1 The variation with time *t* of the displacement *s* for a car is shown in Fig. 1.1.

Fig. 1.1

(a) Determine the magnitude of the average velocity between the times 5.0 s and 35.0 s.

average velocity =
$$ms^{-1}$$
 [2]

(b) On Fig. 1.2, sketch the variation with time t of the velocity v for the car.

Fig. 1.2

2	(a)	Defi	ne
		(i)	force,
			[1]
		(ii)	work done.
			[1]
	(b)		rce F acts on a mass m along a straight line for a distance s . The acceleration of the s is s and the speed changes from an initial speed s to a final speed s .
		(i)	State the work <i>W</i> done by <i>F</i> .
			[1]
		(ii)	your answer in (i) and an equation of motion to show that kinetic energy of a mass can be given by the expression
			kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$.
			[3]
	(c)		sultant force of $3800\mathrm{N}$ causes a car of mass of $1500\mathrm{kg}$ to accelerate from an initial ed of $15\mathrm{ms^{-1}}$ to a final speed of $30\mathrm{ms^{-1}}$.
		(i)	Calculate the distance moved by the car during this acceleration.
			distance = m [2]
		(ii)	The same force is used to change the speed of the car from $30\mathrm{ms^{-1}}$ to $45\mathrm{ms^{-1}}$. Explain why the distance moved is not the same as that calculated in (i).

3	(a)	Dρf	ino
9	(a)	DCI	
		(i)	stress,
			[1]
		(ii)	strain

	[1]	ĺ
(b)	Explain the term <i>elastic limit</i> .	

(d) (i) A ductile material in the form of a wire is stretched up to its breaking point. On Fig. 3.1, sketch the variation with extension x of the stretching force F.

.....[2]

Fig. 3.1

(ii) On Fig. 3.2, sketch the variation with x of F for a **brittle** material up to its breaking point.

Fig. 3.2

[1]

(e)	(i)	Explain the features of the graphs in (d) that show the characteristics of ductile and brittle materials.
		[2]
	(ii)	The force F is removed from the materials in (d) just before the breaking point is reached. Describe the subsequent change in the extension for
		1. the ductile material,
		[1]
		2. the brittle material.
		[1]

4	(a)	Def	ine <i>electric field strength</i> .				
							[1]
	(b)		horizontal metal plates kV is applied across the p			A potential difference	e of
		+1.	5kV	\exists	me	etal plate	
					o oil drop	20 mm	
			0V		me	etal plate	
				Fig. 4.1			
		A cl	narged oil drop of mass 5	$.0 \times 10^{-15}$ kg is I	neld stationary by	y the electric field.	
		(i)	On Fig. 4.1, draw lines to	o represent the	electric field betw	veen the plates.	[2]
		(ii)	Calculate the electric fie	ld strength betw	een the plates.		
				electric field str	enath =	Vm	¹ [1]
		(iii)	Calculate the charge on		g		1.1
		. ,	ÿ	·			
				cl	narge =	C	: [4]
	((iv)	The potential of the upportation of the drop.				
							[2]

5 A potentiometer circuit that is used as a means of comparing potential differences is shown in Fig. 5.1.

Fig. 5.1

A cell of e.m.f. E_1 and internal resistance r_1 is connected in series with a resistor of resistance R_1 and a uniform metal wire of total resistance R_2 .

A second cell of e.m.f. E_2 and internal resistance r_2 is connected in series with a sensitive ammeter and is then connected across the wire at BJ. The connection at J is halfway along the wire. The current directions are shown on Fig. 5.1.

(a)		Kirchhoff's laws to obtain the relation
	(i)	between the currents $I_{\rm 1},I_{\rm 2}$ and $I_{\rm 3},$
		[1]
	(ii)	between E_1 , R_1 , R_2 , r_1 , I_1 and I_2 in loop HBJFGH,
		[1]
	(iii)	between E_1 , E_2 , r_1 , r_2 , R_1 , R_2 , I_1 and I_3 in the loop HBCDJFGH.
		[2]
(b)		connection at J is moved along the wire. Explain why the reading on the ammeter nges.
		[2]

6	(a)	State t	he <i>nri</i>	incinle	of su	nerno	siti∩n									
U	(a)	State ti	ile pri	ricipie	or su	υσιρυ	siliOi i.									
	(b)	An arra		nent tl	nat ca	n be										
			L •	dspeal	. – – ker		c.r.	<i> ا</i> رَّ	– – - microp	-			S			
							F	ig. 6.	1							
		Sound reflecte The loa	ed froi	n a po	oint S	on a h	ard s	urface							_ and	are
		Explair	n how	sound	d wave	es fror	n L giv	ve rise	to a s	station	ary w	ave be	etwee	n L an	d S.	
																[2]
	(c)	A micro														en L
		[

Fig. 6.2

The time-base setting on the c.r.o. is $0.10\,\mathrm{ms\,cm^{-1}}$.

	/:\	anantanaalla			
	(i)	spontaneous,			
((ii)	random.			
				I mass of α -particle and γ -radiation emitte	
			α-particle	β-particle	γ-radiation
		charge			0
		charge			
		mass	4u		
				up to 0.99 <i>c</i>	
<u> </u>	Exp	mass speed	Fig	up to 0.99 <i>c</i> j. 7.1 es lose energy whe	
<u> </u>	Exp	mass speed	Fig	j. 7.1	