Problem 1

Who are your group members?

Solution. Nicholas Rees

Problem 2

Recall the (forward) Euler's method (see class notes or [A&G], page 485) and the (explicit) trapazoidal method (class notes or [A&G], page 494), which solves y' = f(t,y) subject to $y(t_0) = y_0$ (1) choosing a small h > 0 and setting $t_i = t_0 + ih$ (as usual), and (2) takes y_i (an approximation of $y(t_i)$) to produce y_{i+1} , for i = 0, 1, 2, ... via the two formulas:

$$Y_i = y_i + hf(t_i, y_i)$$
 $y_{i+1} = y_i + h\frac{f(t_i, y_i) + f(t_{i+1}, Y_i)}{2}$

(hence Y_i is what Euler's method gives for y_{i+1}).

- (a). Consider the trapezoidal method for y' = y with $y(t_0) = y_0$. Write down a formula for y_{i+1} of the trapezoidal method in terms of y_i .
- (b). Say that we want to approximate y(1) given y(0) = 1 (i.e. $t_0 = 0$, $y_0 = 1$). Choose a natural N (which we think of as large), set h = 1/N; show that y_N in the trapezoidal method approximation of y(1) equals

$$y_{N,\mathrm{trap}} = \left(1 + \frac{1}{N} + \frac{1}{2N^2}\right)^N.$$

- (c). Show that Euler's method for the same ODE and intial condition gives $y_{N,\text{Eul}} = (1 + 1/N)^N$.
- (d). Recall that actual solution to y' = y with y(0) = 1 has y(1) = e. Show that $\ln(y_{N,\text{trap}})$ is closer to the actual value of $\ln(y(1))$ (namely $\ln(e) = 1$) than $\ln(y_{N,\text{Eul}})$, as $N \to \infty$ (i.e., for all N sufficiently large). [It may be helpful to recall that $\ln(1+\varepsilon) = \varepsilon \varepsilon^2/2 + O(\varepsilon^3)$ for $|\varepsilon|$ small.]
- (a). Solution.

$$y_{i+1} = y_i + h \frac{y_i + Y_i}{2} = y_i + h \frac{y_i + y_i + hy_i}{2} = \frac{2y_i + 2hy_i + h^2y_i}{2} = y_i \left(1 + h + \frac{h^2}{2}\right)$$

(b). Solution. Fix some N large and let our step size be h=1/N. We prove by induction that $y_i=y_0(1+\frac{1}{N}+\frac{1}{2N^2})^i$ for all $i\in\mathbb{N}$. The base case when i=1: from part (a), we have $y_1=y_0(1+h+\frac{h^2}{2})=y_0(1+\frac{1}{N}+\frac{1}{2N^2})^1$, as desired. Now assume that $y_i=y_0(1+\frac{1}{N}+\frac{1}{2N^2})^i$, we prove the formula for y_{i+1} . From part (a), we have

$$y_{i+1} = y_i(1+h+\frac{h^2}{2}) = y_i(1+\frac{1}{N}+\frac{1}{2N^2}) = y_0\left(1+\frac{1}{N}+\frac{1}{2N^2}\right)^{i+1}$$

as desired.

Hence, the trapezoidal method at the Nth step, which is the approximation at y(Nh) = y(1) gives $y_{N,\text{trap}} = (1 + \frac{1}{N} + \frac{1}{2N^2})^N$.

(c). Solution. Recall that $y_{i+1} = y_i(1+h)$ for Euler's method. Denote this equation (*). Fix some N large and let our step size be h = 1/N. We prove by induction that $y_i = y_0(1+\frac{1}{N})^i$ for all $i \in \mathbb{N}$. The base case when i = 1: from equation (*), we have $y_1 = y_0(1+h) = y_0(1+\frac{1}{N})^1$, as desired. Now assume that $y_i = y_0(1+\frac{1}{N})^i$, we prove the formula for y_{i+1} . From equation (*), we have

$$y_{i+1} = y_i(1+h) = y_i(1+\frac{1}{N}) = y_0\left(1+\frac{1}{N}\right)^{i+1}$$

as desired.

Hence, Euler's method at the Nth step, which is the approximation at y(Nh) = y(1) gives $y_{N,\text{Eul}} = (1 + \frac{1}{N})^N$.

