

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report Template Version: V03

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website:

Report Template Revision Date: Mar.1st, 2017

FCC Test Report

CQASZ20180700001E-01 Report No.:

Weccan Industrial Limited Applicant:

Address of Applicant: Rm209, 2/F, Building W1-A, No.34 Gaoxin South 4th Street, Hi-Tech Industrial

Park, Nanshan District, Shenzhen City, China

DONGGUAN ADOREE INDUSTRIAL LIMITED Manufacturer:

Address of Manufacturer: Building 10, Fuxing Industrial Area, Fucing Road, Xiagang Village, Changan

Town, Dongguang City, Guangdong Province China.

DONGGUAN ADOREE INDUSTRIAL LIMITED Factory:

Address of Factory: Building 10, Fuxing Industrial Area, Fucing Road, Xiagang Village, Changan

Town, Dongguang City, Guangdong Province China.

Equipment Under Test (EUT):

Product: 2.4G RC DRONE WITH WIFI CAMERA

Added Model No.: Please see page 3

Test Model No.: DRW618

Brand Name: SKY RIDER, WECCAN FCC ID: Z3CDRW618F51W

Standards: 47 CFR Part 15, Subpart C Date of Test: 2018-06-28 to 2018-07-10

Date of Issue: 2018-07-10

Test Result: PASS*

Tested By:

(Aaron Ma)

Reviewed By:

Approved By:

(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: CQASZ20180700001E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20180700001E-01	Rev.01	Initial report	2018-07-10

Report No.: CQASZ20180700001E-01

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01 v04	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01 v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v04	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

All model: DRW618 SG-F51, SG-F1, SG-F2, SG-F3, SG-F4, SG-F5, SG-F6, SG-F7, SG-F8, SG-F9, SG-F10, SG-F11, SG-F12, SG-F13, SG-F14, SG-F15, SG-F16, SG-F17, SG-F18, SG-F19, SG-F20, SG-F21, SG-F22, SG-F23, SG-F24, SG-F25, SG-F26, SG-F27, SG-F28, SG-F29, SG-F30, SG-F31, SG-F32, SG-F33, SG-F34, SG-F35, SG-F36, SG-F37, SG-F38, SG-F39, SG-F40, SG-F41, SG-F42, SG-F43, SG-F44, SG-F45, SG-F46, SG-F47, SG-F48, SG-F49, SG-F50, SG-F52, SG-F53, SG-F54, SG-F55, SG-F56, SG-F57, SG-F58, SG-F59, SG-F60, SG-F61, SG-F62, SG-F63, SG-F64, SG-F65, SG-F66, SG-F67, SG-F68, SG-F69, SG-F70, SG-F71, SG-F72, SG-F73, SG-F74, SG-F75, SG-F76, SG-F77, SG-F78, SG-F79, SG-F80, SG-F81, SG-F82, SG-F83, SG-F84, SG-F85, SG-F86, SG-F87, SG-F88, SG-F89, SG-F90, SG-F91, SG-F92, SG-F93, SG-F94, SG-F95, SG-F96, SG-F97, SG-F98, SG-F99, SG-F100

Only the model DRW618 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Report No.: CQASZ20180700001E-01

3 Contents

			Page
1	VER	SION	2
2	TES	T SUMMARY	3
3	CON	ITENTS	4
4	GEN	IERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	DESCRIPTION OF SUPPORT UNITS	
	4.4	TEST LOCATION	
	4.5	TEST FACILITY	7
	4.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.10	EQUIPMENT LIST	9
5	TES	T RESULTS AND MEASUREMENT DATA	10
	5.1	ANTENNA REQUIREMENT	10
	5.2	CONDUCTED AVERAGE OUTPUT POWER	11
	5.3	6DB OCCUPY BANDWIDTH	13
	5.4	Power Spectral Density	
	5.5	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	5.6	RF CONDUCTED SPURIOUS EMISSIONS	
	5.7	RADIATED SPURIOUS EMISSIONS	
	5.7.1		
	5.7.2		
	5.8	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	54
6	PHO	TOGRAPHS - EUT TEST SETUP	59
	6.1	RADIATED SPURIOUS EMISSION	59
7	DHO	STOCRABLE FUT CONSTRUCTIONAL DETAILS	<i>(</i> 1

Report No.: CQASZ20180700001E-01

4 General Information

4.1 Client Information

Applicant:	Weccan Industrial Limited
Address of Applicant:	Rm209, 2/F, Building W1-A, No.34 Gaoxin South 4th Street, Hi-Tech Industrial Park, Nanshan District, Shenzhen City, China
Manufacturer:	DONGGUAN ADOREE INDUSTRIAL LIMITED
Address of Manufacturer:	Building 10, Fuxing Industrial Area, Fucing Road, Xiagang Village, Changan Town, Dongguang City, Guangdong Province China.
Factory:	DONGGUAN ADOREE INDUSTRIAL LIMITED
Address of Factory:	Building 10, Fuxing Industrial Area, Fucing Road, Xiagang Village, Changan Town, Dongguang City, Guangdong Province China.

