Kapitel 3: Das relationale DB-Modell & SQL

Einführung in Datenbanksysteme

Relationale Darstellung von Beziehungen

Ausprägung der Beziehung hören

Studenten		
MatrNr		
26120		
27550	•••	
•••		

hören			
MatrNr	VorlNr		
26120	5001		
27550	5001		
27550	4052		
28106	5041		
28106	5052		
28106	5216		
28106	5259		
29120	5001		
29120	5041		
29120	5049		
29555	5022		
25403	5022		
29555	5001		

Vorlesungen			
VorINr			
5001			
4052			

Einführung in Datenbanksysteme

hören

Das relationale Datenmodell 3.1.3

Notation für Relationenschemata

Schema: Tabellenname = {[Attr1: Typ1, Attr2: Typ2, ...]}

In eckigen Klammern [...] wird angegeben, wie die Tupel aufgebaut sind.

Die Mengenklammern sollen ausdrücken, daß es sich bei einer Relationenausprägung um eine Menge von Tupeln handelt.

Manchmal werden die Attribute auch als Menge benötigt:

Wir schreiben für das Schema der Tabelle \mathcal{R} : \mathcal{R} = {Attr1, Attr2, ...}.

Eine konkrete Relation R ist eine Teilmenge des Kreuzproduktes von dom(Attr1) x dom(Attr2) x ...

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

Vorlesungen: {[VorlNr, Titel, SWS]}

Professoren: {[PersNr, Name, Rang, Raum]}

lesen: {[VorINr, PersNr]}

Verfeinerung des relationalen Schemas

1:N-Beziehung

Initial-Entwurf

Vorlesungen : {[VorlNr, Titel, SWS]}

Professoren: {[PersNr, Name, Rang, Raum]}

lesen: {[VorINr, PersNr]}

Verfeinerung durch Zusammenfassung

Vorlesungen : {[VorlNr, Titel, SWS, gelesenVon]}

Professoren: {[PersNr, Name, Rang, Raum]}

Regel

Relationen mit gleichem Schlüssel kann man zusammenfassen

aber nur diese und keine anderen!

Ausprägung von Professoren und Vorlesung

Professoren			
PersNr	Name	Rang	Raum
2125	Sokrates	C4	226
2126	Russel	C4	232
2127	Kopernikus	C3	310
2133	Popper	C3	52
2134	Augustinus	C3	309
2136	Curie	C4	36
2137	Kant	C4	7

	Vorlesungen				
VorlNr	Titel	SWS	Gelesen Von		
5001	Grundzüge	4	2137		
5041	Ethik	4	2125		
5043	Erkenntnistheorie	3	2126		
5049	Mäeutik	2	2125		
4052	Logik	4	2125		
5052	Wissenschaftstheorie	3	2126		
5216	6 Bioethik		2126		
5259	Der Wiener Kreis	2	2133		
5022	Glaube und Wissen	2	2134		
4630	Die 3 Kritiken		2137		

Professoren

lesen

- Vorlesungen

Vorsicht: So geht es NICHT

Professoren								
PersNr	ersNr Name Rang Raum liest							
2125	Sokrates	C4	226	5041				
2125	Sokrates	C4	226	5049				
2125	Sokrates	C4	226	4052				
2134	Augustinus	C3	309	5022				
2136	Curie	C4	36	??				

Vorlesungen				
VorlNr	VorlNr Titel			
5001	Grundzüge	4		
5041	Ethik	4		
5043	Erkenntnistheorie	3		
5049	Mäeutik	2		
4052	Logik	4		
5052	Wissenschaftstheorie	3		
5216	Bioethik	2		
5259	Der Wiener Kreis	2		
5022	Glaube und Wissen	2		
4630	Die 3 Kritiken	4		

Professoren 1 lesen Vorlesungen

Einführung in Datenbanksysteme

Anomalien

Professoren				
PersNr	Name	Rang	Raum	liest
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

	Vorlesungen			
VorlNr	VorlNr Titel			
5001	Grundzüge	4		
5041	Ethik	4		
5043	Erkenntnistheorie	3		
5049	Mäeutik	2		
4052	Logik	4		
5052	Wissenschaftstheorie	3		
5216	Bioethik	2		
5259	Der Wiener Kreis	2		
5022	Glaube und Wissen	2		
4630	Die 3 Kritiken	4		

Update-Anomalie: Was passiert wenn Sokrates umzieht

Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt

Einfügeanomalie: Curie ist neu und liest noch keine Vorlesungen

Relationale Modellierung der Generalisierung

Angestellte: {[PersNr, Name]}

Professoren: {[PersNr, Rang, Raum]}

Assistenten: { [PersNr, Fachgebiet] | Datenmodell 3.1.10

Vereinbarung zur Notation

Sei $\mathcal{R} = \{A, B, C, D\}$ ein Relationenschema.

