# CHEM400/740: Quantum Mechanics in Chemistry Chapter#04: Slater Rules and Examples

## **Marcel Nooijen**

## **Contents**

| 1 | Eval | <b>Evaluating Matrix Elements Over Slater Determinants</b> |    |  |  |
|---|------|------------------------------------------------------------|----|--|--|
|   | 1.1  | Evaluate One-electron Matrix Elements                      | 3  |  |  |
|   | 1.2  | Evaluate Two-electron Matrix Elements                      | 4  |  |  |
|   | 1.3  | Example: $H_2$ Molecule                                    | 7  |  |  |
|   |      | 1.3.1 Molecular Orbital Theory                             | 8  |  |  |
|   |      | 1.3.2 Configuration Interaction                            | 8  |  |  |
|   | 1.4  | Example: Excited States of $H_2$ Molecule                  | 10 |  |  |
|   | 1.5  | Some Useful Notations for Evaluating Matrix Elements       | 12 |  |  |
|   | 1.6  | Example: Carbon Atom                                       | 13 |  |  |

## 1. Evaluating Matrix Elements Over Slater Determinants

Formulation of the problem:

Given a set of orthonormal spin-orbitals,  $\psi_a, \psi_b, ..., \psi_m$ , we can construct determinants.

e.g: 
$$|\psi_a\psi_b\psi_c\psi_d| = -|\psi_a\psi_b\psi_d\psi_c| = +|\psi_a\psi_d\psi_b\psi_c| = |K\rangle$$

We want to evaluate  $\langle K|L\rangle$  and  $\langle K|\hat{H}|L\rangle = \langle K|\hat{h}|L\rangle + \langle K|\hat{V}|L\rangle$ .

Note that  $\hat{H} = \sum_i \hat{h}(i) + \sum_{i < j} \frac{1}{r_{ij}}$  and  $\hat{h}(i) = \hat{T}_{(i)} + \hat{V}_{(i)}^{Ne}$ .

We will use antisymmetrizer  $\hat{A}$  to define the determinant.

$$\hat{A} = \frac{1}{N!} \sum_{k=1}^{N!} (-)^{P_k} \hat{P}_k \tag{1}$$

$$\hat{A}^{\dagger} = \hat{A} \tag{2}$$

$$\hat{A}\hat{A} = N!\hat{A} = \hat{A}^{\dagger}\hat{A} = N!\hat{A}^{\dagger} \tag{3}$$

Normalized basis states:

$$|K\rangle = \frac{1}{\sqrt{N!}} \hat{A}(\psi_a(1)\psi_b(2)\cdots\psi_z(N)) \tag{4}$$

Let us prove this,  $\langle K|K\rangle = 1$ :

$$\langle K|K\rangle = \frac{1}{\sqrt{N!}} \frac{1}{\sqrt{N!}} \langle \hat{A}\psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) \rangle$$

$$= \frac{1}{N!} \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger} \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) \rangle$$

$$= \frac{1}{N!} N! \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger}(\psi_{a}(1) \cdots \psi_{z}(N)) \rangle$$

$$= 1 \cdot \langle \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) | \psi_{a}(1) \cdots \psi_{z}(N) \rangle$$

$$= \int \sum_{i} (-)^{P_{i}} \hat{P}_{i}(\psi_{a}^{*}(1) \cdots \psi_{z}^{*}(N)) \cdot (\psi_{a}(1) \cdots \psi_{z}(N)) d1 d2 \cdots dN$$

$$= \int \psi_{a}^{*}(1) \psi_{b}^{*}(2) \cdots \psi_{z}^{*}(N) \cdot \psi_{a}(1) \psi_{b}(2) \cdots \psi_{z}(N) d\tau$$

$$- \int \psi_{b}^{*}(1) \psi_{a}^{*}(2) \cdots \psi_{z}^{*}(N) \cdot \psi_{a}(1) \psi_{b}(2) \cdots \psi_{z}(N) d\tau + \cdots +$$

$$(-) \int \psi_{c}^{*}(1) \psi_{b}^{*}(2) \cdots \psi_{a}^{*}(N) \cdots \psi_{a}(1) \psi_{b}(2) \cdots \psi_{z}(N) d\tau$$

$$= 1$$

$$(5)$$

NOTE:

• 
$$(|\text{ket}\rangle)^{\dagger} \Longrightarrow \langle \text{bra}|. \text{ e.g.} (\hat{A}|\psi_a \cdots \psi_b\rangle)^{\dagger} = \langle \psi_a \cdots \psi_b | \hat{A}^{\dagger}$$

• Only the identity peremutation contributes; otherwise mismatch.

$$\int \psi_a^*(1)\psi_b^*(2)\cdots\psi_z^*(N)\cdot\psi_a(1)\psi_b(2)\cdots\psi_z(N)d\tau = \langle a|a\rangle_1\langle b|b\rangle_2\cdots\langle z|z\rangle_N = 1.$$

$$\int \psi_b^*(1)\psi_a^*(2)\cdots\psi_z^*(N)\cdot\psi_a(1)\psi_b(2)\cdots\psi_z(N)d\tau = \langle b|a\rangle_1\langle a|b\rangle_2\cdots\langle z|z\rangle_N = 0$$

•  $\langle K|K'\rangle=0$ . Note that K' differs by one orbital. SAME: $|K\rangle=|\psi_a\psi_b\cdots\psi_z|$  DIFFERENT: $|K'\rangle=|\psi_p\psi_b\cdots\psi_z|$ Everything works as before: Mismatch in b,c,d,... unless identity permutation, like K=K'.  $\langle K|K'\rangle=\langle a|p\rangle_1\langle b|b\rangle_2\cdots\langle z|z\rangle_N=\langle a|p\rangle_1\cdot 1\cdot 1\cdot 1=\delta_{ap}=0$ 

Important: Define determinants K and K' to have maximum coincidence: line up the orbitals they have in common. Put their differences in same. e.g., first spot.

