DRAFT General Mission Analysis Tool (GMAT) Acceptance Test Plan

GMAT PC Build Date: February 11, 2007 GMAT Mac Build Date: December 10, 2007 GMAT Linux Build Date: December 10, 2007

Edwin Dove NASA Goddard Space Flight Center Greenbelt, MD 20771

February 11, 2008

Contents

1	Acc	ceptance Test Plan Overview 13
	1.1	GMAT Introduction
	1.2	Testing Methodology
		1.2.1 Propagation
		1.2.2 Calculation Parameters
		1.2.3 Integrators
		1.2.4 Stopping Conditions
		1.2.5 Libration Point
		1.2.6 Delta V
		1.2.7 Performance
		1.2.8 Control Flow
2	Pro	opagation 19
_	2.1	Initial Orbit State Conditions
	2.1	2.1.1 Earth Based Test Cases
		2.1.2 Non-Earth Based Test Cases
	2.2	Other Initial State Conditions
	2.2	2.2.1 Earth Orientation Parameters(EOP) data
		2.2.2 Other Planetary Parameters
	2.3	Naming Convention
	۷.5	2.3.1 Comparison Script Information
	2.4	
	2.5	,
	2.6	Win/Linux GMAT Comparison
	2.7	FF/STK Comparison
3	Cal	culation Parameters 53
	3.1	Initial Orbit State Conditions
	3.2	Central Body Dependent Parameters
		3.2.1 Naming Convention
		3.2.2 Comparison Script Information
		3.2.3 Test Case Results
		3.2.4 Win/Mac GMAT Comparison
		3.2.5 Win/Linux GMAT Comparison
	3.3	Coordinate System Dependent Parameters
		3.3.1 Naming Convention
		3.3.2 Comparison Script Information
		3.3.3 Test Case Results
		3.3.4 Win/Mac GMAT Comparison
		3.3.5 Win/Linux GMAT Comparison
4	Into	egrators 85
-1	4.1	Initial Orbit Conditions
	4.1	Naming Convention
	4.2 4.3	Comparison Script Information
	$\frac{4.5}{4.4}$	Test Case Results
	4.4	
		4.4.1 Win/Mac GMAT Comparison

3

CONTENTS

	4.4.2 Win/Linux GMAT Comparison	89
5	Stopping Conditions 5.1 Initial Orbit Conditions	
	5.3 Comparison Script Information	96
	5.4.1 Win/Mac GMAT Comparison	
6	Libration Points 6.1 Initial Orbit Conditions	107 107
	6.2 Naming Convention	
	6.3 Comparison Script Information	
	6.4 Test Case Results	
	6.4.1 Win/Mac GMAT Comparison	
7	Delta V	113
	7.1 Initial Orbit Conditions	
	7.3 Comparison Script Information	
	7.4 Test Case Results	
	7.4.1 Win/Mac GMAT Comparison	
	7.4.2 Win/Linux GMAT Comparison	118
8	Performance	121
	8.1 Test Machine Specifications	
	8.2 Initial Orbit Conditions	
	8.4 Comparison Script Information	
	8.5 Test Results	124
9	ControlFlow	137
	9.1 Test Case Results	137
Ι	GUI and Script Tests	139
10	Test Procedures	141
	10.1 Spacecraft Orbit Tab	
	10.2 Spacecraft Attitude Tab	
11	Test Data	159
12	Base States	167
13	GUI	169
	13.1 Individual GUI panels	169
	13.1.1 S/C => Orbit — Resources Tab	
	13.1.2 S/C => Attitude — Resources Tab	
	13.1.3 S/C => Ballistic/Mass — Resources Tab	
	13.1.5 S/C => Tanks — Resources Tab	
	13.1.6 S/C => Actuators — Resources Tab	169
	13.1.7 Fuel Tank — Resources Tab	
	13.1.8 Thruster — Resources Tab	170

4			OIV	1 L	11110
		13.1.10 Finite Burn — Resources Tab			170
		13.1.11 Impulsive Burn — Resources Tab			170
		13.1.12 Propagator — Resources Tab			170
		13.1.13 Solar System — Resources Tab			170
		13.1.14 Barycenter — Resources Tab			170
		13.1.15 Libration Point — Resources Tab			170
		13.1.16 Celestial Bodies/Planets — Resources Tab			170
		13.1.17 Differential Corrector — Resources Tab			171
		13.1.18 OpenGL — Resources Tab			171
		13.1.19 ReportFile — Resources Tab			171
		13.1.20 XYPlot — Resources Tab			171
		13.1.21 Variable/Array — Resources Tab			171
		13.1.22 Coordinate System — Resources Tab			171
		13.1.23 Function — Resources Tab			171
		13.1.24 Propagate — Mission Tab			171
		13.1.25 Target — Mission Tab			171
		13.1.26 Maneuver — Mission Tab			171
		13.1.27 Vary — Mission Tab			172
		13.1.28 Achieve — Mission Tab			172
		13.1.29 CallFunction — Mission Tab			172
		13.1.30 ScriptEvent — Mission Tab			172
		13.1.31 If — Mission Tab			172
		13.1.32 For — Mission Tab			172
		13.1.33 While — Mission Tab			172
		Saving			172
		Script Event			172
		Buttons			173
		13.4.1 Stop			173
		13.4.2 Pause			173
		13.4.3 Play			173
		13.4.4 Show Script			173
		13.4.5 Command Summary			173
		13.4.6 Open			173
		13.4.7 Other			173
					110
14	Scrip	pt			175
	а.				1 ==
19	Scrip	pt-to-GUI template			177
Π	$\mathbf{A}_{\mathbf{I}}$	ppendix			179
A	Acro	onyms			181
В	Initia	ial Conditions			183
		Propagator Test Cases			183
		Calculation Parameter Test Cases			199
		Integrator Test Cases			200
		Stopping Condition Test Cases			200
		Libration Point Test Cases			200
		DeltaV Test Cases			200
		Performance			200
	٠.,		•		_00
\mathbf{C}	Com	nparison Scripts Guide			201
		Folder Architecture			201
	C.2	Install Instructions			201
	C.3	Warnings/Script Hints			202
		BuildRun_Script_GMAT.m script			203

	1111	11115										U
		C.4.1 Purpos	se	 	 	 		 	 	 	 	 203
		_										
		-	ts									
		-	Algorithm									203
	C.5	Comparison_T										203
	0.0		se									203
		_										204
			ts									204
			Algorithm									204
	C.6	C.5.4 Script Comparison_T										$\frac{204}{205}$
	C.0	_	se									$\frac{205}{205}$
			se									$\frac{205}{205}$
												$\frac{205}{205}$
			ts									
	0.7		Algorithm									206
	C.7	Comparison_T										206
		_	se									207
		_										207
			ts									207
			Algorithm									207
	C.8	Comparison_T										208
			se									208
		-										209
			ts									209
			Algorithm									209
	C.9	Comparison_I										209
			se									
			ts									
		C.9.4 Script	Algorithm	 	 	 		 	 	 	 	 210
	C.10	Comparison_I	OeltaV.m .	 	 	 		 	 	 	 	 211
		C.10.1 Purpos	se	 	 	 		 	 	 	 	 211
		C.10.2 Inputs		 	 	 		 	 	 	 	 211
		C.10.3 Outpu	ts	 	 	 		 	 	 	 	 211
		C.10.4 Script	Algorithm	 	 	 		 	 	 	 	 211
	C.11	Comparison_S	topCond.m	 	 	 		 	 	 	 	 211
		C.11.1 Purpos	se	 	 	 		 	 	 	 	 211
		C.11.2 Inputs										211
		C.11.3 Outpu										211
		C.11.4 Script										211
	C.12	STK_Repropa										211
		C.12.1 Purpos										211
		C.12.2 Inputs										211
		C.12.3 Outpu										212
		C.12.4 Script										212
	C.13	TimeCompare										212
	0.10	C.13.1 Purpos										212
		C.13.2 Inputs										212
		C.13.3 Outpu										212
		C.13.4 Script										212
		Outout poutpt		 	 	 	• •	 	 	 	 	 414
D	STK	Setup										213
		Support Files	Needed	 	 			 		 	 	 213
		STK modules										213
		Scenario Setur										214
		D.3.1 HPOP	-									214
		D.3.2 STK .										214
	D 4	Astrogator El		 	 	 	• •	 	 	 	 	 215

	D.4.1	Calculation Objects: Cartesian Elements	215
	D.4.2	Calculation Objects: Geodetic Elements	216
	D.4.3	Calculation Objects: Keplerian Elements	217
	D.4.4	Calculation Objects: Other Orbit Elements	219
	D.4.5	Calculation Objects: Target Vector Elements	219
	D.4.6	Calculation Objects: Spherical Elements	219
	D.4.7	Calculation Objects: Vector Elements	221
	D.4.8	Coordinate Systems: Central Body Inertial Elements	223
	D.4.9	Propagators Elements	223
	D.4.10	Axes Elements	223
	D.4.11	Coordinate System Elements	223
	D.4.12	Vectors Elements	224
	D.4.13	Vectors: Vehicle Local Elements	224
D.5	Report	Styles	225
D.6	Scripts	Used	225

E FF Setup 227

List of Figures

List of Tables

2.1	Satellite Initial Conditions	20
2.2	Apogee and Perigee Altitudes for Test Satellites	20
2.3	Integrator, Propagator, and Output Frequency	20
2.4		21
2.5		22
2.6		24
2.7		25
2.8		25
2.9		26
2.10	Acceptance Matrix	29
		29
		29
2.13		30
2.14		30
		31
		32
		32
		32
		32
		32
2.21		33
2.22		33
2.23		33
2.24		34
2.25		34
2.26		34
2.27		35
2.28		35
2.29		35
2.30		35
2.31		36
2.32		37
		37
		38
		38
	·	39
2.37		39
		40
		41
	'.	41
		41
	· .	41
	'	41
	-	42
	,	42
	-	42
	· -	43

Draft: Work in Progress
LIST OF TABLES

		. Or	IADL
2.48 WinGMAT/MacGMAT EML2 Test Case Comparison			
2.49 WinGMAT/MacGMAT ESL2 Test Case Comparison			
2.50 WinGMAT/LinuxGMAT GEO Test Case Comparison			
2.51 WinGMAT/LinuxGMAT GPS Test Case Comparison			
2.52 WinGMAT/LinuxGMAT ISS Test Case Comparison			
2.53 WinGMAT/LinuxGMAT Molniya Test Case Comparison			
2.54 WinGMAT/LinuxGMAT SunSync Test Case Comparison			
2.55 WinGMAT/LinuxGMAT Mars1 Test Case Comparison			
2.56 WinGMAT/LinuxGMAT Mercury1 Test Case Comparison			
2.57 WinGMAT/LinuxGMAT Moon Test Case Comparison			
2.58 WinGMAT/LinuxGMAT Neptune1 Test Case Comparison			
2.59 WinGMAT/LinuxGMAT Pluto1 Test Case Comparison			
2.60 WinGMAT/LinuxGMAT Saturn1 Test Case Comparison			
2.61 WinGMAT/LinuxGMAT Uranus1 Test Case Comparison			
2.62 WinGMAT/LinuxGMAT Venus1 Test Case Comparison			
2.63 WinGMAT/LinuxGMAT DeepSpace Test Case Comparison			
2.64 WinGMAT/LinuxGMAT EML2 Test Case Comparison			
2.65 WinGMAT/LinuxGMAT ESL2 Test Case Comparison			
2.66 FF/STK GEO Test Case Comparison			
2.67 FF/STK GPS Test Case Comparison			
2.68 FF/STK ISS Test Case Comparison			
2.69 FF/STK Molniya Test Case Comparison			
2.70 FF/STK SunSync Test Case Comparison			
2.71 FF/STK EML2 Test Case Comparison			
2.72 FF/STK ESL2 Test Case Comparison			
3.1 WinGMAT/STK Central Body Dependent Parameter Differences (1)			
3.2 WinGMAT/STK Central Body Dependent Parameter Differences (2)			
3.3 WinGMAT/STK Central Body Dependent Parameter Differences (3)			
3.4 WinGMAT/STK Central Body Dependent Parameter Differences (4)			
3.5 WinGMAT/STK Central Body Dependent Parameter Differences (5)			
3.6 FF/WinGMAT Central Body Dependent Parameter Differences (1)			
3.7 FF/WinGMAT Central Body Dependent Parameter Differences (2)			
3.8 FF/WinGMAT Central Body Dependent Parameter Differences (3)			
3.9 FF/WinGMAT Central Body Dependent Parameter Differences (4)			
3.10 FF/WinGMAT Central Body Dependent Parameter Differences (5)			
3.11 FF/STK Central Body Dependent Parameter Differences (1)			
3.12 FF/STK Central Body Dependent Parameter Differences (2)			
3.13 FF/STK Central Body Dependent Parameter Differences (3)			
3.14 FF/STK Central Body Dependent Parameter Differences (4)			
3.15 FF/STK Central Body Dependent Parameter Differences (5)			
3.16 WinGMAT/MacGMAT Central Body Dependent Parameter Differences (1) .			
3.17 WinGMAT/MacGMAT Central Body Dependent Parameter Differences (2).			
3.18 WinGMAT/MacGMAT Central Body Dependent Parameter Differences (3).			
3.19 WinGMAT/MacGMAT Central Body Dependent Parameter Differences (4).			
3.20 WinGMAT/MacGMAT Central Body Dependent Parameter Differences (5).			
3.21 WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (1)			
3.22 WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (2)			
3.23 WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (3)			
3.24 WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (4)			
3.25 WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (5)			
3.26 WinGMAT/STK Coordinate System Dependent Parameter Differences (Position			
3.27 WinGMAT/STK Coordinate System Dependent Parameter Differences (Veloci	,		
3.28 WinGMAT/STK Coordinate System Dependent Parameter Differences (Specific			
tum)	_		
3.29 WinGMAT/STK Coordinate System Dependent Parameter Differences (Veloci			
3.30 WinCMAT/STK Coordinate System Dependent Parameter Differences (Angles	•		

115	5T O.	F TABLES	9
	3.31	FF/WinGMAT Coordinate System Dependent Parameter Differences (Position)	70
		FF/WinGMAT Coordinate System Dependent Parameter Differences (Velocity)	70
		FF/WinGMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)	
		FF/WinGMAT Coordinate System Dependent Parameter Differences (Velocity Vector-based)	70
		FF/WinGMAT Coordinate System Dependent Parameter Differences (Angle-based)	70
		FF/STK Coordinate System Dependent Parameter Differences (Position)	71
		FF/STK Coordinate System Dependent Parameter Differences (Velocity)	71
		FF/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)	71
		FF/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)	71
	3.40	FF/STK Coordinate System Dependent Parameter Differences (Angle-based)	71
	3.41	WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Position)	73
	3.42	WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Velocity)	74
	3.43	WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Specific Angular	
		Momentum)	75
	3.44	WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Velocity Vector-	
		based)	76
		$\label{lem:wingMat} \mbox{WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Angle-based)} \ . \ . \ .$	77
		WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Position)	79
		WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Velocity)	80
	3.48	WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Specific Angular	
		Momentum)	81
	3.49	WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Velocity Vector-	0.0
	0.50	based)	82
	3.50	$\label{lem:winGMAT} \mbox{WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Angle-based)} \ . \ .$	83
	4.1	Exact/WinGMAT GEO Test Case Comparison	87
	4.2	Exact/WinGMAT ISS Test Case Comparison	87
	4.3	WinGMAT/MacGMAT GEO Test Case Comparison	87
	4.4	WinGMAT/MacGMAT ISS Test Case Comparison	88
	4.5	WinGMAT/LinuxGMAT GEO Test Case Comparison	89
	4.6	WinGMAT/LinuxGMAT ISS Test Case Comparison	89
	5.1	Stopping Conditions	91
	5.2	Initial Orbit Parameters (EarthPM & EarthMJ2000EqPM)	92
	5.3	Initial Orbit Parameters (EarthAll & EarthMJ2000EqAll)	93
	5.4	Initial Orbit Parameters (EarthPMhyper & EarthMJ2000EqPMhyper)	94
	5.5	Initial Orbit Parameters (MoonPM)	94
	5.6	Initial Orbit Parameters (MarsPM)	95
	5.7	Exact/WinGMAT EarthPM StopCond Test Case Comparison	97
	5.8	Exact/WinGMAT EarthAll StopCond Test Case Comparison	97
	5.9	Exact/WinGMAT EarthPMhyper StopCond Test Case Comparison	98
	5.10	·.	98
	5.11	Exact/WinGMAT MarsPM StopCond Test Case Comparison	98
	5.12	Exact/WinGMAT EarthMJ2000EqPM StopCond Test Case Comparison	98
	5.13	Exact/WinGMAT EarthMJ2000EqAll StopCond Test Case Comparison	99
	5.14	Exact/WinGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison	99
	5.15	Exact/WinGMAT MoonMJ2000EqPM StopCond Test Case Comparison	99
	5.16	Exact/WinGMAT MarsMJ2000EqPM StopCond Test Case Comparison	99
	5.17	Exact/WinGMAT Earth3MultiSatsPM StopCond Test Case Comparison	99
		,	100
		, -	100
		, , , , , , , , , , , , , , , , , , , ,	100
		,	101
		, -	101
			101
			101
	5.25	WinGMAT/MacGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison	101

10	LIST OF TA	ABLES
5 26	WinGMAT/MacGMAT MoonMJ2000EqPM StopCond Test Case Comparison	. 102
	WinGMAT/MacGMAT MoonMJ2000EqPM StopCond Test Case Comparison	
	WinGMAT/MacGMAT Earth3MultiSatsPM StopCond Test Case Comparison	
	WingMAT/MacGMAT EarthSMultisatsFM StopCond Test Case Comparison	
	WinGMAT/LinuxGMAT EarthAll StopCond Test Case Comparison	
	WinGMAT/LinuxGMAT EarthPMhyper StopCond Test Case Comparison	
	WinGMAT/LinuxGMAT MoonPM StopCond Test Case Comparison	
	B WinGMAT/LinuxGMAT MarsPM StopCond Test Case Comparison	
	$\label{thm:cond} WinGMAT/LinuxGMAT\ EarthMJ2000EqPM\ StopCond\ Test\ Case\ Comparison\ .\ .\ .\ .\ .\ .\ .$	
	WinGMAT/LinuxGMAT EarthMJ2000EqAll StopCond Test Case Comparison	
5.36	WinGMAT/LinuxGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison	. 104
5.37	WinGMAT/LinuxGMAT MoonMJ2000EqPM StopCond Test Case Comparison	. 105
5.38	B WinGMAT/LinuxGMAT MarsMJ2000EqPM StopCond Test Case Comparison	. 105
	WinGMAT/LinuxGMAT Earth3MultiSatsPM StopCond Test Case Comparison	
6.1	Initial Orbit Parameters (Sun-Earth(SE) Libration Points)	
6.2	Initial Orbit Parameters (Sun-Earth-Moon(SEM) Libration Points)	
6.3	WinGMAT/STK SEM LibrationTest Test Case Comparison	. 109
6.4	WinGMAT/STK SE LibrationTest Test Case Comparison	. 109
6.5	WinGMAT/MacGMAT SEM LibrationTest Test Case Comparison	. 109
6.6	WinGMAT/MacGMAT SE LibrationTest Test Case Comparison	
6.7	WinGMAT/LinuxGMAT SEM LibrationTest Test Case Comparison	
6.8	WinGMAT/LinuxGMAT SE LibrationTest Test Case Comparison	
7.1	Initial Orbit Parameters (Earth Impulsive Burns)	
7.2	Initial Orbit Parameters (Mars Impulsive Burns)	
7.3	Initial Orbit Parameters (Moon Impulsive Burns)	
7.4	Initial Orbit Parameters (Sun Impulsive Burns)	. 115
7.5	Exact/WinGMAT IEarth Test Case Comparison	. 117
7.6	Exact/WinGMAT IMars Test Case Comparison	. 117
7.7	Exact/WinGMAT IMoon Test Case Comparison	. 117
7.8	Exact/WinGMAT ISun Test Case Comparison	. 117
7.9	WinGMAT/MacGMAT IEarth Test Case Comparison	
	WinGMAT/MacGMAT IMars Test Case Comparison	
	WinGMAT/MacGMAT IMoon Test Case Comparison	
	WinGMAT/MacGMAT ISun Test Case Comparison	
	WinGMAT/LinuxGMAT IEarth Test Case Comparison	
	WinGMAT/LinuxGMAT IMars Test Case Comparison	
	WinGMAT/LinuxGMAT IMoon Test Case Comparison	
7.10	6 WinGMAT/LinuxGMAT ISun Test Case Comparison	. 119
8.1	Performance Test Case Comparisons	. 125
8.2	Performance Test Case Comparisons	. 126
8.3	Performance Test Case Comparisons	
8.4	Performance Test Case Comparisons	
8.5	Performance Test Case Comparisons	
8.6	Performance Test Case Comparisons	
	GMAT/STK Performance Test Case Comparisons	
8.7		
8.8	GMAT/STK Performance Test Case Comparisons	
8.9	GMAT/STK Performance Test Case Comparisons	
8.10	,	
	GMAT/FF Performance Test Case Comparisons	
8.12	2 GMAT/FF Performance Test Case Comparisons	. 136
9.1	Loop Test Case Results	. 138
		_30
	STC-4 Conversion to Disallowed Coordinate System from Keplerian-type Elements	. 141

IST OF TABLES	11
10.3 STC-5 GUI Epoch and State Independence for Time Dependent Coordinate System	142
ı ı ı	143
	143
, · ·	143
	144
· · · · · · · · · · · · · · · · · · ·	
1	145
	146
	146
	147
	147
	148
S S S S S S S S S S S S S S S S S S S	149
	150
0 1	151
7 1	152
7 1	152
	153
1	154
	155
1	156
U I	157
	158
10.25TC-2 Differential Corrector Dialog Box Range Tests- Allowed Values	158
11.1 mp.1 F : 1 + 0+ + P	1.00
1	160
	161
ı v	162
	163
1 1	164
	165
11.7 TD-8 Equivalent Attitude Representations	166
12.1 Spacecraft GUI State Conversion Test	167
12.1 Spacecraft GOT State Conversion 1650	101
B.1 Initial Orbit Parameters (ISS)	183
B.2 Initial Orbit Parameters (Sun-Sync)	184
B.3 Initial Orbit Parameters (GPS)	185
B.4 Initial Orbit Parameters (Molniya)	186
B.5 Initial Orbit Parameters (GEO)	187
B.6 Initial Orbit Parameters (Mars)	188
B.7 Initial Orbit Parameters (Mercury)	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
2.1. Invited Office Continuous (11) portioned	100
D.1 STK support files	213
D.2 STK modules used	214

Draft: Work in Progress LIST OF TABLES

12

Chapter 1

Acceptance Test Plan Overview

1.1 GMAT Introduction

The information presented in this Acceptance Test Plan document shows the current status of the General Mission Analysis Tool (GMAT). GMAT is a software system developed by NASA Goddard Space Flight Center (GSFC) in collaboration with the private sector. The GMAT development team continuously performs acceptance tests in order to verify that the software continues to operate properly after updates are made. The GMAT Development team consists of NASA/GSFC Code 583 software developers, NASA/GSFC Code 595 analysts, and contractors of varying professions.

GMAT was developed to provide a development approach that maintains involvement from the private sector and academia, encourages collaborative funding from multiple government agencies and the private sector, and promotes the transfer of technology from government funded research to the private sector.

GMAT contains many capabilities, such as integrated formation flying modeling and MATLAB compatibility. The propagation capabilities in GMAT allow for fully coupled dynamics modeling of multiple spacecraft, in any flight regime. Other capabilities in GMAT include: user definable coordinate systems, 3-D graphics in any coordinate system GMAT can calculate, 2-D plots, branch commands, solvers, optimizers, GMAT functions, planetary ephemeris sources including DE405, DE200, SLP and analytic models, script events, impulsive and finite maneuver models, and many more.

GMAT runs on Windows, Mac, and Linux platforms. Both the Graphical User Interface (GUI) and the GMAT engine were built and tested on all of the mentioned platforms. GMAT was designed for intuitive use from both the GUI and with an importable script language similar to that of MATLAB.

1.2 Testing Methodology

Purpose

GMAT needs to undergo a series of rigorous tests to validate the numerical implementations of its models and establish a set of acceptable performance times. The 595 analysts created the acceptance test plan to achieve this goal by comparing GMAT with flight-operational reference software packages and documenting the results. Results can be reproduced with the initial conditions and software setups presented in this document.

CHAPTER 1. ACCEPTANCE TEST PLAN OVERVIEW

Reference software

For this comparative study to have merit, GMAT was tested against reliable, trustworthy, and flight operational programs, such as STK-HPOP,STK-Astrogator, Free-Flyer, Swingby, and previous GMAT Builds that were comparable to the aforementioned programs. To achieve accurate comparison results, each program was compared with equivalent, or close to equivalent, test case setups.

Testing Categories

The Acceptance Test Plan divides into the following testing categories: Propagation, Calculation Parameters [Central body(Cb) and Coordinate System(CS) dependent], Integrators, Libration Points, Stopping Conditions, Delta V, and Performance.

Scripts Used

MATLAB scripts were created to make comparisons between GMAT Builds and the reference software. The majority of the comparisons involved taking the difference of the data and extracting the maximum absolute difference observed over the propagation duration. Scripts were also created to compare performance times for individual GMAT test cases to the reference software. The scripts created are as followed: Comparison_Tool1_Tool2_PV.m, Comparison_Tool1_Tool2_CS.m, Comparison_Tool1_Tool2_Cb.m, Comparison_Integ.m, TimeComparo.m, BuildRun_Script_GMAT.m, Comparison_Tool1_Tool2_Libr.m, Comparison_StopCond, and STK_Repropagate.m.

The user of the semi-automated scripts provides input when requested, in order to perform the script's core functions. For example, a user that wants to see the position and velocity differences between STK and GMAT would select a few choices from a menu. Next, the script would generate the comparisons based on the report data available. The semi-automation scripts adhere to the naming conventions outlined in their relevant testing category chapter.

Most of the scripts generate output in at least one of the following formats: ASCII, LaTex, MATLAB .mat, or Excel .xls files. The report files are in an ASCII space delimited format and contain the different test case parameters outputted after propagation. The LaTex files contain the comparison data between two programs and provide an easy way to include that data into a PDF document. The .mat and .xls file are two other methods used to save the comparison data that proved useful from the software development team.

The details of each script and how to use them are outlined in the relevant Testing Category section and/or the Comparison Scripts Guide section, located in Appendix C.

1.2.1 Propagation

The propagation test cases account for various orbits about Earth, as well as other celestial bodies. The main propagation parameters to monitor for differences are the position and velocity vectors. The following script was generated to perform the comparisons for this category:

Comparison_Tool1_Tool2_CS.m

See the Propagators section (Chapter 2) for more detail and comparison results.

14

1.2.2 Calculation Parameters

The calculation parameter test cases verify the internal calculations used to output the various parameters presented in the list below. This section consists of two subsections: Coordinate System(CS) and Central Body(Cb) dependent parameters. The following scripts were generated to perform the comparisons for this testing category: Comparison_Tool1_Tool2_CS.m & Comparison_Tool1_Tool2_Cb.m

• Coordinate Systems

- Earth Fixed
- Earth Mean J2000 Equator (MJ2000Eq)
- Earth Mean J2000 Ecliptic (MJ2000Ec)
- Earth Mean of Date Equator (MODEq)
- Earth Mean of Date Ecliptic (MODEc)
- Earth True of Date Equator (TODEq)
- Earth True of Date Ecliptic (TODEq)
- Earth Geocentric Solar Ecliptic (GSE)
- Earth Geocentric Solar Magnetic (GSM)
- Mars Fixed
- Mars MJ2000Eq
- Mars MJ2000Ec
- Mercury Fixed
- Mercury MJ2000Eq
- Mercury MJ2000Ec
- Moon Fixed
- Moon MJ2000Eq
- Moon MJ2000Ec
- Neptune Fixed
- Neptune MJ2000Eq
- Neptune MJ2000Ec
- Pluto Fixed
- Pluto MJ2000Eq
- Pluto MJ2000Ec
- Saturn Fixed
- Saturn MJ2000Eq
- Saturn MJ2000Ec
- Uranus Fixed
- Uranus MJ2000Eq
- Uranus MJ2000Ec
- Venus Fixed
- Venus MJ2000Eq
- Venus MJ2000Ec
- Coordinate System Parameters
 - Position (X,Y,Z)

- Velocity(X,Y,Z)
- Magnitude of Velocity
- Right Ascension of Velocity
- Specific Angular Momentum
- Argument of Periapsis
- Declination
- Declination of Velocity
- Inclination
- Right Ascension
- Right Ascension of Ascending Node
- Central Body Parameters
 - Altitude
 - Beta Angle
 - C3 Energy
 - Eccentricity
 - Latitude
 - Longitude
 - Specific Angular Momentum
 - Mean Anomaly
 - Mean Motion
 - Period
 - Apoapsis Radius
 - Perigee Radius
 - Position Magnitude
 - Semi-major Axis
 - True Anomaly
 - Semilatus Rectum
 - Apoapsis Velocity
 - Periapsis Velocity
 - Greenwich Hour Angle
 - Local Sidereal Time

See the Calculation Parameters Section (Chapter 3) for more detail and comparison results.

1.2.3 Integrators

The integrator test cases isolate the differences that would occur when changing the integrators for the same orbit. The following script was generated to perform the test case comparisons for this category: Comparison_Integ.m

- RungaKutta(RKV) 8(9)
- DormandElMikkawyPrince(RKN) 6(8)

1.2. TESTING METHODOLOGY

- RungeKuttaFehlberg(RKF) 5(6)
- PrinceDormand(PD) 4(5)
- PrinceDormand(PD) 7(8)
- BulirschStoer(BS)
- AdamsBashforthMoulton(ABM)

See the Integrators Section (Chapter 4) for more detail and comparison results.

1.2.4 Stopping Conditions

The stopping condition test cases determine how effective GMAT is at stopping satellite propagation on certain conditions. The following script was created to perform the test case comparisons for this category: Comparison_StopCond.m

The stopping conditions tested are as followed:

- Epoch (A1 Modified Julian Date)
- Apoapsis
- Elapsed Days
- Mean Anomaly
- Periapsis
- Elapsed Seconds
- True Anomaly
- XY Plane Intersection
- XZ Plane Intersection
- YZ Plane Intersection

See the Stopping Conditions Section (Chapter 5) for more detail and comparison results.

1.2.5 Libration Point

The libration point test cases create data about the location of several libration points. Current and future satellite missions use libration points as part of their mission architecture. It is important to have accurate data for these libration points. The following script was created to perform the test case comparisons for this category:

Comparison_Tool1_Tool2_Libr.m

See the Libration Point Section (Chapter 6) for more detail and comparison results.

1.2.6 Delta V

The delta v test cases determine the effectiveness of the delta v capabilities built into GMAT. When thruster burns are added to the mission sequence it is important that they are added correctly. The following script was created to perform the test case comparisons for this category:

Comparison_DeltaV.m

See the Delta V Section (Chapter 7) for more detail and comparison results.

1.2.7 Performance

The performance test cases generate performance time data for later comparison between GMAT and the reference software packages. Numerical calculation accuracy is important, but the amount of computing time it takes for the software to run is equally as important. We extracted several test cases from previous sections and ran them on the reference software packages, in order to check to make sure GMAT can perform just as good or better.

See the Performance Section (Chapter 8) for more detail and comparison results.

1.2.8 Control Flow

The control flow tests generate report data that easily allows a Matlab script to produce a table of Pass and Fail cases. The following script was created to generate the Pass/Fail table for this category: LoopTestSummary.m

See the Control Flow Section (Chapter 9) for more detail and results.

Chapter 2

Propagation

In order to validate the accuracy of GMAT's propagation, the fundamental unit-level components need to be combined and propagated on a system level. From a software development point of view, if the program under development is tested in a wide range of core applications, it is more likely that problems would be found before each new version is released to the public. This Acceptance Test Plan tests GMAT by comparing many possible scenarios users of GMAT would encounter to reference software packages. Although it is impossible to create all the possible scenarios each user would encounter in GMAT, this is a start to eliminate possible frustrations a user could experience if a component did not work correctly.

Propagation is one of the most important aspects of GMAT. Everything from outputting parameters to performing a thruster burns at the correct stopping condition depend on whether or not GMAT is able to propagate the satellite/object for a defined time period with acceptable accuracy.

Parts of the Initial Orbit State Conditions section are referenced from Emergent Space Technologies' Orbit Determination Toolbox (ODTBX) Spiral 1 DEMO document, due to a similar objective of testing the numerical implementation of the programs base functions.

2.1 Initial Orbit State Conditions

2.1.1 Earth Based Test Cases

The initial orbit states for the Sun-Synchronous (SunSync), Geostationary (GEO), Molniya, International Space Station (ISS) and the Global Positioning Satellite (GPS) orbits were obtained from Emergent Space Technologies' ODTBX Spiral 1 Demo .¹ Emergent used STK-High Precision Orbit Propagator (STK-HPOP) models and two-Line Element (TLE) sets with an initial UTC orbit epoch of June 1st 2004, 12:00:00:00. The initial orbit states that were used for the test case orbits can be seen in Table 2.1, on Page 20. The perigee and apogee altitudes of the test case orbits can be seen in Table 2.2, on Page 20.

The propagation duration, report output step size, and integrator step sizes were varied for the different test cases. For the ISS, SunSync, GPS, Molynia, and GEO cases, the propagation length and report output step size were chosen based on a study performed by The Aerospace Corporation to validate STK-HPOP's.² The integrator time steps were chosen to allow for the most accurate comparison of the test case results. These time steps were based on Vallado's analysis of state vector propagation.³

Table 2.1: Satellite Initial Conditions

Category	Orbit Type	X(km)	Y(km)	Z(km)	Vx(km/s)	Vy(km/s)	Vz(km/s)
LEO	ISS	-4453.783586	-5038.203756	-426.384456	3.831888	-2.887221	-6.018232
LEO	Sun-Sync	-2290.301063	-6379.471940	0	-0.883923	0.317338	7.610832
MEO	GPS	5525.33668	-15871.18494	-20998.992446	2.750341	2.434198	-1.068884
HEO	Molniya	-1529.894287	-2672.877357	-6150.115340	8.717518	-4.989709	0
GEO	GEO	36607.358256	-20921.723703	0	1.525636	2.669451	0

Table 2.2: Apogee and Perigee Altitudes for Test Satellites

Orbit Type	Perigee Altitude(km)	Apogee Altitude(km)
ISS	358.168	380.387
Sun-Sync	400	400
GPS	19757.6	20603.8
Molniya	500	39850.5
GEO	35786	35786

The chosen parameters can be seen in Table 2.3, on Page 20.

Table 2.3: Integrator, Propagator, and Output Frequency

Orbit Type	Integrator Step Size(s)	Propagator Length(days)	Output Frequency(mins)
ISS	5	1	1
Sun-Sync	5	1	1
GPS	60	2	2
Molniya	5	3	5
GEO	60	7	10

Several test cases were created for each satellite orbit to verify GMAT's ability to perform accurately, while applying various forces. The forces used for Earth-based test cases were two-body, JGM2, EGM96, and JGM3 gravity models, third-body perturbation effects from other planets, the Jacchia-Roberts (JR) and the Mass Spectrometer and Incoherent Scatter Radar Exosphere (MSISE 1990 & 2000) Atmospheric Drag Model, and Solar Radiation Pressure (SRP). Each of the force models were run independently within GMAT to verify their individual accuracy, as well as a test case that includes an atmospheric drag model, the SRP model, a non-spherical gravity model, and third-body perturbations. These last test cases were performed to validate the capability of the GMAT to accurately propagate satellite orbits while multiple force models were applied.

The Degree and Order for Earth-based non-spherical gravity cases was set at a constant 20 by 20.

Refer to Appendix B.1 for an alternate listing of all Propagator initial orbit state conditions.

2.2. OTHER INITIAL STATE CONDITIONS

2.1.2 Non-Earth Based Test Cases

GMAT is designed for accuracy in non-Earth mission scenarios. Test cases for Mars, Mercury, the Moon, Neptune, Pluto, Saturn, Uranus, Venus, L2 orbits, and deep space orbits were created to test various forces, individually and jointly, affecting a spacecraft in an orbit. Many satellite parameters, such as Cd,Cr, satellite area, and satellite mass, were kept the same as the Earth test cases for simplicity and consistency. The initial Keplerian satellite state only varied in Semi-Major Axis and gravity field degree & order for the non-Earth test cases.

Refer to Table 2.4 for the initial Keplerian orbital elements and the Degree & Order used for the non-spherical gravity force cases. The integrator step size, propagation length, and output frequency for all the non-Earth cases are 5 seconds, 3 days, and 5 minutes, respectively. Table 2.4 excludes the deep space and L2 orbit test cases.

Table 2.4: Non-Earth Keplerian Orbital Elements

Orbit Type	SMA (km)	Ecc.	Inc. (deg)	AOP (deg)	RAAN (deg)	TA (deg)	Deg. x Ord. used
Mars	4603	0.2	45	45	90	45	20x20
Mercury	3640	0.2	45	45	90	45	4x0
Moon	2500	0.2	45	45	90	45	20x20
Neptune	34999	0.2	45	45	90	45	4x0
Pluto	1795	0.2	45	45	90	45	4x0
Saturn	80000	0.2	45	45	90	45	4x0
Uranus	45000	0.2	45	45	90	45	4x0
Venus	8125	0.2	45	45	90	45	20x20

SMA: Semi-Major Axis | Ecc.: Eccentricity | Inc.: Inclination | AOP: Argument of Perigee

RAAN: Right Ascension of Ascending Node | TA: True Anomaly

The DeepSpace, Earth Moon L2 (EML2), and Earth Sun L2 (ESL2) cases involve propagating about libration points and propagating deep space orbits. Table B.14, B.15, and B.16, in Appendix B, provide the initial states for the DeepSpace, EML2, and ESL2 test cases, respectively.

Refer to Appendix B.1 for a listing of all Propagator initial orbit state conditions.

2.2 Other Initial State Conditions

In order to reduce the complications of the comparisons, certain initial orbit parameters were kept constant throughout all of the cases. These parameters are Cd, Cr, Spacecraft Area, each programs integrator, and software settings affecting the results of various force models.

The GMAT integrator used for all the test cases was Runga Kutta 8(9), except for the STK-HPOP test cases, to avoid any additional differences that could occur from changing integrators. The Integrators Section compares the differences between the various integrators GMAT can use.

The parameters in Table 2.5 shows the differences between GMAT and the reference programs. The ideal situation would be for all the programs to match perfectly, but that is not realistic due to the different approaches each program takes to solve each problem.

Table	25.	Universal	Togt	Cogo	Deremeters

Table 2.5: Universal Test Case Parameters					
Parameter	GMAT	STK-HPOP	FF	STK-Astro	
Cd	2.2	2.2	2.2	2.2	
Cr	1.2	1.2	1.2	1.2	
$Area(m^2)$	20	20	20	20	
Satellite Mass(kg)	1000	1000	1000	1000	
Integrator (excluding integrator test cases)	RK8(9)	RK7(8)	RK8(9)	RK8(9)	
Integrator error tolerance	1e-013	1e-013	1e-013	1e-013	
Integrator error control. Relative to	Step	Step?	?	Step	
Drag: Altitude Calculation	Approximate	Approximate	Exact	?	
Drag: Sun Position	True	True	True	True	
SRP: Sun Position	True	True	True?	True	
Solar Flux (W/m^2) at 1 AU	1359.38857	1359.38857	1358	1359.38857	
Solid Tides	N/A	Disabled	N/A	N/A	
Ocean Tides	N/A	Disabled	N/A	N/A	
Daily F10.7: JR and MSISE models	150	150	N/A	150	
Average F10.7	150	150	150	150	
Geomagnetic Index(Kp): JR and MSISE only	3	3	N/A	3	
Drag: Geomagnetic Flux Update	Constant	Constant	N/A	Constant	
Boundary Mitigation	N/A	Disabled	N/A	N/A	
Relativistic Accelerations	N/A	Disabled	N/A	N/A	
Shadow Modeling	Dual Cone	Dual Cone	Dual Cone	?	
IERS EOP format used:	Long term C04	Bulletin A	Bulletin A	Bulletin A	
Polar Motion calculation:	Enabled	Enabled	Enabled	Enabled?	
Nutation update interval: Earth (sec)	60	60	60	60	
Planetary Ephemeris update interval (sec)	0	0?	0	0?	

2.2. OTHER INITIAL STATE CONDITIONS

Exceptions to Table 2.5 are as followed:

• STK has trouble propagating the EML2 test case at an error tolerance of 1e-013 with a relative to step error control. The GMAT and STK cases were changed to both use relative to state error control

2.2.1 Earth Orientation Parameters(EOP) data

"International Earth Rotation Service (IERS) Bulletins A and B provide current information on the Earth's orientation in the IERS Reference System. This includes Universal Time, coordinates of the terrestrial pole, and celestial pole offsets. Bulletin A gives an advanced solution updated weekly by e-mail subscription or daily by anonymous ftp; the standard solution is given monthly in Bulletin B and updated every week in the (IERS) C04 solution."

"Bulletin A is issued by the IERS Rapid Service/Prediction Centre at the U.S. Naval Observatory(USNO), Washington, DC and Bulletin B", as well as the C04 data, "is issued by the IERS Earth Orientation Centre at the Paris Observatory." ⁴

"Bulletin A is intended for users who need accurate information before the Bulletin B finals series is available, i.e., those who reduce data in the very recent past (require rapid service) or those who operate in real-time (require predictions). Bulletin B is intended for standard use. For scientific and long-term analyses of the Earth's orientation, the long-term continuous series", 4 C04 (1962- present), can be used.

"EOP (IERS) C04 is regularly recomputed to take advantage on one hand of the improvement of the various individual contributions and in the other hand of the refinement of the analysis procedures. To date, it is twiceweekly updated." ⁵

"The EOP (IERS) C04 is given at one-day intervals, it is free from the diurnal/subdiurnal terms due to the oceanic effects and can be interpolated linearly. The oscillations in UT and duration of the days due to zonal tides for periods under 35 days are present in full size in the series." ⁵

GMAT retrieves long term earth orientation IERS EOP CO4 data, which includes UTC-UT1 data, from a file. This file includes smoothed values at 1-day intervals and data from 1962-present.

STK and FF retrieves its EOP data from the USNO series 7 / IERS Bulletin A.

The differences between the EOP data sets are displayed in Table 2.6. The Terrestrial Pole column refers to the accuracy of the pole position [x,y] and the UT1 column refers to the accuracy of the rotation angle about the pole UT1.

As shown in Table 2.6, there are differences between STK and GMAT, but the Terrestrial Pole data agrees to within the thousandth place of a milli-arcseconds and the UT1 data agrees to within the hundredth place of second.

Draft: Work in Progress CHAPTER 2. PROPAGATION

Table 2.6: EOP Format Accuracy

Table 2	2.0. EOI TOIMat Accura	<u>sey</u>
EOP Format	Pole Position (mas)	UT1 (ms)
Bulletin A obs. 1-d (1)	0.10	0.02
Bulletin A pred. 1-d (2)	0.50	0.14
Bulletin A pred. 4-d (2)	1.60	0.52
Bulletin A pred. 10-d (2)	3.9	1.60
Bulletin A pred. 40-d (2)	11.2	7.70
Bulletin B obs. smooth 5-d (3)	0.15	0.02
Bulletin B obs. raw 5-d (3)	0.15	0.02
Bulletin B pred. 5-d (3)	1.6	0.60
Bulletin B pred. 10-d (3)	3.0	1.60
Bulletin B pred. 30-d (3)	10.0	4.0
Long-Term C04 '62-'67	30.0	2.0
Long-Term C04 '68-'71	20.0	1.5
Long-Term C04 '72-'79	15.0	1.0
Long-Term C04 '80-'83	2.0	0.4
Long-Term C04 '84-'95	0.7	0.04
Long-Term C04 '96-present	0.2	0.02

NOTES: (1) Based on data after 1997; applies only to latest epochs in each update.

⁽²⁾ Based on data since 1995.

⁽³⁾ Based on data since 1996.

The Terrestrial Pole and UT1 data is free from the diurnal/subdiurnal terms due to the oceanic effects and can be interpolated linearly.

These terms can be added after interpolation.

2.2.2 Other Planetary Parameters

Gravitational Constant

All programs used for comparisons utilize the DE405 Planetary Gravitational Constants listed in Table 2.7, except when non-spherical gravity was used. When non-spherical gravity files are used they typically call the gravitational constants located in the file, unless the program creates an exception.

Table 2.7: Planetary Gravitational Constants(mu values)

D1 /	(1 3 / 2)
Planet	$mu (km^3/s^2)$
Sun	132712440017.99
Mercury	22032.080486418
Venus	324858.59882646
Earth	398600.44150000
Moon	4902.8005821478
Mars	42828.314258067
Jupiter	126712767.85780
Saturn	37940626.061137
Uranus	5794549.0070719
Neptune	6836534.0638793
Pluto	981.60088770700

Flattening Coefficient

Whenever possible the flattening coefficients listed in Table 2.8 were used. Without the use of these values the planetary bodies could have wildly different shapes, which would result in large differences in parameters such as longitude, latitude, and altitude.

Table 2.8: Flattening Coefficient

Planet	Flattening Coefficient
Sun	0.00000000
Mercury	0.00000000
Venus	0.00000000
Earth	0.00335270
Moon	0.00000000
Mars	0.00647630
Jupiter	0.06487439
Saturn	0.09796243
Uranus	0.02292734
Neptune	0.01856029
Pluto	0.00000000

Equatorial Radius

26

The several celestial body equatorial radii used are listed in Table 2.9. Similar differences as the flattening coefficient occur when GMAT and the reference programs don't use the same values.

Table 2.9: Equatorial Radius

Planet	Radius (km)
Sun	695990.0
Mercury	2439.7
Venus	6051.90
Earth	6378.1363
Moon	1738.2
Mars	3397.0
Jupiter	71492.0
Saturn	60268.0
Uranus	25559.0
Neptune	25269.0
Pluto	1162.0

Leap Seconds

The amount of leap seconds, or ΔAT , has been used since 1972 in order to keep —UTC-UT1— \leq 0.9sec. GMAT and the reference software packages use all the leap seconds up until 2004. In 2004 the amount of leap seconds in use were 32 seconds.

2.3. NAMING CONVENTION

2.3 Naming Convention

This section describes the naming convention for propagator scripts and output reports. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. pmq The point-mass gravity model to use
- 4. nsg The non-spherical gravity model to use
- 5. drag The atmospheric drag model to use
- 6. other Any other forces to include, such as SRP, secondary body gravity, etc

The tool field should always be the first field. Future additional fields should be added to the end of the list of fields. If multiple other options are required, they should be added to the end of the file as required. For example, the file name will be tool_traj_pmg_nsg_drag_other1_other2.report (file extensions are described later.) Each field has a finite list of options, as follows (future options should be added to this list):

1. tool

STK - Satellite Toolkit HPOP or Astrogator

FF - FreeFlver

GMAT - General Mission Analysis Tool

2. traj

ISS - LEO orbit SunSync - LEO orbit GPS - MEO orbit GEO - GEO orbit Molniya - HEO orbit

Mars1 - eccentric low orbit Mercury1 - eccentric low orbit Moon - eccentric low orbit Neptune1 - eccentric low orbit Pluto1 - eccentric low orbit Saturn1 - eccentric low orbit Uranus1 - eccentric low orbit Venus1 - eccentric low orbit DeepSpace deep space orbit EML2 - Earth Moon L2 orbit ESL2 - Earth Sun L2 orbit

NOTE: Some test cases contain *traj* variations. In these cases, *traj* precedes the modification. For example, if ISS trajectory is needed with no output, then *traj* can be ISSnoOut. The lack of a report file is shortened to noOut.

3. *pmg*

Earth - Earth point mass gravity
Sun - Sun point mass gravity
Luna - Lunar point mass gravity

AllPlanets - Sun, Mercury, Venus, Earth, Moon, Mars, Mercury, Jupiter, and Pluto point mass gravity included.

NOTE: When dealing with a combination of pmg's the first point mass is the primary body and the following are third body point masses. For example, LunaSunEarth would be a Lunar primary body with

the Earth and Sun as third body point masses. The pmg's after the primary body are arranged based on the order from the sun, in order to reduce repeat filenames.

4. nsg

28

0 - no non-spherical gravity included
JGM2 - Earth JGM2 20x20 gravity
JGM3 - Earth JGM3 20x20 gravity
EGM96 - Earth EGM96 20x20 gravity
MARS50C - Mars Mars50c 20x20 gravity
- Moon LP165P 20x20 gravity

5. drag

0 - drag not included HP - Harris Priester JRXX - Jacchia-Roberts MSISEXX - NRL MSISE

NOTE: XX in the *drag* field refers to the year. For example, JR77 would be the Jacchia-Roberts 1977 model, and MSISE00 would be NRL MSISE 2000. Refer to Table 2.5 for the drag settings used.

6. other

0 - no other forces includedSRP - Solar Radiation Pressure

NOTE: Any of the above options may be included as an *other* field. Refer to Table 2.5 for the SRP settings used.

2.3.1 Comparison Script Information

The script used to perform the position and velocity comparisons needed for the Propagator section is Comparison_Tool1_Tool2_PV.m. This script takes the normalized position and velocity vector difference between two programs.

Refer to Appendix C for more details about this script and others used in the Acceptance Test Plan document.

2.4 Test Case Results

The following results are for the Propagator section. The current GMAT Build is compared to STK and FreeFlyer for this section, with the maximum normalized position and velocity difference displayed in table format.

To determine if a propagator test case comparison value was acceptable, an acceptance matrix, presented in Table 2.10, was created. The values in Table 2.10 were obtained from the lower position difference bounds of David Vallados An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs, presented at the 2005 American Astronomical Society (AAS)/AIAA Astrodynamics Specialist Conference. These lower bounds are difficult to meet in some orbits due to the wide range of orbits that are possible but they give a order of magnitude number to strive for. If a case has a combination of either Drag, Non-Spherical Gravity, Solar Radiation Pressure(SRP), or Point Mass gravity, the largest acceptable position difference is used.

The next step beyond this acceptance matrix is to compare GMAT's comparison data to differences seen in FF and STK comparisons, and peer reviews.

