Dependency Parsing

Dr. Dheeraj, MU

Overview

- What is dependency parsing?
- Two families of algorithms
 - Transition-based dependency parsing
 - Graph-based dependency parsing

Constituency vs dependency structure

Dependency structure

- Consists of relations between lexical items, normally *binary*, *asymmetric* relations ("arrows") called **dependencies**
- The arrows are commonly typed with the name of grammatical relations (subject, prepositional object, apposition, etc)
- The arrow connects a **head** (governor) and a **dependent** (modifier)
- Usually, dependencies form a tree (single-head, connected, acyclic)

Dependency relations

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

Dependency relations

Relation	Examples with <i>head</i> and dependent		
NSUBJ	United canceled the flight.		
DOBJ	United diverted the flight to Reno.		
	We booked her the first flight to Miami.		
IOBJ	We booked her the flight to Miami.		
NMOD	We took the morning <i>flight</i> .		
AMOD	Book the cheapest <i>flight</i> .		
NUMMOD	Before the storm JetBlue canceled 1000 flights.		
APPOS	United, a unit of UAL, matched the fares.		
DET	The flight was canceled.		
	Which flight was delayed?		
CONJ	We flew to Denver and drove to Steamboat.		
CC	We flew to Denver and drove to Steamboat.		
CASE	Book the flight through <i>Houston</i> .		

(de Marneffe and Manning, 2008): Stanford typed dependencies manual

Advantages of dependency structure

More suitable for free word order languages

Advantages of dependency structure

- More suitable for free word order languages
- The predicate-argument structure is more useful for many applications

Relation: per:city of death

Benoit B. Mandelbrot, a maverick mathematician who developed an innovative theory of roughness and applied it to physics, biology, finance and many other fields, died Thursday in *Cambridge*, Mass.

Relation: per:employee of

In a career that spanned seven decades, Ginzburg authored several groundbreaking studies in various fields — such as quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth's atmosphere — that were of "Nobel Prize caliber," said Gennady Mesyats, the director of the *Lebedev Physics Institute* in Moscow, where **Ginzburg** worked .

Relation: *org:founded_by*

Anil Kumar, a former director at the consulting firm McKinsey & Co, pleaded guilty on Thursday to providing inside information to *Raj Rajaratnam*, the founder of the Galleon Group, in exchange for payments of at least \$ 175 million from 2004 through 2009.

Dependency parsing

Input:

Output:

I prefer the morning flight through Denver

- A sentence is parsed by choosing for each word what other word is it a dependent of (and also the relation type)
- We usually add a fake ROOT at the beginning so every word has one head
- Usually some constraints:
 - Only one word is a dependent of ROOT
 - No cycles: A -> B, B -> C, C -> A

Dependency treebanks

- The major English dependency treebank: converting from Penn Treebank using rule-based algorithms
 - (De Marneffe et al, 2006): Generating typed dependency parses from phrase structure parses
 - (Johansson and Nugues, 2007): Extended Constituent-todependency Conversion for English
- Universal Dependencies: more than 100 treebanks in 70 languages were collected since 2016

Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200 contributors producing more than 100 treebanks in over 70 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

