

SysEng 6542 Model Based Systems Engineering

Systems Modeling Language (SysML)

Dr Quoc Do

MBSE Methodology

- A Systems Engineering Language SysML
- A set of SE Processes
- A Systems Engineering Tool(s)

Systems Modeling Language

- Graphical representation of system information
- Diagrams used to contain information

Systems Modeling Language

 Systems modelling language enables model-centric Systems Engineering practice

SysML and UML

- SysML is a general-purpose graphical modeling language for specifying, analyzing, designing, and verifying complex systems that may include hardware, software, information, personnel, procedures, and facilities.
- SysML is an extension of UML and has four key pillars:
 - Requirements
 - Structure
 - Behavior
 - Parametric

The SysML Architecture

- This architecture provides a means to transfer systems engineering domain information into a metamodel
- This allows for the representation of systems in a uniform model representation
- Enable reuse of models
- Adoption of standards ensures interoperability (...)
- Complexity management

Diagrams

- Graphical representation of the system information
- 9 types used in SysML
- Classified by the type of data they contain

Missouri University of Science and Technology

The Four Pillars of SysML

4. Parametrics

Allocation – Function to Physical Elements

"functions" explicitly allocated to components "I/O" explicitly allocated to interfaces

SysML: Cross Connecting Model Elements

Connecting Models Cross Disciplines

Copyright © 2009 by Elsevier, Inc. All rights reserved

Overview of SysML Diagrams

- Anatomy of a Diagram
- Diagram Types:
 - Requirement (req)
 - Structure
 - Block Definition (bdd)
 - Internal Block (ibd)
 - Parametric (par)
 - Package (pkg)
 - Behavior
 - Activity (act)
 - Sequence (sd)
 - State Machine (stm)
 - Use Case (uc)

Allocations

Requirements

Same as UML 2

Modified from UML 2

New diagram type

SysML Diagram Behavior Requirement Structure Diagram Diagram Diagram Use Case Block Definition Internal Block Activity Sequence State Machine Package Diagram Diagram Diagram Diagram Diagram Diagram

Parametric

Anatomy of a Diagram

- Frame
- Header
 - Name
 - Usage
- Description
- Content

A Practical guide to SysML, Friedenthal et al.

Diagram description

Version

Anatomy of a Diagram

- Frame Visible context of the diagram content
- Header/Name Includes the information to identify the diagram
- Header provides:
 - Diagram kind, Model element type, Model element name, Diagram name, Diagram usage
 - Diagram kind diagram classification
 - Model element type
 - Model element name
 - · Diagram name
 - Diagram usage
- Description Optional note that provides 'bookkeeping' information (version, status, etc.)
- Content The actual information on the elements of the model.
- The content area contains the graphical elements representing model elements: Node: Contain information (symbols, icons, etc.) describing system entities

Header

Wilder

Wind a status Reference User-defined fields

Wind a status Reference User-defined fields

Content

Content

Description
Completion status Reference User-defined fields

User-defined fields

SysEng 6542 Model Based Systems Engineering

Modelling Physical Systems

Organizing the Model

- Model elements are placed in containers
- Containers can be nested
- Containers can be thought of as component entities.
- Ease of access and navigation between elements
- Reuse of elements
- Assists configuration management
- Reuse Libraries
- Views and Viewports
- Import relationships

Model Libraries

- Package hierarchy constructed with the intent for it to be reused.
- Libraries can be used for
 - COTS items
 - Standard definitions
 - Company specific products
 - Etc.

Package Hierarchy

- Gives a standard organization of model data
- Allows data to be arranged in domain specific methods
- Critical to access control, configuration management, data exchange, etc.

Package Diagrams

- Provide a means to organize system model data
- The SysML model is a top-level package

 OR

SysEng 6542 Model Based Systems Engineering

Modelling Physical Systems

Block Definition Diagram

- Modified UML Structure (Class) Diagram
- Used to define blocks and their structural relationships with other blocks (HW, SW, system, facility, etc....)
- Describes the pieces used to construct the model
- Describe a set of similar instances
 - "Engineering objects"

Blocks showing hierarchy

Blocks

- Compartments: hold additional information about the node
 - Part properties
 - Reference properties
 - Value properties
 - Operation
 - Reception
- Part properties (part)
 - Describe composition relationships between blocks
 - Contains part name, block, and number of instances (multiplicity)

