

XGBoost

(Basic, Advanced Concepts and Its Applications)

Vinh Dinh Nguyen
PhD in Computer Science

Outline

- > Regularization
- **Regression XGBoost**
- Classification XGBoost
- > XGBoost: Clearly Explain
- > Time Series Example
- Summary

Regularization

Regularization

Train data

Regularization

Regularization

Train data

Test data

Area (square feet)

Hypothesis: $h_{ heta}(x) = heta_0 + heta_1 x$

Price = Intercept + slope * area

Regularization

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

 $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$ Goal:

Regularization.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$
 Price = [Intercept + slope * area] + λ *slope²

Outline

> Regularization

- **Regression XGBoost**
- **Classification XGBoost**
- > XGBoost: Clearly Explain
- > Time Series Example
- > Summary

Step 1

- Initialize the first prediction for drug effectiveness
- Any number, for default, we set 1st prediction = 0.5

$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

- $\{(x_i,y_i)\}^n$
- Loss function = $L(y_i, F(x)) = 1/2*$ (Output Predicted)²

Tricky implementation here

Step 1

Start with single Leaf of residuals

$SC = \frac{\left[\sum (output-predicted)\right]^2}{m+\lambda}$

m: number of samples λ : regularization parameters

Step 1

Start with single Leaf of residuals

Compute Similarity Score

$$SC = \frac{\left[\sum (output-predicted)\right]^2}{m+\lambda}$$

SC =
$$\frac{[-10.5+7.5+6.5+(-7.5)]^2}{4}$$
 =4

Step 1

-10.5, 6.5, 7.5, -7.5

What happens if we try to split residuals into two groups => measure the similarity score

SC = 4

-10.5, 6.5, 7.5, -7.5

What happens if we try to split residuals into two groups => measure the similarity score

0.5

How to prune the tree to prevent Overfitting? Gain information

$$\gamma = 150$$
 Difference = Gain - γ If difference > 0, do not remove branch If difference < 0, remove branch

□Step 1

-10.5, 6.5, 7.5, -7.5

Compute Similarity Score

$$SC = \frac{\sum (output-predicted)^2}{m+\lambda}$$

$$SC = \frac{[-10.5 + 7.5 + 6.5 + (-7.5)]^2}{4 + 1} = 3.2$$

 $\lambda = 0$

 $\lambda = 1$

How to Predict a Value

How to Predict a Value

Building the Next Tree

HOW TO FIND QUANTILES? => QUANTILE SKETCH APPROXIMATE SOLUTION

Outline

- > Regularization
- **Regression XGBoost**

- **Classification XGBoost**
- > XGBoost: Clearly Explain
- > Time Series Example
- > Summary

Similarity Score for Classification:

Similarity Score =
$$\frac{(\sum Residual_i)^2}{\sum [previous probability_i \times (1-previous probability_i)] + \lambda}$$

Similarity Score for Prediction (regression):

Similarity Score =
$$\frac{(\sum Residual_i)^2}{number of residual + \lambda}$$

Similarity Score =

 $\sum [previous probability_i \times (1-previous probability_i)] + \lambda$

What is a Cover

Similarity Score for Classification:

```
(\sum Residual_i)^2
       Similarity Score =
                                     \sum [\text{previous probability}_i \times (1-\text{previous probability}_i)] + \lambda
                                                                                              Cover
Similarity Score for Prediction:
                          Similarity Score = \frac{(\sum Residual_i)^2}{number of residual + \lambda}
```


What is a Cover

What is a Cover

Drug Weight	Drug Effectiveness
	No
	Yes
	Yes
	No

Initial prediction is that the probability of drug effective is
$$50\%$$
2 Yes and 2 No => Probablity Yes = 2/4 = 1/2 =
0.5
$$Log(odds) = log \left(\frac{Probablity Yes}{Probablity No}\right) = 0$$

In XGBoost (or Gradient Boost), the initial prediction is that the log(odds)

Probability of Drug Effectiveness =
$$\frac{e^{log(odds)}}{1 + e^{log(odds)}}$$

Probability of Drug Effectiveness =
$$\frac{e^0}{1+e^0}$$
 = 0.5

Tranformation formular for getting value at a leaf.

