# Министерство образования и науки Российской Федерации Санкт-Петербургский политехнический университет Петра Великого

Институт компьютерных наук и кибербезопастности Высшая школа программной инженерии

## Лабораторная работа №1 по дисциплине «Вычислительная математика»

Выполнил Студент группы 5130904/20004

Машкин А.А.

Преподаватель Устинов С.М.

### Оглавление

| Задание                                                                 |                      |
|-------------------------------------------------------------------------|----------------------|
| Результаты                                                              |                      |
| Вывод                                                                   |                      |
|                                                                         |                      |
| Код программы                                                           |                      |
| <pre><dir>/computational_mathematics/lab_1/Langrage.cpp</dir></pre>     |                      |
| <pre><dir>/computational_mathematics/lab_1/Langrage.hError!</dir></pre> | Bookmark not defined |
| <dir>/computational_mathematics/lab_1/main.cpp</dir>                    | 6                    |
| <pre><dir>/computational_mathematics/lab_1/function.cpp</dir></pre>     | 7                    |
| <pre><dir>/computational_mathematics/lab_1/function.h</dir></pre>       | 7                    |

### Задание



### Результаты

Flag: -1780482048

|                | Lagrange                                | ř | Spline    |
|----------------|-----------------------------------------|---|-----------|
|                |                                         |   |           |
| -1             | 100 00000000000000000000000000000000000 | ŀ | -1        |
| -0.9           | 0.632278                                |   | 0.640055  |
| -0.8           | 0.995832                                | ŀ | 0.985565  |
| -0.7           | 0.667363                                | I | 0.993233  |
| -0.6           | 0.0702439                               | Ţ | 1.01041   |
| -0.5           | -0.50675                                | I | 1.03248   |
| -0.4           | -0.890464                               | I | 1.05459   |
| -0.3           | -1.00421                                | Í | 1.07185   |
| -0.2           | -0.84848                                | I | 1.0794    |
| -0.1           | -0.481534                               | Ĺ | 1.07236   |
| -1.38778e-16   | -6.9516e-16                             | Ĺ | 1.04585   |
| 0.1            | 0.480559                                | İ | 0.995004  |
| 0.2            | 0.845006                                | Ĺ | 0.914946  |
| 0.3            | 0.997889                                | İ | 0.80195   |
| 0.4            | 0.882544                                | Ĺ | 0.66078   |
| 0.5            | 0.5                                     | Ĺ | 0.5       |
| 0.6            | -0.0723696                              | Ĺ | 0.32698   |
| 0.7            | -0.662497                               | İ | 0.144229  |
| 0.8            | -0.985614                               | Ĺ | -0.046962 |
| 0.9            | -0.626648                               | İ | -0.245299 |
|                |                                         |   |           |
|                |                                         |   |           |
| Result: 16.599 | )                                       |   |           |
| Error: 0.01809 | 91                                      |   |           |
| NoFun: 107668  | 847                                     |   |           |



#### При eps = 0.0001

Result: 24.857

Error: 0.0248595

NoFun: 1041

Flag: 8

### Вывод

В лабароторной работе на графике у меня видны разные результаты. Это связанно с двумя факторами. Первый - мне не известно какого вида фукнция, колебательная или какого-то иного вида. Второй - в нашей таблице есть большой промежуток, где нет известных значений (с -0,7 до 0, 2) и из-за этого вид обеих функций очень разный, если возможно получить значение на этом промежутке, то станет яснее, какой вид принимает истинная фукнция. Результат программы QUANC8 говорит нам о том, что в нашей подинтегральной функции деление промежутка пополам более 30 раз произошло 8 раз и погрешность в этом случае не установлена точно. Это может быть связано с разрывами подынтегральной функции или ее «зашумлением» вычислительной погрешностью.

### Код программы

```
<DIR>/computational mathematics/lab 1/Langrage.cpp
#include "Lagrange.h"
REAL Lagrange(REAL* f, REAL* x, REAL z, int size)
  REAL var = 1.0;
  REAL result = 0.0;
  for (auto k = 0; k \le size; k++)
    for (auto i = 0; i <= size; i++)
      if(k == i)
      {
        continue;
      }
      var *= (z - x[i]) / (x[k] - x[i]);
    result += var * f[k];
    var = 1.0;
  }
  return result;
}
<DIR>/computational mathematics/lab 1/main.cpp
#include <iostream>
#include <functional>
#include <function.h>
#include <fstream>
#include <iomanip>
#include "Lagrange.h"
#include "FORSYTHE.H"
int main(int argc, char** argv)
 if (argc != 2)
    std::cout << "Not enough argument\n";</pre>
    return 1;
  std::ofstream outFile;
  outFile.exceptions(std::ofstream::badbit | std::ofstream::failbit);
  try
  {
    outFile.open(argv[1]);
```

```
}
  catch (const std::exception& ex)
    std::cerr << ex.what() << "\n";</pre>
    return 1;
  double a, b, epsabs, epsrel, result, errest;
  int nfe = 0;
  double flag = 0.0;
  REAL x[] = \{-1.000, -0.960, -0.860, -0.790, 0.220, 0.500, 0.930\};
  REAL y[] = \{-1.000, -0.151, 0.894, 0.986, 0.895, 0.500, -0.306\};
  auto size = sizeof(x) / sizeof(double);
  SPLINE spline(7, x, y);
  std::cout << " x
                              Lagrange
                                                       Spline\n";
  for (auto i = -1.0; i < -1.0 + 0.1 * 19; i += 0.1)
    outFile << i << "," << Lagrange(y, x, i, size) << "," << spline.Eval(i)</pre>
<< "\n";
    std::cout << std::setw(12) << i << " | ";
    std::cout << std::setw(13) << Lagrange(y, x, i, size) << " | ";</pre>
    std::cout << std::setw(12) << spline.Eval(i) << "\n";</pre>
  outFile.close();
  a = 1.0;
  b = 2.0;
  epsrel = 0.0001;
  epsabs = 0.0;
  QUANC8(f, a, b, epsabs, epsrel, result, errest, nfe, flag);
  std::cout << "\n\n";</pre>
  std::cout << "Result: " << result << "\n";</pre>
  std::cout << "Error: " << errest << "\n";</pre>
  std::cout << "NoFun: " << nfe << "\n";</pre>
  std::cout << "Flag: " << flag << "\n";</pre>
}
<DIR>/computational mathematics/lab 1/function.cpp
#include "function.h"
#include <math.h>
double f(double x)
 return std::tan(x) / x;
}
<DIR>/computational mathematics/lab 1/function.h
#ifndef LIBRARY_FUNCTION_H
#define LIBRARY FUNCTION H
#include <functional>
```

double f(double x);
#endif