Układy Sterowania Inteligentnego.

Maciej Cebula Marcin Kowalczyk Daniel Rubak

Spis treści

1	$\mathbf{W}\mathbf{s}_1$	tęp
	1.1	Cel zajęć
	1.2	Obiekt sterowania
	1.3	Cel zajęć
2	Mo	del matematyczny
	2.1	Model silnika elektrycznego prądu stałego
	2.2	Model matematyczny obiektu
3	Reg	gulator
	3.1	Zaproponowany regulator
		3.1.1 Regulator PID
		3.1.2 Regulator neuronowy
	3.2	
	3.3	Porównanie wskaźników jakości

$\overline{ ext{Wstep}}$

1.1 Cel zajęć

Celem projektu wykonywanego w ramach zajęć z przedmiotu *Układy Sterowania Inteligent-nego* było zaprojektowanie regulatora dla manipulatora, którego zadaniem było zabranie szklanki z wodą z jednego miejsca i odstawienie jej w innym miejscu. Przemieszczał się on w płaszczyźnie poziomej. Napędzany był jednym silnikiem prądu stałego.

Projektowany regulator miał być układem sterowania inteligentnego. W ramach tego projektu należało również przeprowadzić porównanie inteligentnych algorytmów sterowania (np. sieć neuronowa lub regulator fuzzy) z regulatorami klasycznymi (np. PID, LQ lub czasooptymalny).

1.2 Obiekt sterowania

Obiektem sterowania był manipulator, który przenosił szklankę z wodą, a następnie powracał do położenia początkowego. Musiał on przenieść szklankę bez wylewania jej zawartości. Takie zadanie nie jest tożsame z samym pozycjonowaniem manipulatora. Wymaganie, by nie wylać wody narzuca ograniczenia na ruch obiektu. Musi poruszać się on z odpowiednio małym przyspieszeniem, gdy trzyma szklankę z wodą. Ograniczenie to nie jest jednak ważne, gdy powraca do położenia początkowego. Jest więc oczywiste, że dla ruchu w obie strony powinny zostać użyte inne regulatory. Pierwszy z regulatorów powinien zapewnić spełnienie następującego ograniczenia:

$$\ddot{\phi}(t) \leqslant \epsilon_{max} \tag{1.1}$$

gdzie:

 ϕ jest położeniem kątowym manipulatora,

 ϵ_{max} jest maksymalnym przyspieszeniem kątowym.

1.3 Wskaźniki jakość

Aby móc porównać ze sobą różne struktury regulatorów konieczne było zdefiniowanie wskaźników jakości, które minimalizować miał projektowany regulator. Zdecydowano, że będą one następującej postaci:

1. całka z kwadratu uchybu regulacji $J_1 = \int_0^{tk} e(t)^2 dt \ [rad^2 \cdot s]$

- 2. wskaźnik energetyczny $J_2 = \int_0^{tk} u(t)^2 dt \ [V^2 \cdot s]$
- 3. suma powyższych wskaźników $J_3=J_1+J_2\,$

(1.2)

gdzie:

- $e(t) = r \phi(t)$ to uchyb regulacji
- ϕ jest położeniem katowym manipulatora,
- r jest zadaną pozycją manipulatora,
- u jest sterowaniem podawanym na obiekt.

Należy zwrócić uwagę, że postanowiono zaniedbać opory ruchu. W związku z tym jedynym momentem siły działającym na manipulator był moment pochodzący od silnika prądu stałego. W dalszej części projektu możliwe jest zmodyfikowanie zadania w taki sposób, by wziąć pod uwagę opory związane z ruchem obrotowym manipulatora.

Model matematyczny

2.1 Model silnika elektrycznego prądu stałego

Silnik elektryczny odpowiedzialny za poruszanie ramieniem został zamodelowany jako obiekt inercyjny pierwszego rzędu. Równania 2.1 i 2.2 opisują zależność generowanego momentu obrotowego od prądu.

$$M(t) = k_e \cdot i(t) \tag{2.1}$$

$$U(t) = i(t) \cdot R + L \cdot \frac{di(t)}{dt}$$
(2.2)

gdzie:

M(t) - moment generowany przez silnik,

i(t) - prąd elektryczny,

 k_e - stała elektryczna silnika,

L - indukcyjność silnika,

R - opór elektryczny silnika.

