TP3 - Champs de vecteurs

On appelle **champ de vecteurs** toute fonction de $\mathbb{R}^n \to \mathbb{R}^m$. Si m = 1, on appelle cette fonction un **champ scalaires**.

On a déjà vu dans le TP2 comment généraliser la notion de dérivée à un champ scalaires, en utilisant le **gradient** (le vecteur des dérivées partielles), puis comment rechercher des points critiques et résoudre des problèmes de minimisation/maximisation. Nous allons voir ici comment généraliser ces outils dans des cas plus généraux.

I - Matrice jacobienne

Lorsque la fonction est à valeurs dans \mathbb{R}^m avec m > 1, on peut dériver chaque composante d'arrivée selon les variables de départ. On n'obtient donc plus un vecteur mais une matrice de dérivées partielles, appelée la **matrice jacobienne**.

Exemple : on considère la fonction suivante :

$$f := (x, y) \to (y + x, y - x) f := (x, y) \mapsto (y + x, y - x)$$
 (1)

Cette fonction possède deux composantes d'arrivée, qu'on peut appeler f1 et f2, avec

On peut alors dériver chacune de ces composantes, par rapport à chacune des variables, ce qui donne au total guatre dérivée partielles.

On peut alors stocker ces informations dans une **matrice carrée : la matrice jacobienne.** On demande à Maple de construire une matrice de taille 2x2 dans lesquels sont stockées ces informations (sur la première ligne les dérivées de f1 par rapport à x et y, et sur la deuxième celles de f2).

>
$$jacob := (x, y) \rightarrow Matrix(2, 2, [[1, 1], [-1, 1]]); jacob(x, y)$$

 $jacob := (x, y) \mapsto Matrix(2, 2, [[1, 1], [-1, 1]])$

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
(4)

Ces matrices, plus particulièrement leur déterminant, sont très utiles dans les changements de variables

en dimension supérieure.

Exercice : calculer la matrice jacobienne à la main et sur Maple pour chacun des champs de vecteurs suivants :

1)
$$f(x, y) = \left(\frac{1}{y+x}, \frac{1}{y-x}\right)$$

2) $f(x, y, z) = \left(x^2 + y^2, \frac{1}{4 - x^2 - y^2 - z^2}, \sqrt{z}\right)$
3) $f(x, y, z) = \left(\frac{1}{2}(x^2 - z^2), \sin(x)\sin(y)\right)$
4) $f(x, y) = \left(xy, \frac{1}{2}x^2 + y, \ln(1 + x^2)\right)$

II - Divergence et rotationnel

Exemple: on considère la fonction suivante:

Cette fonction possède trois composantes d'arrivées f1, f2 et f3.

>
$$f1 := (x, y, z) \to 2 x^2 \cdot y ; f2 := (x, y, z) \to 2 x \cdot y^2 ; f3 := (x, y, z) \to x \cdot z$$

 $f1 := (x, y, z) \mapsto 2 x^2 y$
 $f2 := (x, y, z) \mapsto 2 x y^2$
 $f3 := (x, y, z) \mapsto x z$ (6)

Chacune de ces composantes admet trois dérivées partielles, par rapport à chacune des variables x, y et z. Calculons ces dérivées.

Remarque : on peut à nouveau stocker toutes ces informations dans une matrice, ce qui donne la **matrice jacobienne de** f :

⇒
$$jacob := (x, y, z) \rightarrow Matrix(3, 3, [[4 xy, 2 x^2, 0], [2 y^2, 4 xy, 0], [z, 0, x]]); jacob(x, y, z)$$

 $jacob := (x, y, z) \mapsto Matrix(3, 3, [[4 xy, 2 x^2, 0], [2 y^2, 4 xy, 0], [z, 0, x]])$

$$\begin{bmatrix} 4 xy & 2 x^2 & 0 \\ 2 y^2 & 4 xy & 0 \\ z & 0 & x \end{bmatrix}$$
(10)

1) La divergence de f est donnée par la somme des éléments diagonaux (la divergence est donc un scalaire) :

La divergence mesure le défaut de conservation du volume sous l'action du flot de ce champ.

2) Le **rotationel de** f est donné par un produit vectoriel entre le vecteur des dérivées partielles et les composantes de f (le rotationnel est donc un vecteur):

composantes de
$$f$$
 (le rotationnel est donc un vecteur):

$$rot(f) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \Lambda(fl, f2, f3) = \left(\frac{\partial f3}{\partial y} - \frac{\partial f2}{\partial z}, \frac{\partial f1}{\partial z} - \frac{\partial f3}{\partial x}, \frac{\partial f2}{\partial x} - \frac{\partial f1}{\partial z}\right)$$

>
$$rotf := (x, y, z) \rightarrow Matrix(3, 1, [[0 - 0], [0 - z], [2y^2 - 2x^2]]); rotf(x, y, z)$$

 $rotf := (x, y, z) \mapsto Matrix(3, 1, [[0], [-z], [2y^2 - 2x^2]])$

$$\begin{bmatrix} 0 \\ -z \\ -2x^2 + 2y^2 \end{bmatrix}$$
(12)

Le rotationnel permet de comprendre comment les lignes de champ d'un champ de vecteurs tournent autour d'un point : en mécanique des fluides, elle décrit une rotatin de la particule fluide.

