Wirtschaftsmathematik: Differentialrechnung

Thilo Klein thilo@klein.uk

Gliederung

Funktionen einer Variablen

Grundbegriffe Eigenschaften von Funktionen Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung

Kurvendiskussion Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen Differentialrechnung

Integralrechnung

Gegenstand

- ▶ Die Differentialrechnung ist das wichtigste Hilfsmittel zur Analyse des Verlaufs von Funktionen.
- Der Verlauf einer Funktion wird natürlich durch ihre Steigung in jedem Punkt beschrieben. Entsprechend ist die zentrale Aufgabe der Differentialrechnung die Bestimmung der jeweiligen Steigungen von Funktionen.
- ▶ Da die Steigung einer nichtlinearen Funktion selbst nicht konstant ist, ist die Steigung selbst abhängig von der Variablen x. Man erhält also eine Steigungsfunktion, die als Ableitung bezeichnet wird.
- ▶ Die Differentialrechnung gehört aufgrund des Marginalprinzips (Beschreibung optimaler Lösungen durch Grenzbetrachtungen) zu den wichtigsten mathematischen Hilfsmitteln in den Wirtschaftswissenschaften.

Die Steigung einer linearen Funktion

Wiederholung: Die Steigung der linearen Funktion y = mx + b ist

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}.$$

Die Änderung des Funktionswertes ist

$$\Delta y = m\Delta x$$

Im folgenden werden analoge Beziehungen für nichtlineare Funktionen gesucht.

Der Differenzenquotient

▶ Die durchschnittliche Steigung einer Funktion f(x) zwischen zwei Stellen x_0 und $x_0 + \Delta x$ kann durch den Differenzenquotienten

$$\left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{\Delta y}{\Delta x}\right)$$

dargestellt werden (vgl. folgende Abbildung).

- ▶ Der Differenzenquotient gibt die Steigung der Sekante durch die Punkte $(x_0, f(x_0))$ und $(x_0 + \Delta x, f(x_0 + \Delta x))$ an.
- ▶ Je kleiner Δx ist, desto besser wird die Steigung der Funktion an einer bestimmten Stelle x_0 erfasst. Die Steigung bei x_0 entspricht der Steigung der Tangente an $(x_0, f(x_0))$.

Der Differenzenquotient

Der Differentialquotient

- ▶ Die exakte Steigung in einem Punkt kann ermittelt werden, indem der Grenzwert für $\Delta x \rightarrow 0$ bestimmt wird. Existiert dieser Grenzwert, so heißt die Funktion f(x) differenzierbar an der Stelle x_0 .
- ▶ Der Grenzwert heißt Differentialquotient oder Ableitung der Funktion f(x) und wird mit f'(x) oder dy/dx bezeichnet:

$$f'(x_0) = \frac{dy}{dx}\Big|_{x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

- ► Geometrisch gesehen ist die Ableitung $f'(x_0)$ einer Funktion f(x) an der Stelle x_0 gleich der Steigung ihrer Tangente an $f(x_0)$.
- ▶ Existiert f'(x) für alle x des Definitionsbereichs D, so heißt f(x) differenzierbar auf D.

Der Differentialquotient

▶ Beispiel: Die Ableitung von $f(x) = x^2$ an der Stelle x_0 errechnet sich aus

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^2 - x_0^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{2x_0 \Delta x + (\Delta x)^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (2x_0 + \Delta x) = 2x_0.$$

- ▶ Die Stelle *x*₀ steht dabei für eine beliebige Stelle (also eine bliebige Zahl, für die der Funktionswert berechnet wird).
- ▶ Allgemein lautet die Ableitungsfunktion von $f(x) = x^2$ demnach f'(x) = 2x.

