Apontamentos Slides 03

Criptografia

o Arte de escrever de forma confidencial

Criptanálise

 Arte ou ciência de quebrar sistemas criptográficos ou inofrmação criptogradafada

• Criptologia

o Criptografia + Criptanálise

Cifra

o Técnica concreta de criptografia

• Operação de uma cifra

- o Cifra: texto claro -> criptograma
- o **Decifra:** criptograma -> texto claro

Algoritmo

- o Modo de transformação de dados
- Chave: parâmetro do algoritmo
 - o Influencia a operação do algoritmo

Operações de uma cifra

.....

Criptanálise

- Objetivos:
 - Obtenção do texto original relativo a um criptograma
 - Obtenção de uma chave de cifra ou de uma equivalente
 - Obtenção do algoritmo de cifra
 - Engenharia reversa
 - Normalmente os algoritmos são conhecidos

Ataques por Criptanálise

© João Paulo Barraca, André Zúquete

Seguranca Informática e nas Organizac

Ataques por Força Bruta (ataque genérico

- Pesquisa exaustiva sobre todo o espaço de chaves, até se encontrar uma chave adequada
- o Não é prática oara espaços de dimensão grande
- o É importante que exista aleatoriedade na chave

Ataques mais inteligentes

- Reduzir o espaço de pesquisa para uma dimensão menos:
 - Palavras
 - Números
 - Conjunto reduzido
 - Alfabeto
- o Identificar padrões em algumas operações, etc...

Uso teórico != Exploração prática

 Na teoria uma cifra pode ser boa mas usada com más práitacas, como a reutilização de one-time pads, compromete a sua boa utilização

• Cifras seguras na prática

- o A segurança é assegurada pela dificuldade computacional de realizar a criptanálise
 - Usando força bruta
- Têm uma segurança baseada em limites razoáveis:
 - Custo de uma solução técnica de criptanálise
 - Infraestrutura reservada para a criptanálise
 - Tempo útil de criptanálise

5 critérios de Shannon

- Quantidade de secretismo oferecida
 - Comprimento da chave
- A complexidade na escolha das chaves
 - Geração de chaves, deteção de chaves fracas
- A simplicidade da realização
- A propagação de erros
- A dimensão do criptograma
 - Relativamente aos respetivos textos originais

Confusão

- Complexidade na relação entre o texto, a chave e o criptograma
 - Os bits resultantes devem depender dos bits de entrada de uma forma complexa

Difusão

- Alteração de grandes porções do criptograma em função de uma pequena alteração do texto
 - Se um bit de texto se alterar, então o criptograma deverá mudar substancialmente, de forma imprevisível.
 - Efeito avalanche
- Assumir sempre o pior caso
 - O criptanalista conhece o algoritmo
 - A segurança está na chave
 - O criptanalista possui grande número de criptogrmas gerados com um algoritmo e chave
 - Os criptogramas não são secretos
 - O criptanalista conhece parte dos textos originais
 - É normal haver alguma noção do texto original
 - Ataques com texto escolhido
 - Ataques com texto conhecido

Robustez criptográfica

- O Não há forma de avaliar a robustez de forma precisa
- São robustos até que alguêm os quebre
- o Existem orientações públicas do que deve e não ser usado
- Algoritmos públicos, sem ataques conhecidos, supostamente são mais robustos
 - Mais investigadores à procura de fraquezas

- Algoritmos com chaves maiores são tendencionalemente mais robustos
 - o Mas frequentemente são mais lentos

- Cifras Contínuas (Stream)
 - o Mistura de uma chave contínua (keystream) com o texto ou criptograma
 - Aleatória one time pad
 - Pseudoaleatória gerador
 - o Cifra poli-alfabética
 - Cada símbolo da chave contínua define um alfabeto

- Keystream pode ser infinita, mas possui um período (Período depende do gerador)
- Questões práticas de segurança
 - Cada keystream só pode ser uma vez!!!!!!!
 - Caso contrário a soma dos criptogramas fornece a soma dos textos
 - o Dimensão do texto tem de ser menor que período
 - Exposição de keystream é total com textos escolhidos/conhecidos
 - Período permitem analistas conhecer partes do texto
 - o Controlo de integridade é mandatório
 - Não existe difusão, apenas confusão
 - Criptogramas podem ser manipulados livremente

Cifras Simétricas

- o Chave secreta única, partilhada por 2 ou mais interlocutores
- Permite:
 - Confidencialidade para todos os conhecedores da chave
 - Autenticação de mensagens (cifra por blocos)
- o Muito eficiente
- Demasiadas chaves
- o Distribuição de chaves

• Cifras Simétricas Contínuas

- Obriga que os emissores/recetores estejam sincronizados
- o Normalmente sem possibilidade de acesso aleatório rápido

• Cifras Simétricas por blocos

- Blocos de grande dimensão, >128bits
- o Difusão, confusão
- Exemplos de algoritmos:
 - DES
 - IDEA
 - AES
- S-Box (Substituição): bit de entrada troca bits da saída; alteração de um bit provoca a alteração de pelo menos metade dos bits
- S-Box (Permutação): permuta a posição de bits entre a entrada e saída

DES

- A maioria dos valores de 56 bits são adequados
- o Fáceis de identificar e de evitar
- Pesquisa exaustiva
- 56 bits são atualmente insuficientes
- Solução:
 - Cifra tripla, porque cifra dupla não é segura

ECB

- Cifra direta e decifra direta de cada bloco
- Blocos são independentes
- T1=T2 então C1=C2...