4.2 General Description of EUT

Product Name:	2.4G RC DRONE WITH WIFI CAMERA
Model No.:	Please see page 3
Test Model No.:	DRW618
Trade Mark:	SKY RIDER, WECCAN
Hardware version:	V1.0
Software version:	V1.0
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)
	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)
	IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM,QPSK,BPSK)
Sample Type:	mobile production
Test Software of EUT:	RF test (manufacturer declare)
Antenna Type:	integral antenna
Antenna Gain:	1.3dBi
Power Supply:	DC3.7V, 1500mAh

Report No.: CQASZ20180700001E-01

Operation Frequency each of channel(802.11b/g/n HT20)										
Channel	Fre	equency	Channe	I Frequency	Channel	Fre	quency	Chann	el	Frequency
1	24	112MHz	4	2427MHz	7	244	42MHz	10		2457MHz
2	24	117MHz	5	2432MHz	8	244	47MHz	11		2462MHz
3	24	122MHz	6	2437MHz	9	245	52MHz			
Operation F	requ	ency each	of channe	el(802.11n HT40)						
Channel		Frequ	ency	Channel	Frequen	су	Chan	nel	F	requency
1		2422	MHz	4	2437MF	łz	7 2452MHz		2452MHz	
2		2427	MHz	5	2442MF	łz				
3		2432	MHz	6	2447MH	łz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency	
The Lowest channel	2412MHz	
The Middle channel	2437MHz	
The Highest channel	2462MHz	

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

Note:

Software (RF test) provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: CQASZ20180700001E-01

4.3 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
PC	Lenovo	ThinkPad E450c	SL10G10780	FCC ID

4.4 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• ISED Registration No.: 22984-1

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

Report No.: CQASZ20180700001E-01

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	±5.12dB	(1)
Radiated Emission	Above 1GHz	±4.60dB	(1)
Conducted Disturbance	0.15~30MHz	±3.34dB	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None

4.9 Other Information Requested by the Customer

None.

Report No.: CQASZ20180700001E-01

4.10 Equipment List

Item	Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Due Date
1	EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/24
2	Spectrum analyzer	R&S	FSU26	CQA-038	2018/9/24
3	Preamplifier	MITEQ	AFS4-00010300- 18-10P-4	CQA-035	2018/9/24
4	Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2018/9/24
5	Loop antenna	ZHINAN	ZN30900A	CQA-087	2019/3/21
6	Bilog Antenna	R&S	HL562	CQA-011	2018/9/24
7	Horn Antenna	R&S	HF906	CQA-012	2018/9/24
8	Horn Antenna	R&S	BBHA 9170	CQA-088	2018/9/24
9	Coax cable (9KHz~40GHz)	CQA	RE-low-01	CQA-077	2018/9/24
10	Coax cable (9KHz~40GHz)	CQA	RE-high-02	CQA-078	2018/9/24
11	Antenna Connector	CQA	RFC-01	CQA-080	2018/9/24
12	RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/24
13	Power Sensor	Anritsu	MA2411B	CQA-089	2018/9/24
14	Wideband Peak Power Meter	Anritsu	ML2495A	CQA-090	2018/9/24

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20180700001E-01

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integral antenna. The best case gain of the antenna is 1.3dBi.

Report No.: CQASZ20180700001E-01

5.2 Conducted Average Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	KDB558074 D01 v04		
Test Setup:	EUT Power Meter		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;		
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20)		
	Only the worst case is recorded in the report.		
Limit:	30dBm		
Test Results:	Pass		

Report No.: CQASZ20180700001E-01

Measurement Data

easurement Data			
	802.11b mode		
Test channel	Average Output Power (dBm)	Limit (dBm)	Result
Lowest	13.49	30.00	Pass
Middle	13.37	30.00	Pass
Highest	13.35	30.00	Pass
	802.11g mode		
Test channel	Average Output Power (dBm)	Limit (dBm)	Result
Lowest	12.45	30.00	Pass
Middle	12.43	30.00	Pass
Highest	12.32	30.00	Pass
	802.11n(HT20)mode		
Test channel	Average Output Power (dBm)	Limit (dBm)	Result
Lowest	10.39	30.00	Pass
Middle	10.32	30.00	Pass
Highest	10.27	30.00	Pass

