PCP Theorem

Naman Gupta

June 22, 2021

Naman Gupta PCP Theorem June 22, 2021 1/27

- Motivation: Approximate Solutions to NP-hard problems
- PCP Theorem: Equivalence of two views
- Answer Reduction: Preliminaries and Intuition
- Succinct Representation of Deciders
- PCP for normal form deciders

 Naman Gupta
 PCP Theorem
 June 22, 2021
 2 / 27

- Motivation: Approximate Solutions to NP-hard problems
- PCP Theorem: Equivalence of two views
- Answer Reduction: Preliminaries and Intuition
- Succinct Representation of Deciders
- PCP for normal form deciders

 Naman Gupta
 PCP Theorem
 June 22, 2021
 2 / 27

- Motivation: Approximate Solutions to NP-hard problems
- PCP Theorem: Equivalence of two views
- Answer Reduction: Preliminaries and Intuition
- Succinct Representation of Deciders
- PCP for normal form deciders

 Naman Gupta
 PCP Theorem
 June 22, 2021
 2 / 27

- Motivation: Approximate Solutions to NP-hard problems
- PCP Theorem: Equivalence of two views
- Answer Reduction: Preliminaries and Intuition
- Succinct Representation of Deciders
- PCP for normal form deciders

Naman Gupta PCP Theorem June 22, 2021 2 / 27

- Motivation: Approximate Solutions to NP-hard problems
- PCP Theorem: Equivalence of two views
- Answer Reduction: Preliminaries and Intuition
- Succinct Representation of Deciders
- PCP for normal form deciders

Naman Gupta PCP Theorem June 22, 2021 2 / 27

Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses.

MAX-3SAT is NP-hard.

We define an approximation of MAX-3SAT as follows – For every 3CNF formula φ let $val(\varphi)$ be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables.

For every $\rho \leq 1$, an algorithm A is a ρ -approximation algorithm for MAX-3SAT if for every 3CNF formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \mathrm{val}(\varphi)m$ of φ 's clauses.

■ 1/2 Approximation for MAX-3SAT

Naman Gupta PCP Theorem June 22, 2021 3 / 27

Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses.

MAX-3SAT is NP-hard.

We define an approximation of MAX-3SAT as follows – For every 3CNF formula φ let $val(\varphi)$ be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables.

For every $\rho \leq 1$, an algorithm A is a ρ -approximation algorithm for MAX-3SAT if for every 3CNF formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \mathrm{val}(\varphi)m$ of φ 's clauses.

■ 1/2 Approximation for MAX-3SAT

Naman Gupta PCP Theorem June 22, 2021 3/27

Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses.

MAX-3SAT is NP-hard.

We define an approximation of MAX-3SAT as follows – For every 3CNF formula φ let $val(\varphi)$ be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables.

For every $\rho \leq 1$, an algorithm A is a ρ -approximation algorithm for MAX-3SAT if for every 3CNF formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \mathrm{val}(\varphi) m$ of φ 's clauses.

■ 1/2 Approximation for MAX-3SAT

Naman Gupta PCP Theorem June 22, 2021 3/27

Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses.

MAX-3SAT is NP-hard.

We define an approximation of MAX-3SAT as follows – For every 3CNF formula φ let $val(\varphi)$ be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables.

For every $\rho \leq 1$, an algorithm A is a ρ -approximation algorithm for MAX-3SAT if for every $3\mathrm{CNF}$ formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \mathrm{val}(\varphi)m$ of φ 's clauses.

■ 1/2 Approximation for MAX-3SAT

Naman Gupta PCP Theorem June 22, 2021 3 / 27

Let MAX-3SAT be the problem of finding, given a 3CNF Boolean formula φ as input, an assignment that maximizes the number of satisfied clauses.

MAX-3SAT is NP-hard.

We define an approximation of MAX-3SAT as follows – For every 3CNF formula φ let $val(\varphi)$ be the maximum fraction of clauses that can be satisfied by any assignment to φ 's variables.

For every $\rho \leq 1$, an algorithm A is a ρ -approximation algorithm for MAX-3SAT if for every $3\mathrm{CNF}$ formula φ with m clauses, $A(\varphi)$ outputs an assignment satisfying at least $\rho \cdot \mathrm{val}(\varphi)m$ of φ 's clauses.

■ 1/2 Approximation for MAX-3SAT

Naman Gupta PCP Theorem June 22, 2021 3 / 27

- Recall the definition of NP languages
- lacksquare L \in NP if there is a polynomial time Turing Machine (verifier) V s.t.,

$$x \in L \implies \exists \pi \text{ s.t. } V^{\pi}(x) = 1$$

 $x \notin L \implies \forall \pi \quad V^{\pi}(x) = 0$

- Probabilistic verification of certificates
- Probabilistically Checkable Proofs

Naman Gupta PCP Theorem June 22, 2021 4/27

- Recall the definition of NP languages
- \blacksquare L \in NP if there is a polynomial time Turing Machine (verifier) V s.t.,

$$x \in L \implies \exists \pi \text{ s.t. } V^{\pi}(x) = 1$$
 $x \notin L \implies \forall \pi \quad V^{\pi}(x) = 0$

- Probabilistic verification of certificates
- Probabilistically Checkable Proofs

 Naman Gupta
 PCP Theorem
 June 22, 2021
 4/27

- Recall the definition of NP languages
- \blacksquare L \in NP if there is a polynomial time Turing Machine (verifier) V s.t.,

$$x \in L \implies \exists \pi \text{ s.t. } V^{\pi}(x) = 1$$

 $x \notin L \implies \forall \pi \quad V^{\pi}(x) = 0$

- Probabilistic verification of certificates
- Probabilistically Checkable Proofs

 Naman Gupta
 PCP Theorem
 June 22, 2021
 4/27

- Recall the definition of NP languages
- lueble L \in NP if there is a polynomial time Turing Machine (verifier) V s.t.,

$$x \in L \implies \exists \pi \text{ s.t. } V^{\pi}(x) = 1$$

 $x \notin L \implies \forall \pi \quad V^{\pi}(x) = 0$

- Probabilistic verification of certificates
- Probabilistically Checkable Proofs

