

Claims

1 1. A reflective display comprising an anti-reflection coating on a viewed surface of
2 the display, the anti-reflection coating being configured to increase the contrast ratio of the
3 display.

1 2. The display of claim 1 comprising interferometric modulators.

1 3. An arc-lamp structure comprising a monolithic fabrication on a planar substrate,
2 the fabrication comprising deposited thin films and/or a material of the substrate, the
3 fabrication including thin film electrodes between which an arc is to be formed.

1 4. A transmissive or reflective display device incorporating the arc-lamp structure of
2 claim 3.

1 5. A line-at-a-time electronic driving method comprising

2 applying a bias voltage to rows (or columns) of a device,

3 applying data voltages to the columns (or rows) alternately about a value of the bias
4 voltage,

5 actuation of the device occurring when the difference between the values of the data
6 voltage and the select voltage is above a first predetermined level,

7 release of the device occurring when the difference between the values of the data
8 voltage and the select voltage is below a second predetermined level lowest, and

9 the device maintaining its state when the select voltage is at the bias level.

1 2. The method of claim 5 in which the device comprises multiple MEMS devices.

1 7. Apparatus comprising

2 a reflective display comprising pixel elements each configured to contribute a
3 controlled amount of white and saturated color, and

4 a controller that controls the pixels to provide a full-color display.

1 8. The apparatus of claim 7 in which the display comprises interferometric
2 modulators.

1 9. An electronic product comprising
2 a core non-general-purpose processor that is reconfigurable to perform any selected
3 one or more of multiple software applications or functions, and
4 a control element that enables a user to reconfigure the processor to use any of the
5 software applications or functions.

1 10. The electronic product of claim 9 further comprising peripherals, the peripherals
2 being used or reconfigured or made accessible for interaction based on a configuration of the
3 core processor.

1 11. An interferometric modulator comprising
2 a cavity that provides for actuation of the modulator, and
3 a separate cavity that provides an interference effect.

1 12. An interferometric modulator comprising a structure associated with actuation
2 of the modulator, and
3 an interferometric cavity having walls,
4 the structure being obscured by at least one of the walls of the interferometric cavity.

1 13. An interferometric modulator comprising
2 a thin film stack, and
3 a structure associated with actuation of the modulator, the structure being deposited
4 directly upon the thin film stack, interference of the structure and the stack causing the stack
5 to reflect minimal amounts of light.

1 14. An interferometric modulator comprising
2 a movable wall that

3 is configured as a spiral by induced residual stresses, in one mode of operation, and
4 is un-rolled to form a plate which acts interferometrically on light in another mode of
5 operation.

1 15. A monolithic MEM modulator comprising
2 a movable plate that is held on a supporting substrate and
3 is configured to selectively obstruct a path of light,
4 is movable rotationally, about a hinge, in a plane normal to a surface of the
5 supporting substrate, and
6 is actuated by electrostatic forces applied between it and electrodes at the surface of
7 the substrate.

1 16. The modulator of claim 15 wherein colors or dark states are imparted by the
2 interferometric properties of thin film stacks deposited on the modulator structure.

1 17. A micromechanical switch comprising
2 a supporting substrate, and
3 a movable component that effects switching by motion in a plane parallel to a plane
4 of the substrate.

1 18. The switch of claim 17 wherein the movable component provides electrical
2 contact between a source and a drain.

1 19. The switch of claim 17 wherein the movable component includes an insulating
2 element.

1 20. A voltage switching or logic component that includes the switch of claim 17.

1 21. An electronic or MEMS-based device that incorporates the voltage switching or
2 logic component of claim 20.

3 22. A dynamic micromechanical structure comprising a structure having an index of
4 refraction that varies in a periodic fashion along more than one of at least two orthogonal
5 axis.

1 23. A device for processing light comprising the micromechanical structure of claim
2 22.

1 24. The device of claim 23 configured to select and/or redirect specific frequencies
32 of light from a waveguide that is propagating multiple light frequencies.

1 25. The device of claim 24 wherein a movable portion of the structure is configured
2 to introduce a defect into a periodic photonic structure.

1 26. The device of claim 24 wherein the movable portion of the structure is
2 configured to move a multi-dimensional photonic structure to change overall optical
3 properties of the device.

