연구책임자

송 진 숙 책임연구원

한국화학연구원 의약바이오연구본부 희귀질환치료기술연구센터

타우병증 치료제 개발을 위한 Tau-ATTEC 선도물질

● 요소기술별 분류

대분류	중분류	소분류
의료기반기술	뇌/신경질환 치료제	퇴행성 뇌질환 치료제

○ 기술개요 및 개발배경

- · Autophagosome-tethering chimera(ATTEC)은 Targeted Protein Degradation (TPD) 기술의 하나로, undruggable target protein을 intracellular autophagy-lysosome system을 활용, 분해하는 기술임.
- · ATTEC은 warhead(target binder)-linker-LC3 binder로 구성됨.
- · Tau-targeting ATTEC(Tau-ATTEC)은 알츠하이머병 등의 신경퇴행성 타우병증 치료제로 개발 가능

♪ 기술내용 및 대표이미지

Tau-ATTFC 유효물질 KRM-63424 도출

Target Product Profile of Tau-ATTEC 유효물질 KRM-63424				
구분		시험항목	KRM-63424	
약효	In vitro	IC ₅₀ on 6-OHDA induced neuronal cell death in SH-SY5Y cells	active	
		IC ₅₀ on MPP induced neuronal cell death in SH-SY5Y cells	pending	
		DC ₅₀ in SH-SY5Y cells against tau / p-tau	69nM / 271nM	
		Autophagy-dependent MOA	Pending	
		Affinity (Kd) to Tau / LC3	194nM / 204nM	
	In vivo	Neuroprotection in MPTP induced PD mice	-	
		Neuroprotection in P301S Tg mice	-	
		MOA (IHC& WB_ Tau degradation in brain tissue)	confirmed	
	In vitro	Cell permeability	-	
		Microsomal stability_% remaining @ 30 min (m/h)	3/12	
		Protein binding_% binding	-	
		CYP inhibition_% @10 µM (1A2,2C9,2C19,2D6,3A4)	68/>1/7/32/93	
약물성 _		hERG_inhibition % @10 μM or IC ₅₀ (μM)	-	
		Cytotoxicity in normal cell line	-	
	in vivo	P.O. C _{max} (ng/ml) plasma / brain	2/0.2	
		P.O. AUC (ng*h/ml) plasma / brain	6 / 0.7	
		oral BA(%)	0.37	
		B/P ratio	0.014	
		Single dose acute toxicity	_	

● 기술 한계점 VS 개선점

[기존기술한계점]

· Tau의 aggregation 혹은 기능을 억제하는 다수의 임상 연구 진행중이지만, 아직까지 승인된 약물은 없음.

[개발기술개선점]

- · Tau-ATTEC은 Tau aggregation 및 Tau/p-Tau degradation 효과를 동시에 갖고 있음.
- · Tau-ATTEC은 BBB를 통과하며, in vivo에서도 Tau/p Tau degradation 효과를 나타냄.
- · Tau-ATTEC 개발 가능성이 매우 높음

● 관련시장동향

· 알츠하이머 치료제 시장규모는 2023년 51억 8천만달러로 추산되며, 2024년 56억 달러에서 2032년 105억 2천만 달러로 성장할 것으로 예상됨 (WISEGUY REPORTS)

▶ Business Idea / 응용·적용분야

- · 알츠하이머 치료제, DAC(degrader-antibody conjugate)의 degrader 활용 가능
- ㆍ응용분야: 뇌/신경질환
- ㆍ적용제품: 퇴행성 뇌질환 치료제

● 기술성숙도

Lab-scale 성능 평가 단계 : 실용화를 위한 핵심기술요소 확보

IP Portfolio

· 국내 출원 예정

▶ 기술이전 문의처 한국화학연구원 기술사업화센터

이난영 책임연구원 & 042-860-7940 ☑ nylee@krict.re.kr 심형형 권민수 선임연구원 & 042-860-7337 ☑ mskwon@krict.re.kr

심형훈 선임연구원 042-860-7078 □ hhsim@krict.re.kr