Table of Contents

Dedicat	ion		ii		
Acknowledgments					
Table of Contents					
List of	Tables		ix		
List of I	Figures		xi		
Chapter	: 1: I	ntroduction	1		
1.1		round	1		
1.1	1.1.1	Photoplethysmography (PPG) and Remote PPG	1		
	1.1.2	Electrocardiogram (ECG) and Its Physiological and Signal Rela-	1		
	1.1.2	tion With PPG	4		
	1.1.3	Digital Twins	7		
	1.1.3	Blood Oxygen Saturation	9		
1.2		Contributions	11		
1.2	1.2.1	Cross-domain Joint Dictionary Learning for ECG Inference from	11		
	1.2.1	PPG	12		
	1.2.2	Never-Miss-A-Beat: A Physiological Digital Twins Framework	14		
	1.2.2	for Cardiovascular Health	13		
	1.2.3	Noncontact Hand Video Based SpO ₂ Monitoring Using Smart-	13		
	1.2.3	phone Cameras	14		
		phone Cameras	14		
Chapter	2: (Cross-domain Joint Dictionary Learning for ECG Inference from PPG	16		
2.1	Motiv	ation and Problem Formulation	16		
2.2	Relate	d Work	19		
	2.2.1	ECG reconstruction from PPG	19		
	2.2.2	Dictionary learning	20		
2.3	Proposed Methods				
	2.3.1	Signal Preprocessing	22		
	2.3.2		24		
	2.3.3	Label Consistent XDJDL (LC-XDJDL)	29		
2.4					
	2.4.1	Dataset	32 32		
	2.4.2	Metrics for Evaluation	33		

	2.4.3	Overall Morphological Reconstruction	35			
	2.4.4	Subwave Morphological Reconstruction	39			
	2.4.5	Time Interval Recovery	42			
2.5	Discus	ssions	43			
	2.5.1	Result Using PPG-based Segmentation Scheme	43			
	2.5.2	Evaluation on the Capnobase TBME-RR Dataset	45			
	2.5.3	Feasibility Analysis of The Proposed Method for The Internet-of-	46			
	2.5.4	Healthcare-Things (IoHT)				
	2.5.5	Limitations of The Proposed Method				
2.6		Future Work Towards Explainable AI				
2.0	Спари	er Summary	33			
Chapter	3: N	Never-Miss-A-Beat: A Physiological Digital Twins Framework for				
1		Cardiovascular Health	56			
3.1		l Twins Relating PPG and ECG Sensing: Motivation and Problem				
	_	ılation	56			
3.2		d Background				
3.3		dology				
	3.3.1					
	3.3.2	Transfer Learning for Building Precision Healthcare Digital Twins				
	3.3.3	Testing Modes for ECG Inference				
3.4	Experimental Results Using XDJDL as The Backbone For The Personal-					
		rigital Twin Model	66			
	3.4.1	Dataset	66			
	3.4.2	Hyperparameters Selection				
	3.4.3	Performance of ECG Inference				
3.5	Discus	Discussions for XDJDL-based Personalized Digital Twin Model 7				
	3.5.1	Results Based on PPG Segmentation Scheme	76			
	3.5.2	Performance Evaluation for Long Time Scale Data	78			
3.6	Using	Neural Networks as The Backbone for ECG Inference from PPG				
	to Buil	to Build Digital Twins				
	3.6.1	A Retrospect: The Physiological Process Behind PPG and ECG				
		Generation	84			
	3.6.2	Conditional Variational Autoencoder (CVAE) for PPG-to-ECG				
		Inference	86			
	3.6.3	Transfer Learning to Build Personalized Digital Twin for Cardio-				
		vascular Monitoring	88			
3.7	Incorporating Causality into CVAE Model Based on Structural Causal					
	Model	(SCM)	91			
	3.7.1	Importance of Incorporating Causality into Machine Learning Al-				
		gorithms and Structural Causal Model				
	3.7.2	Causal CVAE Model for PPG-to-ECG Inference	95			
	3.7.3	ECG Reconstruction Performance of Personalized Digital Twins .				
	3.7.4	Intervention Experiment				
2 8	Chapte	ar Cummary	105			

Chapter		A Multi-Channel Ratio-of-Ratios Method for Noncontact Hand Video		
		Based SpO ₂ Monitoring Using Smartphone Cameras	107	
4.1	Related Work			
	4.1.1	Contact-based SpO ₂ measurement using smart devices	107	
	4.1.2	Noncontact SpO_2 measurement using cameras	108	
4.2	Ratio-	of-ratios (RoR) Model for Noncontact SpO ₂ Measurement	110	
4.3	Proposed Multi-Channel RoR Method			
	4.3.1	ROI Localization and Spatial Combining	114	
	4.3.2	rPPG Extraction and HR Estimation	114	
	4.3.3	Feature Extraction	116	
	4.3.4	Regression and Postprocessing	117	
4.4	Experimental Results			
	4.4.1	Data Collection	118	
	4.4.2	Performance Metrics	122	
	4.4.3	Results From Proposed Algorithm	122	
	4.4.4	Ablation Study of Proposed Pipeline	127	
	4.4.5	Leave-One-Out Experiments	130	
4.5	Discus	ssions	132	
	4.5.1	Performance on Contact SpO ₂ Monitoring	132	
	4.5.2	Resilience Against Blurring	133	
	4.5.3	Limitations and Further Verification with Intermittent Hypoxia		
		Protocols	135	
4.6	Chapte	er Summary	142	
Chapter		Optophysiological Model Guided Neural Networks for Contactless		
		Blood Oxygen Estimation From Hand Videos	144	
5.1		uction	144	
5.2	-	sed Optophysiology-Guided Neural Network Method for Estimat-		
		O_2 From Videos		
		Extraction of Skin Color Signals		
	5.2.2	Neural Network Architectures		
5.3	_	imental Results		
	5.3.1	Dataset and Capturing Conditions		
	5.3.2	Participant-Specific Results		
	5.3.3	Leave-One-Participant-Out Results		
	5.3.4	Ablation Studies		
5.4		ssions		
	5.4.1	Contact-based Dataset Testing		
	5.4.2	Ability to Track SpO ₂ Change		
	5.4.3	Visualizations of RGB Combination Weights		
5.5	Chapte	er Summary	169	
Chapter	6: 0	Conclusions and Future Perspectives	171	
Bibliography				