Руководство пользователя ТеX Live — 2021

Редактор: Карл Берри

https://tug.org/texlive/

Март 2021

Содержание

1	Введение				
	1.1	T _E X Live и T _E X Collection	2		
	1.2	Поддерживаемые операционные системы	3		
	1.3	Основы установки Т _Б X Live	3		
	1.4	Соображения безопасности	3		
	1.5	Где можно получить поддержку	4		
	~				
2		yktypa T _E X Live	4		
	2.1	TEX Collection: TEX Live, proTEXt, MacTEX	4		
	2.2	Корневые директории Т <u>E</u> X Live	5		
	2.3	Описание директорий texmf	5		
	2.4	Расширения Т _Е Ха	6		
	2.5	Другие интересные программы в дистрибутиве T _E X Live	7		
3	Уста	ановка	7		
	3.1	Запуск программы установки	7		
		3.1.1 UNIX	8		
		3.1.2 Mac OS X	8		
		3.1.3 Windows	8		
		3.1.4 Cygwin	9		
		3.1.5 Установка в текстовом режиме	9		
		3.1.6 Установка в графическом режиме	9		
			10		
	3.2		10		
	J		10		
			10		
			11		
			$\frac{11}{12}$		
	3.3	·	13		
	0.0		14		
	3.4		14		
	5.4		14		
			$\frac{14}{15}$		
			$\frac{15}{15}$		
		ı v			
			15		
			16		
			16		
			16		
	3.5	•	17		
	3.6	Ссылки на дополнительные программы	18		
4	Уста	ановка системы в особых случаях	18		
	4.1	Установка в локальной сети	18		
5	Уста	ановка TeX Live на флешку	19		

1 ВВЕДЕНИЕ 2

6	Администрирование системы при помощи tlmgr	19
	6.1 Графические оболочки для tlmgr	19
	6.2 Примеры запуска программы tlmgr из командной строки	20
7		22
		22
		22
		23
	★	23
		23
	7.6 Закрытие директории Т _Е Х Live для записи	23
	7.6.1 Увеличение предоставляемой памяти под Windows и Cygwin	23
8		24
	8.1 Поиск файлов в Kpathsea	25
	8.1.1 Источники путей поиска	25
	8.1.2 Конфигурационные файлы	25
	8.1.3 Подстановка путей	26
	8.1.4 Подстановка по умолчанию	26
	8.1.5 Подстановка скобок	27
	8.1.6 Подстановка поддиректорий	27
	8.1.7 Список специальных символов в файле texmf.cnf и их значений	27
		27
		27
		28
		28
		30
		31
		32
9	Благодарности	32
10	История издания	34
		34
	•	34
		35
		36
		37
		37
		38
		$\frac{38}{38}$
		39
		$\frac{33}{39}$
		40
		$\frac{40}{40}$
		_
		41 41
		41
		42
		43
		43
		44
		44
	10.9 Будущее	46

1 Введение

1.1 T_EX Live и T_EX Collection

В этом документе описаны основные возможности программного продукта T_EX Live — дистрибутива T_EX а и других программ для GNU/Linux и других UNIXoв, Mac OS X и Windows.

1 ВВЕДЕНИЕ 3

 $T_{E\!X}$ Live можно скачать с Интернета, а можно получить на DVD « $T_{E\!X}$ Collection». Эти DVD распространяются группами пользователей $T_{E\!X}$ а. В разделе 2.1 кратко описано содержание такого DVD. И $T_{E\!X}$ Live, и $T_{E\!X}$ Collection поддерживаются группами пользователей $T_{E\!X}$ а. В этом документе в основном описан $T_{E\!X}$ Live.

В Тех Live включены программы Тех, I $^{+}$ Тех 2_{ε} , ConText, MetaPost, BibTex и многие другие; общирная коллекция макросов, шрифтов и документации; а также поддержка вёрстки на многих языках мира.

Краткий список основных изменений в этом издании T_EX Live можно найти в разделе 10, стр. 34.

1.2 Поддерживаемые операционные системы

В Т_EX Live включены скомпилированные программы для многих вариантов UNIX, включая GNU/Linux, Mac OS X и Cygwin. Исходный код также включён в дистрибутив, что позволяет компилировать Т_EX Live и на платформах, для которых мы не включили собранных программ.

Что касается Windows: поддерживаются версии Windows 7 и младше. Windows Vista, скорее всего, будет большей частью работать, но TEX Live теперь даже не сможет установиться на Windows XP и старше. Мы не собрали 64-битовые программы для Windows, но 32-битовые варианты должны работать на 64-битовых системах. См. также способы добавить 64-битовые программы на странице https://tug.org/texlive/windows.html.

Альтернативные варианты для Windows и Mac OS X описаны в разделе 2.1.

1.3 Основы установки Т_FX Live

Тех Live можно установить с DVD или с Интернета (https://tug.org/texlive/acquire.html). Программа для установки с сети сама по себе мала—она скачивает все нужное с Интернета.

Программа установки с DVD позволяет установить T_EX Live на диск компьютера. Вы не сможете запускать T_EX Live непосредственно с DVD, но вы можете собрать работающую версию T_EX Live, например, на флешке USB (см. 5). Установка системы подробно описана в следующих разделах (стр. 7), но вкратце она состоит в следующем:

- Скрипт для установки системы называется install-tl в Unixe и подобных системах и install-tl-windows под Windows. Он может работать в графическом варианте, если выбрана опция -gui (режим по умолчанию для Windows и MacOSX), в текстовом варианте, если выбрана опция -gui=text (режим по умолчанию для остальных архитектур).
- Среди установленных программ есть «Менеджер ТЕХ Live», tlmgr. Как и программа установки, он может работать как в графическом, так и в текстовом режимах. Эта программа позволяет устанавливать и удалять пакеты, а также настраивать систему.

1.4 Соображения безопасности

Насколько мы можем сказать, основные программы ТЕХа были и остаются очень надежными. Однако несмотря на все усилия, некоторые программы дистрибутива могут не достичь этого уровня. Как обычно, вы должны быть осторожны, обрабатывая любыми программами ненадежные исходные данные; для безопасности делайте это в отдельной поддиректории или под chroot.

Особенной осторожности требует работа под Windows, поскольку Windows обычно запускает в первую очередь копию программы из текущей директории, даже если существует другая копия там, где в системе обычно находятся бинарники. Это открывает много возможностей для хакерских атак. Мы закрыли много дыр в безопасности, но несомненно ещё больше дыр осталось, особенно в предоставленных нам чужих программах. Поэтому мы рекомендуем проверять подозрительные файлы в рабочей директории, особенно исполняемые файлы (бинарники и скрипты). Обычно их там быть не должно, и вёрстка документов не должна их создавать.

Наконец, Т_EX (и вспомогательные программы) способны писать в файлы при обработке документов. Это можно использовать для атаки разнообразными способами. И опять, безопаснее всего обрабатывать неизвестные документы в отдельной директории.

Еще один аспект безопасности состоит в том, чтобы иметь гарантию, что сгруженные из Интернета файлы не отличаются от созданных авторами. Программа tlmgr (раздел 6) автоматически проводит криптографическую проверку сгруженных файлов, если в системе установлена программа gpg (GNU Privacy Guard). Хотя программа gpg не входит в комплект поставки ТЕХ Live, на странице https://texlive.info/tlgpg/можно найти ее версию для Windows или MacOS.

1.5 Где можно получить поддержку

Сообщество пользователей Т_ЕХа активно и дружелюбно, и практически на каждый серьёзный вопрос найдётся ответ. Однако эта поддержка неформальна, выполняется добровольцами, и поэтому очень важно, чтобы вы сами попробовали найти ответ перед тем, как задавать вопрос. (Если вы предпочитаете коммерческую поддержку, возможно вам стоит вместо Т_ЕХ Live купить одну из коммерческих версий Т_ЕХа, см. список по адресу https://tug.org/interest.html#vendors).

Вот список источников поддержки, приблизительно в том порядке, в котором мы рекомендуем κ ним обращаться:

- Страница для новичков: Если вы новичок, то страница https://tug.org/begin.html может послужить для начала.
- TeX FAQ: TeX FAQ (ЧаВо, часто задаваемые вопросы) огромная коллекция ответов на всевозможные вопросы, от самых простых до самых сложных. Английская версия ЧаВо находится на TeX Live в разделе texmf-dist/doc/generic/FAQ-en/ и доступна в Интернете по адресу https://texfaq.org. Пожалуйста, начинайте поиск ответа на ваши вопросы отсюда.
- T_{EX} Catalogue: Если вы ищете какой-либо пакет, шрифт, программу и т.п., то вам стоит заглянуть в T_{EX} Catalogue. Это огромный каталог всего, что относится к T_{EX} Cм. https://www.ctan. org/pkg/catalogue.
- TeX во всемирной паутине: Вот страничка, на которой много ссылок по TeXy, включая многочисленные книги, руководства и статьи: https://tug.org/interest.html.
- Архивы списков рассылки и групп: Основные форумы технической поддержки Т_EXa—сообщество пользователей L^AT_EXa https://latex.org/, сайт вопросов и ответов https://tex.stackexchange.com, группа news:comp.text.tex и список рассылки texhax@tug.org. В их архивах тысячи вопросов и ответов на все случаи жизни. См. для последних двух https://groups.google.com/groups?group=comp.text.tex и https://tug.org/mail-archives/texhax. Поиск в сети тоже часто помогает найти ответ.
- Вопросы на форумах Если вы не можете найти ответа на ваш вопрос, вы можете либо опубликовать вопрос в http://latex.org/ или https://tex.stackexchange.com/ через Web, или в сотр.text.tex при помощи Google или вашей любимой новостной программы, либо послать письмо на лист рассылки texhax@tug.org. Но перед этим пожалуйста прочтите в ЧаВо совет о том, как правильно задавать вопросы на этих форумах: https://texfaq.org/FAQ-askquestion.
- Поддержка ТеX Live Если вы хотите сообщить о баге или высказать нам свои предложения и замечания о дистрибутиве ТеX Live, его установке или документации, пишите на лист рассылки tex-live@tug.org. Однако если ваш вопрос касается конкретной программы, входящей в ТеX Live, вам лучше задавать вопросы её автору или посылать их на соответствующий список рассылки. Часто соответствующий адрес можно получить при помощи опции --help нужной программы.
- Русскоязычные ресурсы (добавлено переводчиком) Эхоконференция ru.tex доступна как в сети ФИДО, так и в Интернете (как news:fido7.ru.tex). Русские группы ФИДО можно найти на многих серверах, например demos.ddt.su. В ЧаВо этой группы приводится много ссылок на русскоязычные ресурсы.

С другой стороны, вы сами тоже можете помочь тем, у кого есть вопросы. Ресурсы выше открыты для всех, поэтому вы тоже можете присоединиться, читать и помогать другим.

2 Структура Т_EX Live

Этот раздел описывает структуру и содержание T_EX Collection и его составной части T_EX Live.

2.1 TeX Collection: TeX Live, proTeXt, MacTeX

DVD T_FX Collection содержит следующие пакеты:

- T_{EX} Live: полная система, которую можно установить на жесткий диск компьютера. Её домашняя страница https://tug.org/texlive/.
- MacTeX: вариант для Mac OS X (Apple теперь называет Mac OS X macOS, но мы в этом документе используем старое название). Этот пакет добавляет к TeX Live программу установки для Mac OS X и другие программы для Макинтошей. Страница проекта https://www.tug.org/mactex/.

proTeXt: улучшенный вариант дистрибутива MiKTeX для Windows. proTeXt включает в себя дополнительные программы и упрощённую установку. Он не зависит от TeX Live и включает собственные инструкции по установке. Страница proTeXt—https://tug.org/protext.

CTAN: Зеркало архива CTAN (https://ctan/org).

Лицензии на использование CTAN, protext и texmf-extra могут отличаться от лицензии TEX Live, поэтому будьте внимательны при распространении или модификации программ, входящих в эти дистрибутивы.

2.2 Корневые директории Т<u>E</u>X Live

Вот краткое описание корневых директорий в дистрибутиве Т_FX Live.

bin: Программы системы Т_FX, сгруппированные по платформам.

readme-*.dir: Краткое руководство пользователя и коллекция ссылок на разных языках, в текстовом формате и формате HTML.

source: Исходный код всех программ, включая дистрибутивы Web2C T_EX и METAFONT. texmf-dist: См. TEXMFDIST ниже.

tlpkg: Скрипты, программы и другие файлы для поддержки системы, а также некоторые полезные программы для Windows

Файл doc.html в корневой директории содержит много ссылок на полезную документацию. Документация к отдельным программам (руководства, man, info) находится в директории texmf-dist/doc. Документация макропакетов и форматов находится в директории texmf-dist/doc. Для поиска документации можно воспользоваться программой texdoc.

Документация к самому дистрибутиву T_EX Live находится в директории texmf-dist/doc/texlive и доступна на нескольких языках:

- Английский: texmf-dist/doc/texlive-en
- Итальянский: texmf-dist/doc/texlive/texlive-it
- Немецкий: texmf-dist/doc/texlive-de
- Польский: texmf-dist/doc/texlive-pl
- Русский: texmf-dist/doc/texlive-ru
- Сербский: texmf-dist/doc/texlive/texlive-sr
- Упрощенный китайский: texmf/doc/texlive-zh-cn
- Французский: texmf-dist/doc/texlive-fr
- Чешский и словацкий: texmf-dist/doc/texlive-cz
- Японский: texmf-dist/doc/texlive/texlive-ja

2.3 Описание директорий texmf

В этом разделе описаны все переменные, задающие положение деревьев директорий texmf и их значения по умолчанию. Команда tlmgr conf показывает текущие значения этих переменных, так что вы можете определить, где эти директории находятся в вашей системе.

Все эти деревья, включая личные деревья пользователя, должны следовать стандарту директорий T_{EX} (TDS, http://tug.org/tds) со всеми сотнями поддиректорий, иначе система может не найти нужные файлы. Более подробно это описано в разделе 3.4.6 (стр. 16). Порядок, указанный ниже, соответствует обратному порядку поиска по деревьям, то есть последующие файлы имеют преимущество.

ТЕХМFDIST Дерево, где находятся практически все файлы дистрибутива: конфигурационные файлы, шрифты, скрипты, пакеты и т.д. (основное исключение—зависящие от архитектуры программы, которые находятся в директории bin/.)

TEXMFLOCAL Дерево, которое может быть использовано администраторами системы для дополнительных пакетов, шрифтов и т.д.

TEXMFSYSVAR Это дерево используется утилитами texconfig-sys, updmap-sys, fmtutil-sys, а также tlmgr для хранения создаваемых автоматически файлов: форматов, карт шрифтов, общих для всех пользователей.

TEXMFSYSCONFIG Это дерево используется утилитами texconfig-sys, updmap-sys и fmtutil-sys для хранения модифицированных файлов конфигурации, общих для всех пользователей.

ТЕХМГНОМЕ Дерево, которое пользователи могут использовать для установки собственных пакетов, шрифтов и т.д., или для обновлённых версий системных пакетов. Эта переменная указывает на дерево в домашней директории, своей для каждого пользователя.

TEXMFVAR Это дерево используется утилитами texconfig, updmap-user и fmtutil-user для хранения создаваемых автоматически файлов: форматов, карт шрифтов.

TEXMFCONFIG Это дерево используется утилитами texconfig, updmap-sys и fmtutil-sys для хранения модифицированных файлов конфигурации (своих для каждого пользователя)

TEXMFCACHE Это дерево используется программами ConTeXt MkIV и LualateX для хранения файлов, создаваемых автоматически при работе программ. По умолчанию совпадает с TEXMFSYSVAR, или, если эта директория закрыта для записи, TEXMFVAR.

По умолчанию структура директорий выглядит так:

корневая директория может содержать несколько версий ТеX Live (по умолчанию для Линукса это /usr/local/texlive):

```
2020 Предыдущая версия.
     2021 Текущая версия.
         bin
             i386-linux Программы для GNU/Linux (32-битовая версия)
             x86 64-darwin Программы для Mac OS X
             x86 64-linux Программы для GNU/Linux (64-битовая версия)
             win32 Программы для Windows
         texmf-dist
                    TEXMFDIST и TEXMFMAIN
                    TEXMFSYSVAR, TEXMFCACHE
         texmf-config TEXMFSYSCONFIG
     texmf-local TEXMFLOCAL, общая для всех версий Т<sub>Е</sub>X Live.
домашняя директория пользователя ($HOME или %USERPROFILE%)
     .texlive2020 Данные и конфигурационные файлы предыдущей версии.
     .texlive2021 Данные и конфигурационные файлы текущей версии.
         texmf-var
                    TEXMFVAR
         texmf-config TEXMFCONFIG
     texmf TEXMFHOME Личные макропакеты и т.д.
```

2.4 Расширения ТрХа

Кнутовский вариант Т_EXa заморожен— за исключением редких исправлений багов, в него не вносится никаких изменений. Он распространяется в Т_EX Live как tex и будет распространяться в обозримом будущем. В состав Т_EX Live входит несколько расширений Т_EXa:

- ε -ТеX добавляет набор новых примитивов (относящийся к макроподстановкам, чтению символов, дополнительным возможностям отладки и многому другому) и расширения ТеX--ХеТ для вёрстки справа налево и слева направо. В обычном режиме ε -ТеX на 100% совместим со стандартнымТеXом. См. texmf-dist/doc/etex/base/etex man.pdf.
- pdfTEX включает в себя расширения є-ТEXa, добавляя поддержку формата PDF, помимо стандартного DVI, а также много других новых возможностей. Эта программа используется многими форматами, например, etex, latex, pdflatex. Страница программы на сети: http://www.pdftex.org/. В руководстве пользователя texmf-dist/doc/pdftex/manual/padftex-a.pdf и примерах texmf-dist/doc/pdftex/samplepdftex/samplepdf.tex описаны возможности программы.
- LuaTeX обеспечивает поддержку Unicode, шрифтов в форматах TrueType и OpenType, а также системных шрифтов. Встроенный интерпретатор языка Lua (см. https://www.lua.org/) позволяет элегантно решить многие сложные проблемы TeXa. Когда эта программа запускается как texlua, она работает как интерпретатор Lua. См. https://www.luatex.org/ и texmf-dist/doc/luatex/base/luatexref.pdf.
- (e)(u)р T_EX обеспечивают поддержку японских требований к верстке. Базовой программой является pT_EX , в то время как е-варианты добавляют расширения eT_EX , а u-варианты поддержку Unicode.
- XeT_EX добавляет поддержку Unicode и шрифтов в формате OpenType, сделанную через стандартные библиотеки. См. https://tug.org/xetex.
- Ω (Омега) основана на Unicode (система 16-битовых символов), что позволяет работать одновременно почти со всеми письменностями мира. Она также поддерживает так называемый «процесс трансляции Ω » (ОТР) для сложных преобразований произвольного входного потока. Омега больше не включается в дистрибутив T_{EX} Live в качестве самостоятельной программы; на диске есть только Aleph (см. ниже).

Рис. 1: Первая ступень установки под Windows (.exe)

Aleph объединяет Ω и ε -Т_БX. См. краткую документацию в texmf-dist/doc/aleph/base.

