Isomorphism between general objects

Generalization of category theory

Shigeo Hattori

February 12, 2020

bayship.org@gmail.com https://github.com/bayship-org/mathematics

1 Introduction

Prerequisites are only some first chapters of graduate level texts of general topology and graph theory; (1),(2). This article introduces a new fundamental language of mathematics which can be regarded as a generalization of category theory. As you know, two objects are regarded as equivalent if they are isomorphic.

1

3

17

20

21

22

For example, if $\{p_i\}_{i\in\{1,2,3\}}$ is a set of 3 objects pairwise isomorphic then (p_1,p_2) and (p_1,p_3) are isomorphic. Though (p_1,p_2) and (p_1,p_1) are not isomorphic

Analogously, assume that given two non-isomorphic objects, you may be able to abstracted the two by some rule to result isomorphic outputs. Then the original objects are regarded as equivalent for observations which accept the rule of abstraction. A new notion named "the identity of an object" will be used to abstract objects. We will define that: For all two objects, their identities are isomorphic. In addition, their identities are identical if and only if they are identical.

For example, $\{p_1, p_2\}$ and $\{\{p_1\}, \{p_3\}\}$ are not isomorphic whereas abstracting their members by their identities results isomorphic objects, namely $\{d_1, d_2\}$ and $\{D_1, D_3\}$ where d_i denotes the identity of p_i and D_i denotes the identity of $\{p_i\}$.

Take $\forall x$. Then x is said a general objects if it can be equivalently expressed as a nested graph. Blue texts indicate that the notions will be defined later.

This article defines when two given general objects, say (x, y), are said isomorphic, written $x \cong y$. For example, take $\forall (x, y)$ as numbers, then it will be defined that: $x \cong y \equiv x = y$. Contrary two points in the sense of ¹elementary geometry will be unconditionally said isomorphic.

25

26

27

28

29

38

41

44

45

47

48

52

Defining the main notion, I have met one problem that any complex object can be regarded as a point in mathematics. It yields problems because I can not define that all two points are unconditionally said isomorphic. To simply solve this problem, let us bring in a new notion "identity".

Definition 1.1 (Identity). Take $\forall x$, define that: $\exists p$ written $p=\mathrm{ID}(x)$. p is said the **identity** of x. Also write, $x=\mathrm{ID}^{-1}(p)$.

To distinguish x from ID(x), call x as a full point. All full point is not said a point unless x=ID(x).

Take $\forall (x, y)$, define that: $x = y \equiv ID(x) = ID(y)$. It happens to be that x = ID(x) if x is a point in the sense of elementary geometry.

Two identities will be unconditionally said isomorphic.

Definition 1.2 (Identity, point and vertex).

Define that:

```
p is a point \equiv p is a vertex \equiv p is an identity. w is a full point \equiv w is a full vertex \equiv w is a full identity.
```

By default you can regard ID(x) as a ²titled point. If your texts are very explicit, then you can regard a full point as a titled point. With **the default definition**, all homeomorphic topological spaces will be unconditionally said isomorphic because their titled points are points and points will be unconditionally said isomorphic.

Definition 1.3 (Titled point).

By default:

```
p is a titled point \rightarrow p is a point.
```

A topological space X is a set of titled points defined the topology T. (X,T) 5 also may be said a topological space.

¹Or geometry in ancient times.

²It may sound very bad in English. An alternative may be "a said point".

Warning: Inside expressions of isomorphism, no convention implicitly relates X to T; X is just a set of titled points, no topology is implicitly accompanied.

