H5: Optimization		
	5.1 introduction	
5.1.1 concept and notation		
concept of optimization	= problem of determining an argument for which a given function has an extreme value on a given domain	
	formally: given a function $f:\mathbb{R}^n \to \mathbb{R}$, and a set $S\subseteq \mathbb{R}^n$, we seek $\mathbf{x}^*\in S$ such that f attains a minimum on S at \mathbf{x}^* , i.e. $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$.	
objective function f	= the function f for which we want to find an extremum	
	> may be linear or non-linear, but is always differentiable	
feasible set S	= set of equations and inequalities which put constraints on f	
	> any x which satisfies the constraints is called a feasible point, ie x∈S	
	If $S = \mathbb{R}^n$, the problem is unconstrained	
types of optimization problems	A continuous opt. prob. has the form:	
	$\min_{\mathbf{x}} f(\mathbf{x})$ subject to $\mathbf{g}(\mathbf{x}) = 0$ and $\mathbf{h}(\mathbf{x}) \leq 0$	
	where $f:\mathbb{R}^n o\mathbb{R}$, $\mathbf{g}:\mathbb{R}^n o\mathbb{R}^m$ and $\mathbf{h}:\mathbb{R}^n o\mathbb{R}^p$.	
	is f, g and h are linear, the opt. problem is called linear programming if not, its nonlinear programming	
	5.2 optimality conditions	
5.2.1 unconstrained optimality con	ditions	
first-order necessary condition	We have a minimum in x* if:	
	$ abla f(\mathbf{x^*}) = 0$	
	> is a necessary condition, but doesn't prove x* is a minimum ie: it can be a maximum, minimum or saddle point	
second-order sufficient condition	Consider the Hessian: $\mathbf{H}_f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{bmatrix}$	
	Now: At a critical point \mathbf{x}^* , where $ abla f(\mathbf{x}) = 0$, if $\mathbf{H}_f(\mathbf{x}^*)$ is	
	 Positive definite, then x* is a minimum of f Negative definite, then x* is a maximum of f Indefinite, then x* is a saddle point of f Singular, then various pathological situations can occur 	
	5.3 optimization in one dimension	
unimodal function	= a function $f: \mathbb{R} \to \mathbb{R}$ on interval [a,b] for which there is a unique x^* AND for any $x_1, x_2: x_2 < x^*$ implies $f(x_1) > f(x_2)$ and $x_1 > x^*$ implies $f(x_1) < f(x_2)$	
	ie: f(x) is strictly increasing for x <x* and="" for="" increasing="" strictly="" x="">x*</x*>	

5.3.1 golden section search		
golden section search	For f unimodal on [a,b] For $x_1, x_2 \in [a,b]$ with $x_1 < x_2$ > compare the function values $f(x_1)$ and $f(x_2)$	
	 > exclude either [x₂,b] or [a,x₁]: - f(x₁) < f(x₂) → minimum on [a,x₁] - f(x₁) > f(x₂) → minimum on [x₂,b] > repeat this until you find the minimum 	
	To optimize this, each pair of points has the same relative position as the old pair > choose the this distance as τ = golden ratio = $(\sqrt(5)-1)/2\approx 0.618$ and 1- τ	
	>> will converge if function is unimodal within initial bracket	
5.3.2 successive parabolic search		
successive parabolic search	evaluate the function at three points > fit a parabola to the points > use the minimum of the parabola as a new approximate value of the minimum	
	>> algorithm isn't guaranteed to converge	
5.3.3 Newton's method		
Newton's method	Because of the Taylor expansion, the function is locally approximated by:	
	$f(x+h)\approx f(x)+f'(x)h+\frac{1}{2}f''(x)h^2$	
	thus the minimum is given by:	
	-f'(x)/f''(x),	
	use this ti find the minimum of the objective function in an iterative way	
	>> only converges if it started sufficiently close to the minimum > might converge to a maximum or inflection point	
	5.4 multidimensional unconstrained optimization	
5.4.1 direct search		
