Esboço de superfícies

Superficie esférica $x^2 + y^2 + z^2 = r^2$

Esboce a superficie esférica $x^2 + y^2 + (z - 1)^2 = 1$

Superficie cónica $x^2 + y^2 = c^2 z^2$, $z \ge 0$

TPC: Esboce a superficie cónica $z^2 + y^2 = x^2$

Paraboloide $z = x^2 + y^2$

TPC: Esboce o paraboloide $z = 1 - x^2 - y^2$

Superficie cilíndrica $x^2 + y^2 = r^2$

TPC: Esboce a superficie cilíndrica $x^2 + y^2 = 4$, -1 < z < 2

Elipsoide
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

FICHA 1

Equação paramétrica de uma curva

Dado um domínio $I \subset R$ a parametrização de uma superfície é dada pela função

$$r(t)=(x(t),y(t),z(t)), t\in I\subset R$$
 em que x,y,z satisfazem as equações cartesianas da curva (1 em R^2 ou 2 em R^3).

Exercício nº11 pontos P=(1,-1,0) até Q=(3,0,-3)

Exercício nº 3b)

TPC: Calcule, sendo $f(t)=(2t, cos(\pi t), exp(-2t))$, f'(t) e integre f(t) no intervalo [0,1]

f'(t)=

Exercício nº 12 esboce e parametrize

a)

c)

d)

TPC: Esboce e parametrize $x^2 + (y+1)^2 = 4$

c)

g)

TPC: esboce $f(t)=(1+\cos t, -1+\sin t)$, $0< t< 2\pi$

Exercício nº 15 esboce e parametrize a)

d)

b) parametrize

TPC: parametrize e esboce $x^2 + y^2 = 4$, z = y

parametrize $x^2 + y = 4$, $z = 1 + y^2$, 0 < x < 3