Let us use similar procedures to obtain other matrix elements of  $\hat{H}$ . Preliminaries:

$$\frac{1}{N!} \langle \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) | \hat{H} | \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) \rangle$$

$$= \frac{1}{N!} \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger} \hat{H} \hat{A} | \psi_{a}(1) \cdots \psi_{z}(N) \rangle$$

$$= \frac{1}{N!} \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger} \hat{A} \hat{H} | \psi_{a}(1) \cdots \psi_{z}(N) \rangle$$

$$= \frac{1}{N!} \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger} \hat{A} \hat{H} | \psi_{a}(1) \cdots \psi_{z}(N) \rangle$$

$$= \langle \psi_{a}(1) \cdots \psi_{z}(N) | \hat{A}^{\dagger} \hat{H} | \psi_{a}(1) \cdots \psi_{z}(N) \rangle$$

$$= \langle \hat{A}(\psi_{a}(1) \cdots \psi_{z}(N)) | \hat{H}(\psi_{a}(1) \cdots \psi_{z}(N)) \rangle$$
(6)

This is true for any operator  $\hat{O}$ , like Hamiltonian  $\hat{H}$ , which is symmetric in electron labels. i.e. Any operator in electronic structure theory follows:

$$\left[\hat{A},\hat{O}\right] = 0\tag{7}$$

#### 1.1 Evaluate One-electron Matrix Elements

• Diagonal:  $\langle K|\hat{h}|K\rangle$ 

$$\langle K|\hat{h}|K\rangle = \langle \hat{A}(\psi_{a}(1)\cdots\psi_{z}(N))|\hat{h}(1)+\hat{h}(2)+\cdots+\hat{h}(N)|\psi_{a}(1)\cdots\psi_{z}(N)\rangle$$

$$= \langle a|\hat{h}|a\rangle_{1}\langle b|b\rangle_{2}\cdots\langle z|z\rangle_{N}$$

$$+ \langle a|a\rangle_{1}\langle b|\hat{h}|b\rangle_{2}\cdots\langle z|z\rangle_{N}+\cdots$$

$$+ \langle a|a\rangle_{1}\langle b|b\rangle_{2}\cdots\langle z|\hat{h}|z\rangle_{N}$$

$$= \sum_{i\in K}\langle i|\hat{h}|i\rangle$$

$$(8)$$

NOTE:

Only identity permutation contributes, otherwise mismatch in overlap.

All other permutations mismatch. e.g.  $\langle b|\hat{h}|a\rangle_1, \langle b|a\rangle_2$ 

Example of 2 electrons:

$$= \int (a(1)b(2) - b(1)a(2)) \left[\hat{h}(1) + \hat{h}(2)\right] a(1)b(2)$$

$$= \langle a|\hat{h}|a\rangle_{1}\langle b|b\rangle_{2} + \langle a|a\rangle_{1}\langle b|\hat{h}|b\rangle_{2}$$

$$- \langle b|\hat{h}|a\rangle_{1}\langle a|b\rangle_{2} - \langle b|a\rangle_{1}\langle a|\hat{h}|b\rangle_{2}$$

$$= \langle a|\hat{h}|a\rangle + \langle b|\hat{h}|b\rangle$$
(9)

• Single mismatch:  $\langle K'|\hat{h}|K\rangle$ 

$$\langle K'|\hat{h}|K\rangle = \langle \hat{A}(\psi_{p}(1)\psi_{b}(2)\cdots\psi_{z}(N))|\hat{h}(1) + \hat{h}(2) + \cdots + \hat{h}(N)|\psi_{a}(1)\psi_{b}(2)\cdots\psi_{z}(N)\rangle$$

$$= \langle p|\hat{h}|a\rangle_{1}\langle b|b\rangle_{2}\cdots\langle z|z\rangle_{N} + \langle p|a\rangle_{1}\langle b|\hat{h}|b\rangle_{2}\cdot 1 + \langle p|a\rangle_{1}\langle c|\hat{h}|c\rangle_{N}\cdot 1 + \cdots$$

$$= \langle pbc\cdots|\hat{h}|abc\cdots\rangle$$

$$= \langle p|\hat{h}|a\rangle$$
(10)

