EQUILIBRIO QUÍMICO EN FASE GAS

Con datos do equilibrio

- Nun recipiente de 2,0 dm3 introdúcense 0,043 moles de NOCl(g) e 0,010 moles de Cl2(g). Péchase, quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles de NOCl(g). Para o equilibrio: $NOCl(g) \rightleftharpoons \frac{1}{2}Cl_2(g) + NO(g)$, calcula:
 - a) O grao de disociación.
 - b) A concentración de cada gas.
 - c) O valor da constante K_c .
 - d) A presión parcial de cada gas.
 - e) A presión total.
 - f) O valor da constante K_p .

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$. Problema modelo baseado na P.A.U. xuño 15

Rta.: a) $\alpha = 27.9 \%$; b) ([NOCl]_e = 0.0155; [Cl₂]_e = 0.00800; [NO]_e = 0.00600) mol/dm³;

c) $K_c = 0.035$; d) (p(NOCl) = 39; $p(Cl_2) = 20$; p(NO) = 15) kPa; e) p = 74 kPa; f) $K_p = 0.173$.

Datos Cifras significativas: 3

 $V = 2.00 \text{ dm}^3$ Gas: Volume

 $T = 30 \, ^{\circ}\text{C} = 303 \, \text{K}$ **Temperatura**

Cantidade inicial de NOCl $n_0(NOCl) = 0.0430 \text{ mol NOCl}$

Cantidade inicial de Cl₂ $n_0(Cl_2) = 0.0100 \text{ mol } Cl_2$

Cantidade de NOCl no equilibrio $n_e(NOCl) = 0.0310 \text{ mol NOCl}$

Incógnitas

[NOCl]_e, [Cl₂]_e, [NO]_e Concentración de cada gas no equilibrio

Constante do equilibrio das concentracións K_c

Presións parciais de cada gas no equilibrio $p(NOCl), p(Cl_2), p(NO)$

Presión total no equilibrio

Constante do equilibrio das presións K_{p}

Outros símbolos

Cantidade de gas que reaccionou $n_{\rm r}$

Ecuacións

 $p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$ Ecuación de estado dos gases ideais

Lei de Dalton das presións parciais $p_t = \sum p_i$

[X] = n(X) / VConcentración da substancia X

 $\alpha = \frac{n_{\rm d}}{n_{\rm o}}$ Grao de disociación

 $K_c = \frac{\left[\mathbf{C}\right]_{c}^{c}\left[\mathbf{D}\right]_{c}^{d}}{\left[\mathbf{A}\right]_{a}^{d}\left[\mathbf{B}\right]_{a}^{b}} \quad K_p = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{B})}$ Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

Solución:

a) Calcúlase a cantidade de NOCl que reaccionou

$$n_{\rm r} = n_{\rm e} - n_{\rm o} = 0.0310 - 0.0430 = -0.0120 \text{ mol NOCl}$$

O grao de disociación vale:

$$\alpha = \frac{n_{\rm d}}{n_{\rm o}} = \frac{0.0120 \text{ mol reacc.}}{0.0430 \text{ mol inic.}} = 0.279 = 27.9 \%$$

b) Constrúese unha táboa para calcular as cantidades de produtos e reactivos no equilibrio a partir da estequiometría da reacción

$$NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$$

		NOCl	\rightleftharpoons	½ Cl ₂	NO	
Cantidade inicial	n_0	0,0430		0,0100	0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	0,0120	\rightarrow	$\frac{0,0120}{2} = 0,00600$	0,0120	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0310		0,0160	0,0120	mol
Concentración no equilibrio	[]e	$\frac{0,0310}{2} = 0,0155$		$\frac{0,0160}{2} = 0,00800$	$\frac{0,0120}{2} = 0,00600$	mol/dm³

