This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- CÓLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

-1- (WPAT)

AN - 82-18702E/10 (18702E)

XRAM- C82-E18702

TI - High yield prepn. of bis-p-ethyl-benzylidene sorbitol - by reacting sorbitol and p-ethyl-benzaldehyde in presence of acid catalyst and organic solvent forming azeotrope with water

DC - E14

PA - (MITK) MITSUI TOATSU CHEM INC

NP - 2

PN - J57018682-A 82.01.30 (8210) {JP} J86017834-B 86.05.09 (8623) {JP}

PR - 80.07.08 80JP-092262

AP - 80.07.08 80JP-092262

IC - C07D-493/04

AB - (J57018682)

Prepn. of bis(p-ethylbenzylidene) sorbitol (I) involves heating 1 mol. sorbitol (II) and 1.6-2.2 mol. of p-ethylbenzaldehyde (III) in organic solvent which forms an azeotrope with water and using an acid catalyst. To the condensed soln, is added a weakly alkaline aq. soln, of pH 7.1-9.0. The mixt, is heated to remove organic solvent as an azeotropic mixt, with water, and the resultant (I) is sepd, as a solid powder.

The prod. (I) can be obtd. in high yield as a white powder.

The acid catalyst used in the reaction can be completely removed.

Pref. ratio of (III) to (II) (in mols.) is 1.8-2.0:1.

Pref. organic solvents are benzene and cyclohexane. (4pp)

⑩日本国特許庁(JP)

① 特許出頭公告

⑫ 特 公 辍(B2) 昭61 - 17834

@Int.Cl.4

撤別記号

厅内整理番号

❷❷公告 昭和61年(1986)5月9日

C 07 D 493/04

106

7252-4C

発明の数 1 (金4頁)

❷発明の名称

ピス(Pーエチルベンジリデン)ソルピトールの分離方法

の特 題 昭55-92262 每公 開 昭57-18682

魯出 脚 昭55(1980)7月8日

❸昭57(1982)1月30日

砂発料 明岩 砂発明 考 Ж 勝 好 合 **选** —

横浜市戸塚区矢部町1541 横浜市戸塚区矢部町1541

砂発 明 者 今 井

俇

扣

雅夫

横浜市瀬谷区瀬谷町4598の6

砂出 悶 人 三井東圧化学株式会社

東京都千代田区霞が関3丁目2番5号

寒 杏 官

の特許請求の節囲

多参考文献

佐伯 とも子

特開 昭48−99244 (JP, A)

特公 昭48-43748 (JP, B1)

特公 昭49-14758 (JP, B1) 薬学雑誌79(1959)p.600-602

1 ソルビトールとソルビトール1モルに対して 1,6~2.2モルのpーエチルベンズアルデヒドと を、水と共沸する有機溶媒を用いて酸触媒の存在 ルビトールを製造する方法において、脱水縮合さ せて得られる反応液に別7.1~8.0の数アルカリ性 の水溶液を加えて加熱し、有機溶媒を水と共沸湿 合物として留去し、生成したビス(pーエチルベ することを特徴とするビス(ローエチルベンジリ デン)ソルビトールの分離方法。

発明の詳細な説明

本発明は、ビス(pーエチルベンジリデン)ソ* て

+ルビトールの分離方法に関する。

さらに詳しくは、有機溶媒を用いて合成したビ ス(Pーエチルベンジリデン)ソルピトールを極 めて容易に反応液から分離することを可能にした 下に加熱し、ビス(pーエチルペンジリデン)ソ 5 ビス(Pーエチルペンジリデン)ソルビトールの 分離方法に関する。

ポリオレフィン樹脂の成形時に少量添加して透 明性を向上させる効果を有する、いわゆる透明化 剤には種々のものがあるが、最近、本発明者ら ンジリデン)ソルビトールを固体粉末として分離 10 は、下記の化学構造を有するビス(Pーエチルベ ンジリデン)ソルビトールが透明化剤として卓越 した効果を有することを発見し、ピス(Pーエチ ルベンジリデン)ソルビトールの分離方法につい

> СНОН CH_OH

鋭意研究を行ない本発明に到った。

く研究がなされており、酸触媒の存在下で溶媒を 従来、Dーソルビトールとペンズアルデヒド 用いずに脱水縮合させる方法(薬学雑誌79巻、 類、特にベンズアルデヒドとの反応について、良 25 598頁、1958年)およびシクロヘキサンなどの有

