Lab 1: NYC Flights

Aaron C Cochran October 5, 2017

Objectives

In this first lab you will:

- \bullet use an established r dataset from nycflights13
- ullet explore the dataset
- create graphical summaries

Most of this lab comes directly from the R for Data Science book by Hadley Wickham and Garrett Grolemund, available at http://r4ds.had.co.nz/.

Load Data

Load the data and check out the structure of the dataset.

```
library(nycflights13)
data(flights)
head(flights)
```

```
## # A tibble: 6 x 19
      year month
                   day dep_time sched_dep_time dep_delay arr_time
##
     <int> <int> <int>
                                                    <dbl>
                          <int>
                                          <int>
                                                              <int>
## 1 2013
              1
                                                        2
                                                                830
                     1
                             517
                                            515
## 2
     2013
               1
                     1
                             533
                                            529
                                                        4
                                                                850
## 3
     2013
               1
                     1
                             542
                                            540
                                                        2
                                                                923
## 4 2013
                     1
                             544
                                            545
                                                        -1
                                                               1004
               1
                                            600
                                                                812
## 5 2013
               1
                     1
                             554
                                                        -6
                                            558
                                                        -4
## 6 2013
                             554
                                                                740
               1
                     1
## # ... with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
      carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
       air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
       time_hour <dttm>
## #
```

Questions

How many rows are in the dataset?

How many variables?

What type (class) of variable is the time hour variable?

Exploring the data

Let's dig into the dataset and explore it.

```
# using dplyr's n\_distinct is the same as length(unique(x)) from base R
# but faster and easier to use
n_distinct(flights$tailnum)
## [1] 4044
# how many origin airports in NY?
n_distinct(flights$origin)
## [1] 3
# what are the origin airports?
levels(as.factor(flights$origin))
## [1] "EWR" "JFK" "LGA"
# how many destinations?
# (note: way more, probably don't want to list them all)
n_distinct(flights$dest)
## [1] 105
How many total flights departed from just JFK? This will use the filter command from dplyr.
     Note the use of the double equals sign == which is the equivalent of "is equal to"
flights %>%
  filter(origin == 'JFK') %>%
  nrow() # nrow() gives the number of rows
## [1] 111279
What was the average departure delay? What is the standard deviation?
summarize(flights, mean = mean(dep_delay, na.rm=T), sd = sd(dep_delay, na.rm=T))
## # A tibble: 1 x 2
##
         mean
##
        <dbl>
                  <dbl>
## 1 12.63907 40.21006
# note the na.rm=T argument. This tells R to ignore (remove) NA
# values when calculating the mean and standard deviation
Questions
  1. How many flights departed from LaGuardia (LGA) for Portland (PDX)
     Hint: You can combine filtered terms with & (and) or | (or).
```

```
flights %>%
  filter(origin == 'JFK' & dest == 'PDX') %>%
  nrow()
```

[1] 783

2. What was the average air_time for these flights?

```
flights %>%
  filter(origin == 'JFK' & dest == 'PDX') %>%
  summarise(mean_air_time = mean(air_time, na.rm=T), sd_air_time = sd(air_time, na.rm=T))
```

```
## # A tibble: 1 x 2
     mean_air_time sd_air_time
##
                          <dbl>
##
             <dbl>
## 1
          330.9101
                       16.00738
  3. How many flights from each airport happened in July?
flights %>%
  filter(month == 7) %>%
  group_by(month, origin) %>%
  summarise(count = n())
## # A tibble: 3 x 3
## # Groups: month [?]
     month origin count
     <int> <chr> <int>
##
## 1
         7
              EWR 10475
         7
## 2
              JFK 10023
```

Visualizing the data

LGA 8927

7

geom_histogram()

3

Using ggplot2 let's create some graphical summaries of the data.

```
flights %>% filter(origin == 'JFK' & dest == 'PDX') %>%
  # note that ggplot2 doesn't use the %>% pipe operator
  # it was written before that was adopted
  # so it still uses a + sign.
ggplot() +
  # define the geom
geom_histogram(aes(x=factor(month)), stat='count') +
  # x-axis title
scale_x_discrete("Month") +
  # y-axis title
scale_y_continuous('Flights') +
  # graph title
ggtitle('Flights from JFK to PDX, by month')
```

Warning: Ignoring unknown parameters: binwidth, bins, pad

Flights from JFK to PDX, by month

facet_wrap()

```
# all airports to PDX as a facet
flights %>% filter(dest=='PDX') %>%
    # note that LGA does not fly to PDX so it is automatically filtered out
ggplot() +
geom_histogram(aes(x=factor(month)), stat='count') +
# facet_wrap splits the graphs up by the specified variable
facet_wrap(~origin) +
# title and labels as before
scale_x_discrete('Month') +
ggtitle('Flights from NY Airports to PDX, by month')
```

Warning: Ignoring unknown parameters: binwidth, bins, pad

geom_density()

geom_density() creates density plots, which can be easily overlayed to show distributions between groups. Example:

Do certain carriers fly more long or short routes? Let's look just at flights leaving JFK, by carrier, with respect to total air_time. For this, we'll need to use another dataset in the nycflights13 package that contains the names of the airlines, instead of just the carrier codes. This will require a left_join (SQL users will recognize this term) on a common column between the two datasets.

Warning: Removed 2200 rows containing non-finite values (stat_density).

Exercises

1. Create a graph showing flights to PDX by month from both EWR and JFK, but as a dodged bar chart instead of a faceted one.

Hint: position = "dodge" is the option for geom_bar()

```
flights %>% filter(dest=='PDX') %>%
    ggplot() +
    geom_bar(position = "dodge", stat = "count", aes(x=factor(month), fill=origin)) +
    ggtitle('Flights to PDX by month, by origin')
```

Flights to PDX by month, by origin

2. What types of planes, and how many of each does Jet Blue (carrier == B6) fly?

Hint: You'll need to join with the planes dataset in the nycflights13 package for this one.

```
flights %>%
  left_join(planes, by="tailnum") %>% # join with planes by tailnum
  filter(carrier == 'B6') %>% # filtered to just include Jet Blue (B6)
  ggplot() + geom_bar(stat = 'count', aes(x=factor(model))) +
  geom_label(stat='count', aes(label = ..count.., x=factor(model)), vjust=.35) +
  theme(axis.text.x = element_text(angle = 0)) + # Change angle to rotate text
  xlab('Aircraft Model') +
  ggtitle('Jet Blue airplane models, 2013 NYC Flights')
```

Jet Blue airplane models, 2013 NYC Flights