direct search	analogous to golden section search ie: objective function values are compared to one another > however isn't guaranteed to converge	
ex: Nelder and Mead	for a function f: ℝ ⁿ →ℝ, choose n+1 points that form a simplex ie: n+1 points that aren't colinear > generate a new point alon the straight line connecting the point with the highest function value and the centroid of the remaining n points > this new point replaces the other one >> repeat until converge	
5 4 2 steenest descent	// repeat until converge	
5.4.2 steepest descent	if we go in a direction $\nabla f(u)$ we go into a decrease direction	
steepest descent	if we go in a direction $-\nabla f(\mathbf{x})$ we go into a descending direction > thus for a fixed point \mathbf{x} and direction $\mathbf{s} = -\nabla f(\mathbf{x})$, define	
	$\phi(lpha) = f(\mathbf{x} + lpha \mathbf{s})$	
	> now we have a one-dimensional optimization problem > can be solved using previous methods	
	>> repeat until converge	

5.4.3 Newton's method	A
Newton's method	Approximate via Taylor:
	$f(\mathbf{x} + \mathbf{s}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \mathbf{H}_f(\mathbf{x}) \mathbf{s},$ (1)
	where $\mathbf{H}_f(\mathbf{x})$ is the <i>Hessian matrix</i> . This quadratic function in \mathbf{s} is minimized when
	$\mathbf{H}_f(\mathbf{x})\mathbf{s} = -\nabla f(\mathbf{x}). \tag{1}$
	> unreliable method, unless started close enough to the solution
5.4.4 quasi-Newton methods	
quasi-Newton methods	to lower calculations per iteration, consider using a general form:
	$\mathbf{x}_{k+1} = \mathbf{x}_k - lpha_k \mathbf{B}_k^{-1} abla f(\mathbf{x}_k)$
	with α_k a line search parameter \boldsymbol{B}_k some approximation of the Hessian matrix
5.4.5 secant updating methods	
secant updating methods	methods which preserve symmetry in the approximate Hessian and positive definitene > reduces work and storage by half + quasi-Newton step will be in descent
	>> most effective: BFGS (see course)
5.4.6 conjugate gradient method	
conjugate gradient method	= alternative to Newton's method that doesn't use second derivatives > doesn't even use an approximation to Hessian matrix > suitable for large matrices
	uses gradient, but avoids repeatedly searching in the same directions > modifies the new gradient at each step to remove components in previous directions > sequence of conjugate: $(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{H}_f \mathbf{y}$
	5.5 nonlinear least squares
nonlinear least squares problem	view the problem as a special case of nonlinear optimization > given data points (t_i, y_i) , $i=,,m$ we wish to find a vector $\mathbf{x} \in \mathbb{R}^n$ that best fits the model $f(t, \mathbf{x})$, where $f: \mathbb{R}^{n+1} \to \mathbb{R}$.
	> define the components of the residual function $\mathbf{r}:\mathbb{R}^{n} \to \mathbb{R}^{m}$ by: $r_i(\mathbf{x}) = y_i - f(t_i,\mathbf{x}), i=1,\ldots,m,$
	then we wish to minimize the function
	$\phi(\mathbf{x}) = \frac{1}{2}\mathbf{r}(\mathbf{x})^T\mathbf{r}(\mathbf{x})$
	Apply Newton's method: \mathbf{x}_k is an opproximate solution $> \mathbf{s}_k$ is given by the linear system:
	$\mathbf{H}_{\phi}(\mathbf{x}_k)\mathbf{s}_k = -\nabla\phi(\mathbf{x}_k)$
	where the gradient vector and Hessian matrix of ϕ are given by
	$ abla \phi(\mathbf{x}) = \mathbf{J}^T(\mathbf{x})\mathbf{r}(\mathbf{x})$
	and
	$\mathbf{H}_{\phi}(\mathbf{x}) = \mathbf{J}^T(\mathbf{x})\mathbf{J}(\mathbf{x}) + \sum_{i=1}^m r_i(\mathbf{x})\mathbf{H}_{r_i}(\mathbf{x})$
	in which $\mathbf{J}^T(\mathbf{x})$ is the Jacobian matrix of $\mathbf{r}(\mathbf{x})$, and $\mathbf{H}_{r_i}(\mathbf{x})$ denotes the Hessian matrix of the component function $r_i(\mathbf{x})$.
