

Tarea 2

27 de marzo de 2024

 $1^{\underline{0}}$ semestre 2025 - Profesores P. Barceló - P. Bahamondes - D. Bustamante

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 03 de abril a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_EX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Problemas

Problema 1

- (a) [1 pt.] Sea P un conjunto de variables proposicionales. Defina inductivamente el conjunto de variables proposicionales mencionadas en φ , denotado como P_{φ} , para toda fórmula φ en $\mathcal{L}(P)$.
- (b) [5 pts.] Sea P un conjunto de variables proposicionales y sean φ y ψ fórmulas en $\mathcal{L}(P)$. Suponga que $P_{\varphi} \cap P_{\psi} \neq \emptyset$.

Demuestre que si $\varphi \to \psi$ es una tautología, entonces existe una fórmula θ tal que $P_{\theta} = P_{\varphi} \cap P_{\psi}$ y que cumple que tanto $\varphi \to \theta$ como $\theta \to \psi$ son tautologías.

Problema 2

Definimos el conectivo binario de disyunción exclusiva \oplus (XOR), definido por la siguiente tabla de verdad:

$$\begin{array}{c|cccc} \varphi & \psi & \varphi \oplus \psi \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

Definimos de igual modo el operador de disyunción exclusiva generalizada \bigoplus de manera análoga a la conjunción generalizada y la disyunción generalizada, es decir:

$$\bigoplus_{i=1}^n \varphi_i = \varphi_1 \oplus \cdots \oplus \varphi_n$$

- (a) [1 pt.] Dé dos fórmulas equivalentes a $p \oplus q$ en DNF y CNF respectivamente.
- (b) [3 pts.] Demuestre que $\{\oplus\}$ no es un conjunto funcionalmente completo.
- (c) [2 pts.] Demuestre la siguiente propiedad distributiva para \oplus :

$$\left(\bigoplus_{i=1}^{n} \varphi_i\right) \wedge \psi \equiv \bigoplus_{i=1}^{n} \left(\varphi_i \wedge \psi\right)$$