Relatório trabalho I - Meta-heurísticas

Mateus Pinto da Silva - 3489¹

¹Ciência da Computação – Universidade Federal de Viçosa (UFV-caf) – Florestal – MG – Brasil

(mateus.p.silva¹)@ufv.br

Resumo. Neste trabalho será apresentado uma implementação da metaheurística Hill Climb e da Iterated Local Search, e ambos serão testados utilizando duas funções, cada uma testada em dois intervalos diferentes. Optei por utilizar a chance de perturbação de cada variável em 50% para ambos algoritmos. O HC utiliza ruído de até 10% do intervalo passado. O ILS utiliza ruído de até 100% do intervalo passado, e utiliza o HC para refinar sua tentativa, porém com apenas 1% do intervalo passado como ruído. O critério de parada foi de 1000 iterações sem melhoria em ambos algoritmos, embora o HC utilizado pelo ILS pare em 100 iterações sem melhoria. Conclui-se que a implementação foi satisfatória, alcançando bons resultados, e que o ILS aparenta a funcionar melhor que o HC para funções cujo intervalo abrange várias bacias de atração.

1. Como executar

Para executar os algoritmos implementados, é necessário o compilador Rust. Ele pode ser baixado em Rustup.rs (hyperlink). Depois de baixado e instalado, basta acessar a pasta pelo terminal e executar o comando "cargo run --release". Por padrão, será executada 30 vezes o exercício 1a, porém isso pode ser mudado trocando a função executada e os limites no arquivo src/main.rs. Deixei todas as modificações necessárias comentadas no arquivo, a fim de facilitar a correção do professor/monitor.

2. Decisões de implementação

Quanto aos quesitos técnicos, optei pela linguagem Rust por ser muito performática, a fim de abusar do número de iterações sem muito custo de tempo. Quanto a decisões científicas (do próprio algoritmo), optei por utilizar 50% de chance de perturbação de cada variável, o que faz com que em 75% das iterações pelo menos uma das variáveis seja perturbada e em 25% as duas sejam. Testei outros valores, porém com esse tive resultados mais satisfatórios. Optei por utilizar o ruído baseado no próprio intervalo da função. Como o objetivo do algoritmo Hill Climb é encontrar a melhor solução de uma bacia de aproximação, utilizei o valor de 10% do intervalo, e como o do Iterated Local Search é achar bacias de aproximação, utilizei 100% do intervalo. Testei outros valores também, porém novamente esses levaram a melhores resultados.

3. Discussão dos resultados

Problema com função objetivo 1 com intervalo a) para as variáveis de decisão					
Algoritmo	Mínimo	Máximo	Média	Desvio-padrão	
HC	-1.913223	1.228413	-0.447133	1.567299	
ILS	-1.913223	-1.913223	-1.913223	0	

Problema com função objetivo 1 com intervalo b) para as variáveis de decisão				
Algoritmo	Mínimo	Máximo	Média	Desvio-padrão
HC	-1.913223	-1.913222	-1.913223	0
ILS	-1.913223	-1.913223	-1.913223	0

Problema com função objetivo 2 com intervalo c) para as variáveis de decisão					
Algoritmo	Mínimo	Máximo	Média	Desvio-padrão	
НС	-959.400959	-306.178546	-653.666388	177.850723	
ILS	-959.640457	-959.630904	-959.638219	0.002274	

Problema com função objetivo 2 com intervalo d) para as variáveis de decisão					
Algoritmo	Mínimo	Máximo	Média	Desvio-padrão	
НС	-959.640652	-959.639267	-959.64019	0.000377	
ILS	-959.640663	-959.640662	-959.640663	0	

Figura 1. Azul para o Hill-Climb, vermelho para o ILS

Figura 2. Azul para o Hill-Climb, vermelho para o ILS

Figura 3. Azul para o Hill-Climb, vermelho para o ILS

Figura 4. Azul para o Hill-Climb, vermelho para o ILS

Através da análise dos gráficos, das tabelas apresentadas neste relatório e dos gráficos das funções mostradas na especificação, é possível perceber que o algoritmo ILS funciona bem melhor do que o HC, visto que a maioria de suas execuções alcançou resultados melhores. Isso acontece pois o algoritmo HC tende a achar mínimos locais, que podem ser globais ou não. Essa diferença, no entanto, é menor nos intervalos B e D, pois eles são menores e contemplam o mínimo global de cada uma de suas respectivas funções. Além disso, o algoritmo HC tende a performar um pouco melhor em funções com poucas (ou apenas uma) bacias de atração.