Table 2.10: Acceptance Matrix

Difference in	Acceptable Position Difference (m)
Non-Spherical Gravity	< 0.001
Point Mass Gravity	< 0.001
Solar Radiation Pressure	< 0.6
Drag	< 20

Table 2.11: WinGMAT/STK GEO Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0002573600464	1.793782766e-008
EarthLuna-0-0-0	0.000319469177	2.245968491e-008
EarthSunLuna-EGM96-JR-SRP	0.000157111986	1.10145998e-008
EarthSunLuna-EGM96-MSISE90-SRP	0.0001571119996	1.101459883e-008
EarthSunLuna-JGM2-JR-SRP	0.0001132816464	7.86017199e-009
EarthSunLuna-JGM2-MSISE90-SRP	0.0001132816525	7.860172342e-009
EarthSunLuna-JGM3-JR-SRP	0.0002438654858	1.730861641e-008
EarthSunLuna-JGM3-MSISE90-SRP	0.0002438654861	1.730861648e-008
EarthSun-0-0-0	2.279168371e-005	1.61733327e-009
Earth-0-0-0	2.111395905e-005	1.406994785 e - 009
Earth-0-0-SRP	4.571760608e-005	2.615384024e-009
Earth-0-JR-0	2.111395905e-005	1.406994785e-009
Earth-0-MSISE90-0	2.111395905e-005	1.406994785 e - 009
Earth-EGM96-0-0	0.0001110202624	8.026471479e-009
Earth-EGM96full-0-0	0.0001110202624	8.026471479e-009
Earth-JGM2-0-0	2.954895496e-005	2.054073235e-009
Earth-JGM2full-0-0	2.954895496e-005	2.054073235e-009
Earth-JGM3-0-0	1.603674008e-005	1.085055615 e - 009
Earth-JGM3full-0-0	1.603674009e-005	1.085055615e-009

Table 2.12: WinGMAT/STK GPS Test Case Comparison

Table 2.12. Windwitt / DTR GFD Tool Case Comparison						
Test Case	Position Difference(m)	Velocity Difference(m/s)				
AllPlanets-0-0-0	1.857890303e-005	2.692489413e-009				
EarthLuna-0-0-0	2.280562281 e-005	3.313474128e-009				
EarthSunLuna-EGM96-JR-SRP	0.04423319518	4.494744959e-006				
EarthSunLuna-EGM96-MSISE90-SRP	0.04425083865	4.497443366e-006				
EarthSunLuna-JGM2-JR-SRP	0.04423757254	4.4953771e-006				
EarthSunLuna-JGM2-MSISE90-SRP	0.0442455997	4.496600974e-006				
EarthSunLuna-JGM3-JR-SRP	0.04423934565	4.495691689e-006				
EarthSunLuna-JGM3-MSISE90-SRP	0.04423592869	4.495186505e- 006				
EarthSun-0-0-0	1.81527305e- 006	2.214883804e-010				
Earth-0-0-0	2.704817671e-006	3.709235187e-010				
Earth-0-0-SRP	0.04675382861	4.841397638e-006				
Earth-0-JR-0	2.704817671e-006	3.709235187e-010				
Earth-0-MSISE90-0	1.54909103e- 005	2.225873381e-009				
Earth-EGM96-0-0	3.230673797e-005	4.258922497e-009				
Earth-EGM96full-0-0	3.230673797e-005	4.258922497e-009				
Earth-JGM2-0-0	3.207859422e- 005	4.296841145e- 009				
Earth-JGM2full-0-0	3.207859422e- 005	4.296841145e- 009				
Earth-JGM3-0-0	3.197574489e-005	4.249781094e-009				
Earth-JGM3full-0-0	3.197574489e-005	4.249781094e-009				

Table 2.13: WinGMAT/STK ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.236533809e-005	1.385227256e-008
EarthLuna-0-0-0	2.656381117e-005	3.027412372e-008
EarthSunLuna-EGM96-JR-SRP	278.7566272	0.3182101779
EarthSunLuna-EGM96-MSISE90-SRP	56.2421725	0.06448778396
EarthSunLuna-JGM2-JR-SRP	265.0511827	0.3028951491
EarthSunLuna-JGM2-MSISE90-SRP	56.24215684	0.06448774979
EarthSunLuna-JGM3-JR-SRP	278.7568014	0.3182104054
EarthSunLuna-JGM3-MSISE90-SRP	56.24206048	0.06448766318
EarthSun-0-0-0	1.433764674e-005	1.600823115 e-008
Earth-0-0-0	2.047203147e-005	2.325189569e-008
Earth-0-0-SRP	0.130272568	0.0001262632038
Earth-0-JR-0	251.765217	0.2867219205
Earth-0-MSISE90-0	54.12970949	0.06180127344
Earth-EGM96-0-0	0.0003663016096	4.164100958e-007
Earth-EGM96full-0-0	0.0003621628298	4.134604421e- 007
Earth-JGM2-0-0	0.0002104591217	2.411864887e-007
Earth-JGM2full-0-0	0.0002185235364	2.48797737e-007
Earth-JGM3-0-0	0.0002166929687	2.47503413e-007
Earth-JGM3full-0-0	0.0002197092927	2.507716249e-007

Table 2.14: WinGMAT/STK Molniya Test Case Comparison

14010 2.14. WillOMITT/DTIX Monniya 1000 Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0001645654561	1.252146304 e - 007
EarthLuna-0-0-0	0.0001587779228	1.205681387e-007
EarthSunLuna-EGM96-JR-SRP	13.29848959	0.009564197805
EarthSunLuna-EGM96-MSISE90-SRP	7.084035367	0.004827064426
EarthSunLuna-JGM2-JR-SRP	13.29849439	0.009564215374
EarthSunLuna-JGM2-MSISE90-SRP	7.083986451	0.004827011437
EarthSunLuna-JGM3-JR-SRP	13.2985248	0.009564255446
EarthSunLuna-JGM3-MSISE90-SRP	7.08473615	0.004827602744
EarthSun-0-0-0	0.000348717827	2.914219951e-007
Earth-0-0-0	0.0002791429809	2.328580346e-007
Earth-0-0-SRP	0.6111776321	0.0005124550223
Earth-0-JR-0	15.70095053	0.01312840386
Earth-0-MSISE90-0	7.009963698	0.005861408
Earth-EGM96-0-0	0.001747777921	1.46609689e-006
Earth-EGM96full-0-0	0.001874691883	1.572010942e- 006
Earth-JGM2-0-0	0.00156516582	1.313726266e-006
Earth-JGM2full-0-0	0.00153824279	1.291402628e-006
Earth-JGM3-0-0	0.001286385724	1.080852205 e-006
Earth-JGM3full-0-0	0.001517774713	1.273995917e-006

Draft: Work in Progress 2.4. TEST CASE RESULTS

Table 2.15: WinGMAT/STK SunSync Test Case Comparison

Table 2.10. WillOMITI/BITE Balloytic Test Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	4.699222822e-005	5.325243128e-008
EarthLuna-0-0-0	1.738032476e-005	1.943482273e-008
EarthSunLuna-EGM96-JR-SRP	185.4905295	0.2108184432
EarthSunLuna-EGM96-MSISE90-SRP	45.11411956	0.05130834281
EarthSunLuna-JGM2-JR-SRP	185.4896262	0.2108173466
EarthSunLuna-JGM2-MSISE90-SRP	45.1146799	0.05130896317
EarthSunLuna-JGM3-JR-SRP	185.4905136	0.2108184389
EarthSunLuna-JGM3-MSISE90-SRP	45.11393481	0.0513081406
EarthSun-0-0-0	4.687777606e-006	5.019368405e- 009
Earth-0-0-0	4.483249915 e-005	5.068336761e- 008
Earth-0-0-SRP	0.173198102	0.0001547951558
Earth-0-JR-0	172.0259163	0.1950745493
Earth-0-MSISE90-0	42.66516434	0.04839009285
Earth-EGM96-0-0	7.308356983e-005	8.466320674 e - 008
Earth-EGM96full-0-0	7.478889446e-005	8.088061938e-008
Earth-JGM2-0-0	8.928348594 e-005	9.655246367e-008
Earth-JGM2full-0-0	6.955767447e-005	7.95181581e-008
Earth-JGM3-0-0	6.997911597e-005	7.571096195e-008
Earth-JGM3full-0-0	7.300904469e-005	7.891681204 e-008

CHAPTER 2. PROPAGATION

Table 2.16: WinGMAT/STK Mars1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.1994303898	0.0001681334573
Mars-0-0-0	0.1873874394	0.0001577557948
Mars-0-0-SRP	0.6688079458	0.0005576090938
Mars-MARS50C-0-0	0.4488316637	0.0003800813667
Mars-MARS50C-0-SRP	1.105089608	0.0009291075949

Table 2.17: WinGMAT/STK Mercury1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.1124163711	9.591759819e-005
Mercury-0-0-0	0.02585481636	2.218352736e-005
Mercury-0-0-SRP	0.07778801121	6.658571119e-005

Table 2.18: WinGMAT/STK Moon Test Case Comparison

	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0002227517348	1.414654829e-007
Luna-0-0-0	0.0001960891057	1.399292279e-007
Luna-0-0-SRP	5.486875354e-005	3.881689429 e-008
Luna-LP165P-0-0	0.0002701673647	1.922174669e-007
Luna-LP165P-0-SRP	0.0002393214314	1.693094815 e - 007

Table 2.19: WinGMAT/STK Neptune1 Test Case Comparison

	, -	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.9974264518	0.0005074875215
Neptune-0-0-0	1.171036908	0.0005920828399
Neptune-0-0-SRP	0.9524248353	0.0004889922186

Table 2.20: WinGMAT/STK Pluto1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.8883195792	0.0004683900657
Pluto-0-0-0	0.2632397208	0.0001382385307
Pluto-0-0-SRP	0.7534556636	0.0003932303114

Table 2.21: WinGMAT/STK Saturn1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.1414864331	4.873107384e-005
Saturn-0-0-0	0.4497282767	0.0001561546333
Saturn-0-0-SRP	0.4994435851	0.0001686750308

Table 2.22: WinGMAT/STK Uranus1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.2465709269	7.912323063e-005
Uranus-0-0-0	1.320413817	0.0004243963023
Uranus-0-0-SRP	1.156382201	0.0002904419051

Table 2.23: WinGMAT/STK Venus1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02561929021	2.548815625e-005
Venus-0-0-0	0.01793453836	1.768517227e-005
Venus-0-0-SRP	0.006332820969	6.249825126 e - 006
Venus-MGNP180U-0-0	0.007510965788	7.525754724e-006
Venus-MGNP180U-0-SRP	0.006805940089	6.750530974e-006

Table 2.24: WinGMAT/STK DeepSpace Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02376142886	4.703584393e-009

Table 2.25: WinGMAT/STK EML2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	522765.3537	2.863727241
AllPlanets-0-0-SRP	304992.5809	1.654543949
EarthSunLuna-0-0-0	191050.7911	1.043593334
EarthSunLuna-JGM2-0-0	83171.00019	0.4533443656

Table 2.26: WinGMAT/STK ESL2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	29036.71985	0.01713684894
AllPlanets-0-0-SRP	162456.0169	0.1246828624

2.4. TEST CASE RESULTS

Table 2.27: FF/WinGMAT GEO Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02466296086	2.348952999e-006
EarthLuna-0-0-0	0.02466037174	2.264158243e-006
EarthSun-0-0-0	4.79785384e-005	8.493947765e- 007
Earth-0-0-0	5.214381207e-005	6.89627309e-007
Earth-0-0-SRP	2.899321865	0.0001245219489
Earth-JGM2-0-0	0.02515954067	2.313999898e-006

Table 2.28: FF/WinGMAT GPS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.001885974435	1.052020705e- 006
EarthLuna-0-0-0	0.001874007099	9.43361654 e - 007
EarthSun-0-0-0	3.432176702e- 006	8.317293859e-007
Earth-0-0-0	5.489921041e- 006	7.9829921e-007
Earth-0-0-SRP	0.6535523199	6.830245231e- 005
Earth-JGM2-0-0	0.01104317452	2.140216499e-006

Table 2.29: FF/WinGMAT ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	5.610904349e-006	8.224014796e-007
EarthLuna-0-0-0	1.133489824e-005	8.407000067e-007
EarthSun-0-0-0	9.638402495 e006	8.134703987e-007
Earth-0-0-0	2.358180759e-005	8.186468434e-007
Earth-0-0-SRP	0.03352070462	2.995220929e-005
Earth-JGM2-0-0	0.2076314901	0.0002404721693

Table 2.30: FF/WinGMAT Molniya Test Case Comparison

	,	<u> </u>
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.01444526657	1.203396044e-005
EarthLuna-0-0-0	0.01424235005	1.19546892e-005
EarthSun-0-0-0	0.0003311394147	8.232647373e-007
Earth-0-0-0	5.789754939e-005	8.078947532e-007
Earth-0-0-SRP	2.774957384	0.002291583263
Earth-JGM2-0-0	3.064693947	0.002562937467

Draft: Work in Progress Chapter 2. Propagation

Table 2.31: FF/WinGMAT SunSync Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.624452888e-005	8.363014362e-007
EarthLuna-0-0-0	3.641972152e-005	8.139327674e-007
EarthSun-0-0-0	1.62185169e-005	8.470799538e-007
Earth-0-0-0	8.93851495 e-006	8.215195 e-007
Earth-0-0-SRP	0.03205041923	2.81000432e-005
Earth-JGM2-0-0	0.09458368297	0.0001055216409

Draft: Work in Progress 2.4. TEST CASE RESULTS

Table 2.32: FF/WinGMAT EML2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	732436.6987	4.007738969
AllPlanets-0-0-SRP	512825.9651	2.780610367
EarthSunLuna-0-0-0	400326.9215	2.185454594
EarthSunLuna-JGM2-0-0	292445.684	1.595241714

Table 2.33: FF/WinGMAT ESL2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	5690806.264	3.131093893
AllPlanets-0-0-SRP	6718791.552	5.235648755

Win/Mac GMAT Comparison 2.5

38

Table 2.34: WinGMAT/MacGMAT GEO Test Case Comparison

	D 111 D100 ()	77.1 1. 7.00 (/ /)
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	7.889320184e-006	4.981092583e-010
EarthLuna-0-0-0	3.862310091e-005	2.829034403e-009
EarthSunLuna-EGM96-JR-SRP	0.0001255674449	9.1445459e-009
EarthSunLuna-EGM96-MSISE90-SRP	0.0001255674449	9.144545899e-009
EarthSunLuna-JGM2-JR-SRP	7.353496438e-005	5.462181017e-009
EarthSunLuna-JGM2-MSISE90-SRP	7.353496437e-005	5.462181016e-009
EarthSunLuna-JGM3-JR-SRP	0.0001352482846	9.775905712e-009
EarthSunLuna-JGM3-MSISE90-SRP	0.0001352482846	9.775905715e-009
EarthSun-0-0-0	9.928130768e-005	7.154327853e-009
Earth-0-0-0	4.990522323e-005	3.634067315e-009
Earth-0-0-SRP	4.520549659e-005	3.269987835e-009
Earth-0-JR-0	4.990522323e-005	3.634067315e-009
Earth-0-MSISE90-0	4.990522323e-005	3.634067315e-009
Earth-EGM96-0-0	6.81671185 e-005	4.950072943e-009
Earth-EGM96full-0-0	6.81671185 e-005	4.950072943e-009
Earth-JGM2-0-0	1.538671514e-005	1.112479746e-009
Earth-JGM2full-0-0	1.538671514e-005	1.112479746e-009
Earth-JGM3-0-0	5.489787175e-006	4.047244602e- 010
Earth-JGM3full-0-0	5.489787175e-006	4.047244602e-010

Table 2.35: WinGMAT/MacGMAT GPS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.524285564e-005	2.13023419e-009
EarthLuna-0-0-0	7.689731018e-006	1.062224728e-009
EarthSunLuna-EGM96-JR-SRP	1.627453194e-005	2.270918492e-009
EarthSunLuna-EGM96-MSISE90-SRP	9.265605105 e - 006	1.328441506e-009
EarthSunLuna-JGM2-JR-SRP	2.80275826e-006	3.762387107e-010
EarthSunLuna-JGM2-MSISE90-SRP	7.908282521e-006	1.128542622e- 009
EarthSunLuna-JGM3-JR-SRP	6.035842385 e006	7.962769859e-010
EarthSunLuna-JGM3-MSISE90-SRP	6.490395836e-006	9.21768e-010
EarthSun-0-0-0	3.222076727e-006	4.833482138e-010
Earth-0-0-0	5.234750509e-006	7.706152625e- 010
Earth-0-0-SRP	1.171446476e-006	1.822703558e-010
Earth-0-JR-0	5.234750509e-006	7.706152625e- 010
Earth-0-MSISE90-0	2.782120359e-006	3.443304045e- 010
Earth-EGM96-0-0	1.050744267e-005	1.447584802e-009
Earth-EGM96full-0-0	1.050744267e-005	1.447584802e-009
Earth-JGM2-0-0	2.283784887e-006	3.435638023e- 010
Earth-JGM2full-0-0	2.283784887e-006	3.435638023e- 010
Earth-JGM3-0-0	7.101270799e-006	1.060395602 e-009
Earth-JGM3full-0-0	7.101270799e-006	1.060395602e-009

Table 2.36: WinGMAT/MacGMAT ISS Test Case Comparison

Test Cose	Dogition Difference (m)	Volacity Difference (m. /a)
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.767688707e-005	1.987826967e-008
EarthLuna-0-0-0	4.058801998e-005	4.617387375e- 008
EarthSunLuna-EGM96-JR-SRP	2.350033054e-005	2.662367385 e-008
EarthSunLuna-EGM96-MSISE90-SRP	0.0006669672891	7.368745763e-007
EarthSunLuna-JGM2-JR-SRP	1.840611847e-005	2.086797767e-008
EarthSunLuna-JGM2-MSISE90-SRP	0.0006391410111	7.093227198e-007
EarthSunLuna-JGM3-JR-SRP	4.906955953e-005	5.585723624e- 008
EarthSunLuna-JGM3-MSISE90-SRP	0.0001694547514	1.723059642e- 007
EarthSun-0-0-0	3.963497881e-006	4.502622513e- 009
Earth-0-0-0	3.476512236e-005	3.980331596e-008
Earth-0-0-SRP	1.709387551e-005	1.961412784e-008
Earth-0-JR-0	1.516771704 e - 006	1.633830233e-009
Earth-0-MSISE90-0	0.0006871347746	7.902102731e-007
Earth-EGM96-0-0	1.608009486e-005	1.792593523e- 008
Earth-EGM96full-0-0	1.796350308e-005	2.023666e-008
Earth-JGM2-0-0	8.522888644e-006	9.778070887e-009
Earth-JGM2full-0-0	7.900862621 e-006	8.784310979e-009
Earth-JGM3-0-0	6.904868565e-006	7.605149901e-009
Earth-JGM3full-0-0	8.703769381e-006	9.962336035 e - 009

Table 2.37: WinGMAT/MacGMAT Molniya Test Case Comparison

Table 2.91. Windwitt Walder Will Wolling a Test Case Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0001161355335	9.734627028e-008
EarthLuna-0-0-0	0.0001765185068	1.474675389e-007
EarthSunLuna-EGM96-JR-SRP	9.149240024 e - 005	7.550332195 e - 008
EarthSunLuna-EGM96-MSISE90-SRP	0.000337018456	2.517462331e-007
EarthSunLuna-JGM2-JR-SRP	0.0001687015187	1.180293741e-007
EarthSunLuna-JGM2-MSISE90-SRP	0.0003458685231	2.567145268e-007
EarthSunLuna-JGM3-JR-SRP	2.89102084 e - 005	1.439959413e-008
EarthSunLuna-JGM3-MSISE90-SRP	0.0004306462955	3.433138109e-007
EarthSun-0-0-0	0.0004166915691	3.484312793e- 007
Earth-0-0-0	0.0004592790738	3.839183118e-007
Earth-0-0-SRP	3.343036684 e-005	2.780900576e-008
Earth-0-JR-0	0.0002482930089	2.078309993e-007
Earth-0-MSISE90-0	9.929293779e-005	8.265330135 e-008
Earth-EGM96-0-0	4.303627343e-005	2.617173925e-008
Earth-EGM96full-0-0	0.0001105407449	9.218740603e- 008
Earth-JGM2-0-0	0.0002507869521	1.785682667e-007
Earth-JGM2full-0-0	0.0002346500837	1.623140036e-007
Earth-JGM3-0-0	5.099576082e-005	4.255038887e-008
Earth-JGM3full-0-0	0.0001446553101	8.368203852e-008

Draft: Work in Progress Chapter 2. Propagation

Table 2.38: WinGMAT/MacGMAT SunSync Test Case Comparison

Tuble 2.50. William III / MacCantill Salloyile 1650 Cabe Comparison		
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	6.500418074e-006	6.999302677e-009
EarthLuna-0-0-0	4.322773976e-005	4.846536744e-008
EarthSunLuna-EGM96-JR-SRP	1.07874072e-005	1.222942998e-008
EarthSunLuna-EGM96-MSISE90-SRP	0.0002907736973	3.198710152e-007
EarthSunLuna-JGM2-JR-SRP	5.336201438e-006	5.644390406e-009
EarthSunLuna-JGM2-MSISE90-SRP	8.135754448e-005	8.017598457e-008
EarthSunLuna-JGM3-JR-SRP	4.666661247 e - 005	5.293796337e-008
EarthSunLuna-JGM3-MSISE90-SRP	0.0003578443346	3.980896788e-007
EarthSun-0-0-0	1.500943262e-005	1.689722434e-008
Earth-0-0-0	2.653939383e-005	2.998036763e- 008
Earth-0-0-SRP	3.969621364 e-005	4.465304759 e - 008
Earth-0-JR-0	3.885692582 e-005	4.338304594e-008
Earth-0-MSISE90-0	0.0001846260209	2.024641677e-007
Earth-EGM96-0-0	2.749076581e-006	2.902225971e-009
Earth-EGM96full-0-0	3.242311524e-006	3.49137102e-009
Earth-JGM2-0-0	1.047153324e-005	1.171331382e-008
Earth-JGM2full-0-0	1.439187158e-005	1.599554939e-008
Earth-JGM3-0-0	1.416756213e-005	1.591877652e-008
Earth-JGM3full-0-0	1.85849559e-005	2.086516383e-008

Table 2.39: WinGMAT/MacGMAT Mars1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.03972223921	3.343331462e-005
Mars-0-0-0	0.005311861757	4.268418571e- 006
Mars-0-0-SRP	0.05222305978	4.393980991e- 005
Mars-MARS50C-0-0	0.01297658486	1.093110803e-005
Mars-MARS50C-0-SRP	0.1117967472	9.414441698e-005

Table 2.40: WinGMAT/MacGMAT Mercury1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.004516330784	3.600005592e- 006
Mercury-0-0-0	0.03778257814	3.190578299e-005
Mercury-0-0-SRP	0.02607980485	2.236210801e- 005

Table 2.41: WinGMAT/MacGMAT Moon Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.0003918908681	2.810115186e-007
Luna-0-0-0	8.768096011e- 005	6.221838761e- 008
Luna-0-0-SRP	0.000593804859	4.250992344e-007
Luna-LP165P-0-0	0.0004664933125	3.338481962e-007
Luna-LP165P-0-SRP	0.0001597775244	1.143221729e-007

Table 2.42: WinGMAT/MacGMAT Neptune1 Test Case Comparison

	,	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.455191523e-008	6.20685014 e-010
Neptune-0-0-0	1.543463691e-008	1.126411949e-010
Neptune-0-0-SRP	1.458030924 e-008	1.741877302e-010

Table 2.43: WinGMAT/MacGMAT Pluto1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.286219742e-009	3.384705673e-011
Pluto-0-0-0	1.286219742e-009	9.024959195e- 012
Pluto-0-0-SRP	1.023181539e-009	1.649647961e- 010

Table 2.44: WinGMAT/MacGMAT Saturn1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.626953583e-008	1.628929876e-010
Saturn-0-0-0	2.057951587e-008	1.669113889e-010
Saturn-0-0-SRP	2.057951587e-008	1.124589615e-010

Table 2.45: WinGMAT/MacGMAT Uranus1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.458030924 e - 008	2.642610672e- 011
Uranus-0-0-0	1.455191523e-008	8.413351831e-011
Uranus-0-0-SRP	2.057951587e-008	6.76066571e- 011

Table 2.46: WinGMAT/MacGMAT Venus1 Test Case Comparison

	/	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.001945532067	1.947340584e-006
Venus-0-0-0	0.01882594263	1.859722326e-005
Venus-0-0-SRP	0.02322953755	2.299817313e-005
Venus-MGNP180U-0-0	0.03289233273	3.254048475e- 005
Venus-MGNP180U-0-SRP	0.03086632412	3.063642165 e005

Table 2.47: WinGMAT/MacGMAT DeepSpace Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.004474133849	9.33402511e-010

Table 2.48: WinGMAT/MacGMAT EML2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	55804.23343	0.3054834604
AllPlanets-0-0-SRP	124016.2439	0.6662855702
EarthSunLuna-0-0-0	33336.13696	0.1885640618
EarthSunLuna-JGM2-0-0	214046.0535	1.167672328

Table 2.49: WinGMAT/MacGMAT ESL2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	380849.9527	0.2067925122
AllPlanets-0-0-SRP	234119.7653	0.1824594525

Draft: Work in Progress Chapter 2. Propagation

Win/Linux GMAT Comparison 2.6

Table 2.50: WinGMAT/LinuxGMAT GEO Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.818989404e-008	1.256073967e-012
EarthLuna-0-0-0	1.818989404e-008	1.256073967e-012
EarthSunLuna-EGM96-JR-SRP	1.818989404 e - 008	1.256073967e-012
EarthSunLuna-EGM96-MSISE90-SRP	1.818989404e-008	1.256073967e-012
EarthSunLuna-JGM2-JR-SRP	1.818989404e-008	1.256073967e-012
EarthSunLuna-JGM2-MSISE90-SRP	1.818989404 e - 008	1.256073967e-012
EarthSunLuna-JGM3-JR-SRP	1.818989404 e - 008	1.256073967e-012
EarthSunLuna-JGM3-MSISE90-SRP	1.818989404 e - 008	1.256073967e-012
EarthSun-0-0-0	1.818989404 e - 008	1.256073967e-012
Earth-0-0-0	1.818989404 e - 008	1.256073967e-012
Earth-0-0-SRP	1.626953583e-008	1.256073967e-012
Earth-0-JR-0	1.818989404 e - 008	1.256073967e-012
Earth-0-MSISE90-0	1.818989404e-008	1.256073967e-012
Earth-EGM96-0-0	1.818989404e-008	1.256073967e-012
Earth-EGM96full-0-0	1.818989404e-008	1.256073967e-012
Earth-JGM2-0-0	1.818989404e-008	8.950904183e- 013
Earth-JGM2full-0-0	1.818989404e-008	8.950904183e-013
Earth-JGM3-0-0	1.466516141e-008	1.256073967e-012
Earth-JGM3full-0-0	1.466516141e-008	1.256073967e-012

Table 2.51: WinGMAT/LinuxGMAT GPS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.543463691e-008	1.256073967e-012
EarthLuna-0-0-0	1.164721514e-008	1.256073967e-012
EarthSunLuna-EGM96-JR-SRP	1.543463691e- 008	1.256073967e-012
EarthSunLuna-EGM96-MSISE90-SRP	1.286219742e-008	1.25611709 e-012
EarthSunLuna-JGM2-JR-SRP	1.311691913e-008	1.256073967e-012
EarthSunLuna-JGM2-MSISE90-SRP	1.311691913e-008	1.256073967e-012
EarthSunLuna-JGM3-JR-SRP	1.314841238e-008	1.538370149e-012
EarthSunLuna-JGM3-MSISE90-SRP	1.311691913e-008	1.256073967e-012
EarthSun-0-0-0	1.42067614 e - 008	1.256073967e-012
Earth-0-0-0	1.311691913e-008	1.256073967e-012
Earth-0-0-SRP	1.311691913e-008	1.256073967e-012
Earth-0-JR-0	1.311691913e-008	1.256073967e-012
Earth-0-MSISE90-0	1.42067614 e - 008	1.256073967e-012
Earth-EGM96-0-0	1.311691913e-008	1.256073967e-012
Earth-EGM96full-0-0	1.311691913e-008	1.256073967e-012
Earth-JGM2-0-0	1.311691913e-008	1.256073967e-012
Earth-JGM2full-0-0	1.311691913e-008	1.256073967e-012
Earth-JGM3-0-0	1.311691913e-008	1.256073967e-012
Earth-JGM3full-0-0	1.311691913e-008	1.256073967e-012

Table 2.52: WinGMAT/LinuxGMAT ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	2.087012916e-009	2.512147934e-012
EarthLuna-0-0-0	2.033691978e-009	2.512147934e-012
EarthSunLuna-EGM96-JR-SRP	2.033691978e-009	2.512147934e-012
EarthSunLuna-EGM96-MSISE90-SRP	0.0008470424638	9.587548246 e - 007
EarthSunLuna-JGM2-JR-SRP	2.572439484e-009	2.512147934e-012
EarthSunLuna-JGM2-MSISE90-SRP	0.0007669211768	8.667589808e-007
EarthSunLuna-JGM3-JR-SRP	2.572439484e-009	1.986027323e-012
EarthSunLuna-JGM3-MSISE90-SRP	0.0008251276656	9.357517454e-007
EarthSun-0-0-0	2.572439484e-009	2.512147934e-012
Earth-0-0-0	2.572439484e-009	1.986027323e-012
Earth-0-0-SRP	2.033691978e-009	2.512147934e-012
Earth-0-JR-0	2.033691978e-009	2.512147934e-012
Earth-0-MSISE90-0	0.0005086050402	5.7095113e-007
Earth-EGM96-0-0	2.033691978e-009	2.512147934e-012
Earth-EGM96full-0-0	2.033691978e-009	2.664535259 e - 012
Earth-JGM2-0-0	2.572439484e-009	2.512147934e-012
Earth-JGM2full-0-0	2.572439484e-009	2.512147934e-012
Earth-JGM3-0-0	2.033691978e-009	1.986027323e-012
Earth-JGM3full-0-0	2.033691978e-009	2.512147934e-012

Table 2.53: WinGMAT/LinuxGMAT Molniya Test Case Comparison

Table 2.55: WindWilli / Elife	ixdivitti momiya test et	1
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.543463691e-008	1.776356839e-012
EarthLuna-0-0-0	1.818989404e-008	1.776356839e-012
EarthSunLuna-EGM96-JR-SRP	1.818989404e-008	1.986027323e-012
EarthSunLuna-EGM96-MSISE90-SRP	0.0002835450278	1.639475709e-007
EarthSunLuna-JGM2-JR-SRP	1.818989404 e - 008	1.776356839e-012
EarthSunLuna-JGM2-MSISE90-SRP	0.0003637177938	2.536251812e-007
EarthSunLuna-JGM3-JR-SRP	1.818989404e-008	1.986027323e-012
EarthSunLuna-JGM3-MSISE90-SRP	0.0001377244321	6.842684735 e-008
EarthSun-0-0-0	1.455191523e-008	2.512147934e-012
Earth-0-0-0	1.818989404e-008	1.986027323e- 012
Earth-0-0-SRP	1.455191523e-008	1.776356839e-012
Earth-0-JR-0	1.818989404e-008	2.512147934e-012
Earth-0-MSISE90-0	0.0005204508808	4.351107742e-007
Earth-EGM96-0-0	1.543463691e-008	1.986027323e- 012
Earth-EGM96full-0-0	1.818989404e-008	2.512147934e-012
Earth-JGM2-0-0	1.626953583e-008	1.779822905 e-012
Earth-JGM2full-0-0	1.818989404e-008	1.776356839e-012
Earth-JGM3-0-0	1.626953583e-008	2.512147934e-012
Earth-JGM3full-0-0	1.626953583e-008	1.986027323e-012

Draft: Work in Progress Chapter 2. Propagation

Table 2.54: WinGMAT/LinuxGMAT SunSync Test Case Comparison

Table 2:91: Willelvilli Ellie		T
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	2.033691978e-009	1.986027323e-012
EarthLuna-0-0-0	2.033691978e-009	2.512147934e-012
EarthSunLuna-EGM96-JR-SRP	2.033691978e-009	2.664535259 e - 012
EarthSunLuna-EGM96-MSISE90-SRP	0.0004937360699	5.662979365e- 007
EarthSunLuna-JGM2-JR-SRP	2.033691978e-009	2.512147934e-012
EarthSunLuna-JGM2-MSISE90-SRP	0.0006551562744	7.5461681e-007
EarthSunLuna-JGM3-JR-SRP	2.033691978e-009	1.986027323e-012
EarthSunLuna-JGM3-MSISE90-SRP	0.0005964945835	6.857578925e- 007
EarthSun-0-0-0	2.033691978e-009	1.986027323e- 012
Earth-0-0-0	2.572439484e-009	1.986027323e- 012
Earth-0-0-SRP	2.572439484e-009	2.512147934e-012
Earth-0-JR-0	2.033691978e-009	1.986027323e- 012
Earth-0-MSISE90-0	0.0006288991645	7.221314608e-007
Earth-EGM96-0-0	2.033691978e-009	1.986027323e- 012
Earth-EGM96full-0-0	2.036867143e-009	2.512147934e-012
Earth-JGM2-0-0	2.033691978e-009	1.986027323e- 012
Earth-JGM2full-0-0	2.572439484e-009	1.986027323e- 012
Earth-JGM3-0-0	2.033691978e-009	2.512147934e-012
Earth-JGM3full-0-0	2.572439484e-009	$2.512147934 \mathrm{e}\text{-}012$

Table 2.55: WinGMAT/LinuxGMAT Mars1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	2.033691978e-009	1.256073967e-012
Mars-0-0-0	1.818989404e-009	1.256073967e-012
Mars-0-0-SRP	1.818989404e-009	1.256073967e-012
Mars-MARS50C-0-0	1.818989404e-009	1.256073967e-012
Mars-MARS50C-0-SRP	1.822538655e- 009	1.256073967e-012

Table 2.56: WinGMAT/LinuxGMAT Mercury1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.818989404e-009	1.256073967e-012
Mercury-0-0-0	1.286219742e-009	1.256073967e-012
Mercury-0-0-SRP	1.822538655e- 009	1.26097096e-012

Table 2.57: WinGMAT/LinuxGMAT Moon Test Case Comparison

	/	<u> </u>
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.286219742e-009	8.950904183e-013
Luna-0-0-0	1.575291033e-009	8.950904183e- 013
Luna-0-0-SRP	1.286219742e-009	8.881784197e-013
Luna-LP165P-0-0	0.0001310647334	9.401096987e-008
Luna-LP165P-0-SRP	0.0001872108595	1.337602461e-007

Table 2.58: WinGMAT/LinuxGMAT Neptune1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.455191523e-008	1.50728876e-011
Neptune-0-0-0	1.543463691e- 008	1.080515682e- 011
Neptune-0-0-SRP	$1.458030924 \mathrm{e}\text{-}008$	1.080515682e-011

Table 2.59: WinGMAT/LinuxGMAT Pluto1 Test Case Comparison

	'	
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.286219742e-009	1.570092459e-013
Pluto-0-0-0	1.286219742e-009	1.570092459e-013
Pluto-0-0-SRP	1.023181539e-009	1.570092459e-013

 ${\bf Table~2.60:~WinGMAT/LinuxGMAT~Saturn1~Test~Case~Comparison}$

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.626953583e-008	1.50728876e-011
Saturn-0-0-0	2.057951587e-008	1.280949134e-011
Saturn-0-0-SRP	2.057951587e-008	1.280949134e-011

Table 2.61: WinGMAT/LinuxGMAT Uranus1 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.458030924 e - 008	1.065814104e-011
Uranus-0-0-0	1.455191523e-008	1.065814104e-011
Uranus-0-0-SRP	$2.057951587\mathrm{e}\text{-}008$	1.065814104e-011

Table 2.62: WinGMAT/LinuxGMAT Venus1 Test Case Comparison

	1	I
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	2.572439484e-009	1.986027323e-012
Venus-0-0-0	2.572439484e-009	1.986027323e- 012
Venus-0-0-SRP	2.033691978e-009	2.514600007e-012
Venus-MGNP180U-0-0	2.572439484e-009	2.512147934e-012
Venus-MGNP180U-0-SRP	2.572439484e-009	2.512147934e-012

Table 2.63: WinGMAT/LinuxGMAT DeepSpace Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.009386010342	1.886732646e-009

Table 2.64: WinGMAT/LinuxGMAT EML2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	135364.0795	0.7390519353
AllPlanets-0-0-SRP	269258.1081	1.459047458
EarthSunLuna-0-0-0	13791.8204	0.07140281919
EarthSunLuna-JGM2-0-0	104302.9029	0.5713126463

Table 2.65: WinGMAT/LinuxGMAT ESL2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	161033.6102	0.0878775284
AllPlanets-0-0-SRP	70022.39058	0.05565825527

FF/STK Comparison 2.7

Table 2.66: FF/STK GEO Test Case Comparison

	T	-
Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.02441863704	2.331183059e-006
EarthLuna-0-0-0	0.02435631273	2.242953735e- 006
EarthSunLuna-JGM2-HP-SRP	2.852626845	0.0001210061727
EarthSun-0-0-0	4.231055926e- 005	8.493736892 e-007
Earth-0-0-0	6.836800608 e005	6.889863428e-007
Earth-0-0-SRP	2.899330477	0.0001245233005
Earth-0-HP-0	6.836800608 e005	6.889863428e-007
Earth-JGM2-0-0	0.02513336324	2.312005083e-006

Table 2.67: FF/STK GPS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.001903432726	1.053971199e-006
EarthLuna-0-0-0	0.001896072444	9.455916149 e - 007
EarthSunLuna-JGM2-HP-SRP	0.6785588953	6.968633698e-005
EarthSun-0-0-0	3.872950958e-006	8.316397374e-007
Earth-0-0-0	8.164858288e-006	7.983006024 e - 007
Earth-0-0-SRP	0.6692784196	6.82998214 e-005
Earth-0-HP-0	8.164858288e-006	7.983006024 e - 007
Earth-JGM2-0-0	0.01104063243	2.139211093e-006

Table 2.68: FF/STK ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	1.17832665e-005	8.274218823e- 007
EarthLuna-0-0-0	2.023778135e-005	8.422726373e-007
EarthSunLuna-JGM2-HP-SRP	3.468138188	0.003970584682
EarthSun-0-0-0	2.067991746e-005	8.1799381e-007
Earth-0-0-0	4.404163183e-005	8.186528591e-007
Earth-0-0-SRP	0.1637932094	0.0001561216566
Earth-0-HP-0	3.213782043	0.003648358681
Earth-JGM2-0-0	0.2076446785	0.0002404801574

Table 2.69: FF/STK Molniya Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	0.01457313187	1.215436806e-005
EarthLuna-0-0-0	0.01409431455	1.184376446e-005
EarthSunLuna-JGM2-HP-SRP	7.784661066	0.004770671087
EarthSun-0-0-0	0.0006798546862	1.003660696e-006
Earth-0-0-0	0.0003365057467	8.083469211e- 007
Earth-0-0-SRP	2.16384821	0.001779529358
Earth-0-HP-0	15.27354394	0.01277094127
Earth-JGM2-0-0	3.063128789	0.002561623783

Table 2.70: FF/STK SunSync Test Case Comparison

Table 2.70. FF/STR Sunsync Test Case Comparison				
Test Case	Position Difference(m)	Velocity Difference(m/s)		
AllPlanets-0-0-0	3.408772257e-005	8.692082437e-007		
EarthLuna-0-0-0	1.971678896e-005	8.200621923e- 007		
EarthSunLuna-JGM2-HP-SRP	0.7800584002	0.0008377097699		
EarthSun-0-0-0	1.533280696e-005	8.472050762e- 007		
Earth-0-0-0	3.656123033e- 005	8.215198955e- 007		
Earth-0-0-SRP	0.2052485046	0.0001828464597		
Earth-0-HP-0	0.6524853805	0.0007361489035		
Earth-JGM2-0-0	0.09463135069	0.0001055896904		

Draft: Work in Progress Chapter 2. Propagation

Table 2.71: FF/STK EML2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	209675.0986	1.14402647
AllPlanets-0-0-SRP	207842.3945	1.126072479
EarthSunLuna-0-0-0	209277.3047	1.141861418
EarthSunLuna-JGM2-0-0	209283.0825	1.141942183

Table 2.72: FF/STK ESL2 Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
AllPlanets-0-0-0	5661795.485	3.114044517
AllPlanets-0-0-SRP	6881239.331	5.360316234

Draft: Work in Progress

Chapter 3

Calculation Parameters

GMAT's Central Body (Cb) and Coordinate System (CS) dependent parameters were tested to verify that the internal calculations were correct. In order to minimize the effects of other forces/elements, the two-body cases from the Propagators section were used, with some modification, to test both the central body and coordinate system parameters. The only changes to the two body cases were in the report output intervals and report output parameters. Data was outputted in ten minute intervals. The ISS two-body case was used for the Earth case and each planets respective two-body case was used for the non-Earth cases.

3.1 Initial Orbit State Conditions

The ISS, GEO, Mars1, Mercury1, Moon, Neptune1, Pluto1, Saturn1, Uranus1 and Venus1 two-body case's initial orbit parameters were used from the Propagation section (Chapter 2) for the test cases in this section.

Refer to Appendix B.1 Tables B.1-B.13 for a listing of all Propagator initial orbit states used for the Calculation Parameter test cases.

3.2 Central Body Dependent Parameters

3.2.1 Naming Convention

This section describes the naming convention for central body dependent parameter scripts and output reports. The naming convention consists of a case sensitive ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name:

- 1. tool The tool used to generate the test case.
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step.

CbParams precedes the *tool* field and 2Body follows the *traj* field. The central body used can be determined based on the *traj* field. The final Cb file format is as followed: CbParams_*tool_traj_*2Body.report

CHAPTER 3. CALCULATION PARAMETERS

The *tool* field should always be the first option field. Each field has a finite list of options, as follows (future options should be added to this list):

1. tool

STK - Satellite Toolkit HPOP or Astrogator

FF - FreeFlyer

GMAT - General Mission Analysis Tool

2. traj

ISS - leo orbit

Mars1 - eccentric low orbit
Mercury1 - eccentric low orbit
Moon - eccentric low orbit
Pluto1 - eccentric low orbit
Venus1 - eccentric low orbit

NOTE: Some test cases contain *traj* variations. In this case *traj* precedes the modification. For example, if an ISS trajectory is needed with a different Cd, *traj* could be ISSdiffCd1.

3.2.2 Comparison Script Information

Comparison_Tool1_Tool2_Cb.m is the script used to perform the coordinate system comparisons needed for the Acceptance Test Plan. Many elements of this script were extracted from the Comparison_Tool1_Tool2_CS.m script.

Comparison_Tool1_Tool2_Cb.m was designed to allow the user to select two programs to compare to one another. The comparison involves taking the difference of the variables listed in the Acceptance Test Plan Overview Chapter->Testing Methodology->Calculation Parameters section.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

3.2.3 Test Case Results

The following results are for the Central Body-Calculation Parameter section. The current GMAT Build is compared to STK and FreeFlyer for this section.

FF-STK comparison results presented in Tables 3.11- 3.15 are used as a way to determine if the GMAT comparison values are acceptable. If GMAT comparison data is within the same order of magnitude as the FF-STK comparison data, that is acceptable. A more detailed acceptance metric/matrix will be developed at a later date.

54

Table 3.1: WinGMAT/STK Central Body Dependent Parameter Differences (1)

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	1.89175e-006	1.71688e-014	1.90373e-005	3.0114e-015	3.55067e-009
Hyperbolic-2Body	0.00422986	1.98064 e-013	351.401	0.000223215	N/A
ISS-2Body	0.00543367	5.95719e-014	5.82162 e-010	4.99015e-015	2.5193e-010
Mars1-2Body	0.0144309	9.74698e-011	7.84791e-007	1.62511e-013	2.29212e-006
Mercury1-2Body	0.00224375	2.36836e-011	1.7241e-007	5.54375e-014	7.66082e-007
Moon-2Body	2.60019e-005	1.24706e-013	2.88698e-009	3.85868e-016	7.42875e-009
Neptune1-2Body	0.129938	1.31684e-010	6.04911e-007	1.00481e-013	4.02816e-006
Pluto1-2Body	0.19231	1.83823e-009	2.95607e-005	3.82792 e-012	0.000141823
Saturn1-2Body	0.752271	1.05362e-011	6.3449 e-008	1.11997e-014	1.04643e-006
Uranus1-2Body	0.216614	5.31596e-011	6.35362 e-007	8.48005 e-014	8.31598e-006
Venus1-2Body	0.000632367	1.26323e-011	2.13253e-008	1.53591e-014	1.51652e-007

Table 3.2: WinGMAT/STK Central Body Dependent Parameter Differences (2)

		TD 4 1 /1 \	O 11 . D . ()
	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	1.16415e-006	1.90373e-005	7.42148e-007
Hyperbolic-2Body	1.648e-006	7.53175e-012	1.32495 e - 005
ISS-2Body	2.06455 e-007	5.78609 e-010	1.71894e-007
Mars1-2Body	0.000741843	1.15747e-006	0.000794765
Mercury1-2Body	0.000199977	2.61636e-007	0.000175894
Moon-2Body	1.10276e-006	4.32073e-009	1.07548e-006
Neptune1-2Body	0.00597339	9.2047e-007	0.00497125
Pluto1-2Body	0.0111278	4.499e-005	0.0106515
Saturn1-2Body	0.00241793	9.55595 e - 008	0.00235179
Uranus1-2Body	0.0100126	9.19017e-007	0.00930848
Venus1-2Body	0.000101745	3.07957e-008	0.00013864

Table 3.3: WinGMAT/STK Central Body Dependent Parameter Differences (3)

		v 1		
Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	1.23691e-006	1.28057e-006	8.21565e-011	1.03029e-010
Hyperbolic-2Body	N/A	4.5402 e-006	N/A	1.87583e-009
ISS-2Body	5.26597e-007	3.39242e-007	4.40536e-010	3.47278e-010
Mars1-2Body	0.000683647	0.000800039	2.75849e-007	4.86309 e - 007
Mercury1-2Body	0.000280259	0.000125894	7.84977e-008	7.33316e-008
Moon-2Body	1.18234e-006	1.12323e-006	2.56017e-010	5.06262e-010
Neptune1-2Body	0.0107941	0.00538058	2.2861e-006	2.18703e-006
Pluto1-2Body	0.0145814	0.00998796	2.30184e-006	3.55073e-006
Saturn1-2Body	0.002828	0.00203526	2.94648e-007	5.08262e-007
Uranus1-2Body	0.0133233	0.00759641	1.41239e-006	1.43534e-006
Venus1-2Body	0.000149412	0.000183741	6.66214 e-008	1.50022 e-007

Table 3.4: WinGMAT/STK Central Body Dependent Parameter Differences (4)

		v 1		\ /	
Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	2.6823e-007	3.24498e-008	3.14812e-007	0.00196854	0.00196864
Hyperbolic-2Body	1.64846e-006	5.65537e-008	1.35016e-007	0.00196849	0.00196858
ISS-2Body	1.74794e-006	1.07149e-007	1.3276e-007	0.00196849	0.0019686
Mars1-2Body	0.00149955	5.58338e-007	9.73051e-007	N/A	N/A
Mercury1-2Body	0.000332532	1.88133e-007	2.69651e-007	N/A	N/A
Moon-2Body	8.62199 e - 007	3.26031e-009	1.41482e-007	N/A	N/A
Neptune1-2Body	0.0333365	7.39515e-007	1.15656e-006	N/A	N/A
Pluto1-2Body	0.00339014	3.20069 e005	7.44124e-005	N/A	N/A
Saturn1-2Body	0.014334	1.24281e-006	5.18835e-007	N/A	N/A
Uranus1-2Body	0.028651	9.64237e-007	2.34538e-006	N/A	N/A
Venus1-2Body	0.000500677	2.22686e-008	3.82501 e-008	N/A	N/A

Table 3.5: WinGMAT/STK Central Body Dependent Parameter Differences (5)

Test Case	Beta Angle (deg)	(RxV) -Mag (m^2/sec)	R-Mag (m)
GEO-2Body	45.7421	0.00180444	1.88447e-006
Hyperbolic-2Body	130.969	0.025655	1.35624e-005
ISS-2Body	98.3615	0.000749424	4.62933e-007
Mars1-2Body	70.1724	1.23719	0.0126011
Mercury1-2Body	173.794	0.220796	0.00224375
Moon-2Body	34.7765	0.00081809	2.6002e-005
Neptune1-2Body	122.85	35.4559	0.0763421
Pluto1-2Body	56.4158	4.01956	0.19231
Saturn1-2Body	99.1135	26.1241	0.0181717
Uranus1-2Body	150.273	53.902	0.101524
Venus1-2Body	31.881	0.447268	0.000632365

Table 3.6: FF/WinGMAT Central Body Dependent Parameter Differences (1)

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	8.20728e-006	1.93962e-010	6.42153 e-006	5.69653e-016	7.75617e-009
ISS-2Body	0.433346	6.39335 e-012	1.714e-009	4.2466e-015	7.69433e-010

Table 3.7: FF/WinGMAT Central Body Dependent Parameter Differences (2)

Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	2.23372e-006	6.4215 e-006	2.4811e-006
ISS-2Body	4.09273e-007	1.86708e-009	1.7917e-007

Table 3.8: FF/WinGMAT Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	2.72848e-006	3.00497e-006	2.39764e-008	2.39013e-008
ISS-2Body	3.98359e-007	6.89397e-007	2.91838e-008	2.88605 e008

Table 3.9: FF/WinGMAT Central Body Dependent Parameter Differences (4)

Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	0.00014728	5.40781e-008	0	0.00300898	0.00300919
ISS-2Body	0.000444231	6.02545 e-006	5.81869 e007	0.00300898	0.00300919

Table 3.10: FF/WinGMAT Central Body Dependent Parameter Differences (5)

Test Case	Beta Angle (deg)	(RxV)-Mag (m^2/sec)	R-Mag (m)
GEO-2Body	45.7413	0.00429281	3.27418e-006
ISS-2Body	98.3649	0.00164437	1.18325e-006

Draft: Work in Progress CHAPTER 3. CALCULATION PARAMETERS

Table 3.11:	FF/STK	Central	Body	Dependent	Parameter	Differences ((1))

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	8.04721e-006	1.9396e-010	1.76421e-005	2.44679e-015	6.4756e-009
ISS-2Body	0.427915	6.34e-012	1.73014e-009	9.18666e-015	8.14907e-010

Table 3.12: FF/STK Central Body Dependent Parameter Differences (2)

Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	2.08092e-006	1.76414 e - 005	1.92085 e-006
ISS-2Body	4.47471e-007	1.67717e-009	1.56433e-007

Table 3.13: FF/STK Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	2.72848e-006	2.03727e-006	2.38942e-008	2.38796e-008
ISS-2Body	5.23869e-007	6.23913e-007	2.87432e-008	2.88605 e-008

Table 3.14: FF/STK Central Body Dependent Parameter Differences (4)

Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	0.000147141	3.06691e-008	0	0.00497708	0.00497715
ISS-2Body	0.000442895	5.92635 e-006	6.1431e-007	0.00497708	0.00497716

