Linear Conic Optimization Part II

Wenxun Xing

Department of Mathematical Sciences Tsinghua University wxing@tsinghua.edu.cn Office hour: Thur. 4:00-5:00

May, 2023

Preliminaries

Content

- Vectors, Matrices, and Spaces
- Inner Products and Norms
- Open, Closed, Interior, and Boundary Sets
- Functions
- Linear Systems
- Convex Sets and Functions

Vectors, Matrices and Spaces

- Real numbers: \mathbb{R} , \mathbb{R}_+ , \mathbb{R}_{++}
- Euclidean space: \mathbb{R}^n
- First orthant: \mathbb{R}^n_+
- n-dimensional (column) vector:

$$x = (x_1, x_2, \dots, x_n)^T$$

- Matrices space: $\mathbb{R}^{m \times n}$
- Matrix: $M \in \mathbb{R}^{m \times n}$, ith row $M_{i \bullet}$, jth column $M_{\bullet j}$, ijth entry M_{ij}
- Symmetric square matrices space (n(n+1)/2-dimensional space):

$$\mathcal{S}^n = \{ M \in \mathbb{R}^{n \times n} \mid M = M^T \}.$$

Vectors, Matrices and Spaces

Given $M \in \mathbb{R}^{m \times n}$, $N \in \mathbb{R}^{n \times m}$, $S \in \mathbb{R}^{n \times n}$

- Determinant: det(S)
- Trace: $\operatorname{tr}(S) = \sum_{i=1}^{n} s_{ii}$

$$\operatorname{tr}(MN) = \operatorname{tr}(NM)$$

- Null space: $\mathcal{N}(M) = \{x \in \mathbb{R}^n | Mx = 0\}.$
- Range space: $\mathcal{R}(M) = \{ y \in \mathbb{R}^m | y = Mx \text{ for some } x \in \mathbb{R}^n \}.$
- Positive semidefinite matrix:

$$S \succeq 0 \iff z^T S z \ge 0, \ \forall \ z \in \mathbb{R}^n$$

Positive definite matrix:

$$S \succ 0 \iff z^T S z > 0, \ \forall \ z \in \mathbb{R}^n, \ z \neq 0$$

Properties of Trace

Let $A, X, X_1, X_2 \in \mathcal{M}(m, n)$, $k_1, k_2 \in \mathbb{R}$. Define

$$A \bullet X = \operatorname{tr}(AX^T) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_{ij}.$$

- Linearity. $A \bullet (k_1X_1 + k_2X_2) = k_1A \bullet X_1 + k_2A \bullet X_2$.
- Symmetry. $A \bullet X = X \bullet A$.
- Nonnegativity. $X \bullet X \ge 0$ and $X \bullet X = 0$ if and only if X = 0.
- $x^TQx = \operatorname{tr}(Qxx^T) = Q \bullet (xx^T)$, where $x \in \mathbb{R}^n$ and $Q \in \mathcal{S}^n$.

Vectors, Matrices and Spaces

Theorem: (Schur complementary theorem)

$$A \succ 0, X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, S = C - B^T A^{-1} B$$

Then

$$X\succeq (\succ)0\Leftrightarrow S\succeq (\succ)0$$

An Example: QCQP

Quadratically constrained quadratic programming problem

min
$$\frac{1}{2}x^TQ_0x + q_0^Tx + c_0$$

s.t. $\frac{1}{2}x^TQ_ix + q_i^Tx + c_i \le 0, i = 1, 2, \dots, m$
 $x \in \mathbb{R}^n$

where $Q_i \in \mathcal{S}^n$, $q_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, 2, ..., m are given coefficients, x is a decision variable.

min
$$\frac{1}{2}Q_0 \bullet X + q_0^T x + c_0$$

s.t. $\frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m$
 $X = xx^T$
 $x \in \mathbb{R}^n$

An Example: SDP Relaxation

Formulation 1

min
$$\frac{1}{2}Q_0 \bullet X + q_0^T x + c_0$$

s.t. $\frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m$
 $x \in \mathbb{R}^n, X \in \mathcal{S}_+^n$.

