Design Theory: Functional Dependencies and Normal Forms, Part II

Instructor: Shel Finkelstein

Reference:

A First Course in Database Systems, 3rd edition, Chapter 3

Important Notices

- Final Exam is on Wednesday, March 22, noon-3pm in our usual classroom.
 - Final is Cumulative, with more focus on second half of quarter.
 - Please bring a red Scantron sheet (ParSCORE form number f-1712) sold at the Bookstore, and #2 pencils. (Some questions will be multiple choice.)
 - Ink and #3 pencils don't work.
 - You may bring a single two-sided 8.5" x 11" sheet of paper with as much info written (or printed) on it as you can fit and read unassisted, just as for the Midterm.
 - No sharing of these sheets will be permitted.
 - You must show your UCSC id when you turn in your Final and Scantron.
 - The Final from Fall 2016 has been posted on Piazza (Resources → Exams).
 Answers to that Final will be posted during the last week of classes.
- Gradiance Assignment #5 (on Functional Dependencies and Normal Forms) is due by Friday, March 17, 11:59pm.

More Important Notices

- Lab4 assignment was posted on Monday, Feb 27.
 - Due by Sunday, March 12, 11:59pm (2 weeks).
 - Lab4 focusses on material in Lecture 10 (Application Programming), including JDBC and Stored Procedures/Functions.
 - If you don't attend Lectures and Labs, you probably will find Lab4 difficult.
- There will be Lab Sections during the last week of classes.
 - These Lab Sections are an opportunity go over the answers to Lab4 and other Labs, or ask questions about other course material.
- Online course evaluations began Monday, March 5, and run through Sunday, March 19 at 11:59pm.
 - Instructors are not able to identify individual responses.
 - Constructive responses help improve future courses.

Normal Forms

Given a relation schema, we want to understand whether it is a good design or a bad design.

 Intuitively, a good design is one that does not store data redundantly, and does not lead to anomalies.

If we know that rank determines salary_scale, which is a better design?

Employees(eid, name, addr, rank, salary_scale)

OR

Employees(<u>eid</u>, name, addr, rank)
Salary_Table(<u>rank</u>, salary_scale)

Remember that sometimes database designers **may choose** to live with redundancy in order to improve query performance. But then they'll have to cope with anomalies, which can be difficult.

First Normal Form (1NF)

- A relation schema is in *first normal form (1NF)* if the type of every attribute is atomic.
- Very basic requirement of the relational data model. Not based on FDs.

Example:

R(ssn: char(9), name: string, age: int)

All our examples so far have been in 1NF.

Example of a non-first normal form relation:

R(ssn: char(9), name: Record[firstname: string, lastname: string], age: int, children: Set(string))

Second Normal Form (2NF)

- Not particularly important
 - We won't discuss this.
 - (Neither does the textbook.)

Boyce-Codd Normal Form (BCNF)

- Let R be a relation schema, F be a set of FDs that holds for R, with A as an attribute in R, and X as a subset of the attributes in R.
- R is in Boyce-Codd Normal Form (BCNF) if
 - For every FD X → A in \mathcal{F} , at least one of following is true:
 - $X \rightarrow A$ is a trivial FD (i.e., $A \subseteq X$) or,
 - X is a superkey.
- BNCF is desirable for avoiding redundancy.
 - Recall our Employees/Salary_Table example.

Is this relation in BCNF?

Α	В	С
a1	b1	c1
a1	b2	c1

- The only functional dependency given is A → C.
- (to fill in)

Is this relation in BCNF?

A	В	С
a1	b1	c1
a1	b2	c1

- The relation is not in BCNF because
 - $-A \rightarrow C$ is not a trivial FD and A is not a superkey.
- Given that $A \rightarrow C$, we can infer that C value of second tuple is also c1.
- But a1 and c1 are obviously redundantly stored.

