ĐÁP ÁN ĐỀ THI HỌC KỲ 2/2014-2015 - TÍN HIỆU & HỆ THỐNG

Ngày thi: 07/06/2015 - Thời gian: 110 phút không kể chép đề

Bài 1. (2.0 điểm)

Dựa vào
$$\underline{\mathbf{H.1}}$$
 ta có:
$$\begin{cases} X(\omega) = M_1(\omega - \omega_{\mathrm{c}}) + M_1(\omega + \omega_{\mathrm{c}}) \\ V(\omega) = M_2(\omega - \omega_{\mathrm{c}}) - M_2(\omega + \omega_{\mathrm{c}}) \end{cases}$$

Áp dụng tích chất điều chế (dịch trên thang tần số) và tính chất tuyến tính ta có:

$$\begin{cases} x(t) = m_1(t)e^{j\omega_c t} + m_1(t)e^{-j\omega_c t} = 2m_1(t)\cos(\omega_c t) \\ v(t) = m_2(t)e^{j\omega_c t} - m_2(t)e^{-j\omega_c t} = j2m_2(t)\sin(\omega_c t) \end{cases}$$

Mặt khác: $Y(\omega) = X(\omega) + jV(\omega)$, áp dụng tích chất tuyến tính, ta được: y(t) = x(t) + jv(t)

Thế kết quả trên vào ta có: $y(t) = 2m_1(t)\cos(\omega_c t) - 2m_2(t)\sin(\omega_c t)$

Dùng phương trình này ta vẽ sơ đồ khối của hệ thống như sau:

Bài 2. (4.0 điểm)

(a) Dựa vào $\underline{\textbf{H.2}}$ ta có: y(t)=[m(t)p(t)]*h(t)=x(t)*h(t); với x(t)=m(t)p(t)

Áp dụng tích chất nhân trong miền thời gian ta có: $X(\omega) = \frac{1}{2\pi}M(\omega) * P(\omega)$

Trong đó p(t) là tín hiệu tuần hoàn được biểu diễn theo chuỗi Fourier như sau:

$$p(t) = \sum_{n = -\infty}^{+\infty} D_n e^{jn\omega_s t}, \text{ v\'oi } \omega_s = 2\pi F_s = 100.5 \times 10^3 (\text{rad/s}), D_n = \frac{1}{T_s} \int_{-T_s/2}^{+T_s/2} \delta(t) e^{-jn\omega_s t} dt = 1/T_s$$

Áp dụng tính chất biến đổi Fourier, ta có: $P(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} D_n \delta(\omega - n \omega_s) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{+\infty} \delta(\omega - n \omega_s)$

Suy ra:
$$X(\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} M(\omega) * \delta(\omega - n \omega_s) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} M(\omega - n \omega_s)$$

Vậy
$$y(t) = x(t) * h(t) có phổ $Y(\omega) = X(\omega)H(\omega) = \sum_{n=-\infty}^{+\infty} M(\omega - n \omega_s)$$$

Dùng phương trình trên vẽ phổ của y(t)

- (b) Dựa trên phổ của y(t) ta thấy để khôi phục lại m(t) cần bộ lọc thống thấp có $21.4\times10^3 < \omega_s \le 79.2\times10^3$ và $21.4\times10^3 \le \omega_p < 79.2\times10^3$ với lưu ý $\omega_p < \omega_s$. Để tối ưu hóa (hàm truyền bậc thấp nhất có thể) ta chọn: $\omega_p = 21.4\times10^3$ và $\omega_s = 79.2\times10^3$. Dùng bộ lọc thông thấp Butterworth ta tìm H(s) theo các bước sau:
- Xác định bậc của bộ lọc:

$$n \ge \frac{\log[(10^{-G_s/10} - 1)/(10^{-G_p/10} - 1)]}{2\log(\omega_s/\omega_p)} = \frac{\log[(10^4 - 1)/(10^{0.2} - 1)]}{2\log(79.2/21.4)} = 3.34 \implies \text{chon n=4}$$

- Chọn tần số cắt ω_c :

$$\frac{\omega_p}{(10^{-G_p/10}-1)^{1/2n}} \le \omega_c \le \frac{\omega_s}{(10^{-G_s/10}-1)^{1/2n}} \Leftrightarrow \frac{21.4\times10^3}{(10^{0.2}-1)^{1/8}} \le \omega_c \le \frac{79.2\times10^3}{(10^4-1)^{1/8}}$$

 $\Leftrightarrow 22.88 \times 10^3 \le \omega_c \le 25.04 \times 10^3$

→ Chọn
$$\omega_c = 25 \times 10^3$$

- Tra bằng tìm
$$\mathscr{K}(s)$$
: $\mathscr{K}(s) = \frac{1}{(s^2 + 0.76s + 1)(s^2 + 1.84s + 1)}$