Table 3.15: FF/STK Central Body Dependent Parameter Differences (5)

	,		· /
Test Case	Beta Angle (deg)	(RxV)-Mag (m^2/sec)	R-Mag (m)
GEO-2Body	0.000773444	0.00355067	4.05998e-006
ISS-2Body	0.00344889	0.00178261	1.01772e-006

3.2.4 Win/Mac GMAT Comparison

Table 3.16: WinGMAT/MacGMAT Central Body Dependent Parameter Differences (1)

Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	2.452e-006	1.74542e-014	8.52452e-006	6.93889e-018	8.22183e-009
Hyperbolic-2Body	5.23869 e007	9.99201 e-015	0	1.0842e-018	N/A
ISS-2Body	4.58385e-007	3.9682e-014	1.38419e-009	8.39172 e-017	4.02906e-010
Mars1-2Body	0.00342313	1.47847e-010	2.00985e-007	1.34903 e - 013	1.93017e-006
Mercury1-2Body	0.00505079	4.83717e-011	3.89952e-007	1.08871e-013	1.49741e-006
Moon-2Body	2.24818e-005	1.43691e-013	2.53274e-009	4.53522 e-016	9.08949e-009
Neptune1-2Body	2.00089e-008	4.93383e-013	4.70095e-011	2.99186e-016	1.17889e-008
Pluto1-2Body	0.0110934	9.63307e-010	1.50655e-006	1.2462 e-012	4.61344e-005
Saturn1-2Body	5.09317e-008	5.10703e- 015	1.19371e-012	2.81893e-018	2.40107e-010
Uranus1-2Body	3.09228e-008	1.8624 e-014	7.95808e-012	1.24141e-017	1.22236e-009
Venus1-2Body	0.00131446	1.40132e-011	4.55151e-008	2.2602 e-014	2.34479e-007

Table 3.17: WinGMAT/MacGMAT Central Body Dependent Parameter Differences (2)

Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)
GEO-2Body	2.67755e-006	8.52451e-006	2.67755e-006
Hyperbolic-2Body	6.91216 e-008	5.11591e-013	3.27418e-007
ISS-2Body	3.29237e-007	1.38273e-009	3.28328e-007
Mars1-2Body	0.000624696	3.06826 e - 007	0.000545762
Mercury1-2Body	0.000390883	5.87062e-007	0.000336432
Moon-2Body	1.35014 e-006	3.8051e-009	1.19917e-006
Neptune1-2Body	1.74914e-005	3.54987e-011	2.07729e-005
Pluto1-2Body	0.00361984	2.21937e-006	0.00371269
Saturn1-2Body	5.38421e-007	1.3074e-012	4.80213 e-007
Uranus1-2Body	1.46974 e-006	7.53175e-012	1.36788e-006
Venus1-2Body	0.000157314	6.88501 e-008	0.000105473

Table 3.18: WinGMAT/MacGMAT Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	2.78669e-006	2.91766e-006	1.22125e-010	1.15019e-010
Hyperbolic-2Body	N/A	1.89175 e-007	N/A	7.81597e-011
ISS-2Body	3.21052e-007	5.7571e-007	2.98428e-010	4.69846e-010
Mars1-2Body	0.00139151	0.000626785	5.33045 e-007	5.19715e-007
Mercury1-2Body	0.000578938	0.00021615	1.72014e-007	1.50894 e - 007
Moon-2Body	1.92404 e - 006	8.39918e-007	4.62075 e-010	3.57048e-010
Neptune1-2Body	3.5041e-005	2.87691e-005	7.62945e-009	1.22924 e-008
Pluto1-2Body	0.00374967	0.00349214	4.00636e-007	1.2944e-006
Saturn1-2Body	1.06229e-006	7.05768e-007	1.59872e-010	2.02505e-010
Uranus1-2Body	2.55386e-006	1.56433e-006	3.23297e-010	3.8014e-010
Venus1-2Body	0.000302634	6.57656e-005	1.25344e-007	5.78817e-008

Table 3.19: WinGMAT/MacGMAT Central Body Dependent Parameter Differences (4)

Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	6.00409e-007	5.68504e-014	3.10763e-010	1.16529e-010	3.10706e-010
Hyperbolic-2Body	7.10543e-008	6.03961e-014	2.24389 e- 010	1.16529 e-010	2.24304 e-010
ISS-2Body	2.8848e-006	5.10916e-011	2.10321e-010	1.16529 e-010	2.10321e-010
Mars1-2Body	0.00126275	1.58843e-007	3.08052 e-007	N/A	N/A
Mercury1-2Body	0.00064998	4.31925e-007	6.27266 e007	N/A	N/A
Moon-2Body	1.05893e-006	2.93206e-009	4.7355e-009	N/A	N/A
Neptune1-2Body	9.75149 e - 005	6.39488e-014	2.08502 e-010	N/A	N/A
Pluto1-2Body	0.0011028	1.59299e-006	3.42747e-006	N/A	N/A
Saturn1-2Body	3.18323e-006	6.39488e-014	4.16918e-010	N/A	N/A
Uranus1-2Body	4.20641e-006	6.03961e-014	2.08502 e-010	N/A	N/A
Venus1-2Body	0.000774136	5.2415 e-008	8.42126e-008	N/A	N/A

Table 3.20: WinGMAT/MacGMAT Central Body Dependent Parameter Differences (5)

Test Case	Beta Angle (deg)	(RxV)-Mag (m^2/sec)	R-Mag (m)
GEO-2Body	1.42109e-014	0.00410364	2.43745e-006
Hyperbolic-2Body	7.10543e-014	0.000640284	4.07454e-007
ISS-2Body	5.96856e-013	0.00125874	4.65661 e007
Mars1-2Body	2.6164e-009	0.849539	0.0034188
Mercury1-2Body	1.88567e-009	0.422386	0.00505079
Moon-2Body	6.94911e-012	0.000856744	2.24832e-005
Neptune1-2Body	1.7053e-013	0.14808	1.45519e-008
Pluto1-2Body	2.51034e-008	1.40107	0.0110934
Saturn1-2Body	4.26326e-014	0.0060536	1.45519e-008
Uranus1-2Body	1.84741e-013	0.00791624	1.45519e-008
Venus1-2Body	1.98796e-010	0.34034	0.00131445

3.2.5 Win/Linux GMAT Comparison

Table 3.21: WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (1)

T+ C	A 14:41 - ()	D	М А (M M-+: (1/)	D:-1 ()
Test Case	Altitude (m)	Eccentricity	M. Anomaly (deg)	M. Motion (rad/sec)	Period (sec)
GEO-2Body	1.45519e-008	1.05879e-022	1.02318e-012	0	0
Hyperbolic-2Body	1.16415e-007	8.88178e-016	0	1.0842e-019	N/A
ISS-2Body	1.13687e-010	1.0842e-018	1.13687e-013	1.0842e-018	1.81899e-012
Mars1-2Body	9.09495 e-010	1.11022e-016	1.50635 e-012	1.0842e-019	0
Mercury1-2Body	9.09495 e-010	1.11022e-016	1.13687e-013	1.0842e-019	0
Moon-2Body	1.13687e-009	1.11022e-016	4.83169e-013	1.0842e-019	1.09139e-011
Neptune1-2Body	1.09139e-008	1.11022e-016	3.41061e-013	1.0842e-019	1.09139e-011
Pluto1-2Body	1.13687e-010	1.11022e- 016	1.3074e-012	1.0842e-019	1.09139e-011
Saturn1-2Body	1.45519e-008	1.11022e-016	1.98952e-013	1.0842e-019	1.09139e-011
Uranus1-2Body	1.09139e-008	1.11022e-016	1.10845 e-012	1.0842e-019	1.09139e-011
Venus1-2Body	1.02318e-009	1.11022e-016	5.55099e-013	1.0842e-019	1.81899e-012

Table 3.22: WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (2)

	14516 6.22. White Mill Emilia State Emilia Stat					
Test Case	Semi-major Axis (m)	True Anomaly (deg)	Semilatus Rectum(m)			
GEO-2Body	1.45519e-008	9.09495 e-013	1.45519e-008			
Hyperbolic-2Body	1.09139e-008	1.13687e-013	7.27596e-009			
ISS-2Body	1.81899e-009	1.13687e-013	1.81899e-009			
Mars1-2Body	1.81899e-009	9.9476e-013	1.81899e-009			
Mercury1-2Body	9.09495 e-010	1.13687e-013	9.09495 e-010			
Moon-2Body	9.09495 e-010	3.97904 e-013	9.09495 e-010			
Neptune1-2Body	1.45519e-008	3.97904 e-013	1.45519e-008			
Pluto1-2Body	9.09495 e-010	7.95808e-013	9.09495 e-010			
Saturn1-2Body	0	1.98952e-013	0			
Uranus1-2Body	1.45519e-008	7.10543e-013	1.45519e-008			
Venus1-2Body	1.81899e-009	8.4982 e-013	1.81899e-009			

Table 3.23: WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (3)

Test Case	Apoapsis Rad. (m)	Periapsis Rad. (m)	Apo. Vel. (m/sec)	Per. Vel. (m/sec)
GEO-2Body	1.45519e-008	1.45519e-008	8.88178e-013	8.88178e-013
Hyperbolic-2Body	N/A	1.09139e-008	N/A	0
ISS-2Body	1.81899e-009	1.81899e-009	1.77636e-012	1.77636e-012
Mars1-2Body	1.81899e-009	9.09495 e-010	8.88178e-013	8.88178e-013
Mercury1-2Body	1.81899e-009	9.09495 e-010	8.88178e-013	8.88178e-013
Moon-2Body	9.09495 e-010	9.09495 e-010	8.88178e-013	8.88178e-013
Neptune1-2Body	1.45519e-008	1.09139e-008	1.06581e-011	1.06581e-011
Pluto1-2Body	9.09495 e-010	9.09495 e-010	0	0
Saturn1-2Body	0	1.45519 e-008	1.06581e-011	1.06581e-011
Uranus1-2Body	1.45519e-008	1.45519e-008	0	1.06581e-011
Venus1-2Body	0	1.81899e-009	1.77636e-012	1.77636e-012

Table 3.24: WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (4)

Test Case	C3-Energy (m^2/sec^2)	Latitude (deg)	Longitude (deg)	MHA (deg)	LST (deg)
GEO-2Body	0	1.04083e-017	0	1.13687e-013	1.13687e-013
Hyperbolic-2Body	1.06581e-008	1.06581e-014	1.13687e-013	1.13687e-013	1.13687e-013
ISS-2Body	1.42109e-008	1.42109e-014	1.13687e-013	1.13687e-013	1.13687e-013
Mars1-2Body	0	1.06581e-014	1.13687e-013	N/A	N/A
Mercury1-2Body	1.77636e-009	1.42109e-014	1.13687e-013	N/A	N/A
Moon-2Body	8.88178e-010	6.03961e-014	1.13687e-013	N/A	N/A
Neptune1-2Body	1.13687e-007	1.42109e-014	1.13687e-013	N/A	N/A
Pluto1-2Body	0	1.42109e-014	1.13687e-013	N/A	N/A
Saturn1-2Body	1.13687e-007	1.42109e-014	1.13687e-013	N/A	N/A
Uranus1-2Body	1.13687e-007	1.42109e-014	1.13687e-013	N/A	N/A
Venus1-2Body	1.42109e-008	1.42109 e-014	1.13687e-013	N/A	N/A

Table 3.25: WinGMAT/LinuxGMAT Central Body Dependent Parameter Differences (5)

Test Case	Beta Angle (deg)	(RxV)-Mag (m^2/sec)	R-Mag (m)
GEO-2Body	1.42109e-014	0.000101863	1.45519e-008
Hyperbolic-2Body	1.42109e-014	0	1.16415 e-007
ISS-2Body	1.42109e-014	0	1.81899e-009
Mars1-2Body	1.42109e-014	1.09139e-005	1.81899e-009
Mercury1-2Body	2.84217e-014	0	1.81899e-009
Moon-2Body	1.42109e-014	9.09495 e-007	9.09495 e-010
Neptune1-2Body	1.42109e-014	0.000116415	1.45519e-008
Pluto1-2Body	1.42109e-014	9.09495 e-007	9.09495 e-010
Saturn1-2Body	1.42109e-014	0.000931323	1.45519e-008
Uranus1-2Body	1.42109e-014	0.000116415	1.45519e-008
Venus1-2Body	1.42109e-014	1.45519e-005	1.81899e-009

Draft: Work in Progress

3.3. COORDINATE SYSTEM DEPENDENT PARAMETERS

3.3 Coordinate System Dependent Parameters

3.3.1 Naming Convention

This section describes the naming convention for coordinate system dependent parameter scripts and output reports. The naming convention consists of a case sensitive ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. CS The coordinate system to use. The celestial body to use is followed by the CS in the name

CSParams precedes the tool field and 2Body precedes the CS field. The final CS file format is as followed: CSParams_ $tool_traj_2$ Body_CS.report

The *tool* field should always be the first option field. Each field has a finite list of options, as follows (future options should be added to this list):

1. tool

STK - Satellite Toolkit HPOP or Astrogator

FF - FreeFlyer

GMAT - General Mission Analysis Tool

2. traj

ISS - leo orbit
SunSync - leo orbit
GPS - meo orbit
GEO - geo orbit
Molniya - heo orbit

Mars1 - eccentric low orbit
Mercury1 - eccentric low orbit
Moon - eccentric low orbit
Pluto1 - eccentric low orbit
Venus1 - eccentric low orbit

NOTE: Some test cases contain *traj* variations. In this case *traj* precedes the modification. For example, if ISS trajectory is needed with no output, then *traj* can be ISSnoOut. The lack of a report file is shortened to noOut.

3. *CS*

EarthFixed	EarthMJ2000Eq	EarthMJ2000Ec
EarthTODEq	EarthTODEc	EarthMODEq
EarthMODEc	EarthGSM	EarthGSE
MarsFixed	MarsMJ2000Eq	MarsMJ2000Ec
MercuryFixed	Mercury MJ2000 Eq	Mercury MJ2000 Ec
MoonFixed	MoonMJ2000Eq	MoonMJ2000Ec
NeptuneFixed	NeptuneMJ2000Eq	${\bf Neptune MJ2000 Ec}$
PlutoFixed	PlutoMJ2000Eq	PlutoMJ2000Ec
SaturnFixed	SaturnMJ2000Eq	SaturnMJ2000Ec
UranusFixed	UranusMJ2000Eq	UranusMJ2000Ec
VenusFixed	VenusMJ2000Eq	VenusMJ2000Ec

3.3.2 Comparison Script Information

The script used to perform the Coordinate System comparisons needed for the Acceptance Test Plan is Comparison_Tool1_Tool2_CS.m. Many elements of this script were extracted from the Comparison_Tool1_Tool2_PV.m script.

Comparison_Tool1_Tool2_CS.m was designed to allow the user to select two programs to compare to one another. The comparison involves taking the difference of the variables listed in the Acceptance Test Plan Overview Chapter->Testing Methodology->Calculation Parameters section.

Refer to Appendix C for more details of this script and others used in the Acceptance Test Plan document.

3.3.3 Test Case Results

64

The following results are for the Coordinate System-Calculation Parameter section. The current GMAT Build is compared to STK and FreeFlyer for this section.

FF-STK comparison results presented in Tables 3.36- 3.40 are used as a way to determine if the GMAT comparison values are acceptable. If GMAT comparison data is within the same order of magnitude as the FF-STK comparison data that is acceptable. A more detailed acceptance metric/matrix will be developed at a later date.

Table 3.26: WinGMAT/	STK Coordinate System Dependent Parameter Differences ((Position)	

Table 3.20: WINGMAT/STK Coord			` '
Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
GEO-2Body-EarthFixed	0.2281413654	0.04023080692	0.02037045935
GEO-2Body-EarthMJ2000Ec	2.294098067e-005	0.00032580283	0.0007504095265
GEO-2Body-EarthMJ2000Eq	2.294098067e-005	2.433989721e-005	4.46e-009
GEO-2Body-EarthMODEc	0.001272894679	0.001382489927	8.563802112e-006
GEO-2Body-EarthMODEq	0.001272895247	0.001271334213	0.000543207701
GEO-2Body EarthMOEEc	2.295053037e-005	2.237175067e-005	9.603354556e-006
GEO-2Body-EarthTODEc	2.295053037e-005	2.433989721e-005	4.162467864e-009
GEO-2Body-EarthTODEc GEO-2Body-EarthTODEq	0.006357750408 0.006357749726	0.006834059604 0.006271528946	0.0006267036952 0.003423117541
GEO-2Body-EarthTOEEc GEO-2Body-EarthTOEEc	0.006357749726	0.006271528946 0.005975813906	9.603354556e-006
GEO-2Body-EarthTOEEc GEO-2Body-EarthTOEEq	0.005487542296 0.005487542239	0.005975813906 0.005486127634	9.603354556e-006 0.002404046552
Hyperbolic-2Body-EarthFixed	0.005487542259	0.005486127054 0.5436688334	0.002404040352 0.1095402695
Hyperbolic-2Body-EarthMJ2000Ec	1.6822014e-005	0.001917796908	0.1095402095
Hyperbolic-2Body-EarthMJ2000Eq	1.6822014e-005	1.979060471e-006	2.124579623e-006
Hyperbolic-2Body-EarthMODEc	0.008121191058	0.01077665365	7.392372936e-006
Hyperbolic-2Body-EarthMODEq	0.008121191058	0.0107700303	0.004294328392
Hyperbolic-2Body-EarthMOEEc	1.693842933e-005	2.211891115e-006	2.153683454e-006
Hyperbolic-2Body-EarthMOEEq	1.693842933e-005	1.979060471e-006	2.066371962e-006
Hyperbolic-2Body-EarthTODEc	0.01367426012	0.01960279769	0.003635126632
Hyperbolic-2Body-EarthTODEq	0.01367420191	0.02924879664	0.005363341188
Hyperbolic-2Body-EarthTOEEc	0.03536941949	0.04713787348	2.153683454e-006
Hyperbolic-2Body-EarthTOEEq	0.03536941949	0.04508509301	0.01691197394
ISS-2Body-EarthFixed	0.01006907041	0.01444909003	0.002770384526
ISS-2Body-EarthGSE	$5.300529438\mathrm{e}\text{-}005$	3.603599907e-005	$7.66544872 \mathrm{e}\text{-}006$
ISS-2Body-EarthGSM	$4.9540688\mathrm{e}\text{-}005$	0.003799988463	0.00293166886
${\rm ISS\text{-}2Body\text{-}EarthMJ2000Ec}$	$1.033299668\mathrm{e}\text{-}005$	$8.047527444 \mathrm{e}\text{-}005$	0.0001261635134
${\rm ISS-2Body\text{-}EarthMJ2000Eq}$	$1.033299668\mathrm{e}\text{-}005$	$9.667246559\mathrm{e}\text{-}006$	$9.215000318\mathrm{e}\text{-}006$
ISS-2Body-EarthMODEc	0.000210427288	0.0001799346592	7.613095931e-006
ISS-2Body-EarthMODEq	0.0002104279702	0.0001652065293	7.136577551e-005
ISS-2Body-EarthMOEEc	1.033140506e-005	1.099556357e-005	7.695803106e-006
ISS-2Body-EarthMOEEq	1.033140506e-005	9.666564438e-006	9.215000318e-006
ISS-2Body-EarthTODEc	0.0003583738817	0.0002511692401	0.0001079586127
ISS-2Body-EarthTODEq	0.0003583736543	0.0003260520316	0.0003840964382
ISS-2Body-EarthTOEEc	0.0009193927326	0.0007893422662	7.69603048e-006
ISS-2Body-EarthTOEEq	0.0009193925052	0.0006983391359	0.0002934716576
Mars1-2Body-MarsFixed	0.05898887696	0.05711927406	0.03425882358
Mars1-2Body-MarsMJ2000Ec	0.04854124924	0.06378650704	0.05515928102
Mars1-2Body-MarsMJ2000Eq Mercury1-2Body-MercuryFixed	0.04854124947	0.06874534654	0.04854127501
Mercury1-2Body-MercuryFixed Mercury1-2Body-MercuryMJ2000Ec	0.009607810114 0.008947269691	0.01088151507 0.01142762343	0.009587843124
Mercury1-2Body-MercuryMJ2000Ec Mercury1-2Body-MercuryMJ2000Eq	0.008947269691 0.008947269691	0.01142762343 0.01220655815	0.01022404834 0.008947248972
Mercury1-2Body-MercuryMJ2000Eq Moon-2Body-MoonFixed	0.008947269691 0.006440109019	0.01220655815 0.006437562433	0.008947248972
Moon-2Body-MoonMJ2000Ec	0.000440109019 0.0001012271014	0.000437502433	7.894885101e-005
Moon-2Body-MoonMJ2000Ec Moon-2Body-MoonMJ2000Eq	0.0001012271014 0.0001012270729	0.0001030929297 0.0001460622414	0.0001010863286
Neptune1-2Body-NeptuneFixed	0.4543228424	0.0001400022414 0.474102093	0.001010803280 0.2913599029
Neptune1-2Body-NeptuneMJ2000Ec	0.4945226424 0.2946186363	0.379445413	0.2913399029 0.3350099975
Neptune1-2Body-NeptuneMJ2000Eq	0.2946186363	0.4144292316	0.30129434
Pluto1-2Body-PlutoFixed	0.2940180303 0.6182226091	1.111364997	0.7629325749
Pluto1-2Body-PlutoMJ2000Ec	0.7527405821	0.9494719067	0.8475838174
Pluto1-2Body-PlutoMJ2000Eq	0.7527405819	1.085654527	0.7521445426
Saturn1-2Body-SaturnFixed	0.6340523651	0.6134889563	0.06666205172
Saturn1-2Body-SaturnMJ2000Ec	0.07298453147	0.09547611444	0.08217663634
Saturn1-2Body-SaturnMJ2000Eq	0.07298453147	0.1048656477	0.0737594446
Uranus1-2Body-UranusFixed	0.4395935848	0.5642743054	0.5180439475
Uranus1-2Body-UranusMJ2000Ec	0.385162361	0.5115039512	0.433244951
Uranus1-2Body-UranusMJ2000Eq	0.3851623601	0.5548048448	0.3789037312
Venus1-2Body-VenusFixed	0.003286658284	0.002153384223	0.002565443879
Venus1-2Body-VenusMJ2000Ec	0.002135182285	0.003261576126	0.002492622912

Table 3.27: WinGMAT/STK Coordinate System Dependent Parameter Differences (Velocity)

Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
GEO-2Body-EarthFixed	. , , ,	1.788716823e-006	2.603041318e-007
· ·	1.014408074e-005		
GEO-2Body-EarthMJ2000Ec	1.658007065e-009	2.383426789e-008	5.472688969e-008
GEO-2Body-EarthMJ2000Eq	1.658007065e-009	1.708189146e-009	0
GEO-2Body-EarthMODEc	9.276047985e-008	1.009415607e-007	6.031009026e-010
GEO-2Body-EarthMODEq	9.276047985e-008	9.284496089e-008	3.961584403e- 008
GEO-2Body-EarthMOEEc	1.658895243e-009	1.566302643e- 009	6.827038934e-010
GEO-2Body-EarthMOEEq	1.658895243e-009	1.70885528e-009	3.03533858e-013
GEO-2Body-EarthTODEc	4.572472123e- 007	5.051409152e-007	4.601985459e-008
GEO-2Body-EarthTODEq	4.572472123e- 007	4.636103862e- 007	2.603101342e-007
GEO-2Body-EarthTOEEc	4.000988846e-007	4.359142977e-007	6.827038934 e-010
GEO-2Body-EarthTOEEq	4.000988846e-007	4.002142819e-007	1.75307769e-007
Hyperbolic-2Body-EarthFixed	3.961041983e-005	4.825957234e-005	7.70518005e-006
Hyperbolic-2Body-EarthMJ2000Ec	1.829647545e-010	2.841105129e-008	7.195000151e-008
Hyperbolic-2Body-EarthMJ2000Eq	1.900701818e-010	7.416289804e-011	7.505107646e-011
Hyperbolic-2Body-EarthMODEc	1.202220545e-007	3.21276783e-007	2.733924198e-010
Hyperbolic-2Body-EarthMODEq	1.202220545e-007	2.946597966e-007	1.280426876e-007
Hyperbolic-2Body-EarthMOEEc	1.829647545e-010	8.482103908e-011	5.306866058e-011
Hyperbolic-2Body-EarthMOEEq	1.829647545e-010	7.283063042e-011	7.416289804e-011
Hyperbolic-2Body-EarthTODEc	1.646727199e-007	2.454381143e-007	6.046185774e-008
Hyperbolic-2Body-EarthTODEq	1.646727199e-007	3.61354946e-007	2.50673704e-007
Hyperbolic-2Body-EarthTOEEc	5.242357659e-007	1.403959171e-006	5.306866058e-011
0.2			5.625165889e-007
Hyperbolic-2Body-EarthTOEEq	5.242357659e-007	1.28404859e-006	
ISS-2Body-EarthFixed	1.122181903e-005	1.427654617e-005	3.056610076e-006
ISS-2Body-EarthGSE	3.752820277e-008	6.98910979e-008	8.158362874e-009
ISS-2Body-EarthGSM	3.523581427e-008	4.26608171e-006	3.338248789e-006
ISS-2Body-EarthMJ2000Ec	1.084418666e-008	9.146905455e-008	1.441839981e-007
ISS-2Body-EarthMJ2000Eq	1.084418666e-008	1.137612227e-008	1.016586815e-008
ISS-2Body-EarthMODEc	2.404640931e-007	2.0532398e-007	8.086198378e-009
ISS-2Body-EarthMODEq	2.404640931e-007	1.883493361e-007	8.178480115e-008
ISS-2Body-EarthMOEEc	1.084238255e- 008	1.291988738e-008	8.192335699e-009
ISS-2Body-EarthMOEEq	1.084238255e-008	1.137490102e-008	1.016536855e-008
ISS-2Body-EarthTODEc	4.073232862e- 007	2.878270955e-007	1.22599042e-007
ISS-2Body-EarthTODEq	4.073232862e- 007	3.764446532e-007	4.359921313e-007
ISS-2Body-EarthTOEEc	1.051030152e-006	8.982550259e-007	8.192335699e-009
ISS-2Body-EarthTOEEq	1.051030152e-006	7.945391012e-007	3.338689325 e-007
Mars1-2Body-MarsFixed	4.119460101e-005	5.040193685e-005	2.244996011e-005
Mars1-2Body-MarsMJ2000Ec	3.9224898e-005	5.612389309e-005	3.773446111e-005
Mars1-2Body-MarsMJ2000Eq	3.9224898e-005	5.5061041e-005	3.923428094e-005
Mercury1-2Body-MercuryFixed	8.297573739e-006	1.056043131e-005	6.28309893e- 006
Mercury1-2Body-MercuryMJ2000Ec	7.406872116e-006	1.084578205e-005	6.911486272e-006
Mercury1-2Body-MercuryMJ2000Eq	7.406872116e-006	1.046935982e-005	7.379157396e-006
Moon-2Body-MoonFixed	3.128622111e-006	3.435717294e-006	6.516048812e-008
Moon-2Body-MoonMJ2000Ec	6.996597746e-008	7.435752014e-008	3.883038335e-008
Moon-2Body-MoonMJ2000Eq	6.996597746e-008	9.943851298e-008	6.991998647e-008
Neptune1-2Body-NeptuneFixed	0.002311382259	0.00232459858	0.0001281027884
Neptune1-2Body-NeptuneMJ2000Ec	0.002311362233 0.0001425149572	0.00202400000	0.0001281027334 0.0001364492723
Neptune1-2Body-NeptuneMJ2000Eq	0.0001425149572 0.0001425149572	0.0002082204933 0.0002067147653	0.0001304492723
- v			
Pluto1-2Body-PlutoFixed	0.0003613682175	0.0004667307785	0.0004682860251
Pluto1-2Body-PlutoMJ2000Ec	0.0003872987759	0.0005522331561	0.000344448214
Pluto1-2Body-PlutoMJ2000Eq	0.0003872987759	0.0005410307473	0.0003868007483
Saturn1-2Body-SaturnFixed	0.0001164046752	0.0001207579849	2.354126405e-005
Saturn1-2Body-SaturnMJ2000Ec	2.488907747e-005	3.488300981e-005	2.320261316e-005
Saturn1-2Body-SaturnMJ2000Eq	2.488907747e-005	3.502235213e-005	2.510042485e-005
Uranus1-2Body-UranusFixed	0.0001044264559	0.0001481343457	0.000160607621
${\it Uranus 1-2 Body-Uranus MJ 2000 Ec}$	0.0001229694768	0.000170892658	0.0001139574768
Uranus1-2Body-UranusMJ2000Eq	0.0001229694768	0.0001702024259	0.000120316952
Venus1-2Body-VenusFixed	3.298453583e-006	1.926899973e-006	2.241729913e-006
Venus1-2Body-VenusMJ2000Ec	2.213821571e-006	3.107874846e-006	2.148337952e-006

Table 3.28: WinGMAT/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

The A Co	V (II) / 9 /	37 (11) (2)	7 (11) / 2 /)
Test Case	$X-(H)$ (m^2/sec)	Y-(H) (m^2/sec)	Z-(H) (m^2/sec)
GEO-2Body-EarthFixed	10.77395299	2.103745961	434.3113619
GEO-2Body-EarthMJ2000Ec	1.13710075e-005	2.306616807	1.000254997
GEO-2Body-EarthMJ2000Eq	0	0	0.001542503014
GEO-2Body-EarthMODEc	1.670207936	0.001840817276	0.001789885573
GEO-2Body-EarthMODEq	1.670203311	0.001656591829	0.002357410267
GEO-2Body-EarthMOEEc	2.159488468e-005	0.0008076312952	0.001688022166
GEO-2Body-EarthMOEEq	1.279825357e-005	2.844632424e-021	0.001542503014
GEO-2Body-EarthTODEc	8.532207623	1.939180947	0.8412171155
GEO-2Body-EarthTODEq	8.532204795	9.575566487	0.004365574569
GEO-2Body-EarthTOEEc	7.285380082	0.001295120455	0.001702574082
GEO-2Body-EarthTOEEq	7.285369859	1.252006488	0.001396983862
Hyperbolic-2Body-EarthFixed	12999.11691	5061.392323	11584.83326
Hyperbolic-2Body-EarthMJ2000Ec	0.0002509729892	1.80931238	0.7227790775
Hyperbolic-2Body-EarthMJ2000Eq	0.000197488248	0.01781154424	0.01760781743
Hyperbolic-2Body-EarthMODEc	1.183687445	0.007588823792	0.02351589501
Hyperbolic-2Body-EarthMODEq	1.183715035	0.01674925443	0.01817534212
Hyperbolic-2Body-EarthMOEEc	0.00026047443	0.008927599993	0.0233121682
Hyperbolic-2Body-EarthMOEEq	0.000217340812	0.01784064807	0.01766602509
Hyperbolic-2Body-EarthTODEc	2.066649429	1.515742042	0.6023328751
Hyperbolic-2Body-EarthTODEq	2.066692929	5.087713362	5.08732046
Hyperbolic-2Body-EarthTOEEc	5.182947816	0.00926957	0.02366141416
Hyperbolic-2Body-EarthTOEEq	5.182958375	0.6900227163	0.6991467671
ISS-2Body-EarthFixed	89.91428695	67.10288835	31.77833423
ISS-2Body-EarthGSE	0.2475189831	0.02900196705	0.0004220055416
ISS-2Body-EarthGSM	3.261639904	22.63644274	29.37960016
ISS-2Body-EarthMJ2000Ec	0.0007530616131	0.7919024938	0.2579763532
ISS-2Body-EarthMJ2000Eq	0.0007603375707	0.0005566107575	0.000301952241
ISS-2Body-EarthMODEc	0.4284956958	0.9411342035	0.001266016625
ISS-2Body-EarthMODEq	0.4284956958	0.8629867807	0.3752065822
ISS-2Body-EarthMOEEc	0.0007530616131	0.0002983142622	0.0004874891602
ISS-2Body-EarthMOEEq	0.0007603375707	0.0005566107575	0.000301952241
ISS-2Body-EarthTODEc	0.7472881407	2.260314432	0.2173910616
ISS-2Body-EarthTODEq	0.7472772268	3.630950232	2.533914085
ISS-2Body-EarthTOEEc	1.879539923	4.109922884	0.0004874891602
ISS-2Body-EarthTOEEq	1.879554475	4.081139195	1.909433195
Mars1-2Body-MarsFixed Mars1-2Body-MarsM12000Fa	23.98886318	22.21717	10.38143819
Mars1-2Body-MarsMJ2000Ec	0.9952709661	0.5993915693	0.5886722647
Mars1-2Body-MarsMJ2000Eq	0.9952691471	0.2261380806	0.7740909496
Mercury1-2Body-MercuryFixed	0.327698217 0.1878624971	0.4808271115 0.2510159902	0.2502738425 0.2059750841
Mercury1-2Body-MercuryMJ2000Ec Mercury1-2Body-MercuryMJ2000Eq	0.1878634066	0.2510159902 0.1111429479	0.2059750841 0.2888264135
Moon-2Body-MoonFixed	0.1878634066 5.5748352	0.1111429479 5.283694918	0.2888264135 0.002652541298
Moon-2Body-MoonMJ2000Ec	0.001063199306	0.04336504844	0.002652541298 0.0190548235
Moon-2Body-MoonMJ2000Ec Moon-2Body-MoonMJ2000Eq	0.001063199306	0.04336504844 0.0002578476294	0.0190548235 0.00038107828
Neptune1-2Body-NeptuneFixed	42849.13634	43033.72977	96195.52572
Neptune1-2Body-NeptuneHJ2000Ec	42849.13634 29.59038829	43033.72977 77.10719365	79.3626532
Neptune1-2Body-NeptuneMJ2000Eq	29.59038829	84.00197472	79.3020532 57.43693328
Pluto1-2Body-PlutoFixed	29.59038829 12.66916559	15.03451797	18.39295624
Pluto1-2Body-PlutoMJ2000Ec	2.923446004	0.8473472235	3.204913128
Pluto1-2Body-PlutoMJ2000Ec Pluto1-2Body-PlutoMJ2000Eq	2.923445891	0.8302175236	3.147571306
Saturn1-2Body-SaturnFixed	7341.511315	7984.995318	864.7177019
Saturn1-2Body-SaturnMJ2000Ec	13.2243149	7984.995318 25.11031926	27.86074765
Saturn1-2Body-SaturnMJ2000Ec Saturn1-2Body-SaturnMJ2000Eq	13.2243149	16.91115992	24.03883263
Uranus1-2Body-UranusFixed	13.22408207 2955.545322	3574.169823	24.03883203
Uranus1-2Body-UranusMJ2000Ec	5.186127964	39.40385068	90.66710481
Uranus1-2Body-UranusMJ2000Ec Uranus1-2Body-UranusMJ2000Eq	5.186419003	61.77691968	77.83877663
Venus1-2Body-VenusFixed	0.7762544101		
venus1-2Dody-venusfixed	U.11025441U1	0.3817622201	0.2173546818

Table 3.29: WinGMAT/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)

Table 3.29: WINGMAT/STK Coordina	te System Depender		velocity vector-based)
Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
GEO-2Body-EarthFixed	3.278583187e-006	1.162789617	0.178531639
${\rm GEO\text{-}2Body\text{-}EarthMJ2000Ec}$	1.07913678e-010	2.742908123e-010	1.110862513e-009
GEO-2Body-EarthMJ2000Eq	1.07913678e-010	3.426237072e-011	0
GEO-2Body-EarthMODEc	1.070254996e-010	1.887912049e-009	1.108624303e- 011
GEO-2Body-EarthMODEq	1.070254996e-010	1.733170052e-009	7.381565394e-010
GEO-2Body-EarthMOEEc	1.07913678e-010	3.628031209e-011	1.261213356e-011
GEO-2Body-EarthMOEEq	1.07913678e-010	3.427658157e-011	5.656303434e-015
GEO-2Body-EarthTODEc	1.070254996e-010	9.472358897e-009	9.347012053e-010
GEO-2Body-EarthTODEq	1.070254996e-010	8.702897958e-009	4.850753133e-009
GEO-2Body-EarthTOEEc	1.07913678e-010	8.130868423e-009	1.261213356e-011
GEO-2Body-EarthTOEEq	1.07913678e-010	7.460869256e-009	3.266776493e-009
Hyperbolic-2Body-EarthFixed	4.71472088e-005	2.061432909e-007	5.501368605e-008
Hyperbolic-2Body-EarthMJ2000Ec	1.616484724e-010	2.155502443e-010	7.097700205e-010
Hyperbolic-2Body-EarthMJ2000Eq	1.616484724e-010	1.421085472e-012	9.201528428e-013
Hyperbolic-2Body-EarthMODEc	1.616484724e-010	1.854090215e-009	1.578293052e-012
Hyperbolic-2Body-EarthMODEq	1.616484724e-010	1.910734682e-009	7.375620115e-010
Hyperbolic-2Body-EarthMOEEc	1.616484724e-010	1.591615728e-012	2.415845302e-013
Hyperbolic-2Body-EarthMOEEq	1.616484724e-010	1.449507181e-012	9.166001291e-013
Hyperbolic-2Body-EarthTODEc	1.616484724e-010	3.401112281e-009	5.87760951e-010
Hyperbolic-2Body-EarthTODEq	1.616484724e-010	5.039368034e-009	1.719470788e-009
Hyperbolic-2Body-EarthTOEEc	1.616484724e-010	8.096151305e-009	2.415845302e-013
Hyperbolic-2Body-EarthTOEEq	1.616484724e-010	8.594184919e-009	3.265999027e-009
ISS-2Body-EarthFixed	1.000267424e-006	1.289333902e-007	3.871187459e-008
ISS-2Body-EarthGSE	4.574118861e-010	5.30000932e-010	6.077804926e-011
ISS-2Body-EarthGSM	3.126210402e-008	2.998996962e-008	3.987213404e-008
ISS-2Body-EarthMJ2000Ec	4.636291351e-010	8.293685738e-010	1.106641889e-009
ISS-2Body-EarthMJ2000Eq	4.636291351e-010	1.526245796e-010	7.80993048e-011
ISS-2Body-EarthMODEc	4.627409567e-010	1.852910714e-009	6.026290578e-011
ISS-2Body-EarthMODEq	4.52970994e-010	2.479552563e-009	7.349498787e-010
ISS-2Body-EarthMOEEc	4.636291351e-010	1.305977548e-010	6.103206829e-011
ISS-2Body-EarthMOEEq	4.627409567e-010	1.526245796e-010	7.80993048e-011
ISS-2Body-EarthTODEc	4.627409567e-010	3.180247177e-009	9.443787974e-010
ISS-2Body-EarthTODEq	4.627409567e-010	4.238856377e-009	4.168732914e-009
ISS-2Body-EarthTOEEc	4.627409567e-010	8.094446002e-009	6.103206829e-011
ISS-2Body-EarthTOEEq	4.627409567e-010	1.066266009e-008	3.259224002e-009
Mars1-2Body-MarsFixed	9.592806993e-006	9.947378707e-007	3.948958787e-007
Mars1-2Body-MarsMJ2000Ec	8.899687209e-006	1.432667602e-006	6.136789708e-007
Mars1-2Body-MarsMJ2000Eq	8.899676995e-006	1.215923845e-006	6.201466789e-007
Mercury1-2Body-MercuryFixed	1.59941127e-006	3.112265077e-007	1.274611101e-007
Mercury1-2Body-MercuryMJ2000Ec	1.597606047e-006	3.378602003e-007	1.397476694e-007
Mercury1-2Body-MercuryMJ2000Eq	1.597606047e-006	2.85895851e-007	1.4250252e-007
Moon-2Body-MoonFixed	1.504485425e-008	1.412774111e-007	2.357179341e-009
Moon-2Body-MoonMJ2000Ec	1.500399804e-008	4.380240171e-009	1.342904454e-009
Moon-2Body-MoonMJ2000Eq	1.500399804e-008	4.660591912e-009	2.414738631e-009
Neptune1-2Body-NeptuneFixed	0.001546170623	1.309179918e-005	1.351642366e-005
Neptune1-2Body-NeptuneMJ2000Ec	3.205422061e-005	1.140866715e-006	4.847768089e-007
Neptune1-2Body-NeptuneMJ2000Eq	3.205422949e-005	9.779481331e-007	4.998895804e-007
Pluto1-2Body-PlutoFixed	8.217843617e-005	4.784315172e-005	2.956015004e-005
Pluto1-2Body-PlutoMJ2000Ec	8.345292613e-005	5.652545477e-005	2.377500014e-005
Pluto1-2Body-PlutoMJ2000Eq	8.345292613e-005	4.844967677e-005	2.512714485e-005
Saturn1-2Body-SaturnFixed	8.716019906e-006	4.920609911e-007	9.227543885e-008
Saturn1-2Body-SaturnMJ2000Ec	5.18404164e-006	1.242314625e-007	5.306250017e-008
Saturn1-2Body-SaturnMJ2000Eq	5.18404164e-006	1.061025898e-007	5.502680978e-008
Uranus1-2Body-UranusFixed	3.448082886e-005	7.157807744e-006	7.584381549e-007
Uranus1-2Body-UranusMJ2000Ec	2.627271023e-005	1.159199428e-006	5.016063795e-007
Uranus1-2Body-UranusMJ2000Eq	2.627271023e-005	9.843604971e-007	5.082584709e-007
Venus1-2Body-VenusFixed	5.125109226e-007	3.693500616e-008	1.783747905e-008
Venus1-2Body-VenusMJ2000Ec	5.126095104e-007	3.734896836e-008	1.708282227e-008

Table 3.30: WinGMAT/STK Coordinate System Dependent Parameter Differences (Angle-based)

Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
GEO-2Body-EarthFixed	3.357e-005	2.768e-008	0.2044	3.148e-007	9.529e-005
GEO-2Body-EarthMJ2000Ec	1.354e-005	1.111e-009	1.111e-009	2.715e-010	0
GEO-2Body-EarthMJ2000Eq	1.309e-005	0	1e-014	3.513e-011	0
GEO-2Body-EarthMODEc	1.381e-005	1.148e-011	3.233e-013	1.886e-009	1.864e-009
GEO-2Body-EarthMODEq	1.322 e-005	7.381e-010	7.548e-010	1.734e-009	8.657e-010
GEO-2Body-EarthMOEEc	1.354e-005	1.291e-011	3.126e-013	3.401e-011	0
GEO-2Body-EarthMOEEq	1.343e-005	5.656e-015	0	3.513e-011	0
GEO-2Body-EarthTODEc	1.367e-005	9.281e-010	9.348e-010	9.5e-009	9.482e-009
GEO-2Body-EarthTODEq	1.095e-005	4.652e-009	3.537e-009	8.705e-009	1.046e-005
GEO-2Body-EarthTOEEc	1.354e-005	1.291e-011	3.126e-013	8.129e-009	8.107e-009
GEO-2Body-EarthTOEEq	8.314e-005	3.267e-009	1.764e-009	7.462e-009	6.978e-005
Hyperbolic-2Body-EarthFixed	3.504 e-007	1.754e-008	2.357e-007	1.35e-007	1.528e-007
Hyperbolic-2Body-EarthMJ2000Ec	7.617e-012	1.096e-009	1.111e-009	2.172e-010	1.4e-013
Hyperbolic-2Body-EarthMJ2000Eq	7.844e-012	8.207e-013	4.334e-013	1.251e-012	2.5e-013
Hyperbolic-2Body-EarthMODEc	1.18e-011	1.561e-012	3.411e-013	1.854e-009	1.858e-009
Hyperbolic-2Body-EarthMODEq	1.052e-009	7.379e-010	5.755e-013	2.405e-009	9.755e-010
Hyperbolic-2Body-EarthMOEEc	7.518e-012	2.984e-013	3.517e-013	1.393e-012	1.4e-013
${\bf Hyperbolic2BodyEarth MOEEq}$	7.674e-012	8.313e-013	1.421e-013	1.251e-012	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthTODEc}$	9.422 e-012	9.216e-010	9.348e-010	3.396e-009	3.235 e - 009
Hyperbolic-2Body-EarthTODEq	1.824e-009	3.924e-009	4.129e-009	4.887e-009	1.696e-009
Hyperbolic-2Body-EarthTOEEc	7.631e-012	2.984e-013	3.375e-013	8.096e-009	8.107e-009
Hyperbolic-2Body-EarthTOEEq	4.561e-009	3.265e-009	5.531e-010	1.062e-008	4.29e-009
ISS-2Body-EarthFixed	3.206e-008	3.275 e-008	3.965e-008	1.328e-007	1.38e-007
ISS-2Body-EarthGSE	7.436e-010	6.5e-011	5.4e-013	5.681e-010	4.462 e-010
ISS-2Body-EarthGSM	2.426e-006	3.92e-008	4.043e-008	2.862e-008	7.132e-009
ISS-2Body-EarthMJ2000Ec	2.188e-009	1.109e-009	4.623e-010	8.22e-010	1.29e-009
ISS-2Body-EarthMJ2000Eq	5.568e-010	7.966e-011	5.471e-013	1.525e-010	5.4e-013
ISS-2Body-EarthMODEc	5.555e-010	6.455e-011	1.592e-012	1.853e-009	1.852e-009
ISS-2Body-EarthMODEq	1.215e-009	7.378e-010	5.283e-010	2.49e-009	1.291e-009
ISS-2Body-EarthMOEEc	5.49e-010	6.525e-011	4.05e-013	1.269e-010	7.105e-013
ISS-2Body-EarthMOEEq	5.525e-010	7.966e-011	5.471e-013	1.525e-010	5.542e-013
ISS-2Body-EarthTODEc	1.658e-009	9.461e-010	3.891e-010	3.178e-009	4.239e-009
ISS-2Body-EarthTODEq	3.32e-009	4.163e-009	3.569e-009	4.248e-009	4.395e-009
ISS-2Body-EarthTOEEc	5.487e-010	6.526e-011	4.05e-013	8.095e-009	8.095e-009
ISS-2Body-EarthTOEEq	2.92e-009	3.264e-009	2.689e-009	1.063e-008	5.96e-009
Mars1-2Body-MarsFixed	2.247e-006	5.221e-007	5.014e-008	9.731e-007	2.604e-007
Mars1-2Body-MarsMJ2000Ec	4.431e-008	8.568e-007	2.152e-009	1.285e-006	1.562e-009
Mars1-2Body-MarsMJ2000Eq	4.543e-008	7.205e-007 1.881e-007	2.049e-009 1.462e-009	1.377e-006 2.697e-007	1.332e-009 5.066e-009
Mercury1-2Body-MercuryFixed Mercury1-2Body-MercuryMJ2000Ec	7.263e-009		1.402e-009 1.004e-009	3.065e-007	2.237e-009
Mercury1-2Body-MercuryMJ2000Eq	8.609e-009 7.477e-009	1.99e-007 1.735e-007	1.664e-009	3.307e-007	1.026e-009
Moon-2Body-MoonFixed	1.68e-010	3.26e-009	5.607e-011	1.415e-007	1.412e-007
Moon-2Body-MoonMJ2000Ec	1.394e-009	2.259e-009	4.114e-010	4.055e-009	8.905e-010
Moon-2Body-MoonMJ2000Eq	3.644e-011	2.817e-009	1.148e-011	5.613e-009	6.096e-012
Neptune1-2Body-NeptuneFixed	4.002e-005	5.911e-007	1.341e-005	1.157e-006	7.627e-006
Neptune1-2Body-NeptuneMJ2000Ec	2.001e-008	6.812e-007	1.011e-008	1.058e-006	1.042e-008
Neptune1-2Body-NeptuneMJ2000Eq	2.142e-008	6.033e-007	6.69e-009	1.147e-006	1.42e-008
Pluto1-2Body-PlutoFixed	5.512e-006	3.201e-005	7.484e-007	7.441e-005	8.117e-007
Pluto1-2Body-PlutoMJ2000Ec	5.338e-007	3.39e-005	4.962e-008	5.105e-005	3.472e-008
Pluto1-2Body-PlutoMJ2000Eq	5.077e-007	2.963e-005	3.899e-008	5.878e-005	5.172e-008
Saturn1-2Body-SaturnFixed	1.508e-007	5.809e-008	5.751e-008	5.188e-007	4.571e-007
Saturn1-2Body-SaturnMJ2000Ec	3.259e-009	7.328e-008	6.576e-010	1.179e-007	9.333e-010
Saturn1-2Body-SaturnMJ2000Eq	4.55e-009	6.548e-008	5.383e-010	1.273e-007	8.028e-010
Uranus1-2Body-UranusFixed	4.529e-006	8.4e-007	3.03e-007	2.345e-006	4.615e-007
Uranus1-2Body-UranusMJ2000Ec	1.129e-008	6.9e-007	8.766e-009	1.112e-006	5.248e-009
Uranus1-2Body-UranusMJ2000Eq	1.392e-008	6.011e-007	6.433e-009	1.201e-006	1e-008
Venus1-2Body-VenusFixed	1.012e-009	2.227e-008	1.379e-010	3.825e-008	1.158e-009
Venus1-2Body-VenusMJ2000Ec	2.027e-009	2.162e-008	4.209e-010	3.816e-008	8.709e-010

Draft: Work in Progress

CHAPTER 3. CALCULATION PARAMETERS

TI 11 9 91	DD/XX: CMAAD	0 1 1 0 1	D 1 / D /	D.u. (D .''.)
Table 5.51:	rr/willGMAI	Coordinate System	i Debendeni Paramei	er Differences (Position)

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
ISS-2Body-EarthMJ2000Eq	2.54757424e-005	2.516884479e-005	2.321598913e-005

Table 3.32: FF/WinGMAT Coordinate System Dependent Parameter Differences (Velocity)

Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
ISS-2Body-EarthMJ2000Eq	4.993130354e-007	5.00476105e-007	4.961786537e-007

Table 3.33: FF/WinGMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

Test Case	$X-(H) (m^2/sec)$	$Y-(H) (m^2/sec)$	Z -(H) (m^2/sec)
ISS-2Body-EarthMJ2000Eq	0.0005493347999	0.001349690137	0.001567968866

Table 3.34: FF/WinGMAT Coordinate System Dependent Parameter Differences (Velocity Vector-based)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
ISS-2Body-EarthMJ2000Eq	4.860067904 e-007	296.2928006	67.36750845

Table 3.35: FF/WinGMAT Coordinate System Dependent Parameter Differences (Angle-based)

,	v				0
Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
ISS-2Body-EarthMJ2000Eq	1.681e-009	5.884e-010	4.684e-010	7.628e-010	2.418e-010

Draft: Work in Progress

3.3. COORDINATE SYSTEM DEPENDENT PARAMETERS

Table 3.36: FF/STK Coordinate System Dependent Parameter Differences (Position)

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
ISS-2Body-EarthMJ2000Eq	3.580873909e-005	3.470813681e-005	3.243098945e-005

