

សាលាមទ្រៀនដូរជាត់ឌុម

<u>រុបមន្ទសទ្វេប</u>

ពៀបពៀចដោយ: ចេខ សុខអេខ នូរស័ព្ទ: O១២ ៤៩៧ ៤៤៤

Facebook Page: Bacc ii Teaching School Facebook: Cheng SokEng

<u>១. លឿនមធ្យមកំណអង្គធាតុកកើត (P) នៅចន្លោះពេល t_1 និង t_2 </u>

សមីការប្រតិកមទទៅ: $A + B \longrightarrow C + D$

អ.ធប្រតិករ (R) អ.ធកកើត (P)

$$Vm(P)_{t_1,t_2} = \frac{\Delta[P]}{\Delta t} = \frac{[P]_2 - [P]_1}{t_2 - t_1} \qquad \text{if} \qquad Vm(P)_{t_1,t_2} = \frac{n(P)_{t_2} - n(P)_{t_1}}{t_2 - t_1}$$

$$Vm(P)_{t_1,t_2} = \frac{n(P)_{t_2} - n(P)_{t_1}}{t_2 - t_1}$$

<u>២. ល្បឿនមធ្យមបំបាត់អង្គធាតុប្រតិករ (R) នៅចន្លោះពេល</u> t_1 <u>និង</u> t_2

$$Vm(R)_{t_1,t_2} = -\frac{\Delta[R]}{\Delta t} = -\frac{[R]_2 - [R]_1}{t_2 - t_1}$$

$$\mathfrak{V}m(R)_{t_1,t_2} = -\frac{n(R)_{t_2} - n(R)_{t_1}}{t_2 - t_1}$$

<u>សម្ចាល់៖</u>

- \mathfrak{V} $t \rightarrow s : [P] \rightarrow mol.L^{-1} \Rightarrow Vm \rightarrow mol.L^{-1}.s^{-1}$
- $\mathring{\mathbb{U}}$ $t \rightarrow \min$; $[P] \rightarrow mol.L^{-1} \Rightarrow Vm \rightarrow mol.L^{-1}.min^{-1}$
- \mathfrak{V} $t \to h : [P] \to mol.L^{-1} \Rightarrow Vm \to mol.L^{-1}.h^{-1}$

៣. គត្តាខៈឥន្ធិពលនៅលើល្បឿលប្រតិកម្ម

ក. <u>កត្តាទំហំភាគល្អិត</u>

- ទំហំភាគល្អិតតូច ផ្ទៃប៉ះរវាងអង្គធាតុប្រតិករធំ ចំនួនទង្គិចប្រសិទ្ធកើន ឡើង នាំឱ្យល្បឿនប្រតិកម្មលឿន។
- ទំហំភាគល្អិតធំ[ិ]ផ្ទៃប៉ះរវាងអង្គធាតុប្រតិករតូច ចំនួនទង្គិចប្រសិទ្ធថយចុះ ល្បឿនប្រតិកម្មយឺត។

ខ. <u>កត្តាកំហាប់អង្គធាតុប្រតិករ [R]</u>

- [R] កើន ធ្វើឱ្យចំនួនទង្គិចប្រិសិទ្ធកើនឡើង នោះល្បឿនប្រតិកម្មលឿន។
- [R] ថយចុះ ធ្វើឱ្យចំនួនទង្គិចប្រិសិទ្ធថយចុះ នោះល្បឿនប្រតិកម្មយឺត។

គ. <u>កត្តាសម្ពាធ (P)</u>

- P កើន ម៉ូលេគុលឧស្ម័នខិតជិតៗគ្នា ធ្វើឱ្យចំនួនទង្គិចប្រសិទ្ធកើនឡើង នោះល្បឿនប្រតិកម្មលឿន។
- Pថយចុះ ម៉ូលេគុលឧស្ម័នឃ្លាតឆ្ងាយពីគ្នា ធ្វើឱ្យចំនួនទង្គិចតិចតួច (ថយចុះ) នោះល្បឿនប្រតិកម្មយឺត។

ឃ. <u>កត្តាសីកុណ្ហភាព (</u> T)

- T កើនឡើង អ.ធប្រតិករមានថាមពលខ្ពស់ ភាគល្អិតមានចលនាលឿន នាំឱ្យចំនួនទង្គិចប្រសិទ្ធកើនឡើង ល្បឿនប្រតិកម្មលឿន។
 ឬម្យ៉ាងទៀត៖ កាលណាសីតុណ្ហភាពកើន ធ្វើឱ្យចំនួនទង្គិចប្រសិទ្ធក្នុងមួយខ្នាត ពេលកើនឡើង។
- T ថយចុះ អ.ធប្រតិករមានថាមពលទាប ភាគល្អិតមានចលនាយឺត នាំឱ្យចំនួនទង្គិចប្រសិទ្ធថយចុះ ល្បឿនប្រតិកម្មយឺត។

ង. <u>កត្តាកាតាលីករ</u>

🗢 ជួយជំរុញល្បឿនប្រតិកម្មឱ្យលឿនជាងមុន ដោយរក្សាបរិមាណដើមនៅដដែល។

៤. ភាគាលិស គឺប៉ាអំពើខែភាគាលិកខេងលើប្រតិកម្មគីមី ម

កាតាលីសមានបីប្រភេទ គឺ កាតាលីសអូម៉ូសែន កាតាលីសអេតេរ៉ូសែន និង កាតាលីសអង្គស៊ីម ។ កាតាលីសអូម៉ូសែន គឺជាកាតាលីសដែលកាតាលីករ និងអង្គធាតុប្រតិករមាន
 ផាសដូចគ្នា ។

임위하
$$2H_2O_2(aq) \xrightarrow{Fe^{3+}(aq)} 2H_2O(l) + O_2(g)$$

 Fe^{3+} ៖ ជាកាតាលីសអូម៉ូសែន

កាតាលីសអេកេរ៉ូសែន គឺជាកាតាលីសដែលកាតាលីករ និងអង្គធាតុប្រតិករមាន
 ជាសខុសគ្នា ។

ឧទា៖
$$2H_2O_2(aq) \xrightarrow{MnO_2(s)} 2H_2O(l) + O_2(g)$$
 MnO_2 ៖ ជាកាតាលីសអេតេរ៉ូសែន

