

Filières GI & GE

Première Année du Cycle Ingénieur

Support du cours

Simulation et Routage

Layout	Drcad
PSpice Capture	orcad a Cadence product family
Capture CIS	Orcad

Plan du cours :

Chapitre 1 : Introduction à la CAO des systèmes électroniques

- 1.1 L'ordinateur dans le domaine de conception électronique
- 1.2 Cycle de fabrication des systèmes électroniques
- 1.3 Outils de base d'une chaîne d'IAO/CAO

Chapitre 2 : Saisie de schéma

- 2.1 Notion de conception hiérarchique (approche Top Down)
- 2.2 La saisie d'un schéma électronique

Chapitre 3 : La simulation fonctionnelle des systèmes numériques

- 3.1 Environnement de travail d'un simulateur
- 3.2 Procédure de simulation

Chapitre 4 : La simulation TEMPORELLE des systèmes numériques

- 4.1 Caractéristiques temporelles d'un circuit séquentiel
- 4.2 Simulation en temps Min, en temps Max et en temps Typiques
- 4.3 Fréquence maximale de fonctionnement
- 4.4 Marge du 'SETUP' et Marge du 'HOLD' et notion d'Aléas de Fonctionnement
- 4.5 Simulation de fautes et évaluation de la testabilité

<u>Chapitre 5 : Simulation des systèmes analogiques (Simulateur PSPICE)</u>

- 5.1 Représentation fonctionnelle d'un simulateur analogique
- 5.2 Représentation des différents fichiers propre à SPICE
- 5.3 Les icônes relatifs à PSPICE
- 5.4 Les étapes de simulation d'un circuit sous PSPICE

Chapitre 6 : CAO du circuit imprimé

- 6.1 Concepts de base sur la fabrication industrielle des cartes électronique
- 6.2 Procédure de développement d'un PCB par les outils de CAO
- 6.3 Environnement logiciel d'un outil de CAO d'un PCB
- 6.4 Principaux paramètres de configuration d'un PCB
- 6.5 les étapes de conception d'un PCB

1 L'ordinateur dans le domaine de la conception électronique

I.A.O: Ingénierie Assistée par Ordinateur pour le développement de produits électroniques:

- prise en compte des spécifications du cahier des charges pour arriver au produit fini optimal répondant à ces spécifications
- simulation fonctionnelle
- qualification
- Optimisation

C.A.O: Conception Assistée par Ordinateur pour l'implantation physique et le routage des cartes

C.F.A.O : Ingénierie Assistée par Ordinateur pour l'étude et le suivi des procédés de fabrication et tests de circuits imprimés

- perçage par machine à commande numérique
- implantation automatique des composants
- tests IN-SITU

Exemples de chaînes d'IAO/CAO professionnelle et industrielle:

Système Mentor Graphies Système Valid Systèmes Cadence Orcad

Exemples de chaîne complète personnelle :

Système ISIS Système EAGLE Système PROTEUS

2 Cycle de fabrication des systèmes électroniques

3 Outils de base d'une chaîne d'IAO/CAO

Chapitre 2:

Saisie de schéma

Gestion d'un projet de conception électronique :

- · analyses bottom-up et
- analyse top-down

2-1 Notion de conception hiérarchique (approche Top Down)

Phase 1 : Description abstractive du système

Exemple: automate programmable

Phase 2 - Description de chaque fonction principale

* fonction principale 4 (FP 4)

Phase 3 - Description de chaque fonction secondaire : phase concrétisation de l'étude (niveau composant)

* fonction secondaire 2 (FS 4.2)

2.2- La saisie d'un schéma électronique

2.2.1 Les éléments de base d'un éditeur graphique de de schéma

2.2.2 Les trois types de projets relatifs à la création d'une schématique

2.2.3 Menus et commandes d'un éditeur graphique de schéma

Chapitre 3 : La simulation comportementale des systèmes numériques

Définition:

La simulation du comportement d'un circuit numérique nécessite une description du circuit à base d'un langage de description matériel (HDL), par exemple le Verilog ou le VHDL. Cette description peut avoir différents degrés de finesse ou niveaux de description:

