Q: Suppose that $X_1, X_2, ..., X_n$ are independent and identically distributed random variables, each having probability density function $f(\cdot)$ and median θ . We want to test

 $H_0: \theta = \theta_0 \text{ against } H_1: \theta > \theta_0$

Consider a test that rejects H_0 if S > c for some c depending on the size of the test, where S is the cardinality of the set $\{i: X_i > \theta_0, 1 \le i \le n\}$. Then which one of the following statements is true?

- (A) Under H_0 , the distribution of S depends on $f(\cdot)$.
- (B) Under H_1 , the distribution of S does not depend on $f(\cdot)$.
- (C) The power function depends on θ .
- (D) The power function does not depend on θ .

Solution:

Definition 1. *Median* θ *is defined as* $Pr(X_i \le \theta) = 0.5$ *for all i from 1 to n.*

Definition 2. S is defined as

$$S = \sum_{i=1}^{n} I(X_i > \theta_0)$$

where $I(X_i > \theta_0 \text{ represents an indicator function.}$

$$I(X_i > \theta_0) = \begin{cases} 1, & \text{if } X_i > \theta_0 \\ 0, & \text{if } X_i \le \theta_0 \end{cases}$$
 (1)

$$E(S) = E\left(\sum_{i=1}^{n} I(X_i > \theta_0)\right)$$
 (2)

$$=\sum_{i=1}^{n}E(I(X_{i}>\theta_{0}))$$
(3)

Since,

$$E(I(X_i > \theta_0)) = P(X_i > \theta_0) = \int_{\theta_0}^{\infty} f(x) dx$$
(4)

Therefore,

$$E(S) = \sum_{i=1}^{n} \int_{\theta_0}^{\infty} f(x) dx$$
 (5)

- 1) From (5), under H_0 , the distribution of S depends on $f(\cdot)$.
- 2) The power function can be expressed as:

$$\pi(\theta) = \Pr(\text{Reject } H_0 | H_1 \text{ is true})$$
 (6)

$$= \Pr(S > c|\theta) \tag{7}$$

Therefore, power function depends on value of θ .