IT Infrastrukturen - Rechnerstrukturen

Thema 2: Entwurf digitaler Schaltungen

Prof. Dr.-Ing. Sebastian Schlesinger Professur für Wirtschaftsinformatik (Infrastruktur & Security)

Ziele

Nach dieser VL sollten Sie in der Lage sein:

- die Wahrheitswerttabelle einer Booleschen Funktion aufzustellen
- die disjunktive oder konjunktive Normalform aufzustellen
- zu zeigen, dass ein Operatorensatz vollständig ist
- Boolesche Funktionen mit KV-Diagrammen darzustellen und zu vereinfachen
- ein Schaltnetz aus logischen Gattern aufzubauen
- das Verhalten von Speicherelementen (Latch, Flipflop) zu erklären
- ein Schaltwerk aus logischen Gattern und Speicherelementen zu entwerfen
- die Implementierung von Multiplexer, Decoder und Registersätzen zu erklären
- eine arithmetische-logische Einheit (ALU) zu erklären und zu erweitern
- einen Ripple-Carry- und einen Carry-Look-Ahead Addierer zu erklären

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Hierarchischer Entwurf

Prof. Dr. Sebastian Schlesinger

Grundlegende Gatter

	UND	ODER	NICHT
Graphisch	AQ	AQ	A—Out
Aussagenlogik	$Q = A \wedge B$	$Q = A \vee B$	$out = \neg A$
С	Q = A&B	$Q = A \mid B$	out = !A (~A)
Schaltalgebra	$Q = A \cdot B$	Q = A + B	$out = \overline{A}$

Wahrheitswerttabellen

	UND	ODER	NICHT
Graphisch	AQ	AQ	A—Out

A	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

A	Ā
0	1
1	0

Alternative Darstellungen

	UND	ODER	NICHT
MIL/ANSI	AQ	AQ	A—out
IEC	A — & — Y	A — ≥1 B — Y	A—————————————————————————————————————
DIN			

Weitere Gatter

	XOR	NAND	NOR
MIL/ANSI	A	АQ	AQ

a	b	a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

а	b	a NAND b
0	0	1
0	1	1
1	0	1
1	1	0

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

Alternative Darstellungen

	XOR	NAND	NOR
MIL/ANSI		AQ	AQ
IEC	A — =1 B — Y	A — & — Y	A — ≥1 B — O—Y
DIN			

Prof. Dr. Sebastian Schlesinger

Größere Gatter

- Gatter können mehr als 2 Eingänge haben
- n-Input UND-Gatter hat als Ausgang 1,
 nur wenn alle Eingänge den Wert 1 haben
- n-Input ODER-Gatter hat als Ausgang 0,
 nur wenn alle Eingänge den Wert 0 haben
- Beispiel 3-Input UND-Gatter:

Α	В	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Prof. Dr. Sebastian Schlesinger

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Boolesche Algebra

■ George Boole (1815-1864): Algebra der Logik mit zwei Elementen 0 und 1

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

MENU DEALS

Menu 1**£6.90** / 8,50€

Buy any hot drink or soup, and any sandwich or hot snack or the Deli Delights snack box or Saviour snack box, and a Twix.

SAVE £1.20 / €1,50

Menu 2 £6.20 / 8€

Buy a soft drink* and any sandwich or hot snack or Deli Delights snack box or Savious snack box and Boxerchips.

SAVE £1.80 / €2,50

* Soft drinks included in this offer are: Princes Gate Water, Orangina, 7UP Free, Pepsi or Pepsi Max.

