MTH 416: Lecture 7

Cliff Sun

September 17, 2024

Lecture Span

• Bases & dimensions

Theorem 0.1. If V has a finite spanning set, then it has a finite basis.

Proof. Suppose that V is spanned by $S = \{u_1, \dots, u_k\}$, then by a theorem from last class, there exists some linearly independent subset of S, β , such that

$$span(\beta) = span(S) = V \tag{1}$$

Fact: Every vector space has a basis

Theorem 0.2. Let V be a vector space containing

- 1. Spanning set G consisting of n vectors
- 2. A linearly independent set L containing of m vectors

Then:

- 1. $m \leq n$, and
- 2. There exists a subset $H \subseteq G$ that contains m-n vectors such that $H \cup L$ spans V.

Ideas:

- 1. $m \leq dim(V) \leq n$
- 2. Any linearly independent set can be substituted into any spanning set the result still spanning the vector space.

Corollary 0.3. If V has a finite basis, all basis of V are finite \mathcal{E} exactly the same size.

Proof. Suppose V has a finite basis $\beta = \{u_1, \dots, u_n\}$. And some other basis γ . We need to prove that γ is finite and γ has the smae size as β .

Finite

Suppose by contradiction that γ is infinite. Choose some $\gamma' \subset \gamma$ consisting of n+1 vectors. By homework 3, γ' is also linearly independent. Applying the replacement theorem $G = \beta$ and $L = \gamma'$. Then $m \leq n$ and $m = n+1 \leq n$ which is a contradiction.

$$\#(\gamma) = \#(\beta)$$

Applying the replacement theorem, we let $G = \beta$ and $L = \gamma$, then $m \le n$ but similar $G = \gamma$ and $L = \beta$, then $n \le m$. Thus n = m. Thus this proves the corallary.

Therefore, this let's us define

- 1. V is <u>finite-dimensional</u> if it has a finite basis (if and only if it has a finite spanning set)
- 2. If V is finite dimensional, then we define its # of dimensions to be the number of vectors in any basis.

Theorem 0.4. Suppose that W is a subspace of V, where V is finite dimensional. Then

- 1. $dim(W) \leq dim(V)$
- 2. $\dim(W) = \dim(V) \iff W = V$

Proof. Let $\beta_v = \{v_1, \dots, v_k\}$ be a basis of V. Assume that W has a finite basis $\beta_w = \{w_1, \dots, w_m\}$. Applying the replacement theorem to $G = \beta_v$ and $L = \beta_w$, we're given that $m \le n \iff dim(W) \le dim(V)$, if m = n, then part 2 of the replacement theorem says that some set $H = \emptyset$ union with β_w spans V. In particular, that means that β_w spans V. Then $W = span(\beta_w) = V$.

So how do we know that W has a finite basis?

Proof. Procedure to build one:

- 1. Start with $S = \emptyset$
- 2. As long as the $span(S) \neq W$, add S one vector in W which is not already in span(S).

One can verify that the set S is linearly independent at each step. By the replacement theorem, this must stop before S contains n+1 vectors. It stops when span(S)=W and S is linearly dependent. In other words, S is a basis and is finite dimensional.

Some more collaries from the replacement theorem: if dim(V) = n, then

- 1. Every spanning set of V contains $\geq n$ vectors, and has a basis as a subset
- 2. Every linearly independent set contains at most n vectors, and can be enlarged to a basis.
- 3. Given a set of n vectors, we claim that it is linearly independent iff it spans V.

Let's prove the replacement theorem:

Proof. Induction on m, namely starting at m=0.

Base case

If m = 0, then $L = \emptyset$, clearly $0 \le n$. Then choose H = G, then $H \cup L = H$ and H = G, and the theorem assumed that G was a spanning set. Thus we have proved the base case.

Inductive step

Assume that the theorem is true for some value of m, then we claim it to be true for m+1. Given a spanning set $G=\{u_1,\ldots,u_n\}$ and $L=\{v_1,\ldots,v_{m+1}\}$. Set $L'=\{v_1,\ldots,v_m\}\subset L$. By HW 3, we have that L' is linearly independent. Plugging G and L' into the inductive hypothesis, $m\leq n$ and we can substitute L' into G to get a spanning set. That is after relabeling the vectors $u_i's$ $\{v_1,\ldots,v_m,u_1,\ldots,u_{n-m}\}=V$. It follows that $v_{m+1}=a_1v_1+a_mv_m+b_1u_1+b_{n-m}u_{n-m}$ for some constants $a_i,b_i\in\mathbb{R}$. Because L is linearly independent, then v_{m+1} is not a linear combination of v_1,\ldots,v_m . Thus, at least one $b_j\neq 0$. WLOG let $b_1\neq 0$. In particular, n-m>0, thus n>m which proves statement 1. For 2, I claim that

$$span(v_1, \dots, v_{m+1}, u_2, \dots, u_{n-m}) = V$$
 (2)

We claim that u_1 is also in this span. Since you can solve for u_1 using

$$v_{m+1} = a_1 v_1 + a_m v_m + b_1 u_1 + b_{n-m} u_{n-m}$$
(3)

Thus V is spanned by these vectors. This concludes the proof.