(d). Solution. We can compute

$$\ln(y_{N,\text{trap}}) = \ln\left(\left(1 + \frac{1}{N} + \frac{1}{2N^2}\right)^N\right)$$

$$= N \ln\left(1 + \frac{1}{N} + \frac{1}{2N^2}\right)$$

$$= N\left(\frac{1}{N} + \frac{1}{2N^2} - \frac{1}{2}\left(\frac{1}{N} + \frac{1}{2N^2}\right)^2 + O\left(\left(\frac{1}{N} + \frac{1}{2N^2}\right)^3\right)\right)$$

$$= 1 + \frac{1}{2N} - \frac{1}{2N} - \frac{1}{2N^2} - \frac{1}{4N^2} + NO\left(\frac{1}{N^3}\right)$$

$$= 1 + O\left(\frac{1}{N^2}\right)$$

where we replaced $O\left(\left(\frac{1}{N} + \frac{1}{2N^2}\right)^3\right)$ with $O\left(\frac{1}{N^3}\right)$ since $(a + \frac{1}{2}a^2)^3 = O(a^3)$. We also see

$$\ln(y_{N,\text{Eul}}) = \ln\left(\left(1 + \frac{1}{N}\right)^{N}\right)$$

$$= N \ln\left(1 + \frac{1}{N}\right)$$

$$= N\left(\frac{1}{N} - \frac{1}{2N^{2}} + O\left(\frac{1}{N^{3}}\right)\right)$$

$$= 1 - \frac{1}{2N} + O\left(\frac{1}{N^{2}}\right)$$

As $N \to \infty$, $\frac{1}{N^2}$ gets small (much faster than 1/N), and we can neglect it the most, so we can see that while $\ln(y_{N,\text{trap}})$ only differs from $\ln(y(1))$ on order of $\frac{1}{N^2}$, $\ln(y_{N,\text{Eul}})$ differs on order of $\frac{1}{N}$, which is a much larger error when N large.

Problem 3

In this exercise we will solve the ODE $y' - 2y = t^2$.

- (a). Show that there are constants a, b, c such that $y(t) = at^2 + bt + c$ is a solution to $y' 2y = t^2$.
- (b). Show that if $y' 2y = t^2$ and z' 2z = 0, then $(y + z)' 2(y + z) = t^2$.
- (c). Show that if $y' 2y = t^2$ and $(y + z)' 2(y + z) = t^2$, then z' 2z = 0.
- (d). Solve for all z' 2z = 0 (which is called the "homogenous form of the equation $y' 2y = t^2$), and use this to write down the general solution to $y' 2y = t^2$.
- (e). Show that for any t_0, y_0 , your general solution in part (d) has a unique y such that $y(t_0) = y_0$.
- (a). Solution. If a = -1/2, b = 1/2, c = -1/4, then $y(t) = -\frac{1}{2}t^2 + \frac{1}{2}t \frac{1}{4}$ and $y'(t) = -t + \frac{1}{2}$. Plugging it into the differential equation, we have $y' 2y = -t + \frac{1}{2} + t^2 + t \frac{1}{2} = t^2$, hence y(t) is a solution to $y' 2y = t^2$.
- (b). Solution. Assume that $y' 2y = t^2$ and z' 2z = 0. Then

$$(y+z)' - 2(y+z) = y' + z' - 2y - 2z = y' - 2y + z' - 2z = t^2 + 0 = t^2$$

where we have used the linearity of the derivative.

(c). Solution. Assume that $y'-2y=t^2$ and $(y+z)'-2(y+z)=t^2$. Then by the linearity of the derivative, we have $y'+z'-2y-2z=t^2 \implies y'-2y+z'-2z=t^2 \implies t^2+z'-2z=t^2$, and subtracting t^2 on both sides, we are left with z'=2z=0.

(d). Solution. We can rewrite the differential equation as z'=2z, and this is now one of our classic solutions (derived on previous homeworks), $z(t)=Ae^{2t}$, $A \in \mathbb{R}$ constant; one can verify this by plugging it in (and unique from standard theorems).

As we saw from parts (b) and (c), any and all solutions to $y' - 2y = t^2$ is of the form $y_1 + z$ where y_1 is a particular solution to the ODE, and z is the general solution to the homogenous form of the ODE. Hence, using part (a) and the earlier part of (d), the general solution is of the form

$$y(t) = -\frac{1}{2}t^2 + \frac{1}{2}t - \frac{1}{4} + Ae^{2t}$$

(e). Solution. Let t_0, y_0 be fixed. Then the solution from (d) gives

$$y_0 = -\frac{1}{2}t_0^2 + \frac{1}{2}t_0 - \frac{1}{4} + Ae^{2t_0}$$

Which implies

$$A = \frac{y_0 + \frac{1}{2}t_0^2 - \frac{1}{2}t_0 + \frac{1}{4}}{e^{2t_0}}$$

(and we need not worry about dividing by zero, since $e^x \neq 0$ for all $x \in \mathbb{R}$). A is determined uniquely be y_0, t_0 , which gives us the unique solution

$$y(t) = -\frac{1}{2}t^2 + \frac{1}{2}t - \frac{1}{4} + \left(\frac{y_0 + \frac{1}{2}t_0^2 - \frac{1}{2}t_0 + \frac{1}{4}}{e^{2t_0}}\right)e^{2t}$$

Problem 4

In this exericise we will solve the recurrence relation $x_{n+1} - 2x_n = n^2$ for all $n \in \mathbb{Z}$.

