

VERTVES

AN INTEGRATED PACKAGE FOR DESIGN, DRAFTING & M.T.O OF VERTICAL VESSEL FOUNDATION

Version 6.0.0-evaluation-1

VALIDATION REPORT

В	02-09-	ISSUED FOR CONSTRUC-	VS	RS	DA
	2022	TION			
A	02-09-	ISSUED FOR COMMENTS	VS	RS	DA
	2022				
Rev.	Date	Description	Prepared	Approved	Review
No.			by	by	by

Contents

1	Default Values	3
2	Inputs	4
3	Computed Wind Forces	6
4	Computed Seismic Forces	7
5	Load combinations	8
6	Base Pressure Calculations	9
7	Final Base Pressure Calculations	22
8	Moment R/F Calculations	32
9	Shear R/F Calculations	38
10	Pedestal Design	41

1 Default Values

Following values are taken as default by the software, unless user changes them in the interface.

Common Parameters			
Concrete Grade (f_{ck})	M30		
Steel Grade (f_u)	Fe 500		
Code	Indian(LSD)		
Shape of Pedestal	Octagon		
Shape of Footing / Pile Cap	Octagon		
Minimum Thickness of Footing	300		
Minimum Thickness of Pile Cap	500		
Density	<u> </u>		
Concrete (γ_{conc})	2.5 T/m^3		
Soil Density (γ_{dry})	1.8 T/m^3		
Soil Excl. Water (γ_{sat})	0.8 T/m^3		
Grout Thickness (C _{grt})	30 mm		
Concrete Clear Covers			
$Top (C_{top})$	50 mm		
Side (Pedestal / Footing / Pile Cap) (C_{sid})	50 mm		
Bottom (Footing)(C_{bot})	50 mm		
Factor of Safety			
Factor of Safety Sliding (FOSS)	2.0		
Factor of Safety Overturning (FOSO)	1.5		
Partial Safety Factor for LSD			
Without Wind / Seismic	1.5		
With Wind Seismic	1.2		
Pile Foundation			
Min. Pile Diameter	300 mm		
Min. Pile to Pile Distance	300 mm		
Max. Pile to Pile Distance	2000 mm		
Min. Distance from Pile Edge to Pile-Cap edge	250 mm		
Min. Pile Cap bottom Reinforcement	!		

2 Inputs

Levels

Top of Pedestal =100.3 m Finished Ground =100 m Natural Ground =98.6 m Bottom of Foundation =98 m Water Table =99.5 m

Minimum Thickness of Footing / Pile Cap (mm)=0.35 Shape of Pedestal =Octagon Minimum Size of Pedestal (m) =1.65 Shape of Footing / Pile Cap =Octagon Grout Thickness (C_{grt}) =30 mm

 $\begin{array}{l} Concrete \ Clear \ Covers \\ Top \ (C_{top}) = & 50 \ mm \\ Side \ (Pedestal \ / \ Footing \ / \ Pile \ Cap) \ (C_{sid}) = & 50 \ mm \\ Bottom \ (Footing)(C_{bot}) = & 50 \ mm \\ \end{array}$

Concrete Grade (f_{ck}) =M30 $(30N/mm^2)$ Steel Grade (f_y) =Fe 500 $(500N/mm^2)$ Code =Indian(LSD)

Density

Concrete $(\gamma_{\rm conc}) = 2.5 \text{ T/m}^3$ Soil Density $(\gamma_{\rm dry}) = 1.8 \text{ T/m}^3$ Soil Excl. Water $(\gamma_{\rm sat}) = 0.8 \text{ T/m}^3$

Allowable Net Bearing Pressure =16 T/m² Net SBC Increase (DBE) =50.0 % Net SBC Increase (MCE) =100.0 % Net SBC Increase (Wind) =25.0 %

Coefficient of friction between soil and concrete (μ) =0.32

Factor of Safety

Refer load combination details for FOSO, FOSS specific to each Load Combination.

