Problem Set – 3 Solutions

CS 230, Autumn 2023

```
1. li $t0,
   3 li $t2,
   7
   slt $t3, $t0, $t
   beq $t3, $zero, else
   add $t1, t0, $t2;

else:
   add $t1, $t0, $t0
```

- 2.
- **a.** There are 64 registers. We need $\lceil log_2(64) \rceil = 6$ bits to label each register.
- b.

Three Address Instructions

There are 3 6-bit registers and 30 operations. Therefore, we have $30 * 2^{18}$ combinations.

Two Address Instructions

There are 2 6-bit registers and 40 operations. Therefore, we have $40 * 2^{12}$ combinations.

One Address Instructions

There is 1 6-bit register and 60 operations. Therefore, we have $60 * 2^6$ combinations.

Total number of combinations =
$$(30 * 2^{18}) + (40 * 2^{12}) + (60 * 2^{6})$$

= $62750 * 2^{7}$

Total bits needed to represent all combinations = $log_2(62750 * 27) = 23$

Since we have 32 bits instructions, it is possible to encode all operations.

3.

Each instruction = 32 bit

Number of instructions which are supported = 70

Maximum value by unsigned operand = 8191

Formula:

Opcode Register 1	Register 2 (R)	Immediate Operand
-------------------	-------------------	----------------------

In bits,

Opcode + R + R + Immediate Operand = 32

Calculation

Number of bits needed for opcode = $\Gamma \log_2(70) \Im = 7$ bits

The maximum value of unsigned immediate operand = 8191

$$2^{n} - 1 = 8191$$

$$2^{n} = 8192 = 2^{13}$$

∴ n = 13 bits

2R = 12

 \therefore R = 6 bits.

Maximum registers that a processor has $= 2^6 = 64$.

4.

Code line	Live Variables
	-
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o;	
	b, c, e, g, i
a = b * c;	
	a, e, g, i
d = a - e;	
	d, g, i

f = d + g;	
	f, i
h = f * i;	
	h

- a. Before line 2, 5 variables are live. We need 5 registers to store value of each variable. We also need an additional register for variable 'a' to store the value of the expression *b*c*. Therefore, **5 registers** are needed. The compiler can reuse registers, assigned to a variable if it is not live. Since MIPS has 10 temporary registers, there will not be spill to memory.
- b. The minimum number of registers required is 5. MIPS has 10 temporary registers, so no extra register is needed.

5.

REGISTER NAME:	T0	T1	T2	Т3	S0
REGISTER VALUE:	4	7	3	4	10