2020년 9월 7일 월요일 오후 4:11

20184060 Jicheol Kim

Schrödinger eg.
$$-\frac{h^2}{2m}\frac{d^2y}{dx^2} = Ey$$

finite difference
$$-\frac{h^{2}}{2m}\frac{1}{4n^{2}}\begin{pmatrix} 2-1 & 0 \\ -1 & 2-1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \\ 0 & 1 \end{pmatrix} = E_{n}\begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 1 \\ \frac{1}{2} & 1 \end{pmatrix}$$

Numerical solution: | = H

* Numerical solution: | = diagonalize = eigenvector: Namalized (;

* visen vector: Namalized (;

* Exact solution: $\frac{1}{2} \ln (x) = \int_{a}^{2} \sin \left(\frac{n\pi}{a} x \right)$

 $N \rightarrow \infty$, N-1 $\chi_{i}^{(m)} = \chi_{n}(x_{i})$ of Elet. $(N-1)\chi_{i}^{(m)} = \operatorname{rescally} \mathbb{R}^{2}$

Results

a= 5 nm, m= 0. 19 me

E1 of Ground state energy
E2 of 1st excited state energy

* No! 커지수록 Eno! 생활한 값으로 수렴.