Функан. ДЗ 3.

ПРОХОРОВ ЮРИЙ, 776

Теорема Тихонова. Произведение компактных топологических пространств компактно в топологии произведения.

компактность = топологическая компактность

Утв. 1 Отрезок [0,1] со стандартной (метрической) топологией — компактное ТП.

Доказательство

Рассмотрим произвольное открытое покрытие $[0,1] = \bigcup_{\alpha \in A} U_{\alpha}$. Допустим нельзя выделить конечное подпокрытие.

Тогда хотя бы один из отрезков $\left[0,\frac{1}{2}\right]$ и $\left[\frac{1}{2},1\right]$ не допускает конечного подпокрытия (иначе можно было бы объединить их и получить конечное подпокрытие $\left[0,1\right]=r_1$). Назовем этот отрезок r_2 .

Аналогично, какая-то половина r_2 не допускает конечного подкрытия — отрезок r_3 . Продолжая так, получим стягивающуюся систему вложенных отрезков $\{r_n\}_{n\in\mathbb{N}}$. Она имеет общую точку $x\in[0,1]$. Она лежит в каком-то элементе открытого покрытия: $\exists \alpha_0: x\in U_{\alpha_0}$.

В метрической топологии открытость U_{α_0} эквивалентна тому, что любая точка U_{α_0} лежит там вместе с каким-то открытым шаром, значит, $\exists R>0: O_R(x)\subset U_{\alpha_0}$. Мы знаем, что длины отрезков из системы $\{r_n\}$ стремятся к нулю. Поэтому

$$\exists N \ \forall n \geq N \ \rightarrow \ r_n \in O_R(x) \subset U_{\alpha_0}$$

Но по построению, все r_n не допускают конечного покрытия, состоящего из элементов $\{U_\alpha\}$. Однако таким покрытием является покрытие из одного элемента — U_{α_0} . Противоречие.

Утв. 2 Замкнутое подмножество компактного множества — компакт.

Доказательство:

Пусть A — компакт в (X, τ) , $B \subset A$ и B замкнуто. Возьмем произвольное открытое покрытие $B \subset \bigcup U_{\alpha}$.

Добавим в него открытое множество $X \setminus B$ и получим открытое покрытие A. A — компакт, значит можно выделить конечное подпокрытие. Из него, если нужно, удалим $X \setminus B$ и получим конечное подпокрытие B.

Опр. Пусть (X, τ) — ТП. Определяющим семейством или локальной базой точки $x \in X$ называется такое семейство окрестностей $\beta(x) = \{V_{\alpha}(x) \mid \alpha \in \mathcal{A}\}$, что

$$\forall U(x) \in \tau \ \exists V_{\alpha}(x) \in \beta(x) : \ V_{\alpha}(x) \subset U(x)$$

Опр. Говорят, что ТП (X, τ) удовлетворяет *аксиоме счетности*, если для любой точки $x \in X$ существует счетная локальная база.

Утв. 3 Если ТП (X, τ) удовлетворяет аксиоме счетности, то

- x секвенциальная точка пр. \iff x топологическая точка пр.
- \bullet S замкнуто \iff S секвенциально замкнуто;
- $[S]_{\text{секв.}} = [S]_{\tau};$
- Для отображения $f:(X,\tau) \to (Y,\tau_2)$ (причем (Y,τ_2) произвольное ТП):

f топологически непрерывно \iff f секвенциально непрерывно

В произвольном ТП эти утверждения выполняются слева направо и $[S]_{\text{секв.}} \subset [S]_{\tau}$, а компактность и секвенциальная компактность не следуют друг из друга.

Утв. 4 Любое метрическое пространство (X, ρ) (с метрической топологией τ_{ρ}) удовлетворяет аксиоме счетности, а компактность эквивалентна секвенциальной компактности.

