Riassunto Analisi Matematica

Cristian Baldi

23 febbraio 2016

Indice

Prima di iniziare

Un paio di cose prima di iniziare.

Questo riassunto è in preparazione per l'esame orale di Analisi Matematica Unimib Corso Informatica.

Fonte dei contenuti:

- Analisi Matematica, Paolo Maurizio Soardi
- Appunti di Matematica, Luca Chiodini
- WikiToLearn, Analisi 1

Successioni

2.1 Successione numerica

2.1.1 Definizione

Una successione è una funzione $x: N \to R$ indicabile anche con $\{X_n\}_{n\in N}$.

 \bigcirc La successione associa ad ogni numero naturale n un numero reale a_n . Una successione numerica è una lista ordinata e infinita di numeri reali.

2.1.2 Successione limitata

Una successione è detta superiormente limitata se esiste un M tale che $a_n < M \ \forall n \in N$

 \odot Una successione è detta limitata se esiste un numero M che sovrasta tutti i termini della successione.

Una successione è detta inferiormente limitata se esiste un m tale che $a_n > m \ \forall n \in N$

2.1.3 Successione Crescente

Una successione x_n è crescente se $x_{n+1} > x_n$ per ogni n.

① Una successione è crescente se, preso un termine, il suo termine successivo è sempre più grande del termine corrente.

 $\{0, 1, 2, 3, 4, 5, \ldots\}$

2.1.4 Successione Decrescente

Una successione x_n è decrescente se $x_{n+1} < x_n$ per ogni n.

① Una successione è decrescente se, preso un termine, il suo termine successivo è sempre più piccolo del termine corrente.

$$\{0, -1, -2, -3, -4, -5, \ldots\}$$

2.1.5 Successione Non Decrescente

Una successione x_n è non decrescente se $x_{n+1} >= x_n$ per ogni n.

① Una successione è non decrescente se, preso un termine, il suo termine successivo è sempre o uguale o più grande del termine corrente.

$$\{0, 1, 2, 2, 3, 5, 5, 5, \dots\}$$

2.1.6 Successione Non Crescente

Una successione x_n è non crescente se $x_{n+1} \le x_n$ per ogni n.

① Una successione è non crescente se, preso un termine, il suo termine successivo è sempre o uguale o più piccolo del termine corrente.

$$\{0, -1, -1, -3, -4, -4, \ldots\}$$

2.1.7 Successione monotona

Una successione è monotona se è crescente o decrescente o non crescente o non decrescente.

2.2 Limite di una successione

2.2.1 Definizione

 $L \in \mathbb{R}$ è il limite di $\{x_n\}$ se per ogni intorno $\epsilon > 0$ esiste $N \in \mathbb{N}$ tale che, per ogni n > N,

$$L - \epsilon < \{x_n\} < L + \epsilon$$

Tale limite si scrive anche come

$$\lim_{n \to \infty} x_n = L$$

 \odot Un numero reale L è limite di una successione $\{x_n\}$ se la distanza fra i numeri x_n e L è aribrariamente piccola quando n è sufficientemente grande.

Il limite di una successione è il valore a cui tendono i termini di una successione.

2.2.2 Successione convergente e divergente

Se il limite esiste la successione è detta convergente, se il limite non esiste la successione è detta divergente.

2.2.3 Successioni infinitesime

Se una successione è convergente e il suo limite L è 0, questa è detta infinitesima.

2.3 Teorema di unicità del limite

Enunciato

Sia $\{x_n\}$ una successione. Se $\{x_n\}$ ha limite L e $\{x_n\}$ ha limite L' allora L=L'

 \bigcirc Se $\{x_n\}$ ha limite, questo è unico.

La successione $\{x_n\}$ non ammette due limiti diversi.

Dimostrazione

Supponiamo che per assurdo $L \neq L'$ (cioè che la successione abbia due limiti diversi).

Prendiamo $\frac{\epsilon}{2}$ tale che $\epsilon < |L - L'|$

Per la definizione di limite esiste un N tale che $|x_n - L| < \frac{\epsilon}{2}$ per ogni n > N, che si traduce in $x_n < L + \frac{\epsilon}{2}$ e $x_n > L - \frac{\epsilon}{2}$

Per l'assurdo imposto (l'esistenza dei due limiti) esiste nache un N' tale che se n>N' allora $|x_n-L'|<\frac{\epsilon}{2}$

Queste due condizioni si verificano entrambe nel seguente caso $|x_n - L| + |x_n - L'| < 2\frac{\epsilon}{2}$

$$|L - L'| = |x_n - L'| - |x_n - L| \le |x_n - L| + |x_n - L'| < \epsilon$$

Quindi $\epsilon < |L-L'| < \epsilon$ che è ovviamente un assurdo, così da non verificare la nostra ipotesi iniziale.

2.4 Teorema della permanenza del segno

Enunciato

Una successione $\{x_n\}$ che converge ad un limite L > 0 (e quindi anche a $+\infty$) ha definitivamente soltanto termini positivi.

 \bigcirc In altre parole, esiste un N tale che $x_n > 0$ per ogni n > N.

Dopo un certo N tutti i termini della successione sono positivi.

Dimostrazione

Se il limite di x_n è L ed è finito, prendiamo $\epsilon=L$ e usiamolo nella definizione di limite. Esiste quindi un N tale che per ogni n>N si ha che $|x_n-L|<\epsilon$ cioè

$$|x_n - L| < L$$

$$L - L < x_n < L + L$$

in particolare a noi interessa che

$$L - L < x_n$$

cioè che $x_n > 0$ per ogni n > N-

Se il limite di x_n è infinito per la definizione di convergenza, dato un M > 0 qualsiasi, esiste N tale che $x_n > M$ per ogni n > N.

2.5 Teorema di esistenza del limite per successioni monotone

Enunciato

Una successione monotona di numeri reali converge sempre ad un limite L.

Più precisamente, il limite di una successione crescente è il suo estremo superiore, mentre il limite di una successione decrescente è il suo estremo inferiore.

Il limite è finito solo se la successioni è limitata.

Dimostazione

Supponiamo $\{x_n\}$ monotona crescente.

Se la successione è illimitata, allora per ogni M esiste un $N \in \mathbb{N}$ tale che $x_N > M$ (cioè esisterà un termine che prima o poi sarà più grande di M); di conseguenza, per la monotonia, $x_n > M$ per ogni n > N, quindi il limite di $\{x_n\}$ è infinito.

Se la successione è limitata, allora ha un estremo superiore S. Per la definizione di estremo superiore, per ogni $\epsilon > 0$ esiste un $N \in \mathbb{N}$ tale che $x_N > S - \epsilon$. Di conseguenza $x_n > S$ per ogni n > N, quindi S è il limite di $\{x_n\}$.

2.6 Teorema del confronto per le successioni

Enunciato

Prese $\{a_n\}, \{b_n\}, \{c_n\}$ tre successioni, tali che, definitivamente $a_n \leq b_n \leq c_n$ e

$$\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} c_n = L$$

allora

$$\lim_{n\to+\infty}b_n=L$$

È informalmente chiamato teorema dei due carabinieri, per un'allegoria: il teorema sarebbe rappresentato da due carabinieri (due funzioni o successioni a,c che si stringono sempre di più) che conducono in arresto un prigioniero (una funzione o successione b): questo tende sicuramente allo stesso punto dove tendono i carabinieri (il limite comune di a e c).

Dimostrazione

Partiamo dalla definizione di limite, per ogni $\epsilon > 0$ esiste un N (ed in questo caso anche un N') tali che:

$$L - \epsilon < a_n < l + \epsilon \forall n > N$$

$$L - \epsilon < b_n < l + \epsilon \forall n > N'$$

Quindi per ogni n maggiore di $M = max\{N, N'\}$ si ottiene la seguente:

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

Quindi per ogni $\epsilon > 0$ eiste un M tale che $L - \epsilon < b_n < L + \epsilon \forall n > M$ Cioè la successione b_n ha limite L.