	The Newton step \mathbf{s}_k is thus given by the linear system
	$\Bigg(\mathbf{J}^T(\mathbf{x}_k)\mathbf{J}(\mathbf{x}_k) + \sum_{i=1}^m r_i(\mathbf{x}_k)\mathbf{H}_{r_i}(\mathbf{x}_k)\Bigg)\mathbf{s}_k = -\mathbf{J}^T(\mathbf{x}_k)\mathbf{r}(\mathbf{x}_k)$

5.5.1 Gauss-Newton method		
Gauss-Newton method	note that \mathbf{H}_{ri} is multiplied by the corresponding residual component r_i > should be really small at a solution > drop this term:	
	$\left(\mathbf{J}^T(\mathbf{x}_k)\mathbf{J}(\mathbf{x_k})\right)\mathbf{s}_k = -\mathbf{J}^T(\mathbf{x}_k)\mathbf{r}(\mathbf{x}_k)$	
	determines an approximate Newton step \mathbf{s}_k at each iteration.	
	Recognize this system as the normal equations for the mxn linear least squares problem: ${\bf J}({\bf x}_k){\bf s}_k\cong -{\bf r}({\bf x}_k)$	
	which can be solved more reliably by orthogonal factorization of $J(x_k)$ > next approximate solution is given by: $x_{k+1} = x_k + s_k$ > repeat until convergence	
5.5.2 Levenberg-Marquardt method		
Levenberg-Marquardt method	at each iteration, the linear system for the step $\mathbf{s_k}$ is of the form: $\left(\mathbf{J}^T(\mathbf{x}_k)\mathbf{J}(\mathbf{x}_k) + \mu_k\mathbf{I}\right)\mathbf{s}_k = -\mathbf{J}^T(\mathbf{x}_k)\mathbf{r}(\mathbf{x}_k)$	
	with μ_k a nonnegative scalar parameter chosen by some stategy > corresponding linear least squares problem is:	
	$egin{bmatrix} \mathbf{J}(\mathbf{x}_k) \ \sqrt{\mu_k} \ \mathbf{I} \end{bmatrix} \mathbf{s}_k \cong egin{bmatrix} -\mathbf{r}(\mathbf{x}_k) \ 0 \end{bmatrix}$	
	5.6 constrained optimization	
constrained optimization problem	= optimization problem for which the minimum is located outside the feasible set > solution occurs on the boundary of the feasible set	
	They can be linear and nonlinear and subdivided into two categories: • Equality constraints which are of the general form $\mathbf{g}(\mathbf{x}) = 0$ • Inequality constraints which are of the general form $\mathbf{h}(\mathbf{x}) \leq 0$ >> can be solved using Lagrange multipliers	
5.6.1 the trust-region constrained al	gorithm	
the trust-region constrained algorithm	The minimize function of <i>scipy.optimize</i> provides several algorithms for constrained min > one of those is the t-r constr. alg. which deals with constr. min. problems of the form: $\min_{\mathbf{x}} f(\mathbf{x})$	
	$egin{aligned} ext{subject to:} & \mathbf{c}_l \leq \mathbf{c}(\mathbf{x}) \leq \mathbf{c}_u \ & \mathbf{x}_l \leq \mathbf{x} \leq \mathbf{x}_u \end{aligned}$	
	When $c_{l,j}=c_{u,j}$ the method reads the j^{th} constraint as an equality constraint and deals with it accordingly. Beside that, one-sided constraints can be specified by setting the upper (u) or lower (l) bound to <code>np.inf</code> with the appropriate sign. As an illustration this method will be applied to the Rosenbrock example.	