- Xác định H(s):

$$H(s) = \mathcal{K}(s/\omega_c) = \frac{1}{((s/25000)^2 + 0.76(s/25000) + 1)((s/25000)^2 + 1.84(s/25000) + 1)}$$

$$\Leftrightarrow H(s) = \frac{25000^2}{(s^2 + 19000s + 25000^2)} \frac{25000^2}{(s^2 + 46000s + 25000^2)}$$

c) Thiết kế mạch điện dùng Op-amp cho bộ lọc:

Với H(s) của câu b ta sẽ thực hiện bộ lọc bằng cách ghép liên tầng 2 hệ thống bậc 2 theo sơ đồ sau:

$$V_{i}(s) \longrightarrow H_{1}(s) = \frac{25000^{2}}{(s^{2} + 19000s + 25000^{2})} \longrightarrow H_{2}(s) = \frac{25000^{2}}{(s^{2} + 46000s + 25000^{2})} \longrightarrow V_{o}(s)$$

Để thực hiện $H_1(s)$ và $H_2(s)$ ta dùng mạch Op-amp bậc 2 như sau:

$$V_{\text{in}} \bullet V_{\text{out}} \qquad H(s) = \frac{\frac{1}{R^2 C_1 C_2}}{s^2 + \frac{2}{R C_1} s + \frac{1}{R^2 C_1 C_2}}$$

Với H₁(s):
$$\begin{cases} 1/R^2C_1C_2 = 25000^2 \\ 2/RC_1 = 19000 \end{cases}$$
, chọn C1=10nF \rightarrow R=10.5k và C2=1.45nF

Với H₂(s):
$$\begin{cases} 1/R^2C_1C_2 = 25000^2 \\ 2/RC_1 = 46000 \end{cases}$$
, chọn C1=2.2nF \Rightarrow R=19.8k và C2=1.85nF

Vậy mạch điện Op-amp thực hiện bộ lọc trên như sau:

Bài 3. (2.0 điểm)

a) Xét hệ thống như giả thuyết:

$$v(t)=u(t)$$
 $v(t)=0.0125[4e^{2t}+e^{-8t}-5]u(t)$

 Dễ nhận thấy ngõ vào x(t)=u(t) hữu hạn nhưng ngõ ra v(t) chứa thành phần e²t tiến tới vô hạn nên hệ thống này không ổn định, hay không tồn tại H(ω). Vậy không thể dùng biến đổi Fourier để xác định h(t). - Ta có x(t)=u(t) nên v(t)=s(t), suy ra h(t)=ds(t)/dt, kết quả như sau:

$$h(t)=0.0125(8e^{2t}-8e^{-8t})u(t)=0.1(e^{2t}-e^{-8t})u(t)$$

(Có thể dùng biến đổi Laplace, tìm $H(s) \rightarrow h(t)$)

b) Xác định điều kiện của K để hệ thống trên $\underline{\mathbf{H.3}}$ ổn định

- Với kết quả h(t) của câu a ta có H(s)=0.1 $(\frac{1}{s-2} \frac{1}{s+8}) = \frac{1}{(s-2)(s+8)}$
- Dựa vào <u>**H.3**</u>, ta có hàm truyền vòng kín: $T(s) = \frac{H(s)}{1 + K(s+2)H(s)} = \frac{1}{s^2 + (K+6)s + 2K 16}$
- Cực của hệ thống chính là nghiệm của phương trình $s^2 + (K+6)s + 2K-16 = 0$
- Với K≥0, ta có $\Delta = (K+6)^2 4(2K-16) = K^2 + 4K + 100 > 0$, nên hệ thống luôn có 2 cực thực s_1 và s_2 thỏa điều kiện: $\begin{cases} s_1 + s_2 = -(K+6) \\ s_1 s_2 = 2K 16 \end{cases}$
- Vậy để hệ thống ổn định thì s_1 & s_2 phải nằm ở nửa trái của mặt phẳng phức. Do $s_1+s_2<0$ nên $s_1.s_2>0$ thì $s_1<0$ và $s_2<0$ hay $2K-16>0 \rightarrow K>8$.

