

NASA CR-167930  
Garrett 21-4309

(NASA-CR-167930) COMPUTATIONS OF SOOT AND  
AND NO<sub>X</sub> EMISSIONS FROM GAS TURBINE  
COMBUSTORS Final Report (Garrett Turbine  
Engine Co.) 300 p HC A13/MF A01 CSCL 13B

N82-29777

Uncles  
G3/45 28502

# COMPUTATIONS OF SOOT AND NO<sub>X</sub> EMISSIONS FROM GAS TURBINE COMBUSTORS

FINAL REPORT

by

S. K. Srivatsa

Garrett Turbine Engine Company  
P.O. Box 5217  
Phoenix, Arizona 85010



Prepared for

National Aeronautics and Space Administration  
NASA-Lewis Research Center  
Cleveland, Ohio 44135

Contract No. NAS3-22542

NASA CR-167930  
Garrett 21-4309

COMPUTATIONS OF SOOT AND NO<sub>x</sub> EMISSIONS  
FROM  
GAS TURBINE COMBUSTORS

FINAL REPORT

by

S. K. Srivatsa

Garrett Turbine Engine Company  
P.O. Box 5217  
Phoenix, Arizona 85010

Prepared for

National Aeronautics and Space Administration  
NASA-Lewis Research Center  
Cleveland, Ohio 44135

Contract No. NAS3-22542

## **FOREWORD**

This document is the final report for work performed by the Garrett Turbine Engine Company under Contract NAS3-22542. This program, under the sponsorship of the National Aeronautics and Space Administration (NASA) Lewis Research Center accomplished the technical effort involved in the computations of emissions using a 3-D combustor computer program.

The assistance and guidance rendered by Dr. C. J. Marek, who was the NASA Project Manager for the program, is acknowledged.

John C. Clark

## TABLE OF CONTENTS

|                                                                                  | <u>Page</u> |
|----------------------------------------------------------------------------------|-------------|
| List of Illustrations                                                            | vii         |
| List of Tables                                                                   | viii        |
| I. INTRODUCTION                                                                  | 1           |
| A. Background                                                                    | 1           |
| B. Objectives                                                                    | 2           |
| C. Summary                                                                       | 3           |
| II. DESCRIPTION OF THE 3-D COMBUSTOR PERFORMANCE PROGRAM                         | 4           |
| III. SOOT EMISSIONS                                                              | 6           |
| A. Background                                                                    | 6           |
| B. Mechanism of Soot Formation                                                   | 8           |
| C. Mechanism of Soot Oxidation                                                   | 10          |
| D. Quasi-Global Models of Soot Formation and Oxidation                           | 12          |
| E. Influence of Turbulence on Soot Formation and Oxidation                       | 14          |
| F. Present Approach                                                              | 17          |
| IV. RADIATION HEAT TRANSFER                                                      | 19          |
| A. Background                                                                    | 19          |
| B. Radiation Properties of Soot, CO <sub>2</sub> , and H <sub>2</sub> O Mixtures | 20          |
| C. Present Approach                                                              | 22          |
| V. NITROGEN OXIDE EMISSIONS                                                      | 24          |
| A. Background                                                                    | 24          |
| B. The Chemical Kinetics Program                                                 | 25          |
| C. Present Approach                                                              | 26          |
| VI. THE FOUR-STEP HYDROCARBON OXIDATION MECHANISM                                | 31          |
| A. Background                                                                    | 31          |
| B. Hydrocarbon Reaction Mechanisms                                               | 32          |
| C. Present Approach                                                              | 35          |
| VII. RESULTS AND DISCUSSION                                                      | 37          |
| A. Four-Step Hydrocarbon Oxidation Scheme Results                                | 37          |
| B. JT8D Combustor Computations                                                   | 47          |

**TABLE OF CONTENTS (Contd)**

|                                                     | <u>Page</u> |
|-----------------------------------------------------|-------------|
| <b>VIII. CONCLUSIONS</b>                            | <b>56</b>   |
| <b>IX. NOMENCLATURE</b>                             | <b>57</b>   |
| <b>References</b>                                   | <b>59</b>   |
| <b>Appendixes</b>                                   | <b>65</b>   |
| A. Description of 3-D Combustor Performance Program | 65          |
| B. Program Input Description                        | 73          |
| C. List of FORTRAN Variables                        | 87          |
| D. Listing of the 3-D Combustor Performance Program | 145         |
| E. List of Dependent Variables and Source Terms     | 285         |
| F. Input Data for JT8D-17 Combustor Test Case       | 291         |
| G. Dimensions of Variable Arrays                    | 297         |
| <b>Distribution List</b>                            | <b>301</b>  |

LIST OF ILLUSTRATIONS

| <u>Figure</u> | <u>Title</u>                                                                       | <u>Page</u> |
|---------------|------------------------------------------------------------------------------------|-------------|
| 1.            | Comparison of Measurements with Predictions<br>for a Lean Propane Flame.           | 38          |
| 2.            | Comparison of Measurements with Predictions<br>for a Stoichiometric Propane Flame. | 41          |
| 3.            | Comparison of Measurements with Predictions<br>for a Rich Propane Flame.           | 44          |
| 4.            | JT8D-17 Combustor                                                                  | 48          |
| 5.            | Flow Chart of Overall Solution Procedure.                                          | 51          |

LIST OF TABLES

| <u>TABLE</u> | <u>TITLE</u>                                                               | <u>PAGE</u> |
|--------------|----------------------------------------------------------------------------|-------------|
| I            | NO <sub>x</sub> REACTION MECHANISM                                         | 28          |
| IIa          | PREDICTED EMISSIONS INDEX WITH<br>2-STEP HYDROCARBON OXIDATION SCHEME      | 53          |
| IIb          | PREDICTED EMISSIONS INDEX WITH<br>4-STEP HYDROCARBON OXIDATION SCHEME      | 53          |
| IIIa         | PREDICTED WALL RADIATION FLUX WITH<br>2-STEP HYDROCARBON OXIDATION SCHEME  | 54          |
| IIIb         | PREDICTED WALL RADIATION FLUX WITH<br>4-STEP HYDROCARBON OXIDATION SCHEME. | 54          |

## CHAPTER I

### INTRODUCTION

#### A. Background

Significant advances have been made in combustor analytical modeling over the past five years. The use of advanced numerics and kinetics has given the combustion engineer the ability to predict internal combustor flow field characteristics. These advanced tools, while still in their incipient stages, offer the potential of reducing the design and development time required for gas turbine combustors. At the same time, the analytical models increase the understanding of the phenomena affecting combustor performance and provide the basis for designing better combustors. The optimization of the design process will require a judicious blend of the emerging analytical tools (correlated and updated with test data) with the established empirical techniques.

Starting in 1970, Garrett has demonstrated a company commitment to develop combustor analytical design tools and utilize them in the everyday design and development process. In addition to extensive company-sponsored efforts, a significant contribution to this highly successful effort has been the USARTL Combustor Design Criteria Validation Program (Contract DAAJ02-75-C-0044).<sup>1</sup> Among the models developed under the above-mentioned USARTL program was the 3-D Combustor Performance Model, which is the basis for the present program. The present program entailed extending the capability of the model to predict pollutant emissions of nitrogen oxides and smoke.

## B. Objectives

The objective of the program was to utilize and extend an existing three-dimensional(3-D) combustor performance computer program:<sup>1</sup>

- o To predict pollutant emissions of smoke and NO<sub>x</sub>;
- o To include the influence of soot, CO<sub>2</sub>, and H<sub>2</sub>O on radiation heat transfer; and
- o To extend the two-step hydrocarbon oxidation mechanism to a more detailed four-step scheme.

The program consisted of four tasks:

- o Task I - Formulation of the Method
- o Task II - Computer Coding
- o Task III - Computation of Test Cases
- o Task IV - Reporting and Documentation.

In Task I, a method was formulated to predict the emissions of soot and NO<sub>x</sub> and to extend the radiation and hydrocarbon oxidation models.

In Task II, the method was incorporated into the 3-D combustor program in order to compute the emissions of NO<sub>x</sub> and soot and the radiant transfer to the combustor walls.

In Task III, the resulting program was exercised for idle, cruise, and takeoff conditions of a JT8D combustor.

In Task IV, reports were submitted to NASA during and at the end of the program.

C. Summary

This report is the Final Report of the computations of emissions program, and presents the work carried out by Garrett under the program. Chapter II of the report includes a brief description of the original 3-D combustor performance computer program, provided for completeness. Chapters III and IV describe the soot emissions model and the influence of soot on radiation heat transfer. The NO<sub>x</sub> emissions model and the hydrocarbon oxidation mechanism are described in Chapters V and VI, respectively. Chapter VII includes a description of the results of the computations. Chapter VIII contains concluding remarks. Chapters IX and X, respectively, contain a list of nomenclature and list of references, as cited in this report. Finally, Appendices A, B, C, and D contain, respectively, a description of the 3-D program, the program input, a list of FORTRAN variables and a listing of the new 3-D combustor performance program.

## CHAPTER II

### DESCRIPTION OF THE 3-D COMBUSTOR PERFORMANCE PROGRAM

The 3-D Combustor Performance Model Computer Program that forms the basis of the present work, is briefly described. For complete details, refer to Report No. USARTL-TR-55C.<sup>1</sup>

The 3-D program is general and is capable of predicting recirculating turbulent flow in gas-turbine combustion chambers. Reacting or nonreacting, swirling or nonswirling, diffusion and/or premixed flames, and gaseous and/or liquid fuel combustion can be handled by the program. The program computes the following variables in the region of interest:

- o Axial, radial, and swirl velocity components;
- o Pressure;
- o Enthalpy (temperature); in conjunction with the equation of state, the temperature determines the density variations in the flow field;
- o Turbulent kinetic energy and its dissipation rate;
- o Mass fractions of total fuel (mixture fraction), unburned fuel, oxygen, carbon monoxide,  $\text{CO}_2$  and  $\text{H}_2\text{O}$ .
- o Three radiation flux vectors;
- o Spray trajectory, droplet size distribution, and evaporation rates.

The program employs the following physical models to solve the variables mentioned above:

- Turbulence - Two-equation ( $k-\epsilon$ ) turbulence model to obtain turbulent kinetic energy and its dissipation rate.

- Chemistry - Two-step chemical reaction scheme:



- Chemical Reaction Rate - Fuel and CO consumption rates are assumed to be governed by either the time-averaged Arrhenius model or the turbulent eddy break-up model.
- Radiation - A six-flux model of radiation.

The transport equations for all dependent variables  $\phi$  are written in the following general form:

$$\text{div} (\vec{\rho} \vec{u} \phi - \frac{\mu_t}{\sigma_\phi} \text{grad } \phi) = S_\phi \quad (3)$$

where  $\rho$  denotes the mixture density,  $\vec{u}$  the velocity vector,  $\mu_t$  the effective or turbulent viscosity,  $\sigma_\phi$  the effective Prandtl/Schmidt number,  $S_\phi$  the sources of  $\phi$ ; i.e.,  $S_\phi$  includes the creation/destruction of  $\phi$  plus other quantities that do not fall under the convective and diffusive terms. Table E-1 in Appendix E includes a list of the dependent variables  $\phi$  and their source terms.

An iterative, general finite-difference solution procedure suitable for 3-D elliptic flows in complex geometries is used to solve the above system of coupled, nonlinear partial-differential equations. The solution procedure involves discretizing the differential equations by integration over elementary finite-difference control volumes surrounding grid nodes that are nonuniformly spaced over the flow field.

## CHAPTER III

### SOOT EMISSIONS

In this chapter, soot formation and oxidation in combustion chambers are discussed. A general background on soot emissions is provided first. Details of the soot formation and oxidation mechanisms reported in the literature are discussed next. Quasi-global expressions for soot formation and oxidation are described. A description of the influence of turbulence on soot formation and oxidation is included. The approach adopted in the present work is described next. This approach considers the influence of turbulent fluctuations on soot formation and oxidation rates.

#### A. Background

The particulate emission of primary concern in the combustion of hydrocarbon fuels is soot, which is evident in the form of exhaust smoke. The emission of smoke from gas turbine engines is responsible for the following problems:

- o Higher liner temperatures due to increased radiative heat transfer
- o Impingement of carbon on metal surfaces, resulting in erosion and reduced equipment lifetimes
- o Distortion of fuel spray distribution due to carbon deposits, leading to hot spots
- o Visible pollution and associated health hazards
- o Tactical problems in military applications.

Recently, attention is being directed toward the combustion of alternate fuels derived from coal liquids and shale oil. Since the use of these fuels results in significant increases in smoke production, a better understanding of the physical and chemical processes governing soot production is needed.

The processes governing the formation and subsequent oxidation of soot are of a particularly complex nature; and, as such, quantitative models of soot production have yet to be developed. Soot is not an equilibrium product of combustion; and, therefore, its formation is influenced as much by the physical processes of atomization, evaporation, and fuel/air mixing as by reaction kinetics. Soot is generally produced anywhere within the combustor where fuel/air mixing is inadequate, resulting in oxygen-deficient, high-temperature zones.

For the pressures and temperatures normally prevalent in gas turbine combustors, equilibrium calculations indicate that solid carbon appears when there is insufficient oxygen to oxidize the hydrocarbon to CO and H<sub>2</sub> according to the relation:



That is, the carbon-oxygen mass ratio for incipient soot formation is 12:16; or, alternatively, the atomic C-O ratio is unity. However, since soot formation is essentially a nonequilibrium phenomenon, experimentally, soot is observed at C-O ratios (a) much less than unity at low temperatures (<2000°K); and (b) greater than unity at higher temperatures.<sup>2</sup>

Smoke levels are primarily dependent on the following:

- Air/fuel mixing
- Temperature

- o Equivalence ratio
- o Residence time of air/fuel mixture
- o Pressure
- o Fuel composition.

These factors influence both the formation and subsequent oxidation of soot and are dependent on engine operating conditions, details of the combustor internal flow field, fuel droplet characteristics, etc.

#### B. Mechanism of Soot Formation

Detailed discussions of the many mechanisms proposed to explain the chemical and physical processes governing soot formation are available in reviews by Haynes and Wagner,<sup>3</sup> Street and Thomas,<sup>4</sup> Palmer and Culliss,<sup>5</sup> Gaydon and Wolfhard,<sup>6</sup> Homann,<sup>7</sup> and Bittner and Howard.<sup>8</sup> Based on the information available, the process of soot formation can be considered to occur in three distinct stages:

- o Soot-particle nucleation
- o Agglomeration and surface growth
- o Coagulation.

The first stage of soot-particle nucleation is the most difficult to describe, and there is considerable controversy regarding this. The two most viable hypotheses advanced to date are based on ionic and radical polymerizations.

The theory of ionic polymerizations contends that positive ions serve as the nuclei for carbon formation in flames.<sup>9,10</sup> Based on this theory, Howard<sup>11</sup> showed that the chain structure of carbon particles and the uniform size of the spherical chain units can be explained. Experiments by Howard and coworkers<sup>12</sup> have demonstrated this theory to be feasible.

The theory of radical polymerizations considers that fuel pyrolysis gives rise to elementary unsaturated hydrocarbon molecules (e.g., acetylene), which polymerize via radical chain mechanisms.<sup>13</sup> Thus, soot formation is mainly due to gas-phase reactions and is not directly due to liquid pyrolysis. This mechanism has also been proposed by Porter<sup>14</sup> as the "Acetylene Mechanism of Soot Formation." Mass spectrometric measurements of species such as C<sub>2</sub>H<sub>2</sub>, C<sub>4</sub>H<sub>2</sub>, C<sub>6</sub>H<sub>2</sub>, C<sub>8</sub>H<sub>2</sub>, etc. obtained in flames<sup>13</sup> and shock-tube investigations<sup>15</sup> tend to support the radical polymerization theory. However, since a continuation of such a chain-reaction sequence cannot lead directly to carbon particles,<sup>13</sup> chain-branched and ring-closure, followed by agglomeration and dehydrogenation,<sup>5,16</sup> must take place at some point prior to soot formation.

In the second stage of soot formation (agglomeration and surface growth), spherical units of carbon particles (about 250 $\text{\AA}$  in size) are formed by agglomeration and surface growth of the nuclei formed in the first stage.

Finally, in the third stage, the coagulation of the spherical carbon particles leads to the characteristic chain-like structure of soot. Dehydrogenation continues through both the second and third stages.

Jensen<sup>17</sup> proposed a model that treats the various steps of soot formation in some detail. The model agreed qualitatively with experimental observations in a methane flame. However, due to the complexities associated with the detailed reaction mechanism, and uncertainties in the rate constants, the Jensen model is not suitable for gas-turbine combustor analysis.

Since quantitative description of the soot formation mechanism applicable to general conditions are not available, quasi-global models as described later in this chapter are required for the computation of soot emissions.

### C. Mechanism of Soot Oxidation

Analytical and empirical literature on soot oxidation is extensive. However, because of the complexities involved, considerable controversy exists concerning the mechanism of soot oxidation, and many basic questions have yet to be answered. Consideration of soot oxidation processes is important, since soot concentration in the exhaust gases is determined by both the relative rates of soot formation and oxidation in the flame zone and the surface oxidation rate in hot post-flame gases. In this Chapter, a limited review of the soot oxidation models and a rationale for selecting the model used in the present work is presented.

Many studies have been reported on the derivation of mass-transfer (oxidation) rates for single-carbon particles in a hot-oxidizing ambient environment. Recently, studies on the theory of burning carbon particles were made by Avedesian and Davidson,<sup>19</sup> Ubhayakar and Williams,<sup>20</sup> and Libby and Blake.<sup>21</sup> These studies involved simplifying assumptions with regard to the fluid-mechanical and chemical aspects of the problem. Amundson and coworkers<sup>22,23,24</sup> presented a model for the diffusion and chemical reaction in the boundary layer surrounding a burning spherical carbon particle in a quiescent gas. The model accounted for radiation and for the homogeneous combustion of CO in the gas phase and the heterogeneous surface reactions of carbon with oxygen and CO<sub>2</sub>. The model predicted the distribution of the product concentrations around the particle.

High-temperature soot oxidation rates were measured by Lee, et al.,<sup>25</sup> in the tail of propane diffusion flames. The soot oxidation rate ( $R_{ox}$ ) per unit particle surface area was determined as a function of temperature and partial pressure of oxygen, as follows:

$$R_{ox} = 1.09 \times 10^5 P_{O_2} T^{-1/2} \exp(-19725/T) \text{ kg/m}^2\text{s} \quad (5)$$

The measurements were conducted in the temperature range of 1310° to 1670°K. Tesner and Tsibulevsky<sup>26</sup> also measured flame-soot oxidation rates over the temperature range of 1400° to 2000°K and found good agreement with the above expression. Feugier<sup>27</sup> measured soot concentrations in fuel-rich ethane-oxygen flames and deduced a kinetic expression for the oxidation of soot particles similar to the one by Lee, et al.<sup>25</sup>

Based on the measurements of the surface oxidation rates of pyrolytic graphite and the similarity of small soot particles to pyrolytic graphite at the microscopic level, Radcliffe and Appleton<sup>28</sup> proposed that the soot oxidation rate should exhibit a local maximum (for a fixed  $O_2$  partial pressure and increasing temperature) at temperatures from 2000° to 2500°K for  $O_2$  partial pressure in the range of 0.05 to 1.0 atmosphere. Additionally, the soot oxidation rate should exhibit a first-order dependence on the  $O_2$  partial pressure for  $P_{O_2} \leq 0.01$  atmosphere and, at higher pressures, should asymptotically approach a zero-order dependence. The semi-empirical formula for soot oxidation rate proposed by Nagle and Strickland-Constable<sup>29</sup> (discussed later in this chapter) confirms this behavior. The model of Lee, et al., can be derived from that of Nagle and Strickland-Constable for fuel-lean conditions. Therefore, the more general model of Nagle and Strickland-Constable has been adopted in the present work.

#### D. Quasi-global Models of Soot Formation and Oxidation

Since the elementary steps in the formation and oxidation of soot are not totally understood, the present program uses quasi-global models that characterize soot production occurring via a few overall steps. Such models have been successful in predicting soot production.<sup>32</sup> In this section, some of the quasi-global models reported in the literature are described.

The quasi-global models do not predict the size of soot particles. With the current state-of-the-art, it is not possible to predict the size of formation of the soot particles in any practical flow situation. Therefore, it is assumed that particles are produced at a known size. It may also be assumed that particles are produced in accordance with a specified size distribution (e.g., Gaussian).

Tesner, et al.,<sup>33</sup> proposed a soot production model which grouped the complex processes of pyrolysis, nuclei formation, and soot formation into three rate-limited subglobal steps that include (a) a pyrolysis rate first order in hydrocarbon concentration, (b) a chain branching and chain termination rate for soot nuclei formation rate, and (c) a soot formation rate.

##### Pyrolysis:

$$n_o = a_o C_{fu} \exp (-E/RT) \text{ (part./m}^3\text{.s)} \quad (6)$$

##### Nuclei Formation:

$$R_{n,f} = n_o + (f-g)n - g_o Nn \text{ (part./m}^3\text{.s)} \quad (7)$$

##### Soot Formation:

$$R_{S,f} = m_p (a - bN) n \text{ (kg/m}^3\text{.s)} \quad (8)$$

where  $a_0$ ,  $E$ ,  $f$ ,  $g$ ,  $g_0$ ,  $a$ , and  $b$  are constants for a given fuel;  $n_0$  is the rate of spontaneous formation of nuclei;  $n$  is the nucleus concentration;  $N$  is concentration of soot particles;  $m_p$  is the mass of a soot particle; and  $R_{n,f}$  and  $R_{s,f}$  are the nuclei and soot formation rates, respectively.

Khan and Greeves<sup>34</sup> proposed a single-step global expression as a function of the partial pressure of unburned hydrocarbons ( $P_{HC}$ ), the unburned equivalence ratio ( $\phi_u$ ), and the temperature (T):

$$R_{s,f} = 0.468 P_{HC} \phi_u^3 \exp(-40,000/RT) \text{ gm/cm}^3\text{s} \quad (9)$$

This model is overly sensitive to the equivalence ratio and, therefore, is not considered in the present work. In addition, in both the above models, soot oxidation rates are not considered.

Edelman, et al.,<sup>32</sup> consider both soot formation ( $R_f$ ) and soot oxidation ( $R_{ox}$ ) and express the net soot formation rate as:

$$\frac{dC_s}{dt} = R_f - A_t R_{ox} \quad (10)$$

where  $A_t$  equals total surface area available for oxidation. This model is more general and, therefore, it has been adopted in the present work with appropriate modifications to account for turbulence effects as described next in Section E. The formation step is expressed by a modified Arrhenius type of relation:

$$R_f = AT^\alpha C_{HC}^a C_{O_2}^b \exp(-E/RT) \text{ gm/cm}^3\text{s} \quad (11)$$

where  $C_{O_2}$ ,  $C_{HC}$  equal the concentration of unburned oxygen and hydrocarbon ( $\text{gm/cm}^3$ ) and where  $A$ ,  $\alpha$ ,  $a$ ,  $b$ ,  $E$  are model constants.

For the oxidation step, Edelman, et al.,<sup>32</sup> adopt the semi-empirical formula of Nagle and Strickland-Constable<sup>29</sup> for pyrolytic graphite oxidation; this formula is nonlinear and non-Arrhenius in  $P_{O_2}$  and T:

$$A_t R_{OX} = 12 \left[ \left( \frac{K_A P_{O_2}}{1 + K_Z P_{O_2}} \right) \psi + K_B P_{O_2} (1 - \psi) \right] A_t \text{ gm/s} \quad (12)$$

where:

$$\psi = [1 + K_T / (K_B P_{O_2})]^{-1} \quad (13)$$

$$K_A = 20 \exp(-30,000/RT) \text{ gm/cm}^2 \cdot \text{s atm} \quad (14)$$

$$K_B = 4.46 \times 10^{-3} \exp(-15,200/RT) \text{ gm/cm}^2 \cdot \text{s. atm.} \quad (15)$$

$$K_T = 1.51 \times 10^5 \exp(-97,000/RT) \text{ gm/cm}^2 \cdot \text{s} \quad (16)$$

$$K_Z = 21.3 \exp(4100/RT) \text{ atm}^{-1} \quad (17)$$

Shock-tube measurement<sup>18</sup> of soot oxidation rates qualitatively confirms the features of the above formula. With these expressions for soot formation and oxidation and assuming a single-soot particle size of 250Å, Edelman, et al.<sup>32</sup> obtained close agreement of the predicted soot concentration (mg/l) with the experimental data in a jet-stirred reactor. Thus, these expressions assume perfect mixing. In a gas-turbine combustor, however, regions of unmixed species will exist, and turbulence will also influence the soot production rates. As such, modifications to these expressions are required before they can be used for a general 3-D turbulent flow.

#### E. Influence of Turbulence on Soot Formation and Oxidation

Magnussen, et al.,<sup>35,36</sup> have proposed a model that accounts for the influence of turbulent fluctuations on soot production rates.

In turbulent flows, chemical reaction occurs when reactants at a sufficiently high temperature are mixed at the molecular level. The molecular mixing process is analogous to the dissipation ( $\epsilon$ ) of turbulent kinetic energy  $k$  and is associated with the smallest scales of turbulence. Dissipation is concentrated in highly strained regions of the fluid occupied by fine structures with characteristic dimensions of the same magnitude as the Kolmogorov microscale. The reactants are molecularly mixed in these fine structures, where reaction occurs. Magnusson, et al., proposed the following expressions for the mass fraction contained in the fine structures:

$$\gamma^* = 9.7 \cdot (R_t)^{-3/4} \quad (18)$$

where  $R_t$  is the turbulence Reynolds number, and the rate of transfer of mass per unit mass between the fine structures and the surrounding fluid is:

$$\dot{m} = 23.6 \cdot (R_t)^{-1/4} \frac{\epsilon}{k} \quad (19)$$

The rate of reaction is proportional to  $\dot{m}X$  where  $X$  is the fraction of small-structure eddies that are sufficiently heated to react. It is assumed that  $X$  is proportional to the ratio of local reacted fuel concentration and total fuel concentration. Thus, the rate of reaction is:

$$R_{fu} = 23.6 (R_t)^{-1/4} \frac{\epsilon}{k} X C_{min} \text{ (kg/m}^3 \text{ s)} \quad (20)$$

where

$$X = \frac{C_{pr}/(1+i)}{C_{pr}/(1+i) + C_{fu}} \quad (21)$$

$C_{\min}$  is the smaller of  $C_{fu}$  and  $(C_{O_2}/i)$  and  $i$  is the stoichiometric oxygen requirement. The temperature  $T^*$  of the reacting fine structures is  $T$  above the local time-mean temperature  $T$ :

$$T^* = T + \Delta T = T + \frac{\Delta H}{\rho C_p} \frac{C_{\min}}{C_p} \quad (22)$$

where

$\Delta H_R$  = the heat of reaction

$C_p$  = the specific heat

and the surrounding temperature  $T^0$  is

$$T^0 = T - \Delta T \frac{\gamma^* X}{1 - \gamma^* X} \quad (23)$$

Using Equations (6) and (8), the mean rates of nuclei and soot formation are then expressed as:

$$\begin{aligned} R_{n,f} &= n_{O,T^*} \gamma^* X \frac{\rho/\rho^*}{\rho/\rho^*} + n_{O,T^0} (1 - \gamma^* X) \frac{\rho/\rho^0}{\rho/\rho^0} \\ &+ (f - g)_n - g_O n^* N^* \gamma^* X \frac{\rho/\rho^*}{\rho/\rho^*} \\ &- g_O n^0 N^0 (1 - \gamma^* X) \frac{\rho/\rho^0}{\rho/\rho^0} \end{aligned} \quad (24)$$

and

$$\begin{aligned} R_{s,f} &= m_p (a - b N^*) n^* \gamma^* X \frac{\rho/\rho^*}{\rho/\rho^*} + m_p (a - b N^0) n^0 \\ &(1 - \gamma^* X) \frac{\rho/\rho^0}{\rho/\rho^0} \end{aligned}$$

Finally, the mean rates of nuclei and soot oxidation are expressed as:

$$R_{n,c} = R_{fu} n/C_{fu} \text{ (part/m}^3 \text{ s)} \quad (26)$$

$$R_{s,c} = R_{fu} C_s/C_{fu} \text{ (kg/m}^3 \text{ s)} \quad (27)$$

Magnussen, et al., used this model to compute the soot concentrations in a turbulent C<sub>2</sub>H<sub>2</sub> diffusion flame. By adjusting the particle diameter (entered as m<sub>p</sub>, the particle mass in Equation (8), and the constant a<sub>0</sub> in Equation (6), good agreement with experimental measurements was obtained.

#### F. Present Approach

The model adopted for computing soot emissions in the present program is described in the following paragraphs.

The computation of soot emissions involves the solution of two additional transport equations for the concentrations of (a) nuclei and (b) soot. These two equations are of the same general form as Equation (3) solved by the 3-D Combustor Program. To complete the equation specifications, the source terms and the Schmidt numbers for these two variables are as follows:

The source term in the nuclei concentration equation is expressed as

$$R_{n,f} = R_{n,c} \quad (28)$$

where R<sub>n,f</sub> is given by the smaller of the two values from Equations (7) and (24); R<sub>n,c</sub> is given by Equation (26). Thus, these expressions amount to the use of the turbulent reaction rates, subject to the limitation that they cannot be greater than the rates under well-stirred reactor conditions.

The source term in the soot concentration equation is similarly expressed as

$$R_{s,f} = R_{s,c} \quad (29)$$

where  $R_{s,f}$  is given by the smaller of the two values from Equations (11) and (25);  $R_{s,c}$  is given by the smaller of the two values from Equations (12) and (27).

The turbulent Schmidt numbers  $\sigma_s$  and  $\sigma_n$  for soot and nuclei concentrations are assumed the same as for gaseous fuel (i.e., 0.9).

In the computations carried out in the present work, a distribution of two particle sizes was considered: a small size of 0.025 microns as resulting from nucleation and a large size of one micron as resulting from fuel droplet pyrolysis and char formation. The relative rates of formation of these two sizes of particles was assumed to be 90-10 percent. The consideration of two particle sizes leads to the solution of a transport equation of the same general form as Equation (1) for the concentration of the particles in each size. The extension to other sizes is straightforward but involves extra computational effort, since an additional equation must be solved for each additional size considered. In view of the several assumptions inherent in the analysis of soot production, the consideration of other size groups is not necessary at this stage.

The calculation of soot formation is bypassed if the temperature is less than a value below which the formation rates are negligible. It is also bypassed if the local carbon-to-oxygen ratio is less than the incipient soot formation limit. Both of these limits of temperature and carbon-to-oxygen ratio are inputs to the calculation procedure and can be varied at will.

A lack of data exists for computing particle coagulation. Attempts to model particle growth in flames<sup>38,39</sup> have had little success. No definite conclusions could be reached with these models. A lack of understanding of the phenomena and the absence of data reduces coagulation computations to mere speculation. Therefore, this phenomenon is not addressed in the present work.

## CHAPTER IV

### RADIATION HEAT TRANSFER

#### A. Background

The contributors to radiation in combustors fueled by hydrocarbons are soot,  $\text{CO}_2$ ,  $\text{H}_2\text{O}$  (vapor), inorganic particles, CO, unburned fuel ( $\text{C}_x\text{H}_y$ ),  $\text{NO}_x$ , and  $\text{SO}_2$ . Only the influence of soot,  $\text{CO}_2$ , and  $\text{H}_2\text{O}$  (vapor) are considered in the present work. Although CO and unburned  $\text{C}_x\text{H}_y$  contribute to emission and attenuation of radiation within flames, these contributions are localized and of secondary importance when total heat-transfer rates are considered. The contributions of  $\text{NO}_x$  and  $\text{SO}_2$  can be neglected because of their low concentrations.

The determination of the influence of soot on radiant heat transfer reduces to two factors: (a) soot distribution in the flame and (b) the radiative properties of gas-soot mixtures. The first was discussed in the preceding chapter. Radiative properties of gas-soot mixtures are discussed in this chapter.

The radiation properties of the principal radiating species including soot,  $\text{CO}_2$ , and  $\text{H}_2\text{O}$ , are significantly nongrey. Consequently, the calculation of the radiation properties is a time-consuming task. However, spectral calculations are unnecessary since approximate calculations (by means of curve fits) are more convenient and provide good accuracy.<sup>40</sup>

An approximate curve-fit procedure for the calculation of radiation properties is employed in the present work.

## B. Radiation Properties of Soot, CO<sub>2</sub>, and H<sub>2</sub>O Mixtures

The absorptivity ( $\alpha$ ) of the gas-soot mixture includes the soot absorptivity, the absorptivity due to the absorption bands of CO<sub>2</sub> and H<sub>2</sub>O, and corrections for the overlapping of bands.

Utilizing the spectral data,<sup>41</sup> the gas absorptivity is calculated by taking a summation over the absorption bands of CO<sub>2</sub> and H<sub>2</sub>O. In the approximate calculation method adopted here, a simpler approach is used. The gas absorptivity  $\alpha_g$  is written as<sup>42</sup>

$$\alpha_g = \epsilon_g (T/T_s)^{(0.6-0.2\zeta)} \quad (30)$$

where  $\zeta = P_w/(P_w + P_c)$  (31)

$\epsilon_g$  = gas emissivity at a temperature T and path length  
 $LT_s/T$

T, T<sub>s</sub> = gas and blackbody source temperatures, respectively

P<sub>c</sub>, P<sub>w</sub> = partial pressures of CO<sub>2</sub> and H<sub>2</sub>O

$\epsilon_g$  is given by

$$\epsilon_g = \epsilon_c + \epsilon_w - \Delta\epsilon_{cw} \quad (32)$$

where  $\epsilon_c$ ,  $\epsilon_w$  = emissivities of CO<sub>2</sub> and H<sub>2</sub>O

$\Delta\epsilon_{cw}$  = overlap correction factor

$\epsilon_g$  can be computed using a temperature adjusted version of Leckner's<sup>43</sup> approximate overlap correction  $\Delta\epsilon_{cw}$ , and approximating

$\epsilon_c$  and  $\epsilon_w$  by curve fits of  $P_c$ ,  $P_w$ ,  $P_L$ , and  $T$  to spectral calculations. In the range of interest in gas-turbine combustors, such calculations agree to within 5 percent of the spectral calculations and the experimental results.

The temperature adjusted version of Leckner's<sup>43</sup> overlap correction  $\Delta\epsilon_{cw}$ , which accounts for the 2.7 and 15 $\mu\text{m}$  overlapped regions for mixtures of  $\text{CO}_2$  and  $\text{H}_2\text{O}$ , is<sup>40</sup>

$$\Delta\epsilon_{cw} = \frac{\zeta}{(10.7 + 101\zeta)} - \frac{10.4}{111.7}$$

$$\{\log_{10}[101.3(p_c + p_w)L]\}^{2.76} F(T)$$

for  $(p_c + p_w)L \geq 0.1 \text{ atm-m}$

$$= 0 \text{ for } (p_c + p_w)L < 0.1 \text{ atm-m}$$

where  $\zeta$  is defined by Equation (31) and  $F(T)$  is given by:

$$F(T) = -1.0204 \times 10^{-6}T^2 + 2.2449$$

$$10^{-3}T - 0.23469 \quad (T \text{ in degrees K})$$

The coefficients involved in the curve fits of  $\epsilon_c$  and  $\epsilon_w$  to  $P_c$ ,  $P_w$ ,  $P_L$  and  $T$  are given in Reference 40 and are not reproduced here.

The absorptivity ( $\alpha$ ) of the gas-soot mixture is given by

$$\alpha = \alpha_s + \alpha_g - \alpha_s \alpha_g \quad (33)$$

With  $\alpha_g$  obtained above, it remains to determine  $\alpha_s$ , the soot absorptivity. This is obtained by the method of Felske and Tien.<sup>44</sup> This method assumes that the complex refractive index of soot is independent of wavelength and that the soot particle diameter is small compared to the wavelength of radiation, so that scattering is negligible. The spectrally integrated absorptivity  $\alpha_s$  can then be written in a closed-form expression to determine  $\alpha_s$ .

By using the radiative property calculations of the type described above, Sarofim<sup>45</sup> indicated that radiation calculations can be made with fair confidence, and that the major source of uncertainty in such calculations is soot concentration, rather than gas-radiation properties.

### C. Present Approach

The six-flux radiation model incorporated into the 3-D Combustor Performance Computer Program was used in computing radiation heat transfer in the present work.

This model is based on the Schuster-Hamaker approximation.<sup>46</sup> It should be noted that, as pointed out by Siddall,<sup>47</sup> other flux model approximations such as Milne-Eddington and Schuster-Schwarzschild can be represented by the same form of flux equations with constants being different.

The differential equations describing the variations of the fluxes along six directions can be reduced to the following three second-order ordinary differential equations:

$$\frac{d}{dx} \left( \frac{1}{a+S} \frac{dR^x}{dx} \right) = a(R^x - E) + \frac{S}{3} (2R^x - R^r - R^z) \quad (34)$$

$$\frac{1}{r} \frac{d}{dr} \left( \frac{r}{a+S+1} \frac{dR^r}{dr} \right) = a(R^r - E) + \frac{S}{3} (2R^r - R^x - R^z) \quad (35)$$

$$\frac{1}{r} \frac{d}{d\theta} \left( \frac{1}{a+S} \frac{dR^z}{d\theta} \right) = a(R^z - E) + \frac{S}{3} (2R^z - R^x - R^r) \quad (36)$$

Where the composite-fluxes  $R^x$ ,  $R^r$  and  $R^z$  are defined as

$$R^x = \frac{1}{2} (I_{x+} + I_{x-}) \quad (37)$$

$$R^r = \frac{1}{2} (I_{r+} + I_{r-}) \quad (38)$$

$$R^z = \frac{1}{2} (I_{\theta+} + I_{\theta-}) \quad (39)$$

where  $I_{x+}$ ,  $I_{r+}$ , and  $I_{\theta+}$  are the fluxes along the positive directions of axial, radial, and circumferential directions, respectively;  $I_{x-}$ ,  $I_{r-}$ , and  $I_{\theta-}$  are the corresponding fluxes along the negative directions.

a = Absorption coefficient, defined as radiation absorbed per unit length

s = Scattering coefficient, defined as radiation scattered per unit length

E = Black body emissive power =  $\sigma T^4$

$\sigma$  = The Stefan-Boltzman constant

The absorption coefficient a is related to the absorptivity  $\alpha$  of the gas-soot mixture and the path length L by:

$$a = -\frac{1}{L} \ln (1-\alpha)$$

In the original version of the 3-D combustor program,<sup>1</sup> the radiation properties were assigned constant values. For the present work, the absorption coefficient was computed locally as a function of gas and soot concentrations by the approximate procedure described above.

The scattering due to soot particles, which are generally of diameters below one micron, is negligible. In the present work, a uniform value of  $0.01 \text{ m}^{-1}$  was assumed for the scattering coefficient.

## CHAPTER V

### NITROGEN-OXIDE EMISSIONS

#### A. Background

Nitrogen oxides ( $\text{NO}_x$ ) are formed during any combustion process involving air within the normal range of adiabatic flame temperatures and comprise nitric oxide (NO), nitrogen dioxide ( $\text{NO}_2$ ), and small amounts of nitrous oxide ( $\text{N}_2\text{O}$ ). For turbopropulsion engines, the  $\text{NO}_x$  emissions consist mostly of NO, particularly at high power conditions, where maximum  $\text{NO}_x$  concentrations are encountered. However, the contribution of NO to total  $\text{NO}_x$  emissions decreases at low power points. The  $\text{NO}_x$  is conventionally expressed in mass units of  $\text{NO}_2$ , to which the NO would eventually react in the atmosphere.

The major influences contributing to the formation of  $\text{NO}_x$  are (a) high flame temperature, (b) the availability of oxygen as provided by excess air, and (c) sufficient residence time for the reactions to take place. Formation of NO is preceded by the generation of N and O atoms. Nitrogen (N) atoms are formed by the dissociation of nitrogen ( $\text{N}_2$ ) in the air at high temperatures, and can also be a product of hydrocarbon reactions if the fuel contains nitrogen. Oxygen (O) atoms are formed primarily from oxygen ( $\text{O}_2$ ) dissociation. Thus, NO forms both in the reaction zone and in the post-reaction, high-temperature gases. A super-equilibrium of O, N, and OH concentrations (i.e., concentrations exceeding equilibrium levels) in the reaction zone leads to NO formation in this zone (often termed as 'prompt NO'). Nitric oxide formation is controlled by rate-limited reactions, and its calculation is dependent on a knowledge of other radical concentrations.

The conservation equations for the radical and  $\text{NO}_x$  concentrations form a set of coupled 'stiff' nonlinear differential equations and their solution requires special integration procedures. One such procedure, which has been developed by Pratt and Wormeck,<sup>48</sup> is described next. This procedure has been incorporated into the 3-D combustor program and has been used to compute the  $\text{NO}_x$  emissions in the present work.

### B. The Chemical Kinetics Program

The conservation equations for the species involved in  $\text{NO}_x$  production form a set of 'stiff' equations. Pratt and Wormeck<sup>48</sup> have developed a numerically efficient computer program (CREK) for the solution of such a set of equations. The CREK procedure is briefly described in the following paragraphs.

The species and energy conservation equations for a node, P, are expressed in the following standard finite-difference form:

$$A_P \phi_P = A_E \phi_E + A_W \phi_W + A_N \phi_N + A_S \phi_S + A_H \phi_H + A_L \phi_L + S_\phi \quad (40)$$

where A is the finite-difference coefficient containing the convective and diffusive fluxes;  $\phi$  is the dependent variable (species concentration, enthalpy);  $S_\phi$  is the source of  $\phi$ ; subscripts E, W, N, S, H, and L refer to the six neighboring nodes of P.

The CREK program is used to solve the above finite-difference equation. The solution is simultaneous for all the species concentrations and temperature at a given node P; and proceeds node-by-node until all of the nodes in the flow field are covered. The solution procedure involves the derivation of a set of Newton-Raphson correction equations for the species concentrations and temperature. These equations are solved iteratively by pivoted Gaussian elimination.

The program requires as input the following information:

- (1) Previous solution or estimate of  $\phi_p$  and temperature at node P;
- (2) Pressure at node P;
- (3) Finite-difference coefficients  $A_p A_E, A_W, A_N, A_S, A_H$ , and  $A_L$ , as calculated in the 3-D combustor program;
- (4)  $\phi_p^* = (A_E \phi_E + A_W \phi_W + A_N \phi_N + A_S \phi_S + A_H \phi_H + A_L \phi_L) / A_p$
- (5) Enthalpy source coefficients Q, where, enthalpy source =  $-(Q_0 + Q_1 T + Q_2 T^2 + Q_3 T^3 + Q_4 T^4)$ .

The outputs from the program are

- (1) Mole numbers of all chemical species;
- (2) Temperature at node P;
- (3) Density at node P.

Further details of the CREK procedure are contained in Reference 48.

### C. Present Approach

The number of species considered in the present program is 14:  $C_x H_y$ ,  $C_x H_{y-2}$ , CO,  $CO_2$ , H,  $H_2$ , O,  $O_2$ , OH,  $H_2O$ , N,  $N_2$ , NO,  $NO_2$ . Here,  $C_x H_{y-2}$  denotes the intermediate hydrocarbon as explained in Chapter VI. Each of these species concentrations is governed by a transport equation of the same general form as Equation (3). To complete the equation specifications, the source terms and the

Schmidt numbers for these variables have to be determined. The turbulent Schmidt numbers,  $\sigma_\phi$ , for all the species are assumed to be 0.9. The computation of the source terms,  $S_\phi$ , is based on the reaction mechanism given in Table I. The calculation involved for each reaction is illustrated below with reference to the reaction  $A+B \rightleftharpoons C+D$ .

#### The laminar Arrhenius rate

$$R_L = \rho^2 M_A M_B A T^b \exp(-E/RT) \quad (41)$$

where  $M_A$  and  $M_B$  are the mass fractions of A and B.

The turbulent eddy-break-up rate for species A is

$$R_T = C_R \rho M_{MIN} \epsilon / k \quad (42)$$

where  $C_R$  is a constant,  $\rho$  is the density, and where  $M_{MIN}$  is the smaller of  $M_A$  and  $M_B/i$ ,  $i$  being the mass of B required per unit mass of A in this reaction. The rate of production/consumption of A is

$$R = \text{smaller of } R_L \text{ and } R_T$$

The backward rate is treated similarly. All of the reactions listed in Table I and the global reactions discussed in Chapter VI are treated in this way, and the sources due to chemical reaction in the conservation equations for the species are obtained by summing the rates due to all of these reactions. The resulting species equations are solved by the computer program CREK described above. This determines the concentrations of all of the species. Modifications have been made to the CREK program in the present work in order to treat the global reactions and the eddy-break-up rates for the reaction steps.

TABLE I. NO<sub>x</sub> REACTION MECHANISM.

$$K_f = 10^x T^b \exp(-E/RT)$$

| Reaction           |                  |   |   |                  | x               | b      | E/R (°K) |           |
|--------------------|------------------|---|---|------------------|-----------------|--------|----------|-----------|
| 1. H               | H                | M | = | H <sub>2</sub>   | M               | 12.300 | -1.000   | 0.0       |
| 2. O               | O                | M | = | O <sub>2</sub>   | M               | 11.000 | -1.000   | 0.0       |
| 3. H               | OH               | M | = | H <sub>2</sub> O | M               | 13.850 | -1.000   | 0.0       |
| 4. H               | O <sub>2</sub>   |   | = | OH               | O               | 11.350 | 0.0      | 8400.000  |
| 5. O               | H <sub>2</sub>   |   | = | OH               | H               | 10.240 | 0.0      | 4730.000  |
| 6. H               | H <sub>2</sub> O |   | = | OH               | H <sub>2</sub>  | 10.920 | 0.0      | 10050.000 |
| 7. O               | H <sub>2</sub> O |   | = | OH               | OH              | 10.760 | 0.0      | 9000.000  |
| 8. N <sub>2</sub>  | O                |   | = | NO               | N               | 9.000  | 0.0      | 25000.000 |
| 9. N               | O <sub>2</sub>   |   | = | NO               | O               | 5.000  | 1.000    | 2000.000  |
| 10. N              | OH               |   | = | NO               | H               | 9.000  | 0.0      | 0.0       |
| 11. N <sub>2</sub> | O <sub>2</sub>   |   | = | N                | NO <sub>2</sub> | 11.431 | -1.000   | 60600.000 |
| 12. NO             | NO               |   | = | N                | NO <sub>2</sub> | 7.000  | 0.0      | 0.0       |
| 13. NO             | O <sub>2</sub>   |   | = | NO <sub>2</sub>  | O               | 9.000  | 0.0      | 22900.000 |
| 14. H              | NO <sub>2</sub>  |   | = | NO               | OH              | 10.477 | 0.0      | 0.0       |

NOTE: Values are in SI units.

Reverse rate constant obtained from forward rate constant equilibrium constant.

The consideration of a detailed mechanism as shown in Table I is computationally time consuming when considering a three-dimensional problem. The chemical kinetics solution involves a point-by-point procedure, proceeding from one grid node at a time to the next until all nodes are covered. At any stage, the species concentrations at the nodes that are yet to be solved also influence the concentrations at the node currently being solved. Therefore, the concentrations at the nodes not yet solved, have to be estimated or are known from the previous iteration. Due to this explicit (as opposed to implicit) nature of the coupling between values at neighboring nodes, the solution has to be repeated several times in order to achieve convergence with attendant large computer times.

In order to reduce computer times, the partial equilibrium assumption has been used in some work reported in the literature. This involves the assumption that the following four bimolecular reactions are equilibrated:



This assumption reduces the number of kinetic equations to be solved. The equilibration of these reactions in several premixed combustion systems is supported by the studies of References 49-51. Their equilibration in a CH<sub>4</sub>-Air diffusion flame was demonstrated by Mitchell, et al.<sup>25</sup> They showed that these reactions are in equilibrium over a range of equivalence ratios from little less than unity up to approximately 2.5 for a flame at atmospheric pressure with the reactants initially at about 300°K. The equilibration of these reactions at different conditions, more closely resembling those in gas-turbine combustors, has not been demonstrated. Thus,

the partial equilibrium assumption may not be valid in all regions of a gas-turbine combustor; hence, it has not been used in the present work. The present approach, although more time-consuming, is general and does not involve any simplifications regarding the chemistry.

There have been reports of fast integrators for stiff kinetic equations in recent literature, e.g., Reference 57. The use of these instead of CREK (which was used in the present work because of its availability in a well-tested form while other schemes were still in their development and testing phases) will reduce computer times and will make fine grid 3-D computations possible without undue computational costs. The framework for the kinetics calculations has been provided here and the substitution of CREK for another procedure should be a straightforward task. The use of fast integrators will also enable the treatment of a more detailed reaction mechanism for  $\text{NO}_x$ . Thus, steps involving species such as HCN (on fuel-rich side) can be included if reliable kinetic data is available.

## CHAPTER VI

### THE FOUR-STEP HYDROCARBON OXIDATION MECHANISM

#### A. Background

A successful modeling of combustion systems depends on an adequate description of the reaction mechanism. For hydrocarbon oxidation, a large number of species participating simultaneously in numerous elementary kinetic steps is required to specify the reaction mechanism. This results in "stiff" differential equations requiring special time-consuming integration methods. For a complex 3-D problem, the computing costs would be prohibitive. Besides the large number of species equations to be solved, the elementary steps and their rate constants are not well known except for the simplest of hydrocarbons e.g., CH<sub>4</sub>. To get around this problem, the gas turbine combustion modeling effort has frequently been simplified by using a global approach that reduces chemistry to the specification of an overall global oxidation scheme, which can predict quantities of interest: fuel consumption and heat release rates.

The oxidation of hydrocarbon fuel can be described by the following basic steps:

- (a) Transformation of the hydrocarbon fuel into intermediate hydrocarbons and hydrogen with little release of energy;
- (b) Oxidation of intermediates to CO and H<sub>2</sub>;
- (c) Oxidation of CO to CO<sub>2</sub>;
- (d) Oxidation of H<sub>2</sub> to H<sub>2</sub>O.

Steps (b) through (d) are exothermic and are responsible for the release of energy and associated temperature rise. A global reaction scheme, which is designed to correctly model the oxidation process, must include a description of these steps.

### B. Hydrocarbon Reaction Mechanisms

#### One Step Scheme

The simplest global mechanism is the one-step scheme:



The advantage of this mechanism is its simplicity; it involves the solution of the conservation equations for unburned fuel and the mixture fraction. The heat release and the concentrations of the other species are then obtained from linear functions of the amount of fuel consumed. This mechanism, however, fails to predict the important characteristics of hydrocarbon oxidation, i.e., the formation of intermediates and CO, which influence the process considerably. As a result, this mechanism is inadequate for obtaining quantitative predictions.

#### Two-Step Scheme

A slightly more complex scheme is the two-step mechanism:



This involves the solution of one additional equation: that for the concentration of CO. Here again, the formation of intermediates is ignored and so this mechanism cannot predict the time delay

between the initial disappearance of fuel into intermediates and a significant rise in temperature.

#### Four-Step Scheme

The simplest mechanism which accounts for the essential features of the hydrocarbon oxidation is the following four-step scheme proposed by Hautman, et al.<sup>53</sup>



This scheme is valid only for aliphatic hydrocarbons of the type  $C_N H_{2N+2}$ . To accommodate a general hydrocarbon  $C_x H_y$ , the first two steps have been modified in the present work:



This scheme involves the solution of two additional equations: for the concentrations of  $C_x H_{y-2}$  and  $H_2$ .

The rate expressions for the four-step scheme developed primarily from propane oxidation results<sup>53</sup> are

$$\frac{d[C_x H_y]}{dt} = -10^x \exp(-E/RT) [C_x H_y]^a [O_2]^b [C_x H_{y-2}]^c \text{ mole/cc-s} \quad (56)$$

$$\frac{d[C_{x,y-2}]}{dt} = -10^x \exp(-E/RT) [C_{x,y-2}]^a [O_2]^b [C_{x,y}]^c \text{ mole/cc-s} \quad (57)$$

$$\frac{d[CO]}{dt} = \{-10^x \exp(-E/RT) [CO]^a [O_2]^b [H_2O]^c\} \times S \text{ mole/cc-s} \quad (58)$$

$$\frac{d[H_2]}{dt} = -10^x \exp(-E/RT) [H_2]^a [O_2]^b [C_{x,y-2}]^c \text{ mole/cc-s} \quad (59)$$

where [CO], etc. are the species concentrations in gm-moles/cc. The parameters<sup>53</sup> for (56) are  $x = 17.32 \pm 0.88$ ,  $E = 49,600 \pm 2400$ ,  $a = 0.50 \pm 0.02$ ,  $b = 1.07 \pm 0.05$ , and  $c = 0.40 \pm 0.03$ ;

for (57),  $x = 14.70 \pm 2.00$ ,  $E = 50,000 \pm 5000$ ,  $a = 0.90 \pm 0.08$ ,  $b = 1.18 \pm 0.10$ , and  $c = -0.37 \pm 0.04$ ;

for (59),  $x = 13.52 \pm 2.2$ ,  $E = 41,000 \pm 6400$ ,  $a = 0.85 \pm 0.16$ ,  $b = 1.42 \pm 0.11$ , and  $c = -0.56 \pm 0.20$ ;

and for (58),  $x = 14.6 \pm 0.25$ ,  $E = 40,000 \pm 1200$ ,  $a = 1.0$ ,  $b = 0.25$ , and  $c = 0.50$ ;

$S = 7.93 \exp(-2.48\phi)$ , where  $\phi$  is the initial equivalence ratio and  $S$  cannot take values greater than 1.

The rate expressions were found to predict within reasonable accuracy flow reactor and shock tube results on propane oxidation, which encompass an equivalence ratio range 0.12 to 2.0, a temperature range 960 to 1540K, and a pressure range 1 to 9 atm. With modification to the parameters, experimental flow reactor results on the oxidation of butane, 2- and 3-methylpentane, and n-octane are also predicted.<sup>53</sup>

The tolerance bands on the various parameters reflect the sensitivity of the predictions to these parameters and the modifications necessary to the values of these parameters in order to

obtain predictions in agreement with experimental measurements for different conditions. In the present work, it was found that the tolerance band on most of the parameters is rather wide and that for any given flow, changing a parameter from its lower to its upper limit can alter the predictions significantly. For the results reported in Chapter VII, the median values of all the parameters were used. Further comparison with more experimental measurements is necessary in order to narrow the tolerance bands and obtain more certain values.

### C. Present Approach

The four-step mechanism described above has been incorporated into the 3-D Combustor Performance Program. This involved the solution of two additional differential equations of the same general form as Equation (3), for the concentrations of  $C_xH_{y-2}$  and  $H_2$ . The source terms in these equations were obtained from the mechanism given by Equation (50-55). The rate expressions given by Equations (56-59) were modified by the eddy-break-up rate to account for the influence of turbulence. The procedure used was the same as that for the fuel equation<sup>1</sup>. The effective Schmidt numbers for these two species were assumed to be the same as for other species, i.e., 0.9.

Other modifications to the 3-D program to incorporate the four-step scheme were:

- o The source terms for  $C_xH_y$  and CO were modified to be in accordance with the four-step scheme:  $C_xH_y$  consumed in Step (1); CO produced in Step (2) and consumed in Step (3).
- o Mixture molecular weight, density, enthalpy (and hence temperature) calculation sequences were modified to include the two new species:  $C_xH_{y-2}$  and  $H_2$ .

- o Computations of  $O_2$ ,  $CO_2$ ,  $H_2O$  concentrations from element conservation were modified to include the two new species:  $C_xH_{y-2}$  and  $H_2$ .

The four-step scheme was proved to be far superior to the two-step scheme in computations of a plug flow reactor (see Chapter VII, Results).

## CHAPTER VII

### RESULTS AND DISCUSSION

In this section, the results of the computations performed in the present program are described. The results of the validation of the four-step hydrocarbon oxidation scheme are presented followed by computations of the emissions from a JT8D combustor.

#### A. Four-Step Hydrocarbon Oxidation Scheme Results

Measurements in a plug flow reactor were conducted by Hautman, et al.,<sup>53</sup> for lean, stoichiometric, and rich propane flames. These measurements were used to test the validity of the four-step scheme. Computations were performed for these three cases with both the two-step and four-step schemes. Sixty axial grid points were used in these computations. Reduction of the axial spacing by a factor of two, showed negligible changes, thus demonstrating the grid-independency of the results.

Comparison of the results with the measurements are shown in Figures 1, 2, and 3 for the lean, stoichiometric and rich cases, respectively. From these figures, it is clear that the four-step scheme is far superior to the two-step scheme in predicting the salient features of hydrocarbon combustion.

Figure 1 (a, b, and c) shows the two-step and four-step hydrocarbon oxidation scheme predictions and the corresponding measurements for the lean C<sub>3</sub>H<sub>8</sub> flame. The four-step predictions of CO<sub>2</sub>, C<sub>3</sub>H<sub>8</sub>, and temperature agree very closely with the measurements. The four-step CO and H<sub>2</sub> predictions are slightly higher than the measurements, but the discrepancy is not large. Since in the predictions all the intermediates are lumped into C<sub>2</sub>H<sub>4</sub>, the total measured intermediates are shown in Figure 1c for a more meaningful comparison; here, again, the agreement is good. On the other hand,



Figure 1a. Lean C<sub>3</sub>H<sub>8</sub> Flame ( $\phi = 0.12$ ).



Figure 1b. Lean  $C_3H_8$  Flame ( $\phi = 0.12$ ).

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 1c. Lean C<sub>3</sub>H<sub>8</sub> Flame ( $\phi = 0.12$ ).

ORIGINAL DRAWING  
OF PORTION



Figure 2a. Stoichiometric C<sub>3</sub>H<sub>8</sub> Flame ( $\phi=0.98$ ).



Figure 2b. Stoichiometric  $\text{C}_3\text{H}_8$  Flame ( $\phi=0.98$ ).

ORIGINAL VIEW  
OF FLAME



Figure 2c. Stoichiometric C<sub>3</sub>H<sub>8</sub> Flame ( $\phi=0.98$ ).

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 3a. Rich C<sub>3</sub>H<sub>8</sub> Flame ( $\phi=1.59$ ).

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 3b. Rich  $C_3H_8$  Flame ( $\phi=1.59$ ).

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 3c. Rich  $C_3H_8$  Flame ( $\phi=1.59$ ).

the two-step predictions show considerable discrepancy for all the species and for the temperature.

Figure 2 (a, b, and c) shows the measurements and predictions for the stoichiometric case. Here the four-step predictions are not as good as for the lean case; however, compared to the two-step predictions, the four-step results are in much closer agreement with the measurements. A major discrepancy is the predicted (four-step)  $H_2$  concentration, which is considerably higher than the measured values.

Figure 3 (a, b, and c) shows the measurements and predictions for the fuel-rich case. Here, again, the four-step predictions, although not in very close agreement with the measurements, are far superior to the two-step predictions. The four-step fuel concentration and temperature profiles are in good agreement with the measurements;  $CO$ ,  $CO_2$ , and  $C_2H_4$  are in fair agreement. Again, the  $H_2$  concentration is overpredicted as in the stoichiometric case.

As shown by these results, a problem not resolved with the four-step scheme is the discrepancy between predicted and measured  $H_2$  and  $H_2O$  concentrations, especially at stoichiometric and fuel rich conditions. The  $H_2$  oxidation rate is predicted to occur more slowly, and results in an excess of  $H_2$  and under-prediction of  $H_2O$ , as compared to the measurements. A similar observation was also made by Hautman, et al.<sup>53</sup>

#### B. JT8D Combustor Computations

The 3-D Combustor Performance Program was set up and run for a JT8D-17 combustor as shown in Figure 4. This combustor uses a single pressure atomizing injector on the centerline of the can. Air is admitted around the injector through a 45-degree swirler. The operating points for the computations represent idle, cruise, and take-off and are given below:

ORIGINAL DRAWING  
OF POOR QUALITY



FUEL INJECTOR AND PRIMARY SWIRLER EQUIVALENT  
METERING AREA 7.61 PERCENT

Equivalent Metering Area

| Louver Cooling Air |      | Combustion Air |       |
|--------------------|------|----------------|-------|
| Panel              | %    | Panel          | %     |
| 1                  | 1.53 | 2              | 7.93  |
| 2                  | 5.62 | 3              | 1.92  |
| 3                  | 7.56 | 5              | 8.00  |
| 4                  | 5.69 | 8              | 15.85 |
| 5                  | 4.24 | 9              | 18.09 |
| 6                  | 3.41 |                |       |
| 7                  | 3.42 |                |       |
| 8                  | 3.43 |                |       |
| 9                  | 2.78 |                |       |
| 10                 | 1.81 |                |       |

Figure 4. JT8D-17 Combustor.

| Condition | Airflow<br>lbs/sec | Pressure<br>psia | Temperature<br>°F | Fuel/Air<br>Ratio |
|-----------|--------------------|------------------|-------------------|-------------------|
| Idle      | 4.06               | 39.6             | 260               | 0.0074            |
| Cruise    | 7.87               | 103.0            | 657               | 0.0138            |
| Take-Off  | 16.45              | 256.0            | 825               | 0.0182            |

The steps adopted in the solution procedure for the JT8D combustor are outlined below:

- (1) The 3-D combustor program was used to solve for the variables: velocity, pressure, turbulence energy and dissipation, enthalpy (temperature), mixture fraction, mass fractions of unburned fuel,  $C_x H_{y-2}$ , CO, and  $H_2$ . At this stage, the soot and radiation equations were not solved, and the solution was carried on until a convergence level of approximately 5 percent in cumulative mass residual was reached.
- (2) The soot and radiation equations were solved next. The radiation fluxes appear as sources in the enthalpy equation; and this, in turn, influences the other dependent variables. The solution of the variables in Step (1) was repeated coupled with the soot and radiation equations. The process was continued until a convergence level of approximately 1 percent was reached.
- (3) The  $NO_x$  equations were solved next. The solution of the variables in Steps (1) and (2) was repeated, coupled with the  $NO_x$  equations. The process was continued until the convergence level desired for the final solution (~0.5 percent) was reached.

The reason for adopting the above stepwise procedure was to cut down on required computer time. Since the soot is generally present only in small concentrations, it will influence the main flow field only slightly and so delaying the solution of the soot and radiation (which is mainly from soot) equations resulted in a considerable saving of computer time. Similarly, the  $\text{NO}_x$  species have an even smaller influence on the other variables and so their solution was further delayed. Due to the point-by-point nature of the  $\text{NO}_x$  solution, this solution had to be repeated a number of times to achieve convergence, as explained in Chapter V.

A flow chart of the overall solution procedure is given in Figure 5. The various steps are executed automatically by the program from start to completion.

Computations were performed with both the two-step and four-step hydrocarbon oxidation schemes and with a grid of  $10 \times 10 \times 5$  (axial  $\times$  radial  $\times$  tangential) points. Due to the coarseness of the grid, it was not possible to simulate exactly all of the geometrical details of the combustor. However, the main features were simulated as closely as possible. Due to the large computer times required for the  $\text{NO}_x$  calculations, as explained in Chapter V, increasing the number of grid points significantly over that used was found to be computationally prohibitive.

The central processor time on a CYBER 730 computer with the two-step hydrocarbon scheme was 0.044 seconds per iteration per internal node (boundary nodes that are not calculated are excluded here) when the  $\text{NO}_x$  chemical kinetics solution was not activated. For the  $\text{NO}_x$  solution, the central processor time was an additional 0.2-0.3 second per iteration per internal node. Typically 100-150 iterations were required before the  $\text{NO}_x$  solution was turned on, after which an additional 50-100 iterations were required to achieve convergence. Thus for the chosen grid ( $10 \times 10 \times 5$ ), a complete run required 3000-5000 seconds depending on the conditions

ORIGINAL PAGE IS  
OF POOR QUALITY



Figure 5. Flowchart of Overall Solution Procedure.

for the run (which influences the number of iterations to convergence), with the bulk of the time spent on  $\text{NO}_x$  calculations. Since the four-step scheme involved the solution of additional equations for the intermediate hydrocarbon and  $\text{H}_2$ , the computation times were about 10-15 percent higher than those with the two-step scheme. The central memory required for the  $10 \times 10 \times 5$  grid was 173,500 octal words.

The predicted emissions index for the idle, cruise, and take-off conditions with the two-step and four-step schemes is shown in Tables IIa and IIb. For the idle case, the predicted smoke concentration is very small and much lower than that experimentally observed. The formation of soot, as modeled, is governed by the local temperature and fuel/air ratio and also turbulent fluctuations. Since the temperature and fuel/air ratio are low for the idle case, the model does not predict significant soot formation. Obviously, other factors that have not been modeled and that are not precisely known, govern soot formation under such conditions.

For the cruise and takeoff cases, the emissions indices for soot and  $\text{NO}_x$  show the correct trends and are reasonably close to the measurements that are available. The differences between the two-step and four-step schemes are not significant in the prediction of the emissions index, which represents an integrated value at the combustor exit. The differences in the two schemes are significant in the primary zone of the combustor.

The predicted radiation flux to the combustor wall for the conditions of idle, cruise, and takeoff is shown in Table IIIa for the two-step scheme and in Table IIIb for the four-step scheme. The values are reported at the primary, secondary, and tertiary zones which are at 6, 21, and 33cm downstream of the fuel nozzle; these correspond to the locations at which measurements were conducted by Claus<sup>56</sup> for different operating conditions. The predicted radiation fluxes show the correct trends; i.e., the flux is

TABLE IIa. PREDICTED EMISSIONS INDEX WITH TWO-STEP HYDROCARBON OXIDATION SCHEME.

| Condition | Emission Index<br>Gm of Emissions/Kg of Fuel |                         |
|-----------|----------------------------------------------|-------------------------|
|           | Smoke                                        | NO <sub>x</sub>         |
| Idle      | 0.26 E-3 (0.6) <sup>55</sup>                 | ≈0                      |
| Cruise    | 1.6                                          | 15                      |
| Takeoff   | 1.5 (2.8) <sup>55</sup>                      | 28 (24.4) <sup>54</sup> |

NOTE: Values in parentheses are experimental measurements from indicated reference.

TABLE IIb. PREDICTED EMISSIONS INDEX WITH FOUR-STEP HYDROCARBON OXIDATION SCHEME.

| Condition | Emission Index<br>Gm of Emissions/Kg of Fuel |                         |
|-----------|----------------------------------------------|-------------------------|
|           | Smoke                                        | NO <sub>x</sub>         |
| Idle      | 0.056 (0.6) <sup>55</sup>                    | ≈0                      |
| Cruise    | 1.3                                          | 13                      |
| Takeoff   | 1.2 (2.8) <sup>55</sup>                      | 27 (24.4) <sup>54</sup> |

NOTE: Values in parentheses are experimental measurements from indicated reference.

TABLE IIIa. PREDICTED WALL RADIATION FLUX WITH  
TWO-STEP HYDROCARBON OXIDATION  
SCHEME.

| Condition | Primary Zone<br>(W/M <sup>2</sup> ) | Secondary Zone<br>(W/M <sup>2</sup> ) | Tertiary Zone<br>(W/M <sup>2</sup> ) |
|-----------|-------------------------------------|---------------------------------------|--------------------------------------|
| Idle      | 2.9E4                               | 3.46E4                                | 1.03E4                               |
| Cruise    | 5.55E5                              | 8.98E5                                | 2.23E5                               |
| Takeoff   | 7.89E5                              | 1.33E6                                | 4.26E5                               |

TABLE IIIb. PREDICTED WALL RADIATION FLUX WITH  
FOUR-STEP HYDROCARBON OXIDATION  
SCHEME.

| Condition | Primary Zone<br>(W/M <sup>2</sup> ) | Secondary Zone<br>(W/M <sup>2</sup> ) | Tertiary Zone<br>(W/M <sup>2</sup> ) |
|-----------|-------------------------------------|---------------------------------------|--------------------------------------|
| Idle      | 1.06E4                              | 1.35E4                                | 3.19E3                               |
| Cruise    | 3.78E5                              | 9.01E5                                | 2.13E5                               |
| Takeoff   | 6.40E5                              | 1.34E6                                | 3.72E5                               |

maximum in the secondary zone and minimum in the tertiary zone. This trend was experimentally observed by Claus.<sup>56</sup> The level of the flux also corresponds to that measured by Claus for slightly different conditions. Due to the differences in the conditions for which measurements and predictions were made, a direct comparison of the two is not shown.

For the idle case, since the soot concentrations were predicted to be very low, the predicted radiation fluxes are also towards the low side. The predicted radiation flux with the four-step scheme is lower than that with the two-step scheme for the idle case, but the soot predictions show the opposite trend, i.e., slightly higher with the four-step scheme. This occurs because, in the predictions for the idle case, the radiation from the soot is low and is due to its small concentration. The gas radiation is important and is predicted to be higher with the two-step scheme because of a faster temperature rise.

The computations performed for the three operating conditions of the JT8D combustor show that the present model is capable of producing reasonable predictions of the emissions of smoke and NO<sub>x</sub> and of the wall radiation flux.

## CHAPTER VIII

### CONCLUSIONS

In the present work, a method was formulated for the following:

- o computation of soot and  $\text{NO}_x$  emissions from a combustor
- o inclusion of the effects of soot on radiant heat transfer, and
- o extension of the two-step hydrocarbon oxidation scheme to a four-step one.

The method was coded into the Garrett 3-D Combustor Performance Program. A description of the program, list of Fortran variables, and program listing have been included in the report to aid the reader in understanding the emissions model.

The computations that were performed show that the method is capable of producing reasonable results. The lack of accurate experimental data has precluded more detailed validation of the model. As reliable experimental data becomes available, further computations will reveal the capabilities and limitations of the model and the modifications necessary to overcome the limitations.

## CHAPTER IX

### NOMENCLATURE

All symbols were defined in the report at the point when first referenced. The following is a list of symbols used often in the report.

- a = Absorption coefficient
- $C_i$  = Time-mean concentration of species i
- $C_p$  = Specific heat
- D = Particle diameter
- E = Activation energy
- k = Kinetic energy of turbulence
- $K_b$  = Backward reaction rate constant
- $K_C$  = Equilibrium constant
- $K_f$  = Forward reaction rate constant
- $m_i$  = Mass fraction of species i
- n = Nuclei concentration
- $n_o$  = Rate of spontaneous nuclei formation
- N = Concentration of soot particles
- P = Pressure
- R = Reaction rate
- S = Scattering coefficient
- $S_\phi$  = Source term of dependent variable  $\phi$
- t = Time
- T = Temperature

$\vec{u}$  = Velocity vector  
 $\epsilon$  = Emissivity; dissipation rate of turbulence  
 $\phi$  = General dependent variable  
 $\nu$  = Kinematic viscosity  
 $\mu_t$  = Effective viscosity  
 $\sigma$  = Stefan-Boltzmann constant  
 $\sigma_\phi$  = Prandtl/Schmidt number of dependent variable  $\phi$   
 $\rho$  = Density  
 $\lambda$  = Wavelength

#### Subscripts

$fu$  = Fuel  
 $i$  = Species  $i$   
 $n$  = Nuclei  
 $O_2$  = Oxygen  
 $pr$  = Products  
 $s$  = Soot  
 $\phi$  = Dependent variable

#### Superscripts

$*$  = Fine structure  
 $^\circ$  = Surrounding fluid

## REFERENCES

1. Bruce, T.W., H.C. Mongia, and R.S. Reynolds: Combustor Design Criteria Validation, USARL-TR-78-55 (A, B, C), February 1979. [Garrett Report 75-21168?(38)].
2. Radcliffe, S.W. and J.P. Appleton: Combustion Science and Technology 3, 255ff, 1971.
3. Haynes, B.S. and H.G. Wagner: Progress in Energy and Combustion Science 7, 229ff, 1981.
4. Street, J.C. and A. Thomas: "Carbon Formation in Pre-mixed Flames," Fuel 34, 1955, pp. 4-36.
5. Palmer, H.B. and C.F. Culliss: "The Formation of Carbon from Bases," in Chemistry and Physics of Carbon, Volume I, Ed. P.L. Walker, New York: Marcell Dekker, 1965.
6. Gaydon, A.G. and H.G. Wolfhard: Flames, Fourth Edition, London: Chapman and Hall Ltd., 1979.
7. Homann, K.H.: "Carbon Formation in Premixed Flames," Combustion and Flame 11, 1967, pp. 265-287.
8. Bittner, J.D. and J.B. Howard: "Role of Aromatics in Soot Formation," in Alternate Hydrocarbon Fuels: Combustion and Chemical Kinetics, Eds. C.T. Bowman and J. Birkeland, New York: Academic Press, 1978.
9. Miller, W.J. and H.F. Calcote: "Ionic Mechanisms of Carbon Formation in Flames," presented at Eastern U.S. Section Meeting, Combustion Institute, 1977.
10. Lawton, J. and F.J. Weinberg: Electrical Aspects of Combustion, Oxford: Clarendon Press, 1969.
11. Howard, J.B.: "On the Mechanisms of Carbon Formation in Flames," in Twelfth Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 1969.
12. Howard, J.B. and W.J. Kausch: "Soot Control by Fuel Additives--A Review," Report ESL-TR-79-32, AFESC, Tyndall Air Force Base, FL, September 1979.

13. Homann, K.H. and H.G. Wagner: Proceedings of the Royal Society of London A307, 1968, pp. 141ff.
14. Porter, G.: "Carbon Formation in the Combustion Wave," in Fourth Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 1953.
15. Gay, I.D., G.B. Kistiakowsky, J.V. Michael, and H. Niki: "Thermal Decomposition of Acetylene in Shock Waves," Journal of Chemical Physics 43:5, 1965, pp. 1720-1726.
16. Thomas, A.: "Carbon Formation," Combustion and Flame 6, 1962, pp. 46-62.
17. Jensen, D.E.: Proceedings of the Royal Society of London A338, 1974, pp. 375ff.
18. Park, C. and J.P. Appleton: "Shock-Tube Measurements of Soot Oxidation Rates" Combustion and Flame 20, 1973, pp. 369-379.
19. Avedesian, M.M. and J.F. Davidson: Institution of Chemical Engineers Transactions 51, 1973, pp. 121ff.
20. Ubbayakar, S.K. and F.A. Williams: Journal of the Electrochemical Society 123, 1976, pp. 747ff.
21. Libby, P.A. and T.R. Blake: "Theoretical Study of Burning Carbon Particles," Combustion and Flame 36, 1979, pp. 139-169.
22. Caram, H.S. and N.R. Amundson: "Diffusion and Reaction in a Stagnant Boundary Layer about a Carbon Particle," Industrial and Engineering Chemistry Fundamentals 16:2, 1977, pp. 171-181.
23. Mon, E. and N.R. Amundson: "Diffusion and Reaction in a Stagnant Boundary Layer about a Carbon Particle. 2. An Extension," Industrial and Engineering Chemistry Fundamentals 17:4, 1978, pp. 313-321.
24. Mon, E. and N.R. Amundson: "Diffusion and Reaction in a Stagnant Boundary Layer about a Carbon Particle. 3. Stability," Industrial and Engineering Chemistry Fundamentals 18:2, 1979, pp. 162-168.
25. Lee, K.B., M.W. Thring, and J.M. Beer: "On the Rate of Combustion of Soot in a Laminar Soot Flame," Combustion and Flame 20, 1973, pp. 137-145.
26. Tesner, P.A. and A.M. Tsybulevsky: "Kinetics of Dispersed Carbon Gasification in Diffusion Flames of Hydrocarbons," Combustion Explosion and Shock Waves 3, 1967, pp. 163ff; also, Combustion and Flame 11, 1967, pp. 227-233.

27. Feugier, A.: "Soot Oxidation in Laminar Hydrocarbon Flames," Combustion and Flame 19, 1972, pp. 249-256.
28. Radcliffe, S.W. and J.P. Appleton: Combustion Science and Technology 4, 1971, pp. 171ff.
29. Nagle, J. and R.F. Strickland-Constable: "Oxidation of Carbon between 1000-2000°C," in Proceedings of the Fifth Conference on Carbon, Volume I, New York: Pergamon Press, 1962.
30. Millikan, R.C.: Journal of Physical Chemistry 66, 1962, pp. 794ff.
31. Fenimore, C.P. and G.W. Jones: Journal of Physical Chemistry 71, 1967, pp. 593ff.
32. Blazowski, W.S., R.B. Edelman, and E. Wong: "Fundamental Characterization of Alternate Fuel Effects in Continuous Combustion Systems," Technical Progress Report, EXXON/CR.2EBA.80, Linden, NJ, 1980.
33. Tesner, P.A., et al.: "Kinetics of Dispersed Carbon Formation," Combustion and Flame 17, 1971, pp. 253ff.
34. Khan, I.M. and G. Greeves, Heat Transfer from Flames, International Seminar, Trogir, Yugoslavia, 1973.
35. Magnusson, B.F. and B.H. Hjertager: "On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion," in Sixteenth Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 1977).
36. Magnusson, B.F., B.H. Hjertager, J.G. Olsen, and D. Bhaduri: "Effects of Turbulent Structure and Local Concentrations on Soot Formation and Combustion in C<sub>2</sub>H<sub>2</sub> Diffusion Flames," in Seventeenth Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 1978.
37. Heywood, J.B., J.A. Fay, and L.H. Linden: "Jet Aircraft Pollutant Production and Dispersion," AIAA Journal 9:5, 1971, pp. 841-850.
38. Ulrich, G.D.: "Theory of Particle Formation and Growth in Oxide Synthesis Flames," Comb. Sci. Tech., 4, 1971, pp. 47-57.
39. Ulrich, G.D. and N.S. Subramanian, "Particle Growth in Flames III. Coalescence as a Rate-controlling Process," Comb. Sci. Tech. 17, 1977, pp. 119-126.
40. Modak, A.T.: "Radiation from Products of Combustion," Fire Research 1, 1978/79, pp. 339-361.

41. Edwards, D.K. and A. Balakrishnan: "Thermal Radiation by Combustion Gases," International Journal of Heat and Mass Transfer 16, 1973, pp. 25-40.
42. DeRis, J.: "Fire Radiation--A Review," in Seventeenth Symposium (International) on Combustion, Pittsburgh, PA: The Combustion Institute, 1979.
43. Leckner, B.: "Spectral and Total Emissivity of Water Vapor and Carbon Dioxide," Combustion and Flame 19, 1972, pp. 33-48.
44. Felske, J-D and C.L. Tien: "Calculation of the Emissivity of Luminous Flames," Combustion Science and Technology 7, 1973, pp. 25-31.
45. Sarofim, A.F.: "Flame Emissivities: Alternate Fuels," in Alternative Hydrocarbon Fuels: Combustion and Chemical Kinetics, Eds. C.T. Bowman and J. Birkeland, New York: AIAA, 1978.
46. Hamaker, H.C: "Radiation and Heat Conduction in Light-Scattering Material", Philips Research Report, Volume 2, 1947, pp. 55-67.
47. Siddall, R.G: "Flux Methods for the Analysis of Radiant Heat Transfer," presented at Fourth Symposium on Flames and Industry British Flame Research Committee and the Institute of Fuel, Imperial College, London, September 1972.
48. Pratt, D.T. and J.J. Wormeck, "CREK, A Computer Program for Calculation of Combustion Reaction Equilibrium and Kinetics in Laminar or Turbulent Flow," Report WSU-ME-TEL-76-1, Washington State University, Pullman, 1976.
49. Fenimore, C.P. and G.W. Jones, J. Phys. Chem., 1958, pp. 62, 693.
50. Biordi, J.C., C.P. Lazzara, and J.E. Papp: 16th Symp. (Int.) on Comb., 1977, p. 1097.
51. Peeters, J. and G. Mahnen: 14th Symp. (Int.) on Comb., 1973, p. 133.
52. Mitchell, R.E., A.F. Sarofim, and L.A. Clomburg: Comb. and Flame, 1980, pp. 37, 201; also 1980, pp. 37, 227.
53. Hautman, D.J., F.L. Dryer, K.P. Schug, and I. Glassman: "A Multiple-Step Overall Kinetic Mechanism for the Oxidation of Hydrocarbons," Comb. Sci. Tech., 1981, pp. 25, 219-235.

54. Kaufman, C.W., S.M. Correat, and N.J. Orozcot: "The Effect of Local Parameters on Gas Turbine Emissions," Paper presented at 16th AIAA Propulsion Conference, June 1980.
55. Lozano, E.R., W.W. Melvin, and S. Hochheiser: J. Air Pollution Control Assoc., 18, 1968, pp. 392-394.
56. Claus, R.W.: "Spectral Flame Radiance from a Tubular-Can Combustor," NASA TP-1722, February 1981.
57. Pratt, D.T. and K. Radhakrishnan: "Fast Algorithms for Combustion Kinetics Calculations," Western States Sections, The Combustion Institute, October 1981.

**PRECEDING PAGE BLANK NOT FILMED**

**APPENDIX A  
DESCRIPTION OF THE 3-D  
COMBUSTOR PERFORMANCE PROGRAM**

APPENDIX A

DESCRIPTION OF THE 3-D COMBUSTOR PERFORMANCE PROGRAM

The 3-D performance model is a three-dimensional recirculating-flow program that is capable of analyzing a variety of combustor configurations, including can, can-annular, and annular. The program solves for the three velocity components, U, V, and W, species concentrations,  $C_XH_Y$ ,  $C_XH_{Y-2}$ , C(S), CO,  $CO_2$ , H,  $H_2$ , O,  $O_2$ , OH,  $H_2O$ , N,  $N_2$ , NO,  $NO_2$ , turbulence quantities from the k- $\epsilon$  turbulence model, and three radiation fluxes. In addition, the use of primitive variables makes modifications to the boundary conditions easy, allowing the user to analyze complex inlet geometries. Also provided is a subroutine for calculating the trajectories and evaporation rates of a fuel-nozzle spray. The functions of the various subroutines are briefly described below.

Program MAIN (a computer listing has been provided in Appendix D) is divided into two basic sections. Up to card MA.167, the routine is concerned with reading the input data and converting it to the program's internal units which are Système International (S.I.). The input sequence is covered in Appendix B so only the units will be discussed. Cards MA.7 to MA.11 are used to define seven arrays which convert lengths associated with dimensions and lengths associated with velocity, energy, mass, temperature, pressure, and angles respectively. By proper specification in the data statements, the user may employ those input units that are most convenient. The output units are always S.I. From card MA.168 on, MAIN's function is to call the other various routines in their proper sequence.

Subroutine INIT performs some preliminary calculations (AL.10 to AL.155), prints the input data (AL.156 to AL.258), and defines

the initial conditions and some of the boundary conditions on the various arrays (AL.259 on). In section AL.48 through AL.78, two arrays, JKIN and IKIN, are defined. They merely contain flags which indicate the locations of mass injection points. Cards AL.261 to AL.272 contain logic for the restart option. If Tape 0 from a previous run is saved and then made available for use during a subsequent run, the program will read the initial and boundary conditions from it.

Subroutine ALLMOD contains several entry points which perform miscellaneous calculations pertaining, usually, to the boundary nodes where modifications to the standard equation are in order. The cyclic nature of the boundary conditions in the  $\theta$  or K direction is evident in FMOD as well as limits to the species mass fractions. VELMOD allows the inlet swirl velocity to be increased gradually over a number of iterations and assures that overall continuity is maintained at the exit plane. DENMOD makes alterations to the density at the boundaries to maintain the correct mass-flow rate. GAMOD specifies the wall viscosity values as calculated by the wall functions. SOMAS is used to initialize an array DIVG which is used later in the program. The largest entry point SOMOD contains logic for modifying the equation coefficients and source terms when cooling slots, walls, and droplet evaporation are present. Each variable has its own section and accounts for transfer with the walls and mass addition from the evaporating fuel. SOMODZ deals only with the Z-direction radiation equation and is in a section alone as the data storage is slightly different for this variable.

Subroutine OUTPUT is used for printout purposes. The emissions index of SOOT and  $NO_x$  is calculated and printed here. Subsequently, subroutine FPRINT is called for the printout of all dependent variables.

Subroutine AUX performs the auxiliary calculations for temperature, density, viscosity, and source terms. Entry DENS uses AU.11 to AU.56 to calculate temperature. Cards AU.52 to AU.56 limit the values calculated in order to account for dissociation and early iteration fluctuations. With known temperature, density is then determined from AU.57 to AU.108. VISCO obtains effective viscosity from turbulent kinetic energy and dissipation and calculates Y+ for use by the wall function routine. GAMMA obtains the effective diffusion coefficients. SOURCE contains all calculations for source terms with the exception of the aforementioned modifications in SOMOD. Again, each variable has its own section, with coding that is quite straightforward and requires no explanation.

Subroutine AUXRAD performs the same function as AUX except that it pertains only to the radiation equations.

Subroutine SPRAY is used to determine the evaporation rate of the fuel-nozzle spray. A large section, from SP.106 to SP.269, deals with locating the droplet, determining free-stream conditions, and handling the situation where the droplet approaches a boundary. Next, various fuel and free-stream properties are evaluated (to SP.292). The drag forces and time step are then determined and used to obtain new velocities and location. If the droplet is below the boiling temperature, no evaporation occurs (SP.340 to SP.347); but, when the boiling temperature is reached, evaporation rates are calculated, and the appropriate entries to the evaporation array (EVAP) are made. Information concerning momentum changes due to evaporation are also stored in their respective arrays and later (SP.382 to SP.425) on a scratch file for use when the three momentum equations are solved.

The coefficients for each variable are generated and the solution routine called in subroutine STRIDE. First, equations for U,

V, and W are handled (ST.117 to ST.632), then the pressure perturbation ( $P'$ ) is obtained (ST.633 to ST.714) and used to correct the velocities (ST.716 to ST.753) so that mass errors are reduced. Then, the remaining variables are solved with the radiation equations having their own special section (ST.915 to ST.937). The chemical kinetics calculations are contained from NOX.230 to NOX.342. Here the inputs to program CREK are prepared and the outputs from CREK are stored in the respective arrays.

STRAD is a subroutine used in the radiation model which performs the same function as STRIDE performed for the other variables.

Subroutines ABSORB, ASYMP, CHEBY, DLECK, EGAS, PENTA, SOOT and SCRTCH (from Ref. 40) are used to compute the absorbtivity of gas-soot mixtures.

SOLVE provides a solution to the equations generated in STRIDE. A full three-dimensional solution would be time consuming and would require enormous computer storage. Therefore, an approximate solution is obtained by "sweeping" through the field several times alternately solving along one direction, while holding the values in the other two fixed. The variable ICTDMA (NV) at S0.36 is used to specify the number of such sweeps. As the program converges, and the variables assume their final values, the solution becomes more accurate. Due to the cyclic nature of the boundary conditions in the  $\theta$ -direction, a cyclic tri-diagonal matrix algorithm (CTDMA) is used for this direction; the coding sequence is contained in SOLVE2.

Subroutine FPRINT is used for the printout of field values of dependent variables.

The last part of the program contains the chemical kinetics subroutines: CREK, CALC, SPECE, CREKO AND HCPS.

Subroutine CREK is the main routine called from the 3-D program. It controls the solution strategy: equilibrium or kinetic and problems associated with lack of convergence.

Subroutine CALC construct the Newton-Raphson correction matrix for both equilibrium and kinetic states and solves for the corrections by a standard Gaussian elimination procedure. In the present work, modifications have been made to this subroutine in order to incorporate the four-step hydrocarbon oxidation scheme and to compute the reaction rates from the eddy-break-up model.

Subroutine SPECE contains the Newton-Raphson iteration procedure for both equilibrium and kinetic states.

Subroutine CREKO is the initializing subroutine and is used for the input of element, thermodynamic and reaction mechanism data.

Subroutine HCPS is used for computing the enthalpy, constant pressure specific heat and the entropy of the species.

Further details of the chemical kinetics subroutines are contained in Ref. 48.

**PRECEDING PAGE BLANK NOT FILMED**

**APPENDIX B  
PROGRAM INPUT  
DESCRIPTION**

PRECEDING PAGE BLANK NOT FILMED

APPENDIX B

PROGRAM INPUT DESCRIPTION

| Card Set | Variable | Format   | Description                                                                                                                                                                    |
|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | TITLE    | 20A4     | Each card is a heading for a particular three-dimensional array that is printed out. These never change (33 cards).                                                            |
| 2        | TITLE2   | 10A4     | Case title card.                                                                                                                                                               |
| 3        | LP1      | 8(I2,8X) | Number of grid nodes in axial (x) direction.                                                                                                                                   |
|          | MPL      |          | Number of grid nodes in radial (y) direction.                                                                                                                                  |
|          | NPL      |          | Number of grid nodes in tangential (z) direction.                                                                                                                              |
|          | IPLAX    |          | 01 For plane geometry;<br>02 For axisymmetric geometry.                                                                                                                        |
|          | MODEL    |          | 01 For laminar viscosity;<br>02 For k- $\epsilon$ viscosity model.                                                                                                             |
|          | MODER    |          | 01 For kinetic controlled combustion;<br>02 for kinetic and turbulence controlled combustion.                                                                                  |
|          | IPAR     |          | 01 For absolute pressure;<br>02 For relative pressure.                                                                                                                         |
|          | ITRAD    |          | 01 No radiation;<br>02 With radiation; radiation properties specified;<br>03 With radiation; radiation properties calculated.                                                  |
| 4        | IU       | 8(I2,8X) | 01 Input units are international system (i.e., meters, kilograms, degrees kelvin, newtons, joules, radians, seconds or combinations thereof);<br>02 User selected input units. |
|          | MODEN    |          | 01 Density is fixed at the value of "Den" on Card Set 19;<br>02 Density calculated from perfect gas law.                                                                       |
|          | INTAPE   |          | 00 Initial conditions not printed;<br>08 Initial conditions printed.                                                                                                           |

| Card<br>Set | Variable | Format          | Description                                                                                                                                                                                                                                                  |
|-------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | IDW      | 00<br>01        | Inner boundary is axis of symmetry;<br>Inner boundary is wall.                                                                                                                                                                                               |
|             | IRES     | 00<br>01        | This is a new case;<br>This is a restart of previous case.                                                                                                                                                                                                   |
| 5           | ISOLVE   | 8(I2,8X)        | An 01 in proper field indicates that this particular variable will be solved for; an 00 indicates that it will not be. Order of variables: u, v, w, p', k, $\epsilon$ , $\Phi$ , mfu, mCH, mCO, mH, n, s1, s2, 14*0 (14 species solved by CREK), Rx, Ry, Rz. |
| 6           | ICTDMA   | 8(I2,8X)        | Indicates the number of "sweeps" made in the solve routine for each variable. Order of variables as in Card Set 5.                                                                                                                                           |
| 7           | IPRINT   | 8(I2,8X)        | An 01 indicates that this variable will be printed, an 00 indicates that it will not be. Order of variables as in Card Set 1.                                                                                                                                |
| 8           | RELAX    | 8E10.4          | Relaxation parameters for each variable. Order of variables as in Card Set 5. In addition, pressure, density, effective viscosity at end of the set.                                                                                                         |
| 9           | PR       | 8E10.4          | Laminar Prandtl numbers for each variable. Order of variables as in Card Set 5.                                                                                                                                                                              |
| 10          | PREF     | 8E10.4          | Turbulent Prandtl numbers for each variable. Order of variables as in Card Set 5.                                                                                                                                                                            |
| 11          | X        | 8E10.4          | X-coordinates (LP1 values).                                                                                                                                                                                                                                  |
| 12          | RI<br>Y  | 8E10.4          | Radius of inner boundary.<br>Y-coordinates as measured from inner boundary (MP1-1) values. Since Y(1) is <u>always</u> 00, RI is read in its place.                                                                                                          |
| 13          | Z        | 8E10.4          | Z-coordinates (NP1 values).                                                                                                                                                                                                                                  |
| 14          | IWEI     | 8(I2,8X)        | I-node at which upstream inclined wall ends.                                                                                                                                                                                                                 |
|             | JWIO     | See Fig.<br>B-1 | J-node at which upstream outer inclined wall starts.                                                                                                                                                                                                         |

| Card<br>Set | Variable                   | Format   | Description                                                                                                                        |
|-------------|----------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------|
|             | IWE0                       |          | I-node at which downstream inclined wall starts.                                                                                   |
|             | JWOO                       |          | J-node at which downstream outer inclined wall ends.                                                                               |
| 15          | IWL1                       | 8(I2,8X) | Starting I-nodes of the calculation domain when inclined wall is present. (Skip if IWEI = 2).                                      |
| 16          | JWL0                       | 8(I2,8X) | Ending J-nodes of the calculation domain at upstream outer inclined wall. (Skip if IWEI = 2).                                      |
| 17          | IWL0                       | 8(I2,8X) | Ending I-nodes of the calculation domain when inclined wall is present. (Skip if IWE0 = L).                                        |
| 18          | JWL0                       | 8(I2,8X) | Ending J-nodes of the calculation domain at downstream outer inclined wall. (Skip if IWE0 = L).                                    |
| 19          | PRESS<br>DEN               | 8E10.4   | System pressure.<br>The value of density if option MODEN = 01 is selected.                                                         |
|             | ABSOR                      |          | Absorption coefficient in radiation model (if ITRAD = 2).                                                                          |
|             | SCATR                      |          | Scattering coefficient in radiation model (if ITRAD = 2).                                                                          |
|             | AKFAC                      |          | Internally defined turbulent kinetic energies are AKFAC time the appropriate velocity squared.                                     |
|             | ALFAC                      |          | Internally defined turbulent length scales are ALFAC time the appropriate distance.                                                |
| 20          | CXX<br>HYX<br>HFU<br>FUMCO | 8E10.4   | Carbon atoms in fuel molecule.<br>Hydrogen atoms in fuel molecule.<br>Heat of formation of fuel.<br>Initial value assigned to MCO. |
| 21          | PREXP1<br>ARCON1           | 8E10.4   | Preexponent of 1st reaction.<br>Activation energy divided by gas constant of 1st reaction (E/R).                                   |
|             | CR1                        |          | Constant in turbulence controlled reaction rate of 1st reaction.                                                                   |

| Card Set | Variable                                                    | Format                | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|-------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | PREXP2<br>ARCON2                                            |                       | Pre-exponent of 2nd reaction.<br>Activation energy divided by gas constant of 2nd reaction (E/R).                                                                                                                                                                                                                                                                                                   |
|          | CR2                                                         |                       | Constant in turbulence controlled reaction rate for 2nd reaction.                                                                                                                                                                                                                                                                                                                                   |
| 22       | PREXP3<br>ARCON3                                            | 8E10.4                | Pre-exponent of 3rd reaction.<br>Activation energy divided by gas constant of 3rd reaction (E/R).                                                                                                                                                                                                                                                                                                   |
|          | CR3                                                         |                       | Constant in turbulence controlled reaction rate for 3rd reaction.                                                                                                                                                                                                                                                                                                                                   |
|          | PREXP4<br>ARCON4                                            |                       | Pre-exponent of 4th reaction.<br>Activation energy divided by gas constant of 4th reaction (E/R)                                                                                                                                                                                                                                                                                                    |
|          | CR4                                                         |                       | Constant in turbulence controlled reaction rate for 4th reaction                                                                                                                                                                                                                                                                                                                                    |
| 23       | AA1<br>BB1<br>CC1<br>AA2<br>BB2<br>CC2                      | 8E10.4                | Exponent on species concentration in the reaction rate for 1st reaction.<br>Exponent on species concentration in the reaction rate for 2nd reaction.                                                                                                                                                                                                                                                |
| 24       | AA3<br>BB3<br>CC3<br>AA4<br>BB4<br>CC4                      | 8E10.4                | Exponent on species concentration in the reaction rate for 3rd reaction.<br>Exponent on species concentration in the reaction rate for 4th reaction.                                                                                                                                                                                                                                                |
| 25       | C1<br>C2<br>CD<br>AMU<br><br>ERROR<br><br>TCYlw<br><br>TLIP | 8E10.4                | Turbulence model constant.<br>Turbulence model constant.<br>Turbulence model constant.<br>The value of the viscosity if option MODEL = 01 is specified. Also the laminar viscosity used in the "wall functions".<br>Program will terminate if total error in mass becomes less than this value.<br>Temperature of cylindrical portion of combustor and of dome.<br>Temperature of cooling slot lip. |
| 26       | LASTEP<br>IJUMP                                             | 2(I3,7X),<br>6(I2,8X) | Maximum number of iterations.<br>Number of iterations between array printout.                                                                                                                                                                                                                                                                                                                       |

| Card | Set | Variable | Format              | Description                                                        |
|------|-----|----------|---------------------|--------------------------------------------------------------------|
|      |     | JSW1     |                     | J-node at start of dome inlet.                                     |
|      |     | JSW2     |                     | J-node at end of dome inlet.                                       |
|      |     | NUINJ    |                     | Number of axial injection points<br>(cooling slots).               |
|      |     | NVINJ    |                     | Number of radial injection points.                                 |
| 27   |     | USW      | 8E10.4              | Axial velocity of dome inlet.                                      |
|      |     | VSW      |                     | Radial velocity of dome inlet.                                     |
|      |     | SWNO     |                     | Ratio of tangential to axial velocity<br>at dome inlet.            |
|      |     | AFSW     |                     | Flow rate of fuel and air through<br>dome inlet.                   |
|      |     | FSW      |                     | Flow rate of fuel through dome inlet.                              |
|      |     | TSW      |                     | Temperature at dome inlet.                                         |
| 28   |     | NFNZ     | 2(I2,8X),<br>6E10.4 | 00 No liquid fuel nozzle;<br>01 Liquid fuel nozzle present.        |
|      |     | ISPRAY   |                     | Droplet evaporation routine is called.<br>every ISPRAY iterations. |
|      |     | TFUEL    |                     | Initial temperature of liquid fuel.                                |
| 29   |     | XO       | 8E10.4              | X-location of origin of fuel nozzle<br>spray.                      |
|      |     | YO       |                     | Y-location of origin of fuel nozzle<br>spray.                      |
|      |     | ZO       |                     | Z-location of origin of fuel nozzle<br>spray                       |
|      |     | ALFA     |                     | Nozzle cone angle.                                                 |
|      |     | BETA     |                     | Nozzle back angle.                                                 |
|      |     | DELTA    |                     | Nozzle down angle.                                                 |
|      |     | THETA1   |                     | Initial spray cone segment angle.                                  |
|      |     | THETA2   |                     | Final spray cone segment angle.                                    |
|      |     | RNSL     |                     | Number of spray cone rays.                                         |
|      |     | WFF      |                     | Fuel flow rate.                                                    |
|      |     | SMD      |                     | Sauter mean diameter.                                              |
|      |     | VFUEL    |                     | Initial fuel droplet velocity.                                     |
|      |     | RFUEL    |                     | Radius of fuel nozzle.<br>(Skip Set 29 if NFNZ=0)                  |
| 30   |     | IUINJ    | 8(I2,8X)            | Skip Sets 30-35, if NUINJ=0.<br>I node location of cooling slots   |
| 31   |     | JUINJ    | 8(I2,8X)            | J node location of cooling slots.                                  |
| 32   |     | UINJ     | 8E10.4              | Cooling slot axial velocity.                                       |
| 33   |     | WUINJ    | 8E10.4              | Cooling slot tangential velocity.                                  |

| Card Set | Variable | Format   | Description                                                                                                                                                          |
|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34       | AUINJ    | 8E10.4   | Cooling slot mass flow rate.                                                                                                                                         |
| 35       | TUINJ    | 8E10.4   | Cooling slot temperature.                                                                                                                                            |
|          |          |          | Skip Sets 36-43, if NVINJ=0.                                                                                                                                         |
| 36       | IVINJ    | 8(I2,8X) | I node location of radial injection.                                                                                                                                 |
| 37       | JVINJ    | 8(I2,8X) | J node location of radial injection                                                                                                                                  |
| 38       | KVINJ    | 8(I2,8X) | K node location of radial injection.                                                                                                                                 |
| 39       | VINJ     | 8E10.4   | Radial injection velocity.                                                                                                                                           |
| 40       | EVINJ    | 8E10.4   | Radial injection turbulent kinetic energy.                                                                                                                           |
| 41       | DVINJ    | 8E10.4   | Radial injection turbulence length scale.                                                                                                                            |
| 42       | AVINJ    | 8E10.4   | Radial injection mass flow rate.                                                                                                                                     |
| 43       | TVINJ    | 8E10.4   | Radial injection temperature.                                                                                                                                        |
| 44       | NSOOT    | 8(I2,8X) | =0, SOOT calculations not performed;<br>=1, SOOT calculations performed.<br>soot calculation started after ERROR falls to SSOOT or after ISOOT number of iterations. |
|          | ISOOT    |          |                                                                                                                                                                      |
|          | MPART    |          | Number of soot particle sizes.                                                                                                                                       |
|          |          |          | Skip Sets 45-48 if NSOOT=0.                                                                                                                                          |
| 45       | SSOOT    | 8E10.4   | See ISOOT.                                                                                                                                                           |
|          | AO       |          | Constant $a_0$ in soot nuclei formation rate, equation (6).                                                                                                          |
|          | ARCONN   |          | Activation energy divided by gas constant in soot nucleus formation rate, equation (6).                                                                              |
|          | AAA      |          | Constant a in soot formation rate, equation (8).                                                                                                                     |
|          | BBB      |          | Constant b in soot formation rate, equation (8).                                                                                                                     |

| Card Set | Variable     | Format          | Description                                                                                                       |
|----------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------|
|          | FMG          |                 | Constant (f-g) in soot nucleus formation rate, equation (7).                                                      |
|          | GO           |                 | Constant go in soot nucleus formation rate, equation (7).                                                         |
|          | RHOP         |                 | Particle density.                                                                                                 |
| 46       | PREXPS       | 8E10.4          | Pre-exponent in soot oxidation rate, equation (11).                                                               |
|          | ARCONS       |                 | Activation energy divided by gas constant in soot oxidation rate, equation (11).                                  |
|          | ALPHA        |                 | Temperature exponent in soot oxidation rate, equation (11).                                                       |
|          | AAS          |                 | Exponent on fuel concentration in soot oxidation rate, equation (11).                                             |
|          | BBS          |                 | Exponent on oxygen concentration in soot oxidation rate, equation (11).                                           |
|          | DHR          |                 | Heat of fuel combustion reaction.                                                                                 |
|          | CINCP        |                 | Incipient carbon/oxygen ratio for soot formation.                                                                 |
|          | TINCP        |                 | soot calculation bypassed if temperature < TINCP.                                                                 |
| 47       | DPART        | 8E10.4          | soot particle diameters (in microns).                                                                             |
| 48       | FRACP        | 8E10.4          | Relative rates of formation of soot particle sizes.                                                               |
| 49       | IRAD<br>SRAD | I2,8X,<br>E10.4 | Radiation calculation started after ERROR falls to SRAD or after IRAD number of iterations.<br>(Skip if ITRAD=1). |
| 50       | NNOX         | 3(I2,8X),       | =0 NO <sub>x</sub> calculations not performed;<br>=1 NO <sub>x</sub> calculations performed.                      |
|          | INOX         | 2E10.4          | NO <sub>x</sub> calculations started after ERROR falls to SNOX or after INOX number of iterations.                |
|          | ITNOX        |                 | Number of iterations of NO <sub>x</sub> solution at final iteration of flow solution.                             |
|          | SNOX<br>TNOX |                 | See INOX.<br>NO <sub>x</sub> calculation bypassed if temperature < TNOX.                                          |

After these 50 card sets, the input to the chemical kinetics program CREK must be provided. This is described below in Tables B-1, B-2 and B-3.

