Estructures Algebraiques: Tema 2

Dean

December 14, 2017

Contents

1 Anell

1.1 Definicio Anell

Un **anell** es un conjunt A amb dues operacions internes, la suma (+) i el producte (\cdot) , tals que:

- 1. (A, +) es grup abelia
- 2. (A, \cdot) verifica la propietat associativa.
- 3. Propietat distributiva del producte respecte la suma.

L'anell es commutatiu si $ab = ba \quad \forall a, b \in A$

L'anell es unitari si existeix neutre pel producte.

1.2 Propietats:

- 1. $a \cdot 0 = 0$
- 2. $1 = 0 \iff A = 0$
- 3. $(-1) \cdot x = -x$
- 4. Suposem $(A,+,\cdot)$ anell commutatiu amb unitat aleshores la suma es commutativa. (S'imposa a la definicio per si l'anell no es unitari)

1.3 Definicio A*

 $A^* = \{a \in A \mid \exists b \in A \text{ tal que } ab = 1\}$, elements invertibles de A. Llavors A^* es el grup multiplicatiu i es un grup abelia.

1.4 Definicio Cos

Un **cos** es un anell A commutatiu amb unitat tal que $A^* = A \setminus \{0\}$.

1.5 Definicio Subanell

Un **Subanell** de A es un subconjunt $B \subseteq A$ tal que amb la suma, el producte i el deutre de A 1_A , es un anell.

2 Ideals

2.1 Definicio ideals

Sigui A un anell commutatiu amb unitat. Un **ideal de A** es un subconjunt I de A tal que cumpleix:

- 1. $0 \in I$
- 2. $\forall x, y \in I, \quad x + y \in I$
- 3. $\forall x \in I, \forall a \in A, ax \in I$

2.1.1 Observacio

La condicio 1 equival a que $I \neq \emptyset$.

2.1.2 Ideal impropi

Direm que un Ideal I es impropi si $I = \emptyset$.

2.1.3 Ideal principal

Sigui A anell i $x \in A$. El conjunt de multiples de $x = \{ax \mid a \in A\}$ es un ideal de A. Se l'anomena ideal principal

1. Observacio Tot ideal de \mathcal{Z} es principal.

2.1.4 Proposicio

$$I = A \iff 1 \in I \iff I \cap A^* \neq \emptyset.$$

2.1.5 Proposicio

Sigui A anell commutatiu amb unitat. Aleshores, A es cos \iff {ideals de A} = $\{0, A\}$

2.2 Operacions amb ideals

2.2.1 Interseccio

Sigui A anell, I, J ideals de A. La interseccio de I i J es I \cap J = $\{x \in A \mid x \in I, x \in J\}$ Si I, J son ideals de A \Longrightarrow I \cap J es ideal de A.

2.2.2 Unio

Sigui A anell, I, J ideals de A. La unio de I i J es I \cup J = $\{x \in A \mid x \in I \text{ o } x \in J\}$ En general l'unio de ideals no es ideal.

2.2.3 Suma

Sigui A anell, I, J ideals de A. La suma de I i J es I + J = $\{x + y \mid x \in I, y \in J\}$ Si I, J son ideals de A \implies I + J es ideal de A. \ A mes a mes es el menor ideal que conte $I \cup J$.

2.2.4 Generador

Sigui A un anell, $x_1, \ldots, x_r \in A$. Aleshores $\langle x_1, \ldots, x_r \rangle = \{a_1x_1 + \cdots + a_rx_r \mid a_i \in A\}$ es el menor ideal de A que conte x_1, \ldots, x_r