A Primer in Econometric Theory

Lecture 2: Linear Algebra and Matrices

John Stachurski Lectures by Akshay Shanker

March 26, 2017

Matrices

Typical $N \times K$ matrix:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix}$$

Symbol a_{nk} stands for element in the n-th row of the k-th column

 $N \times K$ matrix also called a

- row vector if N=1
- column vector if K = 1

If N = K, then **A** is called **square**

If **A** is square and $a_{nk} = a_{kn}$ for every k and n, then **A** is called **symmetric**

Often elements of a matrix ${\bf A}$ represent coefficients in a system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1K}x_K = b_1$$

 \vdots
 $a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NK}x_K = b_N$

For a matrix A, the notation:

- row_n A refers to the nth row of A
- $\operatorname{col}_k \mathbf{A}$ to refers to the kth column of \mathbf{A}

The symbols ${\bf 0}$ and ${\bf 1}$ represent matrices with all elements equal to zero and one respectively

For square **A**, elements a_{nn} called the **principal diagonal**:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

Identity matrix:

$$\mathbf{I} := \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right)$$

Note $\operatorname{col}_n \mathbf{I} = \mathbf{e}_n$, the *n*th canonical basis vector in \mathbb{R}^N

Algebraic Operations for Matrices

Operations for matrices:

- Scalar multiplication
- Addition
- Matrix multiplication

Scalar multiplication is element by element, as with vectors:

$$\gamma \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1K} \\
a_{21} & a_{22} & \cdots & a_{2K} \\
\vdots & \vdots & & \vdots \\
a_{N1} & a_{N2} & \cdots & a_{NK}
\end{pmatrix} := \begin{pmatrix}
\gamma a_{11} & \gamma a_{12} & \cdots & \gamma a_{1K} \\
\gamma a_{21} & \gamma a_{22} & \cdots & \gamma a_{2K} \\
\vdots & \vdots & & \vdots \\
\gamma a_{N1} & \gamma a_{N2} & \cdots & \gamma a_{NK}
\end{pmatrix}$$

Addition also element by element:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1K} \\ b_{21} & \cdots & b_{2K} \\ \vdots & \vdots & \vdots \\ b_{N1} & \cdots & b_{NK} \end{pmatrix}$$

$$:= \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1K} + b_{1K} \\ a_{21} + b_{21} & \cdots & a_{2K} + b_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} + b_{N1} & \cdots & a_{NK} + b_{NK} \end{pmatrix}$$

Note matrices must be same dimension

Multiplication of matrices:

Product AB: i, j-th element is inner product of i-th row of A and j-th column of B

$$c_{ij} = \langle \operatorname{row}_i \mathbf{A}, \operatorname{col}_j \mathbf{B} \rangle = \sum_{k=1}^K a_{ik} b_{kj}$$

Picture for i = j = 1:

$$\begin{pmatrix} a_{11} & \cdots & a_{1K} \\ a_{21} & \cdots & a_{2K} \\ \vdots & \vdots & \vdots \\ a_{N1} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1J} \\ b_{21} & \cdots & b_{2J} \\ \vdots & \vdots & \vdots \\ b_{K1} & \cdots & b_{KJ} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1J} \\ c_{21} & \cdots & c_{2J} \\ \vdots & \vdots & \vdots \\ c_{N1} & \cdots & c_{NJ} \end{pmatrix}$$

In this picture,

$$c_{11} = \langle \operatorname{row}_1(\mathbf{A}), \operatorname{col}_1(\mathbf{B}) \rangle = \sum_{k=1}^K a_{1k} b_{k1}$$

Suppose **A** is $N \times K$ and **B** is $J \times M$

- **AB** defined only if K = J
- Resulting matrix \mathbf{AB} is $N \times M$

The rule to remember:

product of
$$N \times K$$
 and $K \times M$ is $N \times M$

Multiplication is not commutative: $AB \neq BA$

Note **BA** is not well-defined unless N=M also holds

Fact. (3.1.1) For conformable matrices **A**, **B**, **C** and scalar α , we have

- 1. A(BC) = (AB)C
- $2. \ \mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C},$
- 3. (A+B)C = AC + BC,
- 4. $\mathbf{A}\alpha\mathbf{B} = \alpha\mathbf{A}\mathbf{B}$, and
- 5. AI = A and IA = A, where I is the identity matrix.

Here, "conformable" means operation is defined given matrix dimensions

The kth power of a square matrix \mathbf{A} is defined as

$$\mathbf{A}^k := \underbrace{\mathbf{A} \cdots \mathbf{A}}_{k \text{ terms}}$$

If B is such that $B^2=A,$ then B is called the $square\ root$ of A and written \sqrt{A}

Given $N \times K$ matrix \mathbf{A} and $K \times 1$ column vector \mathbf{x} , the product $\mathbf{A}\mathbf{x}$ is:

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_K \end{pmatrix}$$

$$= x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{N1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{N2} \end{pmatrix} + \cdots + x_K \begin{pmatrix} a_{1K} \\ a_{2K} \\ \vdots \\ a_{NK} \end{pmatrix}$$

$$= \sum_{k=1}^{K} x_k \operatorname{col}_k \mathbf{A}$$

Matrices as Maps

We can think of an $N \times K$ matrix **A** as a map from \mathbb{R}^K to \mathbb{R}^N :

$$\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$$

Such a map is linear

How about examples of linear functions that don't involve matrices?

...actually, there are none!

