目录

	1177	
预备知识		7
一、函数标	及限与连续	7
- 极限	的定义和使用	7
1.	定义	7
2.	使用	7
- 极限	的计算	7
1.	先化简	7
1)	无穷小替换	7
2)	恒等变形	7
3)	提出极限存在且不为0的因式	8
2.	洛必达	8
1)	洛必达使用条件	8
3.	泰勒	8
1)	常用泰勒公式	8
2)	展开原则	8
4.	无穷小比阶	9
- 极限	的存在性	9
1.	具体性	9
1)	洛、泰、夹	9
2.	抽象性	9
1)	单调有界准则	9
•	的应用——连续与间断	
1.	连续	9
	内点处	
,	端点处	
<i>,</i>	连续;右连续	9
	间断	
	及限	
	极限的定义与使用	
	定义	
2.	使用	. 10
	唯一性:	
	极限的存在性与计算☆☆	
	归结原则	
	直接计算法	
	定义法(先斩后奏)���	
	单调有界准则	
	证什么?	
•	怎么证	
•	等式	
	夹逼准则	
	证什么?	
-	怎么证	
7)	<i>□</i> ← Ⅲ	

	题目条件	11
三、	一元微分学概念	11
	■ 导数定义	11
	1. 分段函数分段点	11
	2. 抽象函数特点点	12
	3. 四则运算特殊点 $egin{cases} f_1 + f_2; f_1 \cdot f_2 \ imes$ 求导公式无定义点	12
	• 微分定义	12
四、	一元微分学计算	12
	基本求导公式	12
	■ 复合函数求导	12
	■ 隐函数求导	
	 反函数求导 	
	分段函数求导	
	1 . 分段点用定义法求导	
	2 . 非分段点用公式法求导	
	多项乘除、开发方、乘方	
	- 幂指函数求导	
	参数方程求导	
	高阶导数	
	1. 归纳法	
	2. 莱布尼茨公式	
	3. 展开式	
	2) 常用泰勒展开	
	3) →1)、2) 比较系数得高阶导数	
五、	•	
ш,	- 研究对象	
	- 明九州家	
	2. 分段函数	
	2. 分权函数	
	 多数万任 8 8 3 6 6 7 8 9 9 0 1 1 2 3 4 4 5 6 7 8 9 9<td></td>	
	■ 研究内容	
	2. 极值,单调性	
	1) 单调性	
	2) 极值	
	3. 拐点、凹凸性	
	1) 凹凸性	
	2) 拐点	
	4. 渐近线	
	1) 铅锤渐近线	
	2) 水平渐进线	
	3) 斜渐进线	15

	5. 最值	
	1) 求驻点、不可导点函数值	15
	2) 求端点函数值	
	6. 曲率	
	7. 相关变化率	
六、		
	• <mark>中值定理</mark>	16
	1. 有界与最值定理: $m \le f(x) \le M$	16
	2. 介值定理: $\exists \xi \in [a,b], f(\xi) = \mu, m \le \mu \le M, \dots$	16
	3. 平均值定理: $\exists \xi \in [a,b], f(\xi) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}, \dots$	16
	4. 零点定理: $f(a)f(b) < 0 \Rightarrow \exists \xi \in (a,b), f(\xi) = 0$	16
	5. 费马定理: $f(x)$ 在 x_0 满足	16
	6. 罗尔定理: $f(a) = f(b) \Rightarrow \exists f'(\xi) = 0$	16
	7. 拉格朗日中值定理: $\exists \xi \in (a,b), f(b) - f(a) = f'(\xi)(b-a)$	16
	8. 柯西中值定理 $\exists \xi \in (a,b), \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$	16
	9. 泰勒公式	16
	1) 带拉格朗日余项	16
	2)	
	10. 积分中值定理: $\int_a^b f(x)dx = f(\xi)(b-a)$	16
	解题方法	16
	1. 确定区间	
	2. 确定(构造)辅助函数	16
	3. 确定使用定理	17
	■ 微分等式	17
	1. 理论依据	17
	1) 推广零点定理:	17
	2) 用导数研究函数形态	17
	4) 实系数齐次方程	17
	2. 考法	17
	1) 证明恒等式	17
	2) 零点个数	17
	3) 方程列问题	
	4) 区间列问题	17

