

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Basic Arithmetic Logic Unit

One-bit ALU that performs AND, OR, and

addition

Enhanced Arithmetic Logic Unit

ALU that have NAND/NOR operation Carryout

32-bit ALU

One-bit ALUs with Set Less Than

- Set less than instruction requires a subtraction and then sets all but the least significant bit to 0, with the lsb set to 1 if a < b
- Less signal line
 - Isb signed bit
 - All but the lsb 0

32-bit ALU with Set Less Than

Final 32-bit ALU

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if
 - Adding two –ve operands
 - Overflow if

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from -ve operand

- Subtracting <u>-ve from +ve</u> operand
 - Overflow if

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

1000 1011

1000 **1011**

add

shift

add

shift

shift

shift

Perform steps in parallel: add/shift

0100<mark>0 **101** 1000</mark>

11000 **101**

0110<mark>00 **10** 0000 ac</mark>

)00 add

0110<mark>00 **10** 0011 000 **1**</mark>

1000

00 add

1011000 **1** 01011000

One cycle per partial-product addition

That's ok, if frequency of multiplications is low

00010

0010

00110 000110 0010

001110

Control

test

Multiplication Example

Iteration	Step	Product Register		Multiplicand
		(Product	: Multiplier)	
0	Initial value	0000	0011	0010
1	1: 1→Prod+=Mcand	0010	0011	0010
	2: shift right Preg	0001	0001	0010
2	1: 1→Prod+=Mcand	0011	0001	0010
	2: shift right Preg	0001	1000	0010
3	1: 0→no operation	0001	1000	0010
	2: shift right Preg	0000	1100	0010
4	1: 0→no operation	0000	1100	0010
	2: shift right Preg	0000	0110	0010

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Fast Carry Using the First Level of Abstraction

◆ ci+1: carry output of level i, carry input of level i+1

$$ci+1 = (bi \cdot ci) + (ai \cdot ci) + (ai \cdot bi)$$
$$= (ai \cdot bi) + (ai + bi) \cdot ci$$

• For example

$$c2 = (a1 \cdot b1) + (a1 + b1) \cdot ((a0 \cdot b0) + (a0 + b0) \cdot c0)$$

- We can define generate gi and propagate pi $gi = ai \cdot bi$ such that $ci+1 = gi + pi \cdot ci$
- if ai = bi = 1 $ci+1 = gi + pi \cdot ci = 1 + pi \cdot ci = 1$
- $if \ ai = 1, \ bi = 0 \ or \ ai = 0, \ bi = 1$ $ci+1 = gi + pi \cdot ci = 0 + 1 \cdot ci = ci$

4-bit Carry Look-Ahead Adder

```
c1 = g0 + (p0 \cdot c0)
     = g1 + (p1 \cdot c1) = g1 + (p1 \cdot g0) + (p1 \cdot p0 \cdot c0)
     = g2 + (p2 \cdot c2) = g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot c0)
c4 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)
       +(p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)
                      C_4: 4 AND gates and 1 OR gate
                      C_n: n AND gates and 1 OR gate
                                                    4-bit CLA adder
                                                                             C_{\Delta}
                                                                      group structure
```

Chapter 3 — Arithmetic for Computers — 18

Fast Carry Using the Second Level of Abstraction

The concept can be extended another level by considering *group generate* (g0-3) and *group*propagate (p0-3) functions:

$$g0-3 = g3 + p3g2 + p3p2g1 + p3p2p1g0$$

 $p0-3 = p3p2p1p0$

Using these two equations:

$$c4 = g0-3 + p0-3c0$$

$$c8 = g4-7 + p4-7c4$$

$$= g4-7 + p4-7(g0-3 + p0-3c0)$$

$$= g4-7 + p4-7g0-3 + p4-7p0-3c0$$

 Thus, it is possible to have four 4-bit adders that use one of the same carry lookahead circuit to speed up 16-bit addition

0001 1110 1010 1011

16-bit Two-Level Carry Look-Ahead **Adder**

Chapter 3 — Arithmetic for Computers — 20

= q4-7 + p4-7q0-3 + p4-7p0-3c0

Carry Lookahead Example

Specifications 1:

- 16-bit CLA
- Delays:
 - NOT = 1
 - XOR = Isolated AND = 3
 - \blacksquare AND-OR = 2
- Longest Delays:
 - Ripple carry adder*= 3 + 15 × 2 + 3 = 36
 - CLA = $3 + 3 \times 2 + 3 = 12$
- Specification 2:
 - Exclusive OR = 2 gate delays (GDs)
 - 2-level 16-bit CLA delay = 10 GDs
 - 3-level 64-bit CLA delay = 14 GDs
 - n-level 4ⁿ-bit CLA delay =

