Fondamenti di Automatica (Ing. Gestionale) Prof. Fredy Ruiz Appello del 29 giugno 2023

ESERCIZIO 1

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\dot{x_1}(t) = \alpha x_1(t) + 2x_2(t) + u(t)
\dot{x_2}(t) = \beta x_2(t) + 5u(t)
y(t) = x_1(t) + x_2(t) + u(t)$$

dove α e β e sono costanti reali.

1. Classificare il sistema

2. Studiare la stabilità del sistema al variare dei parametri α e β .

matrice
$$A = \begin{bmatrix} \alpha & 2 \\ 0 & \beta \end{bmatrix}$$
, diagonale superiore $\lambda_1 = \alpha$, $\lambda_2 = \beta$

-
$$\angle < O \land B < O : 515 \text{ tema } Asm to fica mean & stabile$$

- $\angle < O \land B > O : 515 \text{ tema } Instabile$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O) \lor (\angle = O \land B < O) : 5 + 9 \text{ ile } Mq$
- $\angle < O \land B = O \land$

trovare degli equilibri per un qualsiasi valore di α e β ?

• Se
$$x=0$$

$$x_{1}=-\frac{1}{2}.\overline{u} \right] \xrightarrow{5} \text{ equilibrio}$$

$$x_{2}=-\frac{1}{2}.\overline{u} \right] \xrightarrow{5} \text{ equilibrio}$$

$$x_{3}+0 \qquad x_{1}=-\frac{5}{3}.\overline{u} \right] \xrightarrow{5} = \frac{1}{2}$$

4. Fissando i valori dei parametri $\alpha = 1$, $\beta = -1$ trovare gli autovalori, autovettori e la risposta del movimento libero dello stato per $x_1(0) = 0$ e $x_2(0) = 1$.

A=
$$\begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$$
, $\lambda_1 = 1$ Six fema
- $(A - \lambda_1 I)V_1 = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{12} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\ 2 \end{bmatrix} \begin{bmatrix} V_{11} \\ V_{11} \end{bmatrix} = 0$ = $7 \begin{bmatrix} 0 & 2 \\$

ESERCIZIO 2

Si consideri il sistema dinamico descritto dalle seguenti equazioni

$$\begin{cases} x_1(k+1) = \alpha x_1^2(k) + u(k) \\ y_1(k) = x_1(k) + u_{\bullet}(k) \end{cases}$$

dove α è una costante reale *Positiva*.

- 1. Classificare il sistema.
 - -Non lineare (x,2) Tempo invariante -tempo digcreto -SISO - Semp. profrio -Ordino uno
- 2. Determinare i punti di equilibrio del sistema per un ingresso costante $u(k) = \bar{u}$. È possibile trovare degli equilibri per un qualsiasi valore di \bar{u} ?

In equilibro
$$X(X+1)=X(X)=\overline{X}$$
 $\overline{X}=\alpha \, \overline{X}^2+\overline{U}$
 $\alpha \, \overline{X}^2-\overline{X}+\overline{U}=\emptyset=7 \, \overline{X}=\frac{1+\sqrt{1-4\alpha U}}{2\alpha}$
 $\exists \, \overline{X} \in \mathbb{R}$ se $1-4\alpha \overline{U} > 0=7 |\alpha \overline{U} \leqslant 1/4$

Se $\alpha \overline{U}=1/4$ c'é una Golveigne di equilibrio

Se $\alpha \overline{U}=1/4$ ci sono due equilibri

3. Posto $\alpha=0.25$, determinare le equazioni del sistema linearizzato attorno agli stati di equilibrio corrispondenti a $\bar{u}=-3$.

equilibrio
$$X = 6$$
, $\bar{X}^2 = -2$ (dece soluzioni)

Sistema linearizzato
$$\bar{X}(k+1) = \frac{\partial S}{\partial x} X(k) + \frac{\partial S}{\partial u} \bar{u}(k)$$

$$\bar{X}(k+1) = 2x \bar{X} \bar{X}(k) + \bar{v}(k)$$

For
$$\overline{X}' = 6$$

$$\overline{X}(k+1) = 3 \overline{X}(k) + \overline{u}(k)$$
For $\overline{X}' = -2$

$$\overline{X}(k+1) = -1 \cdot \overline{X}(k) + \overline{u}(k)$$

$$\overline{Y}(k) = \overline{X}(k) + \overline{u}(k)$$

4. Determinare i modi e studiare la stabilità di ognuno dei punti di equilibrio trovati al punto precedente.

precedente.

