

Geopolitical Event Sentiment Analysis & Commodity Pricing Prediction

MADHURI PANCHUMARTI HARDIK SETHI

INTRODUCTION

Motivation: Understanding how geopolitical disruptions affect global commodity markets

Commodity Focus: Crude Oil, Gold, Wheat, and Natural Gas

Objective: Integrate financial NLP with ML for better market insights

Research Questions & Hypotheses

RQ1: Do geopolitical events impact commodity prices? Hypothesis: Yes, verified as prices tend to increase with conflict due to supply concerns.

RQ2: Does sentiment from financial news influence short-term price movement?

<u>Hypothesis:</u> Partially true, supported in non-linear models like XGBoost.

RQ3: Are machine learning models better than linear regression for forecasting?

<u>Hypothesis:</u> Yes, ML models captured complex interactions and outperformed OLS.

Data Collection and Preprocessing

- •<u>Time Frame:</u> Jan 2021 Apr 2025
- •Data Sources: GNews API (headlines), Yahoo Finance (ETF prices)
- •Queries: Focused on keywords like 'pipeline explosion', 'export ban'

- •<u>Preprocessing:</u> +3/-3 day window alignment, headline-token cleanup
- •Sentiment Scoring: FinBERT model from HuggingFace, scores in [-1, 1]

OLS with price_change as dependent variable

- $R^2 = 0.014$, p-value of sentiment = $0.326 \rightarrow Not$ statistically significant
- Conclusion: Sentiment-price relationship not well captured linearly
- Durbin-Watson = 1.259 → Autocorrelation present
- •Jarque-Bera p ≈ 0.00000032 → Residuals not normal

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	price_comparison_pct OLS Least Squares Sat, 31 May 2025 18:44:29 143 138 4 nonrobust		3		0.014 -0.015 0.4747 0.754 -330.49 671.0 685.8		
		coef	std err	t	P> t	[0.025	0.975]
Intercept C(commodity)[T.Gold C(commodity)[T.Natu C(commodity)[T.Whea finbert_score	ral Gas]	-1.5892 0.0647 0.1213 0.5035 1.6059			0.907 0.831	-1.031 -1.001	1.243 1.688
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.002 0.192		Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.259 29.912 3.20e-07 15.4		

ML Models: XGBoost & Random Forest

- Target: Predict price direction (up/down)
- Random Forest: Accuracy = 73%, ROC AUC = 0.74
- •XGBoost: Accuracy = 76%, ROC AUC = 0.81
- Why ML? Captures non-linearities and interactions
- Features: Sentiment score, commodity type, temporal features

SHAP Interpretation

- Purpose: Explain model predictions feature-by-feature
- Top Contributors: FinBERT score, commodity type, month
- XGBoost SHAP values showed stronger influence than Random Forest
- Helps in understanding model behavior for policy makers and traders

Forecasting Price Magnitudes: LSTM

- Model: LSTM with 64-unit hidden layer and 5-day rolling window
- •RMSE: ~1.2% for gold and oil
- Architecture: Includes dropout layer to prevent overfitting
- Wheat and gas show less predictability due to external factors
- Sequential dependencies captured better in stable commodities

Commodity-wise Forecasting Results

- •Gold: High predictability, reacts positively to negative sentiment
- Crude Oil: Price spikes during conflict, strong sentiment impact
- Wheat: Mixed results due to supplychain complexity
- Natural Gas: Noisy and difficult to forecast due to storage/weather

Results and Summary

- Geopolitical sentiment impacts commodity pricing
- Gold & oil most responsive to negative news
- ML models outperform traditional regression
- Sentiment and time-based features improve accuracy

Limitations & Future Work

- •LSTM performance limited by small dataset size
- •FinBERT may misinterpret sarcasm/figurative speech
- •ETF proxies may differ from spot prices
 - •Future: multilingual NLP, macroeconomic variables, adaptive windows

Conclusion & Impact

- •Introduced replicable ML-NLP pipeline for forecasting
- Explained sentiment impact on commodity markets

•Bridges behavioral finance with interpretable AI models

Thank You ***