

CONTENTS

- **1. Interest Rate**
- 2. Present Value and Future Value (1)
- 3. Present Value and Future Value (2)
- 4. Evaluation of Cash Flow Stream
- **5. Return & Yield Measurements**

Time value of money

- Money available at the present time is worth more than the same amount in the future due to its potential earning capacity.
 - Provided money can earn interest, any amount of money is worth more the sooner it is received.
 - It concerns equivalence relationships between cash flows occurring on different dates.

Cash flow additivity principle

The amounts of money can only be added on if they are indexed at the same point in time.

Interpretations of Interest Rate

- ➤ Required rate of return: minimum rate of return an investor must receive in order to accept the investment.
- ➤ **Discounted rate**: the rate at which we discount the future amounts to find their value today.
- ➤ **Opportunity cost:** the value that investors forgo by choosing a particular course of action.

Components of interest rate

- Real risk-free interest rate
 - Single-period interest rate for risk-free security without inflation expected.
- > Inflation premium
 - Compensating investors for expected inflation risk.

Interest Rate

Components of interest rate

- Risk premium
 - Default risk premium: compensating investors for the possibility that the borrower will fail to make the promised payments in time and in full amount.
 - **Liquidity premium**: compensating investors for the risk of loss relative to an investment's fair value if the investment needs to be converted to cash quickly.
 - Maturity premium: compensating investors for the increased sensitivity of the market value of debt to a change in market interest rates as maturity is extended.

Components of interest rate

- Nominal interest rate = Real risk-free interest rate
 - + Inflation premium
 - + Default risk premium
 - + Liquidity premium
 - + Maturity premium
- Nominal risk-free interest rate = Real risk-free interest rate
 - + Inflation premium

Simple interest

> The annual interest rate times the principal.

Compounding interest

> The interest earned on interest is count in.

Example

➤ If the annual interest rate is 10% and the principal is \$1000, what is the interest earned in 2 years under simple interest and compounding interest?

Answer:

Under simple interest:

Interest earned =
$$$1000 \times 10\% \times 2 = $200$$

Under compounding interest:

Interest earned =
$$$1000 \times (1+10\%) \times (1+10\%) - $1000 =$$
 \$210

Stated annual interest rate/Quoted interest rate (r_s)

The annual interest rate that does not account for compounding within the year.

Compounding frequency (m)

- The number of compounding periods per year.
 - Continuous compounding: the number of compounding periods per year becomes infinite.

Periodic interest rate (r_s/m)

Stated annual rate divided by the compounding frequency.

Interest Rate

Effective annual rate

The rate by which a unit of currency will grow in a year with interest on interest included.

EAR =
$$(1+Periodic interest rate)^m -1 = (1+\frac{r_s}{m})^m -1$$

• For continuous compounding:

$$EAR=e^{r_s}-1$$

Interest Rate

Example

➤ If the stated annual rate is 8%, compute the effective annual rate with quarterly compounding.

> Answer:

EAR =
$$(1 + 8\%/4)^4 - 1 = 1.0824 - 1 = 8.24\%$$

CONTENTS

- **1. Interest Rate**
- 2. Present Value and Future Value (1)
- 3. Present Value and Future Value (2)
- 4. Evaluation of Cash Flow Stream
- **5. Return & Yield Measurements**

Relationship between PV and FV

- > Present value (PV): the value of an initial investment.
- Future value (FV): the value of an initial investment would be worth n periods from today.
 - Present value and future value are equivalent measures separated in time.

$$FV = PV \times (1+r)^n$$
 or $PV = \frac{FV}{(1+r)^n}$

where: r = periodic rate, n = number of periods

Relationships between PV and FV (Cont.)

- For a given interest rate, the FV increases with the number of periods.
- For a given number of periods, the FV increases with the interest rate.
- For a given interest rate, the farther in the future the amount to be received, the smaller that amount's PV.
- ➤ Holding time constant, the larger the interest rate, the smaller the PV of a future amount.

Example

➤ Suppose a \$10,000 investment and a stated annual interest rate of 8%, compute the future value with monthly compounding and continuous compounding.

