Logistic regression: classification

Ngô Minh Nhựt

2023

Review

☐ Given a linear regression model with one variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- \blacksquare x is input and $h_{\theta}(x)$ is output
- And a dataset of five samples

X	1	2	3	4	5
У	2	4	6	8	10

Run gradient descent algorithm on the above model and dataset and give results with $\alpha=0.01$ and initial $\theta_0=2$, $\theta_1=1$.

Iteration	$ heta_0$	$ heta_1$	Cost
0	2	1	1.5
1			
2			
3			

Classification

- Answer a question with yes or no
 - Check if an email is spam
 - Check if a transaction is anormal
 - Check if a person exposes to health risk
 - Check if an area of an image contains human face
 - Check if an area of an image contains character `0`
 - **...**

Classification

Size	Price	Sell?
80	600	No
30	1200	Yes
70	850	No
26	1200	No

Output

- Output = {yes, no}
- $Y = \{1, 0\}$
 - 1: positive
 - 0: negative

Boundary

- \Box Classes: Y = {1, 0}
- □ Boundary: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0$
- Classification rule

$$\begin{cases} \text{If } h_{\theta}(x) \ge 0, y = 1 \\ \text{If } h_{\theta}(x) < 0, y = 0 \end{cases}$$

Hypothesis

- Boundary: $\theta^T x = 0$
 - $\begin{cases}
 \operatorname{If} \theta^T x \ge 0, y = 1 \\
 \operatorname{If} \theta^T x < 0, y = 0
 \end{cases}$
- We need: $\begin{cases} y = 1, h_{\theta}(x) \to 1 \\ y = 0, h_{\theta}(x) \to 0 \end{cases}$
- \square A new model: $h_{\theta}(x) = g(\theta^T x)$
 - \bullet $\theta^T x$ is much bigger than 0 then $g(\theta^T x)$ approaches to 1
 - \bullet $\theta^T x$ is much smaller than 0 then $g(\theta^T x)$ approaches to 0

Hypothesis: sigmoid function

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Boundary

$$\square h_{\theta}(x) = g(\theta^T x)$$

$$\square g(z) = \frac{1}{1+e^{-z}}$$

Boundary:

■ y = 0 if
$$h_{\theta}(x) < 0.5$$
 $\rightarrow \theta^T x < 0$

• $h_{\theta}(x)$ is actually probability y=1 $h_{\theta}(x) = P(y = 1|x; \theta)$

Source: Andrew Ng

Boundary

Boundary:

- - $0 \le h_{\theta}(x) \le 1$
- $\Box \operatorname{Cost}(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 h_{\theta}(x)) & \text{if } y = 0 \end{cases}$
 - y = 1: if $h_{\theta}(x) \rightarrow 1$, cost $\rightarrow 0$, if $h_{\theta}(x) \rightarrow 0$, cost \rightarrow infinity
 - y = 0: if $h_{\theta}(x) \rightarrow 0$, cost $\rightarrow 0$, if $h_{\theta}(x) \rightarrow 1$, cost \rightarrow infinity

$$Cost(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\Box \operatorname{Cost}(h(x), y) = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

In a new form

$$Cost(h(x), y) = -y^{(i)} \log h(x^{(i)}) - (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

- $y = 1, 1 y = 0 \rightarrow Cost(h(x), y) = ?$
- $y = 0, 1 y = 1 \rightarrow Cost(h(x), y) = ?$

- Const function on one sample

$$Cost(h(x), y) = -y^{(i)} \log h(x^{(i)}) - (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

Cost function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}) + (1 - y^{(i)}) \log (1 - h(x^{(i)}))$$

Partial derivative

Gradient descent

Cost function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta} (x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta} (x^{(i)}))$$

- $lue{}$ Find heta so that J(heta) reaches minimal
- Predict for a new input
 - Output: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Gradient descent

Vector gradient:

$$\frac{dJ}{d\theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

- j = 0, 1, 2, ..., n
- Repeat until convergence

```
\theta_{j} = \theta_{j} - \alpha \frac{dJ}{d\theta_{j}}
```

- Weather: sunny, cloudy, rain, heavy rain
- □ Digit: 0, 1, ..., 9
- Object: human, cat, house, landscape
- \rightarrow y = {1, 2, 3, ...}

Binary classification:

Multi-class classification:

Source: Andrew Ng

 \Box Train classifier for each class $h_{\theta}^{c}(x)$

Source: Andrew Ng

 \square Train classifier for each class $h_{\theta}^{c}(x)$

$$h_{\theta}^{c}(x) = P(y = c|x;\theta)$$

- Predict for a new input
 - $y = \max_{c} h_{\theta}^{c}(x)$