Утв. 5 Пусть (X, ρ) — метрическое пространство, а отображения

$$f: X \longrightarrow \mathbb{R}, \qquad g: X \longrightarrow \mathbb{R}$$

непрерывны. Тогда

- (1) Отображение $h: X \to \mathbb{R}, \ h(x) = f(x) + g(x)$ непрерывно;
- (2) Отображение $h: X \to \mathbb{R}, \ h(x) = f(x) \cdot g(x)$ непрерывно;
- (3) Если $g \neq 0$ на X, то отображение $h: X \to \mathbb{R}, \ h(x) = \frac{f(x)}{g(x)}$ непрерывно;

Доказательство:

В метрическом пространстве определение непрерывности отображения $f:X \to \mathbb{R}$ можно записать в виде:

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ f(O_{\delta}(x)) \subset O_{\varepsilon}(f(x))$$

(1) Пусть f,g непрерывны. Покажем, что h тоже непрерывно, доказав определение выше. Пусть $x \in X$ — произвольная точка, $\varepsilon > 0$ — любое. Надо подобрать число $\delta > 0$ из требования:

$$\forall y \in O_{\delta}(x) \rightarrow h(y) \in O_{\varepsilon}(h(x))$$

$$|h(y)-h(x)| \leq |f(y)-f(x)| + |g(y)-g(x)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \text{ при } y \in O_{\delta_1}(x) \cap O_{\delta_2}(x),$$

где числа δ_1, δ_2 получены из определения непрерывности для f и g для $\frac{\varepsilon}{2}$. Тогда можно взять $\delta = \min\{\delta_1, \delta_2\}$.

Как видим, такое доказательство повторяет аналогичные доказательства с первого семестра матанализа.

(2) Используем, что непрерывная функция ограничена в какой-то окрестности:

$$|h(y) - h(x)| = |f(y)g(y) - f(y)g(x) + f(y)g(x) - f(x)g(x)| \le |f(y)||g(y) - g(x)| + |g(x)||f(y) - f(x)| \le M_1\varepsilon + M_2\varepsilon$$

(3) Аналогично.

Опр. Пусть (X, ρ) — метрическое пространство. Множество $A \subset X$ называется *ограниченным*, если его *диаметр* конечен, то есть

$$\operatorname{diam} A = \sup_{x,y \in A} \rho(x,y) < \infty$$

Эквивалентное определение: существует шар $O_r(x_0)$, содержащий A.

Утв. 6 Пусть $(X, \rho) - \text{МП}, A \subset X$ — компакт. Тогда A ограничено и замкнуто.

Доказательство:

• Покажем ограниченность. Рассмотрим следующее открытое покрытие $A \subset \bigcup_{x \in A} O_1(x)$. A — компакт, значит, существует конечное подпокрытие $\{O_1(x_k)\}_{k=1}^n$. Тогда

$$R = \max_k \rho(x_1, x_k)$$
 \Longrightarrow $A \subset \bigcup_{k=1}^n O_1(x_k) \subset O_{R+1}(x_1)$ \Longrightarrow A ограничено

• Покажем замкнутость A, то есть открытость $X \setminus A$. Покажем, что любая точка $x \notin A$ лежит вне A вместе с каким-то шаром. Пусть $x \notin A$ — произвольная точка.

Легко видеть, что любое метрическое пространство удовлетворяет второй аксиоме отделимости (т.е. является хаусдорфовым): $\forall z \in X \ (x \neq z) \ \exists U(x), \ V(z) : \ U(x) \cap V(z) = \varnothing$. Тогда рассмотрим открытое покрытие A:

$$A\subset \bigcup_{z\in A}V(z), \qquad A\subset \bigcup_{k=1}^nV(z_k)$$
 — конечное подпокрытие

По построению, $U_k(x) \cap V(z_k) = \emptyset$, значит можно построить окрестность $U(x) = \bigcap_{k=1}^n U_k(x)$ такую, что

$$U(x) \cap \bigcup_{k=1}^{n} V(z_k) = \varnothing \qquad \Longrightarrow \qquad U(x) \subset X \setminus \left(\bigcup_{k=1}^{n} V(z_k)\right) \subset X \setminus A$$

Задача 1.6(4) (из задавальника)

Пусть $F = [0,1]^{[0,1]}$ с топологией τ поточечной сходимости. Привести пример множества $M \subset F$, которое является секвенциальным компактом и не является топологическим компактом в (F,τ) .

