Precalculus Logarithm definition

Todor Milev

2019

• Suppose a > 0, $a \neq 1$.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.
- Therefore f has an inverse function, f^{-1} .

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then f is either increasing or decreasing.
- Therefore f is one-to-one.
- Therefore f has an inverse function, f^{-1} .

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
- Then *f* is either increasing or decreasing.
- Therefore *f* is one-to-one.
- Therefore f has an inverse function, f^{-1} .
- The graph shows $y = a^x$ for a > 1.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
 - Then f is either increasing or decreasing.
 - Therefore f is one-to-one.
- $y = \log_a x_{\bullet}$ Therefore f has an inverse function, f^{-1} .
 - The graph shows $y = a^x$ for a > 1.
 - The graph of $y = \log_a x$ is the reflection of this in the line y = x.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$