Techniki mikroprocesorowe, laboratorium 3 Autorzy: Konrad Soboloweski, Bartłomiej Boczek

Treść zadania: Korzystając z modułu mikrokontrolera MSP430 oraz innych modułów systemu SML-3 należy zaprojektować i zrealizować licznik 8-bitowy – ładowanie, zliczanie w górę – kod NKB

Podłączone moduły

Do mikrokontrolera MSP430 zostały podłączone mastępujące moduły:

- Port 1 => Moduł z pokrętłami hex
- Post 2 => Moduł z przyciskami monostabilnymi
- Port 3 => Moduł z dwusegmantowym wyświatlaczem liczb hex

```
1
     : MSP430 Assembler Code Template for use with TI Code Composer Studio
 4
 6
                 .cdecls C ,LIST,"msp430.h"
                                                    ; Include device header file
 8
                  .def
                        RESET
 g
                                                      ; Export program entry-point to
10
                                                     ; make it known to linker.
11
                                                    ; Assemble into program memory.
: Override ELF conditional linking
13
                  .retain
14
                                                     ; and retain current section.
                                                      ; And retain any sections that have
16
                                                     ; references to current section.
17
18
               mov.w #__STACK_END , SP ; Initialize stackpoir
mov.w #WDTPW|WDTHOLD , &WDTCTL ; Stop watchdog timer
19
                                                      ; Initialize stackpointer
20
     StopWDT
21
22
23
24
     ; Main loop here
25
26
27
     INITALIZATION:
                                      # 0FFh, &P3DIR
28
29
                           RTS.R
                                                         ;okreslamy kierunek przeplywu => port P3 jest podlaczony do modulu z wyswietlaczem
                           CLR.B
                                      &P30UT
                                                         ;wyzeruj wyjscia
30
31
                            MOV.B
                                       #003h, &P2IE
                                                         ;wlaczanie przerwan dla pinów 1 i 2 nalezacych do portu 2
                                      #003h, &P2IES
# 000h, &P2DIR
32
                           MOV.B
                                                         ;flaga przerwania (xIFG) ustawiana zboczem opadajacym
33
                           BIS.B
                                                          ;port P2 ustawiony jako wejsciowy => post podlaczony do modulu z przyciskami
34
                                                         ;pirt P1 ustawiony jako wejsciowy => post podlaczony do modulu z pokretlami hex
                                      # 000h, &P1DIR
35
36
                           MOV.B
                                      &P1IN . R9
                                                            ;wczytuje wektor z hexa, rejestr R9 przechowuje liczbe która bedziemy chcieli
     wyswiatlic
37
                           MOV.B
                                      R9, &P30UT
                                                          ;inicjalizacja wyswietlacza
38
39
40
                           MOV.B
                                      #000h , R10
41
                                                             ;inicjalizacja flagi mówiacej czy przerwanie nastapilo poprzez przycisk
     ladowania
42
                           MOV.B
                                       R9. &P30UT
                                                          :wyswietlenie zawartosci rejestu R9 na wyswietlaczu
43
                                                         ;wlaczanie przerwan dla pinów 1 i 2 nalezacych do portu 2
                            MOV.B
                                      #GIE +CPUOFF+OSCOFF+SCG1+SCG0,SR ; wprowadzenie procesowa w tryb energooszczedny => LPM4
44
                           BIS.W
45
46
                            MOV.W
                                     #00D00h, R15
                                                        ;inicjalizacja licznika potrzebnego do niwelacji drgan styków
48
                           MOV.W
                                    #00800h, R14
                                                       ;inicjalizacja drugiego z liczników potrzebnych do niwelacji drgan styków
49
                                                         ;sprawdzenie czy przewanie bylo spowodowanie przyciskiem ladowania ;jezeli tak, to nie musimy unikac drgan styków
                           BIT.B
                                      # 001h, R10
50
51
52
53
     PREVENT VIBRATIONS:
                                                         ;zdekrementuj zawartosc R15 => licznika
;jezeli R15 == 0 skocz do MAIN
54
                           DEC.W
55
                                       MAIN
56
57
                           BIT.B
                                    # 001h, &P2IN
                                                         ;sprawdz czy wcisniety jest przycisk numer 1
58
                                                         ;zdekrementuj zawartosc w rejestrze R14, odczekiwana w naciniciu bez drgan
59
                           DEC.W
                           JNZ PREV
JZ INCREMENT
                                    PREVENT_VIBRATIONS
60
61
62
                           MOV.W #00800h, R14
63
                            JMP PREVENT_VIBRATIONS
65
     INCREMENT:
                           BIC.W
                                      #GIE . SR
                                                          ;nie przyjmuj przerwan
```

```
BIT.B
                                # 001h, R6
                                                        ;czy oba klawisze sa wcisniete na raz
                        MOV.B
                                    #000h, R6
                                                         ;wyzeruj flage
                                                      ;jesli 2 guziki sa wcisniete to nie inkrementujemy
;inkrementuj R9
                                 MAIN
                        JNZ
                        INC.B
                                  R9
                        MOV.B
                                  R9, &P30UT
                                                     ;wyswietl aktualna liczbe (rejestr R9) na wyswietlacz
                        JMP MAIN
INTERRUPT:
                        MOV.B
                                    #000h , R10
                                                           ;ustaw flage mówiaca, ze zostalo wykonane ladowanie
                                 # 002h, &P2IN
INT_LOAD
                                                       ;czy drugi przycik (ladowania) jest wcisniety
;jezeli tak, to rozpocznik operacje ladowania
                        BIT.B
                        JZ
                       CLR.B
                                   &P2IFG
                                   #CPU0FF , 0(SP)
                       BIC.W
                                                          ;jezeli nie, to powróc z przerwania po sladzie na stosie
                       RETI
INT_LOAD:
                        MOV.B
                                    #000h, R6
                                                           ;wyzeruj R6
                       BIT.B
                                # 001h, &P2IN
                                                      ;czy pierwszy przycisk jest wcisniety
                                                      ;jezeli nie to skacz do INT_END
;jezeli tak to ustaw flage ze dwa wcisniete
                        JNZ
                                 INT END
                        MOV.B
                                   #001h, R6
INT_END:
                                                        ;wczytaj wartosc z pokretel do rejestru R9
;a nastepnie wyswietl ta wartosc na wyswietlaczu
;ustaw flage mówiaca, ze zostalo wykonane ladowanie
                        MOV.B
                                    &P1IN, R9
                        MOV.B
                                  R9, &P30UT
                                    #001h, R10
                        MOV.B
                       ;wczytywanie asynchroniczne => podczas trzymania przycisku ladowania zmiany na pokretlach
                        ;sa od razu wyswietlane na wyswietlaczu
BIT.B # 002h, &P2IN
JZ INT_END
                       BIT.B
                        JZ
                       CLR.B
BIC.W
                                   &P2TFG
                                   #CPUOFF +GIE, O(SF); powróc z przerwania po sladzie na stosie
                       RETI
; Stack Pointer definition
;-----
             .global __STACK_END .sect .stack
; Interrupt Vectors
                        ".reset"
              .sect
                                                   ; MSP430 RESET Vector
              .short
                      RESET
                         ".int01"
              .sect
                                                     ;przypisanie przerwan odpowiednim portom
              .short
                         TNTFRRUPT
```