2.2 Model matematyczny obiektu

Równania mechaniczne opisujące dynamikę całego układu mają postać:

$$\frac{d^2\alpha(t)}{dt^2} \cdot J = k_e \cdot i(t) \tag{2.3}$$

$$U(t) = i(t) \cdot R + \frac{di(t)}{dt} \cdot L \tag{2.4}$$

gdzie:

 α - kat wychylenia,

J - moment bezwładności ramienia,

U(t) - napięcie podawane na silnik,

W przyjętym modelu obiektu założono że wielkością sterującą jest napięcie podawane na silnik, a wyjściową kąt wychylenia ramienia.

Na podstawie równań 2.3 i 2.4 zapisano model matematyczny w postać równań stanu przyjmując następujące zmienne stanu:

 x_1 - prad silnika

 x_2 - położenie kątowe ramienia

 \boldsymbol{x}_3 - prędkość kątowa ramienia

$$\dot{x_1} = -x_1 \cdot \frac{R}{L} + \frac{U}{L} \tag{2.5}$$

$$\dot{x_2} = x_3 \tag{2.6}$$

$$\dot{x_3} = \frac{k_e}{J} \cdot x_1 \tag{2.7}$$

Schemat blokowy programu $\mathit{Simulink}$ realizujący opisany powyższy model został przedstawiony na rysunku

Rys. 2.1: Schemat blokowy programu Simulink.

Na rysunkach przedstawiono odpowiedzi zmiennych stanu na skok napięcia.

Rys. 2.2: Odpowiedź prądu na skok napięcia.

Rys. 2.3: Odpowiedź kąta na skok napięcia.

Rys. 2.4: Odpowiedź prędkości kątowej na skok napięcia.

Regulator

3.1 Zaproponowany regulator

3.1.1 Regulator PID

Do pozycjonowania manipulatora zaproponowany został regulator składający się z dwóch równolegle połączonych regulatorów PID. Kiedy trzymana jest pełna szklanka, to na wyjście przekazywane jest sterowanie z pierwszego regulatora, a kiedy jest pusta to z drugiego. Regulatorom postanowiono zadać inne nastawy, takie, by ograniczyć przyspieszenie kątowe w sytuacji, gdy trzymana jest pełna szklanka. Ma to na celu spełnienie warunku, by przyspieszenie było małe, aby nie wylać wody. Struktura obu regulatorów jest identyczna, wyrażona następujący wzorem:

$$U = (P + I\frac{1}{s} + D\frac{sN}{S+N})E$$
(3.1)

gdzie:

U - sterowanie

E - uchyb regulacji

P, I, D - współczynniki odpowiednio od części proporcjonalnej, całkującej i różniczkującej. Na podstawie przeprowadzonych symulacji przyjęto następujące nastawy regulatorów:

Regulator odpowiedzialny za pozycjonowanie ramienia z napełniona szklanka:

P = 3

I = 0.2

D = 1.5

Regulator pozycjonujący ramie z pustą szklanką:

P=3

I = 0.002

D=1

Pozycja zadana podawana na regulator manipulatora miała postać funkcji prostokątnej. Stwierdzono jednak, że z uwagi na ograniczenie przyspieszenia, czas pozycji zadanej dla ruchu z pełną szklanką powinien być dłuższy. Na tej podstawie przyjęto czas pozycjonowania ramienia z napełnioną szklanką na 3 s, a czas powrotu ramienia na pozycję początkową na 2 s.

Na rysunku 3.1 przedstawiono odpowiedz układ dla opisanych powyżej regulatorów. Dla tak przyjętych nastaw regulatorów otrzymano następujące wartości wskaźników jakość:

$$J_1 = 3.847 \ [rad^2 \cdot s]$$

Rys. 3.1: Wartości zmiennych stanu i sterowania.

$$J_2 = 0.7587[V^2 \cdot s]$$
$$J_3 = 4.606$$

3.1.2 Regulator neuronowy

Regulator neuronowy został zaprojektowany w ten sposób aby otrzymać analogiczne przebiegi sygnałów jak w przypadku klasycznego regulatora PID, wykorzystując do tego celu jeden neuron. Przyjęto, że wektor sygnałów wejściowych będzie miał następującą postać:

$$x = \begin{bmatrix} \dot{e} \\ e \\ \int e \\ \frac{z - z_{min}}{z_{max} - z_{min}} \end{bmatrix}$$
 (3.2)

gdzie:

e - uchyb regulacji

z - wart. zadana

 $z_{min},\ z_{max}$ - odpowiednio minimalna i maksymalna wart. zadana

Współczynnik skalujący z racji na to, że w rozważanym przypfdku wymagane są dwa regulatory jest w postaci macierzy:

$$W = \begin{bmatrix} D_1 & P_1 & I_1 & 0 \\ D_2 & P_2 & I_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3.3)