58

67

68

69

71

72

73

Let us continue to enumerate more examples of isomorphism. It will be said: $(X,T,p,321)_1 \cong (X,T,p,321)_2$ if $(X,T)_1$ and $(X,T)_2$ are homeomorphic by some homeomorphism $\exists f$ and $f(p_1) = p_2$. $(x, 321)_1 \not\cong (x, 123)_2$ even if $x_1 \cong x_2$ because different numbers are not isomorphic. $\{x,y\} \not\cong (x,y)$ because (x,y) := $\{\{x\},\{x,y\}\}.$

Needless to say, \cong can express more complex examples like $(X, T, F, k, p)_1 \cong$ $(X,T,F,k,p)_2$ where $(X,T)_{\forall i}$ is a topological space, $F_{\forall i}$ is a set of some ambient isotopies on $X_i^*[0,1]$, $k_{\forall i}$ is an embedding into X_i and $p_{\forall i}$ is a titled point in X_i .

Moreover, \cong can express that two logical expressions containing general objects are isomorphic because all logical expressions can be expressed as nested graphs. Isomorphisms of general objects will be defined in words of elementary graph theory.

$\mathbf{2}$ Isomorphism between general objects

Definition 2.1 (Deep member). Take $\forall (c, x, y)$ such that: c is a chain of set membership. x is the maximum member of c. y is a member of c. Then y is 75 said a deep member of x and you write as $y \in ^{deep} x$. **76**

> 77 78

> > 80

81

For example:

$$m \in \ldots \in y \in \ldots \in x$$

For example:

$$\{y1, y2\} \in ^{deep} \{y1, y2\}$$

$$y \in ^{deep} \{1, \{2, y\}\}$$

Definition 2.2 ($\stackrel{\text{ID}}{Deep}$). Take $\forall X$.

$$\stackrel{\text{ID}}{Deep}(X) := \{ p \mid p \in ^{deep} X \ \wedge \ p \text{ is an identity } \}.$$

83

Definition 2.3 (Nested graph). All nested graph (V, E) is a directed graph 84 (V, E) of which vertices are defined to be **full vertices**.

85

Take $\forall G$ as a nested graph. If no titled vertex v of G a nested graph, then the nest number of G is defined to be 0. Otherwise the nest number of G is defined to be m+1 where m denotes the maximum nest number over all nested graphs as its full vertices. And it is exclusively defined that the nest number of G is decidable and finite.

Definition 2.4 (Isomorphism between full vertices of nested graphs). Take $\forall (F, p_1, p_2)$ such that: F is a bijection between sets of identities. (p_1, p_2) are full vertices of nested graphs.

Let
$$S_F := Deep(\text{domain}(F) \cup \text{image}(F)).$$
Define that: $*1 \equiv (*2 \lor *3)$

1.
$$p_1 \cong_F p_2$$
.

2. *a
$$\stackrel{\text{and}}{\wedge}$$
 (a1 $\stackrel{\text{or}}{\vee}$... $\stackrel{\text{or}}{\vee}$ *a3).

a. take
$$\forall i \in \{1, 2\}$$
 $\stackrel{\text{and}}{\wedge} p_i$ is not a nested graph.

a1.
$$F(p_1) = p_2$$

a2.
$$p_1 = p_2 \stackrel{\text{and}}{\wedge} \varnothing = \stackrel{\text{ID}}{Deep}(\{p_1, p_2\}) \cap S_F.$$

a3. take
$$\forall i \in \{1,2\} \stackrel{\text{and}}{\wedge} \varnothing \neq \stackrel{\text{ID}}{Deep}(p_i) \cap S_F.$$

3. *b1
$$\stackrel{\text{and}}{\wedge}$$
 *b2.

b1. take
$$\forall i \in \{1,2\} \stackrel{\text{and}}{\wedge} p_i$$
 is a nested graph.

b2.
$$p_1 \cong^F p_2$$
.

$$p_1 \cong^F p_2$$
, will be defined later.

Proposition 1. Take $\forall m :\in \mathbb{N}$. Let \mathbb{G}_m denote the set of all nested graphs 110 having nest numbers at most m. Then $*1 \to *2$.

