NOME: TURMA

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2000/2001)

1a chamada - 26/Junho/2001

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- 1 Pretende-se construir um sistema electrónico para prever o estado do tempo com base na medida da variação de pressão atmosférica verificada nas últimas 6 horas. O sistema é formado por um sensor de pressão atmosférica com saída digital Pa, um sistema de memória que armazena o historial da pressão e fornece, em cada instante, o valor da pressão atmosférica P6h existente há 6 horas, e um circuito subtractor para calcular a variação de pressão Vp.

a) Sabendo que a pressão atmosférica **Pa** medida pelo sensor de pressão (em mBar) é positiva e nunca ultrapassa o valor 1100₁₀, diga, justificando, qual é o número mínimo de bits necessários para representar essa grandeza.

b) Sabendo que a variação de pressão **Vp** (positiva ou negativa) nunca excede 40 mBar em valor absoluto, indique, justificando, qual o número mínimo de bits necessário para representar, em complemento para dois, essa variação de pressão.

c) Sabendo que o valor actual de pressão é 923 mBar e há 6 horas atrás era de 957 mBar, obtenha o valor da variação de pressão (pressão actual Pa menos a pressão há 6 horas atrás P6h) efectuando a operação de subtracção em binário e tendo em conta as respostas dadas nas alíneas anteriores.

Nota: $923_{10} = 1110011011_2$ e $957_{10} = 11101111101_2$.

NOME:__

TURMA

2 - Considere um circuito que realiza a operação de multiplicação por 3 de um número positivo de 4 bits representado por $D_3D_2D_1D_0$ compreendido entre 0 e 9, como se mostra na figura:

a) Construa a tabela de verdade que traduz a funcionalidade prevista para o circuito.

$D_3\;D_2\;D_1\;D_0$	P_4 P_3 P_2 P_1 P_0

b) Obtenha as expressão simplificadas na forma de soma-de-produtos para a função P4(D3,D2,D1,D0), e na forma de produto-de-somas para a função P2(D3,D2,D1,D0).

NOME: ____TURMA

- A firma Caricas&caricas Lda. pretende projectar o sistema de controlo para uma máquina de fabrico de cápsulas para garrafas de cerveja (caricas), cortando rodelas de uma tira de metal por acção de uma prensa cortante. A tira de metal desloca-se sob a prensa por acção de um par de rolos accionados por um motor, que é ligado colocando o sinal de controlo MOTOR com o nível lógico 1. Para localizar a tira metálica sob a prensa existem dois sensores fotoeléctricos (S1 e S2) colocados como se indica na figura, que são activados (valor lógico 1) sempre que é interrompido o feixe luminoso emitido pelos LEDs L1 e L2 (estes LEDs podem estar sempre ligados e não é necessário que sejam comandados pelo sistema de controlo). O sensor S1 detecta a

presença da tira metálica imediatamente antes da prensa e **S2** detecta o metal imediatamente após a prensa. A prensa é actuada por um sinal de controlo (**PRENSA**) sempre que se detecte que existe tira de metal ainda não cortada debaixo da prensa. Quando **PRENSA** é actuado (valor lógico 1), a prensa desce cortando uma rodela de metal, subindo automaticamente por acção de um sistema pneumático. Para verificar o estado da prensa, existe um sensor **PRENSA_SUBIDA** que apresenta o valor lógico 1 quando a prensa está na posição superior, pronta para realizar novo corte.

O sistema de controlo deve posicionar a tira metálica sob a prensa, accionar a prensa para cortar uma rodela de metal, esperar que a prensa volte à posição superior e voltar a colocar correctamente a tira de metal por forma a cortar nova rodela. O processo é repetido da maneira que se ilustra na figura seguinte, até que a tira metálica chegue ao fim, altura em que o sistema de controlo deve parar. Admite-se que quando o sistema é ligado não existe chapa de metal sob a prensa (S1=0 e S2=0).

Complete o diagrama de estados apresentado na figura da próxima página que descreve o funcionamento do sistema de controlo.

NOME:_____TURMA

3 - (continuação)

NOME: ____TURMA

4 − A tabela de transição de estados da figura descreve uma máquina de estados de Moore com uma entrada X e uma saída Z:

estado	próxim	o estado	saída	110 ~ 1			
presente	X=0	X=1	Z	codificação de estados			
A	A	В	0	A=001			
В	C	В	0	B=101			
C	A	D	0	C=111			
D	C	E	0	D=011			
E	C	В	1	E=100			

a) Supondo a codificação de estados representada na figura, desenhe o esquema do circuito lógico que implementa a máquina de estados, utilizando *flip-flops* do tipo D, e garantindo que para os estados não especificados o estado seguinte é o estado A e a saída Z é indiferente. (utilize o verso da folha)

b) Indique as alterações a efectuar no circuito anterior se, para os estados não especificados, o estado seguinte pudesse ser apenas o estado A ou o estado B.

NOME: ____TURMA ___

5 –

a) Usando um *shift-register* 74x194 (ver tabela abaixo) e circuitos lógicos adicionais, construa um circuito síncrono com uma entrada X e uma saída Z que coloca na saída o valor lógico 1 sempre que detectar na entrada X a sequência de valores 1011 em 4 transições de relógio consecutivas, como se mostra no exemplo seguinte:

função	S1	so	QA* QB* QC* QD*
hold	0	0	QA QB QC QD
shift right	0	1	RIN QA QB QC
shift left	1	0	QB QC QD LIN
load	1	1	A B C D

b) Modifique o circuito anterior por forma a que apenas sejam detectadas sequências não sobrepostas, como se exemplifica na figura seguinte:

Entrada X: 0
$$\boxed{ 1\ 0\ 1\ 1 }$$
 0 1 1 0 0 $\boxed{ 1\ 0\ 1\ 1 }$ Saída Z: 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

NOME: ____TURMA

6 – Considere o circuito da figura, baseado num contador *up-down* 74x169, cuja funcionalidade é descrita pela tabela abaixo.

a) Admitindo o estado inicial Q_D,Q_C,Q_B,Q_A=0000, determine a sequência (em binário) produzida nas saídas Q_D,Q_C,Q_B,Q_A.

74x169					estado presente				próximo estado			
	UP/DWN	/LD	/ENT	/ENP	QD	QC	QΒ	QA	QD*	QC*	QB*	QA*
	x	0	x	×	×	x	x	x	D	C	В	A
	x	1	1	x	x	x	x	x	QD	QC	QB	QA
	x	1	x	1	x	x	x	x	QD	QC	QB	QA
	1	1	0	0	N	(se	N<:	15)		N +	1	
	0	1	0	0	N	(se	N>	0)		N -	1	
	1	1	0	0	1	1	1	1	0	0	0	0
	0	1	0	0	0	0	0	0	1	1	1	1

b) Modifique o circuito apresentado de forma a acrescentar-lhe uma entrada X, activa no nível lógico alto, que permita reinicializar as saídas com o valor $Q_D, Q_C, Q_B, Q_A = 0011$.