

<u>Home</u> > Chemistry > Physical > Energetics > Average Bond Enthalpy

Average Bond Enthalpy

The average bond enthalpy of the C-F bond in tetrafluoromethane is given by the standard enthalpy change for one of the following reactions. Which one is it?

- $\bigcirc \quad 2\operatorname{F}_{2}\left(\mathrm{g}\right) + \operatorname{C}(\mathrm{s}) \longrightarrow \operatorname{CF}_{4}\left(\mathrm{g}\right)$
- $\bigcirc \quad \tfrac{1}{4}\operatorname{CF}_4(g) \longrightarrow \tfrac{1}{4}\operatorname{C}\left(g\right) + \operatorname{F}\left(g\right)$
- $CF_4(g) \longrightarrow CF_3(g) + F(g)$
- \bigcirc CF₄(s) \longrightarrow CF₄(g)
- $\bigcirc \quad \operatorname{CF_4(g)} \longrightarrow \operatorname{CF_3}^+(g) + \operatorname{F}^-(g)$

Adapted with permission from UCLES, OCSEB A Level Chemistry, June 1995, Paper 1, Question 10

<u>Home</u> > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F2.4

Essential Pre-Uni Chemistry F2.4

Given that the bond energy of H-H is $4.53\,\mathrm{eV}$, D-D is $4.59\,\mathrm{eV}$, and the energy change on reaction $H_2+D_2\longrightarrow 2\,\mathrm{HD}$ is $+0.02\,\mathrm{eV}$, find the bond energy of H-D. Give your answer to 3 significant figures.

Home > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F2.1

Essential Pre-Uni Chemistry F2.1

MEAN BOND ENTHALPIES ($(\mathrm{in}\;\mathrm{kJ}\mathrm{mol}^{-1})$	
------------------------	---	--

	`	/	
$_{ m H-H}$	436	C-Cl	327
C-H (average)	413	I–I	151.2
$\mathrm{C-H}$ (in $\mathrm{CH_4}$ and $\mathrm{CH_3X}$)	435	H–I	298.3
C-C	347	C-I	228
C=C	612	$\mathrm{Br}\mathrm{-Br}$	193
$\mathrm{C}\equiv\mathrm{C}$	838	H-Br	366.3
H-Cl	432	$N \equiv N$	945.4
Cl-Cl	243.4	O=O	498.3

Use the mean bond enthalpies given above to calculate the reaction enthalpies for the following reactions in the gas phase:

Part A (a)

 $H_2 + Cl_2 \longrightarrow 2\,HCl.$ Give your answer to 3 significant figures.

Part B (b)

 $H_2 + I_2 \longrightarrow 2\,HI.$ Give your answer to one significant figure.

Part C (c)

 $CH_4+Cl_2 \longrightarrow CH_3Cl+HCl.$ Give your answer to 2 significant figures.

<u>Home</u> > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F2.3

Essential Pre-Uni Chemistry F2.3

Use some of the following bond enthalpies in $kcal \, mol^{-1}$ to calculate the enthalpy changes for the reactions (in the gas phase):

C=C	146	$C\equiv O$	258
O=O	119	Н-О	111
С-Н	99	$_{ m H-H}$	104
C=O	178		

Part A (a)

 $C_2H_4+O_2 \longrightarrow 2\,CH_2O.$ Give your answer to 2 significant figures.

Part B (b)

 $CO + H_2O \longrightarrow CO_2 + H_2.$ Give your answer to 2 significant figures.

Part C (c)

 $\mathrm{CH_2O} \longrightarrow \mathrm{CO} + \mathrm{H_2}.$ Give your answer to 2 significant figures.

Home > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F2.2

Essential Pre-Uni Chemistry F2.2

MEAN BOND ENTHALPIES (in $kJ \text{ mol}^{-1}$)

$_{ m H-H}$	436	C-Cl	327
C-H (average)	413	I-I	151.2
$\mathrm{C-H}$ (in $\mathrm{CH_4}$ and $\mathrm{CH_3X}$)	435	$_{\mathrm{H-I}}$	298.3
C-C	347	C-I	228
C=C	612	$\mathrm{Br}\mathrm{-Br}$	193
$C \equiv C$	838	$_{ m H-Br}$	366.3
H-Cl	432	$N \equiv N$	945.4
Cl-Cl	243.4	O=O	498.3

Use the reaction enthalpies given (for the gas phase reaction), and the bond enthalpies above, to find the bond enthalpy requested:

Part A E(I-Cl)

 $I_2 + Cl_2 \longrightarrow 2\,ICl$

 $\Delta_{\rm r} H^{\circ} = -70.2\,{\rm kJ\,mol^{-1}}$, find $E({\rm I-Cl})$. Give your answer to 4 significant figures.

Part B E(C-Br)

$$CH_4 + Br_2 \longrightarrow CH_3Br + HBr$$

$$\Delta_{
m r} H^{\circ} = -28.3 \, {
m kJ \, mol^{-1}}$$
 , find $E({
m C-Br})$.

