Robotic Positioner

PRESENTED BY GROUP 5: Thomas Hu, Jordan Smith, Jason Wong

Agenda

- Doepker Industries Ltd
- Problem Description
- Requirements Analysis
- System Alternatives
- System Design

DOEPKER INDUSTRIES LTD

About Doepker Industries

- Provides value in the transportation industry in North America
 - Agriculture
 - Flat decks
 - Oil & gas
 - Forestry
 - Gravel
 - Heavy haul

PROBLEM DESCRIPTION

Problem Definition

A device which can be used to rotate equipment for welding, blasting, painting, or finishing that can be mounted to their existing rotator frames.

Why is this important?

- Currently uses mechanical equipment
- Advancing mechanical machines forward with electronics.
- Provides a safer environment for the users.
- Improves efficiency.

Problem Statement

"There exists a need for a low-cost system that can electrically rotate a load for welding applications to increase efficiency and safety."

REQUIREMENTS ANALYSIS

Design Requirements

The System Shall:

- rotate a load 360° around the horizontal axis
- recall and rotate to a preset angular position
- support up to max load of 500 kilograms
- have a rotation speed between 1-5 rpm

- be built using two "A" frame supports
- not exceed \$10,000 Canadian Dollars to build
- use RoHS compliant components

SYSTEM ALTERNATIVES

Motor Alternatives

Induction Motors

- Pros
 - Inexpensive
 - Easy to maintain
- Cons
 - Speed control is very limited and expensive via variable frequency drive
 - High in rush current when heavy loaded
 - Requires external positioning sensors

Motor Alternatives

Stepper Motors

- Pros
 - High torque at lower speeds
 - Relatively simple operation
 - Possible to operate in closed loop feedback eliminating external sensor
- Cons
 - Sudden drop off in torque as speeds increase
 - Noisy
 - Requires external driver

Motor Alternatives

Servo Motors

- Pros
 - Encoder allows for a closed loop feedback operation
 - Near constant torque within operational speeds
 - Integrated encoder for high precision position tracking
- Cons
 - Expensive

FPGA

- Pros
 - Precise PWM motor control
 - Optimal performance
- Cons
 - Time intensive software development
 - Difficult memory management
 - Can be expensive

Programmable Logic Controller (PLC)

- Pros
 - Reliability
 - Remote control
 - Possible to operate in closed loop feedback eliminating external sensor
- Cons
 - Expensive
 - Not much benefit for this application

Microcomputer

- Pros
 - Simple learning curve
 - Powerful in terms of processing power
- Cons
 - Analog to digital conversion
 - Less accurate timing control
 - SD card will wear out

Microcontroller

- Pros
 - Quickly prototype projects
 - Robust memory management
 - Abundant or expandable pins & ports
 - Reasonable learning curve
 - Inexpensive
- Cons
 - Reliability

Choosing A System

• Employed a weighted decision matrix based on requirements and safety considerations:

Requirement	Weight	FPGA	PLC	Microcomputer	Microcontroller
Cost	20%	2	1	3	4
Memory Management	20%	1	2	3	4
Compatibility	20%	4	2	1	3
Reliability	20%	4	3	1	2
Development	20%	1	3	2	4
TOTAL	100%	2.4	2.2	2	3.4

SYSTEM DESIGN

MICROCONTROLLER

A compact integrated circuit designed to operate the motor.

ENCODER

A motor mounted encoder provides closed loop feedback signals to communicate the speed and position of the motor shaft.

SERVO MOTOR

A rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration.

GEARBOX

A mechanical drive to step down the speed of rotation from the motor shaft to the output drive, proportionally increasing the torque.

Key Components

System-Level Block Design

Hardware Design

System-Level Block Design

Software Design

Q&A