• Double mismatch:  $\langle K''|\hat{h}|K\rangle$ 

$$\langle K''|\hat{h}|K\rangle = \langle \hat{A}(\psi_p(1)\psi_q(2)\cdots\psi_z(N))|\hat{h}(1) + \hat{h}(2) + \cdots + \hat{h}(N)|\psi_a(1)\psi_b(2)\cdots\psi_z(N)\rangle$$

$$= \langle p|\hat{h}|a\rangle\langle q|b\rangle + \langle p|a\rangle\langle q|\hat{h}|b\rangle - \langle q|\hat{h}|a\rangle\langle p|b\rangle - \langle q|a\rangle\langle p|\hat{h}|b\rangle$$

$$= 0$$
(11)

Second terms from permutation:  $p \longleftrightarrow q$ . Also,  $p \ne q$ There is at least one mismatch in orbital overlaps:  $\langle K'' | \hat{h} | K \rangle = 0$ 

#### **Summary 1.1**

• Identity Permutation:

$$\langle K|\hat{h}|K\rangle = \sum_{i\in K} \langle i|\hat{h}|i\rangle$$

• Single Mismatch with  $p \neq a, p \in K', a \in K$ :

$$\langle K'|\hat{h}|K\rangle = \langle p|\hat{h}|a\rangle$$

• Double Mismatch with  $p \neq q, p, q \in K'', a, b \in K$ :

$$\langle K''|\hat{h}|K\rangle = 0$$

• Additional sign to bring orbitals to maximal coincidence.

#### 1.2 Evaluate Two-electron Matrix Elements

Let us first consider 2-electron system:

$$\begin{split} \langle K | \hat{h} | L \rangle &= \langle \hat{A}(\psi_p^*(1)\psi_q^*(2)) | \hat{V} | \psi_a(1)\psi_b(2) \rangle \\ &= \int (\psi_p^*(1)\psi_q^*(2) - \psi_q^*(1)\psi_p^*(2)) \frac{1}{r_{12}} \psi_a(1)\psi_b(2) d1 d2 \end{split}$$

$$= \langle pq | \frac{1}{r_{12}} | ab \rangle - \langle qp | \frac{1}{r_{12}} | ab \rangle \qquad \text{in quantum chemistry notation}$$

$$\equiv \langle pq | ab \rangle - \langle qp | ab \rangle \qquad \frac{1}{r_{12}} \text{is implied}$$

$$\equiv \langle pq | | ab \rangle \qquad (12)$$

NOTE:

- 1. The expressions,  $\langle pq|\frac{1}{r_{12}}|ab\rangle$  and  $\langle qp|\frac{1}{r_{12}}|ab\rangle$ , are in quantum chemistry notation. 2. If 2 orbitals are in ket,  $\frac{1}{r_{12}}$  can be implied, such as:  $\langle pq|ab\rangle$ ,  $\langle qp|ab\rangle$ .

Double bar indicates anti-symmetrized 2-electron integral. q, p, r, s are spin orbitals.

$$\langle pq||ab\rangle = \langle pq|ab\rangle - \langle qp|ab\rangle$$
 (13)

Permutational symmetry:

$$\langle pq||ab\rangle = -\langle qp||ab\rangle = +\langle qp||ba\rangle = -\langle pq||ba\rangle$$
 (14)

If orbitals are real:

$$\langle pq||ab\rangle = \langle ab||pq\rangle = -\langle ba||pq\rangle = -\langle ab||qp\rangle = \langle ba||qp\rangle$$
 (15)

$$\langle pq||ab\rangle = \langle pq|ab\rangle - \langle pq|ba\rangle$$
 (16)

The purpose of using these relations:

- 1. Calculate and store only unique integrals.
- 2. Simplify results.

General treatment of  $\hat{V}$ :

$$\hat{V} = \sum_{i < i} \frac{1}{r_{ij}} = \hat{V}_{12} + \hat{V}_{13} + \hat{V}_{23} + \cdots$$
 (17)

Sum over all pairs.

• The diagonal term:  $\langle K|\hat{V}|K\rangle$ .

$$\langle K|\hat{V}|K\rangle = \langle \hat{A}(\psi_{a}\psi_{b}\cdots\psi_{z}) \left[ \frac{1}{r_{12}} + \frac{1}{r_{13}} + \frac{1}{r_{23}} + \cdots \right] |\psi_{a}\psi_{b}\cdots\psi_{z}\rangle$$

$$= \langle ab||ab\rangle_{12}\langle c|c\rangle\cdots\langle z|z\rangle$$

$$+ \langle ac||ac\rangle_{13}\langle b|b\rangle\cdots\langle z|z\rangle$$

$$+\cdots$$

$$+ \langle bc||bc\rangle_{23}\langle a|a\rangle\cdots\langle z|z\rangle$$

$$+\cdots$$

$$= \sum_{i < j \in K} \langle ij||ij\rangle$$
(18)

NOTE:

Only identity permutation contributes, otherwise mismatch in overlap.

Example: for the term  $\frac{1}{r_{12}}$ , it's only the identity permutation and 1 and 2 interchange.

• Single mismatch:  $\langle K'|\hat{V}|K\rangle$ .

$$\langle K'|\hat{h}|K\rangle = \langle \hat{A}(\psi_p\psi_b\cdots\psi_z)|\hat{V}|\psi_a\psi_b\cdots\psi_z\rangle \tag{19}$$

p and a must be in  $\hat{V}$ , otherwise overlap mismatch.

