

Time Series and Sequence Learning

Temporal Convolutional Networks, cont'd

Fredrik Lindsten, Linköping University

Temporal Convolutional Network

2-layer TCN:

$$h_t^{(0)} = y_t,$$

$$h_t^{(1)} = \sigma(W^{(1)}H_t^{(0)} + b^{(1)}),$$

$$y_{t+1} = W^{(2)}H_t^{(1)} + b^{(2)} + \varepsilon_{t+1},$$
with $\varepsilon_{t+1} \sim N(0, \sigma_{\varepsilon}^2).$

Can extend to multiple layers of hidden signals, $h_t^{(2)}$, $h_t^{(3)}$, ...

- ▲ Multiple layers ⇒ very flexible models
- ▲ Receptive field increases with depth...
- ▼ ...but only linearly

Dilated convolutions

$$W = \begin{bmatrix} W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_2 & W_3 & W_4 \end{bmatrix}$$

$$W_1 & W_2 & W_4 & W_4 \\
W_2 & W_4 & W_4 & W_4 \\
W_4 & W_4 & W_4 & W_4 \\
W_4 & W_4 & W_4 & W_4 \\
W_5 & W_6 & W_6 & W_6 & W_6 \\
W_6 & W_6 & W_6 & W_6 & W_6 \\
W_6 & W_6 & W_6 & W_6 & W_6 \\
W_6 & W_6 & W_6 & W_6 & W_6 \\
W_6 & W_6 & W_6 & W_6 & W_6 \\
W_6 & W_6 & W_6 & W_6 & W_6 \\
W_7 & W_8 & W_8 & W_8 \\
W_8 & W_8 & W_8 & W_8 & W_8 \\
W_9 & W_{1} & W_{1} & W_{2} & W_{1} \\
W_{1} & W_{2} & W_{1} & W_{2} & W_{1} \\
W_{2} & W_{1} & W_{2} & W_{1} \\
W_{3} & W_{1} & W_{2} & W_{1} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{1} & W_{2} \\
W_{1} & W_{2} & W_{1} & W_{2} & W_{1} \\
W_{2} & W_{1} & W_{2} & W_{2} & W_{1} \\
W_{3} & W_{1} & W_{2} & W_{2} & W_{1} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{1} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{2} & W_{2} & W_{2} & W_{2} \\
W_{4} & W_{4} & W_{4} & W_{4} & W_{4} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5} \\
W_{5} & W_{5} & W_{5} & W_{5} & W_{5} & W_{5$$

Dilated convolutions

Formally
$$H_{\xi} = \begin{bmatrix} h_{\xi-(p-1)d} \\ h_{\xi-2d} \\ h_{\xi-d} \\ h_{\xi} \end{bmatrix}, \quad Z_{\xi} = W$$

TCN with dilated convolutions

TCN with dilated convolutions:

$$\begin{split} h_t^{(0)} &= y_t, \\ h_t^{(\ell)} &= \sigma(W^{(\ell)} H_t^{(\ell-1)} + b^{(\ell)}), \qquad \qquad \ell = 1, \dots, L-1, \\ y_{t+1} &= W^{(L)} H_t^{(L-1)} + b^{(L)} + \varepsilon_{t+1}, \qquad \varepsilon_{t+1} \sim N(0, \sigma_{\varepsilon}^2). \end{split}$$

Here

$$H_t^{(\ell)} := \begin{bmatrix} h_{t-(p-1)d^{(\ell)}}^{(\ell)} & \cdots & h_{t-d^{(\ell)}}^{(\ell)} & h_t^{(\ell)} \end{bmatrix}^T$$

and $d^{(\ell)}$ is the dilation factor used in layer ℓ .

Often we let the dilation increase with the depth of the network, e.g.,

$$d^{(\ell)} := 2^{\ell}.$$

TCN with dilated convolutions

By using dilated convolutions we can increase receptive field exponentially with depth.

Multi-channel TCN

All the tricks of the trade from deep learning can be used to extend the TCN model!

In particular:

Multi-dimensional hidden signals:

Let dim
$$h_t^{(\ell)} = c^{(\ell)} \ge 1$$
.

- 1-dimension signal of length $n \iff$ "image" of size $n \times 1 \times 1$
- · $c^{(\ell)}$ -dimensional signal of length $n \iff$ "image" of size $n \times 1 \times c^{(\ell)}$
- Dimension of convolutional filter $W^{(\ell)}: p \times c^{(\ell-1)} \times c^{(\ell)}$

Residual connections

Residual connections: Direct linear term relating $h_t^{(\ell-1)}$ to $h_t^{(\ell)}$.

$$h_t^{(\ell)} = \sigma(W^{(\ell)}H_t^{(\ell-1)} + b^{(\ell)}) + V^{(\ell)}h_t^{(\ell-1)}.$$

Useful for training deep models — enables "easier flow of gradient information".

General TCN formulation

More generally, a TCN cen be written as:

$$\begin{split} h_t^{(0)} &= y_t, \\ h_t^{(\ell)} &= g_{\theta}^{(\ell)}(H_t^{(\ell-1)}), & \ell = 1, \dots, L-1, \\ y_{t+1} &= g_{\theta}^{(L)}(H_t^{(L-1)}) + \varepsilon_{t+1}, & \varepsilon_{t+1} \sim N(0, \sigma_{\varepsilon}^2). \end{split}$$
 with $H_t^{(\ell)} := \begin{bmatrix} h_{t-(p-1)d^{(\ell)}}^{(\ell)} & \cdots & h_{t-d^{(\ell)}}^{(\ell)} & h_t^{(\ell)} \end{bmatrix}^{\mathsf{T}} \text{ for } \end{split}$

arbitrary nonlinear functions $g_{\theta}^{(1)}, \ldots, g_{\theta}^{(L)}$.

ex) WaveNet

WaveNet by DeepMind powers Google's text-to-speech technology.

WaveNet: A Generative Model for Raw Audio. Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu. arXiv:1609.03499, 2016.

ex) Traffic prediction

Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting. Bing Yu, Haoteng Yin, Zhanxing Zhu Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018.

Deep Learning for time series analysis

So is this what we should always do for modeling sequential data?!

No!

- Only makes sense to use something as complex as TCN when classical methods fail — Try Simple Things First!
- Methods based on deep learning work best if we have multiple sequences, or one long sequence that can be split into segments
- For a single univariate time series, classical methods (AR, state space, NAR, ...) often work better.