Przestrzeń \mathbb{R}^2

Przestrzenią \mathbb{R}^2 nazywamy zbiór punktów

$$\{(x,y): x,y \in \mathbb{R}\}$$

Jeśli punkty P(x,y), $P_0(x_0,y_0) \in \mathbb{R}^2$, to ich odległość (ozn. $d(P,P_0)$) określamy wzorem

$$d(P, P_0) \stackrel{df}{=} \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

Definicja 1. Otoczeniem o promieniu r punktu P_0 (ozn. $Q(P_0;r)$) nazywamy zbiór

$${P \in \mathbb{R}^2 : d(P, P_0) < r} = {(x, y) \in \mathbb{R}^2 : \sqrt{(x - x_0)^2 + (y - y_0)^2} < r}.$$

Definicja 2. Sąsiedztwem o promieniu r punktu P_0 (ozn. $S(P_0;r)$) nazywamy zbiór $\{P \in \mathbb{R}^2: 0 < d(P,P_0) < r\}.$

Definicja 3. Punkt $P_0 \in D \subset \mathbb{R}^2$ jest punktem wewnętrznym zbioru D, jeżeli zbiór \mathring{B} zawiera pewne otoczenie punktu P_0 .

Definicja 4. Zbiór $D \subset \mathbb{R}^2$ nazywamy zbiorem otwartym, jeśli każdy jego punkt jest punktem wewnętrznym zbioru D.

Definicja 5. Obszar w \mathbb{R}^2 jest to taki zbiór otwarty, którego każde dwa punkty można połączyć łamaną zawartą w tym zbiorze.

Rysunek 1: Zbiór jest obszarem

Rysunek 2: Zbiór nie jest obszarem

Funkcje dwóch zmiennych

Definicja 6. Funkcję $f: D \to \mathbb{R}$, gdzie $D \subset \mathbb{R}^2$, nazywamy funkcją dwóch zmiennych x, y. Wartość funkcji f w punkcie P(x, y) oznaczamy przez f(x, y) lub f(P).

Definicja 7. Wykresem funkcji $f:D\to\mathbb{R}$, gdzie $D\subset\mathbb{R}^2$, nazywamy zbiór

$$\{(x,y,z) \in \mathbb{R}^3 : z = f(x,y) \land (x,y) \in D\}$$

Przykłady wykresów funkcji dwóch zmiennych

Rysunek 3: Wykres funkcji z = 1 - x - y

Rysunek 4: Wykres funkcji $z = \sqrt{x^2 + y^2}$

Rysunek 5: Wykres funkcji $z=x^2+y^2$

Rysunek 6: Wykres funkcji $z=\sqrt{4-x^2-y^2}$

Granica funkcji dwóch zmiennych

Niech $(P_n(x_n, y_n))$ – ciąg punktów w \mathbb{R}^2 i $P_0(x_0, y_0) \in \mathbb{R}^2$.

Definicja 8. Ciąg punktów (P_n) jest zbieżny do punktu P_0 (ozn. $P_n \to P_0$ lub $\lim_{n \to \infty} P_n = P_0$ lub $\lim_{n \to \infty} (x_n, y_n) = (x_0, y_0)$), jeśli

$$\lim_{n \to \infty} d(P_n, P_0) = 0$$

Uwaga 1. $\lim_{n\to\infty} P_n = P_0 \Leftrightarrow \lim_{n\to\infty} x_n = x_0 i \lim_{n\to\infty} y_n = y_0$.

Załóżmy, że funkcja $f:D\to\mathbb{R},\ D\subset\mathbb{R}^2,$ jest określona w pewnym sąsiedztwie S punktu $(x_0,y_0).$

Definicja 9. Liczba g jest granicą podwójną funkcji f w punkcie (x_0, y_0) (ozn. $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = g$ lub $\lim_{(x,y) \to (x_0, y_0)} f(x,y) = g$), jeśli spełniony jest warunek:

$$\forall ((x_n, y_n)) \subset S \left[\lim_{n \to \infty} (x_n, y_n) = (x_0, y_0) \Rightarrow \lim_{n \to \infty} f(x_n, y_n) = g \right]$$

Załóżmy, że funkcja $f: D \to \mathbb{R}, D \subset \mathbb{R}^2$, jest określona w pewnym otoczeniu punktu (x_0, y_0) .

Definicja 10. Funkcja f jest ciągła w punkcie (x_0, y_0) , jeśli

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Funkcja f jest ciągła w zbiorze, jeśli jest ciągła w każdym punkcie tego zbioru.