Menu 3£3.60 / 4€

Buy any hot drink **or** Orange **or** Apple Juice

Quelle: Wikipedia

Recap: Boolesche Algebra

- Zwei Elemente: 0, 1
- Zwei binäre Verknüpfungen: UND (·), ODER (+)
- Eine unäre Verknüpfung: NICHT (\overline{a})
- Axiome:

■ Neutrale Elemente:
$$a \cdot 1 = a$$
 $a + 0 = a$

• Komplementäre Elemente:
$$a \cdot \overline{a} = 0$$
 $a + \overline{a} = 1$

■ Kommutativgesetze:
$$a \cdot b = b \cdot a$$
 $a + b = b + a$

■ Distributivgesetze:
$$(a+b) \cdot c = a \cdot c + b \cdot c, \ a + (b \cdot c) = (a+b)(a+c)$$

• UND hat höhere Priorität als ODER: $a + b \cdot c = a + (b \cdot c)$

Boolesche Algebra: Weitere Gesetze

Idempotenzgesetze

$$a \cdot a = a + a = a$$

Assoziativgesetze

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$a + (b + c) = (a + b) + c$$

De Morgansche Gesetze

$$\blacksquare \overline{a+b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

Und viele mehr...

$$a + (a \cdot b) = a, a \cdot (a + b) = a$$

• . .

a	b	$\overline{a+b}$	$\overline{a}\cdot \overline{b}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

a	b	$\overline{a \cdot b}$	$\overline{a} + \overline{b}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Implementierung Boolescher Funktionen

Prof. Dr. Sebastian Schlesinger

Spezifikation einer Funktion

- $output_A = F_A(input_0, input_2, ..., input_{n-1})$
- $output_B = F_B(input_0, input_2, ..., input_{n-1})$
- $output_C = F_C(input_0, input_2, ..., input_{n-1})$
- • •
- Methoden:
- Wahrheitswerttabelle
- Disjunktive Normalform (DNF)
- Konjunktive Normalform (KNF)

Beispiel: Wahrheitswerttabelle

Ein Volladdierer addiert drei einstellige Dualzahlen.

Stellen Sie die Wahrheitswerttabelle auf!

Beispiel: Wahrheitswerttabelle

Ein Volladdierer addiert drei einstellige Dualzahlen.

Stellen Sie die Wahrheitswerttabelle auf!

Inputs			Out	puts
A	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Prof. Dr. Sebastian Schlesinger

Disjunktive und Konjunktive Normalform

- Disjunktive Normalform (DNF)
- Disjunktion = ODER-Verknüpfung
- DNF = Disjunktive Verknüpfung von Konjunktionstermen (sum of products)
- Beispiel: $A \cdot \overline{B} + B \cdot \overline{C} + A \cdot B \cdot C + \overline{A}$
- Konjunktive Normalform
- Konjunktion = UND-Verknüpfung
- KNF = Konjunktive Verknüpfung von Disjunktionstermen (product of sums)
- Beispiel: $(A + \overline{B} + C) \cdot (A + \overline{C}) \cdot B$

Ableitung der disjunktiven Normalform

Inputs			Out	puts
A	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Jede Zeile der Tabelle entspricht einer Konjunktion:
 - negierter Eingang bei 0, unveränderter Eingang bei 1
- Ableitung DNF:
 Verknüpfe Konjunktionen, bei denen der Ausgang 1 ist, mit einer Disjunktion

$$S = (\overline{A} \cdot \overline{B} \cdot C_{in}) + (\overline{A} \cdot B \cdot \overline{C_{in}}) + (A \cdot \overline{B} \cdot \overline{C_{in}}) + (A \cdot B \cdot C_{in})$$

Ableitung der konjunktiven Normalform

- jetzt lesen wir Terme ab, bei denen der Ausgang 0 wird und nutzen De Morgan
- De Morgan: $\overline{a+b} = \overline{a} \cdot \overline{b}$ und $\overline{a \cdot b} = \overline{a} + \overline{b}$

A	В	F
0	0	0
0	1	1
1	0	0
1	1	1

$$\overline{F} = (\overline{A} \cdot \overline{B}) + (A \cdot \overline{B})$$

$$F = (\overline{A} \cdot \overline{B}) + (A \cdot \overline{B})$$

$$F = (A + B) \cdot (\overline{A} + B)$$

- Jede Zeile der Tabelle entspricht einer Disjunktion:
 - negierter Eingang bei 1, unveränderter Eingang bei 0
- Ableitung KNF:

Verknüpfe Disjunktionen, bei denen der Ausgang 0 ist, mit einer Konjunktion

Hauptsatz der Schaltalgebra

Jede einwertige Boolesche Funktion kann als Disjunktion von Konjunktionen dargestellt werden.