 $\Rightarrow$  Only  $\hat{V}_{12}, \hat{V}_{13}, \hat{V}_{1N}$ , etc contribute, not  $\hat{V}_{23}, \cdots$ 

$$\langle K'|\hat{V}|K\rangle = \langle pb||ab\rangle_{12} + \langle pc||ab\rangle_{13} + \dots + \langle pz||az\rangle_{1N}$$

$$= \sum_{i \in K, K'} \langle pi||ai\rangle$$
(20)

NOTE:

$$p \in i$$
  $\langle pp||ap \rangle = 0$   
 $a \in i$   $\langle pa||aa \rangle = 0$ 

This is due to antisymmetry.

• Double mismatch:  $\langle K''|\hat{V}|K\rangle$ .

$$\langle K''|\hat{V}|K\rangle = \langle \hat{A}(\psi_p \psi_q \psi_c \cdots \psi_z)|\hat{V}|\psi_a \psi_b \psi_c \cdots \psi_z\rangle$$
 (21)

Only the  $\frac{1}{r_{12}}$  contributes.

$$\langle pq||ab\rangle\langle c|c\rangle\cdots\langle z|z\rangle = \langle pq||ab\rangle$$
 (22)

#### **Summary 1.2**

• Summary all matrix-elements:

| Integrals                       | $\hat{h}$                                        | Ŷ                                             |
|---------------------------------|--------------------------------------------------|-----------------------------------------------|
| $\langle K \hat{H} K\rangle$    | $\sum_{a \in K} \langle a   \hat{h}   a \rangle$ | $\sum_{a < b \in K} \langle ab    ab \rangle$ |
| $\langle K' \hat{H} K\rangle$   | $\langle p \hat{h} a\rangle$                     | $\sum_{b\in K,K'}\langle pb  ab\rangle$       |
| $\langle K'' \hat{H} K\rangle$  | 0                                                | $\langle pq  ab\rangle$                       |
| $\langle K''' \hat{H} K\rangle$ | 0                                                | 0                                             |

NOTE:

- 1) Sum over all contributions that include the special (different) orbitals in the two determinants.
- 2) Signs: Bring determinants into maximum coincidence first. Note that permutation can introduce a sign change.

Basic building blocks that construct matrix-elements:

To evaluate matrix elements  $\langle K|\hat{H}|L\rangle$  we only require one- and two-electron integrals, how many integrals we have: (*M* is the number of spin/spatial orbitals)

$$\langle p|\hat{h}|q\rangle$$
  $\frac{1}{2}M^2$   $\langle pq||rs\rangle$   $\frac{1}{8}M^2$ 

For large systems, even the number of 2-electron integrals is large to store.

- 1) Many integrals are almost zero.
  - ⇒ screen (need clear algorithms)
- 2) Storage on disk is bottleneck:
  - $\Rightarrow$  recompute integrals when needed.

Integrals direct techniques

Widely used in practical Quantum Chemistry. We will regard this as technical detail, likewise for calculating integrals themselves.

We typically cannot store Hamiltonian  $\langle K|\hat{H}|L\rangle$ , and all determinants  $\frac{1}{2}\binom{M}{N}^2$ 

#### 1.3 Example: $H_2$ Molecule

Let us look at a prototypical example first.

 $H_2$  in a minimal basis set.



Figure 1 Molecular Orbital Energy Level Diagram for  $H_2$ 

The overlap integral of the  $H_2$  molecule:

$$S = \int 1S_A(\vec{r}) \cdot 1S_B(\vec{r})dr^3 \tag{23}$$

Symmetry-adapted atomic orbitals: (g is gerade, u is ungerade)

$$\sigma_g = (1S_A + 1S_B) \cdot \frac{1}{\sqrt{2(1+S)}}$$
 (24)

$$\sigma_g = (1S_A + 1S_B) \cdot \frac{1}{\sqrt{2(1+S)}}$$

$$\sigma_u = (1S_A - 1S_B) \cdot \frac{1}{\sqrt{2(1-S)}}$$
(24)



Figure 2  $H_2$  Electronic Wavefunction

#### 1.3.1 Molecular Orbital Theory

Here are some basic orbital diagram (after Hartree-Fock calculation usually). It introduces the the spin-up  $(\alpha)$  and spin-down  $(\beta)$  in molecular orbital diagram.



In molecular orbital theory, put both electrons in bonding orbital. The state is  $|1\bar{1}\rangle$ .

#### 1.3.2 Configuration Interaction

True wavefunction for ground state in the minimal basis set is a linear combination.

$$|\psi_g\rangle = c_1|\sigma_g\bar{\sigma}_g\rangle + c_2|\sigma_u\bar{\sigma}_u\rangle$$
  
=  $c_1|1\bar{1}\rangle + c_2|2\bar{2}\rangle$  (26)

