Introducción a la simulación

Fernando Oleo Blanco fernando.oleo@alu.comillas.edu

github.com/Irvise/Documents

31 de agosto de 2019

Información de la charla

Duración estimada: 2:30h ¡**Haremos una simulación!** Así que por favor, celeridad

Esta charla no tratará

- ANSYS ® o ningún software en específico
- Métodos numéricos ni principios de convergencia
- Funcionamiento de los simuladores ni sus fundamentos
- Análisis de sensibilidad ni optimizaciones de ningún tipo
- Mallado (meshing) de manera formal
- Diseño 3D, esto ya lo deberíais traer
- Puede que no de tiempo al caso práctico de post-procesado

Índice

- Qué es la simulación y qué se requiere
- Software de simulación comercial
 - Software de pago
 - Software libre/gratuito
- Los cinco principios de toda simulación
- Caso práctico, desarrollo de la teoría
 - Presentación y análisis
 - Geometría y grupos
 - Mallado (meshing)
 - Simulación
 - Post-procesado

Qué es la simulación y qué se requiere

Requisitos mínimos para simular

Entender muy, muy bien la física/ingeniería del problema

Los ordenadores no son tan inteligentes. Es un requisito indispensable entender muy bien lo aprendido en las clases. **Dadle valor a la ingeniería.**

Otros:

- Ganas. Los errores son constantes
- Leer la documentación. Hacer cursos/ver vídeos
- Práctica

¿Qué es la simulación?

Una simulación como su nombre indica, no es la realidad.

La simulación es una aproximación a la realidad

La calidad de la aproximación depende de la persona que la realice y de su trabajo; los conocimientos sobre la materia, el simulador y, sobretodo, la precisión que nosotros queramos darle.

Escala dimensional ¡y temporal! de la simulación I

Figura 1: Escala temporal y espacial de simulación. Fuente: LLNL

Escala dimensional jy temporal! de la simulación II

Figura 2: Otro ejemplo, esta vez, con software específico. Fuente: presentación de MATIX_P, CEA

Software de simulación comercial

Selección de software para la simulación

Solo dos comentarios:

¡Cuidado con las licencias!

Las licencias de los programas a los que os da acceso la universidad son de carácter educacional. Esto significa que no podéis hacer nada comercial con ese software.

Selección de software para la simulación

Solo dos comentarios:

¡Cuidado con las licencias!

Las licencias de los programas a los que os da acceso la universidad son de carácter educacional. Esto significa que no podéis hacer nada comercial con ese software.

Selección de software

Por lo general no tendréis que elegir el programa para simular, ya os vendrá dictado por la empresa o institución. Sin embargo, si es para uso propio u os toca elegir, **haced siempre un estudio del mercado.** A continuación os dejo una pequeña ayuda.

Algunos criterios de selección

- √ Que pueda simular lo que se desea
- √ Eficiente
- √ Flexible (el software libre gana claramente)
- ✓ Escalable. ¿Y si mañana quiero optimizar?
- ✓ Integración con otro software que pueda ser necesario (el software de pago es muy bueno en esto)
- √ Costes

Software de simulación comercial

Software de pago

Una pequeñísima selección

Los más conocidos:

- ANSYS ®
- NASTRAN (MSC) ®
- COMSOL Multiphysics ®
- Solid Edge (R)
- SolidWorks (R)
- Autodesk (R)
- Matlab (R)
- •

Otros interesantes...

- Simscale (R). ¡Servicio
 on-line!. Versión gratuita sin
 "restricciones". Link para ver
 capacidades
- Europlexus R
 Ultrafast-transients, thermal,
 fluid and mechanical coupling.
 Aimed towards research
- Cast 3M R
 Thermo-mechanical. Aimed towards research

Software de simulación comercial

Software libre/gratuito

Una pequeña selección

Si se desea ver un listado más grande, tengo un pequeño resumen hecho en *link*, bajo la sección de ingeniería y ciencias.

- FreeCAD. Que el nombre no os eche para atrás, trae de todo y para empezar vais más que sobrados. Tiene plug-ins para interactuar con OpenFOAM
- OpenFOAM. Uno de los CFDs más avanzados del mundo. Se usa especialmente en superordenadores e investigación
- Code_Aster. Simulador termo-mecánico, una bestia donde se hayan visto
- Code_Saturne. CFD
- ElmerFEM. Multyphysics
- }

Para terminar...

Una de las grandes ventajas del software libre, es que se puede ver y modificar el código. Para proyectos de gran complejidad o poco comunes, modificar el código es casi siempre esencial.

Documentación

Muchos de los programas, en especial los programas libres, tienen toneladas de literatura y ejemplos que pueden ser útiles tanto para su aprendizaje como para la resolución de casos de ingeniería. Como recomendación, mirad los informes de referencia de Code_Aster, ver secciones V2 o superior.

Los cinco principios de toda simulación

Los cinco principios de la simulación

- Análisis (ingenieril) del problema
- Creación de la geometría y grupos
- Mallado, meshing en inglés (FEA)
- Configuración de la simulación. Simulación
- Post-procesado

Los cinco principios de la simulación

- Análisis (ingenieril) del problema
- Creación de la geometría y grupos
- Mallado, meshing en inglés (FEA)
- Configuración de la simulación. Simulación
- Post-procesado

Todas son importantes

No os saltéis ninguna jamás. Especialmente el análisis y el post-procesado, que son las más olvidadas e importantes.

Cada principio requiere del resto, no se realiza uno sin tener claro el resto

Caso práctico, desarrollo de la teoría

Dinámica de la parte práctica

A continuación haremos un caso práctico "real". Usaremos el software SALOME-Meca para la simulación, *link para Windows*.

