eCommerce Transactions Dataset EDA

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#Load the all file:
customers=pd.read_csv('/content/Customers.csv')
products=pd.read_csv('/content/Products.csv')
transactions=pd.read_csv('/content/Transactions.csv')
#Check Data:
customers.head()
\equiv
        CustomerID
                       CustomerName
                                           Region
                                                  SignupDate
     0
             C0001
                      Lawrence Carroll South America
                                                   2022-07-10
     1
             C0002
                        Elizabeth Lutz
                                             Asia
                                                   2022-02-13
     2
             C0003
                        Michael Rivera South America
                                                   2024-03-07
     3
             C0004 Kathleen Rodriguez South America
                                                   2022-10-09
             C0005
                         Laura Weber
                                             Asia
 Next steps: Generate code with customers
                                      ○ View recommended plots )
products.head()
        ProductID
                           ProductName
                                          Category
                                                    Price
     0
             P001
                     ActiveWear Biography
                                             Books 169.30
     1
             P002
                   ActiveWear Smartwatch
                                         Electronics 346.30
     2
             P003
                   ComfortLiving Biography
                                             Books
                                                    44 12
     3
             P004
                          BookWorld Rug Home Decor
                                                    95.69
             P005
                          TechPro T-Shirt
                                           Clothing 429 31
            Generate code with products ) (

    View recommended plots

 Next steps: (
                                                                  New interactive sheet
transactions.head()
        TransactionID CustomerID ProductID
                                               TransactionDate Quantity TotalValue Price
     0
               T00001
                            C0199
                                        P067
                                             2024-08-25 12:38:23
                                                                              300.68 300.68
     1
               T00112
                           C0146
                                             2024-05-27 22:23:54
                                                                              300.68 300.68
                                       P067
     2
               T00166
                            C0127
                                       P067 2024-04-25 07:38:55
                                                                       1
                                                                              300.68 300.68
     3
               T00272
                           C0087
                                       P067
                                             2024-03-26 22:55:37
                                                                              601.36 300.68
     (
                                            View recommended plots ) (
```

#Data UnderStanding

```
#Check the data shape
print(customers.info())
print()
print(products.info())
print()
print(transactions.info())
print()
```

```
<pr
     RangeIndex: 200 entries, 0 to 199
     Data columns (total 4 columns):
      # Column Non-Null Count Dtype
      0 CustomerID 200 non-null object
      1 CustomerName 200 non-null
2 Region 200 non-null
3 SignupDate 200 non-null
                                        obiect
                                        object
                        200 non-null object
     dtypes: object(4)
     memory usage: 6.4+ KB
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 100 entries, 0 to 99
     Data columns (total 4 columns):
                   Non-Null Count Dtype
     # Column
      0 ProductID 100 non-null
                                       object
         ProductName 100 non-null
                                       object
      2 Category 100 non-null
3 Price 100 non-null
                                       object
      3 Price
                                      float64
     dtypes: float64(1), object(3)
     memory usage: 3.3+ KB
     None
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1000 entries, 0 to 999
     Data columns (total 7 columns):
                  Non-Null Count Dtype
     # Column
     0 TransactionID 1000 non-null object
1 CustomerID 1000 non-null object
2 ProductID 1000 non-null object
         TransactionDate 1000 non-null object
      4 Quantity 1000 non-null int64
5 TotalValue 1000 non-null float64
6 Price 1000 non-null float64
      6 Price
     dtypes: float64(2), int64(1), object(4)
     memory usage: 54.8+ KB
     None
#Check missing Value
print(customers.isnull().sum())
print()
print(products.isnull().sum())
print()
print(transactions.isnull().sum())
print()
→ CustomerID
                    0
     CustomerName
                     0
     Region
     SignupDate
                    0
     dtype: int64
     ProductID
     ProductName 0
    Product.
Category 0
     Price
     dtype: int64
     TransactionID
     CustomerID
     ProductID
                        0
     TransactionDate 0
     Ouantity
                        0
     TotalValue
                        0
     Price
     dtype: int64
#Check duplicate Value
print(customers.duplicated().sum())
print()
print(products.duplicated().sum())
print()
print(transactions.duplicated().sum())
print()
```

