

**O1**Who are we?





Jiajun He



Zelin Li

Major in Bioinformatics, at UCPH



## 01 VERIFICATION

#### **IDEA**

- Using synthetic data, train a model to predict readmission.
- Check the performance of this model on synthetic data and on real data.



# 01 VERIFICATION

#### **RESULT**

| Synthetic data (Train set) | Synthetic data (Val set) | Real data |
|----------------------------|--------------------------|-----------|
| 71%                        | 68%                      | 53%       |

- There is a **significant difference** between 2 datasets.
- Real data is harder to make prediction. Using this set of synthetic data to do data analysis is risky.

## **02 CLASSIFICATION**

#### **MODEL**



### **03 ANALYSIS**

- Low dimensional embedding
- Check hidden-layer activation
- Re-train the model using combination of dimensions
- Analyze crucial dimensions

# 3.1 Low dimension embedding

- Embedding and visualization by t-SNE
- Check the decoupling of each layer in neuron network





## 3.2 Check hidden layer activation

- Try to find which features the first layer detects

Find the samples that mostly activate the first layer

Recover the input by taking pseudo-inverse

Compare the difference

$$A = relu(W \cdot X + b)$$
$$X \approx W^{-1} \cdot (A - b)$$

The inspiration comes from Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks.

# 3.2 Check hidden layer activation

- By comparing the result, we teased out dimensions not used in decoupling.
- Remain 22 dimensions.



#### 3.3 Train model with combination of dimensions

- To check the most important dimensions among the 22 dimension.
- Find 3 most important dimensions:

"insulin"
"change"
"diabetesMed"



### 3.3 Train model with combination of dimensions

|          | All features | Only 3 features | All other features |
|----------|--------------|-----------------|--------------------|
| Accuracy | 88%          | 72%             | 74%                |
|          |              | 7 14 11         |                    |
|          |              |                 |                    |
|          |              |                 |                    |
|          |              |                 |                    |
|          |              |                 |                    |
|          |              |                 |                    |

#### 3.4 Understand the difference

- Compare the correlation coefficient of this 3 dimensions.

| Corrs       | insulin | change | diabetesMed |
|-------------|---------|--------|-------------|
| insulin     | 1.0     | -0.14  | 0.26        |
| change      | -0.14   | 1.0    | -0.51       |
| diabetesMed | 0.26    | -0.51  | 1.0         |

| Corrs       | insulin | change | diabetesMed |
|-------------|---------|--------|-------------|
| insulin     | 1.0     | -0.02  | 0.01        |
| change      | -0.02   | 1.0    | 0.02        |
| diabetesMed | 0.01    | 0.02   | 1.0         |



## Conclusion

- The mainly difference between real data and synthetic data are dimensions "insulin", "change" and "diabetesMed";
- In real data, these three dimensions are highly related;
- while in synthetic data, these three dimensions seems to be generated **independently**.

### **Future Plan**

 Re-sampling these 3 dimensions to generate a better synthetic data

 Use this new set of synthetic data to train a model predicting re-admission, then check if this model works well on real data