The set of linear functions from \mathbb{R}^K to \mathbb{R}^N and the set of $N \times K$ matrices are in one-to-one correspondence:

Theorem. (3.1.1) Let T be a function from \mathbb{R}^K to \mathbb{R}^N . The following are equivalent:

- 1. T is linear.
- 2. There exists an $N \times K$ matrix \mathbf{A} such that $T\mathbf{x} = \mathbf{A}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^K$.

Proof. $(1. \implies 2.)$

Let $T \colon \mathbb{R}^K \to \mathbb{R}^N$ be linear

We aim to construct an $N \times K$ matrix **A** such that

$$T\mathbf{x} = \mathbf{A}\mathbf{x}, \qquad \forall \, \mathbf{x} \in \mathbb{R}^K$$

As usual, let \mathbf{e}_k be the k-th canonical basis vector in \mathbb{R}^K

Define a matrix **A** by $\operatorname{col}_k(\mathbf{A}) = T\mathbf{e}_k$. Pick any $\mathbf{x} = (x_1, \dots, x_K) \in \mathbb{R}^K$. By linearity we have,

$$T\mathbf{x} = T\left[\sum_{k=1}^{K} x_k \mathbf{e}_k\right] = \sum_{k=1}^{K} x_k T \mathbf{e}_k = \sum_{k=1}^{K} x_k \operatorname{col}_k(\mathbf{A}) = \mathbf{A}\mathbf{x}$$

Proof.(2 \Longrightarrow 1) Fix $N \times K$ matrix \mathbf{A} and let T be defined by $T \colon \mathbb{R}^K \to \mathbb{R}^N, \qquad T\mathbf{x} = \mathbf{A}\mathbf{x}$

Pick any \mathbf{x} , \mathbf{y} in \mathbb{R}^K , and any scalars α and β

The rules of matrix arithmetic tell us that

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) := \mathbf{A}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{A} \mathbf{y} =: \alpha T \mathbf{x} + \beta T \mathbf{y}$$

Consider solving a system of linear equations such as $\mathbf{A}\mathbf{x} = \mathbf{b}$

Existence: can we find an x that satisfies this equation, for any given b?

- is the corresponding linear map Tx = Ax an onto function?
- equivalently, is rng T equal to all of \mathbb{R}^N ?

Column Space

The range of T is all vectors of the form $T\mathbf{x} = \mathbf{A}\mathbf{x}$ where \mathbf{x} varies over \mathbb{R}^K

For $\mathbf{x} \in \mathbb{R}^K$, we have

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^K x_k \operatorname{col}_k \mathbf{A}$$

Thus, rng T equals the **column space** of \mathbf{A} – the span of the columns of \mathbf{A}

$$\operatorname{colspace} \mathbf{A} := \operatorname{span} \{ \operatorname{col}_1 \mathbf{A}, \dots, \operatorname{col}_K \mathbf{A} \}$$

In summary,

$$colspace \mathbf{A} = rng T = {\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^K}$$

Rank

Equivalent questions

- How large is the range of the linear map $T\mathbf{x} = \mathbf{A}\mathbf{x}$?
- How large is the column space of A?

The obvious measure of size for a linear subspace is its dimension

The dimension of colspace A is known as the rank of A

rank A := dim colspace A

Because colspace A is the span of K vectors, we have

 $\operatorname{rank} \mathbf{A} = \operatorname{dim} \operatorname{colspace} \mathbf{A} \leq K$

A has full column rank if

rank A = number of columns of A

Fact. (3.1.2) For any matrix A, the following statements are equivalent:

- 1. A is of full column rank
- 2. The columns of A are linearly independent
- 3. If Ax = 0, then x = 0

Square Matrices and Invertability

Consider the case where **A** is $N \times N$

We seek conditions on ${\bf A}$ under which, for every ${\bf b} \in \mathbb{R}^N$, there exists exactly one ${\bf x} \in \mathbb{R}^N$ such that ${\bf A}{\bf x} = {\bf b}$

Let T be the linear map $T\mathbf{x} = \mathbf{A}\mathbf{x}$

- When does each point $\mathbf{b} \in \mathbb{R}^N$ have one and only one preimage under T?
- Equivalenty, when is T a bijection?

Recall linear bijections are called nonsingular functions

Fact. (3.1.3) For $N \times N$ matrix **A**, the following are equivalent:

- 1. The columns of ${\bf A}$ are linearly independent.
- 2. The columns of **A** form a basis of \mathbb{R}^N .
- 3. rank $\mathbf{A} = N$.
- 4. colspace $\mathbf{A} = \mathbb{R}^N$.
- 5. $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \implies \mathbf{x} = \mathbf{y}$.
- 6. $Ax = 0 \implies x = 0$.
- 7. For each $\mathbf{b} \in \mathbb{R}^N$, the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution.
- 8. For each $\mathbf{b} \in \mathbb{R}^N$, the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.

