СОГЛАСОВАНО:	УТВЕРЖДАЮ:
Главный инженер	1-й зам. Генерального директора
ООО НПО «Нефтегазкомплекс-ЭХЗ»	• 3AO «Связь инжиниринг»
Авдяхин П.Н.	Овчинников Д.А.
• • •	обмена данными НГК-ЭХЗ кция 1.3
Заместитель главного инженера	_
Маначинский Ю. А	
Инженер-электроник	Ведущий инженер
Казанцев С.А	Ферцер П. В
Инженер-электроник	Ведущий инженер
Петров Д. Ю	_ Чудайкин Е. В

Содержание

1 Общие сведения	2
2 Работа устройств	2
2.1 Функционирование сети	3
2.2 Состояния устройств в сети	3
2.3 Подача питания	6
2.4 Аппаратный или программный сброс	6
2.5 Запуск устройств в сети	
2.6 Рабочий цикл	6
2.7 Чтение и запись параметров	6
2.8 Аварийные сообщения	
2.8.1 Подключение сервисного разъёма	7
2.8.2 Вскрытие корпуса КИП	
2.9 Контроль наличия связи с устройством	
3 Используемые сервисы протокола CANOpen	
3.1 Протокол SYNC	
3.2 Протокол ЕМСҮ	
3.3 Протокол NODE GUARD	
3.4 Протокол NMT	
3.5 Протокол PDO Receive	
3.6 Протокол PDO Transmit	
3.7 Протокол SDO Upload	
3.8 Протокол ВООТ UР	
4 Особенности работы с БИ(У)-01 через шлюз интерфейсов	
4.1 Протокол SYNC	
4.2 Протокол EMCY	
4.3 Протокол NODE GUARD	
4.4 Протокол NMT	
4.5 Протокол SDO Upload	
*	
5 Измеряемые данные, объектный словарь, их формат и представление в CAN	
1 1	
5.2 Формат данных в словаре БИ(У)-01	
5.3.1 1-й Transmit PDO	
5.3.2 2-ĭ Transmit PDO	
5.3.3 3-ĭ Transmit PDO	
5.3.4 4-й Transmit PDO	
5.3.5 1-й Receive PDO	
6 Контекст запросов и примеры ответов	
6.1 Сообщение CANOpen	
6.2 Протокол NODE GUARD	
6.3 Протокол BOOT UP	
6.4 Протокол SDO Upload	
6.5 Протокол SYNC	
6.6 Протокол PDO transmit	
6.7 Протокол PDO receive	
6.8 Протокол NMT	
6.9 Протокол ЕМСҮ	
7 Обработка ошибок сети CAN	28

1. Общие сведения

В качестве протокола передачи данных используется САN 2.0В, требования к физической среде передачи определены в ISO 11898. Сигналы в сети передаются по проводным линиям в дифференциальном виде. В качестве протокола обмена верхнего уровня применён протокол, разработанный на базе протокола CANOpen (www.can-cia.org).

Все периферийные устройства в сети считаются ведомыми (SLAVE), в то время как управляющее сетью устройство считается ведущим (MASTER). Все устройства в сети должны иметь уникальный Node-ID в диапазоне от 1 до 127. Node-ID 0 используется для широковещательных команд. В сеть допускается подключать не более 64 устройств. Скорость обмена может принимать следующие значения: 10; 20; 50; 100 кБит/с. Для сетей, имеющие протяженные линии связи рекомендуется выбирать 10 кБит/с, для сетей с короткими линиями связи и для систем управления ЭХЗ 100 кБит/с.

2. Работа устройств

Измерения и передача данных БИ-У осуществляется по следующему алгоритму:

Цикл измерения всех типов БИ(У) привязан к настройкам таймера периода измерений и передачи данных. После подачи питания или по истечении периода измерений производятся измерения активных контролируемых величин и передача результатов по одному из интерфейсов (САN - БИ(У)-00, RS-485 - БИ(У)-01 через шлюз интерфейсов) по приходу команды SYNC от MASTER. Шлюз в свою очередь получив данные от БИ(У)-01 также дожидается команды SYNC и передаёт эти данные в сеть САN. После этого БИ-У переходят в режим ожидания на интервал периода измерений.

Шлюз буферизирует приходящие данные по RS-485 по каждому из каналов из соображения 10 БИ(У)-01 на один канал. Скорость обмена данными по интерфейсу CAN фиксированная - 10 кБит/сек. Регистрация БИ(У)-01 в шлюзе производится по приходу новых данных на передачу от БИ(У)-01 в сеть САЛ. При возникновении ситуации, когда 11-е по счёту БИ(У)-01 пытается зарегистрироваться в канале шлюза – шлюз формирует сообщение «Ошибка аварийное регистрации» MASTER-y информацией о канале (1-4) с ошибкой. В случае ошибки конфигурации сети, когда на каналах шлюза 1-4 или 5-8 обнаруживаются БИ(У)-01 адресами шлюз формирует сообщение одинаковыми аварийное «Дублирование адреса» с информацией о канале (1-4) с задублированными

устройствами. Если нет связи с MASTER-ом сети и приходит новый пакет от БИ(У)-01 - шлюз заменяет старые данные от этого БИ(У)-01 новыми. Глубина буфера сообщений на передачу данных от MASTER-а сети к БИ(У)-01 через шлюз - одно сообщение. При принятии от БИ(У)-01 данных шлюз формирует ответную посылку, содержащую информацию о наличии запроса от MASTER-а сети к БИ(У)-01 с содержанием этого запроса. БИ(У)-01 обрабатывает этот запрос, выдаёт результат шлюзу и переходит в режим ожидания. Шлюз в свою очередь передаёт результат операции чтения параметра MASTER-у сети по повторному запросу.

При подключении сервисного разъёма к плате БИ(У)-01 плата должна послать аварийное сообщение «подключен сервисный разъём». Шлюз, по приходу этого сообщения должен передать это аварийное сообщение в сеть и аннулировать (отменить) регистрацию этой БИ(У)-01 в шлюзе.

После отключения сервисного разъёма БИ(У)-01 должна сразу выйти на связь со шлюзом и зарегистрироваться в шлюзе заново.

Шлюз в свою очередь должен обработать это событие как регистрацию новой БИ(У)-01, с выдачей в сеть соответствующего сообщения по протоколу ВООТ UP. Дальнейшие плановые «пробуждения» должны проходить в соответствии с установленным периодом измерений и передачи данных.

