# Space-bounded quantum interactive proof systems

François Le Gall <sup>1</sup> Yupan Liu <sup>3</sup> Harumichi Nishimura <sup>1</sup> Qisheng Wang <sup>2,1</sup>

<sup>1</sup>Nagoya University

<sup>2</sup>University of Edinburgh

<sup>3</sup>Nagoya University → École Polytechnique Fédérale de Lausanne

Available on arXiv:2410.23958.

IQC Math & CS Seminar, University of Waterloo, August 2025

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- 4 Open problems

## Intermediate measurements in time-bounded quantum computation

#### Time-bounded quantum computation (BQP):

- ▶ Uses poly(n) elementary quantum gates, and thus requires poly(n) qubits.
- ► The goal is to find a small corner of an 2<sup>poly(n)</sup>-dimension Hilbert space that holds the relevant information, which can only be extracted through performing measurements.

#### (Pinching) intermediate measurements:

Measurements via single-qubit pinching channels:

$$\Phi(\rho) := \operatorname{Tr}(\rho |0\rangle\langle 0|) |0\rangle\langle 0| + \operatorname{Tr}(\rho |1\rangle\langle 1|) |1\rangle\langle 1|$$

Removes coherence, leaving only diagonal terms in the post-measurement states.

- ♦ Implicitly used in the proof of QCMA ⊆ QMA [Aharonov-Naveh'02].
- Intermediate measurements are useless (principle of deferred measurements):



♣ Eliminate intermediate measurements by introducing ancillary gubits!

## What is **space-bounded** quantum computation?

#### Space-bounded quantum computation (BQL) is introduced in [Watrous'98, Watrous'99]:

- Limits computation to  $O(\log n)$  qubits, but allows poly(n) quantum gates.
- A quantum logspace computation operates on a 2<sup>O(log n)</sup>-dimension Hilbert space, making this model appear weak and contained in NC.

#### However, BQL has shown *notable* power and gained recent increased attention:

- ♦ INVERTING WELL-CONDITIONED MATRICES [Ta-Shma'13, Fefferman-Lin'16] is BQL-complete, fully saturating the *quadratic* space advantage over classical suggested by BQL ⊆ DSPACE[log²(n)] [Watrous'99].
- Intermediate measurements appear to make BQL stronger than BQUL:
  - $ightharpoonup O(\log n)$  intermediate measurements can be eliminated by introducing ancillary qubits.
  - Allowing both poly(n) pinching intermediate measurements and even reset operations provides no advantage for promise problems [Fefferman-Remscrim'21, Girish-Raz-Zhan'21].
  - These new techniques *don't* extend to *state-synthesizing* tasks!
- Quantum singular value transformation, a unifying quantum algorithm framework, has a logspace version [Gilyén-Su-Low-Weibe'18, Metger-Yuen'23, Le Gall-L.-Wang'23].
  - ► Another example (GAPQSD<sub>log</sub>) that exhibits a space advantage over classical!
  - ► GAPQSD<sub>log</sub> is BQL-complete [LLW23], previously only in NC [Watrous'02].

## What is **interactive proofs**?

#### Classical interactive proof systems

Given a promise problem  $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$ , there is an interactive proof system  $P \rightleftharpoons V$  that involves at most poly(n) messages exchanged between the prover P and the verifier V:



- ⋄ P is typically all-powerful but untrusted;
- ⋄ V is computationally bounded, and use random bits;

For any  $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$ , this proof system  $P \rightleftharpoons V$  guarantees:

- For *yes* instances,  $(P \rightleftharpoons V)(x)$  accepts w.p. at least 2/3;
- For *no* instances,  $(P \rightleftharpoons V)(x)$  accepts w.p. at most 1/3.

\* The image is generated using OpenAI's DALL-E model.

#### Classical interactive proofs were introduced in [Babai'85, Goldwasser-Micali-Rackoff'85]:

- Public-coin (AM[k+2]) matches the power of private-coin (IP[k]) [Goldwasser-Sipser'86].
  - $\diamond~$  Public coins: Verifier's questions have a particular form ("random questions").
  - Private coins: Random bits used by the verifier, but hidden from the prover.
- **2** Constantly many messages:  $IP[O(1)] \subseteq AM[2] \subseteq PH$  [Babai'85, Goldwasser-Sipser'86].
- 3 Polynomially many messages: IP = PSPACE [Lund-Fortnow-Karloff-Nisan'90, Shamir'90].

