Fracture mechanics

Seminar 5: J-integral, testing, and more

Luc St-Pierre May 24, 2023

Learning outcomes

After this week, you should be able to:

Understand and use the *J*-integral,

Explain how to measure the fracture toughness,

Describe the main fracture mechanisms in metals and composites.

Elastic-Plastic Fracture Mechanics

- Last week, we saw how to estimate the size of the plastic zone at the crack tip.
 - If the plastic zone size is small ($r_p < a/10$), you can use LEFM.

- What can we do if the plastic zone size is large?
 - Use the *J*-integral.
 - Fracture will occur when: $J = J_{Ic}$

J-integral: material model

- The J-integral is developed for a non-linear elastic material.
- This is different from the elastic-plastic behavior of most metals.

J-integral: definition

The *J*-integral is defined just like the energy release rate *G*:

$$J = -\frac{d\Pi}{dA}$$
 where $\Pi = U - W$

If the material is linear elastic then I = G.

J-integral and the stress field

Assuming that the stress-strain curve of the material follows the Ramberg-Osgood equation:

$$\varepsilon = \frac{\sigma}{E} + K \left(\frac{\sigma}{E}\right)^n$$

Hutchinson, Rice and Rosengren showed that stresses at the crack tip scale as:

$$\sigma_{ij} \propto \left(\frac{J}{r}\right)^{\frac{1}{n+1}}$$

For a linear elastic material (n = 1), we recover that $\sigma_{ij} \propto 1/\sqrt{r}$

J as a contour integral

$$J = \int_{\Gamma} \left(w dy - t_i \frac{\partial u_i}{\partial x} ds \right)$$

Where,

Strain energy: $w = \int_0^{\varepsilon_{ij}} \sigma_{ij} d\varepsilon_{ij}$

Traction vector: $t_i = \sigma_{ij} n_j$

Vector normal to contour: n_j

Displacement vector: u_i

The *J*-integral is contour independent.

The *J*-integral can be calculated easily in a finite element analysis.

Example problem

$$J = \int_{\Gamma} \left(w dy - t_i \frac{\partial u_i}{\partial x} ds \right)$$

Where,

Strain energy: $w = \int_0^{\varepsilon_{ij}} \sigma_{ij} d\varepsilon_{ij}$

Traction vector: $t_i = \sigma_{ij} n_j$

Vector normal to contour: n_i

Displacement vector: u_i

Determine the *J*-integral for the infinitely wide strip below. Assume that the material is linear elastic, isotropic, and under plane stress.

Computational implementation

Contour integral

Most Finite Element packages can compute the *J*-integral.

- Its definition has been extended to 3D cracks.
- The software may be able to convert J to K_I, K_{II}, K_{III} .

Contour integral

To compute the contour integral, you need to provide:

- 1. A crack tip (2D) or crack front (3D),
- 2. The direction of crack propagation (shown here in blue),
- 3. The number of contours.

Number of contours

2 contours

3 contours

Contour integral

- The J-integral should converge to a certain value after a few contours.
 - How many contours? This is highly dependent on the mesh size and on the problem.

 Warning: results may diverge if you request more contours than there are elements!

Fracture testing

Fracture testing

Measuring the fracture toughness is complex. Consult the relevant standard, e.g. ASTM E1820.

There are two testing methods:

- 1. To measure the fracture toughness K_{Ic}
- 2. Measure the R-curve using the *J*-integral.

Specimen geometries

Side grooves and precrack

Side grooves help to propagate a straight crack.

For metals, fatigue is the only way to produce a sharp crack.

Instrumentation

- Displacement is measured at the crack mouth by a clip-gauge.
- Force is measured by the testing machine.

Method 1: K_{Ic}

Calculate the stress intensity factor with:

$$K_Q = \frac{P_Q}{B\sqrt{W}} f\left(\frac{a}{W}\right)$$

A valid test should respect these conditions:

$$0.45 \le \frac{a}{W} \le 0.55$$

$$P_{max} \le 1.10P_Q$$

$$a, (W - a), B \ge 2.5 \left(\frac{K_{Ic}}{\sigma_V}\right)^2$$

Method 2: R-curve

Use the compliance *C* to calculate the crack length *a* during the test.

Calculate J as a function of a (for each partial unloading).

Method 2: R-curve

The value
$$J_Q = J_{Ic}$$
 if:
 $B, b_0 \ge \frac{25J_Q}{\sigma_V}$

If this is satisfied, you can get:

$$K_{Ic} = \sqrt{\frac{EJ_{Ic}}{1 - v^2}}$$

Fracture mechanics

Fracture mechanisms in metals

1. Ductile fracture,

2. Cleavage,

3. Intergranular fracture

Ductile fracture

1. Inclusions in a ductile matrix

1. Inclusions in a 2. Void nucleation

3. Void growth

5. Necking between voids

6. Void coalescence and fracture

Fractography

Ductile fracture

Most metals at room temperature

Cleavage

Metals at low temperatures

Intergranular fracture

Metals in harsh environments

Fracture mechanisms in composites

- 1. Fibre pull-out,
- 2. Fibre bridging,
- 3. Fibre/matrix debonding,
- 4. Fibre failure,
- 5. Matrix cracking.

In summary

We covered:

- How to use the J-integral, and how it is implemented in FEM.
- The procedure to measure fracture toughness,
- What are the main fracture mechanisms.