Table 3.37: FF/STK Coordinate System Dependent Parameter Differences (Velocity)

			`
Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
ISS-2Body-EarthMJ2000Eq	5.092002375e-007	5.105600387e-007	5.025699856e-007

Table 3.38: FF/STK Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

Test Case	$X-(H) (m^2/sec)$	$Y-(H) (m^2/sec)$	Z -(H) (m^2/sec)
ISS-2Body-EarthMJ2000Eq	0.0005711626727	0.001346052159	0.00146246748

Table 3.39: FF/STK Coordinate System Dependent Parameter Differences (Velocity Vector-based)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
ISS-2Body-EarthMJ2000Eq	4.857803049e-007	296.2928006	67.36750845

Table 3.40: FF/STK Coordinate System Dependent Parameter Differences (Angle-based)

Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
ISS-2Body-EarthMJ2000Eq	1.347e-009	6.518e-010	4.685e-010	8.637e-010	2.414e-010

Draft: Work in Progress CHAPTER 3. CALCULATION PARAMETERS

Win/Mac GMAT Comparison 3.3.4

72

Table 3.41: WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Positio				
Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	
GEO-2Body-EarthFixed	0.0001842481652	3.285822459e-005	8.177306055e-009	
${\rm GEO\text{-}2Body\text{-}EarthMJ2000Ec}$	1.167290975 e - 005	1.199748567e-005	5.201599151e- 006	
GEO-2Body-EarthMJ2000Eq	1.167290975e-005	$1.307660114\mathrm{e}\text{-}005$	0	
GEO-2Body-EarthMODEc	1.167200026e-005	1.199771305e-005	5.201400199e-006	
GEO-2Body-EarthMODEq	1.167200026e-005	1.30769422 e-005	5.027978034e-009	
GEO-2Body-EarthMOEEc	1.167381924e-005	1.199748567e-005	5.201599151e-006	
GEO-2Body-EarthMOEEq	1.167381924e-005	1.307660114 e-005	1.15236801 e-021	
GEO-2Body-EarthTODEc	1.167200026e-005	1.199788358e-005	5.201400199e-006	
GEO-2Body-EarthTODEq	1.167200026e-005	$1.307682851 \mathrm{e}\text{-}005$	8.173711707e-009	
GEO-2Body-EarthTOEEc	1.167427399e-005	1.199748567e-005	5.201599151e-006	
GEO-2Body-EarthTOEEq	1.167427399e-005	$1.307671482\mathrm{e}\text{-}005$	$2.659095166\mathrm{e}\text{-}009$	
Hyperbolic-2Body-EarthFixed	0.0008837669156	0.001192296622	1.164153218e-007	
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Ec}$	3.492459655e- 007	1.164153218e-007	8.731149137e-008	
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Eq}$	3.492459655e- 007	1.164153218e-007	1.164153218e-007	
Hyperbolic-2Body-EarthMODEc	3.492459655e- 007	1.164153218e-007	1.018634066e-007	
Hyperbolic-2Body-EarthMODEq	3.492459655e- 007	1.164153218e-007	1.164153218e-007	
Hyperbolic-2Body-EarthMOEEc	3.492459655e- 007	1.164153218e-007	7.275957614e-008	
Hyperbolic-2Body-EarthMOEEq	3.492459655e-007	1.164153218e-007	1.164153218e-007	
Hyperbolic-2Body-EarthTODEc	4.074536264e-007	1.164153218e-007	1.018634066e-007	
Hyperbolic-2Body-EarthTODEq	4.074536264e- 007	1.164153218e-007	1.164153218e-007	
Hyperbolic-2Body-EarthTOEEc	3.492459655e-007	1.164153218e-007	7.275957614e-008	
Hyperbolic-2Body-EarthTOEEq	3.492459655e-007	1.164153218e-007	1.164153218e-007	
ISS-2Body-EarthFixed	2.39901965e-005	3.032710083e-005	1.251714821e-005	
ISS-2Body-EarthGSE	7.217067832e-006	5.829974725e-006	4.693333722e-006	
ISS-2Body-EarthGSM	1.589199883e-005	1.367493496e-005	9.297707493e-006	
ISS-2Body-EarthMJ2000Ec	6.370953543e-006	7.136122804e-006	4.692878974e-006	
ISS-2Body-EarthMJ2000Eq	6.370953543e-006	6.066102287e- 006	5.955598681e-006	
ISS-2Body-EarthMODEc	6.370100891e-006	7.13589543e-006	4.693220035e-006	
ISS-2Body-EarthMODEq	6.370100891e-006	6.06996764e-006	5.953893378e-006	
ISS-2Body-EarthMOEEc	6.371124073e-006	7.136122804e-006	4.692537914e-006	
ISS-2Body-EarthMOEEq	6.371124073e-006	6.065874913e-006	5.955598681e-006	
ISS-2Body-EarthTODEc	6.370214578e-006	7.13589543e-006	4.693220035e-006	
ISS-2Body-EarthTODEq ISS-2Body-EarthTOEEc	6.370214578e-006 6.371124073e-006	6.069058145e-006	5.954348126e-006	
ISS-2Body-EarthTOEEq	6.371124073e-006	7.136122804e-006 6.065192792e-006	4.692537914e-006 5.955371307e-006	
Mars1-2Body-MarsFixed	0.01889046771	0.0188483892	0.0101035551	
Mars1-2Body-MarsMJ2000Ec	0.01384317869	0.01948085998	0.01588558911	
Mars1-2Body-MarsMJ2000Eq	0.01384317869	0.020802021	0.01400709147	
Mercury1-2Body-MercuryFixed	0.01334317303	0.02563626177	0.02199024959	
Mercury1-2Body-MercuryMJ2000Ec	0.02247740072	0.0263996169	0.02133024333 0.02335545349	
Mercury1-2Body-MercuryMJ2000Eq	0.020712614	0.02828240395	0.02072751528	
Moon-2Body-MoonFixed	0.0001181998073	8.823919018e-005	0.0001023369123	
Moon-2Body-MoonMJ2000Ec	8.999450074e-005	0.0001172169846	0.0001019149067	
Moon-2Body-MoonMJ2000Eq	8.999450074e-005	0.0001284061	9.025099246e-005	
Neptune1-2Body-NeptuneFixed	0.000139336862	0.0001421121851	1.818989404e-008	
Neptune1-2Body-NeptuneMJ2000Ec	1.091393642e-008	1.455191523e-008	1.091393642e-008	
Neptune1-2Body-NeptuneMJ2000Eq	1.091393642e-008	1.455191523e-008	1.091393642e-008	
Pluto1-2Body-PlutoFixed	0.02447438351	0.05146786219	0.03691279483	
Pluto1-2Body-PlutoMJ2000Ec	0.0331401825	0.0482615705	0.03949610559	
Pluto1-2Body-PlutoMJ2000Eq	0.0331401825	0.05435943603	0.03361701965	
Saturn1-2Body-SaturnFixed	0.0006473801477	0.0005969686754	1.455191523e-008	
Saturn1-2Body-SaturnMJ2000Ec	1.455191523e- 008	1.455191523e- 008	1.455191523e-008	
Saturn1-2Body-SaturnMJ2000Eq	1.455191523e- 008	1.455191523e- 008	1.455191523e- 008	
Uranus1-2Body-UranusFixed	0.0001626394805	0.0001651487764	$2.182787284 \mathrm{e}\text{-}008$	
${\it Uranus 1-2 Body-Uranus MJ 2000 Ec}$	1.455191523e- 008	1.455191523e- 008	1.455191523e- 008	
Uranus 1-2 Body-Uranus MJ 2000 Eq	1.455191523e- 008	1.455191523e- 008	1.455191523e- 008	
Venus1-2Body-VenusFixed	0.00709690994	0.005248550565	0.005916503937	
Venus1-2Body-VenusMJ2000Ec	0.005392357707	0.007055124229	0.006031767612	

Table 3.42: WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Velocity)

Table 5.42. WIIIGMAT/MacGMAT Co	-	pendent i arameter	· · · · · · · · · · · · · · · · · · ·
Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
GEO-2Body-EarthFixed	1.909583602e-010	1.048050535e-010	6.29813042e-013
GEO-2Body-EarthMJ2000Ec	8.857428679e-010	8.001099783e-010	3.468336729e-010
GEO-2Body-EarthMJ2000Eq	8.857428679e-010	8.719136524e-010	0
GEO-2Body-EarthMODEc	8.85735929e-010	7.99998956e-010	3.468336729e-010
GEO-2Body-EarthMODEq	8.85735929e-010	8.719136524e-010	3.816391647e-013
GEO-2Body-EarthMOEEc	8.857428679e-010	7.99998956e-010	3.468197951e-010
GEO-2Body-EarthMOEEq	8.857428679e-010	8.718858968e-010	8.744261208e-026
GEO-2Body-EarthTODEc	8.857498068e-010	7.99998956e-010	3.468336729e-010
GEO-2Body-EarthTODEq	8.857498068e-010	8.719136524e-010	6.299214622e-013
GEO-2Body-EarthTOEEc	8.857428679e-010	7.99998956e-010	3.468197951e-010
GEO-2Body-EarthTOEEq	8.857428679e-010	8.719136524e-010	1.940721889e-013
Hyperbolic-2Body-EarthFixed	9.596945461e-008	5.1627147e-008	2.220446049e-012
Hyperbolic-2Body-EarthMJ2000Ec	5.329070518e-012	1.33226763e-012	1.110223025e-012
Hyperbolic-2Body-EarthMJ2000Eq	5.329070518e-012	1.33226763e-012	1.33226763e-012
Hyperbolic-2Body-EarthMODEc	5.329070518e-012	1.33226763e-012	1.998401444e-012
Hyperbolic-2Body-EarthMODEq	5.329070518e-012	1.33226763e-012	2.220446049e-012
Hyperbolic-2Body-EarthMOEEc	4.440892099e-012	2.220446049e-012	1.110223025e-012
Hyperbolic-2Body-EarthMOEEq	4.440892099e-012	1.33226763e-012	1.33226763e-012
Hyperbolic-2Body-EarthTODEc	4.440892099e-012	2.220446049e-012	1.998401444e-012
Hyperbolic-2Body-EarthTODEq	4.440892099e-012	2.220446049e-012	2.220446049e-012
Hyperbolic-2Body-EarthTOEEc	5.329070518e-012	1.33226763e-012	1.110223025e-012
Hyperbolic-2Body-EarthTOEEq	5.329070518e-012	1.33226763e-012	1.33226763e-012
ISS-2Body-EarthFixed	2.755173867e-008	2.405187161e-008	1.391098348e-008
ISS-2Body-EarthGSE	8.265110818e-009	6.57274235e-009	5.144329407e-009
ISS-2Body-EarthGSM	1.852806797e-008	1.512762138e-008	9.931833134e-009
ISS-2Body-EarthMJ2000Ec	6.995792834e-009	8.162914789e-009	5.144218385e-009
ISS-2Body-EarthMJ2000Eq	6.995792834e-009	6.909979533e-009	6.708356093e-009
ISS-2Body-EarthMODEc	6.994210766e-009	8.163247855e-009	5.144329407e-009
ISS-2Body-EarthMODEq	6.994210766e-009	6.913029177e-009	6.706690758e-009
ISS-2Body-EarthMOEEc	6.995792834e-009	8.162692744e-009	5.143885318e-009
ISS-2Body-EarthMOEEq	6.995792834e-009	6.909979533e-009	6.708356093e-009
ISS-2Body-EarthTODEc	6.994294033e-009	8.162803766e-009	5.144329407e-009
ISS-2Body-EarthTODEq	6.994294033e-009	6.912781111e-009	6.706801781e-009
ISS-2Body-EarthTOEEc	6.995889978e-009	8.162248655e-009	5.143885318e-009
ISS-2Body-EarthTOEEq	6.995889978e-009	6.909500749e-009	6.708245071e-009
Mars1-2Body-MarsFixed	1.65924548e-005	1.533683858e-005	6.959634646e-006
Mars1-2Body-MarsMJ2000Ec	1.200730537e-005	1.675083128e-005	1.136635897e-005
Mars1-2Body-MarsMJ2000Eq	1.200730537e-005	1.665495386e-005	1.200201838e-005
Mercury1-2Body-MercuryFixed	1.854803089e-005	2.453733106e-005	1.46014203e-005
Mercury1-2Body-MercuryMJ2000Ec	1.714795417e-005	2.490750972e-005	1.591344523e-005
Mercury1-2Body-MercuryMJ2000Eq	1.714795417e-005	2.425520762e-005	1.714533227e-005
Moon-2Body-MoonFixed	8.846923194e-008	5.997391472e-008	5.85231863e-008
Moon-2Body-MoonMJ2000Ec	6.150671639e-008	8.812783836e-008	5.794542624e-008
Moon-2Body-MoonMJ2000Eq	6.150671639e-008	8.844119881e-008	6.176040235e-008
Neptune1-2Body-NeptuneFixed	4.272804333e-008	4.349276495e-008	2.337685601e-009
Neptune1-2Body-NeptuneMJ2000Ec	1.761257806e-009	2.033040403e-009	2.637001728e-009
Neptune1-2Body-NeptuneMJ2000Eq	1.761257806e-009	2.881250794e-009	1.721289777e-009
Pluto1-2Body-PlutoFixed	1.731889131e-005	2.236791574e-005	2.158779519e-005
Pluto1-2Body-PlutoMJ2000Ec	1.866654031e-005	2.554708012e-005	1.668872029e-005
Pluto1-2Body-PlutoMJ2000Eq	1.866654031e-005	2.480730821e-005	1.907892511e-005
Saturn1-2Body-SaturnFixed	1.174538244e-007	1.154329965e-007	2.131628207e-011
Saturn1-2Body-SaturnMJ2000Ec	3.552713679e-011	6.039613254e-011	4.97379915e-011
Saturn1-2Body-SaturnMJ2000Eq	3.552713679e-011	7.105427358e-011	2.842170943e-011
Uranus1-2Body-UranusFixed	3.869882192e-008	3.740296961e-008	1.643130076e-010
Uranus1-2Body-UranusMJ2000Ec	6.75015599e-011	1.740829703e-010	5.151434834e-011
Uranus1-2Body-UranusMJ2000Eq	6.75015599e-011	1.767475055e-010	3.286954042e-011
Venus1-2Body-VenusFixed	7.910974986e-006	4.326484948e-006	4.740029036e-006
Venus1-2Body-VenusMJ2000Ec	5.252162039e-006	7.2970468e-006	4.826740119e-006

$\hbox{ Table 3.43:} \quad \hbox{WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)}$

entum)			
Test Case	$X-(H) (m^2/sec)$	$Y-(H) (m^2/sec)$	$Z-(H) (m^2/sec)$
GEO-2Body-EarthFixed	3.896616363e-005	0.0002159961099	0.00803578162
GEO-2Body-EarthMJ2000Ec	1.003716411e-005	0.0005893525667	0.001411535777
GEO-2Body-EarthMJ2000Eq	0	0	0.001411535777
GEO-2Body-EarthMODEc	1.380584536e-005	0.0006111804396	0.001396983862
GEO-2Body-EarthMODEq	6.323830348e-007	1.447106324e-008	0.001498847269
GEO-2Body-EarthMOEEc	1.02179897e-005	0.0005966285244	0.001396983862
GEO-2Body-EarthMOEEq	1.486340163e-019	2.762164459e-021	0.001411535777
GEO-2Body-EarthTODEc	1.321609489e-005	0.0005966285244	0.001396983862
GEO-2Body-EarthTODEq	6.394884622 e-007	2.097522156e-005	0.001498847269
GEO-2Body-EarthTOEEc	1.725020127e-005	0.0005893525667	0.001396983862
GEO-2Body-EarthTOEEq	4.218847494e-008	7.14317494e-006	0.001498847269
Hyperbolic-2Body-EarthFixed	12.21429557	16.07602462	0.01862645149
Hyperbolic-2Body-EarthMJ2000Ec	0.0001451052704	0.0002546585165	0.0003929017112
Hyperbolic-2Body-EarthMJ2000Eq	8.698973375e-005	0.0003346940503	0.0002182787284
Hyperbolic-2Body-EarthMODEc	0.000164668279	0.0002983142622	0.0004802132025
Hyperbolic-2Body-EarthMODEq	0.0001312869813	0.0004074536264	0.0003055902198
Hyperbolic-2Body-EarthMOEEc	0.0001579081028	0.0002546585165	0.0003929017112
Hyperbolic-2Body-EarthMOEEq	9.90183124 e-005	0.0003055902198	0.0002328306437
Hyperbolic-2Body-EarthTODEc	0.0001351310175	0.0003055902198	0.0004365574569
Hyperbolic-2Body-EarthTODEq	0.0001949373996	0.0004365574569	0.0004220055416
Hyperbolic-2Body-EarthTOEEc	0.0001569260277	0.0002401066013	0.0005675246939
Hyperbolic-2Body-EarthTOEEq	0.0002851092695	0.0004802132025	0.0004511093721
ISS-2Body-EarthFixed	0.1522203092	0.1153202902	0.005118636182
ISS-2Body-EarthGSE	0.0006320988177	0.0007676135283	0.001055013854
ISS-2Body-EarthGSM	0.002212800609	0.01764419721	0.02349042916
ISS-2Body-EarthMJ2000Ec	0.0007821654435	0.0007894414011	0.001033185981
ISS-2Body-EarthMJ2000Eq	0.0007821654435	0.001149601303	0.0006511982065
ISS-2Body-EarthMODEc	0.0007785274647	0.0007894414011	0.001055013854
ISS-2Body-EarthMODEq	0.0007785274647	0.001142325345	0.00064028427
ISS-2Body-EarthMOEEc	0.0007821654435	0.0008003553376	0.001047737896
ISS-2Body-EarthMOEEq	0.0007821654435	0.001142325345	0.0006511982065
ISS-2Body-EarthTODEc	0.0007821654435	0.0007894414011	0.001055013854
ISS-2Body-EarthTODEq	0.0007821654435	0.001138687367	0.0006511982065
ISS-2Body-EarthTOEEc	0.0007894414011	0.0007894414011	0.001047737896
ISS-2Body-EarthTOEEq	0.0007785274647	0.001149601303	0.0006693881005
Mars1-2Body-MarsFixed	3.465424925	3.332335609	3.114930223
Mars1-2Body-MarsMJ2000Ec	0.3840796126	0.6094032869	0.784824806
Mars1-2Body-MarsMJ2000Eq	0.3840814315	0.5609703017	0.9097748261
Mercury1-2Body-MercuryFixed	0.3643126547	0.2606343514	0.3183149602
${\it Mercury 1-2Body-Mercury MJ 2000 Ec}$	0.3474442565	0.2259671419	0.2800552465
Mercury 1-2 Body-Mercury MJ 2000 Eq	0.3474442565	0.1747036688	0.3285458661
Moon-2Body-MoonFixed	0.000881982487	0.0009599716577	0.0007757989806
Moon-2Body-MoonMJ2000Ec	0.0008471943147	0.0005061338015	0.0002769411367
Moon-2Body-MoonMJ2000Eq	0.0008471943147	0.0004473084551	0.0004151843314
Neptune1-2Body-NeptuneFixed	1.165190042	1.052001608	0.1091102604
Neptune 1-2 Body-Neptune MJ 2000 Ec	0.1045991667	0.04150206223	0.09627547115
Neptune 1-2 Body-Neptune MJ 2000 Eq	0.1045991667	0.0009723253477	0.1047737896
Pluto1-2Body-PlutoFixed	1.363703973	1.145837388	1.336115361
Pluto1-2Body-PlutoMJ2000Ec	1.259122314	0.8433575545	0.5252992423
Pluto 1-2 Body-Pluto MJ 2000 Eq	1.2591222	0.5801695134	0.7820016208
Saturn1-2Body-SaturnFixed	7.802096661	7.727998309	0.004423782229
Saturn 1-2 Body-Saturn MJ 2000 Ec	0.004190951586	0.001455191523	0.004190951586
Saturn 1-2 Body-Saturn MJ 2000 Eq	0.004190951586	0.001082360576	0.004190951586
Uranus1-2Body-UranusFixed	1.692169462	1.658292604	0.003681634553
${\it Uranus 1-2} Body - {\it Uranus MJ2000} Ec$	0.005529727787	0.00320142135	0.004714820534
${\it Uranus 1-2} Body-{\it Uranus MJ2000} Eq$	0.005587935448	0.001361763341	0.00570435077
Venus1-2Body-VenusFixed	0.1877981504	0.235006155	0.2762390068

Table 3.44: WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Velocity Vectorbased)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
GEO-2Body-EarthFixed	2.259566986e-011	1.8981672e-005	1.296584657e-006
GEO-2Body-EarthMJ2000Ec	9.90318938e-011	1.799094207e-011	6.445399769e-012
GEO-2Body-EarthMJ2000Eq	9.90318938e-011	1.661248916e-011	0
GEO-2Body-EarthMODEc	9.90318938e-011	1.799094207e-011	6.445177725e- 012
GEO-2Body-EarthMODEq	9.90318938e-011	1.659827831e-011	7.11149889e-015
GEO-2Body-EarthMOEEc	9.90318938e-011	1.799094207e-011	6.445510792e- 012
GEO-2Body-EarthMOEEq	9.90318938e-011	1.661248916e-011	1.6293922e-027
GEO-2Body-EarthTODEc	9.992007222e-011	1.799094207e-011	6.445399769e-012
GEO-2Body-EarthTODEq	9.90318938e-011	1.661248916e-011	1.174581266e-014
GEO-2Body-EarthTOEEc	9.858780459e-011	1.799094207e-011	6.445510792e- 012
GEO-2Body-EarthTOEEq	9.90318938e-011	1.651301318e-011	3.609959554e-015
Hyperbolic-2Body-EarthFixed	3.197442311e-011	2.243467634e-010	2.131628207e-014
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Ec}$	3.552713679e-012	1.136868377e-013	1.065814104 e-014
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Eq}$	3.552713679e-012	1.136868377e-013	3.197442311e-014
Hyperbolic-2Body-EarthMODEc	4.440892099e-012	1.136868377e-013	1.953992523e- 014
Hyperbolic-2Body-EarthMODEq	4.440892099e-012	1.136868377e-013	3.197442311e-014
${\bf Hyperbolic2BodyEarthMOEEc}$	4.440892099e-012	1.136868377e-013	1.065814104 e-014
${\bf Hyperbolic2BodyEarthMOEEq}$	4.440892099e-012	1.136868377e-013	2.842170943e- 014
${\bf Hyperbolic\text{-}2Body\text{-}EarthTODEc}$	4.440892099e-012	1.136868377e-013	1.065814104 e-014
Hyperbolic-2Body-EarthTODEq	4.440892099e-012	1.136868377e-013	2.842170943e- 014
${\bf Hyperbolic\text{-}2Body\text{-}EarthTOEEc}$	4.440892099e-012	1.136868377e-013	1.953992523e- 014
Hyperbolic-2Body-EarthTOEEq	4.440892099e-012	1.136868377e-013	2.842170943e-014
ISS-2Body-EarthFixed	3.392841563e- 010	4.350155791e-010	1.116795545 e-010
ISS-2Body-EarthGSE	$4.076738946\mathrm{e}\text{-}010$	7.855760487e-011	3.865352483e- 011
ISS-2Body-EarthGSM	2.98427949e-010	1.684554718e-010	7.426859128e-011
ISS-2Body-Earth MJ2000 Ec	4.085620731e-010	7.858602658e-011	3.864730758 e-011
ISS-2Body-EarthMJ2000Eq	$4.067857162\mathrm{e}\text{-}010$	9.879386198e-011	5.010614146e-011
ISS-2Body-EarthMODEc	$4.067857162\mathrm{e}\text{-}010$	7.850076145e- 011	3.864730758 e-011
ISS-2Body-EarthMODEq	$4.076738946\mathrm{e}\text{-}010$	9.879386198e-011	5.009281878e-011
ISS-2Body-EarthMOEEc	$4.067857162\mathrm{e}\text{-}010$	7.861444828e-011	3.864464304 e-011
ISS-2Body-EarthMOEEq	4.067857162e- 010	9.879386198e-011	5.010614146e-011
ISS-2Body-EarthTODEc	4.058975378e-010	7.861444828e-011	3.864730758e-011
ISS-2Body-EarthTODEq	4.067857162e- 010	9.879386198e-011	5.009415105e- 011
ISS-2Body-EarthTOEEc	4.085620731e-010	7.861444828e-011	3.864553122 e-011
ISS-2Body-EarthTOEEq	4.067857162e-010	9.882228369e-011	5.010303283e- 011
Mars1-2Body-MarsFixed	2.56695909 e - 006	3.176321002e-007	1.198383277e-007
Mars 1-2 Body-Mars MJ 2000 Ec	2.3802742e-006	4.106476013e-007	1.879441101e-007
Mars1-2Body-MarsMJ2000Eq	2.3802742e-006	3.544875824e-007	1.887221774e-007
Mercury1-2Body-MercuryFixed	3.661154935 e006	7.217152387e-007	2.972837123e-007
Mercury1-2Body-MercuryMJ2000Ec	3.65724917e-006	7.752641977e-007	3.230690897 e-007
Mercury1-2Body-MercuryMJ2000Eq	3.65724917e-006	6.616439805e-007	3.315035197e-007
Moon-2Body-MoonFixed	1.3161916e-008	4.923492725e-009	2.117699793e-009
Moon-2Body-MoonMJ2000Ec	1.312683295 e-008	4.903711215e-009	2.089478812e-009
Moon-2Body-MoonMJ2000Eq	1.312683295 e-008	4.149796951e-009	$2.132098054 \mathrm{e}\text{-}009$
Neptune1-2Body-NeptuneFixed	3.32711636e-009	2.27714736e-010	1.292577156e-011
Neptune1-2Body-NeptuneMJ2000Ec	3.531397397e-009	1.518785098e-011	1.053734877e-011
Neptune1-2Body-NeptuneMJ2000Eq	3.531397397e-009	1.961986129e-011	7.87991894e-012
Pluto1-2Body-PlutoFixed	4.408564513e-006	1.837341372e-006	1.37896188e-006
Pluto1-2Body-PlutoMJ2000Ec	$4.473986848\mathrm{e}\text{-}006$	2.589462298e-006	1.17972953e-006
Pluto1-2Body-PlutoMJ2000Eq	$4.473986848\mathrm{e}\text{-}006$	2.159538809e-006	1.245299624 e-006
Saturn1-2Body-SaturnFixed	6.039613254 e-011	4.178986046e-010	3.339550858e-013
Saturn1-2Body-SaturnMJ2000Ec	6.039613254 e-011	2.611244554e-013	1.136868377e-013
Saturn1-2Body-SaturnMJ2000Eq	7.105427358e-011	2.486899575 e - 013	8.881784197e-014
Uranus1-2Body-UranusFixed	1.509903313e-010	2.093898388e-010	1.229238933e-012
Uranus1-2Body-UranusMJ2000Ec	1.705302566e-010	1.687538997e-012	5.897504707e-013
Uranus1-2Body-UranusMJ2000Eq	1.705302566e-010	1.440625397e-012	4.831690603e- 013
Venus1-2Body-VenusFixed	1.088321433e-006	8.689147535e-008	3.770613866e-008

Table 3.45: WinGMAT/MacGMAT Coordinate System Dependent Parameter Differences (Angle-based)

Table 5.45. WIIIGMAT/MacGMAT				, ,	
Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
GEO-2Body-EarthFixed	5.547e-009	1.111e-014	1.578e-006	2.543e-010	7.04e-010
GEO-2Body-EarthMJ2000Ec	8.149e-006	7.069e-012	3.908e-014	1.751e-011	0
GEO-2Body-EarthMJ2000Eq	8.149e-006	0 7.060a.012	0 3 00% 014	1.788e-011	0
GEO-2Body-EarthMODEc	8.39e-006	7.069e-012	3.908e-014	1.751e-011	1.188e-011
GEO-2Body-EarthMODEq	8.354e-006	6.855e-015	2.963e-011	1.782e-011	1.137e-013
GEO-2Body-EarthMOEEc	8.151e-006	7.069e-012	3.197e-014	1.751e-011	0
GEO-2Body-EarthMOEEq GEO-2Body-EarthTODEc	8.151e-006 8.15e-006	1.571e-027 7.069e-012	0 3.908e-014	1.782e-011 1.751e-011	0 1.251e-011
GEO-2Body-EarthTODEq	8.029e-006	1.11e-014	3.12e-011	1.791e-011 1.791e-011	2.268e-011
GEO-2Body-EarthTOEEc	8.309e-006	7.069e-012	3.197e-011	1.751e-011 1.751e-011	9.419e-011
GEO-2Body-EarthTOEEq	8.029e-006	3.597e-015	0	1.782e-011	5.599e-011
Hyperbolic-2Body-EarthFixed	1.99e-013	3.197e-013	1.137e-013	2.243e-010	2.244e-010
Hyperbolic-2Body-EarthMJ2000Ec	4.263e-013	1.954e-014	1.599e-013	1.137e-013	0
Hyperbolic-2Body-EarthMJ2000Eq	3.553e-013	3.197e-014	8.527e-014	1.137e-013	0
Hyperbolic-2Body-EarthMODEc	3.979e-013	1.954e-014	1.315e-013	1.137e-013	1.184e-011
Hyperbolic-2Body-EarthMODEq	3.695e-013	3.908e-014	1.208e-013	1.137e-013	2.278e-011
Hyperbolic-2Body-EarthMOEEc	4.263e-013	1.954e-014	1.208e-013	1.137e-013	0
Hyperbolic-2Body-EarthMOEEq	3.553e-013	3.197e-014	1.066e-013	1.137e-013	0
Hyperbolic-2Body-EarthTODEc	4.405e-013	1.954e-014	1.208e-013	1.137e-013	1.251e-011
Hyperbolic-2Body-EarthTODEq	3.979e-013	3.197e-014	1.279e-013	1.137e-013	2.407e-011
Hyperbolic-2Body-EarthTOEEc	4.405e-013	1.954e-014	1.386e-013	1.137e-013	0
Hyperbolic-2Body-EarthTOEEq	4.263e-013	3.197e-014	1.705 e-013	1.137e-013	0
ISS-2Body-EarthFixed	1.567e-010	1.078e-010	6.999e-012	3.318e-010	2.318e-010
ISS-2Body-EarthGSE	1.648e-009	4.005e-011	7.105e-013	7.881e-011	9.663 e-013
ISS-2Body-EarthGSM	6.747e-009	7.885e-011	3.228e-011	1.605e-010	5.969 e-012
ISS-2Body-EarthMJ2000Ec	1.418e-009	4.004 e-011	6.892 e-013	7.884e-011	9.805 e-013
ISS-2Body-EarthMJ2000Eq	1.419e-009	5.081e-011	5.613e-013	1.026e-010	7.461e-013
ISS-2Body-EarthMODEc	1.419e-009	4.005e-011	6.892 e-013	7.878e-011	9.663 e-013
ISS-2Body-Earth MODEq	1.422e-009	5.079e-011	5.684 e-013	1.026e-010	7.603e-013
${\rm ISS\text{-}2Body\text{-}EarthMOEEc}$	1.419e-009	4.004 e-011	7.034e-013	7.878e-011	9.805 e-013
ISS-2Body-Earth MOEEq	1.418e-009	5.081e-011	5.755e-013	1.026e-010	7.603e-013
ISS-2Body-EarthTODEc	1.428e-009	4.005e-011	7.105e-013	7.878e-011	9.805 e-013
ISS-2Body-EarthTODEq	1.428e-009	5.079e-011	5.898e-013	1.026e-010	7.674e-013
ISS-2Body-EarthTOEEc	1.419e-009	4.004e-011	7.105e-013	7.884e-011	9.948e-013
ISS-2Body-EarthTOEEq	1.424e-009	5.08e-011	5.684e-013	1.027e-010	7.603e-013
Mars1-2Body-MarsFixed	6.651e-007	1.57e-007	1.706e-008	3.081e-007	3.345e-008
Mars1-2Body-MarsMJ2000Ec	4.123e-008	2.503e-007	1.833e-009	4.191e-007	3.198e-009
Mars1-2Body-MarsMJ2000Eq	4.11e-008	2.15e-007	2.508e-009	4.378e-007	3.304e-009
Mercury1-2Body-MercuryFixed	2.398e-008	4.319e-007	1.82e-009	6.273e-007	2.7e-009
Mercury1-2Body-MercuryMJ2000Ec	2.128e-008	4.547e-007	1.452e-009	7.112e-007	1.856e-009
Mercury1-2Body-MercuryMJ2000Eq	2.162e-008	3.982e-007	1.935e-009	7.662e-007	1.613e-009
Moon-2Body-MoonFixed	8.67e-011	2.932e-009	1.787e-011	4.735e-009	1.469e-011
Moon-2Body-MoonMJ2000Ec	4.79e-011	2.914e-009	9.791e-012	4.655e-009	4.306e-012
Moon-2Body-MoonMJ2000Eq	5.156e-011	2.513e-009	8.278e-012	4.934e-009	1.057e-011
Neptune 1-2Body-Neptune Fixed	1.117e-010	2.132e-014	7.788e-012	2.085e-010	2.09e-010
Neptune 1-2Body-Neptune MJ2000 Ec	3.546e-011	1.421e-014	1.208e-013	1.137e-013	1.99e-013
Neptune1-2Body-NeptuneMJ2000Eq	3.543e-011	1.421e-014	1.421e-013	1.137e-013	1.705e-013
Pluto1-2Body-PlutoFixed Pluto1-2Body-PlutoMJ2000Ec	3.573e-007	1.593e-006	4.45e-008 2.63e-008	3.427e-006	5.587e-008
Pluto1-2Body-PlutoMJ2000Ec Pluto1-2Body-PlutoMJ2000Eq	2.584e-007	1.608e-006		2.252e-006	2.507e-008
Saturn1-2Body-SaturnFixed	2.522e-007 1.823e-011	1.372e-006 2.132e-014	1.672e-008 2.7e-013	2.939e-006 4.169e-010	3.615e-008 4.17e-010
Saturn1-2Body-SaturnMJ2000Ec	1.339e-012	2.132e-014 1.421e-014	4.974e-014	4.109e-010 1.137e-013	9.948e-014
Saturn1-2Body-SaturnMJ2000Ec Saturn1-2Body-SaturnMJ2000Eq	1.359e-012 1.251e-012	1.421e-014 1.421e-014	4.974e-014 4.974e-014	1.137e-013 1.137e-013	5.684e-014
Uranus1-2Body-UranusFixed	2.359e-011	2.132e-014	4.974e-014 5.826e-013	2.085e-010	2.086e-010
Uranus1-2Body-UranusMJ2000Ec	7.58e-012	1.421e-014	1.563e-013	1.137e-013	2.984e-013
Uranus1-2Body-UranusMJ2000Eq	7.461e-012	1.421e-014 1.421e-014	1.705e-013	1.137e-013 1.137e-013	2.274e-013
Venus1-2Body-VenusFixed	2.72e-009	5.242e-008	1.107e-010	8.421e-008	3.777e-010
Venus1-2Body-VenusMJ2000Ec	2.669e-009	5.242e-008 5.342e-008	1.041e-010	8.603e-008	2.702e-010
voltabi-2Dody-voltabilio2000DC	4.00 <i>0</i> C-00 <i>0</i>	0.0140-000	T'0-TTC-0TQ	0.0000-000	2.1020-010

Draft: Work in Progress CHAPTER 3. CALCULATION PARAMETERS

Win/Linux GMAT Comparison 3.3.5

78

Table 3.46: WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Position)

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)
GEO-2Body-EarthFixed	1.818989404e-009	1.455191523e-008	1.065814104e-011
GEO-2Body-EarthMJ2000Ec	1.455191523e- 008	1.455191523e-008	1.091393642e-008
GEO-2Body-EarthMJ2000Eq	1.455191523e-008	1.455191523e-008	0
GEO-2Body-EarthMODEc	1.455191523e- 008	1.455191523e- 008	1.091393642e-008
GEO-2Body-EarthMODEq	1.455191523e- 008	1.455191523e-008	1.065814104e-011
GEO-2Body-EarthMOEEc	1.455191523e-008	1.455191523e-008	1.091393642e-008
GEO-2Body-EarthMOEEq	1.455191523e-008	1.455191523e-008	1.615587134e-024
GEO-2Body-EarthTODEc	1.455191523e- 008	1.455191523e- 008	1.091393642 e-008
GEO-2Body-EarthTODEq	1.455191523e- 008	1.455191523e- 008	$1.065814104\mathrm{e}\text{-}011$
GEO-2Body-EarthTOEEc	1.455191523e-008	1.455191523e-008	1.091393642 e-008
GEO-2Body-EarthTOEEq	1.455191523e-008	1.455191523e-008	8.881784197e-013
Hyperbolic-2Body-EarthFixed	1.164153218e-007	1.164153218e-007	1.018634066e-007
Hyperbolic-2Body-EarthMJ2000Ec	1.164153218e-007	1.164153218e-007	1.455191523 e-008
Hyperbolic-2Body-EarthMJ2000Eq	1.164153218e-007	1.164153218e-007	1.164153218e-007
Hyperbolic-2Body-EarthMODEc	1.164153218e-007	1.164153218e-007	1.455191523 e-008
Hyperbolic-2Body-EarthMODEq	1.164153218e-007	1.164153218e-007	1.164153218e-007
Hyperbolic-2Body-EarthMOEEc	1.164153218e-007	1.164153218e-007	1.455191523 e-008
Hyperbolic-2Body-EarthMOEEq	1.164153218e-007	1.164153218e-007	1.164153218e-007
Hyperbolic-2Body-EarthTODEc	1.164153218e-007	1.164153218e-007	1.455191523 e-008
Hyperbolic-2Body-EarthTODEq	1.164153218e-007	1.455191523e- 008	$1.164153218\mathrm{e}\text{-}007$
Hyperbolic-2Body-EarthTOEEc	1.164153218e-007	1.164153218e-007	1.455191523e- 008
${\bf Hyperbolic\text{-}2Body\text{-}EarthTOEEq}$	1.164153218e-007	1.164153218e-007	1.164153218e-007
ISS-2Body-EarthFixed	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthGSE	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthGSM	1.818989404e-009	9.094947018e-010	1.818989404e-009
ISS-2Body-EarthMJ2000Ec	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthMJ2000Eq	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthMODEc	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthMODEq	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthMOEEc	1.818989404e-009	1.818989404e-009	9.094947018e-010
ISS-2Body-EarthMOEEq	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthTODEc	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthTODEq	1.818989404e-009	1.818989404e-009	1.818989404e-009
ISS-2Body-EarthTOEEc	1.818989404e-009	1.818989404e-009	9.094947018e-010
ISS-2Body-EarthTOEEq	1.818989404e-009	1.818989404e-009	1.818989404e-009
Mars1-2Body-MarsFixed	1.818989404e-009	1.818989404e-009	9.094947018e-010
Mars1-2Body-MarsMJ2000Ec	9.094947018e-010	1.818989404e-009	9.094947018e-010
Mars1-2Body-MarsMJ2000Eq	9.094947018e-010	1.818989404e-009	9.094947018e-010
Mercury1-2Body-MercuryFixed	9.094947018e-010	9.094947018e-010	9.094947018e-010
Mercury1-2Body-MercuryMJ2000Ec	9.094947018e-010	9.094947018e-010	9.094947018e-010
Mercury1-2Body-MercuryMJ2000Eq	9.094947018e-010	1.818989404e-009	9.094947018e-010
Moon-2Body-MoonFixed	1.136868377e-009	1.364242053e- 009	1.023181539e-009
${\it Moon-2Body-MoonMJ2000Ec}$	9.094947018e-010	1.023181539e-009	9.094947018e-010
Moon-2Body-MoonMJ2000Eq	9.094947018e-010	9.094947018e-010	9.094947018e-010
Neptune1-2Body-NeptuneFixed	1.455191523e- 008	1.455191523e- 008	1.091393642e-008
Neptune1-2Body-NeptuneMJ2000Ec	1.091393642e-008	1.455191523e-008	1.091393642e-008
Neptune1-2Body-NeptuneMJ2000Eq	1.091393642e-008	1.455191523e-008	1.091393642e-008
Pluto1-2Body-PlutoFixed	9.094947018e-010	9.094947018e-010	1.023181539e-009
Pluto1-2Body-PlutoMJ2000Ec	1.023181539e-009	9.094947018e-010	1.023181539e-009
Pluto1-2Body-PlutoMJ2000Eq	1.023181539e-009	9.094947018e-010	1.023181539e-009
Saturn1-2Body-SaturnFixed	1.455191523e-008	1.455191523e-008	1.455191523e-008
Saturn1-2Body-SaturnMJ2000Ec	1.455191523e-008	1.455191523e-008	1.455191523e-008
Saturn1-2Body-SaturnMJ2000Eq	1.455191523e-008	1.455191523e- 008	1.455191523e-008
Uranus1-2Body-UranusFixed	1.455191523e-008	1.455191523e- 008	1.455191523e- 008
Uranus1-2Body-UranusMJ2000Ec	1.455191523e- 008	1.455191523e- 008	1.455191523e- 008
Uranus1-2Body-UranusMJ2000Eq	1.455191523e- 008	1.455191523e- 008	1.455191523e- 008
Venus1-2Body-VenusFixed	1.818989404e-009	1.818989404e-009	1.818989404e-009
Venus1-2Body-VenusMJ2000Ec	1.818989404e-009	1.818989404e-009	1.818989404e-009

Table 3.47: WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Velocity)

Table 5.47. WIIIGWAT/EIIIuxGWAT Co	<u> </u>	-	, ,
Test Case	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
GEO-2Body-EarthFixed	1.058791184e-018	1.058791184e-019	1.084202172e-015
GEO-2Body-EarthMJ2000Ec	8.881784197e-013	8.881784197e-013	8.881784197e-013
GEO-2Body-EarthMJ2000Eq	8.881784197e-013	8.881784197e-013	0 001704107 019
GEO-2Body-EarthMODEc	8.881784197e-013	8.881784197e-013	8.881784197e-013
GEO-2Body-EarthMODEq	8.881784197e-013	8.881784197e-013	1.084202172e-015
GEO-2Body-EarthMOEEc	8.881784197e-013	8.881784197e-013	8.881784197e-013
GEO-2Body-EarthMOEEq	8.881784197e-013	8.881784197e-013	9.860761315e-029
GEO-2Body-EarthTODEc	8.881784197e-013	8.881784197e-013	8.881784197e-013
GEO-2Body-EarthTODEq	8.881784197e-013	8.881784197e-013	1.084202172e-015
GEO-2Body-EarthTOEEc	8.881784197e-013	8.881784197e-013	8.881784197e-013
GEO-2Body-EarthTOEEq	8.881784197e-013	8.881784197e-013	1.084202172e-016
Hyperbolic-2Body-EarthFixed	1.776356839e-012	7.105427358e-012	8.881784197e-013
Hyperbolic-2Body-EarthMJ2000Ec	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthMJ2000Eq	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthMODEc	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthMODEq	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthMOEEc	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthMOEEq	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthTODEc	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthTODEq	1.776356839e-012	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthTOEEc	8.881784197e-013	8.881784197e-013	8.881784197e-013
Hyperbolic-2Body-EarthTOEEq	8.881784197e-013	8.881784197e-013	8.881784197e-013
ISS-2Body-EarthFixed	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthGSE	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthGSM	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthMJ2000Ec	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthMJ2000Eq	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthMODEc	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthMODEq	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthMOEEc	1.776356839e-012	1.776356839e-012	8.881784197e-013
ISS-2Body-EarthMOEEq	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthTODEc	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthTODEq	1.776356839e-012	1.776356839e-012	1.776356839e-012
ISS-2Body-EarthTOEEc	1.776356839e-012	1.776356839e-012	8.881784197e-013
ISS-2Body-EarthTOEEq	1.776356839e-012	1.776356839e-012	1.776356839e-012
Mars1-2Body-MarsFixed	1.110223025e-012	1.33226763e-012	8.881784197e-013
Mars1-2Body-MarsMJ2000Ec	8.881784197e-013	8.881784197e-013	8.881784197e-013
Mars1-2Body-MarsMJ2000Eq	8.881784197e-013	8.881784197e-013	8.881784197e-013
Mercury1-2Body-MercuryFixed	8.881784197e-013	8.881784197e-013	8.881784197e-013
Mercury1-2Body-MercuryMJ2000Ec	8.881784197e-013	8.881784197e-013	8.881784197e-013
Mercury1-2Body-MercuryMJ2000Eq	8.881784197e-013	8.881784197e-013	8.881784197e-013
Moon-2Body-MoonFixed	8.881784197e-013	1.110223025e-012	8.881784197e-013
Moon-2Body-MoonMJ2000Ec	8.881784197e-013	8.881784197e-013	8.881784197e-013
Moon-2Body-MoonMJ2000Eq	8.881784197e-013	8.881784197e-013	8.881784197e-013
Neptune1-2Body-NeptuneFixed	1.065814104e-011	1.065814104e-011	1.065814104e-011
Neptune1-2Body-NeptuneMJ2000Ec	1.065814104e-011	1.065814104e-011	1.065814104e-011
Neptune1-2Body-NeptuneMJ2000Eq	1.065814104e-011	1.065814104e-011	1.065814104e-011
Pluto1-2Body-PlutoFixed	1.110223025e-013	1.110223025e-013	1.110223025e-013
Pluto1-2Body-PlutoMJ2000Ec	1.110223025e-013	1.110223025e-013	1.110223025e-013
Pluto1-2Body-PlutoMJ2000Eq	1.110223025e-013	1.110223025e-013	1.110223025e-013
Saturn1-2Body-SaturnFixed	1.065814104e-011	1.065814104e-011	1.065814104e-011
Saturn1-2Body-SaturnMJ2000Ec	1.065814104e-011	1.065814104e-011	1.065814104e-011
Saturn1-2Body-SaturnMJ2000Eq	1.065814104e-011	1.065814104e-011	1.065814104e-011
Uranus1-2Body-UranusFixed	1.065814104e-011	1.065814104e-011	1.065814104e-011
Uranus1-2Body-UranusMJ2000Ec	1.776356839e-012	1.065814104e-011	1.065814104e-011
Uranus1-2Body-UranusMJ2000Eq	1.776356839e-012	1.065814104e-011	1.776356839e-012
Venus1-2Body-VenusFixed	1.776356839e-012	1.776356839e-012	1.776356839e-012
Venus1-2Body-VenusMJ2000Ec	1.776356839e-012	1.776356839e-012	1.776356839e-012

Table 3.48: WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Specific Angular Momentum)

entum)			
Test Case	$X-(H) (m^2/sec)$	$Y-(H) (m^2/sec)$	Z -(H) (m^2/sec)
GEO-2Body-EarthFixed	1.421085472e-008	1.776356839e-009	1.387778781e-011
GEO-2Body-EarthMJ2000Ec	8.077935669e-022	1.455191523e- 005	0.0001018634066
GEO-2Body-EarthMJ2000Eq	0	0	0.0001018634066
GEO-2Body-EarthMODEc	1.421085472e-008	1.455191523e- 005	0.0001018634066
GEO-2Body-EarthMODEq	1.421085472e-008	1.040834086e-011	0.0001018634066
GEO-2Body-EarthMOEEc	9.693522803e- 021	1.455191523e- 005	0.0001018634066
GEO-2Body-EarthMOEEq	9.693522803e- 021	0	0.0001018634066
GEO-2Body-EarthTODEc	1.421085472e-008	1.455191523e- 005	0.0001018634066
GEO-2Body-EarthTODEq	1.421085472e-008	1.776356839e-009	0.0001018634066
GEO-2Body-EarthTOEEc	0	1.455191523e- 005	0.0001018634066
GEO-2Body-EarthTOEEq	8.881784197e-010	8.881784197e-010	0.0001018634066
Hyperbolic-2Body-EarthFixed	0.001862645149	0.0009313225746	0.0111758709
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Ec}$	9.693522803e- 021	1.455191523e- 005	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthMJ2000Eq}$	8.077935669e-022	0	0
Hyperbolic-2Body-EarthMODEc	1.421085472e-008	1.455191523e- 005	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthMODEq}$	1.421085472e-008	0	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthMOEEc}$	8.077935669e-022	1.455191523e- 005	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthMOEEq}$	8.077935669e-022	0	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthTODEc}$	1.421085472e-008	1.455191523e- 005	0
${\bf Hyperbolic\text{-}2Body\text{-}EarthTODEq}$	1.421085472e-008	0	0
Hyperbolic-2Body-EarthTOEEc	0	1.455191523e- 005	0
${\bf Hyperbolic-2Body-EarthTOEEq}$	0	0	0
ISS-2Body-EarthFixed	1.455191523e- 005	1.455191523e- 005	7.275957614e-006
ISS-2Body-EarthGSE	9.094947018e-007	7.275957614e-006	1.455191523e-005
ISS-2Body-EarthGSM	9.094947018e-007	1.455191523e-005	1.455191523e-005
ISS-2Body-EarthMJ2000Ec	1.091393642e-005	0	1.455191523e-005
ISS-2Body-EarthMJ2000Eq	1.091393642e-005	0	0
ISS-2Body-EarthMODEc	1.091393642e- 005	1.091393642e-005	1.455191523e-005
ISS-2Body-EarthMODEq	1.091393642e-005	1.091393642e-005	1.091393642e-005
ISS-2Body-Earth MOEE c	1.091393642e-005	1.091393642e-005	0
ISS-2Body-Earth MOEEq	1.091393642e-005	0	0
ISS-2Body-EarthTODEc	1.091393642e-005	1.091393642e-005	1.455191523e-005
ISS-2Body-EarthTODEq	7.275957614e-006	1.091393642e-005	7.275957614e-006
ISS-2Body-EarthTOEEc	7.275957614e-006	1.091393642e-005	0
ISS-2Body-EarthTOEEq	7.275957614e-006	1.091393642e-005	7.275957614e-006
Mars1-2Body-MarsFixed	1.818989404e-006	2.728484105e-006	1.091393642e-005
Mars1-2Body-MarsMJ2000Ec	0	9.094947018e-007	0
Mars1-2Body-MarsMJ2000Eq	0	1.058791184e-016	0
Mercury1-2Body-MercuryFixed	1.818989404e-006	1.818989404e-006	1.818989404e-006
Mercury1-2Body-MercuryMJ2000Ec	1.818989404e-006	9.094947018e-007	1.818989404e-006
Mercury1-2Body-MercuryMJ2000Eq	1.818989404e-006	1.32348898e-017	1.818989404e-006
Moon-2Body-MoonFixed	1.364242053e-006	1.136868377e-006	1.364242053e-006
Moon-2Body-MoonMJ2000Ec	9.094947018e-007	0	9.094947018e-007
Moon-2Body-MoonMJ2000Eq	9.094947018e-007	1.033975766e-019	9.094947018e-007
Neptune1-2Body-NeptuneFixed	0.0001164153218	0.0001164153218	0.0001164153218
Neptune1-2Body-NeptuneMJ2000Ec	0.0001164153218	0.0001164153218	0.0001164153218
Neptune1-2Body-NeptuneMJ2000Eq	0.0001164153218	1.355252716e-014	0.0001164153218
Pluto1-2Body-PlutoFixed	1.023181539e-006	1.023181539e-006	1.136868377e-007
Pluto1-2Body-PlutoMJ2000Ec	0	1.136868377e-007	0
Pluto1-2Body-PlutoMJ2000Eq	0	8.470329473e-016	0
Saturn1-2Body-SaturnFixed	0.0002328306437	0.0009313225746	0.0005384208634
Saturn1-2Body-SaturnMJ2000Ec	0.0009313225746	0.0001164153218	0.0009313225746
Saturn1-2Body-SaturnMJ2000Eq	0.0009313225746	1.016439537e-014	0.0009313225746
Uranus1-2Body-UranusFixed	0.0001164153218	0.0001164153218	0.0001164153218
Uranus1-2Body-UranusMJ2000Ec	0.0001164153218	0.0001164153218	0.0001164153218
Uranus1-2Body-UranusMJ2000Eq	0.0001164153218	1.355252716e-014	0.0001164153218
Venus1-2Body-VenusFixed	9.094947018e-007	1.455191523e-005	1.455191523e-005

