

Дисциплина: Математика Специальность:/

80200

Утверждено заседанием кафедры ОмТДС

ЭкзАменационный билет №1

- 1. Электростанция обслуживает сеть на 5600 электроламп, вероятность включения которых вечером равна 0,8. Оцените вероятность того, что число ламп, включенных в сеть сегодня вечером, отличается от своего математического ожидания более чем на 93 (по абсолютной величине).
- 2. Число поврежденных стеклянных изделий в одном контейнере имеет показательное распределение

$$f(x_i; \lambda) = \lambda e^{-\lambda x_i}$$
.

Эмпирическое распределение этой случайной величины по данным n=483обследований контейнеров имеет вид

$$x_i$$
 0 1 2 3 4 5 6 7 8 n_i 241 121 61 30 15 8 4 2 1

Найдите методом наибольшего правдоподобия точечную оценку неизвестного параметра распределения.

Специальность: / 8020

Утверждено заседанием кафедры ОмТДС

(да карел

ЭкзАменационный билет №2

- 1. Рафаэль и Донателло условились встретиться в определенном месте между 13:00 и 16:00. Каждый из них может прийти в любое время в течение указанного промежутка и ждет второго некоторое время. Рафаэль ждет 40 минут, после чего уходит; Донателло ждет 50 минут, после чего уходит. В 16:00 любой из них уходит, сколько бы до этого он ни ждал. Найдите вероятность того, что встреча состоится в первые полчаса.
 - **2.** Случайная величина X распределена по биномиальному закону

$$P(x_i; p) = C_{10}^{x_i} \cdot p^{x_i} \cdot (1 - p)^{10 - x_i},$$

причем известно, что

$$\mu_2^* = 1.6.$$

Найдите **методом моментов** точечную оценку неизвестного параметра этого распределения.

беподавателі

Специальность: / 8020

Утверждено заседанием кафедры ОмТДС

(зак кафедрой)

ЭкзАменационный билет №3

1. Случайная величина X распределена по закону Пуассона

$$P(x_i; \lambda) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!},$$

причем известно, что

$$\nu_1^* = 1.$$

Найдите методом моментов точечную оценку неизвестного параметра этого распределения.

2. Вася и Петя условились встретиться в определенном месте между 6:00 и 9:00. Каждый из них может прийти в любое время в течение указанного промежутка и ждет второго некоторое время. Вася ждет 70 минут, после чего уходит; Петя ждет 60 минут, после чего уходит. В 9:00 любой из них уходит, сколько бы до этого он ни ждал. Найдите вероятность того, что встреча произойдет не ранее чем без четверти 9:00.

Дисциплина: Специальность:/ Математика

Утверждено заседанием кафедры ОмТДС

ЭкзАменационный билет №4

1. Найдите математическое ожидание, дисперсию и вероятность P(X > a/2)непрерывной случайной величины с плотностью вероятностей f(x), заданной графически¹.

2. В течение времени t экслуатируются 470 приборов. Каждый прибор имеет надежность 0,5 и выходит из строя независимо от других. Оцените вероятность того, что в течение указанного времени выйдут из строя от 201 до 269 приборов.

¹график может быть составлен лишь из участков прямых и парабол.

Специальность:/ 80200

кафедры ОмТДС

Утверждено заседанием

ЭкзАменационный билет №5

1. Катя и Полина условились встретиться в определенном месте между 1:00 и 2:00. Каждый из них может прийти в любое время в течение указанного промежутка и ждет второго некоторое время. Катя ждет 40 минут, после чего уходит; Полина ждет 30 минут, после чего уходит. В 2:00 любой из них уходит, сколько бы до этого он ни ждал. Найдите вероятность того, что встреча состоится в последние полчаса.

2. Среднее значение длины детали $235 \, \text{см}$, а дисперсия — 223. Оцените вероятность того, что случайно взятая деталь окажется по длине не менее 176 и не более 294 см.

