Sparse identification of nonlinear dynamics via SBL-DF

Matt O'Shaughnessy

February 10, 2018

1 Problem setup

We have the network in Figure 1. Our goal is to use input data $x_1, \dots x_S$ and associated output classes $y_1, \dots y_S$ to learn the weights $W^{(i)}, i = 1, \dots L - 1$.

The training procedure is as follows:

1.

Figure 1: Graph of an L-layer network with $d=N_1$ input units and $c=N_L$ output units. The l^{th} hidden layer contains N_l hidden units and a bias.