

Placa de prueba para block de energía

Autor:

Marcos Raul Dominguez Shocron

Director:

Nombre del Director (pertenencia)

Codirector:

John Doe (FIUBA)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar.	٠	 •	•	•	•	•	•	 . 5
2. Identificación y análisis de los interesados								 . 6
3. Propósito del proyecto								 . 6
4. Alcance del proyecto								 . 6
5. Supuestos del proyecto								 . 7
6. Requerimientos								 . 7
7. Historias de usuarios (<i>Product backlog</i>)								 . 8
8. Entregables principales del proyecto				•				 . 10
9. Desglose del trabajo en tareas								 . 10
10. Diagrama de Activity On Node								 . 11
11. Diagrama de Gantt								 . 11
12. Presupuesto detallado del proyecto								 . 14
13. Gestión de riesgos								 . 14
14. Gestión de la calidad				•				 . 15
15. Procesos de cierre		 _	_			_		 16

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha		
0	Creación del documento	24 de junio de 2021		
1	Se completa hasta el punto 9 inclusive	13 de julio 2021		

Acta de constitución del proyecto

Buenos Aires, 24 de junio de 2021

Por medio de la presente se acuerda con el Ing. Marcos Raul Dominguez Shocron que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Placa de prueba para block de energía", consistirá esencialmente en una placa de prueba para validar los desarrollos de la placa de control del block de energía, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$60000, con fecha de inicio 24 de junio de 2021 y fecha de presentación pública 15 de mayo de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Gillermo Gebhart Voltu Motors

Nombre del Director Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Un block de energía es un dispositivo de almacenamiento y gestión de energía que se crea como una alternativa a los grupos electrógenos. Estos dispositivos almacenan energía en baterías con autonomías superiores a los 7 [KWh] y la suministran cuando es necesario. Típicamente entregan la tensión de red cuando se corta el suministro principal de energía eléctrica.

Para cumplir su función este dispositivo mide distintas señales del entorno y utiliza estos datos para tomar decisiones. Actualmente es muy complejo generar las condiciones de entorno para verificar que el equipo desarrollado reacciona según lo esperado. El sistema embebido a desarrollar debe generar las posibles señales, que el bloque de energía sensa, para corroborar que el equipo responde adecuadamente ante las posibles situaciones del entorno.

El sistema actual reporta su estado general, las fallas y el estado de sus periféricos. Estos reportes se pueden utilizar para evaluar el comportamiento del equipo. Se espera que generando las señales que el equipo mide para tomar decisiones se pueda evaluar su respuesta.

En la Figura 1 se puede observar cómo se integra la propuesta de sistema embebido con el block de energía. Adicionalmente se pueden observar las señales que se pretenden generar. Las señales enlistadas permiten tomar la mayoría de las decisiones al sistema de control.

El sistema de control también toma decisiones en función la información que recibe del sistema de gestión de batería (en inglés, Battery Management System, BMS). El proyecto actual no simulará la comunicación del BMS. Esto impacta sobre los ensayos y la forma de utilizar la placa de prueba. Para que el BMS no interfiera en las pruebas con la placa a desarrollar, se deberá contar con una batería en buenas condiciones.

Un dispositivo de estas características permite a los desarrolladores validar un cambio en el firmware, o una nueva funcionalidad, con sencillez y velocidad.

Figura 1. Diagrama en bloques del sistema.

Como se introdujo anteriormente, se generarán una serie de señales que permitan simular las condiciones de entorno que mide la placa de control. Este desarrollo permitira entonces verificar si la placa de control responde adecuadamente a las reglas establecidas.

Como se representa en la Figura 1, se generarán diez señales para realizar las pruebas. Las señales de tensión son efectivamente tensiones no escaladas, por lo que tienen valores de $220~\rm V$ en alterna o alrededor de $400~\rm V$ continua.

Las señales de corrientes son medidas por un transductor que convierte el valor medido en tensión, por lo que el valor de señal a inyectar a la placa es una tensión en el rango de los 0 a 5 V. Este rango simula una corriente de -50 a 50 A.

Finalmente las temperaturas se miden con NTC, por lo que las señales 8, 9 y 10 deben ser en Ohms. Esto se realizará con el uso de potenciómetros digitales que cambian su valor para simular los cambios de temperatura.

La placa de prueba será comandada por medio de una interfaz por computadora. En la primera versión el usuario podrá establecer las señales para generar y evaluar el comportamiento del equipo.

