## Section 4 Vision 2

Sujin Park COGS 17 A04 02/07/25

## Recap



#### Recap

#### Receptive Field

- A set of receptors whose activity influences the activity of a "target" downstream cell
- When a cell has a smaller receptive field → better acuity
- Can think of this as pixel resolution
  - If you have less convergence (smaller receptive field), more neurons (pixels) are dedicated to a particular detail (higher DPI)
  - If you have more convergence (larger receptive field), less neurons (pixels) are dedicated to a particular detail (low DPI)



### **Center-Surround Receptive Fields (RF)**

- Excitatory center and inhibitory surround RF
- RF of cells on the retina have Excitatory (+) or Inhibitory (-) activities
- RFs overlap, thus many receptors contribute to multiple RFs

















#### Simultaneous Contrast in the Retina

- Optical Illusion
- Due to Lateral Inhibition, the Ganglions "lie to the brain" about the medium gray, making the one located in the center of the white box look darker
- 1) More lateral inhibition from the bright surrounding
- 2) Less lateral inhibition from the dark





## **Optical Illusions**



#### **Visual Crossover**

- The visual field is split into left and right
- The optic nerve from each eye splits and forms connections to both sides of the brain based on the visual field
  - Crosses via the Optic Chiasm



#### **Visual Crossover**



#### **Visual Crossover**

- Magnification Factor: Cortical cells with small receptive fields have a disproportionately higher projection to the visual area
  - Fovea makes up 0.01% of the retina, but accounts for 8% of V1 mapping
- Visual Imagery: Similar cortical activation when seeing an object as when imagining it



# Topological (preserves spatial relationships) Map of input in V1



But ABSOLUTE size is not maintained

Fovea is greatly (80X) Magnified

## **Information Pathways**

- Dorsal Pathway (Magnocellular Pathway)
  - "Where/How" information
  - Motion and Depth
  - Information from Rods & Cones from Periphery
  - Large "Magnocellular" Ganglions (Y Ganglions)
  - Pathway: LGN > V1 > V2 > Medial Temporal Cortex > Medial Superior Temporal Cortex

#### Ventral Pathway (Parvocellular Pathway)

- "Who/What" information
- Color and Detail (Contextual information)
- Information from Cones in and around Fovea
- Small "Parvocellular" Ganglions (X Ganglions)
- Pathway: LGN > V1 > V2 > V3 > V4 > Inferior Temporal Cortex



#### **LGN**

- LGN is organized into 6 layers:
  - Magnocellular Pathway (Where Pathway) projects to and from layers 1 & 2
  - Parvocellular Pathway (Who/What Pathway) projects to and from layers 3-6
- Some axons from the Magnocellular Pathway go first to the Superior Colliculus in the Tectum of the Midbrain. From there, this sub-pathway goes on to the LGN







## **Visual Cortex (Occipital Lobe)**



- 6 Layered Cortex
- Layer 4 of the Primary Visual Cortex (V1) receives input from the LGN
- Information is then processed and passed "upwards" to other Visual Cortices (V2-V4) which specialize in processing certain properties (Color, Shape, Orientation, etc)



## **Columnal Organization**



- Column: run vertically through the layers of the cortex
  - each column respond to lines oriented in one particular orientation (same "preferred" stimuli like | or / or \ or —, etc)
- Hypercolumn: a set of orientation columns with the same receptive field
  - Comes in Pairs: Left or Right eye dominant
  - Adjacent hypercolumns have adjacent receptive fields → Retinotopic map: A topological map that preserves spatial relationships from the information received

## **Columnal Organization**

#### Simple Cells in V1

Respond to "bar" in a particular orientation in a given Receptive Field



Receptive Field of Simple Cell in Retina

#### "Complex" Cells in V2

Respond to **moving** "bar" in particular orientation in given Receptive Field



Receptive Field of Complex Cell in Retina

#### **Vivid Vision**

- To determine details such as shape and texture, detail information is processed in a hierarchical structure V1 > V2 > V3 > V4
  - Simple cells of V1 responds best to lines of particular Orientation (Orientation tuned)
  - Complex cells of V2 responds best to moving lines of particular orientation (Motion tuned)
  - V3 integrates visual information
  - V4 is tuned to orientation, spatial frequency, and color
- Spatial Frequencies (SF)
  - # of dark-light transitions (changes in contrast) in a given amount of visual space
  - Low SFs for Gross outlines, High SFs for Detail







## **Fusiform Gyrus**

- Face recognition in Inferior Temporal (IT) Cortex
  - Aka Fusiform Face Area (FFA)
- Damage to this area leads to Prosopagnosia, the inability to identify familiar faces (face blindness)
- Other cells in IT react to objects (dog breeds, cars, etc) of which you are an expert (highly practiced) discriminator













## **Fusiform Gyrus**



## **Color Perception**

"Visible light" consists of wavelengths ~350 nm to ~700 nm

#### Trichromatic Color Vision

 3 Cone Types (Blue, Green, Red): each with its own unique type of Opsin that responds to specific wavelengths of light

#### Color Opponency

- Trichromatic system is recorded into opponent systems
- Adapt to Red > Green after image. Adapt to Green > Red after image (same as Yellow vs. Blue)
- "Blobs"
  - In each pair of hypercolumns, there are columns that process colors





## **Color Opponency Circuitry**

- Horizontal cells allow for opponency
- Horizontal "C" cells spontaneously fire, inhibiting neighboring bipolar cells
- Double Opponent Cells in Ganglion Cells
  - Most have R+G- Center and G+R- Surround receptive Fields
  - Good for detecting ripe fruit
- Color constancy: Able to recognize colors under varying light conditions (V4 - detects and filters out overall tint of scene)





## **Medial Temporal (MT)**

- Along the "Where/How" or "Magnocellular" Pathway
- Includes direction-sensitive motion detectors
- Unidirectional lateral inhibition
  - runs in **OPPOSITE** direction detected by circuit
- Feeds to Medial Superior Temporal (MST)
  - Includes "Optic Flow" detectors
  - Responds to the movement of the entire visual field



Detects motion RIGHT to LEFT



Detects motion LEFT to RIGHT



motion across

#### **Depth Perception**

- **Binocular Disparity**: Disparity between the views from each eye allows 3D depth perception
- If both eyes focus on a focal point, the farther any other point is from that point, the greater the disparity in degrees of visual angle between where the points will fall on the two retinas
- In V2, disparity detectors differentially respond to different ranges of disparity
- In MT, the cells respond to different ranges of disparity regardless of receptive field
- Each disparity detector has a "preferred" disparity to which it responds the most to. Some overlap exists



Binocular Disparity

## **Higher Parietal Cortex**

- Integration of visual and somatosensory information
- In Anterior Intra-parietal (AIP) Cortex, "Canonical cells" responds to the "affordances" of objects
  - Signals to the premotor cortex to shape the hand in specific motions (reaching out)
- Mirror Cell System
  - Responds to seeing self or other, perform and action
  - Promotes imitation
- Biological Motion Perception
  - Not in Parietal cortex
  - Located in the Superior Temporal Sulcus (STS)