កាតាលីសអង្គស៊ីម គឺជាកាតាលីករជាអង្គធាតុសរីរាង្គដែលបង្កឡើងពីសរីរាង្គ
 នៃភាវៈរស់ ។ ឧទា៖ ឈាម ការ៉ុត ទឹកមាត់ ថ្លើមជ្រូក

<u>៥. ស្វ័យ**ភាគាលីស**៖</u> ជាកាតាលីសនៃប្រតិកម្មមួយដែលផលិតមានតួនាទីជាកាតាលីករ។

ឧទា៖ ប្រតិកម្មជេដុកម្មអ៊ីយ៉ុង
$$MnO_4^-$$
 ដោយ $H_2C_2O_4^-$ ក្នុងជម្ឈដ្ឋានអាស៊ីត

$$2MnO_4^- + 6H^+ + 5H_2C_2O_4 \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

 Mn^{2+} ដែលកកើតជួយជំរុញល្បឿនប្រតិកម្មឱ្យស្ទុះលឿនជាងមុន

 \Rightarrow Mn^{2+} ជាស្វ័យកាតាលីស។

<u>៦. ទិនីមខ្លាញថាប្រតិតម្មបាប្រតិតម្មអុតស៊ីជុំពេជិតម្ម ឬប្រតិតម្មពេជិត</u>

ប្រតិកម្មអុកស៊ីដូរេដុកម្ម គឺជាប្រតិកម្មបន្ទេរអេឡិចត្រុងពីរេដុករទៅអុកស៊ីតករ ។

ឧទា៖ ប្រតិកម្មគីមីមួយ:
$$Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$$

$$\c \c Zn(s) + 2H^+(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$$

កូរដុកចូលរួមប្រតិកម្មគឺ H^+/H_2 និង Zn^{2+}/Zn

<u>លំនាំអុកស៊ីតកម្ម</u>

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$

Zn ៖ ជាជដុករព្រោះវាបោះបង់អេឡិចត្រុង

<u>លំនាំរដេកម្ន</u>

$$2H^+ + 2e^- \longrightarrow H_2$$

 H^+ ៖ ជាអុកស៊ីតករព្រោះវាចាប់យកអេឡិចត្រុង

ដោយមានការបន្ទេរអេឡិចត្រុងពី Zn ទៅ H^+ នៅក្នុងប្រតិកម្ម

ដូចនេះ

ប្រតិកម្មខាងលើជាប្រតិកម្មរេដុក

អាចដើរតួបានពីរយ៉ាងជារដ្ឋការផង និងជាអ្នកស៊ីតការផង ។

<mark>ឧទា៖</mark> ប្រតិកម្មឌីស្មុតកម្មអ៊ីយ៉ុងត្យូរស៊ុលផាត $(S_2O_3^{2-})$

សមីការ៖
$$S_2O_3^{2-} + 2H^+ \longrightarrow S^- + SO_2^- + H_2O^-$$

គ្លាវេដុកគឺ $S_2O_3^{2-}/S$ និង $SO_2/S_2O_3^{2-}$

ប្រតិកម្មខាងលើជាប្រតិកម្ម ព្រោះ $S_2O_3^{2-}$ អាចដើរតូជារេដុករផង និងជាអុកស៊ីតការផង។

<u> ៤. ចំនួនទ្ទិលធាតុ ទ្វិលេឝុល សារធាតុ 🕝 ៩. ចំនួនទ្វិលនៃសួលុយស្យូខ</u>

$$n = \frac{m}{M}$$

- -n: ចំនួនម៉ូល (mol)
- -m: ម៉ាស (g)
- -M: ម៉ាសម៉ូល (g/mol)

$$n = C \times Vs$$

- -C: កំហាប់ជាម៉ូល $(mol.L^{-1})$
- -Vs: មាឌសូលុយស្យុង (L)
- -n: ចំនួនម៉ូល (mol)

១១. គំចារច់ជាចូល ឬ គំចារច់ចំនុក្សតែ

<u>១០. ចំនួនម៉ូលនៃខ្វស្ន័ន</u>

$$C_m = \frac{m}{V_s}$$

$$C = \frac{n}{Vs}$$

$$C = \frac{C_m}{M}$$

- -V: មាឧស័ន (L)
- -Vm: មាឌម៉ូលឧស្វ័ន $(L.mol^{-1})$
- isi STP ⇒ $Vm = 22.4 L.mol^{-1}$
- $-C_m$: កំហាប់ជាម៉ាស (g/L)
- -C: កំហាប់ជាម៉ូល (M)
- isi $RTP \Rightarrow Vm = 24 L.mol^{-1}$

១២. គំមាម់ខាម៉ូលនៃស្លុមស្យេខ

$$C = \frac{C \% \times ds \times 10}{M}$$

- -ds: ដង់ស៊ីតេសូលុយស្យង (g/mL)
- -C%: កំហាប់ជាភាគរយ (%)

១២. គំ \mathfrak{s} សាច់ទាំគាគ \mathfrak{s} មេ \mathfrak{s} \mathfrak{s}

$$C \% = \frac{m_{st} \times 100}{m_s}$$

- $-m_{ct}$:ម៉ាសធាតុរលាយ(g)
- $-m_{\rm s}$: ម៉ាសសូលុយស្បង (g)

ដែល $m_s = m_{st} + m_{H_2O}$

 \mathbf{G} . ទាំសមាខ្យល់សារធាត្ $\mathbf{G}(\mu)$

<u>៧. ដខ់ស៊ីគេនៃស្ទលុយស្សុខ</u> (ds)

$$ds = \frac{m_s}{V_s}$$

$$ds = \frac{m_s}{V_s} \qquad -1dm^3 = 1 L -1 cm^3 = 1 mL$$

$$\langle \mu = \frac{m}{V}$$

- $-m_s$: ម៉ាសសូលុយស្យុង (g)
- -m: ម៉ាសសារធាតុ (g)
- $-V_s$: មាឌសូលុយស្យូង (mL) -V: មាឌសារធាតុ (cm 3)
- -ds: ដង់ស៊ីតេសូ. (g/mL)
- $-\mu$: ម៉ាសមាឌសារធាតុ (g/cm^3)