As concentracións no equilibrio son:

$$\begin{split} [NOCl]_e &= 0,0155 \; mol/dm^3 \\ [Cl_2]_e &= 0,00800 \; mol/dm^3 \\ [NO]_e &= 0,00600 \; mol/dm^3 \end{split}$$

c) Calcúlase a constante de equilibrio

$$K_c = \frac{[\text{NO}]_e \cdot [\text{Cl}_2]_e^{1/2}}{[\text{NOCl}]_e} = \frac{0,00600 \cdot \sqrt{0,00800}}{0,0155} = 0,0346 \text{ (concentracións en mol/dm³)}$$

d) Calcúlanse as presións parciais de cada gas a partir das cantidades no equilibrio. Supoñendo comportamento ideal para os gases:

$$p(\text{NOCl}) = \frac{n(\text{NOCl}) \cdot R \cdot T}{V} = \frac{0,0310 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2,00 \cdot 10^{-3} \text{ m}^3} = 3,91 \cdot 10^4 \text{ Pa} = 39,1 \text{ kPa} = 0,386 \text{ atm}$$

$$p(\text{Cl}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = \frac{0,0160 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2,00 \cdot 10^{-3} \text{ m}^3} = 2,02 \cdot 10^4 \text{ Pa} = 20,2 \text{ kPa} = 0,199 \text{ atm}$$

$$p(\text{NO}) = \frac{n(\text{NO}) \cdot R \cdot T}{V} = \frac{0,0120 \text{ mol} \cdot 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2,00 \cdot 10^{-3} \text{ m}^3} = 1,51 \cdot 10^4 \text{ Pa} = 15,1 \text{ kPa} = 0,149 \text{ atm}$$

e) Calcúlase la presión total pola lei de Dalton:

$$p = p(NOCl) + p(Cl_2) + p(NO) = 39.1 [kPa] + 20.2 [kPa] + 15.1 [kPa] = 74.4 kPa = 0.734 atm$$

f) Calcúlase a constante de equilibrio das presións K_p a partir das presións parciais:

$$K_p = \frac{p_e(\text{NO}) \cdot p_e^{1/2}(\text{Cl}_2)}{p_e(\text{NOCl})} = \frac{0.149 \cdot \sqrt{0.199}}{0.386} = 0.173 \text{ (presións en atm)}$$

Tamén podemos calculala da relación coa constante K_c:

$$K_{p} = \frac{p_{e}(\text{NO}) \cdot p_{e}^{1/2}(\text{Cl}_{2})}{p_{e}(\text{NOCl})} = \frac{[\text{NO}]_{e} \cdot R \cdot T \cdot ([\text{Cl}_{2}] \cdot R \cdot T)_{e}^{1/2}}{[\text{NOCl}]_{e} \cdot R \cdot T} = \frac{[\text{NO}]_{e} \cdot [\text{Cl}_{2}]_{e}^{1/2}}{[\text{NOCl}]_{e}} \cdot (R \cdot T)^{1/2} = K_{c} \cdot \sqrt{R \cdot T}$$

$$K_{p} = K_{c} \cdot \sqrt{R \cdot T} = 0,0346 \cdot \sqrt{0,082 \cdot 303} = 0,173 \text{ (presions en atm)}$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «♠» (maiúsculas) mentres fai clic na cela:

Equilibrio en fase gas

do capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

•		Reactivo A	+	Reactivo B	\rightleftharpoons	Produto C	+	Produto D	
Reacción axustada		NOCl			0,5	Cl_2		NO	
Cantio	Cantidade inicial					0,01			mol
Cantidade er	equilibrio	0,03							mol
Temperatura		Volume		Presión total					
30	$^{\circ}\!\mathbb{C}$	2	dm³						
	Calcular:	Presión	total						

Poderá ver:

	RESULTADOS								
			Cifras significativas: 3						
Cantidade	NOCl(g)	€ 0,5	$Cl_2(g)$ +	NO(g)				
inicia	0,0430			0,0100	0	mol			
reacciona	a 0,0120		\rightarrow	0,00600	0,0120	mol			
equilibrio	0,0310			0,0160	0,0120	mol			
Constantes	$K_c = 0.0346$	(Conc. en mol/L))						
	$K_p = 0.173$	(p en atm.)							
Presión	(total) = 0,73	o Grao de disociación $\alpha = 27.9 \%$							

2. Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35 °C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$ e cando se alcanza o equilibrio a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 19)

Rta.: $\alpha = 69 \%$.

