МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра «Систем обработки информации и управления»

ОТЧЕТ	
Рубежный контроль№2	
по дисциплине «Методы машинного о	обучения
»	
Тема: «Методы обработки данны	ых»
ИСПОЛНИТЕЛЬ:	Ван Тяньшо
группа ИУ5 И -23М	ФИО
	подпись
	"28"052024 г.
""2024 г	
Москва - 2024	

Задание

Необходимо подготовить отчет по рубежному контролю и разместить

его в Вашем репозитории. Вы можете использовать титульный лист, или в

начале ноутбука в текстовой ячейке указать Ваши Ф.И.О. и группу.

Тема: Методы обработки текстов.

Решение задачи классификации текстов.

Необходимо решить задачу классификации текстов на основе любого

выбранного Вами датасета (кроме примера, который рассматривался в

лекции). Классификация может быть бинарной или многоклассовой. Целевой

признак из выбранного Вами датасета может иметь любой физический

смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на

основе CountVectorizer и на основе TfidfVectorizer.

Мой наборов данных: 20 Newsgroups

Код задачи

```
🔘 # 安装必要的库
             !pip install scikit-learn
            # 导入必要的库
           Import panuas as pu
from sklearn.datasets import fetch_2Onewsgroups
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
            from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
            from sklearn.metrics import classification_report, accuracy_score
            # 下载20类新闻组数据集
             newsgroups = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)
            X, y = newsgroups.data, newsgroups.target
                 划分训练集和测试集
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            # 使用CountVectorizer进行特征提取
            | Windows | Wind
            # 使用TfidfVectorizer进行特征提取
           tfidf_vectorizer = TfidfVectorizer(stop_words='english')
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
                 定义分类器
            classifiers = {
    'LinearSVC': LinearSVC(),
    'LogisticRegression': LogisticRegression(max_iter=1000)
            # 评估每个分类器的性能
           print(f"Results for {vec_name} with {clf_name}:")
                                                      print(classification_report(y_test,
                                                     print(f"Accuracy: {accuracy_score(y_test, y_pred)}\n")
```

Рисунок 1

Результат выполнения задачи:

1.Results for CountVectorizer with LinearSVC:

```
🚁 Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
       Requirement already satisfied: numpy=1.17.3 in /usr/local/lib/python3.10/dist-packages (1.2.2)
Requirement already satisfied: numpy=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.25.2)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)
/usr/local/lib/python3.10/dist-packages/sklearn/svm/_base.py:1244: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
        Results for CountVectorizer with LinearSVC
                                   precision
                                                             recall f1-score support
                                               0.80
                                                                  0.81
                                                                                       0.80
                                                                                       0.85
0.72
0.83
                                              0.86
0.70
                                                                  0.85
0.73
                                               0.83
                                                                  0.83
                                               0.88
                                                                  0.88
                                                                                       0.88
0.83
                                                                                                             215
193
                                                                   0.94
                                               0.91
                                               0.95
                                                                   0.96
                                                                                       0.95
                                                                                                             211
198
201
                                               0.96
                                                                   0.95
                                                                                       0.95
                                              0.97
                                                                                       0.97
                             10
11
                                                                  0.98
0.96
                             12
13
14
                                                                  0.80
                                                                                       0.82
0.93
                                               0.85
                                                                                                             202
                                              0.90
                                                                   0.96
                                                                                       0.96
                             15
16
17
                                               0.92
                                                                   0.98
                                                                                       0.95
                                                                                                             202
188
                                                                                       0.93
0.97
                                               0.93
                             18
                                               0.95
                                                                  0.88
                                                                                       0.91
                                                                                                             159
                            19
                                                                                       0.84
                                                                                                             136
                                                                                       0.90
                                                                                                            3770
                accuracy
                                              0.90
        Accuracy: 0.8954907161803713
```