៩. នាគមេនៃសានោតុនៅភូខល្បាយ ឬនាគសំណាភ

$$\%$$
 សារធាតុ $= \frac{m \left(\text{សារធាតុ} \right) \times 100}{m \left(\text{ភាគសំណាក} \right)}$

$$\binom{m}{m}$$
 សារធាតុ $=rac{m\left($ សារធាតុ $ight) imes 100}{m\left($ ល្បាយ $)}$

<u>១០. ការព្យខានសុលុយស្យខ</u>

$$\left\langle C_i V_i = C_f V_f \right\rangle$$

ដែល $V_f = V_i + V_{H_2O}$ (ថែម)

$\mathbf{99}$. ចំនួន៩១នៃការព្យទ្ធា $\mathbf{5}$ (N)

$$N = \frac{C_i}{C_f}$$

$$N = \frac{V_f}{V_i}$$

- $-C_i$: កំហាប់សូ.មុនពង្រាវ (M) $-C_f$: កំហាប់សូ.ក្រោយពង្រាវ (M)
- $-V_i$: មាឌសូ.មុនពង្រាវ (L) $-V_f$: មាឌសូ.ក្រោយពង្រាវ (L)

១២.និទួនសនៃប្រតិតម្ន(Rd) ឬនាគរ យនៃនំលិតនំលំដែលឧន្ទល់បាន

១៣. នាគមេនៃសានោត្តដែលចូលធ្វើប្រតិកម្

$$egin{aligned} \%$$
 ចូលប្រតិកម្ម $&=rac{m\left(ext{ប្រតិកម្ម}
ight) imes 100}{m\left(ext{ដើម}
ight)} \end{aligned}$
 $\%$ ចូលប្រតិកម្ម $&=rac{n\left(ext{ប្រតិកម្ម}
ight) imes 100}{n\left(ext{ដើម}
ight)}$

១៤. ព្យាគរណ៍សមាសធាតុរលាយ ឬមិនលោយ (គគរ)

- បើមាន Li, Na, K, NH_A , NO_3 \Rightarrow រលាយទាំងអស់
- បើមាន Cl , Br , I រលាយ លើកលែងផ្សំជាមួយ Ag & Pb មិនរលាយ
- បើមាន HCO⁻₃, CH₃COO⁻, ClO⁻₃ ⇒ រលាយទាំងអស់
- ullet SO_4^{2-} ភាគច្រើនរលាយ លែកលែង $BaSO_4$, Ag_2SO_4 $PbSO_4$, $SrSO_4$, $HgSO_4$

<u>សម្គាល់៖</u>

* (aq) : បំបែកជាអ៊ីយ៉ុងបាន

*(s),(g)&(l) : មិនបំបែកជាអ៊ីយ៉ុង

- <u>១៥ អេឡិចគ្រូសិត</u> គឺជាសមាសធាតុដែលបំបែជាអ៊ីយ៉ុងនៅក្នុងទឹក និងចម្លងចរន្ត អគ្គិសនី។ អេឡិចត្រូលីតចែកចេញជាបី គឺអេឡិចត្រូលីតខ្លាំង អេឡិចត្រូលីតខ្សោយ និងមិនមែនអេឡិចត្រូលីត។
 - > <mark>អេឡិចត្រូសិតខ្លាំ១</mark> គឺជាសមាសធាតុដែលបំបែកជាអ៊ីយ៉ុងសព្វនៅក្នុងទឹក និង ចម្លងចរន្តអគ្គិសនីបានល្អ។

<mark>អេឡិចត្រូលីតខ្លាំងមាន៖</mark> អាស៊ីតខ្លាំង បាសខ្លាំង និងអំបិលរលាយ។

> **អេស្ជិចត្រូសិតខ្សោយ** គឺជាសមាសធាតុដែលបំបែកជាអ៊ីយ៉ុងមិនសព្វនៅក្នុងទឹក និងចម្លងចរន្តអគ្គសនីខ្សោយ។

អេឡិចត្រូលីតខ្សោយមាន៖ អាស៊ីតខ្សោយ បាសខ្សោយ និងសមាសធាតុរលយតិច។ <u>ទឹ**នទែនអេស៊្ជិចត្រូលីត**</u> គឺជាសមាសធាតុដែលមិនបំបែកជាអ៊ីយ៉ុងនៅក្នុងទឹក និងមិនចម្លងចរន្តអគ្គសនី។

មិនមែនអេឡិចត្រូលីតមាន៖ អ៊ុយរ៉េ $CO(NH_2)_2$ អ៊ីដ្រូកាបួ (C_xH_y) កាបូនអ៊ីដ្រាត $(C_6H_{12}O_6$, $C_{12}H_{22}O_{11}$, ...) អាល់កុលអាលីជាទិច $(CH_3OH$, C_2H_5OH ,) និងសមាសធាតុមិនរលាយក្នុងទឹក(កករ)។

១៦. គម្នាំ១អន្តរម៉ូលេគុល

គម្លាំ១អ៊ីយ៉ុខ គឺជាកម្លាំងប្រទាញគ្នាទៅវិញទៅមករវាងអ៊ីយ៉ុងវិជ្ជមាន និងអ៊ីយ៉ុង អវិជ្ជមាន។ សមាសធាតុអ៊ីយ៉ុង៖ NaCl; KCl; MgF2; CaCl2; BaBr2,

Note: ភាពខ្លាំងនៃកម្លាំងអ៊ីយ៉ុងអាស្រ័យទៅលើទំហំនៃអ៊ីយ៉ុង និងចំនួនបន្ទុក ។

- ចំហំអ៊ីយ៉ុងតូច → កម្លាំងទំនាញរវាងអ៊ីយ៉ុង (+) និងអ៊ីយ៉ុង (−) ខ្លាំង
 ធ្វើឱ្យចំណុចរំពុះខ្ពស់។
- បន្ទុកអ៊ីយ៉ុងធំ → កម្លាំងទំនាញរវាងអ៊ីយ៉ុង (+) និងអ៊ីយ៉ុង (−) ខ្លាំង
 ធ្វើឱ្យចំណុចរំពុះខ្ពស់។

ខ្វនា ៖ CaF_2 មានចំណុចរំពុះខ្ពស់ជាង NaCl ព្រោះអ៊ីយ៉ុង Ca^{2+} មានបន្ទុកធំជាង អ៊ីយ៉ុង Na^+ ជាហេតុធ្វើឱ្យកម្លាំងទំនាញរវាងអ៊ីយ៉ុង Ca^{2+} និង F^- ខ្លាំងជាង Na^+ និង Cl^- ។

