Fair-MAML offers a route to distribute fair ML models that can quickly be trained on new tasks.

Fair Meta-Learning: Learning How to Learn Fairly

Dylan Slack, Sorelle Friedler, and Emile Givental

MOTIVATION

 Minor changes in test distribution can have significant effects on fairness (see Fairness Warnings). How can we train a model that copes?

METHODS

- We can train fair meta-model that contains general features relating to both fairness and accuracy using model > agnostic meta-learning with added fairness objective (Fair-MAML).
- Fair-MAML can be fine-tuned to new fairness tests to achieve high degrees of accuracy with minimal data.

Fair-MAML y: 10.0 $\gamma: 0.0$ y: 10.0 Accuracy: 0.79 Disparate Impact: 0.71 Accuracy: 0.87 Disparate Impact: 0.49 Accuracy: 0.77 Disparate Impact: 0.72 y: 10.0 y: 10.0 γ : 0.0 y: 0.0 Accuracy: 0.61 Disparate Impact: 0.79 Accuracy: 0.49 Disparate Impact: 1.00 Accuracy: 0.49 Disparate Impact: 1.00 Accuracy: 0.86 Disparate Impact: 0.46 Unprotected Class Test

Protected Class Train

COMMUNITIES AND CRIME EXAMPLE

Check us out at FAT* 2020:

Fairness Warnings & Fair-MAML: Learning Fairly from Minimal Data

