

Prelude

← NEWS

NHTSA: Traffic Crashes Cost America \$340 Billion in 2019

Agency releases new study examining the cost of motor vehicle crashes, injuries and fatalities

January 10, 2023 | Washington, DC

Motor vehicle crashes cost American society \$340 billion in 2019, the National Highway Traffic Safety
Administration announced today. The agency's new report, "The Economic and Societal Impact of
Motor Vehicle Crashes, 2019," examines the costs of one year of crashes that killed an estimated
36,500 people, injured 4.5 million, and damaged 23 million vehicles.

Prelude

BULESIS

Traffic crashes cost taxpayers \$30 billion in 2019, roughly 9% of all motor vehicle crash costs. This is the equivalent of \$230 in added taxes for every household in the United States.

These losses include medical costs, lost productivity, legal and court costs, emergency service costs, insurance administration costs, congestion costs, property damage, and workplace losses. These figures include both police-reported and unreported crashes.

When quality-of-life valuations are considered, the total value of societal harm from motor vehicle crashes in 2019 was nearly \$1.4 trillion.

The report includes new data on the total value of seat belt use. From 1975 to 2019, seat belt use saved 404,000 lives and prevented \$17.8 trillion in societal harm.

Overview:

➤ What is my dataset ?

Row - 7M Columns - 46

Data collected from February 2016 - March 2023

Objective:

To determine if some road features can predict the Severity of accidents. Ranked 1 to be the least up to 4 being the severe one.

Road Features:

Some Data Preparation

ashtests

Added new combined features

_	Severity	Bump	Crossing	Create	Bump Severity	Crossing Severity		
	1	True	False		1	0		
ĺ	4	False	True		0	4		
ĺ	3	False	True		0	3		
	1	True	True		1	1		
	2	True	False		2	0		

Feature Analysis

Covariance and Correlation

There seem **no strong multicolinearity** <u>in independent features.</u>

But noticed that some have same rating.

- 1.Railway_Severity & Station_Severity 0.15
- 2.Crossing_Severity & Station_Severity & Railway_Severity 0.17
- **3.Amenity_Severity & Crossing_Severity** 0.15

First two relates possibly about a train station nearby.

Covariance and Correlation

•Positive correlation are:

- Give_Way_Severity,
- Junction_Severity,
- Railway_Severity,
- •Latitude, Longtitude

•Negative correlation are:

Amenity_Severity, Bump_Severity,
 Crossing_Severity, No_Exit_Severity,
 Roundabout_Severity,
 Station_Severity, Stop_Severity ty'

Detecting MultiCollinearity

	Features	VIF Scores
0	Severity	1.243907
1	Amenity_Severity	1.052348
2	Bump_Severity	1.001426
3	Crossing_Severity	1.216149
4	Give_Way_Severity	1.009367
5	Junction_Severity	1.096052
6	No_Exit_Severity	1.006963
7	Railway_Severity	1.055067
8	Roundabout_Severity	1.000170
9	Station_Severity	1.088753
10	Stop_Severity	1.041732

		1 100	500			
Ordi	nary Least	Square F	Result Severi	ity		
Dep. Variable:	S	everity	R-squared:		0.018	
Model:	OLS		Adj. R-squared:		0.018	
Method:	Least So	quares	F-statistic:		1.409e+04	
Date: W	ed, 16 Aug	g 2023	Prob (F-statistic):		0.00	
Time:	11:21:27		Log-Likelihood:		-5.3361e+06	
No. Observations:	7717272		AIC:		1.067e+07	
Df Residuals:	77	17261	BIC:		1.067e+07	
Df Model:		10				
Covariance Type:	non	robust				
	coef	std err		P> t	[0.025	0.9751
const	2.2067	0.000	1.13e+04	0.000	2,206	2.207
Amenity_Severity	-0.0119	0.000	-15.665	0.000	-0.013	-0.010
Bump_Severity	-0.0115	0.004	-3.507	0.000	-0.021	-0.006
Crossing_Severity	-0.0368	0.004	-134.428	0.000	-0.021	-0.036
Give Way Severity	0.0474	0.000	41.732	0.000	0.045	0.050
Junction Severity	0.0909	0.000	321.731	0.000	0.043	0.030
No Exit Severity	0.0089	0.002	5.537	0.000	0.096	0.012
Railway_Severity	0.0476	0.002	54.737	0.000	0.000	0.012
Roundabout_Severity	-0.0895	0.001	-6.125	0.000	-0.118	-0.061
Station_Severity	-0.0213	0.001	-39.978	0.000	-0.022	-0.020
Stop_Severity	-0.0213	0.001	-34.612	0.000	-0.018	-0.016
Stop_severity	0.0175	0.001	-34.012	0.000	-0.018	0.010
Omnibus: 2623	Omnibus: 2623656.319		Durbin-Watson:		1.431	
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	787654	9.707	
Skew:	1.802		Prob(JB):		0.00	
Kurtosis:	6.391	(Cond. No.		89.7	

Based on the p-values associated with
every variable, we can see
that all features
seem **significant in predicting the Severity rating** (p-values are > 0.05
are considered
insignificant).

R² is 0.018 has a very small value explaining the variance of Severity. The coeff are almost close to the correlation shown before except that the No_Exit_Severity is on the positive side.

Issues

In summary, the covariance direction is hardly to determine as the independent variable are closely situation to zero. Likewise also difficult to interpret the correlation looking at the heatmap; which features are correlated.

So I decided to use the Variance Inflation Factors (VIF) formula. In a perfect multicollinearity the value should be 1. Result values are below 2 however closely nearing to 1.

That is moderately or slightly correlated (Multicollinear) between features.

Issues

Build a regression model using the statsmodel.api Linear Regression R² value is 0.018 that could explain the variation in the target variable (Severity). The coefficient are near zero value. The p-value is less than 0.05 that suggest independent variables are significant in determine the Severity.

The probability plot (q-q plot) are not uniform. Ordered values matches the Theoretical quantile at -3, -1, 1 and close to 2.

With the Homoscedacity plot is also difficult to interpret and my research with such is subjective. Comparing with other that such is not a violation of homoscedacity.

Probability and Residuals **Probability Plot** Homoscedasticity of residuals 1.5 Ordered Values 1.0 Residuals 0.5 0.0 -0.5-1 $R^2 = 0.6229$ -1.0-1.5-2 2.0 2.2 2.6 2.8 1.8 2.4 3.0 Theoretical quantiles Fitted Values

Summary

In this first try of understanding the data and perhaps there are things that I did not consider or overlooked. The R² square is abnormally low.

Steps:

- 1. Re-check again the data preparation.
- 2. Try other than the statsmodel module and try other modelling.