1. For
$$\mathbb{G}_m$$
: Proposition 2 holds true.

2. For
$$\mathbb{G}_m$$
: $p1 \cong_F p2 \equiv p2 \cong_{F^{-1}} p1$.

<i>Proof.</i> Let Def be an alias for Definition 2.4. Take $\forall (F, p1, p2)$ as a counterexample. Hence (*2 $\overset{\text{or}}{\lor}$ *3) of Def holds for $(F, p1, p2)$ in place of $(F, p1, p2)$.	115 116
p1. Assume *2 of Def holds for $(F, p1, p2)$.	117
It is clear that each term of (*a $\stackrel{\text{and}}{\wedge}$ (*a1 $\stackrel{\text{or}}{\vee}$ $\stackrel{\text{or}}{\vee}$ *a3)) is logically neutral between $(F, p1, p2)$ and $(F^{-1}, p2, p1)$. Hence each holds for $(F^{-1}, p2, p1)$ in place of $(F, p1, p2)$. A contradiction.	
p2. Assume *3 of Def holds for $(F, p1, p2)$. It is trivial that *b1 holds for $(F^{-1}, p2, p1)$ in place of $(F, p1, p2)$. And *1 of this proposition implies that Proposition 2 holds for $(F, p1, p2)$ in place of $(F, G1, G2)$. Hence *b2 of Def holds for $(F^{-1}, p2, p1)$ too in place of $(F, p1, p2)$. A contradiction.	122 123
Definition 2.5 (Isomorphism between nested graphs). Take $\forall F$ as a bijection between sets of identities. Take $\forall \{G_i\}_{i\in\{1,2\}}$ as a pair of nested graphs. Decompose G_i as $\exists (V, E)_i$. Then F is said an isomorphism from G_1 to G_2 if (*0 $\stackrel{\text{and}}{\wedge}$ *1). Define that:	126 127 128
0. $\exists f$ as a graph isomorphism from G_1 to G_2 .	131
1. Take $\forall v :\in V_1$, then $v \cong_F f(v)$.	132
2. $G_1 \cong^F G_2$.	133
3. $G_1 \cong G_2$.	134
	135
For \mathbb{G}_m :	137 138
$G_1 \cong^F G_2 \equiv G_2 \cong^{F^{-1}} G_1$	139
	140
J.	141
Take $\forall (m, G_1, G_2, F)$ as a minimum counterexample by m . Though at least F^{-1} is a bijection between sets of identities. Hence the antecedent of Def holds	

14

```
for (G_2, G_1, F^{-1}) in place of (G_1, G_2, F) except (*0 \stackrel{\text{and}}{\wedge} *1) of Def. By the way, 144
f^{-1} is a graph isomorphism from G_2 to G_1.
                                                                                                    145
    Hence *1 of Def fails for (G_2, G_1, F^{-1}, f^{-1}) in place of (G_1, G_2, F, f).
 q1. Hence: \exists v :\in V_2 \stackrel{\text{and}}{\wedge} \neg (v \cong_{F^{-1}} f^{-1}(v)).
                                                                                                    147
 q2. Though: (G_1 \cong^F G_2) \to (f^{-1}(v) \cong_F f \circ f^{-1}(v)).
                                                                                                    148
Let Prop be an alias for Proposition 1 together with its proof.
    The right term of *q2 implies (*p1 \overset{\text{or}}{\vee} *p2) of Prop.
    If *p1 of Prop then (*q1 \stackrel{\text{and}}{\wedge} *q2) is a contradiction.
    Hence *p2 of Prop.
Hence Prop fails for \mathbb{G}_n for \exists n : < m because this proposition holds for \mathbb{G}_n.
Proposition 3. Take \forall F, \forall (X,T)_{i \in \{1,2\}} such that: (X,T)_{\forall i} is a topological 155
space. (X_1, X_2) are homeomorphic by F as a homeomorphism from X_1 to X_2.
    Then (X,T)_1 \cong^F (X,T)_2.
                                                                                                158
Proof. Let (DefV | DefG) be aliases for Definition (2.4 | 2.5) respectively. You 159
can equivalently express (X,T)_i as a nested graph G_i as follows. I show that 160
the antecedent of DefG holds for (F, G_1, G_2) in place of (F, G_1, G_2).
As a prerequisite, define a function toG(\forall S) to return a nested graph (V, E) as 163
follows. As a supplement, S is a deep member of some (X,T)_{\exists i}.
    V := \{v \mid \exists d \in S \stackrel{\text{and}}{\wedge} \text{ if } d \text{ has some member then } v = \text{toG}(d) \text{ else } v = d \} \cup \{S\}. 165
    E := \{ (d1, d2) \in V^2 \mid d1 \in d2 \}.
Let (V, E)_i := \text{toG}(X_i).
    Then (V, E)_1 \cong^F (V, E)_2.
    As a proof, a graph isomorphism f can be defined as:
    f := F \cup \{(X_1, X_2)\}.
    It is trivial that f is a graph isomorphism from (V, E)_1 to (V, E)_2.
    Consider (*a1, *a3) of DefV. Take \forall v :\in V_1, then v \cong_F f(v).
                                                                                                    174
Let T_{12} := \{(t1, t2) :\in T_1 * T_2 \mid t2 = image(F[t1]) \}.
    Take \forall (t1, t2) :\in T_{12}.
    Then toG(t_1) \cong^F toG(t_2).
                                                                                                    177
```

