Machine Learning Foundations

Chapter 2: Calculus

Harish Guruprasad Ramaswamy
IIT Madras

Outline

- · Sets and Functions
 - · Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules

Sets

R - Set of real numbers R+ - Set of positive reals including D Z - Set of Integers Z, - · · +ve Inte [a,6] = {x6R: a < x < b3 $(a,b): \mathcal{L} \times \mathcal{L} \times$ IRd: Set of d-dimensional vectors = IRXRX...XIR $\begin{pmatrix} 1 \\ 2 \\ 3 \cdot 2 \end{pmatrix} \in \mathbb{R}^3$ [a,b]d: {x & Rd: x; & [a,b] i & {1,2,... dgg}

Metric Spaces

$$IR^{d}: D(x,y) = |x-y| - \sqrt{(x,-y,)^{2} + \cdots + (x_{a}-x_{a})^{2}}$$

$$\chi \in \mathbb{R}^d$$
. $B(\chi, \epsilon) : \begin{cases} y \in \mathbb{R}^d : D(\chi, g) < \epsilon \end{cases}$
 $\overline{B}(\chi, \epsilon) : \begin{cases} y \in \mathbb{R}^d : D(\chi, g) \leq \epsilon \end{cases}$

$$\overline{B}(x, \epsilon) = \{y \in \mathbb{R}^d : D(x, y) \leq \epsilon \}$$

$$d^{2}$$

$$\chi^{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathcal{B}([i], 0.5)$$

$$A': U \setminus A$$

$$(A \cup B)^{C}: A^{C} \cap B^{C}$$

$$(AUB): ANB$$

$$(ANB)^{C}: A^{C}UB^{C}$$

$$(ANB)^{C}: A^{C}UB^{C}$$

+ For all

3 There exists

$$A : [2,5], B : [47.5]$$

 $(AUB)' : [0,2) U (7,10] = A' n B'$
as $A' : [0,2) U (5,10], B' : [0,4) U (7,10]$

=> Implies

(=) Equivalent

A = > B

A (=) B

Sequences

$$\mathcal{L}_{1}, \mathcal{L}_{2}, \cdots$$

Where $\mathcal{L}_{1} \in \mathbb{R}^{d}$
 $\mathcal{L}_{1} \to \mathcal{L}_{2}^{*}$
 $\mathcal{L}_{1} \to \mathcal{L}_{2}^{*}$
 $\mathcal{L}_{2} \to \mathcal{L}_{3}^{*}$
 $\mathcal{L}_{3} \to \mathcal{L}_{4}^{*}$
 $\mathcal{L}_{3} \to \mathcal{L}_{4}^{*}$
 $\mathcal{L}_{4} \to \mathcal{L}_{5}^{*}$
 $\mathcal{L}_{5} \to \mathcal{L}_{5}^{*}$
 $\mathcal{L}_{6} \to \mathcal{L}_{5}^{*}$
 $\mathcal{L}_{7} \to \mathcal{L}_{7}^{*}$
 $\mathcal{L}_{7} \to \mathcal{L}_{7}^{*}$

Example sequence 1 $x_n: \left(1 + \frac{4}{3}, 3 - \frac{4}{3}\right)$

$$x_{n}: \left(1 + \frac{4}{2^{n}}, 3 - \frac{4}{2^{n}}\right)$$

$$\begin{vmatrix} 1/3 \\ *_{X_{X}} \\ 2 \end{vmatrix}$$

2 X

Example sequence 2 $X_n: \left(\cos \frac{\pi}{2}n, \sin \frac{\pi}{2}n\right)$

Sequences

Example:

(i)
$$\chi_{i} \in \mathbb{R}$$
, $i \quad \chi_{n} = 1+n$
(ii) $\chi_{i} \in \mathbb{R}^{2}$; $\chi_{n} = \left(\frac{1}{2^{n}}\cos\left(\frac{\pi}{2^{n}}\right), \frac{1}{2^{n}}\sin\left(\frac{\pi}{2^{n}}\right)\right)$
iii) $\chi_{i} \in \mathbb{R}^{2}$; $\chi_{n} = \left(\frac{1}{2^{n}}\cos\left(\frac{\pi}{2^{n}}\right), \sin\left(\frac{\pi}{2^{n}}\right)\right)$

Vector Spaces

If
$$V$$
 is a vector space
$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad B \in \mathbb{R}$$

$$U \in V, \quad U \in V \quad X, \quad X \in V$$

$$= \frac{1}{12} ||X|^2 = X \cdot X \cdot X \cdot ||X|^2 = \frac{1}{12} ||X|^2 = X \cdot X \cdot X \cdot ||X|^2 = \frac{1}{12} ||X|^2 = \frac{1}$$

Functions and Graphs

$$f:A \rightarrow B$$

Y

Domain Co-domain

1-dimensional function

 $f:IR \rightarrow R$
 d -dimensional functions

 $f:R \rightarrow R$
 $G_f \subseteq IR$
 $G_f = \{(x, f(x)) : x \in R^d \}$

Plots of 1-dimensional Functions

Contour Plots of 2-dimensional Functions

$$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$$

$$f(x) = \chi_{1} + \chi_{2}$$

$$Values = \{-1, 0, 1\}$$

$$f(x) = -1 \Rightarrow \chi_{1} = -2 - 1$$

$$f(\chi) = 0 \Rightarrow \chi_{1} = -\chi_{2}$$

Contour Plots of 2-dimensional Functions

Contour Plots of 2-dimensional Functions

Outline

- · Sets and Functions
 - Notations
 - · Logic
 - · Graphs and visualisations.
- · Univariate Calculus
 - · Continuity and differentiability
 - · Derivatives and Linear approximations
 - · Applications/Advanced rules
- · Multivariate Calculus
 - · Lines and planes in high dimensional space.
 - · Partial derivatives
 - · Gradients
 - · Linear approximations and Alternate gradient interpretations
 - · Applications/Advanced rules