

Ch—07 Alternating Current Daily Practice Problem 04

Q1. When an inductor L and a resistor R in series are connected across a 12 V, 50 Hz supply, a current of 0.5 Allows in the circuit. The current differs in phase from applied voltage by $\pi/3$ radian. Calculate the value of R.

- **Q2.** A bulb of resistance 10Ω , connected to an inductor of inductance L, is in series with an a.c. source marked 100 V, 50 Hz. If the phase angle between the voltage and current is it $4 \ radian$, calculate the value of L.
- **Q3.** A student connects a long air core coil of manganin wire to a 100 V d.c. source and records a current of 1.5 A. When the same coil is connected across 100 V, 50 Hz a.c. source the current reduces to 1.0 A.
- (i) Give reason for this observation.
- (ii) Calculate the value of the reactance of the coil.
- **Q4.** In the circuit shown in Fig., the potential difference across the inductor L and resistor R are 120 V and 90 V respectively and the rms value of current is 3 A. Calculate

- (i) the impedance of the circuit and
- (ii) the phase angle between the voltage and current.

Q5. When 100 V dc is supplied across a solenoid, a current of 1.0 A flows in it. When 100 V ac is applied across the same coil, the current drops 0.5 A. the frequency of ac source is 50 Hz, then the impedance and inductance of the solenoid are

- (a) 200Ω and 0.55 H
- **(b)** 100Ω and 0.86 H
- (c) 200Ω and 1.0 H
- (d) 100Ω and 0.93 H
- **Q6.** The virtual current in the a.c. circuit shown in Fig., is 1.0 *A*. Find
- (i) virtual voltage across the coil L,
- (ii) impedance of the circuit and
- (iii) reactance of the coil.

Q7. Find the impedance of the circuit shown in Fig., for

- (i) direct current and
- (ii) alternating current of frequency 10/ πkHz .

Q8. In a series R-C circuit, $R = 30 \Omega$, C = $0.25 \, \mu F$, $V = 100 \, V$ and $\omega =$

 $10,000 \ rad \ s^{-1}$. Find the current in the circuit and calculate the voltage across the resistor and the capacitor.

Q9. A series circuit contains a resistor of 20Ω , a capacitor and an ammeter of negligible resistance. It is connected to a source of 220 V - 50 Hz. If the reading of the ammeter is 2.5 A, calculate the reactance of the capacitor.

Q10. What is the value of current in the a.c.circuit containing $R = 10 \Omega$, $C = 50 \mu C$ in series across 200 V, 50 Hz a.c. source?

ANSWERS

1. 12 Ω

2. 0.0318 *H*

3. 74.53 Ω

4. 50 Ω; 53.1°

5. a

6. (*i*) 160 V

(ii) 200 Ω

(iii) 160Ω

7. (*i*) infinite (ii)32 Ω

8. 0.25 *A*; 7.5 *V*; 100 *V*

9. 85 .7 Ω

10. 3.10 *A*