La dinámica del caso es la siguiente:

- 1. Se introduce la sección teórica
- 2. Se ven ejemplos y se comentan. ¡Participación obligatoria!
- 3. Vamos al programa y aplicamos lo visto

Caso práctico, desarrollo de la teoría

Presentación y análisis

Análisis

Comprobaciones que hacer:

- √ Objetivo de la simulación
- √ Elementos/fuerzas que intervienen
- √ Análisis
- √ Simplificación, equivalencias
- √ Simulación efectiva

En resumidas cuentas

Ya deberíamos saber cómo serán los resultados antes de simularlo (en la gran mayoría de los casos).

Caso práctico. El jefe pregunta: ¿Aguanta la viga?

Ejecución del análisis

- ✓ Nunca puede romper por la soldadura
- √ Los tornillos se sobredimensionan, su seguridad está asegurada
- ✓ La pregunta solo se refiere a la viga, nos olvidamos de las planchas metálicas... ¿Aunque sean de 100kg?
- ✓ La zona más crítica de la viga es en empotramiento
- √ La parte superior tiene que estar a tracción, la inferior a compresión

Sistema simplificado para la simulación

Figura 3: Caso simplificado. L=4, ancho= 0.2, profundidad = 0.4 [m]

¿Qué nos hemos ahorrado?

- √ Condiciones de contacto en las planchas y los tornillos.

 No es necesario realizar un análisis no lineal
- √ Mucha geometría. No modelamos las planchas ni la soldadura
- ✓ Diferentes materiales tanto para los tornillos como para la soldadura

Además, nuestro caso tiene solución analítica, podemos comprobar los resultados

Caso práctico, desarrollo de la teoría Geometría y grupos

Comentarios sobre la geometría

- Nombrad todo de forma comprensiva
- Es posible que queráis parametrizar algunos valores
- Sed lo más limpios posibles y concisos

Grupos geométricos

Son elementos sobre los que nos apoyaremos para hacer el mallado y la simulación. Son zonas de **condiciones de contorno, cargas** y referencias.

Simplificaciones geométricas I

Una image vale más que mil palabras.

Todas las imágenes de las secciones de geometría y mallado están tomadas del libro "Finite element applications A practical guide to the FEM process"

Simplificaciones geométricas II

Fig. 6.7 Examples of structural elements showing both physical and idealized models for: (a) bars/trusses, (b) beams, (c) pipes, (d) spar/web and (e) shear panel elements

Figura 4: Simprlificación real en modelos idealizados

Caso práctico, desarrollo de la teoría Mallado (meshing)

Información general

En resumidas cuentas, el mallado, *meshing* en inglés, es la discretización espacial del problema en nodos, aristas y/o superficies/volúmenes. Es de los temas más complicados y extensos que hay en la simulación FEM, después de todo, es lo que le da el nombre.

Nociones generales básicas

- Tiene que permitir modelar el fenómeno físico, ver caso de la capa límite/viscosa
- Tiene que asegurar convergencia
- Tiene que asegurar precisión
- Tendría que ser sencillo
- Tendría que ser eficiente

Ejemplos de referencia

Figura 5: Refinamiento por geometría

Refinamiento del mallado

Fig. 6.10 Local mesh refinement effect on tensile loading of metallic strip (a) coarse A, (b) coarse B, (c) coarse C, and (d) refined meshes

Figura 6: Evolución de la precisión por el refinamiento del mallado. Caso de concentración de tensiones

Unos sencillos pasos

Esta siguiente lista está hecha con SALOME en mente, pero otro software seguirá principios similares.

- 1. Importar geometría
- 2. Discretizar de manera "bruta" (3D, 2D...)
- 3. Seleccionar referencias
- 4. Controlar la discretización con las referencias
- 5. Recomputar
- 6. (Re)hacer los grupos geométricos
- Comprobar que todo esté correcto. Por ejemplo: en CFD que los cuerpos sumergidos estén sellados

Caso práctico, desarrollo de la teoría Simulación

Nociones generales

En general, hay mil tipos de simulación: FE, por partículas, eventos discretos, formas analíticas, por frecuencias, integradores...

Pero en FEM existe, de forma básica, estas categorías:

- Lineares y no lineares
- Transitorios o *steady-state*
- Estáticos y dinámicos
- Modales, fatiga, fractura, térmica conjugada...
- Con o sin acoplamiento: termo-mecánico, termo-fluido...

Secuencia para el diseño de una simulación

Esta lista está basada en el funcionamiento de SALOME-Meca, pero todo el software funciona igual:

- 1. Importar geometría
- 2. Selección del tipo de simulación
- 3. "Diseñar" materiales
- 4. Asignar materiales a la geometría
- 5. Asignar condiciones de contorno
- 6. Asignar cargas
- 7. Configurar la simulación
- 8. Configurar la salida de datos y el post-procesado

En cualquier momento puede ser necesario el uso de **funciones y listas de valores.**

Caso práctico, desarrollo de la teoría

Post-procesado

Nociones generales

El post-procesado es un sinónimo de **análisis.** ¿Qué se ha de hacer/suele hacer?

- Analizar los resultados de la simulación
 - ¿Son corréctos/esperados?
 - El output puede requerir de procesamiento extra, por ejemplo, plots
- Utilizar herramientas de filtrado
- Utilizar los resultados para derivar otros. Por ejemplo, con la presión que sufre un cuerpo desplazándose en un fluido, se puede procesas su coeficiente aerodinámico

Visualización geométrica de nuestra simulación

Figura 7: Deformación vertical de la viga. Apliada 100 veces.

Visualización "analítica" de nuestra simulación

Fin

Recordad:

- Dad valor a la ingeniería
- Los cinco "principios" de la simulación

Recuerdo que tenéis listas de software para comparar y usar **Resultado analítico:** $\delta = 1,14$ [mm]

¿Preguntas?