NCEA Level 3 Calculus (Differentiation)

14. Differentiation Revision

Halfway there! Let's do a bit of revision.

Questions

- 1. A True or False:
 - (a) If a function f is continuous around a point, then it is differentiable at that point.
 - (b) If a function f is differentiable around a point, then it is continuous at that point.
 - (c) If f and g are differentiable, then $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$.
 - (d) If f and g are differentiable, then $\frac{d}{dx}[f(x)g(x)] = f'(x)g'(x)$.
 - (e) $\frac{d}{dx}(x+3)^2 = 2(x+3)$.
 - (f) $\frac{d}{dx}(x^2+3)^2=2(x^2+3)$.
 - (g) $\frac{\mathrm{d}}{\mathrm{d}x} \tan^2 x = \frac{\mathrm{d}}{\mathrm{d}x} \sec^2 x$.
 - (h) $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$.
 - (i) If $A = \pi r^2$, then $dA\pi = 0$.
- 2. $\boxed{\mathbf{A}}$ Find $\frac{\mathrm{d}y}{\mathrm{d}t}$ in each case.

(a)
$$y = t^2 + 3t$$

(a)
$$y = t + 5$$

(b) $y = \frac{4-t}{3+t}$

(c)
$$y = (t^4 - 3t^2 + 5)^2$$

(d)
$$y = (t+1)^{2017}$$

(e)
$$y = \frac{3t + 4t^2}{\sqrt{t}}$$

(f)
$$y = \sin 2t$$

(g)
$$y = \sin^2 t$$

(h)
$$y = \sin t^2$$

(i)
$$y = \cos \tan t$$

(j)
$$y = (27t+3)^{2017}(t^2 - \sqrt{t})^{2020}$$

$$(\mathbf{k}) \ y = \left(t + \frac{1}{t^2}\right)^{\sqrt{7}}$$

- 3. $\boxed{\mathsf{M}}$ Find the equation of the tangent line to the curve $\sqrt{1+4\sin x}$ at the point (0,1).
- 4. $\boxed{\mathbf{A}}$ Find y'' in each case:

(a)
$$y = 3x^3 + 2x + \sqrt{2x} + \frac{1}{x^2}$$

(b)
$$y = e^{2x}$$

(c)
$$y = \sqrt{4t+1}$$

(d)
$$y = 4\sin^2 x$$

- 5. $\boxed{\mathbf{M}}$ Find the *n*th derivative of e^{2x} (where *n* is a natural (counting) number).
- 6. E The height of a projectile after t seconds can be modelled by h = 3t(t 10). At what time is the height of the projectile at a maximum? Use the second-derivative test to prove that you have found a maximum.

- 7. $\boxed{\mathbf{M}}$ Find f'(x) if:
 - (a) $f(x) = \frac{1}{3} \ln \left| \frac{x-1}{x+2} \right| + 3$
 - (b) $f(x) = 2 \ln \left| \frac{x-2}{x} \right| + \frac{2}{x} + 7$
- 8. $\boxed{\mathbf{M}}$ In each case, find y' in terms of x and y:
 - (a) $x^2 + y^2 = 4$
 - (b) $x^2 + 4xy + y^2 = 13$
 - (c) $xy^4 + x^2y = x + 3y$
 - (d) $x^2 \cos y + \sin 2y = xy$
- 9. M By differentiating the double-angle formula for cosine,

$$\cos 2x = \cos^2 x - \sin^2 x,$$

obtain the double-angle formula for the sine function.