> Answer:

• For monthly compounding:

$$FV_N = PV \times \left(1 + \frac{r_s}{m}\right)^m = 10,000 \times \left(1 + \frac{0.08}{12}\right)^{12} = $10,829.99$$

• For continuous compounding:

$$FV = PV \times e^{r_s} = 10,000 \times e^{0.08} = $10,832.87$$

Future value of a single cash flow

Example: what is the future value of \$200 invested today in two years when the interest rate is 10%?

- \rightarrow Answer: FV=200×(1+10%)×(1+10%)=200 ×(1.1²)=242
 - Using financial calculator:

Present value of a single cash flow

Example: what is the present value of \$200 to be received in two years when the interest rate is 10%?

- \rightarrow Answer: PV=200÷(1.1²)=165.29
 - Using financial calculator:

Annuity

- > A finite set of constant sequential cash flows.
 - Ordinary annuity: all constant cash flows occurring at the end of each period;
 - Annuity due: all constant cash flows occurring at the beginning of each period.

Perpetuity

➤ A set of constant never-ending sequential cash flows occurring at the end of each period.

Future value of an ordinary annuity

Example: what is the value in 3 years time of \$200 to be received at the end of each year for three years when the interest rate is 10%?

- \rightarrow Answer: FV=200×(1.1²)+200×(1.1)+200=662
 - Using financial calculator:

Present value of an ordinary annuity

Example: what is the present value of \$200 to be received at the end of each year for three years when the

- **Answer:** $PV=200 \div (1.1) + 200 \div (1.1^2) + 200 \div (1.1^3) = 497.37$
 - Using financial calculator:

Future value of an annuity due

Example: what is the value in 3 years time of \$200 to be received at the beginning of each year for three years when the interest rate is 10%?

- \rightarrow Answer: FV = $200 \times (1.1) + 200 \times (1.1^2) + 200 \times (1.1^3) = 728.2$
 - Using financial calculator (BGN Mode):

Present value of an annuity due

Example: what is the present value of \$200 to be received at the start of each year for three years when the interest rate is 10%?

- **Answer:** PV = $200+200 \div (1.1)+200 \div (1.1^2) = 547.11$
 - Using financial calculator (BGN Mode):

Present value of perpetuity

$$ightharpoonup PV = \frac{A}{r}$$

- A = the periodic payment to be received forever
- **Example:** a preferred stock will pay \$8 per year forever and the rate of return is 10%. What is its value?
- **Answer:** $PV = 8 \div 0.1 = 80$

CONTENTS

- **1. Interest Rate**
- 2. Present Value and Future Value (1)
- 3. Present Value and Future Value (2)
- 4. Evaluation of Cash Flow Stream
- **5. Return & Yield Measurements**

Future value of a series of unequal cash flow

Example: what is the total value in 3 years time of \$300 received at the end of 1^{st} year, \$600 at the end of 2^{nd} year, and \$200 at the end of 3^{rd} year when the interest rate is

 \rightarrow Answer: FV = 200+600×(1.1)+300×(1.1²) = 1233

Present value of a series of unequal cash flow

Example: what is the total present value of \$300 received at the end of 1st year, \$600 at the end of 2nd year, and \$200 at the end of 3rd year when the interest rate is 10%?

> Answer: PV = $300 \div (1.1) + 600 \div (1.1^2) + 200 \div (1.1^3) = 918.86$

高顿财经 GOLDEN FINANCE

Discount rate or growth rate

- ➤ Example: Elmer has won his \$4 million state lottery and has been offered 20 annual payments of \$200,000 each beginning today or a single payment of \$2,267,000.
 What is the annual discount rate used to calculate the lump-sum pay-out amount?
- Answer: using financial calculator (BGN Mode):
 N=20; FV=0; PV=2,267,000; PMT=-200,000; CPT: I/Y= 7%.

Number of periods

- Example: Elmer has won his \$4 million state lottery and has been offered 20 annual payments of \$200,000 each beginning today or a single payment of \$2,267,000. If Elmer can choose the amount of his annual pay-out, based on a 7% discount rate, how many payments of \$232,631 could Elmer receive if his first payment were today?
- Answer: using financial calculator (BGN Mode):
 FV=0; PV=2,267,000; PMT=-232,631; I/Y= 7%; CPT: N=15.