It is clear that an analogous proof exists.	178
	179
Let $(V, E)_i := \text{toG}(T_i)$.	180
Then $(V, E)_1 \cong^F (V, E)_2$.	181
As a proof, a graph isomorphism f can be defined as:	182
Let $T_{g12} := \{ (\text{toG}(t1), \text{toG}(t2)) \mid (t1, t2) \in T_{12} \}$	183
$f:=\{(T_1,T_2)\}\cup T_{g12}.$	184
It is trivial that f is a graph isomorphism from $(V, E)_1$ to $(V, E)_2$.	185
Consider (*a3, *b2) of DefV. Take $\forall v$, then $v \cong_F f(v)$.	186
	187
Let $(V, E)_i := \text{toG}((X, T)_i)$.	188
Then $(V, E)_1 \cong^F (V, E)_2$.	189
As a proof, a graph isomorphism f can be defined as:	190
$f := \{ ((X,T)_1, (X,T)_2) \} \cup$	191
$\{(\text{ toG}(X_1), \text{toG}(X_2))\} \cup$	192
$\{(\text{ toG}(T_1), \text{ toG}(T_2)) \}.$	193
It is trivial that f is a graph isomorphism from $(V, E)_1$ to $(V, E)_2$.	194
Consider (*a3, *b2) of DefIsoV. Take $\forall v$, then $v \cong_F f(v)$.	195
	196
3 Applications in geometrical topology	197
3.1 Natural automorphism	198
For the notation of the index set, $x_{i \in S}$, it may be written as [i] if the indexed	100
set is known. For example, consider an indexing $f(x,y) = x^2 + 1$. Then [2,3]=7	
If we know the indexed set is $mage(j)$.	201
Definition 3.1 (Natural automorphism).	202
Let $I:=[0,1]$, i.e., I is a unit interval.	203
As you know I is more than a topological space. It is defined a metric table, and decided	204
which end point is 0.	205
Let (Y, T_Y) denote the topological space correspond to I where Y is the set of	206
points and T_Y is the topology on Y. We use I as a bijective index set for Y.	207
	208
Take $\forall X$ such that: X is a topological space defined the topology T_X . Let	209
(P_{XY}, T_{XY}) denote the product space for $X * Y$. In the standard topology, all	210
point p of P_{XY} is some full point $\exists (x,y) \in X * Y$. Define that: take $\forall p :\in P_{XY}$	211
and $h = ID(x, y)$ Write $h = x[x, y]$	219

