High Dimensional Probability Notes

Nong Minh $\mathrm{Hieu^1}$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Ran	dom variables	2	
	1.1	Basic Inequalities	2	
	1.2	Limit Theorems	4	
		1.2.1 Weak Law of Large Numbers	4	
		1.2.2 Strong Law of Large Numbers	6	
		1.2.3 Uniform Law of Large Numbers	8	
		1.2.4 Central Limit Theorem	10	
	1.3	Convergence of Random Variables	11	
		1.3.1 Convergence in Distribution	11	
		V	14	
		1.3.3 Convergence in L^p norm	15	
		1.3.4 Almost-sure Convergence	16	
2	Stat	istical Inference	18	
	2.1	Sufficiency & Likelihood Principles	18	
			18	
		2.1.2 Likelihood	19	
	2.2	Point Estimation	22	
		2.2.1 Bias, Variance, Consistency and MSE	22	
		2.2.2 Sufficient Statistics & Rao-Blackwell Theorem	22	
		2.2.3 Estimator Variance & Cramer-Rao Lower Bound	22	
		2.2.4 Maximum Likelihood Estimation (MLE)	24	
Ι	. A	ppendix	25	
	I.1	Leibniz Differentiation Rule	25	
II	. Lis	t of Definitions	26	
TTI	I. In	portant Theorems 2	26	
			26	
IV	V. Important Propositions			
\mathbf{V}	. R	ferences	27	

1 Random variables

1.1 Basic Inequalities

First, we revisit the definition of a random variable as well as some basic inequalities that we learned in introductory statistics.

Definition 1.1 (Random variable).

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space. A random variable X is defined as a mapping from the sample space Ω to \mathbb{R} :

$$X:\Omega\to\mathbb{R}$$
 (1)

 Σ is the σ -algebra containing the possible events (collection of subsets of Ω) and \mathbb{P} is a probability measure that assigns events with probabilities:

$$\mathbb{P}: \Sigma \to [0, 1] \tag{2}$$

For a given probability space $(\Omega, \Sigma, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$, we will use the following basic notations throughout this note:

• $||X||_{L^p}$ - The p^{th} root of the p^{th} moment of the random variable X.

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p}, \ p \in (0, \infty)$$
 (3)

$$||X||_{L^{\infty}} = \operatorname{ess\,sup}|X| \tag{4}$$

• $L^p(\Omega, \Sigma, \mathbb{P})$ - The space of random variables X satisfying:

$$L^{p}(\Omega, \Sigma, \mathbb{P}) = \left\{ X : \Omega \to \mathbb{R} \middle| \|X\|_{L^{p}} < \infty \right\}$$
 (5)

Some basic inequalities and identities:

• 1. Jensen's Inequality - For a random variable X and a convex function $\varphi : \mathbb{R} \to \mathbb{R}$, we have:

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X) \tag{6}$$

• 2. Monotonicity of L^p norm - For a random variable X:

$$||X||_{L^p} \leqslant ||X||_{L^q}, \ 0 \leqslant p \leqslant q \leqslant \infty. \tag{7}$$

• 3. Minkowski's Inequality - For $1 \le p \le \infty$ and two random variables X, Y in $L^p(\Omega, \Sigma, \mathbb{P})$ space:

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}. \tag{8}$$

• 4. Holder's Inequality - For $p, q \in [1, \infty]$ such that 1/p + 1/q = 1. Then, for random variables $X \in L^p(\Omega, \Sigma, \mathbb{P})$ and $Y \in L^q(\Omega, \Sigma, \mathbb{P})$, we have:

$$|\mathbb{E}XY| \leqslant ||X||_{L^p} \cdot ||Y||_{L^q}. \tag{9}$$

• 5. Markov's Inequality - For a non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}X}{t}.\tag{10}$$

We can also generalize Markov's Inequality for p^{th} moment:

$$\mathbb{P}(|X| \ge t) \le \frac{\mathbb{E}[|X|^p]}{t^p}, \forall t > 0, k \in [2, \infty). \tag{11}$$

• 6. Chebyshev's Inequality - For a random variable X with mean μ and variance σ^2 . Then, for any t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.\tag{12}$$

• 7. Integral Identity - Let X be a non-negative random variable, we have:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt. \tag{13}$$

Exercises

Exercise 1.1.1: Generalized Integral Identity

Let X be a random variable (not necessarily non-negative). Prove the following identity:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt - \int_{-\infty}^0 \mathbb{P}(X < t)dt. \tag{14}$$

Solution (Exercise 1.1.1).

For $x \in \mathbb{R}$, using the basic integral indentity, we have:

$$|x| = \int_0^\infty \mathbf{1}\{t < |x|\}dt$$

We consider the following cases:

• When $x < 0 \implies x = -|x|$:

$$x = -\int_{0}^{\infty} \mathbf{1}\{t < |x|\}dt = -\int_{0}^{\infty} \mathbf{1}\{t < -x\}dt = -\int_{0}^{\infty} \mathbf{1}\{-t > x\}dt = -\int_{-\infty}^{0} \mathbf{1}\{t > x\}dt.$$

• When $x \ge 0 \implies x = |x|$:

$$x = \int_0^\infty \mathbf{1}\{t < |x|\}dt = \int_0^\infty \mathbf{1}\{t < x\}dt.$$

Therefore, for $x \in \mathbb{R}$, we can write:

$$x = \int_0^\infty \mathbf{1}\{t < x\}dt - \int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

Therefore, for a random variable X not necessarily non-negative, we have:

$$\mathbb{E}X = \mathbb{E}\left[\int_0^\infty \mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbf{1}\{t > X\}dt\right]$$

$$= \mathbb{E}\int_0^\infty \mathbf{1}\{t < X\}dt - \mathbb{E}\int_{-\infty}^0 \mathbf{1}\{t > X\}dt$$

$$= \int_0^\infty \mathbb{E}\mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbb{E}\mathbf{1}\{t > X\}dt$$

$$= \int_0^\infty \mathbb{P}(t < X)dt - \int_{-\infty}^0 \mathbb{P}(t > X)dt.$$

ο.

Exercise 1.1.2: p^{th} -moments via tails

Let X be a random variable and $p \in (0, \infty)$. Show that:

$$\mathbb{E}|X|^p = \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt. \tag{15}$$

Solution (Exercise 1.1.2).

Let X be a random variable that is not necessarily non-negative. Using the integral identity, we have:

$$\mathbb{E}|X|^p = \int_0^\infty \mathbb{P}(u < |X|^p) du.$$

Let $t^p = u \implies pt^{p-1}dt = du$. Since we integrate u from $0 \to \infty$, we also integrate t from $0 \to \infty$ when changing the variables. Hence, we have:

$$\mathbb{E}|X|^{p} = \int_{0}^{\infty} \mathbb{P}(t^{p} < |X|^{p})pt^{p-1}dt = \int_{0}^{\infty} \mathbb{P}(t < |X|)pt^{p-1}dt.$$

Hence, we obtained the desired identity.

1.2 Limit Theorems

1.2.1 Weak Law of Large Numbers

Theorem 1.1: Weak Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ in probability $(S_N/N \xrightarrow{p} \mu)$:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = 0, \ \forall \epsilon > 0$$
 (16)

Proof (Weak Law of Large Numbers (WLLN)). _

We split the proof into two sections corresponding to the assumptions of finite variance and non-finite variance.

1. Finite variance case: Suppose that $\operatorname{Var} X_i = \sigma^2 < \infty$ for all $1 \le i \le N$. Let $\bar{X} = S_N/N$. Then, \bar{X} is a random variable with the following mean and variance:

$$\mathbb{E}\bar{X} = \mu \quad and \quad \operatorname{Var}\bar{X} = \frac{\sigma^2}{N}.$$

Hence, by the Chebyshev's inequality, we have:

$$\mathbb{P}(|S_N/N - \mu| > \epsilon) = \mathbb{P}(|\bar{X} - \mu| > \epsilon) \leqslant \frac{\sigma^2}{N\epsilon^2}.$$

Therefore, we have:

$$\lim_{N\to\infty} \mathbb{P}\Big(|S_N/N-\mu|>\epsilon\Big)\leqslant \lim_{N\to\infty} \frac{\sigma^2}{N\epsilon^2}=0.$$

Hence, we have $\lim_{N\to\infty} \mathbb{P}(|S_N/N - \mu| > \epsilon) = 0$ and we obtained (WLLN).

2. Non-finite variance case: In this case, we rely on the Levy Continuity Theorem (LCT), which relies on the convergence of the characteristic function. For $n \ge 1$, define the sequence of random variable $Y_n = S_n/n$. Hence, we have:

$$\varphi_{Y_n}(t) = \varphi_{S_n/n}(t)$$

$$= \varphi_{S_n}(t/n)$$

$$= \prod_{i=1}^n \varphi_{X_i}(t/n) = \left[\varphi_X(t/n)\right]^n,$$

Where $X = X_1 = \cdots = X_n$. By Taylor's expansion, we have:

$$\varphi_X(t/n) = 1 + \frac{it\mathbb{E}[X]}{n} + \mathcal{O}(1/n^2) = 1 + \frac{it\mu}{n} + \mathcal{O}(1/n^2).$$

Hence, we have:

$$\lim_{n\to\infty}\varphi_{Y_n}(t)=\lim_{n\to\infty}\left(1+\frac{it\mu}{n}+\mathcal{O}(1/n^2)\right)^n=e^{it\mu}.$$

Therefore, by (**LCT**), we have $Y_n \xrightarrow{p} \mu$.