Table 3.49: WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Velocity Vectorbased)

Test Case	Mag-Vel (m/s)	Right Asc. of Vel. (deg)	Dec. of Vel. (deg)
GEO-2Body-EarthFixed	1.084202172e-015	1.136868377e-013	0
GEO-2Body-EarthMJ2000Ec	8.881784197e-013	1.136868377e-013	1.065814104e-014
GEO-2Body-EarthMJ2000Eq	8.881784197e-013	1.136868377e-013	0
GEO-2Body-EarthMODEc	8.881784197e-013	1.136868377e-013	1.065814104e-014
GEO-2Body-EarthMODEq	8.881784197e-013	1.136868377e-013	1.040834086e-017
GEO-2Body-EarthMOEEc	8.881784197e-013	1.136868377e-013	1.065814104e-014
GEO-2Body-EarthMOEEq	8.881784197e-013	1.136868377e-013	1.57772181e-030
GEO-2Body-EarthTODEc	8.881784197e-013	1.136868377e-013	1.065814104e-014
GEO-2Body-EarthTODEq	8.881784197e-013	1.136868377e-013	1.040834086e-017
GEO-2Body-EarthTOEEc	8.881784197e-013	1.136868377e-013	1.065814104e-014
GEO-2Body-EarthTOEEq	8.881784197e-013	1.136868377e-013	1.084202172e-018
Hyperbolic-2Body-EarthFixed	1.065814104e-011	1.136868377e-013	1.065814104e-014
Hyperbolic-2Body-EarthMJ2000Ec	1.776356839e-012	1.136868377e-013	1.065814104e-014
Hyperbolic-2Body-EarthMJ2000Eq	1.776356839e-012	1.136868377e-013	1.065814104e-014
Hyperbolic-2Body-EarthMODEc	1.776356839e-012	1.136868377e-013	1.065814104e-014
Hyperbolic-2Body-EarthMODEq	1.776356839e-012	1.136868377e-013	1.065814104 e - 014
Hyperbolic-2Body-EarthMOEEc	1.776356839e-012	1.136868377e-013	1.065814104 e - 014
Hyperbolic-2Body-EarthMOEEq	1.776356839e-012	1.136868377e-013	1.065814104 e - 014
Hyperbolic-2Body-EarthTODEc	1.776356839e-012	1.136868377e-013	1.065814104 e - 014
Hyperbolic-2Body-EarthTODEq	1.776356839e-012	1.136868377e-013	1.065814104e-014
Hyperbolic-2Body-EarthTOEEc	1.776356839e-012	1.136868377e-013	1.065814104 e - 014
Hyperbolic-2Body-EarthTOEEq	1.776356839e-012	1.136868377e-013	1.065814104e-014
ISS-2Body-EarthFixed	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthGSE	1.776356839e-012	1.065814104e-014	1.421085472e-014
ISS-2Body-EarthGSM	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMJ2000Ec	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMJ2000Eq	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMODEc	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMODEq	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMOEEc	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthMOEEq	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthTODEc	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthTODEq	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthTOEEc	1.776356839e-012	1.136868377e-013	1.421085472e-014
ISS-2Body-EarthTOEEq	1.776356839e-012	1.136868377e-013	1.421085472e-014
Mars1-2Body-MarsFixed	1.33226763e- 012	1.136868377e-013	1.065814104 e-014
Mars1-2Body-MarsMJ2000Ec	8.881784197e-013	1.136868377e-013	1.421085472e-014
Mars1-2Body-MarsMJ2000Eq	8.881784197e-013	1.136868377e-013	1.421085472e-014
Mercury1-2Body-MercuryFixed	8.881784197e-013	1.136868377e-013	1.421085472e-014
Mercury1-2Body-MercuryMJ2000Ec	8.881784197e-013	1.136868377e-013	1.421085472e-014
Mercury 1-2 Body-Mercury MJ 2000 Eq	8.881784197e-013	1.136868377e-013	1.421085472e-014
Moon-2Body-MoonFixed	1.110223025 e-012	1.136868377e-013	1.421085472e-014
Moon-2Body-MoonMJ2000Ec	8.881784197e-013	1.136868377e-013	1.421085472e-014
Moon-2Body-MoonMJ2000Eq	8.881784197e-013	1.136868377e-013	1.421085472e-014
Neptune1-2Body-NeptuneFixed	1.065814104e-011	1.136868377e-013	2.131628207e-014
Neptune1-2Body-NeptuneMJ2000Ec	1.065814104e-011	1.136868377e-013	1.421085472e-014
Neptune1-2Body-NeptuneMJ2000Eq	1.065814104e-011	1.136868377e-013	1.421085472e-014
Pluto1-2Body-PlutoFixed	1.110223025 e-013	1.136868377e-013	1.421085472e-014
Pluto1-2Body-PlutoMJ2000Ec	0	1.136868377e-013	1.421085472e-014
Pluto1-2Body-PlutoMJ2000Eq	0	1.136868377e-013	$1.421085472\mathrm{e}\text{-}014$
Saturn1-2Body-SaturnFixed	1.065814104 e-011	3.552713679e-013	$2.131628207 \mathrm{e}\text{-}014$
Saturn1-2Body-SaturnMJ2000Ec	1.065814104 e-011	1.136868377e-013	1.421085472e-014
Saturn1-2Body-SaturnMJ2000Eq	1.065814104 e-011	1.136868377e-013	1.421085472e-014
Uranus1-2Body-UranusFixed	1.065814104 e-011	1.136868377e-013	$2.131628207 \mathrm{e}\text{-}014$
Uranus1-2Body-UranusMJ2000Ec	1.065814104 e-011	1.136868377e-013	1.421085472e-014
Uranus1-2Body-UranusMJ2000Eq	1.065814104 e-011	1.136868377e-013	1.421085472 e-014
Venus1-2Body-VenusFixed	1.776356839e-012	1.136868377e-013	1.421085472e-014

Table 3.50: WinGMAT/LinuxGMAT Coordinate System Dependent Parameter Differences (Angle-based)

Table 3.50: WINGMAT/LINUXGMAT				, -	*
Test Case	Arg. of Per. (deg)	Decl. (deg)	Inc. (deg)	RA (deg)	RAAN (deg)
GEO-2Body-EarthFixed	1.302e-011	1.041e-017	0	1.137e-013	1.137e-013
GEO-2Body-EarthMJ2000Ec	1.137e-013	1.066e-014	7.105e-015	1.137e-013	0
GEO-2Body-EarthMJ2000Eq	1.137e-013	0	0	1.137e-013	0
GEO-2Body-EarthMODEc	1.137e-013	1.066e-014	1.066e-014	1.137e-013	1.506e-012
GEO-2Body-EarthMODEq	1.137e-013	1.041e-017	3.7e-012	1.137e-013	1.137e-013
GEO-2Body-EarthMOEEc	1.137e-013	1.066e-014	1.066e-014	1.137e-013	0
GEO-2Body-EarthMOEEq	9.948e-014	1.578e-030	0	1.137e-013	0
GEO-2Body-EarthTODEc	1.137e-013	1.066e-014	1.066e-014	1.137e-013	1.62e-012
GEO-2Body-EarthTODEq	1.137e-013	1.041e-017	3.894e-012	1.137e-013	1.137e-013
GEO-2Body-EarthTOEEc	1.137e-013	1.066e-014	1.066e-014	1.137e-013	2.217e-012
GEO-2Body-EarthTOEEq	1.137e-013	1.084e-018	4.179e-013	1.137e-013	0
Hyperbolic-2Body-EarthFixed	1.137e-013	1.421e-014	1.137e-013	1.137e-013	1.137e-013
Hyperbolic-2Body-EarthMJ2000Ec	0	1.066e-014	1.066e-014	1.137e-013	0
Hyperbolic-2Body-EarthMJ2000Eq	0	1.066e-014	0	1.137e-013	0
Hyperbolic-2Body-EarthMODEc	0	1.066e-014	1.066e-014	1.137e-013	1.466e-012
Hyperbolic-2Body-EarthMODEq	0	1.066e-014	1.421e-014	1.137e-013	2.843e-012
Hyperbolic-2Body-EarthMOEEc	0	1.066e-014	1.066e-014	1.137e-013	0
Hyperbolic-2Body-EarthMOEEq	0	1.066e-014	0	1.137e-013	0
Hyperbolic-2Body-EarthTODEc	0	1.066e-014	1.066e-014	1.137e-013	1.555e-012
Hyperbolic-2Body-EarthTODEq	0	1.066e-014	1.421e-014	1.137e-013	3.004e-012
Hyperbolic-2Body-EarthTOEEc	0	1.066e-014	1.066e-014	1.137e-013	2.16e-012
Hyperbolic-2Body-EarthTOEEq	0	1.066e-014	1.421e-014	1.137e-013	3.411e-013
ISS-2Body-EarthFixed	1.851e-013	1.421e-014	1.421e-014	1.137e-013	2.842e-013
ISS-2Body-EarthGSE	1.137e-013	1.066e-014	1.421e-014	1.137e-013	1.137e-013
ISS-2Body-EarthGSM	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.137e-013
ISS-2Body-EarthMJ2000Ec	9.948e-014	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthMJ2000Eq	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthMODEc	9.948e-014	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthMODEq	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthMOEEc	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthMOEEq	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthTODEc	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthTODEq	1.137e-013	1.421e-014	1.421e-014	9.948e-014	1.421e-014
ISS-2Body-EarthTOEEc	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
ISS-2Body-EarthTOEEq	1.137e-013	1.421e-014	1.421e-014	1.137e-013	1.421e-014
Mars1-2Body-MarsFixed	2.476e-013	1.066e-014	2.132e-014	1.137e-013	1.137e-013
Mars1-2Body-MarsMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	9.948e-014
Mars1-2Body-MarsMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Mercury1-2Body-MercuryFixed	2.22e-014	1.421e-014	1.421e-014	1.137e-013	1.137e-013
Mercury1-2Body-MercuryMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	1.137e-013
Mercury 1-2 Body-Mercury MJ 2000 Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Moon-2Body-MoonFixed	1.599e-013	1.421e-014	2.132e-014	1.137e-013	3.553e-014
Moon-2Body-MoonMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	1.137e-013
Moon-2Body-MoonMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Neptune1-2Body-NeptuneFixed	1.08e-012	1.421e-014	2.132e-014	1.137e-013	1.705e-013
Neptune 1-2 Body-Neptune MJ 2000 Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	1.137e-013
Neptune1-2Body-NeptuneMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Pluto1-2Body-PlutoFixed	2.274e-013	1.421e-014	1.421e-014	1.137e-013	2.842e-013
Pluto1-2Body-PlutoMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	9.948e-014
Pluto1-2Body-PlutoMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Saturn1-2Body-SaturnFixed	1.024 e-012	1.421e-014	2.842e-014	1.137e-013	1.99e-013
Saturn1-2Body-SaturnMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	9.948e-014
Saturn1-2Body-SaturnMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Uranus1-2Body-UranusFixed	3.979e-013	1.421e-014	9.948e-014	1.137e-013	1.137e-013
Uranus1-2Body-UranusMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	1.137e-013
Uranus1-2Body-UranusMJ2000Eq	1.421e-014	1.421e-014	1.421e-014	1.137e-013	0
Venus1-2Body-VenusFixed	1.066e-014	1.421e-014	1.421e-014	1.137e-013	3.695 e-012
Venus1-2Body-VenusMJ2000Ec	1.066e-014	1.421e-014	1.421e-014	1.137e-013	9.948e-014

Draft: Work in Progress CHAPTER 3. CALCULATION PARAMETERS

84

Draft: Work in Progress

Chapter 4

Integrators

GMAT's integrators were tested on a system level in order to verify that all the integrators were working correctly. In order to minimize the effects of other forces/elements, the two-body cases from the Propagators section were used, with some modification, for testing the integrators. The report output interval and integrators were the only parameter changed when using the Propagator two body test cases. Data was outputted in ten minute intervals.

4.1 Initial Orbit Conditions

The ISS and GEO two-body case's initial orbit parameters were used from the Propagation section (Chapter 2) for the test cases in this section.

Refer to Appendix B.1 Tables B.1-B.13 for a listing of all Propagation initial orbit states used for the Integrator test cases.

4.2 Naming Convention

This section describes the naming convention for integrator scripts and output reports. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test case
- 2. traj The trajectory to use. This includes initial conditions, physical parameters, and time step
- 3. integ The integrator to use

The word Integrator precedes the *tool* field and 2Body follows the *integ* field. The final integrator file format is as followed:

Integrator_tool_traj_integ_2Body.report

The *tool* field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

GMAT - General Mission Analysis Tool

 $\begin{array}{cccc} 2. & traj & {\rm ISS} & - \ {\rm leo \ orbit} \\ {\rm GEO} & - \ {\rm geo \ orbit} \\ \end{array}$

NOTE: Some test cases contain *traj* variations. In this case *traj* precedes the modification. For example, if an ISS trajectory is needed with a different Cd, *traj* could be ISSdiffCd1.

RKV89 - RungaKutta 8(9)

RKN68 - DormandElMikkawyPrince 6(8)

RKF56 - RungeKuttaFehlberg 5(6)

3. integ PD45 - PrinceDormand 4(5)

PD78 - PrinceDormand 7(8)

BS - BulirschStoer

ABM - AdamsBashforthMoulton

4.3 Comparison Script Information

Comparison_Integ.m is the script used to perform the integrator comparisons needed for the Integrators section of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build or the exact analytic solution to compare to one another.

Refer to Appendix C for more details about this script and others used in the Acceptance Test Plan document.

86

4.4 Test Case Results

The following results are for the Integrator section. The GMAT Integrator results are being compared to an exact analytical two-body solution. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 4.1: Exact/WinGMAT GEO Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	0.0001127712184	8.178707643e-009
BS-2Body	6.290317204 e-005	4.535189696e-009
PD45-2Body	3.297921562e-005	2.320908148e-009
PD78-2Body	1.822370346e-005	1.253046654e-009
RKF56-2Body	3.459697578e-005	2.564071918e-009
RKN68-2Body	1.793126562e-005	1.297793489e-009
RKV89-2Body	0.0001127712184	8.178707643e- 009

Table 4.2: Exact/WinGMAT ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	1.052211123e-005	1.172665432e-008
BS-2Body	1.691079091e-005	1.926879767e-008
PD45-2Body	3.080434654e-005	3.521816658e- 008
PD78-2Body	2.772621462e-005	3.15224572e- 008
RKF56-2Body	3.336029534e-005	3.80119779e-008
RKN68-2Body	3.617025125 e-006	3.875411333e-009
RKV89-2Body	1.052211123e-005	1.172665432e-008

4.4.1 Win/Mac GMAT Comparison

Table 4.3: WinGMAT/MacGMAT GEO Test Case Comparison

	/	-
Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	4.990522323e-005	3.634067315e-009
BS-2Body	4.499516895e-005	3.048485196e-009
PD45-2Body	3.360510852 e-005	2.346776158e-009
PD78-2Body	1.721559725 e-005	1.110205705e-009
RKF56-2Body	4.772019229e-005	3.510581894e-009
RKN68-2Body	6.394945484e-005	4.727059048e-009
RKV89-2Body	4.990522323e- 005	3.634067315e-009

Draft: Work in Progress Chapter 4. Integrators

Table 4.4: WinGMAT/MacGMAT ISS Test Case Comparison

10010 1111 1	manni jimacanni ist	y rest case comparison
Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	3.476512236e-005	3.980331596e-008
BS-2Body	3.902337183e-005	4.465750423e- 008
PD45-2Body	1.214759222e-005	1.361758077e-008
PD78-2Body	1.808533949e-005	2.043945469e-008
RKF56-2Body	2.234706582 e-005	2.518943482e-008
RKN68-2Body	4.459241486e-006	4.808133777e-009
RKV89-2Body	3.476512236 e005	3.980331596e-008

Draft: Work in Progress

4.4. TEST CASE RESULTS

4.4.2 Win/Linux GMAT Comparison

Table 4.5: WinGMAT/LinuxGMAT GEO Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	1.818989404e-008	1.256073967e-012
BS-2Body	1.626953583e-008	1.256073967e-012
PD45-2Body	1.818989404 e - 008	1.256073967e-012
PD78-2Body	1.626953583e-008	8.950904183e-013
RKF56-2Body	1.466516141e-008	1.256073967e-012
RKN68-2Body	1.818989404 e - 008	1.256073967e-012
RKV89-2Body	1.818989404e-008	1.256073967e-012

Table 4.6: WinGMAT/LinuxGMAT ISS Test Case Comparison

Test Case	Position Difference(m)	Velocity Difference(m/s)
ABM-2Body	2.572439484e-009	1.986027323e-012
BS-2Body	2.033691978e-009	2.512147934e-012
PD45-2Body	2.572439484e-009	2.512147934e-012
PD78-2Body	2.572439484e-009	2.512147934e-012
RKF56-2Body	2.572439484e-009	2.512147934e-012
RKN68-2Body	2.033691978e-009	2.512147934e-012
RKV89-2Body	2.572439484e-009	1.986027323e-012

Draft: Work in Progress Chapter 4. Integrators

90

Draft: Work in Progress

Chapter 5

Stopping Conditions

GMAT's Stopping Conditions were tested on a system level in order to determine if it stops correctly on user selected conditions. Refer to Table 5.1 for a list of the stopping conditions tested and the units used for the output of data.

Table 5.1: Stopping Conditions

Table 5.1: Stopping Conditions			
Stopping Condition	Stopping Value	Unit Used	
Epoch (A1 Modified Julian Date)	23158.042037434974	Days	
Apoapsis	180	TA in degrees	
Elapsed Days	6 Hours	Days	
Elapsed Days (Multiple Satellites)	5 Hours	Days	
Mean Anomaly	45, 90, & 180	MA in degrees	
Periapsis	0	TA in degrees	
Elapsed Seconds	3600	Seconds	
True Anomaly	45, 90, & 180	TA in degrees	
XY Plane Intersection	Z=0	Km	
XZ Plane Intersection	Y=0	Km	
YZ Plane Intersection	X=0	Km	

5.1 Initial Orbit Conditions

For a listing of the initial conditions used to produce the data for the Stopping Conditions Section, refer to Table 5.2 for the Earth based non-hyperbolic point mass test cases, Table 5.3 for the Earth based non-hyperbolic all forces test cases, and Table 5.4 for the Earth based hyperbolic point mass test cases.

 ${\bf Table} \ \underline{{\bf 5.2:}} \ \underline{{\bf Initial}} \ \underline{{\bf Orbit}} \ \underline{{\bf Parameters}} \ (\underline{{\bf EarthPM}} \ \& \ \underline{{\bf EarthMJ2000EqPM}})$

O.2. Illinoidi Olbin i di dillinoidi	b (Earth in & Earthine 2000E
Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-8043.9600382977915 (km)
Y	-1564.9950345568864 (km)
${f Z}$	3750.9601677510364 (km)
VX	0.99861303787927636 (km)
VY	-6.8834168529193462 (km)
VZ	-0.46566090709653452 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Òff
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	$2700 \; (sec)$
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

Draft: Work in Progress 5.1. INITIAL ORBIT CONDITIONS

Table 5.3: Initial Orbit Parameters (EarthAll & EarthMJ2000EqAll)

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Earth Mean J2000 Equator
X	-8043.9600382977915 (km)
Y	-1564.9950345568864 (km)
Z	3750.9601677510364 (km)
VX	0.99861303787927636 (km)
VY	-6.8834168529193462 (km)
VZ	-0.46566090709653452 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	Jacchia Roberts
Drag F107/F107A	150/150
Drag Kp	3
NSG Model	$_{ m JGM2}$
Degree x Order	4x4
SRP Area	$1 (m^2)$
SRP	On
Integrator Type	RungaKutta 8(9)
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	2700 (sec)
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Same as initial state CS

Initial State Parameter	Parameter Value (unit)	
Coordinate System (CS)	Earth Mean J2000 Equator	
X	12371.791482634855 (km)	
Y	5050.7627227610719 (km)	
Z	5050.762722761071 (km)	
VX	-7.9859921512608487 (km)	
VY	2.44520073255755 (km)	
VZ	2.4452007325575495 (km)	
Mass (No Fuel)	$850 \; (kg)$	
Cd	2.2	
Cr	1.8	
Drag Area	$15 \; (m^2)$	
Drag Model	None	
NSG Model	None	
SRP Area	$1 (m^2)$	
SRP	Off	
Integrator Type	RungaKutta 8(9)	
Integrator Init. StepSize	60 (sec)	
Integrator Accuracy	1e-13	
Integrator Max. StepSize	$2700 \; (sec)$	
Report Precision	16 significant figures	
Report StepSize	Only initial state	
Report CS/Cb	Same as initial state CS	

Table 5.5: Initial Orbit Parameters (MoonPM)

Table 5.5. Illitial Ofbit I arameters (Nicolii Ni)			
Initial State Parameter	Parameter Value (unit)		
Coordinate System (CS)	Earth Mean J2000 Equator		
X	-1486.792117191545200 (km)		
Y	$0.0 \; (km)$		
Z	1486.792117191543000 (km)		
VX	-0.142927729144255 (km)		
VY	-1.631407624437537 (km)		
VZ	0.142927729144255 (km)		
Mass (No Fuel)	850 (kg)		
Cd	2.2		
Cr	1.8		
Drag Area	$15 \ (m^2)$		
Drag Model	None		
NSG Model	None		
SRP Area	$1 (m^2)$		
SRP	Òff		
Integrator Type	RungaKutta 8(9)		
Integrator Init. StepSize	60 (sec)		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	$2700 \; (sec)$		
Report Precision	16 significant figures		
Report StepSize	Only initial state		
Report CS/Cb	Same as initial state CS		

Table 5.6: Initial Orbit Parameters (MarsPM)		
Initial State Parameter	Parameter Value (unit)	
Coordinate System (CS)	Earth Mean J2000 Equator	
X	-2737.481646173082000 (km)	
Y	$0.0~(\mathrm{km})$	
\mathbf{Z}	2737.481646173082000 (km)	
VX	-0.311321695052649 (km)	
VY	-3.553492313930950 (km)	
VZ	0.311321695052650 (km)	
Mass (No Fuel)	$850 \; (kg)$	
Cd	2.2	
Cr	1.8	
Drag Area	$15 \ (m^2)$	
Drag Model	None	
NSG Model	None	
SRP Area	$1 \ (m^2)$	
SRP	Off	
Integrator Type	RungaKutta 8(9)	
Integrator Init. StepSize	60 (sec)	
Integrator Accuracy	1e-13	
Integrator Max. StepSize	$2700 \; (sec)$	
Report Precision	16 significant figures	
Report StepSize	Only initial state	
Report CS/Cb	Same as initial state CS	

96

5.2 Naming Convention

This section describes the naming convention for stopping condition scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the test cases.
- 2. Cb The Central Body used for the stopping condition, including the force model setup.
- 3. stopCond The stopping condition used for the test case.

The word StopCond precedes the *tool* field. The final stopping condition file format is as followed: StopCond_tool_Cb_stopCond.report

The *tool* field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

GMAT - General Mission Analysis Tool

EarthPM - Earth central body with point mass force model

EarthMJ2000EqPM - Same as EarthPM and plane intersection calculations based on EarthMJ2000Eq

EarthAll - Earth central body with all force model types turned on

 $2. \ \ Cb \ \ \text{EarthMJ2000EqAll} \quad \ \ \text{- Same as EarthAll and plane intersection calculations based on EarthMJ2000EqAll}$

Earth#MultiSatsPM $\,$ - Same as EarthPM and the test case involves # satellites

MarsPM - Mars central body with point mass force model
MoonPM - Moon central body with point mass force model

A1ModJulian - A1 Modified Julian Date Apoapsis - Apoapsis of orbit based on TA

Days - Elapsed Days

MA### - ### degree Mean Anomaly Periapsis - Periapsis of orbit based on TA

3. stopCond Seconds - Elapsed Seconds

TA### - ### degree True Anomaly
 XYplane - XY Plane Intersection
 XZplane - XZ Plane Intersection
 YZplane - YZ Plane Intersection

5.3 Comparison Script Information

Comparison_StopCond.m is the script used to perform the comparisons needed for the Stopping Condition chapter of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build and/or the exact solution to compare to one another.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

Draft: Work in Progress 5.4. TEST CASE RESULTS

5.4 Test Case Results

The following results are for the Stopping Condition section. The GMAT Stopping Condition results are being compared to the exact desired stopping condition. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Refer to Table 5.1 to determine the units used in the Difference(s) column of the Stopping Condition comparison results.

Table 5.7: Exact/WinGMAT EarthPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Apoapsis	1.207418308e-006
Days	3.637978807e-012
EA180	0
EA45	1.122458571e-009
EA90	5.233573575e-010
MA180	0
MA90	5.793253877e-009
Periapsis	0
Secs	2.09548034e-007
TA180	0
TA90	$2.69331224 \mathrm{e}\text{-}009$

Table 5.8: Exact/WinGMAT EarthAll StopCond Test Case Comparison

	1
Stopping Condition	Difference(s)
A1ModJulian	7.275957614e-012
Apoapsis	0
Days	0
EA180	0
EA45	8.15098673e- 008
EA90	3.780471047e-009
MA180	0
MA90	5.370637268e-009
Periapsis	0
Secs	4.190951586e-007
TA180	0
TA90	2.783139053e-009

Table 5.9: Exact/WinGMAT EarthPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Days	0
HA45	5.94486238e-009
HA90	6.062620628 e-009
MA45	4.032202128e-009
MA90	7.014335779e-010
Periapsis	0
Secs	2.09548034e-007
TA45	1.530788296e-008
TA90	3.041570551e-008

Table 5.10: Exact/WinGMAT MoonPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Apoapsis	1.207418308e-006
Days	3.637978807e-012
EA180	1.478779296e-006
EA90	3.193633802e-009
MA180	1.774535207e-006
MA90	8.953790598e-009
Periapsis	0
Secs	2.09548034e-007
TA180	1.207418308e-006
TA90	9.594344874e-009

Table 5.11: Exact/WinGMAT MarsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	3.637978807e-012
Apoapsis	0
Days	0
EA180	0
EA90	2.220498629 e-008
MA180	0
MA90	1.276124806e-008
Periapsis	0
Secs	2.09548034e-007
TA180	0
TA90	1.505739533e-008

Table 5.12: Exact/WinGMAT EarthMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	1.967496619e-007
XZplane	1.187821727e-006
YZplane	4.2192789e-007

Draft: Work in Progress 5.4. TEST CASE RESULTS

${\bf Table~5.13:~Exact/WinGMAT~EarthMJ2000EqAll~StopCond~Test~Case~Comparison}$

Stopping Condition	Difference(s)
XYplane	7.834555777e-007
XZplane	1.198100772e-006
YZplane	2.851115597e-007

Table 5.14: Exact/WinGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	9.138221522e-007
XZplane	9.138204291e-007
YZplane	3.637831914e-006

 ${\bf Table~5.15:~Exact/W\underline{inGMAT~MoonMJ2000EqPM~S}topCond~Test~Case~Comparison}$

Difference(s)
1.752778189e-007
0
1.752923708e-007

 ${\it Table 5.16: Exact/WinGMAT\ MarsMJ2000EqPM\ StopCond\ Test\ Case\ Comparison}$

Stopping Condition	Difference(s)
XYplane	2.384185791e-007
XZplane	0
YZplane	2.235174179e-007

Table 5.17: Exact/WinGMAT Earth3MultiSatsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
Days	7.276e-012 7.276e-012 7.276e-012

Win/Mac GMAT Comparison 5.4.1

Table 5.18: WinGMAT/MacGMAT EarthPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	1.091393642e-011
Apoapsis	1.207418308e-006
Days	3.637978807e-012
EA180	0
EA45	1.249863146e-008
EA90	1.641892311e-008
MA180	0
MA90	1.010349138e-009
Periapsis	0
Secs	3.143209142e-007
TA180	0
TA90	1.477332034e-008

Table 5.19: WinGMAT/MacGMAT EarthAll StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	1.091393642e-011
Apoapsis	0
Days	1.091399193e-011
EA180	0
EA45	2.758255135e-008
EA90	6.509765171e-009
MA180	0
MA90	1.209116363e-009
Periapsis	0
Secs	6.286431926 e007
TA180	0
TA90	2.392090437e-008

 ${\it Table 5.20: WinGMAT/MacGMAT EarthPMhyper StopCond \ {\it Test Case Comparison}}$

Stopping Condition	Difference(s)
A1ModJulian	1.091393642e-011
Days	0
HA45	3.278302074 e-010
HA90	5.154717542e-009
MA45	4.688160971e-009
MA90	1.775092073e-009
Periapsis	8.537736463e- 007
Secs	6.286431926 e-007
TA45	7.957417836e-009
TA90	9.00868713e-010

Draft: Work in Progress 5.4. TEST CASE RESULTS

Table 5.21: WinGMAT/MacGMAT MoonPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	0
Apoapsis	1.207418308e-006
Days	3.637978807e-012
EA180	1.478779296e-006
EA90	1.050977971e-008
MA180	1.774535207e-006
MA90	3.044107189e-010
Periapsis	0
Secs	3.143218237e-007
TA180	1.207418308e-006
TA90	1.47603032 e-008

Table 5.22: WinGMAT/MacGMAT MarsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	0
Apoapsis	0
Days	7.276013125 e-012
EA180	0
EA90	1.924313153e-008
MA180	0
MA90	2.515002961e-008
Periapsis	0
Secs	0
TA180	0
TA90	7.037499472e-010

Table 5.23: WinGMAT/MacGMAT EarthMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	1.078823641e- 006
XZplane	1.354494348e-006
YZplane	2.313548366e-006

 ${\it Table~5.24:~WinGMAT/MacGMAT~EarthMJ2000EqAll~StopCond~Test~Case~Comparison}$

Stopping Condition	Difference(s)
XYplane	7.639199145e-007
XZplane	2.233082799e-006
YZplane	1.636945122 e-006

Table 5.25: WinGMAT/MacGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	2.779416424e-007
XZplane	2.779415402e-007
YZplane	$7.390968164 \mathrm{e}\text{-}006$

Draft: Work in Progress CHAPTER 5. STOPPING CONDITIONS

Table 5.26: WinGMAT/MacGMAT MoonMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	4.745961633e-007
XZplane	0
YZplane	4.745961633e- 007

 ${\it Table~5.27:~WinGMAT} \underline{/{\it MacGMAT~MarsMJ2000EqPM~StopCond}} \ {\it Test~Case~Comparison}$

Stopping Condition	Difference(s)
XYplane	2.980232239e-007
XZplane	0
YZplane	2.980232239e-007

Table 5.28: WinGMAT/MacGMAT Earth3MultiSatsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
Days	0 0 0

Draft: Work in Progress 5.4. TEST CASE RESULTS

5.4.2 Win/Linux GMAT Comparison

Table 5.29: WinGMAT/LinuxGMAT EarthPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	0
Apoapsis	0
Days	0
EA180	0
EA45	1.421085472e-014
EA90	0
MA180	0
MA90	0
Periapsis	0
Secs	0
TA180	0
TA90	0

 ${\bf Table~5.30:~WinG} \underline{{\bf MAT/LinuxGMAT~EarthAll~StopCond~Test}}~{\bf Case~Comparison}$

Stopping Condition	Difference(s)
A1ModJulian	1.091393642e-011
Apoapsis	0
Days	0
EA180	0
EA45	4.691976585e-009
EA90	3.45775959e-008
MA180	0
MA90	1.808709271e-008
Periapsis	0
Secs	3.143213689e-007
TA180	0
TA90	5.133045988e-009

Table 5.31: WinGMAT/LinuxGMAT EarthPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	0
Days	0
HA45	0
HA90	0
MA45	0
MA90	0
Periapsis	0
Secs	0
TA45	0
TA90	0

Table 5.32: WinGMAT/LinuxGMAT MoonPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
A1ModJulian	0
Apoapsis	0
Days	0
EA180	0
EA90	0
MA180	0
MA90	0
Periapsis	0
Secs	0
TA180	0
TA90	0

 ${\it Table 5.33: WinGMAT/LinuxGMAT MarsPM StopCond Test Case Comparison}$

Stopping Condition	Difference(s)
A1ModJulian	0
Apoapsis	0
Days	0
EA180	0
EA90	0
MA180	0
MA90	0
Periapsis	0
Secs	0
TA180	0
TA90	0

Table 5.34: WinGMAT/LinuxGMAT EarthMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	0
XZplane	0
YZplane	0

Table 5.35: WinGMAT/LinuxGMAT EarthMJ2000EqAll StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	4.666101248e-007
XZplane	8.586826219 e-007
YZplane	9.998882629 e - 007

Table 5.36: WinGMAT/LinuxGMAT EarthMJ2000EqPMhyper StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	0
XZplane	0
YZplane	0

Draft: Work in Progress 5.4. TEST CASE RESULTS

 ${\it Table 5.37: WinGMAT/LinuxGMAT MoonMJ2000EqPM StopCond Test Case Comparison }$

Stopping Condition	Difference(s)
XYplane	0
XZplane	0
YZplane	0

Table 5.38: WinGMAT/LinuxGMAT MarsMJ2000EqPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
XYplane	0
XZplane	0
YZplane	0

Table 5.39: WinGMAT/LinuxGMAT Earth3MultiSatsPM StopCond Test Case Comparison

Stopping Condition	Difference(s)
Days	0 0 0

Draft: Work in Progress CHAPTER 5. STOPPING CONDITIONS

106

Draft: Work in Progress

Chapter 6

Libration Points

The libration point tests are designed to verify the location of various libration points. In each software tool used the location of the libration point is defined by the tool and then converted to a MJ2000Eq representation for comparison purposes.

6.1 Initial Orbit Conditions

Table 6.1: Initial Orbit Parameters (Sun-Earth(SE) Libration Points)

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Sun-Earth L#* MJ2000Eq
X	0 (km)
Y	0 (km)
Z	0 (km)
VX	0 (km)
VY	0 (km)
VZ	0 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \; (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	N/A
Integrator Init. StepSize	N/A
Integrator Accuracy	N/A
Integrator Max. StepSize	N/A
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Earth MJ2000Eq

NOTES: (*) All five libration points are defined in the test script.

Table 6.2: Initial Orbit Parameters (Sun-Earth-Moon(SEM) Libration Points)

Initial State Parameter	Parameter Value (unit)
Coordinate System (CS)	Sun-Earth-Moon L#* MJ2000Eq
X	0 (km)
Y	0 (km)
Z	0 (km)
VX	0 (km)
VY	0 (km)
VZ	0 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag Area	$15 \ (m^2)$
Drag Model	None
NSG Model	None
SRP Area	$1 \ (m^2)$
SRP	Off
Integrator Type	N/A
Integrator Init. StepSize	N/A
Integrator Accuracy	N/A
Integrator Max. StepSize	N/A
Report Precision	16 significant figures
Report StepSize	Only initial state
Report CS/Cb	Earth MJ2000Eq

NOTES: (*) All five libration points are defined in the test script.

6.2 Naming Convention

This section describes the naming convention for libration point scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the trajectory.
- 2. lib Type The type of libration point used for the test case.
- 3. libPoint The libration point used for the test case.

The word LibrationTest precedes the tool field. The final stopping condition file format is as followed: LibrationTest_ $tool_libType_libPoint$.report

The *tool* field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

6.3 Comparison Script Information

Comparison_Tool1_Tool2_Libr.m is the script used to perform the comparisons needed for the Libration Points chapter of the Acceptance Test Plan. This script was designed to allow the user to select two tools from a list for comparison. The Tools available are presented in this chapter's Naming Convention section.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

6.4 Test Case Results

The following results are for the Libration Points section. The current GMAT Build is compared to STK for the Libration Points section. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 6.3: WinGMAT/STK SEM LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	3.608874977e-006	4.996003611e-013
2	7.275957614e-006	6.439293543e- 012
3	2.980232239e-005	7.105427358e-012
4	0	18.76805413
5	2.980232239e-005	-1.37023761

Table 6.4: WinGMAT/STK SE LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	3.608874977e-006	4.996003611e- 013
2	7.275957614e-006	6.439293543e- 012
3	2.980232239e-005	7.105427358e-012
4	0	18.76805413
5	2.980232239 e-005	-1.37023761

6.4.1 Win/Mac GMAT Comparison

Table 6.5: WinGMAT/MacGMAT SEM LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	0	1.040834086e-014
2	0	8.743006319e-013
3	0	0
4	0	0
5	0	0

Table 6.6: WinGMAT/MacGMAT SE LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	0	1.040834086e-014
2	0	8.743006319e-013
3	0	0
4	0	0
5	0	0

Draft: Work in Progress 6.4. TEST CASE RESULTS

6.4.2 Win/Linux GMAT Comparison

Table 6.7: WinGMAT/LinuxGMAT SEM LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	0	1.040834086e-014
2	0	0
3	0	0
4	0	0
5	0	0

Table 6.8: WinGMAT/LinuxGMAT SE LibrationTest Test Case Comparison

Libration Point	Position Difference(m)	Velocity Difference(m/s)
1	0	1.040834086e-014
2	0	0
3	0	0
4	0	0
5	0	0

Draft: Work in Progress Chapter 6. Libration Points

Chapter 7

Delta V

Once an initial state was created for these Delta V test cases, a set amount of Delta V was applied. For the impulsive burn test cases delta V values of 0.1, 0.1, and 0.1 were applied in the X,Y, and Z axes respectively for either the Cartesian or VNB axes. Each test case generate a report that contains the Cartesian elements of the state before and after the impulsive burn.

7.1 Initial Orbit Conditions

Initial conditions for the impulsive burn delta V test cases are presented in Tables 7.1-7.4.

Table 7.1: Initial Orbit Parameters (Earth Impulsive Burns)

Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Earth
Coordinate System	Earth Mean J2000 Equator
X	7378.0 (km)
Y	$0.0 \; (km)$
\mathbf{Z}	$0.0 \; (km)$
VX	0.0 (km)
VY	5.1973811193846027 (km)
VZ	5.1973811193846018 (km)
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag	$15 \; (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	$2700 \; (sec)$
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

Table 7.2: Initial Orbit Parameters (Mars Impulsive Burns)

	D 4 V1 ('4)
Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Mars
Coordinate System	Mars Mean J2000 Equator
X	4500.0 (km)
Y	0.0 (km)
Z	$0.0 \; (km)$
VX	$0.0~(\mathrm{km})$
VY	2.1814448386859766 (km)
VZ	2.1814448386859713 (km)
Mass (No Fuel)	850 (kg)
Cd	$2.\overline{2}$
Cr	1.8
Drag	$15 \ (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	2700 (sec)
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

Table 7.3: Initial Orbit Parameters (Moon Impulsive Burns)

Initial State Parameter	Parameter Value (unit)
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)
Central Body	Moon
Coordinate System	Moon Mean J2000 Equator
X	$2050.0 \; (km)$
Y	$0.0~(\mathrm{km})$
Z	$0.0~(\mathrm{km})$
VX	$0.0~(\mathrm{km})$
VY	1.093528701 (km)
VZ	$1.093528701 (\mathrm{km})$
Mass (No Fuel)	850 (kg)
Cd	2.2
Cr	1.8
Drag	$15 \; (m^2)$
Drag Model	None
PMG Bodies	Only Central Body
NSG Model	None
SRP Area	$1 (m^2)$
SRP	Off
Integrator Type	RungaKutta 8(9)
Integrator Init.	60 (sec)
Integrator Max. StepSize	$2700 \; (sec)$
Integrator Accuracy	1e-13
Report Precision	16 significant figures
Report CS/Cb	Same as initial state CS

Table 7.4: Initial Orbit Parameters (Sun Impulsive Burns)

Table 7.4: Illitial Orbit Parameters (Sun Impulsive Burns)					
Initial State Parameter	Parameter Value (unit)				
Start & Stop Time	01 Jan 2000 11:59:28.000 (UTCG)				
Central Body	Sun				
Coordinate System	Sun Mean J2000 Equator				
X	1000000.0 (km)				
Y	$0.0~(\mathrm{km})$				
\mathbf{Z}	$0.0~(\mathrm{km})$				
VX	$0.0~(\mathrm{km})$				
VY	257.597010870 (km)				
VZ	257.597010870 (km)				
Mass (No Fuel)	$850 \; (kg)$				
Cd	2.2				
Cr	1.8				
Drag	$15 \; (m^2)$				
Drag Model	None				
PMG Bodies	Only Central Body				
NSG Model	None				
SRP Area	$1 (m^2)$				
SRP	Off				
Integrator Type	RungaKutta 8(9)				
Integrator Init.	60 (sec)				
Integrator Max. StepSize	$2700 \; (sec)$				
Integrator Accuracy	1e-13				
Report Precision	16 significant figures				
Report CS/Cb	Same as initial state CS				

116 CHAPTER 7. DELTA V

7.2 Naming Convention

This section describes the naming convention for Delta V scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool The tool used to generate the trajectory.
- 2. delta V body The type of Delta V applied and the central body the test case uses.
- 3. axes Axes type used for burn maneuver.

The word DeltaV precedes the *tool* field. The final stopping condition file format is as followed: DeltaV_tool_deltaVbody_axes.report

The *tool* field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

GMAT - General Mission Analysis Tool
OD - Orbital Determination Toolbox

IEarth - Earth centered impulsive burn

2. deltaVbody IMars - Mars centered impulsive burn

IMoon - Moon centered impulsive burnISun - Sun centered impulsive burn

VNB - Velocity, Velocity Normal, Velocity BiNormal axes

3. axes Cartesian - Typical X,Y,Z,Vx,Vy,Vz axes

7.3 Comparison Script Information

Comparison.DeltaV.m is the script used to perform the comparisons needed for the Delta V chapter of the Acceptance Test Plan. This script was designed to allow the user to select a GMAT Build and/or the exact solution to compare to one another.

Refer to Appendix C for more details on this script and others used in the Acceptance Test Plan document.

7.4. TEST CASE RESULTS

7.4 Test Case Results

The following results are for the Delta V section. The GMAT Delta V results are being compared to the exact desired Delta V values. We'd like the comparison data to be as close to zero as possible. A detailed acceptance metric/matrix will be developed at a later date.

Table 7.5: Exact/WinGMAT IEarth Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	8.881784197e-013	8.881784197e-013
VNB	0	0	0	0	2.664535259 e-012	8.881784197e-013

Table 7.6: Exact/WinGMAT IMars Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	1.387778781e-012	8.881784197e-013	0
VNB	0	0	0	1.387778781e-012	3.108624469e-012	8.881784197e-013

Table 7.7: Exact/WinGMAT IMoon Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	2.775557562e-014	0	0
VNB	0	0	0	2.775557562e- 014	0	0

Table 7.8: Exact/WinGMAT ISun Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	1.387778781e-012	0	0
VNB	0	0	0	0	0	0

118 CHAPTER 7. DELTA V

7.4.1 Win/Mac GMAT Comparison

Table 7.9: WinGMAT/MacGMAT IEarth Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Table 7.10: WinGMAT/MacGMAT IMars Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Table 7.11: WinGMAT/MacGMAT IMoon Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Table 7.12: WinGMAT/MacGMAT ISun Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

7.4.2 Win/Linux GMAT Comparison

Table 7.13: WinGMAT/LinuxGMAT IEarth Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Table 7.14: WinGMAT/LinuxGMAT IMars Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Table 7.15: WinGMAT/LinuxGMAT IMoon Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Draft: Work in Progress 7.4. TEST CASE RESULTS

Table 7.16: WinGMAT/LinuxGMAT IS un Test Case Comparison

Test Case	X-Pos (m)	Y-Pos (m)	Z-Pos (m)	X-Vel (m/s)	Y-Vel (m/s)	Z-Vel (m/s)
Cartesian	0	0	0	0	0	0
VNB	0	0	0	0	0	0

Draft: Work in Progress CHAPTER 7. DELTA V

Chapter 8

Performance

One of the many goals of GMAT is to perform at satisfactory speed when running a script. By running similar scripts in GMAT and reference software, time performance comparisons could be made. We generated several test cases centered around the Earth and a minimal set of test cases about a few non-Earth bodies. Many of the test cases were extracted from the previous Chapters and used in these tests.

The performance tests cases were created from the propagator test cases with some slight variations. We were interested in test cases focused on only point mass bodies, non-spherical gravity present, solar radiation pressure turned on, or drag effects. Isolation of the mentioned perturbation forces allows us to see how long each process take for GMAT to complete. The deepspace, non-earth, and libration point test cases only focused on point mass bodies.

Propagation duration times for the GEO, GPS, LEO, Molniya, and SunSync cases were increased to obtain a more accurate measurement of the time between GMAT and the reference software packages. This could have been done for the other test cases but the amount time needed to modify the automation scripts was not worth the extra data. The reason extra code would have been needed was to account for the differences in propagation modules for STK. STK-HPOP is used for the GEO, GPS, LEO, Molniya, and Sunsyc test cases and STK-Astrogator is used for the others.

8.1 Test Machine Specifications

All tests presented in this Acceptance Test Plan document were performed on a desktop machine with the following specifications:

Computer Type - PC
OS - Microsoft Windows XP
RAM - 2.0 GB
Processor - Intel(R) Pentium(R) 4 CPU 3.40GHz
Architecture - 32-bit
Manufacturer - Dell
STK Version - STK 6.2.0
FF Version - FF 5.6.5.35

CHAPTER 8. PERFORMANCE 122

Initial Orbit Conditions 8.2

All of the initial orbit parameters for the test cases in this section were obtained from the Propagation section (Chapter 2) test cases. One of the differences is the propagation duration is extended to 30 days, excluding the DeepSpace, ESL2, and EML2 cases. Another difference is the use of NSG, PMG, Drag, and SRP. Refer to the Performance naming conventions section (Section 8.3) for the types of settings used.

Refer to Appendix B.1 Tables B.1-B.13 for a listing of all Propagator initial orbit states used for the Performance test cases.

Draft: Work in Progress 8.3. NAMING CONVENTION

8.3 Naming Convention

This section describes the naming convention for Performance scripts and output reports generated for use in GMAT's Acceptance Test Plan. The naming convention consists of an ordered series of option strings, separated by underscores (_). Currently, options are allowed for the following fields, and will be present in the file name in order:

- 1. tool Tool used to generate the trajectory.
- 2. traj Type of trajectory.
- 3. forces Forces applied.
- 4. output Flag noting if there is output.

The word Performance precedes the *tool* field. The final stopping condition file format is as followed: Performance_tool_traj_forces_output.report or Performance_tool_trajPM_forces_output.report

The *tool* field should always be the first option field. Future additional fields should be added to the end of the list of fields. Each field has a finite list of options, as follows (future options should be added to this list):

STK - Satellite Toolkit HPOP or Astrogator

1. tool FF - FreeFlyer

2. traj

GMAT - General Mission Analysis Tool
OD - Orbital Determination Toolbox

Deepspace - deep space orbit EML2 - Earth Moon L2 orbit

GEO - GEO orbit GPS - MEO orbit ISS - LEO orbit

Mars1 - eccentric low orbit

Molniya - HEO orbit

Moon - eccentric low orbit

SunSync - LEO orbit

NOTE: Some test cases contain *traj* variations. In this case *traj* precedes the modification. For example, an ISS trajectory is used and the point mass code is used in GMAT instead of JGM2 0x0. In this case the *traj* is ISSPM.

AllPlanets - Sun, Mercury, Venus, Earth, Moon, Mars, Mercury, Jupiter,

and Pluto point mass gravity included.

3. forces P - Central body is the only point mass included.

Drag - JR is used for Earth cases. NSG - JGM2 20x20 is used.

SRP - SRP is turned on

8.4 Comparison Script Information

TimeComparo.m is the script used to perform the comparison data needed for the Performance chapter of the Acceptance Test Plan. This script was designed to allow the user to select from a list of dates and then generates output that includes all available performance results from GMAT, STK, and FF. The dates represent the times when all of the performance test cases were run from the BuildRun_Script_GMAT.m script.

STK_Repropagate.m is the script that generates the performance times for STK. The data generated is then exported into an excel document for use with the TimeComparo.m script.

Refer to Appendix C for more details of this script and others used in the Acceptance Test Plan document.

8.5 Test Results

124

We strive to make GMAT perform just as good or better than the reference software packages. For the test cases with performance numbers that are not nearly equivalent or better, work is being done to improve GMAT's performance without affecting its numerical accuracy.

The main performance output parameters of interest are the time taken to run the script, the amount of integration step taken during that run, and the time per integration step. The results in this section are outputted in seconds. Tables 8.1- 8.6 contain these performance parameters by tool.

Tables 8.7- 8.12 contain a percentage difference between GMAT and the other reference software used. The data indicates GMAT's performance data was divided into the reference softwares same performance data to obtain a percentage. A value of 100% indicates both tools were the same, greater than 100% indicates GMAT performed worse, and less than 100% indicates GMAT performed better.