- description comportementale : on décrit le circuit à l'aide de fonctions de haut niveau (équation mathématique, etc.);
- description structurelle : on décrit le circuit par interconnexion de modules plus petits
 (décodeur, multiplexeur, mémoire, opérateur logique ou arithmétique, etc.);
- Register Transfer Level : le système est décrit comme un ensemble d'opérations combinatoires et de registres (élément séquentiel de base)
- portes : l'ensemble du système est décomposé en portes logiques élémentaires (description structurelle au niveau porte).

3.1 Environnement de travail d'un simulateur

3.2 Procédure de simulation

3.2.1 Editions de schéma destiné à la simulation

3.2.2 Insertion et Editions des STIMULS

3.2.3 Choix des signaux à visualiser (Traces)

3.2.4 Lancement de la simulation et analyse des résultats

Chapitre 4 : La simulation TEMPORELLE des systèmes numériques

4.1 Caractéristiques temporelles d'un circuit numérique

switching charateristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{max}				15	25		MHz
[†] PLH	=======================================	Q or $\overline{\overline{Q}}$				25	ns
tPHL	PRE or CLR	Q or Q	$R_L = 400 \Omega$, $C_L = 15 pF$			40	ns
tPLH		- =			14	25	ns
tPHL	CLK	Q or Q			20	40	ns

recommended operating conditions

			SN54LS74A			SN74LS74A			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.7			8.0	٧
ЮН	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		25	MHz
		CLK high	25			25			ns
tw	Pulse duration	PRE or CLR low	25			25			113
		High-level data	20			20			ns
t _{su}	Setup time-before CLK †	Low-level data	20			20			
th	Hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

Simulation logique en temps Min, en temps Typique, en temps Max ou en temps Min/Max :

La simulation temporelle des systèmes logique exploite la librairie des modèles PSPICE de tous les composants qui figurent dans ce système. Les données qui figurent dans ces modèles sont établies à partir des datasheet des composants fournis par le constructeur.

Chaque modèle est composé de deux parties :

- une première partie qui décrit la fonctionnalité du composant
- une deuxième partie qui décrit les paramètres temporels du composant qui sont fournis par le constructeur du composant.

Exemple1: extraits du datasheet relatif au circuit 7400 (composant combinatoire):

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			SN5404 SN7404		UNIT
	(INFOT)	(001F01)			MIN	TYP	MAX	
tPLH	Δ.	v	D. = 400 O	C. = 15 pF		12	22	no.
tPHL	A	Ť	$R_L = 400 \Omega$, $C_L = 15 pF$		8	15	ns	

Exemple 2: extraits du datasheet relatif au circuit 7474 (composant séquentiel):

switching charateristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				15	25		MHz
[†] PLH	PRE or CLR	Q or $\overline{\overline{Q}}$				25	ns
tPHL	PHE OF CER	u or u	$R_{\perp} = 400 \Omega$, $C_{\perp} = 15 pF$			40	ns
^t PLH					14	25	ns
tPHL	CLK	Q or Q			20	40	ns

recommended operating conditions

			1	SN5474			SN7474		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	CC Supply voltage		4.5	5	5,5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			8.0	V
loh	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				16			16	mA
		CLK high	30			30			
t _w	Pulse duration	CLK low	37			37			ns
••		PRE or CLR low	30			30			
t _{su}	Input setup time before CLK1		20			20			ns
th	Input hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

Exemples de simulation

Soit un système combinatoire à trois entrées (E1, E2, E3) , une sortie S et trois nœuds internes (N1, N2, N3) :

On Applique sur ce système quatre simulations logiques en temps Min, en temps Typique, en temps Max ou en temps Min/Max :

Résultats de la Simulation en temps Min

Résultats de la Simulation en temps Typique

Résultats de la Simulation en temps Max

Résultats de la Simulation en temps Min/Max

On constate que c'est uniquement la simulation en temps Min/max qui met en évidence la présence d'états indéterminés entre les instants 25ns et 82ns au niveau de la sortie S.