- Es gibt immer ein Schaltnetz, das nur aus NICHT, UND und ODER-Gattern besteht
- Maximal 3 Stufen: NICHT-Gatter, dann UND-Gatter, schließlich ein ODER-Gatter mit vielen Eingängen
- NICHT, UND und ODER bilden einen funktional vollständigen Operatorensatz

Programmierpare Logische Anordnung (PLA)

Programmable Logic Array

Quelle: Wikipedia

Funktional vollständige Operatorensätze

	NICHT	UND	ODER
Boolesche Basis	\overline{a}	$a \cdot b$	a + b
NICHT, UND	\overline{a}	$a \cdot b$	$\overline{\overline{a}\cdot\overline{b}}$
NICHT, ODER		Übung	
NAND	Übung		
NOR		Übung	

а	b	$\overline{a}\cdot \overline{b}$	$\overline{\overline{a}\cdot\overline{b}}$	a+b
0	0	1	0	0
0	1	0	1	1
1	0	0	1	1
1	1	0	1	1

Multiplexer (MUX)

Wählt je nach Steuersignal S einen der Inputs A oder B aus.

$$Y = (S) ? B : A;$$

S	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Ableitung der DNF aus der Wahrheitswerttabelle

S	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$Y = \overline{S} \cdot A \cdot \overline{B} + \overline{S} \cdot A \cdot B + S \cdot \overline{A} \cdot B + S \cdot A \cdot B$$

- Boolesche Gleichung:
- $Y = \overline{S} \cdot A \cdot \overline{B} + \overline{S} \cdot A \cdot B$ $+ S \cdot \overline{A} \cdot B + S \cdot A \cdot B$
- Jedes Gatter erhöht den Platzbedarf
- Jeder Gatter-Eingang erhöht Platzbedarf und Gatterlaufzeit

Geht das auch besser?

Boolesche Gleichung:

$$Y = \overline{S} \cdot A \cdot \overline{B} + \overline{S} \cdot A \cdot B$$

$$+ S \cdot \overline{A} \cdot B + S \cdot A \cdot B$$

Distributivgesetz:

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

Komplementäre Elemente:

$$a + \overline{a} = 1$$

 \triangleright Vereinfacht: $Y = \overline{S} \cdot A + S \cdot B$

Boolesche Gleichung:

$$Y = \overline{S} \cdot A \cdot \overline{B} + \overline{S} \cdot A \cdot B$$

$$+ S \cdot \overline{A} \cdot B + S \cdot A \cdot B$$

Distributivgesetz:

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

Komplementäre Elemente:

$$a + \overline{a} = 1$$

 \triangleright Vereinfacht: $Y = \overline{S} \cdot A + S \cdot B$

Don't-Care

■ Don't-Care (* oder -) bedeutet, dass dieser Wert keinen Einfluss auf die Logikschaltung hat ⇒kompaktere Wahrheitswerttabellen möglich!

Vollständige Wahrheitswerttabelle

S	A	В	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Wahrheitswerttabelle mit Don't-Cares

S	A	В	Y
0	0	*	0
0	1	*	1
1	*	0	0
1	*	1	1

Überblick

1. Kombinatorische Logik (Schaltnetze)

- Logikgatter
- Boolesche Algebra
- Logiksynthese (Schaltnetzentwurf)
- Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Logikminimierung

- Ziel: Reduzierung der Gatter bei gleicher Funktionalität
- früher wichtigster Kostenfaktor
- heute werden Verbindungsleitungen und Energiebetrachtungen immer wichtiger
- Beispiel: Volladdierer
- addiert A, B und Carry in (C_{in}) , liefert Carry out $(C_{out})^*$

$$C_{out} = B \cdot C_{in} + A \cdot C_{in} + A \cdot B$$

A	В	C _{in}	C _{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

^{* 2.} Ausgang für die Summe S hier nicht betrachtet

Logikminimierung: Ansätze

- Manuelle Minimierung
- Umformen nach den Regeln der Booleschen Algebra
- Algorithmisches Verfahren
- Verfahren nach Quine/McCluskey
- Kann mit einem Programm automatisiert durchgeführt werden
- Geeignet für Schaltfunktionen mit vielen Variablen
- Graphische Verfahren
- Händlerscher Kreisgraph
- Karnaugh-Veitch Diagramme
- Geeignet für Schaltfunktionen mit wenig Variablen

