

COMP1140: Database and Information Management

Lecture Note – Week 12

Dr Suhuai Luo

School of SEEC

University of Newcastle

1

Note

- Assignment 3 is due this week
 - Deliver hard copy to your lab tutor at the beginning of lab
 - Make sure you set up your DB on lab PC when lab starts
 - You are required to attend your lab session, the SQL part of the A3 will be marked on site – no show, no mark
 - Read the assignment specifications & the marking guide; make sure to implement normalised tables; meet constraints etc.
- Lab arrangement this week
 - A3 SQL marking + JDBC practice
- No lecture no lab next week (week 13)
- Q & discussion

Last Lecture

- Discretionary Access Control
 - Schema
 - Privileges
 - Users and Roles
 - GRANT, DENY and REVOKE
- Physical Database Design
 - Data Storage: Overview
 - Indexes: Overview
 - Query Execution Plans: Overview

Today:

- JDBC
- Review for Final Exam
 - Exam arrangement
 - Exam structure
 - Course review

JDBC

See another ppt

Exam arrangement

- Date: Nov 21, Wednesday,6pm (You need double check)
- Weight: accounts for 50% of the whole course

Exam structure

- Restricted Open Book examination
- 1 A4 double sided sheet of notes (Memory Aid sheet) is permitted
- Duration: 2 hours + 10 minutes
- There are 11 Qs, total 100 marks
 - Short answering
 - Problem solving

Final Exam – Areas to Study

- Read the lecture notes and textbook well, also review lab/tutorial exercise, assignment.
- All questions are derived from the text book and the lecture notes and lab practice, so be prepared.
- It covers the contents dealt with from week 1 to week 12.

Course Learning Outcomes recheck:

- 1. Design conceptual models encapsulating data requirements for business and organisational scenarios
- 2. Convert conceptual models to logical data models
- 3. Implement a database solution using contemporary database management systems (DBMS)
- 4. Develop expertise in database languages (e.g. SQL) including the ability to develop sophisticated queries to extract information from large datasets
- 5. Understand data security and data quality management

Content involved

- L1: Introduction to Course, DBMSs
- L2! Project Requirements
- L3: Conceptual DB Design with Entity-Relationship Diagrams
- L4: Logical DB Design, EER/ Relational Mapping
- L5: Normalisation
- L6: Relational Algebra
- L7: SQL (DDL + DML)
- L8: Advanced SQL join, subquery, set operation
- L9: SQL Test
- L10: Views, Transactions, Triggers and Stored Procedures
- L11: Data Access: Users, Roles, Privileges, Physical DB Design: Data Storage, Indexes, Query Execution Plans
- L12: Review + JDBC

- L1: Introduction to Course, DBMSs
 - Concepts of DBMSs
 - Definitions & concepts of database design processes: Requirements Analysis, Conceptual Database Design, Logical Database Design, Physical Database Design

- L2:
- Database and DBMS architectures
 - Three-level database architecture
 - Multi-User DBMS Architectures

- Project Requirements
 - Understand the way to gain requirements

- L3: Conceptual DB Design with Entity-Relationship Diagrams
 - Know how to build EER based on requirements
 - Review lab & assignment content as examples

- L4: Logical DB Design, EER/ Relational Mapping
 - Understand concepts in relation model:
 - Relation, relation database, constrains
 - Know how to map EER to Relation using Database Definition Language (DBDL) notation
 - Pay attention to various cases of EER model (e.g., n:n, sup/sub)
 - Review examples in labs & assignments

- L5: Normalisation
 - Understand concepts in normalisation
 - Considerations when decomposing relations
 - Functional Dependency
 - Normal forms, definitions, procedures

- L6: Relational Algebra
 - Understand basic operations in relational algebra
 - Understand other operations that can be formed with basic ones (e.g., Join)
 - Query in RA

- L7: SQL (DDL + DML)
 - Understand various SQL commands
 - Know how to implement in application
 - Review practical exercise in labs & assignments

- L8: Advanced SQL join, subquery, set operation
 - Know these concepts
 - Can use these in application
 - Review practical exercise in labs & assignments

L9: SQL Test

- **L**10:
- Views, Transactions and Triggers
 - Understand basic concepts
 - Know how to use scripts properly
 - Pay attention to lab exercises

- L11 partA: Data Access: Users, Roles, Privileges
 - Understand basic concepts including:
 - Schema
 - Privileges
 - Users and Roles
 - GRANT, DENY and REVOKE
 - Understand practical issues dealt with in lab

- L11partB: Physical DB Design: Data
 Storage, Indexes, Query Execution Plans
 - Understand basic concepts & definitions

- Be useful to link all the processes for the 3 assignments of a database system, all the steps involved
 - create EER,
 - mapping EER to Relations,
 - relational algebra as theory support of,
 - queries in relational algebra,
 - necessary normalization based on specified function dependency etc,
 - SQL DDL & DML,
 - query, view, transaction, trigger,
 - database access
 - Considerations in physical implementation

More on final exam

Qs?

Study hard & Good luck!