

Das Gehen verstehen

Bioinspirierte Modellierung und Simulation von Laufrobotern

Nachgiebige Laufroboter und Prothesen

Läufer mit Blattfedern

Simplistische Modellierung des Laufens

- Verwendung Simplistischer Modelle um Bewegungsprinzipien zu extrahieren. Template & Anchor. [Full & Koditschek 1998]
- Vorwärts hüpfender 2D-Schwinger erzeugt ähnliche Kontaktkraft wie Menschen beim Rennen. [Bullimore & Burn 2007]

Simulation des Rennens

Bodenkraft

Simplistische Modellierung des Laufens

- Bei geeigneter Kombination aus Anstellwinkel und Beinsteifigkeit ist das Modell stabil!!
- Stabilitätsabschätzung mit Steps-To-Fall Map. Das "J" Gebiet [Seyfarth 2002]

Rennen in 3D

Großer Gewinn an Stabilität & richtungsstabil [Peuker 2012]

Übertragbarkeit in "Reale Welt"

Komplexität erhöhen

- Erhöhe graduell Morphologie des Modelles: Träge Beine
- Ahmed Shabana's Embedding Algorithm
- Versuche positive Eigenschaften des Vorgängermodells zu erhalten (Vererbung)

Konzeptioneller Laufroboter und Modell

Robert Schirmer (EAH Jena) Lutz Kunze (EAH Jena) Dr. Daniel Renjewski

Kleine Kluft

Partner

Take-Home Messages

• Einfache Modelle.

Leichter, motivierender Einstieg. Perfekt für Integration in die Lehre.

Publikums-Magnet.

Sehr gute Außenwirkung, Hohe Sichtbarkeit.

Wirkt Biomechanik-Vakuum in Jena entgegen.

Von 40 auf 0. Uni-Arbeitsgruppen stellen Ihren Betrieb ein.

Aktives Netzwerk.

Gute Verortung und Abstimmung eigener Forschung.

Viele Schnittstellen.

Roboterbau in Zusammenarbeit mit Fachbereichen der EAH Jena und lokalen Unternehmen wie TETRA

Feder-Masse-Modell

Basis für die Beschreibung des Laufens bei Mensch und Tier

Oszillator mit äußerer Kraft

Oszillator darf abheben

Feste Verankerung

Nur einseitige Zwangsbedingung: Nur Druckkraft

Hybride Dynamik

Biomechanik-Zentren

Jena 2011:

Seyfarth (20)

Blickhan (20)

Jena 2016:

Null ?