Karnaugh-Veitch-Diagramm

- Ziel: unnötige Terme und Variablen in einer DNF entfernen
- ⇒ Minimierung des Schaltnetzes, das die Funktion realisiert

Idee

- graphische Darstellung aller möglichen Eingangskombinationen
- Anordnung der Felder so, dass benachbarte Felder zusammenfassbar sind

für zweistellige Schaltfunktionen $f(x_1, x_2)$:

⇒jedes Feld entspricht einem Term der (kanonischen) DNF

	\overline{x}_1	x_1
\overline{x}_2	$\overline{x}_1 \cdot \overline{x}_2$	$x_1 \cdot \overline{x}_2$
x_2	$\overline{x}_1 \cdot x_2$	$x_1 \cdot x_2$

Karnaugh-Veitch-Diagramm

■ Jede Variable x_i halbiert das Diagramm in zwei zusammenhängende Teile ⇒eine Hälfte für \overline{x}_i , die zweite Hälfte für x_i

• Variable x_1 :

Variable x_2 :

	\overline{x}_1	x_1
\overline{x}_2	$\overline{x}_1 \cdot \overline{x}_2$	$x_1 \cdot \overline{x}_2$
x_2	$\overline{x}_1 \cdot x_2$	$x_1 \cdot x_2$

$$\overline{x}_1$$
 x_1
 \overline{x}_2 $\overline{x}_1 \cdot \overline{x}_2$ $x_1 \cdot \overline{x}_2$
 x_2 $\overline{x}_1 \cdot x_2$ $x_1 \cdot x_2$

Benachbarte Felder unterscheiden sich nur in einer Variablen (in einem Bit)

Konstruktion von Karnaugh-Veitch-Diagramm

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

Diagramme für drei und vier Variablen erhält man durch "Spiegeln" des Diagramms

- nach wie vor unterscheiden sich alle benachbarten Felder nur um ein Bit (auch über die Ränder hinaus)
- die Reihenfolge der Variablen spielt keine Rolle

KV-Diagramme: Beispiel

Beispiel: Volladdierer

A	В	C _{in}	C _{out}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

	\overline{x}_2	X	2	\overline{x}_2
	\overline{x}	1	χ	1
\overline{x}_3	$\overline{x}_1 \cdot \overline{x}_2 \cdot \overline{x}_3$	$\overline{x}_1 \cdot x_2 \cdot \overline{x}_3$	$x_1 \cdot x_2 \cdot \overline{x}_3$	$x_1 \cdot \overline{x}_2 \cdot \overline{x}_3$
x_3	$\overline{x}_1 \cdot \overline{x}_2 \cdot x_3$	$\overline{x}_1 \cdot x_2 \cdot x_3$	$x_1 \cdot x_2 \cdot x_3$	$x_1 \cdot \overline{x}_2 \cdot x_3$
	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	$A \cdot B$	$A \cdot \overline{B}$
\overline{C}_{in}	0	0	1	0
C_{in}	0	1	1	1

KV-Minimierung

Idee: Zusammenfassung benachbarter Felder, die eine 1 enthalten

- \Rightarrow Bildung von möglichst wenigen, möglichst großen Rechtecken mit 2^k Feldern (also Zweierpotenzen, bei k Eingängen höchstens 2^k), in denen nur Einsen vorkommen
- Die Rechtecke können über den Rand hinauslaufen und sich gegenseitig überlappen.
- Alle Felder mit 1 müssen zu einem Rechteck gehören.
- Felder mit einem nicht definierten Funktionswert ("Don't care") können wahlweise als 1 oder 0 interpretiert werden.