Решение: (source: Нина Каплоухая)

Покажем, что (F,τ) — компактное ТП. Известно, что топология поточечной сходимости — это топология произведения, которым является F:

$$F = \prod_{\alpha \in [0,1]} [0,1], \qquad \big([0,1],\tau_0\big) - \text{производимые пространства},$$

где τ_0 — стандартная топология на [0,1] (порождена базой из всех открытых интервалов).

Все производимые пространства компактны (утверждение 1), значит, по теореме Тихонова, (F, τ) — компактное топологическое пространство.

$$M = \{\mathbb{I}_A \; \big| \; A \subset [0,1] \; \text{не более, чем счетно} \}$$
 — индикаторные функции

• М секвенциально компактно.

Пусть $\{f_n\}\subset M$ — произвольная последовательность. Надо выделить сходящуюся в M подпоследовательность. Пусть $Q=\bigcup_{n=1}^\infty \{x\mid f_n(x)=1\}$. Сразу заметим, что все функции $f_n\equiv 0$ на $[0,1]\setminus Q$. Пусть $Q=\{q_k\}_{k=1}^\infty$ (так как Q счетно).

Рассмотрим значения функций из $\{f_n\}$ в точке q_1 . Одно из значений 0, 1 принимается бесконечным числом функций. Выкинем из $\{f_n\}$ все функции, принимающие другое значение. Получим подпоследовательность $A_1 \subset \{f_n\}$.

Рассмотрим значения функций из A_1 в точке q_2 и аналогичным образом получим бесконечное множество $A_2 \subset A_1$. Продолжая таким образом, получим систему бесконечных множеств

$$\{f_n\}\supset A_1\supset A_2\supset A_3\supset\ldots$$

Построим подпоследовательность $\{g_n\}$, где $g_n \in A_n$ — произвольная функция. На $[0,1] \setminus Q$ все они равны 0. Рассмотрим их значения на Q. По построению, последовательность $\{g_n(q_k)\}$ стационарна при $n \geq k$, значит она сходится. Таким образом, $\{g_n\}$ сходится поточечно к некоторой функции $g = \mathbb{I}_B$, $B \subset Q$ — не более, чем счетно, значит, $g \in S$.

• M не компактно.

Рассмотрим открытое покрытие

$$M \subset \bigcup_{x \in [0,1]} V(x,0,\varepsilon), \qquad \varepsilon > 0$$

Рассмотрим его произвольное конечное подмножество $\{V(x_k,0,\varepsilon)\}_{k=1}^n$. Оно не является подпокрытием, так как не содержит в себе индикатор множества $\{x_1,\ldots,x_n\}$. Значит, M не компактно.

Задача 1.9(а) (из задавальника)

Пусть $F = \mathbb{R}^{[0,1]}$ (функции $f : [0,1] \to \mathbb{R}$) с топологией τ поточечной сходимости. Привести пример множества $S_0 \subset F$, секвенциальное замыкание которого не совпадает с его τ -замыканием в пространстве (F,τ) .

Решение:

$$S_0 = \{ f \in F \mid f$$
 измерима по Лебегу $\}$

Пусть $f_n \stackrel{\tau}{\longrightarrow} f$, значит, f_n сходится к f поточечно. Поточечный предел измеримых функций — измеримая функция, поэтому $f \in S_0$, значит,

$$[S_0]_{\text{cekb}} = S_0$$

Данный факт доказывался в курсе меры и интеграла Лебега (см. §2.3, утв. 2.3.4 в конспекте Н.А. Гусева).

Рассмотрим произвольную функцию g, быть может даже неизмеримую. Покажем, что g — (топологическая) точка прикосновения S_0 . Отсюда будет следовать, что

$$\begin{bmatrix} S_0 \end{bmatrix}_{\tau} = F \implies \begin{bmatrix} S_0 \end{bmatrix}_{\text{CEKB}} \subsetneq \begin{bmatrix} S_0 \end{bmatrix}_{\tau},$$

так как существуют не измеримые по Лебегу функции (например, индикаторная функция множества Витали).