Специальность: 80200

Утверждено заседанием кафедры ОмТДС

(преподаватель) (зар кафедрой)

ЭкзАменационный билет №6

1. Число нестандартных изделий в партии имеет **биномиальное распределение**

$$P(x_i; p) = C_{10}^{x_i} \cdot p^{x_i} \cdot (1-p)^{10-x_i}.$$

Эмпирическое распределение этого числа по данным обследования n=340 партий имеет вид

$$x_i$$
 2 3 4 5 6 7 8 9 10 n_i 1 4 15 40 73 89 74 36 8

Найдите **методом моментов** точечную оценку неизвестного параметра распределения.

2. Вероятность того, что акции, переданные на депозит, будут востребованы, равна 0.06. Оцените вероятность того, что среди 530 клиентов от 12 до 52 востребуют свои акции.

Дисциплина: Математика Специальность:/

80200

Утверждено заседанием кафедры ОмТДС

Экзаменационный билет №7

1. Число поврежденных стеклянных изделий в одном контейнере имеет распределение Пуассона

$$P(x_i; \lambda) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}.$$

Эмпирическое распределение этой случайной величины по данным n=260обследований контейнеров имеет вид

$$x_i$$
 0 1 2 3 4 5 6 7 8 n_i 16 44 63 58 40 23 11 4 1

Найдите методом наибольшего правдоподобия точечную оценку неизвестного параметра распределения.

- 2. В альбоме 7 чистых и 5 гашеных марок. Из альбома изымаются 2 наудачу извлеченные марки. После этого из альбома вновь наудачу извлекаются 3 марки.
 - а) Найти вероятность того, что эти марки чистые.
- б) Известно, что эти 3 марки чистые; найти вероятность того, что первоначально изъятые 2 марки — гашеные.

Специальность: у 8020

Утверждено заседанием кафедры ОмТДС

(заі кафелрой)

ЭкзАменационный билет №8

1. Экзаменатор задает студенту вопросы до тех пор, пока не получит неверный ответ, но не более 4 вопросов. Вероятность того, что студент верно ответит на первый вопрос, равна 1/9 и с каждым последующим вопросом увеличивается на 1/9. Случайная величина X — число вопросов, заданных студенту. Найдите для этой случайной величины:

- 1) ряд распределения (и постройте полигон);
- 2) функцию распределения (и постройте ее график);
- 3) математическое ожидание;
- 4) дисперсию и среднее квадратическое отклонение.

2. Вероятность сдачи в срок всех экзаменов студентом университета равна 0,07. Оцените вероятность того, что среди 6700 студентов число сдавших в срок все экзамены отличается от своего математического ожидания более чем на 39.

Дисциплина: Специальность:/

Математика

Утверждено заседанием

кафедры ОмТДС

ЭкзАменационный билет №9

- 1. Игральная кость подбрасывается до выпадения двойки, но не более четырех раз. Случайная величина X — количество подбрасываний. Найдите для этой случайной величины:
 - 1) ряд распределения (и постройте полигон);
 - 2) функцию распределения (и постройте ее график);
 - 3) математическое ожидание;
 - 4) дисперсию и среднее квадратическое отклонение.
- **2.** Найдите математическое ожидание, дисперсию и вероятность P(X > a/2)непрерывной случайной величины с плотностью вероятностей f(x), заданной графически².

²график может быть составлен лишь из участков прямых и парабол.

Дисциплина: Математика Специальность: 80200

Утверждено заседанием кафедры ОмТДС

(заркафедрой)

Экзаменационный билет №10

1. Случайная величина X имеет равномерное распределение

$$f(x_i; a, b) = \frac{1}{b-a}$$
 при $x \in [a; b],$

причем известны следующие эмпирические моменты этого распределения:

$$\nu_1^* = 23, \quad \nu_2^* = 597.96$$

Найдите **методом моментов** точечную оценку неизвестных параметров этого распределения.

2. Число букв «Ъ» в абзаце текста имеет биномиальное распределение

$$P(x_i; p) = C_{10}^{x_i} \cdot x_i \cdot (1-p)^{10-x_i}.$$

Эмпирическое распределение этой случайной величины по данным n=220 исследованных абзацев имеет вид

$$x_i$$
 0 1 2 3 4 n_i 70 85 47 15 3

Найдите методом наибольшего правдоподобия точечную оценку неизвестного параметра распределения.

