```
In [38]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from datetime import datetime
         from scipy import stats
         from matplotlib.lines import Line2D
         import seaborn as sns
         from sklearn.linear_model import LinearRegression
         from IPython.display import Image
         import statsmodels.api as sm
         import wooldridge as woo
         import quantecon as qe
         from quantecon import MarkovChain
         from sklearn.model_selection import train_test_split
         from sklearn import linear model
         from sklearn.linear_model import LinearRegression
         from sklearn import metrics
         from sklearn.model selection import cross val score
```

- 1a) When there is a big variation in the independent variable given different values of x. Taking the log could help decrease the variation. If there is a big range of values of our independent variable, taking the log would convert it to percentile change and help us manage our range.
- 1b) Having our residuals randomly distributed around 0 implies that our model is a good fit. It implies that out estimates are very close to the actual value were looking for.
- 1c) It is a good method to test for the robustness of out estimates. It can help us construct confidence intervals and find accurate statistics such as standard errors.
- 1d) If one of our explanatory variable is equal to 0.
- 2) Integrals represents areas under the curve, using monte carlo simulations, we can take different points for different values of x, and estimate the area under the curve for each value of x. We can then average the areas under the curve for each value of x, and find the total area under the curve.
- 3) MLE
- 4)
- 5a) The slope equals 1.9803. this means that 1% increase in education, would raise hourly wages by \$0.019803.
- b) elasticity = B2 x 1/y. $1.9803 \times 1/20.6 = 0.096$.
- c) 32.8975 13.0927 = \$19.803
- 6a) The lowest value for age combined with a highets value for sqft would reflect the highest selling

prices age =1, sqrft = 100

6b)

7)

8) it would be approximately 9% change.

9) 169.81

10) 50

In [15]: df = woo.dataWoo('bwght')

In [16]: df

Out	[1	6	:

	faminc	cigtax	cigprice	bwght	fatheduc	motheduc	parity	male	white	cigs	lbwght
0	13.5	16.5	122.300003	109	12.0	12.0	1	1	1	0	4.691348
1	7.5	16.5	122.300003	133	6.0	12.0	2	1	0	0	4.890349
2	0.5	16.5	122.300003	129	NaN	12.0	2	0	0	0	4.859812
3	15.5	16.5	122.300003	126	12.0	12.0	2	1	0	0	4.836282
4	27.5	16.5	122.300003	134	14.0	12.0	2	1	1	0	4.897840
1383	27.5	30.0	138.300003	110	12.0	12.0	4	1	1	0	4.700480
1384	5.5	30.0	138.300003	146	NaN	16.0	2	1	1	0	4.983607
1385	65.0	8.0	118.599998	135	18.0	16.0	2	0	1	0	4.905275
1386	27.5	8.0	118.599998	118	NaN	14.0	2	0	1	0	4.770685
1387	37.5	8.0	118.599998	111	16.0	13.0	2	0	1	0	4.709530

1388 rows × 14 columns

```
In [17]: X = df[['faminc']].copy()
         X["cigs"] = df["cigs"]
         X = sm.add_constant(X)
         Y = df['bwght']
         result1 = sm.OLS(Y, X).fit()
         result1.summary()
```

Out[17]: OLS Regression Results

OLO Hogicosion ricoults								
Dep. Variable:			bwght	R-squared:		0.030		
	Model:		OLS	Adj. R	-squared:	0.028		
	Method:	Least	Squares	F-statistic:		21.27		
	Date:	Fri, 29	Oct 2021	Prob (F-statistic):		7.94e-10		
	Time:		17:22:59	Log-Li	kelihood:	-6130.4		
No. Observations:			1388		AIC:	1.227e+04		
Df	Residuals:		1385		BIC:	1.228e+04		
Df Model:			2					
Covariance Type:		n	onrobust					
	coef	std err	t	P> t	[0.025	0.975]		
const	116.9741	1.049	111.512	0.000	114.916	119.032		
faminc	0.0928	0.029	3.178	0.002	0.036	0.150		
cigs	-0.4634	0.092	-5.060	0.000	-0.643	-0.284		
Omnibus: 1		116.751	Durbin-Watson:		1.92	22		
Prob(Omnibus):		0.000	Jarque-Bera (JB):		619.78	31		
	Skew:	-0.154	Prob(JB):		2.61e-13	35		
Kurtosis:		6.259	С	ond. No.	67	.4		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [34]: boot_slopes = []
boot_interc = []
boot_adjR2 = []
n_boots = 100
n_points = df.shape[0]
plt.figure()
for _ in range(n_boots):

    sample_df = df.sample(n=n_points, replace=True)