微分不等式	18
1. 用单调性	18
2. 用最值	18
3. 用凹凸性	18
4. 用拉格朗日中值定理	18
5. 用柯西中值定理	18
6. 用带拉格朗日余项的泰勒公司	t18
七、 一元微分学——物理应用	18
■ 相关变化率	18
八、 一元积分学概念	18
■'祖孙三代'的奇偶性、周期性	18
▪ 积分比大小	18
1. 用几何意义: 比面积大小	18
2. 用保号性:看正负、做差	18
定积分的定义	18
i	18
1. 疾侍风一:	18
2. 凑不成: 放缩夹逼再凑	18
3. 带变量的	18
▪ 反常积分判敛	19
1. 概念	19
2. 判别	19
九、 一元积分学计算	20
▪ 基本积分公式	20
▪ 不定积分的计算	20
1. 凑微分法	20
2. 换元法	20
3. 分部积分法	20
4. 有理函数积分	20
定积分的计算	21
1. 重要公式	21
2. 对称性的积分问题	22
3. 定积分分部积分的升阶降阶间	可题22
4. 分段函数积分	22
• 变限积分的计算	22
• 反常积分的计算	22
1. 直接确定	22
2. 换元求导	22
3. 拆分求导	22
4. 换序	22
十、 一元积分学——几何应用	22
■ 研究对象	22
▪ 研究内容	22
1. 面积	22

	2. 旋转体体积	23
	3. 平均值: $\overline{f} = \frac{1}{h-a} \int_a^b f(x) dx$	23
	4. 平面曲线弧长	
	5. 旋转曲面面积	
	5. //CIV M M M M M M M M M	23
	$\int_{a}^{b} x f(x) dx$	
	6. 形心坐标: $x = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx}$	23
	$\int_a f(x)dx$	
	7. 截屏面已知的立体体积: $V = \int_a^b S(x) dx$	23
+-,	积分等式	
•	积分等式	
Ź	1. 常用积分等式	
	2. 通过证明特殊积分等式求其特殊积分(两小问的题)	
	3. 积分形式的中值定理	
• ⁵	积分不等式	
	1. 用单调性	
	2. 处理被积函数	
	3. 夹逼准则	
	4. 曲边梯形离散化	
十二、	一元积分学——物理应用	
ŕ	1. 位移、路程	
	2. 做功	
	a + b + b + b + b + b + b + b + b + b +	0.5
	3. 静水压力: $P = (\rho g h S) = \int_a^b \rho g x [f(x) - h(x)] dx$	25
	4. 质心: $x = \frac{\int_a^b \rho x dx}{\int_a^b \rho dx}$	
	4. 质心: $x = \frac{a}{\int_a^b c dx}$	25
	$\int_a \rho u r$	
十三、	多元函数微分学	25
十四、	二重积分	25
= 7	概念	25
	1. 和式极限	25
	2. 对称性	25
	1) 普通对称性	25
	2) 轮换对称性	25
	3. 二重积分比大小	25
	4. 二重积分中值定理	25
	5. 周期性	
•	计算	
	1. 直角坐标系	
	2. 极坐标系	
	3. 直极互化	26

4. 交换积分顺序	26
5. 二重积分换元法	26
• 应用	26
1. 面积 $S = \iint d\sigma$	26
十五、 微分方程	26
一阶微分方程求解	
1. 可分离变量型	26
2. 齐次型	26
3. 一阶线性型 $y'+p(x)y=q(x)$	27
4. 伯努利方程 y'+p(x)y = q(x)y ⁿ	27
■ 二阶可降解微分方程求解	27
1. $y''=f(x,y')$ 缺 x , "斩草除根" x	27
2. y''= f(y,y')缺y, "赶尽杀绝"y	27
■ 高阶常系数微分方程求解	28
1. $y'' + py' + qy = f(x)$	28
2. $y'' + py' + qy = f_1(x) + f_2(x)$	28
3. $y^{(n)} + \cdots + py' + qy = f(x)$	28
<mark>通解形式</mark>	28
<mark>特解形式</mark>	29
■ 换元法求解	29
1. 求导公式换元	
2. 自变量换元	
3. 因变量换元	
4. x,y 地位互换	
■ 应用	
2. 用几何应用构建微分方程	
3 . 用变化率构建微分方程	
1) 元素衰变问题	
2) 人口增长问题	
3) 曳物线问题(追踪问题)	30