2.1 Функционирование сети

SLAVE устройствами в сети являются БИ(У)-00 и БИ(У)-01, подключенное через шлюз интерфейсов RS-485/CAN. Шлюз интерфейсов прозрачен со стороны протокола обмена с БИ(У)-01, но может формировать два аварийных сообщения ошибок при регистрации БИ(У)-01 в шлюзе. Для работы в единой сети CAN все устройства должны быть предварительно соответствующим образом сконфигурированы.

MASTER должен содержать все настройки SLAVE устройств и в соответствии с ними производить настройку сети, сбор измеряемых данных и контроль параметров.

2.2 Состояния устройств в сети

В устройств: сети допустимы следующие состояния - Initialisation - состояние после подачи питания на устройство, после аппаратного или программного сброса или по команде MASTER-а сети. Из ЭТОГО состояния устройство переходит В состояние **Pre-Operational** автоматически.

- Pre-Operational состояние, в котором устройство находится после состояния Initialisation.
- Operational состояние, в котором устройство осуществляет измерения и передачу информации
- Stopped состояние, в котором устройство находится при подключении сервисного разъёма, при остановке MASTER-ом сети. При остановке MASTER-ом сети доступны протоколы NODE GUARD и NMT. При подключении сервисного разъёма работа по сети приостановлена, доступных протоколов нет.

Подача питания или аппаратный сброс

Рисунок 1. Диаграмма состояния устройства.

Таблица 1. Переходы между состояниями устройства.

Переход в состояние Initialisation после включение питания
или аппаратного сброса.
Завершение Initialisation – переход в состояние Pre-Operational
Переход в состояние Operational из Pre-Operational по команде
MASTER-а сети.
Переход в состояние Pre-Operational из Operational по команде
MASTER-а сети
Переход в состояние Stopped из Pre-Operational по команде
MASTER-а сети или при подключении сервисного разъёма.
Переход в состояние Operational из Stopped по команде
MASTER-а сети.
Переход в состояние Pre-Operational из Stopped по команде
MASTER-а сети.
Переход в состояние Stopped из Operational по команде
MASTER-а сети или при подключении сервисного разъёма.
Переход в состояние Initialisation программным способом
(программный сброс).
Переход в состояние Initialization по команде MASTER-а сети.

2.3 Подача питания

После подачи питания, все устройства переходят в состояние Initialisation, выдают сообщение BOOT UP, затем в Pre-Operational. Шлюз интерфейсов выдаёт это сообщение после успешной регистрации БИ(У)-01. Работа протоколов PDO Transmit и PDO Receive в этом режиме приостановлена.

2.4 Аппаратный или программный сброс

После аппаратного или программного сброса устройство переходит в состояние Initialisation, выдает сообщение BOOT UP, затем в Pre-Operational.

2.5 Запуск устройств в сети

MASTER в зависимости от конфигурационных настроек переводит устройства в сети, по протоколу NMT, в состояние Operational.

2.6 Рабочий цикл

Передачу данных от устройств определяет протокол SYNC. Как только прошел интервал времени измерений и измеренные данные у устройств готовы к передаче или шлюз обработал данные, пришедшие по RS-485 от устройства, производиться ожидание кадра SYNC от MASTER и по его приходу устройства передают свои данные, используя протокол PDO Transmit. После передачи данных все устройства переходят в режим ожидания на период времени измерения и не реагируют на SYNC.

2.7 Чтение и запись параметров

MASTER может синхронизировать текущее время между устройствами, используя для этого протокол PDO Receive. Широковещательная запись в PDO1 Receive текущего времени произведёт перезапись данного времени во все устройства. Также MASTER может считать настроечные параметры и измеренные данные с помощью протокола SDO Upload.

2.8 Аварийные сообщения

При наступлении аварийной ситуации, устройства передают данную информацию MASTER-у, используя протокол EMCY.

2.8.1 Подключение сервисного разъёма

При подключении сервисного разъёма к плате БИ(У)-00 или БИ(У)-01, посылается аварийное сообщение EMCY, где поле ErrCode = 0x0006 - код «подключение сервисного разъёма», бит 5 регистра ошибки — «признак подключения сервисного разъёма» установлен в 1.

Устройство переходит в состояние Stopped.

Работа устройства в сети приостанавливается.

После отключения сервисного разъёма, устройство переходит в состояние Initialisation, происходит сброс устройства, выдается в сеть сообщение BOOT UP и устройство переходит в состояние Pre-Operational.

2.8.2 Вскрытие корпуса КИП

Аварийное сообщение «Вскрытие» передаётся при срабатывании датчика вскрытия в сеть САN БИ(У)-00 напрямую однократно.

У БИ(У)-01 аварийное сообщение «вскрытие» передаётся через шлюз интерфейсов ПБК-8 и ПБК-1 сразу после наступления данного события во время сеанса связи между БИ(У)-01 и шлюзом. Шлюз посылает после приёма, аварийное сообщение «вскрытие» в сеть САN, также однократно.

Если при передаче от БИ(У)-01 нет ответа от шлюза, то сообщения передаются с периодом 10 секунд. Число повторов 5 раз. После этого БИ(У)-01 должна перейти в режим «сна».

Если сеанс связи между БИ(У)-01 и шлюзом прошел успешно, то повторные сообщения «вскрытие» между БИ(У)-01 и шлюзом больше не передаются

Для получения состояния датчика вскрытия от платы БИ(У)-01, устройство должно быть включено для проверки датчика вскрытия через определённый промежуток времени, равный 30 минутам. При устранении ошибки «вскрытие», БИ(У)-01 должно передать информацию об устранении ошибки шлюзу. Если ошибка «вскрытие» не устранена, проверка должна выполняться до устранения ошибки, но не более 5 раз.

Если период измерения установлен меньше чем 30 минут, то проверку датчика вскрытия проводить во время измерений.

При возникновении ошибки «вскрытие» в любом состоянии БИ(У)-01, сообщение должно быть передано в шлюз сразу.

Включения БИ(У)-01, для проверки состояния датчика вскрытия и передача аварийных сообщений, не должны влиять на время следующего «планового» «пробуждения» БИ(У)-01, то есть на период измерения.

2.9 Контроль наличия связи с устройством

MASTER сети должен контролировать наличие связи с устройствами используя протокол NODE GUARD. По восстановлению связи с устройством необходимо проверить его текущий режим работы и перевести в необходимый режим.

3. Используемые сервисы протокола CANOpen

3.1 Протокол SYNC

Устройства в сети передают данные после процедуры измерения, т.е. устройство по истечению периода цикла измерения производит измерения параметров, по пришедшему запросу SYNC передаёт эти данные и на последующие запросы SYNC не отвечает до следующего цикла измерения.