機溶媒を用いて脱水縮合させる方法(特公昭48~ 43748)などが知られている。しかし、Dーソル ビトールとPーエチルベンズアルデヒドの反応に ついては、従来、研究されていなかつた。このた め、本発明者らはDーソルピトールとPーエチル 5 ペンズアルデヒドとの脱水縮合によりピス(Pー エテルベンジリデン) ソルビトールを得ることを 目的に、酸触媒の存在下で溶媒を用いない方法と 溶媒を用いた方法について反応を試みた。その結 し、反応器から生成物を取り出し難く工業的に有 利な方法ではなく、またシクロヘキサンなどの有 機溶媒を用いた場合は、反応時および反応後に加 熱を続ければ固化することなく、ゾル状態を保ち ビス(Pーエチルベンジリデン)ソルビトールを 分離するのが困難であることが判つた。すなわち 後者の場合、取り出したゾル状態の反応液は温度 が下るにつれ、ゲル状態になり易く、このまま浮 過後のケーキには多量の有機溶媒を含有する。こ のため、熱沪過を行うとにより、沪過の速度を早 めることが可能であるが、沪過の際に有機溶媒が 蒸発する欠点があるばかりでなく、ケーキに含ま ないなど繁雑な製造工程を必要とすることが判つ

このような状況に鑑み、本発明者らは、ビス (Pーエチルベンジリデン) ソルビトールの分離 法につき、鋭意研究を行った。

DーゾルピトールとPーエデルベンズアルデヒ ドを水と共沸する有機溶媒を用いて酸触媒の存在 下に脱水縮合させ、得られるピス(Pーエチルベ ンジリデン)ソルビトールを含む反応液に水を加 応が起こるものと予想される。

しかしながら、驚くべきことに反応液に加える 水をPH7.1~9.0の微アルカリ性にすることによ り、ビス(Pーエチルベンジリデン)ソルビトー ルの加水分解反応が起らないばかりでなく、有機 40 溶媒を加えた水との共沸混合物として留去して行 くと、有機溶媒がほぼ完全に反応系外に留出した 時点からピス(Pーエチルペンジリデン)ソルビ トールが散細な粉末状態となつて水中に遊離して

浮遊してくるという現象が起ることが判つた。こ の粉末状態となつたビス(Pーエチルペンジリテ ン)ソルピトールの分離は通常の沪過により極め て容易に可能である。すなわち、本発明は、有機 溶媒を用いて合成したビス(Pーエテルベンジリ デン)ソルビトールを含む反応液に円7.1~8.0の 徴アルカリ性の水を加えたのち、有機溶媒を留去 することにより、ビス(アーエチルベンジリア ン)ソルビトールの加水分解を惹起させずにゾル 果、溶媒を用いない場合は、反応生成物が固化 10 状態である反応液からピス (Pーエチルベンジリ デン)ソルビトールを粉末状で分離取得する方法 である。

特公 昭 61-17834

本発明の方法で、ビス(Pーエチルベンジリデ ン)ソルビトールを分離すれば、皮心に使用した 反応液を反応器から抜き出すことは可能であるが 15 有機溶媒はほぼ完全に反応系外に留去しうるた め、有機溶媒を含むことのない粉末状のビス(P ーエチルベンジリヂン)ソルピトールを得ること が可能となり、ピス(Pーエチルベンジリデン) ソルビトールをさらに、有機溶剤を用いて精製す 過すれば沪過に長時間を要するばかりでなく、沪 20 る必要がある場合、反応に使用した有機溶媒と精 製に使用する有機溶剤との混合が避けられるた め、有機溶媒と有機溶剤の回収利用が簡略化され るという利点をも有し、また、反応に使用した酸 触媒も同時に除去できるなど、予測しえない工業 れる酸触媒を抽出する工程をさらに行わねばなら 25 的に極めて有利なビス(Pーエチルベンジリデ ソ)ソルビトールの分離法である。

本発明の方法において用いる原料のソルビトー ルとPーエチルベンズアルデヒドの割合は、ソル ピトール1モルに対してPーエチルベンズアルチ 30 ヒドが1.6~2.2モルである。 Pーエチルベンズア ルデヒドが1.6モルより少ない場合は、固体粉末 として得られる精製する前のピス(Pーエチルベ ンジリデンソルビトールの中に、ソルビトール1 分子にPーエチルベンズナルデヒドが、1分子脱 えて加熱すれば、従来の通念からは加水分解の反 35 水縮合して皮応した下記の化学構造を有するP-エチルベンジリデンソルビトールが高割合で含有 されてくるため、純度の高いピス(Pーエチルペ ンジリデン)ソルピトールが得られ難くなり、収 率も低下する。

16/04/97

P009/010

PATENT EXPRESS 0171 4127930

* また、ソルビトール1モルに対して2.2モルを 越えた割合でPーエチルベンズアルテヒドを加え た場合には、下記の化学構造式を有するトリス (Pーエテルベンジリデン)ソルビトールが高割 5 合で含有されてくるため、

仕込み割合が低過ぎる場合と同様に純度の高い ピス(Pーエチルベンジリデン)ソルピトールが 得られ難くなり収率も低下する。従つて、ソルビ トール1モルに対してPーエチルペンスアルデヒ ドの使用割合は1.6~2.2モル、好ましくは1.8~ 25 20モルである。また、本発明に用いる水と共沸 する有機溶媒としては、ソルビトールおよびPー エチルベンスアルデヒドと反応性を有しない溶 媒、たとえばベンゼン、トルエン、キシレン、シー エタン、1、2ージクロルプロパン、1ークロル .ブタン、1ークロルー2ーメチルプロパン、1. 2ージメトキシエタン、クロルベンゼン、イソプ ロピルエーテルなどから選択できるが、ピス(P つ高収率で得るために、好ましくはベンゼン、シ クロヘキサンが良い。

