EE223 Analog Integrated Circuits Fall 2018

Lecture 7: Common Source Amplifiers

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Homework

All homework problems should be done individually and submitted by 6PM on the due date.

Submission: Email to sang-soo.lee@sjsu.edu

File name convention: EE223HW#2_Lastname_Firstname.pdf

Send only one pdf file. No zip file please!

Each HW will be 5 points.

- HW#1 Cadence exercise due Sept. 12, Wednesday
- HW#2 Single Stage Amplifier due Oct. 1, Monday
- HW#3 Beta Multiplier with Startup circuit
- HW#4 OTA
- HW#5 Two stage opamp

MOS Layout Example

Mask Layers

- Layer numbers are assigned to Well, Active, Poly, Contact, Metal, Via, Silicide Protect, and Dummy, respectively.
- Some layer is automatically generated from the pattern on the drawn layer.
 - ex. FOX and GOX is generated from the pattern on the active layer.

MOS Layout Example

Gate Resistance in MOS Layout

- Long W: large time constant of gate poly-Si
- Long W: large thermal noise of gate poly-Si
- Long LD, LS: large parasitic capacitance and resistance of drain/source area
- Few number of contact: Shift or fluctuation of substrate potential

How can you design the MOSFET with larger W?

MOS Layout Example Using Fingers

MOFET should be sectioned to reduce the gate resistance.

$$R_{\square} \frac{\mathrm{W}}{\mathrm{L}} \ll \frac{1}{g_m}$$

g_m: trans-conductance

$$g_m = y_{21} = \frac{dI_{ds}}{dV_{gs}}$$

This condition is often met in the case of W/L < 20. W/L < 10 is recommended.

Fingers

 C_j = Capacitance of drain bottom pn junction per area (F/m²)

Fingers vs. Multiplier

Abutment

 C_j = Capacitance of drain bottom pn junction per area (F/m²) SL_{Gmin} = minimum gate spacing

Dummy Pattern

The dummy pattern may be formed to reduce the production tolerance.

Amplifier Applications

Wireless Communication

Ideal vs Non-ideal Amplifier

Ideal amplifier (Fig. a)

$$y(t) = \alpha_0 + \alpha_1 x(t)$$

- Large-signal characteristic is a straight line
- $-\alpha_1$ is the "gain", α_0 is the "dc bias"
- Nonlinear amplifier (Fig. b)

$$y(t) = \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$

- Large signal excursions around bias point
- Varying "gain", approximated by polynomial
- Causes distortion of signal of interest

Analog Design Tradeoff

- Along with gain and speed, other parameters also important for amplifiers
- Input and output impedances decide interaction with preceding and subsequent stages
- Performance parameters trade with each other
 - Multi-dimensional optimization problem

Common Source Stage with Resistive Load

- Very high input impedance at low frequencies
- For $V_{in} < V_{TH}$, M_1 is off and $V_{out} = V_{DD}$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

Slope = small-signal gain

- When $V_{in} > V_{TH}$, M_1 turns on in saturation region, V_{out} falls
- When V_{in} > V_{in1}, M₁ enters triode region
- At point A, $V_{out} = V_{in1} V_{TH}$

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

Common Source Stage with Resistive Load

$$A_v = rac{\partial V_{out}}{\partial V_{in}}$$
 • Taking derivative of I_D ends in saturation region, small $= -R_D \mu_n C_{ox} rac{W}{L} (V_{in} - V_{TH})$ signal gain is obtained $= -g_m R_D$.

 Taking derivative of I_D equation in saturation region, small-

$$V_{out} = -g_m V_1 R_D = -g_m V_{in} R_D$$

• g_m and A_v vary for large input signal swings according to

$$g_m = \mu_n C_{ox}(W/L)(V_{GS} - V_{TH}).$$

This causes non-linearity

Diode-Connected MOSFET

- A MOSFET can operate as a small-signal resistor if its gate and drain are shorted, called a "diode-connected" device
- Transistor always operates in saturation

Impedance of the device can be found from small-signal equivalent model

$$V_1 = V_X$$

$$I_X = V_X/r_O + g_m V_X$$

$$V_X/I_X = (1/g_m)||r_O \approx 1/g_m$$

Diode-Connected MOSFET

 Including body-effect, impedance "looking into" the source terminal of diode-connected device is found as

$$V_{1} = -V_{X} V_{bs} = -V_{X} \frac{V_{X}}{I_{X}} = \frac{1}{g_{m} + g_{mb} + r_{O}^{-1}}$$

$$= \frac{1}{g_{m} + g_{mb}} || r_{O}$$

$$(g_{m} + g_{mb})V_{X} + \frac{V_{X}}{r_{O}} = I_{X} \approx \frac{1}{g_{m} + g_{mb}}.$$

CS Amp with Diode-Connected Load

- For $V_{in} < V_{TH1}$, $V_{out} = V_{DD} V_{TH2}$
- When $V_{in} > V_{TH1}$, previous large-signal analysis predicts that V_{out} approximately follows a single line
- As V_{in} exceeds V_{out} + V_{TH1} (to the right of point A), M_1 enters the triode region and the characteristic becomes nonlinear.