https://universaldependencies.org/

Universal Dependencies

→ >	Afrikaans	1	49K	< 0	IE, Germanic
) <u></u>	Akkadian	1	1K		Afro-Asiatic, Semitic
→ <u>**</u>	Amharic	1	10K	△ <i>5</i> /⊞6	Afro-Asiatic, Semitic
) <u>=</u>	Ancient Greek	2	416K	A #0	IE, Greek
	Arabic	3	1,042K		Afro-Asiatic, Semitic
₩					
. 1912	Armenian	1	36K	879	IE, Armenian
	Assyrian	1	<1K	90	Afro-Asiatic, Semitic
<u> </u>	Bambara	1	13K	9	Mande
→	Basque	1	121K		Basque
—	Belarusian	1	13K		IE, Slavic
→ =	Breton	1	10K	8790 5W	IE, Celtic
—	Bulgarian	1	156K		IE, Slavic
→	Buryat	1	10K		Mongolic
→ ★	Cantonese	1	13K	Q	Sino-Tibetan
—	Catalan	1	531K	Qii	IE, Romance
→ 2	Chinese	5	161K		Sino-Tibetan
	Classical Chinese	1	55K	0	Sino-Tibetan
→	Coptic	1	25K	≜ €0	Afro-Asiatic, Egyptian
- ·	Croatian	1	199K	■♀ W	IE, Slavic
→	Czech	5	2,222K	₽<!--</b-->™0ÛW	IE, Slavic
→	Danish	2	100K	800 0	IE, Germanic
→ <u>=</u>	Dutch	2	307K	■W	IE, Germanic
	English	6	603K		IE, Germanic
-	Erzya	1	15K	8	Uralic, Mordvin
—	Estonian	2	461K	∰B⊞O∧Q	Uralic, Finnic
→ H	Faroese	1	10K	W	IE, Germanic
→ H	Finnish	3	377K	#B/ !!!W</td <td>Uralic, Finnic</td>	Uralic, Finnic
→ □	French	8	1,156K	#<₽©0©>W	IE, Romance
→ N	Galician	2	164K	≡0</td <td>IE, Romance</td>	IE, Romance
—	German	4	3,409K	⊞6 ∂ Q W	IE, Germanic
→ 2	Gothic	1	55K	•	IE, Germanic
→ !	Greek	1	63K		IE, Greek
→ <u>-</u>	Hebrew	1	161K	Qi .	Afro-Asiatic, Semitic
—	Hindi	2	375K	₽W	IE, Indic
T	Hindi English	1	26K	2	Code switching
	Hungarian	1	42K		Uralic, Ugric
	Indonesian	2	141K	₩	Austronesian, Malayo-Sumbawan
—	Irish	1	23K	8 < 9	IE, Celtic
—	Italian	6	781K	★ⅢO NW	IE, Romance
•	Japanese	5	1,688K	##@OOW	Japanese
	Karelian	1	3K	■69	Uralic, Finnic
	Kazakh	1	10K	BeW	Turkic, Northwestern
	Komi Zyrian	2	3K		Uralic, Permic
[Park]	•	5	446K		Korean
→ (**)	Korean	,	770K		Notedia

Universal Dependencies

Manning's Law:

- UD needs to be satisfactory for analysis of individual languages.
- UD needs to be good for linguistic typology.
- UD must be suitable for rapid, consistent annotation.
- UD must be suitable for computer parsing with high accuracy.
- UD must be easily comprehended and used by a non-linguist.
- UD must provide good support for downstream NLP tasks.

Two families of algorithms

Transition-based dependency parsing

• Also called "shift-reduce parsing"

Graph-based dependency parsing

Input buffer

Two families of algorithms

		Test	
Parser		UAS	LAS
(Chen and Manning, 2014)		91.8	89.6
(Dyer et al., 2015)		93.1	90.9
(Ballesteros et al., 2016)	$ _{\mathbf{T}}$	93.56	92.41
(Weiss et al., 2015)	1	94.26	91.42
(Andor et al., 2016)		94.61	92.79
(Ma et al., 2018) §		95.87	94.19
(Kiperwasser and Goldberg, 2016a) §		93.0	90.9
(Kiperwasser and Goldberg, 2016b)		93.1	91.0
(Wang and Chang, 2016)		94.08	91.82
(Cheng et al., 2016)	G	94.10	91.49
(Kuncoro et al., 2016)		94.26	92.06
(Zheng, 2017) §		95.53	93.94
(Dozat and Manning, 2017)		95.74	94.08
Baseline	G	95.68	93.96
Our Model §	0	95.97	94.31

T: transition-based / G: graph-based

Evaluation

- Unlabeled attachment score (UAS)
 - = percentage of words that have been assigned the correct head
- Labeled attachment score (LAS)
 - = percentage of words that have been assigned the correct head & label

UAS = ? LAS = ?

