

[database scientific white paper] Diamond Open Access

[waiting peer review]

Permutation of permutations and Cayley's theorem

Open Mathematics Collaboration*† April 16, 2021

Abstract

The idea behind this preliminary white paper is to try to understand the multiplication of the natural numbers as For this end, we construct a set of the permutation of permutations of the symmetric group S_3 .

keywords: symmetric group, permutations, abstract algebra

The most updated version of this white paper is available at https://osf.io/hd6ar/download

Introduction

- 1. This white paper is waiting peer review and should therefore be treated as preliminary.
- 2. It is part of the global scholarly ecosystem published in the OJMP.
- 3. Online version

https://bit.ly/3tjxcF7

^{*}All authors with their affiliations appear at the end of this white paper.

[†]Corresponding author: mplobo@uft.edu.br | Open Mathematics Collaboration

Open Invitation

Review, add content, and co-author this white paper [6,7]. Join the Open Mathematics Collaboration.

Send your contribution to mplobo@uft.edu.br.

Open Science

The **latex file** for this *white paper* together with other *supplementary* files are available in [8].

Ethical conduct of research

This original work was pre-registered under the OSF Preprints [9], please cite it accordingly [10]. This will ensure that researches are conducted with integrity and intellectual honesty at all times and by all means.

Acknowledgements

- + Center for Open Science https://cos.io
- + Open Science Framework https://osf.io

Agreement

4. All authors agree with [7].

References

- [1] Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2019.

 https://books.google.com/books?vid=ISBN0521861241
- [2] Warner, Steve. Abstract Algebra for Beginners. GET 800, 2018. https://books.google.com/books?id=UFleyAEACAAJ
- [3] Dixon, John D., and Brian Mortimer. *Permutation groups*. Vol. 163. Springer Science & Business Media, 1996. https://books.google.com/books?vid=1SPjBwAAQBAJ
- [4] Dummit, David Steven, and Richard M. Foote. Abstract Algebra. Vol. 3. Hoboken: Wiley, 2004. https://books.google.com/books?id=znzJygAACAAJ
- [5] Rotman, Joseph J. A first course in abstract algebra. Pearson College Division, 2000. https://books.google.com/books?id=ctEZAQAAIAAJ
- [6] Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- [7] Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- [8] Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://doi.org/10.17605/osf.io/6hzyphttps://osf.io/6hzyp/files
- [9] COS. Open Science Framework. https://osf.io

[10] Lobo, Matheus P. "Permutation of Permutations and Cayley's Theorem." OSF Preprints, 14 Apr. 2021.

https://doi.org/10.31219/osf.io/hd6ar

[11] Lobo, Matheus P. "Composition of Permutations in the Symmetric Group." *OSF Preprints*, 16 Apr. 2021.

https://doi.org/10.31219/osf.io/r3jvu

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br) 1,2 https://orcid.org/0000-0003-4554-1372

¹Federal University of Tocantins (Brazil)

²Universidade Aberta (UAb, Portugal)

Permutation of permutations and Cayley's theorem

https://doi.org/10.31219/osf.io/hd6ar
Published 14 Apr 2021
Volume 3, Article 226 (IW)

DOWNLOAD PDF

- 1. Abstract
- 2. Prerequisites
- 🚤 <u>3. Group</u>
- 4. Cayley's theorem
- 5. Permutation of permutations
- 😝 <u>6. Final Remarks</u>
- 7. References

1. Abstract

The idea behind this preliminary white paper is to try to understand the multiplication of the natural numbers as permutations. For this end, we construct a set of the permutation of permutations of the symmetric group S_3 .

1. Abstract 1

2. Prerequisites

- * Function
- 6 One-to-one function (injection)
- 0nto function (surjection)
- 🛵 Ordered pair
- Cartesian product
- <u>Mary operation</u>
- ₹ Bijective function
- Permutation
- Homomorphism
- Isomorphism

Function

Function from A to B

$$f:A o B \ orall a\in A\ \exists !b\in B\ ((a,b)\in f)$$

 $f,A,B:=\ \mathrm{sets}$

 $\exists ! := \, \mathsf{exists} \, \, \mathsf{exactly} \, \, \mathsf{one} \, \,$

(a,b) := ordered pair

[1]

Function

One-to-one function (injection)

f:A o B

$$\neg \exists a_1 \in A \ \exists a_2 \in A \ (f(a_1) = f(a_2) \land a_1 \neq a_2)$$

[1]

Onto function (surjection)

f:A o B

 $orall b \in B \ \exists a \in A \ (f(a) = b)$

[1]

Ordered pair

$$(a,b) = \{\{a\},\{a,b\}\}$$

a := first coordinate b := second coordinate

[1,2]

Cartesian product

$$A\times B=\{(a,b)\mid a\in A,\ b\in B\}$$

 $A,B:=\,\operatorname{sets}$

 $(a,b) := ext{ ordered pair}$

[1]

Cartesian product

Binary operation

$$\star:S imes S o S$$

 $S := \mathsf{set}$

S imes S := Cartesian product

[2]

Binary operation

Bijective function

Bijective function := one-to-one + onto [1]

Bijective function 1

Permutation

 $\begin{tabular}{ll} \textbf{Permutation of } A := \textbf{bijection from } A \textbf{ to itself} \\ \end{tabular}$

Permutation

Homomorphism

 f^h

$$f^h:G o H \ orall x,y\in G:f^h(xst y)=f^h(x)\circ f^h(y)$$

```
f^h:= function G,H:= sets \star,\circ:= binary operations (G,),(H,\circ):= groups [2,4,5]
```

