Formules de dérivation

Domaine	f(x)	f'(x)
\mathbb{R}	λ (constante)	0
\mathbb{R}	ax + b	a
R*	1/x	$-1/x^{2}$
\mathbb{R}	x^n	nx^{n-1}
ℝ*	$1/x^n$	$-n/x^{n+1}$
\mathbb{R}_+^*	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
\mathbb{R}	e^x	e^x
\mathbb{R}_+^*	$\ln x$	1/x
\mathbb{R}	$\sin x$	$\cos x$
\mathbb{R}	$\cos x$	$-\sin x$
$\mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \}$	$\tan x$	$1 + \tan^2 x$
] - 1,1[$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
] – 1, 1[$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
\mathbb{R}	$\arctan(x)$	$\frac{1}{1+x^2}$
\mathbb{R}	ch(x)	sh(x)
\mathbb{R}	sh(x)	$\operatorname{ch}(x)$
\mathbb{R}	th(x)	$1 - th^2(x)$
$]1,+\infty[$	$\operatorname{argch}(x)$	$\frac{1}{\sqrt{x^2 - 1}}$
R	$\operatorname{argsh}(x)$	$\frac{1}{\sqrt{x^2+1}}$
] - 1,1[$\operatorname{argth}(x)$	$\frac{1}{1-x^2}$

f	f'
$\lambda u + \mu v$ (λ , μ constantes)	$\lambda u' + \mu v'$
uv	u'v + uv'
$\frac{1}{v}$	$\frac{-v'}{v^2}$
$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$
u^n	$nu'u^{n-1}$
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$
e^u	$u'e^u$
$\ln u$	$\frac{u'}{u}$
$\sin u$	$u'\cos u$
$\cos u$	$-u'\sin u$
$u(\lambda x)$	$\lambda u'(\lambda x)$
$u \circ v$	$v' \cdot u' \circ v$
u^{-1}	$\frac{1}{u' \circ u^{-1}}$