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE B-1. ELEMENTS INPUT CARDS.

| Order | Contents                                                                                                                                                                                                                                                                                     | Format               | Card Columns                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
| First | ELEMENTS                                                                                                                                                                                                                                                                                     | 3A4                  | 1 to 8                         |
| Any   | One card for each distinct element present in the chemical system. Each card contains:<br><br>1) Atomic symbol of element--must agree with that used in THERMØ data.<br><br>2) Atomic weight of the element<br><br>3) Values of oxidation state of the element (positive, negative or zero). | A2<br>F10.6<br>F10.6 | 1 to 2<br>10 to 19<br>20 to 29 |
| Last  | Blank Card                                                                                                                                                                                                                                                                                   | --                   | --                             |



Figure B-1. Definitions of Inclined Wall Indices.

TABLE B-2. THERMO INPUT CARDS.

| Order         | Contents                                                                                                                                                           | Format                                          | Card Columns                                            |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| First         | THERMO                                                                                                                                                             | 3A4                                             | 1 to 6                                                  |
| Any           | Sets of four cards <u>in sequence</u> for each species in the chemical system. The card formats for each set are, in order:                                        |                                                 |                                                         |
| First in set  | 1) Molecular symbol or name of species<br>2) Date<br>3) Atomic Symbols and formula<br>4) Phase (gas only, letter G)<br>5) Temperature range, deg K<br>6) Integer 1 | 3A4<br>2A3<br>4(A2,F3.0)<br>A1<br>2F10.3<br>I15 | 1 to 12<br>19 to 24<br>25 to 44<br>45<br>46 to 65<br>80 |
| Second in set | 1) Coefficients ( $z_i$ , $i=1,5$ ) for upper temperature range.<br>See Note A.<br>2) Integer 2                                                                    | 5E15.8<br>I5                                    | 1 to 75<br>80                                           |
| Third in set  | 1) Coefficients $z_6$ and $z_7$ for upper temperature range, and $z_3$ for lower. See Note A.<br>2) Integer 3                                                      | 5E15.8<br>I5                                    | 1 to 75<br>80                                           |
| Fourth in set | 1) Coefficients ( $z_i$ , $i=4,7$ ) for low temperature interval.<br>See Note A.<br>2) Integer 4                                                                   | 4E15.8<br>I20                                   | 1 to 60<br>80                                           |
| Last          | Blank Card                                                                                                                                                         | --                                              | --                                                      |

Note A: The coefficients ( $z_i$ ,  $i=1,7$ ) are those which appear in the polynominal expression for the constant pressure specific heat.

TABLE B-3. MECHANISM INPUT CARDS.

| Order | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Format                                                                    | Card Columns                                                                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| First | MECHANISM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3A4                                                                       | 1 to 9                                                                                                  |
| Any   | One card for each distinct forward (or optionally, reverse) reaction step in the mechanism specified.<br>Each card contains:<br><br>1) Molecular symbols of up to three reactant species. See Note A.<br>2) Molecular symbols of up to three product species. See Note A.<br>3) Exponent $B_j$ . See Notes B and E.<br>4) Exponent $N_j$ . See Note B<br>5) Activation temperature $T_j$ , deg K. See Notes B and E.<br><br>6) Options:<br>a) for forward reactions, date or comments, etc.<br>b) for reverse reactions, REVERSE. See Note C.<br>c) for global oxidative pyrolysis of hydrocarbon fuels, GLOBAL. See Note D.<br>d) for rate data in cgs units, CGS. See Note E. | 3(2A4)<br>3(2A4)<br>F8.3<br>F8.3<br>F8.3<br>2A4<br>2A4<br>2A4<br>--<br>-- | 1 to 24<br>25 to 48<br>49 to 56<br>57 to 64<br>65 to 72<br>73 to 80<br>73 to 79<br>73 to 78<br>--<br>-- |
| Last  | Blank Card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                                         |

## NOTES:

- A. Symbols must be identical to those used in THERMØ data cards.
- B. As used in modified Arrhenius expression
- $$k_j = 10^{B_j} T^j \exp(-T_j/T), \text{ with units}$$
- $m^3 \text{ kg-mole}^{-1} s^{-1}$  for bimolecular reactions, and
- $m^6 \text{ kg-mole}^{-2} s^{-1}$  for termolecular reactions.
- C. If REVERSE is specified, Columns 1 to 48 are ignored. Card with reverse rate data must therefore follow immediately the card with data for the associated forward reaction, and must be in same units.

TABLE B-3. MECHANISM INPUT CARDS (Contd.).

- D. All GLOBAL cards must precede other cards in MECHANISM data deck.
- E. If CGS is punched in Columns 73-75,  $B_j$  must correspond to  $\text{cm}^3 \text{ gmol}^{-1} \text{ s}^{-1}$  or  $\text{cm}^6 \text{ gmol}^{-2} \text{ s}^{-1}$ , and  $T_j$  must be the activation energy, kcal/gmol.

PRECEDING PAGE BLANK NOT FILMED

APPENDIX C  
LIST OF FORTRAN VARIABLES

In this appendix a description of the Fortran variables is provided. Table C-1 contains the variables in the 3-D Combustor Program and Table C-2 contains the variables in the chemical kinetics program CREK.

TABLE C-1  
LIST OF FORTRAN VARIABLES IN 3-D COMBUSTOR PROGRAM

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                              |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------|
| A                | STRAD                                  | COFFICIENT IN TONA SOLUTION.                                                            |
| AAA              | AUX,MAIN                               | CONSTANT IN SOOT FORMATION (SEE INPUT).                                                 |
| AAS              | AUX,MAIN                               | EXPONENT ON FUEL CONCENTRATION IN SOOT OXIDATION RATE (SEE INPUT).!                     |
| AA1              | AUX,MAIN INIT                          | EXPONENT ON SPECIES CONCENTRATION IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME.        |
| AA2              | AUX,MAIN INIT                          | EXPONENT ON SPECIES CONCENTRATION IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME.       |
| AA3              | AUX,MAIN INIT                          | EXPONENT ON SPECIES CONCENTRATION IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME.        |
| AA4              | AUX,MAIN INIT                          | EXPONENT ON SPECIES CONCENTRATION IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME.       |
| ABSOR            | MAIN<br>INIT<br>AUXRAD                 | ABSORPTION COEFFICIENT (IF ITRAD=2).                                                    |
| ABSP             | INIT<br>AUX<br>AUXRAD                  | ARRAY TO STORE ABSORPTION COEFFICIENT.                                                  |
| ALDEF            | AUX,DATA                               | COEFFICIENTS TO LIMIT TEMPERATURE TO ACCOUNT FOR DISSOCIATION.                          |
| ACOND            | SPRAY                                  | COEFFICIENT IN THERMAL CONDUCTIVITY CALCULATION.                                        |
| AEXP1            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME(=AA1).  |
| AEXP2            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME(=AA2). |
| AEXP3            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME(=AA3).  |
| AEXP4            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME(=AA4). |
| AFSW             | MAIN<br>INIT                           | AIR+FUEL FLOW THROUGH DOME INLET.                                                       |

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                     |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------------|
| AK               | DATA ALLMOD                            | VON KARMAN CONSTANT.                                                                           |
| AKA,AKB          | AUX                                    | RATE CONSTANTS IN SOOT OXIDATION EXPRESSION.                                                   |
| AKFAC            | MAIN INIT ALLMOD                       | INTERNALY DEFINED TURBULENT KINETIC ENERGIES ARE AKFAC TIMES THE APPROPRIATE VELOCITY SQUARED. |
| AKK,AKT          | AUX                                    | RATE CONSTANTS IN SOOT OXIDATION EXPRESSION.                                                   |
| AKZ              | AUX                                    | RATE CONSTANT IN SOOT OXIDATION EXPRESSION.                                                    |
| AL               | INIT                                   | TURBULENCE LENGTH SCALE.                                                                       |
| ALFA             | MAIN SPRAY                             | NOZZLE CONE ANGLE.                                                                             |
| ALFAC            | MAIN INIT ALLMOD                       | INTERNALY DEFINED TURBULENT LENGTH SCALES ARE ALFAC TIMES THE APPROPRIATE DISTANCE.            |
| ALIN             | INIT                                   | INLET TURBULENCE LENGTH SCALE.                                                                 |
| ALNHGT           | INIT                                   | LENGTH OF COMBUSTOR.                                                                           |
| ALPHA            | AUX,MAIN                               | TEMPERATURE EXPONENT IN SOOT OXIDATION RATE (SEE INPUT).                                       |
| ALPHAS           | AUXRAD                                 | ABSORPTION COEFFICIENT.                                                                        |
| ALX,ALXM         | STRIDE                                 | CONVECTION FLUX IN X DIRECTION.                                                                |
| ALXP,ALXL        | STRIDE                                 | CONVECTION FLUX IN X DIRECTION.                                                                |
| ALY,ALYM         | STRIDE                                 | CONVECTION FLUX IN Y DIRECTION.                                                                |
| ALYP,ALYI        | STRIDE                                 | CONVECTION FLUX IN Y DIRECTION.                                                                |
| ALZ,ALZM         | STRIDE                                 | CONVECTION FLUX IN Z DIRECTION.                                                                |
| ALZF,ALZI        | STRIDE                                 | CONVECTION FLUX IN Z DIRECTION.                                                                |
| AMASS            | INIT                                   | TOTAL AIR FLOW RATE.                                                                           |
| AMT              | SPRAY                                  | FUEL EVAPORATION RATE FOR ONE TIME STEP.                                                       |
| AVII             | MAIN AUX ALLMOD                        | LAMINAR VISCOSITY (SEE INPUT).                                                                 |

67

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE |                  | ROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                 |
|------------------|------------------|-------------------------------------|--------------------------------------------------------------------------------------------|
| AND              | AUX              |                                     | SOOT NUCLEUS FORMATION RATE AT MEAN TEMPERATURE.                                           |
| ANOD             | AUX              |                                     | SOOT NUCLEUS FORMATION RATE IN FLUID SURROUNDING FINE STRUCTURES.                          |
| ANOSTR           | AUX              |                                     | SOOT NUCLEUS FORMATION RATE IN FINE STRUCTURES.                                            |
| ANUC             | ALL              |                                     | SOOT NUCLEUS CONCENTRATION.                                                                |
| AO               | AUX,MAIN         |                                     | CONSTANT IN SOOT NUCLEUS FORMATION RATE (SEE INPUT).                                       |
| AP               | SOLVE            |                                     | COEFFICIENT IN TDMA SOLUTION.                                                              |
| APP              | SOLVE            |                                     | COEFFICIENT IN CYCLIC TDMA SOLUTION.                                                       |
| ARCONN           | AUX,MAIN         |                                     | ACTIVATION ENERGY DIVIDED BY GAS CONSTANT IN SOOT NUCLEUS FORMATION RATE (SEE INPUT).      |
| ARCONS           | AUX,MAIN         |                                     | ACTIVATION ENERGY DIVIDED BY GAS CONSTANT IN SOOT OXIDATION RATE (SEE INPUT).              |
| ARCON1           | AUX,MAIN<br>INIT |                                     | ACTIVATION ENERGY IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT.  |
| ARCON2           | AUX,MAIN<br>INIT |                                     | ACTIVATION ENERGY IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT. |
| ARCON3           | AUX,MAIN<br>INIT |                                     | ACTIVATION ENERGY IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT.  |
| ARCON4           | AUX,MAIN<br>INIT |                                     | ACTIVATION ENERGY IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT. |
| ARFA             | ALLMOD<br>STRIDE |                                     | AREA OF CONTROL VOLUME SURFACE.                                                            |
| AREAT            | AUX              |                                     | SOOT PARTICLE SURFACE AREA.                                                                |
| ARG              | AUX              |                                     | TEMPORARY USAGE.                                                                           |
| ARG              | SPRAY            |                                     | SQUARE OF DROPLET DIAMETER.                                                                |
| ARRHEN           | AUX              |                                     | ARRHENIUS REACTION RATE.                                                                   |
| AS               | SPRAY            |                                     | DROPLET SURFACE AREA.                                                                      |
| ASH              | ALLMOD           |                                     | ABSOLUTE OF CONTINUITY ERROR.                                                              |
| ASUR             | CRFK             |                                     | SEE TABLE C-2.                                                                             |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE                         | DEFINITION                                                             |
|------------------|------------------------------------|------------------------------------------------------------------------|
|                  | WMFRE                              |                                                                        |
|                  | DEFINFO OR<br>USED OFTEN           |                                                                        |
|                  |                                    |                                                                        |
| ASW              | INIT                               | FLOW RATE OF AIR THROUGH DOME INLET.                                   |
| ASWRLR           | INIT                               | DOME INLET AREA.                                                       |
| AT               | SPRAY                              | QUANTITY USED IN THERMAL CONDUCTIVITY CALCULATION.                     |
| AUENJ            | MAIN<br>ALLMOD                     | MASS FLOW RATE THROUGH FILM COOLING SLOT.                              |
| AVENJ            | MAIN<br>ALLMOD                     | MASS FLOW RATE THROUGH DILUTION HOLES.                                 |
| AXM              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE | FINITE-DIFFERENCE COEFFICIENT IN X- DIRECTION.                         |
| AXMK             | SOLVE                              | FINITE-DIFFERENCE COEFFICIENT IN X- DIRECTION,<br>USED IN CYCLIC TDMA. |
| AXP              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE | FINITE-DIFFERENCE COEFFICIENT IN X+ DIRECTION.                         |
| AXPK             | SOLVE                              | FINITE-DIFFERENCE COEFFICIENT IN X+ DIRECTION,<br>USED IN CYCLIC TDMA. |
| AYM              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE | FINITE-DIFFERENCE COEFFICIENT IN Y- DIRECTION.                         |
| AYMK             | SOLVE                              | FINITE-DIFFERENCE COEFFICIENT IN Y- DIRECTION,<br>USED IN CYCLIC TDMA. |
| AYP              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE | FINITE-DIFFERENCE COEFFICIENT IN Y+ DIRECTION.                         |
| AYPK             | SOLVE                              | FINITE-DIFFERENCE COEFFICIENT IN Y+ DIRECTION,<br>USED IN CYCLIC TDMA. |
| AZM              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE | FINITE-DIFFERENCE COEFFICIENT IN Z- DIRECTION.                         |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                 |
|------------------|----------------------------------------|--------------------------------------------------------------------------------------------|
| AZMK             | SOLVE                                  | FINITE-DIFFERENCE COEFFICIENT IN Z- DIRECTION,<br>USED IN CYCLIC TDMA.                     |
| AZP              | STRIDE<br>STRAD<br>ALLMOD<br>SOLVE     | FINITE-DIFFERENCE COEFFICIENT IN Z+ DIRECTION.                                             |
| AZPK             | SOLVE                                  | FINITE-DIFFERENCE COEFFICIENT IN Z+ DIRECTION,<br>USED IN CYCLIC TDMA.                     |
| A1-A6            | AUX                                    | TEMPORARY USAGE.                                                                           |
| A4               | INIT                                   | TEMPORARY USAGE OF FLOW AREA.                                                              |
| B                | STRAD                                  | COEFFICIENT IN TDMA SOLUTION.                                                              |
| B8B              | AUX,MAIN                               | CONSTANT IN SOOT FORMATION (SEE INPUT).                                                    |
| B8S              | AUX,MAIN<br>INIT                       | EXPONENT ON O2 CONCENTRATION IN SOOT OXIDATION<br>RATE (SEE INPUT).                        |
| B81              | AUX,MAIN<br>INIT                       | EXPONENT ON SPECIES CONCENTRATION IN FIRST STEP<br>OF HYDROCARBON OXIDATION SCHEME.        |
| B82              | AUX,MAIN<br>INIT                       | EXPONENT ON SPECIES CONCENTRATION IN SECOND STEP<br>OF HYDROCARBON OXIDATION SCHEME.       |
| B83              | AUX,MAIN<br>INIT                       | EXPONENT ON SPECIES CONCENTRATION IN THIRD STEP<br>OF HYDROCARBON OXIDATION SCHEME.        |
| B84              | AUX,MAIN<br>INIT                       | EXPONENT ON SPECIES CONCENTRATION IN FOURTH STEP<br>OF HYDROCARBON OXIDATION SCHEME.       |
| RCOND            | SPRAY                                  | COEFFICIENT IN THERMAL CONDUCTIVITY CALCULATION.                                           |
| BEE              | SPRAY                                  | DRIVING FORCE FOR MASS TRANSFER.                                                           |
| BETA             | MAIN<br>SPRAY                          | NOZZLE BACK ANGLE.                                                                         |
| BEXP1            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN FIRST STEP<br>OF HYDROCARBON OXIDATION SCHEME(=B81).  |
| BEXP2            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN SECOND STEP<br>OF HYDROCARBON OXIDATION SCHEME(=B82). |
| BEXP3            | INIT                                   | EXPONENT ON SPECIES CONCENTRATION IN THIRD STEP<br>OF HYDROCARBON OXIDATION SCHEME(=B83).  |

ORIGIN  
OF FLUIDITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE    | DEFINITION                                                                              |
|------------------|---------------|-----------------------------------------------------------------------------------------|
| BEXP4            | INIT          | EXponent ON SPECIES CONCENTRATION IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME(=BA4). |
| RK               | SOLVE         | TEMPORARY USAGE.                                                                        |
| BP               | SOLVE         | COEFFICIENT IN TDMA SOLUTION.                                                           |
| BPP              | SOLVE         | COEFFICIENT IN CYCLIC TDMA SOLUTION.                                                    |
| RT               | SPRAY         | QUANTITY USED IN THERMAL CONDUCTIVITY CALCULATION.                                      |
| CANG             | MAIN          | CONSTANT TO CONVERT UNITS ON ANGLES.                                                    |
| CARR             | AUX           | MASS FRACTION OF ELEMENTAL CARBON.                                                      |
| CC1              | AUX,MAIN INIT | EXponent ON SPECIES CONCENTRATION IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME.        |
| CC2              | AUX,MAIN INIT | EXponent ON SPECIES CONCENTRATION IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME.       |
| CC3              | AUX,MAIN INIT | EXponent ON SPECIES CONCENTRATION IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME.        |
| CC4              | AUX,MAIN INIT | EXponent ON SPECIES CONCENTRATION IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME.       |
| CD               | AUX ALLMOD    | CONSTANT IN TURBULENCE MODEL.                                                           |
| CD0,CD1          | SPRAY         | DROPLET DRAG COEFFICIENT.                                                               |
| CERU1            | INIT          | EDDY-BREAK-UP CONSTANT FOR FIRST STEP OF HYDROCARBON OXIDATION SCHEME.                  |
| CERU2            | INIT          | EDDY-BREAK-UP CONSTANT FOR SECOND STEP OF HYDROCARBON OXIDATION SCHEME.                 |
| CERU3            | INIT          | EDDY-BREAK-UP CONSTANT FOR THIRD STEP OF HYDROCARBON OXIDATION SCHEME.                  |
| CERU4            | INIT          | EDDY-BREAK-UP CONSTANT FOR FOURTH STEP OF HYDROCARBON OXIDATION SCHEME.                 |
| CENER            | MAIN          | CONSTANTS TO CONVERT UNITS ON ENERGY.                                                   |
| CEXP1            | AUX,INIT      | EXponent N SPECIES CONCENTRATION IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME(=CC1).   |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                              |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------|
| CEXP2            | AUX,INIT                               | EXponent ON SPECIES CONCENTRATION IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME(=CC2). |
| CEXP3            | AUX,INIT                               | EXponent ON SPECIES CONCENTRATION IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME(=CC3).  |
| CEXP4            | AUX,INIT                               | EXponent ON SPECIES CONCENTRATION IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME(=CC4). |
| CFR              | ALLMOD<br>AUX<br>INIT                  | SKIN FRICTION COEFFICIENT.                                                              |
| CINCP            | AUX,MAIN                               | INCIPENT CARBON/OXYGEN RATIO FOR SOOT FORMATION.                                        |
| CK               | SOLVE                                  | TEMPORARY USAGE.                                                                        |
| CLEND            | MAIN                                   | CONSTANTS TO CONVERT UNITS ON LENGTHS.                                                  |
| CLENV            | MAIN                                   | CONSTANTS TO CONVERT UNITS ON VELOCITIES.                                               |
| CMASS            | MAIN                                   | CONSTANTS TO CONVERT UNITS ON MASS.                                                     |
| CNO              | OUTPUT                                 | NOX EMISSIONS INDEX.                                                                    |
| COND1            | SPRAY                                  | Thermal Conductivity Of Fuel Vapors.                                                    |
| CONS             | SPRAY                                  | TEMPORARY USAGE.                                                                        |
| CONS2            | AUX                                    | TEMPORARY USAGE.                                                                        |
| CON2             | SPRAY                                  | FRACTION OF FUEL EVAPORATED.                                                            |
| COSA             | SPRAY                                  | COSINE OF HALF THE NOZZLE CONE ANGLE.                                                   |
| COSB             | SPRAY                                  | COSINE OF NOZZLE BACK ANGLE.                                                            |
| COSD             | SPRAY                                  | COSINE OF NOZZLE DOWN ANGLE.                                                            |
| COST             | SPRAY                                  | COSINE OF CURRENT SPRAY CONE SEGMENT ANGLE.                                             |
| CP               | AUX<br>ALLMOD                          | CONSTANT PRESSURE SPECIFIC HEAT.                                                        |
| CPI              | INIT<br>AUX                            | CONSTANT PRESSURE SPECIFIC HEAT.                                                        |
| CPLF             | SPRAY                                  | SPECIFIC HEAT OF LIQUID DROPLET.                                                        |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                     |
|------------------|----------------------------------------|--------------------------------------------------------------------------------|
| CPR              | AUX                                    | CONSTANT PRESSURE SPECIFIC HEAT.                                               |
| CPRESS           | MAIN                                   | CONSTANTS TO CONVERT UNITS ON PRESSURE.                                        |
| CPSUM            | ALLMOD AUX                             | CONSTANT PRESSURE SPECIFIC HEAT OF GAS MIXTURE.                                |
| CP1              | SPRAY                                  | SPECIFIC HEAT.                                                                 |
| CR1              | AUX,MAIN                               | EDDY-BREAK-UP CONSTANT IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME(=CERU1).  |
| CR2              | AUX,MAIN                               | EDDY-BREAK-UP CONSTANT IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME(=CERU2). |
| CR3              | AUX,MAIN                               | EDDY-BREAK-UP CONSTANT IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME(=CFBU3).  |
| CR4              | AUX,MAIN                               | EDDY-BREAK-UP CONSTANT IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME(=CFBU4). |
| CSMO             | OUTPUT                                 | SMOKE EMISSIONS INDEX.                                                         |
| CTEMP            | MAIN                                   | CONSTANT TO CONVERT UNITS ON TEMPERATURE.                                      |
| CX               | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE/DIFFUSIVE FLUX IN X DIRECTION.                |
| CXU,CXUP         | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE FLUX IN X DIRECTION.                          |
| CXX              | INIT AUX MAIN                          | NUMBER OF CARBON ATOMS IN THE FUEL.                                            |
| CY               | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE/DIFFUSIVE FLUX IN Y DIRECTION.                |
| CYP              |                                        | NOT USED.                                                                      |
| CYU,CYUP         | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE FLUX IN Y DIRECTION.                          |
| CZ               | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE/DIFFUSIVE FLUX IN Z DIRECTION.                |
| CZP              |                                        | NOT USED.                                                                      |
| CZU,CZUP         | STRIDE                                 | TEMPORARY STORAGE FOR CONVECTIVE FLUX IN Z DIRECTION.                          |
| CA               | AUX,MAIN                               | CONSTANT IN TURBULENCE MODEL.                                                  |

-6-

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE<br>DEFINED OR<br>USED OFTEN | DEFINITION                                                     |
|------------------|----------------------------------------------|----------------------------------------------------------------|
| C2               | AUX,MAIN                                     | CONSTANT IN TURBULENCE MODEL.                                  |
| DANG             | SPRAY                                        | DELTA(ANGLE).                                                  |
| DELTA            | SPRAY<br>MAIN                                | FUEL NOZZLE DOWN ANGLE.                                        |
| DELTAT           | AUX                                          | TEMPERATURE RISE.                                              |
| DEN              | AUX,MAIN                                     | DENSITY (SEE INPUT).                                           |
| DENOM            | SOLVE                                        | TEMPORARY USAGE.                                               |
| DENST            | AUX                                          | DENSITY.                                                       |
| DENSTY           | STRIDE                                       | DENSITY.                                                       |
| DEVAP            | SPRAY                                        | FRACTION OF FUEL EVAPORATED IN ONE TIME STEP.                  |
| DFAC             | MAIN<br>STRIDE                               | QUANTITY USED TO GRADUALLY INTRODUCE<br>2 DIRECTION DIFFUSION. |
| DFTW             | TSOLVE                                       | DIFFERENTIAL OF HEAT TRANSFER W.R.T. TEMPERATURE.              |
| DHR              | AUX,MAIN                                     | HEAT OF FUEL COMBUSTION REACTION.                              |
| DIA              | SPRAY                                        | INSTANTANEOUS DROPLET DIAMETER.                                |
| DIA0             | SPRAY                                        | INITIAL DROPLET DIAMETER.                                      |
| DIST             | ALLMOD<br>AUX<br>STRIDE                      | INTERNOAL DISTANCE.                                            |
| DIVG             | STRIDE<br>ALLMOD                             | MASS IMBALANCE AT A CONTROL VOLUME.                            |
| DK               | SOLVE                                        | TEMPORARY USAGE.                                               |
| DLIM             | SPRAY                                        | CONSTANT TO LIMIT TIME STEP.                                   |
| DM               | SPRAY                                        | DROPLET MASS.                                                  |
| DMDOT            | OUTPUT                                       | MASS FLOW RATE.                                                |
| DP               | SOLVE                                        | COEFFICIENT IN CYCLIC TOMA SOLUTION.                           |
| DPART            | AUX,MAIN                                     | SOOT PARTICLE DIAMETERS.                                       |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                      |
|------------------|----------------------------------------|-----------------------------------------------------------------|
| DQCH             | TSOLVE                                 | HEAT TRANSFER COEFFICIENT.                                      |
| DQRH             | TSOLVF                                 | DIFFERENTIAL OF RADIATION HEAT TRANSFER W.R.T. TEMPERATURE.     |
| DRHOOP           | STPIDE                                 | PARTIAL DERIVATIVE OF DENSITY W.R.T. PRESSURE.                  |
| DSACO            | AUX                                    | TEMPORARY USAGE IN CO SOURCE TERM.                              |
| DSOFU            | AUX                                    | TEMPORARY USAGE IN FUEL SOURCE TERM.                            |
| DSOH             | AUX                                    | TEMPORARY USAGE IN ENTHALPY SOURCE TERM.                        |
| DSODT            | PUTPUT                                 | TEMPORARY USAGE.                                                |
| DSOSP            | AUX                                    | TEMPORARY USAGE IN CXHY-2 AND H2 SOURCE TERMS.                  |
| DSMD             | SPRAY                                  | RATIO OF DROPLET DIAMETER TO SMD.                               |
| DT               | STRIDE                                 | TIME INCREMENT.                                                 |
| DTF              | SPRAY                                  | TEMPERATURE RISE OF DROPLET.                                    |
| DTHTA            | SPRAY                                  | DIFFERENCE BETWEEN INITIAL AND FINAL SPRAY CONE SEGMENT ANGLES. |
| DTI              | SPRAY                                  | LIMIT ON TIME STEP TO AVOID NUMERICAL INSTABILITY.              |
| DTI1-7           | SPRAY                                  | LIMITS ON TIME STEP TO AVOID NUMERICAL INSTABILITY.             |
| DII              | STRIDE<br>SOLVE<br>AUX                 | PRESSURE-VELOCITY COEFFICIENT FOR U-VELOCITY.                   |
| DUDXM            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. X AT I LOCATION.                 |
| DUDXP            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. X AT I+1 LOCATION.               |
| DUDYM            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. Y AT I LOCATION.                 |
| DUDYP            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. Y AT I+1 LOCATION.               |
| DUDZM            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. Z AT I LOCATION.                 |
| DUDZP            | AUX                                    | PARTIAL DERIVATIVE OF U W.R.T. Z AT I+1 LOCATION.               |
| DUDXJ            | AUX                                    | PARTIAL DERIVATIVE OF UI W.R.T. XJ.                             |
| DV               | STRIDE<br>SOLVE<br>AUX                 | PRESSURE-VELOCITY COEFFICIENT FOR V-VELOCITY.                   |

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                        |
|------------------|----------------------------------------|---------------------------------------------------|
| DVDXM            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. X AT J LOCATION.   |
| DVDXP            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. X AT J+1 LOCATION. |
| DVDY             | AUX                                    | VELOCITY GRADIENT NEAR A WALL.                    |
| DVDYM            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. Y AT J LOCATION.   |
| DVDYP            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. Y AT J+1 LOCATION. |
| DVDZM            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. Z AT J LOCATION.   |
| DVDZP            | AUX                                    | PARTIAL DERIVATIVE OF V W.R.T. Z AT J+1 LOCATION. |
| DVINJ            | INIT<br>MAIN                           | RADIAL INJECTION TURBULENCE LENGTH SCALE.         |
| DW               | STRIDE<br>SOLVE<br>AUX<br>ALLMOD       | PRESSURE-VELOCITY COEFFICIENT FOR W-VELOCITY.     |
| DWDXM            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. X AT K LOCATION.   |
| DWDXP            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. X AT K+1 LOCATION. |
| DWDYM            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. Y AT K LOCATION.   |
| DWDYP            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. Y AT K+1 LOCATION. |
| DWDZM            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. Z AT K LOCATION.   |
| DWDZP            | AUX                                    | PARTIAL DERIVATIVE OF W W.R.T. Z AT K+1 LOCATION. |
| DX               | AUX                                    | INTERNODAL DISTANCE IN X DIRECTION.               |
| DX               | SPRAY                                  | DISTANCE TRAVELED BY DROPLET IN X DIRECTION.      |
| DY               | INIT<br>AUX                            | INTERNODAL DISTANCE IN Y DIRECTION.               |
| DY               | SPRAY                                  | DISTANCE TRAVELED BY DROPLET IN Y DIRECTION.      |
| DZ               | AUX<br>INIT                            | INTERNODAL DISTANCE IN Z DIRECTION.               |
| DZ               | SPRAY                                  | DISTANCE TRAVELED BY DROPLET IN Z DIRECTION.      |
| E                | ALLMOD<br>DATA                         | CONSTANT E IN LOG-LAW OF THE WALL.                |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                               |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------|
| EDK              | STRIDE AUX                             | DISSIPATION DIVIDED BY TURBULENCE ENERGY.                                                |
| EDKIJ            | STRIDE                                 | DISSIPATION DIVIDED BY TURBULENCE ENERGY AT NODE I,J,K.                                  |
| EDK2             | AUX                                    | DISSIPATION DIVIDED BY TURBULENCE ENERGY SQUARED.                                        |
| EE               | SPRAY                                  | CONSTANT IN DROPLET BOILING POINT CALCULATION.                                           |
| EMOT             | AUX                                    | RATE OF MASS TRANSFER BETWEEN FINE STRUCTURES AND SURROUNDING FLUID.                     |
| EMOOTR           | AUX                                    | TEMPORARY USAGE.                                                                         |
| EMI              | INIT<br>AUX<br>TSOLVE<br>ALLMOD        | =EMISH/(2.0-EMISH).                                                                      |
| EMTSIN           | INIT                                   | INLET EMISSIVITY.                                                                        |
| EMISR            | INIT<br>ALLMOD                         | GAS EMISSIVITY.                                                                          |
| EMISH            | ALLMOD<br>INIT                         | WALL EMISSIVITY.                                                                         |
| EMIN             | AUX                                    | TEMPORARY USAGE.                                                                         |
| EMP              | AUX                                    | MASS OF SOOT PARTICLE.                                                                   |
| EMPR             | AUX                                    | MASS FRACTION OF PRODUCTS.                                                               |
| EMV              | STRIDE                                 | TOTAL CONVECTIVE AND DIFFUSIVE MASS INFLOW INTO A FINITE-DIFFERENCE CELL; SEE TABLE C-2. |
| ENM              | AUX                                    | MEAN SOOT PARTICLE CONCENTRATION.                                                        |
| ENND             | AUX                                    | SOOT PARTICLE CONCENTRATION IN FLUID SURROUNDING FINE STRUCTURES.                        |
| ENNRH1           | AUX                                    | ENM DIVIDED BY GAS DENSITY.                                                              |
| ENNSTR           | AUX                                    | SOOT PARTICLE CONCENTRATION IN FINE STRUCTURES.                                          |
| END              | AUX                                    | SOOT NUCLEUS CONCENTRATION IN FLUID SURROUNDING FINE STRUCTURES.                         |

TABLE C-1 (CONT'D.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                                |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ENRHO            | AUX                                    | MEAN SOOT NUCLEUS CONCENTRATION DIVIDED BY GAS DENSITY.                                                   |
| ENSTP            | AUX                                    | SOOT NUCLEUS CONCENTRATION IN FINE STRUCTURES.                                                            |
| ENSTR1           | AUX                                    | TEMPORARY USAGE.                                                                                          |
| ENSTR2           | AUX                                    | TEMPORARY USAGE.                                                                                          |
| EP               | SOLVE                                  | COEFFICIENT IN CYCLIC TOMA SOLUTION.                                                                      |
| FR               | CREK                                   | EQUIVALENCE RATIO, SEE TABLE C-2.                                                                         |
| ERROR            | MAIN                                   | PROGRAM WILL TERMINATE IF TOTAL ERROR IN MASS BECOMES LESS THAN THIS VALUE.                               |
| ER1              | INIT                                   | ACTIVATION ENERGY FOR THE FIRST STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT (=ARCON1).  |
| ER2              | INIT                                   | ACTIVATION ENERGY FOR THE SECOND STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT (=ARCON2). |
| ER3              | INIT                                   | ACTIVATION ENERGY FOR THE THIRD STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT (=ARCON3).  |
| ER4              | INIT                                   | ACTIVATION ENERGY FOR THE FOURTH STEP OF HYDROCARBON OXIDATION SCHEME, DIVIDED BY GAS CONSTANT (=ARCON4). |
| ET               | SPRAY                                  | VARIABLE IN DROPLET BOILING POINT CALCULATION.                                                            |
| EVAP             | SPRAY<br>ALLMOD<br>STRIKE              | EVAPORATION RATE OF LIQUID FUEL.                                                                          |
| EVAPIH-W         | SPRAY                                  | INTERPHASE MOMENTUM TRANSFER IN X,Y,Z DIRECTIONS.                                                         |
| EVINJ            | INIT<br>MAIN                           | RADIAL INJECTION TURBULENCE ENERGY.                                                                       |
| EVSI             | SPRAY<br>ALLMOD                        | ARRAY USED TO STORE INTERPHASE MOMENTUM TRANSFER.                                                         |
| F                | ALL                                    | ARRAY USED TO STORE DEPENDENT VARIABLES.                                                                  |
| FAC              | SPRAY                                  | TEMPORARY USAGE.                                                                                          |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                              |
|------------------|----------------------------------------|-----------------------------------------|
| FACP             | AUXRAD                                 | TEMPORARY USAGE.                        |
| FAV              | AUX                                    | AVERAGE RADIATION FLUX.                 |
| FCH              | ALL                                    | INTERMEDIATE HYDROCARBON CONCENTRATION. |
| FDFU             |                                        | NOT USED.                               |
| FEND             | SOLVE                                  | QUANTITY USED IN CYCLIC TDMA.           |
| FEVAP            | SPRAY                                  | FRACTION OF FUEL EVAPORATED.            |
| FEXTT            | INIT                                   | UNAURNT FUEL MASS FRACTION.             |
| FH2              | ALL                                    | HYDROGEN MASS FRACTION.                 |
| FK               | TINIT                                  | INLET TURBULENCE KINETIC ENERGY.        |
| FKFU             |                                        | NOT USED.                               |
| FL0              | INIT                                   | FLOW RATE AT EACH AXIAL STATION.        |
| FL0W             | OUTPUT                                 | MASS FLOW RATE.                         |
| FL0WIN           | TINIT<br>ALLMOD                        | INLET MASS FLOW RATE.                   |
| FL0WOT           | ALLMOD                                 | FLOW RATE AT EXIT PLANE.                |
| FLPCO2           | INIT<br>AUX<br>AUXRAD                  | CO2 MASS FRACTION.                      |
| FLPE             | AUX<br>AUXRAD                          | EMISSIVE POWER.                         |
| FLPH2O           | TINIT<br>AUX<br>AUXRAD                 | H2O MASS FRACTION.                      |
| FLPN2            | TINIT<br>AUX<br>AUXRAD                 | N2 MASS FRACTION.                       |
| FLPOX            | INIT<br>AUX<br>AUXRAD<br>SPRAY         | O2 MASS FRACTION.                       |

TABLE C-1 (CONT'D.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                     |
|------------------|----------------------------------------|----------------------------------------------------------------|
| FLPTE            | AUX<br>AUXRAD                          | TEMPERATURE.                                                   |
| FLZP             | SOLVE                                  | F VALUE AT NODE LZP.                                           |
| FMA              |                                        | NOT USED.                                                      |
| FMG              | AUX,MAIN                               | CONSTANT IN SOOT NUCLEUS FORMATION RATE (SEE INPUT).           |
| FMGF             | AUX                                    | TEMPORARY USAGE.                                               |
| FQ               | CREK                                   | SEE TABLE C-2.                                                 |
| FRACP            | AUX,MAIN                               | RELATIVE RATES OF FORMATION OF SOOT PARTICLE SIZES.            |
| FRACT            | SPRAY                                  | CUMULATIVE MASS FRACTION OF DROPLETS IN DIFFERENT SIZE GROUPS. |
| FS               | ALL                                    | ARRAY USED TO STORE SPECIES MASS FRACTIONS.                    |
| FSLP             | STRIDE                                 | TEMPORARY STORAGE FOR FSILP%.                                  |
| FST              | INIT                                   | STOICHIOMETRIC VALUE OF MIXTURE FRACTION.                      |
| FSTDIC           | INIT<br>AUX                            | STOICHIOMETRIC VALUE OF MIXTURE FRACTION.                      |
| FSW              | INIT<br>MAIN                           | FLOW RATE OF FUEL THROUGH DOME INLET.                          |
| FTW              | TSOLVE                                 | RADIATIVE+CONVECTIVE HEAT TRANSFER.                            |
| FUARAT           | INIT                                   | FUEL/AIR RATIO.                                                |
| FUR              | INIT<br>AUX<br>AUXRAD                  | MASS FRACTION OF BURNED FUEL.                                  |
| FUEL             | INIT                                   | FUEL FLOW RATE AT EACH AXIAL STATION.                          |
| FUFLF            | INIT                                   | MASS FRACTION OF UNBURNED FUEL.                                |
| FUFLI            | INIT                                   | MIXTURE FRACTION.                                              |
| FUELS            | INIT                                   | Liquid FUEL FLOW RATE AT EACH AXIAL STATION.                   |
| FUMCP            | INIT<br>MAIN                           | INITIAL ESTIMATE OF CO MASS FRACTION.                          |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                             |
|------------------|----------------------------------------|--------------------------------------------------------|
| FUMSH            | INIT                                   | FUEL/AIR RATIO AT DOME INLET.                          |
| FUOX             | INIT                                   | MIXTURE FRACTION AT EACH AXIAL STATION.                |
| FUOXSH           | INIT                                   | MIXTURE FRACTION AT DOME INLET.                        |
| FUT              | STRIDE                                 | MIXTURE FRACTION.                                      |
| FUTOT            | INIT                                   | TOTAL FUEL FLOW RATE.                                  |
| FX               | SPRAY                                  | DRAG FORCE ON DROPLET IN X DIRECTION.                  |
| FXN              | ALL                                    | INTERPOLATION FACTOR FOR X- DIRECTION NODAL DISTANCES. |
| FXP              | ALL                                    | INTERPOLATION FACTOR FOR X+ DIRECTION NODAL DISTANCES. |
| FY               | SPRAY                                  | DRAG FORCE ON DROPLET IN Y DIRECTION.                  |
| FYN              | ALL                                    | INTERPOLATION FACTOR FOR Y- DIRECTION NODAL DISTANCES. |
| FYP              | ALL                                    | INTERPOLATION FACTOR FOR Y+ DIRECTION NODAL DISTANCES. |
| FZ               | SPRAY                                  | DRAG FORCE ON DROPLET IN Z DIRECTION.                  |
| FZN              | ALL                                    | INTERPOLATION FACTOR FOR Z- DIRECTION NODAL DISTANCES. |
| FZP              | ALL                                    | INTERPOLATION FACTOR FOR Z+ DIRECTION NODAL DISTANCES. |
| GAM              | ALL                                    | DIFFUSION COEFFICIENT.                                 |
| GAMAS            | AUX                                    | MASS FRACTION OF FLUID IN FINE STRUCTURES.             |
| GANDOL           | ALL400                                 | TEMPORARY USAGE.                                       |
| GAMLP            | AUX<br>STRIDE                          | DIFFUSION COEFFICIENT AT NODE LP.                      |
| GAMLXN           | AUX                                    | DIFFUSION COEFFICIENT AT NODE LXM.                     |
| GAMLYN           | AUX                                    | DIFFUSION COEFFICIENT AT NODE LYH.                     |
| GAMLZH           | AUX                                    | DIFFUSION COEFFICIENT AT NODE LZH.                     |
| GAMM             | AUX                                    | AVERAGE DIFFUSION COEFFICIENT.                         |
| GAMP             | AUX                                    | AVERAGE DIFFUSION COEFFICIENT.                         |
| GAMPT2           | AUX                                    | AVERAGE DIFFUSION COEFFICIENT.                         |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                 |
|------------------|----------------------------------------|------------------------------------------------------------|
| GASCON           | AUX,MAIN                               | UNIVERSAL GAS CONSTANT DIVIDED BY MOLECULAR WEIGHT OF AIR. |
| GFNR             | AUX                                    | GENERATION RATE OF TURBULENCE ENERGY.                      |
| GO               | AUX,MAIN                               | CONSTANT IN SOOT NUCLEUS FORMATION RATE (SEE INPUT).       |
| GPSI             | AUX                                    | =GAMAS*PSI.                                                |
| GPSTR            | AUX                                    | GPSI DIVIDED BY DENSITY OF FINE STRUCTURES.                |
| H                | ALL                                    | ENTHALPY.                                                  |
| HCO              | INIT                                   | HEAT OF COMBUSTION OF CO.                                  |
| HCRAT            | INIT                                   | TEMPORARY USAGE.                                           |
| HDRFL            | ALLMOD                                 | TEMPORARY USAGE.                                           |
| HEIGHT           | INIT                                   | CHANNEL HEIGHT OF COMBUSTOR.                               |
| HEVAP            | SPRAY                                  | HEAT OF VAPORIZATION OF LIQUID FUEL.                       |
| HFU              | MAIN<br>INIT                           | HEAT OF FORMATION OF FUEL.                                 |
| HFUEL            | SPRAY                                  | HEAT OF COMBUSTION OF FUEL.                                |
| HPI              | ALLMOD<br>AUX<br>INIT                  | TEMPORARY USAGE FOR ENTHALPY.                              |
| HSURC            | STRIDE                                 | MIXTURE ENTHALPY.                                          |
| HSUM             | AUX<br>ALLMOD<br>INIT<br>STRIDE        | ENTHALPY OF GAS MIXTURE.                                   |
| HT               | SPRAY                                  | HEAT TRANSFER COEFFICIENT FOR DROPLET HEATUP.              |
| HTC              | ALLMOD<br>AUX                          | HEAT TRANSFER COEFFICIENT.                                 |
| HTCEXT           |                                        | EXTERNAL HEAT TRANSFER COEFFICIENT (NOT USED).             |
| HTCI             | TSOLVE                                 | HEAT TRANSFER COEFFICIENT.                                 |
| HYY              | INIT<br>MAIN<br>AUX                    | NUMBER OF HYDROGEN ATOMS IN FUEL.                          |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                 |
|------------------|----------------------------------------|--------------------------------------------------------------------------------------------|
| H1,H2            | INIT                                   | ENTHALPY(TEMPORARY USAGE).                                                                 |
| IB               | SPRAY                                  | INDEX TO DENOTE LOCATION OF I BOUNDARY.                                                    |
| ICONVG           | STRIDE                                 | *0, CHEMICAL KINETICS SOLUTION NOT CONVERGED.<br>*1, CHEMICAL KINETICS SOLUTION CONVERGED. |
| ICTOMA           | SOLVE<br>PAIN                          | NUMBER OF SWEEPS FOR EACH VARIABLE IN SOLVE (SEE INPUT).                                   |
| IDCH             | DATA, INIT                             | INDEX FOR INTERMEDIATE HYDROCARBON MASS FRACTION.<br>AUX                                   |
| IDCO             | DATA, INIT                             | INDEX FOR CO MASS FRACTION.<br>AUX                                                         |
| IDCO2            | DATA, INIT                             | INDEX FOR CO2 MASS FRACTION.<br>AUX                                                        |
| IDFU             | DATA, INIT                             | INDEX FOR FUEL MASS FRACTION.<br>AUX<br>SPRAY<br>STRIDE<br>ALLMOD                          |
| IDH1             | DATA                                   | INDEX FOR H ATOM MASS FRACTION.                                                            |
| IDH2             | DATA, INIT                             | INDEX FOR H2 MASS FRACTION.<br>AUX                                                         |
| IDH2O            | DATA, INIT                             | INDEX FOR H2O MASS FRACTION.<br>AUX                                                        |
| IDK              | AUX                                    | *01 FOR RATE CONTROLLED COMBUSTION,<br>*02 FOR MIXING CONTROLLED COMBUSTION.               |
| IDNO             | DATA                                   | INDEX FOR NO MASS FRACTION.                                                                |
| IDNO2            | DATA                                   | INDEX FOR NO2 MASS FRACTION.                                                               |
| IDN1             | DATA                                   | INDEX FOR N ATOM MASS FRACTION.                                                            |
| IDN2             | DATA, INIT                             | INDEX FOR N2 MASS FRACTION.<br>ALLMOD<br>AUX<br>STRIDE                                     |
| IDO              | DATA                                   | INDEX FOR O ATOM MASS FRACTION.                                                            |

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                           |
|------------------|----------------------------------------|----------------------------------------------------------------------|
| ID0H             | DATA                                   | INDEX FOR OH MASS FRACTION.                                          |
| ID02             | DATA, INIT<br>ALLMOD<br>UX<br>STRIDE   | INIT INDEX FOR O2 MASS FRACTION.                                     |
| IDW              | MAIN<br>ALLMOD<br>STRIDE<br>AUX        | TYPE OF BOUNDARY AT J=1(SEE INPUT).                                  |
| IE               | ALL                                    | ENDING VALUE OF I (LOCAL VALUE OF INLO).                             |
| IEHO             | FPRINT                                 | FINDING VALUE OF I FOR PRINTOUT.                                     |
| IG               | SPRAY                                  | DO-LOOP INDEX FOR DROPLET SIZE GROUPS.                               |
| IGAM1-2          | DATA<br>ALLMOD                         | INDEX TO DENOTE TYPE OF BOUNDARY CONDITION FOR A DEPENDENT VARIABLE. |
| IGPNT            | SPRAY                                  | INDEX FOR DIAGNOSTIC PRINTOUT.                                       |
| IHCPS            | H_CPS                                  | INDEX FOR CALCULATING THERMODYNAMIC PROPERTIES.                      |
| IJUMP            | PUTPUT<br>PATN                         | NUMBER OF ITERATIONS BETWEEN PRINTOUT.                               |
| IKIN             | INIT<br>ALLMOD<br>AUX<br>STRIDE        | INDEX FOR BOUNDARY CONDITIONS.                                       |
| IL               | STRIDE                                 | TEMPORARY USAGE.                                                     |
| IL               | SPRAY                                  | DO-LOOP INDEX FOR DROPLET RAYS.                                      |
| ILC              | CREK                                   | SEE TABLE C-2.                                                       |
| ILH              | CREK                                   | SEE TABLE C-2.                                                       |
| ILOC             | SPRAY                                  | I INDEX FOR DROPLET LOCATION.                                        |
| IMAT             | CREK                                   | SEE TABLE C-2.                                                       |
| IMAX             | MAIN<br>ALLMOD                         | I LOCATION OF MAXIMUM CONTINUITY ERROR.                              |
| INCOMP           |                                        | INDEX TO DENOTE COMPRESSIBILITY(NOT USED).                           |

TABLE C-1 (CONT'D.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                |
|------------------|----------------------------------------|-----------------------------------------------------------|
| IND              | STRIDE                                 | INDEX USED IN RADIATION CALCULATIONS.                     |
| INDEX            | ALL MOD                                | +1 IF U VELOCITY IS NEGATIVE AT EXIT,<br>OTHERWISE =0.    |
| INDEX            | SPRAY                                  | INDEX FOR TYPE OF BOUNDARY.                               |
| IND              | SOLVE                                  | DO-LOOP INDEX.                                            |
| INOMAX           | SOLVE                                  | NUMBER OF TDM SWEEPS.                                     |
| INOK             | MAIN<br>STRIDE                         | INDEX TO DECIDE ON NOX CALCULATIONS(SEE SNOX).            |
| INTAPE           | MAIN                                   | INDEX FOR INITIAL FIELD PRINTOUT(SEE INPUT).              |
| INV              | INIT<br>STRIDE                         | TEMPORARY USAGE.                                          |
| IOLD             | SPRAY                                  | PREVIOUS I LOCATION OF DROPLET.                           |
| IONF             | FPRINT                                 | FIRST VALUE OF I FOR PRINTOUT.                            |
| IP               | STRIDE                                 | TEMPORARY USAGE.                                          |
| IPAR             | MAIN<br>STRIDE                         | INDEX FOR ABSOLUTE OR RELATIVE PRESSURE(SEE INPUT).       |
| IPLAX            | MAIN<br>STRIDE                         | INDEX FOR PLANE OR AXISYMMETRIC FLOW(SEE INPUT).          |
| IPRINT           | FPRINT<br>MAIN                         | INDEX FOR PRINTOUT OF DEPENDENT VARIABLES<br>(SEE INPUT). |
| IRAD             | MAIN                                   | INDEX FOR RADIATION SOLUTION(SEE SRAD).                   |
| IREF             | MAIN                                   | I LOCATION OF REFERENCE PRESSURE LOCATION.                |
| IPES             | MAIN<br>INIT<br>STRIDE<br>AUX          | INDEX FOR RESTARTING SOLUTION(SEE INPUT).                 |
| IS               | ALL                                    | STARTING VALUE OF I (LOCAL VALUE OF IWLIS).               |
| ISOLVE           | STRIDE<br>MAIN<br>AUX                  | INDEX FOR SOLUTION OF DEPENDENT VARIABLES (SEE INPUT).    |

TABLE C-1 (CONTD.)

ORIGINAL FACE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                |
|------------------|----------------------------------------|---------------------------------------------------------------------------|
| ISOOT            | MAIN                                   | INDEX FOR SOOT SOLUTION(SEE SSOOT).                                       |
| ISP              | MAIN                                   | TEMPORARY USAGE.                                                          |
| ISPRAY           | MAIN                                   | NUMBER OF ITERATIONS BETWEEN SPRAY SOLUTIONS.                             |
| ISTART           | FPRINT                                 | STARTING VALUE OF I FOR PRINTOUT.                                         |
| ISTEP            | MAIN<br>STRIDE<br>AUX<br>OUTPUT        | NUMBER OF CURRENT ITERATION.                                              |
| ISTOP            | FPRINT                                 | ENDING DEPENDENT VARIABLE INDEX FOR PRINTOUT.                             |
| ISTR             | STRIDE                                 | FIRST I LOCATION.                                                         |
| ISTAT            | FPRINT                                 | STARTING DEPENDENT VARIABLE INDEX FOR PRINTOUT.                           |
| ISTR1            | SOLVE<br>STRAD                         | =IS-1.                                                                    |
| ISTUN            |                                        | INDEX FOR STEADY/UNSTEADY FLOW(NOT USED).                                 |
| ISUP             | SOLVE                                  | =ISTR+L.                                                                  |
| ISUM             | STRAD                                  | =IS+IE.                                                                   |
| ISUM1            | SOLVE                                  | =IS+IE.                                                                   |
| ISWP             | SOLVE<br>STRIDE                        | INDEX USED FOR Y-TDMA SWEEP DIRECTION.                                    |
| ITER             | CRK                                    | NUMBER OF CURRENT ITERATION OF CRK SOLUTION.                              |
| ITNOX            | STRIDE<br>MAIN                         | NUMBER OF ITERATIONS OF NOX SOLUTION AT FINAL ITERATION OF FLOW SOLUTION. |
| ITR              | STRIDE                                 | NUMBER OF CHEMICAL KINETICS ITERATIONS.                                   |
| ITR              | TSOLVE                                 | =1 IF RADIATION IGNORED, =2 IF RADIATION CONSIDERED.                      |
| ITRAD            | TSOLVE<br>MAIN<br>AUX                  | INDEX FOR RADIATION SOLUTION(SEE INPUT).                                  |
| ITWALL           | AUX                                    | INDEX FOR WALL TEMPERATURE SOLUTION(SEE INPUT).                           |
| ITYPE            | SPRAY                                  | =1 FOR HEATING DROPLET, =2 FOR BOILING DROPLET.                           |

TABLE C-1 (CONT'D.)

| FORTRAN VARIABLE | SUBROUTINE                        | DEFINITION                                                            |
|------------------|-----------------------------------|-----------------------------------------------------------------------|
|                  | WHERE<br>DEFINED OR<br>USED OFTEN |                                                                       |
| IU               | MAIN                              | INDEX FOR TYPE OF UNITS (SEE INPUT).                                  |
| IU               | SPRAY                             | =IUTNJ-1.                                                             |
| IUINJ            | ALLMOD<br>MAIN<br>INIT            | I NODE LOCATION OF COOLING SLOTS.                                     |
| IWINJ            | INIT<br>MAIN<br>ALLMOD            | I NODE LOCATION OF RADIAL INJECTION HOLES.                            |
| IWEI             | MAIN                              | I NODE AT WHICH UPSTREAM INCLINED WALL ENDS.                          |
| IWEO             | MAIN                              | I NODE AT WHICH DOWNSTREAM INCLINED WALL STARTS.                      |
| INLI             | ALL                               | STARTING I NODES OF CALCULATION DOMAIN WHEN INCLINED WALL IS PRESENT. |
| INLO             | ALL                               | ENDING I NODES OF CALCULATION DOMAIN WHEN INCLINED WALL IS PRESENT.   |
| IYY              | SOLVE<br>STRIDE                   | INDEX FOR DIRECTION OF TIME SWEEPS.                                   |
| JB               | SPRAY                             | INDEX TO DENOTE LOCATION OF J BOUNDARY.                               |
| JE               | ALL                               | LOCAL VALUE OF JWLD-1.                                                |
| JJ               | INIT                              | TEMPORARY USAGE.                                                      |
| JJ               | SOLVE<br>STRIDE                   | BUILDUP INDEX.                                                        |
| JJJ              | STRIDE                            | NUMBER OF REACTION STEPS (JJ OF CRIN) SEE TABLE C-21.                 |
| JKIN             | INIT<br>ALLMOD<br>AUX<br>STRIDE   | INDEX FOR TYPE OF BOUNDARY.                                           |
| JL               | STRIDE                            | TEMPORARY USAGE.                                                      |
| JLDC             | SPRAY                             | J LOCATION OF DROPLET.                                                |
| JM               | ALL                               | = (J-1)*IMAX.                                                         |
| JMAT             | MAIN<br>ALLMT                     | J LOCATION OF MAXIMUM CONTINUITY ERROR.                               |

TABLE C-1 (CONTD.)

CURRENT  
COMPUTER  
QUALITY

| FORTRAN SUBROUTINE<br>VARTABLE WHERE<br>DEFINED OR<br>USED OFTEN |                           | DEFINITION                                                                    |
|------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------|
| JNOX                                                             | MAIN                      | TEMPORARY USAGE.                                                              |
| JOLD                                                             | SPRAY                     | PREVIOUS J LOCATION OF DROPLET.                                               |
| JONE                                                             | FPRINT                    | FIRST J VALUE FOR PRINTOUT.                                                   |
| JP                                                               | STRIDE                    | TEMPORARY USAGE.                                                              |
| JPLANE                                                           | AUXRAD<br>STRAD<br>ALLMOD | VALUE OF J (INDEX FOR Y LOCATION) WHEN<br>SOLVING 2 DIRECTION RADIATION FLUX. |
| JREF                                                             | MAIN                      | J LOCATION OF REFERENCE PRESSURE NODE.                                        |
| JS                                                               | ALL                       | LOCAL VALUE OF JWL <sub>I+1</sub> .                                           |
| JSTR                                                             | STRAD<br>SOLVE<br>STRIOF  | STARTING J VALUE.                                                             |
| JSTR1                                                            | SOLVE<br>STRAD            | =JS-1.                                                                        |
| JSUM                                                             | SOLVE                     | =JSTR+M.                                                                      |
| JSUM                                                             | STRAD                     | =JS+JE.                                                                       |
| JSUM                                                             | FPRINT                    | =JONE+MP1.                                                                    |
| JSUM1                                                            | SOLVE                     | =JS+JE.                                                                       |
| JSWP                                                             | SOLVE<br>STRIDE           | INDEX USED FOR X-TOMA SWEEP DIRECTION.                                        |
| JSW1                                                             | INIT,MAIN                 | J NODE AT START OF DOME INLET.<br>ALLMOD                                      |
| JSW2                                                             | INIT,MAIN                 | J NODE AT END OF DOME INLET.<br>ALLMOD                                        |
| JTRAD                                                            | MAIN                      | TEMPORARY USAGE.                                                              |
| JU                                                               | SPRAY                     | =JUNIJ.                                                                       |
| JUNIJ                                                            | INIT,MAIN                 | J NODE LOCATIONS OF COOLING SLOTS.<br>ALLMOD                                  |
| JVINJ                                                            | INIT,MAIN                 | J NODE LOCATIONS OF RADIAL INJECTION HOLES.<br>ALLMOD                         |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SHAROUTINE WHERE DEFINED OR USED OFTEN                                                    | DEFINITION                                                         |
|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| JWEI             | INIT,MAIN J NODE AT WHICH UPSTREAM INNER INCLINED WALL STARTS.                            |                                                                    |
| JWIO             | INIT,MAIN J NODE AT WHICH UPSTREAM OUTER INCLINED WALL STARTS.                            |                                                                    |
| JWLI             | ALL                                                                                       | STARTING J NODES OF THE CALCULATION DOMAIN AT INNER INCLINED WALL. |
| JWLO             | ALL                                                                                       | ENDING J NODES OF THE CALCULATION DOMAIN AT OUTER INCLINED WALL.   |
| JWOI             | INIT,MAIN J NODE AT WHICH DOWNSTREAM INNER INCLINED WALL ENDS.<br>ALLMOD<br>AUX<br>STRIDE |                                                                    |
| JWOO             | INIT,MAIN J NODE AT WHICH DOWNSTREAM OUTER INCLINED WALL ENDS.<br>ALLMOD<br>AUX<br>STRIDE |                                                                    |
| J1,J2            | INIT                                                                                      | TEMPORARY VALUES FOR JWLI AND JWLO.                                |
| KEND             | SOLVE                                                                                     | VALUE OF K AT LAST Z LOCATION.                                     |
| KENOM1           | SOLVE                                                                                     | =KEND-1.                                                           |
| KENOM2           | SOLVE                                                                                     | =KEND-2.                                                           |
| KJC              | SPRAY                                                                                     | TEMPORARY USAGE.                                                   |
| KJK              | ALLMOD<br>PUTPUT                                                                          | TEMPORARY USAGE.                                                   |
| KJM              | ALL                                                                                       | =KM(K)+JM(J).                                                      |
| KK               | STRA0                                                                                     | TEMPORARY USAGE.                                                   |
| KLOC             | SPRAY                                                                                     | X LOCATION OF DROPLET.                                             |
| KM               | ALL                                                                                       | =(K-1)*NJNK,                                                       |
| KMAX             | MAIN<br>ALLMOD                                                                            | K LOCATION OF MAXIMUM CONTINUITY ERROR.                            |
| KMIN             | SOLVE                                                                                     | =KSTR+1.                                                           |
| KOLO             | SPRAY                                                                                     | PREVIOUS X LOCATION OF DROPLET.                                    |

TABLE C-1 (CONTD.)

GIVEN NAME BY  
OF FORTRAN QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                                                                                                                        |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KONF             | FPRINT                                 | FIRST K VALUE FOR PRINTOUT.                                                                                                                                                       |
| KONTR0           | AUX                                    | CONTROL INDEX =1 ON FIRST ITERATION, OTHERWISE 2.                                                                                                                                 |
| KONTR0           | STRAD                                  | CONTROL INDEX =1,2,3 WHEN NV=LVRX,LVRY,LVRZ.                                                                                                                                      |
| KOUNT            | TSOLVE                                 | NUMBER OF ITERATIONS ON WALL TEMPERATURE.                                                                                                                                         |
| KREF             | MAIN                                   | K LOCATION OF REFERENCE PRESSURE NODE.                                                                                                                                            |
| KSTR             | STRIDE<br>STRAD<br>AUX<br>SOLVE        | FIRST K LOCATION.                                                                                                                                                                 |
| KSUM             | SOLVE                                  | =KEND+KSTR-2.                                                                                                                                                                     |
| KSUM             | STRAD                                  | =2+N.                                                                                                                                                                             |
| KVINJ            | INIT<br>ALLMOD<br>MAIN                 | K NODE LOCATION OF RADIAL INJECTION HOLE.                                                                                                                                         |
| L                | ALL                                    | =LP1-1.                                                                                                                                                                           |
| LADIAR           | CREK                                   | SEE TABLE C-2.                                                                                                                                                                    |
| LASTEP           | MAIN<br>STRIDE                         | MAXIMUM NUMBER OF ITERATIONS.                                                                                                                                                     |
| LCONVG           | CREK                                   | SEE TABLE C-2.                                                                                                                                                                    |
| LCV              | STRIDE                                 | NUMBER OF CONTROL VOLUMES IN X DIRECTION (=L-1).                                                                                                                                  |
| LDERUG           | CREK                                   | SEE TABLE C-2.                                                                                                                                                                    |
| LENER            | CREK                                   | „.FALSE., ENERGY EQUATION COMPLETELY DECOUPLED FROM SPECIES EQUATIONS AND SPECIES CONCENTRATIONS OBTAINED AT SPECIFIED TEMPERATURE,<br>„.TRUE., COMPLETE ENERGY EQUATION IS USED. |
| LEOUIL           | CREK                                   | SEE TABLE C-2.                                                                                                                                                                    |
| LIJ              | ALL                                    | =I+JM(J).                                                                                                                                                                         |
| LTJNV            | SOLVE                                  | INDEX FOR VALUE AT K=1 PLANE IN F ARRAY.                                                                                                                                          |
| LIJ2             | STRIDE                                 | =LIJ+KM(2).                                                                                                                                                                       |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                     |
|------------------|----------------------------------------|----------------------------------------------------------------|
| LIK              | AUXRAD STRAD                           | = I+KM(K).                                                     |
| LMOP, LMPJ       | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.                           |
| LNRG             | CREK                                   | SEE TABLE C-2.                                                 |
| LOMP, LOPM       | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.                           |
| LOPP             | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.                           |
| LP               | ALL                                    | = I+JM(J)+KM(K).                                               |
| LPA              | STRIDE                                 | INDEX TO REFER TO Z- LOCATION.                                 |
| LPC              | ALL                                    | TEMPORARY USAGE.                                               |
| LPCE             | SOLVE                                  | TEMPORARY USAGE.                                               |
| LPCH             | AUX<br>AUXRAD<br>STRIDE<br>SPRAY       | INDEX USED TO REFER TO INTERMEDIATE HYDROCARBON MASS FRACTION. |
| LPCH1            | STRIDE                                 | INDEX USED TO REFER TO INTERMEDIATE HYDROCARBON MASS FRACTION. |
| LPCO             | AUX<br>AUXRAD<br>STRIDE<br>SPRAY       | INDEX USED TO REFER TO CO MASS FRACTION.                       |
| LPCO1            | STRIDE                                 | INDEX USED TO REFER TO CO MASS FRACTION.                       |
| LPCSTR           | SOLVE                                  | TEMPORARY USAGE.                                               |
| LPD              | AUX                                    | INDEX USED TO REFER TO DISSIPATION RATE.                       |
| LPE              | STRIDE                                 | INDEX TO REFER TO X+ LOCATION.                                 |
| LPF              | SOLVE<br>STRIDE<br>STRAD               | INDEX FOR REFERING TO VALUE IN F ARRAY.                        |
| LPF              | FPRINT                                 | DO-LOOP LIMIT FOR PRINTOUT.                                    |
| LPFAV            | AUX<br>STRIDE                          | INDEX USED TO REFER TO AVERAGE RADIATION FLUX.                 |

TABLE C-1 (CONTD.)

ORIGINAL INDEX  
OF PCPA QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                         |
|------------------|----------------------------------------|----------------------------------------------------|
| LPPFU            | AUX<br>AUXRAD<br>STRIDE<br>SPRAY       | INDEX USED TO REFER TO UMBURNT FUEL MASS FRACTION. |
| LPPFUOX          | AUX<br>AUXRAD<br>STRIDE<br>SPRAY       | INDEX USED TO REFER TO MIXTURE FRACTION.           |
| LPPFU1           | STRIDE                                 | INDEX USED TO REFER TO UMBURNT FUEL MASS FRACTION. |
| LPF1             | SOLVE                                  | =LPP+ISTR1.                                        |
| LPH              | AUX<br>STRIDE                          | INDEX USED TO REFER TO ENTHALPY.                   |
| LPHD             | AUX                                    | INDEX USED TO REFER TO ENTHALPY.                   |
| LPH2             | AUX<br>AUXRAD<br>STRIDE<br>SPRAY       | INDEX USED TO REFER TO H2 MASS FRACTION.           |
| LPH21            | STRIDE                                 | INDEX USED TO REFER TO H2 MASS FRACTION.           |
| LPK              | AUX                                    | INDEX USED TO REFER TO TURBULENCE ENERGY.          |
| LPL              | FPRINT                                 | DO-LOOP LIMIT FOR PRINTOUT.                        |
| LPMD             | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.               |
| LPN              | ALLMOD                                 | TEMPORARY USAGE.                                   |
| LPN              | STRIDE                                 | INDEX TO REFER TO Y+ LOCATION.                     |
| LPN              | AUX                                    | INDEX USED TO REFER TO SOOT NUCLEUS CONCENTRATION. |
| LPNP1            | ALLMOD<br>STRIDE                       | TEMPORARY USAGE.                                   |
| LPOM,LPOP        | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.               |
| LPD2             | STRIDE                                 | INDEX USED TO REFER TO O2 MASS FRACTION.           |
| LPPO             | AUX                                    | TEMPORARY USAGE OF LP TYPE OF INDEX.               |
| LPREF            | STRIDE<br>MAIN                         | LOCATION OF REFERENCE PRESSURE NODE.               |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SURROUNTE WHERE DEFINED OR USED OFTEN | DEFINITION                                           |
|------------------|---------------------------------------|------------------------------------------------------|
| LPRX             | AUX<br>AUXRAD<br>STRIDE               | INDEX USED TO REFER TO X DIRECTION RADIATION FLUX.   |
| LPRY             | AUX<br>AUXRAD<br>STRIDE               | INDEX USED TO REFER TO Y DIRECTION RADIATION FLUX.   |
| LPRZ             | AUXRAD<br>STRIDE                      | INDEX USED TO REFER TO Z DIRECTION RADIATION FLUX.   |
| LPS              | AUX                                   | INDEX USED TO REFER TO SOOT CONCENTRATION.           |
| LPS              | STRIDE                                | INDEX TO REFER TO Y- LOCATION.                       |
| LPSTR            | SOLVE                                 | TEMPORARY USAGE.                                     |
| LPS1             | AUX                                   | INDEX USED TO REFER TO SOOT CONCENTRATION OF SIZE 1. |
| LPS2             | AUX                                   | INDEX USED TO REFER TO SOOT CONCENTRATION OF SIZE 2. |
| LPT              | STRIDE                                | INDEX TO REFER TO Z+ LOCATION.                       |
| LPTE             | AUX<br>AUXRAD<br>SPRAY                | INDEX USED TO REFER TO TEMPERATURE.                  |
| LPW              | ALLMOD<br>STRIDE                      | INDEX TO REFER TO X- LOCATION.                       |
| LP1              | ALL                                   | NUMBER OF GRID NODES IN AXIAL (X) DIRECTION.         |
| LP11             | STRIDE                                | TEMPORARY USAGE.                                     |
| LP2              | ALLMOD<br>STRIDF                      | TEMPORARY USAGE.                                     |
| LREACT           | CREK                                  | SEE TABLE C-2.                                       |
| LVCH             | DATA<br>ALLMOD<br>AUX<br>STRIDE       | INDEX FOR INTERMEDIATE HYDROCARBON MASS FRACTION.    |
| LVCH1            | DATA<br>STRIDE                        | INDEX FOR INTERMEDIATE HYDROCARBON MASS FRACTION.    |
| LVCO             | DATA<br>ALLMOD<br>AUX<br>STRIDE       | INDEX FOR CO MASS FRACTION.                          |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN SUBROUTINE VARIABLE |                             | DEFINITION                                |
|-----------------------------|-----------------------------|-------------------------------------------|
|                             | WHERE DEFINED OR USED OFTEN |                                           |
| LVC01                       | DATA STRIDE                 | INDEX FOR CO MASS FRACTION.               |
| LVC02                       | DATA                        | INDEX FOR CO2 MASS FRACTION.              |
| LVO                         | DATA ALLMOD AUX             | INDEX FOR DISSIPATION RATE OF TURBULENCE. |
| LVFU                        | DATA ALLMOD AUX STRIDE      | INDEX FOR UNBURNT FUEL MASS FRACTION.     |
| LVFX0X                      | DATA ALLMOD AUX STRIDE      | INDEX FOR MIXTURE FRACTION.               |
| LVFU1                       | DATA STRIDE                 | INDEX FOR UNBURNT FUEL MASS FRACTION.     |
| LVH                         | DATA ALLMOD AUX STRIDE      | INDEX FOR ENTHALPY.                       |
| LVH1                        | DATA ALLMOD AUX STRIDE      | INDEX FOR H ATOM MASS FRACTION.           |
| LVH2                        | DATA ALLMOD AUX STRIDE      | INDEX FOR H2 MASS FRACTION.               |
| LVH20                       | DATA                        | INDEX FOR H2O MASS FRACTION.              |
| LVH21                       | DATA STRIDE                 | INDEX FOR H2 MASS FRACTION.               |
| LVR                         | DATA ALLMOD AUX STRIDE      | INDEX FOR TURBULENCE KINETIC ENERGY.      |
| LVN                         | DATA ALLMOD AUX             | INDEX FOR SOOT NUCLEUS CONCENTRATION.     |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | DATA WHERE DEFINED OR USED OFTEN | DEFINITION                                       |
|------------------|----------------------------------|--------------------------------------------------|
| LVNO             | DATA                             | INDEX FOR NO MASS FRACTION.                      |
| LVNO2            | DATA                             | INDEX FOR NO2 MASS FRACTION.                     |
| LVN1             | DATA                             | INDEX FOR N ATOM MASS FRACTION.                  |
| LVN2             | DATA                             | INDEX FOR N2 MASS FRACTION.                      |
| LVO              | DATA                             | INDEX FOR O ATOM MASS FRACTION.                  |
| LVOH             | DATA STRIDE                      | INDEX FOR OH MASS FRACTION.                      |
| LVO2             | DATA STRIDE                      | INDEX FOR O2 MASS FRACTION.                      |
| LVRX             | DATA ALLMOD STRIDE               | INDEX FOR X DIRECTION RADIATION FLUX.            |
| LVRY             | DATA ALLMOD                      | INDEX FOR Y DIRECTION RADIATION FLUX.            |
| LVRZ             | DATA STRIDE                      | INDEX FOR Z DIRECTION RADIATION FLUX.            |
| LVS1             | DATA ALLMOD AUX                  | INDEX FOR MASS FRACTION OF SOOT PARTICLE SIZE 1. |
| LVS2             | DATA ALLMOD AUX                  | INDEX FOR MASS FRACTION OF SOOT PARTICLE SIZE 2. |
| LXM              | ALL                              | INDEX TO REFER TO X- LOCATION.                   |
| LXMC             | ALLMOD SPRAY                     | TEMPORARY USAGE.                                 |
| LXM1             | AUX STRIDE                       | =LXM-NI.                                         |
| LXP              | ALL                              | INDEX TO REFER TO X+ LOCATION.                   |
| LXP1             | AUX STRIDE                       | =LXP-NI.                                         |
| LYM              | ALL                              | INDEX TO REFER TO Y- LOCATION.                   |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN SUBROUTINE<br>VARIABLE WHERE<br>DEFINED OR<br>USED OFTEN |                    | DEFINITION                                         |
|------------------------------------------------------------------|--------------------|----------------------------------------------------|
| LYNC                                                             | ALLMOD<br>SPRAY    | TEMPORARY USAGE.                                   |
| LYM1                                                             | AUX                | =LYN-1.                                            |
| LYP                                                              | ALL                | INDEX TO REFER TO Y+ LOCATION.                     |
| LYP1                                                             | AUX<br>STRIDE      | =LYP-1.                                            |
| LZM                                                              | ALL                | INDEX TO REFER TO Z- LOCATION.                     |
| LZMC                                                             | ALLMOD<br>SPRAY    | TEMPORARY USAGE.                                   |
| LZM1                                                             | AUX                | =LZM-1.                                            |
| LZP                                                              | ALL                | INDEX TO REFER TO Z+ LOCATION.                     |
| LZP1                                                             | AUX<br>STRIDE      | =LZP-1.                                            |
| M                                                                | ALL                | =MP1-1.                                            |
| MAX                                                              | AUX<br>STRIDE      | LOCAL VALUE OF JWLD-1.                             |
| MCV                                                              | STRIDE             | NUMBER OF CONTROL VOLUMES IN Y DIRECTION.          |
| MIN                                                              | AUX                | LOCAL VALUE OF JWLI+1.                             |
| MM1                                                              | STRIDE             | SAME AS MCV.                                       |
| MM1                                                              | ALLMOD             | TEMPORARY USAGE.                                   |
| MODEL                                                            | AUX,MAIN           | INDEX FOR TYPE OF VISCOSITY(SEE INPUT).            |
| MDEN                                                             | AUX,MAIN           | INDEX FOR TYPE OF DENSITY(SEE INPUT).              |
| MNDER                                                            | AUX,MAIN<br>STRIDE | INDEX FOR TYPE OF REACTION RATE(SEE INPUT).        |
| MPART                                                            | AUX,MAIN           | NUMBER OF SOOT PARTICLE SIZES.                     |
| MP1                                                              | ALL                | NUMBER OF GRID NODES IN RADIAL (Y) DIRECTION.      |
| MW                                                               | SPRAY              | ARRAY TO STORE MOLECULAR WEIGHTS OF VARIOUS FUELS. |
| MWCOND                                                           | SPRAY              | CONSTANT USED IN MOLECULAR WEIGHT CALCULATION.     |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN SUBROUTINE VARIABLE WHERE DEFINED OR USED OFTEN |                                           |                                                                                           |
|---------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|
| MWT                                                     | SPRAY                                     | MOLECULAR WEIGHT OF FUEL VAPORS.                                                          |
| M1,M2                                                   | ALLMOD                                    | TEMPORARY USAGE.                                                                          |
| N                                                       | ALL                                       | =NP1-1.                                                                                   |
| NA                                                      | CPEK                                      | SEE TABLE C-2.                                                                            |
| NCV                                                     | STRIDE                                    | NUMBER OF CONTROL VOLUMES IN Z DIRECTION (=N-1).                                          |
| NDERUG                                                  | CPEK                                      | SEE TABLE C-2.                                                                            |
| NFNZ                                                    | SPRAY<br>MAIN<br>ALLMOD<br>STRIDE<br>INIT | INDEX FOR WHETHER LIQUID FUEL NOZZLE IS PRESENT<br>(SEE INPUT).                           |
| NG                                                      | SPRAY                                     | NUMBER OF DROPLET SIZE GROUPS.                                                            |
| NGAM                                                    | DATA<br>STRIDE<br>AUX                     | INDEX FOR DIFFUSION COEFFICIENT.                                                          |
| NGLOB                                                   | CPEK                                      | SEE TABLE C-2.                                                                            |
| NGLOPP                                                  | CPEK                                      | SEE TABLE C-2.                                                                            |
| NGOTO                                                   | STRIDE<br>SOLVE<br>STRAD<br>ALLMOD<br>AUX | INDEX WHICH TAKES VALUES 1,2,3 WHEN U,V,W BEING<br>SOLVED, OTHERWISE IT HAS A VALUE OF 4. |
| NI                                                      | ALL                                       | MAXIMUM NUMBER OF NODES IN X DIRECTION.                                                   |
| NINJ                                                    | STRIDE                                    | NINJ.                                                                                     |
| NINJNK                                                  | STRIDE                                    | NINJNK.                                                                                   |
| NITER                                                   | STRIDE                                    | MAXIMUM NUMBER OF CHEMICAL KINETICS ITERATIONS.                                           |
| NJ                                                      | ALL                                       | MAXIMUM NUMBER OF NODES IN Y DIRECTION.                                                   |
| NK                                                      | ALL                                       | MAXIMUM NUMBER OF NODES IN Z DIRECTION.                                                   |
| NLM                                                     | CPEK                                      | SEE TABLE C-2.                                                                            |
| NN                                                      | SPRAY                                     | DO-LOOP INDEX OVER FUEL NOZZLES.                                                          |

TABLE C-1 (CONTD.)

OPTIONAL PARAMETERS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                   |
|------------------|----------------------------------------|--------------------------------------------------------------|
| NNOX             | MAIN                                   | INDEX FOR NOX SOLUTION(SEE INPUT).                           |
| NNV              | DATA STRIDE                            | MAXIMUM NUMBER OF DEPENDENT VARIABLES.                       |
| NP               | DATA STRIDE                            | INDEX FOR PRESSURE.                                          |
| NP1              | ALL                                    | NUMBER OF GRID NODES IN TANGENTIAL (Z) DIRECTION.            |
| NR               | CREK                                   | SEE TABLE C-2.                                               |
| NRHO             | DATA AUX                               | INDEX FOR DENSITY.                                           |
| NS               | ALL                                    | NUMBER OF SPECIES.                                           |
| NSKIP            | FPRINT                                 | TEMPORARY STORAGE FOR IPRINT.                                |
| NSL              | SPRAY MAIN                             | NUMBER OF SPRAY CONE RAYS.                                   |
| NSL2             | SPRAY                                  | =NSL(NN).                                                    |
| NSM              | CREK                                   | SEE TABLE C-2.                                               |
| NSOOT            | MAIN                                   | INDEX FOR SOOT SOLUTION(SEE INPUT).                          |
| NS1,NS2          | ALL                                    | TEMPORARY USAGE OF DO-LOOP LIMITS ON SPECIES CONCENTRATIONS. |
| NTP              | OUTPUT                                 | INDEX FOR TAPE NUMBER.                                       |
| NTPT             | STRIDE                                 | =NTP1+NTP2.                                                  |
| NTP1             | STRIDE<br>MAIN,INIT<br>AUX             | INDEX FOR TAPE NUMBER.                                       |
| NTP2             | STRIDE<br>MAIN,INIT                    | INDEX FOR TAPE NUMBER.                                       |
| NTP3             | SPRAY<br>MAIN<br>ALLMOD                | INDEX FOR TAPE NUMBER.                                       |
| NUINJ            | MAIN,INIT<br>ALLMOD                    | NUMBER OF COOLING SLOTS.                                     |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                   |
|------------------|----------------------------------------|------------------------------------------------------------------------------|
| NV               | ALL                                    | DEPENDENT VARIABLE INDEX.                                                    |
| NVCH             | DATA, INIT                             | INDEX FOR INTERMEDIATE HYDROCARBON MASS FRACTION.<br>ALLMOD<br>STRIDE<br>AUX |
| NVCO             | DATA, INIT                             | INDEX FOR CO MASS FRACTION.<br>STRIDE<br>AUX                                 |
| NVCO2            | DATA                                   | INDEX FOR CO2 MASS FRACTION.                                                 |
| NVD              | DATA, INIT                             | INDEX FOR DISSIPATION RATE OF TURBULENCE.<br>AUX                             |
| NVE              |                                        | INDEX FOR EMISSIVE POWER.                                                    |
| NVF              | ALL                                    | INDEX FOR IDENTIFYING LOCATION IN F ARRAY.                                   |
| NVFAV            | DATA, INIT                             | INDEX FOR AVERAGE RADIATION FLUX.<br>STRIDE<br>AUX                           |
| NVFF             | ALLMOD                                 | =NVF(NV).                                                                    |
| NVFU             | DATA, INIT                             | INDEX FOR UNBURNED FUEL MASS FRACTION.<br>ALLMOD<br>AUX<br>STRIDE            |
| NVFUCX           | DATA, INIT                             | INDEX FOR MIXTURE FRACTION.<br>ALLMOD<br>STRIDE<br>AUX                       |
| NVM              | DATA, INIT                             | INDEX FOR ENTHALPY.<br>STRIDE<br>AUX                                         |
| NVHP             | AUX                                    | INDEX FOR ENTHALPY.                                                          |
| NVH2             | DATA, INIT                             | INDEX FOR H2 MASS FRACTION.<br>STRIDE<br>AUX                                 |
| NVH2O            | DATA                                   | INDEX FOR H2O MASS FRACTION.                                                 |
| NVINJ            | MAIN<br>INIT<br>ALLMOD                 | NUMBER OF RADIAL INJECTION HOLES.                                            |

TABLE C-1 (CONT'D.)

ORIGINAL PRINTOUT  
OF PART. QUANTITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN                               | DEFINITION                                                  |
|------------------|----------------------------------------------------------------------|-------------------------------------------------------------|
| NVJM             | STRAD                                                                | =JM(J)+NVM(NVRZ),                                           |
| NVK              | DATA, INIT INDEX FOR TURBULENCE KINETIC ENERGY.<br>ALLMOD<br>AUX     |                                                             |
| NVKM             | SOLVE<br>STRAD<br>FPRINT                                             | =KM(K)+NVM(NVF(NV)),                                        |
| NVM              | ALL                                                                  | =(NV-1)*NIONJ+NK,                                           |
| NVN              | DATA, INIT INDEX FOR SOOT NUCLEUS CONCENTRATION.<br>AUX              |                                                             |
| NVN2             | DATA                                                                 | INDEX FOR N2 MASS FRACTION.                                 |
| NVNX             | DATA                                                                 | INDEX FOR O2 MASS FRACTION.                                 |
| NVRX             | DATA, INIT INDEX FOR X DIRECTION RADIATION FLUX.<br>STRIDE           |                                                             |
| NVRY             | DATA, INIT INDEX FOR Y DIRECTION RADIATION FLUX.<br>STRIDE           |                                                             |
| NVRZ             | DATA, INIT INDEX FOR Z DIRECTION RADIATION FLUX.<br>STRIDE<br>ALLMOD |                                                             |
| NVS1             | DATA, INIT INDEX FOR MASS FRACTION OF SOOT PARTICLE SIZE 1.<br>AUX   |                                                             |
| NVS2             | DATA, INIT INDEX FOR MASS FRACTION OF SOOT PARTICLE SIZE 2.<br>AUX   |                                                             |
| NVT              | DATA, INIT INDEX FOR TEMPERATURE.<br>AUX                             |                                                             |
| NVV              | FPRINT                                                               | DO-LOOP COUNTER.                                            |
| NVVV             | FPRINT                                                               | FIRST DEPENDENT VARIABLE TO BE PRINTED ON A CALL TO FPRINT. |
| N1               | CREK                                                                 | SEE TABLE C-2.                                              |
| N2               | CREK                                                                 | SEE TABLE C-2.                                              |
| N3               | CREK                                                                 | SEE TABLE C-2.                                              |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                          |
|------------------|----------------------------------------|---------------------------------------------------------------------|
| DGPSI            | AUX                                    | TEMPORARY USAGE.                                                    |
| DGPSIR           | AUX                                    | TEMPORARY USAGE.                                                    |
| P                | ALL                                    | PRESSURE.                                                           |
| PA               | CPEK                                   | PRESSURE.                                                           |
| PATH             | AUXRAD                                 | PATH LENGTH FOR RADIATION CALCULATIONS.                             |
| PRAR             | OUTPUT                                 | TEMPORARY USAGE.                                                    |
| PCO2             | AUXRAD                                 | CO2 PARTIAL PRESSURE.                                               |
| PEXP1            | INIT                                   | PRE-EXPONENT FACTOR IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME.  |
| PEXP2            | INIT                                   | PRE-EXPONENT FACTOR IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME. |
| PEXP3            | INIT                                   | PRE-EXPONENT FACTOR IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME.  |
| PEXP4            | INIT                                   | PRE-EXPONENT FACTOR IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME. |
| PHI              | INIT<br>AUX                            | FUEL MASS FRACTION/STOICHIOMETRIC MIXTURE FRACTION.                 |
| PH2O             | AUXRAD                                 | H2O PARTIAL PRESSURE.                                               |
| PI               | SPRAY                                  | =3.14159.                                                           |
| PJAY             | ALL,MOD<br>MAIN                        | PJAY FUNCTION FOR HEAT TRANSFER WALL FUNCTION.                      |
| PLAXH1           | ALL                                    | IPLAX=1.                                                            |
| PLREF            | STRIDE                                 | PRESSURE AT REFERENCE PRESSURE LOCATION.                            |
| PO,POT           | SPRAY                                  | CONSTANTS IN BOILING POINT CALCULATION.                             |
| PO2              | AUX                                    | OXYGEN PARTIAL PRESSURE.                                            |
| PP               | ALL                                    | PRESSURE CORRECTION.                                                |
| PPLN             | CPEK                                   | SFF TABLE C-2.                                                      |
| PR               | AUX,MAIN<br>ALL,MOD                    | LAMINAR PRANDTL/SCHMIDT NUMBER.                                     |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN SUBROUTINE |                                   | DEFINITION                                                                  |
|--------------------|-----------------------------------|-----------------------------------------------------------------------------|
| VARTABLE           | WHERE<br>DEFINED OR<br>USED OFTEN |                                                                             |
| PRFF               | AUX,MAIN<br>ALLMOD                | TURBULENT PRANDTL/SCHMIDT NUMBER.                                           |
| PRESS              | MAIN<br>INIT<br>STRIDE<br>AUX     | SYSTEM PRESSURE.                                                            |
| PREXPS             | AUX,MAIN                          | PRE-EXPONENT FACTOR IN SOOT OXIDATION RATE (SEE INPUT).                     |
| PREXP1             | AUX,MAIN<br>TNIT                  | PRE-EXPONENT FACTOR IN FIRST STEP OF HYDROCARBON OXIDATION SCHEME(=PEXP1).  |
| PREXP2             | AUX,MAIN<br>INIT                  | PRE-EXPONENT FACTOR IN SECOND STEP OF HYDROCARBON OXIDATION SCHEME(=PEXP2). |
| PREXP3             | AUX,MAIN<br>TNIT                  | PRE-EXPONENT FACTOR IN THIRD STEP OF HYDROCARBON OXIDATION SCHEME(=PEXP3).  |
| PREXP4             | AUX,MAIN<br>INIT                  | PRE-EXPONENT FACTOR IN FOURTH STEP OF HYDROCARBON OXIDATION SCHEME(=PEXP4). |
| PRRAT              | MAIN                              | RATIO OF LAMINAR AND TURBULENT PRANDTL NUMBERS.                             |
| PR3                | SPRAY                             | PRANDTL NUMBER.                                                             |
| PSI                | AUX                               | FRACTION OF FINE STRUCTURES HEATED ENOUGH TO REACT.                         |
| PSIC               | AUX                               | TEMPORARY USAGE IN SOOT OXIDATION RATE.                                     |
| PT2                | SPRAY                             | =2*PI.                                                                      |
| QCH                | TSOLVE                            | CONVECTION HEAT TRANSFER.                                                   |
| QDT                | SPRAY                             | HEAT TRANSFER RATE TO DROPLET.                                              |
| QRH                | TSOLVE                            | NET RADIATION HEAT TRANSFER FROM WALL.                                      |
| QQ-04              | CREK                              | SEE TABLE C-2.                                                              |
| R                  | ALL                               | RADIUS.                                                                     |
| RAD                | TSOLVE                            | RADIATION HEAT FLUX TO WALL.                                                |
| RADIN              | INIT<br>ALLMOD                    | INLET RADIATION FLUX.                                                       |
| RADSUR             | TINIT<br>ALLMOD                   | RADIATION FLUX AT EACH AREA STATION.                                        |

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                   |
|------------------|----------------------------------------|----------------------------------------------|
| RATE             | SPRAY                                  | DROPLET EVAPURATZON RATE.                    |
| RATIO1=9         | INIT ALLMOD AUX                        | CONSTANTS USED IN ELEMENT BALANCE EQUATIONS. |
| RATIO10=12       | INIT ALLMOD AUX                        | CONSTANTS USED IN ELEMENT BALANCE EQUATIONS. |
| RDT              | STRIDE                                 | ALWAYS EQUAL TO ZERO.                        |
| REI              | SPRAY                                  | DROPLET REYNOLDS NUMBER.                     |
| RELAX            | SOLVE MAIN STRIDE AUX                  | UNDER-RELAXATION FACTORS (SEE INPUT).        |
| RELAXM           | SOLVE AUX                              | =1.-RELAX.                                   |
| RET              | AUX                                    | TURBULENT REYNOLDS NUMBER.                   |
| RFUFL            | MAIN SPRAY                             | RADIUS OF FUEL NOZZLE.                       |
| RF1,PF2          | AUX                                    | SOOT FORMATION RATES.                        |
| RGAS             | CREK                                   | SEE TABLE C-2.                               |
| RGASIN           | CREK                                   | SEE TABLE C-2.                               |
| RHO              | ALL                                    | DENSITY.                                     |
| RHDA             | ALLMOD STRIDE                          | DENSITY*AREA.                                |
| RHOCON           | MAIN AUX                               | PRESSURE DIVIDED BY UNIVERSAL GAS CONSTANT.  |
| RHOINJ           | ALLMOD                                 | DENSITY OF DILUTION JET.                     |
| RHOLP            | AUX                                    | DENSITY AT NODE LP.                          |
| RHOI             | AUX                                    | DENSITY OF SURROUNDING FLUID.                |
| RHOP             | AUX MAIN TINIT                         | SOOT PARTICLE DENSITY.                       |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                   |
|------------------|----------------------------------------|----------------------------------------------|
| RHOPP            | STRIDE INIT                            | DENSITY AT NODE P.                           |
| RHODSTR          | AUX                                    | DENSITY OF FINE STRUCTURES.                  |
| RHOSH            | INIT ALLMOD                            | INLET DENSITY.                               |
| RHD4             | INIT                                   | DENSITY.                                     |
| RI               | STRIDE MAIN                            | INNER RADIUS OF COMBUSTOR.                   |
| RM               | STRIDE                                 | RADIUS AT V-VELOCITY LOCATION.               |
| RMV              | STRIDE                                 | RADIUS AT V-VELOCITY CONTROL VOLUME SURFACE. |
| RNC              | AUX                                    | TEMPORARY USAGE.                             |
| RNG              | SPRAY                                  | NUMBER OF DROPLET SIZE GROUPS.               |
| RNSL             | SPRAY MAIN INIT                        | =NSL2, NUMBER OF SPRAY CONE RAYS.            |
| ROA              | ALLMOD                                 | DENSITY*AREA.                                |
| ROF              | SPRAY                                  | DENSITY OF LIQUID FUEL AT BOILING POINT.     |
| ROFO             | SPRAY                                  | INITIAL DENSITY OF LIQUID FUEL.              |
| ROST             | SPRAY                                  | GAS DENSITY.                                 |
| RTCD             | INIT ALLMOD AUX                        | SQUARE ROOT OF CD.                           |
| RTCDK            | ALLMOD                                 | TURBULENCE ENERGY=SQRT(CD).                  |
| RVAV             | STRIDE                                 | TEMPORARY USAGE.                             |
| RVFCX-Z          | SPRAY                                  | COORDINATE TRANSFORMATION QUANTITIES.        |
| SRAR             | OUTPUT                                 | TEMPORARY USAGE.                             |
| SCATR            | AUXRAD MAIN INIT                       | SCATTERING COEFFICIENT (IF ITAD=2).          |

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN  | DEFINITION                                |
|------------------|-----------------------------------------|-------------------------------------------|
| SCTR             | AUXRAD                                  | ARRAY FOR SCATTERING COEFFICIENT.         |
| SC9              | SPRAY                                   | SCHMIDT NUMBER.                           |
| SECTOR           | INIT                                    | ANGULAR SECTOR.                           |
| SEXIT            | ALLMOD                                  | EXIT MASS FLOW ERROR.                     |
| SFAC             | AUX                                     | TEMPORARY USAGE IN CO REACTION RATE.      |
| SHRSTR           | ALLMOD                                  | SHEAR STRESS.                             |
| SIG              | TSOLVE                                  | STEFAN-BOLTZMANN CONSTANT.                |
| SIGMA            | AUXRAD<br>DATA<br>ALLMOD<br>INIT<br>AUX | STEFAN-BOLTZMANN CONSTANT.                |
| SINA             | SPRAY                                   | SINE OF HALF THE NOZZLE CONE ANGLE.       |
| SINR             | SPRAY                                   | SINE OF NOZZLE BACK ANGLE.                |
| SIND             | SPRAY                                   | SINE OF NOZZLE DOWN ANGLE.                |
| SINT             | SPRAY                                   | SINE OF CURRENT SPRAY CONE SEGMENT ANGLE. |
| SKE              | ALLMOD                                  | TURBULENCE ENERGY AT COOLING SLOT.        |
| SLM              | ALLMOD                                  | LENGTH SCALE AT COOLING SLOT.             |
| SM               | CREK                                    | SEE TABLE C-2.                            |
| SMASS            | INIT                                    | TEMPORARY USAGE.                          |
| SMAY             | ALLMOD<br>MAIN                          | MAXIMUM OF CONTINUITY ERRORS.             |
| SMCONE           | OUTPUT                                  | SMOKE CONCENTRATION.                      |
| SMO              | SPRAY<br>MAIN                           | SAUTER MEAN DIAMETER.                     |
| SMINV            | CREK                                    | SEE TABLE C-2.                            |
| SMOND            | OUTPUT                                  | SMOKE NUMBER.                             |
| SMW              | CREK                                    | SEE TABLE C-2.                            |

TABLE C-1 (CONTD.)

ORIGINAL CODE  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                               |
|------------------|----------------------------------------|------------------------------------------------------------------------------------------|
| SMO              | CREK                                   | NOT USED.                                                                                |
| SNOX             | MAIN                                   | NOX SOLUTION STARTED AFTER ERROR FALLS TO SNOX OR AFTER INOX NUMBER OF ITERATIONS.       |
| S00TK            | AUXRAD                                 | SOOT CONCENTRATION.                                                                      |
| S00T1            | ALL                                    | MASS FRACTION OF SOOT PARTICLE SIZE 1.                                                   |
| S00T2            | ALL                                    | MASS FRACTION OF SOOT PARTICLE SIZE 2.                                                   |
| S0R              | AUX                                    | PART OF SOURCE TERM.                                                                     |
| S0RC0            | AUX                                    | PART OF CO SOURCE TERM.                                                                  |
| S0R1             | AUX                                    | LAMINAR SOURCE TERM.                                                                     |
| S0R2             | AUX                                    | TURBULENT SOURCE TERM.                                                                   |
| S0R3             | AUX                                    | LAMINAR SOURCE TERM.                                                                     |
| S0R4             | AUX                                    | TURBULENT SOURCE TERM.                                                                   |
| SP               | ALL                                    | PART OF LINEARIZED SOURCE TERM.                                                          |
| SPCH             | AUX                                    | PART OF LINEARIZED SOURCE TERM (SP) FOR INTERMEDIATE HYDROCARBON MASS FRACTION.          |
| SPC1,SPC2        | AUX                                    | SOOT OXIDATION RATE.                                                                     |
| SPFU             | AUX                                    | PART OF LINEARIZED SOURCE TERM (SP) FOR FUEL.                                            |
| SPF1,SPF2        | AUX                                    | TEMPORARY USAGE.                                                                         |
| SPF2F            | AUX                                    | TEMPORARY USAGE.                                                                         |
| SPK              | SOLVE                                  | PART OF LINEARIZED SOURCE TERM USED IN CYCLIC TOMA.                                      |
| SQFK             | INIT                                   | SQUARE ROOT OF FK.                                                                       |
| SRAD             | MAIN                                   | RADIATION SOLUTION STARTED AFTER ERROR FALLS TO SRAD OR AFTER IRAD NUMBER OF ITERATIONS. |
| SREI             | SPRAY                                  | SQUARE ROOT OF REI.                                                                      |
| SS00T            | MAIN                                   | SOOT SOLUTION STARTED AFTER ERROR FALLS TO SS00T OR AFTER ISOOT NUMBER OF ITERATIONS.    |
| SSS              | AUX                                    | TEMPORARY USAGE.                                                                         |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                                       |
|------------------|----------------------------------------|----------------------------------------------------------------------------------|
| SSUM             | ALLMOD MAIN                            | SUM OF ABSOLUTE CONTINUITY ERRORS.                                               |
| STORE            | SOLVE STRAD                            | TEMPORARY USAGE.                                                                 |
| ST4              | INIT                                   | $\bullet \text{SIGMA} = \text{TEMP}^{0.4}$ .                                     |
| SU               | ALL                                    | PART OF LINEARIZED SOURCE TERM.                                                  |
| SUCH             | AUX                                    | PART OF LINEARIZED SOURCE TERM (SUI) FOR INTERMEDIATE HYDROCARBON MASS FRACTION. |
| SUFU             | AUX                                    | PART OF LINEARIZED SOURCE TERM (SUI) FOR FUEL.                                   |
| SUF1,SUF2        | AUX                                    | TEMPORARY USAGE.                                                                 |
| SUK              | SOLVE                                  | PART OF LINEARIZED SOURCE TERM USED IN CYCLIC TDMA.                              |
| SUN              | AUX                                    | TEMPORARY USAGE.                                                                 |
| SUM1             | MAIN                                   | TEMPORARY USAGE.                                                                 |
| SUM2             | MAIN                                   | TEMPORARY USAGE.                                                                 |
| SWNO             | MAIN                                   | RATIO OF TANGENTIAL TO AXIAL VELOCITY AT DOME INLET.                             |
| S1               | CREK                                   | SEE TABLE C-2.                                                                   |
| S2               | CREK                                   | SEE TABLE C-2.                                                                   |
| T                | INIT AUXRAD AUX                        | TEMPERATURE.                                                                     |
| TAN              | INIT                                   | ANNULUS TEMPERATURE.                                                             |
| TAUP             | AUX                                    | WALL SHEAR STRESS.                                                               |
| TR               | SPRAY                                  | LIQUID FUEL BOILING TEMPERATURE.                                                 |
| TCYLW            | ALLMOD MAIN                            | TEMPERATURE OF CYLINDRICAL PORTION OF COMBUSTOR WALL.                            |
| TEMP             | ALL                                    | TEMPERATURE.                                                                     |
| TEMPW            | ALLMOD                                 | TEMPERATURE.                                                                     |
| TEMTH            | INIT                                   | MASS AVERAGED TEMPERATURE AT EACH AXIAL STATION.                                 |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                                     |
|------------------|----------------------------------------|----------------------------------------------------------------|
| TF               | SPRAY                                  | TEMPERATURE OF COMBUSTION PRODUCTS.                            |
| TFU              | SPRAY                                  | LIQUID DROPLET TEMPERATURE.                                    |
| TFUEL            | MAIN<br>ALLMOD<br>SPRAY                | INLET TEMPERATURE OF FUEL.                                     |
| TGAS             | TSOLVE                                 | GAS TEMPERATURE.                                               |
| THETA            | SPRAY                                  | CURRENT SPRAY CONE SEGMENT ANGLE.                              |
| THETA1           | SPRAY<br>MAIN                          | INITIAL SPRAY CONE SEGMENT ANGLE.                              |
| THETA2           | SPRAY<br>MAIN                          | FINAL SPRAY CONE SEGMENT ANGLE.                                |
| TINE             | STRIDE                                 | TIME.                                                          |
| TIN              | INIT                                   | INITIAL TEMPERATURE AT EACH AXIAL STATION.                     |
| TINCP            | AUX<br>MAIN                            | SOOT CALCULATION BYPASSED FOR TEMPERATURE.LE.TINCP.            |
| TINLW            | ALLMOD<br>MAIN<br>INIT                 | TEMPERATURE OF INCLINED WALL PORTION OF COMBUSTOR AND OF DOME. |
| TITLE            | FPRINT<br>MAIN                         | HEADING FOR DEPENDENT VARIABLE.                                |
| TITLE2           | OUTPUT<br>MAIN                         | CASE TITLE CARD.                                               |
| TK               | CREK                                   | SEE TABLE C-2.                                                 |
| TKINV            | CREK                                   | SEE TABLE C-2.                                                 |
| TLIP             | ALLMOD<br>MAIN                         | TEMPERATURE OF COOLING SLOT LIP.                               |
| TLN              | CREK                                   | SEE TABLE C-2.                                                 |
| TMAX             | INIT<br>AUX                            | MAXIMUM TEMPERATURE.                                           |
| TNEW             | INIT                                   | TEMPERATURE ON NEW ITERATION.                                  |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                           |
|------------------|----------------------------------------|------------------------------------------------------|
| TNOX             | MAIN STRIDE                            | NOX CALCULATION BYPASSED IF TEMPERATURE.LE.TNOX.     |
| TO               | AUX                                    | TEMPERATURE OF SURROUNDING FLUID.                    |
| TOUT             |                                        | OUTLET TEMPERATURE (NOT USED).                       |
| TS               | AUXRAD                                 | TEMPERATURE.                                         |
| TST              | SPRAY                                  | GAS TEMPERATURE.                                     |
| TSTR             | AUX                                    | TEMPERATURE OF FINE STRUCTURES.                      |
| TSW              | INIT MAIN                              | TEMPERATURE AT DOME INLET.                           |
| TUINJ            | ALLMOD MAIN INIT                       | COOLING SLOT TEMPERATURE.                            |
| TVINJ            | MAIN INIT                              | DILUTION JET TEMPERATURE.                            |
| TH               | TSOLVE                                 | WALL TEMPERATURE.                                    |
| THN              | TSOLVE                                 | WALL TEMPERATURE AT NEW ITERATION.                   |
| TH2              | TSOLVE                                 | =TH**2.                                              |
| TX,TX1           | STRIDE STRAD                           | DIFFUSION FLUX IN X DIRECTION.                       |
| TY,TY1           | STRIDE STRAD                           | DIFFUSION FLUX IN Y DIRECTION.                       |
| TZ               | STRIDE STRAD                           | DIFFUSION FLUX IN Z DIRECTION.                       |
| TZFAC            | STRIDE                                 | FRACTION OF DIFFUSION FLUX IN Z DIRECTION.           |
| T1               | SPRAY                                  | AVERAGE OF TB AND TF.                                |
| T4               | INIT                                   | TEMPORARY USAGE.                                     |
| U                | ALL                                    | U-VELOCITY.                                          |
| UADD             | ALLMOD                                 | CORRECTION TO EXIT VELOCITIES.                       |
| UF               | SPRAY                                  | DROPLET VELOCITY IN X DIRECTION AT CURRENT LOCATION. |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN |                                                            |
|------------------|----------------------------------------|------------------------------------------------------------|
| UFN              | SPRAY                                  | DROPLET VELOCITY IN X DIRECTION AT PREVIOUS LOCATION.      |
| UIN              | INIT                                   | MEAN U-VELOCITY AT EACH AXIAL STATION.                     |
| UINJ             | ALLMOD MAIN INIT                       | COOLING SLOT AXIAL VELOCITY.                               |
| ULIM             | SPRAY                                  | LIMIT ON DROPLET VELOCITY CHANGE BETWEEN SUCCESSIVE STEPS. |
| UMASS            | INIT                                   | MOMENTUM FLOW THROUGH DOME INLET.                          |
| UMEAN            | ALLMOD                                 | MEAN EXIT VELOCITY.                                        |
| UNICON           | PATA ALLMOD STRIDE AUX INIT            | UNIVERSAL GAS CONSTANT.                                    |
| UST              | SPRAY                                  | GAS VELOCITY IN X DIRECTION.                               |
| USH              | INIT MAIN                              | AXIAL VELOCITY OF DOME INLET.                              |
| UYN, UYP         | AUX                                    | AVERAGE U VELOCITY BETWEEN NEIGHBORING NODES.              |
| UTM, UZP         | AUX                                    | AVERAGE U VELOCITY BETWEEN NEIGHBORING NODES.              |
| V                | ALL                                    | V-VELOCITY.                                                |
| VC, VFC          | AUX                                    | RESULTANT VELOCITY.                                        |
| VECX-Z           | SPRAY                                  | UNIT VECTORS IN X,Y,Z DIRECTIONS.                          |
| VF               | SPRAY                                  | DROPLET VELOCITY IN Y DIRECTION AT CURRENT LOCATION.       |
| VFO              | SPRAY                                  | DROPLET VELOCITY IN Y DIRECTION AT PREVIOUS LOCATION.      |
| VFU              | SPRAY                                  | RESULTANT DROPLET VELOCITY AT CURRENT LOCATION.            |
| VFUEL            | SPRAY MAIN                             | INITIAL FUEL DROPLET VELOCITY.                             |
| VINJ             | INIT ALLMOD MAIN                       | RADIAL VELOCITY OF DILUTION JET.                           |
| VISC             | ALL                                    | VISCOSITY.                                                 |

TABLE C-1 (CONTD.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN SUBROUTINE VARIABLE WHERE DEFINED OR USED OFTEN |                       | DEFINITION                                           |
|---------------------------------------------------------|-----------------------|------------------------------------------------------|
| VISCO                                                   | SPRAY                 | GAS VISCOSITY.                                       |
| VISCOS                                                  | AUX                   | VISCOSITY.                                           |
| VMIX                                                    | AUX<br>AUXRAD         | RECIPROCAL OF AVERAGE MOLECULAR WEIGHT.              |
| VMT2                                                    | AUX                   | AVERAGE V VELOCITY BETWEEN NEIGHBORING NODES.        |
| VOL                                                     | STRIDE                | VOLUME OF ELEMENTARY CONTROL VOLUME.                 |
| VP                                                      | AUX                   | RESULTANT VELOCITY.                                  |
| VPT2                                                    | AUX                   | AVERAGE V VELOCITY BETWEEN NEIGHBORING NODES.        |
| VR                                                      | SPRAY                 | RESULTANT RELATIVE VELOCITY BETWEEN GAS AND DROPLET. |
| VST                                                     | SPRAY                 | GAS VELOCITY IN Y DIRECTION.                         |
| VSW                                                     | INIT<br>MAIN          | RADIAL VELOCITY OF DOME INLET.                       |
| VXM,VXP                                                 | AUX                   | AVERAGE V VELOCITY BETWEEN NEIGHBORING NODES.        |
| VZM,VZP                                                 | AUX                   | AVERAGE V VELOCITY BETWEEN NEIGHBORING NODES.        |
| W                                                       | ALL                   | W-VELOCITY.                                          |
| WALKE                                                   | ALLMOD                | WALL TURBULENCE KINETIC ENERGY.                      |
| WC1                                                     | INIT<br>AUX           | MOLECULAR WEIGHT OF INTERMEDIATE HYDROCARBON.        |
| WC0                                                     | INIT,DATA             | MOLECULAR WEIGHT OF CO.                              |
| WC02                                                    | INIT,DATA             | MOLECULAR WEIGHT OF CO2.                             |
| WC2H4                                                   | INIT,DATA             | MOLECULAR WEIGHT OF C2H4.                            |
| WF                                                      | SPRAY                 | DROPLET VELOCITY IN Z DIRECTION AT CURRENT LOCATION. |
| WFF                                                     | SPRAY<br>MAIN<br>INIT | FUEL FLOW RATE.                                      |
| WFI                                                     | SPRAY                 | FUEL FLOW RATE ON A PARTICULAR RAY.                  |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                            |
|------------------|----------------------------------------|-------------------------------------------------------|
| WFNZ             | INIT                                   | TOTAL LIQUID FUEL FLOW RATE.                          |
| WFO              | SPRAY                                  | DROPLET VELOCITY IN Z DIRECTION AT PREVIOUS LOCATION. |
| WFU              | INIT, DATA                             | MOLECULAR WEIGHT OF FUEL.<br>AUX                      |
| WH2              | INIT, DATA                             | MOLECULAR WEIGHT OF H2.<br>AUX                        |
| WH2O             | INIT, DATA                             | MOLECULAR WEIGHT OF H2O.<br>AUX                       |
| WIN              | ALLMOD                                 | W-VELOCITY THROUGH DOME INLET.                        |
| WL7P             | STRIDE                                 | TEMPORARY USAGE.                                      |
| WMNM,WMNP        | AUX                                    | AVERAGE W VELOCITY BETWEEN NEIGHBORING NODES.         |
| WN2              | INIT, DATA                             | MOLECULAR WEIGHT OF N2.<br>AUX                        |
| WOX              | INIT, DATA                             | MOLECULAR WEIGHT OF O2.<br>AUX                        |
| WST              | SPRAY                                  | GAS VELOCITY IN Z DIRECTION.                          |
| WSW              | INIT<br>ALLMOD                         | TANGENTIAL VELOCITY OF DOME INLET.                    |
| WIINJ            | ALLMOD<br>MAIN<br>INIT                 | COOLING SLOT TANGENTIAL VELOCITY.                     |
| WXM,WXP          | AUX                                    | AVERAGE W VELOCITY BETWEEN NEIGHBORING NODES.         |
| WYM,WYP          | AUX                                    | AVERAGE W VELOCITY BETWEEN NEIGHBORING NODES.         |
| X                | ALL                                    | AXIAL DISTANCE.                                       |
| XDIF             | STRIDE                                 | INTERMODAL DISTANCE IN X-DIRECTION.                   |
| XF               | SPRAY                                  | X LOCATION OF DROPLET.                                |
| XM               | SPRAY                                  | X LOCATION OF CONTROL VOLUME SURFACES.                |
| XM               | AUX                                    | X DISTANCE AT X- LOCATION.                            |
| XO               | MAIN<br>SPRAY                          | X LOCATION OF ORIGIN OF FUEL NOZZLE SPRAY.            |

ORIGINAL PAGE IS  
OF POOR QUALITY

TABLE C-1 (CONTD.)

