Gravity in 2+1 Dimensions as a Chern-Gauge Theory, Theory, Simons Gauge Theory

Keywords: General Relativity, Gauge Theory,

Quantum Gravity, 2+1 Dimensions

General Relativity in 3+1 dimensions is highly complex, resisting quantization and offering few analytical solutions. This work explores a simpler toy model: **gravity in 2+1 spacetime dimensions**.

- **Key Insight:** In D dimensions, the number of dynamical degrees of freedom for the metric is $\frac{1}{2}D(D-3)$
- **D=3+1:** 2 degrees of freedom (gravitational waves)
- **D=2+1:** 0 degrees of freedom. The theory has **no local dynamics**; the geometry is fixed algebraically by the sources

This simplicity makes (2+1)-gravity a perfect laboratory to investigate deep questions: Can gravity be formulated as a **standard gauge theory**? Can it be quantized?

1. Introduction & Motivation 5. Including the Cosmological Constant

The framework naturally incorporates a cosmological constant, which changes the gauge group.

- $\Lambda = 0$: Gauge group is ISO(2,1) (Poincaré)
- $\Lambda > 0$: Gauge group is SO(3,1) (de Sitter)
- $\Lambda < 0$: Gauge group is SO(2,2) (Anti-de Sitter)

The action with a cosmological constant is equivalent to the **difference** of two Chern-Simons actions:

 $S_{\mathrm{EH}+\Lambda} \propto S_{\mathrm{CS}}[\mathbf{A}^+] - S_{\mathrm{CS}}[\mathbf{A}^-]$

where $\mathbf{A}^{\pm} = \boldsymbol{\omega} \pm \mathbf{e}$.

2. Reformulating Gravity: The Vielbein & Spin Connection

To connect gravity to gauge theory, we shift from the metric g_{ab} to the **vielbein** e^{μ} and **spin connection** ω_{β}^{α} .

- Vielbein (e^{μ}) : A "square root" of the metric. It defines a local inertial frame
- Spin Connection $(\omega_{\beta}^{\alpha})$: The gauge field associated with local Lorentz invariance SO(2,1)
- Curvature 2-form: The Riemann tensor becomes a field strength:

$$R^{\alpha}_{\beta} = d\omega^{\alpha}_{\beta} + \omega^{\alpha}_{\gamma} \wedge \omega^{\gamma}_{\beta}$$

This formalism reveals a gauge-like structure for the Lorentz part of gravity.

The Goal: Gravity Gauge Theory

We aim to describe gravity as the gauge theory of the **Poincaré group** ISO(2,1), which combines Lorentz transformations and translations.

• The Connection: A single gauge field A valued in the iso(2,1) algebra:

$$\mathbf{A} = e^{\mu} P_{\mu} + \frac{1}{2} \omega^{\alpha \beta} J_{\alpha \beta}$$

where P_{μ} are translation generators and $J_{\alpha\beta}$ are Lorentz generators.

• The Challenge: The standard Einstein-Hilbert action must be expressible as a gauge-invariant combination of **e** and ω . This is only possible in **D=3** with a specific bilinear form on the algebra

4. Main Result: Equivalence to Chern-Simons Theory

We successfully rewrite the (2+1) Einstein-Hilbert action in a form that matches a **Chern-Simons action**.

Einstein-Hilbert Action (2+1 D):

$$S_{\rm EH} = \frac{1}{2\kappa} \int \epsilon_{\mu\alpha\beta} e^{\mu} \wedge R^{\alpha\beta}$$

Chern-Simons Action:

$$S_{\rm CS}[\mathbf{A}] = \frac{k}{4\pi} \int \langle \mathbf{A} \wedge (d\mathbf{A} + \frac{2}{3}\mathbf{A} \wedge \mathbf{A}) \rangle$$

The Equivalence:

For the gauge group ISO(2,1) and with the bilinear form $\langle J_{\alpha\beta}, P_{\mu} \rangle = \epsilon_{\alpha\beta\mu}$, we find:

 $S_{\rm CS}[\boldsymbol{\omega} + \mathbf{e}] \propto S_{\rm EH} + (\text{Boundary Term})$

This proves that (2+1)-dimensional gravity is a Chern-Simons gauge theory.

Implications & Conclusions

- Gauge Theory Interpretation Achieved: (2+1)-gravity is a well-defined gauge theory in the usual sense, a property unique to three dimensions
- Path to Quantization: The Chern-Simons formulation provides a clear, well-defined, and renormalizable path for quantizing gravity in this toy model
- Topological Nature: The bulk theory is topological (no local degrees of freedom), but non-trivial dynamics can arise from:
 - -Global Topology (e.g., BTZ black holes)
- -Boundary Degrees of Freedom, described by a Wess-Zumino-Witten model
- Outlook for D=3+1: This success in 2+1 dimensions is not directly transferable to our physical 3+1 world, but it provides profound insights into the deep mathematical structure of general relativity

Key Equations & Visual Summary

From Geometry to Gauge

Lorentz Connection: $\boldsymbol{\omega} = \frac{1}{2}\omega^{\alpha\beta}J_{\alpha\beta}$ Translation Field: $\mathbf{e} = e^{\mu} P_{\mu}$ Full Gauge Field: $\mathbf{A} = \mathbf{e} + \boldsymbol{\omega}$ Curvature: $\mathbf{R} = d\boldsymbol{\omega} + \boldsymbol{\omega} \wedge \boldsymbol{\omega}$ Torsion: $\mathbf{T} = d\mathbf{e} + \boldsymbol{\omega} \wedge \mathbf{e} = 0$ Action $(\Lambda = 0)$: $S_{EH} = \frac{1}{\kappa} \int \langle \mathbf{e} \wedge \mathbf{R} \rangle$

Schematic

Flowchart

From Geometry to Gauge Theory

1. Vielbein \mathbf{e}^{μ} & Spin Connection $\boldsymbol{\omega}_{\beta}^{\alpha}$

2. \downarrow Reformulate in D=2+1

3. Einstein-Hilbert Action: $S_{\rm EH} \propto \int \mathbf{e} \wedge \mathbf{R}$

4. ↓ Identify Gauge Structure

5. Chern-Simons Action: $S_{\text{CS}} \propto \int \langle \mathbf{A} \wedge (d\mathbf{A} + \mathbf{A} \wedge \mathbf{A}) \rangle$

6. ↓ Equivalence!

7. 2+1 Gravity IS a Gauge Theory

References

1. Witten, E. (1988). (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B.

2. Carlip, S. (1995). Lectures in (2+1)-Dimensional Gravity. arXiv:gr-qc/9503024.

3. Deser, S., Jackiw, R. (1984). Three-dimensional cosmological gravity: Dynamics of constant curvature. Annals of Physics.

4. Deser, S., Jackiw, R., 't Hooft, G. (1984). Three-Dimensional Einstein Gravity: Dynamics of Flat Space. Annals of Physics.

Contact: [Your Name/Institution/Email] Acknowledgements: [...]