## Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

# Estrutura de Dados Grafos

Tiago Maritan

tiago@ci.ufpb.br

Modificado por Gilberto Farias



### Grafos

## Um grafo é um par (V, A), onde

V é um conjunto de nós, chamados de vértices

A é uma coleção de pares de vértices, chamados de arestas





### Grafos

### Exemplo: Rede de Aeroportos

Um vértice representa um aeroporto e armazena o código do aeroporto composto de três letras

Uma aresta representa uma rota de vôo entre dois aeroportos e armazena a milhagem da rota



## Aplicações

Circuitos Eletrônicos

Redes de transporte

Rede de rodovias

Rede de vôos

Redes de computadores

Rede local

Internet

**Redes Sociais** 





## Tipos de arestas

### Aresta dirigida

Par ordenado de vértices (u,v)

l° vértice **u** é a origem

2° vértice v é o destino

Ex. Um vôo

### Aresta não-dirigida

Pares não-ordenados de vértices (u,v)

Ex. Distância entre aeroportos

### Grafo dirigido

Todas as arestas são dirigidas

Ex. Rede de vôos

### Grafo não-dirigido

Todos as arestas são não-dirigidas

Ex. Rede de distância entre aeroportos







## Terminologia

- ☐ Vértices-fim de uma aresta ☐ U e V são os pontos-finais da aresta a
- Arestas incidentes em um vértice a, d, e b são incidentes em V
- Vértices AdjacentesU e V são adjacentes
- Grau de um vértice
   Nº de arestas do vértice
   Ex: X tem grau 5
- Arestas paralelash e i são arestas paralelas
- Auto-loopj é um auto-loop



## Terminologia (cont.)

#### Caminho

Sequência de vértices e arestas

Começa com um vértice

Finaliza com um vértice

Cada aresta é precedida e seguida por

### Caminho Simples

seus pontos-finais

Caminho de tal forma que todos os seus vértices e arestas são distintos

### Exemplos

 $P_1$ =(V,b,X,h,Z) é um caminho simples  $P_2$ =(U,c,W,e,X,g,Y,f,W,d,V) é um caminho que não é simples





## Terminologia (cont.)

#### Ciclo

Sequência circular de vértices e arestas Cada aresta é precedida e seguida pelos seus pontos-finais

#### Ciclo simples

Um ciclo de forma que todos os seus vértices e arestas sejam diferentes

#### Exemplos

 $C_1$ =(V,b,X,g,Y,f,W,c,U,a, $\stackrel{\ }{\leftarrow}$ ) é um ciclo simples

 $C_2$ =(U,c,W,e,X,g,Y,f,W,d,V,a, $\checkmark$ ) é um ciclo que não é simples





## Implementação de Grafos

## Como implementar grafos?

Lista de adjacências

Matriz de adjacências



## Lista de Adjacências

Array de listas encadeadas

Para descobrir se existe aresta (i,j) percorremos a lista do nó i até encontrarmos (ou não) j







## Matriz de Adjacências

Matriz de tamanho N x N, onde N é o número de vértices



A célula (i,j) indica se existe aresta entre i e j.

Valor 0 indica aresta inexistente.

|   | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 2 | 0 | 1 | 0 |



## Matriz de Adjacências

#### Estrutura Vértice

Chave inteira (índice) associado com o vértice Informação armazenada



#### Estrutura Aresta

Informação armazenada Ponteiros para os vértices

#### **Matriz**

Ponteiro para a aresta de vértices adjacentes
Null caso não haja aresta





### Busca em Grafos

Operação mais comum em Grafos: visita sistemática a seus nós (uma única vez!)

### Dois tipos básicos de busca:

Busca em largura/extensão

Busca em profundidade



## Busca em Largura

```
BFS(G,s)
1 for cada vértice de u \in V[G] - \{s\}
     do\ cor[u] \leftarrow BRANCO
         d[u] \leftarrow \infty
4 \pi[u] \leftarrow NULL
5 \ cor[s] \leftarrow CINZA
6 d[s] ← 0
7 \pi[s] \leftarrow NULL
8 Q \leftarrow \emptyset
9 ENQUEUE(Q,s)
10 while Q \neq \emptyset
11
       do\ u \leftarrow DEQUEUE(Q)
           for cada vértice de v \in adj[u]
12
                 doif cor[v] = BRANCO
13
                     then cor[v] \leftarrow CINZA
14
                            d[v] \leftarrow d[v] + 1
15
                            \pi[v] \leftarrow u
16
                            ENQUEUE(Q, v)
17
                 cor[u] \leftarrow PRETO
 18
```

## Busca em Largura

Para cada nó, o mesmo é processado e colocamos seus adjacentes em uma FILA



u, v, w, k, z



### Busca em Profundidade

Semelhante a busca em "pré-ordem" em uma árvore





### Busca em Profundidade

```
DFS(G)
1 for cada vértice de u \in V[G]
2 do cor[u] ← BRANCO
        \pi[u] \leftarrow NULL
4 for cada vértice de u \in V[G]
5 doif cor[u] = BRANCO
       then DFS - VISIT(u)
DFS - VISIT(u)
1 cor[u] \leftarrow CINZA
2 for cada vértice v ∈ αdj[u]
3 doif cor[u] = BRANCO
4 then \pi[v] \leftarrow u
      DFS - VISIT(v)
6 cor[u] ← PRETO
```



## Universidade Federal da Paraíba Centro de Informática

Departamento de Informática

# Estrutura de Dados Grafos

Tiago Maritan

tiago@ci.ufpb.br