 Naman Gupta
 PCP Theorem
 June 22, 2021
 4 / 27

- lacktriangle Probabilistic Verifier having random access to the proof string π
- Verifiers can be adaptive or nonadaptive

L has an $(r(n),q(n))\mbox{-PCP}$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- Efficiency At most q(n) nonadaptive queries to a string $\pi \in \{0,1\}^*$ using r(n) length random strings as query address, such that V outputs 1 (accept) or 0 (reject).
- Completeness $x \in L \implies \exists \pi \text{ s.t. } \Pr\left[V^{\pi}(x) = 1\right] = 1$
- Soundness $x \notin L \implies \forall \pi \Pr[V^{\pi}(x) = 1] \le 1/2$ 1/2 is arbitrary and can be any constant < 1

L is in PCP(r(n), q(n)) if there are c, d > 0 such that L has a (cr(n), dq(n))-PCP Verifier. Example: The language GNI of pairs of nonisomorphic graphs is in $\mathbf{PCP}(rolu(n), 1)$

- lacktriangleright Probabilistic Verifier having random access to the proof string π
- Verifiers can be adaptive or nonadaptive

L has an $(r(n),q(n))\mbox{-PCP}$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- **Efficiency** At most q(n) nonadaptive queries to a string $\pi \in \{0,1\}^*$ using r(n) length random strings as query address, such that V outputs 1 (accept) or 0 (reject).
- **Completeness** $x \in L \implies \exists \pi \text{ s.t. } \Pr\left[V^{\pi}(x) = 1\right] = 1$
- Soundness $x \notin L \implies \forall \pi \Pr[V^{\pi}(x) = 1] \le 1/2$ 1/2 is arbitrary and can be any constant < 1

L is in $\mathsf{PCP}(r(n),q(n))$ if there are c,d>0 such that L has a (cr(n),dq(n))-PCP Verifier. Example: The language GNI of pairs of nonisomorphic graphs in

Naman Gupta PCP Theorem June 22, 2021 5/27

- lacktriangleright Probabilistic Verifier having random access to the proof string π
- Verifiers can be adaptive or nonadaptive

L has an $(r(n),q(n))\mbox{-PCP}$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- **Efficiency** At most q(n) nonadaptive queries to a string $\pi \in \{0,1\}^*$ using r(n) length random strings as query address, such that V outputs 1 (accept) or 0 (reject).
- **Completeness** $x \in L \implies \exists \pi \text{ s.t. } \Pr\left[V^{\pi}(x) = 1\right] = 1$
- Soundness $x \notin L \implies \forall \pi \Pr \left[V^{\pi}(x) = 1 \right] \leq 1/2$ 1/2 is arbitrary and can be any constant < 1

L is in ${\rm PCP}(r(n),q(n))$ if there are c,d>0 such that L has a (cr(n),dq(n))-PCP Verifier.

Example: The language GNI of pairs of nonisomorphic graphs is in $\mathbf{PCP}(poly(n),1)$

Naman Gupta PCP Theorem June 22, 2021 5/27

- lacktriangleright Probabilistic Verifier having random access to the proof string π
- Verifiers can be adaptive or nonadaptive

L has an $(r(n),q(n))\mbox{-PCP}$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- **Efficiency** At most q(n) nonadaptive queries to a string $\pi \in \{0,1\}^*$ using r(n) length random strings as query address, such that V outputs 1 (accept) or 0 (reject).
- **Completeness** $x \in L \implies \exists \pi \text{ s.t. } \Pr\left[V^{\pi}(x) = 1\right] = 1$
- Soundness $x \notin L \implies \forall \pi \Pr \left[V^{\pi}(x) = 1 \right] \leq 1/2$ 1/2 is arbitrary and can be any constant < 1

L is in ${\rm PCP}(r(n),q(n))$ if there are c,d>0 such that L has a (cr(n),dq(n))-PCP Verifier.

Example: The language GNI of pairs of nonisomorphic graphs is in $\mathbf{PCP}(poly(n),1)$

Naman Gupta PCP Theorem June 22, 2021 5/27

- $lue{}$ Probabilistic Verifier having random access to the proof string π
- Verifiers can be adaptive or nonadaptive

L has an $(r(n),q(n))\mbox{-PCP}$ verifier if there's a polynomial-time probabilistic algorithm V satisfying:

- **Efficiency** At most q(n) nonadaptive queries to a string $\pi \in \{0,1\}^*$ using r(n) length random strings as query address, such that V outputs 1 (accept) or 0 (reject).
- **Completeness** $x \in L \implies \exists \pi \text{ s.t. } \Pr\left[V^{\pi}(x) = 1\right] = 1$
- Soundness $x \notin L \implies \forall \pi \Pr \left[V^{\pi}(x) = 1 \right] \leq 1/2$ 1/2 is arbitrary and can be any constant < 1

L is in PCP(r(n),q(n)) if there are c,d>0 such that L has a (cr(n),dq(n))-PCP Verifier.

Example: The language GNI of pairs of nonisomorphic graphs is in $\mathbf{PCP}(poly(n),1)$

PCP Theorem

 ${f NP} = {f PCP}(\log n,1)$: Constant number of random queries to verify the certificate for a NP language

 Naman Gupta
 PCP Theorem
 June 22, 2021
 6 / 27

PCP Theorem: Hardness of Approximation View

Theorem – There exists $\rho < 1$ such that for every $L \in \mathbf{NP}$ there is a polynomial-time function f mapping strings to (representations of) $3\mathrm{CNF}$ formulas such that

$$x \in L \Rightarrow \operatorname{val}(f(x)) = 1$$

 $x \notin L \Rightarrow \operatorname{val}(f(x)) < \rho$

Corollary – There exists some constant $\rho < 1$ such that if there is a polynomial time ρ -approximation algorithm for MAX-3SAT, then **P=NP**.