本発明の方法に用いられる酸触媒としては、通 常用いられる硫酸、塩酸、燐酸などの無機酸また をソルビトールに対して0.1~5重量%添加す る。また、本発明の方法に使用するPH7.1~9.0の 微アルカリ性の水溶液とは、水に微量のアルカリ 性物質を溶解させたものであり、使用するアルカ

り性物質としては、通常用いられる水酸化ナトリ ウム、水酸化カリウム、水酸化カルシウム、重炭 酸ナトリウム、重炭酸カリウム、炭酸ナトリウ ム、炭酸カリウムなどから選択できる。

本発明の方法において、ソルピトールとPーエ チルペンズアルデヒドとの脱水縮合反応は、生成 する縮合水を水と共沸する有機溶媒で濃流させな がら反応系外に誘導し、所定量の生成水を反応系 外に留去させるまで行なう。生成水を留去させた クロヘキサン、クロロホルム、1, 2-ジクロル 30 時点でPH7.1~9.0の微アルカリ性の水溶液を反応 に使用した散触媒を中和し、反応液がPH7.0~8.0 になるように加える。その添加量は、反応に用い た水と共沸する有機溶媒をすべて共沸混合物とし て留去させ得るに足る量である。この際、反応液 ーエチルベンジリデン)ソルビトールを高純度か 35 をPH7.0~9.0に保つのは、酸性またはPHが9.0を越 えたアリカリ性になった状態で共沸混合物を留去 するまで加熱すると、ピス(Pーエチルベンジリ デン)ソルビトールの加水分解が起ることが避け られず、ビス(Pーエチルベンジリデン)ソルビ はPートルエンスルフオン酸などの公知の酸触媒 40 トールの収率が低くなるとともにピス (Pーエチ ルベンジリデン)ソルビトールの純度が低くなる ためである。かくして、水と共沸する有機溶媒が ほとんど留出した時点で、有機溶媒と混合してゲ ル状態であつたビス(Pーエチルペンジリデン)

特公 昭 61-17834

ソルビトールが粉末化して水に浮遊した状態とな り、これを通常の沪過により粉末固体を分離すれ ば白色の高純度のピス(Pーエチルベンジリア ン)ソルビトールを高収率で得ることができる。

次に、実施例により本発明を詳述するが、例中 5 に示す部はすべて重量部を嵌わす。

実施例 1

かきまぜの良いカイ型かきまぜ機、温度計およ び上部に遺流冷却器を備えた液々分離機を付した (0.2モル)、Pーエチルベンズアルデヒド 53.7部 (0.40モル)、ベンゼン720訓およびPートルエン スルフオン酸0.38部を加えた。強くかきまぜなが ら湯浴で加熱して還流温度まで加熱を強め、6時 間反応を続け、生成した水を液々分離器に集め 15 クロヘキサンがほぼ完全に留出する直前に粉末化 た。ついで、還流冷却器および夜々分離器を取り はずし、リービッヒ型の冷却器を付したのち、重 **皮酸ソーダ1.0部を水500部に溶解させた水溶液を** 反応器に加えたのち加熱を続けてベンゼンと水を 共沸させて留出させた。このときの水層液のPHは 20 量%)、H:7.43重量%(計算値7.29重量%)で 7.5~8.0であった。 ペンゼンがほぼ完全に留出す る直前に粉末化した固体が、浮遊した。次いで、 反応液を沪過し、乾燥して白色のビス(Pーエチ

ルベンジリデン)ソルピトール71部を得た。融点 215~218℃、元素分析値はC;69,65重量%(計 算值69.54重量%)、H:7.37重量%(計算值7.29 重量%)であつた(P-エチルペンズアルデヒド をベースとした収率86モル%)。

実施例 2

実施例1に使用したペンゼン720和のかわりに シクロヘキサン800al、Pートルエンスルフオン 酸0.38部のかわりに濃硫酸0.30部を用いる以外は 2 ℓ容の反応フラスコに、ソルビトール38.3部 10 実施例1と全く同様にして脱水縮合の反応を行つ たのち、炭酸ソーダ1.0部を水500部に溶解させた 水溶液を反応器に加え、加熱を続けてシクロヘキ サンと水を共沸させて留出させた。

このときの水層液のPHは8.0~8.5であつた。シ した固体が遊離して浮遊した。次いで、反応液を 炉過し、乾燥して白色のビス(Pーエチルベンジ リデン)ソルビトール69部を得た。融点213~219 ℃、元素分析值 C;69.77重量%(計算值69.54重 あつた(Pーエチルベンズアルデヒドをベースと した収率83モル%)。