Simplified Multiplication

- Consider $01110 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1$ (three additions)
- One important observation another faster calculation
 - $01110 = 1 \times 2^4 1 \times 2^1$ (one addition and one subtraction)
- Multiplication has similar property
 - The process on the left is traditional operation
 - The process on the right applies the above concept

```
0010 \times 0110 = 0 \times (0010 \times 2^{0}) + 1 \times (0010 \times 2^{1}) + 1 \times (0010 \times 2^{2}) + 0 \times (0010 \times 2^{3})
```

```
0010 \times 0110 = 0 \times (0010 \times 2^{0}) - 1 \times (0010 \times 2^{1}) + 0 \times (0010 \times 2^{2}) + 1 \times (0010 \times 2^{3})
```

```
0010<sub>two</sub>
     0010<sub>two</sub>
                                                 0110_{two}
     0110_{two}
Х
    0000 shift (0 in multiplier)
                                                0000
                                                      shift (O in multiplier)
    0010 add
               (1 in multiplier)
                                                       sub (first 1 in multiplier)
                                            - 0010
+ 0010
               (1 in multiplier)
           add
                                            + 0000
                                                       shift (middle of string of 1s)
+ 0000
           shift (0 in multiplier)
                                                       add (prior step had last 1)
                                            +0010
  00001100<sub>two</sub>
                                           00001100two
```


Booth's Algorithm

Current bit	Bit to the right	Explanation	example
1	0	Beginning of a run of 1s	00001111000
1	1	Middle of a run of 1s	00001111000
0	1	End of a run of 1s	000 <mark>01</mark> 111000
0	0	Middle of a run of 0s	00001111000

Booth's algorithm

- Based on the current and previous bits, do one of the following
 - 00: middle of a string of 0s, so no arithmetic operation.
 - 01: end of a string of 1s, so add the multiplicand to the left half of the product
 - 10: beginning of a string of 1s, so subtract the multiplicand from the left half of the product.
 - 11: middle of a string of 1s, so no arithmetic operation.
- As in the previous algorithm, shift the product register right 1 bit

Booth's Algorithm

Examples for Booth's Algorithm

Itera- Multi-		Original algorithm		Booth's algorithm	
tion plicand	plicand	Step	Product	Step	Product
0	0010	Initial values	0000 0110	Initial values	0000 0110 0
1	0010	1: 0 ⇒ no operation	0000 0110	1a: 00 ⇒ no operation	0000 0110 0
	0010	2: Shift right Product	0000 0011	2: Shift right Product	0000 0011 0
2	0010	1a: 1 ⇒ Prod = Prod + Mcand	0010 0011	1c: 10 ⇒ Prod = Prod - Mcand	1110 0011 0
	0010	2: Shift right Product	0001 0001	2: Shift right Product	1111 0001 1
3	0010	1a: 1 ⇒ Prod = Prod + Mcand	0011 0001	1d: 11 ⇒ no operation	1111 0001 1
'	0010	2: Shift right Product	0001 1000	2: Shift right Product	1111 1000 1
4	0010	1: 0 ⇒ no operation	0001 1000	1b: 01 ⇒ Prod = Prod + Mcand	0001 1000 1
	0010	2: Shift right Product	0000 1100	2: Shift right Product	0000 1100 0

Iteration	Step	Multiplicand	Product
0	Initial values	0010	0000 1101 0
1	1c: 10 ⇒ Prod = Prod - Mcand	0010	1110 1101 0
	2: Shift right Product	0010	1111 0110 1
2	1b: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
	2: Shift right Product	0010	0000 1011 0
3	3 1c: 10 ⇒ Prod = Prod - Mcand		1110 1011 0
	2: Shift right Product	0010	1111 0101 1
4	4 1d: 11 ⇒ no operation		1111 0101 1
	2: Shift right Product	0010	1111 1010 1

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32 bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Division Example

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	1 110 0111
1	2b: Rem $< 0 \Rightarrow$ +Div, sll Q, QQ = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	1 111 0111
	2b: Rem $< 0 \Rightarrow$ +Div, sll Q, QQ = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	<mark>1</mark> 111 1111
	2b: Rem $< 0 \Rightarrow$ +Div, sll Q, QQ = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	0000 0011
	2a: Rem ≥ 0 ⇒ sll Q, QQ = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem – Div	0001	0000 0010	0000 0001
	2a: Rem ≥ 0 ⇒ sll Q, QQ = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Division Algorithm

- Restoring algorithm
 - r d (assuming $< 0 \Rightarrow$ quotient = 0)
 - Restore r by adding d: (r − d) + d
 - Next iteration: SLL for 2r, then 2r d
 - SLL (shift left logical) is nearly free
 - •
- Non-restoring algorithm (on the right)
 - r d (assuming $< 0 \Rightarrow$ quotient = 0)
 - Next iteration: SLL for 2(r d)
 - Want 2r d: 2(r d) + d
 - •

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division)
 generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

■
$$-2.34 \times 10^{56}$$

■ $+0.002 \times 10^{-4}$
■ $+987.02 \times 10^{9}$

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision
 - Double precision

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand:
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation:
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent:⇒ actual exponent =
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - |
- Largest value
 - Exponent: ⇒ actual exponent =
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - -

8 bits	127	254	
1			
	0	127	
	-1	126	
	-126	1	
	-127	0	
	-128	255	

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single:
- Double:

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

Denormal Numbers

■ Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{1-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

IEEE 754 Encoding of FPN

Single F	Precision	Double Precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	±denormalized number
1-254	Anything	1-2046	Anything	±floating-point number
255	0	2047	0	± ∞
255	Nonzero	2047	Nonzero	NaN

- Smallest positive single precision normalized number
- Smallest positive single precision denormalized no. (Hint: Fraction is 23-bit)
- ∞ must obey mathematical conventions: $F + \infty = \infty$; $F/\infty = 0$

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $\mathbf{9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \Rightarrow 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - 1.110₂ × 2^{-3} (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Interpretation of Data

The BIG Picture

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward –∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

