

Normal Subgroups and Factor Groups

Presented To:

Presented By:

Dr.Ziaur Rahman

Assistant Professor

Department of ICT

Fahmidha islam Shorna

Department of ICT

Student ID: 23623

Mawlana Bhashani Science and Technology University

Contents

Introduction to Group	3
Subgroups	4
Normal Subgroups	5
Cosets and Their Role in Normal Subgroups	6
Differences Between Subgroups and Normal Subgroups 7	
Factor Group	8
Example of Factor Groups	9
Applications of Normal Subgroups and Factor Groups 10	
Conclusion	11
References	12

Groups are sets with a binary operation that satisfies closure, associativity, identity, and inverses. They are essential for studying symmetry and algebraic structures.

Subgroup

Contains the Identity: The identity element of G must be in H.

Closure: If a,b \in H, then a*b (the group operation) must also be in H.

Inverses: For every element $a \in H$, its inverse a^{-1} must also be in H.

Non-empty: A subgroup cannot be empty, and it must satisfy the above conditions under the same operation as *G*.

• A normal subgroup N of G is a subgroup that satisfies the condition:

$$gN = Ng$$
 for all $g \in G$.

Normal Subgroup

- Notation: $N \triangleleft G$.
- This property allows the formation of factor groups.
- Example: In (Z,+), 2Z is a normal subgroup.

Cosets and Their Role in Normal Subgroups

Key Differences Between Subgroups and Normal Subgroups

Subgroups

- Cosets Not always equal.
- Factor Groups Not applicable.
- Conjugacy Not required.

Normal Subgroups

- Cosets Always equal
- Factor Groups Can form factor groups
- Conjugacy Required (closed under conjugacy)

Factor Group

• A factor group (or quotient group) G/N is the set of cosets of a normal subgroup N in G.

The operation on cosets is defined as:

$$(g1N)(g2N)=(g1g2)N.$$

Example of Factor Groups

• Let *G*=*Z* (integers) and *N*=3*Z*(multiples of 3).

• The cosets of *N* in *G* are:

$$[0]=\{...,-6,-3,0,3,6,...\},[1]=\{...,-5,$$

 $-2,1,4,7,...\},[2]=\{...,-4,-1,2,5,8,...\}$

• The factor group is $Z/3Z = \{[0], [1], [2]\}$.

Applications of Normal Subgroups and Factor Groups

01

02

03

Symmetry groups in geometry and physics:

Understanding symmetries often involves identifying normal subgroups.

Cryptography:

In RSA encryption, normal subgroups and factor groups are used in constructing secure cryptographic systems.

Finite groups:

Simplifying the structure of finite groups by examining their normal subgroups.

Conclusion

- Normal subgroups are essential for understanding the structure of groups and for simplifying groups into manageable factor groups.
- Factor groups provide a powerful tool for studying group properties through coset formation.
- These concepts are foundational in algebra, cryptography, and the study of symmetries in mathematics.

References

Books:

Dummit, D. S., & Foote, R. M. (2004). Abstract Algebra. Wiley.

Herstein, I. N. (1996). Topics in Algebra. Wiley.

•

Online Resources:

Wikipedia: Normal Subgroup

MathWorld: Factor Group

Thank You