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                            |
|------------------|----------------------------------------|-------------------------------------------------------|
| XP               | AUX                                    | X DISTANCE AT X+ LOCATION.                            |
| XS               | STRIDE                                 | MAIN CONTROL VOLUME WIDTH IN X DIRECTION.             |
| XSU              | STRIDE                                 | U-VELOCITY CONTROL VOLUME WIDTH IN X DIRECTION.       |
| Y                | ALL                                    | RADIAL DISTANCE.                                      |
| YDIF             | STRIDE                                 | INTERNODAL DISTANCE IN Y DIRECTION.                   |
| YF               | SPRAY                                  | Y LOCATION OF DROPLET.                                |
| YM               | SPRAY                                  | Y LOCATION OF CONTROL VOLUME SURFACES.                |
| YH               | AUX                                    | Y DISTANCE AT Y- LOCATION.                            |
| YO               | MAIN SPRAY                             | Y LOCATION OF ORIGIN OF FUEL NOZZLE SPRAY.            |
| YP               | AUX                                    | Y DISTANCE AT Y+ LOCATION.                            |
| YPLUS            | ALLMOD                                 | YPLUS IN WALL FUNCTIONS.                              |
| YS               | STRIDE                                 | MAIN CONTROL VOLUME WIDTH IN Y DIRECTION.             |
| YSR              | STRIDE                                 | MAIN CONTROL VOLUME AREA NORMAL TO X DIRECTION.       |
| YSV              | STRIDE                                 | V-VELOCITY CONTROL VOLUME WIDTH IN Y DIRECTION.       |
| YSVR             | STRIDE                                 | V-VELOCITY CONTROL VOLUME AREA NORMAL TO X DIRECTION. |
| Y1,Y2            | INIT                                   | TEMPORARY USAGE.                                      |
| Z                | ALL                                    | TANGENTIAL DISTANCE.                                  |
| ZDIF             | STRIDE                                 | INTERNODAL DISTANCE IN Z DIRECTION.                   |
| ZF               | SPRAY                                  | Z LOCATION OF DROPLET.                                |
| ZH               | SPRAY                                  | Z LOCATION OF CONTROL VOLUME SURFACES.                |
| ZM               | AUX                                    | Z DISTANCE AT Z- LOCATION.                            |
| ZO               | MAIN SPRAY                             | Z LOCATION OF ORIGIN OF FUEL NOZZLE SPRAY.            |
| ZP               | AUX                                    | Z DISTANCE AT Z+ LOCATION.                            |
| ZS               | STRIDE                                 | MAIN CONTROL VOLUME WIDTH IN Z DIRECTION.             |

TABLE C-1 (CONT'D.)

ORIGINAL PAGE IS  
OF POOR QUALITY

| FORTRAN VARIABLE | SUBROUTINE WHERE DEFINED OR USED OFTEN | DEFINITION                                      |
|------------------|----------------------------------------|-------------------------------------------------|
| ZSMALL           | SPRAY                                  | ONE HUNDRETH OF AVERAGE ANGULAR GRID SPACING.   |
| ZSW              | STRIDE                                 | W-VELOCITY CONTROL VOLUME WIDTH IN Z DIRECTION. |

TABLE C-2. LIST OF FORTRAN VARIABLES IN THE CHEMICAL KINETICS PROGRAM CREK.

This list is adapted from Ref. 48 to which the reader is referred for further details.

| Fortran Variable | Routines Where Defined Or Used Often | Definition                                                                                                                                                                                                        |
|------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                | CALC                                 | Elements of Newton-Raphson correction matrix.                                                                                                                                                                     |
| AL               | CREKO<br>SPECE<br>CALC               | Atomic stoichiometric coefficients, AL(I,J) = the number of kg-atoms of element I per kg-mole of species J.                                                                                                       |
| ATOM             | ERATIO<br>(SPECE)<br>CREKO           | ATOM (1,K) = atomic symbol for element K. ATOM (2,K) = atomic weight of element K. ATOM (3,K) = valence or oxidation state of element K.                                                                          |
| ASUB             | CREKO                                | Molecular symbol of each NS species (e.g., CO, H <sub>2</sub> O, etc.).                                                                                                                                           |
| BO               | SPECE<br>CALC                        | Atom numbers for reactant mixture, BO(I) = kg-atoms element I per kg reactant mixture.                                                                                                                            |
| BX               | CREKO<br>CALC                        | Exponent-on 10 on pre-exponential term of extended Arrhenius forward rate expression, when read from MECHANISM data cards. Later, BX is set = BX*(log <sub>e</sub> 10) to avoid repetitive exponentiation on ten. |
| BX2              | CREKO<br>CALC                        | Same as BX for reverse rate expression.                                                                                                                                                                           |
| CPSUM            | CALC<br>CREKO<br>HCPS                | Non-dimensional mixture constant pressure specific heat capacity.                                                                                                                                                 |
| EMV              | CREK<br>CALC                         | Total convective and diffusive mass inflow rate to the control volume, kg m <sup>-3</sup> s <sup>-1</sup> .                                                                                                       |
| ER               | CREK<br>ERATIO<br>(SPECE)            | Fuel/air equivalence ratio.                                                                                                                                                                                       |

TABLE C-2 (Continued).

| Fortran Variable                         | Routines Where Defined Or Used Often | Definition                                                                                                                                                                                                                |
|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETA                                      | SPECE                                | Self-adjusting under-relaxation parameter.                                                                                                                                                                                |
| FQ                                       | CREK<br>CALC                         | Scaling parameter for Q.                                                                                                                                                                                                  |
| HO                                       | CREKO<br>CALC<br>HCPS                | Non-dimensional, ideal-gas enthalpy of each chemical species at given temperature.                                                                                                                                        |
| HSUBO                                    | CREKO<br>CALC                        | Convective and diffusive net enthalpy influx rate to the control volume, divided by EMV (i.e., mass-averaged specific enthalpy of reactants entering the control volume), J/kg. HSUBO must be set by the calling program. |
| HSUM                                     | CREKO<br>CALC                        | Working variable wherever used.                                                                                                                                                                                           |
| ID                                       | CREKO<br>CALC                        | ID(K,J) is the species index number (i=1, NS) of the K-th species (K=1,4) in the J-th reaction (J=1,JJ).                                                                                                                  |
| IDCO, IDC02<br>IDH2, IDH20<br>IDN2, ID02 | CALC                                 | Index number (i=1,NS) of the particular species in the variable name.                                                                                                                                                     |
| IHCPS                                    | CREKO<br>CALC<br>HCPS                | Value of IHCPS controls whether or not subroutine HCPS calculates values of non-dimensional one-atmosphere entropy for each species.                                                                                      |
| ILC, ILH                                 | CREKO<br>CALC                        | Index number of the elements carbon and hydrogen, respectively.                                                                                                                                                           |
| IMAT                                     | SPECE<br>CALC                        | Number of rows in Newton-Raphson correction matrix; set in CALC. IMAT=N2 if LEQUIL=.TURE.: IMAT=NQ if LEQUIL=.FALSE..                                                                                                     |

TABLE C-2 (Continued)

| Fortran Variable | Routines Where Defined Or Used Often | Definition                                                                                                                                                                              |
|------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITER             | SPECE                                | Current value of iteration counter.                                                                                                                                                     |
| ITMAX            | SPECE                                | Controls the maximum number of iterations permitted by each call to CREK. Set by DATA statement in SPECE.                                                                               |
| JJ               | CREKO<br>CALC                        | Number of distinct forward reactions considered in reaction mechanism; must be less than or equal to the dimensions of labeled COMMON block REACTS.                                     |
| LADIAB           | CREK<br>CALC                         | LADIAB must be set by program calling CREK. If = .FALSE., enthalpy source term Q is non-zero, and calling program must specify values of Q0, Q1, Q2, Q3 and Q4 in enthalpy source term. |
| LCONVG           | CREK<br>SPECE                        | Initially = .FALSE.; set = .TRUE. in SPECE if convergent solution achieved. Controls solution strategy in CREK.                                                                         |
| LDEBUG           | SPECE<br>CALC                        | If LDEBUG is set = .TRUE. by the calling program, intermediate output is written on the output record. Default value is .FALSE.                                                         |
| LEQUIL           | CREK<br>SPECE<br>CALC                | LEQUIL must be set by calling program. If = .TRUE., equilibrium states are calculated; if = .FALSE., kinetic stationary states are calculated.                                          |
| LNRG             | CREK<br>CALC                         | For LEQUIL = .FALSE. problems only. If = .TRUE., fully coupled energy equation is used.                                                                                                 |
| LREACT           | CREK                                 | LREACT = .FALSE. on entry to CREK suppresses calculation of combustion reaction. Default value is .TRUE.                                                                                |

TABLE C-2 (Continued)

| Fortran Variable | Routines Where Defined Or Used Often | Definition                                                                                                                                  |
|------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| NDEBUG           | CREK<br>SPECE<br>CALC                | When LDEBUG = .TRUE., NDEBUG set from 1 to 5 controls increasing detail of debug output. Default value of NDEBUG = 5.                       |
| NGLOB            | CREKO<br>CALC                        | Number of finite-rate global hydrocarbon pyrolysis steps considered.                                                                        |
| NGLOBP           | CREKO<br>CALC                        | NGLOB + 1.                                                                                                                                  |
| NLM              | CREKO<br>SPECE<br>CALC               | The number of distinct elements considered. Must be less than or equal to corresponding dimensions of labeled COMMON block CEQUIL.          |
| N1,N2,N3         | CREKO<br>CALC                        | N1 = NLM + 1, N2 = NLM + 2,<br>N3 = NLM + 3.                                                                                                |
| NS               | CREKO<br>SPECE<br>CALC               | Number of distinct species considered. Must be less than appropriate dimensions in labeled COMMON blocks CEQUIL, CMATRI, CPARAM and CSPECE. |
| NSM, NQ, NA      | CREKO<br>CALC                        | NSM = NS + 1, NQ = NS + 2,<br>NA = NS + 3.                                                                                                  |
| PA               | CREK<br>SPECE<br>CALC                | Pressure within control volume, N m <sup>-2</sup> . Must be set by program calling CREK.                                                    |
| PI               | CALC                                 | Lagrange multipliers in reduced Gibbs iteration correction equations.                                                                       |
| PPLN             | CREK<br>CALC                         | Loge (P/P <sub>0</sub> ).                                                                                                                   |
| Q                | CALC                                 | Negative of non-dimensional enthalpy source term, determined by values of Q0, Q1, Q2, Q3 and Q4 set by the calling program.                 |

TABLE C-2 (Continued)

| Fortran Variable      | Routines Where Defined Or Used Often | Definition                                                                                                                                                                                       |
|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q0, Q1, Q2,<br>Q3, Q4 | CALC                                 | Coefficients for enthalpy source term, $-S_H = Q_0 + Q_1 T + Q_2 T^2 + Q_3 T^3 + Q_4 T^4$ , $Jm^{-3} s^{-1}$ . These values must be set whenever LADIAB = .FALSE. is set by the calling program. |
| RGAS                  | CREKO<br>CALC                        | Universal gas constant, 8314.4 J/(kg-mole) (K).                                                                                                                                                  |
| RGASIN                | CREKO<br>CALC                        | Inverse of RGAS.                                                                                                                                                                                 |
| RHOP                  | CREKO<br>CALC                        | Mass density , kg m <sup>-3</sup> .                                                                                                                                                              |
| RT                    | CALC                                 | $\frac{\partial f_i}{\partial \log T}$                                                                                                                                                           |
| SO                    | CREKO<br>CALC<br>HCPS                | One-atmosphere, ideal-gas entropy of species i.                                                                                                                                                  |
| S1                    | CREKO<br>CALC                        | Inlet mole numbers of species i.                                                                                                                                                                 |
| S2                    | CREKO<br>CALC                        | Mole numbers of species i, kg-moles i/kg. Calling program must set these values as estimates; on return they are solution values.                                                                |
| SM                    | ALL                                  | Reciprocal mixture molecular weight.                                                                                                                                                             |
| SMINV                 | CREK<br>CALC                         | Reciprocal of SM, therefore the mixture molecular weight, kg/(kg-mole).                                                                                                                          |
| SMW                   | CREKO                                | Molecular weight of species i.                                                                                                                                                                   |
| SSAVE                 | CREK                                 | Array for saving current values of S2.                                                                                                                                                           |

TABLE C-2 (Continued)

| Fortran Variable | Routines Where Defined Or Used Often | Definition                                                                                                                                                         |
|------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TACT,<br>TACT2   | CREKO<br>CALC                        | Activation temperature (activation energy divided by gas constant) for forward and reverse reactions respectively, degrees K.                                      |
| TEN,<br>TEN2     | CREKO<br>CALC                        | Exponent-on-temperature in pre-exponential term of rate constant in forward and reverse reactions respectively.                                                    |
| TK               | ALL                                  | Temperature T, deg K. Estimate on calling CREK, solution on return. If set equal to zero by program calling CREK, causes CREK to establish estimates for T and S2. |
| TKINV            | CREK<br>CALC                         | Reciprocal of TK.                                                                                                                                                  |
| TLN              | CREKO<br>CALC<br>HCPS                | Logarithm of the temperature.                                                                                                                                      |
| X                | CREKO<br>CALC                        | Current values of the correction variables: Also used as working variable in subroutine CREKO.                                                                     |
| X1, X2           | CALC                                 | Contact index for forward and reverse reactions j. Dimensionless.                                                                                                  |
| Y                | CREKO<br>CALC                        | Logarithms of variables. Also used as working variable in subroutine CREKO.                                                                                        |
| Z                | CREKO<br>HCPS                        | Coefficients for calculation of thermochemical data.                                                                                                               |

**PRECEDING PAGE BLANK NOT FILMED**

**APPENDIX D**  
**LISTING OF THE 3-D COMBUSTOR**  
**PERFORMANCE PROGRAM**

## APPENDIX D

### LISTING OF THE 3-D COMBUSTOR PERFORMANCE PROGRAM

This appendix contains a listing of the 3-D combustor performance program. In order to identify the changes made to the original program of Ref. 1, various correction ident appear at the ends of the changed or newly inserted statements. The meanings of these correction ident are given below:

|         |                                                                       |
|---------|-----------------------------------------------------------------------|
| CREK    |                                                                       |
| CALC    |                                                                       |
| SPEC    | - Chemical kinetics program CREK                                      |
| CRKO    |                                                                       |
| HCPS    |                                                                       |
|         |                                                                       |
| ABSOR   | - Radiation-property subroutine                                       |
| SOOT    | - Soot-emissions updates                                              |
| NASAX   | - Corrections to the original program                                 |
| CTDMA   | - Cyclic TDMA updates                                                 |
| NOXXX   | - Updates to make the chemical kinetics program CREK CYBER-Compatible |
|         |                                                                       |
| RAD     |                                                                       |
| TS0     | - Radiation updates                                                   |
| NOX     | - NO <sub>x</sub> -emissions updates for 3-D program                  |
| NOXX    | - NO <sub>x</sub> -emissions updates for CREK program                 |
| 4STEP   | - 4-Step-mechanism updates                                            |
| COMMENT | - Comment cards                                                       |
|         |                                                                       |
| JAN14   |                                                                       |
| JAN18   | - Some additional modifications                                       |
| FEB2    |                                                                       |
| MAR2    |                                                                       |

PREVIOUS PAGE BLANK NOT FILMED

```

PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE8,TAPE9,
1 TAPE11)
COMMON F(900,7),NU(10,10,5),DV(10,10,5),DW(10,10,5),
1 AMUC(10,10,5),S00T1(10,10,5),S00T2(10,10,5),FCH(10,10,5),
2 FH2(10,10,5),FS(500,14),
1 RHO(10,10,5),VISC(10,10,5),ABSR(10,10,5),SCTR(10,10,5),
1 SU(10,10),SP(10,10),DRHONP(10,10,5),
1 AXP(10,10),AXM(10,10),AYP(10,10),AYM(10,10),AZP(10,10),
2 AZP(10,10),C7(10,10),CY(10,10),CZU(10,10),CYU(10,10),
3 CZP(10,10),CVP(10),DIVG(10,10),NTP1,NTP2
1,AKMK(192),AXPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),
2 SUK(192),SPK(192)
DTMFNSION U(10,10,5),V(10,10,5),W(10,10,5),PP(10,10,5)
DTMFNSION P(10,10,5),TEMP(10,10,5),GAM(10,10,5)
FOUIVALENCE (F(1,1),U(1,1,1)),(F(1,2),V(1,1,1)),(F(1,3),W(1,1,1))
EQUIVALENCE (F(1,4),PP(1,1,1)),(F(1,5),P(1,1,1))
EQUIVALENCE (F(1,6),TEMP(1,1,1)),(F(1,7),GAM(1,1,1))
COMMON/CYL/R(30),RM(30),RHM(30),YSR(30),YSVR(30),IPALX
COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),
1 YSV(30),ZSU(30),X0IF(40),Y0IF(30),Z0IF(30),FXP(40),FXM(40),
2 FYP(30),FYR(30),F7P(30),F2M(30),DT,TIME
COMMON
1/CIMDFX/IDCC,IDFU,IDO2,IDH2,IDH2D,IDCO2,IDH1,IDH2,IDM1,IDM0,IDM02
1,IDO0,IDOM,ICPSS,ILC,ILH,IMAT,ITER,JJJ,N1,N2,N3,NA,NGLOB,NGLOAP,
2 NLM,NG,NSP,NS1,NS2,ICDH
3/CCHFM/CPSUP,HSUM,FQ,PPLN,RGAS,RGASIN,SMINV,TKINV,TLN,LNRG
4/CARAM/ASUB(30,3),EMV,ER,HSUB0,NDEBUG,NS,PA,QQ,Q1,Q2,Q3,Q4,RHOPP,
4 SM,SMU(30),SM0,S1(30),S2(30),TK,LADTAB,LDEBUG,LFEUIL,LPEACT,
4 LENER,EDRJ,LCNVG
DOUBLE PRECISION CPSUM,ENV,ER,FQ,HSUB0,HSUM,PA,PPLN,QQ,Q1,Q2,Q3,
1 Q4,RGAS,RGASIN,RHOPP,SM,SMINV,SHW,S1,S2,TK,TKINV,TLN,SM0
2,FUT,FST
COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CERU1,CERU2,
1 CERU3,CERU4,EXP1,AEXP2,AEXP3,AEXP4,EXP1,REXP2,BEXP3,REXP4,
2 REXP1,CEXP2,CEXP3,CEXP4,FUT,FST
LOGICAL LADTAB,LCNVG,LDEBUG,LEQUIL,LNRG,LREACT,LENER
COMMON/INT/L,N,NCV,LCV,NCV,LPI,MP1,MP1,NT,NJ,NK,NINJ,NINJNK,NV,
1 NNV,NGOTD,K,ISTR,JSTR,KSTR,NVM(35),KM(30),JM(30),ISTEP,
2 ISOLVE(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(35),NP,
3 VRHO,NGAM,IULI(30,5),IWLO(30,5),JWLO(40,5),JWLI(40,5),IWFI,
4 IWFO,MRI,JWII,JWIO,JWDI,JWDO,INW,JKIN(30,30),IKIN(40,30)
COMMON/INDEX/IPAR,LPREF,ISTUN,INCOMP,ITRAD,NVRX,NVRY,NVRZ,JPLANE
1,PLAKM2,LVK,LVD,LVFUOX,LVFU,LVCO,LVH,LVRX,LVRY,LVRZ,NVF(32),
2 IJUMP,IRFS,TITLE2(20),IMAX,JMAX,KMAX,NVCO,FUMCC,NVH20,NVC02,
3 NVN2,NVCH,NVM2
COMMON/CNDR/LVH1,LVH2,LVN1,LVNO,LVNO2,LVO,LVNH,LVH20,LVN2,LVO2,
1 LVCO2,LVFU1,LVC01,NN0X,IN0X,ITNOX,SN0X,TNOX
COMMON/THRM/NVH,NVFU,NV0X,NVFUOX,NVTE,MODFN,IKR,FSTOIC,HFU,CP,
1 GASCON,RHOCN,UNICON,PRSS,NVFV,TCYLW,TINLW,TIP,ACOEF(4),
2 T4,OFAC,WFU,WCO,WNOX,WH20,HN2,HYY,CXX,RATIO1,RATIO2,
3 RATIO3,RATIO4,HCO,TAN,ITWALL
COMMON/CTDPA/KEND,ICTDMA(32)
COMMON/MIS/AMU,OPEN,SMAX,SSUM,LASTEP,HTCENT,CFR,EMISH,EMISIN,
1 FMTSR,TOUT,RTCD,EM1,RADIN,RADSUR,FMA,FK,SGFK,
2 FKFU,FDFFU,TFUEL,MFN2,FLD(40),TEMTH(40),H(40),FUEL(40),FUDX(40),
2 UTM(40),TIN(40),FUELS(40),SFKIT,IGAM1(29),IGAM2(29)
COMMON/TIIR/NVK,NVD,C1,C2,CD,AK,QUICKJ(3,3),AKFAC,ALFAC,
1 MDEL,PR(92),PRF(32),PJAY(32),E
COMMON/RAD/NVE,SIGMA,ARSOR,SCATR
COMMON/REACT/ARCON1,PREXP1,CR1,ARCON2,PREXP2,CR2,MODER
COMMON/DRDPL/FVAP(192),NTP4,NFM2,K0(3),Y0(3),Z0(3),ALFA(3),
1 BETA(3),DELTA(3),THETA1(3),THETA2(3),NSL(3),MFF(3),SM0(3),
2 VFUEL(3),RFUEL(3),FVSU(64),HEVAP
COMMON/INJEC/LOWIN,IUTNJ(20),JUTNJ(20),UINJ(20),WINJ(20),
1 ASAK 1
1 ASAK 2
1 COMFA 2
1 4STEP 1
1 4STEP 2
1 RAD 1
1 RAD 2
1 COMFA 4
1 COMFA 5
1 COMFA 6
1 COMFA 7
1 COMFA 8
1 COMFA 9
1 COMFA 10
1 COMFA 11
1 COMMON 2
1 COMMON 3
1 COMMON 4
1 COMMON 5
1 COMMON 6
1 NOX 2
1 NOX 3
1 NOX 4
1 NOX 5
1 NOX 6
1 NOX 7
1 NOX 8
1 NOX 9
1 NOX 10
1 NOX 11
1 NOX 12
1 NOX 13
1 NOX 14
1 NOX 15
1 NOX 16
1 NOX 17
1 COMMON 18
1 COMMON 19
1 COMMON 20
1 COMMON 21
1 COMMON 22
1 COMMON 23
1 COMMON 24
1 COMMON 25
1 COMMON 26
1 COMMON 27
1 COMMON 28
1 COMMON 29
1 COMMON 30
1 COMMON 31
1 COMMON 32
1 COMMON 33
1 COMMON 34
1 COMMON 35
1 COMMON 36
1 COMMON 37
1 COMMON 38
1 COMMON 39
1 COMMON 40
1 COMMON 41
1 COMMON 42
1 COMMON 43
1 COMMON 44
1 COMMON 45
1 COMMON 46
1 COMMON 47
1 COMMON 48
1 COMMON 49
1 COMMON 50
1 COMMON 51
1 COMMON 52
1 COMMON 53
1 COMMON 54
1 COMMON 55
1 COMMON 56
1 COMMON 57
1 COMMON 58
1 COMMON 59
1 COMMON 60
1 COMMON 61
1 COMMON 62
1 COMMON 63
1 COMMON 64
1 COMMON 65
1 COMMON 66
1 COMMON 67
1 COMMON 68
1 COMMON 69
1 COMMON 70
1 COMMON 71
1 COMMON 72
1 COMMON 73
1 COMMON 74
1 COMMON 75
1 COMMON 76
1 COMMON 77
1 COMMON 78
1 COMMON 79
1 COMMON 80
1 COMMON 81
1 COMMON 82
1 COMMON 83
1 COMMON 84
1 COMMON 85
1 COMMON 86
1 COMMON 87
1 COMMON 88
1 COMMON 89
1 COMMON 90
1 COMMON 91
1 COMMON 92
1 COMMON 93
1 COMMON 94
1 COMMON 95
1 COMMON 96
1 COMMON 97
1 COMMON 98
1 COMMON 99
1 COMMON 100
1 COMMON 101
1 COMMON 102
1 COMMON 103
1 COMMON 104
1 COMMON 105
1 COMMON 106
1 COMMON 107
1 COMMON 108
1 COMMON 109
1 COMMON 110
1 COMMON 111
1 COMMON 112
1 COMMON 113
1 COMMON 114
1 COMMON 115
1 COMMON 116
1 COMMON 117
1 COMMON 118
1 COMMON 119
1 COMMON 120
1 COMMON 121
1 COMMON 122
1 COMMON 123
1 COMMON 124
1 COMMON 125
1 COMMON 126
1 COMMON 127
1 COMMON 128
1 COMMON 129
1 COMMON 130
1 COMMON 131
1 COMMON 132
1 COMMON 133
1 COMMON 134
1 COMMON 135
1 COMMON 136
1 COMMON 137
1 COMMON 138
1 COMMON 139
1 COMMON 140
1 COMMON 141
1 COMMON 142
1 COMMON 143
1 COMMON 144
1 COMMON 145
1 COMMON 146
1 COMMON 147
1 COMMON 148
1 COMMON 149
1 COMMON 150
1 COMMON 151
1 COMMON 152
1 COMMON 153
1 COMMON 154
1 COMMON 155
1 COMMON 156
1 COMMON 157
1 COMMON 158
1 COMMON 159
1 COMMON 160
1 COMMON 161
1 COMMON 162
1 COMMON 163
1 COMMON 164
1 COMMON 165
1 COMMON 166
1 COMMON 167
1 COMMON 168
1 COMMON 169
1 COMMON 170
1 COMMON 171
1 COMMON 172
1 COMMON 173
1 COMMON 174
1 COMMON 175
1 COMMON 176
1 COMMON 177
1 COMMON 178
1 COMMON 179
1 COMMON 180
1 COMMON 181
1 COMMON 182
1 COMMON 183
1 COMMON 184
1 COMMON 185
1 COMMON 186
1 COMMON 187
1 COMMON 188
1 COMMON 189
1 COMMON 190
1 COMMON 191
1 COMMON 192
1 COMMON 193
1 COMMON 194
1 COMMON 195
1 COMMON 196
1 COMMON 197
1 COMMON 198
1 COMMON 199
1 COMMON 200
1 COMMON 201
1 COMMON 202
1 COMMON 203
1 COMMON 204
1 COMMON 205
1 COMMON 206
1 COMMON 207
1 COMMON 208
1 COMMON 209
1 COMMON 210
1 COMMON 211
1 COMMON 212
1 COMMON 213
1 COMMON 214
1 COMMON 215
1 COMMON 216
1 COMMON 217
1 COMMON 218
1 COMMON 219
1 COMMON 220
1 COMMON 221
1 COMMON 222
1 COMMON 223
1 COMMON 224
1 COMMON 225
1 COMMON 226
1 COMMON 227
1 COMMON 228
1 COMMON 229
1 COMMON 230
1 COMMON 231
1 COMMON 232
1 COMMON 233
1 COMMON 234
1 COMMON 235
1 COMMON 236
1 COMMON 237
1 COMMON 238
1 COMMON 239
1 COMMON 240
1 COMMON 241
1 COMMON 242
1 COMMON 243
1 COMMON 244
1 COMMON 245
1 COMMON 246
1 COMMON 247
1 COMMON 248
1 COMMON 249
1 COMMON 250
1 COMMON 251
1 COMMON 252
1 COMMON 253
1 COMMON 254
1 COMMON 255
1 COMMON 256
1 COMMON 257
1 COMMON 258
1 COMMON 259
1 COMMON 260
1 COMMON 261
1 COMMON 262
1 COMMON 263
1 COMMON 264
1 COMMON 265
1 COMMON 266
1 COMMON 267
1 COMMON 268
1 COMMON 269
1 COMMON 270
1 COMMON 271
1 COMMON 272
1 COMMON 273
1 COMMON 274
1 COMMON 275
1 COMMON 276
1 COMMON 277
1 COMMON 278
1 COMMON 279
1 COMMON 280
1 COMMON 281
1 COMMON 282
1 COMMON 283
1 COMMON 284
1 COMMON 285
1 COMMON 286
1 COMMON 287
1 COMMON 288
1 COMMON 289
1 COMMON 290
1 COMMON 291
1 COMMON 292
1 COMMON 293
1 COMMON 294
1 COMMON 295
1 COMMON 296
1 COMMON 297
1 COMMON 298
1 COMMON 299
1 COMMON 300
1 COMMON 301
1 COMMON 302
1 COMMON 303
1 COMMON 304
1 COMMON 305
1 COMMON 306
1 COMMON 307
1 COMMON 308
1 COMMON 309
1 COMMON 310
1 COMMON 311
1 COMMON 312
1 COMMON 313
1 COMMON 314
1 COMMON 315
1 COMMON 316
1 COMMON 317
1 COMMON 318
1 COMMON 319
1 COMMON 320
1 COMMON 321
1 COMMON 322
1 COMMON 323
1 COMMON 324
1 COMMON 325
1 COMMON 326
1 COMMON 327
1 COMMON 328
1 COMMON 329
1 COMMON 330
1 COMMON 331
1 COMMON 332
1 COMMON 333
1 COMMON 334
1 COMMON 335
1 COMMON 336
1 COMMON 337
1 COMMON 338
1 COMMON 339
1 COMMON 340
1 COMMON 341
1 COMMON 342
1 COMMON 343
1 COMMON 344
1 COMMON 345
1 COMMON 346
1 COMMON 347
1 COMMON 348
1 COMMON 349
1 COMMON 350
1 COMMON 351
1 COMMON 352
1 COMMON 353
1 COMMON 354
1 COMMON 355
1 COMMON 356
1 COMMON 357
1 COMMON 358
1 COMMON 359
1 COMMON 360
1 COMMON 361
1 COMMON 362
1 COMMON 363
1 COMMON 364
1 COMMON 365
1 COMMON 366
1 COMMON 367
1 COMMON 368
1 COMMON 369
1 COMMON 370
1 COMMON 371
1 COMMON 372
1 COMMON 373
1 COMMON 374
1 COMMON 375
1 COMMON 376
1 COMMON 377
1 COMMON 378
1 COMMON 379
1 COMMON 380
1 COMMON 381
1 COMMON 382
1 COMMON 383
1 COMMON 384
1 COMMON 385
1 COMMON 386
1 COMMON 387
1 COMMON 388
1 COMMON 389
1 COMMON 390
1 COMMON 391
1 COMMON 392
1 COMMON 393
1 COMMON 394
1 COMMON 395
1 COMMON 396
1 COMMON 397
1 COMMON 398
1 COMMON 399
1 COMMON 400
1 COMMON 401
1 COMMON 402
1 COMMON 403
1 COMMON 404
1 COMMON 405
1 COMMON 406
1 COMMON 407
1 COMMON 408
1 COMMON 409
1 COMMON 410
1 COMMON 411
1 COMMON 412
1 COMMON 413
1 COMMON 414
1 COMMON 415
1 COMMON 416
1 COMMON 417
1 COMMON 418
1 COMMON 419
1 COMMON 420
1 COMMON 421
1 COMMON 422
1 COMMON 423
1 COMMON 424
1 COMMON 425
1 COMMON 426
1 COMMON 427
1 COMMON 428
1 COMMON 429
1 COMMON 430
1 COMMON 431
1 COMMON 432
1 COMMON 433
1 COMMON 434
1 COMMON 435
1 COMMON 436
1 COMMON 437
1 COMMON 438
1 COMMON 439
1 COMMON 440
1 COMMON 441
1 COMMON 442
1 COMMON 443
1 COMMON 444
1 COMMON 445
1 COMMON 446
1 COMMON 447
1 COMMON 448
1 COMMON 449
1 COMMON 450
1 COMMON 451
1 COMMON 452
1 COMMON 453
1 COMMON 454
1 COMMON 455
1 COMMON 456
1 COMMON 457
1 COMMON 458
1 COMMON 459
1 COMMON 460
1 COMMON 461
1 COMMON 462
1 COMMON 463
1 COMMON 464
1 COMMON 465
1 COMMON 466
1 COMMON 467
1 COMMON 468
1 COMMON 469
1 COMMON 470
1 COMMON 471
1 COMMON 472
1 COMMON 473
1 COMMON 474
1 COMMON 475
1 COMMON 476
1 COMMON 477
1 COMMON 478
1 COMMON 479
1 COMMON 480
1 COMMON 481
1 COMMON 482
1 COMMON 483
1 COMMON 484
1 COMMON 485
1 COMMON 486
1 COMMON 487
1 COMMON 488
1 COMMON 489
1 COMMON 490
1 COMMON 491
1 COMMON 492
1 COMMON 493
1 COMMON 494
1 COMMON 495
1 COMMON 496
1 COMMON 497
1 COMMON 498
1 COMMON 499
1 COMMON 500
1 COMMON 501
1 COMMON 502
1 COMMON 503
1 COMMON 504
1 COMMON 505
1 COMMON 506
1 COMMON 507
1 COMMON 508
1 COMMON 509
1 COMMON 510
1 COMMON 511
1 COMMON 512
1 COMMON 513
1 COMMON 514
1 COMMON 515
1 COMMON 516
1 COMMON 517
1 COMMON 518
1 COMMON 519
1 COMMON 520
1 COMMON 521
1 COMMON 522
1 COMMON 523
1 COMMON 524
1 COMMON 525
1 COMMON 526
1 COMMON 527
1 COMMON 528
1 COMMON 529
1 COMMON 530
1 COMMON 531
1 COMMON 532
1 COMMON 533
1 COMMON 534
1 COMMON 535
1 COMMON 536
1 COMMON 537
1 COMMON 538
1 COMMON 539
1 COMMON 540
1 COMMON 541
1 COMMON 542
1 COMMON 543
1 COMMON 544
1 COMMON 545
1 COMMON 546
1 COMMON 547
1 COMMON 548
1 COMMON 549
1 COMMON 550
1 COMMON 551
1 COMMON 552
1 COMMON 553
1 COMMON 554
1 COMMON 555
1 COMMON 556
1 COMMON 557
1 COMMON 558
1 COMMON 559
1 COMMON 560
1 COMMON 561
1 COMMON 562
1 COMMON 563
1 COMMON 564
1 COMMON 565
1 COMMON 566
1 COMMON 567
1 COMMON 568
1 COMMON 569
1 COMMON 570
1 COMMON 571
1 COMMON 572
1 COMMON 573
1 COMMON 574
1 COMMON 575
1 COMMON 576
1 COMMON 577
1 COMMON 578
1 COMMON 579
1 COMMON 580
1 COMMON 581
1 COMMON 582
1 COMMON 583
1 COMMON 584
1 COMMON 585
1 COMMON 586
1 COMMON 587
1 COMMON 588
1 COMMON 589
1 COMMON 590
1 COMMON 591
1 COMMON 592
1 COMMON 593
1 COMMON 594
1 COMMON 595
1 COMMON 596
1 COMMON 597
1 COMMON 598
1 COMMON 599
1 COMMON 600
1 COMMON 601
1 COMMON 602
1 COMMON 603
1 COMMON 604
1 COMMON 605
1 COMMON 606
1 COMMON 607
1 COMMON 608
1 COMMON 609
1 COMMON 610
1 COMMON 611
1 COMMON 612
1 COMMON 613
1 COMMON 614
1 COMMON 615
1 COMMON 616
1 COMMON 617
1 COMMON 618
1 COMMON 619
1 COMMON 620
1 COMMON 621
1 COMMON 622
1 COMMON 623
1 COMMON 624
1 COMMON 625
1 COMMON 626
1 COMMON 627
1 COMMON 628
1 COMMON 629
1 COMMON 630
1 COMMON 631
1 COMMON 632
1 COMMON 633
1 COMMON 634
1 COMMON 635
1 COMMON 636
1 COMMON 637
1 COMMON 638
1 COMMON 639
1 COMMON 640
1 COMMON 641
1 COMMON 642
1 COMMON 643
1 COMMON 644
1 COMMON 645
1 COMMON 646
1 COMMON 647
1 COMMON 648
1 COMMON 649
1 COMMON 650
1 COMMON 651
1 COMMON 652
1 COMMON 653
1 COMMON 654
1 COMMON 655
1 COMMON 656
1 COMMON 657
1 COMMON 658
1 COMMON 659
1 COMMON 660
1 COMMON 661
1 COMMON 662
1 COMMON 663
1 COMMON 664
1 COMMON 665
1 COMMON 666
1 COMMON 667
1 COMMON 668
1 COMMON 669
1 COMMON 670
1 COMMON 671
1 COMMON 672
1 COMMON 673
1 COMMON 674
1 COMMON 675
1 COMMON 676
1 COMMON 677
1 COMMON 678
1 COMMON 679
1 COMMON 680
1 COMMON 681
1 COMMON 682
1 COMMON 683
1 COMMON 684
1 COMMON 685
1 COMMON 686
1 COMMON 687
1 COMMON 688
1 COMMON 689
1 COMMON 690
1 COMMON 691
1 COMMON 692
1 COMMON 693
1 COMMON 694
1 COMMON 695
1 COMMON 696
1 COMMON 697
1 COMMON 698
1 COMMON 699
1 COMMON 700
1 COMMON 701
1 COMMON 702
1 COMMON 703
1 COMMON 704
1 COMMON 705
1 COMMON 706
1 COMMON 707
1 COMMON 708
1 COMMON 709
1 COMMON 710
1 COMMON 711
1 COMMON 712
1 COMMON 713
1 COMMON 714
1 COMMON 715
1 COMMON 716
1 COMMON 717
1 COMMON 718
1 COMMON 719
1 COMMON 720
1 COMMON 721
1 COMMON 722
1 COMMON 723
1 COMMON 724
1 COMMON 725
1 COMMON 726
1 COMMON 727
1 COMMON 728
1 COMMON 729
1 COMMON 730
1 COMMON 731
1 COMMON 732
1 COMMON 733
1 COMMON 734
1 COMMON 735
1 COMMON 736
1 COMMON 737
1 COMMON 738
1 COMMON 739
1 COMMON 740
1 COMMON 741
1 COMMON 742
1 COMMON 743
1 COMMON 744
1 COMMON 745
1 COMMON 746
1 COMMON 747
1 COMMON 748
1 COMMON 749
1 COMMON 750
1 COMMON 751
1 COMMON 752
1 COMMON 753
1 COMMON 754
1 COMMON 755
1 COMMON 756
1 COMMON 757
1 COMMON 758
1 COMMON 759
1 COMMON 760
1 COMMON 761
1 COMMON 762
1 COMMON 763
1 COMMON 764
1 COMMON 765
1 COMMON 766
1 COMMON 767
1 COMMON 768
1 COMMON 769
1 COMMON 770
1 COMMON 771
1 COMMON 772
1 COMMON 773
1 COMMON 774
1 COMMON 775
1 COMMON 776
1 COMMON 777
1 COMMON 778
1 COMMON 779
1 COMMON 780
1 COMMON 781
1 COMMON 782
1 COMMON 783
1 COMMON 784
1 COMMON 785
1 COMMON 786
1 COMMON 787
1 COMMON 788
1 COMMON 789
1 COMMON 790
1 COMMON 791
1 COMMON 792
1 COMMON 793
1 COMMON 794
1 COMMON 795
1 COMMON 796
1 COMMON 797
1 COMMON 798
1 COMMON 799
1 COMMON 800
1 COMMON 801
1 COMMON 802
1 COMMON 803
1 COMMON 804
1 COMMON 805
1 COMMON 806
1 COMMON 807
1 COMMON 808
1 COMMON 809
1 COMMON 810
1 COMMON 811
1 COMMON 812
1 COMMON 813
1 COMMON 814
1 COMMON 815
1 COMMON 816
1 COMMON 817
1 COMMON 818
1 COMMON 819
1 COMMON 820
1 COMMON 821
1 COMMON 822
1 COMMON 823
1 COMMON 824
1 COMMON 825
1 COMMON 826
1 COMMON 827
1 COMMON 828
1 COMMON 829
1 COMMON 830
1 COMMON 831
1 COMMON 832
1 COMMON 833
1 COMMON 834
1 COMMON 835
1 COMMON 836
1 COMMON 837
1 COMMON 838
1 COMMON 839
1 COMMON 840
1 COMMON 841
1 COMMON 842
1 COMMON 843
1 COMMON 844
1 COMMON 845
1 COMMON 846
1 COMMON 847
1 COMMON 848
1 COMMON 849
1 COMMON 850
1 COMMON 851
1 COMMON 852
1 COMMON 853
1 COMMON 854
1 COMMON 855
1 COMMON 856
1 COMMON 857
1 COMMON 858
1 COMMON 859
1 COMMON 860
1 COMMON 861
1 COMMON 862
1 COMMON 863
1 COMMON 864
1 COMMON 865
1 COMMON 866
1 COMMON 867
1 COMMON 868
1 COMMON 869
1 COMMON 870
1 COMMON 871
1 COMMON 872
1 COMMON 873
1 COMMON 874
1 COMMON 875
1 COMMON 876
1 COMMON 877
1 COMMON 878
1 COMMON 879
1 COMMON 880
1 COMMON 881
1 COMMON 882
1 COMMON 883
1 COMMON 884
1 COMMON 885
1 COMMON 886
1 COMMON 887
1 COMMON 888
1 COMMON 889
1 COMMON 890
1 COMMON 891
1 COMMON 892
1 COMMON 893
1 COMMON 894
1 COMMON 895
1 COMMON 896
1 COMMON 897
1 COMMON 898
1 COMMON 899
1 COMMON 900
1 COMMON 901
1 COMMON 902
1 COMMON 903
1 COMMON 904
1 COMMON 905
1 COMMON 906
1 COMMON 907
1 COMMON 908
1 COMMON 909
1 COMMON 910
1 COMMON 911
1 COMMON 912
1 COMMON 913
1 COMMON 914
1 COMMON 915
1 COMMON 916
1 COMMON 917
1 COMMON 918
1 COMMON 919
1 COMMON 920
1 COMMON 921
1 COMMON 922
1 COMMON 923
1 COMMON 924
1 COMMON 925
1 COMMON 926
1 COMMON 927
1 COMMON 928
1 COMMON 929
1 COMMON 930
1 COMMON 931
1 COMMON 932
1 COMMON 933
1 COMMON 934
1 COMMON 935
1 COMMON 936
1 COMMON 937
1 COMMON 938
1 COMMON 939
1 COMMON 940
1 COMMON 941
1 COMMON 942
1 COMMON 943
1 COMMON 944
1 COMMON 945
1 COMMON 946
1 COMMON 947
1 COMMON 948
1 COMMON 949
1 COMMON 950
1 COMMON 951
1 COMMON 952
1 COMMON 953
1 COMMON 954
1 COMMON 955
1 COMMON 956
1 COMMON 957
1 COMMON 958
1 COMMON 959
1 COMMON 960
1 COMMON 961
1 COMMON 962
1 COMMON 963
1 COMMON 964
1 COMMON 965
1 COMMON 966
1 COMMON 967
1 COMMON 968
1 COMMON 969
1 COMMON 970
1 COMMON 971
1 COMMON 972
1 COMMON 973
1 COMMON 974
1 COMMON 975
1 COMMON 976
1 COMMON 977
1 COMMON 978
1 COMMON 979
1 COMMON 980
1 COMMON 981
1 COMMON 982
1 COMMON 983
1 COMMON 984
1 COMMON 985
1 COMMON 986
1 COMMON 987
1 COMMON 988
1 COMMON 989
1 COMMON 990
1 COMMON 991
1 COMMON 992
1 COMMON 993
1 COMMON 994
1 COMMON 995
1 COMMON 996
1 COMMON 997
1 COMMON 998
1 COMMON 999
1 COMMON 1000
1 COMMON 1001
1 COMMON 1002
1 COMMON 1003
1 COMMON 1004
1 COMMON 1005
1 COMMON 1006
1 COMMON 1007
1 COMMON 1008
1 COMMON 1009
1 COMMON 1010
1 COMMON 1011
1 COMMON 1012
1 COMMON 1013
1 COMMON 1014
1 COMMON 1015
1 COMMON 1016
1 COMMON 1017
1 COMMON 1018
1 COMMON 1019
1 COMMON 1020
1 COMMON 1021
1 COMMON 1022
1 COMMON 1023
1 COMMON 1024
1 COMMON 1025
1 COMMON 1026
1 COMMON 1027
1 COMMON 1028
1 COMMON 1029
1 COMMON 1030
1 COMMON 1031
1 COMMON 1032
1 COMMON 1033
1 COMMON 1034
1 COMMON 1035
1 COMMON 1036
1 COMMON 1037
1 COMMON 1038
1 COMMON 1039
1 COMMON 1040
1 COMMON 1041
1 COMMON 1042
1 COMMON 1043
1 COMMON 1044
1 COMMON 1045
1 COMMON 1046
1 COMMON 1047
1 COMMON 1048
1 COMMON 1049
1 COMMON 1050
1 COMMON 1051
1 COMMON 1052
1 COMMON 1053
1 COMMON 1054
1 COMMON 1055
1 COMMON 1056
1 COMMON 1057
1 COMMON 1058
1 COMMON 1059
1 COMMON 1060
1 COMMON 1061
1 COMMON 1062
1 COMMON 1063
1 COMMON 1064
1 COMMON 1065
1 COMMON 1066
1 COMMON 1067
1 COMMON 1068
1 COMMON 1069
1 COMMON 1070
1 COMMON 1071
1 COMMON 1072
1 COMMON 1073
1 COMMON 1074
1 COMMON 1075
1 COMMON 1076
1 COMMON 1077
1 COMMON 1078
1 COMMON 1079
1 COMMON 1080
1 COMMON 1081
1 COMMON 1082
1 COMMON 1083
1 COMMON 1084
1 COMMON 1085
1 COMMON 1086
1 COMMON 1087
1 COMMON 1088
1 COMMON 1089
1 COMMON 1090
1 COMMON 1091
1 COMMON 1092
1 COMMON 1093
1 COMMON 1094
1 COMMON 1095
1 COMMON 1096
1 COMMON 1097
1 COMMON 1098
1 COMMON 1099
1 COMMON 1100
1 COMMON 1101
1 COMMON 1102
1 COMMON 1103
1 COMMON 1104
1 COMMON 1105
1 COMMON 1106
1 COMMON 1107
1 COMMON 1108
1 COMMON 1109
1 COMMON 1110
1 COMMON 1111
1 COMMON 1112
1 COMMON 1113
1 COMMON 1114
1 COMMON 1115
1 COMMON 1116
1 COMMON 1117
1 COMMON 1118
1 COMMON 1119
1 COMMON 1120
1 COMMON 1121
1 COMMON 1122
1 COMMON 1123
1 COMMON 1124
1 COMMON 1125
1 COMMON 1126
1 COMMON 1127
1 COMMON 1128
1 COMMON 1129
1 COMMON 1130
1 COMMON 1131
1 COMMON 1132
1 COMMON 1133
1 COMMON 1134
1 COMMON 1135
1 COMMON 1136
1 COMMON 1137
1 COMMON 1138
1 COMMON 1139
1 COMMON 1140
1 COMMON 1141
1 COMMON 1142
1 COMMON 1143
1 COMMON 1144
1 COMMON 1145
1 COMMON 1146
1 COMMON 1147
1 COMMON 1148
1 COMMON 1149
1 COMMON 1150
1 COMMON 1151
1 COMMON 1152
1 COMMON 1153
1 COMMON 1154
1 COMMON 1155
1 COMMON 1156
1 COMMON 1157
1 COMMON 1158
1 COMMON 1159
1 COMMON 1160
1 COMMON 1161
1 COMMON 1162
1 COMMON 1163
1 COMMON 1164
1 COMMON 1165
1 COMMON 1166
1 COMMON 1167
1 COMMON 1168
1 COMMON 1169
1 COMMON 1170
1 COMMON 1171
1 COMMON 1172
1 COMMON 1173
1 COMMON 1174
1 COMMON 1175
1 COMMON 1176
1 COMMON 1177
1 COMMON 1178
1 COMMON 1179
1 COMMON 1180
1 COMMON 1181
1 COMMON 1182
1 COMMON 1183
1 COMMON 1184
1 COMMON 1185
1 COMMON 1186
1 COMMON 1187
1 COMMON 1188
1 COMMON 1189
1 COMMON 1190
1 COMMON 1191
1 COMMON 1192
1 COMMON 1193
1 COMMON 1194
1 COMMON 1195
1 COMMON 1196
1 COMMON 1197
1 COMMON 1198
1 COMMON 1199
1 COMMON 1200
1 COMMON 1201
1 COMMON 1202
1 COMMON 1203
1 COMMON 1204
1 COMMON 1205
1 COMMON 1206
1 COMMON 1207
1 COMMON 1208
1 COMMON 1209
1 COMMON 1210
1 COMMON 1211
1 COMMON 1212
1 COMMON 1213
1 COMMON 1214
1 COMMON 1215
1 COMMON 1216
1 COMMON 1217
1 COMMON 1218
1 COMMON 1219
1 COMMON 1220
1 COMMON 1221
1 COMMON 1222
1 COMMON 1223
1 COMMON 1224
1 COMMON 1225
1 COMMON 1226
1 COMMON 1227
1 COMMON 1228
1 COMMON 1229
1 COMMON 1230
1 COMMON 1231
1 COMMON 1232
1 COMMON 1233
1 COMMON 1234
1 COMMON 1235
1 COMMON 1236
1 COMMON 1237
1 COMMON 1238
1 COMMON 1239
1 COMMON 1240
1 COMMON 1241
```

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

RFAD(5,100) IWEI, JWI0, IWE0, JW00
IF (IWEI.EQ.2) GO TO 82
RFAD(5,100) (JWL)(J,4), J=JWI0, MP1)
RFAD(5,100) (JWL0(I,4), I=1, XWEI)
82 CONTINUE
IF (IWE0.EQ.1) GO TO 83
RFAD(5,100) (JWL0(J,4), J=JW00, MP1)
READ(5,100) (JWL0(I,4), I=IWE0, LP1)
83 CONTINUE
GO TO (23, 24), IPAR
24 IREF=L
JREF=M
KREF=N
LPREF=NM(KREF)+JM(JREF)+IREF
23 CONTINUE
DO 25 J=1, MP1
GO TO (260, 265), IPLAK
260 RIJ)=1.0
GO TO 25
265 RIJ)=RI+Y(IJ)
27 CONTINUE
C+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
CALL STRID1
C+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
CHAPTER 3 -----DEPENDENT VARIABLES-----+-----+-----+-----+-----+-----+
READ (5,101) PRESS, DEN, ARSDR, SCATR, AKFAC, ALFAC
READ (5,101) CKX, HYY, HFU, FUNCO
READ (5,101) PREXP1, ARCON1, CR1, PREXP2, ARCON2, CR2
READ(5,101) PREXP3, ARCON3, CR3, PREXP4, ARCON4, CR4
READ(5,101) AA1, BB1, CC1, AA2, BB2, CC2
RFAD(5,101) AA3, BB3, CC3, AA4, BB4, CC4
READ (5,101) C1, C2, CD, AMU, ERROR, TCYLW, TINLW, TLIP
READ (5,101) LASTFP, IJUMP, JSW1, JSW2, NUINJ, NVINJ
103 FORMAT (2(I3, 7X), 6(I2, 8X))
READ (5,101) USW, VSW, SWND, AFSW, FSW, TSW
C-----FUEL INJECTION DATA.
READ (5,102) NFNZ, ISPRAY, TFUEL
102 FORMAT (2(I2, 8X), 6E10.4)
IF (NFN7.LE.0) GO TO 110
DO 115 I=1, NFNZ
READ (5,103) X0(I), Y0(I), Z0(I), ALFA(I), BETA(I), DELTA(I), THETA1(I),
1 THETA2(I), RNSL, WFF(I), SMD(I), VFUEL(I), RFUEL(I)
115 NSL(I)=IFIX(RNSL)
DO 120 II=1, NFNZ
Y0(II)=X0(II)*CLEND(IU)
Y0(II)=Y0(II)*CLEND(IU)
GO TO (125, 130), IPLAK
125 Z0(II)=Z0(II)*CLEND(IU)
GO TO 135
130 Z0(II)=Z0(II)*CANG(IU)
129 ALFACT(I)=ALFA(II)*CANG(IU)
BETA(II)=BETA(II)*CANG(IU)
DELTA(II)=DELTA(II)*CANG(IU)
THETA1(II)=THETA1(II)*CANG(IU)
THETA2(II)=THETA2(II)*CANG(IU)
WFF(I)=WFF(I)*CMASS(IU)
RFUEL(I)=RFUEL(I)*CLEND(IU)
120 VFUEL(I)=VFUEL(I)*CLENV(IU)
110 CONTINUE
TFUEL=TFUEL+CTEMP(IU)
AMU=AMU*CMASS(IU)/CLENV(IU)
PRESS=PRESS*CPRESS(IU)
DEN=DEN*CMASS(IU)/CLEND(IU)/CLEND(IU)/CLEND(IU)
TCYLW=TCYLW+CTEMP(IU)

```

```

TINLW=TINLW+CTEMP(IU)                               MA    117
TLTP=TLIP+CTEMP(IU)                                MA    118
USM=USM+CLENV(IU)                                 MA    119
VSM=VSM+CLENV(IU)                                 MA    120
AFSM=AESM+CHASS(IU)                                MA    121
FSM=FSM+CHASS(IU)                                 MA    122
TSW=TSW+CTEMP(IU)                                 MA    123
COMMENT 2
C-----FILM COOLING DATA.
IF (NUINJ.LE.0) GO TO 85
READ (5,100) (UINJ(I),I=1,NUINJ)                  MA    124
READ (5,100) (UINJ(I),I=1,NUINJ)                  MA    125
READ (5,100) (UINJ(I),I=1,NUINJ)                  MA    126
READ (5,101) (UINJ(I),I=1,NUINJ)                  MA    127
READ (5,101) (UINJ(I),I=1,NUINJ)                  MA    128
READ (5,101) (UINJ(I),I=1,NUINJ)                  MA    129
READ (5,101) (UINJ(I),I=1,NUINJ)                  MA    130
DO 239 II=1,NUINJ
UINJ(II)=UINJ(II)+CLENV(IU)
WUINJ(II)=WUINJ(II)+CLENV(IU)
AUINJ(II)=AUINJ(II)+CHASS(IU)
235 TUINJ(II)=TUINJ(II)+CTEMP(IU)
COMMENT 3
C-----DILUTION JET DATA.
85 IF (NVINJ.LE.0) GO TO 86
READ (5,100) (VINJ(I),I=1,NVINJ)                  MA    136
READ (5,100) (VINJ(I),I=1,NVINJ)                  MA    137
READ (5,100) (VINJ(I),I=1,NVINJ)                  MA    138
READ (5,100) (VINJ(I),I=1,NVINJ)                  MA    139
READ (5,101) (VINJ(I),I=1,NVINJ)                  MA    140
READ (5,101) (EVINJ(I),I=1,NVINJ)                 MA    141
READ (5,101) (DVINJ(I),I=1,NVINJ)                 MA    142
READ (5,101) (AVINJ(I),I=1,NVINJ)                 MA    143
READ (5,101) (TVINJ(I),I=1,NVINJ)                 MA    144
DO 240 II=1,NVINJ
VINJ(II)=VINJ(II)+CLENV(IU)
EVINJ(II)=EVINJ(II)+CLENV(IU)+CLENV(IU)
DVINJ(II)=DVINJ(II)+CLENV(IU)
AVINJ(II)=AVINJ(II)+CHASS(IU)
240 TVINJ(II)=TVINJ(II)+CTEMP(IU)
89 READ(5,100)NSOOT,ISOOT,MPART
C-----SOOT DATA.
TF(NSOOT,EQ.0)GO TO 910
READ(5,101)SSOOT,A0,ARCONN,AAA,BBB,FMG,GO,RHOP
READ(5,101)PREXP,ARCONN,ALPHA,AAS,BBS,DHR,CINCP,TINCP
READ(5,101)(DPART(I),I=1,MPART)
READ(5,101)(FRACP(I),I=1,MPART)
RHOP=RHOP*CHASS(IU)/(CLEND(IU)**3)
DHR=DHR*CFNER(IU)/CHASS(IU)
910 CONTINUE
COMMENT 5
C-----RADIATION DATA.
IF(ITRAO,NE,1)READ(5,105)IRAD,SRAD
105 FORMAT(12.0X,E10.4)
C-----NOX DATA.
READ(5,104)NNOX,INOX,ITNOX,SNOX,TNOX
104 FORMAT(12.0X),2E10.4)
TNOX=TNOX+CTEMP(IU)
CALL CREKO
WFU=17.0*CX*HYV
ISTFP=IRES
DFAC=1.0
SUM1=.01
SUM2=.05
CHAPTER 4 ----- MATERIAL CONSTANTS -----
PRFF(LVD)=AKBAA/(C2-C1)/SORT(CD)
DO 93 NV=2,NNV
PRRAT=PR(NV)/PREF(NV)
93 PJJY(NV)=E0*(PRRAT-1.)/PRRAT**.25
MA    151

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

RHCON=PRESS/UNICON
GASCON=UNICON*(0.232/MOX+0.768/MN2)
CHAPTER 5 -----INITIAL VALUES-----
CALL START
IF(INTAPE.NE.C)CALL OUTPUT(INTAPE)
JTRAD=ITRAD
ITRAD=1
JNOX=1
SSUM=1.0E30
C----- MAIN LOOP STARTS -----
60 CONTINUE
IF(JSOOT.EQ.0)GO TO 64
C----START SOOT CALCULATION.
TF(ISTEP.LT.ISOOT.AND.SSUM.GT.SSOOT)GO TO 64
DO 66 II=1,MPART
ISOLVE(LVS1+II-1)=1
66 IPRINT(29+II)=1
ISOLVF(LVN)=1
GO TO 63
64 DO 67 II=1,MPART
ISOLVE(LVS1+II-1)=0
67 IPRINT(29+II)=0
ISOLVF(LVN)=0
IPRINT(23)=0
63 IF(JTRAD.EQ.1)GO TO 65
C----START RADIATION CALCULATION.
TF(ISTEP.GE.IRAD.OR.SSUM.LE.SRAD)ITRAD=JTRAD
IF(ITRAD.F0.1)GO TO 65
ISOLVF(LVRX)=1
ISOLVE(LVRY)=1
ISOLVE(LVR7)=1
IPRINT(11)=1
IPRINT(12)=1
IPRINT(13)=1
IPRINT(14)=1
GO TO 69
69 CONTINUE
ISOLVF(LVRX)=C
ISOLVE(LVRY)=C
ISOLVF(LVRZ)=0
IPRINT(11)=0
IPRINT(12)=0
IPRINT(13)=C
IPRINT(14)=0
69 CONTINUE
IF(JNOX.EQ.0)GO TO 70
C----START NOX CALCULATION.
IF(INNOX.EQ.0)GO TO 60
IF(ISTEP.LT.INOX.AND.SSUM.GE.SNOX)GO TO 60
ISOLVE(LVFU)=0
ISOLVF(LVCO)=0
ISOLVF(LVCH)=0
ISOLVE(LVH2)=C
ISOLVF(LVH1)=1
JNOX=0
INOX=ISTEP
GO TO 70
60 ISOLVE(LVH1)=0
70 CONTINUE
C-----+
IF(ISTEP.F0.100) ISOLVE(LVK)=9
IF(ISTEP.EC.100) ISOLVF(LVD)=9
CALL DENS
ISP=ISPRAY

```

|  | MA      | 162 |
|--|---------|-----|
|  | NASAK   | 0   |
|  | MA      | 164 |
|  | MA      | 165 |
|  | NASAX   | 9   |
|  | SOOT    | 22  |
|  | SOOT    | 23  |
|  | NOX     | 26  |
|  | SOOT    | 24  |
|  | MA      | 167 |
|  | MA      | 168 |
|  | SOOT    | 25  |
|  | COMMENT | 7   |
|  | SOOT    | 26  |
|  | SOOT    | 27  |
|  | SOOT    | 28  |
|  | SOOT    | 29  |
|  | SOOT    | 30  |
|  | SOOT    | 31  |
|  | SOOT    | 32  |
|  | SOOT    | 33  |
|  | SOOT    | 34  |
|  | SOOT    | 35  |
|  | SOOT    | 36  |
|  | RAD     | 7   |
|  | COMMENT | 8   |
|  | SOOT    | 38  |
|  | RAD     | 8   |
|  | RAD     | 9   |
|  | RAD     | 10  |
|  | RAD     | 11  |
|  | RAD     | 12  |
|  | RAD     | 13  |
|  | RAD     | 14  |
|  | RAD     | 15  |
|  | RAD     | 16  |
|  | SOOT    | 39  |
|  | RAD     | 17  |
|  | RAD     | 18  |
|  | RAD     | 19  |
|  | RAD     | 20  |
|  | RAD     | 21  |
|  | RAD     | 22  |
|  | RAD     | 23  |
|  | RAD     | 24  |
|  | NOX     | 27  |
|  | COMMENT | 9   |
|  | NOX     | 28  |
|  | NOX     | 29  |
|  | NOX     | 30  |
|  | NOX     | 31  |
|  | 4STEP   | 22  |
|  | 4STEP   | 23  |
|  | NOX     | 32  |
|  | NOX     | 33  |
|  | NOX     | 34  |
|  | NOX     | 35  |
|  | NOX     | 36  |
|  | NOX     | 37  |
|  | MA      | 169 |
|  | MA      | 170 |
|  | MA      | 171 |
|  | MA      | 172 |
|  | MA      | 173 |

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                                     |        |     |
|---------------------------------------------------------------------|--------|-----|
| ? UIN(40),TIN(40),FUELS(40),SEXIT,IGAM1(29),IGAM2(29)               |        |     |
| COMMON/TURB/NVK,NVD,C1,C2,CD,AK,DUODXJ(3,3),AKFAC,ALFAC,            | 4STEP  | 13  |
| 1 MODEL,PR(32),PRFF(32),PJAY(32),E                                  | CONGEN | 6   |
| COMMON/RAD/NVE,SIGMA,ABSOR,SCATR                                    | 4STEP  | 14  |
| COMMON/REACT/ARCON1,PREXP1,CR1,ARCON2,PREXP2,CR2,MODER              | CONGEN | 8   |
| COMMON/DRDPL/EVAP(192),NTP4,NFNZ,XO(3),YO(3),ZO(3),ALFA(3),         | CONGEN | 9   |
| 1 RETA(3),DELTA(3),THETA1(3),THETA2(3),MSL(3),WFF(3),SND(3),        | CONGEN | 10  |
| 2 VFUFL(3),RFUEL(3),EVSU(64),HEVAP                                  | CONGEN | 11  |
| COMMON/INJECT/FLNWIN,IUINJ(20),JIINJ(20),UINJ(20),WIINJ(20),        | CONGEN | 12  |
| 1 AUINJ(20),TUINJ(20),IVINJ(20),JVINJ(20),KVINJ(20),VINJ(20),       | CONGEN | 13  |
| 2 EVINJ(20),DVINJ(20),AVINJ(20),TVINJ(20),WIINJ,WVINJ,JSW1,JSW2,    | CONGEN | 14  |
| 3 USW,VSW,AFSW,FSW,TSM,MSW,SWNO,RHOSW                               | CONGEN | 15  |
| COMMON/CSDCT/LVN,MVS1,MVS2,ISOOT,SSOOT,NSOOT,AD,ARCONN,AAA,BBB,FNG  | CONGEN | 16  |
| 1,GO,MRART,DPART(2),FRACP(2),RHOP,ARCONS,PREXPS,ALPHA,AAS,BBS,DHR   | SOOT   | 8   |
| 2,LVN,LVS1,LVS2,CINCP,TINCP,FUTOT                                   | SOOT   | 9   |
| COMMON/CRAD/IPAD,SRAD                                               | SOOT   | 10  |
| COMMON/CFDUR/PREP3,ARCON3,CR3,PREXP4,ARCON4,CR4,AA1,BB1,CC1,        | SOOT   | 11  |
| 1 AA2,AB2,CC2,AA3,BB3,CC3,AA4,BB4,CC4,RATIO5,RATIO6,RATIO7,         | 4STEP  | 12  |
| 2 RATIO6,RATIO9,RATO10,RATO11,RATO12,WCH,WH2,WC2H4,LVCH,LVCH1,LVH21 | 4STEP  | 13  |
| DATA NI,NJ,NK,NNV/10,10,5,29/                                       | 4STEP  | 17  |
| DATA AK,E/.43,9./                                                   | 4STEP  | 24  |
| DATA UNICON,SIGMA/0314.,5.669E-08/                                  | MA     | 203 |
| DATA NVK,NVD,NVFUOX,NVFU,NVCH,NVCD,NVH2,NVTE,NVH,NVN,MVS1,MVS2      | MA     | 204 |
| 1/4,5,4,5,14,6,9,11,12,13/                                          | 4STEP  | 25  |
| DATA NVFAV,NVRX,NVRY,NVRZ/10,1,2,3/                                 | MA     | 206 |
| DATA IDFC,IDC2,IDN2,IDCO,IDCW,IDH2,IDH20,IDC02,IDH1,IDN1,IDNO,      | 4STEP  | 27  |
| 1 IDN02,IDO,IOOM/1,2,3,4,5,6,7,8,9,10,11,12,13,14/                  | 4STEP  | 28  |
| DATA NVFF/1,2,3,4,5,4,5,14,8,19,9,11,12,13,16,17,18,19,20,21,22,    | 4STEP  | 29  |
| 1 23,24,25,26,27,28,29,1,2,3/                                       | 4STEP  | 30  |
| DATA LVK,LVD,LVFUOX,LVFU,LVCH,LVC0,LVH2,LVH,LVN,LVS1,LVS2/3,6,      | 4STEP  | 31  |
| 1 7,8,9,10,11,12,13,14,15/                                          | 4STEP  | 32  |
| DATA LVFU1,LVC02,LVN2,LVC01,LVCH1,LVH21,LVH20,LVC02,LVH1,LVN1,      | 4STEP  | 33  |
| 1 LVNO,LVNQ2,LVQ,LVOM/16,17,18,19,20,21,22,23,24,25,26,27,28,29/    | 4STEP  | 34  |
| DATA LVRX,LVRY,LVRZ/30,31,32/                                       | 4STEP  | 35  |
| DATA NVH20,NVEX,NVCD2,NVN2/1,2,3,4/                                 | MA     | 210 |
| DATA NP,NRHO,NGAM/33,34,35/                                         | 4STEP  | 36  |
| DATA WC02,WCD,WDX,WH2D,WN2,WH2,WC2H4/44.,28.,32.,18.,28.,2.,20./    | 4STEP  | 37  |
| DATA IGAM1,IGAM2/1,0,3*1,24*0,0,4*1,24*0/                           | 4STEP  | 38  |
| DATA ACDEF/-1306.01,6620.37,-6167.00,1336.65/                       | NA     | 214 |
| END                                                                 | NA     | 215 |
| SUBROUTINE INIT                                                     | NASAX  | 10  |
| COMMON F(500,7),DU(10,10,5),DV(10,10,5),DW(10,10,5),                | COMFA  | 2   |
| 1 ANUC(10,10,5),SOUT1(10,10,5),SOUT2(10,10,5),FCM(10,10,5),         | 4STEP  | 1   |
| 2 FH2(10,10,5),FS(500,14),                                          | 4STEP  | 2   |
| 1 RH0(10,10,5),VISCI(10,10,5),ABSR(10,10,5),SCTR(10,10,5),          | RAD    | 1   |
| 1 CU(10,10),SP(10,10),DRH0DP(10,10,5),                              | RAD    | 2   |
| 1 AXP(10,10),AXP(10,10),AYP(10,10),AYH(10,10),AZP(10,10),           | COMFA  | 4   |
| 2 ATM(10,10),CZ(10,10),CY(10),CZU(10,10),CYU(10),                   | COMFA  | 5   |
| 3 CZP(10,10),CYP(10),DIVG(10,10),NTP1,NTP2                          | COMFA  | 6   |
| 1,AKPK(192),AXPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),      | CTOMA  | 1   |
| 2 SHK(192),SPK(192)                                                 | CTOPA  | 2   |
| DIMENSION U(10,10,5),V(10,10,5),W(10,10,5),PP(10,10,5)              | COMFA  | 7   |
| DIMENSION P(10,10,5),TEMP(10,10,5),GAM(10,10,5)                     | COMFA  | 8   |
| EQUIVALENCE (F(1,1),U(1,1,1)),(F(1,2),V(1,1,1)),(F(1,3),W(1,1,1))   | COMFA  | 9   |
| EQUIVALENCE (F(1,4),P(1,1,1)),(F(1,5),P(1,1,1))                     | COMFA  | 10  |
| EQUIVALENCE (F(1,6),TEMP(1,1,1)),(F(1,7),GAM(1,1,1))                | COMFA  | 11  |
| COMMON/CYL/R130),RM(30),RMV(30),YSR(30),YSVR(30),IPMAX              | COMMON | 2   |
| COMMON/GRD/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),          | COMMON | 3   |
| 1 YSV(30),ZSH(30),XDIF(40),YDIF(30),ZDIF(30),FXP(40),FXM(40),       | COMMON | 4   |
| 2 FYP(30),FYM(30),FZP(30),FZN(30),DT,TIME                           | COMMON | 5   |
| COMMON                                                              | NOX    | 2   |
| 1/CINDEX/IDCF,IDFU,IDO2,IDN2,IDH20,IDC02,IDH1,IDH2,ION1,IDNO,IDNO2  | NOX    | 3   |
| 1,IDO,IDOH,IMCPS,ILC,ILH,IMAT,ITER,JJJ,N1,N2,N3,NA,NGLOB,NGLOBF,    | NOX    | 4   |
| 2 NLM,NQ,NSM,NS1,NS2,ICHC                                           | 4STEP  | 3   |



ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                      |         |     |
|------------------------------------------------------|---------|-----|
| RATIO9=HYY*WH2/(2.0*WFU)                             | 4STEP   | 45  |
| RAT010=(HYY-2.0)*WH2/(2.0*WCH)                       | 4STEP   | 46  |
| PATO11=CXX*WCD/WCH                                   | 4STEP   | 47  |
| RATO12=WH2/WFU                                       | 4STEP   | 48  |
| FSTDIC=RAT012/(RATIO1+RATIO2)                        | AL      | 49  |
| HFU=HFU/1.987                                        | NOX     | 50  |
| CFR=.003                                             | AL      | 51  |
| EMISW=.0                                             | AL      | 52  |
| EMISIN=.1                                            | AL      | 53  |
| EMISR=.1                                             | AL      | 54  |
| UMASS=0.                                             | AL      | 55  |
| SMASS=1.E-30                                         | AL      | 56  |
| ASH=AFSW-FSW                                         | AL      | 57  |
| FUMSW=FSW/AFSW                                       | AL      | 58  |
| FUNXSW=FUMSW                                         | AL      | 59  |
| WSW=SWN0*USW                                         | AL      | 60  |
| UMASS=AFSW*USW                                       | AL      | 61  |
| SPASS=AFSW                                           | AL      | 62  |
| FK=AMAX1(10.,AKFAC*(UMASS/SMASS)+0.2)*FLOAT(MODEL-1) | AL      | 63  |
| SQFR=SORT(FK)                                        | AL      | 64  |
| ASURLR=0.                                            | AL      | 65  |
| DO 10 J=JSW1,JSW2                                    | AL      | 66  |
| 10 ASURLR=ASURLR+YSR(J)*(Z(NP1)-Z(1))                | AL      | 67  |
| ALIN=.5*ALFAC*(Y(JSW2)+Y(JSW2+1)-Y(JSW1)+Y(JSW1-1))  | AL      | 68  |
| RHOSW=AFSW/ASURLR/USW                                | AL      | 69  |
| RTCD=SGRT(CD)                                        | AL      | 70  |
| DO 40 I=1,LP1                                        | AL      | 71  |
| 40 FUELS(I)=0.                                       | AL      | 72  |
| C----FUEL INJECTION.                                 | COMMENT | 73  |
| IF (NFMZ.LE.0) GO TO 40                              | AL      | 74  |
| DO 165 II=1,NFMZ                                     | AL      | 75  |
| DO 165 I=2,L                                         | AL      | 76  |
| IF (XO(I),GT,0.5*(X(I)+X(I+1))) GO TO 165            | AL      | 77  |
| FUELS(I)=FUELS(I)+WFF(I)                             | AL      | 78  |
| 165 CONTINUE                                         | AL      | 79  |
| 40 FUELS(LP1)=FUELS(L)                               | AL      | 80  |
| WFN2=FUELS(LP1)                                      | AL      | 81  |
| C----BOUNDRY CONDITIONS.                             | COMMENT | 82  |
| DO 80 K=1,NP1                                        | AL      | 83  |
| DO 80 J=1,MPI                                        | AL      | 84  |
| 82 JKIN(J,K)=0                                       | AL      | 85  |
| DO 80 I=1,LP1                                        | AL      | 86  |
| 80 IKIN(T,K)=0                                       | AL      | 87  |
| DO 80 K=1,NP1                                        | AL      | 88  |
| DO 80 J=JSW1,JSW2                                    | AL      | 89  |
| 85 JKIN(J,K)=1                                       | AL      | 90  |
| 84 CONTINUE                                          | AL      | 91  |
| C----DILUTION JETS.                                  | COMMENT | 92  |
| 80 IF (INVINJ.LE.0) GO TO 92                         | AL      | 93  |
| 80 94 II=1,NVINJ                                     | AL      | 94  |
| I=IVINJ(T)                                           | AL      | 95  |
| J=JVINJ(T)                                           | AL      | 96  |
| K=KVINJ(T)                                           | AL      | 97  |
| IF (J,EQ,JWLI(I,4)) GO TO 96                         | AL      | 98  |
| IKIN(T,K)=IKIN(I,K)+2                                | AL      | 99  |
| GO TO 94                                             | AL      | 100 |
| 96 IKIN(I,K)=IKIN(I,K)+1                             | AL      | 101 |
| 94 CONTINUE                                          | AL      | 102 |
| C----FILM COOLING SLOTS.                             | COMMENT | 103 |
| 97 IF (NUINJ.LE.0) GO TO 199                         | AL      | 104 |
| DO 198 II=1,NUINJ                                    | AL      | 105 |
| I=TUTNJ(T)-1                                         | AL      | 106 |
| J=JUTNJ(T)                                           | AL      | 107 |
| IF (J,EQ,JWLI(I,4)+1) GO TO 197                      | AL      | 108 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

    DO 196 K=1,NP1          AL      72
196  IKIN(I,K)=IKIN(I,K)+2   AL      73
      GO TO 198           AL      74
197  DO 199 K=1,NP1          AL      75
198  IKIN(I,K)=IKIN(I,K)+1   AL      76
199  CONTINUE              AL      77
200  CONTINUE              AL      78
C ----- COMPUTE TOTAL FLOW RATE -----          AL      79
201  DO 499 I=1,LPI          AL      80
      FLO(I)=0.             AL      81
      FUEL(I)=0.             AL      82
499  TEMTH(I)=0.            AL      83
      FLO(I)=AFSW            AL      84
      FUEL(I)=FSW             AL      85
      TEMTH(I)=AFSH+TSW       AL      86
C ----- AXIAL INJECTION          AL      87
202  IF (NUINJ.LE.0) GO TO 104        AL      88
203  DO 106 II=1,NUINJ          AL      89
      I=IIINJ(II)-1          AL      90
      FLO(I)=FLO(I)+AUINJ(II)  AL      91
104  TEMTH(I)=TEMTH(I)+TUINJ(II)*AUINJ(II)  AL      92
C ----- RADIAL INJECTION          AL      93
205  IF (NVINJ.LE.0) GO TO 106        AL      94
206  DO 110 II=1,NVINJ          AL      95
      I=IVINJ(II)            AL      96
      FLO(I)=FLO(I)+AVINJ(II)  AL      97
110  TEMTH(I)=TEMTH(I)+TVINJ(II)*AVINJ(II)  AL      98
207  CONTINUEF                  AL      99
C ----- FLOW RATE AT EACH I-STATION          AL     100
208  DO 139 I=2,LPI          AL     101
      FLO(I)=FLO(I-1)+FLO(I)  AL     102
      FUEL(I)=FUEL(I-1)+FUEL(I)  AL     103
139  TEMTH(I)=TEMTH(I-1)+TEMTH(I)  AL     104
      FLOWIN=FLO(LPI)+WFNZ      AL     105
209  DO 145 I=1,LPI          AL     106
      FUUX(I)=FUEL(I)/FLO(I)  AL     107
      FUTOT=FUEL(LPI)+WFNZ      AL     108
      AMASS=FLO(LPI)-FUEL(LPI)  AL     109
      FUARAT=FUTOT/AMASS      AL     110
210  DO 150 I=1,LPI          AL     111
      FUEL1=(FUEL(I)+FUELS(I))/(FLO(I)+FUELS(I))  AL     112
      FUEL2=AMAX1(FUEL1-RATIO2*(1.-FUEL1)/RATIO1,0.)  AL     113
      PHT=FUEL2/FSTCIC        AL     114
      THCP5=3                 NOX     49
      NS1=IDFU                NOX     50
      NS2=IDN2                NOX     51
      TK=TSW                  NOX     52
      TKINV=1.000/TK          NOX     53
      S2(TDFU)=FUFLI/SNW(IDFU)  NOX     54
      S2(TD02)=(1.0-FUEL1)*RATE02/SNW(TD02)  NOX     55
      S2(TDN2)=(1.0-FUFLI)*(1.0-RATIO2)/SNW(TDN2)  NOX     56
      CALL HCPS                NOX     57
      H1=HSUM*UNICCR*TK        NOX     58
      TIN(I)=TSW               AL     117
      FUB=FUEL1-FUEL2          AL     118
      FLPC02=WC02*(CXX*FUB/WFU-CXX*FUNCO/WCH-FUNCO/WCO)  4STEP   49
      FLPOX=RATIO1+FUEL2*RATIO2*FUNCO+RATIO2*(RATIO1+RATIO2)*FUEL1  AL     120
      1+(RATIO3+RATIC6)*FUNCO  4STEP   50
      FLPOX=AMAX1(FLPOX,0.)    AL     121
      FLPH2O=C(.5*WH2O+(HYY*FUB/WFU-(RATE07+1.01*FUNCO))  4STEP   51
      FLPH2O=1.0-FUEL2-FLPC02-3.0*FUNCO-FLPOX-FI.PH2O  4STEP   52
      IHCP5=4                 NOX     59
      NS1=IDFU                NOX     60
      NS2=IDC02                NOX     61

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

S2(IDFUI)=FUEL/FMW(IDFUI)
S2(IDO2)=FLPQH/SMW(IDO2)
S2(IDN2)=FLPN2/SMW(IDN2)
S2(IDC1)=FUNC0/SMW(IDC0)
S2(IDC1)=FUNCC/SMW(IDC1)
S2(IDH2)=FUNCE/SMW(IDH2)
S2(IDH20)=FLPH20/SMW(IDH20)
S2(IDC02)=FLPC02/SMW(IDC02)

C-----IGNITION SEQUENCE.
DO 151 II=1,10
T=TIN(I)
TK=T
TKINV=1.000/TK
CALL MCPS
H2=HSUM*UNICON*TK
CPI=CPSUM*UNICCN
THFW=T+(H1-H2)/CPI
TMAX=ACDEF(1)+PHI*(ACDEF(2)+PHI*(ACDEF(3)+PHI*ACDEF(4)))
TMAX=AMAX1(TMAX,2000.)
TNEW=AMIN1(TNEW,TMAX)
IF (ARS(TIN(I)-TNEW),LT.10.) GO TO 150
151 TIN(I)=TNEW
WRTTE (6,156)
156 FORMAT (' **ERROR=100**')
150 CONTINUE
T4=TIN(LP1)
IMCPS=1
NS1=1002
NS2=10N2
TK=T4
TKINV=1.000/TK
S2(IDO2)=RATIC2/SMW(IDO2)
S2(IDN2)=(1.0-RATT02)/SMW(IDN2)
CALL MCPS
CP=CPSUM*UNICCN

C-----AVERAGE U-VELOCITY AT EACH I-SECTION.
DO 231 I=3,LPI
J1=JWL(I,1)
J2=JWL(I,1)
RH04=PRESS/GASCON/TIN(I-1)
A4=.5*(Z(NP1)-Z(1))*(RM(J2)**2-RM(J1+1)**2)
IF (IPLAX,F0,2) GO TO 231
Y1=.5*(Y(J1)+Y(J1+1))
IF (J1,F0,1) Y1=Y(J1)
Y2=.5*(Y(J2)+Y(J2-1))
IF (J2,F0,MP1) Y2=Y(J2)
A4=(Z(NP1)-Z(1))*(Y2-Y1)
231 UIN(I)=FLD(I-1)/RH04/A4
EMI=EMISW/(2.*EMISW)
RADIN=EMISIN*SIGMA*TSW004
RADSUR=EMISR*SIGMA*T4004
C ----- PRINTOUT INPUT DATA -----
WRTTE (6,1004) TITLE2
1004 FORMAT(1H1,24X,20A4/29X,00(1H-1))
MC RAT=MCRAT,MFU,MFU
WRTTE (6,2010) MC RAT,MFU,MFU
2010 FORMAT (2X,'PHYSICAL INPUT'/8X,14(1H-1)/10X,'1.FUEL-'/,
4 30X,'HYDROGEN-CARBON RATIO-----',1PE12.4,/,
2 30X,'MOLECULAR WEIGHT-----',1PE12.4,' (KG/KGMOLE)''/',
3 30X,'HEAT OF FORMATION-----',1PE12.4,' (CAL/GMOLE)''')
JJ=1
WRTTE (6,2014) JJ,FSW
2014 FORMAT (30X,'INLET-',1X,'MASS FLOW RATE-----',1PE12.4,
1  '(KG/S)')


```

ORIGINAL  
OF POUR

|                                                                       |      |     |  |  |  |  |  |
|-----------------------------------------------------------------------|------|-----|--|--|--|--|--|
| WRITE (6,2020) PRESS                                                  |      |     |  |  |  |  |  |
| 2020 FORMAT (10X,'2.AIR -')                                           |      |     |  |  |  |  |  |
| 3 30X,'PRESSURE-----',1PE12.4,' (NEW/SQ.M)')                          | AL   | 169 |  |  |  |  |  |
| WRITE (6,2024) JJ,ASW,JD,USW,BJ,SWNO                                  | AL   | 170 |  |  |  |  |  |
| 2024 FORMAT (30X,'INLET-',11,', MASS FLOW RATE-----',1PE12.4,         | AL   | 171 |  |  |  |  |  |
| 1 1 , '(M/S)/30X,'INLET-',11,', AXIAL VELOCITY-----',1PE12.4,         | AL   | 172 |  |  |  |  |  |
| 2 1 , '(M/S)/30X,'INLET-',11,', SWIRL NUMBER-----',                   | AL   | 173 |  |  |  |  |  |
| 3 1PE12.4)                                                            | AL   | 174 |  |  |  |  |  |
| HEIGHT=2.0(Y(NP1)=Y(1))                                               | AL   | 175 |  |  |  |  |  |
| ALNHT=X(LP1)-X(1)                                                     | AL   | 176 |  |  |  |  |  |
| SECTOR=2(NP1)-2(1)                                                    | AL   | 177 |  |  |  |  |  |
| WRITE (6,2025) HEIGHT,ALNHT,SECTOR                                    | AL   | 178 |  |  |  |  |  |
| 2025 FORMAT (2X,'IT. GEOMETRICAL INPUT')/8X,10(1H-)/                  | AL   | 179 |  |  |  |  |  |
| 1 30X,'CHANNEL HEIGHT OF COMBUSTOR-----',1PE12.4,' (M)')              | AL   | 180 |  |  |  |  |  |
| 2 30X,'LENGTH OF COMBUSTOR-----',1PE12.4,' (M)')                      | AL   | 181 |  |  |  |  |  |
| 2 30X,'ANGULAR SECTOR-----',1PE12.4,' (RAD-M1)')                      | AL   | 182 |  |  |  |  |  |
| WRITE (6,2029) JJ,ASWRLR                                              | AL   | 183 |  |  |  |  |  |
| 2029 FORMAT (30X,'INLET-',11,', FLOW AREA-----',1PE12.4,              | AL   | 184 |  |  |  |  |  |
| 1 1 ,(SQ.M)')                                                         | AL   | 185 |  |  |  |  |  |
| IF (NUINJ+NVINJ+NFNZ.GT.0) WRITE (6,2030)                             | AL   | 186 |  |  |  |  |  |
| 2030 FORMAT (2X,'III. AIR INJECTIONNS')/8X,14(1H-)                    | AL   | 187 |  |  |  |  |  |
| IF (NUINJ.LE.0) GO TO 770                                             | AL   | 188 |  |  |  |  |  |
| WRITE (6,2031)                                                        | AL   | 189 |  |  |  |  |  |
| 2031 FORMAT (10X,'1.FILM COOLING AIR-')                               | AL   | 190 |  |  |  |  |  |
| WRITE (6,2033)                                                        | AL   | 191 |  |  |  |  |  |
| 2033 FORMAT (25X,'SLOT NO',4X,'I',5X,'J',4X,'K',8X,'U-VELOCITY',      | AL   | 192 |  |  |  |  |  |
| 1 5X,'V-VELOCITY',5X,'W-VELOCITY',6X,'MASS FLOW',6X,'FUEL FLOW'/      | AL   | 193 |  |  |  |  |  |
| 2 50X,'(M/S)',10X,'(M/S)',10X,'(M/S)',10X,'(KG/S)',9X,'(KG/S)')       | AL   | 194 |  |  |  |  |  |
| DO 772 II=1,NUINJ                                                     | AL   | 195 |  |  |  |  |  |
| I=IUINJ(II)                                                           | AL   | 196 |  |  |  |  |  |
| J=JVINJ(II)                                                           | AL   | 197 |  |  |  |  |  |
| 772 WRITE (6,2090) II,I,J,KUDEF,UINJ(II),UDEF,WUINJ(II),AVINJ(II)     | AL   | 198 |  |  |  |  |  |
| 770 IF (VINIJ.LE.C1) GO TO 774                                        | AL   | 199 |  |  |  |  |  |
| WRITE (6,2034)                                                        | AL   | 200 |  |  |  |  |  |
| 2034 FORMAT (/10X,'2.DILUTION AND SECONDARY AIR-')                    | AL   | 201 |  |  |  |  |  |
| WRITE (6,2033)                                                        | AL   | 202 |  |  |  |  |  |
| DO 776 II=1,NVINJ                                                     | AL   | 203 |  |  |  |  |  |
| I=IVINJ(II)                                                           | AL   | 204 |  |  |  |  |  |
| K=KVINJ(II)                                                           | AL   | 205 |  |  |  |  |  |
| J=JVINJ(II)                                                           | AL   | 206 |  |  |  |  |  |
| 776 WRITE (6,2090) II,I,J,K,UDEF,VINJ(II),UDEF,AVINJ(II)              | AL   | 207 |  |  |  |  |  |
| 774 CONTINUE                                                          | AL   | 208 |  |  |  |  |  |
| 2090 FORMAT (27X,13,4X,13,3X,13,2X,13,8X,1PE10.3,4(5X,1PE10.3))       | AL   | 209 |  |  |  |  |  |
| 810 IF (NFNZ.LE.0) GO TO 813                                          | AL   | 210 |  |  |  |  |  |
| WRITE (6,811)                                                         | AL   | 211 |  |  |  |  |  |
| 811 FORMAT (/10X,'3.FUEL NOZZLES-/12X,'X0',8X,'Y0',8X,'Z0',6X,'ALFA', | AL   | 212 |  |  |  |  |  |
| 1 5X,'BETA',5X,'DELTA',4X,'THETA1',4X,'THETA2',7X,'NSL',8X,'WF',      | AL   | 213 |  |  |  |  |  |
| 2 7X,'SMO',5X,'VFUEL')/12X,'(M)',7X,'(M)',6X,'(N-R)',4X,'(RAD)',      | AL   | 214 |  |  |  |  |  |
| 3 5X,'(RAD)',5X,'(RAD)',5X,'(RAD)',5X,'(RAD)',8X,'(M/S)',6X,'(KG/S)', | AL   | 215 |  |  |  |  |  |
| 4 3X,'(MICRON)',2X,'(M/S)')                                           | AL   | 216 |  |  |  |  |  |
| DO 811 I=1,NFNZ                                                       | AL   | 217 |  |  |  |  |  |
| RNSL=FLOAT(NSL(I))                                                    | AL   | 218 |  |  |  |  |  |
| 811 WRITE (6,811) X0(I),Y0(I),Z0(I),ALFA(I),BETA(I),DELTA(I),         | AL   | 219 |  |  |  |  |  |
| 1 THETA1(I),THETA2(I),RNSL,WFF(I),SMO(I),VFUEL(I)                     | AL   | 220 |  |  |  |  |  |
| 811 FORMAT (9X,1P12E10.2)                                             | AL   | 221 |  |  |  |  |  |
| 812 CONTINUE                                                          | AL   | 222 |  |  |  |  |  |
| 812 WRITE (6,2037) FUTOT,ANASS,FUARAT                                 | AL   | 223 |  |  |  |  |  |
| 2037 FORMAT (/2X,'IV. AIR-FUEL BALANCE')/8X,16(1H-)/                  | AL   | 224 |  |  |  |  |  |
| 1 30X,'TOTAL FUEL FLOW RATE-----',1PE12.4,' (KG/S)')                  | AL   | 225 |  |  |  |  |  |
| 2 30X,'TOTAL AIR FLOW RATE-----',1PE12.4,' (KG/S)')                   | AL   | 226 |  |  |  |  |  |
| 3 30X,'FUEL TO AIR RATIO-----',1PE12.4,'/')                           | AL   | 227 |  |  |  |  |  |
| WRITE (6,2040) CP,ARCON1,PREXP1,CRI1,ARCON2,PREXP2,CR2,               | AL   | 228 |  |  |  |  |  |
| 1 C1,C2,CD                                                            | AL   | 229 |  |  |  |  |  |
| 2040 FORMAT (2X,'V. SOME IMPORTANT QUANTITIES')/8X,24(1H-)/           | SOOT | 230 |  |  |  |  |  |
|                                                                       | AL   | 49  |  |  |  |  |  |
|                                                                       | AL   | 232 |  |  |  |  |  |

```

1 30X,*SPECIFIC HEAT-----',1PE12.4,I (J/KG-K)** AL 233
2 30X,*ACTIVATION ENERGY (1ST) -----',1PE12.4,I (K)** AL 234
3 30X,*PRE-EXPONENT (1ST) -----',1PE12.4,I AL 235
3 30X,*EDDY BREAKUP CONSTANT (1ST) -----',1PE12.4,I AL 236
7 30X,*ACTIVATION ENERGY (2ND) -----',1PE12.4,I (K)** AL 237
6 30X,*PRE-EXPONENT (2ND) -----',1PE12.4,I AL 238
9 30X,*EDDY BREAKUP CONSTANT (2ND) -----',1PE12.4,I AL 239
4 30X,*TURB. CONSTANT (C1) -----',1PE12.4,I AL 240
4 30X,*TURB. CONSTANT (C2) -----',1PE12.4,I AL 241
4 30X,*TURB. CONSTANT (CD) -----',1PE12.4,I SOOT 50
      WRITE(6,2062)PREXP3,ARCON3,CR3,PREXP4,ARCON4,CR4
2062 FORMAT(30X,*PRE-EXPONENT (3RD) -----',1PE12.4,I 4STEP 55
1 30X,*ACTIVATION ENERGY (3RD) -----',1PE12.4,I 4STEP 56
1 30X,*EDDY BREAKUP CONSTANT (3RD) -----',1PE12.4,I 4STEP 57
1 30X,*PRE-EXPONENT (4TH) -----',1PE12.4,I 4STEP 58
1 30X,*ACTIVATION ENERGY (4TH) -----',1PE12.4,I 4STEP 59
1 30X,*EDDY BREAKUP CONSTANT (4TH) -----',1PE12.4,I 4STEP 60
      WRITE(6,2064)AA1,BB1,CC1,AA2,BB2,CC2,AA3,BB3,CC3,AA4,BB4,CC4
2064 FORMAT(30X,*SPECIES EXPONENTS,A,B,C(1ST) ---,1P3E12.4/I 4STEP 63
1 30X,*SPECIES EXPONENTS,A,B,C(2ND) ---,1P3E12.4/I 4STEP 64
1 30X,*SPECIES EXPONENTS,A,B,C(3RD) ---,1P3E12.4/I 4STEP 65
1 30X,*SPECIES EXPONENTS,A,B,C(4TH) ---,1P3E12.4/I 4STEP 66
C-----UNIT CONVERSION FOR 4-STEP RATE CONSTANTS.
      PREXP1=PREXP1*((WFU**((1.0-AA1)))/((WDX**BB1)*(WC2H4**CC1)))
1*(10.0**(-3.0*(AA1+BB1+CC1)))
      PREXP2=PREXP2*((WC2H4**((1.0-AA2)))/((WDX**BB2)*(WFU**CC2)))
1*(10.0**(-3.0*(AA2+BB2+CC2)))
      PREXP3=PREXP3*((WC0**((1.0-AA3)))/((WDX**BB3)*(WH2O**CC3)))
1*(10.0**(-3.0*(AA3+BB3+CC3)))
      PREXP4=PREXP4*((WH2O**((1.0-AA4)))/((WDX**BB4)*(WC2H4**CC4)))
1*(10.0**(-3.0*(AA4+BB4+CC4)))
      PEKP1=ALOG(PREXP1*((WFU**((AA1-1.0)))*(WDX**BB1)*(WC2H4**CC1)))
      PEKP2=ALOG(PREXP2*((WC2H4**((AA2-1.0)))*(WDX**BB2)*(WFU**CC2)))
      PEKP3=ALOG(PREXP3*((WC0**((AA3-1.0)))*(WDX**BB3)*(WH2O**CC3)))
      PEKP4=ALOG(PREXP4*((WH2O**((AA4-1.0)))*(WDX**BB4)*(WC2H4**CC4)))
      ER1=ARCON1
      FR2=ARCON2
      ER3=ARCON3
      ER4=ARCON4
      CFBU1=CR1
      CERU2=CR2
      CERU3=CR3
      CERU4=CR4
      AEXP1=AA1
      AEXP2=AA2
      AEXP3=AA3
      AEXP4=AA4
      REXP1=BB1
      REXP2=BB2
      REXP3=BB3
      REXP4=BB4
      CFKP1=CC1
      CFKP2=CC2
      CFKP3=CC3
      CFKP4=CC4
      FST=FSTOIC
      IF(IITRAD.EQ.2)WRITE(6,2041)ARSOR,SCATR
2041 FORMAT(
3 30X,*ABSORPTION COEFFICIENT-----',1PE12.4,I AL 243
4 30X,*SCATTERING COEFFICIENT-----',1PE12.4,I AL 244
      IITRAD,EQ.3)WRITE(6,2043)
2043 FORMAT(30X,*ABSORPTION AND SCATTERING COEFFICIENTS CALCULATED*)/
      TFINSOOT,FQ,C1GO TO 401
      WRITE(6,2045)(DPART(T),T=1,MPART)
      SOOT 51
      SOOT 52
      AL 243
      AL 244
      SOOT 53
      SOOT 54
      SOOT 55
      SOOT 56