```
<del>→</del> 0
```

0

0

#Describe the transaction Table

round(transactions.describe()).T

#Data Cleaning:

300.68

300.68

4

```
print(customers.head())
print()
print(products.head())
print()
      CustomerID
                        CustomerName
                                             Region SignupDate
           C0001
                    Lawrence Carroll South America
                                                      2022-07-10
           C0002
                      Elizabeth Lutz
                                               Asia 2022-02-13
           C0003
                       Michael Rivera South America 2024-03-07
           C0004
                  Kathleen Rodriguez South America 2022-10-09
    3
                                               Asia 2022-08-15
    4
           C0005
                         Laura Weber
                                                        Price
      ProductID
                             ProductName
                                             Category
    0
           P001
                    ActiveWear Biography
                                                Books 169.30
    1
           P002
                   ActiveWear Smartwatch Electronics 346.30
    2
           P003
                 ComfortLiving Biography
                                                Books
                                                         44.12
           P004
                           BookWorld Rug
                                            Home Decor
                                                        95.69
    4
                          TechPro T-Shirt
                                             Clothing 429.31
           P005
#Remove the time from TransactionDate column of transaction Table:
transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
transactions['TransactionDate'] = transactions['TransactionDate'].dt.date
customers['SignupDate'] = pd.to_datetime(customers['SignupDate'])
transactions['TransactionDate'] = pd.to_datetime(transactions['TransactionDate'])
print(customers.head())
print()
print(transactions.head())
print()
\equiv
      CustomerID
                        CustomerName
                                             Region SignupDate
           C0001
                    Lawrence Carroll South America 2022-07-10
           C0002
                      Elizabeth Lutz
                                                Asia 2022-02-13
           C0003
                       Michael Rivera
                                       South America 2024-03-07
    3
           C0004 Kathleen Rodriguez South America 2022-10-09
    4
                                               Asia 2022-08-15
           C0005
                         Laura Weber
      TransactionID CustomerID ProductID TransactionDate Quantity
                                                                     TotalValue
                                               2024-08-25
    0
             T00001
                         C0199
                                     P067
                                                                         300.68
             T00112
                         C0146
                                     P067
                                               2024-05-27
                                                                         300.68
                                                                         300.68
             T00166
                         C0127
                                     P067
                                               2024-04-25
    2
                                               2024-03-26
    3
             T00272
                         C0087
                                     P967
                                                                         601.36
    4
             T00363
                         C0070
                                    P067
                                               2024-03-21
                                                                         902.04
        Price
    0
       300.68
       300.68
```

```
#Check the data shape
print(customers.info())
print()
print(products.info())
print()
print(transactions.info())
print()
</pre
    RangeIndex: 200 entries, 0 to 199
    Data columns (total 4 columns):
        Column
                   Non-Null Count Dtype
        CustomerID
                     200 non-null
                                    object
        CustomerName 200 non-null
                                    object
                   200 non-null
        Region
                                    object
        SignupDate
                     200 non-null
                                    datetime64[ns]
    dtypes: datetime64[ns](1), object(3)
    memory usage: 6.4+ KB
    None
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 100 entries, 0 to 99
    Data columns (total 4 columns):
     # Column
                  Non-Null Count Dtype
        ProductID 100 non-null
                                   object
        ProductName 100 non-null
                                   object
        Category 100 non-null
                                   object
        Price
                    100 non-null
                                   float64
    dtypes: float64(1), object(3)
    memory usage: 3.3+ KB
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 7 columns):
                  Non-Null Count Dtype
     # Column
     0
        TransactionID 1000 non-null object
        CustomerID
                        1000 non-null
                                      obiect
        ProductID
                        1000 non-null
                                      object
        TransactionDate 1000 non-null
                                      datetime64[ns]
                  1000 non-null
        Quantity
        TotalValue
                        1000 non-null
                                       float64
                       1000 non-null
    dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
    memory usage: 54.8+ KB
    None
```

Exploratory Analysis (Lets analyze all the file indivisual)

customers file:

customers.head() \equiv CustomerID CustomerName Region SignupDate 0 C0001 Lawrence Carroll South America 2022-07-10 C0002 Elizabeth Lutz Asia 2022-02-13 2 C0003 Michael Rivera South America 2024-03-07 C0004 Kathleen Rodriguez South America 2022-10-09 C0005 Laura Weber 2022-08-15 Next steps: (Generate code with customers) (View recommended plots) (New interactive sheet #Distributed region wise: sns.countplot(data=customers, x='Region', palette='Set2') plt.xticks(rotation=45) plt.title("Region-wise Customer Distribution") plt.show()

<ipython-input-65-e2c8c2e5aadd>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and so sns.countplot(data=customers, x='Region', palette='Set2')


