OVERVIEW

- Real (non-ideal) gases. Van der Waals equation.
- Phases of matter and phase transitions.

(FOUR WEEKS AGO) PHASE TRANSITIONS

(FOUR WEEKS AGO) PHASE TRANSITIONS

Imagine taking a block of ice at $T < 0\,^{\circ}\mathrm{C}$ at atmospheric pressure and slowly adding heat at a constant rate.

To completely melt $m \log$ of ice, we need to add $Q = mL_f$

PHASE TRANSITIONS

Q: What is the entropy change during the phase transition?

A: Heat is added at constant temperature T_{PT} , thus

$$\Delta S = \frac{mL_f}{T_{PT}}$$

Define the *specific entropy* of a substance (entropy per unit mass) S = S/m.

$$L_f = T_{PT} \left[S_{\text{liquid}} - S_{\text{solid}} \right]$$

where the entropies are evaluated at $T = T_{PT}$.

Likewise, the latent heat of vaporization

$$L_{v} = T_{\text{boiling}} [S_{\text{gas}} - S_{\text{liquid}}]$$

(TWO WEEKS AGO) MOLECULAR THEORY OF GASES

For N molecules of gas confined to a volume V, concentration n=N/V. The typical distance between molecules $\ell\sim n^{-1/3}$ For air at standard conditions $n\sim 3\times 10^{25}\,\mathrm{m}^{-3}$, hence $\ell\sim 30\,\mathrm{\AA}$

For gases at around room temperature and around atmospheric pressure

$$\ell \gg r_o$$

And neglecting the interactions is a good first approximation.

IDEAL GAS APPROXIMATION

Assumptions of the ideal gas model:

- molecules are pointlike
- no interactions between molecules

This leads to the ideal gas law

$$pV = \nu RT$$

Which works very well as long as the gas is dilute.

NB: An ideal gas does not liquefy—ever. While real gases certainly do.

VAN DER WAALS EQUATION

An empirical way of relaxing the ideal gas assumptions.

Excluded volume correction:

$$V \longrightarrow V - \nu b$$

Here b is the excluded volume occupied by a mole of molecules. Units of b are m^3/mol :

(Attractive) interaction between molecules:

$$p \longrightarrow p + a \frac{\nu^2}{V^2}$$

VAN DER WAALS EQUATION

VAN DER WAALS EQUATION

$$\left(p + a \frac{\nu^2}{V^2}\right) (V - \nu b) = \nu RT$$

which reduces to the ideal gas equation for dilute gases (small ν/V).

INTERNAL ENERGY OF A VAN DER WAALS GAS

$$U = \underbrace{\frac{f}{2}\nu RT}_{\text{ideal gas term}} - \frac{a\nu^2}{V}$$

where f is the number of degrees of freedom of molecules.

VAN DER WAALS EQUATION

van der Waals equation:

$$\left(p + a\frac{\nu^2}{V^2}\right)(V - \nu b) = \nu RT$$

which reduces to the ideal gas equation for dilute gases (small ν/V).

For CO₂: $a = 0.36 \, \mathrm{m}^3/\mathrm{mol}^2$ and $b = 4.3 \times 10^{-5} \, \mathrm{m}^3/\mathrm{mol}$.

At standard conditions ($T=0\,^{\circ}\text{C}$ and $p=1.01\times10^{5}\,\text{Pa}$) the molar volume of an ideal gas is 22.4 L/mol= 0.0224 m³/mol

If a mole of CO_2 at standard conditions occupies this volume, van der Waals equation predicts the pressure being smaller than the ideal gas pressure by $\sim 500\,\text{Pa}$

ISOTHERMS OF VAN DER WAALS EQUATION

$$\left(p + a \frac{\nu^2}{V^2}\right) \left(V - \nu b\right) = \nu RT$$

The relation between p and V is a cubic parabola.

- for T larger than some T_c , isotherms resemble the ideal gas isotherms
- for T smaller than $T < T_c$, isotherms are non-monotonic

 T_c is called the *critical temperature* (and the blue line is the *critical isotherm*)

ISOTHERMS OF VAN DER WAALS EQUATION

Q: So, the red-colored parts of the isotherms have $\kappa < 0 \Rightarrow$ are unstable?

A: In fact, these are *metastable* states (an overcooled gas).

ISOTHERMS OF VAN DER WAALS EQUATION

Van der Waals equation describes a liquid-gas phase transition

Shaded region: liquid-gas equilibrium

Flat parts of the isotherms (the so-called Maxwell construction): when compressed at T = const, the gas condenses into liquid, and p = const

NB: Condensation \Rightarrow the corresponding latent heat needs to be removed in order to maintain T = const

CRITICAL POINT

For $T > T_c$, there is no sign of phase coexistence. Isotherms look just like the ideal gas isotherms.

Indeed, for $T > T_c$ there is no difference between a gas and a liquid.

At $T
ightarrow T_c - 0$ the latent heat of vaporization $L_{
u}
ightarrow 0$

	Argon	CO_2	Mercury	Water
T_c ,°C			1477	374
p_c , atm	48.1	72.8	1720	217.7

TRIPLE POINT

	Argon	_	Mercury	Water
$\overline{T_{\mathrm{triple}}}, {}^{\circ}C$	-189.3	-56.6	-38.8	0.01
p_{triple} , atm			$1.6 imes 10^{-9}$	$0.6 imes 10^{-2}$

PHASE DIAGRAM OF WATER