Datos

Volume

Temperatura

Cantidade inicial de tetraóxido de dinitróxeno

Presión no equilibrio

Incógnitas

Porcentaxe de N₂O₄ disociado

Ecuacións

Concentración da substancia X

Ecuación de estado dos gases ideais

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$

Cifras significativas: 3

 $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

 $T = 35 \,^{\circ}\text{C} = 308 \,^{\circ}\text{K}$

 $n_0(N_2O_4) = 0,0800 \text{ mol}$

 $p = 2,27 \text{ atm} = 2,30 \cdot 10^5 \text{ Pa}$

 α

[X] = n(X) / V

 $p \cdot V = n \cdot R \cdot T \Longrightarrow p = \frac{n \cdot R \cdot T}{V}$

 $K_c = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{a} \cdot \left[\mathbf{B}\right]_{e}^{b}}$

Solución:

b) A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

Chamando *x* á cantidade de N₂O₄ que se disocia ata chegar ao equilibrio, pódese escribir:

		N ₂ O ₄	=	2 NO ₂	
Cantidade inicial	n_0	0,0800		0	mol
Cantidade que reacciona ou se forma	$n_{\rm r}$	x	\rightarrow	2 x	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

A cantidade total de gas no equilibrio será

$$n_{\rm t} = 0.0800 - x + 2 \ x = 0.0800 + x$$

Por outra banda, pódese calcular a cantidade de gas a partir da presión total

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Despexando

$$x = 0.135 - 0.080 = 0.055$$
 mol de N₂O₄ que se disocian

A porcentaxe de N₂O₄ disociado é:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «♠» (maiúsculas) mentres fai clic na cela:

Equilibrio en fase gas

do capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

	e prema nas ceias de	cor sami	ni para chixii c	11111	as operons q	ac sc	presentan.			
D A T O S										
			Reactivo A +		Reactivo B	\rightleftharpoons	Produto C	+	Produto D	
	Reacción axustada		N_2O_4			2	NO_2			
	Cantida	0,08							mol	
	Cantidade en d	equilibrio								
						'				
	Temperatura		Volume		Presión total					
	35	$^{\circ}\!\mathbb{C}$	1,5	dm³	2,27	atm				

Poderá ver:

i oucia vei.									
		RESULTADOS							
	Cifras significativas: 3								
Cantidade		$N_2O_4(g)$		⇌ 2	$NO_2(g)$				
	inicial	0,0800			0		mol		
	reacciona	0,0547		\rightarrow	0,109		mol		
	equilibrio	0,0253			0,109		mol		
	Constantes	$K_c = 0.314$	(Conc. en mol/I	رـ)					
		$K_p = 7,95$	(p en atm.)						
					Grao de di	sociación α =	68,3 %		

- 3. Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gasosa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 .
 - a) Calcula $a K_c$ da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C.

b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?

Dato: R = 0.082 atm·dm³/(K·mol).

(P.A.U. xuño 07)

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$.