Table 8.1: Performance Test Case Comparisons

Test Case	GMAT TimeToRun(sec)	STK TimeToRun(sec)	FF TimeToRun(sec)
DeepSpacePM-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpacePM-AllPlanets-output.m	NaN	NaN	NaN
DeepSpace-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpace-AllPlanets-output.m	NaN	NaN	NaN
EML2PM-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2PM-AllPlanets-output.m	NaN	NaN	NaN
EML2-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2-AllPlanets-output.m	NaN	NaN	NaN
GEOPM-1PM-noOutput.m	2.365369677	0.9100139264	NaN
-	3.624228889	2.025697121	NaN
GEOPM-1PM-output.m		4.056012761	
GEOPM AllPlanets output m	9.262963421		NaN
GEOPM GRP	10.63963856	5.203490891	NaN
GEOPM CRP	3.221224485	1.527696956	NaN
GEOPM-SRP-output.m	4.613150554	2.711619773	NaN
GEO-1PM-noOutput.m	5.080978504	0.9100139264	NaN
GEO-1PM-output.m	9.065021783	2.025697121	NaN
GEO-AllPlanets-noOutput.m	12.82652415	4.056012761	NaN
GEO-AllPlanets-output.m	14.62352863	5.203490891	NaN
GEO-Drag-noOutput.m	9.083949943	1.076942908	NaN
GEO-Drag-output.m	9.863043934	2.161930469	NaN
GEO-NSG-noOutput.m	9.079661186	3.27783425	NaN
GEO-NSG-output.m	9.063319947	4.456671393	NaN
GEO-SRP-noOutput.m	9.086620394	1.527696956	NaN
GEO-SRP-output.m	9.037045099	2.711619773	NaN
GPSPM-1PM-noOutput.m	2.324964709	0.9494172025	NaN
GPSPM-1PM-output.m	3.695722836	2.657454174	NaN
GPSPM-AllPlanets-noOutput.m	9.27329574	4.106867269	NaN
GPSPM-AllPlanets-output.m	10.67132599	5.382557951	NaN
GPSPM-SRP-noOutput.m	4.068783658	1.55785984	NaN
GPSPM-SRP-output.m	5.080100348	2.793106498	NaN
GPS-1PM-noOutput.m	5.085208763	0.9494172025	NaN
GPS-1PM-output.m	9.064168882	2.657454174	NaN
GPS-AllPlanets-noOutput.m	12.82362876	4.106867269	NaN
GPS-AllPlanets-output.m	14.21737953	5.382557951	NaN
GPS-Drag-noOutput.m	9.078539423	1.11248804	NaN
GPS-Drag-output.m	9.829883966	2.366961555	NaN
GPS-NSG-noOutput.m	6.989305121	3.277017722	NaN
GPS-NSG-output.m	9.049662625	4.556902511	NaN
GPS-SRP-noOutput.m	9.063283294	1.55785984	NaN
GPS-SRP-output.m	10.14604839	2.793106498	NaN
ISSPM-1PM-noOutput.m	3.371743671	3.532383306	NaN
ISSPM-1PM-output.m	9.505570289	8.654091176	NaN
ISSPM-AllPlanets-noOutput.m	34.23165034	17.8158481	NaN
ISSPM-AllPlanets-output.m	40.2429021	23.11573611	NaN
ISSPM-SRP-noOutput.m	14.61508594	6.507057014	NaN

Table 8.2: Performance Test Case Comparisons

	.2: Performance Test Case		
Test Case	GMAT TimeToRun(sec)	STK TimeToRun(sec)	FF TimeToRun(sec)
ISSPM-SRP-output.m	25.07031637	11.69117678	NaN
ISS-1PM-noOutput.m	9.069769649	3.532383306	NaN
ISS-1PM-output.m	14.29912081	8.654091176	NaN
ISS-AllPlanets-noOutput.m	39.95640016	17.8158481	NaN
ISS-AllPlanets-output.m	46.03288368	23.11573611	NaN
ISS-Drag-noOutput.m	25.20274035	6.702129963	NaN
ISS-Drag-output.m	31.62018206	11.94099205	NaN
ISS-NSG-noOutput.m	18.25562254	14.51133002	NaN
ISS-NSG-output.m	26.18732275	19.74322161	NaN
ISS-SRP-noOutput.m	27.42110369	6.507057014	NaN
ISS-SRP-output.m	37.81563076	11.69117678	NaN
Mars1PM-1PM-noOutput.m	NaN	NaN	NaN
Mars1PM-1PM-output.m	NaN	NaN	NaN
Mars1PM-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1PM-AllPlanets-output.m	NaN	NaN	NaN
Mars1-1PM-noOutput.m	NaN	NaN	NaN
Mars1-1PM-output.m	NaN	NaN	NaN
Mars1-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1-AllPlanets-output.m	NaN	NaN	NaN
MolniyaPM-1PM-noOutput.m	2.520149293	1.138387756	NaN
MolniyaPM-1PM-output.m	4.727116994	2.810948095	NaN
MolniyaPM-AllPlanets-noOutput.m	13.49447664	5.357828495	NaN
MolniyaPM-AllPlanets-output.m	15.48603786	7.016379791	NaN
MolniyaPM-SRP-noOutput.m	4.93236051	2.014259857	NaN
MolniyaPM-SRP-output.m	9.064659894	3.669778142	NaN
Molniya-1PM-noOutput.m	5.931093645	1.138387756	NaN
Molniya-1PM-output.m	9.067935171	2.810948095	NaN
Molniya-AllPlanets-noOutput.m	17.02801742	5.357828495	NaN
Molniya-AllPlanets-output.m	18.94455575	7.016379791	NaN
Molniya-Drag-noOutput.m	11.14562516	1.48759834	NaN
Molniya-Drag-output.m	12.81850503	3.148300748	NaN
Molniya-NSG-noOutput.m	9.06083695	4.249729672	NaN
Molniya-NSG-output.m	9.881694573	5.892727931	NaN
Molniya-SRP-noOutput.m	9.723377636	2.014259857	NaN
Molniya-SRP-output.m	11.63239417	3.669778142	NaN
MoonPM-1PM-noOutput.m	NaN	NaN	NaN
MoonPM-1PM-output.m	NaN	NaN	NaN
Moon-1PM-noOutput.m	NaN	NaN	NaN
Moon-1PM-output.m	NaN	NaN	NaN
SunSyncPM-1PM-noOutput.m	3.357036607	3.408378327	NaN
SunSyncPM-1PM-output.m	9.442151447	8.631484337	NaN
SunSyncPM-AllPlanets-noOutput.m	33.3628759	17.53388808	NaN
SunSyncPM-AllPlanets-output.m	39.61642969	22.77039115	NaN
SunSyncPM-SRP-noOutput.m	14.48378093	6.372961703	NaN
SunSyncPM-SRP-output.m	25.21344992	11.62540558	NaN

Table 8.3: Performance Test Case Comparisons

Test Case	GMAT TimeToRun(sec)	STK TimeToRun(sec)	FF TimeToRun(sec)
SunSync-1PM-noOutput.m	9.077130362	3.408378327	NaN
SunSync-1PM-output.m	14.25260635	8.631484337	NaN
SunSync-AllPlanets-noOutput.m	39.61202214	17.53388808	NaN
SunSync-AllPlanets-output.m	45.78612287	22.77039115	NaN
SunSync-Drag-noOutput.m	24.86261533	6.570531171	NaN
SunSync-Drag-output.m	31.29207997	11.86876567	NaN
SunSync-NSG-noOutput.m	18.61135222	14.13227078	NaN
SunSync-NSG-output.m	27.37641393	19.3581896	NaN
SunSync-SRP-noOutput.m	26.72110975	6.372961703	NaN
SunSync-SRP-output.m	37.03988272	11.62540558	NaN

Table 8.4: Performance Test Case Comparisons

Table 8.4: Performance Test Case Comparisons			
Test Case	GMAT 10000xTime/Step	STK 10000xTime/Step	FF 10000xTime/Step
DeepSpacePM-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpacePM-AllPlanets-output.m	NaN	NaN	NaN
${\bf DeepSpace\text{-}AllPlanets\text{-}noOutput.m}$	NaN	NaN	NaN
DeepSpace-AllPlanets-output.m	NaN	NaN	NaN
EML2PM-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2PM-AllPlanets-output.m	NaN	NaN	NaN
EML2-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2-AllPlanets-output.m	NaN	NaN	NaN
GEOPM-1PM-noOutput.m	2.736746126	1.052891272	NaN
GEOPM-1PM-output.m	4.193253372	2.343743053	NaN
GEOPM-AllPlanets-noOutput.m	10.71730119	4.69282976	NaN
GEOPM-AllPlanets-output.m	12.31012213	6.020468461	NaN
GEOPM-SRP-noOutput.m	3.726974992	1.767554039	NaN
GEOPM-SRP-output.m	5.337441344	3.13735945	NaN
GEO-1PM-noOutput.m	5.878720935	1.052891272	NaN
GEO-1PM-output.m	10.4882816	2.343743053	NaN
GEO-AllPlanets-noOutput.m	14.84036116	4.69282976	NaN
GEO-AllPlanets-output.m	16.91950553	6.020468461	NaN
GEO-Drag-noOutput.m	10.51018158	1.24602905	NaN
GEO-Drag-output.m	11.41159775	2.501365809	NaN
GEO-NSG-noOutput.m	10.50521947	3.79247281	NaN
GEO-NSG-output.m	10.48631256	5.156394068	NaN
GEO-SRP-noOutput.m	10.51327131	1.767554039	NaN
GEO-SRP-output.m	10.45591241	3.13735945	NaN
GPSPM-1PM-noOutput.m	2.68999735	1.098481086	NaN
GPSPM-1PM-output.m	4.275972274	3.074689545	NaN
GPSPM-AllPlanets-noOutput.m	10.72925574	4.751668714	NaN
GPSPM-AllPlanets-output.m	12.34678467	6.227650065	NaN
GPSPM-SRP-noOutput.m	3.450168454	1.801410545	NaN
GPSPM-SRP-output.m	4.307725217	3.229771621	NaN
GPS-1PM-noOutput.m	5.883615368	1.098481086	NaN
GPS-1PM-output.m	10.48729478	3.074689545	NaN
GPS-AllPlanets-noOutput.m	14.83701117	4.751668714	NaN
GPS-AllPlanets-output.m	16.44958872	6.227650065	NaN
GPS-Drag-noOutput.m	10.50392158	1.287154969	NaN
GPS-Drag-output.m	11.37323148	2.738587938	NaN
GPS-NSG-noOutput.m	8.085730126	3.791528082	NaN
GPS-NSG-output.m	10.46929966	5.27236204	NaN
GPS-SRP-noOutput.m	7.738459097	1.801410545	NaN
GPS-SRP-output.m	8.662951156	3.229771621	NaN
ISSPM-1PM-noOutput.m	0.8663044812	0.9223173727	NaN
ISSPM-1PM-output.m	2.442272883	2.25961283	NaN
ISSPM-AllPlanets-noOutput.m	8.795162081	4.651536018	NaN
ISSPM-AllPlanets-output.m	10.33963724	6.035282657	NaN
ISSPM-SRP-noOutput.m	2.173053102	1.699636154	NaN

Table 8.5: Performance Test Case Comparisons

Test Case	5: Performance Test Case GMAT 10000xTime/Step	STK 10000xTime/Step	FF 10000xTime/Step
ISSPM-SRP-output.m	3.727595511	3.05372255	NaN
ISS-1PM-noOutput.m	2.330302317	0.9223173727	NaN
ISS-1PM-output.m	3.673883202	2.25961283	NaN
ISS-AllPlanets-noOutput.m	10.26602609	4.651536018	NaN
ISS-AllPlanets-output.m	11.82726129	6.035282657	NaN
ISS-Drag-noOutput.m	6.416339609	1.741039086	NaN
ISS-Drag-output.m	8.05014946	3.101959229	NaN
ISS-NSG-noOutput.m	3.455671717	3.778008335	NaN
ISS-NSG-output.m	4.957091456	5.140125387	NaN
ISS-SRP-noOutput.m	4.07785136	1.699636154	NaN
ISS-SRP-output.m	5.623643858	3.05372255	NaN
Mars1PM-1PM-noOutput.m	NaN	NaN	NaN
Mars1PM-1PM-output.m	NaN	NaN	NaN
Mars1PM-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1PM-AllPlanets-output.m	NaN	NaN	NaN
Mars1-1PM-noOutput.m	NaN	NaN	NaN
Mars1-1PM-output.m	NaN	NaN	NaN
Mars1-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1-AllPlanets-output.m	NaN	NaN	NaN
MolniyaPM-1PM-noOutput.m	1.809412186	0.9989362548	NaN
MolniyaPM-1PM-output.m	3.393966825	2.46660942	NaN
MolniyaPM-AllPlanets-noOutput.m	9.698488317	4.708523152	NaN
MolniyaPM-AllPlanets-output.m	11.12982454	6.166077679	NaN
MolniyaPM-SRP-noOutput.m	2.835504748	1.767514792	NaN
MolniyaPM-SRP-output.m	5.211072086	3.22023354	NaN
Molniya-1PM-noOutput.m	4.258395782	0.9989362548	NaN
Molniya-1PM-output.m	6.510579531	2.46660942	NaN
Molniya-AllPlanets-noOutput.m	12.23804615	4.708523152	NaN
Molniya-AllPlanets-output.m	13.61546338	6.166077679	NaN
Molniya-Drag-noOutput.m	7.904138115	1.305483405	NaN
Molniya-Drag-output.m	9.090493606	2.762879112	NaN
Molniya-NSG-noOutput.m	6.50081572	3.759824535	NaN
Molniya-NSG-output.m	7.089750734	5.213419385	NaN
Molniya-SRP-noOutput.m	5.574052761	1.767514792	NaN
Molniya-SRP-output.m	6.668421333	3.22023354	NaN
MoonPM-1PM-noOutput.m	NaN	NaN	NaN
MoonPM-1PM-output.m	NaN	NaN	NaN
Moon-1PM-noOutput.m	NaN	NaN	NaN
Moon-1PM-output.m	NaN	NaN	NaN
Sun Sync PM-1 PM-no Output.m	0.8684386917	0.8905438109	NaN
SunSyncPM-1PM-output.m	2.442609542	2.25524112	NaN
Sun Sync PM-All Planets-no Output.m	8.630934134	4.581268277	NaN
Sun Sync PM-All Planets-output.m	10.24872065	5.949465982	NaN
SunSyncPM-SRP-noOutput.m	2.172100138	1.665132522	NaN
SunSyncPM-SRP-output.m	3.781204529	3.037495251	NaN

Table 8.6: Performance Test Case Comparisons

180	de 6.0. Terrormance Test Ca	ise Comparisons	
Test Case	GMAT 10000xTime/Step	STK 10000xTime/Step	FF 10000xTime/Step
SunSync-1PM-noOutput.m	2.348181488	0.8905438109	NaN
SunSync-1PM-output.m	3.687035997	2.25524112	NaN
SunSync-AllPlanets-noOutput.m	10.24758043	4.581268277	NaN
SunSync-AllPlanets-output.m	11.84481254	5.949465982	NaN
SunSync-Drag-noOutput.m	6.382393873	1.712145917	NaN
SunSync-Drag-output.m	8.032878955	3.092757366	NaN
SunSync-NSG-noOutput.m	3.417686247	3.701970079	NaN
SunSync-NSG-output.m	5.027253917	5.070907558	NaN
SunSync-SRP-noOutput.m	4.003942303	1.665132522	NaN
SunSync-SRP-output.m	5.550127024	3.037495251	NaN

Table 8.7: GMAT/STK Performance Test Case Comparisons

Test Case	% Time to Run	% Int. Steps	% Time Per Step
DeepSpacePM-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpacePM-AllPlanets-output.m	NaN	NaN	NaN
DeepSpace-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpace-AllPlanets-output.m	NaN	NaN	NaN
EML2PM-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2PM-AllPlanets-output.m	NaN	NaN	NaN
EML2-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2-AllPlanets-output.m	NaN	NaN	NaN
GEOPM-1PM-noOutput.m	259.9267559	100	259.9267559
GEOPM-1PM-output.m	178.9126742	100	178.9126742
GEOPM-AllPlanets-noOutput.m	228.3760917	100	228.3760917
GEOPM-AllPlanets-output.m	204.4711672	100	204.4711672
GEOPM-SRP-noOutput.m	210.8549391	100	210.8549391
GEOPM-SRP-output.m	170.1252735	100	170.1252735
GEO-1PM-noOutput.m	558.3407415	100	558.3407415
GEO-1PM-output.m	447.5013412	100	447.5013412
GEO-AllPlanets-noOutput.m	316.2348076	100	316.2348076
GEO-AllPlanets-output.m	281.0330399	100	281.0330399
GEO-Drag-noOutput.m	843.4941054	100	843.4941054
GEO-Drag-output.m	456.2146691	100	456.2146691
GEO-NSG-noOutput.m	277.0018401	100	277.0018401
GEO-NSG-output.m	203.3652282	100	203.3652282
GEO-SRP-noOutput.m	594.7920731	100	594.7920731
GEO-SRP-output.m	333.271102	100	333.271102
GPSPM-1PM-noOutput.m	244.8833561	100	244.8833561
GPSPM-1PM-output.m	139.0700496	100	139.0700496
GPSPM-AllPlanets-noOutput.m	225.799743	100	225.799743
GPSPM-AllPlanets-output.m	198.2575216	100	198.2575216
GPSPM-SRP-noOutput.m	261.1777744	136.36679	191.5259386
GPSPM-SRP-output.m	181.8799373	136.36679	133.3755362
GPS-1PM-noOutput.m	535.6137164	100	535.6137164
GPS-1PM-output.m	341.0846731	100	341.0846731
GPS-AllPlanets-noOutput.m	312.2484345	100	312.2484345
GPS-AllPlanets-output.m	264.1379741	100	264.1379741
GPS-Drag-noOutput.m	816.0572608	100	816.0572608
GPS-Drag-output.m	415.2954637	100	415.2954637
GPS-NSG-noOutput.m	213.2824939	100.0115701	213.2578198
GPS-NSG-output.m	198.5924123	100.0115701	198.5694377
GPS-SRP-noOutput.m	581.777838	135.4301573	429.5777615
GPS-SRP-output.m	363.2531878	135.4301573	268.2217869
ISSPM-1PM-noOutput.m	95.45237251	101.6240633	93.92693956
ISSPM-1PM-output.m	109.8390356	101.6240633	108.0836881
ISSPM-AllPlanets-noOutput.m	192.1415705	101.6187567	189.0808122
ISSPM-AllPlanets-output.m	174.0931023	101.6187567	171.3198507
ISSPM-SRP-noOutput.m	224.6036251	175.6719342	127.8540173

Table 8.8: GMAT/STK Performance Test Case Comparisons

Table 8.8: GMAT/STP Test Case	% Time to Run		% Time Per Step
		% Int. Steps 175.6719342	
ISSPM-SRP-output.m	214.4379204 256.7606306	101.6240633	$122.0672621 \\ 252.6573158$
ISS-1PM-noOutput.m		101.6240633	
ISS-1PM-output.m	$165.2296067 \\ 224.274477$		162.5890575
ISS-AllPlanets-noOutput.m		101.6187567	220.701851
ISS-AllPlanets-output.m	199.1408946	101.6187567	195.9686391
ISS-Drag-noOutput.m	376.0407585	102.0366281	368.5350696
ISS-Drag-output.m	264.8036438	102.0366281	259.5182227
ISS-NSG-noOutput.m	125.8025455	137.5370997	91.4680808
ISS-NSG-output.m	132.6395624	137.5370997	96.43911546
ISS-SRP-noOutput.m	421.4056159	175.6405903	239.9249599
ISS-SRP-output.m	323.4544431	175.6405903	184.1570007
Mars1PM-1PM-noOutput.m	NaN	NaN	NaN
Mars1PM-1PM-output.m	NaN	NaN	NaN
Mars1PM-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1PM-AllPlanets-output.m	NaN	NaN	NaN
Mars1-1PM-noOutput.m	NaN	NaN	NaN
Mars1-1PM-output.m	NaN	NaN	NaN
Mars1-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1-AllPlanets-output.m	NaN	NaN	NaN
MolniyaPM-1PM-noOutput.m	221.3788122	122.2183222	181.1338989
MolniyaPM-1PM-output.m	168.1680641	122.2183222	137.596443
MolniyaPM-AllPlanets-noOutput.m	251.8646623	122.2778803	205.9772885
MolniyaPM-AllPlanets-output.m	220.7126513	122.2778803	180.5008811
MolniyaPM-SRP-noOutput.m	244.8721049	152.6412776	160.4232542
MolniyaPM-SRP-output.m	247.0083897	152.6412776	161.8228002
Molniya-1PM-noOutput.m	521.0082077	122.2183222	426.2930453
Molniya-1PM-output.m	322.593476	122.2183222	263.9485391
Molniya-AllPlanets-noOutput.m	317.8156492	122.2778803	259.9126256
Molniya-AllPlanets-output.m	270.0047077	122.2778803	220.8123882
Molniya-Drag-noOutput.m	749.2361921	123.7472576	605.4568051
Molniya-Drag-output.m	407.1563062	123.7472576	329.0224884
Molniya-NSG-noOutput.m	213.2097251	123.3123949	172.9021038
Molniya-NSG-output.m	167.6930394	123.3123949	135.9904165
Molniya-SRP-noOutput.m	482.7270723	153.0712531	315.3610247
Molniya-SRP-output.m	316.9781312	153.0712531	207.0788112
MoonPM-1PM-noOutput.m	NaN	NaN	NaN
MoonPM-1PM-output.m	NaN	NaN	NaN
Moon-1PM-noOutput.m	NaN	NaN	NaN
Moon-1PM-output.m	NaN	NaN	NaN
SunSyncPM-1PM-noOutput.m	98.49366133	101.0007055	97.51779543
SunSyncPM-1PM-output.m	109.391978	101.0007055	108.3081326
SunSyncPM-AllPlanets-noOutput.m	190.2765419	100.9980927	188.3961735
SunSyncPM-AllPlanets-output.m	173.9822097	100.9980927	172.2628667
SunSyncPM-SRP-noOutput.m	227.269229	174.2246492	130.4460821
SunSyncPM-SRP-output.m	216.8823252	174.2246492	124.4842943
Sunsyner m-Srer-Output.m	410.0040404	114.444444	124.4042340

Table 8.9: GMAT/STK Performance Test Case Comparisons

Test Case	% Time to Run	% Int. Steps	% Time Per Step
SunSync-1PM-noOutput.m	266.3181575	101.0007055	263.6795023
SunSync-1PM-output.m	165.1234689	101.0007055	163.4874411
SunSync-AllPlanets-noOutput.m	225.9169328	100.9980927	223.6843557
SunSync-AllPlanets-output.m	201.0774543	100.9980927	199.0903482
SunSync-Drag-noOutput.m	378.3958205	101.5087555	372.7716084
SunSync-Drag-output.m	263.6506681	101.5087555	259.7319481
SunSync-NSG-noOutput.m	131.6939968	142.6483301	92.32074203
SunSync-NSG-output.m	141.4203213	142.6483301	99.13913554
SunSync-SRP-noOutput.m	419.2887231	174.3709665	240.4578764
SunSync-SRP-output.m	318.6115313	174.3709665	182.7205169

Draft: Work in Progress CHAPTER 8. PERFORMANCE

Table 8.10: GMAT/FF Performance Test Case Comparisons

Test Case Table 8.10: GMA1/FF	% Time to Run	% Int. Steps	% Time Per Step
DeepSpacePM-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpacePM-AllPlanets-output.m	NaN	NaN	NaN
DeepSpace-AllPlanets-noOutput.m	NaN	NaN	NaN
DeepSpace-AllPlanets-output.m	NaN	NaN	NaN
EML2PM-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2PM-AllPlanets-output.m	NaN	NaN	NaN
EML2-AllPlanets-noOutput.m	NaN	NaN	NaN
EML2-AllPlanets-output.m	NaN	NaN	NaN
GEOPM-1PM-noOutput.m	NaN	NaN	NaN
GEOPM-1PM-output.m	NaN	NaN	NaN
GEOPM-AllPlanets-noOutput.m	NaN	NaN	NaN
GEOPM-AllPlanets-output.m	NaN	NaN	NaN
GEOPM-SRP-noOutput.m	NaN	NaN	NaN
GEOPM-SRP-output.m	NaN	NaN	NaN
GEO-1PM-noOutput.m	NaN	NaN	NaN
GEO-1PM-noOutput.m	NaN	NaN	NaN
GEO-AllPlanets-noOutput.m	NaN	NaN	NaN
GEO-All Planets-nooutput.m	NaN	NaN	NaN
GEO-Drag-noOutput.m	NaN	NaN	NaN
GEO-Drag-nooutput.m	NaN	NaN	NaN
GEO-NSG-noOutput.m	NaN	NaN	NaN
GEO-NSG-noOutput.m	NaN	NaN	NaN
GEO-SRP-noOutput.m	NaN	NaN	NaN
GEO-SRP-output.m	NaN	NaN	NaN
GPSPM-1PM-noOutput.m	NaN	NaN	NaN
GPSPM-1PM-output.m	NaN	NaN	NaN
GPSPM-AllPlanets-noOutput.m	NaN	NaN	NaN
GPSPM-AllPlanets-output.m	NaN	NaN	NaN
GPSPM-SRP-noOutput.m	NaN	NaN	NaN
GPSPM-SRP-output.m	NaN	NaN	NaN
GPS-1PM-noOutput.m	NaN	NaN	NaN
GPS-1PM-output.m	NaN	NaN	NaN
GPS-AllPlanets-noOutput.m	NaN	NaN	NaN
GPS-AllPlanets-output.m	NaN	NaN	NaN
GPS-Drag-noOutput.m	NaN	NaN	NaN
GPS-Drag-nooutput.m	NaN	NaN	NaN
GPS-NSG-noOutput.m	NaN	NaN	NaN
GPS-NSG-nooutput.m	NaN	NaN	NaN
GPS-SRP-noOutput.m	NaN	NaN	NaN
GPS-SRP-output.m	NaN	NaN	NaN
ISSPM-1PM-noOutput.m	NaN	NaN	NaN
ISSPM-1PM-noOutput.m	NaN	NaN	NaN
ISSPM-AllPlanets-noOutput.m	NaN	NaN	NaN
ISSPM-AllPlanets-output.m	NaN	NaN	NaN
ISSPM-SRP-noOutput.m			
1991 M-9VL-110Onthat'III	NaN	NaN	NaN

Table 8.11: GMAT/FF Performance Test Case Comparisons

Test Case	% Time to Run	% Int. Steps	% Time Per Step
ISSPM-SRP-output.m	NaN	NaN	NaN
ISS-1PM-noOutput.m	NaN	NaN	NaN
ISS-1PM-output.m	NaN	NaN	NaN
ISS-AllPlanets-noOutput.m	NaN	NaN	NaN
ISS-AllPlanets-output.m	NaN	NaN	NaN
ISS-Drag-noOutput.m	NaN	NaN	NaN
ISS-Drag-output.m	NaN	NaN	NaN
ISS-NSG-noOutput.m	NaN	NaN	NaN
ISS-NSG-output.m	NaN	NaN	NaN
ISS-SRP-noOutput.m	NaN	NaN	NaN
ISS-SRP-output.m	NaN	NaN	NaN
Mars1PM-noOutput.m	NaN	NaN	NaN
Mars1PM-1PM-output.m	NaN	NaN	NaN
Mars1PM-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1PM-AllPlanets-output.m	NaN	NaN	NaN
Mars1-1PM-noOutput.m	NaN	NaN	NaN
Mars1-1PM-output.m	NaN	NaN	NaN
Mars1-AllPlanets-noOutput.m	NaN	NaN	NaN
Mars1-AllPlanets-output.m	NaN	NaN	NaN
MolniyaPM-1PM-noOutput.m	NaN	NaN	NaN
MolniyaPM-1PM-output.m	NaN	NaN	NaN
MolniyaPM-AllPlanets-noOutput.m	NaN	NaN	NaN
MolniyaPM-AllPlanets-output.m	NaN	NaN	NaN
MolniyaPM-SRP-noOutput.m	NaN	NaN	NaN
MolniyaPM-SRP-output.m	NaN	NaN	NaN
Molniya-1PM-noOutput.m	NaN	NaN	NaN
Molniya-1PM-output.m	NaN	NaN	NaN
Molniya-AllPlanets-noOutput.m	NaN	NaN	NaN
Molniya-AllPlanets-output.m	NaN	NaN	NaN
Molniya-Drag-noOutput.m	NaN	NaN	NaN
Molniya-Drag-output.m	NaN	NaN	NaN
Molniya-NSG-noOutput.m	NaN	NaN	NaN
Molniya-NSG-output.m	NaN	NaN	NaN
Molniya-SRP-noOutput.m	NaN	NaN	NaN
Molniya-SRP-output.m	NaN	NaN	NaN
MoonPM-1PM-noOutput.m	NaN	NaN	NaN
MoonPM-1PM-output.m	NaN	NaN	NaN
Moon-1PM-noOutput.m	NaN	NaN	NaN
Moon-1PM-output.m	NaN	NaN	NaN
SunSyncPM-1PM-noOutput.m	NaN	NaN	NaN
SunSyncPM-1PM-output.m	NaN	NaN	NaN
SunSyncPM-AllPlanets-noOutput.m	NaN	NaN	NaN
SunSyncPM-AllPlanets-output.m	NaN	NaN	NaN
SunSyncPM-SRP-noOutput.m	NaN	NaN	NaN
SunSyncPM-SRP-output.m	NaN	NaN	NaN

Draft: Work in Progress CHAPTER 8. PERFORMANCE

Table 8.12: GMAT/FF Performance Test Case Comparisons

Test Case	% Time to Run	% Int. Steps	% Time Per Step
SunSync-1PM-noOutput.m	NaN	NaN	NaN
SunSync-1PM-output.m	NaN	NaN	NaN
SunSync-AllPlanets-noOutput.m	NaN	NaN	NaN
SunSync-AllPlanets-output.m	NaN	NaN	NaN
SunSync-Drag-noOutput.m	NaN	NaN	NaN
SunSync-Drag-output.m	NaN	NaN	NaN
SunSync-NSG-noOutput.m	NaN	NaN	NaN
SunSync-NSG-output.m	NaN	NaN	NaN
SunSync-SRP-noOutput.m	NaN	NaN	NaN
SunSync-SRP-output.m	NaN	NaN	NaN

Chapter 9

ControlFlow

The Control Flow tests were designed to verify that the control flow commands (If, While, and For) function as expected. There are scripts that test the control flow commands by themselves, nested, and using different user defined parameters, such as arrays, numbers, variables, and spacecraft parameters. Each test script was designed to store flags that contained details of the command execution for each test case and reported to a text file.

Due to the layout of the report, a Matlab script can easily create a pass and fail table based on the values of the flag variables. In the report output the main columns to pay attention to are the ranOK and ansFlag columns. The ansFlag variable tells us if there was an incorrect control flow execution (ansFlag=-99), correct control flow execution (ansFlag=1), or the control flow didn't get executed (ansFlag=1). The ranOK variable tells us if each test case inside the test script ran correctly (ranOK = 1) or not (ranOK = 0). The only scripts that do not generate the ranOK column are the IfLoopTest## $_$ ##, IfLoopTest##, and IfIfLoopTest## $_$ ##.m, because the ansFlag column is sufficient.

9.1 Test Case Results

The results in Table 9.1 display the Pass and Fail outcome of each Control Flow test script.

Table 9.1: Loop Test Case Results

Table 9.1:	Loop Test (Jase Results
TestName	Pass/Fail	Failed/TotalTests
For	Pass	0/15
ForFor	Pass	0/9
ForIf41-14	Pass	0/20
ForIf42-24	Pass	0/21
ForIf43-34	Pass	0/20
ForIf51-15	Pass	0/16
For If 52-25	Pass	0/20
ForIf53-35	Pass	0/20
ForWhile42	Pass	0/8
If11	Pass	0/9
If12-21	Pass	0/18
If22	Pass	0/9
If32-23	Pass	0/18
If33	Pass	0/9
If42-24	Pass	0/16
If44	Pass	0/8
If52-25	Pass	0/16
If55	Pass	0/8
IfFor	Pass	0/9
IfIf41-14	Pass	0/16
IfIf42-24	Pass	0/16
IfIf43-34	Pass	0/20
IfIf51-15	Pass	0/16
IfIf52-25	Pass	0/16
IfIf53-35	Pass	0/16
IfWhile	Pass	0/8
While42-24	Pass	0/16
While43-34	Pass	0/16
While52-25	Pass	0/16
While53-35	Pass	0/16
WhileFor	Pass	0/9
WhileIf41-14	Pass	0/16
WhileIf42-24	Pass	0/16
WhileIf43-34	Pass	0/16
WhileIf51-15	Pass	0/17
While If $52-25$	Pass	0/16
WhileIf53-35	Pass	0/16
WhileTarget	Pass	0/1
WhileWhile42-24	Pass	0/16

Part I

GUI and **Script** Tests

Chapter 10

Test Procedures

10.1 Spacecraft Orbit Tab

Name	STC-3 Conversion to Keplerian-type Elements Disallowed when Celestial Body
	Not at Origin
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to a Keplerian state
	when the coordinate system does not have a celestial body (i.e. mu value) at
	the origin.
PreConditions	BS-2
Steps	1. Load BS-2.
	2. Open the dialog box for DefaultSC.
	3. Change the StateType to Keplerian.
	4. Click on the down arrow on the Coordinate System drop-down menu and
	inspect the available Coordinate Systems.
	5. Change the StateType to Modified Keplerian.
	6. Click on the down arrow on the Coordinate System drop-down menu and
	inspect the available Coordinate Systems.
	7. Change the StateType to Equinoctial.
	8. Click on the down arrow on the Coordinate System drop-down menu and
	inspect the available Coordinate Systems.
Expected Results	The only coordinate systems available in the inspection steps above should
1	be EarthMJ2000Eq, EarthMJ2000Ec, and Earth Fixed. Coordinate Systems
	CS_ESL2 and CS_SSBary are NOT available because these orbit state repre-
	sentations are only valid for coordinate systems with a central body at the
	origin.

Table 10.1: STC-3 Conversion to Keplerian-type Elements Disallowed when Celestial Body Not at Origin.

Name	STC-4 Conversion to Disallowed Coordinate System from Keplerian-type Ele-
	ments
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to a new coordinate
	system that does not have a celestial body at the center.
PreConditions	BS-2
Data	 Load BS-2. Open the dialog box for DefaultSC. Change the Coordinate System to CS_ESL2. Click on the down arrow on the State Type drop-down menu and inspect the available State Types. Change the Coordinate System to CS_SSBary. Click on the down arrow on the State Type drop-down menu and inspect the available State Types.
Expected Results	The only State Types available are Cartesian, SphericalRADEC, and SphericalAZFPA. State Types Keplerian, Modified Keplerian, and Equinoctial are NOT available because these orbit state representations are only valid for coordinate systems with a central body at the origin.

Table 10.2: STC-4 Conversion to Disallowed Coordinate System from Keplerian-type Elements

Name	STC-5 GUI Epoch and State Independence for Time Dependent Coordinate
	System
Requirements	FR-1.3
Summary	This test is to verify that changing the epoch of the spacecraft, does not effect
	the orbit state, even when the coordinate system is, for example, a libration
	point coordinate system that has a time varying origin and axis system.
PreConditions	BS-2
Steps	1. Load BS-2
	2. Open the dialog box for DefaultSC
	3. Change the CoordinateSystem to CS_ESL2
	4. Change the Epoch Format to UTCGregorian
	5. Change the Epoch value to 01 Jan 2010 12:00:00.000
	6. Hit Ok to close the dialog box
	7. Reopen the dialog box for DefaultSC.
	1. Hoopen the dialog box for Belaution.
Expected Results	The data in the GUI should agree with the data below to at least 12 significant
	figures.
	• DefaultSC.X = 273083.6097699367 ;
	• DefaultSC.Y = -1332500.504835084;
	• DefaultSC.Z = -576402.9744365886 ;
	• DefaultSC.VX = 0.2990482122160891 ;
	• DefaultSC.VY = 7.400368588891073 ;
	• DefaultSC.VZ = 1.021835464804587 ;

Table 10.3: STC-5 GUI Epoch and State Independence for Time Dependent Coordinate System

Draft: Work in Progress 10.1. SPACECRAFT ORBIT TAB

Name	STC-6 Orbit GUI Behavior for Singular Conic Section
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to element represen-
	tations with a cartesian state that results in a singular conic section.
PreConditions	BS-2 and TD-4
Data	 Load BS-1. Open the dialog box for DefaultSC. Enter the Cartesian state data from TD-5. Hit Apply. Change the State Type to Keplerian and verify the following error message is thrown: "GMAT does not support parabolic orbits in conversion from Cartesian to Keplerian state". Change the State Type to Modified Keplerian and verify the following error message is thrown: "GMAT does not support parabolic orbits in conversion from Cartesian to Keplerian state". Change the state to SphericalRADEC and verify the numeric data with TD-5. Change the state to SphericalAZEL and verify the numeric data with TD-5. Change the State Type to Equinoctial and verify the following error message is thrown: "GMAT does not support parabolic orbits in conversion from Cartesian to Equinoctial state".
Expected Results	The only State Types available are Cartesian, SphericalRADEC, and SphericalAZFPA. State Types Keplerian, Modified Keplerian, and Equinoctial are NOT available because they are undefined.

Table 10.4: STC-6 Orbit GUI Behavior for Disallowed Conversions

Name	STC-7 Orbit GUI Behavior for Circular, Equatorial Orbit
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to element represen-
	tations when the cartesian state results in a circular, equatorial orbit.
PreConditions	BS-1 and TD-5
Data	 Load BS-1. Open the dialog box for DefaultSC. Enter the Cartesian state data from TD-5. Hit Apply. Change the state to Keplerian and verify the numeric data with TD-5. Change the state to Modified Keplerian and verify the numeric data with TD-5. Change the state to SphericalRADEC and verify the numeric data with TD-5. Change the state to SphericalAZEL and verify the numeric data with TD-5. Change the state to Equinoctial and verify the numeric data with TD-5.
Expected Results	The truth data is contained in TD-5.

Table 10.5: STC-7 Orbit GUI Behavior for Circular, Equatorial Orbit

Name	STC-8 Orbit GUI Behavior for Circular, Inclined Orbit
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to element represen-
	tations when the cartesian state results in a circular, equatorial orbit.
PreConditions	BS-1 and TD-6
Data	 Load BS-1. Open the dialog box for DefaultSC. Enter the Cartesian state data from TD-6. Hit Apply. Change the state to Keplerian and verify the numeric data with TD-6. Change the state to Modified Keplerian and verify the numeric data with TD-6. Change the state to SphericalRADEC and verify the numeric data with TD-6. Change the state to SphericalAZEL and verify the numeric data with TD-6. Change the state to Equinoctial and verify the numeric data with TD-6.
Expected Results	The truth data is contained in TD-6.

Table 10.6: STC-8 Orbit GUI Behavior for Circular, Inclined Orbit

Name	STC-9 Orbit GUI Behavior for orbit with zero velocity
Requirements	FR-1.3
Summary	This case tests GUI behavior when attempting to convert to element represen-
	tations when the cartesian state results in a circular, equatorial orbit.
PreConditions	BS-1
Data	 Load BS-1. Open the dialog box for DefaultSC. Enter the following Cartesian State data: (a) X = 7000 (b) Y = 7000 (c) Z = 7000 (d) VX = 0; (e) VY = 0; (f) VZ = 0; Hit Apply. Change the state to Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Keplerian elements are undefined. Change the state to Modified Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Modified Keplerian elements are undefined. Change the state to SphericalRADEC and verify that the following error message is returned: The orbit is a singular conic section and the SphericalRADEC elements are undefined. Change the state to SphericalAZEL and verify that the following error message is returned: The orbit is a singular conic section and the SphericalAZEL elements are undefined. Change the state to Equinoctial and verify that the following error message is returned: The orbit is a singular conic section and the Equinoctial elements are undefined.
Expected Results	The truth data is described above.

Table 10.7: STC-9 Orbit GUI Behavior for orbit with zero velocity

Name	STC-10 Orbit GUI Behavior for orbit with zero position							
Requirements	FR-1.3							
Summary	This case tests GUI behavior when attempting to convert to element represen-							
	tations when the cartesian state results in a circular, equatorial orbit.							
PreConditions	BS-1							
PreConditions Data	1. Load BS-1. 2. Open the dialog box for DefaultSC. 3. Enter the following Cartesian State data: (a) X = 0.0 (b) Y = 0.0 (c) Z = 0.0 (d) VX = 7.0; (e) VY = 7.0; (f) VZ = 7.0; 4. Hit Apply. 5. Change the state to Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Keplerian elements are undefined. 6. Change the state to Modified Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Modified Keplerian elements are undefined. 7. Change the state to SphericalRADEC and verify that the following error message is returned: The orbit is a singular conic section and the SphericalRADEC elements are undefined. 8. Change the state to SphericalAZEL and verify that the following error message is returned: The orbit is a singular conic section and the SphericalAZEL elements are undefined. 9. Change the state to Equinoctial and verify that the following error message is returned: The orbit is a singular conic section and the Equinoctial SphericalAZEL elements are undefined.							
elements are undefined.								
Expected Results	The truth data is described above.							
	1							

Table 10.8: STC-10 Orbit GUI Behavior for orbit with zero position

Name	STC-11 Orbit GUI Behavior for orbit with zero state								
Requirements	FR-1.3								
Summary	This case tests GUI behavior when attempting to convert to element representations when the cartesian state results in a circular, equatorial orbit.								
PreConditions	BS-1								
Data	 Load BS-1. Open the dialog box for DefaultSC. Enter the following Cartesian State data: (a) X = 0.0 (b) Y = 0.0 (c) Z = 0.0 (d) VX = 0.0; (e) VY = 0.0; (f) VZ = 0.0; Hit Apply. Change the state to Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Keplerian elements are undefined. Change the state to Modified Keplerian and verify that the following error message is returned: The orbit is a singular conic section and the Modified Keplerian elements are undefined. Change the state to SphericalRADEC and verify that the following error message is returned: The orbit is a singular conic section and the SphericalRADEC elements are undefined. Change the state to SphericalAZEL and verify that the following error message is returned: The orbit is a singular conic section and the SphericalAZEL elements are undefined. Change the state to Equinoctial and verify that the following error message is returned: The orbit is a singular conic section and the Equinoctial elements are undefined. 								
Expected Results	The truth data is described above.								

Table 10.9: STC-11 Orbit GUI Behavior for orbit with zero state

Name	STC-12 Orbit GUI behavior when performing Modulo on Keplerian Angular							
	Elements							
Requirements	FR-1.3							
Summary	This case tests GUI behavior when attempting to convert to element represen-							
	tations when the cartesian state results in a circular, equatorial orbit.							
PreConditions	BS-1							
Data	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Keplerian Change INC to 370.0 degrees. Change RAAN to 380.0 degrees. Change AOP to 390.0 degrees. Change TA to 400.0 degrees. Change the State Type to Cartesian. Change the State Type to Keplerian. 							
Expected Results	INC = 10.0 degrees, $RAAN = 20$ degrees, $AOP = 30.0$ degrees, and $TA = 40.0$							
	degrees. (All values match to 14 sig. figs.)							

Table 10.10: STC-12 Orbit GUI behavior when performing Modulo on Keplerian Angular Elements

Name	STC-13 Orbit GUI behavior when performing Modulo on Modified Keplerian							
	Angular Elements							
Requirements	FR-1.3							
Summary	This case tests GUI behavior when attempting to convert to element represen-							
	tations when the cartesian state results in a circular, equatorial orbit.							
PreConditions	BS-1							
Data	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Modified Keplerian Change INC to 370.0 degrees. Change RAAN to 380.0 degrees. Change AOP to 390.0 degrees. Change TA to 400.0 degrees. Change the State Type to Cartesian. Change the State Type to Keplerian. 							
Expected Results	INC = 10.0 degrees, $RAAN = 20$ degrees, $AOP = 30.0$ degrees, and $TA = 40.0$							
	degrees. (All values match to 14 sig. figs.)							

Table 10.11: STC-13 Orbit GUI behavior when performing Modulo on Modified Keplerian Angular Elements

Name	STC-14 Orbit GUI behavior when performing Modulo on SphericalRADEC							
	Angular Elements							
Requirements	FR-1.3							
Summary	This case tests GUI behavior when attempting to convert to element represen-							
	tations when the cartesian state results in a circular, equatorial orbit.							
PreConditions	BS-1							
Data	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Spherical Change RA to 370.0 degrees. Change DEC to 380.0 degrees. Change RAV to 390.0 degrees. Change DECV to 400.0 degrees. Change the State Type to Cartesian. Change the State Type to Keplerian. 							
Expected Results	RA = 10.0 degrees, DEC = 20 degrees, RAV = 30.0 degrees, and DECV = 40.0							
	degrees. (All values match to 14 sig. figs.)							

Table 10.12: STC-14 Orbit GUI behavior when performing Modulo on SphericalRADEC Angular Elements

Draft: Work in Progress CHAPTER 10. TEST PROCEDURES

Name	STC-18 Orbit GUI behavior when Orbit is near parabolic							
Requirements	FR-1.1							
Summary	SMA is undefined for parabolic orbits. This test check behavior as orbit ap-							
	proaches parabolic from ECC; 1 side for Keplerian state type.							
PreConditions	BS-1							
Steps	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Keplerian Change ECC to 0.99999999 Hit Apply. 							
Expected Results	The following error message should be displayed: The value of "0.99999999" for field "ECC" is not an allowed value. The allowed values are: [0.0 leq Real Number \leq 0.9999999, or Real Number \geq 1.0000001].)							

Table 10.13: STC-18 Orbit GUI behavior when performing Modulo on Equinoctial Angular Elements

Name	STC-19 Orbit GUI conversion for near singular Cartesian state
Requirements	FR-1.3
PreConditions	BS-1
Steps	1. Load BS-1.
	2. Open the dialog box for DefaultSC.
	3. Set the Cartesian state to the following values
	(a) $X = 6999.998216286026$
	(b) $Y = 0$
	(c) $Z = -5.002359263770285$
	(d) $VX = 10.63431352889248$
	(e) $VY = 0$
	(f) $VZ = -0.003772975815698364$
	4. Hit Apply.
	5. Change state type to Keplerian and ensure that the following error is thrown: "Warn-
	ing: A nearly singular conic section was encountered while converting from the Carte-
	sian state to the Keplerian elements so conversion was aborted. The radius of periapsis
	must be greater than 1 meter."
	6. Change state type to Modified Keplerian and ensure that the following error is thrown:
	"Warning: A nearly singular conic section was encountered while converting from the
	Cartesian state to the Modified Keplerian elements so conversion was aborted. The
	radius of periapsis must be greater than 1 meter." 7. Change state type to Equinoctial and ensure that the following error is thrown: "Warn-
	ing: A nearly singular conic section was encountered while converting from the Carte-
	sian state to the Equinoctial elements so conversion was aborted. The radius of peri-
	apsis must be greater than 1 meter."
	8. Change the following states.
	(a) $X = 1e-10$
	(b) Y = 1e-10
	(c) $Z = 1e-10$
	9. Hit Apply
	10. Repeat steps 5, 6, and 7.
	11. Change state type to SphericalRADec and ensure that the following error is thrown:
	"Warning: A nearly singular conic section was encountered while converting from the
	SphercialRADEC state to the Cartesian State so conversion was aborted. The Right
	Ascension and Declination of position are undefined."
	12. Change state type to Spherical AZFPA and ensure that the following error is thrown:
	"Warning: A nearly singular conic section was encountered while converting from the Sphercial AZFPA state to the Cartesian State so conversion was aborted. The Right
	Ascension and Declination of position are undefined."
	13. Change the following states:
	(a) X = 6999.998216286026
	(b) $Y = 0$
	(c) $Z = -5.002359263770285$
	(d) $VX = 1e-10$
	(e) $VY = 1e-10$
	(f) $VZ = 1e-10$
	14. Hit Apply
	15. Repeat steps 5, 6, and 7.
	16. Change state type to SphericalRADec and ensure that the following error is thrown:
	"Warning: A nearly singular conic section was encountered while converting from
	the Cartesian state to the SphericalRADEC so conversion was aborted. The Right
	Ascension and Declination of velocity are undefined." 17. Change state type to Spherical AZFPA and ensure that the following error is thrown:
	"Warning: A nearly singular conic section was encountered while converting from the
	SphercialAZFPA state to the Cartesian State so conversion was aborted. The Right
	Ascension and Declination of velocity are undefined."
Expected Results	Test results are described above.

Table 10.14: STC-19 Orbit GUI conversion for near singular Cartesian state

Name	STC-20 Orbit GUI conversion for near singular SphericalAZEl state							
Requirements	FR-1.3							
PreConditions	BS-1							
Steps	1. Load BS-1. 2. Open the dialog box for DefaultSC. 3. Change the state type to SphercialAZFPA 4. Set the SphercialAZFPA state to the following values (a) RMAG = 7000.00000 (b) RA = 0 (c) DEC = -0.04094487109516581 (d) VMAG = 10.63431419820442 (e) AZI = 0 (f) FPA = 0.02061675296478873 5. Hit Apply. 6. Change state type to Keplerian and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialAZFPA state to the Keplerian elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." 7. Change state type to Modified Keplerian and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialAZFPA state to the Modified Keplerian elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." 8. Change state type to Equinoctial and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialAZFPA state to the Equinoctial elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." 9. Change state type to Equinoctial and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialAZFPA state to the Equinoctial elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." 9. Change RMAG to 0.00001 and click apply. 10. Repeat steps 5, 6, and 7. 11. Change RMAG to 1e-14. 13. Repeat steps 5, 6, and 7. 14. Change state type to SphericalRADEC and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialAZFPA state to the SphericalRADEC state so conversion was aborted. The Right Ascension and Declination of velocity are undefined."							
Expected Results	Test results are described above.							

Table 10.15: STC-20 Orbit GUI conversion for near singular Spherical AZEl state

Name	STC-20 Orbit GUI conversion for near singular SphericalRADEC state							
Requirements	FR-1.3							
PreConditions	BS-1							
Steps	 Load BS-1. Open the dialog box for DefaultSC. Change the state type to SphercialRADEC. Set the SphercialRADec state to the following values: (a) RMAG = 7000.00000 (b) RA = 0 (c) DEC = -0.04094487109516581 (d) VMAG = 10.63431419820442 (e) RAV = 0 (f) DECV = -0.0203281181043372 Hit Apply. Change state type to Keplerian and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialRADEC state to the Keplerian elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." Change state type to Modified Keplerian and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialRADEC state to the Modified Keplerian elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." Change state type to Equinoctial and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialRADEC state to the Equinoctial elements so conversion was aborted. The radius of periapsis must be greater than 1 meter." Change RMAG to 0.00001 and click apply. Repeat steps 5, 6, and 7. Change RMAG to 10.00001 and click apply. Repeat steps 5, 6, and 7. Change State type to SphericalRADEC and ensure that the following error is thrown: "Warning: A nearly singular conic section was encountered while converting from the SphercialRADEC state to the SphericalAZEL state so conversion was aborted. The Azimuth and Flight Path Angle are undefined." 							
Expected Results	Test results are described above.							