## What is quantum interactive proofs?

#### Quantum interactive proof systems

Given a promise problem  $(\mathcal{L}_{yes}, \mathcal{L}_{no})$ , there is an interactive proof system  $P \rightleftharpoons V$  that involves at most poly(n) quantum messages exchanged between P and V:



- ⋄ P is typically all-powerful but untrusted;
- ⋄ V is bounded and capable of quantum computation;
- ⋄ P and V may become entangled during the interaction.

For any  $x \in \mathcal{L}_{yes} \cup \mathcal{L}_{no}$ , this proof system  $P \rightleftharpoons V$  guarantees:

- ► For *yes* instances,  $(P \rightleftharpoons V)(x)$  accepts w.p. at least 2/3;
- For *no* instances,  $(P \rightleftharpoons V)(x)$  accepts w.p. at most 1/3.

#### Quantum interactive proofs were introduced in [Watrous'99, Kitaev-Watrous'00]:

- $\textbf{ ``Parallelization": PSPACE} \subseteq \textbf{QIP} \subseteq \textbf{QIP}[3] \text{ [Watrous'99, Kitaev-Watrous'00].}$
- Quantum analog of Babai's collapse theorem [Kobayashi-Le Gall-Nishimura'13]: For any O(1)-message (classical or quantum) "public coin" quantum interactive proofs, the corresponding class is one of PSPACE, qq-QAM, cq-QAM, or cc-QAM.

The image is generated using OpenAl's DALL-E model.

## What is space-bounded (classical) interactive proofs?

**Space-bounded classical interactive proofs** were introduced in [Dwork-Stockmeyer'92, Condon'91], where the verifier operates in *logspace* but can run in *polynomial time*.

#### Public coins *weaken* the computational power of such proof systems:

- ▶ Classical interactive proofs with a logspace verifier using private (random) coins:
  - ♦ With  $O(\log n)$  private coins, this model ("IPL") exactly characterizes NP [Condon-Ladner'92].
  - ♦ With poly(n) private coins, this model exactly characterizes PSPACE [Condon'91].
- ▶ The model of *public-coin* space-bounded classical interactive proofs is weaker:
  - ♦ With poly(n) public coins, this model is contained in P [Condon'89].
  - $\diamond$  With  $O(\log n)$  public coins, it contains SAC<sup>1</sup> [Fortnow'89], enabling bounded fan-in AND.
  - $\diamond$  With poly  $\log(n)$  public coins, it contains NC [Fortnow-Lund'91].
  - With poly(n) public coins, it contains P [Goldwasser-Kalai-Rothblum'15], connecting to doubly-efficient interactive proofs, where the prover is also efficient in some sense.

In this work, the verifier has *direct access* to messages during interaction, generalizing the space-bounded quantum Merlin-Arthur proofs (QMAL):

- Direct access: A QMAL verifier has direct access to an O(log n)-qubit message, processing it directly in the verifier's workspace qubit, similar to QMA.
- QMAL = BQL [Fefferman-Kobayashi-Lin-Morimae-Nishimura'16, Fefferman-Remscrim'21].

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- Main results on QIP<sub>U</sub>L, QIPL, and QSZK<sub>U</sub>L
- Open problems

# 1st attempt: Space-bounded UNITARY quantum interactive proofs

## Space-bounded unitary quantum interactive proofs (QIP<sub>U</sub>L)

Consider a 2l-turn space-bounded unitary quantum interactive proof system  $P \rightleftharpoons V$  for  $(\mathcal{L}_{yes}, \mathcal{L}_{no})$ , where the verifier V operates in quantum logspace and has direct access to messages during interaction with the prover P:



- ▶ The verifier V maps  $x \in \mathcal{L}_{\text{yes}} \cup \mathcal{L}_{\text{no}}$  to  $(V_1, \dots, V_{l+1})$ , where each  $V_j$  is unitary.
- ▶ Both M and W are of size  $O(\log n)$ , with M being accessible to both P and V.
- ▶ Strong uniformity: The description of  $(V_1, \dots, V_{l+1})$  can be computed by a single deterministic logspace Turing machine, intuitively implying  $\{V_j\}$ 's repetitiveness.
- ★ QIP<sub>U</sub>L does not contain "IPL", particularly the model from [Condon-Ladner'92]:
  - ► To show IP ⊆ QIP, the verifier needs to *measure* the received messages at the beginning of each action, and treat the outcome as classical messages.
  - Soundness against classical messages does not (directly) extend to quantum!

