Analysis of FM and PM

Modulation Index in FM and PM

- We have assumed m(t)
 - m(t) = Amcos(wm * t)
- $f(t) = f_c + K * Amcos(wm * t)$

Frequency Deviation

- delta f = K * Am
- $delta_f = can take values max and min depending on the values of magnitude of <math>m(t)$
- $c(t) = Accos(wct) + phi_0$

- here delta_f/fm will be called modulation index==>beta
- if beta is small then it is called -> Narrow Band
- if beta is large then it is called -> Wide Band

Carrier Wave

• The final carrier wave can be written as

 \bullet Expanded form

For Narrow Signal

- $\cos(\text{theta}) \rightarrow 1$
- $\sin(\text{theat}) \rightarrow \text{theta}$

In terms of freq band