If any of the equivalent conditions in fact 3.1.3 are true we will call not just the map T but also the underlying matrix $\bf A$ nonsingular

If any one—and hence all—of these conditions fail, then ${\bf A}$ is called ${\bf singular}$

Any bijection has an inverse (see §15.2 in ET)

Any nonsingular map T has a nonsingular inverse T^{-1} (fact 2.1.9 on page 26)

• where T is generated by a matrix \mathbf{A} , the inverse T^{-1} is also associated with a matrix, called the inverse of \mathbf{A}

Theorem. (3.1.2) For nonsingular **A** the following statements are true:

- 1. There exists a square matrix \mathbf{B} such that $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$, where \mathbf{I} is the identity matrix. The matrix \mathbf{B} is called the inverse of \mathbf{A} , and written as \mathbf{A}^{-1} .
- 2. For each $\mathbf{b} \in \mathbb{R}^N$, the unique solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is given by

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Example. Consider the N good linear demand system

$$q_n = \sum_{k=1}^N a_{nk} p_k + b_n, \quad n = 1, \dots, N$$

where q_n and p_n are quantity and price of the nth good

We want to compute the inverse demand function which gives prices in terms of quantities

Write the system in matrix form as $\mathbf{q} = \mathbf{A}\mathbf{p} + \mathbf{b}$

If the columns of A are linearly independent, then we can invert the system— a unique solution exists for each fixed q and b:

$$\mathbf{p} = \mathbf{A}^{-1}(\mathbf{q} - \mathbf{b})$$

For $N \times N$ matrices **A** and **B**, if

- **B** is a **left inverse**, that is, BA = I
- or B is aright inverse, that is, AB = I

Then A is invertible and B is the inverse of A

Fact. (3.1.4) Let \mathbf{A} and \mathbf{B} be $N \times N$ square matrices. If \mathbf{B} is either a left or a right inverse of \mathbf{A} , then \mathbf{A} is nonsingular and \mathbf{B} is its inverse.

Fact. (3.1.5) If **A** and **B** are nonsingular and $\alpha \neq 0$, then

- 1. $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$,
- 2. $(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$, and
- 3. $(AB)^{-1} = B^{-1}A^{-1}$

Determinants

Determinant is a unique number for each square matrix A

Let S(N) be the set of all bijections from $\{1, \ldots, N\}$ to itself

For $\pi \in S(N)$, define the **signature** of π

$$\operatorname{sgn}(\pi) := \prod_{m < n} \frac{\pi(m) - \pi(n)}{m - n}$$

The **determinant** of $N \times N$ matrix **A** is

$$\det \mathbf{A} := \sum_{\pi \in S(N)} \operatorname{sgn}(\pi) \prod_{n=1}^N a_{\pi(n)n}$$

Fact. (3.1.6) If **I** is the $N \times N$ identity, **A** and **B** are $N \times N$ matrices and $\alpha \in \mathbb{R}$, then

- 1. $\det I = 1$,
- 2. **A** is nonsingular if and only if $\det \mathbf{A} \neq 0$,
- 3. $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$,
- 4. $\det(\alpha \mathbf{A}) = \alpha^N \det(\mathbf{A})$, and
- 5. $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$.

In the 2×2 case one can show that the determinant satisfies

$$\det\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc$$

Proof.(Fact 3.1.4)

Fix square matrix A and suppose a right inverse B exists:

$$AB = I$$

Then both A and B are nonsingular, since using the rules in fact 3.1.6:

$$det(\mathbf{A}) det(\mathbf{B}) = 1$$

Both $\det A$ and $\det B$ are nonzero and hence both matrices are nonsingular. Next, AB = I, hence

$$BAB = B$$

Post-multiplying by \mathbf{B}^{-1} gives $\mathbf{B}\mathbf{A} = \mathbf{I}$

Diagonal and Triangular Matrices

A square matrix is called **lower triangular** if every element strictly above the principle diagonal is zero

Example.

$$\mathbf{L} := \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{array} \right)$$

Example.

$$\mathbf{U} := \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 1 \end{array} \right)$$

A square matrix is called **triangular** if it is either upper or lower triangular

Fact. (3.2.1) If $\mathbf{A} = (a_{mn})$ is triangular, then $\det \mathbf{A} = \prod_{n=1}^{N} a_{nn}$.

Example.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

becomes

$$x_1 = b_1$$

$$2x_1 + 5x_2 = b_2$$

$$3x_1 + 6x_2 + x_3 = b_3$$

Top equation involves only x_1 , so can solve for it directly

Plug that value into second equation, solve out for x_2 , etc.

Consider a square $N \times N$ matrix \mathbf{A}

The N elements of the form a_{nn} are called the **principal diagonal**

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & \cdots & a_{2N} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{pmatrix}$$

A square matrix \mathbf{D} is called **diagonal** if all entries off the principal diagonal are zero

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_N \end{pmatrix}$$

Often written as

$$\mathbf{D} = \operatorname{diag}(d_1, \dots, d_N)$$

Diagonal systems are very easy to solve

Example.

$$\begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

is equivalent to

$$d_1x_1 = b_1$$

$$d_2x_2 = b_2$$

$$d_3x_3 = b_3$$

Fact. (3.2.2) If $C = diag(c_1, ..., c_N)$ and $D = diag(d_1, ..., d_N)$, then

- 1. $C + D = diag(c_1 + d_1, ..., c_N + d_N)$
- 2. **CD** = diag($c_1d_1,...,c_Nd_N$)
- 3. $\mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_N^k)$ for any $k \in \mathbb{N}$
- 4. $d_n > 0$ for all $n \implies \mathbf{D}^{1/2}$ exists and equals

$$\operatorname{diag}(\sqrt{d_1},\ldots,\sqrt{d_N})$$

5. $d_n \neq 0$ for all $n \implies \mathbf{D}$ is nonsingular and

$$\mathbf{D}^{-1} = \text{diag}(d_1^{-1}, \dots, d_N^{-1})$$

Proofs: Check 1 and 2 directly. Parts 3-5 then follow from 1 and 2.