Formulation 2

$$\min \quad \frac{1}{2}Q_0 \bullet X + q_0^T x + c_0$$

$$s.t. \quad \frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m$$

$$\begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} \in \mathcal{S}_+^{n+1}.$$

Inner Products and Norms

Inner products:

$$\begin{split} x \bullet y &= x^T y = \sum_i x_i y_i \\ X \bullet Y &= \operatorname{tr}(X^T Y) = \sum_{i,j} X_{ij} Y_{ij} \end{split}$$

- Norms:
 - Euclidean norm: $||x||_2 = \sqrt{x \bullet x}$
 - p-norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$.
 - Infinity-norm: $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$
 - Frobenius norm:

$$||X||_F = \sqrt{X \bullet X} = \sqrt{\operatorname{tr}(X^T X)}$$

• Note that: $x^T A x = A \bullet x x^T$

Open, Closed, Interior and Boundary Sets

- Neighborhood: $N(x^0; \epsilon) = \{x \in \mathbb{R}^n | ||x x^0|| < \epsilon\}.$
- Open: $\mathcal{X} \subset \mathbb{R}^n$ is open if for any $x \in \mathcal{X}$, there exists $\epsilon > 0$ such that $N(x;\epsilon) \subset \mathcal{X}$.
- Closed: $\mathcal{X} \subset \mathbb{R}^n$ is closed, if $\mathbb{R}^n \setminus \mathcal{X} = \{x \in \mathbb{R}^n | x \notin \mathcal{X}\}$ is open.
- Closed: An equivalent statement: any accumulation point of $\mathcal X$ is in $\mathcal X$.
- Closure of a set $\mathcal{X} \subset \mathbb{R}^n$ is the smallest closed set containing \mathcal{X} and is denoted as $\operatorname{cl}(\mathcal{X})$.

Open, Closed, Interior and Boundary Sets

• Interior: the interior of a given set $\mathcal{X} \subset \mathbb{R}^n$ is

$$\operatorname{int}(\mathcal{X}) = \{x \in \mathcal{X} | \exists \ \epsilon_x > 0 \text{ such that } N(x; \epsilon_x) \subset \mathcal{X} \}$$

• Boundary of a set $\mathcal{X} \subset \mathbb{R}^n$:

$$bdry(\mathcal{X}) = cl(\mathcal{X}) \setminus int(\mathcal{X}) = \{x \in cl(\mathcal{X}) | x \notin int(\mathcal{X})\}$$

• Bounded: a set $\mathcal{X} \subset \mathbb{R}^n$ is bounded if there exists an r > 0 such that

$$||x|| < r, \forall x \in \mathcal{X}$$

Functions

- Continuous: $f: \mathcal{X} \subset \mathbb{R}^n$ is continuous at x^0 (i) $x^0 \in \mathcal{X}$. (ii) $\lim_{x \to x^0} f(x) = f(x^0)$.
- Continuous function: $f \in C^0(\mathcal{X})$ means f is continuous at all points in $\mathcal{X} \subset \mathbb{R}^n$.
- Gradient: For $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$

$$\nabla f(x) = \left[\frac{\partial f(x)}{\partial x_1}, \cdots, \frac{\partial f(x)}{\partial x_n}\right]_{1 \times n}$$

• Hessian: For $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$

$$F(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right]_{n \times n}$$

• Continuously differentiable function: $f \in C^p(\mathcal{X})$ $(p = 1, 2, \cdots)$ means f is p-th continuously differentiable over $\mathcal{X} \subset \mathbb{R}^n$.

Functions

Theorem (Taylor theorem)

Let $\mathcal X$ be open, $f\in C^p(\mathcal X),\, x^1,x^2\in \mathcal X,\, x^1\neq x^2$ and

$$x(\theta) = \theta x^1 + (1 - \theta)x^2 \in \mathcal{X}, \ \forall \ 0 \le \theta \le 1.$$

Then $\exists \ \bar{x} = \bar{\theta}x^1 + (1 - \bar{\theta})x^2 \in \mathcal{X}$, $0 < \bar{\theta} < 1$, s.t.

$$f(x^2) = f(x^1) + \sum_{k=1}^{p-1} \frac{1}{k!} d^k f(x^1; x^2 - x^1) + \frac{1}{p!} d^p f(\bar{x}; x^2 - x^1)$$

where $d^k f(x; h)$ is the k-th order differential of function f along h.

