HUDM6052 Psychometric II Homework_04

Chenguang Pan

2023-11-14

Contents

Q1-a-Parameters-Estimation	1
Q1-a-(1)	4
Q1-a-(2)	4
Q1-a-(3)	Į.

Q1-a-Parameters-Estimation

Fit the 1PL, 2PL, and 3PL models...report the estimated item parameters in separated tables

My Solution:

To make the layout concise and good-looking, I intentionally omitted the codes for data cleaning and some instant display of running outcomes. I attached the estimated item parameters from all three models into one table to save space.

```
> # load the binary response dataset
> library(mirt)
> df <- read.csv("/Users/panpeter/Desktop/PhD_Learning/HUDM6052 Psychometric II/HUDM6052_Psychometic_II
> df <- df[,-1]</pre>
                          Run 1PL
> # specify the model for 33 items loading on 1 dimension
> # and constrain all the item slope to be equal for 1PL estimation
> spec <- 'F = 1-33
+ CONSTRAIN = (1-33, a1)'
> # estimated the model
> # since I constrained all slopes to be equal, here the argument "2PL" is safe
> irt_1pl <- mirt(df, model = spec, itemtype = "2PL", SE=T)</pre>
Iteration: 1, Log-Lik: -20276.377, Max-Change: 0.18304Iteration: 2, Log-Lik: -20265.381, Max-Change: 0.
Calculating information matrix...
> irt_1pl
Call:
```

```
mirt(data = df, model = spec, itemtype = "2PL", SE = T)
Full-information item factor analysis with 1 factor(s).
Converged within 1e-04 tolerance after 25 EM iterations.
mirt version: 1.40
M-step optimizer: BFGS
EM acceleration: Ramsay
Number of rectangular quadrature: 61
Latent density type: Gaussian
Information matrix estimated with method: Oakes
Second-order test: model is a possible local maximum
Condition number of information matrix = 50.40657
Log-likelihood = -20260.22
Estimated parameters: 66
AIC = 40588.44
BIC = 40756.74; SABIC = 40648.75
> # -----
                Run 2PL
> #
> # -----
> irt_2pl <- mirt(df, model = 1, itemtype = "2PL", SE=T)
Iteration: 1, Log-Lik: -20276.377, Max-Change: 0.63072Iteration: 2, Log-Lik: -20095.717, Max-Change: 0.
Calculating information matrix...
> irt_2pl
Call:
mirt(data = df, model = 1, itemtype = "2PL", SE = T)
Full-information item factor analysis with 1 factor(s).
Converged within 1e-04 tolerance after 32 EM iterations.
mirt version: 1.40
M-step optimizer: BFGS
EM acceleration: Ramsay
Number of rectangular quadrature: 61
Latent density type: Gaussian
Information matrix estimated with method: Oakes
Second-order test: model is a possible local maximum
Condition number of information matrix = 11.16451
Log-likelihood = -20078.62
Estimated parameters: 66
AIC = 40289.23
BIC = 40615.92; SABIC = 40406.3
> #
                       Run 3PL
> # specify the model
> spec <- 'F = 1-33
```

```
+ PRIOR = (1-33, g, norm, -1.1, 2)'
> irt_3pl <- mirt(df, model = spec, itemtype = "3PL", SE = T)
Iteration: 1, Log-Lik: -20990.083, Max-Change: 1.61517Iteration: 2, Log-Lik: -20300.703, Max-Change: 1.
```

