使用 Virtuoso 设计全定制版图

本文介绍利用 virtuoso layout editor(以后简称 le)创建全定制版图,以及 vituoso le 的一些使用说明。全文将用一个贯穿始终的例子来说明如何绘制全定制版图,一个最简单的反相器的版图.设计过程采用 chartered (csm25rf) 库—标准 CMOS 工艺库。

具体内容包括:

- 1) 如何打开 virtuoso le 和 le 的一些设置;
- 2) 使用 LSW 窗口:
- 3) 使用 le 创建一个版图;
- 4) 使用快捷键—bindkey;
- 5) 使用 diva 验证版图;
- 6) 使用 diva 进行 LVS;

登陆以后,首先要先创建自己的工作目录,比如 Work, cd Work.从 csm25rf 库所在文件夹下拷贝 display.drf 文件到自己的工作目录下,你的工作目录下必须有 display.drf 文件,不然在 LSW 窗无法显示绘制版图需要的各个图层。从/CDS_ROOT/tools/dfll/cdsuser 目录下拷贝.cdsinit 文件到自己的目录下该文件是 Cadence 自带的软件相关设置的文件,里面有相关字体的设置,Bindkey 设置等, 这里主要考虑 Bindkey 的设置,也可以设置自己的 Bindkey,不过 Cadence 默认的设置是足够的。当然也可以单单靠鼠标来进行操作,virtuoso le 窗口有常用命令的工具栏,不过就我自己的感觉,用快捷键比鼠标要快很多。如果要运行 Diva LVS 还得有.simrc 文件。(不过这里有一个问题,服务器上的.simrc 文件的设置跟 csm25rf 库有不一致的地方,运行 Diva LVS 会出现目录 LVS 非法的错误。

运行 vituoso le

要打开 virtuoso le ,首先要打开 CIW 窗口。在 shell 命令行下输入: icfb& 进入 CIW 窗口,字符& 使得 cadence 在后台工作(即可以在 shell 命令行执行其它命令),也可以在 shell 提示符下输入其它的命令来打开 CIW 窗口,如下图: (在这里也可以输入 layout& 或者 layoutPlus&)

检查设计需要的相关库是否存在。在 CIW 窗口选择 Tools->Library Manager 打开 Library Manager 窗口,如下:

确保 csm25rf,basic 和 analogLib 这三个库都已经存在,如果不存在就自己手动添加它们。

小技巧:如果在自己的 Library Manager 中发现有的 Library 的字的颜色是红色的,把该库删除 掉,不然它可能会引起一些奇怪的问题来.

一些相关的设置

在 CIW 窗口中,选择 Options -> User Preferences ,在弹出的对话框中把 **Undo level** 拖到最大 10,这样在画板图的过程中,如果发现有错误的操作,在还没保存的情况下就可以通过撤销命令 (Undo)来撤销相关的操作,User Preference 的设置窗口如下图。作为一个版图的新手,出现错误是无法避免的,virtuoso le 并不是很听话。当然如果还没保存,又发现有错误,但又撤销不了,或者是因

为没有修改 Undo level 值(默认为 1),或者已经经过很多步的操作,这时也并不是一点办法都没有了,只要还没保存过,就可以在 virtuoso le 窗口中运行 design->disguard change 来返回到上次保存的状态,不过这个方法有时会浪费好长时间的工作。在 Command Controls 中把 Option Displayed When Cammand Start 设置为 on ,则每次执行一个命令时其相应的对话框就会出现,在这种情况下,就可以对命令的一些参数进行设置,也有利于更好了解一些常用的命令。

开始设计过程

假如现在有如下图所示的逻辑电路图,技术库为 csm25rf,P 管和 N 管采用相同的尺寸,W=600n,L=3u。

现在要先建立自己的工作库。

在 CIW 窗口中选择 File- 〉 new-> new library 建立自己的库。在弹出的对话框中,在 libraryname 中输入库的名字,比如 guan;在 Technology 选项选择 Attach to an existing techfile,点击 OK,弹出 Attach Design Library to Technology File 的对话框,如下图:

在 Technology Library 选项卡中选择 csm25rf,按下 OK ,两个对话框窗口消失。现在已经建立了自己的工作库 quan,并且它与技术库 csm25rf 相关联。