Projectivity

• **Definition**: there are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance dependencies or in languages with flexible word order.

Dataset	# Sentences	(%) Projective
English	39,832	99.9
Chinese	16,091	100.0
Czech	72,319	76.9
German	38,845	72.2

This class: focuses on projective parsing

Transition-based dependency parsing

- The parsing process is modeled as a sequence of transitions
- A configuration consists of a stack s, a buffer b and a set of dependency arcs A: c = (s, b, A)
- Initially, $s = [ROOT], b = [w_1, w_2, ..., w_n], A = \emptyset$
- Three types of transitions (s_1 , s_2 : the top 2 words on the stack; b_1 : the first word in the buffer)
 - LEFT-ARC (r): add an arc ($s_1 \stackrel{r}{\rightarrow} s_2$) to A, remove s_2 from the stack
 - RIGHT-ARC (r): add an arc $(s_2 \xrightarrow{r} s_1)$ to A, remove s_1 from the stack
 - SHIFT: move b_1 from the buffer to the stack
- A configuration is terminal if s = [ROOT] and $b = \emptyset$

This is called "Arc-standard"; There are other transition schemes...

"Book me the morning flight"

A running example

	stack	buffer	action	added arc
O	[ROOT]	[Book, me, the, morning, flight]	SHIFT	
1	[ROOT, Book]	[me, the, morning, flight]	SHIFT	
2	[ROOT, Book, me]	[the, morning, flight]	RIGHT-ARC(iobj)	(Book, iobj, me)
3	[ROOT, Book]	[the, morning, flight]	SHIFT	
4	[ROOT, Book, the]	[morning, flight]	SHIFT	
5	[ROOT, Book, the, morning]	[flight]	SHIFT	
6	[ROOT, Book, the,morning,flight]		LEFT-ARC(nmod)	(flight,nmod,morning)
7	[ROOT, Book, the, flight]	[]	LEFT-ARC(det)	(flight,det,the)
8	[ROOT, Book, flight]	[]	RIGHT-ARC(dobj)	(Book,dobj,flight)
9	[ROOT, Book]	[]	RIGHT-ARC(root)	(ROOT,root,Book)
10	[ROOT]	[]		

Transition-based dependency parsing

Dependency Parsing

Transition-based dependency parsing

How many transitions are needed? How many times of SHIFT?

Correctness:

- For every complete transition sequence, the resulting graph is a projective dependency forest (soundness)
- For every projective dependency forest G, there is a transition sequence that generates G (completeness)

- However, one parse tree can have multiple valid transition sequences. Why?
 - "He likes dogs"
 - Stack = [ROOT He likes]
 - Buffer = [dogs]
 - Action = ??

Train a classifier to predict actions!

- Given $\{x_i, y_i\}$ where x_i is a sentence and y_i is a dependency parse
- For each x_i with n words, we can construct a transition sequence of length 2n which generates y_i , so we can generate 2n training examples: $\{(c_k, a_k)\}$ c_k : configuration, a_k : action
 - "shortest stack" strategy: prefer LEFT-ARC over SHIFT.

```
Given this information, the oracle chooses transitions as follows: LEFTARC(r): if (S_1 r S_2) \in R_p RIGHTARC(r): if (S_2 r S_1) \in R_p and \forall r', w \ s.t. (S_1 r' w) \in R_p then (S_1 r' w) \in R_c SHIFT: otherwise
```

• The goal becomes how to learn a classifier from c_i to a_i

Train a classifier to predict actions!