Para lograr las señales de tensión el equipo deberá estar conectado a una alimentación de red, a una batería igual a la del equipo cargada y alimentada por el USB de comunicación. Este proyecto se vincula con el proceso de desarrollo del block de energía de la empresa Voltu y será utilizado para testear los avances de desarrollo del equipo. Se espera también que permita realizar el control de los equipos en la etapa de producción.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Gillermo Gebhart	Voltu Motors	CEO
Impulsor	Gillermo Gebhart	Voltu Motors	CEO
Responsable	Marcos Raul Dominguez	FIUBA	Alumno
	Shocron		
Orientador	Nombre del Director	pertenencia	Director Trabajo final
Usuario final	Carlos Zalayeta	Voltu Motors	Desarrollador

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un dispositivo que permita evaluar, de forma parcial, el comportamiento de la placa de control del Block de Energía durante su desarrollo.

4. Alcance del proyecto

A se detalla el alcance del proyecto y sus limitaciones.

Alcances

- Se realizará un prototipo que permita generar las 10 señales listadas en la Figura 1.
- Se desarrollará un prototipo que permita configurar los valores de las señales en tiempo real.

Limitaciones

- No se simulará la comunicación con el BMS.
- No se analizará el comportamiento del equipo por software.
- Se desarrollará un prototipo sin embalaje y sin chasis.
- Solo dispondrá la electrónica y conectores necesarios.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de al menos una Placa de Control funcional durante todo el desarrollo.
- Se dispondrá de al menos una Placa de Comunicación funcional durante todo el desarrollo.
- Se dispondrá de al menos una batería con su BMS completo y funcional durante todo el desarrollo.
- Se dispondrá de señales estables de tensión alterna para el uso del sistema.
- Se dispondrá de acceso a los interesados de forma regular para discutir los avances.

6. Requerimientos

1. Interfases

- 1.1. Comunicación serie con PC
- 1.2. Botón de encendido
- 1.3. Actuadores de tensión de potencia
- 1.4. Actuadores de baja tensión
- 1.5. Actuadores resistivos
- 1.6. Led identificador de señales (on/off)

2. Requerimientos funcionales

2.1. Emulación de altas tensiones continuas

- 1) El sistema debe controlar salidas de tensión que emulen las tensiones de continua elevadas que mide el block de energía.
- 2) El sistema debe permitir que el usuario configure el valor de tensión continua elevada a emular.
- 3) El sistema debe reportar error si no se configura un valor válido de tensión.
- 4) El sistema debe permitir configurar las tensiones elevadas continuas Vbatt, Vbus y Vrelé de la Figura 1 de forma independiente.

- 5) El sistema emulará tensiones de bus, batería y relé en un rango comprendido entre 0 V a 450 V.
- 2.2. Simulación de corriente con bajas tensiones de continua
 - 1) El sistema debe controlar salidas de tensión que simule la medición de corriente de los sensores utilizados por el block de energía.
 - 2) El sistema debe permitir que el usuario configure el valor de corriente a simular.
 - 3) El sistema debe reportar error si no se configura un valor válido de corriente.
 - 4) El sistema debe permitir configurar las corrientes Igrid e Ibatt de la Figura 1 de forma independiente.
 - 5) El sistema simulará corrientes desde 0 A a 50 A.

2.3. Emulación de tensiones alternas

- 1) El sistema debe controlar salidas de tensión que emulen las tensiones alternas que mide el block de energía.
- 2) El sistema debe permitir que el usuario configure el valor de tensión a emular.
- 3) El sistema debe reportar error si no se configura un valor válido de tensión alterna.
- 4) El sistema debe permitir configurar las tensiones alternas Vgrid y Vinverter de la Figura 1 de forma independiente.
- 5) El sistema emulará tensiones alternas (inverter y grid) en un rango comprendido entre 0 y 240 Vrms.

2.4. Simulación de temperaturas

- 1) El sistema debe controlar resistencias variables que emulen la variación de resistencia de un termistor NTC por temperatura.
- 2) El sistema debe permitir que el usuario configure el valor de temperatura a emular.
- 3) El sistema debe reportar error si no se configura un valor válido de temperatura.
- 4) El sistema debe permitir configurar las temperaturas coil, igbt y ambiente de la Figura 1 de forma independiente.
- 5) El sistema simulará las temperaturas en un rango comprendido entre 5 a 150 °C.

3. Requerimientos de rendimiento

 $3.1. \ El sistema debe actuar en un tiempo menor a <math display="inline">150 \ \mathrm{ms}$ luego de recibir un comando del usuario.

7. Historias de usuarios (*Product backlog*)

En esta sección se deben incluyen las historias de usuarios y su ponderación (history points).

