# El problema de los 2 cuerpos y el caós en sistemas de 3 o más cuerpos

Proyecto del curso CA0305 - Herramientas de Ciencia de Datos II

Jose Andrey Prado Rojas C36174\*1, Debbie Con Ortega C32250\*2, Aarón Jesús Retana

Castro C26400\*3

\*Estudiantes de Ciencias Actuariales Pura, Escuela de Matemática, Universidad de Costa Rica. San José, Costa Rica. Junio, 2025

 $^1joseandrey.prado@ucr.ac.cr,\ ^2debbie.con@ucr.ac.cr,\ ^3jesus.retana@ucr.ac.cr$ 

#### Introducción

El movimiento de los cuerpos celestes ha despertado un profundo interés durante siglos, tanto para la comunidad física como matemática. De hecho, ha sido impulsor de revoluciones científicas y filosóficas a lo largo de la historia. En sus inicios, los grandes pensadores centraban sus ideas en el movimiento de los cuerpos del sistema solar.

A lo largo del tiempo la discusión sobre el movimiento de los cuerpos celestes ha persistido, dando lugar a una variedad de teorías que en ocasiones se han mezclado y coexistido entre ellas. Desde la Teoría Geocéntrica formulada por Aristóteles y desarrollada por Ptolomeo, hasta la Teoría Heliocentrista propuesta por Nicolás Copérnico en el siglo XVI y posteriormente confirmada por Galileo Galilei. Finalmente, la comunidad científica acepta el modelo Kepleriano que agrupa el heliocentrismo, las leyes de Kepler y las leyes de la mecánica establecidas por Newton (Ponce, 2010).

El problema de los dos cuerpos; es decir, el movimiento de dos masas que interactúan por la aceleración gravitacional puede ser descrita como una función de tiempo y es analiticamente soluble. Gracias a la mecánica clásica Newtoniana es posible describir el movimiento del sistema como una ecuación diferencial por tanto el problema se reduce a calcular las funciones que satisfacen estas ecuaciones (Guzman Perez et al., 2025).

Este problema es de gran importancia en astronomía, mecánica orbital, dinámica galáctica, formación estelar, así como en la determinación de trayectorias óptimas para misiones de naves espaciales (Perezagua López, 2022).

Sin embargo, un sistema mayor a dos cuerpos no es analiticamente soluble por tanto no existe una solución explícita del sistema de ecuaciones. En el presente trabajo, se resolverá y simulará la trayectoria en dos cuerpos. Y además, en el caso tres cuerpos se realizará una aproximación con el método de Runge Kutta.

## **Exploración**

El ser humano desde el inicio de los tiempos ha presentado cierta fascinación con el espacio. Desde las más antiguas civilizaciones el ser humano ha dedicado tiempo y esfuerzo en entender el movimiento de los cuerpos celestes desde una perspectiva filosófica, espiritual y científica. Primeramente, el interés de estas civilizaciones giraba en torno a las estrellas lo que probó ser fundamental con el advenimiento de la navegación (Ponce, 2010).

Uno de los mayores quiebres en la teoría se produjo por Ptolomeo en el siglo II d.C quien propuso que la Tierra ocupaba el centro del universo y los demás cuerpos giraban en órbitas alrededor de ella es decir, un modelo geocéntrico. Claramente, apoyándose con la teoría de Aristóteles; Teoría del geocentrismo. A pesar de no asemejarse a la realidad que conocemos probó ser bastante preciso en sus cálculos a la hora de predecir fenómenos astronómicos (Cortés Maldonado, 2021).

Luego en el siglo XVI, Nicolás Copérnico plantea el sol como el centro del universo donde la tierra y demás cuerpos giraban alrededor de él; teoría del heliocentrismo. La cual fue luego validada por Galileo usando el recién inventado telescopio (Ponce, 2010). A Galileo se le atribuye como el primero en utilizar el telescopio para el estudio sistemático de los cielos. Asimismo, se le considera "el padre de la ciencia" ya que sus descubrimientos contribuyeron a ponerle fin a la ciega lealtad a la autoridad tanto eclesiástica como a otros pensadores entre ellos Aristoteles, en materia de ciencia. Además, de promulgar la separación de la ciencia, religión y filosofía (Museo Virtual de la Ciencia del CSIC, 2025).

Posteriormente, Johannes Kepler (1571-1630) postula las leyes de Kepler, conocidas como la Ley de las Órbitas, la Ley de las Áreas y la Ley de los Periodos. A partir de estas, Newton llega a ciertas conclusiones importantes. Una de ellas es que los planetas y los satélites no están en equilibrio; hay una fuerza neta que actúa sobre ellos ya que se mueven en órbitas (1 Ley del Movimiento). La segunda es que todos los cuerpos se atraen unos a otros mediante la fuerza gravitatoria, por lo tanto las fuerzas centrales sobre los planetas son la atracción de la fuerza gravitatoria del sol (Bernard, s.f).

