PAGE NO:-
[0.1]
And.
=> we have 4-pegs & have to move n disks from Peg-I
to peg-4 with the standard restriction of this
problem.
=) Bujicelly, we can some how compare & Relute
Supremental with adjusted Toth problem.
the problem with original T.O.H problem.
which hey 3 disk to trumpter to the pegs.
$l = m - 101 \text{ in } total = 2^{M} - 1 \text{ to}$
=) so we have nows (vi) star =
=) so, we have moves in total = 2"-1 to pertorm carlendate this problem. =
La an a movel which can not
=) 19 It would be no of moves which can not
be more than 2 ^N -1.
=d
(0,1)
"I don't know"

P	AGE NO: - 2
(0.3)	
Total to a maint	(coullest)
Ans: les OPT Ci.j] = minimum possible weight	(Jimay)
considering items [1is & such that -	the total.
values is \$ 20	
=) 15i { y and 0 { j { E V(k).	
K	
Buse couse: OPT(i,j) =0 if i=0 pr	J°≥0 .
OPT (i,j) = min & wci] it j	-0.
KEI	
otherwise:	
OPT (i, j) = min (OPT (i-1, j), OPT (i-1, j-1	rin)+wrin3
7	1
Mot picking cm Picking	ng and
not picking on picking element	element.
Time-Complexity	
•	
= 0(M.V), V= &UCiJ.	
•	
=) The Memo is Obsize MX & VCi]. Now it	ENCI)
·	110 (NK)
Bud it & UCID is cursitrurily lurge then it	
more porynomia.	

PAGE NO: 3 Q.4) => main aim to determine the gruph hus a negative-weight ayore. So avoid this ayore (circular dependency) we need an additioned ruseameter which decreasely at each cycle of Recursion. Apspaist ex, v, K) it u=V it K=0 88 U + V Min (AMP APSP (2L, x, |K-1) + W (X-)V)) 500m 2 to V with us most 1c eager. (umsv) (.: APSP (dist (u,v,k)) = APSP(dist (u,v,k-1)) =1 we're really prying to compute APSPdist (u, v, 12-1) to.

determine the length. (or negative - weight).

PAGE NO! 4 AND! william] = / it j= i (Base case). 1 wici-1, k) it j>i & E(j,K)= E(j-1,K)+b. IIdeletion. wici, K-1) it jois Ewik) = E (i, K-1] + a 11 injection wi [0-1, 12-1] it j> i 1 EGI, K) = E (1-1, K-1) E (j, K) : E (j-1, K-1)+ C

PACE No! - 5 Any: wicj(k) = it je i 0 12 15 j=i wicj-1, k) it j>i & Ecjik) = (-(j-1,K). wi [j, K-1] : it j > i & E(j, K) = E (U, K-1) wilj-1, K-17 it j>i J E(j,k) = E(j-1, K-1) $) \in (j, k) = \in (j-1, k-1)$ =) Here we set it joi then these is no meaning of the given solution so we that point we set to 'oo'.

PAGE NO: 6 Ta.71 ①. As we have [] blocky of 3 element each & we need to bind Man. T(N) < O(N)+T(M)+T(M) 2) we need stace to store the result. T(m) = O(N). to store. (3) · [n] $T(n) \leq o(n) + T(n) + T(2n)$

PACTE NO: 7 Ans: SIN SOURCE SHOTELINGLY 666 (4) stretements use us pollows: (i) Is Subseq Rearrive (i, i+1) (ii) Issubsequeauxive (it1, jt1). (b) Time Gomplexity Ob above equation is T(m) = T(m-1) + 1=) led it be the time Complexity of the Issubsequence (i,i) wherether use they both the String is subservence of the string or not.

		L	आत्मदापाभव
	PACE	No:	And the second control of the second control
		and the second second second second second second	
(a). T(K-1)+2. T(2) (1.			
=) tightest reprez bound.			ega di ya di rakwa shini yankini wapi inaka najikini kita ka
=> tightest reprez bound.) Reverse A [s n].		ann an aire an	
© space- Complexity as we need 12 subcurry.	-sized		
Subcerry.			
T(11) = O(K).		,	
			7

PAGE NO! - 10 for the Problem which is given here. =) we have to every mux Protit. PRObit (Know Price). size = length of the values up prices. Il buye ceese. it (size = =0): yeturn 0 else, for (- i to size (length of Prices). it was seen Prices (0) > prices (i) priles (0) = priles (i). Il priles (0) = U. core at essects esse it priles (0) = priles (i) 11 prile(0) = B De pesult [] = max (pegult [i-1], U-B). return regult [size-1]. Time Complexity = O(M).

11 rejust [] corray space - 11