Reinforcement Learning Exercise 3

Jim Mainprice, Philipp Kratzer

Machine Learning & Robotics lab, U Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

May 5, 2020

Submission Instructions:

The submission deadline for this exercise sheet is 12.05., 23:55.

Put your answers into a single pdf. Your python code should be a single python script. Upload both files to ilias. Make sure that the code runs with *python3 yourscript.py* without any errors.

Group submissions of up to three students are allowed.

1 Proofs (5P)

a) Show that the Bellman optimality operator \mathcal{T} is a γ -contraction. (2P)

$$(\Im v)(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v(s')]$$

$$\tag{1}$$

b) Assuming a general finite MDP (S, A, R, p, γ) where rewards are bounded: $r \in [r_{\min}, r_{\max}]$ for all $r \in R$. Prove the following equations. (3P)

$$\frac{r_{\min}}{1 - \gamma} \le v(s) \le \frac{r_{\max}}{1 - \gamma} \tag{2}$$

$$|v(s) - v(s')| \le \frac{r_{\text{max}} - r_{\text{min}}}{1 - \gamma} \tag{3}$$

2 Value Iteration (5P)

As in the previous exercise sheet, we will use the FrozenLake environment from gym (https://gym.openai.com/envs/FrozenLake-v0/). The code template can be found on github (https://github.com/humans-to-robots-motion/rl-course) in ex03-dynp/ex03-dynp/ex03-dynp.py.

- a) Implement the value iteration algorithm (see lecture 3 slide 25) in the function $value_iteration$. Use the values for γ and θ that are given in the code. Initialize the value function V(s) to 0 for all states. How many steps does it need to converge? What is the optimal value function? Put your answers into your submission pdf. (3P)
- b) Compute the optimal policy from the value function and put it into your submission pdf. (2P)