```
#Analysis by Signup date
customers['SignupMonth'] = customers['SignupDate'].dt.to_period('M')
monthly_signups = customers.groupby('SignupMonth').size()

monthly_signups.plot(kind='bar', figsize=(12, 6), color='skyblue')
plt.title("Monthly Signups")
plt.xlabel("Month")
plt.ylabel("Number of Customers")
plt.show()
```


From Product File:

#Category_wise product count:

```
sns.countplot(data=products, x='Category', palette='Set2')
plt.title("Product Count by Category")
plt.xticks(rotation=45)
plt.show()
```

<ipython-input-54-2fad0c645677>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and so sns.countplot(data=products, x='Category', palette='Set2')

#price Distribution:
sns.histplot(products['Price'], bins=20, kde=True, color='orange')
plt.title("Product Price Distribution")
plt.show()

Transactions File

transactions.head()

```
TransactionID CustomerID ProductID TransactionDate Quantity TotalValue Price
     0
               T00001
                           C0199
                                       P067
                                                  2024-08-25
                                                                           300.68 300.68
               T00112
                           C0146
                                       P067
                                                  2024-05-27
                                                                           300.68 300.68
     1
     2
               T00166
                           C0127
                                       P067
                                                  2024-04-25
                                                                           300.68 300.68
     3
               T00272
                           C0087
                                       P067
                                                  2024-03-26
                                                                           601 36 300 68
               T00363
                           C0070
                                       P067
                                                                           902.04
                                                                                  300.68
              _____
 Next steps:
            Generate code with transactions ) (
                                           View recommended plots \( \text{New interactive sheet} \)
#calculate Toral revenue:
total_revenue = transactions['TotalValue'].sum()
print(f"Total Revenue: {total_revenue}")
→ Total Revenue: 689995.56
# Top 10 customers by revenue:
top customers = transactions.groupby('CustomerID')['TotalValue'].sum().sort values(ascending=False).head(10)
print(top_customers)
→ CustomerID
    C0141
             10673.87
    C0054
              8040.39
    C0065
              7663.70
    C0156
              7634.45
              7572.91
    C0082
    C0188
              7111.32
    C0059
              7073.28
              6819.57
    C0028
              6715.72
    C0099
    C0165
              6708.10
    Name: TotalValue, dtype: float64
# Top 10 products by sales:
top_products = transactions.groupby('ProductID')['Quantity'].sum().sort_values(ascending=False).head(10)
print(top_products)
    ProductID
<del>_</del>
    P059
            46
    P054
            46
    P029
            45
    P079
            43
    P061
            43
    P057
            43
    P048
            43
    P062
            39
    P020
    P028
            38
    Name: Quantity, dtype: int64
#Monthly revenue trends:
transactions['TransactionMonth'] = transactions['TransactionDate'].dt.to_period('M')
monthly_revenue = transactions.groupby('TransactionMonth')['TotalValue'].sum()
monthly revenue.plot(kind='line', figsize=(12, 6), marker='o', color='green')
plt.title("Monthly Revenue Trends")
plt.xlabel("Month")
plt.ylabel("Revenue")
plt.show()
```


Business Insghts:

1. Customer Demographics and Signup Trends:

A.South America has the highest number of customers compared to other regions. This indicates that South America is a key market for the business.

B.Most customers signed up during February, March, and April, whereas January consistently shows the lowest number of new signups.

2. Product Category and Pricing Trends:

A.Products across categories have almost equal distribution, with a slight dip in the Home Decor category. This might indicate either lower demand or limited product variety in this segment.

B.Price distribution highlights two key ranges: 100-200 and 400-500, showing these are the most popular pricing brackets among customers.

3. Revenue and Customer Trends:

 $A. The total revenue generated is ~689, 995.56, with Customer ID: Coll 41 being the top contributor, generating {\it 10,673} in revenue. \\$ B. The top-selling product is Po59, sold 46 times, indicating strong demand for this product.

4. Monthly Revenue Trends:

A.In December 2023, revenue was critically low (below 1, 000), butitshowed as harprecovery to over 6,000 in January 2024.

B.Post-recovery, the monthly revenue stabilized in the range of 5,000-7,000 for the rest of the year, showing consistent performance after an initial spike.

TASK 2: Looklike Model

