

Object Detection and Depth Estimation for Drone Camera Images

Paul Crann, Eric Viscione

Object Detection Using Yolo V11

You only look once

YoloV11 - Model

- Real Time Detection Model
- A single neural network is applied to a whole image
 - Single Neural network = You Only Look Once
 - This network will internally subdivide the image then predict the bounding boxes per region
- Many Pretrained models are provided which speeds up the training purposes
 - We used the yolo11m pretrained model

YOLOv11 Model Architecture

Training Data

- Images from the Syndrone dataset were used
 - Town01 RGB data at heights of 20, 50 and 80 meters
- Each image needed to be annotated
 - Used the label-studio applet
 - Categories used: Car, Bus, Motorcycle, Bicycle, Truck

Training

- Dataset was loaded and pointed the trainer to the images and the bounding boxes
 - The training set was 100 labeled images with 400-500 labeled objects

Results

6

Results

Worcester Polytechnic Institute

Results and Discussion

- The model was able to generally accurately identify the types of vehicles in each scene
 - o The inaccuracies could be mitigated with an increase in the training data size

Dense Prediction Transformer for Syndrone Dataset

Monocular Depth Prediction

Overview

- Fine tuned monocular depth estimation models proposed in R. Ranftl, et. al, "Vision Transformers for Dense Prediction", 2021
 - https://arxiv.org/pdf/2103.13413
- Supervised approach on dataset provided by G. Rizzoli, et. al, "SynDrone - Multi-modal UAV Dataset for Urban Scenarios", 2023
 - https://github.com/LTTM/Syndrone/tree/main

Model Overview - DPT Large

Training - DPT Large

- Eigen Loss function proposed in Eigen et al. "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network" 2014.
 - Computes the scale invariant MSE loss
 - https://arxiv.org/pdf/1406.2283
- Robust regression (Huber loss) was used to calibrate pretrained model outputs to our dataset (m=2.52e-5 b=3.33e-5).

```
def eigen_loss(outputs, truths, lam=0.5):
    # Input: output and truth values (1/distance)
    outputs_d = 1 / (outputs + 10**-4.5)
    truths_d = 1 / (truths + 10**-4.5)

# Scale-Invariant MSE + L2
    d = torch.log(outputs_d) - torch.log(truths_d)
    n = d.numel()
    scale_invariant_MSE = torch.sum(d**2) / n - lam*(torch.sum(d)/n)**2

return scale_invariant_MSE
```

Hyper Parameter	Value
Initial Learning Rate	1e-5
LR Gamma (Exponential Decay)	0.93
Batch Size (Memory Constraint)	1
Epochs	30

Results - DPT Large

- Achieved an improved depth prediction model on unseen testing data
- Optimal model at epoch 16

Loss vs Epoch dpt_large fine tuned

Results Cont - DPT Large

Worcester Polytechnic Institute