Notion de fréquence maximale (période minimale) de fonctionnement

Un système logique est décomposé en plusieurs 'chemins temporels', dans chacun de ces chemins on calcul la période minimale de fonctionnement Thmin . La période minimale de fonctionnement de tous le système est donnée alors par la valeurs maximale de tous les Thmin calculées :

$$T_{min} = Max(Th_{min})$$

Chaque chemin temporel est composé de la structure suivante :

Thmin est alors calculée selon la règle suivante :

4.5 Simulation de fautes et évaluation de la testabilité

Principe d'un simulateur de fautes

Exemples de Fautes injectées :

- Collages
- Courts-circuits
- Courts-circuits résistifs
- · Circuits ouverts
- · Circuits ouverts résistifs
- Délais de porte (de type lent-à-monter et/ou lent-à-descendre) et par extension, de chemins ou de segments de chemins

Chapitre 5 : Simulation des systèmes analogiques (Simulateur PSPICE)

Définition:

Un simulateur analogique utilise une modélisation du circuit électronique sous la forme d'un système d'équations différentielles. Ces équations sont obtenues en regroupant :

- les lois de Kirchhoff : expression de la conservation du courant et de la tension dans la topologie en graphe du circuit ;
- la loi d'Ohm ou autres équations caractéristiques statiques et dynamiques des composants utilisées.
- les signaux de stimulation, correspondant aux sources (alimentations et signaux d'entrée).

Pour connaître le comportement transitoire du circuit, le système d'équation est résolu sous forme différentielle (typiquement par la méthode d'Euler ou de Runge-Kutta.

Pour déterminer le point de polarisation du circuit, la simulation est faite en statique. Il s'agit alors de résoudre un système d'équation non différentielles mais souvent non-linéaire.

Enfin, pour déterminer le comportement en petits signaux (linéarisé) du système autour du point de polarisation, on utilise une résolution fréquentielle permettant d'avoir une simple résolution de système linéaire à variable complexe pour chaque fréquence, grâce aux propriétés de la transformée de Fourier.

Exemple de simulateurs :

- SPICE
- Verilog-A
- VHDL-AMS

Modélisation comportementale des composants sous Pspice

Niveau physique : composants primitifs de SPICE (R/C/L – diodes – transistors – sources U/I...)

Niveau structurel: modélisation par macro-modèles (AOPs - PLL ...)

Niveau comportemental : description fonctionnelle et langage de spécification (VHDL-AMS, VERILOG-AMS ...)

Exemples de modèles PSPICE niveau physique

Figure 1 : Schéma fonctionnel du produit MC33981 à modéliser

Figure 2 : Modèle comportemental de l'étage de puissance

Une diode idéale simple en VHDL-AMS pourrait être décrite comme suit :

```
-- (Il s'agit d'un commentaire)
-- Importer electrical_system de la librairie disciplines
library IEEE, disciplines;
use IEEE.math_real.all;
use disciplines.electrical system.all;
-- Il s'agit d'une entité
entity DIODE is
  generic (iss : REAL := 1.0e-14; -- Courant de saturation
          port (terminal anode, cathode : electrical);
end entity DIODE;
architecture IDEAL of DIODE is
 quantity v across i through anode to cathode;
 constant vt : REAL := 0.0258; -- Voltage thermique à 300K
begin
 i == iss * (exp(v/vt) - af);
end architecture IDEAL;
```

5.1 Représentation fonctionelle d'un simulateur analogique

A l'heure actuelle, la société Cadence est le principal leader dans le marché des logiciels de CAO pour les systèmes électroniques analogiques et mixtes. Il a d'ailleurs racheté la société MicroSim, à travers la société Orcad.

