

Winning Space Race with Data Science

Li Ma May 27, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- We have used the following methods:
 - Data Collection using API and Web Scrapping
 - Data Wrangling
 - Explorative Data Analysis using SQL and Data Visualization
 - Interactive Visual Analytics and Dashboards
 - Machine Learning
- We have obtained the following results:
 - We have collected data from public resources
 - We have found the best features to predict launching result
 - We have established models for prediction using Machine Learning

Introduction

- The company SpaceX is very successful and our object is to help the company SpaceY to compete with SpaceX
- Our tasks:
 - Determine the price of each launch
 - Predict whether SpaceX will reuse the first stage

Methodology

Executive Summary

- Data collection methodology:
 - From the API of SpaceX and scrapping websites
- Perform data wrangling
 - Fill in missing data and add new columns to the data frame using original data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Divide data into training and test sets, train models on the training set and evaluate them on the test set.

Data Collection

- We collect data from the SpaceX API
- We also collect data from scrapping webpages on Wikipedia

Data Collection - SpaceX API

 Use 'get' command to download data from the SpaceX API in json format, then convert it to pandas data frame

GitHub
 URL: https://github.com/limabielefel
 d/coursera_homework/blob/8e5640
 468a5a13dba316ba4f07d9c40c6be6
 5bbe/Applied%20Data%20Science%2
 OCapstone/1.jupyter-labs-spacex data-collection-api.ipynb

Data Collection - Scraping

- Download webpage from wikipedia to a BeautifulSoup object, then extract data from the tables inside
- GitHub URL:
 https://github.com/limabielefe
 ld/coursera_homework/blob/8
 e5640468a5a13dba316ba4f07
 d9c40c6be65bbe/Applied%20
 Data%20Science%20Capstone/
 2.jupyter-labs-webscraping.ipynb

Data Wrangling

- Missing data are fixed by filling in average values
- Landing outcome labels are created using outcome data
- GitHub
 URL: https://github.com/limabielefeld/coursera_homework/blob/8e56404
 68a5a13dba316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20C
 apstone/3.IBM-DS0321EN-SkillsNetwork_labs_module_1_L3_labs-jupyter-spacex-data wrangling jupyterlite.jupyterlite.jupyterlite.jupyterlite.jupyh

EDA with Data Visualization

The charts plotted are:

- Scatter point plot, to visualize the relations: FlightNumber vs. PayloadMass, PayloadMass vs. LaunchSite, etc.
- Bar chart, to visualize success rate of each orbit
- Line chart, to visualize success rate of each year

GitHub

URL: https://github.com/limabielefeld/coursera_homework/blob/8e5640468a5a1 3dba316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone/5.IB M-DS0321EN-SkillsNetwork_labs_module_2_jupyter-labs-edadataviz.ipynb.jupyterlite.ipynb

EDA with SQL

- SQL queries performed:
 - Display the names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List the date when the first successful landing outcome in ground pad was acheived.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - List the total number of successful and failure mission outcomes

EDA with SQL

- SQL queries performed (continued):
 - List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
 - Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.
- GitHub

URL: https://github.com/limabielefeld/coursera_homework/blob/8e56404 68a5a13dba316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone/4.jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- Objects added to a folium map:
 - Markers for locations such as launch sites
 - Circles to highlight an area
 - Lines to mark distance between two points
- GitHub

URL: https://github.com/limabielefeld/coursera_homework/blob/8e5640468a5a13dba3 16ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone/6.IBM-DS0321EN-SkillsNetwork_labs_module_3_lab_jupyter_launch_site_location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

- Plots/graphs and interactions added to a dashboard:
 - Launch success rate per site
 - Payload range
- These are added so that one can easily interact with the dashboard to visualize the relations among different factors
- GitHub
 URL: https://github.com/limabielefeld/coursera_homework/blob/8e5640468a5a1
 3dba316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone/7.spacex_dash_app.py

Predictive Analysis (Classification)

- We built logistic regression model, support vector machine, decision tree and k nearest neighbors models.
- We train the models using training data and then test their performances using test data
- GitHub

URL: https://github.com/limabielefeld/coursera_homework/blob/8e5640468a5a1 3dba316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone/8.IB M-DS0321EN-

SkillsNetwork_labs_module_4_SpaceX_Machine_Learning_Prediction_Part_5.jup yterlite.ipynb

Results

- Exploratory data analysis results:
 - SpaceX uses four launch sites, the average payload of F9 v1.1 booster is 2,928 kg, the F9 v1.1 B1012 and F9 v1.1 B1015 boosters failed in 2015
- Interactive analytics demo in screenshots
- Predictive analysis results
 - After selecting the best hyperparameters for the decision tree classifier using the validation data, it achieves 83.3% accuracy on the test data