在前面的 New Library 窗口 Technology File 选项中,如果没有现成的技术库,而有相应的技术文件(techfile),那么可以先选择 Compile a new techfile 来创建自己的技术库。如果该选项被选上,点击 OK 后会弹出一个输入 ASCII 码文件(techfile)的对话框,在对话框中输入技术文件的完整路径,点击 OK,如果没有错误,一个自己的技术库就生成了。不过利用这种方法生成的技术库里面包含的器件数量一般比较少,可以自行添加,这里涉及库开发的问题,超出本文的讨论范围。

为了运行 Diva LVS ,还要把前面的逻辑电路图添加到刚刚创建的工作库中。

下一步,创建相对于上图中的逻辑电路图的版图。

在 CIW 窗口中,File->new->new cellview,打开创建新 cellview 的对话框。按照下图中的设置设置对话框,Library Name 选择 guan,Tool 选择 Virtuoso, cellname 为 inv.点击 OK。

这时会弹出三个窗口,其中一个是 le 的窗口,一个是 le 的说明窗口,另一个是 LSW 窗口。对于 le 和 LSW 窗口在后面的图片中会出现,在这里就省略了。下面的一段斜体字是 Le 和 LSW 窗口的相关使用说明及相关工艺,可以跳过去不看。

Le 及 LSW 窗口相关

版图视窗(virtuoso le)打开后,掩模版图(le)窗口显现。视窗由三部分组成: Icon menu, menu banner, status banner.

Icon menu (图标菜单)缺省时位于版图图框的左边,列出了一些最常用的命令的图标,要查看图标所代表的指令,只需要将鼠标滑动到想要查看的图标上,图标下方即会显示出相应的指令。

menu banner (菜单栏),包含了编辑版图所需要的各项指令,并按相应的类别分组。几个常用的指令及相应的快捷键列举如下:

Zoom In -----放大 (z) **Zoom out by 2-----** 缩小 2 倍(Z) Save Delete ----- 保存编辑(f2) ----- 删除编辑(Del) Undo Redo ----- 取消编辑(u) -----恢复编辑 (U) Move Stretch ----- 移动(m) ----- 伸缩(s) Rectangle Polygon -----编辑矩形图形(r) ----- 编辑多边形图形(P) ------ 编辑布线路径(p) Copy -----复制编辑 (c)

status banner(状态显示栏),位于 menu banner 的上方,显示的是坐标、当前编辑指令等状态信息。

在版图视窗外的左侧还有一个层选择窗口(Layer and Selection Window LSW)。

LSW 视图的功能:

- 1) 可选择所编辑图形所在的层;
- 2) 可选择哪些层可供编辑;

3) 可选择哪些层可以看到。

只要在刚才运行 *Icfb* 的目录中有正确的 *display.drf* 文件的拷贝,在 *LSW* 窗口就会显示我们设计中需要的所有图层。为了简单起见,以下仅列出绘制我们这个版图所需的最少版图层次。

层次名称	说明
Nwell	N 阱
Pdiff	P有源区
Ndiff	N 有源区
CNT	引线孔,连接金属与多晶硅/有源区
Met1	第一层金属,用于水平布线,如电源和地
Via1	通孔,连接 metal1 和 metal2
Met2	第二层金属,用于垂直布线,如信号源的 I/O 口
Text	标签
Poly2	多晶硅,做 mos 的栅

使用 LSW 窗口

在 LSW 窗口的图层栏点击一个图层,比如 metal1,则 metal1 为当前图层,在 le 窗口就可以画出该层的图形来,编辑过程不会有影响。

如果想要只显示 metal1 层,那么请先选择 metal1,然后在图层资源的上方选择 NV,鼠标点击 Le 窗口,在键盘按下 f 键,则 le 视图窗口就隐藏其它的图层,这你可以只编辑该图层,而不受其它图层的影响。接着如果想要多显示另外一层,比如 contact,用鼠标在 LSW 窗口点击 contact,然后鼠标点击 le 窗口,按下 f 键,看看是不是 contact 层也显示出来了。利用同样的方法,可以显示更多的图层或者任意的一层或几层。当编辑完之后,要回到全部显示时,在 LSW 窗口选择 AV,切换到 Le 窗口,按下 f 键,显示全部图层。

在建立相应的版图的图形后,如果需要编辑新建的图形,这时可能会遇到这样的一个问题,由于设计的版图比较复杂,多个图形叠加到一起,结果在想选择 metall 的一个图形时,不小心选上了 P 管,而这时如果执行的命令是移动或者拉伸,就有可能造成先前管子的布局和位置的改变,如果是删除则可能会把