CBC

- o Cifra e decifra com feedback do anterior
- Bloco inicial usa IV
- CBC não propaga tantos padrões

Problemas de alinhamento ECB/CBC

- o Necessitam de textos com dimensão múltipla da dimensão do bloco
- o Blocos incompletos necessitam de tratamento diferenciado
- o Resultado é um bloco
 - Criptograma pode ser maior que o texto em claro
- o Alternativa: Padding
- Ciphertext Stealing
 - Troca ordem de cifra/decifra dos dois últimos blocos

- Usa parte do criptograma do penúltimo para preencher o último
- Usa Padding fixo e cifra contínua antes de cifra por blocos

Modos: Comparação

	Bloco		Contínua (Stream)			
	ECB	СВС	OFB	CFB	CTR	GCM
Ocultação de padrões no texto		1	✓	✓	√	✓
Confusão na entrada da cifra		✓		✓	Contador Secreto	Contador Secreto
Mesma chava para mensagens diferentes	√	~	Outro IV	Outro IV	Outro IV	Outro IV
Dificuldade de alteração	✓	√ ()				✓
Pré-processamento			✓		✓	✓
Paralelização	✓	decifra	com pré.	decifra	*	✓
Acesso aleatório uniforme			proc.			
Propagação de erros		próximo bloco		alguns bits seguintes		detetado
Capacidade de re-sincronização	perda de blocos	perda de blocos		perda de múltiplos n-bits		detetado

• Ataque Meet in the Middle

- o Cifra dupla
- o Se C e T forem conhecidos, podem-se calcular a Decifra e a Cifra
 - Db(kb, C), variando Kb
 - Ea(ka, T), variando Ka
- Chaves encontradas quando se verificar a igualdade Db(kb, C) = Ea(ka, T)

• Cifras assimétricas por blocos

- Para de chaves
 - Privada
 - Pública
- o Permitem:
 - Confidencialidade na troca de segredos
 - Autenticação de conteúdos (integridade) e de autoria (assinaturas digitais)
- São pouco eficientes
- o Interação com N interlocutores requer apenas N pares de chaves
 - Cifra por blocos simétrica iria requerer N²

- Chaves públicas têm de ser distribuídas à priori
- Tempo de vida dos pares de chaves (têm de expirar)
- Algoritmos usados
 - RSA
 - ElGamal
 - Curvas elípticas
 - Diffie-Hellman
- Confidencialidade
 - Publica cifra
 - Privada decifra
- Autenticidade
 - Publica decifra
 - Privada cifra
- o O resultado da cifra de uma chave pública não deverá ser previsível
 - Concatenação do valor a cifrar com dois valores
 - Fixo
 - Aleatório

• Cifra Híbrida

- Juntar as duas Cifras
- Digest
 - Fingerprint
 - o Resultados muito diferentes para entradas similares
 - Resistência à descoberta de um texto
 - Resistência à descoberta de um 2ºtexto
 - Resistência à colisão
- Hash algorithmic
 - o MD5
 - o SHA

MIC

- Fornecem capacidade de detetar alterações por máquinas
- o Envio:
 - Calcular Mic (sintese) e enviar T+Mic
- o Receção:
 - Receber dados e verificar se S(T) = MIC
- Não protege contra alterações deliberadas
- MAC
 - Sintese/HAsh/digest gerada com recurso a uma chave
 - Utilizada para garantir autenticidade/integridadade

- o Enviar:
 - M+Mac, Mac=F(K,M)
- o Receber:
 - Calcular F(K,M') e comparar com MAC
- Encrypt then Mac: Mac calculado do criptograma
 - Não pode ser calculado a partir do texto

Assinaturas Digitais

- o Autenticam o conteúdo de documentos
 - Garantem a sua integridade
- o Autenticam o autor
 - Garantem a identidade do autor/criador
- Previnem repudiação do conteúdo
 - Autor não pode negar a sua criação
 - Só ele tem acesso à chave privada
- Cifra assimétrica sobre Síntese
 - Síntese usada por questões de desempenho
 - Cifra assimétrica para garantir autenticidade

Assinar:
$$A_x(doc) = info + E(K_x^{-1}, digest(doc + info))$$

info associada com K_x

Verificar:

$$D(K_v, A_v(doc)) \equiv digest(doc + info)$$

∩ João Paulo Barraca, André Zúguete

Segurança Informática e nas Organizações

102

Assinaturas cegas

- o Garante o anonimato e não alteração da informação assinada
- Assinante não consegue observar os conteúdos assinados