

Distribuciones nuvestrales

Def Una muestra <u>aleatoria</u> es un subconjunts de la población que debe describir de la mejor forma posible toda la heterogeneidad de la población. Para que esto se cumpla:

Def
$$X_1, ..., X_n$$
 son $v.q.$ independientes si
$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^{n} f_{X_i}(x_i) = f_{X_i}(x_i) \cdot f_{X_i}(x_i) \cdot f_{X_n}(x_n)$$

Def. X1,..., Xn son N.a. identicamente distribuidas si

$$F_{xi}(xi) = F_{xj}(xj)$$
 $\forall i \neq j$

m.a. = v.a. V.a. V.a. dénticam. distribuidas

random sample (r. s.)
independent identrically distributed random var. (i i dr)

Def. Un parametro es una característica numérica de la población que define por completo el comportamiento probabilistico del fenómeno aleatorio de interés.

En probabilidad suponemos conocidos los parámetros; en la realidad esto es poro fartible. Por esta razón, la (inferencia) estadística busea estimar los valores de los parámetros a partir de una (o varias) muestras.

 E jemplos Feriómeno	Pollación	Característico real	y Variable sleatoria	Modelo	H) m	eta (0) rayúsaula "espacus parametral"
Proporción de mexicanos con licencia- tura	Todos los mesicanos (mayores de idad?)	, , , , , , , , , , , , , , , , , , ,	X=#de mexicano con lic. (v.a.)	$X \sim Bin(n_{1}p)$ n = 130 M p = 243 0.15	$n \in \mathbb{N}$ $P \in (0,1)$	= el conjunto de posible valores de los parámetros
Puntage INFONAVIT para credito Impoterario (minno: 116)	Todos las perse nas (con el deredro) que solicitan el crédito		Y= puntaje	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$	μ ε R+ σ² E R+	

Def. Un estadístico es una función de los elementos de una muestra
$$h: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$h(X_{1},...,X_{n})=T(X_{1},...,X_{n})=T(\underline{X})$$

. Son características numéricas de la muestra que NO dependas de los parámetros poblacionales.

e.g.
$$X_{1},...,X_{10} \sim dV(\mu_{1},\sigma^{2})$$

$$T_{n}(X) = \frac{X_{1} + X_{2} + 0X_{3} + \cdots + 0X_{10}}{2}$$

$$T_{2}(X) = \overline{X} = \frac{1}{n} \sum X_{i} \sqrt{1}$$

$$T_{3}(X) = \frac{X_{1} + X_{2} + 0X_{3} + \cdots + 0X_{10}}{n} \sqrt{1}$$

· Como $X_{1},...,X_{n}$ son v.a. $\Longrightarrow T(X)$ es en sí misma una v.a.

Det La distribución de probabilidades de T(X) se llama distribución muestral o de muestres.

$$X_{1},...,X_{10} \sim \mathcal{N}(\mu,\sigma^{2})$$

$$T(X)=X_{1}+...+X_{p} \sim \mathcal{N}(10\mu,10\sigma^{2})$$

$$T(X)=\frac{1}{10}\sum_{i=1}^{10}X_{i} \sim \mathcal{N}(\mu,\frac{\sigma^{2}}{10})$$

. Una vez que se observa la nuestra, pasamos a T(x), que toma valores según la nuestra con la que se cuente.

Ejemplo

	•		
Fenómeno	Población Estadísticos		Modelo
# de integrantes del hogar en el censo del INEGI.	3 1 4 5 6 7 4 3 3 5 5 2 6 4 6 7 8 9 1 2 4 5 2 3 Total: 24 magares	T(x)=11 2.75	$X \sim P_{o}(5.5)$ $X \sim P_{o}(4)$ $X \sim P_{o}(5.75)$ $X \sim P_{o}(2.75)$

En promedio, un hogar tiene 2 = 4.375 integrantes

$$\begin{bmatrix}
 4.375 - E[X] \\
 - 1.125 \\
 \hline
 0.375 - 1.00
 \end{bmatrix}$$

$$\begin{array}{c}
 0.375 - 1.00 \\
 - 1.375 - 1.00
 \end{array}$$

$$\begin{array}{c}
 0.375 - 1.00 \\
 - 1.625
 \end{array}$$

· Conocer la distribución de muestres de un estadistico nos permite hacer càlculo de probabilidades y an analizar sus características y tomar decisiones.

$$X \sim W(\mu, \sigma^2), X_1,...,X_n m.q.$$
 $X = \frac{1}{n-1} \sum (x_i - \bar{x})^2$
 $X =$

$$X = \text{altura do los hombres}$$

 $Y = \text{altura de las mujeres}$
 $\bar{X} - \bar{Y}$ $\frac{5\bar{\chi}}{5\bar{\chi}^2}$

$$Z=\pm 11$$
Columes
$$\hat{C}_{1}=\hat{C}_{2}$$