Remark 1.1 (Taylor expansion of Moment Generating and Characteristic Functions). ______ Given a random variable X. For reference, the following are the Taylor expansions of the Moment Generating Function $M_X(t)$ and the Characteristic Function $\varphi_X(t)$:

$$M_X(t) = \mathbb{E}[e^{tX}] = 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n],$$

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = 1 + \sum_{n=1}^{\infty} \frac{(it)^n}{n!} \mathbb{E}[X^n].$$
(17)

For the sake of my laziness, here are the Taylor expansion for the first three terms of both the MGF and the CF:

$$M_X(t) = 1 + t\mathbb{E}[X] + \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3),$$

$$\varphi_X(t) = 1 + it\mathbb{E}[X] - \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3).$$
(18)

□.

Theorem 1.2: Levy Continuity Theorem

Let X_1, X_2, \ldots be *i.i.d* random variables. Then:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \iff X_n \stackrel{d}{\to} X, \tag{19}$$

for some random variable X. In a special case where X=c for some $c\in\mathbb{R}$, we have:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = e^{itc} \iff X_n \xrightarrow{p} c.$$
 (20)

Proof (Levy Continuity Theorem (LCT)).

The proof for (LCT) can be found in Gut 2004, Section 9.1, Theorem 9.1 and Collorary 9.1

1.2.2 Strong Law of Large Numbers

Theorem 1.3: Strong Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean $\mu < \infty$. Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ almost surely $(S_N/N \xrightarrow{a.s} \mu)$:

$$\mathbb{P}\left(\limsup_{N\to\infty}|S_N/N-\mu|>\epsilon\right)=0,\ \forall\epsilon>0$$
(21)

Proof (Strong Law of Large Numbers (SLLN)).

For the sake of simplicity, we will present the proof for (SLLN) with an additional assumption that $\mathbb{E}[|X_n|^4] < \infty$, $\forall n \ge 1$. The proof for the general case of (SLLN) (also called the Kolmogorov Strong Law) can be found in Gut 2004, Section 6, Theorem 6.1. For convenience, we assume the following:

- 1. $\mathbb{E}[|X_n|^4] = K < \infty$.
- 2. $\mathbb{E}[X_n] = 0$. For non-zero mean case, we can set $Y_n = X_n \mu$ and repeat the same arguments made below.

We aim to prove that $\mathbb{P}\Big(\limsup_{N\to\infty}|S_N/N|>\epsilon\Big)=0$ for any $\epsilon>0$. Firstly, use the Multinomial formula to expand $\mathbb{E}[S_n]$. The expansion will contain the terms in the following forms:

$$X_{i}^{2}, X_{i}^{3}X_{i}, X_{i}^{2}X_{i}^{2}, X_{i}^{2}X_{i}X_{i}X_{k}, X_{i}X_{i}X_{k}X_{\ell},$$

where i, j, k, ℓ are distinct indices. By independence, we have:

$$\mathbb{E}[X_i^3 X_i] = \mathbb{E}[X_i^2 X_i X_k] = \mathbb{E}[X_i X_l X_k X_\ell] = 0.$$

As a result, we have the following remaining terms by the Multinomial formula:

$$\mathbb{E}[S_n^4] = \sum_{i=1}^n \mathbb{E}[X_i^4] + \binom{4}{2} \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= \sum_{i=1}^n \mathbb{E}[X_i^4] + 6 \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= nK + 3n(n-1)\mathbb{E}[X_i^2 X_j^2].$$

By independence, we have $\mathbb{E}[X_i^2 X_j^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_j^2]$ and for any $1 \le i \le n$. Furthermore, we have $\mathbb{E}[X_i^2] = \text{Var}(X_i) + \mu^2 = \sigma^2 + \mu^2$. Therefore:

$$\mathbb{E}[S_n^4] = nK + 3n(n-1)(\sigma^2 + \mu^2) < nK + 3n^2(\sigma^2 + \mu^2).$$

Applying Markov's Inequality with the fourth moment, we have:

$$\mathbb{P}(|S_n/n| \ge \epsilon) = \mathbb{P}(|S_n| \ge n\epsilon)$$

$$\le \frac{\mathbb{E}[S_n^4]}{n^4 \epsilon^4}$$

$$< \frac{K}{n^3 \epsilon^4} + \frac{3(\sigma^2 + \mu^2)}{n^2}.$$

Therefore, we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(|S_n/n| \ge \epsilon) < \frac{K}{\epsilon^4} \sum_{n=1}^{\infty} n^{-3} + 3(\sigma^2 + \mu^2) \sum_{n=1}^{\infty} n^{-2} < \infty$$
 (22)

Finally, by the Borel-Cantelli Lemma (BCL), we have:

$$\mathbb{P}\left(\limsup_{n\to\infty}|S_n/n|\geqslant\epsilon\right)=0,\quad\forall\epsilon>0.$$

 \Box .

Theorem 1.4: Borel-Cantelli Lemma (BCL

1. First Borel-Cantelli Lemma: Given a probability space $(X, \mathcal{S}, \mathbb{P})$ and a sequence $\{A_n\}_{n=1}^{\infty} \subset \mathcal{S}$. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0. \tag{23}$$

2. Second Borel-Cantelli Lemma: On the other hand, if $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1. \tag{24}$$

Proof (Borel-Cantelli Lemma (BCL)).

We focus on proving the first Borel-Cantelli lemma. We define another sequence of S-measurable sets $\{B_n\}_{n=1}^{\infty}$ such that:

$$B_n = \bigcup_{k=n}^{\infty} A_n.$$

Hence, we have $B_{\ell+1} \subset B_{\ell}$ for every $\ell \geqslant 1$. In other words, B_n is a decreasing sequence of S-measurable sets. By continuity of measure, we have:

$$\mathbb{P}\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n)$$

$$= \lim_{n\to\infty} \sum_{k=n}^{\infty} \mathbb{P}(A_n) \quad (By \ additivity)$$

$$= \sum_{i=1}^{\infty} \mathbb{P}(A_i) - \lim_{n\to\infty} \sum_{k=1}^{n} \mathbb{P}(A_n)$$

$$= 0.$$

Furthermore, we have:

$$\mathbb{P}\Big(\lim_{n\to\infty}B_n\Big)=\mathbb{P}\bigg(\lim_{n\to\infty}\bigcup_{k=n}^{\infty}\bigg)=\mathbb{P}\bigg(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_n\bigg)=\mathbb{P}\bigg(\limsup_{n\to\infty}A_n\bigg).$$

Hence proved the first Borel-Cantelli Lemma. To prove the second Borel-Cantelli Lemma, we prove the following:

$$1 - \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = \mathbb{P}\left(\left\{\limsup_{n \to \infty} A_n\right\}^c\right)$$
$$= \mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) = 0.$$

1.2.3 Uniform Law of Large Numbers

The Uniform Law of Large Numbers (**ULLN**) provides a convergence result for collection of estimators where the convergence is uniform in the parameters space.

Theorem 1.5: Uniform Law of Large Numbers

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from a distribution p_{θ_*} over \mathcal{X} that depends on the true parameters θ_* . Let $\Theta \subset \mathbb{R}^m$ be the parameters space and $f_{\theta} : \mathcal{X} \to \mathbb{R}$ be a function indexed by $\theta \in \Theta$ that satisfies the following conditions:

- 1. $\theta_* \in \Theta$ and Θ is compact.
- 2. $\mathbb{E}_{\theta_*}[\sup_{\theta \in \Theta} |f_{\theta}(X)|] < \infty^a$.
- 3. $f_{\theta}(x)$ is continuous in θ for all $x \in \mathcal{X}$.

Then, we have:

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(X_i) - \mathbb{E}_{\theta_*}[f_{\theta}(X)] \right| \xrightarrow{p} 0.$$
 (25)

 ${}^a\mathbb{E}_{{m{\theta}_{*}}}$ denotes the expectation taken over the distribution described by $p_{{m{\theta}_{*}}}$.

Proof (Theorem 1.5).

A nice proof is provided in Ferguson 1996, Theorem 16, Page 111. However, we will conduct our own version of the proof relying on results in learning theory. For $\theta \in \Theta$, define the following function:

$$\phi_{\theta}(\mathbf{X}) = \left| \frac{1}{n} \sum_{i=1}^{n} \left(f_{\theta}(X_i) - \mathbb{E}_{\theta_*}[f_{\theta}(X)] \right) \right|$$
 (26)

We have to prove that $\mathbb{P}(\sup_{\theta \in \Theta} |\phi_{\theta}(\mathbf{X})| \ge \epsilon) \to 0$ for all $\epsilon > 0$. For $\epsilon > 0$, we have:

$$\mathbb{P}\left(\sup_{\theta \in \Theta} |\phi_{\theta}(\mathbf{X})| \geq \epsilon\right) = \mathbb{P}\left(\left\{\sup_{\theta \in \Theta} \phi_{\theta}(\mathbf{X}) \geq \epsilon\right\} \cup \left\{\sup_{\theta \in \Theta} (-\phi_{\theta}(\mathbf{X})) \geq \epsilon\right\}\right) \\
\leq \mathbb{P}\left(\sup_{\theta \in \Theta} \phi_{\theta}(\mathbf{X}) \geq \epsilon\right) + \mathbb{P}\left(\sup_{\theta \in \Theta} (-\phi_{\theta}(\mathbf{X})) \geq \epsilon\right) \\
\leq \frac{1}{\epsilon} \left(\mathbb{E}\left[\sup_{\theta \in \Theta} \phi_{\theta}(\mathbf{X})\right] + \mathbb{E}\left[\sup_{\theta \in \Theta} (-\phi_{\theta}(\mathbf{X}))\right]\right) \quad (Markov's Inequality)$$

