8 КЛАС: ЕСЕН 2016

Задача 1. Най-голям	иото сред числата $(-2)^{\frac{1}{2}}$	2 , 2^{-2} , $(-3)^{3}$ и 3^{-3} е	:
A) $(-2)^2$	B) 2^{-2}	C) $(-3)^3$	D) 3^{-3}
Задача 2. Днес е вто	рник. Кой ден от седми	цата ще е след 366 дни	, считано от утре?
А) вторник	В) сряда	С) четвъртък	D) петък
Задача 3. Намерете	броя на четирицифрени	те числа, които се запи	исват само с цифрите 2
и 3, и които се делят	на 12 (с остатък 0).		
A) 1	B) 2	C) 3	D) повече от 3
3адача 4. Ако $ 2x +$	$1 + 4x^2 - 1 = 0, \text{ np}$	есметнете $2x - 1$.	
A) 0	B) 2	C) - 2	D) 1
Задача 5. Колко е бр	оят на изпъкналите <i>N</i> -т	ыгълници ($N \ge 3$), сбор	ът от ъглите на които е
по-малък от 9 999 гр	адуса?		
A) 55	B) 56	C) 57	D) 58
Задача 6. Амфитеат	ьр се състои от 20 реда.	На най-близкия до сце	ената ред има 10 места.
Колко зрители мога	г да заемат всички мест	га, ако всеки ред има с	е едно място повече от
предходния?			
A) 195	B) 290	C) 390	D) 300
Задача 7. От три к	вадрата със страни в с	антиметри а, b и с (а	< b < c) е образувана
фигура, както е пока	зано на чертежа.		
Изпазете през а h и	<i>c</i> разликата на сбора о	т обиколките на трите	урапрата и обимопмата
на образуваната фиг	-	т оонколките на трите	квадрата и обиколката
A) $3a + 3b + c$		C) $a + 3b + 3c$	D) HDVE OTEOROD
ŕ	\mathbf{B}) $3a + b + 3c$ простите числа, които до		Б) друг отговор
	$+2^{n+4}$, ако <i>n</i> е естестве	-	
A) 1	B) 2	C) 3	D) повече от 3
Задача 9. Правоъгъ.	лник 8 <i>ст</i> х 18 <i>ст</i> мож	ке да бъде разделен на	д две фигури, от които
може да се сглоби к	вадрат. Пресметнете обы	иколката на този квадра	AT.
A) 52 cm	B) 48 cm	C) 24 <i>cm</i>	D) 144 cm
Задача 10. Двама б	$oldsymbol{\mathcal{L}}$ ратя A и B имат общо	о 43 бонбона. Ако <i>А</i> 1	подари на сестра си 5
бонбона, а $B - 13$, то	гава A ще има $2/3$ от ос	ганалите бонбони на В.	Колко бонбона е имал
в началото A ?			
A) 10	B) 15	C) 20	D) 45

Задача 11. Намерете последната цифра на разликата $3^{2016} - 4^{2017}$.

Задача 12. Намерете най-малкото естествено число, което се дели на 2017, а при делението на 2015 дава остатък 4.

Задача 13. Правоъгълник A е разрязан на четири правоъгълника. Лицата на три от тях, в *квадратни сантиметри*, са посочени на чертежа.

6	8	
	24	

Колко $\kappa вадратни сантиметра$ е лицето на правоъгълника A?

Задача 14. Колко най-малко числа от числата 1, 2, 3, 4, 5, 6, ..., 18, 19 и 20 трябва да бъдат избрани на случаен принцип, така че сред тях да има 2 числа със сбор 30?

Задача 15. В израза 1111 + 11 преместили една цифра и след пресмятането на получения израз получили най-малкото възможно число. Кое е то?

Задача 16. Намерете най-малката цяла положителна стойност на параметъра a, за която уравнението $a \times (ax - 5) = 9x + 15$ има за решение цяло число.

Задача 17. В N щайги има ябълки (няма щайга без ябълки). Във всяка щайга има наймалко 1 ябълка и най-много 80 ябълки. Намерете най-малката стойност на N, за която винаги има 3 щайги с равен брой ябълки.

Задача 18. Средната възраст на мен, мама и татко е x години. Определете на колко години е сестра ми, ако средната възраст на мен, мама, татко и сестра ми е

$$\frac{1,5x+6}{2}$$

Задача 19. Нека n е естествено число, n > 2. Колко са естествените числа, които са точни квадрати и са от интервала

$$(n^2, 4n^2 - 4n + 1)$$
?

Задача 20. Две от страните на триъгълник имат дължини съответно 8 *cm* и 10 *cm*. От височините, спуснати към тях, едната е с 2 *cm* по-дълга от другата. Пресметнете найголемия ъгъл на този триъгълник.