    OLS_boot = sm.OLS(formula = 'bwght ~ faminc , cigs', data=sample_df)
    results_boot = OLS_boot.fit()

    boot_interc.append(results_boot.params[0])
    boot_slopes.append(results_boot.params[1])
    boot_adjR2.append(results_boot.rsquared_adj)
```

```
ValueError
                                          Traceback (most recent call las
t)
<ipython-input-32-2ce038272b7a> in <module>
            [1/3, 1/3, 1/3],
      3
             [0 , 1/3, 3/4]]
---> 4 mc = qe.MarkovChain(P)
      5 X = mc.simulate(ts_length=10000)
      6
~/opt/anaconda3/lib/python3.8/site-packages/quantecon/markov/core.py in
_init__(self, P, state_values)
    195
                    row_sums = row_sums.getA1()
    196
                if not np.allclose(row_sums, np.ones(self.n)):
--> 197
                    raise ValueError('The rows of P must sum to 1')
    198
    199
                # Call the setter method
```

ValueError: The rows of P must sum to 1

```
In [36]: crime = woo.dataWoo('crime1')
```

In [37]: crime

Out[37]:

		narr86	nfarr86	nparr86	pcnv	avgsen	tottime	ptime86	qemp86	inc86	durat	Ł
•	0	0	0	0	0.38	17.600000	35.200001	12	0.0	0.000000	0.0	
	1	2	2	0	0.44	0.000000	0.000000	0	1.0	0.800000	0.0	
	2	1	1	0	0.33	22.799999	22.799999	0	0.0	0.000000	11.0	
	3	2	2	1	0.25	0.000000	0.000000	5	2.0	8.800000	0.0	
	4	1	1	0	0.00	0.000000	0.000000	0	2.0	8.100000	1.0	
	2720	1	1	0	0.00	0.000000	0.000000	0	0.0	0.000000	3.0	
	2721	0	0	0	0.00	0.000000	0.000000	0	3.0	11.500000	1.0	
	2722	0	0	0	0.00	0.000000	0.000000	0	1.0	1.900000	1.0	
	2723	1	1	0	0.00	0.000000	0.000000	0	0.0	0.000000	19.0	
	2724	0	0	0	0.00	0.000000	0.000000	0	4.0	191.300003	0.0	

2725 rows × 16 columns

```
In [41]: x = crime['pcnv']
         y = crime['narr86']
         regr = LinearRegression()
         model = regr.fit(x,y)
         regr.coef_
         regr.intercept
         x train, x test, y train, y test = train test split(x, y, test size=0.3, ra
         regr = LinearRegression()
         regr.fit(x_train, y_train)
         y pred = regr.predict(x test)
         print('MAE:', metrics.mean absolute error(y test, y pred))
         print('MSE:', metrics.mean squared error(y test, y pred))
         print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
         regr = linear model.LinearRegression()
         scores = cross_val_score(regr, x, y, cv=5, scoring='neg_root_mean_squared_e
         print('5-Fold CV MSE Scores:', scores)
```

ValueError Traceback (most recent call las <ipython-input-41-62e3b5d032fc> in <module> 4 regr = LinearRegression() $---> 5 \mod el = regr.fit(x,y)$ 6 regr.coef_ 7 regr.intercept ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/ base.py in fit(self, X, y, sample weight) 516 accept sparse = False if self.positive else ['csr', 'csc' , 'coo'] 517 --> 518 X, y = self._validate_data(X, y, accept_sparse=accept_spa rse, 519 y numeric=True, multi output=T rue) 520 ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/base.py in validate data(self, X, y, reset, validate separately, **check params) 431 y = check_array(y, **check_y_params) 432 else: --> 433 X, y = check X y(X, y, **check params)434 out = X, y435 ~/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py i n inner f(*args, **kwargs) 61 extra args = len(args) - len(all args) 62 if extra args <= 0:</pre>

