(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-43773

(43)公開日 平成5年(1993)2月23日

(51)Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

C 0 8 L 59/04

67/00

LMP

8215-4 J

LPK

8933-4 J

審査請求 未請求 請求項の数1(全 10 頁)

(21)出願番号

特願平3-202932

(71)出願人 000000033

旭化成工業株式会社

(22)出願日

平成3年(1991)8月13日

大阪府大阪市北区堂島浜1丁目2番6号

(72)発明者 八尋 修二

岡山県倉敷市潮通3丁目13番1 旭化成工

業株式会社内

(72)発明者 松本 勝男

岡山県倉敷市潮通3丁目13番1 旭化成工

業株式会社内

(72)発明者 松崎 一彦

岡山県倉敷市潮通3丁目13番1 旭化成工

業株式会社内

(74)代理人 弁理士 小松 秀岳 (外2名)

(54)【発明の名称】 生分解性ポリアセタール樹脂組成物

(57)【要約】

【目的】 優れた生分解性と機械物性を兼ね備えたポリアセタール樹脂組成物を提供するものである。

【構成】 (1) ポリアセタール(A) とポリエステル

- (B) とから構成される A B型又は A B A型のブロック共重合体 100重量部
- (2) 重合体中に芳香族ジカルボン酸又は芳香族ジオールより誘導される芳香族成分が重合体の全重量部に基づいて、 $0\sim40$ 重量部の割合で含有される脂肪族系ポリエステル $0.1\sim100$ 重量部

よりなる生分解性ポリアセタール樹脂組成物。

【効果】 本組成物は優れた生分解性と機械物性を有しており、その廃棄物は生分解処理可能である。

【特許請求の範囲】

【請求項1】 (1) ポリアセタール(A) とポリエス テル(B)とから構成されるA-B型又はA-B-A型 のブロック共重合体100重量部

(2) 重合体中に芳香族ジカルボン酸又は芳香族ジオー ルより誘導される芳香族成分が、重合体の全重量部に基 づいて0~40重量部の割合で含有される脂肪族系ポリ エステル0.1~100重量部よりなる生分解性ポリア セタール樹脂組成物。

【発明の詳細な説明】

[0001]

【従来の技術】近年、ポリアセタール樹脂は機械的特 性、クリープ特性、疲労特性及び電気的特性などに優れ ていることから、エンジニアリングプラスチックスとし て、多くの分野において広く用いられ、その需要は増大 する傾向にある。

【0002】ところで、プラスチックスは、一般的に生 分解性に欠き、自然界で分解されにくいため、最近、使 用後の廃棄物処理の問題がクローズアップされてきてお り、ポリアセタール樹脂もその例外ではない。

【0003】従来、プラスチックスに分解性を付与する 方法としては、セルロースやデンプンなどの天然高分子 物質を添加する方法が知られている。一例として、ポリ エチレンにデンプン、セルロース等を添加した組成物が 公知となっているが、その分解性能は、必ずしも充分で なく、これらの組成物を原材料として作られた構造体は その原形を崩すほどの分解性能を有するまでには至って

【 0 0 0 4 】 一方プラスチックスの分子中に特定の化合 物を導入させ、得られた共重合体に自然分解性能を付与 30 する方法も知られている。この方法の例としてはエチレ ンと一酸化炭素を共重合することにより、得られる共重 合体が知られており、この共重合体が紫外線を照射され ることによって分解されることが報告されている。しか しながら、この共重合体を製造するに当っては、多大な 工程の処理を必要とし、複雑かつ長大な設備が不可欠と なり、低コストで容易に製造することが出来ないという 欠点が存在する。

【0005】さらに特開平2-14228号、2-20 564号公報には、分解デンプンもしくは水含有分解親*40

$$\begin{array}{c|c}
 & C - R_1 - 0 \\
 & 0
\end{array}$$

* 水性ポリマーと水不溶性の熱可塑性ポリマーとからなる 組成物が開示されている。しかし、かかる方法で得られ た組成物は、実質的にはデンプンもしくは水含有分解性 親水性ポリマーを主成分としているため、該組成物を原 材料として構造材料を成形した場合には、その機械物性 を大きく損なうために、プラスチックスに分解性を付与 する方法としては、好ましくない。

[0006]

【発明が解決しようとする課題】本発明は、優れた生分 10 解性とエンジニアプラスチックスとしての機械物性とを 同時に兼ね備えたポリアセタール樹脂組成物を提供する 事を課題としてなされたものである。

