Введение в KNN

Денисов Егор

Кафедра математический методов прогнозирования ВМК МГУ

Содержание

- Введение
- 2 Алгоритм
- Подсчёт евклидовой метрики
- 4 MNIST
- 5 Кросс-валидация
- б Аугментации

Введение

Пусть имеются:

- ullet $(x_1,y_1),\cdots(x_N,y_N)$ обучающая выборка
- $(x_{N+1}, y_{N+1}), \cdots, (x_{N+M}, y_{N+M})$ тестовая выборка
- $x_i \in \mathbb{R}^d$

Определение

KNN (k-Nearest Neighbors) — семейство метрических алгоритмов классификации и регрессии, предсказание которых на каждом объекте определяется через K его ближайших соседей.

Предполагаем, что выполнена *гипотеза компактности* - то есть, похожим объектам соответствуют похожие значения целевой переменной.

Предсказание модели

Пусть $\mathbb{X}=(x_i,y_i)_{i=1}^N$ - обучающая выборка, $z\in\mathcal{X}$ - новый объект. Упорядочим $x_i\in\mathbb{X}$ по их близости к z:

$$\rho(z, x_1) \leq \cdots \leq \rho(z, x_N)$$

Классификация

$$y(z) = argmax_{y \in \mathbb{Y}} \sum_{i=1}^{k} w_i \cdot [y_i = y]$$

Регрессия

- $y(z) = \frac{1}{k} \sum_{i=1}^{k} y_i$ среднее
- $\mathbf{v}(z) = median(y_1, \cdots, y_k)$ медиана
- $y(z) = \frac{\sum_{i=1}^k w_i \cdot y_i}{\sum_{i=1}^k w_i}$ взвешенный алгоритм

Гиперпараметры модели

- ullet Количество ближайших соседей k
- Функция расстояния $\rho(x, y)$:

1 L2:
$$\rho(x,y) = ||x-y||_2^2 = \sum_{i=1}^D (x_i - y_i)^2$$

2 L1:
$$\rho(x,y) = ||x-y||_1 = \sum_{i=1}^{D} |x_i - y_i|$$

- **③** Косинусное расстояние: $\rho(x,y) = 1 \frac{\langle x,y \rangle}{\||x||\cdot\||y||}$
- ullet Расстояние Чебышёва: $ho(x,y)=||x-y||_{\infty}=\max_i|x_i-y_i|$
- **5** Расстояние Махаланобиса: $\rho(x,y) = \sqrt{(x-y)^T \Sigma^{-1} (x-y)}$
- Beca w_i:
 - **1** $w_i = 1$
 - $w_i = \frac{1}{\rho(z,x_i)+\epsilon}, \epsilon > 0$
 - $w_i = \alpha^i, \alpha \in (0,1)$
- Стратегия поиска соседей (kd-tree, brute, ball-tree)

Особенности

- Непараметрический подход
- Лёгкая реализация
- Интерпретируемость
- Небольшое число гиперпараметров
- lazy learning (при обучении происходит только сохранение выборки)
- Неэффективен по памяти
- Проклятие размерности
- Чувствителен к масштабу данных, к выбросам

Подсчёт евклидовой метрики

Пусть $X \in \mathbb{R}^{N \times D}$ - обучающая выборка, $Z \in \mathbb{R}^{M \times D}$ - тестовая выборка.

Вычисление $ho(x,z)=||x-z||_2^2$ для всех пар (x,z) требует 3NMD операций.

Раскроем норму:

$$||x - z||_2^2 = \langle x - z, x - z \rangle = \langle x, x \rangle + \langle z, z \rangle - 2\langle x, z \rangle$$
$$||x - z||_2^2 = ||x||_2^2 + ||z||_2^2 - 2\langle x, z \rangle$$

Теперь вычисления стоят 2(N+M)D + 2NMD операций.

Датасет MNIST

Рассмотрим задачу классификации на датасете MNIST. Датасет содержит 70 тыс. изображений размера 28×28 . Обучающая выборка состоит из 60 тыс. объектов, тестовая - из 10 тыс.

Каждое изображение представляет собой рукописную цифру от 0 до 9. Таким образом, перед нами задача классификации с 10 классами.

Кросс-валидация

Кросс-валидацию необходимо будет реализовать самостоятельно.

Важно - для перебора различных $k_1 < k_2 < \cdots < k_n$ можно считать матрицу расстояний лишь один раз, что значительно ускорит работу алгоритма.

Аугментации

Вы должны будете применить две стратегии аугментации:

- Аугментация обучающей выборки
 - Аугментируем только тренировочную выборку
 - Обучаем модель на исходных и аугментированных данных
 - Проверяем качество на тестовой выборке
- Аугментация тестовой выборки
 - Обучаем модель на исходной тренировочной выборке
 - Аугментируем тестовую выборку
 - Получаем предсказания для исходных и полученных путем аугментаций объектов из теста
 - Проводим голосование и получаем итоговое предсказание для объекта