Note that the other determinants  $\sigma_g \bar{\sigma}_u$  and  $\sigma_u \bar{\sigma}_g$  have wrong symmetry:  $g \times u = u$ . In CI: create Hamiltonian matrix  $\langle \lambda | \hat{H} | \mu \rangle$ 

| $\hat{H}$           | $ 1ar{1}\rangle$                                                                                          | $ 2\bar{2}\rangle$                                                                                        |
|---------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\langle 1\bar{1} $ | $\langle 1 \hat{h} 1\rangle + \langle \bar{1} \hat{h} \bar{1}\rangle + \langle 1\bar{1}  1\bar{1}\rangle$ | $\langle 1\bar{1}  2\bar{2}\rangle$                                                                       |
| $\langle 2\bar{2} $ | $\langle 2\bar{2}  1\bar{1}\rangle$                                                                       | $\langle 2 \hat{h} 2\rangle + \langle \bar{2} \hat{h} \bar{2}\rangle + \langle 2\bar{2}  2\bar{2}\rangle$ |

Simplify the matrix, we can get:  $\begin{bmatrix} \varepsilon_1 & v \\ v & \varepsilon_2 \end{bmatrix}$ 

Next, diagonal the matrix in order to get the energy from the Hamiltonian matrix.

$$\begin{bmatrix} \varepsilon_1 - \lambda & v \\ v & \varepsilon_2 - \lambda \end{bmatrix}$$
 (27)

$$(\varepsilon_1 - \lambda)(\varepsilon_2 - \lambda) - \nu^2 = 0 \tag{28}$$

$$\varepsilon_1 \varepsilon_2 - \lambda(\varepsilon_1 + \varepsilon_2) + \lambda^2 - \nu^2 = 0 \tag{29}$$

We can get two solutions from this problem.

• Full CI solutions:

$$\lambda = \frac{1}{2} (\varepsilon_1 + \varepsilon_2 \pm \sqrt{(\varepsilon_1 + \varepsilon_2)^2 - 4[(\varepsilon_1 - \varepsilon_2) - v^2]})$$

$$= \frac{1}{2} (\varepsilon_1 + \varepsilon_2) \pm \frac{1}{2} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + 4v^2}$$
(30)

• Second order perturbation(MP2) solutions: Approximation:

$$\sqrt{(\varepsilon_{1} - \varepsilon_{2})^{2} + 4\nu^{2}} = (\varepsilon_{2} - \varepsilon_{1})\sqrt{1 + \frac{4\nu^{2}}{(\varepsilon_{2} - \varepsilon_{1})^{2}}} \qquad \text{use Taylor:} \sqrt{1 + x} \approx 1 + \frac{1}{2}x \quad (31)$$

$$\approx (\varepsilon_{1} - \varepsilon_{2}) + \frac{1}{2} \frac{4\nu^{2}}{(\varepsilon_{2} - \varepsilon_{1})} \qquad \varepsilon_{2} - \varepsilon_{1} > 0 \quad (32)$$

Energy with MP2 approximation:

$$E_{\pm} \cong \frac{1}{2} (\varepsilon_1 + \varepsilon_2) \pm \left[ \frac{1}{2} (\varepsilon_1 - \varepsilon_2) + \frac{v^2}{\varepsilon_2 - \varepsilon_1} \right]$$
 (33)

Note that the lower energy,  $E_{-}$ , should be the energy of ground state; the higher energy,  $E_{+}$ , should be the energy of excited state.

Sketch the potential energy curve (PES) for the  $H_2$  molecule for variety of methods.



Figure 4 Potential Energy Curve at HF+ MP2 +FCI

Due to the FCI, the energy levels shift from  $\varepsilon_1$  and  $\varepsilon_2$ . The shift depends on the  $\hat{V}:\langle 1\bar{1}||2\bar{2}\rangle$ , and  $\varepsilon_1 - \varepsilon_2$ . The FCI (diagonalize the matrix) is the correct result at long distance. When  $\varepsilon_1 \approx \varepsilon_2$ , second order correction(MP2) is not accurate, because the existence of the term  $\frac{v^2}{\varepsilon_1 - \varepsilon_2} \to -\infty$ ! This is the behaviour of MP2 in Gaussian.

### 1.4 Example: Excited States of $H_2$ Molecule

Let us analyze the excited states of  $H_2$  molecule in a minimal basis, singlet  ${}^1\Sigma_u$  and triplet  ${}^3\Sigma_u$ .

• Triplet state: (both electrons are spin-up or spin-down in different orbitals)



Figure 5 MO Diagram of Triplet States

• Singlet or Triplet state: (linear combinations of spin-up electron and spin-down electron)

Figure 6 MO Diagram of Triplet States or Single States

$$E_T = \langle 1|\hat{h}|1\rangle + \langle 2|\hat{h}|2\rangle + \langle 12||12\rangle \tag{34}$$

To calculate singlet energy, set up the  $2 \times 2$  matrix:

| $\hat{H}$           | $ 1ar{2} angle$                                                                                           | $ \bar{1}2\rangle$                                                                                        |
|---------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\langle 1\bar{2} $ | $\langle 1 \hat{h} 1\rangle + \langle \bar{2} \hat{h} \bar{2}\rangle + \langle 1\bar{2}  1\bar{2}\rangle$ | $\langle 1\bar{2}  \bar{1}2\rangle$                                                                       |
| $\langle \bar{1}2 $ | $\langle \bar{1}2  1\bar{2}\rangle$                                                                       | $\langle 2 \hat{h} 2\rangle + \langle \bar{1} \hat{h} \bar{1}\rangle + \langle \bar{1}2  \bar{1}2\rangle$ |

What can we say about the integrals in terms of the spin-orbitals?