- (a). Show that there are constants a, b, c such that $x_n = an^2 + bn + c$ is a solution to $x_{n+1} 2x_n = n^2$.
- (b). What is the general solution to $x_{n+1} 2x_n = 0$?
- (c). Use the above two parts to write a general solution to the recurrence equation $x_{n+1} 2x_n = n^2$, and explain your reasoning in term of Problem (2) above and the appropriate notation of the "homogenous form of the recurrence $x_{n+1} 2x_n = n^2$.
- (a). Solution. If a = -1, b = -2, c = -3, then $x_n = -n^2 2n 3$ and $x_{n+1} = -1(n+1)^2 + -2(n+1) 3 = -n^2 4n 6$. Plugging these together into the recurrence relation, we have

$$x_{n+1} - 2x_n = -n^2 - 4n - 6 + 2n^2 + 4n + 6 = n^2$$

Hence, x_n is a solution to $x_{n+1} - 2x_n = n^2$.

- (b). Solution. This is equivalent to $x_{n+1} = 2x_n$. As we discussed in class, this is a solution of the form Ar^n , where $r \in \mathbb{R}$ is a constant, and A is a constant determined by x_0 . For our specific case, $x_n = x_0 2^n$ works.
- (c). Solution. We can use the same logic from the previous problem, and it would be simple to show as well, that any solution to the recurrence relation is the sum of a particular solution and the general solution to the homogenous form of the recurrence relation. Hence, using parts (a) and (b), we have the general solution

$$x_n = -n^2 - 2n - 3 + A2^n$$

Problem 5

(a). At what value of n does MATLAB declare $(1/2)^n$ to be 0? There are a number of ways of doing this, but one way is to examine the values of x generated by:

```
clear for n=1:1100, x{n}=(1/2)^n; end
```

(you may need the extra blank line above if you copy and paste).

- (b). Find the general solution to the recurrence $x_{n+2} = (3/2)x_{n+1} (1/2)x_n$.
- (c). Find the special case of this recurrence subject to the initial conditions $x_1 = 1$ and $x_2 = 1/2$.
- (d). Use MATLAB to compute the solution of this recurrence subject to $x_1 = 1$ and $x_2 = 1/2$ for $x_1, x_2, \ldots, x_{100}$ via:

```
clear x\{1\} = 1; x\{2\} = 1/2; for n=1:98, x\{n+2\} = (3/2)*x\{n+1\}-(1/2)*x\{n\}; end x
```

What does MATLAB report for the values of

```
x{100} * 2^99
x{100} * 2^99 - 1
```

(e). Now run the same code to generate $x_1, x_2, \ldots, x_{1200}$ using

```
clear x\{1\} = 1; x\{2\} = 1/2; for n=1:1198, x\{n+2\} = (3/2)*x\{n+1\}-(1/2)*x\{n\}; end x
```

Anwser the following:

- (i) Does MATLAB report $x_n = 0$ for some value of $n \le 1200$?
- (ii) What is the smallest value of n_0 such that the values that MATLAB reports for $(1/2)^{n_0-1}$ and $x\{n_0\}$ are not equal?
- (iii) For the value of n_0 , by examining the values of $(3/2) * x\{n_0 1\}$ and $(1/2) * x\{n_0 2\}$, can you see where an error in precision occurs?
- (iv) What repeating pattern do you see in the values of $x\{n\}$ for $n \ge n_0$? [Hint: It may be simpler to report this pattern in multiples of $(1/2)^{1074}$.] [Warning: if you type something like

```
for n=1070:1100, \{n,x\{n\},x\{n\}*2^1074\}, end then the last cell value will be Inf, since 2^{1074} will yield Inf. However, if you type: for n=1070:1100, \{n,x\{n\},(x\{n\}*2^900)*2^174\}, end then you'll get the answers you want.
```

- (a). Solution. For any $n \ge 1075$.
- (b). Solution. Didn't do:)
- (c). Solution. Didn't do :)

- (d). Solution. It produces 1 and 0, respectively.
- (e). Solution. (i) didn't do :0
 - (ii) didn't do :0
 - (iii) Didn't do :)
 - (iv) Didn't do :)