Definition 1. A set is just a collection of objects satisfying certain properties. If an object(say x) is belong to a set(say A), then we say x is an element of A, and denote it as $x \in A$.

Definition 2. A set A is an subset of B if $\forall x \in A$, then $x \in B$. And we denote this by $A \subseteq B$. Moreover, if A is an subset of B and there A does not contain all elements of B, we call A as a proper subset of B, and we denote this by $A \subset B$.

Example 1. Let $A = \{0, 1, 2, 3, 4, 5\}$. Then

$$2 \in A$$
$$3, 4, 5 \in A$$
$$0, 1 \subset A$$
$$0, 3, 4, 5 \subset A$$

Important sets

Example 2.

 \mathbb{N} is the set of all natural numbers.

 \mathbb{Z} is the set of all integers.

 \mathbb{Q} is the set of all real numbers.

 \mathbb{R} is the set of all rational numbers.

 $\mathbb{R}\backslash\mathbb{Q}$ is the set of all irrational numbers.

Curly Bracket notation

Example 3. $\{x|x>4\}$ is the set of real number x, such that x is greater than λ .

Example 4. $\{x \in \mathbb{Q} | x < -1\}$ is the set of rational numbers x such that x is less that -1.

Interval notation

Example 5. [1,2] is the set of all real numbers between 1 and 2, including the end points 1 and 2.

(-1,2) is the set of all real numbers between -1 and 2, excluding the end points 1 and 2.

(-1,3] is the set of all real numbers between -1 and 3, endpoint 3 is included but -1 is excluded.

[-2,3) is the set of all real numbers between -2 and 3, -2 is included but 3 is excluded.

 $[0,\infty)$ is the set of all real numbers from 0 to ∞ , 0 is included.

 $(-\infty, 1]$ is the set of all real numbers from $-\infty$ to 1, 1 is included.

Set Operations

There are 3 basic operations we have to learn.

Definition 3. Union of two sets A and B, $A \cup B$ is defined by joining all elements in set A and B together.

Example 6. Let A = [3, 5), and $B = [5, \infty)$, then $A \cup B = [3, \infty)$

Definition 4. Intersection of two sets A and B, $A \cap B$ is defined by taking the intersection (common part) of two sets.

Example 7. Let A = [3, 5] and B = (-2, 4), then $A \cap B = [3, 4)$.

Definition 5. Difference between two sets A and B, usually denoted by $A \setminus B$ or A - B, is defined by taking all elements of A except those are also belong to B.

Example 8. The set of all irrational numbers consists of all real numbers that are not rational. In other words, $\mathbb{R}\setminus\mathbb{Q}$ (or maybe you can denote it by $\mathbb{R}-\mathbb{Q}$).