Datos Cifras significativas: 3

Volume $V = 310 \text{ cm}^3 = 0.310 \text{ dm}^3$

Temperatura do apartado a) $T = 35 \, ^{\circ}\text{C} = 308 \, \text{K}$

Masa no equilibrio N₂O₄ a 35 °C $m_e(N_2O_4) = 1,660 \text{ g } N_2O_4$

Masa no equilibrio NO₂ a 35 °C $m_{\rm e}({\rm NO_2}) = 0.385 \text{ g NO_2}$

Constante do equilibrio K_c a 150 °C $K_c' = 3,20$

Cantidade no equilibrio N₂O₄ a 150 °C $n_e(N_2O_4) = 1,00 \text{ mol } N_2O_4$

Cantidade no equilibrio NO₂ a 150 °C $n_{\rm e}({\rm NO_2}) = 2{,}00 \; {\rm mol} \; {\rm NO_2}$

dióxido de nitróxeno $M(NO_2) = 46.0 \text{ g/mol}$ Masa molar:

tetraóxido de dinitróxeno $M(N_2O_4) = 92.0 \text{ g/mol}$

Incógnitas

Constante do equilibrio K_c a 35 °C K_c V

Volume do recipiente

Ecuacións

Cantidade (número de moles) n = m / M

[X] = n(X) / VConcentración da substancia X

 $K_{c} = \frac{\left[C\right]_{e}^{c} \cdot \left[D\right]_{e}^{a}}{\left[A\right]^{a} \cdot \left[B\right]^{b}}$ Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$

Solución:

A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

A expresión da constante de equilibrio:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_c}$$

As concentracións das especies no equilibrio son:

$$\begin{split} \left[\mathrm{NO_2}\right]_{\mathrm{e}} &= \frac{0,385 \text{ g NO_2}}{0,310 \text{ dm}^3} \frac{1 \text{ mol NO_2}}{46,0 \text{ g NO_2}} = 0,027 \text{ 0mol/dm}^3 \\ \left[\mathrm{N_2O_4}\right]_{\mathrm{e}} &= \frac{1,660 \text{ g N_2O_4}}{0,310 \text{ dm}^3} \frac{1 \text{ mol N_2O_4}}{92,0 \text{ g N_2O_4}} = 0,058 \text{ 2mol/dm}^3 \end{split}$$

e o valor da constante de equilibrio a 35 ℃ é

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{(0.027)^2}{0.0582} = 0.0125$$

b) Ao variar a temperatura, varía a constante de equilibrio. Volvendo escribir a expresión da constante á temperatura de 150 ℃

$$K_c' = 3,20 = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{\left(\frac{2,00}{V}\right)^2}{\left(\frac{1,00}{V}\right)} = \frac{4,00}{V}$$

de onde:

$$V = 4.00 / 3.20 = 1.25 \text{ dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal) Cando estea no índice, manteña pulsada a tecla « 🌣 » (maiúsculas) mentres fai clic na cela:

Equilibrio en fase gas

do capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul,

e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

۲	Terria mas ceras de v	cor bailinoir	para chian c	iiii	as operons qu	e be j	presentan.			
			Reactivo A	+	Reactivo B	⇒ Produto C			Produto D	
Re	eacción axustada		N_2O_4			2	NO_2			
	Cantio	dade inicial								
	Masa er	n equilibrio	1,66				0,39			g
	Temperatura		Volume		Presión total					
	35	$^{\circ}$ C	310	cm³						

Nos resultados verá:

Constantes
$$K_c = 0.0125$$
 (Conc. en mol/L)
 $K_p = 0.317$ (p en atm.)

Para o apartado b) borre os datos numéricos e as súas unidades (seleccione co rato desde a cela baixo «Ecuación axustada» ata a cela onde se cruzan «Calcular» e «g» e faga clic no botón <mark>Borrar datos</mark>), e escriba os novos datos

Agora verá:

- Nun recipiente pechado introdúcense 2,0 moles de CH₄ e 1,0 mol de H₂S á temperatura de 727 °C, establecéndose o seguinte equilibrio: $CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$. Una vez alcanzado o equilibrio, a presión parcial do H₂ é 0,20 atm e a presión total é de 0,85 atm. Calcule:
 - a) Os moles de cada substancia no equilibrio e o volume do recipiente.
 - b) O valor de K_c e K_p .

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$.

