```
In [61]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
In [62]: k = 100
```

```
In [63]: # lander PP02 Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_ppo2_million.csv")
         lander_pp02_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x ppo2 time = pd.to numeric(lander pp02 million df.t.values)
         pp02 my = pd.to numeric(file data.iloc[1:].index.values)
         ax.set title("Lander PP01 -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_ppo2_time , pp02_my);
         ppo2 hy2 = []
         for i in range(len(pp02 my) - k):
             num = 0
             for j in range(k):
                 num += pp02_my[i+j]
             ppo2_hy2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_ppo2_time[:-k], ppo2_hy2);
         max(ppo2_hy2)
         plt.savefig('CleanedPlots/lander ppo1 time.png')
```

after removing the cwd from sys.path.


```
In [64]: file_data
lander_pp02_million_df
```

Out[64]:

r	1	t
0	66	0.759621
1	92	1.052448
2	84	1.133883
3	88	1.244922
4	63	1.32216
5	93	1.387393
6	67	1.458337
7	125	1.561875
8	122	1.665198
9	74	1.712245
10	131	1.820043
11	128	1.9319
12	121	2.028663
13	65	2.090502
14	102	2.172058
15	108	2.239115
16	149	2.375895
17	93	2.432054
18	159	2.57555
19	80	2.624756
20	73	2.68832
21	112	2.778434
22	79	2.827761
23	82	2.89656
24	95	2.976816
25	109	3.048229
26	102	3.130776
27	81	3.20103
28	79	3.268912
29	122	3.342766
3269	362	1493.876991
3270	153	1494.025899
3271	227	1494.328768
3272	243	1494.632573
3273	259	1494.956744
3274	245	1495.269418
3275	210	1495.516291
3276	511	1496.208708

```
In [65]: # lander PP02 MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_ppo2_million.csv", index_col =False)
         lander_pp02_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x m = pd.to numeric(lander pp02 million df.index.values)
         pp02 my = pd.to numeric(lander pp02 million df.r.values)
         ax.set title("Lander PP02 -- Million Timesteps")
         ax.set xlabel("Episode Number")
         ax.set_ylabel("Episode Score")
         \#ax.plot(x m , pp02 my);
         ppo2 my2 = []
         for i in range(len(pp02 my) - k):
             num = 0
             for j in range(k):
                 num += pp02_my[i+j]
             ppo2_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_m[:-k], ppo2_my2);
         plt.savefig('CleanedPlots/lander_ppo2_episode.png')
```

after removing the cwd from sys.path.


```
In [66]: # lander PP01 MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_ppo1_million.csv", index_col=False)
         lander_pp01_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander pp01 million df.index.values)
         pp01_my = pd.to_numeric(lander_pp01_million_df.r.values)
         ax.set title("Lander PP01 -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set_ylabel("Episode Score")
         #ax.plot(x , pp01 my);
         ppo1 my2 = []
         for i in range(len(pp01 my) - k):
             num = 0
             for j in range(k):
                 num += pp01_my[i+j]
             ppo1_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], ppo1_my2);
         plt.savefig('CleanedPlots/lander_ppo1_episode.png')
```

after removing the cwd from sys.path.


```
In [67]: | # lander ppo1 Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_ppo1_million.csv")
         lander_ppo1_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x ppo1 time = pd.to numeric(lander ppo1 million df.t.values)
         ppo1 my = pd.to numeric(file data.iloc[1:].index.values)
         ax.set title("Lander PP01 -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_ppo1_time , ppo1_my);
         ppo1 hy2 = []
         for i in range(len(ppo1 my) - k):
             num = 0
             for j in range(k):
                 num += ppo1_my[i+j]
             ppo1_hy2.append(num/k)
         ax.plot(x_ppo1_time[:-k], ppo1_hy2);
         ax.set_ylim(-400, 300)
         max(ppo1_hy2)
         plt.savefig('CleanedPlots/lander ppo1 time.png')
```