<u>**ភេទ្ធាំ១ឱ្យម៉ូល-ឱ្យម៉ូល**</u> គឺជាកម្លាំងប្រទាញគ្នារវាងម៉ូលេគុលប៉ូលែ។

ម៉ូលេគុលប៉ូលែ៖ $\begin{cases} O \; ; \; N \; ; \; S \; ; \; P \\ HF \; ; \; HCl \; ; \; HBr \; ; \; HI \end{cases}$

កាលណាម៉ូលេគុលកាន់តែប៉ូលែ នាំឲ្យកម្លាំងទំនាញកាន់តែខ្លាំង ធ្វើឲ្យចំណុច
 រំពុះកាន់តែខ្ពស់។

 ${\color{red} {\bf 2808} \atop {\bf 808}} H_2O$ មានចំណុចរំពុះខ្ពស់ជាង NH_3 ព្រោះអាតូម O មានកម្រិតអេឡិចត្រូ អវិជ្ជមានធំជាងអាតូម N នាំឱ្យម៉ូលេគុល H_2O មានភាពប៉ូលែខ្លាំង NH_3 ។

ភ្ន<mark>ុះទាំខ៖ឆាយខ្សួន</mark> គឺជាកម្លាំងប្រទាញគ្នារវាងម៉ូលេគុលមិនប៉ូលែ ។ ម៉ូលេគុលមិនប៉ូលែមានដូចជា ៖

- អ៊ីជ្រូកាបុ៖ C,H, ; C,H, ; C,H, ; C,H,
- ផ្សំពីអាតូមដូចគ្នា៖ H_2 ; N_2 ; O_2 ; Cl_2 ; Br_2 ; I_2
- ដៃចងដូចៗគ្នា៖ $extit{CCl}_4$; $extit{CBr}_4$; $extit{CF}_4$; $extit{CI}_4$; $extit{CO}_2$,
- ឧស័នកម្រ៖ He ; Ne ; Ar ; Kr ; Xe ; Rn

M ធំ ightarrow n_{e^-} ច្រើន ightarrow កម្លាំងរបាយឡូនដុនខ្លាំង នាំឱ្យចំណុចរំពុះខ្ពស់ ។

ខ្ទនា ៖ CCl_4 មានចំណុចរំពុះខ្ពស់ជាង C_2H_4 ដោយសារតែៈ

- CCl_4 មានម៉ាសម៉ូលធំជាង C_2H_4
- CCl_4 មាន n_{e^-} ច្រើនជាង C_2H_4 ជាហេតុធ្វើកម្លាំងរបាយឡូនដុនរបស់ CCl_4 ធំជាង C_2H_4 ។

<u>១៧. ន្រឹស្តីអាស៊ីត-លស</u> <u>ទ្រឹស្តីអាពីញ៉ូស</u>

- អាស៊ីត គឺជាសារធាតុដែលបង្កើតជាអ៊ីយ៉ុង H⁺ នៅក្នុងសូលុយស្យងទឹក។
- ightarrow **ទាស** គឺជាសារធាតុដែលបង្កើតជាអ៊ីយ៉ុង OH^- នៅក្នុងសូលុយស្យ៉ុងទឹក។ <u>ស្រឹស្តីប្រ្**១ស្ងែន-ល្បី**</u>
- អាស៊ីត គឺជាប្រភេទគីមីដែលបោះបង់ប្រូតុង (H⁺) ។
- » **ខាស** គឺជាប្រភេទគីមីដែលចាប់យកប្រូតុង (*OH*⁻)។ **រូស៊ីស៊ីន៊ីទីស**
- អាស៊ីត គឺជាប្រភេទគីមីដែលទទួលយកទ្វេតា e⁻ ដើម្បីបង្កើតជាសម្ព័ន្ធកូវ៉ាឡង់។
- ightarrow ទាស គឺជាប្រភេទគីមីដែលបោះបង់ទ្វេតា e^- ដើម្បីបង្កើតជាសម្ព័ន្ធកូវ៉ាឡង់។

១៨<u>. គូអាស៊ីត-បាស សមាសនាតុអំន្ទំខែ អាស៊ីតឆ្លាស់ និចបាសឆ្លាស់</u> **គូអាស៊ីត-បាស** គឺជាសំណុំនៃប្រភេទគីមីពីរឆ្លាស់គ្នា ដែលប្តូរប្រុត្តងគ្នាទៅវិញទៅមក

គូអាស៊ីគ-បាស គេសរសេរ:

អាស៊ីដ /បាស

នំនាក់នំនខរខាខកម្លាំខរបស់អាស៊ីត និខកម្លាំខរបស់ជាសម្គាស់

- បើអាស៊ីតកាន់តែខ្លាំង ⇒ កម្លាំងបាសឆ្លាស់កាន់តែខ្សោយ។
- បើអាស៊ីតកាន់តែខ្សោយ ⇒ កម្លាំងបាសឆ្លាស់កាន់តែខ្លាំង។

កម្លាំ១មេស់ជាស និខកម្លាំ១មេស់អាស៊ីតឆ្លាស់

- បើបាសកាន់តែខ្លាំង ⇒ កម្លាំងអាស៊ីតឆ្លាស់កាន់តែខ្សោយ។
- បើបាសកាន់តែខ្សោយ ⇒ កម្លាំងអាស៊ីតឆ្លាស់កាន់តែខ្លាំង។

សទាសនាតុអំនុំខែ គឺជាសមាសធាតុទាំងឡាយណាដែលអាចដើរតួបានពីរយ៉ាង ជាអាស៊ីតផង និងជាបាសផង។

ଥମା៖ NH_3 , H_2O , HSO_3^- , HCO_3^- , HS^- , $H_2PO_4^-$,...

