

Lecture 23

Confidence Intervals

Announcements

Percentiles

Computing Percentiles

The pth percentile is first value on the sorted list that is at least as large as p% of the elements.

```
Example: s = [1, 7, 3, 9, 5]
s_sorted = [1, 3, 5, 7, 9]

Percentile Data array
percentile (80, s) is 7
```

The 80th percentile is ordered element 4: (80/100) * 5 If p% does not exactly correspond to an element (e.g. 85th percentile), take the next greater element (9).

The percentile Function

- The pth percentile of a set of numbers is the smallest value in the set that is at least as large as p% of the elements in the set
- Function in the datascience module:

```
percentile(p, values_array)
```

- p is between 0 and 100
- Evaluates to the pth percentile of the array

Discussion Question

```
Which are True, when s = [1, 5, 7, 3, 9]?
     percentile(10, s) == 0
    percentile(39, s) == percentile(40, s)
     percentile(40, s) == percentile(41, s)
     percentile(50, s) == 5
                     (Demo)
```

Estimation

Inference: Estimation

- How can we figure out the value of an unknown parameter?
- If you have a census (that is, the whole population):
 - Just calculate the parameter and you're done
- If you don't have a census:
 - Take a random sample from the population
 - Use a statistic as an estimate of the parameter (Demo)

Variability of the Estimate

- One sample → One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Big question:
 - How different would it be if we did it again?

Quantifying Uncertainty

- The estimate is usually not exactly right
- How accurate is the estimate, usually?
- If we already have a census, we can check this by comparing the estimate and the parameter

Where to Get Another Sample?

- We want to understand variability of our estimate
- Given the population, we could simulate
 - ...but we only have the sample!
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
 - No time, no money
- Stuck?

The Bootstrap

The Bootstrap

A technique for simulating repeated random sampling

- All that we have is the original sample
 - ... which is large and random
 - Therefore, it probably resembles the population

So we sample at random from the original sample!

The Problem

- All we have is the random sample
- We know it could have come out differently
- We need to know how different, to quantify the variability in estimates based on the sample
- So we need to create another sample ... or two ... or more

Why the Bootstrap Works

All of these look pretty similar, most likely.

Why We Need the Bootstrap

The Bootstrap Principle

- The bootstrap principle:
 - Re-sampling from the original random sample
 ≈ Sampling from the population
 - with high probability

- Doesn't always hold
 - ... but reasonable for estimating many parameters if the original random sample is large enough

Key to Resampling

- From the original sample,
 - draw at random
 - with replacement
 - as many values as the original sample contained

• The size of the new sample has to be the same as the original one, so that the two estimates are comparable

The Bootstrap Process

One Random Sample

- True but unknown distribution (population)
 - → Random sample (the original sample)

Bootstrap:

- Empirical distribution of original sample ("population")
 - → Bootstrap sample 1
 - → Estimate 1
 - → Bootstrap sample 2
 - → Estimate 2
 - 0 ...
 - o → Bootstrap sample 1000
 - \rightarrow Estimate 1000

95% Confidence Interval

- Interval of estimates of a parameter
- Based on random sampling
- 95% is called the confidence level
 - Could be any percent between 0 and 100
 - Higher level means wider intervals
- The confidence is in the process that creates the interval:
 - It generates a "good" interval about 95% of the time.

Confidence Intervals