Sepsis Subphenotype Clustering: Critical Timing and Early-Warning Prediction

Presenter: Panyu Chen, Jiayu Gao

Sepsis -- Reality

 "Sepsis, a syndrome of physiologic, pathologic, and biochemical abnormalities induced by infection" [1]

	Score				
System	0	1	2	3	4
Respiration					
PaO ₂ /FIO ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support
Coagulation					
Platelets, $\times 10^3/\mu$ L	≥150	<150	<100	<50	<20
Liver					
Bilirubin, mg/dL (µmol/L)	<1.2 (20)	1.2–1.9 (20–32)	2.0–5.9 (33–101)	6.0–11.9 (102–204)	>12.0 (204)
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1–15 or epinephrine ≤ 0.1 or norepinephrine $\leq 0.1^b$	Dopamine >15 or epinephrine >0.1 or norepinephrine >0.1
Central nervous system					
Glasgow Coma Scale score ^C	15	13–14	10–12	6–9	<6
Renal					
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2–1.9 (110–170)	2.0–3.4 (171–299)	3.5–4.9 (300–440)	>5.0 (440)
Urine output, mL/d				<500	<200

Sepsis - Related Works

Sepsis Prediction [2][3]

Related Works

Disease Subphenotype Clustering

Latent Dirichlet Allocation[4]

Sepsis -- Hierarchical Clustering [5]

COVID 19 -- Consensus K-Means Clustering[6]

No Time-Series Data is used!

Related Works

- Sepsis Detection with Time-Series Data
 - Jensen-Shannon's Divergence [7]
- Disease Subphenotype Clustering with Time-Series Data
 - Acute Kidney Injury Subphenotype [8]
 - Liver Diseases Subphenotype [9]
 - Sepsis Sub-Phenotyping with Lung, Kidney,
 - **Heart-Related Diagnosis Calibration [10]**

ICU Admissions in MIMIC-III

ICU Admissions in MIMIC-III

ICU Admissions in MIMIC-III

MIMIC-III: Sepsis-Related Items

Measured

- #220210, #224688, #224689, #224690 -- Respiratory Rate (Respiratory)
- #227457 -- Platelet Count (Coagulation)
- #225651, #225690, #226998 Bilirubin (Renal)
- #220045 -- Heart Rate (Cardiovascular)
- #220615, #226751, #226752, #227005 Creatinine
 (Renal)
- #224828 -- Base Excess (Liver)

Workflow

Sepsis Diagnoses from MIMIC-III

Mutual Information Graph Construction

 Finding: Sepsis Sub-Phenotypes and Critical Time Points

 Sub-Phenotype Early-Warning Prediction with Machine Learning

ICU Admissions in MIMIC-III – Sepsis-Related Measurements (120h) before ICU Admission

	SUBJECT_ID	HADM_ID	before_ICU_time	ITEMID	VALUE	VALUENUM
336	85	112077	22.156389	220045	100.0	100.0
337	85	112077	22.156389	220210	30.0	30.0
338	85	112077	23.156389	220045	106.0	106.0
339	85	112077	23.156389	220210	34.0	34.0
340	85	112077	24.156389	220045	114.0	114.0
2054661	48935	177563	23.900000	220210	20.0	20.0
2054662	48935	177563	23.916667	220045	97.0	97.0
2054663	48935	177563	23.916667	220210	14.0	14.0
2054664	48935	177563	23.933333	220045	95.0	95.0
2054665	48935	177563	23.933333	220210	33.0	33.0

Method: Multi-Layer Horizontal Visibility Graph (MHVG) Fix timepoints 1, 2, ..., T Horizontal Visibility Network

hours for a Measurement

$$T=120$$
, before ICU

 Patient-Wise Horizontal Visibility

$$x_k < \min\{x_i, x_j\},\$$

$$\forall i < k < j$$

Doints with ___

Impute Missing Time

Time 0 20 40 60 80 100

Method: Multi-Layer Horizontal Visibility Graph (MHVG) [11]