2.5 Другие интересные программы в дистрибутиве Т_БX Live

Вот несколько других важных программ в дистрибутиве ТЕХ Live:

bibtex, biber поддержка библиографий.

makeindex, xindy поддержка алфавитных указателей.

dvips преобразование DVI в PostScript.

xdvi программа для просмотра DVI для X Window System.

dviconcat, dviselect перестановка страниц в файлах DVI.

dvipdfmx преобразование DVI в PDF, альтернатива pdfTFXy, упомянутому выше.

psselect, psnup, ... утилиты для работы с файлами в формате PostScript.

pdfjam, pdfjoin, ... утилиты для работы с файлами в формате PDF.

context, mtxrun Программы для ConT_FXta и обработки PDF.

htlatex, . . . tex4ht: конвертер из (IA)Т_FХа в HTML, (и XML и многие другие форматы).

3 Установка

3.1 Запуск программы установки

Для начала вам потребуется DVD T_EX Collection или программа установки T_EX Live с Интернета. Подробно различные способы приобретения и установки дистрибутива рассмотрены на странице https://tug.org/texlive/acquire.html.

Установка с сети, архив (.zip или .tag.gz): скачайте файл из архива CTAN, директория systems/texlive/tlnet; адрес http://mirror.ctan.org/systems/texlive/tlnet должен автоматически привести к ближайшему зеркалу архива. Вы можете скачать либо install-tl.zip (установка под UNIX и Windows), либо файл существенно меньшего размера install-unx.tar.gz (только для UNIX). После распаковки файлы install-tl и install-tl.bat окажутся в поддиректории install-tl.

Установка с сети, программа .exe (только Windows): Скачайте файл из архива CTAN, как указано выше, и запустите его. Это запускает распаковщик и установщик первой ступени, см. рис. 1. Он предлагает выбрать из двух вариантов: «Install» начинает установку в обычном режиме, «Unpack only» — распаковка без установки.

TEX Collection DVD: Перейдите в поддиректорию texlive. Под Windows программа установки запускается автоматически, когда вы вставляете DVD в компьютер. Вы можете получить DVD, вступив в группу пользователей TEXa (мы настоятельно рекомендуем это сделать, https://tug.org/usergroups.html), либо купив его отдельно (https://tug.org/store), либо сделав его самостоятельно, скачав ISO образ диска. После установки системы вы сможете получать обновления из Интернета, см. раздел 3.4.3.

Во всех случаях программа установки системы одна и та же. Главное различие состоит в том, что при установке с сети ставятся последние версии пакетов — в отличие от установки с DVD или ISO.

Если вам нужно использовать прокси для Wget, занесите их в файл $^{\sim}$ /.wgetrc или задайте их в переменных окружения, как описано в (https://www.gnu.org/software/wget/manual/html_node/Proxies.html) для программы Wget — или задайте их, как описано в руководстве программы, которую вы используете для скачивания файлов. Разумеется, эти соображения неважны, если вы устанавливаете с DVD или ISO.

В следующих разделах установка описывается более подробно.

3.1.1 UNIX

 ${
m Huжe}>{
m ykaзывает}$ системный промпт; то, что вводит пользователь, показано жирным шрифтом. Проще всего начать установку так:

- > cd /path/to/installer
- > perl install-tl

(Вместо этого вы можете запустить perl /path/to/installer/install-tl, или ./install-tl, если у этого скрипта есть права на выполнение, и т.д. Мы не будем указывать все эти варианты.) Возможно, вам придется увеличить размер окна терминала, чтобы в него поместился весь диалог (Рисунок 2).

Для установки в графическом режиме (рисунок 4) вам потребуется модуль Tcl/Tk. Если он у вас установлен, используйте

> perl install-tl -gui

Старые режимы wizard и perltk/expert все еще доступны, но теперь они эквивалентны режиму -gui. Полный список возможных опций дает команда

> perl install-tl -help

О правах доступа в UNIX: система установки Т_ЕХ Live использует текущее значение параметра umask. Поэтому, если вы хотите, чтобы системой могли пользоваться не только вы, но и другие пользователи, вы должны установить, например, umask 022. Более подробно umask обсуждается в документации к вашей системе.

Замечание об установке под Cygwin: в отличие от других систем типа UNIX, Cygwin в стандартной конфигурации не включает всех необходимых для установки Т_EX Live программ. См. раздел 3.1.4.

3.1.2 Mac OS X

Как отмечается в разделе 2.1, для Mac OS X существует специальный дистрибутив, Mac TeX (https://tug.org/mactex). Мы рекомендуем пользоваться его системой установки, а не общим скриптом TeX Live, поскольку у него есть дополнительные возможности, специфические для Макинтошей, например, удобное переключение между различными дистрибутивами TeXa для Mac OS X (Mac TeX, Fink, Mac Ports, ...), которые соответствуют стандарту TeXDist.

MacT_EX основан на T_EX Live, основные деревья директорий и программы у этих дистрибутивов совпадают. МасT_EX добавляет несколько поддиректорий с программами и документацией, предназначенными для Макинтошей.

3.1.3 Windows

Если вы устанавливаете систему с сети при помощи распакованного архива .zip, или если программа установки с DVD не стартовала автоматически, дважды щёлкните по install-tl-windows. bat.

Можно также запустить программу из командной строки. Ниже > означает системный промпт; то, что вводит пользователь, указано жирным шрифтом. Если вы находитесь в директории программы установки, напечатайте:

> install-tl-windows

Программу можно вызвать и из другой директории, например,

> D:\texlive\install-tl-windows

(предполагается, что в D: находится DVD T_EX Collection). На рисунке 3 показан специальный проводник установки, который по умолчанию запускается в Windows.

Для установки в текстовом режиме используйте

> install-tl-windows -no-gui

```
Installing TeX Live 2021 from: ..
Platform: x86 64-linux => 'GNU/Linux on x86 64'
Distribution: inst (compressed)
Directory for temporary files: /tmp
Detected platform: GNU/Linux on x86\_64
<B> platforms: 1 out of 16
<S> Installation scheme: scheme-full
Customizing installation scheme:
  <C> standard collections
    40 collections out of 41,\,\mathrm{disk} space required: 7172~\mathrm{MB}
<D> directories:
  TEXDIR (the main TeX directory):
   /usr/local/texlive/2021
<O> options:
 [] use letter size instead of A4 by default
<V> set up for portable installation
Actions:
<I> start installation to hard disk
<P> save installation profile to 'texlive.profile' and exit
<H> help
<Q> quit
```

Рис. 2: Главное меню программы установки в текстовом режиме (GNU/Linux)

Все опции программы можно получить при помощи команды > install-tl-windows -help

3.1.4 Cygwin

Перед началом установки ТеХ Live установите при помощи программы setup.exe из комплекта Cygwin пакеты perl и wget, если их нет в вашей системе. Мы рекомендуем также следующие дополнительные пакеты:

- fontconfig [нужен для XeT_FX и LuaT_FX]
- ghostscript [нужен для разных программ]
- libXaw7 [нужен для xdvi]
- ncurses [предоставляет команду «clear», которая нужна при установке]

3.1.5 Установка в текстовом режиме

На рисунке 2 показано основное меню программы установки в текстовом режиме для UNIX. Текстовый режим является режимом по умолчанию для UNIX.

Интерфейс программы довольно примитивен: поддержки курсора в нем нет. Например, нельзя передвигаться по полям при помощи клавиши «Tab». Вы просто печатаете что-то (регистр учитывается!) и нажимаете клавишу «Enter», после чего перерисовывается весь экран.

Этот интерфейс примитивен для того, чтобы работать на как можно большем количестве платформ, включая такие, где есть только усеченный вариант программы Perl.

3.1.6 Установка в графическом режиме

По умолчанию графическая установка начинается очень просто, позволяя выбрать всего из нескольких опций, см. рис. 3. Этот вариант может быть выбран командой

```
> install-tl -gui
```

Кнопка Advanced дает доступ к большинству возможнотей текстового установщика, см. рис. 4.

Рис. 3: Меню программы установки (Windows). Кнопка Advanced вызывает режим, похожий на рис. 4

3.1.7 Устаревшие режимы

Pежимы perltk/expert и wizard теперь эквивалентны стандартнаму графическому установщику.

3.2 Работа программы установки

Меню программы установки должно быть понятно без объяснений. Мы все же приведем несколько кратких замечаний по поводу различных опций и подменю.

3.2.1 Меню выбора платформы (только для UNIX)

На рисунке 5 изображено меню выбора платформы. По умолчанию устанавливаются только программы для вашей текущей архитектуры. В этом меню вы можете выбрать также установку программ для других платформ. Это может быть полезно, если вы используете одно и то же дерево ТЕХа для разных машин и раздаёте его по локальной сети, либо если на вашей машине установлено несколько операционных систем.

3.2.2 Выбор основных компонентов

На рисунке 6 показано меню выбора основных компонентов (схем) Т_ЕХ Live. В этом меню вы можете выбрать «схему», т.е. набор коллекций пакетов. По умолчанию используется схема full, т.е. все пакеты Т_ЕХ Live. Мы рекомендуем эту схему, но вы можете выбрать схему basic, которая устанавливает только plain Т_ЕХ и L⁴Т_ЕХ, схему small, которая устанавливает еще несколько программ (она эквивалентна так называемой Basix Т_ЕХ installation для MacT_EX), схему minimal для тестирования или схему medium, или схему teTeX. Есть также ряд специальных схем, в том числе и предназначенных для различных стран.

Вы можете уточнить ваш выбор при помощи меню «коллекций» (рисунок 7, для разнообразия сделанный в графическом режиме).

Коллекции представляют собой следующий после схем уровень иерархии Т_EX Live. Грубо говоря, схемы состоят из коллекции, коллекции состоят из пакетов, а пакеты (нижний уровень иерархии Т_EX Live) содержат макросы, шрифты и т.д.

Если вы хотите более тонкой настройки, чем возможна в меню коллекций, вы можете использовать программу tlmgr после установки (см. раздел 6). Эта программа позволяет устанавливать или удалять отдельные пакеты.

Рис. 4: Экспертное меню установки (GNU/Linux)

```
Available platforms:
 a [ ] Cygwin on Intel x86 (i386-cygwin)
 b [] Cygwin on x86_64 (x86_64-cygwin)
 c [] MacOSX current (10.14-) on ARM/x86_64 (universal-darwin)
 d [ ] MacOSX legacy (10.6-) on x86_64 (x86_64-darwinlegacy)
 e [] FreeBSD on x86_64 (amd64-freebsd)
 f [ ] FreeBSD on Intel x86 (i386-freebsd)
 g [ ] GNU/Linux on ARM64 (aarch64-linux)
 h [] GNU/Linux on ARMv6/RPi (armhf-linux)
 i [] GNU/Linux on Intel x86 (i386-linux)
 j [X] GNU/Linux on x86_64 (x86_64-linux)
 k [ ] GNU/Linux on x86_64 with musl (x86_64-linuxmusl)
 l NetBSD on x86 64 (amd64-netbsd)
 m [] NetBSD on Intel x86 (i386-netbsd)
 o [] Solaris on Intel x86 (i386-solaris)
 p [ ] Solaris on x86 64 (x86 64-solaris)
 s [] Windows (win32)
```

Рис. 5: Меню выбора платформы

3.2.3 Директории

Схема директорий, создаваемых по умолчанию, описана в разделе 2.3, стр. 5. По умолчанию дерево установки в системе Unix /usr/local/texlive/2021 и %SystemDrive%\texlive\2021 под Windows. Это позволяет установить несколько параллельных вариантов $T_{\rm E}X$ Live (например, версий разных лет, как в нашем примере) и переключаться между ними, изменив список директорий поиска программ.

Вы можете изменить положение дерева, задав для установщика другое значение параметра TEXDIR. На рисунке 4 показано, как изменить этот и другие параметры. Основные причины, по которой бывает необходимо его изменить — недостаток места в разделе (полная установка ТЕХ Live требует нескольких гигабайт диска) или отсутствие у вас прав на запись в нужные директории.

```
Select scheme:

a [X] full scheme (everything)
b [] medium scheme (small + more packages and languages)
c [] small scheme (basic + xetex, metapost, a few languages)
d [] basic scheme (plain and latex)
e [] minimal scheme (plain only)
f [] ConTeXt scheme
g [] GUST TeX Live scheme
h [] infrastructure-only scheme (no TeX at all)
i [] teTeX scheme (more than medium, but nowhere near full)
j [] custom selection of collections
```

Рис. 6: Выбор основных компонентов

Рис. 7: Меню коллекций

Вам не нужно иметь права администратора для установки Т_ЕХ Live, однако вам необходимо иметь право на запись в директорию, куда устанавливается система.

Директории для установки можно также изменить, задав ряд переменных окружения (например, TEXLIVE_INSTALL_PREFIX и TEXLIVE_INSTALL_TEXDIR); см. документацию, выдаваемую по команде install-tl --help (также доступную по ссылке https://tug.org/texlive/doc/install-tl.html), где находится полный список переменных окружения и другие детали.

Если у вас нет права на запись в системные директории, естественной альтернативой является установка в вашу домашнюю директорию, особенно если вы будете единственным пользователем системы. Для этого используйте ' $^{\sim}$ ' (например, ' $^{\sim}$ /texlive/2021').

Мы рекомендуем включать номер года в название директории, чтобы можно было держать отдельно разные версии T_EX Live. Вы также можете использовать общее имя, не зависящее от года, например, /usr/local/texlive-cur, создав ссылку на соответствующую директорию.

Изменение TEXDIR изменит также TEXMFLOCAL, TEXMFSYSVAR и TEXMFSYSCONFIG.

Личные пакеты и файлы рекомендуется держать в директории TEXMFHOME. По умолчанию это $^{\sim}$ /texmf ($^{\sim}$ /Library/texmf для Макинтошей). В отличие от TEXDIR, здесь $^{\sim}$ будет своим для каждого пользователя. Эта переменная становится \$HOME под UNIX и %USERPROFILE% под Windows. На всякий случай повторим, что структура TEXMFHOME должна совпадать со стандартной структурой директорий TEXMF, иначе система может не найти ваши файлы.

Директория TEXMFVAR используется для хранения автоматически создаваемых файлов, своих для каждого пользователя. Директория TEXMFCACHE используется для этой же цели программами Lual^ATeX и ConTeXt MkIV (см. раздел 3.4.5, стр. 16), по умолчанию это директория TEXMFSYSVAR, или, если она закрыта для записи, TEXMFVAR.

3.2.4 Опции

На рисунке 8 приведено меню опций (текстовый режим). Стоит упомянуть несколько из них:

Рис. 8: Меню опций (Unix)

- use letter size instead of A4 by default (использовать по умолочанию размер letter вместо A4): выбор размера бумаги по умолчанию. Разумеется, отдельные документы могут при необходиости указать собственный размер бумаги.
- execution of restricted list of programs: Начиная с T_{EX} Live 2010 T_{EX} может автоматически вызывать несколько внешних программ. Список этих программ находится в файле texmf.cnf; он очень мал, но эти программы очень полезны. См. раздел «Что нового в T_{EX} Live 2010» 10.1.7.
- create all format files (созать все форматы): Хотя ненужные форматы занимают место на диске и требуют времени для создания, мы все же рекомендуем не изменять эту опцию. В противном случае отсутствующие форматы будут создаваться в директориях TEXMFVAR для каждого пользователя. Они не будут автоматически перегенерироваться при изменении программ и схем переноса, и в итоге могут оказаться несовместимыми с новой системой.
- install font/macro . . . tree: Установить документацию и исходники для большинства пакетов. Не рекомендуется убирать эту опцию.
- стеаte symlinks in standard directories (создать симлинки в стандартных директориях) (только для UNIX): Эта опция делает ненужной смену переменных окружения. Без неё директории Тех Live нужно добавить к РАТН, МАРРАТН и INFOPATH. Для этой опции вам нужны права на запись в стандартные директории. Эта опция нужна для создания симлинков в директориях типа /usr/local/bin, которые не содержат файлов Теха из системного дистрибутива. Не следует при помощи этой опции подменять системные файлы, например, указывая /usr/bin. Наиболее безопасный и рекомендованный вариант не выбирать эту опцию.
- after install, set CTAN as source for package updates: Если вы устанавливаете систему с DVD, эта опция включена по умолчанию, поскольку обычно люди обновляют пакеты из архива CTAN, который сам непрерывно обновляется. Единственной причиной, по которой вы можете захотеть выключить её, может быть то, что вы устанавливаете только несколько пакетов из DVD и планируете изменить систему позже. В любом случае вы можете задать альтернативный репозиторий для обновлений, см. разделы 3.3.1 и 3.4.3.

Опции, специфические для Windows в экспертном варианте интерфейса:

- adjust search path (добавить директории поиск) Эта опция позволяет всем программам найти директорию TeX Live.
- add menu shortcuts (добавить ярлыки меню) Если эта опция выбрана, то в меню Start появится подменю Т_EX Live. Есть также опции 'Launcher entry' и 'No shortcuts'. Эти опции описаны в разделе 4.1.
- File associations (изменить ассоциации файлов) Есть выбор между 'Only new' (установить новые ассоциации, но не убирать уже существующих), 'All' (все) and 'None' (не устанавливать). install TeXworks front end (установить TeXworks)

Задав нужные настройки, вы можете начать установку системы, нажав клавишу «I» в текстовом варианте или кнопку «Install TeX Live» в GUI. Когда установка будет закончена, перейдите к разделу 3.4, чтобы проверить, нужно ли вам сделать ещё что-нибудь.

3.3 Опции вызова команды install-tl

Напечатайте

> install-tl -help

чтобы получить список опций комадной строки. В опциях можно использовать как -, так и --. Вот самые интересные опции:

-gui Если возможно, использовать графический режим. Для этого нужен Tcl/Tk версии 8.5 и выше. Он есть под Mac OS X и поставляется вместе с TEX Live под Windows. Устарелые варианты -gui=perltk и -gui=wizard все еще доступны. Если в системе нет ни Tcl/Tk, ни Perl/Tk, установка происходит в текстовом режиме.

- -no-gui Использовать текстовый режим.
- -lang LL Задать язык интерфейса программы установки (стандартным кодом страны, обычно двухбуквенным). Программа установки пытается определеть нужный язык автоматически, но если это не получается или если нужный язык не поддерживается, она переходит на английский. Команда install-tl --help выдает список языков.
- -in-place (Документируется здесь для полноты; не используйте эту опцию если вы не эксперт). Если у вас уже есть копия TeX Live, полученная из репозитория по rsync, svn или иным способом (см. https://tug.org/texlive/acquire-mirror.html), то эта опция позволяет использовать эту копию. Учтите, что при этом база данных tlpkg/texlive.tlpdb может быть затерта; вы должны сохранить её сами. Кроме того, удаление пакетов нужно будет делать вручную. Эту опцию нельзя выбрать из интерфейса установщика.
- -portable Установить переносимую версию T_EX Live, например, на флешку USB. Эту опцию также можно указать при помощи команды V в текстовом установки, или из графического режима. См. также раздел 5.
- -profile файл Использовать конфигурацию установки file и не задавать пользователю никаких вопросов. Программа установки всегда записывает файл texlive.profile в поддиректорию tlpkg. Этот файл может быть использован в качестве аргумента данной опции, чтобы, например, получить идентичную конфигурацию на другой машине. Вы можете также создать собственную конфигурацию, например, взяв за основу автоматически созданный файл или пустой файл (так что параметры, которые не заданы в файле, получат значения по умолчанию).
- -repository url или директория Указать альтернативный источник пакетов для установки; см. ниже.

