سوالات سری چهارم

دانشگاه شهید بهشتی ، دانشکده فیزیک ۱۶ آبان ماه ۱۴۰۲ مهلت تحویل : ۲۳ آبان

۱ دترمینان

- det(AB) = det(A)det(B) ثابت کنید .1
- $det(A+B) \neq det(A) + det(B)$ ، نشان دھید در حالت کلی. ۲
- $det(O)=\pm 1$ ثابت کنید اگر O یک ماتریس متعامد باشد ، آنگاه T
 - باشد و دارای شکل بلوکی زیر باشد $N \times N$ باشد و دارای شکل بلوکی زیر باشد A

$$A = \begin{pmatrix} \boxed{A_1} & 0 \\ B & \boxed{A_2} \end{pmatrix} \quad or \quad A = \begin{pmatrix} \boxed{A_1} & B \\ 0 & \boxed{A_2} \end{pmatrix}$$

آنگاه ثابت کنید

$$det(A) = det(A_1)det(A_2)$$

۲ رد

می کنند L_3 ، L_2 ، L_1 ، N imes N سه ماتریس Δ

$$[L_1, L_2] = iL_3$$
 , $[L_1, L_3] = iL_2$, $[L_2, L_3] = iL_1$

ثابت كنيد

$$tr(L_k) = 0$$
 , $k = 1, 2, 3$

وض کنید نگاشتی مانند g داریم که $M^{N \times N} \times M^{N \times N} \to C$ فضای $M^{N \times N}$ فضای فضای برداری ماتریس های $M \times N$ است و $M^{N \times N}$ مجموعه اعداد مختلط است. فرض کنید این نگاشت ویژگی های زیر را دارا باشد

1.
$$g(a,b) = g(b,a)$$

2.
$$g(a, \alpha b + \gamma c) = \alpha g(a, b) + \gamma g(a, c)$$

3.
$$g(a,a) \ge 0$$
 if $a = 0$, $g(a,a) = 0$

اگر نگاشتی ویژگی های بالا را داشته باشد به آن متریک می گوییم. حال فرض کنید نگاشتی به صورت زیر تعریف می کنیم

$$g: M^{N \times N} \times M^{N \times N} \to C$$

 $g(A, B) = tr(A^{\dagger}B)$

نشان دهید که آیا می توان نگاشت تعریف شده را متریک دانست یا خیر.

۷. فرض کنید ماتریس های C ، B ، A به ترتیب دلخواه ، متقارن و پادمتقارن هستند. ثابت کنید که

1.
$$tr(A) = tr(\hat{A})$$

$$2. \ tr(BC) = 0$$