For
$$X'=6$$
 $A=3$, $\lambda=3$? mode

 $A=-1$, $\lambda=-1$? mode

 $\lambda=-1$, $\lambda=-1$? mode

 $\lambda=-1$
 $\lambda=-$

5. Fissato $\alpha = 0.25$, calcolare i primi 5 campioni del movimento dello stato del sistema non lineare per $u(k) = -3, \forall k \geq 0$ e $x_1(0) = -1$.

JK	[U_	/ X,
0	~3	-1
1	~3	-2,75
Z	-3	-l, l(
3	-3	-2,69
4	-3	-1,19
5	-3	-2,65

ESERCIZIO 3

Si consideri la funzione di trasferimento

$$G(s) = 10 \frac{s - 2}{s^2 + 11s + 10}$$

di un sistema lineare tempo invariante senza autovalori nascosti.

1. Calcolare guadagno, tipo, poli e zeri di G(s) e studiare la stabilità del sistema con funzione di trasferimento G(s).

For the discounds ordine, Poli: $\{l_i=-1, l_2=-10\}$ Asinto For discounds ordine, Poli: $\{l_i=-1, l_2=-10\}$ stabile afase non minima $\{l_i=-1, l_2=-10\}$ stabile $\{l_i=-1, l_2=-10\}$ afase non minima $\{l_i=-1, l_2=-10\}$ and $\{l_i=-1, l_2=-10\}$ and

2. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di trasferimento G(s).

3. Per un ingresso u(t) tipo scalino determinare l'espressione analitica dell'uscita y(t) e i valori di y(0), y'(0) e $y(\infty)$. Tracciare qualitativamente l'andamento dell'uscita. È possibile fare una approssimazione a poli dominanti? Giustificare la risposta.

$$V(s) = G(s) \cdot U(s) = 10 \frac{s-2}{s^2 + 11s + 10} \cdot \frac{1}{5} = \frac{A}{5} + \frac{B}{5+1} + \frac{C}{5+10}$$

-Polo
clominante
n -1
- E possibile
trascurare
il polo

4. Determinare, giustificando la risposta, quanto vale l'uscita y(t) di regime del sistema lineare tempo invariante con funzione di trasferimento G(s) associata agli ingressi:

•
$$u_1(t) = 4sin(0.1t)$$

•
$$u_2(t) = 10sin(10t)$$

$$y(t) = 8 \sin(0,1t-T)$$

$$u_{2}(t) = 10 \sin(10t), \quad \omega = 10 = 7 \cdot 16 \cos(10) \approx 0 dB$$

$$-3 dB = 5 \cos(200)$$

ESERCIZIO 4

Si consideri il sistema di controllo in figura

dove

$$G(s) = \frac{9}{(s+30)(s+5)}$$

$$R(s) = 100 \frac{s+5}{s}.$$

$$\mathcal{L}(s) = \frac{900}{5(s+30)}$$

е

1. Tracciare i diagrammi di Bode di modulo e fase della risposta in frequenza associata alla funzione di anello L(s).

2. Determinare le proprietà di stabilità del sistema retroazionato e trovare in maniera approssimata i margini di fase e di guadagno.

MTP, I(5) non ha pdi 119 fabili Le concellazion, sono di poli studili Per il criterio di ficcola pase, Il 519 temes vetoaziona to E Agintoti Camente 5 tabilo

Dalgrapico di Bode Pm=45°, Km=+00

3. Determinare l'errore a transitorio esaurito a fronte di un ingresso di riferimento $y^{o}(t) =$ 5sca(t).

LCG/ tipo I, allora por ngresso 410 scalino si ha:

 $C^{\infty} = \emptyset$

4. Determinale il modulo dell'errore a transitorio esaurito a fronte di un disturbo d(t) = $\sin(\omega t)$, con $\omega = 10rad/s$.

E(5) = - S(5)·D(5) = - (5)

w=lorad/s < cuc=30 fad/s, allora

dal grafico di Bode: 16.(510)] = 10dB

allora $|e_0| = \frac{1}{3,16} = 0.32$

5. Dire, giustificando la risposta, quanto vale l'ampiezza dell'uscita y(t) di regime associata all'ingresso $y^o(t) = 4\sin(0.1t) - 10\sin(100t)$ con d(t) = 0.

$$V(s) = \frac{L(s)}{1 + L(s)} V_{o}(s)$$
-Per $w = 0,1$ $\neq e$ $w = 1,1$ $\neq e$ $q = 1,1$ $\neq e$ $q = 1,1$ q

