MD KAWSER BEPARY

[LinkedIn] [GitHub] [Google Scholar]

Area of Interests

Email: mdkawser.bepary@ufl.edu Mobile: +1-256-417-9343 Address: Gainesville, FL, USA

 $\bullet \ \ \text{System-on-Chip Design and Verification, Embedded System Application, Hardware Security and Trust, Side-Channel Analysis.}$

EDUCATION

• University of Florida

Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering Advisor: Prof. Mark Tehranipoor Jan 2021 - May 2025 (Expected) CGPA: **3.93/4.00**

Huntsville, AL Aug 2019 - Dec 2020

Gainesville, FL

• The University of Alabama in Huntsville

Master of Science (M.Sc.) in Computer Engineering Advisor: Prof. M. Tauhidur Rahman

CGPA: 3.71/4.00

• Bangladesh University of Engineering and Technology (BUET)

Bachelor of Science (B.Sc.) in Electrical and Electronic Engineering

Dhaka, Bangladesh Jul 2014 - Oct 2018 CGPA: 3.51/4.00

EXPERIENCE

• Florida Institute for Cybersecurity (FICS) Research, University of Florida Graduate Research Assistant

Gainesville, FL Jan 2021 - Current

• Developing a GNN-based power/EM side-channel leakage modeling framework at pre-silicon stage to ensure secure cryptographic designs.

- Developing a novel PMU-based methodology for detecting browser workloads and cache side-channel attacks to thawrt speculative attacks during runtime.
- Implemented an automated CAD toolflow to evaluate physical-design aware EM side-channel vulnerability at gate-level, enabling fast security sign-off at pre-silicon.
- Developed a python-based framework to estimate the IP and SoC-level resiliency against power side-channel threats at RTL as part of a DARPA-funded project in collaboration with Synopsys.
- Designed security primitive IPs in RTL for device lifecycle management as part of a DARPA-funded AISS project in collaboration with Synopsys.

• Synopsys Inc.

Mountainview, CA

May 2023 - Dec 2023

Graduate Technical Intern (Security IP Team), Solutions Group

- Developed embedded applications for secure boot, TLS communication, and cryptographic services as part of DARPA-funded AISS (Automatic Implementation of Secure Silicon) project.
- Implemented ASCON lightweight cryptographic application for embedded firmware encryption and authentication as part of secure boot protocol.
- Integrated ASCON authenticated encryption and hashing hardware module to the Synopsys security engine subsystem and implemented a masking scheme for side-channel resiliency.

• Department of ECE, University of Florida

Graduate Teaching Assistant - Intro to Hardware Security and Trust

Gainesville, FL Aug 2022 - Dec 2022

 Managed the assignments, projects, and exams and developed tutorials on commercial EDA tools for VLSI design, synthesis, functional and security verification.

• Department of ECE, The University of Alabama in Huntsville

Huntsville, AL Aug 2019 - Dec 2020

Graduate Research Assistant

- Developed open-source API-based C++ scripts to interface commercial DDR3 DRAM chips deployed on a Xilinx ML605 FPGA board to execute read/write operations with configurable timing parameters.
- Performed device aging under stress conditions for DRAM modules and analyzed bit-flips due to retention error to explore reliability issues, security vulnerabilities and generate robust signatures.

• Department of ECE, The University of Alabama in Huntsville

Huntsville, AL

Graduate Teaching Assistant - Computer Organization, Intro to Computer Architecture

Aug 2020 - Dec 2020

• Assisted 100+ graduate/undergraduate students with grading homework, quizzes, projects, and exams on concepts of computer organization, architecture, memory hierarchy, assembly language, and MIPS ISA.

Relevant Coursework

- Computer Engineering: System-on-Chip Design, VLSI HDL/Modeling, Advanced Computer Architecture, Advanced VLSI, Analog and Digital Electronics, Parallel Programming, Microprocessor and Interfacing
- Hardware Security: CAD for Hardware Security Verification, Advanced Hardware Security, Cybersecurity Engineering, Hardware Security and Trust
- Machine Learning: Data Mining, Intro to Machine Learning, Probability and Statistics, Linear Algebra

TECHNICAL SKILLS

- Programming Languages: Python, C/C++, Rust, MATLAB, RISC-V/MIPS/8086 Assembly
- Hardware Description Languages: Verilog, VHDL, SystemVerilog
- Electronic Design Automation Tools:
 - o RTL Design and Synthesis: Synopsys Design Compiler, Xilinx Vivado, Cadence Genus, ABC
 - Functional Verification: Synopsys VCS, ModelSim, SystemVerilog Assertion, UVM
 - o Formal Verification: Cadence JasperGold, Synopsys Formality
 - o Physical Design: Cadence Innovus, Synopsys ICC2
 - Other EDA Tools: Synopsys SpyGlass, PrimeTime, TetraMax, StarRC, HSpice
- Scripting Languages: Tcl/Tk, Unix Shell, Bash, Make, CMake, Perl
- Data Analysis & Machine Learning: Numpy, SciPy, Pandas, Scikit-learn, Tensorflow, Keras, PyTorch
- Other Software and Tools: Proteus, gem5, multi2sim, PAPI, Linux, Git, Perforce, Latex, Minitab

