

07.11.2023 Computer Vision Seminar 23/24

Agenda

- 1. Na czym polega wizja komputerowa?
- 2. Przykłady i zastosowania
- 3. Czym jest zdjęcie?
- 4. Przekształcenia globalne
- 5. OpenCV

Computer Vision: Algorithms and Applications, 2nd ed.

https://szeliski.org/Book/

https://www.cs.cornell.edu/courses/cs5670/2023sp/lectures/lectures.html

Na czym polega computer vision?

Classification

Object Detection

Instance Segmentation

CAT

CAT

CAT, DOG, DUCK

CAT, DOG, DUCK

Single object

Multiple objects

Oszacowanie pozy (pose estimation)

Czym jest zdjęcie cyfrowe?

- Dwuwymiarowa funkcja f(x,y)
- x i y określają współrzędne
- Amplituda f w (x,y) jest określana jako intensywność zdjęcia w tym punkcie
- Wartości x, y i f są skończone

Lub inaczej: tablica składająca się z rzędów i kolumn pikseli o skończonych wartościach

Zdjęcie jako macierz

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & f(0,2) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & f(1,2) & \dots & f(1,N-1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ f(M-1,0) & f(M-1,1) & f(M-1,2) & \dots & f(M-1,N-1) \end{bmatrix}$$

Visual image formation-Digital Version

Model przestrzeni kolorów RGB

RGB i HSV (hue, saturation, value)

Zdjęcie jako funkcja - przekształcenia

As with any function, we can apply operators to an image

$$g(x,y) = f(x,y) + 20$$

$$g\left(x,y\right) =f\left(-x,y\right)$$

Parametric (global) warping

$$\mathbf{p'} = (\mathbf{x'}, \mathbf{y'})$$

Transformation T is a coordinate-changing machine:

$$\mathbf{p'} = T(\mathbf{p})$$

- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's represent T as a matrix:

$$\mathbf{p'} = \mathbf{T}\mathbf{p}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Przesunięcie, translacja

- Skalowanie
- Obrót
- Pochylenie

https://sites.google.com/pjwstk.edu.pl/grk/grk/przekszta%C5%82cenia-afiniczne?pli=1

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Podstawowe przekształcenia

Computer Vision: Algorithms and Applications, 2nd ed. (final draft, Sept. 2021)

Figure 2.4 Basic set of 2D planar transformations.

Więcej o transformacjach: http://alumni.media.mit.edu/~maov/classes/comp_photo_vision08f/lect/08_image_warps.pdf

OpenCV: Python lub C++

Tutorial: https://learnopencv.com/getting-started-with-opency/

Materialy

• Introduction to Basic Computer Vision & Image Processing

https://bishalbose294.medium.com/introduction-to-basic-computer-vision-image-processing-f692aa1a4f18

• Everything You Ever Wanted To Know About Computer Vision.

https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8 a58dfb641e

• Awesome Computer Vision

https://github.com/jbhuang0604/awesome-computer-vision

Google Colab - wstęp do CV

 $\underline{https://colab.research.google.com/drive/1EPOBn24plc-kTb5jgTbitpLoylRVKVRh?usp=sharing}$