

Model Development Phase Template

Date	13 july 2024
Team ID	739805
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Logistic Regression

```
# LogisticRegression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train, y_train)
y_pred_lr = lr.predict(x_test)
y_pred_lr
```

KNeighborsClassifier

```
#KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
ypred_knn = knn.predict(x_test)
```


SVC

```
#SVC()
from sklearn.svm import SVC
svm = SVC()
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
```

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
ypred_rfc = rfc.predict(x_test)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Logistic			
Regression	print(classification_report(y_test,y_pred)) precision recall f1-score support 1 0.75 0.91 0.83 128 2 0.45 0.19 0.27 47 accuracy 0.72 175 macro avg 0.60 0.55 0.55 175 weighted avg 0.67 0.72 0.68 175	<pre>lr_acc = accuracy_score(y_pred, y_test) lr_acc 0.72</pre>	<pre>conmat=confusion_matrix(y_test,y_pred) print(conmat) [[117 11] [38 9]]</pre>
K neighbors Classifier	<pre>: print(classification_report(y_test,ypred_knn))</pre>		
	1 0.81 0.80 0.80 109 2 0.42 0.43 0.43 37 accuracy macro avg 0.61 0.62 0.61 146 weighted avg 0.71 0.71 146	<pre>knn_acc = accuracy_score(ypred_knn, y_test) print(knn_acc) 0.7054794520547946</pre>	<pre>confusion_matrix(y_test,ypred_knn) array([[87, 22],</pre>

Random Forest					
Classifier	print(classification_m precisio 1 0.8 2 0.4 accuracy macro avg 0.6 weighted avg 0.7	0.85 0.82 0.37 0.41 0.73 0.61 0.61	print(rfc_acc)	<pre>rfc_acc = accuracy_score(ypred_rfc, y_test) print(rfc_acc) 0.7264957264957265</pre>	<pre>confusion_matrix(y_test,ypred_rfc) array([[74, 13],</pre>
SVC	<pre>print(classification_r/ precision_recorder)</pre>	port(y_test,y_pred_svm)) recall f1-score s	pport		
	1 0.7 2 0.0 accuracy macro avg 0.3 weighted avg 0.5	1.00 0.85 0.00 0.00 0.74 0.50 0.43	87 30	y_pred_svm, y_test) 436	<pre>confusion_matrix(y_test,y_pred_svm) array([[87, 0], [30, 0]], dtype=int64)</pre>