Fouille de Données

Data Mining

Plan du cours

- 1. Régression / Estimation : Définition et principe
- 2. Régression linéaire simple.
- 3. Régression linéaire simple en utilisant le Gradient Descent.
- 4. Régression linéaire multiple

Classification: Algorithmes

SAVOIR - PREDIRE - DECIDER

Linear Regression

- La **régression** est la méthode utilisée pour l'estimation des valeurs **continues**. Tache supervisée.
- Son objectif est de trouver le meilleur modèle qui décrit la relation entre une variable continue de sortie et une ou plusieurs variables d'entrée.
- Prédire la valeur continue de la sortie Y selon une entrée X ou plusieurs entrées Xi (attributs). = Expliquer une variable Y à l'aide d'une variable X ou plusieurs variables Xi.
- Ex : prédire le cours de la bourse, le prix d'un appartement, ou bien l'évolution de la température sur Terre.
- Il s'agit donc de trouver une fonction f (=le modèle de régression) qui se rapproche le plus possible d'un scénario donné d'entrées et de sorties.
- Différents types de régression : linéaire, polynomiale, logistique (classification), Lasso, etc.

• Différents types de régression : linéaire, polynomiale.

- Régression linéaire : fonction f (modèle de régression) linéaire.
- Peut être : Simple ou Multiple.
- Linéaire **Simple** : utilisée pour estimer une sortie Y en fonction d'une seule entrée X.
- Linéaire **Multiple** : utilisée pour estimer une sortie Y en fonction de plusieurs entrées Xi.

- Régression **linéaire** : fonction f (modèle) linéaire.
- Peut être : Simple ou Multiple.
- Linéaire **Simple**: **Ex**: prédire le prix de vente d'un appartement (**Y**) en fonction de la surface habitable (**X**).
- Linéaire Multiple : Ex : prédire le prix de vente d'un appartement (Y) en fonction de la surface habitable (X1) et du nombre de pièces (X2).

- Régression **polynomiale**: fonction f (modèle de régression) non linéaire.
- Peut être : Simple ou Multiple.
- Polynomiale Simple : utilisée pour estimer une sortie Y en fonction d'une seule entrée X.
- Polynomiale **Multiple** : utilisée pour estimer une sortie Y en fonction de plusieurs entrées Xi.

Régression linéaire simple

- But: Trouver un modèle linéaire f(x)=b1x+b0 où b_1 et b_0 sont les hyperparamètres/coefficients du modèle.
- y = b1x + b0
- Trouver le meilleur modèle
 (Best fit line) =>
 - => Trouver les **meilleures** (optimales) valeurs des paramètres **b1** (**slope**) et **b0** (**intercept**).
- => Faire le **minimum d'erreurs** possible sur les prédictions de Y.

Régression linéaire simple

- But: Trouver un modèle linéaire f(x) = b1x + b0
- Exemple :

Régression linéaire simple

• But: Trouver un modèle linéaire y = b1x + b0

<u>Régression linéaire simple</u>	Hours	Grade
regression metalic simple	spent	
	on	
Exemple :	essay	
	6	82
 X = nombre d'heures passées à réviser 	10	88
• $\mathbf{Y} = \text{Note \'etudiant (/100)}$	2	56
	4	64
	6	77
Objectif:	7	92
Objecti .	0	23
	1	41
On souhaite savoir si, de façon générale, le nombre d'heur	es 8	80
passées à réviser a une influence sur la note obtenue et so	us 5	59
quelle forme cette influence peut être exprimée.	3	47
<u>-</u>		

Haura Crada

Le but est **d'expliquer** au mieux comment la note d'un étudiant varie en fonction du nombre d'heures de révision et éventuellement de **prédire** la note à partir d'un nombre d'heures donné.

