

**BM40A1500 DATA STRUCTURES AND ALGORITHMS** 

#### **ALGORITHM DESIGN PRINCIPLES 2**

2024



## ALGORITHM DESIGN PRINCIPLES

- Greedy approach
- Backtracking
  - Branch and bound
- Divide and conquer
- Dynamic programming
- Probabilistic algorithms
  - Las Vegas algorithms
  - Monte Carlo algorithms



- A way to improve the efficiency of any inherently recursive algorithm that repeatedly resolves the same subproblems.
- Steps of utilizing dynamic programming:
  - 1. Find a recursive solution to your problem
  - 2. Identify the subproblems that are redundantly solved many times.
  - 3. Optimize the algorithm by eliminating re-solving of subproblems
    - Storing subproblem results in a table
- The final algorithm can be either recursive or iterative.
  - The iterative form is commonly referred to by the term dynamic programming.



**Example:** In how many ways we can build a tower with the heigh *n* by using blocks with heights of 1, 2, and 3?







- Example: In how many ways we can build a tower with the heigh *n* by using blocks with heights of 1, 2, and 3?
  - towers(n) = towers(n-1) + towers(n-2) + towers(n-3)
  - Can be solved easily using recursion.
  - Very slow due to the repetitive solving of the subproblems with small value of n.
  - Solution using dynamic programming (values from the subproblems stored in a table):









- Knapsack problem (subset sum problem):
  - ❖ find a subset of the *n* items whose sizes exactly sum to the size of the knapsack, if one exist.

$$\sum_{i \in S} k_i = K$$

S: subset of items

- $\star$  E.g If we have 4 items of sizes 3, 8, 7, and 5, and K = 10 there exists a solution (3 + 7 = 10), but if K = 14, there is no solution.
- $\diamond$  Let's denote an instance of the problem as P(n,K)
  - ❖ *n* is the index of the last item (the number of items 1).
  - ❖ K is the size of the knapsack





P(10, 2) $k_i = \{5, 3, 7\}$ 

$$\sum_{i \in S} k_i = 10.3$$

 $k_3 = 2$  is omitted

P(8, 2) $k_i = \{5, 3, 7\}$ 

$$\sum_{i \in S} k_i = 8?$$

 $k_3 = 2$  is included

- ❖ The problem P(n,K) can be divided into simpler subproblems:
  - P(n-1, K) nth item is omitted
  - $P(n-1, K-k_n) -- n$ th item is included
- Can be solved recursively
  - Base cases are those, where there are only one item, or the knapsack has the size of 0.
- To avoid solving the same subproblems multiple times, the solutions can be stored in a table.



6(8'1)

P(8,0) P(5,0)

## **DYNAMIC PROGRAMMING**

P(10, 3)  $k_i = \{5, 3, 7, 2\}$  $\sum_{i \in S} k_i = 10?$ 

P(10, 2) $k_i = \{5, 3, 7\}$ 

 $\sum_{i \in S} k_i = 10?$ 

 $k_3 = 2$  is omitted

P(8, 2) $k_i = \{5, 3, 7\}$ 

 $\sum_{i \in S} k_i = 8?$ 

 $k_3 = 2$  is included

|                   | 0 | 1 | 2 | 3 | 4 | 5   | 6 | 7  | 8 | 9        | 10       |
|-------------------|---|---|---|---|---|-----|---|----|---|----------|----------|
| k <sub>0</sub> =5 | 0 |   | ) |   | - |     | - | 7  |   | -        | )        |
| k <sub>1</sub> =3 | 0 | l | ( | l |   | 0   |   | 7  |   | <b>–</b> | •        |
| k <sub>2</sub> =7 | 0 | - | _ | 0 | 1 | O   | - | l  | O |          |          |
| k <sub>3</sub> =2 | 0 | - | l | 0 |   | 1/0 | _ | 10 | 0 |          | <b>%</b> |

$$S = \{2, 3, 5\}$$
  
 $S = \{2, 3, 5\}$ 



## PROBABILISTIC ALGORITHMS

- Typically, algorithms are defined as set of instructions that are executed deterministically.
- If we relax the definition a bit, we can introduce randomness to our algorithms to:
  - \* reduce the execution time,
  - \* increase the probability of finding a good solution/result within time limits, and
  - \* reduce the probability of a bad case with long running time.
- Especially useful for very difficult problems for which efficient algorithm is not known.



## **MONTE CARLO ALGORITHMS**

- ❖Probabilistic algorithms that do not necessary produce exact (or optimal) result
- ❖But produce some result fast.
- Accuracy or goodness of the result can be typically improved by increasing the computation time.
- \*Example: numerical integration:

$$\int_{a}^{b} f(x) dx$$





## LAS VEGAS ALGORITHMS

- Produce only correct/optimal results (or informs that result was not found),
- But the running time is not guaranteed.
- Typically, the running time is restricted (e.g., maximum number of iterations)
   The result may not be found at all.
- Probability of finding the (correct) result can be increased by increasing the maximum running time



#### LAS VEGAS ALGORITHMS

Example: prime factorization of large numbers

```
prime_factors = []
for i = 1 to N
    x = random_prime_number()
    if mod(number, x) == 0
        prime_factors = [prime_factors, x]
        number = number / x
        if isprime(number)
            prime_factors = [prime_factors, number]
            return prime_factors
```

