Math 108B Homework 3

Rad Mallari

February 18, 2022

Let V be an inner product space over F, and $T \in \mathcal{L}(V)$

1 Problem 1

Prove that if U = range (T), then $U^{\perp} = \text{null } T^*$. **Proof.**

2 Problem 2

Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection if and only if P is self-adjoint. **Proof.**

3 Problem 3

Prove that if T is normal, then range $T = \text{range } T^*$ **Proof.** Since T is normal we know that

range
$$T = (\text{null } T^*)^{\perp} = (\text{null } T)^{\perp} = \text{range } T^*$$

4 Problem 4

Prove that if T is normal, then

$$\operatorname{null}\, T^k = \operatorname{null}\, T \quad \text{and} \quad \operatorname{range}\, T^k = \operatorname{range}\, T$$

for every positive integer k.

Proof. If k = 1, then this is trivial, and now since k is a positive integer, we consider $k \geq 2$. For the first, we know that if $v \in \text{null } T$, then $T^k v = T^{k-1}(Tv) = T^{k-1}0 = 0$.

5 Problem 5

Prove that there does not exist a self-adjoint operator $T \in \mathcal{L}(\mathbb{R}^3)$ such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7)**Proof.**

6 Problem 6

Give a counterexample to show that the product of two self-adjoint operators is not necessarily self-adjoint.

Proof.

7 Problem 7

Suppose $F = \mathbb{C}$. Prove that a normal operator on V is self-adjoint if and only if all its eigenvalues are real.

Proof.

8 Problem 8

Suppose $F = \mathbb{C}$ and T is a normal operator on V. Prove that there is a $S \in \mathcal{L}(V)$ such that $T = S^2$.

Proof.

9 Problem 9

Prove that if T is a positive operator on V, then T^k is positive for every positive integer k.

Proof.

10 Problem 10

Suppose T is a positive operator on V. Prove that T is invertible if and only if $\langle Tx, x \rangle$ is positive for $x \in V \setminus \{0\}$.

Proof.

11 Problem 11

Prove that if $S \in \mathcal{L}(\mathbb{R}^3)$ is an isometry, then there exists a nonzero vector $x \in \mathbb{R}^3$ such that $S^2x = x$.

Proof.