```
#import sklearn library
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import MinMaxScaler

# visit the Data:
print(customers.head())
print()
```

```
1/27/25. 6:19 PM
```

data.head()

T00272

T00363

C0087

C0070

```
print(products.head())
print()
print(transactions.head())
                                               Region SignupDate SignupMonth
       CustomerID
                         CustomerName
            C0001
                                       South America 2022-07-10
                     Lawrence Carroll
            C0002
                       Elizabeth Lutz
                                                Asia 2022-02-13
                                                                      2022-02
            C0003
                       Michael Rivera
                                       South America 2024-03-07
                                                                      2024-03
     3
            C0004
                   Kathleen Rodriguez
                                       South America 2022-10-09
                                                                      2022-10
                                                 Asia 2022-08-15
     4
            C0005
                          Laura Weber
                                                                      2022-08
       ProductID
                              ProductName
                                               Category
                                                          Price
     0
            P001
                     ActiveWear Biography
                                                  Books
                                                         169.30
            P002
                    ActiveWear Smartwatch
                                            Electronics
                                                         346.30
            P003
                  ComfortLiving Biography
                                                  Books
                                                          44.12
            P004
                            BookWorld Rug
                                                          95.69
                                             Home Decor
                                               Clothing 429.31
     4
            P005
                          TechPro T-Shirt
       TransactionID CustomerID ProductID TransactionDate Ouantity
                                                                       TotalValue
     0
                                                2024-08-25
              T00001
                          C0199
                                     P067
                                                                           300.68
              T00112
                          C0146
                                     P067
                                                2024-05-27
                                                                           300.68
     1
                                                                    1
                                                2024-04-25
                                                                           300 68
     2
              T00166
                          C0127
                                     P067
                                                                    1
     3
              T00272
                          C0087
                                     P967
                                                2024-03-26
                                                                    2
                                                                           601.36
     4
              T00363
                          C0070
                                     P067
                                                2024-03-21
                                                                    3
                                                                           902.04
         Price TransactionMonth
       300.68
        300.68
                        2024-05
        300.68
                        2024-04
     2
        300.68
                        2024-03
     3
     4
        300.68
                        2024-03
# Merge 3 Dataset
# Merge transactions with products
transactions = transactions.merge(products, on='ProductID', how='left')
# Merge transactions with customers
data = transactions.merge(customers, on='CustomerID', how='left')
# Check the final dataset
```

