# Семинар 7

Кратчайшие пути во взвешенном графе

# Взвешенный граф G(V, E)

Рассмотрим взвешенный ориентированный граф G(V, E).

Любому ребру (v,w) соответствует неотрицательное число  $l_{vw}$  (вес, длина, стоимость). Необходимо найти пути из  $s \in V$  во все вершины графа так, чтобы длины этих путей были минимальны.

Пример:



Каковы кратчайшие пути до s, v, w, t?

- a) 0, 1, 2, 3
- б) 0, 1, 3, 6
- в) 0, 1, 4, 6
- г) 0, 1, 4, 7

Почему не поиск в ширину?

# Алгоритм Дейкстры



Каждая итерация алгоритма Дейкстры обрабатывает одну новую вершину, голову ребра, переходящего из X в V-X

#### DIJKSTRA

**Вход**: ориентированный граф G = (V, E), представленный в виде списков смежности, вершина  $s \in V$ , длина  $l_e \ge 0$  для каждого  $e \in E$ .

Постусловие: для каждой вершины v значение len(v) равно истинному кратчайшему расстоянию dist (s, v).

```
// инициализация
```

- 1)  $X := \{s\}$
- 2) len(s) := 0,  $len(v) := +\infty$  для каждого  $v \neq s$ // главный цикл
- 3) while существует ребро (v, w), где  $v \in X$ ,  $w \notin X$  do
- $(v^*, w^*)$  := такое ребро, которое минимизирует  $len(v) + l_{vw}$ 4)
- $prev[w^*] = v^*$  добавить  $w^*$  в X5)
- 6)
- 7)  $len(w^*) := len(v^*) + l_{ww}$

### Тестовое задание

Какое из следующих времен выполнения лучше всего описывает простую реализацию алгоритма Дейкстры для графов, представленных в виде списков смежности?

Обозначим 
$$n=|V|$$
,  $m=|E|$ 

- a) O(m+n)
- 6)  $O(m \cdot \log n)$
- B)  $O(n^2)$
- r)  $O(m \cdot n)$

Пример.





| X    | V-X                    |
|------|------------------------|
| A(0) | B(1), C(2), D(∞), E(∞) |
|      |                        |

| Α        | В | С | D | E | prev |
|----------|---|---|---|---|------|
| <u>0</u> | 8 | 8 | 8 | 8 | 1    |
| 0        | 4 |   |   |   |      |

## Ускорение алгоритма Дейкстры

```
Если на шаге 4 (4) (v^*, w^*) := такое ребро, которое минимизирует len(v) + l_w ) выбирать \min_{\substack{v \in X, \\ w \in V - X}} (len(v) + l_{vw}) = l_{v^*w^*}
```

для каждой из O(|V|) вершин перебирать O(|E|) ребер, то время работы  $O(|V|\cdot|E|)$  . Можно ли быстрее? — да, если использовать двоичную кучу.

Куча поддерживает основные операции «вставить» и «извлечь минимум», которые выполняются за время  $O(\log n)$ .

Будем хранить в куче необработанные вершины из V-X.

При этом будем поддерживать инвариант:

Ключом вершины  $w \in V - X$  является минимальная дейкстрова оценка ребра с хвостом  $v \in X$  и с головой  $w \in V - X$  либо  $+\infty$ , если такое ребро не существует:  $key(w) = \min_{\substack{v \in X, \\ w \in V - X}} (len(v) + l_{vw})$ 

## Алгоритм Дейкстры на основе двоичной кучи

#### DIJKSTRA (НА ОСНОВЕ КУЧИ, ЧАСТЬ 1)

**Вход**: ориентированный граф G = (V, E), представленный в виде списков смежности, вершина  $s \in V$ , длина  $l_s \ge 0$  для каждого  $e \in E$ .

**Постусловие**: для каждой вершины v значение len(v) равно истинному кратчайшему расстоянию dist(s, v).



Сколько раз Dijkstra (на основе кучи) выполняет строки 13 и 16?

- a) O(m + n)
- 6) O(m)
- B)  $O(n^2)$
- г)  $O(m \cdot n)$

<u>Задача 1</u>. Применить алгоритм Дейкстры к следующему графу. Привести результаты последовательных итераций в виде таблиц (см. слайд 4). Нарисовать дерево кратчайших путей



Задача 2. Докажите, что ребра (u, prev[u]), полученные в результате работы алгоритма Дейкстры, образуют дерево

Задача 3. Дан граф G=(V, E) с (возможно, отрицательными) весами на ребрах, а также  $s \in V$  и дерево  $T = (V, E'), E' \in E$ . Постройте алгоритм, проверяющий за линейное время, является ли T деревом кратчайших путей.