Wektory

18 marca 2012

Definicja

Wektor to uporządkowana para punktów, z których pierwszy nazywamy początkiem, a drugi końcem wektora. Wektor o początku w punkcie A i końcu w punkcie B zaznaczamy na rysunku w postaci odcinka AB zakończonego grotem w punkcie B i oznaczamy \overrightarrow{AB} .

Własności

Każdy wektor posiada następujące własności:

- \bullet kierunek zgodny z kierunkiem prostej, na której leżą punkty A i B,
- zwrot zaznaczony grotem wektora sposób uporządkowania punktów A i B,

• punkt przyłożenia (zaczepienia) – miejsce lokalizacji początku wektora.

Jeśli wektor \overrightarrow{AB} umieścić w kartezjańskim układzie współrzędnych, w którym punkt A ma współrzędne (x_a, y_a) , a punkt B (x_b, y_b) , to liczby $a = x_b - x_a$ oraz $b = y_b - y_a$ nazywamy współrzędnymi (składowymi) wektora \overrightarrow{AB} , co zapisujemy w postaci $\overrightarrow{AB} = [a, b]$.

Powiązane definicje

Długość wektora wyraża się wzorem:

$$|\overrightarrow{AB}| = \sqrt{a^2 + b^2} = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$$

Wektory równoległe to dwa niezerowe wektory, które wyznaczają ten sam kierunek. Aby to łatwo sprawdzić, wystarczy policzyć *iloczyn wektorowy*. Jeśli jest on równy 0, dwa wektory są równoległe.

Wektory przeciwne to dwa wektory, posiadające tę samą długość i kierunek, lecz przeciwne zwroty. Dla wektora \overrightarrow{v} wektorem przeciwnym jest $-\overrightarrow{v}$.

Wektor swobodny to wektor, dla których nie określono punktu zaczepienia. Definiuje się je określając współrzędne.

Wektor zerowy to wektor, którego początek i koniec pokrywają się. Nie posiada on kierunku oraz zwrotu, zatem jest równoległy do każdego innego wektora.

Wektory prostopadłe to wektory, których wyznaczane kierunki są prostopadłe. Aby łatwo stwierdzić ten fakt, liczy się *iloczyn skalarny*, który jest równy 0 wtedy i tylko wtedy, gdy wektory są prostopadłe.

Wektor jednostkowy (wersor) to wektor o długości 1, posiadający kierunek i zwrot jednej z osi układu współrzędnych

Działania na wektorach

Dodawanie

Mając dwa wektory $\overrightarrow{a} = [x_a, y_a]$ oraz $\overrightarrow{b} = [x_b, y_b]$ (wektory składowe – uczestniczące w działaniu), dodawszy je, otrzymujemy nowy wektor $\overrightarrow{c} = \overrightarrow{a} = \overrightarrow{b} = [x_a + x_b, y_a + y_b]$. Jego współrzędne równe są sumie współrzędnych wektorów składowych. Suma wektorów zwana jest często wypadkową.

Da się również obliczyć sumę wektorów geometrycznie. Aby dodać dwa wektory \overrightarrow{AB} i \overrightarrow{BC} zaczepiamy pierwszy wektor w punkcie A, drugi w końcu pierwszego wektora (punkcie B). Wektorem wypadkowym jest wektor biegnący od początku pierwszego wektora (punktu A) do końca ostatniego wektora (punktu C).

Dodawanie wektorów podlega prawu przemienności oraz łączności.

Przykład Sumą wektorów $\overrightarrow{u} = [5, -3]$ i $\overrightarrow{v} = [2, 7]$ jest wektor $\overrightarrow{u+v} = [5+2, -3+7] = [7, 4]$.