3.3.1 Параметр -repository

По умолчанию пакеты сгружаются с одного из зеркал архива CTAN. Ссылка
 https://mirror.ctan.org автоматически выбирает зеркало.

Если вы хотите указать другой источник, вы можете задать его как URL, начинающийся с ftp:, http:, https:, file:/ или просто как директорию на диске. (Когда вы указываете репозиторию как http:, https: или ftp:, окончание / или /tlpkg игнорируется.)

Например, вы можете задать в качестве параметра определенное зеркало CTAN: https://ctan.example.org/tex-archive/texlive/tlnet/. Разумеется, вам следует подставить вместо example.ctan.org нужное зеркало и путь к архиву на этом зеркале. Список зеркал находится на https://ctan.org/mirrors.

Если параметр задает директорию на диске (прямо или при помощи file:/), система автоматически определяет, является ли источник архивом: если найдена поддиректория archive со сжатыми файлами, то она будет использована, даже если рядом находятся незаархивированные файлы.

3.4 Действия после установки

Иногда после установки системы требуются дополнительные действия.

3.4.1 Переменные окружения для UNIX

Если вы решили создать симлинки в стандартных директориях (см. раздел 3.2.4), то изменять переменные окружения не требуется. В противном случае вам нужно добавить к списку поиска программ директорию, где лежат программы Техlive (под Windows программа установки делает это сама).

Программы для каждой архитектуры помещаются в собственную поддиректорию под TEXDIR/bin. См. список поддиректорий и соответствующих платформ на рисунке 5.

Вы можете также добавить директории с документацией в формате man и info к соответствующим путям поиска, если вы хотите, чтобы ваша операционная система знала о них. В некоторых системах документация в формате man будет найдена автоматически после изменения переменной РАТН.

Ниже мы используем для примера стандартную систему директорий в системе Intel86 $\mathrm{GNU}/\mathrm{Linux}$.

3 VCTAHOBKA 15

Для оболочек типа Bourne (bash и т.п.) вы можете добавить в файл \$HOME/.profile (или в файл, который вызывается из .profile) следующее:

```
PATH=/usr/local/texlive/2021/bin/x86\_64-linux:\$PATH; export PATH\\ MANPATH=/usr/local/texlive/2021/texmf-dist/doc/man:\$MANPATH; export MANPATH INFOPATH=/usr/local/texlive/2021/texmf-dist/doc/info:\$INFOPATH; export INFOPATH
```

Для csh или tcsh следует редактировать файл HOME/.cshrc, и следует добавить что-то вроде setenv PATH /usr/local/texlive/2021/bin/x86_64-linux:PATH setenv MANPATH /usr/local/texlive/2021/texmf-dist/doc/man:MANPATH setenv INFOPATH /usr/local/texlive/2021/texmf-dist/doc/info:INFOPATH

Разумеется, в ваших конфигурационных файлах уже могут быть определены эти переменные; фрагменты выше добавляют к ним директории T_FX Live.

3.4.2 Переменные окружения: глобальная конфигурация

Если вы хотите внести эти изменения для всех пользователей или добавлять их автоматически для новых пользователей, то вам следует разобраться самому: в разных системах это делается слишком по-разному.

Два совета: 1) возможно, вам следует добавить в файл /etc/manpath.config строчки вроде: MANPATH_MAP /usr/local/texlive/2021/bin/x86_64-linux \ /usr/local/texlive/2021/texmf-dist/doc/man

 ${
m M}$ 2) иногда пути поиска и другие глобальные переменные окружения задаются в файле /etc/environment.

Мы также добавляем симлинк man в каждой поддиректории bin. Некоторые варианты программы man, например, в ${\rm Mac\,OS\,X},$ автоматически ищут файлы в этих поддиректориях, что избавляет от необходимости добавлять их в MANPATH.

3.4.3 Обновления из Интернета после установки с DVD

Если вы устновили Т_EX Live с DVD и хотите получать обновления из Интернета, запустите следующую команду (после добавления программ Т_EX Live к списку поиска программ, см. предыдущий раздел):

> tlmgr option repository https://mirror.ctan.org/systems/texlive/tlnet

Она указывает программе tlmgr, что нужно искать обновления на ближайшем зеркале CTAN. Это делается по умолчанию при установке с DVD при помощи опций, описанных в разделе 3.2.4.

Если автоматический выбор зеркала не работает, вы можете указать адрес зеркала вручную, взяв его из списка на https://ctan.org/mirrors. Задайте при этом точное положение директории tlnet, как указано выше.

3.4.4 Настройка шрифтов для программ XeT_FX и LuaT_FX

XeTeX и LuaTeX могут использовать все шрифты, установленные в вашей системе, не только те, которые находятся в директориях TeXа. Они это делают при помощи похожих, но чуть-чуть разных методов.

Под Windows шрифты, включенные в дистрибутив T_EX Live, автоматически доступны в XeT_EXe по названию шрифта. Под MacOSX настройка поиска шрифтов по имени требует дополнительных шагов, см. руководство пользователя $MacT_EX$ (https://tug.org/mactex). Настройка поиска шрифтов по имени для других Юниксов описана ниже.

Для поиска шрифтов по имени, когда пакет хеteх устанавливается (либо при первоначальной установке дистрибутива, либо позже), он создает необходимый конфигурационный файл в TEXMFSYSVAR/fonts/conf/texlive-fontconfig.conf.

Если вы обладаете правами администратора, то для того, чтобы шрифты T_EX Live были доступны всем программам, сделайте следующее:

- 1. Скопируйте файл texlive-fontconfig.conf в /etc/fonts/conf.d/09-texlive.conf.
- 2. Запустите fc-cache -fsv.

Если у вас нет прав администратора, то вы можете вместо этого сделать шрифты T_EX Live доступными только вам:

- 1. Скопируйте файл texlive-fontconfig.conf в ~/.fonts.conf, где ~ ваша домашняя директория.
- 2. Запустите fc-cache -fv.

Чтобы посмотреть названия системных шрифтов, вы можете запустить программу fc-list. Можно получить много интересной информации, запустив её как fc-list : family style file spacing (все аргументы—текстовые строки).

3.4.5 ConTEXt Mark IV

Kак «старый» $ConT_EXt(Mark\ II)$, так и «новый» $ConT_EXt\ (Mark\ IV)$, должны работать «из коробки» после установки T_EX Live и после обновления системы при помощи tlmgr.

Однако, так как ConTeXt MkIV не использует библиотеку kpathsea, после установки новых файлов вручную (не при помощи tlmgr) нужны дополнительные действия. Каждый пользователь MkIV должен после такого обновления запустить

context --generate

чтобы обновить базу данных ConTeXt. Получившиеся файлы будут установлены в директории TEXMFCACHE. В TeX Live эта директория совпадает с TEXMFVAR.

ConT_EXt MkIV читает файлы из всех директорий, заданных переменной TEXMFCACHE и пишет в первую директорию в списке, в которой у него есть права на запись. При чтении в случае дублирующих записей имеет преимущество последняя прочитанная запись.

См. также https://wiki.contextgarden.net/Running Mark IV.

3.4.6 Добавление личных и локальных пакетов

Этот вопрос уже обсуждался в разделе 2.3: для локальных шрифтов и пакетов, общих у всех пользователей, предназначена директория TEXMFLOCAL (по умолчанию /usr/local/texlive/texmf-local или %SystemDrive%\texmf-local), а для личных шрифтов и пакетов — директория TEXMFHOME (по умолчанию \$HOME/texmf или %USERPROFILE%\texmf). Эти директории предполагаются общими для всех версий TEX Live, и каждая версия TEX Live видит их автоматически. Поэтому мы не рекомендуем менять значение TEXMFLOCAL, иначе вам придется делать это для каждой новой версии.

Файлы в обеих директориях должны находиться в правильных поддиректориях; см. https://tug.org/tds и texmf-dist/web2c/texmf.cnf. Hanpumep, LATEXOBCKUЙ класс или пакет должен находиться в директории TEXMFLOCAL/tex/latex или TEXMFHOME/tex/latex или какой-либо из их поддиректорий.

Для директории TEXMFLOCAL должна поддерживаться база данных о файлах, иначе система не сможет найти там нужные файлы. Эта база обновляется командой mktexlsr или кнопкой «Reinit file database» в графическом режиме программы tlmgr.

По умолчанию, каждая из этих переменных указывает на одну директорию, как в нашем примере. Однако это не обязательное требование. Если вам нужно, например, поддерживать несколько версий больших пакетов, вы можете захотеть иметь несколько деревьев директорий. Тогда вы можете определить TEXMFHOME как набор директорий в фигурных скобках, разделенных запятыми:

 $TEXMFHOME = {/my/dir1,/mydir2,/a/third/dir}$

Подробнее эти вопросы объясняются в разделе 8.1.5.

3.4.7 Добавление новых шрифтов

К сожалению, это очень сложная задача для Т_EXa и pdfT_EXa. Не делайте этого, если вы не знаете Т_EX как свои пять пальцев. В состав Т_EX Live включено много шрифтов, поэтому полезно сначала проверить, не входит ли нужный шрифт в дистрибутив. Сайты вроде https://tug.org/FontCatalogue показывают практически все шрифты, включенные в основные дистрибутивы Т_EXa, классифицированные в соответствии с разнообразными схемами.

Если вам все же нужно добавить шрифты, то посмотрите страницу https://tug.org/fonts/fontinstall.html — это лучшее, что мы смогли написать по этому поводу.

Возможная альтернатива — программы XeT_EX и LuaT_EX (см. раздел 2.4), которые позволяют автоматически использовать в T_EXe шрифты вашей операционной системы. Не забывайте, однако, что использование системных шрифтов делает ваши документы бесполезными для тех, кто пытается их использовать на другой системе.

3.5 Тестирование системы

После установки T_{EX} Live вы, скорее всего, захотите проверить работу системы, а уже затем перейти к созданию прекрасных документов и/или шрифтов.

Вы можете начать с программы для редактирования файлов. T_EX Live устанавливает T_EX works (https://tug.org/texworks) только под Windows, а Mac T_EX устанавливает TeXShop (https://pages.uoregon.edu/koch/texshop). На других системах выбор редактора остается за вами. Есть много возможностей, некоторые из которых перечислены ниже; см. также https://tug.org/interest.html# editors. Вообще говоря, годится любой текстовый редактор; иногда специфические для T_EX а особенности просто не нужны.

В этом разделе описываются основные процедуры по тестированию системы. Мы приводим команды для операционных систем типа Unix; под Mac OS X и Windows вы, скорее всего, будете использовать графический интерфейс, но принцип тот же.

1. Сначала проверьте, что вы можете запускать программу tex:

```
> tex --version
TeX 3.14159265 (TeX Live ...)
kpathsea version 6.0.1
Copyright ... D.E. Knuth.
```

• • •

Если вы получаете в ответ «command not found» вместо номера версии и информации о копирайте, у вас, скорее всего, нет директории с нужными программами в переменной РАТН. См. обсуждение на странице 14.

2. Скомпилируйте простой IATEX овский файл, получив PDF:

```
> pdflatex sample2e.tex
```

This is pdfTeX 3.14...

. . .

Output written on sample2e.pdf (3 pages, 142120 bytes).

Transcript written on sample2e.log.

Если программа не может найти sample2e.tex или другие файлы, возможно, у вас остались следы от старой установки: переменные окружения или конфигурационные файлы. Мы рекомендуем сначала убрать все переменные окружения, относящиеся к ТЕХу. (Для отладки вы всегда можете попросить ТЕХ точно сказать, что именно он ищет; см. «Отладка» на стр. 30.)

3. Посмотрите результат на экране:

> xpdf sample2e.dvi

Вы должны увидеть новое окно с красиво свёрстанным документом, объясняющим основы БТГХа. (Кстати, если вы новичок, вам стоит его прочесть.)

Разумеется, есть и другие программы для просмотра PDF. Под Unixoм часто используются evince и okular. Для Windows мы рекомендуем Sumatra PDF (https://www.sumatrapdfreader.org/free-pdf-reader.html). Мы не включили программ для просмотра PDF в TEX Live, так что вы можете использовать программу, к которой вы привыкли.

Разумеется, вы все еще можете использовать классический формат DVI:

> latex sample2e.tex

и смотреть на экране результаты:

- > xdvi sample2e.dvi # Unix
- > dviout sample2e.dvi # Windows

Чтобы программа xdvi могла запуститься, вы должны быть в среде X Window; если это не так, или если переменная DISPLAY установлена неправильно, вы увидите ошибку «Can't open display».

- 4. Создание файла в формате PostScript из DVI:
 - > dvips sample2e.dvi -o sample2e.ps
- 5. Альтернативный способ преобразования DVI в PDF, который иногда может быть полезен:
 - > dvipdfmx sample2e.dvi -o sample2e.pdf
- 6. Другие стандартные тестовые файлы, которые вам могут пригодиться:

small2e.tex Более простой документ, чем sample2e, удобный, если последний слишком велик для вас.

testpage.tex Проверяет поля и позиционирование бумаги для вашего принтера.

nfssfont.tex Используется для печати таблиц шрифтов и тестов.

testfont.tex Печать таблиц шрифтов под plain T_FX.

story.tex Самый канонический файл в формате (plain) Т_EX. Вы должны напечатать «\bye» в ответ на приглашение * после «tex story.tex».

7. Если вы установили пакет xetex, вы можете проверить, доступны ли ему системные шрифты: > xetex opentype-info.tex

This is XeTeX, Version 3.14...

...

Output written on opentype-info.pdf (1 page).

Transcript written on opentype-info.log.

Если вы получите сообщение об ошибке: «Invalid fontname 'Latin Modern Roman/ICU'...», то вам нужно настроить систему, чтобы можно было найти шрифты Т_FX Live. См. раздел 3.4.4.

3.6 Ссылки на дополнительные программы

Если вы новичок в T_EX е, или вам нужна помощь в создании документов на языке T_EX или L^AT_EX , посетите https://tug.org/begin.html.

Вот ссылки на некоторые другие программы, которые вам могут пригодиться:

Ghostscript https://ghostscript.com/

Perl https://perl.org/ с дополнительными пакетами из архива CPAN, http://www.cpan.org/

ImageMagick https://imagemagick.com, для конвертирования и преобразования графики.

NetPBM http://netpbm.sourceforge.net, тоже для графики.

Редакторы для T_EX а. Их очень много, и выбор их — дело вкуса. Вот несколько из них (некоторые доступны только для Windows):

- GNU Emacs есть для Windows, см. https://www.gnu.org/software/emacs/emacs.html.
- Emacs с AucTeXoм для Windows есть в директории tlpkg/support на DVD TeX Live; его страница на сети: https://www.gnu.org/software/auctex.
- SciTE можно скачать с https://www.scintilla.org/SciTE.html.
- Texmaker это свободная программа, которую можно скачать с
 https://www.xm1math.net/texmaker/.
- TeXstudio начался как вариант Texmaker с дополнительными возможностями; доступен по ссылке https://texstudio.org и в дистрибутиве proTeXt.
- TeXnicCenter это свободная программа, которую можно скачать с https: //www.texniccenter.org.
- TeXworks— это свободная программа, которую можно скачать с https://tug.org/texworks. Её версия для Windows (только) входит в TeX Live.
- Vim это свободная программа, которую можно скачать с https://www.vim.org.
- WinEdt это shareware. Эту программу можно скачать с https://tug.org/winedt или https://www.winedt.com.
- WinShell можно скачать с https://www.winshell.de.

Гораздо более полный лист программ и пакетов находится на https://tug.org/interest.html.

4 Установка системы в особых случаях

В предыдущих разделах описывались основы процесса установки T_EX Live. Здесь мы остановимся на нескольких особых случаях.

4.1 Установка в локальной сети

 $T_{\rm EX}$ Live может использоваться одновременно разными машинами в локальной сети. В стандартной схеме директорий все пути к файлам являются относительными: программы $T_{\rm EX}$ Live определяют, где лежат нужные им файлы, исходя из того, где они находятся сами. Вы можете увидеть, как это делается, посмотрев конфигурационный файл $T_{\rm EXMFDIST/web2c/texmf.cnf}$ со строчками типа

 ${\tt TEXMFROOT} = \${\tt SELFAUTOPARENT}$

TEXMFDIST = \$TEXMFROOT/texmf-dist

...

TEXMFLOCAL = \$SELFAUTOGRANDPARENT/texmf-local

Это означает, что другие системы или пользователи должны просто добавить директорию с программами T_EX Live к директориям поиска.

Точно так же вы можете установить Т_ЕX Live на один компьютер, а затем перенести всю иерархию на локальную сеть.

Для Windows в дистрибутив включен скрипт запуска ТеХа tlaunch. Его главное окно содержит меню и кнопки для разнообразных программ поддержки ТеХа и документацию. Это окно настраивается путем редактирования файла ini. При первом запуске скрипт добавляет пути поиска для программ ТеХ Live и системные установки, но только для текущего пользователя, Поэтому для компьютеров с доступом к ТеХ Live по сети нужен только ярлык запуска скрипта. См. руководство пользователя tlaunch (texdoc tlaunch), или https://ctan.org/pkg/tlaunch).

5 Установка Т_БХ Live на флешку

Опция программы установки -portable (или команда V в текстовом режиме, или соответствующий пункт меню в графическом режиме) создает систему, находящуюся полностью в своей директории, и не изменяет конфигурации компьютера. Вы можете установить такую систему на USB флешку или в отдельную директорию, а потом скопировать её на флешку.

Чтобы сделать систему самодостаточной, переменные TEXMFHOME, TEXMFVAR и TEXMFCONFIG совпадают с переменными TEXMFLOCAL, TEXMFSYSVAR, и TEXMFSYSCONFIG. Это означает, что конфигурации и кэши для отдельных пользователей не создаются.

Чтобы запустить T_EX с такой флешки, вам нужно добавить директорию с программами к путям поиска программ. Под Юниксом это делается при помощи изменения переменной окружения РАТН.

Под Windows вы можете щелкнуть на tl-tray-menu в корневой директории, чтобы создать меню для выбора из нескольких стандартных задач, как показано ниже:

Меню «Custom Script» вызывает окошко с объяснением, как добавить дополнительные возможности в меню.

6 Администрирование системы при помощи tlmgr

В Т_EX Live входит программа tlmgr для администрирования системы после установки. Программы updmap, fmtutil и texconfig все ещё есть в системе и будут там в будущем, но мы рекомендуем теперь программу tlmgr. Среди её возможностей:

- установка, обновление, архивирование, восстановление и удаление отдельных пакетов, при желании с учетом зависимостей между ними;
- поиск и перечисление пакетов;
- перечисление, добавление и удаление платформ;
- изменение параметров системы, например, размера бумаги и источника установки (см. раздел 3.3.1).

6.1 Графические оболочки для tlmgr

 T_{EX} Live включает несколько графических оболочек для tlmgr. Два важных примера: на рисунке 9 приведен tlshell, который написан на T_{cl}/T_{k} и работает из коробки под Windows иMac OS X. На рисунке 10 показан tlcockpit, который требует Java версии 8 и JavaFX. Оба этих пакета нужно установить отдельно. Сама программа tlmgr может быть запущена в графическом режиме (рисунок 11)) командой

> tlmgr -gui

Рис. 9: tlmgr в графическом режиме (Mac OS X), меню Actions

Рис. 10: Графическая оболочка tlcockpit для tlmgr

Следует заметить, однако, что эта оболочка требует Perl/Tk, который больше не включают в дистрибутив T_EX Live для программы Perl под Windows.