- 10. $\boxed{\mathbf{M}}$ Find f' in terms of g' if $f(x) = x^2 g(x)$.
- 11. M The volume of a cube is increasing at a rate of $10 \,\mathrm{cm^3 \,min^{-1}}$. How fast is the surface area increasing when the length of an edge is $30 \,\mathrm{cm}$?
- 12. $\boxed{\mathbf{M}}$ The volume of a right circular cone is $V = \frac{1}{3}\pi r^2 h$.
 - (a) Find the rate of change of volume with respect to height if the radius is constant.
 - (b) Find the rate of change of volume with respect to radius if the height is constant.
- 13. M A particle moves along a horizontal line such that its coordinate at time t is $x = \sqrt{b^2 + c^2 t^2}$ $(t \ge 0)$, where b and c are positive constants. Find its velocity and acceleration functions.
- 14. M From first principles, show that:
 - (a) $\frac{\mathrm{d}}{\mathrm{d}x}x^2 = 2x$
 - (b) $\frac{d}{dx}[2x^3 + 2x] = 6x^2 + 2$
- 15. E Find the derivative of $f(x) = \frac{4}{\sqrt{1-x}}$ from first principles.
- 16. $\boxed{\mathbf{E}}$ Each limit represents the derivative of a function f at a point a. Identify each function and point.
 - (a) $\lim_{h\to 0} \frac{\cos(\pi+h)+1}{h}$
 - (b) $\lim_{t\to 1} \frac{t^4+t-2}{t-1}$
- 17. M Find the best linear approximation to $f(x) = \sqrt{25 x^2}$ near x = 3.
- 18. $\boxed{\mathbb{M}}$ A balloon is rising at a constant speed of $2\,\mathrm{m\,s^{-1}}$. A girl is cycling along a straight road at a speed of $5\,\mathrm{m\,s^{-1}}$. When she passes under the balloon, it is 15 m above her. How fast is the distance between the person and the balloon increasing 3 seconds later?
- 19. E On a straight shoreline there is a tree and exactly opposite it, 100 m away in the sea, stands a lighthouse. A strong and thin spotlight on its top revolves at the rate of one revolution per 4 seconds, its light creating a running light spot on the shore. You stand on the shore 100 m from the tree. How fast does this spot move when it goes past you?
- 20. M Find $\frac{dy}{dx}$ in terms of t for the following parametrically-defined curves.
 - (a) $t \mapsto (1 + e^{2t}, e^t)$

- (b) $x = \tan t$, $y = \sec 2t$
- (c) $x = \frac{t^2 10}{t^2 + 1}$, y = tx
- 21. E Find the lowest point on the curve $\gamma: t \mapsto (t^3 3t, t^2 + t + 1)$. Prove you have found a minimum.
- 22. $\boxed{\mathtt{M}}$ Find the acceleration of a particle at time t if its displacement from the origin at time t is $-t^6+5t^4+\sin t$.
- 23. E A piece of wire 10 m long is cut into two pieces; one is bent into a square and the other into a circle. Where should the wire be cut to ensure the total area of the enclosed shapes is (a) a minimum and (b) a maximum?
- 24. $\boxed{\mathtt{M}}$ A cone is made by cutting a sector out of a circle of paper of radius R and gluing together the edges of the cut. Find the maximum possible volume of the cone.
- 25. \blacksquare Find the dimensions of the rectangle of largest area that can be inscribed in a circle of radius r.
- 26. E At which points does the 'bouncing wagon' curve $2y^3 + y^2 y^5 = x^4 2x^3 + x^2$ have horizontal tangents?
- 27. E Salt forms a cone as it falls from a conveyor belt. The slant of the cone forms an angle of 30° with the horizontal. The belt delivers salt at a rate of 2 m³ per minute. When the radius of the cone is ten metres, what is the rate of increase of the slant height (measured along the surface of the cone)?
- 28. Suppose we take a circle of radius r, and inscribe within it a triangle such that each corner of the triangle is located on the circle. What is the maximum possible area of the triangle?
- 29. \blacksquare Take derivatives of the following functions with respect to x:
 - (a) $f(x) = 2^x$
 - (b) $g(x) = \log_{\log x} x$
- 30. Scholarship 2017: For $y = x^{(x^x)}$, find $\frac{dy}{dx}$ when x = 2.
- 31. Scholarship 2015 (adapted): A car is driving along a road shaped like a parabola at night. The parabola has a vertex at the origin, and the car starts at a point 100 m west and 100 m north of the origin.
 - (a) Write an equation modelling the road as a parabola.
 - (b) Find the general equation for the tangent line to the parabola at some point (x_0, y_0) , and substitute into it the parabola equation to obtain an equation only in x, x_0 , and y_0 .
 - (c) Suppose there is a statue of the Roman emperor Augustus located 100 m east and 50 m north of the origin. Write the equation for the tangent line of the parabola passing through the statue (so that it only depends on a value x on the parabola).
 - (d) Hence find the single point (x, y) on the road where the headlights of the car illuminate the statue.
- 32. O (Difficult) Find the two points on the curve $y = x^4 2x^2 x$ that have a common tangent line.
- 33. S (Difficult) A cone of radius r centimetres and height h centimetres is lowered point first at a rate of 1 cm^2 into a cylinder of radius R centimetres that is partially filled with water. How fast is the water level rising at the instant that the cone is fully submerged?