 Naman Gupta
 PCP Theorem
 June 22, 2021
 7/27

PCP Theorem: Hardness of Approximation View

Theorem – There exists $\rho < 1$ such that for every $L \in \mathbf{NP}$ there is a polynomial-time function f mapping strings to (representations of) $3\mathrm{CNF}$ formulas such that

$$x \in L \Rightarrow \operatorname{val}(f(x)) = 1$$

 $x \notin L \Rightarrow \operatorname{val}(f(x)) < \rho$

Corollary – There exists some constant $\rho < 1$ such that if there is a polynomial time ρ -approximation algorithm for MAX-3SAT, then **P=NP**.

Naman Gupta PCP Theorem June 22, 2021 7/27

Some notations and definitions to begin with -

- Let $V = \mathbb{F}^n$ be a vector space. A register subspace S of V is a subspace that is the span of the standard basis of V.
- \blacksquare Two subspaces are complimentary if $S\cap T=\{0\}, S+T=V$
- Let $x \in V$. x^S denotes the projection of x onto the subspace S parallel to T.

 Naman Gupta
 PCP Theorem
 June 22, 2021
 8 / 27

Some notations and definitions to begin with -

- Let $V = \mathbb{F}^n$ be a vector space. A register subspace S of V is a subspace that is the span of the standard basis of V.
- Two subspaces are complimentary if $S \cap T = \{0\}, S + T = V$
- Let $x \in V$. x^S denotes the projection of x onto the subspace S parallel to T.

Naman Gupta PCP Theorem June 22, 2021 8/27

Some notations and definitions to begin with -

- Let $V = \mathbb{F}^n$ be a vector space. A register subspace S of V is a subspace that is the span of the standard basis of V.
- Two subspaces are complimentary if $S \cap T = \{0\}, S + T = V$
- Let $x \in V$. x^S denotes the projection of x onto the subspace S parallel to T.

◆ロト ◆個ト ◆園ト ◆園ト ■ りへの

Conditionally Linear Functions -

Intuitively, a conditionally linear function (L) takes as input an element $x \in V = \mathbb{F}^n$ for some $n \geq 0$, and applies linear maps L_j sequentially on x^{V_j} where V_1, V_2, \ldots are a sequence of complementary register subspaces such that both the linear maps L_j and the subspace V_j may depend on the values taken by previous linear maps $L_1(x^{V_1}), L_2(x^{V_2})$, etc. Let x^{L_1} denote $L_1(x^{V_1})$.

- k-th marginal of $L L_{\leq k} : V \to V = \sum_{i=1}^k x^{L_i}$
- k-th factor space with prefix $u \in L_{\leq k}(V) V_{k,u}$
- k-th linear map $L_{k,u}: V_{k,u} \to V_{k,u}$ with prefix u

 Naman Gupta
 PCP Theorem
 June 22, 2021
 9 / 27

Conditionally Linear Functions -

Intuitively, a conditionally linear function (L) takes as input an element $x \in V = \mathbb{F}^n$ for some $n \geq 0$, and applies linear maps L_j sequentially on x^{V_j} where V_1, V_2, \ldots are a sequence of complementary register subspaces such that both the linear maps L_j and the subspace V_j may depend on the values taken by previous linear maps $L_1(x^{V_1}), L_2(x^{V_2})$, etc. Let x^{L_1} denote $L_1(x^{V_1})$.

- k-th marginal of $L L_{\leq k} : V \to V = \sum_{i=1}^k x^{L_i}$
- $\ \ \, \mbox{ } k\text{-th factor space with prefix }u\in L_{< k}(V)$ $V_{k,u}$
- k-th linear map $L_{k,u}: V_{k,u} \to V_{k,u}$ with prefix u

Naman Gupta PCP Theorem June 22, 2021 9 / 27

Conditionally Linear Functions -

Intuitively, a conditionally linear function (L) takes as input an element $x \in V = \mathbb{F}^n$ for some $n \geq 0$, and applies linear maps L_j sequentially on x^{V_j} where V_1, V_2, \ldots are a sequence of complementary register subspaces such that both the linear maps L_j and the subspace V_j may depend on the values taken by previous linear maps $L_1(x^{V_1}), L_2(x^{V_2})$, etc. Let x^{L_1} denote $L_1(x^{V_1})$.

- k-th marginal of $L L_{\leq k} : V \to V = \sum_{i=1}^k x^{L_i}$
- $\ \ \, \mbox{ } k\text{-th factor space with prefix }u\in L_{< k}(V)$ $V_{k,u}$
- k-th linear map $L_{k,u}:V_{k,u}\to V_{k,u}$ with prefix u

Naman Gupta PCP Theorem June 22, 2021 9 / 27

CL Samplers – Turing Machines that perform computations corresponding to CL functions.

A function $q:\mathbb{N}\to\mathbb{N}$ is an admissible field size function if $\forall n\ q(n)$ is of the form 2^d where d is odd.

A 6-input TM $\mathcal S$ is a l-level CL Sampler with field size q(n) and dimenstion s(n) if for all n there exist l-level CL functions satisfying certain conditions, such that $\mathcal S$ can output the binary representation of marginal, factor space and linear maps.

Naman Gupta PCP Theorem June 22, 2021 10/27

CL Samplers – Turing Machines that perform computations corresponding to CL functions.

A function $q:\mathbb{N}\to\mathbb{N}$ is an admissible field size function if $\forall n\ q(n)$ is of the form 2^d where d is odd.

A 6-input TM $\mathcal S$ is a l-level CL Sampler with field size q(n) and dimension s(n) if for all n there exist l-level CL functions satisfying certain conditions, such that $\mathcal S$ can output the binary representation of marginal, factor space and linear maps.

