Importing dataset and libraries In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import fetch_california_housing # Load dataset housing = fetch_california_housing(as_frame=True) df = housing.frame df.head() MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude MedHouseVal 322.0 2.555556 37.88 -122.23 **0** 8.3252 41.0 6.984127 1.023810 4.526 21.0 6.238137 0.971880 1 8.3014 2401.0 2.109842 37.86 -122.22 3.585 **2** 7.2574 52.0 8.288136 1.073446 496.0 2.802260 37.85 -122.24 3.521 **3** 5.6431 52.0 5.817352 1.073059 558.0 2.547945 37.85 -122.25 3.413 **4** 3.8462 52.0 6.281853 1.081081 565.0 2.181467 37.85 -122.25 3.422 EDA on dataset In [2]: df.info() df.describe() <class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 9 columns): Non-Null Count Dtype # Column _____ 20640 non-null float64 0 MedInc 20640 non-null float64 1 HouseAge 2 AveRooms 20640 non-null float64 20640 non-null float64 3 AveBedrms 4 Population 20640 non-null float64 20640 non-null float64 5 AveOccup 20640 non-null float64 6 Latitude 7 Longitude 20640 non-null float64 8 MedHouseVal 20640 non-null float64 dtypes: float64(9) memory usage: 1.4 MB Longitude MedHouseVal AveRooms AveOccup Latitude MedInc HouseAge AveBedrms Population count 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000 20640.000000 3.870671 28.639486 5.429000 1.096675 1425.476744 3.070655 35.631861 -119.569704 2.068558 mean 0.473911 1132.462122 1.899822 12.585558 2.474173 10.386050 2.135952 2.003532 1.153956 std 0.499900 1.000000 0.846154 0.333333 3.000000 0.692308 32.540000 -124.350000 0.149990 2.563400 18.000000 4.440716 787.000000 2.429741 -121.800000 1.196000 25% 1.006079 33.930000

52.000000 141.909091 34.066667 35682.000000 1243.333333 41.950000 -114.310000 In [3]: plt.figure(figsize=(10,6)) sns.heatmap(df.corr(), annot=True, cmap='coolwarm') plt.show() 0.33 -0.062 0.0048 0.019 -0.08 -0.015 - 0.75 -0.15 -0.078 -0.3 0.013 0.011 -0.11 0.11 HouseAge - -0.12 - 0.50 AveRooms --0.072 -0.0049 0.11 -0.028 0.15 AveBedrms - -0.062 -0.078 -0.066 -0.0062 0.07 0.013 -0.047 - 0.25 Population - 0.0048 -0.3 -0.072 -0.066 0.07 -0.11 0.1 -0.025 - 0.00 AveOccup - 0.019 0.013 -0.0049 -0.0062 0.07 0.0024 0.0025 -0.024 -0.25 -0.14 Latitude - -0.08 0.011 0.11 0.07 -0.11 0.0024 -0.92 - -0.50 -0.046 Longitude - -0.015 -0.11 -0.028 0.013 0.1 0.0025 -0.75 -0.047 -0.025 -0.024 -0.14 -0.046 MedHouseVal -0.15

1.048780 1166.000000

1.099526 1725.000000

2.818116

3.282261

-118.490000

-118.010000

1.797000

2.647250

34.260000

37.710000

Data Pre-processing

3.534800

4.743250

75%

29.000000

37.000000

5.229129

6.052381

There doesn't seem to be any null values that need to be imputed

X = pd.DataFrame(scaled_features, columns=features.columns)

y = df['MedHouseVal'] Troip Toot colit

Model Training and saving

```
In [7]: import os
import joblib

from sklearn.linear_model import LinearRegression, Ridge
from sklearn.tree import DecisionTreeRegressor
from sklearn.neural_nestwork import M.P.P.E.gressor
from xgboost import XGERegressor

* creating models directory
model_dir = "models"
os.makedirs(model_dir, exist_ok=True)

In [8]: models = {
    "LinearEmpression": LinearEmpression().
```

model_dir = "weddle"
os.makedirsimodal_dir, exist_ok=True)

in (8): models = {
 "!ineasRegression": LimeasRegressor(random_state=42),
 "becisionIrse": DecisionTree": DecisionTree": McDangressor(hidnen layer sizess(64, 32), max iter=1000, random_state=42),
 "Noosoot": XSoogressor(m_cestimators=100, random_state=42),
 "Ridge": Ridge(alpha=1.0)
}

Fitting mean mean
for name, model in models.items():
 print(!*Training inmee)...*)
 model.ifx(X_truin, y_truin, y_t

Training DecisionTree...

DecisionTree model saved as DecisionTree.pkl

Training NeuralNetwork...

NeuralNetwork model saved as NeuralNetwork.pkl
Training XGBoost...

XGBoost model saved as XGBoost.pkl
Training Ridge

Training Ridge...
Ridge model saved as Ridge.pkl

```
In [9]: import json
        import numpy as np
       from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
        # Dictionary to hold evaluation metrics
        evaluation_results = {}
        def evaluate_model(name, model, X_test, y_test):
           preds = model.predict(X_test)
           rmse = float(np.sqrt(mean_squared_error(y_test, preds)))
            mae = float(mean_absolute_error(y_test, preds))
           r2 = float(r2_score(y_test, preds))
            # Storing metrics in dictionary
            evaluation_results[name] = {
               "RMSE": rmse,
                "MAE": mae,
                "R2": r2
        for name, model in models.items():
           evaluate_model(name, model, X_test, y_test)
        # Printing results
        for m_name, metrics in evaluation_results.items():
           print(m_name, metrics)
        # storing results in a json file
        json_file_path = "evaluation_results.json"
        with open(json_file_path, "w") as json_file:
           json.dump(evaluation_results, json_file, indent=4)
       print(f"Evaluation metrics successfully saved to {json_file_path}")
```

LinearRegression {'RMSE': 0.7455813830127762, 'MAE': 0.5332001304956565, 'R2': 0.575787706032451}
DecisionTree {'RMSE': 0.7030445773467542, 'MAE': 0.4537843265503876, 'R2': 0.6228111330554302}
NeuralNetwork {'RMSE': 0.5072218293125931, 'MAE': 0.3387485704888966, 'R2': 0.8036689396950109}
XGBoost {'RMSE': 0.4717943691423984, 'MAE': 0.30957335413783094, 'R2': 0.8301370561019205}
Ridge {'RMSE': 0.7455542909384607, 'MAE': 0.5331933646313114, 'R2': 0.5758185345441323}
Evaluation metrics successfully saved to evaluation_results.json

Insights

- XGBoost excels at handling non-linearity and often performs best on tabular data, but can be more complex to tune.
- Neural Networks capture complex relationships but require careful tuning and scaling.
 Linear/Ridge regressions provide quick, interpretable baselines, though they may struggle with non-linear patterns.

• Decision Trees can capture non-linearities but often overfit if hyperparameters aren't carefully managed.

In [10]: # Saving the scaler
 joblib.dump(scaler, f"{model_dir}/scaler.pkl")

Out[10]: ['models/scaler.pkl']