Functions: Big O and Small o

Let $g(\cdot)$ be a real-valued function on \mathbb{R} .

•
$$g(x) = O(x)$$

 $\exists c > 0$ such that

$$\left| \frac{g(x)}{x} \right| \le c \text{ as } x \to +\infty$$

$$g(x) = o(x)$$

$$\left| \frac{g(x)}{x} \right| \to 0 \text{ as } x \to 0$$

Functions

Taylor theorem in small *o* formulation:

•
$$p = 1$$

$$f(x+h) = f(x) + \nabla f(x)h + o(\|h\|)$$

•
$$p = 2$$

$$f(x+h) = f(x) + \nabla f(x)h + \frac{1}{2}h^T F(x)h + o(\|h\|^2)$$

Given $x^1, \dots, x^m \in \mathbb{R}^n$

Linear combination:

$$\sum_{i=1}^{m} \lambda_i x^i,$$

where $\lambda_i \in \mathbb{R}$, $i = 1, \ldots, m$.

Linearly independent

$$\sum_{i=1}^{m} \lambda_i x^i = 0 \Rightarrow \lambda_1 = \dots = \lambda_m = 0$$

Affine combination: a linear combination with

$$\sum_{i=1}^{m} \lambda_i = 1$$

• Affinely independent: if $x^2 - x^1, \dots, x^m - x^1$ are linearly independent.

Convex combination: a linear combination with

$$\sum_{i=1}^m \lambda_i = 1$$
 and $\lambda_i \geq 0, i = 1, \dots, m$

Hyperplane:

$$\mathcal{X} = \{ x \in \mathbb{R}^n | a^T x = \sum_{i=1}^n a_i x_i = b \}$$

- Affine space: affine combination of any two points in the space is still in the space. (An intersection of finitely many hyperplanes.)
- Linear subspace: an affine space containing the origin.

We can always transform an affine space $\mathcal{Y} \subset \mathbb{R}^n$ into a linear subspace $\mathcal{X} \subset \mathbb{R}^n$ by choosing $x^0 \in \mathcal{Y}$ such that

$$\mathcal{X} = \{x - x^0 | x \in \mathcal{Y}\}$$

Half space:

$$\mathcal{X} = \{ x \in \mathbb{R}^n | a^T x = \sum_{i=1}^n a_i x_i \le b \}$$

- Polyhedron (Polytope): an intersection of finitely many half spaces.
- Dimension of a linear subspace: the maximum number of linearly independent vectors in the subspace.
- Dimension of an affine space: the dimension of the transformed linear subspace.
- Dimension of a polyhedron: the dimension of the smallest affine space containing it.

Linear equations

$$a^{1} \bullet x = b_{1}$$

$$a^{2} \bullet x = b_{2}$$

$$\dots \dots \dots \dots \Rightarrow Ax = b,$$

$$a^{m} \bullet x = b_{m}$$

where a^1, \dots, a^m and x are all in \mathbb{R}^n .

$$A_{1} \bullet X = b_{1}$$

$$A_{2} \bullet X = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_{m} \bullet X = b_{m}$$

where A_1, \dots, A_m and X are all in S^n .

• For convenience, $A^*y = \sum_{i=1}^m y_i A_i$.