Beispiel Volladdierer:

$$C_{out} = \overline{A} \cdot B \cdot C_{in} + A \cdot \overline{B} \cdot C_{in} + A \cdot B \cdot \overline{C}_{in} + A \cdot B \cdot C_{in}$$

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	$A \cdot B$	$A \cdot \overline{B}$
\overline{C}_{in}	0	0	1	0
C_{in}	0	1	1	1

KV-Minimierung: Beispiel

Beispiel Volladdierer:

- Gruppe: $A \cdot B$
- vollständig im Bereich von B ⇒ B gehört zum Term dieser Gruppe
- vollständig im Bereich von A ⇒ A gehört zum Term dieser Gruppe
- erstreckt sich über C_{in} und \overline{C}_{in} \Rightarrow C_{in} gehört nicht zum Term dieser Gruppe
- analog für die anderen Gruppen

Minimierter Funktionsterm: $C_{out} = A \cdot B + B \cdot C_{in} + A \cdot C_{in}$

KV-Minimierung: fiktive Beispiele

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	$A \cdot B$	$A \cdot \overline{B}$
\overline{C}	1	0	0	1
C	0	0	1	1

		\overline{x}_2	X	2	\overline{x}_2
		\overline{x}	1	X	1
$\overline{\chi}_4$	$\frac{1}{x_3}$	1	0	0	1
		1	0	1	0
χ_4		1	1	1	1
$\overline{\chi}_4$	x_3	1	0	0	1

Was ist jeweils die beste Markierung? Geben Sie die minimierten Funktionsterme an!

Nicht vergessen:

- wie bei einer Weltkarte liegt ganz rechts neben ganz links
- das gleiche gilt für oben und unten bei größeren KV-Diagrammen

KV-Minimierung: fiktives Beispiel 1/2

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	A	$\cdot B$	 $A \cdot \overline{B}$	
\overline{C}	1	0		0	1	
С	0	0		1	1	

■ orange Gruppe: A · C

• blaue Gruppe: $\overline{B} \cdot \overline{C}$

• Funktionsterm: $f = A \cdot C + \overline{B} \cdot \overline{C}$

KV-Minimierung: fiktives Beispiel 2/2

- hellblaue Gruppe: $x_3 \cdot x_4$
- orange Gruppe: $\bar{x}_1 \cdot \bar{x}_2$
- rote Gruppe: $x_1 \cdot x_2 \cdot x_4$
- blaue Gruppe: $\bar{x}_2 \cdot \bar{x}_4$

■ Funktionsterm: $f = x_3 \cdot x_4 + \bar{x}_1 \cdot \bar{x}_2 + x_1 \cdot x_2 \cdot x_4 + \bar{x}_2 \cdot \bar{x}_4$

KV-Minimierung: Mehrere Lösungen

• orange Gruppe: $\bar{x}_1 \cdot \bar{x}_2$

• rote Gruppe: $x_1 \cdot x_2$

• blaue Gruppe: $\bar{x}_1 \cdot x_3 \cdot x_4$

ODER: hellblaue Gruppe: $x_2 \cdot x_3 \cdot x_4$

• Funktionsterm: $f = \bar{x}_1 \cdot \bar{x}_2 + x_1 \cdot x_2 + \bar{x}_1 \cdot x_3 \cdot x_4$ • ODER: $f = \bar{x}_1 \cdot \bar{x}_2 + x_1 \cdot x_2 + x_2 \cdot x_3 \cdot x_4$

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Schaltnetz vs. Schaltwerk

- Bisher: Schaltnetze (combinatorial circuits):
 - ohne Rückkopplung
 - Ausgangssignale hängen nur von Eingangssignalen ab
 - eindeutig beschrieben durch (Boolesche) Schaltfunktion
 - Speichern nicht möglich
 - z.B. MUX, ALU, ...
- Schaltwerke (sequential circuits):
 - mit Rückkopplung
 - Speichern von Zuständen möglich
 - Ausgänge hängen ab von Eingängen und vom Inhalt des internen Speichers
 - zustandsabhängige Schaltfunktion
 - z.B. Register, Speicher,...

