

Digital Signal and Image Processing CSC 701

Subject In-charge

Ms. Sweedle Machado

Assistant Professor

email: sweedlemachado@sfit.ac.in

Module III

Fast Fourier Transform

Introduction

- The N-point DFT of a sequence x(n) converts the time domain N-point sequence x(n) to a frequency domain N-point sequence X(k).
- The direct computation of an N-point DFT requires
 - N * N complex multiplications
 - N(N-1) complex additions
- Many methods were developed for reducing the number of calculations involved.

 The most popular of these is the Fast Fourier Transform (FFT), a method developed by Cooley and Turkey. FFT is an algorithm that computes DFT in Nlog(N) time

 The computational efficiency is achieved by adopting a divide and conquer approach.

 This approach is based on the decomposition of an N-point DFT into successively smaller DFTs and then combining them to give the total transform.

- Basically there are two FFT algorithms;
 - 1. Decimation-in-time (DIT) FFT algorithm
 - 2. Decimation-in-frequency (DIF) FFT algorithm

Decimation-in-Time (DIT-FFT) FFT Algorithm

- This algorithm is also known as radix-2 DIT-FFT algorithm.
- As the name implies, the number of output points N can be expressed as a power of 2.
- N= 2^m where m is an integer.

- 1. Select the number of input samples N such that N= 2^m where m is an integer
- 2. The input sequence is shuffled through bit reversal
- 3. The number of stages in the flowgraph is given as $M = log_2 N$
- 4. Each stage has N/2 Butterflies
- 5. Inputs/Outputs for each butterfly are separated by 2^{m-1} samples where m represents the stage index .
- 6. No. of butterflies in each stage = 2 M-m
- 7. Twiddle factor exponents is given by $k=Nt/2^m$, $t=0,1,2...2^{m-1}-1$

21-09-2020

1. Select the number of input samples N such that N= 2^m where m is an integer

$$N=4, m=2$$

2. The input sequence is shuffled through bit reversal

Input Sample	Binary Representation	Bit Reversed Binary	Bit Reversed Index
0	00	00	0
1	01	10	2
2	10	01	1
3	11	11	3

- 3. The number of stages in the flowgraph is given as $M = log_2 N$ $M = log_2 4 = 2$
- 4. Each stage has N/2 Butterflies

 Thus each stage has 2 butterflies
- 5. Inputs/Outputs for each butterfly are separated by 2^{m-1} samples where m represents the stage index .

Stage	Separation (2 ^{m-1})
1	1
2	2

6. No. of butterflies in each stage = 2 M-m

Stage	Number of Butterflies (2 ^{2-m})	
1	2	
2	1	

7. Twiddle factor exponents is given by $k=Nt/2^{m}$, $t=0,1,2...2^{m-1}-1$

m	2 ^{m-1} - 1	t	k=4t/2 ^m
1	0	0	0
2	1	0,1	0,1

4-point DITFFT Butterfly

Problem 1:

Find the 4-point DFT of the sequence $x(n) = \{2, 1, 4, 3\}$ by DIT FFT algorithm

Problem 2:

Find the 4-point DFT of the sequence $x(n) = \{0, 1, 2, 3\}$ by DIT FFT algorithm

Additional Problems

- Compute the 4-point DFT of a sequence x(n)={1,2,3,4} using DIT-FFT algorithm
- Find the 4-point DFT of the sequence x(n) = {2, 1, 4, 3} by DIT FFT algorithm
- For the causal signal x(n) = {2,2,4,4} compute 4-point DFT using DIT-FFT algorithm
- Draw the radix2 DIT flowgraph and find the DFT of the sequence $x(n) = \{10,11,8,5\}$
- Find the value of $x(n) = Cos(0.25\pi n)$ for n = 0,1,2,3. Compute the DFT of x(n) using FFT flowgraph

4 point Inverse DIT FFT Butterfly

Problem 3:

Find the 4-point Inverse FFT of the sequence $X(k) = \{6, -2+2j, -2, -2-2j\}$ by DIT

Problem 4:

Find the 4-point Inverse FFT of the sequence $X(k) = \{10, -2+2j, -2, -2-2j\}$ by DIT FFT algorithm

Ans: { 2, 1, 4, 3}

8 point DIT FFT Algorithm

1. Select the number of input samples N such that N= 2^m where m is an integer

N=8, m=3

2. The input sequence is shuffled through bit reversal

Input Sample	Binary Bit-reversed Bit-reversed Index		Bit-reversed Index	
0	000	000	0	
1	001	100	4	
2	010	010	2	
3	011	110	6	
4	100	001	1	
5	101	101	5	
6	110	011	3	
7	111	111	7	

- 3. The number of stages in the flowgraph is given as $M = log_2 N$ $M = log_2 8 = 3$
- 4. Each stage has N/2 Butterflies
 Thus each stage has 4 butterflies
- 5. Inputs/Outputs for each butterfly are separated by 2^{m-1} samples where m represents the stage index .