5.2 Représentation des différents fichiers propre à SPICE

5.3 Les icônes relatifs à PSPICE

Visualisation des résultats de Courant de transition simulation

5.4 Les étapes de simulation d'un circuit sous PSPICE

Etape 1:

saisie du schéma avec les composants de la librairie PSPICE et placement des STIMULUS (générateurs) et des PROBES (points test) sur la feuille de dessin

Etape 2 : Définition d'un type d'analyse

DC Sweep. Etude en statique du montage. Correspond à l'étude des variations des sources continues, de la température, variation de paramètres du montage ou des composants (Ex: béta d'un transistor)...). Permet d'étudier la polarisation, choix d'un point de repos optimum. AC Sweep. Correspond à l'analyse harmonique (Bode, Nyquist, Black). L'étude est faite en sinusoïdal petits signaux, en linéarisant les modèles autour du point de repos calculé. L'étude est faite d'une fréquence min à une fréquence max, soit linéairement soit de manière logarithmique.

Time Domain (Transient). Cette analyse permet de visualiser des signaux en fonction du temps (Chronogrammes en régime permanent ou en transitoire). Elle tient compte des modèles non linéaires (saturation, limitation par les alimentations, ...), mais le temps de simulation peut être considérable (plusieurs heures) si l'on ne réfléchit pas correctement aux paramètres de simulation.

Bias Point. Calcul du point de repos appelé point de

polarisation. Ce calcul est automatiquement lancé pour permettre le démarrage des autres simulations. Il est indispensable pour d'autres analyses qui en dépendent. Dans le cas de l'analyse harmonique (AC), les caractéristiques non linéaires de certains composants (Ex: transistors, diodes...) sont linéarisées (approximation par la tangente) à l'endroit du point de repos.

Etape 3: Lancement de la simulation

Etape 3 : Choix des traces, Lancement de la simulation et analyse des résultats

Chapitre 6 : CAO du circuit imprimé (PCB)

6.1 Concepts de base sur la fabrication industrielle des cartes électroniques

6.1.1 Assemblage composants-carte

6.1.2 Les différents types de cartes électroniques

Filière		Types de cartes					
Traversants	Composants traversants sur une face						
Tout CMS	Composants CMS sur une face	COURSE AAA COCCOOL					
	Composants CMS sur les deux faces						

Exemple de carte électronique avec composants CMS

Exemple de carte électronique avec composants Traversant

6.1.3 Principe de base d'une machine à braser à la vague

6.2 Procédure de développement d'un PCB par les outils de CAO

6.3 Environnement logiciel d'un outil de CAO d'un PCB

6.4 Principaux paramètres de configuration d'un PCB

```
. :::Design Conditions Configuration:::
Parameter

1 - Track Width

2 - Pad Diameter

3 - VIA Diameter

4 - Drill Diameter - Pad

5 - Drill Diameter - VIA

6 - Text Horizontal Dimension

7 - Text Vertical Dimension

8 - Solder Mask Guard

9 - Isolation Track to Track

10 - Isolation Track to VIA

11 - Isolation VIA to VIA

11 - Isolation VIA to VIA

12 - Number of Backup Files

13 - Number of Layers

14 - Routing Grid

15 - Working Layer A

16 - Working Layer B

17 - Strategy Pass 1

Ctrategy Pass 2
              Parameter - Track Width
                                                                                                                                              .050
                                                                                                                                              .050
                                                                                                                                              .010
                                                                                                                                              .010
                                                                                                                                              .050
                                                                                                                                              .050
                                                                                                                                              .020
                                                                                                                                              .013
                                                                                                                                             .013
                                                                                                                                             .039
                                                                                                                                             .025
     17 - Strategy Pass 1
18 - Strategy Pass 2
19 - Net Pattern
                                                                                                                                     Flexible
Extensive
                                                                                                                                    Tree
     20 - Cursor Style
                                                                                                                                  Short Cross
```

Classement des PCB

D'après la norme NFC 93 -713, sont définies plusieurs classes :