នាស៊ីតឆ្លាស់ គឺជាប្រភេទគីមីដែលកកើត បន្ទាប់ពីបាសចាប់យកប្រូតុង។ **នាសឆ្លាស់** គឺជាប្រភេទគីមីដែលនៅសល់ បន្ទាប់ពីអាស៊ីតបោះបង់ប្រូតុង។

១៩. រុមមន្ត pH នៃអាស៊ីត និ១ គំចាាច់អ៊ីយ៉ូ១អ៊ីជ្រូញ៉ូម

$$pH = -\log[H_3O^+] \iff [H_3O^+] = 10^{-pH}$$

- បើ pH ធំ \Leftrightarrow កំហាប់ $[H_3O^+]$ តូច។
- បើ pH តូច \Leftrightarrow កំហាប់ $[H_3O^+]$ ធំ។

២០. រួមមន្ត្ត pH នៃលស និ១ គំអាម់អ៊ីយ៉ុខអ៊ីដ្រូកស៊ីត

$$pH = 14 + \log [OH^-] \Leftrightarrow [OH^-] = 10^{-pOH}$$

សម្គាល់៖ ទំនាក់ទំនងរវាង pOH និង [OH⁻]

- បើ pOH ធំ \Leftrightarrow កំហាប់ $[OH^-]$ តូច។
- បើ pOH តូច \Leftrightarrow កំហាប់ $[OH^-]$ ធំ។

២១. ដល់គ្គុណអ៊ីម៉ូខនៃនីគ (Kw) / នំនាក់នំទខ pH, pOH និខ pKw (25 °С)

$$[H_3O^+] \times [OH^-] = 10^{-14}$$

$$pH + pOH = 14$$

<u>២២. រួមមន្ត pH រើរាត ឬ pH មេស់អូតូប្រូតូរបីសនៃនឹកនៅគ្រប់សីតុណ្ហភាព</u>

$$pH = \frac{1}{2} pKw \; ; \; pKw = -\log Kw$$

<u>២៣. រុមមន្ត pH មេស់សុលុយស្</u>សូខតំប៉ុខ

$$pH = pKa + \log \frac{[Base]}{[Acid]}$$
; $pKa = -\log Ka$

និយមន័យ៖ សូលុយស្យុងតំប៉ុង គឺជាល្បាយសូលុយស្យុងនៃអាស៊ីតខ្សោយលាយ ជាមួយអំបិលនៃបាសឆ្លាស់របស់វាដែលមានកំហាប់ប្រហាក់ប្រហែលគ្នាឬស្មើគ្នា។

២៤. អត្រាគម្ភអាស៊ីត-លស

• ម៉ូណូអាស៊ីតខ្លាំង និងម៉ូណូបាសខ្លាំង៖

ម៉ូណូអាស៊ីតខ្លាំង និងឌីបាសខ្លាំង៖

ឌីអាស៊ីតខ្លាំង និងម៉ូណូបាសខ្លាំង៖

$$C_A V_A = C_B V_B$$

$$C_A V_A = 2C_B V_B$$

$$2C_A V_A = C_B V_B$$

 $-C_A$: កំហាប់សូ.អាស៊ីត $(mol.L^{-1})$ $-C_B$: កំហាប់សូ.អាស៊ីត $(mol.L^{-1})$

 $-V_A$: មាឌសូ.អាស៊ីត (L) $-V_B$: មាឌសូ.អាស៊ីត (L)

អត្រោគម្ចុ គឺជាលំនាំ ឬបច្ចេកទេសដែលប្រើនៅក្នុងទីពិសោធន៍ដើម្បីកំណត់
 រកកំហាប់សូលុយស្យុងអាស៊ីត ឬ បាសដែលគេមិនស្គាល់។

អន្តឆាតុចខ្ពុលពណ៌ ៖ មាននាទីឲ្យសញ្ញាប្រាប់ឲ្យដឹងពីមាឧសូលុយស្យុង
 ស្តង់ដាដែលបានបន្ថែមនៅចំណុចសមមូល។

> **ចំណុចសមទុល** គឺជាចំណុចដែលសូលុយស្យូងពីរមានចំនួនធាតុគីមីរលាយ

ចូលគ្នាក្នុងសមាមាត្រស្មើគ្នា។

<u>អន្តជាតុខខ្ពសពណ៌ដែលត្រូងច្រើ</u>

អាស៊ីឌ	ខាស	អខ្ពុឆាឌុចខ្ពុលពណ៌
ខ្លាំង	ខ្លាំង	ប្រូម៉ូទីម៉ុលខៀវ (BBT)
ខ្សោយ	ខ្លាំង	ជេណុលផ្កាលេអ៊ីន (PPT)
ខ្លាំង	ខ្សោយ	មេទីលទឹកក្រូច / មេទីលប្រហម / អេល្យង់ទីន

២៥. គន្សោមថេះលំនឹចនៃខ្យស្ន័ន(K)

សមីការតុល្បការលំនឹង:
$$aA(g) + bB(g) \iff cC(g) + dD(g)$$

$$K = \frac{[C]^c \times [D]^d}{[A]^a \times [B]^b}$$

– K: គ្មានខ្នាត

 $-s\,,l$ មិនសរសេរចូលក្នុងកន្សោម K

សម្ភាល់ ៖

- st ថេរលំនឹង K នៃប្រតិកម្ម ប្រែប្រួលទៅតាមសីតុណ្ហភាព ។
- * **សំនឹទឝ៏ម៏** គឺជាប្រតិកម្មច្រាស់ពីរដែលក្នុងនោះ ល្បឿនប្រតិកម្មតាមទិសបណ្ដោយ ស្មើនឹងល្បឿនតាមប្រតិកម្មតាមទិសច្រាស់ ហើយកំហាប់អង្គធាតុប្រតិករ និងកំហាប់ អង្គធាតុកកើតលែងប្រែប្រួល។
- * **ថេះលំនី១** K **នៃប្រតិតម្ល** ៖ សម្រាប់សម្គាល់ប្រព័ន្ធប្រតិកម្មដែលមានលំនឹងនៅ សីតុណ្ហភាពកំណត់មួយ។

២៦. គារអំគិលលំនិ៍១

កត្តាដែលនាំឲ្យរំកិលលំនឹងនៃប្រព័ន្ធប្រតិកម្មមានបីគឺ កំហាប់ សម្ពាធ និងសីតុណ្ហភាព។ **គារព្យាគរស៍រនិសដៅខែគារ គែលសំនឹទ**