Trace, Transpose, Symmetry

The trace of a square matrix is defined by

trace
$$\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} = \sum_{n=1}^{N} a_{nn}$$

Fact. (3.2.3) If **A** and **B** are square matrices and $\alpha, \beta \in \mathbb{R}$, then $\operatorname{trace}(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \operatorname{trace}(\mathbf{A}) + \beta \operatorname{trace}(\mathbf{B})$

If **A** is $N \times M$ and **B** is $M \times N$, then trace(**AB**) = trace(**BA**)

$$\operatorname{col}_n(\mathbf{A}') = \operatorname{row}_n(\mathbf{A})$$

Example. If

$$\mathbf{A} := \begin{pmatrix} 10 & 40 \\ 20 & 50 \\ 30 & 60 \end{pmatrix} \quad \text{then} \quad \mathbf{A}' = \begin{pmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{pmatrix}$$

lf

$$\mathbf{B} := \left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) \quad \text{then} \quad \mathbf{B}' := \left(\begin{array}{ccc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array}\right)$$

A square matrix A is called **symmetric** if $A^T = A$

• equivalently, $a_{nk} = a_{kn}$ for every k and n

The matricies $\mathbf{A}^\mathsf{T}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^\mathsf{T}$ are always well-defined and symmetric

Fact. (3.2.4) For conformable matrices $\bf A$ and $\bf B$, transposition satisfies

- 1. $(A^{T})^{T} = A$,
- $2. (AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$
- 3. $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$, and
- 4. $(c\mathbf{A})^{\mathsf{T}} = c\mathbf{A}^{\mathsf{T}}$ for any constant c.

Fact. (3.2.5) For each square matrix A, we have

- 1. $trace(\mathbf{A}) = trace(\mathbf{A}^{\mathsf{T}})$ and
- 2. $det(\mathbf{A}^{\mathsf{T}}) = det(\mathbf{A})$.
- 3. If \mathbf{A} is nonsingular, then so is \mathbf{A}^{T} , and its inverse is $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$.

If **a** and **b** are $N \times 1$ vectors, then the matrix product $\mathbf{a}^\mathsf{T} \mathbf{b} = \mathbf{b}^\mathsf{T} \mathbf{a}$ is equal to $\sum_{n=1}^N a_n b_n$,

same as the inner product (a, b)

Eigenvalues and Eigenvectors

Let **A** be $N \times N$

In general A maps x to some arbitrary new location Ax

But sometimes x will only be scaled:

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \quad \text{for some scalar } \lambda \tag{1}$$

If (1) holds and x is nonzero, then

- 1. \mathbf{x} is called an eigenvector of \mathbf{A} and λ is called an eigenvalue
- 2. (\mathbf{x}, λ) is called an **eigenpair**

Clearly (\mathbf{x}, λ) is an eigenpair of $\mathbf{A} \implies (\alpha \mathbf{x}, \lambda)$ is an eigenpair of \mathbf{A} for any nonzero α

Example. Let

$$\mathbf{A} := \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$$

Then

$$\lambda = 2$$
 and $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

form an eigenpair because $x \neq 0$ and

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda \mathbf{x}$$

Example. Consider the matrix

$$\mathbf{R} := \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

Induces counter-clockwise rotation on any point by 90°

Hence no point x is scaled

Hence there exists $\underline{\mathsf{no}}$ pair $\lambda \in \mathbb{R}$ and $\mathbf{x} \neq \mathbf{0}$ such that

$$\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$$

In other words, no <u>real-valued</u> eigenpairs exist

Figure: The matrix ${\bf R}$ rotates points by 90°

Figure: The matrix ${\bf R}$ rotates points by 90°

But $\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$ can hold if we allow complex values

Example.

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{matrix} 1 \\ -i \end{matrix}\right) = \left(\begin{matrix} i \\ 1 \end{matrix}\right) = i \left(\begin{matrix} 1 \\ -i \end{matrix}\right)$$

That is,

$$\mathbf{R}\mathbf{x} = \lambda\mathbf{x}$$
 for $\lambda := i$ and $\mathbf{x} := \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Hence (\mathbf{x}, λ) is an eigenpair provided we admit complex values

Fact. (3.2.6) For any square matrix A

$$\lambda$$
 is an eigenvalue of $\mathbf{A} \iff \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

Proof.Let ${\bf A}$ by $N\times N$ and let ${\bf I}$ be the $N\times N$ identity We have

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \iff \mathbf{A} - \lambda \mathbf{I} \text{ is singular}$$

$$\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } (\mathbf{A} - \lambda \mathbf{I}) \mathbf{x} = \mathbf{0}$$

$$\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

$$\iff \lambda \text{ is an eigenvalue of } \mathbf{A}$$

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Hence the eigenvalues of A are given by the two roots of

$$\lambda^2 - (a+d)\lambda + (ad - bc) = 0$$

Equivalently,

$$\lambda^2 - \operatorname{trace}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

Existence of Eigenvalues

Fix $N \times N$ matrix **A**

Fact. There exist complex numbers $\lambda_1, \ldots, \lambda_N$ such that

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda)$$

Each such λ_i is an eigenvalue of **A** because

$$\det(\mathbf{A} - \lambda_i \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda_i) = 0$$

Important: not all eigenvalues are necessarily distinct — there can be repeats

Fact. (3.2.7) Given $N \times N$ matrix **A** with eigenvalues $\lambda_1, \ldots, \lambda_N$ we have

