Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Prof. Dr. Harald Upmeier M.Sc. Philipp Naumann

Übungen zur Mathematik I

- Blatt 2 -

Abgabe: Donnerstag, den 29.10.2015, 10:00 - 10:10 Uhr, HG Hörsaal +1/0010

Aufgabe 1 (4 Punkte)

Bestimme, ob die folgenden Funktionen injektiv und/oder surjektiv sind. Gib, falls die Funktion bijektiv ist, auch die Umkehrabbildung an.

- a) $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (x^2 + y^2, y)$
- b) $g: \mathbb{R} \to \mathbb{R}^2, g(x) = (3x 4, 2x)$
- c) $h : \mathbb{R}^2 \to \mathbb{R}^2, h(x, y) = (x + y, x y)$

Aufgabe 2 (4 Punkte)

Es seien X und Y beliebige Mengen und $f: X \to Y$ eine Abbildung. Zeige:

- a) f injektiv $\iff f(X \setminus M) \subset Y \setminus f(M)$ für alle $M \subset X$.
- b) f surjektiv $\iff Y \setminus f(M) \subset f(X \setminus M)$ für alle $M \subset X$.

Aufgabe 3 (4 Punkte)

Seien X, Y, Z Mengen mit Abbildungen $f: X \to Y$ und $g: Y \to Z$. Beweise:

- a) Ist $g \circ f: X \to Z$ injektiv, dann ist auch f injektiv.
- b) Ist $g \circ f : X \to Z$ surjektiv, dann ist auch g surjektiv.
- c) Gebe ein Beispiel an, so dass $g \circ f$ injektiv ist, aber g nicht injektiv ist.
- d) Gebe ein Beispiel an, so dass $g \circ f$ surjektiv ist, aber f nicht surjektiv ist.

 ${\it Hinweis:}$ Für die Gegenbeispiele können endliche Mengen benutzt werden, wobei f und g durch eine Wertetafel oder ein Pfeildiagramm beschrieben werden.

Aufgabe 4 (4 Punkte)

Es sei $M = Y^X$ die Menge aller Abbildungen $f: X \to Y$. Definiere eine Relation \sim auf M durch

 $f \sim g :\iff$ Es existieren bijektive Abbildungen $\varphi : X \to X$ und $\psi : Y \to Y$ mit $g \circ \varphi = \psi \circ f$.

Zeige, dass dies eine Äquivalenzrelation auf M definiert.