FP1086-PCT Spec (3)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-108033

(43) Date of publication of application: 19.04.1994

(51)Int.Cl.

C09J201/06 C08L101/02

(21)Application number: 05-133577

(71)Applicant: ROHM & HAAS CO

(22)Date of filing:

03.06.1993

(72)Inventor: SNYDER BARRY S

BORS DANIEL A

(30)Priority

Priority number: 92 894124

Priority date: 04.06.1992

Priority country: US

(54) PRESSURE-SENSITIVE ADHESIVE EMULSION POLYMER

(57)Abstract:

PURPOSE: To prepare the pressure-sensitive adhesive which shows improved shear strength without compromise of peel strength and adhesion by reacting a polymer having a low Tg and pendant acetoacetate functional groups with ammonia or amines to form enamines.

CONSTITUTION: The improved pressure-sensitive adhesive emulsion polymer having improved shear strength is prepared by reacting a polymer having a low Tg lower than about 0° C and pendant acetoacetate functional groups with ammonia or amines in order to convert its pendant acetoacetate functional groups into enamines. The pressure sensitive adhesive which shows improved shear strength in the absence of depleted peel strength and adhesion is obtained by introducing the pendant acetoacetate functional groups of the formula (R1 is divalent organic group having three atoms in length; X is organic acyl or cyano) to a polymer having a Tg of about 0° C or less. The shear strength of the

polymer is improved by reacting the polymer with a sufficient amount of ammonia or amines in order to obtain the polymer containing enamines, which shows finally a pH 8-10.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-108033

(43)公開日 平成6年(1994)4月19日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

C 0 9 J 201/06

JAQ

7415-4 J

C 0 8 L 101/02

LTB

7242-4 J

審査請求 未請求 請求項の数4(全 11 頁)

(21)出願番号

特願平5-133577

(22)出願日

平成5年(1993)6月3日

(31)優先権主張番号 894124

(32)優先日

1992年6月4日

(33)優先権主張国 米国 (US)

(71)出願人 590002035

FΙ

ローム アンド ハース カンパニー

ROHM AND HAAS COMPA

アメリカ合衆国ペンシルパニア州フイラデ

ルフイア, インデイペンデンス モール

ウエスト (番地なし)

(72)発明者 パリィ サムエル スナイダー

アメリカ合衆国ペンシルパニア州ドレッシ

ャー, カーディナル ドライブ 556

(74)代理人 弁理士 浅村 皓 (外3名)

最終頁に続く

(54)【発明の名称】 感圧接着剤エマルジョン重合体

(57)【要約】

【目的】 本発明は、剥離および粘着性に妥協すること なく、改良された剪断強さを示す感圧接着剤を提供す る。

【構成】 O℃以下のTgを有し、かつ、ペンダントの アセトアセテート官能基を有し、該アセトアセテート基 はアンモニアまたはアミンと反応してエナミンが形成さ れている、感圧接着剤エマルジョン重合体。

【特許請求の範囲】

【請求項1】 約0℃以下のTgを有し、かつ、ペンダントのアセトアセテート官能基を有し、該ペンダントのアセトアセテート基がアンモニアまたはアミンと反応してエナミンを形成しており、改良された剪断強さを生じる、改良された感圧接着剤エマルジョン重合体。

【請求項2】 重合体中のアセトアセテート官能性単量 体の量が約0. 05~約10重量%である、請求項1に 記載の感圧接着剤。

【請求項3】 重合体中のアセトアセテート官能性単量体の量が約0.5~約5重量%である、請求項1に記載の感圧接着剤。

【請求項4】 重合体中のアセトアセテート官能性単量体の量が、約1~約5重量%である、請求項1に記載の 感圧接着剤。

【発明の詳細な説明】

【産業上の利用分野】

【〇〇〇1】本発明は、感圧接着剤および感圧接着剤を 含む製品に関する。

【0002】感圧接着剤は、接着テープ、および、圧力を加えるだけで二つの部品の容易な結合が望まれる他の系を含む、多数の製品の製造に普通に用いられる。感圧接着剤の性能は、三つの性質:耐剥離性(接着力の尺度)、粘着性(tack)および剪断強さ(凝集力の尺度)の釣合より成る。一般に、剥離および粘着性の改良に役立ついずれの系の摂動(perturbation)も、剪断強さの枯渇(depletion)に帰着する。逆に、剪断強さを改良するいずれの変化も、剥離および粘着性を損なう効果を有する。加えて、最終フィルムの透明度および色の安定度のような他の性質は、重要であることが分かる。

【0003】広範囲の重合体組成物は、基体に適用されるとき、感圧接着剤として有用であることが見出された。重合体は、溶液、エマルジョンまたはホットメルトのような、いくつかの形態で適用することができる。多数のこれらの適用のために重要な性質は、非常に高い剪断強さを達成することである。この高い剪断強さを達成することができる多数の方法論は、この強はされてきた。一般に、これらの方法論は、この強化された剪断を同伴する剥離および粘着性の減少をこうむる。重合体の分子量の増加は、剥離および粘着性の観性において剪断強さを改良するのに役立つ。重合性カルボン酸のような高度に極性の単量体を加えるか、または、Nーメチロール アクリルイミドのような架橋性単量体を含ませても、また、増大した剪断強さを提供することができるが、剥離および粘着性の損失を伴う。

[0004]

【従来の技術】文書で広く立証された方法は、接着剤組成物中に金属架橋を導入する方法である。米国特許第4,540,739号は、高剪断感圧接着剤の製造にお

いて、中和剤としてアルカリ金属水酸化物の使用を記載する。架橋されたフィルムを製造するための多価金属による処理は、米国特計第2,754,280号に記載されている。しかしながら、剥離および粘着性は損なわれる。

