Assignment 1: Data Preprocessing and Visualization

Rumeha Asim

July 2024

1 Problem 1.1

1.1 Question 1 solution:

 $\begin{aligned} & \text{Minimum} = 2.2 \\ & \text{First Quartile} = 4.0 \\ & \text{Median} = 5.45 \\ & \text{3rd Quartile} = 6.3 \\ & \text{Maximum} = 13.4 \end{aligned}$

1.2 Question 2 solution:

1.3 Question 3 solution:

• Equal Frequency Partitioning:

Bin 1: [2.2, 2.5, 2.5, 2.7 4.0] Bin 2: [4.0, 4.2, 4.3, 4.8, 5.4] Bin 3: [5.5, 5.5, 5.5, 5.8, 6.3] Bin 4: [6.5, 7.9 7.9 8.4 13.4]

• Equal Width Partitioning:

```
Bin 1: [2.2, 2.5, 2.5, 2.7, 4.0, 4.0, 4.2, 4.3, 4.8]
Bin 2: [5.4, 5.5, 5.5, 5.5, 5.8, 6.2, 6.5]
Bin 3: [7.9, 7.9, 8.4]
Bin 4: [13.4]
```

1.4 Question 4 solution:

Any value that exceeds the range of 1.5 times the inter-quartile range of the box plot is consdiered an outlier, which in this case is 13.4.

1.5 Question 5 solution:

- **Deletion:** This involves removing rows or columns with missing values. The resultant data set would be
- Imputation: This method finds the closest data points based on available features and uses their values to estimate the missing values. Such as using the mean, median or mode.

2 Problem 1.2

2.1 Part(a) solution:

```
Programming language: Python
import numpy as np
import statistics as st
from scipy import stats

marks = [56.7, 45, 65, 77, 75, 78, 56, 73, 75, 24,
0, 10, 100, 95, 45, 52, 55, 56, 58, 58.5, 59, 61]

mean = round(np.mean(marks), 1)
print("Mean of the dataset:", mean)

median = round(np.median(marks), 1)
print("Median of the dataset:", median)

mode = st.mode(marks)
print("Mode of the dataset:", mode)

trimMean5 = round(stats.trim_mean(marks, 0.05), 1)
print("5% trimmed mean of the data set:", trimMean5)
```

```
trimMean10 = round(stats.trim_mean(marks, 0.1), 1)
print("10% trimmed mean of the dataset:", trimMean10)

RESULTS FROM CODE:
    Mean of the dataset: 58.8
    Median of the dataset: 60.0
    Mode of the dataset: 45
    5% trimmed mean of the data set: 59.7
    10% trimmed mean of the dataset: 60.5
```

I believe **mean** is the best measure of central tendency as it takes all values of the dataset into consideration for finding the central tendency and any changes in the values will effect the mean. Therefore it is more representative of the dataset values than other measurements.

The most robust measure of centrality would be the **median** as it is unaffected by extreme values, making it a reliable measure in the presence of outliers.

2.2 Part(b) solution:

Programming language: Python

```
import numpy as np
import statistics as st
from scipy import stats
np.random.seed(0)
data = np.random.uniform(1, 5, 22)
print("Randomly generated values:", data)
mean = round(np.mean(data), 1)
print("Mean of the dataset:", mean)
median = round(np.median(data), 1)
print("Median of the dataset:", median)
mode = round(st.mode(data), 1)
print("Mode of the dataset:", mode)
trimMean5 = round(stats.trim_mean(data, 0.05), 1)
print("5% trimmed mean of the data set:", trimMean5)
trimMean10 = round(stats.trim_mean(data, 0.1), 1)
print("10% trimmed mean of the dataset:", trimMean10)
```

RESULTS FROM CODE:

Randomly generated values: [3.19525402 3.86075747 3.4110535 3.17953273 2.6946192 3.58357645 2.75034885 4.567092 4.85465104 2.53376608 4.16690015 3.11557968 3.27217824 4.70238655 1.28414423 1.3485172 1.08087359 4.33047938 4.112627 4.48004859 4.91447337 4.19663426]

Mean of the dataset: 3.4 Median of the dataset: 3.5 Mode of the dataset: 3.2

5% trimmed mean of the dataset: 3.5 10% trimmed mean of the dataset: 3.5

3 Problem 1.3

3.1 Part(a) solution:

Categorical categories (count of distinct values):

• Class(3)

Numerical categories (count of distinct values):

- Alcohol(127)
- Malicacid(134)
- Ash(79)
- Alcalinity of Ash(63)
- Magnesium (37)
- Total Phenols (97)
- Flavanoids(132)
- Non-flavanoid Phenols (35)
- proanthocyanins(101)
- Colour intensity(132)
- Hue (78)
- 0D280 0D315 of diluted wines(122)
- Proline(121)