Third Normal Form (3NF)

- Let R be a relation schema, T be a set of FDs that holds for R, with A as an attribute in R, and X as a subset of the attributes in R.
- R is in third normal form (3NF) if
 - For every FD X \rightarrow A in \mathcal{T} , at least one of following is true:
 - $X \rightarrow A$ is a trivial FD (i.e., $A \subseteq X$), or
 - X is a superkey, or
 - A is part of some key of R.
- Note that red condition says that A has to be the part of <u>some</u> key for R, not some superkey for R.

Consider R(A, B, C, D)

with FD: $A \rightarrow D$

- Is it in BCNF?
- Is it in 3NF?

Α	В	С	D
a1	b1	c1	d1
a1	b2	c2	d1
a1	b2	с3	d1
a2	b2	с3	d2

Now consider R(A, B, C, D)

with FD's: $A \rightarrow D$, and $D \rightarrow A$.

- Note that BCD is also a key for R.
- Is it in BCNF?
- Is it in 3NF?

Α	В	С	D
a1	b1	c1	d1
a1	b2	c2	d1
a1	b2	с3	d1
a2	b2	с3	d2

Note that there is still redundancy in R, even though it is in 3NF!

BCNF and 3NF

- By definition, a BCNF relation is also a 3NF relation.
- Definition says:
 - ... if at least one of the following holds for each FD X \rightarrow A:
 - $X \rightarrow A$ is a trivial dependency (i.e., $A \subseteq X$). BCNF, 3NF
 - X is a superkey. BCNF, 3NF
 - A is part of some key of R. 3NF
- However, a 3NF relation is <u>not</u> always in BCNF.
 - Example 2 is an example of a 3NF relation that is **not** in BCNF.

Relationships Among Normal Forms – The Big Picture


```
Company_Info(emp, dept, manager)
  emp → dept
  dept → manager
Is it in BCNF?
Is it in 3NF?
```

```
R(<u>city</u>, <u>street</u>, zip)

city, street \rightarrow zip

zip \rightarrow city
```

The above FDs are true of most post office policies; note that a city may have multiple zips, but a zip is in a single city.

```
Is it in BCNF?
Is it in 3NF?
```

- Despite 3NF, there can be Redundancy: The association of a zip with a city could appear in multiple records of R.
- So although R is in 3NF, there can be Anomalies:
 - zip → city. So if the city is changed in one (city, street, zip) record, but is not changed for another (city, street, zip) record that has the same zip, that's an anomaly.

Customers(<u>ssn</u>, name, address)

 $ssn \rightarrow name$

ssn → address

Is it in BCNF?

Is it in 3NF?

Algorithm for Testing Whether a Relation is in BCNF using Attribute Closure

Given R and \mathcal{T} , determine whether R is in BCNF.

- For each FD $X \rightarrow Y \subseteq \mathcal{F}$ such that $Y \subseteq X$ (i.e., the FD is non-trivial), compute X^+ .
 - If every such X is a superkey (i.e., X⁺ = attr(R)), then
 R is in BCNF.
 - If there is a set X of attributes such that X⁺ ≠ attr(R), then
 R is not in BCNF.

Examples: BCNF Testing

- CompanyInfo(emp, dept, manager)
 - emp → dept, dept → manager
 - dept⁺ ≠ attr(CompanyInfo). Hence CompanyInfo is not in BCNF.
- Customers(ssn, name, address)
 - ssn → name
 - $ssn \rightarrow address$
 - ssn⁺ = attr(Customers) Hence Customers is in BCNF.
- R(city, street, zip)
 - city, street → zip
 - $zip \rightarrow city$
 - $zip^+ \neq attr(R)$

Hence R is not in BCNF.

More on BCNF

Is R(A,B) is in BCNF?

Fact: Any binary relation schema is in BCNF. (Why?)

How can we improve a relation that is not in BCNF?

- Approach: Decompose ("break up") R into smaller relations so that each smaller relation is in BCNF.
- We did this when we decomposed Employees, separating out Salary_Table because of FD: rank → salary_scale.

Employees(eid, name, addr, rank)

Salary_Table(<u>rank</u>, salary_scale)

Decomposition of a Relation

A decomposition of a relation R is defined by sets of attributes $X_1, ..., X_k$ (which don't have to be disjoint) such that:

- 1. Each $X_i \subseteq attr(R)$
- 2. $X_1 \cup X_2 \cup ... \cup X_k = attr(R)$

For a decomposition, we will write $\pi_{Xi}(R)$ as R_i , with instance of R written as r and instances of R_i written as r_i .

