

GPS/北斗定位模块

型号: HS6601-485

使用说明书

山东互信智能科技有限公司

地址:济南市高新区新泺大街 1766 号齐鲁软件园大厦 A座 701 室

网址: www. husin. cn 电话: 0531-88799107

尊敬的用户:

感谢您选用本公司设计生产的产品!

在您使用本产品之前,请务必仔细阅读此使用说明书,并注意以下几点:

- 1、保证产品正常使用的电源及环境条件。
- 2、严格按照产品说明书正确使用,避免出现不必要的故障或损坏。
- 3、对产品进行维护、调整或更换易损件时,确保产品及其回路可靠断电。
- 4、请用户严格按照产品说明书的说明指导进行正确的安装和使用,以获得最佳使用效
- 果。对于未按说明书使用所造成的产品损坏、人身伤害等,公司不予承担任何责任。
 - 5、保修期内禁止非公司授权的专业人士对产品进行维修,以免扩大故障。

著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由山东互信智能科技有限公司拥有,但注明引用其他方的内容除外。未经公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。

目录

1.	产品介绍1
	1.1 产品概述 1
	1.2 产品型号1
	1.3 产品特点 1
	1.4 技术指标1
	1.5 产品尺寸
	1.6 硬件接口 3
2.	通信协议3
	2.1 通信协议 4
	2.2 寄存器定义4
3.	协议详解6
	3.1 读保持寄存器6
	3.1.1 读取版本号7
	3.1.2 读取设备地址7
	3.1.3 读取设备波特率7
	3.1.4 读取奇偶校验位8
	3.1.5 读取定位数据(RMC)8
	3.1.6 定位数据 (RMC) 解析 8
	3.2 写保持寄存器9
	3.2.1 修改设备地址(广播)9
	3.2.2 修改波特率9
	3.2.3 修改奇偶校验位10
4.	配置工具10
5.	保修期限11
6.	技术支持12
7.	联系方式12

1. 产品介绍

1.1 产品概述

互信智能 HS6601 GPS/北斗定位模块(以下简称: HS6601 定位模块),是一款具有 GPS 定位和北斗定位的双模定位终端,可以快速、精确定位位置。

HS6601 定位模块内含双模定位芯片,快速定位位置,并且将定位信息以 RS485 接口和 Modbus 协议的方式提供给用户使用, 串口波特率最高可达 115200 bps, 可以通过 PC 机设置软件或串口命令轻松控制,使用方便快捷。

1.2 产品型号

目前互信智能 HS6601 系列有两款产品,型号如表 1-1 产品型号。

表	1 - 1	产品	型号

序号	产品型号	说明
1	HS6601- 485	RS485 接口
2	HS6601- 232	RS232 接口

1.3 产品特点

- ♦ 同时支持 GPS 定位和北斗定位
- ◆ 串口波特率自定义,支持 2400 ~ 115200 bps
- ◆ 串口支持全双工和半双工串口通讯,支持 RS485 收发自动切换
- ◆ 模块串口波特率等参数可通过 PC 机或串口命令配置
- ◆ RS485 带 TVS、过流等保护
- ◆ 提供天线状态诊断,提供天线开路、短路等状态信息