Now, we need to bound the expectations on the right-hand-side. To do so, we use the symmetrization trick. Specifically, given a sequence of i.i.d random variables $S = \{Z_1, \ldots, Z_n\} \sim \rho^n$ sampled from a distribution ρ and a class of functions \mathcal{F} . Let $S' = \{Z'_1, \ldots, Z'_n\} \sim \rho^n$ be a another sample

from the same distribution ρ (which we called the phantom sample), we have:

$$\mathbb{E}_{S}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}(f(Z_{i})-\mathbb{E}_{S}[f(Z_{i})])\right]$$

$$=\mathbb{E}_{S}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}(f(Z_{i})-\mathbb{E}_{S'}[f(Z'_{i})])\right]$$

$$=\mathbb{E}_{S}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}f(Z_{i})-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{S'}[f(Z'_{i})]\right]$$

$$=\mathbb{E}_{S}\left[\sup_{f\in\mathcal{F}}\mathbb{E}_{S'}\left[\frac{1}{n}\sum_{i=1}^{n}(f(Z_{i})-f(Z'_{i}))\right]\right]$$

$$\leq\mathbb{E}_{S,S'}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}(f(Z_{i})-f(Z'_{i}))\right] \quad (Jensen's\ Inequality)$$

$$=\mathbb{E}_{S,S',\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(Z_{i})-f(Z'_{i}))\right] \quad (\sigma \sim \mathrm{Rad}^{n}, f(Z_{i})-f(Z'_{i})\ is\ symmetric)$$

$$\leq\mathbb{E}_{S,\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(Z_{i})\right]+\mathbb{E}_{S',\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}(-\sigma_{i})f(Z'_{i})\right]$$

$$=\mathbb{E}_{S,\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(Z_{i})\right]+\mathbb{E}_{S',\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(Z'_{i})\right] \quad (Rademacher\ variables\ are\ symmetric)$$

$$=2\mathbb{E}_{S,\sigma}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(Z_{i})\right] \quad (S\ and\ S'\ are\ identically\ distributed)$$

$$=2\mathfrak{R}_{n}(\mathcal{F}). \tag{27}$$

Using the same argument, we can also have:

$$\mathbb{E}_{S} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (\mathbb{E}_{S}[f(Z_{i})] - f(Z_{i})) \right] \leq 2\mathfrak{R}_{n}(\mathcal{F}).$$
 (28)

Using equations 27 and 28 to bound $\mathbb{P}(\sup_{\theta \in \Theta} |\phi_{\theta}(S)| \ge \epsilon)$, we have:

$$\mathbb{P}\Big(\sup_{\theta \in \Theta} |\phi_{\theta}(S)| \geqslant \epsilon\Big) \leqslant \frac{4\mathfrak{R}_n(\mathcal{F}_{\Theta})}{\epsilon}, \text{ where } \mathcal{F}_{\Theta} = \Big\{f_{\theta} : \theta \in \Theta\Big\}.$$

To complete the proof, we have to show that the Rademacher complexity $\mathfrak{R}_n(\mathcal{F}_{\Theta}) \to 0$ as $n \to \infty$. By the definition of Rademacher Complexity, we have:

$$\mathfrak{R}_n(\mathcal{F}_{\Theta}) = \mathbb{E}_{\mathbf{X} \sim p_{\theta_*}^n} \mathbb{E}_{\sigma} \Big[\hat{\mathfrak{R}}_{\mathbf{X}}(\mathcal{F}_{\Theta}) \Big],$$

It is sufficient to prove that the Empirical Rademacher Complexity $\hat{\mathfrak{R}}_{\mathbf{X}}(\mathcal{F}_{\Theta}) \to 0$ as $n \to \infty$. Using Dudley's Entropy Integral Bartlett et al. 2017, Lemma A.5, we have:

$$\hat{\mathfrak{R}}_{\mathbf{X}}(\mathcal{F}_{\Theta}) \leqslant \frac{12}{\sqrt{n}} \int_{\alpha}^{M} \sqrt{\log \mathcal{N}(\mathcal{F}_{\Theta}, \epsilon, L_{2}(\mathbf{X}))} d\epsilon, \quad \alpha > 0,$$
(29)

where $M < \infty$ is a constant such that $|f_{\theta}(x)| \leq M$ p_{θ_*} -(almost everywhere) on \mathcal{X} for all $\theta \in \Theta^1$. Now, we need to construct a cover in L_2 norm for the class \mathcal{F}_{Θ} . Since $f_{\theta}(x)$ is continuous in θ for all $x \in \mathcal{X}$, for all $\epsilon > 0$, there exists $\delta_x > 0$ such that $\|\theta - \bar{\theta}\|_2 < \delta_x \implies |f_{\theta}(x) - f_{\bar{\theta}}(x)| < \epsilon$. Define $\delta > 0$ as follows:

$$\delta = \min_{1 \le i \le n} \delta_{X_i}, \quad X_i \in \mathbf{X}. \tag{30}$$

¹M exists because we have $\mathbb{E}_{\theta_*}[\sup_{\theta \in \Theta} |f_{\theta}(X)|] < \infty$.

Due to continuity, constructing an ϵ -cover in \mathcal{F}_{Θ} is equivalent to constructing a δ -cover for Θ with respect to the Euclidean norm. Since Θ is compact, there exists $N \in \mathbb{N}$ and a sequence of open balls $\{\mathcal{B}(y_j, r_j)\}_{j=1}^N$ where $y_j \in \Theta$ for all $1 \leq j \leq N$ such that:

$$\Theta \subseteq \bigcup_{j=1}^{N} \mathcal{B}(y_j, r_j). \tag{31}$$

By Long et al. 2020, Lemma A.8, we have:

$$\log \mathcal{N}\left(\mathcal{B}(y_j, r_j), \delta, \|.\|_2\right) \leqslant m \log \left(\frac{3r_j}{\delta}\right). \tag{32}$$

Therefore, we have:

$$\log \mathcal{N}\left(\Theta, \delta, \|.\|_{2}\right) \leqslant \sum_{j=1}^{N} \log \mathcal{N}\left(\mathcal{B}(y_{j}, r_{j}), \delta, \|.\|_{2}\right) \leqslant mN \log \left(\frac{\prod_{j=1}^{N} r_{j}}{\delta^{N}}\right). \tag{33}$$

From the above covering number bound, we can see that $\log \mathcal{N}\left(\Theta, \delta, \|.\|_2\right)$ does not grow with n and therefore, $\log \mathcal{N}\left(\mathcal{F}_{\Theta}, \epsilon, L_2(\mathbf{X})\right)$ does not grow with n. Therefore, we have $\hat{\mathfrak{R}}_{\mathbf{X}}(\mathcal{F}_{\Theta}) \in \mathcal{O}(1/\sqrt{n})$ and $\hat{\mathfrak{R}}_{\mathbf{X}}(\mathcal{F}_{\Theta}) \to 0$ as $n \to \infty$.

1.2.4 Central Limit Theorem

Theorem 1.6: Central Limit Theorem (CLI

Let $X_1, \ldots X_n$ be a sequence of *i.i.d* random variables with expected value μ and finite variance σ^2 . Then, we have:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad as \quad n \to \infty, \tag{34}$$

where $\bar{X}_n = S_n/n$ and $\mathcal{N}(0,1)$ is the standard normal distribution.

Proof (Central Limit Theorem (CLT)).

We prove this via the Characteristic Function. Let $\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$, notice that:

$$\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma},$$

Let $Z_i = X_i - \mu$ for $1 \le i \le n$ and suppose $Z = Z_1 = \cdots = Z_n$, we have:

$$\varphi_{\bar{Z}_n}(t) = \varphi_{\sum_{i=1}^n Z_i} \left(\frac{t}{\sqrt{n}} \right) = \left[\varphi_Z \left(\frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \left[1 + \frac{it \mathbb{E}[Z]}{\sqrt{n}} - \frac{t^2}{2n} \mathbb{E}[Z^2] + \mathcal{O}(1/n) \right]^n \quad (Taylor's Expansion)$$

$$= \left[1 - \frac{t^2}{2n} + \mathcal{O}(1/n) \right]^n.$$

The final equality comes from the fact that $\mathbb{E}[Z] = 0$ and $\mathbb{E}[Z^2] = \mathbb{E}[Z]^2 + \operatorname{Var}(Z) = 1$. Finally, we have:

$$\lim_{n\to\infty} \varphi_{\bar{Z}_n}(t) = \lim_{n\to\infty} \left[1-\frac{t^2}{2n} + \mathcal{O}(1/n)\right]^n = e^{-t^2/2}.$$

Since $e^{-t^2/2}$ is the Characteristic Function of the standard normal distribution, by (LCT), we have $\bar{Z}_n \xrightarrow{d} \mathcal{N}(0,1)$.

Convergence of Random Variables 1.3

Convergence in Distribution 1.3.1

Definition 1.2 (Convergence in Distribution). _ Given a sequence of real-valued random variables X_1, X_2, \ldots with CDFs F_1, F_2, \ldots We say that

the sequence converges in distribution to a random variable X with CDF F, denoted $X_n \xrightarrow{d} X$ if:

$$\lim_{n \to \infty} F_n(x) = F(x),\tag{35}$$

for all $x \in \mathbb{R}$ at which F is continuous. Convergence in distribution can also be referred to as weak convergence in measure theory.

Theorem 1.7: Slutsky's Theorem

Let X_n and Y_n be two sequences of random variables such that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c^a$ where $c < \infty$ is a constant. Then, we have:

- 1. $X_n + Y_n \xrightarrow{d} X + c$.
- $2. \ X_n Y_n \xrightarrow{d} cX.$
- 3. $X_n/Y_n \xrightarrow{d} X/c$ if $c \neq 0$.

^aIn the next section, we will see that $Y_n \xrightarrow{d} c$ implies $Y_n \xrightarrow{p} c$ for a constant c.