Дисциплина: Математика Специальность:/

Утверждено заседанием кафедры ОмТДС

Экзаменационный билет №11

1. Число букв «Ъ» в абзаце текста имеет распределение «кратности звезд»

$$P(x_i; q) = (1 - q)^2 x_i q^{x_i - 1}.$$

Эмпирическое распределение этой случайной величины по данным n=101исследованных абзацев имеет вид

$$x_i$$
 1 2 3 4 5 6 7 n_i 53 25 12 6 3 1 1

Найдите методом наибольшего правдоподобия точечную оценку неизвестного параметра распределения.

2. Найдите математическое ожидание, дисперсию и вероятность P(X > a/2)непрерывной случайной величины с плотностью вероятностей f(x), заданной графически³.

³график может быть составлен лишь из участков прямых и парабол.

Дисциплина: Математика Специальность: 80200

Утверждено заседанием кафедры ОмТДС

Экзаменационный билет №12

- 1. В контрольной работе пять задач. Вероятность правильного решения студентом каждой задачи равна 40% и не зависит от правильности решения остальных. Случайная величина X количество правильно решенных задач. Найдите для этой случайной величины:
 - 1) ряд распределения (и постройте полигон);
 - 2) функцию распределения (и постройте ее график);
 - 3) математическое ожидание;
 - 4) дисперсию и среднее квадратическое отклонение.
- **2.** В первом ящике 7 черных и 7 белых шаров, а во втором 8 черных и 7 белых. Из первого ящика во второй перекладываются 2 наудачу извлеченных шара. После этого из второго ящика наудачу извлекается один шар.
 - а) Найти вероятность того, что он белый.
- б) Известно, что этот шар белый; найти вероятность того, что извлеченные из первого ящика шары белые.

Специальность: 8020

Утверждено заседанием кафедры ОмТДС

Экзаменационный билет №13

1. Число поврежденных стеклянных изделий в одном контейнере имеет геометрическое распределение

$$P(x_i; p) = p(1-p)^{x_i-1}.$$

Эмпирическое распределение этой случайной величины по данным n=150 обследований контейнеров имеет вид

$$x_i$$
 1 2 3 4 5 6 n_i 94 35 13 5 2 1

Найдите методом наибольшего правдоподобия точечную оценку неизвестного параметра распределения.

2. В среднем 7% работоспособного населения некоторого региона — безработные. Оцените вероятность того, что уровень безработицы среди обследованных 5200 работоспособных жителей города будет в пределах от 6% до 8%.

Специальность: у 8020

Утверждено заседанием кафедры ОмТДС

реподаватель

Экзаменационный билет №14

- 1. Стрелок попадает в цель из пистолета с вероятностью 0.8, а из снайперской винтовки с вероятностью 0.995. Найти вероятность того, что, сделав 1600 выстрелов по цели из каждого оружия, стрелок
 - а) промахнется из пистолета от 1254 до 1318 раз;
 - б) промахнется из пистолета ровно 1382 раз;
 - в) допустит более чем 4 промаха из снайперской винтовки.
 - **2.** Из генеральной совокупности извлечена выборка объема n=120:

Найдите для нее:

- 1) распределение частот (и постройте полигон частот);
- 2) эмпирическую функцию распределения (и постройте ее график);
- 3) несмещенную оценку генеральной средней;
- 4) смещенную оценку генеральной дисперсии.

Специальность: / 8020

Утверждено заседанием кафедры ОмТДС

(зар кафелрой)

ЭкзАменационный билет №15

1. Случайная величина X распределена по показательному закону

$$f(x_i; \lambda) = \lambda e^{-\lambda x_i},$$

причем известно, что

$$\nu_1^* = 1.52.$$

Найдите **методом моментов** точечную оценку неизвестного параметра этого распределения.

2. Степан Степаныч Пивораки и Хоттабыч условились встретиться в определенном месте между 11:00 и 12:00. Каждый из них может прийти в любое время в течение указанного промежутка и ждет второго некоторое время. Степан Степаныч Пивораки ждет 20 минут, после чего уходит; Хоттабыч ждет 30 минут, после чего уходит. В 12:00 любой из них уходит, сколько бы до этого он ни ждал. Найдите вероятность того, что Степан Степаныч Пивораки придет раньше, чем Хоттабыч.