

BIOFIZIKE

Grade										
Grade										
6 60-										
7										
8										
(1) -	100									
-	-									
1, , ,										
HW (MI	ust Do	,,, (C		7 7	_					
- Oral e	weeb	wth.	a sei	5700~7						
	w_C =									

₽.	٠ ٢		Ω	v	04	~														٨	. No). પ્ર	V
1001	1 T	ا،	7	KO.	٥٩	0		L a			a .			IL	۲-		1		7 • 1				H
-	MC	7 W	:0 F	ind	5	۴	ωç	1	r 0	w	X (air	6	OU	LTI) N	10	lua	₩t	4			H
							0	1				Ü	,	L						•			H
							بد	a	00	ie>		3	54	7.0	/0 k	હ							H
Pol										01				1	v.								ŀ
										H	.\ '	in	60,	~	ro.	pe	7						t
																							l
75	۸ -	_	O 4	د۲;	.	ا ما	٨	.4.	4	lor	_												t
7	M	0	~	• ()	~ ~	۲,۷ آگ	(e)	· ·		74		15)		(Dia							t
7 P1	ч () .T	<u>-</u>	7) }	4	ره د		12	4.	_	Q	5,4	, M.		, i	2						t
			,	P	~('			,	7	(0		· .	١,	~ w ~		,,,	2						İ
		_		_	_			-					_		_		_	_					Ī
																							T
rq	20	T	FU	NS	S																		İ
			_ `																				Ī
	SI	- T V	<i>ι</i> ς+	wr	2 %																		Ī
							ch	ain	٥.	₽ (ww	w	O.	લં૦	Ls	(Αf	7)					
	-	Se	C()	nd	la	r Y	∻	X	- h	leli	z.		w	d 1	(3-)a-	a	res	5				
	^	16	761	ar	ج. ٠	> ``	35	h	$l \infty$	لحا	٠, ١	bo	nd	<u> </u>	œ	S	- 6	ie(do	•			
	_	Q,	La	, +	αr	>	80	wa	16	N	o _v	nd	ر د	one	ود	ò	e	oq	m	r(fii	o(e	ch	Ω
	Ъ.	DT	ડ		40	9	to	re	d	h	. (ano	رلہ	se		we	مان	tir	ies	a	wl		
	Cc	hne	:cf	ion	9	6	e fu	ree	2	P	Уď	aho fei	ر حر										
																							L
	G	TOU	h	S	(λlc	ф	+	7QS	(p													
	- ,	$\mathcal{I}\mathcal{D}$, ,	sk	re	.Se	ta	μc	n	78	Ĵ	\mathcal{D}	841	ruc	etu	٦٩							
				Ĭ																			
	Q_{ν}	an	tolo	Ltiv	૯	Q	wa	lys	કોંડ														
	-	Wi	4W	P'	to	-eiv	L	dis	oté	wc	e	w	×4;	K									
				,																			ļ

Graphlets - Used to analyse huge molecules more stable u - Node we are looking at in graph is always the end usde in graphlet Estimation of body volume - Using water density Radius of EARTH - Burj Khalifa: 800m - Distance to horizon: 100km Bs+ Fs = (B+M) 15 + 15 = 55 + 5 EN+1/5 Le = 2Rh + he $R = \frac{\sqrt{12}}{2h} = \frac{100^{7}}{2.06} = 6250 \text{ km}$

MOTION IN ONE DIMENSION:

displacement, speed, velocity, acceleration

Kinematiks

· Describes quantitatively how a body moves through space

Mesurment motion

- To mesure motion we must first mesure position

One dimential motion

- Frame of reference is one line - Distance length of way from one to another position - Displacement - difference in position

Average speed and average velocity

- Speed is scalar

- Velocity is vektor
- Average speed = distance
- Average velocity = displacement. It can be negative!

Instantaneous velocity U= x2-x1 = Ax > U = Lim Ax

- The limit of velocity funktion when st >0, a.k.a. the derivative of the space relative to time

Acceleration

-Average acceleration = 3+ = a -Acceleration de scribes change of velocity

Instantaneous acceleration a = 4 m = 54 - acceleration is the derivative of velocity relative to time Units · Displacement: meters (m)
· Velocity: meters per second (\$)
· Acceleration: meters persecond per second (\$\frac{m}{5}^2) Constant acceleration $\frac{dv}{dt} = \alpha = const$ - Constant acceleration means the rate of change of velocity is constant

- A solution to above equation is $v = v_0 + at = \int_{v_0}^{v_0} dv = \int_{v_0}^{v_0} dt$ Distance and constant Acceleration -At constant acceleration, dx = v(t) = v. + at - The solution of the equation is x(t) = x0+4t + 2 ate Constant acceleration formulas v = 1/2 + af x (+)=x,+v++2 ate v2 = v0 + 2a(x-x0)

