PSI-Scenariusz 1

Kacper Pawlikowski IS. Gr.3 W swoim programie zastosowałem Neuron McCullocha-Pittsa z dwoma wejściami. Dla każdego wejścia x_i perceptronu przypisana jest waga w_i . Dla stanów wejściowych liczymy sumę ważoną:

$$s=\sum_{i=1}^n x_i w_i + b$$

b-wartość odchylenia, odpowiada za nieliniowe przekształcenie wejść w wyjście Funkcję progowa unipolarna w postaci:

$$y = \begin{cases} 0 & dla & s < 0 \\ 1 & dla & s > 0 \end{cases}$$
 y-wyjście neuronu

użyłem jako funkcję aktywacji.

Skorzystałem z następującego algorytmu uczenia:

- Początkowe wagi zostały wylosowane z zakresu <-0.5, 0.5>
- Sprawdzam czy na podstawie przygotowanych danych wejściowych otrzymam oczekiwany wynik. Jeżeli nie:
 - o Obliczam błąd: e=uzyskany_wynik oczekiwany_wynik
 - Modyfikuję wagi:
 Waga=Waga+współczynnik_uczenia*e*dana_wejściowa, oraz b=b+współczynnik_uczenia *e
- Procedurę powtarzam dla wszystkich przygotowanych zestawów danych (kolejność użycia zestawów jest losowa) a następnie sprawdzam błąd średniokwadratowy:

$$E = \frac{1}{2} \sum_{i=1}^{p} (d_i - y_i)^2$$

p-liczba przykładów do nauki d_i -oczekiwana odpowiedź perceptronu y_i -uzyskana odpowiedź

• Jeżeli e>0 to powtarzam proces uczenia

Dane do uczenia:

Neuron ma realizować procedurę OR

Dane wejściowe: $\{(0,0), (0,1), (1,0), (1,1)\}$

Dane wyjściowe: {0, 1, 1, 1}

Zależność pomiędzy współczynnikiem uczenia a ilością niezbędnych cykli uczenia

		ilość potrzebnych cykli uczenia										
ni	test 1	test 2	test 3	test 4	test 5	test 6	test 7	test 8	test 9	średnia		
0,0	. 48	51	51	35	37	37	45	9	66	42,11		
0,3	. 5	10	5	10	6	12	4	6	6	7,11		
0,2	6	4	10	7	4	5	7	6	3	5,78		
0,3	4	2	7	6	8	6	4	3	4	4,89		
0,4	6	8	4	4	2	7	5	8	4	5,33		
0,!	5	5	3	9	5	4	9	9	10	6,56		
0,6	7	9	4	10	4	8	5	10	9	7,33		

Błąd średniokwadratowy w kolejnych iteracjach:

Wnioski:

- Im współczynnik uczenia jest większy, tym większa poprawka wag jest
 wykonywana przy takiej samej wartości błędu. Dlatego dla małych wartości
 potrzeba znacznie więcej iteracji. Należy jednak pamiętać, że dla dużych wartości
 poprawka wag może być za duża i nie przybliży nas do rozwiązania. W moim
 przypadku optymalna wartość współczynnika uczenia wynosiła ok 0,3.
- Początkowo zamierzałem wykonać funkcję XOR ale nigdy nie otrzymałem prawidłowych wyników. Doczytałem, że wiąże się to z tym, że pojedynczy neuron nie jest w stanie odróżnić zbiorów nieseparowalnych liniowo, czyli takich, że między punktami z odpowiedzią na tak i odpowiedzią negatywną nie da się poprowadzić prostej rozgraniczającej. Problem ten można rozwiązać poprzez zastosowanie sieci neuronów.
- W początkowej fazie nauki perceptronu błąd średniokwadratowy maleje regularnie natomiast gdy zbliża się do 0 to zaczyna się zachowywać w nie przewidywalny sposób. Dzieje się tak ponieważ na początku wartości wag znacząco różnią się od wymaganych. W późniejszej fazie dokonywane są już niewielkie korekty które znacząco wpływają na wynik.