【0005】米国特許第4,812,541号は、グリシジル単量体およびNービニル ラクタム単量体の組合せを含む、高性能感圧接着剤組成物を記載する。結果として生じる重合体系は、アルミニウムに対する接着力および高い凝集力の良好な釣合を示すことが見出された。 【0006】最近の開示、米国特許第4,759,983号は、下記の式:

【化1】

を有する官能性単量体の使用を記載する。

【0007】式中、R1は、少なくとも3原子長の二価の有機基であり、Xは有機アシルまたはシアノである。 【0008】このような単量体の導入は、剥離および粘着性の有意な妥協なしに、接着剤重合体組成物に改良された剪断強さを与えることが見出された。米国特許第4,759,983号のすべての実施例は、アンモニアまたは水酸化ナトリウムで調節された4~6.5のPHで行われている。米国特許第4,908,403号は、結果として生じる接着剤重合体の剪断強さを更に増大させるために、酸含有成分による上記の系の処理を開示する。米国特許第4,908,403号は、酸性PH値が

【0009】米国特許第4,540,739号には、水酸化アンモニウムのような非一永続性塩基により、接着剤エマルジョン重合体を8.5~10のPHに中和しても、結果として生じる接着剤フィルムの剪断強さに影響しないことを示すデータが提出されている。水酸化ナトリウムによる中和は、剪断における重大な改良を生じた。

[0010]

好ましいと言う。

【発明が解決しようとする課題】本発明は、剥離および 粘着性に妥協することなく、改良された剪断強さを示す 感圧接着剤を提供する。

[0011]

【課題を解決するための手段】Knutsonらの特許(米国特許第4,759,983号)に記載された重合体系は、それ自体、強化された剪断強さを有することが見出されていたが、この重合体系は、アンモニアまたは第一アミンにより8~10の範囲のPHに維持することにより更に改良することができることが見出された。この種の感圧接着剤は、架橋剤および/または触媒を含有してもよいが、このような物質の使用を必要としない。

したがって、剥離および粘着性の枯渇なしに改良された 剪断強さを示す感圧接着剤、および、感圧接着剤を含有 する製品は、下記のタイプのペンダント官能基を、約0 ℃またはそれ以下のTgを有する重合体中に導入するこ とにより得ることができる:

【化2】

【〇〇12】式中、R₁ は少なくとも3原子長の二価の有機基であり、Xは有機アシルまたはシアノである。

【〇〇13】ほぼ8~1〇の最終PHを結果として生じる、エナミンを形成するのに十分な量のアンモニアまたは第一アミンによる処理は、剪断強さを更に改良し、製

【 O O 1 5 】式中、Xは有機アシルまたはシアノである。

【0016】用語「ペンダント」は、本明細書において、「重合体主鎖に結合し、更なる反応に利用できる」を意味するために用いられる。ペンダントは、重合体鎖の末端における、このような基の結合を排除する厳密な意味に解釈してはならない。したがって、米国特許第4,960,924号に教示されるようなアセトアセテート官能性メルカプタンにより、鎖末端に導入されたアセトアセテート官能基を有する重合体は、本発明に有用であろう。一般に、ペンダントのアセトアセテート基は、次々にアセトアセテート部分に結合される二価の有機基によって、または、2個のアセトアセテート基を有する三価の有機基によって重合体主鎖に結合される。

【0017】重合体組成物の残余は、感圧接着剤特性を有する重合体を生成するために知られた単量体から選択される。好ましくは、これらの単量体は、(1)4~約8個の炭素原子を有する1種またはそれ以上の共役ジェン単量体の少なくとも約50重量%と、1種またはそれ以上のアルケニル置換モノ芳香族単量体の0~約50重量%より成る共役ジオレフィン重合体、(2)約4個までの炭素原子を有するモノオレフィン単量体の少なくとも約1重量%と、飽和カルボン酸のアルケニルまたはアルケノールエステルの少なくとも約40重量%を含むオレフィン不飽和カルボン酸エステル単量体を含むオレフィン不飽和カルボン酸エステル重合体、

(4) 少なくとも約30重量%のアルケニルエーテル単量体単位を含むアルケニルエーテル重合体、および(5) それらの組合せから選ばれる。

【〇〇18】アセトアセテート重合体は、当該技術で知られた手段により製造することができる。好ましい方法

品に改良された打抜き性を与えるのに役立つ。加水分解に対するペンダント基の安定性もまた、この方法により増大する。異なるR1 およびX基を同一重合体内に組合わせることができ、または、種々のR1 およびX基を含有する重合体を同一の分散液にブレンドすることができる。接着剤重合体は、水性分散液として製造してもよく、この形態で基体に適用される。

【0014】好ましい彭様において、本発明は、架橋剤の添加を必要とせずに、高い凝集強さを有する感圧接着剤を結果として生じる。本発明において使用するために好ましい重合体は、ペンダントのアセトアセテート基を有するビニル重合体であり、下記の一般式を有するペンダント基が用いられてよい。

【化3】

は、導入によるアセトアセテート官能性単量体を含む重合である。好ましい単量体は、本明細書を通じて便宜上 AAEMとして冒及する。下記のアセトアセトキシエチル メタクリレートである。

【化4】

【OO19】アセトアセテート官能価の導入に有用な他の例は、アセトアセトキシエチルアクリレート、アセトアセトキシプロピル メタクリレート、アリルアセトアセトキシプチル メタクリレート、2、3ージ(アセトアセトキシブチル メタクリレート、2、3ージ(アセトアセトキシ)プロピル メタクリレートなどである。一般に、いずれの重合性ヒドロキショ能性単量体も、ジケトンまたは他の適当なアセトアセチル化剤との反応により相当するアセトアセテートに転化することができる(例えばアセトアセチル化コーティング樹脂の製造方法の比較、Witzeman, J.S;Dell Nottmngham, W.;Del Rector, F.J.CoatingsTechnology;Vol.62,1990.101(およびここに含まれた文献)を参照のこと)。