3.2 Part(b) solution:

Alcohol:

Mean: 13.13 Median: 13.05 Mode: 13.05 Minimum: 11.03 Maximum: 37 Q1: 12.335 Q3: 13.675

Malicacid:

Mean: 2.35 Median: 1.88 Mode: 1.73 Minimum: 0.74 Maximum: 5.8 Q1: 1.61 Q3: 3.083

Ash:

Mean: 2.37 Median: 2.36 Mode: 2.3 Minimum: 1.36 Maximum: 3.23 Q1: 2.21 Q3: 2.558

Alkalinity of Ash:

Mean: 19.49 Median: 19.5 Mode: 20 Minimum: 10.6 Maximum: 30 Q1: 17.2 Q3: 21.5

Magnesium:

Mean: 99.74 Median: 98.0 Mode: 88 Minimum: 70 Maximum: 162

Q1: 88 Q3: 107

Total Phenols:

Mean: 2.3 Median: 2.36 Mode: 2.2 Minimum: 0.89 Maximum: 3.88 Q1: 1.742 Q3: 2.8

Flavanoid:

Mean: 2.03 Median: 2.13 Mode: 2.65 Minimum: 0.34 Maximum: 5.08 Q1: 1.205 Q3: 2.875

Non-Flavanoid Phenols:

Mean: 0.36 Median: 0.34 Mode:0.26 Minimum: 0.13 Maximum: 0.66 Q1:0.27

Q1:0.27 Q3: 0.438

Proanthocyanins:

Mean: 1.59 Median: 1.56 Mode: 1.35 Minimum: 0.41 Maximum: 3.58 Q1: 1.25 Q3: 1.95

Colour intensity:

Mean: 5.06 Median: 4.69 Mode: 3.8 Minimum: 1.28 Maximum: 13 Q1: 3.22 Q3: 6.2 Hue:

Mean: 0.96 Median: 0.96 Mode: 1.04 Minimum: 0.48 Maximum: 1.71 Q1: 0.782 Q3: 1.12

$0D280\ 0D315$ of diluted wines:

Mean: 2.16 Median: 2.78 Mode: 2.87 Minimum:1.27 Maximum: 4 Q1: 1.938 Q3: 3.17

Proline:

Mean: 746.89 Median: 673.5 Mode: 680 Minimum: 278 Maximum: 1680 Q1: 500.5 Q3: 985

3.3 Part(c) solution:

Figure 1: Bar chart for class

3.4 Part(d) solution:

No missing values.

3.5 Part(e) solution:

Attribute name(mean, standard deviation)

Alcohol (13.13, 1.96)

Malicacid (2.35, 1.12)

Ash (2.37, 0.27)

Alkalinity of Ash (19.49, 3.33)

Magnesium (99.74, 14,24)

Total phenols (2.3, 0.62)

Flavanoids (2.03, 1.00)

Non-flavanoid phenols (0.36, 0.12)

Proanthocyanins (1.59, 0.57)

Colour intensity (5.06, 2.3)

Hue (0.96, 0.23)

 $0D280 \ 0D315 \ of \ diluted \ wines \ (2.16, \ 0.71)$

Proline (746.84, 314.02)

Figure 2: Alcohol quantity histogram

Figure 3: Malicacid quantity histogram

Figure 4: Ash quantity histogram

Figure 5: Alkalinity of ash histogram

Figure 6: Magnesium quantity histogram

Figure 7: Total phenols quantity histogram

Figure 8: Flavanoid quantity histogram

Figure 9: Non-flavanoid phenols quantity histogram

Figure 10: Proanthocyanins quantity histogram

Figure 11: Colour intensity histogram

Figure 12: Hue histogram

Figure 13: $0D280\ 0D315$ of diluted wines histogram

Figure 14: Proline quantity histogram

3.6 Part(f) solution:

3.7 Part(g) solution:

	(-,											
Alcohol Class	11.03	11.41	11.45	11.46	11.5		14	1.37	14.38	14.39	14.75	14.83
1	0	0	0	0		0 .		1	2	1	1	
2	1	1	1	1		1 .		0	0	0	0	
3	0	0	0	0		0 .		0	0	0	0	
Malicacid Class	0.74	0.89	0.90	0.92 (.94		5.04	5.19	5.51	5.65	5.80	
1	0	0	0	0	0		0	0	0	0	0	
2	1	1	1	1	2		0	0	0	0	1	