Convex Sets and Properties

- A set $\mathcal{X} \subset \mathbb{R}^n$ is convex if for any $x^1 \in \mathcal{X}$ and $x^2 \in \mathcal{X}$, we have $\lambda x^1 + (1 \lambda)x^2 \in \mathcal{X}$, for all $0 \le \lambda \le 1$.
- Convex hull: the smallest convex set containing a given set

$$\begin{array}{l} \operatorname{conv}(\mathcal{X}) = \{x \in \mathbb{R}^n | x = \sum_{i=1}^m \lambda_i y^i \text{ for some } m \in \mathbb{N}_+, \\ \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1, \text{ and } y^i \in \mathcal{X}, i = 1, \dots, m\} \end{array}$$

- Dimension of a convex set: the dimension of the smallest affine space containing it.
- Relative interior of a convex set $\mathcal{X} \subset \mathbb{R}^n$: suppose \mathcal{H} is the smallest affine space containing \mathcal{X} ,

$$\operatorname{ri}(\mathcal{X}) = \{x \in \mathbb{R}^n | \exists \text{ open set } \mathcal{Y} \subseteq \mathbb{R}^n \text{ such that } x \in \mathcal{Y} \cap \mathcal{H} \subset \mathcal{X} \}$$

• Supporting hyperplane $\mathcal{H} = \{x \in \mathbb{R}^n | a^T x = b\}$ of a convex set \mathcal{X} :

$$a^T y \ge b, \forall y \in \mathcal{X} \text{ and } \operatorname{cl}(\mathcal{X}) \cap \mathcal{H} \ne \emptyset.$$

Relative Interior—An Example

$$\mathcal{X} = \{x_1 \in \mathbb{R} | 0 \le x_1 \le 2\}.$$

A linear programming standard reformulation

$$\mathcal{Y} = \{(x_1, x_2) \in \mathbb{R}^2_+ | x_1 + x_2 = 2\}.$$

Relative interior

$$ri(\mathcal{X}) = int(\mathcal{X}) = \{x_1 \in \mathbb{R} | 0 < x_1 < 2\}.$$

$$ri(\mathcal{Y}) = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 = 2, x_1 > 0, x_2 > 0\},\$$

where the small affine space is $\mathcal{H} = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 = 2\}$, and the open set is defined as in \mathbb{R}^2 .

Supporting hyperplane—Examples

• Supporting hyperplane $\mathcal{H} = \{x \in \mathbb{R}^n | a^T x = b\}$ of a convex set \mathcal{X} :

$$a^Ty \ge b, \forall \ y \in \mathcal{X} \ \text{and} \ \mathrm{cl}(\mathcal{X}) \cap \mathcal{H} \ne \emptyset.$$

- Example 1 (Y): $\mathcal{X} = \{x \in \mathbb{R}^2 | x_1^2 \le x_2\}, \ \mathcal{H} = \{x \in \mathbb{R}^2 | x_2 = 0\}.$
- Example 2 (Y): $\mathcal{X} = \{x \in \mathbb{R}^2 | x_1^2 < x_2\}, \, \mathcal{H} = \{x \in \mathbb{R}^2 | x_2 = 0\}.$
- Example 3 (N): $\mathcal{X} = \{x \in \mathbb{R}^2 | x_1^2 \le x_2\}, \, \mathcal{H} = \{x \in \mathbb{R}^2 | x_2 = -1\}.$

Convex Functions and Properties

• Epigraph of a function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{epi} f = \{(x, \lambda) \in \mathbb{R}^{n+1} | \lambda \ge f(x), x \in \mathcal{X}\}$$

- Closed function: if epif is a closed set.
- Convex function: if epif is a convex set.
- Concave function: if -f is a convex function.
- Convex hull function $\operatorname{conv}(f)$ of a function $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ is a function on \mathcal{X} such that $\operatorname{epi}(\operatorname{conv}(f)) = \operatorname{conv}(\operatorname{epi}(f))$.

Lemma

 $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ is a convex function if and only if for any $x^1,\,x^2\in\mathcal{X}$, and $0\leq\lambda\leq1$, we have

$$f(\lambda x^{1} + (1 - \lambda)x^{2}) \le \lambda f(x^{1}) + (1 - \lambda)f(x^{2}).$$

Convex Functions and Properties

• Subgradient d of a convex function $f: \mathcal{X} \subset \mathbb{R}^n$ at $x \in \mathcal{X}$: if for any $y \in \mathcal{X}$,

$$f(y) \ge f(x) + d^T(y - x)$$

- The set $\{(y,\lambda)\in\mathbb{R}^{n+1}|\lambda-d^Ty=f(x)-d^Tx\}$ is a supporting hyperplane of epif at x.
- Subdifferential of a convex function $f: \mathcal{X} \subset \mathbb{R}^n$ at $x \in \mathcal{X}$:

$$\partial f(x) = \{d|d \text{ is a subgradient of } f \text{ at } x\}$$

Convex Functions and Properties

Figure: $(x, f(x)) \leftrightarrow (y, \lambda)$

- (x, f(x)): The curve of f(x).
- (y, λ) : The supporting plane of $\{(x, f(x)) | x \in \mathbb{R}^n\}$ at x.

