Artificial Neural Networks (Gerstner). Exercises for week 5

Error function and Optimization

Exercise 1. Averaging of Stochastic gradients.

We consider stochastic gradient descent in a network with three weights, (w_1, w_2, w_3) .

Evaluating the gradient for 100 input patterns (one pattern at a time), we observe the following time series

for w_1 : observed gradients are 1.1; 0.9, 1.1; 0.9; 1.1; 0.9; ...

for w_2 : observed gradients are 0.1; 0.1; 0.1; 0.1; 0.1; ...

for w_3 : observed gradients are 1.1; 0; -0.9; 0; 1.1; 0; -0.9; 0; 1.1; 0; -0.9; ...

- a. Calculate the mean gradient for w_1 and w_2 and w_3 .
- b. Calculate the mean of the squared gradient $\langle g_k^2 \rangle$ for w_1 and w_2 and w_3 .
- c. Divide the result of (a) by that of (b) so as to calculate $\langle g_k \rangle / \langle g_k^2 \rangle$.
- d. You use an an algorithm to update a variable m:

$$m(n+1) = \rho m(n) + (1-\rho)x(n)$$
 (*)

where $\rho \in [0,1)$ and x(n) refers to an observed time series $x(1), x(2), x(3), \dots$

Show that, if all all values of x are identical [that is, $x(k) = \bar{x}$ for all k], then the algo (*) converges to $m = \bar{x}$.

e. Assume the initial condition m(0) = 0. Show that, for $1 - \rho \ll 1$ the algorithm outputs in time step n + 1 the value

$$m(n+1) = (1-\rho) \sum_{k=0}^{n} \exp[-(1-\rho)k] \cdot x(n-k)$$

Hint: (i) compare m(n+1) with m(n) and reorder terms. (ii) At the end of your calculation you may approximate $\exp[\epsilon] = 1 + \epsilon$ (which is valid for small $\epsilon \ll 1$).

f. Your friend makes the following statement:

The algo (*) performs a running average of the time series x(n) with an exponentially weighted window that extends roughly over $1/(1-\rho)$ samples. Therefore, if you want to include about 100 samples in the average, you should choose $\rho = 0.99$.

Is your friend's claim correct?

Exercise 2. ADAM and minibatches.

In your project you have already spent some time on optimizing the ADAM parameters ρ_1 and ρ_2 while you ran preliminary tests with a minibatch size of 128 on your computer.

For the final run you get access to a bigger and faster computer that allows you to run minibatches of size 512.

How should you rescale ρ_1 and ρ_2 so as to expect roughly the same behavior of the two machines on the training base?

Hint: For ρ_1 you can directly use the results from Exercise 1. However, for ρ_2 you may want to distinguish between the time series for w_1 and that for w_3 . Why? Think of the time series in exercise 1 as the gradients of true stochastic gradient. Then make batches of size 2 and 4, and redo the calculation of the squared gradient. What do you observe?

Exercise 3. Unitwise learning rates

Consider minimizing the narrow valley function $E(w_1, w_2) = |w_1| + 75|w_2|$ by gradient descent.

- a. Sketch the equipotential lines of E, i.e. the points in the w_1-w_2 -plane, where $E(w_1, w_2) = c$ for different values of c.
- b. Start at the point $\mathbf{w}^{(0)} = (10, 10)$ and make a gradient descent step, i.e. $\mathbf{w}^{(1)} = \mathbf{w}^{(0)} \eta(\partial E/\partial w_1, \partial E/\partial w_2)$ with $\eta = 0.1$.

Hint: Use the numeric definition of $\partial |x|/\partial x = sgn(x)$ if $x \neq 0$ and 0 otherwise.

- c. Continue gradient descent, i.e. compute $\boldsymbol{w}^{(2)}, \boldsymbol{w}^{(3)}$ and $\boldsymbol{w}^{(4)}$ and draw the points $\boldsymbol{w}^{(0)}, \dots, \boldsymbol{w}^{(4)}$ in your sketch with the equipotential lines. What do you observe? Can you choose a better value for η such that gradient descent converges faster?
- d. Repeat now the gradient descent procedure with different learning rates for the different dimensions, i.e. $\mathbf{w}^{(1)} = \mathbf{w}^{(0)} (\eta_1 \partial E/\partial w_1, \eta_2 \partial E/\partial w_2)$ with $\eta_1 = 1$ and $\eta_2 = 1/75$. What do you observe? Can you choose better values for η_1 and η_2 such that gradient descent converges faster?
- e. An alternative to individual learning rates is to use momentum, i.e. $\Delta \boldsymbol{w}^{(t+1)} = -\eta (\partial E/\partial w_1, \partial E/\partial w_2) + \alpha \Delta \boldsymbol{w}^{(t)}$ with $\alpha \in [0,1)$ and $\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \Delta \boldsymbol{w}^{(t+1)}$. Repeat the gradient descent procedure for 3 steps with $\eta = 0.2$ and $\alpha = 0.5$. What do you observe?
- f. Assume $\partial E/\partial w_1 = 1$ in all time steps while $\partial E/\partial w_2 = \pm 75$ switches the sign in every time step. Compute $\lim_{t\to\infty} \Delta \boldsymbol{w}^{(t)}$ as a function of η and α . Hint: $\sum_{s=0}^t \alpha^s = \frac{1-\alpha^{t+1}}{1-\alpha}$.
- g. What do you conclude from this exercise in view of training neural networks by gradient descent?

Exercise 4. Weight space symmetries

Suppose you have found a minimum for some set of weights. Show that in a network with m layers of n neurons each, there are always at least $(n!)^m$ equivalent solutions.

Exercise 5. Relation of weight decay and early stopping

Suppose that we are close to a minimum at w_1^*, w_2^* . The error function in the neighborhood is given by

$$E = \frac{1}{2}\beta_1(w_1 - w_1^*)^2 + \frac{1}{2}\beta_2(w_2 - w_2^*)^2$$
(1)

a. Show that gradient descent with learning rate γ starting at time zero with weights $w_1(0), w_2(0)$ leads to a new weight after n updates given by

$$w_i(n) = w_i^* + (1 - \beta_i \gamma)^n (w_i(0) - w_i^*)$$

b. Suppose that $\beta_2 \gg \beta_1$ (take $\beta_2 = 20\beta_1$). You perform early stopping after n_{stop} steps where $n_{\text{stop}} \approx 1/(5\gamma\beta_1)$.

Show that at n_{stop} we have $w_2 \approx w_2^*$ and $w_1 \approx w_1(0)$.

Hint:
$$\left(1 + \frac{x}{n}\right)^n \approx \exp(x)$$
 for large n .

Hence, you may conclude that with an appropriate choice of early stopping, some coordinates have converged and others have not even started convergence.

c. We now consider L2 regularization and work with a modified error function $\tilde{E} = E + \frac{\lambda}{2} \sum_{j} (w_j)^2$.

Show that the minimum of the error function is at

$$w_i = \beta_i w_i^* / (\lambda + \beta_i).$$

d. Consider $\beta_2 \gg \lambda \gg \beta_1$.

Compare the role of λ with the number n_{stop} in early stopping.