预备知识

$$S_{\text{HI}} = \pi ab \qquad \tan^2 x + a = \sec^2 x \quad \csc^2 x + 1 = \cot^2 x$$

一、函数极限与连续

• 极限的定义和使用

1. 定义

$$\Leftrightarrow \lim_{x \to \cdot} f(x) = A \Leftrightarrow \forall \varepsilon > 0, x \to \cdot \mathbb{H}, |f(x) - A| < \varepsilon$$

- 2. 使用
 - 1) 是常数: $\lim_{x \to \infty} f(x) = A$
 - 2) 唯一性: $\lim_{x \to \cdot^+} f(x) = \lim_{x \to \cdot^-} f(x)$
 - 3) 局部有界性: $x \rightarrow \cdot$ 时, $\exists M > 0, |f(x)| < M$
 - 4) 局部保号性: $x \rightarrow \cdot$ 时, 若 $A > 0 \Rightarrow f(x) > 0$; 若 $f(x) \ge 0 \Rightarrow A \ge 0$
 - 5) 等式脱帽法: $f(x) = A + \alpha$, 其中 $\lim_{x \to \infty} \alpha = 0$

• 极限的计算

- 1. 先化简
 - 1) 无穷小替换
 - 2) 恒等变形

◆提公因式、通分、换元、有理化、因式分解、中值定理、 $u^{\nu} = e^{\nu \ln u}$

3) 提出极限存在且不为 0 的因式

2. 洛必达

1) 洛必达使用条件

$$\diamond \frac{0}{0}, \frac{\infty}{\infty}$$
型; 分子分母均可导; 结果为0, c, ∞

3. 泰勒

1) 常用泰勒公式

2) 展开原则

$$\Rightarrow \frac{A}{B}$$
, 上下同阶 $\Rightarrow A - B$, 幂次最低

4. 无穷小比阶

1)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \begin{cases} 0, & f(x) \neq g(x) \in \mathbb{N} \\ c, & f(x) \neq g(x) \in \mathbb{N} \\ \infty, & f(x) \neq g(x) \in \mathbb{N} \end{cases}$$

• 极限的存在性

- 1. 具体性
 - 1) 洛、泰、夹
- 2. 抽象性
 - 1) 单调有界准则

■ 极限的应用——连续与间断

- 1. 连续
 - 1) 内点处

$$\Leftrightarrow$$
 若 $\lim_{x \to x_0} f(x) = f(x_0)$, 称 $f(x)$ 在 $x = x_0$ 处 连 续

2) 端点处

◆左连续; 右连续

- 2. 间断
 - 1) 前提: $x = x_0$ 左右两侧均右定义

二、数列极限

■ 数列极限的定义与使用

- 1. 定义
 - 1) $\lim_{n\to\infty} x_n = A \Leftrightarrow \forall \varepsilon > 0, \exists N > 0, x > N \text{ B}, |x_n A| < \varepsilon$
- 2. 使用
 - 1) 是常数: $\lim_{x \to \infty} f(x) = A$
 - 2) 唯一性:
 - 3) 有界性: $\exists M > 0, |x_n| < M$

 - 5) 收敛的充要条件: 所有子列 $\{x_n\}$ 均收敛与A

■ 数列极限的存在性与计算☆ ☆

- 1. 归结原则
 - 1) 若 $\lim_{x \to x_0} f(x) = A$,则 当 $\{x_n\}$ 以 x_0 为极限时,有 $\lim_{n \to \infty} f(x_n) = A$
- 2. 直接计算法
- 3. 定义法(先斩后奏)☆☆☆

1) 构造
$$|x_n - a|$$
,证明 $|x_n - a| \rightarrow 0 \Rightarrow \lim_{x \to \infty} x_n = a$

- 4. 单调有界准则
 - 1) 证什么?