◆□ → ◆□ → ◆ 豊 → ◆ 豊 → りへで

THU

Conjugate Functions

• The negative of λ -intercept: $\lambda - d^T y = f(x) - d^T x, y \in \mathbb{R}^n$.

$$f^*(d) = \sup_{x \in \mathcal{X}} \{ d \bullet x - f(x) \}$$

• Conjugate of $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$:

$$f^*(y) = \sup_{x \in \mathcal{X}} \{ y \bullet x - f(x) \}$$

with f^* being defined on $\mathcal{Y} = \{y \in \mathbb{R}^n | f^*(y) < +\infty\}$.

Conjugate Functions

Lemma

If $f^* : \mathcal{Y}$ exists then \mathcal{Y} is a convex set and $f^* : \mathcal{Y}$ is a convex function.

Lemma (Fenchel's inequality)

Given $f: \mathcal{X}$ and its conjugate $f^*: \mathcal{Y}$, then

$$x \bullet y \le f(x) + f^*(y), \ \forall \ x \in \mathcal{X} \text{ and } y \in \mathcal{Y}.$$

Moreover,

$$x \bullet y = f(x) + f^*(y) \iff y \in \partial f(x)$$

Conjugate Functions–Examples

Example 1: $f(x) = x^2$.

$$f^*(y) = \sup_{x \in \mathbb{R}} (xy - x^2) = \frac{y^2}{4}, \quad \mathcal{Y} = \mathbb{R}.$$

Example 2: $f(x) = x^{3}$.

$$f^*(y) = \sup_{x \in \mathbb{R}} (xy - x^3) = +\infty, \quad \mathcal{Y} = \emptyset.$$

Example 3: $f(x) = 2x^2, x \ge 1$.

$$f^*(y) = \sup_{x \ge 1} (xy - 2x^2) = \begin{cases} \frac{y^2}{8}, & y \ge 4\\ y - 2, & y < 4, \end{cases}$$
 $\mathcal{Y} = \mathbb{R}.$

Conjugate Functions and Properties

Let $f: \mathcal{X} \subset \mathbb{R}^n \to \mathbb{R}$ be a function with its conjugate transform $f^*: \mathcal{Y}$.

- For $\alpha \in \mathbb{R}$, the conjugate of $f + \alpha$ is $f^* \alpha$.
- For $a \in \mathbb{R}^n$, the conjugate of $\tilde{f}(x) = f(x) + x \bullet a$ on \mathcal{X} is $\tilde{f}^*(y) = f^*(y-a), \forall y \in \mathcal{Y}.$
- For $a \in \mathbb{R}^n$, the conjugate of $\bar{f}(x) = f(x-a)$ on \mathcal{X} is $\bar{f}^*(y) = f^*(y) + y \bullet a, \forall y \in \mathcal{Y}$.
- For $\lambda > 0$, the conjugate of $f_1(x) = \lambda f(x)$ on \mathcal{X} is $f_1^*(y) = \lambda f^*(\frac{y}{\lambda})$, $\forall y \in \lambda \mathcal{Y}$.
- For $\lambda > 0$, the conjugate of $f_2(x) = f(\frac{x}{\lambda})$ on $\lambda \mathcal{X}$ is $f_2^*(y) = f^*(\lambda y)$, $\forall \ y \in \mathcal{Y}/\lambda$.

Theorem

Assume that $f_1: \mathcal{X}$ and $f_2: \mathcal{X}$ have the same convex hull function. Then they have the same conjugate transform $f^*: \mathcal{Y}$ when it exists.