```

160

ORIGINAL PAGE IS  
OF POOR QUALITY

```

2045 FORMAT(30X,*SOOT PARTICLE DIAMETERS(MICRONS)*,1PE12.4,/)
  WRITE(6,2047)(FRACP(I),I=1,MPART)
2047 FORMAT(30X,*RELATIVE FORMATION RATES -----*,1PE12.4,/)
  DO 2049 II=1,MPART
    DPART(II)=1.0E-6*DPART(II)
2049 FRACP(II)=0.01*FRACP(II)
  WRITE(6,2054)AD,ARCONN,PREXPS,ARCONS,ALPHA,AAS,BDS,AAA,BBB,FMG,
  1 GD,RHCP
2054 FORMAT(30X,*PRE-EXPONENT (NUCLEI) -----*,1PE12.4,/
  1   30X,*ACTIVATION ENERGY (NUCLEI) -----*,1PF12.4,/
  2   30X,*PREF-EXPONENT (SOOT) -----*,1PE12.4,/
  3   30X,*ACTIVATION ENERGY (SOOT) -----*,1PF12.4,/
  4   30X,*TEMPERATURE EXPONENT (SOOT) -----*,1PE12.4,/
  5   30X,*FUEL EXPONENT (SOOT) -----*,1PE12.4,/
  6   30X,*OXYGEN EXPONENT (SOOT) -----*,1PE12.4,/
  7   30X,*CONSTANTS IN SOOT FORMATION --,/
  8   35X,*A = *,1PE12.4,5X,*B = *,1PE12.4,/
  9   30X,*CONSTANTS IN NUCLEI FORMATION --,/
  1   35X,*F-G = *,1PE12.4,5X,*G0 = *,1PE12.4,/
  ?   30X,*PARTICLE DENSITY -----*,1PE12.4,* KG/M3*,/)
  WRITE(6,402)ISOOT,SSOOT,CINCP,TINCP
402 FORMAT(30X,*SOOT CALCULATION STARTED AFTER ISTEP,GE.0,I3,
  1 * OR SSUM.LF.0,1PE8.2/30X,*SOOT CALCULATION BYPASSED IF C/N RATIO
  1 LT.4,1PE8.2,* OR IF TEMPERATURE LT.0,1PE8.2)
401 CONTINUE
  IF(ITRAD.NE.1)WRITE(6,365)IRAD,SRAD
365 FORMAT(30X,*RADIATION INCLUDED AFTER ISTEP,GE.0,I3,
  1 * OR SSUM.LF.0,1PE8.2)
  IF(NNOX.NE.0)WRITE(6,403)INOX,SNOX,TNOX
403 FORMAT(30X,*NOX CALCULATIONS STARTED AFTER ISTEP,GE.0,I3,
  1 * OR SSUM.LE.0,1PE8.2/30X,*NOX CALCULATION BYPASSED IF TEMPERATUR
  IE LT.4,1PE8.2)
  WRITE(6,2042)(RELAX(I),I=1,39)
2042 FORMAT(/8X,*RELAXATION PARAMETERS*/8X,2I(1H-)/(5X,1P10E12.3))
  GO TO (2050,2051), MODEL
2050 WRITE(6,2052)(PR(I),I=1,32)
  GO TO 2053
2051 WRITE(6,2052)(PREF(I),I=1,32)
2052 FORMAT(/8X,*PRANDTL NUMBERS*/8X,13(1H-)/(5X,1P10E12.3))
2053 CONTINUE
  WRITE(6,2044)(X(I),I=1,LP1)
2044 FORMAT(/8X,*X-COORDINATES*/8X,13(1H-)/(5X,1P10E12.3))
  WRITE(6,2046)R(1),(Y(J),J=2,MP1)
2046 FORMAT(/8X,*Y-COORDINATES*/8X,13(1H-)/(5X,1P10E12.3))
  WRITE(6,2047)(Z(K),K=1,MP1)
2048 FORMAT(/8X,*Z-COORDINATES*/8X,13(1H-)/(5X,1P10E12.3))
C +-----+-----+-----+-----+-----+-----+-----+
C ----- RESTART OPTIONS
C ----- IF (IRES.EQ.0) GO TO 201
  REWIND NTP1
  DO 202 II=1,2
202 READ(NTPI)
C ----- HERE PP IS PHI, P IS MFUP, DU IS MC0
  READ(NTPI)PP,P,DU
C ----- HERE DV IS ENTHALPY, DW IS FAV
  READ(NTPI)DV,DW
C ----- HERE U IS FX, V IS FY, W IS FZ
  READ(NTPI)U,V,W
  READ(NTPI)TEPP,RHO
  READ(NTPI)FC1,FC2
  READ(NTPI)AMUC,SOOT1,SOOT2
  READ(NTPI)FS
C ----- ABSORPTION AND SCATTERING COEFFICIENTS.
  DO 203 K=1,MP1

```

```

DO 203 J=1,NP1
DO 203 I=1,LPI
ABSR(I,J,K)=ABSOR
203 SCTR(I,J,K)=SCATR
RETURN
C ===== ZERO ARRAYS
201 DO 204 NV=1,N
DO 204 K=1,NP1
DO 204 J=1,NP1
KJM=KM(K)+JM(J)
DO 204 I=1,LPI
ABSR(I,J,K)=ABSOR
SCTR(I,J,K)=SCATR
LP=KJM+I
204 F(ILP,NV)=0.
DO 205 K=2,N
DO 205 J=2,M
KJM=KM(K)+JP(J)
DO 205 I=2,L
LP=KJM+I
C-----SPECIES CONCENTRATIONS.
207 INV=LVO2,LVOM
207 F(ILP,INV)=1,F=15
F(ILP,NVS1)=1.E-5
F(ILP,NVS2)=1.E-6
209 F(ILP,NVN)=1.E0
C +----- U,V,W AND PRESSURE +-----+
DO 491 K=1,NP1
DO 491 J=2,M
IS=IWLI(I,J,4)
IE=IWLO(I,J,4)
DO 491 I=IS,IE
IF (I,EQ.IS) GO TO 492
U(I,J,K)=UIN(I)
492 W(I,J,K)=0.0
IF (J,EQ.JWLI(I,4)+1) GO TO 491
V(I,J,K)=0.0
491 CONTINUE
IF (IPAR.EQ.2) GO TO 259
DO 209 K=1,NP1
DO 209 J=1,NP1
IS=IWLI(I,J,5)
IE=IWLC(I,J,5)
DO 209 I=IS,IE
209 P(I,J,K)=PRESS
C ----- BOUNDARY NCDES
255 DO 240 K=1,NP1
IF (IDW,EQ.1) GO TO 241
DO 242 I=3,LPI
J=JWLI(I,4)
Uff,J,K)=IN(I)
242 CONTINUE
241 CONTINUE
DO 244 J=JSW1,JSW2
I=IWLI(I,J,4)-1
Uff+1,J,K)=USW
V(I,J,K)=VSW
244 V(I,J+1,K)=VSH
247 CONTINUE
DO 245 J=1,NP1
I=IWLO(I,J,4)+1
IF (J,LE,JWCI,OR,J,GE,JWCO) GO TO 245
Uff,J,K)=U(I-1,J,K)
245 CONTINUE

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|         |     |
|---------|-----|
| RAD     | 26  |
| RAD     | 27  |
| RAD     | 28  |
| RAD     | 29  |
| AL      | 272 |
| AL      | 273 |
| 4STEP   | 104 |
| AL      | 275 |
| AL      | 276 |
| AL      | 277 |
| AL      | 278 |
| RAD     | 30  |
| RAO     | 31  |
| AL      | 279 |
| AL      | 280 |
| SOOT    | 90  |
| SOOT    | 91  |
| SOOT    | 92  |
| SOOT    | 93  |
| SOOT    | 94  |
| COMMENT | 19  |
| NOX     | 91  |
| NOX     | 92  |
| SOOT    | 93  |
| SOOT    | 96  |
| SOOT    | 97  |
| AL      | 201 |
| AL      | 202 |
| AL      | 203 |
| AL      | 204 |
| AL      | 205 |
| AL      | 206 |
| AL      | 207 |
| AL      | 208 |
| SOOT    | 98  |
| AL      | 209 |
| SOOT    | 99  |
| AL      | 210 |
| AL      | 211 |
| AL      | 212 |
| AL      | 213 |
| AL      | 214 |
| AL      | 215 |
| AL      | 216 |
| AL      | 217 |
| AL      | 218 |
| AL      | 219 |
| AL      | 220 |
| AL      | 221 |
| AL      | 222 |
| AL      | 223 |
| AL      | 224 |
| AL      | 225 |
| AL      | 226 |
| AL      | 227 |
| AL      | 228 |
| AL      | 229 |
| AL      | 230 |
| AL      | 231 |
| AL      | 232 |
| AL      | 233 |
| AL      | 234 |
| AL      | 235 |
| AL      | 236 |
| AL      | 237 |
| AL      | 238 |
| AL      | 239 |
| AL      | 240 |
| AL      | 241 |
| AL      | 242 |
| AL      | 243 |
| AL      | 244 |
| AL      | 245 |
| AL      | 246 |
| AL      | 247 |
| AL      | 248 |
| AL      | 249 |
| AL      | 250 |
| AL      | 251 |
| AL      | 252 |
| AL      | 253 |
| AL      | 254 |
| AL      | 255 |
| AL      | 256 |
| AL      | 257 |
| AL      | 258 |
| AL      | 259 |
| AL      | 260 |
| AL      | 261 |
| AL      | 262 |
| AL      | 263 |
| AL      | 264 |
| AL      | 265 |
| AL      | 266 |
| AL      | 267 |
| AL      | 268 |
| AL      | 269 |
| AL      | 270 |
| AL      | 271 |
| AL      | 272 |
| AL      | 273 |
| AL      | 274 |
| AL      | 275 |
| AL      | 276 |
| AL      | 277 |
| AL      | 278 |
| AL      | 279 |
| AL      | 280 |
| AL      | 281 |
| AL      | 282 |
| AL      | 283 |
| AL      | 284 |
| AL      | 285 |
| AL      | 286 |
| AL      | 287 |
| AL      | 288 |
| AL      | 289 |
| AL      | 290 |
| AL      | 291 |
| AL      | 292 |
| AL      | 293 |
| AL      | 294 |
| AL      | 295 |
| AL      | 296 |
| AL      | 297 |
| AL      | 298 |
| AL      | 299 |
| AL      | 300 |
| AL      | 301 |
| AL      | 302 |
| AL      | 303 |
| AL      | 304 |
| AL      | 305 |
| AL      | 306 |
| AL      | 307 |
| AL      | 308 |
| AL      | 309 |
| AL      | 310 |
| AL      | 311 |
| AL      | 312 |
| AL      | 313 |
| AL      | 314 |
| AL      | 315 |
| AL      | 316 |
| AL      | 317 |
| AL      | 318 |

| ORIGINAL PAGE IS<br>OF POOR QUALITY                                                |  |            |
|------------------------------------------------------------------------------------|--|------------|
| C ----- INJECTION POINTS                                                           |  | AL 319     |
| C-----FILM COOLING SLOTS.                                                          |  | COMMENT 20 |
| IF (NUINJ.LE.0) GO TO 240                                                          |  | AL 320     |
| DO 246 II=1,NUINJ                                                                  |  | AL 321     |
| I=IUINJ(II)                                                                        |  | AL 322     |
| J=JUINJ(II)                                                                        |  | AL 323     |
| U(I,J,K)=UINJ(II)                                                                  |  | AL 324     |
| U(I-1,J,K)=0.                                                                      |  | AL 325     |
| 245 W(I-1,J,K)=WUINJ(II)                                                           |  | AL 326     |
| 240 CONTINUE                                                                       |  | AL 327     |
| C ----- DILUTION JETS.                                                             |  | COMMENT 21 |
| IF (NVINJ.LE.0) GO TO 249                                                          |  | AL 328     |
| DO 250 II=1,NVINJ                                                                  |  | AL 329     |
| I=IVINJ(II)                                                                        |  | AL 330     |
| J=JVINJ(II)                                                                        |  | AL 331     |
| K=KVINJ(II)                                                                        |  | AL 332     |
| V(I,J,K)=VINJ(II)                                                                  |  | AL 333     |
| IF (J.EQ.JWL(I,4)) V(I,J+1,K)=VINJ(II)                                             |  | AL 334     |
| 250 CONTINUE                                                                       |  | AL 335     |
| 249 CONTINUE                                                                       |  | AL 336     |
| REWIND NTP1                                                                        |  | AL 337     |
| WRITE (NTP1) U,V,W,P                                                               |  | AL 338     |
| C +---+---+---+---+ TURBULENT KINETIC ENERGY AND DISSIPATION +---+---+---+---+     |  | AL 339     |
| DO 437 K=1,NP1                                                                     |  | AL 340     |
| DO 418 J=1,MP1                                                                     |  | AL 341     |
| KJM=KM(K)+JM(J)                                                                    |  | AL 342     |
| IS=IWLI(J,5)                                                                       |  | AL 343     |
| IE=IWLD(J,5)                                                                       |  | AL 344     |
| DO 418 I=IS,IE                                                                     |  | AL 345     |
| LP=KJM+I                                                                           |  | AL 346     |
| F(LP,NVK)=FK                                                                       |  | AL 347     |
| DY=Y(JWL(I,4))-Y(J)                                                                |  | AL 348     |
| IF (IDW.EQ.1) DY=AMIN1(Y(JWL(I,4))-Y(J),Y(J)-Y(JWL(I,4)))                          |  | AL 349     |
| DY=AMAX1(DY,0.)                                                                    |  | AL 350     |
| AL=ALFAC*DY                                                                        |  | AL 351     |
| 418 F(LP,NVD)=CD*FK**1.5/(AL+1.E-30)                                               |  | AL 352     |
| DO 775 J=JSW1,JSW2                                                                 |  | AL 353     |
| LP=KM(K)+JM(J)+IWLI(J,4)-1                                                         |  | AL 354     |
| 775 F(LP,NVD)=CD*FK**1.5/ALIN                                                      |  | AL 355     |
| C ----- INJECTION POINTS.                                                          |  | COMMENT 22 |
| C-----FILM COOLING SLOTS.                                                          |  | COMMENT 23 |
| IF (NUINJ.LE.0) GO TO 437                                                          |  | AL 356     |
| DO 270 II=1,NUINJ                                                                  |  | AL 357     |
| I=IUINJ(II)-1                                                                      |  | AL 358     |
| J=JUINJ(II)                                                                        |  | AL 359     |
| LP=KM(K)+JM(J)+I                                                                   |  | AL 360     |
| F(LP,NVK)=ARFAC*(UINJ(II)**2+WUINJ(II)**2)                                         |  | AL 361     |
| AL=ALFAC*YS(J)                                                                     |  | AL 362     |
| 270 F(LP,NVD)=CD*F(LP,NVK)**1.5/(AL+1.E-30)                                        |  | AL 363     |
| 437 CONTINUE                                                                       |  | AL 364     |
| C ----- DILUTION JETS.                                                             |  | COMMENT 24 |
| IF (NVINJ.LE.0) GO TO 272                                                          |  | AL 365     |
| DO 274 II=1,NVINJ                                                                  |  | AL 366     |
| I=IVINJ(II)                                                                        |  | AL 367     |
| J=JVINJ(II)                                                                        |  | AL 368     |
| K=KVINJ(II)                                                                        |  | AL 369     |
| LP=KJM+I                                                                           |  | AL 370     |
| F(LP,NVK)=EVINJ(II)                                                                |  | AL 371     |
| 274 F(LP,NVD)=CD*F(LP,NVK)**1.5/(DVINJ(II)+1.E-30)                                 |  | AL 372     |
| *77 CONTINUE                                                                       |  | AL 373     |
| C ----- HERE PP IS RF, P IS DISSIPATION                                            |  | AL 374     |
| WRITE (NTP1) PP,P                                                                  |  | AL 375     |
| C +---+---+---+---+---+---+---+---+ PHX,FUEL,CO AND TEMP +---+---+---+---+---+---+ |  | AL 376     |
| DO 404 K=1,NP1                                                                     |  | AL 377     |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

DO 404 J=1,MPI
  KJM=KMK(K)+JM(J)
  TS=IWLI(J,5)
  IE=IWLD(J,9)
  DO 405 I=IS,IE
    LP=KJM+I
    F(LP,NVFOUX)=TIN(I)
    IS=IWLI(J,4)
    IE=IWLD(J,4)
    DO 404 I=IS,IE
      LP=KJM+I
      F(LP,NVFUOX)=FUOX(I)
      F(LP,NVFU)=AMAX1(0.,F(LP,NVFUOX)-RATIO2*(1.-F(LP,NVFUOX))/RATIO1)
      F(LP,NVCH)=FUNCO
      F(LP,NVH2)=FUPCO
  404 F(LP,NVCC)=FUPCO
C ----- BOUNDARY NODES
  DO 495 K=1,NPI
  DO 206 I=1,LP1
    J=JWLT(I,4)
    LP=KMK(K)+JM(J)+I
    IF (IDW,EO,0) GO TO 217
    TEMP(I,J,K)=TCYLW
    IF (J,EO,1) GO TO 206
    TEMP(I,J,K)=TINLW
  208 F(LP,NVFUOX)=0.
    F(LP,NVFU)=0.
    F(LP,NVCO)=0.
    F(LP,NVCH)=0.0
    F(LP,NVH2)=0.0
    GO TO 216
  217 TEMP(I,J,K)=TIN(I)
    F(LP,NVFUOX)=FUOX(I)
    FEXIT=FUOX(I)-RATIO2*(1.-FUOX(I))/RATIO1
    F(LP,NVFU)=AMAX1(FEXIT,0.)
    F(LP,NVCC)=0.
    F(LP,NVCH)=0.0
    F(LP,NVH2)=0.0
  216 J=IWLD(I,4)
    LP=KMK(K)+JM(J)+I
    TEMP(I,J,K)=TCYLW
    IF (J,EO,MP1) GO TO 444
    TEMP(I,J,K)=TINLW
  444 F(LP,NVFU)=0.
    F(LP,NVCO)=0.
    F(LP,NVCH)=0.0
    F(LP,NVH2)=0.0
  206 F(LP,NVFUOX)=0.
  DO 210 J=1,MP1
    I=IWLT(J,4)-1
    LP=KMK(K)+JM(J)+I
    IF (J,EE,JSW1.AND.J,LE,JSW2) GO TO 212
    TEMP(I,J,K)=TINLW
    F(LP,NVFUOX)=0.
    F(LP,NVFU)=0.
    F(LP,NVCO)=0.
    F(LP,NVCH)=0.0
    F(LP,NVH2)=0.0
    GO TO 219
  212 TEMP(I,J,K)=TSW
    F(LP,NVFUOX)=FUOXSW
    F(LP,NVFU)=FUMSW
    F(LP,NVCO)=0.
    F(LP,NVCH)=0.0
  219

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

F(LP,NVH2)=0.0          4STEP    116
213 I=IWLO(J,4)+1      AL        431
LP=KM(K)+JM(J)+I      AL        432
IF (J,GT,JW01,AND,J,LT,JW00) GO TO 214
TEMP(I,J,K)=TINLW      AL        433
F(LP,NVFUOX)=0.0       AL        434
F(LP,NVFU)=0.0          AL        435
F(LP,NVCO)=0.0          AL        436
F(LP,NVCH)=0.0          AL        437
F(LP,NVH2)=0.0          4STEP    117
GO TO 210               4STEP    118
214 F(LP,NVFUOX)=FUOX(LP1)
FEKIT=FUOX(LP1)-RATIO2*(1.-FUOX(LP1))/RATIO1
F(LP,NVFU)=AMAX1(FFKIT,0.)
F(LP,NVTE)=TIN(I)
F(LP,NVCO)=0.0          AL        438
F(LP,NVCH)=0.0          AL        439
F(LP,NVH2)=0.0          4STEP    119
210 CONTINUE              4STEP    120
C ---- INJECTION POINTS
C ---- FILM COOLING SLOTS.
IF (NUINJ,LE,0) GO TO 495
DO 218 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)
LP=KM(K)+JM(J)+I
F(LP,NVFUOX)=0.0
F(LP,NVFU)=0.0
F(LP,NVCO)=0.0
F(LP,NVCH)=0.0
F(LP,NVH2)=0.0
218 TEMP(I,J,K)=TUINJ(II)
495 CONTINUE
C ---- DILUTION JETS.
IF (NVINJ,LE,0) GO TO 220
DO 222 III=1,NVINJ
I=IVINJ(III)
J=JVINJ(III)
K=KVINJ(III)
LP=KM(K)+JM(J)+I
F(LP,NVFUOX)=0.0
F(LP,NVFU)=0.0
F(LP,NVCO)=0.0
F(LP,NVCH)=0.0
F(LP,NVH2)=0.0
222 TEMP(I,J,K)=TVINJ(III)
220 CONTINUE
C ----- HERE PP IS PHI, P IS VFU AND DU IS MCO
WRITE (NTP1) PP,P,DU
C +-----+-----+-----+-----+-----+-----+-----+-----+
DO 276 K=1,NPI
DO 276 J=1,NPI
IS=IWLI(J,5)
IE=IWLO(J,5)
KJM=KM(K)+JM(J)
DO 276 I=IS,IE
LP=KJM+I
T=TEMP(I,J,K)
FUR=F(LP,NVFUOX)-F(LP,NVFU)
FLPOX=RATIO1+F(LP,NVFU)+RATIO3+F(LP,NVCO)+RATIO2-(RATIO1+RATIO2)*
 1 F(LP,NVFUOX)+RATIO5+F(LP,NVCH)+RATIO6+F(LP,NVH2)
FLPOX=AMAX1(FLPOX,0.)
FLPH2D=0.5*WH2D*(HYY*FUB/VFU-RATIO7*(F(LP,NVCH)-F(LP,NVH2))
FLPCO2=MCO2*(CXX*FUR/VFU-CXX*F(LP,NVCH)/VCH-F(LP,NVCO)/VCO)
4STEP    121
4STEP    122
AL        434
AL        435
AL        436
AL        437
AL        438
AL        439
AL        440
AL        441
AL        442
AL        443
AL        444
AL        445
COMMENT   25
AL        446
AL        447
AL        448
AL        449
AL        450
AL        451
AL        452
AL        453
AL        454
AL        455
COMMENT   26
AL        456
AL        457
AL        458
AL        459
AL        460
AL        461
AL        462
AL        463
AL        464
4STEP    123
4STEP    124
AL        465
AL        466
AL        467
AL        468
AL        469
AL        470
AL        471
AL        472
AL        473
AL        474
AL        475
AL        476
AL        477
AL        478
AL        479
4STEP    125
AL        480
4STEP    126
4STEP    127

```

```

FLPN2=1.-F(LP,NVFU)-FLPC02-F(LP,NVC0)-FLPOX-FLPH20
1-F(LP,NVCH)-F(LP,NVM2)
1HCPS=3
NS1=1NU
NS2=1DC02
TK=T
TKINV=1.000/TK
FS(LP,1DFU)=F(LP,NVFU)
FS(LP,1D02)=FLPOX
FS(LP,1DH2)=FLPN2
FS(LP,1DC01)=F(LP,NVC0)
FS(LP,1DC1)=F(LP,NVCH)
FS(LP,1DH2)=F(LP,NVM2)
FS(LP,1DH20)=FLPH20
FS(LP,1DC02)=FLPC02
DO 277 II=NS1,NS2
277 S2(II)=FS(LP,II)/SMW(II)
CALL HCPS
HPI=HSUM0UNICCN0TK
F(LP,NVM)=HPI
276 CONTINUE
C +-----+-----+-----+-----+-----+-----+-----+-----+-----+
C      HERE DV IS ENTHALPY, DW IS FAV
      DO 791 K=1,NP1
      DO 791 J=1,NP1
      KJM=KM(K)+JP(J)
      IS=IWLI(J,5)
      IE=IWLO(J,5)
      DO 791 I=IS,IE
      LP=KJM+I
      ST4=SIGMAUTEMP(I,J,K)*04
      F(LP,NVRX)=ST4
      F(LP,NVRY)=ST4
      F(LP,NVRZ)=ST4
      791 F(LP,NVFAV)=ST4
C ----- HERE DV IS ENTHALPY, DW IS FAV
      WRITE (NTP1) DV,DW
C ----- HERE U IS FX, V IS FY, W IS FZ
      WRITE (NTP1) U,V,W
      WRITE (NTP1) TEMP,RHO
C-----SPECIFCS AND SOOT CONCENTRATIONS.
      WRITE(NTP1)FCM,FH2
      WRITE(NTP1)AMUC,SCOT1,SOOT2
      WRITE(NTP1)FS
      RETURN
      END
      SUBROUTINE ALLMOD
      COMMON F(500,7),DU(10,10,5),DV(10,10,5),DW(10,10,5),
1 AMUC(10,10,5),SOOT1(10,10,5),SOOT2(10,10,5),FCM(10,10,5),
2 FH2(10,10,5),FS(500,14),
1 KHN(1C,10,5),VTSC(10,10,5),ABSR(10,10,5),SCTR(10,10,5),
1 SV(10,10),SP(10,10),DRHNDP(10,10,5),
1 AXPK(10,10),AXM(10,10),AYP(10,10),AYM(10,10),ATP(10,10),
2 ATM(10,10),CZ(10,10),CY(10),CZU(10,10),CYU(10),
2 CZP(10,10),CYP(10),DIVG(10,10),NTP1,NTP2
1,AMHK(192),AXPK(192),AYMK(192),AYPK(192),AZHK(192),AZPK(192),
2,SK(192),SPK(192)
      DIMENSION U(10,10,5),V(10,10,5),W(10,10,5),PP(10,10,5)
      DIMENSION P(1C,10,5),TEMP(10,10,5),GAM(10,10,5)
      EQUIVALENCE (F(1,1),U(1,1,1)),(F(1,2),V(1,1,1)),(F(1,3),W(1,1,1))
      EQUIVALENCE (F(1,4),PP(1,1,1)),(F(1,5),P(1,1,1))
      EQUIVALENCE (F(1,6),TEMP(1,1,1)),(F(1,7),GAM(1,1,1))
      COMMON/CYL/R(30),RM(30),RMV(30),YSR(30),YSVR(30),IPAK
      COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),
1 YSV(30),ZSW(30),X0IF(40),Y0IF(30),Z0IF(30),FKP(40),FXN(40),
COMMON

```

|   |                                                                                             |         |     |
|---|---------------------------------------------------------------------------------------------|---------|-----|
| 2 | FYP(30),FYH(30),FZP(30),FZH(30),OT,TIME                                                     | COMMON  | 5   |
|   | CMMMN                                                                                       | NOX     | 2   |
| 1 | CINDFR/IDCO, IDFU, IDO2, IDN2, IDH2D, IDCO2, IDH1, IDH2, IDN1, IDN2, IDN02                  | NOX     | 3   |
| 2 | IDO, IDCH, INCPS, ILC, ILH, TMAT, ITER, JJJ, M1, M2, M3, MA, NGLOR, NGLORP,                 | NOX     | 4   |
| ? | NLM, NO, NSM, NS1, NS2, IDCH                                                                | 4STEP   | 3   |
| 3 | CCHEMI/CPSUM, HSUM, FO, PPLH, RGAS, RGASIN, SHINV, TKINV, TLH, LNRG                         | NOX     | 6   |
| 4 | CPARAP/ASUB(30,3), EMV, ER, HSU0, HDERUG, MS, PA, Q0, Q1, Q2, Q3, Q4, RHOPP,                | NOX     | 7   |
| 4 | SM, SHW(30), SMO, S1(30), S2(30), TK, LADTAB, LDEBUG, LEQUIL, LREACT,                       | NOX     | 8   |
| 4 | LENER, EDKIJ, LCONVG                                                                        | NOX     | 9   |
|   | DOUBLE PRECISION CPSUM, EMV, FR, FO, HSU0, HSUM, PA, PPLH, Q0, Q1, Q2, Q3,                  | NOX     | 10  |
| 1 | Q4, RGAS, RGASIN, RHOPP, SH, SHINV, SHW, S1, S2, TK, TKINV, TLH, SMO                        | NOX     | 11  |
| 2 | FUT, FST                                                                                    | 4STEP   | 4   |
|   | COMMON/STEP4/PEXP1, PEXP2, PEXP3, PEXP4, ER1, ER2, ER3, ER4, CEBU1, CEBU2,                  | 4STEP   | 5   |
| 1 | CEBU3, CEBU4, AEXP1, AEXP2, AEXP3, AEXP4, BEXP1, BEXP2, BEXP3, BEXP4,                       | 4STEP   | 6   |
| 2 | CEXP1, CEKP2, CEXP3, CEXP4, FUT, FST                                                        | 4STEP   | 7   |
|   | LOGICAL LADIAS, LCONVG, LDERUG, LEQUIL, LNRG, LREACT, LENER                                 | NOX     | 12  |
|   | COMMON/INT/L, P, N, LCV, MCV, NCV, LP1, MP1, NP1, NI, NJ, MJ, MK, MINJ, MINJNK, NV,         | COMMON  | 6   |
| 1 | NMV, NGOF0, N, ISTR, JSTR, KSTR, HV4(39), KN(30), JM(30), ISTEP,                            | 4STEP   | 8   |
| 2 | ISOLVF(32), IPPINT(33), TITLE(10,33), XY, ISWP, JSWP, RELAK(35), NP,                        | 4STEP   | 9   |
| 3 | MRHO, NGAM, INLI(30,5), INLO(30,5), JWLO(40,5), JWL1(40,5), INL1,                           | COMMON  | 9   |
| 4 | TWD, PM1, JWI1, JWI2, JWI3, JWI4, JWI5, JWI6, JKIN(30,3), IKIN(40,3),                       | COMMON  | 10  |
|   | COMMON/INDEX/IPAR, LPREF, ISTUM, INCOMP, ITAD, NVRX, NVRY, NVRZ, JPLANE                     | COMMON  | 11  |
| 1 | PLAXM1, LVK, LVD, LVFUD, LVFU, LVCO, LVH, LVRK, LVRY, LVRZ, NVF(32),                        | 4STEP   | 10  |
| 2 | TJUMP, IRFS, TITLE2(20), IMAX, JMAX, KMAX, NVCO, FUNCO, NVH20, NVCO2,                       | COMMON  | 13  |
| 3 | NVN2, NVCH, NVH2                                                                            | 4STEP   | 11  |
|   | COMMON/CNOX/LVH1, LVH2, LVN1, LVN0, LVN02, LVO, LVOH, LVH20, LVN2, LVO2,                    | NOX     | 16  |
| 1 | LVCO2, LVFUD1, LVCO1, NNOX, INOX, ITNOX, SHOK, THOK                                         | NOX     | 17  |
|   | COMMON/THERP/NVH, NVFU, NVOX, NVFU0, NVTE, MODEN, IDK, FSTOIC, HFU, CP,                     | COMMON  | 19  |
| 1 | GASCON, RHOCEN, UNICON, PRESS, NVFAV, TCYLW, TINLW, TLIP, ACOEF(4),                         | COMMON  | 16  |
| 2 | T4, DFAC, WFU, WC02, WCO, WDX, WH20, WN2, HVY, CXX, RATIO1, RATIO2,                         | COMMON  | 17  |
| 3 | RATIO3, RATIO4, HCO, TAN, ITWALL                                                            | COMMON  | 10  |
|   | COMMON/CTDMA/KEND, ICTDMA(32)                                                               | 4STEP   | 12  |
|   | COMMON/MIS/APIU, DEN, SNAK, SSUM, LASTEP, HTCEXT, CTR, EMISH, EMISIM,                       | COMGEN  | 2   |
| 1 | EMISR, TOUT, RTCD, EMI, RADIN, RADSUR, FMA, FM, SQFK,                                       | COMGEN  | 9   |
| 2 | FKFU, FDFU, TFUEL, WFN7, FLO(40), TERM(40), H(40), FUEL(40), FUOK(40),                      | COMGEN  | 4   |
| 2 | UTN(40), TIM(40), FUELS(40), SEXIT, IGAMI(29), IGAM2(29)                                    | 4STEP   | 13  |
|   | COMMON/TURB/NVK, NVD, C1, C2, CO, AK, DUOIJXJ(3,3), AKFAC, ALFAC,                           | COMGEN  | 6   |
| 1 | MODEL, PR(32), PREF(32), PJAY(32), E                                                        | 4STEP   | 14  |
|   | COMMON/RAD/NVE, SIGMA, ABSOR, SCATR                                                         | COMGEN  | 8   |
|   | COMMON/REACT/ARCON1, PREXP1, CR1, ARCON2, PREXP2, CR2, MODER                                | COMGEN  | 9   |
|   | COMMON/DROPL/EVAP(192), NTP4, NFH2, X0(31), Y0(3), Z0(3), ALFA(3),                          | COMGEN  | 10  |
| 1 | BETA(3), DELTA(3), THETA1(3), THETA2(3), NSL(3), WFF(3), TMD(3),                            | COMGEN  | 11  |
| 2 | VFUEL(3), RFUEL(3), EVSU(64), HEVAP                                                         | COMGEN  | 12  |
|   | COMMON/INJECT/FLOWIN, IWINJ(20), JWINJ(20), UWINJ(20), WWINJ(20),                           | COMGEN  | 13  |
| 1 | AUINJ(20), TUINJ(20), IVINJ(20), JVINJ(20), KVINJ(20), VINJ(20),                            | COMGEN  | 14  |
| 2 | EVINJ(20), OVINJ(20), AVINJ(20), TVINJ(20), HUINJ, NVINJ, JSW1, JSW2,                       | COMGEN  | 15  |
| 3 | USH, VSH, AFSH, FSH, TSW, WSW, S, ND, RHOSW                                                 | COMGEN  | 16  |
|   | COMMON/CSOOT/NVM, NVS1, NVS2, ISOOT, SSOOT, NSOOT, AD, ARCONN, AAA, BB0, FMG                | SOOT    | 8   |
| 1 | GO, MPART, DPART(2), FRACP(2), RHOP, ARCONS, PREXP5, ALPHA, AAS, RDS, DHR                   | SOOT    | 9   |
| 2 | LVN, LVS1, LVS2, CINC, TINC, FUTOT                                                          | SOOT    | 10  |
|   | COMMON/CRAD/TRAD, SRAD                                                                      | SOOT    | 11  |
|   | COMMON/CFOUR/PREXP3, ARCON3, CR3, PREXP4, ARCON4, CR4, AA1, BB1, CC1,                       | 4STEP   | 12  |
| 1 | AA2, BB2, CC2, AA3, BB3, CC3, AA4, BB4, CC4, RATIO5, RATIO6, RATIO7,                        | 4STEP   | 13  |
| 2 | RATIO8, RATIO9, RAT010, RAT011, RAT012, WCH, WH2, WC2H4, LVCH, LVCH1, LVH21                 | 4STEP   | 16  |
| C | ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * AL | 4STEP   | 17  |
|   | ENTRY FMOD                                                                                  | AL      | 512 |
| C | -----FMTRY FMOD IS USED TO UPDATE BOUNDARY VALUES AND TO LIMIT                              | AL      | 513 |
| C | SPECIES MASS FRACTIONS TO LIE BETWEEN 0.0 AND 1.0.                                          | COMMENT | 20  |
|   | NVFF=NVF(NV)                                                                                | COMMENT | 29  |
|   | IF(NV, NF, LVN1)0 TO 1210                                                                   | AL      | 514 |
| C | -----NUCLEI CONCENTRATION.                                                                  | SOOT    | 102 |
|   | DO 1211 K=2,N                                                                               | SOOT    | 103 |
|   | DO 1211 J=2,P                                                                               | SOOT    | 104 |
|   | KJM=KM(K1+JM(J))                                                                            | SOOT    | 105 |

```

00 1211 I=2,L
LP=KJM+J
1211 F(LP,NVFF)=AMAX1(F(LP,NVFF),1.0)
1210 IF(NV.LT.LVS1.OR.NV.GT.LVS2)GO TO 1310
C----SOOT CONCENTRATION.
00 1311 K=2,N
00 1311 J=2,M
KJM=KM(K)+JM(J)
00 1311 I=2,L
LP=KJM+I
F(LP,NVFF)=AMAX1(F(LP,NVFF),1.E-30)
1311 F(LP,NVFF)=AMIN1(F(LP,NVFF),1.0)
1310 CONTINUE
C----SYMMETRY AXIS UPDATING.
IF(NV.EQ.2)GF TO 2044
00 1005 J=1,MP1
00 1005 K=2,N
LP=LP1+JM(J)+KM(K)
LPW=LP-1
1005 F(LP,NVFF)=F(LPW,NVFF)
IF(IDW,NE,0)GC TO 1044
00 1006 I=2,LP1
00 1006 K=2,N
LP=I+KM(K)
LPN=LP+JM(2)
1006 F(LP,NVFF)=F(LPN,NVFF)
C----- CYCLIC BOUNDARY CONDITIONS -----
00 1002 J=1,MP1
00 1002 I=1,LP1
LIJ=I+JM(J)
LP2=I+JM(J)+KM(2)
LPN=LIJ+KM(N)
LPNP1=LIJ+KM(NP1)
F(LIJ,NVFF)=F(LPN,NVFF)
F(LPNP1,NVFF)=F(LP2,NVFF)
1002 CONTINUE
1001 CONTINUE
IF(NV,NE,LVFUOX)GO TO 1010
C----MIXTURE FRACTION.
00 1020 K=1,MP1
00 1020 J=1,MP1
KJM=KM(K)+JM(J)
00 1020 I=1,LP1
LP=KJM+I
F(LP,NVFF)=AMAX1(F(LP,NVFF),0.1)
F(LP,NVFF)=AMIN1(F(LP,NVFF),1.0)
1020 CONTINUE
GO TO 1036
1010 IF(NV,NE,LVFU)GO TO 1030
C----FUEL CONCENTRATION.
00 1031 K=1,MP1
00 1031 J=1,MP1
KJM=KM(K)+JM(J)
00 1031 I=1,LP1
LP=KJM+I
F(LP,NVFF)=AMIN1(F(LP,NVFF),F(LP,NVFUOK))
1031 F(LP,NVFF)=AMAX1(F(LP,NVFF),0.0)
GO TO 1036
1030 IF(NV,NE,LVCH)GO TO 1032
C----INTERMEDIATE HYDROCARBON CONCENTRATION.
00 1033 K=1,MP1
00 1033 J=1,MP1
KJM=KM(K)+JM(J)
00 1033 I=1,LP1

```

168

ORIGINAL PAGE IS  
OF POOR QUALITY

```

LP=KJM+1
F(LP,NVFF)=AMIN1(F(LP,NVFF),RATI00*(F(LP,NVFUDX)-F(LP,NVFUI)))
1033 F(LP,NVFF)=AMAX1(F(LP,NVFF),1.0E-2)
GO TO 1030
1032 IF(INV,NE,LVCH1) GO TO 1034
C-----LU CONCENTRATION.
DO 1035 K=1,NPI
DO 1035 J=1,MP1
KJM=KM(K)+JM(J)
DO 1035 I=1,LP1
LP=KJM+1
F(LP,NVFF)=AMIN1(F(LP,NVFF),RATI04*(F(LP,NVFUDX)-F(LP,NVFUI))
1-RATI01*(F(LP,NVCH1))
1035 F(LP,NVFF)=AMAX1(F(LP,NVFF),1.0E-2)
GO TO 1036
1034 IF(INV,NE,LVH2) GO TO 1030
C-----L2 CONCENTRATION.
DO 1037 K=1,NPI
DO 1037 J=1,MP1
KJM=KM(K)+JM(J)
DO 1037 I=1,LP1
LP=KJM+1
F(LP,NVFF)=AMIN1(F(LP,NVFF),RATI09*(F(LP,NVFUDX)-F(LP,NVFUI))
1-RATI04*(F(LP,NVCH1))
1037 F(LP,NVFF)=AMAX1(F(LP,NVFF),1.0E-2)
1036 CONTINUE
RETURN
C ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * AL 537
ENTRY VELMOD
C-----ENTRY VELMOD IS USED FOR VELOCITY MODIFICATIONS.
C
C-----INTRODUCE SWIRL GRADUALLY.
DO 1000 K=1,NPI
DO 1000 J=JSW1,JSW2
WIN=WSWR(J)/R(JSW2)
I=LWLI(J,4)-1
W(I,J,K)=W(I,J,K)+0.02*WIN
IF (ABS(W(I,J,K)),GT,ABS(WIN)) W(I,J,K)=WIN
1000 CONTINUE
1003 CONTINUE
DO 2005 J=2,M
DO 2005 I=2,L
W(I,J,2)=W(I,J,NPI)
2007 DW(I,J,2)=DW(I,J,NPI)
2005 CONTINUE
C ----- SATISFY CONTINUITY AT EXIT PLANE
RHUA=0.0
FLJN0T=U,J
INDEX=0
DO 752 K=2,N
JS=JWL1(LP1+4)+1
JE=JWL0(LP1+4)-2
DO 752 J=JS,JE
RHJ(LP1,J,K)=RHO(L,J,K)
KUA=YSH(J)*ZS(K)*RHO(LP1,J,K)
RHJA=RHUA+RDA
FLJNUT=FLJN0T+U(L,J,K)*RUA
IF (U(L,J,K),GE,0.0) GO TO 755
INDEX=1
755 CONTINUE
UADD=(FLJNIN-FLJN0T)/RHUA
SEXIT=1.-FLJNUT/FLJNIN
UMAN=FLJNIN/RHUA
DO 750 K=2,N

```

```

JS=JWL(I(LP1,4)+1          971
JE=JWL0(LP1,4)-1           972
DO 756 J=JS,JE              973
U(LP1,J,K)=AMAX1(0.0,U(L,J,K)+UADD)      NASAK 21
756 CONTINUE
RETURN
C   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * AL 570
ENTRY DFNMD0
C----FENTRY DFNMD0 IS USED FOR MODIFYING DENSITIES AT RADIAL
C    INJECTION HOLES, INLET SWIRLER, AND FILM COOLING SLOTS.
C
C    IF (INVIND.LE.0) GO TO 750
C----RADIAL INJECTION.
DO 749 II=1,NVINJ           AL 579
I=IVINJ(II)
K=KVINJ(II)
J=JVINJ(II)
M1=J
IF (J.EQ.JWL(I,4)) M1=J+1
AREA=XS(I)*RM(M1)*ZSI(K)
RHODINJ=AVINJ(II)/ABS(VINJ(II))/AREA
749 RHO(I,J,K)=RHODINJ
750 CONTINUE
C----CYCLIC BOUNDARY CONDITIONS.
DO 2060 J=2,M               AL 580
DO 2060 I=2,L               AL 581
RHO(I,J,NP1)=.5*(RHO(I,J,2)+RHO(I,J,M))
RHO(I,J,1)=RHO(I,J,NP1)
2060 CONTINUE
C----INLET SWIRLER.
DO 760 K=1,NP1              AL 582
DO 2061 J=JSW1,JSW2         AL 583
I=IWL(I,J,4)-1             AL 584
2061 RHO(I,J,K)=RHOSW
2099 CONTINUE
C----FILM COOLING SLOTS.
2064 IF (NUINJ.LE.0) GO TO 760
DO 759 II=1,NUINJ           AL 585
I=IUINJ(II)-1
J=JUINJ(II)
AREA=YSR(J)*(Z(NP1)-Z(1))
759 RHO(I,J,K)=2.*AUTND(II)/AREA/UINJ(II)-RHO(I+1,J,K)
760 CONTINUE
RETURN
C   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * AL 586
ENTRY GAM0D
C----FENTRY GAM0D IS USED TO CALCULATE WALL GAMAS FROM THE WALL
C    FUNCTIONS.
C
DO 3000 K=1,NP1             AL 587
DO 3007 I=1,LP1              AL 588
J=JWL0(I,4)
IF (IKIN(I,K).EQ.2.OR.IKIN(I,K).EQ.3) GO TO 3003
IF (IGAM1(NV).EQ.0) GO TO 3003
YPLUS=VTSC(I,J,K)
IF (YPLUS.GT.21.5) GO TO 3001
GAM(I,J,K)=AMU/PR(NV)
GO TO 3002
3001 GAM(I,J,K)=AMU*YPLUS/PREF(NV)/(ALOG(E*YPLUS)/AK+PDAT(NV))
GO TO 3002
3003 GAM(I,J,K)=0.
3002 J=JWL(I,4)
IF (IDW.EQ.0.CR.IKIN(I,K).EQ.1.OR.IKIN(I,K).EQ.3) GO TO 3004
IF (IGAM1(NV).EQ.0) GO TO 3004

```

170

ORIGINAL PAGE IS  
OF POOR QUALITY

```

YPLUS=VISC(I,J,K)
IF (YPLUS.GT.11.5) GO TO 3006
GAM(I,J,K)=AMU/PR(NV)
GO TO 3007
3006 GAM(I,J,K)=AMU*YPLUS/PREF(NV)/(ALOG(E*YPLUS)/AK+PJAY(NV))
GO TO 3007
3004 GAM(I,J,K)=0.
3007 CONTINUE
DO 3000 J=2,M
I=IWLI(J,4)-1
IF (JKIN(J,K).EQ.1) GO TO 3009
IF (IGAM2(NV).EQ.0) GO TO 3009
YPLUS=VISC(I,J,K)
IF (YPLUS.GT.11.5) GO TO 3019
GAM(I,J,K)=AMU/PR(NV)
GO TO 3013
3019 GAM(I,J,K)=AMU*YPLUS/PREF(NV)/(ALOG(E*YPLUS)/AK+PJAY(NV))
GO TO 3012
3009 GAM(I,J,K)=0.
3011 I=IWLO(J,4)+1
IF (J.GT.JNCL.AND.J.LT.JWNO) GO TO 3012
IF (IGAM2(NV).EQ.0) GO TO 3012
YPLUS=VISC(I,J,K)
IF (YPLUS.GT.11.5) GO TO 3013
GAM(I,J,K)=AMU/PR(NV)
GO TO 3000
3013 GAM(I,J,K)=AMU*YPLUS/PREF(NV)/(ALOG(E*YPLUS)/AK+PJAY(NV))
GO TO 3000
3012 GAM(I,J,K)=0.
3000 CONTINUE
CYCLIC BOUNDARY CONDITIONS.
DO 3014 I=2,L
DO 3014 J=2,M
GAM(I,J,1)=.5*(GAM(I,J,2)+GAM(I,J,M))
GAM(I,J,NP1)=GAM(I,J,1)
IF (NV.EQ.3) GAM(I,J,NP1)=GAM(I,J,2)
3014 CONTINUE
RETURN
C ** 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C-----ENTRY SCMAS
C-----ENTRY SCMAS IS USED TO INCLUDE THE SPRAY EVAPORATION TERM
C-----IN THE VARIOUS EQUATIONS.
C
DO 124 I=1,LPI
DO 124 J=1,MPI
124 DIVG(I,J)=0.
GO TO (266,267,268,269), NGOTO
C ----- U-VELOCITY
266 CONTINUE
270 IF (MFNZ.LE.0) GO TO 271
DO 273 J=2,M
KJK=(K-2)*(NJ-2)+(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLO(J,NGOTO)
DO 273 I=IS,IE
LPC=KJK+(I-1)
LYNC=LPC-1
DIVG(I,J)=DIVG(I,J)-FXR(I-1)*EVAP(LXMC1-FKP(I)*EVAP(LPC))
IF (I.EQ.3) DIVG(I,J)=DIVG(I,J)-FXP(2)*EVAP(LXMC1)
IF (I.EQ.1) DIVG(I,J)=DIVG(I,J)-FXM(L)*EVAP(LPC)
273 CONTINUE
271 CONTINUE
RETURN
C ----- V-VELOCITY

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

267 CONTINUE
274 IF (INFNZ,LE,0) GO TO 276
   DO 277 J=3,M
      KJK=(K-2)*(NI-2)+(NJ-2)+(J-2)*(NI-2)
      IS=IWLI(J,NGOTO)
      IE=IWLO(J,NGOTO)
      DO 277 I=IS,IE
         LPC=KJK+(I-1)
         LYMC=LPC-(NI-2)
         DIVG(I,J)=DIVG(I,J)-FYM(J-1)*EVAP(LYMC)-FYP(J)*EVAP(LPC)
         IF (J.EQ.3) DIVG(I,J)=DIVG(I,J)-FYP(2)*EVAP(LYMC)
         IF (J.EQ.M) DIVG(I,J)=DIVG(I,J)-FYR(M)*EVAP(LPC)
277 CONTINUE
276 CONTINUE
   RETURN
C ----- W-VELOCITY
268 CONTINUE
278 IF (INFNZ,LE,0) GO TO 281
   DO 282 J=2,M
      KJK=(K-2)*(NI-2)+(NJ-2)+(J-2)*(NI-2)
      IS=IWLI(J,NGOTO)
      IE=IWLC(J,NGOTO)
      DO 282 I=IS,IE
         LPC=KJK+(I-1)
         LZMC=LPC-(NI-2)+(NJ-2)
         LIJ=(J-2)+(NI-2)+(I-1)
         DIVG(I,J)=DIVG(I,J)-FZM(K-1)*EVAP(LZMC)
         IF (K.LT.NP1) DIVG(I,J)=DIVG(I,J)-FZP(K)*EVAP(LPC)
         IF (K.EQ.NP1) DIVG(I,J)=DIVG(I,J)-FZP(2)*EVAP(LIJ)
282 CONTINUE
281 CONTINUE
   RETURN
C ----- OTHER VARIABLES
269 CONTINUE
283 IF (INFNZ,LE,0) GO TO 285
   DO 286 J=2,M
      KJK=(K-2)*(NI-2)+(NJ-2)+(J-2)*(NI-2)
      IS=IWLI(J,NGOTO)
      IE=IWLO(J,NGOTO)
      DO 286 I=IS,IE
         LDC=KJK+(I-1)
         DIVG(I,J)=DIVG(I,J)-EVAP(LDC)
286 CONTINUE
285 CONTINUE
   RETURN
C   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
C ENTRY SOMOD
C-----ENTRY SOMOD IS USED TO INTRODUCE THE BOUNDARY CONDITIONS
C BY MODIFYING THE SOURCE TERMS.
C
COME HERE FOR SLOT COEFFICIENT MODS.
54 IF (NUINJ,LE,0) GO TO 92
   DO 49 II=1,NUINJ
      I=IUTNJ(II)
      J=JUTNJ(II)
      IF (J.EQ.JWLI(I,4)+1) GO TO 149
      M1=J-1
      IF (INV,EQ,1) AYP(I,M1)=.5*AYP(I,M1)
      IF (INV,EQ,1) AYP(I-1,M1)=.5*AYP(I-1,M1)
      IF (INV,GT,2) AYP(I-1,M1)=0.
      IF (INV,NF,1) AYP(I-2,J)=0.
      IF (INV,FQ,LVRX) AXM(I,J)=0.
      GO TO 49
149 M1=J+1

```

172

ORIGINAL PAGE IS  
OF POOR QUALITY

```

IF (INV.EQ.1) AYM(I,M1)=.5*AYM(I,M1)
IF (INV.EQ.1) AYM(I-1,M1)=.5*AYM(I-1,M1)
IF (INV.GT.2) AYM(I-1,M1)=0.
IF (INV.NE.1) AXP(I-2,J)=0.
IF (INV.EQ.LVRX) AXM(I,J)=0.
49 CONTINUE
50 CONTINUE
C +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
C----- PRESSURE PERTABATION +---+---+---+---+---+---+---+---+---+---+---+
IF (INV.NF,4) GO TO 200
C-----SLOT MODIFICATIONS.
C-----COMMENT 50
IF (INUINJ.LE.0) GO TO 99
DO 98 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)
SU(I,J)=0.
98 SP(I,J)=-1.E30
99 CONTINUE
COME HERE FOR DROPLET EVAPORATION TERMS
IF (NFNZ.LE.0) GO TO 344
DO 346 J=2,N
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLO(J,NGOTO)
DO 346 I=IS,IE
LPC=KJK*(I-1)
346 SU(I,J)=SU(I,J)+EVAP(LPC)
344 CONTINUE
C-----CALCULATE THE MAXIMUM AND SUM OF CONTINUITY ERRORS.
C-----COMMENT 59
IF (K.NE.2) GO TO 101
SMAX=0.
SSUM=0.
101 CONTINUE
DO 100 J=2,N
IS=IWLI(J,NGOTO)
IE=IWLO(J,NGOTO)
DO 100 I=IS,IE
ASU=ARS(SU(I,J))
SSUM=SSUM+ASU
IF (ASU.LT.SMAX) GO TO 100
IMAX=I
JMAX=J
KMAX=K
SMAX=ASU
100 CONTINUE
IF (K.NE.N) GO TO 102
SMAX=SMAX/FLOWIN
SSUM=SSUM/FLOWIN
102 CONTINUE
200 CONTINUE
C +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
C----- TURBULENCE DISSIPATION +---+---+---+---+---+---+---+---+---+---+---+
IF (INV.NE.LVD) GO TO 300
COME HERE FOR CYLINDRICAL WALL SOURCE TERMS
DO 201 I=2,L
J=JWLI(I,NGOTC)-1
IF (IKIN(I,K).EQ.2.OR.IKIN(I,K).EQ.3) GO TO 1201
DIST=.2*YDIF(J+1)
IF (J.EQ.M) DIST=YDIF(MP1)
L=KM(K)+JM(J)+1
RTCDK=RTCD*F(ILP,NVK)
SU(I,J)=3.E30*RTCDK*SORT(RTCDK)/(AK*DIST)
SP(I,J)=-1.E90
1201 IF (IDWI=201,201,1200
1204 J=JWLI(I,NGOTC)+1
IF (IKIN(I,K).EQ.1.OR.IKIN(I,K).EQ.3) GO TO 201

```

173

ORIGINAL PAGE IS  
OF POOR QUALITY

```

DIST=.5*YDIF(J)
IF (J.EQ.2) DIST=YDIF(2)
LP=KM(K)+JM(J)+I
RTCDK=RTCD+F(LP,NVK)
SU(I,J)=1.E30+RTCDK*SQRT(RTCDK)/(AK*DIST)
SP(I,J)=-1.E30
201 CONTINUE
COME HERE FOR SLOT MODIFICATIONS
IF (NUINJ.LE.C) GO TO 710
DO 709 II=1,NUINJ
I=IUINJ(II)-1
J=JIUINJ(II)
M1=J-1
IF (J.EQ.JWL(I,NGOTO)+1) M1=J+1
M2=AMAX0(M1,J)
LP=KM(K)+JM(M1)+I
RTCDK=RTCD+F(LP,NVK)
SKE=AKFAC*(UINJ(II)**2+MUINJ(II)**2)
SLN=ALFAC*VS(J)
SU(I,J)=1.E30*CD+SKE**1.5/(SLN+1.E-30)
SP(I,J)=-1.E30
SU(I,M1)=1.E30+RTCDK*SQRT(RTCDK)/(AK+.5*YDIF(M2))
SP(I,M1)=-1.E30
709 CONTINUE
710 CONTINUE
COME HERE FOR INLET WALL SOURCE TERMS
DO 202 J=2,M1
I=IWLT(J,NGOTC)
IF (JKIN(J,K).EQ.1) GO TO 1202
LP=I+JM(J)+KM(K)
RTCDK=RTCD+F(LP,NVK)
DIST=.5*XDIF(I)
IF (I.EQ.2) DIST=XDIF(2)
SU(I,J)=1.E30+RTCDK*SQRT(RTCDK)/(AK*DIST)
SP(I,J)=-1.E30
1202 I=IWLD(J,NGOTC)
IF (J.GT.JWC1.AND.J.LT.JW001) GO TO 202
LP=I+JM(J)+KM(K)
RTCDK=RTCD+F(LP,NVK)
DIST=.5*XDIF(I+1)
IF (I.EQ.1) DIST=XDIF(LP1)
SU(I,J)=1.E30+RTCDK*SQRT(RTCDK)/(AK*DIST)
SP(I,J)=-1.E30
202 CONTINUE
C +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
300 IF (INV.NE.1) GO TO 400
COME HERE FOR SLOT MODIFICATIONS
IF (NUINJ.LE.C) GO TO 720
DO 719 II=1,NUINJ
I=IUINJ(II)
J=JIUINJ(II)
SU(I,J)=1.E30*UINJ(II)
SP(I,J)=-1.E30
719 SP(I,J)=-1.E30
720 CONTINUE
COME HERE FOR DROPLET EVAPORATION TERMS
IF (NFMZ.LE.C) GO TO 321
IF (K.EQ.2) REWIND NTP4
READ (NTP4) EVSU
DO 322 J=2,M
KJK=(K-2)+(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLT(J,NGOTC)
IF=IWLC(J,NGOTC)
DO 322 I=IS,IF

```

174

ORIGINAL PAGE IS  
OF POOR QUALITY





```

S2(IDN2)=(1.0-RATIO2)/SMW(IDN2)
CALL HCPS
HPI=HSUM*UNICON*TK
SU(I,J)=1.E300*HPI
736 SP(I,J)=1.E30
802 CONTINUE
COME HERE FOR INLET WALL SOURCE TERMS
DO 803 J=2,M
I=IWLI(J,NGOTO)
IF (JKIN(J,K),EQ,1) GO TO 1803
HTC=.5*(W(I,J,K)+W(I,J,K+1))*RHOC(I,J,K)*CFR
HTC=ABS(HTC)
AREA=YSR(J)*ZS(K)
SU(I,J)=SU(I,J)+HTC*AREA*CPO(TINLW-TEMP(I,J,K))
1803 I=IWLD(J,NGOTO)
IF (J.GT.JWDL.AND.J.LT.JWDL) GO TO 803
LP=I+JMC(J)+KMC(K)
HTC=.5*(W(I,J,K)+W(I,J,K+1))*RHOC(I,J,K)*CFR
HTC=ABS(HTC)
AREA=YSR(J)*ZS(K)
SU(I,J)=SU(I,J)+HTC*AREA*CPO(TINLW-TEMP(I,J,K))
803 CONTINUE
COME HERE FOR CROPLET EVAPORATION TERMS
IF (NFNZ.LE.0) GO TO 319
DO 316 J=2,M
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLD(J,NGOTO)
DO 316 I=IS,IE
LPC=KJK+(I-1)
IHCPSS=3
MS1=IDFU
MS2=IDFU
TK=TFUEL
TKINV=1.000/TK
S2(IDFU)=1.000/SPW(IDFU)
HDFU=HSUM*UNICON*TK
SU(I,J)=SU(I,J)+EVAP(LPC)*HDFU
316 SP(I,J)=SP(I,J)-EVAP(LPC)
315 CONTINUE
C   +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
900 IF (INV.NE.LVFUOX) GO TO 850
COME HERE FOR SLOT MODIFICATIONS
IF (NUINJ.LE.0) GO TO 851
DO 737 II=1,NUINJ
I=TUINJ(II)-1
J=JUINJ(II)
SU(I,J)=0.
737 SP(I,J)=-1.E30
851 CONTINUE
COME HERE FOR DROPLET EVAPORATION TERMS
IF (NFNZ.LE.0) GO TO 317
DO 318 J=2,M
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLD(J,NGOTO)
DO 318 I=IS,IE
LPC=KJK+(I-1)
SU(I,J)=SU(I,J)+EVAP(LPC)
318 SP(I,J)=SP(I,J)-EVAP(LPC)
317 CONTINUE
C   +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
950 IF (INV.NE.LVFU) GO TO 951
COME HERE FOR SLOT MODIFICATIONS

```

177

ORIGINAL PAGE IS  
OF POOR QUALITY

```

IF (NUINJ,LF,0) GO TO 899
DO 742 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)
742 SP(I,J)=1.E30
899 CONTINUE
COME HERE FOR DROPLET EVAPORATION TERMS
IF (NFMZ,LF,0) GO TO 319
DO 320 J=2,M
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLC(J,NGOTO)
DO 320 I=IS,IE
LPC=KJK+(I-1)
SUI(I,J)=SUI(I,J)+EVAP(LPC)
320 SP(I,J)=SP(I,J)-EVAP(LPC)
319 CONTINUE
C   +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+
941 IF(NV,NE,LVCO,AND,NV,NE,LVCH,AND,NV,NE,LVH2,AND,NV,NE,LVH1)GO TO 1 950
COME HERE FOR SLOT MODIFICATION
IF(NUINJ,LF,0) GO TO 959
DO 952 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)
SUI(I,J)=0.
952 SP(I,J)=1.E30
959 CONTINUE
COME HERE FOR DROPLET EVAPORATION TERMS
951 IF (NFMZ,LF,0) GO TO 950
DO 957 J=2,M
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLC(J,NGOTO)
DO 957 I=IS,IE
LPC=KJK+(I-1)
957 SP(I,J)=SP(I,J)-EVAP(LPC)
C   +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+
950 IF(NV,NE,LVN)GO TO 1200
COME HERE FOR SLOT MODIFICATIONS
IF(NUINJ,LF,0)GO TO 1203
DO 1207 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)
SUI(I,J)=0.0
1207 SP(I,J)=-1.0E30
COME HERE FOR DROPLET EVAPORATION TERMS
1203 IF(NFMZ,LF,C1)GO TO 1205
DO 1206 J=2,P
KJK=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2)
IS=IWLI(J,NGOTO)
IE=IWLC(J,NGOTO)
DO 1206 I=IS,IE
LPC=KJK+I-1
1206 SP(I,J)=SP(I,J)-EVAP(LPC)
1205 CONTINUE
RETURN
C   +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+
1200 IF(NV,LT,LVS1,OR,NV,GT,LVS2)GO TO 1300
COME HERE FOR SLOT MODIFICATIONS
IF(NUINJ,LF,0)GO TO 1303
DO 1306 II=1,NUINJ
I=IUINJ(II)-1
J=JUINJ(II)

```

178

ORIGINAL PAGE IS  
OF POOR QUALITY

```

      SU(I,J)=0.0
1308 SP(I,J)=1.0E30
COME HERE FOR DRLPLFT EVAPORATION TERMS
1303 IF(NFNZ,LE,C)GO TO 1305
DO 1306 J=2,M
KJR=(K-2)*(NI-2)*(NJ-2)*(J-2)*(NI-2)
IS=IWLI(J,NGOTD)
IE=IWLO(J,NGOTD)
DO 1306 I=IS,IE
LPC=KJK+I-1
1306 SP(I,J)=SP(I,J)-EVAP(LPC)
1305 CONTINUE
RETURN
C +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ X-DIRECTION RADIATION +--+ +--+ +--+ +--+ +--+ +--+ +--+
1300 IF(NV,NE,LVRX)GO TO 910
C-----INLET BOUNDARY.
DO 901 A=2,M
I=IWLI(J,NGOTC)
IF (JKIN(J,K),EQ,1) GO TO 902
TEMPH=TEMP(I-1,J,K)
SU(I,J)=SU(I,J)+EMI*SIGMA*TEMPH##4
SP(I,J)=SP(I,J)-EMI
GO TO 1901
902 CONTINUE
SU(I,J)=SU(I,J)+RADIN
SP(I,J)=SP(I,J)-1.
C-----OUTLET BOUNDARY.
1901 I=.WLO(J,NGOTC)
II (J.GT.JWOI.AND.J.LT.JWOO) GO TO 1902
TEMPH=TEMP(I+1,J,K)
SU(I,J)=SU(I,J)+EMI*SIGMA*TEMPH##4
SP(I,J)=SP(I,J)-EMI
GO TO 901
1902 CONTINUE
SU(L,J)=SU(L,J)+RADSUR
SP(L,J)=SP(L,J)-1.
901 CONTINUE
COME HERE FOR SLOT MODIFICATIONS
IF (NUINJ,LE,C) GO TO 903
DO 743 II=1,NUINJ
I=IWINJ(II)-1
J=JUINJ(II)
SU(I+1,J)=SU(I+1,J)+EMISR*SIGMA*TEMP(I,J,K)##4
SP(I+1,J)=SP(I+1,J)-1
TEMPH=TLIP
SU(I-1,J)=SU(I-1,J)+EMI*SIGMA*TEMPH##4
743 SP(I-1,J)=SP(I-1,J)-EMI
903 CONTINUE
C +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ +--+ Y-DIRECTION RADIATION +--+ +--+ +--+ +--+ +--+ +--+ +--+
910 IF (NV,NE,LVRY) GO TO 920
DO 911 I=2,L
C-----TOP WALL.
J=JWL(I,NGOTC)-1
IF (IKIN(I,K),EQ,2,OR.IKIN(I,K),EQ,3) GO TO 904
TEMPH=TEMP(I,J+1,K)
SU(I,J)=SU(I,J)+EMI*SIGMA*TEMPH##4*RH(J+1)
SP(I,J)=SP(I,J)-EMI*RH(J+1)
GO TO 903
904 SU(I,J)=SU(I,J)+RADIM*RH(J+1)
SP(I,J)=SP(I,J)-RH(J+1)
905 IF (IDW) 911,911,1911
C-----BOTTOM WALL.
1911 J=JWL(I,NGOTD)+1
IF (IKIN(I,K),EQ,1,OR.IKIN(I,K),EQ,3) GO TO 906

```

|         | SOOT  | 145  |
|---------|-------|------|
|         | SOOT  | 146  |
|         | SOOT  | 147  |
|         | SOOT  | 148  |
|         | SOOT  | 149  |
|         | SOOT  | 150  |
|         | SOOT  | 151  |
|         | SOOT  | 152  |
|         | SOOT  | 153  |
|         | SOOT  | 154  |
|         | SOOT  | 155  |
|         | SOOT  | 156  |
|         | SOOT  | 157  |
|         | AL    | 1089 |
|         | SOOT  | 158  |
| COMMENT |       | 60   |
|         | AL    | 1091 |
|         | AL    | 1092 |
|         | AL    | 1093 |
|         | AL    | 1094 |
|         | AL    | 1095 |
|         | AL    | 1096 |
|         | AL    | 1097 |
|         | AL    | 1098 |
|         | AL    | 1099 |
|         | AL    | 1100 |
| COMMENT |       | 61   |
|         | AL    | 1101 |
|         | AL    | 1102 |
|         | AL    | 1103 |
|         | AL    | 1104 |
|         | AL    | 1105 |
|         | AL    | 1106 |
|         | AL    | 1107 |
|         | AL    | 1108 |
|         | AL    | 1109 |
|         | AL    | 1110 |
|         | AL    | 1111 |
|         | AL    | 1112 |
|         | AL    | 1113 |
|         | AL    | 1114 |
|         | AL    | 1115 |
|         | AL    | 1116 |
|         | AL    | 1117 |
|         | AL    | 1118 |
|         | AL    | 1119 |
|         | AL    | 1120 |
|         | AL    | 1121 |
|         | AL    | 1122 |
|         | AL    | 1123 |
|         | AL    | 1124 |
| COMMENT |       | 62   |
|         | AL    | 1125 |
|         | AL    | 1126 |
|         | AL    | 1127 |
|         | AL    | 1128 |
|         | AL    | 1129 |
|         | AL    | 1130 |
|         | NASAX | 24   |
|         | NASAX | 25   |
|         | AL    | 1133 |
| COMMENT |       | 63   |
|         | AL    | 1134 |
|         | AL    | 1135 |

ORIGINAL PAGE IS  
OF POOR QUALITY





```

CALL FPRINT (1,3,1)
CALL FPRINT (3,3,4)
IF(ISTEP.EQ.0)GO TO 300
IF(MSOOT.EQ.0)GO TO 227
C-----SOOT EMISSIONS INDEX AND SMOKE NUMBER.
FLOW=0.0
PBAR=0.0
SBAR=0.0
DO 225 K=2,N
DO 225 J=2,P
LP=KM(K)+JP(J)+L
DMOOT=RHO(LP1,J,K)*YSR(J)*ZS(K)*U(LP1,J,K)
FLOW=FLOW+DMOOT
DSOOT=DMOOT*(SOOT1(L,J,K)+SOOT2(L,J,K))
SBAR=SBAR+DSOOT
225 PRAR=PBAR+DSOOT*RHO(LP1,J,K)
PRAR=PRAR+1.0E-30
FLOW=FLOW+1.0E-30
CSMO=1000.0*SBAR/FUTOT
SMCONC=1.0E6*PRAR/FLOW
SMONO=12.9847*ALOG(SMCONC)+12.045
SMONO=AMAX1(SMONO,0.0)
227 IF(MNOX.EQ.0)GO TO 300
C-----NOX EMISSIONS INDEX.
PRAR=0.0
DO 301 K=2,N
DO 301 J=2,N
LP=KM(K)+JP(J)+L
301 PRAR=PRAR+RHC(LP1,J,K)*YSR(J)*ZS(K)*U(LP1,J,K)*(F(LP,LVNO)+46./30.*1+F(LP,LVNO2))
CN1=1000.0*PRAR/FUTOT
300 CONTINUE
C ---- HFRF PP IS ACTUALLY KE, P IS ACTUALLY DISSIPATION
READ (NTP) PP,P
DO 25 K=1,NP1
DO 25 J=1,NP1
KJM=KM(K)+JM(J)
DO 25 I=1,LPI
LP=KJM+I
25 F(LP,NVD)=CD*F(LP,NVK)**1.5/(F(LP,NVD)+1.0E-30)
CALL FPRINT (NVK,NVD,5)
C ----- HFRF PP IS PHE, P IS MFU, DU IS MCO
READ (NTP) PP,P,DU
CALL FPRINT (NVFUOX,NVTE,7)
CALL FPRINT (NVCO,NVCO,15)
DO 50 K=1,NP1
DO 50 J=1,NP1
KJM=KM(K)+JM(J)
DO 50 I=1,LPI
LP=KJM+I
FUR=F(LP,NVFUDX)-F(LP,NVFU)
F(LP,NVFUD2)=FS(LP,IOCO2)
F(LP,NVHDX)=FS(LP,IOO2)
F(LP,NVH2D)=FS(LP,IOH20)
F(LP,NVN2)=FS(LP,ION21)
50 CONTINUE
CALL FPRINT (NVH20,NVN2,16)
IF (NFN2.LT.0) GO TO 35
DO 37 K=1,NP1
DO 37 J=1,NP1
KJM=KM(K)+JM(J)
DO 37 I=1,LPI
LP=KJM+I
37 F(LP,NVFUDX)=C.

```

|  | OU      | 12  |
|--|---------|-----|
|  | OU      | 13  |
|  | NOX     | 127 |
|  | SOOT    | 139 |
|  | COMMENT | 69  |
|  | SOOT    | 160 |
|  | SOOT    | 161 |
|  | SOOT    | 162 |
|  | SOOT    | 163 |
|  | SOOT    | 164 |
|  | SOOT    | 165 |
|  | SOOT    | 166 |
|  | SOOT    | 167 |
|  | SOOT    | 168 |
|  | SOOT    | 169 |
|  | SOOT    | 170 |
|  | SOOT    | 171 |
|  | SOOT    | 172 |
|  | SOOT    | 173 |
|  | SOOT    | 174 |
|  | SOOT    | 175 |
|  | SOOT    | 176 |
|  | NOX     | 128 |
|  | COMMENT | 70  |
|  | NOX     | 129 |
|  | NOX     | 130 |
|  | NOX     | 131 |
|  | NOX     | 132 |
|  | NOX     | 133 |
|  | NOX     | 134 |
|  | NOX     | 135 |
|  | NOX     | 136 |
|  | OU      | 14  |
|  | OU      | 15  |
|  | OU      | 16  |
|  | OU      | 17  |
|  | OU      | 18  |
|  | OU      | 19  |
|  | OU      | 20  |
|  | OU      | 21  |
|  | OU      | 22  |
|  | OU      | 23  |
|  | OU      | 24  |
|  | OU      | 25  |
|  | OU      | 26  |
|  | OU      | 27  |
|  | OU      | 28  |
|  | OU      | 29  |
|  | OU      | 30  |
|  | OU      | 31  |
|  | OU      | 32  |
|  | NOX     | 137 |
|  | NOX     | 138 |
|  | NOX     | 139 |
|  | NOX     | 140 |
|  | OU      | 40  |
|  | OU      | 41  |
|  | OU      | 42  |
|  | OU      | 43  |
|  | OU      | 44  |
|  | OU      | 45  |
|  | OU      | 46  |
|  | OU      | 47  |
|  | OU      | 48  |

182

ORIGINAL PAGE IS  
OF POOR QUALITY

```

C-----SPRAY EVAPORATION RATES.          COMMENT    71
DO 39 K=2,N                           OU        49
DO 39 J=2,M                           OU        50
KJM=KM(K)+JP(J)
KJK=(K-2)*(NI-2)*(NJ-2)*(J-2)*(NI-2)   OU        51
DO 39 I=2,L                           OU        52
LP=KJM+I                           OU        53
LPC=LPC+(I-1)
39 F(LP,NVFUDX)=EVAP(LPC)
CALL FPRINT (NVFUDX,NVFUDX,22)         OU        54
39 CONTINUE                         OU        55
C ----- MFR E DV IS ENTHALPY, DW IS FAV
READ (NTP) DV,DW                      OU        56
CALL FPRINT (NVH,NVFAV,10)             OU        57
C ----- MFR U IS FX, V IS FY, W IS FZ
READ (NTP) U,V,W                      OU        58
CALL FPRINT (NVFX,NVYZ,12)            OU        59
C ----- RHO AND VISCOSITY
CALL FPRINT(3C,30,20)                  4STEP    179
NV=4
DO 56 K=1,NP1                         OU        60
DO 56 J=1,NP1                         OU        61
KJM=KM(K)+JM(J)
DO 56 I=1,LP1                         OU        62
LP=KJM+I                           OU        63
56 F(LP,7)=0.
CALL GAMMA                          OU        64
CALL FPRINT (7,T,21)                  OU        65
REWIND NTP1                          OU        66
DO 46 II=1,2                         OU        67
46 READ (NTP1)
C ----- HERE PP IS PHI, P IS MFU, DU IS MCQ
READ (NTP1) PP,P,DU                  OU        68
CALL FPRINT(11,13,?3)                4STEP    179
CALL FPRINT(24,29,26)                4STEP    176
CALL FPRINT(14,15,32)                4STEP    177
1 IF(ISTEP.GT.0.AND.NSOOT.NE.0)WRITE(6,226)SMONO,SMCONC,CSNO
226 FORMAT(1HO,10(1H4),5X,*SMOKE NUMBER = *, E10.2,5X,10(1H4)/1HO,
1 10(1H4),5X,*SMOKE CONCENTRATION = *,E10.2,1X,0MG/M3, OR*,E10.2,
2 1X,0GM.OF SMOKE/KG.OF FUEL*,5X,10(1H4)/)
IF(ISTEP.GT.C.AND.NNOX.NE.0)WRITE(6,302)CMO
302 FORMAT(1HO,10(1H4),5X,*NOX EMISSIONS INDEX = *,E10.2,1X,
1 *GM.OF NO2/KG.OF FUEL*,5X,10(1H4)/)
15 CONTINUE                         OU        69
WRITE(6,19)
19 FORMAT (1HO,4HSTEP,5X,4HSMAX,7X,4HSUM,6X,9HSEKIT,5X,
1 1HPL(2,M,2),3X,8HP(L,M,2),3X,8HU(I,J,K),3X,8HV(I,J,K),3X,
2 8HW(I,J,K),2X,8HT(I,J,K),2X,10HRHO(I,J,K),2X,7HI J K)
20 CONTINUE                         OU        70
RETURN
END
SUBROUTINE AUX
COMMON F(3500),DU(500),DV(500),DW(500),
1 AMUC(500),SOOT1(500),SOOT2(500),FCM(500),FH2(500),FS(500,14),
1 RH0(500),VTSC(500),ABSR(500),SCTR(500),SU(100),SP(100),
1 DRHDP(500),
1 AXP(.00),AYP(100),AYP(100),AYM(100),AZP(100),
2 AYM(100),CY(100),CYU(100),CYU(100),
3 CZP(100),CTP(10),DIVG(100),NTP1,NTP2
1,AYMK(192),AZPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),
2 SUK(192),SPK(192)
DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)
DIMENSION GM(500)
FOH(VALENCE (F(1),U(1)),(F(501),V(1)),(F(1001),W(1)))
COMMENT    71
COMMENT    49
COMMENT    50
COMMENT    51
COMMENT    52
COMMENT    53
COMMENT    54
COMMENT    55
COMMENT    56
COMMENT    57
COMMENT    58
COMMENT    59
COMMENT    60
COMMENT    61
COMMENT    62
COMMENT    63
COMMENT    64
COMMENT    65
COMMENT    66
COMMENT    67
COMMENT    68
COMMENT    69
COMMENT    70
COMMENT    71
COMMENT    72
COMMENT    73
COMMENT    74
COMMENT    75
COMMENT    76
COMMENT    77
COMMENT    78
COMMENT    79
COMMENT    80
COMMENT    SOOT    179
COMMENT    81
COMMENT    82
COMMENT    83
COMMENT    84
COMMENT    85
COMMENT    86
COMMENT    87
COMMENT    88
COMMENT    AU     2
COMMENT    COMFB  2
4STEP    179
RAD      3
RAD      4
COMFR   4
COMFB   5
COMFB   6
CTOMA   3
CTOMA   4
COMFB   7
COMFR   8
COMFR   9

```

|                                                                      |        |     |
|----------------------------------------------------------------------|--------|-----|
| EQUIVALENCE (F(19C1),PP(1)),(F(2001),P(1)),(F(2901),TEMP(1))         | COMMON | 10  |
| EQUIVALENCE (F(3001),GAM(1))                                         | COMMON | 11  |
| COMMON/CYL/R(30),PM(30),RMV(30),YSR(30),YSVR(30),IPLAX               | COMMON | 2   |
| COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),TS(40),XSU(40),          | COMMON | 3   |
| 1 YSV(30),ZSW(30),XDTF(40),YDEF(30),ZDIF(30),FXP(40),FKM(40),        | COMMON | 4   |
| 2 FYP(30),FYH(30),F7P(30),FZM(30),DT,TIME                            | COMMON | 5   |
| COMMON                                                               | NOX    | 2   |
| 1/CTMDFX/IDCC,INFU,IND2,IND2,IND2,IND2,IND2,IND2,IND2,IND2           | NOX    | 3   |
| 1,IND,INDH,IHCPS,ILC,ILH,IMAT,ITER,JJJ,N1,N2,N3,NA,NGLOR,NGLORP,     | NOX    | 4   |
| 2 NLM,NO,NSP,NS1,NS2,INDH                                            | 4STEP  | 3   |
| 3/CCHEMI/CPSUM,HSUM,FQ,PPLN,RGAS,RGASIN,SHINV,TINV,LNRG              | NOX    | 6   |
| 4/CPARAM/ASUR(30,31),FMV,ER,HSUB0,NDEBUG,MS,PA,QQ,Q1,Q2,Q3,Q4,RHOPP, | NOX    | 7   |
| 4 SM,SHW(30),SM0,S1(30),S2(30),TK,LADIAB,LDEBUG,LEQUIL,LREACT,       | NOX    | 8   |
| 4 LENER,FDKID,LCONVG                                                 | NOX    | 9   |
| DOUBLE PRECISION CPSUM,EMV,ER,FQ,HSUB0,HSUM,PA,PPLN,QQ,Q1,Q2,Q3,     | NOX    | 10  |
| 1 Q4,RGAS,RGASIN,RHOPP,SH,SHINV,SHW,S1,S2,TK,TINV,TLM,SM0            | NOX    | 11  |
| 2,FIUT,FST                                                           | 4STEP  | 4   |
| COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,C8U1,C8U2,      | 4STEP  | 5   |
| 1 CERU3,CFRU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,       | 4STEP  | 6   |
| 2 CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST                                    | 4STEP  | 7   |
| LOGICAL LADIAB,LCPNVG,LDEBUG,LEQUIL,LNRG,LREACT,LENER                | NOX    | 12  |
| COMMON/INT/L,P,N,LCV,MCV,N,V,LPI,MP1,MP1,NI,NJ,NK,NINJ,NINJK,NV,     | COMMON | 6   |
| 1 NNV,NGOTO,K,ISTR,JSTR,KSTR,NVM(35),KM(30),JM(30),ISTEP,            | 4STEP  | 8   |
| 2 ISOLVF(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(35),NP,     | 4STEP  | 9   |
| 3 NRHO,NGAM,IWLI(30,5),IWLD(30,5),JWLD(40,5),JWLII(40,5),IWEI,       | COMMON | 9   |
| 4 INFO,NN1,JWII,JWDI,JWOO,ICM,JKIM(30,30),IKIM(40,30)                | COMMON | 10  |
| COMMON/INDEX/IPAR,LPREF,ISTUN,INCOMP,ITRAD,MVRX,MVRY,MVRZ,JPLANE     | COMMON | 11  |
| 1,PLAYM1,LVK,LVD,LVFUOK,LVFU,LVCO,LVH,LVRX,LVRY,LVRZ,NVF(32),        | 4STEP  | 10  |
| 2 IJUMP,IRFS,TITLE2(20),TMAX,JMAX,KMAX,MVCO,MVH20,MVC02,             | COMMON | 13  |
| 3 MVN2,MVCH,MVH2                                                     | 4STEP  | 11  |
| COMMON/CNOX/LVH1,LVH2,LVN1,LVNO,LVNO2,LVD,LVOM,LVH20,LVN2,LVO2,      | NOX    | 16  |
| 1 LVCO2,LVFU1,LVCO1,NNOX,INOX,ITNOX,SNOK,TNOX                        | NOX    | 17  |
| COMMON/THERP/NVH,NVFU,NVFX,NVFOOK,NVTE,NOEN,IOK,FSTOIC,HFU,CP,       | COMMON | 15  |
| 1 GASCON,RHCCN,UNICON,PRESS,MVFAV,TCYLW,TINLW,TLIP,ACDEF(4),         | COMMON | 16  |
| 2 T4,DFAC,WFU,WCO2,WCO,WFX,WHD,WN2,HYY,CKX,RATIO1,RATIO2,            | COMMON | 17  |
| 3 RATIO3,RATIC4,MCO,TAN,ITWALL                                       | COMMON | 18  |
| COMMON/CTDMA/REND,ICTDMA(32)                                         | 4STEP  | 12  |
| COMMON/RIS/APU,DEM,SHAK,SSUM,LASTEP,HTCEXT,CFR,EMISH,EMISIN,         | COMGEN | 2   |
| 1 EMISR,TOUT,RTCD,EMI,RADIN,RADSUR,FMF,SKF,                          | COMGEN | 3   |
| 2 EFKU,FDFU,TFUEL,WFNZ,FLD(40),TEMTH(40),H(40),FUEL(40),FUOK(40)     | COMGEN | 4   |
| 2 UTN(40),TIM(40),FUELS(40),SEXIT,IGAM1(29),IGAM2(29)                | 4STEP  | 13  |
| COMMON/TURB/MVK,NVD,C1,C2,CD,AK,DUIDXJ(3,3),AKFAC,ALFAC,             | COMGEN | 6   |
| 1 MODEL,PR(32),PREF(32),PJAY(32),E                                   | 4STEP  | 14  |
| COMMON/RAD/NVE,STGMA,ABSOR,SCATR                                     | COMGEN | 8   |
| COMMON/REACT/ARCON1,PREXP1,CR1,ARCON2,PREXP2,CR2,MODER               | COMGEN | 9   |
| COMMON/DRDPL/EVAP(192),NTP4,MFNZ,KO(3),YO(3),ZO(3),ALFA(3),          | COMGEN | 10  |
| 1 BETA(3),DETA(3),THETA1(3),THETA2(3),NSL(3),WFF(3),SMO(3),          | COMGEN | 11  |
| 2 VFUFL(3),RFUFL(3),EVSU(64),HEVAP                                   | COMGEN | 12  |
| COMMON/INJEC/FLOWIN,IUINJ(20),JIINJ(20),UIINJ(20),WIINJ(20),         | COMGEN | 13  |
| 1 AUINJ(20),TUINJ(20),IVINJ(20),JVINJ(20),KVINJ(20),VINJ(20),        | COMGEN | 14  |
| 2 EVINJ(20),AVINJ(20),TVINJ(20),NUINJ,MVINJ,JSW1,JSW2,               | COMGEN | 15  |
| 3 USW,VSW,AFSW,FSW,TSW,WSW,SWH,RHOSW                                 | COMGEN | 16  |
| COMMON/CSOOT/NVN,MVS1,MVS2,ISOOT,SSOOT,NSOOT,AO,ARCONN,AAA,BBB,FMG   | SOOT   | 8   |
| 1,GO,MPART,OPART(2),FRACP(2),RHOP,ARCONS,PREXP5,ALPHA,AAS,RBS,DRH    | SOOT   | 9   |
| 2,LVN,LVS1,LVS2,CINCP,TINCP,FUTOT                                    | SOOT   | 10  |
| COMMON/CRAD/IRAD,SRAD                                                | SOOT   | 11  |
| COMMON/CFDUP/PREP3,ARCON3,CR3,PREXP4,ARCON4,CR4,AA1,BR1,CC1,         | 4STEP  | 15  |
| 1 AA2,BB2,CC2,AA3,BB3,CC3,A44,B44,CC4,RATIO5,RATIO6,RATIO7,          | 4STEP  | 16  |
| 2 RATIO8,R47109,RATO10,RATO11,RATO12,MCH,W42,WC2H,LVCH,LVCH1,LVH21   | 4STEP  | 17  |
| COMMON/CLDR/FDK(192)                                                 | NOX    | 146 |
| DIMENS:DM GENR(500),SFU(500),SPFU(500),EDK2(192)                     | NOX    | 147 |
| DIMENS:DN SUCH(500),SPCH(500)                                        | 4STEP  | 170 |
| *** REWARE OF EQUIVALENCE STATEMENTS ***                             | AU     | 7   |
| EQUIVALENCE (GENR(1),DU(1)),(SFU(1),DV(1)),(SPFU(1),DN(1))           | AU     | 8   |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

TMAX=AMAX1(TMAX,2000.)
TEMP(LP)=AMIN1(TEMP(LP),TMAX)
1050 TEMP(LP)=AMAX1(TEMP(LP),100.)
C ----- HERE DU IS U, DV IS V, DW IS W
1034 RFWIND NTP1
READ (NTP1) DU,DV,DW,P
1048 RFAD (NTP1)
C ----- HERE PP IS PHI, DU IS MFU, DV IS MCQ
READ (NTP1) PP,DU,DV
RFAD(NTP1)
READ(NTP1)DW,P
REWIND NTP1
READ(NTP1)U,V,W
CALCULATE WALL TEMPERATURE.
DO 1052 K=2,N
DO 1058 I=2,L
IF(IKIN(I,K).EQ.2.OR.IKIN(I,K).EQ.3)GO TO 1054
J=JWL(I,I,4)-1
LP=I+JM(J)+KM(K)
LPRY=LP+NVM(5)
VEC=0.25*((U(LP)+U(LP+1))**2+(W(LP)+W(LP+1))**2)
HTC=CFR*RHO(LP)*CP*SQRT(VEC)
TEMP(LP+NI)=TSOLVE(TEMP(LP+NI),TEMP(LP),F(LPRY),HTC,SIGMA,EMI,
1 ITRAD)
1054 IF(IKIN(I,K).EQ.1.OR.IKIN(I,K).EQ.3)GO TO 1058
IF(IDW,F0.0)GO TO 1058
J=JWL(I,I,4)+1
LP=I+JM(J)+KM(K)
LPRY=LP+NVM(5)
VEC=0.25*((U(LP)+U(LP+1))**2+(W(LP)+W(LP+1))**2)
HTC=CFR*RHO(LP)*CP*SQRT(VEC)
TEMP(LP+NI)=TSOLVE(TEMP(LP+NI),TEMP(LP),F(LPRY),HTC,SIGMA,EMI,
1 ITRAD)
1058 CONTINUE
DO 1052 J=2,M
IF(JKTN(J,K).EQ.1)GO TO 1059
LP=IWLI(J,4)+JM(J)+KM(K)
LPRY=LP+NVM(10)
VEC=0.25*((V(LP)+V(LP+NI))**2+(W(LP)+W(LP+NI))**2)
HTC=CFR*RHO(LP)*CP*SQRT(VEC)
TEMP(LP-1)=TSOLVE(TEMP(LP-1),TEMP(LP),F(LPRY),HTC,SIGMA,EMI,ITRAD)
1059 IF(J.GT.JWDI.AND.J.LT.JWDD)GO TO 1072
LP=IWLI(J,4)+JM(J)+KM(K)
LPRY=LP+NVM(10)
VEC=0.25*((V(LP)+V(LP+NI))**2+(W(LP)+W(LP+NI))**2)
HTC=CFR*RHO(LP)*CP*SQRT(VEC)
TEMP(LP+1)=TSOLVE(TEMP(LP+1),TEMP(LP),F(LPRY),HTC,SIGMA,EMI,ITRAD)
1072 CONTINUE
REWIND NTP1
READ(NTP1)U,V,W,P
IF(ISOLVE(LVFU).EQ.0)GO TO 1200
GO TO (1060,1062,1064), MODEM
1060 DO 1061 K=1,NP1
C-----DENSITY=CONSTANT, MODEM=1.
DO 1061 J=1,NP1
KJM=KM(K)+JM(J)
IS=IWLI(J,3)
IE=IWLC(J,3)
DO 1061 I=IS,IE
LP=KJM+I
RH0(ILP)=DFN
1061 CONTINUE
GO TO 1200

```

```

1062 DO 1063 K=1,NP1
C-----DENSITY=FUNCTION(NCOMPOSITION,TEMPERATURE), MODEN=2.
    DO 1063 J=1,MP1
        KJM=KM(K)+JM(J)
        IS=IWLI(J,5)
        IE=IWLC(J,2)
        DO 1063 I=IS,IE
            LP=KJM+I
            LPTE=LP+NVM(NVTE)
            LPFU=LP+NVM(NVFUDX)
C ----- CAUTION HERE
            LPFU=LP+NVM(NVFUDX+3)
            LPC0=LPC0+NVM(NVCO+1)
            LPCH=LPC0+NVM(NVCH)
            LPH2=LPC0+NVM(NVH2)
            FUR=F(LPFUDX)-F(LPFU)
            FLPH2D=0.5*WH2D*(HYY*FUB/WFU-RATIO7*F(LPCH)-F(LPH2))
            FLPC02=WC02*(CKX*FUB/WFU-CKX*F(LPCH)/WCH-F(LPC0)/WC0)
            FLPOX=RATIO1*F(LPFU)+RATIO3*F(LPC0)+RATIO2-(RATIO2+RATIO1)*
1 F(LPFUDX)+RATIO5*F(LPCH)+RATIO6*F(LPH2)
            FLPOX=AMAX1(FLPOX,0.)
            FLPN2=1.0-F(LPFU)-FLPC02-F(LPC0)-FLPOX-FLPH2D-F(LPCH)-F(LPH2)
1008 CONTINUE
            RLPTE=F(LPTE)
            RLPTE=AMAX1(RLPTE,100.)
            VMIX=F(LPFU)/WFU+FLPC02/WC02+F(LPC0)/WC0+FLPOX/WOX+FLPH2D/WH2D+
1 FLPN2/WH2+F(LPCH)/WCH+F(LPH2)/WH2
            DENST=RHODCN/(VMIX*RLPTE)
            GO TO (1009,1010),KONTRO
1009 RHO(LP)=DENST
1010 RHO(LP)=RELAX(NRHO1)*DENST+RELAXM*RHO(LP)
1063 CONTINUE
1064 CONTINUE
1200 CONTINUE
    CALL DENMOD
    RETURN
C   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 + AU 100
C   ENTRY VISCC
C-----ENTRY VISCC IS USED TO CALCULATE THE EFFECTIVE VISCOSITY
C   AND YPLUS AT WALL BOUNDARIES.
C   COMMENT 109
C   COMMENT 110
C   COMMENT 79
C   COMMENT 60
C   COMMENT 81
C ----- HERE DU IS KE, DV IS DISS
    RFAD(INTP1) DU,DV
    RELAXM=1.-RELAX(NGAM)
    KONYRD=2
    IF (ISTEP.EQ.IRES) KONTRO=1
    DO 2000 K=1,NP1
    DO 2000 J=2,M
        KJM=KM(K)+JM(J)
        IS=IWLI(J,4)
        IE=IWLC(J,4)
        DO 2000 I=IS,IE
            LP=KJM+I
            GO TO (2001,2002),MODEL
2001 CONTINUE
C-----CONSTANT VISCOSITY, MODEL=1, LAMINAR.
    VISCLP=AMU
    GO TO 2000
2002 CONTINUE
    LPK=LP+NVM(NVK+4)
    LPD=LP+NVM(NVD+4)
C-----VISCOSITY FROM K-E MODEL, MODEL=2, TURBULENT.
    VISCOS=RHO(LP)*CD0*F(LPK)*42/(F(LP0)+1.E-30)
    GO TO (2003,2004),KONTRO

```

```

2003 VISC(LP)=VISCOS          AU 132
2004 VISC(LP)=RELAX(NGAM)*VISCOS+RELAXNO*VISC(LP)    AU 133
2000 CONTINUE                   AU 134
C ----- CALCULATE YPLUS        AU 135
DO 2020 K=1,NPI                AU 136
DO 2022 I=1,LP1                 AU 137
J=JWL(I,4)                      AU 138
LP=KM(K)+JM(J)+I               AU 139
LPK=LP+NVM(NVK+4)               AU 140
DIST=.5*YDIF(J)                 AU 141
IF (J.EQ.MP1) DIST=YDIF(MP1)     AU 142
YPLUS=RHO(LP-NI)*SURT(F(LPK-NI)*RTCD)*DIST/AMU   AU 143
VISC(LP)=YPLUS                  AU 144
J=JWL(I,I,4)                    AU 145
LP=KM(K)+JM(J)+I               AU 146
LPK=LP+NVM(NVK+4)               AU 147
DIST=.5*YDIF(J+1)               AU 148
IF (J.EQ.1) DIST=YDIF(2)         AU 149
YPLUS=RHO(LP+NI)*SURT(F(LPK+NI)*RTCD)*DIST/AMU   AU 150
VISC(LP)=YPLUS                  AU 151
2022 CONTINUE                   AU 152
DO 2024 J=2,M                   AU 153
I=IWLT(I,J,4)-1                AU 154
LP=KM(K)+JM(J)+I               AU 155
LPK=LP+NVM(NVK+4)               AU 156
DIST=.5*YDIF(I+1)               AU 157
IF (I.EQ.1) DIST=XDIF(2)         AU 158
YPLUS=RHO(LP+1)*SURT(F(LPK+1)*RTCD)*DIST/AMU   AU 159
VISC(LP)=YPLUS                  AU 160
I=IWLO(I,J,4)+1                AU 161
LP=KM(K)+JM(J)+I               AU 162
LPK=LP+NVM(NVK+4)               AU 163
DIST=.5*XDIF(I)                 AU 164
IF (I.EQ.LP1) DIST=XDIF(LP1)     AU 165
YPLUS=RHO(LP-1)*SURT(F(LPK-1)*RTCD)*DIST/AMU   AU 166
VISC(LP)=YPLUS                  AU 167
2024 CONTINUE                   AU 168
2020 CONTINUE                   AU 169
DO 3005 K=2,N                   AU 170
DO 3005 J=2,M                   AU 171
KJM=KM(K)+JM(J)                AU 172
IS=IWLT(I,J,4)                 AU 173
IE=IWLC(I,J,4)                 AU 174
DO 3005 I=IS,IE                 AU 175
LP=KJM+I                        AU 176
LPK=LP+NVM(NVK+4)               AU 177
LPD=LP+NVM(NVD+4)               AU 178
LPC=I-1+(J-2)*(NI-2)+(K-2)*(NI-2)*(NJ-2)       AU 179
ENDP(LPC)=F(LPD)/(F(LPK)**2+1.0E-30)           SOUT 180
3005 FOK(LPC)=F(LPD)/(F(LPK)+1.E-30)            AU 181
RETURN                           AU 182
C ** ** ** ** ** ** ** ** ** * AU 182
ENTRY GAMMA                      AU 183
C-----ENTRY GAMMA IS USED TO CALCULATE THE DIFFUSION COEFFICIENTS. COMMENT 184
C
DO 3000 K=1,NPI                 COMMENT 185
DO 3000 J=2,M                     AU 186
KJM=KM(K)+JM(J)                 AU 187
IS=IWLT(I,J,4)                  AU 188
IE=IWLO(I,J,4)                  AU 189
DO 3000 I=IS,IE                  AU 190
LP=KJM+I                        AU 191
DO TO (3001,3002),NODFL        AU 192
3001 CONTINUE

```

1RR

ORIGINAL PAGE IS  
OF POOR QUALITY

```

      GAM(LP)=VISC(LP)/PR(NV)
      GO TO 3000
3002 CONTINUE
      GAM(LP)=VISC(LP)/PREF(NV)
3000 CONTINUE
      CALL GAMOD
3004 CONTINUE
      RETURN
C   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
C   ENTRY SOURCE
C-----FNTRY SOURCE IS USED TO CALCULATE THE SOURCE TERMS FOR
C   THE DEPENDENT VARIABLES.
C
CAUTION NOT ALL SOURCE TERMS ARE VALID - AT BOUNDARY NODES -
CHECK AND MODIFY ACCORDINGLY IN S0M0D
GO TO (100,200,300,400),NGOTO
C   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
C   SOURCE TERMS FOR U-VELOCITY      +---+---+---+---+---+
100 DO 101 J=2,N
      IS=IWLI(J,NGOTO)
      IE=IWLP(J,NGOTO)
      DO 101 I=IS,IE
      LIJ=JM(J)+I
      LP=LIJ+KM(K)
      EXP=LP+1
      LXM=LP-1
      DUDXP=(U(LXP)-U(LP))/XS(I)
      DUDXM=(U(LP)-U(LXM))/XS(I-1)
      GAMLP=GAM(LP)
      GAMLXM=GAM(LXM)
      IF (I.EQ.IS) GAMLXM=GAM(LXM-1)
      IF (I.EQ.IE) GAMLP=GAM(LP+1)
      SU(LIJ)=(GAMLP*DUDXP-GAMLXM*DUDXM)/XSU(I)
      LYP=LP+NI
      LYX=LP-NI
      LYPI=LYP-1
      LYMI=LYM-1
      GAMP=0.25*(GAM(LP)+GAM(LXM)+GAM(LYP)+GAM(LYMI))
      GAMM=0.25*(GAM(LP)+GAM(LXM)+GAM(LYM)+GAM(LYMI))
      DWDXP=(V(LYP)-V(LYPI))/XDIF(I)
      DWDXM=(V(LP)-V(LXM))/XDIF(I)
      SU(LIJ)=SU(LIJ)+(GAMP*Dwdxpm(j+1)-GAMM*Dwdxmrn(j))/YSR(j)
      LZP=LP+NI+N
      LZM=LZP-NINJ
      LZP1=LZP-1
      LZM1=LZM-1
      GAMP=0.25*(GAM(LP)+GAM(LXM)+GAM(LZP)+GAM(LZP1))
      GAMM=0.25*(GAM(LP)+GAM(LXM)+GAM(LZM)+GAM(LZM1))
      DWDXP=(W(LZP)-W(LZP1))/XDIF(I)
      DWDXM=(W(LP)-W(LXM))/XDIF(I)
      SU(LIJ)=SU(LIJ)+(GAMP*Dwdxpm(j+1)-GAMM*Dwdxmrn(j))/YSR(j)
      SP(LIJ)=0.
101 CONTINUE
      GO TO 5000
C   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *
C   SOURCE TERMS FOR V-VELOCITY      +---+---+---+---+---+
200 DO 201 J=3,N
      IS=IWLI(J,NGOTO)
      IE=IWLO(J,NGOTO)
      DO 201 I=IS,IE
      LIJ=JM(J)+I
      LP=LIJ+KM(K)
      LYP=LP+NI
      LYX=LP-NI
      DVNDXP=(V(LYP)-V(LP))/YS(I)
      DVNDXM=(V(LP)-V(LXM))/YS(I-1)

```

```

GAMLP=GAM(LP)
GAMLYM=GAM(LYM)
IF (J.EQ.JWL1(I,NGOTO)+1) GAMLYM=GAM(LYM-NI)
IF (J.EQ.JWL0(I,NGOTO)-1) GAMLP=GAM(LP+NI)
SU(LIJ)=(GAMLP*DWDYDPMV(J+1)-GAMLYM*DWDYHDMV(J))/YSVR(J)
LXP=LP+1
LXM=L_P-1
LXP1=LXP-NT
LXM1=LXM-NI
GAMP=0.25*(GAM(LP)+GAM(LYM)+GAM(LXP)+GAM(LXP1))
GAMM=0.25*(GAM(LP)+GAM(LYM)+GAM(LXM)+GAM(LXM1))
DUJYP=(U(LXP)-U(LXP1))/YDIF(J)
DUOYM=(U(LP)-U(LYM))/YDIF(J)
SU(LIJ)=SU(LIJ)+(GAMP*DUJYP-GAMM*DUOYM)/XS(I)
AU 258
AU 259
AU 260
AU 261
AU 262
AU 263
AU 264
AU 265
AU 266
AU 267
AU 268
AU 269
AU 270
AU 271
AU 272
AU 273
AU 274
AU 275
AU 276
AU 277
AU 278
AU 279
AU 280
AU 281
AU 282
AU 283
AU 284
AU 285
AU 286
AU 287
AU 288
AU 289
AU 290
AU 291
AU 292
AU 293
AU 294
AU 295
AU 296
AU 297
AU 298
AU 299
AU 300
AU 301
AU 302
AU 303
AU 304
AU 305
AU 306
AU 307
AU 308
AU 309
AU 310
AU 311
AU 312
AU 313
AU 314
AU 315
AU 316
AU 317

```

|                                                                      |    |     |
|----------------------------------------------------------------------|----|-----|
| DVDZM=(V(LP)-V(LZM))/ZDIF(K)                                         | AU | 318 |
| SU(LIJ)=SU(LIJ)+GAMP*DVDZP-GAMM*DVDZM)/VS(R(J))                      | AU | 319 |
| WMMR=0.5*(W(LP)+W(LYM))                                              | AU | 320 |
| WMMP=0.5*(W(LP)+W(LYP))                                              | AU | 321 |
| SH(LIJ)=SU(LIJ)+PLAXM1*(GAMM*WMMR-GAMP*WMMP)/VS(R(J))                | AU | 322 |
| VPT2=V(LP)+V(LYP)                                                    | AU | 323 |
| VMT2=V(LZN)+V(LZH+NI)                                                | AU | 324 |
| SU(LIJ)=SH(LIJ)+PLAXM1*(GAM(LP)*VPT2-VMT2*GAM(LZN))/VS(R(J))/R(J)/   | AU | 325 |
| 2*VS(R(J))/ZSW(K)                                                    | AU | 326 |
| GAMP=0.5*(GAM(LP)+GAM(LZN))                                          | AU | 327 |
| SU(LIJ)=SU(LIJ)+PLAXM1*(GAMP/R(J)+((WMMP-WMMR)/VS(J))+0.5*(VPT2-VMT2 | AU | 328 |
| 1)/R(J))/ZSW(K))                                                     | AU | 329 |
| SP(LIJ)=-GAMP/R(J)/R(J)+PLAXM1                                       | AU | 330 |
| 301 CONTINUE                                                         | AU | 331 |
| GO TO 5000                                                           | AU | 332 |
| C SOURCE TERMS FOR TURBULENT KINETIC ENERGY                          | AU | 333 |
| 400 CONTINUE                                                         | AU | 334 |
| IF (MV,NE,LVK) GO TO 500                                             | AU | 335 |
| DO 401 J=2,N                                                         | AU | 336 |
| IS=IWLI(J,NGOTO)                                                     | AU | 337 |
| IE=IWLO(J,NGOTO)                                                     | AU | 338 |
| DO 401 I=IS,IE                                                       | AU | 339 |
| MIN=JWLII(I,NGOTO)+1                                                 | AU | 340 |
| MAX=JWL0(I,NGOTO)-1                                                  | AU | 341 |
| LIJ=JM(J)+I                                                          | AU | 342 |
| LP=LJ+KM(K)                                                          | AU | 343 |
| LYP=LP+1                                                             | AU | 344 |
| LYP=LP+NI                                                            | AU | 345 |
| LZP=LP+MINJ                                                          | AU | 346 |
| LXM=LP-1                                                             | AU | 347 |
| LXM=LP-NI                                                            | AU | 348 |
| LZN=LP-NINJ                                                          | AU | 349 |
| LPP0=LYP+1                                                           | AU | 350 |
| LPN0=LXM+1                                                           | AU | 351 |
| LPN0=LZN+1                                                           | AU | 352 |
| LPOP=LZP+1                                                           | AU | 353 |
| LPOP=LZP+1                                                           | AU | 354 |
| LXN0=LXM+NI                                                          | AU | 355 |
| LOPP=LZP+NI                                                          | AU | 356 |
| LOPN=LZN+NI                                                          | AU | 357 |
| LMOP=LXM+NINJ                                                        | AU | 358 |
| LMOP=LXM+NINJ                                                        | AU | 359 |
| CALCULATE THE PRODUCTION TERM                                        | AU | 360 |
| DUIDXJ(1,1)=(U(LXP)-U(LP))/XS(I)                                     | AU | 361 |
| DUIDXJ(2,2)=(V(LYP)-V(LP))/VS(J)                                     | AU | 362 |
| DUIDXJ(3,3)=(W(LZP)-W(LP))/ZS(K)/R(J)                                | AU | 363 |
| 1+PLAXM1*C.5*(V(LP)+V(LYP))/R(J)                                     | AU | 364 |
| IF (I-IS) 411,412,411                                                | AU | 365 |
| 411 VXM=0.5*(V(LXP)+V(LMPO))                                         | AU | 366 |
| WXM=0.5*(W(LXM)+W(LMOP))                                             | AU | 367 |
| XM=X(I-1)                                                            | AU | 368 |
| GO TO 413                                                            | AU | 369 |
| 412 VXM=0.5*(V(LP)+V(LYP))                                           | AU | 370 |
| WXM=0.5*(W(LP)+W(LZP))                                               | AU | 371 |
| XM=X(I)                                                              | AU | 372 |
| 413 IF (I-IE) 414,415,414                                            | AU | 373 |
| 414 VXP=0.5*(V(LXP)+V(LPP0))                                         | AU | 374 |
| WXP=0.5*(W(LXP)+W(LPOP))                                             | AU | 375 |
| XP=X(I+1)                                                            | AU | 376 |
| GO TO 416                                                            | AU | 377 |
| 415 VXP=0.5*(V(LP)+V(LYP))                                           | AU | 378 |
| WXP=0.5*(W(LP)+W(LZP))                                               | AU | 379 |
| XP=X(I)                                                              | AU | 380 |
| 416 DX=XP-XM                                                         | AU | 381 |
| DUIDXJ(2,1)=(VXP-VXM)/DX                                             | AU | 382 |