```
return f(*args, **kwargs)
---> 63
     64
     65
                    # extra args > 0
~/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py i
n check X y(X, y, accept sparse, accept large sparse, dtype, order, copy,
force all finite, ensure 2d, allow nd, multi output, ensure min samples,
 ensure min features, y numeric, estimator)
    812
                raise ValueError("y cannot be None")
    813
--> 814
            X = check array(X, accept sparse=accept sparse,
    815
                            accept_large_sparse=accept_large_sparse,
    816
                            dtype=dtype, order=order, copy=copy,
~/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py i
n inner_f(*args, **kwargs)
     61
                    extra args = len(args) - len(all args)
     62
                    if extra_args <= 0:</pre>
---> 63
                        return f(*args, **kwargs)
     64
     65
                    # extra args > 0
~/opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/validation.py i
n check array(array, accept sparse, accept large sparse, dtype, order, co
py, force all finite, ensure 2d, allow nd, ensure min samples, ensure min
features, estimator)
    635
                    # If input is 1D raise error
    636
                    if array.ndim == 1:
--> 637
                        raise ValueError(
                            "Expected 2D array, got 1D array instead:\nar
    638
ray={}.\n"
    639
                            "Reshape your data either using array.reshape
(-1, 1) if "
ValueError: Expected 2D array, got 1D array instead:
                  0.44
                             0.33000001 ... 0.
array=[0.38
                                                        0.
                                                                   0.
].
Reshape your data either using array.reshape(-1, 1) if your data has a si
ngle feature or array.reshape(1, -1) if it contains a single sample.
```

```
In [42]: ceosal = woo.dataWoo('ceosal1')
```

In [43]: ceosal

Out[43]:

	salary	pcsalary	sales	roe	pcroe	ros	indus	finance	consprod	utility	Isal
0	1095	20	27595.000000	14.1	106.400002	191	1	0	0	0	6.998
1	1001	32	9958.000000	10.9	-30.600000	13	1	0	0	0	6.908
2	1122	9	6125.899902	23.5	-16.299999	14	1	0	0	0	7.022
3	578	-9	16246.000000	5.9	-25.700001	-21	1	0	0	0	6.359
4	1368	7	21783.199219	13.8	-3.000000	56	1	0	0	0	7.221
204	930	10	1509.099976	9.0	20.500000	131	0	0	0	1	6.835
205	525	3	1097.099976	15.5	20.100000	72	0	0	0	1	6.263
206	658	32	4542.600098	12.1	-7.800000	68	0	0	0	1	6.489
207	555	6	2023.000000	13.7	-14.600000	60	0	0	0	1	6.318
208	626	0	1442.500000	14.4	-10.200000	62	0	0	0	1	6.439

209 rows × 12 columns

In [44]: plt.matshow(ceosal.corr())
 plt.show()

In [45]: sav = woo.dataWoo('saving')

In [46]: sav

Out[46]:

	sav	inc	size	educ	age	black	cons
0	30	1920	4	2	40	1	1890
1	874	12403	4	9	33	0	11529
2	370	6396	2	17	31	0	6026
3	1200	7005	3	9	50	0	5805
4	275	6990	4	12	28	0	6715
95	1800	32080	2	16	54	0	30280
96	1684	9260	5	12	31	0	7576
97	1475	10450	2	18	27	0	8975
98	566	9138	5	12	40	0	8572
99	25405	12350	6	18	34	0	-13055

100 rows × 7 columns

```
In [48]: X = sav['inc']
X = sm.add_constant(X)
Y = sav['sav']
OLS_mod = sm.OLS(Y, X).fit()
OLS_mod.summary()
```

Out[48]:

OLS Regression Results

Covariance Type:

Dep. Variable:	sav	R-squared:	0.062
Model:	OLS	Adj. R-squared:	0.053
Method:	Least Squares	F-statistic:	6.492
Date:	Fri, 29 Oct 2021	Prob (F-statistic):	0.0124
Time:	18:10:39	Log-Likelihood:	-947.89
No. Observations:	100	AIC:	1900.
Df Residuals:	98	BIC:	1905.
Df Model:	1		

	coef	std err	t	P> t	[0.025	0.975]
const	124.8424	655.393	0.190	0.849	-1175.764	1425.449
inc	0.1466	0.058	2.548	0.012	0.032	0.261

nonrobust

 Omnibus:
 126.825
 Durbin-Watson:
 1.536

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 3750.981

 Skew:
 4.206
 Prob(JB):
 0.00

 Kurtosis:
 31.801
 Cond. No.
 2.33e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.33e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [ ]:
```