# 2<sup>nd</sup> attempt: Space-bounded ISOMETRIC quantum interactive proofs

## Space-bounded *isometric* quantum interactive proofs (QIPL<sup>5</sup>)

Consider a 2l-turn space-bounded isometric quantum interactive proof system  $P \rightleftharpoons V$  for  $(\mathcal{L}_{ves}, \mathcal{L}_{no})$ , where V acts on  $O(\log n)$  qubits and has direct access to messages:



- ▶ Each  $\widetilde{V}_j$  is a unitary quantum circuit with  $O(\log n)$  pinching intermediate measurements and reset operations.
- QIPL<sup>o</sup> contains the Condon-Ladner model ("IPL"), but it appears too powerful:
- For instance, the prover P can send an n-qubit state using  $\lceil n/\log n \rceil$  messages, each consisting of an  $O(\log n)$ -qubit state, and the verifier V randomly selects only  $O(\log n)$  qubits, without revealing the selection to P.
- ▶ QIPL<sup>o</sup> can verify the local Hamiltonian problem, and thus contains QMA.

# Space-bounded ISOMETRIC quantum interactive proofs (Cont.)

## Space-bounded isometric quantum interactive proofs (QIPL<sup>o</sup>)

Consider a 2l-turn space-bounded isometric quantum interactive proof system  $P \rightleftharpoons V$  for  $(\mathcal{L}_{yes}, \mathcal{L}_{no})$ , where V acts on  $O(\log n)$  qubits and has direct access to messages:



Each  $\widetilde{V}_j$  is a unitary quantum circuit with  $O(\log n)$  pinching intermediate measurements and reset operations.

<u>Where is the isometry?</u> Each  $\widetilde{V}_j$  has a unitary dilation  $V_j$ , where  $V_j$  is an *isometric* quantum circuit that allows  $O(\log n)$  ancillary gates:



- $\blacktriangleright$  Each ancillary gate introduces an ancillary qubit  $|0\rangle$  in the environment register  $E_i$ .
- $\triangleright$  Each environment register  $E_i$  is *only accessible* in the round of  $V_i$  belongs.
- $\blacksquare$  The qubits in  $E_i$  cannot be altered after  $V_i$ , but entanglement with W can change!

# 3<sup>rd</sup> attempt: Space-bounded quantum interactive proofs

## Space-bounded quantum interactive proofs (QIPL & QIPLHC)

Consider a 2l-turn space-bounded quantum interactive proof system P = V for  $(\mathcal{L}_{\text{yes}}, \mathcal{L}_{\text{no}})$ , where V acts on  $O(\log n)$  qubits and has direct access to messages:



- Each  $\widetilde{V}_j$  is an almost-unitary quantum circuit, meaning that a unitary quantum circuit with  $O(\log n)$  pinching intermediate measurements.
  - The O(logn) bound on pinching intermediate measurements corresponds to the maximum number of measurement outcomes that can be stored in logspace.
- ▶ QIPL<sup>HC</sup>: For *yes* instances, the distribution of intermediate measurement outcomes  $u = (u_1, \dots, u_l)$ , condition on acceptance, must be *highly concentrated*.
  - ★ This requirement leads to the NP containment for any QIPLHC proof system.
  - $\diamond$  Specifically, let  $\omega(V)|^u$  be the contribution of u to  $\omega(V)$ , where  $\omega(V)$  is the maximum acceptance probability of  $P \rightleftharpoons V$ . There must exists a  $u^*$  such that  $\omega(V)|^{u^*} \ge c(n)$ .
- ▶ Both QIPL<sup>HC</sup> and QIPL also contain the Condon-Ladner model ("IPL")!

3<sup>rd</sup> attempt: Space-bounded quantum interactive proofs (Cont.)

## Space-bounded quantum interactive proofs (QIPL & QIPLHC)

Consider a 2l-turn space-bounded quantum interactive proof system P = V for  $(\mathcal{L}_{yes}, \mathcal{L}_{no})$ , where V acts on  $O(\log n)$  qubits and has direct access to messages:



▶ Each  $\widetilde{V}_j$  is an *almost-unitary* quantum circuit, meaning that a unitary quantum circuit with  $O(\log n)$  *pinching* intermediate measurements.