Naman Gupta PCP Theorem June 22, 2021 10 / 27

 $\begin{array}{l} \textbf{Decider} - \mathsf{A} \text{ 5-input TM } \mathcal{D} \text{ that on all inputs of the form } (n,x,y,a,b) \\ \text{where } n \in \mathbb{N} \text{ and } x,y,a,b \in \{0,1\}^* \text{ halts and returns a single bit.} \end{array}$

Normal Form Verifier – V = (S, D)

 Naman Gupta
 PCP Theorem
 June 22, 2021
 11/27

 $\begin{array}{l} \textbf{Decider} - \mathsf{A} \text{ 5-input TM } \mathcal{D} \text{ that on all inputs of the form } (n,x,y,a,b) \\ \text{where } n \in \mathbb{N} \text{ and } x,y,a,b \in \{0,1\}^* \text{ halts and returns a single bit.} \end{array}$

Normal Form Verifier – $\mathcal{V} = (\mathcal{S}, \mathcal{D})$

Naman Gupta PCP Theorem June 22, 2021 11/27

Answer Reduction: Intuition

- We transform a normal form verifier \mathcal{V} into an answer reduced verifier $\mathcal{V}^{AR} = (\mathcal{S}^{AR}, \mathcal{D}^{AR})$ such that the answer reduced decider is only polylog in the answer length. This is achieved by composing a PCP.
- Similar to Interactive Proofs, the verifier samples questions x and y and distributes them to players which return answers a and b. The decider than takes the questions and answers as input and outputs a single bit. The answer reduced verifier asks the prover to provide a certificate for $\mathcal{D}(N, x, y, a, b)$, then executes a PCP Verifier after sampling part of that certificate Π .
- The original decider runs in poly(N), but due to the PCP formulation the decision can be executed in poly(n = log N).

Answer Reduction: Intuition

- We transform a normal form verifier $\mathcal V$ into an answer reduced verifier $\mathcal V^{AR}=(\mathcal S^{AR},\mathcal D^{AR})$ such that the answer reduced decider is only polylog in the answer length. This is achieved by composing a PCP.
- Similar to Interactive Proofs, the verifier samples questions x and y and distributes them to players which return answers a and b. The decider than takes the questions and answers as input and outputs a single bit. The answer reduced verifier asks the prover to provide a certificate for $\mathcal{D}(N,x,y,a,b)$, then executes a PCP Verifier after sampling part of that certificate Π .
- The original decider runs in poly(N), but due to the PCP formulation the decision can be executed in poly(n = log N).

Naman Gupta PCP Theorem June 22, 2021 12 / 27

Answer Reduction: Intuition

- We transform a normal form verifier \mathcal{V} into an answer reduced verifier $\mathcal{V}^{AR} = (\mathcal{S}^{AR}, \mathcal{D}^{AR})$ such that the answer reduced decider is only polylog in the answer length. This is achieved by composing a PCP.
- Similar to Interactive Proofs, the verifier samples questions x and y and distributes them to players which return answers a and b. The decider than takes the questions and answers as input and outputs a single bit. The answer reduced verifier asks the prover to provide a certificate for $\mathcal{D}(N,x,y,a,b)$, then executes a PCP Verifier after sampling part of that certificate Π .
- The original decider runs in poly(N), but due to the PCP formulation the decision can be executed in poly(n = log N).

Naman Gupta PCP Theorem June 22, 2021 12/27

Succinct description of 3SAT formulas

Let $N=2^n$, and let φ be a 3 SAT formula on N variables named x_0,\ldots,x_{N-1} . Let $\mathcal C$ be a Boolean circuit with 3 inputs of length n and three single-bit inputs. Then $\mathcal C$ is a succinct description of φ if for each $i_1,i_2,i_3\in\{0,1,\ldots,N-1\}$ and $o_1,o_2,o_3\in\{0,1\}$,

$$C(i_1, i_2, i_3, o_1, o_2, o_3) = 1$$

if and only if $x_{i_1}^{o_1} \vee x_{i_2}^{o_2} \vee x_{i_2}^{o_3}$ is a clause in φ . Here x^o denotes x if o=1, $\neg x$ otherwise.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

 Naman Gupta
 PCP Theorem
 June 22, 2021
 13/27

Informally, a decider $\mathcal D$ can be converted into a circuit $\mathcal C$ which represents a 3SAT formula φ which carries out the time T computation of $\mathcal D$. Additionally, $\mathcal C$ is of size poly $\log(T)$ rather than $\operatorname{poly}(T)$.

Decider Encodings – Encode tape alphabet = $\{0,1,\sqcup\}$ and set of states K into a binary representation.

$$enc(0,1,\sqcup,\Box) = (00,01,10,11)$$

Informally, a decider $\mathcal D$ can be converted into a circuit $\mathcal C$ which represents a 3SAT formula φ which carries out the time T computation of $\mathcal D$. Additionally, $\mathcal C$ is of size poly $\log(T)$ rather than $\operatorname{poly}(T)$.

Decider Encodings – Encode tape alphabet = $\{0,1,\sqcup\}$ and set of states K into a binary representation.

$$enc(0,1,\sqcup,\Box) = (00,01,10,11)$$

Proposition – Let $\mathcal D$ be a decider, let n,T,Q, and σ be integers with $Q\leq T$ and $|\mathcal D|\leq \sigma$, and let x and y be strings of length at most Q. Then on input $(\mathcal D,n,T,Q,\sigma,x,y)$, there is an algorithm that outputs a circuit $\mathcal C$ on 3m+3 inputs which succinctly describes a 3SAT formula φ_{3SAT} on $M=2^m$ variables.

 φ_{3SAT} has the following property:

For all $a,b \in \{0,1\}^{2T}$, there exists a $c \in \{0,1\}^{M-4T}$ such that w=(a,b,c) satisfies φ_{3SAT} if and only if there exist a_{prefix} , $b_{\mathsf{prefix}} \in \{0,1\}^*$ of lengths $\ell_a,\ell_b \leq T$, respectively, such that

$$a = \mathrm{enc}_{\Gamma}\left(a_{\mathsf{prefix}} \;, \sqcup^{T-\ell_a}\right) \quad \text{ and } \quad b = \mathrm{enc}_{\Gamma}\left(b_{\mathsf{prefix}} \;, \sqcup^{T-\ell_b}\right)$$

and \mathcal{D} accepts $(n, x, y, a_{\mathsf{prefix}}, b_{\mathsf{prefix}})$ in time T.

