## 1 Fiber optics: problem 1

The incidence plane of a ray SI propagating into the air and then to the fiber is shown in Fig.1

- (1) Show that if the angle  $\theta_i$  is inferior to the angle  $\theta_a$ , then a ray can be guided into the core. We call the numerical aperture the quantity  $\sin(\theta_a)$ . Express such a quantity in function of  $n_1$  and  $\Delta$ , and evaluated. umerically for the value  $\Delta = 10^{-2}$  and  $n_1 = 1.5$ .
- (2) A light pulse arrives at t=0 to the point O (r=0) under the conical convergence (faisceau), of half-angle  $\theta_i < \theta_a$ . For an optical fiber of length l, calculated the temporal broadening  $\Delta t$  of this pulse at the output of the fiber. Express  $\Delta t$  with respect to  $l, n_1, c$  and  $\theta_i$ . Calculated  $\Delta t$  for l=10 km,  $\theta_i=8$  and  $n_1=1.5$ .
- (3) We send to the input of the fober ultra short pulses of duration  $\delta t$  and with period T. What is the minimal value of T so that the pulses are separated at the output of the fiber?



Figure 1: Fiber optics.