```
\Rightarrow
         TransactionID CustomerID ProductID TransactionDate Quantity TotalValue Price x TransactionMonth ProductName x Category
                                                                                                                                ComfortLiving
                 T00001
                               C0199
                                             P067
                                                          2024-08-25
                                                                                       300.68
                                                                                                 300.68
                                                                                                                    2024-08
                                                                                                                                    Bluetooth
                                                                                                                                                Electro
                                                                                                                                     Speaker
                                                                                                                                ComfortLiving
                 T00112
                               C0146
                                             P067
                                                          2024-05-27
                                                                                       300.68
                                                                                                 300.68
                                                                                                                    2024-05
                                                                                                                                    Bluetooth
                                                                                                                                                Electro
                                                                                                                                     Speaker
                                                                                                                                ComfortLiving
                 T00166
                               C0127
                                             P067
                                                          2024-04-25
                                                                                       300.68
                                                                                                 300.68
                                                                                                                    2024-04
                                                                                                                                    Bluetooth
                                                                                                                                                Electro
                                                                                                                                     Speaker
                                                                                                                                ComfortLiving
```

2

3

601.36

902.04

300.68

300.68

2024-03

2024-03

Bluetooth

Speaker ComfortLiving

Bluetooth

Speaker

Electro

Electro

Next steps: Generate code with data © View recommended plots (New interactive sheet

2024-03-26

2024-03-21

```
# Aggregate transaction data
customer_agg = data.groupby('CustomerID').agg({
    'TotalValue': 'sum','Quantity': 'sum','Price': 'mean'}).reset_index()

# Add region encoding
region_encoding = pd.get_dummies(customers[['CustomerID', 'Region']], columns=['Region'])
customer_agg = customer_agg.merge(region_encoding, on='CustomerID', how='left')

# Check aggregated features
customer_agg.head()
```

P067

P067

$\overline{\Rightarrow}$	C	ustomerID	TotalValue	Quantity	Price	Region_Asia	Region_Europe	Region_North America	Region_South America	
	0	C0001	3354.52	12	278.334000	False	False	False	True	11.
	1	C0002	1862.74	10	208.920000	True	False	False	False	
	2	C0003	2725.38	14	195.707500	False	False	False	True	
	3	C0004	5354.88	23	240.636250	False	False	False	True	
	4	C0005	2034.24	7	291.603333	True	False	False	False	>
Next	steps	s: Generat	e code with cu	stomer_agg	○ View	recommended p	lots New inter	active sheet		

Normalize the Features

Normalize numerical features

normalized_features.head()

```
scaler = MinMaxScaler()
features = customer_agg.drop('CustomerID', axis=1) # Exclude CustomerID for scaling
normalized_features = scaler.fit_transform(features)

# Convert back to DataFrame
normalized features = pd.DataFrame(normalized features, columns=features.columns, index=customer agg['CustomerID'])
```

$\overline{\Rightarrow}$		TotalValue	Quantity	Price	Region_Asia	Region_Europe	Region_North America	Region_South America	
	CustomerID								il.
	C0001	0.308942	0.354839	0.519414	0.0	0.0	0.0	1.0	
	C0002	0.168095	0.290323	0.367384	1.0	0.0	0.0	0.0	
	C0003	0.249541	0.419355	0.338446	0.0	0.0	0.0	1.0	
	C0004	0.497806	0.709677	0.436848	0.0	0.0	0.0	1.0	
	C0005	0.184287	0.193548	0.548476	1.0	0.0	0.0	0.0	>

Next steps: Generate code with normalized_features View recommended plots New interactive sheet

Calculate similirity score (Build the lookalike model)

```
# Compute pairwise cosine similarity
similarity_matrix = cosine_similarity(normalized_features)
```

Convert to DataFrame for easy manipulation
similarity_df = pd.DataFrame(similarity_matrix, index=customer_agg['CustomerID'], columns=customer_agg['CustomerID'])
similarity_df.head()

$\overline{\Rightarrow}$	CustomerID	C0001	C0002	C0003	C0004	C0005	C0006	C0007	C0008	C0009	C0010	 C0191	C0192
	CustomerID												
	C0001	1.000000	0.253518	0.986950	0.959271	0.286969	0.995359	0.330221	0.348553	0.241389	0.224175	 0.999278	0.989804
	C0002	0.253518	1.000000	0.221730	0.289222	0.984924	0.277859	0.969086	0.272393	0.185625	0.178380	 0.247901	0.224718
	C0003	0.986950	0.221730	1.000000	0.968405	0.229577	0.968467	0.262941	0.326945	0.176962	0.211370	 0.984116	0.970527
	C0004	0.959271	0.289222	0.968405	1.000000	0.287091	0.953520	0.328818	0.447073	0.205789	0.284352	 0.948407	0.910928
	C0005	0.286969	0.984924	0.229577	0.287091	1.000000	0.322382	0.995295	0.274389	0.248972	0.179873	 0.285261	0.271305
	5 rows × 199 c	olumns											
	4												>

Generate recoomendations