2. Results for CountVectorizer with LogisticRegression:

Results for CountVectorizer with LogisticRegression:

	precision	recall	f1-score	support
0	0.89	0.89	0.89	151
1	0.78	0.84	0.81	202
2	0.88	0.82	0.85	195
3	0.72	0.73	0.73	183
4	0.85	0.85	0.85	205
5	0.88	0.86	0.87	215
6	0.83	0.85	0.84	193
7	0.89	0.94	0.92	196
8	0.97	0.93	0.95	168
9	0.94	0.97	0.96	211
10	0.97	0.96	0.97	198
11	0.98	0.94	0.96	201
12	0.85	0.81	0.83	202
13	0.91	0.95	0.93	194
14	0.94	0.94	0.94	189
15	0.91	0.99	0.95	202
16	0.93	0.94	0.94	188
17	0.99	0.96	0.97	182
18	0.92	0.88	0.90	159
19	0.87	0.81	0.84	136
accuracy			0.89	3770
macro avg	0.90	0.89	0.89	3770
weighted avg	0.90	0.89	0.89	3770

Accuracy: 0.8949602122015915

Рисунок 3

3. Results for TfidfVectorizer with LinearSVC

Results for TfidfVectorizer with LinearSVC:				
	precision	recall	f1-score	support
(0.93	0.93	151
		0.90	0.86	202
2		0.89	0.90	195
	3 0.79	0.80	0.79	183
	4 0.90	0.92	0.91	205
Ę	5 0.92	0.91	0.92	215
	0.88	0.85	0.86	193
,	7 0.93	0.94	0.94	196
{	3 0.97	0.95	0.96	168
(0.99	1.00	0.99	211
10	0.97	0.99	0.98	198
1:	0.98	0.98	0.98	201
12	2 0.92	0.88	0.90	202
13	3 0.95	0.96	0.95	194
14	4 0.96	0.98	0.97	189
15	5 0.96	0.98	0.97	202
16	0.95	0.95	0.95	188
1	7 0.99	0.99	0.99	182
18	3 0.96	0.91	0.93	159
19	0.92	0.88	0.90	136
accuracy	7		0.93	3770
macro av	0.93	0.93	0.93	3770
weighted av	g 0.93	0.93	0.93	3770

Accuracy: 0.9305039787798408

4. Results for TfidfVectorizer with LogisticRegression:

Results for TfidfVectorizer with LogisticRegression:

precision recall f1-score support

	precision	recall	f1-score	support
0	0.89	0.90	0.89	151
1	0.79	0.87	0.83	202
2	0.13	0.83	0.83	195
3	0.72	0.76	0.74	183
4	0.12	0.86	0.88	205
5	0.89	0.85	0.87	215
6				193
7	0.84	0.83	0.83	
	0.91	0.94	0.93	196
8	0.97	0.93	0.95	168
9	0.97	0.97	0.97	211
10	0.96	0.97	0.97	198
11	0.98	0.95	0.96	201
12	0.87	0.87	0.87	202
13	0.96	0.96	0.96	194
14	0.91	0.98	0.94	189
15	0.92	0.98	0.95	202
16	0.93	0.93	0.93	188
17	0.99	0.98	0.99	182
18	0.93	0.86	0.89	159
19	0.89	0.73	0.80	136
accuracy			0.90	3770
macro avg	0.90	0.90	0.90	3770
weighted avg	0.90	0.90	0.90	3770

Accuracy: 0.9007957559681697

Рисунок 5

5.Оценка метода

	Precision	Recall	F1-Score	Accuracy
CountVectorizer	0.9	0.9	0.9	0.895
+ LinearSVC				
CountVectorizer	0.9	0.89	0.89	0.895
+ Logistic				
Regression				
TfidfVectorizer	0.93	0.93	0.93	0.93
+ LinearSVC				
TfidfVectorizer	0.90	0.90	0.90	0.901
+Logistic				
Regression				

Вывод

Как видно из приведенных выше результатов, производительность различных комбинаций методов векторизации объектов (CountVectorizer и TfidfVectorizer) и классификаторов (LinearSVC и LogisticRegression) в задачах классификации различна.

Комбинация CountVectorizer и LinearSVC показала хорошие результаты, достигнув показателя точности 0,90.

Комбинация CountVectorizer и LogisticRegression также показала хорошие результаты, но они были немного ниже, чем у LinearSVC, с точностью 0,895.

Комбинация TfidfVectorizer и LinearSVC показала наилучшие

результаты среди всех комбинаций, достигнув показателя точности 0,93.

Комбинация TfidfVectorizer и LogisticRegression также показала хорошие результаты с точностью 0,90, но немного ниже, чем LinearSVC.

Таким образом, комбинация TfidfVectorizer и LinearSVC демонстрирует наилучшие характеристики классификации с высочайшей точностью (0,930) и высокой точностью воспроизведения, а также показателем F1.