Build 2nd Tree

-0.5

P = 0.5

-0.35, 0.35, 0.35, -0.35


```
Similarity Score =
                           (-0.35 + 0.35 + 0.35 - 0.35)^2
 0.35 \times (1-0.35) + 0.65 \times (1-0.65) + 0.65 \times (1-0.65) + 0.35 \times (1-0.35)
                                                                           (\sum Residual_i)^2
Similarity Score = \frac{\sum_{\text{previous probability}_{i}} \times (1 - \text{previous probability}_{i})] + \lambda}{\sum_{\text{previous probability}_{i}} \times (1 - \text{previous probability}_{i})] + \lambda}
```


Build 2nd Tree

P = 0.5

Log(odds) = 0

Average = 5

-0.35, 0.35, 0.35, -0.35

```
(-0.35 + 0.35 + 0.35 - 0.35 )
Output Score = \frac{0.35 \times (1 - 0.35) + 0.65 \times (1 - 0.65) + 0.65 \times (1 - 0.65) + 0.35 \times (1 - 0.35) + \lambda}{0.35 \times (1 - 0.35) + 0.65 \times (1 - 0.65) + 0.65 \times (1 - 0.65) + 0.35 \times (1 - 0.35) + \lambda}
```

Output Score =
$$\frac{(\sum \text{Residual}_{i})}{\sum [\text{previous probability}_{i} \times (1-\text{previous probability}_{i})] + \lambda}$$

Build 2nd Tree

When do you stop to build the Tree

2. What's happen when $\lambda > 0$

Similarity Score =
$$\frac{(\sum Residual_i)^2}{\sum [previous probability_i \times (1-previous probability_i)] + \lambda}$$

Outline

- > Regularization
- **Regression XGBoost**
- **Classification XGBoost**

- > XGBoost: Clearly Explain
- > Time Series Example
- > Summary

AI VIET NAM AGBOOST: Behind The Scenes

Similarity Score =
$$\frac{(\sum \text{Residual})^2}{\sum \overline{y_i} \times (1 - \overline{y_i}) + \lambda}$$
Ouput value =
$$\frac{(\sum \text{Residual})}{\sum \overline{y_i} \times (1 - \overline{y_i}) + \lambda}$$

Similarity Score =
$$\frac{(\sum \text{Residual})^2}{\text{Number of Residual} + \lambda}$$

Output Value =
$$\frac{(\sum Residual)}{Number of Residual + \lambda}$$

Sử dụng loss functions xây dựng cây

=> It plays no role in deriving the Optimal

 $\sum \mathcal{L}(y_i, \overline{y_i^0} + P) + \frac{1}{2}\lambda P^2$

Chúng cần tìm giá trị đầu ra của nút lá này (giá trị P) bằng cách mininize loss function (giả sử $\lambda = 0$)

AI VIET NAM AGBOOST: Behind The Scenes

Tìm giá trị P cần tìm sao cho đạo hàm của loss function theo P bằng 0

$$\frac{d}{dP} \left[(g_1 + g_2 + \dots + g_n) P + \frac{1}{2} (h_1 + h + \dots + h_n + \lambda) P^2 \right] = 0$$

XGBoost Regression: Output Value

Output value af the leaf (or terminal node)

XGBoost For Classification: Output Value

$$\mathcal{L}(y_i, \overline{y_i}) = -[y_i \log(\overline{y_i}) + (1 - y_i) \log(1 - \overline{y_i})]$$

$$\mathcal{L}(y_i, \log(\text{odds})) = -y_i \log(\text{odds}) + \log(1 + e^{\log(\text{odds})})$$

$$g_i = \frac{d}{d\log(\text{odds})} \mathcal{L}(y_i, \log(\text{odds})) = -y_i + \frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}} = -(y - \overline{y_i})$$

$$d^2 \qquad \qquad e^{\log(\text{odds})}$$

$$h_i = \frac{d^2}{d\log(odds)^2} \mathcal{L}(y_i, \log(odds)) = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}} \times \frac{1}{1 + e^{\log(odds)}} = \overline{y_i} \times (1 - \overline{y_i})$$

$$P = \frac{-(g_1 + g_2 + \dots + g_n)}{h_1 + h_2 + \dots + h_n + \lambda} = \frac{\text{sum of residual}}{\overline{y_1} \times (1 - \overline{y_1}) + \overline{y_2} \times (1 - \overline{y_2}) + \dots + \overline{y_n} \times (1 - \overline{y_n}) + \lambda} = \frac{(\sum \text{Residual})}{\sum \overline{y_i} \times (1 - \overline{y_i}) + \lambda}$$