Seien r und t Tupel aus einer konkreten Relation R gemäß dem Schema R.

Sei weiterhin $\square \square \mathcal{R}$.

Wir vereinbaren:

r. ☐ = t. ☐ soll heißen, daß für alle A aus ☐ gilt: r. A = t. A.

Funktionale Abhängigkeiten

Schema

$$\square$$
 $\mathcal{R} = \{A, B, C, D\}$

Ausprägung R

Seien $\square \square \mathcal{R}$, $\square \square \mathcal{R}$

☐ ☐ ☐ genau dann wenn ☐ r, s ☐	$R \text{ mit } r. \square = s. \square \square$	$r. \square = s. \square$
--------------------------------	--	---------------------------

R					
A B C D					
a4	b2	c4	d3		
a1	b1	c1	d1		
a1	b1	c1	d2		
a2	b2	c3	d2		
аЗ	b2	c4	d3		

$$\{A\} \rightarrow \{B\}$$
 $\{C, D\} \rightarrow \{B\}$
 $Nicht: \{B\} \rightarrow \{C\}$
 $Notationskonvention:$
 $CD \rightarrow B$

Beispiel

Stammbaum						
Kind	Kind Vater Mutter Opa Oma					
Sofie	Alfons	Sabine	Lothar	Linde		
Sofie	Alfons	Sabine	Hubert	Lisa		
Niklas	Alfons	Sabine	Lothar	Linde		
Niklas	Alfons	Sabine	Hubert	Lisa		
			Lothar	Martha		

Kind → Vater, Mutter

Kind,Opa → Oma

Kind,Oma → Opa

Schlüssel

$\ \ \square \ \ \mathcal{R}$ ist ein Super-Schlüssel, falls folgendes gilt:
Wir nennen ☐ Super-Schlüssel, weil noch nichts darüber ausgesagt wird,
daß der Schlüssel 🛘 minimal ist.
☐ ist voll funktional abhängig von ☐ genau dann wenn gilt
□ □ und
☐ kann nicht mehr verkleinert werden, d.h.
 □A □ □ folgt, dass (□ □ {□}) □ □ nicht gilt, oder kürzer
• □A □ □: □((□ □ {□}) □ □)
Notation für volle funktionale Abhängigkeit: \Box \Box \Box \Box \Box \Box Ist ein Kandidaten-Schlüssel, falls folgendes gilt:
$\square \sqcap \sqcap \cdot \mathcal{R}$

Schlüsselbestimmung

Städte			
Name	BLand	Vorwahl	EW
Frankfurt	Hessen	069	650000
Frankfurt	Brandenburg	0335	84000
München	Bayern	089	1200000
Passau	Bayern	0851	50000

Kandidaten-schlüssel von *Städte*:

- □ {Name,BLand}
- {Name, Vorwahl}

Beachte, dass 2 kleinere Städte dieselbe Vorwahl haben können

Bestimmung funktionaler Abhängigkeiten

Professoren: {[PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung]} □ {PersNr} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \square {Ort,BLand} \rightarrow {EW, Vorwahl} \square {PLZ} \rightarrow {Bland, Ort, EW} \square {Bland, Ort, Straße} \rightarrow {PLZ} □{Bland} → {Landesregierung} \square {Raum} \rightarrow {PersNr} Zusätzliche Abhängigkeiten, die aus obigen abgeleitet werden können: □ {Raum} → {PersNr, Name, Rang, Raum, Ort, Straße, PLZ, Vorwahl, Bland, EW, Landesregierung} \Box {PLZ} \rightarrow {Landesregierung}

RDM: Relationale Algebra - Anfragen (1)

Vereinigung R S:

- ☐ Alle Tupel zweier Relationen werden in einer Ergebnisrelation zusammengefaßt.
- ☐ Das Ergebnis enthält keine Duplikate.

$$R \square S := \{ r \mid r \square R \quad r \square S \}$$

n S	ANr	AName	Menge
latior	237	Ölfilter	1.560
<u>e</u>	÷	ŧ	i
Rel	851	Schraube	25.000

Ergebnisrelation $R \square S$

Relation R

RDM: Relationale Algebra - Anfragen (2)

Differenz R \ S:

- ☐ Die Tupel zweier Relationen werden miteinander verglichen.
- ☐ Die in der ersten, nicht aber in der zweiten Relation befindlichen Tupel werden in die Ergebnisrelation aufgenommen.

