Math 22 Workshop I 8 July 2010

- 1. Let A be a $m \times n$ matrix, let **b** and **b**' be vectors in \mathbf{R}^m and let c be a scalar. Prove the following statements.
 - (a) If $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}'$ are both consistent, then $A\mathbf{x} = \mathbf{b} + \mathbf{b}'$ is consistent.

ANS: By assumption there are vectors $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{R}^n$ such that $A\mathbf{x}_1 = \mathbf{b}$ and $A\mathbf{x}_2 = \mathbf{b}'$. If $\mathbf{x}_3 := \mathbf{x}_1 + \mathbf{x}_2$, then we have $A\mathbf{x}_3 = A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{b} + \mathbf{b}'$. Therefore $A\mathbf{x} = \mathbf{b} + \mathbf{b}'$ is consistent as claimed.

(b) If $A\mathbf{x} = \mathbf{b}$ is consistent, then so is $A\mathbf{x} = c\mathbf{b}$.

ANS: By assumption there is an $\mathbf{x}_1 \in \mathbf{R}^n$ such that $A\mathbf{x}_1 = \mathbf{b}$. If $\mathbf{x}_2 := c\mathbf{x}_1$, then we have $A\mathbf{x}_2 = A(c\mathbf{x}_1) = cA\mathbf{x}_1 = c\mathbf{b}$. Therefore $A\mathbf{x} = c\mathbf{b}$ is consistent.

- 2. Let A be a $m \times n$ matrix, let **u** and **v** be vectors in \mathbb{R}^n and let c be a scalar.
 - (a) If \mathbf{u} and \mathbf{v} are solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$, then so is $\mathbf{u} + \mathbf{v}$.

ANS: By assumption, $A\mathbf{u} = \mathbf{0}$ and $A\mathbf{v} = \mathbf{0}$. Therefore, $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. Therefore $\mathbf{u} + \mathbf{v}$ is a solution to $A\mathbf{x} = \mathbf{0}$ as required.

- (b) If **u** is a solution to A**x** = **0**, then c**u** is too.
- 3. A variation on problem 2 (with the same hypotheses).
 - (a) Is it true that **u** and **v** are solutions to $A\mathbf{x} = \mathbf{0}$ if and only if $\mathbf{u} + \mathbf{v}$ is?

ANS: This is false. Although we proved the " \Longrightarrow " direction in problem 2 (also called the "only if" direction), the converse is false. *For example*, suppose that **u** is a solution to the non-homogeneous system $A\mathbf{x} = \mathbf{b}$ (so that $\mathbf{b} \neq \mathbf{0}$). Let $\mathbf{v} := -\mathbf{u}$. Then $\mathbf{u} + \mathbf{v} = \mathbf{0}$ is a solution to $A\mathbf{x} = \mathbf{0}$, but neither **u** nor **v** is. For a more specific example, let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

(b) Suppose that $c \neq 0$. Then is it true that **u** is a solution to $A\mathbf{x} = \mathbf{0}$ if and only if $c\mathbf{u}$ is?

ANS: Suppose that $A(c\mathbf{v}) = \mathbf{0}$. Then $cA\mathbf{v} = \mathbf{0}$. Since $c \neq 0$, we can divide both sides by c to obtain $A\mathbf{v} = \mathbf{0}$. We proved the other direction above. (COMMENT: your solution must mention where you use $c \neq 0$. The statement is false otherwise, so it is important to emphasize where the hypothesis is used.)

4. Let A be a $m \times n$ matrix. Show that if $\mathbf{u}_1, \dots, \mathbf{u}_p$ are all solutions to $A\mathbf{x} = \mathbf{0}$ and if $\mathbf{v} \in \mathrm{Span}(\{\mathbf{u}_1, \dots, \mathbf{u}_p\})$, then \mathbf{v} is a solution to $A\mathbf{x} = \mathbf{0}$.

ANS: If $v \in \text{Span}(\{\mathbf{u}_1, \dots, \mathbf{u}_p\})$, then there are scalars c_1, \dots, c_p such that $v = c_1\mathbf{u}_1 + \dots + c_p\mathbf{u}_p$. But then

$$A\mathbf{v} = A(c_1\mathbf{u}_1 + \dots + c_p\mathbf{u}_p)$$

$$= A(c_1\mathbf{u}_1) + \dots + A(c_p\mathbf{u}_p)$$

$$= c_1A\mathbf{u}_1 + \dots + c_pA\mathbf{u}_p$$

$$= c_1\mathbf{0} + \dots + c_p\mathbf{0}$$

$$= \mathbf{0}.$$

Therefore **v** is a solution to A**x** = **0** as claimed.

- 5. Prove or disprove the following statements.
 - (a) If the vectors \mathbf{u} and \mathbf{v} are solutions to $A\mathbf{x} = \mathbf{b}$, then so is $\mathbf{u} + \mathbf{v}$.

ANS: This is false. Let $\mathbf{u} = \mathbf{v} = \mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $A\mathbf{u} = A\mathbf{v} = \mathbf{b}$, but $A(\mathbf{u} + \mathbf{v}) = 2\mathbf{b} \neq \mathbf{b}$. In other words, $\mathbf{u} + \mathbf{v}$ is not a solution to $A\mathbf{x} = \mathbf{b}$.

(b) If A and B are 2×2 matrices and if $\mathbf{u} \in \mathbf{R}^2$, then $A(B\mathbf{u}) = B(A\mathbf{u})$.

ANS: This is false. Let $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then if $u = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, we have $A\mathbf{u} = \mathbf{0}$ so that $B(A\mathbf{u}) = \mathbf{0}$. On the other hand $B\mathbf{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, so that $A(B\mathbf{u}) = A\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Thus $A(B\mathbf{u}) \neq B(A\mathbf{u})$ in this case.