Maximal repetition & "Runs" conjecture

Riccardo Lo Iacono 1 ottobre 2024

Definizioni preliminarie

Definizione: una terna r = (i, j, p) è una ripetizione massimale (o *run*) di una qualche stringa s, se il più piccolo periodo p di s[i,j] è tale che $|s[i,j]| = j - i \ge 2p$.

Esempio: sia considerata la stringa s = aababaababb. Si ha che gli intervalli $[1,2] = a^2$, $[6,7] = a^2$, $[10,11] = b^2$, $[2,6] = (ab)^{5/2}$, $[7,10] = (ab)^2$, $[4,9] = (aba)^2$, $[1,10] = (aabab)^2$ hanno rispettivamente periodo, 1, 2, 3, 5.

Sia posto $\rho(n)$ il numero di ripetizioni massimali. Inoltre, sia Runs(s) l'insieme delle run in s.

Background storico

Kolpakov e Kucherov¹ dimostrano $\rho(n) = \mathcal{O}(n)$.

Congettura: $\rho(n) < n$.

¹R. M. KUCHEROV AND G. KOLPAKOV, Finding maximal repetition in a word in linear time.

Punti chiave della discussione

- · Dimostrazione della runs conjecture.
- Soluzione algoritmica per il calcolo delle ripetizioni massimali in $\mathcal{O}(n)$.

Notazione

- \cdot Σ è un alfabeto finito di simboli
- · $s \in \Sigma^*$ è una stringa, la cui lunghezza è |s|
- s[i] è l'iesimo carattere di s, s[i,j] è la sotto-stringa compresa tra gli indici i,j inclusivamente, $i,j \in (1,|s|)$
- $p \in \mathbb{N}$ periodo di s \iff $s[i] == s[i+p], 1 \le i \le |s|-p$
- I insieme di intevalli, Beg(I) posizioni iniziali degli intervalli in I
- · \prec_0 ordine totale su Σ e ordine lessicografico indotto su Σ^* , \prec_1 ordine rovesciato.

Esempio: sia s = babbabbab. Si osserva facilmente che le ripetizioni massimali in essa sono quelle in *Figura 1*.

Figura 1: Esempio di ripetizioni massimali

Segue che

$$Runs(babbabbab) = \{(1,9,3), (3,4,1), (6,7,1)\}$$

Lyndon words & L-roots

Definizione (Lyndon word): una stringa non vuota $s \in \Sigma^*$ è detta essere una *Lyndon word*, rispetto a \prec , se $s \prec u$, per ogni u suffisso proprio di s.

Definizione equivalente è la seguente.

Definizione: data una stringa s di lunghezza n e $i \in [1, n]$, la stringa $s_i s[1, i-1]$ è detta *shift ciclico* di s, non banale se i > 1. Una Lyndon word è una stringa non vuota che è lessicograficamente minore di ogni suo shift ciclico non banale.

Definizione (L-root): data r=(i,j,p) una run per una qualche stringa $s \in \Sigma^*$, un intervallo $\lambda=[i_\lambda,j_\lambda]$ è detto essere *L-root* di r rispetto \prec se $i \leq i_\lambda \leq j_\lambda \leq j$ e s $[i_\lambda,j_\lambda]$ è una Lyndon word.

"Runs" Theorem

Sia $\hat{s} = s\$, \$ \notin \Sigma$.

Lemma 1: per ogni stringa s e posizione i, sia $\ell \in \{0,1\}$, tale che $\hat{\omega}[k] \prec_{\ell} \hat{s}[i]$, per $k = \min\{k' \mid \hat{s}[k'] \neq \hat{s}[i], k' > i\}$. Allora $l_{\ell}(i) = [i, i]$ e $l_{\overline{\ell}}(i) = [i, j]$, per qualche j > i.

Lemma 2: sia r=(i,j,p) una ripetizione massimale in una stringa s, sia inoltre $\ell_r \in \{0,1\}$ tale che $\hat{s}[j+1] \prec_{\ell_r} \hat{s}[j+1-p]$. Allora, ogni L-root $\lambda = [i_\lambda, j_\lambda]$ di r rispetto \prec_{ℓ_r} è uguale a $l_{\ell_r}(i_\lambda)$.

Sia B_r l'insieme delle L-root tali da soddisfare Lemma 2, allora vale quanto segue.

Lemma 3: per ogni coppia di ripetizioni massimali r, r', con $r \neq r'$, $Beg(B_r) \cap Beg(B_{r'}) = \varnothing$.

Da ciò, poiché

$$|Beg(B_r)| = |B_r| \ge \lfloor e_e - 1 \rfloor \ge 1$$

e inoltre, dato che $1 \notin Beg(B_r)$ per ogni run r, regge $\sum_{r \in Runs(s)} |B_r| = \sum_{r \in Runs(s)} |Beg(B_r)| \le |s| - 1$.

Teorema: $\rho(s) < n$.