◆单调:
$$x_n$$
与 x_{n+1} 的大小关系

$$♦$$
有界: $\exists M > 0, |x_n| \le M$

- 2) 怎么证
 - ◆不等式
 - ◆题目条件
- 5. 夹逼准则
 - 3) 证什么?

$$\Leftrightarrow \lim_{\substack{n \to \infty \\ n \to \infty}} y_n = a, \lim_{\substack{n \to \infty \\ n \to \infty}} z_n = a$$

$$\Rightarrow \lim_{\substack{n \to \infty \\ n \to \infty}} x_n = a$$

4) 怎么证

令基本放缩法
$$n \cdot u_{\min} \le u_1 + u_2 + \cdots u_n \le n \cdot u_{\max}$$
 $1 \cdot u_{\max} \le u_1 + u_2 + \cdots u_k \le k \cdot u_{\max}$

◆题目条件

三、一元微分学概念

• 导数定义

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

1. 分段函数分段点

- 2. 抽象函数特点点

• 微分定义

 $\exists \Delta x$ 无关的常数 A ,使得 $\Delta y = A\Delta x + o(x)$,称 f(x) 在 x_0 处可微

四、一元微分学计算

• 基本求导公式

$$(\ln |\cos x|)' = -\tan x; (\ln |\sin x|)' = \cot x;$$

$$(\ln(|\sec x + \tan x|)' = \sec x; (\ln(|\csc x - \cot x|)' = \csc x,$$

$$[\ln(x+\sqrt{x^2+a^2})]' = \frac{1}{\sqrt{x^2+a^2}}$$

$$[\ln(x+\sqrt{x^2-a^2})]' = \frac{1}{\sqrt{x^2-a^2}}$$

■ 复合函数求导

$$d\{f[g(x)]\} = f'[g(x)]g'(x)dx$$

- 隐函数求导
- 反函数求导

$$y = f(x), x = \varphi(y)$$

$$\varphi'(x) = \frac{1}{f'(x)}$$

• 分段函数求导

- 1. 分段点用定义法求导
- 2. 非分段点用公式法求导

• 多项乘除、开发方、乘方

$$y = f(x) \to \ln y = \ln f(x) \to \frac{y'}{y} = [\ln |f(x)|]'$$

■ 幂指函数求导

$$[u^{v}]' = [e^{v \ln u}]' = u^{v}(v' \ln u + v \frac{u'}{u})$$

■ 参数方程求导

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

$$\frac{dy}{dx} = \frac{\varphi'(t)}{\psi'(t)}, \quad \frac{d^2y}{dx^2} = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{[\psi'(t)]^3}$$

- 高阶导数

- 1. 归纳法
- 2. 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(u-k)} v^{(k)}$$

3. 展开式

1) 任何函数可以展开为
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)$$

2) 常用泰勒展开

五、一元微分学——几何应用

• 研究对象

- 1. "祖孙三代"
- 2. 分段函数
- 3. 参数方程
- 4. 隐函数

• 研究内容

- 1. 切线、法线、截距
- 2. 极值,单调性
 - 1) 单调性
 - 2) 极值

$$f'(x) = 0$$
, 左邻域 $f'(x) < 0$, 右邻域 $f'(x) > 0 \Rightarrow$ 极小值
 $\Rightarrow f'(x) = 0$, $f''(x) > 0 \Rightarrow$ 极小值
 $f'(x) = 0$, $f^{(6)}(x) > 0 \Rightarrow$ 极小值

- 3. 拐点、凹凸性
 - 1) 凹凸性

2) 拐点

$$f''(x) = 0$$
,左右变号
 $\Rightarrow f''(x) = 0$, $f'''(x) \neq 0$
 $f''(x) = 0$, $f^{(\hat{\sigma})}(x) \neq 0$

- 4. 渐近线
 - 1) 铅锤渐近线

$$\Leftrightarrow \lim_{x \to x_0^+} f(x) = \infty$$
或 $\lim_{x \to x_0^-} f(x) = \infty \Rightarrow x = x_0$ 为铅锤渐近线

2) 水平渐进线

3) 斜渐进线

- 5. 最值
 - 1) 求驻点、不可导点函数值
 - 2) 求端点函数值
- 6. 曲率

2) 曲率半径:
$$R = \frac{1}{k}$$

7. 相关变化率

<mark>六、中值定理、微分等式☆☆☆</mark>

中值定理

f(x)在[a,b]连续

- 1. 有界与最值定理: $m \le f(x) \le M$
- 2. 介值定理: $\exists \xi \in [a,b], f(\xi) = \mu, m \leq \mu \leq M$,
- 3. 平均值定理: $\exists \xi \in [a,b], f(\xi) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n},$
- 4. 零点定理: $f(a)f(b) < 0 \Rightarrow \exists \xi \in (a,b), f(\xi) = 0$
- 5. 费马定理: f(x)在 x_0 满足 可导 取极值 $\Rightarrow f'(x_0) = 0$
- 6. 罗尔定理: $f(a) = f(b) \Rightarrow \exists f'(\xi) = 0$
- 7. 拉格朗日中值定理: $\exists \xi \in (a,b), f(b) f(a) = f'(\xi)(b-a)$
- 8. 柯西中值定理 $\exists \xi \in (a,b), \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$
- 9. 泰勒公式
 - 1) 带拉格朗日余项
 - 2) 带佩亚诺余项
- 10. 积分中值定理: $\int_a^b f(x)dx = f(\xi)(b-a)$