• During testing, we use the classifier to repeat predicting the action, until we reach a terminal configuration

```
function DEPENDENCYPARSE(words) returns dependency tree

state ← {[root], [words], [] } ; initial configuration

while state not final

t ← Classifier (state) ; choose a transition operator to apply

state ← APPLY(t, state) ; apply it, creating a new state

return state
```

- This is also called "greedy transition-based parsing" because we always make a local decision at each step
 - It is very fast (linear time!) but less accurate
 - Can easily do beam search

MaltParser

- Extract features from the configuration
- Use your favorite classifier: logistic regression, SVM...

Source	Feature templates		
One word	$s_1.w$	<i>s</i> ₁ . <i>t</i>	$s_1.wt$
	$s_2.w$	$s_2.t$	$s_2.wt$
	$b_1.w$	$b_1.w$	$b_0.wt$
Two word	$s_1.w \circ s_2.w$	$s_1.t \circ s_2.t$	$s_1.t \circ b_1.w$
	$s_1.t \circ s_2.wt$	$s_1.w \circ s_2.w \circ s_2.t$	$s_1.w \circ s_1.t \circ s_2.t$
	$s_1.w \circ s_1.t \circ s_2.t$	$s_1.w \circ s_1.t$	

w: word, t: part-of-speech tag

MaltParser

Feature templates

$$s_{2} \cdot w \circ s_{2} \cdot t$$

 $s_{1} \cdot w \circ s_{1} \cdot t \circ b_{1} \cdot w$
 $lc(s_{2}) \cdot t \circ s_{2} \cdot t \circ s_{1} \cdot t$
 $lc(s_{2}) \cdot w \circ lc(s_{2}) \cdot l \circ s_{2} \cdot w$

Features

$$s_2 \cdot w = \text{has} \circ s_2 \cdot t = \text{VBZ}$$

 $s_1 \cdot w = \text{good} \circ s_1 \cdot t = \text{JJ} \circ b_1 \cdot w = \text{control}$
 $lc(s_2) \cdot t = \text{PRP} \circ s_2 \cdot t = \text{VBZ} \circ s_1 \cdot t = \text{JJ}$
 $lc(s_2) \cdot w = \text{He} \circ lc(s_2) \cdot l = \text{nsubj} \circ s_2 \cdot w = \text{has}$

Usually a combination of 1-3 elements from the configuration Binary, sparse, millions of features

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

More feature templates

```
# From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }
# From word pairs
guad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
triple { stack.tag input.tag input.word }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }
# From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }
# Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }
```

```
# valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }
# unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}
# third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1)
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1).
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1)
# label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1)
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1).
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(
quad { input.tag input.child(-1).label input.child(-1).sibling(1)
```

Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Parsing with neural networks

- Used pre-trained word embeddings
- Part-of-speech tags and dependency labels are also represented as vectors
- No feature template any more!

A simple feedforward NN: what is left is backpropagation!

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks

Further improvements

- Bigger, deeper networks with better tuned hyperparameters
- Beam search
- Global normalization

Method	UAS	LAS (PTB WSJ SD 3.3)
Chen & Manning 2014	92.0	89.7
Weiss et al. 2015	93.99	92.05
Andor et al. 2016	94.61	92.79

Google's SyntaxNet and the Parsey McParseFace (English) model

Announcing SyntaxNet: The World's Most Accurate Parser Goes Open Source

Thursday, May 12, 2016

Handling non-projectivity

- The arc-standard algorithm we presented only builds projective dependency trees
- Possible directions:
 - Give up!
 - Post-processing
 - Add new transition types (e.g., SWAP)
 - Switch to a different algorithm (e.g., graph-based parsers such as MSTParser)

Graph-based dependency parsing

• **Basic idea**: let's predict the dependency tree directly

$$Y^* = argmax_{Y \in \Phi(X)} score(X, Y)$$

X: sentence, Y: any possible dependency tree

• Factorization:

$$score(X, Y) = \sum_{e \in Y} score(e) = \sum_{e \in Y} w^{\dagger} f(e)$$

• **Inference**: finding maximum spanning tree (MST) for weighted, directed graph