【0007】本発明でいう生分解性とは、微生物等の酵 素により樹脂の分子量、又は重量が減少する物質を言 う。この生分解性を備えた樹脂は自然界で分解されるた め、使用後の廃棄物処理が容易となる。

[0008]

【課題を解決するための手段】本発明者らは、生分解性 を有し、しかもエンジニアリングプラスチックスとして 20 優れた機械物性を有する、生分解性ポリアセタール樹脂 組成物を開発すべく、鋭意研究を重ねた結果、ポリアセ タールとポリエステルとから構成されるブロック共重合 体と特定のポリエステルとからなるポリアセタール樹脂 組成物が優れた生分解性とエンジニアリングプラスチッ クスとしての優れた機械物性を併せもつことを見い出 し、本発明を完成するに至った。

【0009】すわなち本発明は(1)ポリアセタール (A) とポリエステル (B) とから構成されるA-B 型、又はA-B-A型のブロック共重合体100重量部 (2) 重合体中に、芳香族ジカルボン酸又は芳香族ジオ ールより誘導される、芳香族成分が重合体の全重量部に 基づいて0~40重量部の割合で含有される脂肪族系ポ リエステル 0. 1~100重量部

よりなる生分解性ポリアセタール樹脂組成物に関するも のである。

【0010】本発明で用いられるブロック共重合体は、 ポリアセタール(A)と一般式(1)又は(2)

[0011]

【化1】

(1)

【0012】(一般式(1)、(2)においてR₁、R z、Rzはアルキレン基、置換アルキレン基、フェニレ 50 る。)で表わされる構造を有するポリエステル(B)と

ン基、置換フェニレン基を表わし、n、1は整数であ

から構成されるA-B型、又はA-B-A型のブロック 共重合体である。

【0013】本ブロック共重合体中のポリアセタール (A) にはホモポリマーとコポリマーの2種類がある。 ホモポリマーはオキシメチレン単位- (CH2O)-の くり返しよりなる重合体であり、コポリマーはオキシメ チレン単位のくり返しよりなる連鎖中にオキシアルキレ ン単位がランダムに挿入された構造を有する重合体であ る。

【0014】又本ブロック共重合体を構成している一方 10 のセグメントであるポリエステル(B)としては、一般 式(1)又は(2)で表わされる2つのグループがあ る。

【0015】一般式(1)で表わされる構造を有するポ リエステルとしては例えば、ポリβーヒドロキシ酪酸、 ポリβーメチルβープロピオラクトン、ポリ乳酸、ポリ グリコール酸、ポリε-カプロラクトン、ポリγ-ブチ ロラクトン等が挙げられる。又一般式(2)で表わされ る構造を有するポリエステルとしては、ポリテトラメチ レンアジピン酸エステル、ポリエチレンアジピン酸エス 20 テル、ポリエチレンセバシン酸エステル、ポリテトラメ チレンコハク酸エステル、(エチレングリコール、アジ ピン酸、テレフタル酸との3元共重合体)、(ブチレン グリコール、セバシン酸、イソフタル酸との3元共重合 体)、ポリエチレンテレフタレート、ポリブチレンテレ フタレート等が挙げられる。

【0016】本ブロック共重合体は、一般式(1)又は (2)で表わされる構造を有する重合体の存在下で、ホ ルムアルデヒド又はトリオキサンを単独重合させるか、 ホルムアルデヒド又はトリオキサンと環状エーテルとを 30 共重合させることによって得ることが出来る。環状エー テルとしては、エチレンオキシド、プロピレンオキシ ド、ブチレンオキシド、等のアルキレンオキシド、1. 4ブタンジオールホルマール、エチレングリコールホル マール、ジエチレングリコールホルマール等の環状ホル マールが挙げられる。本ブロック共重合体の数平均分子 量は1万~50万の範囲が好ましい。又、一般式(1) 又は(2)で表わされる構造を有しかつ重合体の片末端 又は両末端に例えば水酸基、アミノ基、カルボキシル基 等の官能基を有する重合体の存在下でブロック共重合体 40 の数平均分子量は調節することが出来る。

【0017】本発明で用いられるブロック共重合体は、 一般式(1)又は(2)で表わされる構造を有し、かつ 片末端に水酸基、カルボキシル基、アミノ基等の官能基 を有する重合体の存在下(この場合該官能基を有する重 合体はポリアセタールの分子量調節剤として機能す る。)で、ホルムアルデヒド又はトリオキサンを単独 で、あるいは共重合させる事により、A-B型のブロッ ク共重合体が得られる。又、両末端に上記官能基を有す が得られる。