Ash Class	1.36	1.7	0 1	.71	1.75	1.82	1.88		2.8	4 2	.86 2	2.87	2.92	3.22	3.23
1	0		0	0	0	0	0			1	0	1	0	1	
2	1		2	1	1	1	1			0	0	0	1	0	
3	0		0	0	0	0	0			0	1	0	0	0	
Alkali Class	nity o	f as	h 1	0.6	11.2	11.4	12.0	12.4	1		6.0 2	26.5	27.0	28.5	30.0
1				0	1	1	1	:	1		0	0	0	0	
2				1	0	0	0	()		1	1	0	2	
3 0				0	0	0	0	()	•	0	0	1	0	
Magne 162 Class	sium	70	78	80	81	82	84	85		128	132	134	136	139	151
1		0	0	0	0	0	0	0		1	1	0	0	0	0
2		1	3	4	1	1	3	5		0	0	1	1	1	1
3 0		0	0	1	0	0	0	1		0	0	0	0	0	0
Total Class	phenol	s 0	.98	1.10	1.1	5 1.2	25 1.2		3 	3.40	3.50	3.52	2 3.8	5 3.8	38
1			0	C			0	0 .		1	0	(1	1
2			0	1			0			0	1			0	0
3			1	C)	1	1	1 .		0	0	()	0	0

```
Flavanoids 0.34 0.47 0.48 0.49 0.50 ... 3.69 3.74 3.75 3.93 5.08
Class
                                                                                   0
1
                0
                       0
                              0
                                    0
                                           0
                                               . . .
                                                        1
                                                              1
                                                                     0
                                                                            1
2
                0
                       0
                              0
                                     0
                                           0
                                               . . .
                                                        0
                                                              0
                                                                     1
                                                                            0
                                                                                   1
3
                1
                       2
                                    1
                                           2
                                               . . .
                                                        0
                                                              0
                                                                     0
                                                                            0
                                                                                   0
Non-flavanoid phenols 0.13 0.14 0.17 0.19 ... 0.60 0.61 0.63 0.66
1
                             0
                                   0
                                          3
                                                             0
                                                                    0
                                                                           0
                                                                                 0
                                                 1
                                                    . . .
2
                             1
                                   2
                                          1
                                                 1
                                                             1
                                                                    1
                                                                           1
                                                                                 1
                                                    . . .
3
                                   0
                                          1
                                                             2
                                                                    2
                                                                           3
                                                                                 0
                             0
                                                 0
                                                    . . .
Colour intensity 1.28
                            1.74
                                   ... 11.75 13.00
Class
                                    . . .
1
                        0
                                0
                                              0
                                                     0
                                   . . .
2
                        1
                                1
                                              0
                                                     0
                                   . . .
3
                        0
                                0
                                   . . .
                                              1
                                                     1
       0.48 \quad 0.54 \quad 0.55 \quad 0.56 \quad 0.57 \quad \dots \quad 1.36 \quad 1.38 \quad 1.42 \quad 1.45 \quad 1.71
Hue
Class
           0
                 0
                        0
                               0
                                                  0
                                                         0
                                                                0
                                                                      0
                                                                             0
                                      0
                                         . . .
2
           0
                 0
                        0
                               0
                                      0
                                                  2
                                                         1
                                                                1
                                                                       1
                                                                             1
                               2
                                                                0
           1
                 1
                        1
                                      5
                                                  0
                                                         0
                                                                      0
                                                                             0
                                         . . .
OD280_OD315_of_diluted_wines 1.27 1.29 1.30 1.33 ... 3.71 3.82 3.92 4.00
Class
                                                            . . .
                                                         0 ...
1
                                     0
                                           0
                                                  0
                                                                     1
                                                                            1
                                                                                   1
1
2
                                     0
                                           0
                                                  0
                                                         0
                                                                            0
                                                                                   0
                                                           . . .
                                                                     0
0
3
                                     1
                                           2
                                                  1
                                                         3 ...
                                                                     0
                                                                            0
                                                                                   0
0
```

Proline 1680 Class	278	290	312	315	325	342		1450	1480	1510	1515	1547
1	0	0	0	0	0	0		1	1	1	1	1
1												
2	1	1	1	1	1	1	• • •	0	0	0	0	0
0					•			•			•	•
3	0	0	0	0	0	0	• • •	0	0	0	0	0
0												

3.8 Part(i) solution:

 $Covariance\ table$

	Class	 Proline
Class	0.600679	 -154.667651
Alcohol	-0.206515	 164.567185
Malicacid	0.379039	 -67.548867
Ash	-0.010555	 19.319739
Alkalinity of ash	1.340364	 -463.355345
Magnesium	-2.315495	 1769.158700
Total phenols	-0.348835	 98.171057
Flavanoids	-0.656091	 155.447492
Non-flavanoid phenols	0.047177	 -12.203586
Proanothcyanins	-0.221413	 59.554334
Colour intensity	0.477339	 230.767480
Hue	-0.109368	 17.000223
OD280_OD315_of_diluted_wines	-0.433737	 69.927526
Proline	-154.667651	 99166.717355