Pochodne cząstkowe

Zał. $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^2$. Wybieramy i ustalamy punkt $P_0(x_0, y_0) \in D$ oraz dowolny punkt $P \in D$ taki, że P różni się od P_0 tylko na jednej współrzędnej.

Definicja 11. Pochodną cząstkową funkcji f względem zmiennej x w punkcie P_0 (ozn. $\frac{\partial f}{\partial x}(P_0)$ lub $\frac{\partial f}{\partial x}(x_0, y_0)$) nazywamy wartość granicy właściwej

$$\frac{\partial f}{\partial x}(x_0, y_0) \stackrel{df}{=} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x};$$

Definicja 12. Pochodną cząstkową funkcji f względem zmiennej y w punkcie P_0 (ozn. $\frac{\partial f}{\partial y}(P_0)$ lub $\frac{\partial f}{\partial y}(x_0, y_0)$) nazywamy wartość granicy właściwej

$$\frac{\partial f}{\partial y}(x_0, y_0) \stackrel{df}{=} \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y};$$

Jeżeli pochodne cząstkowe funkcji f istnieją w każdym punkcie zbioru D, to można mówić o funkcjach pochodnych cząstkowych: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ – są to funkcje dwóch zmiennych.

Obliczanie pochodnych cząstkowych funkcji dwóch zmiennych polega na tym, że jedną zmienną traktujemy jako stałą i obliczamy pochodną funkcji ze względu na drugą zmienną; wówczas możemy korzystać ze wzorów i reguł obliczania pochodnych dla funkcji jednej zmiennej.

Uwaga 2. Pochodne cząstkowe funkcji względem różnych zmiennych istnieją niezależnie od siebie.

Uwaga 3. Ciągłość funkcji nie jest warunkiem koniecznym istnienia pochodnych cząstkowych.

 ${\bf Uwaga~4.}$ Ciągłość funkcji nie jest warunkiem wystarczającym istnienia pochodnych cząstkowych.

Definicja 13. Pochodne cząstkowe rzędu drugiego funkcji f są to pochodne cząstkowe pochodnych cząstkowych $\frac{\partial f}{\partial x}$ i $\frac{\partial f}{\partial y}$

Oznaczamy je następująco

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \stackrel{ozn}{=} \frac{\partial^2 f}{\partial x^2} \,, \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \stackrel{ozn}{=} \frac{\partial^2 f}{\partial y^2} \,, \; , \; \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \stackrel{ozn}{=} \frac{\partial^2 f}{\partial x \partial y} \,, \; \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \stackrel{ozn}{=} \frac{\partial^2 f}{\partial y \partial x} \,.$$

Dwie ostatnie pochodne cząstkowe drugiego rzędu nazywamy pochodnymi mieszanymi, różnią się kolejnością obliczania pochodnych.

Podobnie określamy pochodne cząstkowe wyższych rzędów.

Twierdzenie 1. (Schwarza) Jeżeli funkcja f ma w pewnym obszarze $D \subset \mathbb{R}^2$ ciągłe pochod ne mieszane drugiego rzędu $\frac{\partial^2 f}{\partial x \partial y}$ i $\frac{\partial^2 f}{\partial y \partial x}$, to są one równe w tym obszarze.

 $C^m(D)$ oznacza zbiór wszystkich funkcji, które w obszarze D mają ciągłe pochodne cząstkowe do m – tego rzędu włącznie.

Niech $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^2$; $P_0 \in D$ – punkt wewnętrzny zbioru D.

Definicja 14. Funkcja f ma w punkcie P_0 minimum lokalne (odp. maksimum lokalne), jeśli istnieje sąsiedztwo S punktu P_0 takie, że

$$\forall P \in S \ [f(P_0) \leqslant f(P)] \qquad (\text{odp.} \forall P \in S \ [f(P_0) \geqslant f(P)])$$

Funkcja f ma w punkcie P_0 ekstremum, jeśli ma w tym punkcie minimum lub maksimum.

Uwaga 5. Funkcja f ma w punkcie P_0 ekstremum, jeśli w pewnym sąsiedztwie tego punktu przyrost $\Delta f = f(P) - f(P_0)$ ma stały znak.

Twierdzenie 2. (WK istnienia ekstremum) Jeżeli funkcja f ma w punkcie P_0 ekstremum i istnieją pochodne cząstkowe pierwszego rzędu $\frac{\partial f}{\partial x}(P_0)$ i $\frac{\partial f}{\partial y}(P_0)$, to są one równe zero.

