

Packet Tracer. Исследование методов реализации сети VLAN

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
S1	VLAN 99	172.17.99.31	255.255.255.0	_
S2	VLAN 99	172.17.99.32	255.255.255.0	_
S3	VLAN 99	172.17.99.33	255.255.255.0	_
PC1	NIC	172.17.10.21	255.255.255.0	172.17.10.1
PC2	NIC	172.17.20.22	255.255.255.0	172.17.20.1
PC3	NIC	172.17.30.23	255.255.255.0	172.17.30.1
PC4	NIC	172.17.10.24	255.255.255.0	172.17.10.1
PC5	NIC	172.17.20.25	255.255.255.0	172.17.20.1
PC6	NIC	172.17.30.26	255.255.255.0	172.17.30.1

PC7	NIC	172.17.10.27	255.255.255.0	172.17.10.1
PC8	NIC	172.17.20.28	255.255.255.0	172.17.20.1
PC9	NIC	172.17.30.29	255.255.255.0	172.17.30.1

Задачи

- Часть 1. Наблюдение за трафиком широковещательной рассылки в сети VLAN
- Часть 2. Наблюдение за трафиком широковещательной рассылки без сетей VLAN
- Часть 3. Вопросы на закрепление

Общие сведения

В этом упражнении необходимо отслеживать пересылку широковещательного трафика через коммутаторы при сконфигурированных и не сконфигурированных VLAN.

Часть 1: Наблюдение за трафиком широковещательной рассылки в сети VLAN

Шаг 1: Отправьте эхо-запрос от РС1 на РС6.

- а. Дождитесь, когда все индикаторы состояния каналов загорятся зеленым цветом. Для ускорения процесса нажмите кнопку **Fast Forward Time** (Ускорить), расположенную на нижней панели инструментов желтого цвета.
- b. Нажмите на вкладку **Simulation (Симулирование)** и используйте инструмент Add Simple PDU (**Добавить простой PDU**). Щелкните узел **PC1**, затем узел **PC6**.
- с. Нажмите на кнопку **Capture/Forward (Захват/Вперед)**, чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер переполнен) нажмите кнопку **View Previous Events** (Просмотреть предыдущие события).

d. Успешно ли выполнена проверка связи? Почему?

Нет, АРП запрос не выявил айпи владельца указанного в пду мак-адреса, потому что рассылал арп запрос исключительно по ВЛАН10, когда ПК6 находится во ВЛАН30.

e. Взгляните на Simulation Panel (Панель моделирования) и скажите, куда коммутатор **\$3** отправил пакет после того, как получил его?

S3 отправил пакет на ПК4

При нормальной эксплуатации, когда коммутатор получает широковещательный кадр на одном из своих портов, он пересылает кадр из всех портов. Обратите внимание, что коммутатор \$2 отправляет ARP-запрос из интерфейса Fa0/1 на коммутатор \$1. Также обратите внимание, что коммутатор \$3 отправляет ARP-запрос из интерфейса Fa0/11 на коммутатор \$4. Узлы PC1 и PC4 принадлежат сети VLAN 10. Узел PC6 принадлежит сети VLAN 30. Поскольку широковещательный трафик находится в пределах сети VLAN, узел PC6 не может получить ARP-запрос от узла PC1. Поскольку узел PC4 не является пунктом назначения, он отбрасывает ARP-запрос. Эхо-запрос от узла PC1 не удался, потому что PC1 не может получить ARP-ответ.

Шаг 2: Отправьте эхо-запрос от РС1 на РС4.

- а. Нажмите на кнопку **New (Создать)** под раскрывающейся вкладкой Scenario 0 (Сценарий 0). Теперь щелкните значок **Add Simple PDU** (Добавить простой PDU) в правой части Packet Tracer и с помощью утилиты ping проверьте связь компьютера **PC1** с **PC4**.
- b. Нажмите на кнопку **Capture/Forward (Захват/Вперед)**, чтобы перейти к следующему шагу. Понаблюдайте за прохождением ARP-запросов по сети. При появлении окна Buffer Full (Буфер переполнен) нажмите кнопку **View Previous Events** (Просмотреть предыдущие события)

с. Успешно ли выполнена проверка связи? Почему?

Пинг прошел т.к. устройства находятся в одном влане.

d. Изучите Simulation Panel (Панель моделирования). Почему коммутатор **S1**, получив пакет, пересылает его на узел **PC7**?

