¹³/₁₆

D6 The Photoelectric Effect

When the photon energy is insufficient for the ejection of photoelectrons, answer the question by writing 'no electrons emitted'.

D6.1 Complete the questions in the table:

Frequency of Light /Hz	Wavelength of Light /nm	Work Function	Max. KE of Photoelectrons	Stopping Potential /V
6.0×10^{14}		$1.2 \times 10^{-19} \text{ J}$	(a)	
6.0×10^{14}		2.6 eV		(b)
	350	2.6 eV		(c)
	530	(d)		1.35

D6.2 A material's work function is 1.3 eV. Calculate its threshold frequency.

- D6.3 A material will not emit photoelectrons unless it is irradiated by light with a wavelength less than 380 nm. Calculate its work function in electronyolts.
- D6.4 a) Calculate the maximum speed of the photoelectrons emitted when a material with an 8.4×10^{-20} J work function is illuminated by light of frequency 7.0×10^{14} Hz.
 - b) What is the minimum speed of the photoelectrons emitted?
- D6.5 A graph of stopping potential (*y*) against frequency of light (*x*) is plotted for zinc, and also for aluminium. Without knowing more information, answer the following questions:
 - a) Are the lines straight or not?
 - b) Are the *y*-intercepts positive, negative or zero?
 - c) Are the gradients positive, negative or zero?
 - d) Are the gradients of the two lines the same or different?
 - e) Are the *y*-intercepts of the two lines the same or different?
 - f) What is the significance of the *x*-intercept?
 - g) If you answered 'same' to parts (d) or (e), write down the value of the common gradient or intercept.
- D6.6 A material has a work function of 3.4 eV, and is illuminated by 5.0 eV photons. Calculate the stopping potential of its photoelectrons.