2.7 Criterio del rapporto per successioni

Enunciato

Sia $\{x_n\}$ una successione a termini positivi e sia

$$L = \lim_{n \to +\infty} \frac{x_{n+1}}{x_n}$$

Allora:

- se L > 1 la successione è definitivamente crescente e $\lim x_n = +\infty$.
- se $0 \le L < 1$ la successione è definitivamente decrescente e $\lim x_n = 0$.

Dimostrazione

• se L > 1 allora possiamo imporre $L = 1 + 2\epsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} > L - \epsilon \qquad \forall n > N$$

$$\frac{x_{n+1}}{x_n} > 1 + \epsilon \qquad \forall n > N$$

Quindi $x_{n+1} > x_n \cdot (1+\epsilon) > x_n$ per n > N. Quindi la successione è definitivamente crescente.

Proseguendo otteniamo:

$$x_{N+2} > x_{N+1} \cdot (1+\epsilon)$$

 $x_{N+3} > x_{N+2} \cdot (1+\epsilon) > x_{N+1} \cdot (1+\epsilon)^2$ e così via...

Generalizzando:

$$x_n > (1 + \epsilon)^{n - (N+1)} \cdot x_{N+1}$$

Poiché $(1+\epsilon)^{n-(N+1)}$ diverge a $+\infty$, per il teorema del confronto anche $\lim x_n = +\infty$.

• se 0 < L < 1 procediamo in modo analogo al caso precedente. Imponiamo $L = 1 - 2\epsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} < L + \epsilon \qquad \forall n > N$$

$$\frac{x_{n+1}}{x_n} < 1 - \epsilon \qquad \forall n > N$$

Come prima vale:

$$0 < x_n < (1 - \epsilon)^{n - (N+1)} \cdot x_{N+1} \qquad \forall n > N$$

Per il criterio del confronto, essendo $\lim (1 - \epsilon)^{n - (N+1)} \cdot x_{N+1} = 0$, allora $\lim x_n = 0$. Inoltre, $x_{n+1} < x_n \cdot (1 - \epsilon) < x_n$; quindi la successione è definitivamente decrescente.

2.8 Algebra dei limiti

Date due successioni a_n e b_n tali che

- $\lim_{n\to inf} a_n = a$
- $\lim_{n\to inf} b_n = b$

$$\lim_{n\to inf} a_n + b_n = a + b$$
 $\lim_{n\to inf} a_n * b_n = a * b$ $\lim_{n\to inf} \frac{a_n}{b_n} = \frac{a}{b}$

2.9 Forme di indeterminazione

In alcuni casi è impossibile stabilire il comportamento di un limite di una serie, questo avviene nelle forme di indeterminazione.

Ad esempio:

$$\frac{\infty}{\infty}$$
 $\frac{0}{0}$ 1^{∞} 0^{∞} ∞^{∞} $\infty - \infty$ $0 * \infty$ 0^0

2.10 Successioni definite per ricorrenza

Una successione è definita per ricorrenza se è data nella forma:

$$\begin{cases} x_1 = a \\ x_{n+1} = F(n, x_n) & \text{con } n > 0 \end{cases}$$

2.11 Limiti delle successioni elementari

2.12 Successioni asintotiche

Due successioni a_n e b_n sono asintotiche se $b_n \neq 0$ definitivamente e

$$\lim \frac{a_n}{b_n} = 1$$

L'asintoticità si indica con $\{a_n\} \sim \{b_n\}$

2.12.1 Proprietà derivate

$$a_n \sim b_n \leftrightarrow b_n \sim b_n$$
 Se $\{a_n\} \sim \{a_n'\}$ e $\{b_n\} \sim \{b_n'\}$ allora

$$\lim \frac{\{a_n\}}{\{b_n\}} = \lim \frac{\{a'_n\}}{\{b'_n\}}$$

2.13 Numero di Nepero

e (circa 2,71828) è un numero irrazionale: non può essere espresso come frazione o come numero decimale periodico.

In particolare abbiamo visto come e sia il limite della successione

$$\left\{ (1+\frac{1}{n})^n \right\}$$

Per ogni $k \in \mathbb{N}$ vale infatti che $(1 + \frac{1}{k})^k < e < \sum_{h=0}^k \frac{1}{h} + \frac{1}{2^{k-1}}$

2.13.1 Limiti che si deducono da e

Sia $\{a_n\}$ divergente (e quindi con il limite a $+\infty$) allora

$$\lim(1+\frac{1}{a_n})^{a_n} = e$$

2.14 Successioni infinitesime

Una successione $\{x_n\}$ si dice infinitesima se $\lim x_n=0$. Sia ϵ_n una successione infinitesima a termini positivi. Allora:

- $\sin \epsilon_n \sim \epsilon_n$
- $1 \cos \epsilon_n \sim \frac{1}{2} (\epsilon_n)^2$
- $\lim (1 + \epsilon_n)^{\frac{1}{\epsilon_n}} = e$
- $\log(1+\epsilon_n) \sim \epsilon_n$
- $e^{\epsilon_n} 1 \sim \epsilon_n$
- $(1+\epsilon_n)^{\alpha}-1\sim\alpha\cdot\epsilon_n$

Serie Numerica

3.1 Definizione

Data la successione $\{a_n\}$ possiamo costruire la successione delle somme parziali $\{s_n\}$ nel seguente modo

$$s_0 = a_0$$
$$s_1 = a_0 + a_1$$

. . .

Più generalmente

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n = \sum_{k=0}^n a_k$$

Il simbolo $\sum_{k=0}^{n} a_k$ è detto serie numerica mentre a_k è il termine generale della serie.

3.2 Carattere di una serie

Data la successione $\{a_k\}$ e posto $s_n = \sum_{k=0}^n a_k$, calcoliamo il $\lim_{n \to +\infty} s_n$

3.2.1 Convergenza

Se il limite della serie esiste ed è finito, diremo che la serie converge e la somma della serie converge al valore del limite.

3.2.2 Divergenza

Se il limite esiste ma è infinito, diremo che la serie diverge.

3.2.3 Indeterminatezza

Se il limite non esiste (esempio funzioni goniometriche) diremo che la serie è indeterminata.

Proprietà sul carattere

Il carattere di una serie non viene modificato se si aggiungono, tolgono o modificano un numero finito di termini.

Ad esempio se la nostra serie invece che partire da n = 0, partisse da n = 135, il carattere della serie rimarrebbe invariato perchè, all'infinito, i termini che vengono saltati nella somma sono *definitivamente* trascurabili.

Condizione di Cauchy 3.3

Generalmente, quando lavoriamo con le serie, si tende in modo particolare a studiare il loro carattere (cioè se divergono, convergono od altro). Per aiutarci in questo compito, Cauchy ha dimostrato la condizione necessaria ma non sufficiente per la convergenza di una serie.

© Proprio come suggerisce il nome questa è una condizione che tutte le serie convergenti rispettano (perchè è necessara) ma, essendo una condizione non sufficiente, ci informa anche che, se una generica serie la rispetta, non per forza questa è convergente.

Enunciato

Se $\sum_{n=1}^{\infty} a_n$ è una serie numerica convergente allora $\lim_{n\to+\infty} a_n=0$ Dimostrazione

Prendiamo $\sum_{n=1}^{\infty} a_n$ che è una serie numerica che converge ad S

Sia $s_k = \sum_{n=1}^{\kappa}$ la successione delle somme parziali. Per ipotesi sappiamo che la serie converge ad un numero S, quindi abbiamo che

$$\sum_{n=1}^{\infty} a_n = S \leftrightarrow \lim_{k \to \infty} s_k = S$$

Quindi abbiamo che il termine k-esimo della nostra serie, $a_k = s_k - s_{k-1}$, (cioè la sommatoria di tutti i termini della serie fino a k meno quelli fino a k-1).