Speicher mit rückgekoppelten Gattern

- Durch Rückkopplung können Werte gespeichert werden
- Zwei Inverter bilden eine statische Speicherzelle
- Wert wird gespeichert, solange Versorgungsspannung anliegt

Problem: der Wert ist immer gleich (es kann kein neuer Wert gesetzt werden)

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0		
0	1	1	0
1	0		
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0		
0	1	1	0
1	0		
1	1		

50

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0		
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0?
- Was passiert für S = 1 und R = 1? Ist das ein Problem?

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0		
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0? MIt Q = 0 und $\overline{Q} = 0$

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0		
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0? Mit Q = 0 und $\overline{Q} = 1$

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0?
- Was passiert für S = 1 und R = 1? Ist das ein Problem?

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0?
- Was passiert für S = 1 und R = 1? Ist das ein Problem?

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0?
- Was passiert für S = 1 und R = 1? Ist das ein Problem?

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1		

- Zwei rückgekoppelte NOR Gatter
- mit S = 1 wird die Speicherzelle auf 1 gesetzt (Set), mit R = 1 wird sie auf 0 zurückgesetzt (Reset)
- Was passiert für S = 0 und R = 0?
- Was passiert für S = 1 und R = 1? Ist das ein Problem?

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1	X	X

RS Flipflop: Zeitverhalten

- Die bisher gezeigte Schaltung ist asynchron
- Entscheidend für Zeitverhalten ist die Gatterlaufzeit Δt
- Ausgangssignal stabilisiert sich nach $2\Delta t$
- dies kann zu undefinierten Werten führen!

Synchrone vs. Asynchrone Schaltwerke

- Schaltwerke können asynchron oder synchron sein
- Synchronisierung erfolgt über Taktsignale
 - Taktsignal gibt an, wann der Zustand sich ändert
 - Zustandsänderungen nur zu definierten Zeitpunkten

Getaktetes RS Flipflop

- Zustandswechsel (Wert) abhängig vom Takt (Clock)
- Änderungen am Eingang nur übernehmen, wenn clk = 1

Problem: mehrere Zustandsänderungen pro Takt möglich

Master-Slave Flipflop

- besteht aus zwei getakteten RS Flipflops (Master und Slave)
- Slave erhält negiertes Taktsignal des Masters

Master akzeptiert Änderungen bei clk = 1, Slave übernimmt den letzten Zustand wenn clk von 1 auf 0 wechselt (flankengesteuertes Flipflop)

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Synthese synchroner Schaltwerke

- Beschreibung des gewünschten Verhaltens z.B. als endlicher Automat gegeben
- Moore-Automat: Ausgaben gekoppelt an Zustände
- Mealy-Automat: Ausgaben als Funktion von Eingaben und Zustand

Systematischer Schaltwerksentwurf (für Moore-Automaten)

- 1. Zustandsdiagramm mit binärer Zustandskodierung
- 2. Wahrheitswerttabelle der zustandsabhängigen Schaltfunktion aufstellen
- 3. ggf. Erweiterung der Wahrheitswerttabelle um Ansteuerung der Flipflops
- 4. Minimierung der Schaltfunktion
- 5. Aufbau der Schaltung

(für Mealy-Automaten analog, zusätzlich Definition und Minimierung der Ausgabefunktion)

Beispiel: Hochwassererkennung

- Ziel: Wasserstandsanzeige (Hochwasser / Niedrigwasser)
- Gemessen wird mit zwei Wasserstandssensoren H und L
- Wasser oberhalb von H: Hochwasser, unterhalb von L: Niedrigwasser
- Dazwischen: alten Wert halten (stabile Anzeige)

 $L=1 \rightarrow Wasser über L$,

Verwendung eines RS Flipflops als Zustandsspeicher und Ausgabe

H=1 → Wasser über H

LH=01 eigentlich nicht möglich, aber wir entwickeln den Fall mit

Beispiel: Wahrheitswerttabelle

aktueller Zustand (NW/HW): Q, Folgezustand: Q'

Beispiel: Wahrheitswerttabelle

• aktueller Zustand (NW/HW): Q, Folgezustand: Q'Hochwasser

00

Q	L	H	Q'
0	0	*	0
0	1	0	0
0	1	1	1
1	*	1	1
1	1	0	1
1	0	0	0

RS Flipflop: Zustandsübergänge

• Wie müssen R und S gesetzt werden, um die jeweiligen Zustandsübergänge $Q \rightarrow Q'$ zu realisieren?