Conjugate Functions and Properties

We know the dual problem of LD is LP again. When will the conjugate transform of $f^* : \mathcal{Y}$ become $f : \mathcal{X}$?

Proper function

A convex function f is proper if its epigraph is non-empty and contains no vertical lines, i.e. if $f(x)<+\infty$ for at least one x and $f(x)>-\infty$ for every x.

Theorem

Let $f:\mathcal{X}\subset\mathbb{R}^n\to\mathbb{R}$ be a proper closed convex function with conjugate transform $f^*:\mathcal{Y}$. Then the conjugate transform of $f^*:\mathcal{Y}$ is $f:\mathcal{X}$. Moreover, $y\in\partial f(x)$ if and only if $x\in\partial f^*(y)$. In this case,

$$x \bullet y = f(x) + f^*(y) \iff y \in \partial f(x) \text{ or } x \in \partial f^*(y)$$

Convex Cone Structure

Content

- Convex Cones and Properties
- Dual Cones
- Partial Order and Ordered Vector Space
- Some Examples

Convex Cones and Properties

• A set $K \subset \mathbb{R}^n$ is a cone if

$$\forall x \in K \text{ and } \lambda > 0 \Rightarrow \lambda x \in K;$$

• A cone $K \subset \mathbb{R}^n$ is pointed if

$$K \cap -K = \{0\};$$

• A cone $K \subset \mathbb{R}^n$ is solid if

$$\operatorname{int} K \neq \emptyset$$
;

• A cone $K \subset \mathbb{R}^n$ is proper if it is pointed, solid, closed and convex.

Dual Cones

- Conic combination: a linear combination $\sum_{i=1}^{m} \lambda_i x^i$ with $\lambda_i \geq 0$, $x^i \in \mathbb{R}^n$ for all $i = 1, \dots, m$.
- The conic hull of a set $\mathcal{X} \subset \mathbb{R}^n$ is

$$\begin{aligned} \operatorname{cone}(\mathcal{X}) &= \{x \in \mathbb{R}^n | x = \sum_{i=1}^m \lambda_i x^i, \text{ for some } m \in \mathbb{N}_+ \\ &\quad \text{and } x^i \in \mathcal{X}, \lambda_i \geq 0, i = 1, \dots, m. \} \end{aligned}$$

• The dual cone $K^* \subset \mathbb{R}^n$ of a cone $K \subset \mathbb{R}^n$ is

$$K^* = \{ y \in \mathbb{R}^n | y \bullet x \ge 0, \forall \ x \in K \}$$

 K^* is a *closed, convex* cone.

• If $K^* = K$, then K is a self-dual cone.

Properties

K, K_1 , K_2 are convex cones in \mathbb{R}^n .

- $(K^*)^* = cl(K)$
- $K_1 \cap K_2$, $K_1 \cup K_2$, $K_1 + K_2$ are all cones
- $(K_1 + K_2)^* = K_1^* \cap K_2^*$
- K_1 and K_2 are both closed $\Rightarrow K_1 + K_2$ is closed.
- $ri(K_1 + K_2) = ri(K_1) + ri(K_2)$
- ullet The supporting hyperplane of K always contains the origin
- If K is solid (pointed), then K* is pointed (solid).

Partial Order and Ordered Vector Space

- A relation "≥" is a partial order on a set X if it has:
 - 1. *reflexivity*: $a \ge a$ for all $a \in \mathcal{X}$;
 - 2. antisymmetry: $a \ge b$ and $b \ge a$ imply a = b;
 - 3. *transitivity*: $a \ge b$ and $b \ge c$ imply $a \ge c$.

- An ordered vector space X is equipped with a partial order "≥" which also satisfies:
 - homogeneity: $a \ge b$ and $\lambda \in \mathbb{R}_+$ imply $\lambda a \ge \lambda b$;
 - additivity: $a \ge b$ and $c \ge d$ imply $a + c \ge b + d$.

Partial Order and Ordered Vector Space

• A proper cone K in a vector space can induce a partial order " \geq_K "

$$a \ge_K b \Leftrightarrow a - b \in K$$

which leads to an ordered vector space.