Итак, пусть U(g) — произвольная окрестность g, которая есть объединение элементов базы. Значит, существует элемент базы $W(g) \subset U(g)$, который, в свою очередь, есть конечное пересечение элементов предбазы:

$$W(g) = \bigcap_{k=1}^{n} V(x_k, c_k, \varepsilon_k),$$

где $V(x,c,\varepsilon)=\left\{f\ \big|\ |f(x)-c|<\varepsilon\right\}$ — элементы предбазы $\tau.$

Определим функцию:

$$h: [0,1] \to \mathbb{R}, \qquad h(x) = \begin{cases} c_k, & x = x_k \\ 0, & x \neq x_k \end{cases} (\forall k)$$

h измерима по Лебегу, т.е. $h \in S_0$. Кроме того,

$$h \in V_{x_k, c_k, \varepsilon_k} \quad \forall k \qquad \Longrightarrow \qquad h \in W(g) \subset U(g),$$

следовательно, g — точка прикосновения S_0 .

Задача 1.11 (из задавальника)

Дано семейство множеств

$$\tau = \{ V \subset \mathbb{R} \mid \mathbb{R} \setminus V \text{ конечно} \} \cup \{\emptyset\}$$

- (a) доказать, что τ топология в \mathbb{R} ;
- (b) привести пример компактного и незамкнутого в пространстве (\mathbb{R}, τ) множества $K \subset \mathbb{R}$;
- (c) привести пример секвенциально компактного и секвенциально незамкнутого в топологическом пространстве (\mathbb{R}, τ) множества $S \subset \mathbb{R}$.

Решение:

- (а) Проверим свойства из определения топологии.
 - $\varnothing \in \tau$, $\mathbb{R} \in \tau$.
 - Пусть $\{U_{\alpha}\} \in \tau$. Тогда все $\mathbb{R} \setminus U_{\alpha}$ конечны либо равны всему \mathbb{R} . Если все $U_{\alpha} = \emptyset$, то и объединение есть пустое множество, которое лежит в τ . Пусть среди $\{U_{\alpha}\}$ есть непустое U_{0} . Тогда

$$\mathbb{R}\setminus\bigcup_{\alpha}U_{\alpha}=\bigcap_{\alpha}\left(\mathbb{R}\setminus U_{\alpha}\right)\subset\mathbb{R}\setminus U_{0}$$
 — не более, чем конечно \Longrightarrow $\bigcup_{\alpha}U_{\alpha}\in\tau$

• Пусть $A, B \in \tau$. Если среди них есть пустые, то $A \cap B = \emptyset \in \tau$. Если оба непустые, то

$$\mathbb{R}\setminus (A\cap B)=(\mathbb{R}\setminus A)\cup (\mathbb{R}\setminus B)$$
 — не более, чем конечно \implies $A\cap B\in au$

(b)
$$K = \mathbb{N} \subset \mathbb{R}$$
.

 $\mathbb N$ бесконечно, поэтому $\mathbb N$ незамкнуто. Покажем компактность. Рассмотрим произвольное открытое покрытие $\{U_{\alpha}\}$. Рассмотрим произвольный непустой элемент этого покрытия $X_0 = \mathbb R \setminus \{x_k\}$, где $\{x_k\}$ — конечный набор действительных чисел.

Построим конечное подпокрытие \mathbb{N} . Сначала добавим туда X_0 . Осталось покрыть $\{x_k\} \cap \mathbb{N}$. Если $x_k \in \mathbb{N}$, то $\exists X_k \subset \{U_\alpha\}$, содержащее x_k . Тогда добавим это X_k в покрытие. Получили конечное подпокрытие.

(c)
$$S = \mathbb{N} \subset \mathbb{R}$$

Покажем, что $[\mathbb{N}]_{\text{секв.}} = \mathbb{R}$. Пусть $a \in \mathbb{R}$. Покажем, что $\{n\}_1^\infty \xrightarrow{\tau} a$. Рассмотрим произвольную окрестность $U(a) = \mathbb{R} \setminus \{z_1, \ldots, z_k\}$. Пусть $N = \lceil \max\{z_1, \ldots, z_k\} \rceil + 1$. Тогда $\forall n \geq N$ выполнено $n \in U(a)$. Значит $\{n\}$ сходится к a по топологии. Мы доказали, что \mathbb{N} секвенциально незамкнуто.

