ALPSCore:

Libraries for Physics Simulations

Core libraries of the ALPS project

Alexander Gaenko Andrey Antipov James LeBlanc Emanuel Gull

What is ALPSCore?

http://alpscore.org/

- 1. Open-source libraries and a framework for physics HPC simulations.
- 2. Aims to provide generic algorithms and utilities for physics problems.
- 3. Strives to increase software reuse in computational physics community.
- 4. Based on Algorighm and Libraries for Physics Simulations (ALPS, alps.comp-phys.org)
- 5. Takes most essential components of ALPS, providing compact C++ implementation and short development cycle.
- 6. Aims to be easy to maintain, install and use.

Why use ALPSCore?

- 1. Easy to install, simple interface
- 2. Ready-made command line and parameter files reading
- 3. Built-in statistics accumulation with error estimates
- 4. Easy checkpointing and restarting
- 5. Effortless MPI parallelization
- 6. Compact (~550 files, 400K lines of C++) with minimal external library dependence
- 7. Reduces time to develop and test complex scientific applications

ALPSCore package

params

(Access to paramer file and command line)

archive

(Save to, restore from HDF5 files)

Python bindings

(Access from Python scripts)

accumulators

(Gather statistical data with error estimates)

Monte Carlo scheduler

(Distribute work via MPI, set termination criteria)

Tutorials

(E.g., Ising model MC simulation)

Example: Using accumulators

```
// Declare quantities:
using alps::accumulators;
accumulator set measurem;
measurem << FullBinningAccumulator<double>("quantity1")
         << FullBinningAccumulator<double>("quantity2");
                                             Accumulator features
// Measure quantity at each MC step:
                                               MeanAccumulator
double q1=get quantity1();
double q2=get quantity2();
                                               NoBinningAccumulator
measurem["quantity1"] << q1;</pre>
                                               LogBinningAccumulator
measurem["quantity2"] << q2;</pre>
                                               FullBinningAccumulator
// Extract results
result set results (measurem);
                                                 Mean of a ratio --
result wrapper r1=results["quantity1"];
result wrapper r2=results["quantity2"];
                                               not a ratio of means
// Do arithmetics, get statistics:
int nmeasure = count(r1);
```

Installing and using ALPSCore

Installation from source

- \$ cmake -DCMAKE INSTALL PREFIX=/where/to/install ` -DB00ST R00T=/path/to/boost \
 - -DENABLE MPI=true \
 - -DHDF5 DIR=/path/to/hdf5 \ /path/to/alpscore-src
- \$ make \$ make test
- \$ make install

MacPorts and Debian packages: coming soon!

To use: put in your CMakeLists.txt

find_package(ALPSCore REQUIRED COMPONENTS hdf5 accumulators mc params) include_directories(\${ALPSCore_INCLUDE_DIRS}) link_libraries(\${ALPSCore_LIBRARIES})

and invoke your cmake:

\$ cmake your project options\ -DALPS ROOT=/path/to/alpscore/

double mean ratio = (r1/r2).mean<double>(); \leftarrow