Convolution Input: vectors (ao,a,..., an) (bo, ba, ..., ba.) Outlent: vector c = a * b , where $Ck = \sum_{i=0}^{k} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ $Ck = \sum_{i=0}^{k} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ $Ck = \sum_{i\neq j} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ $Ck = \sum_{i\neq j} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ $Ck = \sum_{i\neq j} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ $Ck = \sum_{i\neq j} a_i b_{k-i} = \sum_{i\neq j} a_i b_j$ a, b, a, b, a, b, ... · a, bó a, b, a, bz ···

· azbo azb, azbz · ·

an-, bo an-, bo

Why do we care

· polynomial mult

. signal processing

replace (ao, a,,.., ani) with

 $a_{i} = \frac{1}{2} \sum_{j=i-k}^{i+k} a_{j} e^{-(j-i)^{2}}$

ao b 1-1

a, b ...

a2 bn-1

C2n-2

$$A(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$$

 $B(x) = b_0 + b_1 x + b_2 x^2 + ... + b_{n-1} x^{n-1}$

We focus on comfenting ((x) given A(x) and B(x)

[Jal: best trivial O(n2) selyo

- · feick 2n values X1, ..., X2n
- · evaluate $A(x_1)$... $A(x_{2n})$
 - $\beta(x_i)$ $\beta(x_{2n})$
- . compente C(X,) C(Xzn)
- . recover C(x) from f(xi): i=1,... 2a

Choosing the right values to sample Let $w(j, 2n) = e^{\frac{j}{h}Ti}$ be the 2nth roots of unit that is the 2n solutions to $2^{2n} = 1$

Obs:
$$\omega^2(j,2n) = \omega(j,n)$$
 proof
 $\left[e^{j}\pi^{i}\right]^2 = e^{2j}\pi^{i} = e^{2j}\pi^{i}$

Evaluating all roots in one go

 $A(x) = A_{even}(x^2) + x A_{oold}(x^2)$, where

Aeven(x) = $q_0 + q_2 \times + q_3 \times^2 + ... \quad a_{n-2} \times^{\frac{N}{2}-1}$

Add $(x) = a_1 + a_3 x + a_5 x^2 + ... \quad a_{n-1} x^{\frac{n}{2}-1}$

To compute $A(\omega(0,2n))$ $A(\omega(1,2n))$... $A(\omega(2n-1,2n))$ recursively compute

 $A_{even}(\omega(o, n))$ $A_{even}(\omega(i, pa))$... $A_{even}(\omega(n-i, n))$

A odd $(\omega(0, n))$ A odd $(\omega(1, n))$... A odd $(\omega(n-1, n))$

combine then with & de yet desired out fent

 $T(n) = 2T(\frac{1}{2}) + O(n) = D T(n) = O(n \log n)$

C(x)= Co+C1 X+ .. + C2n-2 X How to reconstruct C(x) D(x) = 90+91x+ ... + 954-5x x 24-5 $D(x) = \sum_{s=1}^{\infty} C(\omega(s, sn)) x^{s}$ Claim: $\frac{1}{2n}$ D($\omega(2n-5,2n)$) = C_s =0 companie C by evaluate D $D(\omega(j,2n)) = \sum_{i=1}^{n} C(\omega(s,2n)) (\omega(i,j,2n))^{3}$ $= \sum_{j=1}^{2n-1} c_{t}(\omega(s,2n))^{t}(\omega(j,2n))^{s}$ $= \frac{1}{2} \sum_{s} C_{t} e^{\frac{ts}{n}Ti} + \frac{s.j}{n}Ti$ $= \sum_{s} \sum_{t}^{\infty} (c_{t}) \psi(t+j, 2n)$ for $\omega(thi, 2h) \neq 1$ $= \frac{2h-1}{2} c_{t} \left(\frac{2h-1}{2} \omega^{S}(t+j, 2n) \right)$ since x 21 -1 -0

= 2n for t=2n-j

Complète Alyonthe evaluate A(x) at x = U(j, 2n) for j=1...2nho(n logn) evaluate B(x) at $x = \omega(j, 2n)$ for j = 1, ... 2ncomfende C(x), at x = w(j, 2n) for j = 1... 2n $\int O(n)$ evaluate D(x) at x = W(j, 2n) for $\hat{j} = 1, \dots 2n$ $\int O(n \log n)$ let $C_{S} = D\left(\omega\left(2n-s\right), 2n\right)$ for S = 0, ... 2n-1 $\int_{S} O(n)$

to comfute convolution