Покажем секвенциальную компактность \mathbb{N} . Пусть $\{x_n\} \subset \mathbb{N}$ — произвольная последовательность. Если она содержит только конечное число различных чисел, то можно выбрать стационарную подпоследовательность, которая и будет сходящейся в \mathbb{N} .

Пусть $\{x_n\}$ содержит бесконечное число различных чисел. Значит, она неограничена, и поэтому можно выделить строго возрастающую подпоследовательность $\{y_n\}$. Последовательность $\{y_n\}$ сходится к произвольному числу $a \in \mathbb{R}$ (доказательство аналогично тому, что $\{n\} \xrightarrow{\tau} a$). Значит, это верно и для любого $a \in \mathbb{N}$

Итак, из любой последовательности натуральных чисел можно выделить сходящуюся к натуральному числу подпоследовательность. Значит, N секвенциально компактно.

Задача §1.4

 l_{∞} — пространство всех ограниченных числовых последовательностей с метрикой

$$\rho_{\infty}(x,y) = \sup_{k \in \mathbb{N}} |x_k - y_k|$$

Проверить открытость в метрическом пространстве (l_{∞}, ρ) множества

$$A = \left\{ x \in l_{\infty} \mid 0 < x_k < 1 \ \forall k \in \mathbb{N} \right\}$$

Под открытостью в метрическом пространстве (X, ρ) понимается принадлежность метрической топологии τ_{ρ} , порожденной базой из всех открытых шаров в X.

Решение:

Известно, что

$$A$$
 открыто \iff $\forall x \in A \ \exists r > 0 \ O_r(x) \subset A$

Покажем, что A не открыто, доказав отрицание этого утверждения.

Рассмотрим последовательность $x=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}\in A$. Пусть $O_r(x)$ — произвольный открытый шар. Надо показать, что для любого r>0 выполнено $O_r(x)\not\subset A$. Зафиксируем r>0.

Рассмотрим последовательность у:

$$y_n = \begin{cases} \frac{1}{n}, & \frac{1}{n} \ge r \\ 0, & \frac{1}{n} < r \end{cases}, \qquad y \notin A$$

Однако легко видеть, что по построению $\rho(x,y) < r$, то есть $y \in O_r(x)$ и $y \notin A$.

Задача §1.7

Пусть A,B — замкнутые, непересекающиеся подмножества метрического пространства (X,ρ) . Доказать, что на X существует непрерывная функция f такая, что $f\big|_A \equiv 0, \ f\big|_B \equiv 1.$

 $f|_A$ — сужение функции f на множество A.

Под открытостью в метрическом пространстве (X, ρ) понимается принадлежность метрической топологии τ_{ρ} , порожденной базой из всех открытых шаров в X.

Так как любое метрическое пространство удовлетворяет аксиоме счетности, то в нем понятия топологически непрерывного и секвенциально непрерывного отображения совпадают. Под непрерывностью понимается любое из них.

Решение:

Из задачи §1.5, разобранной на семинаре, мы знаем, что

$$\forall S\subset X \quad f_S(x)=
ho(x,S)=\inf_{y\in S}
ho(x,y)$$
 — непрерывное отображение

Докажем, что искомым в нашей задаче является отображение

$$f(x) = \frac{\rho(x, A)}{\rho(x, A) + \rho(x, B)}$$

Надо доказать следующее:

- (1) f определено на всем X;
- (2) $f|_A \equiv 0$, $f|_B \equiv 1$;
- (3) f непрерывно на X.
- (1) Покажем, что если A, B замкнутые непересекающиеся множества, то

$$\rho(x, A) + \rho(x, B) > 0$$

для любых $x \in X$.

Пусть $\rho(x_0, A) = \rho(x_0, B) = 0$. Тогда

$$\exists \{x_n\} \subset A, \ \exists \{y_n\} \subset B: \ \rho(x_0, x_n) \to 0, \ \rho(x_0, y_n) \to 0 \ (n \to \infty)$$

В метрическом пространстве:

$$\rho(x_0, x_n) \to 0, \quad \rho(x_0, y_n) \to 0 \qquad \Longleftrightarrow \qquad x_n \xrightarrow{\tau_\rho} x_0, \ y_n \xrightarrow{\tau_\rho} x_0,$$

то есть x_0 — точка прикосновения A и B. Значит, $x_0 \in [A] \cap [B] = A \cap B$ — противоречие.