高顿财经 GOLDEN FINANCE

Size of payment

- **Example:** what is the monthly payment on a \$100K, 30-year home loan with stated rate of 6%?
- > **Answer:** using financial calculator:

Practice 1

A financial product offers to pay a sum of \$2,500 per annum for an infinite period in return for an upfront investment of \$38,462. What is the interest rate implicit within this product?

- A. 6.5%
- B. 7%
- C. 7.5%

Answer: A

The present value of the perpetuity at 6.5% is:

CONTENTS

- **1. Interest Rate**
- 2. Present Value and Future Value (1)
- 3. Present Value and Future Value (2)
- 4. Evaluation of Cash Flow Stream
- **5. Return & Yield Measurements**

Net Present Value (NPV)

- The present value of its cash inflows(benefits) minus the present value of its cash outflows(costs).
- Calculation of NPV:
 - Identify all cash flows;
 - Determine the discount rate or opportunity cost (r);
 - Find the present value of each cash flow;
 - Sum up all present value to get NPV.

NPV =
$$CF_0 + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + ... + \frac{CF_n}{(1+r)^n}$$

Net Present Value (Cont.)

- > Apply the NPV rules:
 - If NPV > 0, undertake the project;
 - If NPV ≤ 0, should not undertake the project;
 - For mutually exclusive projects (can only invest in one),
 choose the one with higher positive NPV.

Example:

A project requires an initial outlay of \$2 million, cash flows at end of year 1, 2, 3 are \$0.5 million, \$0.75 million, \$1.35 million, respectively. If the discount rate is 10% per year, calculate the net present value.

Answer:

NPV =
$$-2 + 0.5/(1.10) + 0.75/(1.10)^2 + 1.35/(1.10)^3$$

= \$0.089 mil.

Internal rate of return (IRR):

> The discount rate that makes net present value equal to zero.

NPV = 0 =
$$CF_0 + \frac{CF_1}{(1+IRR)^1} + \frac{CF_2}{(1+IRR)^2} + ... + \frac{CF_n}{(1+IRR)^n}$$

- > Apply the IRR rules:
 - IRR > opportunity cost of capital, undertake the project .
 - IRR ≤ opportunity cost of capital, should not undertake the project.

Example

A project requires an initial outlay of \$2 million, cash flows at end of year 1, 2, 3 are \$0.5 million, \$0.75 million, \$1.35 million, respectively. If the discount rate is 10% per year, calculate the IRR.

Answer:

$$0 = -2 + 0.5/(1+IRR) + 0.75/(1+IRR)^2 + 1.35/(1+IRR)^3$$

IRR = 12.13%

Problems with IRR rules

- NPV and IRR rules give the same accept or reject decision when projects are independent, but may rank projects differently if projects are mutually exclusive when:
 - The size or scale of the projects differs;
 - The timing of the projects' cash flows differs.
- > Stick to the NPV rule when NPV's and IRR's suggestions are conflict.
- When the signs of cash flows change more than once, there can be more than one IRR.

CONTENTS

- 1. Interest Rate
- 2. Present Value and Future Value (1)
- 3. Present Value and Future Value (2)
- 4. Evaluation of Cash Flow Stream
- **5. Return & Yield Measurements**

Holding period return

> The return that an investor earns over a specified holding period.

HPR =
$$\frac{P_1 - P_0 + D_1}{P_0}$$

Example

➤ Stock purchased nine months ago for \$29 just paid a dividend of \$1.30 and is valued at \$30.50. Calculate the nine-month holding period return.

