Math 690 F2017: Topics in Data Analysis and Computation Homework 6

Xiuyuan Cheng

- 1. Using concentration argument, finish the proof of the upper bound of the Johnson-Lindenstrauss lemma. The proof is given in [DG03].
- 2. Study the concentration of λ_2 , the second smallest eigenvalue, of the normalized graph laplacian of an Erdos-Renyi random graph G(n,p), i.e. the graph has n nodes and the probability of $A_{ij}=1$ equals $p\in(0,1)$. We know that when the graph is connected (which happens almost surely if $p>(1+\varepsilon)\frac{\log n}{n}$, as proved in the classical work of Erdos and Renyi in 1960), $0<\lambda_2<2$.
 - (1) Let p be fixed constant, and n increases. What is the limiting statistics of λ_2 like? (Hint: $\lambda_2 \to a$ for some constant a, and after properly centering and rescaling $(\lambda_2 a)$ converges to a limiting distribution.)
 - (2) What happens if p decreases with n, e.g. $p = \alpha \frac{\log n}{n}$ for $\alpha > 1$? Numerically observe the distribution of λ_2 in this case.