【0020】有用な感圧接着剤重合体は、官能性単量体がなければ同一の、他の感圧接着剤に関係のある接着剤の凝集強さを改良するのに十分な量の1種またはそれ以上の官能性単量体を含有する。一般に、約0.05重量%~約10重量%の量が用いられ、通常は、約0.5%~約5重量%であり、1~5%が好ましい。最終的に、官能性単量体の量は、特定の重合体の性質が物質の必要量を指令するから、場合ごとに変わる。

【0021】適当な官能性単量体の含有は、Knuts

onらの特許に開示されたが、彼らは、PHの最適範囲は、水酸化アンモニウムまたは水酸化ナトリウムによる中和により達成される4~6.5であることを示唆する。アンモニアまたは第一アミンによりPHを8~10に調節すると、結果として生じる接着剤の凝集強さにおける意外な更なる改良が得られることが見出された。そして、それが本発明の主題である。この処理のための追

加の誘因は、ペンダントのアセトアセテートを含有する ビニル重合体は、水中で、特に熱老化により加水分解し がちである事実にある。加水分解は、ほとんどのPHで 起り、アセト酢酸を生成し、それは頤次アセトンと二酸 化炭素に分解する。

【化5】

【0022】しかしながら、我々は、この問題は、水性 アセトアセテート重合体を、製造および中和後に、アン モニアまたはエタノールアミン、メチルアミンまたはイ ソプロピルアミンのような第一アミンの1モル当量で処 理することにより、除去できることを見出した。代表的 には、エナミン形成のための1モル当量の添加前に、重 合体は、最初に、塩基性PH、好ましくは9以上のPH に中和される。これらの条件下でエナミンが形成され る。エナミンを形成する反応は、一般に急速であり、温 度とともに形成速度が増加する。一般に、エナミン形成 は24時間以内で完結する。エナミンは加水分解に安定 である。使用するアンモニアまたはアミンの量は、重合 体中のアセトアセテートの量に少なくとも当量でなけれ ばならない。 t ープチルアミンのような立体障害第一ア ミンおよびアニリンのような芳香族アミンは、不完全な エナミン形成のために安定でない。

【0023】同等のベンダント エナミン官能価を含む ビニル重合体の製造のための別の方法は、適当なアミン とアセトアセテート単量体から誘導される予備形成され たエナミン単量体を用いる方法である。この場合、エナ ミンが加水分解してアセトアセテートにもどるのを避け るために、PHは、重合中アルカリ性側に保持しなけれ ばならない。

【0024】上記の官能性単量体を含む好ましい重合体は、(1)置換または非置換アルケニル芳香族単量体と共役ジオレフィンとの共重合体 、(2) C2-4 モノオレフィンと、C1-2 飽和カルボン酸のC2-8 アルケニルまたはアルケノール エステルとのオレフィンエステル 共重合体、(3) オレフィン不飽和カルボン酸の重合したアルキルおよびアルカノールエステル、(4) アルケニルエーテル単独重合体およびC1-10アルコールのC2-10オレフィンエーテルの共重合体、および(5) それらの組合せを含む。上記の官能性単量体に加えて、これらの好ましい級の重合体は、それぞれ、オレフィン不飽和モノおよびポリカルボン酸、アミド、アルデヒドなど

のような追加の単量体を含むことができる。

【0025】オレフィン不飽和カルボン酸のエステルの 例証となる重合体は、米国特許第4,540,739号 (1985) においてMidgleyにより記載されて おり、その開示は参照により本明細書の開示とする。こ れらの重合体は、主として、1種またはそれ以上の重合 したオレフィン不飽和モノおよび/またはポリカルボン 酸エステルを含み、所望により他の重合した単量体を含 むことができる。したがって、エステル重合体は、上記 の官能性単量体以外の、重合したオレフィン不飽和カル ポン酸エステル単量体を、通常は少なくとも約40重量 %、しばしば少なくとも約60重量%、好ましくは、少 なくとも80重量%含有してよい。好ましいエステル単 量体は、4-17個の炭素原子を有するオレフィン不飽 和モノーおよびポリカルボン酸と、1分子中に1~約3 〇個の炭素原子、好ましくは、1~約20個の炭素原子 を有する、ヒドロキシアミノーまたはチオー置換または 非置換アルコールのエステルである。例証となる不飽和 カルボン酸は、アクリル、メタクリル、フマール、マレ イン、イタコン酸などである。例証のヒドロキシー、ア ミノーおよびチオー置換アルコール、アミンおよびチオ ールは、グリセリン、1ーヒドロキシー5ーチオドデカ ン、2-アミノー5-ヒドロキシヘキサンなどである。 主として原価および利用性により、好ましいエステル は、アクリル酸およびメタクリル酸のヒドロキシ置換お よび非置換アルコールエステル、例えば、ブチルアクリ レート、2-エチルヘキシルアクリレート、メチルメタ クリレート、ヒドロキシエチルアクリレートなどであ る。

【0026】感圧接着剤重合体の製造に有用な、種々の不飽和カルボン酸エステル単量体および種々の他の重合性オレフィン不飽和単量体、並びに、これらの単量体と重合体Tg(ガラス転移温度)の相互関係は、感圧接着剤技術便覧、Van Nostrand-Reinhold コンパニー、ニューヨーク、1983、特に、第

