Lab 2 - Explainable AI

Name: M Goutham

Hall-Ticket No: 2303A52010

Code File:

Lab2 XAI.ipynb

Dataset:

diabetes.csv

Summary Plot from the dataset:

Lab 2 🛭 Explainable AI

1. Dataset Description

- Source: PIMA Indians Diabetes Dataset @UCI Machine Learning Repository / Kaggle).
- Size: 768 rows and 9 columns.
- Features:
 - Pregnancies
 - Glucose
 - BloodPressure
 - SkinThickness
 - Insulin
 - o BMI
 - DiabetesPedigreeFunction
 - Age
- Target Variable: Outcome 20 2 No Diabetes, 1 2 Diabetes).

2. Preprocessing Steps

- Handled missing or zero values in features such as BloodPressure, BMI, Insulin.
- Scaled the features using StandardScaler to improve model performance.
- Split data into training 280%2 and testing 220%2 sets.

3. Model & Performance

- Algorithm Used:Logistic Regression
- Parameters: Default scikit-learn logistic regression with regularization.
- Evaluation Metrics:
 - **Accuracy:** 277%
 - Precision: 274%
 - Recall: 261%
 - **F1-score:** 267%

Lab 2 🛚 Explainable AI

4. SHAP Analysis

SHAP Summary Plot (Above)

- Top 5 most influential features:
 - 22 Glucose 2 High glucose strongly increases diabetes risk.
 - **BMI** Predicting diabetes.
 - 22 Age 2 Older individuals tend to have higher diabetes probability.
 - **BloodPressure Moderately impacts diabetes risk.**
 - **Pregnancies More** pregnancies correlate with higher diabetes risk.

Comparison with Model's Coefficients (Logistic Regression Feature Importance)

- Logistic Regression coefficients also show **Glucose**, **BMI**, and **Age** as strongest predictors.
- SHAP adds interpretability by showing **direction and individual sample effects**, not just global weights.

Domain Relevance

- The results are **clinically meaningful**:
 - High **glucose** is a known diagnostic factor for diabetes.
 - BMI and age are strong risk factors in medical literature.
 - **Pregnancies** relate to gestational diabetes, which increases future diabetes risk.
 - **Blood Pressure** is often linked with metabolic syndrome and diabetes.

5. Conclusion

- Logistic Regression performed well and provided interpretable coefficients.
- SHAP analysis confirmed the most important risk factors: **Glucose, BMI, Age, BloodPressure, and Pregnancies**.
- The results align with domain knowledge in medicine.

•

Limitations: The dataset is relatively small, and missing values imputation may affect results.

• **Future Improvements:** Try ensemble models Random Forest, XGBoost) with SHAP to see if interpretability improves.

Lab 2 🛽 Explainable Al