- (16%) 1. With less than 25 words, please list the name of the **four feedback amplifiers** (e.g. Trans... amplifier) and their corresponding topologies (e.g. series-shunt). (16%)
- (20%) 2. Consider a closed-loop circuit shown in Fig. P2. Assume that the input impedance of the basic amplifier is **infinite**, open-loop gain μ =6000 V/V, r_o = R_L =100 k Ω , $R_1 = R_2 = 50k\Omega$, $C_L=1pF$, please **respectively** calculate the dc gain of the loop gain, and the dominant pole location of the loop gain by

- (a) breaking the loop at XX'. (10%)
- (b) breaking the loop at the output of the basic amplifier Y. (10%)

Fig. P2

- (20%) 3. Please give definitions of the following terms for an op amp.
 - (a) -3dB bandwidth (5%)
- (b) unity-gain bandwidth (5%)
- (c) CMRR (5%)
- (d) PSRR (5%)

- (20%) 4. Fig. P4 shows a two-stage op amp with a simple bias circuit. Assume $\mu_n C_{ox} = 200 \mu A/V^2$, $\mu_p C_{ox} = 80 \mu A/V^2$, $|V_{tp}|$ =0.8V, and I_{D8} =20 μ A, I_{D5} =200 μ A, I_{D7} =500 μ A, and $(W/L)_{M5}=(20\mu m/1\mu m)$, $(W/L)_{M7}=(50\mu m/1\mu m)$, $(W/L)_{M3}$ = $(10\mu m/1\mu m)$. Without considering the channel-length modulation, please
 - (a) calculate $(W/L)_{M8}$. (5%)
 - (b) calculate R_b . (5%)
 - (c) design the $(W/L)_{M6}$ to minimize the input systematic offset if the input stage is perfectly balanced. (5%)
 - (d) find the **output swing** of the op amp. (5%)

- (15%) 5. A folded-cascode op amp is shown in Fig. P5 where $I_{M11}{=}200\mu\text{A},\ I_{M10}{=}300\mu\text{A},\ \text{and}\ |V_{OV}|\ \text{for all transistors is}$ $0.2\text{V}.\quad \text{Assuming}\quad \lambda_n{=}0.1\text{V}^{\text{-1}},\quad \lambda_p{=}0.2\text{V}^{\text{-1}},\quad V_{DD}{=}3.3\text{V},$ $V_{tn}{=}0.8\text{V},\ |V_{tp}|{=}0.8\text{V},\ \text{and}\ C_L{=}1\text{pF},\ \text{please}$
 - (a) calculate **dc gain**. (5%)
 - (b) calculate **slew rate**. (5%)
 - (c) specify which node is the **positive** input terminal $(v_{INI} \text{ or } v_{IN2})$. Explain your answer. (5%)

Fig. P5

- (9%) 6. A wide-swing current mirror is shown in Fig. P6. Assume V_{tn} =0.7V for all transistors, and I_{bias} = I_{in} = I_{out} . The V_{OV} of M_1 , M_2 , M_3 , M_4 are 0.3V. In order to minimize the allowable output voltage,
 - (a) find V_{OV} of M_5 . (3%)
 - (b) if $(W/L)_{M1}=(W/L)_{M2}=n_1\cdot (W/L)_{M3}=n_1\cdot (W/L)_{M4}=n_2\cdot (W/L)_{M5},$ what are the values of $\mathbf{n_1}$ and $\mathbf{n_2}$ should be designed? (6%)