Applying the *principle of deferred measurements* to the almost-unitary quantum circuit  $\widetilde{V}_j$  transforms it into a special class of isometric quantum circuits  $V_j$ , followed by *measuring* the register  $E_j$  with outcome  $u_j$ :



- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- 4 Open problems

## Main results on QIP<sub>U</sub>L and QIPL

#### <u>Theorem 1.</u> NP = QIPL<sup>HC</sup> $\subseteq$ QIPL.

- ▶ QIPL<sup>HC</sup> is the *weakest* model that includes space-bounded classical interactive proof systems, particularly the Condon-Ladner model ("IPL").
- New technique: Directly upper-bounding quantum interactive proof systems with non-unitary verifier, whereas existing techniques only handle unitary verifier.
  - To ensure that soundness against classical messages also holds against quantum messages, the verifier needs to perform poly(n) pinching measurement in total.

# $\underline{\textbf{Theorem 2.}} \ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP_UL} \subseteq \cup_{c(n)-s(n) \geq 1/\mathsf{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P}.$

- **♣** Intermediate measurements enhance the model:  $QIP_UL \subseteq QIPL$  unless P = NP.
- QIP<sub>U</sub>L proof systems, regarded as the most natural space-bounded analog to QIP, do not achieve the aforementioned soundness guarantee.

# Main results on QIP<sub>U</sub>L and QIPL (Cont.)

#### **Theorem 3.** For any $c(n) - s(n) \ge \Omega(1)$ , $QIPL_{O(1)}[c, s] \subseteq NC$ .

For constant-turn space-bounded quantum proofs, all three models are equivalent!

Theorem 4 (Properties for QIPL and QIPUL). Let c(n), s(n), and m(n) be functions such that  $0 \le s(n) < c(n) \le 1$ ,  $c(n) - s(n) \ge 1/\text{poly}(n)$ , and  $1 \le m(n) \le \text{poly}(n)$ . Then, we have:

- Closure under perfect completeness.
  - $\mathsf{QIPL}_m[c,s] \subseteq \mathsf{QIPL}_{m+2}\big[1,1-\tfrac{1}{2}(c-s)^2\big] \text{ and } \mathsf{QIP}_\mathsf{U}\mathsf{L}_m[c,s] \subseteq \mathsf{QIP}_\mathsf{U}\mathsf{L}_{m+2}\big[1,1-\tfrac{1}{2}(c-s)^2\big].$
- **@ Error reduction.** For any polynomial k(n), there is a polynomial m'(n) such that:  $QIPL_m[c,s] \subseteq QIPL_{m'}[1,2^{-k}]$  and  $QIP_UL_m[c,s] \subseteq QIP_UL_{m'}[1,2^{-k}]$ .
- **3** Parallelization.  $QIP_UL_{4m+1}[1,s] \subseteq QIP_UL_{2m+1}[1,(1+\sqrt{s})/2].$
- ⋄ To establish Theorem 4 ②, we use sequential repetition due to the space constraint, with the key being to force the prover to "clean" the workspace.

# Main results: Proof intuitions for *upper* bounds (*unitary* verifier)

Theorem 2. SAC<sup>1</sup> 
$$\cup$$
 BQL  $\subseteq$  QIP<sub>U</sub>L  $\subseteq \cup_{c(n)-s(n)\geq 1/\text{poly}(n)}$ QIPL<sub>O(1)</sub>[ $c,s$ ]  $\subseteq$  P.

- **a** Parallelization (Theorem 4 **3**) for QIP<sub>U</sub>L proof systems:
  - The original approach in [Kitaev-Watrous'00] fails, since it requires sending all snapshot states in a single message, which exceeds logarithmic size.
  - The turn-halving approach in [Kempe-Kobayashi-Matsumoto-Vidick'07] works, a "dequantized" version of the above approach, which leverages the *reversibility* and *dimension preservation* of the verifier's actions.
- **6** Adapting the SDP formulation for QIP [Vidick-Watrous'16] to QIP<sub>U</sub>L proof systems:
  - For any constant-round QIP<sub>U</sub>L proof system, the corresponding SDP admits polynomial-size solutions, ensuring P containment via standard SDP solvers.
  - Parallelization (Theorem 4 3) makes QIP<sub>U</sub>L easy!