管子删除掉,这会给的设计带来很大的不便。在这种情况下可以通过 LSW 窗口的来控制器具可选性,在 LSW 窗口中比较靠上方处有两个选项,默认都被选上,如果不想让器件为可选,则取消 inst 前面的选上 标志,同样也可以取消 Pin 的可选性。另外也可以控制那些图层可以被编辑,方法类似于如何控制图层的显示,其中的选项为 NS 和 AS,通过设置可以选择任意的图层来编辑。

Le的相关选项设置

在 le 菜单栏中,选择 option->display (快捷键 e) 打开 display options 对话框,如下图。在 Display levels 中把 from 0 to 0 改为 from 0 to 21 (或者其它的大于零的数),该选项设置显示的深度,如果不改,将无法看到调用的器件的内部结构。在 Minor Spacing 填入 0.1,Major Spacing: 0.5,X Snap Spacing: 0.01,Y Snap Spacing: 0.01。这些设置有利于编辑时候的图形对准,当然有时候会设置得更小。其它的保持默认。

还有一个需要更改设置的地方,选择 option->layout editor (快捷键 shift+e),在 Layout

editor option 对话框中 取消其中的 gravity on 选项,点击 OK。请务必保证 gravity on 为 off.

添加器件

现在添加反相器 N 管和 P 管,在工具栏中选择 addinstance 或者按快捷键(i),弹出添加器件对 话框(Create Instance),选择 Browse,在 Browse Library 对 话框中, Library 选择 csm25rf,Cell 为 pmos_tk(厚栅), view 为 layout 改变管子的栅长和宽为 w=3u,l=600n,如下图。然后在 le 窗口中点击鼠标左键,添加一个 P 管。

用同样的方法添加一个 N 管,完成后的版图如下所示。图片的左边是 LSW 窗口,其结构:左上方为编辑菜单和帮助按钮,然后是当前选择的图层,接着下面是器件与 Pin 的可选性控制选项,再下来是全部可见与不可见,全部可选与不可选按钮,再下来是图层资源框。LSW 窗口再过来就是 le 窗口的工具栏,其中列出大部分常用命令的按钮。

添加矩形

在 N 管和 P 管之间需要用多晶硅来连接两个管子的栅。在 LSW 窗口中点击 POLY2(在 charter 库中利用 poly2 作为管子的栅),切换到 Le 窗口,利用鼠标点击工具栏中的下方倒数第二个按钮或者按下 r键,放大到两个管子之间的地方,就可以开始画矩形了,选择的第一个点是 P 管的多晶硅的左下角,第二个点是 N 管的多晶硅栅的右上角。如下图所示,多晶硅矩形把两个管子的栅连接到一起。

利用同样的方法在输出端用金属 1 把两个管子连接起来,该软件的默认设置是重复命令,即在画完一个矩形后可以不执行任何其它命令继续画更多的矩形,按 ESC 键来可以取消当前命令。但一旦执行下一个命令后,前一个命令自动取消。

添加多边形

在 LSW 窗口中选择 MET1 作为当前图层,在 Create 菜单选择 Polygon 或者按工具栏上下方倒数 第四个按钮(shift+p)进入添加多边形状态,如果在先前 user preference 对话框中选上了 option displayed when command start,则可以看到一个新建多边形的对话框,如下。

这里 Snap Mode 为 orthogonal 表示多边形的各边只能为垂直或水平方向,当然还有其它的选项, 比如 Anyangle (任意方向)。Net Name 处可以不输入。

现在首先添加电源连线,用鼠标多次点击形成多边形的多个顶点,就可以构成一个封闭的图像,如下图。

继续添加地线,得到如下所示的粗糙的版图,还需要编辑才能不致于有错误。

从图中可以看出,两个多边形和金属矩形连线都没有对准。

编辑版图

现在我们要通过拉伸来使得各个图形相互对准。在菜单栏 Edit->stretch(s)或者按下工具栏的相应按钮,进入到拉伸状态。放大到要编辑的地方,选择要调整的边,不能把这个图形选上,拖动鼠标拉到合适的地方,如下图。

注意:在这里执行拉伸命令的时候请保证当前没有选中的器件或者图形。如果有选中的图形,则相当于执行移动命令。

一个小技巧:利用鼠标右键可以放大到自己需要的地方,先用鼠标右键点中要放大的区域的 右下角,按住往左上角方向拖动,会有一个方形的边框表示选择的区域,如果看到该边框已经包 围了需要放大的区域,放开鼠标右键,看看是不是如你所愿地放大了。如果鼠标往右下角拖动, 则会起到缩小的作用。

调整后的版图如下所示.