Régression linéaire simple

Exemple: X = nombre d'heures de révision ---- Y = Note étudiant

Hours	Grade
spent	
on	
essay	
6	82
10	88
2	56
4	64
6	77
7	92
0	23
1	41
8	80
5	59
3	47

- Training Entrainement :
- 1 Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) selon :

$$b_{1} = \frac{\sum (x - \bar{x}) * (y - \bar{y})}{\sum (x - \bar{x})^{2}} = \frac{Covariance(x, y)}{Variance(x)}$$

$$b_{0} = \bar{y} - b_{1}\bar{x}$$

Régression linéaire simple – Etapes de base

Training - Entrainement :

1 - Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

		spent	
		on	
_		essay	
		6	82
$\sum (x - \bar{x}) \star (y - \bar{y}) \qquad Covariance(x,y)$		10	88
$b_1 = \frac{2}{3} + \frac{3}{3} = 3000000000000000000000000000000000000$		2	56
$b_1 = \frac{\sum (x - \bar{x}) \star (y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{Covariance(x, y)}{Variance(x)}$		4	64
		6	77
		7	92
		0	23
$h - \overline{y} - h \overline{z}$		1	41
$b_0 = \bar{y} - b_1 \bar{x}$		8	80
		5	59
_		3	47
	Mean	4.72	64.45

 \bar{x} \bar{y}

Hours Grade

spent

Mean 4.72 64.45 \overline{x} \overline{y}

1 - Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

Hours	Grade	Ī.
	Grade	ľ
spent		
on essay		L
6	82	
10	88	
2	56	
4	64	
6	77	
7	92	
0	23	
1	41	
8	80	
5	59	
3	47	

$$b_1 = \frac{\sum (x - \bar{x}) * (y - \bar{y})}{\sum (x - \bar{x})^2}$$

1 - Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

Hours	Grade	Hours spent – Average Hours Spent
spent		
on essax		$(x-\bar{x})$
6	82	1.27
10	88	5.27
2	56	-2.73
4	64	-0.73
6	77	1.27
7	92	2.27
0	23	-4.73
1	41	-3.73
8	80	3.27
5	59	0.27
3	47	-1.73

1 - Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

Hours /	Grade	Hours spent – Average Hours Spent	Grade – Average Grade
spent)	
on essay		$(x-\bar{x})$	$(y-\bar{y})$
6	82	1.27	17.55
10	88	5.27	23.55
2	56	-2.73	-8.45
4	64	-0.73	-0.45
6	77	1.27	12.55
7	92	2.27	27.55
0	23	-4.73	-41.45
1	41	-3.73	-23.45
8	80	3.27	15.55
5	59	0.27	-5.45
3	47	-1.73	-17.45

$$b = \frac{\sum (x - \bar{x}) \star (y - \bar{y})}{\sum (x - \bar{x})^2}$$

1 - Calculer les valeurs de ${\bf b1}$ (le slope) et ${\bf b0}$ (l'intercept) :

			T	Т
Hours	Grade	Hours spent – Average Hours Spent	Grade – Average Grade	
spent				
on essay		$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})\times(y-\bar{y})$
6	82	1.27	17.55	22.33
10	88	5.27	23.55	124.15
2	56	-2.73	-8.45	23.06
4	64	-0.73	-0.45	0.33
6	77	1.27	12.55	15.97
7	92	2.27	27.55	62.60
0	23	-4.73	-41.45	195.97
1	41	-3.73	-23.45	87.42
8	80	3.27	15.55	50.88
5	59	0.27	-5.45	-1.49
3	47	-1.73	-17.45	30.15

- Training Entrainement :
- 1 Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

$$b_1 = \frac{\sum (x - \bar{x}) \star (y - \bar{y})}{\sum (x - \bar{x})^2}$$

$$\sum (x-x^{-}) * (y-y^{-}) = 611.36$$

$$\Rightarrow b_1 = 611.36/94.18$$

$$\Rightarrow (x-x^{-}) ^2 = 94.18$$

- Training Entrainement :
- 1 Calculer les valeurs de **b1** (le slope) et **b0** (l'intercept) :

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b1 = 6.49$$

Mean 4.72 64.45
$$\overline{x}$$
 \overline{y}

- Training Entrainement :
- Trouver la droite : y = 6.49 * x + 33.81

Régression linéaire simple – Etapes de base

• **Prédiction**: Prédire la valeur Y (la note) d'un nouvel exemple (**X=6**) selon la fonction trouvée précédemment:

Régression linéaire simple – Etapes de base

• Evaluation du modèle : Prédire les nouvelles valeurs Y des exemples de la table d'entrainement, selon la fonction trouvée précédemment:

Hours Grade

spent on essay 6 82 10 88 2 56 4 64 6 77 7 92 0 23 1 41 8 80 5 59 3 47		Hours	Grade
$\mathbf{y} = 6.49 * \mathbf{x} + 33.81$ $6 82$ $10 88$ $2 56$ $4 64$ $6 77$ $7 92$ $0 23$ $1 41$ $8 80$ $5 59$		spent	
6 82 10 88 2 56 4 64 6 77 7 92 0 23 1 41 8 80 5 59		on	
y = 6.49 * x + 33.81 $10 88$ $2 56$ $4 64$ $6 77$ $7 92$ $0 23$ $1 41$ $8 80$ $5 59$		essay	
y = 6.49 * x + 33.81 2 56 4 64 6 77 7 92 0 23 1 41 8 80 5 59		6	82
y = 6.49 * x + 33.81 4 64 6 77 7 92 0 23 1 41 8 80 5 59		10	88
6 77 7 92 0 23 1 41 8 80 5 59	(40 * 1 00 04	2	56
7 92 0 23 1 41 8 80 5 59	$y = 6.49 \cdot x + 33.81$	4	64
0 23 1 41 8 80 5 59		6	77
1 41 8 80 5 59		7	92
8 80 5 59		0	23
5 59		1	41
		8	80
3 47		5	59
5 47		3	47

Predicted Grade		
72.716216		
98.681467		
46.750965		
59.733591		
72.716216		
79.207529		
33.768340		
40.259653		
85.698842		
66.224903		
53.242278		

Régression linéaire simple – Etapes de base

• Evaluation du modèle : Prédire les nouvelles valeurs Y des exemples de la table d'entrainement, selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade
spent	
on	
essay	
6	82
10	88
2	56
4	64
6	77
7	92
0	23
1	41
8	80
5	59
3	47

Predicted Grade
72.716216
98.681467
46.750965
59.733591
72.716216
79.207529
33.768340
40.259653
85.698842
66.224903
53.242278

En bleu : vraie valeur - y
En rouge : valeur prédite - y_pred

Régression linéaire simple – Etapes de base

 Evaluation du modèle : Prédire les nouvelles valeurs Y des exemples de la table d'entrainement, selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade	Predicted Grade
spent		72.716216
on essay		98.681467
6	82	46.750965
10	88	59.733591
2	56	72.716216
4	64	
6	77	79.207529
7	92	33.768340
0	23	
1	41	40.259653
8	80	85.698842
5	59	66.224903
3	47	53.242278
		55.272270

Régression linéaire simple – Etapes de base

 Evaluation du modèle : Prédire les nouvelles valeurs Y des exemples de la table d'entrainement, selon la fonction trouvée précédemment:

$$y = 6.49 * x + 33.81$$

Hours	Grade	Predicted Grade
spent		72.716216
on		98.681467
essay		30.001107
6	82	46.750965
10	88	59.733591
2	56	
4	64	72.716216
6	77	79.207529
7	92	33.768340
0	23	
1	41	40.259653
8	80	85.698842
5	59	66.224903
3	47	
	- •	53.242278

Régression linéaire simple – Etapes de base

• Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)):

Régression linéaire simple – Etapes de base

• Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)) :

- **Evaluation du modèle** de régression en estimant les **erreurs** sur les prédictions y_pred (i.e. f(x)) :
- Différentes fonctions de coût permettant d'estimer l'erreur d'un modèle.
- Ex: MAE Mean Absolute Error / l'erreur absolue moyenne.

- Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)) :
- Différentes fonctions de coût permettant d'estimer l'erreur d'un modèle.
- Ex: MSE Mean Squared Error / l'erreur quadratique moyenne.
- Ex: RMSE Root Mean Squared Error / sqrt (l'erreur quadratique moyenne).

$$MSE = \frac{1}{n} \sum \left(y - \widehat{y} \right)^{2}$$
The square of the difference between actual and predicted

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- Evaluation du modèle de régression en estimant les erreurs sur les prédictions \mathbf{y} _**pred** (i.e. f(x)):
- y_pred = b1x + b0 + err

Régression linéaire simple – Etapes de base

Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)) :

$$e_i = Y_i - \widehat{Y}_i$$

$$Ex : (y_pred - y) = 85.698842 - 80 = +5.698842$$

Le modèle trouvé a fait une erreur err de +5.698842 sur l'exemple (8, 80) du dataset.

