Metropolis

A modern beamer theme

Matthias Vogelgesang

April 20, 2019

Center for modern beamer themes

- 1. Introduction
- 2. Title formats
- 3. Elements
- 4. Conclusion

Introduction

Metropolis

The **metropolis** theme is a Beamer theme with minimal visual noise inspired by the hsrm Beamer Theme by Benjamin Weiss.

Enable the theme (in LATEX) by loading

```
\documentclass{beamer}
\usetheme{metropolis}
```

Note, that you have to have Mozilla's *Fira Sans* font and XeTeX installed to enjoy this wonderful typography.

In R you can of course use this package directly, see its documentation.

Sections

Sections group slides of the same topic

Elements

for which metropolis provides a nice progress indicator . . .

Title formats

Metropolis title formats

metropolis supports 4 different title formats:

- Regular
- SMALL CAPS
- ALL SMALL CAPS
- ALL CAPS

They can either be set at once for every title type or individually.

Elements

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic (also Italic)
- SMALL CAPS
- Bold (also Bold)
- Bold Italic (also Italic)
- Bold Small Caps
- Monospace
- Monospace Italic
- Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatoes

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

Animation (using LTEX)

This is important

This uses LATEX for aninmation. The next slides uses RMarkdown

Animation (using LETEX)

- This is important
- Now this

This uses \LaTeX for animmation. The next slides uses RMarkdown

Animation (using LETEX)

- This is important
- Now this
- And now this

This uses \LaTeX for animmation. The next slides uses RMarkdown

Animation (using LTEX)

- This is really important
- Now this
- And now this

This uses LATEX for aninmation. The next slides uses RMarkdown

Animation (using RMarkdown, plus one LaTeX trick)

This is important

Animation (using RMarkdown, plus one LeteX trick)

- This is important
- Now this

Animation (using RMarkdown, plus one LeteX trick)

- This is important
- Now this
- And now this

Animation (using RMarkdown, plus one LaTeX trick)

- This is really important
- Now this
- And now this

Figures (using LATEX)

Figure 1: Rotated square from texample.net.

This used a $\ensuremath{\text{LATE}} X$ feature. All RMarkdown features are also at our disposal.

Tables (using LETEX))

Table 1: Largest cities in the world (source: Wikipedia)

City	Population				
Mexico City	20,116,842				
Shanghai	19,210,000				
Peking	15,796,450				
Istanbul	14,160,467				
Peking	15,796,450				

This used a LATEX feature. All RMarkdown features are also at our disposal.

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Defaul:	t
---------	---

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

The right side uses the \metroset{block=fill} option. Blocks can also used in Markdown using ### (if slide-level=2).

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots with tikz

Bar charts with tikz

Quotes

Veni, Vidi, Vici

References

Some references [Knuth, 1992, Graham et al., 1989, Simpson, 2003, Erdős, 1995, Greenwade, 1993]

allowframebreaks is not used or needed, also changed \subset to \subset and defaulted natbib to option [round].

Conclusion

Summary

Get the source of this theme and the demo presentation from

https://github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Source and documentation for the RMarkdown variant are at https://github.com/eddelbuettel/binb.

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

Calling \appendix currently leads to an error in when using binb.

R Appendix: R Figure Example

The following code generates the plot on the next slide (taken from help(bxp) and modified slightly):

R Appendix: R Figure Example

Example from help(bxp)

R Appendix: R Table Example

A simple knitr::kable example:

Table 2: (Parts of) the mtcars dataset

	mpg	cyl	disp	hp	drat	wt	qsec	VS
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0

References

- P. Erdős. A selection of problems and results in combinatorics. In *Recent trends in combinatorics (Matrahaza, 1995)*, pages 1–6. Cambridge Univ. Press, Cambridge, 1995.
- R. Graham, D. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA, 1989.
- G. D. Greenwade. The Comprehensive Tex Archive Network (CTAN). *TUGBoat*, 14(3):342–351, 1993.
- D. Knuth. Two notes on notation. *Amer. Math. Monthly*, 99: 403–422, 1992.

H. Simpson. Proof of the Riemann Hypothesis. preprint (2003), available at http://www.math.drofnats.edu/riemann.ps, 2003.