Let us assume that the spatial parts of the orbitals are the same.  $|1\rangle = \psi_1(\vec{r})|\alpha\rangle, |1\rangle = \psi_1(\vec{r})|\beta\rangle$ .

$$\langle 1\bar{2}||1\bar{2}\rangle = \langle 1\bar{2}|1\bar{2}\rangle - \langle 1\bar{2}|\bar{2}1\rangle$$

$$= \int \psi_1(1)\bar{\psi}_2(2)\frac{1}{r_{12}}\psi_1(1)\bar{\psi}_2(2) - \int \psi_1(1)\bar{\psi}_2(2)\frac{1}{r_{12}}\bar{\psi}_2(1)\psi_1(2)d1d2$$

$$= \langle \alpha|\alpha\rangle_1\langle\beta|\beta\rangle_2 - \langle\alpha|\beta\rangle_1\langle\beta|\alpha\rangle_2$$
(35)

NOTE:

The second integral is zero because the spin does note match. eg,  $\langle \alpha(1)|\beta(1)\rangle = 0$ 

On the other hand:

$$\langle 1\bar{2}||\bar{1}2\rangle = \langle 1\bar{2}|\bar{1}2\rangle - \langle 1\bar{2}|2\bar{1}\rangle$$

$$= 0 - \langle 12|21\rangle \tag{36}$$

NOTE:

- 1. The integral  $\langle 12|21\rangle$  is spatial integral.
- 2. Because these integrals occur often, they get a special symbol for convenience.

$$\langle ab|ab\rangle = J_{12} \quad ; \quad \langle 12|12\rangle = J_{12} \tag{37}$$

$$\langle ab|ba\rangle = K_{12} \quad ; \quad \langle 12|21\rangle = K_{12}$$
 (38)

$$\langle a|\hat{h}|a\rangle = \langle \bar{a}|\hat{h}|\bar{a}\rangle = h_{aa} \tag{39}$$

*J* is Coulomb integral; *K* is Exchange integral.

Then, CI matrix can be reduced to:

| $\hat{H}$           | $ 1\bar{2}\rangle$         | $ \bar{1}2\rangle$         |
|---------------------|----------------------------|----------------------------|
| $\langle 1\bar{2} $ | $h_{11} + h_{22} + J_{12}$ | $-K_{12}$                  |
| $\langle \bar{1}2 $ | $-K_{12}$                  | $h_{11} + h_{22} + J_{12}$ |

$$\begin{bmatrix} \varepsilon & -K_{12} \\ -K_{12} & \varepsilon \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = (\varepsilon - K_{12}) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (40)

$$\begin{bmatrix} \varepsilon & -K_{12} \\ -K_{12} & \varepsilon \end{bmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = (\varepsilon + K_{12}) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
(41)

$$E_{-} = \varepsilon - K_{12} \tag{42}$$

$$E_{+} = \varepsilon + K_{12} \tag{43}$$

We can a higher energy,  $E_+$ , and a lower energy,  $E_-$ .

Compare to triplet energy:

$$h_{11} + h_{12} + \langle 12||12\rangle = h_{11} + h_{12} + J_{12} - K_{12}$$
  
=  $\varepsilon - K_{12}$   
=  $E_{-} = E_{\text{triplet}}$  (44)

Similarly, the singlet energy:

$$E_{+} = E_{\text{singlet}} \tag{45}$$

Like spin in Figure 5 is lower in energy than singlet coupled opposite spin (Figure 6).

• The singlet spin(1 state):  $\hat{S}_{+}|12\rangle = |1\bar{2}\rangle - |\bar{1}2\rangle = |1\bar{2}\rangle + |\bar{1}2\rangle$ 

• The triplet spin(3 states):  $\hat{S}_{-}|12\rangle = |12\rangle, |\bar{1}\bar{2}\rangle, |1\bar{2}\rangle + |\bar{1}2\rangle$ 

The integral  $K_{12} = \int \psi_1(1)\psi_2(2)\frac{1}{r_{12}}\psi_2(1)\psi_1(2) > 0$ , hence in this  $2 \times 2$  model:  $E_{\text{singlet}} > E_{\text{triplet}}$ 

This is the origin of Hund's rule in atomic spectra. Hund's rule: put the electrons(spin configuration) in the lowest energy. Because exchange interaction due to antisymmetry of wave function.

#### 1.5 Some Useful Notations for Evaluating Matrix Elements

Using the Slater rules we can easily write down the energy expression for any determinant. Example:



Figure 7 MO Diagram of Example

The element of Slater rules are the diagonal elements,  $\langle K|\hat{H}|K\rangle$ . The energy of this determinant:

$$E = \langle 1|\hat{h}|1\rangle + \langle \bar{1}|\hat{h}|\bar{1}\rangle + \langle 2|\hat{h}|2\rangle + \langle 3|\hat{h}|3\rangle + \langle 1\bar{1}||1\bar{1}\rangle + \langle 12||12\rangle + \langle 13||13\rangle + \langle \bar{1}2||\bar{1}2\rangle + \langle \bar{1}2||\bar{1}3\rangle + \langle 23||23\rangle$$

$$(46)$$

Here is the general formula of energy:

$$E = \sum_{a \in K} \langle a|\hat{h}|a\rangle + \sum_{a < b \in K} \langle ab||ab\rangle \tag{47}$$