(3)

【0018】本発明で用いられるブロック共重合体は重 合直後に、ポリアセタール(A)の末端に水酸基を有し ている場合には不安定である。ポリアセタール(A)が ホモポリマーの場合は、末端の水酸基をエステル化、エ ーテル化、ウレタン化等の公知の方法を用いて、安定な 基に変換後、実用に供される。またポリアセタール

(A)が、コポリマーの場合は、ホモポリマーと同様に 処理するか、あるいは末端の不安定部分を加水分解によ って除去した後、実用に供される。

【0019】本発明の組成物において、ブロック共重合 体に添加される化合物は、重合体中に芳香族ジカルボン 酸又は芳香族ジオールより誘導される芳香族成分が、重 合体の全重量部に基づいて、0~40重量の割合で含有 される脂肪族系ポリエステルである。該脂肪族系ポリエ ステル中の芳香族成分が40重量部を越える場合には、 生分解性が低下する為、本発明の組成物としては使用出 来ない。

【0020】脂肪族系ポリエステルの代表的な例として は、ポリ β -ヒドロキシ酪酸、ポリ β -メチル β -プロ ピオラクトン、ポリ乳酸、ポリグリコール酸、ポリεー カプロラクトン、ポリテトラメチレンアジピン酸エステ ル、ポリエチレンアジピン酸エステル、ポリエチレンセ バシン酸エステル、ポリテトラメチレンコハク酸エステ ル、エチレングリコールーセバシン酸ーテレフタル酸3 元共重合体(重合体全重量部に基づいて、テレフタル酸 成分

[0021]

【化2】

【0022】が40重量部以下であることが必要であ る。)、ブチレングリコールーカテコールーコハク酸3 元共重合体(重合体全重量部に基づいて、カテコール成 分

[0023]

【化3】

【0024】が40重量部以下であることが必要であ る。)、等が挙げられる。

【0025】脂肪族系ポリエステルの添加量は、ブロッ ク共重合体100重量部に対して0.1~100重量部 である。添加量が100重量部を越える場合には、機械 物性の低下が大きく又0.1重量部未満の場合は、生分 る重合体の場合には、A-B-A型のブロック共重合体 50 解性が不良となる。好ましくは、10~60重量部の範

囲にある事が望ましい。又本発明の組成物においてブロ ック共重合体の一方のセグメントであるポリエステル

(B) は、ブロック共重合体に添加される脂肪族系ポリ エステルの、相溶化剤としても機能しており、本組成は 均一なモルホロジーを有するポリマーアロイとなる場合 が多い。

【0026】又本発明の組成物においてブロック共重合 体に添加される脂肪族系ポリエステルは単独で用いても よいし、2種以上混合して用いてもよい。

び脂肪族系ポリエステルはいずれも熱可塑性を有してお り、各々重合体の融点(軟化点)以上の温度では溶融す る性質を有する。従って本発明の組成物も、各々重合体 の融点(軟化点)のうち最も高い融点(軟化点)以上の 温度では溶融する。

【0028】本発明の組成物は、その目的、用途に応じ て熱安定剤、酸化防止剤、離型剤、耐候剤、帯電防止 剤、着色剤、補強剤、界面活性剤、無機充てん剤等の補 助目的成分を添加することが出来る。

【0029】本発明の組成物は、一般式に押出機を用い 20 て溶融混合される。又本発明の組成物を用いて成形品を 製造する方法としては例えば射出成形法、押出し成形 法、ブロー成形法等の慣用手段を採用する事が出来る。 成形は通常160~300℃の温度範囲で行なわれる事 が多い。

[0030]

【実施例】次に実施例によって本発明を更に詳細に説明 するが、本発明はこれらの例によってなんら限定される ものではない。

*【0031】〔生分解性〕30℃恒温下、純水100m 1にリゾプス・デレマー(Rhizopus dele mar) 由来のリパーゼ50mgを加え、厚さ0.01 mmのフィルムにしたポリアセタール樹脂組成物100 mgを浸漬し、フィルムの重量半減期を求めた。この値 が小さいほど生分解性に優れている事を示す。

【0032】〔アイゾット衝撃値(ノッチ付)〕ポリア セタール樹脂組成物を射出成形機を用いて平板に成形し た。この平板より試験片を切削し、ASTM-D256 【0027】本発明で用いられるブロック共重合体およ 10 に準じて測定した。この値が大きいほど、機械物性に優 れている事を示す。