$$R \setminus S := \{ r \mid r \square R \square r \square S \}$$

Relation R

ANr	AName	Menge
001	Anlasser	1.000
237	Ölfilter	1.560
199	Kolben	5.000

Relation S

ANr	AName	Menge
851	Schraube	25.000
232	Gummiring	2.000
001	Anlasser	1.000

Ergebnisrelation $R \setminus S$

ANr	AName	Menge
237	Ölfilter	1.560
199	Kolben	5.000

RDM: Relationale Algebra - Anfragen (3)

Durchschnitt R [] S:

□ Alle Tupel, die sowohl in der Relationen R als auch in der Relation S enthalten sind, werden in der Ergebnisrelation zusammengefaßt.

$$R \square S := \{ r \mid r \square R \square r \square S \}$$

\approx	
0	
Œ	
<u>w</u>	
Ψ	
\sim	

ANr	AName	Menge
001	Anlasser	1.000
007	Zündkerze	1.380
199	Kolben	5.000

ANr	AName	Menge
001	Anlasser	1.000
199	Kolben	5.000
237	Ölfilter	1.560

Ergebnisrelation $R \square S$

ANr	AName	Menge
001	Anlasser	1.000
199	Kolben	5.000

RDM: Relationale Algebra - Anfragen (4)

Kartesisches Produkt R ☐ S:

- □ Alle Tupel zweier Relationen R und S werden kombinatorisch miteinander verbunden. Wenn die Relation R n Spalten und die Relation S m Spalten umfaßt, dann besitzt R □ S (n+m) Spalten.
- □ Wenn die Relation R k Zeilen und die Relation S I Zeilen umfaßt, dann besitzt R \square S (k*I) Zeilen.
- ☐ Um eindeutige Attributbezeichnungen in der Ergebnisrelation zu gewährleisten, müssen Attribute, die in den Relationen R und S gleich bezeichnet sind, vor der Bildung des kartesischen Produkts umbenannt werden.

$$R \square S := \{ (r_1, ..., r_n, s_1, ..., s_m) \mid (r_1, ..., r_n) \square R, (s_1, ..., s_m) \square S \}$$

- **□** Beispiel:
 - Projekte

 Projektdurchführung (s. nächste Folie)

RDM: Relationale Algebra - Anfragen (5)

Beispiel: Projekte | Projektdurchführung

Projektdurchführung (Ausschnitt)

Projekte

Nr	Titel	Budget
100	DB Fahrpläne	300.000
200	ADAC Kundenstamm	100.000
300	Telekom Statistik	200.000

Nr	Kurz
100	MFSW
200	PERS
300	MFSW

Ergebnisrelation Projekte □ Projektdurchführung

Nr	Titel	Budget	Nr2	Kurz
100	DB Fahrpläne	300.000	100	MFSW
100	DB Fahrpläne	300.000	200	PERS
100	DB Fahrpläne	300.000	300	MFSW
200	ADAC Kundenstamm	100.000	100	MFSW
200	ADAC Kundenstamm	100.000	200	PERS
200	ADAC Kundenstamm	100.000	300	MFSW
300	Telekom Statistik	200.000	100	MFSW
300	Telekom Statistik	200.000	200	PERS
300	Telekom Statistik	200.000	300	MFSW

RDM: Relationale Algebra - Anfragen (6)

Join (Verbindung) R >< $_{\sqcap}$ S:

- □ Eine Verbindung zwischen zwei Relationen wird in einer Kombination von kartesischem Produkt und nachfolgender Selektion (□) gemäß des Prädikats □ hergestellt.
- ☐ Im allgemeinen Fall (*Theta-Join*) vergleicht ein (beliebiges) Prädikat ☐ mehrere Attribute aus den Relationen R und S (Spezialfall: Equi-Join).

$$R > <_{\square} S := _{\square} (R \square S)$$

☐ Beispiele:

- *Projekte* >< (Nr≠Nr) *Projektdurchführung* (s. nächste Folie)
- Projekte >< (Budget > 150000) [(Nr = Nr)] Projektdurchführung
- □ Die Ergebnisrelation enthält die Zeilen des kartesischen Produkts der Relationen R und S, die ☐ erfüllen.

