

Network Layer Overview

Ian Marsden, Integration Associates ZigBee NWG Chair

Embedded Systems Show, Birmingham, October 12th, 2006

ZigBee Stack

ZigBee is built upon the foundations provided by the IEEE 802.15.4 standard.

ZigBee Stack

802.15.4 Architecture:

- PHY Frequency Options
- Network Structure
- 802.15.4 Device Types
- Locating Networks
- Joining / Rejoining Networks
- Direct / Indirect Data Transmission

Architecture: 802.15.4 PHY Options

Freq Band	Bit Rate	Channels
868 / 915 MHz	20 / 40 kbps	1 / 10
2.4 GHz	250 kbps	16

Architecture: Network Structure in 802.15.4

Architecture: 802.15.4 Device Types

Full Function Device (FFD)

- Capable of being the PAN Coordinator
- Implements processing of "Association Request"
- Implements processing of "Orphan Notification"
- Implements processing of "Start Request"
- Implements processing of "Disassociation Notification"

Reduced Function Device (RFD)

- Can only associate and communicate with a FFD
- Reduced stack removes optional components

MLME_SCAN: Locating Networks

MLME_ASSOCIATE: Joining a Network

MLME_SCAN: Rejoining a Network

Data Transmission:

Direct (FFD \rightarrow FFD, or RFD \rightarrow FFD)

- The receiving device has its receiver on (RxOnIdle)
- The data packet can be set unsolicited
- The MAC schedules it for immediate delivery (using CSMA-CA)

Indirect (FFD → RFD)

- The receiving device is asleep with its receiver off
- The data packet has to be requested (Polled)
- The FFD MAC stores it for later retrieval by the RFD.

802.15.4 Summary

- Wireless Personal Area Network (WPAN)
 - Used to convey information over short distances.
- Star network topology
- Devices communicate only with the Coordinator
- In-direct data transmission enables small, power efficient, inexpensive solutions to be implemented.
- But...
- 802.15.4 does not provide multi-hop networking
- 802.15.4 does not provide mesh networking
- Enter ZigBee

ZigBee Stack

ZigBee is built upon the foundations provided by the IEEE 802.15.4 standard.

ZigBee Stack

Architecture: NWK layer details

- ZigBee Device Types
- Stack Profile, Network Rules
- Network Management and Addressing
- Message Routing
- Route Discovery and Maintenance
- Security

Architecture: Network Structure in ZigBee

Architecture: Stack Profile

Sets the rules that the network adheres to:

- nwkMaxDepth
- nwkMaxChildren
- nwkMaxRouters
- nwkSecurityLevel

And many more

- Table sizes
- Timeouts
- Route Cost Calculation Algorithm

Architecture: ZigBee Device Types

ZigBee Coordinator (ZC)

- One and only one required for each ZigBee network.
 - First one on the scene
- Initiates network formation.
 - Selects the time and place (Channel, PANId, Stack Profile)
- Acts as IEEE 802.15.4 2003 PAN coordinator (FFD).
- Also performs as router once network is formed.
- Not necessarily a dedicated device can perform an application too.
- One extra function: Acts as Bind Request Controller

Architecture: ZigBee Device Types

ZigBee Router (ZR)

- Optional network component.
- Discovers and associates with ZC or ZR.
 - Extends the network coverage
- Acts as IEEE 802.15.4 2003 coordinator (FFD).
- Manages local address allocation / de-allocation
- Participates in multi-hop / mesh routing of messages.
- Looks after its ZED's when it comes to broadcasting and routing messages
- Maintains Neighbor Table to allow Neighbor Routing

Architecture: ZigBee Device Types

ZigBee End Device (ZED)

- Optional network component.
- Discovers and associates with ZC or ZR.
- Acts as IEEE 802.15.4 2003 device (RFD).
- Can be optimised for very low power operation
- Relies on its parent to let it sleep
 - RxOnldle is off
- Shall not allow association.
- Shall not participate in routing.