1 27. A process for fabricating multi-dimensional photonic structures in conjunction
2 with microelectromechanical structures, the process comprising

3 holographic patterning or polymeric self-assembly processes or self-organizing
4 particle suspensions.

1 28. A process for introducing defects into multidimensional photonic structures, the
2 process comprising

3 using a beam of atomic or sub-atomic particles to modify part of the photonic
4 structure, by the addition or removal of material, by alteration of optical properties of a
5 material or, by using micro-electrodeposition to add material.

1 29. A process for introducing defects into a multidimensional photonic structure, the
2 process forming features on surface of a substrate, the features configured to provide
3 locations for development of defects in a later formed photonic structure.

1 30. A device comprising

2 a substrate,

3 an interferometric modulator fabricated on the substrate, the interferometric
4 modulator configured to modulate light propagating within the substrate upon which it is
5 fabricated, in a direction that is generally parallel to the surface of the substrate.

1 31. A device comprising a substrate and a metallic MEM structure formed on the
2 substrate, the MEM structure being configured to modulate light that is propagating as
3 guided waves.

1 32. The modulator of claims 30 and 31 configured to function as a variable
2 attenuator.

1 33. A dynamic micromechanical structure comprising a substrate, and a reflecting
2 optic on the substrate, the reflecting optic when actuated, re-directing light which is incident
3 upon it and is propagating within the substrate, towards another optical structure.

1 34. A static microfabricated structure comprising a substrate and a mirror fabricated
2 on or in close proximity to the substrate, the mirror being configured to redirect light that is
3 incident upon it and is propagating within the substrate.

1 35. An optical switch comprising
2 a dynamic micromechanical structure comprising a reflecting optic and a fixed micro-
3 structure incorporating a reflecting optic,
4 the two structures being fabricated on opposite sides of a substrate/waveguide,
5 the reflecting optics being oriented such that when a beam of light propagating within
6 the substrate/waveguide is incident upon the dynamic structure in an actuated state, the
7 optical path of the combined reflecting optics allows the path of the light's propagation
8 within the substrate/waveguide to be altered arbitrarily.

1 36. The device of claim 34 wherein the reflecting optic comprises a mirror.

1 37. The device of claim 33 configured to couple light into or out of the substrate.

1 38. An optical device comprising

2 micromechanical structures configured to process light is propagating within a
3 substrate/waveguide, and an optical or electronic device configured to thereafter intercept or
4 manipulate the light.

1 39. An optical device of claim 37 further comprising anti-reflection coatings
2 configured to couple and decouple light into and out of the substrate/waveguide.

1 40. The optical device of claim 38 further comprising an optical superstructure that is
2 capable of supporting a combination of static microfabricated components, dynamic
3 micromechanical components, and electronic components, and that is attached to the
4 substrate/waveguide.

1 41. An optical path repositioning device comprising a patterned block of dielectric
2 material deposited upon the surface of a substrate/waveguide.

1 42. The device of claim 37 wherein the micromechanical structures comprise a
2 tunable filter.

1 43. An N X N optical switch comprising the devices of claims 33, 34, or 37.

1 44. A wavelength selective switch comprising the devices of claims 33, 34, or 37.

1 45. An optical mixer comprising the devices of claims 33, 34, and 37.

1 46. A process for fabricating micromechanical structures comprising
2 feeding a continuous web of a plastic supporting substrate through a series of tools for
3 depositing, patterning, and etching deposited films.

1 47. A method of measuring a residual stress of deposited materials that comprise an
2 interferometric cavity which is deformed by the deposition of the materials to be measured,
3 the method comprising determining the deformation of the microstructure by measuring a
4 pattern of wavelengths of light reflected by the cavity.

1 48. The method of claim 44 further comprising automatically determining the stress
2 of the deposited materials based upon the patterns of reflected light.

1 49. The method of claim 45 further comprising determining the residual stress of
2 films during and after deposition.

1 50. A dynamic micromechanical structure comprising a dielectric, metallic, or
2 semiconducting film which is discontinuous, the optical properties of said film differing from
3 those of a continuous film because of the discontinuity.

1 51. A dynamic micromechanical structure comprising a dielectric, metallic, or
2 semiconducting film which has been etched in such a way as to produce a continuous
3 variation in the optical properties of the film through its depth.