Visto che stiamo lavorando con limiti scriveremo quindi che

$$\lim_{n \to +\infty} a_k = \lim_{n \to +\infty} (s_n - s_{n-1}) = \lim_{n \to +\infty} s_m - \lim_{n \to +\infty} s_n = L - L = 0$$

Che in sostanza è quello che volevamo dimostrare.

 \bigcirc Perchè $\lim_{n\to+\infty} s_n - \lim_{n\to+\infty} s_{n-1} = 0$?

Perchè, per ipotesi, la serie che stiamo prendendo in considerazione è convergente, quindi i due limiti, all'infinito tendono alla stesso valore S, Quindi S - S = 0.

3.4 Serie Geometrica

3.4.1 Definizione

Ogni serie nella forma $\sum_{k=0}^{\infty} q^k$ (con $q \in R$) è detta serie geometrica. q è detta ragione della serie geometrica.

3.4.2 Convergenza

$$\sum_{k=0}^{\infty} q^k \begin{cases} \text{coverge a } \frac{1}{1-q} \text{se } |q| < 1 \\ \text{diverge a } + \infty \text{se } q \ge 1 \\ \text{è indeterminata se } q \le -1 \end{cases}$$

 \odot Se $q \leq -1$ la successione di cui si deve fare la somma diventerebbe a segno alterno, nella forma $\{q^0, q^1, q^2, q^3\}$, dove i termini di indice pari saanno positivi, quelli di indice dispari negativi.

3.4.3 Dimostrazione

Andiamo per casi.

Se q >= 1 la serie geometrica ottenuta non rispetta la condizione di Cauchy per la convergenza: il limite del termine generale non è infatti 0 ma infinito, quindi la serie diverge.

Se q=-1, $\sum_{k=0}^{\infty}q^k$ vale 0 per n pari e -1 per n dispari, e non rispetta la condizione di Cauchy, quindi la serie diverge.

Se q < -1, $\sum_{k=0}^{\infty} q^k$ il limite del termine generale non esiste, non rispetta la condizione di Cauchy e quindi la serie diverge.

Se -1 < q < 1, cioè |q| < 1. Ricordiamo che per ogni $q \neq 1$ vale la seguente uguaglianza $s_n = 1 + q + q^1 + q^2 + \ldots + q^k = \frac{1 - q^{n+1}}{1 - q}$. Quindi all'infinito $\lim_{n \to \infty} s_n = \frac{1}{1 - q}$ perchè $\lim_{n \to \infty} 1 - q^{n+1} = 1$ con |q| < 1.

 $\ \odot$ Da dove nasce questa uguaglianza? $s_n=1+q+q^1+q^2+\ldots+q^n=\frac{1-q^{n+1}}{1-q}$ Per ipotesi $q\neq 1.$

Lavoriamo su

$$s_n = 1 + q + q^1 + q^2 + \ldots + q^n$$

Moltiplichiamo entrambi i membri per q-1 in modo da ottenere

$$(q-1) \cdot s_n = (1+q+q^1+q^2+\ldots+q^n) \cdot (q-1)$$

Sviluppiamo il secondo termie e otteniamo

$$(q-1) \cdot s_n = 1 - q^{n+1}$$

Dividiamo per (q-1) e ottengo

$$s_n = \frac{1 - q^{n+1}}{q - 1}$$

Che è quello che volevamo dimostrare

3.5 Serie di Mengoli

3.5.1 Definizione

La serie $\sum\limits_{n=1}^{\infty}\frac{1}{7}n(n+1)$ è detta serie di Mengoli.

3.5.2 Convergenza

La serie di Mengoli converge a 1.

3.5.3 Dimostrazione

Inanzitutto $\frac{1}{7}n(n+1) = \frac{1}{n} - \frac{1}{n+1}$

Sostituiamo i valori di N dentro la serie così da ottenere

$$s_n = \sum_{n=1}^{\infty} \frac{1}{n} n(n+1) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{k} - \frac{1}{k+1}$$

Semplificando si ottiene

$$1 - \frac{1}{k+1}$$

Il secondo termine all'infinito tende a 0, quindi $s_n = 1$

3.6 Serie armonica

3.6.1 Definizione

La serie $\sum_{n=1}^{\infty} \frac{1}{7}n$ è detta serie armonica.

3.6.2 Convergenza

La serie armonica diverge a $+\infty$

3.6.3 Dimostrazione

Inanzitutto è facile notare che

$$s_{n+1} = s_n + \frac{1}{n+1} > s_n$$

????

3.7 Serie numerica a segno costante

Una serie $\sum_{n=1}^{\infty} a_n$ si dice a segno costante se per ogni $n \in \mathbb{N}$ i termini della successioni numerica $\{a_n\}$ sono tutti dello stesso segno, o tutti positivi o tutti negativi.

In particolare si parla di:

* serie a termini positivi, se tutti i termini sono > 0 * serie a termini negativi, se tutti i termini sono < 0 * sere a termini non negativi, se tutti i termini sono ≥ 0 * sere a termini non positivi, se tutti i termini sono ≤ 0

3.7.1 Convergenza

Enunciato

Se una serie $\sum_{n=1}^{\infty} a_n$ è a termini non negativi o converge o diverge a $+\infty$.

Dimostrazione Consideriamo $s_n = x_1 + x_2 + ... + x_n$ e $s_{n+1} = x_1 + x_2 + ... + x_n + x_{n+1} = s_n + x_{n+1}$.

E' ovvio che $s_{n+1} > s_n$ quindi s_n è non decrescente, che implica che o diverge o converge a $+\infty$ (ha sempre un limite).

15

3.8 Criterio del confronto

3.8.1 Enunciato

Siano $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ due serie tali che

$$0 \le a_n \le b_n$$

allora

- se $\sum_{n=1}^{\infty} b_n$ convergge, anche $\sum_{n=1}^{\infty} a_n$ converge
- se $\sum_{n=1}^{\infty} a_n$ diverge, $\sum_{n=1}^{\infty} b_n$ diverge

3.8.2 Dimostrazione

 $A_k = \sum_{n=1}^k a_n$ e $B_k = \sum_{n=1}^k b_n$ è ovvio dall'ipotesi che $A_k \leq B_k$ per ogni k. Se B_k converge, vuol dire che esiste un M tale che

$$A_k \leq B_k \leq M$$

Quindi anche A_k è limitata superiormente e perciò converge. Viceversa se A_k diverge, vuol dire che per ogni M si ha

$$M < A_k \le B_k$$

Quindi ancche B_k diverge.

3.9 Criterio del confronto asintotico

3.9.1 Enunciato

Siano $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ due serie a termini positivi con $b_n \neq 0$ per ogni $n \in n$. Supponiamo che esista il limite $\lim_{n \to +\infty} \frac{a_n}{b_n} = L$. Se $L \neq 0$ le due serie hanno lo stesso comportamento.

3.9.2 Dimostrazione

Si sceglie un $\epsilon > 0$ in modo che $L - \epsilon > 0$.

Applichiamo quindi la definizione di limite: esiste un N tale che per n > N,

$$\left|\frac{a_n}{b_n} - L\right| \le \epsilon$$

che scritto in forma estesa equivale a dire che definitivamente

$$(L - \epsilon)b_n \le a_n \le (l + \epsilon)b_n$$

Applichiamo quindi il criterio del confronto su questa disuguaglianza trovata. Se $\sum_{n=1}^{\infty} a_n$ converge, allora converge anche $\sum_{n=1}^{\infty} b_n$, mentre se diverge $\sum_{n=1}^{\infty} b_n$ diverge anche $\sum_{n=1}^{\infty} a_n$.

3.10 Criterio della radice

3.10.1 Enunciato

Sia data la serie $\sum_{n=1}^{\infty} a_n$ a termini positivi per ogni n. Si supponga che esista il limite

$$\lim_{n \to \infty} \sqrt[n]{a_n} = L$$

Allora se L < 1 la serie converge, se L > 1 la serie diverge.