3.2 Протокол ЕМСҮ

Сообщения об ошибках формируются сразу по наступлению данного события, сообщение об устранении всех ошибок (ErrCode = 0x0000) формируется, только когда у устройства пропали все условия ошибок. Текущее состояние устройства (активные ошибки) доступны через сервис SDO и PDO2 Receive. Аварийное сообщение «Вскрытие», формируется и передаётся сразу после фактического наступления этого события, без учёта состояния, в котором находилось БИ(У). Аварийное сообщение «Батарея разряжена» формируется и передаётся БИ(У)-01, после процедуры измерения и передачи данных, а сообщение «Основное питание ниже нормы» - до процедуры измерения. Аварийное сообщение «Основное питание ниже нормы» у БИ(У)-00 контролируется и формируется по истечении таймера периода измерения питающего напряжения. Аварийное сообщение «Подключен сервисный разъём», передаётся сразу после подключения сервисного разъёма. При отключении сервисного разъёма отдельных сообщений по протоколу ЕМСУ не передаётся.

При обработке сообщений по этому протоколу сначала проверяется двухбайтное поле кода ошибки ErrCode, затем битовое поле регистра ошибки err_reg. Код ошибки ErrCode указывает на источник ошибки, соответствующий бит в регистре ошибки err_reg на наличие или отсутствие конкретной ошибки.

3.3 Протокол NODE GUARD

МАЅТЕЯ сети с помощью этого протокола контролирует наличие связи с отдельным устройством. При наличии в сети устройств с одинаковыми Node-ID, с помощью этого протокола, осуществляется их обнаружение по приходу нескольких сообщений от устройств сети с одинаковым полем СОВ-Id. Источником сообщений с одинаковым СОВ-Id могут быть некорректно настроенные БИ(У)-00 и/или БИ(У)-01, подключенные через шлюзы интерфейсов. Для локализации устройств в сети с одинаковым Node-ID используется протокол SDO Upload (чтение серийного номера устройства).

3.4 Протокол NMT

Все устройства в сети по подаче питания, переходят в состояние Initialisation, выдают в сеть сообщение BOOTUP и переходят в состоянии Pre-Operational, затем MASTER сети с помощью этого протокола, переводит все устройства в состояние Operational. Также в процессе работы MASTER может перевести отдельное устройство или все устройства сети в состояние Stopped, Pre-Operational, Operational, Initialisation.

При переводе устройства в состояние Initialisation происходит сброс устройства с выдачей сообщения ВООТ UP по шине CAN.

3.5 Протокол PDO Receive

Используется широковещательная запись времени во все устройства в сети. Шлюз интерфейсов также принимает время и продолжает его отсчёт. Доступно только PDO1 Receive. Как только БИ(У)-01 пытается зарегистрироваться на канале шлюза — шлюз записывает текущее время в БИ(У)-01. Время в БИ(У)-01 записывается также при каждом запросе SDO либо записью в PDO1.

3.6 Протокол PDO Transmit

Используется для передачи данных MASTER-у сети по приходу SYNC сообщения после проведения цикла измерения контролируемых параметров. Всего доступно до 4-х PDO Transmit. Если параметры, расположенные в PDO Transmit находятся в неактивном состоянии, то соответствующее PDO Transmit не передаётся в цикле передачи данных.

3.7 Протокол SDO Upload

Используется для чтения настроечных параметров устройств и всех измеренных параметров, в соответствии со словарём объекта.

3.8 Протокол **BOOT UP**

Устройства в сети, по подаче питания, переходят в состояние Initialisation и выдают данное сообщение, сигнализирующее, что на устройство подано питание, оно сброшено и устройство перешло в состояние Pre-Operational.

При переводе устройства в сети в состояние Initialisation, оно должно быть сброшено, и должно выдавать данное сообщение.

4. Особенности работы с БИ(У)-01 через шлюз интерфейсов

4.1 Протокол SYNC

Устройства в сети отвечают на запросы SYNC после процедуры измерения, т.е. устройство по истечению периода цикла измерения проводит измерения параметров и передает их в шлюз. Шлюз по пришедшему запросу SYNC передает эти данные и на последующие запросы SYNC не отвечает до следующего прихода данных от БИ(У)-01.

По запросу SYNC передаются только те PDO, в которых активны измерения данных в БИ-У. Это относится как к шлюзу, так и БИ(У)-01.

4.2 Протокол ЕМСҮ

Сообщения об ошибках формируются сразу по наступлению данного события, и передается устройством в шлюз. Шлюз передает это сообщение MASTER-у сети. Сообщение об устранении ошибок формируется тогда, когда у устройства пропали все условия ошибок и передается в шлюз и далее MASTER-у сети.

Сообщение об ошибке «вскрытие» с установленным в 1 битом 0 регистра ошибки err_reg передаётся по шине CAN шлюзом, при поступлении в шлюз сообщения «вскрытие» от БИ(У)-01.

По приходу в шлюз от БИ(У)-01 сообщения о устранении ошибки вскрытия, шлюз передаёт в сеть сообщение «вскрытие» со снятым битом 0 регистра ошибки err_reg.

Шлюз интерфейсов при возникновении ошибок регистрации и дублирования адресов формирует сообщения об этих ошибках и сбрасывает ошибки через 1 секунду. Дополнительные данные, полученные шлюзом при приёме аварийного сообщения от БИ(У)-01 не обрабатываются и не передаются по SYNC.

4.3 Протокол NODE GUARD

Шлюз отвечает на запросы NODE GUARD в том случае, если БИ(У)-01 уже передала данные шлюзу, а запрос NODE GUARD еще не подавался. На последующие запросы NODE GUARD шлюз не отвечает до следующего прихода данных от БИ(У)-01.

4.4 Протокол NMT

Все устройства, зарегистрированные в шлюзе, при подаче питания переходят в состояние Initialisation, сбрасываются и переходят в состояние Pre-Operational, затем MASTER сети переводит все устройства в активный

режим специальной командой. Также MASTER может в процессе работы перевести режим работы устройств в режим Pre-Operational, Stop и Initialisation.

При переводе устройства в состояние Initialisation происходит сброс устройства с выдачей сообщения ВООТ UP по шине CAN.

4.5 Протокол SDO Upload

При запросе по протоколу SDO шлюз на первый запрос выдает исключение (0x0504 0000 SDO protocol timed out), и ставит флаг для БИ(У)-01 на обновление данных. После второго запроса SDO шлюз передает принятые данные от БИ(У)-01 MASTER-у сети при повторном запросе от MASTER-а сети.