• Similarly, we can define " \leq_K "

$$a \leq_K b \Leftrightarrow b \geq_K a$$
,

• Closeness of K allows passing limits in \geq_K :

$$a^i \ge_K b^i, \ a^i \to a, \ b^i \to b \text{ as } i \to \infty \ \Rightarrow \ a \ge_K b.$$

Solidness of K allows us to define a strict inequality:

$$a >_K b \Leftrightarrow a - b \in \text{int}K$$
,

and

$$a <_K b \Leftrightarrow b >_K a$$
.

Examples: \mathbb{R}^n_+

- \mathbb{R}^n_+ is a proper cone;
- Inner product: $x \bullet y = x^T y$;
- $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$ (self-dual);
- Partial order: " $\geq_{\mathbb{R}^n_+}$ "

Examples: \mathcal{L}^n

 • Lⁿ / SOC(n − 1)Lorentz cone (second order cone)

$$\mathcal{L}^{n} = \{ x \in \mathbb{R}^{n} | x_{n} \ge \sqrt{x_{1}^{2} + \dots + x_{n-1}^{2}} \}$$

- \mathcal{L}^n is a proper cone;
- Inner product: $x \bullet y = x^T y$;
- $(\mathcal{L}^n)^* = \mathcal{L}^n$ (self-dual);
- Partial order: " $\geq_{\mathcal{L}^n}$ "

Examples: S_+^n

- $S^n_+ \subset S^n$: the set of symmetric positive semidefinite matrices
- S₊ⁿ is a proper cone;
- Inner product:

$$X \bullet Y = \operatorname{tr}(X^T Y)$$

Another view:

$$\operatorname{vec}(X) = [X_{11}, \sqrt{2}X_{12}, X_{22}, \sqrt{2}X_{13}, \sqrt{2}X_{23}, X_{33}, \cdots, X_{nn}]^T \in \mathbb{R}^{\frac{n(n+1)}{2}}$$

Then

$$X \bullet Y = \operatorname{vec}(X) \bullet \operatorname{vec}(Y) = \sum_{i,j} X_{ij} Y_{ij}$$

• Partial order: " $\geq_{\mathcal{S}^n_+}$ " or " \succeq "

Examples: S_+^n

Lemma

$$(\mathcal{S}^n_+)^* = \mathcal{S}^n_+$$
 (self-dual)

Proof.

" \subseteq ": If $X \in (\mathcal{S}^n_+)^*$, then $z^T X z = X \bullet z z^T \ge 0$, for all $z \in \mathbb{R}^n$. Therefore, $X \in \mathcal{S}^n_+$. " \supseteq ": For any $Y \in \mathcal{S}^n_+$,

$$Y = \sum_{i=1}^{n} \lambda_i z^i (z^i)^T,$$

with $\lambda_i \geq 0$.

If $X \in \mathcal{S}^n_+$, then

$$X \bullet Y = \sum_{i=1}^{n} \lambda_i X \bullet z^i (z^i)^T = \sum_{i=1}^{n} \lambda_i (z^i)^T X z^i \ge 0.$$

Therefore, $X \in (\mathcal{S}^n_+)^*$.

Examples: C_n and C_n^*

Copositive cone:

$$C_n = \{ X \in \mathcal{S}^n | z^T X z \ge 0, \forall z \ge_{\mathbb{R}^n_+} 0 \}$$

Completely positive(nonnegative) cone:

$$\mathcal{C}_n^* = \left\{ X \in \mathcal{S}^n \middle| \begin{array}{c} X = \sum_{i=1}^m z^i (z^i)^T, \text{ for some } m \in \mathbb{N}_+ \\ \text{and } z^i \geq_{\mathbb{R}_+^n} 0, i = 1, \dots, m \end{array} \right\}$$

- $(\mathcal{C}_n)^* = \mathcal{C}_n^*$ and $\mathcal{C}_n = (\mathcal{C}_n^*)^*$
- $\mathcal{C}_n^* \subset \mathcal{S}_+^n \subset \mathcal{C}_n$