■ 解题方法

- 1. 确定区间
- 2. 确定(构造)辅助函数

1)
$$uv'+u'v = (uv)'$$

3. 确定使用定理

• 微分等式

- 1. 理论依据
 - 1) 推广零点定理:
 - 2) 用导数研究函数形态
 - 3) 罗尔定理推论: 设 $f^{(n)}(x) = 0$ 至 多k个根 ,则f(x) = 0zhi至 多k + n个根
 - 4) 实系数齐次方程
- 2. 考法
 - 1) 证明恒等式
 - 2) 零点个数

◆至少几个、至多几个、恰有几个

- 3) 方程列问题
- 4) 区间列问题

• 微分不等式

- 1. 用单调性
- 2. 用最值
- 3. 用凹凸性
- 4. 用拉格朗日中值定理
- 5. 用柯西中值定理
- 6. 用带拉格朗日余项的泰勒公式

七、一元微分学——物理应用

• 相关变化率

 $\frac{dA}{dB}$

八、一元积分学概念

- '祖孙三代'的奇偶性、周期性
- 积分比大小
 - 1. 用几何意义:比面积大小
 - 2. 用保号性:看正负、做差
- 定积分的定义
- 一部分数列和极限要用定积分来计算
 - 1. 凑得成 $\frac{i}{n}$:
 - 2. 凑不成: 放缩夹逼再凑
 - 3. 带变量的

• 反常积分判敛

- 1. 概念
 - 1) 无穷区间上的反常积分: $\int_a^{+\infty} f(x)dx$
 - 2) 无界区域上的反常积分: $\int_a^c f(x)dx$, 其中 $\lim_{x\to a^+} f(x) = \infty$, a 称为 瑕点
- 2. 判别

1)
$$\begin{cases} \int_0^1 \frac{1}{x^p} dx \begin{cases} 0 1, & \text{$\not$$$\sharp} \\ p \le 1, & \text{ψ} \end{cases} \end{cases}$$

2) 万能公式

$$\oint \int \frac{1}{x^{\alpha} \ln^{\beta} x} dx \begin{cases} x \to 0, \begin{cases} \alpha < 0 \\ a = 1, \beta > 1 \end{cases} & \text{if } \text{if }$$

九、一元积分学计算

■ 基本积分公式

$$\oint \frac{\int \sec x dx = \ln|\sec x + \tan x| + C}{\int \csc x dx = \ln|\csc x - \cot x| + C}$$

$$\oint \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\oint \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$$

$$\oint \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + C$$

$$\oint \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x - \sqrt{x^2 + a^2}) + C$$

$$\oint \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} kn \left| \frac{x - a}{x + a} \right| + C$$

• 不定积分的计算

- 1. 凑微分法
- 2. 换元法
- 3. 分部积分法
- 4. 有理函数积分

1)
$$\int \frac{P_n(x)}{Q_m(x)} dx$$

2) 因式分解

$$\Rightarrow (ax+b)^k \to \frac{A_1}{ax+b}, \frac{A_1}{(ax+b)^2}, \dots, \frac{A_1}{(ax+b)^k}$$

$$\Rightarrow px^2 + qx + r \to \frac{Ax+B}{px^2 + qx + r}$$

$$\Rightarrow A_1x + B_1 \qquad A_2x + B_2 \qquad A_kx + B_k$$

$$\Rightarrow (px^2 + qx + r)^k \to \frac{A_1x + B_1}{px^2 + qx + r}, \frac{A_2x + B_2}{(px^2 + qx + r)^2}, \dots, \frac{A_kx + B_k}{(px^2 + qx + r)^k}$$