Method: From MHVG to Mutual

Information Graph

Single-Layer Degree
 Distribution

$$P(k^{[\alpha]}) = \frac{N_{k^{[\alpha]}}}{N}$$

Joint-Layer Degree
 Distribution

$$P(k^{[\alpha]}, k^{[\beta]}) = \frac{N_{k^{[\alpha]}, k^{[\beta]}}}{N}$$

Method: From MHVG to Mutual Information Graph

Inter-Patient Mutual Information

$$I_{\alpha,\beta} = \sum_{k[\alpha],k[\beta]} P(k^{[\alpha]},k^{[\beta]}) \log \frac{P(k^{[\alpha]},k^{[\beta]})}{P(k^{[\alpha]})P(k^{[\beta]})}$$
$$I_{\alpha,\beta} = D_{\text{KL}}[P(\mathbf{k}^{[\alpha]},\mathbf{k}^{[\beta]})||P(\mathbf{k}^{[\alpha]}) \otimes P(\mathbf{k}^{[\beta]})]$$

Stochastic Laplacian

$$L = I - D^{-1}A$$

Method: From MHVG to Mutual

Method: Mutual Information Graph

Method: From MHVG to Mutual Information Graph

Normalization of each Row

Stochastic Laplacian

$$L = I - D^{-1}A$$

Method: Clustering with Mutual Information Graph

Results: Critical Timing in Prognosis

Results: Critical Timing in Prognosis

Results: Critical Timing Overlooked by Previous Works [10]

Clustering with lung, kidney, and heart-related calibration data

Early-Warning Prediction: Time-

Series Data

Window	Model	Accuracy	Precision	Recall	F1-score	AUC-ROC
12h	Logistic Regression	0.5983	0.6110	0.5983	0.6020	0.6972
	Random Forest	0.5897	0.5998	0.5897	0.5936	0.7873
	XGBoost	0.5726	0.5818	0.5726	0.5767	0.7533
24h	Logistic Regression	0.6068	0.6204	0.6068	0.6080	0.7488
	Random Forest	0.6923	0.6990	0.6923	0.6944	0.8262
	XGBoost	0.6752	0.6809	0.6752	0.6761	0.8103
48h	Logistic Regression	0.8034	0.8146	0.8034	0.8048	0.8960
	Random Forest	0.8889	0.8910	0.8889	0.8881	0.9456
	XGBoost	0.8632	0.8661	0.8632	0.8637	0.9354
120h	Logistic Regression	0.8632	0.8689	0.8632	0.8645	0.9192
	Random Forest	0.8974	0.9105	0.8974	0.8986	0.9830
	XGBoost	0.8889	0.8998	0.8889	0.8901	0.9192

Early-Warning Prediction:

Feature Importance Score

Early-Warning Prediction: Time-Window Characteristics

- Take window sizes: first 12h, 24h, 48h
- Take as Features in each Window: Maximum,

Minimum, Mean, Standard Deviation

gistic Regression ndom Forest Boost	0.6752 0.7094 0.6239	0.6884 0.7184 0.6331	0.6752 0.7094 0.6239	0.6793 0.7126 0.6263	0.7868 0.8040 0.7631
Boost	0.6239				
		0.6331	0.6239	0.6263	0.7631
istis Dansasian				0.0200	0.7031
gistic Regression	0.7350	0.7502	0.7350	0.7391	0.8439
ndom Forest	0.7607	0.7741	0.7607	0.7641	0.8948
Boost	0.7350	0.7454	0.7350	0.7376	0.8698
gistic Regression	0.8632	0.8667	0.8632	0.8643	0.9474
ndom Forest	0.8632	0.8749	0.8632	0.8646	0.9560
Poort	0.8889	0.8941	0.8889	0.8900	0.9510
1		idom Forest 0.8632	dom Forest 0.8632 0.8749	idom Forest 0.8632 0.8749 0.8632	dom Forest 0.8632 0.8749 0.8632 0.8646

Early-Warning Prediction: SHAP [14] Interpretation (towards class 0)

Early-Warning Prediction: Interpretation (violin class 1)