Answer: HPR = (30.50 + 1.30 - 29)/29 = 9.66%

Portfolio Return Measurement

Time-weighted return (TWR)

- The compound return that \$1 initially invested in the portfolio over a stated measurement period.
- Calculation of TWR:
 - Break the overall evaluation period into sub-periods based on the dates of significant cash inflows and outflows;
 - Calculate the HPRs for each sub-periods;
 - Link or compound HPRs to obtain an annual rate of return.

$$TWR = \left[\left(\frac{\text{End Value}_1}{\text{Begin Value}_1} \right) \left(\frac{\text{End Value}_2}{\text{Begin Value}_2} \right) \dots \left(\frac{\text{End Value}_n}{\text{Begin Value}_n} \right) \right]^{\frac{1}{N}} - 1$$

Money-weighted return (MWR)

- MWR accounts for the timing and amount of all cash flows into and out of the portfolio.
 - If more funds to invest at an unfavorable time, MWR will tend to be depressed;
 - If more funds to invest at a favorable time, MWR will tend to be elevated.
- Calculation of MWR: similar to IRR.

$$CF_0 + \frac{CF_1}{1 + MWR} + ... + \frac{CF_N}{(1 + MWR)^N} = 0$$

Portfolio Return Measurement

TWR vs. MWR

> Time weighted return:

- Not affected by cash withdrawals or additions;
- Periods can be any length between significant cash flows.

Money weighted return:

- Assign more weights to the return of larger cash flows;
- Affected by cash withdrawals or additions;
- Periods must be equal length.
 - ✓ Use shortest period with no significant cash flows.

Portfolio Return Measurement

TWR vs. MWR (Cont.)

Example: Eric invests \$1,000 in an account. After one year, the value of his investment is \$1,200 and Eric adds another \$800 into the account. At the end of Year 2, the total value of the investment is \$2,200. Calculate the annual TWR and MWR.

Answer:

TWR =
$$[(1.2)(1.1)]^{1/2} - 1 = 14.89\%$$
; MWR = 13.623%.

Using your calculator to calculate MWR:

$$CF_0 = -1,000$$
; $CF_1 = -800$; $CF_2 = 2,200$; CPT : $IRR = 13.623\%$.

Money Market Yields

Holding period yield (HPY)

> HPY = (Ending Value/Beginning Value) - 1

Bank discount yield (BDY)

- BDY = (Discount/Face Value) × (360/Days to maturity)
 - Discount rate, simple interest, 360-day annualized.

Money Market Yield (MMY)

- \triangleright MMY = (Discount/Price) \times (360/Days to maturity)
 - Add-on rate, simple interest, 360-day annualized.

Money Market Yields

Bond Equivalent Yield (BEY)

- \triangleright BEY = (Discount/Price) \times (365/Days to maturity)
 - Add-on rate, simple interest, 365-day annualized;
 - Only for money market, not available for capital market.

Effective annual yield (EAY)

- \rightarrow EAY = $(1+HPY)^{365/Days} -1$
 - Add-on rate, compound interest, 365-day annualized.

Money Market Yields

Example

➤ A 90-day T-bill is purchased for \$997.40. What are the bank discount yield, holding period yield, money market yield, and the effective yield?

Answer:

Bank discount yield: $[(1,000 - 997.40)/1,000] \times 4 = 1.04\%$;

90-day holding period return: 1,000/997.4 - 1 = 0.2607%;

Money market yield: $0.2607 \times (360/90) = 1.0428\%$;

Effective annual yield: $(1,000/997.4)^{365/90} - 1 = 1.0614\%$.

Practice (1)

If a bank offers a stated annual interest rate of 3.98%, and compounds quarterly, what is the effective annual rate the bank is offering?

- A. 13.33%
- B. 16.90%
- C. 4.040%

Answer: C

Effective annual rate = $(1 + 3.98\%/4)^4 - 1 = 4.040\%$

Practice (2)

Supersuds is planning to spend \$8 million on advertising.

The company expects this expenditure to result in annual incremental cash flows of \$1.2 million in perpetuity. What is the net present value and IRR of this project if Supersuds' opportunity cost of capital is 11%?

NPV		IRR
A.	\$2.91 million	4%
B.	\$10.91 million	4%
C.	\$2.91 million	15%

Practice (2)

Answer: C

PV of incremental cash flow = 1.2/0.11 = 10.91 Mil.

$$NPV = 10.91 - 8 = 2.91 \text{ Mil.}$$

You're a Champion!

Thanks for staying with us. You have finished this chapter.