Examples: Cones of Nonnegative Quadratic Functions — Homogeneous

- $\mathcal{F} \subset \mathbb{R}^n$
- Nonnegative homogeneous quadratic functions over \mathcal{F}

$$f(x) = x^T A x \ge 0, \forall x \in \mathcal{F}$$
$$f \Leftrightarrow A$$

• $\mathcal{HD}_{\mathcal{F}}=\{A\in\mathcal{S}^n|x^TAx\geq 0, \forall x\in\mathcal{F}\}$ is a closed, convex cone. (i) Closeness:

$$x^T A_i x \ge 0$$
 and $A_i \to A \Rightarrow x^T A x \ge 0$

(ii) Convexity:

$$x^{T} A_{i} X \geq 0, i = 1, 2 \Rightarrow x^{T} (\lambda A_{1} + (1 - \lambda) A_{2}) x \geq 0, \forall 0 \leq \lambda \leq 1$$

Examples: Cones of Nonnegative Quadratic Functions — Homogeneous

- $\mathcal{HD}_{\mathcal{F}}^* = \operatorname{cl}(\operatorname{cone}\{xx^T|x \in \mathcal{F}\})$
- $\bullet \ (\mathcal{H}\mathcal{D}_{\mathcal{F}})^* = \mathcal{H}\mathcal{D}_{\mathcal{F}}^* \ \text{and} \ (\mathcal{H}\mathcal{D}_{\mathcal{F}}^*)^* = \mathcal{H}\mathcal{D}_{\mathcal{F}}$
- Examples:
 - $\mathcal{F} = \mathbb{R}^n$ $\mathcal{H}\mathcal{D}_{\mathcal{F}} = \mathcal{H}\mathcal{D}_{\mathcal{F}}^* = \mathcal{S}_+^n$
 - $\mathcal{F} = \mathbb{R}^n_+$ $\mathcal{H}\mathcal{D}_{\mathcal{F}} = \mathcal{C}_n$ and $\mathcal{H}\mathcal{D}_{\mathcal{F}}^* = \mathcal{C}_n^*$
 - $\mathcal{F} = \{x | e^T x = 1, x \in \mathbb{R}^n_+\}$ $\mathcal{HD}_{\mathcal{F}} = \mathcal{C}_n \text{ and } \mathcal{HD}_{\mathcal{F}}^* = \mathcal{C}_n^*$

Examples: Cones of Nonnegative Quadratic Functions — Nonhomogeneous

• Nonnegative quadratic functions over $\mathcal{F} \subset \mathbb{R}^n$

$$f(x) = x^{T} A x + 2b^{T} x + c \ge 0, \forall x \in \mathcal{F}$$
$$f \Leftrightarrow \begin{bmatrix} c & b^{T} \\ b & A \end{bmatrix}$$

- $\mathcal{D}_{\mathcal{F}} = \{ \begin{bmatrix} c & b^T \\ b & A \end{bmatrix} \in \mathcal{S}^{n+1} | \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} c & b^T \\ b & A \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0, \forall x \in \mathcal{F} \}$ is a closed, convex cone.
- $\mathcal{D}_{\mathcal{F}}^* = \operatorname{cl}(\operatorname{cone}\left\{\begin{bmatrix} 1 & x^T \\ x & xx^T \end{bmatrix} | x \in \mathcal{F}\right\})$
- $\bullet \ (\mathcal{D}_{\mathcal{F}}^*)^* = \mathcal{D}_{\mathcal{F}} \ \text{and} \ (\mathcal{D}_{\mathcal{F}})^* = \mathcal{D}_{\mathcal{F}}^*$

THU

Examples: Cones of Nonnegative Quadratic Functions — Nonhomogeneous

Examples:

```
• \mathcal{F} = \mathbb{R}^n

\mathcal{D}_{\mathcal{F}} = \mathcal{D}_{\mathcal{F}}^* = \mathcal{S}_{+}^{n+1}
```

•
$$\mathcal{F} = \mathbb{R}^n_+$$

 $\mathcal{D}_{\mathcal{F}} = \mathcal{C}_{n+1}$ and $\mathcal{D}_{\mathcal{F}}^* = \mathcal{C}_{n+1}^*$