

YEAR 12 MATHEMATICS METHODS Test 2 2016

Exponential and Trigonometric Functions

NAME:				Date: Tuesday 10th May
TEACHER:				
to a first white to we start the sound and the time of the	n-calculator sec Calculator section OVERALL:		33 minutes 17 minutes 50 minutes	33 marks 17 marks 50 marks
Questions or pareceive full man	r king Answe arts of questic rks.	er all questions on ons worth more th ACE formula shee	an two marks requ	uire working to be shown to
TRIG FORMU	LA:	$\cos 2\theta = \cos^2 \theta$	$-\sin^2\theta$	$\sin 2\theta = 2\sin\theta\cos\theta$
	4	$\lim_{h \to 0} \left(\frac{1 - \cos h}{h} \right) =$	0	$\lim_{h\to 0}(\frac{\sin h}{h})=1$
Q1 (5 mark	•	on of the tangent to	the curve $y = \frac{\sin x}{x}$	$\frac{x}{2}$ at the point $(\pi, 0)$.
y = sign inx v= 105% v'=	26		1 = 3 = 5 the substitute of th	16AE
= X rolx	e with	p.	さい (ボ,さ)	TETE
X=TT D	TT - SuiTT	nia.	, m	-1 (T) +C
= 17(-	1 -1) - 0		and the state of t	1 2 + 1
172			19	

Q2
$$(3+3+3+3=12 \text{ marks})$$

Determine $\frac{dy}{dx}$ for each of the following simplifying answers where possible.

(a)
$$y = e^{x^2-1} + 2\cos(2x-1) + e^3$$

$$\frac{dy}{dx} = 2xe^{x^2-1} - 4\sin(2x-1)$$

(b)
$$y = \sin^3 5x = (\sin 5x)^2$$

 $\frac{dy}{dx} = 3(\sin 5x)^2 (\cos 5x) = 15 \cos 5x \sin^2 5x = 15$

(c)
$$y = \frac{\cos x}{e^x}$$

$$u = \cos x \qquad \forall = e^x$$

$$u' = -\sin x \qquad \forall ' = e^x$$

$$\frac{dy}{dx} = -cixe^{2x} - cixe^{2x}$$

$$= -e^{2x} (six + coxx)$$

$$= -e^{2x} (six + coxx)$$

$$= -e^{2x}$$

$$\frac{dy}{dx} = -e^{1-2x} \sin^2 x + 2\cos^2 x e^{1-2x}$$

$$= e^{1-2x} (2\cos^2 x - \sin^2 x)$$

Q3
$$(4+2+1=7 \text{ marks})$$

Evaluate the following.

(a)
$$\int_0^{\frac{\pi}{3}} (\cos \frac{x}{2} - \sin x) . dx$$

= $\begin{bmatrix} 2 & 5 & \frac{\pi}{2} \\ -1 & \frac{\pi}{3} \end{bmatrix} + \cos \frac{\pi}{3} - 2 = 0$
= $2(\frac{1}{2}) + \frac{1}{3} - 0 = 1$

(b)
$$\frac{d}{dx} \left(\int_{3}^{x^{2}} e^{(\sqrt{t}-1)} \cdot dt \right) \text{ when } x = 2$$

$$= e^{2x-1} \left(2x \right)$$

$$= e^{2x-1} \left(2x \right)$$

$$= e^{1} \left(4 \right)$$

$$= 4e$$

(c)
$$\lim_{h \to 0} \frac{\sin h}{2h}$$

$$= \frac{1}{2} \lim_{h \to 0} \frac{\sinh h}{h}$$

$$= \frac{1}{2} (1)$$

Q4
$$(2+2+3+2=9 \text{ marks})$$

Evaluate the following integrals.

(a)
$$\int (e^x + \cos x + \sin x) . dx$$
$$= e^x + \sin x - \cos x + 6$$

(b)
$$\int \frac{2}{e^{3x}} dx$$

$$= \int 2e^{-3x} dx$$

$$= 2e^{-3x} + 6$$

$$= \left(\frac{1}{4}\right) \frac{1}{2} \int \frac{\sin x \cos^3 x}{2} dx$$

$$= \left(\frac{1}{4}\right) \frac{1}{2} \int \frac{4 \sin x \cos^3 x}{2} dx$$

$$= -\frac{1}{8} \cos^4 x + C$$

(d)
$$\int 4 \sin x \cos x . dx$$

$$= 2 \int 2 \sin x \cos x . dx$$

$$= 2 \int (2\pi) . d\pi$$

$$= 2 \left(-\cos 2\pi \right) . d\pi$$

$$= -\cos 2\pi + c . /$$

YEAR 12 MATHEMATICS METHODS Test 2 2016

Exponential and Trigonometric Functions

NAME:		Date: Tuesday 10th May
TEACHER:		
Non-calculator section:	33 minutes	33 marks
Calculator section:	17 minutes	17 marks
OVERALL:	50 minutes	50 marks

INSTRUCTIONS:

Show FULL working Answer all questions on this test paper

Questions or parts of questions worth more than two marks require working to be shown to receive full marks.

Allowed: Maths Methods WACE formula sheets, 3 calculators, 1 A4 page of notes

Q5 (4 marks)

A curve passes through the point $(\frac{\pi}{2}, \pi - 2)$ and has a gradient function given by $\frac{dy}{dx} = 1 - 2\cos x$. Determine the equation of the original curve.

$$y = 2c - 2\sin 2c + c$$
 $(\frac{\pi}{2}, \pi^{-2})$
 $\pi^{-2} = \frac{\pi}{2} - 2\sin (\frac{\pi}{2}) + c$
 $\pi^{-2} = \frac{\pi}{2} - 2\sin (\frac{\pi}{2}) + c$
 $\pi^{-2} = c$
 $\pi^{-2} = c$

Q6 (1+2+1+2+4=10 marks)

The mass of a drug remaining in the bloodstream of a patient is changing according to the rule $\frac{dM}{dt} = -0.12M$, where M is the mass of drug remaining t hours after the initial dose of 60 milligrams was administered.

(a) <u>Circle</u> the response below that best describes the type of relationship between M and t.

EXPONENTIAL GROWTH

(b) Write down an equation for M in terms of t.

(c) Determine the mass of drug remaining in the bloodstream after one day.

$$| t = 24 = 60 = 0.12(24)$$

$$= 3.37 \text{mg}$$

(d) Determine, to the nearest hour, the time taken for less than one percent of the initial dose to remain in the bloodstream of the patient.

- At what rate is the mass of the drug in the bloodstream changing (e)
 - after 12 hours?

(ii) when 25mg of the drug remains?

Q7(3 marks)

> A section of the graph of the function $y = 0.5 - \sin x$ is shown below. Calculate the **enclosed area** between the function stated and the x axis as shown in the diagram.