- 1. $\det(\mathbf{A}) = \prod_{n=1}^{N} \lambda_n$
- 2. trace(**A**) = $\sum_{n=1}^{N} \lambda_n$
- 3. If **A** is symmetric, then $\lambda_n \in \mathbb{R}$ for all n
- 4. If ${\bf A}$ is nonsingular, then eigenvalues of ${\bf A}^{-1}=1/\lambda_1,\ldots,1/\lambda_N$
- 5. If $\mathbf{A} = \operatorname{diag}(d_1, \dots, d_N)$, then $\lambda_n = d_n$ for all n

Hence A is nonsingular \iff all eigenvalues are nonzero

Quadratic Forms

Fix $N \times N$ matrix **A**

The quadratic function or quadratic form on \mathbb{R}^N associated with \mathbf{A} is the map Q defined by

$$Q(\mathbf{x}) := \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{j=1}^{N} \sum_{i=1}^{N} a_{ij} x_i x_j$$

Example. Let N=2 and let ${\bf A}$ be the identity matrix ${\bf I}$. In this case,

$$Q(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + x_2^2$$

Figure: Quadratic function $Q(\mathbf{x}) = x_1^2 + x_2^2$

Notice:

• The graph for $Q(\mathbf{x}) = \|\mathbf{x}\|^2 = x_1^2 + x_2^2$ lies everywhere above zero

Matrix ${\bf A}$ with Quadratic form with the above property $Q({\bf x}) \geq 0$ is called *positive definite*

More generally, an $N \times N$ symmetric matrix \mathbf{A} is called

- nonnegative definite if $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^N$,
- positive definite if $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$,
- nonpositive definite if $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^N$, and
- negative definite if $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} < 0$ for all $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$.

If A fits none of these categories, then A is called indefinite

Figure: Quadratic function $Q(\mathbf{x}) = -x_1^2 - x_2^2$

Figure: Quadratic function $Q(\mathbf{x}) = x_1^2/2 + 8x_1x_2 + x_2^2/2$

When the matrix A is diagonal:

$$\mathbf{A} = \operatorname{diag}(d_1, \dots, d_N)$$
 implies $Q(\mathbf{x}) = d_1 x_1^2 + \dots + d_N x_N^2$

A diagonal matrix is positive definite if and only if all diagonal elements are positive

Fact. (3.2.8) Let **A** be any symmetric matrix. **A** is

- 1. positive definite if and only if its eigenvalues are all positive,
- 2. negative definite if and only if its eigenvalues are all negative,

...and similarly for nonpositive and nonnegative definite

Fact. (3.2.9) If $\bf A$ is positive definite, then $\bf A$ is nonsingular, with $\det {\bf A} > 0$

A necessary (but not sufficient) condition for each kind of definiteness:

Fact. (3.2.10) If **A** is positive definite, then each element a_{nn} on the principal diagonal is positive, and the same for nonnegative, nonpositive and negative.

Projection Matrices

Recall given any subspace of \mathbb{R}^N , S, the corresponding projection $\mathbf{P}=\operatorname{proj} S$ is a linear map from \mathbb{R}^N to \mathbb{R}^N

Recall Theorem 3.1.1: there exists an $N \times N$ matrix $\hat{\mathbf{P}}$ such that $\mathbf{P}\mathbf{x} = \hat{\mathbf{P}}\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^N$

from now on P will also represent the corresponding matrix

What does this matrix look like?

Theorem. (3.3.1) Let S be a subspace of \mathbb{R}^N . If $\mathbf{P} = \operatorname{proj} S$, then

$$\mathbf{P} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}} \tag{2}$$

for every matrix ${\bf B}$ such that the columns of ${\bf B}$ form a basis of S

See exercise 3.5.30 for proof

• The matrix $\mathbf{M} = \mathbf{I} - \mathbf{P}$ denotes the residual projection (see page 32)

Example. Recall example 2.2.1 on page 30

We found the projection of $\mathbf{y} \in \mathbb{R}^N$ onto $\mathrm{span}\{\mathbf{1}\}$ is $\bar{y}\mathbf{1}$

Same result using Theorem (3.3.1):

Since 1 is a basis for span{1}:

$$\mathbf{P} = \text{proj span}\{\mathbf{1}\} \implies \mathbf{P} = \mathbf{1}(\mathbf{1}^{\mathsf{T}}\mathbf{1})^{-1}\mathbf{1}^{\mathsf{T}} = \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathsf{T}}$$

- Thus, $\mathbf{P}\mathbf{y} = \bar{y}\mathbf{1}$, as expected
- Corresponding residual projection is

$$\mathbf{M}_{c} = \mathbf{I} - \frac{1}{N} \mathbf{1} \mathbf{1}^{\mathsf{T}}$$

Fact. (3.3.1) In the setting of theorem 3.3.1, we have

- 1. MB = 0
- 2. PB = B

Proof is an exercise (ex. 3.5.31 in ET)

Easy to see \mathbf{M}_c in the previous example maps 1 to 0

A square matrix A is **idempotent** if AA = A

Fact. (3.3.2) Both \mathbf{P} and \mathbf{M} are symmetric and idempotent (Exercise: check by direct calculation)

Intuition: projecting onto a subspace twice is the same as projecting once – recall fact 2.2.8 on page 33

- 1. $\operatorname{rank} \mathbf{P} = \operatorname{trace} \mathbf{P} = \dim S$ and
- 2. rank $\mathbf{M} = \operatorname{trace} \mathbf{M} = N \dim S$

Proof.

