林元烈《概率论与数理统计》考试 A 卷(回忆)↔

考试时间: 2006年6月20日,120分钟↔

一、(基础题) ₽

- 1、P(A)=0.48,P(B)=0.40,P(A|B)=0.50,求 $P(A \cup B)$, $P(B \mid \overline{A})$ 。 4
- 2、以下三个命题是否等价,说明理由。↩
 - (1)、事件 A 与事件 B 相互独立。→
 - (2)、I_A生成的σ域σ(I_A) ={Ø, A, Ā, Ω}与σ(I_B)独立。→
 - (3)、I_A与I_B相互独立。→
- 3、求E (I_A|I_B, I_C),并证明↓

$$E(I_A|I_B)=E(E(I_A|I_B,I_C)|I_B)$$

±\ 1\ €

$$\{X_i,1\leq i\leq n\}$$
独立同分布 $\mathbb{N}(\mu,\sigma^2)$, Y与其独立且Y ~ $\mathbb{P}\diamond(\lambda)=\frac{1}{n}\sum_{i=1}^nX_i,S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})$

- a、求S的最大似然估计。 b、求证邓以概率收敛到46
- c、X与S²是否独立,请写出证明概要。

求X的概率密度函数f.,(x)

- 2、(想不起来了) ₽
- 3、 $\{Y_k, k \ge 1\}$ 独立同分布, $P(Y_K = 1) = p, P(Y_K = 0) = r, P(Y_K = -1) = q, \forall p \in Y_K = 0$

$$p+r+q=1$$
, $X_1 = \sum_{k=1}^{n} Y_k$, $N_1 = \sum_{k=1}^{n} I_{(Y_k-1)}$, $N_2 = \sum_{k=1}^{n} I_{(Y_k-0)}$, $N_3 = \sum_{k=1}^{n} I_{(Y_k-3)}$

- a、 求 (N₁, N₂, N₃) 的分布, 求 P (N₁+N₂ = m) ₽
- b、 求 $E(X_3|X_1)$ 的分布率, $E(X_2|X_1 \ge 0)$ \leftarrow
- C、求X₁₀₀与X₄₀₀的相关系数↓

三、某批零件强度 $X \sim N(48,2^2)$ (批量无穷大),若 $X \geq 46.32$,则此零件合格,否则为次品,制定检验方案:第一次任取 3 个,若全部合格则接受,若至少有两个次品,则拒绝,若恰有两个合格则在抽一次,也是三个,重复上述不走直至作出决定。4

- a、求零件不合格的概率 p (给定了几个 Φ 值) ↓
- 6、求接受该批产品的概率和作出决定所需抽出样品个数的均值。↓
- c、求E(X|X≥46.32)₽

+

四、1、 $\{X_i, i \geq 1\}$ 独立同分布 $N(\mu, \sigma^2)$, $\{Y_i, i \geq 1\}$ 独立同分布B(1,p), $N \sim Po(\lambda)$,

且它们相互之间以独立。 $X=\sum_{i=1}^N X_i \bullet I_{(Y_i=1)} \bullet$

- a、求X的条件概率密度函数f_{xN=n}(x)。₽
- b、求 EX₽

4

- 2、 $\{X_i, n \ge i \ge 1\}$ 独立同分布 $Ex(\lambda)$, $\{X_{(i)}, n \ge i \ge 1\}$ 为其顺序统计量↓
 - a、求X_{ii}的概率分布函数→
 - b、 $X_{(1)}$ 与 $\sum_{i=1}^{n}$ $(X_i X_{(1)})$ 是否独立,证明你的结论。 φ

Ų

五、(poisson)过程问题 18 分)设一信号接收器证同时接受三类相互独立且参数为 λ 的泊松信号流 $\{N_i(t), t \geq 0\}$, $N_i(0) = 0$, $S_i^{(i)}$ 表示第 i 类第 n 个信号到达的时刻,i=1, 2, 3, $n \geq 1$. ω

- a、求 $E(N_1 | S_1^{(2)}) ilde{ ilde{\psi}}$
- b. $\Re E(S_1^{(1)} | N_1 + N_2 + N_3 = 1) +$