◆ロト ◆昼ト ◆星ト ◆星ト 星 める()

- $m = O(\log T + \log \sigma)$
- \mathcal{C} has $poly(\log n, \log T, Q, \sigma)$ gates
- The algorithm runs in time $poly(\log n, \log T, Q, \sigma)$

- \mathcal{C} has $poly(\log n, \log T, Q, \sigma)$ gates
- The algorithm runs in time $poly(\log n, \log T, Q, \sigma)$

 Naman Gupta
 PCP Theorem
 June 22, 2021
 16 / 27

- \mathcal{C} has $poly(\log n, \log T, Q, \sigma)$ gates
- The algorithm runs in time $poly(\log n, \log T, Q, \sigma)$

 Naman Gupta
 PCP Theorem
 June 22, 2021
 16 / 27

Proof Sketch -

- Consider the execution table of \mathcal{D} , that is, record the position of tape heads, values in all tape cells, decider state at every time step $t \leq T$
- As in proof of Cook Levin Theorem, construct a 3SAT formula which defines the execution and boundary constraints ($\varphi_{\text{boundary}}$) for \mathcal{D} .
- Define a local check circuit $\mathcal{C}_{\mathsf{Check}}$ having size $poly(|\mathcal{D}|)$ that essentially checks an entry (row) from the execution table. Convert this circuit to corresponding 3SAT formulas.
- Obtains that SAL reduction after considering every check circuit.
- lacksquare Construct the final circuit $\mathcal C$ which succinctly describes arphi

Proof Sketch -

- Consider the execution table of \mathcal{D} , that is, record the position of tape heads, values in all tape cells, decider state at every time step $t \leq T$
- As in proof of Cook Levin Theorem, construct a 3SAT formula which defines the execution and boundary constraints ($\varphi_{boundary}$) for \mathcal{D} .
- Define a local check circuit $\mathcal{C}_{\mathsf{Check}}$ having size $poly(|\mathcal{D}|)$ that essentially checks an entry (row) from the execution table. Convert this circuit to corresponding 3SAT formulas.
- Obtain a final 3SAT reduction after considering every check circuit, $\varphi := \varphi_{boundary} \wedge (\land_{:}\varphi_{Check})$
- lacktriangle Construct the final circuit $\mathcal C$ which succinctly describes φ

 Naman Gupta
 PCP Theorem
 June 22, 2021
 17 / 27

Proof Sketch -

- Consider the execution table of \mathcal{D} , that is, record the position of tape heads, values in all tape cells, decider state at every time step $t \leq T$
- As in proof of Cook Levin Theorem, construct a 3SAT formula which defines the execution and boundary constraints ($\varphi_{boundary}$) for \mathcal{D} .
- Define a local check circuit $\mathcal{C}_{\mathsf{Check}}$ having size $poly(|\mathcal{D}|)$ that essentially checks an entry (row) from the execution table. Convert this circuit to corresponding 3SAT formulas.
- Obtain a final 3SAT reduction after considering every check circuit, $\varphi := \varphi_{\text{boundary}} \wedge (\land_i \varphi_{\text{Check}})$
- lacksquare Construct the final circuit $\mathcal C$ which succinctly describes arphi

4□ ► 4□ ► 4□ ► 4□ ► 4□ ► 900

Proof Sketch -

- Consider the execution table of \mathcal{D} , that is, record the position of tape heads, values in all tape cells, decider state at every time step $t \leq T$
- As in proof of Cook Levin Theorem, construct a 3SAT formula which defines the execution and boundary constraints ($\varphi_{boundary}$) for \mathcal{D} .
- Define a local check circuit $\mathcal{C}_{\mathsf{Check}}$ having size $poly(|\mathcal{D}|)$ that essentially checks an entry (row) from the execution table. Convert this circuit to corresponding 3SAT formulas.
- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \textbf{Obtain a final 3SAT reduction after considering every check circuit,} \\ \varphi := \varphi_{\texttt{boundary}} \wedge \left(\wedge_i \varphi_{\texttt{Check}} \right) \\ \end{tabular}$
- lacksquare Construct the final circuit ${\mathcal C}$ which succinctly describes ${arphi}$

Proof Sketch -

- Consider the execution table of \mathcal{D} , that is, record the position of tape heads, values in all tape cells, decider state at every time step $t \leq T$
- As in proof of Cook Levin Theorem, construct a 3SAT formula which defines the execution and boundary constraints ($\varphi_{boundary}$) for \mathcal{D} .
- Define a local check circuit $\mathcal{C}_{\mathsf{Check}}$ having size $poly(|\mathcal{D}|)$ that essentially checks an entry (row) from the execution table. Convert this circuit to corresponding 3SAT formulas.
- $\begin{tabular}{l} \blacksquare \begin{tabular}{l} \textbf{Obtain a final 3SAT reduction after considering every check circuit,} \\ \varphi := \varphi_{\texttt{boundary}} \wedge \left(\wedge_i \varphi_{\texttt{Check}} \right) \\ \end{tabular}$
- lacksquare Construct the final circuit $\mathcal C$ which succinctly describes arphi

Decoupled 5SAT

Previous algorithm allows us to convert any decider $\mathcal D$ and inputs n,x,y into a 3SAT formula $\varphi_{3\text{SAT}}$ succinctly described by $\mathcal C.$

We modify $\varphi_{3\mathsf{SAT}}$ into $\varphi_{5\mathsf{SAT}}$ such that every clause is made up of different assignments $(a_{i_1}^{o_{i_1}} \vee b_{i_2}^{o_{i_2}} \vee w_{1,i_3}^{o_{i_3}} \vee w_{2,i_4}^{o_{i_4}} \vee w_{3,i_5}^{o_{i_5}})$ instead of $(w_{i_1}^{o_{i_1}} \vee w_{i_2}^{o_{i_2}} \vee w_{i_2}^{o_{i_2}})$ such that (a,b,w_1,w_2,w_3) satisfies $\varphi_{5\mathsf{SAT}}$ iff $\mathcal D$ accepts (n,x,y,a,b).

