

Question - 1 BST	SCORE: 5 points
In delete operation of BST, we need inorder successor (or predecessor) of a node when the node to be deleted has both left and right child as non-empty. Which of the following is true about inorder successor needed in delete operation?	
Inorder Successor is always a leaf node	
Inorder successor is always an empty left child	
Inorder successor may be an ancestor of the node	
Inorder successor is always either a leaf node or a node with empty right child	
Question - 2 BST2	SCORE: 5 points
We are given a ordered set of n distinct elements and an unlabeled binary tree with n nodes. In how many ways can we populate the tree with the given ordered set so that it becomes a binary search tree?	(
1	
(1/(n+1)).2nCn	
Question - 3 BST3	SCORE: 5 points
Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?	
7510324689	
0243165987	
0 1 2 3 4 5 6 7 8 9	

Question - 4 BST4

SCORE: 5 points

If we randomly search one of the keys present in above BST, what would be the expected number of comparisons?

- 2.75
- 2.63
- 2.57
- 3.25

Question - 5 **BST5**

SCORE: 30 points

Implement binary search tree CountNodes and Search operations.

```
The first line of the input is number of
operations that will happen.
The subsequent lines represent the operation and
key, value pair.
Sample Input1:
4 // number of operations
1,5 //(operation, nodeValue)
1,1
1,3
2,3
Sample Output1:
true
Sample Input2:
4 // number of operations
1,5 //(operation, nodeValue)
1,1
1,3
4
Sample Output2:
Types of Operation:
```

- $1 \rightarrow insert$ (inserts an element into the tree)
- 2 -> search (returns true/false depending on whether or not the value is found)
- $3 \rightarrow \text{isEmpty}$ (returns true for an empty tree else false)
- 4 -> countNodes (returns number of nodes in the tree)
- 5 -> preorder traversal
- 6 -> inorder traversal
- 7 -> postorder traversal