【0033】実施例1

- (1) ポリアセタール樹脂組成物の製造
- (A) ブロック共重合体

分子量調節剤としてポリε-カプロラクトン

[0034]

$$\left(\begin{array}{c}
HO \leftarrow C \leftarrow CH_2 \rightarrow_5 O \rightarrow_{\mathfrak{so}} H
\end{array}\right)$$

【0035】を含むトルエン中に、ジブチルスズジメト キシドを重合触媒として加え、次いでホルムアルデヒド を添加し、所定時間後、トルエンと重合体とを分離し重 合体を無水酢酸で安定化せしめた。この重合体は次の構 造を有している。

[0036]

【化5】

$$\begin{array}{c} CH_3CO \leftarrow CH_2O \xrightarrow{3 \text{ 0 0}} \left(\begin{array}{c} C \leftarrow CH_2 \xrightarrow{5} O \end{array} \right)_{\begin{array}{c} 5 \text{ 0} \end{array}} CH_2O \xrightarrow{3 \text{ 0 0}} CCH_3 \\ O & O & O \end{array}$$

【0037】(ここで300と50は重合度を示す)

- (A) のブロック共重合体
 - 100重量部
- (B) ポリグリコール酸(数平均分子量50000) 熱安定剤 ナイロン66
- 85重量部 0.5重量部

酸化防止剤2,2-メチレンビス(4-メチルー

6-t-ブチルフェノール) (以下AOと略す) 0.4重量部

を混合した後、30mm o 二軸押出機にて溶融せしめ teo

【0038】(2)ポリアセタール樹脂組成物の生分解 性と機械物性(1)で製造したポリアセタール樹脂組成 物の重量半減期は、リパーゼによる試験で1日であり、

アイゾット衝撃値は75kgcm/cmであった。この ポリアセタール樹脂組成物は生分解性および機械物性に※

※おいても優れるものであった。

- 40 【0039】実施例2
 - (1) ポリアセタール樹脂組成物の製造
 - (A) ブロック共重合体

分子量調節剤として、ポリエチレンアジピン酸エステル [0040]

【化6】

$$\begin{pmatrix}
H & -\begin{pmatrix}
0 & CH_2 & CH_2 & 0 - C & CH_2 & -\frac{1}{4} & C & -\frac{1}{2} & 0 & -CCH_3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

【0041】を用い、トリオキサンとエチレンオキシド 50 とを三弗化ホウ素を触媒として共重合せしめ、次いで重

* [0043]

【化7】

7

合体を押出機中でトルエチルアミンー水を用いて溶融加 水分解することにより安定化せしめた。

【0042】この重合体は次の構造を有している。

$$H \xrightarrow{\text{COCH}_2 \to 0} (\text{OC}_2 \text{H}_4) \xrightarrow{\text{SO}} (\text{OCH}_2 \text{CH}_2 \text{O} - \text{C} + \text{CH}_2)_4 \xrightarrow{\text{COCH}_2} 0 \text{CCH}_3$$

[0044] (22
$$\tilde{c}$$

[0045]
[(± 8] (C₂H₄O) (C₂H₄

(A) のブロック共重合体

(B) ポリ β -ヒドロキシ酪酸 熱安定剤 ナイロン66 酸化防止剤AO

を混合した後、45mmφ二軸押出機にて溶融せしめ

【0047】(2)ポリアセタール樹脂組成物の生分解 性と機械物性ポリアセタール樹脂組成物の重量半減期は リパーゼによる試験で2日であり、又アイゾット衝撃値 20 は80kgcm/cmであった。このポリアセタール樹 脂組成は生分解性および機械物性においても優れるもの であった。

【0048】実施例3~11

第1表に示したブロック共重合体、100重量部に対し て、第1表に示した添加量で脂肪族系ポリエステルを加 え、次いて熱安定剤(ナイロン66:0.5重量部)、 酸化防止剤(AO:0.4重量部)を加えて30mm φ 押出し機で溶融混合せしめ、ポリアセタール樹脂組成物 械物性の結果を表1に示す。いずれの実施例においても 良好な生分解性と機械物性を有していた。

【0049】比較例1~4

※【0046】は1000個のオキシメチレン単位中に3 0個のオキシエチレン単位がランダムに挿入されている

ことを示すものであり、オキシエチレン単位の重合体中

10 での分布を規定するものではない。)