3.10.2 Dimostrazione

Caso L < 1

Per definizione di limite, fissato arbitrariamente un $\epsilon > 0$, esiste un N tale che per n > N si abbia

$$\sqrt[n]{a_n} < L + \epsilon$$

Poniamo $L+\epsilon=q,$ e ricordando che siamo nel caso L<1 scegliamo un ϵ tale che

$$q = L + \epsilon < 1$$

Quindi dalla definizione di limite definita sopra

$$\sqrt[n]{a_n} < L + \epsilon$$

avremo

$$\sqrt[n]{a_n} < q$$

eleviamo alla n

$$a_n < q^n$$

Quindi otteniamo che la nostra serie a_n è definitivamente minorante della serie gemoetrica, che per convergere deve avere |q| < 1, che è vero visto che abbiamo imposto q < 1 sopra. Per il confronto anche a_n converge.

Caso L > 1

Per definizione di limite, fissato arbitrariamente un $\epsilon > 0$, esiste un N tale che per n > N si abbia

$$\sqrt[n]{a_n} > L - \epsilon$$

Poichè L>1, anchre prendendo ϵ abbastanza piccolo, sarà che $L-\epsilon>1$ e quindi

$$\sqrt[n]{a_n} > 1$$

elevando alla n

$$a_n > 1$$

Che pr il confronto diverge, visto che $\sum_{n=0}^{\infty} 1$ diverge.

3.11 Criterio del rapporto

3.11.1 Enunciato

Sia $\{x_n\}$ una successione a termini positivi e sia

$$L = \lim_{n \to +\infty} \frac{x_{n+1}}{x_n}$$

Allora:

- se L > 1 la successione è definitivamente crescente e $\lim x_n = +\infty$.
- se $0 \le L < 1$ la successione è definitivamente decrescente e $\lim x_n = 0$.

3.11.2 Dimostrazione

• se L>1 allora possiamo imporre $L=1+2\epsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} > L - \epsilon \qquad \forall n > N$$

$$\frac{x_{n+1}}{x_n} > 1 + \epsilon \qquad \forall n > N$$

Quindi $x_{n+1} > x_n \cdot (1+\epsilon) > x_n$ per n > N. Quindi la successione è definitivamente crescente.

Proseguendo otteniamo:

$$x_{N+2} > x_{N+1} \cdot (1+\epsilon)$$

 $x_{N+3} > x_{N+2} \cdot (1+\epsilon) > x_{N+1} \cdot (1+\epsilon)^2$ e così via...

Generalizzando:

$$x_n > (1+\epsilon)^{n-(N+1)} \cdot x_{N+1}$$

Poiché $(1+\epsilon)^{n-(N+1)}$ diverge a $+\infty$, per il teorema del confronto anche $\lim x_n = +\infty$.

se 0 < L < 1 procediamo in modo analogo al caso precedente. Imponiamo $L = 1 - 2\epsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} < L + \epsilon \qquad \forall n > N$$

$$\frac{x_n}{x_n} < 1 - \epsilon \qquad \forall n > N$$

Come prima vale:

$$0 < x_n < (1 - \epsilon)^{n - (N+1)} \cdot x_{N+1} \qquad \forall n > N$$

Per il criterio del confronto, essendo $\lim (1 - \epsilon)^{n - (N+1)} \cdot x_{N+1} = 0$, allora $\lim x_n = 0$. Inoltre, $x_{n+1} < x_n \cdot (1 - \epsilon) < x_n$; quindi la successione è definitivamente decrescente.

Serie assolutamente convergente 3.12

Una serie $\sum_{n=1}^{\infty} a_n$ si dice assolutamente convergente se converge $\sum_{n=1}^{\infty} |a_n|$.

La convergenza assoluta implica la convergenza 3.12.1

Enunciato

Se la serie $\sum_{n=1}^{\infty} |a_n|$ converge, allora converge anche la serie $\sum_{n=1}^{\infty} a_n$

Dimostrazione

Qualunque sia il segno di a_n . risulta sempre che $a_n \leq |a_n|$, quindi

•
$$|a_n| - a_n \ge 0$$

• $|a_n| - a_n \le 2|a_n|$ per ogni $n \in \mathbb{R}$

Questo ci permetti di dire che la serie $\sum_{n=1}^{\infty} (|a_n| - a_n)$ converge per confronto (visto che converge $2|a_n|$, più grande).

Scriviamo ora $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{\infty} (|a_n| - a_n)$: in questo modo $\sum_{n=1}^{\infty} a_n$ diventa differenza di due serie entrambi convergenti.

Per linearità quindi la serie $\sum_{n=1}^{\infty} a_n$ converge.

3.13 Serie a segno variabile

Si parla di serie a segno variabile quando si affrontano serie che hanno un numero infinito di termini positivi e un numero infinito di termini negativi.

Generalmente queste serie sono nella forma

$$\sum_{n=1}^{\infty} (-1)^n a_n \operatorname{con} a_n \ge 0 \operatorname{per ogni} n \in N$$

3.13.1 Criterio di Leibniz

Enunciato Sia $\sum_{n=1}^{\infty} (-1)^n a_n$ una serie a segno variabile. Se valgono le seguenti ipotesi:

- $\{a_n\}$ è una successione infinitesima, cioè $\lim_{n\to+\infty}a_n=0$
- $\{a_n\}$ è definitivamente una successione non crescente, ossia esiste un indice n_0 per cui per ogni $n \ge n_0$ risulta che $a_{n+1} \le a_n$

Allora, secondo il criterio di Leibiniz, la serie $\sum_{n=1}^{\infty} (-1)^n a_n$ convege.

Dimostrazione

Chiamiamo con A_m le somme parziali della serie, con A_{2k-1} le somme di indice dispari e con A_{2k} le somme di indice pari.

Si ha che $A_{2k+1} = A_{2k-1} + a_{2k} - a_{2k+1}$

Visto che la seire è non crscente per ipotesi $a_{2k} \leq a_{2k+1}$ e quindi anche $A_{2k+1} \leq A_{2k-1}$. La sccessione

no

Funzioni di una variabile reale

4.1 Definizione

Definiamo una funzione di una variabile reale (che d'ora in poi chiamaremo funzione) come una legge che agisce su un numero reale e lo trasforma in un altro numero reale. Una funzione si indica con la scrittura $f: D \to \mathbb{R}$.

D è il dominio (sottoinsieme di \mathbb{R}) della funzione, spesso indicato con D(f).

E' detta immagine l'insieme dei valori assunti dalla funzione.

4.2 Funzioni Crescenti e Decrescenti

Pre un qualunque x e y tali che x < y diciamo che una funzione è:

- crescente se vale f(x) < f(y)
- decrescente se vale f(x) > f(y)
- non-decrescente se vale $f(x) \le f(y)$
- non-crescente se vale $f(x) \ge f(y)$

4.2.1 Funzioni monotone

Una funzione è monotona se soddisfa una qualsiasi delle proprietà sopra elencate.

4.3 Funzioni limitate

4.3.1 Funzioni superiormente limitate

Una funzione si dice superiormente limitata se l'immagine è un insieme superiormente limitato.

o Esiste un $M \in \mathbb{R} \geq$ di tutti i valori assunti della funzione. Per ogni $y \in F(D)$ vale che $M \geq y$ Per ogni $x \in D$ vale che $M \geq f(x)$

4.3.2 Funzioni superiormente limitate

Una funzione si dice inferiormente limitata se l'immagine è un insieme inferiormente limitato.

4.3.3 Funzioni limitate

Una funzione è limitata se è sia superiormente che inferiormente limitata.

4.4 Funzioni iniettive, suriettive, biettive

4.4.1 Funzione iniettiva

Una funzione è detta iniettiva se elementi distinti del dominio hanno immagini distinte. Cioè se

$$a \neq b$$
allora $f(a) \neq f(b)$ per ogni a, b

4.4.2 Funzione suriettiva

Una funzione è detta suriettiva se l'immagine di f coincide con il codominio.

4.4.3 Funzione biettiva

Una funzione si dice biettiva (o biunivoca) se è sia iniettiva che suriettiva.

