RESOLUCIÓN DE PROBLEMAS COMPUTACIONALES III HERRAMIENTAS PARA LA REPRESENTACIÓN DE ALGORITMOS

FLUJO DE CONTROL DE UN ALGORITMO

- Es el orden temporal en el cual se ejecutan los pasos individuales del algoritmo.
- El flujo normal de un algoritmo es el flujo lineal o secuencial de los pasos (un paso a continuación de otro).
- Para apartarse del flujo normal lineal están las estructuras de control de repetición y selección:
 - Una permite repetir automáticamente un grupo de pasos (repetición).
 - Otra permite seleccionar una acción de entre un par de alternativas especificas, teniendo en cuenta determinas condiciones (selección).

Teorema de Böhm y Jacopini

- También llamado "Teorema Fundamental de la Programación Estructurada".
- El teorema de Böhm Jacopini [C.Böhm, G.Jacopini, Comm. ACM vol.9, nº5, 366-371, 1966] establece que:
- "Todo programa propio se puede escribir utilizando únicamente las estructuras de control secuencial, condicional e iterativa".
- Un programa se define como propio si cumple las siguientes condiciones:
 - Si tiene un solo punto de entrada y un solo punto de salida
 - Existen caminos desde la entrada hasta la salida que pasan por todas las partes del programa.
 - Todas las instrucciones son ejecutables y no existen bucles sin fin.

HERRAMIENTAS PARA LA REPRESENTACIÓN DE ALGORITMOS

- Diagramas de Bloques
- Diagramas de Flujo.
- Pseudocódigo.
- Lenguaje natural
- Tablas de Decisión

DIAGRAMAS DE BLOQUES

 La estructura de un algoritmo se puede representar con un diagrama estructurado en forma de bloques, donde se muestren los sucesivos refinamientos a partir del problema inicial.

DIAGRAMAS DE BLOQUES

Figura 3. Diagrama de bloques para el cálculo de la superficie y longitud del círculo

- Los diagramas de flujo son una herramienta gráfica para descripción de algoritmos.
- Un diagrama de flujo muestra la lógica del algoritmo.
- Los diagramas de flujo han sido una de las herramientas de programación clásica más usadas.
- Ventajas
 - Muestran el flujo lógico del algoritmo de una manera clara
- Inconvenientes
 - Su complejidad aumenta con la complejidad del problema
 - Son difíciles de actualizar y oscurecen la estructura del algoritmo.

- Un diagrama de flujo debe reflejar:
 - El comienzo del programa
 - Las operaciones que el programa realiza
 - El orden en que se realizan
 - El final del programa

- En la representación es conveniente seguir las siguientes reglas:
 - El comienzo del programa figurará en la parte superior del diagrama.
 - Los símbolos de comienzo y fin deberán aparecer una única vez.
 - El flujo de las operaciones será de arriba a abajo y de izquierda a derecha.
 - Se debe guardar cierta simetría en la representación de bifurcaciones y bucles.
 - Se evitarán los cruces de líneas de flujo, utilizando conectores.

 Es un lenguaje algorítmico que permite representar las construcciones básicas de los lenguajes de programación pero manteniéndose próximo al lenguaje natural.

Ventajas

- Podemos centrarnos sobre la lógica del problema olvidándonos de la sintaxis de un lenguaje concreto.
- Es fácil modificar el algoritmo descrito.
- Es fácil traducir directamente a cualquier lenguaje de programación el algoritmo obtenido.

```
INICIO
  LEER precioKg
  LEER peso
  LEER pago
  precio ← peso x precioKg
  devuelta ← pago – precio
  ESCRIBIR precio
  ESCRIBIR devuelta
FIN
```

- El pseudocódigo que nosotros utilizaremos consta exactamente de las siguientes construcciones:
 - INICIO: Indica el comienzo del algoritmo
 - FIN : Indica la finalización del algoritmo.
 - LEER: Se usa para leer un dato del teclado.
 - ESCRIBIR : Se usa para escribir un dato por pantalla.

 SELECCIÓN -CONDICIÓN

REPETITIVA ITERATIVA

SI <condición> ENTONCES <Acción 1> EN OTRO CASO <Acción 2> FINSI

MIENTRAS < Condición > HACER < Acción 1> FINMIENTRAS

TABLAS DE DECISIÓN

CONDICIONES	1	2	3	4
Antigüedad empleado	<5 años	5 a <10 años	10 a 15 años	> 15 años
ACCIONES				
Calcular bonificación por antigüedad.				
Sueldo x 1% x años antig.	Х			
Sueldo x 1,5% x años antig.		X		
Sueldo x 2% x años antig.			X	
Sueldo x 2,5% x años antig.				X

Presenta:

- Las posibles situaciones o condiciones que pueden plantearse en un problema,
- Las respectivas acciones o tratamiento a seguir en cada caso