Proof (Theorem 1.7). ____

1. $X_n + Y_n \xrightarrow{d} X + c$. Let $\epsilon > 0$ be any positive constant, we have:

$$\begin{split} F_{X_n+Y_n}(t) &= \mathbb{P}(X_n+Y_n \leqslant t) \\ &= \mathbb{P}(X_n+Y_n \leqslant t, |Y_n-c| \leqslant \epsilon) + \mathbb{P}(X_n+Y_n \leqslant t, |Y_n-c| > \epsilon) \\ &\leqslant \mathbb{P}(X_n+Y_n \leqslant t, |Y_n-c| \leqslant \epsilon) + \underbrace{\mathbb{P}(|Y_n-c| > \epsilon)}_{approaches \ 0 \ as \ n \to \infty}. \end{split}$$

In the event that $|Y_n - c| \le \epsilon$, we have $|Y_n| \ge c - |Y_n - c| \ge c - \epsilon$. Therefore, we have:

$$F_{X_n+Y_n}(t) \leq \mathbb{P}(X_n \leq t - c + \epsilon) + \mathbb{P}(|Y_n - c| > \epsilon).$$

Similarly, we have:

$$F_{X_n+Y_n}(t) \geqslant \mathbb{P}(X_n \leqslant t-c-\epsilon) - \mathbb{P}(|Y_n-c| > \epsilon).$$

Taking limits of both inequalities, we have:

$$F_X(t-c-\epsilon) \le \lim_{n \to \infty} F_{X_n+Y_n}(t) \le F_X(t-c+\epsilon).$$

Let $\epsilon \to 0$, we have $\lim_{n\to\infty} F_{X_n+Y_n}(t) \to F_X(t-c) = F_{X+c}(t)$ as $n\to\infty$.

- 2. $X_n Y_n \xrightarrow{d} cX$. (Apply the same proof method as (1)).
- 3. $X_n/Y_n \xrightarrow{d} X/c$ if $c \neq 0$. (Apply the same proof method as (1)).

Connection to Weak Convergence of Measures

Definition 1.3 (Continuity Sets).

Let X be a metric space and \mathcal{B} be the Borel- σ -algebra generated from open subsets of X. Let $A \in \mathcal{B}$ be a Borel set. Then, we say that A is a continuity set with respect to a measure μ , or A is a μ -continuity set, if:

$$\mu(\partial A) = 0, \text{ or } \mu(\operatorname{cl}_X(A)) = \mu(A), \tag{36}$$

where ∂A is the topological boundary of A, defined as:

$$\partial A = \operatorname{cl}_X(A) \backslash \operatorname{in}_X(A), \tag{37}$$

where $\operatorname{cl}_X(A)$ is the closure, which contains all limit points of A and $\operatorname{in}_X(A)$ is the set of all interior points of A. Intuitively, a set is continuous with respect to a measure if its closure does not change its measure.

Remark 1.2 (Non-examples of Continuity Sets).

Some examples of the non-continuity sets are as follows:

1. The set of rational numbers \mathbb{Q} is not a continuity set with respect to the Lebesgue measure λ because its closure is the set of real numbers. Hence, we have:

$$\lambda(\partial \mathbb{Q}) = \lambda(\mathbb{R}\backslash \mathbb{Q}) = \infty.$$

2. Given an experiment of rolling an unfair 6-sided die with probabilities p_1, \ldots, p_6 . Let the sample space $\Omega = [1, 6]$ and $\mathcal{B}(\Omega)$ be the Borel- σ -algebra generated from open subsets of the sample space. Then, we have the corresponding probability space $(\Omega, \mathcal{B}(\Omega), \mu)$ where μ is defined as:

$$\mu((a,b)) = \sum_{i=\lceil a \rceil}^{\lfloor b \rfloor} p_i, \quad \forall (a,b) \in \mathcal{B}(\Omega),$$

which denotes the probability that the rolled die lands on a face in the range between a and b. Then, any set (a,b) in $\mathcal{B}(\Omega)$ where a or b is integer is not μ -continuous. For example:

$$\mu((2,4.5)) = p_3 + p_4,$$

$$\mu(\text{cl}((2,4.5))) = \mu([2,4.5]) = p_2 + p_3 + p_4 > \mu((2,4.5)).$$

Definition 1.4 (Weak Convergence of Measures). __

Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of measures and μ be a measure on a measurable space (X, \mathcal{F}) . We say that μ_n converges weakly to a measure μ if:

$$\lim_{n \to \infty} \mu_n(A) = \mu(A),\tag{38}$$

for all μ -continuity sets $A \in \mathcal{F}$.

Theorem 1.8: Portmanteau's Theorem (PORTM

Let $\{\mathbb{P}_n\}_{n=1}^{\infty}$, \mathbb{P} be probability measures on a measurable space (X, \mathcal{F}) . Then, the following statements are equivalent:

- 1. \mathbb{P}_n converges weakly to \mathbb{P} .
- 2. $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$ for all $f \in C_b(X)^a$.
- 3. $\limsup_{n\to\infty} \mathbb{P}_n(F) \leq \mathbb{P}(F)$ for all closed $F \in \mathcal{F}$.
- 4. $\liminf_{n\to\infty} \mathbb{P}_n(G) \geqslant \mathbb{P}(G)$ for all open $G \in \mathcal{F}$.

 ${}^aC_b(X)$ denotes the space of bounded continuous $f:X\to\mathbb{C}$ functions.

Proof (Theorem 1.8).

Assume that for all Borel sets $A \in \mathcal{F}$ that is \mathbb{P} -continuity, we have $\lim_{n\to\infty} \mathbb{P}_n(A) = \mathbb{P}(A)$. We prove the following:

1. $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$ for all $f \in C_b(X)$: Let b > 0, without loss of generality, suppose that $0 \leq f \leq b$ for all $f \in C_b(X)$. By the integral identity, we have:

$$f(x) = \int_0^b \mathbf{1}\{t < f(x)\}dt, \quad \forall x \in X.$$

Hence, for $n \ge 1$, we have:

$$\int f d\mathbb{P}_n = \int \int_0^b \mathbf{1}\{t < f\} dt d\mathbb{P}_n$$

$$= \int_0^b \int \mathbf{1}\{t < f\} d\mathbb{P}_n dt \quad (Fubini's Theorem)$$

$$= \int_0^b \mathbb{P}_n(f^{-1}(t,b)) dt.$$

We have $\partial f^{-1}(t,b) \subseteq f^{-1}(\{t,b\})$. Hence, we have $\mathbb{P}(\partial f^{-1}(t,b)) \leq \mathbb{P}(f^{-1}(\{t,b\})) = 0$, which means that $f^{-1}(t,b)$ is a \mathbb{P} -continuity set. Therefore, by the initial assumption, we have:

$$\lim_{n \to \infty} \mathbb{P}_n(f^{-1}(t,b)) = \mathbb{P}(f^{-1}(t,b)).$$

By Dominated Convergence Theorem, we have $\int_0^b \mathbb{P}_n(f^{-1}(t,b))dt \to \int_0^b \mathbb{P}(f^{-1}(t,b))dt$. Hence, we obtain the desired result.

2. $\liminf_{n\to\infty} \mathbb{P}_n(G) \geqslant \mathbb{P}(G)$ for all open $G \in \mathcal{F}$: Let $G \in \mathcal{F}$ be an open set and let $U = G^c$. Consider the following sequence of continuous, bounded functions:

$$f_m(s) = \min(1, m \cdot d_X(s, U)),$$

where we denote:

$$d_X(s, U) = \inf_{x \in U} d_X(s, x),$$

which is the projection of a point s onto the set U. We can re-write f_m as follows:

$$f_m(s) = \begin{cases} 1, & \text{if } d(s, U) \geqslant \frac{1}{m} \\ m \cdot d(s, U), & \text{if } d(s, U) < \frac{1}{m} \end{cases}.$$

In other words, $f_m(s) = 1$ when the point s is sufficiently far away from the complement U and as m increases, the distance threshold required for $f_m(s) = 1$ becomes smaller, making f_m approaches the indicator function $\mathbf{1}_G$. Hence, we have:

$$\mathbb{P}_n(G) = \int \mathbf{1}_G d\mathbb{P}_n \geqslant \int f_m d\mathbb{P}_n \to \int f_m d\mathbb{P}, \qquad (By \ (1)).$$

Hence, we have $\liminf_{n\to\infty} \mathbb{P}_n(G) \geqslant \int f_m d\mathbb{P}^2$. Taking $m\to\infty$ and using Monotone Convergence Theorem, we have:

$$\liminf_{n\to\infty} \mathbb{P}_n(G) \geqslant \lim_{m\to\infty} \int f_m d\mathbb{P} = \int \lim_{m\to\infty} f_m d\mathbb{P} = \int \mathbf{1}_G d\mathbb{P} = \mathbb{P}(G).$$

3. $\limsup_{n\to\infty} \mathbb{P}_n(F) \leq \mathbb{P}(F)$ for all closed $F \in \mathcal{F}$: Taking the complement of F and apply (2), we obtain the desired result.

1.3.2 Convergence in Probability

Given a sequence of real-valued random variables X_1, X_2, \ldots We say that the sequence converges in probability to a random variable X, denoted $X_n \stackrel{p}{\to} X$ if:

$$\lim_{n \to \infty} \mathbb{P}\Big(|X_n - X| \ge \epsilon\Big) = 0, \quad \forall \epsilon > 0.$$
 (39)

□.

We also refer to convergence in probability as convergence in measure in measure theory.

Proposition 1.1: $X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$

Let X and the sequence X_1, X_2, \ldots be real-valued random variables. If $X_n \xrightarrow{p} X$, then $X_n \xrightarrow{d} X$.

Proof (Proposition 1.1).

