Ozone Air Quality in Nigeria: a View from Space

Presented on behalf of:

E. A. Marais (emarais@seas.harvard.edu),

D. J. Jacob, K. Wecht, C. Lerot, L. Zhang, K. Yu, T. P. Kurosu, K. Chance

ENVISAT satellite:

 CH_{Λ}

MetOp-A satellite: CHOCHO

Simone Tilmes (UCAR)

West Africa Air Quality Workshop
June 2014

Sources of Pollution in Nigeria

Large and growing population with inefficient energy mix and wasted natural gas

Population distribution in 2000

Energy Mix in 2010

[EIA, 2012]

Vehicle Emissions

[Assamoi et al., 2010]

[EIA, 2012]

[Ologunorisa, 2001]

Sources of Pollution in Nigeria

Seasonal enhancements from open fires (Dec-Feb) and soils (Jun-Aug)

OMI tropospheric NO₂ in 2005-2007 [10¹⁵ molecules cm⁻²]

Meteorological features in each season

Temperature inversion (Harmattan winds)
Severely restricted ventilation

West African Monsoon

Efficient ventilation

Atmospheric Composition in Nigeria

Annual mean satellite data for 2005-2007 at 0.5×0.5° (GOME-2 is 2007 only)

CO and NO₂ are dominated by open fires (but AIRS boundary layer sensitivity is low)

Evaluate **NMVOC emissions** with HCHO and CHOCHO:

NMVOC oxidation → HCHO

Aromatic oxidation → CHOCHO

Niger Delta CH₄ and HCHO hotpots indicate extensive gas leakage, venting and flaring.

Lagos CHOCHO and HCHO hotspots from reactive aromatics (vehicle and generator emissions)

Constraints on Nigerian Emissions

Satellite observations and AMMA aircraft observations provide constraints on emissions in Nigeria

NMVOC and CO concentrations over Lagos below 1 km on 8 August 2006

Model (2×2.5° simulation) underestimates aromatic, acetaldehyde and higher alkanes.

Model bias is **due to emissions**, rather than dilution or transport (good agreement with CO, acetone and shorter alkanes)

The corrected Nigerian NMVOC emissions are 5.7 Tg C a⁻¹ (a priori emissions =1.6 Tg C a⁻¹)

EDGAR v4.2 CH₄ oil & gas emissions are also increased from 1.7 Tg CH₄ a⁻¹ to 5.5 Tg CH₄ a⁻¹.

Ozone Air Quality Implications

Space-based observations of ozone indicate severe ozone air pollution in Nigeria

Vertical seasonal mean O₃ [ppbv] over Lagos

MOZAIC O_3 data are invaluable for interpreting the vertical distribution of O_3 .

But, surface observations in W. African coastal cities sample clean oceanic air.

High seasonal mean surface O_3 from TES (70 ppbv) and GEOS-Chem (60 ppbv).

DJF mean O₃ [ppbv] in West Africa at 825 hPa

Model reproduces the spatial variability of seasonal mean near-surface O₃ in W. Africa

Use GEOS-Chem to link O₃ air quality with human health

Ozone Air Quality Implications

Values of MDA8 O₃ exceed 80 ppbv in south-central Nigeria in DJF

GEOS-Chem surface mean MDA8 O₃ [ppbv]

Current (2006) MDA8 ozone

Anthropogenic emission contribution to MDA8 O₃ is low (7 ppbv)

Ozone production efficiency (OPE) is < 5 mol/mol in DJF compared with 9 mol/mol for the US in July

Future (2050) MDA8 ozone

1) RCP Scenario:

Modest economic growth and strict emission controls

4- fold increase in NO_x emissions

5-6 ppbv increase in MDA8 O₃

2) Alternate Scenario:

Rapid economic growth and no emission controls

15-fold increase in NO_x emissions

14-16 ppbv increase in MDA8 O₃

Concluding Remarks

Space-based observations show high concentrations of formaldehyde, glyoxal, and methane associated with vehicle and back-up generators in Lagos and oil and gas extraction in the Niger Delta.

GEOS-Chem NMVOC and methane a posteriori emissions constrained with satellite and aircraft observations are at least a factor of 3 higher than a priori emissions.

Severe ozone air pollution in winter is seen with the space-based Tropospheric Emission Spectrometer and reproduced in GEOS-Chem.

According to GEOS-Chem anthropogenic emissions in Nigeria are only responsible for 7 ppbv MDA8 O_3 .

GEOS-Chem MDA8 O₃ exceeds 80 ppbv in winter and future economic development that includes a transition to more efficient energy sources would add to it.

Acknowledgements

FUNDING:

RESEARCH GROUP:

Atmospheric Chemistry Modeling Group (acmg.seas.harvard.edu)

Simone Tilmes for presenting on my behalf.

For questions or comments on this research please contact:

Eloïse Marais

emarais@seas.harvard.edu

Supplementary Slide

GEOS-Chem atmospheric composition after applying emissions corrections