XGBoost: Similarity Score

XGBoost: Similarity Score

XGBoost: Similarity Score

 $g_i = \frac{d}{d\bar{y}_i} \frac{1}{2} (y_i - \bar{y}_i)^2 = -(y_i - \bar{y}_i)$

XGBoost Regression: Similarity Score

AI VIET NAM @aivietnam.edu.vn

 $h_i = \overline{y_i} \times (1 - \overline{y_i})$

XGBoost Classification: Similarity Score

Outline

- > Regularization
- **Regression XGBoost**
- **Classification XGBoost**
- > XGBoost: Clearly Explain

- > Time Series Example
- Summary

We will focus on the energy consumption problem, where given a sufficiently large dataset of the daily energy consumption of different households in a city, we are tasked to predict as accurately as possible the future energy demands.

london_energy

LCLid	Date	KWH
MAC000002	2012-10-12	7.098
MAC000002	2012-10-13	11.087
MAC000002	2012-10-14	13.223
MAC000002	2012-10-15	10.257
MAC000002	2012-10-16	9.769
MAC000002	2012-10-17	10.885
MAC000002	2012-10-18	10.751
MAC000002	2012-10-19	8.431
MAC000002	2012-10-20	17.578
MAC000002	2012-10-21	24.49
MAC000002	2012-10-22	18.885
MAC000002	2012-10-23	10.485
MAC000002	2012-10-24	15.537

Preprocessing

XGBoost For Training

```
from xgboost import XGBRegressor
import lightgbm as lgb
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV
# XGBoost
cv_split = TimeSeriesSplit(n_splits=4, test_size=100)
model = XGBRegressor()
parameters = {
    "max_depth": [3, 4, 5],
    "learning_rate": [0.01, 0.05],
    "n_estimators": [100, 300],
    "colsample_bytree": [0.3]
grid_search = GridSearchCV(estimator=model, cv=cv_split, param_grid=parameters)
grid_search.fit(X_train, y_train)
```


XGBoost For Predicting

The model performs relatively well, but is there a way to improve it even further?

The answer is yes

Metric	XGBoost
MAE	0.768
MSE	1.499
MAPE	0.197

Enhance our dataset with weather data from the London Weather Dataset

london_weather									
date	cloud_cover	sunshine	global_radiation	max_temp	mean_temp	min_temp	precipitation	pressure	snow_depth
19790101	2.0	7.0	52.0	2.3	-4.1	-7.5	0.4	101900.0	9.0
19790102	6.0	1.7	27.0	1.6	-2.6	-7.5	0.0	102530.0	8.0
19790103	5.0	0.0	13.0	1.3	-2.8	-7.2	0.0	102050.0	4.0
19790104	8.0	0.0	13.0	-0.3	-2.6	-6.5	0.0	100840.0	2.0
19790105	6.0	2.0	29.0	5.6	-0.8	-1.4	0.0	102250.0	1.0
19790106	5.0	3.8	39.0	8.3	-0.5	-6.6	0.7	102780.0	1.0
19790107	8.0	0.0	13.0	8.5	1.5	-5.3	5.2	102520.0	0.0
19790108	8.0	0.1	15.0	5.8	6.9	5.3	0.8	101870.0	0.0
19790109	4.0	5.8	50.0	5.2	3.7	1.6	7.2	101170.0	0.0
19790110	7.0	1.9	30.0	4.9	3.3	1.4	2.1	98700.0	0.0
19790111	1.0	6.8	55.0	2.9	2.6	0.3	2.3	98960.0	0.0
19790112	3.0	6.4	54.0	2.0	0.4	-2.0	0.0	100650.0	1.0