Differentiale

- ▶ Die Ableitung von f(x) an der Stelle x_0 gibt die Steigung der Tangente an f(x) bei x_0 an.
- Man Änderungen des Funktionswertes durch Bewegungen entlang der Tangente abschätzen.
- ▶ Verwendet man $\Delta y := f(x_0 + \Delta x) f(x_0)$ in der Definition der Ableitung, so folgt aus

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

die folgende für kleine Δx gute Näherungsformel für Änderungen von y (also Δy) ind Abhängigkeit von Änderungen von x (also Δx):

▶ Mit den Differentialen $dy \approx \Delta y$ und $dx = \Delta x$ gilt die exakte Beziehung

$$dy = f'(x_0) \cdot dx$$

Differentiale

Differentiale

▶ Zahlenbeispiel: Für $f(x) = x^2$ gilt f'(x) = 2x. Ändert man den x-Wert von $x_0 = 1$ auf 1,1, so dass $\Delta x = 0,1$, so folgt:

$$\Delta y \approx dy = f'(1)dx = 2 \cdot 0, 1 = 0,2$$

► Für die exakte Änderung gilt:

$$\Delta y = f(1,1) - f(1) = 1,1^2 - 1^2 = 0,21$$

- ▶ dy = 0.2 ist hier also eine gute Näherung für $\Delta y = 0.21$.
- ▶ Beispiel Kostenfunktion: Stellt K = K(x) eine Kostenfunktion dar, so folgt aus dK = K'(x)dx, dass K'(x) näherungsweise die Kostensteigerung dK angibt, wenn eine Einheit mehr produziert wird (dx = 1), also die Grenzkosten:

$$dK = K'(x)dx \Rightarrow K'(x) = dK$$
 für $dx = 1$

Wichtige Ableitungen

In der Anwendung ist die Durchführung der Grenzwertberechnung für den Differentialquotienten nicht erforderlich, weil die Ableitungsfunktionen aller hier interessierenden Funktionen nach allgemeingültigen Regeln bekannt sind:

f(x)	а	x ^k	e ^x	ln x	a ^x	log _a x
<i>f</i> ′(<i>x</i>)	0	<i>kx</i> ^{<i>k</i>-1}	e ^x	$\frac{1}{x}$	In a · a ^x	$\frac{1}{\ln a} \frac{1}{x}$

Für zusammengesetzte Funktionen gelten folgende Rechenregeln:

$$(af(x))' = af'(x),$$

 $(f(x) \pm g(x))' = f'(x) \pm g'(x)$

Beispiele

$$f(x) = 2x^{8} \Rightarrow f(x) = 3x^{7} + x^{2} \Rightarrow f(x) = 3x^{7} - 4x^{2} + 3x \Rightarrow f(x) = \ln x \Rightarrow f(x) = 10 \ln x + 2x \Rightarrow f(x) = 4e^{x} \Rightarrow f(x) = x^{2} - 4e^{x} \Rightarrow f(x) = x^{2} - 4e^{x} \Rightarrow f(x) = x^{2} - 10^{x} \Rightarrow f(x) = 10x \Rightarrow f(x) = 10x^{2} + x^{-1} - x \Rightarrow f(x) = 1/x^{3} \Rightarrow f(x) =$$

Produktregel

- Bei komplizierteren Verknüpfungen von Funktionen sind zusätzliche Regeln zur Bestimmung der Ableitungen erforderlich.
- ▶ Produktregel: Wenn $f(x) = u(x) \cdot v(x)$ das Produkt von zwei Funktionen u(x) und v(x) ist, so gilt:

$$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Beispiel:

$$f(x) = x^2 \cdot (1 + \sqrt{x})$$
 \Rightarrow $f'(x) = 2x \cdot (1 + \sqrt{x}) + x^2 \cdot \frac{1}{2\sqrt{x}}$

Quotientenregel

▶ Quotientenregel: Wenn f(x) = u(x)/v(x) der Quotient von zwei Funktion u(x) und v(x) ist, so gilt:

$$f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$$

Beispiel:

$$f(x) = \frac{x^2}{1+x^3}$$
 \Rightarrow $f'(x) = \frac{2x \cdot (1+x^3) - x^2 \cdot 3x^2}{(1+x^3)^2}$