	1PL				2PL				3PL			
Items	а	b	g	u	а	b	g	u	а	b	g	u
mathc1	0.960	-0.881	0	1	1.078	-0.816	0	1	1.385	-0.250	0.238	1
mathc2	0.960	-1.706	0	1	1.135	-1.516	0	1	1.198	-1.170	0.198	1
mathc3	0.960	-0.162	0	1	1.307	-0.145	0	1	1.529	0.080	0.095	1
mathc4	0.960	-0.412	0	1	1.308	-0.349	0	1	2.095	0.170	0.235	1
mathc5	0.960	1.104	0	1	0.627	1.556	0	1	2.282	1.443	0.187	1
mathc6	0.960	-0.696	0	1	1.352	-0.569	0	1	1.428	-0.432	0.060	1
mathc7	0.960	-0.457	0	1	1.044	-0.434	0	1	1.247	-0.081	0.141	1
mathc8	0.960	-0.562	0	1	0.897	-0.589	0	1	0.951	-0.395	0.071	1
mathc9	0.960	-2.089	0	1	1.415	-1.609	0	1	1.464	-1.443	0.129	1
mathc11	0.960	-0.668	0	1	1.243	-0.571	0	1	1.956	0.092	0.293	1
mathc12	0.960	0.470	0	1	0.856	0.514	0	1	1.130	0.802	0.114	1
mathc13	0.960	-1.212	0	1	1.535	-0.910	0	1	2.546	-0.207	0.360	1
mathc14	0.960	0.552	0	1	0.775	0.655	0	1	0.887	0.819	0.060	1
mathc15	0.960	0.498	0	1	0.726	0.624	0	1	0.858	0.838	0.075	1
mathc16	0.960	-0.216	0	1	0.829	-0.237	0	1	0.942	0.027	0.090	1
mathc17	0.960	0.715	0	1	0.837	0.795	0	1	1.254	1.050	0.125	1
mathc18	0.960	0.767	0	1	1.107	0.688	0	1	1.253	0.757	0.034	1
mathc19	0.960	0.290	0	1	0.551	0.475	0	1	1.432	1.302	0.297	1
mathc21	0.960	-0.004	0	1	0.607	0.011	0	1	3.411	1.149	0.407	1
mathc22	0.960	-0.253	0	1	0.990	-0.250	0	1	1.401	0.295	0.212	1
mathc23	0.960	-0.085	0	1	0.688	-0.099	0	1	1.428	0.863	0.316	1
mathc24	0.960	-0.052	0	1	0.986	-0.053	0	1	1.460	0.460	0.202	1
mathc25	0.960	-0.170	0	1	1.230	-0.155	0	1	1.517	0.132	0.122	1
mathc26	0.960	0.332	0	1	0.893	0.350	0	1	1.177	0.672	0.125	1
mathc27	0.960	-0.282	0	1	1.479	-0.232	0	1	1.719	-0.018	0.094	1
mathc28	0.960	-0.026	0	1	1.949	-0.044	0	1	2.260	0.100	0.058	1
mathc29	0.960	0.119	0	1	1.229	0.092	0	1	1.928	0.476	0.173	1
mathc31	0.960	1.250	0	1	0.723	1.564	0	1	1.699	1.576	0.150	1
mathc32	0.960	-0.476	0	1	0.837	-0.522	0	1	1.600	0.481	0.350	1
mathc33	0.960	0.176	0	1	1.284	0.134	0	1	2.790	0.582	0.217	1
mathc34	0.960	0.165	0	1	0.678	0.229	0	1	0.863	0.645	0.131	1
mathc35	0.960	0.667	0	1	0.360	1.577	0	1	1.480	1.899	0.288	1
mathc36	0.960	1.449	0	1	1.060	1.352	0	1	1.601	1.359	0.070	1

Due to the limitation of mirt package, I can't constrain all the α to be 1. Rather, I can only set them to be equal across all the items. Therefore, in the estimation for the 1PL, the estimated universal α is .96 here.

Q1-a-(1)

Does it appear reasonable to assume all the items having an equal slope...

My Solution:

No.

From a aspect of test development, since this is a test about math placement, we should expect that items can discriminate students with different traits well. In addition, comparing the estimated parameters from 2PL model versus 1PL, these items' levels of discrimination spread along a wide range. It is reasonable to have items with higher levels of discrimination than others.

From a mathematics perspective, since the 1PL model is nested in the 2PL model, I conducted the Likelihood Ratio Test to compare the two models as followed:

$$D = -2[ln(L_{1pl}) - ln(L_{2pl})].$$

Plug the log likelihood estimated from the above code chunck, then one can have D = 363.2 at the degree of freedom of $df = df_{2pl} - df_{1pl} = 66 - 34 = 32$. Based on the Chi-squared distribution, the p value is lower than .001. Therefore, 2PL is better than 1PL, which means the discrimination is preferred.

Q1-a-(2)

Does it appear useful to include a guessing parameter in the model...

My Solution:

Yes, it is useful.

Intuitively, it is reasonable to include a guessing parameter since this a test with multiple choice and guessing is very possible. In addition, by looking through all the guessing parameters, one can find that the matchc13, matchc21, and matchc32 do have quite high guessing rate, i.e., all above .30.

