Individual Contribution:

Name	Model
LIM YUAN HER (20A459H)	Using AlphaPose/Openpose and LSTM for Gait Recognition

• Model Development Log

- Input
 - Video files in .avi format
 - Data from *GaHu-Video: Parametrization system for human gait recognition* dataset downloadable at: https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/gprg4s73v4-2.zip

Output

Person identifier e.g. S040

Architecture

The input videos are preprocessed using pose estimation models (AlphaPose/OpenPose) to extract keypoint data from each video frame and the sequence data are used as input to a LSTM network for classification modelling.

Data Preprocessing

- Removal of the detection confidence score (C) from each keypoint data pair
 (X, Y, C)
- Use neck point (point 1) as centre of entire skeleton from which other keypoint data pair take reference from to cater for varying body part lengths of different persons.
- Scaling based on the torso length to cater for distance from the camera
- Only keypoint data of first 50 frames from videos (with more than 50 frames extracted using OpenPose/AlphaPose) were included to exclude data from poor quality videos

o Model Summary

- As extracted keypoint data is sequential data, LSTM-based network is used
- Simple 1-layer, stacked, bidirectional LSTM networks were evaluated:

Type	Model Summary			Code		
	Model: "sequential_Z1"			<pre>def createSimpleLSTM(neurons=64): # Use Kerss to create a Sequential model here with any layers that</pre>		
Simple	Layer (type)	Output Shape	Param #	# you'd like.		
	lstm_29 (LSTM)	(None, 64)	25856	model = Sequential()		
	batch_normalization_29 (Batc (None, 64) 256		<pre>model.add(LSTM(neurons, input_shape=(50, 36))) model.add(BatchNormalization())</pre>			
	dense_21 (Dense)	(None, 44)	2860	<pre># One or more repetitions of Dense layers model.add(Dense(44, activation='softmax'))</pre>		
	Total params: 28,972 Trainable params: 28,844 Non-trainable params: 128			<pre>model.compile(loss-categorical_crossentropy, optimizer='adem', metrics={'accuracy'}) model.summary() return model</pre>		
	Layer (type)	Output Shape	Param #	def createStacked(570(meuronse64): # Use Keras to create # Sequential model here with any layers that		
Stacked			25856	# you'd like.		
	15tm_50 (ESTM)	(None, 50, 64)	25856	model = Sequential() layer2 neurons = int(neurons/2)		
	batch_normalization_30 (Batc	(None, 50, 64)	256	layer2_neurons = int(neurons/2) layer3_neurons = int(neurons/4) #Stacked		
	lstm_31 (LSTM)	(None, 50, 32)	12416	<pre>model.add(LSTM(neurons, activation='relu', return_sequences=True, input_shape=(50, 36))) model.add(STM(shape=1ation()) model.add(LSTM(shape=1_neurons, activation='relu', return_sequences=True))</pre>		
	batch_normalization_31 (Batc	(None, 50, 32)	128	not_solitinity=v_method, attention=v_d, recom_tequences(ref) not_solitinity=v_d(ref) not_sol_sol_sol_sol_sol_sol_sol_sol_sol_sol		
	lstm_32 (LSTM)	(None, 16)	3136			
	batch_normalization_32 (Batc	(None, 16)	64	<pre>model.compile(loss-categorical_crossentropy, optimizer='adam', metrics=['accuracy']) model.summary()</pre>		
	dense_22 (Dense)	(None, 44)	748	return model		
	Total params: 42,604 Trainable params: 42,380 Non-trainable params: 224					
BiDirectional		Output Shape	Param #	<pre>def createBiLSTM(neuronseE4): # Use Keras to create a Sequential model here with any layers that</pre>		
	bidirectional_4 (Bidirection		51712	word data to cate a region as more and any ages one soci * separtial() #Bisinectional model.add(Bisinectional(LSTM(meuron, activations'rels'), input_shapes(58, 38))) model.add(Bisinectional(LSTM(meuron, activations'rels'), input_shapes(58, 38))) ### One or more repetitions of Ones layers		
	batch_normalization_33 (Batc	(None, 128)	512			
	dense_23 (Dense)	(None, 44)	5676			
	Total params: 57,900 Trainable params: 57,644 Non-trainable params: 256			model.od(Dense(sk. activation=loctnas*)) model.compile(loss-actagorical_crossentropy, optimizer=laden*, metrics=['accuracy*]) model.summary() return model		

Train/Validation/Test Dataset Split

- Train/Validation dataset
 - ➤ Train keypoint data extracted from video files in Track A and B
 - ➤ Validation keypoint data extracted from video files in Track C
 - ➤ Train/Validation data in 90:10 proportion
- Test dataset
 - ➤ 4 video files were removed from the original dataset and reserved for model testing purposes

Hyperparameter

- Hyperparameter to be tuned is the number of neurons in each layer e.g. 32, 64,
 128 etc.
- Baseline parameter used: 64 (AlphaPose outputs) and 512 (OpenPose outputs)

Epochs

• 50 epochs were used for model training.

Learning Graphs

 Accuracy/loss curves, confusion matrix, classification report for each model run is tabulated as below:

LSTM Network	Pose Estimation	Train/Test Accuracy Curves	Train/Test Loss Curves	Confusion Matrix	Classification Report
Simple	AlphaPose	10 model accuracy 10 model acc	model loss	Continues feator (Not Data)	Martin Partin P
	OpenPose	model accuracy 10	model loss	Configure Report Cred Digits 1	THE COMMUNICATION OF THE COMMU
Stacked	AlphaPose	014	model loss 139 139 131 131 133 133 133 1		The California The
	OpenPose	0.000 model accuracy 0.003 mer. 0.009 mer. 0.000 mer. 0	model loss	Configure Name of Theat Dated	NOT 1975. Particular No. 10 No. 10 No. 10 No. 10
Bidirectional	AlphaPose	10	### model loss #### #### #### #### #### #### ####		
	OpenPose	0000 was model accuracy 0001 was 0001	model loss — van 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -	Consider Rates Florida - 189 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.	Total State

Based on the results above, combination of AlphaPose keypoint data with 1-layer simple or Bi-Directional LSTM network for classification modelling outperformed the rest (highlighted in yellow) whilst using OpenPose keypoint data with a simple 1-layer LSTM network displayed high bias characteristics (highlighted in orange).

Testing Accuracy

Based on the results above, using <u>AlphaPose</u> keypoint extraction outputs and a <u>simple</u> <u>1-layer LSTM</u> network produced high train and test accuracies above 90%.

Possible improvements for next iteration

Other possible future enhancements that can be incorporated include:

- Data augmentation by using a sliding window approach to increase the amount of training data
- Incorporating detection confidence score of the keypoint extraction output in the training data to check whether it enhances performance
- Evaluate using other recurrent neural network architectures e.g. GRU (gated recurrent unit) for the classification modelling

Model Deployment

- The proposed mode involves using a Flask web application packaged as a docker image for deployment to a docker container environment e.g. cloud-based like Amazon ACS, Google CloudRun, Azure ACI etc.
- The web interface allows the user to select a captured video footage of the persons to be identified and click a "Generate Prediction" button to upload the video for keypoint extraction using Alphapose and perform model prediction using the extracted keypoint data. The person identifier and confidence score will be displayed as shown below:

Code

- The Jupyter Notebook and source code for the Flask web application is available at the github repository (https://github.com/yuanher/GaitRecognition)
- o The docker image is available from hub.docker.com at <u>yuanher/webapp</u>.