Студент: Александр Никулин Дата: 14 декабря 2020 г.

Задача 1. Малая теорема Ферма говорит, что $a^{p-1} \equiv 1 \mod p$ (p простое).

Обозначим $ord(a) = \min x > 0$: $a^x \equiv 1 \mod p$. g: ord(g) = p-1 называют первообразным корнем Даны простое p и z (0 < z < p).

- (a) Подумайте, каким может быть (z)?
- ${
 m (b)}\ \ \it 3a\ c$ колько максимально быстро вы можете проверить, является ли $z\ n$ ервообразным корнем?

Решение.

- (a) (z) можно оценить сверху как p-1, т.к. по теореме Ферма определение будет выполнено, однако может найтись и меньший х. Докажем, что если такой найдется, то он будет одним из делителей p-1. От противного, пусть $k=\operatorname{ord}(z)$ не является делителем, тогда можно записать $p-1=k*q+r, 0\leq r< k$. Тогда $z^{p-1}=z^kqz^r=1^qz^r=z^r$. Получили, что $1\equiv z^{p-1}=z^r$, но r< k, а значит мы нашли меньший такой подходящий х, чем k противоречие. Отсюда следует, что r=0, то есть $\operatorname{ord}(z)|p-1$.
- (b) Можно перебрать все делители числа p-1, тогда за $\mathcal{O}(\sqrt{p-1})$ т.к. нужно факторизовать. Можно быстрее, если доказать, что достаточно проверить только делители вида $\frac{p-1}{p_i}$, где p_i простой делитель. По традиции, есть поистине чудесное доказательство этого факта, но сюда оно уже не влезет, да и количество операций тогда оценить сложнее.

Задача 2.

Решение.

Задача 3. Обозначим i-е по возрастанию простое число, как p_i . Назовём число b-гладким, если все его простые делители не превосходят p_b . Дано $n \leq 10^6$. Для каждого $b \leq n$ найдите количество b-гладких чисел от 1 до n.

Решение. Мы уже умеем делать Решето Эратосфена за $\mathcal{O}(n \log \log n)$, попробуем применить его здесь. Минимальную b-гладкость можно определить по максимальному простому числу в разложении числа на простые множители. Например, число 6=2*3 является 2-гладким, 3-гладким и т.д. (по определению), но не 1-гладким. Видно, что в количество n-гладких чисел вложено количество всех меньших. Поэтому, для каждого b, надо найти количество чисел в разложении которых на простые числа в будет максимальным, а также числа в разложении которых все простые меньше b. То есть числа вида $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$, где $p_i \leq b$, а произведение $\leq n$.

Во время прохода алгоритма Эратосфена будем для каждого числа хранить максимальное простое число, для которого это число было вычеркнуто. В конце у нас будет массив числе длины n, тогда достаточно для каждого уникального посчитать частоту, после чего посчитать префиксные суммы (сколько чисел у которых максимальное 2, + сколько чисел у которых максимальное 3 и т.д.). Тогда за два прохода посчитаем, что нужно.

Асимптотика: $\mathcal{O}(2n + n \log \log n) = \mathcal{O}(n \log \log n)$

Задача 4. Известны открытый ключ (n,3) и закрытый ключ (n,d) системы RSA. Известно, что n- произведение двух разных простых. Разложите n на множители. $\mathcal{O}(\operatorname{poly}(\log n))$.

Решение. Нужно найти p и q. Мы знаем (из системы RSA), что $3d \equiv 1 \mod \phi(n)$, то есть по мультипликативности функции Эйлера $3d \equiv 1 \mod (p-1)(q-1) \Rightarrow 3d = k(p-1)(q-1)+1$, откуда $k \in \{1,2\}$ т.к d < (p-1)(q-1). Тогда, по обратной теореме Виета (если выразить из предыдущего p+q, а pq=n) p и q находятся из квадратных уравнений: $x^2 - (n-3d+2)x + n = 0$ при k=1; $x^2 + (\frac{2n-3d+3}{2})x + n = 0$ при k=2. Так как мы договорились работать с короткими числами, то это просто фиксированное количество операций, поэтому асимптотика $\mathcal{O}(1)$.