Table 10.16: STC-21 Orbit GUI conversion for near singular SphericalRADEC state

Name	STC-27 Performing Modulo on Keplerian Elements for Circular, Equatorial orbit							
Requirements	FR-1.1							
Summary	This case tests GUI behavior when attempting to convert to element represen-							
	tations when the cartesian state results in a circular, equatorial orbit.							
PreConditions	BS-1							
Data	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Keplerian Change ECC to 0.0. Change INC to 0.0 degrees. Change RAAN to 380.0 degrees. Change AOP to 390.0 degrees. Change TA to 430.0 degrees. Hit Apply. 							
Expected Results	RAAN = 0.0 degrees, $AOP = 0.0$ degrees, and $TA = 120.0$ degrees. (All values							
	match to 14 sig. figs.)							

Table 10.17: STC-27 Performing Modulo on Keplerian Elements for Circular, Equatorial orbit

Name	STC-28 Performing Modulo on Keplerian Elements for Circular, Inclined Orbit							
Requirements	FR-1.1							
PreConditions	BS-1							
Data	 Load BS-1. Open the dialog box for DefaultSC. Change the State Type to Keplerian Change ECC to 0.0. Change INC to 45 degrees. Change RAAN to 380.0 degrees. Change AOP to 390.0 degrees. Change TA to 430.0 degrees. Hit Apply. 							
Expected Results	RAAN = 20.0 degrees, $AOP = 0.0 degrees$, and $TA = 70.0 degrees$. (All values							
	match to 14 sig. figs.)							

Table 10.18: STC-28 Performing Modulo on Keplerian Elements for Circular, Equatorial orbit

Name	STC-23 Epoch conversion in the spacecraft orbit dialog box									
Requirements	FRR-2.3									
Summary	This test case represents $n(n-1)$ tests where n is the number of epoch formats supported as input types in GMAT. Each test case is designated a unique number. For example, STC-23.32 test GUI conversion from A1Gregorian to TAIModJulian. The procedures described below must be performed for each test case in the table below.									
PreConditions	To run this test you need to load BS-1 and have data defined in TD-2 available.									
Steps	 Select subtest number. (STC-23.32, for example) Create a new spacecraft. Change the Epoch Format to the format defined in the first column of the row containing the test case ID. (A1Gregorian, for STC-23.32) Enter the epoch in the Define Format from TD-2. Change the Epoch Format to the format defined in the first row of the column containing the test case Id. (TAIModJulian for STC-23.32) Verify that the new epoch exactly matches the value for that format given in TD-2. 									
	UTCGregorian UTCModJulian TAIGregorian A1Gregorian TTGregorian TTGregorian									
	UTCGregorian	N/A	23.1	23.2	23.3	23.4	23.5	23.6	23.7	
	UTCModJulian	23.8	N/A	23.9	23.10	23.11	23.12	23.13	23.14	
	TAIGregorian	23.15	23.16	N/A	23.17	23.18	23.19	23.20	23.21	
	TAIModJulian	23.22	23.23	23.24	N/A	23.25	23.26	23.27	23.28	
	A1Gregorian	23.29	23.30	23.31	23.32	N/A	23.33	23.34	23.35	
	A1ModJulian	23.36	23.37	23.38	23.39	23.40	N/A	23.41	23.42	
	TTGregorian	23.43	23.44	23.44	23.45	23.46	23.47	N/A	23.48	
	TTModJulian	23.49	23.50	23.51	23.52	23.53	23.54	23.55	N/A	
Expected Results	The expected numeric results are described above and in TD-2.									

Table 10.19: STC-23 Epoch conversion in the spacecraft orbit dialog box $\,$

Name	STC-24 State conver	rsion in	the space	ecraft or	rbit dial	og box		
Requirements	FRR-2.3							
Summary	supported as input to For example, STC-2 elements. The proceed the table below.	This test case represents $n(n-1)$ tests where n is the number of state representations supported as input types in GMAT. Each test case is designated a unique number. For example, STC-24.17 tests GUI conversion from SphericalRADEC to Keplerian elements. The procedures described below must be performed for each test case in the table below.						
PreConditions Steps	To run this test you	need to	load BS	8-1 and 1	have dat	a define	d in TD-	-1 available.
	 Select subtest Create a new s Change the Electron containing Enter the epoch Change the Epcontaining the Verify that the 14 significant f 	spacecra poch For the test ch in the test cas e new sta	ft. rmat to t case II e Define mat to the le Id. (K	the form O. (Spher Format he formate plerian	mat definition defined to the defined for STO	ned in t DEC, for D-1. d in the C-24.17)	r STC-24	4.17) of the column
		Cartesian	Keplerian	Mod. Keplerian	SphericalRADEC	SphericalAZFPA	Equinoctial	
	Cartesian	N/A	24.1	24.2	24.3	24.4	24.5	
	Keplerian	24.6	N/A	24.7	24.8	24.9	24.10	
	TAIGregorian	25.11	24.12	N/A	24.13	24.14	24.15	
	SphericalRADEC	24.16	24.17	24.18	N/A	24.19	24.20	
	SphericalAZFPA	24.21	24.22	24.23	24.24	N/A	24.25	
	Equinoctial	24.26	24.27	24.28	24.29	24.30	N/A	
Expected Results	The expected numer	ric result	s are de	scribed	above ar	nd in TI)-1.	

Table 10.20: STC-24 State Representation conversion in the spacecraft orbit dialog box

Name	STC-25 Epoch com	version	in the s	pacecra	aft orbit	dialog	box			
Requirements	FRR-2.3									
Summary	This test case represents $n(n-1)$ tests where n is the number of epoch formats supported as input types in GMAT. Each test case is designated a unique number. For example, STC-25.32 test GUI conversion from A1Gregorian to TAIModJulian. The procedures described below must be performed for each test case in the table below.									
PreConditions	To run this test you	u need 1	to load	BS-1 ar	nd have	data de	efined in	n TD-2	availab	le.
Steps	 Select subtest Create a new Change the I row containin Enter the epo Change the E containing the Verify that the TD-2. 	spacecra Epoch F g the to ech in the poch Fo e test co	raft. Format est case he Defir brmat to ase Id.	to the in ID. (A ne Form the for (TAIM)	format 1Gregor at from rmat de odJuliar	defined rian, for TD-2. fined in for ST	the firs	5.32) t row of 2)	the col	umn
	EarthMJ2000Eq EarthMJ2000Ec EarthFixed LunaFixed EarthMoonRot SunMJ2000Ec CS_ESL2 CS_SSBary PhobosFixed	N/A 8 15 22 29 36 43 49 49	1 N/A 16 23 30 37 44 50	ParthFixed 2 9 N/A 24 31 38 44 51 51 51	Positive of the positive of th	4 11 18 25 N/A 40 46 53 53	5 12 19 26 33 N/A 47 54	55 55 57 57 57 57 57 57 57 57 57 57 57 5	7 14 21 28 35 42 48 N/A N/A	PhobosFixed
Expected Results	The expected nume	<u> </u>	<u>I</u>		J.	<u>I</u>	<u>I</u>	<u>I</u>	/	

Table 10.21: STC-25 Coordiate system conversion in the spacecraft orbit dialog box

Spacecraft Attitude Tab 10.2

Name	STC-2	26 Att	itude	conve	ersion	in the	space	ecraft	attitu	de dia	alog b	OX		
Requirements	FRR-	3.3												
Summary	tation number sequent the ta	This test case represents $n(n-1)$ tests where n is the number of attitude representations supported as input types in GMAT. Each test case is designated a unique number. For example, STC-26.32 tests conversion from a 231 to a 232 Euler angle sequence. The procedures described below must be performed for each test case in the table below.												
PreConditions	To rui	n this	test y	ou ne	ed to	load l	BS-1 ε	and ha	eve da	ta def	ined i	n TD-	8 avai	lable.
Steps	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Creat Open Click Chang the ro If the the se ID. (2 Enter Hit A Chang colum If the the fo (232, Verify TD-8. Comp	e a ne the d on the ge the ow con Attit equence 31, fo the a pply. ge the n con Attit for ST that	w spa ialog le Attit AttitudeSt e defirer STC ttitudes Attit taininudeSt definer CC-26 the no	cecraft box for tude to tude Structure at each of the ateTy and in the ateTy are well as each of the ateTy and in the ateTy and in the ateTy and in the ateTy are well as each of the ateTy are ateTy and in the ateTy are	r the ab. ateTy test cope is a the 2) e for t ateTy test cope is l he firs och ex	pe to ase II Euler first contact the test row stactly less to	D. (EuAngles olumn st ID the feet of the match	formatiler And so of the using cormatiler And so columns the colum	definate defination de	for ST the Euler control ata from ed in For ST the Euler taining	FC-26. er Ang aining om TI the first C-26. er Ang ing the chat for new a	.32) ;leSequ; the t 0-8. rst rov 32) ;leSeque test ormat	lumn of nence to est case w of the nence to case Id. given in e repre-
			123	31	312	132	321	213	21	232	313	31	323	212
		X X	1	231	ਲ 3	4	- 5 - 5	6	7	8	9	10	සි 11	12
	123	13	X	14	15	16	17	18	19	20	21	22	23	24
	231	25	26	X	27	28	29	30	31	32	33	34	35	36
	312	37	38	39	X	40	41	42	43	44	45	46	47	48
	132	49	50	51	52	X	53	54	55	56	57	58	59	60
	321	61	62	63	64	65	X	66	67	68	69	70	71	72
	213	73	74	75	76	77	78	X	79	80	81	82	83	84
	121	85	86	87	88	89	90	91	X	92	93	94	95	96
	232	97	98	99	100	101	102	103	104	X	105	106	107	108
	313	109	110	111	112	113	114	115	116	X	117	118	119	120
	131	121	122	123	124	125	126	127	128	129	X	130	131	132
	323	133	134	135	136	137	138	139	140	141	142	143	X	144
	212	145	146	146	148		149	150	151	152	153	154	155	X
Expected Results	The e	xpect	ed nui	meric	result	s are	descril	bed al	oove a	nd in	TD-8			

Table 10.22: STC-26 Attitude conversion in the spacecraft attitude dialog box

Name	Attitude GUI behavior when entering zero quaternion
Requirements	FR-3.1
PreConditions	BS-1
Data	 Load BS-1. Open the dialog box for DefaultSC. Click on the attitude tab. Set all values of the quaternion to zero. Click Ok.
Expected Results	The following warning is displayed: The magnitude of a quaternion must be
	greater than 1e-10.

Table 10.23: STC-17 Attitude GUI behavior when entering zero quaternion

Differential Corrector 10.3

Name	TC-1 Differential Corrector Dialog Box Range Tests - Disallowed Values
Requirements	FR-19
Summary	This case verifies the Differential Corrector dialog box rejects disallowed data.
PreConditions	BS-1
Data	 Load BS-1. In the solvers folder in the mission tree, right-click on the Boundary Value Solvers folder and add a Differential Corrector. Open the dialog box for the new Differential Corrector. In the Max Iterations field, enter -2, and hit Apply. Ensure the following error message is provided: The value of "-2" for field "Maximum Iterations" is not an allowed value. The allowed values are: [Integer Number > 0]. In the Max Iterations field, enter DNE, and hit Apply. Ensure the following error message is provided: The value of "DNE" for field "Maximum Iterations" is not an allowed value. The allowed values are: [Integer Number > 0]. In the Max Iterations field, enter 23.6, and hit Apply. Ensure the following error message is provided: The value of "23.6" for field "Maximum Iterations" is not an allowed value. The allowed values are: [Integer Number > 0].
Expected Results	Test results are described above.

Table 10.24: TC-1 Differential Corrector Dialog Box Range Tests - Disallowed Values

Name	TC-2 Differential Corrector Dialog Box Range Tests- Allowed Values
Requirements	FR-19
Summary	This case verifies the Differential Corrector accepts allowed data.
PreConditions	BS-1
Data	 Load BS-1. In the solvers folder in the mission tree, right-click on the Boundary Value Solvers folder and add a Differential Corrector. Open the dialog box for the new Differential Corrector. Set the Max Iterations to 56. In the ReportFile field type .\output\DCReport.txt Uncheck the ShowProgress box. Set the DerivativeMethod drop-down menu to CentralDifference. Set the ReportStyle drop-down menu to Verbose. Click the Apply button. Click the Show Script button.
Expected Results	<pre>Create DifferentialCorrector DC1; GMAT DC1.ShowProgress = false; GMAT DC1.ReportStyle = 'Verbose'; GMAT DC1.ReportFile = '.\output\DCData.txt'; GMAT DC1.MaximumIterations = 56; GMAT DC1.DerivativeMethod = CentralDifference;</pre>

Table 10.25: TC-2 Differential Corrector Dialog Box Range Tests- Allowed Values

Chapter 11

Test Data

Source T v c d	This table contains equivalent states in all GMAT state representations that have a central body at the origin. This is data comes from GMAT and allows testing consistency between state conversions. We have numerical tests that verify that GMAT is correctly performing conversions correctly via the script when compared to truth data from STK. The data below is to ensure that the GUI state conversions agree with conversions in the script. (The test data assumes $\mu=398600.4415$) 1. Cartesian State (a) $X=-2011.554639349956$ (b) $Y=7587.193672855249$ (c) $Z=1362.382029017782$ (d) $VX=-7.694247416401868$ (e) $VY=-0.9065479140190984$ (f) $VZ=0.4284953758282981$ 2. Keplerian State
Source V C C d	This is data comes from GMAT and allows testing consistency between state conversions. We have numerical tests that verify that GMAT is correctly performing conversions correctly via the script when compared to truth data from STK. The data below is to ensure that the GUI state conversions agree with conversions in the script. (The test data assumes $\mu=398600.4415$) 1. Cartesian State (a) $X=-2011.554639349956$ (b) $Y=7587.193672855249$ (c) $Z=1362.382029017782$ (d) $VX=-7.694247416401868$ (e) $VY=-0.9065479140190984$ (f) $VZ=0.4284953758282981$ 2. Keplerian State
v c d t.	versions. We have numerical tests that verify that GMAT is correctly performing conversions correctly via the script when compared to truth data from STK. The data below is to ensure that the GUI state conversions agree with conversions in the script. (The test data assumes $\mu = 398600.4415$) 1. Cartesian State (a) $X = -2011.554639349956$ (b) $Y = 7587.193672855249$ (c) $Z = 1362.382029017782$ (d) $VX = -7.694247416401868$ (e) $VY = -0.9065479140190984$ (f) $VZ = 0.4284953758282981$ 2. Keplerian State
Data	 (a) X = -2011.554639349956 (b) Y = 7587.193672855249 (c) Z = 1362.382029017782 (d) VX = -7.694247416401868 (e) VY = -0.9065479140190984 (f) VZ = 0.4284953758282981 2. Keplerian State
	 (a) X = -2011.554639349956 (b) Y = 7587.193672855249 (c) Z = 1362.382029017782 (d) VX = -7.694247416401868 (e) VY = -0.9065479140190984 (f) VZ = 0.4284953758282981 2. Keplerian State
	(a) SMA = 10000 (b) ECC = 0.25 (c) INC = 10.0 (d) RAAN = 25.0 (e) AOP = 35.0 (f) TA = 45.0 (g) MA = 27.24378911263291; (h) EA = 35.57751520702131; 3. Modified Keplerian (a) RadPer = 7500 (b) RadApo = 12500 (c) INC = 10.0 (d) RAAN = 25.0 (e) AOP = 35.0 (f) TA = 45.0 4. Spherical RADec (a) RMAG = 7966.67714229061 (b) RA = 104.8489182889519 (c) DEC = 9.846551939834079 (d) VMAG = 7.759309293508375 (e) AZI = 88.24621654190652 (f) FPA = 81.45684518510772 5. Spherical RADec (a) RMAG = 7966.67714229061 (b) RA = 104.8489182889519 (c) DEC = 9.846551939834079 (d) VMAG = 7.759309293508375 (e) AZI = 88.24621654190652 (f) FPA = 81.45684518510772 5. Spherical RADec (a) RMAG = 7966.67714229061 (b) RA = 104.8489182889519 (c) DEC = 9.846551939834079 (d) VMAG = 7.759309293508375 (e) AZI = -173.28033040524276 (f) FPA = 3.165677683357204 6. Equinoctial (a) SMA = 10000 (b) h = 0.2165063509461095 (c) k = 0.125 (d) p = 0.03697430690134294 (e) a = 0.07029165703007421
	(d) $p = 0.03697430690134294$ (e) $q = 0.07929165703097431$ (f) $MLONG = 87.2437891126329$

Table 11.1: TD-1 Equivalent State Representations

Name	TD-2 Equivalent Epoch Representations
Description	This table contains equivalent epoch representations in all formats and systems
	supported as input types.
Source	Need to verify source.
Data	1. 04 Jul 2004 12:34:56.789 UTC 2. 23191.0242683912 UTC 3. 04 Jul 2004 12:35:28.789 TAI 4. 23191.02463876157 TAI 5. 04 Jul 2004 12:35:28.823 A1 6. 23191.02463915951 A1 7. 04 Jul 2004 12:36:00.973 TT 8. 23191.0250112616 TT

Table 11.2: TD-2 Equivalent Epoch Representations

	1 1 0 1 1 1	TTT T	105	1 000	
162				CHAPTER 11.	$TEST\ DATA$

Name	TD-3 Equivalent States in Different Coordinate Systems
Description	This table contains equivalent states in various coordinate systems. The epoch 04 Feb 2001 11:59:28.000 UTC.
Source	This is data comes from GMAT and allows testing consistency between state con
	versions. We have numerical tests that verify that GMAT is correctly performing
	conversions correctly via the script when compared to truth data from STK. The
	data below is to ensure that the GUI state conversions agree with conversions
	the script.
Oata	1. EarthMJ2000Eq
	(a) 5071.298226925739
	(b) 7611.115643763225
	(c) 3591.57811088299
	(d) -5.443963856628132
	(e) 2.768170139549618
	(f) 1.993434604659487
	2. EarthMJ2000Eq
	(a) 5071.298226925739
	(b) 8411.709801736053
	(c) 267.6805571735547
	(d) -5.443963856628132
	(e) 3.332689195355913
	(f) 0.7278256465019841
	3. EarthFixed System —-
	(a) -1863.0575794316
	(b) 8953.983671172193
	(c) 3591.903847242492
	(d) -5.139752276668541
	(e) -1.799622038729856
	(f) 1.992983974458626
	4. LunaFixed System —- (a) 356201 5164882602
	(a) 356291.5164882602 (b) -33974.36961780395
	(c) 16667.54936624816
	(d) -3.267914664134139
	(e) -5.374404304814976
	(f) 0.7247736501205496
	5. EarthMoonRot System
	(a) 8968.872502970022
	(b) -3907.723350348471
	(c) 914.1141166948707
	(d) 2.581713440043834
	(e) 5.842794343296872
	(f) 0.3253861743578399
	6. SunMJ2000Ec System
	(a) 125912803.1220472
	(b) 163450023.4650465
	(c) 66337826.42493016
	(d) -33.57498440092737
	(e) 0.0008503562866066794
	(f) 1.493151380860197
	7. CS_ESL2 System
	(a) -560121.5615799141 (b) 284125 8138175178
	(b) 284125.8138175178 (c) 13140.72166463266
	(d) 5.466911578720965
	(d) 5.400911578720905 (e) 0.7694483179080936
	(e) 0.7694483179080936 (f) 0.6355953786263187
	(1) 0.0353935780203187 8. CS_SSBary System
	(a) 147428584.0468952
	(a) 14/426364.0406932 (b) -9578.340467568873
	(c) 266.8937442606475
	(d) 6.68279484246637
	(e) 1.370672075811688
	(f) 0.726953785084683

(f) 0.726953785084683

Name	TD-4 Equivalent State Representations for a Singular Conic Section
Description	This table contains equivalent states in all GMAT state representations that have
	a central body at the origin.
Source	STK. The data below is to ensure that the GUI state conversions agree with con-
	versions in the script. (The test data assumes $\mu = 398600.4415$)
Data	1. Cartesian State
	(a) $X = 7000$
	(a) $X = 7000$ (b) $Y = 7000$
	(c) $Z = 7000$
	(d) $VX = -4.04145188432738$
	(e) $VY = -4.04145188432738$
	(f) VZ = -4.04145188432738
	(1) $VZ = -4.04143160432136$ 2. Keplerian State: Undefined (e = 1);
	3. Modified Keplerian: Undefined (e = 1);
	4. Spherical RADec
	(a) RMAG = 12124.355652982142
	(a) $RAAG = 12124.555052582142$ (b) $RA = 45$
	(c) DEC = 35.2643896827546470
	(d) VMAG = 6.99999999999998
	(e) $AZI = 0$
	(f) $\frac{1}{1}$ FPA = 180
	5. Spherical RADec
	(a) RMAG = 12124.355652982142
	(a) $RA = 12124.999092382142$ (b) $RA = 45$
	(c) DEC = 35.2643896827546470
	(d) VMAG = 6.99999999999998
	(e) DECV = 225
	(f) $RAV = 35.264389682754661$
	6. Equinoctial: Undefined $(e = 1)$;
	o. Equinocolai. Oridenned (c = 1),

Table 11.4: TD-4 Equivalent State Representations for a Singular Conic Section

Name	TD-5 Equivalent State Representations for a Circular, Equatorial Orbit				
Description	This table contains equivalent states in all GMAT state representations that a central body at the origin.				
Source	Hand calculations based on Math spec for all except Equinoctial which is from STK. (The test data assumes $\mu=398600.4415$)				
Data	1. Cartesian State (a) X = 4949.747468305833 (b) Y = 4949.747468305833 (c) Z = 0.0 (d) VX = 5.335865450622125 (e) VY = 5.335865450622125 (f) VZ = 0 2. Keplerian State (a) SMA = 7000 (b) ECC = 0.0 (c) INC = 0.0 (d) RAAN = 0.0 (e) AOP = 0.0 (f) TA = 45.0 3. Modified Keplerian (a) RadPer = 7000 (b) RadApo = 7000 (c) INC = 0.0 (d) RAAN = 0.0 (e) AOP = 0.0 (f) TA = 45.0 4. Spherical RADee (a) RMAG = 7000 (b) RA = 45.0 4. Spherical RADee (a) RMAG = 7.5460532872678359 (e) RAV = 135.000000000000000000000000000000000000				

Table 11.5: TD-5 Equivalent State Representations for a Circular, Equatorial Orbit

	TD-6 Equivalent State Representations for a Circular, Inclined (retrograde) Orbit
Description	This table contains equivalent states in all GMAT state representations that have
	a central body at the origin.
Source	Hand calculations based on Math spec for all except Equinoctial which is from STK.
	(The test data assumes $\mu = 398600.4415$)
Data	Hand calculations based on Math spec for all except Equinoctial which is from STK. (The test data assumes $\mu=398600.4415$) 1. Cartesian State (a) $X=-5975.5752861126311$ (b) $Y=480.14719831222595$ (c) $Z=-3416.4248371584213$ (d) $VX=3.8002690670377621$ (e) $VY=0.9160734111800478$ (f) $VZ=-6.5182010133917370$ 2. Keplerian State (a) $SMA=6900$ (b) $ECC=0.0$ (c) $INC=98$ (d) $RAAN=0.0$ (e) $AOP=0.0$ (f) $TA=210.0$ 3. Modified Keplerian (a) $RadPer=6900$ (b) $RadApo=6900$ (c) $INC=98$ (d) $RAAN=0.0$ (e) $AOP=0.0$ (f) $TA=210.0$ 4. Spherical RADec (a) $RMAG=6900$ (b) $RA=175.4060606593105$ (c) $DEC=-29.67858910292156$ (d) $VMAG=7.6005381340755180$ (e) $RAV=13.55286811093926$ (f) $DECV=-59.04786932043024$ 5. Spherical RADec (a) $RMAG=6900$ (b) $RA=175.4060606593105$ (c) $DEC=-29.67858910292156$ (d) $VMAG=7.6005381340755180$ (e) $RAV=13.55286811093926$ (f) $DECV=-59.04786932043024$ 5. Spherical RADec (a) $RMAG=6900$ (b) $RA=175.4060606593105$ (c) $DEC=-29.67858910292156$ (d) $VMAG=7.6005381340755180$ (e) $AVAV=18189.2177489242794$ (f) $FPA=90$ 6. Equinoctial (a) $SMA=6900$ (b) $h=0.0$ (c) $k=0.0$ (d) $p=0.0$ (e) $q=1.1503684072210094$

Table 11.6: TD-6 Equivalent State Representations for a Circular, Inclined (retrograde) Orbit

166

Draft: Work in Progress Chapter 11. Test data

Name	Equivalent A	Equivalent Attitude Representations						
Description		This table contains equivalent states in various coordinate systems. The epoch is 04 Feb 2001 11:59:28.000 UTC.						
Source	versions. We conversions of	This is data comes from GMAT and allows testing consistency between state conversions. We have numerical tests that verify that GMAT is correctly performing conversions correctly via the script when compared to truth data from STK. The data below is to ensure that the GUI state conversions agree with conversions in						
Data	1. 0.0 2. 0.1 3. 0.6 4. 0.7	 Quaternion 1. 0.05431254465935684 2. 0.1536190745285137 3. 0.6870053865727263 4. 0.7081489435519108 Euler Angles 						
		quence θ_1 (e	- /	θ_2 (deg.)		θ_3 (deg.)		
	123 231	1 86.457390	59790678	16.9894966652 81.7658976611	13709	89.46981218935655 -69.50363702414091		
	312 132	00.000		16.7380776045 73.002476395		8.584547140308942 88.26525116243468		
	321 213			8.2182590680 -7.7095593393		16.91694843278077 87.09931277680732		
	121 232	0-110-1-0		89.4929510850 87.1255546979		-73.00981782084581 7.719330705131926		
	313 131			18.7548966671 89.4929510850		-26.39703015347826 16.99018217915419		
	323 212			18.7548966671 87.1255546979		63.60296984652174 97.71933070513192		
		ection Cosine Matrix						
				4749262536867 0.287		29443491946786 79970056070911		
	0.5	2921963921524783	0.134	0.134151521118533		9026548672567		

Table 11.7: TD-8 Equivalent Attitude Representations

Chapter 12

Base States

Name	BS-1 The Default Mission
Summary	This base state configures GMAT to the default mission.
Description	See BS-1.script

Table 12.1: Spacecraft GUI State Conversion Test

Draft: Work in Progress Chapter 12. Base States

Chapter 13

GUI

13.1 Individual GUI panels

(identify the most common user usage) [INSERT info for section]

13.1.1 S/C => Orbit — Resources Tab

[INSERT info for section]

13.1.2 S/C => Attitude — Resources Tab

[INSERT info for section]

13.1.3 S/C => Ballistic/Mass — Resources Tab

[INSERT info for section]

13.1.4 S/C => Sensors — Resources Tab

[INSERT info for section]

13.1.5 S/C => Tanks — Resources Tab

[INSERT info for section]

13.1.6 S/C => Actuators — Resources Tab

170 CHAPTER 13. GUI

13.1.7 Fuel Tank — Resources Tab

[INSERT info for section]

13.1.8 Thruster — Resources Tab

[INSERT info for section]

13.1.9 Formation — Resources Tab

[INSERT info for section]

13.1.10 Finite Burn — Resources Tab

[INSERT info for section]

13.1.11 Impulsive Burn — Resources Tab

[INSERT info for section]

13.1.12 Propagator — Resources Tab

[INSERT info for section]

13.1.13 Solar System — Resources Tab

[INSERT info for section]

13.1.14 Barycenter — Resources Tab

[INSERT info for section]

13.1.15 Libration Point — Resources Tab

[INSERT info for section]

13.1.16 Celestial Bodies/Planets — Resources Tab

13.1. INDIVIDUAL GUI PANELS

Differential Corrector — Resources Tab 13.1.17

[INSERT info for section]

13.1.18 OpenGL — Resources Tab

[INSERT info for section]

13.1.19 ReportFile — Resources Tab

[INSERT info for section]

13.1.20 XYPlot — Resources Tab

[INSERT info for section]

13.1.21 Variable/Array — Resources Tab

[INSERT info for section]

13.1.22Coordinate System — Resources Tab

[INSERT info for section]

13.1.23 Function — Resources Tab

[INSERT info for section]

13.1.24 Propagate — Mission Tab

[INSERT info for section]

13.1.25Target — Mission Tab

[INSERT info for section]

13.1.26 Maneuver — Mission Tab

172 CHAPTER 13. GUI

13.1.27 Vary — Mission Tab

[INSERT info for section]

13.1.28 Achieve — Mission Tab

[INSERT info for section]

13.1.29 CallFunction — Mission Tab

[INSERT info for section]

13.1.30 ScriptEvent — Mission Tab

[INSERT info for section]

13.1.31 If — Mission Tab

[INSERT info for section]

13.1.32 For — Mission Tab

[INSERT info for section]

13.1.33 While — Mission Tab

[INSERT info for section]

13.2 Saving

[INSERT info for section]

13.3 Script Event

 $[{\tt INSERT~info~for~section}]$

Draft: Work in Progress 13.4. BUTTONS

13.4 Buttons

[INSERT info for section]

13.4.1 Stop

[INSERT info for section]

13.4.2 Pause

[INSERT info for section]

13.4.3 Play

[INSERT info for section]

13.4.4 Show Script

[INSERT info for section]

13.4.5 Command Summary

[INSERT info for section]

13.4.6 Open

[INSERT info for section]

13.4.7 Other

(Print, default mission, close all, close child)

Draft: Work in Progress CHAPTER 13. GUI

Chapter 14

Script

Draft: Work in Progress CHAPTER 14. SCRIPT

Chapter 15

Script-to-GUI template

A select group of tests recreated in the GUI from a script mission are created to help avoid situations where the script can perform actions that the GUI can not. The results of these Script-to-GUI tests are documented by a tester using the Script2GUI_GMAT_template.doc.

Using the available template, a tester needs to go through each panel of the GUI interface to duplicate the data seen in the script. The tester needs to have a general understanding of how the GMAT system works in order to get around some issues that may occur. The tester records successful panel completions, as well as any bugs generated. The template gives examples on how the data should be entered.

Draft: Work in Progress CHAPTER 15. SCRIPT-TO-GUI TEMPLATE

Part II

Appendix

Appendix A

Acronyms

Cb - Central Body Cd - Drag coefficient

COTS - Commercial Off The Shelf software

Cr - Coefficient of reflexivity CS - Coordinate System EGM - Earth Gravity Model

EOP - Earth Orientation ParametersFDAB - Flight Dynamics Analysis Branch

FF - Free Flyer

GEO - Geosynchronous Orbit

GMAT - General Mission Analysis Tool GPS - Global Positioning Satellite HEO - Highly Elliptical Orbit

HPOP - High Precision Orbit PropagatorIAU - International Astronomical Union

IERS - International Earth Rotation and Reference Systems Service

ISS - International Space StationJGM - Joint Gravity ModelJR - Jacchia Roberts

GMAT - General Mission Analysis Tool

LEO - Low Earth Orbit
LOD - Length of Day
MEO - Medium Earth Orbit
mas - milliarcseconds

MSISE - Mass Spectrometer and Incoherent Scatter Radar Exosphere

NSG - Non-Spherical Gravity PIP - Professional Intern Program

PMG - Point Mass Gravity
SRP - Solar Radiation Pressure
STK - Satellite Tool Kit

TAI - International Atomic Time

TLE - Two Line ElementUSNO - U.S. Naval Observatory

UT - Universal time

UTC - Coordinated Universal Time

Draft: Work in Progress
APPENDIX A. ACRONYMS

182

Appendix B

Initial Conditions

The text and tables in this appendix allow someone to have an easier time duplicating the test case setups described in the previous chapters. The same information was presented in the previous chapters but this appendix has the information arranged different for ease of duplication reasons.

B.1 Propagator Test Cases

Table B.1: Initial Orbit Parameters (ISS)

Table B.1. Illitiai	Orbit Parameters (155)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	2 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Earth Mean J2000 Equator
X	-4453.783586 (km)
Y	-5038.203756 (km)
Z	-426.384456 (km)
VX	3.831888 (km)
VY	-2.887221 (km)
VZ	-6.018232 (km)
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	60 (sec)
Report CS/Cb	Same as initial state CS

Table B 2: Initial Orbit Parameters (Sun-Sync)

Table B.2: Initial Of	rbit Parameters (Sun-Sync)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	2 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Earth Mean J2000 Equator
X	-2290.301063 (km)
Y	-6379.471940 (km)
Z	$0.0~(\mathrm{km})$
VX	-0.883923 (km)
VY	0.317338 (km)
VZ	7.610832 (km)
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	60 (sec)
Report CS/Cb	Same as initial state CS

Table B.3: Initial Orbit Parameters (GPS

Table B.3: Initial	Orbit Parameters (GPS)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	3 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Earth Mean J2000 Equator
X	5525.33668 (km)
Y	-15871.18494 (km)
${f Z}$	-20998.992446 (km)
VX	2.750341 (km)
VY	2.434198 (km)
VZ	-1.068884 (km)
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	60 (sec)
Report Precision	16 significant figures
Report StepSize	120 (sec)
Report CS/Cb	Same as initial state CS

Table B.4: Initial O	Prbit Parameters (Molniya)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Earth Mean J2000 Equator
X	-1529.894287 (km)
Y	-2672.877357 (km)
Z	-6150.115340 (km)
VX	8.717518 (km)
VY	-4.989709 (km)
VZ	$0.0~(\mathrm{km})$
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.5: Initial Orbit Parameters (GEO)

Table B.5: Initial	Orbit Parameters (GEO)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	8 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Earth Mean J2000 Equator
X	36607.358256 (km)
Y	-20921.723703 (km)
Z	$0.0~(\mathrm{km})$
VX	1.525636 (km)
VY	2.669451 (km)
VZ	$0.0~(\mathrm{km})$
Mass (No Fuel)	1000 (kg) (some exceptions)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	60 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	60 (sec)
Report Precision	16 significant figures
Report StepSize	$600 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.6: Initial	Orbit Parameters (Mars)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Mars Mean J2000 Equator
X	-2737.481646173082000 (km)
Y	$0.0~(\mathrm{km})$
Z	2737.481646173082000 (km)
VX	-0.311321695052649 (km)
VY	-3.553492313930950 (km)
VZ	0.311321695052650 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.7: Initial Orbit Parameters (Mercury

Table B.7: Initial O	rbit Parameters (Mercury)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Mercury Mean J2000 Equator
X	-2164.769322630887000 (km)
Y	$0.0~(\mathrm{km})$
Z	2164.769322630886100 (km)
VX	-0.251096955137200 (km)
VY	-2.866074270797602 (km)
VZ	0.251096955137201 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.8: Initial	Orbit Parameters (Moon)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Moon Mean J2000 Equator
X	-1486.792117191545200 (km)
Y	$0.0~(\mathrm{km})$
Z	1486.792117191543000 (km)
VX	-0.142927729144255 (km)
VY	-1.631407624437537 (km)
VZ	0.142927729144255 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.9: Initial Orbit Parameters (Neptune)	
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Neptune Mean J2000 Equator
X	-20815.089640681723000 (km)
Y	$0.0~(\mathrm{km})$
Z	20815.089640681723000 (km)
VX	-1.426423063858300 (km)
VY	-16.281497481173282 (km)
VZ	1.426423063858303 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B 10: Initial Orbit Parameters (Pluto)

Table B.10: Initial	Orbit Parameters (Pluto)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Pluto Mean J2000 Equator
X	-1067.516740143530600 (km)
Y	$0.0~(\mathrm{km})$
Z	1067.516740143529700 (km)
VX	-0.075474392886505 (km)
VY	-0.861480838897026 (km)
VZ	0.075474392886505 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.11: Initial Orbit Parameters (Saturn

Table B.11: Initial	Orbit Parameters (Saturn)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Saturn Mean J2000 Equator
X	-47577.347750129338000 (km)
Y	$0.0 \; (km)$
Z	47577.347750129360000 (km)
VX	-2.222652848522210 (km)
VY	-25.369834288049386 (km)
VZ	2.222652848522210 (km)
Mass (No Fuel)	1000 (kg)
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.12: Initial (Orbit Parameters (Uranus)
Initial State Parameter	Parameter Value (unit)
Start Time	1 Jun 2004 12:00:00.000 (UTCG)
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)
Coordinate System	Uranus Mean J2000 Equator
X	-26762.258109447845000 (km)
Y	$0.0~(\mathrm{km})$
\mathbf{Z}	26762.258109447823000 (km)
VX	-1.158158360792704 (km)
VY	-13.219466869135891 (km)
VZ	1.158158360792704 (km)
Mass (No Fuel)	$1000 \; (kg)$
Cd	2.2
Cr	1.2
Drag Area	$20 \ (m^2)$
Drag Model	Case dependent
NSG Model	Case dependent
SRP Area	$20 \ (m^2)$
SRP	Case dependent
Integration Method	Tool/Program Dependent
Integrator StepSize control	Fixed
Integrator Init. StepSize	5 (sec)
Integrator Accuracy	1e-13
Integrator Max. StepSize	5 (sec)
Report Precision	16 significant figures
Report StepSize	$300 \; (sec)$
Report CS/Cb	Same as initial state CS

Table B.13: Initial Orbit Parameters (Venus)			
Initial State Parameter	Parameter Value (unit)		
Start Time	1 Jun 2004 12:00:00.000 (UTCG)		
Stop Time	4 Jun 2004 12:00:00.000 (UTCG)		
Coordinate System	Venus Mean J2000 Equator		
X	-4832.074380872521000 (km)		
Y	0.0 (km)		
Z	4832.074380872517400 (km)		
VX	-0.645356787452373 (km)		
VY	-7.366240195908405 (km)		
VZ	0.645356787452373 (km)		
Mass (No Fuel)	1000 (kg)		
Cd	2.2		
Cr	1.2		
Drag Area	$20 \ (m^2)$		
Drag Model	Case dependent		
NSG Model	Case dependent		
SRP Area	$20 \ (m^2)$		
SRP	Case dependent		
Integration Method	Tool/Program Dependent		
Integrator StepSize control	Fixed		
Integrator Init. StepSize	5 (sec)		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	5 (sec)		
Report Precision	16 significant figures		
Report StepSize	$300 \; (sec)$		
Report CS/Cb	Same as initial state CS		

Table B 14: Initial Orbit Parameters (DeepSpace)

Table B.14: Initial Orbit Parameters (DeepSpace)			
Initial State Parameter	Parameter Value (unit)		
Start Time	01 Jan 2000 12:00:00.000 (UTCG)		
Stop Time	01 Jan 2001 12:00:00.000 (UTCG)		
Central Body	Sun		
Coordinate System	Sun Mean J2000 Ecliptic		
X	30043412.094803076000000 (km)		
Y	143707423.481292670000000 (km)		
\mathbf{Z}	2198384.040184043300000 (km)		
VX	-29.715920923036403 (km)		
VY	6.056690472247896 (km)		
VZ	0.123271169290614 (km)		
Mass (No Fuel)	$1000 \; (kg)$		
Cd	2.2		
Cr	1.2		
Drag Area	$20 \ (m^2)$		
Drag Model	Case dependent		
NSG Model	Case dependent		
SRP Area	$20 \; (m^2)$		
SRP	Case dependent		
Integration Method	Tool/Program Dependent		
Integrator StepSize control	Variable		
Integrator Init. StepSize	$30000 \; (sec)$		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	$30000 \; (sec)$		
Report Precision	16 significant figures		
Report StepSize	$86400 \; (sec)$		
Report CS/Cb	Same as initial state CS		

Table B.15: Initial Orbit Parameters (EML2)

Table B.15: Initial Orbit Parameters (EML2)			
Initial State Parameter	Parameter Value (unit)		
Start Time	23 Jan 2010 00:00:03.999 (UTCG)		
Stop Time	6 Feb 2010 00:00:03.999 (UTCG)		
Coordinate System	Earth Mean J2000 Equator		
X	406326.22661300009 (km)		
Y	177458.38761599999 (km)		
Z	145838.58078999998 (km)		
VX	-0.517274673822 (km)		
VY	0.774650366561 (km)		
VZ	0.331416602654 (km)		
Mass (No Fuel)	$1000 \; (kg)$		
Cd	2.2		
Cr	1.2		
Drag Area	$20 \ (m^2)$		
Drag Model	Case dependent		
NSG Model	Case dependent		
SRP Area	$20 \; (m^2)$		
SRP	Case dependent		
Integration Method	Tool/Program Dependent		
Integrator StepSize control	Variable		
Integrator Init. StepSize	$1200 \; (sec)$		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	$1200 \; (sec)$		
Report Precision	16 significant figures		
Report StepSize	$2400 \; (sec)$		
Report CS/Cb	Same as initial state CS		

Table B.16: Initial Orbit Parameters (ESL2)			
Initial State Parameter	Parameter Value (unit)		
Start Time	5 Feb 2006 17:05:48.772 (UTCG)		
Stop Time	4 Aug 2006 17:05:48.772 (UTCG)		
Coordinate System	Earth Mean J2000 Equator		
X	1010800.968074728 (km)		
Y	-910963.5377102628 (km)		
${ m Z}$	-295145.6311353027 (km)		
VX	$0.2642852647102676 (\mathrm{km})$		
VY	0.286744175490658 (km)		
VZ	0.07338744995264675 (km)		
Mass (No Fuel)	$1000 \; (kg)$		
Cd	2.2		
Cr	1.2		
Drag Area	$20 \ (m^2)$		
Drag Model	Case dependent		
NSG Model	Case dependent		
SRP Area	$20 \ (m^2)$		
SRP	Case dependent		
Integration Method	Tool/Program Dependent		
Integrator StepSize control	Variable		
Integrator Init. StepSize	$15000 \; (sec)$		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	$15000 \; (sec)$		
Report Precision	16 significant figures		
Report StepSize	$43200 \; (sec)$		
Report CS/Cb	Same as initial state CS		

B.2. CALCULATION PARAMETER TEST CASES

B.2 Calculation Parameter Test Cases

The Cb and CS initial orbit state conditions for the ISS, GEO, Mars1, Mercury1, Moon, Neptune1, Pluto1, Saturn1, Uranus1 and Venus1 test cases are the same as the vales presented in Tables B.1, B.5, B.6-B.13. The only exception is that the Report StepSize is 600 seconds.

Table B.17: Initial Orbit Parameters (Hyperbolic)

Table B.17: Initial Orbit Parameters (Hyperbolic)			
Initial State Parameter	Parameter Value (unit)		
Coordinate System	Earth Mean J2000 Equator		
Start Time	01 Jun 2004 12:00:00.000 (UTCG)		
Stop Time	02 Jun 2004 12:00:00.000 (UTCG)		
X	12371.791482634855 (km)		
Y	5050.7627227610719 (km)		
Z	5050.762722761071 (km)		
VX	-7.9859921512608487 (km)		
VY	2.44520073255755 (km)		
VZ	2.4452007325575495 (km)		
Mass (No Fuel)	1000 (kg)		
Cd	$2.\hat{2}$		
Cr	1.2		
Drag Area	$20 \ (m^2)$		
Drag Model	None		
NSG Model	None		
SRP Area	$20 \ (m^2)$		
SRP	None		
Integration Method	Tool/Program Dependent		
Integrator StepSize control	Fixed		
Integrator Init. StepSize	5 (sec)		
Integrator Accuracy	1e-13		
Integrator Max. StepSize	5 (sec)		
Report Precision	16 significant figures		
Report StepSize	600 (sec)		
Report CS/Cb	Case Dependent		

B.3 Integrator Test Cases

200

The integrator initial orbit state conditions for the ISS and GEO test cases are the same as the vales presented in Tables B.1 and B.5. The only exception is that each test case uses one of the following Integration Methods: ABM, BS, PD45, PD78, RKF56, RKN68, and RKV89.

B.4 Stopping Condition Test Cases

Refer to Tables 5.2- 5.6 in Chapter 5 for initial orbit state values for the Stopping Condition test cases.

B.5 Libration Point Test Cases

Refer to Tables 6.1- 6.2 in Chapter 6 for initial orbit state values for the Stopping Condition test cases.

B.6 DeltaV Test Cases

Refer to Tables 7.1-7.4 in Chapter 7 for initial orbit state values for the Performance test cases.

B.7 Performance

Refer to Tables??-?? in Chapter 8 for initial orbit state values for the Performance test cases.

Appendix C

Comparison Scripts Guide

Using specific naming conventions, outlined in this acceptance test plan, and a folder architecture, highlighted below for the test cases, several semi-automated scripts were generated to compare all of the GMAT test case results with other tools. Most of these scripts have the ability to also compare results of older versions of GMAT.

C.1 Folder Architecture

The folder architecture for the files needed for the comparison scripts is presented below:

- GMAT_RegSetup/
 - output/AcceptTest/CompareResults/
 - [Tool1]_[Tool2]
 - input/AcceptTest/
 - output/AcceptTest/[Tool]_reports/
 - output/AcceptTest/Good_reports/
 - FF
 - STK
- GMATDocuments/
 - AcceptTest

C.2 Install Instructions

- 1. Copy the GMAT_RegSetup and GMATDocuments folders to the same location on your hard drive.
- 2. Check to make sure the folders listed in Section C.1
- 3. Make sure the GMAT executable folder has a Matlab folder with the latest GMAT commands and keywords
- 4. Open Matlab
- 5. Set the path in Matlab to include the GMAT matlab folder

- 6. Open GMAT and start the Matlab server
- 7. Make sure Excel is closed
- 8. Set current directory to the main GMAT_results/GMAT_scripts folder and then type BuildCompare_GMATteam in the command window or
- 9. Open one of the following files and run (F5 in Windows): Click ok to change the current Matlab directory if prompted
 - (a) BuildRun_Script_GMAT.m
 - (b) Comparison_Tool1_Tool2_PV.m
 - (c) Comparison_Tool1_Tool2_CS.m
 - (d) Comparison_Tool1_Tool2_Cb.m
 - (e) Comparison_Tool1_Tool2_Libr.m
 - (f) Comparison_Integ.m
 - (g) Comparison_DeltaV.m
 - (h) Comparison_StopCond.m
 - (i) TimeComparo.m
 - (j) LoopTestSummary.m

C.3 Warnings/Script Hints

- The following scripts were not designed for the user to hit one button, run multiple calculations, and output data without user interaction. User interaction is necessary in all of these scripts.
- The [] notation indicates multiple words can be used. For example, [Tool] means replace the bracketed expression with words such as FF, STK, and GMAT.
- As of November 2005, the Excel data created by the comparison scripts will be saved in one file name [Tool1]_[Tool2]_Results_[DD-MMM-YYYY].xls in their respective [Tool1]_[Tool2] folder in the CompareResults folder.
- Be careful adding MATLAB .m files that contain the text GMAT in their file name. These scripts use the text GMAT as an indicator to know if the file is a GMAT compatible script.
- The adherence to the naming conventions are very strict in these scripts. Make sure when adding reports, scripts, or folders to use case sensitive filenames that agree with the naming conventions at all times.
- Several output formats are overwritten when running each script. The Excel documents are saved with the current date as part of the filename. If the filename exists it will be replaced. The same overwriting process occurs with the Matlab .mat files.
- In order to compare old GMAT Builds to one another, a new folder must be created with the date of the GMAT Build. For example, the [Month] [Day] build performed well so after running the scripts that generate all the comparison data for the [Month] [Day] Build, a new folder must be created. The folder can be named YYMMDDGMAT_reports with the appropriate GMAT Build Year Month and Date replacing YYMMDD. Now simply copy the contents of GMAT_reports into YYMMDDGMAT_reports and the data can be used to compare future build of GMAT to one another.
- All the .mat files, except for the TimeComparo files, are formatted in a similar way. They contain the following variables mat_Tool11, mat_Tool21, mat_header, maxDiffs, and diffMat_Tool1_Tool2 or norm-Mat_Tool1_Tool2.

The mat_header variable contains what parameters each column represents for the other variables The mat_Tool11 and mat_Tool21 variables contain the report file data minus any headers. Tool1 is the alphabetical first tool selected and Tool2 is the other tool selected

203

- Common mistakes made with these scripts:
 - Adding report files and not following the naming convention (i.e. FF_ISS_Earth_0_0_0 was misnamed as FF_ISS_Earth_0_0).
 - Outputting other tools and not following the proper ordering of parameters for comparison
 - Report files were outputted in the wrong time interval increment
 - Report files were outputted without enough numerical precision. GMAT outputs data at a fixed width of 12 numerical characters (default). Other programs should be the same or better.

C.4 BuildRun_Script_GMAT.m script

Win compatible / Mac & Linux ?

C.4.1 Purpose

This script was designed to send multiple GMAT scripts from Matlab to GMAT to be built and ran. In early versions of GMAT, there was no capability to run multiple scripts, but since current versions of GMAT contain this capability this script is not as vital in the Acceptance test plan.

Its secondary purpose is to record the individual time elapsed to run each test case and output the results to a .mat file for later use.

C.4.2 Inputs

• All .m files located in the GMAT_RegSetup/input/AcceptTest/ folder that follow the GMAT comparison naming convention described in Sections 2.3, 3.2.1, 3.3.1, and 4.2

C.4.3 Outputs

- When choosing to build multiple scripts and the all command is used a mat file is created, which keeps a log of the time it takes to run each case. The script also displays the case name and the time it takes for GMAT to run the file in Matlab's command window.
- Any other output data is dependent on the GMAT script.

C.4.4 Script Algorithm

C.5 Comparison_Tool1_Tool2_PV.m

Win/Mac/Linux compatible

C.5.1 Purpose

This script is used to perform the position and velocity comparisons needed for the Propagator Section (2) of the Acceptance Test Plan. This script takes the normalized position and velocity vector differences between the two selected programs.

204

C.5.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports. (Refer to Section 2.3 for the naming convention of these report files.)
- The report files must be formatted the same way. The first column is time (Mod. Julian Date), second-fourth columns are the position vector components (x, y, z), and fifth-seventh columns are the velocity vector components (Vx, Vy, Vz). The data must be separated by spaces.
- Currently the location of the report's first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the first row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.5.3 Outputs

- Comparison data is displayed in MATLAB's command window for all test cases.
- Excel documents with comparison data and pass/fail information.
- MATLAB .mat files with comparison data.
- Latex documents with comparison data.

C.5.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu

 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found

- Continue if match found or exit loop if no match found
- Read both output files and save the data to different matrices
- Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
- Take difference of both Tools report data
- Normalize the results based on position and velocity
- Determine the maximum normalized position and velocity difference
- Store propagation duration of the test cases in a variable
- Add acceptable differences values for Excel output
- Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
- Close Excel connection if open.
- End Loop. Allow user to rerun script

C.6 Comparison_Tool1_Tool2_CS.m

Win/Mac/Linux compatible

C.6.1 Purpose

This script is used to perform the coordinate system dependent comparisons needed for the Calculation Parameters Section (3) of the Acceptance Test Plan. The comparison involves taking the maximum absolute value of the differences of the variables listed in the Inputs section of this help guide.