Uwaga 6. Ekstremum funkcji f poszukujemy wśród takich punktów P_0 , że $\frac{\partial f}{\partial x}(P_0) =$ $=\frac{\partial f}{\partial y}(P_0)=0$ lub co najmniej jedna z pochodnych cząstkowych $\frac{\partial f}{\partial x}(P_0), \frac{\partial f}{\partial u}(P_0)$ nie istnieje.

Punkt P_0 taki, że $\frac{\partial f}{\partial x}(P_0) = \frac{\partial f}{\partial y}(P_0) = 0$ nazywamy punktem stacjonarnym funkcji f.

Twierdzenie 3. (WW istnienia ekstremum) Jeżeli funkcja f jest klasy $C^2(Q((x_0, y_0); r))$ oraz

1.
$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0,$$

2.
$$W(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix} > 0$$

to funkcja f ma w punkcie (x_0, y_0) ekstremum właściwe:

- maksimum, jeśli
$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0;$$

- minimum, jeśli $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0.$

– minimum, jeśli
$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0.$$

Uwaga 7. Jeśli spełnione są dwa pierwsze założenia twierdzenia 3. i $W(x_0, y_0) < 0$, to w punkcie (x_0, y_0) funkcja f nie ma ekstremum.

Dodatek

Pochodna przekształcenia

Niech $g: D \to \mathbb{R}^2$, gdzie $D \subset \mathbb{R}^2$, tzn. dla $t = (t_1, t_2)$ i $g = (g_1, g_2)$:

$$g(t) = (g_1(t_1, t_2), g_2(t_1, t_2))$$

Określamy pochodną przekształcenia g(t) jako macierz (ozn.g'(t)):

$$g'(t) \stackrel{df}{=} \left[\begin{array}{cc} \frac{\partial g_1}{\partial t_1} & \frac{\partial g_1}{\partial t_2} \\ \frac{\partial g_2}{\partial t_1} & \frac{\partial g_2}{\partial t_2} \end{array} \right].$$

Podobnie:

Dla $g: P \to \mathbb{R}^2$, gdzie $P \subset \mathbb{R}$, $g'(t) \stackrel{df}{=} \begin{bmatrix} g'_1(t) \\ g'_2(t) \end{bmatrix}$, $g = (g_1, g_2)$.

Dla
$$g: D \to \mathbb{R}$$
, gdzie $D \subset \mathbb{R}^2$, $g'(t) \stackrel{df}{=} \left[\frac{\partial g}{\partial t_1} \frac{\partial g}{\partial t_2} \right]$, $t = (t_1, t_2)$.

We wszystkich wzorach zakłada się, że odpowiednie pochodne istnieją.

Twierdzenia o pochodnej funkcji złożonej

 $P \subset \mathbb{R}$, $D_2 \subset \mathbb{R}^2$. Dane są funkcje: $(x,y): P \to D_2$ oraz $f: D_2 \to \mathbb{R}$;

Twierdzenie 4. Jeżeli funkcja f(x,y) jest klasy $C^1(D_2)$ i funkcje x(t), y(t) posiadają pochodne x'(t), y'(t), to funkcja złożona $z(t) \stackrel{df}{=} f(x(t), y(t))$ posiada pochodną z'(t) i prawdziwy jest wzór

$$z'(t) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix}$$

 $D_1 \subset \mathbb{R}^2$, $D_2 \subset \mathbb{R}^2$. Dane są funkcje: $(x,y): D_1 \to D_2 \text{ oraz } f: D_2 \to \mathbb{R}$;

Twierdzenie 5. Jeżeli funkcja f(x,y) jest klasy $C^1(D_2)$ i funkcje $x(t_1,t_2), y(t_1,t_2)$ posiadają pochodne cząstkowe I rzędu, to funkcja złożona $z(t_1,t_2) \stackrel{df}{=} f(x(t_1,t_2),y(t_1,t_2))$ posiada pochodne cząstkowe I rzędu i prawdziwy jest wzór

$$z'(t) = \begin{bmatrix} \frac{\partial z}{\partial t_1} & \frac{\partial z}{\partial t_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial x}{\partial t_1} & \frac{\partial x}{\partial t_2} \\ \frac{\partial y}{\partial t_1} & \frac{\partial y}{\partial t_2} \end{bmatrix}$$

Zatem

$$\frac{\partial z}{\partial t_1} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t_1} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t_1}$$
$$\frac{\partial z}{\partial t_2} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t_2} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t_2}$$