Publications

- MK Bepary, A Basu, S Mohammad, R Hasan, F Farahmandi, M Tehranipoor, "SPY-PMU: Side-channel Profiling of Your Performance Monitoring Unit to Leak Remote User Activity," IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2025. (Under Review)
- MK Bepary, T Zhang, J Zhou, F Rahman, F Farahmandi, M Tehranipoor, "Towards Efficient Gate-Level Electromagnetic Side-Channel Leakage Modeling and Vulnerability Assessment," Journal of Hardware and Systems Security, 2024. (Under Review)
- MK Bepary, T Zhang, F Farahmandi and M Tehranipoor. "PreSCAN: A Comprehensive Review of Pre-Silicon Physical Side-Channel Vulnerability Assessment Methodologies." Chips 3, no. 3 (2024). (link)
- T Rahman, MK Bepary, MSUl Haque, M Tehranipoor and F Rahman, "Design and Security-Mitigation of Custom and Configurable Hardware Cryptosystems," 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 2023, pp. 1-6. (link)
- MK Bepary, F Rahman, F Farahmandi, and M Tehranipoor. "Security Assessment and Modeling of EM Side-channel Leakage at Gate-Level." in Annual GOMACTech Workshop 2023, USA.
- B Ahmed, **MK Bepary**, N Pundir, M Borza, et al. "Quantifiable Assurance: From IPs to Platforms." Cryptology ePrint Archive (2021). (link)
- Co-authored a book chapter titled "A Survey on CAD for Power Side-Channel Detection" for the book "Farimah Farahmandi et al., CAD for Hardware Security, Springer, 2023."
- Co-authored a book chapter titled "Counterfeit and Recycled IC Detection" for the book "Tehranipoor, M., Pundir, N., Vashistha, N., Farahmandi, F.., Hardware Security Primitives. Springer, 2022." (link)
- MK Bepary, BMSB Talukder, and MT Rahman. "DRAM Retention Behavior with Accelerated Aging in Commercial Chips." Applied Sciences 12, no. 9 (2022): 4332. (link)

Poster Presentations

- Presented a poster titled "Quantitative Assessment of Power Side-channel Vulnerability at Pre-silicon Stages" on 2023 Florida Semiconductor Week, Gainesville, FL. (Jan 2023) (link)
- Presented a poster titled "Electromagnetic Side-Channel Leakage Modeling and Security Assessment at Pre-Silicon Stages" on 2022 Trusted and Assurance Microelectronics (TAME) Forum, Columbus, OH. (Sep 2022) (link)

Selected Academic Projects

- System-on-Chip (SoC) Design: Implemented a SoC hardware design using MicroBlaze processor, peripheral IP integration (AXI, APB), bus protocol (APB), and developed baremetal C applications. (2023)
- Implementation of FPGA Pong Game: Implemented the hardware design of the VGA controller for monitor and Pong Game controller on a Xilinx FPGA using MicroBlaze processor and I/O peripherals. (2023)
- Property-based security verification of an RSA controller: Implemented security properties with SystemVerilog assertions to verify an RSA controller design on Cadence Jasper. (2021)
- Deep-learning based hand-written character recognition: Developed a deep convolutional neural network pipeline along with data pre-processing and augmentation techniques using python keras and scikit-learn libraries to classify images of hand-written characters with 98.07% accuracy. (2022) (github)
- Implementation of an efficient AES crypto engine: Developed an efficient VHDL implementation of AES 128-bit encryption/decryption engine using pipelined architecture on Xilinx Artix-7 FPGA board. (2020)
- Performance analysis of cache replacement policies: Implemented different cache replacement policies (LRU, pseudo-LRU, FIFO, random, MRU, LFU, etc.) on x86 architecture using Gem-5 simulator to analyze the performance improvement on benchmark programs. (2020)
- Parallel implementation of PCA algorithm: Developed a parallel implementation of principal component analysis (PCA) algorithm using singular value decomposition (SVD) in OpenMP specification on Alabama Supercomputer to improve performance. (2019)

Honors and Awards

 1st Place in 2022 IEEE HOST Microelectronics Security Challenge (github), 2022 IEEE HOST Travel Grant, Undergrad Dean's List (2015), Education Board Merit Scholarship (Secondary and Higher Secondary).