现在还需要添加输入端,反相器的输入端应该为金属,所以要添加接触孔。在菜单栏 Create->contact(o),弹出添加接触孔的对话框,如下。

在 Contact Type 选项选择 M1_POLY2,点击 Hide,在 le 视窗适当位置点击添加接触孔。于是我们得到一个漂亮的版图如下。接下来将对版图进行验证。

使用 DIVA

DIVA 和 dracula 都是 CADENCE 的,而且集成到了 virtuoso 平台,一般说,dracula 更精确,但是 diva 更加容易使用,况且学会 DIVA 了再学其它的验证软件会更容易。

DIVA DRC

现在我们将要对先前设计的版图进行设计规则的检查。

首先,我们还得先做一件事,检查我们的环境变量 CDS_Netlisting_Mode,在 shell 提示符下输入: env | grep CDS_Netlisting_Mode,确保该变量的值为 Analog,如果不是可能需要找管理员,因为如果这个值设置不当会引起一些很奇怪的问题,那时是根本无法从问题上找出原因来的。网上有很多通过把该

变量改为 Analog 就解决问题的说法。接下来就可以开始了。在 le 窗口,选择 verify- > DRC 打开 DRC 对话框如下

	DRC	×
OK Cancel Defaults	Apply	Help
Checking Method ◆ flat	♦ hierarchical ♦ hier w/o optimizat	ion
Checking Limit 🔷 full		
Cont	nate	Sel by Cursor
Switch Names	I	Set Switches
Run-Specific Command File	_	
Inclusion Limit	1000 <u>°</u>	
Join Nets With Same Name		
Echo Commands	F	
Rules File	divaDRC.rul <u>i</u>	
Rules Library	■ csm25rf <u>í</u>	
Machine	♦ local ↓ remote Machine	

在这里需要在 Switch Names 处填上验证方法,可以通过键盘输入,如果已经很熟悉了。鼠标点击 Set Switches 按钮,弹出如下图所示的 Set Switches 对话框,在对话框中用鼠标点击,就可以选择相 应的项,也可以通过在选择过程中按住 CTRL 键来选择多项,不过有些项是不能重复的,而具体每一项是 干什么用的可以通过查询该技术库的说明文件,比如 2P4M 表示两层多晶硅四层金属,即金属 4 为顶层 金属。

在该对话框点击 OK 后,所选择的项就在 DRC 对话框的 Switch Names 后面出现。在 DRC 对话框单击 Ok,DRC 对话框消失,开始进行 DRC 检查。检查完成后,在 CIW 窗口有检查结果的相关信息输出,在进行设计的过程中可能要经常通过 CIW 窗口来获得相关信息。与此同时,在版图上有错误的地方会被一些专用的图层标出来,但有时由于版图太复杂了,无法很快从版图上直接找到一些错误。检查结束后的 CIW 窗口和 le 窗口如下。

通过 CIW 窗口我们可知,版图中存在违反金属 1 的最小面积规则,金属 1 最小面积为: 0.36 us 2 ,但是通过 layout 窗口是不太好定位的。

现在要找出出错的地方,在 layout 窗口选择 verify->marker->find,得到 Find Marker 对话框,在对话框中,把 Zoom to Marker 选上,其它的保持默认。

按下 Apply 后,layout 窗口放大到相应的出错的地方,同时还有一个 marker text 窗口,其上面的

信息解释当前的错误,如下。

取消掉 FindMarker 和解释窗口(Find Marker 窗口按下 Cancel 键),缩小 layout 视图就可以确定出错的位置了,如下图,出错在多晶硅连接的接触孔处。

根据出错的提示信息,可以在接触孔出添加金属,使得金属 1 的面积不小于 0.36,保存后再运行 DRC,结果如下图。

CIW 窗口给出信息找到 0 个错误,就是说以上版图已经没有违背物理设计规则的地方了,虽然这个版图并不完整,比如版图上还没有 N 并和衬底的偏置连接。但我们还是用这个版图继续去完成下面的步骤,当然在下面的验证过程中我们会遇到一些错误。