4.5 Funzione inversa

Sia $f:A\to B$ una funzione biunivoca. La funzione inversa $f^{-1}:B\to A$ è la funzione che associa ad ogni $y\in B$ l'unico elemento $x\in A$ tale che f(x)=y.

 $\ \, \odot \ \, f^{-1}$ associa ad y l'unico elemento della contro
immagine di y.

4.6 Massimi e minimi relativi

4.7 Limite di funzione

4.7.1 Definizione

Sia data una funzione $f:X\to\mathbb{R}$ e un punto x_0 di X. Si dice che f ha limite L per $x\to x_0$ e scriviamo

$$\lim_{x \to x_0} = L$$

se per ogni valore $\epsilon > 0$ esiste un $\gamma(\epsilon) > 0$, cioè un γ dipendente dall' ϵ scelto prima tale che pgni volta che prendo un x tale che

$$0 < |x - x_0| < \gamma$$

risulta che

$$f(x) - L < \epsilon$$

© URGE SPIEGAZIONE MIGLIORE (TODO)

4.7.2 Teorema di unicità del limite

Se il limite di una funzione esiste, esso è unico.

4.8 Limite destro e sinistro

4.8.1 Limite destro

Sia $f:(x_0,b)\to\mathbb{R}$. Si dice che L è il limite destro di f(x) in x_0 e si scrive

$$L = \lim_{x \to x_0^+}$$

se per ogni $\epsilon > 0$ esiste $\gamma > 0$ tale che $x_0 < x < x_0 + \gamma \to f(x) \in B_{\gamma}(L)$

4.8.2 Limite sinistro

Sia $f:(x_0,b)\to\mathbb{R}$. Si dice che L è il limite sinistro di f(x) in x_0 e si scrive

$$L = \lim_{x \to x_0^-}$$

se per ogni $\epsilon > 0$ esiste $\gamma > 0$ tale che $x_0 < x < x_0 - \gamma \to f(x) \in B_{\gamma}(L)$

4.8.3 Osservazioni collegate

Se esiste il limite L in x_0 , allora L è anche il limite destro e sinistro.

Se il limite sinistro e destro esistono e coincidono, allora esiste anche in limite L.

4.9 Teorema del confronto

Molto simile a quello delle successioni.

Siano f, g, h funzioni definite da $A \to R$. Se $f(x) \le g(x) \le h(x)$ e $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$ allora $\lim_{x \to x_0} g(x) = L$.

4.10 Esistenza del limite per funzioni monotone

Presa f(x), funzione monotona, possiamo dire che essa ammette limite.

4.11 Funzione continua

4.11.1 Funzione continua in un punto

Una funzione $f: A \to \mathbb{R}$ è continua in $x_0 \in A$ se per ogni intorno V di $f(x_0)$ esiste un $\gamma > 0$ tale che per ogni $x \in B_{\gamma}(x_0)$ vale $f(x) \in V$

 \odot La scrittura $B_{\gamma}(x_0)$ indica un intorno bucato di x_0 .

4.11.2 Funzione continua

Una funzone è coninua se è continua in ogni $x \in D$, con D dominio della funzione.

4.12 Punti di discontinuità

Prendiamo una funzione $f: A \to \mathbb{R}$ e un punto $x_0 \in A$. In x_0 diciamo che:

- La funzione ha una discontinuità di prima specie (salto) se i limiti destro e sinitro, esistono, sono finiti e sono diversi.
- La funzione ha una disconitnuità di seconda specie (cuspide) se almeno uno tra il limite destro e sinitro o è infinito o non esiste.

• La funzione ha una disconitnuità di terza specie (eliminabile) se $\lim_{x\to x_0} f(x)$ esiste ed è finito ma è diversodal valore di $f(x_0)$.

Osservazione correlata Data una funzione monotona allora tutti i suoi punti di discontinuità sono di prima specie.

4.13 Operazioni su funzioni continue

Enunciato

Siano f, g due funzioni $A \to R$ allora f + g e $f \cdot g$ sono anch'esse funzioni continue. Inoltre, se $g \neq 0$ in ogni punto di A allora anche $\frac{f}{g}$ è continua.

Dimostrazione

Dimostriamo per prima cosa la somma. Per fare questo utilizziamo l'algebra dei limiti. Infatti dato un $x_0 \in A$, deve valre, affinchè ci sia continuità che $\lim_{x\to x_0} (f(x) + g(x)) = f(x_0) + g(x_0)$. Questa cosa è ovvia perchè

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0)$$

Allo stesso modo si agisce per la moltiplicazione e la divisione.

4.14 Teorema di Weierstrass

4.14.1 Alcuni enunciati necessari

Data una funzione $f:A\to\mathbb{R}$ si dice che y è il massimo assoluto di f se $y=\max\{f(x)|x\in A\}$

Se una funzione ha un massimo assoluto, questo è unico.

4.14.2 Teorema di Weierstrass

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua; allora f ammette un minimo e un massimo. Ovvero f([a,b]) è un intervallo chiuso.

4.15 Teorema degli zeri

Enunciato

Sia $f: [a,b]to\mathbb{R}$ una funzione continua; se f(a) < 0 e f(b) > 0, allora esiste un $x \in (a,b)$ tale che f(x) = 0.

Dimostrazione 1

Consideriamo l'intervallo I = [a, b]. Poichè la funzione è continua e f(I) è un intervallo che contiene sia f(a) che f(b), deve per forza contenere lo 0.

 \odot Abbastanza ovvio, se è continua vuol dire che (prima o poi) assume tutti i valori tra f(a) < 0 e f(b) > 0 e tra questi valori c'è per forza lo 0, altrimenti non sarebbe continua.

Dimostrazione 2

(TODO)?

Derivate

A partire dal problema dell'individuazione della tangente geometrica ad una curva sono state formulate le basi del calcolo differenziale.

5.1 Rapporto incrementale

Sia $f:(a,b)\to\mathbb{R}$ e sia $x_0\in(a,b)$. Sia x_0+h , con $h\neq 0$, un altro punto di (a,b). Si chiama rapporto incrementale della funzione f, con punto iniziale x_0 e incremento h della variabile dipendende, la quantità

$$\frac{f(x_0+h)-f(0)}{h}$$

5.1.1 Significato geometrico

Il rapporto incrementale costituisce il coefficiente angolare della retta (secante) passante per i punti $(x_0, f(x_0))$ e $(x_0 + h, f(x_0 + h))$. Infatti, per ogni h scelto la secante ha equazione

$$f(x_0) + \frac{f(x_0+h) - f(x_0)}{h} \cdot (x-x_0)$$

Se la funzione è quindi derivabile, se $h \to 0$ il punto $(x_0 + h, f(x_0 + h))$ tende al punto $(x_0, f(x_0))$ e quindi la retta secante diventa retta tangente di f nel punto $(x_0, f(x_0))$

5.2 Derivata

Sia $f:(a,b)\to\mathbb{R}$ e sia $x_0\in(a,b)$. Si dice che la funzione è derivabile in x_0 se esiste, finito, il limite del rapporto incrementale con $h\to 0$. Tale limite si indica con $f'(x_0)$ e si chiama derivata di f in x_0 .

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Se si pone $x = x_0 + h$, il rapporto incrementale diventa

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

5.2.1 Retta tangente

Sia $f:(a,b)\to\mathbb{R}$ derivabile in $x_0\in(a,b)$. Si chiama retta tangente al grafico della funzione in $(x_0,f(x_0))$ la retta

$$y = f(x_0) + f'(x_0)(x - x_0)$$

5.3 Relazione tra derivabilità e continuità

Enunciato

Se una funzione è derivabile in un punto x_0 allora è anche continua in quel punto.