Data Analysis: Filling missing value

```
[22] df_weather = pd.read_csv("/content/drive/MyDrive/AI02024/london_weather.csv")
     print(df_weather.isna().sum())
     df_weather.head()
\overline{\longrightarrow}
    date
     cloud cover
     sunshine
    global_radiation
    max_temp
    mean_temp
    min_temp
    precipitation
    pressure
                           1441
     snow_depth
     dtype: int64
```

```
# Parsing dates
df_weather["date"] = pd.to_datetime(df_weather["date"], format="%Y%m%d")

# Filling missing values through interpolation
df_weather = df_weather.interpolate(method="ffill")

# Enhancing consumption dataset with weather information
df_avg_consumption = df_avg_consumption.merge(df_weather, how="inner", on="date")
df_avg_consumption.head()
```


Prepare New Dataset

```
# Dropping unnecessary `date` column
training_data = training_data.drop(columns=["date"])
testing_dates = testing_data["date"]
testing_data = testing_data.drop(columns=["date"])
X_train = training_data[["day_of_week", "day_of_year", "month", "quarter", "year",\
                         "cloud_cover", "sunshine", "global_radiation", "max_temp", \
                         "mean_temp", "min_temp", "precipitation", "pressure",\
                         "snow depth"]]
y_train = training_data["consumption"]
X_test = testing_data[["day_of_week", "day_of_year", "month", "quarter", "year",\
                         "cloud_cover", "sunshine", "global_radiation", "max_temp",\
                         "mean_temp", "min_temp", "precipitation", "pressure", \
                         "snow_depth"]]
y_test = testing_data["consumption"]
```


Performance Evaluation

Metric	XGBoost (old data)	XGBoost (new data)
MAE	0.768	0.423
MSE	1.499	0.864
MAPE	0.197	0.164

Outline

- > Regularization
- **Regression XGBoost**
- Classification XGBoost
- > XGBoost: Clearly Explain
- **How to File Missing Values**
- > Time Series Example

> Summary

$$\mathcal{L}(y_i, \overline{y_i}) = -[y_i \log(\overline{y_i}) + (1 - y_i) \log(1 - \overline{y_i})]$$

$$\mathcal{L}(y_i, \overline{y_i}) = [-y_i \log(\overline{y_i}) - (1 - y_i) \log(1 - \overline{y_i})]$$

$$\mathcal{L}(y_i, \overline{y_i}) = -y_i \log(\overline{y_i}) - \log(1 - \overline{y_i}) + y_i \log(1 - \overline{y_i})$$

$$\mathcal{L}(y_i, \overline{y_i}) = -y_i[\log(\overline{y_i}) - \log(1 - \overline{y_i})] - \log(1 - \overline{y_i}))$$

$$\log(\overline{y_i}) - \log(1 - \overline{y_i})] = \log\left(\frac{\overline{y_i}}{1 - \overline{y_i}}\right) = \log(\text{odds})$$

$$\mathcal{L}(y_i, \overline{y_i}) = -y_i \log(\text{odds}) - \log(1 - \overline{y_i})$$

$$\log(1-\overline{\mathbf{y_i}}) = \log\left(1-\frac{\mathrm{e}^{\log(\mathrm{odds})}}{1+\mathrm{e}^{\log(\mathrm{odds})}}\right) = \log\left(\frac{1}{1+\mathrm{e}^{\log(\mathrm{odds})}}\right) = \log(1) - \log(1+\mathrm{e}^{\log(\mathrm{odds})}) = -\log(1+\mathrm{e}^{\log(\mathrm{odds})})$$

$$\mathcal{L}(y_i, \log(odds)) = -y_i \log(odds) + \log(1 + e^{\log(odds)})$$

$$\log\left(\frac{\bar{y_i}}{1-\bar{y_i}}\right) = \log(\text{odds})$$

Exponential both sides

$$\left(\frac{\overline{y_i}}{1-\overline{y_i}}\right) = e^{\log(\text{odds})}$$

$$\overline{y_i} = (1 - \overline{y_i}) e^{\log(\text{odds})}$$

Add $\overline{y_i}e^{\log(odds)}$ both sides

$$\overline{y_i} = e^{\log(\text{odds})} - \overline{y_i}e^{\log(\text{odds})}$$

$$\overline{y_i} + \overline{y_i}e^{\log(odds)} = e^{\log(odds)}$$

$$\overline{y_i}(1 + e^{\log(odds)}) = e^{\log(odds)}$$

$$\overline{y_i} = \frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$