Report No.: CQASZ20180700001E-01

5.3 6dB Occupy Bandwidth

Report No.: CQASZ20180700001E-01

Measurement Data

802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	9.960	≥500	Pass		
Middle	10.080	≥500	Pass		
Highest	10.120	≥500	Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	16.480	≥500	Pass		
Middle	16.480	≥500	Pass		
Highest	16.480	≥500	Pass		
	802.11n(HT20) mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	17.680	≥500	Pass		
Middle	17.600	≥500	Pass		
Highest	17.720	≥500	Pass		

Report No.: CQASZ20180700001E-01

Test plot as follows:

Report No.: CQASZ20180700001E-01

5.4 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	KDB558074 D01 v04	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset = cable loss + attenuation factor	
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates	
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;	
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20	
Limit:	≤8.00dBm/3kHz	
Test Results:	Pass	

Report No.: CQASZ20180700001E-01

Measurement Data

802.11b mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-14.640	≤8.00	Pass		
Middle	-14.000	≤8.00	Pass		
Highest	-15.120	≤8.00	Pass		
	802.11g mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-16.640	≤8.00	Pass		
Middle	-18.000	≤8.00	Pass		
Highest	-17.070	≤8.00	Pass		
	802.11n(HT20) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-17.090	≤8.00	Pass		
Middle	-17.470	≤8.00	Pass		
Highest	-17.630	≤8.00	Pass		

Report No.: CQASZ20180700001E-01

Test plot as follows:

Report No.: CQASZ20180700001E-01

5.5 Band-edge for RF Conducted Emissions

Report No.: CQASZ20180700001E-01

Test Data:

103t Data.						
	Test mode: 802.11b					
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result		
Lowest	2400	-43.940	-20.17	Pass		
Highest	2483.5	-53.180	-20.63	Pass		
	Test mode: 802.11g					
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result		
Lowest	2400	-37.280	-21.61	Pass		
Highest	2483.5	-48.370	-21.9	Pass		
Test mode: 802.11n(HT20)						
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result		
Lowest	2400	-32.670	-22	Pass		
Highest	2483.5	-44.650	-21.87	Pass		

Report No.: CQASZ20180700001E-01

Test plot as follows:

Report No.: CQASZ20180700001E-01

5.6 RF Conducted Spurious Emissions

Report No.: CQASZ20180700001E-01

Test plot as follows:

Report No.: CQASZ20180700001E-01

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: CQASZ20180700001E-01

5.7 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above 1G112	Peak	1MHz	10Hz	Average			
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless of emissions is 20dB applicable to the e emission level radi	above the maximu	um permitted st. This peak	average emi	ssion limit			

Report No.: CQASZ20180700001E-01

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table
 - was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT

determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for

	the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case
	of 802.11n(HT20
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
	Only the worst case is recorded in the report.
Test Results:	Pass

5.7.1 Radiated emission below 1GHz

5.7.2 Transmitter emission above 1GHz

Test mode:		802.11b(1	Mbps)	Test chann	nel:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4824.000	53.13	-4.26	48.87	74	-25.13	peak	Н
4824.000	36.58	-4.26	32.32	54	-21.68	AVG	Н
7236.000	50.30	1.18	51.48	74	-22.52	peak	Н
7236.000	38.81	1.18	39.99	54	-14.01	AVG	Н
4824.000	54.85	-4.26	50.59	74	-23.41	peak	V
4824.000	39.80	-4.26	35.54	54	-18.46	AVG	V
7236.000	51.56	1.18	52.74	74	-21.26	peak	V
7236.000	35.99	1.18	37.17	54	-16.83	AVG	V

Test mode:		802.11b(1	Mbps)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4874.000	52.56	-4.12	48.44	74	-25.56	peak	Н
4874.000	37.63	-4.12	33.51	54	-20.49	AVG	Н
7311.000	49.01	1.46	50.47	74	-23.53	peak	Н
7311.000	35.36	1.46	36.82	54	-17.18	AVG	Н
4874.000	53.16	-4.12	49.04	74	-24.96	peak	V
4874.000	36.38	-4.12	32.26	54	-21.74	AVG	V
7311.000	48.46	1.46	49.92	74	-24.08	peak	V
7311.000	36.62	1.46	38.08	54	-15.92	AVG	V

