Kvantemekanik 2, skriftlig eksamen, d. 3. april 2020.

4+1 timers prøve med alle sædvanlige hjælpemidler. Opgaven må besvares med blyant. Opgaven indeholder 10 delspørgsmål, som vægtes lige i bedømmelsen.

Opgave 1. Perturbation of Majorana mode

Et system er beskrevet ved en Hamiltonoperator med formen

$$H^0 = \left(\begin{array}{ccc} 0 & ia & ib \\ -ia & 0 & ic \\ -ib & -ic & 0 \end{array}\right)$$

hvor a, b og c er reelle konstanter, der er forskellige fra nul

1.1. Udled, med eksplicitte mellemregninger, de 3 egenværdier af H^0 .

Vink: Den ene egenværdi E_0^0 af H^0 er 0 og for de andre to E_\pm^0 gælder at $E_-^0 = -E_\pm^0$.

Den egensøjle for H^0 , der tilhører E_0^0 , er $\psi_0^0 = A(c, -b, a)^T$, hvor A er en nomalisationskonstant og T betyder transponeret.

Systemet perturberes af

$$H' = \left(\begin{array}{ccc} \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{array}\right)$$

hvor $\epsilon \ll |a|, |b|, |c|$. Vi vil benytte perturbationsteori til at bestemme effekten af H'.

- 1.2. Bestem første ordens korrektionen, E_0^1 , til den uperturberede egenenergi E_0^0 af H^0 .
- 1.3. Vis, at anden ordens korrektionen, E_0^2 , til egentilstanden ψ_0^0 af H^0 er nul. Kommentér resultatet.

Vi betragter nu i stedet et system, der er dobbelt så stort. Det uperturberede system og perturbationen er beskrevet ved hhv. (H^0 og H' er stadig givet som ovenfor)

$$H_{\text{new}}^0 = \left(\begin{array}{cc} H^0 & 0 \\ 0 & -H^0 \end{array} \right) \quad \text{og} \quad H_{\text{new}}' = \left(\begin{array}{cc} 0 & iH' \\ -iH' & 0 \end{array} \right) \ .$$

1.4. Bestem første ordens korrektionerne til den dobbelt udartede egenværdi 0 af H_{new}^0 .

Kommentar: Det uperturberede system er en simpel model, der har en Majorana tilstand.

Opgave 2. Lab med skævt placeret spole

Med vores setup fra laboratoriet observeres der resonans ved vinkelfrekvensen $\omega = \omega_{\rm old}$. Nu drejes den store spole vinklen θ omkring den lille spoles akse således at Hamiltonoperatoren bliver

$$H = -\gamma B_0 \cos(\theta) S_z + \gamma B_0 \sin(\theta) S_y - \gamma B_{\rm rf} \cos(\omega t) S_x .$$

2.1. Ved hvilken vinkelfrekvens, ω_{new} , vil vi forvente at finde resonans efter den store spole er blevet drejet

a)
$$\omega_{\text{new}} = \omega_{\text{old}} \cos(\theta)$$
 , b) $\omega_{\text{new}} = \omega_{\text{old}}$ eller c) $\omega_{\text{new}} = -\omega_{\text{old}} \sin(\theta)$

Husk at begrunde svaret.

Opgave 3. Påvirker Jordens magnetfelt drivhuseffekten?

Rotationen af et molekyle er beskrevet ved Hamiltonoperatoren

$$H^0 = \frac{L^2}{2I} + dBL_z,$$

hvor I og d er positive reelle konstanter. I de næste 3 delspørgsmål, **3.1, 3.2 og 3.3**, sættes magnetfeltet B = 0.

3.1 Opskriv egenværdierne for H^0 for B=0 og angiv deres udartethed.

Molekylet bliver udsat for elektromagnetisk stråling med vinkelfrekvensen ω beskrevet ved

$$H' = q\mathcal{E}z\cos(\omega t) ,$$

hvor q og \mathcal{E} er reelle konstanter.

Molekylet befinder sig til tiden $t = -\infty$ i grundtilstanden, $|l m\rangle = |0 0\rangle$, af H^0 .

- **3.2** Benyt første ordens tidsafhængig perturbationsteori til at opskrive et udtryk for sandsynlighedsamplituden fra grundtilstanden til en vilkårlig af de 3 første exciterede tilstande, $|1 m\rangle$, for H_0 til tiden t.
- **3.3** Brug svaret fra forrige spørgsmål til at vurdere ved hvilken vinkelfrekvens ω , der kan forekomme absorption, så rotoren er gået fra $|0\,0\rangle$ til $|1\,0\rangle$ til tiden $t=\infty$.

Vink: Nyttigt integral

$$\delta(\tilde{\omega}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\tilde{\omega}t} dt \ .$$

Nu betragter vi samme problemstilling som ovenstående, men denne gang med magnetfeltet, $B \neq 0$, der er tilstrækkelig lille til at grundtilstanden af H^0 stadig er $|0,0\rangle$.

3.4 Ændrer det eksterne magnetfelt på de mulige vinkelfrekvenser, ω , hvor der kan forekomme absorption, så rotoren går fra $|0\,0\rangle$ for $t=-\infty$ til en af tilstandene $|1\,m\rangle$ til tiden $t=\infty$?

Kommentar: Molekylet kan tænkes som en drivhusgas og det eksterne magnetfelt som Jordens magnetfelt.

Opgave 4. Hvilket potientiale passer til variationsbølgefunktionen

Vi betragter en partikel i en dimension.

4.1 For hvilket af de 3 nedenstående potentialer vil variationsbølgefunktionen

$$\psi_b(x) = \left(\frac{2b}{\pi}\right)^{1/4} e^{-b(x-a)^2},$$

hvor a er en positiv reel konstant og b er variationsparameteren, være et godt valg?

1)
$$V_1(x) = \frac{1}{2}k_1x^2$$
, 2) $V_2 = k_2(x+a)^4$ eller 3) $V_3 = k_3|x-a|$.

Konstanterne k_1 , k_2 og k_3 er alle positive. Der skal indgå en illustration i begrundelsen for dit svar.