 Naman Gupta
 PCP Theorem
 June 22, 2021
 18 / 27

Decoupled 5SAT

Previous algorithm allows us to convert any decider $\mathcal D$ and inputs n,x,y into a 3SAT formula φ_{3SAT} succinctly described by $\mathcal C.$

We modify $\varphi_{3\mathsf{SAT}}$ into $\varphi_{5\mathsf{SAT}}$ such that every clause is made up of different assignments $(a_{i_1}^{o_{i_1}} \lor b_{i_2}^{o_{i_2}} \lor w_{1,i_3}^{o_{i_3}} \lor w_{2,i_4}^{o_{i_4}} \lor w_{3,i_5}^{o_{i_5}})$ instead of $(w_{i_1}^{o_{i_1}} \lor w_{i_2}^{o_{i_2}} \lor w_{i_2}^{o_{i_2}})$ such that (a,b,w_1,w_2,w_3) satisfies $\varphi_{5\mathsf{SAT}}$ iff $\mathcal D$ accepts (n,x,y,a,b).

◆ロト ◆個ト ◆意ト ◆意ト · 意 · かへで

 Naman Gupta
 PCP Theorem
 June 22, 2021
 18 / 27

Explicit Succinct 5SAT Description of Deciders

Let $\mathcal{D}, n, T, Q, \sigma, x, y$ be defined as before. There is a TM SuccinctDecider which outputs a circuit \mathcal{C} with two inputs of length $l_0(T)$, three inputs of length $r_0(T,\sigma)$ and five single bit inputs which succinctly describes \mathcal{D} on inputs n,x,y and time T.

$$l_0 = O(\log T)$$

$$r_0 = O(\log T + \log \sigma)$$

$$s = poly(\log T, \log n, Q, \sigma)$$

PaddedSuccinctDecider

 Naman Gupta
 PCP Theorem
 June 22, 2021
 19 / 27

Explicit Succinct 5SAT Description of Deciders

Let $\mathcal{D}, n, T, Q, \sigma, x, y$ be defined as before. There is a TM SuccinctDecider which outputs a circuit \mathcal{C} with two inputs of length $l_0(T)$, three inputs of length $r_0(T,\sigma)$ and five single bit inputs which succinctly describes \mathcal{D} on inputs n,x,y and time T.

$$l_0 = O(\log T)$$

$$r_0 = O(\log T + \log \sigma)$$

$$s = poly(\log T, \log n, Q, \sigma)$$

PaddedSuccinctDecider

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Explicit Succinct 5SAT Description of Deciders

Let $\mathcal{D}, n, T, Q, \sigma, x, y$ be defined as before. There is a TM SuccinctDecider which outputs a circuit \mathcal{C} with two inputs of length $l_0(T)$, three inputs of length $r_0(T,\sigma)$ and five single bit inputs which succinctly describes \mathcal{D} on inputs n,x,y and time T.

$$l_0 = O(\log T)$$

$$r_0 = O(\log T + \log \sigma)$$

$$s = poly(\log T, \log n, Q, \sigma)$$

PaddedSuccinctDecider

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Preliminaries - Polynomials over finite fields

An m-variate polynomial f over \mathbb{F}_q is a function of the form

$$f(x_1, \dots, x_m) = \sum_{\alpha \in \{0, 1, \dots, q-1\}^m} c_{\alpha} x_1^{\alpha_1} \dots x_m^{\alpha_m}$$

Individual degree $d \implies c_{\alpha} = 0$ if $\alpha_i > d$ Total degree $d \implies c_{\alpha} = 0$ if $\sum \alpha_i > d$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Preliminaries - Polynomials over finite fields

An m-variate polynomial f over \mathbb{F}_q is a function of the form

$$f(x_1, \dots, x_m) = \sum_{\alpha \in \{0, 1, \dots, q-1\}^m} c_{\alpha} x_1^{\alpha_1} \dots x_m^{\alpha_m}$$

Individual degree
$$d \implies c_{\alpha} = 0$$
 if $\alpha_i > d$
Total degree $d \implies c_{\alpha} = 0$ if $\sum \alpha_i > d$

Preliminaries - Polynomials over finite fields

An m-variate polynomial f over \mathbb{F}_q is a function of the form

$$f(x_1, \dots, x_m) = \sum_{\alpha \in \{0, 1, \dots, q-1\}^m} c_{\alpha} x_1^{\alpha_1} \dots x_m^{\alpha_m}$$

Individual degree $d \implies c_{\alpha} = 0$ if $\alpha_i > d$ Total degree $d \implies c_{\alpha} = 0$ if $\sum \alpha_i > d$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q で

 Naman Gupta
 PCP Theorem
 June 22, 2021
 20 / 27

Preliminaries - Low Degree Code

[Schwartz Zippel Lemma] Let $f,g:\mathbb{F}_q^m\to F_q$ be two unequal polynomials with total degree at most d. Then,

$$\Pr_{x \sim \mathbb{F}_q^m} [f(x) = g(x)] \le d/q$$

This lemma implies that the set of low degree polynomials form an error correcting code called as low-degree code.

Preliminaries – Polynomial basis of zero functions

Let $f:\mathbb{F}^n \to \mathbb{F}$ is an individual degree d polynomial such that f(x)=0 for $x\in\{0,1\}^n$. Define $zero:\mathbb{F}\to\mathbb{F}$ as the univariate polynomial $x\to x(1-x)$. Then there exist polynomials $c_1,c_2,\ldots c_n:\mathbb{F}^n\to\mathbb{F}$ such that

$$f(x) = \sum_{i=1}^{n} c_i(x) \cdot zero(x_i)$$

Proof. Polynomial division and induction

PCP Verifier $V^\Pi:(\mathcal{D},n,T,Q,\sigma,\gamma,x,y) \to \{0,1\}$. It checks if there exists strings $a_{\text{prefix}},b_{\text{prefix}}$ of length O(T) such that \mathcal{D} halts on $(n,x,y,a_{\text{prefix}},b_{\text{prefix}})$

Parameters for the PCP -(q, m, d, m', s) which are computed from the input (m' = 5m + 5 + s).

|ロト4回ト4厘ト4厘ト | 厘 | 釣りで

PCP Verifier $V^\Pi:(\mathcal{D},n,T,Q,\sigma,\gamma,x,y) \to \{0,1\}$. It checks if there exists strings $a_{\text{prefix}},b_{\text{prefix}}$ of length O(T) such that \mathcal{D} halts on $(n,x,y,a_{\text{prefix}},b_{\text{prefix}})$

Parameters for the PCP – (q, m, d, m', s) which are computed from the input (m' = 5m + 5 + s).

