Notes taken from the Interpretable Machine Learning book by Christoph Molnar

- Explainability continually asking why (and how)?
 - Ex. Why stopped? 70% chance of child crossing the road. How did you calculate that? I took into account X,Y and Z, and combined them in this way. Why did you take these 3 features and not some other combination?
 - Explanations are contrastive Why this and not that?
 - For a house price prediction, the house owner might be interested in why the predicted price was high compared to the lower price they had expected. If my loan application is rejected, I do not care to hear all the factors that generally speak for or against a rejection. I am interested in the factors in my application that would need to change to get the loan. I want to know the contrast between my application and the would-be-accepted version of my application.
 - The best explanation is the one that highlights the greatest difference between the object of interest and the reference object.
 - Explanations are selected small list of causes (not all of them)
 - o Explanations are social know your audience
 - Explanations focus on the abnormal
 - If input features for a prediction was abnormal in any sense (eg rare category), and feature influenced the prediction, it should be included in an explanation
 - Explanations are truthful should predict the event as truthfully as possible (called fidelity)
 - Explanations are general and probable in contrast with them being abnormal above
- Properties of individual explanations
 - Accuracy how well does explanation predict unseen data?
 - Fidelity how well does explanation approximate prediction of black box model?
 - Consistency how much does an explanation differ between models that have been trained on the same task and that produce similar predictions?
 - Stability how similar are explanations for similar instances? (always desirable)
 - Comprehensibility
 - Certainty (confidence) that model has in individual predictions
 - Degree of importance how well does explanation reflect importance of features or parts of the explanation
 - Novelty is data instance an outlier? Then high novelty (and likely low certainty)
 - Representativeness how many instances does an explanation cover?
- Model-agnostic methods

• Partial Dependence Plots

Advantages

0

- Intuitive
- Easy to implement
- Has a causal interpretation (within the model, not necessarily the real world!)
- Disadvantages

- Low max number of features to represent
- Need to show feature distribution on bottom
- Assumption of independence (features could be correlated)
 - ALE plots help with this, work with conditional instead of marginal distribution
- Heterogeneous effects might be hidden
 - Individual conditional expectation curves instead of aggregated line
- Alternatives
 - ALE, ICE
- Individual Conditional Expectation (ICE)
 - Visualizes the dependence of the prediction on a feature for each instance separately, resulting in one line per instance. PDP is average of ICE plot

centered-ICE

- Advantages
 - Even more intuitive than PDP
 - Uncover heterogeneous relationships
- Disadvantages
 - Can only display 1 feature at a time
 - Feature correlation isn't dealt with meaningfully
 - Plot can become crowded/average not easy to see (easy to fix)
- Accumulated Local Effects (ALE)
 - Faster and unbiased alternative to PDPs
 - If features are correlated, the PDP cannot be trusted

$$\hat{ ilde{f}}_{j,ALE}(x) = \sum_{k=1}^{k_j(x)} rac{1}{n_j(k)} \sum_{i: x_i^{(i)} \in N_j(k)} \left[f(z_{k,j}, x_{ackslash j}^{(i)}) - f(z_{k-1,j}, x_{ackslash j}^{(i)})
ight]$$

0

- The value of the ALE can be interpreted as the main effect of the feature at a certain value compared to the average prediction of the data. For example, an ALE estimate of -2 at x_j=3 means that when the j-th feature has value 3, then the prediction is lower by 2 compared to the average prediction.
- Advantages
 - Unbiased (work even when correlated)
 - Faster to compute than PDPs
 - Clear interpretation: conditional on a given value, the relative effect of changing the feature on the prediction can be read
 - In most situations, prefer ALE plots over PDPs
- Disadvantages

- Interpretation remains difficult when features are strongly correlated
- ALE plots are not accompanied by ICE curves

Feature Interaction

- Want to know the share of variance that is explained by the interaction?
- H-statistic!

Advantages

0

- Has underlying theory
- Always between 0 and 1, comparable across features and even models
- Detects all kinds of interactions (even higher-order than 2)

Disadvantages

- Computationally expensive
- If sampling data, estimates have a certain variance and results can be unstable
- Difficult to say when H-statistic is large enough to consider an interaction "strong"
- If features are correlated, then integrate over feature combinations that are very unlikely in reality (same problem as with PDP)

Feature Importance

 Increase in the prediction error of the model after we permuted the feature's values (randomize the values in that column)

0

Advantages

- Nice interpretation
- Highly compressed, global insight
- FI is comparable across different problems (if use error ratio)
- Automatically takes into account all interactions
- No retraining

Disadvantages

- Unclear: use training or test data
- Linked to error of model
- Need access to the true outcome (need labeled data)
- May be unstable
- Correlated features are a problem, again (biased by unrealistic data points)

Global Surrogate

- Interpretable model that is trained to approximate the predictions of a black box model
- Advantages
 - Flexible
 - Intuitive
 - Can easily measure how well surrogates are in approximating

Disadvantages

- Draw conclusions about model, not data!
- Surrogate model comes with advantages and disadvantages of that model

Local Surrogate (LIME)

The recipe for training local surrogate models:

- Select your instance of interest for which you want to have an explanation of its black box prediction.
- Perturb your dataset and get the black box predictions for these new points.
- Weight the new samples according to their proximity to the instance of interest.
- Train a weighted, interpretable model on the dataset with the variations.
- Explain the prediction by interpreting the local model.
- Kernel width (neighborhood size) can make a large difference in interpretability

- Advantages
 - Model-agnostic
 - Explanations are short (selective) and possibly contrastive
 - Fidelity measure gives idea of reliability of interpretable model
 - Can use other features than original model
- Disadvantages
 - Unclear neighborhood size
 - Better sampling
 - Complexity of explanation model is pre-defined

Instability of explanations

Shapley Values

- The Shapley value is the average marginal contribution of a feature value across all possible coalitions
- The Shapley value is NOT the difference in prediction when we would remove the feature from the model.
- An intuitive way to understand the Shapley value is the following illustration: The feature values enter a room in random order. All feature values in the room participate in the game (= contribute to the prediction). The Shapley value of a feature value is the average change in the prediction that the coalition already in the room receives when the feature value joins them.

Advantages

 \bigcirc

- Difference between prediction and average prediction is fairly distributed among feature values of the instance
- Allows contrastive explanations
- Solid theory

Disadvantages

- Lots of computing time
- Can be misinterpreted
- Not parsimonious
- No prediction model (like LIME)
- Need access to data

Inclusion of unrealistic data instances

Kaggle

- Feature importances (how much a feature affects)
 - Permutation use eli5
- Partial dependence plots (how a feature affects)
 - PDPBox
- SHAP values
 - SHAP values interpret the impact of having a certain value for a given feature in comparison to the prediction we'd make if that feature took some baseline value.
 - Shap library

