Übungsblatt 8 zur Algebraischen Zahlentheorie

Aufgabe 1. Verzweigung ist die Ausnahme

Sei K ein Zahlkörper vom Grad n. Gelte $K = \mathbb{Q}[\vartheta]$ mit $\vartheta \in \mathcal{O}_K$.

- a) Zeige: Die Diskriminante d_{ϑ} der \mathbb{Q} -Basis $(1, \vartheta, \dots, \vartheta^{n-1})$ von K ist gleich der Diskriminante des Minimalpolynoms von ϑ .
- b) Sei p eine Primzahl, sodass die Ideale (p) und \mathfrak{F}_{ϑ} von \mathcal{O}_K zueinander teilerfremd sind. Zeige, dass p genau dann in K verzweigt ist, wenn $p \mid d_{\vartheta}$.
- c) Zeige: Nur endlich viele Primzahlen sind in K verzweigt. Kannst du die Kandidaten für verzweigte Primzahlen sogar explizit angeben?
- d) Interpretiere Aufgabe 2 von Blatt 4 in neuem Licht.
- O Aufgabe 2. Verzweigte Überlagerungen in der komplexen Geometrie
 - a) Informiere dich über verzweigte Überlagerungen (branched coverings) in der komplexen Geometrie und vergleiche die dortige Situation mit der fundamentalen Gleichung.
 - b) Frage Sven, was er dir zu diesem Thema auf jeden Fall mitgeben möchte.

O Aufgabe 3. Lücken zwischen Primzahlen

Zeige: Zu jeder Lauflänge $n \ge 1$ gibt es eine Folge von n aufeinanderfolgenden natürlichen Zahlen, welche alle keine Primzahlen sind.