Kettenregel

► Kettenregel: Wenn f(x) = h(g(x)) eine verkettete Funktion h von g von x ist, so gilt:

$$f'(x) = h'(g(x)) \cdot g'(x)$$

▶ In der Leibnizschen Schreibweise nimmt sich die Kettenregel wie eine Trivialität aus. Wenn y = h(z) und z = g(x), dann gilt:

$$\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx}$$

Beispiel:

$$f(x) = \ln(1 + x^2)$$
 \Rightarrow $f'(x) = \frac{1}{1 + x^2} \cdot 2x$

Höhere Ableitungen

- ▶ Die Ableitung f'(x) von f(x) ist selbst eine Funktion, die in der Regel wieder abgeleitet werden kann.
- ▶ Die Ableitung von f'(x) heißt zweite Ableitung von f(x) und wird mit f''(x) bezeichnet. Entsprechend ist f'''(x) die dritte Ableitung und $f^{(n)}(x)$ die n-te Ableitung von f(x).
- Beispiel:

$$f(x) = x^{4} - x^{3} + 5x$$

$$f'(x) = 4x^{3} - 3x^{2} + 5$$

$$f''(x) = 12x^{2} - 6x$$

$$f'''(x) = 24x - 6$$

$$f^{(4)}(x) = 24$$

$$f^{(5)}(x) = 0$$

$$f^{(6)}(x) = 0$$

- ► Elastizitäten stellen wichtige Kennzahlen zur Reaktion von Nachfragefunktionen auf Preis- oder Einkommensänderungen dar.
- Hier wird nur die Preiselastizität der Nachfrage betrachtet:

$$\frac{\text{Preiselastizit"at der Nachfrage} := \frac{\text{prozentuale Nachfrage"anderung}}{\text{prozentuale Preis"anderung}}$$

- Symbol: η = Preiselastizität
- Beispiel: Steigt der Preis einer Eiskugel von 2 Euro auf 2,20 Euro und geht die nachgefragte Menge von 10 auf 8 Kugeln zurück, bewirkt eine Preissteigerung um 10% einen Mengenrückgang um 20%. Also:

$$\eta = \frac{-20\%}{10\%} = -2$$

► Interpretation: Eine einprozentige Preiserhöhung bewirkt einen zweiprozentigen Nachfragerückgang.

- Frage: Wie kann man die Elastizität für eine Nachfragefunktion x = N(p) einfach bestimmen?
- In Symbolen gilt:

$$\eta = \frac{\Delta x/x \cdot 100}{\Delta p/p \cdot 100} = \frac{\Delta x}{\Delta p} \frac{p}{x}$$

▶ Da ein Differenzenquotient durch den Differentialquotienten, also die Ableitung angenähert werden kann, gilt ungefähr:

$$\eta = \frac{dx}{d\rho} \frac{\rho}{x} \qquad (= N'(\rho) \frac{\rho}{x})$$

➤ Zur Unterscheidung bezeichnet man die ursprüngliche Elastizität als Bogenelastizität, die mittels des Differentialquotienten berechnete als Punktelastizität.

▶ Beispiel: x(p) = 100-2p. Für die Preiselastizität der Nachfrage folgt

$$\frac{dx}{dp}\frac{p}{x}=\frac{-2p}{100-2p}.$$

▶ Da 100-2p>0 für x>0, ist die Elastizität negativ. Daher wird häufig der Betrag verwendet (der Betrag |x| macht aus einer negativen Zahl x eine positive Zahl):

$$\left|\frac{dx}{dp}\frac{p}{x}\right| = \frac{2p}{100 - 2p}.$$

▶ Setzt man $\left| \frac{dx}{dp} \frac{p}{x} \right| \stackrel{\ge}{=} 1$, so folgt

$$\left|\frac{dx}{dp}\frac{p}{x}\right| \begin{cases} > 1 & p > 25 \\ = 1 & p = 25 \\ < 1 & p < 25 \end{cases} \qquad (|\eta| > 1 \text{heißt elastische Nachfrage})$$