after removing the cwd from sys.path.


```
In [68]: # lander DQN Million
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander_lander_dqn_million.csv", index_col=False)
         lander_dqn_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_da
         ta.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander dgn million df.index.values)
         dgn my = pd.to numeric(lander dgn million df.r.values)
         ax.set title("Lander DQN -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set_ylabel("Episode Score")
         #ax.plot(x , dqn my);
         dqn my2 = []
         for i in range(len(dqn my) - k):
             num = 0
             for j in range(k):
                 num += dqn_my[i+j]
             dqn_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], dqn_my2);
         plt.savefig('CleanedPlots/lander_fwn_episode.png')
```

after removing the cwd from sys.path.


```
In [69]: # lander dqn Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_dqn_million.csv")
         lander_dqn_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_da
         ta.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x dgn time = pd.to numeric(lander dgn million df.t.values)
         dqn_my = pd.to_numeric(file_data.iloc[1:].index.values)
         ax.set title("Lander DQN -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x dqn time , dqn my);
         dqn hy2 = []
         for i in range(len(dqn my) - k):
             num = 0
             for j in range(k):
                 num += dqn_my[i+j]
             dqn_hy2.append(num/k)
         ax.plot(x_dqn_time[:-k], dqn_hy2);
         ax.set_ylim(-400, 300)
         max(dqn_hy2)
         plt.savefig('CleanedPlots/lander dqn time.png')
```

after removing the cwd from sys.path.


```
In [70]: # lander acktr Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_acktr_million.csv")
         lander_acktr_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_
         data.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x_acktr_time = pd.to_numeric(lander_acktr_million_df.t.values)
         acktr my = pd.to numeric(file data.iloc[1:].index.values)
         ax.set title("Lander ACKTR -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_acktr_time , acktr_my);
         acktr hy2 = []
         for i in range(len(acktr my) - k):
             num = 0
             for j in range(k):
                 num += acktr_my[i+j]
             acktr_hy2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_acktr_time[:-k], acktr_hy2);
         max(acktr_hy2)
         plt.savefig('CleanedPlots/lander acktr time.png')
```

after removing the cwd from sys.path.


```
In [71]: # lander ACKTR MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_acktr_million.csv",index_col=False)
         lander_acktr_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_
         data.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander acktr million df.index.values)
         y = pd.to numeric(lander acktr million df.r.values)
         ax.set title("Lander ACKTR -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set ylabel("Episode Score")
         #ax.plot(x, y);
         acktr my2 = []
         for i in range(len(y) - k):
             num = 0
             for j in range(k):
                 num += y[i+j]
             acktr_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], acktr_my2);
         #file_data.iloc[0,:].values
         plt.savefig('CleanedPlots/lander acktr episode.png')
```

after removing the cwd from sys.path.


```
In [72]: | # lander acer Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_acer_million.csv")
         lander_acer_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x acer time = pd.to numeric(lander acer million df.t.values)
         acer_my = pd.to_numeric(file_data.iloc[1:].index.values)
         ax.set title("Lander ACER -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_acer_time , acer_my);
         acer hy2 = []
         for i in range(len(acer my) - k):
             num = 0
             for j in range(k):
                 num += acer_my[i+j]
             acer_hy2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_acer_time[:-k], acer_hy2);
         max(acer_hy2)
         plt.savefig('CleanedPlots/lander_acer_time.png')
```

after removing the cwd from sys.path.


```
In [73]: # lander ACER MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_acer_million.csv", index_col=False)
         lander_acer_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander acer million df.index.values)
         y = pd.to numeric(lander acer million df.r.values)
         ax.set title("Lander ACER -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set_ylabel("Episode Score")
         #ax.plot(x, y);
         acer my2 = []
         for i in range(len(y) - k):
             num = 0
             for j in range(k):
                 num += y[i+j]
             acer_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], acer_my2);
         plt.savefig('CleanedPlots/lander_acer_episode.png')
```



```
In [74]: # lander a2c Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_a2c_million.csv")
         lander_a2c_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_da
         ta.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x a2c time = pd.to numeric(lander a2c million df.t.values)
         a2c_my = pd.to_numeric(file_data.iloc[1:].index.values)
         ax.set title("Lander A2C -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_a2c_time , a2c_my);
         a2c hy2 = []
         for i in range(len(a2c my) - k):
             num = 0
             for j in range(k):
                 num += a2c_my[i+j]
             a2c_hy2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_a2c_time[:-k], a2c_hy2);
         max(a2c_hy2)
         plt.savefig('CleanedPlots/lander_a2c_time.png')
```