5. Измеряемые данные, объектный словарь, их формат и представление в CAN

5.1 Формат данных в словаре БИ(У)-00

Таблица 2. Формат данных в словаре БИ(У)-00.

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x2000	device_type	UInt16	Нет	Тип устройства: 0x2652		RO
0x2001	fw_version	UInt16	Нет	Версия ПО		RO
0x2002	hw_version	UInt16	Нет	Версия аппаратной части		RO
0x2003	serial_number1	UInt16	Нет			RO
0x2004	serial_number2	UInt16	Нет	Серийный номер устройства		RO
0x2005	serial_number3	UInt16	Нет			RO
0x2006	vcard_chksum	UInt16	Нет	Визитная карточка		RO
0x2007	vendor_id	UInt16	Нет	Код производителя		RO
0x2008	polarisation_pot	NgkFloat (x0,01)	В	Поляризационный потенциал, дополнительный код, ±2 В (0xFF38-0x00C8)	0x7FFF	RO
0x2009	protection_pot	NgkFloat (x0,01)	В	Защитный потенциал, дополнительный код, ±50 В (0xEC78-0x1388)	0x7FFF	RO
0x200A	induced_ac	UInt16	В	Наведенное переменное напряжение, 0 – 100 В (0х0000-0х0064)	0xFFFF	RO
0x200B	protection_cur	NgkUFloat (x0,05)	Α	Ток катодной защиты, 0 -150 A (0x0000-0x0BB8)	0xFFFF	RO
0x200C	polarisation_cur	NgkFloat (x0,01)	mA	Ток поляризации, дополнительный код, ± 300 мА (0x8ADO-0x7530)	0x7FFF	RO
0x200D	aux_cur1	NgkUFloat (x0,01)	mA	Ток канала 1, 4 – 20 мА (0x0190-0x07D0)	0xFFFF	RO
0x200E	aux_cur2	NgkUFloat (x0,01)	mA	Ток канала 2, 4 – 20 мА (0x0190-0x07D0)	0xFFFF	RO
0x200F	corrosion_depth	UInt16	MKM	Глубина коррозии, 0 – 65534 мкм (0x0000-0xFFFE)	0xFFFF	RO
0x2010	corrosion_speed	UInt16	мкм/год	Скорость коррозии, 0 – 65534 мкм/год (0x0000-0xFFFE)	0xFFFF	RO
0x2011	usikp_state	UInt8	Нет	Состояние УСИКПСТ 0x00 – норма 0xFF – нет связи Либо код исключения от УСИКПСТ		RO
0x2012	reserved1 (supply_voltage)	NgkUFloat (x0,05)	В	Питающее напряжение, 9 – 55 В (0x00В4-0x044С)		RO
0x2013	battery_voltage	NgkUFloat (x0,01)	В	Напряжение внутренней батареи, 1,8 – 3,6 В (0x00В4-0x0168)	0xFFFF	RO
0x2014	reserved					RO

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x2015	Tamper	NgkBoolean	Нет	Вскрытие (True – есть вскрытие, False – нет вскрытия)		RO
0x2016	reserved2 (supply_voltage_low)	NgkBoolean	Нет	Напряжение внешнего питания ниже нормы	False	RO
0x2017	battery_voltage_low	NgkBoolean	Нет	Напряжение внутренней батареи ниже нормы (True – ниже, False – норма)		RO
0x2018	corrosion_sense1	NgkBoolean	Нет	Состояние датчика коррозии 1. [True – норма. False - обрыв.]		RO
0x2019	corrosion_sense2	NgkBoolean	Нет	Состояние датчика коррозии 2. [True – норма. False - обрыв.]		RO
0x201A	corrosion_sense3	NgkBoolean	Нет	Состояние датчика коррозии 3. [True – норма. False - обрыв.]		RO
0x201B	polarisation_cur_dc	NgkFloat (x0,01)	mA	Ток натекания ВЭ постоянный, дополнительный код, ± 300 мА (0x8ADO-0x7530)	0x7FFF	RO
0x201C	polarisation_cur_ac	NgkUFloat (x0,01)	mA	Ток натекания ВЭ переменный, 0 - 300 мА (0х0000-0х7530)	0xFFFF	RO
0x201D	reserved3	, ,				
0x201E	meas_period	UInt32	Сек.	Период измерений и передачи, 1сек - 7сут (0x0000 0001-0x0009 3A80) 0x0000 0000 — измерять постоянно. 0xFFFF FFFF -передача данных только по запросу.		RW
0x201F	reserved4					
0x2020	reserved5 (meas_supply_period)	UInt16	Сек.	Период измерения питающего напряжения, 1 – 100 сек (0x0001-0x0064)		RW
0x2021	usikp_period	NgkUInt16 (x10)	Сек.	Период опроса УСИКПСТ, 10сек - 7сут (0x0001-0xFFFE) =0xFFFF – если отключен.		RW
0x2022	corr_sense_period	NgkUInt16 (x10)	Сек.	Период опроса датчиков коррозии, 10сек - 7сут (0x0001-0xFFFE) =0xFFFF – если отключен.		RW
0x2023	aux1_period	NgkUInt16 (x10)	Сек.	Период опроса канала 1, 10сек - 7сут (0х0001-0хFFFE) =0хFFFF – если отключен.		RW
0x2024	aux2_period	NgkUInt16 (x10)	Сек.	Период опроса канала 2, 10сек - 7сут (0х0001-0хFFFE) =0хFFFF – если отключен.		RW
0x2025	reserved6					
0x2026	shunt_nom	UInt16	А	Номинал шунта: Ряд 10, 20, 30, 50, 75, 100, 150. (0x000A, 0x0014, 0x001E, 0x0032, 0x004B, 0x0064, 0x0096)		RW
0x2027	polarisation_pot_en	NgkBoolean	Нет	Разрешение измерения поляризационного потенциала		RW
0x2028	protection_pot_en	NgkBoolean	Нет	Разрешение измерения защитного потенциала		RW
0x2029	protection_cur_en	NgkBoolean	Нет	Разрешение измерения защитного тока		RW
0x202A	polarisation_cur_en	NgkBoolean	Нет	Разрешение измерения поляризационного тока		RW
0x202B	induced_ac_en	NgkBoolean	Нет	Разрешение измерения наведенного напряжения		RW

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x202C	prot_pot_ext_range	NgkBoolean	Нет	Расширенный диапазон защитного потенциала		RW
0x202D	polarisation_cur_dc_en	NgkBoolean	Нет	Разрешение измерения тока натекания ВЭ постоянного		RW
0x202E	polarisation_cur_ac_en	NgkBoolean	Нет	Разрешение измерения тока натекания ВЭ переменного		RW
0x202F	status_flags_en	NgkBoolean	Нет	Разрешение передачи слова состояния		RW
0x2030	pdo_flags	Ulnt16 0 бит – напичие PDO1 1 бит – напичие PDO2 2 бит – напичие PDO3 3 бит – напичие PDO4	Нет	Разрешение или запрещение передачи PDO 1 – включен 0 – выключен		RW
0x2031	datetime	UInt32	Сек.	Текущее время в формате Unix-POSIX (0x00000000-0xFFFFFFF)		RW

5.2 Формат данных в словаре БИ(У)-01

Таблица 3. Формат данных в словаре БИ(У)-01.