Потому что при АРП запросе пакет с запросом рассылается на все узлы в локальной сети

Часть 2: Наблюдение за трафиком широковещательной рассылки без сетей VLAN

Шаг 1: Очистите настройки на всех трех коммутаторах и удалите базу данных VLAN.

- а. Вернитесь в режим реального времени (**Realtime**).
- b. Удалите загрузочную конфигурацию на всех трех коммутаторах. Какая команда используется для удаления загрузочной конфигурации на коммутаторах?

erase startup-config

с. Где на коммутаторах хранится файл сети VLAN?

В флеш памяти

d. Удалите файл VLAN на всех трех коммутаторах. С помощью какой команды можно удалить файл сети VLAN на коммутаторах?

No vlan 99

Шаг 2: Перезагрузите коммутаторы.

Чтобы сбросить все настройки коммутаторов, используйте команду **reload** в исполнительском режиме EXEC. Дождитесь, когда весь канал загорится зеленым цветом. Для ускорения процесса нажмите кнопку **Fast Forward Time** (Ускорить), расположенную на нижней панели инструментов желтого цвета.

Шаг 3: Нажмите кнопку Capture/Forward (Захват/Вперед), чтобы отправить ARP-запросы и проверить связь с помощью утилиты ping.

- а. После того как коммутаторы перезагрузятся, а индикатор состояния канала загорится зеленым, сеть будет готова к пересылке ваших ARP- и эхо-запросов.
- b. Выберите **Scenario 0 (Сценарий 0)** в раскрывающейся вкладке, чтобы вернуться к сценарию 0.
- с. В режиме Simulation (Моделирование) нажмите на кнопку Capture/Forward (Захват/Вперед), чтобы перейти к следующему шагу. Обратите внимание, что теперь коммутаторы пересылают ARP-запросы из всех портов, кроме порта, на котором ARP-запрос был получен. Подобное поведение коммутаторов демонстрирует, каким образом сети VLAN могут повышать производительность сети. Широковещательный трафик находится в пределах каждой сети VLAN. При появлении окна Buffer Full (Буфер заполнен) нажмите на кнопку View Previous Events (Просмотреть предыдущие события).

Часть 3: Вопросы на закрепление

- 1. Если компьютер в сети VLAN 10 отправляет широковещательное сообщение, какие устройства его получат?
 - PC1, PC7, PC4 хосты из VLAN10, один из них не получит т.к. он и отправляет. Запрос пройдет при этом через S1, S2, S3
- 2. Если компьютер в сети VLAN 20 отправляет широковещательное сообщение, какие устройства его получат?
 - PC2, PC8, PC5 хосты из VLAN20, один из них не получит т.к. он и отправляет. Запрос пройдет при этом через S1, S2, S3
- 3. Если компьютер в сети VLAN 30 отправляет широковещательное сообщение, какие устройства его получат?
- 4. PC3, PC9, PC6 хосты из VLAN30, один из них не получит т.к. он и отправляет. Запрос пройдет при этом через S1, S2, S3
- 4. Что происходит с кадром, отправленным с компьютера сети VLAN 10 на компьютер сети VLAN 30?

Он не попадет на устройство из-за того, что стандартные коммутаторы не выполняют сетевую функцию. Если же настроить коммутатор, то он будет осуществлять межвлановскую маршрутизацию

- 5. Что представляют собой коллизионные домены на коммутаторе применительно к портам? Это единый влан
- 6. Что представляют собой широковещательные домены на коммутаторе применительно к портам?

Единый влан

Предлагаемый способ подсчета баллов

Раздел упражнений	Вопрос	Максимальное количество баллов	Заработанные баллы
Часть 1. Наблюдение за трафиком	Шаг 1d	6	
	Шаг 1е	5	
	Шаг 2с	6	
	Шаг 2d	5	
Часть 1. Всего		22	
Часть 2. Наблюдение за трафиком	Шаг 1b	6	
широковещательной рассылки без сетей VLAN	Шаг 1с	6	
VLAIN	Шаг 1d	6	
Часть 2. Всего		18	
Часть 3. Вопросы на закрепление	1	10	
закрепление	2	10	
	3	10	
	4	10	
	5	10	
	6	10	
Часть 3. Всего		60	
Оби	цее число баллов	100	