□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ♀ ○ ○

 Naman Gupta
 PCP Theorem
 June 22, 2021
 23 / 27

Definition – A low-degree PCP proof is a tuple Π of evaluation tables of polynomials $g_1,\ldots g_5:\mathbb{F}_q^m\to\mathbb{F}_q$ and $c_0,\ldots,c_{m'}:\mathbb{F}_q^{m'}\to\mathbb{F}_q$ having individual degree at most d.

Definition $-z \in \mathbb{F}_q^{m'} = (x_1, \dots, x_5, o, w)$ where $x_i \in \mathbb{F}_q^m, o \in \mathbb{F}_q^5, w \in \mathbb{F}_q^s$. The evaluation of Π at z is given by

$$z' = eval_z(\Pi) = (g_i(x_i), c_j(z))$$

(ロト 4回 ト 4 恵 ト 4 恵 ト) 恵 り へ ○

 Naman Gupta
 PCP Theorem
 June 22, 2021
 24 / 27

Definition – A low-degree PCP proof is a tuple Π of evaluation tables of polynomials $g_1,\ldots g_5:\mathbb{F}_q^m\to\mathbb{F}_q$ and $c_0,\ldots,c_{m'}:\mathbb{F}_q^{m'}\to\mathbb{F}_q$ having individual degree at most d.

Definition $-z \in \mathbb{F}_q^{m'} = (x_1, \dots, x_5, o, w)$ where $x_i \in \mathbb{F}_q^m, o \in \mathbb{F}_q^5, w \in \mathbb{F}_q^s$. The evaluation of Π at z is given by

$$z' = eval_z(\Pi) = (g_i(x_i), c_j(z))$$

Theorem – There exists a TM \mathcal{M}_{AR} with the following properties:

- Input = Decider Specification + PCP View Decider Specification = $(\mathcal{D}, n, T, Q, \sigma, \gamma, x, y)$ PCP View (random strings) = (z, z') where $z \in \mathbb{F}_q^{m'}, z' \in \mathbb{F}_q^{m'+6}$
- Output is either 1(accept) or 0(reject)
- Complexity = poly($\log T$, $\log n$, Q, σ , γ)
- Completeness: Suppose \mathcal{D} halts on strings a_{prefix} , b_{prefix} then there exists a low-degree proof Π which causes \mathcal{M} to accept with probability 1 over a uniformly random z.
- Soundness: An invalid proof is accepted with less than 1/2 probability

◆□▶◆□▶◆壹▶◆壹▶ 壹 釣Q@

Theorem – There exists a TM \mathcal{M}_{AR} with the following properties:

- Input = Decider Specification + PCP View Decider Specification = $(\mathcal{D}, n, T, Q, \sigma, \gamma, x, y)$ PCP View (random strings) = (z, z') where $z \in \mathbb{F}_q^{m'}, z' \in \mathbb{F}_q^{m'+6}$
- Output is either 1(accept) or 0(reject)
- Complexity = $poly(log T, log n, Q, \sigma, \gamma)$
- Completeness: Suppose \mathcal{D} halts on strings a_{prefix} , b_{prefix} then there exists a low-degree proof Π which causes \mathcal{M} to accept with probability 1 over a uniformly random z.
- Soundness: An invalid proof is accepted with less than 1/2 probability

Theorem – There exists a TM \mathcal{M}_{AR} with the following properties:

- Input = Decider Specification + PCP View Decider Specification = $(\mathcal{D}, n, T, Q, \sigma, \gamma, x, y)$ PCP View (random strings) = (z, z') where $z \in \mathbb{F}_q^{m'}, z' \in \mathbb{F}_q^{m'+6}$
- Output is either 1(accept) or 0(reject)
- Complexity = $poly(log T, log n, Q, \sigma, \gamma)$
- Completeness: Suppose \mathcal{D} halts on strings a_{prefix} , b_{prefix} then there exists a low-degree proof Π which causes \mathcal{M} to accept with probability 1 over a uniformly random z.
- Soundness: An invalid proof is accepted with less than 1/2 probability

Theorem – There exists a TM \mathcal{M}_{AR} with the following properties:

- Input = Decider Specification + PCP View Decider Specification = $(\mathcal{D}, n, T, Q, \sigma, \gamma, x, y)$ PCP View (random strings) = (z, z') where $z \in \mathbb{F}_q^{m'}, z' \in \mathbb{F}_q^{m'+6}$
- Output is either 1(accept) or 0(reject)
- Complexity = poly($\log T$, $\log n$, Q, σ , γ)
- Completeness: Suppose \mathcal{D} halts on strings a_{prefix} , b_{prefix} then there exists a low-degree proof Π which causes \mathcal{M} to accept with probability 1 over a uniformly random z.
- Soundness: An invalid proof is accepted with less than 1/2 probability

Theorem – There exists a TM \mathcal{M}_{AR} with the following properties:

- Input = Decider Specification + PCP View Decider Specification = $(\mathcal{D}, n, T, Q, \sigma, \gamma, x, y)$ PCP View (random strings) = (z, z') where $z \in \mathbb{F}_q^{m'}, z' \in \mathbb{F}_q^{m'+6}$
- Output is either 1(accept) or 0(reject)
- Complexity = poly($\log T$, $\log n$, Q, σ , γ)
- Completeness: Suppose \mathcal{D} halts on strings a_{prefix} , b_{prefix} then there exists a low-degree proof Π which causes \mathcal{M} to accept with probability 1 over a uniformly random z.
- lacksquare Soundness: An invalid proof is accepted with less than 1/2 probability

The TM \mathcal{M} performs the following steps sequentially:

- Compute C=PaddedSuccinctDecider(D, n, T, Q, σ , x, y). C has five m-bit inputs and five single-bit inputs, contains at most s gates.
- Compute a boolean formula $\mathcal{F}: \mathbb{F}_q^{m'} \to \mathbb{F}_q$ such that $\mathcal{C}(x,o) = 1$ iff there exists $w \in \{0,1\}^s, \mathcal{F}(x,o,w) = 1$
- Parse z = (x, o, w) and $z' = (\alpha_1, \dots, \alpha_5, \beta_0, \dots, \beta_{m'})$
- Formula Test: Reject if $\beta_0 \neq \mathcal{F}(x, o, w) \cdot (\alpha_1 o_1) \dots (\alpha_5 o_5)$. Else, continue.
- Zero on Subcube Test: Reject if $\beta_0 \neq \sum_{i=1}^{m'} \beta_i \cdot zero(z_i)$. Otherwise, accept.