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x2000	device_type	UInt16	Нет	Тип устройства: 0х2653		RO
0x2001	fw_version	UInt16	Нет	Версия ПО		RO
0x2002	hw_version	UInt16	Нет	Версия аппаратной части		RO
0x2003	serial_number1	UInt16	Нет			RO
0x2004	serial_number2	UInt16	Нет	Серийный номер устройства		RO
0x2005	serial_number3	UInt16	Нет			RO
0x2006	vcard_chksum	UInt16	Нет	Визитная карточка		RO
0x2007	vendor_id	UInt16	Нет	Код производителя		RO
0x2008	polarisation_pot	NgkFloat (x0,01)	В	Поляризационный потенциал, дополнительный код, ±2 В (0xFF38-0x00C8)	0x7FFF	RO
0x2009	protection_pot	NgkFloat (x0,01)	В	Защитный потенциал, дополнительный код, ±50 В (0xEC78-0x1388)	0x7FFF	RO
0x200A	induced_ac	UInt16	В	Наведенное переменное напряжение, 0 – 100 В (0х0000-0х0064)	0xFFFF	RO
0x200B	protection_cur	NgkUFloat (x0,05)	Α	Ток катодной защиты, 0 -150 A (0x0000-0x0BB8)	0xFFFF	RO
0x200C	polarisation_cur	NgkFloat (x0,01)	mA	Ток поляризации, дополнительный код, ± 300 мА (0x8AD0-0x7530)	0x7FFF	RO
0x200D	aux_cur1	NgkUFloat (x0,01)	mA	Ток канала 1, 4 – 20 мА (0x0190-0x07D0)	0xFFFF	RO
0x200E	aux_cur2	NgkUFloat (x0,01)	mA	Ток канала 2, 4 – 20 мА (0x0190-0x07D0)	0xFFFF	RO
0x200F	corrosion_depth	UInt16	MKM	Глубина коррозии, 0 – 65534 мкм (0x0000-0xFFFE)	0xFFFF	RO
0x2010	corrosion_speed	UInt16	мкм/год	Скорость коррозии, 0 – 65534 мкм/год (0x0000-0xFFFE)	0xFFFF	RO
0x2011	usikp_state	UInt8	Нет	Состояние УСИКПСТ 0x00 — норма 0xFF — нет связи Либо код исключения от УСИКПСТ		RO
0x2012	reserved1 (supply_voltage)	NgkUFloat (x0,05)	В	Питающее напряжение (0x00B4-0x044C)		RO
0x2013	battery_voltage	NgkUFloat (x0,01)	В	Напряжение внутренней батареи, 1,8 – 3,6 В (0x00В4-0x0168)		RO
0x2014	int_temp	Int16	°C	Температура с встроенного датчика, дополнительный код, -40 - +85°C (0xFFD8-0x0055)	0x7FFF	RO
0x2015	tamper	NgkBoolean	Нет	Вскрытие (True – есть вскрытие, False – нет вскрытия)		RO

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x2016	reserved2 (supply_voltage_low)	NgkBoolean	Нет	Напряжение питания ниже нормы	False	RO
0x2017	battery_voltage_low	NgkBoolean	Нет	Напряжение внутренней батареи ниже нормы (True – ниже, False – норма)		RO
0x2018	corrosion_sense1	NgkBoolean	Нет	Состояние датчика коррозии 1. [True - норма. False - обрыв.]		RO
0x2019	corrosion_sense2	NgkBoolean	Нет	Состояние датчика коррозии 2. [True - норма. False - обрыв.]		RO
0x201A	corrosion_sense3	NgkBoolean	Нет	Состояние датчика коррозии 3. [True - норма. False - обрыв.]		RO
0x201B	polarisation_cur_dc	NgkFloat (x0,01)	mA	Ток натекания ВЭ постоянный, дополнительный код, ± 300 мА (0x8ADO-0x7530)	0x7FFF	RO
0x201C	polarisation_cur_ac	NgkUFloat (x0,01)	mA	Ток натекания ВЭ переменный, 0 - 300 мА (0х0000-0х7530)	0xFFFF	RO
0x201D	reserved3	, ,				
0x201E	meas_period	UInt32	Сек.	Период измерений и передачи, 10сек - 7сут (0x0000 000A - 0x0009 3A80) 0xFFFF FFFF -передача данных только по запросу.		RW
0x201F	reserved4					
0x2020	reserved5 (meas_supply_period)					
0x2021	usikp_period	NgkUInt16 (x10)	Сек.	Период опроса УСИКПСТ, 10сек - 7сут (0x0001-0xFFFE) =0xFFFF – если отключен.		RW
0x2022	corr_sense_period	NgkUInt16 (x10)	Сек.	Период опроса датчиков коррозии, 10сек - 7сут (0x0001-0xFFFE) =0xFFFF – если отключен.		RW
0x2023	aux1_period	NgkUInt16 (x10)	Сек.	Период опроса канала 1, 10сек - 7сут (0х0001-0хFFFE) =0хFFFF – если отключен.		RW
0x2024	aux2_period	NgkUInt16 (x10)	Сек.	Период опроса канала 2, 10сек - 7сут (0х0001-0хFFFE) =0хFFFF – если отключен.		RW
0x2025	reserved6					
0x2026	shunt_nom	UInt16	А	Номинал шунта Ряд 10, 20, 30, 50, 75, 100, 150. (0x000A, 0x0014, 0x001E, 0x0032, 0x004B, 0x0064, 0x0096)		RW
0x2027	polarisation_pot_en	NgkBoolean	Нет	Разрешение измерения поляризационного потенциала		RW
0x2028	protection_pot_en	NgkBoolean	Нет	Разрешение измерения защитного потенциала		RW
0x2029	protection_cur_en	NgkBoolean	Нет	Разрешение измерения защитного тока		RW
0x202A	polarisation_cur_en	NgkBoolean	Нет	Разрешение измерения поляризационного тока		RW
0x202B	induced_ac_en	NgkBoolean	Нет	Разрешение измерения наведенного напряжения		RW
0x202C	prot_pot_ext_range	NgkBoolean	Нет	Расширенный диапазон защитного потенциала		RW
0x202D	polarisation_cur_dc_en	NgkBoolean	Нет	Разрешение измерения тока натекания ВЭ постоянного		RW