Régression linéaire simple – Etapes de base

 Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)) :

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$=>$$
 RMSE $= 8.125$

Chaque prédiction (exemple/datapoint) s'accompagne d'une erreur, on a donc *n* **erreurs**.

Régression linéaire simple – Etapes de base

- Evaluation du modèle de régression en estimant les erreurs sur les prédictions y_pred (i.e. f(x)).
- Quel est **le meilleur modèle** ? Laquelle de ces droites est la droite la mieux ajustée (performante) ?

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Chaque prédiction (exemple/datapoint) s'accompagne d'une erreur, on a donc *n* **erreurs**.

- Minimiser l'erreur en minimisant la fonction coût:
- y = bix + bo + err => Ramener err vers zéro => RMSE le plus petit possible
 - Le but est de trouver les meilleures (**optimales**) estimations des coefficients **bo** et **b1** pour minimiser les erreurs de prédiction de y.

Régression linéaire simple – Etapes de base

- Minimiser l'erreur en minimisant la fonction coût:
- y = b1x + b0 + err => Ramener err vers zéro => RMSE le plus petit possible
 - Le but est de trouver les meilleures (**optimales**) estimations des coefficients **bo** et **b1** pour minimiser les erreurs de prédiction de y.

Minimiser l'erreur →

Problème d'optimisation →

Itérer les étapes précédentes en utilisant un algorithme d'optimisation cherchant à minimiser la fonction coût.

which of these lines is the best fit line?

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Gif: https://miro.medium.com/max/1400/1*CjTBNFUEI_lokEOXJoozKw.gif

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex : Algorithme de Gradient Descent (Descente du Gradient)

Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- Modèle linéaire avec f(x): y = m * x + c y_{vrai} y_{pred}
- Fonction cout : **MSE** Mean Squared Error $=\frac{1}{n}\sum_{i=0}^{n}(y_i-\bar{y}_i)^2$
- 1 Initialiser les paramètres m et c à o : m = o et c = o (m est b1 et c est b0)
- 2 Choisir et fixer le nombre d'itération (*epochs*) et *learning_rate*.
- 3 Calculer les prédictions y_pred pour chaque exemple dans le dataset, selon : $y_pred = m * x + c$
- 4 Calculer le gradient : i.e. les dérivées partielles **Dm** et **Dc**.
- $\mathbf{5}$ Mettre à jour les valeurs de \mathbf{m} et de \mathbf{c} en fonction du gradient.
- Répéter (3 4 5) epochs fois afin de le minimiser gradient et optimiser m, c

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- Modèle linéaire avec $\mathbf{f(x)}$: $\mathbf{y} = \mathbf{m} * \mathbf{x} + \mathbf{c}$ Fonction cout : \mathbf{MSE} Mean Squared Error $= \frac{1}{n} \sum_{i=1}^{n} (y_i \bar{y}_i)^2$
- **1** Initialiser les paramètres m et c à o : m = o et c = o (m est b1 et c est b0)
- 2 Choisir et fixer le nombre d'itération (epochs) et learning_rate.
- 3 Calculer les prédictions y_pred pour chaque exemple dans le dataset, selon : $y_pred = m * x + c$

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- 4 Calculer le gradient : i.e. les dérivées partielles **Dm** et **Dc** :
- **Dm** : Dérivée partielle de la fonction coût selon le paramètre m
- Dc: Dérivée partielle de la fonction coût selon le paramètre c

$$Cost\ Function(MSE) = \frac{1}{n} \sum_{i=0}^{n} (y_i - y_{i\ pred})^2$$

Replace $y_{i pred}$ with $mx_i + c$

Cost Function(MSE) =
$$\frac{1}{n} \sum_{i=0}^{n} (y_i - (mx_i + c))^2$$

Cost Function(MSE) =
$$\frac{1}{n}\sum_{i=0}^{n}(y_i-y_{i\ pred})^2$$

$$D_m=\frac{1}{n}\sum_{i=0}^{n}2(y_i-(mx_i+c))(-x_i)$$

$$= \frac{-2}{n} \sum_{i=0}^{n} x_i (y_i - y_{i pred})$$

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

- **4** Calculer le gradient : i.e. les dérivées partielles **Dm** et **Dc** :
- Dm : Dérivée partielle de la fonction coût selon le paramètre m
- **Dc** : Dérivée partielle de la fonction coût selon le paramètre c

