ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 Работа с системой компьютерной вёрстки Т<u>Е</u>X Вариант: 9

Выполнил:
Караганов Павел Эдуардович
Группа Р3110
Проверил:
Балакшин П. В. (ординарный доцент)
Рыбаков С. Д. (преподаватель практик)

Рис. 3

показана зависимость величины $y=\ln\frac{I}{I_0}$ от $z=1-\frac{U_0}{U}$ (необходимые данные приведены в той же таблице 2). Экспериментальные точки хорошо ложатся на прямую линию. Логарифмический масштаб по оси y выбран потому, что если бы в формуле для I(T) не было стоящего перед экспонентой множителя, то зависимость y(T) имела бы вид:

$$y = \ln \frac{I}{I_0} = \frac{T_{\kappa p}}{T_0} \left(1 - \frac{T_0}{T} \right),$$

величина же $\theta = 1 - \frac{T_0}{T}$, как можно заключить из данных таблицы 1, с хорошей точностью пропорциональна z (чтобы догадаться до этого, нужны были некоторые наводящие соображения, связанные с балансом энергии в лампочке): $\theta \approx Kz$, где коэффи-

_						Т	аблица 2
l	IJ, В	220	120	130	150	180	190
U	J_0/U	1	1,81	1,66	1,47	1,14	1,12
	z	0	-0,81	-0,66	-0,47	-0,14	-0, 12
r	, см	27	5,5	8	13	21	22
	I/I_0	1	0,05	0,09	0,23	0,60	0,66
	y	0	-3,0	-2, 4	-1, 5	-0,5	-0, 4

-циент пропорциональности K равен примерно 0,3. Наличие множителя перед экспонентой вызывает отклонение зависимости y(z) от

Рис. 4

строгой пропорциональности, однако эти отклонения невелики.

Почему лампочка перегорает?

Причина перегорания лампочки ясна — это испарение вольфрама. Для того чтобы от поверхности нити оторвалась молекула вольфрама, необходимо, чтобы кинетическая энергия её теплового движения $W \sim kT$ стала больше энергии связи молекулы с остальным кристаллом w. Согласно закону статистической физики, вероятность такого события пропорциональна $e^{-w/kT}$. Значит, число молекул, отрывающихся от нити в единицу времени,

$$n \sim e^{-w/kT}$$
.

Величину w можно определить из значения теплоты испарения вольфрама при комнатной температуре $Q \approx 850 \, \mathrm{kДж/моль}$:

$$w = \frac{Q}{N_A} pprox \frac{1,4 \times 10^{-19}\,\mathrm{Дж}}{\mathrm{K}}$$
 (число Авогадро),

величина $k \cdot T$, имеющая размерность температуры, около $10^5 \, \mathrm{K}.$

Предположим, что нить перегорает после полного испарения определённого количества молекул. Это означает, что время службы лампочки тем больше, чем аоитваоивитовпититит