Densely Connected Convolutional Networks (DenseNet)

Problem: gradient explosion/vanish of very deep CNN

Previous CNN: connection between adjacent layers

ResNet: Skip connection between identity blocks

DenseNet: Dense connection between every pair of layers

--> Can build very deep CNN without performnace degradation

1. ResNet and DenseNet

 Additive identity transformation
 (Impeded network)

Identity Block of ResNet

- Concatenate features, presuming
 every layers' feature-maps
- Feature Reuse
- Remove redundant training
- Fewer paramters
- Improved flow of info. and gradients
- Regularization effect

DenseNet

2. Architecture

- Dense connectivity: $X_l = H_l([X_0, X_1, \dots, X_{l-1}])$
- Growth rate (k): the number of feature maps that H_l produces for each layer (X_1,\ldots,X_{l-1})
 - Can be very narrow (k = 12)
- Composite function: BN \rightarrow ReLU \rightarrow 1 \times 1 Conv. \rightarrow BN \rightarrow RELU \rightarrow 3 \times 3 Conv.
- Bottleneck layer:

- Unlike ResNet, does not reduce the number of feature maps for computational efficiency
- 1×1 Conv. Produces 4k feature maps.
- Transition layer: between dense blocks.
 - BN \rightarrow 1 \times 1 Conv. \rightarrow 2 \times 2 average pooling
 - 1 x 1 Conv. : reduce the number of feature maps
 - 2×2 average pooling: reduce the size of feature maps into half
- Compression: In transition layer, reduce the number of feature maps by $\text{hyperparameter } \theta$
 - Set $\theta=0.5$ (automatically set the number of 1×1 Conv. filter to $\lfloor \theta m \rfloor$)

3. Further Studies

- Bottleneck layer에서 전통적 접근에서 벗어나 growth rate을 이용한 접근이 참신했다. 하지만 왜 4k (오히려 필터의 개수를 늘리는 것이 아닌가?) 개의 feature map을 만들어야하는지에 대한 설명이 부족하다. 나는 이해가 가지 않았다... 추후 다른 논문에서도 이 문제점을 언급하였다고 한다.
 - (https://arxiv.org/abs/1804.06882)
- 이론적으로는 작은 k값 (k=12), 즉 파라미터 개수가 작아도 충분한 성능을 보인다고 했다. 실험결과에 의하면, 실제로 비슷한 성능을 보이는 다른 모델보다 훨씬 적은 파라미터를 사용하는 것을 확인할 수있다. 하지만, "높은" 성능을 보이려면 결국 k=24, params $\geq 15M$ 이상이 필요하고, 다른 모델과비슷한 정도의 파라미터 개수가 필요한 것으로 보인다.
- https://github.com/liuzhuang13/DenseNet