1 Curvas Parametrizadas

De modo geral, podemos descrever uma curva plana por uma parametrização:

$$\vec{r}(t) = (x(t), y(t))$$
 onde $x(t)$ e $y(t)$ são funções da variável t .

Exemplo:

$$y = 2x \rightarrow \vec{r}(t) = (t, 2t)$$

1.1 Vetor Tangente

O vetor tangente à curva $\vec{r}(t) = (x(t), y(t))$ em um ponto $(x(t_{\lambda}), y(t_{\lambda}))$ é:

$$\vec{v}(t_{\lambda}) = \vec{x}'(t_{\lambda})\vec{i} + \vec{y}'(t_{\lambda})\vec{j}$$

Denota-se $\vec{r}'(t_{\lambda})$.

Exemplo:

Vetor tangente à curva $\vec{r}(t) = (t, 2t)$ no ponto (3, 6):

$$(3,6) \Rightarrow t_{\lambda} = 3$$

$$\vec{x}'(t) = 1$$

$$\vec{y}'(t) = 2$$

$$\vdots$$

$$\vec{v}'(3) = \vec{i} + 2\vec{j}$$

O respectivo vale para curvas no espaço.

1.2 Gráficos

$$\vec{r}(t) = (\cos t, 0, \sin t)$$

$$\vec{r}(t) = (\cos t, \sin t, t)$$

1.3 Comprimento de Curvas

O comprimento de uma curva $\gamma(t)$ no plano é dado por

$$l(\gamma(t)) = \lim_{\Delta t \to 0} \sum_{i} \sqrt{\left(\frac{x(t_{i+1}) - x(t_{i})}{\Delta t}\right)^{2} + \left(\frac{y(t_{i+1}) - y(t_{i})}{\Delta t}\right)^{2}} \cdot \Delta t$$
$$= \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} \cdot dt$$

Para uma curva $\gamma(t)$ no espaço, analogamente:

$$l(\gamma(t)) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} \cdot dt$$

Exemplo:

$$\gamma(t) = (\cos t, \sin t)$$

Obtemos o arco acima variando t entre a=0 e $b=\frac{\pi}{2}$.

Logo

$$l = \int_{0}^{\pi/2} \sqrt{(-\sin t)^2 + (\cos t)^2} \cdot dt$$
$$= \int_{0}^{\pi/2} 1 \cdot dt$$
$$= \frac{\pi}{2}$$

2 Coordenadas Polares

Um ponto em coordenadas polares é definido por um raio e um ângulo:

$$p = (r,\theta)_{polar}$$

Exemplo: Se $p = \left(5, \frac{\pi}{4}\right)_{polar}$

Convenções:

• $\theta > 0$ se medido, a partir do eixo polar, no sentido anti-horário.

• $\theta < 0$ se medido, a partir do eixo polar, no sentido horário.

• $(-r, \theta)_{polar} = (r, \theta - \pi)_{polar}$

Exemplo: $(-3, \frac{\pi}{4}) = (3, \frac{5\pi}{4})$

• $\forall \theta : (0, \theta)_{polar} = 0$

2.1 Relação Entre Sistemas de Coordenadas

$$p = (r, \theta)_{polar} = (x, y)_{ret}$$

$$\forall r, \theta : (r, \theta)_{polar} = (r \cdot \cos \theta, r \cdot \sin \theta)_{ret}$$

$$\forall x, y : (x, y)_{ret} = \left(\sqrt{x^2 + y^2}, \arctan \frac{y}{x}\right)_{ret}$$

3

2.2 Curvas Polares

Uma curva polar é definida por uma equação entre as coordenadas polares dos pontos da curva (equação polar).

Exemplos: $r^2 + e^{r\theta} = 0$

$$0 \cdot \theta + r - 25 = 0 \quad \Rightarrow \quad r = 25$$

$$\theta + \frac{\pi}{6} = 0 \quad \Rightarrow \quad \theta = -\frac{\pi}{6}$$

$$r = \cos(2\theta)$$

3 Superfícies

Qual é o conjunto solução da equação $x^2 + y^2 + z^2 = 4$?

Resposta: uma esfera de raio 2 centrada na origem.

—sphere graph here—

3.1 Estratégias de esboço de superfícies no espaço

Identificar sua interseção com planos (cortes) que cobrem todo o espaço.

Exemplifies oide
$$S=\{(x,y,z)\in\mathbb{R}^3|\frac{x^2}{25}+\frac{y^2}{4}+\frac{z^2}{9}=1\}$$

Cortes horizontais:

$$\begin{split} C_h &= S \cap \Pi_h \{ \text{Plano horizontal de altura } h \} \\ &= S \cap \Pi_h \left\{ (x, y, z) \in \mathbb{R}^3 \middle| z = h \right\} \\ &= \left\{ (x, y, z) \in \mathbb{R}^3 \middle| \frac{x^2}{25} + \frac{y^2}{4} + \frac{h^2}{9} = 1 \right\} \end{split}$$

—Intersection graph here—

3.2 Cilindros

Um cilindro é um objeto construido através de uma curva γ no plano e um ângulo α .

O cilindro é o conjunto de todas as retas que possuem interseção com γ , formando um ângulo equivalente à α com o plano de γ .

Qual é a superfície descrita pela equação $x^2 + y^2 = 9$?

Qual é o objeto geométrico $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 9\}$?

Resposta: Cilindro. O conjunto é formado por todos os pontos do espaço cuja distância ao eixo z é 3.

—Cilinder graph here—

3.3 Quádricas

As superfícies quádricas são soluções de equações da forma

$$ax^{2} + by^{2} + cz^{2} + dxy + eyz + fxz + qx + hy + iz + j = 0$$