We first prove the following claim: Let X, Y be random variables, $a \in \mathbb{R}$ and $\epsilon > 0$, the inequality $\mathbb{P}(Y \leq a) \leq \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|Y - X| \geq \epsilon)$ holds. We have:

$$\begin{split} \mathbb{P}(Y \leqslant a) &= \mathbb{P}(Y \leqslant a, X \leqslant a + \epsilon) + \mathbb{P}(Y \leqslant a, X \geqslant a + \epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant a - X, a - X \leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant -\epsilon) + \mathbb{P}(Y - X \geqslant \epsilon) \\ &= \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(|Y - X| \geqslant \epsilon). \end{split}$$

Using the above inequality, we have:

$$\mathbb{P}(X \leqslant a - \epsilon) - \mathbb{P}(|X_n - X| \geqslant \epsilon) \leqslant \mathbb{P}(X_n \leqslant a) \leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(|X_n - X| \geqslant \epsilon).$$

Taking limits as $n \to \infty$ from both sides, we have:

$$F_X(a-\epsilon) \leqslant \lim_{n\to\infty} F_{X_n}(a) \leqslant F_X(a+\epsilon).$$

Taking $\epsilon \to 0^+$, we have $\lim_{n\to\infty} F_{X_n}(a) = F_X(a)$.

 $^{2^{2}}$ From $\mathbb{P}_{n}(G) \geqslant \int f_{m} d\mathbb{P}_{n}$, we have $\liminf_{n \to \infty} \mathbb{P}_{n}(G) \geqslant \liminf_{n \to \infty} \int f_{m} d\mathbb{P}_{n} = \lim_{n \to \infty} \int f_{m} d\mathbb{P}_{n} = \int f_{m} d\mathbb{P}$.

Proposition 1.2: $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c$

Let $c \in \mathbb{R}$ be a constant and X_1, X_2, \ldots be a sequence of real-valued random variables. Then, $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c$.

Proof (Proposition 1.2, Pishro-Nik 2014).

Since $X_n \xrightarrow{d} c$, we immediately have the following:

$$\lim_{n \to \infty} F_{X_n}(c - \epsilon) = 0,$$

$$\lim_{n \to \infty} F_{X_n}(c + \epsilon/2) = 1.$$

Then, for any $\epsilon > 0$, we have:

$$\lim_{n \to \infty} (|X_n - c| \ge \epsilon) = \lim_{n \to \infty} \mathbb{P} \Big[\mathbb{P}(X_n \le c - \epsilon) + \mathbb{P}(X_n \ge c + \epsilon) \Big]$$

$$= \lim_{n \to \infty} F_{X_n}(c - \epsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon)$$

$$\le \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon/2)$$

$$= 1 - \lim_{n \to \infty} F_{X_n}(c + \epsilon/2)$$

$$= 0.$$

From the above, we have $\lim_{n\to\infty} \mathbb{P}(|X_n-c| \ge \epsilon) = 0$ and $X_n \xrightarrow{p} c$.

1.3.3 Convergence in L^p norm

Definition 1.6 (Convergence in L^p norm).

Given a sequence of random variables X_1, X_2, \ldots and a real number $p \in [1, \infty)$. We say that the sequence converges in L^p norm to a random variable X, denoted as $X_n \xrightarrow{L^p} X$ if:

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^p = 0. \tag{40}$$

 $^{\square}.$

Proposition 1.3: $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$

Let $p \ge 1$ and X_1, X_2, \ldots be a sequence of real-valued random variables. Let X be a random variable, then, $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$.

Proof (Proposition 1.3). $_$ Let $\epsilon > 0$, we have:

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}(|X_n - X|^p \ge e^p) \quad (p \ge 1)$$

$$\le \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p}. \quad (Markov's Inequality)$$

Taking the limits from both sides, we have $\lim_{n\to\infty} \mathbb{P}(|X_n-X| \ge \epsilon) = 0$ and $X_n \xrightarrow{p} X$.

1.3.4 Almost-sure Convergence

Definition 1.7 (Convergence almost-surely).

Let X_1, X_2, \ldots be a sequence of real-valued random variables that map from a sample space Ω . Let X also be a real-valued random variable. We say that X_n converges almost surely to X, denoted as $X_n \xrightarrow{a.s} X$, if $X_n(\omega) \to X(\omega)$ as $n \to \infty$ for almost all $\omega \in \Omega$:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1. \tag{41}$$

In other words, we can write:

$$\mathbb{P}\Big(\limsup_{n\to\infty} E_n\Big) = 0 \quad \text{where} \quad E_n = \Big\{\omega \in \Omega : |X_n(\omega) - X(\omega)| \geqslant \epsilon\Big\}. \tag{42}$$

Remark 1.3 (Consequence of (BCL)).

Let X, X_1, X_2, \ldots be random variables defined over the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For $\epsilon > 0$ be chosen arbitrarily, let $E_n = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}$. Then, we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \implies X_n \xrightarrow{a.s} X. \tag{43}$$

□.

In other words, if the sequence $\{\mathbb{P}(E_n)\}_{n=1}^{\infty}$ converges, then X_n converges almost surely to X.

Proposition 1.4: $X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X$

Let X_1, X_2, \ldots be a sequence of real-valued random variables and also let X be a real valued random variables. If $X_n \xrightarrow{a.s} X$ then $X_n \xrightarrow{p} X$.

Proof (Proposition 1.4).

Let $f_n: \Omega \to \mathbb{R}_+$ be a sequence of nonnegative Borel-measurable functions such that $f_n(\omega) = |X_n(\omega) - X(\omega)|$. By Fatou's Lemma (reverse), we have:

$$\underbrace{\mathbb{P}\Big(\limsup_{n\to\infty}\{\omega\in\Omega:|X_n(\omega)-X(\omega)|\geqslant\epsilon\}\Big)}_{=0} = \int f_n d\mathbb{P}$$

$$\geqslant \limsup_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon)$$

$$\geqslant \lim_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon).$$

Hence, we have $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$ and $X_n \xrightarrow{p} X$.

Theorem 1.9: Continuous Mapping Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous almost everywhere function and X_1, X_2, \ldots be a sequence of real-valued random variables. Then, the following statements hold:

1.
$$X_n \xrightarrow{d} X \implies f(X_n) \xrightarrow{d} f(X)$$
.

2.
$$X_n \xrightarrow{p} X \implies f(X_n) \xrightarrow{p} f(X)$$
.

3.
$$X_n \xrightarrow{a.s} X \implies f(X_n) \xrightarrow{a.s} f(X)$$
.

Proof (Continuous Mapping Theorem (CMT)).

We handle each statement separately:

1. Let \mathbb{P}_n , \mathbb{P} be the probability measures induced by X_n and X, respectively. By (**PORTMANTEAU**), \mathbb{P}_n converges weakly to \mathbb{P} is equivalent to $\int gd\mathbb{P}_n \to \int gd\mathbb{P}$ for all continuous, bounded $g: \mathbb{R} \to \mathbb{R}$. For all g continuous and bounded, $g \circ f$ is also continuous and bounded. Hence:

$$\int g \circ f d\mathbb{P}_n \to \int g \circ f d\mathbb{P} \text{ as } n \to \infty.$$

Hence, let $\mathbb{P}_n f$ and $\mathbb{P} f$ be the probability measures induced by $f(X_n)$ and f(X), respectively. We have $\mathbb{P}_n f$ converges $\mathbb{P} f$ weakly. Therefore, $f(X_n) \xrightarrow{d} f(X)$.

2. Let C_f denotes the set of points on \mathbb{R} where f is continuous. By assumption, we have $\mathbb{P}(x)$. Let $\epsilon > 0$ be arbitrary. For all $\delta > 0$, we denote the following set:

$$B_{\delta} = \left\{ x \in C_f : \exists y \in \mathbb{R} \ s.t \ |x - y| < \delta \ but \ |f(x) - f(y)| \ge \epsilon \right\}$$

In other words, B_{δ} denotes the set of all conitnuous points x of f such that we can find a point close to x but its output is not close to f(x). We have:

$$\mathbb{P}\Big(|f(X_n) - f(X)| \geqslant \epsilon\Big) = \mathbb{P}\Big(\Big\{X \notin C_f\Big\} \cup \Big\{|X_n - X| \geqslant \delta\Big\} \cup \Big\{X \in B_\delta\Big\}\Big)$$

$$\leqslant \underbrace{\mathbb{P}(X \notin C_f)}_{=0} + \mathbb{P}(|X_n - X| \geqslant \delta) + \mathbb{P}(X \in B_\delta)$$

$$= \mathbb{P}(|X_n - X| \geqslant \delta) + \mathbb{P}(X \in B_\delta).$$

Since $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \delta) = 0$ for all $\delta > 0$ by assumption and $\mathbb{P}(X \in B_{\delta}) = 0$ when $\delta \to 0$, we have:

$$\lim_{n \to \infty} \mathbb{P}\Big(|f(X_n) - f(X)| \ge \epsilon\Big) = 0 \text{ or } f(X_n) \xrightarrow{p} f(X).$$

3. Since f is continuous, for any $\omega \in \Omega$ such that $X_n(\omega) \to X(\omega)$, we have $f(X_n(\omega)) \to f(X(\omega))$. Therefore, we have:

$$\Big\{\omega\in\Omega:X_n(\omega)\to X(\omega)\Big\}\subseteq \Big\{\omega\in\Omega:f(X_n(\omega))\to f(X(\omega))\Big\}.$$

Therefore, for all $\epsilon > 0$, we have:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} f(X_n(\omega)) = f(X(\omega))\right\}\right)$$

$$\geq \mathbb{P}\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1,$$

Hence, we have $f(X_n) \xrightarrow{a.s} f(X)$.

□.

