清华大学本科生考试试题专用纸

	考试课程	热力学与传	热学基础	期末考试	2022年	12	月 30	日
		班级	姓名_		学号			
	、简要回答	下列问题(52	2分)					
1.		引热源、常物性、 体在坐标(<i>x</i> =0,					-	
2.		说明 <i>Bi</i> 数的物理 认为, <i>Bi →</i> 0 代章						什么
3.		性画出单相流体 对应位置定性画						
4.		太阳能利用中, 采暖板都不做成			糙的黑色表	面;	而用于	室内
5.	冷流体温度	逆流换热器中, 沿流动方向的变 量流量; <i>c_{p1}、c_p</i>	化曲线,并约	合出简单解释	。(其中q _{m1}			
6.		力学是传热学研 列举一个传热学						

二、计算题 (48分)

- 1. (14 分)将一个直径为 8 mm 的钢球加热到 1200 K,然后慢慢冷却到 400 K 进行退火。冷却过程在周围的空气中进行,空气温度 T_{∞} =300 K、对流换热系数 h=20 W/(m²•K);钢球的导热系数 λ =40 W/(m•K),密度 ρ =7800 kg/m³,比热容 c=600 J/(kg•K)。求冷却过程所需要的时间。
- 2. (16 分)将一个厚度为 1 mm 的薄膜型加热器件均匀贴在汽车后窗的内表面上以消除雾气。通电加热该器件,玻璃内表面受到的热流密度可视为均匀。车内空气温度 T_{in} =25°C、对流换热系数 h_{in} =10 W/(m²•K);车外环境空气温度 T_{out} =-10°C、对流换热系数 h_{out} =65 W/(m²•K);窗户玻璃的厚度 δ =4 mm,玻璃导热系数 λ =0.65 W/(m•K)。要保持车窗内表面温度 T_{w} =15°C,请问:加热薄膜所需施加的热流密度为多大?忽略辐射效应、薄膜热阻以及接触热阻。
- 3. (18 分) 水以 1.6 m/s 的流速流入内径为 28 mm、外径为 31 mm、长为 1.5 m 的 直管,进口水温 10℃。管外表面均匀缠有电加热丝,加热功率为 40.05 kW,加热 丝外包有保温材料,通过外壁保温层的散热损失为加热量的 3.3 %。管材导热系数 为 12.30 W/(m•K)。
 - (1) 忽略进口段影响,求直管出口水温以及管内壁平均温度(计算结果取整);
 - (2) 若考虑进口段影响,请画出管内局部流体温度和管内壁温度沿管长方向变化的示意图。

1	ሰረ ተ	À'n	14	会	*	表
71	m	4771	14	獗	<i>4</i> ;∨	ᅏ

t	ρ	c_p	$\lambda \times 10^2$	$\nu \times 10^6$	D.
°C	kg/m ³	kJ/(kg·K)	W/m·K	m^2/s	Pr
10	999.7	4.191	57.4	1.306	9.52
15	999.0	4.187	58.7	1.156	8.27
20	998.2	4.183	59.9	1.006	7.02
25	997.0	4.179	60.9	0.906	6.22
30	995.7	4.174	61.8	0.805	5.42

已知充分发展时管内强迫对流湍流换热关系式:

当流体与管壁温度相差不大的情况下 (对于水, Δt < 30°C):

 $Nu = 0.023 Re_f^{0.8} Pr_f^n$

适用条件: n = 0.4, $t_w > t_f$; n = 0.3, $t_w < t_f$; $0.7 \le Pr_f \le 160$, $Re_f \ge 10^4$, $l/d \ge 60$.