Cioè $\lim_{x\to x_0}$

$$\bigcirc$$
 Derivabile in x_0

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Continua in x_0

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Dimostrazione

Sappiamo che

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$$

Calcoliamo il limite per $x \to x_0$ di entrambi i membri.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x_0) + \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$$

Quindi

$$\lim_{x \to x_0} f(x_0) = f(x_0)$$

 $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f''(x_0)$ perchè la funzione è derivabile per ipotesi in x_0 .

$$\lim_{x \to x_0} (x - x_0) = x_0 - x_0 = 0$$

Quindi

$$\lim_{x \to x_0} f(x) = f(x_0)$$

5.4 Regole di derivazione

Se $f, g:(a,b) \to \mathbb{R}$ sono due funzioni derivabili in (a,b), allora:

- f + g è derivabile in (a, b) e (f + g)' = f' + g'
- dato $a \in \mathbb{R}$. $a \cdot f$ è derivabile e $(a \cdot f)' = a \cdot f'$
- f * g è derivabile in (a, b) e (f * g)' = f' * g'
- $g(x) \neq 0$ per ogni $x \in (a,b)$ allora $\frac{f}{g}$ è derivabile e $(\frac{f}{g})' = \frac{f'g fg'}{g^2}$

5.5 Derivate funzioni elementari

5.5.1 Derivata di sin(x)

Sia $f(x) = \sin(x)$, allora $f'(x) = \cos(x)$.

Dimostrazione

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h} = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - 1}{h} + \cos(x) * \frac{\sin(x+h) - \sin(x)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(x)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(h)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(h)\frac{\cos(h) - \sin(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(h)\frac{\cos(h) - \sin(h)}{h}) = \lim_{h \to 0} (\sin(h)\frac{\sin(h) - \sin(h)$$

Sappiamo che $1-\cos(h)\sim \frac{1}{2}h^2,$ quindi lim $\frac{1-\cos(h)}{h}=0.$

$$= \cos(x) \cdot \lim_{h \to 0} \frac{\sin(h)}{h} = \cos(x)$$

5.5.2 Derivata di cos(x)

Sia $f(x) = \cos(x)$, allora $f'(x) = -\sin(x)$.

Dimostrazione

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= -\sin x$$

5.5.3 Derivata di tan(x)

Sia $f(x) = \tan(x)$, allora $f'(x) = \frac{1}{\cos^2(x)}$.

Dimostrazione

Conoscendo le derivate di $\sin(x)$ e $\cos(x)$, scriviamo $f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$. Applichiamo la regola di derivazione del rapporto:

$$f'(x) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}$$

5.5.4 Derivata di e^x

Se $f(x) = e^x$, allora $f'(x) = e^x$.

Dimostrazione

$$\lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x \cdot (e^h - 1)}{h}$$

$$= e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h} = e^x$$

5.5.5 Derivata di log(x)

Se $f(x) = \log x$, allora $f'(x) = \frac{1}{x}$. Infatti:

Dimostrazione

$$\lim_{h \to 0} \frac{\log(x+h) - \log x}{h}$$

$$= \lim_{h \to 0} \frac{\log \frac{x+h}{x}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \cdot \log \left(1 + \frac{h}{x}\right)$$

Osservando che $\frac{h}{x}$ tende comunque a zero, possiamo applicare il limite notevole $\log(1 + \frac{h}{x}) \sim \frac{h}{x}$.

$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{h}{x} = \frac{1}{x}$$

5.6 Punti di non derivabilità

Ricordiamo che una funzione y = f(x), $f : \mathbb{R} \to \mathbb{R}$ è derivabile in un punto x_0 se esistono finiti e uguali i limiti sinitro e destro del rapporto incrementale.

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h}$$

Adattare la definizione di punti di discontinuità per le derivate.

5.7 Teorema di Fermat

Enunciato Sia $f:(a,b) \to \mathbf{R}$ una funzione e si supponga che $x_0 \in (a,b)$ sia un punto di estremo locale (massimo o minimo) di f. Se f è derivabile nel punto x_0 , allora $f'(x_0) = 0$.

Dimostrazione

Supponiamo che x_0 sia un punto di minimo relativo. Esiste $\delta > 0$ tale che per ogni $x \in (x_0 - \delta, x_0 + \delta)$ si abbia $f(x) \ge f(x_0)$

Per $x_0 < x < x_0 + \delta$ (rapporto incrementale destro) si ha

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Per $x_0 - \delta < x < x_0$ (rapporto incrementale sinistro) si ha

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Visto che la funzione f(x) è derivabile in x_0 (per ipotesi), calcoliamo il limite destro del rapporto incrementale

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

e anche il limite sinistro del rapporto incrementale

$$f'(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Combinando le due soluzioni $(f'(x_0) \le 0 \land f'(x_0) \ge 0)$ per forza deve essere che $f'(x_0) = 0$

5.8 Teorema di Rolle

Enunciato

Presa $f:[a,b] \to \mathbb{R}$, se essa è continua in [a,b], derivanbile in (a,b) e f(a)=f(b), allora esiste un punto $z \in (a,b)$ tale che f'(z)=0.

Dimostrazione

La funzione è continua in un intervallo, per il teorema di Weierstrass esiste per forza un punto di massimo assoluto e minimo assoluto in [a, b].

Se il punto trovato è sia di massimo che di minimo allora la funzione è costante. Altrimenti:

- Se a non è un punto di massimo allora neanche b lo è, visto che f(a) = f(b). Quindi un punto di massimo ci deve essere per forza in (a, b) in cui, per il teorema di Fermat, la derivata vale 0.
- Se a non è un punto di minimo allora neanche b lo è, visto che f(a) = f(b). Quindi un punto di minimo ci deve essere per forza in (a, b) in cui, per il teorema di Fermat, la derivata vale 0.

5.9 Teorema di Lagrange

Enunciato Presa $f:[a,b] \to \mathbb{R}$, se essa è continua in [a,b], e derivabile in (a,b). Allora esiste un $x \in (a,b)$ tale che

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

Dimostrazione

Consideriamo la funzione

$$g(x) = f(x) - (x - a) \cdot \frac{f(b) - f(a)}{b - a}$$

Questa funzione soddisfa le ipotesi del teorema di Rolle, infatti:

$$g(b) = f(b) - (b-a) \cdot \frac{f(b) - f(a)}{b-a} = f(a)$$

e g(a) = f(a) per gli stessi calcoli. Inoltre g è continua in [a, b] e derivabile in (a, b) perché f lo è.

Il teorema di Rolle ci garantisce l'esistenza di almeno un $x \in (a, b)$ tale che g'(x) = 0. Calcoliamo la derivata della funzione:

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Quindi

$$f'(x) = \underbrace{g'(x)}_{0} + \frac{f(b) - f(a)}{b - a}$$

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

5.10 Teorema di Cauchy

Siano $f, g : [a, b] \to \mathbb{R}$ due funzioni continue in [a, b] e derivabili in (a, b). Allora esiste un punto $c \in (a, b)$ tale che

$$[g(b) - g(a)]f'(c) = [f(b) - f(a)]g'(c).$$

5.11 Teorema de L'Hopital

Siano $f, g : [a, b] \to \mathbb{R}$ due funzioni continue in [a, b] e derivabili in (a, b), con $-\infty \le a < b \le +\infty$; sia g'(x) diversa da 0 in ogni punto di tale intervallo, tranne al più in $c \in (a, b)$. Sia inoltre

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0$$

oppure

$$\lim_{x \to c} |f(x)| = \lim_{x \to c} |g(x)| = \infty,$$

ed esista

$$L = \lim_{x \to c} \frac{f'(x)}{g'(x)} \in \bar{\mathbb{R}}$$

Allora

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L$$

5.12 Polinomio di Taylor

Data una funzione $f: I \to \mathbb{R}$, derivabile n-1 volte, con $f^{(n-1)'}$ derivabile in x_0 , si definisce polinomio di Taylor

$$P_n(x) = \sum_{k=0}^{n} \frac{1}{k!} \cdot f^{k\prime}(x_0)(x - x_0)^k$$

5.12.1 Resto in forma di Peano

Data una funzione $f: I \to \mathbb{R}$, derivabile n-1 volte, con $f^{(n-1)\prime}$ derivabile in x_0 , allora

$$f(x) = P_n(x) + o((x - x_0)^n)$$

La funzione si può quindi esprimere tramite un polinomio di Taylor e un resto $R_n(n) = f(x) - P_n(x)$, tale che

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0$$

5.12.2 Resto in forma di Lagrange

Data una funzione $f: I \to \mathbb{R}$, derivabile n-1 volte, definita su I intervallo aperto. Per ogni $x, x_0 \in I$ esiste c compreso tra x e x_0 tale che

$$f(x) - P_n(x) = \frac{f^{(n+1)'}(c)}{(n+1)!} \cdot (x - x_0)^{n+1} = \text{Resto di Lagrange}$$

5.13 Convessità e concavità

5.13.1 Funzione Concava

Dato un intervallo $I, f: I \to \mathbb{R}$ si dice *convessa* se $\forall x_1, x_2 \in I$ vale

$$f(x_1 + t(x_2 - x_1)) \le f(x_1) + t(f(x_2) - f(x_1))$$

per ogni $t \in [0, 1]$.