1.4 技术指标

◇ 环境参数

- 工作温度: -40°C~80°C
- 工作湿度: 5%~95% RH, 无凝露

◆ 供电

- 工作电压: DC 5~28 V
- 功耗: ≤0.3W

◆ 定位精度

■ 出色的定位功能,支持 BDS/GPS/GLONASS 卫星导航系统的单系统定位,

以及任意组合的多系统联合定位

- 冷启动捕获灵敏度: -148dBm 跟踪灵敏度: -162dBm
- 定位精度: 2.5 米 (CEP50)
- 内置天线检测及天线短路保护功能

1.5 产品尺寸

产品尺寸长 x 宽 x 高为: 95 mm x 50 mm x30 mm, 其中 95mm 包含长度 80mm 和两个 安装孔 15mm。

图 1-1 产品尺寸

1.6 硬件接口

图 1-2 硬件接口

硬件接口定义见表 1-2 硬件接口定义。

表 1-2 硬件接口定义

编号	端子定义	说明
1)	电源适配器接口	输入 5~28V 直流电源
2	天线	SMA 天线接口
3	VCC	输出电源正极,与电源适配器接口联通
4	GND	输出电源负极
(5)	485 A	RS485 总线的 A
6	485 B	RS485 总线的 B
7	PWR 指示灯	电源指示灯,上电常亮
8	RUN 指示灯	运行指示灯,正常运行时亮1秒,灭1秒
9	TXD 指示灯	发送指示灯,向 RS485/RS232 总线接发送数据时闪烁
(10)	RXD 指示灯	接收指示灯,从 RS485/RS232 总线接收到数据时闪烁
11)	PPS 秒脉冲指示灯	定位无效时常亮;定位有效后,每秒闪烁一次
		长按 5 秒,开始恢复出厂设置,同时 RUN 运行指示灯
12	按键	快闪,完成后,运行指示灯正常闪烁。
		出厂设置为: 地址为 1, 串口通信 9600/8/One/None。

2. 通信协议

2.1 通信协议

GPS/北斗定位模块物理层为 RS485/ RS232 总线, 1 位起始位, 8 位数据位, 1 位停止位, 1 位奇偶校验位。

GPS/北斗定位模块协议层为标准 ModBus 通信协议,符合国家标准 GBT 19582.1-2008 <<基于 Modbus 协议的工业自动化网络规范>>,采用 ModBusRTU 通讯协议,通过接收、解析数据总线上的帧数据,根据解析结果返回数据。

帧格式如下:

图 2-1 ModBus 帧格式

GPS/北斗定位模块模块支持<mark>寄存器读写、广播写、通用寄存器读</mark>的功能,协议帧数据遵循图 2-1 ModBus 帧格式的命令格式,采用如下功能码:

0x03: 读保持寄存器; 0x06: 写单个寄存器。

2.2 寄存器定义

表 2-1 保持寄存器定义

序	寄存器	B地址	参数名称	数据格式	备注		
号	(十进制)	(16 进制)	少 数石桥	数据俗 丸	省 位		
		0001 版本号			低字节有效,其中高4位代表		
1	40001		版太号	Int16	主版本号,低 4 位代表次版本		
	10001		7,00	7,001 3	mito	, and the second	号。0x0010 代表 1.0 版本。
				版本号只读。			
2	40002	0002	从站地址	Int16	1-255, 默认: 1。		
						数值范围为 0~7;	
3	40002	.0003	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	T1.6	T .16	0: 1200 bps; 1: 2400 bps;	
3	40003		11116	2: 4800 bps; 3: 9600 bps;			
					4: 19200 bps; 5: 38400 bps;		

		I	I		
					6: 57600 bps; 7: 115200 bps;
					默认: 3(9600 bps)。
					数值范围为 0~4;
					0: 无校验; 1: 奇校验;
4	40004	0004	奇偶校验	Int16	2: 偶校验; 3: MARK 校验;
					4: SPACE 校验;
					默认: 0(无校验)。
5	40005	0005	定位数据	Int16	
	•••••				
39	40039	0039	定位数据	Int16	
40	40200	00C8	定位状态	Int16	0 定位无效, 1 定位有效。
41	40201	00C9	年	Int16	2019 代表 2019 年
42	40202	00CA	月	Int16	数值范围为 1~12, 分别代表 1
					月到 12 月。
43	40203	00CB	日	Int16	数值范围为 1~31, 分别代表 1
					号到 31 号。
44	40204	00CC	时	Int16	数值范围为 0~23, 分别代表 0
44	40204	0000	μŋ	milo	点到 23 点。
45	40205	00CD	分	Int16	数值范围为 0~59, 分别代表 0
43	40203	ООСД))	milo	分到 59 分。
46	40206	00CE	秒	Int16	数值范围为 0~59, 分别代表 0
40	40206	VUCE	イン 	111110	秒到 59 秒。
47	40207	00CF	经度方向	Int16	0x45(E) 代表东经,
4/	1 020/	UUCF	工 汉 / 刊	111110	0x57(W) 代表西经。
48	40208	00D0	经度	Float	单位为度,小数点后5位小数。
				(4 字节)	举例: 117.12583°
50	40210	00D2	纬度方向	Int16	0x4E('N') 代表北纬,