RDM: Relationale Algebra - Anfragen (7)

Beispiel: Projekte >< (Nr≠Nr) Projektdurchführung

Projektdurchführung (Ausschnitt)

Projekte

	Nr	Titel	Budget
	100	DB Fahrpläne	300.000
•	200	ADAC Kundenstamm	100.000
	300	Telekom Statistik	200.000

Nr	Kurz
100	MFSW
200	PERS
300	MFSW

Ergebnisrelation

Nr	Titel	Budget	Nr2	Kurz
100	DB Fahrpläne	300.000	200	PERS
100	DB Fahrpläne	300.000	300	MFSW
200	ADAC Kundenstamm	100.000	100	MFSW
200	ADAC Kundenstamm	100.000	300	MFSW
300	Telekom Statistik	200.000	100	MFSW
300	Telekom Statistik	200.000	200	PERS

RDM: Relationale Algebra - Anfragen (8)

Join (Verbindung): Fortsetzung

- □ Von besonderer Bedeutung im RDM ist der Natural Join, da er eine Verknüpfung von Tabellen über ihre Fremdschlüsselwerte erlaubt.
 - Beispiel:
 - Projekte >< Projektdurchführung := Projekt >< Nr = Nr Projektdurchführung
 - In diesem Fall betrachtet ☐ nur die Gleichheit zwischen Fremdschlüssel und Primärschlüssel, die den gleichen Attributnamen (*Nr*) besitzen.
- ☐ Weitere abgeleitete *Joinoperationen* (*Semi-Join, Outer-Join*, ...) und die Division zweier Relationen sind beschrieben in:
 - S.M. Lang, P.C. Lockemann. Datenbankeinsatz. Springer, Berlin u.a., 1995.

RDM: Relationale Algebra - Anfragen (9)

Natural Join: Projekte $><_{(Nr=Nr)}$ Projektdurchführung

Projekte

	Nr	Titel	Budget
	100	DB Fahrpläne	300.000
•	200	ADAC Kundenstamm	100.000
	300	Telekom Statistik	200.000

Projektdurchführung (Ausschnitt)

Nr Kurz	
100	MFSW
200	PERS
300	MFSW

Ergebnisrelation

Nr	Titel	Budget	Nr2	Kurz
100	DB Fahrpläne	300.000	100	MFSW
200	ADAC Kundenstamm	100.000	200	PERS
300	Telekom Statistik	200.000	300	MFSW

RDM: Relationale Algebra - Anfragen (10)

Projektion $\prod_{(r_{f_1}, \dots, r_{f_n})} (R)$:

- ☐ n Spalten einer m-stelligen Relation R werden über ihren Namen ausgewählt.
- \square Dadurch entsteht eine n-stellige Relation ($n \square m$).
- ☐ Die Reihenfolge der Spalten in der Ergebnisrelation kann definiert werden.
- ☐ Duplikatelimination in der Ergebnisrelation.

$$\square_{(r_{f_1}, \dots, r_{f_n})}(R) := \{ (r_{f_1}, \dots, r_{f_n}) | (r_1, \dots, r_m) \square R \}$$

☐ Beispiel: ☐(Nr. Budget) (Projekte)

$\square_{(Nr, Budg)}$	$_{\text{et})}$ (Projekte)
Nr	Budget

(A)	Nr	Titel	Budget
ojekte	100	DB Fahrpläne	300.000
roje	200	ADAC Kundenstamm	100.000
Ф	300	Telekom Statistik	200.000

Nr	Budget
100	300.000
200	100.000
300	200.000

Ergebnisrelation

RDM: Relationale Algebra - Anfragen (11)

Selektion □_□(R):

- ☐ Bestimmte Tupel einer Relation werden ausgewählt und in der Ergebnisrelation vereiniat.
- ☐ Zur Auswahl der zu übernehmenden Tupel dient das Prädikat □: R → { true, false }, in dem die Attributbezeichner als Eingabevariablen dienen.
- ☐ Anwendung dieses Prädikats auf jedes Tupel der Ausgangsrelation, indem die Werte des Tupels unter den jeweiligen Attributen für die Variablen eingesetzt werden.
- ☐ In die Ergebnisrelation werden alle Tupel übernommen, für die das Prädikat den Wahrheitswert + rue liefert.

$$\square_{\sqcap}(R) := \{ r \square R \mid \square (r) \}$$

Zündkerze

AName

Anlasser

RDM: Relationale Algebra: Zusammenfassung

Vorteil:

- □ Einfache, mathematische Behandlung, z.B. $(R \square S) \square T = R \square (S \square T)$
- ☐ Einfache (naive) Implementierung durch typisierte (!?) algebraische Signatur

Nachteile:

- ☐ Eingeschränkte Ausdrucksmächtigkeit auf Relationenebene (Summe, Mittelwert, Kardinalität)
- ☐ Reine Anfragesprache
- ☐ Prozedurale Formulierung des Lösungswegs (Expressions) statt deklarativer Spezifikation des Ergebnisses (Kalküle)