Machine Learning System Design

Quiz, 5 questions

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.095

1 point Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

We train a learning algorithm with a

small number of parameters (that is thus unlikely to

overfit).

The features x contain sufficient

information to predict \boldsymbol{y} accurately. (For example, one

way to verify this is if a human expert on the domain $% \left\{ 1,2,...,n\right\}$

can confidently predict y when given only x).

We train a learning algorithm with a

large number of parameters (that is able to

learn/represent fairly complex functions).

When we are willing to include high

order polynomial features of x (such as x_1^2, x_2^2 ,

 x_1x_2 , etc.).

1 point 3. Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you **increase** the threshold to 0.9. Which of the following are true? Check all that apply.

The classifier is likely to now have higher precision.

The classifier is likely to have unchanged precision and recall, and

thus the same F_1 score.

The classifier is likely to now have higher recall.

The classifier is likely to have unchanged precision and recall, but

higher accuracy.

	1 4.		Suppose you are working on a spam classifier, where spam		
		emails are positive examples ($y=1$) and non-spam emails are negative examples ($y=0$). You have a training set of emails in which 99% of the emails are non-spam and the other 1% is spam. Which of the following statements are true? Check all			
		that apply.			
			If you always predict non-spam (output		
			y=0), your classifier will have an accuracy of		
			99%.		
			If you always predict spam (output $y=1$),		
			your classifier will have a recall of 0% and precision		
			of 99%.		
			If you always predict spam (output $y=1$),		
			your classifier will have a recall of 100% and precision		
			of 1%.		
			If you always predict non-spam (output		
			y=0), your classifier will have a recall of		
		0%.			
1 point	5.	Which	of the following statements are true? Check all that apply.		
			If your model is underfitting the		
			training set, then obtaining more data is likely to		
		_	help.		
			Using a very large training set		
			makes it unlikely for model to overfit the training		
			data.		
			It is a good idea to spend a lot of time		
			collecting a large amount of data before building		
			your first version of a learning algorithm.		
			After training a logistic regression		
			classifier, you must use 0.5 as your threshold		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or		
			classifier, you must use 0.5 as your threshold		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and you should		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and you should instead use F_1 score based on the		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and you should		
			classifier, you must use 0.5 as your threshold for predicting whether an example is positive or negative. On skewed datasets (e.g., when there are more positive examples than negative examples), accuracy is not a good measure of performance and you should instead use F_1 score based on the		