```

        DUIDXJ(3,1)=(WXP-WXM)/DX          AU    382
        IF (J-MIN) 421,422,421          AU    383
421      WYM=0.5*(W(LTM)+W(LMP))      AU    384
        UYM=.5*(U(LTP)+U(LPM))        AU    385
        YP=Y(J-1)                      AU    386
        GO TO 423                      AU    387
422      WYP=0.5*(W(LP)+W(LZP))       AU    388
        UYP=0.5*(U(LP)+U(LXP))       AU    389
        YM=Y(J)                        AU    390
423      TF (J-MAX) 424,425,424      AU    391
424      WYP=0.5*(W(LTP)+W(LPP))     AU    392
        UYP=0.5*(U(LTP)+U(LPP))     AU    393
        YP=Y(J+1)                      AU    394
        GO TO 426                      AU    395
425      WYP=0.5*(W(LP)+W(LZP))     AU    396
        UYP=0.5*(U(LP)+U(LXP))     AU    397
        YP=Y(J)                        AU    398
426      DY=YP-YM                  AU    399
        DUIDXJ(3,2)=(WYP-WYM)/DY-PLAXM100.5*(W(LP)+W(LZP))/R(J)  AU    400
        DUIDXJ(1,2)=(UYP-UYM)/DY
        TFIK=21 431,432,431          AU    401
431      U7M=0.5*(U(LZM)+U(LPM))    AU    402
        V7M=0.5*(V(L7M)+V(LPM))    AU    403
        ZM=Z(K)                        AU    404
        ?M=Z(K-1)                      AU    405
        GO TO 433                      AU    406
432      U2M=0.5*(U(LP)+U(LXP))    AU    407
        V2M=0.5*(V(LP)+V(LYP))    AU    408
        ZM=Z(K)                        AU    409
433      TFIK=N 434,435,434          AU    410
434      U2P=0.5*(U(LZP)+U(LPP))    AU    411
        V2P=0.5*(V(LZP)+V(LPP))    AU    412
        ZP=Z(K+1)                      AU    413
        GO TO 436                      AU    414
435      U2P=0.5*(U(LP)+U(LXP))    AU    415
        V2P=0.5*(V(LP)+V(LYP))    AU    416
        ZP=Z(K)                        AU    417
436      DZ=ZP-ZM                  AU    418
        DUIDXJ(1,3)=(U2P-U2M)/DZ/R(J)  AU    419
        DUIDXJ(2,3)=(V2P-V2M)/DZ/R(J)  AU    420
        SUM=0.                         AU    421
        DO 402 II=1,3                 AU    422
        DO 402 JJ=1,3                 AU    423
402      SUM=SUM+(DUIDXJ(II,JJ)+DUIDXJ(JJ,II))+DUIDXJ(IX,JJ)  AU    424
        GENR(LP)=SUM                  AU    425
CALCULATE THE SOURCE TERM
        LPK=LP+NVM(NVK)                AU    426
        LPM=LP+NVM(NVD)                AU    427
        SUMLTJ=RHQ(LP)*CDRF(LPK)**2/(F(LPK)+1.E-30)*SUM  AU    428
        SP(LIJ)=RHQ(LP)*F(LPU)/(F(LPK)+1.E-30)              AU    429
C-----MODIFICATIONS OF THE SOURCE TERMS AT WALL BOUNDARIES.  COMMENT 89
        IF (I,LT,IS) GO TO 440          AU    430
        IF (JKIN(J,K),EQ,1) GO TO 440          AU    431
        DIST=.5*XDF(I)                AU    432
        IF (T,EQ,2) DIST=XDF(2)          AU    433
        VP=.5*SQRT((V(LP)+V(LYP))**2+(W(LP)+W(LZP))**2)  AU    434
        TAUP=AMAX1(GAM(LXM)*VP/DIST,1.E-20)          AU    435
        GAM(LXP)=0.                         AU    436
        VXP=V(LP)+V(LYP)+V(LXP)+V(LPP)          AU    437
        WXP=W(LP)+W(LZP)+W(LXP)+W(LPP)          AU    438
        VC=.25*SQRT(VXP**2+WXP**2)          AU    439
        DVDT=VC/XS(I)                  AU    440
        SUCLIJ=TAUP*DVTY          AU    441
        SP(LIJ)=RHQ(LP)*RHQ(LP)*CDRF(LPK)*DVDT/TAUP          AU    442
440      IF (T,LT,IE) GO TO 442          AU    443
                                         AU    444

```

102

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)          AU      509
LPFU=LP+NVM(NVFM)          AU      510
LPFUNX=LP+NVM(NVFUOX)      AU      511
LPCH=LP+NVM(NVCH)          4STEP   194
LPH2=LP+NVM(NVH2)          4STEP   195
LPTE=LP+NVM(NVTE)          AU      512
FLPTE=F(LPTE)              AU      513
FLPTF=AMAX1(FLPTE,100.)    AU      514
F(LPFU)=AMIN1(F(LPFU),F(LPFUOX))                    AU      515
LPC0=LP+NVM(NVCO)          AU      516
FLPOY=RATIO1*F(LPFU)+RATIO3*F(LPC0)+RATIO2-(RATIO2+RATIO1)*
1 F(LPFUOX)+RATIO5*F(LPCH)+RATIO6*F(LPH2)          4STEP   196
FLPOX=AMAX1(FLPOX,0.)     AU      517
RHOLP=ABS(RHO(LP))        AU      518
ARRHEN=PRXP1*EXP(-ARCON1/FLPTE)                      4STEP   197
SOR1=((F(LPFU)*RHOLP)*AA1)*((FLPOX*RHOLP)*BB1)*((F(LPCH)*RHOLP))
1*CC1*ARRHEN               4STEP   198
4STEP   199
GO TO 611,612,MODER      AU      520
611 SOR=SOP1              AU      521
GO TO 602                AU      522
612 LPK=LP+NVM(NVK)        AU      523
LPD=LP+NVM(NVD)          AU      524
PHI=F(LPFU)              4STEP   200
SOR2=-CR1+PHI*RHO(LP)*EDK(LPC)
SOR=AMAX1(SOR1,SOR2)      AU      525
602 FUB=AMAX1(0.,((RATIO2+RATIO1)*F(LPFUOX)-RATIO2-RATIO3*F(LPC0)
1-RATIO5*F(LPCH)-RATIO6*F(LPH2))/RATIO1)            4STEP   201
FUR=AMIN1(F(LPFU),FUB)  4STEP   202
DSDFU=SOR/(F(LPFU)-FUB+1.E-30)                      4STEP   203
SUILIJ=SOR-DSDFU+F(LPFU)                                AU      526
SP(LIJ)=DSDFU          AU      527
SUFH(LP)=SUILIJ          AU      528
SPFUL(LP)=SP(LIJ)        AU      529
501 CONTINUE             AU      530
GO TO 5000              AU      531
C +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
700 CONTINUE             AU      540
IF (NV,NE,LVH) GO TO 800          AU      541
DO 701 J=2,M          AU      542
TS=IWLT(j,NGCTD)        AU      543
IF =IWLD(j,NGCTD)        AU      544
DO 701 I=IS,IF          AU      545
LIJ=JN(j)+I          AU      546
SUILIJ=0.          AU      547
SP(LIJ)=0.          AU      548
IF(ITTAD,EQ.1)GO TO 701          RAO    72
LP=L(TJ)KM(K)          AU      549
LPH=LP+NVM(NVH)          AU      550
LPFAV=LP+NVM(NM*AV)      AU      551
LPTE=LP+NVM(NVTE)        AU      552
FLPTE=F(LPTE)          AU      553
FLPE=$IGMA*FLPTE*004
FAV=F(LPFAV)
SOR=6.0*ABS(RLP)*(FAV-FLPE)          RAO    73
T0=(FAV/$IGMA)**.29
T0=T0+.001
DSOH=SCR/(CP*(FLPTE-T0))
SUILIJ=SUILIJ+SOR-DSOH*F(LPH)
SP(LIJ)=SP(LIJ)+DSOH
701 CONTINUE             AU      560
GO TO 5000              AU      561
C +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
800 CONTINUE             AU      562
IF (NV,NE,LVFUOX) GO TO 900          AU      563
AU      564
AU      565
AU      566
AU      567
AU      568
AU      569

```

104

ORIGINAL PAGE IS  
OF POOR QUALITY

```

00 801 J=2,M          AU      570
IS=IWLI(J,MGET0)     AU      571
IF=IWLO(J,MGET0)     AU      572
00 901 I=1$,IF        AU      573
LTJ=JM(J)+I          AU      574
SU(LTJ)=0.            AU      575
SP(LIJ)=0.            AU      576
801 CONTINUE          AU      577
GO TO 9000            AU      578
C-----+----- SOURCE TERM FOR CO +-----+
900 IF(NV,NF,LVC0) GO TO 950          AU      579
SFAC=2.48*(1.0-FSTOIC)/FSTOIC        4STEP   205
DO 901 J=2,M          AU      580
IS=IWLI(J,MGET0)     AU      581
IE=IWLO(J,MGET0)     AU      582
00 901 I=1$,IF        AU      583
IJ=JM(J)+I          AU      584
LP=LJ+NM(K)          AU      585
LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)    AU      586
LPC0=LPC+NVP(NVCO)        AU      587
LPFU0X=LP+NVM(NVFU0X)        AU      588
LPFU=LP+NVM(NVFU)          AU      589
LPTE=LP+NVM(NVTE)          AU      590
LPCH=LP+NVM(NVCH)          AU      591
LPH2=LP+NVM(NVH2)          AU      592
FLPTE=F(LPTE)          AU      593
FLPTE=AMAX1(FLPTE,100.)    AU      594
FLPOX=RATIO1+F(LPC0)+RATIO2+F(LPC4)+RATIO2-(RATIO2+RATIO1)*
1 F(LPC0)+RATIO3+F(LPC4)+RATIO6+F(LPH2)        4STEP   206
FLPOX=AMAX1(FLPOX,0.)        AU      595
FU0=F(LPFU0X)-F(LPFU)        AU      596
FLPH2D=0.5*W20*(HY+FB/NF-U-RATIO7+F(LPCH)-F(LPH2))  4STEP   210
FLPH2D=AMAX1(0.0,FLPH2D)        AU      597
RHOLP=APS(RHO(LP))          AU      598
ARRHEN=-PREXP3*EXP(-ARCON3/FLPTE)        4STEP   211
SOR3=((FLPC0)+RHOLP)*AA3*((FLPOX+RHOLP)*RB3)*((FLPH2D+RHOLP))
1*CC3)*ARRHEN        4STEP   212
SSS=7.93*EXP(-F(LPFU0X)+SFAC/(1.0-F(LPFU0X)))    4STEP   213
SSS=AMIN1(SSS,1.0)          AU      599
SOR3=SOR3+SSS            AU      600
GO TO (911,912),MODER        AU      601
911 SORCO=SOR3          AU      602
GO TO 902              AU      603
912 CONTINUE          AU      604
PHI=AMIN1(F(LPC0),FLPOX/RATIO3)        AU      605
SOR4=-CR3*PHI+RHO(LP)*EOK(LPC)        AU      606
SORCO=AMAX1(SOR3,SOR4)        4STEP   220
902 FUR=AMAX1(0.,((RATIO2+RATIO3)*F(LPFU0X)-RATIO2-RATIO1)*F(LPTE)
1-RATIO5+F(LPCH)-RATIO6+F(LPH2)+1/RATIO3)    4STEP   221
FUR=AMIN1(F(LPC0),FUR)        4STEP   222
DSDC0=SORCO/(F(LPC0)+FUR+1.E-30)        4STEP   223
SU(LIJ)=DSDC0*(FLPC0+FLC11*FUCHILP)+SPCHC1*(1-(LPCH))  4STEP   224
SP(LIJ)=DSDC0          AU      611
901 CONTINUE          AU      612
GO TO 950              AU      613
950 IF(NV,NF,LVC0) GO TO 960          AU      614
C-----+----- SOURCE TERMS FOR CRMY=2 +-----+
DO 951 J=2,M          4STEP   225
IS=IWLI(J,MGET0)     4STEP   226
IE=IWLO(J,MGET0)     4STEP   227
00 951 I=1$,IF        4STEP   228
IJ=JM(J)+I          4STEP   229
LP=LJ+NM(K)          4STEP   230
LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)    4STEP   231

```

```

LPC0=LP+NVM(NVCO) 4STEP 296
LPFUOX=LP+NVM(NVFUOX) 4STEP 297
LPFU=LP+NVM(NVFU) 4STEP 298
LPTE=LP+NVM(NVTE) 4STEP 299
LPCH=LP+NVM(NVCH) 4STEP 299
LPH2=LP+NVM(NVH2) 4STEP 299
FLPTE=F(LPTE)
FLPTE=AMAX1(FLPTE,100.) 4STEP 299
FLPOX=RATIO1+F(LPFU)+RATIO3+F(LPC0)+RATIO2-(RATIO2+RATIO1)* 4STEP 299
1 F(LPFUOX)+RATIO5+F(LPCH)+RATIO6+F(LPH2) 4STEP 299
FLPOX=AMAX1(FLPOX,0.0) 4STEP 299
ARRHEN=-PREXP2*EXP(-ARCON2/FLPTE) 4STEP 299
RHOLP=AUS(RHOLP) 4STEP 299
SOR1=((F(LPCH)+RHOLP)**AA2)*(FLPOX+RHOLP)**BB2*((F(LPFU)+RHOLP 4STEP 299
1+1.E-30)**CC2)*ARRHEN 4STEP 299
IF(NODER.EQ.2)GO TO 952 4STEP 299
SOR=SOR1 4STEP 299
GO TO 953 4STEP 299
952 PHI=AMIN1(F(LPCH),FLPOX/RATIO5) 4STEP 299
SOR2=CR2*PHI*RHOLP*FDK(LPC) 4STEP 299
SOR=AMAX1(SOR1,SOR2) 4STEP 299
953 FUB=AMAX1(C.,((RATIO2+RATIO1)*F(LPFUOX)-RATIO2-RATIO3+F(LPC0) 4STEP 299
1-RATIO1+F(LPFU)-RATIO6+F(LPH2))/RATIO5) 4STEP 299
FUR=AMIN1(F(LPCH),FUB) 4STEP 299
DSDSP=SOR/(F(LPCH))-FUR+1.E-30 4STEP 299
SUCH(LP)=SOR-DSDSP+F(LPCH) 4STEP 299
SPCH(LP)=DSDSP 4STEP 299
SU(LIJ)=SUCH(LP)-RATIO0*(SUFLU(LP)+SPFU(LP)*F(LPFU)) 4STEP 299
SP(LIJ)=DSDSP 4STEP 299
951 CONTINUE 4STEP 299
GO TO 9000 4STEP 299
960 IF(NV.NE.LVH2)GO TO 1000 4STEP 299
-----SOURCE TERMS FOR H2----- 4STEP 299
DO 961 J=2,N 4STEP 299
IS=IWLI(J,N60TN) 4STEP 299
IF=IWLO(J,N60TO) 4STEP 299
DO 961 I=IS,IF 4STEP 299
LIJ=JM(J)+I 4STEP 299
LP=LIJ-KM(K) 4STEP 299
LP=LIJ-KM(K) 4STEP 299
LP=1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)+MJ-2 4STEP 299
LPC0=LP+NVM(NVCO) 4STEP 299
LPFUOX=LP+NVM(NVFUOX) 4STEP 299
LPFU=LP+NVM(NVFU) 4STEP 299
LPTE=LP+NVM(NVTE) 4STEP 299
LPCH=LP+NVM(NVCH) 4STEP 299
LPH2=LP+NVM(NVH2) 4STEP 299
FLPTE=F(LPTE)
FLPTE=AMAX1(FLPTE,100.) 4STEP 299
FLPOX=RATIO1+F(LPFU)+RATIO3+F(LPC0)+RATIO2-(RATIO2+RATIO1)* 4STEP 299
1 F(LPFUOX)+RATIO5+F(LPCH)+RATIO6+F(LPH2) 4STEP 299
FLPOX=AMAX1(FLPOX,0.0) 4STEP 299
ARRHEN=-PREXP4*EXP(-ARCON4/FLPTE) 4STEP 299
RHOLP=AUS(RHOLP) 4STEP 299
SOR1=((F(LPH2)+RHOLP)**AA4)*(FLPOX+RHOLP)**BB4*((F(LPCH)+RHOLP 4STEP 299
1+1.E-30)**CC4)*ARRHEN 4STEP 299
IF(NODER.EQ.2)GO TO 962 4STEP 299
SOR=SOR1 4STEP 299
GO TO 963 4STEP 299
962 PHI=AMIN1(F(LPH2),FLPOX/RATIO6) 4STEP 299
SOR2=CR4*PHI*RHOLP*FDK(LPC) 4STEP 299
SOR=AMAX1(SOR1,SOR2) 4STEP 299
963 FUR=AMAX1(C.,((RATIO2+RATIO1)*F(LPFUOX)-RATIO2-RATIO3+F(LPC0) 4STEP 299
1-RATIO1+F(LPFU)-RATIO5+F(LPCH))/RATIO6) 4STEP 299
FUR=AMIN1(F(LPH2),FUR) 4STEP 299

```

```

D9DSP=SU/(F(LPH2)-FUB+1.E-30)          4STEP    300
S1(L1J1)=SDR-D9DSP*F(LPH2)-RAT012*(SUFLP1+SPFLP1*F(LPFU)) 4STEP    301
1-RAT010*(SUCH(LP)+SPCH(LP)*F(LPCH)) 4STEP    302
SP(L1J1)=D9DSP 4STEP    303
961 CONTINUE 4STEP    304
GO TO 5000  SOOT    107
C----- SOURCE TERM FOR NUCLEI CONCENTRATION -----
1000 IF(NV,NF,LVN160 TO 2100
DO 1001 J=2,M  SOOT    108
TS=TWL((J,NGOTO)
IE=IWLO(J,NGOTO)
DO 1001 I=1S,IF  SOOT    109
LTJ=JNE(J)+I  SOOT    110
LP=LTJ+KMK(K)
LPFU=LP+NVN(NVFUDX)
LPFD=LPCD+NVN(NVCD)
LPTE=LPCD+NVN(NVTE)
LPCH=LPCD+NVN(NVCH)
LPH2=LPCD+NVN(NVH2)
T=F(LPTE)
FLPOX=RATIO1+F(LPFU)+RATIO3*F(LPCD)+RATIO2-(RATIO2+RATIO1)*
1 F(LPFUDX)+RATIO2*F(LPCH)+RATIO6*F(LPH2)  SOOT    201
FLPOX=SMAX1(FLPOX,1.E-30)  SOOT    202
CARB=F(LPFUDX)*12.0*CXX/WFU  SOOT    203
LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)  SOOT    204
LPS1=LP+NVN(NVS1)  SOOT    205
LPS2=LP+NVN(NVS2)  SOOT    206
LPN=LP+NVN(NVN)  SOOT    207
FUR=F(LPFUDX)-F(LPFU)  SOOT    208
FLPC02=WC02*(CXX*FUB/WFU-CXX*F(LPCH)/WCH-F(LPCD)/WC0) 4STEP    209
FLPH20=0.5*WH20*(HYT*FUB/WFU-RATIO7*F(LPCH)-F(LPH2)) 4STEP    210
FLPN2=1.0-F(LPFU)-FLPC02-F(LPCD)-FLPOX-FLPH20-F(LPCH)-F(LPH2) 4STEP    211
VMIX=F(LPFU)/WFU+FLPC02/WC02+F(LPCD)/WC0+FLPOX/NOX+FLPH20/WH20  SOOT    212
1+FLPN2/WH2+F(LPCH)/WCH+F(LPH2)/WH2 4STEP    213
RET=(AMU*EDR2(LPC)/RHO(LP))+0.25  SOOT    214
EMDOT=23.6*RET*EDR(LPC)  SOOT    215
EMPR=FUB*(1.0+RATIO1)  SOOT    216
PST=EMPR/(EMPR+F(LPFU)+(1.0+RATIO1))  SOOT    217
FMIN=AMIN1(F(LPFU),FLPOX/RATIO1)  SOOT    218
FMAX=AMIN1(F(LPFU),FLPOX/RATIO1)  SOOT    219
C-----BYPASS CALCULATION IF TEMP.LT.TINCPC, OR IF
C CARBON/OXYGEN RATIO LT.CINCP (TINCPC AND CINCP INPUT BY USER).
1 IF(T.LT.TINCPC) GO TO 1006  COMMENT    90
1 IF(CARB/FLPC02.LT.CINCP) GO TO 1006  COMMENT    91
1 F(LPS1)/DPART(1)+3+F(LPS2)/(DPART(2)+1.E-30)*3)  SOOT    220
1/(F(LPS1)+F(LPS2))  SOOT    221
EMP=RHCP*(3.14159/(6.0*EMP))  SOOT    222
AND=AD*RHO(LP)*F(LPFU)*EXP(-ARCONN/F(LPTE))  SOOT    223
GAMAS=AMIN1(1.0,9.7*RET*3)  SOOT    224
GPST=GAMAS*PST  SOOT    225
NGPST=1.0-GPST  SOOT    226
1NGPS=1  NOX    167
NS1=IDFU  NOX    168
NS2=TOCO2  NOX    169
C-----CALCULATE MIXTURE CP.
TK=T  COMMENT    92
TKTNV=1.000/TK  NOX    170
DO 1012 II=NS1,NS2  NOX    171
1012 S2(II)=FS(LP,II)/SMW(II)  NOX    172
CALL HCPS  NOX    173
CPR=CPSUM*UNICON  NOX    174
DELTAT=DHR*EMPIN/CPR  NOX    175
TSTR=F(LPTE)*DELTAT  SOOT    231
RH0STR=RHOCON/IVMIX*TSTR  SOOT    232
RH0STR=RHOCON/IVMIX*TSTR  SOOT    233

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                              |         |     |
|--------------------------------------------------------------|---------|-----|
| TO=F(LPTE)-DELTAT*GPSI/OGPSI                                 | SOOT    | 234 |
| TO=AMAX1(TO,100.0)                                           | SOOT    | 235 |
| RHOO=RHOCON/(VMIX*TO)                                        | SOOT    | 236 |
| ANOSTR=A0*RHO0*F(LPFU)*EXP(-ARCONN/TSTR)                     | SOOT    | 237 |
| AN0P=A0*RHO0*F(LPFU)*EXP(-ARCONN/T0)                         | SOOT    | 238 |
| GPSIR=GPSI/RHOSTR                                            | SOOT    | 239 |
| OGPSIR=OGPSI/RHO0                                            | SOOT    | 240 |
| ENRHO=F(LPNT)/RHO(LP)                                        | SOOT    | 241 |
| EMD0TR=EMD0TR*RHOSTR/(GPSI*OGPSI)                            | SOOT    | 242 |
| FNN=(F(LPS1)+F(LPS2))*RHO(LP)/EMP                            | SOOT    | 243 |
| ENNRHO=FNN/RHO(LP)                                           | SOOT    | 244 |
| A1=(ANOSTR+EMD0TR*ENRHO)/GO                                  | SOOT    | 245 |
| A2=(FMG-FMD0TR/RHOSTR)/GO                                    | SOOT    | 246 |
| A3=EMD0TR*(A1/RHOSTR)                                        | SOOT    | 247 |
| A4=EMD0TR*(A2/RHOSTR-ENNRHO)                                 | SOOT    | 248 |
| A5=-RRB*A1                                                   | SOOT    | 249 |
| A6=AAA-BBR*A2                                                | SOOT    | 250 |
| ARG=SORT(ARS((A4-A5)*2+4.0*A6*A3))                           | SOOT    | 251 |
| ENSTR1=(A4-A5+ARG)/(2.0*A6)                                  | SOOT    | 252 |
| ENSTR2=(A4-A5-ARG)/(2.0*A6)                                  | SOOT    | 253 |
| ENSTR=ENSTR1                                                 | SOOT    | 254 |
| IF(ENSTR1.LT.0.0)ENSTR=ENSTR2                                | SOOT    | 255 |
| ENSTR=AMIN1(ENSTR,ENRHO/GPSIR)                               | SOOT    | 256 |
| FNSTR=AMAX1(ENSTR,ENRHO*RHOSTR)                              | SOOT    | 257 |
| ENSTR=AMAX1(1.0,ENSTR)                                       | SOOT    | 258 |
| ENNSTR=(A1+A2*ENSTR)/ENSTR                                   | SOOT    | 259 |
| ENNSTR=AMIN1(ENNSTR,AAA/BBB)                                 | SOOT    | 260 |
| ENNSTR=AMIN1(ENNSTR,ENNRHO/GPSIR)                            | SOOT    | 261 |
| FNNSTR=AMAX1(1.0,ENNSTR)                                     | SOOT    | 262 |
| END=(ENRHO-ENNSTR*GPSIR)/OGPSIR                              | SOOT    | 263 |
| END=AMAX1(1.0,FNO)                                           | SOOT    | 264 |
| ENNO=(ENNPHO-ENNSTR*GPSIR)/OGPSIR                            | SOOT    | 265 |
| FNNO=AMAX1(1.0,ENNO)                                         | SOOT    | 266 |
| FMGF=FMG*F(LPNT)                                             | SOOT    | 267 |
| SUF1=A0D*FMGF                                                | SOOT    | 268 |
| SPF1=GC*EMH                                                  | SOOT    | 269 |
| SUF2=(ANOSTR*GPSIR+AN0P*OGPSIR+GO*ENSTR*GPSIR*(ENNO-ENNSTR)) | SOOT    | 270 |
| 1*RHO(LP)+FMGF                                               | SOOT    | 271 |
| SPF2=GO*FNNO                                                 | SOOT    | 272 |
| RF1=SUF1-SPF1*F(LPNT)                                        | SOOT    | 273 |
| RF2=SUF2-SPF2*F(LPNT)                                        | SOOT    | 274 |
| C-----FORMATION RATE.                                        | COMMENT | 93  |
| IF(RF1.GT.RF2)GO TO 1004                                     | SOOT    | 275 |
| SU(LTJ)=SUF1                                                 | SOOT    | 276 |
| SP(LIJ)=SPF1                                                 | SOOT    | 277 |
| GO TO 1005                                                   | SOOT    | 278 |
| 1004 SU(LIJ)=SUF2                                            | SOOT    | 279 |
| SP(LIJ)=SPF2                                                 | SOOT    | 280 |
| GO TO 10C9                                                   | SOOT    | 281 |
| 100A SU(LIJ)=0.0                                             | SOOT    | 282 |
| SP(LIJ)=0.0                                                  | SOOT    | 283 |
| C-----OXIDATION RATE.                                        | COMMENT | 94  |
| 1005 RNC=EMD0TR*PSI*FMPMIN/(F(LPFU)+1.E-30)                  | SOOT    | 284 |
| SP(LIJ)=SP(LIJ)-RNC                                          | SOOT    | 285 |
| 1001 CONTINUE                                                | SOOT    | 286 |
| GO TO 3000                                                   | SOOT    | 287 |
| ***** SOURCE TERM FOR SOOT CONCENTRATION *****               | SOOT    | 288 |
| 1100 IF(NV.LT.LVS1.OR.NV.GT.LVS2)GO TO 1300                  | SOOT    | 289 |
| IT=NV-LVS1+1                                                 | SOOT    | 290 |
| CONS2=6.0/(RHOP*DPART(IT))                                   | SOOT    | 291 |
| DO 1101 J=2,M                                                | SOOT    | 292 |
| IS=IWLC(J,NGOT0)                                             | SOOT    | 293 |
| IF=IVLC(J,NGOT0)                                             | SOOT    | 294 |
| DO 1101 I=IS,IF                                              | SOOT    | 295 |

```

L(J=JNE(J)+I
LP=L(J+KMK(K)
LPFU0X=LP+NM(NVFU0X)
LPFU=LP+NM(NVFU)
LPC0=LP+NM(NVCO)
LPTE=LP+NM(PNTE)
LPCH=LP+NM(NVCH)
LPH2=LP+NM(NVH2)
T=F(LPTE)
FLPOX=RATIO1+F(LPFU)+RATIO3+F(LPC0)+RATIO2-(RATIO2+RATIO1)*
1 F(LPFU0X)+RATIO5+F(LPCH)+RATIO6+F(LPH2)
FLPOX=AMAX1(FLPOX,1.E-30)
CARB=F(LPFU0X)+12.0*CKX/WFU
LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)+(HJ-2)
LPS1=LP+NM(NVS1)
LPS2=LP+NM(NVS2)
LPS=LPS1+NM(NV)
LPN=LP+NM(NVN)
FUB=F(LPFU0X)-F(LPFU)
FLPC02=WC02*(CKX+FUB/WFU-CXX*F(LPCH)/WCH-F(LPC0)/WC0)
FLPH20=0.5*WH20*(HY+FUB/WFU-RATIO7+F(LPCH))-F(LPH2)
FLPN2=1.0-F(LPFU)-FLPC02-F(LPC0)-FLPOX-FLPH20-F(LPCH)-F(LPH2)
VMIX=F(LPFU)/WFU+FLPC02/WC02+F(LPC0)/WC0+FLPOX/WOX+FLPH20/WH20
1+FLPN2/WN2+F(LPCH)/WCH+F(LPH2)/WH2
RET=(ANU*EDK2(LPC)/RHO(LPI))**0.25
FM00T=29.6*RET*EDK(LPC)
EMPR=FUB*(1.0+RATIO1)
PSI=EMPR/(EMPR+F(LPFU)*(1.0+RATIO1))
FMIN=AMIN1(F(LPFU),FLPOX/RATIO1)
C----BYPASS CALCULATION IF TEMP.LT.TINCP, OR IF
C CARBON/OXYGEN RATIO LT.CINCP (TINCP AND CINCP INPUT BY USER).
C IF(T.LT.TINCP)GO TO 1106
1 IF(CARB/FLPOX.LT.CINCP)GO TO 1106
FMP=(F(LPS1)/DPART(1)**3+F(LPS2)/(DPART(2)+1.E-30)**3)
1/F(LPS1)+F(LPS2))
FMP=RHO*1.4159/(6.0*EMPR)
AN0=A0*RHO(LP)+F(LPFU)*EXP(-ARCONN/F(LPTE))
GAMAS=AMIN1(1.0,9.7*RET**3)
GPSI=GAMAS*PSI
OGPSI=1.0-GPSI
INCPS=1
NS1=TDFU
NS2=IOCO2
C----CALCULATE MIXTURE CP.
TK=T
TKINV=1.000/TK
D9 1013 II=NS1,NS2
1013 S2(TF)=FS(LP,II)/SM(II)
CALL HCPS
CPR=CPUSUM*UNICON
DELTAT=DHR*EMIN/CPR
TSTR=F(LPTE)+DELTAT
RHOSTR=RHOCON/(VMIX*TSTR)
TO=F(LPTE)-DELTAT*GPST/OGPST
TO=AMAX1(TO,100.0)
RHOD0=RHOCON/(VMIX*TO)
AN0STR=A0*RHO*STR+F(LPFU)*EXP(-ARCONN/TSTR)
AN0D0=A0*RHO*DF(LPFU)*EXP(-ARCONN/TO)
GPSIR=GPST/RHOSTR
OGPSTR=OGPST/RHO0
ENRHO=F(LPN)/RHO(LPI)
EMD0TR=EMD0T*RHOSTR/GPST
ENM=(F(LPS1)+F(LPS2))/RHO(LPI)/EMP
ENMRHO=ENM/RHC(LPI)

```

|         |     |
|---------|-----|
| SOOT    | 296 |
| SOOT    | 297 |
| SOOT    | 298 |
| SOOT    | 299 |
| SOOT    | 300 |
| SOOT    | 301 |
| 4STEP   | 312 |
| 4STEP   | 313 |
| SOOT    | 302 |
| SOOT    | 303 |
| 4STEP   | 314 |
| SOOT    | 305 |
| SOOT    | 306 |
| SOOT    | 307 |
| SOOT    | 308 |
| SOOT    | 309 |
| SOOT    | 310 |
| SOOT    | 311 |
| SOOT    | 312 |
| 4STEP   | 315 |
| 4STEP   | 316 |
| 4STEP   | 317 |
| SOOT    | 318 |
| 4STEP   | 318 |
| SOOT    | 318 |
| SOOT    | 319 |
| SOOT    | 320 |
| SOOT    | 321 |
| SOOT    | 322 |
| COMMENT | 95  |
| COMMENT | 96  |
| SOOT    | 323 |
| SOOT    | 324 |
| SOOT    | 325 |
| SOOT    | 326 |
| SOOT    | 327 |
| SOOT    | 328 |
| SOOT    | 329 |
| SOOT    | 330 |
| SOOT    | 331 |
| NOX     | 176 |
| NOX     | 177 |
| NOX     | 178 |
| COMMENT | 97  |
| NOX     | 179 |
| NOX     | 180 |
| NOX     | 181 |
| NOX     | 182 |
| NOX     | 183 |
| NOX     | 184 |
| SOOT    | 334 |
| SOOT    | 335 |
| SOOT    | 336 |
| SOOT    | 337 |
| SOOT    | 338 |
| SOOT    | 339 |
| SOOT    | 340 |
| SOOT    | 341 |
| SOOT    | 342 |
| SOOT    | 343 |
| SOOT    | 344 |
| SOOT    | 345 |
| SOOT    | 346 |
| SOOT    | 347 |

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

A1=(ANQSTR+EMDDOTR+ENRHQ)/GO  
 A2=(FMG-FMDDOTR/RHOSTR)/GO  
 A3=FMDDOTR+A1/RHOSTR  
 A4=EMDDOTR\*(A2/RHOSTR-ENNRHO)  
 A5=-RBRPAZ  
 A6=AAA-RBB+A2  
 ARG=SORTI(ARS((A4-A5)\*02+4,0DAB0A3))  
 ENSTR1=(A4-A5+ARG)/(2.0\*AG)  
 ENSTR2=(A4-A5-ARG)/(2.0\*AG)  
 ENSTR=ENSTR1  
 TF(ENSTR).LT.0.01ENSTR=ENSTR2  
 ENSTR=A MIN1(ENSTR,ENRHQ/GPSIR)  
 ENSTR=A MAX1(ENSTR,ENRHQ+RHOSTR)  
 ENSTR=A MAX1(1.0,ENSTR)  
 ENNSTR=(A1+A2\*ENSTR)/ENSTR  
 ENNSTR=A MIN1(ENNSTR,AAA/BBB)  
 ENNSTR=A MIN1(ENNSTR,ENRHQ/GPSIR)  
 ENNSTR=A MAX1(1.0,ENNSTR)  
 FNO=(ENRHQ-FNSTR\*GPSIR)/OGPSIR  
 ENO=A MAX1(1.0,ENO)  
 ENNO=(ENRHQ-ENNSTR\*GPSIR)/OGPSIR  
 FNNO=A MAX1(1.0,ENNO)  
 C-----QUASI GLOBAL FORMATION RATE.  
 SUF1=PREXPS\*F(LPTE)\*ALPHA\*(RHQ(LP)\*F(LPFU))+AAS\*(RHQ(LP)\*FLPOX)  
 1000AS\*EXP(-ARCONS/F(LPTE))\*FRACP(II)  
 C-----TURBULENT FORMATION RATE.  
 SUF2=EMPO\*(AAA+F(LPM)+RBB+ENNSTR\*GPSIR+RHQ(LP)\*(ENO-ENSTR))  
 10FRACP(II)  
 SPF2=RHO(LP)+RBB+ENO\*FRACP(II)  
 SPF2F=SPF2\*F(LPS)  
 SUF2=A MAX1(SUF2,SPF2F)  
 RF2=SUF2-SPF2F  
 TF(SUF),GT,RF2!60 TO 1104  
 SU(LIJ)=SUF1  
 SP(LIJ)=0.0  
 GO TO 1105  
 1104 SU(LIJ)=SUF2  
 SP(LIJ)=SPF2  
 GO TO 1105  
 1105 SU(LIJ)=0.0  
 SP(LIJ)=0.0  
 C-----SURFACE OXIDATION RATE.  
 1105 AREAT=CDS2\*RHO(LP)  
 AKA=2000.0\*EXP(-19100./F(LPTE))  
 AKR=4.4E-1\*EXP(-7640./F(LPTE))  
 AK7=21.38\*EXP(2060./F(LPTE))  
 AXT=1.51E6\*EXP(-46800./F(LPTE))  
 P02=FLPOX\*PRESS/(VMIX\*92.0\*101329.0)  
 PSIC=1.0/(1.0+AKT/(AKB\*P02))  
 AKK=AKA\*P02/(1.0+AKZ\*P02)  
 SPC1=12.0\*AREAT\*(AKK\*PSIC+AKB\*P02\*(1.0-PSIC))  
 C-----TURBULENT OXIDATION RATE.  
 SPC2=EMDDOT\*PSI\*FMMIN\*RHT(LP)/(F(LPFU)+1.E-30)  
 SPC1=APTN1(SPC1,SPC2)  
 SP(LIJ)=SP(LIJ)-SPC1  
 1101 CONTINUE  
 GO TO 5000  
 C----- OTHER SPECIES - H2O, OH, N, NO, NO2  
 C----- THESE SOURCES CALCULATED IN KINETICS PROGRAM CREK.  
 1200 IF(NV,NE,LVH1)60 TO 1400  
 DO 1201 J=2,N  
 IS=IWLC(J,NGCTO)  
 IF=IWLC(J,NGCTO)  
 1201  
 1300

00 1201 I=IS,IE  
 LIJ=I+JM(J)  
 SU(LIJ)=0.0  
 1201 SP(LIJ)=0.0  
 GO TO 5000  
 1400 CONTINUE  
 5000 CONTINUE  
 RETURN  
 FND  
 SUBROUTINE AUXRAD  
 COMMON F(300),DU(300),DV(300),DW(300),  
 1 ANUC(900),S00T1(900),S00T2(900),FCM(900),FH2(900),FS(900,14),  
 1 RHO(500),VIS(500),ABSR(500),SCTR(500),SU(100),SP(100),  
 1 DRHNDP(500),  
 1 AXPK(100),AXPM(100),AYP(100),AYM(100),AZP(100),  
 2 AZM(100),C7(100),CY(10),CZU(100),CYU(10),  
 3 C7P(100),CYP(10),DIV6(100),NTP1,NTP2  
 1, AXMK(192),AXPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),  
 2 SUK(192),SPK(192)  
 DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)  
 DIMENSION GAM(500)  
 EQUIVALENCE (F(1),U(1)),(F(501),V(1)),(F(1001),W(1))  
 EQUIVALENCE (F(1501),PP(1)),(F(2001),P(1)),(F(2501),TEMP(1))  
 EQUIVALENCE (F(3001),GAM(1))  
 COMMON/CYL/R(30),RM(30),RMV(30),YSR(30),YSVR(30),IPLAK  
 COMMON/GR ID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),  
 1 YSV(30),ZSH(30),XOIF(40),YOIF(30),ZOIF(30),FXP(40),FXM(40),  
 2 FYP(30),FYR(30),FZP(30),FZN(30),DT,TIME  
 COMMON  
 1/CINDEX/IDCO, IDFU, IDO2, IDN2, IDH20, IDCO2, IDH1, IDH2, IDN1, IDNO, IDNO2  
 1, IDP, IDOH, IMCPS, ILC, ILH, IMAT, ITER, JJJ, N1, N2, N3, NA, NGLOB, NGLBP,  
 2 NLM, NQ, NSP, NS1, NS2, IDCH  
 3/CCHEM/CPSUM,HSUM,FQ,PPLN,RGAS,RGASIN,SMINV,TKINV,TLN,LNRG  
 4/CPARAM/ASUB(30,31),EMV,ER,HSUB0,NOEBUG,NS,PA,Q0,Q1,Q2,Q3,Q4,RHOFP,  
 4 SM,SMW(30),SPO,S1(30),S2(30),TK,LADIA0,LDEBUG,LEQUIT,LREACT,  
 4 LENER,EDKIJ,LCONVG  
 DOUBLE PRECISION CPSUM,EMV,ER,FQ,HSUB0,HSUM,PA,PPLN,Q0,Q1,Q2,Q3,  
 1 Q4,RGAS,RGASIN,RHOFP,SM,SMINV,SMW,S1,S2,TK,TKINV,TLN,SM0  
 2,FUT,FST  
 COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CEBU1,CEBU2,  
 1 CEBU3,CFBU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,  
 2 CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST  
 LOGICAL LADIA0,LCONVG,LDEBUG,LEQUIT,LNRG,LREACT,LENER  
 COMMON/INT/L,R,N,LCV,MCV,NCV,LP1,MP1,NP1,NI,NJ,NK,NINJ,NINJNK,NV,  
 1 MMV,NGOTO,K,ISTR,JSTR,KSTR,NVM(35),NM(30),JM(30),ISTFP,  
 2 ISOLVE(32),IPRINT(33),TITLE(10,33),IKV,ISWP,JSWP,RELAX(35),NP,  
 3 MRHO,NGAP,INLJ(30,5),JWLJ(30,5),JWL(40,5),JVL(40,5),IWEI,  
 4 INFO,MM1,JWIT,JWTO,JWOT,JW0,JDW,JKIN(30,30),IKIN(40,30)  
 COMMON/INDEX/IPAR,LPREF,ISTUN,IMCOP,ITRAD,NVRX,NVRY,NVRZ,JPLANE  
 1,PLAKM1,LVK,LVD,LVFUDX,LVFU,LVCO,LVH,LVRK,LVRY,LVRZ,NVF(32),  
 2,IJUMP,IRES,TITLE2(20),IMAX,JMAX,KMAX,NVCO,FUMCO,NVH20,NVC02,  
 3 NVN2,NVCH,NVH2  
 COMMON/CNOX/LVH1,LVH2,LVN1,LVN02,LVO,LV0H,LVH20,LVN2,LVD2,  
 1 LVC02,LVFU1,LVC01,NNOX,INOX,ITNOX,SN0X,TNOX  
 COMMON/THERP/NVH,NVFU,NVOX,NVFUDX,NVTF,MDEN,IDK,FSTOIC,NFU,CP,  
 1 GASCON,RHOCON,UNICON,PRESS,NVFAV,TCYLM,TINLM,TLIP,ACDEF(4),  
 2 T4,DFAC,WFU,WCO2,WCO,WDX,WH20,WN2,MYY,CXX,RATIO1,RATIO2,  
 3 RATIO3,RATIC4,HCO,TAN,ITWALL  
 COMMON/CTDMA/KEND,ICTDMA(32)  
 COMMON/MIS/AMU,DEM,SMAX,SSUM,LASTEP,HTCEXT,CFR,EMISW,EMISIN,  
 1 FMISR,TOUT,RTCD,EMI,RADIN,RADSUR,FMA,FR,SOFR,  
 2 FKFU,FDFU,TFUEL,WFN2,FLD(40),TFMTM(40),H(40),FUEL(40),FUDX(40),  
 2 HIN(40),TIN(40),FUELS(40),SEXIT,IGAM1(29),IGAM2(29)  
 COMMON/TURB/NVH,NVD,C1,C2,CD,AK,DUDOKJ(3,3),AKFAC,ALFAC,

ORIGINAL PAGE IS  
OF POOR QUALITY

|        |     |
|--------|-----|
| NOX    | 189 |
| NOX    | 190 |
| NOX    | 191 |
| NOX    | 192 |
| NOX    | 193 |
| NOX    | 194 |
| AU     | 615 |
| AU     | 616 |
| AU     | 617 |
| AUR    | 2   |
| COMFB  | 2   |
| 4STEP  | 18  |
| RAD    | 3   |
| RAD    | 4   |
| COMFB  | 4   |
| COMFB  | 5   |
| COMFB  | 6   |
| CTOMA  | 3   |
| CTOMA  | 4   |
| COMFB  | 7   |
| COMFB  | 8   |
| COMFB  | 9   |
| COMFB  | 10  |
| COMFB  | 11  |
| COMMON | 2   |
| COMMON | 3   |
| COMMON | 4   |
| COMMON | 5   |
| COMMON | 6   |
| COMMON | 7   |
| COMMON | 8   |
| COMMON | 9   |
| COMMON | 10  |
| COMMON | 11  |
| NOX    | 2   |
| NOX    | 3   |
| NOX    | 4   |
| 4STEP  | 3   |
| NOX    | 6   |
| NOX    | 7   |
| NOX    | 8   |
| NOX    | 9   |
| NOX    | 10  |
| NOX    | 11  |
| 4STEP  | 4   |
| 4STEP  | 5   |
| 4STEP  | 6   |
| 4STEP  | 7   |
| NOX    | 12  |
| COMMON | 6   |
| 4STEP  | 8   |
| 4STEP  | 9   |
| COMMON | 9   |
| COMMON | 10  |
| COMMON | 11  |
| 4STEP  | 10  |
| COMMON | 12  |
| 4STEP  | 11  |
| NOX    | 16  |
| NOX    | 17  |
| COMMON | 19  |
| COMMON | 20  |
| COMMON | 21  |
| COMMON | 22  |
| COMMON | 23  |
| COMMON | 24  |
| 4STEP  | 13  |
| COMMON | 6   |

```

1 MODEL,PR(32),PREF(32),PJAY(32),E
COMMON/PAD/NVE,SIGMA,ABSOR,SCATR
COMMON/REACT/ARCON1,PREXP1,CR1,ARCON2,PREXP2,CR2,MODER
COMMON/DRNPL/EVAP(192),NTP4,NFNZ,KD(3),YD(3),ZD(3),ALFA(3),
1 DELTA(3),THETA1(3),THETA2(3),NSL(3),WFF(3),SMDF(3),
2 VFIIFL(3),RFUEL(3),EVSU(64),HEVAP
COMMON/INJECT/LOWIN,IWINJ(20),JWINJ(20),UWINJ(20),WWINJ(20),
1 AWINJ(20),TIWINJ(20),IVINJ(20),JVINJ(20),KVINJ(20),VINJ(20),
2 FVINJ(20),DVINJ(20),AVINJ(20),TVINJ(20),NURNJ,NVINJ,JSW1,JSW2,
3 NSW,VSW,AFSW,FSW,TSW,WSW,SWH,RHOSW
COMMON/CSORT/NVN,NVS1,NVS2,ISOOT,SSOOT,NSOOT,AD,ARCONN,AAA,BBB,FNG
1,GO,MPART,DPART(2),FRACP(2),RHOP,ARCONS,PREXPS,ALPHA,AAB,BAB,DHR
2,LVN,LVS1,LVS2,CINCP,TINCP,FUTOT
COMMON/CRAD/IPAD,SRAD
COMMON/CFOUR/PREXP3,ARCON3,CR3,PREXP4,ARCON4,CR4,AA1,BB1,CC1,
1 AA2,BB2,CC2,AA3,BB3,CC3,AA4,BB4,CC4,RATIO9,RATIO6,RATIO7,
2 RATIO8,RATIO9,RATIO10,RATO11,RATO12,WCH,WH2,WC2H4,LVCH1,LVH21
C   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FNTRY GAMRAD
C-----FNTRY GAMRAD IS USED TO CALCULATE THE GAMAS IN THE RADIATION
C-----EQUATIONS.
C
IF (NV,EQ,1) GO TO 3100
DO 4002 K=1,NPI
DO 4002 J=1,MP1
KJM=KM(K)+JP(J)
IS=IWLI(J,4)
IE=IWLC(J,4)
DO 4002 I=IS,IE
LP=KJM+I
C-----VALUES OF ABSORPTION AND SCATTERING COEFFICIENTS FOR
C   ITRAD=2.
ARSR(LP)=ABSR
4002 SCTR(LP)=SCATR
TF(ITRAD,NE,2)GO TO 4001
C-----ABSORPTION COEFFICIENT CALCULATED FROM SUBROUTINE ABSOR
C   (ITRAD=3).
DO 4000 K=2,N
DO 4000 J=2,M
KJM=KM(K)+JP(J)
IS=IWLI(J,4)
IE=IWLC(J,4)
DO 4000 I=IS,IE
LP=KJM+I
TS=TEMP(ILP)
TS=AMAX1(TS,300.0)
TS=AMIN1(TS,2000.0)
T+TS
PATH=2.0*Y(MP1)
C-----SOOT CONCENTRATION.
SOTK=7.0*(SCET1(LP)+SOOT2(LP))*RHO(LP)/(RHOP*0.94E-6)
LPFU=LP+NVM(NVFU)
LPFU0X=LP+NVM(NVFU0X)
LPCO=LP+NVM(NVCO)
LPCH=LP+NVM(NVCH)
LPH2=LP+NVM(NVH2)
FIR=F(LPFUK)-F(LPFU)
C-----CO2 AND H2O CONCENTRATIONS.
FLPCO2=WC02*(CYR*FIR/WFU-CYR*F(LPCH)/WCH-F(LPCO)/WC01)
FLPCO2=AMAX1(1.0,F-20,FLPCO2)
FLPOX=AMAX1(0.0,RATIO1*F(LPFU)+RATIO3*F(LPCO)+RATIO2
1-(RATIO1+RATIO2)*F(LPFU0X)+RATIO5*F(LPCH)+RATIO6*F(LPH2))
FLPH2O=C.5*WH2O*(HYT*FIR/WFU-RATIO7*F(LPCH)-F(LPH2))
FLPH2O=AMAX1(1.0,F-20,FLPH2O)
4STEP      14
COMGEN     8
COMGEN     9
COMGEN    10
COMGEN    11
COMGEN    12
COMGEN    13
COMGEN    14
COMGEN    15
COMGEN    16
COMGEN    17
SOOT      8
SOOT      9
SOOT    10
SOOT    11
SOOT    12
SOOT    13
SOOT    14
SOOT    15
SOOT    16
AUR      6
AUR      7
COMMENT 105
COMMENT 106
COMMENT 107
AUR      8
RAD      74
RAD      75
RAD      76
RAD      77
RAD      78
RAD      79
RAD      80
COMMENT 108
COMMENT 109
RAD      81
RAD      82
RAD      83
COMMENT 110
COMMENT 111
RAD      84
RAD      85
RAD      86
RAD      87
RAD      88
RAD      89
RAD      90
RAD      91
RAD      92
RAD      93
RAD      94
RAD      95
RAD      96
RAD      97
RAD      98
RAD      99
RAD      100
COMMENT 112
RAD      101
RAD      102
RAD      103
4STEP 319
4STEP 320
RAD      100
COMMENT 113
4STEP 321
RAD      102
RAD      103
4STEP 322
4STEP 323
RAD      106

```

```

FLPM2=1.0-F(LPFU)-FLPC02-F(LPC0)-FLPOX-FLPH20-F(LPCH)-F(LPH2)
FLPN2=AMAX1(0.0,FLPH2)
VMTX=F(LPFU)/MFU+FLPC02/MC02+F(LPC0)/MC0+FLPOX/MOX+FLPH20/MH20
1+FLPN2/MH2+F(LPCH)/MCH+F(LPH2)/MH2
PC02=FLPC02/(VMTX*MC02)
PH20=FLPH20/(VMTX*MH20)
PC02=APIN1(PC02,1.0-PH20)
FACP=5.97*T/TS
PATH=AMIN1(PATH,FACP/PC02)
PATH=AMIN1(PATH,FACP/PH20)
CALL APSORR(TS,T,PATH,SQTK,PC02,PH20,ALPHAS)
ALPHAS=AMIN1(ALPHAS,0.999)
ABSR(LP)=ALOG(1.0-ALPHAS)/PATH

4000 CONTINUE
4001 CONTINUE
CALCULATE GAMMA FOR X-DIRECTION FLUX.
DO 3000 K=1,NP1
DO 3000 J=1,MP1
KJM=KM(K)+JM(J)
IS=IWLI(J,4)
IE=IWLO(J,4)
DO 3000 I=IS,IE
LP=KJM+I
GAM(LP)=1.0/(ABSR(LP)+SCTR(LP))
3000 CONTINUE
GO TO 3200
CALCULATE GAMMA FOR Y-DIRECTION FLUX.
3100 DO 3200 K=1,NP1
DO 3200 J=1,MP1
KJM=KM(K)+JM(J)
IS=IWLI(J,4)
IE=IWLO(J,4)
DO 3200 I=IS,IE
LP=KJM+I
GAM(LP)=1.0/(ABSR(LP)+SCTR(LP)+1.0/(ER(J)+1.E-30))
3200 CONTINUE
3300 RETURN
C ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * AUR 29
      FNTRY SORAD
C-----FNTRY SORAD IS USED TO CALCULATE THE SOURCE TERMS IN THE
C RADIATION EQUATIONS.
C
IF (INV,EQ,LVR2) GO TO 300
C-----X- AND Y-DIRECTION FLUXES.
DO 101 J=2,N
IS=IWLI(J,MGOTO)
IE=IWLO(J,MGOTO)
DO 101 I=IS,IE
LTJ=JM(J)+I
LP=LTJ+KM(K)
LPRX=LP+NVN(MVRX)
LPRY=LP+NVN(MVRY)
LPRZ=LP+NVN(MVRZ)
LPTE=LP+NVN(MVTE)
FLPTE=F(LPTE)
FLPE=SIGMAOFIPTE*0.4
SU(LIJ)=ABSR(LP)+FLPE+SCTR(LP)*(F(LPRX)+F(LPRY)+F(LPRZ))/3.
SP(LIJ)=(ABSR(LP)+SCTR(LP))
101 CONTINUE
RETURN
300 CONTINUE
C-----Z-DIRECTION FLUX.
DO 301 K=2,N
KJM=KM(K)+JM(JPLANE)

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

IS=IWLI(JPLANE,NGATO)
IF=IWLO(JPLANE,NGATO)
DO 301 I=IS,IF
  LIK=JMK+I
  LP=KJM+I
  LPRX=LPOHVM(NVRX)
  LPRY=LPOHVM(NVRY)
  LPRZ=LPOHVM(NVRZ)
  LPTF=LPOHVM(NVTF)
  FLPTF=F(LPTF)
  FLPE=SIGMA*FLPTF*94
  SU(LIK)=ABSR(LP)+FLPE+SCTR(LP)*(F(LPRX)+F(LPRY)+F(LPRZ))/3.
  SP(LIK)=(ABSR(L')+SCTR(LP))
301 CONTINUE
RETURN
END
SUBROUTINE SPRAY
C ***** SUBROUTINE SPRAY *****
C SURROUNTING FOR AIRTRIP CODE WHICH CALCULATES THE TRAJECTORY
C AND EVAPORATION RATES FOR A FUEL NOZZLE SPRAY. WRITTEN NOV. 1976
C *****
COMMON F(3500),DU(500),DV(500),DM(500),
  1 ANUC(500),SOOT1(500),SOOT2(500),FCH(500),FH2(500),FS(500,14),
  1 RHO(500),VIS(500),ABSR(500),SCTR(500),SU(100),SP(100),
  1 DRHOOP(500),
  1 AXP(100),AXM(100),AYP(100),AZP(100),
  2 AZM(100),CZ(100),CYU(100),CYU(10),
  3 C7P(100),CYP(100),DIVG(100),NTP1,NTP2
  1,AKMK(192),AXPK(192),AYPK(192),AZMK(192),AZPK(192),
  2 SUK(192),SPK(192)
  DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)
  DIMENSION GAM(500)
  EQUIVALENCE (F(1),U(1)),(F(501),V(1)),(F(1001),W(1))
  EQUIVALENCE (F(1501),PP(1)),(F(2001),P(1)),(F(2501),TEMP(1))
  EQUIVALENCE (F(3001),GAM(1))
  COMMON/CYL/R(30),RM(30),RNV(30),YSR(30),YSVR(30),IPLAX
  COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30)+XSU(40),
  1 YSV(30),ZSW(30),XDIF(40),YDIF(30),ZDIF(30),FXP(40),FXM(40),
  2 FYP(30),FYM(30),FPZ(30),FZM(30),DT,TIME
  COMMON
  1/CINDEX/IDCC,IDFU,IDO2,IDM2,IDH20,IDC02,IDH1,IDH2,IDN1,IDNO,EDNO2
  1,IDD,IDRH,ICHPS,ILC,ILH,IMAT,ITER,JJJ,M1,M2,M3,NA,NGLOE,NGLNP,
  2 NLM,NG,NSM,NS1,NS2,IOCH
  3/CCHEMI/CPSUM,HSUM,FQ,PPLN,RGAS,RGASIN,SINV,TINV,TLN,LNRG
  4/CPARAM/ASUB(30,3),EMV,ER,HSUB0,NDEBUG,NS,PA,QQ,Q1,Q2,Q3,Q4,RHOPP,
  4 SH,SHW(30),SM0,S1(30),S2(30),TK,LADTAB,LDEBUG,L_EQUI,LRATE,
  4 LENER,EDKT,IJ,LCQNYG
  DOUBLE PRECISION CPSUM,EMV,ER,FQ,HSUB0,HSUM,PA,PPLN,QQ,Q1,Q2,Q3,
  1 Q4,RGAS,RGASIN,RHOPP,SH,SHINV,S1,S2,TK,TINV,TLN,SM0
  2,FUT,FST
  COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CB01,CB02,
  1 CERU3,CERU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,
  2 CFXP1,CFXP2,CFXP3,CFXP4,FUT,FST
  LOGICAL LADTAB,LCQNYG,LDEBUG,L_EQUI,LRATE,LENER
  COMMON/INT/L,M,N,LCV,NCV,NCV,LP1,MP1,MP1,NI,ND,NK,NINJ,NINJNK,NV,
  1 NMV,NGOTO,N,ISTR,JSTR,KSTR,NVM(35),NM(30),JN(30),ISTEP,
  2 ISOLVE(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(35),MP,
  3 NMHD,NGAM,INL(30,5),IWLO(30,5),JWL(40,5),JWL(-3,5),IWEI,
  4 IWE0,MM1,JW1,JW0,JW01,JW00,JDW,JKIN(30,30),IKIN(40,30)
  COMMON/INDEX/IPAR,LPREF,ISTUN,INCMP,ITRD,MRK1,MRK2,MRK3,JPLANE
  1,PLAVM1,LVR1,LVD,LVFUD,LVFU,LVC0,LV4,LVR1,LVRY,LVR2,LVF(32),
  2,IJUMP,IRES,TITLE2(20),IMAX,JMAX,KMAX,NVC0,FUNCO,NVH20,NVC02,
  3 NVN2,NVCH,NVH2
  COMMON/CMOX/LVH1,LVH2,LVN1,LVND,LVND2,LVD,LVOD,LVH20,LVN2,LV02,

```



|                                                                                                                    |    |     |
|--------------------------------------------------------------------------------------------------------------------|----|-----|
| XH(1)=X(1)                                                                                                         | SP | 47  |
| DO 115 I=2,L                                                                                                       | SP | 48  |
| 115 XM(I)=XM(I-1)+XS(I)                                                                                            | SP | 49  |
| XM(LPI)=XM(L)                                                                                                      | SP | 50  |
| YM(1)=Y(1)                                                                                                         | SP | 51  |
| DO 17 J=2,M                                                                                                        | SP | 52  |
| 17 YM(J)=YM(J-1)+YS(J)                                                                                             | SP | 53  |
| YM(MP1)=YM(M)                                                                                                      | SP | 54  |
| ZM(1)=Z(1)                                                                                                         | SP | 55  |
| DO 19 K=2,N                                                                                                        | SP | 56  |
| 19 ZM(K)=ZM(K-1)+ZS(K)                                                                                             | SP | 57  |
| ZM(NP1)=ZM(N)                                                                                                      | SP | 58  |
| C #####                                                                                                            | SP | 59  |
| C -----LOOP OVER FUEL NOZZLES                                                                                      | SP | 60  |
| DO 2000 NH=1,NFH7                                                                                                  | SP | 61  |
| RFF=0.                                                                                                             | SP | 62  |
| NSL2=NSL(NH)                                                                                                       | SP | 63  |
| RNSL=NSL2                                                                                                          | SP | 64  |
| WFT=WFF(NH)/RNSL                                                                                                   | SP | 65  |
| C -----CALCULATE UNIT VECTORS OF SPRAY LINES                                                                       | SP | 66  |
| SINA=SIN(ALFA(NH)/2.)                                                                                              | SP | 67  |
| SINR=SIN(BETA(NH))                                                                                                 | SP | 68  |
| SIND=SIN(DELTA(NH))                                                                                                | SP | 69  |
| COSA=COS(ALFA(NH)/2.)                                                                                              | SP | 70  |
| COSR=COS(BETA(NH))                                                                                                 | SP | 71  |
| COSD=COS(DELTA(NH))                                                                                                | SP | 72  |
| DTHETA=THETA2(NH)-THETA1(NH)                                                                                       | SP | 73  |
| IF (DTHETA.LT.0.0) DTHETA=DTHETA+PT2                                                                               | SP | 74  |
| DANG=DTHETA/(RNSL-1.)                                                                                              | SP | 75  |
| IF (DTHETA.GT.0.9*PT2) DANG=DTHETA/RNSL                                                                            | SP | 76  |
| THETA=THETA1(NH)                                                                                                   | SP | 77  |
| DO 10 IL=1,NSL2                                                                                                    | SP | 78  |
| SINT=SIN(THETA)                                                                                                    | SP | 79  |
| COST=COS(THETA)                                                                                                    | SP | 80  |
| THFTA=THETA+DANG                                                                                                   | SP | 81  |
| IF (THETA.GT.PT2) THETA=THETA-PT2                                                                                  | SP | 82  |
| VFCX(IL)=-SINA*SINT+COSB-COSA*SINB                                                                                 | SP | 83  |
| VECY(IL)=SINA*COST+COSD+SINA*SINT*SINB*SIND-COSA*COSD*SIND                                                         | SP | 84  |
| VFC7(IL)=SINA*COST*SIND-SINA*SINT*SINB*COSD+COSA*COSP+COSD                                                         | SP | 85  |
| RVECX(IL)=-SINT*COSA                                                                                               | SP | 86  |
| RVECY(IL)=COST*COSD+SINT*SINB*SIND                                                                                 | SP | 87  |
| RVEC7(IL)=COST*SIND-SINT*SINB*COSD                                                                                 | SP | 88  |
| 10 CONTINUE                                                                                                        | SP | 89  |
| C#####                                                                                                             | SP | 90  |
| C-----START CALCULATIONS FOR EVAPORATION RATES-----                                                                | SP | 91  |
| DO 1750 IL=1,NSL2                                                                                                  | SP | 92  |
| DO 2000 IG=1,NG                                                                                                    | SP | 93  |
| UF=VFCX(IL)*VFUEL(NH)                                                                                              | SP | 94  |
| VF=VECY(IL)*VFUEL(NH)                                                                                              | SP | 95  |
| VR=VEC7(IL)*VFUEL(NH)                                                                                              | SP | 96  |
| DIA=SD(NH)*1.E-6*DSND(IG)                                                                                          | SP | 97  |
| TFU=TFUFL                                                                                                          | SP | 98  |
| ITYPF=1                                                                                                            | SP | 99  |
| DTAO=DTIA                                                                                                          | SP | 100 |
| CON2=0.                                                                                                            | SP | 101 |
| TGPNT=-10                                                                                                          | SP | 102 |
| IF (ISTEP.NE.1GPNT) GO TO 7746                                                                                     | SP | 103 |
| WRITE (6,7747)                                                                                                     | SP | 104 |
| 7747 FORMAT (1/10X,'UF',10X,'VF',10X,'WF',9X,'UST',9X,'VST',9X,'NST',1<br>1 7X,'FEVAP',10X,'XF',10X,'YF',10X,'ZF') | SP | 105 |
| 1746 CONTINUE                                                                                                      | SP | 106 |
| FEVAP=0.                                                                                                           | SP | 107 |
| DO 21 I=1,LPI                                                                                                      | SP | 108 |
| ILOC=I                                                                                                             | SP | 109 |
|                                                                                                                    | SP | 110 |

ORIGIN  
OF PUD

```

IF (X0(NN).GT.XM(I)) GO TO 11      SP    111
GO TO 12                            SP    112
11 CONTINUE                          SP    113
12 DO 13 J=1,NP1                    SP    114
    JLOC=J
    IF (Y0(NN).GT.YM(J)) GO TO 13
    GO TO 14
13 CONTINUE                          SP    115
14 DO 15 K=1,NP1                    SP    116
    KLOC=K
    IF (Z0(NN).GT.ZM(K)) GO TO 15
    GO TO 16
15 CONTINUE                          SP    117
16 XF=X0(NN)+RFUEL(NN)*RVECX(IL)   SP    118
    YF=Y0(NN)+RFUEL(NN)*RVECY(IL)
    ZF=ZF(NN)+RFUEL(NN)*RVECZ(IL)/(R(1)+PLAXM1*YF)
C-----LOCATION OF THE DROPLET-----
110 CONTINUE                         SP    119
    ILOC=JLOC
    JLOC=JLOC
    KLOC=KLOC
C -----X DROPLET LOCATION          SP    120
    IF (XF.GE.XM(ILOC-1).AND.XF.LT.XM(ILOC)) GO TO 27
    DO 22 I=1,LP1
        ILOC=I
        IF (XF.GT.XM(I)) GO TO 22
        GO TO 27
22 CONTINUE                           SP    121
C -----Y DROPLET LOCATION          SP    122
27 IF (YF.GE.YM(JLOC-1).AND.YF.LT.YM(JLOC)) GO TO 23
    DO 24 J=1,NP1
        JLOC=J
        IF (YF.GT.YM(J)) GO TO 24
        GO TO 23
24 CONTINUE                           SP    123
C -----Z DROPLET LOCATION          SP    124
23 IF (ZF.GE.ZM(KLOC-1).AND.ZF.LT.ZM(KLOC)) GO TO 63
    DO 26 K=1,NP1
        KLOC=K
        IF (ZF.GT.ZM(K)) GO TO 26
        GO TO 48
26 CONTINUE                           SP    125
48 IF (KLOC.GT.1) GO TO 28
    KLOC=N
    ZF=Z(NP1)-ZSMALL
28 IF (KLOC.LT.NP1) GO TO 63
    KLOC=?
    ZF=Z(1)+ZSMALL
C -----DROPLET NEAR A WALL         SP    126
63 INDX=0
    IF (ILOC.GE.IWLI(JLOC,4)) GO TO 49
    ILOC=ILOC
    XF=AMAX1(XF,XM(ILOC-1)+DIA/2.)
    XF=AMIN1(XF,XM(ILOC)-DIA/2.)
    INDX=1
49 IF (ILOC.LE.IWLI(JLOC,4)) GO TO 47
    IF (JLOC.GT.JW01.AND.JLOC.LT.JW00) GO TO 1000
    ILOC=ICLD
    XF=AMAX1(XF,XM(ILOC-1)+DIA/2.)
    YF=AMIN1(YF,XM(ILOC)-DIA/2.)
    INDX=?
47 IF (JLOC.GT.JWLI(ILOC,4)) GO TO 44
    IF (INDX.EQ.0) GO TO 50
    JLOC=JLOC

```

```

YF=AMAX1(YF,YM(JLOC-1)+DIA/2.)
YF=AMIN1(YF,YM(JLOC)-DIA/2.)
INDX=3
44 IF (JLOC.LT.JWLO(JLOC,4)) GO TO 41
JLOC=JOLD
YF=AMAX1(YF,YM(JLOC-1)+DIA/2.)
YF=AMIN1(YF,YM(JLOC)-DIA/2.)
INDX=4
C -----CHECK FOR SLOTS
41 IF (NUINJ.LE.0) GO TO 45
DO 149 II=1,NUINJ
IU=IUINJ(II)-1
JU=JUINJ(II)
IF (ILOC,F0,IU,AND,JLOC,E0,JU) GO TO 50
149 CONTINUE
45 CONTINUE
GO TO 60
C -----DROPLET HAS HIT SOLID BOUNDARY
50 ILOC=ICLO
JLOC=JOLD
KLOC=KOLD
DEVAP=1.-FEVAP
UF=0.
VF=0.
WF=0.
FX=0.
FY=0.
FT=0.
GO TO 249
C -----NO BOUNDARIES HAVE BEEN HIT
60 CONTINUE
LP=KM(KLOC)+JM(JLOC)+ILOC
LYP=LP+1
LYP=LP+NI
L7P=LP+NUINJ
LPTE=LP+NVM(NVTE)
LPFUOK=LP+NVM(NVFUOK)
C ----- CAREFUL HERE
LPFU=LP+NVM(NVFU+3)
LPCD=LP+NVM(NVCD+1)
LPCH=LP+NVM(NVCH)
LPH2=LP+NVM(NVH2)
C -----FREESTREAM PROPERTIES
ROST=RHO(LP)
TST=F(LPTE)
UST=FXP(ILOC)*U(LP)+FXM(ILOC)*U(LXP)
VST=FYP(JLOC)*V(LP)+FYM(JLOC)*V(LYP)
WST=F7P(KLOC)*W(LP)+F7M(KLOC)*W(L7P)
IR=IWLT(JLOC,4)
IF (XF.GE.X(IR)) GO TO 51
IF (JKIN(JLOC,KLOC),E0,1) GO TO 51
FAC=(X(F-1)/(X(IR)-X(IR-1)))**.14286
UST=0.
VST=VST+FAC
WST=WST+FAC
IF (INDR,NE,1) GO TO 51
UF=UST
VF=VST
WF=WST
51 IR=IWLO(JLOC,4)
IF (XF,LE,X(IR)) GO TO 56
IF (JLOC,GT,JWDI,AND,JLOC,LT,JWDD) GO TO 56
FAC=(X(M(IR))-XF)/(X(M(IR))-X(IR)))**.14286
UST=0.

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|       |     |
|-------|-----|
| SP    | 175 |
| SP    | 176 |
| SP    | 177 |
| SP    | 178 |
| SP    | 179 |
| SP    | 180 |
| SP    | 181 |
| SP    | 182 |
| SP    | 183 |
| SP    | 184 |
| SP    | 185 |
| SP    | 186 |
| SP    | 187 |
| SP    | 188 |
| SP    | 189 |
| SP    | 190 |
| SP    | 191 |
| SP    | 192 |
| SP    | 193 |
| SP    | 194 |
| SP    | 195 |
| SP    | 196 |
| SP    | 197 |
| SP    | 198 |
| SP    | 199 |
| SP    | 200 |
| SP    | 201 |
| SP    | 202 |
| SP    | 203 |
| SP    | 204 |
| SP    | 205 |
| SP    | 206 |
| SP    | 207 |
| SP    | 208 |
| SP    | 209 |
| SP    | 210 |
| SP    | 211 |
| SP    | 212 |
| SP    | 213 |
| SP    | 214 |
| 4STEP | 326 |
| 4STEP | 327 |
| SP    | 215 |
| SP    | 216 |
| SP    | 217 |
| SP    | 218 |
| SP    | 219 |
| SP    | 220 |
| SP    | 221 |
| SP    | 222 |
| SP    | 223 |
| SP    | 224 |
| SP    | 225 |
| SP    | 226 |
| SP    | 227 |
| SP    | 228 |
| SP    | 229 |
| SP    | 230 |
| SP    | 231 |
| SP    | 232 |
| SP    | 233 |
| SP    | 234 |
| SP    | 235 |
| SP    | 236 |

```

VST=WST*FAC SP 237
WST=WST*FAC SP 238
IF (INDX,NE,2) GO TO 56 SP 239
UF=UST SP 240
VF=VST SP 241
WF=WST SP 242
56 JR=JWL((ILOC,4) SP 243
IF (YF,LE,Y(JR+1)) GO TO 53 SP 244
IF (IKIN(ILOC,KLOC),EQ,1,JR,IKIN(ILOC,KLOC),EQ,3) GO TO 53 SP 245
FAC=((YF-YM(JB))/(Y(JR+1)-YM(JB)))**.14286 SP 246
UST=UST*FAC SP 247
VST=0. SP 248
WST=WST*FAC SP 249
IF (INDX,NE,3) GO TO 53 SP 250
UF=UST SP 251
VF=VST SP 252
WF=WST SP 253
SP 254
53 JR=JWL((ILOC,4) SP 255
IF (YF,LE,Y(JR-1)) GO TO 54 SP 256
IF (IKIN(ILOC,KLOC),EQ,2,01,IKIN(ILOC,JLOC),EQ,3) GO TO 54 SP 257
FAC=((YM(JB-1)-YF)/(YM(JB-1)-Y(JR-1)))**.14286 SP 258
UST=UST*FAC SP 259
VST=0. SP 260
WST=WST*FAC SP 261
IF (INDX,NE,4) GO TO 54 SP 262
UF=UST SP 263
VF=VST SP 264
WF=WST SP 265
54 CONTINUE SP 266
IF (ABS(UF).LT.1.E-30,AND,ABS(VF).LT.1.E-30,AND,ABS(UST).LT.1.E-30, AND,ABS(WST).LT.1.E-30, AND,ABS(FEVAP).LT.1.E-30, AND,ABS(TF).LT.1.E-30, AND,ABS(POT).LT.1.E-30) GO TO 50 SP 267
1 AND,ANS(VST),LT,1,E-30) GO TO 50 SP 268
FLPOX=RATIO1+F(LPFU)+RATIO3+F(LPCD)+RATIO2-(RATIO2+RATIO1)* SP 269
1 F(LPFUN)+RATIO5+F(LPCH)+RATIO36+F(LPH2) 4STEP SP 270
FLPOX=AMAX1(FLPOX,0.) SP 271
IF (ISTEP,NF,IGPNT) GO TO 7744 SP 272
WRITE (6,7745) UF,VF,WF,UST,VST,WST,FEVAP,KF,YF,ZF SP 273
7745 FORMAT (10E12.4) SP 274
7744 CONTINUE SP 275
C ----BOILING TEMPERATURE OF FUEL----- SP 276
POT=P0(4) SP 277
ET=EE(4) SP 278
IF(FEVAP,GE,0.9) GO TO 200 SP 279
POT=TAR(FEVAP,FRACT,P0,4) SP 280
ET=TAR(FEVAP,FRACT,EE,4) SP 281
200 TR=ET+ALCG(PRESS)+POT SP 282
T1=(TR+TF)/2. SP 283
TFU=AMIN1(TFU,TB) SP 284
C----DENSITY OF LIQUID FUEL AT TB SP 285
RDF=1.076/(1.+1.076/.773-1.1*(1.-.67*FEVAP)) SP 286
RDF=1000.+(RDF+.208-.00072*TFU) SP 287
C----MOLECULAR WEIGHT OF FUEL VAPORS SP 288
MWT=TAR(FEVAP,FRACT,MW,7) SP 289
AT=TAR(MWT,MCOND,ACOND,4) SP 290
300 RT=TAR(PWT,MCOND,RCOND,4) SP 291
C----THERMAL CONDUCTIVITY AND SPECIFIC HEAT OF FUEL VAPORS SP 292
COND1=1.729*(AT+RT+T1) NOX 193
THCP5=1 NOX 194
NS1=TFNU NOX 195
NS2=TFNU NOX 196
TK=T1 NOX 197
TKINV=1.000/TK NOX 198
S2(TDFU)=1.000/SMW(TDFU) NOX 199
CALL HCPS NOX 200
CP1=CPSUM*UNICON NOX 201
CP1=CP1*1.000 NOX 202

```

```

400 CONDI=0.4*COND1+0.6*0.064*SQRT(T1/1111.)
C ----RELATIVE VEL, REYNOLDS NO., DRAG COEF AND FORCE COMPONENTS
  VR=SQRT((UF-UST)**2+(VF-VST)**2+(WF-WST)**2)
  VISCO=4.464E-5*SORT(TST/1111.)
  REI=RNST*VR*ODIA/VISCO
  SREI=SORT(REI)
  COS=2.0
  IF (REI.GT.22.16.AND.REI.LE.80.) COS=27./REI**0.04
  IF (REI.GT.80..AND.REI.LT.10000.) COS=.271*REI**0.217
  CO1=AMAX1(COS/2.,COS/(1.+BEE))
  CONS=CO1*3.14159/4.*DIA**2/2.*RNST
  DM=PI*DIA**3*ROF/6.
  FX=CONS*VR*(UST-UF)
  FY=CONS*VR*(VST-VF)+PLAXM1*DM*WF*WF/R(JLOC)
  FZ=CONS*VR*(WST-WF)-PLAXM1*DM*VF*WF/R(JLOC)
  VFU=SORT(UF**2+VF**2+WF**2)
  FAC=AMAX1(1.0,25./((VR*VR)+1.E-20))
  DTI1=ULIM*VFU*DM+FAC/(ABS(FX)+1.E-30)
  DTI2=ULIM*VFU*DM+FAC/(ABS(FY)+1.E-30)
  DTI3=ULIM*VFU*DM+FAC/(ABS(FZ)+1.E-30)
  DTI4=DLIM/(CON2+1.E-30)
  DTI5=KS1(JLOC)/IARS(UF)+1.E-20
  DTI6=YS(JLOC)/IARS(VF)+1.E-20
  DTI7=R(JLOC)*PSIKLLOC/(ABS(WF)+1.E-20)
  DTI=AMIN1(DTI1,DTI2,DTI3,DTI4,DTI5,DTI6,DTI7)
  CONS=DM/DTI
C-----VELOCITY AND LOCATION OF THE DROPLET
  UF0=UF
  VF0=VF
  WF0=WF
  UF=UF+FX/CONS
  VF=VF+FY/CONS
  WF=WF+FZ/CONS
  IF (UF0.GT.UST) UF=AMAX1(UF,UST-.001)
  IF (UF0.LT.UST) UF=AMIN1(UF,UST+.001)
  IF (VF0.GT.VST) VF=AMAX1(VF,VST-.001)
  IF (VF0.LT.VST) VF=AMIN1(VF,VST+.001)
  IF (WF0.GT.WST) WF=AMAX1(WF,WST-.001)
  IF (WF0.LT.WST) WF=AMIN1(WF,WST+.001)
  DX=.5*(UF+UF0)*DTI
  DY=.5*(VF+VF0)*DTI
  DZ=.5*(WF+WF0)*DTI
  XF=XF+DX
  YF=YF+DY
  ZF=DZ/R(JLOC)
  IF (TFU.GE.TB) ITYPE=2
  GO TO (10P,199), ITYPE
C----- HEATING DROPLET -----
C ----HEAT TRANSFER
  100 HT=COND1*(2.+6*PR3*SREI)/DIA
  AS=PI*DIA*DIA
  QDOT=AS*HT*(TST-TFU)
  CPLF=840.5+4.1372*TFU
  DTF=DTI*QDOT/DM/CPLF
  TFU=TFU+DTF
  GO TO 11C
C ----- BOILING DROPLET -----
C ----MASS TRANSFER NUMBER
  100 TF (FLPFUC1)=FSTOIC) 210,209,201 .
  201 RFE=AMAX1(CP1*(TST-TB)/MEVAP,0.)
  GO TO 219
  205 RFE=FLPNX/RATIO1
  GO TO 219
  210 RFE=(FLPNX*HFUEL/RATIO1+AMAX1(CP1*(TST-TB),0.))/MEVAP

```

```

215 RATE=0./RDF*COND1/CP1+ALOG(1.+BEE)*(1.+0.276*SREI*SCRI) SP 356
C-----FRACTION EVAPORATED SP 357
  CON2=1.9/RDF/DIA00030*RDF/DIA*RATE SP 358
  DFVAP=CON2*DTI SP 359
240 FEVAP=FEVAP+DEVAP SP 360
  IF (FFVAP.LT.1.0) GO TO 250 SP 361
  DEVAP=DEVAP-FEVAP+1. SP 362
  FEVAP=1. SP 363
C ----NEW DROPLET DIAMETER SP 364
250 ARG=DIA*DIA-RATE*DTI SP 365
  IF (ARG.GT.0.0) GO TO 262 SP 366
  DEVAP=DEVAP+1.-FEVAP SP 367
  FEVAP=1.0 SP 368
  GO TO 292 SP 369
262 DIA=SORT(ARG) SP 370
C ----- FUEL EVAPORATION FLOW RATE SP 371
272 AMT=DEVAP*WFI/RNG SP 372
  LPC=ILPC-1+(JLOC-2)*(NI-2)+(KLOC-2)*(NI-2)+(NJ-2) SP 373
  EVAP(LPC)=EVAP(LPC)+AMT SP 374
  EVAPU(LPC)=EVAPU(LPC)+AMT*UF SP 375
  EVAPV(LPC)=EVAPV(LPC)+AMT*VF SP 376
  EVAPH(LPC)=EVAPH(LPC)+AMT*UF SP 377
  900 IF (FEVAP.LT.0.99) GO TO 110 SP 378
1000 CONTINUE SP 379
2900 CONTINUE SP 380
C ***** STORE MOMENTUM DATA ON TAPE4 SP 381
C ----- STORE MOMENTUM DATA ON TAPE4 SP 382
  RFWIND NTP4 SP 383
  00 1100 K=2,N SP 384
  00 1110 J=2,M SP 385
  KJC=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2) SP 386
  00 1110 I=3,L SP 387
  LIJ=(J-2)*(NI-2)+(I-1) SP 388
  LPC=KJC+(I-1) SP 389
  LYNC=LPC-1 SP 390
  EVSU(LIJ)=FXN(I-1)*EVAPU(LYNC)+SXP(I)*EVAPU(LPC) SP 391
  IF (I.EQ.3) EVSU(LIJ)=EVSU(LIJ)+FYP(2)*EVAPU(LYNC) SP 392
  IF (I.EQ.1) EVSU(LIJ)=EVSU(LIJ)+FXN(L)*EVAPU(LPC) SP 393
1110 CONTINUE SP 394
  WRITE (NTP4) EVSU SP 395
1100 CONTINUE SP 396
  00 1200 K=2,N SP 397
  00 1210 J=3,M SP 398
  KJC=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2) SP 399
  00 1210 I=2,L SP 400
  LIJ=(J-2)*(NI-2)+(I-1) SP 401
  LPC=KJC+(I-1) SP 402
  LYNC=LPC-(NI-2) SP 403
  EVSU(LIJ)=FYN(J-1)*EVAPV(LYNC)+FYP(J)*EVAPV(LPC) SP 404
  IF (J.EQ.3) EVSU(LIJ)=EVSU(LIJ)+FYP(2)*EVAPV(LYNC) SP 405
  IF (J.EQ.1) EVSU(LIJ)=EVSU(LIJ)+FYH(N)*EVAPV(LPC) SP 406
1210 CONTINUE SP 407
  WRITE (NTP4) EVSU SP 408
1200 CONTINUE SP 409
  00 1300 K=3,NP1 SP 410
  00 1310 J=2,M SP 411
  KJC=(K-2)*(NI-2)*(NJ-2)+(J-2)*(NI-2) SP 412
  00 1310 I=2,L SP 413
  LIJ=(J-2)*(NI-2)+(I-1) SP 414
  LPC=KJC+(I-1) SP 415
  LYNC=LPC-(NI-2)*(NJ-2) SP 416
  EVSU(LIJ)=F2N(K-1)*EVAPH(LYNC) SP 417
  IF (K.EQ.NP1) GO TO 1309 SP 418
  EVSU(LIJ)=EVSU(LIJ)+F2P(K)*EVAPH(LPC) SP 419

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

GO TO 1310
1300 FVSU(LIJ)=EVSU(LIJ)+FZP(2)*EVAPM(LIJ)
1310 CONTINUE
WRITE (NTP4) EVSU
1300 CONTINUE
RETURN
END
FUNCTION TAB (X,XX,YY,NTAB)
DIMENSION XX(11),YY(11)
IF (NTAB.GT.0) GO TO 5
TAB=0.0
RETURN
5 F=1.
IF (XX(1).GT.XX(2)) F=-F
DO 10 J=1,NTAB
I=J
IF (F*(XX(I)-X)<0.40) 10,40,20
10 CONTINUE
20 IF (I.NE.1) GO TO 30
I=2
30 J=I-1
DEL=XX(I)-XX(J)
IF (DEL.FO.0.0) GO TO 50
TAB=(YY(I)*(X-XX(J))-YY(J)*(X-XX(I)))/DEL
RETURN
40 TAB=YY(I)
RETURN
50 WRITE (6,60) X,I,J
60 FORMAT (* 000 ERROR IN SUBROUTINE TAB ***,E15.4,2I5)
STOP
END
SUBROUTINE STRIDE
COMMON/CEDK/EOK(192)
COMMON F(3500),DU(500),DV(500),DW(500),
1 AMUC(500),SOOT1(500),SOOT2(500),FCH(500),FH2(500),FS(500,14),
1 RHO(500),VIS(500),ABSR(500),SCTR(500),SU(100),SP(100),
1 DRHOPP(500),
1 AXP(100),AYM(100),AYP(100),AZP(100),
2 AZM(100),CY(100),C7U(100),CYU(100),
3 CZP(100),CYP(100),DIVG(100),NTP1,NTP2
1,AYMK(192),AXPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),
2 SUK(192),SPK(192)
DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)
DIMENSION GAM(500)
EQUIVALENCE (F(1),U(1)),(F(501),V(1)),(F(1001),W(1))
EQUIVALENCE (F(1901),PP(1)),(F(2001),P(1)),(F(2501),TEMP(1))
EQUIVALENCE (F(3001),GAM(1))
COMMON/CYL/R(30),RM(30),RMRV(30),YSR(30),YSVR(30),IPLAK
COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),
1 YSV(30),ZSW(30),X0IF(40),Y0IF(30),Z0IF(30),FXP(40),FXH(40),
2 FYP(30),FYH(30),F7P(30),FZH(30),DT,TIME
COMMON
1/CINDEX/I0CC,I0FU,I0D2,I0N2,I0H2D,I0C02,I0H1,I0H2,I0N1,I0N0,I0N02
1,I0D,I0H,I0CPS,I0L,I0H,I0AT,I0T,J0J,N1,M2,N3,NA,NGL0B,NGL0BP,
2 NLH,NQ,NSP,NS1,NS2,I0CH
3/CCHFT/CPSUM,H$UM,FQ,PPLN,RGAS,RGASIN,SHINV,TKINV,TLN,LHRG
4/CPARAM/ASUR(30,3),ENV,EP,HSUB0,MDERUG,NS,PA=00,01,02,03,04,RHOPP,
4 SM,SMH(30),SM0,S1(30),S2(30),TK,LADEAR,LDERUG,LFACT,
4 LENE*,FDKIJ,LCORVG
      DECIMAL PRECISION CPSUM,ENV,EP,FQ,HSUB0,HSUM,PA,PPLN,00,01,02,03,
1 04,RGAS,RGASIN,RHOPP,SM,SHINV,SMH,S1,S2,TK,TKINV,TLN,SM0
2,FUT,FST
COMMON/STFP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CERU1,CERU2,
1 CERU3,CERU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|        |     |
|--------|-----|
| SP     | 420 |
| SP     | 421 |
| SP     | 422 |
| SP     | 423 |
| SP     | 424 |
| SP     | 425 |
| SP     | 426 |
| SP     | 427 |
| SP     | 428 |
| SP     | 429 |
| SP     | 430 |
| SP     | 431 |
| SP     | 432 |
| SP     | 433 |
| SP     | 434 |
| SP     | 435 |
| SP     | 436 |
| SP     | 437 |
| SP     | 438 |
| SP     | 439 |
| SP     | 440 |
| SP     | 441 |
| SP     | 442 |
| SP     | 443 |
| SP     | 444 |
| SP     | 445 |
| SP     | 446 |
| SP     | 447 |
| SP     | 448 |
| SP     | 449 |
| SP     | 450 |
| ST     | 2   |
| NOX    | 203 |
| COMFB  | 2   |
| 4STEP  | 10  |
| RAD    | 3   |
| RAD    | 4   |
| COMFB  | 4   |
| COMFB  | 5   |
| COMFR  | 6   |
| CTOMA  | 3   |
| CTOMA  | 4   |
| COMFR  | 7   |
| COMFB  | 8   |
| COMFR  | 9   |
| COMFB  | 10  |
| COMFR  | 11  |
| COMMON | 2   |
| COMMON | 3   |
| COMMON | 4   |
| COMMON | 5   |
| NOX    | 2   |
| NOX    | 3   |
| NOX    | 4   |
| 4STEP  | 3   |
| NOX    | 6   |
| NOX    | 7   |
| NOX    | 8   |
| NOX    | 9   |
| NOX    | 10  |
| NOX    | 11  |
| 4STEP  | 4   |
| 4STEP  | 5   |
| 4STEP  | 6   |

|       |                                                                   |         |     |
|-------|-------------------------------------------------------------------|---------|-----|
| 2     | CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST                                   | 4STEP   | 7   |
|       | LOGICAL LADTAB,LCONVG,LDEBUG,L_EQUIL,LWRG,LREACT,LENER            | NOX     | 12  |
|       | COMMON/INT/L,M,N,LCV,NCV,NP1,NP1,NI,NJ,NK,NINJ,NINJNK,NV,         | COMMON  | 6   |
| 1     | NNV,NGDTN,K,ISTR,JSTR,KSTR,NVM(39),NM(39),JM(39),ISTFP,           | 4STEP   | 8   |
| 2     | ISOLVE(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(33),NP,    | 4STEP   | 9   |
| 3     | NRHO,NGAM,INLI(30,5),INLO(30,5),JNL(40,5),JNL(40,5),IWEI,         | COMMON  | 9   |
| 4     | INED,MM1,JNT1,JNTQ,JM01,JM00,TDN,JKIN(30,30),IKIN(40,30)          | COMMON  | 10  |
|       | COMMON/INDEX/IPAR,LPREF,ISTUN,INCIMP,ITRAD,NVRX,NVRT,NVRZ,JPLANE  | COMMON  | 11  |
| 1     | PLAM1,LVK,LVD,LVFUO,X,LVFU,LVCO,LVH,LVRX,LVRY,LVRZ,NVF(32),       | 4STEP   | 10  |
| 2     | TJUMP,IRES,TITLE2(20),IMAX,JMAX,KMAX,NVCO,FUNC0,NVH20,NVC02,      | COMMON  | 13  |
| 3     | NVN2,NVCH,NVN2                                                    | 4STEP   | 11  |
|       | COMMON/CNOX/LVH1,LVH2,LVN1,LVN02,LVO,LVOH,LVH20,LVN2,LVO2,        | NOX     | 16  |
| 1     | LVC02,LVFU1,LVC01,MNOX,INOX,ITNOX,SNOK,TNOX                       | NOX     | 17  |
|       | COMMON/THERM/NVN,NVFU,NVOK,NVFUOK,NVTE,MODEM,1DK,FSTOIC,HFU,CP,   | COMMON  | 19  |
| 1     | GASCON,RHOCON,UNICON,PRESS,NVFAV,TCYLW,TINLW,TLIP,ACOEFC(4),      | COMMON  | 16  |
| 2     | T4,DFAC,WFU,WCO,WCO,WCO,WH20,NVN2,NVY,CXX,RAT101,RATIO2,          | COMMON  | 17  |
| 3     | RATIO3,RATIC4,HCO,TAN,ITWALL                                      | COMMON  | 18  |
|       | COMMON/CTDMA/KEND,ICTDMA(32)                                      | 4STEP   | 12  |
|       | COMMON/MIS/AMU,DEM,SMAK,SSUM,LASTEP,HTCEXT,CFR,EMISH,EMISIM,      | CONGEN  | 2   |
| 1     | EMISP,TPUT,RTCD,EMI,RADTH,RADSUR,FMA,FK,SQFK,                     | CONGEN  | 3   |
| 2     | FKFU,FDFU,TFUEL,WFNZ,FL(40),TENTH(40),H(40),FUEL(40),FUO(40)      | CONGEN  | 4   |
| 2     | UTN(40),TIN(40),FUELS(40),SEKIT,IGAM1(29),IGAM2(29)               | 4STEP   | 13  |
|       | COMMON/TURB/NVK,NVD,C1,C2,CD,AK,OUIDXJ(3,3),AKFAC,ALFAC,          | CONGEN  | 6   |
| 1     | MODEL,PR(32),PREF(32),PJAY(32),E                                  | 4STEP   | 14  |
|       | COMMON/RAD/NVE,SIGMA,ABSOR,SCATR                                  | CONGEN  | 8   |
|       | COMMON/REACT/ARCON1,PREXP1,CR1,ARCON2,PREXP2,CR2,MODER            | CONGEN  | 9   |
|       | COMMON/DRDPL/EVAP(192),NTP4,NFMZ,KD(3),YD(3),ZD(3),ALFA(3),       | CONGEN  | 10  |
| 1     | BETA(3),DELTA(3),THETA1(3),THETA2(3),MSL(3),WFF(3),SND(3),        | CONGEN  | 11  |
| 2     | VFUEL(3),RFUEL(3),EVSU(64),HEVAP                                  | CONGEN  | 12  |
|       | COMMON/INJEC/FLOWIN,INJIN(20),JINJ(20),UTINJ(20),WIINJ(20),       | CONGEN  | 13  |
| 1     | AUTNJ(20),THINJ(20),IVINJ(20),JVINJ(20),KVINJ(20),VINJ(20),       | CONGEN  | 14  |
| 2     | EVINJ(20),DVINJ(20),AVINJ(20),TVINJ(20),NUINJ,NVINJ,JSW1,JSW2,    | CONGEN  | 15  |
| 3     | USh,VSh,AFSh,FSW,TSW,WSW,SWH,RHSH                                 | CONGEN  | 16  |
|       | COMMON/CSOC/AVN,NVS1,NVS2,ISOOT,SSOOT,NSOOT,AQ,ARCONN,AAA,BBS,FMG | SOOT    | 8   |
| 1     | GO,MPART,DPART(2),FRACP(2),RHOP,ARCONS,PREXP5,ALPHA,AAS,BBS,DHR   | SOOT    | 9   |
| 2     | LVN,LVS1,LVS2,CTINCP,TINCP,FUTOT                                  | SOOT    | 10  |
|       | COMMON/CRAD/IPAD,SRAD                                             | SOOT    | 11  |
|       | COMMON/CFOUR/PREXP3,ARCON3,CR3,PREXP4,ARCON4,CR4,AA1,BB1,CC1,     | 4STEP   | 15  |
| 1     | AA2,BB2,CC2,AA3,BB3,CC3,AA4,BB4,CC4,RATIO5,RATIO6,RATIC7,         | 4STEP   | 16  |
| 2     | RATIO8,RATIC9,RAT010,RAT011,RAT012,WCh,WH2,WC2H4,LVCh,LVCh1,LVH21 | 4STEP   | 17  |
|       | ENTRY STRIO                                                       | ST      | 5   |
| C---- | ENTRY STRIO IS USED FOR PRELIMINARY CALCULATIONS.                 | COMMENT | 121 |
| C     |                                                                   | COMMENT | 122 |
|       | IXY=1                                                             | ST      | 6   |
|       | ISWP=1                                                            | ST      | 7   |
|       | JSWP=1                                                            | ST      | 8   |
|       | TINF=0,                                                           | ST      | 9   |
|       | L=LP1-1                                                           | ST      | 10  |
|       | M=NP1-1                                                           | S:      | 11  |
|       | M=NP1-1                                                           | ST      | 12  |
|       | LCV=L-1                                                           | ST      | 13  |
|       | NCV=M-1                                                           | ST      | 14  |
|       | NCV=M-1                                                           | ST      | 15  |
|       | NN1=M-1                                                           | ST      | 16  |
|       | NNJ=NINJ                                                          | ST      | 17  |
|       | NINJNK=NINJNK                                                     | ST      | 18  |
|       | NVM(1)=0                                                          | ST      | 19  |
| 1     | DO 1 NV=2,NGAM                                                    | ST      | 20  |
|       | NVM(NV)=NVM(NV-1)+NINJNK                                          | ST      | 21  |
|       | KM(1)=0                                                           | ST      | 22  |
| 2     | DO 2 K=2,NP1                                                      | ST      | 23  |
|       | KM(K)=KM(K-1)+NINJ                                                | ST      | 24  |
|       | JM(J)=0                                                           | ST      | 25  |
|       | MAX=MAX0(NP1,LP1)                                                 | ST      | 26  |

ORIGINAL FAX IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

|     |                                                               |         |     |
|-----|---------------------------------------------------------------|---------|-----|
| 3   | DO 3 J=2,MAX                                                  | ST      | 27  |
|     | JM(J)=JM(J-1)+NI                                              | ST      | 28  |
|     | RETURN                                                        | ST      | 29  |
| C   | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * | ST      | 30  |
|     | ENTRY STRID1                                                  | ST      | 31  |
| C   | *****ENTRY STRID1 IS USED TO CALCULATE INTER-MODAL DISTANCES. | COMMENT | 123 |
| C   | CONTROL VOLUME AREAS AND VOLUMES.                             | COMMENT | 124 |
| C   | *****X=GRID0.                                                 | COMMENT | 125 |
|     | DO 101 I=2,LP1                                                | COMMENT | 126 |
| 101 | XDIF(I)=X(I)-X(I-1)                                           | ST      | 32  |
|     | DO 111 I=2,L                                                  | ST      | 33  |
| 111 | XS(I)=0.5*(X(I+1)-X(I-1))                                     | ST      | 34  |
|     | XS(2)=XS(2)+0.5*XDIF(2)                                       | ST      | 35  |
|     | XS(L)=XS(L)+0.5*XDIF(LP1)                                     | ST      | 36  |
|     | DO 121 I=3,L                                                  | ST      | 37  |
|     | XSU(I)=XDIF(I)                                                | ST      | 38  |
|     | FXP(I)=XDIF(I)/(2.*XS(I))                                     | ST      | 39  |
| 121 | FXM(I)=1.0-FXP(I)                                             | ST      | 40  |
|     | XSU(3)=XSU(3)+XDIF(2)                                         | ST      | 41  |
|     | XSU(L)=XSU(L)+XDIF(LP1)                                       | ST      | 42  |
|     | FXP(2)=FXP(3)                                                 | ST      | 43  |
|     | FXM(2)=1.0-FXP(2)                                             | ST      | 44  |
|     | FXP(L)=FXP(L-1)                                               | ST      | 45  |
|     | FXM(L)=1.0-FXP(L)                                             | ST      | 46  |
| C   | *****Y=GRID0.                                                 | COMMENT | 127 |
|     | DO 102 J=2,MP1                                                | ST      | 47  |
| 102 | YDIF(J)= Y(J)- Y(J-1)                                         | ST      | 48  |
|     | DO 112 J=2,M                                                  | ST      | 49  |
| 112 | YS(J)= 0.5*(Y(J+1)-Y(J-1))                                    | ST      | 50  |
|     | YS(2)=YS(2)+0.5*YDIF(2)                                       | ST      | 51  |
|     | YS(M)=YS(M)+0.5*YDIF(MP1)                                     | ST      | 52  |
|     | RM(2)=R(1)                                                    | ST      | 53  |
|     | DO 122 J=3,M                                                  | ST      | 54  |
|     | RM(J)=.5*(R(J)+R(J-1))                                        | ST      | 55  |
|     | RMV(J+1)=R(J)                                                 | ST      | 56  |
|     | YSV(J)=YDIF(J)                                                | ST      | 57  |
|     | FYP(J)=YDIF(J)/(2.*YS(J))                                     | ST      | 58  |
| 122 | FYM(J)=1.0-FYP(J)                                             | ST      | 59  |
|     | RM(MP1)=R(MP1)                                                | ST      | 60  |
|     | RMV(3)=R(1)                                                   | ST      | 61  |
|     | RMV(MP1)=R(MP1)                                               | ST      | 62  |
|     | YSV(3)=YSV(3)+YDIF(2)                                         | ST      | 63  |
|     | YSV(M)=YSV(M)+YDIF(MP1)                                       | ST      | 64  |
|     | FYP(2)=FYP(3)                                                 | ST      | 65  |
|     | FYM(2)=1.0-FYP(2)                                             | ST      | 66  |
|     | FYP(M)=FYP(M-1)                                               | ST      | 67  |
|     | FYM(M)=1.0-FYP(M)                                             | ST      | 68  |
|     | DO 132 J=2,P                                                  | ST      | 69  |
| 132 | YSR(J)=.5*(RM(J+1)+RM(J))+YS(J)                               | ST      | 70  |
|     | DO 142 J=3,P                                                  | ST      | 71  |
| 142 | YSVR(J)=.5*(RMV(J+1)+RMV(J))+YSV(J)                           | ST      | 72  |
| C   | *****Z=GRID0.                                                 | COMMENT | 128 |
|     | DO 103 K=2,MP1                                                | ST      | 73  |
| 103 | ZDIF(K)=Z(K)-Z(K-1)                                           | ST      | 74  |
|     | DO 113 K=2,N                                                  | ST      | 75  |
| 113 | ZS(K)=0.5*(Z(K+1)-Z(K-1))                                     | ST      | 76  |
|     | ZS(2)=ZS(2)+0.5*ZDIF(2)                                       | ST      | 77  |
|     | ZS(MP1)=ZS(2)                                                 | ST      | 78  |
|     | ZSV(K)=ZDIF(K)                                                | ST      | 79  |
|     | FZP(K)=ZDIF(K)/(2.*ZS(K))                                     | ST      | 80  |
| 123 | FZM(K)=1.0-FZP(K)                                             | ST      | 81  |
|     |                                                               | ST      | 82  |
|     |                                                               | ST      | 83  |
|     |                                                               | ST      | 84  |

