mk 31/07/23

```
In [ ]:
In [26]: # import libraries
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [29]:
          x=pd.read_csv(r"C:\Users\user\Downloads\5_Instagram data.csv")
           116
                     4139
                            1133
                                     1538
                                             1367
                                                     33
                                                            36
                                                                       0
                                                                                    92
                                                                                           34
                                                                                                   10
           117
                     32695 11815
                                     3147
                                            17414
                                                    170
                                                          1095
                                                                              75
                                                                                   549
                                                                                          148
                                                                                                  214
           118
                     36919 13473
                                                   2547
                                                           653
                                                                                          611
                                     4176
                                            16444
                                                                       5
                                                                              26
                                                                                   443
                                                                                                  228
```

```
In [30]: x.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 119 entries, 0 to 118
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Impressions	119 non-null	int64
1	From Home	119 non-null	int64
2	From Hashtags	119 non-null	int64
3	From Explore	119 non-null	int64
4	From Other	119 non-null	int64
5	Saves	119 non-null	int64
6	Comments	119 non-null	int64
7	Shares	119 non-null	int64
8	Likes	119 non-null	int64
9	Profile Visits	119 non-null	int64
10	Follows	119 non-null	int64
11	Caption	119 non-null	object
12	Hashtags	119 non-null	object

dtypes: int64(11), object(2)
memory usage: 12.2+ KB

```
In [31]: x.columns
```

In [32]: x.describe()

Out[32]:

	Impressions	From Home	From Hashtags	From Explore	From Other	Saves	Comments	
count	119.000000	119.000000	119.000000	119.000000	119.000000	119.000000	119.000000	119.
mean	5703.991597	2475.789916	1887.512605	1078.100840	171.092437	153.310924	6.663866	9.
std	4843.780105	1489.386348	1884.361443	2613.026132	289.431031	156.317731	3.544576	10.
min	1941.000000	1133.000000	116.000000	0.000000	9.000000	22.000000	0.000000	0.
25%	3467.000000	1945.000000	726.000000	157.500000	38.000000	65.000000	4.000000	3.
50%	4289.000000	2207.000000	1278.000000	326.000000	74.000000	109.000000	6.000000	6.
75%	6138.000000	2602.500000	2363.500000	689.500000	196.000000	169.000000	8.000000	13.
max	36919.000000	13473.000000	11817.000000	17414.000000	2547.000000	1095.000000	19.000000	75.
4								

In [33]: sns.pairplot(x)

Out[33]: <seaborn.axisgrid.PairGrid at 0x22333373c70>


```
In [34]: sns.distplot(x['Shares'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[34]: <AxesSubplot:xlabel='Shares', ylabel='Density'>


```
In [35]: x1=x[['Comments','Shares','Likes','Profile Visits','Follows','Impressions']]
```

In [36]: | sns.heatmap(x1.corr())

Out[36]: <AxesSubplot:>


```
In [37]: a=x1[['Comments','Shares','Likes','Profile Visits','Follows']]
b=x1['Impressions']
```

```
In [38]: from sklearn.model selection import train test split
          a train, a test, b train, b test=train test split(a,b,test size=0.3)
In [39]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(a_train,b_train)
Out[39]: LinearRegression()
In [40]: print(lr.intercept_)
          823.3078249433393
In [41]: | coeff=pd.DataFrame(lr.coef_,a.columns,columns=['Co-efficient'])
          coeff
Out[41]:
                      Co-efficient
            Comments
                       -24.223180
               Shares
                       -17.548712
                Likes
                       18.463447
           Profile Visits
                        -3.481187
              Follows
                       111.257878
In [42]: prediction=lr.predict(a_test)
          plt.scatter(b_test,prediction)
Out[42]: <matplotlib.collections.PathCollection at 0x2233a13bee0>
           35000
           30000
           25000
           20000
           15000
           10000
            5000
                          6000
                                8000 10000 12000 14000 16000 18000
               2000
                     4000
In [43]: |lr.score(a_test,b_test)
Out[43]: 0.24553761848396038
In [44]: from sklearn.linear model import Ridge,Lasso
```

```
In [45]: rr=Ridge(alpha=10)
         rr.fit(a train,b train)
Out[45]: Ridge(alpha=10)
In [46]: rr.score(a_test,b_test)
Out[46]: 0.24628293331475137
In [47]: la=Lasso(alpha=10)
         la.fit(a_train,b_train)
Out[47]: Lasso(alpha=10)
In [48]: la.score(a test,b test)
Out[48]: 0.2464987229004253
In [51]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(a_train,b_train)
Out[51]: ElasticNet()
In [53]: en.coef
Out[53]: array([-23.52115573, -16.91781346, 18.44583646, -3.39752581,
                110.97476804])
In [55]: en.predict(a test)
Out[55]: array([ 4234.94584711, 15637.14139154,
                                                4702.39716834,
                                                                 5260.82935877,
                 4032.52939008, 7161.72588189, 2470.37598897,
                                                                 3871.11148693,
                 9975.56049157, 3491.13249867, 1995.82586268,
                                                                 4061.40686295,
                 3411.35000234, 3609.86404238, 8113.55351306, 3794.80825315,
                 6742.33928196, 2982.10800203, 16454.19693378, 3611.78372544,
                 3525.41553903, 4034.39889288, 3649.05235307, 7161.72588189,
                10605.69848598, 4302.79677314, 3810.50518271, 3173.01981794,
                14705.06434119, 3140.28330171, 10059.58141832, 35473.99187608,
                 3939.13651653, 10059.58141832, 2994.26220142, 6366.04396264])
In [56]: en.intercept_
Out[56]: 816.8015547953592
In [57]: en.score(a test,b test)
Out[57]: 0.24866267001336173
In [58]: from sklearn import metrics
In [59]: print("Mean Absolute Error", metrics.mean_absolute_error(b_test, prediction))
         Mean Absolute Error 1329.2569074940563
```

```
In [60]: print("Mean Squared Error",metrics.mean_squared_error(b_test,prediction))
    Root Mean Squared Error 11417227.25181067
In [61]: print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(b_test,prediction)))
    Root Mean Squared Error 3378.9387759784386
In []:
```