(Có thể giải bằng phương pháp quỹ đạo nghiệm số)

Bài 4. (2.0 điểm)

(a) Dựa vào $\underline{\mathbf{H.4}}$ ta có đường tiệm cận tổng hợp có 3 đoạn thẳng tương ứng với 3 độ dốc: đoạn 1 độ dốc 0dB/dec với giá trị độ lớn 40dB tương ứng với hằng số K=100; đoạn 2 đi qua ω =100 với giá trị 30dB và ω =1000 với giá trị 10dB nên độ dốc là -20dB/dec, tương ứng với cực bậc 1 a/(s+a), do tại ω =a có giá trị là 0dB và tại ω =100 giá trị là 30dB nên từ ω =a tới ω =100 là 0.5dec hay a=31.6; đoạn 3 đi qua ω =1000 với giá trị 10dB và ω =10000 với giá trị -30dB nên độ dốc -40dB/dec tương ứng với cực bậc 2 kể từ ω =1000 tuy nhiên do trước đó ω =31.6 đã có 1 cực bậc 1 do vậy tại

ω=1000 cần thêm 1 cực bậc 1 nữa là 1000/(s+1000). Vậy hàm truyền $H_1(s)$ có dạng: $H_1(s)=100\frac{31.6}{s+31.6}\frac{1000}{s+1000}.$

(b) Vẽ đáp ứng biên độ và đáp ứng pha của $H(s)=H_1(s)H_2(s)$ với $H_2(s)=(5s+10^3)/(s+10^4)$.

Từ kết quả câu a ta có H(s)= $10\frac{31.6}{s+31.6}\frac{s+200}{200}\frac{1000}{s+1000}\frac{10^4}{s+10^4}$ dùng kết quả này ta vẽ đáp ứng biên độ và đáp ứng pha dựa vào các thành phần : 1) Hằng số K=10 hay 20dB, 2) cực bậc 1, ω=31.6, 3) zero bậc 1, ω=200, 4) cực bậc 1, ω=1000, 5) cực bậc 1, ω=10 4 .

------Hết-------

ω (rad/s)

Tiêu chí chấm điểm

Bài 1. (2.0 điểm)				
Điểm CĐR	CĐR 5- Có khả năng phân tích và thực hiện các hệ thống điều chế liên tục AM, ghép kênh, phân kênh và lấy mẫu ở mức sơ đồ khối. (100%)			
0	 Không làm bài Chỉ trình bày các bước và kết quả (sơ đồ khối) không liên quan tới bài toán 			
1	 Có trình bày các bước liên quan tới bài toán nhưng không rõ ràng và chưa ra kết quả. Cung cấp kết quả liên quan tới bài toán mà kết quả có nhiều sai sót và không cung cấp lời giải thích. 			
2	 Có trình bày các bước và kết quả có liên quan tới bài toán nhưng còn nhiều sai sót. Cung cấp kết quả đúng mà không cung cấp lời giải thích. 			
3	 Có trình bày các bước chính xác nhưng kết quả chưa có hoặc sai sót Cung cấp kết quả đúng nhưng giải thích còn nhiều sai sót. 			
4	 Có trình bày các bước và kết quả chính xác nhưng kết quả chưa rút gọn Cung cấp kết quả đúng và giải thích chính xác như kết quả chưa rút gọn. 			
5	 Trình bày đầy đủ các bước chính xác và kết quả chính xác rút gọn Cung cấp kết quả đúng rút gọn sau đó cung cấp các giải thích đầy đủ chính xác 			
	của câu =(Điểm CĐR x 2)x0.2 Điểm CĐR=4 → Điểm của câu = (4x2)x0.2=1.6			

Bài 2. (4.0 điểm)				
Điểm CĐR	CĐR 5- Có khả năng phân tích và thực hiện các hệ thống điều chế liên tục AM, ghép kênh, phân kênh và lấy mẫu ở mức sơ đồ khối. (a-35%)			
0	Không làm bàiCó làm nhưng không liên quan tới bài toán			
1	 Cung cấp hình vẽ phổ nhưng hoàn toàn sai Cung cấp công thức chưa chính xác nên vẽ phổ sai 			
2	 Cung cấp công thức đúng còn hình vẽ phổ sai Cung cấp hình vẽ phổ đúng 			
3	- Có lý giải trước khi cung cấp công thức và hình vẽ phổ nhưng có sai sót nhỏ			