Odejmowanie wektorów

Różnica wektorów to wektor, o współrzędnych równych różnicy współrzędnych wektorów składowych. Dla $\overrightarrow{a} = [x_a, y_a]$ oraz $\overrightarrow{b} = [x_b, y_b]$ wektor różnicy jest równy $\overrightarrow{a-b} = [x_a - x_b, y_a - y_b]$. A więc odjęcie wektora \overrightarrow{b} od wektora \overrightarrow{a} jest równoznaczne dodaniu do wektora \overrightarrow{a} wektora $-\overrightarrow{b}$.

Mnożenie wektorów przez skalar

Dla wektora $\overrightarrow{a} = [x_a, y_b]$ oraz liczby $k \in \mathbb{R}$ iloczyn równy jest $k \overrightarrow{a} = [k \cdot x_a, k \cdot y_a]$.

Dla dowolnych liczb rzeczywistych k i loraz wektorów \overrightarrow{u} i \overrightarrow{v} prawdziwe są twierdzenia:

- $k(l\overrightarrow{u}) = (k \cdot l)\overrightarrow{u}$
- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$
- $(k+l)\overrightarrow{u} = k\overrightarrow{u} + l\overrightarrow{u}$

Iloczyn skalarny

Dla wektorów $\overrightarrow{a} = [x_a, y_b]$ i $\overrightarrow{b} = [x_b, y_b]$ iloczynem skalarnym wektorów jest liczba:

$$\overrightarrow{a} \circ \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \angle (\overrightarrow{a}, \overrightarrow{b}) = x_a \cdot x_b + y_a \cdot y_b$$

Własności iloczynu skalarnego

• Przemienność:

$$\overrightarrow{u} \circ \overrightarrow{v} = \overrightarrow{v} \circ \overrightarrow{u}$$

• Łączność mnożenia wektora z wektorem pomnożonym przez skalar:

$$(k\overrightarrow{u}) \circ \overrightarrow{v} = \overrightarrow{u} \circ (k\overrightarrow{v}) = k (\overrightarrow{u} \circ \overrightarrow{v})$$

• Rozdzielność mnożenia względem dodawania wektorów:

$$\overrightarrow{a} \circ \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \circ \overrightarrow{b} + \overrightarrow{a} \circ \overrightarrow{c}$$

• Iloczyn skalarny dwóch niezerowych prostopadłych wektorów jest równy 0.

$$\overrightarrow{u} \circ \overrightarrow{v} = 0 \Rightarrow \overrightarrow{u} \perp \overrightarrow{v}$$

Przykład Dla wektorów $\overrightarrow{u}=[3,5], \ \overrightarrow{v}=[-5,2]$ iloczyn wynosi $\overrightarrow{u}\circ\overrightarrow{v}=3\cdot(-5)+5\cdot 2=-8.$

Iloczyn wektorowy

Dla dwóch niezerowych wektorów $\overrightarrow{a} = [x_a, y_a, z_a]$ i $\overrightarrow{b} = [x_b, y_b, z_b]$ iloczyn wektorowy jest równy:

$$\overrightarrow{a} \times \overrightarrow{b} = [y_a \cdot z_b - z_a \cdot y_b, z_a \cdot x_b - x_a \cdot z_b, x_a \cdot y_b - y_a \cdot x_b]$$

Długość takiego iloczynu równa jest:

$$\left|\overrightarrow{a}\times\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|\cdot\left|\overrightarrow{b}\right|\cdot\sin\angle\left(\overrightarrow{a},\overrightarrow{b}\right)$$

Własności iloczynu wektorowego

- $\bullet \ \overrightarrow{u} \times \overrightarrow{v} = -\overrightarrow{v} \times \overrightarrow{u}$
- $k(\overrightarrow{u} \times \overrightarrow{v}) = (k\overrightarrow{u}) \times \overrightarrow{v}$
- $\bullet \ \overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$
- $\overrightarrow{u} \times \overrightarrow{v} = 0 \Leftrightarrow \overrightarrow{u} \perp \overrightarrow{v}$

Długość iloczynu wektorowego jest geometrycznie równa polu równoległoboku ułożonego z wektorów.

