p)$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $p \in [1; +\infty]$. Найти субдифференциал $\partial f(x)$.

Субдифференциал и субградиент. Дополнительная часть

Задача 1. (2 балла) Пусть $f:\mathbb{R}^n \to \mathbb{R}$ есть индикаторная функция следующего множества

$$\mathcal{B}_{\|\cdot\|}(0,1) = \{x : \|x\|_p \le 1\},\,$$

где $p \in [1; +\infty]$. Найдите субдифференциал $\partial f(x)$.

Задача 2. (3 балла) Пусть $f:S\to\mathbb{R}$ - функция, определенная на множестве S из Евклидова пространства E. Пусть $x_0\in S$ и пусть $f^*:S_*\to\mathbb{R}$ - сопряженная функция, где S_* из сопряженного пространства E^* . Покажите, что

$$\partial f(x) = \{ g \in S_* : \langle g, x \rangle = f^*(g) + f(x) \}$$

.

Задача 3. (2 балла) Пусть $\lambda_{\max}: \mathbb{S}^d \to \mathbb{R}$ - функция максимального собственного значения, заданная на \mathbb{S}^d . Найдите субдифференциал $\partial \lambda_{\max}(X)$. Здесь \mathbb{S}^d - симметричные матрицы.

 $\it Указание:$ воспользуйтесь вариационным представлением $\lambda_{\rm max}$ и формулой для субдифференциала максимума.

Задача 4. (Збалла) Покажите, что функция $\lambda_{\max}(X)$ дифференцируема в точке $X \in \mathbb{S}^d$ тогда и только тогда, когда максимальное собственное значение матрицы X является простым (т.е. имеет кратность 1). Чему равен градиент $\nabla \lambda_{\max}(X)$?