Una vez son postuladas y aceptadas las leyes de la mecánica desarrolladas por Newton en 1687 a las cuales también se les conoce como Leyes de Newton, la comunidad científica aprueba la Teoría Heliocéntrica y las las Leyes de Kepler. El modelo resultante de aplicar las leyes de Newton a un sistema con características similares al nuestro es lo que se conoce como el modelo Kepleriano (Ponce, 2010).

La mecánica clásica newtoniana permite describir el movimiento de los objetos mediante ecuaciones diferenciales. Estas ecuaciones basadas en las Leyes de Newton expresan como cambian las variables físicas como posición y velocidad en función del tiempo. Al resolver el sistema, se obtiene la trayectoria del mismo en cualquier instante. Por lo tanto, el comportamiento del sistema se reduce en calcular las funciones que satisfacen las ecuaciones. Ahora bien, encontrar las funciones mencionadas es sumamente complejo inclusive para modelos simples. Los

intentos de encontrar este estas funciones se agrupan bajo el nombre del problema de los n cuerpos (Ponce, 2010).

Al tratarse de dos cuerpos, por ende el sistema que consiste en las órbitas de dos masas que interactúan a causa de la aceleración gravitacional, el sistema es "analiticamente soluble". Esto dado que el sistema se puede expresar como una ecuación diferencial y la función del movimiento entre las dos masas se puede describir usando las leyes de movimiento de Newton junto con la fórmula de la fuerza gravitacional. Sin embargo, un sistema de tres o más masas interactuando exclusivamente por la aceleración gravitacional no es "analiticamente soluble" (Guzman Perez et al., 2025).

La conclusión de que no es posible encontrar un función en el caso de tres cuerpos fue desarrollada por Henri Poincaré. El determinó que en casos como el anterior la evolución del sistema es extremadamente caótica. Ya que, una pequeña perturbación en el estado inicial podría llevar eventualmente a un estado totalmente diferente. Por lo tanto, es imposible predecir el estado del sistema dado que los instrumentos de medición ni siquiera pueden detectar esa mínima variación (Pardo Silván, 2022).

Poincaré más bien propone un estudio más cualitativo de las órbitas cuando se trata de esta cantidad o mayor cantidad de masas. Es así, que se establece una nueva área en la matemática; sistemas dinámicos (Ponce, 2010).

### Metodología

Basado en lo expuesto en la introducción y la exploración, es pertinente plantear una metodología que permita darle una respuesta satisfactoria al problema planteado. En este caso, se pretende lograr tres objetivos principales: aproximación, simulación y animación. Como se explicó en la sección anterior, el problema de los dos cuerpos puede ser resuelto por completo de forma analítica, pero esto requeriría darle un enfoque al trabajo que no solo excede los alcances del curso, sino que se desvía de los aprendizajes esperados.

Por esta razón, para el problema de los dos cuerpos, la implementación se limitará a realizar una aproximación de la órbita, preferiblemente en un sistema bien conocido como Tierra-Sol, o de manera más general, de un cuerpo cuya masa pueda expresarse en términos del otro objeto en el sistema. Para abordar esta tarea, se puede crear una clase dedicada que, basada en los procedimientos propuestos por Alhowaity (2022), contenga un método que permita aproximar la solución al problema de los dos cuerpos, tomando como parámetros: tiempo inicial, tiempo final y los vectores de posición y velocidad iniciales. No obstante, para obtener estos valores es necesario realizar varios pasos previos, como el cálculo de los coeficientes requeridos para las series de potencias que se definen en el artículo previamente citado. Como resultado final de los métodos de esta clase, se espera obtener una tabla con los valores en cada coordenada (x,y,z) de los vectores de posición y velocidad del objeto a lo largo de un lapso establecido. Cabe destacar que un beneficio de realizar una aproximación y no buscar una solución exacta, es que

queda margen para comparar los datos generados por el modelo con cifras de bases de datos reales, para así evaluar su porcentaje de error; esto será explorado en la implementación.

El segundo aspecto que se espera cubrir dentro de la implementación es la simulación. El primer paso debe ser la creación de una clase "Cuerpo", que pueda representar un planeta, una estrella o cualquier otro objeto astronómico significativo, por lo que sus atributos deben necesariamente incluir su posición inicial (en tres dimensiones), su velocidad y su masa. A partir de esta primera clase madre, se puede desarrollar otra clase que se encargue de la simulación propiamente, para lo cual debería tener como atributo la lista de cuerpos (creados con la clase anterior) que van a interactuar y el tiempo que va a transcurrir en la simulación.

