Warmup: The importance of node choice in Gaussian quadrature

Group members:

Integral approximations

Given n nodes $x_1, ..., x_n$ in (-1, 1), we approximated the integral of a function f by

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i),$$

where

$$w_i = \int_{-1}^{1} L_{n,i}(x)$$
 $L_{n,i}(x) = \prod_{k:k \neq i} \frac{(x - x_k)}{(x_i - x_k)}$

Our goal for today is to understand the importance of choosing the right nodes $x_1, ..., x_n$.

Questions

1. For the two-point rule (n=2) we have $L_{2,1}(x)=\frac{x-x_2}{x_1-x_2}$ and $L_{2,2}(x)=\frac{x-x_1}{x_2-x_1}$. Suppose that we choose n=2 nodes with $x_1=-0.1$ and $x_2=0.5$. Show that $w_1=5/3$ and $w_2=1/3$.

2. Let $f(x) = x^3 - 2x^2 + 3$. Then, $\int_{-1}^{1} f(x)dx = 14/3$. Calculate $w_1 f(x_1) + w_2 f(x_2)$ using the two nodes and weights from question 1. Is our integral approximation exact with these two nodes?

3. Let $f(x) = x^3 - 2x^2 + 3$. Previously, we found that the "best" two-point rule uses $x_1 = -1\sqrt{3}$ and $x_2 = 1/\sqrt{3}$. Calculating the weights for these two nodes gives $w_1 = w_2 = 1$. Using these optimal nodes and weights, calculate $w_1 f(x_1) + w_2 f(x_2)$. Is our integral approximation exact with these two nodes?