GeHoJerez

Miguel Molinos Pérez

May 31, 2019

Contents

1	Physical problem		2
	1.1	Balance of momentum (Equilibrium)	2
	1.2	Compatibility	2
	1.3	Constitutive response	2
2	Material Point Method		2
	2.1	Explicit MPM Scheme	2
3	Proposed tests		3
	3.1	Simple propagation of a shock wave in a 1D media	3
	3.2	Simple propagation of a shock wave in a 1D elastic media	
		using the formulation σ - v	3
4	Iter	ns	3
	4.1	DONE Get the Nodal coordinates of the material points	3
		4.1.1 23-05-2019, Madrid	3
	4.2	DONE Get the strain increment in the material points	3
		4.2.1 28-05-2019, Madrid	3
	4.3	DONE Get the stress state	3
	This is a simple MPM code write in C, the main purpose of this code is		
to	unde	erstand the basics concepts of a MPM code. I also write this lines	to
ke	ep so	me order in my ideas during this crazy years.	

Miguel Molinos Pérez, PhD candidate. Madrid 28-5-2019

1 Physical problem

1.1 Balance of momentum (Equilibrium)

$$\rho \cdot \partial_t v + \partial_x \sigma = \rho \cdot b \tag{1}$$

1.2 Compatibility

1.3 Constitutive response

$$\sigma = 2G\epsilon + \lambda tr(\epsilon)I \tag{2}$$

2 Material Point Method

2.1 Explicit MPM Scheme

1. Calculate the grid nodal mass and momentum by maping the particle mass and momentum to the corresponding grid nodes.

$$m_I^k = \sum_{p=1}^{n_p} m_p N_{Ip}^k \tag{3}$$

$$p_{I,i}^{k-1/2} = \sum_{p=1}^{n_p} m_p v_{ip}^{k-1/2} N_{Ip}^k \tag{4}$$

- 1. Impose essential boundary conditions on the grid nodal momentum. At the fixed boundary, set $p_{iI}^{k-1/2}=0$.
- 2. For the USF only, calculate the particle strain increment $\Delta \epsilon_{ijp}^{k-1/2}$, and the update the particle density and stress as follows:
 - \bullet Calculate the grid nodal velocity $v_{iI}^{k-1/2}$

$$v_{iI}^{k-1/2} = \frac{p_{iI}^{k-1/2}}{m_I^k} \tag{5}$$

 \bullet Calculate the particle strain increment $\Delta \epsilon_{ijp}^{k-1/2}$ with :

$$\Delta \epsilon_{ijp}^{k-1/2} = \frac{1}{2} (N_{Ip,j}^k v_{iI}^{k-1/2} + N_{Ip,i}^k v_{jI}^{k-1/2})$$
 (6)

• Update the particle density with:

$$\rho_p^{k+1} = \frac{\rho_p^k}{1 + \Delta \epsilon_{iip}^{k-1/2}} \tag{7}$$

• Update the particle stress stated based on $\Delta^{k-1/2}_{ijp}$ with an appropriate constitutive law.

3 Proposed tests

3.1 Simple propagation of a shock wave in a 1D media

Here we solve the transport equation with a time integrator called Two-Step Taylor-Galerkin that stabilize the solution avoiding the formation of spurious oscillations during the transport. For the spatial discretization will be used 1D li

$$\partial_t \; u + c \cdot \partial_x \; u = 0$$

The algorithm is as follows:

- 1. Transfer information to the Gauss-Points : $u_{\mathrm{GP}}^n = \sum_{i=0}^N N(x_i) \cdot u_i^n$
- 2. Get the solution in the Gauss-Points for t=n+1/2 : $u_{GP}^{n+1/2}=u_{GP}^n$ $\Delta~t/2\cdot\sum_{i=0}^N~\partial~N(x_i)\cdot u_i^n$
- 3. Get the solution in the nodes for t = n + 1:

3.2 Simple propagation of a shock wave in a 1D elastic media using the formulation σ - v

4 Items

- 4.1 DONE Get the Nodal coordinates of the material points
- 4.1.1 23-05-2019, Madrid
- 4.2 DONE Get the strain increment in the material points
- 4.2.1 28-05-2019, Madrid
- 4.3 DONE Get the stress state