Stała składowa dla tak przyjętej postaci regulatora jest trójelementowym wektorem:

$$b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{3.4}$$

Z racji na to że w zależności od tego czy przestawiamy pustą szklankę czy pełną należy zmieniać nastawy regulatora oraz saturację sygnału sterującego. Po uwzględnieniu tych wymagań przyjęto następującą postać funkcji:

$$f(u,z) = f_{sat1}((1-z) \cdot u_1 + z \cdot u_2) \cdot (1-z) + f_{sat2}((1-z) \cdot u_1 + z \cdot u_2) \cdot z \tag{3.5}$$

gdzie:

z-przeskalowania wartość zadana do przedziału [0,1]

 u_1 , u_2 —wartości sterowania odpowiednio od regulatorów dla pełnej i pustej szklanki.

 f_{sat1} , f_{sat2} - funkcje saturacji dla pełnej i pustej szklanki.

Przeanalizowano dwie postaci funkcji saturacji:

1. klasyczna funkcja opisana równaniem:

$$f_{sat}(x) = \begin{cases} -K & x < y_{min} \\ x & x \in [y_m in, y_m ax] \\ K & x > y_{max} \end{cases}$$

$$(3.6)$$

2. przybliżenie funkcją sigmoidalną postaci:

$$f_{sat}(x) = \left(\frac{2}{1 + \exp{-\beta \cdot x}} - 1\right) \cdot K \tag{3.7}$$

gdzie:

K - maksymalna dozwolona wartość sterowania podawanego na obiekt.

Parametry funkcji sigmoidlanych β zostały dobrane za pomocą funkcji fmincon tak aby zminimalizować różnice w stosunku do zależności opisanych równaniami 3.6. Finalnie otrzymano następujące wartości parametrów:

$$\beta 1 = -2.65$$

$$\beta 2 = -5.33$$

Rys. 3.2: Porównanie saturacji i funkcji sigmoidalnej - pełna szklanka.

Rys. 3.3: Porównanie saturacji i funkcji sigmoidalnej - pusta szklanka.

Rys. 3.4: Porównanie sterowania dla regulatora neuronowego.

3.2 Optymalizacja nastaw regulatora

Wykorzystując funkcję optymalizacyjną fmincon środowiska MATLAB dobrano nastawy regulatora neuronowego opisanego w poprzedniej części tak aby minimalizować wskaźnik jakości J_3 . Poniżej zaprezentowano wartości poszczególnych parametrów regulatora oraz wartości wskaźników jakości.

$$J1 = 2.089 [rad^2 \cdot s]$$

 $J2 = 0.438 [v^2 \cdot s]$
 $J3 = 2.527$

$$W = \begin{bmatrix} D_1 & P_1 & I_1 & 0 \\ D_2 & P_2 & I_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.2402 & 2.6707 & 1.282 & 0 \\ 0.0661 & 0.7348 & 0.3541 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rys. 3.5: Opdowiedź układu po optymalizacji $J = J_3$.

Z racji tej, że w układzie saturację zastąpiono funkcją sigmoidalną w wyniku działania regulatora otrzymano uchyb ustalony. Aby zniwelować ten efekt zmieniono postać wskaźnika jakości wykorzystywanego w funkcji optymalizującej na :

$$J = J_3 + 10 \cdot |z - \alpha_k| \tag{3.8}$$

gdzie:

z – wartość zadana,

 α_k - położenie ramienia w stanie ustalonym.

Dla tak zmodyfikowanego wskaźnika jakości otrzymano następujące parametry układu regulacji:

$$J1 = 1.963 [rad^2 \cdot s]$$

 $J2 = 0.7543 [v^2 \cdot s]$
 $J3 = 2.718$

$$W = \begin{bmatrix} D_1 & P_1 & I_1 & 0 \\ D_2 & P_2 & I_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.2410 & 2.9867 & 1.5563 & 0 \\ 0.0635 & 3.0089 & 0.9648 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rys. 3.6: Opdowiedź układu po optymalizacji $J = J_3 + |z - \alpha_k|$.

3.3 Porównanie wskaźników jakości

Tabela 3.1: Porównanie wskaźników jakości regulator PID - neuronowy + saturacja - neuronowy + f. sigmoidalna.

Regulator [g]	J_1	J_2	J_3
PID	3.739	0.841	4.580
Neuronowy + saturacja	3.739	0.841	4.580
Neuronowy + f. sigmoidalna	3.741	0.857	4.597
OPTYMALIZACJA			
Neuronowy1	2.08	0.438	2.527
Neuronowy2	1.963	0.7543	2.718

Bibliografia