$3.9 \quad Part(j) \text{ solution:}$

3.10 Part(l) solution:

3.11 Part(m) solution:

	1.2					
	Class	Alcohol	Malicacid	Ash	Alkalinity of ash	 Proanothcyanins
0	0.0	0.842105	0.191700	0.572193	0.257732	 0.593060
1	0.0	0.571053	0.205534	0.417112	0.030928	 0.274448
2	0.0	0.560526	0.320158	0.700535	0.412371	 0.757098
3	0.0	0.878947	0.239130	0.609626	0.319588	 0.558360
4	0.0	0.581579	0.365613	0.807487	0.536082	 0.444795
173	1.0	0.705263	0.970356	0.582888	0.510309	 0.205047
174	1.0	0.623684	0.626482	0.598930	0.639175	 0.315457
175	1.0	0.589474	0.699605	0.481283	0.484536	 0.296530
176	1.0	0.563158	0.365613	0.540107	0.484536	 0.331230
177	1.0	0.815789	0.664032	0.737968	0.716495	 0.296530

Colour intensity	Hue	0D280_0D315_of_diluted_wines	Proline
0.372014	0.455285	0.970696	0.561341
0.264505	0.463415	0.780220	0.550642
0.375427	0.447154	0.695971	0.646933
0.556314	0.308943	0.798535	0.857347
0.259386	0.455285	0.608059	0.325963
0.547782	0.130081	0.172161	0.329529
0.513652	0.178862	0.106227	0.336662
0.761092	0.089431	0.106227	0.397290
0.684300	0.097561	0.128205	0.400856
0.675768	0.105691	0.120879	0.201141

3.12 Part(n) solution:

Figure 15: Normalised alcohol quantity histogram

Figure 16: Not normalised histogram

Figure 17: Normalised malicacid histogram

Figure 18: Not normalised histogram

The shape of the normalised histograms and those that were not normalised is the same. But the x-axis values in the normalised histogram do not go above 1 as the min-max approach, used to normalise the datasets to make the histograms, rescales the feature to a range of [0,1].

3.13 Part(p) solution:

The results of this database show that there is a significant relationship between the class of the wine and the quantities of different constituents in the wine. But there is no significant relationship between each of the constituents of the wines. This data base had 13 attributes out of which 1 was a categorical attribute and the others were numeric attributes. This is a total of 178 instances recorded in the database: Class 1, 59; Class 2, 71; Class 3, 48. Line graphs between numerical data could not be made as there was no relationship between the constituents of the wine. Heat maps between 2 numerical attributes also could not be made as there were hundreds of distinct values.

3.14 Part(q) solution:

Outliers of numeric attributes:

Alcohol: NA

Malicacid: 5.8, 5.51, 5.65 Ash: 3.22, 1.36, 3.23 Alkalinity of ash: 10.6, 30.0, 28.5, 28.5

Magnesium: 151, 139, 136, 162

Flavanoids: NA

Non-flavanoid phenols: NA Proanthocyanins: 3.28, 3.58

Colour intensity: 10.8, 13, 11.75, 10.68

 $\mathrm{Hue}:\,1.71$

 $0D280\ 0D315$ of diluted wines: NA

Proline: NA

3.15 Part(r) solution:

Malicacid:

Mean: 2.29 Median: 1.87 Mode: 1.73 Q1:1.61 Q3:3.01 Min:0.74 Max:5.19

Ash:

Mean: 2.36 Median: 2.36 Mode: 2.3 Q1:2.21 Q3:2.55 Min:1.7 Max:2.9

Proanthocyanins:

Mean: 1.57 Median:1.54 Mode:1.35 Q1:1.25 Q3:1.95 Min:0.41 Max:2.96

Alkalinity of ash:

Mean: 19.44 Median: 19.5 Mode: 20 Q1:17.2 Q3:21.5 Min:11.2 Max:30

Magnesium:

Mean: 98.66 Median: 97.5 Mode: 88 Q1:88 Q3:106.8 Min:70 Max:134

Colour intensity:

Mean: 4.91 Median: 4.6 Mode: 3.8 Q1:3.18 Q3:6.08 Min:1.28 Max:10.52

Hue:

Mean: 0.95 Median: 0.96 Mode: 1.04 Q1:0.78 Q3:1.12 Min:0.48 Max:1.45