- * គរស៊ាសម្ពាច (គិតតែខ្យស្នំសនេ)
 - បើសម្ពាធកើន \Rightarrow លំនឹងរំកិលទៅខាងចំនួនម៉ូលតូច។
 - បើសម្ពាធថយចុះ ⇒ លំនឹងរំកិលទៅខាងចំនួនម៉ូលធំ។
- * គរេណ៏គំចារច់អទ្ឋធាតុប្រតិករ
 - បើកំហាប់អង្គធាតុប្រតិករកើន ⇒ លំនឹងរំកិលទៅខាងស្តាំ។
 - បើកំហាប់អង្គធាតុប្រតិករថយចុះ ⇒ លំនឹងរំកិលទៅខាងឆ្វេង។
- * <u>គរណីគំចារច់អទ្ធធាតុគគើត</u>
 - បើកំហាប់អង្គធាតុកកើតកើន ⇒ លំនឹងរំកិលទៅខាងឆ្វេង។
 - បើកំហាប់អង្គធាតុកកើតថយចុះ ⇒ លំនឹងរំកិលទៅខាងស្ដាំ។

* <u>ករេសិសិតុល្អភាព</u>

- $\overset{\bullet}{\Sigma}$ <u>ចំពោះប្រតិកម្មបញ្ចេញកំដៅ</u> (A + B \longrightarrow C + D + $\overset{\bullet}{\Gamma}$ Fig.
 - បើសីតុណ្ហភាពកើន ⇒ លំនឹងរំកិលទៅខាងឆ្វេង ។
 - បើសីតុណ្ហភាព៥យចុះ ⇒ លំនឹងរំកិលទៅខាងស្ដាំ ។
- 🗻 ចំពោះប្រតិតម្យុស្រូបតំដៅ

$$(A + B + \frac{\pi i \eta}{i}) \longrightarrow C + D \ \underline{U} \ AB \xrightarrow{\pi i \eta} A + B)$$

- បើសីតុណ្ហភាពកើន ⇒ លំនឹងរំកិលទៅខាងស្តាំ។
- បើសីតុណ្ហភាពថយចុះ ⇒ លំនឹងរំកិលទៅខាងឆ្វេង។
- * ភរស៊ីមាឌ្យម៉ូព័ន្ធ (គិតតែខ្យស្ន័ននេ)
 - បើមាឌកើន \Rightarrow លំនឹងរំកិលទៅខាងចំនួនម៉ូលធំ ។
- បើមាឌ្ឋថយចុះ ⇒ លំនឹងរំកិលទៅខាងចំនួនម៉ូលតូច។

ಹಳಾಣಃ

បើបន្ថែមកាតាលីករ , ង្គធាតុរឹង (s) និង ឧស្ម័នកម្រ $(He, Ne, Ar, Kr, Xe, Ra) \Rightarrow$ គ្មានការរំកិលលំនឹង។

<u>២៧. គល្មោះថេះអ៊ីយ៉ុខកម្មខែអាស៊ីត (Ka)</u> និខភាគយេអ៊ីយ៉ុខកម្ម α សមីការអីយ៉ងកមនៃអាសីតៈ

$$HA(aq) + H_2O(l) \iff H_3O^+(aq) + A^-(aq)$$

$$Ka = \frac{[H_3O^+] \times [A^-]}{[HA]}$$

$$\alpha = \frac{[H_3 O^+] \times 100}{C_A}$$

Ka ប្រែប្រួលទៅតាមសីតុណ្ហភាព ; $\alpha \to \%$

២៨. ការឡាងថេះអ៊ីយ៉ុខកង្វនៃលាស $({ m Kb})$ និខភាគយេអ៊ីយ៉ុខកង្វ lpha

សមីការអ៊ីយ៉ុងកម្មនៃបាសៈ

$$B(aq) + H_2O(l) \iff BH^+(aq) + OH^-(aq)$$

$$Kb = \frac{[BH^+] \times [OH^-]}{[B]}$$

$$\alpha = \frac{[OH^-] \times 100}{C_B}$$

Kb ប្រែប្រួលទៅតាមសីតុណ្ហភាព ; α → %

២៩. នំនាក់នំនខ Ka , Kb និខ Kw

$$Ka \times Kb = Kw$$
; at $25^{\circ}C$ $Kw = 10^{-14}$
 $Ka \times Kb = 10^{-14}$

mo. នំនាក់នំន១ pKa, Ka និ១ pKb, Kb

$$pKa = -\log Ka \iff Ka = 10^{-pKa}$$

 $pKb = -\log Kb \iff Kb = 10^{-pKb}$

pKa + pKb = 14នៅសី/ត្ 25 °C

៣១. គឺន៏ពន្យល់អំមិលលោយភ្លូខនឹក(ខេអ៊ីជ្រូលីស) មច្ចើតវាស្.អាស៊ីត ស្.នាស ឬស្.ណីត

- គ្រប់អ៊ីយ៉ុងលោហៈ ៖ Li⁺, Na⁺, K⁺, Ba²⁺, Ca²⁺, Mg²⁺,....
- ightharpoonup គ្រប់រ៉ាឌីកាល់អាស៊ីតខ្លាំង ៖ Cl^- , Br^- , I^- , ClO_4^- , ClO_3^- , NO_3^- , SO_4^{2-}

ឧតាទី១ ៖ ហេតុអ្វីបានជា $(NH_4)_2SO_4$ រលាយក្នុងទឹកឱ្យជាសូលុយស្យុងអាស៊ីត? ចូរពន្យល់ និងសរសេរសមីការតាងប្រតិកម្ម។

ចម្លើយ៖ ព្រោះ $(NH_4)_2SO_4$ រលាយក្នុងទឹកបង្កើតជាអ៊ីយ៉ុង NH_4^+ និង SO_4^{2-} ។ អ៊ីយ៉ុង SO_4^{2-} គ្មានប្រតិកម្មជាមួយទឹក បុន្តែ NH_4^+ មានប្រតិកម្មជាមួយ ទឹកបង្កើតបាន H_3O^+ នៅក្នុងសូលុយស្យុង។