В метрическом пространстве эквивалентны понятия топологической и секвенциальной точки прикосновения, топологического и секвенциального замыкания.

- (2) При $x \in A$: f(x) = 0, а при $x \in B$: $f(x) = \frac{\rho(x,A)}{\rho(x,A)} = 1$.
- (3) Мы знаем, что $\rho(x,A)$ и $\rho(x,B)$ непрерывные отображения. Так сумма, произведение и частное непрерывных отображений непрерывны (утверждение 5), то и f(x) непрерывно.

Задача §1.13

Опр. Топологическое пространство (X, τ) называется *метризуемым*, если на X можно так задать метрику ρ , что метрическая топология $\tau_{\rho} = \tau$.

 $D(\mathbb{R})$ — пространство финитных, бесконечно дифференцируемых функций на \mathbb{R} . В нем можно задать топологию τ так, что сходимость по ней будет эквивалентна привычной сходимости в D:

$$\phi_n \xrightarrow{\tau} \phi \qquad \Longleftrightarrow \qquad \phi_n \xrightarrow{D(\mathbb{R})} \phi \qquad \overset{\text{def}}{\Longleftrightarrow} \qquad \begin{cases} \phi_n^{(k)} \longrightarrow \phi^{(k)} \text{ равномерно на } \mathbb{R} & \forall k \in \mathbb{N}_0 \\ \text{supp } \phi_n \subseteq [a,b] & \forall n \in \mathbb{N} \end{cases}$$

где supp $\phi = \overline{\{x \mid \phi(x) \neq 0\}}$ — носитель функции — замыкание множества точек, где функция отлична от нуля.

Доказать, что пространство основных функций $D(\mathbb{R})$ неметризуемо.

Решение:

Допустим противное: существует такая метрика ρ на $D(\mathbb{R})$, что

$$\phi_n \overset{D(\mathbb{R})}{\longrightarrow} \phi \qquad \Longleftrightarrow \qquad \rho(\phi_n,\phi) \longrightarrow 0 \ \text{при} \ n \to \infty$$

Идея: построить последовательность функций, которая сходится по метрике ρ , но не сходится в смысле $D(\mathbb{R})$. Определим функцию:

$$\phi_n(x) = \begin{cases} 1 & , |x| \le n \\ \dots & , n < |x| < n+1 \\ 0 & , |x| \ge n+1 \end{cases}$$

где при n < |x| < n+1 функция определена так, чтобы ϕ_n была бесконечно дифференцируемой.

Сначала покажем, что $\forall n \in \mathbb{N}: \ \frac{\phi_n}{m} \overset{D(\mathbb{R})}{\longrightarrow} 0$ при $m \to \infty.$

$$\begin{cases} \operatorname{supp} \; \frac{\phi_n}{m} \subset [-n-1,n+1] & \forall m \in \mathbb{N} \\ \\ \operatorname{sup} \; \left| \frac{\phi_n^{(k)}}{m} \right| = \frac{1}{m} \max_{[-n-1,n+1]} \left| \phi_n^{(k)} \right| \longrightarrow 0, \quad \text{при } m \to \infty \end{cases} \qquad \Longrightarrow \qquad \frac{\phi_n}{m} \overset{D(\mathbb{R})}{\longrightarrow} 0$$

Тогда $ho\left(\frac{\phi_n}{m},0
ight) o 0$ при $m o \infty,$ значит:

$$\forall n \in \mathbb{N} \ \exists m_n: \ \rho\left(\frac{\phi_n}{m_n}, 0\right) < \frac{1}{n} \qquad \Longrightarrow \qquad \rho\left(\frac{\phi_n}{m_n}, 0\right) \longrightarrow 0 \text{ при } n \to \infty$$

Тогда $\frac{\phi_n}{m_n} \stackrel{D(\mathbb{R})}{\longrightarrow} 0$. Однако носители функций ϕ_n неограниченно разрастаются — противоречие.