Exercises 1 B = 2, 4 m = 2, C = 0, 12 m = 3 u = X(+) => u = 2Bt -3Ct2 v(06) = 2B(05) -3C(05)2 = 0 U(32) = 15 $v(\Lambda 0) = \Lambda 2$ a = V(+) = a = 26-6C+ v = 0 = 2B7-3Ct2 = 0 t(2B-3Ct)=0 t1=05 2B-3Ct,=0 t2 = RE = 13,35 2. k=5m=== v = K. 1+ a = v(+) = 1k = \times . $\frac{1}{3}\sqrt{1}$ dt = $\frac{1}{4}$ = $\frac{$ $x = x^{-1} \int_{4^{\delta}} \Lambda(t) dt$ x = Acos(wt), A and w are constants. Displacement & Velocity & Acceleration

Task

$$f(x) = x^2 - 2$$
; $x = 14$
 $f(A4) = 184 = 4$
 $f'(x) = 2x$
 $k = f'(A4) = 28$
 $n = 4 - k = 134 - 28 \cdot 14 = -138$
 $4 = 28x - 138$
 $4 = 47,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -7.07 = -51$
 $4 = 14,38 - 14 \cdot 7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.07 = -7.0$

	١																	2:	2.1	0.24
1	1En	T (2N		LA	ł W	S													
41	1	1		₽.	1	1		0		۲.										
N	ent	on	3	μı	うて よ。	\ 	SW)	04	m	η Τ ι	~. T			1.	1.	۔ ام	، باد		امدا	
	0P	Je c	1) (~11	LM.	62 65	1,0	fo	NC - 10	- OUT	· Cc) 	t an	1 3.) EUC	2.19	- COV	(162)	,
	act For		SA	رځم	St.		<i>A</i>	.au	w-(on d	n ct									
•	Pue	hin	a -1	ગજ	Le,	fri	ctio	n 2	ore	ور د	rau	ita:	r'o	nal	ر کور	T C6	2			
			a								a.									
\mathcal{T}	-elat	ing	41	ىو	ch	ναν	ge	, in	U	eloc	ity	4.	o (orc	e					
•	Thi	9 0	com	c	n 4	y	be	de	ne	e	x pe	riw	en	tal	4					
•	Ca	re v	nus	+ 1	se	40	Jeer	~ f	0 (mal	۷è	ರಿ	ررو	fo	rce	s l	ikef	ricti	on.	
	are																			
	A																			
_			1				<u></u>													
	orce T.									^_	٤.									
	For											مے	ی ر)	~ <i>ψ</i> ;	011					
	Acc	-					•				~	1 .				e.				
						1	7			7.7										
0	nit	٥f	801	- C	وا															
•	ka	· 8	È = (V		٤	7 =	m	٠ ۵	•										
	nit ka	2	di	r	al v	chw 12	_		۵											
	<u> </u>	= 7	犹	: :	第	<u> </u>	จี +	m.	ā	7										
								-cor												
+																				
<u> </u>	med	ms	+	o to	ય	40	rce	2												
41	euto	رو	2	.1	(م. ۱		ء	30			٠. ا									
10,	eu (o	Λ0	ار	ο ν	.00	•)	٨٥١	(IOK	_ \ \	رمدد	.((00									

Free Pall with air resistance Fo = 1 cspv2 · Air resistance is a force that affects objects moving through air. velocity max velocity (nt occeleration time

u(t) = dy => u+(1-e-++) = dy sdy = \$v+ (1-e- +) d+ 4-0= & 1/4- 1/6 6 - 1/4 = 1/4. f - 1/4 (- 1/2) & 1/6 = 17. t+4 = e - 17 = = = + (++ = (- + = 1)) WHdsolve 29.W.24 Dynamic and static friction - Dynamic-when the object slides (Velocity is not zero)
- Statie-when the object doesn't slide (Velocity is zero)
- Dynamic fri. force formula: Fer=kaFv · Static fri force formula Fer= kotu FL لط Applyed force

Calculating opt angle to pull object 2K=0 x: Fx-F=0 y: Fu + Fy - Fg = 0 2 Fy = 0 v = const Fu- Fg- Fg Fgr = Fx For - Fn. K = (Fg - Fg). K Fx = (Fg-Fy) k Fx = Fok - Fok Fcosx = Fgk-Fsinx.k FCOS & FFSINA' k = Fg k

F = COSA+E-DINA => F(x) => F'(x)=0? F'(K) = - Folk (-sind+kcosk) = 0 K=013213, - sinx+k-cosx = 0 K=02=>11,3° sina = kcos x k = sina = tan(x) r=013=>16'1, Kopt = arctan(k)

Work is only done by a force

The force has to move something!