Let us condense a little bit and consider spin explicitly. Assume same spatial orbitals for  $\alpha$  and  $\beta$  spin. Consider real orbitals only.

$$\langle a|\hat{h}|a\rangle = \langle \bar{a}|\hat{h}|\bar{a}\rangle = h_{aa} \tag{48}$$

$$\langle a|\hat{h}|\bar{b}\rangle = 0 \tag{49}$$

$$\langle ab|ab\rangle = J_{ab} \tag{50}$$

$$\langle ab|ba\rangle = K_{ab} \tag{51}$$

NOTE:

•  $J_{ab}$  is spatial Colomb integral. Coulomb interaction between  $|\psi_a(1)|^2$  and  $|\psi_b(2)|^2$ 

$$J_{ab} = \int \psi_a^*(1)\psi_a(1) \frac{1}{r_{12}} \psi_b^*(2)\psi_b(2)d1d2$$
 (52)

•  $K_{ab}$  is spatial exchange integral. Exchange interaction between  $\psi_a(1)\psi_b(1)$  and  $\psi_a(2)\psi_b(2)$ .  $\psi_a\psi_b$  may not be positive everywhere, but  $K_{ab}>0$  is always true.

$$K_{ab} = \int \psi_a^*(1)\psi_b(1)\frac{1}{r_{12}}\psi_a^*(2)\psi_b(2)d1d2$$
 (53)

We would have more integrals  $\langle pq|rs\rangle$ , but in the example we can use the 'diagonal' integrals exclusively.

$$\langle ab||ab\rangle = \langle ab|ab\rangle - \langle ab|ba\rangle = J_{ab} - K_{ab} \tag{54}$$

$$\langle a\bar{b}||a\bar{b}\rangle = \langle a\bar{b}|a\bar{b}\rangle - \langle a\bar{b}|\bar{b}a\rangle = J_{ab} \tag{55}$$

$$\langle a\bar{b}||\bar{a}b\rangle = -\langle a\bar{b}|b\bar{a}\rangle = -K_{ab} \tag{56}$$

Moreover the integrals/ orbitals are real. Then, we can flip(interchange) the a and b labels due to symmetry.

$$\langle aa|bb\rangle = \langle ab|ba\rangle = K_{ab} \tag{57}$$

$$\langle a\bar{a}||b\bar{b}\rangle = \langle a\bar{a}|b\bar{b}\rangle - \langle a\bar{a}|\bar{b}b\rangle = K_{ab}$$
(58)

Using these integrals we can set up some interesting problems.

#### 1.6 Example: Carbon Atom

Example: Carbon.

Firstly, we need some background about angular momentum. See Link: Atomic Term Symbol.

• Angular momentum theory:

For states, we use upper case.

The orbital angular momentum:  $L, M_L = -L, \dots, +L$ . (2L + 1) states associated with orbital.

The spin angular momentum:  $S, M_S = -S, \dots, +S$ . (2S + 1) states associated with spin.

• The easiest way to construct:

1) highest  $M_S$ :  $M_S = \sum m_s$ 

$$m_s = \frac{1}{2}$$
 for  $\alpha$   $m_s = -\frac{1}{2}$  for  $\beta$ 

2) highest  $M_L$ :  $M_L = \sum m_l$ 

• Term symbol: (2S+1)L

$$L = 0, 1, 2, 3, 4 \Rightarrow S, P, D, F, G$$

Return to atom: Carbon.

The ground state configuration of Carbon atom:  $1s^22s^2(2p)^2$ . There are  $C_6^2 = 15$  different quantum states.

Regardless of the close shell  $(1s^22s^2)$ , we have six spin-orbitals,  $p_1, p_0, p_{-1}, \bar{p}_1, \bar{p}_0, \bar{p}_{-1}$ .

1) Highest  $M_S$ , of theses highest  $M_L$ :  $|p_1p_0|$  state

$$M_S = \frac{1}{2} + \frac{1}{2} = 1$$
  $S = M_S = 1$   $(2S + 1) = 3$   $M_L = 1 + 0 = 1$   $L = M_L = 1$   $(2L + 1) = 3$ 

There are 9 degeneracies in total. (2S + 1)(2L + 1) = 9.

Term symbol  ${}^{3}P$  has 9 states. (Neglect *J*-coupling spin-orbital.)

These 9 states are all degenerate.

2) Highest  $M_L$ , of theses highest  $M_S$ :  $|p_1\bar{p}_1|$  state

$$M_S = \frac{1}{2} - \frac{1}{2} = 0$$
  $S = M_S = 0$   $(2S + 1) = 1$   $M_L = 1 + 1 = 2$   $L = M_L = 2$   $(2L + 1) = 5$ 

There are 9 degeneracies in total. (2S + 1)(2L + 1) = 5.

Term symbol  ${}^{1}D$  has 5 states. (Neglect *J*-coupling spin-orbital.)

These 5 states are all degenerate.

3) One state left: <sup>1</sup>S

We get degeneracy pattern from angular momentum theory.

