Aufgabe 6.3

$$\begin{split} N &= (Q, \Sigma, \delta, q_o, F), L(N) = L \\ N' &= (Q', \Sigma', \delta', q'_o, F'), L(N') = L^* \end{split}$$

Konstruktion von N':

- Es wird ein ϵ -Übergang zwischen allen $q_F \in F$ und q_0 gebildet, also $\forall q_F \in F.(q_F, \epsilon) \vdash (q_0, \epsilon) \in \delta'$
- neuer Endzustand q'_F und neuer Startzustand q'_0 wird eingefügt, also $Q'=Q\cup\{q_F',q_0'\}$
- Die Zustandsübergangsfunktion wird somit um folgende Übergänge erweitert:

$$- \forall q_F \in F.(q_F, \epsilon) \vdash (q'_F, \epsilon)$$
$$- (q'_0, \epsilon) \vdash (q_0, \epsilon)$$
$$- (q'_0, \epsilon) \vdash (q'_F, \epsilon)$$

Beweis:

$$\begin{split} \text{IVor: } & (q_0', w) \vdash (q_F', \epsilon) \\ \text{IBeh: } & \forall v \in L. (q_0', wv) \vdash (q_F', \epsilon) \end{split}$$

IBew.:

Wir unterscheiden 2 Fälle, der erste ist der direkte Pfad von q_0' nach q_F' , der zweite Fall ist, dass das Wort w den Automaten durchläuft.

1:Fall: $w = \epsilon$

$$(q'_0, wv) \vdash (q'_0, v) \vdash (q_0, v) \vdash (q_F, \epsilon) \vdash (q'_F, \epsilon)$$
 q.e.d

2.Fall: $(q_0, w) \vdash (q_F, \epsilon)$

$$(q'_0, wv) \vdash (q_0, wv) \vdash (q_F, v) \vdash (q_0, v) \vdash (q_F, \epsilon) \vdash (q'_F, \epsilon)$$
 q.e.d.