

The fifth project of the Data Science Bootcamp T5

Deep Learning and Convolutional Neural Network (CNN)

Handwritten Signature Forgery Detection

December 2021

Do twins have the same handwriting?

Handwriting is often referred to as a brain fingerprint because it differs from one person to another, which is why many organizations use it for the purpose of proof of identity such as:

- Banking.
- Insurance.
- Healthcare.
- Copyright.
- Intellectual Property Rights.
- Regulatory and Government Compliance.

But things like signatures can easily be forged. The rate of forgery is not little, but there are not enough fraud detection experts.

In our project, a solution based on Convolutional Neural Network (CNN) is presented where the model is trained with a dataset of signatures, and predictions are made as to whether a provided signature is genuine or forged.

Data Set

- The Handwritten Signature dataset is found on Kaggle.
- The dataset contains the signature of the user both genuine and forged. In the dataset, the directory number says the name of the user and it's classified into two: Geniune and forged.
- Split the dataset into 1649 for training and 500 for testing.

Genuine signature

Forged signature

Root Mean Square Propagation(RMS)

Training Accuracy	Validation Accuracy	Test Accuracy
98%	54%	60%

EPOCHS = 5

Batch Size = 64

Adaptive Møment Optimizer (ADAM)

Training Accuracy	Validation Accuracy	Test Accuracy
99%	65.2%	68%

Results of Adam

Probability Genuine: 61%

Probability Forged: 39%

Probability Genuine: 3%

Probability Forged: 97%

Tools

• Libraries:

• Technologies:

Conclusion

In this project, using Convolutional Neural Network (CNN) has been trained and tested in a dataset and reached an accuracy of 99% and 68% for testing.

Future Work:

❖ Increase the obtained results by using different DL approaches which are supported by extra feature extraction methods.

Thank you for listening