INTRODUCCION A LAS TECNICAS DIGITALES 1

DIGITALES: *INFORMACION CODIFICADA EN DOS UNICOS ESTADOS

*SE BASA EN EL ALGEBRA BOOLEANA

*LOS SISTEMAS DIGITALES PUEDEN CLASIFICARSE EN:

- SISTEMAS CABLEADOS
COMBINACIONALES
SECUENCIALES
MEMORIAS

CONVERTIDORES

SISTEMAS PROGRAMADOS
DISP LÓGICOS PROG
MICROPROCESADORES

MICROCONTROLADORES

PROGRAMA TECNICAS DIGITALES 1

CAPÍTULO 1: ÁLGEBRA DE BOOLE

Teoremas y Postulados

CAPÍTULO 2: FUNCIONES LÓGICAS y MINIMIZACIÓN

Funciones Canónicas – T:V – Formas Standard

Conceptos – Métodos algebraicos y Gráficos

CAPÍTULO 3: SISTEMA DE NUMERACIÓN Y CÓDIGOS

Diversos sistemas de Numeración — Códigos detectores y correctores

CAPÍTULO 4: ARITMÉTICA BINARIA

Sumadores – Restadores – Comparadores – ALU

CAPÍTULO 5: DECODIFICADORES Y DEMUX

Diseño y síntesis circuitales

PROGRAMA TECNICAS DIGITALES 1

CAPÍTULO 6: TECNOLOGÍA

Flia CMOS –PLD – Display

CAPÍTULO 7: CONTADORES Y REGISTROS

Biestables – Contadores – Registro –

CAPÍTULO 8: CIRCUITOS DE TIEMPO

Diseño de osciladores - Temporizadores -

CAPÍTULO 9: CIRCUITOS SECUENCIALES

Diseño y Síntesis de Autómatas

CAPÍTULO 10: MEMORIAS Y BUSES

NOTA: En cada uno de los capitulos se va introduciendo VHDL

La simulación y Síntesis se realiza con el programa

BOOLE-DEUSTO

BIBLIOGRAFIA

- •TECNICAS DIGITALES I: Rodolfo A Cavallero
- •DISEÑO LOGICO DIGITAL CON VHDL: S. Brown Z Vranesic
- •DISEÑO DE SISTEMAS DIGITALES CON VHDL : S.Perez –E. Soto
- •DISEÑO DIGITAL, PRINCIPIOS Y PRACTICAS: John Wakerly
- •GUIAS DE ESTUDIO DE LA CATEDRA : Página Web de la Cátedra
- •CUADERNILLOS DE CATEDRA: Autogestión

CRONOGRAMA DE DESARROLLO DE ACTIVIDADES ACADEMICAS

		Clase Nro.															
UNIDAD	TEMA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Álgebra de Boole	X	X														
2	Funciones Logicas y su minimización			X	X	X											
3	Sistemas de Numeración y Códigos					х	х	x									
4	Aritmética Binaria								X	X							
5	Codificadores-Decodificadores Multiplexores/Demux										X	Х	X				
6	Tecnologia													x	X	х	X

		Clase Nro.																
UNIDAD	TEMA	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	
7	Biestables, Contadores y Registros	X	X	X	X													
8	Circuitos de tiempo					X	X	х	X									
9	Circuitos Secuenciales									X	X	X	X					
10	Memorias y Estructura de Buses													X	X	X	R	

FUNCIONAMIENTO RELE

ALGEBRA DE BOOLE

CLASE: Es un conjunto compuesto por ELEMENTOS suceptibles de poseer ciertas propiedades y tener entre ellos, o con elementos de otros conjuntos, ciertas relaciones

CLASE UNIVERSAL : (U = 1)

Es el conjunto de todos los elementos que se van a tratar,

CLASE VACIA: (0)

No contiene ningun elemento

OPERACIONES BOOLEANAS

DIAGRAMAS DE VENN (Definamos un Universo)

DEFINAMOS DOS CONJUNTOS "A" Y "B"

"A" → HOMBRES BAJOS

$$\mathbf{m} = \mathbf{A} \cdot \mathbf{B}$$

UNION

M = BAJOS O OBESOS

POSTULADOS DEL ALGREBRA DE BOOLE

DIAGRAMA DE VENN

$$\mathbf{A} + \mathbf{1} = \mathbf{1} \qquad \longleftrightarrow \qquad \mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

$$A + 0 = A \quad \longleftrightarrow \quad A \cdot 1 = A$$

$$A + \overline{A} = 1 \longrightarrow A \cdot \overline{A} = 0$$

$$\frac{\Xi}{A} = A$$

PROPIEDAD CONMUTATIVA

$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

$$A \cdot B = B \cdot A$$

PROPIEDAD DE INVARIANCIA

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$

$$A \cdot 1 = A$$

PROPIEDAD DISTRIBUTIVA

- - - · (DUALIDAD)

$$A(B+C) = AB + AC$$

$$A + BC...N = (A+B)(A+C)...(A+N)$$

PROPIEDAD DEL COMPLEMENTO

$$\mathbf{A} + \overline{\mathbf{A}} = \mathbf{1} = \mathbf{U}$$

$$A \cdot \overline{A} = 0$$

TEOREMAS DEL ALGREBRA DE BOOLE

PRINCIPIO DE DUALIDAD: SE OBTIENE UNA EXPRESION DUAL SI:

(COMPROBAR EN POSTULADOS) $(+) \longleftrightarrow (.)$

$$(0) \longleftrightarrow (1)$$

ABSORCION

$$A + ABCD...N = A$$

$$A + (B+C) = (A + B) + C$$

$$A \cdot (A+B+C+...N) = A$$

$$A.B.C = (A.B).C$$

NEGACION

DE MORGAN

$$\overline{\overline{A}} = A$$

$$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$

$$\overline{0} = 1 , \overline{1} = 0$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

TEOREMA DE DEMORGAN → VENN

Observe: $\overline{\mathbf{m}}_3 = \mathbf{M}_0$ con lo que $\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$

SIMBOLO LÓGICO "OR"

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} F = A + B \end{array}$$

SIMBOLO LOGICO AND

$$\begin{array}{ccc} A & & \\ & & \\ B & & \end{array}$$

CIRCUITO NOT

TV

SIMBOLO LOGICO - NOT

A	f
0	1
1	0

$$A \longrightarrow \overline{A}$$

CIRCUITO NOR

TV

SIMBOLO LOGICO - NOR

A	В	f
0	0	1
0	1	0
1	0	0
1	1	0

$$A \longrightarrow f = \overline{A + B}$$

CIRCUITO NAND

TV

SIMBOLO LOGICO -NAND

A	В	f
0	0	1
0	1	1
1	0	1
1	1	0

$$\begin{array}{c|c}
A & \hline
B & \hline
\end{array}$$

SIMBOLO LOGICO -O-EXCLUSIVA

A	В	f
0	0	0
0	1	1
1	0	1
1	1	0

$$f = A \left(\frac{1}{+} \right) B$$

TV

SIMBOLO LOGICO -O-EXCLUSIVA NEGADA (COMPARADOR DE IGUALDAD)

VHDL

El lenguaje de programación VHDL (Very High Speed Integrated Circuit Hardware Description Languaje) es un lenguaje que describe el comportamiento del circuito, es decir describe el hardware

En la Fig 1 se observan los tres estilos de descripción

Fig. 1 Estilos de descripción VHDL

VHDL – Lenguaje para síntesis y modelado de circuitos – Fernado Pardo y Jose Boluda Editorial Alfaomega

VHDL - David Maxinez - Editorial C.E.C.S.A

Diseño de sistemas con VHDL – Editorial Paraninfo

VHDL

ESTRUCTURA BASICA DE UN ARCHIVO FUENTE VHDL

	Library <nombre_libreria></nombre_libreria>
ENCABEZAMIENTO	Use <nombre_librería>.<nombre_paquete>. all</nombre_paquete></nombre_librería>
	Entity <nombre_entidad>is</nombre_entidad>
ENTIDAD	listado de puertos>
	Declaración de pines
	<pre>end <nombre_entidad>;</nombre_entidad></pre>
	Architecture <nombre_arquitectura> of<nombre_entidad> is</nombre_entidad></nombre_arquitectura>
	Declaracion de señales internas
	Declaracion de tipos de datos definidos por el usuario
	Declaración de componentes en caso de instanciación
	begin
ARQUITECTURA	Cuerpo de la arquitectura
	Se define la funcionalidad del diseño con:
	Asignaciones concurrentes
	Procesos
	Instanciación de componentes
	<pre>end<nombre_arquitectura>;</nombre_arquitectura></pre>

VHDL

ENTIDAD Y ARQUITECTURA

Fig. 4 Entidad y Arquitectura

Metodología para la resolución de problemas lógicos

Diseño de un circuito combinacional

Cuando se diseña un circuito lógico combinacional, debemos realizar los siguientes pasos :

- 1. Construccion de la Tabla de Verdad.
- 2. Desarrollo de la expresión lógica
- 3. simplificación de la expresión lógica
- 4. Implementación eficiente

Ejemplo 1: SISTEMA DE ALARMA

Un supermercado tiene dos cajeros y cada uno de ellos dispone de un interruptor de pedal conectado a un sistema de alarma. Cuando se pulsa uno de estos interruptores, o ambos, se prende una luz en la gerencia. Plantee el sistema lógico correspondiente.

Definición de las variables de entrada y su comportamiento.

Cajero 1 Interruptor "A"

A=0 interruptor abierto.

A=1 interruptor cerrado.

Cajero 2 Interruptor "B"

B=0 interruptor abierto.

B=1 interruptor cerrado.