Next, we will do Carbon atom by diagonalizing Hamiltonian  $15 \times 15$  matrix. Use symmetry to do small blocks. We will use abbreviate symbols, x, y, z,  $\bar{x}$ ,  $\bar{y}$ ,  $\bar{z}$ , represent real orbitals  $p_x$ ,  $p_y$ ,  $p_z$ ,  $\bar{p}_x$ ,  $\bar{p}_y$ ,  $\bar{p}_z$ . There are three types of  $M_S$  function:

• 
$$M_S = 0$$
:  $|x\bar{x}|, |y\bar{y}|, |z\bar{z}|,$   
 $|x\bar{y}|, |x\bar{z}|, |y\bar{x}|, |y\bar{z}|, |z\bar{x}|, |z\bar{y}|$ 

- $M_S = 1$ : |xy|, |xz|, |yz|
- $M_S = -1$ :  $|\bar{x}\bar{y}|, |\bar{x}\bar{z}|, |\bar{y}\bar{z}|$

Types of 2-electron integrals:

1) 
$$h_{xx} = h_{yy} = h_{zz} \equiv h$$

2) 
$$\langle xx|xx\rangle = \langle yy|yy\rangle = \langle zz|zz\rangle = D$$

3) 
$$\langle xy|xy\rangle = \langle xz|xz\rangle = \langle yz|yz\rangle = J$$

4) 
$$\langle xy|yx \rangle = \langle xz|zx \rangle = \langle yz|zy \rangle = \langle xx|yy \rangle = \langle xx|zz \rangle = \langle yy|zz \rangle = K$$

- 5) Integrals in which x, y, z occur an odd number of times are zero.
- 6) There is one more important about relation between the integrals: D = J + 2K

Now we can partition Hamiltonian in small sub-blocks:

•  $M_S = 1$ :

|    | xy         | xz         | yz         |
|----|------------|------------|------------|
| xy | 2h + J - K | 0          | 0          |
| XZ | 0          | 2h + J - K | 0          |
| yz | 0          | 0          | 2h + J - K |

$$E(^{3}P) = 2h + J - K$$
, same for  $M_{S} = -1$ , likewise  $\bar{x}\bar{y}, \bar{x}\bar{z}, \bar{y}\bar{z}$ 

•  $M_S = 0$ :

|            | $x\bar{y}$ | $y\bar{x}$ |
|------------|------------|------------|
| $x\bar{y}$ | 2h + J     | +K         |
| $y\bar{x}$ | +K         | 2h + J     |

NOTE: 
$$\langle x\bar{y}||y\bar{x}\rangle = \langle x\bar{y}|y\bar{x}\rangle - \langle x\bar{y}|\bar{x}y\rangle = \langle xy|yx\rangle - 0 = K$$

$$E = 2h + J \pm K$$
, for  $x\bar{y} + \bar{x}y$ 

$$E(^{3}P) = 2h + J - K$$
, for  $|x\bar{y}\rangle - |y\bar{x}\rangle$ 

$$E(^{1}D) = 2h + J + K$$
, for  $|x\bar{y}\rangle + |y\bar{x}\rangle$ 

Same for  $x\bar{z} \pm z\bar{x}$  and  $y\bar{z} \pm z\bar{y}$ 

 $\Rightarrow$  9 states found for triplet  ${}^{3}P$ ; 3 states for singlet  ${}^{1}D$ .

Finally:

|            | $x\bar{x}$ | $y\bar{y}$ | $z\bar{z}$ |
|------------|------------|------------|------------|
| $x\bar{x}$ | 2h + D     | K          | K          |
| $y\bar{y}$ | K          | 2h + D     | K          |
| $z\bar{z}$ | K          | K          | 2h + D     |

NOTE: 
$$\langle x\bar{x}||y\bar{y}\rangle = \langle x\bar{y}|y\bar{x}\rangle = K$$

Familiar with Hamiltonian, diagonalize the matrix and get eigenvectors and eigenvalues.

The eigenvector 
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 with the eigenvalue  $E = 1h + D + 2K = 2h + J + 4K \Rightarrow {}^1S$ .

The eigenvector 
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 with the eigenvalue  $E = 1h + D + 2K = 2h + J + 4K \Rightarrow {}^{1}S$ .

The eigenvectors  $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$  and  $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$  with the same eigenvalue  $E = 2h + D - K = 2h + J + K \Rightarrow {}^{1}D$ .

 $^{1}D$ .

Hence, 
$${}^{1}S = |x\bar{x}\rangle + |y\bar{y}\rangle + |z\bar{z}\rangle$$

$${}^{1}D = \begin{cases} |y\bar{y}\rangle - |z\bar{z}\rangle \\ 2|x\bar{x}\rangle - |y\bar{y}\rangle - |z\bar{z}\rangle \end{cases}$$
$${}^{1}D = \begin{cases} |x\bar{x}\rangle - |y\bar{y}\rangle \\ 2|z\bar{z}\rangle - |x\bar{x}\rangle - |y\bar{y}\rangle \end{cases}$$

Atom: small but complicated due to degeneracies and small excitation energies. Many states are linear combinations of determinants.

Hartree-Fock is useless, because HF method depends on single determinants.

DFT is also useless.

Electronic structure (multireference method): Qualitative wave functions, required more than one determinants.