Zur Erinnerung:

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1	X	X

Zustandsübergangstabelle RS-Flipflop

$Q \rightarrow Q'$	R	S
0 → 0		
0 → 1		
1 → 0		
$1 \rightarrow 1$		

RS Flipflop: Zustandsübergänge

• Wie müssen R und S gesetzt werden, um die jeweiligen Zustandsübergänge $Q \rightarrow Q'$ zu realisieren?

Zur Erinnerung:

R	S	Q	\overline{Q}
0	0	Q_{alt}	\overline{Q}_{alt}
0	1	1	0
1	0	0	1
1	1	X	X

Zustandsübergangstabelle RS-Flipflop

$m{Q} ightarrow m{Q}'$	R	S
0 → 0	*	0
0 → 1	0	1
1 → 0	1	0
$1 \rightarrow 1$	0	*

Beispiel: Flipflop-Ansteuerung

aktueller Zustand (NW/HW): Q, Folgezustand: Q'

Niedrigwasser

Q	L	H	Q'
0	0	*	0
0	1	0	0
0	1	1	1
1	*	1	1
1	1	0	1
1	0	0	0

Beispiel: Flipflop-Ansteuerung

aktueller Zustand (NW/HW): Q, Folgezustand: Q'

Niedrigwasser

Q	L	H	Q'	R	S
0	0	*	0	*	0
0	1	0	0	*	0
0	1	1	1	0	1
1	*	1	1	0	*
1	1	0	1	0	*
1	0	0	0	1	0

Beispiel: KV-Minimierung

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

			_					
2.	1	H	1	H	<i>I.</i> ·	H	1	H

R:	3	K	Q	П	L	Q
\overline{Q}	0	*	0	*	0	0
0	0	*	0	0	1	0
¥	1	0	1	1	1	0
S:	*	\cap	1	1	*	1

*

K:	L · H	L · H	L·H	L·H	
$\overline{m{Q}}$	*	*	0	*	
\boldsymbol{Q}	1	0	0	0	

R	=	L	•	H

S:
$$\overline{L} \cdot \overline{H}$$
 $\overline{L} \cdot H$ $L \cdot H$ $L \cdot \overline{H}$
 \overline{Q} 0 0 1 0
 O * *

$$S = L \cdot H$$

Beispiel: Schaltung

• Mit $R = \overline{L} \cdot \overline{H}$ und $S = L \cdot H$ und Ausgang W als Zustand des RS Flipflops:

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

MUX-Symbole

Symbol im Textbuch:

gebräuchlicher:

4-Input MUX

32 Bit Multiplexer

32 Bit breiter MUX

(Array von 32 1 Bit breiten MUX)

1-aus-n-Decoder

- Schaltung mit m Eingängen $a_{m-1}...a_0$ und $n = 2^m$ Ausgängen $y_{n-1}...y_0$
- Ausgang y_i wird 1 (High) wenn die m Eingänge der Dualzahl i entsprechen
- Alle andere Ausgänge werden 0 (Low)

a_1	a_0
0	0
0	1
1	0
1	1

У з	y ₂	y ₁	Yo
0	0	0	1
0	0	1	0
0	1	0	0
1	0	0	0

Schaltnetz 1-aus-4-Decoder

a_1	a _o	y ₃	y ₂	Y ₁	Yo
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Registersatz

- jeder Prozessor verfügt über einen Registersatz / Registerdatei / Registerspeicher
- darin werden Operanden und Ergebnisse aller Berechnungen gespeichert
- Register sind i.d.R. genau so groß wie die Wortgröße des Prozessors (8, 16, 32 oder 64 Bit)

Register Cache Arbeitsspeicher Festplatte / Peripherie Kosten, Geschwindigkeit

Speicherhierarchie

Implementierung eines Registersatzes

- 32-Bit Register können aus32 D-Flip-Flops aufgebaut werden
- ein Registersatz (register file)besteht aus n Registern
- Wie können Lese- und Schreibport implementiert werden?

