

1 **WHAT IS CLAIMED IS:**

1 1. A system for controlling the number of iterations to be performed
2 by an iterative decoder, comprising:

3 an input port configured to receive a data throughput value;
4 a processor configured to determine an efficient number of
5 iterations for an iterative decoder based on the data throughput value; and
6 an output port configured to provide the efficient number of
7 iterations based on the determination by the processor.

1 2. The system of claim 1, wherein the data throughput value is the
2 number of packets that are currently stored in a data packet queue.

1 3. The system of claim 1, wherein the data throughput value is the
2 rate at which data packets are being received by a receiving module include
3 the system for controlling the number of iterations to be performed by an
4 iterative decoder.

1 4. The system of claim 2, wherein the determination by the
2 processor is made by referencing a table.

1 5. The system of claim 4, wherein the table includes a number of
2 iterations to be performed by the iterative decoder for each possible length of
3 the packet data queue.

1 6. The system of claim 1, wherein the processor is further
2 configured to calculate a number of iterations to be performed by the iterative
3 decoder using the data throughput value as an input value.

1 7. A method for real-time optimization of error detection and
2 correction algorithms, comprising:
3 receiving a data throughput value;
4 determining a number of iterations to be performed by an
5 iterative decoder based on the data throughput value; and

6 providing the number of iterations to be performed to the
7 iterative decoder.

1 8. The method of claim 7, wherein the data throughput value is the
2 number of packets that are currently stored in a data packet queue.

1 9. The method of claim 7, wherein the data throughput value is the
2 rate at which data packets are being received by a receiving module.

1 10. The method of claim 7, wherein determining a number of
2 iteration to be performed includes referencing a table.

1 11. The method of claim 10, wherein the table includes a number of
2 iterations to be performed by the iterative decoder for each possible length of
3 the packet data queue.

4 12. The method of claim 7, wherein the determination by the
5 processor is made based on a calculation using the data throughput value as
6 an input value.

1 13. A modem for a wireless communication system, comprising:

2 a data packet queue configured to store data packets received

3 as input to the modem;

4 an iterative decoder configured to decode data packets stored in

5 the data packet queue; and

6 a processor configured to determine a data throughput value

7 and determine the number of iterations to be performed by the iterative

8 decoder based on the data throughput value and further configured to control

9 the number of iterations performed by the iterative decoder based on the

10 determination.

1 14. The modem of claim 13, wherein the processor is configured to
2 determine the number of iterations to be performed each time before the
3 iterative decoder begins to decode a packet.

1 15. The modem of claim 13, wherein the processor is configured to
2 determine the number of iterations to be performed each time before the
3 iterative decoder begins an iteration while decoding a packet.

1 16. The system of claim 13, wherein the data throughput value is
2 the number of packets that are currently stored in a data packet queue.

1 17. The modem of claim 13, wherein the data throughput value is
2 the rate at which data packets are being received by a receiving module
3 include the system for controlling the number of iterations to be performed by
4 an iterative decoder.

1 18. The modem of claim 13, wherein the determination by the
2 processor is made by referencing a table.

1 19. The method of claim 18, wherein the table includes a number of
2 iterations to be performed by the iterative decoder for each possible length of
3 the packet data queue.

4 20. The modem of claim 13, wherein the determination by the
5 processor is made based on a calculation using the data throughput value as
6 an input value.