Examples:

- CompanyInfo(emp, dept, manager)
 - R_1 (emp, dept), R_2 (dept, manager)
- R(A,B,C,D,E,F,G)
 - $R_1(A,C), R_2(A,B,C,D), R_3(C,D,E,F,G)$

Goals for Redesigning Schema Using A Decomposition

- 1. The decomposition Eliminates Anomalies.
- 2. The decomposition doesn't lead to any "extra data" (that was not in instance r) when the r_i's are re-joined back together.
 - Such Decompositions are called Lossless Join decompositions.
 - Why must the <u>Natural Join</u> of all the r_i's always give at least all the data that was in r?
- 3. Dependency Preservation:
 - The FD's on R_i are the FD's in \mathcal{F}^+ that mention only attr(R_i).
 - The decomposition is Dependency-Preserving if when the R_i 's are re-joined back together, the FD's that were on the R_i 's imply all of the original FD's in \mathcal{F} .

 Is it always possible to decompose R so that each smaller relation is in BCNF?

- YES
- One strategy: decompose R into a set of relation schemas $R_1, ..., R_k$ such that each R_i is a binary relation schema.
- Are all BCNF decompositions good?
- NO

Decomposing a Relation

Suppose we have decomposed R into R_1 and R_2 . Given an instance r of R, we decompose r into r_1 and r_2 . Can we get back the original instance r by (natural) joining r_1 and r_2 ?

Lossless Join Decomposition

In general, can we obtain r by joining r_1 with r_2 ... with r_k ?

- That is, must it always true for any instance r, that: $r = r_1 \bowtie r_2 \bowtie ... \bowtie r_k$ (Natural Join) ?

More precise definition:

- Let R be a relation schema and \mathcal{T} be a set of FDs over R.
- A decomposition of R into k schemas, with attribute sets X_1 , ..., X_k , is a Lossless Join decomposition with respect to \mathcal{T} if:

For every instance r of R that satisfies \mathcal{F} , we have:

$$r = \pi_{X1}(r) \bowtie ... \bowtie \pi_{Xk}(r)$$

= $r_1 \bowtie r_2 \bowtie ... \bowtie r_k$

Lossless Join Example 1

- Let R(A,B,C) be a relation schema with no functional dependencies
- Is the decomposition of R into schemas R₁(A,B) and R₂(B,C) a Lossless Join decomposition?

Instance rx

Α	В	С
a1	b1	c1
a1	b1	c2
a1	b2	сЗ

 $\pi_{A, B}(rx)$

Α	В
a1	b1
a1	b2

 $\pi_{B,C}(rx)$

В	O
b1	c1
b1	c2
b2	сЗ

 $\pi_{A, B}(rx) \bowtie \pi_{B,C}(rx)$

Α	В	С
a1	b1	c1
a1	b1	c2
a1	b2	сЗ

Lossless Join Example 2

Instance ry

Α	В	С
a1	b1	c1
a2	b1	c2

$$\pi_{A, B}(ry)$$

Α	В
a1	b1
a2	b1

$$\pi_{B,C}(ry)$$

В	C
b1	c1
b1	c2

$$\pi_{A, B}(ry) 1 \pi_{B,C}(ry)$$

Α	В	С	
a1	b1	c1	
a1	b1	c2	Г
a2	b1	c1	
a2	b1	c2	

Lossy!

- By projecting on $R_1(A,B)$ and $R_2(B,C)$, some information may be lost in general.
- We no longer know that (a1,b1,c2) does not exist in the original relation.
- Hence R₁ and R₂ is not a Lossless Join decomposition of R.