298~329頁、引用文献を含む、に論じられてい る。その開示は、全部、参照により本明細書の開示とす る。このようなカルボン酸エステルの単独または共重合 体に基づく感圧接着剤の主要な特性は、低ガラス転移温 度であり、それは、ある場合には、カルボン酸エステル 単独重合体により達成することができるが、通常は、特 定の用途に最も適合するTgを有する重合体を生成する ために、「硬質」エステル単量体を適当な割合の「軟 質」エステル単量体と重合させることにより得られる。 いわゆる「硬質」単量体は、相対的に高いTgを有する 単独重合体を生成するものであり、一方、「軟質」単量 体は、相対的に低いTgを有する単独重合体を生成する ものである。例えば、アクリレート単量体は、相当する メタクリル酸エステルよりも、代表的に「軟質」であ る。したがって、nープチルアクリレート、2ーエチル ヘキシルアクリレートおよびn-オクチルアクリレート は、「軟質」単量体として普通に用いられ、一方、メチ ル、イソプロピル、nープチルおよび t ープチルメタク リレートを含む種々のメタクリレートは、代表的な「硬 質」単量体である。

和カルボン酸エステル単量体は、この種の重合体の全組成を構成することができ、または、これら2種の単量体によって占められない重合体分子の部分は、いずれの重合性オレフィン不飽和単量体またはこのような単量体の組合せであることができる。酸部分が1~約20個の炭素原子を含むカルボン酸のビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、イソノナン酸ビニル、プロピオン酸ビニル、スチレン・酸ビニル、プロピレン、スチレンおよびビニル・プロピレン、スチレンおよびビニル・カースには、エチレン・プロピレン、スチレンおよびビニルおよび塩化ビニリデンのようなビニルハライド;アクリル、メタクリル、クロトン、イタコンおよびフマール酸のような10個までの炭素原子を有するオレフィン不飽和カルボン酸などが、他の重合性単量体の例証となる。

【0027】上記の官能性単量体およびオレフィン不飽

【0028】共役ジオレフィン重合体は、代表的に、約0.5~約50重量%の1種またはそれ以上のビニル芳香族単量体、および、約50~約99重量%の、4~約8個の炭素原子を有する1種またはそれ以上の共役ジオレフィンを含む。これらの共重合体は、ランダムまたはブロック共重合体のいずれでもよい。例証のアルケニル芳香族単量体は、スチレン、αーメチルスチレン、pーメチルスチレン、クロロスチレン、メチルーブロモスチレンなどである。例証の共役ジオレフィン単量体は、アルケニル芳香族単量体は、好ましくは、約5~約70重量%、最も好ましくは約20~約50重量%の濃度で存在するが、一方、共役ジオレフィン単量体は、約50~約80重量%の濃度で存在する。

【0029】上記に論じたオレフィン不飽和カルボン酸エステル重合体の場合におけるように、共役ジオレフィン重合体は、上記の官能性単量体に加えて、オレフィン不飽和カルボン酸エステル共重合体に関して上記に論じた、カルボン酸のビニルエステル、モノオレフィン、オレフィン不飽和ニトリル、オレフィン不飽和カルボン酸などのような種々の他の単量体を含むことができる。更に、共役ジオレフィン重合体は、約40重量%までの、代表的には約20重量%までの、有用なカルボン酸エステル共重合体の製造における使用のために上記した単量体のようなオレフィン不飽和カルボン酸エステル単量体単位を含むことができる。

【0030】オレフィンエステル重合体は、代表的に、約10~約40重量%のC2-4 モノオレフィン単量体、約50~約99.5重量%のC1-12飽和カルボン酸のC2-8アルケニルまたはアルケノールエステルおよび約0.5~約10重量%の上記のような官能性単量体を含む。好ましくは、モノオレフィン単量体は、約1~25重量%、最も好ましくは、約10~15重量%の量で存在する。例証のモノオレフィンは、エチレン、プロピレンおよびプチレンであり、エチレンが好ましい。

【〇〇31】オレフィンエステル重合体のエステル成分は、好ましくは、C1-12飽和カルボン酸のC2-8 アルケニルまたはアルケノールエステルである。C1-12飽和カルボン酸と反応して反応性エステルを生成することができるC2-8 不飽和アルコールおよびジオールの例証は、プロペノール、ブテノール、ペンテノール、ヘキセノール、ヘブテノールおよびオクテノールおよびそれらのジオール同族体である。適当な飽和酸は、ギ酸、酢酸、プロピオン酸、ブタン酸、吉草酸、カプロン酸、ヘプタン酸およびオクテン酸である。上記エステルのうち最も普通のものは、酢酸ピニル、プロピオン酸ピニルおよびブタン酸ピニルである。

【0032】アルケニルエーテル重合体は、代表的に、少なくとも約30重量%、好ましくは、少なくとも50重量%の、アルケニル基が少なくとも2個の炭素原子、代表的には、2~約10個の炭素原子を有し、そして、アルコール(ヒドロカルビルーオキシ)基が1~約10個の炭素原子を有する、重合したアルケニルエーテル単量体単位を含有する。メチルビニルエーテル、nーオクチルー1ープロペニルエーテル、2,4ージメチルブチルー2~ヘキセニルエーテル、ビニルフェニルエーテルなどが例証となる。

【0033】上記の一般的な4種類に包含される重合体は、少量の、例えば、30重量%までの、1種またはそれ以上の追加の単量体を含むことができ、そして、それらは、それらの化学組成を修正するために、グラフトされ、または他の薬剤と反応させることができる。したがって、グループ(1)および(3)の重合体は、少量の、エチレン、イソブチレン、クロロブテン、アクリロ

ニトリル、ビニルエーテル、飽和カルボン酸のアルケニルエステルなどのような置換および非置換モノオレフィン単量体を含有してもよい。共役ジオレフィン重合体(グループ1)は、また、オレフィン不飽和カルボン酸エステル単量体を含有することができ、そして、オレフィン不飽和酸エステル重合体(グループ3)は、共役ジオレフィンおよび/またはアルケニルモノ芳香族単量体を含有することができる。同様に、グループ(2)のアルケニルエステル重合体およびグループ(4)のアルケニルエーテル重合体は、置換および/または非置換共役ジオレフィン、アルケニル芳香族化合物、オレフィン不飽和カルボン酸エステルなどを含むことができる。

