Differentiate $y = e^{\frac{x}{4}}$

Find $f^{i}(x)$ if $f(x) = cscx^2$

$$f'(x) = (\operatorname{cscx}^2 \operatorname{cotx}^2)(2x)$$

= $-2x \operatorname{cscx}^2 \operatorname{cotx}^2$

$$\frac{d}{dx}[csc^2x] = (2csx)(-cscx cotx)$$

$$= -2csc^2x cotx$$

Find the derivative of
$$f(t) = cos^2 t^3$$
 = $(cost^3)^2$

$$f'(t) = 2(cost^2)(-sint^3)(3t^2)$$

$$= (cost^2)(cost^3)(3t^2)$$

Derivative of the Natural Logarithmic Function

Let u be a differentiable function of x.

$$\frac{d}{dx}[lnx] = \frac{1}{X}$$

$$\frac{d}{dx}[lnu] = \frac{1}{u} \cdot u'$$

Examples: Differentiating the Natural Logarithm Function

Find y' if $y = ln(2x^3)$

$$y' = \frac{1}{2x^3} \cdot 6x^2 = \frac{3}{x}$$

Find
$$\frac{dy}{dx}$$
 if $y = x^2 lnx$

$$\frac{dy}{dx} = x^2 \cdot \frac{1}{x} + 2x \ln x = x + 2x \ln x$$

$$= x(1 + 2 \ln x)$$

Differentiate
$$y = [\ln(x+5)]^2$$

Differentiate
$$f(x) = \ln(x-3)^2$$

$$f'(x) = \frac{1}{(x-3)^2} \cdot 2(x-3) \cdot 1$$

$$= \frac{2}{x-3}$$
Find $f'(x)$ if $f(x) = \ln \frac{x^3(x-3)}{\sqrt{x^2-9}} = 3 \ln x + \ln(x-3) - \frac{1}{2} \ln(x^2-9)$

$$f'(x) = \frac{3}{x^2} + \frac{1}{x-3} - \frac{x}{x^2-9}$$

Definition of Exponential Function to Base a

If a is a positive real number $(a \neq 1)$ and x is any real number then:

Definition of Logarithmic Function to Base a

If a is a positive real number $(a \neq 1)$ and x is any positive real number then:

Sw

Derivatives for Bases other than e

$$\frac{d}{dx}[a^{x}] = \frac{d}{dx} \left[e^{(\ln a)x} \right] = e^{(\ln a)x} - \ln a = a^{x} \cdot \ln a$$

$$\frac{d}{dx}[a^{x}] = (\ln a)a^{x}$$

$$\frac{d}{dx}[\log_{a}x] = \frac{d}{dx} \left[\frac{1}{\ln a} \cdot \ln x \right] = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$\frac{d}{dx} \left[\log_{a}x \right] = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$\frac{d}{dx} \left[\log_{a}x \right] = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$\frac{d}{dx} \left[\log_{a}x \right] = \frac{1}{\ln a} \cdot \frac{1}{x}$$

Examples: Differentiating Functions with Bases Other than $oldsymbol{e}$

Find the derivative of each function

$$y = 7^{x}$$

$$y' = (1 \wedge 7) \cdot 7^{x}$$

$$y = 7^{\frac{x}{2}}$$

$$y = (\ln 7)(7^{\frac{x}{2}})(\frac{1}{2})$$

$$y = \log_4 \csc x$$

 $y' = \frac{1}{\ln 4} \cdot \frac{1}{\csc x} - \frac{\cot x}{\ln 4}$

$$y = \log_{5} \frac{x+3}{(2x-1)^{2}} = \log_{5} (x+3) - 2 \log_{5} (2x-1)$$

$$= \left(\frac{1}{\ln 5}\right) \left(\frac{1}{x+2}\right) - \left(\frac{2}{\ln 5}\right) \left(\frac{1}{2x-1}\right) (2)$$

$$= \frac{1}{\ln 5} \left(\frac{1}{x+3} - \frac{1}{2x-1}\right)$$

$$= \frac{1}{\ln 5} \left(\frac{2x-1}{x+3} - \frac{1}{2x-1}\right)$$

$$= \frac{1}{\ln 5} \left(\frac{2x-1}{x+3} - \frac{1}{2x-1}\right)$$

$$= \frac{1}{\ln 5} \left(\frac{2x-1}{x+3} - \frac{1}{2x-1}\right)$$