Podsumowanie

67

68

69

70

71

72 73

74

75

76 77

78

79

80

81

82

83

84 85

86

87

88 89

90

91 92

93

94

95

96 97

104

110

111

112

114

115 116

W powyższym projekcie użyty został system oszczędzania energii przez mikrokontroler MSP430. Kontroler po wstępnej inicjalizacji, wyłączeniu watchdoga i ustawieniu odpowiednich rejestrów, przechodzi w stan oszczędzenia energii z włączonymi przerwaniami. Port 2 ustawiony jest jako wejściowy z dwoma pierwszymi pinami ustawionymi jako zgłaszającymi przerwania. Do owych dwóch pinów podpięte są dwa przyciski monostabilne (zerowy to dekrementacja, pierwszy odpowiedzialny jest za resetowanie) Przy naciśnięciu jednego z przycisków, a co za tym idzie zgłoszeniu przerwania, procesor wychodzi ze stanu uśpienia i realizowana jest odpowiednia procedura obsługi przerwań INTERRUPT odpowiadającemu przerwaniom zgłaszanym przez port 2 wedle specyfikacji urządzenia. Jeżeli wciśnięty jest przycisk ładowania(1), realizowane jest ładowania licznika. W przeciwnym przypadku badany jest stan przycisku odpowiedzialnego za inkrementacje licznika, co dzieje się już w pętli głównej programu, aby zniwelować możliwość nie zarejestrowania wciśnięcia w tym czasie przycisku reset. Dodatkowo wprowadzona została flaga, która sprawdza czy w przypadku wciśnięcia przycisku reset, nie został także wciśnięty przycisk dekrementacji co mogłoby spowodować niekorzystny efekt natychmiastowej dekrementacji zaraz po puszczeniu