【0034】少量の、オレフィン不飽和モノーおよびポリ塩基性カルポン酸および/またはこのようなカルボン酸のスルホアルキルエステルは、PSA重合体の凝集強さを相当に改良することが見出された。したがって、重合体が、少なくとも約0.1重量%、通常は約0.1~約10重量%、好ましくは約0.1~約5重量%の、約10個までの炭素原子を有する重合性オレフィン不飽和カルボン酸、および/または、このような酸のスルホアルキルエステル、例えば、スルホエチルメタクリレート、スルホエチルイタコネート、スルホメチルマロネートなどを含有するのが好ましい。

【0035】適当な接着性は、アルデヒド硬化剤(例え ば、ホルムアルデヒド、ムコクロル酸など)、米国特許 第4, 408, 018号においてBartmanにより 議論された強塩基触媒のような架橋触媒、燐酸またはメ タンスルホン酸のような酸触媒、金属および金属化合物 のような錯化剤および錯体、または反応性単量体(例え ば、グリコール、ポリアミドなど)のような架橋剤また は硬化剤なしに達成できることが見出された。このよう な硬化剤は、重合体の製造を複雑にし、出費を増大する から、これらは、本発明の重合体について必要な感圧性 を得るのに必要とされない。多くの場合、このような 「硬化」剤の添加は、粘着性および接着のような他の望 ましいPSA特性を損なう。好ましい重合体は、このよ うな硬化剤またはそれらの残留物を実質的に含まない。 しかしながら、このような物質の少量は、存在すること ができる。

【0036】重合体の分子量は、与えられた単量体組成の重合体、すなわち、同一の単量体含有量の重合体において、感圧接着剤特性の釣合に重大な影響を有する。したがって、感圧接着剤技術便覧において、例えば、第307~311頁に議論されたように、剪断抵抗は、比較的に高い分子量にまで概略的に比例し、その分子量で、ある重合体では、剪断抵抗は劇的に低下する。粘着性は、代表的に、非常に低い分子量で高く、最適な粘着性を生じる分子量値を越えた後に、分子量の増加につれ次第に減少する。接着は、代表的に、不連続性の挙動を示し、中度の分子量レベルにまで分子量とともに増加し、

次に、分子量が更に増加すると次第に減少する。本発明 の接着剤に有用な重合体は、ゲル透過クロマトグラフィ ーにより測定して、代表的に、少なくとも10.000 の数平均分子量、一般的に、約10,000~約1,0 00,000の範囲内の数平均分子量を有する。このよ うな重合体は、比較的に高い剪断値、および、剥離およ び粘着性を含む他の性質の好ましい釣合を有する。した がって、接着剤は、代表的に、少なくとも20分、代表 的に、少なくとも約1時間、および、高剪断配合物にお いては、後記のように1000グラム荷重下で75°F で測定して50時間またはそれ以上の剪断保持値を有す る。剥離値は、一般に、少なくとも15、最もしばし ば、約25、好ましくは約35オンス/インチ巾であ る。これらの感圧接着剤の高い剪断および剥離値は、あ るにしても、粘着性の大きな損失を犠牲にして、依然と して達成されない。したがって、重合体は、一般に、少 なくとも約30グラム、より一般的に少なくとも約50 Oグラムの探針粘着値(probe tack val ue)を有する。この開示の目的のために、剪断強さ、 剥離接着性および探針粘着は、特記しない限り、以下に 記載するように実施例で測定される。

【0037】共役ジエンオレフィン重合体は、一般に、 多くの用途のために十分な粘着性を有するべく粘着付与 剤を必要とするが、本発明に有用な重合体の多くは、粘 着付与剤の添加なしに、PSAの多くの用途のために十 分な粘着性を示す。他の単量体、例えば、スチレンの存 在または不存在における、イソプレン、ブタジェンなど の重合体および共重合体のような、共役ジオレフィン重 合体およびそれらの共重合体は、粘着付与剤とともに通 常用いられる重合体の例証となる。一方、ポリアルケニ ルエーテルおよびオレフィン不飽和カルボン酸エステル 重合体、および、オレフィンとアルケニルカルボン酸エ ステルの共重合体は、通常、粘着付与剤の不存在で、感 圧接着剤として有用であるのに十分な粘着性を示す。そ れにもかかわらず、このような重合体に基づく接着剤 は、また、所望により、増加された粘着性を与えるため に相容性の粘着付与剤を含有してよい。

【0038】接着剤は、わずかにのみ粘着性を増加するために極少量の粘着付与剤を含有することができ、または、1種またはそれ以上の上記重合体の100重量部につき150重量部までの、または、それ以上の粘着付与剤を含有することができる。適当な粘着付与剤は、ロジン、水素化ロジン、このようなロジンのエステル、合成炭化水素粘着付与剤、および、低分子量および低Tgポリカルボン酸エステルを含む。代表的なロジンおよび水素化ロジンエステル粘着付与剤は、約20℃~約115℃の環球軟化点を有するが、好ましい粘着付与剤は約50℃~約110℃の軟化温度を有する。有用な炭化水素粘着付与剤は、Cg 芳香族単量体またはC5 脂肪族単量体、および、このような芳香族および脂肪族単量体の混

合物から製造することができる。このような単量体は、通常、原油または同様の物質の分留における、いわゆる Cg およびC5 カットから誘導される。このような合成 炭化水素粘着付与剤は、一般に、約10℃~約100℃ の環球軟化温度を有する。ポリカルボン酸エステル粘着 付与剤は、1~4個の炭素原子を有するアルキルまたはアルコキシ基で置換された、または、置換されないアクリル酸、または、アルキルまたはアルカノール部分が1~約6個の炭素原子を有するこのような酸のアルキルまたはアルカノールエステルのような1種またはそれ以上の単量体から重合される。