```

7SW(NP1)=2DIF(2)+2DIF(NP1)
7FP(NP1)=2DIF(2)/ZS(NP1)
7FM(NP1)=1,-FZP(NP1)
7T(2)=2DIF(2)/ZS(2)
7TM(2)=1,-F2P(2)
C-----BOUNDARY CONDITION INDICES.
ON 290 I=1,LP1
1P=M1NO(I+1,LP1)
1L=MAXO(I-1,1)
JWL(I,I,1)=MIN(JWL(I,I,4),JWL(I,IL,4))
JWL(I,I,2)=JWL(I,I,4)+1
JWL(I,I,3)=JWL(I,I,4)
JWL(I,I,5)=MINC(JWL(I,P,4),JWL(I,I,4),JWL(I,IL,4))
JWL(I,I,1)=M1NO(JWL(I,I,4),JWL(I,IL,4))
JWL(I,I,2)=JWL(I,I,4)
JWL(I,I,3)=JWL(I,I,4)
JWL(I,I,5)=MAXC(JWL(I,P,4),JWL(I,I,4),JWL(I,IL,4))
290 CONTINUE
ON 292 J=1,NP1
JP=M1NO(J+1,NP1)
JL=MAXO(J-1,1)
IWL(I,J,1)=IWL(I,J,4)+1
IWL(I,J,2)=MAXC(IWL(I,J,4),IWL(JL,4))
IWL(I,J,3)=IWL(I,J,4)
IWL(I,J,5)=MINC(IWL(I,JP,4),IWL(I,J,4),IWL(I,JL,4))-1
IWL(I,J,1)=IWL(I,J,4)
IWL(I,J,2)=MINC(IWL(I,J,4),IWL(JL,4))
IWL(I,J,3)=IWL(I,J,4)
IWL(I,J,5)=MAXC(IWL(I,JP,4),IWL(I,J,4),IWL(I,JL,4))+1
292 CONTINUE
RETURN
C ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * ST
C ENTRY STRID2
C-----ENTRY STRID2 IS USED TO CALCULATE THE FINITE-DIFFERENCE
C COEFFICIENTS AXP, AKN, AVP, AYH, AZP, AND AZR.
C
C +---+---+---+---+---+---+---+---+ U-VELOCITY +---+---+---+---+---+---+---+
ON 360 LP=1,NINJNH
360 DU(LP)=0.0
TF(ISOLVE(1)) 303,302,303
303 TF(MODITSTEP,ISOLVE(1)) 302,304,302
304 CONTINUE
1STA=3
2STA=2
3STA=2
NV=1
NGATO=1
C-----OBTAIN DIFFUSION COEFFICIENTS.
CALL GAMMA
ON 30 J=2,M
TS=IWL(I,J,NGATO)
TF=IWLO(J,NGATO)
T2FAC=R(E(J))/R(H)+DFAC*(R(J)-R(H))/)
ON 30 I=TS,TF
1P=JN(E(J))+1
L7P=1 P+NINJ
LP11=LP-1
L7P1=L7P-1
ARFA=RSU(I,J)*VS(J)
AL7=RHO(I,LP1)*W(L7P)*AREA
AL71=RHO(I,LP11)*W(L7P1)*AREA
AL72=RHO(E(J)+AL21)
AL7=AL7/2.
T7=.5*(GAM(LP)+GAM(LP11))*AREA*T2FAC/(ZSW(NP1)*R(J))

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

T7=AMAX1(T2,ARS(ALZ))
C7U(LP)=Z,0ALZ
30 C7(LP)=T7+AL7
DO 301 K=2,M
C-----OBTAIN SOURCE TERMS AND EVAPORATION RATES.
CALL SOURCE
CALL SCMAS
DO 31 I=3,L
JS=JWL(I),NGOT01+1
ARS=XSU(I)*ZS(K)*RM(JS)
LP=KMH(K)+JM(JS)+I
LYM=LP-M
LXM1=LXM-1
LXM=LP-1
IF (JWL(I)=4,FO,JS-1) GO TO 150
ALY=.5*(RHO(LP)+RHO(LYM))*V(LP)*AREA
TY=.5*(GAM(LP)+GAM(LYM))*AREA/YDIF(JS)
GO TO 192
150 ALY=RHO(LYM)*V(LP)*AREA
DIST=.5*YDIF(JS)
IF (JS,EO,2) DIST=YDIF(2)
TY=GAM(LYM)*AREA/DIST
152 IF (JWL(I)=3,4),FO,JS-1) GO TO 154
ALY1=.5*(RHO(LXM)+RHO(LXM1))*V(LXM)*AREA
TY1=.5*(GAM(LXM)+GAM(LXM1))*AREA/YDIF(JS)
GO TO 156
154 ALY1=RHO(LXM1)*V(LXM)*AREA
DIST=.5*YDIF(JS)
IF (JS,EO,2) DIST=YDIF(JS)
TY1=GAM(LXM1)*AREA/DIST
156 ALY=.5*(ALY+ALY1)
TY=.5*(TY+TY1)
TY=AMAX1(TY,-ALY)
CYU(I)=ALY
31 CY(I)=TY+ALY
DO 32 J=2,M
KJM=KM(K)+JPC(J)
AREA=VSP(J)*ZS(K)
IS=IWLI(J,NGOT01)
IE=IWLC(J,NGCT01)
I=IS-1
LXP=KJM+IS
LP=LP-1
LXM=LP-1
200 ALXM=RHO(LXM)*U(LP)*AREA
ALXP=0.
TX=GAM(LXM)*AREA/XS(I)
CXIJ=ALXM
202 TX=AMAX1(TX,ALXP)
TX=AMAX1(TX,-ALXM)
CX=TX+ALXM
TZFAC=R(J)/(R(M)+DFAC*(R(J)-R(M)))
DO 32 I=IS,IE
MAX=JWL(I),NGOT01-1
LTJ=JPC(J)+I
LP=KJM+I
LYP=LP+1
LYP=LP+M
L7P=LP+MINJ
LP11=LP-1
LYP1=LYP-1
L7P1=L7P-1
AXM(LIJ)=CX
AYM(LIJ)=CY(I)
ST 144
ST 145
ST 146
ST 147
ST COMMENT 134
ST 148
ST 149
ST 150
ST 151
ST 152
ST 153
ST 154
ST 155
ST 156
ST 157
ST 158
ST 159
ST 160
ST 161
ST 162
ST 163
ST 164
ST 165
ST 166
ST 167
ST 168
ST 169
ST 170
ST 171
ST 172
ST 173
ST 174
ST 175
ST 176
ST 177
ST 178
ST 179
ST 180
ST 181
ST 182
ST 183
ST 184
ST 185
ST 186
ST 187
ST 188
ST 189
ST 190
ST 191
ST 192
ST 193
ST 194
ST 195
ST 196
ST 197
ST 198
ST 199
ST 200
ST 201
ST 202
ST 203
ST 204
ST 205
ST 206

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                              |    |     |
|--------------------------------------------------------------|----|-----|
| ALM(LIJ)=CZ(LIJ)                                             | ST | 207 |
| AREA=YSR(J)*ZS(K)                                            | ST | 208 |
| IF (I.EQ.J) GO TO 33                                         | ST | 209 |
| ALX=RHO(LP)*AREA*(FRP(I)*U(LXP)+FXM(I)*U(LP))                | ST | 210 |
| ALXP=FP*(I)*ALX                                              | ST | 211 |
| ALXM=FM*(I)*ALX                                              | ST | 212 |
| TX=GAM(LP)*AREA/XS(I)                                        | ST | 213 |
| CXUP=ALX                                                     | ST | 214 |
| GO TO 34                                                     | ST | 215 |
| 33 ALXP=RHO(LP)*U(LXP)*AREA                                  | ST | 216 |
| ALXM=0.                                                      | ST | 217 |
| TY=GAM(LP)*AREA/XS(L)                                        | ST | 218 |
| CXUP=ALXP                                                    | ST | 219 |
| 34 TX=AMAX1(TX,ALXP)                                         | ST | 220 |
| TX=AMAX1(TX,-ALXM)                                           | ST | 221 |
| ALXP(IJ)=TX-ALXP                                             | ST | 222 |
| CX=CXUP                                                      | ST | 223 |
| DIVG(LIJ)=DIVG(LIJ)+CXUP-CXU                                 | ST | 224 |
| CXU=CXUP                                                     | ST | 225 |
| AREA=7S(K)*XSU(I)*RM(J+1)                                    | ST | 226 |
| IF (J.EQ.MAX) GO TO 33                                       | ST | 227 |
| ALY=.25*(RHC(LP)+RHO(LYP))*V(LYP)*AREA                       | ST | 228 |
| ALY1=.25*(RHO(LP11)+RHO(LYP1))*V(LYP1)*AREA                  | ST | 229 |
| ALY=.5*(ALY+ALY1)                                            | ST | 230 |
| TY=.25*(GAM(LP)+GAM(LYP)+GAM(LP11)+GAM(LYP1))*AREA/YDIF(J+1) | ST | 231 |
| TY=AMAX1(TY,ABS(ALY))                                        | ST | 232 |
| CYUP=2.*ALY                                                  | ST | 233 |
| GO TO 36                                                     | ST | 234 |
| 35 IF (JWLO(I,4).EQ.MAX+1) GO TO 157                         | ST | 235 |
| ALY=.5*(RHO(LP)+RHO(LYP))*V(LYP)*AREA                        | ST | 236 |
| TY=.5*(GAM(LP)+GAM(LYP))*AREA/YDIF(MAX+1)                    | ST | 237 |
| GO TO 158                                                    | ST | 238 |
| 157 ALY=RHC(LYP)*V(LYP)*AREA                                 | ST | 239 |
| DIST=.5*YDIF(MAX+1)                                          | ST | 240 |
| IF (MAX.EQ.M) DIST=YDIF(MP1)                                 | ST | 241 |
| TY=GAM(LYP)*AREA/DIST                                        | ST | 242 |
| 158 IF (JWLO(I-1,4).EQ.MAX+1) GO TO 159                      | ST | 243 |
| ALY1=.5*(RHO(LP11)+RHO(LYP1))*V(LYP1)*AREA                   | ST | 244 |
| TY=.5*(GAM(LP11)+GAM(LYP1))*AREA/YDIF(MAX+1)                 | ST | 245 |
| GO TO 160                                                    | ST | 246 |
| 159 ALY1=RHO(LYP1)*V(LYP1)*AREA                              | ST | 247 |
| DIST=.5*YDIF(MAX+1)                                          | ST | 248 |
| IF (MAX.EQ.M) DIST=YDIF(MP1)                                 | ST | 249 |
| TY1=GAM(LYP1)*AREA/DIST                                      | ST | 250 |
| 160 ALY=.5*(ALY+ALY1)                                        | ST | 251 |
| TY=.5*(TY+TY1)                                               | ST | 252 |
| TY=AMAX1(TY,ALY)                                             | ST | 253 |
| CYUP=ALY                                                     | ST | 254 |
| 36 AYP(IJ)=TY-ALY                                            | ST | 255 |
| CY(I)=TY+ALY                                                 | ST | 256 |
| DIVG(LIJ)=DIVG(LIJ)+CYUP-CYU(I)                              | ST | 257 |
| CYU(I)=CYUP                                                  | ST | 258 |
| AREA=XSU(I)*YS(J)                                            | ST | 259 |
| TF(K,F0,M) GO TO 37                                          | ST | 260 |
| ALZ=.25*(RHC(LP)+RHO(LZP))*W(LZP)*AREA                       | ST | 261 |
| ALZ1=.25*(RHO(LP11)+RHO(LZP1))*W(LZP1)*AREA                  | ST | 262 |
| ALZ=.5*(ALZ+ALZ1)                                            | ST | 263 |
| GAMLP=.25*(GAM(LP)+GAM(LZP)+GAM(LP11)+GAM(LZP1))             | ST | 264 |
| TZ=GAMLP*AREA*ZFAC/(ZDIF(K+1)*R(J))                          | ST | 265 |
| TZ=AMAX1(TZ,ARS(ALZ))                                        | ST | 266 |
| CZUP=2.*ALZ                                                  | ST | 267 |
| GO TO 38                                                     | ST | 268 |
| 37 ALZ=RHC(LZP)*W(LZP)*AREA                                  | ST | 269 |
| ALZ1=RHO(LZP1)*W(LZP1)*AREA                                  | ST | 270 |

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                                    |         |     |
|--------------------------------------------------------------------|---------|-----|
| AL2=.5*(AL2+AL7)                                                   | ST      | 271 |
| AL7=AL7/2.                                                         | ST      | 272 |
| TZ=.5*(GAM(LZP)+GAM(LZP1))*AREA*TZFAC/(ZSW(NP1)*R(J))              | ST      | 273 |
| TZ=AMAX1(TZ,ABS(AL7))                                              | ST      | 274 |
| CZUP=2.*AL2                                                        | ST      | 275 |
| 38 A7P(LIJ)=TZ-AL7                                                 | ST      | 276 |
| CZILIJ=TZ+AL2                                                      | ST      | 277 |
| DIVG(LIJ)=DIVG(LIJ)+CZUP-CZULIJ                                    | ST      | 278 |
| CZULIJ=CZUP                                                        | ST      | 279 |
| VOL=KSU(I)*VSU(J)*ZS(K)                                            | ST      | 280 |
| IF (I.EQ.IWL1(J,NGOTO),AND,I.GT.3) VOL=VOL*(1.+.5*XSU(I-1)/KSU(I)) | ST      | 281 |
| IF (I.EQ.IWL0(J,NGOTO),AND,I.LT.1) VOL=VOL*(1.+.5*XSU(I+1)/KSU(I)) | ST      | 282 |
| LXM=LPM-1                                                          | ST      | 283 |
| 39 RDT=0.                                                          | ST      | 284 |
| 392 DIVG(LIJ)=AMAX1(RDT,DIVG(LIJ))                                 | ST      | 285 |
| DU(LP)=VOL/VDF(I)                                                  | ST      | 286 |
| SU(LIJ)=SU(LIJ)*VOL+DU(LP)*(PLKRI-PLP1)+DIVG(LIJ)*U(LP)            | ST      | 287 |
| SP(LIJ)=SP(LIJ)*VOL-DIVG(LIJ)                                      | ST      | 288 |
| 92 CONTINUE                                                        | ST      | 289 |
| C----SOURCE TERM MODIFICATIONS - BOUNDARY CONDITIONS.              | COMMENT | 135 |
| CALL SCMOD                                                         | ST      | 290 |
| C----SOLVE FINITE-DIFFERENCE EQUATIONS IN SOLVE1 AND SOLVE2.       | COMMENT | 136 |
| CALL SOLVF1                                                        | ST      | 291 |
| 301 CONTINUE                                                       | ST      | 292 |
| CALL SOLVE2                                                        | ST      | 293 |
| CALL FROD                                                          | ST      | 294 |
| 302 CONTINUE                                                       | ST      | 295 |
| 440 LP=1,NINJNK                                                    | ST      | 296 |
| 460 DV(LP)=0.0                                                     | ST      | 297 |
| TF(ISCLVE(2)) 403,402,403                                          | ST      | 298 |
| 403 TF(MOD(ISTEP,ISOLVE(2))) 402,404,402                           | ST      | 299 |
| 404 CONTINUE                                                       | ST      | 300 |
| ISTR=2                                                             | ST      | 301 |
| JSTR=3                                                             | ST      | 302 |
| KSTR=2                                                             | ST      | 303 |
| NV=2                                                               | ST      | 304 |
| NGOTO=2                                                            | ST      | 305 |
| C----OBTAIN DIFFUSION COEFFICIENTS.                                | COMMENT | 137 |
| CALL GAMMA                                                         | ST      | 307 |
| DO 40 J=3,N                                                        | ST      | 308 |
| IS=IWLI(J,NGOTO)                                                   | ST      | 309 |
| IF=IWLO(J,NGOTO)                                                   | ST      | 310 |
| TZFAC=RN(J)/(RR(N)+DFAC*(RN(J)-RN(N)))                             | ST      | 311 |
| DO 40 I=IS,IE                                                      | ST      | 312 |
| LP=JN(J)+I                                                         | ST      | 313 |
| LZP=LP+NINJ                                                        | ST      | 314 |
| LP11=LP-NI                                                         | ST      | 315 |
| L7P1=LZP-NI                                                        | ST      | 316 |
| AREA=XS(I)*VSU(J)                                                  | ST      | 317 |
| AL2=RHC(LP)*W(L7P1)*AREA                                           | ST      | 318 |
| AL71=RHO(LP11)*W(LZP1)*AREA                                        | ST      | 319 |
| AL7=.5*(AL2+AL71)                                                  | ST      | 320 |
| AL2=AL7/2.                                                         | ST      | 321 |
| TZ=.5*(GAM(LP)+GAM(LP11))*AREA*TZFAC/(ZSW(NP1)*RN(J))              | ST      | 322 |
| TZ=AMAX1(TZ,ABS(AL7))                                              | ST      | 323 |
| CZULP1=2.*AL7                                                      | ST      | 324 |
| 40 CZ(LP)=TZ+AL2                                                   | ST      | 325 |
| DO 401 K=2,N                                                       | ST      | 326 |
| C----OBTAIN SOURCE TERMS AND EVAPORATION RATES.                    | COMMENT | 138 |
| CALL SOURCE                                                        | ST      | 327 |
| CALL SCMAS                                                         | ST      | 328 |
| DO 41 I=2,L                                                        | ST      | 329 |
| J=JWL(I,K,NGOTO)                                                   | ST      | 330 |

| AREA=ZS(K)*XSET)*ORMV(J+1)                                   | ORIGINAL PAGE IS<br>OF POOR QUALITY | ST | 333 |
|--------------------------------------------------------------|-------------------------------------|----|-----|
| LP=KN(K)+JM(J)+I                                             |                                     | ST | 332 |
| LYP=LP+NI                                                    |                                     | ST | 331 |
| LYN=LP-NI                                                    |                                     | ST | 330 |
| 206 ALYM=RHO(LYM)+VELP1*AREA+                                |                                     | ST | 329 |
| ALYP=0,                                                      |                                     | ST | 328 |
| TY=GAM(LYM)+AREA/YS(J)                                       |                                     | ST | 327 |
| CYU(I)=ALYN                                                  |                                     | ST | 326 |
| 208 TY=AMAX1(TY,ALYP)                                        |                                     | ST | 325 |
| TY=AMAX1(TY,-ALYM)                                           |                                     | ST | 324 |
| 41 CY(I)=TY+ALYM                                             |                                     | ST | 323 |
| DO 42 J=3,N                                                  |                                     | ST | 322 |
| KJM=KN(K)+JM(J)                                              |                                     | ST | 321 |
| IS=IWLI(J,NGOTO)                                             |                                     | ST | 320 |
| IE=IWLO(J,NGOTO)                                             |                                     | ST | 319 |
| LXP=KJM+IS                                                   |                                     | ST | 318 |
| LP=LXP-1                                                     |                                     | ST | 317 |
| LP11=LP-NI                                                   |                                     | ST | 316 |
| LXP1=LXP-NI                                                  |                                     | ST | 315 |
| AREA=YSVR(J)+ZS(K)                                           |                                     | ST | 314 |
| IF (IMLI(J,4),EQ,IS) GO TO 162                               |                                     | ST | 313 |
| ALK=.5*(RHO(LP)+RHO(LXP))+U(LXP)*AREA                        |                                     | ST | 312 |
| TX=.5*(GAM(LP)+GAM(LXP))*AREA/XDIF(IS)                       |                                     | ST | 311 |
| GO TO 163                                                    |                                     | ST | 310 |
| 162 ALK=RHO(LP)*U(LXP)*AREA                                  |                                     | ST | 309 |
| DIST=.5*XDIF(IS)                                             |                                     | ST | 308 |
| IF (IS,EQ,2) DIST=XDIF(2)                                    |                                     | ST | 307 |
| TX=GAM(LP)*AREA/DIST                                         |                                     | ST | 306 |
| 163 IF (IWLI(J-1,4),EQ,IS) GO TO 164                         |                                     | ST | 305 |
| ALK1=.5*(RHO(LP11)+RHO(LXP1))+U(LXP1)*AREA                   |                                     | ST | 304 |
| TX1=.5*(GAM(LP11)+GAM(LXP1))*AREA/XDIF(IS)                   |                                     | ST | 303 |
| GO TO 165                                                    |                                     | ST | 302 |
| 164 ALK1=RHO(LP11)*U(LXP1)*AREA                              |                                     | ST | 301 |
| DIST=.5*XDIF(IS)                                             |                                     | ST | 300 |
| IF (IS,EQ,2) DIST=XDIF(2)                                    |                                     | ST | 299 |
| TX1=GAM(LP11)*AREA/DIST                                      |                                     | ST | 298 |
| 165 ALK=.5*(ALK+ALK1)                                        |                                     | ST | 297 |
| TX=.5*(TX+TX1)                                               |                                     | ST | 296 |
| TX=AMAX1(TX,-ALK)                                            |                                     | ST | 295 |
| CYU=ALK                                                      |                                     | ST | 294 |
| CX=TX+ALK                                                    |                                     | ST | 293 |
| TZFA=RM(J)/(RM(H)+DFAC*(RM(J)-RM(H)))                        |                                     | ST | 292 |
| DO 42 I=IS,IE                                                |                                     | ST | 291 |
| MAX=JWLO(I,NGOTO)-1                                          |                                     | ST | 290 |
| LTJ=JM(J)+I                                                  |                                     | ST | 289 |
| LP=KJM+I                                                     |                                     | ST | 288 |
| LXP=LP+1                                                     |                                     | ST | 287 |
| LYP=LP+NI                                                    |                                     | ST | 286 |
| L7P=LP+NI                                                    |                                     | ST | 285 |
| LP11=LP-NI                                                   |                                     | ST | 284 |
| L7P1=L7P-NI                                                  |                                     | ST | 283 |
| AXM(LIJ)=CX                                                  |                                     | ST | 282 |
| AYM(LIJ)=CY(I)                                               |                                     | ST | 281 |
| AZM(LIJ)=CZ(LIJ)                                             |                                     | ST | 280 |
| AREA=YSVR(J)+ZS(K)                                           |                                     | ST | 279 |
| IF (I,EQ,IE) GO TO 43                                        |                                     | ST | 278 |
| ALK=.25*(RHO(LP)+RHO(LXP))+U(LXP)*AREA                       |                                     | ST | 277 |
| ALK1=.25*(RHO(LP11)+RHO(LXP1))+U(LXP1)*AREA                  |                                     | ST | 276 |
| ALK=.5*(ALK+ALK1)                                            |                                     | ST | 275 |
| TX=.25*(GAM(LP)+GAM(LXP)+GAM(LP11)+GAM(LXP1))*AREA/XDIF(I+1) |                                     | ST | 274 |
| TX=AMAX1(TX,ARS(ALK))                                        |                                     | ST | 273 |
| CXUP=.5*ALK                                                  |                                     | ST | 272 |
| GO TO 44                                                     |                                     | ST | 271 |

|     |                                                 |    |     |
|-----|-------------------------------------------------|----|-----|
| 43  | IF ((WLO(I,J,4),EQ,IE) GO TO 167                | ST | 395 |
|     | ALX=.5*(RHO(LP)+RHO(LXP))+U(LXP)*AREA           | ST | 396 |
|     | TX=.5*(GAM(LP)+GAM(LXP))*AREA/XDIF(I+1)         | ST | 397 |
|     | GO TO 168                                       | ST | 398 |
| 167 | ALK=RHO(LXP)*U(LXP)*AREA                        | ST | 399 |
|     | DIST=.5*XDIF(I+1)                               | ST | 400 |
|     | IF (I,EQ,L) DIST=XDIF(LP1)                      | ST | 401 |
|     | TX=GAM(LP)*AREA/DIST                            | ST | 402 |
| 168 | IF ((WLO(I,J-1,4),EQ,IE) GO TO 169              | ST | 403 |
|     | ALX1=.5*(RHO(LP1)+RHO(LXP1))+U(LXP1)*AREA       | ST | 404 |
|     | TX1=.5*(GAM(LP1)+GAM(LXP1))*AREA/XDIF(I+1)      | ST | 405 |
|     | GO TO 170                                       | ST | 406 |
| 169 | ALX1=RHO(LXP1)*U(LXP1)*AREA                     | ST | 407 |
|     | DIST=.5*XDIF(I+1)                               | ST | 408 |
|     | IF (I,EQ,L) DIST=XDIF(LP1)                      | ST | 409 |
|     | TX1=GAM(LXP1)*AREA/DIST                         | ST | 410 |
| 170 | ALK=.5*(ALX+ALX1)                               | ST | 411 |
|     | TX=.5*(TX+TX1)                                  | ST | 412 |
|     | TX=AMAX3(TX,ALX)                                | ST | 413 |
|     | CXUP=ALK                                        | ST | 414 |
| 44  | AX=(L,I,J)=TX-ALK                               | ST | 415 |
|     | CT=TX+ALK                                       | ST | 416 |
|     | DIVG(L,I,J)=DIVG(L,I,J)+CXUP-CXU                | ST | 417 |
|     | CXU=CXUP                                        | ST | 418 |
|     | ARFA=7S(K)*XS(I)*RNV(J+1)                       | ST | 419 |
|     | IF (J,EQ,JWLO(I,NGOTO)-1) GO TO 45              | ST | 420 |
|     | ALY=RHO(LP)*AREA*(FYP(J)*V(LYP)+FYH(J)*V(LP))   | ST | 421 |
|     | ALYP=FYP(J)*ALY                                 | ST | 422 |
|     | ALYM=FYH(J)*ALY                                 | ST | 423 |
|     | TY=GAM(LP)*AREA/YS(J)                           | ST | 424 |
|     | CYUP=ALY                                        | ST | 425 |
|     | GO TO 46                                        | ST | 426 |
| 45  | ALYP=RHO(LYP)*V(LYP)*AREA                       | ST | 427 |
|     | ALYM=0,                                         | ST | 428 |
|     | TY=GAM(LYP)*AREA/YS(J)                          | ST | 429 |
|     | CYUP=ALYP                                       | ST | 430 |
| 46  | TY=AMAX3(TY,ALYP)                               | ST | 431 |
|     | TY=AMAX3(TY,-A,YM)                              | ST | 432 |
|     | AYP(L,I,J)=TY-ALYP                              | ST | 433 |
|     | CY(I)=TY+1LYM                                   | ST | 434 |
|     | DIVG(L,I,J)=DIVG(L,I,J)+CYUP-CYU(I)             | ST | 435 |
|     | CYU(I)=CYUP                                     | ST | 436 |
|     | AREA=XS(I)*YS(V(J))                             | ST | 437 |
|     | TF(K,FQ,N) GO TO 47                             | ST | 438 |
|     | AL7=.25*(RHO(LP)+RHO(LZP))*W(LZP)*AREA          | ST | 439 |
|     | AL71=.25*(RHO(LP1)+RHO(LZP1))*W(LZP1)*AREA      | ST | 440 |
|     | AL7=.5*(AL7+AL71)                               | ST | 441 |
|     | GAMLP=.25*(GAM(LP)+GAM(LZP)+GAM(LP1)+GAM(LZP1)) | ST | 442 |
|     | T7=GAMLP*AREA*TZFAC/120*F(K+1)*RN(J))           | ST | 443 |
|     | T7=AMAX1(T7,ARS(AL71))                          | ST | 444 |
|     | CZUP=2.*AL7                                     | ST | 445 |
|     | GO TO 48                                        | ST | 446 |
| 47  | ALZ=RHO(LZP)*W(LZP)*AREA                        | ST | 447 |
|     | AL71=RHO(LZP1)*W(LZP1)*AREA                     | ST | 448 |
|     | AL7=.5*(ALZ+AL71)                               | ST | 449 |
|     | AL7=AL7/2.                                      | ST | 450 |
|     | T7=GAM(LZP)*AREA*TZFAC/(ZSH(NP1)*RN(J))         | ST | 451 |
|     | T7=AMAX1(T7,ARS(AL71))                          | ST | 452 |
|     | CZUP=-.9AL7                                     | ST | 453 |
| 48  | A7P(L,I,J)=T7-AL7                               | ST | 454 |
|     | C7(L,I,J)=TZ+ALZ                                | ST | 455 |
|     | DIVG(L,I,J)=DIVG(L,I,J)+CZUP-CZU(L,I,J)         | ST | 456 |
|     | C7U(L,I,J)=CZUP                                 | ST | 457 |
|     | VOL=KRE(I)*YSVR(J)*ZS(K)                        | ST | 458 |

ORIGINAL FACT IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                              |    |     |
|--------------------------------------------------------------|----|-----|
| ALY=.54(ALY+ALY1)                                            | ST | 519 |
| 0.9ST=.54YDIF(J)                                             | ST | 520 |
| XF=CJ.FQ.21 DIST=YDIF(2)                                     | ST | 521 |
| TY=.5*(GAM(LP)+GAM(LP11))*AREA/DIST                          | ST | 522 |
| TX=AMAX1(TY,-ALY)                                            | ST | 523 |
| CYU(I)=ALY                                                   | ST | 524 |
| 51 CY(I)=TY+ALY                                              | ST | 525 |
| DO 52 J=2,M                                                  | ST | 526 |
| KJM=KJM(K)+JPC(J)                                            | ST | 527 |
| IS=IMLIX(J,NGOTO)                                            | ST | 528 |
| IF=IMLIC(J,NGOTO)                                            | ST | 529 |
| LYP=KJM+IS                                                   | ST | 530 |
| LP=LXP+1                                                     | ST | 531 |
| LP1=LXP-NINJ                                                 | ST | 532 |
| LXP1=LXP-NINJ                                                | ST | 533 |
| AREA=YSR(J)*ZSW(K)                                           | ST | 534 |
| ALX=RHO(LP)*U(LXP)*AREA                                      | ST | 535 |
| ALK1=RHO(LP11)*U(LXP1)*AREA                                  | ST | 536 |
| ALK=.5*(ALX+ALK1)                                            | ST | 537 |
| DIST=.5*XNDF(I)                                              | ST | 538 |
| IF (IS.EQ.2) DIST=XDIF(2)                                    | ST | 539 |
| TX=.5*(GAM(LP)+GAM(LP11))*AREA/DIST                          | ST | 540 |
| TX=AMAX1(TX,-ALK)                                            | ST | 541 |
| CXU=ALX                                                      | ST | 542 |
| CX=TR+ALX                                                    | ST | 543 |
| TZFAC=1.0                                                    | ST | 544 |
| DO 52 I=IS,IF                                                | ST | 545 |
| MAX=JMLD(I,NGOTO)-1                                          | ST | 546 |
| LIJ=JME(J)+I                                                 | ST | 547 |
| LP=KJM+I                                                     | ST | 548 |
| LXP=LP+NINJ                                                  | ST | 549 |
| LXP1=LXP-NINJ                                                | ST | 550 |
| LYP=LYP-NINJ                                                 | ST | 551 |
| AXM(LIJ)=CX                                                  | ST | 552 |
| AYM(LIJ)=CY(I)                                               | ST | 553 |
| ATM(LIJ)=C7(LIJ)                                             | ST | 554 |
| AREA=YSR(J)*ZSW(K)                                           | ST | 555 |
| IF (I.EQ.IF) GO TO 53                                        | ST | 556 |
| ALK=.25*(RHO(LP)+RHO(LXP))+U(LXP)*AREA                       | ST | 557 |
| ALK1=.25*(RHO(LP11)+RHO(LXP1))+U(LXP1)*AREA                  | ST | 558 |
| ALK=.5*(ALX+ALK1)                                            | ST | 559 |
| TX=.25*(GAM(LP)+GAM(LXP)+GAM(LP11)+GAM(LXP1))*AREA/XDIF(I+1) | ST | 560 |
| TX=AMAX1(TX,ARS(ALX))                                        | ST | 561 |
| CXUP=2.0*ALX                                                 | ST | 562 |
| GO TO 54                                                     | ST | 563 |
| 53 ALX=RHF(LXP)*U(LXP)*AREA                                  | S" | 564 |
| ALK1=RHO(LXP1)*U(LXP1)*AREA                                  | ST | 565 |
| ALK=.5*(ALY+ALK1)                                            | ST | 566 |
| DIST=.5*XNDF(I+1)                                            | ST | 567 |
| IF (I.EQ.I) DIST=XDIF(LP1)                                   | ST | 568 |
| IF (I.EQ.I) DIST=XDIF(LP1)                                   | ST | 569 |
| TX=.5*(GAM(LXP)+GAM(LXP1))*AREA/DIST                         | ST | 570 |
| TX=AMAX1(TX,ALK)                                             | ST | 571 |
| CXUP=ALX                                                     | ST | 572 |
| 54 AXP(LIJ)=TX-ALX                                           | ST | 573 |
| CX=TX+ALX                                                    | ST | 574 |
| DIVG(LIJ)=DIVG(LIJ)+CXUP-CXU                                 | ST | 575 |
| CXU=CXUP                                                     | ST | 576 |
| AREA=.75V(K)*RS(I)*RM(J+1)                                   | ST | 577 |
| IF (J,FQ,MAX) GO TO 53                                       | ST | 578 |
| ALY=.25*(RHO(LP)+RHO(LYP))*V(LYP)*AREA                       | ST | 579 |
| ALY1=.25*(RHO(LP11)+RHO(LYP1))*V(LYP1)*AREA                  | ST | 580 |
|                                                              | ST | 581 |
|                                                              | ST | 582 |

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                               |         |     |
|---------------------------------------------------------------|---------|-----|
| ALY=.5*(ALY+ALY1)                                             | ST      | 583 |
| TY=.25*(GAM(LP)+GAM(LYP)+GAM(LP11)+GAM(LYP1))*AREA/YDIF(J+1)  | ST      | 584 |
| TY=AMAX1(TY,ARS(ALY))                                         | ST      | 585 |
| CYUP=2.*ALY                                                   | ST      | 586 |
| GO TO 56                                                      | ST      | 587 |
| 55 ALY=RHO(LYP)*V(LYP)*AREA                                   | ST      | 588 |
| ALY1=RHO(LYP1)*V(LYP1)*AREA                                   | ST      | 589 |
| ALY=.5*(ALY+ALY1)                                             | ST      | 590 |
| DIST=.5*YDIF(J+1)                                             | ST      | 591 |
| IF (J,EQ,M) DIST=YDIF(MP1)                                    | ST      | 592 |
| TY=.5*(GAM(LYP)+GAM(LYP1))*AREA/DIST                          | ST      | 593 |
| TY=AMAX1(TY,ALY1)                                             | ST      | 594 |
| CYUP=ALY                                                      | ST      | 595 |
| 56 AYP(LIJ)=TY-ALY                                            | ST      | 596 |
| CY(I)=TY+ALY                                                  | ST      | 597 |
| DIVG(LIJ)=DIVG(LIJ)+CYUP-CYU(I)                               | ST      | 598 |
| CYU(I)=CYUP                                                   | ST      | 599 |
| AREA=XS(I)*YS(J)                                              | ST      | 600 |
| DENSTY=RHO(LP)                                                | ST      | 601 |
| IF (K,EQ,NP1) DENSTY=RHO(LIJ+NINJ)                            | ST      | 602 |
| IF (K,EQ,NP1) WLZP=W(LIJ+2*NINJ)                              | ST      | 603 |
| IF (K,LT,NP1) WLZP=W(LZP)                                     | ST      | 604 |
| ALZ=DENSTY*AREA+(F2P(K)*WLZP+F2M(K)*W(LP))                    | ST      | 605 |
| ALZP=F2P(K)*ALZ                                               | ST      | 606 |
| ALZM=F2M(K)*ALZ                                               | ST      | 607 |
| TZ=GAM(LP)*AREA*TZFACT/(2S(K)*R(J))                           | ST      | 608 |
| CZUP=ALZ                                                      | ST      | 609 |
| TZ=AMAX1(TZ,ALZP)                                             | ST      | 610 |
| TZ=AMAX1(TZ,-ALZM)                                            | ST      | 611 |
| AZP(LIJ)=TZ-ALZP                                              | ST      | 612 |
| CZ(LIJ)=TZ+ALZM                                               | ST      | 613 |
| DIVG(LIJ)=DIVG(LIJ)+CZUP-CZU(LIJ)                             | ST      | 614 |
| CZU(LIJ)=CZUP                                                 | ST      | 615 |
| VOL=XS(I)*YSR(J)*ZSW(K)                                       | ST      | 616 |
| L7M=LP-NINJ                                                   | ST      | 617 |
| 59 RDT=0.                                                     | ST      | 618 |
| 592 DIVG(LIJ)=AMAX1(RDT,DIVG(LIJ))                            | ST      | 619 |
| DW(LP)=VOL/ZDIF(K)/R(J)                                       | ST      | 620 |
| IF (K,EQ,NP1) DW(LP)=DW(LP)*ZDIF(K)/ZSW(K)                    | ST      | 621 |
| SU(LIJ)=SU(LIJ)*VOL+DW(LP)*(P(LZM)-P(LP))+DIVG(LIJ)*W(LP)     | ST      | 622 |
| SP(LIJ)=SP(LIJ)*VOL-DIVG(LIJ)                                 | ST      | 623 |
| IF (TPLAX,EQ,1) GO TO 52                                      | NASAX   | 37  |
| RVAV=0.125*(RHO(LP)+RHO(LP-NINJ))*(V(LP)+V(LP-NINJ)+V(LP+NJ)) | NASAX   | 38  |
| +V(LP-NINJ+NJ)*VOLR(J)                                        | NASAX   | 39  |
| IF (RVAV,LT,0.0) GO TO 57                                     | NASAX   | 40  |
| SP(LIJ)=SP(LIJ)-RVAV                                          | NASAX   | 41  |
| GO TO 52                                                      | NASAX   | 42  |
| 57 SU(LIJ)=SU(LIJ)-RVAV*W(LP)                                 | NASAX   | 43  |
| 52 CONTINUE                                                   | ST      | 626 |
| C---- SOURCE TERM MODIFICATIONS - BOUNDARY CONDITIONS.        | COMMENT | 143 |
| CALL SCMD                                                     | ST      | 627 |
| C---- SOLVE FINITE-DIFFERENCE EQUATIONS IN SOLVE1 AND SOLVE2. | COMMENT | 144 |
| CALL SOLVE1                                                   | ST      | 628 |
| 501 CONTINUE                                                  | ST      | 629 |
| CALL SOLVE2                                                   | ST      | 630 |
| 502 CONTINUE                                                  | ST      | 631 |
| CALL VELMOD                                                   | ST      | 632 |
| C +----- PRESSURE PERTABATION EQUATION ----- C                | ST      | 633 |
| NGOTD=4                                                       | ST      | 634 |
| TF(SOLVE(4)) 603,602,603                                      | ST      | 635 |
| 603 IF(NOD(ISTEP,ISOLVE(4))) 602,604,602                      | ST      | 636 |
| 604 CONTINUE                                                  | ST      | 637 |
| DO 605 LP=1,NINJNK                                            | ST      | 638 |
| 605 PP(LP)=0.0                                                | ST      | 639 |

| ORIGINAL PAGE IS<br>OF POOR QUALITY             |         |     |
|-------------------------------------------------|---------|-----|
| ISTR=2                                          | ST      | 640 |
| JSTR=2                                          | ST      | 641 |
| KSTR=2                                          | ST      | 642 |
| NV=4                                            | ST      | 643 |
| A000 CONTINUE                                   | ST      | 644 |
| CALCULATE CONTINUITY ERRORS.                    | COMMENT | 149 |
| DO 60 J=2,N                                     | ST      | 645 |
| TS=IWLI(J,NGOTO)                                | ST      | 646 |
| IE=IWLE(J,NGOTO)                                | ST      | 647 |
| DO 60 I=TS,IE                                   | ST      | 648 |
| LP=JN(J)+1                                      | ST      | 649 |
| LZP=LP+NINJ                                     | ST      | 650 |
| RHDA=RHO(LP)*XS(I)*YS(J)                        | ST      | 651 |
| CXU(LP)=RHOA*DULZP                              | ST      | 652 |
| 60 C7(LP)=RHDA*DULZP                            | ST      | 653 |
| DO 601 K=2,N                                    | ST      | 654 |
| DO 61 I=2,L                                     | ST      | 655 |
| J=JWL(I,J,NGOTO)+1                              | ST      | 656 |
| LP=KMK(K)+JM(J-1)+I                             | ST      | 657 |
| LYP=LP+NI                                       | ST      | 658 |
| RHDA=RHO(LP)*ZS(K)*XS(I)*RM(J)                  | ST      | 659 |
| CYU(I)=RHOA*DULYP                               | ST      | 660 |
| 61 CY(I)=RHDA*DULYP                             | ST      | 661 |
| DO 62 J=2,M                                     | ST      | 662 |
| KJM=KMK(K)+JM(J)                                | ST      | 663 |
| TS=IWLI(J,NGOTO)                                | ST      | 664 |
| IE=IWLE(J,NGOTO)                                | ST      | 665 |
| LP=KJM+IS-1                                     | ST      | 666 |
| LXP=LP+1                                        | ST      | 667 |
| RHDA=RHO(LP)*YSR(J)*ZS(K)                       | ST      | 668 |
| CXU=RHOA*DULXP                                  | ST      | 669 |
| CY=RHOA*DULXP                                   | ST      | 670 |
| DO 62 I=IS,IE                                   | ST      | 671 |
| MAY=JWL(I,J,NGOTO)-1                            | ST      | 672 |
| LIJ=JM(J)+I                                     | ST      | 673 |
| LP=KJM+I                                        | ST      | 674 |
| LXP=LP+1                                        | ST      | 675 |
| LYP=LP+NI                                       | ST      | 676 |
| LZP=LP+NINJ                                     | ST      | 677 |
| AXM(LIJ)=CX                                     | ST      | 678 |
| AYM(LIJ)=CY(I)                                  | ST      | 679 |
| AZM(LIJ)=C2(LIJ)                                | ST      | 680 |
| IF (I,FO,IE) GO TO 63                           | ST      | 681 |
| RHDA=0.5*(RHO(LP)+RHO(LXP))*YSR(J)*ZS(K)        | ST      | 682 |
| GO TO 64                                        | ST      | 683 |
| 63 RHDA=RHO(LXP)*YSR(J)*ZS(K)                   | ST      | 684 |
| 64 CX=RHOA*DULXP                                | ST      | 685 |
| CXUP=RHOA*DULXP                                 | ST      | 686 |
| SU(LIJ)=CXU-CXUP                                | ST      | 687 |
| CXU=CXUP                                        | ST      | 688 |
| AXP(LIJ)=CX                                     | ST      | 689 |
| IF (J,EQ,MAY) GO TO 65                          | ST      | 690 |
| RHDA=0.5*(RHO(LP)+RHO(LYP))*ZS(K)*XS(I)*RM(J+1) | ST      | 691 |
| GO TO 6A                                        | ST      | 692 |
| 65 RHDA=RHO(LYP)*ZS(K)*XS(I)*RM(J+1)            | ST      | 693 |
| 66 CY(I)=RHOA*DULYP                             | ST      | 694 |
| CYUP=RHOA*DULYP                                 | ST      | 695 |
| SU(LIJ)=SU(LIJ)+CYU(I)-CYUP                     | ST      | 696 |
| CYU(I)=CYUP                                     | ST      | 697 |
| AYP(LIJ)=CY(I)                                  | ST      | 698 |
| IF(K,FO,M) GO TO 67                             | ST      | 699 |
| RHDA=0.5*(RHO(LP)+RHO(LZP))*XS(I)*YS(J)         | ST      | 700 |
| GO TO 6B                                        | ST      | 701 |
| 67 RHDA=RHO(LZP)*XS(I)*YS(J)                    | ST      | 702 |

ORIGINAL PAGE IS  
OF POOR QUALITY

|     |                                                 | ORIGINAL PAGE IS<br>OF POOR QUALITY |     |
|-----|-------------------------------------------------|-------------------------------------|-----|
| C   | ---- HERE PP IS KE, P IS DISSIPATION            | ST                                  | 759 |
|     | READ (NTP1) PP,P                                | ST                                  | 760 |
| 710 | IF (INV,NE,LVFU0X) GO TO 714                    | ST                                  | 761 |
| C   | ---- HERE PP IS KF, P IS DISS                   | ST                                  | 762 |
|     | WRITE (NTP2) PP,P                               | ST                                  | 763 |
| C   | ---- HERE PP IS PH, P IS MFU, DU IS MCD         | ST                                  | 764 |
|     | READ (NTP1) PP,P,DU                             | ST                                  | 765 |
| 714 | IF (INV,NE,LVH) GO TO 720                       | ST                                  | 766 |
| C   | ---- HERE DV IS ENTHALPY, DW IS FAV             | ST                                  | 767 |
|     | RFAO (NTP1) DV,DW                               | ST                                  | 768 |
|     | NCPS=3                                          | NOX                                 | 209 |
|     | NS1=ID02                                        | NOX                                 | 210 |
|     | NS2=ION2                                        | NOX                                 | 211 |
|     | S2(ID02)=RATIO2/SMW(ID02)                       | NOX                                 | 212 |
|     | S2(ION2)=(1.0-RATIO2)/SMW(ION2)                 | NOX                                 | 213 |
| C   | ---- BOUNDARY VALUES OF ENTHALPY.               | COMMENT                             | 149 |
|     | DO 716 K=1,NP1                                  | ST                                  | 769 |
|     | DO 717 I=1,LP1                                  | ST                                  | 770 |
|     | IF (IKIN(I,K).EQ.2.0R.IKIN(I,K).EQ.3) GO TO 712 | ST                                  | 771 |
|     | LP=KM(K)+JM(JWL(I,4))+I                         | ST                                  | 772 |
|     | LPH=L P+NVH(NVH)                                | ST                                  | 773 |
|     | TK=TEMP(LP)                                     | NOX                                 | 214 |
|     | TKINV=1.000/TK                                  | NOX                                 | 215 |
|     | CALL MCPS                                       | NOX                                 | 216 |
|     | F(LPH)=HSUM+UNICON+TK                           | NOX                                 | 217 |
| 712 | IF (IKIN(I,K).EQ.1.0R.IKIN(I,K).EQ.3) GO TO 717 | ST                                  | 775 |
|     | LP=KM(K)+JM(JWL(I,4))+I                         | ST                                  | 776 |
|     | LPH=L P+NVH(NVH)                                | ST                                  | 777 |
|     | TK=TEMP(LP)                                     | NOX                                 | 218 |
|     | TKINV=1.000/TK                                  | NOX                                 | 219 |
|     | CALL MCPS                                       | NOX                                 | 220 |
|     | F(LPH)=HSUM+UNICON+TK                           | NOX                                 | 221 |
| 717 | CONTINUE                                        | ST                                  | 779 |
|     | DO 716 J=1,NP3                                  | ST                                  | 780 |
|     | IF (JWLN(J,K).EQ.1) GO TO 760                   | ST                                  | 781 |
|     | LP=KM(K)+JM(J)+IWLD(J,4)-1                      | ST                                  | 782 |
|     | LPH=L P+NVH(NVH)                                | ST                                  | 783 |
|     | TK=TEMP(LP)                                     | NOX                                 | 222 |
|     | TKINV=1.000/TK                                  | NOX                                 | 223 |
|     | CALL MCPS                                       | NOX                                 | 224 |
|     | F(LPH)=HSUM+UNICON+TK                           | NOX                                 | 225 |
| 760 | IF (J,GT,JW01.AND.J.LT.JW00) GO TO 716          | ST                                  | 785 |
|     | LP=KM(K)+JM(J)+IWLD(J,4)+1                      | ST                                  | 786 |
|     | LPH=L P+NVH(NVH)                                | ST                                  | 787 |
|     | TK=TEMP(LP)                                     | NOX                                 | 226 |
|     | TKINV=1.000/TK                                  | NOX                                 | 227 |
|     | CALL MCPS                                       | NOX                                 | 228 |
|     | F(LPH)=HSUM+UNICON+TK                           | NOX                                 | 229 |
| 716 | CONTINUE                                        | ST                                  | 789 |
| 720 | IF (ISOLVE(NV)) 703,702,703                     | ST                                  | 790 |
| 703 | IF (MODITSTEP,ISOLVE(NV))) 702,704,702          | ST                                  | 791 |
| 704 | CONTINUE                                        | ST                                  | 792 |
|     | ISTR=2                                          | ST                                  | 793 |
|     | JSTR=2                                          | ST                                  | 794 |
|     | KSTR=2                                          | ST                                  | 795 |
| C   | ---- OBTAIN DIFFUSION COEFFICIENTS.             | COMMENT                             | 190 |
|     | CALL GAMMA                                      | ST                                  | 796 |
|     | DO 70 J=2,M                                     | ST                                  | 797 |
|     | IS=IWLD(J,NGOTO)                                | ST                                  | 798 |
|     | TF=IWLD(J,NGOTO)                                | ST                                  | 799 |
|     | T7FAC=R(J)/(R(M)+DFAC*(R(J)-R(M)))              | ST                                  | 800 |
|     | DO 70 I=IS,IE                                   | ST                                  | 801 |
|     | LP=JM(J)+I                                      | ST                                  | 802 |
|     | L7P=LP+NIJ                                      | ST                                  | 803 |

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                 |         |     |
|-------------------------------------------------|---------|-----|
| AREA=XS(I)*YS(J)                                | ST      | 004 |
| ALZ=RHO(LP)*V(LZP)*AREA                         | ST      | 005 |
| ALZ=ALZ/2.                                      | ST      | 006 |
| TZ=GAM(LP)*AREA*TZFAC/(2SW(NP1)*R(J))           | ST      | 007 |
| T7=AMAX1(TZ,ABS(ALZ))                           | ST      | 008 |
| CZU(LP)=2.*ALZ                                  | ST      | 009 |
| 70 C7(LP)=TZ+ALZ                                | ST      | 010 |
| DO 701 K=2,N                                    | ST      | 011 |
| C----OBTAIN SOURCE TERMS AND EVAPORATION RATES. |         |     |
| CALL SOURCE                                     | COMMENT | 151 |
| CALL SOMAS                                      | ST      | 012 |
| DO 71 I=2,L                                     | ST      | 013 |
| J=JWL(I,I,NGOT0)+1                              | ST      | 014 |
| LP=KM(K)+JM(J-1)+I                              | ST      | 015 |
| LYP=LP+NI                                       | ST      | 016 |
| AREA=ZS(K)*XS(I)*RM(J)                          | ST      | 017 |
| ALY=RHO(LP)*V(LYP)*AREA                         | ST      | 018 |
| DIST=.20VDIF(J)                                 | ST      | 019 |
| IF (J,EO,21) DIST=VDIF(2)                       | ST      | 020 |
| TY=GAM(LP)*AREA/DIST                            | ST      | 021 |
| TY=AMAX1(TY,-ALY)                               | ST      | 022 |
| CYU(I)=ALY                                      | ST      | 023 |
| 71 CY(I)=TY+ALY                                 | ST      | 024 |
| DO 72 J=2,M                                     | ST      | 025 |
| KJM=KM(K)+JM(J)                                 | ST      | 026 |
| IS=IWLT(J,NGOT0)                                | ST      | 027 |
| IE=IWLO(J,NGOT0)                                | ST      | 028 |
| LXP=KJM+IS                                      | ST      | 029 |
| LP=LXP-1                                        | ST      | 030 |
| AREA=YSR(J)*ZS(K)                               | ST      | 031 |
| ALY=RHO(LP)*U(LXP)*AREA                         | ST      | 032 |
| DIST=.20XDIF(IS)                                | ST      | 033 |
| IF (IS,EO,2) DIST=XDIF(2)                       | ST      | 034 |
| TX=GAM(LP)*AREA/DIST                            | ST      | 035 |
| TX=AMAX1(TX,-ALX)                               | ST      | 036 |
| CXU=ALX                                         | ST      | 037 |
| CX=TX+ALX                                       | ST      | 038 |
| TZFAC=R(J)/(R(M)+DFAC*(R(J)-R(M)))              | ST      | 039 |
| DO 72 I=IS,IE                                   | ST      | 040 |
| MAT=JUL0(I,NGOT0)-1                             | ST      | 041 |
| LTJ=JM(J)+I                                     | ST      | 042 |
| LP=KJM+I                                        | ST      | 043 |
| LYP=LP+NI                                       | ST      | 044 |
| LZP=LP+NI+NINJ                                  | ST      | 045 |
| AXM(LTJ)=CX                                     | ST      | 046 |
| AYM(LIJ)=CY(I)                                  | ST      | 047 |
| ATM(LIJ)=CZ(LIJ)                                | ST      | 048 |
| AREA=YSR(J)*ZS(K)                               | ST      | 049 |
| TF (I,EO,IFI) GO TO 73                          | ST      | 050 |
| ALX=.25*(RHO(LP)+RHO(LXP))+U(LXP)*AREA          | ST      | 051 |
| TX=.2*(GAM(LP)+GAM(LXP))*AREA/XDIF(I+1)         | ST      | 052 |
| TX=AMAX1(TX,ABS(ALX))                           | ST      | 053 |
| CXUP=2.*ALX                                     | ST      | 054 |
| GO TO 74                                        | ST      | 055 |
| 73 ALX=RHO(LXP)*U(LXP)*AREA                     | ST      | 056 |
| DIST=.20XDIF(I+1)                               | ST      | 057 |
| IF (I,EO,L) DIST=XDIF(LP1)                      | ST      | 058 |
| TX=GAM(LXP)*AREA/DIST                           | ST      | 059 |
| TY=AMAX1(TX,ALX)                                | ST      | 060 |
| CXUP=ALX                                        | ST      | 061 |
| 74 AXP(LIJ)=TX-ALX                              | ST      | 062 |
| CX=TX+ALX                                       | ST      | 063 |
| DIVG(LIJ)=DIVG(LIJ)+CXUP-CXU                    | ST      | 064 |
|                                                 | ST      | 065 |
|                                                 | ST      | 066 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

CXU=CXUP
AREA=7S(K)*XS(I)*RM(J+1)
IF (J,EO,MAX) GO TO 79
ALY=.25*(RHO(LP)+RHO(LYP))*V(LYP)*AREA
TY=.5*(GAM(LP)+GAM(LYP))*AREA/YDIF(J+1)
TY=AMAX1(TY,ABS(ALY))
CYUP=2.*ALY
GO TO 76
75 ALY=RHO(LYP)*V(LYP)*AREA
DIST=.5*YDIF(J+1)
IF (J,EO,M) DIST=YDIF(MP1)
TY=GAM(LYP)*AREA/DIST
TY=AMAX1(TY,ALY)
CYUP=ALY
76 AYP(LIJ)=TY-ALY
CY(I)=TY+ALY
DIVG(LIJ)=DIVG(LIJ)+CYUP-CYU(I)
CYU(I)=CYUP
AREA=XS(I)*YS(J)
IF(K,EO,N) GO TO 77
ALZ=.25*(RHO(LP)+RHO(LZP))*W(LZP)*AREA
TZ=.5*(GAM(LP)+GAM(LZP))*AREA+TZFAC/(ZDIF(K+1)*R(J))
TZ=AMAX1(TZ,ABS(ALZ))
CZUP=2.*ALZ
GO TO 78
77 ALZ=RHO(LZP)*W(LZP)*AREA
ALZ=ALZ/2.
TZ=GAM(LZP)*AREA+TZFAC/(ZSW(NP1)*R(J))
TZ=AMAX1(TZ,ABS(ALZ))
CZUP=2.*ALZ
78 AZP(LIJ)=TZ-ALZ
C7(LIJ)=TZ+ALZ
DIVG(LIJ)=DIVG(LIJ)+CZUP-CZU(LIJ)
CZU(LIJ)=CZUP
VOL=XS(I)*YSR(J)*ZS(K)
79 RDT=0.
792 DIVG(LIJ)=AMAX1(RDT,DIVG(LIJ))
LPF=LP+NVM(NVF(NV))
SU(LIJ)=SU(LIJ)+VOL+DIVG(LIJ)*F(LPF)
SP(LIJ)=SP(LIJ)+VOL-DIVG(LIJ)
72 CONTINUE
C-----SOURCE TERM MODIFICATIONS - BOUNDARY CONDITIONS.
CALL SOMOD
C-----CHEMICAL KINETICS CALCULATIONS.
C
IF(NV,NE,LVH1)GO TO 722
PA=PRESS
DO 723 J=2,M
TS=IWL1(I,J,NGOTO1)
TF=IWL0(I,J,NGOTO1)
DO 723 I=IS,IE
LIJ=I+J*M(J)
LP=LIJ+NM(K)
TK=TEMP(LP)
EMV=AKP(LIJ)+AKM(LIJ)+AYP(LIJ)+AZP(LIJ)+AZM(LIJ)
C-----NODE IN BLOCKAGE - SKIP CALCULATION - GO TO 723
IF(EMV,LT,1.0E-1G)GO TO 723
EMV=EMV-SP(LIJ)
TF(EMV,GT,1.0E20)GO TO 723
LPF=LP+1
LPW=LP-1
LPN=LP+NI
LPB=LP-NI
LPT=LP+NMJ

```

|                                                        | ST      | 067 |
|--------------------------------------------------------|---------|-----|
| CXU=CXUP                                               | ST      | 068 |
| AREA=7S(K)*XS(I)*RM(J+1)                               | ST      | 069 |
| IF (J,EO,MAX) GO TO 79                                 | ST      | 070 |
| ALY=.25*(RHO(LP)+RHO(LYP))*V(LYP)*AREA                 | ST      | 071 |
| TY=.5*(GAM(LP)+GAM(LYP))*AREA/YDIF(J+1)                | ST      | 072 |
| TY=AMAX1(TY,ABS(ALY))                                  | ST      | 073 |
| CYUP=2.*ALY                                            | ST      | 074 |
| GO TO 76                                               | ST      | 075 |
| 75 ALY=RHO(LYP)*V(LYP)*AREA                            | ST      | 076 |
| DIST=.5*YDIF(J+1)                                      | ST      | 077 |
| IF (J,EO,M) DIST=YDIF(MP1)                             | ST      | 078 |
| TY=GAM(LYP)*AREA/DIST                                  | ST      | 079 |
| TY=AMAX1(TY,ALY)                                       | ST      | 080 |
| CYUP=ALY                                               | ST      | 081 |
| 76 AYP(LIJ)=TY-ALY                                     | ST      | 082 |
| CY(I)=TY+ALY                                           | ST      | 083 |
| DIVG(LIJ)=DIVG(LIJ)+CYUP-CYU(I)                        | ST      | 084 |
| CYU(I)=CYUP                                            | ST      | 085 |
| AREA=XS(I)*YS(J)                                       | ST      | 086 |
| IF(K,EO,N) GO TO 77                                    | ST      | 087 |
| ALZ=.25*(RHO(LP)+RHO(LZP))*W(LZP)*AREA                 | ST      | 088 |
| TZ=.5*(GAM(LP)+GAM(LZP))*AREA+TZFAC/(ZDIF(K+1)*R(J))   | ST      | 089 |
| TZ=AMAX1(TZ,ABS(ALZ))                                  | ST      | 090 |
| CZUP=2.*ALZ                                            | ST      | 091 |
| GO TO 78                                               | ST      | 092 |
| 77 ALZ=RHO(LZP)*W(LZP)*AREA                            | ST      | 093 |
| ALZ=ALZ/2.                                             | ST      | 094 |
| TZ=GAM(LZP)*AREA+TZFAC/(ZSW(NP1)*R(J))                 | ST      | 095 |
| TZ=AMAX1(TZ,ABS(ALZ))                                  | ST      | 096 |
| CZUP=2.*ALZ                                            | ST      | 097 |
| 78 AZP(LIJ)=TZ-ALZ                                     | ST      | 098 |
| C7(LIJ)=TZ+ALZ                                         | ST      | 099 |
| DIVG(LIJ)=DIVG(LIJ)+CZUP-CZU(LIJ)                      | ST      | 900 |
| CZU(LIJ)=CZUP                                          | ST      | 901 |
| VOL=XS(I)*YSR(J)*ZS(K)                                 | ST      | 902 |
| 79 RDT=0.                                              | ST      | 903 |
| 792 DIVG(LIJ)=AMAX1(RDT,DIVG(LIJ))                     | ST      | 904 |
| LPF=LP+NVM(NVF(NV))                                    | ST      | 905 |
| SU(LIJ)=SU(LIJ)+VOL+DIVG(LIJ)*F(LPF)                   | ST      | 906 |
| SP(LIJ)=SP(LIJ)+VOL-DIVG(LIJ)                          | ST      | 907 |
| 72 CONTINUE                                            | COMMENT | 152 |
| C-----SOURCE TERM MODIFICATIONS - BOUNDARY CONDITIONS. | ST      | 908 |
| CALL SOMOD                                             | COMMENT | 153 |
| C-----CHEMICAL KINETICS CALCULATIONS.                  | COMMENT | 154 |
| C                                                      | NOX     | 230 |
| IF(NV,NE,LVH1)GO TO 722                                | NOX     | 231 |
| PA=PRESS                                               | NOX     | 232 |
| DO 723 J=2,M                                           | NOX     | 233 |
| TS=IWL1(I,J,NGOTO1)                                    | NOX     | 234 |
| TF=IWL0(I,J,NGOTO1)                                    | NOX     | 235 |
| DO 723 I=IS,IE                                         | NOX     | 236 |
| LIJ=I+J*M(J)                                           | NOX     | 237 |
| LP=LIJ+NM(K)                                           | NOX     | 238 |
| TK=TEMP(LP)                                            | NOX     | 239 |
| EMV=AKP(LIJ)+AKM(LIJ)+AYP(LIJ)+AZP(LIJ)+AZM(LIJ)       | COMMENT | 155 |
| C-----NODE IN BLOCKAGE - SKIP CALCULATION - GO TO 723  | NOX     | 240 |
| IF(EMV,LT,1.0E-1G)GO TO 723                            | NOX     | 241 |
| EMV=EMV-SP(LIJ)                                        | NOX     | 242 |
| TF(EMV,GT,1.0E20)GO TO 723                             | NOX     | 243 |
| LPF=LP+1                                               | NOX     | 244 |
| LPW=LP-1                                               | NOX     | 245 |
| LPN=LP+NI                                              | NOX     | 246 |
| LPB=LP-NI                                              | NOX     | 247 |
| LPT=LP+NMJ                                             | NOX     |     |

LPA=LP-NINJ  
 LIJ2=LID+NM(2)  
 LPFHDX=LP+NM(NVFUDX)  
 IF(IITR,NE,1)GO TO 741  
 IF(ISTEP,NE,INOX)GO TO 741  
 C-----FIRST ITERATION - SET SPECIES CONCENTRATIONS EQUAL TO THOSE  
 C AT NEIGHBORING NODE WHICH HAS ALREADY BEEN SOLVED.  
 IF(IRES,NE,0)GO TO 741  
 IF(I,EQ,ISIGN)TO 743  
 DO 742 II=9,NS  
 FS(LP,II)=FS(LPN,II)  
 IF(I,NE,IE)FS(LPE,II)=FS(LPN,II)  
 TF(J,NE,JWLO(I,NGOTO)-1)FS(LPN,II)=FS(LPN,II)  
 FS(LPT,II)=FS(LPN,II)  
 742 IF(K,FQ,N)FS(LPT,II)=FS(LIJ2,II)  
 GO TO 741  
 743 TF(J,EC,JWLI(I,NGOTO)+1)GO TO 741  
 DO 744 II=9,NS  
 FS(LP,II)=FS(LPS,II)  
 IF(I,NE,IE)FS(LPE,II)=FS(LPS,II)  
 IF(J,NE,JWLO(I,NGOTO)-1)FS(LPN,II)=FS(LPS,II)  
 FS(LPT,II)=FS(LPS,II)  
 744 IF(K,FQ,N)FS(LPT,II)=FS(LIJ2,II)  
 741 CONTINUE  
 C-----PREPARE INPUTS TO CHEMICAL KINETICS PROGRAM CREK.  
 DO 724 II=1,NS  
 S2(II)=FS(LP,II)/SMW(II)  
 724 S1(II)=(AKP(LIJ)+FS(LPE,II)+AKM(LIJ)+FS(LPN,II)+AYP(LTJ))  
 1\*FS(LPN,II)+AYM(LIJ)\*FS(LPS,II)+AZP(LIJ)\*FS(LPT,II)+APM(LIJ))  
 2\*FS(LPB,II))/(EMV\*SMW(II))  
 HSURO=F(LP+NVP(NVH))  
 LPC=I-1+(J-2)\*(NI-2)+(K-KSTR)\*(NI-2)\*(NJ-2)  
 EDKIJ=EDK(LPC)  
 C-----MODER=1, LAMINAR RATES USED.  
 IF(MODER,EQ,1)EDKIJ=1.0E30  
 FUT=F(LPFUDX)  
 IF(NFNZ,NE,0)S1(IDFU)=S1(IDFU)+EVAP(LPC)/(EMV\*SMW(IDFU))  
 FMV=EMV/(XS(I)\*YS(J)\*ZS(K))  
 IF(TK,LT,TNOX)GO TO 735  
 C-----BYPASS CALCULATION IF TEMPERATURE.LT.TNOX (TNOX INPUT  
 C BY USR1).  
 CALL CREK  
 C-----OUTPTS FROM CREK.  
 RHO(LP)=RHOPP  
 TEMP(LP)=TK  
 C-----STORE SPECIES CONCENTRATIONS IN RESPECTIVE ARRAYS.  
 DO 725 II=1,NS  
 FSLP=S2(II)\*SMW(II)  
 IF(FSLP,LT,1.0E-20)GO TO 729  
 C-----CHECK CONVERGENCE.  
 IF(ABS(FSLP-FS(LP,II))/FSLP,GT,0.01)ICONVG=1  
 725 FS(LP,II)=FSLP  
 GO TO 738  
 738 CONTINUE  
 DO 736 II=9,NS  
 FSLP=S1(II)\*SMW(II)  
 TF(FSLP,LT,1.0E-20)GO TO 736  
 IF(ABS(FSLP-FS(LP,II))/FSLP,GT,0.01)ICONVG=1  
 736 FS(LP,II)=FSLP  
 738 CONTINUE  
 LPD2=(LP+NVM(LV02))  
 LPFDU=(LP+NVM(NVFU))  
 LPFU1=(LP+NVM(LVFU))  
 LPOD=(LP+NVM(NVCD))  
 NOX 248  
 NOX 249  
 NOX 250  
 NOX 251  
 NOX 252  
 COMMENT 196  
 COMMENT 197  
 JAN10 1  
 NOX 254  
 4STEP 329  
 NOX 256  
 NOX 257  
 NOX 258  
 NOX 259  
 NOX 260  
 NOX 261  
 NOX 262  
 4STEP 330  
 NOX 264  
 NOX 265  
 NOX 266  
 NOX 267  
 NOX 268  
 NOX 269  
 COMMENT 158  
 NOX 270  
 NOX 271  
 NOX 272  
 NOX 273  
 NOX 274  
 NOX 275  
 NOX 276  
 NOX 277  
 COMMENT 159  
 NOX 278  
 4STEP 331  
 FEB2 3  
 NOX 280  
 NOX 281  
 COMMENT 160  
 COMMENT 161  
 NOX 282  
 COMMENT 162  
 NOX 283  
 NOX 284  
 COMMENT 163  
 NOX 285  
 NOX 286  
 NOX 287  
 COMMENT 164  
 NOX 288  
 NOX 289  
 NOX 290  
 NOX 291  
 4STEP 332  
 NOX 292  
 NOX 294  
 NOX 295  
 NOX 296  
 NOX 297  
 NOX 298  
 NOX 299  
 NOX 300  
 NOX 301

**ORIGINAL PAGE IS  
OF POOR QUALITY**

|         |     |
|---------|-----|
| NOX     | 302 |
| NOX     | 303 |
| NOX     | 304 |
| NOX     | 305 |
| NOX     | 306 |
| 4STEP   | 333 |
| 4STEP   | 334 |
| 4STEP   | 335 |
| 4STEP   | 336 |
| 4STEP   | 337 |
| 4STEP   | 338 |
| NOX     | 307 |
| NOX     | 308 |
| COMMENT | 165 |
| NOX     | 309 |
| ST      | 910 |
| NOX     | 310 |
| ST      | 912 |
| ST      | 913 |
| NOX     | 311 |
| NOX     | 312 |
| ST      | 914 |
| COMMENT | 166 |
| NOX     | 313 |
| NOX     | 314 |
| NOX     | 315 |
| NOX     | 316 |
| NOX     | 317 |
| NOX     | 318 |
| NOX     | 319 |
| NOX     | 320 |
| NOX     | 321 |
| NOX     | 322 |
| NOX     | 323 |
| 4STEP   | 339 |
| 4STEP   | 340 |
| 4STEP   | 341 |
| 4STEP   | 342 |
| NOX     | 324 |
| COMMENT | 167 |
| NOX     | 325 |
| NOX     | 326 |
| NOX     | 327 |
| NOX     | 328 |
| NOX     | 329 |
| COMMENT | 168 |
| NOX     | 330 |
| NOX     | 331 |
| NOX     | 332 |
| NOX     | 333 |
| NOX     | 334 |
| COMMENT | 169 |
| NOX     | 335 |
| NOX     | 336 |
| NOX     | 337 |
| NOX     | 338 |
| NOX     | 339 |
| NOX     | 340 |
| NOX     | 341 |
| NOX     | 342 |
| ST      | 915 |
| ST      | 916 |
| ST      | 917 |
| ST      | 918 |

$$\text{EQUATIONS} \quad A = A + A - A + A - A + A - A + A - A + A - A$$

ORIGINAL PAGE IS  
OF POOR QUALITY

```

DO 730 NV=LVRX,LVRZ
IF (ISCLVE(NV)) 733,730,733
733 IF (MD(ISTEP,ISOLVE(NV))) 730,734,730
734 IF (IND,F0,0) CALL GAMRAD
    XF (IPMAX,F0,1) TNO=1
    CALL STRAD
    CALL FMOD
730 CONTINUE
C ----- COMPUTE AVG RADIATION FLUX -----
DO 740 K=1,NP1
DO 740 J=1,NP1
KJM=KM(K)+JM(J)
DO 740 I=1,LP1
    LP=KJM+I
    LPRX=LP+NVM(NVRX)
    LPRY=LP+NVM(NVRY)
    LPRZ=LP+NVM(NVRZ)
    LPFAV=LP+NVM(NVFAV)
    740 FIL(LPFAV)=(F(LPRX)+F(LPRY)+F(LPRZ))/3.
C ----- HERE PP IS PHI, P IS NFM, DU IS NCO
    WRITE (NTP2) PP,P,DU
C ----- HERE DV IS ENTHALPY, DW IS FAV
    WRITE (NTP2) DV,DW
C ----- HERE U IS FX, V IS FY, W IS FZ
    WRITE (NTP2) U,V,W
    WRITE (NTP2) TEMP,RHO
    WRITE (NTP2) FCH,FH2
    WRITE (NTP2) ANUC,SOOT1,SOOT2
    WRITE (NTP2) FS
799 NTPT=NTP1+NTP2
NTP1=NTPT-NTP1
NTP2=NTPT-NTP2
200 ISTEP=ISTEP+1
IXY= 3-IXY
RETURN
END
SUBROUTINE STRAD
COMMON/Coeff/A(40),B(40),EP(30),DP(30),APP(30),BPP(30)
COMMON F(3500),OU(500),DV(500),DW(500),
1 ANUC(500),SOOT1(500),SOOT2(500),FCH(500),FH2(500),FS(500,14),
1 RHO(500),VIS(500),AHSR(500),SCTR(500),SU(100),SP(100),
1 DRHOOP(500),
1 AXP(100),AYX(100),AYP(100),AYM(100),AZP(100),
2 APM(100),C7(100),CY(10),C2U(100),CYU(10),
3 C2P(100),CYF(10),DIVG(100),NTP1,NTP2
1,AYMK(192),AXPK(192),AYMK(192),AYPK(192),AZMK(192),AZPK(192),
2 SUK(192),SPK(192)
DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)
DIMENSION GAM(500)
EQUIVALENCE (F(1),U(1)),(F(501),V(1)),(F(1001),W(1))
EQUIVALENCE (F(1901),PP(1)),(F(2001),P(1)),(F(2501),TEMP(1))
EQUIVALENCE (F(3001),GAM(1))
COMMON/CYL/R(30),RM(30),RMV(30),YSR(30),YSVR(30),IPMAX
COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),
1 YSV(30),ZSW(30),XDIF(40),YDIF(30),ZDIF(30),FXP(40),FXM(40),
2 FYP(30),FYM(30),FZP(30),FZN(30),DT,TIME
COMMON
1/CINDEX/IDCO,IDFU,IDO2,IDM2,IDH20,IDCO2,IDM1,IDH2,IDN1,IDNO,IDNO2
1,IND,IOOM,IMCPS,ILC,ILH,IMAT,ITER,JJJ,M1,M2,M3,MA,MGL08,MGL09P,
2 MLM,NO,NSP,NS1,NS2,IOCH
3/CCHEMI/CPSUM,HSUM,FQ,PPLN,RGAS,RGASTM,SMINV,TRINV,TLM,LNG
4/CPARAP/ASUB(30,31),EMV,ER,HSUB0,MDERUG,MS,PA,QQ,Q1,Q2,Q3,Q4,RHOFP,
4 SM,SMV(30),SMO,S1(30),S2(30),TK,LADIA,R,DEBUG,LEQUIL,LREACT,
4 LENFR,EDK1J,LCNVGA
ST      919
ST      920
ST      921
ST      922
ST      923
ST      924
ST      925
ST      926
ST      927
ST      928
ST      929
ST      930
ST      931
ST      932
ST      933
ST      934
ST      935
ST      936
ST      937
ST      938
ST      939
ST      940
ST      941
ST      942
ST      943
ST      944
ST      945
ST      946
ST      947
ST      948
ST      949
ST      950
ST      951
STR      2
MASAK   44
COMFB   2
4STEP   18
SOOT    403
NOX     343
4STEP   343
SOOT    403
NOX     343
ST      945
ST      946
ST      947
ST      948
ST      949
ST      950
ST      951
CTDMA   2
CTDMA   44
CTDMA   2
CTDMA   18
RAD     3
RAD     4
RAD     4
RAD     5
RAD     6
RAD     7
RAD     8
RAD     9
RAD     10
RAD     11
CTDMA   3
CTDMA   4
CTDMA   4
CTDMA   5
CTDMA   6
CTDMA   7
CTDMA   8
CTDMA   9
CTDMA   10
CTDMA   11
COMMON   2
COMMON   3
COMMON   4
COMMON   5
NOX     2
NOX     3
NOX     4
NOX     5
NOX     6
NOX     7
NOX     8
NOX     9
NOX     10
NOX     11
COMMON   2
COMMON   3
COMMON   4
COMMON   5
NOX     2
NOX     3
NOX     4
NOX     5
NOX     6
NOX     7
NOX     8
NOX     9

```

```

      DOUBLE PRECISION CPSUM,ENV,ER,FQ,HSUBD,HSUM,PA,PPLN,Q0,Q1,Q2,Q3,
1  Q4,RGAS,RGASIN,RHOPP,SM,SMINV,SMW,S1,S2,TK,TKINV,TLN,SMO
2,FIUT,FST
      COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CE8U1,CE8U2,
1  CE8U3,CE8U4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,
2  CEXP1,CEXP2,CEXP3,CEXP4,FIUT,FST
      LOGICAL LADTAR,LCONVG,LDEBUG,LEQUIL,I,NRG,LREACT,LENER
      COMMON/INT/L,M,N,LCV,NCV,LP1,MP1,MP1,NI,NJ,NK,NINJ,NINJHK,NV,
1  NVV,NGOTO,K,ISTP,JSTR,KSTR,NVM(32),NM(30),JM(30),ISTEP,
2  ISOLVE(32),IPRINT(32),TITLE(10,32),IXY,ISWP,JSWP,RELAX(32),NP,
3  NRHO,NGAM,IWLI(30,5),IWLO(30,5),JWL0(40,5),JWL1(40,5),IVEI,
4  TWD0,PM1,JWIT,JWTO,JWPO,IMD,JKIN(30,30),IKEIM(40,30)
      COMMON/INDEX/IPAR,LPREF,LISTM,INCIMP,ITRAD,NVRX,NVRV,NVRZ,JPLANE
1  PLAXM1,LVK,LVD,LVFUOX,LVFU1,LVCO,LVM,LVRX,LVRT,LVRZ,NVF(32),
2  TJJHP,IPFS,TITLEF2(20),IMAX,JMAX,KMAX,NVCO,FUNCC,NVH20,NVC02,
3  NVN2,NVCH,NVH2
      COMMON/CNOX/LVH1,LVH2,LVN1,LVNO,LVNQ2,LVD,LVNH,LVH20,LVN2,LVQ2,
1  LVC02,LVFU1,LVC01,MNOX,INOX,ITNOX,SMOX,TNOX
      COMMON/THERM/NVH,NVFU,NVDX,NVFUOX,NVTE,NODEN,IKS,FSTOIC,HFU,CP,
1  G45CON,RHCON,UNICON,PRESS,NVFAV,TCYLW,TINLW,TLIP,ACDEF(4),
2  T4,DFAC,WFU,WCO2,WCO,WDX,WH20,WN2,MYY,CXX,RATIO1,RATIO2,
3  RATIO3,RATIO4,HCD,TAN,ITWALL
      COMMON/CTDMA/KEND,ICTDMA(32)
C-----SUBROUTINE STRAD IS USED FOR CALCULATING THE FINITE-
C DIFFERENCE COEFFICIENTS IN THE RADIATION FLUX EQUATIONS
C AND FOR SOLVING THESE EQUATIONS BY USING THE
C TRI-DIAGONAL-MATRIX-ALGORITHM(TDMA).
C
      KONTRO=NV=LVRX+1
      GO TO (100,200,300),KONTRO
C ----- X-DIRECTION FLUX -----
100 CONTINUE
      DO 101 K=2,N
      NVKM=NVM(NVRX)+KM(K)
C-----ORTAIN SOURCE TERMS (SORAD) AND BOUNDARY CONDITIONS (SOMOD).
      CALL SORAD
      CALL SOMOD
      DO 102 J=2,M
      TX=0.
      IS=IWLI(J,NGOTO)
      IE=IWLC(J,NGOTO)
      DO 103 T=IS,IF
      LIJ=JM(JT+I)
      LP=LIJ+KPK(K)
      LXP=LP+1
      AXM(LIJ)=TX
      TX=.5*(GAM(LP)+GAM(LXP))/XDIF(I+1)
      AXP(LIJ)=TX
      SH(LIJ)=SU(LIJ)*XS(I)
      SP(LIJ)=SP(LIJ)*XS(I)
103 CONTINUE
      AXP(LIJ)=0.
102 CONTINUE
C-----TOMA SOLUTION.
      DO 104 J=2,M
      LPF=NVKM+JM(J)
      IS=IWLI(J,NGOTO)
      IF=IWLC(J,NGOTO)
      ISTR1=IS-1
      A(IFSTP)=0.
      B(IFSTP)=0.
      DO 105 I=IS,IF
      LIJ=JM(I)+I
      SP(LIJ)=SP(LIJ)-AXM(LIJ)+A(I-1)
      A(I)=SP(LIJ)
      B(I)=SP(LIJ)-SP(LIJ)
      105 CONTINUE
      104 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 106 I=1,M
      TX=0.
      DO 107 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      107 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      106 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 108 I=1,M
      TX=0.
      DO 109 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      109 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      108 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 110 I=1,M
      TX=0.
      DO 111 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      111 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      110 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 112 I=1,M
      TX=0.
      DO 113 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      113 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      112 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 114 I=1,M
      TX=0.
      DO 115 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      115 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      114 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 116 I=1,M
      TX=0.
      DO 117 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      117 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      116 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 118 I=1,M
      TX=0.
      DO 119 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      119 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      118 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 120 I=1,M
      TX=0.
      DO 121 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      121 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      120 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 122 I=1,M
      TX=0.
      DO 123 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      123 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      122 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 124 I=1,M
      TX=0.
      DO 125 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      125 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      124 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 126 I=1,M
      TX=0.
      DO 127 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      127 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      126 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 128 I=1,M
      TX=0.
      DO 129 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      129 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      128 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 130 I=1,M
      TX=0.
      DO 131 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      131 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      130 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 132 I=1,M
      TX=0.
      DO 133 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      133 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      132 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 134 I=1,M
      TX=0.
      DO 135 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      135 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      134 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 136 I=1,M
      TX=0.
      DO 137 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      137 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      136 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 138 I=1,M
      TX=0.
      DO 139 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      139 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      138 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 140 I=1,M
      TX=0.
      DO 141 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      141 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      140 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 142 I=1,M
      TX=0.
      DO 143 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      143 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      142 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 144 I=1,M
      TX=0.
      DO 145 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      145 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      144 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 146 I=1,M
      TX=0.
      DO 147 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      147 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      146 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 148 I=1,M
      TX=0.
      DO 149 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      149 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      148 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 150 I=1,M
      TX=0.
      DO 151 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      151 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      150 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 152 I=1,M
      TX=0.
      DO 153 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      153 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      152 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 154 I=1,M
      TX=0.
      DO 155 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      155 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      154 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 156 I=1,M
      TX=0.
      DO 157 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      157 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      156 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 158 I=1,M
      TX=0.
      DO 159 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      159 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      158 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 160 I=1,M
      TX=0.
      DO 161 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      161 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      160 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 162 I=1,M
      TX=0.
      DO 163 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      163 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      162 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 164 I=1,M
      TX=0.
      DO 165 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      165 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      164 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 166 I=1,M
      TX=0.
      DO 167 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      167 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      166 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 168 I=1,M
      TX=0.
      DO 169 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      169 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      168 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 170 I=1,M
      TX=0.
      DO 171 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      171 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      170 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 172 I=1,M
      TX=0.
      DO 173 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      173 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      172 CONTINUE
      CALL SORAD
      CALL SOMOD
      DO 174 I=1,M
      TX=0.
      DO 175 J=1,M
      LIJ=JM(I)+J
      SP(LIJ)=SP(LIJ)+A(J)*B(I-J)
      175 CONTINUE
      TX=SP(LIJ)/B(I)
      SP(LIJ)=TX
      174 CONTINUE

```

```

A(IJ)=AP(LIJ)/STORE
105 R(IJ)=(SU(LIJ)+AP(LIJ)*R(I-1))/STORE
JSUM=IS+TF
DO 106 II=IS,IE
I=ISUM-II
LP=LPF+I
106 F(LP)=A(IJ)*F(LP+1)+B(IJ)
104 CONTINUE
101 CONTINUE
RETURN
C ----- Y-DIRECTION FLUX -----
200 CONTINUE
DO 201 K=2,M
NVKN=NVM(NVRY)+KM(K)
(-----) ORTATN SOURCE TERMS (SORAD) AND BOUNDARY CONDITIONS (SOMOD).
CALL SORAD
CALL SOMOD
DO 202 I=2,L
TY=0.
JS=JUL(I,I,NGCTO)+1
JE=JWL(I,I,NGCTO)-1
DO 203 J=JS,JE
LIJ=JM(J)+I
LP=LIJ+KM(K)
LYP=LP+NI
AYM(LIJ)=TY
TY=.5*(GAM(LP)+GAM(LYP))/YDIF(J+1)*RN(J+1)
AYP(LIJ)=TY
SU(LIJ)=SU(LIJ)*YS(J)*R(J)
SP(LIJ)=SP(LIJ)*YS(J)*R(J)
203 CONTINUE
AYP(LIJ)=0.
202 CONTINUE
C----- TDMA SOLUTION.
DO 204 I=2,L
LPF=MVKM+I
JS=JUL(I,I,NGOTO)+1
JE=JWL(I,I,NGOTO)-1
JSTR1=JS-1
A(JSTR1)=0.
R(JSTR1)=0.
DO 205 J=JS,JE
LID=JM(J)+I
STORE=AYP(LIJ)+AYM(LIJ)-SP(LIJ)-AYN(LIJ)*A(J-1)
A(J)=AYP(LIJ)/STORE
205 R(J)=(SU(LIJ)+AYM(LIJ)+R(J-1))/STORE
JSUM=JS+JE
DO 206 JJ=JS,JE
J=JSUM-JJ
LP=LPF+JR(J)
LYP=LP+NI
206 FILP)=A(J)*F(LYP)+R(J)
204 CONTINUE
201 CONTINUE
RETURN
C ----- Z-DIRECTION FLUX -----
300 KSUM=2+N
DO 301 J=2,M
JPLAHF=J
NVJR=NVM(NVRZ)+JME(J)
C-----) ORTATN SOURCE TERMS (SORAD) AND BOUNDARY CONDITIONS (SOMODZ).
CALL SORAD
CALL SOMODZ
IS=JWL(I,I,NGOTZ)

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|     | COMMENT | 177 |
|-----|---------|-----|
| STR |         | 94  |
| STR |         | 95  |
| STR |         | 96  |
| STR |         | 97  |
| STR |         | 98  |
| STR |         | 99  |
| STR |         | 100 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

IF=IWLOC(J,NGOTO)
DO 302 I=IS,IF
  LIJ=JM(J)+I
  T7=0.
  DO 303 K=2,N
    LTK=JM(K)+I
    LP=LJ+NM(K)
    LTP=LP+NMJ
    AZM(ILIK)=T7
    T2=(GAM(LP)+GAM(LTP))/(2DIF(K+1)*R(J))
    AZP(ILIK)=T2
    SU(LIK)=SU(LIK)+ZS(K)*R(J)
    SP(LIK)=SP(LIK)+ZS(K)*R(J)
  303 CONTINUE
  A7P(ILIK)=0.
  302 CONTINUE
C-----TOMA SOLUTION.
  DO 304 I=IS,IE
    A(I)=0.
    R(I)=0.
    LPF=NVJM+I
    DO 305 K=2,N
      LIK=JM(K)+I
      STORE=AZP(ILIK)+AZM(ILIK)-SP(ILIK)-AZR(ILIK)*A(K-1)
      A(K)=AZP(ILIK)/STORE
      305 R(K)=(SU(LIK)+AZM(ILIK)*B(K-1))/STORE
    DO 306 KK=2,N
      K=KSUM-KK
      LD=LPF+NM(K)
      LZD=LP+NMJ
      306 F(LP)=A(K)+F(LZP)+B(K)
    304 CONTINUE
    301 CONTINUE
    RETURN
    END
    FUNCTION TSOLVE(TWN,TGAS,RAD,HTCI,STG,ENI,ITRA0)
C-----SOLVE FOR WALL TEMPERATURES.
    ITR=MIND(ITRA0,2)
    KOUNT=0
    10 TW=TWN
    KOUNT=KOUNT+1
    IF(KOUNT.GT.10)GO TO 30
    TW2=TW+TW
    C-----RADIATION.
    ORH=2.0*EMI*(STG+TW2+TW2-RAD)*FLOAT(ITR-1)
    C-----CONVECTION.
    QCH=HTCI*(TW-TGAS)
    NORM=8.0*EMI*STG+TW+TW2*FLOAT(ITR-1)
    DOCH=HTCI
    FTH=ORH+QCH
    DFTW=NORM+DOCH
    TWN=TW-FTH/(DFTW+1.E-30)
    IF(ABS(TWN/TW-1.).GT..001)GO TO 10
    30 TSOLVE=TWN
    RETURN
    END
    SUBROUTINE ABSORBITS,T,PATH,SOOTK,PCO2,PH2O,ALPHA1
    
```

SUBROUTINE ABSROB COMPUTES THE ABSORPTIVITIES (WITH RESPECT TO A BLACKBODY SOURCE) OF ISOTHERMAL, HOMOGENEOUS MIXTURES OF SOO CO<sub>2</sub> AND H<sub>2</sub>O AT A TOTAL PRESSURE OF 1 ATMOSPHERE. ABSORPTIVITIES CALCULATED BY SUBROUTINE ABSROB ARE IN GOOD AGREEMENT WITH ABSORPTIVITIES COMPUTED BY THE ABSORBTION CODE.

ORIGINAL PAGE IS  
OF POOR QUALITY

EXPERIMENTAL MEASUREMENTS.

FOR A BLACKBODY SOURCE TEMPERATURE EQUAL TO THE MIXTURE TEMPERATURE, ABSORPTIVITY EQUALS EMISSIVITY. EMISSIVITIES SO CALCULATED ARE IN GOOD AGREEMENT WITH SPECTRAL CALCULATIONS AND WITH EXPERIMENTAL MEASUREMENTS.

EACH CALL ON SUBROUTINE ABSORR REQUIRES LESS THAN 12 MILLISECOND OF CPU TIME ON AN IBM 370/190.

INPUTS

1. TS (IN DEGREES KELVIN) IS BLACKBODY SOURCE TEMPERATURE. TS MUST BE GREATER THAN OR EQUAL TO 300.K AND LESS THAN OR EQUAL TO 2000.K.

2. T (IN DEGREES KELVIN) IS MIXTURE TEMPERATURE. T MUST BE GREAT THAN OR EQUAL TO 300.K AND LESS THAN OR EQUAL TO 2000.K.

3. PATH (IN METRES) IS MIXTURE PATHLENGTH. PATH MUST BE GREATER THAN OR EQUAL TO 0.0 METRES.

4. SOOTK (IN INVERSE METRES) IS ABSORPTION COEFFICIENT OF SOOT AT A WAVELENGTH OF 0.94 MICRONESTERS. SOOTK IS (APPROXIMATELY) RELATED TO THE SOOT VOLUME FRACTION, FV, BY ESOOTK=7FV/0.94E-6. SOOTK MUST BE GREATER THAN OR EQUAL TO 0.0 INVERSE METRES.

5. PCO2 (IN ATMOSPHERES) IS PARTIAL PRESSURE OF CO2 IN A MIXTURE WHOSE TOTAL PRESSURE IS 1 ATMOSPHERE. PCO2 MUST BE GREATER THAN OR EQUAL TO 0.0 ATMOSPHERES AND LESS THAN OR EQUAL TO 1.0 ATMOSPHERES. FOR PCO2 LESS THAN 0.0011 ATMOSPHERES, THE CONTRIBUTION OF CO2 TO THE MIXTURE ABSORPTIVITY IS ASSUMED TO BE ZERO. FOR (PATH\*TS/T\*PCO2) LESS THAN 0.0011 ATM-METRE, THE CONTRIBUTION OF CO2 TO THE MIXTURE ABSORPTIVITY IS ASSUMED TO BE ZERO. IF (PATH\*TS/T\*PCO2) EXCEEDS 9.98 ATM-METRE, SUBROUTINE ABSORR ABORTS AND RETURNS A VALUE OF ABSORPTIVITY SET AT -1.E30. A DIAGNOSTIC MESSAGE IS PROVIDED.

6. PH2O (IN ATMOSPHERES) IS PARTIAL PRESSURE OF H2O IN A MIXTURE WHOSE TOTAL PRESSURE IS 1 ATMOSPHERE. PH2O MUST BE GREATER THAN OR EQUAL TO 0.0 ATM AND LESS THAN OR EQUAL TO (1.0-PCO2). FOR PH2O LESS THAN 0.0011 ATM, THE CONTRIBUTION OF H2O TO THE MIXTURE ABSORPTIVITY IS ASSUMED TO BE ZERO. FOR (PATH\*TS/T\*PH2O) LESS THAN 0.0011 ATM-METRE, THE CONTRIBUTION OF H2O TO THE MIXTURE ABSORPTIVITY IS ASSUMED TO BE ZERO. IF (PATH\*TS/T\*PH2O) EXCEEDS 9.98 ATM-METRE, SUBROUTINE ABSORR ABORTS AND RETURNS A VALUE OF ABSORPTIVITY SET AT -1.E30. A DIAGNOSTIC MESSAGE IS PROVIDED.

OUTPUTS

|       |    |
|-------|----|
| ABSOR | 10 |
| ABSOR | 11 |
| ABSOR | 12 |
| ABSOR | 13 |
| ABSOR | 14 |
| ABSOR | 15 |
| ABSOR | 16 |
| ABSOR | 17 |
| ABSOR | 18 |
| ABSOR | 19 |
| ABSOR | 20 |
| ABSOR | 21 |
| ABSOR | 22 |
| ABSOR | 23 |
| ABSOR | 24 |
| ABSOR | 25 |
| ABSOR | 26 |
| ABSOR | 27 |
| ABSOR | 28 |
| ABSOR | 29 |
| ABSOR | 30 |
| ABSOR | 31 |
| ABSOR | 32 |
| ABSOR | 33 |
| ABSOR | 34 |
| ABSOR | 35 |
| ABSOR | 36 |
| ABSOR | 37 |
| ABSOR | 38 |
| ABSOR | 39 |
| ABSOR | 40 |
| ABSOR | 41 |
| ABSOR | 42 |
| ABSOR | 43 |
| ABSOR | 44 |
| ABSOR | 45 |
| ABSOR | 46 |
| ABSOR | 47 |
| ABSOR | 48 |
| ABSOR | 49 |
| ABSOR | 50 |
| ABSOR | 51 |
| ABSOR | 52 |
| ABSOR | 53 |
| ABSOR | 54 |
| ABSOR | 55 |
| ABSOR | 56 |
| ABSOR | 57 |
| ABSOR | 58 |
| ABSOR | 59 |
| ABSOR | 60 |
| ABSOR | 61 |
| ABSOR | 62 |
| ABSOR | 63 |
| ABSOR | 64 |
| ABSOR | 65 |
| ABSOR | 66 |
| ABSOR | 67 |
| ABSOR | 68 |
| ABSOR | 69 |
| ABSOR | 70 |
| ABSOR | 71 |
| ABSOR | 72 |
| ABSOR | 73 |

SUBROUTINE ABSOR RETURNS ALPHA, THE (DIMENSIONLESS)  
ABSORPTIVITY OF A MIXTURE OF S<sub>CO2</sub>, CO<sub>2</sub> AND H<sub>2</sub>O AT A TOTAL  
PRESSURE OF 1 ATMOSPHERE.

THE FOLLOWING SUBROUTINES MUST BE USED WITH

1. ASYMP  
2. CHFRY  
3. DLECK  
4. FGAS  
5. PENTA  
6. SCOT  
7. SCRTCH

QUESTIONS ABOUT SUBROUTINE ABSOR MAY BE ADDRESSED TO:  
ASHOK T. MODAK  
NORTHERN RESEARCH AND ENGINEERING CORPORATION  
WORCESTER, MASS. 01801  
USA  
TEL. NO. (617) 935-9050 EXT 264.

