Load Dataset Analysis

We will perform data analysis and will explore the Loan Dataset that w downloaded from kaggle.com

In [4]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Read and Load CSV Dataset

In [33]: df = pd.read_csv("loan_data_set.csv")
df

Out[33]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Pro
	0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0	
	1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	
	4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	
	•••												
	609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	
	610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	
	611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	1.0
	612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	
	613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	

614 rows × 13 columns

In [11]: # summary of data
 df.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

Visualize Data

<Axes: >

In [20]: df['LoanAmount'].hist(bins=50) #there are some extreme values

Out[20]:

Out[11]:

In [21]: df['ApplicantIncome'].hist(bins=50) #there are some extreme values

<Axes: > Out[21]:


```
In [30]: # checking credit hsitory
fig = plt.figure(figsize=(8,4))
ax1 = fig.add_subplot(121)
ax1.set_xlabel('Credit History')
ax1.set_ylabel('Count Of Applicants')
ax1.set_title("Applicants by credit history")

df['Credit_History'][:10].plot(kind="bar")
```

Out[30]: <Axes: title={'center': 'Applicants by credit history'}, xlabel='Credit History', ylabel='Count Of Applicants'>

Data wrangling/cleaning

In [65]:

df['Dependents'].fillna(df['Dependents'].mode()[0], inplace=True)

```
df.isnull().sum()
In [51]:
          Loan_ID
                                0
Out[51]:
          Gender
                               13
         Married
                                3
                               15
         Dependents
          Education
                                0
          Self_Employed
                               32
         ApplicantIncome
                                0
          CoapplicantIncome
                                0
          LoanAmount
                               22
                               14
         Loan_Amount_Term
                               50
         Credit_History
          Property_Area
                                0
         Loan_Status
                                0
          dtype: int64
```

```
df['Gender'].fillna(df['Gender'].mode()[0], inplace=True)
In [72]:
          df['Married'].fillna(df['Married'].mode()[0], inplace=True)
In [73]:
          df['LoanAmount'].fillna(df['LoanAmount'].mean(), inplace=True)
In [75]:
          df['Loan Amount Term'].fillna(df['Loan Amount Term'].mean(), inplace=True)
In [76]:
          df['Credit History'].fillna(df['Credit History'].mean(), inplace=True)
In [78]:
In [79]:
          df.isnull().sum()
                               0
         Loan ID
Out[79]:
          Gender
                               0
          Married
                               0
          Dependents
                               0
          Education
                               0
         Self_Employed
          ApplicantIncome
                               0
          CoapplicantIncome
                               0
          LoanAmount
                               0
          Loan_Amount_Term
                               0
          Credit_History
                               0
          Property_Area
                               0
          Loan Status
                               0
          dtype: int64
          df.dtypes
In [80]:
          Loan ID
                                object
Out[80]:
          Gender
                                object
                                object
          Married
                                object
          Dependents
          Education
                                object
          Self_Employed
                                object
          ApplicantIncome
                                 int64
          CoapplicantIncome
                               float64
          LoanAmount
                               float64
          Loan_Amount_Term
                               float64
          Credit_History
                               float64
          Property_Area
                                object
          Loan Status
                                object
          dtype: object
```

Model Building

```
from sklearn.linear model import LogisticRegression
In [82]:
           from sklearn.model selection import KFold
           from sklearn.ensemble import RandomForestClassifier
           from sklearn.tree import DecisionTreeClassifier,export graphviz
           from sklearn import metrics
In [83]:
Out[83]:
                 Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Pro
             0 LP001002
                                                        Graduate
                                                                                                                      146.412162
                                                                                                                                               360.0
                            Male
                                      No
                                                                            No
                                                                                            5849
                                                                                                                0.0
                                                                                                                                                               1.0
             1 LP001003
                                                        Graduate
                                                                                            4583
                                                                                                             1508.0
                                                                                                                       128.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
                            Male
                                      Yes
                                                                            No
             2 LP001005
                                                                                            3000
                                                                                                                        66.000000
                                                                                                                                                               1.0
                                                        Graduate
                                                                                                                0.0
                                                                                                                                               360.0
                            Male
                                      Yes
                                                                            Yes
                                                             Not
             3 LP001006
                            Male
                                      Yes
                                                                            No
                                                                                            2583
                                                                                                             2358.0
                                                                                                                       120.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
                                                        Graduate
             4 LP001008
                            Male
                                      No
                                                        Graduate
                                                                            No
                                                                                            6000
                                                                                                                0.0
                                                                                                                       141.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
               LP002978
                          Female
                                      No
                                                        Graduate
                                                                            No
                                                                                            2900
                                                                                                                0.0
                                                                                                                       71.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
           610 LP002979
                                                        Graduate
                                                                                                                        40.000000
                                                                                                                                               180.0
                                                                                                                                                               1.0
                            Male
                                      Yes
                                                                            No
                                                                                            4106
                                                                                                                0.0
           611 LP002983
                                                        Graduate
                                                                            No
                                                                                            8072
                                                                                                              240.0
                                                                                                                      253.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
                            Male
                                      Yes
           612 LP002984
                            Male
                                      Yes
                                                        Graduate
                                                                            No
                                                                                            7583
                                                                                                                0.0
                                                                                                                       187.000000
                                                                                                                                               360.0
                                                                                                                                                               1.0
                                                                                                                                               360.0
           613 LP002990
                          Female
                                                        Graduate
                                                                            Yes
                                                                                            4583
                                                                                                                0.0
                                                                                                                      133.000000
                                                                                                                                                               0.0
                                      No
```

