Introducción a los Sistemas Distribuidos (75.43 / 75.33 / 95.40)

Evaluación Parcial 2C 2024 – Primer Recuperatorio

TURNO MARTES

Padrón	
Apellido	
Nombre	
email	

Criterio de aprobación:

El alumno debe demostrar conocimiento de todos los puntos que componen el parcial.

Responder las preguntas críticas (marcadas en gris) es una condición necesaria para aprobar el examen.

Latencia	App Layer	DNS	TCP	Frag IPv4	Routing	Routing II	Subnetting

1. Latencia

Responder brevemente:

- ¿Qué es el RTT?
- ¿Cuáles son los componentes de la latencia?
- ¿Cuál es el componente de mayor incidencia en su cálculo?

2. App Layer

Responder brevemente:

- ¿Qué es un protocolo de capa de aplicación?
- Enumere 3 ejemplos.

3. DNS

Responder brevemente:

- ¿Qué es el protocolo DNS?
- Describa brevemente su funcionamiento

4. TCP

Elija las opciones correctas

- El header de la capa de transporte es 32 bits.
- El mecanismo de control de flujo utilizado es Tahoe.
- El tamaño del paquete enviado es 831346 Bytes.
- El header de la capa de enlace es de 14 B, como el de Ethernet.

No.		Time	Source	SRC Port	Destination	DST Port	Protocol	Length	tcp_header_length	ip_fragment_size	ack_number	Info	
	225	0.027088669	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	702001	40002	→
	226	0.027102320	127.0.0.1	59060	127.0.0.1	40002	TCP	1066	32	1052	1	59060	→
	227	0.027759195	127.0.0.1	59060	127.0.0.1	40002	TCP	32834	32	32820	1	59060	→
	228	0.027768023	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	735769	40002	→
	229	0.027776440	127.0.0.1	59060	127.0.0.1	40002	TCP	298	32	284	1	59060	→
	230	0.028055286	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	736001	40002	→
	231	0.028071608	127.0.0.1	59060	127.0.0.1	40002	TCP	13066	32	13052	1	59060	→
	232	0.028152158	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	749001	40002	→
	233	0.028159221	127.0.0.1	59060	127.0.0.1	40002	TCP	4066	32	4052	1	59060	-
	234	0.028180613	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	753001	40002	→
	235	0.028186550	127.0.0.1	59060	127.0.0.1	40002	TCP	1066	32	1052	1	59060	→
	236	0.028195224	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	754001	40002	→
	237	0.028200275	127.0.0.1	59060	127.0.0.1	40002	TCP	1066	32	1052	1	59060	→
	238	0.028887873	127.0.0.1	59060	127.0.0.1	40002	TCP	32834	32	32820	1	59060	→
	239	0.028896147	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	787769	40002	→
	240	0.028904424	127.0.0.1	59060	127.0.0.1	40002	TCP	298	32	284	1	59060	-
	241	0.029066156	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	788001	40002	-
	242	0.029075066	127.0.0.1	59060	127.0.0.1	40002	TCP	7066	32	7052	1	59060	-
	243	0.029115713	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	795001	40002	→
	244	0.029122022	127.0.0.1	59060	127.0.0.1	40002	TCP	3066	32	3052	1	59060	→
	245	0.029149059	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	798001	40002	→
	246	0.029154909	127.0.0.1	59060	127.0.0.1	40002	TCP	1066	32	1052	1	59060	→
	247	0.029163130	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	799001	40002	→
	248	0.029168246	127.0.0.1	59060	127.0.0.1	40002	TCP	1066	32	1052	1	59060	→
	249	0.029891572	127.0.0.1	59060	127.0.0.1	40002	TCP	31410	32	31396	1	59060	-
	250	0.029900836	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	831346	40002	→
	251	0.030131382	127.0.0.1	40002	127.0.0.1	59060	TCP	66	32	52	831346	40002	-

5. Fragmentación IPv4 - Si el host A envía un paquete de 2048b de payload al host B, con la siguiente configuración de MTUs, ¿cuáles son los fragmentos que llegan a R2? Elija la opción correcta.

	Nro de frag	Fragment offset	Total length	Payload length	More fragments
A	F1_1	0		976	0
	F1_2	122	200	220	1
	F2_1	147	882	862	1
В	F1_1	0	1000	1020	1
	F1_2	125	200	220	1

F2_1 F1_1 C 6. F1_2 F2_1 F1_1 D F1_2 F2_1

7. Routing

Considere la siguiente tabla de ruteo:

Network destination	Netmask	Interface	Next Hop
96.208.54.96	255.255.255.224	if1	10.57.192.85
96.208.54.192	255.255.255.192	if1	10.57.192.85
96.208.54.64	255.255.255.224	if1	10.57.192.85
96.208.54.16	255.255.255.240	if2	10.64.128.1
96.208.54.0	255.255.255.192	if2	10.64.128.1
96.208.62.0	255.255.255.192	if2	10.64.128.1

A. Se solicita agregar un default gateway que salga por la interfaz 3 y luego, optimizar la tabla de ruteo eliminando las entradas redundantes. Ordenar la misma por interfaz de salida.

Network destination	Netmask	Interface	Next Hop

- B. Responda Verdadero o Falso justificando su respuesta.
 - Se denomina máscara de red a los primeros N bits de un prefijo de red, siendo N un número entre 0 y 32.

8. Routing II

Completar la tabla de ruteo para el router R2 del ejercicio de Subnetting. Indique las hipótesis necesarias para completar la tabla.

Network destination	Netmask	Interface	Next Hop

9. Subnetting - Dada la topología:

A. Completar la siguiente tabla dado los espacios de direcciones 200.172.48.0/22 y 200.180.192.0/24 priorizando el orden alfabético a la hora de subnetear bloques del mismo tamaño. Utilizar primero el espacio de direcciones /22

Subnet	#Hosts	Tamaño de bloque	Subnet
А	500		
В	200		
С	128		
D	50		
E	40		
F	30		
G	20		
P1	-		
P2	-		
P3	-		
P4	-		
P5	-		

- B. Asignar una dirección IP posible para:
 - i. El router de la subnet C
 - ii. Un host perteneciente a la subnet C
 - iii. Un router de la subnet P1