版图的提取

现在我们可以将刚才那个版图进行提取,这一步是必须的,在 LVS 或者 ERC 时我们不再用刚才那个版图文件,即.layout 文件,而使用.extracted 文件。

Le 窗口选择 verify->extract,打开 Extractor 对话框。

如同在 DRC 对话框,这里也只要在 SwitchNames 中输入相关消息就可以了,其他的信息只要在建立库时指定正确的技术库,其中大部分内容都会被填充。对于提取方法(Extract Method)的设置,默认为 Flat,是全新提取,会覆盖先前的提取。点击 Set Switches 按钮后得到如下 SetSwitch 对话框,选择 No Soft Checks(工艺说明文件上有相关选项的说明),点击 Ok。

在 Extractor 对话框点击 OK,开始版图的提取。运行完成后,查看 CIW 窗口,如下,没有错误,我们可以进行下一步验证,如果有错误,找到并改正它。

现在我们就可以通过 design->open 打开 Open File 对话框,如下,在 View Name 选项选择 extracted。

点击 Ok 打开提取过的版图,如下图,可以看到一些跟逻辑电路图上相同的管子符号,除了偏置端悬空外,管子的其它各个端点都已和特定的节点连接上,各个节点的命名由系统自动生成,当然也可以通过添加 Pin 来自定义各个节点的名字。

运行 LVS

在菜单栏选择 verify->LVS,打开 LVS 对话框,

按照上图在 Create Netlist 处进行填写,可以通过 Browse 按钮来填充。在 View 处分别为

schematic 和 extracted,请不要在 View 上填入 layout,这里只能是 Schematic 和 Extracted 的比较.在对话框的左下角的 priority 处填上 20,默认值为 0,改为 20 会看到更多的信息。其它的采用默认,点击 Run 按钮,开始 LVS。LVS 是后台运行的,在运行 LVS 过程中可以干一些其它的事情,当 LVS 运行完成后,会弹出一个运行成功或失败的对话框,如下,显示运行成功。

现在可以查看运行结果了。如果弹出的对话框显示失败,则没有输出文件生成。从这里可以看出,虽然我们的版图上有错误,但 LVS 还是可以成功运行的,不过输出结果是肯定有 Missmatch 的。 LVS 过程出现错误往往是由于软件设置不当造成的,可以通过 LVS 对话框的 Error Display 来查看信息,同样也可以通过 CIW 窗口,不过如果 LVS 运行出问题了,往往无法通过错误信息直接找到错误的原因,比如有时会看到像: LVS 目录非法的信息。

在 LVS 窗口中点击 Info 按钮,打开 Display Run Information 对话框来查看信息,如下。

面板上有很多按钮,通过按钮上的标签就可以得到相应的运行信息,比如,点击 Log File 查看运行日志,在 Schematic 处点击 Netlist 可以看到逻辑电路图的网表输出,而点击 Extracted 的 Netlist 按钮则可以看到版图提取生成的网表文件,LVS 就是通过先生成两个视图的网表,然后再比较两个网表文件的。

点击 Output 来查看 LVS 的输出,如下图。

```
/root/forcsmc/LVS/si.out
File
                                                                                Help
                                                                                        6
@(#)$CDS: LVS version 5.0.0 01/07/2003 19:34 (intelibm1) $
Like matching is enabled.
Net swapping is enabled.
Using terminal names as correspondence points.
 CSM 0.25um CMOS MS/RF Diva LVS Rules
    Net-list summary for /root/forcsmc/LVS/layout/netlist
       count
                        nets
        0
                        terminals
                        pmos_tk
                        nmos_tk
    Net-list summary for /root/forcsmc/LVS/schematic/netlist
       count
        4
                        nets
        4
                        terminals
                        nmos_tn
                        pmos_tn
        Device summary for layout
                   bad total
        pmos_tk
                   1
                           1
        nmos_tk
                     1
        Device summary for schematic
                  bad total
                   1
        nmos_tn
        pmos_tn
The net-lists failed to match.
                              layout schematic
                                 instances
                                 2
        un-matched
                                 0
                                         0
        rewired
        size errors
                                 0
                                         0
        pruned
                                 0
                                         0
        active
                                 2
                                         2
        total
                                   nets
        un-matched
                                 6
                                         4
        merged
```

到此已经完成版图的 LVS。祝贺你,这个使用说明结束了。

以上是在大学的时候写的,全部属于原创. 如有疑问请联系: guanzhzh@126.com