The Role of Macroeconomic Factors and Macro Attention Indices in Forecasting Equity Risk Premia

Aaron Arauz Baumender Michael Adrian Geiser Pasquel Zhiyi Tang Andreas Stavropoulos

University of Zurich

December 2023

Abstract

In demonstration of our proficiency in digital tools acquired through the course "Digital Tools for Finance," we submit a concise paper wherein we conduct equity risk premia forecasts (S&P 500). Our analysis focuses on the utilization of macroeconomic features, particularly emphasizing macroeconomic factors (MEF) and macroeconomic attention indices (MAI).

Keywords: Equity risk premia; Forecast; Macroeconomic features; Macroeconomic factors; Macro economic attention indices

Outline

- Introduction
- 2 Literature Review
- 3 Theoretical Framework
- Methodology
- 6 Empirical Analysis
- 6 Discussion
- Conclusion
- 8 References
- 9 Appendices

Introduction

Background

- Traditional focus on macroeconomic factors (interest rates, inflation, growth). Behavioral finance introduces macro attention indices reflecting market
- Behavioral finance introduces macro attention indices reflecting market sensitivity to information.
- Study recognizes interplay between macroeconomic factors and macro attention indices, and aims to contribute predictive models using linear and neural networks.

Objectives

- Assess predictive capacity of macroeconomic factors using linear regression and neural networks.
- Evaluate effectiveness of macro attention indices in prediction via linear and neural network models.
- Investigate combined predictive power of both sets of variables in integrated models.

Significance of the Study

- Goes beyond traditional forecasting methods.
- Comprehensive analysis with linear and neural network models.

Literature Review

• Macroeconomic Factors:

- Historical emphasis on dividends and book value.
- Insights from Fama and French (1988) and Goyal and Welch (2003).
- Recent studies (Karolyi and Shue, 2019; Al Saud, 2019) use advanced techniques, revealing intricate dynamics.

• Macro Attention Indices:

- Revolutionize understanding of information impact on markets.
- Studies by Johnson et al. (2006) and Korkeamäki et al. (2011) highlight the role in shaping investor sentiment.
- Recent research (Ma et al., 2022) emphasizes improved predictive accuracy during market uncertainty.

• Integration of Factors and Indices:

- No existing exploration of joint influence.
- Combining variables may offer a more robust framework.
- Study uses linear regression models and neural networks for a comprehensive analysis.

Theoretical Framework

• Market Dynamics Beyond Efficiency:

- Challenges traditional Efficient Market Hypothesis (EMH).
- Acknowledges anomalies and deviations from efficiency, especially during heightened investor attention.
- Highlights the need for alternative frameworks beyond complete market efficiency.

• Behavioral Finance and Investor Attention:

- Integrates behavioral finance insights into decision-making.
- Considers investor attention and herd behavior, leading to overreaction or underreaction.
- Accounts for sentiment and attention in forecasting models, recognizing limitations of purely rational assumptions.

• Neural Networks in Financial Forecasting:

- Utilizes neural networks to capture complex, non-linear relationships.
- Addresses limitations of traditional linear models.
- Enhances modeling of interactions between macroeconomic factors and attention metrics impacting equity risk premia.

Theoretical Framework (continued)

• Model Specification:

- Macroeconomic Indexes: Log Dividend-Price Log Dividend Yield Log Earnings-Price Log Dividend-Payout Equity Premium Vol Book-to-Market Ratio Net Equity Expansion Treasury Bill Rate Long-Term Yield Long-Term Return Term Spread Default Yield Spread Default Return Spread Inflation
- Macro Attention Indexes: Credit Rating Gross Domestic Product — House Market — Inflation — Monetary — Oil — Unemployment Rate — US Dollar
- Equity risk Premia: GSP Equity Risk Premia

Methodology

Data Management:

- Historical data from 1985 to 2018, daily, monthly, and quarterly frequencies.
- Collected from various repositories, organized chronologically for model training.

• Data Collection (Raw Data):

- MEF and MAI data collected from specific GitHub repositories.
- GSPC data collected from Yahoo Finance.

• Data Cleaning (Interim Data):

 Preprocessing steps applied to address missing values in MAI raw databases.

• Data Processing (Processed Data):

- MEF and MAI data undergo processing to construct data for model training.
- Calculations include transformations and interpolations to derive key macroeconomic factors and attention indexes.

Methodology (continued)

• Model Training:

- Two approaches: linear regression and neural network models.
- Linear regression uses the standard equation with gradient descent and Ridge regularization.
- Neural network employs feedforward architecture with specific parameters.
- Root Mean Squared Error (RMSE) used to assess model performance.

• Comparison and Interpretation:

- Comparative analysis of results from linear regression and neural network models.
- Evaluation based on RMSE for different combinations of economic data (MAI and MEF) and target variable (1-month GSPC equity risk premia).
- Daily and monthly frequencies considered.

Empirical Analysis

- Data Overview Page 11
- Model Implementation Page 11
 - Linear Regression Model Page 11
 - Neural Network Model Page 11
- Results Page 11
 - Performance evaluation Page 11
 - Predictions Page 12
- Comparison and Interpretation Page 12
 - Model Selection Page 12
 - $\bullet\,$ Data Selection Page 12

Discussion

- Practical Implications Page 13
- Limitations Page 13
- Future Research Directions Page 13

Conclusion

- Summary of Findings Page 15
- Limitations and Caveats Page 15
- Recommendations for Future Research Page 15

References

- Fama and French. (1988). Dividend Yields and Expected Stock Returns.
- Goyal and Welch. (2003). Predicting the Equity Premium with Dividend Ratios.
- G. Andrew Karolyi and Kelly Shue. (2019). *Machine Learning in Asset Pricing*.
- Ahmed S. Al Saud. (2019). Predicting Stock Returns: An Examination of the Equity Premium Predictability via Machine Learning Techniques.
- Neil Johnson, Guannan Zhao, Eric Hunsader, et al. (2006). News Analytics.
- Timo Korkeamäki, Sami Vähämaa, and Josef Zechner. (2011). Financial News Predicts Stock Market Volatility Better Than Close Price.
- Feng Ma, Xinjie Lu, Jia Liu, and Dengshi Huang. (2022).

 Macroeconomic attention and stock market return predictability.

Appendices

• On Page 17