Индекс	Название	Формат данных (scaler)	Единица измерения	Описание, диапазон (диапазон допустимых значений hex)	Сигнатура	Доступ
0x202E	polarisation_cur_ac_en	NgkBoolean	Нет	Разрешение измерения тока натекания ВЭ переменного		RW
0x202F	status_flags_en	NgkBoolean	Нет	Разрешение передачи слова состояния		RW
0x2030	pdo_flags	Ulnt16 0 бит – наличие PDO1 1 бит – наличие PDO2 2 бит – наличие PDO3 3 бит – наличие PDO4	Нет	Разрешение или запрещение передачи PDO 1 – включен 0 – выключен		RW
0x2031	datetime	UInt32	Сек.	Текущее время в формате Unix-POSIX (0x00000000-0xFFFFFFF)		RW

Типы данных в таблицах:

Int16 – 16 битное число со знаком.

UInt8, UInt16, UInt32 – соответственно 8, 16 и 32 битное число без знака.

NgkUInt16 – 16-ти битное число без знака. Для получения значения параметра, его необходимо умножить на scaler. Scaler у данного типа всегда больше 1.

NgkFloat - 16-ти битное число со знаком, представленное в дополнительном коде. Для получения значения параметра, его необходимо умножить на scaler. Scaler у данного типа всегда меньше 1.

NgkUFloat - 16-ти битное число без знака. Для получения значения параметра, его необходимо умножить на scaler. Scaler у данного типа всегда меньше 1.

NgkBoolean - 8-ми битное число, значения которого могут принимать true (больше 0x00) и false (равное 0x00).

Scaler — множитель для каждого параметра, представленного как NgkUInt16, NgkFloat или NgkUFloat. Также определяет точность каждого параметра (количество знаков после запятой).

Доступ:

RO – доступ только для чтения.

RW – доступ чтение/запись.

Сигнатура:

Значения, хранимые в объектном словаре при отсутствии измерений или их недостоверности. Значение указанное в графе устанавливается при включении питания или сбросе БИ(У)-00, БИ(У)-01 и шлюзов ПБК-8, ПБК-1.

5.3 Расположение объектов в PDO

5.3.1 1-й Transmit PDO

Таблица 4. Размещение объектов в PDO1 transmit.

Поле	Бит	Передаваемое значение	Индекс в объектном словаре	Описание
COB-ID		0x180 + Node-ID		
rtr				флаг
0		polarisation_pot	0x2008	Поляризационный потенциал
1		polarisation_pot	0,2000	Поляризационный потенциал
2		protection_pot	0x2009	Защитный потенциал
3		protection_pot	0,2003	оащитный потенциал
4		induced ac	0x200A	Наводолно поромонно надражение
5		IIIuuceu_ac	UX200A	Наведенное переменное напряжение
6		protection_cur	0x200B	Ток катодной защиты
7		protection_cur	UX200D	ток катодной защиты

5.3.2 2-й Transmit PDO

Таблица 5. Размещение объектов в PDO2 transmit.

Поле	Бит	Передаваемое значение	Индекс в объектном словаре	Описание	
COB-ID		0x280 + Node-ID			
Rtr		0		флаг	
0		polarisation_cur	0x200C	Поляризационный ток	
1		polarisation_cui	0,2000	Поляризационный ток	
2		aux cur1	0x200D	Ток канала 1	
3		aux_cui i	0,2000	ток канала т	
4		aux cur2	0x200E	Ток канала 2	
5		aux_cui2	0,200E	ТОК Канала 2	
	0	tamper	0x2015	Вскрытие	
6	1	supply_voltage_low	0x2016	Напряжение питания ниже нормы	
0	2	battery_voltage_low	0x2017	Напряжение внутренней батареи ниже нормы	

5.3.3 3-й Transmit PDO

Таблица 6. Размещение объектов в PDO3 transmit.

Поле	Бит	Передаваемое значение	Индекс в объектном словаре	Описание		
COB-ID		0x380 + Node-ID				
rtr		0		флаг		
0		corrosion_depth	0x200F	Глубина коррозии		
1		corrosion_deptin	0,2001	т тубина коррозии		
2		corrosion_speed	0x2010	Скорость коррозии		
3		corrosion_speed	0,2010	Скороств коррозии		
4		usikp_state	0x2011	Состояние УСИКПСТ		
	0	corrosion_sence1	0x2018	1-й датчик коррозии		
5	1	corrosion_sence2	0x2019	2-й датчик коррозии		
	2	corrosion_sence3	0x201A	3-й датчик коррозии		

5.3.4 4-й Transmit PDO

Таблица 7. Размещение объектов в PDO4 transmit

Поле	Бит	Передаваемое значение	Индекс в объектном словаре	Описание		
COB-ID		0x480 + Node-ID				
rtr		0		флаг		
0		polarisation_cur_dc	0x201B	Ток натекания ВЭ постоянный		
1		polarisation_cur_uc	0,2010	ток натекания во постоянный		
2		polarisation_cur_ac	0x201C	Ток натекания ВЭ переменный		
3		polarisation_cur_ac	0,2010	ток натекания во переменный		

5.3.5 1-й Receive PDO

Таблица 8. Размещение объектов в PDO1 receive

Поле	Бит	Передаваемое значение	Индекс в объектном словаре	Описание		
COB-ID		0x200				
rtr		0		флаг		
0						
1		datetime	0x2031	Towns and a share and I have Time Otoman		
2		uatetiiile	0,2031	Текущее время в формате Unix TimeStamp		
3						

6. Контекст запросов и примеры ответов.