As you know, the topology of P_{XY} is said a product topology.	213
Take $\forall F$ as an injection from X^*Y to P_{XY} such that $(*0 \ \stackrel{\text{and}}{\wedge} \dots \ \stackrel{\text{and}}{\wedge} *2)$. Hence	214215
F takes a pair of points as the input. Then F outputs a point which is the	
identity of a pair of points.	217
0. Take $\forall (x_1, y) :\in X^*Y$.	218
1. $\exists x_2 :\in X \ \wedge \ F(x_1, y) = [x_2, y].$	219
2. $F(\forall x, 0) := [x, 0].$	220
	221
Let F_0 be a solution of F with (X, I) fixed such that: $F_0(\forall x, \forall y) := [x, y]$.	222
	223
Take $\forall F_i$ as a solution of F with (X, I) fixed such that: *1.	224
1. $(F_i, T_X, T_Y, T_{XY}) \cong (F_0, T_X, T_Y, T_{XY}).$	225
	226
Let A denote the set of all solutions of F_i with (X, I) fixed. Take $\forall F_i :\in A, \forall g$	
such that g is a function on X as $g(\forall x) := ID^{-1} \circ F_i(x,1)$. Then g is said a	
natural automorphism on X .	229
Definition 3.2 (Natural-automorphic).	230
Take $\forall X$ such that: X is a topological space. Take $\forall (s1,s2)$. Then $(s1,s2)$ are	231
said X-natural-automorphic if: $\exists F$ as a super set of some natural automor-	232
phism on $X \stackrel{\text{and}}{\wedge} s1 \cong^F s2$.	233
3.2 Ideal set of sub spaces	234
Definition 3.3 (Ideal set of sub spaces).	235
Take $\forall (X, S)$ such that: X is a topological space. S is a set of sub spaces of X.	
S is said ideal if: $(*1 \ \stackrel{\text{and}}{\wedge} \dots \ \stackrel{\text{and}}{\wedge} *7)$.	237
1. Let S_P be the set to collect $\forall (s,p)$ such that $s \in S \stackrel{\text{and}}{\wedge} p \in s$.	238
2. $\exists B$ as an open basis to generate X .	239
Regard B as a subset of the power set of X .	240
3. Let $S_B := \{S_b \mid \exists b \in B \stackrel{\text{and}}{\wedge} S_b = \{(s, p) \in S_P \mid s \subset b \} \}.$	241
4. Let $S_P := \{ ID((s, p)) \mid (s, p) \in S_P \}.$	242

6. S_B is an open basis on S_P . 7. Members of S_P are pairwise S_P -natural-automorphic. 245 246 Conjecture 3.1 (Ideal set of sub spaces and ambient isotopies). 247 Take $\forall (X, T, S, F, A)$ such that: S is an ideal set of sub spaces of (X, T) where 248 T is the topology. F is the set to collect: $\forall f: X^*[0,1] \to X$ such that f is an 249 ambient isotopy. A is the set to collect $\forall (g, S_1, S_2)$ such that: g is a natural 250 automorphism on $X \stackrel{\text{and}}{\wedge} (S1, S2)$ are subsets of $S \stackrel{\text{and}}{\wedge} (S_1, T) \cong^g (S_2, T)$. Then $(*1 \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *4)$ holds. 252 **1.** take $\forall (g, S_1, S_2) :\in A$. **2.** $\exists f :\in F$ **3.** take $\forall t :\in (0,1] \stackrel{\text{and}}{\wedge} \text{let } f_t(\forall x :\in X) := f(x,t).$ 255 **4.** $(f_t, S, S) \in A \stackrel{\text{and}}{\wedge} \text{if } t = 1 \text{ then } f_t = g.$ 257 **Definition 3.4** (Prime topological space). Take $\forall X$ as a topological space. 258 Then X is said prime if *1. **1.** $\exists S$ as a set of sub spaces of $X \stackrel{\text{and}}{\wedge} S$ is ideal $\stackrel{\text{and}}{\wedge} S$ is an open basis to 260 generate X. 261 262 Conjecture 3.2 (Ideal set of sub spaces). Take $\forall (X, S)$ such that: X is a prime 263 topological space. S is a set of sub spaces of X. Then S is ideal if (*1 $\stackrel{\text{and}}{\wedge}$ *2). 264 1. Members of $\{S\}^*X$ are pairwise X-natural-automorphic. 265 **2.** Let $S_p := \{(s, p) \mid s \in S \overset{\text{and}}{\wedge} p \in s \}.$ Members of $\{S\}^*S_p$ are pairwise X-natural-automorphic. 267