2 Statistical Inference

2.1 Sufficiency & Likelihood Principles

2.1.1 Sufficiency

Definition 2.1 (Sufficient Statistics).

Let $\mathbf{X} = (X_1, \dots, X_n) \sim p_{\boldsymbol{\theta_*}}$ be a random sample drawn i.i.d from a distribution with parameters $\boldsymbol{\theta_*}$. Let $\mathbf{U} = T(\mathbf{X})$ be a statistic, then it is called a <u>sufficient statistic</u> if the conditional distribution $p_{\mathbf{X}|\mathbf{U}}$ does not depend on $\boldsymbol{\theta_*}$.

Example 2.1 (Bernoulli random variables). _

Let $\mathbf{X} = (X_1, \dots, X_n) \sim \text{Bernoulli}(\theta)$ be a random sample from the Bernoulli distribution. Let $\mathbf{U} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then \mathbf{U} is a sufficient statistic of θ . To illustrate this, suppose that $\mathbf{x} = (x_1, \dots, x_n)$ is an observation of the random sample \mathbf{X} and $\mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} x_i$. We have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) = \frac{\mathbb{P}(\mathbf{X} = \mathbf{x}, \mathbf{U} = \mathbf{u})}{\mathbb{P}(\mathbf{U} = \mathbf{u})} \\
= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\
= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\
= \frac{\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}.$$

Now, setting $k = \sum_{i=1}^{n} x_i$, The denominator is basically the probability that the Bernoulli variables sums up to k. Hence, we can calculate the denominator as follows:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i = k\right) = \binom{n}{k} \theta^k (1-\theta)^{n-k}.$$

Therefore, we have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) = \frac{\theta^k (1 - \theta)^{n - k}}{\binom{n}{k} \theta^k (1 - \theta)^{n - k}} = \frac{1}{\binom{n}{k}}.$$

Therefore, the conditional distribution does not depend on θ and U is a sufficient statistic.

Definition 2.2 (Sufficiency Principle).

If $\mathbf{U} = T(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}_*$, then any inference about $\boldsymbol{\theta}_*$ should only depend on the sample \mathbf{X} through \mathbf{U} . In other words, if we estimate $\boldsymbol{\theta}_*$ using an estimator $\hat{\boldsymbol{\theta}}_*$, only \mathbf{U} shows up in the formula of $\hat{\boldsymbol{\theta}}_*$, not the sample \mathbf{X} itself. We will see why this is the case in the Factorisation Theorem (FacT), which states that we can factorise the density function into a function of $\mathbf{U}, \boldsymbol{\theta}_*$ and a function of the observations \mathbf{x} and thus, the inference about $\boldsymbol{\theta}_*$ is independent of the observations \mathbf{x} .

Theorem 2.1: Factorisation Theorem (Fa

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample with joint density function p_{θ_*} over \mathcal{X}^n . The statistic $\mathbf{U} = T(\mathbf{X})$ is sufficient for the parameters θ_* if and only if we can find functions h, g such that:

$$p_{\theta_*}(\mathbf{x}) = g(T(\mathbf{x}), \theta_*)h(\mathbf{x}),$$

for all $\mathbf{x} \in \mathbb{R}^n$ and $\boldsymbol{\theta}_* \in \Theta$.

Proof (Factorisation Theorem (**FacT**)). ______ We have to conduct the proof in both directions.

• $T(\mathbf{X})$ is sufficient \Longrightarrow Factorisation exists: Let $\mathbf{U} = T(\mathbf{X})$ be a sufficient statistics and $\mathbf{u} = T(\mathbf{x})$ be the statistics evaluated on the observations \mathbf{x} . Then, we have:

$$p_{\theta_*}(\mathbf{x}) = \mathbb{P}(\mathbf{X} = \mathbf{x}; \theta_*)$$
$$= \mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}; \theta_*) \mathbb{P}(\mathbf{U} = \mathbf{u}; \theta_*).$$

Since $\mathbf{U} = T(\mathbf{X})$ is a sufficient statistics, $\mathbb{P}(\mathbf{X} = \mathbf{x}|\mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*)$ does not depend on $\boldsymbol{\theta}_*$. Hence, we denote $h(\mathbf{x}) = \mathbb{P}(\mathbf{X} = \mathbf{x}|\mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*)$. Furthermore, $\mathbb{P}(\mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*)$ is a function of \mathbf{u} and $\boldsymbol{\theta}_*$. We denote this function as $g(\mathbf{u}, \boldsymbol{\theta}_*)$ and conclude that the factorisation $p_{\boldsymbol{\theta}_*}(\mathbf{x}) = h(\mathbf{x})g(T(\mathbf{x}), \boldsymbol{\theta}_*)$ indeed exists.

• Factorisation exists \implies $T(\mathbf{X})$ is sufficient: Suppose that there exists g, h such that we have the factorisation $p_{\theta_*}(\mathbf{x}) = g(T(\mathbf{x}), \theta_*)h(\mathbf{x})$. We then have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*) = \frac{p_{\boldsymbol{\theta}_*}(\mathbf{x})}{\mathbb{P}(\mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*)} = \frac{g(\mathbf{u}, \boldsymbol{\theta}_*)h(\mathbf{x})}{\mathbb{P}(\mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*)}.$$

We denote $A_{\mathbf{u}} = \left\{ \tilde{\mathbf{x}} \in \mathcal{X}^n : T(\tilde{\mathbf{x}}) = \mathbf{u} \right\}$. We have:

$$\begin{split} \mathbb{P}(\mathbf{U} = \mathbf{u}; \pmb{\theta}_*) &= \sum_{\tilde{\mathbf{x}} \in A_{\mathbf{u}}} \mathbb{P}(\mathbf{X} = \tilde{\mathbf{x}}) \\ &= \sum_{\tilde{\mathbf{x}} \in A_{\mathbf{u}}} p(\tilde{\mathbf{x}}; \pmb{\theta}_*) = \sum_{\tilde{\mathbf{x}} \in A_{\mathbf{u}}} g(T(\tilde{\mathbf{x}}), \pmb{\theta}_*) h(\tilde{\mathbf{x}}) \\ &= g(\mathbf{u}, \pmb{\theta}_*) \sum_{\tilde{\mathbf{x}} \in A_{\mathbf{u}}} h(\tilde{\mathbf{x}}). \end{split}$$

From the above, we have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}; \boldsymbol{\theta}_*) = \frac{h(\mathbf{x})}{\sum_{\tilde{\mathbf{x}} \in A_{\mathbf{u}}} h(\tilde{\mathbf{x}})},$$

and the above expression does not depend on θ_* . Hence, $T(\mathbf{X})$ is a sufficient statistics.

ο.

2.1.2 Likelihood

Definition 2.3 (Likelihood Function).

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample whose distribution belongs to a family of distributions $\mathcal{P} = \{p_{\theta} : \theta \in \Theta\}$. Let $\mathbf{x} = (x_1, \dots, x_n)$ be an observation of the random sample \mathbf{X} . Then, the likelihood function $L(\theta; \mathbf{x})$ is defined as follows:

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(x_i), \quad \theta \in \Theta.$$
 (44)

In some cases, we also use the log-likelihood function:

$$\ell(\theta; \mathbf{x}) = \log L(\theta; \mathbf{x}) = \sum_{i=1}^{n} \log p_{\theta}(x_i), \quad \theta \in \Theta.$$
 (45)

Essentially, $L(\theta; \mathbf{x})$ quantifies the likelihood that θ generates the observations \mathbf{x} . In a way, it is the inverse of probability density (mass) functions, we can see the contrast as follows:

- Probability Density Function: The parameters are fixed but the observations are random.
- Likelihood Function: The observations are fixed but the parameters are variable.

Definition 2.4 (Maximum Likelihood Estimator). Given $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample whose distribution belongs to a family of distributions $\mathcal{P} = \left\{ p_{\theta} : \theta \in \Theta \right\}$ and let $\mathbf{x} = (x_1, \dots, x_n)$ be an observation of the random sample \mathbf{X} . The Maximum Likelihood Estimator $\theta_{MLE} \in \Theta$ is the parameter that maximizes the likelihood function:

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} L(\theta; \mathbf{x}). \tag{46}$$

In the subsequent propositions, we will discuss some of the key properties of MLE.

Proposition 2.1: Consistency of MLE

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from a distribution p_{θ_*} over \mathcal{X} dependent on a true set of parameters θ_* . Let Θ be the parameters space. Then, the Maximum Likelihood Estimator $\Theta_{MLE} = \arg \max_{\theta \in \Theta} L(\theta; \mathbf{X})$, which is a random variable, is consistent, meaning $\Theta_{MLE} \stackrel{p}{\longrightarrow} \theta_*$, provided that the following conditions are met:

- 1. $\theta_* \in \Theta$ and Θ is a compact space.
- 2. $\log p_{\theta}(x)$ is continuous in θ for almost all $x \in \mathcal{X}$.
- 3. $\mathbb{E}_{\theta_*}[\sup_{\theta \in \Theta} |\log p_{\theta}(X)|] < \infty$.
- 4. The mapping $\xi \mapsto p_{\xi}$, $\xi \in \Theta$ is one-to-one (Identifiability).

Furthermore, we can also show that Θ_{MLE} is asymptotically unbiased. In other words, $\lim_{n\to\infty} \mathbb{E}[\Theta_{MLE}] = \theta_*$.

Proof (Proposition 2.1).

