读取iris数据集中鸢尾花的萼片、花瓣长度数据,并对其进行排序、去重,并求出和、累积和、均值、标准差、方差、最小值、最大值。

1、导入模块

```
In [ ]: import pandas as pd
import numpy as np
```

2、获取数据

```
In [ ]: data=pd.read_csv('iris.csv')
    data.head()
```

Out[]:		Unnamed: 0	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	0	1	5.1	3.5	1.4	0.2	setosa
	1	2	4.9	3.0	1.4	0.2	setosa
	2	3	4.7	3.2	1.3	0.2	setosa
	3	4	4.6	3.1	1.5	0.2	setosa
	4	5	5.0	3.6	1.4	0.2	setosa

3、数据清洗

```
In [ ]: data=data.iloc[:,1:]
    data.head()
```

ut[]:		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

4、数据统计

(1) 、创建数据类型 (字符串类型)

(2) 、创建二维数组

```
In [ ]: two_dimensional_array=np.array([[1,2],[3,4]])
    two_dimensional_array.two_dimensional_array.shape
```

```
Out[]: (array([[1, 2], [3, 4]]), (2, 2))
```

Out[

(3)、将待处理数据的类型转化为float类型

```
In [ ]: data.iloc[:,:-1]=pd.DataFrame(data.iloc[:,:-1],dtype=float)
    data.head()
```

Out[]:		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

(4)、排序(按照Sepal.Length这一列排序)

```
In [ ]: data.sort_values('Sepal.Length').head()
```

]:		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	13	4.3	3.0	1.1	0.1	setosa
	42	4.4	3.2	1.3	0.2	setosa
	38	4.4	3.0	1.3	0.2	setosa
	8	4.4	2.9	1.4	0.2	setosa
	41	4.5	2.3	1.3	0.3	setosa

(5)、数据去重(对Petal.Length列去重,只保留第一次出现的行)

```
In [ ]: data.drop_duplicates(subset=['Petal.Length'], keep='first').head()
```

Out[]:		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	0	5.1	3.5	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	5	5.4	3.9	1.7	0.4	setosa
	11	4.8	3.4	1.6	0.2	setosa

(6)、对指定列(萼片的长度、宽度,或花瓣的长度、宽度,选一个,不用都做)求和、均值、标准差、方差、最小值积及最大值

对Sepal.Width进行求解

```
print("标准差",data.iloc[:,1].std())
print("求方差",data.iloc[:,1].var())
print("求最小值",data.iloc[:,1].min())
print("求最大值",data.iloc[:,1].max())
```

求和 458.6 求均值 3.057333333333333 标准差 0.4358662849366982 求方差 0.189979418344519 求最小值 2.0 求最大值 4.4