5.
$$\hat{H} = \begin{pmatrix} 0 & \Delta \\ \Delta & 0 \end{pmatrix}$$

a) we see that
$$\frac{1(12) + 1R}{\sqrt{2}}$$
 and $\frac{1}{\sqrt{2}}$ (12>)

are normalized eigenstates with energy ±0

b)
$$|\Upsilon,0\rangle = C_L |L\rangle + C_R |R\rangle$$

$$= \left(\frac{C_L + C_R}{2}\right)|1\rangle + \left(\frac{C_L - C_R}{2}\right)|2\rangle$$

Parobability of observing IL> state is
$$sm^2(ot(h))$$

$$\hat{H} = \begin{pmatrix} 0 & D \\ 0 & 0 \end{pmatrix}$$

eintly

eintly

eintly

acting on LL> gives
$$0 + 1L$$
>

on $0 \mid R>$, $e^{-iHt/\hbar} = 1 - \frac{iHt}{\hbar} - \frac{Ht}{\hbar^2} + \dots$

HIR> = $1 = 2$ only first two terms

contribute