Ahora, para obtener los valores de posición y velocidad de los cuerpos a través del tiempo, se propone utilizar el Método de Runge-Kutta de cuarto orden (RK4), un método iterativo para la aproximación de soluciones a ecuaciones diferenciales. Este es relevante porque en el problema de los n-cuerpos, la posición y velocidad de cada cuerpo cambian con el tiempo por las influencia de las fuerza gravitacionales de los demás, lo cual puede describirse mediante ecuaciones diferenciales. No solo ofrece soluciones para cada intervalo de tiempo establecido, sino que además utiliza un promedio ponderado de cuatro estimaciones de la pendiente de la solución para mejorar la precisión. Por lo tanto, es indispensable que la clase "Simulación" incorpore un método capaz de ejecutar el RK4 considerando varios cuerpos, para lo cual también es necesario un método auxiliar que calcule las aceleraciones y otro que actualice las posiciones de los cuerpos tras cada estimación.

Finalmente, se espera incluir una funcionalidad de animación dentro del código. Hasta el momento, los módulos anteriores solo muestran resultados numéricos o almacenan las operaciones internamente, pero para representar más intuitivamente su comportamiento se considera oportuno agregar módulos con la capacidad de mostrar gráficamente las trayectorias de los cuerpos en dos y tres dimensiones. Para esto, se incluirá una clase "Simulación2D" que herede de "Simulación", la cual obtendrá los datos de las posiciones en el tiempo para dibujar las trayectorias con el uso de paquetes de graficación y animación como matplotlib.pyplot y matplotlib.animation. El principal método tendrá que definir de manera dinámica el rango de los ejes para garantizar la correcta visualización de todos los cuerpos, crear puntos que representan los cuerpos, líneas para trazar las trayectorias y actualizar periódicamente el gráfico mostrado para cubrir la órbita completa (o al menos en el periodo que se defina). De forma similar para la visualización en tres dimensiones, se construirá una clase "Simulación3D" con un funcionamiento análogo a su contraparte bidimensional, solo que con una coordenada adicional.

# **Implementación**

Como se mencionó en la sección de Metodología, para el problema de los dos cuerpos se decidió aproximar la solución de la órbita y a la vez simularla. Aunque la solución de este problema existe tiene muchas variantes según cuales suposiciones iniciales se tomen, entre ellas

la conservación de energia, de momento angular, deformaciones en espacio tiempo, tiempo en actuar la fuerza gravitacional, entre otros (Helm, 2022).

Para la aproximación de los dos cuerpos, se tomó como guía el artículo publicado por Alhowaity (2022)

#### Referencias

- Alhowaity, S. (2022). Computational algorithm to solve two-body problem using power series in geocentric system. *Applied Mathematics and Nonlinear Sciences*, 1–8. https://doi.org/10.2478/amns.2021.2.00300
- Cortés Maldonado, L. Y. (2021). Aproximación al problema de los dos cuerpos [Master's thesis, Universidad Pedagógica Nacional; https://repositorio.pedagogica.edu.co/bitstream/handle/20.500.12209/13457/APROXIMACI%C3%93N%20AL% 20PROBLEMA%20DE%20LOS%20DOS%20CUERPOS.pdf?sequence=1]. https://repositorio.pedagogica.edu.co/handle/20.500.12209/13457
- Guzman Perez, Y. U., Fragoso Martínez, I., & García Mendoza, F. (2025). El problema de los dos cuerpos. Proyecto de Análisis Numérico III, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional.
- Helm, J. (2022). Approximate and exact GR-solutions for the two-body problem. *Journal of High Energy Physics, Gravitation and Cosmology*, 8(3), 690–723. https://doi.org/10.4236/jhepgc.2022.83051
- Museo Virtual de la Ciencia del CSIC. (2025). Galileo galilei. https://museovirtual.csic.es/salas/magnetismo/biografias/galileo.htm
- Pardo Silván, E. (2022). Mecánica hamiltoniana y el problema de los n cuerpos [Trabajo Fin de Grado]. Universidad Politécnica de Madrid. https://oa.upm.es/71786/
- Perezagua López, R. L. (2022). El problema de los tres cuerpos. Empresarios Agrupados. https://www.empresariosagrupados.es/wp-content/uploads/2022/12/Art.-3-cuerpos.pdf
- Ponce, M. (2010). *Movimiento de planetas y otras dinámicas de baja dimensión*. Facultad de Matemáticas, PUC-Chile; Notas del mini curso dictado en la XXXVI Semana de la Matemática.