- The rank of a linear map is the dimension of its range. When P = proj S, the range of P is exactly S
- To show that trace P = dim S also holds, use fact 3.3.3– trace P = dim S,
- It follows that trace $\mathbf{M} = N \dim S$, because

trace
$$\mathbf{M} = \operatorname{trace}(\mathbf{I} - \mathbf{P}) = \operatorname{trace} \mathbf{I} - \operatorname{trace} \mathbf{P} = N - \dim S$$

Overdetermined Systems of Equations

Consider systems of equations of the form Ax = b when:

- The matrix **A** is $N \times K$ and has full column rank
- The vector \mathbf{x} is $K \times 1$
- The vector **b** is $N \times 1$
- *K* ≤ *N*

Taking **A** and **b** as given, we seek $\mathbf{x} \in \mathbb{R}^K$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$

If K = N, then system has precisely one solution

When N > K, the system of equations said to be **overdetermined**:

- number of equations > number of unknowns
- number of constraints > degrees of freedom

May not be able find a ${\bf b}$ that satisfies all N equations

Recall the linear map $T\colon \mathbb{R}^K \to \mathbb{R}^N$ corresponding to \mathbf{A} is $T\mathbf{x} = \mathbf{A}\mathbf{x}$

The following statements are equivalent:

- 1. there exists an $\mathbf{x} \in \mathbb{R}^K$ with $\mathbf{A}\mathbf{x} = \mathbf{b}$
- 2. the vector $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$
- 3. the vector $\mathbf{b} \in \operatorname{rng} T$

Theorem 2.1.8 on page 26: when K < N, the function T cannot be onto – possible ${\bf b}$ lies outside the range of T

When K < N, the scenario $\mathbf{b} \in \operatorname{colspace} \mathbf{A}$ is "very rare" because:

- ullet the point ${f b}$ is an arbitrary point in \mathbb{R}^N
- ullet the space colspace old A has dimension K
- K-dimensional subspaces of \mathbb{R}^N have "Lebesgue measure zero" the "chance" of \mathbf{b} happening to lie in this subspace is tiny

Standard approach: admit an exact solution may not exist

Focus on finding $\mathbf{x} \in \mathbb{R}^K$ to make $\mathbf{A}\mathbf{x}$ as close to \mathbf{b} as possible

close in terms of ordinary Euclidean norm

The minimization problem, called the least squares problem

$$\hat{\mathbf{x}} : = \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \| \mathbf{b} - \mathbf{A} \mathbf{x} \| \tag{3}$$

Assuming **A** is $N \times K$ with $K \leq N$ and **b** is $N \times 1$, we can use the orthogonal projection theorem to solve (3)

Theorem. (3.3.2) If $\bf A$ has full column rank, then (3) has the unique solution

$$\hat{\mathbf{x}} := (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{A}^\mathsf{T} \mathbf{b} \tag{4}$$

Proof.

Let:

- A and b be as in the statement of the theorem
- x̂ be as in (4) and
- $S := \operatorname{colspace} \mathbf{A}$

By full column rank assumption, the columns of $\bf A$ form a basis for S. Applying theorem 3.3.1, orthogonal projection of $\bf b$ onto S is

$$\mathbf{P}\mathbf{b} := \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b} = \mathbf{A}\hat{\mathbf{x}}$$
 (5)

Since the orthogonal projection theorem gives a unique minimizer in terms of the closest point in S to \mathbf{b} ,

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{y}\|$$
 for all $\mathbf{y} \in S$, $\mathbf{y} \neq \mathbf{A}\hat{\mathbf{x}}$ (6)

Proof.(cont.) Pick any $\mathbf{x} \in \mathbb{R}^K$ such that $\mathbf{x} \neq \hat{\mathbf{x}}$

We have $\mathbf{A}\mathbf{x} \in S$

In addition, since $\mathbf{x} \neq \hat{\mathbf{x}}$, and since \mathbf{A} has full column rank, it must be that $\mathbf{A}\mathbf{x} \neq \mathbf{A}\hat{\mathbf{x}}$ (ex. 3.5.4)

Hence

$$\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\| < \|\mathbf{b} - \mathbf{A}\mathbf{x}\|$$
 for all $\mathbf{x} \in \mathbb{R}^K$, $\mathbf{x} \neq \hat{\mathbf{x}}$

In other words, \hat{x} is the unique solution to (3)

In (4), the matrix $(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ is called the **pseudoinverse** of \mathbf{A}

If K=N, then the least squares solution $\hat{\mathbf{x}}$ in (4) reduces to:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

What happens if the columns of A are not linearly independent?

