10. SIGN LANGUAGE INTERPRETER

Project Description:

SIGN LANGUAGE INTERPRETER is a wearable system designed to translate sign language into text, making communication more accessible for individuals with speech and hearing impairments. The system utilizes flex sensors attached to a glove to detect finger movements, which are then processed by an Arduino Uno. The detected gestures are mapped to predefined sign language symbols, and the corresponding text is displayed on a 16x2 LCD screen using an I2C module for efficient data transmission.

Powered by a battery, the system operates as a standalone device with minimal power consumption. The 10K resistor ensures accurate sensor readings, while jumper wires interconnect all components. By converting hand gestures into readable text, SignSense provides a cost-effective and portable solution to bridge the communication gap between sign language users and non-signers, enhancing accessibility in daily interactions.

Apparatus:

Serial No.	Component	Description
1	Flex Sensor	Detects finger bending and converts it into electrical signals.
2	Arduino Uno	Microcontroller board that processes sensor data and maps it to predefined gestures.
3	LCD Display (16x2)	Displays the interpreted text output for easy communication.
4	I2C Module	Reduces the number of pins needed for LCD communication, making wiring more efficient.
5	10K Resistor	Helps in stabilizing the sensor output and ensures accurate readings.
6	Battery	Powers the system for standalone operation.
7	Jumper Wires	Connects all components for seamless data transfer.

Connection Diagram:

Code:

```
#include <Wire.h>
     #include <LiquidCrystal_I2C.h>
     LiquidCrystal_I2C lcd(0x27, 16, 2);
 4
     const int flexPins[5] = {A0, A1, A2, A3, A4};
     int flexValues[5];
8
     void setup() {
        lcd.begin();
10
         lcd.backlight();
         lcd.setCursor(0, 0);
12
         lcd.print("Sign Detection");
13
         delay(2000);
         lcd.clear();
14
15
       Serial.begin(9600);
17
     18
19
           flexValues[i] = analogRead(flexPins[i]);
21
22
         lcd.clear();
23
         lcd.setCursor(0, 0);
         String gesture = identifyGesture(); if (gesture != "Nothing") {
25
26
           lcd.print(gesture);
27
         Serial.println(gesture);
28
29
         delay(500);
30
31
32
     String identifyGesture() {
33
         if (flexValues[0] > 600 && flexValues[1] > 600 && flexValues[2] > 600 && flexValues[3] > 600 && flexValues[4] > 600) {
35
             return "OK";
         } else if (flexValues[0] < 400 && flexValues[1] > 600 && flexValues[2] > 600 && flexValues[3] < 400 && flexValues[4] < 400) {
36
            return "How are you";
37
38
         } else if (flexValues[0] > 600 && flexValues[1] < 400 && flexValues[2] > 600 && flexValues[3] > 600 && flexValues[4] < 400) {
39
             return "Good morning";
         } else if (flexValues[0] > 600 && flexValues[1] < 400 && flexValues[2] < 400 && flexValues[3] > 600 && flexValues[4] > 600) { | return "Welcome to VIT";
40
41
         } else if (flexValues[0] > 600 && flexValues[1] > 600 && flexValues[2] < 400 && flexValues[3] < 400 && flexValues[4] < 400) {
42
             return "I am really sorry";
44
         } else if (flexValues[0] < 400 && flexValues[1] < 400 && flexValues[2] > 600 && flexValues[3] > 600 && flexValues[4] > 600) {
45
            return "Thank you";
         } else if (flexValues[0] > 600 && flexValues[1] > 600 && flexValues[2] < 400 && flexValues[3] > 600 && flexValues[4] < 400) {
46
         | return "Please help me";
47
46
      | else if (flexValues[0] > 600 && flexValues[1] > 600 && flexValues[2] < 400 && flexValues[3] > 600 && flexValues[4] < 400) {
            return "Please help me
47
        } else if (flexValues[0] < 400 && flexValues[1] > 600 && flexValues[2] < 400 && flexValues[3] > 600 && flexValues[4] > 600) {
48
            return "Excuse me";
50
        } else if (flexValues[0] > 600 && flexValues[1] < 400 && flexValues[2] > 600 && flexValues[3] < 400 && flexValues[4] > 600) { | return "See you soon";
51
        | | else if (flexvalues[0] < 400 && flexvalues[1] < 400 && flexvalues[2] < 400 && flexvalues[3] < 400 && flexvalues[4] < 400) {
| return "Nothing";
53
55
        return "Unknown";
```

Project Outcome:

This project successfully demonstrates how sign language can be converted into text using sensor-based technology. By integrating flex sensors, an Arduino Uno, and an LCD display, we create a wearable assistive device that helps bridge the communication gap between sign language users and non-signers. The system effectively captures hand gestures, processes them through a microcontroller, and displays the corresponding text, making communication more accessible and inclusive.

Through this project, we gain valuable insights into sensor interfacing, microcontroller programming, and embedded system integration. We also develop a deeper understanding of I2C communication for efficient LCD operation and the role of resistors in stabilizing sensor readings. Beyond technical learning, this project highlights the real-world impact of assistive technology, showcasing how engineering solutions can improve accessibility for individuals with speech and hearing impairments.