Homomorphism

Isomorphism

Isomorphism := bijective homomorphism
[2,4,5]

Isomorphism

3. Group

 (G,\star)

 $\begin{array}{ll} \underline{\texttt{Identity}}\colon \; \exists e \in G : \forall x \in G, \; e \star x = x \star e = x \\ \underline{\texttt{Inverse}}\colon \; \forall x \in G \; \exists y \in G : \; x \star y = y \star x = e \end{array}$

 $G := \, \operatorname{set}$

 $\star := \text{binary operation}$

[2]

3. Group

4. Cayley's theorem

$$(G,\star)\cong\ (P,\circ_lpha)$$

```
(G,\star):= group (P,\circ_{\alpha}):= permutation group \cong isomorphism \star,\circ_{\alpha}:= binary operations \alpha:P\to P (permutation := bijective function) \circ_{\alpha}:= composition of permutations [2,3]
```

4. Cayley's theorem 1

5. Permutation of permutations

Let $N_3=\{1,2,3\}$. Suppose (N_3,\star) is a group.

 $S_3 := ext{group of all the permutations of } N_3$ $S_3 = \{(1), (12), (13), (23), (123), (132)\}$

From Cayley's theorem, there is a bijection between (N_3,\star) and a permutation group.

- W Brainstorming: constructing the set PP3
- **Multiplication tables for S2 and S3**

Brainstorming: constructing the set PP3

```
S_3 = \{(1), (12), (13), (23), (123), (132)\} Let PP_3 = \{((1,1)), ((2,2)), ((3,3)), ((12,2)), ((13,3)), ((23,6)), ((123,6)), ((132,6))\}. ((1,1)) \text{ is the permutation of } (1) \text{ by } (1). ((2,2)) \text{ is the permutation of } (2) \text{ by } (2). ((3,3)) \text{ is the permutation of } (3) \text{ by } (3). ((12,2)) \text{ is the permutation of } (12) \text{ by } (2). ((13,3)) \text{ is the permutation of } (13) \text{ by } (3). ((23,6)) \text{ is the permutation of } (23) \text{ by } (6). ((123,6)) \text{ is the permutation of } (123) \text{ by } (6). ((132,6)) \text{ is the permutation of } (132) \text{ by } (6).
```

Clearly there is a bijection between S_3 and PP_3 .

Multiplication tables for S2 and S3

Check [11] at https://doi.org/10.31219/osf.io/r3jvu or here.

$$S_2 = \{(1), (12)\}$$
 , let $a := (1)$ and $b := (12)$
$$S_2 \mid a \mid b$$

$$egin{array}{c|ccc} S_2 & a & b \ \hline a & a & b \ b & b & a \ \hline \end{array}$$

$$\begin{split} S_3 &= \{(1), (12), (13), (23), (123), (132)\} \\ a &:= (1), \ b := (12), \ c := (13), \ d := (23), \ e := (123), \ f := (132) \end{split}$$

S_3	a	b	c	d	e	f
\overline{a}	a	b	c	d	e	\overline{f}
b	$egin{array}{c} a \\ b \\ c \\ d \\ e \\ f \end{array}$	a	e	f	c	d
c	c	f	a	e	d	\boldsymbol{b}
d	d	e	f	a	b	c
e	e	d	b	c	f	a
f	f	c	d	b	a	e

6. Final Remarks

We present a bijection from PP_3 (the permutation of permutations of N_3) and a group (\mathbb{N}_3,\star) in order to have an insight of (\mathbb{N}_3,\star) as a permutation group, a known result from Cayley's theorem.

6. Final Remarks

7. References

- 1. Velleman, Daniel J. How to prove it: A structured approach. Cambridge University Press, 2019. https://books.google.com/books?vid=ISBN0521861241
- 2. Warner, Steve. *Abstract Algebra for Beginners*. GET 800, 2018. https://books.google.com/books?id=UFleyAEACAAJ}
- 3. Dixon, John D., and Brian Mortimer. Permutation groups. Vol. 163. Springer Science \& Business Media, 1996. https://books.google.com/books?vid=1SPjBwAAQBAJ
- 4. Dummit, David Steven, and Richard M. Foote. *Abstract Algebra*. Vol. 3. Hoboken: Wiley, 2004. https://books.google.com/books?id=znzJygAACAAJ
- 5. Rotman, Joseph J. A first course in abstract algebra. Pearson College Division, 2000. https://books.google.com/books?id=ctEZAQAAIAAJ
- 6. Lobo, Matheus P. "Microarticles." *OSF Preprints*, 28 Oct. 2019. https://doi.org/10.31219/osf.io/ejrct
- 7. Lobo, Matheus P. "Simple Guidelines for Authors: Open Journal of Mathematics and Physics." *OSF Preprints*, 15 Nov. 2019. https://doi.org/10.31219/osf.io/fk836
- 8. Lobo, Matheus P. "Open Journal of Mathematics and Physics (OJMP)." OSF, 21 Apr. 2020. https://doi.org/10.17605/osf.io/6hzyp} https://osf.io/6hzyp/files
- 9. COS. Open Science Framework. https://osf.io
- .0. Lobo, Matheus P. "Permutation of Permutations and Cayley's Theorem." OSF Preprints, 14 Apr. 2021. https://doi.org/10.31219/osf.io/hd6ar

7. References 1

.1. Lobo, Matheus P. "Composition of Permutations in the Symmetric Group." *OSF Preprints*, 16 Apr. 2021. https://doi.org/10.31219/osf.io/r3jvu

7. References 2