

R Syntax I: Data Types and Vector

Pilsung Kang
School of Industrial Management Engineering
Korea University

Basic Instructions

• Getting Help, Using Packages, and Working Directory

Getting Help

Accessing the help files

?mean

Get help of a particular function.

help.search('weighted mean')

Search the help files for a word or phrase.

help(package = 'dplyr')

Find help for a package.

More about an object

str(iris)

Get a summary of an object's structure.

class(iris)

Find the class an object belongs to.

Using Packages

install.packages('dplyr')

Download and install a package from CRAN.

library(dplyr)

Load the package into the session, making all its functions available to use.

dplyr::select

Use a particular function from a package.

data(iris)

Load a built-in dataset into the environment.

Working Directory

getwd()

Find the current working directory (where inputs are found and outputs are sent).

setwd('C://file/path')

Change the current working directory.

Use projects in RStudio to set the working directory to the folder you are working in.

• Data Types w.r.t. dimensions

- Tensor in Data Analytics
 - ✓ Whose eye is it?

- Tensor in Data Analytics
 - √ Whose eye is it?
 - It's my eye

Computers recognize an image as a 3-D Tensor: Width X Height X 3 (RGB)

- Variable types
 - √ Homogeneous variables
 - All elements are the same type: numeric values in this example

	Year	January	February	March	April	May	June	July	August	September	October	November	December
1	1998	0	0	2	21	47	272	391	262	251	178	47	8
2	1999	0	4	1	24	145	230	448	195	117	248	17	2
3	2000	3	9	0	28	74	281	309	341	190	169	10	8
4	2001	1	1	1	64	42	245	271	233	177	127	30	2
5	2002	2	12	2	24	87	179	107	173	80	178	18	1
6	2003	0	2	18	37	7	182	205	172	72	166	9	1
7	2004	2	1	6	54	178	202	201	193	140	97	22	0
8	2005	5	2	3	67	57	239	472	295	210	196	35	3
9	2006	0	0	26	17	152	270	356	273	168	74	67	0
10	2007	0	0	1	36	62	344	371	350	270	118	19	8
11	2008	0	15	129	33	61	172	189	262	161	106	37	2

- Variable types
 - √ Homogeneous variables
 - Variables (Columns) are different types

	Name	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
5	Amir Johnson	90.0	PF	29.0	6-9	240.0	NaN	12000000.0
6	Jordan Mickey	55.0	PF	21.0	6-8	235.0	LSU	1170960.0
7	Kelly Olynyk	41.0	С	25.0	7-0	238.0	Gonzaga	2165160.0
8	Terry Rozier	12.0	PG	22.0	6-2	190.0	Louisville	1824360.0
9	Marcus Smart	36.0	PG	22.0	6-4	220.0	Oklahoma State	3431040.0
	1 10 10	7.0		210		200.0	A11 A11	2500000

- Questions
 - √ QI:Are all variables homogeneous?
 - ✓ Q2: Are there more than one record?

Attribute\No. Records	I	>= 2		
Homogeneous	Vector	Matrix or Array		
Heterogeneous	List	Dataframe		

• Dataframe makes R powerful to analyze heterogeneous multivariate data

Scalar Vector List Matrix Array Factor Data.frame

- Vector
 - √ Vectors are homogeneous
 - All elements in a vector should be the same mode
 - √ Vector has an index for each element
 - A set of indices returns the corresponding sub-vector
 - Index starts from I (python: 0)
 - √ The elements of a vector can have its own name
 - ✓ Vectors in R is a column-wise vectors

```
1 * # Part 1-1: Data Handling (Vector)
   # Assign values to the vector A & B
   A \leftarrow c(1,2,3)
   B \leftarrow c(1, "A", 0.5)
 7 # Check the mode
 8 mode(A)
   mode(B)
11 # Select a subset of vector
12 A[1]
A[2:3]
14 A[c(2,3)]
15
16 # Assign names
17 \quad names(A)
   names(A) <- c("First", "Second", "Third")</pre>
19
20 # call by index or name
21 A[1]
22 A["First"]
```


- Vector initiation
 - \checkmark Do not have to initiate \rightarrow creation and value assignment are done at the same time
 - a <- 3: create a vector named 'a' and assign the value 3 to it</p>
- Add elements to an existing vector
 - ✓ The size of a vector is fixed when it is created
 - ✓ We have to recreate the vector if we want to add or remove some elements

```
24  # Data Handling: Vector
25  x <- c(1,2,3,4)
26  x
27  x <- c(x[1:3], 10, x[4])
28  x
29  length(x)</pre>
```


Vector reuse

✓ When R conduct an operation with two vectors, the shorter vector is reused to
avoid an error

```
> c(1,2,4) + c(10,11,12,13,14)
[1] 11 13 16 14 16
Warning message:
In c(1, 2, 4) + c(10, 11, 12, 13, 14) :
   longer object length is not a multiple of shorter object length
```

√ Column-first

Arithmetic Operators

Logical Operators

- Vector operations are element-wise
- Vector indexing
 - ✓ Extract a subset of vectors
 - √ Index can be used redundantly
 - √ A negative index is used to remove the corresponding element.

```
Console ~/ 🖒
                        Console ~/ 🖒
                                                                           Console ~/ 🖒
                                                       Console ~/ 🖒
> x <- c(1,2,3)
                       > y <- c(10,20,30,40,50)
                                                      > y[c(1,2,1,3)]
                                                                          > y[-5]
> y <- c(10,20,30)
                       > y[c(1,3)]
                                                                          [1] 10 20 30 40
                                                      [1] 10 20 10 30
                       [1] 10 30
> X+Y
                                                                          > y[-length(y)]
                                                      >
[1] 11 22 33
                       > y[2:3]
                                                                          [1] 10 20 30 40
                       [1] 20 30
> x*y
                                                                          >
[1] 10 40 90
                       > v <- 2:3
                       > v[v]
> x%%y
                       [1] 20 30
[1] 1 2 3
```


- Creating vectors with operators
 - ✓: operator: create vectors with certain range
 - ✓ seq: a generalized version of ":" operator
 - √ rep: repeat values

Console ~/ A > x <- 1:5 > y <- 5:1 > z <- 2 > 1:z-1 [1] 0 1 > 1:(z-1) [1] 1

Operator Syntax and Precedence

Description

Outlines R syntax and gives the precedence of operators.

Details

The following unary and binary operators are defined. They are listed in precedence groups, from highest to lowest.

```
access variables in a namespace
$ @
                     component / slot extraction
                     exponentiation (right to left)
                     unary minus and plus
                     sequence operator
                     special operators (including %% and %/%)
%anv%
                     multiply, divide
                     (binary) add, subtract
                   = ordering and comparison
                     negation
                     as in formulae
                     rightwards assignment
                     assignment (right to left)
                     assignment (right to left)
                     help (unary and binary)
```


- Apply conditions for each element in a vector
 - ✓ any() function: return TRUE if at least one of the elements satisfies the condiditon
 - ✓ all() function: return TRUE only when all elements satisfy the condition
- NA vs NULL
 - ✓ NA (Not Available): Some value exists but we cannot exactly know the value
 - √ NULL: Physically not exist

- Filtering: Extract the element that satisfy a given condition
 - ✓ Directly extract from index
 - ✓ subset(): return the values that satisfy the condition
 - √ which(): return the indices that satisfy the condition

```
> x <- c(10,20,NA,40,50)
> x[x>20]
[1] NA 40 50
> subset(x, x>20)
[1] 40 50
> which(x>20)
[1] 4 5
```


