## National Institute of Technology Karnataka Surathkal Department of Information Technology



# IT 200 Computer Communication and Networking Transport Layer

#### Dr. Geetha V

Assistant Professor

Dept of Information Technology

NITK Surathkal

## **Syllabus**

- Evolution of Data Communication and Networks,
- Transmission Fundamentals: Signaling Schemes, Encoding and Modulation,
- Data Transmission over Networks Switching Techniques, Layered Architecture of Computer Networks,
- OSI & TCP/IP Architectures and Layers with protocols,
- Data Link Control and Protocols, Error Detection and Correction,
- Internetworking & Routing,
- Transport Layer Protocols,
- Applications: E-Mail, HTTP, WWW, Multimedia;
- Implementation of Signaling and Modulation, Bit, Byte & Character Stuffing and Error Detection/Correction Coding Techniques, TCP/IP Level Programming, Routing Algorithms, Exercises comprising simulation of various protocols.

## Index

- Introduction
- UDP
- TCP
- Congestion Control

- Transport layer provides service to Application layer and Network layer
- It provides process to process communication
- Communication through logical connection (port number)

Figure 23.1: Logical connection at the transport layer



Figure 23.2: Network layer versus transport layer



Figure 23.4: IP addresses versus port numbers





Figure 23.8: Multiplexing and demultiplexing







Figure 23.10: Flow control at the transport layer



UDP is connectionless, Unreliable transport protocol.

It provides process to process communication.

Client Client transport process layer

Server transport Server layer process



FTP can be used both with TCP and UDP (port 21)

SNMP uses port 161(TCP/UDP) and 162 (UDP)

 Table 23.1
 Well-known ports used with UDP

| Port | Protocol   | Description                                   |
|------|------------|-----------------------------------------------|
| 7    | Echo       | Echoes a received datagram back to the sender |
| 9    | Discard    | Discards any datagram that is received        |
| 11   | Users      | Active users                                  |
| 13   | Daytime    | Returns the date and the time                 |
| 17   | Quote      | Returns a quote of the day                    |
| 19   | Chargen    | Returns a string of characters                |
| 53   | Nameserver | Domain Name Service                           |
| 67   | BOOTPs     | Server port to download bootstrap information |
| 68   | BOOTPc     | Client port to download bootstrap information |
| 69   | TFTP       | Trivial File Transfer Protocol                |
| 111  | RPC        | Remote Procedure Call                         |
| 123  | NTP        | Network Time Protocol                         |
| 161  | SNMP       | Simple Network Management Protocol            |
| 162  | SNMP       | Simple Network Management Protocol (trap)     |



UDP length = IP length – IP header's length



Data

(Padding must be added to make the data a multiple of 16 bits)



| 153.18.8.105 |    |        |        |  |  |  |
|--------------|----|--------|--------|--|--|--|
| 171.2.14.10  |    |        |        |  |  |  |
| All Os       | 17 | 1      | 5      |  |  |  |
| 10           | 87 | 13     |        |  |  |  |
| 1            | 5  | All Os |        |  |  |  |
| T            | E  | S      | T      |  |  |  |
| I            | N  | G      | All Os |  |  |  |



TCP is connection oriented reliable transport protocol.

It provides process to process communication.

Figure 23.15: Connection-oriented service



TCP is connection oriented reliable transport protocol.

It provides process to process communication.

#### Table 23.2 Well-known ports used by TCP

| Port | Protocol     | Description                                   |
|------|--------------|-----------------------------------------------|
| 7    | Echo         | Echoes a received datagram back to the sender |
| 9    | Discard      | Discards any datagram that is received        |
| 11   | Users        | Active users                                  |
| 13   | Daytime      | Returns the date and the time                 |
| 17   | Quote        | Returns a quote of the day                    |
| 19   | Chargen      | Returns a string of characters                |
| 20   | FTP, Data    | File Transfer Protocol (data connection)      |
| 21   | FTP, Control | File Transfer Protocol (control connection)   |
| 23   | TELNET       | Terminal Network                              |
| 25   | SMTP         | Simple Mail Transfer Protocol                 |
| 53   | DNS          | Domain Name Server                            |
| 67   | BOOTP        | Bootstrap Protocol                            |
| 79   | Finger       | Finger                                        |
| 80   | HTTP         | Hypertext Transfer Protocol                   |
| 111  | RPC          | Remote Procedure Call                         |

Stream Delivery



Sending and receiving buffers for end to end flow control.

The bytes of data being transferred in each connection are numbered by TCP. The numbering starts with a randomly generated number.



Sending and receiving buffers for end to end flow control.

The bytes of data being transferred in each connection are numbered by TCP. The numbering starts with a randomly generated number.

```
      Segment 1
      →
      Sequence Number: 10,001 (range: 10,001 to 11,000)

      Segment 2
      →
      Sequence Number: 11,001 (range: 11,001 to 12,000)

      Segment 3
      →
      Sequence Number: 12,001 (range: 12,001 to 13,000)

      Segment 4
      →
      Sequence Number: 13,001 (range: 13,001 to 14,000)

      Segment 5
      →
      Sequence Number: 14,001 (range: 14,001 to 15,000)
```



URG: Urgent pointer is valid ACK: Acknowledgment is valid

PSH: Request for push

RST: Reset the connection

SYN: Synchronize sequence numbers

FIN: Terminate the connection

A SYN segment cannot carry data, but it can consume one sequence number.

A SYN+ACK segment cannot carry data, but it can consume one sequence number.

AN ACK segment, if carrying no data consumes no sequence number.

Figure 23.18 Connection establishment using three-way handshaking



A FIN segment consumes one sequence number if it does not carry data.,

A
FIN+ACK segment consumes
one sequence number if it
does not carry data.,

Figure 23.20 Connection termination using three-way handshaking



A FIN segment consumes one sequence number if it does not carry data.,

A
FIN+ACK segment consumes
one sequence number if it
does not carry data.,

#### Figure 23.21 Half-close



Sliding window for flow control

In modern implementations, a retransmission occurs if the retransmission timer expires or three duplicate ACK segments have arrived.



#### TCP Connection State Diagram



## Reference

• "Data Communications and Networking", Behrouz A. Forouzan, 5th Edition, McGraw Hill, 2017.

# Next Topic Congestion Control