UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT1110 — Kalkulus og lineær algebra

Eksamensdag: Onsdag 1. juni 2011

Tid for eksamen: 9.00-13.00

Oppgavesettet er på 3 sider.

Vedlegg: Formelsamling

Tillatte hjelpemidler: Godkjent kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Hver deloppgave (1a, 1b, 2a, etc.) teller like mye. Du må begrunne alle svar, og vise nok mellomregninger til at man lett kan følge argumentene dine.

Oppgave 1

La $f: \mathbb{R}^2 \to \mathbb{R}$ være gitt ved

$$f(x,y) = 2x^2 - x^4 + y^2.$$

1a

Beregn gradienten $\nabla f(x,y)$ og finn de stasjonære punktene til f.

1b

Beregn Hesse-matrisen Hf(x,y) og avgjør hvilke av de stasjonære punktene som er lokale minimumspunkter, lokale maksimumspunkter eller sadelpunkter.

Oppgave 2

La 0 < a < b.

2a

Beregn dobbeltintegralet

$$\iint_{A} 2\sqrt{b^2 - x^2 - y^2} \, dx dy$$

$$der A = \{(x, y) \in \mathbb{R}^2 \mid a^2 \le x^2 + y^2 \le b^2\}.$$

(Fortsettes på side 2.)

2b

En kule med radius b er plassert med sentrum i (0,0,0). Med et bor dreies det ut et hull tvers gjennom kulen, slik at alle punkter i avstand < a fra z-aksen fjernes. Hva er volumet til legemet som står igjen, når hullet har høyde $2\sqrt{b^2 - a^2} = 6$ cm?

Oppgave 3

$$\operatorname{La} A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

3a

Finn egenverdiene $\lambda_1 < \lambda_2 < \lambda_3$ til A. Hint: $\lambda_2 = 2$.

3b

Finn en invertibel matrise M og en diagonalmatrise D slik at AM = MD.

3c

La $\{\vec{r}_n\}_{n=0}^{\infty}$ være en følge vektorer i \mathbb{R}^3 gitt ved $\vec{r}_0 = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$ og $\vec{r}_{n+1} = A\vec{r}_n$ for alle $n \geq 0$. Finn en lukket formel for \vec{r}_n .

3d

Vektorene

$$\vec{x}_n = \frac{1}{(2+\sqrt{2})^n} \vec{r}_n$$

nærmer seg en grense i \mathbb{R}^3 når $n \to \infty$. Finn denne grensen.

Oppgave 4

La $W \subset \mathbb{R}^2$ være mengden av par (x,y) med x>0 og y>0. La $\vec{F}\colon W\to \mathbb{R}^2$ være gitt ved

$$\vec{F}(x,y) = \begin{bmatrix} y \ln(x) \\ x \ln(y) \end{bmatrix}$$
.

4a

Beregn Jacobi-matrisen $\vec{F}'(x,y)$.

(Fortsettes på side 3.)

4b

La $\vec{p}=(x,y)\in W$ og $\vec{q}=\vec{F}(\vec{p})$. Hvilken betingelse på $\vec{F}'(\vec{p})$ er, i følge det omvendte funksjonsteoremet for \vec{F} , tilstrekkelig for at det skal finnes åpne delmengder $U\subset W$ og $V\subset \mathbb{R}^2$, med $\vec{p}\in U$ og $\vec{q}\in V$, slik at restriksjonen $\vec{F}\colon U\to V$ har en omvendt funksjon $\vec{G}\colon V\to U$?

4c

Vis at denne betingelsen er oppfylt for $\vec{p}=(2,1)\in W$. Finn Jacobi-matrisen $\vec{G}'(\vec{q})=\vec{G}'(\ln(2),0)$ til den omvendte funksjonen i $\vec{q}=(\ln(2),0)$.

SLUTT