Probability prepare

STA 101

Getting started

Download this prepare file by pasting the code below into your **console** (bottom left of screen)

```
download.file("https://sta101-fa22.netlify.app/static/appex/prepareProbability.qmd",
   destfile = "prepareProbability.qmd")
```

Goals

• be able to define and give examples of sample space, outcomes, events, probabilities, conditional, marginal, joint and independent probabilities

Load packages

```
library(tidyverse)
library(fivethirtyeight)
```

Notes

Sample space

The **sample space** is the set of all possible outcomes of an experiment.

Discrete examples

• Experiment 1: You flip a coin once. The sample space is $\{H, T\}$.

We separate each outcome by a comma and use brackets {} to denote a "set".

- Experiment 2: You flip a coin twice. The sample space is $\{HH, HT, TH, TT\}$
- Experiment 3: You roll a die once. The sample space is $\{1, 2, 3, 4, 5, 6\}$
- Experiment 4: You send out a survey asking participants whether they prefer cats or dogs. The sample space is {Cats, Dogs}
- Experiment 5: A car manufacturer makes 100 vehicles. You count the number of recalls. The sample space is $\{0, 1, 2, 3, \dots, 99, 100\}$

Continuous examples

• Experiment 6: You observe the numeric grade you earn in a course. The sample space is [0, 100]

Here we write the lower bound and upper bound of the sample space and assume we can observe all values in-between. Brackets, [], are inclusive of the end values while parentheses, (), are not.

- Experiment 7: You measure the tail length of American alligators The sample space is (0, c] feet where c is the maximum tail length of an alligator, e.g. c might be approximately 10.
- Experiment 8: You measure the geographic coordinates (longitude and latitude) of a COVID case. The sample space is [-90, 90] for latitude and [-180, 180] for longitude.

Events

An **event** is a collection of 1 or more outcomes. Two events are said to be **disjoint** if they cannot occur at the same time.

Examples

- You roll a die once. Let A be the event that you roll an even number, i.e. $A = \{2, 4, 6\}$. Let B be the event you roll a 1 or a 2, i.e. $B = \{1, 2\}$. A and B are **not** disjoint.
- A car manufacturer makes 100 vehicles. You count the number of recalls. Let C be the event you see fewer than 10 recalls. $C = \{0, 1, 2, 3, \dots, 8, 9\}$
- You observe the numeric grade you earn in a course. Let D be the event you receive a letter grade of "A". D = [93, 100]. Let E be the event that you earn a "B" or worse. E = [0, 87). D and E are disjoint events because they cannot occur simultaneously.

Random variables

Random variables are functions that map outcomes to numbers. An **indicator random** variable takes values 1 and 0 to indicate whether or not an event occurs.

```
data(bob_ross) # within fivethirtyeight package
bob_ross %>%
head(10)
```

A tibble: 10 x 71

	episode	${\tt season}$	${\tt episode_num}$	title	apple_frame	aurora_borealis	barn	beach
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>
1	S01E01	1	1	A WALK IN~	0	0	0	0
2	S01E02	1	2	MT. MCKIN~	0	0	0	0
3	S01E03	1	3	EBONY SUN~	0	0	0	0
4	S01E04	1	4	WINTER MI~	0	0	0	0
5	S01E05	1	5	QUIET STR~	0	0	0	0
6	S01E06	1	6	WINTER MO~	0	0	0	0
7	S01E07	1	7	AUTUMN MO~	0	0	0	0
8	S01E08	1	8	PEACEFUL ~	0	0	0	0
9	S01E09	1	9	SEASCAPE	0	0	0	1
10	S01E10	1	10	MOUNTAIN ~	0	0	0	0

- # ... with 63 more variables: boat <int>, bridge <int>, building <int>,
- # bushes <int>, cabin <int>, cactus <int>, circle_frame <int>, cirrus <int>,
- # cliff <int>, clouds <int>, conifer <int>, cumulus <int>, deciduous <int>,
- # diane andre <int>, dock <int>, double oval frame <int>, farm <int>,
- # fence <int>, fire <int>, florida_frame <int>, flowers <int>, fog <int>,
- # framed <int>, grass <int>, guest <int>, half_circle_frame <int>,
- # half_oval_frame <int>, hills <int>, lake <int>, lakes <int>, ...

One often writes indicator random variables as a bold "1",

$$\mathbf{1}_{\text{clouds}} = \begin{cases} 1 & \text{if there are clouds,} \\ 0 & \text{if not} \end{cases}$$

Probability

A **probability** is the long-run frequency of an *event*. In other words, the proportion of times we would see an event occur if we could repeat an experiment an infinite number of times. Probabilities take values between 0 and 1 inclusive.

• We can often compute probabilities practically as the mean of an indicator random variable. For example,

$$P(\mathrm{clouds}) = \mathrm{mean}(\mathbf{1}_{\mathrm{clouds}})$$

• If A and B are two disjoint events, then the probability of A or B occurring is equal to the probability of A plus the probability of B. More concisely, Pr(A or B) = Pr(A) + Pr(B).

More definitions

Let A and B be two events.

- Marginal probability: The probability an event occurs regardless of values of the other event
 - P(A)
 - Example: What's the probability that, in a randomly selected episode of Bob Ross, the painting features clouds?
- Joint probability: The probability two or more events simultaneously occur
 - Example: What's the probability that, in a randomly selected episode of Bob Ross, the painting features clouds and mountains?
 - P(A and B)
- Conditional probability: The probability an event occurs given the other has occurred
 - P(A|B) or P(B|A)
 - Example: What is the probability that a Bob Ross painting features clouds in season 1?
 - P(A|B) = P(A and B) / P(B)

- Independent events: Knowing one event has occurred does not lead to any change in the probability we assign to another event.
 - P(A|B) = P(A) or P(B|A) = P(B)
 - Example: P(lakes | rivers) = P(lakes)