1 Math

2 Applied

Topics covered up to 31 October

Matrix / Vector differentiation

2.1 Linear Models

Least Squares Principle

$$\arg\min_{\beta} \|Y - X\beta\|^2$$

Normal Model

$$Y = X\beta + \epsilon, \qquad \epsilon \sim N(0, \sigma^2 I)$$

Normal Equations - Any b satisfying this solves the least squares

$$X^T X b = X^T y$$

Gauss Markov Theorem - $\hat{\beta}(X^TX)^{-1}y$ is Best Linear Unbiased Estimator (BLUE) of β .

Estimating the variance: $\frac{\left\|y-X\hat{\beta}\right\|^2}{\sigma^2} \sim \chi_{n-p}^2$.

$$\hat{\sigma}^2 = \frac{\left\| y - X\hat{\beta} \right\|^2}{n - p}$$

Use t test for hypothesis testing and confidence intervals for the value of a particular β_j coefficient.

$$\frac{\beta_j - \beta_j^*}{\hat{\sigma}\sqrt{w_{ii}}} \sim t_{n-p}$$

General linear tests. Partition $\beta = (\beta_1, \beta_2)$ where β_1 is an r vector and β_2 is p - r. Null hypothesis $H_0: \beta_2 = \beta_2^*$ (often 0), and $H_a: \beta_2 \neq \beta_2^*$. Then $SSE_r = \left\| y - X_2\beta_2^* - X_1\tilde{\beta_1} \right\|^2$ is the sum of squared error for the reduced model and $SSE_f = \left\| y - X\hat{\beta} \right\|^2$ is the squared sum of error for the full model. Under H_0 :

$$\frac{\frac{SSE_r - SSE_f}{p - r}}{\frac{SSE_f}{n - p}} \sim F_{p - r, n - p}$$

Alternate forms of linear test, and testing a linear combination if $R\beta = r$.

$$\frac{(R\hat{\beta} - r)^T (R(X^T X)^{-1} R^T)^{-1} (R\beta - r)/s}{\hat{\sigma}}^2 \sim F_{s,n-p}$$

Confidence intervals for new observation Y_h and $E[Y_h]$.

Simultaneous confidence bands for all f(x).

If the model has an intercept then SSTO = SSR + SSE.

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i = \bar{y})^2 + (y_i - \hat{y}_i)^2$$

 \mathbb{R}^2 and adjusted \mathbb{R}^2

2.2 ANOVA

Three principles of experimental design: 1) Replication 2) Randomization 3) Blocking One way ANOVA with n total observations, K groups:

SS DF
SSTR
$$\sum_{j=1}^{K} n_j (\bar{y_j}. - \bar{y_.})^2$$
 K - 1
SSE $\sum_{i=1}^{n} (y_{ij} - \bar{y_i})^2$ n - K
SSTO $\sum_{i=1}^{n} (y_{ij} - \bar{y_.})^2$ n - 1

Contrasts are sums of the form $\Phi = \sum_{i=1}^{K} c_i \mu_i$ with $\sum_{i=1}^{K} c_i = 0$. Tukey's works for all pairwise contrasts. Scheffe's and extended Tukey works for all contrasts. Bonferroni's is for a limited number of pre specified contrasts.

2.3 General Techniques

Singular Value Decompostion (SVD) Any matrix X can be written

$$X = UDV^T$$

with U, V orthogonal, and D diagonal.

Moore Penrose Psuedoinverse A^+ exists uniquely for every matrix A.

Projection matrix P are symmetric and idempotent. They have eigenvalues either 0 or 1.

$$P = P^T$$
 $P^2 = P$

Covariance of linear transformations

$$Cov(Ay, Bx) = ACov(y, x)B^{T}$$

2.4 Distributions

Multivariate Normal $y \sim N(\mu, \Sigma), A$ an $m \times n$ matrix, then

$$Ay \sim N(A\mu, A\Sigma A^t)$$

Noncentral χ^2 . Let $Y \sim N(\mu, I)$ be an n vector. Then

$$||Y||^2 \sim \chi_n^2(||(||\mu|)^2)$$

F

 \mathbf{T}

Studentized range distribution. Let $z_1, \ldots z_K$ be i.i.d N(0,1) and X be an independent χ^2_{ν} . Then

$$\frac{\max_i z_i - \min_i z_i}{\sqrt(X/\nu)} \sim q_{K,\nu}$$