

Correctness Argument

Towards Extension of Basic Vectorization

Removal of Infeasible Edges

Array writes limit vectorization as they sometimes introduce infeasible loop-carried dependencies. Consider the followin whites limit vectorization as they sometimes introduce inleasible loop-carried dependencies. Consider the following for i in range(N): A[i] = B[i] + 10; B[i] = A[i] * D[i-1]; C[i] = A[i] * D[i-1]; D[i] = B[i] * C[i]; In Cytron's SSA this code (roughly) translates into for i in range(N): 1. $A_0 = \phi(A, A_1)$ 2. $B_0 = \phi(B, B_1)$ 3. $C_0 = \phi(C, C_1)$ 4. $D_0 = \phi(D, D_1)$ 5. $A_1 = A_0$; $A_1[i] = B_0[i] + 10$; There is a cycle around $B_0 = \phi(B, B_1)$ that includes statement $A_1[i] = B_0[i] + 10$; and that statement won't be vector The following algorithm removes certain infeasible loop-carried dependencies that are due to array writes. Consider each array A written in loop j including enclosed loops in j dep = False each pair def: $A_m[f(i,j,k)] = ...$, and use: Ishaq: Note to self: This algorithm is an instantiation for j loop, the one for k loop will be exactly the same, modu Consider a loop j enclosed in some fixed \underline{i} . Only if an update (definition) $\mathbf{A}_m[f(i,j,k)] = ...$ at some iteration \underline{j} references. Consider the earlier example. There is a single loop, i. Clearly, there is no pair \underline{i} and \underline{i}' , where $\underline{i} < \underline{i}'$ that make $\underline{i} = \text{Ana}$: Commented out previous writeup. Removal/handling of targetless phi-nodes will go into the Extension to Ba

Array MUX refinement

Ana: TODO: I think we should implement this.

Next, the algorithm refines array MUX statements. MPC-source after Cytron's SSA may result in statements $A_j = \text{This}$ is to reduce the dimensionality of simd-ified computation. Technically, $A_j = MUX(..., A_k, A_l)$ is a simdified oper each stmt: $A_j = MUX(c, A_k, A_l)$ in the MPC-source seq. $i_1 = find_update(A_k)$ Is null when $A_k = \phi(...)$ $i_2 = find_update(A_k)$ and $A_k = A_k =$ $A_i = A_{i-1}$; $A_i[i_1] = MUX(c, A_k[i_1], A_l[i_1])$ stmt stays as is

Extension of Basic Vectorization with Array Writes

Ana: TODO: Handling of Targetless phi nodes should be done here, as an extension to Basic Vectorization.

Restricting Array Writes

For now, we restrict array updates to canonical updates. Assume (for simplicity) a two-dimensional array A[I, J]. A can The update A[i,j] can be nested into an inner loop and there may be multiple updates, i.e., writes to A[i,j]. However, Reads through an arbitrary formula, such as A[i-1] for example, are allowed, however, we assume the programmer

Changes to Basic Vectorization

One change to Basic vectorization is the expansion of dimension if the array write or read occurs in a nested loop. That The other change concerns def-use edges $X \to Y$ where X defines and Y uses an array variable (e.g., the definition same-level $X \to Y$. We do nothing, just propagate the array, which happens to be of the right dimension. Ana: There is inner-to-outer $X \to Y$. Let A be the array defined at X. If the dimensionality of A is greater than its canonical dimension outer-to-inner $X \to Y$. Add $raise_dim(...)$ (at X) as in Basic Vectorization.

"mixed" $X \to Y$. We assume that the mixed edge is transformed into an inner-to-outer followed by outer-to-inner edge

Examples with Array Writes

Example 1

Recall that after removal of infeasible edges and redundant phi-nodes, the Aiken's array write example will be (rough for i in range(N): 1. $D_0 = \phi(D, D_1)$ 2. $A_1 = A$; $A_1[i] = B[i] + 10$; 3. $B_1 = B$; $B_1[i] = A_1[i] * D_0[i-1]$; 4. $C_1 = C$; $C_1[i] = A$ There are no nested loops, thus, array accesses remain as is.

After Phase 1 of Basic vectorization we have the following code: for i in range(N): 1. $D_0 = \phi(D, D_1)$ 2. $A_1 = A$; $A_1 = A$; $A_1 = A$; $A_2 = A$; $A_3 = A$; $A_4 = A$; $A_5 = A$; $A_5 = A$; $A_7 = A$; 1. $A_1 = A$; $A_1[i] = ADD_SIMD(B[i], [10, ...])$ Fully vectorized, size N. FOR i=0; i;N; i++; MOTION loop 2. $D_0 = ADD_SIMD(B[i], [10, ...])$

Consider MPC-source of Histogram after removal of infeasible edges and redundant phi-nodes, and MUX refinement res!1 = [] for i: plaintext in range(0, num_bins): $res!2 = \phi(res!1, res!3)$... res!4 = res!2 Added due to the "mix After Phase 1 of Basic Vectorization:

res!1 = [] for i: plaintext in range(0, num_bins): res!2 = ϕ (res!1, res!3) ... res!4 = res!2 Added due to the "mix After Phase 2 and Phase 3. The EQ operation is vectorizable across both dimensions, and the rest of the computation .. $!2!3[i,j] = EQ_SIMD(A[i,j], [[0,0...], [1,1...],...[num_bins-1,num_bins-1...]])$ FOR j=0; j_iN ; j++; MOTION locality i_i , i_i , Divide-and-Conquer

Ana: TODO: Now that we have broken FOR loops into smaller chunks, we can add Divide-and-conquer reasoning Implementation and Evaluation

Future Work

Conclusions