			T	Т	
					0x53('S') 代表南纬。
51	40211	00D3	纬度	Float	单位为度,小数点后5位小数。
				(4 字节)	36.67438°
53	40213	00D5	对地速度	Float	单位为千节/小时
				(4 字节)	
55	40215	00D7	对地航向	Float	单位为度
				(4 字节)	

3. 协议详解

3.1 读保持寄存器

功能码 0x03 用于读取保持寄存器的值,命令帧和响应帧遵循如下格式,其中 CRC 校验数据低字节在前,高字节在后。

命令帧:

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
(1字节)	(1字节)	(2 字节)	(2字节)	(2 字节)
0x01-0xFE	0x03			CRC16

响应帧:

地址	功能码	数据长度	数据	CRC 校验
(1字节)	(1字节)	(1 字节)		(2 字节)
0x01-0xFE	0x03			CRC16

以下为 GPS/北斗定位模块模块的 ModBus 命令举例,举例中采用默认的设备地址 0x01,用户重新设置设备地址后,应以设置的地址为准,重新打包命令数据。

3.1.1 读取版本号

命令帧: 01 03 00 01 00 01 D5 CA

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x01	0x00 0x01	0xD5 0xCA

响应帧: 01 03 02 00 10 B9 88

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x10	0xB9 0x88

说明:

返回数据中版本号为 0x0010, 表示版本号为 V1.0。

3.1.2 读取设备地址

命令帧: FF 03 00 02 00 01 30 14

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0xFF	0x03	0x00 0x02	0x00 0x01	0x30 0x14

响应帧: 01 03 02 00 01 79 84

地址	功能码	数据长度	数据	CRC 校验
0xFF	0x03	0x02	0x00 0x01	0x79 0x84

说明:

该命令为地址的通用读命令,使用广播命令,为了避免与系统中其他设备的冲突,读取时保证总线上只连接要读取设备。

3.1.3 读取设备波特率

命令帧: 01 03 00 03 00 01 74 0A

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x03	0x00 0x01	0x74 0x0A

响应帧: 01 03 02 00 03 F8 45

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x03	0xF8 0x45

说明:

返回波特率为 0x03, 代表 9600 bps。

3.1.4 读取奇偶校验位

命令帧: 01 03 00 04 00 01 C5 C8

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x04	0x00 0x01	0xC5 0xC8

响应帧: 01 03 02 00 00 B8 44

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x02	0x00 0x00	0xB8 0x44

说明:返回校验位为0x00,代表无奇偶校验。

3.1.5 读取定位数据(RMC)

命令帧: 01 03 00 05 00 23 14 12

地址	功能码	寄存器起始地址	寄存器个数	CRC 校验
0x01	0x03	0x00 0x05	0x00 0x23	0x14 0x12

响应帧:

地址	功能码	数据长度	数据	CRC 校验
0x01	0x03	0x46	70 字节数据	两字节校验

3.1.6 定位数据 (RMC)解析

读取定位数据 (RMC) 返回的 70 字节数据符合 NMEA0183 协议, ASCII 显示如下: \$GNRMC, 072905. 00, A, 3640. 46260, N, 11707. 54950, E, 000. 0, 000. 0, 050119, 0K*24

表 3-1 GNRMC 解析

字段	符号	含义	取值范围	举例	备注
1	\$	语句起始符			
2	GNRMC	RMC协议头			RMC协议头, GNRMC表示联合定位
3	hhmmss.ss	UTC 时间	时时分分秒秒.秒秒	072905.00	北京东八区需要时+8