6.2 Примеры запуска программы tlmgr из командной строки

После первоначальной установки вы можете обновить систему до последних версий, имеющихся на сети:

> tlmgr update -all

Рис. 11: Устаревшая графическая оболочка для tlmgr: основное окно после нажатия на 'Load'

Если вы хотите сначала посмотреть, что именно будет обновляться, попробуйте сначала

> tlmgr update -all -dry-run

или (не так многословно):

> tlmgr update -list

В более сложном примере мы добавляем новую коллекцию (XeTpX) из локальной директории:

> tlmgr -repository /local/mirror/tlnet install collection-xetex

В результате система печатает следующее (многие строки удалены для краткости):

```
install: collection-xetex install: arabxetex ... install: xetex install: xetex install: xetexconfig install: xetex.i386-linux running post install action for xetex install: xetex-def ... running mktexlsr mktexlsr: Updating /usr/local/texlive/2021/texmf-dist/ls-R... ... running fmtutil-sys --missing ... Transcript written on xelatex.log.
```

fmtutil: /usr/local/texlive/2021/texmf-var/web2c/xetex/xelatex.fmt installed.

Как вы видите, tlmgr учитывает зависимости между пакетами и сам делает нужные после установки шаги, включая обновление базы имен файлов и перегенерирование форматов. В примере выше она создала новые форматы для программы XeT_FX.

Описание пакета (или коллекции или схемы):

> tlmgr show collection-latexextra

что дает

package: collection-latexextra

category: Collection

shortdesc: LaTeX supplementary packages

longdesc: A very large collection of add-on packages for LaTeX.

installed: Yes revision: 46963 sizes: 657941k

 ${\tt M}$ наконец, полная документация находится по адресу <code>https://tug.org/texlive/tlmgr.html</code> или вызывается командой

> tlmgr -help

7 Дополнительные замечания о Windows

7.1 Дополнительные возможности Windows

Под Windows программа установки делает несколько дополнительных вещей:

Меню и ярлыки. Устанавливается подменю «Т_ЕX Live» меню «Start», которое содержит некоторые программы (tlmgr, texdoctk) и документацию.

Программы по умолчанию. При необходимости, программы TeXworks и Dviout становятся программами по умолчанию для соответствующих типов файлов или заносятся в меню «Открыть при помощи...» для этих файлов.

Конвертирование графики в формат eps. В меню «Открыть при помощи...» для графических файлов добавляется команда bitmap2eps. Это простой скрипт, который вызывает программы sam2p или bmeps для конвертирования графики.

Автоматическая установка переменных окружения. Все переменные окружения устанавливаются автоматически.

Удаление системы. Программа установки создает в меню «Add/Remove Programs» запись «ТеХ Live». Клавиша «удалить» в меню tlmgr вызывает удаление системы. При установке для индивидуального пользователя также создается пункт в меню для удаления системы.

Защита от записи. При установке в административном режиме директории T_EX Live будут защищены от записи, по крайней мере, если T_EX Live устанавливается на жесткий диск, размеченный под NTFS.

В разделе 4.1 описан альтернативный подход, изпользующий программу tlaunch.

7.2 Дополнительные пакеты для Windows

Для полноты дистрибутиву T_EX Live необходимы дополнительные пакеты, которые обычно не встречаются на машине под Windows. В T_EX Live есть недостающие программы и пакеты (они устанавливаются только для Windows):

Perl и Ghostscript. Ввиду важности этих программ, T_EX Live включает их «скрытые» копии. Программы T_EX Live, которым они нужны, знают, где их найти, но они не выдают их присутствия системе через переменные окружения или регистр. Это усеченные варианты программ Perl и Ghostscript, и они не должны замещать системные версии.

dviout. Также устанавливается dviout, программа для просмотра файлов в формате DVI. При первом запуске программы она создает шрифты для просмотра файлов. Если вы будете пользоваться ей некоторое время, она создаст практически все нужные вам шрифты, и окно создания шрифтов будет появляться все реже. Дополнительная информация о программе содержится в (очень хорошем) меню Help.

TeXworks. T_EXworks— это редактор для T_EXa со встроенной программой для просмотра PDF. Он устанавливается уже настроенным для T_EX Live.

Утилиты командной строки. Вместе с программами ТеX Live устанавливается ряд портированных под Windows стандартных юниксовских утилит: gzip, zip, unzip и программы из набора poppler (pdfinfo, pdffonts, . . .); просмотрщик PDF в дистрибутив для Windows не включен.

Одна из возможных альтернатив: программа Sumatra (https://www.sumatrapdfreader.org/free-pdf-reader.html).

fc-list, fc-cache и т.д. Эти программы из библиотеки fontconfig помогают XeTgXy работать со шрифтами под Windows. Вы можете определить названия шрифтов для команды \font при помощи программы fc-list. Если нужно, вызовите сначала программу fc-cache, чтобы обновить информацию о шрифтах.

7.3 Домашняя директория под Windows

Аналогом домашней директории под UNIX является директория %USERPROFILE%. Под Windows Vista и младше это обычно $C:\Users\=$ В файле texmf.cnf и вообще при работе Kpathsea, тильда \sim правильно интерпретируется как домашняя директория пользователя и под Windows, и под UNIX.

7.4 Peructp Windows

Windows хранит почти все конфигурационные данные в регистре. Регистр содержит набор иерархически организованных записей, с несколькими корневыми записями. Наиболее важны для программ установки записи HKEY_CURRENT_USER и HKEY_LOCAL_MACHINE, сокращенно HKCU и HKLM. Как правило, HKCU находится в домашней директории пользователя (см. раздел 7.3), а HKLM—поддиректория директории Windows.

Иногда конфигурация системы определяется переменными окружения, но некоторые вещи (например, положение ярлыков) задаются в регистре. Для того, чтобы перманентно задать переменные окружения, также нужен доступ к регистру.

7.5 Права доступа под Windows

В поздних версиях Windows делается различие между обычными пользователями и администраторами, причем только последние имеют право доступа почти ко всей операционной системе. Мы постарались сделать возможным установку ТЕХ Live без прав администратора.

Если программа установки запущена с привилегиями администратора, она может установить ТЕХ Live для всех пользователей. В этом случае ярлыки создаются у всех пользователей, и модифицируются все пути поиска. В противном случае ярлыки и меню создаются только для текущего пользователя, и модифицируются только его пути поиска.

Вне зависимости от статуса пользователя, корень установки Т_EX Live, предлагаемый по умолчанию, всегда находится под %SystemDrive%. Программа установки всегда проверяет, открыта ли корневая директория на запись для текущего пользователя.

Может возникнуть проблема, если у пользователя нет прав администратора, а в пути поиска уже есть ТеХ. Поскольку в пути поиска системный путь стоит перед путем пользователя, ТеХ из ТеХ Live не будет найден. Чтобы обойти эту проблему, программа в таком случае создает ярлык с командной строкой, в которой директория ТеХ Live стоит первой в пути поиска. Из этой командной строки можно пользоваться ТеХ Live. Ярлык для ТеХworks, если эта программа установлена, также добавляет директории ТеХ Live в начало пути поиска.

Есть ещё одна особенность: даже если вы являетесь администратором, вам нужно отдельно указать административные права при запуске программ. Поэтому не имеет особого смысла заходить в систему как администратор: вместо этого, щелкнув правой клавишей мыши на ярлык, выберите из меню «Run as administrator».

7.6 Закрытие директории Т_ЕХ Live для записи

Установка в качестве администратора не защищает директорию Т_EX Live от записи другими пользователями. Это нужно делать отдельно, задав соответствующие установки в ACL (Access Control List) для данной директории, например, при помощи утилиты Windows icacls.

7.6.1 Увеличение предоставляемой памяти под Windows и Cygwin

Пользователи Windows и Cygwin (см. раздел 3.1.4 об особенностях установки под Cygwin) могут обнаружить, что для некоторых программ ТЕХ Live не хватает оперативной памяти. Например, программа азу может не запуститься, если вам нужно разместить массив в 25 000 000 чисел с плавающей точкой, а LuaTeX может не справиться с документом, в котором много разных шрифтов.

Под Cygwin можно увеличить используемый объем памяти, если воспользоваться инструкциями в Руководстве пользователя Cygwin (https://www.cygwin.com/cygwin-ug-net/setup-maxmem. html).

Под Windows нужно создать файл, скажем, moremem.reg, со следующими четырьмя строками: Windows Registry Editor Version 5.00

```
[HKEY LOCAL MACHINE\Software\Cygwin]
"heap chunk in mb"=dword:ffffff00
```

а затем выполнить как администратор команду regedit /s moremem.reg. Если вы хотите изменить этот параметр только для текущего пользователя, то в третьей строке надо написать HKEY CURRENT USER.

Руководство пользователя Web2C

Web2C — это интегрированная коллекция программ, относящихся к ТрХу: сам ТрХ, МЕТА-FONT, MetaPost, BibTFX, и т.д. Это сердце TFX Live. Страница Web2C с руководством пользователя и многим другим находится на https://tug.org/web2c.

Немного истории. Первая версия программы была написана Томасом Рокики, который в 1987 году создал систему Т_FX-to-C, адаптировав патчи для UNIX, разработанные в основном Говардом Трики и Павлом Куртисом. Тим Морган стал поддерживать систему, и в этот период её название сменилось на Web-to-C. В 1990 году Карл Берри взял на себя этот проект, координируя работу десятков программистов, а в 1997 он передал руководство Олафу Веберу, который вернул его Карлу в 2006 году.

Система Web2C работает под UNIX, 32-битовыми Windows, Mac OS X и под другими операционными системами. Она использует оригинальные исходники Кнута для ТрХа и других программ, написанных на языке WEB и переведённых на С. Основные программы системы:

```
bibtex Поддержка библиографий.
dvicopy Работа с виртуальными шрифтами в файлах DVI.
dvitomp Перевод DVI в MPX (рисунки в MetaPost).
dvitype Перевод DVI в текст.
gftodvi Гранки шрифтов.
gftopk Упаковка шрифтов
gftype Перевод GF в текст.
mf Создание шрифтов.
mft Вёрстка исходников METAFONT.
mpost Рисование диаграмм.
patgen Создание таблиц переносов.
pktogf Перевод РК в GF.
pktype Перевод PK в текст
pltotf Перевод из списка свойств шрифта в TFM.
pooltype Расшифровка файлов pool в WEB.
```

tangle Перевод WEB в Pascal.

tex Bёрстка.

tftopl Перевод TFM в список свойств шрифта.

vftovp Перевод виртуального шрифта в список свойств шрифта.

vptovf Перевод списка свойств шрифта в виртуальный шрифт.

weave Перевод WEB в Т_БХ.

Полностью эти программы описаны в документации к соответствующим пакетам и самой Web2C. Однако знание некоторых общих принципов для всей семьи программ поможет вам полнее использовать программы системы Web2C.

Все программы поддерживают стандартные опции GNU:

- --help напечатать краткую справку
- --version Напечатать версию программы и завершить работу.

Многие программы также поддерживают опцию

--verbose печатать подробную информацию по мере работы

Для поиска файлов программы Web2C используют библиотеку Kpathsea (https://tug.org/ kpathsea). Эта библиотека использует комбинацию переменных окружения и конфигурационных файлов, чтобы найти нужные файлы в огромной системе T_FX. Web2C может просматривать одновременно больше одного дерева директорий, что полезно для работы со стандартным дистрибутивом Т_EXa и его локальными расширениями. Для ускорения поисков файлов каждое дерево содержит файл ls-R, в котором указаны названия и относительные пути всех файлов в этом дереве.

8.1 Поиск файлов в Kpathsea

Рассмотрим сначала общий алгоритм библиотеки Kpathsea.

Будем называть путём поиска набор разделённых двоеточием или точкой с запятой элементов пути, представляющих из себя в основном названия директорий. Путь поиска может иметь много источников. Чтобы найти файл «my-file» в директории «.:/dir», Kpathsea проверяет каждый элемент пути по очереди: сначала ./my-file, затем /dir/my-file, возвращая первый файл (или, возможно, все файлы).

Чтобы работать с разными операционными системами, Kpathsea под системой, отличной от UNIX, может использовать разделители, отличные от $\ll 1$ и $\ll 1$.

Чтобы проверить определённый элемент пути р, Kpathsea вначале проверяет наличие базы данных (см. раздел «База данных файлов» на стр. 27), т.е., есть ли база в директории, которая является префиксом для р. Если это так, спецификация пути сравнивается с содержимым базы данных.

Хотя самый простой и часто встречающийся элемент пути—это название директории, Kpathsea поддерживает дополнительные возможности: разнообразные значения по умолчанию, имена переменных окружения, значения из конфигурационных файлов, домашние директории пользователей, рекурсивный поиск поддиректорий. Поэтому мы говорим, что Kpathsea вычисляет элемент пути, т.е., что библиотека преобразует спецификации в имя или имена директории. Это описано в следующих разделах в том же порядке, в котором происходит поиск.

Заметьте, что имя файла при поиске может быть абсолютным или относительным, т.е. начинаться с «/», или «./», или «../», Kpathsea просто проверяет, существует ли файл.

8.1.1 Источники путей поиска

Путь поиска может иметь разные источники. Краthsea использует их в следующем порядке:

- 1. Установленные пользователем переменные окружения, например TEXINPUTS. Переменные окружения с точкой и названием программы имеют преимущество; например если «latex» имя программы. то TEXINPUTS.latex имеет преимущество перед TEXINPUTS.
- 2. Конфигурационный файл, специфический для данной программы, например, строка «S /a:/b» в config.ps для dvips.
- 3. Конфигурационный файл Kpathsea texmf.cnf, содержащий строку типа «TEXINPUTS=/c:/d» (см. ниже).
- 4. Значение, заданное при компиляции.

Вы можете увидеть каждое из этих значений для данного пути поиска, задав соответствующий уровень отладки (см. «Отладка» на стр. 30).

8.1.2 Конфигурационные файлы

Kpathsea читает конфигурационные файлы texmf.cnf, в которых задаются параметры программы. Раньше для поиска этих файлов использовалась переменная TEXMFCNF, но теперь мы не рекомендуем пользоваться этой (или какой-либо другой) переменной окружения.

Теперь при нормальной установке создается файл .../2021/texmf.cnf. Если вам нужно изменить настройки (обычно этого делать не приходится), внесите их в этот файл. Главный конфигурационный файл — это файл .../2021/texmf/web2c/texmf.cnf. Его редактировать не следует, так как при обновлении системы ваши изменения пропадут.

Если вы хотите только добавить личную директорию к определенному списку поиска, вы можете задать переменную окружения:

TEXINPUTS=.:/my/macro/dir:

Чтобы эта система могла работать при изменении версии TEX Live, мы советуем использовать в конце «:» («;» под Windows), чтобы добавить системные директории, вместо того, чтобы указывать их явно (см. раздел 8.1.4). Другой вариант — использование дерева TEXMFHOME (см. раздел 3.2.3).

Все найденные файлы texmf.cnf будут прочитаны, и определения в более ранних файлах имеют преимущество перед определениями в более поздних. Таким образом, если путь поиска задан как .:\$TEXMF, значения в ./texmf.cnf имеют преимущество перед значениями в \$TEXMF/texmf.cnf.

- Комментарии начинаются с % в начале строки или после пробелов и продолжаются до конца строки.
- Пустые строки игнорируются
- \ в конце строки означает продолжение, т.е. добавляется следующая строка. Пробелы в начале следующей строки не игнорируются.
- Определения параметров имеют вид

```
variable [.progname] [=] value
```

где «=» и пробелы вокруг могут опускаться. Но (если value начинается с «.», проще использовать «=», чтобы точка не могла интерпретироваться как указание на то, что переменная относится к определенной программе.)

- variable может содержать любые символы, кроме пробела, «=» или «.», но надёжнее всего придерживаться набора «A-Za-z ».
- Если есть «.progname», определение относится только к программе, которая называется progname или progname.exe. Это позволяет, например, разным видам Т_ЕХа иметь разные пути поиска.
- Так как значения value являются строковыми константами, они могут содержать любые символы. Но так как на практике большинство значений переменных в файле texmf.cnf связано с путями поиска, и так как различные специальные символы, такие как запятые и фигурные скобки, используются для их задания (см. раздел 8.1.7), такие символы не могут быть использованы в именах директорий.

Символ «;» в строке value переводится в «:» под Юникосм, чтобы один и тот же файл texmf.cnf мог работать под Юниксом и под Windows. Это происходит со всеми подстроками, не только с путями поиска, но к счастью символ «;» больше нигде не используется.

Суффикс \$var.prog не работает в правой части присвоения; вместо этого следует явно задавать соответствующую переменную.

• Все определения читаются до подстановок, поэтому к переменным можно обращаться до того, как они определены.

Фрагмент конфигурационного файла, иллюстрирующий эти правила, приведен ниже:

```
\label{eq:texmf} \begin{split} \text{TEXMF} &= \{\text{\$TEXMFLOCAL}, \text{"\$TEXMFMAIN}\} \\ \text{TEXINPUTS.latex} &= .; \text{\$TEXMF/tex}/\{\text{latex,generic};\}//\\ \text{TEXINPUTS.fontinst} &= .; \text{\$TEXMF/tex}/; \text{\$TEXMF/fonts/afm}//\\ \text{\% e-TeX related files} \\ \text{TEXINPUTS.elatex} &= .; \text{\$TEXMF/\{etex,tex}\}/\{\text{latex,generic};\}//\\ \text{TEXINPUTS.etex} &= .; \text{\$TEXMF/\{etex,tex}\}/\{\text{eplain,plain,generic};}//\\ \end{split}
```

8.1.3 Подстановка путей

Краthsea распознаёт определённые специальные символы и конструкции в путях поиска, аналогичные конструкциям в стандартных оболочках UNIX. Например, путь ~\$USER/{foo,bar}//baz, означает все поддиректории директорий foo и bar в домашней директории пользователя \$USER, которые содержат файл или поддиректорию baz. Это объяснено в следующих разделах.

8.1.4 Подстановка по умолчанию

Если путь поиска с наибольшим приоритетом (см. раздел «Источники путей поиска» на стр. 25) содержит дополнительное двоеточие (в начале, в конце, двойное), Kpathsea заменяет его следующим по приоритету путём. Если этот вставленный путь содержит дополнительное двоеточие, то же происходит со следующим путём. Например, если переменная окружения задана как

```
> setenv TEXINPUTS /home/karl:
```

```
и TEXINPUTS в файле texmf.cnf в дистрибутиве содержит .:$TEXMF//tex
то поиск будет происходить с путём
/home/karl:.:$TEXMF//tex
```

Поскольку было бы бесполезно вставлять значение по умолчанию более чем один раз, Kpathsea изменяет только одно лишнее двоеточие, и оставляет остальные: она проверяет сначала двоеточие в начале, потом в конце, потом двойные двоеточия.

