Równania różniczkowe zwyczajne Laboratorium 9

Jakub Ciszewski, Wiktor Smaga

3 czerwca 2024

1 Zadanie 1

1.1 Przekształcenie równania Van der Pol'a na układ równań pierwszego rzędu

Oryginalne równanie Van der Pol'a:

$$y'' = y'(1 - y^2) - y$$

Krok 1: Wprowadzenie nowych zmiennych

Wprowadzamy zmienne:

$$y_1 = y$$

$$y_2 = y'$$

Krok 2: Wyrażenie pochodnych

Teraz możemy wyrazić pochodne y w terminach nowych zmiennych:

$$y_1' = y_2$$

$$y_2' = y''$$

Krok 3: Przekształcenie oryginalnego równania

Podstawiamy y_1 i y_2 do oryginalnego równania:

$$y_2' = y_2(1 - y_1^2) - y_1$$

Wynikowy układ równań pierwszego rzędu

Ostatecznie, równanie Van der Pol'a można zapisać jako układ dwóch równań pierwszego rzędu:

$$\begin{cases} y_1' = y_2 \\ y_2' = y_2(1 - y_1^2) - y_1 \end{cases}$$

1.2 Przekształcenie równania Blasiusa na układ równań pierwszego rzędu

Oryginalne równanie Blasiusa:

$$y''' = -yy''$$

Krok 1: Wprowadzenie nowych zmiennych

Wprowadzamy zmienne:

$$y_1 = y$$

$$y_2 = y'$$

$$y_3 = y''$$

Krok 2: Wyrażenie pochodnych

Teraz możemy wyrazić pochodne y w terminach nowych zmiennych:

$$y_1' = y_2$$

$$y_2' = y_3$$

$$y_3' = y'''$$

Krok 3: Przekształcenie oryginalnego równania

Podstawiamy y_1, y_2 i y_3 do oryginalnego równania:

$$y_3' = -y_1 y_3$$

Wynikowy układ równań pierwszego rzędu

Ostatecznie, równanie Blasiusa można zapisać jako układ trzech równań pierwszego rzędu:

$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \\ y_3' = -y_1 y_3 \end{cases}$$

1.3 Przekształcenie równań II zasady dynamiki Newtona dla problemu dwóch ciał na układ równań pierwszego rzędu

Oryginalne równania:

$$y_1'' = -\frac{GMy_1}{(y_1^2 + y_2^2)^{3/2}},$$

$$y_2'' = -\frac{GMy_2}{(y_1^2 + y_2^2)^{3/2}}.$$

Krok 1: Wprowadzenie nowych zmiennych

Wprowadzamy zmienne:

$$y_3 = y_1'$$

$$y_4 = y_2'$$

Krok 2: Wyrażenie pochodnych

Teraz możemy wyrazić pochodne y_1 i y_2 w terminach nowych zmiennych:

$$y_1' = y_3$$

$$y_2' = y_4$$

$$y_3' = y_1''$$

$$y_4' = y_2''$$

Krok 3: Przekształcenie oryginalnych równań

Podstawiamy y_1, y_2, y_3 i y_4 do oryginalnych równań:

$$y_3' = -\frac{GMy_1}{(y_1^2 + y_2^2)^{3/2}},$$

$$y_4' = -\frac{GMy_2}{(y_1^2 + y_2^2)^{3/2}}.$$

Wynikowy układ równań pierwszego rzędu

Ostatecznie, równania II zasady dynamiki Newtona dla problemu dwóch ciał można zapisać jako układ czterech równań pierwszego rzędu:

$$\begin{cases} y_1' = y_3 \\ y_2' = y_4 \\ y_3' = -\frac{GMy_1}{(y_1^2 + y_2^2)^{3/2}} \\ y_4' = -\frac{GMy_2}{(y_1^2 + y_2^2)^{3/2}} \end{cases}$$

2 Zadanie 2

Dane jest równanie różniczkowe zwyczajne

$$y' = -5y$$

z warunkiem początkowym y(0)=1. Równanie rozwiązujemy numerycznie z krokiem h=0.5.

(a) Analityczna stabilność

Definicja z wykładu

Rozwiązanie równania y' = f(y,t) jest stabilne, jeśli dla każdego $\epsilon > 0$ istnieje $\delta > 0$ takie, że jeśli $\|\hat{y}(t_0) - y(t_0)\| < \delta$, to $\|\hat{y}(t) - y(t)\| < \epsilon$ dla $t \ge t_0$.