Composite Associations

- Describes whether the part can exist without the block it is associated with
- Multiplicity at whole end is either 1 (needed by part) or 0..1 (not needed)

Reference Properties

- Reference properties (reference) describe additional relationships
- They describe additional associations between blocks
- Can be shown in a separate 'hierarchy'

Block Associations

Value Properties

- Value properties (value) add quantitative properties to blocks
 - Value types describe the values for the quantities (think of it as units)
 - Can take on primitive type (integer, string, etc.), enumeration, or custom representations
 - Can read in model libraries to apply measurement systems (English, SI, etc.)
 - May also be used for derived properties
 - Value properties with values that are calculated

Blocks

bdd [model element type] model element name [diagram name] <<blook>> <Name> parts <Part1>:<Block>[<Multiplicity>] <Part2>:<Block>[<Multiplicity>] references <Reference>:<Block>[<Multiplicity>] values <ValueProperty>:<ValueType>=<ValueExpression>

Block - Value Properties

bdd [Package] Structure [Values]

Camera

values

dimensions : Size = (0.04,0.03,0.01)

«normal»{mean = "2.1", standardDeviation = "0.01"} power : W

«interval»{min = "0", max = "360"} pan field of regard : °

«interval»{min = "0.05", max = "0.1"} sensitivity : lux

«interval»{min = "0", max = "90"} tilt field of regard : °

Optical Assembly

values

aperture: mm = 2.4

"normal" (mean = "7", standardDeviation = "0.35") focal length : mm

- Main behavior of block can be shown in behavioral features
 - Operations
 - Receptions
- Actual behavior shown in function, state machine, activities etc....

- Receptions are asynchronous requests
 - Each reception is associated with a signal
- Operations are synchronous requests
 - Parameters are defined and passed with request

bdd [Package] Logical [Classes with Operations]

«block» UI

login(): String logout(): String

receptions

operations

«signal» Test in Progress(camera id : String)

«signal» Test Complete(camera id : String, OK : Boolean)

«signal» System OK()

«signal» **Test Complete**

camera id : String OK: Boolean

Test in Progress

camera id : String

«signal» «signal» System OK

«block» Monitoring Station

operations

create route(): Route delete route(in r : Route)

test cameras()

camera test complete(in OK : Boolean)

verify login details(): Boolean

check capacity()

pan camera(in strength: Integer) tilt camera(in strength : Integer)

get camera status(in camera id : Integer, out camera status : String)

- Interface definitions for ports can also define behavior
 - Required interface: operations required by block to realize behavior
 - Provided interface: operation that a block provides

bdd [Package] Logical [Interfaces]

«interface» User Login

operations

login(): String logout(): String

«interface» Camera Control

operations

get camera status(in camera id : Integer, in camera status : String)

test cameras()

pan camera(in strength : Integer) tilt camera(in strength : Integer)

«interface» Route Management

operations

create route(): Route delete route(in r: Route)

«interface» Login Support

operations

verify login details(): Boolean

check capacity()

«interface» Test Tracking

receptions

«signal» Test in Progress(camera id : String)

«signal» Test Complete(camera id : String, OK : Boolean)

«signal» System OK()

Modeling Classification Hierarchies

- Block definition diagrams can be used for classification
 - Superclass : general classifier
 - Subclass : specialized classifier
 - Generalization : relationship between superclass and subclass

Modeling Classification Hierarchies

- Using subclasses allow for:
 - Supplying additional detail
 - Redefinition of features
 - Change multiplicity
 - Add or change initial value
 - Add or change probability distribution
 - Change property type to a more restrictive property

Generalization

- Similar to class membership
- Provides description of relationship
 - Coverage : complete or incomplete
 - Overlap : can instance be a member of more than one subclass

Modeling Configurations

Modeling Configurations

Parametric Diagram

- New Structure Diagram
- Contains information to create a system of equations to constrain the block properties

par [model element type] model element name [diagram name]

Parametric Diagrams

Parametric Diagram

- Can describe interfaces with external software
 - Can be given in constraints compartment or as an attached note
- Constraints can also be given in a separate block

A note on external solvers

If an external solver is to be used, initial values will typically need to be specified

Parametric Diagram ...

... with initial values

Parametric Diagrams for Trade Studies

Parametric Diagrams for Trade Studies

Parametric Diagrams for Trade Studies

Next Time

More on SysML Behaviors

Assembling models

Program Completed

Missouri University of Science & Technology