BiMOSFET™ Monolithic Bipolar MOS Transistor

IXBN75N170

G = Gate, C = Collector, E = Emitter

① either emitter terminal can be used as Main or Kelvin Emitter

Features

- International Standard Package
- High Blocking Voltage
- Isolation Voltage 3000 V~
- High Current Handling Capability
- Anti-Parallel Diode

Advantages

- High Power Density
- Low Gate Drive Requirement
- Easy to Mount with 2 Screws
- Intergrated Diode Can Be Used for Protection

Applications

- Capacitor Discharge
- AC Switches
- Switch-Mode and Resonant-Mode Power Supplies
- UPS
- AC Motor Drives

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	1700	V		
V _{CGR}	$T_{_J} = 25^{\circ}C$ to $150^{\circ}C$, $R_{_{GE}} = 1M\Omega$	1700	V		
V _{GES}	Continuous	±20	V		
V _{GEM}	Transient	±30	V		
I _{C25}	T _C = 25°C	145	A		
I _{C90}	$T_{C} = 90^{\circ}C$	75	Α		
I _{CM}	$T_{\rm C} = 25^{\circ}$ C, 1ms	680	Α		
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 1\Omega$	I _{CM} = 150	A		
(RBSOA)	Clamped Inductive Load	$V_{\rm CE} \leq 0.8 \bullet V_{\rm CES}$			
P _c	$T_{c} = 25^{\circ}C$	625	W		
T _J		-55 +150	°C		
T_{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _L T _{SOLD}	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10	300 260	°C °C		
V _{ISOL}		2500 3000	V~ V~		
M _d	Mounting Torque Terminal Connection Torque (M4)	1.5/13 1.3/11.5	Nm/lb.in. Nm/lb.in.		
Weight		30	g		

		cteristic Typ.	Values Max.		
BV _{CES}	$I_{c} = 250 \mu A, V_{GE} = 0V$	1700			V
V _{GE(th)}	$I_{\rm C} = 1.5 {\rm mA}, V_{\rm CE} = V_{\rm GE}$	2.5		5.5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$			25	μΑ
	$T_J = 125^{\circ}C$			2	mΑ
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15V, \text{ Note 1}$		2.6	3.1	V
	$T_J = 125^{\circ}C$		3.1		V

Symbol Test Conditions Chara T _J = 25°C Unless Otherwise Specified) Min.		cteristic \	Values Max.
g_{fs} $I_{C} = I_{C90}$, $V_{CE} = 10V$, Note 1	34	56	S
C _{ies}		6930	pF
C_{oes} $V_{CE} = 25V, V_{GE} = 0V, f = 1MHz$		400	pF
C _{res}		150	pF
Q_{a}		350	nC
Q_{ge} $I_{C} = I_{C90}, V_{GE} = 15V, V_{CE} = 0.5 \cdot V_{CES}$		50	nC
Q_{gc}		160	nC
t _{d(on)} Resistive load, T _J = 25°C		46	ns
$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15V$		160	ns
$R_{\rm G} = 1\Omega, V_{\rm CE} = 0.5 \cdot V_{\rm CES}$		260	ns
t, J NG 123, TCE SIG TCES		440	ns
t _{d(on)} Resistive load, T ₁ = 125°C		47	ns
t_{r} $\downarrow t_{C} = I_{C90}, V_{GE} = 15V$		230	ns
		260	ns
t_f $R_g = 1\Omega, V_{CE} = 0.5 \cdot V_{CES}$		580	ns
R _{thJC}			0.20 °C/W
R _{thCS}		0.05	°C/W

SOT-227B miniBLOC (IXBN) MYZ MAX 31.88 8,20 4.09 4.2 .161 .169 4.09 4.09 14.91 1.186 1.49€ .460 .481 11.68 8.92 0.76 9.60 .033 0.84 12.60 25.15 1.001

.078

1.045 .155 .186 .968 .084

1.98

4.95 26.54 3.94 4.72 24.59

26.90 4.42

Reverse Diode

Symbol Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C \text{ Unless Otherwise Specified})$	Min.	Тур.	Max	
V_F $I_F = I_{C90}, V_{GE} = 0V, Note 1$			3.0 V	
I_{rr}		1.5	μs	
I _{RM}		50	A	
\mathbf{Q}_{RM} $\mathbf{V}_{R} = 100V, V_{GE} = 0V$		38.2	μC	

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ 25°C 160 $V_{GE} = 25V$ 19V 140 15V 120 lc - Amperes 09 08 09 40 20 0 0.0 0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.5 V_{CE} - Volts

@ 25°C 320 $V_{GE} = 25V$ 17V 280 15V 13V 240 . Amperes 80 40 7V

8

10

V_{CE} - Volts

12

14

16

18

6

0

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics @ 125°C 160 $V_{GE} = 25V$ 19V 140 15V 13V 120 11V Ic - Amperes 09 08 00 40 20 5V 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 V_{CE} - Volts

Fig. 7. Transconductance

Fig. 8. Forward Voltage Drop of Intrinsic Diode

Fig. 9. Gate Charge

Fig. 10. Capacitance

Fig. 11. Reverse-Bias Safe Operating Area

Fig. 12. Maximum Transient Thermal Impedance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Rise Time vs. Collector Current

Fig. 14. Resistive Turn-on

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off
Switching Times vs. Collector Current

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS: IXBN75N170