Flight Number vs. Launch Site

 A scatter plot of Flight Number vs. Launch Site

- CCAFS SLC 40 has most Class
 1 Launches in higher Flight
 Numbers
- KSC LC 39A has the highest percentage of Class 1 Launches

Payload vs. Launch Site

A scatter plot of Payload vs.
 Launch Site

- KSC LC 39A has most Class 1 Launches with low Payload Mass
- VAFB SLC 4E doesn't have very high Payload Mass Launches

Success Rate vs. Orbit Type

 A bar chart for the success rate of each orbit type

- The orbit types with high success rates are: ES-L1, GEO, HEO, SSOV, LEO
- The orbit types with low success rates are: GTO, ISS, LEO, MEO, PO, SO

Flight Number vs. Orbit Type

 A scatter point of Flight number vs. Orbit type

- For each Orbit type, Class 1
 Launches become more
 frequent in higher Flight
 Numbers
- VLEO has the most Class 1 Launches in higher Flight Numbers

Payload vs. Orbit Type

 A scatter point of payload vs. orbit type

- Only VLEO has very high Payload Mass
- Class O Launches happen more frequently with low Payload Mass

Launch Success Yearly Trend

 A line chart of yearly average success rate

- In general, success rate increases with respect to time
- There is a big decrease near the year 2018

All Launch Site Names

- The names of the unique launch sites
 - CCAFS LC-40, VAFB SLC-4E, KSC LC-39A, CCAFS SLC-40
- Explanation:
 - select unique launch sites from the data

Launch Site Names Begin with 'CCA'

- 5 records where launch sites begin with `CCA`
- Explanation:
 - Select launch sites that matches pattern 'CCA%'
 - Limit to 5 results

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outc
06/04/2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0.0	LEO	SpaceX	Success	Failure (paracł
12/08/2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0.0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (paracl
22/05/2012	7:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525.0	LEO (ISS)	NASA (COTS)	Success	No atte
10/08/2012	0:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500.0	LEO (ISS)	NASA (CRS)	Success	No atte
03/01/2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677.0	LEO (ISS)	NASA (CRS)	Success	No atte

Total Payload Mass

- The total payload carried by boosters from NASA
 - 45596.0
- Explanation:
 - Calculate sum of payload mass where customer is NASA (CRS)

Average Payload Mass by F9 v1.1

- The average payload mass carried by booster version F9 v1.1
 - 2928.4
- Explanation:
 - Calculate the average payload mass where booster version is F9 v1.1

First Successful Ground Landing Date

- The dates of the first successful landing outcome on ground pad
 - 01/08/2018
- Explanation:
 - Find the min of date where the outcome is 'Success (ground pad)'

Successful Drone Ship Landing with Payload between 4000 and 6000

- The names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
 - F9 FT B1022, F9 FT B1026, F9 FT B1021.2, F9 FT B1031.2
- Explanation:
 - Select boosters where payload mass > 4000 and < 6000 and landing outcome is 'Success' (drone ship)'

Total Number of Successful and Failure Mission Outcomes

• The total number of successful and failure mission outcomes

• Success: 100

• Failure: 1

• Explanation:

Group mission outcomes that match 'Success'

Boosters Carried Maximum Payload

- The names of the booster which have carried the maximum payload mass
- Explanation:
 - Select distinct names of boosters where payload mass equals maximum payload mass (calculated from a subquery)

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

2015 Launch Records

• The failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Month Landing_Outcome Booster_Version Launch_Site

F9 v1.1 B1015 CCAFS LC-40

F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship)

10 Failure (drone ship)

• Explanation:

• Select with landing outcome 'Failure (drone ship)' and year is 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

• Explanation:

 Group by landing outcomes and sort by their count in descending order

Landing_Outcome	CNT
Success	20
No attempt	10
Success (drone ship)	8
Success (ground pad)	7
Failure (drone ship)	3
Failure	3
Failure (parachute)	2
Controlled (ocean)	2
No attempt	1

All Launch Sites

• The launch sites are near the two coast lines.

Launch Outcomes

• The markers indicate success or not

Distance to Coast Line

• The Launch site is 7.97 KM from coast line

Distribution of Success Launches

• The chart shows the distributions of success launches in the four sites

Success Rate for One Site

• The chart shows the success rate on the site KSC LC-39A

< Dashboard Screenshot 3>

• Most Payloads are under 7k.

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• The decision tree model has the highest classification accuracy

Confusion Matrix

- Explanation:
 - The model has no false negative prediction but one false positive prediction

Conclusions

- We have collected data from different sources
- We have wrangled the collected data to suit our usage
- We have used explorative data analysis to find out which factors are important
- We have used interactive visual analytics to explore our data
- We have trained several models and found that the decision tree model predicts landing the best

Appendix

• The source files are available on GitHub: https://github.com/limabielefeld/coursera_homework/tree/8e5640468a5a13db a316ba4f07d9c40c6be65bbe/Applied%20Data%20Science%20Capstone