Definition: if I push with 1N through 1m, I do 1 Soul of Potencial energy

Stored work is Wp => DWp = mg & h = mg (hz-h) Kinetic energy Fdx = madx = may dx = mudu Total work:

| Jun volu = 2 m v2 | = 1 m v2 - 2 m v2 Conservation of mechanical energy y = 40-1 0. 4 - + - 2 4 = 3 = K 6 = \(\frac{2h'}{9} \) d = \(\nu_2 \cdot \) t 1 mu2 + ma H = 1 muz + mah mgH = 2 mv2 + mgh d= -129 (H-N) . 12M 12 = -12 g (H-h) 21(H-h)k d'(h) = 1 2(4-2h) = 0 => H-2h=0 => h= 4

t=1day=24h=3600;2h 5 = 2 TTRE-COSK V = 2 TIRE . COSK VF1 = 24.80002 = 403 \$ VFG = 2 TRE 0056° = 450 % GASES AND LIQUIDS Boyle's law constant temperature. If the presure increases, then the volume decreases. They discovered that the produkt of presure and volume is a constant. Pressure [No] Pa (105 Pa=1bar) · 1013 mbor (at sea level) Constant presure: there is a linear relation between volume and temperature Formula (ideal gas (aw) pv=nRT , R = 8.8 Au Du o(~K~

$$S = \frac{1}{5} =$$

Gas in 3D

$$F_{x} = \frac{MV_{x}^{2}}{U} + \frac{1}{1} + \frac{MV_{x}^{2}}{U} \Rightarrow 6imilar \text{ for } F_{ux} \text{ and } F_{ux} = 0$$

$$F_{ux} = \frac{MV_{x}^{2}}{U} + ... + \frac{MV_{x}^{2}}{U} \Rightarrow 6imilar \text{ for } F_{ux} \text{ and } F_{ux} = 0$$

$$V_{x}^{2} = \frac{MV_{x}^{2}}{V} + \frac{1}{U_{x}^{2}} \Rightarrow V_{x}^{2} = V_{x}^{2} + ... + V_{x}^{2}$$

$$V_{x}^{2} = \frac{1}{V} + \frac{1}{V} + \frac{1}{U}

HW (calculate TT) So = 11 r2 } So = 11 r2 = 17 => 11 = 4 So $\pi = 4 \frac{N_{in}}{N_{ToT}}$ Plot line: yline (pi,...) 19.11.24 Difusion · Mixing of two or more gases Motion of indealles · In air about 500 % · They move in a rigrag because they bounce of each other.
· Volume per 1 molebule in air = 1000013, d=diam.of molecule V=Sh= 77d2·(=10002)= (= 16002 = 3002 L = ava. distance between & collisions Pandom walk · Movement of a moletule · Eteps are different length and in different directions 10 = start to finish (x, +x2+x3)2= x1+x2 +x3 +2x1x2+2x1x3+2x2x3 r2 = 12+12+12=33N (= 11/ (TAD = - 1/0)

Fick law Ax ... gradient $J_x = -DA_x \Rightarrow J = -DPP$ J. .. diffusion flux, D. .. diffusion const, P. .. amount of substance The gradient of a scalar Rield is a vector field that etuiog Diffusion and Random walk diffusional constant Example 1: what 's the defension distance of a molecule in class room? v=5008 2=300d=300.2A time = 1h r = -1500 = . 800.2. 10-10 36005 - -1 0,108 = 0,3 Pittusion constant: temperature, viscosity, size of molebules D = kT n... viscosity

	1		1	T			,	۲,-	· /	,					,	. 1				26	ለሊ	. પ્રા	١
+	eat			I H	۱ د	LOV	u l	L 3.	, ,	0(6	rec	m	ut.	col	.br	ie 1							ŀ
+	Pe.	Š	role	2.CL	as	م	40	the	۶۰	f en	ودر	37					,						
•	٨	غراد) ४ रहे	ີ	*	en	ورم	y is	720	yuer	ed	40	W	at	λg	૦૧ પ	n oct	نور	by	٨٠	C		
	be.										_											_	
	54									f h	ومرخ	W	ece	550	ry	40	دلا	on	~e	+1	he	۱ ،	د
	1k	В	₽₿	w	٥٥	۱ د	ρq	Λ¥	4														ŀ
*																							
Ex	ilra	se																					
a)																							
		e												Q	_ =	w.	Cì,	e.	72				
		50.	1										/		,=	Qs.	كملا	.20	သင) } }	X	۱.5	K
												/				2 C							ľ
		ųΟ.	Ī								/												
										/				Q .	=1	٧٠.5	ક	1.Kr	31	لام	•		l
		₹∂ .	t						/					~1	=	ر. و حرح ۲۵۲	16	8	34./	g_{Q}	مياك	Z	
								/							=	163	V. 1	_3 ^3	\ <u>-</u>	16-	- 172'	σ	
		10 -					/								-	~ (0 7	(· /(J -		T KJ		
						/								M	-			^-	r _				
		0 -												W.	-	ω. (Lw.	60-	. = 	بهو	.		
	-	5 •													-	υ _ι ς • • • •	κθ.	(2.5	Σ€ 7 <u>}</u>	*9	<`S	OX	_
																102	k)	1					L