▶ Die Umkehrfunktion des Beispiels x(p) = 100 - 2p lautet p(x) = 50 - 0.5x. Daraus lässt sich die Nachfrageelastizität des Preises bestimmen:

$$\frac{dp}{dx}\frac{x}{p} = \frac{-0.5x}{50 - 0.5x}$$

▶ Ersetzt man x durch x = 100 - 2p so folgt:

$$\frac{dp}{dx}\frac{x}{p} = \frac{-50 + p}{p} = \frac{-100 + 2p}{2p} = \frac{1}{\frac{dx}{dp}\frac{p}{x}} = \frac{1}{\eta}$$

Die Nachfrageelastizität de Preises ist also gleich dem Kehrwert der Preiselastizität der Nachfrage (nicht nur in diesem Beispiel).

Gliederung

Funktionen einer Variablen

Grundbegriffe Eigenschaften von Funktionen Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung

Kurvendiskussion

Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen

Differentialrechnung

Optimierungsprobleme

Integralrechnung

Wiederholung: Extrem- und Wendestellen, Krümmung

Eine reelle Funktion $f: D \rightarrow R$ hat

- eine Nullstelle x_0 , wenn $f(x_0) = 0$,
- ▶ ein globales Maximum x_{max} , wenn $f(x_{max}) \ge f(x)$ für alle $x \in D$,
- ▶ eine globales Minimum x_{\min} , wenn $f(x_{\min}) \leq f(x)$ für alle $x \in D$,
- ▶ ein lokales Maximum x_{max} , wenn $f(x_{max}) \ge f(x)$ für alle x in einer Umgebung um x_{max} ,
- ▶ ein lokales Minimum x_{min} , wenn $f(x_{min}) \le f(x)$ für alle x einer Umgebung um x_{min} .

Oberbegriffe für Maxima und Minima: Extremstellen oder Optimalstellen; die Punkte heißen auch Hoch- und Tiefpunkte.

Die Funktion heißt

- streng konvex oder linksgekrümmt, wenn ihre Steigung zunimmt,
- streng konkav oder rechtsgekrümmt, wenn ihre Steigung abnimmt.

Sie hat eine Wendestelle, wenn sich ihre Krümmung von konkav in konvex oder umgekehrt ändert.

Wiederholung: Extrem- und Wendestellen, Krümmung

Kurvendiskussion

Die einzelnen Schritte der Kurvendiskussion werden anhand eines Beispiels erläutert:

$$f(x) = x^3 + 4x^2 - 4x - 16$$

- Folgende Schritte werden in der Regel betrachtet:
 - ▶ Berechnung der Nullstellen und des *y*-Achsenabschnitts.
 - (Prüfung auf Symmetrie),
 - (Prüfung der Grenzwerte für $x \to \pm \infty$),
 - (ggf. Prüfung auf vertikale Asymptoten),
 - Berechnung der Extremwerte,
 - Berechnung der Wendestellen,
 - graphische Darstellung.

Nullstellen und Achsenabschnitt

▶ Durch Ausprobieren: $x_1 = 2$. Polynomdivision:

$$(\begin{array}{rr} x^3 + 4x^2 & -4x - 16) : (x - 2) = x^2 + 6x + 8 \\ \underline{-x^3 + 2x^2} \\ 6x^2 & -4x \\ \underline{-6x^2 + 12x} \\ 8x - 16 \\ \underline{-8x + 16} \\ 0 \end{array}$$

- Aus dem Restpolynom erhält man mittels der p-q-Formel die weiteren Nullstellen $x_2 = -2$ und $x_3 = -4$.
- Schnittpunkt mit der *y*-Achse: f(0) = -16.
- ▶ Damit gefundene Punkte: (-4/0), (-2/0), (2/0) und (0/ 16).