Hinweis:

Wenn eine "7" anliegt soll ein Leseport den Inhalt von Register 7 liefern, wenn eine "7" und eine "42" anliegen, soll der Schreibport 42 in Register 7 schreiben.

Implementierung eines Registersatzes

Implementierung eines Leseports

Implementierung eines Schreibports

 Takt (clock) hier nicht dargestellt, wird aber trotzdem benutzt, um zu bestimmen wann geschrieben wird

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

Arithmetical Logical Unit (ALU)

- MUX kann benutzt werden, um eine 1-Bit ALU zu konstruieren, die die Operationen AND,
 OR und + unterstützt.
- Einfach alles parallel ausführen und den richtigen Output auswählen:

32-Bit ALU

- 1-Bit ALU kann zur Realisierung einer
 32-Bit ALU genutzt werden.
- Zum Beispiel mit "ripple-carry adder"

Überblick

- 1. Kombinatorische Logik (Schaltnetze)
 - Logikgatter
 - Boolesche Algebra
 - Logiksynthese (Schaltnetzentwurf)
 - Minimierung von Schaltungen
- 2. Sequentielle Logik (Schaltwerke)
 - Speicherelemente (Flipflops, Latches)
 - Schaltwerksentwurf
- 3. Wichtige Schaltungen
 - Multiplexer und Decoder
 - Registersatz
 - Arithmetisch-Logische Einheit (ALU)
 - Ripple-Carry und Carry-Look-Ahead Addierer

32-Bit Ripple-Carry Addierer

FA = Full Adder

- Problem: Lange Durchlaufzeit für den Übertrag bei großer Stellenzahl, z.B. bei 32-Bit- oder 64-Bit-Addierer.
- Lösung: Parallelisierung der Übertragsbildung

4-Bit CLA-Addierer

$$s_i = a_i XOR b_i XOR c_i$$
$$= p_i XOR c_i$$

Subtraktion

- Subtraktion verwendet 2er-Komplement:
 - → einfach b negieren und addieren
- Wie negiert man b?
- → alle Bits invertieren und 1 addieren
- Eine clevere Lösung:
 - Um zu subtrahieren, setze
 CarryIn von ALU0 auf 1,
 Binvert auf 1 und
 Operation auf 10

ALU-Erweiterung

Wahlweise kann auch a invertiert werden:

- Unsere ALU kann folgende arithmetischlogische Operationen umsetzen:
- and, or, nand, nor
- Addition und Subtraktion

Zusammenfassung

 Die logische Operatoren UND, ODER und NICHT bilden einen funktional vollständigen Operatorensatz

- Boolesche Funktionen können mit Wahrheitswerttabellen spezifiziert werden
- Ableitung der Schaltfunktion: KNF und DNF
- Minimierung zum Beispiel mit KV Diagrammen

	$\overline{A} \cdot \overline{B}$	$\overline{A} \cdot B$	A	$\cdot B$	A	$A \cdot \overline{B}$	
\overline{C}	1	0		0		1	
— C	0	0		1		1	

a	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

Zusammenfassung

- Schaltwerke verfügen über internen Speicher
- Zur Speicherung können Latches oder Flipflops verwendet werden
- Schaltwerksentwurf aus endlichen Automaten

Zusammenfassung

 Ein Multiplexer wählt je nach Steuersignal S einen der Inputs A oder B aus.

- aus Flipflops können wir Register bauen
- Wir können eine ALU konstruieren, die verschiedene Operationen unterstützt (AND, OR, ADD, SUB, NAND, NOR)
- Ein Carry-Look-Ahead-Addierer ist effizienter als ein Ripple-Carry-Addierer