Total heat
$$0 = \frac{Q}{E} = \frac{23 + 1031}{800 2 \text{min}} = 346 \text{min} = 666$$

b)

... morenn = 0,0440 (T=100°C)

... et bn = 0,2 hag (T=50°C)

... et bn = 0,2 hag (T=50°C)

... Mot all steam

[4 all higher upporties:

Q=0,2 kag 4200 1 kg' 50 K = 420001)

Liquities

49.10³ J = mx · 22.10° 5 Kg'

42 = mx · 22.10° kg'

mx = \frac{22.10^3 kg'}{2.2.10^3 kg'}

mx = \frac{2.2.10^3 kg'}{2.2.10^3 kg}

Matern = 0,04 kg - Q.0.49 kg

Matern = 0,04 kg' - Q.0.49 kg

Matern = 0,04 kg' - Q.0.49 kg

Tense - 000°C

c) m = 70 kg

Q = m · 3500 1 kg'K' 1 K

Sweat (H30) > Evaporates = L -> Q

Q = 70 kg' 3500 1 kg'K' 1 K = 245 K1 = mx · 2400 k3 kg''

mx = \frac{2400 kg'}{2400 kg'} - 0,14 kag

mx = \frac{2400 kg'}{2400 kg'} - 0,14 kag

Electric force · El field is defined as el force per unit charge F=e EExt (Force = charge Field(external)) $x: \alpha_{x} = 0$ $x = u_{x} \cdot t \Rightarrow t = \frac{x}{v_{x}}$ Ux = const y: ay \$ 0, ay = eE y= ay t2 = e E +2 = et x2 Electrostatic potencial 10,12.24 Magnetic field - All moving charged particles produce magnetic field · Magnetic field is similar to electric field · Electric current is inside copper wire and magnetic field is ti bancara

Example E = 1.12.205 Vm-B=0,540T R = 31cm m = eBR = eBZR Charge = positive @ (+1) M = 16.10-13C.0.818. (0.540T)2 m = 0.129.20-24 atomic mas=77.71 Example E = 1.88. 104 V/m 15 = 0.701T = MV = ME = 0.0325 Mg = 82.1.66.10-27 Man = 84.1.66.10 23 - 5 R2 = 0.0383 M34 = 84.1.60 m M86 = 86.1.66.10-27 M86 = 0.0341 Stefan-Boltzmann law j=dT": j= power density ;= == [w] SE j = S; / > 4T (150.103m)2. 1400 = 4T (7.108m)2 = T4 0 = 5.67 10 min T = 5800 K

	F	10 y	ro:	. Q																		۷.	٦_/	າ ເ	_
																							` . /\	. 2,4	, V
-		₩.												2		_		0 _	\						
+		Pri													(e+1	er	Ce	ove	S						
_		Se													, .										F
_		(17	(၁	⁻ 5	We.	et5	, bo	ral	مل	ovvo		ant	1-6	wa											F
	•	(Tor	Lia	~vc	/ر	stw	-ct:	3	> 4	str	uct	. of	Z A	A	cha	in							_		ŀ
	• ((Kuo	rto	ano	ر) ه	f w	ct:	3,	D 6	40	let.	ુર	9	·04	ein	(,	-ul	rigl	و م'	hai	NS 0	P a	(A)		ŀ
-	•	11-	ter	min	ral	: W	her	٠و	4 \	e.	A٩	ch	ain	لع	tar	45									-
	•	ĄA	C) hw	ect	ed	wi	<i>tk</i>	P	rps	de	boo	nd	s											L
									Ţ	_															L
	A,	nin.	0 (. લે	۸e																				L
		Hyd					નેન	ic																	
		P'_{r}																							
						,																			
	C	rist	al.	li za	tio																				
		Pu					, for	e.	ori	stal	li za	tin	L												Ī
		Bw																							İ
		Bro							(E (~ , ,		1 0	ha.												İ
			<i>~</i> 0.	9-																					t
																									ŀ
																									H
																									H
																									ŀ
																									ŀ
																									F
																									ŀ
																									ŀ
																									F
																									Ī
	_			1																					+