2 Definición de las variables de salida y su comportamiento.

Luz de gerencia Lámpara "F"

f=0 alarma desactivada.

f=1 alarma activada

3. Tabla de verdad y expresión lógica

Entr	adas	Salida
A	B	f
0	0	0
0	1	1
1	0	1
1	1	1

4 Implementación

METODOS DE OBTENCION DE LA FUNCIÓN

COMO SUMATORIA DE MINTERM

Para obtener una función de la TV se suman los MINTERM que hacen <u>uno (1)</u> la función y se los suma. Volvamos al sistema de alarma:

mi	A	В	f
m0	0	0	0
m1	0	1	1
m2	1	0	1
m3	1	1	1

$$f = \overline{A}.B + A.\overline{B} + A.B$$

$$= m1 + m2 + m3$$

$$= \underline{\Sigma} 1, 2, 3$$

SIMPLIFICANDO:
$$f = \overline{A}.B + A.\overline{B} + A.B$$

 $= A(B + \overline{B}) + \overline{A}.B \longrightarrow P2$
 $= A + \overline{A}.B \longrightarrow P4$
 $= (A + \overline{A}).(A + B) \longrightarrow P2$
 $f = A + B \longrightarrow A$

COMO PRODUCTO DE MAXTERM

Para obtener una función expresada en MAXTERM se toman lo terminos que hacen *cero* (0) la TV y se niegan sus variables (*Luego a través de la función complemento lo vamos a demostrar*).

Veamos el ejemplo del sistema de alarma:

Mi	A	В	f
M3	0	0	0
M2	0	1	1
M1	1	0	1
M0	1	1	1
	1		

$$f = \overline{\overline{A}} + \overline{\overline{B}} = A + B = M3$$

$$A \longrightarrow B$$

Se niegan las variables

FUNCION COMPLEMENTO: f

$$\overline{f} = \Sigma \text{ mi}$$
 \longrightarrow QUE HACEN CERO LA FUNCIÓN $\overline{f} = f = \Pi \text{ Mj}$

Ejemplo:

Mj	mi	A	B	C	f
M7	m0	0	0	0	0
M6	m1	0	0	1	1
M5	m2	0	1	0	1
M4	m3	0	1	1	0
M3	m4	1	0	0	1
M2	m5	1	0	1	0
M1	m6	1	1	0	0
M0	m7	1	1	1	1

$$f = m0 + m3 + m5 + m6$$

NEGANDO EL COMPLEMENTO

$$f = m0 + m3 + m5 + m6$$

POR DE MORGAN

$$f = \overline{m0} \cdot \overline{m3} \cdot \overline{m5} \cdot \overline{m6}$$

$$f = (A.B.C)(A.B.C)(A.B.C)$$

APLICANDO DE MORGAN NUEVAMENTE

$$f = (A + B + C) (A + B + C) (A + B + C) (A + B + C)$$

$$f = M7$$
 . $M4$. $M2$. $M1$

RELACIÓN ENTRE LOS OPERADORES LÓGICOS

EJEMPLOS

FORMAS STANDART DE UNA FUNCIÓN

EJEMPLO:
$$f = m1 + m2$$

$$= AB + AB$$

$$f = f = \overline{AB} + A\overline{B}$$

$$f = \overline{AB} \cdot A\overline{B}$$
 NAND/NAND

$$f = (A + \overline{B})(\overline{A} + B)$$
 OR/NAND

$$f = (A + \overline{B}) + (\overline{A} + \overline{B})$$
 NOR/OR

EJEMPLOS OBTENCION FUNCIONES Y VHDL

X3	X2	X 1	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$f = m3 + m4 + m5 + m7$$
SIMPLIFICANDO: $f = x2.x1 + x3.\overline{x2}$
IMPLEMENTACIÓN
$$x1$$

$$x2$$

$$x3$$

A continuación escribimos el codigo VHDL correspondiente

ENTITY ejemplo1 **IS**

PORT (x1, x2, x3 : IN BIT;

f : OUT BIT);

END ejemplo1;

ARCHITECTURE LogicFunc OF ejemplo1 IS BEGIN

 $f \le (x1 \text{ AND } x2) \text{ OR (NOT } x2 \text{ AND } x3);$

END LogicFunc;

ANÁLISIS DE CÓDIGO VHDL

ENTITY ejemplo2 IS

PORT (x1, x2, x3, x4 : **IN** BIT; f,g : **OUT** BIT);

END ejemplo2;

ARCHITECTURE LogicFunc OF ejemplo2 IS **BEGIN**

f <= (x1 AND x3) OR (NOT x3 AND x2); g <= (NOT x3 OR x1) AND (NOT x3 OR x4);

END LogicFunc;

EJEMPLO DE CODIGO VHDL

Para STD_LOGIC hay un numero de valores legales, pero los mas importantes son : 0, 1, z (alta impedancia) y - (condiciones no importa)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY ejemplo4 IS

PORT $(x1, x2, x3 : IN STD_LOGIC;$

f : OUT STD_LOGIC);

END ejemplo4;

ARCHITECTURE LogicFunc OF ejemplo4 IS BEGIN

f <= (NOT x1 AND NOT x2 AND x3) OR
(x1AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND X2 AND NOT x3);

END LogicFunc;