Stage	Separation (2 ^{m-1})
1	1
2	2
3	4

6. No. of butterflies in each stage = 2 M-m

Stage	Number of Butterflies (2 ^{3-m})	
1	4	
2	2	
3	1	

7. Twiddle factor exponents is given by $k=Nt/2^{m}$, $t=0,1,2...2^{m-1}-1$

m	2 ^{m-1} - 1	t	k=8t/2 ^m
1	0	0	0
2	1	0,1	0,2
3	3	0,1,2,3	0,1,2,3

8 point DIT FFT Algorithm

Problem 5: $x(n) = \{-1, 0, 2, 0, -4, 0, 2, 0\}$. Find X(k) using DIT FFT Algorithm

Problem

• Find the DFT of the sequence x(n) = {1,2,3,4,4,3,2,1} using DIT-FFT algorithm

Solution

St. Francis Institute of Technology

Department of Computer Engineering

21-09-2020

Additional Problems

- Find the DFT of the sequence x(n) = {1,2,2,1,1,2,2,1} using DIT-FFT algorithm
- Find the DFT of the sequence $x(n) = \{0,1,2,3,4,5,6,7\}$ using DIT-FFT algorithm
- Find the DFT of the sequence $x(n) = \{2,3,4,1,0,0,0,0,0\}$ using DIT-FFT algorithm
- Find the DFT of the sequence x(n) = {2,1,2,1,1,2,1,2} using DIT-FFT algorithm

8 point Inverse DIT FFT Algorithm

Problem:

Let X(k)={ 0.5, 2+j, 3+2j, j, 3, -j, 3-2j, 2-j }. Find x(n) using Inverse DIT FFT.

Stage 1 output: { 0.44, 0.25, 0.75, 0.25, -0.31, j0.35, -0.5, -j0.35}

Stage 2 output: { 1.19, 0.5, -0.31, 0, 0.81, 0, 0.91, -0.71}

Stage 3 Output:

Problem: Compute the circular convolution of the two sequences $x1(n) = \{1, 2, 0, 1\}$ and $x2(n) = \{2, 2, 1, 1\}$ using FFT approach.

Step 1

Step 3: $X(k) = \{4, 1-j, -2, 1+j\} \{6, 1-j, 0, 1+j\} = \{24, -j2, 0, j2\}$

Step 4: Find Inverse FFT

Step 5: Final Answer: $x(n) = \{6, 7, 6, 5\}$

Problem:

• In an LTI system, the input $x(n) = \{2, 2, 2\}$ and the impulse response $h(n) = \{-2, -2\}$. Determine the response of LTI system by radix-2, DIT FFT

Solution:

- Response of LTI system y(n) = x(n) * h(n)
- length of y(n) is 3 + 2 1 = 4Append zeros x(n) = $\{2, 2, 2, 0\}$ h(n) = $\{-2, -2, 0, 0\}$

- The various steps in computing y(n) are
 - Step 1: Determine X(k) using radix-2 DIT FFT algorithm
 - Step 2: Determine H(k) using radix-2 DIT FFT algorithm
 - Step 3: Determine the product X(k)H(k)
 - Step 4: Take IDFT of the product X(k)H(k) using radix-2 DIT FFT algorithm

Step 1:

$$x(n) = \{2, 2, 2, 0\}; x_r(n) = \{2, 2, 2, 0\}$$

Figure 7.25 Computation of 4-point DFT of x(n) by radix-2, DIT FFT.

From Figure 7.25, $X(k) = \{6, -j2, 2, j2\}.$

Step 2:

$$h(n) = \{-2, -2, 0, 0\}; h_r(n) = \{-2, 0, -2, 0\}$$

From Figure 7.26, $H(k) = \{-4, -2 + j2, 0, -2 - j2\}$

Figure 7.26 Computation of 4-point DFT of h(n) by radix-2, DIT FFT.

Step 3:
$$Y(k) = X(k)H(k) = \{6, -j2, 2, j2\} \{-4, -2 + j2, 0, -2 - j2\}$$

= $\{-24, 4 + j4, 0, 4 - j4\}$

Step 4: Find Inverse FFT

Step 5: Final Answer: $x(n) = \{-4, -8, -8, -4\}$

Comparison of direct DFT computation

& computation using FFT algorithms.

Table

,	Number	Direct C			y FFT
	of pts in			. ^ .	Complex
		multiple N2	Additions	multipla	Addition
			(N2-N)	(N/2 log2N)	(N1092H)
; .	4	16	12	2	4
	8	64	56	12	24
	16.	256	240	32	64
	32_	1024	992	40	80
	'				

2	Show of compare computational complexity
-	is reduced if 32 point DFT is computed
-	using Rodix-2 DIT FFT alg.
2	32 point DFT using direct computation
1	Gren=> no of pt. =32
	Number of complex muffiplicn = N2 = 322 = 1024
12	Number of complex additions= N2-N=322-32
	- 1024-32 = 992
	In case of Radix 2 DIT FFT alg.
-	Number of complex multiplic? = N/2 log2 N
1	$=\frac{32}{2}\log_2 32$
1	= 16/09,32=16X5=80
-	Number of complex add? = Nlog N = 32 log 32
+	= 32 X 5=160
	Comparing both answers, it is possed
-	that computational complexity is reduced
- 11	if 32 point DFT is computed using Radix-2
	DIT FET ala.
- 1	

Find the number of complex additions
& complex multiplic? required to find
DFT for 16 point signal. Compare then
with no of computation required if
FFT alg. is used.
N-16
Using OFT:
no of complex multiplich = N2=162=256
Using FFT:-
Number of Complex - N/ loge N = 16/ loge N
mulliple on tions
= 8 log2 6 = 32
Number of Complex Non No 10100 10-00
Number of Complex = Nlog2N = 16109216 = 64

