Modern Fizika Labor

Fizika BSC

A mérés	A mérés száma és címe:	Értékelés:
dátuma:	17, Folyadékkristályok	
április 20.	17, Polyadekkiistaiyok	
upinis 20.		
A beadás	A mérést végezte:	
dátuma:		
	Meszéna Balázs, Tüzes Dániel	
május 1.		

A mérés célja

A mérés célja a folyadékkristályok, illetve az azokból készült kijelzők vizsgálata. A mérés első felében a folyadékkristály fázisátalakulását vizsgáltuk meg törési tulajdonságaik alapján, míg a második részben csavart nematikus, illetve ferroelektromos kijelző áteresztőképességét mértük.

Törésmutató mérés

Ebben a részben egy optikai padra helyeztünk egy lézert, elétettünk egy folyadékkristályt tartalmazó prizmát, majd egy polárszűrőt. A fénysugár, hogy hosszú utat tegyen meg, visszaverődött az optikai pad másik végén lévő tükörről, és az ajtóra ragasztott milliméterpapírra vetült.

Először bejelöltük a papíron azt a foltot ami a folyadékkristály nélkül keletkezik (referenciapont). Ezek után betettük kristályt, és mivel szobahőmérsékleten az nematikus fázisban van, kettőstörő tulajdonsággal rendelkezik. Így két folt volt látható.

A kristályt egy áramgenerátorral fűteni kezdtük, és mértük a foltok középpontjának távolságát a referenciaponttól. Ebből meghatározhattuk a törésmutatókat a hőmérséklet függvényében.

A méréshez kénytelenek voltunk a régi folyadékkristályt használni, mivel az újnak az érdekes hőmérséklettartománya túl alacsonyan volt és nem tudtuk elég lassan fűteni. A prizma törőszöge α =1,93° volt. A fénysugár eltérülési szögéhez meg kellett még mérnünk a fénysugár útját. Ez elég körülményes volt, hisz a táv két szakaszból állt: a lézertől a tükörig, illetve a tükörtől a papírig. Az utóbbi esetben útban volt az asztal, továbbá a mérőszalag is rövidebb volt a mérendő távolságnál. Ezért kétszer mértük le a távolságot és 550cm, illetve 579cm-t kaptunk. Így a távolságot l = (560±10)cm-nek vettük.

Ha a papíron mért eltérülés d, akkor a nyaláb szögeltérése $\beta = \frac{d}{l}$ (hisz kis

szögekről van szó). Szintén ebben a közelítésben a törésmutató $n \approx \frac{\alpha + \beta}{\alpha} = 1 + \frac{\beta}{\alpha}$.

Az alábbi táblázat tartalmazza az adatokat az érdekes tartományban (d1 az ordinárius, d2 az extraordinárius nyaláb oszlopa).

T(℃)	d2(cm) d	d1(cm) r	า2 เ	า1
37.9	12.5	10.1	1.66	1.54
38.7	12.3	10.1	1.65	1.54
40.1	12.1	10.2	1.64	1.54
40.5	11.8	10.3	1.63	1.55
40.8	11.1	10.3	1.59	1.55
41.1	10.9	10.9	1.58	1.58
41.7	10.7	10.7	1.57	1.57

A papíron mért eltérülés hibáját az határozza meg, hogy mennyire kiterjedt a fényfolt. Ez az elején kb 0,5cm átmérőjű volt, majd a végén 1cm-nél is nagyobb. Így ennek középpontjának helyzetének bizonytalansága átlagosan 3mm-nek vehető. Az eltérülés szöge így d és l hibájából adódóan 5%. Ez $\frac{\beta}{\alpha}$ -ban, és így a törésmutatóban is 0,03 abszolút hibát eredményez

A hőmérsékletet 0,1°C pontossággal tudtuk mérni. A távolság mérése nagyon pontatlan és nehézkes volt, mivel kis és hirtelen változásokat kellett jegyeznünk, továbbá a foltok átmérője kb. 0,8cm volt az elején, majd a végén kb. 2cm-nyire is szétkenődött. Így ezek pontossága csak 0,2-0,3 cm volt, ami összemérhető a változásokkal.

Láthatjuk, hogy kb. 40°C-ig a törésmutatók alig változnak, majd 40°C és 41°C között az extraordinárius törésmutató hirtelen elkezd csökkenni. Tovább növelve a hőmérsékletet a két folt egybeolvadt, megszűnt az anyag kettőstörő tulajdonsága. E mögött a gyors változás mögött a nematikus fázisban lévő kristály fázisátalakulása van. A túl nagy hőmozgás miatt a kristály direktorának iránya már nem lesz meghatározó.