```
# Function to get top 3 lookalikes for each customer

def get_top_lookalikes(similarity_df, top_n=3):
    lookalike_list = []
    for customer_id in similarity_df.index:
        # Sort customers by similarity score, skip self (iloc[1:top_n+1])
        similar_customers = similarity_df.loc[customer_id].sort_values(ascending=False).iloc[1:top_n+1]
        # Add results to the list
```

```
lookalike_list.append(
            [customer id] + list(similar customers.index) + list(similar customers.values)
   return lookalike list
# Get top 3 lookalikes for all customers
lookalike_list = get_top_lookalikes(similarity_df)
# Convert the list into a DataFrame
lookalike_df = pd.DataFrame(
   lookalike list,
    columns=['CustomerID', 'Lookalike1', 'Lookalike2', 'Lookalike3', 'Score1', 'Score2', 'Score3']
# Save the DataFrame as a CSV file
lookalike_df.to_csv('Lookalike.csv', index=False)
# Show the first few rows
lookalike_df.head()
        CustomerID Lookalike1 Lookalike2 Lookalike3
                                                         Score1
                                                                  Score2
                                                                            Score3
             C0001
                         C0137
                                     C0191
                                                 C0011 0.999479 0.999278 0.999276
     0
     1
             C0002
                         C0088
                                     C0142
                                                 C0027 0 998965 0 998596 0 996510
             C0003
                         C0190
                                     C0147
                                                 C0174 0.998906 0.997914 0.996201
             C0004
                         C0113
                                                 C0012 0.999112 0.995818 0.994859
     3
                                     C0169
             C0005
                         C0186
                                     C0140
                                                 C0146 0.998743 0.998450 0.996784
             Generate code with lookalike df
 Next steps:
                                             View recommended plots
                                                                        New interactive sheet
#Top 3 similar customers and their scores for all customers
lookalike df.head(3)
        CustomerID Lookalike1 Lookalike2 Lookalike3
     0
             C0001
                         C0137
                                     C0191
                                                 C0011 0.999479 0.999278 0.999276
      1
             C0002
                         C0088
                                     C0142
                                                 C0027 0.998965 0.998596 0.996510
                                     C0147
                                                 C0174 0.998906 0.997914
            Generate code with lookalike_df
                                          ○ View recommended plots
```

Task 3: Customer Segmentation / Clustering

To group customers into segments based on their profiles and transaction history, enabling better targeting and personalized marketing.

```
# Merge Customers.csv and Transactions.csv
merged_df = pd.merge(transactions, customers, on='CustomerID', how='left')
# Aggregate transaction-level data for each customer
customer_agg = merged_df.groupby('CustomerID').agg({
    'TotalValue': 'sum',
                              # Total revenue per customer
    'TransactionID': 'count', # Total number of transactions
    'Quantity': 'mean',
                               # Average basket size
}).rename(columns={
    'TotalValue': 'TotalRevenue',
    'TransactionID': 'TotalTransactions',
    'Quantity': 'AvgBasketSize'
}).reset_index()
# Merge aggregated transaction data back to customer profile
customer_profile = pd.merge(customers, customer_agg, on='CustomerID', how='left')
# Fill any missing values (e.g., customers with no transactions)
customer_profile.fillna({
    'TotalRevenue': 0,
    'TotalTransactions': 0,
    'AvgBasketSize': 0
}, inplace=True)
# Convert SignupDate to a datetime object for tenure calculation
customer_profile['SignupDate'] = pd.to_datetime(customer_profile['SignupDate'])
```

