Mechanism Design for selling a single object

Single object auction model:

Type set of agent i: Ti CIR
value ti if he wins the object.

An allocation a war avector of n length that represents the probability of winning the object by an agent. The set of allocations is denoted by $\Delta A = \begin{cases} 2a \in \mathbb{R}, n \\ n \end{cases} : \sum_{i=1}^{n} a_i = 1 \end{cases}$

- The setting and results are extendable to setting where a is of the amount of an object allocated to i — e.g. for sponsoned search anctions a is replaced by the CTR i

The allocation nule: $f: T_1 \times T_2 \times \cdots \times T_m \to \Delta A$ Given an allocation $a \in \Delta A$, the valuation of agent i is given by $a_i \cdot t_i$ ($t_i: type o i$) [valuation is in product form] $-f(t_i, t_i)$ is the probability of winning the object tonagent i when the type profile is (t_i, t_i)

Recall: Vickney auction/Second price auction:

The type of agent $i: v_i: v_alue of the object if i wins.$ define $t_{-i}^{(2)} = \max_{j \neq i} \{v_i\}$.

Agent i winx i $v_i > t_{-i}^{(2)}$, loses i $v_i < t_{-i}^{(2)}$

utility is convex, derivative is zono $v_i < \pm_i^{(e)}$ and 1 for $v_i > \pm_i^{(e)}$, and is not differentiable at $v_i = \pm_i^{(e)}$.

Whenever the destivative exists, it coincides with The probability of winning;

A convex function is differentiable "almost everywhere"

- The fact the the denivative coindices with
allocation probability holds almost everywhere.

Some facts from convex analysis:

We are interested in functions $g: I \to \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval.

Defn: A function $g: I \to \mathbb{R}$ is convex if for every $\alpha, y \in I$ and $\lambda \in (0,1)$ $\lambda g(\alpha) + (1-\lambda)g(\gamma) \geq g(\lambda x + (1-\lambda)\gamma)$. facts ()— convex functions are continuous in the intenior of its domain, a jumps can occur only at the boundaries.

(2) Convex functions are differentiable "almost every where" in I. Formally, I subset I'CI s.t. I\I' has countable points (has measure zero) and g is differentiable at every point of I'.

It g is differentiable at some $\alpha \in \Gamma$, we denote the derivative with $g'(\alpha)$. The following definition extends the idea of gradient/derivative.

Defn: For any $x \in I$, x^* is a subgradient of The function $g: I \to \mathbb{R}$ at $x \in I$, x^* is a subgradient of $g(x) > g(x) + x^* (x - x)$ $\forall x \in I$.

Lemma 1: Suppose $g: I \to \mathbb{R}$ is a convex function. Suppose z is in the intenior of I and g is differentiable at z. Then g'(x) is the unique subgradient of g at z.

Consider a ZEI s.t. Z>2 (Some proof works if 3(x). Consider la s.t. (z-x)>,h>0 $2+h = \frac{h}{3-x} \cdot 3 + \left(1 - \frac{h}{3-x}\right) z$ 2 3 xh Since g is convex $\frac{h}{3-x} \cdot g(3) + \left(1 - \frac{h}{3-x}\right) g(x) \right), g(x+h)$ $\frac{g(3)-g(\alpha)}{3-\alpha}$ $\frac{g(3)-g(\alpha)}{h}$ $\frac{g(3)-g(\alpha)}{h}$ $\frac{g(\alpha+h)-g(\alpha)}{h}$ $\frac{g(\alpha+h)-g(\alpha)}{h}$ time for any 4 >0 g(3) - g(x) > g'(x) (3-x)hence g'(x) is a subgradient of a at x.

Now, we need to show uniqueness. Say for contradiction, there exists another to subgradient $n^* \neq g'(x)$ at 1. Case 1: $n^* > g'(x)$. By definition

g(x+h) - g(x) >, gx*h $\Rightarrow \frac{g(x+h) - g(x)}{h} >, x* > g'(x) \text{ firths for all $h > 0$}$ $\text{taking lim as $h \to 0$}$ g'(x) >, x* > g'(x) (outhadiction.

Case 2: 2* < g'(x): very similar exercise.

Lemma?: Let g: I-IR be a convex function. Then for every ZEI The subgradient of g at z exists.

Proof skipped.

- Facts: () For points in I/I' (g is not differentiable), This set is of measure zero, the set of subgradients at a point forms a convex set. Define $g'(x) = \lim_{x \to \infty} g'(x)$ zei', z>x

and $g'(x) = \lim_{3 \to x} g'(3)$.

ztI', z<2 The set of subgradients at $x \in I \setminus I'$ is $\left[g'(x), g'_{+}(x)\right]$

The set of subgradients of g at a point XEI we is denoted by 2g(x).

Lemma I says that $\partial \xi g(x)$ is $\xi g'(x) f$ for $\chi \in \Gamma'$, and Lemma 2 says that it is non-empty for all af I.

Lemma 3: Let g: I -) R be a convex function. Let $\phi: I \rightarrow R$ such that $\phi(3) \in \mathcal{S}_{6} \mathcal{S}_{9}(3) \ \forall \ 3 \in I$. Then for all 2, y EI s.t. 2>y, we have $\phi(2)$ >, $\phi(y)$.

Proof: By definition, g(x) >, g(y) + \phi(y) (x-y) and $g(y) > g(x) + \varphi(x)(y-x)$ adding, $(\phi(x) - \phi(y))(x-y)$ 7,0 since 2>y => \$(x) > \$(y).

It g was differentiable everywhere, Then $g(x) = g(y) + \int g'(3) d3$ an extension of this result holds for convex functions with subgradients. Lemma 4: Let g: I->R be a convex function. Then for any x, y \in I

 $g(2) = g(7) + \int \phi(3) d3$

where $\phi: \mathbb{I} \to \mathbb{R}$ is s.t. $\phi(3) \in \delta g(3) + 3 \in \mathbb{I}$.