MATH7501 Practical 10 (Week 11), Semester 1-2021

Topic: Sequences & Series, Limits and Derivatives

Author: Aminath Shausan

Date: 14-05-2021

Pre-Tutorial Activity

Students must have familiarised themselves with units 5 to 8 contents of the reading materials for MATH7501

Resources

- Chapters 5 to 8 of
- https://en.wikipedia.org/wiki/Law_of_the_unconscious_statistician

Section 1: Quiz 2

Do Quiz 2 of Sem1, 2021

See Quiz 2 solution s

Section 2: Exponential Distribution

In probability theory and statistics, the exponential distribution is a continuous distribution that is commonly used to measure the expected time for an event to occur. For example,

- in **physics** it is often used to measure radioactive decay,
- in **engineering** it is used to measure the time associated with receiving a defective part on an assembly line,
- in **finance** it is often used to measure the likelihood of the next default for a portfolio of financial assets I
- it can also be used to measure the likelihood of incurring a specified number of defaults within a specified time period.

If a random variable has the exponential distribution with parameter λ , we write it as: $X \sim \text{Exp}(\lambda)$.

Here $\lambda > 0$ is called the **rate parameter** and X takes values in the interval $[0, \infty)$.

The **probability density function** (pdf), f_X , of X is given by:

$$f_{X}\left(x\right)=\,\left\{ \begin{aligned} \lambda e^{-\lambda x}\,,\;x\;&\geq0\\ 0,\;\;x\;&<0 \end{aligned}\right..$$

The cumulative distribution function (cdf), F_X , of X is given by :

$$F_{X}\left(x\right)=\;\left\{ \begin{array}{ll} 1-e^{-\lambda x}\,,\;x\;\geq0\\ 0,\;\;x\;<0 \end{array}\right. \label{eq:FX}$$

Relationship between pdf and cdf of a continuous random variable

In general, suppose X is a continuous random variable defined on the entire real line, then we compute:

• the probability of X falling within a given interval [a,b] is computed by integrating its pdf, f_X .

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

■ The cumulative distribution function (cdf), F_{X_i} of X is defined as

$$F_X(x) = P(-\infty \le X \le x) = \int_{-\infty}^x f_X(t) dt.$$

■ The pdf of a continuous random variable X can be computed by differentiating its cdf, as long as the derivative exists:

$$f_X(x) = \frac{d}{dx} F_X(x).$$

- Intuitively this means $f_X(x)$ dx is the probability of X falling within the infinitesimal interval [x, x + dx]
- **Q1)** Use the above general definition of cdf to show that the cdf of X~Exp (λ) is given as in Eq (1)

$$\begin{split} F_X & (x) &= P \left(0 \le X \le x \right) \\ &= \int_0^x f_X (t) dt \\ &= \int_0^x \lambda e^{-\lambda t} dt \\ &= \lambda \int_0^x e^{-\lambda t} dt \\ &= \lambda \left[\frac{-1}{\lambda} e^{-\lambda t} \right]_{t=0}^{t=x} \\ &= \left\{ \begin{array}{c} 1 - e^{-\lambda x} , & x \ge 0 \\ 0, & x < 0 \end{array} \right. \end{split}$$

Q2) Plot the pdf and cdf of X~Exp (λ) for $\lambda = 0.5, 1, 1.5, 2$

(* plot the pdf*) Plot[

Table [PDF [ExponentialDistribution[λ], x], $\{\lambda, \{1/2, 1, 1.5, 2\}\}$] // Evaluate, $\{x, 0, 5\}$, PlotRange \rightarrow All, PlotLegends $\rightarrow \{"\lambda=0.5", "\lambda=1", "\lambda=1.5", "\lambda=2"\}$

(*plot the cdf*)

In[55]:= Plot[

 $Table \big[\texttt{CDF} [\texttt{ExponentialDistribution}[\lambda] \,,\, \texttt{x}] \,,\, \big\{ \lambda,\, \big\{ 1 \,\big/\, 2,\, 1,\, 1.5,\, 2 \big\} \big\} \big] \,\, //\,\, \texttt{Evaluate},$ $\{x, 0, 5\}$, PlotRange \rightarrow All, PlotLegends \rightarrow $\{"\lambda=0.5", "\lambda=1", "\lambda=1.5", "\lambda=2"\}$