FD's and Lossless Joins

- Let R(A,B,C) be a relation schema
- Is the decomposition of R into schemas $R_1(A,B)$ and $R_2(B,C)$ a Lossless Join decomposition if we know $B \rightarrow C$?
 - ry is not a legal instance, since it does not satisfy B → C.
 - rx, however, is a legal instance with respect to $B \rightarrow C$.
- But that doesn't prove that $R_1(A,B)$ and $R_2(B,C)$ is a Lossless Join decomposition in the presence of the FD B \rightarrow C.
 - Is it Lossless?
 - Yes; see textbook, Sections 3.4.1 and 3.4.2 ...
 - ... or later slides in this lecture!!

Lossless Join Example 3

```
CompanyInfo(emp, salary, dept, manager)
emp → salary, dept, manager
dept→manager
```

- CompanyInfo is not in BCNF because of dept → manager.
- Let's decompose into R₁(emp, salary) and R₂(dept, manager).

```
Instance r of CompanyInfo:
(Bolt, 85K, Math, Tromb)
(Montgomery, 90K, Math, Tromb)
(Brandt, 88K, CS, Pohl)
```

Lossless Join Example 3 (cont'd)

```
    r<sub>1</sub>
        (Bolt, 85K)
        (Montgomery, 90K)
        (Brandt, 88K)
```

```
    r<sub>2</sub>
        (Math, Tromb)
        (CS, Pohl)
```

- $r_1 \bowtie r_2 = r_1 \times r_2$ has 6 tuples
- That's 3 more tuples than in r. Therefore the decomposition is not a Lossless Join decomposition.

A Necessary and Sufficient Condition for Lossless Join Decomposition

 We would like our decompositions to be Lossless, and we'd like to be able to decide when a decomposition is Lossless.

Let R be a relation and \mathcal{F} be set of FDs that hold over R.

Fact: A decomposition of R into relation schemas R_1 and R_2 is Lossless if and only if \mathcal{T}^+ contains either:

1.
$$R_1 \cap R_2 \rightarrow R_1$$
, or

2.
$$R_1 \cap R_2 \rightarrow R_2$$

That is, the intersection of the attributes of R_1 and R_2 is a superkey of either R_1 or R_2

Testing Whether Decomposition is a Lossless Join Decomposition

Fact: A decomposition of R into relation schemas R_1 and R_2 is Lossless if and only if \mathcal{T}^+ contains either:

1.
$$R_1 \cap R_2 \rightarrow R_1$$
, or

2.
$$R_1 \cap R_2 \rightarrow R_2$$

That is, the intersection of the attributes of R_1 and R_2 is a superkey of either R_1 or R_2

- This Fact works only for decompositions into <u>two</u> relations.
 - And note that it's <u>not the definition</u> of Lossless Join Decomposition!
- "The Chase" (see textbook) is a procedural algorithm for checking whether <u>any</u> decomposition is a Lossless Join decomposition

Two More Lossless Join Examples

- Decompose R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$, with \mathcal{F} being the empty set.
 - Since B → AB and B → BC are not in \mathcal{T}^+ , this decomposition is not a Lossless Join decomposition.
- CompanyInfo(emp, salary, dept, manager)
 - emp → salary, dept, manager
 - dept → manager
 - CompanyInfo is not in BCNF.

Decompose into R₁(emp, salary) and R₂(dept, manager)

- Since FDs $\{\}$ \rightarrow emp,salary and $\{\}$ \rightarrow dept, manager are not in \mathcal{F}^+ , this decomposition is not a Lossless Join decomposition.

A Final Lossless Join Example

```
Employees(eid, name, addr, rank, salary scale)
  with FD: rank \rightarrow salary scale
Decomposition:
   Employees(eid, name, addr, rank)
   Salary_Table(rank, salary_scale)
    Employees ∩ Salary_Table = {rank}
    rank \rightarrow attr(Salary Table).
    Therefore, the decomposition <u>is</u> Lossless.
```

Decomposition and Normalization

Given a relation schema and functional dependencies, it is always possible to decompose schema into a set of **BCNF** relations that:

- 1) Eliminates Anomalies,
- and is 2) a Lossless Join decomposition.
- However, the schema might not always be 3) Dependency-Preserving.