• 定积分的计算

- 1. 重要公式
 - 1) 区间再现公式

$$\Rightarrow \int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$

2) 点火公式

3) 三角函数积分等式

$$\Rightarrow \int_0^{\frac{\pi}{2}} f(\sin x) dx = \int_0^{\frac{\pi}{2}} f(\cos x) dx$$

$$\Rightarrow \int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\cos x) dx$$

$$\Rightarrow \int_0^{\pi} x f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\cos x) dx$$

4) 区间简化公式

- 2. 对称性的积分问题
- 3. 定积分分部积分的升阶降阶问题
- 4. 分段函数积分

• 变限积分的计算

$$\Rightarrow \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt\right]' = f[\varphi_2(x)]\varphi'_2(x) - f[\varphi_1(x)]\varphi'_1(x)$$

• 反常积分的计算

1. 直接确定

$$\Rightarrow \int_{a}^{+\infty} f(x)dx = F(+\infty) - F(a)$$

 $\Rightarrow a 为 瑕 点 , \int_{a}^{b} f(x)dx = F(b) - \lim_{x \to a} F(x),$

- 2. 换元求导
- 3. 拆分求导
- 4. 换序

十、一元积分学——几何应用

■ 研究对象

• 研究内容

1. 面积

1) 直角坐标系:
$$S = \int_{a}^{b} |f(x) - g(x)| dx$$

2) 极坐标系:
$$S = \int_{\alpha}^{\beta} \frac{1}{2} |r_2^2(\theta) - r_1^2(\theta)| d\theta$$

2. 旋转体体积

1) 旋转法:
$$V = \int_a^b \pi y^2(x) dx$$

2) 柱壳法:
$$V = \int_{a}^{b} 2\pi x |y(x)| dx$$

3. 平均值:
$$\overline{f} = \frac{1}{h-a} \int_a^b f(x) dx$$

4. 平面曲线弧长

1) 直角坐标系:
$$s = \int_a^b \sqrt{1 + [y'(x)]^2} dx$$

2) 极坐标系:
$$s = \int_{\alpha}^{\beta} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

3) 参数坐标:
$$s = \int_{\alpha}^{\beta} \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$$

5. 旋转曲面面积

1)
$$S = 2\pi \int_{a}^{b} |y(x)\sqrt{1+[y'(x)]^{2}} dx$$
$$S = 2\pi \int_{a}^{\beta} |y(t)\sqrt{[x'(t)]^{2}+[y'(t)]^{2}} dx$$

6. 形心坐标:
$$\overline{x} = \frac{\int_a^b x f(x) dx}{\int_a^b f(x) dx}$$

7. 截屏面已知的立体体积:
$$V = \int_a^b S(x) dx$$

十一、积分等式

• 积分等式

- 1. 常用积分等式
- 2. 通过证明特殊积分等式求其特殊积分 (两小问的题)
- 3. 积分形式的中值定理

• 积分不等式

- 1. 用单调性
- 2. 处理被积函数
 - 1) 积分保号性: $f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$
 - 2) 拉格朗日中值定理
 - 3) 放缩法
 - 4) 分部积分法
 - 5) 换元法
- 3. 夹逼准则
- 4. 曲边梯形离散化

十二、一元积分学——物理应用

- 1. 位移、路程
- 2. 做功
 - 1) 变力做功: $W = \int_a^b F(x) dx$
 - 2) 提取物体(抽水): $W = (mgh) = \int_a^b \rho gx A(x) dx$

3. 静水压力: $P = (\rho ghS) = \int_a^b \rho gx[f(x) - h(x)]dx$

4. 质心:
$$\bar{x} = \frac{\int_a^b \rho x dx}{\int_a^b \rho dx}$$

十三、多元函数微分学

十四、二重积分

- 概念
 - 1. 和式极限
 - 2. 对称性
 - 1) 普通对称性

关于坐标轴对称 关于 y = x 对称 关于 y = a, x = a 对称

2) 轮换对称性

y,x 对调后积分不变

- 3. 二重积分比大小
- 4. 二重积分中值定理

$$\iint f(x,y)d\sigma = f(\xi,\eta)\sigma$$

5. 周期性

计算

- 1. 直角坐标系
- 2. 极坐标系
- 3. 直极互化
- 4. 交换积分顺序
- 5. 二重积分换元法

$$\iint_{D_{xy}} f(x,y) dx dy \xrightarrow{x=x(u,v)y=y(u,v)} \iint_{D_{uv}} f(u,v) \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} du dv$$

$$f(x,y) \to f(u,v)$$

$$D_{xy} \to D_{uv}$$

$$dx dy \to \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

• 应用

1. 面积
$$S = \iint d\sigma$$

十五、微分方程

一阶微分方程求解

1. 可分离变量型

$$y' = f(x)g(y) \Rightarrow \frac{dy}{g(y)} = f(x)dx$$

2. 齐次型

$$y = ux \Rightarrow \frac{dy}{dx} = u + x \frac{du}{dx}$$
$$x = uy \Rightarrow \frac{dx}{dy} = u + y \frac{du}{dy}$$

