Principy počítačů a operačních systémů

Operační systémy Souborové systémy

Zimní semestr 2011/2012

Poděkování

Při přípravě této prezentace jsem většinu materiálu převzal z prezentace

Yaghob, J. Základy operačních systémů. Katedra SW inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze, 2007.

Proč potřebujeme souborové systémy?

Kapacita

- v hlavní paměti je možné pracovat pouze s omezeným množstvím informace
 - soubor umožňuje uložit obrovské množství dat

Perzistence dat

- obsah paměti je při ukončení procesu ztracen
 - informace v souboru přetrvává (perzistence)

Sdílení/výměna dat

- sdílení informace mezi více procesy
 - k souboru může přistupovat více procesů současně
- přenos informace mezi počítači

Soubory – obecné koncepty

Co je to soubor?

 soubor je perzistentní úložiště nestrukturovaných nebo strukturovaných dat, umístěné v pomocné paměti

Identifikace

 soubor má jméno, aby bylo možné se na něj odkazovat po dobu, která značně přesahuje dobu běhu programu, který ho vytvořil

Abstrakce

- soubor je abstrakce, která umožňuje uložit informaci na disk a později ji přečíst
 - odstiňuje uživatele od podrobností práce s disky

4/34 - OS - souborv

Soubory z pohledu OS

Informace o souboru (metadata)

- jméno
- atributy
- struktura
- typ

Práce se soubory

- druhy přístupu
- operace

Jméno souboru

Identifikace

umožňuje lidskému uživateli přístup k jeho datům

Přesná pravidla pojmenování určuje OS

- délka jména
- malá vs. velká písmenka
- speciální znaky
- přípony a jejich význam

Atributy souboru

Ostatní informace

definují vlastnosti a uchovávají informace o souboru

Atributy opět určuje OS

- jméno, typ
- velikost, umístění na disku
- vlastník, přístupová práva
- čas vytvoření, zápisu, přístupu

Struktura souboru

Sekvence bajtů

Windows, UNIX

Sekvence záznamů

IBM mainframes

Strom

8/34 - OS - soubory NSWI120

Typ souboru

Běžné soubory

- obsahují data, z pohledu operačního systému se jedná pouze o pojmenovaný souvislý blok dat
- vnitřní struktura určena programem, který soubor vytváří

Adresáře

- systémové soubory vytvářející logickou strukturu souborového systému
- vnitřní struktura určena souborovým systémem

Speciální soubory

 znaková/bloková zařízení, roury, sockety, symbolické odkazy

9/34 - OS - soubory NSWI120 Z

Přístup k souborům

Sekvenční

- pouze pohyb vpřed, možný rewind
- umožňuje OS přednačítání

Přímý přístup

umožňuje měnit aktuální pozici

Mapování do paměti

využití stránkování

Soubory mapované do paměti

"pojmenovaná" virtuální paměť

- program přistupuje k souboru pomocí bežných instrukcí pro práci s pamětí
 - soubor "vypadá" v paměti jako pole bajtů
- ušetří se kopírování souboru po paměti

Problémy

- přesná velikost souboru
- zvětšování souboru
- velikost souborů

Operace se soubory

CREATE	vytvoření souboru (jméno)
DELETE	smazání souboru (jméno)
OPEN	otevření souboru (jméno)
CLOSE	zavření souboru (id)
READ	čtení ze souboru (id)
WRITE	zápis do souboru (id)
SEEK	posun aktuální pozice (id)

Adresáře

Proč potřebujeme adresáře?

- udržení organizační struktury souborů
 - dnes typicky hierarchický systém
 - počátečním elementem je kořenový adresář
- uchovávání atributů souboru

Adresář – zvláštní typ souboru

- vnitřní struktura definována OS
- speciální operace nad adresáři
 - hledání souboru, vypsání adresáře
 - přejmenování, vytvoření, smazání souboru

Cesty

Cesta k souboru

- pojmenování souboru v hierarchickém uspořádání
- absolutní cesta
 - cesta v grafu od kořene k souboru
- relativní cesta
 - cesta z aktuálního adresáře k souboru
 - pojmenování pro aktuální (.) a rodičovský (..) adresář

Aktuální adresář

- vlastnost procesu
- jména souborů, která nezačínají kořenem, se hledají vzhledem k aktuálnímu adresáři

Hierarchická struktura

Strom

- jednoznačné pojmenování
 - /B/D/g

Hierarchická struktura

DAG – Directed Acyclic Graph

- víceznačné pojmenování
 - /B/D/g nebo /C/g
- hierarchie neobsahuje cykly
- mazání souboru kdy smazat data?
 - nutno prozkoumat všechny rodičovské uzly (nedostatek informací)
 - použít reference counting na data souboru (obvyklé)

Hierarchická struktura

Obecný graf

- víceznačné pojmenování
 - /B/D/g nebo /B/D/q/C/g
- cykly vytváří problémy
 - při prohledávání
 - při mazání souborů (potřebuje garbage collection, reference counting nestačí)

17/34 - OS - soubory NSWI120

Odkazy na soubory (links)

Hard link

- na jedna data souboru (nikoliv adresáře) se odkazuje z různých položek v (různých) adresářích
 - data mají více jmen
- souborový systém má DAG strukturu

Soft link (symbolický odkaz, symlink)