8.1.5 Подстановка скобок

Полезна также подстановка скобок, из-за которой, например, v{a,b}w означает vaw:vbw. Вложенность тут допускается. Благодаря этому можно иметь несколько иерархий директорий, присвоив \$TEXMF несколько вариантов путей. Например, в файле texmf.cnf можно найти следующее определение (это упрощение, на самом деле там ещё больше деревьев):

 $TEXMF = \{TEXMFVAR, TEXMFHOME, !! TEXMFLOCAL, !! TEXMFDIST\}$

Мы можем теперь использовать это, чтобы задать директории поиска:

TEXINPUTS = .; TEXMF/tex//

что означает, что, кроме текущей директории, будет происходить поиск только в TEXMFVAR/tex, TEXMFHOME/tex, TEXMFLOCAL/tex, и TEXMFDIST/tex (последние два дерева используют файлы ls-R).

8.1.6 Подстановка поддиректорий

Два или более слэша «/» в элементе пути вслед за именем директории d заменяются всеми поддиректориями d рекурсивно. На каждом уровне порядок поиска по директориям не определён.

Если вы определите компоненты имени файла после «//», только поддиректории с соответствующими компонентами будут включены. Например, «/a//b» даёт поддиректории /a/1/b, /a/2/b, /a/1/1/b, и т.д., но не /a/b/c или /a/1.

Возможны несколько конструкций «//» в одном пути, но «//» в начале пути игнорируются.

8.1.7 Список специальных символов в файле texmf.cnf и их значений

В следующем списке приводятся специальные символы и сочетания в конфигурационных файлах Kpathsea.

- : Разделитель в спецификациях путей; в начале или конце спецификации или удвоенный внутри нее, означает подстановку по умолчанию.
- ; Разделитель путей в системах, отличных от UNIX (то же, что :).
- \$ Подстановка переменных.
- Означает домашнюю директорию пользователя.
- {...} Подстановка скобок.
- Разделяет объекты при подстановке скобок.
- // Подстановка поддиректорий (может встретиться где угодно, кроме начала пути).
- % Начало комментария.
- Символ продолжения (для команд из нескольких строк).
- !! Поиск только в базе данных, но не на диске.

Будет ли конкретный символ считаться специальным или будет читаться буквально, зависит от контекста. Правила разные на разных стадиях интерпретации конфигурационного файла (чтение, подстановка, поиск), и их, к сожалению, невозможно изложить коротко. Нет механизма защиты символов; в частности, «\» не приводит к тому, что специальные символы в texmf.cnf перестают быть специальными.

При выборе директорий для установки проще всего избегать названий директорий, включающих эти символы.

8.2 Базы данных файлов

Краthsea старается минимизировать обращение к диску при поиске. Тем не менее в ТЕХ Live или в любой системе с большим количеством директорий поиск в каждой возможной директории может занять долгое время. Поэтому Kpathsea умеет использовать внешний текстовый файл, «базу данных» ls-R, который знает, где находятся файлы в директориях, что даёт возможность избежать частых обращений к диску.

Ещё одна база данных, файл aliases, позволяет вам давать дополнительные названия файлам в ls-R.

8.2.1 Базы данных ls-R

Как объяснено выше, основная база данных называется ls-R. Вы можете создать её в корне каждого дерева Т_ЕХа, которое просматривается Краthsea (по умолчанию, \$TEXMF). Краthsea ищет файлы ls-R в пути TEXMFDBS.

Рекомендуемый способ создания и поддержки «ls-R»—скрипт mktexlsr, включённый в дистрибутив. Он вызывается разными скриптами «mktex».... В принципе этот скрипт выполняет команды типа

cd /your/texmf/root && $\label{loop} \$ \ls -1LAR ./ >ls-R

при условии, что в вашей системе ls даёт вывод в нужном формате (GNU ls годится). Чтобы поддерживать базу данных в текущем состоянии, проще всего перегенерировать её регулярно из стопа, чтобы она автоматически обновлялась через некоторое время после установки нового пакета.

Если файл не найден в базе данных, по умолчанию Kpathsea ищет его на диске. Если элемент пути начинается с «!!», то поиск происходит только в базе данных.

8.2.2 kpsewhich: Программа для поиска файлов

Программа kpsewhich выполняет поиск в соответствии с алгоритмом, описанным выше. Это может быть полезно в качестве варианта команды find для поиска файлов в иерархиях T_EXa (это широко используется в скриптах «mktex»...).

> kpsewhich option... filename...

Опции, указанные в option, начинаются либо с «-» либо «--», и любые однозначные (не могущие иметь двояких толкований) сокращения допустимы.

Kpathsea рассматривает каждый аргумент, не являющийся опцией, как имя файла и возвращает первый найденный файл. Нет опции вернуть все найденные файлы (для этого можно использовать программу «find»).

Наиболее важные опции описаны ниже.

--dpi=num

Установить разрешение num; это влияет только на поиск файлов «gf» и «pk». Синоним «-D», для совместимости с dvips. По умолчанию 600.

--format=name

Установить формат для поиска name. По умолчанию, формат определяется из имени файла. Для форматов, для которых нет однозначного суффикса, например, файлов MetaPost и конфигурационных файлов dvips, вы должны указать название, известное Kpathsea, например, tex или enc files. Список вариантов можно получить командой kpsewhich --help-formats.

--mode=string

Установить значение режима печати string; это влияет только на поиск файлов «gf» и «pk». Значения по умолчанию нет: ищутся файлы для всех режимов.

--must-exist

Сделать всё возможное, чтобы найти файл, включая поиск на диске. По умолчанию для повышения эффективности просматривается только база данных ls-R.

--path=string

Искать в наборе директорий string (как обычно, разделённых двоеточиями), вместо того, чтобы вычислять путь поиска по имени файла. «//» и обычные подстановки работают. Опции «--path» и «--format» несовместимы.

--progname=name

Установить имя программы равным name. Это влияет на путь поиска из-за префикса .progname. По умолчанию kpsewhich.

--show-path=name

Показать путь, используемый при поисках файлов типа name. Можно использовать расширение (.pk, .vf и т.д.) или тип файла, как для опции «--format».

--debug=num

Установить уровень отладки num.

8.2.3 Примеры использования

Давайте посмотрим на Kpathsea в действии. Вот простой поиск:

> kpsewhich article.cls

/usr/local/texmf-dist/tex/latex/base/article.cls

Мы ищем файл article.cls. Так как суффикс «.cls» однозначен, нам не нужно указывать, что мы ищем файл типа tex (исходники TeXa). Мы находим его в поддиректории tex/latex/base директории «temf-dist» TeX Live. Аналогично, всё последующее находится без проблем благодаря однозначному суффиксу:

- > kpsewhich array.sty
 - /usr/local/texmf-dist/tex/latex/tools/array.sty
- > kpsewhich latin1.def
 - /usr/local/texmf-dist/tex/latex/base/latin1.def
- > kpsewhich size10.clo
 - /usr/local/texmf-dist/tex/latex/base/size10.clo
- > kpsewhich small2e.tex
 - /usr/local/texmf-dist/tex/latex/base/small2e.tex
- > kpsewhich tugboat.bib
 - /usr/local/texmf-dist/bibtex/bib/beebe/tugboat.bib

Кстати, последнее — библиографическая база данных статей журнала TUGBoat.

> kpsewhich cmr10.pk

Битмапы шрифтов типа .pk используются программами dvips и xdvi. Ничего не найдено, поскольку у нас нет готовых файлов шрифтов Computer Modern в формате «.pk» (так как мы используем версии в формате Туре 1 из дистрибутива ТЕХ Live).

> kpsewhich wsiupa10.pk

/usr/local/texmf-var/fonts/pk/ljfour/public/wsuipa/wsuipa10.600pk

Для этих шрифтов (фонетический алфавит, созданный в Университете штата Вашингтон) мы должны сгенерировать «.pk», и так как режим METAFONT по умолчанию в нашей системе ljfour с разрешением of $600\,\mathrm{dpi}$ (точек на дюйм), этот шрифт и найден.

> kpsewhich -dpi=300 wsuipa10.pk

В этом случае нам нужно разрешение $300\,\mathrm{dpi}$ (-dpi=300); мы видим, что такого шрифта в системе нет. На самом деле программа dvips или xdvi построила бы нужный файл .pk при помощи скрипта mktexpk.

Теперь обратимся к заголовкам и конфигурационным файлам dvips. Вначале рассмотрим один из наиболее часто используемых файлов, пролог tex.pro для поддержки ТеХа, а затем рассмотрим общий конфигурационный файл config.ps и карту шрифтов psfonts.map (с 2004 года карты и файлы кодировок имеют собственные пути поиска в деревьях texmf). Так как суффикс «.ps» неоднозначен, мы должные явно указать тип файла, который мы ищем: (dvips config) для файла config.ps.

> kpsewhich tex.pro

/usr/local/texmf/dvips/base/tex.pro

> kpsewhich --format="dvips config" config.ps

/usr/local/texmf/dvips/config/config.ps

> kpsewhich psfonts.map

/usr/local/texmf/fonts/map/dvips/updmap/psfonts.map

Рассмотрим теперь файлы поддержки URW Times (PostScript). Префикс для этих файлов в стандартной схеме обозначения шрифтов «utm». Вначале мы рассмотрим конфигурационный файл, который содержит название карты шрифтов:

> kpsewhich --format="dvips config" config.utm

/usr/local/texmf-dist/dvips/psnfss/config.utm

Содержание этого файла:

```
p +utm.map
```

что указывает на файл utm.map, который мы хотим теперь найти.

> kpsewhich --format="dvips config" utm.map

/usr/local/texmf-dist/fonts/map/dvips/times/utm.map

Эта карта определяет названия шрифтов формата Type 1 (PostScript) в коллекции URW. Она выглядит так (мы показываем только часть файла):

utmb8r NimbusRomNo9L-Medi ... <utmb8a.pfb

utmbi
8r Nimbus Rom No9L-Medi
Ital... <
utmbi8a.pfb

utmr8r NimbusRomNo9L-Regu ... <utmr8a.pfb

utmri8r NimbusRomNo9L-ReguItal... <utmri8a.pfb

utmbo8r NimbusRomNo9L-Medi ... <utmb8a.pfb

utmro8r NimbusRomNo9L-Regu ... <utmr8a.pfb

Давайте найдём, например, файл для Times Roman utmr8a.pfb:

> kpsewhich utmr8a.pfb

/usr/local/texmf-dist/fonts/type1/urw/times/utmr8a.pfb

Из этих примеров видно, что вы можете легко найти заданный файл. Это особенно важно, если вы подозреваете, что программы находят неправильную версию файла, поскольку kpsewhich показывает первый найденный файл.

8.2.4 Отладка

Иногда необходимо проверить, как программа ищет файлы. С этой целью Kpathsea предлагает разные уровни отладки:

- 1 статистика обращений к диску. При работе с базами ls-R это почти не должно давать записей в лог.
- 2 Ссылки на хеши (например, базы данных ls-R, конфигурационные файлы и т.д.).
- 4 Операции открытия и закрытия файлов.
- 8 Общая информация о типах файлов, которые ищет Kpathsea. Это полезно для того, чтобы найти, где определяется тип пути поиска для данного файла.
- 16 Список директорий для каждого элемента пути (при поисках на диске).
- 32 Поиски файлов.
- 64 Значения переменных.

Значение -1 задаст все опции выше; именно это значение чаще всего используется на практике.

Аналогично, запустив программу dvips и используя сочетание этих опций, можно проследить подробно, как ищутся файлы. С другой стороны, если файл не найден, трассировка показывает, где его искали, так что можно понять, в чём состоит проблема.

Вообще говоря, поскольку большинство программ пользуются библиотекой Kpathsea, вы можете установить опцию отладки, используя переменную окружения KPATHSEA_DEBUG и установив её на комбинацию описанных выше значений.

(Примечание для пользователей Windows: в этой системе трудно перенаправить все сообщения в файл. Для диагностики вы можете временно установить SET KPATHSEA DEBUG OUTPUT=err.log).

Рассмотрим в качестве примера простой файл в формате I⁴ТEX, hello-world.tex, со следующим содержанием:

```
\documentclass{article}
\begin{document}
Hello World!
\end{document}
```

Этот маленький файл использует только шрифт cmr10, так что давайте посмотрим, как dvips создаёт файл в формате PostScript (мы хотим использовать версию шрифтов в формате Type 1, отсюда опция -Pcms).

> dvips -d4100 hello-world -Pcms -o

В этом случае мы объединили отладочный уровень 4 для dvips (директории шрифтов) с подстановкой элементов путей в Kpathsea(см. Руководство пользователя dvips. Результат (слегка отредактированный) показан на рисунке 12.

Программа dvips вначале ищет свои конфигурационные файлы. Сначала находится texmf.cnf, который содержит определения для путей поиска остальных файлов, затем база данных ls-R (для оптимизации поиска файлов) и файл aliases, который позволяет объявить несколько имён (например, короткие в формате 8.3 и более длинные) для одного файла. Затем dvips ищет свой конфигурационный файл config.ps и файл .dvipsrc (который в данном случае не найден). Наконец, dvips находит конфигурационный файл для шрифтов Computer Modern PostScript config.cms (это было задано опцией -Pcms в командной строке). Этот файл содержит список карт, которые определяют соотношения между файлами в форматах TeX, PostScript и названиями шрифтов:

> more /usr/local/texmf/dvips/cms/config.cms

```
p +ams.map
```

p + cms.map

p +cmbkm.map

p +amsbkm.map

dvips находит все эти файлы плюс общую карту шрифтов psfonts.map, которая всегда загружается (она содержит обычные шрифты в формате PostScript; см. последнюю часть раздела 8.2.3).

В этот момент dvips сообщает о себе пользователю:

This is dvips(k) 5.92b Copyright 2002 Radical Eye Software (www.radicaleye.com)

Затем она ищет пролог texc.pro:

```
debug:start search(file=texmf.cnf, must exist=1, find all=1,
 path=::/usr/local/bin/texlive:/usr/local/bin:
     /usr/local/bin/texmf/web2c:/usr/local:
     /usr/local/texmf/web2c:/.:/./teTeX/TeX/texmf/web2c:). \\
kdebug:start search(file=ls-R, must exist=1, find all=1,
 path=~/tex:/usr/local/texmf).
kdebug:search(ls-R) = > /usr/local/texmf/ls-R
kdebug:start\ search(file=aliases,\ must\_exist=1,\ find\ \ all=1,
 path=~/tex:/usr/local/texmf).
kdebug:search(aliases) => /usr/local/texmf/aliases
kdebug:start search(file=config.ps, must exist=0, find all=0,
 path=.:~/tex:!!/usr/local/texmf/dvips//).
kdebug:search(config.ps) => /usr/local/texmf/dvips/config/config.ps
kdebug:start search(file=/root/.dvipsrc, must exist=0, find all=0,
 path=:.~/tex:!!/usr/local/texmf/dvips//).
search(file=/home/goossens/.dvipsrc, must_exist=1, find_all=0,
 path=:.~/tex/dvips//:!!/usr/local/texmf/dvips//).
kdebug:search($HOME/.dvipsrc) =>
kdebug:start search(file=config.cms, must exist=0, find all=0,
 path=:.~/tex/dvips//:!!/usr/local/texmf/dvips//).
kdebug:search(config.cms)
=>/usr/local/texmf/dvips/cms/config.cms
```

Рис. 12: Поиск конфигурационных файлов

Найдя этот файл, dvips печатает дату и время и информирует нас, что собирается генерировать файл hello-world.ps, что ей нужен файл cmr10 и что последний является «резидентным» (битмапы не нужны):

```
TeX output 1998.02.26:1204' -> hello-world.ps Defining font () cmr10 at 10.0pt Font cmr10 <CMR10> is resident.
```

Теперь она ищет файл cmr10.tfm, который она находит, затем ещё несколько прологов (здесь они опущены), и наконец файл формата Туре 1 cmr10.pfb найден и включён в выходной файл (см, последнюю строку):

```
 kdebug: start\ search (file=cmr10.tfm,\ must\_exist=1,\ find\_all=0,\ path=.:^/tex/fonts/tfm//:!!/usr/local/texmf/fonts/tfm//: /var/tex/fonts/tfm//). \\ kdebug: search (cmr10.tfm) => /usr/local/texmf/fonts/tfm/public/cm/cmr10.tfm kdebug: start\ search (file=texps.pro,\ must\_exist=0,\ find\_all=0, ... \\ < texps.pro> kdebug: start\ search (file=cmr10.pfb,\ must\_exist=0,\ find\_all=0, path=.:^/tex/dvips//:!!/usr/local/texmf/dvips//: ^/tex/fonts/type1//:!!/usr/local/texmf/fonts/type1//). \\ kdebug: search (cmr10.pfb) => /usr/local/texmf/fonts/type1/public/cm/cmr10.pfb < cmr10.pfb>[1]
```

8.3 Опции запуска

Ещё одна полезная возможность Web2C — изменение параметров памяти (в особенности размеров массивов) при запуске, во время чтения файла texmf.cnf библиотекой Kpathsea. Параметры памяти находятся в части 3 этого файла в дистрибутиве T_FX Live. Вот самые важные:

main_memory Общее количество слов в памяти для программ Т_EX, МЕТАFONT и MetaPost. После изменения этого параметра надо перегенерировать формат. Например, вы можете создать «огромную» версию Т_EXa, и назвать соответствующий формат hugetex.fmt. По общим правилам Kpathsea, значение переменной main_memory будет читаться из файла texmf.cnf. extra_mem_bot Дополнительная память для «больших» структур, которые создаёт Т_EX: боксов, клея и т.д. Особенно полезно при использовании Р_IСТ_EXa.

font_mem_size Количество слов информации о шрифтах для Т_EXa. Это примерно суммарный размер всех файлов ТFM, которые читает Т_EX.

hash ехtra Дополнительный размер хеша для имён команд. По умолчанию 600000.

Это не замена настоящих динамических массивов и распределения памяти, но поскольку эти черты исключительно сложно осуществить в текущем ТЕХе, использование этих параметров представляет собой полезный компромисс и обеспечивает некоторую гибкость.

8.4 \$TEXMFDOTDIR

Выше мы указывали различные пути поиска начиная с точки «.» (начать поиск с текущей директории), например,

TEXINPUTS=.;\$TEXMF/tex//

Это упрощение. Файл texmf.cnf, который входит в T_{EX} Live, использует \$TEXMFDOTDIR вместо «.», например:

TEXINPUTS = TEXMFDOTDIR; TEXMF/tex//

(В реальном файле второй элемент слегка сложнее, чем \$TEXMF/tex//. Но это неважно: здесь мы обсуждаем \$TEXMFDOTDIR).

Причина, по которой в определениях используется переменная \$TEXMFDOTDIR, а не просто «.», в том, что эту переменную можно переопределить. Например, в сложный документ может включать файлы из многих поддиректорий. В этом случае можно выставить TEXMFDOTDIR на .// (например, в дереве директорий, предназначенном только для данного текста), и поиск пойдет по всем директориям системы. (Предупреждение: не используйте .// по умолчанию: обычно крайне нежелательно и потенциально небезопасно, искать во всех поддиректориях для каждого документа)

Другой пример: вы можете не хотеть искать в текущей директории, например, если вы подгружаете файлы, явно указывая их полные пути. В этом случае вы можете выставить \$TEXMFDOTDIR на, например, /nonesuch или любую несуществующую директорию.

По умолчанию \$TEXMFDOTDIR указывает на «.», как в нашем texmf.cnf.