【0039】有用な重合体は、バッチ、連続および半連 統法を含む、当該技術で知られた遊離基エマルジョン重 合により製造することができる。この開示のために、遊 離基重合法は、放射線重合法を含むことを意図する。水 性重合体エマルジョンの製造に適当な例証となる遊離基 重合手順は、単量体または同時に重合されるべき複数の 単量体を、水性反応媒体に、完成重合体中の各々の単量 体の各々のパーセントに比例する速度で徐々に添加し、 適当な遊離基重合触媒で重合を開始し、継続することを 含む。任意に、共重合体は、初期重合段階中に生成した 重合体の部分が、同一重合の中間または後の段階中に生 成したものとは異なる単量体租成を含む、不均化反応様 式で、重合を通じて1種またはそれ以上の単量体を添加 することにより得ることができる。例えば、スチレンー ブタジエン共重合体は、大部分またはすべてのスチレン を初期重合段階中に添加し、ブタジエンの大部分を重合 の後期に添加することによって、生成することができ る。

【0040】例証となる遊離基触媒は、単独、または、1種またはそれ以上の亜硫酸水素ナトリウム、メタ亜硫酸水素ナトリウム、グルコース、アルコルビン酸、エリソルビン酸(erythorbic acid)などのような遠元剤とともに、過酸化水素、カリウムまたはアンモニウムベルオキシジサルフェート、ジベンゾイルベルオキシド、ラウリルベルオキシド、ジ第三ブチルベルオキシド、2,2′ーアゾビスイソブチロニトリルなどのような遊離基開始剤である。反応は、ほとんど、または、すべての単量体が消費されるまで、適当な反応速度を維持するのに十分な温度で、攪拌して継続される。単量体の添加は、通常、ラテックスが約20~約70重量%の重合体濃度に達するまで継続する。

【 O O 4 1 】分散液の物理的安定性は、通常、水性反応 媒体中に、スルホン化アルキルフェノールポリアルキレ ンオキシマレエートのような共重合性表面活性剤および スルホエチルメタクリレート、アルケニルスルホネート などのような共重合性安定剤を含む、1種またはそれ以 上の非イオン、アニオンおよび/または両性表面活性剤 を提供することにより達成される。例証となる非イオン 表面活性剤は、ラウリル、オレイルおよびステアリルア

ルコール、または、ココナット脂肪族アルコールのよう なアルコールの混合物のエトキシル化生成物のようなア ルキルポリグリコールエーテル;オクチルーまたはノニ ルフェノール、ジイソプロピルフェノール、トリイソプ ロピルフェノール、ジまたはトリ第三プチルフェノール などのエトキシル化生成物のようなアルキルフェノール ポリグリコールである。例証となる芳香族表面活性剤 は、アルキル、アリールまたはアルキルアリルスルホネ ート、サルフェート、ホスフェート、ホスホネートなど のアルカリ金属またはアンモニウム塩である。例は、ナ トリウムラウリルサルフェート、ナトリウムオクチルフ ェノールグリコールエーテルサルフェート、ナトリウム ドデシルベンゼンスルホネート、ナトリウムラウリルジ グリコールサルフェート、およびアンモニウムトリ第三 ブチルフェノールペンターおよびオクターグリコールサ ルフェートを含む。

【0042】保護コロイドが、反応期間中または後に水性重合体分散液に添加されてよい。例証となる保護コロイドは、アラビアゴム、スターチ、アルギネート、および、メチルー、エチルー、ヒドロキシアルキルーおよびカルボキシメチルセルロースのような改質天然物質、および、ポリビニルアルコール、ポリビニルピロリドンおよび2種またはそれ以上のこのような物質の混合物を含む。分散性クレーのような充填剤および/または増量剤、および、顔料および染料のような着色剤もまた、充性分散液に添加することができる。エマルジョン重合体の当業者は、コロイド、粘着付与剤および他の添加剤は、安定な分散液の形成を確実にするために、重合体エマルジョンと相容すべきことを理解するであろう。

【0043】エマルジョンは、代表的に、約20~約70%の製造された重合体を含有するが、好ましいラテックスは、代表的に、約40~約60重量%の重合体固形分の固形物含有量を有する。重合体分散粒子は、意図された利用に適当ないずれの粒径のものであることができるが、少なくとも100ナノメートルの粒径が好ましい。最もしばしば、上記のラテックスは、約100~約1000ナノメートルの範囲内の粒径を有する。

【0044】感圧接着剤は、他の表面または物品に接着することが望まれるいずれの裏材に適用することができる。例証となる裏材は、プラスチック、エラストマー、固体金属および箔、セラミックス(タイル、ガラスなど)、木材、紙および厚紙、なめし革材料などを含む、フィルム、固体製品、織布および不織布材料などを含む、本質的にいずれの形態の、軟質および硬質、天然および合成材料を含む。このような製品の例証となる利用は、壁被覆(紙、繊維、フィルムなど)、椅子張り成形品(ロpholstery items)、建築屋根材およびサイジング材料、すべての種類のテープ(機布または不織布、紙、重合体フィルム、金属、箔、フォームなどよ

り成る裏材を有するテープを含み、両面テープおよびい わゆる転写テープを含む)、包装、床および壁タイル、 および、他の床および壁被覆、パネルなどを含む。適当 な裏材および基体材料は、本質的に、いずれの化学組成 のものであることができ、金属、セラミックス(すべて の種類のガラスを含む)、および、ポリオレフィン、例 えば、単独重合体およびエチレン、プロピレン、スチレ ン、ブタジエン、ジシクロペンタジエンなど、および、 代表的に、ヒドロキシ、エーテラル(ethera 1)、カルボニル、カルボン酸(カルボン酸塩を含 む)、カルボン酸エステル(チオエステルを含む)、ア ミド、アミンなどのような極性官能基を含む物質のよう な、天然および合成の極性および非極性物質を含む。本 質的にすべての天然物質は、1種またはそれ以上の極性 官能基を含む。例証は、綿、、紙、木材、ココナット機 維、ジュート、麻などのような天然産および再生のセル ロース繊維、および、なめし革、木材および他の動物毛 皮のような蛋白質物質である。例証となる極性官能基含 有合成物質は、ナイロンー6、ナイロンー66、ナイロ ン-610、「Dacron」、「Fortrel」、 [Kodel]、[Acrilan]、[Orlo n」、「Creslan」、「Verel」および「D ynel」のようなポリエステル、ポリアミド、カルボ キシル化スチレンーブタジエン重合体などである。他の 有用な極性物質の例証は、合成炭素、珪素および珪酸マ グネシウムである。