Rozwiązanie

• Ogólne rozwiązanie równania różniczkowego y' = -5y to:

$$y(t) = y(0)e^{-5t}$$

• Dla y(0) = 1, rozwiązanie szczególne to:

$$y(t) = e^{-5t}$$

- Rozwiązanie $y(t) = e^{-5t}$ dąży do zera, gdy $t \to \infty$.
- Dla małego zaburzenia w warunku początkowym, powiedzmy $\hat{y}(0) = y(0) + \delta$, rozwiązanie zaburzone to:

$$\hat{y}(t) = (1+\delta)e^{-5t}$$

• Różnica między rozwiązaniem zaburzonym a oryginalnym rozwiązaniem to:

$$\|\hat{y}(t) - y(t)\| = |(1+\delta)e^{-5t} - e^{-5t}| = |\delta e^{-5t}|$$

- Dla dowolnego $\epsilon > 0$, możemy wybrać $\delta = \epsilon e^{5t_0}$ dla $t_0 \ge 0$, aby zapewnić $\|\hat{y}(t_0) y(t_0)\| < \delta$.
- Dla $t \ge t_0$:

$$\|\hat{y}(t) - y(t)\| = |\delta e^{-5t}| = \epsilon e^{5t_0} e^{-5t}$$

Ponieważ $t \ge t_0$, $e^{5t_0}e^{-5t} \le 1$. Stąd $\|\hat{y}(t) - y(t)\| \le \epsilon$.

• Zatem rowiązania tego równania są stabilne

(b) Numeryczna stabilność

Definicja z wykładu

Aby metoda Eulera była numerycznie stabilna, musi być spełniony warunek:

$$|1+h\lambda|<1$$

Rozwiązanie

 \bullet Metoda Eulera dla równania różniczkowego $y'=\lambda y$ jest opisana wzorem:

$$y_{k+1} = y_k + h\lambda y_k$$

Dla naszego równania $\lambda = -5$.

 \bullet Sprawdźmy, czy warunek stabilności jest spełniony dla kroku h=0.5:

$$|1 + h\lambda| = |1 + 0.5 \cdot (-5)| = |1 - 2.5| = |-1.5| = 1.5$$

• Widzimy, że:

$$|1.5| \nleq 1$$

• Zatem, metoda Eulera **nie jest stabilna numerycznie** dla tego równania różniczkowego przy kroku h=0.5.

(c) Obliczenie numeryczne z użyciem metody Eulera

Dla jednego kroku, gdzie $\lambda = -5$:

$$y_1 = y_0 + h\lambda y_0 = 1 + 0.5 \cdot (-5) \cdot 1 = 1 - 2.5 = -1.5$$

Zatem, wartość przybliżona metodą Eulera dla t=0.5 wynosi:

$$y = -1.5$$

(d) Numeryczna stabilność

Definicja z wykładu

Aby niejawna metoda Eulera była numerycznie stabilna, musi być spełniony warunek:

 $\left| \frac{1}{1 - h\lambda} \right| < 1$

Rozwiązanie

 \bullet Sprawdźmy, czy warunek stabilności jest spełniony dla kroku h=0.5:

$$\left| \frac{1}{1 - h\lambda} \right| = \left| \frac{1}{1 - 0.5 \cdot (-5)} \right| = \left| \frac{1}{1 + 2.5} \right| = \left| \frac{1}{3.5} \right| = \frac{1}{3.5} \approx 0.2857$$

• Widzimy, że:

 \bullet Zatem, niejawna metoda Eulera **jest stabilna numerycznie** dla tego równania różniczkowego przy kroku h=0.5.

(e) Niejawna metoda Eulera

Dla równania y' = -5y z warunkiem początkowym y(0) = 1 i krokiem h = 0.5, niejawna metoda Eulera jest opisana wzorem:

$$y_{k+1} = y_k + h\lambda y_{k+1}$$

Możemy to przekształcić:

$$y_{k+1}(1-h\lambda) = y_k \implies y_{k+1} = \frac{y_k}{1-h\lambda}$$

Dla jednego kroku, gdzie $\lambda = -5$:

$$y_1 = \frac{y_0}{1 - h\lambda} = \frac{1}{1 - 0.5 \cdot (-5)} = \frac{1}{1 + 2.5} = \frac{1}{3.5} \approx 0.2857$$

Zatem, wartość przybliżona niejawnej metodą Eulera dla t=0.5 wynosi:

$$y = 0.2857$$

Zadanie 3 3

Rozwiązanie układu równań różniczkowych Kermack'a-McKendrick'a:

$$S' = -\frac{\beta IS}{N} \tag{1}$$

$$I' = \frac{\beta IS}{N} - \gamma I \tag{2}$$

$$R' = \gamma I \tag{3}$$

gdzie:

 ${\cal S}$ - liczba osób zdrowych

 ${\cal I}$ - liczba osób zainfekowanych

R - liczba osób ozdrowiałych

$$\beta = 1$$

$$\gamma = \frac{1}{7}$$

 $\gamma = \frac{1}{7}$ S(0) = 762

I(0) = 1

R(0) = 0

N = S(0) + I(0) + R(0) = 763

Całkując od t = 0 do t = 14 z krokiem h = 0.2. Przy pomocy:

• jawnej metody Eulera

$$y_{k+1} = y_k + h_k f(t_k, y_k) (4)$$

• niejawnej metody Eulera

$$y_{k+1} = y_k + h_k f(t_{k+1}, y_{k+1})$$
(5)

• metody Rungego-Kutty czwartego rzędu

$$y_{k+1} = y_k + \frac{h_k}{6}(k_1 + 2k_2 + 2k_3 + k_4) \tag{6}$$

gdzie:

$$k_1 = f(t_k, y_k)$$

$$k_2 = f(t_k + \frac{h_k}{2}, y_k + h_k \frac{k_1}{2})$$

$$k_3 = f(t_k + \frac{h_k}{2}, y_k + h_k \frac{k_2}{2})$$

$$k_4 = f(t_k + h_k, y_k + h_k k_3)$$

3.1 Jawna metoda Eulera

Wykres 1: SIR - metoda jawna Eulera

3.2 Niejawna metoda Eulera

Wykres 2: SIR - niejawna metoda Eulera

3.3 Metoda Rungego-Kutty czwartego rzędu

Wykres 3: SIR - metoda Rungego-Kutty czwartego rzędu

3.4 Zachowanie populacji

t	Ν		
0	763		
1	763		
2	763		
3	763		
4	763		
5	763		
6	763		
7	763		
8	763		
9	763		
10	763		
11	763		
12	763		
13	763		
14	763		

Tabela 1: Populacja dla jawnej metody Eulera

t	N
0	763
1	763
2	763
3	763
4	763
5	763
6	763
7	763
8	763
9	763
10	763
11	763
12	763
13	763
14	763

Tabela 2: Populacja dla niejawnej metody Eulera

t	N		
0	763		
1	763		
2	763		
3	763		
4	763		
5	763		
6	763		
7	763		
8	763		
9	763		
10	763		
11	763		
12	763		
13	763		
14	763		

Tabela 3: Populacja dla metody Rungego-Kutty

Estymacja β i γ 3.5

Mając prawdziwe dane:

t	I_0		
0	1		
1	3		
2	6		
3	25		
4	73		
5	222		
6	294		
7	258		
8	237		
9	191		
10	125		
11	69		
12	27		
13	11		
14	4		

Tabela 4: Zestawienie liczby zakażonych w zależności od dnia epidemii

Przeprowadzono estymacje prawdziwych współczynników $\theta = [\beta, \gamma]$ stosując metode Rungego-Kutty. W tym celu wykonano minimalizacje funkcji kosztów:

• RSS - Residual Sum of Squares

$$L(\theta) = \sum_{i=0}^{T} (I_i - \hat{I}_i)^2$$

• NLL - Negative Log Likelihood

$$L(\theta) = -\sum_{i=0}^{T} I_i \log \hat{I}_i + \sum_{i=0}^{T} \hat{I}_i$$

Z racji na nieznajomość gradientu $\nabla_{\theta} L(\theta)$ wykorzystano metode Neldera-Meada. Wyniki:

 $\beta_{RSS} = 6.5371637387741455$

 $\gamma_{RSS} = 1.3316471395682492$

 $\begin{array}{l} \gamma_{RSS} = 1.3510471393082492 \\ R_{0RSS} = \frac{\beta_{RSS}}{\gamma_{RSS}} = 4.909081050475312 \; \beta_{NLL} = 1 \\ \gamma_{NLL} = 0.14285714285714285 \approx \frac{1}{7} \\ R_{0NLL} = \frac{\beta_{NLL}}{\gamma_{NLL}} = 7 \end{array}$

3.6 Porównanie metod

Wykres 4: Porównanie metod względem prawdziwych wartości

	RSS	NLL
Jawna metoda Eulera	766515	-4690
Niejawna metoda Eulera	629069	-5045
Metoda Rungego-Kutty	470011	-5336

Tabela 5: Zestawienie wskaźników

4 Wnioski

- Wszystkie metody zachowują niezmiennik
- Najdokładniejszą metodą spośród omawianych jest metoda Rungego-Kutty czwartego rzędu.