Exercice : calculer la divergence et le rotationnale à la main et sur Maple pour chacun des champs de vecteurs suivants :

```
1) f(x, y, z) = (xy - 5z, xz^2 - 2y^3, x + 3e^z)

2) f(x, y, z) = (\sin(xy), 0, \cos(xz))

3) f(x, y, z) = (x(2y + z), -y(x + z), z(x - 2y))
```

III - Potentiel scalaire

On dit qu'un champ de vecteurs $F: \mathbb{R}^n \to \mathbb{R}^m$ dérive d'un potentiel scalaire s'il existe un champ scalaire $f: \mathbb{R}^m \to \mathbb{R}$ tel que F = grad(f).

Dans ce cas, on dit que F est un **champ de gradient** et que f est son **potentiel.**

De plus, on a la propriété suivante, qui caractérise l'existence d'un potentiel pour un champ de vecteurs donné :

Un champ de vecteur F est un champ de gradient si et seulement si son rotationnel est nul.

En physique, les potentiels de champs de vecteurs permettent des représentation alternatives de champs aux propriétés particulières.

Exemple: on considère la fonction suivante:

>
$$F := (x, y, z) \rightarrow (2 \cdot x \cdot y + z^3, x^2, 3 \cdot x \cdot z^2)$$

 $F := (x, y, z) \mapsto (2 x y + z^3, x^2, 3 x z^2)$
(13)

On commence par calculer la matrice jacobienne de F:

>
$$diff(2 \cdot x \cdot y + z^3, y); diff(x^2, y); diff(3 \cdot x \cdot z^2, y)$$

$$\begin{array}{c} 2 x \\ 0 \\ 0 \end{array}$$
(15)

>
$$diff(2 \cdot x \cdot y + z^3, z); diff(x^2, z); diff(3 \cdot x \cdot z^2, z)$$

 $3 z^2$
 0
 $6 x z$ (16)

La matrice jacobienne est donc donnée par :

>
$$jacobF := (x, y, z) \rightarrow Matrix(3, 3, [[2y, 2x, 3z^2], [2x, 0, 0], [3z^2, 0, 6x \cdot z]]); jacobF(x, y, z)$$

 $jacobF := (x, y, z) \mapsto Matrix(3, 3, [[2y, 2x, 3z^2], [2x, 0, 0], [3z^2, 0, 6xz]])$

$$\begin{bmatrix} 2y & 2x & 3z^2 \\ 2x & 0 & 0 \\ 3z^2 & 0 & 6xz \end{bmatrix}$$
 (17)

Le rotationnel de F est donc donné par le vecteur :

>
$$rotF := (x, y, z) \rightarrow Matrix(3, 1, [[0 - 0], [3z^2 - 3z^2], [2x - 2x]]); rotF(x, y, z)$$

 $rotF := (x, y, z) \mapsto Matrix(3, 1, [[0], [3z^2 - 3z^2], [2x - 2x]])$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(18)

Ainsi, le rotationnel de F est nul, ce qui signifie qu'il existe un champ scalaire f tel que F = grad(f). On pose donc $f: \mathbb{R}^3 \to \mathbb{R}$, et on veut que $\frac{\partial}{\partial x} f = 2 \cdot x \cdot y + z^3$, $\frac{\partial}{\partial y} f = x^2$ et $\frac{\partial}{\partial z} f = 3 \cdot x \cdot z^2$. C'est un système d'équation aux dérivées partielles! La deuxième équation donne par exemple $f(x, y, z) = x^2 y + h(x, z) + c$, où h est une fonction qui ne dépend que de x et z, pour que sa dérivée par rapport à y soit nulle, et où c est une constante. La première équation nous donne $h(x, z) = x \cdot z^3$, ce qui convient aussi pour la troisième équation.

Conclusion : le champ de vecteurs F est un champ de gradient qui dérive des potentiels scalaires de la forme $f(x, y, z) = x^2y + xz^3 + c$ avec $c \in \mathbb{R}$.

Exercice : montrer que les champs suivants dérivent d'un potentiel scalaire (attention, si les champs ne sont pas de la forme $\mathbb{R}^3 \to \mathbb{R}^3$, alors on ne peut pas utiliser la caractérisation du rotationnel).

1)
$$F(x, y) = (y, x)$$

2) $F(x, y) = (x + y, x - y)$
3) $F(x, y) = \left(-\frac{y}{(x - y)^2}, \frac{x}{(x - y)^2}\right)$
4) $F(x, y) = (\cos(x), \sin(y))$
5) $F(x, y, z) = (x^2 - yz, y^2 - zx, z^2 - xy)$