Given a relation schema and functional dependencies, it is always possible to decompose schema into a set of **3NF** relations that:

- is 2) a Lossless Join decomposition,
- and is 3) Dependency-Preserving.
- However, the schema might not always 1) Eliminate Anomalies.

- Let R be a relation and T be set of FDs that hold over R.
- Fact: A decomposition of R into relation schemas R_1 and R_2 is Lossless if and only if \mathcal{T}^+ contains either
 - 1. $R_1 \cap R_2 \rightarrow R_1$, or
 - 2. $R_1 \cap R_2 \rightarrow R_2$
- This fact provides you a criteria for checking whether a decomposition is a Lossless Join decomposition. But it does not tell you exactly how to check for this criteria.
- Is there a more procedural algorithm for checking whether a decomposition is a Lossless Join decomposition?

The Chase Algorithm

Input: A relation $R(a_1, ..., a_k)$. Its decomposition relation schemas $R_1, ..., R_n$ and a set \mathcal{F} of FDs.

Output: Decides whether the decomposition is a Lossless Join decomposition.

- 1. Create a tableau T (i.e., a symbolic relation) according to R and R_1 , ..., R_n .
 - Let $t = (a_1, ..., a_k)$. The "canonical tuple".
 - T is a relation of arity k with n tuples such that the ith tuple $t_i[R_i] = t[R_i]$.
 - Every other attribute value in T that is not among t_i[R_i], where 1<=i<=n, is a fresh new value of a higher subscript.
- 2. Apply the FDs \mathcal{F} of to T until no more FDs can be applied.
- 3. Return YES if the canonical tuple $(a_1, ..., a_k)$ is in T. Return NO otherwise.

Example

• R(A,B,C) into $R_1(A,B)$ and $R_2(B,C)$ with \mathcal{F} being the empty set.

The tableau T is:

Α	В	С
a1	b1	c2
a2	b1	c1

- Since \mathcal{F} is the empty set, no FDs can be applied. The canonical tuple (a1,b1,c1) does not occur in the resulting tableau.
- Answer: NO. Not a Lossless Join decomposition.
- What does "apply the FDs \mathcal{F} of to T" in step 2 mean?

Example

- CompanyInfo(emp, salary, dept, manager)
- R₁(emp, salary), R₂(dept, manager)
- • T = { emp → salary, dept, manager, dept → manager }

Tableau T:

emp	salary	dept	manager
e1	s1	d2	m2
e2	s2	d1	m1

- None of the FDs can be applied.
- The canonical tuple (e1,s1,d1,m1) does not occur in T.
- Answer: NO. Not a Lossless Join decomposition.

- Employees(eid, name, addr, rank, salary_scale)
- Decomposition: Employees(eid, name, addr, rank)
 Salary_Table(rank, salary_scale)
- $\mathcal{T} = \{ \text{ rank} \rightarrow \text{salary_scale} \}$

Tableau T:

When given a choice to replace s1 by s2 or s2 by s1, always replace with the value with a lower subscript.

eid	name	addr	rank	salary_scale
e1	n1	a1	r1	s2
e2	n2	a2	r1	s1

eid	name	addr	rank	salary_scale
e1	n1	a1	r1	s2 s1
e2	n2	a2	r1	s1

eid	name	addr	rank	salary_scale
e1	n1	a1	r1	s2
e2	n2	a2	r1	s1

Apply rank → salary_scale

eid	name	addr	rank	salary_scale
e1	n1	a1	r1	s1
e2	n2	a2	r1	s1

Apply the FDs until no more FDs can be applied.

- The canonical tuple (e1,n1,a1,r1,s1) occurs in T.
- Answer: YES. This is a Lossless Join decomposition.

- FDs can be applied in any order. The existence of the canonical tuple is agnostic to the order in which FDs are applied.
- The chase algorithm will always terminate since there is only a finite number of times one can replace a value with a value of a lower subscript.

