Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 109.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 1.18, tilsynelatende blå størrelseklass $m_B=3.70$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 1.18, tilsynelatende blå størrelseklass $m_B = 2.70$

Stjerna C: Tilsynelatende visuell størrelseklasse $m_{-}V = 9.30$, tilsynelatende

blå størrelseklass m_B = 11.82

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 9.30, tilsynelatende blå størrelseklass $m_B = 10.82$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.13 og store halvakse a=7.99 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.13 og store halvakse a=28.44 AU.

Filen 1F.txt

Ved bølgelengden 621.32 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 4.60 4.40 Tilsynelatende størrelsklasse m_V 4.20 4.00 3.80 3.60 3.40 3.20 3.00 20 60 80 Ó 40 100 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 17.80 solmasser, temperatur på 13.20 Kelvin og tetthet 1.65e-20 kg per kubikkmeter

Gass-sky B har masse på 11.60 solmasser, temperatur på 47.30 Kelvin og tetthet 8.90e-21 kg per kubikkmeter

Gass-sky C har masse på 7.40 solmasser, temperatur på 70.40 Kelvin og

tetthet 3.31e-21 kg per kubikkmeter

Gass-sky D har masse på 20.60 solmasser, temperatur på 73.90 Kelvin og tetthet 4.33e-21 kg per kubikkmeter

Gass-sky E har masse på 6.80 solmasser, temperatur på 64.80 Kelvin og tetthet 6.03e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE B) stjerna har en degenerert heliumkjerne

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE D) stjerna har et degenerert heliumskall

STJERNE E) stjernas energi kommer fra Planck-stråling alene

Filen 1L.txt

Stjerne A har spektralklasse F8 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.45

Stjerne B har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V = 8.80

Stjerne C har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 3.78

Stjerne D har spektralklasse G9 og visuell tilsynelatende størrelseklasse m $_{\text{-}}\mathrm{V}$ = 3.21

Stjerne E har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 1.69

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

1 -

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.693999999999995026201 AU.

Tangensiell hastighet er 43422.51504323667177232 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.010 AU.

Kometens avstand fra jorda i punkt 2 er r2=8.810 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.374.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9588 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00034 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=670.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9911 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 501.60 nm.

Filen 4A.txt

Stjernas masse er 6.98 solmasser.

Stjernas radius er 0.92 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 500 -1000 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 14.33 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.02 solmasser.

r-koordinaten til det innerste romskipet er r $=6.23~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=9.73~\mathrm{km}.$