Демонстрационная версия проверочной работы 1

Задание 1. Ниже представлены результаты оценивания линейной регрессионной модели процента детей, получающих образование, (eduger), на социально-экономические показатели. polityIV — индекс демократии Polity IV (от -10 до 10); $gini_8090$ — средний индекс имущественного неравенства в 1980 и 1990 г. (от 0 до 100); ssw — консолидированные бюджетные расходы на социальное обеспечение (% ВВП); prot80 — процент протестантов от численности населения в 1980 г.

	coef	std. error	t I	Pr> t	[0.025;	0.975]
(Intercept)	59.0982	9.2578				
polityIV	1.0462	0.4522				
gini_8090	0.2556	0.1952				
SSW	1.4918	0.3066				
prot80	0.1016	0.0576				
		AN	AVO			
	sum_sq	df	mean_s	sq f	PR(>1	F)
Regression						
Residual	5665.644	1				
Total	14178.832	2 57				

- 1. Постройте 99%-ый доверительный интервал для коэффициента при ssw, используя нормальную аппроксимацию для расчета процентной точки (однако в ответах запишите обязательно количество степеней свободы по распределению Стьюдента), и проинтерпретируйте его
- 2. Проинтерпретируйте оценку коэффициента при предикторе ssw
- 3. Рассчитайте коэффициент детерминации и проинтерпретируйте полученное значение
- 4. Проверьте гипотезу, что регрессия на константу не хуже модели с предикторами, на фиксированном уровне значимости 0.01. Запишите значение статистики и ее промежуточные расчеты, а также выберите необходимую критическую точку квантиль. Сделайте вывод.
 - (a) квантиль хи-квадрат распределения уровня 0.99, df= 57: **84.733**
 - (b) квантиль хи-квадрат распределения уровня 0.01, df = 57: **35.131**
 - (c) квантиль распределения Фишера уровня 0.99, df1 = 5, df2 = 53: **3.384**
 - (d) квантиль распределения Фишера уровня 0.99, df1 = 4, df2 = 53: **3.695**
 - (e) квантиль распределения Фишера уровня 0.01, df1 = 5, df2 = 53: **0.108**
 - (f) квантиль распределения Фишера уровня 0.01, df1 = 4, df2 = 53: **0.073**

Задание 2. По результатам анализа данных, посвящённых рынку труда в США, с использованием подхода разность разностей (difference-in-difference) была получена следующая таблица:

	До	После	Разность
Группа воздействия	20.44	21.03	?
Контрольная группа	23.33	21.17	?
DiD			?

Исследователи сравнивали средний уровень занятости в ресторанах быстрого питания до повышения минимальной заработной платы в штате и после. В качестве группы воздействия был выбран штат Нью-Джерси, в котором произошло повышение минимальной заработной платы, а в качестве контрольной группы был выбран штат Пенсильвания, так как его повышение заработной платы не затронуло.

Восстановите оценки коэффициентов в классической модели разность разностей (DiD) без контрольных переменных и проинтерпретируйте коэффициент при переменной взаимодействия.

Задание 3.

Ниже представлены оценки регрессионной модели. Зависимая переменная — успеваемость школьника по литературе (рассчитан средний балл по предмету за год). В качестве предикторов используется показатель количества книг дома у школьника (Books), наличие доступа к интернету (Internet — дамми-переменная, при этом 1 соответствует наличию доступа, 0 — доступ отсутствует) и переменная взаимодействия.

Grade (literature)
1.06**
(0.424)
0.72***
(0.176)
-0.61^{***} (0.141)
3.5***
(0.367)

Standard errors are given in parentheses

- 1. Проинтерпретируйте оценку коэффициента при переменной Internet
- 2. Рассчитайте значение предельного эффекта Books в случае, если доступ к интернету есть
- 3. Проинтерпретируйте оценку коэффициента при переменной взаимодействия

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Задание 4. Ответьте на вопросы ниже:

- 1. Приведите пример строгой мультиколлинеарности. Каковы последствия строгой мультиколлинеарности? Свой ответ поясните
- 2. Прочитайте нижеприведенный отрывок из статьи и продолжите его, аргументировав позицию авторов:

Much of the concern about multicollinearity arises when the analyst observes that the coefficients from a linear-additive model change when an interaction term is introduced. In the linear-additive world, the sensitivity of results to the inclusion of an additional variable is often taken as a sign of multicollinearity. However, this need not be the case with interaction models.

Задание 5. Ниже в таблице представлены значения переменных: У и Х.

Y	-5	0	-1	-2	2
X	3	0	0	-4	1

Получите оценки коэффициентов в регрессии Y на X с помощью общей векторно-матричной формулы получения оценок коэффициентов. Представьте промежуточные расчеты, выпишите полученный вектор оценок коэффициентов и запишите спецификацию модели, подставив эти оценки в уравнение.

Задание 6. Выберите ВСЕ верные утверждения из списка ниже. Если верные утверждения отсутствуют, обязательно в ответе напишите "HET":

- 1. По построению линейной регрессионной модели верно, что сумма квадратов остатков равна 0
- 2. В результате сильной мультиколлинеарности стандартные ошибки оценок коэффициентов становятся, как правило, ниже
- 3. Согласно допущениям Гаусса-Маркова, распределение ошибок в линейной регрессионной модели является нормальным
- 4. Модель DiD основывается на допущении о параллельности трендов