```
# Calculate tenure in days since signup
current_date = pd.Timestamp.now()
customer_profile['TenureDays'] = (current_date - customer_profile['SignupDate']).dt.days
# Drop unneeded columns for clustering
customer_clustering_data = customer_profile.drop(['CustomerName', 'SignupDate'], axis=1)
customer_clustering_data.head()
```

\rightarrow	CustomerID	Region	SignupMonth	TotalRevenue	TotalTransactions	AvgBasketSize	TenureDays	
0	C0001	South America	2022-07	3354.52	5.0	2.400000	932	11.
1	C0002	Asia	2022-02	1862.74	4.0	2.500000	1079	
2	C0003	South America	2024-03	2725.38	4.0	3.500000	326	
3	C0004	South America	2022-10	5354.88	8.0	2.875000	841	
4	C0005	Asia	2022-08	2034.24	3.0	2.333333	896	

Next steps: Generate code with customer_clustering_data © View recommended plots New interactive sheet

→ Feature Scaling:

from sklearn.preprocessing import StandardScaler

```
# Select numeric columns for clustering
numeric_columns = ['TotalRevenue', 'TotalTransactions', 'AvgBasketSize', 'TenureDays']
scaler = StandardScaler()
scaled_data = scaler.fit_transform(customer_clustering_data[numeric_columns])

# Convert scaled data back to a DataFrame for easier handling
scaled_df = pd.DataFrame(scaled_data, columns=numeric_columns)
scaled_df['CustomerID'] = customer_clustering_data['CustomerID']
scaled df.head()
```

₹	TotalRevenue	TotalTransactions	AvgBasketSize	TenureDays	CustomerID	
0	-0.051884	0.000000	-0.201382	1.152884	C0001	11.
1	-0.862714	-0.451294	-0.030924	1.605593	C0002	
2	-0.393842	-0.451294	1.673655	-0.713387	C0003	
3	1.035375	1.353881	0.608293	0.872636	C0004	
4	-0.769499	-0.902587	-0.315021	1.042017	C0005	

→ 1. K-Means Clustering:

What is it?:

K-Means is a popular clustering algorithm that partitions data into K distinct clusters. Each customer is assigned to the cluster whose center (centroid) is nearest.

Why use it?:

Easy to understand and implement.

Works well when clusters are spherical or circular and data is relatively well-separated.

Good for large datasets.

```
#Step 1: Elbow Method to Find Optimal K
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

# Elbow method to find the optimal number of clusters
inertia = []

# Try different values of K from 1 to 10
for k in range(1, 11):
```

```
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(scaled_df[numeric_columns]) # Fit the KMeans model on the scaled data
inertia.append(kmeans.inertia_) # Store inertia (sum of squared distances to the nearest cluster center)

# Plot the Elbow Method graph
plt.plot(range(1, 11), inertia, marker='o')
plt.title('Elbow Method')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('Inertia')
plt.show()
```


#Step 2: Apply K-Means with Chosen K:

```
# Apply K-Means clustering with K=4 (example)
kmeans = KMeans(n_clusters=4, random_state=42)
customer_profile['Cluster'] = kmeans.fit_predict(scaled_df[numeric_columns])
```

Check the first few rows to see which customer belongs to which cluster customer_profile.head()

_		CustomerID	CustomerName	Region	SignupDate	SignupMonth	TotalRevenue	TotalTransactions	AvgBasketSize	TenureDays	Clust€
	0	C0001	Lawrence Carroll	South America	2022-07-10	2022-07	3354.52	5.0	2.400000	932	
	1	C0002	Elizabeth Lutz	Asia	2022-02-13	2022-02	1862.74	4.0	2.500000	1079	
	2	C0003	Michael Rivera	South America	2024-03-07	2024-03	2725.38	4.0	3.500000	326	
	4		Kathleen	South							>

```
# Evaluate clustering quality
db_index = davies_bouldin_score(scaled_df[numeric_columns], customer_profile['Cluster'])
print('Davies-Bouldin Index:', db_index)
```

```
from sklearn.metrics import davies_bouldin_score
```

```
# Evaluate clustering quality
db_index = davies_bouldin_score(scaled_df[numeric_columns], customer_profile['Cluster'])
print('Davies-Bouldin Index:', db_index)
```

Davies-Bouldin Index: 1.215035501264994 Davies-Bouldin Index: 1.215035501264994