"Como desarrollador quiero poder suministrar distintos valores de tension de linea al control para validar la generación."

Dificultad: alta (5) - Implica muchas horas de diseño de hardware y software.

Complejidad: alta (5) - Realizar un diseño seguro cuando se manejan valores de tensión elevados requiere de un cuidando superior.

Riesgo: alta (5) - Durante los ensayos de esta funcionalidad es probable que se quemen componentes y existe el riesgo de electrochoque.

story points: 13 (5 + 5 + 3 = 15 - 13 es el valor mas cercano en Fibonacci)

"Como desarrollador quiero poder suministrar distintos valores de tension de a la medición de batería al control para validar la entrada y salida del modo carga."

Dificultad: alta (5) - Implica muchas horas de diseño de hardware y software.

Complejidad: alta (5) - Realizar un diseño seguro cuando se manejan valores de tensión elevados requiere de un cuidando superior.

Riesgo: alta (5) - Durante los ensayos de esta funcionalidad es probable que se quemen componentes y existe el riesgo de electrochoque.

story points: 13 (5 + 5 + 3 = 15 - 13 es el valor mas cercano en Fibonacci)

"Como desarrollador quiero poder variar los valores de resistencia medidos por la placa de control para validar el encendido/apagado de los circuitos de refrigeración.

Dificultad: alta (5) - Implica muchas horas de diseño de hardware y software.

Complejidad: baja (1) - El manejo de potenciómetros digitales para variar resistencia no supone un nivel elevado de complejidad.

Riesgo: bajo (1) - La variación de potenciómetros digitales alimentados a 5 V no suponen un riesgo elevado.

story points: 8 (5 + 1 + 1 = 7 - 8 es el valor mas cercano en Fibonacci)

"Como desarrollador quiero poder simular las corrientes medidas por la placa de control para validar las protecciones del sistema de control.

Dificultad: alta (5) - Implica muchas horas de diseño de hardware y software.

Complejidad: baja (1) - El manejo de tensiones analógicas bajas para simular salidas de sensores de corrientes no requiere de un know-how muy específico y difícil de conseguir.

Riesgo: bajo (1) - El uso de bajas tensiones no produce grandes riesgos en su manipulación.

story points: 8(5+1+1=7-8) es el valor mas cercano en Fibonacci)

"Como desarrollador quiero poder enviar comandos por una terminal desde la PC.

Dificultad: alta (5) - Implica muchas horas de diseño de hardware y software.

Complejidad: media (3) - El diseño e implementación del protocolo de comunicación y la interfaz tienen una complejidad elevada.

Riesgo: bajo (1) - No existen grandes riesgos en el desarrollo de una interfaz de comunicación con la placa de prueba.

story points: 8(5+3+1=9-8) es el valor mas cercano en Fibonacci)

8. Entregables principales del proyecto

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- Prototipo

9. Desglose del trabajo en tareas

1. Hardware

- 1.1. Decidir micro a utilizar (40 hs).
- 1.2. Decidir reguladores de tension alterna (20 hs).
- 1.3. Diseñar salidas analógicas de baja tensión (20 hs).
- 1.4. Elegir método para simular NTC (20 hs)
- 1.5. Diseñar integralmente el hardware (40 hs).
- 1.6. Solicitar el primer prototipo (5 hs).

2. Firmware

- 2.1. Crear repositorio (0.5 hs).
- 2.2. Diseñar las maquinas de estado (40 hs).
- 2.3. Implementar el protocolo de comunicación con PC (40 hs).
- 2.4. Implementar simulación de señales de corriente (40 hs).
- 2.5. Implementar emulación de señales de tensón alterna (40 hs).
- 2.6. Implementar emulación de señales de tensión continua (40 hs).
- 2.7. Implementar simulación de señales de temperatura (40 hs).

3. Validación

- 3.1. Validar las temperaturas simuladas (5 hs).
- 3.2. Validar las corrientes simuladas (5 hs).
- 3.3. Validar las tensiones continuas simuladas (5 hs).
- 3.4. Validar las tensiones alternas simuladas (5 hs).
- 3.5. Validar el funcionamiento integral con un block de energía (20 hs).

Cantidad total de horas: 425.5 hs.

Figura 2. Diagrama en Activity on Node

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS									
Descripción	Cantidad	Valor unitario	Valor total						
SUBTOTAL									
COSTOS INDIRECTOS									
Descripción	Cantidad	Valor unitario	Valor total						
SUBTOTAL									
TOTAL									

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.