武汉大学物理科学与技术学院 物理实验报告

物理科学与技术学院

物理学专业

日期

实验	俭名称	RLC 电路的稳态									
姓	名	姓名	年	级	年级	学	号	学号	成	绩	
实验报告内容:											
一、实验目的 五、数据表格											
	二、主要实验仪器										
	三、实验原理 七、实验结果分析										
四、实验内容与步骤											

一 实验目的

- 1. 通过观测、分析 RLC 串联电路的相频和幅频特性,理解并学会具体应用特性。
- 2. 进一步学习使用双踪示波器进行相位差的测量。

二 实验仪器

正弦信号发生器、毫伏表、双踪数字示波器、自感器、电容器、交流电阻箱

三 实验原理

1 RC 串联电路的相频特性和幅频特性

在右图中, RC的

总阻抗为
$$\tilde{Z} = R - j \frac{1}{\omega C}$$
, 其模为 $Z = |\tilde{Z}| = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$,

其幅角为 $\varphi = -\arctan \frac{1}{\omega CR}$,电容电阻两端的分压分别为

$$U_R = \frac{U}{\sqrt{1 + (\omega CR)^{-2}}}, U_C = \frac{U}{\sqrt{1 + (\omega CR)^2}}$$

由以上公式可得该串联电路的如下特征

RC 串联电路

(1) 幅频特性

根据上述 U_R,U_C 的表达式,当 $\omega\to 0$ 时, $U_R\to 0,U_C\to U$; U_R 随着 ω 增大逐渐增大, U_C 反之;当 $\omega\to\infty$ 时, $U_R\to U,U_C\to 0$ 。

(2) 相频特性

当 ω 很低时, $\varphi_R \to +\pi/2$; 当 ω 很高时, $\varphi_R \to 0$, 且 $\varphi_C = |\varphi_R| -\pi/2$

(3) 等幅频率

当 $R=1/(\omega C)$ 时, $U_R=U_C$,此时的频率为等幅频率,也叫截止频率

2 RL 电路的幅频特性

RL 的阻抗为 $\tilde{Z}=R+j\omega L$, 其模为 $Z=|\tilde{Z}|=\sqrt{R^2+(\omega L)^2}$ 其他同 RC 电路

RL 串联电路

3 RLC 串联电路

该电路的总阻抗为 $\tilde{Z} = R + j \left(\omega L - \frac{1}{\omega C} \right)$ 幅角: $\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$ R 上的电压为 $U_R = \frac{U}{Z}R$

RLC 串联电路

(1) 谐振频率

当 $\omega L - \frac{1}{\omega C} = 0$ 时, $\varphi = 0$,并且 $U_R = U$ 为极大值,此时的 频率记为谐振频率 $f_0 = \frac{1}{2\pi\sqrt{LC}}$

(2) 相频特性

 $\omega < \omega_0$ 时,此时电路呈电容性; $\omega > \omega_0$ 时,此时电路呈电感性; $\omega = \omega_0$ 时,此时电路呈电阻性。

四 实验内容与步骤

1 测量并绘制 RC 串联电路的幅频、相频曲线

(1) 连接电路,接通各个仪器电源进行预热

- (2) 调节信号源的 $f = 500Hz, U = 3.0V_{RMS} = 8.5Vpp$
- (3) 依次从电压表上测出 R,C 上的电压 U, U, 从示波器的李萨如图形上读出 x 轴与图形相交的水平距离 $2x_0$ 和图形在 x 轴上的投影 2X
- (4) 依次测出表格中其余 f 值条件下的 U_R, U_C , 和 φ 值.

2 测量并绘制 RL 串联电路的幅频、相频曲线

与上一步内容相似,将 C 替换为 L

3 测量并绘制 RLC 串联电路的相频曲线

其测量电路与以上内容相仿, 只是将串联 LC 代替原来的 C 即可

- (1) 用李萨如图形找出谐振频率
- (2) 测出 f=350,600,700,780,900,1500Hz 条件下的 φ 值

五 数据表格

RC 幅频, 相频曲线

$U = 3.0V_{RMS} = 8.5Vpp \ R = 200\Omega \ C = 0.47\mu F$								
f/Hz	500	1200	1700	2000	3000	7000		
U_R/V								
U_C/V								
$2x_0/cm$								
2X/cm								
φ/(°)								

RL 幅频, 相频曲线

$U = 3.0V_{RMS} = 8.5Vpp R = 1000\Omega L = 0.1H$								
f/Hz	500	1200	1700	2000	3000	7000		
U_R/V								
U_L/V								
$2x_0/cm$								
2X/cm								
φ/(°)								

RLC 相频曲线

$U = 3.0V_{RMS} = 8.5Vpp \ R = 1000\Omega \ C = 0.47\mu F \ L = 0.1H$								
理论谐振频率 $f_0=734Hz$ 实验谐振频率 $f_{op}=712Hz$								
f/Hz	350	600	700	780	900	1500		
$2x_0/cm$								
2X/cm								
φ/(°)								

六 数据处理及结果表达

接线柱 1

接线柱 2

接线柱 3

七 实验结果分析

芝士实验结果分析

八 习题

- 1. 2
- 2. 3
- 3. 4

教师评语

指导教师:

年 月 日