ALGORITHM ANALYSIS

CSE/IT 122 ~ Algorithms and Data Structures

THEOREM OF POLYNOMIAL ORDERS

⇒ Suppose a_0, a_1, \ldots, a_n are real numbers and $a_n \neq 0$ • Then $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$ is $0(x^s)$ for all integers $s \ge n$

EXAMPLE: POLYNOMIAL ORDERS

- → What is the Big-Oh of 1+2+...+n
 - $1+2+...+n = (n(n+1))/2 = 1/2n^2 + 1/2n$ so by theorem it is $O(n^2)$ and $O(n^3)$, etc
- → He theorem works for rational powers as well
 - The biggest term dominates and you can find multiple of the largest power that is greater than the sum of the terms of the polynomial

MORE EXAMPLES: POLYNOMIAL ORDERS

- → Show $f(n) = n^2 + 2n + 1$ is $O(n^2)$
 - $n^2+2n+1 < n^2+2n^2+n^2 < 4n^2$ for all n > 1
 - Can do better $n^2 > 2n+1$, n > 2+1/n, true for n > 2
 - So $f(n) < 2n^2$, for c=2, and $n_0 = 2$
- \rightarrow Show $7n^2$ is $O(n^3)$
 - 7 < n for n > 7 and multiplying both sides by n^2 we get
 - $7n^2 < n^3$
 - So c=1 and $n_0 = 7$
 - We can also show that $7n^2$ is $O(n^2)$
 - Upper bounds are not unique

Upper Bounds Of Functions Besides Power Functions

- → Logs
 - $y = \log_b x \text{ iff } b^y = x$
 - Taking logs of both sides doesn't change the sign of an inequality
 - $n! \le n^n$ Why?
 - So $\log n! \le \log n^n = n \log n$
 - Soo log n! = O(n log n)

EXAMPLE: REMEMBER INDUCTION

- \rightarrow Show $2^n < n!$
 - By induction
 - Base Case: $2^4 < 4!$
 - Assume: $2^k < k!$
 - Show $2^{k+1} < (k+1)!$
 - Proof:
 - \circ 2^{k+1} = 2^k * 2 < k! * 2, by assumption
 - Now (k+1)! = (k+1)k!, and 2 < (k+1) for all $k \ge 4$

EXAMPLE: REMEMBER INDUCTION

- \rightarrow Show $2^n > n^3$
 - By induction:
 - Base case: $2^{10} > 10^3$ (this is also a good approximation)
 - Assume: $2^k > k^3$
 - Show: $2^{k+1} > (k+1)^3$
 - Proof:
 - \circ $2^{k+1} = 2^k * 2 > 2k^3$
 - \circ Now, $(k+1)^3 = k^3 + 3k^2 + 3k + 1$
 - o So, have to show that $2k^3 > (k+1)^3 = k^3+3k^2+3k+1$
 - \circ Which is really just showing that $k^3 > 3k^2+3k+1$, which is true by theorem on the order of polynomials

COMBINING RUNNING TIMES

- \rightarrow Suppose $T_1(n)$ and $T_2(n)$ are running times of two program fragments.
 - $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$
 - Then the running time of $T_1(n)+T_2(n)=O(\max(f(n),g(n)))$

→ Proof

For some constants c_1, c_2, n_1, n_2 .

If $n \ge n_1$ then $T_1(n) \le c_1 f(n)$ and $n \ge n_2$ then $T_2(n) \le c_2 g(n)$.

Let $n_o = max(n_1, n_2)$.

If $n \ge n_0$ then $T_1(n) + T_2(n) \le c_1 f(n) + c_2 g(n) \le c_1 max(f(n), g(n)) + c_2 max(f(n), g(n)) = (c_1 + c_2) max(f(n), g(n))$

ORDERING THE FUNCTIONS

- → We order the functions:
 - $\log n \le n \le n*\log n \le n^2 \le n^3 \le 2^n \le n! \le n^n$
 - $0(\log n) \le 0(n) \le 0(n*\log n) \le 0(n^2) \le 0(n^3) \le 0(2^n) \le 0(n!) \le 0(n^n)$

A MORE CONCRETE VIEW OF RUN TIMES

 \rightarrow There are 86400 seconds in a day, which to keep the math simple we will assume is approximately 10⁵

Growth Rates

n f(n)	log n	n	n log n	n ²	2 ⁿ	n!
10	0.003ns	0.01ns	0.033ns	0.1ns	1ns	3.65ms
20	0.004ns	0.02ns	0.086ns	0.4ns	1ms	77years
30	0.005ns	0.03ns	0.147ns	0.9ns	1sec	8.4x10 ¹⁵ yrs
40	0.005ns	0.04ns	0.213ns	1.6ns	18.3min	ST.
50	0.006ns	0.05ns	0.282ns	2.5ns	13days	*
100	0.07	0.1ns	0.644ns	0.10ns	4x10 ¹³ yrs	STE.
1,000	0.010ns	1.00ns	9.966ns	1ms	-	-
10,000	0.013ns	10ns	130ns	100ms	-	2 11
100,000	0.017ns	0.10ms	1.67ms	10sec		- T
1'000,000	0.020ns	1ms	19.93ms	16.7min		
10'000,000	0.023ns	0.01sec	0.23ms	1.16days		
100'000,000	0.027ns	0.10sec	2.66sec	115.7days	144	
1,000'000,000	0.030ns	1sec	29.90sec	31.7 years		3 44

BACK TO OUR RAM MODEL

- → Generic one processor model, does one instruction after another, instructions can have different cost
- \rightarrow Basic model T(n) \approx kC(n), where C(n) is a count of the number of instructions
- \rightarrow Input size *n* affects runtime
- \rightarrow Assume you have a runtime of T(n) = n^2 .
 - How much longer will the algorithm run if you double the input size
 n?
 - $\frac{T(2n)}{T(n)} = \frac{(2n)^2}{n^2} = \frac{4n^2}{n^2} = 4$

BACK TO OUR RAM MODEL

What about T(n) = n^3 , and you double n $\frac{T(2n)}{T(n)} = \frac{(2n)^3}{n^2} = \frac{8n^3}{n^3} = 8$

- What about T(n) = 2^n , and you double n $\frac{T(2n)}{T(n)} = \frac{(2)^{2n}}{2^n} = 2^{2n-n} = 2^n$
- What about t(n) = n!, and you double n $\frac{T(2n)}{T(n)} = \frac{(2n)!}{n!} = 2n \cdot (2n-1) \cdots (n+1)$

ORDERS OF GROWTH COST

- \rightarrow How long would it take to solve a problem with T(n), where n = 10⁶
 - 10^6 operations $(1/10^{12}$ operations per second) = 10^{-6} seconds
 - $T(n^2)$, $n^2 = 10^{12}$, 10^{12} operations $(1/10^{12}$ operations per second) = 1 second
 - $T(n^3)$, $n^3 = 10^{18}$, 10^{18} operations $(1/10^{12}$ operations per second) = 10^6 seconds which is approximately 11.6 days
 - $T(2^n)$, with $n=10^3$, $2^n=10^{300}$, 10^{300} operations $(1/10^{12}$ operations per second) = 10^{318} seconds, so approximately 10^{313} years assuming 10^5 seconds in a year
 - Overall age of the universe 1.4x10¹⁰