4	A	定位状态	A/V		A-有效,V-无效
5	ddmm.mmmmm	纬度	度度分分.分分分分分分分	3640.46260	计算要转为度: 36度 + 40.46260分。
3	GGIIIII	71/2		3010.10200	40.46260/60=0.67438度,所以为36.67438度
6	a	纬度方向	N/S		N-北纬, S-南纬
7	dddmm.mmmm	经度	度度度分分.分分分分分分分	11707.54950	计算要转为度: 117度 + 07.54950分。
/	dddiiiii.iiiiiiiiiiiiii	红汉	反反反力力.力力力力力力	11/07.34930	07.54950/60=0.12583度,所以为117.12583度
8	a	经度方向	E/W		E-东经,W-西经
9		对地速度	计	123.2	地速率 节单位 地面速率
9	x.xxx –xxx.x	州地 壓度	11	123.2	000.0~999.9节,Knot
10		对地航向	度	000.0~359.9	地面航向(000.0~359.9度,以真北为参考基
10	x.xxx –xxx.x	<i>入</i> 订工已为1.[14]	· /文	000.0~339.9	准)
11	xxxxxx	日期	日月年	050119	2019年那1月5日
12.	00	天线状态	OK/OP/OR		OK 代表天线正常 OK; OP 代表开路
12	aa	人纹小心	UK/UF/UK		OPEN: OR 代表天线短路 SHORT
13	*	语句结束符			
14	24	校验和	对 '\$'和 '*'之间的数据 (不包括这两个字符) 按字节进行异或运算,用十六进制数值表示		

3.2 写保持寄存器

3.2.1 修改设备地址(广播)

命令帧: 00 06 00 02 00 01 18 1B

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x00	0x06	0x00 0x02	0x00 0x01	0x18 0x1B

响应帧: 01 06 00 02 00 01 E9 CA

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x02	0x00 0x01	0xE9 0xCA

说明:

该条命令用于设置设备地址, 使用 0x00 作为广播地址, 将设备地址修改为 0x01。

3.2.2 修改波特率

命令帧: 01 06 00 03 00 03 39 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

响应帧: 01 06 00 03 00 03 39 CB

l l	地址	功能码	寄存器地址	寄存器数值	CRC 校验
(0x01	0x06	0x00 0x03	0x00 0x03	0x39 0xCB

说明:

该条命令用于设置设备的波特率为9600。

设备出厂时默认为9600波特率无校验,用户可根据实际需求设置波特率与校验方式。

3.2.3 修改奇偶校验位

命令帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x06	0x00 0x04	0x09 0xCB

响应帧: 01 06 00 06 00 04 09 CB

地址	功能码	寄存器地址	寄存器数值	CRC 校验
0x01	0x06	0x00 0x04	0x00 0x04	0x09 0xCB

说明:

该条命令用于设置设备的校验位为奇校验。

4. 配置工具

PC 机配置工具软件见图 4-1 配置软件,功能说明见表 4-1 功能说明。

图 4-1 配置软件

表 4-1 功能说明

编号	功能项	说明
1)	串口连接设置	电脑串口的参数设置
2	打开/关闭串口	打开或者关闭串口
3	搜索设备	当终端设备波串口特率未知时,对设备进行搜索,搜 索到之后,在④显示设备地址,然后可以进行波 特率等参数的修改。
4	更改连接信息	终端设备地址,串口通信的一般设置
5	CRC 校验	选中之后,软件自动添加 Modbus 校验和到发送数据
6	发送	点击发送按钮,将发送区数据发出
7	清除发送	点击清除发送按钮,将发送区数据清除
8	清除接收	点击清除接收按钮,将接收区数据清除
9	清除日志	点击清除日志,清空日志
(10)	日志显示	显示通信日志

5. 保修期限

自售出之日起1年内,在用户遵守使用规定要求,且出厂标志完整的条件下,给予免费修理或更换。

6. 技术支持

本说明书主要用来指导用户更好地使用该系列产品,如果在使用中有不明之处,请与我司联系,技术人员会给您满意的答复。

7. 联系方式

公司: 山东互信智能科技有限公司

地址:济南市高新区新泺大街 1766 号齐鲁软件园大厦 A座 701室

网址: www.husin.cn

电话: 0531-88799107