Datos

Cifras significativas: 3

Temperatura Cantidade inicial de metano Cantidade inicial de sulfuro de hidróxeno

 $n_0(CH_4) = 2,00 \text{ mol } CH_4$

 $T = 727 \, ^{\circ}\text{C} = 1000 \, \text{K}$

 $n_0(H_2S) = 1,00 \text{ mol } H_2S$

Datos Cifras significativas: 3

Presión parcial do hidróxeno no equilibrio $p_e(H_2) = 0,200$ atm

Presión total no equilibrio $p_e = 0.850$ atm

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Cantidade no equilibrio de cada substancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volume do recipiente VConstante do equilibrio K_c K_c

Constante do equilibrio K_p K_p

Ecuacións

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T \implies p = \frac{n \cdot R \cdot T}{V}$

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a \, \mathbf{A} + b \, \mathbf{B} \rightleftharpoons c \, \mathbf{C} + d \, \mathbf{D}$ $K_{c} = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{c} \cdot \left[\mathbf{B}\right]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(\mathbf{C}) \cdot p_{e}^{d}(\mathbf{D})}{p_{e}^{d}(\mathbf{A}) \cdot p_{e}^{b}(\mathbf{B})}$

Solución:

a) A ecuación química é:

$$CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$$

Chamando *x* á cantidade de metano que reaccionou ata acadar o equilibrio podemos escribir

		CH ₄	2 H ₂ S	\Rightarrow	CS ₂	4 H ₂	
Cantidade inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidade que reacciona ou se forma	n_{r}	х	2 x		х	4 x	mol
Cantidade no equilibrio	$n_{\rm e}$	2,00 - x	1,00 - 2 x		х	4 x	mol

No equilibrio haberá en total:

$$n_e = (2.00 - x) + (1.00 - 2 x) + x + 4 x = 3.00 + 2 x$$

Da presión parcial do hidróxeno podemos deducir:

$$p \cdot V = n \cdot R \cdot T \implies n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{dm}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 x = 0.0244 \cdot V$$

Da presión total podemos deducir:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.0104 \cdot V \text{ mol}$$

$$3,00 + 2 x = 0,104 \cdot V$$

Do sistema de dúas ecuacións con dúas incógnitas,

$$4x = 0.00244 \cdot V$$

 $3.00 + 2x = 0.0104 \cdot V$

deducimos o volume V do recipiente e a cantidade x de metano que reaccionou ata acadar o equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,0104 \cdot V}{0,00244 \cdot V} = 4,25$$

$$3,00 + 2 x = 17,0 x$$

 $x = 0,200 \text{ mol}$
 $V = 328 \text{ dm}^3$

As cantidades das substancias no equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$
 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

A constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot \left[\text{H}_{2}\text{S}\right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2}) \cdot \left(\frac{n_{e}(\text{H}_{2})}{V}\right)^{4}}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}\text{S})}{V}\right)^{2}}{\frac{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}\text{S})}{V}\right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentracións en mol/dm³)

Se consideramos comportamento ideal para os gases, podemos escribir:

$$K_{p} = \frac{p_{e}(\text{CS}_{2}) \cdot p_{e}^{4}(\text{H}_{2})}{p_{e}(\text{CH}_{4}) \cdot p_{e}^{2}(\text{H}_{2}\text{S})} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot R \cdot T \cdot (\left[\text{H}_{2}\right]_{e} \cdot R \cdot T)^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot R \cdot T \cdot (\left[\text{H}_{2}\text{S}\right]_{e} \cdot R \cdot T)^{2}} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot (\left[\text{H}_{2}\right]_{e})^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot (\left[\text{H}_{2}\text{S}\right]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

$$K_p = 1,2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^2 = 0,0079$$
 (presións en atm)

Este problema non pode resolverse coa folla de cálculo.