However, in terms of model comparison, when using the LRT test again to compare the 2PL vs 3PL model, one can have D=28.28 at 33 degree of freedom, P=.701. Based on the parsimony rule, one should endorse the simpler model, i.e., the 2PL.

Therefore, my overall conclusion is including a guessing parameter is useful in this scenario. A practitioner should choose the either model based on their purpose since these two models do not differ a lot.

```
> # get the fit indices for 1PL model
> M2(irt_1pl, na.rm = T)
            M2 df p
                          RMSEA
                                   RMSEA_5
                                              RMSEA_95
                                                            SRMSR
                                                                        TLI
stats 992.2492 527 0 0.03104487 0.02805368 0.03398001 0.05781072 0.9632371
stats 0.9633067
> # get the fit indices for 2PL model
> M2(irt_2pl, na.rm = T)
            M2 df
                                     RMSEA
                                               RMSEA 5
                                                         RMSEA 95
                                                                       SRMSR
stats 678.0246 495 7.852727e-08 0.02009113 0.01617592 0.02371771 0.03274386
stats 0.9846029 0.9855652
```

Q1-a-(3)

Evaluate the goodness of fit of the items with the option of the chi-square test...

My Solution:

I conduct the item fit analysis on each model and summarize the results into one table to make the layout concise.

```
> # get the item fit indices for each model
> item_fit_1pl <- itemfit(irt_1pl, na.rm = T)</pre>
> item_fit_2pl <- itemfit(irt_2pl, na.rm = T)</pre>
> item_fit_3pl <- itemfit(irt_3pl, na.rm = T)</pre>
> # combine all the outputs into one table
> item_fit_all <- cbind(item_fit_1pl[,c("item")],</pre>
                       round(item_fit_1pl[,c("S_X2", "p.S_X2")],4),
+
                       round(item_fit_2pl[,c("S_X2", "p.S_X2")],4),
                       round(item_fit_3pl[,c("S_X2", "p.S_X2")],4))
+
> names(item_fit_all)[1] <- "item"</pre>
> # get all the item fit indices for 1PL, 2PL, and 3PL model
> item_fit_all
      item
              S_X2 p.S_X2
                             S_X2 p.S_X2
                                            S_X2 p.S_X2
   mathc1 24.8711 0.4128 23.0566 0.4575 23.8800 0.3536
1
2
   mathc2 28.1234 0.2112 30.4743 0.1074 28.6024 0.1239
3
   mathc3 27.2722 0.2919 22.4566 0.4929 21.7064 0.4775
   mathc4 26.5449 0.3261 19.2254 0.6314 17.4558 0.6831
5
   mathc5 97.3404 0.0000 52.8362 0.0014 39.3238 0.0183
6
   mathc6 35.2844 0.0643 26.8461 0.2171 23.9949 0.2933
7
   mathc7 30.6375 0.1645 30.4324 0.1708 30.8269 0.1271
8
   mathc8 31.1674 0.1490 31.5235 0.1393 23.0747 0.4564
   mathc9 31.5513 0.0854 16.4299 0.6896 12.8670 0.7994
10 mathc11 24.7300 0.4205 17.4787 0.7364 16.8747 0.7187
11 mathc12 23.5755 0.4861 22.8300 0.5298 20.6982 0.5995
12 mathc13 35.9083 0.0422 24.6484 0.2627 19.3900 0.3682
13 mathc14 27.5382 0.2800 23.1188 0.5128 20.5069 0.6112
14 mathc15 33.5261 0.0934 21.0409 0.6903 17.2351 0.7976
15 mathc16 26.6813 0.3195 25.3271 0.3882 22.7550 0.5343
16 mathc17 21.2673 0.6229 17.9679 0.8046 17.1584 0.8014
17 mathc18 21.5747 0.6046 22.3173 0.5012 19.1247 0.6376
18 mathc19 54.0475 0.0004 20.7629 0.7058 20.1995 0.6854
19 mathc21 61.7627 0.0000 33.2577 0.1247 23.3450 0.4408
20 mathc22 20.4045 0.6736 20.4046 0.6736 20.8114 0.5926
21 mathc23
           20.8365 0.6483 14.4939 0.9524 13.5269 0.9566
```

The results show that all items fit well in all models except the mathc5 item.