- the set colspace A is still a linear subspace and the orthogonal projection theorem still gives us a closest point Pb to b in colspace A
- since $Pb \in \operatorname{colspace} A$, there still exists a vector $\hat{\mathbf{x}}$ such that $Pb = A\hat{\mathbf{x}}$
- but there exists an infinity of such vectors

See Exercise 3.5.34

QR Decomposition

The QR decomposition of a given matrix A is a product of the form QR

- first matrix has orthonormal columns and
- the second is upper triangular

Applications include least squares problems and the computation of eigenvalues

Theorem. (3.3.3) If A is an $N \times K$ matrix with full column rank, then there exists a factorization A = QR where

- 1. **R** is $K \times K$, upper triangular and nonsingular, and
- 2. **Q** is $N \times K$, with orthonormal columns

See page 64 in ET for a proof

Given the decomposition $\mathbf{A} = \mathbf{Q}\mathbf{R}$, the least squares solution $\hat{\mathbf{x}}$ defined in (4) can also be written as:

$$\hat{\mathbf{x}} = \mathbf{R}^{-1} \mathbf{Q}^\mathsf{T} \mathbf{b}$$

See Ex. 3.5.32

Premultiplying by **R**:

$$R\hat{x} = Q^{\mathsf{T}}b$$

Diagonalisation and Spectral Theory

If $f \colon A \to A$ and $g \colon B \to B$, then g is said to be **topologically conjugate** to f whenever there exists a continuous bijection $\tau \colon B \to A$ such that

$$f = \tau \circ g \circ \tau^{-1}$$

Can be beneficial if g is somehow simpler than f

A square matrix A is said to be **similar** to another matrix B if there exists an invertible matrix P such that $A = PBP^{-1}$

Figure: A is similar to B

If ${\bf A}$ is similar to a diagonal matrix, then ${\bf A}$ is called diagonalizable

We are interested in similarity to simple matrices, and diagonal matrices are the simplest kind

Fact. (3.3.5) If **A** is similar to **B**, then \mathbf{A}^t is similar to \mathbf{B}^t for all $t \in \mathbb{N}$

Example. We want to calculate \mathbf{A}^t for some given $t \in \mathbb{N}$

If $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ for some $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_N)$, then by fact 3.3.5 and fact 3.2.2, we have

$$\mathbf{A}^t = \mathbf{P}\operatorname{diag}(\lambda_1^t, \dots, \lambda_N^t)\mathbf{P}^{-1}$$

Diagonalization and Eigenvalues

Fact. (3.3.6) If $\mathbf{A} = \mathbf{P}\Lambda\mathbf{P}^{-1}$ for some $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$, then $(\operatorname{col}_n \mathbf{P}, \lambda_n)$ is an eigenpair of \mathbf{A} for each n

Proof. Observe $\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$ implies $\mathbf{A} \mathbf{P} = \mathbf{P} \mathbf{\Lambda}$

Equating the nth column on each side gives

$$\mathbf{A}\mathbf{p}_n = \lambda_n \mathbf{p}_n$$

Where $\mathbf{p}_n := \operatorname{col}_n \mathbf{P}$

Note \mathbf{p}_n is not the zero vector because \mathbf{P} is invertible

But when is A diagonalizable?

Fact. (3.3.7) An $N \times N$ matrix **A** is diagonalizable if and only if it has N linearly independent eigenvectors

In some cases, we can get an even simpler matrix decomposition if the matrix ${\bf P}$ has orthogonal columns

These kinds of matrices are called orthogonal matrices

Fact. (3.3.8) If \mathbf{Q} and \mathbf{P} are $N \times N$ orthogonal matrices, then

- 1. \mathbf{Q}^{T} is orthogonal and $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}}$,
- 2. QP is orthogonal, and
- 3. $\det \mathbf{Q} \in \{-1, 1\}$.

If $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$ and \mathbf{Q} has orthonormal columns, then

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$$

Clearly, **A** must be symmetric. Next theorem shows symmetry of **A** is also sufficient

Theorem. (3.3.4) If A is symmetric, then A can be diagonalized as $A = Q\Lambda Q^T$, where Q is an orthogonal matrix and Λ is the diagonal matrix formed from the eigenvalues of A

Above theorem was a version of the **spectral decomposition theorem**

 $\mathbf{Q}\Lambda\mathbf{Q}^{\mathsf{T}}$ is called the symmetric eigenvalue decomposition of \mathbf{A} – action of \mathbf{A} on an $N\times 1$ vector \mathbf{x} :

$$\mathbf{A}\mathbf{x} = \sum_{n=1}^{N} \lambda_n(\mathbf{u}_n^{\mathsf{T}}\mathbf{x})\mathbf{u}_n$$

where λ_n is the *n*th eigenvalue of **A** and $\mathbf{u}_n = \operatorname{col}_n \mathbf{Q}$

Compare with $\mathbf{x} = \sum_{n=1}^{N} (\mathbf{u}_{n}^{\mathsf{T}} \mathbf{x}) \mathbf{u}_{n}$

Fact. (3.3.9) If \mathbf{A} is nonnegative definite, then $\sqrt{\mathbf{A}}$ exists and equals $\mathbf{Q}\sqrt{\mathbf{\Lambda}}\mathbf{Q}^{\mathsf{T}}$. The matrix $\sqrt{\mathbf{\Lambda}}$ is given by $\mathrm{diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_N})$

Fact. (3.3.10) If A is positive definite, then there exists a nonsingular, upper triangular matrix R such that $A = R^T R$

This decomposition is called the **Cholesky decomposition**

Proof.(Cholesky decomposition) We can write:

$$\boldsymbol{A} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\intercal} = \boldsymbol{Q}\sqrt{\boldsymbol{\Lambda}}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal} = (\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal})^{\intercal}\sqrt{\boldsymbol{\Lambda}}\boldsymbol{Q}^{\intercal}$$

Then apply the QR decomposition to $\sqrt{\Lambda} \mathbf{Q}^{\mathsf{T}}$:

$$\sqrt{\Lambda}Q^\intercal = \tilde{Q}R$$

where R is nonsingular and upper triangular, and \tilde{Q} has orthonormal columns

