

Wintersemester 2024/2025 Prof. Dr. Sergey Dashkovskiy

24.10.2024 Andreas Schroll

2. Übungsblatt zu gewöhnlichen Differentialgleichungen

Präsenzaufgaben

Diese Aufgaben werden zusammen mit ihrem Übungsleiter in den Übungen vom 28.10. und 29.10. gelöst.

Aufgabe P2.1

Zeigen Sie, dass die Differentialgleichung $2te^x - 1 + (t^2e^x + 1)\dot{x} = 0$, x(1) = 0 exakt ist und finden Sie eine Stammfunktion.

Aufgabe P2.2

Bestimmen Sie eine Lösung des Anfangswertproblems

$$t\dot{x} = x + 2t^3, \quad x(1) = 1.$$

Wintersemester 2024/2025 Prof. Dr. Sergey Dashkovskiy 24.10.2024 Andreas Schroll

2. Übungsblatt zu gewöhnlichen Differentialgleichungen

Hausaufgaben

Die Abgabe der bearbeiteten Übungszettel ist auf WueCampus bis zum 31.10.2024 (bis 23:59 Uhr) möglich. Bis zu 3 Personen dürfen zusammen abgeben. Bitte laden Sie Ihre Abgabe nur einmal pro Gruppe hoch und schreiben Sie alle entsprechenden Namen auf die Abgabe.

Aufgabe H2.1 (2+4=6 Punkte)

Bestimmen Sie die Lösungen der Anfangswertprobleme

a)
$$\dot{x} = (5t + 5x)^2$$
, $x(0) = 0$ und

b)
$$\dot{x} = \frac{t^2 - x^2}{-5tx}$$
, $x(1) = 1$.

(Hinweis: Bei beiden Teilaufgaben kann man eine Substitution durchführen. Bei Teil b wäre es gut, die vorgegebene Gleichung für die Substitution umzuformen.)

Aufgabe H2.2 (2+3=5 Punkte)

Zeigen Sie, dass die Differentialgleichung

- a) $\cos(t) + \sin(x) + (t\cos(x) + x)\dot{x} = 0$, x(0) = 0 exakt ist und bestimmen Sie die Stammfunktion $F_0(t, x)$,
- b) $\frac{1}{4}t^4\dot{x} + 3x + t^2\dot{x} + t^3x = -3t\dot{x} 5\dot{x} 2tx$, x(0) = 1 exakt ist, bestimmen Sie Stammfunktion $F_0(t,x)$ und bestimmen Sie eine Lösung.

Aufgabe H2.3 (4+3=7 Punkte)

Gegeben sei eine Differentialgleichung für $(t,x) \in U \subset \mathbb{R} \times \mathbb{R}$ mit der Form

$$M(t,x) + N(t,x)\dot{x} = 0, (1)$$

die der Exaktheitsbedingung $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial t}$ nicht genügt.

- a) Seien N, M stetig differenzierbare Funktionen auf $\tilde{D} \to \mathbb{R}$, wobei $M(t, x) \neq 0$ für alle $(t, x) \in \tilde{D}$ für ein offenes Rechteck $\tilde{D} \subset U$. Zeigen Sie: Hängt $\beta(t, x) := \frac{1}{M} \left(\frac{\partial M}{\partial x} \frac{\partial N}{\partial t} \right)$ allein von x ab, so ist $\mu(x) := \exp\left(-\int_{x_0}^x \beta(s) \ ds\right)$ für $(t_0, x_0) \in \tilde{D}$ ein integrierender Faktor von (1).
- b) Überprüfen Sie die Differentialgleichung

$$-2tx + (3t^2 - x^2)\dot{x} = 0, \quad x(1) = 1$$

auf Exaktheit und bestimmen Sie dann eine Stammfunktion $F_0(t,x)$ im Falle der Exaktheit. Falls sie nicht exakt ist, finden Sie einen integrierenden Faktor und bestimmen Sie dann eine Stammfunktion $F_0(t,x)$.

Aufgabe H2.4 (3+3=6) Punkte)

a) Bestimmen Sie die Lösung des Anfangswertproblems

$$\dot{x} - \frac{3t^2 + 4}{t^3 + 4t}x = t, \quad x(2) = 0.$$

b) Für welche Anfangswerte $x(1) = x_0, x_0 \in \mathbb{R}$, hat die Differentialgleichung

$$t\dot{x} = x + 2t^3$$

eine Lösung? Bestimmen Sie alle möglichen Lösungen des Anfangswertproblems.

Wintersemester 2024/2025 Prof. Dr. Sergey Dashkovskiy 24.10.2024 Andreas Schroll

2. Übungsblatt zu gewöhnlichen Differentialgleichungen

Freiwillige Aufgaben

Bitte geben Sie diese Aufgaben nicht mit der Hausaufgabe ab.

Aufgabe F2.1

(frewillige Aufgabe, keine Abgabe)

Zeigen Sie, dass die Differentialgleichung

$$3e^{3t}x - 2t + e^{3t}\dot{x} = 0, \quad x(1) = 1$$

exakt ist, bestimmen Sie die Stammfunktion $F_0(t,x)$ und eine Lösung.

Aufgabe F2.2

(frewillige Aufgabe, keine Abgabe)

Finden Sie für die Differentialgleichung

$$x \ln(x) + x^2 e^t + (t + xe^t)\dot{x} = 0, \quad x(0) = 1$$

einen integrierenden Faktor sowie eine Stammfunktion $F_0(t,x)$.

Aufgabe F2.3

(freiwillige Aufgabe, keine Abgabe)

Sei $D_1 \subset \mathbb{R}$ eine offene Menge, $a, b : D_1 \to \mathbb{R}$ stetig und $\alpha \in \mathbb{R} \setminus \{1\}$. Wir definieren die Bernoullische Differentialgleichung auf der Definitionsmenge $D = D_1 \times \mathbb{R}^+$ durch

$$\dot{x} = a(t)x + b(t)x^{\alpha}.$$

- a) Zeigen Sie, dass man die Bernoullische Differentialgleichung mit Hilfe der Transformation $y(t) = x^{1-\alpha}(t)$ in eine lineare Differentialgleichung transformieren kann. Geben Sie eine allgemeine Lösungsformel an
- b) Lösen Sie das Anfangswertproblem

$$\dot{x}(t) - x(t) + tx^{3}(t) = 0, \quad x(0) = 1.$$