# Detection Overview

# Keyword

Edge

 Classification, Classification with localization, Detection

 Sliding window, Anchor, Intersection of union, Non-maximum suppression

### What are localization and detection?

Image classification



" Car"

Classification with localization



"Car

Detection



multiple
objects

bjert

### Classification

• Problem: classify the objects

How do the people recognize the objects?

• Edge, color ...

How do the computers recognize the objects using edges?

# Edge definition

Discontinuity in image brightness or contrast



- Usually, edges occur on the boundary of two regions
- Abrupt changes in the intensity of pixels
- How does the computer recognize edges?



# Vertical edge detection

| 10 | 10 | 10 | 0 | 0 | 0 |
|----|----|----|---|---|---|
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |

| 1 | 0 | -1 |
|---|---|----|
| 1 | 0 | -1 |
| 1 | 0 | -1 |

| 0 | 30 | 30 | 0 |
|---|----|----|---|
| 0 | 30 | 30 | 0 |
| 0 | 30 | 30 | 0 |
| 0 | 30 | 30 | 0 |



\* corrolati

\*





# Edge Detection

| 1  | 1  | 1  |  |
|----|----|----|--|
| 0  | 0  | 0  |  |
| -1 | -1 | -1 |  |

Horizontal

### Computer Vision Problem



### CNN visualization



Gradient descent can optimize the weights in the convolution filters

### Classification with localization



2 - car <

3 - horse <

4 - background

$$b_{x} = 0.3$$

$$b_{y} = 0.7$$

$$b_{h} = 0.3$$

$$b_{w} = 0.4$$

Classifier + Regressor

# Defining the target label y

- 1 pedestrian
- 2 car <
- 3 horse
- 4 background  $\leftarrow$

$$\begin{cases}
(\dot{y}_{1}, y)^{2} + (\dot{y}_{2} - y_{2})^{2} \\
+ \dots + (\dot{y}_{8} - y_{8})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - y_{1})^{2} & \text{if } y_{1} = 0
\end{cases}$$



Need to output  $b_x$ ,  $b_y$ ,  $b_h$ ,  $b_w$ , class label (1-4)







Andrew Ng

### Detection Problem



- Problems arise when using images with multiple objects.
- Alternative plan: add more classifier & regressor for multiple objects

#### Detection Problem



Let's add more classifier & regressor for multiple objects!

### Detection Problem



 it seems not to work properly

 Solution: Let's use sliding window

### Sliding windows detection: Naïve version







Too slow for inferring each window!

# Receptive field



# Convolution implementation of sliding windows



[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

× 8 × 4 Andrew Ng

# Convolution implementation of sliding windows







# Improved Model



- •4 bounding box coordinates (center x, center y, width, height)
- •1 confidence score
- •20 numbers containing the class probabilities

### Loss function review

• when the confidence score is too low

when the coordinates are wrong

when the class is wrong

we want to penalize it

# Overlapping objects



- Problem:
   If there are objects that have center point close to each other, does the model work well?
- Solution:
   Anchor Box (predefined bounding box)

# Overlapping objects:



$$\mathbf{y} = \begin{bmatrix} b_c \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_2 \end{bmatrix}$$

Anchor box 1:

Anchor box 2:



[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

### Visualization Problem



- Problem:
   Several boxes on single object
- Solution:
   Non-max suppression
- First, we need to know intersection of union

### Intersection of Union



### Non-max suppression example



## Non-max suppression algorithm



Each output prediction is:

 $\begin{bmatrix} b_x \\ b_y \\ b_h \\ b_w \end{bmatrix}$ 

Discard all boxes with  $p_c \leq 0.6$ 

While there are any remaining boxes:

- Pick the box with the largest  $p_c$  Output that as a prediction.
- Discard any remaining box with  $IoU \ge 0.5$  with the box output in the previous step

  Andrew Ng

### Reference

Deep Learning | Coursera

One-stage object detection (machinethink.net)

 Understanding the receptive field of deep convolutional networks | Al Summer (theaisummer.com)

 Intersection over Union (IoU) for object detection -PylmageSearch