An observation

 Given a relation R, an FD X → Y that holds over R, and X ∩ Y is empty, then the decomposition of R into R-Y and XY is lossless.

$$- R_1 = R-Y, R_2 = XY$$

$$- R_1 \cap R_2 = X, X \rightarrow Y$$

- Therefore, R_1 ∩ R_2 → R_2
- We can apply this observation repeatedly.
 - Given a set of FDs \mathcal{F} , if R can be losslessly decomposed into R₁ and R₂ and, R₂ can be losslessly decomposed into R₃ and R₄, then the decomposition of R into relations R₁, R₃, and R₄ is also a lossless decomposition.

Algorithm for producing a BCNF Lossless Join decomposition of a relation schema R

- Input: R, \mathcal{F}
- Output: A lossless join decomposition of R into R₁, ..., R_k.
- Set $D = \{R\}$.
- While there is some R_i in D which is not in BCNF, do
 - 1. Find $X \rightarrow Y \subseteq \mathcal{F}^+$ such that X is not a superkey for R_i and $Y^* \subseteq X$.
 - 2. Replace R_i by R_i-Y and XY in D.

Examples

- $R(A,B,C), \mathcal{T}=\{\}.$
 - R is in BCNF.
- R(A,B,C), $\mathcal{T}=\{A \rightarrow B\}$.
 - $-A \rightarrow B$ violates 2nd condition of the BCNF definition.
 - Decompose R into $R_1(A,C)$ and $R_2(A,B)$.
 - $-R_1$ and R_2 are each in BCNF. Done.
- R(city, street, zip), \mathcal{F} ={city, street \rightarrow zip, zip \rightarrow street}
 - The 2nd FD violates the 2nd condition of the BCNF definition.
 - Decompose R into R₁(city,zip) and R₂(zip,street).
 - No more decompositions as R₁ and R₂ are each in BCNF. Done.

- CompanyInfo(emp, salary, dept, manager)
 F={emp → salary, dept, manager, dept → manager}
 - The 2nd FD violates the 2nd condition of the BCNF definition.
 - Decompose CompanyInfo into R_1 (emp, salary, dept) and R_2 (dept, manager).
 - R_1 is in BCNF because emp⁺ = attr(R_1). Note that dept \rightarrow manager does not apply to R_1 .

A necessary and sufficient condition for Lossless Join decomposition

- We would like our decompositions to be lossless and be able to decide when a decomposition is lossless.
- Let R be a relation and \mathcal{F} be set of FDs that hold over R.
- Fact: A decomposition of R into relation schemas R_1 and R_2 is lossless if and only if \mathcal{T}^+ contains either
 - 1. $R_1 \cap R_2 \rightarrow R_1$, or
 - 2. $R_1 \cap R_2 \rightarrow R_2$

Proof?

(★) If R1 \cap R2 \rightarrow R1, then R1 \bowtie R2 = R.

Let t be a tuple in R. Clearly, $t[R1] \subseteq R1$ and $t[R2] \subseteq R2$ and therefore, $t \subseteq R1 \bowtie R2$. We have shown that $R \subseteq R1 \bowtie R2$.

Let t be a tuple in R1 \bowtie R2.

This means there exists a tuple $t1 \subseteq R1$ and $t2 \subseteq R2$ such that $t1 \bowtie t2 = t$.

Suppose t ∉ R.

Since R1 is the projection of R on attributes of R1, we know there exists a tuple $t' \in R$ such that t'[R1] = t1 and $t'[R2] \neq t2$. (otherwise, t = t' meaning that $t \in R$ and we are done.)

Similarly, there also exist a tuple t" in R such that t"[R2] = t2 and t"[R1] \neq t1 for the same reason as above.

Notice that t' and t" are distinct tuples but share the same values for attributes in R1 \cap R2. However, t'[R1] \neq t"[R1]. Hence the FD is violated. Contradiction.

(→) If R1 \bowtie R2 = R, then either R1 \cap R2 \rightarrow R1 or R1 \cap R2 \rightarrow R2

Assume that R1 \cap R2 \forall R1 AND R1 \cap R2 \forall R2, we will show that we can always construct a counterexample to show that R1 \bowtie R2 \neq R.

The basic idea is as follows.

Let R(A,B,C), R1(A,B), and R2(B,C) and R contains (a1,b1,c1) (a2,b1,c2) is a counter example. See the previous slide.