9 Благодарности

 $T_{E}X$ Live — результат объединённых усилий практически всех групп пользователей $T_{E}X$ а. Это издание $T_{E}X$ Live выходит под редакцией Карла Берри. Другие основные авторы, прошлые и настоящие, перечислены ниже. Мы благодарим:

- Англоязычную, немецкую, голландскую и польскую группы пользователей Т_EXa (TUG, DANTE e.V., NTG и GUST) за необходимую техническую и административную инфраструктуру. Пожалуйста, вступайте в группы пользователей Т_EXa (см. https://tug.org/usergroups. html).
- Группу поддержки CTAN (https://ctan.org) за размещение дисков Т_EX Live и поддержку инфраструктуры обновления пакетов, от которой зависит Т_EX Live.
- Нельсона Биба за предоставленные разработчикам ТЕХ Live компьютеры и за тестирование дистрибутива а также беспримерную работу в области библиографии.
- Джона Боумана за работу по интегрированию его программы для сложной графики Asymptote в TeX Live.
- Питера Брейтенлохнера и команду разработчиков ε -Т_ЕХа за стабильный движок для будущих Т_ЕХов, и в особенности Питера за блестящую работу с системой GNU autoools для Т_ЕХ Live. Питер покинул нас в октябре 2015 года, и мы посвящаем эту работу его памяти.
- Цзинь-Хуэя Чоу и команду разработчиков DVIPDFMx за их прекрасный драйвер и помощь в его конфигурации.
- Томаса Эссера, без замечательного пакета teTeX которого TeX Live не существовал бы.
- Мишеля Гусенса, который был соавтором первой версии документации.
- Эйтана Гурари, чей ТеХ4ht использовался для создания файлов в формате HTML, и который неустанно работал, по первому требованию добавляя нужные нам возможности. Эйтан безвременно скончался в июне 2009 года, и мы посвящаем эту документацию его памяти.
- Ханса Хахена за огромную помощь в тестировании и приспособлении пакета ConT_EXt (https://pragma-ade.com) к T_EX Live и за постоянную работу на развитие T_EXa.
- Хан Те Таня, Мартина Шрёдера и команду pdfTgXa (http://pdftex.org) за расширение возможностей ТgXa.

- Хартмута Хенкеля за существенный вклад в pdfTFX LuaTFX и другие программы.
- Шушаку Хирата за создание и развитие DVIPDFMx.
- Тако Хоекватера за возобновление работы над MetaPost и (Lua)T_EXom (http://luatex.org) за интегрирование ConT_EXta в T_EX Live, параллелизацию программы Kpathsea и много другое.
- Халеда Хосни за его работу над программами XeTEX, DVIPDFMx, а также арабским и другими шрифтами.
- Павла Яцковского за инсталлятор для Windows tlpm, и Томаша Лужака за tlpmgui, использованные в прошлых версиях Т_EX Live.
- Акиру Какуто за большую помощь в интегрировании в систему программ для Windows из его дистрибутивов W32TEX и W64TEX для японского TEXa (http://w32tex.org) и многое другое.
- Джонатана Кью за создание замечательной новой системы XeT_EX, за усилия по её интегрированию в T_EX Live, за исходную версию программы установки MacT_EX и за рекомендуемую нами оболочку для работы в T_EXe T_EXworks.
- Хиронори Китагаву за большую работу над рТЕХом и смежными проектами.
- Дика Коха за поддержку MacTEXa (https://tug.org/mactex) в тесном сотрудничестве с TEX Live и за его неистощимый энтузиазм.
- Рейнхарда Котуху за огромную работу по инфраструктуре ТеX Live 2008, за исследовательскую работу в области Windows, за скрипт getnonfreefonts и многое другое.
- Сипа Кроненберга, за большой влад в инфраструктуру Т_ЕХ Live 2008 и программу установки, особенно для Windows, а также за основную работу по документации новых возможностей.
- Клерка Ма за исправление багов и расширение возможностей системы.
- Мойцу Миклавец за помощь с форматом ConT_EXt, компилирование для многих платформ, и массу другой помощи.
- Хейко Обердиека за пакет epstopdf и многие другие, включая сжатие огромных файлов пакета pst-geo, что позволило включить их в дитрибутив, и главное—за его замечательную работу над пакетом hyperref.
- Фелипе Олейника за способ чтения файлов с пробелами в названии для всех форматов в 2020 и многое другое.
- Петра Олшака за координацию и тщательную проверку чешского и словацкого материала.
- Тошио Ошиму за программу dviout для Windows.
- Мануэля Пьегорье-Гоннара за помощь в обновлении пакетов, документации и работу над программой texdoc.
- Фабриция Попинье, за поддержку Windows в первых версиях Т<u>Е</u>X Live и за работу над французской документацией.
- Норберта Прейнинга, главного архитектора инфраструктуры и программы установки текущего Т_ЕX Live, который также координировал дебиановскую версию Т_ЕX Live (совместно с Франком Кюстером) и проделал много другой необходимой работы.
- Себастьяна Ратца, создавшего проект Т_ЕХ Live и много лет поддерживавшего его. Себастьян скончался в марте 2016 года, и мы посвящаем эту работу его памяти.
- Луиджи Скарсо за работу над программами MetaPost, LuaT_FX и другими.
- Андреаса Шерера за cwebbin, версию CWEB, использованную в ТрХ Live.
- Такуджи Танаку за поддержку (e)(u)рТгX и смежных программ.
- Томаша Тжечака за помощь в работе над версией для Windows.
- Владимира Воловича за помощь в портировании и поддержке программ, в особенности за работу над xindy, которая дала возможность включить эту программу в дистрибутив.
- Сташека Ваврикевича, который был главным тестером ТЕХ Live и координировал многие польские проекты: шрифты, установку под Windows и многое другое. Сташек скончался в феврале 2018 года, и мы посвящаем эту работу его памяти.
- Олафа Вебера за терпеливую работу над Web2C в прошедшие годы.
- Хербена Виерду за разработку и поддержку Т
EXa для $\operatorname{Mac} \operatorname{OS} X.$
- Грэма Виллиамса, создавшего каталог пакетов Т_БX Catalogue.
- Джозефа Райта за большую работу по упорядочиванию функциональности примитивов на разных платформах.
- Хиронубу Ямашита, за большую работу над рТгХом и смежными проектами.

Программы компилировали: Марк Бадон (amd64-netbsd, i386-netbsd), Кен Браун (i386-cygwin, x86_64-cygwin), Саймон Дейлес (armhf-linux), Йоханнес Хилшир (aarch64-linux), Акира Какуто (win32), Дик Кох (x86_64-darwin), Мойца Миклавец (amd64-freebsd, i386-freebsd, x86_64-darwinlegacy, i386-solaris, x86_64-solaris, sparc-solaris), Норберт Прейнинг (i386-linux,

 $x86_64$ -linux, $x86_64$ -linuxmusl), Информация о процессе компилирования T_EX Live находится на https://tug.org/texlive/build.html.

Перевод документации: Такута Асакура (японский), Денис Битуз и Патрик Бидол (французский), Карлос Энрике Фигуерас (испанский), Цзигод Цзян, Цзиньсун Чжао, Юэ Ван и Хэлинь Гай (китайский), Никола Лечич (сербский), Марко Палланте и Карла Магги (итальянский), Петр Сойка и Ян Буса (чешский и словацкий), Борис Вейцман (русский), София Валчак (польский), Уве Цигенхаген (немецкий). Страница документации ТЕХ Live: https://tug.org/texlive/doc.html.

Разумеется, наша главная благодарность — Дональду Кнуту, во-первых, за разработку Т<u>Е</u>Ха, и во-вторых, за то, что он подарил его миру.

10 История издания

10.1 Прошлое

В конце 1993 года в голландской группе пользователей ТЕХа во время работы над дистрибутивом 4AllTEX CD для пользователей MS-DOS возникла новая идея. Была поставлена цель создать единый CD для всех систем. Эта цель была чересчур сложна для того времени, однако она привела не только к появлению очень успешного CD 4AllTEX, но и к созданию рабочей группы Технического Совета TUG по структуре директорий для ТЕХа (https://tug.org/tds), которая разработала стандарт структуры директорий для системы ТЕХ и указала, как создать логичную единую систему файлов для ТЕХа. Несколько версий TDS было опубликовано в декабрьском выпуске TUGboat в 1995 году, и с самого начала стало ясно, что следует создать пример структуры на CD. Дистрибутив, который вы держите в руках, — прямой результат работы этой группы. Из успеха 4AllTeX был сделан вывод, что пользователям UNIX также подойдёт такая удобная система, и так родилась другая важная часть ТеX Live.

Мы начали делать CD с UNIX и структурой директорий TDS осенью 1995 года, и быстро поняли, что у teTeXa Томаса Эссера идеальный состав дистрибутива и поддержка многих платформ. Томас согласился нам помочь, и мы в начале 1996 года стали серьёзно работать над дистрибутивом. Первое издание вышло в мае 1996 года. В начале 1997 года Карл Берри завершил новую версию Web2C, которая включила практически все новые возможности, добавленные Томасом Эссером в teTeX, и мы решили основать второе издание на стандартном Web2C, с добавлением скрипта texconfig из teTeXa. Третье издание CD основывалось на новой версии Web2C 7.2 Олафа Вебера; в то же время была выпущена новая версия teTeXa, и TeX Live включил почти все его новые возможности. Четвертое издание следовало той же традиции, используя новую версию teTeXa и Web2C (7.3). Теперь в нём была полная система для Windows, благодаря Фабрицию Попинье.

Для пятого издания (март 2000 года) многие пакеты на CD были пересмотрены и проверены. Информация о пакетах была собрана в файлы XML. Но главным изменением в Т_ЕХ Live 5 было удаление всех несвободных программ. Всё на Т_ЕХ Live преполагается совместимым с Правилами Дебиана для Свободных Программ (https://www.debian.org/intro/free); мы сделали всё, что могли, чтобы проверить лицензии всех пакетов, и мы будем благодарны за любое указание на опибки.

В шестом издании (июль 2001 года) было много нового материала. Главным была новая концепция установки: пользователь выбирал нужный набор коллекций. Языковые коллекции были полностью реорганизованы, так что выбор любой из них устанавливал не только макросы, шрифты и и т.д., но и вносил изменения в language.dat.

Седьмое издание 2002 года добавило поддержку ${\rm Mac\,OS\,X}$, и большое количество обновлений для пакетов и программ. Важной целью была интеграция с ${\rm teT_EXom}$, чтобы исправить расхождение, наметившееся в версиях 5 и 6.

$10.1.1 \quad 2003$

В 2003 году мы продолжили изменения и дополнения, и обнаружили, что Т_ЕХ Live так вырос, что не помещается на CD. Поэтому мы разделили его на три дистрибутива (см. раздел 2.1, стр. 4). Кроме того:

- По просьбе авторов IATEXa, мы сменили стандартные команды latex и pdflatex: теперь они используют ε -TEX (см. стр. 6).
- Новые шрифты Latin Modern включены и рекомендованы для использования.
- Убрана поддержка для Alpha OSF (поддержка для HPUX была убрана ранее), поскольку никто не имел (и не предложил) компьютеров для компилирования программ.

- Сильно изменилась установка для Windows: впервые была предложена интегрированная среда на основе редактора XEmacs.
- Добавлены вспомогателные программы для Windows (Perl, Ghostscript, ImageMagick, Ispell).
- Файлы Fontmap для dvips, dvipdfm и pdftex генерируютрся программой updmap и устанваливаются в texmf/fonts/map.
- Т_EX, МЕТАГОNТ и MetaPost теперь по умолчанию выводят символы из верхней половины таблицы ASCII в файлы, открытые командой \write, логи и на терминал буквально, т.е. не используя формат ^^. В Т_EX Live 7 это зависело от системной локали, но теперь это верно для всех локалей. Если вам нужен формат ^^, переименуйте файл texmf/web2c/cp8bit.tcx. В будущем эта процедура будет упрощена.
- Документация была существенно обновлена.
- Наконец, из-за того, что нумерация по изданиям стала неудобной, мы перешли на нумерацию по годам: ТеХ Live 2003.

$10.1.2 \quad 2004$

В 2004 году мы внесли много изменений.

- Если у вас есть локальные шрифты с собственными файлами .map или .enc, вам может понадобиться переместить эти файлы.
 - Файлы .map теперь ищутся только в поддиректориях fonts/map (в каждом дереве texmf) в пути TEXFONTMAPS. Аналогично файлы .enc теперь ищутся только в поддиректориях fonts/enc в пути ENCFONTS. Программа updmap предупреждает, если находит эти файлы не там, где они должны быть.
 - См. описание этой структуры на https://tug.org/texlive/mapenc.html.
- К коллекции Т_EX Collection был добавлен установочный CD с дистрибутивом MiKT_EX для тех, кто предпочитает MiKT_EX программам, основанным на Web2C. См. раздел 2 (стр. 4).
- Дерево texmf в T_EX Live было разделено на три: texmf, texmf-dist и texmf-doc. См. раздел 2.2 (стр. 5) и файлы README в соответствующих директориях.
- Все файлы, которые читает T_EX, собраны в поддиректории tex деревьев texmf* вместо разделения на tex, etex, pdftex, pdfetex и т.д. См. texmf-doc/doc/english/tds/tds.html#Extensions.
- Вспомогательные скрипты (вызываемые другими программами, а не непосредственно пользователем) теперь собраны в директории scripts деревьев texmf* и ищутся командой kpsewhich -format=texmfscripts. Поэтому, если у вас есть программы, которые вызывают такие скрипты, их надо изменить. См. texmf-doc/doc/english/tds/tds.html#Scripts.
- Почти все форматы теперь печатают большинство символов непосредственно, используя «таблицы перевода» ср227.tcx вместо формата ^ . В частности, символы с кодами 32–256 плюс табуляция, вертикальная табуляция и перевод страницы печатаются непосредственно. Исключениями являются plain ТеХ (печатаются непосредственно символы 32–127), ConTeXt (0–255) и форматы, относящиеся к программе Ω. Это поведение почти такое же, как у ТеX Live 2003, но реализовано более аккуратно, с большей возможностью настройки. См. texmf-dist/doc/web2c/web2c.html#TCX-files. (Кстати, при вводе в Unicode, ТеX может выводить при указании на ошибку только часть многобайтного символа, так как внутри ТеX работает с байтами).
- pdfetex теперь используется для всех форматов, кроме plain tex. (Разумеется, он делает файлы в формате DVI, если вызван как latex и т.п.). Это означает, помимо прочего, что возможности pdftexa для микротипографии а также возможности ε -TeXa доступны в форматах Latex и т.д. (texmf-dist/doc/etex/base/).
 - Это также означает, что теперь очень важно использовать пакет ifpdf (работает и с plain, и с IATEX) или эквивалентные средства, поскольку просто проверка, определён ли \pdfoutput или другой примитив, не достаточна для того, чтобы понять, в каком формате генерируется результат. Мы сделали всё возможное для совместимости в этом году, но в будущем году \pdfoutput может быть определён даже если генерируется DVI.
- У программы pdfT_FX (http://pdftex.org) много новых возможностей:
 - Поддержка карт шрифтов изнутри документа при помощи \pdfmapfile и \pdfmapline.
 - Микротипографические расширения могут быть использованы намного проще. http://www.ntg.nl/pipermail/ntg-pdftex/2004-May/000504.html
 - Все параметры, ранее задававшиеся в специальном конфигурационном файле pdftex.cfg, теперь должны быть установлены примитивами, например, в файле pdftexconfig.tex. Файл pdftex.cfg больше не поддерживается. При изменении файла pdftexconfig.tex все форматы .fmt должны быть перегенерированы.

- Остальные изменения описаны в руководстве пользователя программой pdfT_EX: texmf/doc/pdftex/manual.
- Примитив \input в программе tex (и mf и mpost) теперь правильно интерпретирует пробелы и другие специальные символы в двойных кавычках. Вот типичные примеры:

\input "filename with spaces" % plain \input{"filename with spaces"} % latex

См. подробности в руководстве к программе Web2C: texmf/doc/web2c.

- Поддержка encT_EXa включена в Web2C и, следовательно, во все программы T_EX, которые теперь поддерживают опцию -enc (только при генерировании форматов). encT_EX обеспечивает общую перекодировку входного и выходного потоков, что позволяет полную поддержку Unicode (в UTF-8). См. texmf-dist/doc/generic/enctex/ и http://olsak.net/enctex.html.
- В дистрибутиве появилась новая программа Aleph, сочетающая ε -ТеХ и Ω . Краткая информация о ней находится в texmf-dist/doc/aleph/base и https://texfaq.org/FAQ-enginedev. Формат для IATeXa на основе этой программы называется lamed.
- Последняя версия IATEX включает новую версию лицензии LPPL—теперь официально одобренную Debianom. Некоторые другие изменения перечислены в файлах ltnews в texmf-dist/doc/latex/base.
- В дистрибутиве появилась dvipng, новая программа для перевода DVI в PNG. См. https://www.ctan.org/pkg/dvipng.
- Мы уменьшили размер пакета cbgreek до приемлемого набора шрифтов, с согласия по совету автора (Клаудио Беккари). Исключены невидимые, прозрачные и полупрозрачные шрифты, которые относительно редко используются, а нам не хватало места. Полный набор шрифтов можно найти в архиве CTAN (https://www.ctan.org/tex-archive/fonts/greek/cbfonts).
- Программа oxdvi удалена из дистрибутива; используйте xdvi.
- Линки ini и vir для программ tex, mf и mpost (например, initex) больше не создаются. Уже много лет опция -ini их успешно заменяет.
- Убрана поддержка платформы i386-openbsd. Так как в портах BSD есть пакет tetex, и можно пользоваться программами для GNU/Linux и FreeBSD, мы посчитали, что время добровольных сотрудников проекта можно потратить с большей пользой по-другому.
- По крайней мере для платформы sparc-solaris требуется установить переменную окружения LD_LIBRARY_PATH для работы программ t1utils. Это вызвано тем, что они написаны на C++, а стандартной директории для бибилиотек C++ в системе нет (это было добавлено до 2004 года, но ранее эта особенность не была документирована). Аналогично, в mips-irix требуются библиотеки MIPSpro 7.4.

10.1.3 2005

В 2005 году было, как всегда, сделано много изменений в пакетах и программах. Инфраструктура почти не изменилась по сравненению с 2004 годом, но некоторые неизбежные изменения были сделаны.

- Были добавлены новые скрипты texconfig-sys, updmap-sys и fmtutil-sys, которые изменяют конфигурационные файлы в системных деревьях. Скрипты texconfig, updmap и fmtutil теперь модифицируют индивидуальные файлы пользователя в \$HOME/.texlive2005.
- Были добавлены новые переменные TEXMFCONFIG и TEXMFSYSCONFIG для указания, где находятся конфигурационные файлы (пользовательские и системные). Таким образом, вам надо переместить туда ваши личные копии fmtutil.cnf и texmf.cnf. В любом случае положение этих файлов и значения переменных TEXMFCONFIG и TEXMFSYSCONFIG должны быть согласованы. См. раздел 2.3, стр. 5.
- В прошлом году мы оставили неопределёнными \pdfoutput и другие переменные при генерировании файлов в формате DVI, хотя для этого использовалась программа pdfetex. В этом году, как и было обещано, это уже не так. Поэтому если ваш документ использует для проверки формата \ifx\pdfoutput\undefined, его надо изменить. Вы можете использовать пакет ifpdf.sty (работает в plain T_EX и L^AT_EX) или аналогичную логику.
- Добавлена новая программа dvipdfmx для перевода из DVI в PDF; это активно поддерживаемая версия программы dvipdfm, которая пока ещё включена в дистрибутив, но уже не рекомендована.