C.6.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports. (Refer to Section 3.3.1 for the naming convention of these report files.)
- The report files must be formatted the same way. Time, [X, Y, andZ] Position(km), [X, Y, andZ] Velocity(km/sec), Mag. of Velocity(km/sec), Right Ascension of Velocity(deg), [X, Y, andZ] RxV-Specific Angular Momentum(km^2/sec), Arg. of Perigee(deg), Declination(deg), Declination of Velocity(deg), Inclination(deg), Right Ascension(deg), Right Ascension of Ascending Node(deg)
- Currently the location of the reports first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.6.3 Outputs

- Excel documents with comparison data
- MATLAB .mat files with comparison data
- Latex documents with comparison data

C.6.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu

 Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu

 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found
 - Continue if match found or exit loop if no match found
 - Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Determine the maximum difference for each coordinate system dependent parameter
 - Store propagation duration of the test cases in a variable
 - Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

C.7 Comparison_Tool1_Tool2_Cb.m

207

C.7.1 Purpose

This script is used to perform the central body dependent comparisons needed for the Calculation Parameters Section (3) of the Acceptance Test Plan. The comparison involves taking the maximum absolute value of the differences of the variables listed in the Inputs section of this help guide.

C.7.2 Inputs

- Folder to search for files: [RootFolder]/[Tool]_reports. (Refer to Section 3.2.1 for the naming convention of these report files.)
- The report files must be formatted the same way. Time, Altitude (km), Beta Angle (deg), C3_Energy (km^2/sec^2) , Eccentricity, Latitude (deg), Longitude (deg), (RxV)_Mag (km^2/sec) , Mean Anomaly (deg), Mean Motion (rad/sec), Period (sec), Apoapsis Radius (km), Perigee Radius (km), R_Mag (km), Semimajor Axis (km), True Anomaly (deg), Semilatus Rectum(km), Apoapsis Velocity (km/sec), Periapsis Velocity (km/sec), Greenwich Hour Angle(deg), Local Sidereal Time
- Due to the inability of FF and STK tools to output all the parameters listed in the previous bullet, exceptions for FF and STK are built into the code.

STK: Semilatus Rectum, Apoapsis Velocity, Perigee Velocity, Greenwich Hour Angle, and Local Sidereal Time can not be outputted in the same report file. Out of the aforementioned parameters Greenwich Hour Angle is the only parameter that can be outputted in a separate file. All the other parameters are calculated in MATLAB based on the results STK could generate.

FF: (RxV)_Mag and R_Mag could not be outputted easily. Instead the [XYZ] components were outputted and the script computes the magnitude of the vectors. Apoapsis Velocity, Periapsis Velocity, and Local Sidereal Time are all created in this script based on available parameters.

Modifications to the code will need to be made to add a new tool that cannot output all of the central body parameters that GMAT does.

• Currently the location of the reports first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.7.3 Outputs

- Excel documents with comparison data
- MATLAB .mat files with comparison data
- Latex documents with comparison data

C.7.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder
- Wait for user to choose tool from menu

Implement error system for incorrect choice

- Display menu for Tool2 options based on [Tool]_reports folder
- Wait for user to choose tool from menu
 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

Generate error report if no *.report files are located in [Tool1]_report folder

- Wait for user to choose report comparison option
 - Implement error system for incorrect choice

Open Excel Connection if compare all choice selected

- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found
 - Continue if match found or exit loop if no match found
 - Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Code in exceptions for STK, FF, and any other tools that don't output all the desired GMAT central body dependent parameters
 - Determine the maximum difference for each central body dependent parameter
 - Store propagation duration of the test cases in a variable
 - Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

C.8 Comparison_Tool1_Tool2_Libr.m

Win/Mac/Linux compatible

C.8.1 Purpose

This script is used to perform the position and velocity comparisons needed for the Libration Points Section (6) of the Acceptance Test Plan. This script takes the normalized position and velocity vector differences between the two selected programs.

Praft: Work in Progress C.9. COMPARISON_INTEG.M

Inputs

C.8.2

- Folder to search for files: [Root Folder]/[Tool]_reports. (Refer to Section 6.2 for the naming convention of these report files.)
- The report files must be formatted the same way. The first column is time (Mod. Julian Date), secondfourth columns are the position vector components (x, y, z), and fifth-seventh columns are the velocity vector components (Vx, Vy, Vz). The data must be separated by spaces.
- Currently the location of the report's first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the first row, OD toolbox is the first row, and any other tools added will automatically search the first row.

C.8.3Outputs

- Comparison data is displayed in MATLAB's command window for all test cases.
- Excel documents with comparison data and pass/fail information.
- MATLAB .mat files with comparison data.
- Latex documents with comparison data.

C.8.4Script Algorithm

[INSERT script Algorithm]

C.9Comparison_Integ.m

Win/Mac/Linux compatible

C.9.1Purpose

This script is used to perform the integrator comparisons needed for the Integrator Section (4) of the Acceptance Test Plan. The comparison involves taking the difference of the position and velocity vector and then normalizing these two vectors to get the position and velocity difference. This script behaves similar to the Comparison_Tool1_Tool2_PV.m script but the components being varied are the integrators for two body test cases.

C.9.2**Inputs**

- Folder to search for files: [RootFolder]/[Tool]_reports.
- Naming convention: Integrator[Tool][Trajectory][IntegratorType]2Body.report
- The report files must be formatted the same way. The first column is time, second-fourth columns are the position vector (x,y,z), and fifth-seventh columns are the velocity vector (x,y,z). The data must be separated by spaces.
- Currently the location of the reports' first row of numerical data is coded into the script. FreeFlyer is the fourth row, STK is the seventh row, GMAT is the second row, OD toolbox is the first row, and any other tools added will automatically search the first row.

Draft: Work in Progress

APPENDIX C. COMPARISON SCRIPTS GUIDE

C.9.3 Outputs

- Excel documents with comparison data into the following folder: [RootFolder]/CompareResults/[Tool1]_[Tool2]
- MATLAB .mat files with comparison data into the following folder: [RootFolder]/CompareResults/[Tool1]_[Tool2]
- Latex documents with comparison data into the following folder: [RootFolder]/Latex_Docs

C.9.4 Script Algorithm

- Display welcome message
- Display menu for Tool1 options based on [Tool]_reports folder (Can only be Exact or GMAT folders)
- Wait for user to choose tool from menu Implement error system for incorrect choice
- Display menu for Tool2 options based on [Tool]_reports folder (Can only be Exact or GMAT folders)
- Wait for user to choose tool from menu

 Implement error system for incorrect choice
- Alphabetize Tool1 and Tool2 for naming purposes and rename if necessary
- Store the row location of the first instance of numerical data for both Tools' report files
- Initialize variables and folder locations
- Display a menu of Tool1 *.report files

 Generate error report if no *.report files are located in [Tool1]_report folder
- Wait for user to choose report comparison option
 Implement error system for incorrect choice
 Open Excel Connection if compare all choice selected
- Display filename, position difference, and velocity difference header
- Begin Loop. Loop once for single comparison and several times for comparing all files.
 - Check the Tool2 folder for the same report
 Display error message if no report found
 - Continue if match found or exit loop if no match found
 - Read both output files and save the data to different matrices
 - Check to see if the row sizes are the same in both matrices
 Display error if row sizes do not match
 - Take difference of both Tools report data
 - Normalize the results based on position and velocity
 - Determine the maximum normalized position and velocity difference
 - Store propagation duration of the test cases in a variable
 - Save comparison data to .mat file
 - * If compare all reports chosen, format data for output to Latex
 - * Use BasicLatexTable script to save data to LaTex file
 - * Save comparison results, acceptance errors, and duration to Excel
 - Close Excel connection if open.
- End Loop. Allow user to rerun script

210

Draft: Work in Progress C.10. COMPARISON_DELTAV.M

C.10 Comparison_DeltaV.m

Win/Mac/Linux compatible

- C.10.1 Purpose
- C.10.2 Inputs
- C.10.3 Outputs
- C.10.4 Script Algorithm

C.11 Comparison_StopCond.m

Win/Mac/Linux compatible

- C.11.1 Purpose
- C.11.2 Inputs
- C.11.3 Outputs
- C.11.4 Script Algorithm

C.12 STK_Repropagate.m

Win compatible

C.12.1 Purpose

The STK_Repropagate script was designed to reduce the time it took to generate STK report files, after modifications to the STK scenario were made, and obtain more accurate STK run times. Through STK's connect module Matlab connect with STK and propagates satellites, generates reports, and outputs run times.

C.12.2 Inputs

• STK scenario folders that follow the GMAT Acceptance Test Plan naming convention, in the following folder: [RootFolder]/TruthFiles/STK

C.12.3 Outputs

- STK report file saved into [RootFolder]/STK_reports.
- Matlab .mat file with the time taken to propagate each satellite.

C.12.4 Script Algorithm

C.13 TimeComparo.m

Win/Mac/Linux compatible

C.13.1 Purpose

When running the BuildRun_Script_GMAT.m script there is an all option after selecting the build & run multiple cases choice. By using this all option, the GMAT performance times for all the test cases are saved to a .mat file. This script uses those saved performance times and, based on a pre-selected amount of test cases, creates a new excel file that contains GMAT, FF, and STK performance times for those pre-selected cases.

C.13.2 Inputs

- \bullet Template file containing pre-selected cases: [RootFolder]/NonGMATrunTimes.xls
- Folder to search for files: [RootFolder]/CompareResults
- Naming convention: [Date]/_Time2RunAll.mat

C.13.3 Outputs

• Excel document with comparison data

C.13.4 Script Algorithm

Appendix D

STK Setup

The STK setups were very crucial in determining a preliminary standard to compare GMAT to. In the initial stages of the Acceptance Test Plan STK scenarios were obtained from Emergent Space, as mentioned in Section 2.1. These Earth based cases were created in STK-HPOP and modified to provide a setup that was as equivalent to GMAT as was possible. Non-Earth test cases could not be created with STK-HPOP, so STK-Astrogator was used. In order to use STK-Astrogator several Astrogator elements needed to be created. Section D.4 details all the elements needed for the non-Earth STK test cases.

D.1 Support Files Needed

All alterations to STK scenarios were performed with STK 6.1 on the desktop machine described in the Performance Section (Section 8.1).

In order to duplicate data generated by STK for this Acceptance Test Plan, the same files presented in Table D.1 are needed.

Table D.1: STK support files

Filename(s)	File('s) and/or Folder('s) Location	Information in Section
EOP.dat	[STK Root Directory]\DynamicEarthData	2.2.1
EOP.dat.all	[STK Root Directory]\DynamicEarthData	2.2.1
All planetary cb files	[STK Root Directory]\STKData\CentralBodies	2.2.2
Non-spherical grav (nsg) files	[STK Root Directory]\STKData\CentralBodies	2.3
Report Styles	[STK individual user folder]\Config\Styles	D.5
Non-Earth Astrogator Elements	[STK Root Directory]\STKData\Astrogator	D.4
Leap Seconds File	$[STK\ Root\ Directory] \backslash STKData \backslash Astro$	2.2.2

D.2 STK modules used

Refer to Appendix B for a easy initial orbit state format to use as input into STK. Table D.2 displays the STK module to use in order to duplicate the results seen in theis Acceptance Test Plan document.

Table D.2: STK modules used

Test Cases	Test Group(s)	STK-type
ISS, GEO, SunSync, Molniya, GPS, Hyperbolic	Propagator, Cb, CS	STK-HPOP
DeepSpace, EML2, ESL2, All non-Earth cases	Propagator	STK-Astrogator
ISS, GEO	Integrator	STK-2Body

D.3 Scenario Setup

The following are guidelines we followed when creating STK Scenarios, excluding HPOP or Astrogator specific guidelines:

- Initial Scenario Epoch is the same as the satellite epoch
- Make sure all support files (Table D.1) are present and match the information in this document.
- *.cb planetary files need to contain the values in Tables 2.5, 2.7, and 2.9
- Remember the Modified Julian Date used in GMAT and STK are different. (i.e. UTC_GMAT_ModJulian = UTC_STK_ModJulian + 29999.5)

D.3.1 HPOP

- Planetary information should be taken from the JPL DE file
- Satellite properties must be consistent with table the values in Table 2.5

[INSERT Screen captures of HPOP]

D.3.2 STK

- All Astrogator support files (Table D.1) are essential in reproducing the values in this document.
- Make sure the maximum propagation is greater than the test case propagation duration or turn off the feature in STK.

[INSERT Screen captures of Astrogator]

Draft: Work in Progress D.4. ASTROGATOR ELEMENTS

D.4 Astrogator Elements

For the non-Earth cases a large number of Astrogator elements were created in order to compare STK to GMAT's results.

D.4.1 Calculation Objects: Cartesian Elements

Vx_EarthMJ2000Ec Vx_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthMODEc Vx_Neptune_Centered_Mean_J2000_Earth_Eq Vx_EarthMODEq Vy_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthMOEEc Vy_Neptune_Centered_Mean_J2000_Earth_Eq Vx_EarthMOEEq Vz_Neptune_Centered_Mean_J2000_Earth_Ec Vx_EarthTODEc Vz_Neptune_Centered_Mean_J2000_Earth_Eq Vx_EarthTODEq Vx_NeptuneFixed $Vx_EarthTOEEc$ Vy_NeptuneFixed Vx_EarthTOEEq Vz_NeptuneFixed Vy_EarthMJ2000Ec Vx_Pluto_Centered_Mean_J2000_Earth_Ec Vy_EarthMODEc Vx_Pluto_Centered_Mean_J2000_Earth_Eq Vy_EarthMODEq Vy_Pluto_Centered_Mean_J2000_Earth_Ec Vy_EarthMOEEc Vy_Pluto_Centered_Mean_J2000_Earth_Eq Vy_EarthMOEEq $\label{lem:vz_Pluto_Centered_Mean_J2000_Earth_Ec} Vz_Pluto_Centered_Mean_J2000_Earth_Ec$ Vz_Pluto_Centered_Mean_J2000_Earth_Eq Vv_EarthTODEc Vy_EarthTODEq Vx_PlutoFixed Vy_EarthTOEEc Vv_PlutoFixed Vy_EarthTOEEq Vz_PlutoFixed Vz_EarthMJ2000Ec Vx_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthMODEc Vx_Saturn_Centered_Mean_J2000_Earth_Eq Vz_EarthMODEq Vv_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthMOEEc Vy_Saturn_Centered_Mean_J2000_Earth_Eq Vz_EarthMOEEq Vz_Saturn_Centered_Mean_J2000_Earth_Ec Vz_EarthTODEc Vz_Saturn_Centered_Mean_J2000_Earth_Eq Vz_EarthTODEq Vx_SaturnFixed Vz_EarthTOEEc Vy_SaturnFixed Vz_EarthTOEEq Vz_SaturnFixed Vx_Mars_Centered_Mean_J2000_Earth_Ec Vx_Sun_Centered_Mean_J2000_Earth_Ec Vx_Mars_Centered_Mean_J2000_Earth_Eq Vx_Sun_Centered_Mean_J2000_Earth_Eq Vy_Mars_Centered_Mean_J2000_Earth_Ec Vy_Sun_Centered_Mean_J2000_Earth_Ec Vy_Mars_Centered_Mean_J2000_Earth_Eq Vy_Sun_Centered_Mean_J2000_Earth_Eq Vz_Mars_Centered_Mean_J2000_Earth_Ec Vz_Sun_Centered_Mean_J2000_Earth_Ec Vz_Mars_Centered_Mean_J2000_Earth_Eq Vz_Sun_Centered_Mean_J2000_Earth_Eq Vx_MarsFixed Vx_SunFixed Vy_MarsFixed Vy_SunFixed Vz_MarsFixed Vz_SunFixed Vx_Mercury_Centered_Mean_J2000_Earth_Ec Vx_Uranus_Centered_Mean_J2000_Earth_Ec Vx_Mercury_Centered_Mean_J2000_Earth_Eq Vx_Uranus_Centered_Mean_J2000_Earth_Eq Vy_Mercury_Centered_Mean_J2000_Earth_Ec Vy_Uranus_Centered_Mean_J2000_Earth_Ec Vy_Mercury_Centered_Mean_J2000_Earth_Eq Vy_Uranus_Centered_Mean_J2000_Earth_Eq $Vz_Uranus_Centered_Mean_J2000_Earth_Ec$ Vz_Mercury_Centered_Mean_J2000_Earth_Ec Vz_Mercury_Centered_Mean_J2000_Earth_Eq Vz_Uranus_Centered_Mean_J2000_Earth_Eq Vx_MercuryFixed Vx_UranusFixed Vy_MercuryFixed Vv_UranusFixed Vz_MercuryFixed Vz_UranusFixed

APPENDIX D. STK SETUP 216

> Vx_Moon_Centered_Mean_J2000_Earth_Ec Vx_Moon_Centered_Mean_J2000_Earth_Eq Vy_Moon_Centered_Mean_J2000_Earth_Ec Vv_Moon_Centered_Mean_J2000_Earth_Eq Vz_Moon_Centered_Mean_J2000_Earth_Ec Vz_Moon_Centered_Mean_J2000_Earth_Eq

Vx_MoonFixed Vy_MoonFixed $Vz_{-}MoonFixed$ X_EarthGSE Y_EarthGSE **Z_**EarthGSE Vx_EarthGSE Vy_EarthGSE Vz_EarthGSE

Vx_Venus_Centered_Mean_J2000_Earth_Ec Vx_Venus_Centered_Mean_J2000_Earth_Eq Vy_Venus_Centered_Mean_J2000_Earth_Ec Vy_Venus_Centered_Mean_J2000_Earth_Eq Vz_Venus_Centered_Mean_J2000_Earth_Ec Vz_Venus_Centered_Mean_J2000_Earth_Eq

Vx_VenusFixed Vy_VenusFixed Vz_VenusFixed X_EarthGSM Y_EarthGSM Z_EarthGSM Vx_EarthGSM Vy_EarthGSM Vz_EarthGSM

D.4.2Calculation Objects: Geodetic Elements

Altitude_Mars Altitude_Pluto $Latitude_Mars$ Latitude_Pluto Longitude_Mars Longitude_Pluto Altitude_Mercury Altitude_Saturn Latitude_Saturn Latitude_Mercury Longitude_Mercury Longitude_Saturn Altitude_Moon Altitude_Uranus Latitude_Moon Latitude_Uranus Longitude_Moon Longitude_Uranus Altitude_Neptune Altitude_Venus Latitude_Neptune Latitude_Venus Longitude_Neptune Longitude_Venus

D.4. ASTROGATOR ELEMENTS

Draft: Work in Progress

D.4.3 Calculation Objects: Keplerian Elements

Argument_of_Periapsis_(fixed) Inclination_(fixed) Argument_of_Periapsis_(MJ2000Ec) Inclination_(MJ2000Ec) Argument_of_Periapsis_(MODEc) Inclination_(MODEc) Argument_of_Periapsis_(MOEEc) Inclination_(MOEEc) Argument_of_Periapsis_(MOEEq) Inclination_(MOEEq) Argument_of_Periapsis_(TODEc) Inclination_(TODEc) Argument_of_Periapsis_(TOEEc) Inclination_(TOEEc) Argument_of_Periapsis_(TOEEq) Inclination_(TOEEq) Argument_of_Periapsis_(EarthGSE) Inclination_(EarthGSE) Argument_of_Periapsis_(EarthGSM) Inclination_(EarthGSM) Argument_of_Periapsis_(MarsFixed) Inclination_(MarsFixed) Argument_of_Periapsis_(MarsMJ2000Ec) Inclination_(MarsMJ2000Ec) Inclination_Mars_(MJ2000Eq) Argument_of_Periapsis_Mars_(MJ2000Eq) Argument_of_Periapsis_(MercuryFixed) Inclination_(MercuryFixed) Argument_of_Periapsis_(MercuryMJ2000Ec) Inclination_(MercuryMJ2000Ec) Argument_of_Periapsis_Mercury_(MJ2000Eq) Inclination_Mercury_(MJ2000Eq) Argument_of_Periapsis_(MoonFixed) Inclination_(MoonFixed) Argument_of_Periapsis_(MoonMJ2000Ec) Inclination_(MoonMJ2000Ec) Argument_of_Periapsis_Moon_(MJ2000Eq) Inclination_Moon_(MJ2000Eq) Inclination_(NeptuneFixed) Argument_of_Periapsis_(NeptuneFixed) Argument_of_Periapsis_(NeptuneMJ2000Ec) Inclination_(NeptuneMJ2000Ec) Argument_of_Periapsis_Neptune_(MJ2000Eq) Inclination_Neptune_(MJ2000Eq) Argument_of_Periapsis_(PlutoFixed) Inclination_(PlutoFixed) Argument_of_Periapsis_(PlutoMJ2000Ec) Inclination_(PlutoMJ2000Ec) Argument_of_Periapsis_Pluto_(MJ2000Eq) Inclination_Pluto_(MJ2000Eq) Argument_of_Periapsis_(SaturnFixed) Inclination_(SaturnFixed) Argument_of_Periapsis_(SaturnMJ2000Ec) Inclination_(SaturnMJ2000Ec) Argument_of_Periapsis_Saturn_(MJ2000Eq) Inclination_Saturn_(MJ2000Eq) Argument_of_Periapsis_(UranusFixed) Inclination_(UranusFixed) Argument_of_Periapsis_(UranusMJ2000Ec) Inclination_(UranusMJ2000Ec) Argument_of_Periapsis_Uranus_(MJ2000Eq) Inclination Argument_of_Periapsis_(VenusFixed) Inclination_(VenusFixed) Argument_of_Periapsis_(VenusMJ2000Ec) Inclination_(VenusMJ2000Ec) Argument_of_Periapsis_Venus_(MJ2000Eq) Inclination_Venus_(MJ2000Eq) Eccentricity_Mars Mean_Motion_Mars Eccentricity_Mercury Mean_Motion_Mercury Eccentricity_Moon Mean_Motion_Moon Eccentricity_Neptune Mean_Motion_Neptune Eccentricity_Pluto Mean_Motion_Pluto Eccentricity_Saturn Mean_Motion_Saturn Eccentricity_Uranus Mean_Motion_Uranus Eccentricity_Venus Mean_Motion_Venus

Orbit_Period_Mars Orbit_Period_Mercury Orbit_Period_Moon Orbit_Period_Neptune Orbit_Period_Pluto Orbit_Period_Saturn Orbit_Period_Uranus Orbit_Period_Venus RAAN_(fixed) RAAN_(MJ2000Ec) RAAN_(MODEc) RAAN_(MOEEc) RAAN_(MOEEq) RAAN_(TODEc) RAAN_(TOEEc) RAAN_(TOEEq) RAAN_(MarsFixed) RAAN_(MarsMJ2000Ec) RAAN_Mars_(MJ2000Eq) RAAN_(MercuryFixed) RAAN_(MercuryMJ2000Ec) RAAN_Mercury_(MJ2000Eq) RAAN_(MoonFixed) RAAN_(MoonMJ2000Ec) RAAN_Moon_(MJ2000Eq) RAAN_(NeptuneFixed) RAAN_(NeptuneMJ2000Ec) RAAN_Neptune_(MJ2000Eq) RAAN_(PlutoFixed) RAAN_(PlutoMJ2000Ec) RAAN_Pluto_(MJ2000Eq) RAAN_(SaturnFixed) RAAN_(SaturnMJ2000Ec) RAAN_Saturn_(MJ2000Eq) RAAN_(UranusFixed) RAAN_(UranusMJ2000Ec) RAAN_Uranus_(MJ2000Eq) RAAN_(VenusFixed) RAAN_(VenusMJ2000Ec)

RAAN_Venus_(MJ2000Eq)

Radius_Of_Apoapsis_Mars Radius_Of_Apoapsis_Mercury Radius_Of_Apoapsis_Moon Radius_Of_Apoapsis_Neptune Radius_Of_Apoapsis_Pluto Radius_Of_Apoapsis_Saturn Radius_Of_Apoapsis_Uranus Radius_Of_Apoapsis_Venus Radius_Of_Periapsis_Mars Radius_Of_Periapsis_Mercury Radius_Of_Periapsis_Moon Radius_Of_Periapsis_Neptune Radius_Of_Periapsis_Pluto Radius_Of_Periapsis_Saturn Radius_Of_Periapsis_Uranus Radius_Of_Periapsis_Venus Semimajor_Axis_Mars Semimajor_Axis_Mercury Semimajor_Axis_Moon Semimajor_Axis_Neptune Semimajor_Axis_Pluto Semimajor_Axis_Saturn Semimajor_Axis_Uranus Semimajor_Axis_Venus True_Anomaly_Mars True_Anomaly_Mercury True_Anomaly_Moon True_Anomaly_Neptune True_Anomaly_Pluto True_Anomaly_Saturn True_Anomaly_Uranus True_Anomaly_Venus RAAN_(EarthGSE) RAAN_(EarthGSM)

Draft: Work in Progress D.4. ASTROGATOR ELEMENTS

D.4.4 Calculation Objects: Other Orbit Elements

Beta_Angle_Mercury
Beta_Angle_Meon
Beta_Angle_Neptune
Beta_Angle_Pluto
Beta_Angle_Saturn
Beta_Angle_Uranus
Beta_Angle_Venus

D.4.5 Calculation Objects: Target Vector Elements

C3_Energy_Mars
C3_Energy_Mercury
C3_Energy_Moon
C3_Energy_Neptune
C3_Energy_Pluto
C3_Energy_Saturn
C3_Energy_Uranus
C3_Energy_Venus

D.4.6 Calculation Objects: Spherical Elements

Declination_(EarthGSE) Right_Asc_(MercuryMJ2000Ec) Declination_(EarthGSM) Right_Asc_(MoonFixed) Declination_(MJ2000Ec) Right_Asc_(MoonMJ2000Ec) Declination_(MODEc) Right_Asc_(NeptuneFixed) Declination_(MOEEc) Right_Asc_(NeptuneMJ2000Ec) Declination_(MOEEq) Right_Asc_(PlutoFixed) Declination_(MarsFixed) Right_Asc_(PlutoMJ2000Ec) Declination_(MarsMJ2000Ec) Right_Asc_(SaturnFixed) Declination_(MercuryFixed) Right_Asc_(SaturnMJ2000Ec) Declination_(MercuryMJ2000Ec) Right_Asc_(TODEc) Declination_(MoonFixed) Right_Asc_(TOEEc) Declination_(MoonMJ2000Ec) Right_Asc_(TOEEq) Declination_(NeptuneFixed) Right_Asc_(UranusFixed) Right_Asc_(UranusMJ2000Ec) Declination_(NeptuneMJ2000Ec) Declination_(PlutoFixed) Right_Asc_(VenusFixed) Declination_(PlutoMJ2000Ec) Right_Asc_(VenusMJ2000Ec) Declination_(SaturnMJ2000Ec) Right_Asc_Mars_(MJ2000Eq) Declination_(SaturnsFixed) Right_Asc_Mercury_(MJ2000Eq) Declination_(TODEc) Right_Asc_Moon_(MJ2000Eq) Declination_(TOEEc) Right_Asc_Neptune_(MJ2000Eq) 220 APPENDIX D. STK SETUP

Declination_(TOEEq)

Declination_(UranusFixed)

Declination_(UranusMJ2000Ec)

Declination_(VenusFixed)

Declination_(VenusMJ2000Ec)

Declination_(VenusMJ2000Eq)

Declination_Mars_(MJ2000Eq)

Declination_Mercury_(MJ2000Eq)

Declination_Moon_(MJ2000Eq)

Declination_Neptune_(MJ2000Eq)

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

Declination_Neptune_(MJ2000Eq)

V_Mag

Declination_Neptune_(MJ2000Eq)

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

V_Mag

Declination_Neptune_(MJ2000Eq)

Declination_Pluto_(MJ2000Eq)
Declination_Saturn_(MJ2000Eq)
Declination_Uranus_(MJ2000Eq)

Declination_Venus_(MJ2000Eq)
R_Mag_(MarsFixed)
R_Mag_(MercuryFixed)
R_Mag_(MoonFixed)
R_Mag_(NeptuneFixed)

R_Mag_(NeptuneFixed)
R_Mag_(PlutoFixed)
R_Mag_(SaturnFixed)
R_Mag_(UranusFixed)
R_Mag_(VenusFixed)
R_Mag_Mars
R_Mag_Mercury
R_Mag_Moon

R_Mag_Neptune
R_Mag_Pluto
R_Mag_Saturn
R_Mag_Uranus
R_Mag_Venus
R_Mag_(EarthGSE)
R_Mag_(EarthGSM)

Right_Asc_(MJ2000Ec)
Right_Asc_(MODEc)
Right_Asc_(MOEEc)
Right_Asc_(MOEEq)
Right_Asc_(MarsFixed)
Right_Asc_(MarsMJ2000Ec)
Right_Asc_(MercuryFixed)

 $Right_Asc_(EarthGSM)$

Right_Asc_Pluto_(MJ2000Eq)
Right_Asc_Saturn_(MJ2000Eq)

Right_Asc_Uranus_(MJ2000Eq) Right_Asc_Venus_(MJ2000Eq)

V_Mag_(MJ2000Ec)
V_Mag_(MODEc)
V_Mag_(MOEEc)
V_Mag_(MOEEq)
V_Mag_(MarsFixed)
V_Mag_(MarsMJ2000Ec)
V_Mag_(MercuryFixed)
V_Mag_(MercuryMJ2000Ec)

V_Mag_(MoonFixed) V_Mag_(MoonMJ2000Ec) V_Mag_(NeptuneFixed) V_Mag_(NeptuneMJ2000Ec) V_Mag_(PlutoFixed)

V_Mag_(PlutoMJ2000Ec)
V_Mag_(SaturnMJ2000Ec)
V_Mag_(SaturnsFixed)
V_Mag_(TODEc)
V_Mag_(TOEEc)
V_Mag_(TOEEq)
V_Mag_(UranusFixed)
V_Mag_(UranusMJ2000Ec)
V_Mag_(VenusFixed)
V_Mag_(VenusMJ2000Ec)
V_Mag_(VenusMJ2000Ec)
V_Mag_Mars_(MJ2000Eq)
V_Mag_Mercury_(MJ2000Eq)

V_Mag_(EarthGSE)
V_Mag_(EarthGSM)
V_Mag_Moon_(MJ2000Eq)
V_Mag_Neptune_(MJ2000Eq)
V_Mag_Pluto_(MJ2000Eq)
V_Mag_Saturn_(MJ2000Eq)
V_Mag_Uranus_(MJ2000Eq)
V_Mag_Venus_(MJ2000Eq)
Right_Asc_(EarthGSE)

Draft: Work in Progress D.4. ASTROGATOR ELEMENTS

D.4.7 Calculation Objects: Vector Elements

(RxV) _Mag	$(RxV)_Z(MOEEq)$
(RxV) _Mag_ $(MarsFixed)$	$(RxV)_Z(MarsFixed)$
(RxV) _Mag_ $(MarsMJ2000)$	$(RxV)_Z(MarsMJ2000Ec)$
(RxV) _Mag_ $(MarsMJ2000Ec)$	$(RxV)_Z(MarsMJ2000Eq)$
(RxV)_Mag_(MercuryFixed)	(RxV)_Z_(MercuryFixed)
(RxV)_Mag_(MercuryMJ2000)	(RxV)_Z_(MercuryMJ2000Ec)
(RxV)_Mag_(MercuryMJ2000Ec)	(RxV)_Z_(MercuryMJ2000Eq)
(RxV)_Mag_(MoonFixed)	(RxV)_Z_(MoonFixed)
(RxV)_Mag_(MoonMJ2000)	(RxV)_Z_(MoonMJ2000Ec)
(RxV)_Mag_(MoonMJ2000Ec)	(RxV)_Z_(MoonMJ2000Eq)
(RxV)_Mag_(NeptuneFixed)	(RxV)_Z_(NeptuneFixed)
(RxV)_Mag_(NeptuneMJ2000)	(RxV)_Z_(NeptuneMJ2000Ec)
(RxV)_Mag_(NeptuneMJ2000Ec)	(RxV)_Z_(NeptuneMJ2000Eq)
(RxV)_Mag_(PlutoFixed)	(RxV)_Z_(PlutoFixed)
(RxV)_Mag_(PlutoMJ2000)	(RxV)_Z_(PlutoMJ2000Ec)
(RxV)_Mag_(PlutoMJ2000Ec)	(RxV)_Z_(PlutoMJ2000Eq)
(RxV)_Mag_(SaturnFixed)	(RxV)_Z_(SaturnFixed)
(RxV)_Mag_(SaturnMJ2000)	(RxV)_Z_(SaturnMJ2000Ec)
(RxV)_Mag_(SaturnMJ2000Ec)	(RxV)_Z_(SaturnMJ2000Eq)
(RxV)_Mag_(UranusFixed)	(RxV)_Z_(TODEc)
(RxV)_Mag_(UranusMJ2000)	$(RxV)_Z(TODEq)$
(RxV)_Mag_(UranussMJ2000Ec)	(RxV)-Z- $(TOEEc)$
(RxV)_Mag_(VenusFixed)	$(RxV)_Z(TOEEq)$
(RxV)_Mag_(VenusMJ2000)	(RxV)_Z_(UranusFixed)
(RxV)_Mag_(VenusMJ2000Ec)	(RxV)_Z_(UranusMJ2000Ec)
(RxV)_X	(RxV)_Z_(UranusMJ2000Eq)
$(RxV)_X$ (Fixed)	(RxV)-Z- $(VenusFixed)$
$(RxV)_X_M(MJ2000Ec)$	(RxV)_Z_(VenusMJ2000Ec)
(RxV)_X_(MODEc)	(RxV)-Z- $(VenusMJ2000Eq)$
(RxV)_X_(MODEq)	
-/	(RxV)_X_(MOEEc)
(RxV)_X_(MOEEq)	Vector_Dec_(Fixed)
(RxV)_X_(MarsFixed)	Vector_Dec_(MJ2000Ec)
(RxV)_X_(MarsMJ2000Ec)	Vector_Dec_(MODEc)
(RxV)_X_(MarsMJ2000Eq)	Vector_Dec_(MODEq)
(RxV)_X_(MercuryFixed)	Vector_Dec_(MOEEc)
(RxV)_X_(MercuryMJ2000Ec)	Vector_Dec_(MOEEq)
(RxV)_X_(MercuryMJ2000Eq)	Vector_Dec_(MarsFixed)
(RxV)_X_(MoonFixed)	Vector_Dec_(MarsMJ2000Ec)
(RxV)_X_(MoonMJ2000Ec)	Vector_Dec_(MarsMJ2000Eq)
(RxV)_X_(MoonMJ2000Eq)	Vector_Dec_(MercuryFixed)
(RxV)_X_(NeptuneFixed)	Vector_Dec_(MercuryMJ2000Ec)
(RxV)_X_(NeptuneMJ2000Ec)	Vector_Dec_(MercuryMJ2000Eq)
(RxV)_X_(NeptuneMJ2000Eq)	Vector_Dec_(MoonFixed)
(RxV)_X_(PlutoFixed)	Vector_Dec_(MoonMJ2000Ec)
(RxV)_X_(PlutoMJ2000Ec)	Vector_Dec_(MoonMJ2000Eq)
(RxV)_X_(PlutoMJ2000Eq)	Vector_Dec_(NeptuneFixed)
(RxV)_X_(SaturnFixed)	Vector_Dec_(NeptuneMJ2000Ec)
(RxV)_X_(SaturnMJ2000Ec)	Vector_Dec_(NeptuneMJ2000Eq)
(RxV)_X_(SaturnMJ2000Eq)	(RxV)_Z_(MOEEc)
$(RxV)_X_(EarthGSE)$	$(RxV)_X(EarthGSM)$
(RxV) _Y_ $(EarthGSE)$	(RxV) _ Y _ $(EarthGSM)$
$(RxV)_{-}Z_{-}(EarthGSE)$	(RxV)Z(EarthGSM)
EarthGSM_Position_X	EarthGSM_Velocity_X

222

EarthGSM_Position_Y EarthGSM_Velocity_Y EarthGSM_Position_Z EarthGSM_Velocity_Z Vector_Dec_(EarthGSE) Vector_Dec_(EarthGSM) Vector_RA_(EarthGSE) Vector_RA_(EarthGSM) Vector_Dec_(PlutoFixed) (RxV)_X_(TODEc) Vector_Dec_(PlutoMJ2000Ec) $(RxV)_X_(TODEq)$ Vector_Dec_(PlutoMJ2000Eq) $(RxV)_X_(TOEEc)$ Vector_Dec_(SaturnFixed) $(RxV)_X_{(TOEEq)}$ Vector_Dec_(SaturnMJ2000Ec) $(RxV)_X_{(UranusFixed)}$ Vector_Dec_(SaturnMJ2000Eq) (RxV)_X_(UranusMJ2000Ec) Vector_Dec_(TODEc) (RxV)_X_(UranusMJ2000Eq) Vector_Dec_(TODEq) $(RxV)_X(VenusFixed)$ Vector_Dec_(TOEEc) $(RxV)_X(VenusMJ2000Ec)$ Vector_Dec_(TOEEq) $(RxV)_X(VenusMJ2000Eq)$ Vector_Dec_(UranusFixed) $(RxV)_{-}Y$ Vector_Dec_(UranusMJ2000Ec) $(RxV)_Y_{Fixed}$ Vector_Dec_(UranusMJ2000Eq) $(RxV)_Y_(MJ2000Ec)$ Vector_Dec_(VenusFixed) $(RxV)_Y_(MODEc)$ Vector_Dec_(VenusMJ2000Ec) $(RxV)_Y(MODEq)$ Vector_Dec_(VenusMJ2000Eq) (RxV)_Y_(MOEEc) Vector_RA_(Fixed) $(RxV)_Y_(MOEEq)$ Vector_RA_(MJ2000Ec) $(RxV)_Y_{(MarsFixed)}$ $(RxV)_Y(MarsMJ2000Ec)$ Vector_RA_(MODEc) Vector_RA_(MODEq) (RxV)_Y_(MarsMJ2000Eq) Vector_RA_(MOEEc) (RxV)_Y_(MercuryFixed) Vector_RA_(MOEEq) (RxV)_Y_(MercuryMJ2000Ec) Vector_RA_(MarsFixed) (RxV)_Y_(MercuryMJ2000Eq) Vector_RA_(MarsMJ2000Ec) (RxV)_Y_(MoonFixed) Vector_RA_(MarsMJ2000Eq) $(RxV)_Y_(MoonMJ2000Ec)$ Vector_RA_(MercuryFixed) $(RxV)_Y_{(MoonMJ2000Eq)}$ Vector_RA_(MercuryMJ2000Ec) (RxV)_Y_(NeptuneFixed) Vector_RA_(MercuryMJ2000Eq) (RxV)_Y_(NeptuneMJ2000Ec) Vector_RA_(MoonFixed) (RxV)_Y_(NeptuneMJ2000Eq) Vector_RA_(MoonMJ2000Ec) (RxV)_Y_(PlutoFixed) Vector_RA_(MoonMJ2000Eq) (RxV)_Y_(PlutoMJ2000Ec) Vector_RA_(NeptuneFixed) (RxV)_Y_(PlutoMJ2000Eq) Vector_RA_(NeptuneMJ2000Ec) (RxV)_Y_(SaturnFixed) Vector_RA_(NeptuneMJ2000Eq) (RxV)_Y_(SaturnMJ2000Ec) Vector_RA_(PlutoFixed) (RxV)_Y_(SaturnMJ2000Eq) Vector_RA_(PlutoMJ2000Ec) (RxV)_Y_(TODEc) Vector_RA_(PlutoMJ2000Eq) $(RxV)_Y_{(TODEq)}$ Vector_RA_(SaturnFixed) $(RxV)_Y_(TOEEc)$ Vector_RA_(SaturnMJ2000Ec) $(RxV)_Y_{(TOEEq)}$ Vector_RA_(SaturnMJ2000Eq) (RxV)_Y_(UranusMJ2000Ec) Vector_RA_(TODEc) (RxV)_Y_(UranusMJ2000Eq) Vector_RA_(TODEq) (RxV)_Y_(UranussFixed) Vector_RA_(TOEEc) (RxV)_Y_(VenusFixed) Vector_RA_(TOEEq) $(RxV)_Y_(VenusMJ2000Ec)$ Vector_RA_(UranusFixed) $(RxV)_Y_{(VenusMJ2000Eq)}$ Vector_RA_(UranusMJ2000Ec) $(RxV)_Z$ Vector_RA_(UranusMJ2000Eq) $(RxV)_Z(Fixed)$ $(RxV)_Z(MJ2000Ec)$ Vector_RA_(VenusFixed) Vector_RA_(VenusMJ2000Ec) $(RxV)_Z(MODEc)$

 $(RxV)_Z(MODEq)$

Vector_RA_(VenusMJ2000Eq)

Draft: Work in Progress

D.4. ASTROGATOR ELEMENTS

D.4.8 Coordinate Systems: Central Body Inertial Elements

Mars_Centered_Mean_J2000 Mercury_Centered_Mean_J2000 Moon_Centered_Mean_J2000 Neptune_Centered_Mean_J2000 Pluto_Centered_Mean_J2000 Saturn_Centered_Mean_J2000 Uranus_Centered_Mean_J2000 Venus_Centered_Mean_J2000 Sune_Centered_MJ2000Ec Mars_Centered_MJ2000Ec
Mercury_Centered_MJ2000Ec
Moon_Centered_MJ2000Ec
Neptune_Centered_MJ2000Ec
Pluto_Centered_MJ2000Ec
Saturn_Centered_MJ2000Ec
Uranus_Centered_MJ2000Ec
Venus_Centered_MJ2000Ec

D.4.9 Propagators Elements

CisLunar Moon_SRP EarthMoon_L2_AllPlanets Neptune_2-Body

EarthMoon_L2_AllPlanets_and_SRP Neptune_AllPlanets EarthMoon_L2_ESM Neptune_SRP

EarthMoon_L2_ESM_JGM Pluto_2-Body
EarthMoon_L2_ESM_LP165P Pluto_AllPlanets
EarthSun_L2_AllPlanets Pluto_SRP

EarthSun_L2_AllPlanets_and_SRP Saturn_2-Body Earth_J2 Saturn_AllPlanets

Earth_Point_Mass Saturn_SRP Heliocentric Sun_AllPlanets

LunarSun_AllPlanets_and_SRPMars_2-BodyUranus_2-BodyMars_AllPlanetsUranus_AllPlanets

Mars_MARS50C Uranus_SRP
Mars_MARS50C_and_SRP Venus_2-Body
Venus_AllPlanets

Mercury_2-Body Venus_MGNP180U
Mercury_AllPlanets Venus_MGNP180U_and_SRP

Mercury_SRP Venus_SRP
Moon_2-Body Moon_AllPlanets

D.4.10 Axes Elements

Earth_GSE Earth_GSM

D.4.11 Coordinate System Elements

Earth_GSE Earth_GSM

APPENDIX D. STK SETUP 224

D.4.12**Vectors Elements**

Cross_Product_(RxV) $Cross_Product_(RxV)_(fixed)$ $Cross_Product_(RxV)_(MarsFixed)$ Cross_Product_(RxV)_(MarsMJ2000) $Cross_Product_(RxV)_(MarsMJ2000Ec)$ Cross_Product_(RxV)_(MercuryFixed) Cross_Product_(RxV)_(MercuryMJ2000) Cross_Product_(RxV)_(MercuryMJ2000Ec) Cross_Product_(RxV)_(MoonFixed) Cross_Product_(RxV)_(MoonMJ2000) Cross_Product_(RxV)_(MoonMJ2000Ec) Cross_Product_(RxV)_(NeptuneFixed) Cross_Product_(RxV)_(NeptuneMJ2000) Cross_Product_(RxV)_(NeptuneMJ2000Ec) Cross_Product_(YofGSM) EarthSun_J2K_Velocity DiPole_Vector_GSM

Cross_Product_(RxV)_(PlutoFixed) Cross_Product_(RxV)_(PlutoMJ2000) Cross_Product_(RxV)_(PlutoMJ2000Ec) Cross_Product_(RxV)_(SaturnFixed) Cross_Product_(RxV)_(SaturnMJ2000) Cross_Product_(RxV)_(SaturnMJ2000Ec) Cross_Product_(RxV)_(UranusFixed) Cross_Product_(RxV)_(UranusMJ2000) Cross_Product_(RxV)_(UranusMJ2000Ec) Cross_Product_(RxV)_(VenusFixed) Cross_Product_(RxV)_(VenusMJ2000) Cross_Product_(RxV)_(VenusMJ2000Ec) $Cross_Product_(RxV)_(EarthGSE)$ Cross_Product_(RxV)_(EarthGSM) Cross_Product_(ZofGSE)

EarthSun_Vector

Vectors: Vehicle Local Elements D.4.13

Position_(MarsFixed) Position_(MarsMJ2000Ec) Position_(MercuryFixed) Position_(MercuryMJ2000Ec) Position_(MoonFixed) Position_(MoonMJ2000Ec) Position_(NeptuneFixed) Position_(NeptuneMJ2000Ec) Position_(PlutoFixed) Position_(PlutoMJ2000Ec) Position_(SaturnFixed) Position_(SaturnMJ2000Ec) Position_(UranusFixed) Position_(UranusMJ2000Ec) Position_(VenusFixed) Position_(VenusMJ2000Ec) Position_Mars_(MJ2000) Position_Mercury_(MJ2000) Position_Moon_(MJ2000) Position_Neptune_(MJ2000) Position_Saturn_(MJ2000) Position_Uranus_(MJ2000) Position_Venus_(MJ2000) Position_(EarthGSE) Position_(EarthGSM)

Velocity_(MarsFixed) Velocity_(MarsMJ2000Ec) Velocity_(MercuryFixed) Velocity_(MercuryMJ2000Ec) Velocity_(MoonFixed) Velocity_(MoonMJ2000Ec) Velocity_(NeptuneFixed) Velocity_(NeptuneMJ2000Ec) Velocity_(PlutoFixed) Velocity_(PlutoMJ2000Ec) Velocity_(SaturnFixed) Velocity_(SaturnMJ2000Ec) Velocity_(UranusFixed) Velocity_(UranusMJ2000Ec) Velocity_(VenusFixed) Velocity_(VenusMJ2000Ec) Velocity_Mars_(MJ2000) Velocity_Mercury_(MJ2000) Velocity_Moon_(MJ2000) Velocity_Neptune_(MJ2000) Velocity_Saturn_(MJ2000) Velocity_Uranus_(MJ2000) Velocity_Venus_(MJ2000) Velocity_(EarthGSE) Velocity_(EarthGSM)

D.5. REPORT STYLES 225

D.5 Report Styles

Classical_Orbit_Elements GMAT_CSParameters_TODEq Earth_MJ2000_Position_Velocity GMAT_CSParameters_TOEEc $GMAT_Apoapsis_Periapsis$ GMAT_CSParameters_TOEEq GMAT_CSParameters_Fixed GMAT_CSParameters_UranusFixed GMAT_CSParameters_Uranus_MJ2000Ec GMAT_CSParameters_MJ2000Ec GMAT_CSParameters_MJ2000Eq GMAT_CSParameters_Uranus_MJ2000Eq $GMAT_CSParameters_MODEc$ GMAT_CSParameters_VenusFixed GMAT_CSParameters_MODEq GMAT_CSParameters_Venus_MJ2000Ec GMAT_CbParameters GMAT_CSParameters_Venus_MJ2000Eq GMAT_CbParameters_Mars GMAT_CSParameters_MOEEc GMAT_CSParameters_MOEEq GMAT_CbParameters_Mercury GMAT_CSParameters_MarsFixed GMAT_CbParameters_Moon GMAT_CSParameters_Mars_MJ2000Ec GMAT_CbParameters_Neptune GMAT_CbParameters_Pluto GMAT_CSParameters_Mars_MJ2000Eq GMAT_CSParameters_MercurvFixed GMAT_CbParameters_Saturn $GMAT_CbParameters_Uranus$ GMAT_CSParameters_Mercury_MJ2000Ec GMAT_CSParameters_Mercury_MJ2000Eq GMAT_CbParameters_Venus GMAT_CSParameters_MoonFixed J2000_ECI_Position_Velocity GMAT_CSParameters_Moon_MJ2000Ec Mars_MJ2000_Position_Velocity GMAT_CSParameters_Moon_MJ2000Eq Mercury_MJ2000_Position_Velocity GMAT_CSParameters_NeptuneFixed Moon_MJ2000_Position_Velocity GMAT_CSParameters_Neptune_MJ2000Ec Neptune_MJ2000_Position_Velocity GMAT_CSParameters_Neptune_MJ2000Eq GMAT_CSParameters_PlutoFixed Pluto_MJ2000_Position_Velocity GMAT_CSParameters_Pluto_MJ2000Ec Saturn_MJ2000_Position_Velocity GMAT_CSParameters_Pluto_MJ2000Eq Sun_MJ2000Ec_Position_Velocity GMAT_CSParameters_SaturnFixed GMAT_CSParameters_Saturn_MJ2000Ec Sun_MJ2000_Position_Velocity Uranus_MJ2000_Position_Velocity GMAT_CSParameters_Saturn_MJ2000Eq Venus_MJ2000_Position_Velocity GMAT_CSParameters_TODEc Greenwich_Hour_Angle

D.6 Scripts Used

The main script used with STK is the STK_Repropagate.m Matlab script. STK_Repropagate.m connects to STK, propagates satellites in the scenario, generates reports, and outputs performance run times. The STK_Repropagate script was designed to reduce the time it took to generate STK report files, after modifications to the STK scenario were made, and obtain accurate STK run times.

Refer to Appendix C for more details of this script and others used in the Acceptance Test Plan document.

Draft: Work in Progress APPENDIX D. STK SETUP

226

Draft: Work in Progress

Appendix E

FF Setup

[INSERT explanation of how the FF scenarios were setup]

Draft: Work in Progress
APPENDIX E. FF SETUP

228

Draft: Work in Progress

Bibliography

- [1] Dave Gaylor, Kathryn Bradley, et al. Orbit Determination Toolbox(ODTBX) Spiral 1 Emergent Space Technology.
- [2] C. C. Chao and J. W. Cook et al. Independent Verification and Validation for Analytical Graphics, Inc. of Three Astrodynamic Functions of the Satellite Tool Kit: Version 4.1.0. Aerospace Corporation. El Segundo, CA. ATR-2000(7605)-1. 15 February 2000.
- [3] D. A. Vallado. An Analysis of State Vector Propagation Using Differing Flight Dynamics Programs. Paper AAS 05-199.
- [4] International Earth Rotation and Reference Service. Explanatory Supplement to IERS Bulletins A and B, 2004. URL:http://hpiers.obspm.fr/eoppc/bul/bulb/explanatory.html, Accessed June 2006.
- [5] International Earth Rotation and Reference Service. Earth Rotation Parameter EOP (IERS) C04, ?. URL: http://hpiers.obspm.fr/eoppc/eop/eopc04/EOPC04.GUIDE, Accessed June 2006.
- [6] International Earth Rotation and Reference Service. Explanatory Supplement to IERS Bulletins A and B, 1999. URL: ftp://cddisa.gsfc.nasa.gov/reports/iers/bulletin_a/iers_bulletinab.explain, Accessed June 2006.