A proof for consistency of MLE can be found in "Chapter 36 Large sample estimation and hypoth-

 $[^]a$ In general, it is required that the model is strongly identifiable. However, since the parameters space Θ is compact, this requirement is satisfied.

esis testing" 1994, Theorem 2.5 but we attempt our own proof anyway. The general proof strategy is listed below:

- 1. First, prove that $\theta_* = \arg \max_{\xi \in \Theta} \mathbb{E}_{\theta_*} [\log p_{\xi}(X)]$.
- 2. Then, by (ULLN): $\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(X_i) \xrightarrow{p} \mathbb{E}_{\theta_*}[\log p_{\theta}(X)], \forall \theta \in \Theta.$
- 3. Prove that if a stochastic process converges in probability to a deterministic process, then the maximizers of the stochastic process converges in probability to the maximizer of the deterministic process.

To complete the proof, it is sufficient to prove the first point. For any $\theta \in \Theta$, we have:

$$\mathbb{E}_{\boldsymbol{\theta_*}} \left[\log \frac{p_{\boldsymbol{\theta}}(X)}{p_{\boldsymbol{\theta_*}}(X)} \right] \leq \log \mathbb{E}_{\boldsymbol{\theta_*}} \left[\frac{p_{\boldsymbol{\theta}}(X)}{p_{\boldsymbol{\theta_*}}(X)} \right] = \log \int_{\mathcal{X}} \frac{p_{\boldsymbol{\theta}}(x)}{p_{\boldsymbol{\theta_*}}(x)} p_{\boldsymbol{\theta_*}}(x) dx = \log 1 = 0.$$

Therefore, for all $\theta \in \Theta$: $\mathbb{E}_{\theta_*}[\log p_{\theta}(X)] \leq \mathbb{E}_{\theta_*}[\log p_{\theta_*}(X)]$. Hence, $\theta_* = \arg \max_{\xi \in \Theta} \mathbb{E}_{\theta_*}[\log p_{\xi}(X)]$ as desired. Define the following continuous mappings:

$$M_n = \xi \mapsto \frac{1}{n} \sum_{i=1}^n \log p_{\xi}(X_i),$$

and $M = \xi \mapsto \mathbb{E}_{\theta_{\star}}[\log p_{\xi}(X)].$

Then, by (ULLN), we have $||M_n - M||_{\infty} \xrightarrow{p} 0$. This means that for any fixed $\epsilon > 0$ and $\delta \in (0,1)$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$, with probability of at least $1 - \delta$, we have:

$$|M_n(\hat{\theta}_n) - M(\hat{\theta}_n)| < \frac{\epsilon}{2}, \quad and \quad |M_n(\boldsymbol{\theta}_*) - M(\boldsymbol{\theta}_*)| < \frac{\epsilon}{2},$$

simultaneously, where $\hat{\theta}_n = \arg \max_{\theta \in \Theta} M_n(\theta)$. From the above, with probability of at least $1 - \delta$, we have:

$$M(\hat{\theta}_n) \geqslant M_n(\hat{\theta}_n) - \frac{\epsilon}{2} \geqslant M_n(\boldsymbol{\theta}_*) - \frac{\epsilon}{2} \geqslant M(\boldsymbol{\theta}_*) - \epsilon.$$

Hence, we have $M(\theta_*) - M(\hat{\theta}_n) < \epsilon$ with high probability. Since M is continuous on a compact space, for all $\epsilon > 0$, there exists a constant $\xi > 0$ such that $|\theta - \theta_*| < \xi \implies |M(\theta_*) - M(\theta)| < \epsilon$. Hence, we have:

$$\mathbb{P}(|\boldsymbol{\theta_*} - \hat{\theta}_n| < \xi) = \mathbb{P}(|M(\boldsymbol{\theta_*}) - M(\hat{\theta}_n)| < \epsilon) \ge 1 - \delta.$$

Hence, we have $|\theta_* - \hat{\theta}_n| < \xi$ with high probability. Since δ is chosen arbitrarily, we can take $\delta \to 0$ and for all $\xi > 0$, we have:

$$\lim_{n \to \infty} \mathbb{P}(|\boldsymbol{\theta}_* - \hat{\theta}_n| < \xi) = 1 \implies \hat{\theta}_n \xrightarrow{p} \boldsymbol{\theta}_*$$

□.

Proposition 2.2: Asymptotic Normality of MLE

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample from a distribution $p_{\boldsymbol{\theta_*}}$ dependent on a true set of parameters $\boldsymbol{\theta_*}$. Let Θ be the parameters space. Then, the Maximum Likelihood Estimator $\Theta_{MLE} = \arg \max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}; \mathbf{X})$ is asymptotically normal:

$$\sqrt{n}(\Theta_{MLE} - \boldsymbol{\theta}_*) \xrightarrow{d} \mathcal{N}(0, \mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_*)^{-1}).$$
(47)

Proof (Proposition 2.2).

2.2 Point Estimation

2.2.1 Bias, Variance, Consistency and MSE

2.2.2 Sufficient Statistics & Rao-Blackwell Theorem

Theorem 2.2: Rao-Blackwell Theorem (R

2.2.3 Estimator Variance & Cramer-Rao Lower Bound

Definition 2.5 (Fisher Information).

Let $\mathbf{X} = (X_1, \dots, X_n) \sim p_{\boldsymbol{\theta_*}}$ be a random sample from a distribution $p_{\boldsymbol{\theta_*}}$ with the true unknown parameter $\boldsymbol{\theta_*}$. The Fisher Information about $\boldsymbol{\theta_*}$ in the random sample \mathbf{X} is defined as follows:

$$\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) = \mathbb{E}_{\boldsymbol{\theta}_{*}} \left[\left(\frac{\partial}{\partial \xi} \log L(\xi; \mathbf{X}) \middle|_{\xi = \boldsymbol{\theta}_{*}} \right)^{2} \right], \tag{48}$$

where \mathbb{E}_{θ_*} denotes the expectation conditioned on θ_* . The Fisher Information is the total information about θ_* contained in the sample X.

Remark 2.1.

Some Notes on Fisher Information:

- 1. The expectation \mathbb{E}_{θ} conditioned on θ means that the expectation is taken over the sample X under the hypothesis that θ is the true parameter of all the X_i 's.
- 2. Inside the expectation is the score function evaluated at θ_* .
- 3. From two points above, the Fisher Information is essentially calculated as the expectation conditioned on θ_* of the score evaluated at θ_* .

Proposition 2.3: Alternative Representation of Fisher Information

Let $\mathbf{X} = (X_1, \dots, X_n) \sim p_{\boldsymbol{\theta_*}}$ be a random sample from a distribution parameterized by a true unknown parameter $\boldsymbol{\theta_*}$. Let $\ell(\boldsymbol{\theta}; \mathbf{X}) = \log L(\boldsymbol{\theta}; \mathbf{X})$ be the log-likelihood function. Then, we have:

$$\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) = \operatorname{Var}(s(\boldsymbol{\theta}_{*}; \mathbf{X})), \tag{49}$$

where $s(\boldsymbol{\theta}_*; \mathbf{X}) = \frac{\partial \ell(\boldsymbol{\theta}_*; \mathbf{X})}{\partial \boldsymbol{\theta}_*}$ is the score evaluated at the true parameter $\boldsymbol{\theta}_*$. Furthermore, we have:

$$\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) = -\mathbb{E}_{\boldsymbol{\theta}_{*}} \left[\left. \frac{\partial^{2}}{\partial \xi^{2}} \ell(\xi; \mathbf{X}) \right|_{\xi = \boldsymbol{\theta}_{*}} \right]. \tag{50}$$

Proof (Proposition 2.3). _

Denote $s(\theta_*; \mathbf{X})$ as the score evaluated at the true parameter θ_* , we have:

$$\begin{aligned} \operatorname{Var}(s(\boldsymbol{\theta}_{*}; \mathbf{X})) &= \mathbb{E}_{\boldsymbol{\theta}_{*}} \left[\left(\frac{\partial}{\partial \xi} \ell(\xi; \mathbf{X}) \bigg|_{\xi = \boldsymbol{\theta}_{*}} \right)^{2} \right] - \mathbb{E}_{\boldsymbol{\theta}_{*}} \left[\frac{\partial}{\partial \xi} \ell(\xi; \mathbf{X}) \bigg|_{\xi = \boldsymbol{\theta}_{*}} \right]^{2} \\ &= \mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) - \mathbb{E}_{\boldsymbol{\theta}_{*}} \left[\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \log p_{\xi}(X_{i})}{\partial \xi} \bigg|_{\xi = \boldsymbol{\theta}_{*}} \right] \\ &= \mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) - \mathbb{E}_{\boldsymbol{\theta}_{*}} [s(\boldsymbol{\theta}_{*}; X)]^{2}, \end{aligned}$$

where X is identically distributed as X_1, \ldots, X_n . We claim that $\mathbb{E}_{\theta_*}[s(\theta_*; X)] = 0$. Let χ be the sample space, we have:

$$\mathbb{E}_{\boldsymbol{\theta_*}}[s(\boldsymbol{\theta_*}; X)] = \int_{\chi} p_{\boldsymbol{\theta_*}}(x) \frac{\partial \log p_{\boldsymbol{\xi}}(x)}{\partial \boldsymbol{\xi}} \bigg|_{\boldsymbol{\xi} = \boldsymbol{\theta_*}} dx$$

$$= \int_{\chi} p_{\boldsymbol{\theta_*}}(x) \cdot \frac{1}{p_{\boldsymbol{\theta_*}}(x)} \frac{\partial p_{\boldsymbol{\theta_*}}(x)}{\partial \boldsymbol{\theta_*}} dx$$

$$= \int_{\chi} \frac{\partial p_{\boldsymbol{\theta_*}}(x)}{\partial \boldsymbol{\theta_*}} dx$$

$$= \frac{\partial}{\partial \boldsymbol{\theta_*}} \int_{\chi} p_{\boldsymbol{\theta_*}}(x) dx = \frac{\partial}{\partial \boldsymbol{\theta_*}} 1 = 0. \qquad (Leibniz's Differentiation Rule)$$