សមីការតាងប្រតិកម្ម៖
$$(NH_4)_2SO_4(s) \xrightarrow{\mbox{$\mb$$

- **ឧទាទី២ ៖** ហេតុអ្វីបានជា Na_2CO_3 លោយក្នុងទឹកឱ្យជាសូលុយស្យុងបាស? ចូរពន្យល់ និងសរសេរសមីការតាងប្រតិកម្ម។
- ចច្ចើយ៖ Na_2CO_3 រលាយក្នុងទឹកបង្កើតជាអ៊ីយ៉ុង Na^+ និង CO_3^{2-} ។ អ៊ីយ៉ុង Na^+ គ្មានប្រតិកម្មជាមួយទឹក បុន្តែ CO_3^{2-} មានប្រតិកម្មជាមួយ ទឹកបង្កើតបាន OH^- នៅក្នុងសូលុយស្យុង។

សមីការតាងប្រតិកម្ម៖
$$Na_2CO_3(s)$$
 $\stackrel{\text{g}_{\text{fh}}}{-\!\!\!-\!\!\!-\!\!\!-}$ $2Na^+(aq) + CO_3^{2-}(aq)$ $Na^+(aq) + H_2O(l)$ \longrightarrow គ្មានប្រតិកម្ម $CO_3^{2-}(aq) + H_2O(l)$ $\stackrel{\text{constant}}{-\!\!\!-\!\!\!-}$ $HCO_3^-(aq) + OH^-(aq)$

- **ឧទាទី៣ ៖** ហេតុអ្វីបានជា $BaCl_2$ លោយក្នុងទឹកឱ្យជាសូលុយស្យុងណឺត? ចូរពន្យល់ និងសរសេរសមីការតាងប្រតិកម្ម។
- ចម្លើយ៖ ព្រោះ $BaCl_2$ រលាយក្នុងទឹកបង្កើតជាអ៊ីយ៉ុង Ba^{2+} និង Cl^- ។ អ៊ីយ៉ុង Ba^{2+} និង Cl^- គ្មានប្រតិកម្មជាមួយទឹក (ជាអ៊ីយ៉ុងណឺត) នាំឱ្យសូ. $BaCl_2$ ជាសូលុយស្យូងណឺត។

សមីការតាងប្រតិកម្ម៖
$$BaCl_2(s) \xrightarrow{\mbox{$^6{\rm h}$}} Ba^{2^+}(aq) + 2Cl^-(aq)$$
 $Ba^{2^+}(aq) + H_2O(l) \longrightarrow$ គ្មានប្រតិកម្ម $Cl^-(aq) + H_2O(l) \longrightarrow$ គ្មានប្រតិកម្ម

រុមមន្ត្យស្វានៗខ្លាំនមខ្មែនសម្រាច់ម្រន្សួទ ITC

៣២. ច្បាច់សាល

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

- -V: មាឌឧស្ន័ន (L)
- -T: សីតុណ្ហភាព (K)

៣៤. ច្បាច់អាច៉ូអាថ្នូ

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

-n: ចំនួនម៉ូលឧស្ព័ន (mol)

<u>៣៦. ម៉ាសម៉ូលខ្មស្ន័ន</u>

$$M = \frac{dRT}{P}$$

- $-d \rightarrow g.L^{-1}$
- R = 0.0821 L.atm / mol.K
- $P \rightarrow atm ; T \rightarrow K$

៣៨. ចំណុះកម្ដៅ និ១មរិមាណកម្ដៅ

$$C = m \times s$$
 ; $q = ms\Delta t$

- -C: ចំណុះកម្ដៅ $J/^{\circ}$ C
- -s: កម្ដៅយថាប្រភេទ J/g. $^{\circ}$ C
- -q: បរិមាណកម្ដៅ J

៣៣. ច្បាច់នាយល្យសាន់

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

-P: សម្ពាធឧស័ន (atm)

៣៥. នំនាក់នំនe P , V និe T

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

៣៧. សនីភាខ្វេស្ត័នបរិសុន្ធ

$$PV = nRT$$

R = 0.0821 L.atm / mol.K

៣៤. ទំនាក់ទំនងសម្ពាធ-មាឌ

$$P_1V_1=P_2V_2$$

៣៩. អម្រិតកើននៃសីគុណ្ណភាពព្រះ

$$\Delta t_b = K_b \times m$$

- -Kb: ថេរវំពុះ ${}^{\circ}C/m$
- -m: កំហាប់ណរម៉ាលីតេ m

<u>៤០. គម្រឹតតំសយចុះនៃសីតុណ្ហភាពកំណត</u>

$$\Delta t_f = K_f \times m$$

 $-K_f$: ថេរកំណក ${}^{\circ}$ C/m

৫១. អទ់គាល់ពីស្គខ់ជានៃប្រតិតម្

$$\Delta H_{rxn}^o = \Sigma n \Delta H_f^o$$
 (ផលិតផល) $- \Sigma m \Delta H_f^o$ (ប្រតិការ)

៤២. សម្ពាន និទក្សទិតលោយ

ប្បាប់
$$Henry: \frac{S_1}{P_1} = \frac{S_2}{P_2}$$

$$V/V\% = \frac{V_{st}}{V_{s}} \times 100$$

 $-S_1$ កម្រិតរលាយនៅសម្ពាធ P_1

៤៥. សម្ពានអុស្ត្រូស π

 $-S_2$ កម្រិតរលាយនៅសម្ពាធ P_2

 $\pi = MRT$

<u>៤៤. គំមាមម៉ូន្សាលីគេ (m)</u>

$$m=rac{n}{Kg}$$
នៃធាតុរលាយ

៤៥. ឧទ្រខ់ទ្រតិកម្មនៃគីទីសពែទ្ឋ

> <u> ខំទេះសព្វនៃអាល់គុល</u>

$$C_n H_{2n+1}OH + \frac{3n}{2}O_2 \longrightarrow nCO_2 + (n+1)H_2O$$

ចំមោះសព្វនៃអេស្វែ

$$C_n H_{2n} O_2 + \left(\frac{3n}{2} - 1\right) O_2 \longrightarrow nCO_2 + n H_2 O$$

<u>I. ទ្រតិតម្មគីមីនៃអេស្វែ</u>

គ. ប្រតិតម្មអ៊ីជ្រលិសនៃអេស្វែ

<u>១. ប្រតិតម្មសាចិតម្</u>

$$R-COO-R'+NaOH\longrightarrow R-COONa+R'OH$$
 អេស្ទែ សូដ្យូមអ៊ីដ្រុកស៊ីត សូដ្យូមកាបុកស៊ីឡាត អាល់កុល