【0045】接着剤組成物は、ロール塗り、スプレー塗

り、カーテン塗りなどのような種々の慣用の被覆法のい ずれか一つにより、裏材に適用することができる。プラ イマーは、裏材を前処理するために用いることができる が、多くの用途において不必要である。乾燥被覆重量、 (単位面積当り適用される乾燥接着剤の重量) は、裏材 の、および、裏材が接着されるべき基体表面の多孔性お よび不規則性、および他のファクターに依存して、実質 的に変化することができる。例えば、高いポリマー負荷 は、多孔、不規則のセラミックスタイルを多孔性表面に 接着するために好ましいが、一方、低い接着剤負荷は、 合成重合体フィルムおよびシートのような比較的に非多 孔、平滑な表面の材料から、テープ、フィルムおよび他 の製品を製造するために、通常、必要とされる。接着剤 を、非多孔性重合体または金属の表面に接着させようと する非多孔性重合体または金属の基体に適用するとき は、処理表面の3,000平方フィート当り、約5~約 50ポンド乾燥接着剤の接着剤負荷は、一般に十分であ る。連続シート重合体基体から製造されたテープにおけ る十分な接着は、一般に、処理された表面の3,000 平方フィート当り、約10~約20ポンドの乾燥被覆接 着剤重量で達成することができるが、一方、マスキング テープのような紙-裏打ちテープのためには、3,00 0平方フィート当り20~約40ポンドが、通常、使用

される。

【 O O 4 6 】本発明は、発明の実施の特定の態様の例証 となる下記の実施例により更に説明するが、特許請求の 範囲により規定される範囲を限定するつもりはない。

【0047】試験基準

試験試料は、1ーミルの配向ポリプロピレン (OPP) 裏材に、硬化して1ーミルの接着剤層を形成する接着剤 ラテックスのフィルムを適用することにより製造され た。エマルジョン重合体は、1.5ーミルの層で適用され、150°Fで5分間乾燥し、レリーズライナーで覆い、24時間、75℃および50%相対湿度で熟成した。

【0048】剪断強さは、ASTM D3654-8 8、PSTC-7に従って測定され、接着剤の凝集強さ の尺度である。(「PSTC」はpressure-s ensitive Tape Councilを指示す る。)それは、静的負荷(static loade d)テープ試料が、標準圧力で押された表面に本質的に 平行方向における標準の平滑な表面から分離するのに必 要な時間に基づく。各々の試験は、標準ステンレス鋼バ ネルに適用された接着剤被覆ストリップについて、スト リップの1インチ部分に基づき2分の1インチがパネル にしっかり接触し、ストリップの他端部分が自由である 様な仕方で行われる。試験パネルは、はりつけた被覆ス トリップとともに、パネルが、のびたテープ自由端と1 78°~180°の角度を形成する様に、ラックに保持 し、次に、試験ストリップの自由端から懸垂重量として 適用される1000グラムの力をかけることにより、自. 由端に張力をかける。各々の試験ストリップが75°F で試験パネルから分離するのに要する経過時間を、時間 で、剪断強さとして記録する。

【0049】剥離接着は、ASTM D-3330-9 O、PSTC-1に従って測定し、被覆された軟質シー ト材料を、特定の角度および除去速度で、試験パネルか ら除去するのに要する力の尺度である。特記しない限 り、ここに報告される剥離接着の数値は、以下の手順に より、75°Fで測定された1インチ巾の被覆された試 験シート材料当り、オンスで表現された力の値である。 1インチ巾の被覆シートを、汚れのないステンレス鋼の 試験パネルに、スチールプレートにしっかり接触した被 覆シート材料の少なくとも5線インチで適用する。スト リップをしっかりと適用し、すべての不連続性および閉 じ込められた空気を除去するために、硬質ゴムローラー を用いる。被覆ストリップの自由端を、スチールプレー トからの除去角度が180℃になるように、ほとんどそ れ自身に触れるほど後退させる。試験ストリップの自由 端(引っぱられたもの)を、接着試験機のアーム(In strumetors slip/peel test er)に取り付ける。次に、試験プレートを、試験機の 移動ベッドに取り付け、それは毎分12インチの速度で

アームから離れて移動する。テープがスチール表面から 剥離されるときのオンスで読む目盛を記録する。

【0050】探針粘着は、ASTM D2979-88に従って測定された。それは、固定圧で形成され、与えられた時間、保圧された接着結合を破壊するために必要な最大力である。特記しない限り、粘着のために報告された数値は、グラムで表わされ、以下の手順により75下で得られた。被覆された材料の試料を20グラム環状リングに張りつけ、探針粘着試験機(Polyken

Probe Tack Tester, Testing Machines, Inc.)中に導入した。試験は、ステンレス鋼探針を、毎秒1センチメートルの速度で、試験片に接近し、1秒保持することにより、続行した。探針を接着剤から除去する、または、接着結合を破壊するのに必要な力(グラム)を探針粘着力として記録した。