Report No.: CQASZ20180700001E-01

Test mode:		802.11b(1	Mbps)	Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4924.000	51.72	-4.03	47.69	74	-26.31	peak	Н
4924.000	37.31	-4.03	33.28	54	-20.72	AVG	Н
7386.000	51.00	1.66	52.66	74	-21.34	peak	Н
7386.000	37.69	1.66	39.35	54	-14.65	AVG	Н
4924.000	54.04	-4.03	50.01	74	-23.99	peak	V
4924.000	38.69	-4.03	34.66	54	-19.34	AVG	V
7386.000	50.58	1.66	52.24	74	-21.76	peak	V
7386.000	36.11	1.66	37.77	54	-16.23	AVG	V

Remark:

- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: CQASZ20180700001E-01

5.8 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)					
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
	Above IGHZ	74.0	Peak Value					
Test Setup:								

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode, found the Transmitting mode which it is worse case.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case
	of 802.11n(HT20)
	Only the worst case is recorded in the report.
Test Results:	Pass

Report No.: CQASZ20180700001E-01

Test data:

Worse case	mode:	802.11b(1N	Mbps)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2390.000	58.78	-9.2	49.58	74	-24.42	peak	Н
2390.000	44.66	-9.2	35.46	54	-18.54	AVG	Н
2400.000	59.54	-9.39	50.15	74	-23.85	peak	Н
2400.000	46.80	-9.39	37.41	54	-16.59	AVG	Н
2390.000	58.43	-9.2	49.23	74	-24.77	peak	V
2390.000	44.45	-9.2	35.25	54	-18.75	AVG	V
2400.000	59.43	-9.39	50.04	74	-23.96	peak	V
2400.000	46.01	-9.39	36.62	54	-17.38	AVG	V

Worse case mode:		802.11b(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	57.67	-9.29	48.38	74	-25.62	peak	Н
2483.500	43.62	-9.29	34.33	54	-19.67	AVG	Н
2483.500	57.80	-9.29	48.51	74	-25.49	peak	V
2483.500	45.57	-9.29	36.28	54	-17.72	AVG	V

Worse case	mode:	802.11g(6N	Mbps)	Test chann	el:	Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	59.17	-9.2	49.97	74	-24.03	peak	Н
2390.000	44.85	-9.2	35.65	54	-18.35	AVG	Н
2400.000	59.82	-9.39	50.43	74	-23.57	peak	Н
2400.000	46.61	-9.39	37.22	54	-16.78	AVG	Н
2390.000	58.69	-9.2	49.49	74	-24.51	peak	V
2390.000	44.14	-9.2	34.94	54	-19.06	AVG	V
2400.000	60.17	-9.39	50.78	74	-23.22	peak	V
2400.000	46.85	-9.39	37.46	54	-16.54	AVG	V

Worse case	mode:	802.11g(6N	Лbps)	Test chann	el:	Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2483.500	57.82	-9.29	48.53	74	-25.47	peak	Н
2483.500	44.10	-9.29	34.81	54	-19.19	AVG	Н
2483.500	57.61	-9.29	48.32	74	-25.68	peak	V
2483.500	46.05	-9.29	36.76	54	-17.24	AVG	V

Report No.: CQASZ20180700001E-01

Worse case	mode:	802.11n(HT	(20)(6.5Mbps)	Test chann	el:	Lowest	
	Meter		Emission				Ant. Pol.
Frequency	Reading	Factor	Level	Limits	Over	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
2390.000	58.50	-9.2	49.30	74	-24.70	peak	Н
2390.000	44.79	-9.2	35.59	54	-18.41	AVG	Н
2400.000	60.11	-9.39	50.72	74	-23.28	peak	Н
2400.000	46.46	-9.39	37.07	54	-16.93	AVG	Н
2390.000	58.87	-9.2	49.67	74	-24.33	peak	V
2390.000	44.58	-9.2	35.38	54	-18.62	AVG	V
2400.000	60.11	-9.39	50.72	74	-23.28	peak	V
2400.000	46.07	-9.39	36.68	54	-17.32	AVG	V

Worse case mode:		802.11n(HT20)(6.5Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
2483.500	57.60	-9.29	48.31	74	-25.69	peak	Н
2483.500	43.97	-9.29	34.68	54	-19.32	AVG	Н
2483.500	58.16	-9.29	48.87	74	-25.13	peak	V
2483.500	45.47	-9.29	36.18	54	-17.82	AVG	V

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

7 Photographs - EUT Constructional Details

Test model No.: DRW618

THE END