Di fatto questo significa che il grafico della funzione sta sotto la corda.

5.13.2 Funzione Convessa

Con definizione analoga, si dice che f è strettamente convessa se vale

$$f(x_1 + t(x_2 - x_1)) < f(x_1) + t(f(x_2) - f(x_1))$$

Invertendo le due disuguaglianze precedenti si ottengono intuitivamente le definizioni di funzione concava e strettamente concava:

$$f(x_1 + t(x_2 - x_1)) \ge f(x_1) + t(f(x_2) - f(x_1))$$

Diamo ora per vero che una funzione derivabile è convessa se e solo se la sua derivata è non decrescente.

Se f' è non decrescente, allora $g(x) = f(x) - f'(x_0)(x - x_0) + f(x_0)$ ha un minimo in x_0 . Infatti $g'(x) = f'(x) - f'(x_0)$; quindi $g'(x) \ge 0$ per $x > x_0$ e $g'(x) \le 0$ per $x < x_0$. Quindi effettivamente esiste un minimo in x_0 .

La retta tangente ha equazione $y = f(x_0) + f'(x_0)(x - x_0)$. Consideriamo g(x) come differenza tra la funzione e la retta tangente. A questo punto $g(x_0) = f(x_0) - f(x_0) = 0$, quindi $g(x) \ge 0 \ \forall x$.

Sia $f: I \to \mathbb{R}$ derivabile, allora f è convessa se e solo se f' è non decrescente.

Se $f: I \to \mathbb{R}$ è derivabile due volte, allora è convessa se e solo se $f''(x) \ge 0$ in ogni punto.

5.14 Punti di flesso

Si dice che x è un punto di flesso per f se f è concava in $(x, x + \delta)$ e f è convessa in $(x - \delta, x)$ o viceversa.

Nei punti di flesso la tangente attraversa il grafico della funzione.

In un punto di flesso la funzione cambia concavità.

5.14.1 Punti a tangente verticale

Si dice che x_0 è un punto a tangente verticale per f se

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

è infinito.

Primitive

6.1 Definizioni

6.1.1 Primitiva

Data una funzione $f:(a,b)\to\mathbb{R},$ si dice che F è una primitiva di f se F'=f

6.1.2 Integrale indefinito

Si dice integrale indefinito di f(x) l'insieme di tutte le primitive di f(x) e si scrive come $\int f(x) dx$.

$$\bigcirc$$
 $F(x)$ è una primitiva di $f(x)$ se e solo e $F(x) \in \int f(x) dx$

6.2 Linearità dell'integrale

Se f,g ammettono una primitiva, allora anche la somma ammette una primitiva.

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

Se $\lambda \in \mathbb{R}$ e f(x) ha una primitiva F(x), allora

$$\int \lambda f(x) \, \mathrm{d}x = \lambda \int f(x) \, \mathrm{d}x$$

6.3 Integrazione per parti

Siano $f,g:I\to\mathbb{R}$ due funzioni. Sia f derivabile; supponiamo che g abbia una primitiva G e $f\cdot g$ abbia una primitiva. Allora

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$

6.4 Sostituzione di variabile

Sia $f: I \to \mathbb{R}$ e $g: J \to \mathbb{R}$ derivabile; con I e J intervalli tali che abbia senso la scrittura f(g(x)). Se f(x) ha una primitiva F(x) allora

$$F(g(t)) = \int f(g(t)) \cdot g'(t) dx$$

6.5 Integrali di funzioni fratte

(TODO?)

Integrali definiti

7.1 Partizioni

Sia [a,b] un intervallo chiuso e limitato. Una partizione P di [a,b] è un insieme di n+1 punti

$$a = x_0 < x_1 < \ldots < x_n = b$$

 \odot Una partizione P suddivide l'intervallo [a,b] in n intervalli.

7.1.1 Somma inferiore

Se f è una funzione $[a,b] \to \mathbb{R}$ limitata e P è una partizione di [a,b], la somma inferiore di f relativa a $P = \{x_0, \dots, x_n\}$ è

$$s(f, P) = \sum_{i=1}^{n} \underbrace{(x_i - x_{i-1})}_{base} \cdot \underbrace{m_i}_{altezza}$$

dove

$$m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$

 \odot Prendo ogni singola base del rettangolo che nasce dal partizionamento e lo moltiplico per il punto minimo di f(x) compreso tra gli estremi di ogni singola base. **Aggiungi foto**

7.1.2 Somma superiore

Se f è una funzione $[a,b] \to \mathbb{R}$ limitata e P è una partizione di [a,b], la somma superiore di f relativa a $P = \{x_0, \dots, x_n\}$ è

$$S(f, P) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot M_i$$

dove

$$M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

 \odot Prendo ogni singola base del rettangolo che nasce dal partizionamento e lo moltiplico per il punto massimo di f(x) tra gli estremi di ogni singola base. **Aggiungi** foto

7.1.3 Raffinamento di una partizione

Data una partizione P, si dice che una partizione P^* è un raffinamento di P se $P \subset P^*$, ossia se ogni punto di P è anche punto di P^* . Date due partizioni P_1 e P_2 si dice comune raffinamento di P_1 e P_2 la partizione $P^* = P_1 \cup P_2$.

① Un raffinamento è quindi ottenuto introducendo nuovi punti nella partizione.

Sia $f:[a,b]\to\mathbb{R}$ limitata. Se P è una partizione di [a,b] e P^* un suo raffinamento, allora

$$s(f, P) \le s(f, P^*)$$
 e $S(f, P) \ge S(f, P^*)$

$$(b-a)\inf f \le \sup_{P} s(f,P) \le \inf_{P} S(f,P) \le (b-a)\sup f$$

7.2 Integrali definiti

7.2.1 Funzione integrabile

Una funzione f(x) limitata definita su [a,b] si dice integrabile se

$$\sup_{P} s(f, P) = \inf_{P} S(f, P)$$

In questo caso si dice che

$$\sup_{P} s(f, P) = \int_{a}^{b} f(x) \, \mathrm{d}x$$

7.2.2 Integrale definito

Si dice integrale definito tra a, b di una funzione integrabile f(x)

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Tale integrale viene indicato per indicare l'area sottesa al grafico di una funzione nell'intervallo [a, b].

Proprietà dell'integrale

Sia $f:[a,b]\to\mathbb{R}$ e $c\in[a,b]$. La funzione f è integrabile su [a,b] se e solo se è integrabile su [a,c] e [c,b]; vale

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Se $b \leq a$ allora

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Se b = a allora

$$\int_{a}^{a} f(x) \, dx = 0$$

Se $f,g:[a,b]\to\mathbb{R}$ sono funzioni integrabili, allora f+g è una funzione integrabile e

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Se $\lambda \in \mathbb{R}$, allora $\lambda f(x)$ è una funzione integrabile e

$$\int_{a}^{b} \lambda f(x) \, dx = \lambda \int_{a}^{b} f(x) \, dx$$

Se $f:[a,b]\to\mathbb{R}$ è una funzione integrabile, allora |f(x)| è integrabile e

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

7.2.3 Integrabilità delle funzioni monotone

Enunciato

Supponiamo che $f:[a,b]\to\mathbb{R}$ sia monotona. Allora f è integrabile.