#### **Theorem 3.** For any $c(n) - s(n) \ge \Omega(1)$ , $QIPL_{O(1)}[c, s] \subseteq NC$ .

An exponentially down-scaling version of QIP = PSPACE [Jain-Ji-Upadhyay-Watrous'09].

# Main results: Proof intuitions for *upper* bounds (*non-unitary* verifier)

#### Theorem 1. $NP = QIPL^{HC} \subset QIPL$ .

In  $P \rightleftharpoons V$ , let  $\omega(V)|^u$  denote the contribution of the branch  $u = (u_1, \cdots, u_l)$  to the maximum acceptance probability  $\omega(V) = \sum_u \omega(V)|^u$ , where  $u_k$  denotes the intermediate measurement outcome in the verifier's k-th turn  $(1 \le k \le l)$ .

- ▶ Pinching measurements eliminate coherence between subspaces corresponding to different branches, allowing  $\omega(V)|^u$  to be approximately optimized *in isolation*.
- ► Therefore, for any QIPL proof system  $P \rightleftharpoons V$  with a **fixed** branch u, one can write a SDP formulation, which computes an approximation  $\widehat{\omega}(V)|^u$  of  $\omega(V)|^u$  satisfying

 $\omega(V)|^{u} < \widehat{\omega}(V)|^{u} < \omega(V).$ 

- <u>"Efficient verifiability"</u>: Noting that a solution to this SDP formulation can be written as a *Cartesian* product of a polynomial number of *O*(log n)-qubit states (i.e., snapshot states in P ⇒ V), we can verify the SDP feasibility of this solution in NP.
- ★ "Efficient verifiability" does not imply QIPL ⊆ AM: The set lower bound protocol [Goldwasser-Sipser'86] and similar techniques are not directly applicable to QIPL.

#### Main results: Proof intuitions for *lower* bounds

# $\underline{\mathsf{Theorem 2.}}\ \mathsf{SAC}^1 \cup \mathsf{BQL} \subseteq \mathsf{QIP_UL} \subseteq \cup_{c(n)-s(n)\geq 1/\mathsf{poly}(n)} \mathsf{QIPL}_{\mathrm{O}(1)}[c,s] \subseteq \mathsf{P.}$

- **Key idea**: Simulating  $O(\log n)$  *public* coins in space-bounded classical interactive proof systems by performing  $O(\log n)$  pinching measurements.
- ▶ The lower bound (SAC<sup>1</sup> ⊆ QIP<sub>U</sub>L) is inspired by space-bounded classical interactive proof systems with  $O(\log n)$  public coins for evaluating (uniform) SAC<sup>1</sup> circuits [Fortnow'89].
  - $\diamond \ \ \text{It is known that NL} \subseteq \text{SAC}^1 = \text{LOGCFL} \subseteq \text{AC}^1 \subseteq \text{NC}^2 \ [\text{Venkateswaran'91}].$

#### Theorem 1. $NP = QIPL^{HC} \subset QIPL$ .

- Key idea: Simulating O(log n) private coins in space-bounded classical interactive proof systems by
  - **1** Measuring each  $O(\log n)$ -qubit message received from the prover in the proof system;
  - **2** Performing  $O(\log n)$  pinching measurement to generate  $O(\log n)$  random coins.
- ▶ The lower bound (NP  $\subseteq$  QIPL<sup>HC</sup>) is inspired by space-bounded classical interactive proof systems with  $O(\log n)$  private coins for NP (i.e., 3-SAT) in [Condon-Ladner'95].

## Statistical zero-knowledge: General cases and in QIP<sub>U</sub>L

<u>Definition 5 (Statistical zero-knowledge, informal)</u>. An interactive proof system admits the *(statistical) zero-knowledge* property if verifier's view ( $\mathcal{P}_0$ ) is *(statistically) indistinguishable* from "verifier's view" ( $\mathcal{P}_1$ ) generated by an *efficient* simulator.





Figure: Verifier's view ( $\mathcal{P}_0$ )

Figure: Simulated "Verifier's view" ( $\mathcal{P}_1$ )

- A common misusage (*unrelated to science!*): zero-knowledge vs. zero-entropy.
- ▶ Intuitively, the classical views  $\mathcal{P}_0$  and  $\mathcal{P}_1$  can be treated as distributions  $p_0$  and  $p_1$ , respectively. The notion of *statistical indistinguishablity* is then characterized by the  $\ell_1$  norm distance  $\mathrm{TV}(p_0,p_1) := \frac{1}{2} \|p_0 p_1\|_1$ .