គ. ប្រតិតម្មអេស្តែខាមួយអាម៉ូញ៉ាំត់

$$R-COO-R'+NH_3 \longrightarrow R-CONH_2+R'OH$$
 អេស្ទែ អាម៉ូញ៉ាក់ អាមីត អាល់កុល

<u>ឃ. ប្រតិតម្ភពជិតម្ភូលៃអែស្នែ</u>

$$R-COO-R'+2H_2 \xrightarrow{catalysis} R-CH_2OH+R'OH$$
 អៅស្វែ អាល់កុលថ្នាក់ ${}_{\rm I}$ អាល់កុលទូទៅ

<u>II. အថ្វើអេស្នែ</u>

គ. ប្រតិតម្ភៈចាខអាស៊ីតតាបុគស៊ីលិច និខអាល់គុល (អេស្នែកម្ម)

$$R-COOH+R'OH\iff R-COO-R'+H_2O$$
 អាស៊ីតកាបុកស៊ីលលិច អាល់កុល អេស្វែ ទឹក

Prepared by: Cheng Sok Eng

<u>ខ. ប្រតិតម្មទោខអាស៊ីលត្តរួ និខអាល់គុល</u>

$$R-COCl + HO-R' \longrightarrow R-COO-R' + HCl$$
 អាស៊ីលក្លរួ អាល់កុល អេស្វែ អ៊ីដ្រូសែនក្លរួ

គ. ប្រតិតម្មចោខអានីឡើតអាស៊ីត និខអាល់គុល

$$(R-CO)_2O + HO-R' \longrightarrow R-COO-R' + R-COOH$$
 អានីឌ្រីតអាស៊ីត អាល់កុល អេស្វែ អាស៊ីត

III. រុន្តិគ្លីសេរីត (ខ្លាញ់ ឬ ប្រេច)

គ. ប្រតិតម្មចោខអាស៊ីតខ្លាញ់ និចគ្គីសេរ៉ូល

ខ. ប្រតិតម្មសាចិតម្មនៃខ្នាញ់ ឬម្រេច

<u>ឝ. ប្រតិតម្មអ៊ីដ្រូលិសនៃខ្លាញ់ ឬប្រេច</u>

IV. ប្រតិតម្មតិទីនៃអាទីន

ភ. ប្រតិតម្មប់មួយនឹត

$$R-NH_2 + H_2O \iff R-NH_3^+ + OH^-$$

អាមីន ទឹក អ៊ីយ៉ុងអាល់គីលឡាម៉ូញ៉ូម អ៊ីយ៉ុងអ៊ីជ្រុកស៊ីត

<u>១. ប្រតិតម្មបាមួយអាល់គីលអាឡូសែណូ</u>

$$R-NH_2+R'-X\longrightarrow R-NH-R'+HX$$
អាមីនថ្នាក់ I អាលគីលអាឡូសែណួ អាមីនថ្នាក់ II អ៊ីដ្រូសែនអាឡូសែណួ

គ. ប្រតិតម្មប់មួយអាស៊ីលត្តរួ

$$R-NH_2+R'-COCl\longrightarrow R'-CONH-R+HCl$$
 អាមីនថ្នាក់ I អាស៊ីលក្លរួ អាមីតថ្នាក់ I អ៊ីដ្រូសែនក្លរួ

<u>ឃ. ប្រតិតម្មប៉ាមួយអាស៊ីតព័</u>

$$R-NH_2+HCl\longrightarrow R-NH_3^++Cl^-$$
អាមីន អាស៊ីតក្លូវីខ្ពិច អាល់គីលឡាម៉ូញ៉ូមក្លូ

១. ៗៗគឺកម្មជនកម្មនៃស៊ីទ្រឹល

$$R-CN+4H$$
 \xrightarrow{Ni} $R-CH_2-NH_2$ នីទ្រីល អាមីនថ្នាក់ទី I

<u>v. នទ្វើអាទីត</u>

គ. ប្រតិតម្មចោខអែស្គ និខអាម៉ូញ៉ាត់

$$R-COO-R'+NH_3\longrightarrow R-CONH_2+ROH$$
អេស្តែ អាម៉ូញ៉ាក់ អាមីត អាល់កុល

ខ. ប្រតិតម្មទោខអាស៊ីតកាបុគស៊ីលិច និខអាម៉ូល្ប៉ាត់

$$R-COOH+NH_3\longrightarrow R-CONH_2+H_2O$$
អាស៊ីត អាម៉ូញ៉ាក់ អាមីត ទឹក

<u>ឝ. ប្រតិតម្មទោខអាស៊ីលត្អរួ និខអាម៉ូញ៉ាំក់លើស</u>

$$R-COCl + 2NH_3 \longrightarrow R-CONH_2 + NH_4Cl$$
 អាស៊ីលក្ខារ្ហ អាម៉ូញ៉ាក់លើស អាមីត អាម៉ូញ៉ូមក្គារួ

ឃ. ប្រតិតម្មចោខអានិទ្រឹតអាស៊ីត និខអាម៉ូញ៉ាត់

$$(R-CO)_2O + NH_3 \longrightarrow R-CONH_2 + R-COOH$$
 អានីឌ្រីតអាស៊ីត អាម៉ូញ៉ាក់ អាមីត អាស៊ីត

VI. ប្រតិតម្មនៃអាមិត និខផ្សេខៗ

គ. ប្រតិតម្មរចាខអាមិត និចនឹក

$$R-CONH_2 + H_2O \xrightarrow{t^o} R-COOH + NH_3$$
 អាមីត ទឹក អាស៊ីត អាម៉ូញ៉ាក់

ខ ប្រតិតម្មទោខអាម៉ូញ៉ាត់ និខតាមូនឱ្យអតស៊ីត

$$2NH_3 + CO_2 \longrightarrow CO(NH_2)_2 + H_2O$$
 អាម៉ូញ៉ាក់ កាបូនឌីអ្នកស៊ីត អ៊ុយរ៉េ ទឹក

VII. ប្រតិតម្មនទ្វេសស៊ីតសម៌ឈោ

អាស៊ីត lpha – អាឡូសែណូកាបុកស៊ីលិច អាស៊ីត lpha – អាមីណូកាបុកស៊ីលិច

សម្គាល់៖ X អាចជា Cl ឬ Br។