Mean and variance of a continuous random variable

suppose X is a continuous random variable defined on the entire real line with pdf $f_X(x)$, then

• its **mean**, μ_X , is the expected value of X which is defined as follows

$$\mu_{X} = E(X) = \int_{-\infty}^{\infty} x f_{X}(x) dx$$

• and variance of X, σ^2 _X, is the expected variability of X form its mean, μ_X . Variance of X is computed as

$$\begin{split} \sigma^2_{X} &= \text{var}(X) = \text{E}\big[(X - \mu_{X})^2 \big] \\ &= \text{E}\big[X^2 - 2\,\mu_{X}\,X \, + \mu_{X}^2 \big], \text{ after expanding } (X - \text{mu})^2 \\ &= \text{E}\big[X^2 \big] - 2\,\mu_{X}\,\text{E}[X] \, + \mu_{X}^2 \; , \end{split}$$

after using the peoperty : E (aX + bY) = aE (X) + bE (Y) for two random variables X and Y = E[X²] - 2 μ_X^2 + μ_X^2 , using the fact that E[X] = μ_X = E[X²] - μ_X^2 - - - - - Eq (2)

Note that X^2 is a function of X (say $g(X) = X^2$). Then by the

law of the unconscious statistician for continuous random variable,

we have $E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx$. Thus Eq (2) is computed as :

$$\sigma^2_X = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \mu_X^2.$$

Q3) Show that the mean of $X \sim \text{Exp}(\lambda) = \frac{1}{\lambda}$

$$\mu_{X} = E(X) = \int_{0}^{\infty} x \lambda e^{-\lambda x} dx$$

$$= \lambda \int_{0}^{\infty} x e^{-\lambda x} dx$$

$$= \frac{\lambda}{\lambda} \left\{ \left[-x e^{-\lambda x} \right]_{x=0}^{x=\infty} + \int_{0}^{\infty} e^{-\lambda x} dx \right\},$$

using integration bi parts : $\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx,$

where f (x) = x and g'(x) =
$$\int_0^\infty e^{-\lambda x}$$
=
$$\left\{0 - \frac{1}{\lambda} \left[e^{-\lambda x}\right]_{x=0}^{x=\infty}\right\}$$
=
$$\frac{1}{\lambda}$$

Q4) Show that the variance of $X \sim \text{Exp}(\lambda) = \frac{1}{\lambda^2}$

To compute $\sigma^2_X = \int_{-\infty}^{\infty} x^2 f_X(x) dx - \mu_X^2$, first we need to find

$$\begin{split} \int_{-\infty}^{\infty} & x^2 \, f_X \left(x \right) \, = \, \int_0^{\infty} & x^2 \, \lambda e^{-\lambda x} \, dx \\ & = \lambda \, \int_0^{\infty} & x^2 \, e^{-\lambda x} \, dx \\ & = \, \frac{\lambda}{\lambda} \, \Big\{ \big[-x^2 \, e^{-\lambda x} \big]_{x=0}^{x=\infty} \, + \, 2 \, \int_0^{\infty} & x e^{-\lambda x} \, dx \Big\}, \end{split}$$

using integration bi parts with f (x) =
$$x^2$$
 and g'(x) = $\int_0^\infty e^{-\lambda x}$
= $\left\{0 + \frac{2}{\lambda} \int_0^\infty x \lambda e^{-\lambda x} dx\right\}$, multiplying by $\frac{\lambda}{\lambda}$
= $\frac{2}{\lambda} E[X]$
= $\frac{2}{\lambda^2}$

Thus

$$\sigma^{2}_{X} = \frac{2}{\lambda^{2}} - \left(\frac{1}{\lambda}\right)^{2}$$
$$= \frac{1}{\lambda^{2}}$$