БЕСКОНЕЧНЫЕ АНТАГОНИСТИЧЕСКИЕ ИГРЫ

Цель работы: приобретение практических навыков в распределении выигрышей при бесконечном множестве возможных стратегий в играх преследования В играх типа дуэлей, исследование бесконечных И антагонистических игр ВЫПУКЛЫМИ функциями выигрышей c сепарабельных игр.

Задания

Построить функцию выигрыша для игры нападения - защиты при следующих предположениях.

Игрок 1 силами A единиц намерен атаковать один из объектов C_1 , C_2 , ..., C_n ценность которых определяется величинами

$$r_1 > 0, r_2 > 0, \dots, r_n > 0,$$

причем

$$r_1 \ge r_2 \ge \cdots \ge r_n$$

 $r_1 \geq r_2 \geq \cdots \geq r_n.$ Чистой стратегией игрока 1 является вектор

$$x = {\{\xi_1, \xi_2, \dots, \xi_n\}}, \sum_{i=1}^n \xi_i = A,$$

где ξ_i — часть сил, выделенных для атаки объекта \mathcal{C}_i .

Суммарные силы обороняющейся стороны (игрока 2) равны B.

Чистой стратегией игрока 2 является выбор множества неотрицательных чисел

$$y = {\eta_1, \eta_2, ..., \eta_n}, \sum_{i=1}^n \eta_i = B,$$

где η_i — часть сил, выделенных для защиты объекта C_i

Результат атаки на объект C_i пропорционален разности $\xi_i - \eta_i$, если силы атакующих превосходят силы защищающихся, а в остальных случаях он равен нулю.

No	Количество объектов атаки	Вектор ценности объектов	Мощность a таки A	Мощность обороны <i>В</i>
1	4	{7,4,3,1}	12	15
2	5	{9,6,4,2,1}	20	10
3	6	{9,9,8,6,5,5}	16	16
4	4	{10,10,6,4}	11	8

5	5	{9,9,4,2,1}	9	14
6	6	{7,6,5,4,4,1}	12	13
7	4	{8,5,4,2}	21	18
8	5	{8,5,2,2,1}	10	9
9	6	{10,9,8,7,5,4}	14	17
10	4	{7,2,1,1}	11	11
11	5	{10,8,8,4,3}	13	20
12	6	{7,7,5,4,2,1}	9	8
13	4	{7,6,4,1}	12	14
14	5	{10,6,2,2,1}	11	10
15	6	{9,8,6,4,2,1}	20	19
16	4	{8,5,2,1}	17	12

2. Игра на единичном квадрате имеет функцию выигрыша M(x,y). Определить имеет ли место ситуация равновесия в этой игре. $M(x,y) = xy - \frac{1}{3}x - \frac{1}{2}y$

$$M(x,y) = xy - \frac{1}{3}x - \frac{1}{2}y$$

No	Функция выигрыша $M(x,y)$		Функция выигрыша $M(x,y)$	
1	$M(x,y) = \frac{x^2}{2} + y^2 - xy$	9	$M(x,y) = xy - \frac{1}{3}x - \frac{1}{2}y$	
2	M(x,y) = x + 2y	10	M(x,y) = sign(x - y)	
3	$M(x,y) = \frac{x+y}{4xy}$	11	$M(x,y) = x^2y - \frac{1}{2}x$	
4	$M(x,y) = \frac{1}{2}xy + \frac{1}{3}y^2$	12	$M(x,y) = (x-y)^2$	

5	$M(x,y) = \frac{x+y^3}{3} - \frac{1}{2}y$	13	$M(x,y) = \frac{(x+y)^3}{2} - \frac{1}{2}x$
6	$M(x,y) = x^2y^2 - \frac{1}{3}xy$	14	$M(x,y) = (x - y)^2 + \frac{1}{2}xy$
7	$M(x,y) = \frac{1}{3}x^2 + \frac{1}{2}y^3$	15	$M(x,y) = \frac{x^3 - y^3}{2} + \frac{1}{2}y$
8	$M(x,y) = xy + (x + \frac{1}{2}y)^2$	16	$M(x,y) = x - \frac{1}{2}x^3 + \frac{1}{3}y^2$