100重量部 30重量部

0.5重量部

0. 4重量部

表2に示した構造を有するブロック共重合体100重量 部に対して表2に示した脂肪族系ポリエステルを加え次 いで熱安定剤(ナイロン66:0.5重量部)、酸化防 止剤(AO:0.4重量部)を加えてポリアセタール樹 脂組成物を製造した。ポリアセタール樹脂組成物の生分 解性と機械物性の結果も併せて表2に示す。

【0050】比較例1においてはホルムアルデヒドを単 独重合させることにより得られたポリアセタール樹脂で あり、このものは生分解性を全く有していない。比較例 2においては脂肪族系ポリエステルの添加量が過少であ る為に生分解性が不良であった。比較例3においては、 脂肪族系ポリエステルの添加量が過多である為に機械物 性が大きく低下した。又、比較例4においては、脂肪族 系ポリエステル中に含有される芳香族成分の割合が40 を製造した。ポリアセタール樹脂組成物の生分解性と機 30 重量部を越えた組成物であるため、生分解性は不良であ った。

> [0051] 【表1】

10

		3								10	
機械物性 **/// (希野庄/)	/ 1 / y r 便 擊 個 (Kgcm/cm)	ខា	દ ક	က	88 /-	7 0	8 1	ထ	8 4	7 3	
	里十级	0. 2		က	5	 5	2	0.9	0.3	l. 1	
脂肪族系ポリエステル(青島部)		ポリε-カプロラクトン (0.15)	ポリモーカプロラクトン(8)	ポリモーカプロラクトン (10)	ポリβ-ヒドロキン酪酸 (30)	ポリグリコール酸 (85)	ポリテトラメチレンコハ ク酸エステル (50)	ポリモーカプロラクトン (90)	ポリ8-ヒドロキン酪酸(95)	注-2) エチレングリコールー テレフタル酸ーアジピン 酸の 3 元共重合体	(16)
ブロック共重合体の構造式		A	В	U	D	Ю	ţ	U	Н	—	The state of the s
実権例	:	ಣ	4	S	9	<u></u>	∞	တ	10	Ξ	

【0052】表1中、 【0053】

[0054]

【化10】

注-1)

F
$$CH_3O - \left(C - (CH_2)_{\frac{1}{5}}O\right)_{\frac{2}{2}} O - \left(OCH_2\right)_{\frac{3}{2}} OCH_2CH_2 - OCH_2CH_2\right)_{\frac{4}{5}} OH$$

$$H = HO + (CH_2CH_2O) + (CH_2O) + ($$

注-1) - $(0CH_2)_n(0CH_2CH_2)_n$ は n 個中のオキシメチレン単位中に 1 個のオキシエチレン単位がランダムに挿入されることを示す。

で表わされる構造を有し、テレフタル酸成分が重合体全重量部に基づいて34重量部である。

【0055】 【表2】

1	E
1	П

				15	
機械物性7//1/5/新鞍值///2000/000)	11.17.1旬 年1回(KBCIII)CIII)	Ð	က	23	5 6
生分解性 音量光滤瓶 (日)	馬十億朔	200 日経過しても 重量減認められず	8 7	0, 2	1 0 1
脂肪族系ポリエステル(重量数)	H)		ポリ乳酸 (0.08)	ポリεカプロラクトン (130)	注-3) エチレングリコールー テレフタル酸ーアジピン 酸の 3 元共重合体 (95)
ブロック共重合体の構造式		ſ	X	٦	M
北 較產			2	က	4

【0056】表2中、 【0057】 【化11】

10

20

30

40

$$\begin{array}{c} \text{CH}_{3} \\ \text{L} & \text{CH}_{3}\text{CO} - (\text{OCH}_{2}) \\ \text{II} \\ \text{O} & \text{O} \end{array} \\ (\text{OCH}_{2}) \\ \xrightarrow{\text{5 o o}} (\text{OCH}_{2}) \\ \xrightarrow{\text{5 o o}} (\text{OCH}_{2}) \\ \text{O} & \text{O} \end{array}$$

で表わされる構造を有し、テレフタル酸成分が重合体全重量部に基づいて 5 6 重量部である脂肪族系ポリエステル。

[0058]

【発明の効果】本発明のポリアセタール樹脂組成物はエ ンジニアリングプラスチックスとしての優れた特性と生

30 分解性を有しており、フィルム、シート、電気部品、電子部品、自動車部品などに好適に用いられ、又その成形品の廃棄物は生分解処理が可能である。