Folyadékkristályos kijelzők

Ebben a mérésben a lézer elé egy polarizátort, illetve sötétítőlapkát helyeztünk (utóbbit azért, hogy a fotódióda ne kapjon túl nagy jelet). Ezeket követte a folyadékkristályos kijelző, és még egy polarizátor. Végül a fénysugár egy tölcséren keresztül egy fotodiódába érkezett, melynek jelét oszcilloszkópon

figyeltük. Az első polarizátort úgy állítottuk be, hogy keresztezzék egymást, valamint a bejövő fény polarizációja legyen párhuzamos a direktor irányával. Ezt úgy láttuk, hogy tér nélkül a kimenő jel maximális volt. Ezek után egy jelgenerátorral a kijelzőre háromszög, négyszög, illetve szinuszos jelet kapcsoltunk.

Kétféle cellát vizsgáltunk: nematikust, illetve ferroelektromost.

Első feladatunk volt megvizsgálni a kimenő jelalakot a bemenő függvényében. A következő képeken a nematikus kijelzőre kapcsolt négyszög, háromszög, illetve szinuszos jelre adott választ látjuk.

Ezek pedig a ferroelektromos kijelzővel készült felvételek.

Az alábbi táblázat tartalmazza az oszcilloszkóp beállításait a képeken.

nematikus	frekv(Hz)	be(V)	ki(V)	idő(ms)
négyszög	39	2	0.1	5
háromszög	90	2	0.05	2
szinusz	90	2	0.05	2
ferro				
négyszög	90	2	0.5	2
háromszög	80	2	0.5	2
szinusz	90	0.2	0.05	2

Vizsgáljuk meg kvalitatívan a kimenőjeleket szinuszos bemenőjel esetén. Első körben tegyük fel, hogy nem kell idő a molekulák átrendeződéséhez. A nematikus kijelző esetén, ha épp nincs külső tér, akkor az intenzitás maximális. Ha azonban a tér maximális, akkor az intenzitásnak minimuma van, függetlenül a tér irányától. Így a kimenőjel frekvenciája kétszerese lesz a bemenőjel frekvenciájának. A ferroelektromos kijelző azonban bistabil, így az egyik tériránynál a kimenőjel minimális, mert a direktor iránya megegyezik a bemenő fény polarizációjával. A másik iránynál a direktor átbillen, így az intenzitás maximális lesz. Ezt a véges átbillenési idő úgy módosítja, hogy a kimenőjel késik az ideálishoz képest (vagy négyszögjel esetén "bekapcsolási" jelenséget látunk).

A következőkben meghatározzuk a kijelzők átbillenésének karakterisztikus idejét.

A csavart, nematikus kijelző esetén először a négyszögjeles képből meghatározzuk a kimenő jel időállandóját. Azaz $U_{ki} = A - B \exp(-t/\tau)$ -t feltételezve τ -t fogjuk megkapni.

Az ábráról leolvasott értékek (az oszcilloszkóp egy kockájában mérve):

t(kocka)	U(kocka)
-2.8	-2
-2.6	-1.2
-2.4	-0.2
-2.2	0.4
-2	0.8
-1.8	1.4
-1.6	1.6
-1.4	1.8
-1.2	2
-1	2.2
-0.8	2.2

Az időállandóra illesztésből (4.2±0.3)ms adódott.

Hasonló jellegű mennyiséget olvashatunk le a szinuszos bemenő jelű képekről. Megállapítottuk, hogy a bemenőjel zérushelye, illetve a kimenő jel maximuma mennyire tér el egymástól. Ezt különböző frekvenciánál is megmértük.

frek(Hz)	késés(ms)
20	13
40	9
60	6.5
80	5.5
100	5.5
120	5
140	5
160	4.5
200	4

Látható, hogy az így definiált holtidő is 5-10ms között van és a frekvencia

növekedésével csökken.

Végül meghatároztuk a ferroelektromos cella időállandóját egy négyszögjeles felvételből.

A felhasznált adatpontok egy olyan felvételről származnak, melyen 1 kocka 1 ms-nak felel meg:

t(kocka)	U(kocka)
0.4	4 1.8
0.6	6 1
0.8	8 0.2
•	1 -0.6
1.2	2 -1
1.4	4 -1.5
1.6	6 -1.8
1.8	8 -1.9
2	2 -2
2.2	2 -2

Ezekből az időállandóra $\tau = (0.75 \pm 0.08) ms$ adódik. Azaz a ferroelektromos kijelző holtideje egy nagyságrenddel kisebb, mint a csavart nematikusé.