Network Initiation: ZC

NLME_NETWORK_FORMATION.request

- Performs an Energy Detect Scan
 - Looks for other wireless devices on the channel
- Performs an Active Scan
 - Looks for other 802.15.4 networks on the channel
- Selects the "nicest" channel
 - Weights up channels based on noise level and PANs
- Selects an unused PANId
- Starts a network

Network Discovery: ZR & ZED

NLME_NETWORK_DISCOVERY.request

- Performs an Active Scan
 - Looks for other ZigBee networks on the channel
- Selects a compatible network
 - Stack Profile

Network Association: ZR & ZED

NLME_JOIN.request

- Selects the highest acceptable router
 - Link Quality, with capacity
- Associates with the router
- Allocated an address on the network
- Device authenticates with network

Network Association: ZR Cont.

NLME_START_ROUTER.request

- Updates Beacon Payload
 - Depth, Capacity
- Starts a router
- Updates Association Permit Status

Addressing: Tree-structured Address Assignment

- CSkip based address assignment
- Address determined from tree location

Transmitting Data

NLDE-DATA.request

- Used by NHL for all data transmissions
 - Uni-casts and broadcasts
- Accepts the following parameters
 - Destination Address
 - Radius
 - Discover Route

NLDE-DATA.indication

- Reports the receipt of a data transmission
- Includes the following parameters
 - Source Address

Tree Routing:

- The address tells you where the destination is
- Simple equation gives 'route up' or 'route down'
- If LocalAddr < DestAddr < LocalAddr + CSkip(d-1) Route Down</p>
- Else Route Up

Neighbour Routing:

- A ZC or ZR maintains a table of devices in its neighbourhood
- If the target device is physically in range it can send the message directly.

But what happens if the destination is not in the local neighbourhood?

Mesh Routing:

- ZC or ZR maintains a routing table of next hop addresses
- If the target device has a routing table entry then the message can be sent using this route.

That's great, but where do the routing table entries come from?

Routing: Route Discovery

- A device wishing to discover a route issues a route request command frame
 - Specialized broadcast frame transmitted throughout the network.
 - Path cost is computed by intermediary nodes on receipt
- Nodes pass on the route request if new or better route request
- Intended destination responds to the route request command frame if new or better route request with a route reply command frame
 - Unicast frame, returns along the reverse path
 - Reports the path cost
- Nodes pass on the route reply and update their routing tables

Message Routing: The Basic Algorithm

- 1. See if the destination is in the Neighbour Table
- 2. Check for a Routing Table entry
- 3. Finally resort to Tree Routing

NB. ZRs store messages for sleeping ZED's

Broadcast:The Basic Algorithm

- Transmit broadcast message
- Rebroadcast by local ZRs if it is new.

- Time & radius limited.
- ZRs store messages for sleeping ZED's
- ZRs issue broadcasts on behalf of sleeping ZEDs

Security: NWK Layer

- The Stack Profile defines the security level in use.
- Uses Network Key unless Link Key has been applied.
- Tool box offers both authentication and encryption facilities.
- Auxiliary Header and
 Message Integrity Code add
 overhead to the packet.

nibSecurityLevel	Security Suite
0	NONE
1	MIC-32
2	MIC-64
3	MIC-128
4	ENC
5	ENC-MIC-32
6	ENC-MIC-64
7	ENC-MIN-128

Network Layer Management Primitives

NLME-PERMIT-JOINING.request

NLME-PERMIT-JOINING.confirm

NLME-DIRECT-JOIN.request

NLME-DIRECT-JOIN.confirm

NLME-LEAVE.request

NLME-LEAVE.confirm

NLME-LEAVE.indication

NLME-SYNC.request

NLME-SYNC.confirm

NLME-SYNC.indication

NLME-RESET.request

NLME-RESET.confirm

NLME-GET.request

NLME-GET.confirm

NLME-SET.request

NLME-SET.confirm

To summarise the ZigBee network layer:

- Has 3 device types; ZC, ZR and ZED.
- Performs network discovery and formation
- Performs address allocation
- Performs message routing
- Configured by the stack profile
- Provides network wide security
- Allows low power devices to maximize their battery life

ZigBee turns 802.15.4 into a low power multi-hop mesh network.

Any Questions

Any Questions

Contact Details

Ian Marsden Integration UK Ltd

Director, Software Engineering

imarsden@integration.com

DDI: +44 (0) 1737 227721

Tel: +44 (0) 1737 227722

16-18 West Street, Reigate, Surrey, RH2 9BS, United Kingdom

www.integration.com

Cell: +44 (0) 7920 105537

Fax: +44 (0) 1737 227744

