Universidade Estadual de Maringá

Graduação em Estatística - Dep. de Estatística

Disciplina: DES8076 - Modelos Mistos

Professor: Prof. Vanderly Janeiro (DES/UEM)

1ª Lista de exercícios

1. Considere os modelos:

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \qquad \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (1)

$$y_{ij} = \mu + \alpha_i + b_j + \varepsilon_{ij}, \qquad \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (2)

em que:

- μ denota a média geral;
- α_i o efeito fixo do *i*-ésimo tratamento;
- β_j o efeito fixo do *j*-ésimo bloco, modelo (1);
- b_j o efeito aleatório do j-ésimo bloco, $b_j \stackrel{iid}{\sim} N(0, \sigma_b^2)$, modelo (2);
- ε_{ij} o efeito aleatório de resíduo, $\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$;
- β_i e ε_{ijk} são independentes.

para i = 1, 2, j = 1, 2, 3.

Pede-se:

- a. Obtenha e apresente (em uma tabela) a esperança das somas de quadros médios para uma possível decoposição dos modelos em somas de quadrados.
- b. Escreva na forma matricial as matrizes de variâncias e covariâncias, dos resíduos, dos efeitos aleatórios e de Y, para os modelos.
- c. A inversa e o determinante de Var(Y).
- d. Escreva o logaritmo da função de verossimilhança para estes modelos.
- 2. Na página 03 do arquivo eNote-3.pdf é apresentado o modelo

$$Y_{ij} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \delta_k + \varepsilon_{ij}.$$

Obtenha a esperança do quadrado médio de δ_k em duas possibilidades: a primeira δ_k de efeito fixo e a segunda como efeito aleatório.

- 3. Faça o exercício 02 que esta na página 43 do arquivo eNote-1.pdf. https://www2.compute.dtu.dk/courses/02429/enotepdfs/eNote-1.pdf
- 4. Faça o exercício 01 e 02 que esta na página 27 do arquivo eNote-3.pdf. https://www2.compute.dtu.dk/courses/02429/enotepdfs/eNote-3.pdf
- 5. Faça o exercício 02 que esta na página 29 do arquivo eNote-3.pdf. https://www2.compute.dtu.dk/courses/02429/enotepdfs/eNote-4.pdf
- 6. Considere um estudo sobre os efeitos aprendizagem de jogadas repetidas de videogame, onde se espera que a idade (age) tenha efeito. O resultado quantitativo é a pontuação (score) do videogame (em milhares de pontos). As variáveis explicativas são faixa etária (agegrp) do sujeito e trial que representa o horário em que o sujeito jogou o jogo (1, 3 ou 5) e a variável id identifica os sujeitos. Banco de dados:

	id	age	agegrp	trial	score
1	SY	34	(30,40]	1	14.3
2	SY	34	(30,40]	3	27.6
3	SY	34	(30,40]	5	33.2
4	ZN	43	(40,50]	1	15.9
5	ZN	43	(40,50]	3	22.0
6	ZN	43	(40,50]	5	33.6
7	ME	26	(20,30]	1	13.1
8	ME	26	(20,30]	3	28.1
9	ME	26	(20,30]	5	43.0

- a. Escreva um modelo para o i-ésimo sujeito na j-ésima temtativa. Porque você considera esse modelo adequado aos dados.
- b. Converta o modelo do item (a) para a forma matricial explicitando as matrizes.