Dimostrazione

Supponiamo senza perdita di generalità f non decrescente, allora $\forall x$ vale $f(a) \leq f(x) \leq f(b)$; quindi la funzione è limitata.

Sia P_n la partizione $\{x_0, \ldots, x_n\}$ e chiamiamo

$$x_i - x_{i-1} = \delta = \frac{b-a}{n}$$

Esprimiamo la somma inferiore:

$$s(f, P_n) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot m_i$$

Ricordiamo che

$$m_i = \inf_{x_{x-1} \le x \le x_i} f(x)$$

ma essendo f non decrescente, $m_i = f(x_{i-1})$. Quindi

$$s(f, P_n) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot f(x_{i-1})$$
$$= \sum_{i=1}^{n} \delta \cdot f(x_{i-1})$$

Analogamente si ragiona per la somma superiore e si osserva che il sup in questo caso coincide con $f(x_i)$, sempre perché f è non decrescente. Quindi

$$S(f, P_n) = \sum_{i=1}^{n} \delta \cdot f(x_i)$$

Calcoliamo quindi la differenza tra le due somme in questo caso particolare:

$$S(f, P_n) - s(f, P_n) = \sum_{i=1}^n \delta \cdot f(x_i) - \sum_{i=1}^n \delta \cdot f(x_{i-1})$$

$$= \delta[f(x_1) + \dots + f(x_n)] - \delta[f(x_0) + \dots + f(x_{n-1})]$$

$$= \delta[f(x_n) - f(x_0)]$$

$$= \frac{b-a}{n} \cdot [f(b) - f(a)]$$

Quindi

$$\lim_{n \to +\infty} S(f, P_n) - s(f, P_n) = 0$$

Per definizione di limite, $\forall \epsilon > 0$ esiste P_n tale che $S(f, P_n) - s(f, P_n) < \epsilon$. Quindi la funzione è integrabile.

7.3 Teorema della media integrale

Enunciato Sia $f:[a,b]\to\mathbb{R}$ una funzione continua, allora esiste $c\in[a,b]$ tale che

$$f(c)(b-a) = \int_{a}^{b} f(x) dx$$

 \odot Esiste un altezza f(c) che moltiplicata per la base (b-a) da il valore dell'area sottesa al grafico della funzione.

Dimostrazione

La funzione è continua, quindi anche integrabile.

Per il teoream di Weirstrass la funzione ha quindi almeno un punto di massimo M e un punto di minimo m.

Di conseguenza possiamo scrivere

$$m \cdot (b-a) \le \int_a^b f(x) \, \mathrm{d}x \le M \cdot (b-a)$$

Dividiamo i membri della disequazione per b-a e otteniamo

$$m \le \frac{\int_a^b f(x)}{b-a} \, \mathrm{d}x \le M$$

Visto che la funzione è continua essa assume quindi tutti i valori intermedi tra m e M, quindi esiste per forza un punto c tale che $f(c) = \frac{\int_a^b f(x)}{b-a}$ cioè

$$f(c) \cdot (b - a) = \int_{a}^{b} f(x)$$

7.4 Funzione integrale

Data una funzione $f:[a,b]\to\mathbb{R}$, definiamo funzione integrale $F:[a,b]\to\mathbb{R}$

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

7.5 Teorema fondamentale del calcolo integrale

7.5.1 Parte 1

Definizione

Sia f una funzione integrabile su [a, b] e sia $x_0 \in [a, b]$. Allora la funzione F(x), definita mediante la seguente formula,

$$F(x) = \int_{x_0}^{x} = f(t) dt$$

è continua su [a, b]

 $\ \, \ \, \ \,$ Se $f:[a,b]\to\mathbb{R}$ è una funzione integrabile, la funzione integrale F(x) è continua.

Dimostrazione

Dimostrazione. Essendo integrabile, la funzione f è limitata. Quindi esiste $H \geq 0$ tale che, per ogni x,

$$|f(x)| \le H$$

Consideriamo F(y) - F(x):

$$F(y) - F(x) = \int_{a}^{y} f(t) dt - \int_{a}^{x} f(t) dt$$
$$= \int_{a}^{y} f(t) dt + \int_{x}^{a} f(t) dt = \int_{x}^{y} f(t) dt$$

Ora:

$$|F(y) - F(x)| = \left| \int_{x}^{y} f(t) dt \right| \le \int_{x}^{y} |f(t)| dt \le \int_{x}^{y} H dt = (y - x) \cdot H$$

Quanto abbiamo scritto vale ovviamente se $x \leq y$. In questo caso

$$\lim_{y \to x^+} (y - x) \cdot H = 0$$

Sappiamo quindi che

$$0 \le |F(y) - F(x)| \le (y - x) \cdot H$$

Quindi, per il teorema del confronto abbiamo che

$$\lim_{y \to x^{+}} |F(y) - F(x)| = 0$$

Se fosse invece $x \geq y$, possiamo scambiarli nella penultima equazione e resta

$$0 \le |F(x) - F(y)| \le (x - y) \cdot H$$

da cui segue che

$$\lim_{y \to x^{-}} (x - y) \cdot H = 0$$

e quindi che

$$\lim_{y \to x^{-}} |F(y) - F(x)| = 0$$

In conclusione, unendo i due limiti, trovo che

$$\lim_{y \to x} |F(y) - F(x)| = 0$$

che è esattamente la definizione di continuità.

7.5.2 Parte 2

Enunciato

Se f è continua su [a,b] allora F è derivabile su [a,b] e F'(x)=f(x) per ogni $x\in [a,b].$

Dimostrazione

La funzione integrale esiste, perché f(x) è continua e quindi integrabile.

Sia $x \in [a, b]$ e sia h tale che $x + h \in [a, b]$. Scriviamo il rapporto incrementale in x:

$$\frac{F(x+h) - F(x)}{h}$$

$$= \frac{1}{h} \left(\int_{a}^{x+h} f(t) \, dt - \int_{a}^{x} f(t) \, dt \right) = \frac{1}{h} \int_{x}^{x+h} f(t) \, dt$$

Per il teorema della media integrale esiste y compreso tra $x \in x + h$ tale che

$$f(y) \cdot (x+h-x) = \int_{x}^{x+h} f(t) dt$$

Quindi il rapporto incrementale è $f(y) \cdot \frac{h}{h} = f(y)$. Inoltre

$$\lim_{h \to 0} y = x$$

Quindi

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

Ciò significa che F(x) è derivabile e la sua derivata è f(x).

7.5.3 Parte 3

Enunciato

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Sia G una primitiva di f. Allora presi due valori $x,y\in[a,b]$

$$\int_{a}^{y} f(t) dt = G(y) - G(x)$$

Dimostrazione

Consideriamo una funzione ausiliaria

$$H(y) = G(y) - \int_{x}^{y} f(t) dt$$

Sappiamo che G(y), essendo una primitiva, è derivabile e G'(y) = f(y). Inoltre sappiamo che $\int_x^y f(t) dt$ è una funzione derivabile di y e la sua derivata è f(y) (per il teorema fondamentale del calcolo II).

Consideriamo la derivata di H(y):

$$H'(y) = f(y) - f(y) = 0$$

Poiché H ha derivata zero in [a,b], allora è costante in [a,b]. In particolare si ha che H(y) = H(x). Si ha che

$$H(x) = G(x) - \int_x^x f(t) dt = G(x)$$

e anche che

$$G(x) = H(y) = G(y) - \int_x^y f(t) dt$$

Quindi

$$\int_{x}^{y} f(t) dt = G(y) - G(x)$$