```

IF(TS.LT.300. .OR. TS.GT.2000.)GOTO 1
IF(T .LT.300. .OR. T .GT.2000.)GOTO 2
PSUM=PCO2+PH20
IF(PSUM.GT.1.0) GOTO 3
COMPUTE RATIO OF MIXTURE AND SOURCE TEMPERATURES.
RATIO=T/TS
COMPUTE EFFECTIVE PATHLENGTH,PATHL
PATHL=PATH/RATIO
PCL=PCO2*PATHL
PWL=PH20*PATHL
IF(PCL.GT.5.98 .OR. PWL.GT.5.98) GOTO 4
COMPUTE SOOT ABSORPTIVITY,AS
AS=0.0
IF(SOOTK.LE.0.01) GOTO 51
CALL SCOT(SOOTK,PATH,TS,TAUS)
AS=1.-TAUS
C
C
51 CONTINUE
COMPUTE GAS ABSORPTIVITY,AG
AG=0.0
IF(PCO2.LT.0.0011 .AND. PH20.LT.0.0011)GOTO 52
IF(PCL .LT.0.0011 .AND. PWL .LT.0.0011)GOTO 52
AG=FGAS(PATHL,PCO2,PH20,TS)
COMPUTE WATER VAPOR FRACTION,ZETA
ZETA=PH20/PSUM
POWER=0.63-0.2*ZETA
AG=AG*POWER
AG=AG*RATIO**POWER
52 CONTINUE
ALPHA=AS+AG-AS*AG
RETURN
4 CONTINUE
WRITE(6,*)
3 FORMAT(* IF THE PRODUCT,PATH,TS/T,PCO2,OR PATH,TS/T,PH20 EXCEEDS
105.5, OR AT P=1E-5)
WRITE(6,*)

```

|       |     |
|-------|-----|
| ABSOR | 74  |
| ABSOR | 75  |
| ABSOR | 76  |
| ABSOR | 77  |
| ABSOR | 78  |
| ABSOR | 79  |
| ABSOR | 80  |
| ABSOR | 81  |
| ABSOR | 82  |
| ABSOR | 83  |
| ABSOR | 84  |
| ABSOR | 85  |
| ABSOR | 86  |
| ABSOR | 87  |
| ABSOR | 88  |
| ABSOR | 89  |
| ABSOR | 90  |
| ABSOR | 91  |
| ABSOR | 92  |
| ABSOR | 93  |
| ABSOR | 94  |
| ABSOR | 95  |
| ABSOR | 96  |
| ABSOR | 97  |
| ABSOR | 98  |
| ABSOR | 99  |
| ABSOR | 100 |
| ABSOR | 101 |
| ABSOR | 102 |
| ABSOR | 103 |
| ABSOR | 104 |
| ABSOR | 105 |
| ABSOR | 106 |
| ABSOR | 107 |
| ABSOR | 108 |
| ABSOR | 109 |
| ABSOR | 110 |
| ABSOR | 111 |
| ABSOR | 112 |
| ABSOR | 113 |
| ABSOR | 114 |
| ABSOR | 115 |
| ABSOR | 116 |
| ABSOR | 117 |
| ABSOR | 118 |
| ABSOR | 119 |
| ABSOR | 120 |
| ABSOR | 121 |
| ABSOR | 122 |
| ABSOR | 123 |
| ABSOR | 124 |
| ABSOR | 125 |
| ABSOR | 126 |
| ABSOR | 127 |
| ABSOR | 128 |
| ABSOR | 129 |
| ABSOR | 130 |
| ABSOR | 131 |
| ABSOR | 132 |
| ABSOR | 133 |
| ABSOR | 134 |
| ABSOR | 135 |
| ABSOR | 136 |
| ABSOR | 137 |

ORIGIN OF FLAME  
OF PREDICTABILITY

```

6 FORMAT( THIS CALCULATION LIES OUTSIDE THE RANGE OF SUBROUTINE ABS ABSOR 138
10PR, SUBROUTINE ABSOR ABORTS AND RETURNS A VALUE OF+1
  WRITE(6,7) ABSOR 139
7 FORMAT( ALPHA SET EQUAL TO -1.E300) ABSOR 140
  GOTO 8 ABSOR 141
3 CONTINUE ABSOR 142
  WRITE(6,9) ABSOR 143
9 FORMAT( SUM OF GAS PARTIAL PRESSURES, PCO2+PH2O, EXCEEDS 1 ATM) ABSOR 144
  WRITE(6,6) ABSOR 145
  WRITE(6,7) ABSOR 146
  GOTO 8 ABSOR 147
2 CONTINUE ABSOR 148
  WRITE(6,11) ABSOR 149
11 FORMAT( MIXTURE TEMPERATURE , T, LIES OUTSIDE THE TEMPERATURE RANG ABSOR 150
  IE 300 TO 2000 DEGREES KELVIN) ABSOR 151
  WRITE(6,6) ABSOR 152
  WRITE(6,7) ABSOR 153
  GOTO 8 ABSOR 154
1 CONTINUE ABSOR 155
  WRITE(6,10) ABSOR 156
10 FORMAT( BLACKBODY SOURCE TEMPERATURE, TS, LIES OUTSIDE THE TEMPERAT ABSOR 157
  URE RANGE 300 TO 2000 DEGREES KELVIN) ABSOR 158
  WRITE(6,6) ABSOR 159
  WRITE(6,7) ABSOR 160
9 CONTINUE ABSOR 161
  ALPHA=-1.E30 ABSOR 162
  RETURN ABSOR 163
  END ABSOR 164
  SUBROUTINE ASYMP(Z,ZV) ABSOR 165
    SURROUNTR ASYMP COMPUTES THE ASYMPTOTIC EXPANSION FOR THE ABSOR 166
    PENTAGAMMA FUNCTION. ABSOR 167
C C
C C
    Z11=1./Z ABSOR 168
    Z12=Z11*Z11 ABSOR 169
    Z13=Z11*Z12 ABSOR 170
    ZV=Z13*(Z.+3.+Z11)+Z12*(Z.+Z12*(-1.+Z12*(1.3333333333
    +Z12*(-3.+10.*Z12)))) ABSOR 171
    RETURN ABSOR 172
    END ABSOR 173
    SUBROUTINE CHERY(N,X,V) ABSOR 174
      V REPRESENTS VALUE OF CHEBYSHEV POLYNOMIAL OF ORDER N ABSOR 175
      AND ARGUMENT X. ABSOR 176
      V=1. ABSOR 177
      IF(N) 1,1,2 ABSOR 178
      1 RETURN ABSOR 179
C C
C C
      2 V=Y ABSOR 180
      IF(N=1) 1,1,3 ABSOR 181
      3 F=N*X ABSOR 182
      VM1=X ABSOR 183
      VM2=1. ABSOR 184
      DO 4 I=2,N ABSOR 185
      Y=F*VM1-VM2 ABSOR 186
      VM2=VM1 ABSOR 187
      VM1=Y ABSOR 188
      4 CONTINUE ABSOR 189
      RETURN ABSOR 190
      END ABSOR 191
      FUNCTION DLECK(X,PL,T)
        SURROUNTR DLECK COMPUTES THE 2,7 AND 15 MICROMETRE OVERLAP ABSOR 192
        CORRECTION FOR MIXTURES OF CO2 AND H2O. THE OVERLAP CORRECTION ABSOR 193
        IS COMPUTED BY USING A TEMPERATURE-ADJUSTED VERSION OF THE ABSOR 194
        OVERLAP CORRECTION FACTOR SUGGESTED BY R. LECKNFT ABSOR 195
        (COMBUSTION AND FLAME VOLUME 19 PAGES 33-48, 1972) ABSOR 196
C C
C C
C C
        ABSOR 197
        ABSOR 198
        ABSOR 199
        ABSOR 200
        ABSOR 201

```

```

IF(IPL,LT.0.1) GOTO 1
TERM=X/(10.7+101.0K) -X**10.4/111.7
TERM2=ALOG10(101.325*PL)
TERM2=TERM2**2.76
TT=T/1000.
TT2=TT*TT
A=-1.0204082
B=2.244979
C=-0.23449386
TERM3=A+TT2+B*TT+C
TERMC REPRESENTS THE TEMPERATURE ADJUSTMENT
DLECK=TERM +TERM2+TERM3
RETURN
1 DLFCK=0.0
RETURN
END
FUNCTION EGAS(PATHL,PC,PH,T)
FUNCTION EGAS COMPUTES THE EMISSIVITY OF A GIVEN PATH (PATHL)
OF A MIXTURE OF CO2 AND H2O AT TEMPERATURE T.
PC = PARTIAL PRESSURE OF CO2
PH = PARTIAL PRESSURE OF H2O
EGAS=0.0
IF(T,LT,300. .OR. T.GT,2000.) RETURN
FC=0.0
IF(PC,LT,0.0011 .OR. PC.GT,1.0) GOTO 1
PCL=PC+PATHL
IF(PCL,LT,0.0011 .OR. PCL.GT,5.98) GOTO 1
CALL SCRTCH(PC,PCL,T,1,EC)
1 CONTINUE
IF(PH,LT,0.0011 .OR. PH.GT,1.0) GOTO 2
PWL=PH+PATHL
IF(PWL,LT,0.0011 .OR. PWL.GT,5.98) GOTO 2
CALL SCRTCH(PW,PWL,T,2,EW)
EGAS=FC+FW
IF(EC,LF,C.0) RETURN
PCPH=PC+PH
V1=PW/PCPH
IF(XI,LT,0.01) RETURN
PCWL=PCPH+PATHL
IF(PCWL,LT,0.1 ) RETURN
DELE=DLECK(XI,PCWL,T)
EGAS=EGAS-DELE
RETURN
2 CONTINUE
EGAS=FC
RETURN
END
SUBROUTINE PENTA(X,V)
SUBROUTINE PENTA RETURNS THE VALUE V OF THE PENTAGAMMA FUNCTION
OF ARGUMENT X. RECURRENCE FORMULA 6.4.6, AND ASYMPTOTIC FORMUL
6.4.14 (PAGE 260) OF ABRAMOWITZ AND STEGUN ARE USED IN
THIS CALCULATION.
IF(X,GF,4.1) GOTO 1
IF(X,GE,3.1) GOTO 2
IF(X,GF,2.1) GOTO 3
S=(1. / (X+2.1004+1. / (X+1.1004+1. / X004))**6.
Z=X+3.
CALL ASYMP(Z,ZV)
GOTO 4
3 CONTINUE
S=(1. / (X+1.1004+1. / X004))**6.

```

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

T=X+2.
CALL ASYMP(Z,ZV)
GOTO 4
2 CONTINUE
S=6./X**6
T=X+1.
CALL ASYMP(Z,ZV)
GOTO 4
1 CONTINUE
S=0.0
CALL ASYMP(X,ZV)
4 CONTINUE
V=ZV+S
RETURN
END

SUBROUTINE SOOT(ZKLED,PATHL,TBLACK,TAUS)
SUBROUTINE SOOT COMPUTES THE TRANSMISSIVITY (TAUS) OF PATH (PATHL)
OF SOOT TO A BLACKBODY RADIATION SOURCE AT A GIVEN
TEMPERATURE (TBBLACK).

IF(ZKLED.LE. 0.) GOTO 1
ARG=1.+ZKLED*PATHL*TBLACK*6.5337E-5
TBBLACK - SOURCE TEMPERATURE OR GAS TEMPERATURE
CALL PENTA(ARG,V)
SUBROUTINE PENTA COMPUTES THE PENTAGAMMA FUNCTION
ARG - ARGUMENT OF THE PENTAGAMMA FUNCTION
TAUS=V*1539897336
TAUS = SOOT TRANSMISSIVITY
RETURN
1 TAUS=1.
RETURN
END

SUBROUTINE SCRTCH(P,PL,T,INDEX,V)
DIMENSION CC(3,4,4),CW(3,4,4),           SC(3,4,4)
IF(INDEX.EQ.2) GOTO 2
CC REPRESENTS AN ARRAY OF 40 COEFFICIENTS FOR CO2

CC(1,1,1)=0.2754568E+01
CC(1,1,2)=0.2997857E+00
CC(1,1,3)=0.1232494E+00
CC(1,1,4)=0.1279287E-01
CC(1,2,1)=0.1503051E+01
CC(1,2,2)=0.3156449E+00
CC(1,2,3)=0.1098126E-01
CC(1,2,4)=0.3729629E-01
CC(1,3,1)=0.2474119E+00
CC(1,3,2)=0.3323046E-01
CC(1,3,3)=0.1019471E-01
CC(1,3,4)=0.2269709E-01
CC(1,4,1)=0.4994029E-01
CC(1,4,2)=0.1986766E-02
CC(1,4,3)=0.3007698E-02
CC(1,4,4)=0.1179598E-02
CC(2,1,1)=0.5737722E-02
CC(2,1,2)=0.9328498E-02
CC(2,1,3)=0.2906266E-02
CC(2,1,4)=0.4227520E-03
CC(2,2,1)=0.3121784E-02
CC(2,2,2)=0.5632821E-02
CC(2,2,3)=0.3260295E-02
CC(2,2,4)=0.7067884E-03
CC(2,3,1)=0.1666731E-03

```

ABSOR 266  
ABSOR 267  
ABSOR 268  
ABSOR 269  
ABSOR 270  
ABSOR 271  
ABSOR 272  
ABSOR 273  
ABSOR 274  
ABSOR 275  
ABSOR 276  
ABSOR 277  
ABSOR 278  
ABSOR 279  
ABSOR 280  
ABSOR 281  
ABSOR 282  
ABSOR 283  
ABSOR 284  
ABSOR 285  
ABSOR 286  
ABSOR 287  
ABSOR 288  
ABSOR 289  
ABSOR 290  
ABSOR 291  
ABSOR 292  
ABSOR 293  
ABSOR 294  
ABSOR 295  
ABSOR 296  
ABSOR 297  
ABSOR 298  
ABSOR 299  
ABSOR 300  
ABSOR 301  
ABSOR 302  
ABSOR 303  
ABSOR 304  
ABSOR 305  
ABSOR 306  
ABSOR 307  
ABSOR 308  
ABSOR 309  
ABSOR 310  
ABSOR 311  
ABSOR 312  
ABSOR 313  
ABSOR 314  
ABSOR 315  
ABSOR 316  
ABSOR 317  
ABSOR 318  
ABSOR 319  
ABSOR 320  
ABSOR 321  
ABSOR 322  
ABSOR 323  
ABSOR 324  
ABSOR 325  
ABSOR 326  
ABSOR 327  
ABSOR 328  
ABSOR 329

ORIGINAL PAGE IS  
OF POOR QUALITY

|                                                         |       |     |
|---------------------------------------------------------|-------|-----|
| CC(2,3,2)=-0.7326533E-03                                | ABSOR | 330 |
| CC(2,3,3)=0.3639835E-03                                 | ABSOR | 331 |
| CC(2,3,4)=0.3226318E-03                                 | ABSOR | 332 |
| CC(2,4,1)=0.7386638E-03                                 | ABSOR | 333 |
| CC(2,4,2)=-0.7277073E-03                                | ABSOR | 334 |
| CC(2,4,3)=0.3925968E-03                                 | ABSOR | 335 |
| CC(2,4,4)=-0.2021413E-03                                | ABSOR | 336 |
| CC(3,1,1)=0.3385611E-02                                 | ABSOR | 337 |
| CC(3,1,2)=-0.5439185E-02                                | ABSOR | 338 |
| CC(3,1,3)=0.1764560E-02                                 | ABSOR | 339 |
| CC(3,1,4)=0.3035031E-03                                 | ABSOR | 340 |
| CC(3,2,1)=-0.1862700E-02                                | ABSOR | 341 |
| CC(3,2,2)=0.3236275E-02                                 | ABSOR | 342 |
| CC(3,2,3)=-0.1992250E-02                                | ABSOR | 343 |
| CC(3,2,4)=0.3474022E-03                                 | ABSOR | 344 |
| CC(3,3,1)=0.1204807E-03                                 | ABSOR | 345 |
| CC(3,3,2)=-0.4479927E-03                                | ABSOR | 346 |
| CC(3,3,3)=0.2497521E-03                                 | ABSOR | 347 |
| CC(3,3,4)=0.1812996E-03                                 | ABSOR | 348 |
| CC(3,4,1)=0.4218169E-03                                 | ABSOR | 349 |
| CC(3,4,2)=-0.4046608E-03                                | A. R. | 350 |
| CC(3,4,3)=0.3256061E-03                                 | ABSOR | 351 |
| CC(3,4,4)=-0.9514981E-04                                | ABSOR | 352 |
| GOTO4                                                   | ABSOR | 353 |
| 2 CONTINUE                                              | ABSOR | 354 |
| C C C CW REPRESENTS AN ARRAY OF 48 COEFFICIENTS FOR H2O | ABSOR | 355 |
| CW(1,1,1)=-0.2594279E+01                                | ABSOR | 356 |
| CW(1,1,2)=-0.7118472E+00                                | ABSOR | 357 |
| CW(1,1,3)=-0.9956839E-03                                | ABSOR | 358 |
| CW(1,1,4)=0.12226560E-01                                | ABSOR | 359 |
| CW(1,2,1)=0.2510331E+01                                 | ABSOR | 360 |
| CW(1,2,2)=0.6481808E+00                                 | ABSOR | 361 |
| CW(1,2,3)=-0.3390597E-01                                | ABSOR | 362 |
| CW(1,2,4)=-0.5524345E-02                                | ABSOR | 363 |
| CW(1,3,1)=-0.4191636E+00                                | ABSOR | 364 |
| CW(1,3,2)=-0.1379180E+00                                | ABSOR | 365 |
| CW(1,3,3)=0.3077930E-01                                 | ABSOR | 366 |
| CW(1,3,4)=0.8862328E-03                                 | ABSOR | 367 |
| CW(1,4,1)=-0.3223912E-01                                | ABSOR | 368 |
| CW(1,4,2)=-0.1820241E-01                                | ABSOR | 369 |
| CW(1,4,3)=-0.2223143E-01                                | ABSOR | 370 |
| CW(1,4,4)=-0.5940781E-03                                | ABSOR | 371 |
| CW(2,1,1)=0.1126569E+00                                 | ABSOR | 372 |
| CW(2,1,2)=-C.0133829E-01                                | ABSOR | 373 |
| CW(2,1,3)=0.1514940E-01                                 | ABSOR | 374 |
| CW(2,1,4)=0.1993880E-02                                 | ABSOR | 375 |
| CW(2,2,1)=-C.4298803E-02                                | ABSOR | 376 |
| CW(2,2,2)=0.4530660E-01                                 | ABSOR | 377 |
| CW(2,2,3)=-C.2082004E-01                                | ABSOR | 378 |
| CW(2,2,4)=0.2013361E-02                                 | ABSOR | 379 |
| CW(2,3,1)=-0.4375032E-01                                | ABSOR | 380 |
| CW(2,3,2)=0.1924597E-01                                 | ABSOR | 381 |
| CW(2,3,3)=0.8859877E-02                                 | ABSOR | 382 |
| CW(2,3,4)=-0.4618414E-02                                | ABSOR | 383 |
| CW(2,4,1)=0.7077876E-02                                 | ABSOR | 384 |
| CW(2,4,2)=-C.2096168E-01                                | ABSOR | 385 |
| CW(2,4,3)=0.1458262E-02                                 | ABSOR | 386 |
| CW(2,4,4)=0.3851421E-02                                 | ABSOR | 387 |
| CW(3,1,1)=0.9341917E-01                                 | ABSOR | 388 |
| CW(3,1,2)=-0.9407693E-01                                | ABSOR | 389 |
| CW(3,1,3)=0.4394611E-02                                 | ABSOR | 390 |
| CW(3,1,4)=C.149203E-02                                  | ABSOR | 391 |



```

4/CPARAM/ASUR(30,3),ENV,ER,HSUB0,NOEBUG,NS,PA,00,01,02,03,04,RHOFP, NOX    7
4 SM,SMW(30),SP0,S1(30),S2(30),TK,LADIAR,LDEBUG,LEQUIL,LREACT, NOX    8
4 LENER,ER0IJ,LCONVG
  DOUBLE PRECISION CPSUM,ENV,ER,FQ,HSUB0,HSUM,PA,PPLN,00,01,02,03,
1 Q4,RGAS,RGASIN,RHOFP,SM,SINV,SMW,S1,S2,TK,TKINV,TLN,SMO NOX    9
2 FUT,FST
  COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CEBU1,CEBU2,
1 CFRU3,CFRU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4, 4STEP   4
2 CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST
  LOGICAL LADIAR,LCONVG,LDEBUG,LEQUIL,LNRG,LREACT,LENER
  COMMON/INT/L,M,N,LCV,MCV,NCV,LP1,MP1,NP1,NI,NJ,NK,NINJ,NINJK,NV,
1 NNV,NGOTO,K,ISTR,JSTR,KSTR,NVM(35),KM(30),JM(30),ISTEP, 4STEP   5
2 ISOLVE(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(35),NP,
3 NRHO,NGAM,IWLI(30,5),IWLD(30,5),JWLI(40,5),JWLW(40,5),IWEI,
4 IWEN,MM1,JWID,JWID,JWDD,INW,JKIN(30,30),IKIN(40,30)
  COMMON/INDEX/IPAR,LPREF,ISTUM,INCMP,ITRAD,NVRX,NVRY,NVRZ,JPLANE
1 PLAXW1,LVH,LVD,LVFUOX,LVFU,LVC0,LVH,LVRY,LVZ,NVF(32),
2 IJUMP,IRES,TITLE2(20),IMAX,JMAX,KMAX,NVCO,FUMCO,NVH20,NVCD2,
3 NVN2,NVCH,NVH2
  COMMON/CNOX/LVH1,LVH2,LVN1,LVN02,LVO,LVOH,LVH20,LVN2,LVO2,
1 LVC02,LVFU1,LVC01,NNOX,INOX,ITNOX,SNOK,TNOX
  COMMON/THERP/NVM,NVFU,NVOX,NVFUOX,NVTE,NGDEN,IKR,FSTOIC,HFU,CP,
1 GASCON,RHOCON,UNICON,PRESS,NVFAV,TCYLW,TINLW,TLIP,ACOEF(4),
2 T4,DFAC,WFU,WCO2,WCO,WDX,WH20,WN2,HYY,CXX,RATIO1,RATIO2,
3 RATIO3,RATIO4,HCO,TAN,ITWALL
  COMMON/CTDMA/KEND,ICTDMA(32)
C-----SUBROUTINE SOLVE IS USED TO SOLVE THE FINITE-DIFFERENCE
C EQUATIONS BY THE TRI-DIAGONAL-MATRIX-ALGORITHM(TDMA).
C
C ENTRY SOLVE1
  RELAXM=1,-RELAX(NV)
  DO 10 J=JSTR,M
  KJM=KM(K)+JME(J)
  IS=TWL(I(J),NGETO)
  IF=IWLD(I(J),NGOTO)
  DO 10 I=IS,IE
  LIJ=JM(J)+I
  LP=KJM+I
  LPF=LP+NVMINV(NV)
  L7P=LPF+MINJ
  L7N=LPF-MINJ
  FL7P=F(L7P)
  IF (INV.EQ.3.AND.K.EQ.NP1) FL7P=W(LIJ+2*MINJ)
10 CONTINUE
  SP(LIJ)=(AXM(LIJ)+AXP(LIJ)+AYM(LIJ)+AYP(LIJ)+AZM(LIJ)+AZP(LIJ)-
  1SP(LIJ))/RELAX(NV)
C-----STORE COEFFICIENTS FOR CYCLIC TDMA.
  LPC=T-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)
  AYMK(LPC)=AYM(LIJ)
  AXPK(LPC)=AXP(LIJ)
  AYNK(LPC)=AYM(LIJ)
  AYPK(LPC)=AYP(LIJ)
  AZMK(LPC)=AZM(LIJ)
  AZPK(LPC)=AZP(LIJ)
  SU(LPC)=SU(LIJ)+SP(LIJ)*RELAXN*F(LPF)
  SPK(LPC)=SP(LIJ)+1.0E-30
  SU(LIJ)=SU(LIJ)+SP(LIJ)*RELAXN*F(LPF)+AZM(LIJ)*F(LZM)+AZP(LIJ)*
1  FL7P
  GO TO (11,12,13,10),NGOTO
11 DU(LP)=DU(LP)/SP(LIJ)
  GO TO 10
12 DV(LP)=DV(LP)/SP(LIJ)
  GO TO 10
13 DW(LP)=DW(LP)/SP(LIJ)

```

242

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE 1.  
OF POOR QUALITY

|    |                                                                    |         |     |
|----|--------------------------------------------------------------------|---------|-----|
| 10 | CONTINUE                                                           | \$0     | 32  |
|    | NVKM=NM(K)+NVP(NVF(NV))                                            | \$0     | 33  |
|    | ISUM=ISTP+L                                                        | \$0     | 34  |
|    | JSUM=JSTR+N                                                        | \$0     | 35  |
|    | INOMAX=ICTDMA(NV)                                                  | \$0     | 36  |
|    | DO 45 INO=1,INOMAX                                                 | \$0     | 37  |
|    | GO TO (20,30),IXY                                                  | \$0     | 38  |
| 20 | CONTINUE                                                           | \$0     | 39  |
|    | C----TOMA TRAVERSE IN X-DIRECTION.                                 | COMMENT | 100 |
|    | DO 21 JJ=JSTR,N                                                    | \$0     | 40  |
|    | GO TO (24,29),JSWP                                                 | \$0     | 41  |
| 24 | J=JJ                                                               | \$0     | 42  |
|    | GO TO 26                                                           | \$0     | 43  |
| 25 | J=JSUM-JJ                                                          | \$0     | 44  |
| 26 | CONTINUE                                                           | \$0     | 45  |
|    | LPF=NVKM+JM(J)                                                     | \$0     | 46  |
|    | IS=IWLI(J,NGOTO)                                                   | \$0     | 47  |
|    | IF=IWLO(J,NGOTO)                                                   | \$0     | 48  |
|    | ISTR1=IS-1                                                         | \$0     | 49  |
|    | LPFI=LPF+ISTR1                                                     | \$0     | 50  |
|    | AP(ISTR1)=0.                                                       | \$0     | 51  |
|    | RP(ISTR1)=F(LPFI)                                                  | \$0     | 52  |
|    | DO 22 I=IS,IE                                                      | \$0     | 53  |
|    | LIJ=JM(J)+I                                                        | \$0     | 54  |
|    | LYP=LPF+NI+I                                                       | \$0     | 55  |
|    | LYM=LPF-NI+I                                                       | \$0     | 56  |
|    | STORE=SP(LIJ)-AXH(LIJ)*AP(I-1)+1.E-30                              | \$0     | 57  |
|    | AP(I)=AYP(LIJ)/STORE                                               | \$0     | 58  |
| 22 | RP(I)=(SUI(LIJ)+AYP(LIJ)*F(LYP)+AYH(LIJ)*F(LYN)+AXH(LIJ)*BP(I-1))/ | \$0     | 59  |
|    | 1STORE                                                             | \$0     | 60  |
|    | ISUM1=IS+IE                                                        | \$0     | 61  |
|    | DO 23 II=IS,IE                                                     | \$0     | 62  |
|    | I=ISUM1-II                                                         | \$0     | 63  |
|    | LP=LPF+I                                                           | \$0     | 64  |
| 23 | F(LP)=AP(I)*F(LP+1)+BP(I)                                          | \$0     | 65  |
| 21 | CONTINUE                                                           | \$0     | 66  |
|    | JSWP=3-JSWP                                                        | \$0     | 67  |
|    | GO TO (20,20),JSWP                                                 | \$0     | 68  |
| 28 | CONTINUE                                                           | \$0     | 69  |
|    | GO TO (30,40),IXY                                                  | \$0     | 70  |
|    | C----TOMA TRAVERSE IN Y-DIRECTION.                                 | COMMENT | 189 |
| 30 | DO 31 II=ISTR,L                                                    | \$0     | 71  |
|    | GO TO (34,35),TSWP                                                 | \$0     | 72  |
| 34 | I=II                                                               | \$0     | 73  |
|    | GO TO 36                                                           | \$0     | 74  |
| 35 | I=ISUM-II                                                          | \$0     | 75  |
| 36 | CONTINUE                                                           | \$0     | 76  |
|    | LPF=NVKM+I                                                         | \$0     | 77  |
|    | JS=JWL(I,NGOTO)+1                                                  | \$0     | 78  |
|    | JE=JWL(I,NGOTO)-1                                                  | \$0     | 79  |
|    | JSTR1=JS-1                                                         | \$0     | 80  |
|    | LPFI=LPF+JM(JSTR1)                                                 | \$0     | 81  |
|    | AP(JSTR1)=0.                                                       | \$0     | 82  |
|    | RP(JSTR1)=F(LPFI)                                                  | \$0     | 83  |
|    | DO 32 J=JS,JE                                                      | \$0     | 84  |
|    | LIJ=JM(J)+I                                                        | \$0     | 85  |
|    | LXP=NVKM+IJ+1                                                      | \$0     | 86  |
|    | LXM=LXP-2                                                          | \$0     | 87  |
|    | STORE=SP(LIJ)-AYH(LIJ)*AP(J-1)+1.E-30                              | \$0     | 88  |
|    | AP(J)=AYP(LIJ)/STORE                                               | \$0     | 89  |
| 32 | RP(J)=(SUI(LIJ)+AYP(LIJ)*F(LXP)+AXH(LIJ)*F(LXM)+AYH(LIJ)*BP(J-1))/ | \$0     | 90  |
|    | 1STORE                                                             | \$0     | 91  |
|    | JSUM1=JS+JE                                                        | \$0     | 92  |
|    | DO 33 JJ=JS,JE                                                     | \$0     | 93  |

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

J=JSUM1-JJ
LP=LPP+JM(J)
LYP=LP+NI
F(LP)=AP(J)*F(LYP)+BP(J)
CONTINUF
ISWP=3-ISWP
GO TO (30,30),ISWP
30 CONTINUE
GO TO 140,20),IXY
40 CONTINUF
45 CONTINUE
RETURN
C ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** * SO 105
ENTRY SOLVE2
C-----CYCLIC T0MA IN Z-DIRECTION.
KEND=N
IF(INV.EQ.3)KFND=NP1
IF(CTDMA(NV).EQ.0)GO TO 606
INOMAX=CTDMA(NV)
DO 605 INO=1,INOMAX
DO 600 J=JSTR,M
IS=IWLI(J,NGOTO)
IE=IWLO(J,NGOTO)
DO 600 I=IS,IE
LIJ=I+JM(J)
LIJNV=LIJ+NVN(NVF(NV))
LPSTR=LIJNV+KM(KSTR)
LPCSTR=I-1+(J-2)*(NI-2)
AP(KSTR)=A7PK(LPCSTR)
BP(KSTR)=A7MK(LPCSTR)
FP(KSTR)=SUH(LPCSTR)+AXMK(LPCSTR)*F(LPSTR-1)+AXPK(LPCSTR)*F(LPSTR+
21)+AYMK(LPCSTR)*F(LPSTR-NI)+AYPK(LPCSTR)*F(LPSTR+NI)
DP(KSTR)=SPK(LPCSTR)
TF(DPK(KSTR)).LT.1.E-30)DP(KSTR)=1.E30
KMTN=KSTR+1
DO 601 K=KMIN,KEND
LPC=I-1+(J-2)*(NI-2)+(K-KSTR)*(NI-2)*(NJ-2)
LP=LTJNV+KM(K)
AP(K)=A7PK(LPC)
BK=A7MK(LPC)
CK=SUH(LPC)+AXMK(LPC)*F(LP-1)+AXPK(LPC)*F(LP+1)+AYMK(LPC)*F(LP-NI)
2 +AYPK(LPC)*F(LP+NI)
DK=SPK(LPC)
RP(K)=BK+BP(K-1)/DP(K-1)
EP(K)=EP(K-1)+BK/DP(K-1)+CK
DP(K)=DK-BK+AP(K-1)/DP(K-1)
IF(DPK(K).LT.1.E-30)DP(K)=1.E30
501 CONTINUF
KSUM=KEND-2+KSTR
APP(KEND-1)=(AP(KEND-1)+BP(KEND-1))/DP(KEND-1)
BP(KEND-1)=FP(KEND-1)/DP(KEND-1)
KENDM2=KEND-2
DO 602 KK=KSTR,KENDM2
KKSUM=KK
APP(K)=(AP(K)+APP(K+1)+BP(K))/(DP(K)+1.0E-30)
BP(K)=(AP(K)+APP(K+1)+EP(K))/(DP(K)+1.0E-30)
502 CONTINUF
DENOM=DP(KEND)-BP(KEND)-APP(KSTR)+AP(KEND)
IF((ABS(CENOM)).LT.1.E-30)DENOM=1.E30
FEND=(APP(KSTR)+AP(KEND)+EP(KEND))/DENOM
KENDM1=KEND-1
DO 603 K=KSTR,KENDM1
LP=LTJNV+KM(K)
F(LP)=APP(K)*FEND+APP(K)

```

ORIGINAL PAGE IS  
OF POOR QUALITY.

|     |                                                                              |         |     |
|-----|------------------------------------------------------------------------------|---------|-----|
| 603 | CONTINUE                                                                     | CTDMA   | 61  |
|     | LPCF=LJNV+KM(KEND)                                                           | CTDMA   | 62  |
|     | F(LPCE)=FEND                                                                 | CTDMA   | 63  |
| 600 | CONTINUE                                                                     | CTDMA   | 64  |
| 601 | CONTINUE                                                                     | CTDMA   | 65  |
| 602 | CONTINUE                                                                     | CTDMA   | 66  |
|     | RETURN                                                                       | SD      | 108 |
|     | FND                                                                          | SD      | 109 |
|     | SURROUNITE FPRINT (ISTRAT,ISTOP,NVVV)                                        | FP      | 2   |
|     | COMMON F(3500),DU(500),OV(500),DW(500),                                      | COMFA   | 2   |
| 1   | AMUC(500),SNOT1(500),SNOT2(500),FCN(500),FH2(500),FS(500,14),                | 4STEP   | 10  |
| 1   | RHO(500),VIS(500),ABSR(500),SCTR(500),SU(100),SP(100),                       | RAD     | 3   |
| 1   | DRHOOP(500),                                                                 | RAD     | 4   |
| 1   | AXPK(100),AKM(100),AYM(100),AZP(100),                                        | COMFB   | 4   |
| 2   | AZM(100),C7(100),CY(100),CZU(100),CYU(100),                                  | COMFB   | 5   |
| 3   | CZP(100),CYP(100),DIVG(100),NTP1,NTP2                                        | COMFB   | 6   |
| 1   | AXMK(192),AYPK(192),AYM(192),AZPK(192),AZMK(192),                            | CTDMA   | 3   |
| 2   | SUK(192),SPK(192)                                                            | CTDMA   | 4   |
|     | DIMENSION U(500),V(500),W(500),PP(500),P(500),TEMP(500)                      | COMFB   | 7   |
|     | DIMENSION GAM(500)                                                           | COMFB   | 8   |
|     | EQUIVALENCE (F(1),U(1)),(F(901),V(1)),(F(1001),W(1))                         | COMFB   | 9   |
|     | EQUIVALENCE (F(1501),PP(1)),(F(2001),P(1)),(F(2501),TEMP(1))                 | COMFB   | 10  |
|     | EQUIVALENCE (F(3001),GAM(1))                                                 | COMMON  | 11  |
|     | COMMON/CYL/R(30),RM(30),RMV(30),YSR(30),YSVR(30),IPLAK                       | COMMON  | 2   |
|     | COMMON/GRID/X(40),Y(30),Z(30),XS(40),YS(30),ZS(30),XSU(40),                  | COMMON  | 3   |
| 1   | YSV(30),ZSW(30),XOIF(40),YOIF(30),ZDIF(30),FXP(40),FXM(40),                  | COMMON  | 4   |
| 2   | FYP(30),FYM(30),FZP(30),FZN(30),DT,TIME                                      | COMMON  | 5   |
|     | COMMON                                                                       | NOX     | 2   |
| 1   | /CTNOFX/IDCF, IDFU, IDO2, IDN2, IDH20, IDC02, IDH1, IDH2, IDN1, IDNO, IDNO2  | NOX     | 3   |
| 1   | ,IDH, IDOH, IMCPS, ILC, ILH, IMAT, ITER, JJJ, N1, N2, N3, NA, NGLO8, NGLO8P, | NOX     | 4   |
| 2   | NLM, NO, NSM, NS1, NS2, IDCH                                                 | 4STEP   | 3   |
| 3   | /CCHE=I/CPSUM,HSUM,FO,PPLN,RGAS,RGASIN,SINV,TKINV,TLN,LNRG                   | NOX     | 6   |
| 4   | /CPARAM/ASUB(30,3),ENV,ER,HSURO,NOEBUG,NS,PA,00,01,02,03,04,RHOOPP,          | NOX     | 7   |
| 4   | SM,SMW(30),SMW,S1(30),S2(30),TK,LADIA8,LDEBUG,LEQUIL,LREACT,                 | NOX     | 8   |
| 4   | LENER,EDKIJ,LCONVG                                                           | NOX     | 9   |
|     | DOUBLE PRECISION CPSUM,ENV,ER,FQ,HSUB0,HSUM,PA,PPLN,00,01,02,03,             | NOX     | 10  |
| 1   | 04,RGAS,RGASIN,RHOOPP,SM,SMINV,SMW,S1,S2,TK,TKINV,TLN,SMW                    | NOX     | 11  |
| 2   | ,FUT,FST                                                                     | 4STEP   | 4   |
|     | COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CB8U1,CB8U2,            | 4STEP   | 9   |
| 1   | CB8U3,CB8U4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,                 | 4STEP   | 6   |
| 2   | CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST                                              | 4STEP   | 7   |
|     | LOGICAL LADIA8,LCONVG,LDEBUG,LEQUIL,LNRG,LREACT,LENER                        | NOX     | 12  |
|     | COMMON/INT/L,M,N,LCV,MCV,NCV,LP1,MP1,NP1,NT,NJ,MM,MINJ,MINJNK,NV,            | COMMON  | 6   |
| 1   | NNV,NGCT0,K,ISTR,JSTR,KSTR,NVM(35),KM(30),JM(30),ISTEP,                      | 4STEP   | 8   |
| 2   | TSOLVE(32),IPRINT(33),TITLE(10,33),IXY,ISWP,JSWP,RELAX(35),NP,               | 4STEP   | 9   |
| 3   | NRHO,NCAP,ILHI(30,9),IWLO(30,5),JWL0(40,5),JWL1(40,5),TWFI,                  | COMMON  | 9   |
| 4   | IWN,PM1,JWI1,JWI0,JW01,JW00,INW,JKIN(30,30),IKIN(40,30)                      | COMMON  | 10  |
|     | COMMON/INDEX/IPAP,LPRF,ISTUM,INCNP,ITRAD,NVRX,NVRY,NVRZ,JPLANE               | COMMON  | 11  |
| 1   | PLAKM1,LVK,LVD,LVFU0X,LVFU,LVCO,LVH,LVRX,LVRY,LVRZ,NVF(32),                  | 4STEP   | 10  |
| 2   | IJUMP,IRFS,TITLE2(20),IMAX,JMAX,KMAX,NVC0,FUNCD,NVH20,NVC02,                 | COMMON  | 13  |
| 3   | NVM2,NVC1,NVH2                                                               | 4STEP   | 11  |
|     | COMMON/CNOX/LVH1,LVH2,LVN1,LVN0,LVN02,LVO,LVOH,LVH20,LVN2,LV02,              | NOX     | 14  |
| !   | LVC02,LVFU1,LVCD1,NNOX,INOX,ITNOX,SNOK,TNOX                                  | NOX     | 17  |
|     | COMMON/THERM/NVH,NVFU,NVOK,NVFUOX,NVTE,MODEN,IK,FSTOIC,MFU,CP,               | COMMON  | 19  |
| 1   | GASCON,RHOCCN,UNICON,PRESS,NVFAV,TCYLW,TINLW,TLIP,ACDEF(4),                  | COMMON  | 16  |
| 2   | T4,DFAC,MFU,WCD2,WCN,WOK,WH20,MM2,MVY,CXX,RATIO1,RATIO2,                     | COMMON  | 17  |
| 3   | RATIO3,RATIC4,HCD,TAM,ITWALL                                                 | COMMON  | 18  |
|     | COMMON/CTDMA/KEND,ICTDMA(192)                                                | 4STEP   | 12  |
| C   | -----SURROUNITE FPRINT IS USED TO PRINT THE FIELD VALUES OF                  | COMMENT | 191 |
| C   | ALL THE DEPENDENT VARIABLES.                                                 | COMMENT | 192 |
| C   | NVV=NVVV-1                                                                   | COMMENT | 193 |
| 00  | 108 NV=ISTRAT,ISTOP                                                          | FP      | 7   |
|     | NVV=NVV+                                                                     | FP      | 8   |
|     |                                                                              | FP      | 9   |

```

IF (IPRINT(NVV),EQ,0) GO TO 108
WRITE (6,101) (TITLE(I,NVV),I=1,10)
101 FORMAT (1H0,20(2H*-),10A4,3X,20(2H-*))
KONE=1
IF (NVV.EQ.3) KONE=2
NSKIP=IPRINT(NVV)
DO 100 K=KONE,NP1,NSKIP
WRITE(6,102) K
102 FORMAT(1H0,5BX,4HK = ,I2)
NVKM=NVM(NV)+KM(K)
JONE=1
IF (NVV.EQ.2) JONE=2
IONE=1
IF (NVV.EQ.1) IONE=2
ISTART=IONE-12
103 CONTINUE
ISTART=ISTART+12
IEND=ISTART+11
IEND=MIND(IEND,LP1)
WRITE(6,103) (I,I=ISTART,IEND)
103 FORMAT(1H0,6H I = ,I3,11I10)
WRITE(6,104)
104 FORMAT(2H JJ)
JSUM=JONE+MP1
DO 106 JJ=JONE,MP1
J=JSUM-JJ
LPF=NVKM+JM(J)
LPL=LPF+IEND
LPF=LPF+ISTART
106 WRITE(6,107) J,(F(LP),LP=LPF,LPL)
107 FORMAT(1I9,1P12E10.2)
IF (TFND.LT.LP1) GO TO 105
100 CONTINUE
108 CONTINUE
RETURN
END
SUBROUTINE CREK
C
C A COMPUTER PROGRAM FOR CALCULATION OF
C CHEMICAL REACTION EQUILIBRIUM AND KINETICS
C IN LAMINAR OR TURBULENT FLOWS
C
C CALLING PROGRAM MUST FIRST EXPRESS SPECIES AND ENERGY CONSERVATION
C FINITE-DIFFERENCE EQUATIONS IN THE STANDARD FORMS
C
C AP0$2(I),P = AE0$2(I),E + AH0$2(I),H + AN0$2(I),N + AS0$2(I),S
C           +AH0$2(I),H + AL0$2(I),L + SD(S2(I)) ,   I=1,NS
C DEPT M.E.    WASHINGTON STATE UNIVERSITY
C PULLMAN, WASHINGTON 99163
C MARCH 1976
C DAVID T. PRATT AND JOHN S. WORRECK
C
C ***SUMMARY***
C CREK CONSISTS OF 3 FORTRAN-IV SUBROUTINES: CREK, CREK0, SPECE, CALC, MCPS
C WHICH ENABLES THE EXTENSION OF ANY EXISTING HYDRODYNAMIC COMPUTER
C CODE TO THE CALCULATION OF COMPLEX FLOW WITH CHEMICALLY COMPLEX
C EQUILIBRIUM OR KINETIC STATIONARY STATES
C THIS VERSION OF CREK IS LIMITED TO IDEAL HOMOGENEOUS GAS-PHASE
C CHEMICAL EQUILIBRIUM AND NON-EQUILIBRIUM (KINETIC) STATES
C
C ***CALLING CREK ***
C CALLING PROGRAM SEEKS SOLUTION FOR VALUES AT A POINT P OF MOLE

```

|       |    |
|-------|----|
| FP    | 10 |
| FP    | 11 |
| FP    | 12 |
| FP    | 13 |
| FP    | 14 |
| FP    | 15 |
| FP    | 16 |
| FP    | 17 |
| FP    | 18 |
| FP    | 19 |
| FP    | 20 |
| FP    | 21 |
| FP    | 22 |
| FP    | 23 |
| FP    | 24 |
| FP    | 25 |
| FP    | 26 |
| FP    | 27 |
| FP    | 28 |
| FP    | 29 |
| FP    | 30 |
| FP    | 31 |
| FP    | 32 |
| FP    | 33 |
| FP    | 34 |
| FP    | 35 |
| FP    | 36 |
| FP    | 37 |
| FP    | 38 |
| FP    | 39 |
| FP    | 40 |
| FP    | 41 |
| FP    | 42 |
| FP    | 43 |
| FP    | 44 |
| FP    | 45 |
| NOXXX | 1  |
| CREK  | 3  |
| CREK  | 4  |
| CREK  | 5  |
| CREK  | 6  |
| CREK  | 7  |
| CREK  | 8  |
| CREK  | 9  |
| CREK  | 10 |
| CREK  | 11 |
| CREK  | 12 |
| CREK  | 13 |
| CREK  | 14 |
| CREK  | 15 |
| CREK  | 16 |
| CREK  | 17 |
| CREK  | 18 |
| CREK  | 19 |
| CREK  | 20 |
| CREK  | 21 |
| CREK  | 22 |
| CREK  | 23 |
| CREK  | 24 |
| CREK  | 25 |
| CREK  | 26 |
| CREK  | 27 |
| CREK  | 28 |
| CREK  | 29 |

C NUMBERS OF CHEMICAL SPECIES, (S2(I),I=1,NS) AND THE TEMPERATURE TK,  
 C GIVEN THE VALUES OF SAME VARIABLES AT NEIGHBORING NODES, AND VALUES  
 C AT P AT A PREVIOUS TIME STEP OR ESTIMATES FROM PREVIOUS ITERATION  
 C WHERE  
 C  $AP = AE + AM + AN + AS + AH + AL + APP$   
 C  $AD$  DENOTES CONVECTIVE AND DIFFUSIVE FLUX COEFFICIENTS  
 C AT NEIGHBORING NODES D=E,W,N,S,H AND L, KG/CU M-SEC  
 C APP IS INFLUENCE TERM FROM P AT PREVIOUS TIME STEP  
 C S2(I) IS THE MOLE NO. OF SPECIES I AT THE POINT P, KG-MOLE/KG  
 C S2(I),D IS THE MOLE NO. OF SPECIES I AT NEAR-NODE D,  
 C KG-MOLE I/KG  
 C SO(S2(I)) IS RATE OF APPEARANCE OF SPECIES I DUE TO  
 C CHEMICAL REACTION, KG-MOLES I/CU M-SEC  
 C  
 C AND  
 C  $APP_H,P = AEH_E + AHM_W + ANH_N + ASH_S + AHG_H + ALH_L$   
 C  $+ SO(H)$   
 C WHERE  
 C  $H_P$  IS THE MIXTURE ENTHALPY AT POINT P, J/KG  
 C  $H_D$  IS THE MIXTURE ENTHALPY AT NEIGHBOR NODES D,  
 C SO(H) IS RATE OF HEAT ADDITION TO CONTROL VOLUME BY  
 C RADIATIVE AND KINETIC HEATING, J/CU M-SEC  
 C  
 C CALLING PROGRAM MUST SUPPLY FOLLOWING VARIABLES THROUGH LABLELED  
 C COMMON BLOCK /CPARAM/  
 C  
 C  $TK =$  TEMPERATURE AT NODE P, DEGREES KELVIN (ESTIMATE)  
 C  $PA =$  PRESSURE AT POINT P, PASCALS (INT/SQ M)  
 C  $FMV = AP$ , KG/CU M-SEC  
 C  $S1(I) = (AE+S2(I),E+AN+S2(I),W...+AL+S2(I),L) / AP$   
 C \*  $S2(I) =$  PREVIOUS SOLUTIONS OR ESTIMATES FOR S2(I)...  
 C \*\* IF TEMP TK IS SET TO ZERO, PROGRAM CONSTRUCTS  
 C \*\*\* OWN ESTIMATES  
 C \*  $HSUB0 = (AE^4,E+ANH,W...+ALH,L) / AP$ , J/KG  
 C \*\* COEFFICIENTS IN EXPRESSION FOLLOWING...  
 C  $SO(H) = -(00+01*T+02*T^2+03*T^3+04*T^4)$ , J/CU M-SEC  
 C  
 C LADIAN = T --- IGNORES ABOVE EXPRESSION FOR SO(H), TAKES  
 C SOURCE(H)=0,C  
 C LEQUIL = T --- EQUILIBRIUM SOLUTION SOUGHT  
 C \* F --- KINETIC SOLUTION SOUGHT  
 C LREACT = T --- CHEMICAL REACTION (FAL OR KIN)  
 C \* F --- ADIABATIC NON-REACTING MIXING  
 C LOERUG = T --- INTERMEDIATE DEBUG PRINTING  
 C \* F --- NO INTERMEDIATE DEBUG PRINTING  
 C  
 C #RETURN#  
 C S2(I),I=1,NS IS THE MOLE NUMBER OF CHEMICAL SPECIES I (KG-MOLE I/KG)  
 C TK IS THE TEMPERATURE (DEGREES K) FROM THERMAL ENERGY EQUATION  
 C HSUB0 IS STATIC ENTHALPY AT NODE POINT P (J/KG)  
 C RHOP IS THE MASS DENSITY AT NODE POINT P (KG/CU M)  
 C SM IS RECIPROCAL OF MIXTURE MOLECULAR WEIGHT (KG-MOLE/KG)  
 C ASUR(I,3) IS THE SPECIES NAME (HOLLERITH FIELD)  
 C  
 C #DIMENSIONS#  
 C NE = NUMBER OF ELEMENTS (7)  
 C NS = NUMBER OF CHEMICAL SPECIES (20)  
 C JJ = NUMBER OF CHEMICAL REACTIONS (36)  
 C  
 C THESE DIMENSIONS MAY BE ADJUSTED BY SIMPLY CHANGING THE  
 C FOLLOWING LABLELED COMMON BLOCKS#  
 C  
 CREK 20  
 CPEK 31  
 CREK 32  
 CREK 33  
 CREK 34  
 CREK 35  
 CREK 36  
 CPEK 37  
 CREK 38  
 CREK 39  
 CPEK 40  
 CREK 41  
 CREK 42  
 CPEK 43  
 CREK 44  
 CPEK 45  
 CPEK 46  
 CPEK 47  
 CPEK 48  
 CPEK 49  
 CPEK 50  
 CPEK 51  
 CPEK 52  
 CPEK 53  
 CPEK 54  
 CPEK 55  
 CPEK 56  
 CPEK 57  
 CPEK 58  
 CPEK 59  
 CPEK 60  
 CPEK 61  
 CPEK 62  
 CPEK 63  
 CPEK 64  
 CPEK 65  
 CPEK 66  
 CPEK 67  
 CPEK 68  
 CPEK 69  
 CPEK 70  
 CPEK 71  
 CPEK 72  
 CPEK 73  
 CPEK 74  
 CPEK 75  
 CPEK 76  
 CPEK 77  
 CPEK 78  
 CPEK 79  
 CPEK 80  
 CPEK 81  
 CPEK 82  
 CPEK 83  
 CPEK 84  
 CPEK 85  
 CPEK 86  
 CPEK 87  
 CPEK 88  
 CPEK 89  
 CPEK 90  
 CPEK 91  
 CPEK 92  
 CPEK 93

```

C C EQUIL...NLM,NS          CPEK    94
C C INDEX...             CPEK    95
C C KINET...             CPEK    96
C C MATRI...NS+2          CPEK    97
C C PARAM...NS            CPEK    98
C C FACT...NS              CPEK    99
C C SPECFC...NS           CPEK   100
C C AND THE FOLLOWING DIMENSION STATEMENT IN ROUTINE CALC WHICH
C SHOULD BE DOUBLE DIMENSIONED FOR IBM MACHINES
C C A(NS+2,NS+3)          CPEK   101
C C
C C DOUBLE PRECISION AL,RO,CPSUM,EMV,ER,FO,HSURO,HSUM,HQ,PA,PI,PPLN,
C 1 Q0,Q1,Q2,Q3,Q4,RGAS,RGASIN,RHOP,SM,SMINV,SMW,SSAVE,SA,S1,S2,TK,
C 2 TKINV,TLN,T,SMO
C C DOUBLE PRECISION EMVSAY,FACTOR,SMALL,TSAVE,KHI,XLD
C C LOGICAL LADTAB,LCONVG,LODEBUG,LEQUIL,LHRCG,LREACT,LEMER
C C
C C COMMON
C 3/CCHEMI/CPSUM,HSUM,FO,PPLN,RGAS,RGASIN,SMINV,TKINV,TLN,LHRCG
C 1/CFOUTL/AL(7,30),ATOM(3,7),HO(7),PI(7)
C 1/CTINDEX/IDCO,IDFU,IDOH,IDON2,IDH20,IDCO2,IDH1,IDH2,IDN1,IDNO,IDNO2
C 1,TD0,TD0H,IHCPS,ILC,ILH,IMAT,ITER,JJ,N1,N2,N3,NA,MGLOB,MGLOBP,
C 2,NI,NO,NSM,NS1,NS2,IOCH
C 1/CPARAM/ASUR(30,3),EMV,ER,HSURO,MDEBUG,NS,PA,Q0,Q1,Q2,Q3,Q4,RHOP,
C 1,SM,SMW(30),SMO,S1(30),S2(30),TK,LADTAB,LDEBUG,LEQUIL,LREACT,LEMER
C 2,FDTIJ,LCONVG
C 1/CSPECFC/HO(30),SO(30),SSAVE(30),Z(7,2,30)
C
C *****
C THIS SUBROUTINE IS THE MAIN EQUILIBRIUM AND KINETIC SOLUTION ROUTINE.
C THE CALLING PROGRAM MUST SUPPLY ALL THE VARIABLES EXCEPT RHOP AND SM
C THROUGH THE LABELLED COMMON BLOCK CPARAM IN SI UNITS. BOTH EQUIL
C SOLUTIONS (LEQUIL=1) -- BY MINIMIZATION OF THE GIBBS FUNCTION --
C AND KINETIC (LEQUIL=2) SOLUTIONS ARE CALCULATED BY A MF7 .-RAPHSON
C TECHNIQUE. CPEK ALSO CONTROLS THE LOGIC FOR PROBLEM CELLS
C REFERENCE CPEK (WASHINGTON STATE UNIVERSITY) MARCH 1976
C *****
C
C DATA FACTOR/5.000/,SMALL/1.0D-6/
C
C C #NORMAL SOLUTION#00
C
C DETERMINE EQUIVALENCE RATIO AND IF OUTSIDE INTERVAL (0,1,10) ASSUME
C NO REACTION AND RETURN ADIABATIC NON-REFACTED MIXTURE PROPERTIES
C SAVE GIVEN ESTIMATES OR PROGRAM GENERATED ESTIMATES IF TK IS SMALL
C IF SOLUTION IS SUCCESSFUL, RETURN TO CALLING ROUTINE OTHERWISE.
C ENTER PROBLEM CELL LOGIC BELOW
C LCONVG=.TRUE.
C
C CALL EPATC
C IF (1,NOT,LODEBUG) GO TO 30
C WRITE(6,10) LFACT,LEQUIL,LADTAB,EMV,ER,HSURO,Q0,Q1,Q2,Q3,Q4,PA,TK
C 10 FORMAT(3X,3L3,1P10D12.3)
C IF (NDEBUG,ER,1) GO TO 30
C WRITE(6,20) (S1(I),I=1,NS)
C WRITE(6,20) (S2(I),I=1,NS)
C 20 FORMAT(1X,1P10D12.3)
C 30 IF (1,NET,LREACT) GO TO 400
C EMVSAY=EMV

```

```

C      11.52609 IS E-LOG OF STD PATH=101325.0 N/M442          CREK    155
C      PPLM=DLOG(PA)=11.5260 .00          CREK    156
C      TSAVE=TK          CREK    157
C      DO 40 I=1,NS          CREK    158
C      40 SSAVE(I)=S2(I)          CREK    159
C      IF (TK.LT.SMALL) GO TO 100          CREK    160
C
C      CALL SPEC
C
C      IF (LCNVG) GO TO 900          CREK    161
C      DO 101 I=1,NS          CREK    162
C      IF(S2(I).LT.2.00-20)S2(I)=S1(I)          CREK    163
C      101 CONTINUE          NOXX    12
C      IF(.NOT.LCNVG)GO TO 900          NOXX    13
C
C      ****PROBLEM CEIL000          NOXX    14
C
C      SOLUTION LOGIC IS DIFFERENT FOR FOUR TYPES OF PROBLEMS AS FOLLOWS          NOXX    15
C      MODE 1 ... LEQUIL = T, LADIAR = T          CREK    165
C      MODE 2 ... LEQUIL = T, LADIAB = F          CREK    166
C      MODE 3 ... LEQUIL = F, LADIAR = T          CREK    167
C      MODE 4 ... LEQUIL = F, LADIAB = F          CREK    168
C
C      ALWAYS TRY RT=0.0 (LNRC=F) AFTER SOLUTION FAILURE WHEN LEQUIL=F.          CREK    169
C      LOGIC TO FIND SOLUTION IS CONTROLLED IN CHAPTERS 1 AND 2 BELOW          CREK    170
C      WHEREIN EACH SECTION, NEW ESTIMATES ARE DETERMINED EITHER BY          CREK    171
C      SAVED GIVEN ONES, NEW ASSIGNED ONES, OR SOLUTION FOUND NOT AT          CREK    172
C      REQUIRED CONDITIONS. THE VARIABLES NEXTOK AND NEXTNG ARE ASSIGNED          CREK    173
C      THE STATEMENT NUMBERS OF WHERE TO GO IF THE SOLUTION ATTEMPT IS          CREK    174
C      SUCCESSFUL OR NOT, RESPECTIVELY.          CREK    175
C
C      ASSIGN 900 TO NEXTOK          CREK    176
C      ASSIGN 100 TO NEXTNG          CREK    177
C      GO TO 520          CREK    178
C
C      ****EQUILIBRIUM***          CREK    179
C      THIS CHAPTER MAKES EQUILIBRIUM ESTIMATES AND INITIATES STRATEGY FOR          CREK    180
C      CASES IN WHICH CONVERGENCE WAS NOT ACHIEVED ON FIRST CALL TO SPEC          CREK    181
C
C      100 MODE=4          CREK    182
C      IF (LEQUIL) MODE=MODE-2          CREK    183
C      IF (LADIAR) MODE=MODE-1          CREK    184
C      LEQUIL=.TRUE.          CREK    185
C      LADIAR=.TRUE.          CREK    186
C      IF (MODE.LT.3.0R.TK.LT.SMALL) GO TO 170          CREK    187
C
C      -----FIRST USE GIVEN ESTIMATES FOR EQUIL SOLN IN MODE 3 AND 4 PROBLEMS          CREK    188
C
C      TK=TSAVE          CREK    189
C      DO 120 I=1,NS          CREK    190
C      120 S2(I)=SSAVE(I)          CREK    191
C      ASSIGN 200 TO NEXTOK          CREK    192
C      ASSIGN 170 TO NEXTNG          CREK    193
C      GO TO 500          CREK    194
C
C      -----GARBAGE ESTIMATES (GORDON AND MCARDELL)          CREK    195
C
C      170 TK=3800.000          CREK    196
C      SM=0.100/FLOAT(NS)          CREK    197
C      DO 171 I=1,NS          NOXXX    6
C

```

```

171 S2(I)=SM
SM=0.1NC
IF (IMODE.EQ.1) ASSIGN 900 TO NEXTOK
IF (IMODE.EQ.2) ASSIGN 300 TO NEXTOK
IF (IMODE.EQ.3) ASSIGN 200 TO NEXTOK
ASSIGN 600 TO NXXTNG
GO TO 300
C
C   00  00  00  00  00  00  00  00  00  00  00  00  CHAPTER 2  00  00  00
C   00  00  00  00  00  00  00  00  00  00  00  00  CHAPTER 2  00  00  00
C
C   ***KINETIC****
C   SECTION FOR KINETIC SOLUTION FROM ADIABATIC EQUILIBRIUM ESTIMATES
C   (IMODE 3 AND 4 ONLY)
C
C-----NEAR-EQUILIBRIUM SOLUTION (KINETIC WITH EMV=1.00E-3 KG/CU M-SEC)
C
200 LFAULT=.FALSE.
IX=0
EMV=1.00E-3
XL0=FMV
C-----INCREASE MINOR SPECIES FROM EQUILIBRIUM ESTIMATES
DO 201 I=1,NS
IF (S2(I).LT.SMALL) S2(I)=SMALL
201 CONTINUE
ASSIGN 230 TO NEXTOK
ASSIGN 210 TO NXXTNG
GO TO 500
C
C
C-----FAILURE ON NEAR-EQUIL WITH EMV=XL0, DECREASE EMV BY AN ORDER OF
C-----MAGNITUDE AND ATTEMPT AGAIN, ITERATING THIS WAY UP TO 12 TIMES
C
210 EMV=EMV*0.100
XL0=FMV
IX=IX+1
IF (IX.EQ.12) GO TO 610
TK=TSAVE
DO 211 I=1,NS
211 S2(I)=SSAVE(I)
ASSIGN 230 TO NEXTOK
ASSIGN 210 TO NXXTNG
GO TO 500
C
C
C-----HAVE NEAR-EQUIL SOLUTION, SO FIRST TRY DIRECTLY TO OBTAIN
C-----REQUIRED SOLUTION AT GIVEN EMV
C
230 EMV=EMVSAY
IF (IMODE.EQ.3) ASSIGN 900 TO NEXTOK
IF (IMODE.EQ.4) ASSIGN 300 TO NEXTOK
ASSIGN 230 TO NXXTNG
GO TO 500
C
C   ***UPPER BRANCH MARCHING***
C   HAVE A KINETIC SOLUTION BUT AT EMV .LT. EMVSAY. START AT
C   KNOWN SOLUTION AND INCREASE EMV BY FACTOR TO MOVE TOWARDS
C   A SOLN THERE, IF SUCCESSFUL, REPEAT UNTIL EMVSAY IS REACHED. IF
C   NOT SUCCESSFUL START HALF INTERVAL SEARCHING DESCRIBED BELOW
C
250 FMV=XL0*FACTOR
IF (EMV.GT.EMVSAY) EMV=EMVSAY
XHT=FMV
IT=0

```

250

|      |     |
|------|-----|
| CREK | 215 |
| CREK | 216 |
| CREK | 217 |
| CREK | 218 |
| CREK | 219 |
| CREK | 220 |
| CREK | 221 |
| CREK | 222 |
| CREK | 223 |
| CREK | 224 |
| CREK | 225 |
| CREK | 226 |
| CREK | 227 |
| CREK | 228 |
| CREK | 229 |
| CREK | 230 |
| CREK | 231 |
| CREK | 232 |
| CREK | 233 |
| CREK | 234 |
| CREK | 235 |
| CREK | 236 |
| CREK | 237 |
| CREK | 238 |
| CREK | 239 |
| CREK | 240 |
| CREK | 241 |
| CREK | 242 |
| CREK | 243 |
| CREK | 244 |
| CREK | 245 |
| CREK | 246 |
| CREK | 247 |
| CREK | 248 |
| CREK | 249 |
| CREK | 250 |
| CREK | 251 |
| CREK | 252 |
| CREK | 253 |
| CREK | 254 |
| CREK | 255 |
| CREK | 256 |
| CREK | 257 |
| CREK | 258 |
| CREK | 259 |
| CREK | 260 |
| CREK | 261 |
| CREK | 262 |
| CREK | 263 |
| CREK | 264 |
| CREK | 265 |
| CREK | 266 |
| CREK | 267 |
| CREK | 268 |
| CREK | 269 |
| CREK | 270 |
| CREK | 271 |
| CREK | 272 |
| CREK | 273 |
| CREK | 274 |
| CREK | 275 |
| CREK | 276 |
| CREK | 277 |
| CREK | 278 |

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

TK=TSAVE
DO 251 I=1,NS
251 S2(I)=SSAVE(I)
ASSIGN 250 TO NEXTOK
IF (EMV.GE.FMVSAV.AND.MODE.EQ.3) ASSIGN 900 TO NEXTOK
IF (EMV.GE.FMVSAV.AND.MODE.EQ.4) ASSIGN 900 TO NEXTOK
ASSIGN 270 TO NEXTNG
GO TO 300

C
C ***HALF-INTERVAL SEARCHING*** 
C HAVE SOLUTION AT XLC BUT NOT AT XHI. HENCE START INTERVAL
C SEARCHING BY SETTING EMV TO THE LOGARITHMIC AVERAGE
C IF ITERATING MORE THAN TEN TIMES, TERMINATE.
C

270 IX=IX+1
TK=TSAVE
DO 271 I=1,NS
271 S2(I)=SSAVF(I)
IF (IX.GT.10) GO TO 620
EMV=DSORT(XLO*XHI)
XHT=EMV
ASSIGN 250 TO NEXTOK
ASSIGN 270 TO NEXTNG
GO TO 300

C
C***NON-ADIABATIC*** 
C SECTION FOR NON-ADIABATIC SOLUTIONS FROM ADIABATIC ESTIMATES
C (MODE 2 AND 4 ONLY)
C TRY DIRECTLY TO OBTAIN NON-ADIABATIC SOLUTION IF NOT SUCCESSFUL,
C START HALF-INTERVAL SCALING FROM THE ADIABATIC SOLUTION BY
C DEFINING A SCALING FACTOR FO (0.0-1.0) TO MULTIPLY THE NON-ADIABATIC
C TERM (O) IN THE ENERGY EQUATION IN SPEC
C

300 LADTAB=.FALSE.
XLO=0.000
XHI=1.000
FO=1.000
IX=0
310 ASSIGN 320 TO NEXTOK
ASSIGN 330 TO NEXTNG
GO TO 900

C
320 IF (FO.EC.1.000) GO TO 900
XLO=FO
FO=1.000
XHI=1.000
IX=0
GO TO 310

C
330 IX=IX+1
IF (IX.GT.10) GO TO 340
TK=TSAVE
DO 331 I=1,NS
331 S2(I)=SSAVF(I)
FO=0.500*(XLO+XHI)
XHT=FO
GO TO 310

C
340 FO=1.000
GO TO 630
C

```

| CREK | 279 |
|------|-----|
| CREK | 280 |
| CREK | 281 |
| CREK | 282 |
| CREK | 283 |
| CREK | 284 |
| CREK | 285 |
| CREK | 286 |
| CREK | 287 |
| CREK | 288 |
| CREK | 289 |
| CREK | 290 |
| CREK | 291 |
| CREK | 292 |
| CREK | 293 |
| CREK | 294 |
| CREK | 295 |
| CREK | 296 |
| CREK | 297 |
| CREK | 298 |
| CREK | 299 |
| CREK | 300 |
| CREK | 301 |
| CREK | 302 |
| CREK | 303 |
| CREK | 304 |
| CREK | 305 |
| CREK | 306 |
| CREK | 307 |
| CREK | 308 |
| CREK | 309 |
| CREK | 310 |
| CREK | 311 |
| CREK | 312 |
| CREK | 313 |
| CREK | 314 |
| CREK | 315 |
| CREK | 316 |
| CREK | 317 |
| CREK | 318 |
| CREK | 319 |
| CREK | 320 |
| CREK | 321 |
| CREK | 322 |
| CREK | 323 |
| CREK | 324 |
| CREK | 325 |
| CREK | 326 |
| CREK | 327 |
| CREK | 328 |
| CREK | 329 |
| CREK | 330 |
| CREK | 331 |
| CREK | 332 |
| CREK | 333 |
| CREK | 334 |
| CREK | 335 |
| CREK | 336 |
| CREK | 337 |
| CREK | 338 |
| CREK | 339 |
| CREK | 340 |
| CREK | 341 |
| CREK | 342 |

```

C*****      *****      *****      *****      *****      *****      CHAPTER 4      *****
C*****      *****      *****      *****      *****      *****      CHAPTER 4      *****
C
C ***FAILURE EXITS***  

C FAILED EQUIL OR KINETIC SOLN OR EQUIV RATIO OUTSIDE (0.1,10)  

C RETURN ADIABATIC, NON-REACTED MIXTURE PROPERTIES  

400 SM=0.000  

    DO 401 I=1,NS  

    S2(I)=S1(I)  

    SM=SM+S2(I)  

401 CONTINUE  

    TK=1000.000  

    XLO=TK  

    IMCPS=1  

    NS1=1  

    NS2=NS  

    TKINV=1.0D-3  

    DO 403 I=1,30  

    CALL HCPS  

    HSUM=0.000  

    DO 402 K=1,NS  

    HSUM=HSUM+H0(K)*S2(K)  

402 CONTINUE  

    IF(.NOT.LADIAB)HSUM=HSUM+((Q4*TK+Q3)*TK+Q2)*TK+Q1+Q0*TKINV)/  

    (RGAS*EMV)  

    TK=TK*(1.0D+0.500*(HSUB0*RGASIN*TKINV-HSUM)/CPSUM)  

    TKINV=1.0D/TK  

    XHI=DARS(TK-XLO)  

    XLO=TK  

    IF (XHI.LT.1.000) GO TO 404  

403 CONTINUE  

404 CONTINUE  

    IF(.NOT.LADIAB)HSUB0=HSUM*RGAS/TK  

C  

    GO TO 900  

C
C*****      *****      *****      *****      *****      *****      CHAPTER 5      *****
C*****      *****      *****      *****      *****      *****      CHAPTER 5      *****
C
C ***PROBLEM CELL CALL TO SPECIE***  

C TAKE THE ESTIMATES GENERATED IN CHAPTERS 1,2 AND ATTEMPT A SOLUTION  

C WITH FULL EQUATIONS. IF SUCCESSFUL, UPDATE THE SAVE ANSWERS WITH THE  

C SOLUTION AND RETURN TO STATEMENT NUMBER NEXTNG. IF NOT, THE ACTION  

C DEPENDS ON WHETHER AN EQUILIBR OR KINETIC SOLN IS SOUGHT. FAILED  

C EQUIL SOLN, RETURN TO STATEMENT NUMBER NEXTNG, WHILE FAILURE IN A  

C KINETIC SOLN WILL BE FOLLOWED BY AN ATTEMPT WITH LNRCG=F --- RT=0.0  

C AND SAME ESTIMATES. SETTING RT=0.0 IMPLIES THAT A CHANGE IN TEMP  

C FIELD HAS NO EFFECT ON SPECIES DISTRIBUTION FOR THAT PARTICULAR  

C ITERATION, BUT DOES ALLOW THE SPECIES CHANGES TO INFLUENCE THE TEMP  

C CHANGE --- PARTIAL DECOUPLING OF THE ENERGY EQUATION.  

C IF STILL NO GOOD, RETURN TO STATEMENT NUMBER NEXTNG.  

C  

500 CALL SPECF  

    IF (LCONVG) GO TO 540  

C  

    SOLUTION FAILED TRY RT=0.0  

    IF (LNRCG) GO TO 520  

    LNRCG=.TRUE.  

510 GO TO NEXTNG, (100,170,210,250,270,330,600)  

520 IF (LFCUTL) GO TO 510  

530 LNRCG=.FALSE.  

    GO TO 500  

540 IF (LNRCG) GE TO 550  

    LNRCG=.TRUE.  

C

```

252

ORIGINAL PAGE IS  
OF POOR QUALITY

```

C      GO TO 500      *REMOVED PER D.T.PRATT 7/19/7800
C*****IF COMPLEX CASES DO NOT CONVERGE, IT MAY BE NECESSARY TO*****
C*****RETURN THIS STATEMENT TO THE PROGRAM.      ****
C
C
C-----SOLUTION IS SUCCESSFUL, UPDATE SAVE ANSWERS AND CONTINUE.
C
C      550 TSAVE=TK
C         00 560 I=1,NS
C      560 SSAVE(I)=S2(I)
C
C      GO TO NEXTOK, (200,230,250,300,320,900)
C
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      408
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      409
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      410
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      411
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      412
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      413
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      414
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      415
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      416
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      417
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      418
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      419
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      420
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      421
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      422
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      423
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      424
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      425
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      426
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      427
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      428
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      429
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      430
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      431
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      432
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      433
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      434
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      435
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      436
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      437
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      438
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      439
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      440
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      441
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      442
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      443
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      444
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      445
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      446
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      447
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      448
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      449
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      450
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      451
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      452
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      453
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      454
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      455
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      456
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      457
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      458
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      459
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      460
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      461
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      462
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      463
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      464
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      465
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      466
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      467
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      468
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      469
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      470
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      471
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      472
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      473
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      474
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      475
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      476
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      477
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      478
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      479
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      480
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      481
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      482
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      483
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      484
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      485
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      486
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      487
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      488
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      489
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      490
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      491
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      492
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      493
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      494
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      495
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      496
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      497
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      498
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      499
C*****      000000      000000      000000      CHAPTER 6      000000      CREK      500
C
C-----RESTORE FAILED PROBLEM MODE PRIOR TO RETURN
C
C      650 IF (MODE.EQ.2) LADIAB=.FALSE.
C         IF (MODE.EQ.3) LEQUIL=.FALSE.
C         IF (MODE.EQ.4) LADIAB=.FALSE.
C         GO TO 400
C
C-----FAILED NON-ADIAHATIC SOLUTION...RETURN ADIAHATIC
C-----EQUIL OR KINETIC SOLUTION
C
C      670 TK=TSAVE
C         SM=0.000
C         DO 671 I=1,NS
C            S2(I)=SSAVE(I)
C 671   SM=SM+S2(I)
C 900   RHOP=PA/(RGAS*TK*SM)
C         RETURN
C         END
C         SUBROUTINE CALC
C
C         DOUBLE PRECISION AL,BQ,CPSUM,EMV,ER,FQ,HSUB0,HSUM,HQ,PA,PI,PPLN,
C 1  OO,Q1,Q2,Q3,Q4,RGAS,RGASIN,RHOP,SM,SMINV,SM,SSAVE,S0,S1,S2,TK,
C 2  TKINV,TLN,Z,SM
C         DOUBLE PRECISION RK,RX2,TACT,TACT2,TEM,TEM2,T1,X2,CERU
C         DOUBLE PRECISION XCYH,FUT,FST,SSS
C         DOUBLE PRECISION X,Y
C         DOUBLE PRECISION ANG,BIG,RXX,DSUM,EN,HH,HEH,Q,QDRV,RHSM,RHSQ,
C 1  RM,RT,R1,R2,SS,SUM,S2,T1,T2,TM1,TM2,TM3,TN2,XC,YH
C         LOGICAL LADTAB,LCCNVG,DEBUG,LEQUIL,LNRG,LREACT,LENER
C
C

```

```

      DOUBLE PRECISION RLAM,RTURA,PHT
      THE FOLLOWING DOUBLE PRECISION REQUIRED ONLY FOR IBM MACHINES
      DOUBLE PRECISION A,DTM1

      COMMON
      3/CCHEMI/CPSUM,HSUM,FQ,PPLN,RGAS,RGASIM,SHINV,TKINV,TLM,LMRG
      1/CEQUIL/AL(7,30),ATOM(3,7),R0(7),PI(7)
      1/CINDFX/IDCO,INFO1,IO02,IDH2,IDH20,IDCO2,IDH1,IDH2,IDM1,IDM2,IDN02
      1,ID00,ID0H,IHCPS,ILC,ILH,IMAT,ITER,JJ,N1,N2,N3,NA,NGL08,NGL0P,
      2,MLM,NQ,NSM,NS1,NS2,IDCH
      1/CMATR/X(32),Y(32)
      1/CPARAM/ASUB(30,31),ENV,ER,HSUB0,NDEBUG,NS,PA,OO,O1,O2,O3,O4,RHOP,
      1,SM,SNW(30),SM0,S1(30),S2(30),TK,LADIAB,LDEBUG,LREACT,LENER
      2,ENKIJ,LCNVG
      1/CREACT/RX(36),BX2(36),ID(6,36),MDR(36),TACT(36),TACT2(36),
      2,TEN(36),TEN2(36),X1(36),X2(36),CEBU(36)
      1/CSPEC/EQ(30),SO(30),SSAVE(30),Z(7,2,30)
      COMMON/STEP4/PEXP1,PEXP2,PEXP3,PEXP4,ER1,ER2,ER3,ER4,CEBU1,CEBU2,
      1,CEBU3,CEBU4,AEXP1,AEXP2,AEXP3,AEXP4,BEXP1,BEXP2,BEXP3,BEXP4,
      2,CEXP1,CEXP2,CEXP3,CEXP4,FUT,FST

C
C ***** THIS SUBROUTINE CONSTRUCTS THE NEWTON-RAPHSON DERIVATIVE MATRIX FOR
C ***** BOTH KINETIC AND EQUILIBRIUM SOLUTIONS AND SOLVES IT BY PIVOTAL
C ***** GAUSSIAN REDUCTION. WHENEVER TEMP IS LESS THAN 1500K, THE REVERSE
C ***** RATE IS CALCULATED FROM THE FORWARD RATE AND EQUILIBRIUM CONSTANT.
C ***** PROVISION IS MADE FOR GLOBAL REACTIONS
C ***** REFERENCE CREK (WASHINGTON STATE UNIVERSITY) MARCH 1976
C
      DIMENSION A(32,33)
      DATA RIG/46.05100/
      DO 10 I=1,NO
      X(I)=0.0
      DO 10 K=1,NA
      10 A(I,K)=0.000
      THCPS=1
      IF (LFOUIL) IMCPS=2
      IF (TK.LT.1500.0001) IMCPS=2
      NS1=1
      NS2=NS
      CALL HCPS
      WIN=HSUB0*RGASIN*TKINV
      O=0.000
      ORRV=0.000
      IF (LADIAB) GO TO 20
      C-----0 AND ORRV ARE NON-DIMENSIONAL
      TM1=FQ/(ENV*RGAS)
      O=((((O4+TK+Q3)*TK+Q2)*TK+Q1+OO*TKINV)*TM1
      ORRV=((((4.000*O4+TK+3.000*Q3)*TK+2.000*Q2)*TK+Q1)*TM1
      20 CONTINUE
      IF (LFOUIL) GO TO 300
      RHSM=PAB*RGASIN*TKINV
      RHOP=RHSM+SHINV
      RHCO=RHOP*OO2
      **** CHAPTER 1 ****
      **** CHAPTER 1 ****

```

ORIGINAL EDITION  
OF POOR GRAMMAR

GLOBAL REACTIONS  
OF POOR QUALITY

```

C
C ***GLOBAL REACTION***          CALC    61
C GLOBAL RATE EQUATIONS FOR HYDROCARBON PYROLYSIS...  CALC    62
C GLOBAL RATE EXPRESSIONS DUE TO KOLLRACK...   CALC    63
C (1) C12H23 + O2 --- 5 C2H4 + C2H3 + O2  CALC    64
C (2) C12H23 + OH --- 6 C2H4 + O  CALC    65
C
C IF (NGLOR,EQ,0) GO TO 110  CALC    66
C IF (TK,LT,500,00) GO TO 110  CALC    67
C DO 100 J=1,NGLOR  CALC    68
C I=ID(1,J)  CALC    69
C K=ID(2,J)  CALC    70
C M=ID(4,J)  CALC    71
C N=ID(5,J)  CALC    72
C IF (I,FQ,1DFU,AND,M,EQ,1DH,AND,N,EQ,1DH2) GO TO 190  4STEP  350
C IF (I,FQ,1DCO,AND,K,EQ,1D02) GO TO 160  4STEP  351
C IF (I,EQ,1DCO,AND,K,EQ,1D02) GO TO 170  4STEP  352
C IF (I,EQ,1DH2,AND,K,EQ,1D02) GO TO 180  4STEP  353
C IF (M,EQ,1DCO,AND,N,EQ,1DH2) GO TO 105  CALC    73
C IF (M,EQ,1DCO,AND,N,EQ,1DH2) GO TO 111  NOXX   35
C IF (I,EQ,1DCO,AND,K,EQ,1D02) GO TO 121  NOXX   36
C TK1=TACT(J)*TKINV  CALC    74
C TM2=TK1-TEM(J)*TLM-BX(J)  CALC    75
C IF (DABS(TM2).GT.RIG) GO TO 100  CALC    76
C R1=DEXP(-TM2)  CALC    77
C
C -----PROVISION FOR CONTACT INDEX  CALC    78
C R1=X1(J)*R1  CALC    79
C R1=R1*S2(J)*RHS0*S2(K)  CALC    80
C RT=R1*(TEM(J)+TK1-2.00)  CALC    81
C RN=R1*2.00  CALC    82
C -----A(ANY,M)=A(ANY,N)=0 BECAUSE NO REVERSE REACTION ASSUMED  CALC    83
C A(I,I)=A(I,I)+R1  CALC    84
C A(T,K)=A(T,K)+R1  CALC    85
C A(I,NA)=A(I,NA)-R1  CALC    86
C A(T,NSM)=A(T,NSM)-RN  CALC    87
C A(I,NO)=A(I,NO)+RT  CALC    88
C A(N,I)=A(N,I)-R1  CALC    89
C A(N,K)=A(N,K)-R1  CALC    90
C A(N,NA)=A(N,NA)+R1  CALC    91
C A(N,NSM)=A(N,NSM)+RN  CALC    92
C A(N,NO)=A(N,NO)-RT  CALC    93
C AND=5.00  CALC    94
C IF (J,FQ,1) GO TO 101  CALC    95
C A(K,I)=A(K,I)+R1  CALC    96
C A(K,K)=A(K,K)+R1  CALC    97
C A(K,NA)=A(K,NA)-R1  CALC    98
C A(K,NSM)=A(K,NSM)-RN  CALC    99
C A(K,NO)=A(K,NO)+RT  CALC    100
C AND=6.00  CALC    101
C 101 CONTINUE  CALC    102
C R1=R1+AND  CALC    103
C RN=RN+ANC  CALC    104
C RT=RT+AND  CALC    105
C A(M,I)=A(M,I)-R1  CALC    106
C A(M,K)=A(M,K)-R1  CALC    107
C A(M,NA)=A(M,NA)+R1  CALC    108
C A(M,NSM)=A(M,NSM)+RN  CALC    109
C A(M,NO)=A(M,NO)-RT  CALC    110
C GO TO 200  CALC    111
C 105 CONTINUE
C ***GLOBAL REACTION***          CALC    112
C GLOBAL RATE EQUATIONS FOR HYDROCARBON PYROLYSIS...  CALC    113
C GLOBAL RATE EXPRESSION DUE TO ROELMAN AND FORTUNE  CALC    114
C
C

```

```

C      CHXY + (X/2) O2 ---- X CO + (Y/2) H2          CALC    119
C
C      XC=AL(ILC,I)
C      YH=AL(ILH,I)
C      TK1=TACT(J)*TKINV
C      TM2=TK1-BX(J)-(0.3*PPLN)
C      IF(TEM(J).NE.0.C.1TM2=TM2-TEM(J)*TLN
C      IF(DARS(TM2).GT.BIG)GO TO 100
C      R1=DEXP(-TM2)
C
C      -----PROVISION FOR CONTACT INDEX
C      R1=Y1(J)*R1
C      R1=R1*(RHOP*S2(K))*DSORT(RHOP*S2(I))
C      TM1=R1*0.5
C      A(I,I)=A(I,I)+TM1
C      A(I,K)=A(I,K)+R1
C      A(K,I)=A(K,I)+R1*XC*0.25
C      A(K,K)=A(K,K)+TM1*XC
C      A(M,I)=A(M,I)-TM1*YC
C      A(M,K)=A(M,K)-R1*YC
C      A(N,I)=A(N,I)-R1*YH*0.25
C      A(N,K)=A(N,K)-TM1*YH
C      -----A(NY,M)=A(NY,N)=0 BECAUSE NO REVERSE REACTION ASSUMED
C      RN=R1*1.5
C      A(I,NSM)=A(I,NSM)-RN
C      A(K,NSM)=A(K,NSM)-RN*XC*0.5
C      A(M,NSM)=A(M,NSM)+RN*XC
C      A(N,NSM)=A(N,NSM)+RN*YH*0.5
C      A(I,NA)=A(I,NA)-R1
C      A(K,NA)=A(K,NA)-R1*XC*0.5
C      A(M,NA)=A(M,NA)+R1*XC
C      A(N,NA)=A(N,NA)+R1*YH*0.5
C      IF (.NOT.LNRG) GO TO 100
C      RT=R1*(TK1+TFN(J)-1.5)
C      A(I,NO)=A(I,NO)+RT
C      A(K,NO)=A(K,NO)+RT*XC*0.5
C      A(M,NO)=A(M,NO)-RT*XC
C      A(N,NO)=A(N,NO)-RT*YH*0.5
C      GO TO 100
111 CONTINUE
C      ***GLOBAL REACTIONS***
C      FLORAL RATE EQUATIONS FOR 2-STEP REACTION.
C      FIRST STEP   CHXY+(X/2+Y/4)O2 ---- XCO+(Y/2)H2O
C
C      XC=AL(ILC,I)
C      YH=AL(ILH,I)
C      TK1=TACT(J)*TKINV
C      TM2=TK1-BX(J)-TFN(J)*TLN
C      IF(DARS(TM2).GT.BIG)GO TO 100
C      R1=DEXP(-TM2)
C
C      -----PROVISION FOR CONTACT INDEX.
C      R1=Y1(J)*R1
C      R1=R1*(RHOP*S2(K))*DSORT(RHOP*S2(I))
C      RLAM=R1
C      PHI=DMIN1(S2(I),S2(K)/(XC+0.25*YH))
C      RTURR=(CFLU(J)*RHOP*PHI*EOKIJ
C      TFIRLAM,LT,RTURR)GO TO 130
C      P1=RTURR
C      FN=1.000
C      TFIS2K/(XC+0.25*YH),LT,S2(I))GO TO 131
C      R1T=RTURR
C      R1K=0.0
C      GO TO 132

```

131 R1T=0.0  
 R1K=RTURN  
 GO TO 132  
 130 R1I=0.500\*RLAM  
 R1K=RLAM  
 R1=RLAM  
 EN=1.302  
 132 CONTINUE  
 $A(I,I)=A(I,I)+R1I$   
 $A(I,K)=A(I,K)+R1K$   
 $A(K,I)=A(K,I)+R1I+0.5*(XC+0.5*YH)$   
 $A(K,K)=A(K,K)+0.5*R1K*(XC+0.5*YH)$   
 $A(M,I)=A(M,I)-R1I*XC$   
 $A(M,K)=A(M,K)-R1K*XC$   
 $A(N,I)=A(N,I)-R1I*YH+0.5$   
 $A(N,K)=A(N,K)-0.5*R1K*YH$   
 C-----A(ANY,N)=A(ANY,N)=0 BECAUSE NO REVERSE REACTION ASSUMED.  
 RN=R1\*EN  
 $A(I,NSM)=A(I,NSM)-RN$   
 $A(K,NSM)=A(K,NSM)-RN+0.5*(XC+0.5*YH)$   
 $A(M,NSM)=A(M,NSM)+RN*XC$   
 $A(N,NSM)=A(N,NSM)+RN*YH+0.5$   
 $A(I,NA)=A(I,NA)-R1$   
 $A(K,NA)=A(K,NA)-R1+0.5*(XC+0.5*YH)$   
 $A(M,NA)=A(M,NA)+R1*XC$   
 $A(N,NA)=A(N,NA)+R1*YH+0.5$   
 IF(.NOT.LNRG)GO TO 100  
 IF(RTURN.LT.RLAM)GO TO 100  
 RT=R1\*(TK1+TEN(J)-1.5)  
 $A(I,NO)=A(I,NO)+RT$   
 $A(K,NO)=A(K,NO)+RT+0.5*(XC+0.5*YH)$   
 $A(M,NO)=A(M,NO)-RT*XC$   
 $A(N,NO)=A(N,NO)-RT*YH+0.5$   
 GO TO 100  
 121 CONTINUE  
 C \*\*\*GLOBAL REACTION\*\*\*  
 C GLOBAL RATE EQUATIONS FOR 2-STEP REACTION.  
 C SECOND STEP CO+(1/2)O2 --- CO2  
 C  
 $TK1=TACT(J)*TK1INV$   
 $TM2=TK1-BX(J)-TEH(J)*TLN$   
 IF(DABS(TM2).GT.0.016)GO TO 100  
 R1=DEXP(-TM2)  
 C-----PROVISION FOR CONTACT INDEX.  
 $R1=X1(J)*R1$   
 $R1=R1*RHSQ*S2(K)*S2(I)$   
 RLAM=R1  
 $PHI=DMIN1(2.0*S2(K),S2(I))$   
 RTURA=CEPU(J)\*RHDP\*PHI\*ENDKIJ  
 TF(RLAM,LT,RTURA)GO TO 140  
 R1=RTURN  
 EN=1.000  
 TF(2.0\*S2(K),LT,S2(I))GO TO 141  
 R1I=RTURA  
 $R1K=0.0$   
 GO TO 142  
 141 R1I=0.0  
 R1K=RTURN  
 GO TO 142  
 140 R1I=RLAM  
 R1K=RLAM  
 R1=RLAM  
 EN=2.000

ORIGINAL PAGE IS  
OF POOR QUALITY

|      |     |
|------|-----|
| NOXX | 63  |
| NOXX | 64  |
| NOXX | 65  |
| NOXF | 66  |
| NOXX | 67  |
| NOXX | 68  |
| NOXX | 69  |
| NOXX | 70  |
| NOXX | 71  |
| NOXX | 72  |
| NOXX | 73  |
| NOXX | 74  |
| NOXX | 75  |
| NOXX | 76  |
| NOXX | 77  |
| NOXX | 78  |
| NOXX | 79  |
| NOXX | 80  |
| NOXX | 81  |
| NOXX | 82  |
| NOXX | 83  |
| NOXY | 84  |
| NOXX | 85  |
| NOXX | 86  |
| NOXX | 87  |
| NOXX | 88  |
| NOXX | 89  |
| NOXX | 90  |
| NOXX | 91  |
| NOXX | 92  |
| NOXX | 93  |
| NOXX | 94  |
| NOXX | 95  |
| NOXX | 96  |
| NOXX | 97  |
| NOXX | 98  |
| NOXX | 99  |
| NOXX | 100 |
| NOXF | 101 |
| NOXX | 102 |
| NOXX | 103 |
| NOXX | 104 |
| NOXX | 105 |
| NOXX | 106 |
| NOXY | 107 |
| NOXX | 108 |
| NOXX | 109 |
| NOXX | 110 |
| NOXX | 111 |
| NOXX | 112 |
| NOXX | 113 |
| NOXX | 114 |
| NOXX | 115 |
| NOXX | 116 |
| NOXX | 117 |
| NOXX | 118 |
| NOXY | 119 |
| NOXX | 120 |
| NOXX | 121 |
| NOXX | 122 |
| NOXX | 123 |
| NOXX | 124 |
| NOXX | 125 |
| NOXX | 126 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

142 CONTINUE
A(I,I)=A(I,I)+R1I
A(I,K)=A(I,K)+R1K
A(K,I)=A(K,I)+0.5*R1I
A(K,K)=A(K,K)+0.5*R1K
A(M,I)=A(M,I)-R1I
A(M,K)=A(M,K)-R1K
C=====A(NY,M)=A(ANY,N)=0 BECAUSE NO REVERSE REACTION ASSUMED.
RN=R1+EN
A(I,NSM)=A(I,NSM)-RN
A(K,NSM)=A(K,NSM)-RN*0.5
A(M,NSM)=A(M,NSM)+RN
A(I,NA)=A(I,NA)-R1
A(K,NA)=A(K,NA)-R1*0.5
A(M,NA)=A(M,NA)+R1
IF(NDNT,LNRG)GO TO 100
IF(RTURB,LT,RLAM)GO TO 100
RT=R1*(TK1+TEM(J)*2.0)
A(I,NO)=A(I,NO)+RT
A(K,NO)=A(K,NO)+RT*0.5
A(M,NO)=A(M,NO)-RT
GO TO 100
150 CONTINUE
C ***GLOBAL REACTION***
C GLOBAL RATE EQUATIONS FOR 4-STEP REACTION.
C FIRST STEP CXHY --- CXHY-2+H2
C
XC=AL(ILC,I)
YH=AL(ILH,I)
TACT(J)=ER1
TEM(J)=0.000
CERU(J)=CEBU1
RX(J)=PEXP1
TK1=TACT(J)*TKINV
TM2=TK1-RX(J)-TEM(J)+TLN
IF(DARS(TM2),GT,0.01)GO TO 100
R1=DEXP(-TM2)

C-----PROVISION FOR CONTACT INDEX.
R1=X1(J)*R1
R1=R1*((RHCP*S2(IDFU))**AEXP1)*((RHOP*S2(IDO2))**BEXP1)
1=((RHOP*S2(IDCH))**CEXP1)
PLAM=R1
PHT=S2(I)
RTURR=CERU(J)*RHOP*PHI*EDKIJ
IF(RLAM,LT,RTURR)GO TO 151
R1=RTURR
EN=1.000
R1I=RTURR
R1M=0.0
R1O2=0.0
GO TO 152
151 R1I=AEXP1*RLAM
R1O2=BEXP1*RLAM
R1M=CEXP1*RLAM
R1=RLAM
FH=AEXP1+BEXP1+CEXP1
152 A(I,I)=A(I,I)+R2I
A(T,M)=A(T,M)+R3M
A(I,IDO2)=A(I,IDO2)+R1O2
A(M,I)=A(M,I)-R1I
A(M,M)=A(M,M)-R1M
A(M,IDO2)=A(M,IDO2)-R1O2
A(M,I)=A(M,I)-R1I

```

|  | NOXX  | 127 |
|--|-------|-----|
|  | NOXX  | 128 |
|  | NOXX  | 129 |
|  | NOXX  | 130 |
|  | NOXX  | 131 |
|  | NOXX  | 132 |
|  | NOXX  | 133 |
|  | NOXX  | 134 |
|  | NOXX  | 135 |
|  | NOXX  | 136 |
|  | NOXX  | 137 |
|  | NOXX  | 138 |
|  | NOXX  | 139 |
|  | NOXX  | 140 |
|  | NOXX  | 141 |
|  | NOXX  | 142 |
|  | NOXX  | 143 |
|  | NOXX  | 144 |
|  | NOXX  | 145 |
|  | NOXX  | 146 |
|  | NOXX  | 147 |
|  | 4STEP | 354 |
|  | 4STEP | 355 |
|  | 4STEP | 356 |
|  | 4STEP | 357 |
|  | 4STEP | 358 |
|  | 4STEP | 359 |
|  | 4STEP | 360 |
|  | 4STEP | 361 |
|  | 4STEP | 362 |
|  | 4STEP | 363 |
|  | 4STEP | 364 |
|  | 4STEP | 365 |
|  | 4STEP | 366 |
|  | 4STEP | 367 |
|  | 4STEP | 368 |
|  | 4STEP | 369 |
|  | 4STEP | 370 |
|  | 4STEP | 371 |
|  | 4STEP | 372 |
|  | 4STEP | 373 |
|  | 4STEP | 374 |
|  | 4STEP | 375 |
|  | 4STEP | 376 |
|  | 4STEP | 377 |
|  | 4STEP | 378 |
|  | 4STEP | 379 |
|  | 4STEP | 380 |
|  | 4STEP | 381 |
|  | 4STEP | 382 |
|  | 4STEP | 383 |
|  | 4STEP | 384 |
|  | 4STEP | 385 |
|  | 4STEP | 386 |
|  | 4STEP | 387 |
|  | 4STEP | 388 |
|  | 4STEP | 389 |
|  | 4STFP | 390 |
|  | 4STFP | 391 |
|  | 4STFP | 392 |
|  | 4STFP | 393 |
|  | 4STFP | 394 |
|  | 4STFP | 395 |
|  | 4STFP | 396 |

OF POOR QUALITY

```

A(N,M)=A(N,M)-R1M          4STEP    397
A(N,1002)=A(N,1002)-R102   4STEP    398
RN=R1+FN                    4STEP    399
A(I,NSM)=A(I,NSM)-RN      4STEP    400
A(M,NSM)=A(M,NSM)+RN      4STEP    401
A(N,NSM)=A(N,NSM)+RN      4STEP    402
A(I,NA)=A(I,NA)-R1        4STEP    403
A(M,NA)=A(M,NA)+R1        4STEP    404
A(N,NA)=A(N,NA)+R1        4STEP    405
IF(.NOT.LNRCG)GO TO 100    4STEP    406
IF(RTURA.LT.RLAM)GO TO 100 4STEP    407
RT=R1*(TH1+TEN(J)-EN)      4STEP    408
A(I,NQ)=A(I,NQ)+RT        4STEP    409
A(M,NQ)=A(M,NQ)-RT        4STEP    410
A(N,NQ)=A(N,NQ)-RT        4STEP    411
GO TO 100                  4STEP    412
160 CONTINUE                4STEP    413
C ***GLOBAL REACTION***     4STEP    414
C GLOBAL RATE EQUATIONS FOR 4-STEP REACTION.  4STEP    415
C SECOND STEP CXHY=2+(X/2)O2 === XCO+(Y-2)/2)H2 4STEP    416
C                                         4STEP    417
XC=AL(ILC,1DFU)             4STEP    418
YH=AL(ILH,1DFU)             4STEP    419
XCYH=XC+C.2500*(YH-2.000)   4STEP    420
TACT(J)=FR2                 4STEP    421
TEN(J)=0.000                 4STEP    422
CEBU(J)=CEBU2               4STEP    423
RX(J)=PEXP2                 4STEP    424
TK1=TACT(J)*TKINV           4STEP    425
TM2=TK1-RX(J)-TEN(J)*TLN   4STEP    426
IF(DARS(TM2),GT,R1)GO TO 100 4STEP    427
R1=DEXP(-TM2)               4STEP    428
                                         4STEP    429
C-----PROVISION FOR CONTACT INDEX.  4STEP    430
R1=X1(J)*R1                 4STEP    431
R1=R1*((RHOP*S2(10CH))**AEXP2)*(RHOP*S2(1002))**BEXP2) 4STEP    432
1*((RHOP*S2(1DFU)+1.0-30)**CEXP2) 4STEP    433
RLAM=R1                      4STEP    434
PHI=0*M1(S2(10CH),S2(1002)/XCYH) 4STEP    435
RTURB=(CEBU(J)*RHOP*PHI*EDKIJ 4STEP    436
IF(RLAM.LT.RTURB)GO TO 161 4STEP    437
R1=RTURA                     4STEP    438
R1FU=0.0                      4STEP    439
EN=1.000                      4STEP    440
IF(S2(1002)/XCYH.LT.S2(10CH))GO TO 162 4STEP    441
R1I=RTURA                     4STEP    442
R1K=0.0                        4STEP    443
GO TO 163                     4STEP    444
162 R1I=0.0                     4STEP    445
R1K=RTURB                     4STEP    446
GO TO 163                     4STEP    447
161 R1T=1FXP2*RLAM            4STEP    448
R1K=REXP2*RLAM               4STEP    449
R1FU=CEXP2*RLAM              4STEP    450
R1=RLAM                       4STEP    451
EN=AEXP2+REXP2+CEXP2          4STEP    452
163 A(I,I)=A(I,I)+R1T        4STEP    453
A(I,K)=A(I,K)+R1K            4STEP    454
A(I,1DFU)=A(I,1DFU)+R1FU    4STEP    455
A(K,I)=A(K,I)+R1I+0.500*XC 4STEP    456
A(K,K)=A(K,K)+R1K+0.500*XC 4STEP    457
A(M,1DFU)=A(M,1DFU)+R1FU+0.500*XC 4STEP    458
A(M,I)=A(M,I)+R1I*XC        4STEP    459
A(M,K)=A(M,K)+R1K*XC        4STEP    460

```

ORIGINAL PAGE 25  
OF POOR QUALITY

```

A(M,INFU)=A(M,INFU)-P1FU*XC
A(N,I)=A(N,I)-R2I*(YH-2.000)*0.500
A(N,K)=A(N,K)-R1K*(YH-2.000)*0.500
A(N,TDFU)=A(N,TDFU)-R1FU*(YH-2.000)*0.500
RN=R1*EN
A(I,NSP)=A(I,NSM)-RN
A(K,NSM)=A(K,NSM)-RN*0.500*XC
A(M,NSM)=A(P,NSM)+RN*XC
A(N,NSM)=A(N,NSM)+RN*(YH-2.000)*0.500
A(I,NA)=A(I,NA)-R1
A(K,NA)=A(K,NA)-R1*0.500*XC
A(M,NA)=A(M,NA)+R1*XC
A(N,NA)=A(N,NA)+R1*(YH-2.000)*0.500
IF(I,NOT,LNR6)GO TO 100
IF(RTURR,LT,RLAM)GO TO 100
RT=R1*(TK1+TEN(J)-EN)
A(I,NO)=A(I,NO)+RT
A(K,NO)=A(K,NO)+RT*0.500*XC
A(M,NO)=A(M,NO)-RT*XC
A(N,NO)=A(N,NO)-RT*(YH-2.000)*0.500
GO TO 100
170 CONTINUE
C ***GLOBAL REACTIONS**
C GLOBAL RATE EQUATIONS FOR 4-STEP REACTION.
C THIRD STEP CO+(1/2)O2 --- CO2
C
        TACT(J)=ER3
        TEN(J)=0.000
        CERU(J)=CERU3
        RX(J)=PEXP3
        TK1=TACT(J)*TRINV
        TM2=TK1-RX(J)-TEN(J)*TLN
        IF(DARS(TM2),GT,RIG)GO TO 100
        R1=DEXP1-TM2
C-----PROVISION FOR CONTACT INDEX.
        R1=Y1(J)*R1
        SSS=7.9300*DEXP1*(-2.4800*FUT*(1.000-FST)/(FST*(1.000-FUT)))
        SSS=DMIN1(1.000,SSS)
        R1=R1*((RHOP+S2(IDCO))**AEXP3)*((RHOP+S2(IDO2))**BEXP3)
        1*((RHOP+S2(IDH2O1))**CEXP3)+SSS
        RLAM=R1
        PHI=DMIN1(2.000*S2(K),S2(I))
        RTURR=CERU(J)*RHOP**PHI*ENKIJ
        TF(PLAM,I,T,RTURR)GO TO 171
        R1=RTURR
        R1H2O=C.O
        FN=1.000
        TF(2.000*S2(K),LT,S2(I))GO TO 172
        RII=RTURR
        R1K=0.C
        GO TO 173
172 RII=0.O
        RIK=RTURR
        GO TO 173
171 R1I=AEXP3*RLAM
        R1K=REXP3*RLAM
        R1H2O=CEXP3*RLAM
        R1=RLAM
        FN=AEXP3+REXP3+CEXP3
173 A(I,I)=A(I,I)+R1I
        A(I,K)=A(I,K)+R1K
        A(I,IDO2)=A(I,IDO2)+R1H2O
        A(K,I)=A(K,I)+R1I*0.500

```

|                                                         |       |     |
|---------------------------------------------------------|-------|-----|
| A(K,K)=A(K,K)+R1K*0.500                                 | 4STEP | 525 |
| A(K,1DH2D)=A(K,1DH2D)+R1H2D*0.500                       | 4STEP | 526 |
| A(M,I)=A(M,I)-R1I                                       | 4STEP | 527 |
| A(M,K)=A(M,K)-R1K                                       | 4STEP | 528 |
| A(M,1DH2C)=A(M,1DH2C)-R1H2D                             | 4STEP | 529 |
| RN=R1+EN                                                | 4STEP | 530 |
| A(I,NSM)=A(I,NSM)-RN                                    | 4STEP | 531 |
| A(K,NSM)=A(K,NSM)-RN*0.500                              | 4STEP | 532 |
| A(M,NSM)=A(M,NSM)+RN                                    | 4STEP | 533 |
| A(T,NA)=A(T,NA)-R1                                      | 4STEP | 534 |
| A(K,NA)=A(K,NA)-R1*0.500                                | 4STEP | 535 |
| A(M,NA)=A(M,NA)+R1                                      | 4STEP | 536 |
| IF(I,NOT,LMPG)GO TO 100                                 | 4STEP | 537 |
| IF(URTRG,LT,RLAM)GO TO 100                              | 4STEP | 538 |
| RT=R1*(TK1+TEN(J)-EN)                                   | 4STEP | 539 |
| A(T,NO)=A(T,NO)+RT                                      | 4STEP | 540 |
| A(K,NO)=A(K,NO)+RT*0.500                                | 4STEP | 541 |
| A(M,NO)=A(M,NO)-RT                                      | 4STEP | 542 |
| GO TO 100                                               | 4STEP | 543 |
| 180 CONTINUE                                            | 4STEP | 544 |
| C ***GLOBAL REACTION***                                 | 4STEP | 545 |
| C GLOBAL RATE EQUATIONS FOR 4-STEP REACTION.            | 4STEP | 546 |
| C FOURTH STEP H2+(1/2)O2 --- H2O                        | 4STEP | 547 |
| C                                                       | 4STEP | 548 |
| TAUT(J)=ERA4                                            | 4STEP | 549 |
| TEN(J)=0.0DC                                            | 4STEP | 550 |
| CEMU(J)=CEBU4                                           | 4STEP | 551 |
| RX(J)=PEXP4                                             | 4STEP | 552 |
| TKJ=TAUT(J)*TKINV                                       | 4STEP | 553 |
| TM2=TK1-RX(J)-TEN(J)*TLN                                | 4STEP | 554 |
| IF(DARS(TM2),GT,RIG6)GO TO 100                          | 4STEP | 555 |
| R1=DEXP(-TM2)                                           | 4STEP | 556 |
| C                                                       | 4STEP | 557 |
| -----PROVISION FOR CONTACT INDEX.                       | 4STEP | 558 |
| R1=Y1(J)+R1                                             | 4STEP | 559 |
| R1=R1*((RHOP*S2(IDH2))**AEXP4)*((RHOP*S2(IDO2))**BEXP4) | 4STEP | 560 |
| 1*((RHOP*S2(IDCH)+1.0-30)**CEXP4)                       | 4STEP | 561 |
| RLAM=R1                                                 | 4STEP | 562 |
| PHT=DMIN1(2.000*S2(K),S2(I))                            | 4STEP | 563 |
| RTURR=CF8U(J)*RHLR*PHI*EDKIJ                            | 4STEP | 564 |
| IF(RLAM,LT,RTURR)GO TO 181                              | 4STEP | 565 |
| R1=RTURR                                                | 4STEP | 566 |
| R1CH=0.0                                                | 4STEP | 567 |
| EN=1.000                                                | 4STEP | 568 |
| IF(2.000*S2(K),LT,S2(I))GO TO 182                       | 4STEP | 569 |
| R1I=RTURR                                               | 4STEP | 570 |
| R1K=0.0                                                 | 4STEP | 571 |
| GO TO 183                                               | 4STEP | 572 |
| 182 R1I=0.0                                             | 4STEP | 573 |
| R1K=RTURR                                               | 4STEP | 574 |
| GO TO 183                                               | 4STEP | 575 |
| 181 R1I=AEXP4*RLAM                                      | 4STEP | 576 |
| R1K=REXP4*RLAM                                          | 4STEP | 577 |
| R1CH=CEXP4*RLAM                                         | 4STEP | 578 |
| EN=AEXP4+BEXP4+CEXP4                                    | 4STEP | 579 |
| 183 A(I,I)=A(I,I)+R1I                                   | 4STEP | 580 |
| A(I,K)=A(I,K)+R1K                                       | 4STEP | 581 |
| A(I,1DCH)=A(I,1DCH)+R1CH                                | 4STEP | 582 |
| A(K,I)=A(K,I)+R1I*0.500                                 | 4STEP | 583 |
| A(K,K)=A(K,K)+R1K*0.500                                 | 4STEP | 584 |
| A(K,1DCH)=A(K,1DCH)+R1CH*0.500                          | 4STEP | 585 |
| A(M,I)=A(M,I)-R1I                                       | 4STEP | 586 |
| A(M,K)=A(M,K)-R1K                                       | 4STEP | 587 |
| A(M,1DCH)=A(M,1DCH)-R1CH                                | 4STEP | 588 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

RN=R1*FN
A(I,NRM)=A(I,NRM)-RN
A(K,NRM)=A(K,NRM)-RN*0.500
A(M,NRM)=A(M,NRM)+RN
A(I,NA)=A(I,NA)-R1
A(K,NA)=A(K,NA)-R1*0.500
A(M,NA)=A(M,NA)+R1
IF(I,MRT,LNRG) GO TO 100
IF(IRTURR,LT,RLAM) GO TO 100
RT=R1*(TK1+TEN(J)-EN)
A(I,NQ)=A(I,NQ)+RT
A(K,NQ)=A(K,NQ)+RT*0.500
A(M,NQ)=A(M,NQ)-RT
100 CONTINUE
C 110 CONTINUE
IF(NRLOOP.GT.JJ) GO TO 271
C 200 270 J=NRLOOP,JJ
C
C   **REACTION RATES**+
C   CALCULATE FORWARD AND REVERSE RATES R1 AND R2
C   THREE TYPES OF REACTIONS
C
C   MDR 1 ... A + B (+C) --- D + E (+F)
C   MDR 2 ... AB + M --- A + B + M
C   MDR 3 ... A + B + M --- AB + M
C
C   ID(I,J)
C   ID(2,J)
C   ID(3,J)
C   ID(4,J)
C   ID(5,J)
C   ID(6,J)
C   MDR=MDR(J)
C
C   R1=0.000
C   R2=0.000
C   TM1=0.000
C   TM2=0.000
C   RN=0.000
C   RT=0.000
C   R1T=0.0
C   R1K=0.0
C   R1KK=0.0
C   R2M=0.0
C   R2MN=0.0
C   R2NN=0.0
C
C   TK1=TAUT(J)*TKINV
C   TM2=TK1-RX(J)
C   IF (TEN(J),NE,0.001) TM2=TM2-TEN(J)*TLN
C   IF (DARS(TM2),GT,RIG) GO TO 205
C   R1=DEXP(-TM2)
C
C-----PROVISION FOR CONTACT INDEX
C   PI=R1*X1(J)
C   IF (MDRF-2) 200,201,202
C   200 R1=R1*S2(J)*RHSQ*S2(K)
C   RLAM=R1
C   PHT=DMIN1(S2(K),S2(J))
C   RTURB=CERUL(J)*RHUP*PHI*EDK(J)

