Algoritmos Gulosos

Ricardo Dutra da Silva

Universidade Tecnológica Federal do Paraná

- Suponha uma mensagem com os caracteres $\Gamma = \{a, b, c, d\}$.
- Os caracteres aparecem com as seguintes frequências:

Γ	Freq.
a	60%
b	25%
С	10%
d	5%

 Podemos usar um código binário de 2 bits para codificar a mensagem.

Γ	Freq.	CF
а	60%	00
b	25%	01
С	10%	10
d	5%	11

- Podemos usar menos de 2 bits em média, e obter compressão da mensagem.
- Usamos um código variável.
- Menos bits para caracteres mais frequentes.

Γ	Freq.	CF	CV
а	60%	00	0
b	25%	01	1
С	10%	10	00
d	5%	11	11

- Problema: código ambíguo.
- O que significa a sequência: 01100?

Г	Freq.	CF	CV
а	60%	00	0
b	25%	01	1
С	10%	10	00
d	5%	11	11

Código livre de prefixo.

Γ	Freq.	CF	CV	LP
а	60%	00	0	0
b	25%	01	1	10
С	10%	10	00	110
d	5%	11	11	111

- Em LP, 01100 é aca.
- $0.6 \times 1 + 0.25 \times 2 + 0.1 \times 3 + 0.05 \times 3 = 1.55$ bits por caractere.

Γ	Freq.	CF	CV	LP
а	60% 25%	00	0	0
a b	25%	01	1	10
С	10%	10	00	110
d	5%	11	11	111

Γ	Freq.	CF	CV	LP
а	60% 25%	00	0	0
a b	25%	01	1	10
С	10%	10	00	110
d	5%	11	11	111

Γ	Freq.	CF	CV	LP
а	60%	00	0	0
b	25%	01	1	10
С	10%	10	00	110
d	5%	11	11	111

Árvore de Codificação Mínima

Entrada

Um alfabeto Γ e a frequência p_a para todo caractere $a \in \Gamma$.

Saída

Árvore de codificação $\mathcal T$ que minimiza a quantidade média de bits para codificação

$$L(T) = \sum_{a \in \Gamma} p_a d_a$$

tal que d_a é a profundidade (número de bits) do caractere na árvore T.

 T_1 :

$$L(T_1) = 2.0$$

T_2 :

$$L(T_2)=1.55$$

Solução gulosa:

- escolha gulosa;
- subproblemas;
- subestrutura ótima.

- Escolha gulosa: combina caracteres $a, b \in \Gamma$ com menor frequência como irmãos em uma subárvore.
- Subproblema: $\Gamma' = \Gamma \setminus \{a, b\} \cup \{c\}$, com $p_c = p_a + p_b$.

Γ Freq.	<i>a</i> 0.15	<i>b</i> 0.20	<i>c</i> 0.27	<i>d</i> 0.23	<i>e</i> 0.10	f 0.05
a/0.15	b/0.2	0 $c/0$.	27 d/0).23 <i>e</i> /	0.10 f	/0.05

Teorema

A escolha gulosa de Huffman pertence a uma árvore de codificação ótima.

Demonstração.

Suponha uma árvore de codificação ótima qualquer T sem a a escolha gulosa de Huffman (nós de menor frequência a e b não estão no último nível da árvore).

Demonstração.

Construímos uma árvore T' com a e b sendo irmãos no último nível.

Demonstração.

Comparando os custos das árvores

$$\begin{split} L(T) - L(T') &= \sum_{a \in \Gamma} p_a d_a - \sum_{a \in \Gamma} p_a d'_a \\ &= p_a d_a + p_b d_b + p_x d_x + p_y d_y - p_a d'_a - p_b d'_b - p_x d'_x - p_y d'_y \\ &= p_a d_a + p_b d_b + p_x d_x + p_y d_y - p_a d_x - p_b d_y - p_x d_a - p_y d_b \\ &= (p_x - p_a)(d_x - d_a) + (p_y - p_b)(d_y - d_b). \end{split}$$

Como todos os fatores são positivos, temos

$$L(T) - L(T') \ge 0$$

e, portanto, T' é ótima.

Teorema

Se T é uma árvore de Huffman ótima para Γ e $a,b \in \Gamma$ são os caracteres da escolha gulosa, então T' é uma árvore ótima para $\Gamma' = \Gamma \setminus \{a,b\} \cup \{z\}$, com $p_z = p_a + p_b$.

Demonstração. Seja T uma árvore de Huffman qualquer.

Demonstração.

Seja a árvore T' correspondente.

Demonstração.

A diferença entre o tamanho médio dos códigos dessas duas árvores é dada por

$$\begin{split} L(T) - L(T') &= \sum_{a \in \Gamma} p_a d_a - \sum_{a \in \Gamma'} p_a d_a' \\ &= p_a d_a + p_b d_b - p_z d_z \\ &= p_a (d_z + 1) + p_b (d_z + 1) - (p_a + p_b) d_z \\ &= p_a d_z - p_a d_z + p_b d_z - p_b d_z + p_a + p_b \\ &= p_a + p_b. \end{split}$$

Então a diferença entre as árvores é $p_a + p_b$ e

$$L(T) = L(T') + p_a + p_b.$$

Demonstração.

Para argumento de contradição, suponha que T' não é ótima, então exite T'^* com codificação menor, $L(T'^*) < L(T')$. No entanto, neste caso teríamos

$$L(T) = L(T') + p_a + p_b$$

> $L(T'^*) + p_a + p_b$
= $L(T^*)$.

Ou seja, teríamos uma árvore T^* melhor do que a árvore ótima T. Portanto, por contradição, T' é ótima.

Algoritmo: $Huffman(\Gamma)$

```
/* Heap minimo auxiliar H.
                                                                                     */
 1 para a ∈ \Gamma faça
        cria nó n
 2
 3
        n.p = p_a
        n.esq = nulo
 4
        n.dir = nulo
 5
        Insere(H,n)
 6
   enquanto |H| > 1 faça
        a \leftarrow \text{Remove}(H)
 8
        b \leftarrow \text{Remove}(H)
 9
        cria nó n
10
        n.p = a.p + b.p
11
        n.esq = a
12
        n.dir = b
13
        Insere(H,n)
14
```

- Laço da linha 1 é executado $\mathcal{O}(n)$ vezes.
- Linhas 2 a 5 tem operações de tempo constante, no total são executadas $\mathcal{O}(n)$ vezes.
- Linha 6 é uma operação de tempo $\mathcal{O}(\log n)$, no total toma tempo $\mathcal{O}(n \log n)$.
- Laço da linha 7 é executado $\mathcal{O}(n)$ vezes.
- Linhas 10 a 13 tem operações de tempo constante, no total leva tempo $\mathcal{O}(n)$.
- Linhas 8, 9 e 14 são operações de tempo $\mathcal{O}(\log n)$, no total tomam tempo $\mathcal{O}(n \log n)$.
- Portanto, Huffman toma tempo $\mathcal{O}(n \log n)$.