3. 一阶线性型
$$y'+p(x)y=q(x)$$

两边同乘
$$e^{\int p(x)dx}$$

$$\Rightarrow y = e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} q(x) dx + C \right]$$

4. 伯努利方程
$$y'+p(x)y=q(x)y^n$$

$$z = y^{1-n}$$

$$\frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx} + p(x)z = q(x)$$

■ 二阶可降解微分方程求解

1.
$$y''=f(x,y')$$
----缺 x , "斩草除根" x

$$p = y'$$
$$y'' = p'$$

2.
$$y''=f(y,y')$$
----缺 y , "赶尽杀绝" y

$$p = y'$$

$$y'' = \frac{dp}{dx} = \frac{dp}{dy}\frac{dy}{dx} = p\frac{dp}{dy}$$

高阶常系数微分方程求解

$$1. \quad y'' + py' + qy = f(x)$$

1)
$$\lambda^2 + p\lambda + q = 0 \Rightarrow \lambda_1, \lambda_2 \Rightarrow$$
齐次通解

2) 设特解
$$y^*$$
 ⇒ 带回方程求特解

2.
$$y'' + py' + qy = f_1(x) + f_2(x)$$

3)
$$\lambda^2 + p\lambda + q = 0 \Rightarrow \lambda_1, \lambda_2 \Rightarrow$$
 齐次通解

4) 设特解
$$y_1^*, y_2^* \Rightarrow$$
 带回方程求特解 $y_1^* + y_2^*$

3.
$$y^{(n)} + \cdots + py' + qy = f(x)$$

1) 若
$$\lambda$$
为单实根, $y = Ce^{\lambda x}$

2) 若
$$\lambda$$
为 k 重实根, $y = (C_1 + C_2 x + \dots + C_k x^{k-1})e^{\lambda x}$

3) 若
$$\lambda$$
为单复根 $\alpha + \beta i$, $y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

通解形式

1)
$$\lambda_1 \neq \lambda_2$$

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$

2)
$$\lambda_1 = \lambda_2$$

$$y = (C_1 + C_2 x)e^{\lambda x}$$

3)
$$\lambda_{1,2} = \alpha \pm \beta i$$

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

特解形式

1)
$$f(x) = P_n(x)e^{\alpha x}$$

$$y^* = e^{ax} Q_n(x) x^k$$

e ax 照抄

$$Q_n(x) 为 P_n(x) 的一般多项式$$

$$k = \begin{cases} 0, \alpha \neq \lambda_1 & and & \alpha \neq \lambda_2 \\ 1, \alpha = \lambda_1 & or & \alpha = \lambda_2 \\ 2, \alpha = \lambda_1 = \lambda_2 \end{cases}$$

2)
$$f(x) = e^{\alpha x} [P_m(x) \cos \beta x + P_n(x) \sin \beta x]$$

$$y^* = e^{\alpha x} [Q_l^{(1)} \cos \beta x + Q_l^2 \sin \beta x] x^k$$

 $e^{\alpha x}$ 照抄

 $l = \max\{m, n\}$

$$k = \begin{cases} 0, \alpha \pm \beta i \text{ 不是特征根} \\ 1, \alpha \pm \beta i \text{ 是特征根} \end{cases}$$

• 换元法求解

- 1. 求导公式换元
- 2. 自变量换元
- 3. 因变量换元
- 4. x,y 地位互换

应用

- 1. 用极限、导数、积分的定义构建微分方程
- 用几何应用构建微分方程
 斜率、截距、面积、体积、弧长、侧面接、曲率、形心、平均值、
- 3. 用变化率构建微分方程
 - 1) 元素衰变问题
 - 2) 人口增长问题
 - 3) 曳物线问题(追踪问题)