HW#3

- It will be posted soon.
 - Simulation of a pn junction

Lecture9: Diode models and circuits (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Forward/reverse

- A diode shows a strong polarity.
 - Does a resistor have a polarity?
 - In diodes, the following two cases are completely different.
- Forward bias
 - The voltage at the n-type side is higher than the p-type one.

- Reserve bias
 - The voltage at the p-type side is lower than the n-type one.

Reverse bias

Electric field

Now, the magnitude of the electric becomes larger.

← This is the equilibrium solution. What happens when the n-type region is positively biased?

Higher electric field?

- How can the pn junction generate the higher electric field?
 - At equilibrium, how did it generate the built-in electric field? $\nabla \cdot \mathbf{D} = \rho$
 - Higher electric field means more space charges!

← Which one can provide nonzero electric field?

- Therefore, the depletion region becomes wider.
 - Even higher potential barrier!

Variable capacitance

Capacitor? Why do we care about it?

$$Q = CV$$
 and $I = C \frac{dV}{dt}$

- Where can you find capacitance in the following structure?
- Why is it important?

Doping profile of a typical planar MOSFET

Charge

Charge stored in a pn junction

$$Q = A \sqrt{2\epsilon_s q \frac{N_A N_D}{N_A + N_D}} (V_0 + V_R)$$

- Then, what is the capacitance at a given value of the reverse bias, V_R ?

Summary of reverse bias

Reverse bias

- Larger electric field
- Wider depletion region
- (Almost) no current flow
- Variable capacitance

Forward bias

Forward bias

- We can easily guess that the depletion width will be reduced.
- Potential barrier is lowered. (Equilibrium and 0.5 V)

Electric potential [V]

Position [µm]
GIST Lecture on March 30, 2016 (Internal use only)

Density @ forward bias

- Electron concentration (similar for hole concentration)
 - Equilibrium and 0.5 V
 - Exponential increase of electron density!

IV characteristics

- In forward bias,
 - The external voltage opposes the built-in potential, raising the diffusion currents substantially.
- In reverse bias,
 - The applied voltage enhances the field, prohibiting current flow.

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Here, the "reverse saturation current" is given by

$$I_S = Aqn_i^2 \left(\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right)$$

- L_n and L_p are electron and hole "diffusion lengths," respectively.

An example

- Determine I_S .
 - The cross section of 100 μm²
 - L_n and L_p are 20 µm and 30 µm, respectively.
 - L_n and L_p are 20 µm and 30 µm, respectively.
- When $I_S = 1.77 \times 10^{-17} \text{ A}$,
 - Determine the forward bias current.
 - For $V_D = 300 \text{ mV}$, $I_S \left(\exp \frac{V_D}{V_T} 1 \right) = 3.63 \text{ pA}$
 - For $V_D = 800$ mV, 820 μ A

60 mV/dec, what is it?

- Calculate $V_T \ln 10$ at 300K.
 - Approximately 60 mV

GIST Lecture on March 30, 2016 (Internal use only)

Draw it!

In the linear scale, very steep increase of current!

Diode current [A]

Constant-voltage model

Idealized model

A simple math

- An input voltage, $V_{in}(t) = \sin \omega t$
- A system

Another system

Which is nonlinear?

Diode

Its symbol

Ideally, a perfect rectifier

Example 3.4

A diode-resistor combination

- Consider two cases, $V_A > 0$ and $V_A < 0$.
- ← Draw the IV curve.

Example 3.6

An OR gate

Rectifier

Same circuit shown in Example 3.4.

Input vs. output

Input

- 50 Hz
- Pure sine
- No dc

Output

- 0, 50, 100, ... Hz
- dc voltage: $\frac{1}{\pi}$ V

0.04

0.06

0.08

0.1

22

GIST Lecture on March 30, 2016 (Internal use only)

0.02

-0.5

Concept!

- How to detect the electromagnetic radiation
 - Nonlinearity is required.

Incident THz wave (High freq)

Rectifier, revisited

Same circuit shown in Example 3.4.

pn junction as a diode

Exponential model

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