5. Let $S_B := \{ S_b 1 \mid \exists S_b 2 \in S_B \overset{\text{and}}{\wedge} S_b 1 = \{ ID((s, p)) \mid (s, p) \in S_b 2 \} \}.$

243

268

4 Abstract conjectures	269
4.1 Main abstract conjecture	270
	271 272
Consider (*B \rightarrow *C). It is independent from the topological class of members of S1 if f is enough general for topological classes of members of solutions of	
and and	276277
 M is a metric table to define X as a topological space ^{and} X is prime. S1 is an ideal set of sub spaces of X. 	278 279
3. f is a function on $S1$.	280
	281 282
	283 284
Unique?: For example, take $\forall x \in \stackrel{\text{ID}}{Deep}(X)$. If $S2$ is the set to collect $\forall k \in S1$ such that $x \in \stackrel{\text{ID}}{Deep}(k)$ then $S2$ is not unique for (M,X) in general because x is not unique for (M,X) in general. Instead $S2$ is unique for (M,X,x) .	
	288 289
4.2 Application on knots	290
Let Conj be an alias for Conjecture 4.1. Let Def be an alias for the following a Definition 4.1. The antecedent of Conj apparently holds for (M, X, K, K_f, f) of Def in place of $(M, X, S1, S2, f)$. And f is apparently enough general as required in Conj.	292
M is a metric table to define X as a Euclidean space of 3-dimension. Take $\forall k_0$ as a knot and a subspace of X .	295 296 297 298

$K_f := \{ k \in K \mid f(k) = f(k_0) \}.$	299
Definition of f :	300 301
• $j1(\forall k :\in K) := \{j \mid j \text{ is an orthogonal }^3\text{projection of } k \text{ onto some infinite plane } \}.$	302 303
• $j2(\forall k :\in K) := \{j \in j1(k) \mid \neg (\exists p \land p \in \text{image}(j) \land j^{-1}(p) \mid > 2) \}.$	304 305
• $j3(\forall k:\in K):=\{n\mid\exists j\overset{\mathrm{and}}{\wedge} j\in j2(k)\overset{\mathrm{and}}{\wedge} n \text{ is the number of }^4\text{double points on } j\}.$	306 307
• $f(\forall k :\in K) := \{m \mid m \text{ is the maximal member from } j3(k) \}.$	308 309
•	310
5 Notation	311
• take $\forall x \equiv \text{for } \forall x \equiv \forall x$.	312
In other words, "take" means nothing.	313
• $\forall x \text{ as a set} \equiv \forall x \text{ such that } x \text{ is a set.}$	314
• Assume y is dependent on z then:	315
$\forall x \text{ as a solution of } y \text{ with } z \text{ fixed } \equiv \forall x \text{ as a solution of } y.$	316
• $\{x \mid p(x)\} \equiv$ the set to collect $\forall x$ such that $p(x)$.	317
In definitions, I rarely write "if and only if". In stead I write "if" even if I know that "if and only if" can replace the "if".	318 319 320
References	321
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	322
[2] Reinhard Diestel, Graph Theory, Springer-Verlag, ISBN 0-387-98976-5	323
377	

³Hence, j is a function from k to an infinite plane. ⁴Double point?: That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point represents a crossing or a tangent point.