6.1 Сообщение CANOpen

COB-Id rtr	d0	d1	• • •	d7
------------	----	----	-------	----

Данные в фрейме CAN находятся в формате LSB (little endian)

Число 0x01020304, будет представлено как

XXX	rtr	04	03	02	01
COB-ID	rtr	d0	d1	d2	d3

XXX - COB-ID: идентификатор CAN сообщения, обычно 11 бит

Расшифровка:

Fur	octio	n co	ode	Node-ID						
10	9	8	7	6	5	4	3	2	1	0
	4 би	ита					7 6	ит		

Function Code (bin):

NMT : 0000;

EMCY : 0001; oτ Slave κ Master; SYNC : 0001; oτ Master κ Slave;

PDO Receive : 0100;

PDO Transmit : 0011, 0101, 0111, 1001; SDO Upload : 1011, or Slave κ Master; SDO Upload : 1100, or Master κ Slave; BOOT UP : 1110 or Slave κ Master; NODE GUARD : 1110 or Master κ Slave;

зарезервированы : 0010, 0110, 1111, 1010, 1101, 1000

Rtr: 0 – обычное сообщение

1 – удаленный запрос на передачу. Не содержит данных.

Dn: байты данных. Сообщение может содержать от 0 до 8 байт данных

6.2 Протокол NODE GUARD

Чтобы узнать состояние узла, MASTER сети посылает

0x700+Node_ID	1
COB-ID	rtr

Ответ:

0x700+Node-ID	0	t state
COB-ID	rtr	0

t|state:

t – 1 бит, переключается при каждом запросе

state -

0x04 = stopped

0x05 = operational

0x7F = pre-operational

Ответ в состоянии:

operational: 0x05 или 0x85 в зависимости от бита t.

stopped: 0x04 или 0x84 в зависимости от бита t.

pre-operational: 0x7F или 0xFF в зависимости от бита t.

Пример:

Чтобы узнать состояние узла с адресом 2, MASTER посылает запрос

0x702	1
COB-ID	rtr

6.3 Протокол BOOT UP

Когда узел переходит в состояние pre-operational из initialization, он посылает сообщение:

0x700+Node-ID	0	0x00
COB-ID	rtr	0

То-же сообщение выдаёт шлюз при регистрации в нём БИ(У)-01.

6.4 Протокол SDO Upload

Чтобы прочитать данные, нужно послать запрос:

0x600+Node-ID	0	40	index		subindex	0	0	0	0
COB-ID	rtr	0	1	2	3	4	5	6	7

COB-ID = 0x600 + Node-ID

Ответ (успешный):

0x580+Node-ID	0	DL	index		subindex	d0	d1	d2	d3
COB-ID	rtr	0	1	2	3	4	5	6	7

 $0 - \phi$ лаг rtr

DL – длина возвращаемых данных

0x4F - 1байт

0х4В – 2 байта

0х47 – 3 байта

0х43 – 4 байта

Index – индекс в словаре, (2 байта);

Subindex- подиндекс, (1 байт);

d0, d1, d2, d3 – байты данных, равны нулю, если отсутствуют.

d0 – младший байт передаваемого параметра.

Ответ при неудаче:

0x580+Node-ID	0	80	inc	lex	subindex	SDO abort code				
COB-ID	rtr	0	1	2	3	4	5	6	7	

Примеры:

Чтобы прочитать 4 байта данных 0x01020304 по индексу 0x202D, подиндекс 00 узел сети 02: Запрос:

602 40 2D 20 00 00 00 00 00

Ответ:

582 43 2D 20 00 04 03 02 01

Коды исключений SDO:

Abort code (hexa)

0x0503 0000 Toggle bit not alternated

0x0504 0000 SDO protocol timed out

0x0504 0001 Client/server command specifier not valid or unknown

0x0504 0002 Invalid block size (block mode only)

0x0504 0003 Invalid sequence number (block mode only)

0x0504 0004 CRC error (block mode only)

0x0504 0005 Out of memory

0x0601 0000 Unsupported access to an object

0x0601 0001 Attempt to read a write only object

0x0601 0002 Attempt to write a read only object

0x0602 0000 Object does not exist in the object dictionary

0x0604 0041 Object cannot be mapped to the PDO

0x0604 0042 The number and length of the objects to be mapped whould exceed PDO length

0x0604 0043 General parameter incompatibility reason

0x0604 0047 General internal incompatibility in the device

0x0606 0000 Access failed due to a hardware error

0x0607 0010 Data type does not match, length of service parameter does not match

0x0607 0012 Data type does not match, length of service parameter too high

0x0607 0013 Data type does not match, length of service parameter too low

0x0609 0011 Sub-index does not exist.

0x0609 0030 Value range of parameter exceeded (only for write access)

0x0609 0031 Value of parameter written too high

0x0609 0032 Value of parameter written too low

0x0609 0036 Maximum value is less than minimum value

0x0800 0000 General error

 $0x0800\ 0020$ Data cannot be transferred or stored to the application

0x0800 0021 Data cannot be transferred or stored to the application because of local control

0x0800 0022 Data cannot be transferred or stored to the application because ofthe present device state

0x0800 0023 Object dictionary dynamic generation fails or no object dictionary is present.

6.5 Протокол SYNC

SYNC используется MASTER-ом сети для получения от устройств сети сообщений PDO transmit.

0x080	0
COB-ID	rtr

6.6 Протокол PDO transmit

Сообщение PDO

XXX	0	dataX		dataX dataY			
COB-ID	rtr	0	1	2	3	4	5

XXX - COB-ID = HOMEP PDO(0x180, 0x280, 0x380, 0x480) + Node-ID

0 – флаг rtr

dataX – данные из первого PDO (2 байта)

dataY – данные из второго PDO (4 байта)

Пример PDO1 transmit, передаваемый в ответ на SYNC (настроен в БИ-У №1)

0x181	0	dat	aA	da	taB	da	taC	da	ataD
COB-ID	rtr	0	1	2	3	4	5	6	7

0x181 = 0x180 + 1 (HOMED PDO + Node-ID)

0 – флаг rtr

dataA – polarisation pot (поляризационный потенциал) (0x2008)

dataB – protection_pot (защитный потенциал) (0x2009)

dataC – induced ас (наведенное напряжение) (0x200A)

dataD – protection_cur (защитный ток) (0x200B)

Пример PDO2 transmit, передаваемый в ответ на SYNC (настроен в БИ-У №1)

0x281	0	da	ıtaA	da	taB	da	taC	dataD
COB-ID	rtr	0	1	2	3	4	5	6

0x281 = 0x280 + 1 (HOMED PDO + Node-ID)

 $0 - \phi$ лаг rtr

dataA – polarisation_cur (поляризационный ток) (0x200C)

dataB – aux_cur1 (ток канала 1) (0x200D)

dataC – aux cur2 (ток канала 2) (0x200E)

dataD – биты состояния. Расположение по битам:

X	X	X	X	X	D3	D2	D1
7	6	5	4	3	2	1	0

D1 – tamper (вскрытие) (0x2015)

D2 – supply_voltage_low (напряжение питания ниже нормы) (0x2016)

D3 – battery voltage low (напряжение внутренней батареи ниже нормы) (0x2017)

Пример PDO3 transmit, передаваемый в ответ на SYNC (настроен в БИ-У №1)

0x381	0	da	taA	da	taB	dataC	dataD
COB-ID	rtr	0	1	2	3	4	5

0x381 = 0x380 + 1 (HOMED PDO + Node-ID)

 $0 - \phi$ лаг rtr

dataA – corrosion_depth (Глубина коррозии) (0x200F)

dataB – corrosion_speed (Скорость коррозии) (0x2010)

dataC – usikp_state (Состояние УСИКПСТ) (0x2011)

0х00 – норма;

0xFF - нет связи;

либо код исключения от УСИКПСТ.

dataD – биты состояния датчиков коррозии. Расположение по битам:

X	X	X	X	X	D3	D2	D1
7	6	5	4	3	2	1	0

D1 – corrosion_sence1 (1-й датчик коррозии) (0x2018)

D2 – corrosion_sence1 (2-й датчик коррозии) (0x2019)

D3 – corrosion_sence1 (3-й датчик коррозии) (0x201A)

1 - норма;

0 - обрыв.

Пример PDO4 transmit, передаваемый в ответ на SYNC (настроен в БИ-У №1)

0x481	0	dataA		0 dataA dataB		taB
COB-ID	rtr	0	1	2	3	

0x481 = 0x480 + 1 (HOMED PDO + Node-ID)

 $0 - \phi$ лаг rtr

dataA – polarisation cur dc (ток натекания ВЭ постоянный) (0x201В)

dataB – polarisation_cur_ac (ток натекания ВЭ переменный) (0x201C)

6.7 Протокол PDO receive

Каждая БИ(У) имеет PDO1 receive. Используется для записи времени в устройство. Изменяет данные datetime (текущее время) в словаре объекта (0x2031) Поддерживается только широковещательная запись времени.

Пример PDO1, передаваемый в шлюз и БИ(У)-00 для установки времени.

0x200	0	0xC4	0x73	0x11	0x54
COB-ID	rtr	0	1	2	3

0x200 – COB-ID для широковещательной установки времени

 $0 - \phi$ лаг rtr

0x541173C4 – текущее время в формате Unix timestamp

6.8 Протокол NMT

Перевод узла сети в состояние Operational

0x000	0	0x01	Node-ID
COB-ID	rtr	0	1

Перевод узла сети в состояние Stop

0x000	0	0x02	Node-ID
COB-ID	rtr	0	1

Перевод узла сети в состояние Pre-Operational

0x000	0	0x80	Node-ID
COB-ID	rtr	0	1

Перевод узла сети в состояние Initialisation.

0x000	0	0x81	Node-ID		
COB-ID	rtr	0	1		

Примечание:

Для управления всеми узлами сети, используется Node-ID = 0x00

Примеры:

Перевод всех узлов сети в состояние Stopped:

0x000	0	0x02	0x00	
COB-ID	rtr	0	1	

Перевод узла сети 0x06 в состояние Operational:

0x000	0	0x01	0x06
COB-ID	rtr	0	1

Перевод узла сети 0x06 в состояние Pre-Operational:

0x000	0	0x80	0x06		
COB-ID	rtr	0	1		

Перевод узла сети 0x06 в состояние Initialisation:

<u> </u>							
0x000	0	0x81	0x06				
COB-ID	rtr	0	1				

6.9 Протокол ЕМСҮ

Сообщение ЕМСУ

XXX	0	ErrCode		err_reg	d0	d1	d2	d3	d4
COB-ID	rtr	0	1	2	3	4	5	6	7

XXX - COB-ID = 0x080 + Node-ID

 $0 - \phi$ лаг rtr

ErrCode – код ошибки (2 байта)

err_reg – содержимое регистра ошибки (1байт)

d0, d1, d2, d3, d4 – дополнительная информация (5 байт)

Пример ЕМСУ, передаваемый в случае возникновения аварийной ситуации

0x081	0	ErrCode		err_reg	X	0	0	0	0
COB-ID	rtr	0	1	2	3	4	5	6	7

0x081 = 0x080 + 1 (код EMCY + Node-ID)

 $0 - \phi$ лаг rtr

ErrCode содержит код ошибки. Размер – 2 байта.

0х0000 – отсутствие ошибок.

0х0001 – вскрытие

0х0002 - ошибка внешнего питания

0х0003 – неисправность внутренней батареи питания

0х0004 – ошибка регистрации

0х0005 – ошибка дублирования адреса.

0х0006 – подключение сервисного разъёма.

err_reg – содержимое регистра ошибки, начиная с 0 бита.

бит 0 – индицирует наличие в текущий момент времени ошибки вскрытия:

0 - нет вскрытия

1- есть вскрытие

бит 1 – наличие ошибки внешнего питания:

0 – питание в норме.

1 – ошибка питания.

бит 2 – неисправность внутренней батареи питания

0 – внутренняя батарея питания в норме

1 - неисправность внутренней батареи питания

бит 3 – ошибка регистрации БИ(У)-01.

Возникает при попытке регистрации БИ(У)-01 числом больше 10 на 1 порт ПБК-8 и 16 для ПБК-1.

0 – нет ошибки

1 – ошибка регистрации БИ(У)-01.

бит 4 — ошибка дублирования адреса БИ(У)-01: Возникает если в шлюзе уже зарегистрирована БИ(У)-01 с таким адресом или уже зарегистрированная в шлюзе БИ(У)-01 подключена через другой порт этого-же шлюза:

0 - нет ошибки

1 – совпали адреса БИ(У)-01

бит 5 – признак подключения сервисного разъёма.

0 – разъём не подключен.

1 – подключен сервисный разъём

Х – номер канала шлюза, вызвавший сообщение. Значение от 1 до 4.

Для EMCY от БИ(У)-00, X всегда равен 0.

7. Обработка ошибок сети САЛ

Обработка ошибок осуществляется контроллером CAN, используя счетчик ошибок передачи (TEC) и счетчик ошибок приема (REC), которые увеличиваются или уменьшаются согласно количеству ошибок. Когда TEC достигает значения 255, контроллер переходит в состояние BUS-Off, в котором выключены прием и передача сообщений. Устройства в сети выходят из этого состояния автоматически по приходу последовательности для восстановления (128 вхождений из 11 последовательных рецессивных бит на CANRX).