- Добавлены новые программы pdfopen и pdfclose, которые позволяют перегрузить файл PDF в Adobe Acrobat Reader, не перезапуская программу (у других программ для чтения файлов PDF, включая xpdf, gv и gsview, такой проблемы никогда не было).
- Для единообразия мы переименовали переменные HOMETEXMF и VARTEXMF в TEXMFHOME и TEXMFSYSVAR. Есть также TEXMFVAR, индивидуальная для каждого пользователя (см. первый пункт выше).

10.1.4 2006-2007

В 2006—2007 главным нововведением была программа XeTeX, вызываемая как xetex или xelatex; см. https://scripts.sil.org/xetex.

Значительно обновлена программа MetaPost; предполагаются дополнительные обновления в будущем (https://tug.org/metapost/articles). Также обновлён pdf T_EX (https://tug.org/applications/pdftex).

Форматы .fmt и т.д. теперь хранятся в поддиректориях texmf/web2c, а не в самой директории (хотя директория всё ещё включена в поиск форматов, на случай, если там находятся старые файлы). Поддиректории названы по имени программы, например, tex, pdftex, xetex. Это изменение не должно влиять на работу программ.

Программа (plain) tex больше не определяет по %& в первой строке, какой формат использовать: это всегда Кнутовский Тех (IFTeX и другие ещё используют %&).

Разумеется, в этом году были, как обычно, сотни обновлений пакетов и программ. Как обычно, обновлённые версии можно найти в сети CTAN (https://ctan.org).

Дерево Т_EX Live теперь хранится в системе Subversion, и у нас появился WWW-интерфейс для его просмотра. Мы предполагаем, что эта система будет использована для разработки в будущем.

Наконец, в мае 2006 года Томас Эссер объявил о прекращении работы над teTeXoм (https://tug.org/tetex). Это вызвало всплеск интереса к TeX Live, особенно среди разработчиков систем GNU/Linux (мы добавили схему tetex, которая устанавливает систему, примерно соответствующую teTeXy). Мы надеемся, что это приведёт в конечном итоге к улучшению работы в TeXe для всех.

$10.1.5 \quad 2008$

В 2008 была заново разработана и переписана вся структура $T_{\rm E}X$ Live. Полная информация об установке системы теперь хранится в текстовом файле tlpkg/texlive.tlpdb.

Помимо прочего, это наконец позволило обновление TEX Live по сети — возможность, которая много лет была у программы MiKTEX. Мы предполагаем регулярно обновлять пакеты, поступающие на CTAN.

Включен новый важный «движок» Lua T_EX (http://luatex.org); помимо нового уровня вёрстки, это дает прекрасный скриптовый язык для использования как изнутри документов T_EX а, так и отдельно.

Поддержка многих платформ на основе UNIX и Windows теперь гораздо более последовательна. В частности, большинство скриптов на языках Perl и Lua теперь доступны под Windows благодаря версии Perla, распространяемой с T_FX Live.

Новый скрипт tlmgr (см. раздел 6) теперь является основным интерфейсом для администрирования Т_ЕХ Live после установки. Он осуществляет обновление пакетов и перегенерирование форматов, карт шрифтов и языков, включая локальные добавления.

В связи с появлением программы tlmgr, возможности программы texconfig по редактированию конфигурационных файлов форматов и таблиц переноса отключены.

Программа xindy (http://xindy.sourceforge.net/) для создания указателей теперь работает на большинстве платформ.

Программа kpsewhich теперь может сообщить обо всех нужных файлах (опция -all) и ограничить поиск определенной поддиректорией (опция -subdir).

Программа dvipdfmx теперь может извлекать информацию о высоте и ширине текста, если вызвана как extractbb; это одна из последних возможностей программы dvipdfm, которой не было у dvipdfmx.

Алиасы Times-Roman, Helvetica и т.д. убраны. Разные пакеты ожидают от них разного поведения (особенно при разных кодировках), и мы не нашли способа решить эту проблему единообразно.

Формат platex убран из-за конфликта с японским пакетом platex; теперь основная поддержка польского языка осуществляется через пакет polski.

Пулы строковых констант WEB теперь компилируются в сами программы для удобства обновлений.

Наконец, добавлены изменения, сделанные Дональдом Кнутом в его «Настройке Т_EXa 2008 года», см. https://tug.org/TUGboat/Articles/tb29-2/tb92knut.pdf.

10.1.6 2009

Начиная с 2009 года по умолчанию Lua(IA)ТЕХ теперь создает файлы в формате PDF, чтобы полнее использовать поддержку шрифтов в формате OpenType. Чтобы получить результат в формате DVI, используйте программы dviluatex и dvilualatex. Страница LuaTEX находится на http://luatex.org.

Программа Omega и формат Lambda были после консультаций с авторами исключены из дистрибутива. В дистрибутиве остались Aleph и Lamed, а также утилиты из набора Omega.

Включена новая версия шрифтов AMS в формате Туре 1. Она включает Computer Modern: были учтены изменения, которые Кнут внес в исходные параметры для программы Metafont, а также обновлены хинты. Шрифты Euler были полностью перерисованы Германом Цапфом (см. https://tug.org/TUGboat/Articles/tb29-2/tb92hagen-euler.pdf). Во всех случаях метрики шрифтов не изменились. Страница шрифтов AMS находится на https://www.ams.org/tex/amsfonts.html.

Новая графическая оболочка T_EX works включена в дистрибутив для Windows и Mac T_EX . Информация о версиях для других платформ и дополнительная документация находится на https://tug.org/texworks. Это мультиплатформенная оболочка, вдохновленная программой T_EX hop для Mac OS X и ориентированная на упрощение работы с T_EX oм.

Графическая программа Asymptote включена в дистрибутив для нескольких платформ. Она основана на языке представления графики, напоминающем MetaPost, но с поддержкой трехмерных объектов и другими возможностями. Её страница находится на https://asymptote.sourceforge.io.

Программа dvipdfm была заменена программой dvipdfmx; если вызвать последнюю как dvipdfm, она работает в специальном режиме эмуляции dvipdfm. Программа dvipdfmx включает поддержку китайского, японского и корейского языков (СЈК) и много других изменений по сравнению с dvipdfm.

В дистрибутив включены программы для cygwin и i386-netbsd, в то время как другие варианты BSD были исключены: нам сказали, что пользователи OpenBSD и FreeBSD устанавливают T_EX, пользуясь пакетными менеджерами. Кроме того, оказалось сложным создать программы, которые бы работали под разными версиями этих систем.

Ещё несколько изменений: мы теперь используем архиватор xz, стабильную замену для lzma (https://tukaani.org/xz/); знак доллара \$ теперь допустим в именах файлов, если результат не может быть истолкован как известная перемена окружения; библиотека Kpathsea теперь параллелизована (это нужно для новой версии программы MetaPost); процесс компиляции теперь полностью основан на Automake.

Последнее замечание о прошлом: все выпуски T_EX Live вместе с дополнительными материалами вроде обложек CD хранятся на ftp://tug.org/historic/systems/texlive. ftp://tug.org/historic/systems/texlive.

$10.1.7 \quad 2010$

Начиная с 2010 года файлы в формате PDF по умолчанияю создаются в версии PDF 1.5. Это верно для всех вариантов T_EXa, которые способны создавать файлы PDF, а также для dvipdfmx. Чтобы получать файлы в формате PDF 1.4, используйте I^AT_EXовский пакет pdf14 или команду \pdfminorversion=4.

pdf(IA)TEX теперь автоматически конвертирует файлы в формате Encapsulated PostScript (EPS) в PDF при помощи пакета epstopdf, если используется конфигурационный файл graphics.cfg в IATEX и требуется вывод в формате PDF. Вы можете отказаться от загрузки пакета epstopdf, поместив перед объявлением \documentclass команду \newcommand{\DoNotLoadEpstopdf}{{ (или \def...)}. Он также не загружается, если используется пакет pst-pdf. См. также документацию к пакету epstopdf (https://ctan.org/pkg/epstopdf-pkg).

С этим связано ещё одно изменение: теперь по умолчанию разрешено вызывать из ТЕХа несколько внешних команд (при помощи механизма \write18). Это repstopdf, makeindex, kpsewhich, bibtex и bibtex8. Список определен в texmf.cnf. В случае, если необходимо запретить все текие команды, можно убрать соответствующую опцию при установке системы (см. раздел 3.2.4) или переконфигурировать систему после установки командой tlmgr conf texmf shell escape 0.

Ещё одно изменение, связанное с этим: теперь BibT_EX и Makeindex по умолчанию отказываются записывать в файлы, лежащие в произвольной директории системы (как и сам T_EX). Поэтому их можно запускать через механизм \write18. Чтобы изменить это правило, можно установить переменную окружения TEXMFOUTPUT или изменить значение параметра openout any.

XeT_EX теперь поддерживает оптическое выравнивание полей, как это умеет делать pdfT_EX. (Шрифты с вариантами пока не поддерживаются).

По умолчанию, tlmgr теперь сохраняет предыдущую версию каждого пакета после апгрейда (tlmgr option autobackup 1), поэтому ошибки можно «откатить назад» командой tlmgr restore. Если у вас нет места на диске для этих копий, запустите tlmgr option autobackup 0.

Новые программы: pTEX и пакет утилит для набора японских текстов, программа BibTEXU для варианта BibTEXа с поддержкой Юникода, утилита chktex (первая версия на http://baruch. ev-en.org/proj/chktex) для проверки документов, созданных (IA)TEXом, программа dvisvgm (https://dvisvgm.de) для перевода из формата DVI в формат SVG.

Включены программы для следующих новых платформ: amd64-freebsd, amd64-kfreebsd, i386-kfreebsd, x86 64-darwin, x86 64-solaris.

Об одном изменении в T_EX Live 2009 мы забыли упомянуть в свое время: многочисленные программы конвертера T_EX4 ht (https://tug.org/tex4ht) были убраны из директорий для бинарников; все теперь делается одной программой mk4ht.

Наконец, релиз Т<u>E</u>X Live на Т<u>E</u>X Collection DVD уже нельзя использовать «live», непосредственно с диска (что может показаться странным). Кстати, из-за этого установка с DVD будет теперь значительно быстрее.

10.1.8 2011

В 2011 году было сделано относительно немного изменений.

Программы для Mac OS X (universal-darwin и x86_64-darwin) работают теперь только под Leopard или младшей системой; Panther и Tiger больше не поддерживаются.

Программа biber для обработки библиографических списков добавлена для всех платформ. Она тесно связана с пакетом biblatex, который предлагает совершенно новый способ обработки библиографий из IATEXa.

Программа MetaPost (mpost) больше не создает файлов .mem. Нужные файлы, например plain.mp, теперь просто перечитываются при каждом запуске. Это связано с поддержкой MetaPost как библиотеки— ещё одно важное, но прозрачное для пользователя изменение.

Версия программы updmap, написанная на Перле, ранее использованная только под Windows, теперь улучшена и устанавливается для всех платформ. Это должно быть прозрачно для пользователя—разве что программа теперь работает гораздо быстрее.

Программы initex и inimf были возвращены (но другие варианты ini* — нет).

$10.1.9 \quad 2012$

Программа tlmgr теперь поддерживает обновления из нескольких сетевых репозиториев. Эти возможности подробнее описаны в соответствующем разделе tlmgr help.

Параметр \XeTeXdashbreakstate теперь по умолчанию равен 1, как для хеtex, так и для хelatex. Это разрешает переход на новую строку после тире, что всегда было разрешено в plain TeX, LATeX, LuaTeX и т.д. Старые документы в XeTeXe, для которых нужно в точности сохранить старое форматирование, теперь должны будут явно установить \XeTeXdashbreakstate равным 0.

Файлы, создаваемые программами pdftex и dvips, теперь могут быть больше 2 гигабайт.

35 стандартных шрифтов PostScripta теперь по умолчанию включены в файлы, создаваемые dvips, так как сейчас существует много разных версий этих «стандартных» шрифтов.

К программам, которые могут по умолчанию вызываться в ограниченном режиме через \write18, добавлена mpost.

Файл texmf.cnf теперь ищется ещё и в директории ../texmf-local, т.е. если файл /usr/local/texlive/texmf-local/web2c/texmf.cnf существует, он будет использован.

Скрипт updmap теперь читает файлы updmap.cfg в каждом поддереве директорий, вместо одного глобального конфигурационного файла. Это изменение должно быть прозрачным для пользователя, если вы не редактировали вручную файлы updmap.cfg. Подробнее объяснено в документации, выдаваемой командой updmap --help.

Платформы: добавлены armel-linux и mipsel-linux; из основного дистрибутива исключены платформы sparc-linux и i386-netbsd.

10.1.10 2013

Изменена структура директорий: директория texmf/ объединена с texmf-dist/. Переменные TEXMFMAIN и TEXMFDIST указывают теперь на texmf-dist/,

Многие небольшие языковые коллекции объединены для упрощения установки.

MetaPost: добавлена поддержка записи в PNG и чисел с плавающей точой (IEEE double).

LuaT_EX: обновлено до Lua 5.2 и включена новая библиотека (pdfscanner) для включения страниц в формате PDF и многого другого (см. страницы LuaT_EX на WWW).

XeT_EX (также см. страницы на WWW):

- Для шрифтов теперь используется библиотека HarfBuzz вместо библиотеки ICU (ICU все еще используется для поддержки кодировок на входе, верстки справа налево и переносов в кодировке Unicode).
- Вместо SilGraphite теперь используется HarfBuzz и Graphite2.
- На Макинтоше теперь вместо устаревшего ATSUI используется Core Text.
- Если в системе есть шрифты с совпадающими названиями, предпочтение отдается TrueType/OpenType перед Type1.
- Исправлены расхождения между XeT_FX и xdvipdfmx в поиске шрифтов.
- Поддержка математики в OpenFonts.

xdvi: теперь использует FreeType вместо t1lib.

microtype.sty: добавлена поддержка XeT_EX (вынесение знаков препинания на поля) и LuaT_EX (вынесение знаков препинания на поля, манипуляции со шрифтами, разрядка), помимо других улучшений.

tlmgr: новый механизм pinning для работы с несколькими репозиториями; см. tlmgr --help и https://tug.org/texlive/doc/tlmgr.html#MULTIPLE-REPOSITORIES.

Платформы: добавлены или восстановлены armhf-linux, mips-irix, i386-netbsd и amd64-netbsd. Убрана powerpc-aix.

10.2 2014

2014 год ознаменовался новыми поправками от Кнута; это касается всех програм, но наиболее видимое изменение — восстановлены слова preloaded format в баннере. Как пишет Кнут, это теперь означает, что формат может быть загружен по умолчанию, а не то, что он на самом деле загружен; этот формат может быть изменен.

 $pdfT_EX$: новый параметр для подавления предупреждений \pdfsuppresswarningpagegroup; новые примитивы для специальных пробелов, чтобы помочь переверстке PDF \pdfinterwordspaceon, \pdfinterwordspaceoff, \pdfiakespace.

LuaTeX: значительные изменения в механизме загрузки шрифтов и переноса. Самое большое изменение — добавление нового движка luajittex и его собратьев texluajit и texluajitc. Они используют just-in-time компилятор (см. подробную статью http://tug.org/TUGboat/tb34-1/tb106scarso. pdf). luajittex все еще в состоянии разработки, он поставляется не для всех систем и существенно менее стабилен, чем luatex. Ни мы, ни разработчки не рекомендуем использование его для чего бы то ни было, кроме экспериментов.

XeT_EX: сейчас на всех платформах поддерживаются одни и те же форматы графики (включая Mac), исключена декомпозиция составных символов Юникода, шрифты ОрепТуре теперь предпочитаются Graphite для совместимости с предыдущими версиями XeT_EXa.

MetaPost: поддерживается новая система нумерации decimal, наряду с внутренней numberprecision; новое определение drawdot в plain.mp от Кнута; исправлены баги в экспорте SVG и PNG и др.

Утилита pstopdf (ConT_EXt) будет убрана в качестве самостоятельной команды после релиза изза конфликта с системной командой под тем же названием. Ее все еще можно будет использовать как mtxrun –script pstopdf.

Утилиты psutils были существенно обновлены новым разработчиком. В результате несколько редко используемых утилит (fix*, getafm, psmerge, showchar) сейчас находятся в директории scripts/, а не не в общей директории с другими программами (возможно, это будет изменено в будущем). Добавлен новый скрипт psjoin.

Наш вариант MacT_EX (раздел 3.1.2) больше не включает специфических для макинтошей пакетов шрифтов Latin Modern и TeX Gyre, так как пользователь может легко включить эти шрифты в систему. Мы также убрали программу convert из пакета ImageMagick, так как T_EX4ht (точнее, tex4ht.env) теперь использует Ghostscript напрямую.

Коллекция langcjk для китайского, японского и корейского языков разбита на отдельные коллекции меньшего размера.

Платформа x86_64-судwin добавлена, mips-irix убрана; Микрософт больше не поддерживает Windows XP, так что наши программы под ними могут в любой момент перестать работать.

10.3 2015

 \LaTeX Теперь по умолчанию включает в себя изменения, которые раньше делались при загрузпе пакета fixltx2e (который теперь пуст). Новый пакет latexrelease и другие механизмы позволяют управлять этим процессом. Подробности см. в \LaTeX News #22 и документации по изменениям в \LaTeX Кстати, пакеты babel и psnfss, хотя и относятся к базовому дистрибутиву \LaTeX поддерживаются отдельно и не затронуты этими изменениями (и должны работать, как раньше).

Теперь I 4 Те 2 Х 2 6 включает в себя конфигурацию поддержки Юникода (что считается буквами, именами примитивов и т.д.), которая раньше была частью Те 4 Х Live. Это изменение должно быть прозрачно для пользователей; несколько низкоуровневых команд было переименовано или удалено, но поведение системы измениться не должно.

pdfT_EX: Теперь поддерживает JPEG Exif, а также JFIF; не печатает предупреждений, если \pdfinclusionerrorlevel отрицателен; синхронизирован с xpdf 3.04.

LuaT_EX: Новая библиотека newtokenlib для сканирования токенов; исправлены баги в генераторе случайных чисел и других местах.

 XeT_EX : Улучшена обработка графики; в первую очередь используется программа xdvipdfmx; изменены внутренние коды XDV.

MetaPost: Новая система счисления binary; новые программы upmpost и updvitomp для японского языка, аналогичные up*tex.

MacTeX: Обновлен пакет Ghostscript для поддержки CJK. Панель выбора дистрибутива TeX теперь работает под Yosemite (MacOS X 10.10). Пакеты шрифтов в ресурсах (без расширения в имени файла) более не поддерживаются в XeTeX; пакеты в данных (.dfont) все еще поддерживаются

Инфраструктура: скрипт fmtutil теперь читает fmtutil.cnf в каждом дереве, как updmap. Скрипты mktex* Web2C (включая mktexlsr, mktextfm, mktexpk) теперь предпочитают программы в собственной директории, вместо того, чтобы всегда использовать РАТН.