```

|     | 4STEP | 589 |
|-----|-------|-----|
|     | 4STEP | 590 |
|     | 4STEP | 591 |
|     | 4STEP | 592 |
|     | 4STEP | 593 |
|     | 4STEP | 594 |
|     | 4STEP | 595 |
|     | 4STEP | 596 |
|     | 4STEP | 597 |
|     | 4STEP | 598 |
|     | 4STEP | 599 |
|     | 4STEP | 600 |
|     | 4STEP | 601 |
|     | CALC  | 157 |
|     | CALC  | 158 |
|     | CALC  | 159 |
|     | 4STFP | 602 |
|     | CALC  | 160 |
|     | CALC  | 161 |
|     | CALC  | 162 |
|     | CALC  | 163 |
| CSE | CALC  | 164 |
| CSE | CALC  | 165 |
|     | CALC  | 166 |
|     | CALC  | 167 |
|     | CALC  | 168 |
|     | CALC  | 169 |
|     | CALC  | 170 |
|     | CALC  | 171 |
|     | CALC  | 172 |
|     | CALC  | 173 |
|     | CALC  | 174 |
|     | CALC  | 175 |
|     | CALC  | 176 |
|     | CALC  | 177 |
|     | CALC  | 178 |
|     | CALC  | 179 |
|     | CALC  | 180 |
|     | CALC  | 181 |
|     | CALC  | 182 |
|     | CALC  | 183 |
|     | CALC  | 184 |
|     | CALC  | 185 |
|     | CALC  | 186 |
|     | CALC  | 187 |
|     | NOXX  | 148 |
|     | NOXX  | 149 |
|     | NOXX  | 150 |
|     | NOXX  | 151 |
|     | NOXX  | 152 |
|     | NOXX  | 153 |
|     | CALC  | 188 |
|     | CALC  | 189 |
|     | CALC  | 190 |
|     | CALC  | 191 |
|     | CALC  | 192 |
|     | CALC  | 193 |
|     | CALC  | 194 |
|     | CALC  | 195 |
|     | CALC  | 196 |
|     | CALC  | 197 |
|     | NOXX  | 154 |
|     | NOXX  | 155 |
|     | NOXX  | 156 |

```

IF(RLAH,LT,RTURB)GO TO 291
R1=RTUPR
EN=1.000
IF(S2(K),LT,S2(I))GO TO 292
RII=RTURB
R1K=0.0
GO TO 293
292 RII=0.0
R1K=RTURB
GO TO 293
291 R1T=RLAH
R1K=RLAM
R1=RLAM
FN=2.000
293 CONTINUE
IF(KK,EO.O) GO TO 290
RLAM=R(AM)*RHOP*S2(KK)
PHI=DMIN1(PHI,S2(KN))
RTURB=CEBU(J)*RHOP+PHI*EDKIJ
IF(RLAH,LT,RTURB)GO TO 294
EN=1.000
R1=RTUPR
IF(S2(K),LT,S2(I))GO TO 295
IF(S2(I),LT,S2(KK))GO TO 296
GO TO 298
295 IF(S2(K),LT,S2(KK))GO TO 297
298 RIKK=RTURB
R1K=0.0
R1T=0.0
GO TO 299
297 RIK=RTURB
R1KK=0.0
R1=0.0
GO TO 299
296 R1T=RTURB
R1K=0.0
R1KK=0.0
GO TO 299
294 RII=RLAH
R1K=RLAM
R1KK=RLAM
R1=RLAM
EN=3.000
299 CONTINUE
290 RN=R1*EN
IF(.NOT.LNRG)GO TO 205
IF(RTURB,LT,RLAM)GO TO 205
R=R1*(TEN(J)+TK1-EN)
GO TO 205
C
201 R1=R1*RHSM*RHOP*S2(I)
RLAM=R1
PHI=S2(I)
RTURB=CEBU(J)*RHOP+PHI*EDKIJ
R1T=DMIN1(RLAM,RTURB)
R1=R1T
RN=R1
IF(.NOT.LNRG)GO TO 205
IF(RTURB,LT,RLAM)GO TO 205
RT=R1*(TEN(J)+TK1-2.000)
GO TO 205
C
202 R1=R1*RHSM*S2(I)*RHSQ*S2(K)
RLAM=R1

```

ORIGINAL PAGE IS  
OF POOR QUALITY

|      |     |
|------|-----|
| NOXX | 157 |
| NOXX | 158 |
| NOXX | 159 |
| NOXX | 160 |
| NOXX | 161 |
| NOXX | 162 |
| NOXX | 164 |
| NOXX | 165 |
| NOXX | 166 |
| NOXX | 167 |
| NOXX | 168 |
| NOXX | 169 |
| CALC | 170 |
| NOXY | 170 |
| CALC | 170 |
| NOXX | 171 |
| NOXX | 172 |
| NOXX | 173 |
| NOXX | 174 |
| NOXX | 175 |
| NOXX | 176 |
| NOXX | 177 |
| NOXX | 178 |
| NOXX | 179 |
| NOXX | 180 |
| NOXX | 191 |
| NOXX | 192 |
| NOXX | 193 |
| NOXX | 194 |
| NOXX | 195 |
| NOXX | 196 |
| NOXX | 197 |
| NOXX | 198 |
| CALC | 199 |
| NOXX | 199 |
| NOXX | 200 |
| NOXX | 201 |
| CALC | 204 |
| CALC | 205 |
| CALC | 206 |
| NOXX | 202 |
| NOXX | 203 |
| NOXX | 204 |
| NOXX | 205 |
| NOXX | 206 |
| CALC | 207 |
| NOXX | 207 |
| NOXX | 208 |
| NOXX | 209 |
| CALC | 209 |
| CALC | 210 |
| CALC | 211 |
| NOXX | 210 |

```

PHI=DMIN1(S2(K),S2(I))
RTURR=CEAU(J)*PHOP*PHI*EDKIJ
IF(PLAP,LT,RTURR) GO TO 301
R1=RTURR
FN=1.000
IF(S2(K),LT,S2(I)) GO TO 302
R1T=RTURR
R1K=0.0
GO TO 303
302 R1I=0.0
R1K=RTURR
GO TO 303
301 R1I=R1AM
R1K=R1AM
R1=R1AM
FN=2.000
303 CONTINUE
RN=R10EN
IF(.NOT.LNPG) GO TO 205
IF(RTURR,LT,R1AM) GO TO 205
RT=R1*(TEN(J)+TK1-3.000)
C
205 TM1=R1
C
C-----CALCULATE REVERSE RATE CONST FROM FWD RATE CONST AND EQUIL CONST
C-----WHENEVER TEMP IS LESS THAN 1500 K
C
IF (TK,GT,1500.000) GO TO 220
C
HH=HO(I)-HO(M)
SS=S0(I)-S0(M)
IF (M0DF-2) 210,211,212
C
210 HH=HH+HO(K)-HO(N)
SS=SS+S0(K)-S0(N)
IF(KK,F0,0) GO TO 218
HH=HH+HO(KK)
SS=SS+S0(KK)
218 IF(NN,F0,0) GO TO 219
HH=HH-HO(NN)
SS=SS-S0(NN)
219 CONTINUE
RXX=RX(J)+SS
TK2=TK1+HH
TN2=TFN(J)
GO TO 230
C
211 HH=HH-HO(N)
SS=SS-S0(N)
C -2.500304 IS E-LG OF GAS CONST 0.00206 NOF3-ATM/KGMOL-DEG K.
RXX=RX(J)+SS-2.50030400
TK2=TK1+HH
TN2=TFN(J)+1.000
GO TO 230
C
212 HH=HH+HO(K)
SS=SS+S0(K)
RXX=RX(J)+SS+2.50030400
TK2=TK1+HH
TN2=TEN(J)-1.000
GO TO 230
C
220 RXX=RX2(J)

```

ADDITIONAL PAGE IS  
OF POOR QUALITY

|      |     |
|------|-----|
| NOXX | 211 |
| NOXX | 212 |
| NOXX | 213 |
| NOXX | 214 |
| NOXX | 215 |
| NOXX | 216 |
| NOXX | 217 |
| NOXX | 218 |
| NOXX | 219 |
| NOXX | 220 |
| NOXX | 221 |
| NOXX | 222 |
| NOXX | 223 |
| NOXX | 224 |
| NOXX | 225 |
| NOXX | 226 |
| NOXX | 227 |
| NOXX | 228 |
| NOXX | 229 |
| NOXX | 230 |
| NOXX | 231 |
| CALC | 214 |
| CALC | 215 |
| CALC | 216 |
| CALC | 217 |
| CALC | 218 |
| CALC | 219 |
| CALC | 220 |
| CALC | 221 |
| CALC | 222 |
| CALC | 223 |
| CALC | 224 |
| CALC | 225 |
| CALC | 226 |
| CALC | 227 |
| CALC | 228 |
| CALC | 229 |
| CALC | 230 |
| CALC | 231 |
| CALC | 232 |
| CALC | 233 |
| CALC | 234 |
| CALC | 235 |
| CALC | 236 |
| CALC | 237 |
| CALC | 238 |
| CALC | 239 |
| CALC | 240 |
| CALC | 241 |
| CALC | 242 |
| CALC | 243 |
| CALC | 244 |
| CALC | 245 |
| CALC | 246 |
| CALC | 247 |
| CALC | 248 |
| CALC | 249 |
| CALC | 250 |
| CALC | 251 |
| CALC | 252 |
| CALC | 253 |
| CALC | 254 |
| CALC | 255 |
| CALC | 256 |

ORIGINAL FROM GS  
OF POOR QUALITY

```

TK2=TACT2(J)*TKINV
TN2=TFN2(J)

C
230 TN2=TK2-RXX
IF (TN2,NE,0.00) TN2=TN2-TN2*TLN
IF (DABS(TN2),GT,BIG) GO TO 250
R2=DEXP(-TN2)
C----MULTIPLY HOMOGENEOUS RATE CONSTANT BY CONTACT INDEX
R2=R2*X?(J)
C
IF (MODE=2) 240,241,242
C
240 R2=R2*S2(M)*RH50*S2(N)
RLAM=R2
PHI=DMIN1(S2(M),S2(N))
RTURB=CERU(J)*RHOP*PHI*EDKIJ
IF(RLAM,LT,RTURB)GO TO 311
R2=RTURB
EN=1.000
IF(S2(M),LT,S2(N))GO TO 312
R2M=RTURB
P2M=0.0
GO TO 313
312 R2N=0.0
R2M=RTURB
GO TO 313
311 R2N=RLAM
R2M=RLAM
R2=RLAM
EN=2.000
313 CONTINUE
IF(NN,EQ,0) GO TO 249
RLAM=RLAM+RHOP*S2(NN)
PHI=DMIN1(PHI,S2(NN))
RTURB=CERU(J)*RHOP*PHI*EDKIJ
IF(PLAM,LT,RTURB)GO TO 314
R2=RTURB
EN=1.000
IF(S2(M),LT,S2(N))GO TO 315
IF(S2(N),LT,S2(NN))GO TO 316
GO TO 318
315 IF(S2(M),LT,S2(NN))GO TO 317
316 R2NN=RTURB
R2M=0.0
R2N=0.0
GO TO 319
317 R2M=RTURB
R2NN=0.0
R2N=0.0
GO TO 319
316 R2N=RTURB
R2NN=0.0
R2M=0.0
GO TO 319
314 R2N=RLAM
R2M=RLAM
R2NN=RLAM
R2=RLAM
EN=3.000
319 CONTINUE
249 RH=RN=R2*EN
IFI,NOT,LNRG1GO TO 250
IFI RTURB,LT,RLAM1GO TO 250
PT=PT-R2*(TN2+TK2-EN)

```

|  | CALC | 257 |
|--|------|-----|
|  | CALC | 258 |
|  | CALC | 259 |
|  | CALC | 260 |
|  | CALC | 261 |
|  | CALC | 262 |
|  | CALC | 263 |
|  | CALC | 264 |
|  | CALC | 265 |
|  | CALC | 266 |
|  | CALC | 267 |
|  | CALC | 268 |
|  | CALC | 269 |
|  | NOXX | 232 |
|  | NOXX | 233 |
|  | NOXX | 234 |
|  | NOXX | 235 |
|  | NOXX | 236 |
|  | NOXX | 237 |
|  | NOXX | 238 |
|  | NOXX | 239 |
|  | NOXX | 240 |
|  | NOXX | 241 |
|  | NOXX | 242 |
|  | NOXX | 243 |
|  | NOXX | 244 |
|  | NOXX | 245 |
|  | NOXX | 246 |
|  | NOXX | 247 |
|  | CALC | 270 |
|  | NOXX | 248 |
|  | CALC | 271 |
|  | NOXX | 249 |
|  | NOXX | 250 |
|  | NOXX | 251 |
|  | NOXX | 252 |
|  | NOXX | 253 |
|  | NOXX | 254 |
|  | NOXX | 255 |
|  | NOXX | 256 |
|  | NOXX | 257 |
|  | NOXX | 258 |
|  | NOXX | 259 |
|  | NOXX | 260 |
|  | NOXX | 261 |
|  | NOXX | 262 |
|  | NOXX | 263 |
|  | NOXX | 264 |
|  | NOXX | 265 |
|  | NOXX | 266 |
|  | NOXX | 267 |
|  | NOXX | 268 |
|  | NOXX | 269 |
|  | NOXX | 270 |
|  | NOXX | 271 |
|  | NOXX | 272 |
|  | NOXX | 273 |
|  | NOXX | 274 |
|  | NOXX | 275 |
|  | NOXX | 276 |
|  | CALC | 274 |
|  | NOXX | 277 |
|  | NOXX | 278 |
|  | NOXX | 279 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

GO TO 250                                CALC    276
C
241 R2=R2+RHSM*S2(M)+RHSD*S2(N)          CALC    277
      RLAM=R2
      PHI=DMIN1(S2(M),S2(N))
      RTURB=CEAU(J)*RHOP*PHI*EDKIJ
      IF(RLAM.LT.RTURB)GO TO 321
      R2=RTURB
      FN=1.000
      IF(S2(M).LT.S2(N))GO TO 322
      R2N=RTURB
      R2M=0.0
      GO TO 323
322 R2M=0.0
      R2M=RTURB
      GO TO 323
321 R2H=RLAM
      R2M=RLAM
      R2=RLAM
      FN=2.000
323 CONTINUE
      RN=RN-R2*FN
      TF(.NOT.,LNRG)GO TO 250
      TF(,RTURB,LT,RLAM)GO TO 250
      RT=RT-R2*(TN2+TK2-3.000)
      GO TO 250                                NOXX   280
                                                NOXY   281
                                                NOXX   282
                                                NOXX   283
                                                NOXX   284
                                                NOXX   285
                                                NOXX   286
                                                NOXX   287
                                                NOXX   288
                                                NOXX   289
                                                NOXX   290
                                                NOXX   291
                                                NOXX   292
                                                NOXY   293
                                                NOXX   294
                                                NOXX   295
                                                NOXX   296
                                                NOXX   297
                                                NOXX   298
                                                NOXX   299
                                                NOXX   300
                                                NOXX   301
                                                CALC   281
                                                CALC   282
                                                CALC   283
                                                NOXX   302
                                                NOXX   303
                                                NOXX   304
                                                NOXX   305
                                                NOXX   306
                                                CALC   284
                                                NOXX   307
                                                NOXY   308
                                                NOXX   309
                                                CALC   286
                                                CALC   287
                                                CALC   288
                                                CALC   289
                                                CALC   290
                                                CALC   291
                                                CALC   292
                                                NOXX   310
                                                NOXX   311
                                                NOXX   312
                                                NOXX   313
                                                CALC   297
                                                CALC   298
                                                CALC   299
                                                CALC   300
                                                CALC   301
                                                CALC   302
                                                CALC   303
                                                CALC   304
                                                NOXX   314
                                                NOXX   315
                                                NOXX   316
                                                NOXX   317
                                                NOXX   318
                                                CALC   310
                                                CALC   311
                                                CALC   312
A(I,I)=A(I,I)+R1I                         CALC   304
A(M,I)=A(M,I)-R1I                         NOXX   314
A(T,M)=A(T,M)-R2M                         NOXX   315
A(M,M)=A(M,M)+R2M                         NOXX   316
A(I,NSM)=A(I,NSM)-RN                      CALC   297
A(M,NSM)=A(M,NSM)+RN                      CALC   298
A(I,NQ)=A(I,NQ)+RT                        CALC   299
A(M,NQ)=A(M,NQ)-RT                        CALC   300
A(I,NA)=A(I,NA)-TM1                        CALC   301
A(M,NA)=A(M,NA)+TM1                        CALC   302
IF (MODE,EO,3) GO TO 260                  CALC   303
C
A(N,I)=A(N,I)-R1I                         CALC   304
A(M,N)=A(M,N)+R2M                         NOXX   314
A(T,N)=A(T,N)-R2M                         NOXX   315
A(M,N)=A(M,N)+R2M                         NOXX   316
A(N,N)=A(N,N)+R2N                         NOXX   317
A(N,NSM)=A(N,NSM)+RN                      CALC   310
A(M,NQ)=A(M,NQ)-RT                        CALC   311
A(M,NA)=A(M,NA)+TM1                        CALC   312
                                                CALC   313

```

CHAPTER 1  
OF POOR QUALITY

IF (MODE.EQ.2) GO TO 270

260 CONTINUE

```

A(K,I)=A(K,I)+R1K
A(I,K)=A(I,K)+R1K
A(K,K)=A(K,K)+R1K
A(M,K)=A(M,K)+R1K
A(K,M)=A(K,M)+R2M
A(K,NSM)=A(K,NSM)+RN
A(K,NQ)=A(K,NQ)+RT
A(K,NA)=A(K,NA)+TM1
IF (MODE.EQ.3) GO TO 270

```

A(N,K)=A(N,K)+R1K

A(K,N)=A(K,N)+R2N

IF (KK.EQ.0) GO TO 268

A(I,KK)=A(I,KK)+R1KK

A(K,KK)=A(K,KK)+R1KK

A(KK,I)=A(KK,I)+R1I

A(KK,K)=A(KK,K)+R1K

A(KK,KK)=A(KK,KK)+R1KK

A(M,KK)=A(M,KK)+R1KK

A(N,KK)=A(N,KK)+R1KK

A(KK,M)=A(KK,M)+R2M

A(KK,N)=A(KK,N)+R2N

A(KK,NSM)=A(KK,NSM)+RN

A(KK,NQ)=A(KK,NQ)+RT

A(KK,NA)=A(KK,NA)+TM1

268 IF (NN.EQ.0) GO TO 269

A(I,NN)=A(I,NN)+R2NN

A(K,NN)=A(K,NN)+R2NN

A(NN,I)=A(NN,I)+R1I

A(NN,K)=A(NN,K)+R1K

A(M,NN)=A(M,NN)+R2NN

A(N,NN)=A(N,NN)+R2NN

A(NH,NN)=A(NH,NN)+R2NN

A(NH,HN)=A(NH,HN)+R2N

A(NH,HN)=A(NH,HN)+R2NN

A(NH,NSM)=A(NH,NSM)+RN

A(NH,NQ)=A(NH,NQ)+RT

A(NH,NA)=A(NH,NA)+TM1

269 CONTINUE

270 CONTINUE

271 CONTINUE

HSUM=0.000

DO 280 I=1,NS

S2I=S2(I)

A(I,I)=A(I,I)+EMV\*S2I

A(I,NA)=A(I,NA)+EMV\*(S1(I)-S2I)

A(NSM,I)=S2I

A(NSM,NA)=A(NSM,NA)-S2I

A(NO,I)=HC(I)\*S2I

HSUM=HSUM+A(NO,I)

280 CONTINUE

281 CONTINUE

A(NSM,NSP)=SP

C-----A(NSM,NQ) AND A(NO,NSM) ARE EQUAL TO ZERO.

A(NSM,NA)=A(NSM,NA)+SP

A(NO,NO)=CPSUM+QDRV

A(NO,NA)=HTN-Q-HSUM

THAT AND

THE ENERGY GO TO 282

|       |     |
|-------|-----|
| CALC  | 313 |
| CALC  | 314 |
| CALC  | 315 |
| NOXX  | 319 |
| NOXX  | 320 |
| NOXX  | 321 |
| NOXX  | 322 |
| NOXX  | 323 |
| CALC  | 321 |
| CALC  | 322 |
| CALC  | 323 |
| CALC  | 324 |
| CALC  | 325 |
| NOXX  | 324 |
| NOXX  | 325 |
| CALC  | 326 |
| NOXY  | 326 |
| NOXX  | 327 |
| NOXX  | 328 |
| NOXX  | 329 |
| NOXX  | 330 |
| NOXX  | 331 |
| NOXX  | 332 |
| NOXX  | 333 |
| NOXX  | 334 |
| CALC  | 336 |
| CALC  | 339 |
| CALC  | 340 |
| CALC  | 341 |
| NOXX  | 335 |
| NOXX  | 336 |
| NOXX  | 337 |
| NOXX  | 338 |
| NOXX  | 339 |
| NOXX  | 340 |
| NOXX  | 341 |
| NOXX  | 342 |
| NOXX  | 343 |
| CALC  | 351 |
| CALC  | 352 |
| CALC  | 353 |
| CALC  | 354 |
| CALC  | 355 |
| CALC  | 356 |
| CALC  | 357 |
| 4STEP | 603 |
| CALC  | 358 |
| CALC  | 359 |
| CALC  | 360 |
| CALC  | 361 |
| CALC  | 362 |
| CALC  | 363 |
| CALC  | 364 |
| CALC  | 365 |
| CALC  | 366 |
| CALC  | 367 |
| CALC  | 368 |
| CALC  | 369 |
| CALC  | 370 |
| CALC  | 371 |
| CALC  | 372 |
| CALC  | 373 |
| CALC  | 374 |
| NOXY  | 344 |

ORIGINAL PAGE 13  
OF POOR QUALITY

```

IMAT=NS
DO 281 I=1,NS
281 A(I,NSM)=A(I,NM)
282 CONTINUE
GO TO 400

C
C***EQUILIBRIUM***  

C DERIVATIVE AND FUNCTION MATRIX FOR EQUILIBRIUM SOLUTION
C
300 DO 310 L=1,NLM
310 R0(L)=0.000
C
HSUM=0.000
SUM=0.000
DO 340 I=1,NS
SUM=SUM+S2(I)
TM1=H0(I)*S2(I)
HSUM=HSUM+TM1
TM2=(H0(I)-S0(I)+Y(I)-Y(NSM)+PPLN)*S2(I)
A(N1,N3)=A(N1,N3)+TM1
A(N2,N2)=A(N2,N2)+H0(I)*TM2
A(N2,N3)=A(N2,N3)+H0(I)*TM2
C
DO 330 L=1,NLM
IF (AL(L,I).EQ.0.000) GO TO 390
TM3=AL(L,I)*S2(I)
C----CROSS-DERIVATIVES OF ELEMENT EQUATIONS, D F(L)/D PI(K)
DO 320 K=L,NLM
IF (AL(K,I).EQ.0.000) GO TO 320
AL(L,K)=AL(K,L)+AL(K,I)*TM3
320 CONTINUE
C----DERIVATIVES OF L-ELEMENT EQN W.R.T. LN SM AND LN T
A(L,N1)=A(L,N1)+TM3
A(L,N2)=A(L,N2)+AL(L,I)*TM1
C----NEGATIVE OF L-ELEMENT EQN, F(L)
A(L,N3)=A(L,N3)+AL(L,I)*TM2
R0(L)=R0(L)+AL(L,I)*S1(I)
330 CONTINUE
340 CONTINUE
C
A(N1,N1)=SUM-SM
A(N1,N3)=A(N1,N3)-(SUM-SM)
A(N1,N2)=HSUM
A(N2,N2)=A(N2,N2)+CPSUM+ODRV
A(N2,N3)=A(N2,N3)+HIN=HSUM=0
C
C----NEGATIVE OF L-ELEMENT EQNS, F(L)
DO 350 L=1,NLM
A(L,N3)=A(L,N3)+R0(L)-A(L,N1)
350 CONTINUE
C
C----STORE SYMMETRIC ELEMENTS OF MATRIX
C
DO 360 I=1,N2
DO 360 J=I,N2
A(I,J)=A(I,J)
360 CONTINUE
C
C----INTERCHANGE SM-EQN WITH ELEMENT ROW L WITH LARGEST A(L,N1) TO
C----AVOID POTENTIAL ZERO IN DIAGONAL ELEMENT A(N1,N1)
C
NOX 345
NOXX 346
NOXX 347
NOXX 348
CALC 375
CALC 376
CALC 377
CALC 378
CALC 379
CALC 380
CALC 381
CALC 382
CALC 383
CALC 384
CALC 385
CALC 386
CALC 387
CALC 388
CALC 389
CALC 390
CALC 391
CALC 392
CALC 393
CALC 394
CALC 395
CALC 396
CALC 397
CALC 398
CALC 399
CALC 400
CALC 401
CALC 402
CALC 403
CALC 404
CALC 405
CALC 406
CALC 407
CALC 408
CALC 409
CALC 410
CALC 411
CALC 412
CALC 413
CALC 414
CALC 415
CALC 416
CALC 417
CALC 418
CALC 419
CALC 420
CALC 421
CALC 422
CALC 423
CALC 424
CALC 425
CALC 426
CALC 427
CALC 428
CALC 429
CALC 430
CALC 431
CALC 432
CALC 433
CALC 434

```

OPTIONAL OUTPUT  
OF PEEK QUALITY

```

TM1=0.000          CALC  435
DO 370 L=1,NLM    CALC  436
IF (A(L,N1).LT.TM1) GO TO 370  CALC  437
TM1=A(L,N1)        CALC  438
LL=L               CALC  439
170 CONTINUE       CALC  440
C                   CALC  441
      DO 380 J=1,N3  CALC  442
      TM1=A(N1,J)    CALC  443
      A(N1,J)=A(LL,J)  CALC  444
      A(LL,J)=TM1    CALC  445
180 CONTINUE       CALC  446
      IMAT=N2         CALC  447
C                   CALC  448
      CCCCC   0000   0000   0000   0000   0000   CHAPTER 4   0000  000  CALC  449
      CCCCC   0000   0000   0000   0000   0000   CHAPTER 4   0000  000  CALC  450
C                   CALC  451
C ***MATRIX SOLUTION***  CALC  452
C SOLVE FOR CORRECTIONS BY STANDARD PIVOTAL GAUSSIAN ELIMINATION  CALC  453
C                   CALC  454
400 KMAT=IMAT+1    CALC  455
C-----OPTIONAL OUTPUT OF INTERMEDIATE VALUES FOR DEBUGGING  CALC  456
      IF (.NOT.LOERUG) GO TO 410  CALC  457
      IF (INERUG.LT.5) GO TO 410  CALC  458
      WRITE(6,4C1)            CALC  459
401 FORMAT(1H0,10X,36HELEMENTS A(I,K) OF CORRECTION MATRIX)  CALC  460
      DO 402 K=1,IMAT  CALC  461
      WRITE(6,402) (A(K,I),I=1,KMAT)  CALC  462
402 FORMAT(1X,1P16.0,0)  CALC  463
403 CONTINUE       CALC  464
410 CONTINUE       CALC  465
      DO 450 NN=1,IMAT  CALC  466
      IF (A(NN,NN).EQ.0.000) GO TO 900  CALC  467
C-----CHANGE 1.000 TO 1.0 FOR NON-IBM MACHINES NOT REQUIRING DOUBLE PRE  CALC  468
C      DTN1=1.000/A(NN,NN)  CALC  469
C      DTN1=1.000/A(NN,NN)  CALC  470
      K=NN+1             CALC  471
      DO 420 J=K,KMAT  CALC  472
      A(NN,J)=A(NN,J)*DTN1  CALC  473
420 CONTINUE       CALC  474
      IF (K.EQ.KMAT) GO TO 450  CALC  475
      DO 440 I=K,IMAT  CALC  476
      IF (A(I,NN).EQ.0.000) GO TO 440  CALC  477
      DO 430 J=K,KMAT  CALC  478
      A(I,J)=A(I,J)-A(I,NN)*A(NN,J)  CALC  479
430 CONTINUE       CALC  480
440 CONTINUE       CALC  481
450 CONTINUE       CALC  482
C-----BACK SOLVE FOR CORRECTION VECTOR  CALC  483
C
      K=IMAT  CALC  484
460 J=K+1           CALC  485
      DSUM=0.000  CALC  486
      X(K)=0.000  CALC  487
      IF (IMAT.LT.J) GO TO 480  CALC  488
      DO 470 I=J,IMAT  CALC  489
      DSUM=DSUM+A(I,K)*X(I)  CALC  490
470 CONTINUE       CALC  491
480 CONTINUE       CALC  492
      X(K)=A(K,KMAT)-DSUM  CALC  493
      K=K-1             CALC  494
      IF (K.NE.0) GO TO 460  CALC  495
      CALC  496
      CALC  497
      CALC  498

```

```

      RETURN
C
C*****SINGULAR MATRIX***  

C
      500 WRITE(6,501)
      501 FORMAT(1HO,10X,3(4H****),16HSINGULAR MATRIX//)
C----SET LCONVG=.TRUE. TO NOTIFY SPECIE OF SINGULAR MATRIX
      LCONVG=.TRUE.
      RETURN
      END
      SUBROUTINE SPECIE
C
      DOUBLE PRECISION AL,BO,CPSUM,EMV,ER,FQ,HSUB0,HSUM,H0,PA,PI,PPLN,
      1 00,01,02,03,04,RGAS,RGASIN,RHOP,SM,SHINV,SMW,SSAVE,S0,S1,S2,TK,
      2 TKINV,TLN,2,SM0
      DOUBLE PRECISION X,Y
      DOUBLE PRECISION ETA,ETA0,ETA1,SUM,TINY,TH1,TNY,TST1,VM,VP
      LOGICAL LADIAB,LCONVG,LDEBUG,LEQUIL,LNRG,LREACT,LENER
      COMMON
      3/CCHEM/CPSUP,HSUM,F0,PPLN,RGAS,RGASIN,SHINV,TKINV,TLN,LNRG
      1/CEQUIL/AL(17,301),ATOM(3,7),R0(7),PI(7)
      1/CINDEF/IDCO,INFOU,10D2,1DN2,1D420,1DCO2,1DH1,1DH2,1DN1,1DN0,1DN02
      1,1D0,1D0H,1HCPS,1LC,1LH,IMAT,ITER,JJ,N1,N2,N3,NA,NGLOR,NGLORP,
      2 NLM,NQ,NSM,NS1,NS2,1DCH
      1/CMATRIX/X(32),Y(32)
      1/CARAM/ASUB(30,3),EMV,ER,HSUB0,NDEBUG,NS,PA,00,01,02,03,04,RHOP,
      1 SM,SMW(301),SM0,S1(301),S2(301),TK,LADIAB,LDEBUG,LEQUIL,LREACT,LENER
      2,FOKIJ,LCONVG
      1/CSPECIE/H0(301),S0(301),SSAVE(301),Z(7,2,301)
C
***** THIS SUBROUTINE CALLS CALC TO COMPUTE THE CORRECTIONS TO THE
C CHEMICAL SPECIES AND TEMP AND DETERMINES THE UNDERRELAXATION
C PARAMETER PRIOR TO THE APPLICATION OF THESE CORRECTIONS TO THE
C ESTIMATES FOR BOTH EQUILIBRIUM AND KINETIC STATIONARY STATES
C FOR EACH ITERATION. SPECIE ALSO CONTROLS THE CONVERGENCE TESTS
C PREFERENCE CRELK (WASHINGTON STATE UNIVERSITY) MARCH 1976
*****  

C
      DATA ITMAX/50/,TINY/1.0D-20/,TNY/-46.051700/
      LCONVG=.FALSE.
      SM=0.0D0
      DO 20 I=1,NS
      TF (S2(I).GT.TINY) GO TO 10
      S2(I)=TINY
      Y(I)=TNY
      GO TO 20
10   SM=SM+S2(I)
      Y(I)=DLNG(S2(I))
20   CONTINUE
      TKINV=1.000/TK
      TLN=DLNG(TK)
      Y(NSM)=DLNG(NSM)
      SHINV=1.000/SM
      Y(1NO)=TLN
      
```

```

C ***SOLVE FOR CORRECTIONS***          SPEC    47
C INITIATE THE ITER LOOP AND CALL CALC TO SET UP AND CALCULATE THE SPEC    48
C CORRECTIONS FOR EITHER EQUILIBRIUM OR KINETIC SOLUTION      SPEC    49
C
C      ETA=1.000          SPEC    50
C      ETA0=ETA          SPEC    51
C      NDEC=0            SPEC    52
C      NRlx=0            SPEC    53
C      DO 550 ITER=1,ITMAX      SPEC    54
C
C      CALL CALC          SPEC    55
C
C      IF (IMAT.EQ.NQ) GO TO 300      SPEC    56
C      IF (IMAT.EQ.NS) GO TO 300      SPEC    57
C
C
C*** 00 00 00 00 00 00 00 00 00 00 00 00 CHAPTER 2 00 00 00      SPEC    58
C*** 00 00 00 00 00 00 00 00 00 00 00 00 CHAPTER 2 00 00 00      SPEC    59
C
C      SPEC    60
C      SPEC    61
C      ***CONSTRUCT CORRECTIONS FOR EQUILIBRIUM SPECIES***      SPEC    62
C      CHECK FOR SINGULAR MATRIX (LCONVG SET TO TRUE AT END OF CALC)      SPEC    63
C      IF (NMT.LCONVG) GO TO 200      SPEC    64
C      LCONVG=.FALSE.
C      RETURN      SPEC    65
C
C      200 DO 210 L=1,NLM      SPEC    66
C      210 PI(L)=X(L)          SPEC    67
C          X(NSM)=X(N1)          SPEC    68
C          X(ND)=X(N2)          SPEC    69
C      DO 230 I=1,NS          SPEC    70
C          Y(I)=HO(I)*X(NQ)-(HO(I)-SO(I)+Y(I)+PPLN-Y(NSM))+X(NSM)      SPEC    71
C      DO 220 L=1,NLM          SPEC    72
C          X(I)=Y(I)+AL(L,I)*PI(L)          SPEC    73
C      220 CONTINUE          SPEC    74
C      230 CONTINUE          SPEC    75
C
C
C*** 000 000 000 000 000 000 000 000 000 000 000 000 CHAPTER 3 000 000      SPEC    76
C*** 000 000 000 000 000 000 000 000 000 000 000 000 CHAPTER 3 000 000      SPEC    77
C
C      SPEC    78
C      ***CALCULATE UNDERRELAXATION PARAMETER ETA***      SPEC    79
C      UNDERRELAXATION TESTS ARE DIFFERENT FOR MAJOR AND MINOR SPECIES WITH      SPEC    80
C      ETA = MIN(ETA1,ETA2,1) WHERE      SPEC    81
C      MAJOR SPECIES --- S2(I)/SM 1.00-B      SPEC    82
C      MINOR SPECIES --- S2(I)/SM 1.00-B      SPEC    83
C      AND ONLY POSITIVE CORRECTION CHANGES FOR MOLE NUMBERS ARE MONITORED      SPEC    84
C      ETA1 = MAJOR SPECIES CONTROL      SPEC    85
C      ETA2 = MINOR SPECIES CONTROL      SPEC    86
C
C      300 ETA0=ETA          SPEC    87
C          ETA=1.000          SPEC    88
C          ETA1=1.000          SPEC    89
C          SUM=DAOS(X(NSP))          SPEC    90
C          TM1=DARS(X(NO))          SPEC    91
C          IF (TM1.GT.SUM) SUM=TM1          SPEC    92
C          DO 320 I=1,NS          SPEC    93
C              IF (X(I).LE.0.000) GO TO 320          SPEC    94
C              IF (S2(I)*SPINV.LE.1.00-B) GO TO 320          SPEC    95
C-----MAJOR SPECIES          SPEC    96
C              IF (X(I).GT.SUM) SUM=K(I)          SPEC    97
C              GO TO 320          SPEC    98
C-----MINOR SPECIES          SPEC    99
C              320 TST1=DAOS((Y(NSM)-Y(I)-11.91292900)/(((X(I)-X(NSM))+TINY))      SPEC    100
C                  IF (TST1.LT.ETA1) ETA1=TST1          SPEC    101
C              320 CONTINUE          SPEC    102
C
C
C      NOXX 363
C      SPEC 103
C      SPEC 104
C      SPEC 105
C      SPEC 106
C      NOXX 363
C      SPEC 107
C      SPEC 108
C      SPEC 109

```

271

CHART 1  
OF POOL QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

IF(SUM.GT.0.200)ETA=0.200/SUM
IF (ETA1.LT.ETA) ETA=ETA1
IF(LEQUILGE TD 400

C
C ***CONVERGENCE MONITORING***  

C AFTER TEN SUCCESSIVE UNDERRELAXED ITERATIONS, IN WHICH ETA DOES NOT  

C INCREASE BY 1.1 OR MORE, OR AFTER SIX ITERATIONS IN WHICH ETA  

C DECREASES, DIVergENCE IS ASSUMED AND THE SOLUTION TERMINATED
C
C LNRG=.TRUE. ---- FULL EQUATIONS
  IF (ETA.EQ.1.000) NRLX=-1
  IF((ETA/FTAO).GE.1.1D0)NRLX= 2
  NRLX=NRLX+1
  IF (NRLX.GT.10) GO TO 900
  IF (FTA.LT.ETA0) NDEC=NDEC+1
  IF (.NOT.LNPG) NDEC=1
  IF (NDEC.GT.6) GO TO 900

C
C     0000      0000      0000      0000      0000      CHAPTER 4      0000      0000      SPEC      120
C     0000      0000      0000      0000      0000      CHAPTER 4      0000      0000      SPEC      129
C
C APPLY CORRECTIONS TO ESTIMATES
C
C
C 400 CONTINUE
  SUM=0.000
  DO 420 I=1,NS
    Y(I)=Y(I)+ETA*X(I)
    IF (Y(I).LT.TNY) GO TO 410
    S2(I)=DEXP(Y(I))
    SUM=SUM+S2(I)*SMW(I)
    GO TO 420

C
C 410 Y(T)=TNy
  S2(I)=TINY
C-----INSURE CONVERGENCE TEST PASSED WHENEVER Y(I)=TNy
  Y(I)=0.000
  420 CONTINUE
  DO 450 I=1,NS
    S2(I)=S2(I)/SUM
  450 Y(T)=DLOG(S2(I))
  Y(NSM)=Y(NSM)+ETA*X(NSM)
  SM=DEXP(Y(NSM))
  SMINV=1.000/SM
  Y(NQ)=Y(NQ)+ETA*X(NQ)
  TLN=Y(NQ)
  TK=DEXP(TLN)
  TKINV=1.000/TK

C
  IF (.NOT.LDEBUG) GO TO 500
  IF (NDEBUG.GE.3) WRITE(6,430) ITER,ETA,LREACT,LEQUIL,LADTAB,
  1                           LNRG,HSUB0,SM,EMV,TK
  1   IF (NDEBUG.GE.4) WRITE(6,440) (I,ASUB(I,1),S1(I),S2(I),Y(I),
  1                               X(I),HO(I),SO(I),I=1,NS)
  630 FORMAT(2X,I3,1P012.3,4L8,1P4012.3)
  440 FORMAT(20X,7HSPECIFS,4X,9HS1(I),7X,9HS2(I),7X,4HY(I),8X,
  84HK(I),8X,9HHO(I),7X,9HSO(I)/(10X,I2,3X,A4,2X,1P6012.3))
C
C     00000      00000      00000      00000      00000      CHAPTER 5      00000  0      SPEC      162
C     00000      00000      00000      00000      00000      CHAPTER 5      00000  0      SPEC      163
C
C CONVERGENCE CHECK...ALL MOLE NUMBER CORRECTIONS MUST BE .LT. 1.0 PCT
C
  500 IF (ETA.LT.1.000) GO TO 550

```

```

      DO 510 I=1,NS
      IF (DABS(X(I)),GT.0.0100) GO TO 550
510 CONTINUE
      LCONVG=.TRUE.
      HSUB0=HSUM*RGAS*TK
      RETURN
C
550 CONTINUE
C
C      RETURN
C
      F000000      000000      000000      000000      CHAPTER 6      000000      SPEC   169
      C000000      000000      000000      000000      CHAPTER 6      000000      SPEC   170
C
      ENTRY ERATIC
C
C      CALCULATES FUEL/AIR EQUIV RATIO, GIVEN MOLE NUMBERS IN S1 ARRAY,
C      USING POSITIVE AND NEGATIVE OXIDATION STATES (VALENCES)
C
      VP=0.000
      VM=0.000
      DO 610 I=1,NS
      IF (S1(I),LE,TINY) GO TO 610
      DO 600 L=1,NLP
      IF (AL(L,I),EQ.0.00) GO TO 600
      IF (ATOM(3,L),GT.0.000) VP=VP+AL(L,I)*ATOM(3,L)*S1(I)
      IF (ATOM(3,L),LT.0.000) VM=VM+AL(L,I)*ATOM(3,L)*S1(I)
600 CONTINUE
610 CONTINUE
C
      VM=-VM
      IF (VM,LT,TINY) GO TO 620
      IF (VP,LT,TINY) GO TO 630
      ER=VP/VM
      RETURN
C
620 ER=1000000.000
      RETURN
C
630 ER=0.000
C
900 RETURN
END
      SUBROUTINE CREKO
C
      DOUBLE PRECISION AL,B0,CPSUM,EMV,ER,FQ,HSUB0,HSUM,H0,P0,PI,PPLN,
1 00,01,02,03,04,RGAS,RGASIM,RHOP,SM,SMINV,SMW,SSAVE,S0,S1,S2,TK,
2 TKINV,TLN,Z,SM0
      DOUBLE PRECISION RX,RX2,TACT,TACT2,TEN,TEN2,X1,X2,CERU
      DOUBLE PRECISION X,Y
      DOUBLE PRECISION AMOLE,B0,DX,GF,PECHT,RTLN,SUM,SUMX,SUMY,SUM1,
1 TENLN,TM1,TM2,T1,T2,XBAR,XMAX,XMIN,YBAR
      LOGICAL LADAR,LCONVG,LDEBUG,LEQUIL,LMOLES,LNRG,LFACT,LSI,LENER
C
      COMMON
3/CCHEM1/CPSUM,HSUM,F0,PPLN,RGAS,RGASIM,SMINV,TKINV,TLN,LNRG
1/CEQUIL/AL(7,30),ATOM(3,7),B0(7),PI(7)
1/CTNDEX/IDCO,IFNU,ION2,ION2,IDC02,IDH1,IDH2,IDM1,IDM0,IDM02
1,ION,IDOM,THCP,ILC,ILH,IMAT,ITER,JD,N1,N2,N3,N4,NGL00,NGL0P,
2 NLH,NQ,NSM,NS1,NS2,IDCM
1/CMATR/N(32),Y(32)
1/CPARAM/ASUR(30,2),EMV,FR,HSUB0,NDEBUG,NS,PA,QQ,Q1,Q2,Q3,Q4,RHOP,
1 SM,SMW(30),SM0,S1(30),S2(30),TK,LADAR,LDEBUG,LEQUIL,LREACT,LENER
      NOXX 372
      NOXXX 22
      NOXXX 23
      NOXX 373
      NOXXX 25
      NOXXX 26
      NOXXX 27
      NOXX 374
      CRKO   2
      CRKO   3
      NOXX 372
      NOXXX 22
      NOXXX 23
      NOXX 373
      NOXXX 25
      NOXXX 26
      NOXXX 27
      NOXX 374
      CRKO   6
      CRKO   7
      NOXX 375
      CRKO   9
      NOXX 376
      NOXX 377
      4STEP 605
      NOXX 378
      CRKO  13
      NOXX 380

```

273

ORIGINAL  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

```

C
      NLM=1
110 READ(5,120) (ATOM(K,NLM),K=1,3)
120 FORMAT(1A2,7X,2F10.6)
      IF (ATOM(1,NLM).EQ.BLANK) GO TO 140
      WRITE(6,130) (ATOM(K,NLM),K=1,3)
130 FORMAT(1X,A2,5X,2F10.6/)
      IF (ATOM(1,NLM).EQ.CARB) ILC=NLM
      IF (ATOM(1,NLM).EQ.MYDR) ILH=NLM
      NLM=NLM+1
      GO TO 110
C
140 CONTINUE
      NLM=NLM-1
      N1=NLM+1
      N2=NLM+2
      N3=NLM+3
      GO TO 10
C
C     00 00 00 00 00 00 00 00 00 00 00 CHAPTER 2 00 00 00
C     00 00 00 00 00 00 00 00 00 00 00 CHAPTER 2 00 00 00
C
C   ***THERMO***  

C   READ THERMODYNAMIC DATA CARDS
C
200 NS=1
201 READ(5,210) (CDATA(I),I=1,3),DT1,DT2,(AT(J),B(J),J=1,4),PHAZ,
      1T1,T2,NCD
210 FORMAT(3A4,6X,2A3,4(A2,F3.0),A1,2F10.3,I19)
      IF (CDATA(1).EQ.BLANK) GO TO 260
      WRITE(6,211)(CDATA(I),I=1,3),DT1,DT2,(AT(J),B(J),J=1,4),PHAZ,
      1T1,T2,NCD
211 FORMAT(10X,3A4,6X,2A3,2X,4(A2,2X,F3.0),2K,A1,2X,2F10.3,I19)
      IF (PHAZ.NE.GAZ) WRITE(6,212) (CDATA(I),I=1,3),PHAZ
212 FORMAT(1H0,10X,26HWARNING...DATA FOR SPECIES,2X,3A4,3X,
      A1HNOT GAS BUT,2X,A1//)
C-----READ Z WITH FIRST AND SECOND SUBSCRIPTS REVERSED
      READ(5,213) (Z(J,1,NS),J=1,5),NCD
213 FORMAT(5D15.8,I5)
      WRITE(6,214) (Z(J,1,NS),J=1,5),NCD
214 FORMAT(10X,5D15.8,I5)
      READ(5,215) (Z(J,1,NS),J=6,7),(Z(K,2,NS),K=1,3),NCD
      WRITE(6,216) (Z(J,1,NS),J=6,7),(Z(K,2,NS),K=1,3),NCD
      READ(5,217) (Z(J,2,NS),J=4,7),NCD
215 FORMAT(4D15.8,I20)
      WRITE(6,218) (Z(J,2,NS),J=4,7),NCD
216 FORMAT(10X,4D15.8,I20//)
C
C-----ESTABLISH ATOM STOICHIOMETRY...AL(L,NS) = (KG-ATOMS ELEMENT L
C-----PER KG-MOLECULE OF SPECIES NS)
C
      DO 220 L=1,NLM
220 AL(L,NS)=0.0DC
C
      SUM=0.0DC
      DO 240 K=1,4
      IF (R(K).EQ.0.0001) GO TO 240
      DO 230 L=1,NLM
      IF (ATOM(1,L).NE.AT(K)) GO TO 230
      AL(L,NS)=AL(L,NS)+R(K)
230
C-----ESTABLISH MOLECULAR WEIGHT OF SPECIES
C
      SUM=SUM+ATOM(2,L)*R(K)

```

ORIGINAL PAGE IS  
OF POOR QUALITY

```

230 CONTINUE
240 CONTINUE
  SMW(NS)=SUM
  S2(NS)=1.0D-6
C
C-----STORE MOLLERITH NAME OF SPECIES
C
  DO 250 I=1,3
  250 ASUR(NS,I)=CDATA(I)
C
C-----STORE INDEX NUMBER OF SPECIES
C
  IF (ASUR(NS,1).EQ.AC0) 10C0=NS
  TF (ASUR(NS,1).EQ.AC02) 10C02=NS
  IF (ASUR(NS,1).EQ.AH2) 10H2=NS
  IF (ASUR(NS,1).EQ.AH20) 10H20=NS
  IF (ASUR(NS,1).EQ.AN2) 10N2=NS
  IF (ASUR(NS,1).EQ.AO2) 10O2=NS
  IF (NS.NE.10CH) GO TO 292
  DO 251 I=1,2
  DO 251 J=1,7
  251 7(J,I,10CH)=Z(J,I,10CH)*(SMW(10FU)-2.0D0)/28.0D0
  252 CONTINUE
C
  NS=NS+1
  GO TO 201
C
  260 NS=NS-1
  NSM=NS+1
  NQ=NS+2
  NA=NS+3
  GO TO 10
C
  **** 000 MECHANISM ****
C  READ MECHANISM/RATE DATA CARDS
C  THE VARIABLE DT1 (COLUMNS 73/76) IS USED AS A FLAG,
C  CGS --- CGS UNITS, RATE CONSTANTS IN GM-MOLEs, CM, SEC
C  AND EACH IN (KCAL/GM-MOLE)
C  COMM --- COMMENT CARD, FIRST 48 CHARACTERS PRINTED OUT
C  REVF --- REVERSE RATE DATA, IN SAME UNITS AS FORWARD DATA
C  GLOB --- GLOBAL RATE EXPRESSION DATA IN SI UNITS
C  OTHERWISE THE SI UNITS (KG-MOLEs, M, SEC) ARE ASSUMED
C  DT1 AND DT2 (COL 73/80) CAN HAVE ANYTHING (COMMENTS) IF ABOVE FOUR
C  WORDS ARE NOT REQUIRED
C  TACT IS ACTIVATION TEMPERATURE, = EACT/GASCON, DEG K
C
  300 JJ=1
  NGLOR=0
C
  310 READ(5,3111)(CDATA(I),I=1,12),8X(JJ),TEN(JJ),TACT(JJ),
  1 CFRU(JJ),DT1,DT2
  311 FORMAT(12A4,F7.3,F5.3,F7.3,F5.3,2A4)
  IF (CDATA(1).EQ.BLANK.AND.DT1.NE.COMM) GO TO 356
C-----CHECK FOR COMMENT CARD
  IF (DT1.NE.COMM) GO TO 313
  WRITE(6,3121)(CDATA(I),I=1,12)
  312 FORMAT(1H0,9X,3H#00,12A4,3H#00)
  GO TO 310
C-----CHECK FOR REVERSE RATE DATA...ORDER OF CARDS MUST BE CORRECT
C-----UNITS OF REVERSE DATA ASSUMED SAME AS FORWARD DATA
  313 IF (DT1.NE.REVF) GO TO 315

```

|       |     |
|-------|-----|
| CRKO  | 141 |
| CRKO  | 142 |
| CRKO  | 143 |
| CRKO  | 144 |
| CRKO  | 145 |
| CRKO  | 146 |
| CRKO  | 147 |
| CRKO  | 148 |
| CRKO  | 149 |
| CRKO  | 150 |
| CRKO  | 151 |
| CRKO  | 152 |
| CRKO  | 153 |
| CRKO  | 154 |
| CRKO  | 155 |
| CRKO  | 156 |
| CRKO  | 157 |
| CRKO  | 158 |
| 4STEP | 606 |
| 4STEP | 607 |
| 4STEP | 608 |
| 4STEP | 609 |
| 4STEP | 610 |
| CRKO  | 159 |
| CRKO  | 160 |
| CRKO  | 161 |
| CRKO  | 162 |
| CRKO  | 163 |
| CRKO  | 164 |
| CRKO  | 165 |
| CRKO  | 166 |
| CRKO  | 167 |
| CRKO  | 168 |
| CRKO  | 169 |
| CRKO  | 170 |
| CRKO  | 171 |
| CRKO  | 172 |
| CRKO  | 173 |
| CRKO  | 174 |
| CRKO  | 175 |
| CRKO  | 176 |
| CRKO  | 177 |
| CRKO  | 178 |
| CRKO  | 179 |
| CRKO  | 180 |
| CRKO  | 181 |
| CRKO  | 182 |
| CRKO  | 183 |
| CRKO  | 184 |
| CRKO  | 185 |
| CRKO  | 186 |
| CRKO  | 187 |
| NOXX  | 387 |
| NOXX  | 388 |
| NOXX  | 389 |
| CRKO  | 190 |
| CRKO  | 191 |
| CRKO  | 192 |
| CRKO  | 193 |
| CRKO  | 194 |
| CRKO  | 195 |
| CRKO  | 196 |
| CRKO  | 197 |
| CRKO  | 198 |

ORIGINAL PAGE IS  
OF POOR QUALITY

```

J=JJ-1
RX2(J)=RX(JJ)
TEM2(J)=TEM(JJ)
TACT2(J)=TALT(JJ)
WRITE(6,314) RX2(J),TEM2(J),TACT2(J),DT1,DT2
314 FORMAT(14X,17HREVERSE RATE DATA,20X,3F15.3,2A4)
C-----CONVERT RX2 FOR INTERNAL CALCULATIONS
BX2(J)=BX2(J)*TEMLN
IF (LSI) GO TO 310
RX2(J)=RX2(J)-TEMLN*3.000
TACT2(J)=TACT2(J)+1000.000/1.96700
IF (MDR(J),EQ.2) BX2(J)=BX2(J)-TEMLN*3.000
GO TO 310
C-----CHECK FOR UNITS
315 LST=.TRUE.
IF (DT1,EQ.CGS) LSI=.FALSE.
C
WRITE(6,316) JJ,(CDATA(I),I=1,12),BX(JJ),TEM(JJ),TACT(JJ),DT1,DT2
316 FORMAT(1HO,5X,I5,4H, ,12A4,3F15.3,5X,2A4)
F (.NOT. LSI) TACT(JJ)=TACT(JJ)+1000.00/1.96700
IF (DT1,EQ.GLOB) MGLOR=MGLOR+1
C-----CONVERT RX FOR INTERNAL CALCULATIONS
BX(JJ)=BX(JJ)*TEMLN
C
C-----ID(I,J) IS THE INDEX NUMBER OF THE I-TH DISTINCT SPECIES IN
C-----REACTION J ... I=1,4 AS NO DISTINCT THIRD BODIES ARE CONSIDERED
C
DO 320 I=1,6
320 ID(I,JJ)=0
C
DO 325 N=1,6
K=N*2-1
IF (CDATA(K),EQ.BLANK) GO TO 325
IF (CDATA(K),NE.THIRD) GO TO 321
CDATA(K)=BLANK
GO TO 325
321 CONTINUE
DO 322 I=1,NS
IF (CDATA(K),NE.ASUR(I,2)) GO TO 322
IF (CDATA(K+1),NE.ASUB(I,2)) GO TO 322
II=I
GO TO 323
322 CONTINUE
323 CONTINUE
ID(N,JJ)=II
325 CONTINUE
C
C-----STORE THE TYPE OF REACTION...THREE TYPES
C
MDR 1 ... A + B (+C) --- D + E (+F)
C
MDR 2 ... AB + M --- A + B + M
C
MDR 3 ... A + B + M --- AB + M
C
MDR(JJ)=1
IF (ID(2,JJ),EQ.0) MDR(JJ)=2
IF (ID(5,JJ),EQ.0) MDR(JJ)=3
C
C-----THE FOLLOWING SECTION, UP TO STATEMENT 395 INCLUSIVE, MAY BE
C-----ELIMINATED IF REVERSE (AS WELL AS FORWARD) RATE DATA IS SUPPLIED
C-----FOR ** ALL ** REACTIONS.
C
C-----CALCULATES REVERSE RATE CONSTANTS FROM EQUILIBRIUM CONSTANTS
C-----AND FORWARD RATE CONSTANTS FOR FIFTEEN POINTS

```

|      |     |
|------|-----|
| CRKO | 199 |
| CRKO | 200 |
| CRKO | 201 |
| CRKO | 202 |
| CRKO | 203 |
| CRKO | 204 |
| CRKO | 205 |
| CRKO | 206 |
| CRKO | 207 |
| CRKO | 208 |
| CRKO | 209 |
| CRKO | 210 |
| CRKO | 211 |
| CRKO | 212 |
| CRKO | 213 |
| CRKO | 214 |
| CRKO | 215 |
| CRKO | 216 |
| CRKO | 217 |
| CRKO | 218 |
| CRKO | 219 |
| CRKO | 220 |
| CRKO | 221 |
| CRKO | 222 |
| CRKO | 223 |
| CRKO | 224 |
| CRKO | 225 |
| CRKO | 226 |
| CRKO | 227 |
| CRKO | 228 |
| CRKO | 229 |
| CRKO | 230 |
| CRKO | 231 |
| CRKO | 232 |
| CRKO | 233 |
| CRKO | 234 |
| CRKO | 235 |
| CRKO | 236 |
| CRKO | 237 |
| CRKO | 238 |
| CRKO | 239 |
| CRKO | 240 |
| CRKO | 241 |
| CRKO | 242 |
| CRKO | 243 |
| CRKO | 244 |
| CRKO | 245 |
| CRKO | 246 |
| CRKO | 247 |
| CRKO | 248 |
| CRKO | 249 |
| CRKO | 250 |
| CRKO | 251 |
| CRKO | 252 |
| CRKO | 253 |
| CRKO | 254 |
| CRKO | 255 |
| CRKO | 256 |
| CRKO | 257 |
| CRKO | 258 |
| CRKO | 259 |
| CRKO | 260 |
| CRKO | 261 |
| CRKO | 262 |

```

C   OVER THE TEMPERATURE RANGE 1000 TO 3000 DEG K          CRKO    263
C   INSERTED 1 STEP IN D,HODVEN, 7/22/79)                  CRKO    264
C   IF (DT1.EQ.GLOK) GO TO 357                            CRKO    265
C   IF (DT1.EQ.GLOR) GO TO 355                            CRKO    266
C   DX=(XMAX-XMIN)/14.000                                  CRKO    267
C   SUMX=0.000                                              CRKO    268
C   SUMY=0.000                                              CRKO    269
C   HCPS=2                                                 CRKO    270
C   DO 351 N=1,15                                         LRKO    271
C   X(N)=XMIN+DX*FLOAT(N-1)                               CRKO    272
C   SUMX=SUMX+X(N)                                         NOXXX   28
C   TINV=X(N)                                              CRKO    274
C   TV=1.000/TINV                                         CRKO    275
C   TLN=DLGG(TV)                                         CRKO    276
C   NS1=1                                                 CRKO    277
C   NS2=NS                                               NOXX    390
C   CALL HCPS                                           CRKO    391
C   SUM1=0.000                                              CRKO    278
C   DO 350 ND=1,6                                         CRKO    279
C   K=ID(ND,JJ)                                         CRKO    280
C   IF (K.EQ.0) GO TO 350                                CRKO    281
C   GF=HA(K)-SO(K)                                       CRKO    282
C   IF (ND.LT.4) SUM1=SUM1+GF                           CRKO    283
C   IF (ND.GE.4) SUM1=SUM1-GF                           CRKO    284
C   350 CONTINUE                                         CRKO    285
C   TM1=0.000                                              CRKO    286
C   NATURAL LOGS OF GAS CONSTANTS...R=82.057 CN3=ATH/GMOL,K (CGS) CRKO    287
C   AND R=C.002057 M3=ATM/KGMOL,K (SI)                   CRKO    288
C   RTLN=TLN+4.4074DC                                     CRKO    289
C   TF (LSI) RTLN=TLN-2.50034D0                          CRKO    290
C   IF (MDP(JJ).GT.1) GO TO 3501                         CRKO    291
C   IF (ID(3,JJ).EQ.0) TM1=TM1+RTLN                      CRKO    292
C   IF (ID(6,JJ).EQ.0) TM1=TM1-RTLN                      CRKO    293
C   GO TO 3502                                         CRKO    294
C   3501 CONTINUE                                         CRKO    295
C   IF (ID(2,JJ).EQ.0) TM1=RTLN                         CRKO    296
C   IF (ID(5,JJ).EQ.0) TM1=-RTLN                        CRKO    297
C   3502 CONTINUE                                         CRKO    298
C   Y(N)=TM1-SUM1+TEN(JJ)*TLN-TACT(JJ)*TINV+BX(JJ)      CRKO    299
C   SUMY=SUMY+Y(N)                                         CRKO    300
C   351 CONTINUE                                         CRKO    301
C   XRAR=SUMX/15.000                                     CRKO    302
C   YRAR=SUMY/15.000                                     CRKO    303
C   SUMX=0.000                                              CRKO    304
C   SUM1=0.000                                              CRKO    305
C   SUMY=0.000                                              CRKO    306
C   DO 352 N=1,15                                         CRKO    307
C   SUMX=SUMX+Y(N)*(X(N)-XRAR)                           CRKO    308
C   SUM1=SUM1+(X(N)-XRAR)**2                            CRKO    309
C   SUMY=SUMY+(Y(N)-YRAR)**2                            CRKO    310
C   352 CONTINUE                                         CRKO    311
C   TEN2(JJ)=0.000                                         CRKO    312
C   TACT2(JJ)=SUMX/SUM1                                    CRKO    313
C   BX2(JJ)=(YRAR+TACT2(JJ)*XRAR)/TENLN                 CRKO    314
C   SUMX=0.000                                              CRKO    315
C   DO 353 N=1,15                                         CRKO    316
C   SUMY=SUMX+(Y(N)+TACT2(JJ)*X(N)-TENLN*BX2(JJ))**2   CRKO    317
C   353 CONTINUE                                         CRKO    318
C   SUMY=DSORT(1.000-SUMX/SUMY)                           CRKO    319
C   SUMX=DSORT(SUMX/14.000)                             CRKO    320
C   CDATA(1)=TACT2(JJ)                                    CRKO    321
C   IF (.NOT.ISI) CDATA(1)=TACT2(JJ)*1.98700*0.00100     CRKO    322
C   WRITE(*,354) BX2(JJ),TEN2(JJ),CDATA(1),SUMX,SUMY      CRKO    323
C   354

```

DO NOT USE THIS  
FOR SCIENTIFIC QUALITY

```

354 FORMAT(6X,57H CALCULATED REVERSE RATE DATA, STD DEV AND CORR COEF CRKO 325
      1 = ,3F15.3,4K,1P2010,3) CRKO 326
C-----CONVERT RX2 FOR INTERNAL CALCULATIONS CRKO 327
      RX2(JJ)=RX2(JJ)*TFMLN CRKO 328
C CRKO 329
C-----SET REVERSE REACTION RATE VARIABLES=0 FOR GLOBAL REACTIONS CRKO 330
C-----SO THAT THESE VARIABLES ARE DEFINED FOR THE KINETIC RATE CRKO 331
C-----PRINTOUT (M,D,MQIVEN 7/22/79)
      357 IF (DT1,NE,GLCR) GO TO 395 CRKO 332
      TACT2(JJ)=C CRKO 333
      TFM2(JJ)=0 CRKO 334
      RX2(JJ)=0 CRKO 335
      355 JJ=JJ+1 CRKO 336
C-----CONVERT ALL RATE DATA TO SI UNITS CRKO 337
      TF (LS1) GO TO 310 CRKO 338
      J=JJ-1 CRKO 339
      RX(J)=BX(J)-TENLN#3.000 CRKO 340
      BX2(J)=BX2(J)-TENLN#3.000 CRKO 341
      IF (MODR(J),EQ.2) RX2(J)=RX2(J)-TENLN#3.000 CRKO 342
      IF (MODR(J),EQ.3) BX(J)=BX(J)-TENLN#3.000 CRKO 343
      IF (MODR(J),NE.1) GO TO 310 CRKO 344
      IF (ID(3,J),NE.0) BX(J)=BX(J)-TENLN#3.000 CRKO 345
      IF (ID(6,J),NE.0) BX2(J)=BX2(J)-TENLN#3.000 CRKO 346
      GO TO 310 CRKO 347
      CRKO 348
C 356 JJ=JJ-1 CRKO 349
      NGLORP=NGLOR+1 CRKO 350
C CRKO 351
C-----PRINT OUT ARRAY OF STOICHIOMETRIC COEFFICIENTS CRKO 352
C CRKO 353
      DO 372 J=1,JJ CRKO 354
      DO 370 N=1,6 CRKO 355
      K=N#2-2 CRKO 356
      L=N CRKO 357
      CDATA(K)=BLANK CRKO 358
      CDATA(K+1)=BLANK CRKO 359
      IDLJ=ID(L,J) CRKO 360
      IF (IDLJ,EQ.0) GO TO 370 CRKO 361
      CDATA(K)=ASUR(IDLJ,1) CRKO 362
      CDATA(K+1)=ASUR(IDLJ,2) CRKO 363
      370 CONTINUE CRKO 364
      IF (ID(2,J),EQ.0) CDATA(5)=THIRD CRKO 365
      IF (ID(5,J),EQ.0) CDATA(9)=THIRD CRKO 366
      IF (MODR(J),GT.1) CDATA(11)=THIRD CRKO 367
      WRITE(6,371) J,(CDATA(K),K=1,12) CRKO 368
      371 FORMAT(5X,15,1H,,5X,6A4,,H---- ,6X,6A4/) CRKO 369
      372 CONTINUE CRKO 370
      CRKO 371
C-----PRINT OUT ALL RATE DATA IN SI UNITS CRKO 372
C CRKO 373
      WRITE(6,380) CRKO 374
      380 FORMAT(//1H0,40X,29HKINETIC RATE DATA IN SI UNITS/
      41H0,6X,1HJ,2X,4HMDR,16X,2HID,19X,2HAX,10X,3HTEN,9X,4HTACT,
      413X,3HBX2,4X,4HTEN2,9X,5HTACT2/) CRKO 375
      DO 382 J=1,JJ CRKO 376
      TM1=BX(J)/TENLN CRKO 377
      TM2=BX2(J)/TENLN CRKO 378
      WRITE(6,381) J,MDR(J),(ID(I,J),I=1,6),TM1,TEN(J),TACT(J),
      1TM2,TEN2(J),TACT2(J) CRKO 379
      382 CONTINUE CRKO 380
      381 FORMAT(5X, 2,1H,,14,3K,6I4,2(3X,3F13.9)) CRKO 381
      CRKO 382
C-----SET CONTACT INDEXES TO UNITY CRKO 383
      DO 390 J=1,JJ CRKO 384
      CRKO 385
      CRKO 386
      CRKO 387
      CRKO 388

```

```

      X1(J)=1.000          CRKO 389
      X2(J)=1.000          CRKO 390
  390 CONTINUE
C
      RETURN
C
      0000    0000    0000    0000    0000    0000    CHAPTER 4    0000  000
      0000    0000    0000    0000    0000    0000    CHAPTER 4    0000  000
C
C 0000 REACTANTS000
C  READ REACTANTS DATA CARDS FOR EACH INLET STREAM
C
      400 NSTRM=NSTR'+1
      LMOLES=.FALSE.
C-----SCRUB SPECIES MOLE NUMBER ARRAY
      DO 405 I=1,NS
      405 S2(I)=0.000
      SUM1=0.000
C
      410 READ(5,411) (AT(I),B(I),I=1,4), (CDATA(I),I=1,21),PECWHT,MOLE,PHAZ
      411 FORMAT(4(A2,FT,5),2A4,1X,F7.5,A1,9X,A1)
      IF (AT(1).EQ.RLMK) GO TO 450
      WRITE(6,412) (AT(I),B(I),I=1,4), (CDATA(I),I=1,21),PECWHT,MOLE,
      1PHAZ,NSTRM
      412 FORMAT(1X,4(2X,A2,F9.5),2X,2A4,2X,F9.5,2X,A1,2X,A1,2X,I5)
      IF (MOLE.EQ.MOL) LMOLES=.TRUE.
C
C-----ESTABLISH MOLE NUMBERS (KG-MOL / KG M MIXTURE) IN INLET STREAM
C
      TKINV=1.000/TR
      SCREEN FOR CONDENSED SPECIES
      DO 430 I=1,NS
C-----SCREEN FOR SPECIES NAME
      IF (CDATA(1).NE.ASUB(1,1)) GO TO 430
      IF (CDATA(2).NE.ASUB(1,2)) GO TO 430
      DO 422 L=1,NM
C-----SCREEN FOR ATOMIC COMPOSITION
      DO 420 K=1,4
      IF (ATOM(1,L).NE.AT(K)) GO TO 420
      IF (AL(1,L).NE.R(K)) GO TO 430
      420 CONTINUE
C-----IF PECWT IS RELATIVE MASS, CONVERT TO RELATIVE MOLE NUMBERS
      AMOLE=PECWHT/SMW(I)
      IF (.NOT.LMOLES) AMOLE=PECWHT
      S2(I)=S2(I)+AMOLE
      SUM1=SUM1+AMOLE*SMW(I)
      GO TO 410
      430 CONTINUE
C
      WRITE(6,440)
      440 FORMAT(1HC,10X,4SH REACTANT ABOVE NOT FOUND IN THERMO LIBRARY/ )
      GO TO 410
C
      450 CONTINUE
C-----ESTABLISH MIXTURE ENTHALPY
C
      IMCAS=1
      CALL HCPS
C
      WRITE(6,460) NSTRM
      460 FORMAT(1HO,10H000 REACTANT STREAM,13,4H 000/
      A1HO,5X,2HI,4X,7HSPECIES,14X,16HMOLECULAR WEIGHT,2X,
      A12HMOLE NUMBERS,8X,144MASS FRACTIONS/32X,17H(MOLE %)/KG %)

```

END

ORIGINAL PAGE 1  
OF POOR QUALITY

```

C 6X,17H(KGMOLE I)/(KG X),9X,13H(KG I)/(KG X)//
HSUM=0.000 CRKO 453
SM=0.000 CRKO 454
DO 480 I=1,NS CRKO 455
S2(I)=S2(I)/SUM1 CRKO 456
C-----S2(I) IN MOLE NUMBERS, KG-MOLES I/KG MIXTURE CRKO 457
HSUM=HSUM+HO(I)*S2(I) CRKO 458
SM=SM+S2(I) CRKO 459
DT1=S2(I)*SMW(I) CRKO 460
WRITE(6,470) I,(ASHR(I,J),J=1,3),SMW(I),S2(I),DT1 CRKO 461
470 FORMAT(9F,1H.,4X,3A4,1P3D20.3) CRKO 462
480 CONTINUE CRKO 463
C-----HSUB0 IN JOULES/KG REACTANT MIXTURE CRKO 464
HSUB0=HSUM*RGAS*TK CRKO 465
C-----RHOP IS MASS DENSITY, KG/CU M CRKO 466
RHOP=PA/(RGAS*TK*SM) CRKO 467
C CRKO 468
SMINV=1.000/SM CRKO 469
WRITE(6,490) TK,HSUB0,PA,RHOP,SMINV CRKO 470
490 FORMAT(1HC/,12X,13HTMPFRATIURE ,1PD12.3,3X,9HDEG K/
A12X,10HENHALPY ,3X,1PD12.3,3X,9HJOULES/KG/ CRKO 471
R12X,10HPRESSURE ,3X,1PD12.3,3X,6HN/M**2/ CRKO 472
C12X,9HDFNSITY ,4X,1PD12.3,3X,7HKG/M**3/ CRKO 473
D12X,19HMEN MOL WT ,1PD12.3,3X,9HKG/KGMOLE//) CRKO 474
C CRKO 475
C-----ON RETURN, CALLING PROGRAM MUST STORE MOLE NUMBERS S2(I).
C-----PRESSURE, TEMPERATURE, ENTHALPY AND DENSITY AT APPROPRIATE INLET CRKO 476
C-----INLET #10 NODE CRKO 477
C
      RETURN
END
SURROUNTE HCPS
C *** MODIFIED FOR CONDENSED SPECIES 7-79 D.T.PRATT HCPS 2
C
      DNIMALE PRECISION CPSUM,FMV,ER,FQ,HSUB0,HSUM,HO,PA,PPLN,
1  QO,O1,O2,O3,O4,RGAS,RGASIN,RHOP,SM,SMINV,SMW,SSAVE,SQ,S1,S2,TK, NOXX 392
2  TKINV,TLN,7,SMO NOXXX 30
      DOURLF PRFCISION CP1,CP2,CP3,CP4,CP5,P2,P25,P333,P5,TKCU,TKSQ,TK4 NOXXX 31
      LOGICAL LADIAF,LCONVG,LOFRUG,LEQUIL,LNRG,LREACT,LENER NOXX 372
      NOXX 393
C
      COMMON
9/CCHEMI/CPSUM,HSUM,FQ,PPLN,RGAS,RGASEN,SMINV,TKINV,TLN,LNRG HCPS 7
1/CMINDEX/IDCD,IDFU,IDO2,ION2,IDM20,IDCO2,IDH1,IDH2,IDH1,IDM1,IDN02 NOXX 394
1,IND,TOCH,THCPS,ILC,ILM,IMAT,ITER,JD,N1,N2,N3,NA,NGLOR,NGLDRP, NOXX 395
2,NLM,NO,NSM,NS1,NS2,IDCH NOXX 396
1/CPARAM/ASHR(30,3),EMV,ER,HSUB0,MDERUG,NS,PA,QO,O1,O2,O3,O4,RHOP, 4STEP 611
1,SM,SMW(30),SP0,S1(30),S2(30),TY,LADIAF,LOFRUG,LFOUTL,LREACT,LENER NOXX 397
2,EDKIJ,LCONVG NOXX 398
1/CSPECE/HG(30),SO(30),SSAVE(30),Z(420) NOXX 400
C
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo HCPS 15
C THIS SURROUNTE CALCULATES THE NON-DIMENSIONAL, 1-ATM VALUFS OF HCPS 16
C ENTHALPY, SPECIFIC HEAT, AND ENTROPY FOR A GIVEN VALUE OF TEMPERATURE HCPS 17
C (DEG K). THE Z ARRAY IS REFERENCED AS HAVING ONLY ONE SUBSCRIPT HCPS 18
C TO SAVE INTERNAL SUPERSCRIPT CALCULATIONS. HCPS 19
C Z(IC,IT,IS) --- Z(IC+7*(IT-1)+7*(IS-1)) FOR Z(7,2,20) HCPS 20
C WHERE IC=1,7, COEF FOR TEMP RANGE IT=1 OR 2, FOR SPECIES IS=1,NS. HCPS 21
C NOTE THAT THE FIRST 2 SUBSCRIPTS ARE REVERSED FROM THE HCPS 22
C GORDON AND MCRRIDGE PRACTICE HCPS 23
C REFERENCE GORDON AND MCRRIDGE (NASA SP-279, 1971) HCPS 24
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo HCPS 25
C
      DATA ICIT/14/ HCPS 26
      DATA P2,P25,P333,P5/0.200,0.2500,0.3333333D0,0.700/ HCPS 27
      DATA P25/0.2500/ HCPS 28
      DATA P333/0.3333333D0/ HCPS 29

```

## ORIGIN OF FOLKLORE

C  
 IT=0  
 IF (TK.LT.1000,000) IT=7  
 C  
 TKSQ=TK#2  
 TKCU=TK\$00TK  
 TK4=TKCU#TK  
 CPSUM=0,000  
 GO TO 11,21,31,41,11,1HCPS  
 C  
 C-----1HCPS=1 --- JUST CPSUM AND HO(I) REQUIRED  
 C  
 11 DO 10 I=NS1,NS2  
 K=IT+ICIT\*(I-1)  
 CP1=7(K+1)  
 CP2=TK#2(K+2)  
 CP3=TKSQ#2(K+3)  
 CP4=TKCU#2(K+4)  
 CP5=TK4#2(K+5)  
 CPSUM=CPSUM+(CP1+CP2+CP3+CP4+CP5)\*S2(I)  
 HO(I)=P2\*CP5+P25\*CP4+P333\*CP3+P5  
 X \*CP2+CP1+TKINV#2(K+6)  
 10 CONTINUE  
 RETURN  
 C  
 C-----1HCPS=2 --- CPSUM, HO(I) AND SO(I) REQUIRED  
 C  
 21 DO 30 I=NS1,NS2  
 K=IT+ICIT\*(I-1)  
 CP1=7(K+1)  
 CP2=TK#2(K+2)  
 CP3=TKSQ#2(K+3)  
 CP4=TKCU#2(K+4)  
 CP5=TK4#2(K+5)  
 CPSUM=CPSUM+(CP1+CP2+CP3+CP4+CP5)\*S2(I)  
 HO(I)=P2\*CP5+P25\*CP4+P333\*CP3+P5  
 X \*CP2+CP1+TKINV#2(K+6)  
 SO(I)=P25\*CP5+P333\*CP4+P5\*CP3  
 X \*CP2+TLN#CP1#7(K+7)  
 30 CONTINUE  
 RETURN  
 C-----1HCPS=3 --- HSUM REQUIRED  
 31 HSUM=0,000  
 DO 40 I=NS1,NS2  
 K=IT+ICIT\*(I-1)  
 CP1=7(K+1)  
 CP2=TK#2(K+2)  
 CP3=TKSQ#2(K+3)  
 CP4=TKCU#2(K+4)  
 CP5=TK4#2(K+5)  
 HO(I)=P2\*CP5+P25\*CP4+P333\*CP3+P5\*CP2+CP1+TKINV#2(K+6)  
 HSUM=HSUM+HO(I)\*S2(I)  
 40 CONTINUE  
 RETURN  
 C-----1HCPS=4 --- HSUM AND CPSUM REQUIRED  
 41 HSUM=0,000  
 DO 50 I=NS1,NS2  
 K=IT+ICIT\*(I-1)  
 CP1=7(K+1)  
 CP2=TK#2(K+2)  
 CP3=TKSQ#2(K+3)  
 CP4=TKCU#2(K+4)  
 CP5=TK4#2(K+5)  
 CPSUM=CPSUM+(CP1+CP2+CP3+CP4+CP5)\*S2(I)

```
H0(I)=P2*CP5+P25*CP4+P333*CP3+P5*CP2+CP1+TKINV02(K+6)  
HSUM=HSUM+H0(I)*S2(I)  
50 CONTINUE  
RETURN  
END
```

|      |     |
|------|-----|
| NOXX | 427 |
| NOXX | 428 |
| NOXX | 429 |
| NOXX | 430 |
| MCPS | 72  |

ORIGINAL PAGE IS  
OF POOR QUALITY

ORIGINAL PAGE IS  
OF POOR QUALITY

**APPENDIX E**  
**LIST OF DEPENDENT VARIABLES**  
**AND SOURCE TERMS**

APPENDIX E

LIST OF DEPENDENT VARIABLES AND SOURCE TERMS

TABLE E-1

| Dependent Variable                | Source Term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $u$<br>(axial velocity)           | $\frac{\partial}{\partial x} (\mu_{eff} \frac{\partial u}{\partial x}) + \frac{1}{r} \frac{\partial}{\partial r} (\mu_{eff} r \frac{\partial v}{\partial x}) + \frac{1}{r} \frac{\partial}{\partial \theta}$<br>$(\mu_{eff} \frac{\partial w}{\partial x}) + s_u^u_{spray} - \frac{\partial p}{\partial x}$                                                                                                                                                                                                                           |
| $v$<br>(radial velocity)          | $\frac{\partial}{\partial x} (\mu_{eff} \frac{\partial u}{\partial r}) + \frac{1}{r} \frac{\partial}{\partial r} (\mu_{eff} r \frac{\partial v}{\partial r}) + \frac{1}{r} \frac{\partial}{\partial \theta}$<br>$[\mu_{eff} (\frac{\partial w}{\partial r} - \frac{w}{r})] - 2 \frac{\mu_{eff}}{r} (\frac{1}{r} \frac{\partial w}{\partial \theta} + \frac{v}{r}) + \frac{\rho w^2}{r}$<br>$+ s_v^v_{spray} - \frac{\partial p}{\partial r}$                                                                                          |
| $w$<br>(tangential velocity)      | $\frac{\partial}{\partial x} (\frac{\mu_{eff}}{r} \frac{\partial u}{\partial \theta}) + \frac{1}{r} \frac{\partial}{\partial r} [\mu_{eff} r (\frac{1}{r} \frac{\partial v}{\partial \theta} - \frac{w}{r})]$<br>$+ \frac{1}{r} \frac{\partial}{\partial \theta} [\frac{\mu_{eff}}{r} (\frac{\partial w}{\partial \theta} + 2v)] - \frac{\rho v w}{r} + \frac{\mu_{eff}}{r} (\frac{\partial w}{\partial r} +$<br>$\frac{\partial v}{\partial \theta} - \frac{w}{r}) + s_w^w_{spray} - \frac{1}{r} \frac{\partial p}{\partial \theta}$ |
| $k$<br>(Turbulent kinetic energy) | $G_k \sim \rho \epsilon$<br>$(C_1 G_k - C_2 \rho \epsilon) \frac{1}{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\epsilon$<br>(Dissipation rate)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

TABLE E-1 (Contd)

| Dependent Variable                                   | Source Term                                                                                             |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\phi$<br>(Mixture fraction)                         | $m_{evap}$                                                                                              |
| $m_{fu}$<br>(Unburnt fuel mass fraction)             | As per four-step mechanism, (Chapter VI) and modified by the eddy-break-up model as in Ref. 1, Page 23. |
| $m_{CH}$<br>(Intermediate hydrocarbon mass fraction) | $m_{evap}$ added on to $m_{fu}$ source.                                                                 |
| $m_{CO}$<br>(CO mass fraction)                       |                                                                                                         |
| $m_{H_2}$<br>(H <sub>2</sub> mass fraction)          |                                                                                                         |
| Soot nuclei and particle concentrations              | As given in Chapter III, equations (28) and (29).                                                       |
| $\tilde{h}$<br>(Stagnation enthalpy)                 | $2a [(R^x - E) + (R^r - E) + (R^z - E)]$<br>+ $m_{evap} H_{fuel}$                                       |

In the above table, the symbols have the meanings:

$x, r, \theta$  = axial, radial, tangential directions;

$\mu_{eff}$  = effective viscosity;

$p$  = pressure;

$\rho$  = density;

$$G_k = \mu_{\text{eff}} [2 \{ (\frac{\partial u}{\partial x})^2 + (\frac{\partial v}{\partial r})^2 + (\frac{\partial w}{\partial \theta} + \frac{v}{r})^2 \} \\ + (\frac{\partial w}{\partial x} + \frac{u}{r \partial \theta})^2 + (\frac{\partial u}{\partial r} + \frac{\partial v}{\partial x})^2 + (\frac{\partial w}{\partial r} + \frac{\partial v}{r \partial \theta} - \frac{w}{r})^2];$$

$c_1, c_2$  = Turbulence model constants;

$s_{\text{spray}}^u, s_{\text{spray}}^v, s_{\text{spray}}^w \}$  = Momentum transfer from spray to the gas phase  $u, v,$  and  $w$  - momentum equations;

$\dot{m}_{\text{evap}}$  = rate of spray evaporation per unit volume;

$a$  = Absorption coefficient defined as radiation absorbed per unit length;

$E$  = Blackbody emissive power;

$R^x, R^r, R^z$  = Composite radiation fluxes (See equations 37, 38, and 39);

$H_{\text{fuel}}$  = Heat of formation of fuel.

**APPENDIX F  
INPUT DATA FOR JT8D-17 COMBUSTOR TEST CASE**

## APPENDIX F

### INPUT DATA FOR JT8D-17 COMBUSTOR TEST CASE

In this Appendix, a listing of the input data used for the JT8D-17 Combustor computations is provided. The data shown is for the takeoff case using the four-step hydrocarbon oxidation mechanism. The specificaiton of the  $x$ ,  $r$ , and  $\theta$  grids is contained in lines 630-670. Other inputs may be easily interpreted with reference to the input description provided in Appendix B.

PRECEDING PAGE BLANK NOT FILMED

|                                      | OPERATING POINT<br>OF POOR QUALITY |       |       |       |       |       |       |     |
|--------------------------------------|------------------------------------|-------|-------|-------|-------|-------|-------|-----|
| U-VELOCITY                           |                                    |       |       |       |       |       |       | 10  |
| V-VELOCITY                           |                                    |       |       |       |       |       |       | 20  |
| W-VELOCITY                           |                                    |       |       |       |       |       |       | 30  |
| PRESSURE                             |                                    |       |       |       |       |       |       | 40  |
| TURBULENT KIN. ENERGY                |                                    |       |       |       |       |       |       | 50  |
| TURBULENCE LENGTH SCALE              |                                    |       |       |       |       |       |       | 60  |
| PHI (INITIAL FUEL)                   |                                    |       |       |       |       |       |       | 70  |
| FUEL MASS FRACTION                   |                                    |       |       |       |       |       |       | 80  |
| TEMPERATURE                          |                                    |       |       |       |       |       |       | 90  |
| SPECIFIC ENTHALPY                    |                                    |       |       |       |       |       |       | 100 |
| AVG. RAD.                            |                                    |       |       |       |       |       |       | 110 |
| RX                                   |                                    |       |       |       |       |       |       | 120 |
| RY                                   |                                    |       |       |       |       |       |       | 130 |
| RZ                                   |                                    |       |       |       |       |       |       | 140 |
| CC                                   |                                    |       |       |       |       |       |       | 150 |
| H2O                                  |                                    |       |       |       |       |       |       | 160 |
| C2                                   |                                    |       |       |       |       |       |       | 170 |
| CO2                                  |                                    |       |       |       |       |       |       | 180 |
| N2                                   |                                    |       |       |       |       |       |       | 190 |
| RHO                                  |                                    |       |       |       |       |       |       | 200 |
| FFF. VISCOSITY                       |                                    |       |       |       |       |       |       | 210 |
| EVAPORATION RATE                     |                                    |       |       |       |       |       |       | 220 |
| NUCLEI CONCENTRATION                 |                                    |       |       |       |       |       |       | 230 |
| SOOT CONCENTRATION - SIZE 1          |                                    |       |       |       |       |       |       | 240 |
| SOOT CONCENTRATION - SIZE 2          |                                    |       |       |       |       |       |       | 250 |
| H                                    |                                    |       |       |       |       |       |       | 260 |
| K                                    |                                    |       |       |       |       |       |       | 270 |
| NO                                   |                                    |       |       |       |       |       |       | 280 |
| NO2                                  |                                    |       |       |       |       |       |       | 290 |
| O                                    |                                    |       |       |       |       |       |       | 300 |
| CH                                   |                                    |       |       |       |       |       |       | 310 |
| CKH7-2                               |                                    |       |       |       |       |       |       | 320 |
| H2                                   |                                    |       |       |       |       |       |       | 330 |
| JT8D-LGARSE GRID-TAKEOFF-JETA-4 STEP |                                    |       |       |       |       |       |       | 340 |
| 10                                   | 10                                 | 0.5   | 0.2   | 0.2   | 0.2   | 0.2   | 0.3   | 350 |
| 0.1                                  | 0.2                                | 0.1   | 0.0   | 0.0   |       |       |       | 360 |
| 0.1                                  | 0.1                                | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 370 |
| 0.1                                  | 0.0                                | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 380 |
|                                      |                                    |       |       |       |       |       |       | 390 |
| 0.1                                  | 0.1                                | 0.1   | 0.3   | 0.1   | 0.1   | 0.1   | 0.1   | 410 |
| 0.1                                  | 0.1                                | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 420 |
| 0.1                                  | 0.1                                | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 430 |
| 0.1                                  | 0.1                                | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 0.1   | 440 |
| 0.1                                  | 0.1                                | 0.1   | 0.0   | 0.0   | 0.0   | 0.1   | 0.1   | 450 |
| 0.1                                  | 0.0                                | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 0.0   | 460 |
| 0.0                                  | 0.0                                | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 470 |
| 0.0                                  | 0.0                                | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 480 |
| 0.1                                  |                                    |       |       |       |       |       |       | 490 |
| 0.2                                  | 0.2                                | 0.2   | 1.0   | 0.5   | 0.5   | 0.5   | 0.5   | 500 |
| 0.5                                  | 0.2                                | 0.2   | 0.5   | 0.5   | 0.5   | 0.2   | 0.5   | 510 |
| 0.5                                  | 0.2                                | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 520 |
| 0.5                                  | 0.2                                | 0.5   | 0.5   | 0.5   | 1.0   | 1.0   | 1.0   | 530 |
| 0.2                                  | 0.3                                | 0.3   |       |       |       |       |       | 540 |
| 1.0                                  | 1.0                                | 1.0   | 1.0   | 0.7   | 0.7   | 0.7   | 0.7   | 550 |
| 0.7                                  | 0.7                                | 0.7   | 0.7   | 0.7   | 0.7   | 0.7   | 0.7   | 560 |
| 0.7                                  | 0.7                                | 0.7   | 0.7   | 0.7   | 0.7   | 0.7   | 0.7   | 570 |
| 0.7                                  | 0.7                                | 0.7   | 0.7   | 0.7   | 1.0   | 1.0   | 1.0   | 580 |
| 1.0                                  | 1.0                                | 1.0   | 1.0   | 0.9   | 0.9   | 0.9   | 0.9   | 590 |
| 0.9                                  | 0.9                                | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 600 |
| 0.9                                  | 0.9                                | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 0.9   | 610 |
| 0.9                                  | 0.9                                | 0.9   | 0.9   | 0.9   | 1.0   | 1.0   | 1.0   | 620 |
| 0.0                                  | 0.250                              | 0.007 | 0.012 | 0.017 | 0.022 | 0.021 | 0.016 | 630 |
| 0.0                                  | 0.0181                             |       |       |       |       |       |       | 640 |
| 0.0                                  |                                    |       |       |       |       |       |       |     |

294

|            |                 |                    |                     |                  |                 |                   |                  |      |
|------------|-----------------|--------------------|---------------------|------------------|-----------------|-------------------|------------------|------|
| 0.0        | 0.005           | 0.015              | 0.025               | 0.035            | 0.045           | 0.057             | 0.07             | 650  |
| 0.001      | 0.0064          |                    |                     |                  |                 |                   |                  | 660  |
| 0.0        | 0.1496          | 0.4484             | 0.7480              | 0.8376           |                 |                   |                  | 670  |
| 02         | 10              | 64                 | 10                  |                  |                 |                   |                  | 680  |
| 1.7650E+16 | 1.0             | 0.1                | 0.01                | 0.003            | 0.002           |                   |                  | 690  |
| 10.        | 19.00           | -49317.            | .001                |                  |                 |                   |                  | 700  |
| 2.0893E+17 | 76000.          | 1.0                | 5.0117E+19          | 25000.           | 3.0             |                   |                  | 710  |
| 3.9811E+17 | 20000.          | 3.0                | 3.3113E+18          | 20500.           | 3.0             |                   |                  | 720  |
| 0.5        | 1.07            | 0.5                | 0.3                 | 1.18             | -0.37           |                   |                  | 730  |
| 1.0        | 1.15            | 0.5                | 0.85                | 1.42             | -0.50           |                   |                  | 740  |
| 1.42       | 1.92            | 0.07               | 1.7100E-05          | 0.00001          | 713.0           | 713.0             | 713.0            | 750  |
| 075        | 100             | 04                 | 04                  | 00               | 02              |                   |                  | 760  |
| 46.418     | 0.3             | 1.10               | 0.081               | 0.0              | 713.0           |                   |                  | 770  |
| 01         | 02              | 300.0              |                     |                  |                 |                   |                  | 780  |
| .0001      | 0.0001          | 0.6488             | 1.570795            | -1.570795        | 0.0             | 5.8343E           | 0.6488           | 790  |
| 5.00       | 0.01916         | 46.0               | 40.00               | 0.0              |                 |                   |                  | 800  |
| 03         | 07              |                    |                     |                  |                 |                   |                  | 810  |
| 10         | 10              |                    |                     |                  |                 |                   |                  | 820  |
| 03         | 63              |                    |                     |                  |                 |                   |                  | 830  |
| -80.6      | -80.0           |                    |                     |                  |                 |                   |                  | 840  |
| 95.        | 95.             |                    |                     |                  |                 |                   |                  | 850  |
| 0.0001     | 0.0001          |                    |                     |                  |                 |                   |                  | 860  |
| 0.2626     | 0.7114          |                    |                     |                  |                 |                   |                  | 870  |
| 713.6      | 713.6           |                    |                     |                  |                 |                   |                  | 880  |
| 01         | 30              | 02                 |                     |                  |                 |                   |                  | 890  |
| 0.05       | 1.1000E+31      | 40000.             | 1.0000E+038         | 0.0000E-16       | 100.0           | 1.0000E-15        | 2000.0           | 900  |
| 1.5626E+13 | 16000.0         | -1.94              | 1.81                | -0.5             | 4.5000E+070.1   | 400.0             |                  | 910  |
| 0.025      | 1.0             |                    |                     |                  |                 |                   |                  | 920  |
| 96.0       | 100.0           |                    |                     |                  |                 |                   |                  | 930  |
| 3C         | 0.301           |                    |                     |                  |                 |                   |                  | 940  |
| 01         | 49              | 02                 | 0.0005              | 500.0            |                 |                   |                  | 950  |
| ELEMENTS   |                 |                    |                     |                  |                 |                   |                  | 960  |
| C          | 12.01115        | +0.600000          |                     |                  |                 |                   |                  | 970  |
| H          | 1.007470        | 1.000000           |                     |                  |                 |                   |                  | 980  |
| N          | 14.006700       | 0.0                |                     |                  |                 |                   |                  | 990  |
| O          | 15.999400       | -2.000000          |                     |                  |                 |                   |                  | 1000 |
|            |                 |                    |                     |                  |                 |                   |                  | 1010 |
|            |                 |                    |                     |                  |                 |                   |                  | 1020 |
| THERMO     |                 |                    |                     |                  |                 |                   |                  |      |
| C10H14     | J 3/01C         | 10.0 19.00         | 0.00 0.6            | 300.000          | 5000.000        |                   |                  | 1030 |
|            | L.26845936E+02  | 0.46476050E-01     | -0.22957813E-04     | 0.48494616E-06   | -0.37080214E-12 |                   |                  | 1040 |
|            | -L.24819829E+05 | 0.10767143E+02     | 0.57799475E+01      | 0.50561468E-01   | 0.51144225E-04  |                   |                  | 1050 |
|            | -L.94968140E-07 | 0.39004875E-10     | -0.24819829E+05     | 0.86690068E+01   |                 |                   |                  | 1060 |
|            | 02              | J 9/05D            | 2.0 0.0 0.0 0.6     | 300.000          | 5000.000        |                   |                  | 1070 |
|            | C.36219521E     | J 1 0.73018256E-03 | -0.19652219E-05     | 0.36201556E-10   | -0.26945023E-14 |                   |                  | 1080 |
|            | -0.12014922E    | 04                 | 0.36150492E         | 01               | 0.36255980E     | 01-0.18782103E-02 | 0.76254943E-05   | 1090 |
|            | -L.67635537E-08 | 0.21555477E-11     | -0.10475225E        | 04               | 0.43052764E     | 01                |                  | 1100 |
|            | N2              | J 9/05N            | 2.0 0.0 0.0 0.6     | 300.000          | 5000.000        |                   |                  | 1110 |
|            | C.28943144E     | J 1 0.15154863E-02 | -0.57235275E-06     | 0.99807385E-10   | -0.65223530E-14 |                   |                  | 1120 |
|            | -C.90586182E    | 03                 | 0.01015143E         | 01               | 0.36748257E     | 01-0.12081496E-02 | 0.23240100E-05   | 1130 |
|            | -L.63217570E-04 | -0.22577253E-12    | -0.10011587E        | 04               | 0.23580418E     | 01                |                  | 1140 |
|            | CL              | J 9/05C            | 1.0 1.00 0.00 0.6   | 300.000          | 5000.000        |                   |                  | 1150 |
|            | C.29840099E     | J 1 0.14941387E-02 | -0.573998678E-06    | 0.10364576E-04   | -0.69353494E-14 |                   |                  | 1160 |
|            | -L.14245227E    | 05                 | 0.63479147E         | 01               | 0.37100914E     | 01-0.16190964E-02 | 0.30423584E-05   | 1170 |
|            | -C.20314073E-08 | 0.23453346E-12     | -0.14355309E        | 05               | 0.24555334E     | 01                |                  | 1180 |
|            | C2H4            | J 3/01C            | 2.01 4.000 0.00 0.6 | 300.000          | 5000.000        |                   |                  | 1190 |
|            | C.23312489E+04  | 1.32141704E-02     | -0.11224078E-04     | 0.83920416E-16   | -0.3043019E-14  |                   |                  | 1200 |
|            | 5.10531973E+03  | 9.38961110E+00     | 2.41624020E+00      | 1.27921279E-04   | -2.46080270E-06 |                   |                  | 1210 |
|            | 2.13882527E-06  | -1.44524497E-12    | 5.05491829E+03      | 0.02623346E+00   |                 |                   |                  | 1220 |
|            | 02              | J 3/01H            | 2.0 0.0 0.0 0.6     | 300.000          | 5000.000        |                   |                  | 1230 |
|            | C.310015d4      | J 1 0.51114453E-01 | 0.52044204E-07      | -0.354909964E-16 | 0.36465341E-14  |                   |                  | 1240 |
|            | -C.97726413E    | 03                 | -L.195154412E       | 01               | C.30574444E     | 01-0.26765148E-02 | -0.580499144E-05 | 1250 |
|            | C.55210443E-08  | -0.18122776E-11    | -0.98390430E        | 03               | -0.22997046E    | 01                |                  | 1260 |
|            | 020             | J 3/01C            | 2.0 1.00 0.00 0.6   | 300.000          | 5000.000        |                   |                  | 1270 |
|            | C.27117616E     | J 1 0.24451370E-02 | -0.80224368E-06     | 0.10226641E-16   | -0.46672134E-14 |                   |                  | 1280 |

-0.269001770 05 0.663056666 01 0.407012750 01-0.410844998-02 0.41221x001-05  
 -0.276374141-06 0.367621031-17-0.30797191 05-0.322700101 06  
 C12 3.97650 1.0 2.00 0.00 0.0 300.000 500.00000  
 0.446080401 01 0.331817171-02-0.123075661-05 0.22741323-06-0.155277581-13  
 -0.489614301 05-0.4966354781 00 0.2400777841 01 0.873569038-02-0.600700611-05  
 0.200214601-06 0.631740321-15-0.483775201 05 0.969514471 0.  
 H 3.97650 1.00 2.00 0.00 0.0 300.000 500.00000  
 0.250000000 01 0.0 0.0 0.0 0.0 0.0 0.0  
 0.254716270 05-0.460117591 00 0.250000001 01 0.0 0.0 0.0  
 C10 0.0 0.0 0.0 0.0 0.0 0.0 0.0  
 N 3.3761N 1.00 2.00 0.00 0.0 300.000 500.00000  
 C.255026781 01 0.106614501-04-C.746533151-07 0.167455201-10-0.167558371-14  
 0.561160351 05 0.464175721 01 0.29030699F 01-0.210001811-06 0.952052841-07  
 -0.564755621-10 0.209990381-13 0.560098898F 05 0.416757491 01  
 NP 3.6764N 1.0 2.00 0.00 0.0 300.000 500.00000  
 C.318897721 01 0.133822771-02-C.521993161-05 0.959173161-11-0.640579201-16  
 0.482032421 04 0.674581151 01 0.604695091 01-0.341617531-02 0.790191761-05  
 -0.611392561-03 0.159190721-11 0.974538A7F 04 0.299764761 01  
 NL2 3.9765N 1.0 2.00 0.00 0.0 300.000 500.00000  
 0.462407591 01 0.252601301-07-0.10609483F-05 0.198772391-09-0.137794461-13  
 C.228977601 04 0.133261371 01 0.34389224F 01 0.206470031-07 0.666666601-05  
 -0.955566661-06 0.361969731-11 0.781522610 06 0.831104801 01  
 H 3.6762D 1.00 2.00 0.00 0.0 300.000 500.00000  
 0.254702601 01-0.275000031-04-0.31028029F-08 0.45510670F-14-0.438346441-15  
 C.292306012 05 0.49203072E 01 0.29464283F 01-0.163816661-02 0.242113303F-05  
 -0.16026932L-08 0.309069641-12 0.29147641F 05 0.296399311 01  
 at 3.3766D 1.0 2.00 0.00 0.0 300.000 500.00000  
 C.29100417. 01 0.959316271-03-0.19441700F-05 0.137506461-10 0.142245421-12  
 0.393518111 04 0.346134201 01 0.33375931F 01-0.107730591-02 0.908303241-05  
 C.18713471L-09-0.229713891-12 0.36412420F 04 0.493700091 00

#### MECHANISM

|      | C10H19 | C2H4 | H2  |        |            |     |       |       |
|------|--------|------|-----|--------|------------|-----|-------|-------|
| C2H4 | 12     | C3   | H2  |        |            |     | 51.04 | -51.0 |
| CO   | 1e     | C32  |     |        |            |     | 10.30 |       |
| O2   | 02     | C2D  |     |        |            |     | 0.108 | 124.0 |
| O    | 0      | H2   |     | 12.3   | -1.0 0 0.0 | 0.0 |       | 165.0 |
| O    | 0      | D2   |     | 11.0   | -1.0 0 0.0 | 0.0 |       | 138.0 |
| O    | 0F     | H2D  |     | 13.05  | -1.0 0 0.0 | 0.0 |       | 167.0 |
| O    | 1e     | D1   | 0   | 11.30  | 0.0 0 0.0  | 0.0 |       | 164.0 |
| O    | 02     | D1   | 0   | 10.24  | 0.0 0 0.0  | 0.0 |       | 164.0 |
| H    | H2D    | D1   | H2  | 10.92  | 0.0 0 0.0  | 0.0 |       | 170.0 |
| O    | 02D    | D1   | DH  | 10.70  | 0.0 0 0.0  | 0.0 |       | 171.0 |
| N2   | 0      | ND   | N   | 9.0    | 0.0 0 0.0  | 0.0 |       | 172.0 |
| N    | 12     | ND   | 0   | 2.0000 | 1.0 0 0.0  | 0.0 |       | 173.0 |
| N    | 11     | ND   | 0   | 4.0000 | 0.0 0 0.0  | 0.0 |       | 174.0 |
| N2   | 1C     | R    | ND2 | 11.531 | -1.0 0 0.0 | 0.0 |       | 175.0 |
| NE   | ND     | R    | ND2 | 7.00   | 0.0 0 0.0  | 0.0 |       | 176.0 |
| NI   | 12     | ND2  | 0   | 8.0    | 0.0 0 0.0  | 0.0 |       | 177.0 |
| H    | 9.02   | ND   | 01t | 10.477 | 0.0 0 0.0  | 0.0 |       | 178.0 |
|      |        |      |     |        |            |     |       | 179.0 |

DRUGMA 7.0  
OF POOR QUALITY

**APPENDIX G**  
**DIMENSIONS OF VARIABLE ARRAYS**

## APPENDIX G

### DIMENSIONS OF VARIABLE ARRAYS

The program listing shown in Appendix D is for a 10 x 10 x 5 (axial x radial x tangential) grid. In order to change the number of nodes to any NX, NY, NZ, the dimensions of various variable arrays have to be changed as indicated on the following page. Some of the variables are dimensioned as (NX, NY, NZ) in some subroutines and as (NXYZ) in others. Both forms are indicated below. In addition, in BLOCK DATA, NI, NJ, and NK have to be set to NX, NY, and NZ, respectively.

$$\begin{aligned} \text{NXYZ} &= \text{NX} * \text{NY} * \text{NZ} \\ \text{NXY} &= \text{NX} * \text{NY} \end{aligned}$$

PRECEDING PAGE BLANK NOT FILMED

| Variable                                                                                                | Dimensions                   |
|---------------------------------------------------------------------------------------------------------|------------------------------|
| F                                                                                                       | (NXYZ, 7) or (7* NXYZ)       |
| DU, DV, DW, ANUC, SOOT1, SOOT2, FCH,<br>FH2, RHO, VIS, ABSR, SCTR, DRHODP,<br>U, V, W, PP, P, TEMP, GAM | (NX, NY, NZ)<br>or<br>(NXYZ) |
| FS                                                                                                      | (NXYZ, 14)                   |
| GENR, SUFU, SPFU                                                                                        | (NXYZ)                       |
| SU, SP, AXP, AXM, AYP, AYM, AZP, AZM,<br>CZ, CZU, CZP, DIVG                                             | (NX, NY)<br>or<br>(NXY)      |
| AXMK, AXPK, AYMK, AYPK, AZMK, AZPK,<br>SUK, SPK, EVAP, EVAPU, EVAPV, EVAPW,<br>EDK, EDK 2               | (NX-2) * (NY-2) * (NZ-2)     |
| EVSU                                                                                                    | (NX-2) * (NY-2)              |
| CY, CYU, CYP, X, XS, XSU, XDIF, FXP,<br>FXM, FLO, TEMTM, H, FUEL, FUOX, UIN,<br>TIN, FUELS              | GE . (NX)                    |
| R, RM, RMV, YSR, YSVR, Y, YS, YSV<br>YDIF, FYP, FYM, JM                                                 | GE . (NY)                    |
| Z, ZS, ZSW, ZDIF, FZP, FZM, KM                                                                          | GE . (NZ)                    |
| IWLI, IWLO                                                                                              | GE . (NY, 5)                 |
| JWLO, JWLI                                                                                              | GE . (NX, 5)                 |
| JKIN                                                                                                    | GE . (NY, NZ)                |
| IKIN                                                                                                    | GE . (NX, NZ)                |