Steigung und Extremwerte

- ▶ Eine differenzierbare Funktion verläuft streng monoton steigend auf einem Intervall I, wenn f'(x) > 0 für alle $x \in I$. Sie verläuft streng monoton fallend auf I, wenn f'(x) < 0 für alle $x \in I$.
- ► Eine notwendige Bedingung für einen lokalen Extremwert im Inneren des Definitionsbereichs (also nicht an Randstellen) ist

$$f'(x)=0$$

 Eine hinreichende Bedingung für ein lokales Maximum an der Stelle x₀ ist

$$\left(\begin{array}{ccc} f'(x_0) = 0 & ext{und} & f''(x_0) < 0 \end{array}
ight)$$

► Eine hinreichende Bedingung für ein lokales Minimum an der Stelle x₀ ist

$$f'(x_0) = 0$$
 und $f''(x_0) > 0$

Steigung und Extremwerte

▶ Die erste und zweite Ableitung von $f(x) = x^3 + 4x^2 - 4x - 16$ lauten

$$f'(x) = 3x^2 + 8x - 4,$$
 $f''(x) = 6x + 8$

▶ Setzt man die erste Ableitung gleich Null und löst die quadratische Gleichung, so folgen mögliche Extremwerte bei

$$x_1 = 0.43, \qquad x_2 = -3.10$$

Einsetzen in die zweite Ableitung ergibt

$$f''(0,43) = 6 \cdot 0,43 + 8 > 0, \quad f''(-3,1) = 6 \cdot (-3,1) + 8 < 0$$

Also liegt bei x=0.43 ein Minimum und bei x=-3.10 ein Maximum vor.

► Einsetzen in f(x) liefert die Extrempunkte (-3,10/5,05) und (0,43/-16.90).

Krümmung und Wendestellen

- ▶ Eine zweimal differenzierbare Funktion verläuft linksgekrümmt oder streng konvex auf einem Intervall I, wenn f''(x) > 0 für alle $x \in I$. Sie verläuft rechtsgekrümmt oder streng konkav auf I, wenn f''(x) < 0 für alle $x \in I$.
- Eine notwendige Bedingung für eine Wendestelle im Inneren des Definitionsbereichs ist

$$f''(x)=0$$

Eine hinreichende Bedingung für eine Links-Rechts-Wendestelle an der Stelle x₀ ist

$$f''(x_0) = 0$$
 und $f'''(x_0) < 0$

Eine hinreichende Bedingung für eine Rechts-Links-Wendestelle an der Stelle x₀ ist

$$f''(x_0) = 0$$
 und $f'''(x_0) > 0$

▶ Ist bei einer Wendestelle x_0 zusätzlich $f'(x_0) = 0$, so handelt es sich um eine Sattelstelle (Beispiel: $f(x) = x^3$).

Krümmung und Wendestellen

▶ Die zweite und dritte Ableitung von $f(x) = x^3 + 4x^2 - 4x - 16$ lauten

$$f''(x) = 6x + 8, \qquad f'''(x) = 6$$

 Setzt man die zweite Ableitung gleich Null, so folgt die mögliche Wendestelle bei

$$x_1 = -1.33$$

Einsetzen in die dritte Ableitung ergibt

$$f'''(-1,33) = 6 > 0$$

Also liegt bei x = -1,33 eine Rechts-Links-Wendestelle vor, bei der sich die Krümmung von konkav in konvex ändert.

▶ Einsetzen in f(x) liefert den Wendepunkt (-1,33/-5,96).

Graphische Darstellung

Gliederung

Funktionen einer Variablen

Grundbegriffe Eigenschaften von Funktionen Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung Kurvendiskussion

Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen Differentialrechnung

Integralrechnung

Grundlagen

Ziel eines Unternehmens ist die Gewinnmaximierung:

▶ Ist *x* die Produktionsmenge, *E*(*x*) der Erlös (Umsatz) und *K*(*x*) die Kostenfunkton, so lautet der Gewinn

$$G(x) = E(x) - K(x)$$

▶ Notwendige Bedingung für ein Gewinnmaximum aus G'(x) = 0:

$$K'(x) = E'(x)$$

In Worten: Grenzkosten gleich Grenzerlös.