	Classe						
Critère d'appartenance à une classe Valeurs limites mesurées sur le cliché (en mm)	1	2	3	4	5	6	7
Largeur minimale des conducteurs		0.45	0.28	0.19	0.13	0.09	
Espacement minimal entre conducteurs entre conducteurs et pastilles ou plages entre pastilles, entre plages	0.6	0.45	0.28	0.19	0.13	0.09	
Ecart par rapport à sa position théorique du centre d'une pastille, ou plage, ou fenêtre (Centre déterminé à partir du contour du motif)	0.2	0.1	0.05	0.04	0.03	0.03	
Ecarts entre positions relatives de centres de pastilles, plage ou fenêtre théoriquement superposées (superposition des clichés)	0.15	0.1	0.07	0.05	0.04	0.04	
Largeur des pastilles		1.65	1.25	1.05	0.85	0.65	0.55
Diamètre du trou traversant la pastille		0.8	0.7	0.6	0.45	0.35	0.3

6.6Les étapes de conception d'un PCB

6.5.1 Saisie d'un schéma pour PCB

6.5.2 Génération d'un fichier Netlist

6.5.3 et définition des empreintes physiques

Exemples d'empreintes

6.5.4 Création d'un nouveau PCB

6.5.5 Tracé du contour et Placement manuel des composants critiques

6.5.6 Définition des paramètres de routage (pistes, pastilles, traversées)

6.5.7 Vérification de la faisabilité

6.5.8 Routage manuel des équipotentielles

6.5.9 Routage automatique des équipotentielles restantes et vérification

6.5.10 Faire un plan de masse

6.5.11 Génération de fichiers Gerber pour la fabrication du PCB

Plot output	Batch			
File Name	Enabled	Device	Shift	Plot Title
*.TOP	No	EXTENDED GERBER	No shift	Top Layer
*.B0T	Yes	EXTENDED GERBER	No shift	Bottom Layer
*.GND	No	EXTENDED GERBER	No shift	Ground Layer
*.PWR	No	EXTENDED GERBER	No shift	Power Layer
*.IN1	No	EXTENDED GERBER	No shift	Inner Layer 1
*.IN2	No	EXTENDED GERBER	No shift	Inner Layer 2
*.IN3	No	EXTENDED GERBER	No shift	Inner Layer 3
*.IN4	No	EXTENDED GERBER	No shift	Inner Layer 4
*.IN5	No	EXTENDED GERBER	No shift	Inner Layer 5
*.IN6	No	EXTENDED GERBER	No shift	Inner Layer 6
*.IN7	No	EXTENDED GERBER	No shift	Inner Layer 7
*.IN8	No	EXTENDED GERBER	No shift	Inner Layer 8
*.IN9	No	EXTENDED GERBER	No shift	Inner Layer 9
*.110	No	EXTENDED GERBER	No shift	Inner Layer 10
*.111	No	EXTENDED GERBER	No shift	Inner Layer 11

Exemple de Fichier GERBER

```
*G01*G90*G01D2*G54D11*G01D2*X03700Y03500D03

*X04600Y03500D03*G01D2*G54D12*G01D2

*X02900Y03550D03*X03100Y03550D03*X01275Y03600D03

*X01625Y03600D03*X03200Y03350D03*X02800Y03350D03

etc...

Figure : Extrait de fichier "Gerber"
```

Le fichier Gerber ne peut être exploité par le photo traceur laser qu'en présence d'un fichier outils lumineux :

```
Ver Hor Type Tool
               L,
                    D10
0.008, 0.008,
0.160, 0.160,
               C,
                    D11
                   D12
0.150, 0.150,
               C,
0.100, 0.100,
                   D13
               C,
                   D14
0.110, 0.110,
               R,
0.110, 0.110,
                   D15
               C,
0.030, 0.030,
               L,
                   D16
0.090, 0.090,
                    D17
               C,
                    D18
0.044, 0.044,
               L,
```

Figure : Fichier des Outils Lumineux

Les type d'outils sont les suivants :

```
    Circle ou pastilles circulaires.
    O Oval ou pastilles ovales.
    Line ou outil de tracé de lignes.
    R Rectangle pour les pastilles carrées ou rectangulaires.
```

Les dimensions sont toujours données en pouces (1 pouce=25.4mm).