Therefore, we have $\left[\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) = \operatorname{Var}(s(\boldsymbol{\theta}_{*}; \mathbf{X}))\right]$. Now, we prove the second point: $\mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}) = -\mathbb{E}_{\boldsymbol{\theta}_{*}}\left[\frac{\partial^{2}}{\partial \xi^{2}}\ell(\xi; \mathbf{X})\Big|_{\xi=\boldsymbol{\theta}_{*}}\right]$. Expanding $\frac{\partial^{2}}{\partial \xi^{2}}\ell(\xi; \mathbf{X})\Big|_{\xi=\boldsymbol{\theta}_{*}}$, we have:

$$\begin{split} \frac{\partial^{2}}{\partial \xi^{2}} \ell(\xi; \mathbf{X}) \Big|_{\xi=\boldsymbol{\theta_{*}}} &= \frac{\partial}{\partial \boldsymbol{\theta_{*}}} \left[\frac{\partial}{\partial \boldsymbol{\theta_{*}}} \ell(\boldsymbol{\theta_{*}}; \mathbf{X}) \right] \\ &= \frac{\partial}{\partial \boldsymbol{\theta_{*}}} \left[\frac{1}{L(\boldsymbol{\theta_{*}}; \mathbf{X})} \frac{\partial}{\partial \boldsymbol{\theta_{*}}} L(\boldsymbol{\theta_{*}}; \mathbf{X}) \right] \\ &= -\frac{1}{L(\boldsymbol{\theta_{*}}; \mathbf{X})^{2}} \left[\frac{\partial}{\partial \boldsymbol{\theta_{*}}} L(\boldsymbol{\theta_{*}}; \mathbf{X}) \right]^{2} + \frac{1}{L(\boldsymbol{\theta_{*}}; \mathbf{X})} \frac{\partial^{2} L(\boldsymbol{\theta_{*}}; \mathbf{X})}{\partial \boldsymbol{\theta_{*}}^{2}} \\ &= -\left[\frac{\partial}{\partial \boldsymbol{\theta_{*}}} \ell(\boldsymbol{\theta_{*}}; \mathbf{X}) \right]^{2} + \frac{1}{L(\boldsymbol{\theta_{*}}; \mathbf{X})} \frac{\partial^{2} L(\boldsymbol{\theta_{*}}; \mathbf{X})}{\partial \boldsymbol{\theta_{*}}^{2}}. \end{split}$$

Now, let P_{θ_*} be the probability density function for the random sample **X**. Then, essentially, $P_{\theta_*}(\mathbf{X}) = L(\theta_*; \mathbf{X})$. Therefore, we have:

$$\mathbb{E}_{\mathbf{X} \sim P_{\boldsymbol{\theta}_{*}}} \left[\frac{1}{L(\boldsymbol{\theta}_{*}; \mathbf{X})} \frac{\partial^{2} L(\boldsymbol{\theta}_{*}; \mathbf{X})}{\partial \boldsymbol{\theta}_{*}^{2}} \right] = \int_{\chi^{n}} \frac{1}{L(\boldsymbol{\theta}_{*}; \mathbf{x})} \frac{\partial^{2} L(\boldsymbol{\theta}_{*}; \mathbf{x})}{\partial \boldsymbol{\theta}_{*}^{2}} P_{\boldsymbol{\theta}_{*}}(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\chi^{n}} \frac{\partial^{2} L(\boldsymbol{\theta}_{*}; \mathbf{x})}{\partial \boldsymbol{\theta}_{*}^{2}} d\mathbf{x}$$

$$= \frac{\partial^{2}}{\partial \boldsymbol{\theta}_{*}^{2}} \int_{\chi^{n}} L(\boldsymbol{\theta}_{*}; \mathbf{x}) d\mathbf{x} \qquad \text{(Leibniz's Differentiation Rule)}$$

$$= \frac{\partial^{2}}{\partial \boldsymbol{\theta}_{*}^{2}} 1 = 0.$$

Therefore, we have:

$$-\mathbb{E}_{\boldsymbol{\theta}_{*}}\left[\frac{\partial^{2}}{\partial \xi}\ell(\xi;\mathbf{X})\bigg|_{\xi=\boldsymbol{\theta}_{*}}\right] = \mathbb{E}_{\boldsymbol{\theta}_{*}}\left[\left(\frac{\partial}{\partial \boldsymbol{\theta}_{*}}\ell(\boldsymbol{\theta}_{*};\mathbf{X})\right)^{2}\right] = \mathcal{I}_{\mathbf{X}}(\boldsymbol{\theta}_{*}),$$

 $as\ desired.$

Remark 2.2 (Exchanging Derivative and Integral).

Note that in the proof of proposition 2.3, we exchanged the integration and the partial derivative to prove that $\mathbb{E}_{\theta_*}[s(\theta_*; X)] = 0$. This exchange of differentiation and integral can be done under certain conditions, which are listed in the appendix, section I.1.

Theorem 2.3: Cramer-Rao Lower Bound (CRLE

2.2.4 Maximum Likelihood Estimation (MLE)

I . Appendix

I.1 Leibniz Differentiation Rule

Leibniz Differentiation/Integral Rule refers to the conditions by which differentiation and integration can be exchanged. Essentially, let Ω be a measure space and $A \subset \mathbb{R}^n$ be an open subset. Then, if a function $f: A \times \Omega \to \mathbb{R}$ satisfies:

- 1. For all $x \in A$, $\omega \mapsto f(x, \omega)$ is a measurable function in ω (f is a Caratheodory Function).
- 2. For almost all $\omega \in \Omega$, $\frac{\partial f(x,\omega)}{\partial x}$ exists for all $x \in A$.
- 3. For almost all $\omega \in \Omega$, there is an integrable function $h: \Omega \to \mathbb{R}$ such that $|f(x,\omega)| \leq h(x)$ for all $x \in A$.

Definition I.1 (Caratheodory Function). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $A \subset \mathbb{R}^n$. We say $f: A \times \Omega \to \mathbb{R}$ is a Caratheodory Function if it satisfies:

- 1. For all $x \in A$: $\omega \mapsto f(x, \omega)$ is \mathcal{F} -measurable.
- 2. For all $\omega \in \Omega$: $x \mapsto f(x, \omega)$ is continuous.

We also say that f is a Caratheodory function if it is measurable in ω and continuous in x.

II . List of Definitions

1.1	Definition (Random variable)	2
1.2	Definition (Convergence in Distribution)	11
1.3	Definition (Continuity Sets)	12
1.4	Definition (Weak Convergence of Measures)	12
1.5	Definition (Convergence in Probability)	14
1.6	Definition (Convergence in L^p norm)	
1.7	Definition (Convergence almost-surely)	
2.1	Definition (Sufficient Statistics)	18
2.2	Definition (Sufficiency Principle)	18
2.3	Definition (Likelihood Function)	20
2.4	Definition (Maximum Likelihood Estimator)	
2.5	Definition (Fisher Information)	
I.1	Definition (Caratheodory Function)	25
III	Important Theorems	
TIT	. Important Theorems	
1.1	Weak Law of Large Numbers (WLLN)	4
1.2	Levy Continuity Theorem (LCT)	
1.3	Strong Law of Large Numbers (SLLN)	
1.4	Borel-Cantelli Lemma (BCL)	7
1.5	Uniform Law of Large Numbers (ULLN)	8
1.6	Central Limit Theorem (CLT)	10
1.7	Slutsky's Theorem (SLUTSKY)	
1.8	Portmanteau's Theorem (PORTMANTEAU)	
1.9	Continuous Mapping Theorem (CMT)	16
2.1	Factorisation Theorem (FacT)	
2.2	Rao-Blackwell Theorem (RB)	
2.3	Cramer-Rao Lower Bound (CRLB)	24
IV	. Important Propositions	
1 V	. Important 1 ropositions	
1.1	$X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X \dots $	14
1.2	$X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c \dots \dots \dots \dots \dots \dots \dots$	
1.3	$X_n \xrightarrow{L^p} X \Longrightarrow X_n \xrightarrow{p} X$	15
1.4	$X_n \xrightarrow{a.s} X \Longrightarrow X_n \xrightarrow{p} X$	
2.1	Consistency of MLE	
2.2	Asymptotic Normality of MLE	
2.3	Alternative Representation of Fisher Information	22

V . References

References

- Bartlett, Peter L., Dylan J. Foster, and Matus Telgarsky (2017). "Spectrally-normalized margin bounds for neural networks". In: *Conference on Neural Information Processing Systems*.
- "Chapter 36 Large sample estimation and hypothesis testing" (1994). In: vol. 4. Handbook of Econometrics. Elsevier, pp. 2111-2245. DOI: https://doi.org/10.1016/S1573-4412(05) 80005-4. URL: https://www.sciencedirect.com/science/article/pii/S1573441205800054.
- Durrett, Rick (2010). *Probability: Theory and Examples*. 4th. USA: Cambridge University Press. ISBN: 0521765390.
- Ferguson, Thomas S. (1996). A Course in Large Sample Theory. Chapman & Hall.
- Gut, Allan (2004). A Graduate Course in Probability. Graduate Text in Mathematics.
- Long, Philip M. and Hanie Sedghi (2020). "Generalization Bounds for Deep Convolutional Neural Networks". In: *International Conference on Learning Representation*.
- Pishro-Nik, Hossein (2014). Introduction to Probability, Statistics and Random Processes. Kappa Research, LLC.
- undefinedinlar, Erhan (2011). *Probability and Stochastics*. Springer New York. ISBN: 9780387878591. URL: http://dx.doi.org/10.1007/978-0-387-87859-1.
- Wikipedia (2023). Vitali set Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Vitali%20set&oldid=1187241923. [Online; accessed 24-December-2023].