# Visualising Highdimensional Data with R

Session 2

Dianne Cook, Monash University Ursula Laa, BOKU

# Session 2

# Outline

| time            | topic                                                   |
|-----------------|---------------------------------------------------------|
| 11:00-<br>11:45 | Understanding clusters in data using visualisation      |
| 11:45-<br>12:30 | Building better classification models with visual input |

# Clustering

## Method 1: Spin-and-brush

**DEMO** 

### What are clusters?

Ideal thinking of neatly separated clusters, but it is rarely encountered in data



Objective is to organize the cases into groups that are similar in some way. You need a measure of similarity (or distance).

# Why visualise? Which is the better?

Nuisance cases

Nuisance variables





To decide on a best result, you need to see how it divides the data into clusters. The cluster statistics, like dendrogram, or cluster summaries, or gap statistics might all look good but the result is bad. You need to see the model in the data space!

# Model-based clustering (1/3)

Model-based clustering fits a multivariate normal mixture model to the data.

$$\Sigma_k = \lambda_k D_k A_k D_k^{\mathsf{T}}, \quad k = 1, \dots, g$$

where

 $\Sigma_k$  is the variance-covariance of cluster k, g =number of clusters,

 $D_k$  describes the orientation of a cluster,

 $A_k$  describes the variance in different variables,

 $\lambda_k$  is an overall size.

# Model-based clustering (2/3)

Clustering this data. What do you expect?



Can we assume the shape of the clusters is elliptical?



Volume, Shape, Orientation

# Model-based clustering (3/3)

Four-cluster VEE



Three-cluster EEE



Models (ellipses) are overlaid on the data. Which is the best fit?

# How do you draw ellipses in high-d?

#### Extract the estimated model parameters

```
p_mc <- Mclust(
    p_tidy[,2:5],
    G=3,
    modelNames = "EEE")
p_mc$parameters$mean</pre>
```

```
[,1] [,2] [,3]
bl 39 48 49
bd 18 15 18
fl 190 217 196
bm 3693 5076 3754
```

#### p\_mc\$parameters\$variance\$sigma[,,1]

```
bl bd fl bm
bl 8.4 1.6 8.3 755
bd 1.6 1.2 3.5 318
fl 8.3 3.5 42.5 1751
bm 754.7 318.4 1751.2 211467
```

Generate data that represents the ellipse(s) to overlay on the data.

```
p_mce <- mc_ellipse(p_mc)</pre>
```

- Sample points uniformly on a pD sphere
- Transform into an ellipse using the inverse variance-covariance matrix



### Your turn

Use the spin-and-brush approach to extract the clusters from the c1 data.

# Classification

# What should you visualise?

- Understand any clustering related to the known classes.
- Obtain a sense of where boundaries might be placed.
- Examine where the fitted model fits the data well, and where poorly.
- Understand the misclassifications, whether they are reasonable given uncertainty in the data, or due to an illfitting or poorly specified model.
- Understand what can happen with model fitting and pattern recognition with sparse data.

# Example: Linear DA





Linear discriminant analysis is the ideal classifier for this data.

## Random forests (1/2)

A random forest is the simplest classifier to fit for complicated boundaries. It is built from multiple trees generated by randomly sampling the cases and the variables. The random sampling (with replacement) of cases has the fortunate effect of creating a training ("in-bag") and a test ("out-of-bag") sample for each tree computed. The most beautiful results are obtaining diagnostics that help us to assess the model are the votes, the measure of variable importance, and the proximity matrix.

```
Call:
randomForest(formula = cause ~ ., data =
bushfires sub, importance = TRUE)
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 7
        OOB estimate of error rate: 11%
Confusion matrix:
            accident arson burning off lightning
accident
                  73
                  11
                                               17
arson
burning off
lightning
                                              823
            class.error
accident
                  0.471
                  0.784
arson
burning off
                  0.667
lightning
                  0.017
```

## Random forests (2/2)

The votes matrix can be considered to be predictive probabilities, where the values for each observation sum to 1. With 3 classes it is a 2D triangle. For 4 or more classes it is a simplex and can be examined in a tour.



Votes matrix for bushfire model fit

▶ Code



Votes matrix for the random forest fit on penguins

# **Exploring misclassifications**

```
library(crosstalk)
library(plotly)
library(RColorBrewer)
p cl <- p tidy std |>
  mutate(pspecies = predict(p lda, p_tidy)$class) |>
  dplyr::select(bl:bm, species, pspecies) |>
  mutate(sp jit = jitter(as.numeric(species), 0.5),
         psp jit = jitter(as.numeric(pspecies), 0.5))
p cl shared <- SharedData$new(p cl)</pre>
detour plot <- detour(p cl shared, tour aes(</pre>
  projection = bl:bm,
  colour = species)) |>
    tour path(grand tour(2),
                    \max \text{ bases=50, fps = 60)} >
       show scatter(alpha = 0.9, axes = FALSE,
                     width = "100%", height = "450px",
                     palette = brewer.pal(3, "Dark2"))
conf mat <- plot ly(p cl shared,</pre>
                     x = \sim psp jit
                     y = \sim sp jit
                     color = ~species,
                     colors = brewer.pal(3, "Dark2"),
                     height = 450) |>
  highlight(on = "plotly selected",
```

#### Your turn

Explore the misclassifications in the random forest fit of the penguins data, using the code provided in the slides2.R file.

# Cautions about high-dimensions

Space is big.

What might appear to be structure is only sampling variability.



$$n = 48, p = 40$$

Permutation is your friend, for highdimensional data analysis.

Permute the class labels.

```
set.seed(951)
ws <- w |>
mutate(cl = sample(cl))
```



# Other compelling pursuits

Explore and compare the boundaries of different models using the slice tour.

Dissect and explore the operation of a neural network.





### Where to learn more

All of the material presented today comes from

Cook and Laa (2024) Interactively exploring high-dimensional data and models in R

#### Software:













<sup>™</sup> liminal

# End of session 2



This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.