after removing the cwd from sys.path.


```
In [75]: # lander A2C MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_a2c_million.csv", index_col=False)
         lander_a2c_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_da
         ta.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander a2c million df.index.values)
         y = pd.to numeric(lander a2c million df.r.values)
         ax.set title("Lander A2C -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set_ylabel("Episode Score")
         #ax.plot(x, y);
         a2c my2 = []
         for i in range(len(y) - k):
             num = 0
             for j in range(k):
                 num += y[i+j]
             a2c_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], a2c_my2);
         plt.savefig('CleanedPlots/lander_a2c_episode.png')
```

after removing the cwd from sys.path.


```
In [76]: # lander trpo MILLION
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_trpo_million.csv", index_col=False)
         lander_trpo_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x = pd.to numeric(lander trpo million df.index.values)
         y = pd.to numeric(lander trpo million df.r.values)
         ax.set title("Lander TRPO -- Score vs Episode Number")
         ax.set xlabel("Episode Number")
         ax.set ylabel("Episode Score")
         #ax.plot(x, y);
         trpo my2 = []
         for i in range(len(y) - k):
             num = 0
             for j in range(k):
                 num += y[i+j]
             trpo_my2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x[:-k], trpo_my2);
         plt.savefig('CleanedPlots/lander_trpo_episode.png')
```

after removing the cwd from sys.path.


```
In [77]: | # lander trpo Time
         # Read in File as pandas dataframe
         file_data = pd.read_csv("lander/lander_trpo_million.csv")
         lander_trpo_million_df = pd.DataFrame(columns= file_data.iloc[0,:], data=file_d
         ata.iloc[1:,].as_matrix())
         #PLOTTING
         fig, ax = plt.subplots(1,1, figsize=(10,6))
         x trpo time = pd.to numeric(lander trpo million df.t.values)
         trpo_my = pd.to_numeric(file_data.iloc[1:].index.values)
         ax.set title("Lander TRPO -- Score vs Time")
         ax.set xlabel("Time")
         ax.set_ylabel("Episode Score")
         #ax.plot(x_trpo_time , trpo_my);
         trpo hy2 = []
         for i in range(len(trpo my) - k):
             num = 0
             for j in range(k):
                 num += trpo_my[i+j]
             trpo_hy2.append(num/k)
         ax.set_ylim(-400, 300)
         ax.plot(x_trpo_time[:-k], trpo_hy2);
         max(trpo_hy2)
         plt.savefig('CleanedPlots/lander trpo time.png')
```

after removing the cwd from sys.path.

In [78]: file_data

Out[78]:

	#{"t_start": 1544913525.1111975	"env_id": "LunarLander-v2"}
r	I	t
-345.919924	88	1.378366
-83.062989	87	1.43728
-334.165633	101	1.534916
-125.934519	82	1.623836
-516.057746	123	1.719272
-188.823438	88	1.775862
-40.630753	60	1.810143
-269.490342	76	1.861909
-192.456949	84	1.916748
-314.726354	76	1.9753
-383.029522	127	2.08118
-65.38048	71	2.561471
-79.933222	61	2.597451
-315.680468	122	2.667012
-79.250598	77	2.710587
-128.486335	103	2.767554
-80.537811	73	2.811426
-111.725123	77	2.855112
-134.32482	93	2.909612
-10.14226	124	2.984175
-137.430927	66	3.023521
-126.70447	71	3.065548
-118.37138	61	3.102295
-299.923441	90	3.234227
-111.498649	109	3.29415
-132.99746	72	3.335989
-48.546732	101	3.394657
-54.971552	62	3.429781
-408.161685	102	3.490258
15.879172	111	1159.926006
31.642527	141	1160.031422
35.202756	79	1160.080989
43.316936	115	1160.161212
146.511923	1000	1161.432066
235.904463	284	1161.680677
237.079112	475	1162.243664
-47.057321	75	1162.288153

In [79]: file_data

Out[79]:

	#{"t_start": 1544913525.1111975	"env_id": "LunarLander-v2"}
r	I	t
-345.919924	88	1.378366
-83.062989	87	1.43728
-334.165633	101	1.534916
-125.934519	82	1.623836
-516.057746	123	1.719272
-188.823438	88	1.775862
-40.630753	60	1.810143
-269.490342	76	1.861909
-192.456949	84	1.916748
-314.726354	76	1.9753
-383.029522	127	2.08118
-65.38048	71	2.561471
-79.933222	61	2.597451
-315.680468	122	2.667012
-79.250598	77	2.710587
-128.486335	103	2.767554
-80.537811	73	2.811426
-111.725123	77	2.855112
-134.32482	93	2.909612
-10.14226	124	2.984175
-137.430927	66	3.023521
-126.70447	71	3.065548
-118.37138	61	3.102295
-299.923441	90	3.234227
-111.498649	109	3.29415
-132.99746	72	3.335989
-48.546732	101	3.394657
-54.971552	62	3.429781
-408.161685	102	3.490258
15.879172	111	1159.926006
31.642527	141	1160.031422
35.202756	79	1160.080989
43.316936	115	1160.161212
146.511923	1000	1161.432066
235.904463	284	1161.680677
237.079112	475	1162.243664
-47.057321	75	1162.288153

```
In [80]: fig t, ax t = plt.subplots(1,2,figsize=(20,12))
         # MAYBE CHANGE K FOR 100,000
         # A2C
         ax_t[0].plot(x_m[:1000], a2c_my2[:1000], label="A2C");
         ax_t[1].plot(x_a2c_time[:int(len(a2c_hy2)/1.6)], a2c_hy2[:int(len(a2c_hy2)/1.6)]
         ], label="A2C");
         print(len(a2c hy2))
         # ACER
         ax t[0].plot(x m[:1000], acer my2[:1000], label="ACER");
         ax t[1].plot(x acer time[:750], acer hy2[:750], label="ACER");
         print(len(acer hy2))
         # ACKTR
         ax t[0].plot(x m[:1000], acktr my2[:1000], label="ACKTR");
         ax_t[1].plot(x_acktr_time[:int(len(acktr_hy2)/2)], acktr_hy2[:int(len(acktr_hy2
         )/2)], label="ACKTR");
         print(len(acktr hy2))
         # DQN
         ax_t[0].plot(x_m[:1000], dqn_my2[:1000], label="DQN");
         ax_t[1].plot(x_dqn_time[:int(len(dqn_hy2)/4.5)-1], dqn_hy2[:int(len(dqn_hy2)/4.5)-1]
         5)-1], label="DQN");
         print(len(dqn_hy2))
         # PP01
         ax t[0].plot(x m[:375], ppo1 my2[:], label="PP01");
         ax_t[1].plot(x_ppo1_time[:int(len(ppo1_hy2)/1)], ppo1_hy2[:int(len(ppo1_hy2)/1)]
         ], label="PP01");
         print(len(ppo1_hy2))
         # PP02
         ax t[0].plot(x m[:1000], ppo2 my2[:1000], label="PP02");
         ax t[1].plot(x ppo2 time[:int(len(ppo2 hy2)/1.8)], ppo2 hy2[:int(len(ppo2 hy2)/
         1.8)], label="PP02");
         print(len(ppo2 hy2))
         # TRPO
         ax_t[0].plot(x_m[:1000], trpo_my2[:1000], label="TRPO");
         ax_t[1].plot(x_trpo_time[:int(len(trpo_hy2)/1.25)], trpo_hy2[:int(len(trpo_hy2)
         /1.25)], label="TRPO");
         print(len(trpo_hy2))
         ax_t[0].set_xlabel("Episodes")
         ax_t[1].set_xlabel("Time (s)")
         ax t[0].set ylabel("Moving Average Score (k = {0})".format(k))
         ax t[1].set ylabel("Moving Average Score (k = \{0\})".format(k))
         ax t[0].legend();
         ax_t[1].legend();
         fig t.suptitle("Performance of Deep RL Algorithms on Lunar Lander", fontsize=30
         ax t[0].set title("Score vs Episode Number", fontsize=15)
         ax t[1].set title("Score vs Time", fontsize=15);
```

Performance of Deep RL Algorithms on Lunar Lander

In []: