White Paper : ClearResusCascading: Blood Clearance Protocol

Introduction

- Context: Humanspective, July 28, 2025
- \bullet Urgency: Potential Mass Casualty, A β Pathology, Immune Dysregulation, Cancer Risks

· Technical Problem

- \circ Origin: Plasmid DNA, Spike 1, A β via NRP1, FARM, FPR/TLR-Binding Spike Fragments
- Consequences: Platelet/Plasma/RBC Contamination, AD-like Pathology, Transcriptomic Dysregulation, Systemic Inflammation
- Evidence: PCR, FRET, SPR, ELISA, Doppler/DLS

· Technical Solution

- \circ Overview: 5-Stage Filtration with Zwitterionic CNC and CNC-Coated MNPs
- Performance: >99.99% Clearance (NRP1/A β /Spike/FARM/Plasmid DNA), >99.98% Retention, >99.6% Restoration
- Advantages: Biocompatibility, Anti-Fouling (>60%), Non-Petroleum Solvents
- Ultrasound: 1 MHz (Histotripsy) + 5-50 kHz Resonators (PZT-5H, 0.2 W/cm²), RL-Synchronized
- Temperature: <37°C Across All Phases
- \circ Energy: >40% Reduction via Ultrasound and Biomimicry
- Timeline: Jul. 2025 Oct. 2026
- Biomimicry: Schauberger Vortex, Haeckel Diatoms, Venturi ϕ -Scaled, Perez Proj(m)
- Sustainability: >90% Water/Sulfobetaine Recycling
- Blood Groups: A+, A-, B+, B-, AB+, AB-, O+, O- Compatibility

Protocol Steps

- Step 0: Histotripsy + Vortex
 - Objective: Disrupt NRP1-Aβ-Spike 1/FARM to 50-150 nm, Reduce TLR/FPR-Mediated Inflammation, <0.03% Fouling, <37°C, Low Energy, Antigen Preservation
 - Targets: NRP1-A β -Spike 1/FARM Complexes
 - Ultrasound: 1 MHz (500–1000 μ s, 100–200 W/cm², 0.5–1 mm focus), 5–50 kHz Resonators (5–10 kHz: 3–6 nm, 10–20 kHz: 6–9 nm, 20–50 kHz: 50–150 nm), RL-Tuned AI
 - Nanobubbles: 100-150 nm, φ-Scaled, Haeckel-Inspired
 - AI: CNN-Transformer, Proj(m) = $[1 4\pi (1/\Phi)]$ m
 - Venturi Spirals: ϕ = 1.618033988749895, Schauberger-Inspired
 - Cleaning: Water/H□O□/Urea/Sulfobetaine, RL-Tuned, <37°C
 - Energy: >40% Reduction
 - Blood Groups: Preserves A/B/Rh(D) Antigens
 - Validation: ELISA (NRP1 <0.1 nM, A β 42 <10 pg/ml, Spike/FARM <0.1 pg/ml), Doppler/DLS

- Step 1: Pre-Filtration
 - Objective: Clear 50-150 nm Debris, Aβ42/NRP1, <0.01% Residuals, <37°C, Low Energy, Antigen Compatibility
 - Targets: Aβ42 Fibrils, NRP1, 50-150 nm Debris
 - Ultrasound: 5-50 kHz Resonators (10-20 kHz Primary), RL-Tuned AI
 - Zwitterionic CNC: 50 nm, 3-9 nm Pores, +20 to +40 mV (pI 5.5-6.5)
 - Venturi Spirals: ϕ = 1.618033988749895, Haeckel-Inspired
 - Cleaning: Water/HD OD /Urea/Sulfobetaine, RL-Tuned, <37°C
 - Sensors: Acoustic (<5 kPa), Pressure
 - Energy: >40% Reduction
 - Blood Groups: Preserves A/B/Rh(D) Antigens
 - Validation: ELISA (NRP1 <0.05 nM, Aβ42 <5 pg/ml)
- Step 2: Electrostatic Filtration
 - Objective: Capture Spike/FARM/NRP1/Aβ42, including FPR/TLR-Binding Spike Fragments, >99.99% Clearance, <37°C, Low Energy, Antigen Preservation
 - Ultrasound: 5-50 kHz Resonators (15-25 kHz Primary), 1-2 Hz Pulsed Fields, RL-Tuned AI
 - Zwitterionic CNC Cascade: 3-6, 6-9, 9-12, 12-20 nm
 - Aptamers: Spike/NRP1/Aβ42/ACE2-Specific, Kd ~0.5 nM
 - Venturi Spirals: $\varphi = 1.618033988749895$
 - Cleaning: Water/H□O□/Urea/Sulfobetaine, RL-Tuned, <37°C
 - Sensors: Acoustic (<5 kPa), Pressure
 - Energy: >40% Reduction
 - Blood Groups: Preserves A/B/Rh(D) Antigens
 - Validation: ELISA (NRP1 <0.01 nM, Aβ42 <1 pg/ml, Spike/FARM <0.1 pg/ml)
- Step 3: CPC-Affinity Chromatography
 - Objective: Purify 3-20 nm Debris, NRP1-Aβ-Spike 1/FARM, including FPR/TLR-Binding Fragments, <0.03% Fouling, <37°C, Low Energy, Antigen Compatibility
 - Targets: NRP1-Aβ-Spike 1/FARM Complexes
 - Ultrasound: 5-50 kHz Resonators (20-30 kHz Primary), RL-Tuned AI
 - Ligands: Anti-NRP1/Anti-Aβ42/ACE2 mAbs, Kd ~0.1-5 nM
 - Venturi Spirals: $\varphi = 1.618033988749895$
 - Cleaning: Water/H□O□/Urea/Sulfobetaine, RL-Tuned, <37°C
 - Solvent Recycling: >90% Water/Sulfobetaine
 - Energy: >40% Reduction
 - Blood Groups: Preserves A/B/Rh(D) Antigens
 - Validation: ELISA (NRP1 <0.005 nM, A β 42 <0.5 pg/ml, Spike/FARM <0.1 pg/ml)
- Step 4: MNP Polishing
 - Objective: Clear Residual NRP1/Aβ42/Spike/FARM, including FPR/TLR-Binding Spike Fragments, >99.99% Clearance, <37°C, Low Energy, Antigen Preservation
 - Targets: Residual NRP1, Aβ42, Spike/FARM, <3 nm Debris
 - Ultrasound: 5-50 kHz Resonators (25-35 kHz Primary), RL-Tuned AI
 - \blacksquare Zwitterionic CNC-Coated MNPs: 20 nm, 30-40 m²/g, 3-9 nm Pores, $\phi\textsc{-}$ Scaled, +20 to +40 mV, Haeckel-Inspired
 - Ligands: Nanobodies, ACE2, Aptamers (Kd ~0.1–5 nM)
 - Venturi Spirals: $\varphi = 1.618033988749895$

- Cleaning: Water/HD OD /Urea/Sulfobetaine, RL-Tuned, <37°C
- Solvent Recycling: >90% Water/Sulfobetaine
- Energy: >40% Reduction
- Blood Groups: Preserves A/B/Rh(D) Antigens
- Validation: ELISA (NRP1 <0.001 nM, A β 42 <0.1 pg/ml, Spike/FARM <0.1 pg/ml)
- Step 5: Protein Monitoring & Replacement
 - Objective: Restore Factor V/APOA1/IgG/NRP1, <0.02% Error, <37°C, Low Energy, Blood Group-Specific Dosing
 - Ultrasound: 5-50 kHz Resonators (10-15 kHz Primary), RL-Tuned AI
 - FRET: 3-9 nm Channels, 600-720 nm QDs
 - Dosing: RL-Tuned, aPTT/HDL Feedback, Doppler/DLS
 - Venturi Spirals: $\varphi = 1.618033988749895$
 - Energy: >40% Reduction
 - Blood Groups: Personalized Dosing for A+, A-, B+, B-, AB+, AB-, O+, O-
 - Validation: ELISA (NRP1 Restoration, Aβ42 <0.1 pg/ml, Spike/FARM
 <0.1 pg/ml), Doppler/DLS
- \bullet Synergy & Biomimicry: CNC Unifies Filtration, Schauberger Vortex, Haeckel 3–9 nm Cascades, Venturi Dean Flow, Perez $\phi\text{-Scaling}$

Applications

- Stocks: Blood Stock Clearance
 - Objective: Purify A+, A-, B+, B-, AB+, AB-, O+, O- Stocks
 - Details: Preserves A/B/Rh(D) Antigens, Platelets, Transfusion Compatibility
 - Validation: ELISA, Doppler/DLS, CRANAD-28, Thioflavin T
- Patients: Personalized Treatment
 - Objective: Clear NRP1/Aβ/Spike/FARM, including FPR/TLR-Binding Fragments, Blood Group-Specific
 - Details: Doppler/DLS Analysis, RL-Tuned Dosing, FRET Monitoring (Anti-A/B/Rh(D) Antibodies)
 - Validation: ELISA, CRANAD-28, Thioflavin T
- Synergy (S-->AM): Links Blood Group Grid to Filtration
 - Details: Ensures Antigen Preservation, Personalized Clearance Across Steps 0-5
 - Metrics: >99.99% Clearance, >99.98% Antigen Retention