```
#Step 4: Optional - Visualize the Clusters

from sklearn.decomposition import PCA

# Reduce the features to 2D using PCA
pca = PCA(n_components=2)
pca_components = pca.fit_transform(scaled_df[numeric_columns])

# Add PCA components to the DataFrame
customer_profile['PCA1'] = pca_components[:, 0]
customer_profile['PCA2'] = pca_components[:, 1]

# Plot the clusters
plt.scatter(customer_profile['PCA1'], customer_profile['PCA2'], c=customer_profile['Cluster'], cmap='viridis')
plt.title('Customer Segmentation (K-Means Clusters)')
plt.xlabel('PCA 1')
plt.ylabel('PCA 2')
plt.colorbar(label='Cluster')
plt.show()
```


#Step 5: Analyze the Clusters:

```
# Group by clusters and calculate the average for each feature
cluster_summary = customer_profile.groupby('Cluster').agg({
    'TotalRevenue': 'mean',
    'TotalTransactions': 'mean',
    'AvgBasketSize': 'mean',
    'TenureDays': 'mean'
}).reset_index()
# Print the cluster summary
print(cluster_summary)
```

```
\equiv
       Cluster TotalRevenue TotalTransactions AvgBasketSize
                                                                TenureDays
             0
                5755.758125
                                      7.708333
                                                     2.657543
                                                                709.958333
             1
                 3476.467463
                                       5.179104
                                                      2.505467
                                                                255.194030
                 2684.503091
                                       3.709091
                                                      2.824545
                                                                775.872727
                 1104.939333
                                       2.633333
                                                      1.761667
                                                                589.333333
```

#Step 6: Label the Clusters

```
# Create a new column for cluster labels based on the summary

def label_cluster(cluster_id):
    if cluster_id == 0:
        return 'High-Value, Frequent Shoppers'
    elif cluster_id == 1:
        return 'Moderate Shoppers'
    elif cluster_id == 2:
        return 'Loyal, Moderate Spenders'
    elif cluster_id == 3:
        return 'Low-Value, Infrequent Shoppers'

# Apply the label function to the Cluster column
customer_profile['ClusterLabel'] = customer_profile['Cluster'].apply(label_cluster)
```

Check the updated customer profile
customer_profile.head()

$\overline{\Longrightarrow}$		CustomerID	CustomerName	Region	SignupDate	SignupMonth	TotalRevenue	TotalTransactions	AvgBasketSize	TenureDays	Cluste
	0	C0001	Lawrence Carroll	South America	2022-07-10	2022-07	3354.52	5.0	2.400000	932	
	1	C0002	Elizabeth Lutz	Asia	2022-02-13	2022-02	1862.74	4.0	2.500000	1079	
	2	C0003	Michael Rivera	South America	2024-03-07	2024-03	2725.38	4.0	3.500000	326	
	₹	C0004	Kathleen	South	2022-10-00	2022-10	535/1 88	8 N	2 875000	2/1	>
Next	ste	os: Generat	e code with custo	interactive sheet							

Cluster:

Cluster 0: High revenue, frequent transactions, and larger average basket size.

Cluster 1: Moderate revenue, fewer transactions, shorter tenure.

Cluster 2: Moderate revenue, larger basket size, longer tenure.

Cluster 3: Low revenue, infrequent transactions, small basket size.

```
# Save the customer profile with cluster labels to a new CSV
customer_profile.to_csv('CustomerProfile_with_Clusters.csv', index=False)
```

Evaluate the Clustering Performance:

```
from sklearn.metrics import davies_bouldin_score
db_index = davies_bouldin_score(scaled_df[numeric_columns], kmeans.labels_)
print("DB Index:", db_index)

DB Index: 1.215035501264994

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca_components = pca.fit_transform(scaled_df[numeric_columns])

plt.scatter(pca_components[:, 0], pca_components[:, 1], c=kmeans.labels_, cmap='viridis')
plt.title("Customer Segmentation using K-means")
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.show()
```