▶ Insbesondere E'(x) hängt davon ab, welche Marktform betrachtet wird.

- Vollständige Konkurrenz bedeutet, dass ein kleines Unternehmen auf einem vollkommenen Markt mit vielen Anbietern und Nachfragern betrachtet wird.
- ▶ In diesem Fall kann der Verkaufspreis p als vorgegebene Konstante betrachtet werden, so das E(x) = px.
- ▶ Das Problem der Gewinnmaximierung lautet also: Zu maximieren ist

$$G(x) = px - K(x)$$

▶ Aus G'(x) = 0 folgt die Grenzkosten-Preis-Regel

$$(K'(x)=p)$$

Hinreichende Bedingung für ein lokales Gewinnmaximum:

$$K'(x) = p$$
 und $K''(x) > 0$

▶ Beispiel: Mit der Kostenfunktion $K(x) = 2.040 + 0.4x^2$ und dem Absatzpreis p = 80 erhält man die Gewinnfunktion

$$G(x) = 80x - 2.040 - 0.4x^2.$$

▶ Die Nullstellen dieser Funktion erhält man aus $x^2 - 200x + 5.100 = 0$ mittels der p-q-Formel:

$$x_1 = 30, \quad x_2 = 170$$

▶ Die Bedeutung dieser Nullstellen wird anhand der folgenden Abbildung verdeutlicht.

- Vor der ersten Nullstelle x₁ = 30 ist der Gewinn negativ, danach positiv. Dieser Punkt heißt daher Gewinnschwelle oder Break-Even-Punkt.
- Zwischen der ersten und der zweiten Nullstelle ist der Gewinn positiv. Daher heißt dieser Bereich Gewinnzone.
- Nach der zweiten Nullstelle $x_2 = 170$ wird der Gewinn wieder negativ. Dieser Pukt heißt daher Gewinngrenze.
- ▶ Das Gewinnmaximum liegt bei einer Produktion von x = 100, da hier G'(x) = 80 0.8x = 0 und G''(x) = -0.8 < 0 gilt.
- Alternativ: Hier gilt

$$K'(x) = p \iff 0.8x = 80 \text{ sowie } K''(x) = 0.8 > 0.$$

▶ Der maximale Gewinn ist G(100) = 1.960.

Monopol

- Bisher: Preis als gegeben unterstellt (Marktform vollständige Konkurrenz).
- Jetzt: Preis hängt von verkaufter Menge ab (Marktform Monopol (Alleinanbieter)).
- ▶ Beispiel: Die inverse Nachfragefunktion laute p(x) = 100 2x, die Kostenfunktion $K(x) = x^2 + 300$.
- Die Erlösfunktion ist nun

$$E(x) = p(x)x = (100 - 2x)x = 100x - 2x^2.$$

Damit erhält man für die Gewinnfunktion

$$G(x) = E(x) - K(x) = 100x - 2x^2 - x^2 - 300 = -3x^2 + 100x - 300.$$

▶ Mittels der p-q-Formel folgt aus $x^2 - 33, \bar{3}x + 100 = 0$, dass die Gewinnschwelle bei $x_1 = 3, \bar{3}$ und die Gewinngrenze bei $x_2 = 30$ liegt.

Monopol

Das Gewinnmaximum erhält man durch Ableitung der Gewinnfunktion:

$$G'(x) = -6x + 100 = 0, \Rightarrow x = 50/3.$$

▶ Den vom Monopolisten gesetzten Preis erhält man durch Einsetzen in die Nachfragefunktion:

$$p(50/3) = 100 - 2 \cdot 50/3 = 66,\bar{6}$$

Der maximale Gewinn beträgt

$$G(50/3) = 533, \bar{3}$$