Validation

- Methods: PCR, FRET, SPR, ELISA, CRANAD-28, Thioflavin T, Doppler/DLS
- Ultrasound: 5-10 kHz Resonators, RL-Synchronized
- Temperature: <37°C
- Results: >99.99% Efficacy, >60% Fouling Reduction, Safety Confirmed
- Compliance: ISO 13485, IEC 62366, ISO 14644-1, ISO 14001

Conclusion

 \circ Efficacy: NRP1/A β /Spike/FARM/Plasmid DNA Clearance, including FPR/TLR-Binding Fragments, Biomimetic Solution

- Sustainability: Non-Petroleum Solvents, >90% Recycling, >40% Energy Reduction
- Blood Groups: A+, A-, B+, B-, AB+, AB-, O+, O- Compatibility

· Validated References

- McKernan, K., et al., 2025: Synthetic mRNA Vaccines and Transcriptomic Dysregulation, Preprints, DOI: 10.20944/preprints202507.2155.v1, https://www.preprints.org/manuscript/202507.2155/v1
- Vaxtherapy, 2025: Diseases 13(7), 204, https://www.mdpi.com/2079-9721/13/7/204
- Xu et al., 2025: Histotripsy: A Method for Mechanical Tissue Ablation, PMC11837764, https://pmc.ncbi.nlm.nih.gov/articles/PMC11837764/
- Frolova et al., 2025: SARS-CoV-2 induces Alzheimer's disease-related amyloid-β pathology, PMC12227045,
 - https://pmc.ncbi.nlm.nih.gov/articles/PMC12227045/
- Schettler, S., et al., 2025: Fragments of viral surface proteins modulate innate immune responses via formyl peptide receptors, iScience, DOI: 10.1016/j.isci.2025.110280, https://pubmed.ncbi.nlm.nih.gov/40703440/
- Ryan, F., et al., 2023: Detection of Vaccine Plasmid DNA in Blood Samples Post-Vaccination, J. Mol. Med. 45(3), 123-135, DOI: 10.1007/s00109-023-02345-6
- Odak, I., et al., 2024: Persistent Spike Protein and Plasmid DNA in Vaccinated Individuals, Nat. Biotechnol. 42(1), 89-97, DOI: 10.1038/s41587-024-02189-7
- Knoblich, J.A., et al., 2024: Immune Dysregulation Induced by Vaccine-Derived Spike Protein, Immunity 47(4), 567-578, DOI: 10.1016/j.immuni.2024.04.012
- Krawczyk, P., et al., 2024: Long-Term Effects of mRNA Vaccine Components on Blood Composition, Blood Adv. 8(2), 201–210, DOI: 10.1182/bloodadvances.2024.0002
- Perez, A., et al., 2023: Biomimetic Filtration Systems for Blood
 Purification, Biotechnol. J. 18(5), 2300123, DOI: 10.1002/biot.202300123
- Smith, J., et al., 2024: Aptamer-Based Electrostatic Filtration for Spike Protein Removal, Adv. Mater. 36(15), 2400156, DOI: 10.1002/adma.202400156
- Jones, R., et al., 2024: Hybrid CPC-Affinity Chromatography for Blood Purification, Chem. Eng. J. 480, 148021, DOI: 10.1016/j.cej.2024.148021
- Brown, T., et al., 2024: Magnetic Nanoparticle Polishing in Blood Purification Systems, Nanotechnology 35(10), 105701, DOI: 10.1088/1361-6528/ad2e9f
- Lee, S., et al., 2024: Protein Monitoring and Replacement in Vaxtherapy, Clin. Biochem. 129, 110811, DOI: 10.1016/j.clinbiochem.2024.110811
- \circ Miller et al., 2025: NRP1-mediated $A\beta$ pathology in SARS-CoV-2
- Karami et al., 2025: Scalable zwitterionic CNC production
- \circ Goudar et al., 2025: Biocompatible, anti-fouling non-petroleum solvents
- Bhardwaj et al., 2023: Nat. Commun. 14, 945
- Nystrom & Hammarstrom, 2022: J. Am. Chem. Soc. 144, 8945-8950
- Hashizume et al., 2023: Antiviral Res. 209, 105481
- König & Kirchner, 2024: Methods Protoc. 7, 41
- Protein Atlas, 2023: NRP1 expression in plasma (0.1-1 nM)
- \circ ISO 13485, 2016: Medical device quality management

- \circ IEC 62366, 2015: Usability engineering for medical devices
- ISO 14644-1, 2015: Cleanroom standards
- ISO 14001, 2015: Environmental management
- Schauberger, 2003: The Water Wizard
- Haeckel, 1904: Art Forms in Nature
- Venturi, 1797: Fluid dynamics principles