$$D_m = rac{1}{n} \sum_{i=0}^n 2(y_i - (mx_i + c))(-x_i)$$

$$= \frac{-2}{n} \sum_{i=0}^{n} x_i (y_i - y_{i pred})$$

$$D_c = rac{-2}{n} \sum_{i=0}^n (y_i - ar{y}_i)$$

Régression linéaire simple – Utilisation d'un algorithme d'optimisation

Ex : Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

5 - Mettre à jour les valeurs de m et de c en fonction du gradient et du learning rate L, comme suit :

$$m=m-L imes D_m$$

$$c = c - L \times D_c$$

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

5 – Mettre à jour les valeurs de m et de c en fonction du gradient et du learning rate L, comme suit :

$$m=m-L imes D_m$$

$$c = c - L \times D_c$$

Répétez les étapes (3, 4, et 5) *epochs* fois; jusqu'à ce que la fonction de coût a une <u>très petite valeur ou idéalement = 0</u> (ce qui signifie o erreur ou 100% de précision).

<u>Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**</u>

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Etapes:

5 – Mettre à jour les valeurs de m et de c en fonction du gradient et du learning rate L, comme suit :

$$m=m-L imes D_m$$

$$c = c - L \times D_c$$

Répétez les étapes (3, 4, et 5) *epochs* fois; jusqu'à ce que la fonction de coût a une <u>très petite valeur ou idéalement = 0</u> (ce qui signifie o erreur ou 100% de précision).

Les dernières valeurs de **m** et de **c** trouvées représentent leurs valeurs optimales.

Régression linéaire simple – **Utilisation d'un algorithme d'optimisation**

Ex: Algorithme de Gradient Descent (Descente du Gradient)

Entrainement et Exécution sur l'exemple précédent:

On pose : epochs = 11 et l_rate = 0.01

```
>epoch=0, lrate=0.010, m=7.205455, c=1.289091

>epoch=1, lrate=0.010, m=9.834750, c=1.871157

>epoch=2, lrate=0.010, m=10.783632, c=2.192994

>epoch=3, lrate=0.010, m=11.115504, c=2.418682

>epoch=4, lrate=0.010, m=11.220881, c=2.608478

>epoch=5, lrate=0.010, m=11.243171, c=2.784517

>epoch=6, lrate=0.010, m=11.235038, c=2.954926

>epoch=7, lrate=0.010, m=11.215822, c=3.122697

>epoch=8, lrate=0.010, m=11.192622, c=3.288929

>epoch=9, lrate=0.010, m=11.168048, c=3.454030

>epoch=10, lrate=0.010, m=11.143055, c=3.618152

>epoch=11, lrate=0.010, m=11.117996, c=3.781355
```


$$f(x): y = m * x + c$$

La régression linéaire multiple

Régression linéaire multiple:

La régression linéaire multiple utilisée pour estimer une sortie en fonction de **plusieurs entrées** X n'est qu'une extension de la précédente:

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

Dependent variable (DV) Independent variables (IVs)
$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_n$$
Constant Coefficients

La régression linéaire multiple

<u>Régression linéaire multiple</u>: $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_n X_{ni}$

 La régression linéaire multiple utilisée pour estimer une sortie en fonction de plusieurs entrées X n'est qu'une extension de la précédente. Ex:

La régression linéaire multiple

<u>Régression linéaire multiple</u>: $Y_i = \beta_0 + \beta_1 X_{1i} + \cdots + \beta_n X_{ni}$

La régression linéaire multiple utilisée pour estimer une sortie en fonction de **plusieurs entrées X** n'est qu'une extension de la précédente. Ex:

$$sales = \beta_0 + \beta_1 TV + \beta_2 radio + \beta_3 newspaper$$

Calcul et optimisation des paramètres du modèle : bo, b1, b2, , bn.

$$\widehat{y} = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n + \xi$$
target
random error

Références

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Références

- https://www.technologynetworks.com/informatics/articles/calculating-a-least-squares-regression-line-equation-example-explanation-310265
- https://machinelearningmastery.com/simple-linear-regression-tutorialfor-machine-learning/
- https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931
- https://machinelearningmastery.com/implement-simple-linear-regressionscratch-python/