Equation of State for an Ideal Gas

By Vincent Edwards

Lab Partner: Gina Herrera

September 12, 2025

1. Results

Table 1 contains various quantities, both measured and given, that will be relevant to the analysis. They were collected in a table to assist with lookup.

T is the temperature of the room measured using a digital thermometer. The temperature was initially measured as 71 °F, then converted to kelvins as show in Equation 1.

$$T = \left(\frac{5}{9}(71 - 32) + 273.15\right) \text{ K} = 294.82 \text{ K}$$
 (1)

 P_0 is the atmospheric pressure measured using a digital barometer. The pressure was initially measured as 28.93, then converted to pascals as shown in Equation 2.

$$P_0 = (28.93 \text{ in Hg}) \cdot \frac{25.4 \text{ mm Hg}}{1 \text{ in Hg}} \cdot \frac{101 325 \text{ Pa}}{760 \text{ mm Hg}} = 97 968 \text{ Pa}$$
 (2)

 m_p is the mass of the piston & platform, taken from the label on the gas law apparatus. D is the piston diameter, taken from the label on the gas law apparatus.

Table 1: Miscellaneous Quantities

Quantity	Value
T	$294.82~\mathrm{K}$
P_0	$97968\mathrm{Pa}$
m_p	$35.0\mathrm{g}$
D	$32.5~\mathrm{mm}$

2. Analysis