Платформы: *-kfreebsd удалены, так как теперь \mbox{TeX} Live можно установить на них через системный менеджер пакетов.

Поддержку некоторых дополнительных платформ можно найти на (https://tug.org/texlive/custom-bin.html). Кроме того, программы для некоторых платформ не попали на DVD (просто чтобы сэкономить место), но могут быть установлены обычным способом по сети.

10.4 2016

LuaTeX: Масса изменений у примитивов, как переименования, так и удаления, а также изменения структуры нод. Изменения описаны в статье Xarca Xarena, "LuaTeX 0.90 backend changes for PDF and more" (https://tug.org/TUGboat/tb37-1/tb115hagen-pdf.pdf); см. также подробности в справочнике к программе LuaTeX, texmf-dist/doc/luatex/base/luatex.pdf.

Metafont: Новые экспериментальные программы MFlua и MFluajit, интегрирующие Lua и METAFONT, пока в стадии разработки.

MetaPost: Исправление багов и подготовка к выпуску MetaPost 2.0.

Поддержка SOURCE_DATE_EPOCH для всех вариантов, кроме LuaTeX (где она ожидается в следующей версии) и классического tex (где она опущена намеренно): если переменная окружения SOURCE_DATE_EPOCH установлена, она используется для дат в PDF. Если также установлена переменная SOURCE_DATE_EPOCH_TEX_PRIMITIVES, то переменная SOURCE_DATE_EPOCH используется для примитивов \year, \month, \day, \time. Руководство пользователя pdfTeX содержит подробную информацию и примеры.

pdfTEX: новые примитивы \pdfinfoomitdate, \pdftrailerid, \pdfsuppressptexinfo для информации в PDF, которая меняется при каждом запуске программы. Эти нововведния касаются только PDF, а не DVI.

XeT_EX: Новые примитивы \XeTeXhyphenatablelength, \XeTeXgenerateactualtext,

 $XeTeXinterwordspaceshaping, \mbox{mdfivesum};$ максимальное количество классов букв увеличено до 4096; увеличен байт номера версии DVI.

Другие утилиты:

- gregorio: новая программа, часть пакета gregoriotex для набора григорианской хоральной музыки. По умолчанию включена в список shell escape commands.
- upmendex: программа для создания указателей, в основном совместимая с программой makeindex, но с поддержкой сортировки по правилам Юникода.
- afm2tfm теперь делает поправки к высоте из-за диакритических знаков только в сторону увеличения; новая опция -а удаляет поправки
- ps2pk теперь может работать с расширенными шрифтами в формате PK/GF.

MacTEX: Убрана панель выбора дистрибутива; теперь эту роль выполняет утилита TEX Live. Обновлены аппликации, добавлен скрипт cjk-gs-integrate для интегрирования шрифтов СЈК (китайские, японские, корейские) в Ghostscript.

Инфраструктура: Добавлена поддержка конфигурации tlmgr на уровне системы, проверки контрольных сумм пакетов. Если есть системная поддержка GPG, то проверяются криптографические подписи при обновлениях из сети, как при установке, так и при работе tlmgr. Если система не поддерживает GPG, обновления происходят по-старому.

Платформы: убраны alpha-linux и mipsel-linux.

10.5 2017

LuaT_EX: Больше контроля над версткой и алгоритмами; на некоторых платформах добавлена библиотека ffi для динамической загрузки программ.

pdf T_EX : Переменная окружения SOURCE_DATE_EPOCH_TEX_PRIMITIVES, добавленная в прошлом году, переименована в FORCE_SOURCE_DATE, с той же функцией; если набор токенов \pdfpageattr содержит строку /MediaBox, то другое значение /MediaBox не печатается.

XeT_EX: Матемтатика для Unicode/OpenType теперь основана на таблице MATH библиотеки HarfBuzz. Убраны некоторые баги.

Dvips: Последние значения размеров страницы теперь имеют преимущество, что делает поведение программы таким же, как для dvipdfmx и соотвествует коду макропакетов; опция -L0 (или L0 в конфигурационном файле) восстанавливает старое поведение, когда имели преимущество первые значения.

epT_EX, eupT_EX: Новые примитивы из pdfT_EXa: \pdfuniformdeviate, \pdfrandomseed, \pdfsetrandomseed, \pd

 $MacT_EX$: Начиная с этого года, $MacT_EX$ для платформы $x86_64$ -darwin поддерживает только версии MacOSX, для которых Apple выпускает обновления. Сейчас это означает Yosemite, El Capitan и Sierra (10.10 и новее). Программы для более старых версий MacOSX не включены в $MacT_EX$, но есть в T_EX Live ($x86_64$ -darwinlegacy, i386-darwin, powerpc-darwin).

Инфраструктура: Дерево TEXMFLOCAL теперь читается до TEXMFSYSCONFIG и TEXMFSYSVAR (по умолчанию); мы надеемся, что это лучше соотвествует интуитивным представлениям о том, как локальные настройки имеют преимущество перед системными. Кроме того, у tlmgr новый режим shell для использования в интерактивном режиме и скриптах, и новая команда conf auxtrees для добавления и удаления новых деревьев.

updmap и fmtutil: Эти скрипты теперь выдают предупреждение, когда вызываются без указания либо так называемого системного режима (updmap-sys, fmtutil-sys, или опция -sys), либо пользовательского режима (updmap-user, fmtutil-user, или опция -user). Мы надеемся помочь с частой проблемой, когда по опшбке запускается пользовательский режим, после чего системные обновления перестают влиять на настройки пользователя. См. https://tug.org/texlive/scripts-sys-user.html.

install-tl: По умолчания личные деревья на Макинтошах устанавливаются в обычную для MacTeXa папку ($^{\sim}/Library/...$). Новая опция -init-from-profile начинает установку с данного шаблона. Новая команда P сохраняет шаблон.

SyncT_EX: Временные файлы теперь называются по шаблону foo.synctex(busy) вместо foo.synctex.gz(busy) (опущено .gz). Скрипты, которые удаляют временные файлы, могут нуждаться в обновлении.

Другие программы: texosquery-jre8— новая программа, которая используется для получения информации о локали и системы изнутри TeXa. По умолчанию она включена в список shell_escape_commands, которые можно вызывать из TeXa. (Более старые версии JRE поддерживаются texosquery, но их нет в списке, так как они больше не поддерживаются Oracle)

Платформы: см МасТЕХ выше.

$10.5.1 \quad 2018$

Краthsea: теперь по умолчанию поиск файлов вне системных директорий ведется без учета регистра; чтобы вернуться к старому поведению, измените в texmf.cnf или в переменных окружения значение texmf_casefold_search на 0. См. подробности в руководстве пользователя библиотекой Kpathsea (https://tug.org/kpathsea).

ерТ_ЕX, еupТ_EX: Новый примитив \epTeXversion.

LuaTeX: Подготовка к переходу на Lua 5.3 в 2019 году: программа luatex53 собрана для большинства платформ, но для использования ее надо переименовать в luatex. В качестве альтернативы можно использовать файлы из ConTeXt Garden (https://wiki.contextgarden.net); см. подробности по ссылке выше.

MetaPost: Исправлены баги с неправильным направлением обхода в форматах TFM и PNG.

pdfT_EX: Теперь возможно использовать векторы кодировки для растровых шрифтов; текущая директория не записывается в PDF ID; исправлены баги для\pdfprimitive и других команд.

XeT_EX: Подержка /Rotate для PDF; ненулевой код ошибки при аварийной остановке; масса сложных исправлений в UTF-8 и в других примитивах.

MacTEX: См. список изменений в поддержке версий MacOS ниже. Кроме того, файлы, которые MacTeX устанавливает в /Applications/TeX/, были реорганизованы для большей ясности. Сейчас туда на верхнем уровне устанавливаются четыре программы с GUI (BibDesk, LaTeXiT, TeX Live Utility и TeXShop) и директории с дополнительными программами и документацией.

tlmgr: новые оболочки tlshell (Tcl/Tk) и tlcockpit (Java); выдача в формате JSON; uninstall сейчас синоним для remove; новая опция print-platform-info.

Платформы:

- Удалены: armel-linux, powerpc-linux.
- x86 64-darwin поддерживает 10.10–10.13 (Yosemite, El Capitan, Sierra и High Sierra).
- x86_64-darwinlegacy поддерживает 10.6—10.10 (хотя для 10.10 рекомендуется x86_64-darwin).
 Поддержка для 10.5 (Leopard) убрана, т.е. удалены и powerpc-darwin, и i386-darwin platforms.
- Windows: XP больше не поддерживается.

10.6 2019

Kpathsea: более аккуратная работа с переменными; новая переменная TEXMFDOTDIR вместо точки «.» позволяет легко добавлять поддиректории для поиска; см. комментарии в файле texmf.cnf).

ерТ_EX, еupТ_EX: Новые примитивы \readpapersizespecial и \expanded.

 ${
m LuaT_EX}$: Теперь программа использует Lua 5.3, с соответствующими изменениями в арифметике и интерфейсе. Для чтения PDF теперь используется собственная библиотека pplib, что позволило избавиться от зависимости от библиотеки poppler (и ${
m C++}$). Соответственно изменен интерфейс к Lua.

MetaPost: теперь команда r-mpost распознается как вызов mpost с опцией –restricted, и команда добавлена к списку команд, доступных из-под Т_EXa. Минимальная точность теперь 2 в десятичном и двоичном режимах. Двоичный режим уже не доступен из-под MPlib, но все еще доступен для MetaPost.

pdfTEX: Новый примитив \expanded; если новый параметер \pdfomitcharset равен 1, то строка /CharSet не добавляется к PDF, так как сложно гарантировать ее правильность, которую требуют стандарты PDF/A-2 и PDF/A-3.

XeTeX: Hoвые примитивы \expanded, \creationdate, \elapsedtime, \filedump, \filemoddate, \filesize, \resettimer, \normaldeviate, \uniformdeviate, \randomseed; теперь \Ucharcat может производить активные символы.

codetlmgr: Поддержка программы curl, использование lz4 и gzip, если они есть, вместо хz для локальных бэкапов, предпочтение системных программ для сжатия и скачивания перед программами T_EX Live, если не установлена переменная окружения TEXLIVE_PREFER_OWN.

install-tl: Новая опция -gui (без аргумента) теперь работает по умолчанию под Windows и MacOS X и вызывает оболочку Tcl/TK (см разделы 1.3 и 3.1.6).

Утилиты:

- cwebbin (https://ctan.org/pkg/cwebbin) новая версия CWEB под Т_EX Live, с поддержкой новых диалектов языка, и программой ctwill для создания мини-индексов.
- chkdvifont: информация о шрифтах в файлах DVI а также tfm/ofm, vf, gf, pk.
- dvispc: делает страницы файла DVI независимыми по отношению к specials.

 $MacTEX: x86_64$ -darwin теперь поддерживает MacOSX 10.12 и выше (Sierra, High Sierra, Mojave); $x86_64$ -darwinlegacy все еще поддерживает 10.6 и выше. Спелл-чекер Excalibur больше не включен в пакет, так как ему требуется поддержка 32-битовых программ.

Платформы: удалена sparc-solaris.

10.7 2020

Общие изменения:

- Примитив \input primitive во всех движках, включая tex, теперь понимает имена файлов, разделенные специфическим для системы способом. Стандартный способ, когда имена файлов разделены пробелами, не изменился. Такой способ раньше был имплементирован в движке LuaTeX; теперь он есть для всех движков. Двойные кавычки ASCII (") удаляются из имени файла, но в остальном имя файла не изменяется. Сейчас это не влияет на команду \input в IATeXe, так как последняя— макро, преопределяющее примитив \input.
- Новая опция –cnf-line для kpsewhich, tex, mf, и других программ позволяет задать любые конфигурационные изменения в командной строке.
- Добавление примитивов к движкам в этом и предыдущих релизах приведет к общей функциональности примитивов во всех движках (LATEX News #31, https://latex-project.org/news).

epT_EX; eupT_EX: Новые примитивы \Uchar, \Ucharcat, \current(x)spacingmode, \ifincsname; исправлены \fontchar?? и \iffontchar. Только для eupT_EX: \currentcjktoken.

LuaTEX: Интеграция с библиотекой HarfBuzz в новых движках luahbtex (используется для lualatex) и luajithbtex. Новые примитивы: \eTeXgluestretchorder, \eTeXglueshrinkorder.

 $pdfT_{E}X$: Новый примитив \pdfmajorversion; он только меняет номер версии в файле PDF, но не влияет на сам PDF. \pdfximage и аналогичные примитивы теперь ищут файлы там же, где и \openin.

рТ_ЕX: Новые примитивы \ifjfont, \iftfont. Также для ерТ_ЕX, upT_EX, eupT_EX.

XeTeX: Исправлены \Umathchardef, \XeTeXinterchartoks, \pdfsavepos.

Dvips: Новые кодировки для растровых шрифтов, что улучшает копирование текстов (https://tug.org/TUGboat/tb40-2/tb125rokicki-type3search.pdf).

MacTEX: MacTEX и x86_64-darwin теперь требуют MacOS 10.13 или выше (High Sierra, Mojave, и Catalina); x86_64-darwinlegacy поддерживает 10.6 и выше. MacTEX нотаризован, и программы, вызываемые из командной строки, усилены, как требуется фирмой Apple. BibDesk и TEX Live Utility не в MacTEXe, так как они не нотаризованы, но в файле README указано, откуда их можно скачать.

tlmgr и инфраструктура:

- Автоматическая вторая попытка скачать пакеты, которые не удалось скачать в первый раз.
- Новая опция tlmgr check texmfdbs для проверки файлов ls-R и !! в каждом дереве.
- Использование номера версии для файлов пакетов, как tlnet/archive/pkgname.rNNN.tar.xz; это должно быть прозрачно для пользователей, но это кардинально меняет работу дистрибутива.
- Информация о дате catalogue-date больше не берется из Т_ЕX каталога, так как она часто не имеет отношения к обновлению пакета.

10.8 Настоящее: 2021

Общие изменения:

- Добавлены последние изменения Дональда Кнута в его плановой настройке программ Т_ЕX и METAFONT(https://tug.org/TUGboat/tb42-1/tb130knuth-tuneup21.pdf. Они также есть в архиве CTAN (пакеты knuth-dist и knuth-local). Как и ожидалось, изменения касаются только экзотических ситуаций и не влияют на работу программ в реальных условиях.
- Для всех движков, кроме оригинального ТеХа, установка параметра \tracinglostchars на 3 или больше приведет к ошибке, а не только предупреждению в логе, и будет указан шестнадцатеричный код отсутствующего символа.
- Для всех движков, кроме оригинального ТЕХа, добавлен новый целочисленный параметер \tracingstacklevels. Если он положителен, и параметр \tracingmacros положителен, в логе появляется префикс, указывающий глубину макроподстановки (например, ~.. для глубины 2). Кроме того, трассировка не делается для глубины ≥ значению этого параметра.

Aleph: Основанный на движке Aleph формат I⁴ТЕХа, lamed, исключен из дистрибутива. Сама программа aleph включена и поддерживается.

LuaT_FX:

- Lua 5.3.6.
- В $\$ tracingmacros обработка уровня вложенности реализована как обобщенный вариант новой переменной $\$ tracingstacklevels.
- Специально отмечаются математические глифы, чтобы не применять к ним текстовые преобразования.
- Удалены компенсация ширины и поправки на италики в коде для традиционной математики. MetaPost:
- Переменная SOURCE_DATE_EPOCH для воспроизводимого результата, не зависящего от даты.
- Удалена ошибочная конечная % в mpto.
- Документирован ключ -Т, добавлены другие изменения в документацию.
- Значение epsilon изменено в двоичном и десятичном режиме, так что mp_solve_rising_cubic теперь работает, как ожидается.

pdfT_FX:

- Новые примитивы \pdfrunninglinkoff и \pdfrunninglinkon для того, чтобы отключать гиперлинки, например, в заголовках страниц.
- Предупреждение вместо ошибки, когда \pdfendlink и \pdfstartlink оказываются на разных уровнях вложенности.
- Таблица, созданная \pdfglyphtounicode, теперь сохраняется в файле fmt.
- Изменения в коде: удалена поддержка библиотеки poppler, так как оказалось слишком сложно синхронизироваться с ее изменениями. В самом ТЕХLive pdfTEX всегда использует libs/xpdf, сокращенный и адаптированнй код из xpdf.

ХеТЕХ: Исправления в кернинге математических формул.

Dvipdfmx:

- Ghostscipt теперь вызывается в безопасном режиме. Если вы полностью доверяете всем входным файлам, вы можете вернуться к небезопасному режиму при помощи ключа -i dvipdfmx-unsafe.cfg. Это необходимо, в частности, для работы PSTricks под XeTeXom, где нужно использовать xetex -output-driver="xdvipdfmx -i dvipdfmx-unsafe.cfg -q -E" ...
- Если графический файл не найден, остановка с соответствующим кодом выхода.
- Расширенный синтаксис команд поддержки цвета.
- Команды для управления ExtGState.
- Поддержка совместимости с pdfcolorstack и pdffontattr.
- Экспериментальная поддержка dviluatexa теперь включает fnt_def.
- Поддержка новых возможностей виртуальных шрифтов для дефолтных вариантов японских шрифтов.

Dvips:

- По умолчанию заголовок документа в PostScripte теперь название файла. Это можно изменить опцией -title.
- Если файл .eps или другой графический файл не найден, остановка с соответствующим кодом выхода.
- Поддержка новых возможностей виртуальных шрифтов для дефолтных вариантов японских шрифтов.

 $MacT_EX$: $MacT_EX$ и новый набор программ universal-darwin теперь требуют macOS 10.14 или выше (Mojave, Catalina, или Big Sur). Директория $x86_64$ -darwin теперь отсутствует. Директория $x86_64$ -darwinlegacy, которая устанавливается только юниксовским install-tl, совместима с 10.6 и выше.

Это важный водораздел для Макинтошей, так как Эппл стала выпускать машины на основе процессора ARM в ноябре 2020 года и собирается продавать и поддерживать машины на основе ARM и Intel в обозримом будущем. Все программы в universal-darwin содержат код для ARM и Intel, собранный из одних и тех же исходников.

Дополнительные программы Ghostscript, LaTeXiT, T_EX Live Utility, и TeXShop поддерживают обе архитектуры и криптографические подписи для безопасного режима, и поэтому в этом году включены в MacT_EX.

tlmgr and infrastructure:

- Теперь хранится только один бэкап основного репозитория texlive.tlpdb.
- Еще больше совместимости между различными системами и версиями Перла.

- Результат tlmgr info теперь содержит поля lcat-* and rcat-* для данных из локального и удаленного каталогов.
- Трассировка подкоманд теперь сбрасывается в новый файл texmf-var/web2c/tlmgr-commands.log.

10.9 Будущее

Т_EX Live не совершенен, и никогда не будет совершенным. Мы предполагаем выпускать новые версии, добавляя справочный материал, утилиты, установочные программы, новые макропакеты и шрифты и все остальное, имеющее отношение к Т_EXу. Эта работа делается добровольцами в свободное время, и многое остается сделать. Если вы можете помочь, не стесняйтесь. См. https://tug.org/texlive/contribute.html.

Присылайте, пожалуйста, замечания и предложения по адресу:

tex-live@tug.org https://tug.org/texlive

Happy TEXing!