Extract Independent and Dependent

614 rows × 13 columns

```
In [92]: # selects all rows (:) and the columns specified in the list ['LoanAmount', 'Credit_History'].
# It returns a new DataFrame with only these selected columns.

# Independent Variables
X = df.loc[:, ['LoanAmount', 'Credit_History']].values
```



```
# Dependent Variables
y = df.loc[:, ['Loan_Status']].values
```

Split Data into Training and Testing

```
In [93]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
```

Filling Data into Logistic Regression

```
In [97]: classifier = LogisticRegression(random_state=0) classifier.fit(X_train, y_train)

D:\apps\anaconda\files\lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d ray was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)

Out[97]: LogisticRegression
LogisticRegression(random_state=\five \five \f
```

Predicting the Result

```
# predicting the test set results
In [100...
 y pred = classifier.predict(X_test)
 y pred
 Out[100]:
  dtype=object)
```

Performance of the Model

```
from sklearn.metrics import confusion matrix
In [103...
          cm = confusion matrix(y test, y pred)
          cm
          # the output is as below
           Predicted
                         No | Yes | Total
           |----|
           Actual
                        19
                                24
                                        43
                               109
                         2
                                       111
           Total
                        21
                               133
                                       154
           along the diagonal (19, 109) are the correct values. and these should be greaer
           than the other diagonal, that will determine how good model accuracy is
           Accuracy:
           (True Positive + True Negative)/total = (109+19)/154 = 0.83 is the accuracy
           Precision:
           True Positive/total predicted Yes = 109/133 = 0.81 is precision
          array([[ 19, 24],
Out[103]:
                 [ 2, 109]], dtype=int64)
          Calculate Accuracy using scikit
          from sklearn.metrics import accuracy_score
In [111...
          accuracy_score(y_test, y_pred)
```

```
0.8311688311688312
Out[111]:
```

In [118... y_test

```
['Y'],
                      ['N'],
                      ['Y'],
                      ['N'],
                      ['Y'],
                      ['Y'],
                      ['N'],
                      ['Y'],
                      ['Y'],
                      ['Y'],
['Y'],
['Y'],
['Y'],
                      ['N'],
                      ['N'],
                      ['Y'],
                      ['Y'],
                      ['N'],
                      ['N'],
                      ['Y'],
                      ['Y'],
['Y'],
                      ['Y'],
['Y'],
['Y'],
['Y'],
                      ['N'],
                      ['N'],
                      ['Y'],
                      ['Y'],
                      ['Y'],
                      ['Y'],
                      ['Y'],
                      ['N'],
                      ['Y'],
                      ['Y'],
['Y'],
['Y'],
['Y'],
                      ['Y'],
['Y'],
                      ['Y'],
['Y'],
                      ['Y'],
                      ['Y'],
```

*

```
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['N'],
['Y'],
['N'],
['Y'],
['N'],
['N'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['N'],
['N'],
['Y'],
['N'],
```

```
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['N'],
['N'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
['Y'],
['N'],
['N'],
['Y'],
['Y'],
['N'],
['Y'],
['Y'],
['Y'],
['N'],
['N'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['Y'],
['N'],
['Y'],
```

```
['Y'],
   ['N'],
   ['Y'],
   ['Y'],
   ['N'],
   ['N'],
   ['Y'],
   ['Y'],
   ['Y'],
   ['N']], dtype=object)
In [119... y_pred
 Out[119]:
   dtype=object)
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```