Early-Warning Prediction:

Interpretation (towards class 2)

Conclusion

- We construct multi-layer networks for each sepsis-diagnosed admission
- We construct a mutual information graph that encodes all sepsis diagnoses
- We compute sepsis subphenotypes from mutual information, and derive critical timepoints
- We conduct early-warning prediction of subphenotypes by machine learning

References

- [1] Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, Manu Shankar-Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard, Jean-Daniel Chiche, Craig M Coopersmith, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama, 315(8):801–810, 2016.
- [2] Yan Tang, Yu Zhang, and Jiaxi Li. A time series driven model for early sepsis prediction based on transformer module. BMC Medical Research Methodology, 24(1):23, 2024.
- [3] Shaunak Dalal, Ahad Khaleghi Ardabili, and Anthony S Bonavia. Time-series deep learning and conformal prediction for improved sepsis diagnosis in non-icu hospitalized patients. medRxiv, pages 2024–11, 2024.
- [4] Yanshan Wang, Yiqing Zhao, Terry M Therneau, Elizabeth J Atkinson, Ahmad P Tafti, Nan Zhang, Shreyasee Amin, Andrew H Limper, Sundeep Khosla, and Hongfang Liu. Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records. Journal of biomedical informatics, 102:103364, 2020.
- [5] Zina M Ibrahim, Honghan Wu, Ahmed Hamoud, Lukas Stappen, Richard JB Dobson, and Andrea Agarossi. On classifying sepsis heterogeneity in the icu: insight using machine learning. Journal of the American Medical Informatics Association, 27(3):437–443, 2020.

References

- [6] Wonsuk Oh, Pushkala Jayaraman, Ashwin S Sawant, Lili Chan, Matthew A Levin, Alexander W Charney, Patricia Kovatch, Benjamin S Glicksberg, and Girish N Nadkarni. Using sequence clustering to identify clinically relevant subphenotypes in patients with covid-19 admitted to the intensive care unit. Journal of the American Medical Informatics Association, 29(3):489–499, 2022.
- [7] Jeffrey Smith, Christopher Josef, Yao Xie, and Rishikesan Kamaleswaran. Online critical-state detection of sepsis among icu patients using jensen-shannon divergence. In AMIA Annual Symposium Proceedings, volume 2022, page 982, 2023.
- [8] Zhenxing Xu, Jingyuan Chou, Xi Sheryl Zhang, Yuan Luo, Tamara Isakova, Prakash Adekkanattu, Jessica S Ancker, Guoqian Jiang, Richard C Kiefer, Jennifer A Pacheco, et al. Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic health record data with memory networks. Journal of biomedical informatics, 102:103361, 2020.
- [9] Thomas A Lasko and Diego A Mesa. Computational phenotype discovery via probabilistic independence. arXiv preprint arXiv:1907.11051, 2019.
- [10] Shiyi Jiang, Xin Gai, Miriam M Treggiari, William W Stead, Yuankang Zhao, C David Page, and Anru R Zhang. Soft phenotyping for sepsis via ehr time-aware soft clustering. Journal of Biomedical Informatics, 152:104615, 2024.

References

[11] Lucas Lacasa, Vincenzo Nicosia, and Vito Latora. Network structure of multivariate

time series. Scientific reports, 5(1):15508, 2015.

[12] Nikos Pitsianis, Alexandros-Stavros Iliopoulos, Dimitris Floros, and Xiaobai Sun.

Spaceland embedding of sparse stochastic graphs. In 2019 IEEE High Performance

Extreme Computing Conference (HPEC), pages 1–8. IEEE, 2019.

[13] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding.

Advances in

neural information processing systems, 15, 2002.

[14] Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint

arXiv:1705.07874, 2017.

Agenda

Jenaa Grateful for Sepsis Diagnoses from MIMIC-III

• Mutual Information Graph Construction Attention!

 Finding: Sepsis Sub-Phenotypes and Critical **Time Points**

 Sub-Phenotype Early-Warning Prediction with **Machine Learning**