Неопределимост

Иво Стратев $24\ {\rm октомвр}\ 2019\, {\rm r}.$

Съдържание

1 Хомоморфизми

1.1 Слаб хомоморфизъм

Нека \mathcal{L} е език на предикатното смятане от първи ред. Нека \mathcal{A} и \mathcal{B} са две структури за \mathcal{L} . Нека $h: |\mathcal{A}| \to |\mathcal{B}|$. h е слаб хомоморфизъм ($h \in WeakHom(\mathcal{A}, \mathcal{B})$), ако

- $(\forall c \in Const_{\mathcal{C}})[h(c^{\mathcal{A}}) = c^{\mathcal{B}}];$
- $(\forall f \in Func_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#f} \in |\mathcal{A}|)[h(f^{\mathcal{A}}(a_1, \dots, a_{\#f})) = f^{\mathcal{B}}(h(a_1), \dots, h(a_{\#f}))];$
- $(\forall p \in Pred_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#p} \in |\mathcal{A}|)$ $[\langle a_1, \dots, a_{\#p} \rangle \in p^{\mathcal{A}} \longrightarrow \langle h(a_1), \dots, h(a_{\#p}) \rangle \in p^{\mathcal{B}}];$

Накратко слабия хомоморфизъм запазва операциите (функциите) и запазва истинността на свойствата/връзките/релациите.

1.2 Рефлектиращ хомоморфизъм или просто хомоморфизъм

Нека \mathcal{L} е език на предикатното смятане от първи ред. Нека \mathcal{A} и \mathcal{B} са две структури за \mathcal{L} . Нека $h: |\mathcal{A}| \to |\mathcal{B}|$. h е рефлектиращ (reflective) хомоморфизъм ($h \in Hom(\mathcal{A}, \mathcal{B})$), ако

- $(\forall c \in Const_{\mathcal{L}})[h(c^{\mathcal{A}}) = c^{\mathcal{B}}];$
- $(\forall f \in Func_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#f} \in |\mathcal{A}|)[h(f^{\mathcal{A}}(a_1, \dots, a_{\#f})) = f^{\mathcal{B}}(h(a_1), \dots, h(a_{\#f}))];$
- $(\forall p \in Pred_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#p} \in |\mathcal{A}|)$ $[\langle a_1, \dots, a_{\#p} \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle h(a_1), \dots, h(a_{\#p}) \rangle \in p^{\mathcal{B}}];$

Забележа: Разликата е в последното свойство.

Накратко рефлектиращ хомоморфизъм или просто хомоморфизъм е слаб хомоморфизъм, който запазва и лъжата (неистинността) на свойствата/връзките/релациите.

1.3 Изоморфизъм

Изоморфизъм е хомоморфизъм, който е и биекция!

1.4 Автоморфизъм

Автоморфизъм е изоморфизъм на една структура в себе си. Но тъйкато понятието за нас е с особена важност ще го напишем!

Нека $\mathcal L$ е език на предикатното смятане от първи ред. Нека $\mathcal A$ е структура за $\mathcal L$. Нека $h: |\mathcal A| \to |\mathcal A|$.

h е автоморфизъм $(h \in Aut(A))$, ако h е биекция и още:

- $(\forall c \in Const_{\mathcal{L}})[h(c^{\mathcal{A}}) = c^{\mathcal{A}}];$
- $(\forall f \in Func_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#f} \in |\mathcal{A}|)[h(f^{\mathcal{A}}(a_1, \dots, a_{\#f})) = f^{\mathcal{A}}(h(a_1), \dots, h(a_{\#f}))];$
- $(\forall p \in Pred_{\mathcal{L}})(\forall a_1 \in |\mathcal{A}|) \dots (\forall a_{\#p} \in |\mathcal{A}|)$ $[\langle a_1, \dots, a_{\#p} \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle h(a_1), \dots, h(a_{\#p}) \rangle \in p^{\mathcal{A}}];$

Забелжка: в сила е $\{id_{|\mathcal{A}|}\}\subseteq Aut(\mathcal{A}).$