 Naman Gupta
 PCP Theorem
 June 22, 2021
 26 / 27

The TM \mathcal{M} performs the following steps sequentially:

- Compute C=PaddedSuccinctDecider(D, n, T, Q, σ , x, y). C has five m-bit inputs and five single-bit inputs, contains at most s gates.
- Compute a boolean formula $\mathcal{F}: \mathbb{F}_q^{m'} \to \mathbb{F}_q$ such that $\mathcal{C}(x,o) = 1$ iff there exists $w \in \{0,1\}^s, \mathcal{F}(x,o,w) = 1$
- Parse z = (x, o, w) and $z' = (\alpha_1, \dots, \alpha_5, \beta_0, \dots, \beta_{m'})$
- Formula Test: Reject if $\beta_0 \neq \mathcal{F}(x, o, w) \cdot (\alpha_1 o_1) \dots (\alpha_5 o_5)$. Else, continue.
- Zero on Subcube Test: Reject if $\beta_0 \neq \sum_{i=1}^{m'} \beta_i \cdot zero(z_i)$. Otherwise, accept.

The TM \mathcal{M} performs the following steps sequentially:

- Compute C=PaddedSuccinctDecider(D, n, T, Q, σ , x, y). C has five m-bit inputs and five single-bit inputs, contains at most s gates.
- Compute a boolean formula $\mathcal{F}: \mathbb{F}_q^{m'} \to \mathbb{F}_q$ such that $\mathcal{C}(x,o) = 1$ iff there exists $w \in \{0,1\}^s, \mathcal{F}(x,o,w) = 1$
- Parse z = (x, o, w) and $z' = (\alpha_1, \dots, \alpha_5, \beta_0, \dots, \beta_{m'})$
- Formula Test: Reject if $\beta_0 \neq \mathcal{F}(x, o, w) \cdot (\alpha_1 o_1) \dots (\alpha_5 o_5)$. Else, continue.
- Zero on Subcube Test: Reject if $\beta_0 \neq \sum_{i=1}^{m'} \beta_i \cdot zero(z_i)$. Otherwise, accept.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ● ■ りゅの

 Naman Gupta
 PCP Theorem
 June 22, 2021
 26 / 27

The TM \mathcal{M} performs the following steps sequentially:

- Compute C=PaddedSuccinctDecider(D, n, T, Q, σ , x, y). C has five m-bit inputs and five single-bit inputs, contains at most s gates.
- Compute a boolean formula $\mathcal{F}: \mathbb{F}_q^{m'} \to \mathbb{F}_q$ such that $\mathcal{C}(x,o) = 1$ iff there exists $w \in \{0,1\}^s, \mathcal{F}(x,o,w) = 1$
- Parse z = (x, o, w) and $z' = (\alpha_1, \dots, \alpha_5, \beta_0, \dots, \beta_{m'})$
- Formula Test: Reject if $\beta_0 \neq \mathcal{F}(x, o, w) \cdot (\alpha_1 o_1) \dots (\alpha_5 o_5)$. Else, continue.
- Zero on Subcube Test: Reject if $\beta_0 \neq \sum_{i=1}^{m'} \beta_i \cdot zero(z_i)$. Otherwise, accept.

The TM \mathcal{M} performs the following steps sequentially:

- Compute C=PaddedSuccinctDecider(D, n, T, Q, σ , x, y). C has five m-bit inputs and five single-bit inputs, contains at most s gates.
- Compute a boolean formula $\mathcal{F}: \mathbb{F}_q^{m'} \to \mathbb{F}_q$ such that $\mathcal{C}(x,o) = 1$ iff there exists $w \in \{0,1\}^s, \mathcal{F}(x,o,w) = 1$
- Parse z = (x, o, w) and $z' = (\alpha_1, \dots, \alpha_5, \beta_0, \dots, \beta_{m'})$
- Formula Test: Reject if $\beta_0 \neq \mathcal{F}(x, o, w) \cdot (\alpha_1 o_1) \dots (\alpha_5 o_5)$. Else, continue.
- Zero on Subcube Test: Reject if $\beta_0 \neq \sum_{i=1}^{m'} \beta_i \cdot zero(z_i)$. Otherwise, accept.

Proof Sketch

- Define $c_0 = \mathcal{F}(x,o,w) \cdot (g_1(x_1) o_1) \dots (g_5(x_5) o_5)$. It is possible to show that $c_0(x,o,w) = 0$ for all z. The PCP view (z,z') then passes the formula test and zero subcube test which establishes completeness.
- Soundness follows from Shwartz Zippel Lemma

<ロ > ∢回 > ∢回 > ∢ 直 > √ 直 > りへで

 Naman Gupta
 PCP Theorem
 June 22, 2021
 27 / 27

Proof Sketch

- Define $c_0 = \mathcal{F}(x,o,w) \cdot (g_1(x_1) o_1) \dots (g_5(x_5) o_5)$. It is possible to show that $c_0(x,o,w) = 0$ for all z. The PCP view (z,z') then passes the formula test and zero subcube test which establishes completeness.
- Soundness follows from Shwartz Zippel Lemma

 Naman Gupta
 PCP Theorem
 June 22, 2021
 27 / 27