【0051】例1 重合体Aを、457.5グラムの 水、16.4グラムのドデシルペンゼンスルホン酸ナト リウムの23%溶液、1550グラムのブチルアクリレ ート、29. 9グラムのメタクリル酸、83. 2グラム のアセトアセトキシエチルメタクリレートおよび〇、8 3グラムのnードデシルメルカプタンを含む単量体混合 物から製造した。1038.3グラムの水および0.8 2グラムの炭酸ナトリウムの混合物を含み、85℃に加 熱された釜に、52.5グラムの44.6%固形分、小 粒径BA/MMA/MAAエマルジョン重合体を添加し た。15グラムの水に溶解した6.7グラムの過硫酸ナ トリウムの開始剤仕込みを加えた。次に、単量体エマル ジョンを、別個の供給として67.5グラムの水に溶解 した2. 25グラムの過硫酸ナトリウムとともに、3時 間にわたり徐々に加えた。3時間後、エマルジョンを6 0℃に冷却し、その温度で、4.5グラムの水に溶解し た1. 5グラムの t ープチルヒドロベルオキシドを添加 し、次いで、18.8グラムの水に溶解した0.75グ ラムのイソアスコルピン酸を添加した。この方法を2分 間隔で2回繰返した。次に、ラテックスを周囲温度に冷 却した。

【0052】結果として生じるラテックスを、4、5、6、7、8、9および10のPH値を達成するためにアンモニア水で処理し、試料を平衡させた。24時間後、各試料のPHを再測定し、その結果を表1に要約する。高いPHにするようにした試料は、AAEMのエナミンの形成におけるアンモニア消費と一致するPHのかなりの低下を示すことが分かった。次に、ラテックスを注型し、上記のように試験した。結果を表2に記載する。粘着性および剥離は、PHの全範囲にわたり、それぞれの平均値、1インチ当り540グラムおよび38オンスから逸脱しないことが分かった。しかしながら、剪断保圧時間により示されるように、凝集強さは、PH4におけ

る4時間からPH10における54時間に劇的に改良さ れた。

【0053】例2 重合体Bを、重合体Aと同様の仕方で、457.5グラムの水、16.4グラムのドデシルベンゼンスルホン酸ナトリウムの23%溶液、1550グラムのブチルアクリレート、29.9グラムのメタクリル酸、83.2グラムのアセトアセトキシエチルメタクリレート、および1.66グラムのnードデシルメルカプタンを含む単量体混合物を用いて製造した。

【0054】結果として生じるラテックスを、4、5、6、7、8、9および10のPH値を達成するために、アンモニア水で処理し、次に試料を平衡させた。各試料のPHを再測定し、結果を表1に要約する。高PHにするようにした試料は、AAEMのエナミンの形成におけるアンモニア消費に一致するPHのかなりの低下を示すことが分かった。次に、ラテックス重合体を注型し、上記のように試験した。結果を表2に記載する。粘着性および剥離は、PHの全範囲にわたり、それぞれの平均値、1インチ当り530グラムおよび41オンスから逸脱しないことが分かった。しかしながら、剪断保圧時間により示されるように、凝集強さは、PH4における2時間からPH10における141時間に劇的に改良された。

【0055】例3 重合体Cを、重合体Aと同様の仕方で、457.5グラムの水、16.4グラムのドデシルベンゼンスルホン酸ナトリウムの23%溶液、1181.4グラムの2ーエチルヘキシルアクリレート、416グラムのメチルアクリレート、33.3グラムのアクリル酸および33.3グラムのアセトアセトキシエチルメタクリレートを含有する単量体混合物を用いて製造した。

【0056】結果として生じるラテックスを、4、5、 6、7、8、9および10のPH値を達成するために、 アンモニア水で処理し、次に試料を平衡させた。24時 間後、各試料のPHを再測定した。その結果を表1に要 約する。高PHにするようにした試料は、AAEMのエ ナミンの形成におけるアンモニア消費に一致する、PH のかなりの低下を示すことが分かった。ラテックス重合 体を、次に、注型し、上記のように試験した。結果を表 2に記載する。粘着性および剥離は、全範囲のPHにわ たり、それぞれの平均値、1インチ当り340グラムお よび21オンスから逸脱しないことが分かった。凝集強 さにおける変化は、剪断保圧時間により示されるよう に、米国特許第4,759,983号におけるのと同じ く、この場合に用いられた試験方法がPH変化の効果を 区別することができないので、この重合体のために容易 に測定できなかった。

【表1】

	<u>単量体,%</u>	出発 PH	最終 PH
重合体A	93.2BA; 1.8MAA; 5AAEN;	4	4.0
	連鎖移動剤-0.05n-DDM	5	5.0
		6	5.9
		7	6.9
		8	7.1
		9	7.9
		10	10
重合体B	93.2BA;1.8MAA;5AAEM;	4	4.1
	連鎖移動剤-0.10n-DDM	5	5.0
		6	6.0
		7	6.5
		. 8	7.2
		9	7.8
		10	9.6
重合体C	71 2-EHA;25MA;2AA;	4	4.0
	2AAEM	5	5.1
		6	6.0
		7	6.9
		8	7.5
		9	8.1
		10	9.6

【表2】

<u>表 2</u>						
	出発 PH	粘着性	剥離	剪断		
重合体 A	4	660	42	4.0		
	5 .	440	36	3.8		
	6	610	40	7.3		
	7	590	45	6.1		
	8	560	39	12.4		
	9	450	36	45.1		
	10	440	26	53.7		
重合体B	4	530	41	2.3		
	5	540	39	4.1		
	6	610	41	14.6		
	7	540	38	33.8		
	8	500	42	72.1		
	9	490	41	106.5		
	10	530	48	141.8		
重合体C	. 4	340	21	48.3		
	. 5	360	22	>;400		
·	6	330	19	>;400		
	7	360	14	>;400		
	8	330	17	>;400		
	9	360	15	>;400		
	10	320	17	>;400		

フロントページの続き

(72)発明者 ダニエル アーサー ボアス アメリカ合衆国ペンシルバニア州ウォーミ ンスター, スターブリッジ ドライブ 1275