Dr. J. Schulz

Einheit 5
WS 2009/2010

Aufgabe 1:

Gegeben seien die Listen $L1 = [x, x^3, x^5, x^7, x^9]$ und $L2 = [x, x^2, x^6, x^{24}, x^{120}]$.

- 1. Erstellen Sie diese beiden Listen mit Hilfe des \$--Operators.
- 2. Erstellen Sie eine sortierte Liste L3, die die Elemente aus L1 und L2 enthält.
- 3. Bilden Sie von jedem Eintrag von L3 die Ableitung und die Stammfunktion.
- 4. Bestimmen Sie von jedem Element von L3 den Funktionswert an der Stelle x=3. Entfernen Sie den größten Eintrag aus der resultierenden Liste.

Aufgabe 2:

Gegeben sei:

L=[16,81,125,512,729,4096,19683,78125,262144,390625, 505,22343243,512]

- 1. Bestimmen Sie aus L alle Elemente, die durch 3 teilbar sind und entfernen Sie diese aus der Liste.
- 2. Bestimmen Sie aus den restlichen Elementen alle Elemente, die durch 2 teilbar sind, und entfernen diese aus der Liste.
- 3. Bestimmen Sie zuletzt alle Elemente, die durch 5 teilbar sind.

Aufgabe 3:

1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte und die Eigenvektoren der Matrizen:

$$A = \begin{pmatrix} 19 & -2 & 4 \\ 4 & 10 & -2 \\ 4 & -8 & 25 \end{pmatrix}, B = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}, C = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix}.$$

Überprüfen Sie diese Matrizen ebenfalls auf Diagonalisierbarkeit.

2. Bestimmen Sie die Eigenwerte der (2×2) -Drehmatrix aus der Vorlesung. Überlegen Sie sich, für welche Winkel reelle Eigenwerte existieren. Überlegen Sie sich eine geometrische Begründung.

Aufgabe 4:

Gegeben seien Basen $V=(v_1,v_2,v_3),\,W=(w_1,w_2,w_3)$ des \mathbb{R}^3 mit Vektoren

$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ und } w_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, w_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, w_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Berechnen Sie die Basiswechselmatrix bzgl. eines Basiswechsels von V nach W!

Aufgabe 5:

Gegeben seien die Matrizen $A = \begin{pmatrix} 0 & 2 & -2 \\ 3 & x & 4 \\ -1 & y & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 8 & x \\ 3 & 2 & y \\ 6 & 4 & 4 \end{pmatrix}$. Bestimmen Sie x und y so, dass AB invertierbar ist. Überprüfen Sie das Ergebnis durch Einsetzen.

Aufgabe 6:

Untersuchen Sie für $m=0,1,\ldots,41$ jeweils, wieviele der Zahlen n^2+n+m^2 mit $n=1,2,\ldots,100$ Primzahlen sind.

Aufgabe 7:

Berechnen Sie mit Hilfe des Punkt-Operators die ersten 10 Glieder der Folge

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, n \in \mathbb{N}$$

mit Startwert $x_0 = 1$. Erraten Sie den Grenzwert der Folge! Ersetzen Sie den Startwert x_0 durch den Gleitkommawert $x_0 = 1.0$ und berechnen Sie nun die ersten 50 Folgenglieder (Benutzen Sie DIGITS := 50).

Aufgabe 8:

Erstellen Sie eine Tridiagonalmatrix A der Größe 20×20 mit 2 auf der Diagonalen und -1 und auf den Nebendiagonalen.

Berechnen Sie mit Hilfe von Gleitkommaberechnungen bei 10 signifikanten Stellen den größten und den kleinsten Eigenwert von A. Benutzen Sie die Funktion numeric::eigenvalues.

Aufgabe 9:

Schreiben Sie eine Prozedur fak, die die Fakultät

$$a! = \prod_{i=1}^{a} i$$

von einer natürlichen Zahl a berechnet.