Because the columns of $\tilde{\mathbf{Q}}$ are orthonormal,

$$\mathbf{A} = (\tilde{\mathbf{Q}}\mathbf{R})^\mathsf{T} \tilde{\mathbf{Q}} \mathbf{R} = \mathbf{R}^\mathsf{T} \tilde{\mathbf{Q}}^\mathsf{T} \tilde{\mathbf{Q}} \mathbf{R} = \mathbf{R}^\mathsf{T} \mathbf{R}$$

Norms and Continuity

Given vector sequence $\{\mathbf{x}_n\}$ in \mathbb{R}^K and any point $\mathbf{x} \in \mathbb{R}^K$, we say that $\{\mathbf{x}_n\}$ converges to \mathbf{x} and write $\mathbf{x}_n \to \mathbf{x}$ if, for any $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\|\mathbf{x}_n - \mathbf{x}\| < \epsilon$ whenever $n \geq N$

Equivalently, the real-valued sequence $z_n := \|\mathbf{x}_n - \mathbf{x}\|$ converges to zero in \mathbb{R} as $n \to \infty$

Fact. (3.3.11) The following results hold:

- 1. If $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$, then $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$.
- 2. If $\mathbf{x}_n \to \mathbf{x}$ and $\alpha \in \mathbb{R}$, then $\alpha \mathbf{x}_n \to \alpha \mathbf{x}$.
- 3. $\mathbf{x}_n \to \mathbf{x}$ if and only if $\mathbf{a}^\mathsf{T} \mathbf{x}_n \to \mathbf{a}^\mathsf{T} \mathbf{x}$ for all $\mathbf{a} \in \mathbb{R}^K$.

We want to extend notion of convergence to matrices

The matrix norm of $N \times K$ matrix **A**:

$$\|\mathbf{A}\| := \max \left\{ \|\mathbf{A}\mathbf{x}\| : \mathbf{x} \in \mathbb{R}^K, \|\mathbf{x}\| = 1 \right\}$$
 (7)

The value of the matrix norm is not easy to solve for in general However, the matrix norm behaves like the vector norm

Fact. (3.3.12) For any conformable matrices $\bf A$ and $\bf B$, the matrix norm satisfies

- 1. $\|\mathbf{A}\| \geq 0$ and $\|\mathbf{A}\| = 0$ if and only if all entries of **A** are zero,
- 2. $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ for any scalar α ,
- 3. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$, and
- 4. $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$.

Fact. (3.3.13) For any $J \times K$ matrix **A** with elements a_{jk} , we have

$$\|\mathbf{A}\| \le \sqrt{JK} \max_{jk} |a_{jk}|$$

If every element of A is close to zero then $\|A\|$ is also close to zero

Neumann Series

Later on, we study dynamic systems of the form

$$\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}$$

Does there exist a "stationary" vector $\mathbf{x} \in \mathbb{R}^N$, in the sense that $\mathbf{x}_t = \mathbf{x}$ implies $\mathbf{x}_{t+1} = \mathbf{x}$?

We seek an $\mathbf{x} \in \mathbb{R}^N$ that solves the system of equations

$$\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 (A is $N \times N$ and b is $N \times 1$) (8)

Consider the scalar case x = ax + b

If |a| < 1, then there is a unique solution

$$\bar{x} = \frac{b}{1-a} = b \sum_{k=0}^{\infty} a^k$$

The Neumann series Lemma helps generalise to \mathbb{R}^N

Theorem. (3.3.5) If $\mathbf A$ is square and $\|\mathbf A^j\|<1$ for some $j\in\mathbb N$, then $\mathbf I-\mathbf A$ is invertible, and

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{i=0}^{\infty} \mathbf{A}^{i}$$

When the condition of the Neumann series lemma holds, (8) has the unique solution

$$\bar{\mathbf{x}} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{b} = \sum_{i=0}^{\infty} \mathbf{A}^i \mathbf{b}$$

To test the condition, we use the **spectral radius** of **A**:

$$\varrho(\mathbf{A}) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } \mathbf{A}\}$$

 $|\lambda|$ is the $oldsymbol{\mathsf{modulus}}$ of the possibly complex number λ

Fact. If $\varrho(\mathbf{A}) < 1$, then $\|\mathbf{A}^j\| < 1$ for some $j \in \mathbb{N}$

Why is $\varrho(\mathbf{A}) < 1$ is sufficient?

We need $\sum_{i=0}^t \mathbf{A}^i (\mathbf{I} - \mathbf{A})$ to close be \mathbf{I} for large t

We have:

$$\sum_{i=0}^{t} \mathbf{A}^{i} (\mathbf{I} - \mathbf{A}) = \sum_{i=0}^{t} \mathbf{A}^{i} - \sum_{i=0}^{t} \mathbf{A}^{i+1} = \mathbf{I} - \mathbf{A}^{t+1}$$

Simplify to the case where A is diagonalizable:

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$$

where Λ is a diagonal matrix containing the eigenvalues $\lambda_1, \ldots, \lambda_N$ of **A** on its principal diagonal

Now, use fact 3.3.5,

$$\mathbf{A}^t = \mathbf{P} \begin{pmatrix} \lambda_1^t & 0 & \cdots & 0 \\ 0 & \lambda_2^t & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_N^t \end{pmatrix} \mathbf{P}^{-1}$$

If $\varrho(\mathbf{A}) < 1$, then $|\lambda_n| < 1$ for all n, and hence $\lambda_n^t \to 0$ as $t \to \infty$. It follows that $A^t \rightarrow 0$