Exercice 1

Représenter graphiquement et calculer chaque intégrale :

a)
$$\int_{2}^{5} (x+2)dx$$

a)
$$\int_{2}^{5} (x+2)dx$$
 b) $\int_{3}^{2} \left(-\frac{x}{3}+2\right)dx$ **c)** $\int_{0}^{e} 2dx$

c)
$$\int_0^e 2dx$$

d)
$$\int_{1}^{5} x^{2} dx$$

Exercice 2

On a représenté 4 fonctions f ci-dessous.

Figure 1

Figure 2

Figure 3

Figure 4

- 1) Pour chaque figure, donner par lecture graphique l'aire du domaine hachuré délimité par la courbe, l'axe des abscisses et les droites perpendiculaires à (OI).
- 2) Donner pour chaque figure l'expression algébrique de la fonction f représentée.
- 3) Vérifier avec la calculatrice les résultats de la première question.

Exercice 3

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x}{4} + 2$. Calculer la valeur moyenne de la fonction f:

a) sur l'intervalle [0; 4]

b) sur l'intervalle [1; 11] **c)** sur l'intervalle [-4; 4]

Exercice 4

On considère la fonction f, dite affine par morceaux, dont on donne la courbe représentative C_f ci-après.

1) Donner la valeur des intégrales suivantes :

a)
$$\int_{-4}^{-2} f(x)dx$$
 b) $\int_{-2}^{0} f(x)dx$ c) $\int_{0}^{3} f(x)dx$

d) $\int_{3}^{5} f(x)dx$

2) En déduire la valeur des intégrales :

a)
$$\int_{-4}^{0} f(x)dx$$

b) $\int_{0}^{5} f(x) dx$

c) $\int_{-2}^{3} f(x)dx$

 $\mathbf{d)} \int_{-4}^{5} f(x) dx$

3) Calculer la valeur moyenne de la fonction f sur les intervalles :

a)
$$[-4; 0]$$

b) [0; 5]

c) [-2; 3]

d) [-4; 5]

Exercice 4

On considère la fonction f, dite affine par morceaux, dont on donne la courbe représentative C_f ci-après.

1) Pour déterminer les valeurs des intégrales, on procède par lecture graphique à l'évaluation des aires de chaque domaine placé sous la droite.

2

a)
$$\int_{-4}^{-2} f(x)dx = 4$$

b)
$$\int_{-2}^{0} f(x)dx = 5$$

a)
$$\int_{-2}^{-2} f(x)dx = 4$$
 b) $\int_{-2}^{0} f(x)dx = 5$ c) $\int_{0}^{3} f(x)dx = 7.5$ d) $\int_{3}^{5} f(x)dx = 3$

d)
$$\int_{3}^{5} f(x)dx = 3$$

2) On en déduit la valeur des intégrales :

a)
$$\int_{-4}^{0} f(x) dx = \int_{-4}^{-2} f(x) dx + \int_{-2}^{0} f(x) dx = 4 + 5 = 9$$

b)
$$\int_0^5 f(x) dx = \int_0^3 f(x) dx + \int_3^5 f(x) dx = 7, 5 + 3 = 10$$

c)
$$\int_{-2}^{3} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{3} f(x) dx = 5 + 7, 5 = 12, 5$$

d)
$$\int_{-4}^{5} f(x) dx = \int_{-4}^{0} f(x) dx + \int_{0}^{5} f(x) dx = 9 + 10 = 19$$

3) Valeur moyenne de la fonction f sur les intervalles :

a)
$$[-4; 0]: \frac{1}{0-(-4)} \int_{-4}^{0} f(x) dx = \frac{1}{4} \times 9 = 2,25$$

b)
$$[0; 5]: \frac{1}{5-0} \int_0^5 f(x) dx = \frac{1}{5} \times 10 = 2$$

c)
$$[-2; 3]: \frac{1}{3-(-2)} \int_{-2}^{3} f(x) dx = \frac{1}{5} \times 12, 5 = 2,5$$

d)
$$[-4; 5]: \frac{1}{5-(-4)} \int_{-4}^{5} f(x) dx = \frac{1}{9} \times 19 = \frac{19}{9}$$