Coa constante como dato

Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concentracións en equilibrio das especies son:

 $[CO_2] = 0.086 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$ e $[H_2O] = 0.040 \text{ mol/dm}^3$.

- a) Calcula K_c para a reacción a 686 °C.
- b) Se se engadise CO₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concentracións de todos os gases unha vez restablecido o equilibrio?

(P.A.U. set. 14)

Rta.: a)
$$K_c = 0.517$$
; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; $[CO] = 0.075$ e $[H_2O] = 0.065$ mol/dm³.

Datos	Cifras significativas: 2
Temperatura	$T = 686 ^{\circ}\text{C} = 959 \text{K}$
Concentración no equilibrio de H ₂	$[H_2]_e = 0.045 \text{ mol/dm}^3 H_2$
Concentración no equilibrio de CO ₂	$[CO_2]_e = 0,086 \text{ mol/dm}^3 CO_2$
Concentración no equilibrio de H ₂ O	$[H_2O]_e = 0.040 \text{ mol/dm}^3 H_2O$
Concentración no equilibrio de	$CO [CO]_e = 0.050 \text{ mol/dm}^3 CO$
Concentración inicial de CO ₂ no apartado b)	$[CO_2]_0 = 0,50 \text{ mol/dm}^3 CO_2$
Incógnitas	
Constante de equilibrio	K_c
Concentracións no novo equilibrio	$[H_2]_{eb}, [CO_2]_{eb}, [H_2O]_{eb}, [CO]_{eb}$

Ecuacións

Concentración da substancia X

[X] = n(X) / V

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$K_c = \frac{\left[\mathbf{C}\right]_{e}^{c} \cdot \left[\mathbf{D}\right]_{e}^{d}}{\left[\mathbf{A}\right]_{e}^{a} \cdot \left[\mathbf{B}\right]_{e}^{b}}$$

Solución:

a) A constante de equilibrio K_c vale

$$K_{c} = \frac{[\mathrm{H_{2}O}]_{\mathrm{e}} \cdot [\mathrm{CO}]_{\mathrm{e}}}{[\mathrm{H_{2}]_{\mathrm{e}}} \cdot [\mathrm{CO}_{\mathrm{2}}]_{\mathrm{e}}} = \frac{0,040 \ \mathrm{mol/dm^{3}} \cdot 0,050 \ \mathrm{mol/dm^{3}}}{0,045 \ \mathrm{mol/dm^{3}} \cdot 0,086 \ \mathrm{mol/dm^{3}}} = 0,52 \ (\mathrm{concentracións} \ \mathrm{en} \ \mathrm{mol/dm^{3}})$$

b) Chamando x ás concentracións en mol/dm³ de CO_2 que reaccionan desde que a concentración de CO_2 é 0,50 mol/dm³ ata alcanzar o equilibrio, pódese escribir:

		CO ₂	H ₂	\rightleftharpoons	СО	H ₂ O	
Concentración inicial	[X] ₀	0,50	0,045		0,050	0,040	mol/dm³
Concentración que reacciona ou se forma	[X] _r	x	x	\rightarrow	x	x	mol/dm³
Concentración no equilibrio	[X] _{eb}	0,50 - x	0.045 - x		0,050 + x	0,040 + x	mol/dm³

A expresión da constante de equilibrio en función das concentracións é:

$$K_c = \frac{[H_2O]_{eb} \cdot [CO]_{eb}}{[CO_2]_{eb} \cdot [H_2]_{eb}} = \frac{(0.040 + x) \cdot (0.050 + x)}{(0.50 - x) \cdot (0.045 - x)} = 0.52$$

Resolvendo a ecuación de segundo grao dá dúas solucións. Unha delas (-0,79) non é válida, xa que supoñería a existencia de concentracións negativas no equilibrio. A outra solución é $x = 0,025 \text{ mol/dm}^3$. As concentracións no equilibrio son:

$$[CO_2]_{eb} = 0.475 \text{ mol/dm}^3$$

$$[H_2]_{eb} = 0.020 \text{ mol/dm}^3$$

$$[CO]_{eb} = 0.075 \text{ mol/dm}^3$$

$$[H_2O]_{eb} = 0.065 \text{ mol/dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «◆» (maiúsculas) mentres fai clic na cela:

Equilibrio en fase gas

do capítulo:

Equilibrio químico Equilibrio en fase gas

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

e prema nas ce	las de coi saililo	n para chan ci	inc a	as opcions q	uc sc	presentan.			
	DATOS								
		Reactivo A +		Reactivo B	\rightleftharpoons	Produto C	+	Produto D	
Reacción		CO_2		H_2		CO		H ₂ O	
(Cantidade inicial								
Concentrac	ión en equilibrio	0,086		0,05		0,05		0,04	mol/dm³
Temperatura	a	Volume	I	Presión total					
686	$^{\circ}$ C								
	Calcular:								

Escriba 6 en «Cifras significativas» para mellorar o resultado do apartado b), e obterá os resultados: RESULTADOS Cifras significativas: 6 $CO_2(g) +$ $H_2(g)$ CO(g) + $H_2O(g)$ Concentración inicial mol/dm³ reacciona mol/dm³ 0.0450000 equilibrio 0,0860000 0.0500000 0.0400000 mol/dm³ Constantes $K_c = 0.516796$ (Conc. en mol/L) $K_p = 0.516796$ (p en atm.) Para o apartado b) borre as concentracións en equilibrio e escriba as novas concentracións iniciais: Cantidade inicial 0,5 0,05 0,05 0,04 mol/dm³ Concentración en equilibrio Volume Presión total *K*_c Constante de concentracións Temperatura 686 °C 0,516796 Calcular: Os resultados son: RESULTADOS 3 Cifras significativas: CO(g) +Concentración $CO_2(g) +$ $H_2O(g)$ $H_2(g)$ inicial 0,500 0,0450 0,0500 0,0400 mol/dm3 reacciona 0,0251 0,0251 mol/dm³ 0,0251 0,0251 0,0199 mol/dm³ equilibrio 0,475 0,0751 0,0651 Constantes $K_c = 0.517$ (Conc. en mol/L)

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

 $K_p = 0.517$

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

(p en atm.)

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 17/07/24

Sumario

EQUILIBRIO QUÍMICO EN FASE GAS

Con	datos do equilibrio1
1.	Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de Cl₂(g). Péchase,
	quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles
	de NOCl(g). Para o equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl ₂ (g) + NO(g), calcula:1
	a) O grao de disociación
	b) A concentración de cada gas
	c) O valor da constante K _c
	d) A presión parcial de cada gas
	e) A presión total
	f) O valor da constante K _p
2.	Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35
	$^{\circ}$ C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2$ $NO_2(g)$ e cando se alcanza o equilibrio
	a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado3
3.	Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gaso-
	sa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 4
	a) Calcula a K_c da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C
	b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean
	en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?
4.	Nun recipiente pechado introdúcense 2,0 moles de CH₄ e 1,0 mol de H₂S á temperatura de 727 °C,
	establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o
	equilibrio, a presión parcial do H_2 é 0,20 atm e a presión total é de 0,85 atm. Calcule:6
	a) Os moles de cada substancia no equilibrio e o volume do recipiente
	b) O valor de K _c e K _p
	constante como dato8
1.	Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concen-
	tracións en equilibrio das especies son: $[CO_2] = 0,086 \text{ mol/dm}^3$; $[H_2] = 0,045 \text{ mol/dm}^3$; $[CO] = 0,050 \text{ mol/dm}^3$;
	$mol/dm^3 e [H_2O] = 0,040 \ mol/dm^38$
	a) Calcula K _c para a reacción a 686 °C
	b) Se se engadise CO ₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concen-
	tracións de todos os gases unha vez restablecido o equilibrio?