4	- Lý giải chính xác trước khi cung cấp công thức đúng nhưng hình vẽ phổ sai		
5	- Lý giải chính xác trước khi cung cấp công thức đúng và hình vẽ phổ đúng		
Điểm CĐR	CĐR 7- Có khả năng vẽ đáp ứng tần số của hệ thống LTIC và thiết kế các dạng bộ lọc Butterworth và Chebysev. (b-35%)		
0	Không làm bàiCó làm nhưng không liên quan tới bài toán		
1	- Thể hiện việc lựa chọn ω_p và ω_s và thiết kế bộ lọc nhưng không rõ ràng và hoàn toàn sai		
2	- Chọn ω_p và ω_s đúng và thể hiện các bước thiết kế bộ lọc nhưng tính toán sai		
3	- Chọn ω_p và ω_s đúng và thể hiện các bước thiết kế bộ lọc chính xác nhưng bậc của bộ lọc chưa tối ưu do chọn ω_p và ω_s		
4	 Chọn ω_p và ω_s đúng và thể hiện các bước thiết kế bộ lọc chính xác và bậc của bộ lọc tối ưu do chọn ω_p và ω_s nhưng dạng của hàm truyền chưa được rút gọn để chuẩn bị cho bước tiếp theo 		
5	 Chọn ω_p và ω_s đúng và thể hiện các bước thiết kế bộ lọc chính xác và bậc của bộ lọc tối ưu do chọn ω_p và ω_s đồng thời dạng của hàm truyền được rút gọn để chuẩn bị sẵn sàng cho bước tiếp theo 		
Điểm CĐR	CĐR 6- Có khả năng phân tích, hiệu chỉnh và thực hiện hệ thống LTIC dùng biến đổi Laplace. (c-30%)		
0	Không làm bàiCó làm nhưng không liên quan tới bài toán		
1	- Thể hiện việc thực hiện hàm truyền bằng 1 mạch điện Op-amp nhưng hoàn toàn sai		
2	- Cung cấp một mạch điện Op-amp đúng nhưng không giải thích		
3	- Thể hiện đầy đủ các lý giải chính xác nhưng chưa kịp đưa ra sơ đồ mạch điện Opamp cuối cùng.		
4	- Thể hiện đầy đủ các lý giải chính xác và đưa ra sơ đồ mạch điện Op-amp cuối cùng nhưng có sai sót nhỏ.		
5	- Thể hiện đầy đủ các lý giải chính xác và đưa ra sơ đồ mạch điện Op-amp cuối cùng chính xác.		
Điểm	của câu =[(Điểm CĐR-5x0.35+ Điểm CĐR-7x0.35+ Điểm CĐR-6x0.3) x 2]x0.4		

VD: Điểm CĐR-5=4, Điểm CĐR-7=3, Điểm CĐR-6=0 → Điểm của câu = (4x0.35+3x0.35)x2x0.4=1.96

Bài 3. (2.0 điểm)				
Điểm CĐR	CĐR 6- Có khả năng phân tích, hiệu chỉnh và thực hiện hệ thống LTIC dùng biến đổi Laplace. (100%)			
0	-	Không làm bài Có làm nhưng không liên quan tới bài toán		
1	-	Thể hiện việc giải bài toán nhưng không rõ ràng và hoàn toàn sai		
2	-	Chỉ tìm đúng h(t)		
3	-	Giải thích đúng tại sao không dùng Fourier và tìm đúng h(t) Tìm đúng h(t) và tìm T(s) đúng nhưng không tìm được điều kiện của K		
4	-	Tìm đúng h(t) và điều kiện của K nhưng không giải thích tại sao không dùng biến đổi Fourier được		
5	-	Giải bài toán đầy đủ chính xác		
Điểm của câu =(Điểm CĐR x 2)x0.2				
VD: Điểm CĐR=4 → Điểm của câu = $(4x2)x0.2=1.6$				

Bài 4. (2.0 điểm)				
Điểm CĐR	CĐR 7- Có khả năng vẽ đáp ứng tần số của hệ thống LTIC và thiết kế các dạng bộ lọc Butterworth và Chebysev. (100%)			
0	Không làm bàiCó làm nhưng không liên quan tới bài toán			
1	 Thể hiện việc giải bài toán nhưng không rõ ràng và hoàn toàn sai Viết đúng H₁(s) nhưng không lý giải. 			
2	 Viết đúng H₁(s) và có lý giải Vẽ được đường tiệm cận đáp ứng biên độ của H(s) nhưng có sai sót tại các vị trí ω đặc biệt 			
3	 Viết đúng H₁(s) nhưng không lý giải + Vẽ được đường tiệm cận đáp ứng biên độ của H(s) nhưng có sai sót tại các vị trí ω đặc biệt. Vẽ đúng đường tiệm cận đáp ứng biên độ của H(s) 			

4		Viết đúng $H_1(s)$ nhưng không lý giải $+$ vẽ đúng đáp ứng biên độ & đáp ứng pha Viết đúng $H_1(s)$ có lý giải $+$ vẽ đúng đường tiệm cận đáp ứng biên độ & đáp ứng pha nhưng chưa vẽ đường chính xác
5	_	Giải bài toán đầy đủ chính xác
Diễm của câu =($Diễm$ CPR v 2)v0 2		

Điểm của câu =(Điểm CĐR x 2)x0.2

VD: Điểm CĐR=4 \rightarrow Điểm của câu = (4x2)x0.2=1.6