

Design and ray-tracing of the BEATS beamline of SESAME

Gianluca Iori¹, Pierre Van Vaerenbergh², Juan Reyes-Herrera², Mohammad Al'Najdawi¹ Ivan Cudin³, Tomasz Kołodziej⁴, Matteo Altissimo³, Maher Al Shehab¹, Andrea Lausi¹, Axel Kaprolat²

¹Synchrotron Light for Experimental Science and Applications in the Middle East — SESAME, Allan, Jordan

- ²European Synchrotron Radiation Facility, Grenoble, France
- ³Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy
- ⁴National Synchrotron Radiation Centre Solaris, Jagiellonian University, Krakow, Poland

The BEAmline for Tomography at SESAME (BEATS) will operate an X-ray micro tomography station serving a broad user community from the Middle East and beyond

Geology and Environment:

- Simulation of rock properties
- Fuel research
- Soil characterization

Archaeology and Cultural Heritage:

- Archaeological Materials
- Human bioarchaeology
- Plant remains
- Animal remains and artefacts

Services to Industry and Private sector

Health, Biology and Food:

- Musculoskeletal research
- Bone and dental implants
- Soft tissue imaging
- Animal and plant characterization
- Food science

- Materials under mechanical stress
- Energy materials research

The RFATS beamline at a glance

THE DEAL S DEALITHE at a glance			
Photon source	Wavelength shifter (3 T @ 11 mm gap; E _c = 12.5 keV)		
Length	45 m		
Energy range	8 – 50 keV		
Divergence	I.8 mrad (H) \times 0.4 mrad (V)		
Double Multilayer Monochromator	Stripe I: $[Ru/B_4C]_{65}$; $d = 4 \text{ nm}$; $dE/E \approx 3\%$ Stripe 2: $[W/B_4C]_{100}$; $d = 3 \text{ nm}$; $dE/E \approx 3\%$		
Detectors	$I \times - 10 \times$ optics; 2560 \times 2160 sCMOS camera		
Voxel size	6.5 – 0.65 μm		
Modalities	Filtered white beamMonochromatic (with DMM)		

Raytracing

- Repository of the beamline raytracing [1] using OASYS toolsuite [2] and Jupyter
 - Design and verification of beamline optics
 - Characterization of heat load on critical components
 - Beamline performance
 - DMM operation and multilayers specs

Flat field @ 43 m

- [W/B₄C]₁₀₀ DMM stripe @ 45 keV
- Meridional slope error: 0.1 0.5 μrad

The quality of the flat field deteriorates for mirror slope errors > 0.2 µrad!

Expected beam properties at sample

Flux density: 8×10⁹ Ph/s/mm²/0.1%BW White beam:

beam size @ $43m:75\times15$ mm²

With DMM stripe 2 Flux density: I×I0¹¹ Ph/s/mm² @ 25 keV Beam size @ 43 m: 68×8 mm²

Transverse coherence length is improved closing the F-E slits:

Beamline	Length	Source size FWHM	Coh. length
ID 19, ESRF	145 m	25 μm	720.0 μm
TOMCAT, SLS	34 m	I40 μm	30.2 µm
SYRMEP, Elettra	23 m	197 μm	14.5 μm
BEATS	43 m	1978 μm	2.7 µm
BEATS, F-E slits: 0.5 mm (H)	35 m	500 μm	8.5 µm

References

- BEATS Technical Design Report raytracing, doi:10.5281/zenodo.3988604.
- L. Rebuffi and M. Sanchez del Rio, "OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments," Proc.SPIE 10388: 130080S (2017).
- C. Muñoz Pequeño et al., "Development of a Linear Fast Shutter for BM05 at ESRF and BEATS at SESAME", presented at MEDSI'20, Chicago, USA, July 2021. [4] F. Mokoena et al., "An FEA Investigation of the Vibration Response of the BEATS Detector Stage", presented at MEDSI'20, Chicago, USA, July 2021.

SOLARIS