- speciální soubor obsahující jméno souboru/adresáře
 - při otevření se otevře soubor určený odkazem, při mazání se maže odkaz
- souborový systém má logicky strukturu obecného grafu bez problémů s mazáním

Implementace souborových systémů

Správa souborů

kde na disku jsou umístěna data uložená v souboru

Správa adresářů

- mapování jména na jeho binární identifikaci
- uložení atributů

Správa volného místa

které bloky jsou ještě volné

Implementace souborových systémů

Ukládání souboru na disk

- disky jsou organizovány po sektorech
- soubory se ukládají na disk po blocích
- velké bloky
 - rychlejší práce s diskem
 - nebezpečí velké vnitřní fragmentace
 - · průměrná velikost souboru ~1500B
- malé bloky
 - pomalejší práce s diskem
 - větší režie na informaci o volných blocích
 - větší řežie na informaci o umístění dat souboru

Uložení souborů na disku

Souvislá alokace

- souvislý sled bloků (run, extent)
- informace o uložení souboru sestává pouze z čísla prvního bloku
- lepší práce s diskem
- problém při hledání volného místa
- problém při zvětšování souborů

Run list

- seznam runů, ze kterých se skládá soubor
- umožňuje fragmentovat soubor odpadají problémy s hledáním volného místa a při zvětšování souborů

21/34 - OS - soubory NSWI120 Z

Uložení souborů na disku

Spojovaná alokace

- pospojování bloků použitých pro soubor
- modifikace FAT přemístění spojového seznamu do speciální oblasti disku

22/34 - OS - soubory NSWI

Uložení souborů na disku

Indexová alokace

UNIX a i-node

23/34 - OS - soubory NSWI120 2

Implementace adresářů

Záznamy pevné velikosti

FAT

Spojový seznam

- delší jména
- pomalé hledání

B-stromy

- rychlé hledání
- Win NT

NSWI120 ZS 2010/2011

24/34 - OS - soubory

Volné místo na disku

Obdoba správy paměti

- souvislý adresový prostor rozdělený do bloků
- struktury nutno přizpůsobit práci s diskem
 - co to znamená?

Bitmapa

NTFS, HPFS, NetWare

Spojový seznam volných bloků

UNIX, Ext (ne Ext2)

Příklady souborových systémů

NTFS

NTFS (Windows NT, ...)

Základní charakteristika

- v podstatě neomezená velikost systému (16 exaB)
- v podstatě neomezený počet souborů
- jména v UCS-2 (podmnožina UTF-16), max. 255 znaků
- libovolné atributy včetně přístupových práv
- vícenásobné streamy
- sparse files díry ve streamech
- šifrování od NTFS 5
- komprese
- automatická fault tolerance žurnálování, transakce
- hard linky, symbolické linky od NTFS 5
- adresáře jsou soubory s B-stromem s odkazy na soubory

Základní struktura

Oblast MFT (Master File Table)

- řídící struktury obsaženy ve speciálním souboru MFT
 - vyhrazeno cca 12% kapacity, MFT rozdělena na záznamy (1 KB)
- prvních 16 souborů je speciálních metasoubory
 - \$MFT sama MFT
 - \$MFTmirr kopie prvních 16 záznamů MFT
 - \$LogFile žurnál
 - \$AttrDef seznam std. atributů souboru na systému
 - \$Volume informace o systému
 - \$. kořenový adresář
 - \$Bitmap bitmapa volného místa

Oblast dat

Soubory

Pro každý soubor záznam v MFT

- počet odkazů
- příznaky
- seznam atributů (včetně streamů) jméno, typ, data
- "Data" souboru jsou taky stream s názvem :\$data
- přístup ke streamu je soubor:stream
- data rezidentní přímo v MFT
- data nerezidentní run list
- pokud pro popis dat nebo seznamu atributů nestačí základní záznam, tak se připojí další záznamy

Run list

VCN – virtual cluster number

od začátku souboru

LCN – logical cluster number

od začátku systému

Jeden run

velikost runu, VCN, LCN, odkaz na další run

NSWI120 ZS 2010/2011

30/34 - OS - soubory

Příklady souborových systémů

Ext2/Ext3

Ext2/Ext3 (Linux)

Základní charakteristika

- max. velikost souborového systému 16TiB
- jména max. 255 znaků
- rezervace volného místa pro vybraného uživatele
 - typicky root, ale může být zvolen jiný
- hard linky, symbolické linky
- prealokace po 8 souvislých blocích při zápisu, zbytek vrácen při zavření
- nezávislé žurnálování EXT3
 - Souborový systém rozumí transakci, ale nedělá žurnálování
 - několik transakcí je cachováno, a pak uloženo najednou do žurnálu jako složená transakce

32/34 - OS - soubory

Struktura na disku

Superblock Group Block Inode Inode Descriptor Bitmap Bitmap Table Data Blocks

Soubory

Inode

- reprezentuje (pouze) data souboru
- jméno souboru s číslem inode uloženo v adresáři

Několik pevných atributů

- UID, GID, velikost, různé časy, počet odkazů
- 12 přímých odkazů na bloky
- Jeden nepřímý, jeden dvojitě- a jeden trojitě-nepřímý odkaz

Rezervovaná inode (první volný je 11)

- EXT2_ROOT_INO kořenový adresář
- EXT2_BAD_INO seznam špatných bloků