地址包包括一个从机地址和一个读或写控制位,分别用 SLA+R 或 SLA+W 来表示。

地址字节的 MSB 位首先发生。除了保留地址"00000000"被留用作广播呼叫以及所有形如"1111xxxx"格式的地址需要保留作将来使用外,其它从机地址可由设计者自由分配。

当发生广播呼叫时,所有的从机应在 ACK 周期通过拉低 SDA 线来做出应答。当主机需要发送相同的信息给多个从机时可以使用广播功能。当广播呼叫地址加上 WRITE 位被发送到总线上以后,所有需要响应该广播呼叫的从机将在 ACK 周期拉低 SDA 线。所有这些响应了广播呼叫的从机将会接收紧跟的数据包。需要注意的是,发送广播呼叫地址加上 READ 位是没有意义的,因为如果几个从机同时发送不同的数据会带来总线冲突。

## 地址包格式如下图所示:



TWI 地址包格式图

## 数据包格式

所有 TWI 总线上传输的数据包都是 9 位数据长度,由 1 个数据字节和 1 位应答位组成。在数据传输期间,主机负责产生传输时钟 SCL 和 START 及 STOP 状态,发送器发送要传输的字节数据,接收器产生接收响应。确认信号 ACK 是接收器在第 9 个 SCL (ACK) 周期通过拉低 SDA 线来产生的。如果接收器在 ACK 周期保持 SDA 线为高,则发出的是未确认信号 NACK。当接收器已经接收到了最后一个字节,或者由于某些原因不能再接收任何数据,则应该在收到最后字节后通过发送 NACK 来告知发送器。数据字节的 MSB 位先传输。

## 数据包格式如下图所示:



TWI 数据包格式图

组合地址和数据包的传输,一次传输基本上由1个START,1个SLA+R/W,1个或多个