Practice Problem Set 6: Engineering Mechanics (NMEC101) Answers

1.
$$I_{yy} = \frac{47}{60}ab^3$$

2.
$$(a)I_{xx} = \frac{\pi a b^3}{8}$$
, $(b)I_{yy} = \frac{\pi b a^3}{8}$

3.
$$I_{xx} = \frac{15}{91}ab^3$$

- **4.** $(I_{xx})_C = 26.6 \times 10^6 \text{ mm}^4$ (centroidal axis parallel to side AB) $(I_{yy})_C = 2.65 \times 10^6 \text{ mm}^4$ (centroidal axis perpendicular to side AB)
- **5.** (a) $I_{xx} = \frac{\pi a^4}{8}$, $I_{yy} = \frac{\pi a^4}{2}$, $I_{xy} = \frac{a^4}{2}$ (b) $\theta_p = 20.16^o$, 110.16^o , $I_{max} = 1.755 \ a^4$, $I_{min} = 0.209 \ a^4$ (c) For 45^o anticlockwise rotation $(I_{xx}') = 0.482 \ a^4$, $(I_{yy}') = 1.482 \ a^4$, $(I_{xy}') = -0.589 \ a^4$ For 30^o clockwise rotation $(I_{xx}') = 1.12 \ a^4$, $(I_{yy}') = 0.483 \ a^4$, $(I_{xy}') = 0.76 \ a^4$

6.
$$\theta_p = 12.06^o$$
, 102.06^o , $I_{max} = 8064120.68 \ mm^4$, $I_{min} = 365199.32 \ mm^4$