**Zero-knowledge property in**  $QIP_UL$ . A  $QIP_UL$  proof system has *the zero-knowledge property* if there is a *space-bounded* simulator that well approximates the snapshot states ("the verifier's view") in (M,W) after each turn, with respect to the trace distance.

#### Main results on space-bounded unitary quantum statistical zero-knowledge

 $QSZK_UL_{HV}$  and  $QSZK_UL$  are space-bounded variants of quantum statistical zero-knowledge against an honest and arbitrary verifier,  $QSZK_{HV}$  and QSZK, respectively, introduced in [Watrous'02] and [Watrous'09].

Theorem 6.  $QSZK_{IJ}L = QSZK_{IJ}L_{HV} = BQL$ .

The INDIVPRODQSD $[k, \alpha, \delta]$  problem (INDIVIDUAL PRODUCT STATE DISTINGUISHABILITY) involves two k-tuples of  $O(\log n)$ -qubit states,  $\sigma_1, \cdots, \sigma_k$  and  $\sigma'_1, \cdots, \sigma'_k$ , whose purifications can be prepared by unitary quantum logspace circuits, satisfying  $\alpha(n) - k(n) \cdot \delta(n) \geq 1/\text{poly}(n)$  and  $1 \leq k(n) \leq \text{poly}(n)$ , with the following conditions:

- $\diamond$  For *yes* instances, the *k*-tuples are *globally far*, i.e.,  $T(\sigma_1 \otimes \cdots \otimes \sigma_k, \sigma_1' \otimes \cdots \otimes \sigma_k') \geq \alpha$ .
- $\diamond$  For *no* instances, the *k*-tuples are *pairwise close*, i.e.,  $\forall j \in [k], T(\sigma_j, \sigma_j') \leq \delta$ .

#### $QSZK_UL_{HV}\subseteq BQL \ follows \ since \ IndivProdQSD \ is \ QSZK_UL_{HV}\text{-}complete:$

- ▶ Since INDIVPRODQSD implies an "existential" version of GAPQSD<sub>log</sub>, which is BQL-complete [Le Gall-L.-Wang'23], it follows that INDIVPRODQSD  $\in$  QMAL  $\subseteq$  BQL.
- ► The complement of INDIVPRODQSD is QSZK<sub>U</sub>L<sub>HV</sub>-hard, similar to [Watrous'02].

- Space-bounded quantum computation meets interactive proofs
- 2 Definitions of space-bounded quantum interactive proof systems
- 3 Main results on QIPUL, QIPL, and QSZKUL
- 4 Open problems

# Conclusions and open problems

#### Take-home messages on our work

 Intermediate measurements play a distinct role in space-bounded quantum interactive proofs compared to space-bounded quantum computation:

```
QIP_UL\subsetneq QIPL \ unless \ P=NP \ (this \ work), \ while \ BQ_UL=BQL \ [FR21, GRZ21].
```

We define three models of space-bounded quantum interactive proofs:

|                    | QIP <sub>U</sub> L                                   | QIPL                                                    | QIPL°    |
|--------------------|------------------------------------------------------|---------------------------------------------------------|----------|
| Verifier's actions | unitary                                              | almost-unitary                                          | isometry |
| Lower bounds       | $SAC^1 \cup BQL$ "IPL" with $O(\log n)$ public coins | $NP (= QIPL^{HC})$ "IPL" with $O(\log n)$ private coins | QMA      |
| Upper bounds       | Р                                                    | PSPACE                                                  | PSPACE   |

Introducing the zero-knowledge property for QIP<sub>U</sub>L proof systems, i.e., QSZK<sub>U</sub>L, eliminates the usual advantage gained from interaction (QSZK<sub>U</sub>L = BQL).

#### Open problems

- Is it possible to obtain a tighter characterization of QIP<sub>U</sub>L? Thus may require to simulate  $\omega(\log n)$  public coins using only  $O(\log n)$  pinching measurements.
- What is the computational power of the classes QIPL and QIPL<sup>°</sup>?

# Thanks!