BIG OMEGA NOTATIONMATHEMATICAL EXAMPLES AND PROOFS

EXAMPLE 1

1) Find lower bound for $f(n) = 5n^2$

SOLUTION: We know by definition of Big Omega Ω notation:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants.

If there exist c, n_0 Such that:

$$0 \le cn^2 \le 5n^2$$

$$\Rightarrow cn^2 \leq 5n^2$$

$$\implies c \leq \frac{5n^2}{n^2}$$

$$\Rightarrow c \leq 5$$

and

$$we see : g(n) = n^2$$

$$f(n) \ge c \times g(n)$$

$$5n^2 \ge c \times n^2 \ge 0$$

We know c = 5, hence:

$$5n^2 \geq 5 \times n^2 \geq 0$$

$$or, n^2 \ge n^2 \ge 0$$

 $or, n \ge n \ge 0$

 $or, n \geq 0$ is correct,

or we may say $n \ge 1$, Based on Analysis given below:

N	$5n^2$	n^2
1	5	1
2	20	4
3	45	9
4	80	16

Hence $n \ge 1$ is best possible analysis on the, baisis of rate of growth.

$$\therefore 5n^2 = \Omega(n^2) with \ c = 5 \ and \ n_0 = 1$$

EXAMPLE 2

2) Let
$$f(n) = n^4 + 3n^3 + 2n + 1$$
. Let $g(n) = n^3 + 4$.

Prove that f(n) of an algorithm is $\Omega(n^3)$.

SOLUTION:

We know by definition of Big Omega Ω notation:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants.

$$0 \le c \times (n^3 + 4) \le n^4 + 3n^3 + 2n + 1$$

$$c \leq \frac{n^4 + 3n^3 + 2n + 1}{n^3 + 4}i.e.\frac{f(n)}{g(n)}$$

And
$$n \leq \sqrt[3]{\frac{n^4 + 3n^3 + 2n + 1}{n^3 + 4}}$$

BUT WITH THE ABOVE EQUATION OF n WE CANNOT DETERMINE, HENCE LET'S GO WITH INPUTS

N	$n^4 + 3n^3 + 2n + 1$	$n^3 + 4$
1	1+3+2+1=6	1+4=5
2	16+24+4+1=45	8+1=9
3	81+81+6+1=169	27+4=31

$$\emph{i.e.} \ \emph{for} \ \emph{n} = 1 \ \emph{,} \ \emph{c} \leq \frac{6}{5} = 1.2$$

$$i.e. for n=2$$
 , $c \leq \frac{45}{5}=5$

$$\emph{i.e.} \ \emph{for} \ \emph{n} = 3 \ \emph{,} \ \emph{c} \leq \frac{169}{31} = 5.45$$

HENCE: $n \geq 1$

Therefore, we $have\ c$ which has a positive number, for sufficiently large values of n, We can see that $c \ge 1$.

NOTE: c is natural positive number.

This satisfies the definition:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants which imply f(n) grows at a faster rate than a constant time g(n) for a sufficiently large n.

Therefore $\Omega(g(n)) = \Omega(n^3)$.

EXAMPLE 3

3) If the relation $f(n) = 6n^2 + 7n + 8$ holds, prove that f(n) is not $\Omega(n^3)$

SOLUTION

We know by definition of Big Omega Ω notation:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants.

Note: By the equation we can see that:

$$f(n) \ge c \times g(n)$$

$$\Rightarrow 6n^2 + 7n + 8 \ge c \times n^3$$

$$\Rightarrow f(n) \leq 6n^2 + 7n^2 + 8n^2 \text{ for all } n \geq 1$$

$$\Rightarrow f(n) \leq 21n^2$$

Now,

$$\Rightarrow cn^3 \leq 21n^2$$

$$\implies c \le 21n^{2-3} i.e. 21n^{-1}$$

$$c \leq \frac{21}{n}$$

And

$$\Rightarrow cn^3 - 21n^2 \le 0$$

$$\Rightarrow n^2(cn-21) \leq 0$$

$$\Rightarrow$$
 $cn-21 \leq 0$

$$\Rightarrow$$
 $cn \leq 21$

$$\Rightarrow n \leq \frac{21}{c}$$

$$n \leq \frac{21}{c}$$

Now we can see that

$$c \leq \frac{21}{n}$$

and

$$n \leq \frac{21}{c}$$

c can be $\frac{21}{n}$ or less than $\frac{21}{n}$ as c is a positive number and constant but $n \leq \frac{21}{c}$ implies n is smaller than constant c which is not true,

Suppose c is 10 , then n is $\frac{21}{10} \approx 2(approx)$

Hence we can say that this cannot be proved as there is no positive number c' for which this condition holds good.

Therefore: $f(n) \notin \Omega(n^3)$

EXAMPLE 4

4) If the relation f(n) = 100n + 5 holds, prove that f(n) is not $\Omega(n^2)$

SOLUTION

We know by definition of Big Omega Ω notation:

 $f(n) = \Omega(g(n))$, if $0 \le c \times g(n) \le f(n)$ for all $n \ge n_0$, where c and n_0 are constants.

Note: By the equation we can see that:

$$f(n) \ge c \times g(n)$$

$$\Rightarrow$$
 100 $n + 5 \ge c \times n^2$

$$\Rightarrow f(n) \leq 100n + 5n$$
 for all $n \geq 1$

$$\Rightarrow f(n) \leq 105n$$

Now,

$$\Rightarrow cn^2 \leq 105n$$

$$\Rightarrow cn^2 - 105n \leq 0$$

$$\Rightarrow n(cn-105) \leq 0$$

$$\Rightarrow$$
 $(cn - 105) \le 0$

$$\Rightarrow$$
 cn \leq 105

$$\Rightarrow n \leq \frac{105}{c}$$

 \Rightarrow Contradiction: n cannot be smaller than a constant.

EXAMPLE 5

- $1.2n = \Omega(n)$
- $2.n^3 = \Omega(n^3)$
- $3. logn = \Omega(logn)$