Partial Safety Factor for LSD = Without Wind / Seismic =1.5 With Wind Seismic =1.2

Inputs for Vertves generated Equipment Loads

Wind

Basic Wind Speed $(V_b) = 44 \text{ T/m}2$

 $K_1 = 1$

 K_2 (Terrain Category) = 1

 $K_3 = 1$

 $K_4 = 1$

 $K_{\rm d} = 1$

 $K_a = NA$

 $K_c = NA$

Seismic

Seismc Coeff (DBE) = 0.25

Seismc Coeff (MCE) = 0.35

Vessel Segment Information

Seismic C.G. of the Vessel = 104 m

No.	Vessel Diameter	Shape Factor	Top Level	Bottom Level
1	1.5	0.85	112.10	105.5
2	1.8	0.9	105.5	103.5
3	2.1	0.95	103.5	100.3

Equipment Weights

Empty $(W_e) = 3.5 \text{ T}$

Operating $(W_o) = 11 \text{ T}$

Hydrotest $(W_h) = 13.2 \text{ T}$

Shear	Moment
$H_{\rm w} = 1.54 {\rm T}$	$M_{\rm w} = 5.73~{\rm Tm}$
$H_{\rm dbe} = 2.54 {\rm T}$	$M_{\rm dbe} = 9.26 \; \mathrm{Tm}$
$H_{\rm mce} = 5.69 \text{ T}$	$M_{\rm mce} = 10.54 \; \mathrm{Tm}$
	$H_{\rm w} = 1.54 \text{ T}$ $H_{\rm dbe} = 2.54 \text{ T}$

3 Computed Wind Forces

Number of Segments $(N_{\text{segments}}) = 3$

Top most Point (Point_{top}) = 112.1

Bottom most Point (Point_{bottom}) = 100.3

Height of vessel (Ht_{vessel}) = 12.1

BreakPoints:

0. 0.3

1. 3.5

2. 5.5

3. 10

4. 12.1

Wind Calculation Factors

Basic Wind Speed $(V_b) = 44$

Factor 1 $(K_1) = 1$

Terrain Category = 1

Factor $3 (K_3) = 1$

Factor 4 $(K_4) = 1$

Factor $(K_d) = 1$

Calculation for part: from 0.3 to 3.5

Factor 2 $(K_2) = 1.05$

Design Speed $(V_{\text{wind}}) = V_b * K_1 * K_2 * K_3 * K_4 = 44 * 1 * 1.05 * 1 * 1 = 46.2 m/s$

Design Pressure $(P_{\text{wind}}) = 0.6 * V_{\text{wind}}^2 * K_{\text{d}} = 0.6 * 46.2^2 * 1 = 1280.664 N/m^2$

Calculation for part: from 3.5 to 5.5

Factor 2 $(K_2) = 1.05$

Design Speed $(V_{\text{wind}}) = V_b * K_1 * K_2 * K_3 * K_4 = 44 * 1 * 1.05 * 1 * 1 = 46.2 m/s$

Design Pressure $(P_{\text{wind}}) = 0.6 * V_{\text{wind}}^2 * K_{\text{d}} = 0.6 * 46.2^2 * 1 = 1280.664 N/m^2$

Calculation for part: from 5.5 to 10

Factor 2 (K_2) = 1.05

Design Speed $(V_{\text{wind}}) = V_b * K_1 * K_2 * K_3 * K_4 = 44 * 1 * 1.05 * 1 * 1 = 46.2 m/s$

Design Pressure $(P_{\text{wind}}) = 0.6 * V_{\text{wind}}^2 * K_{\text{d}} = 0.6 * 46.2^2 * 1 = 1280.664 N/m^2$

Calculation for part: from 10 to 12.1

Factor 2 $(K_2) = 1.067$

Design Speed $(V_{\text{wind}}) = V_b * K_1 * K_2 * K_3 * K_4 = 44 * 1 * 1.067 * 1 * 1 = 46.939 m/s$

Design Pressure $(P_{\text{wind}}) = 0.6 * V_{\text{wind}}^2 * K_{\text{d}} = 0.6 * 46.939^2 * 1 = 1321.973 N/m^2$

Breakpoints-wise Calculations for all the Segments

Segment no: 1 from 0.3 to 3.5

Height $(H_{segment}) = 3.5 - 0.3 = 3.2m$

Diameter $(D_{segment}) = 2.1m$

Shape Factor $(S_{\text{segment}}) = 0.95$

Area (A_{segment}) = S_{segment} * D_{segment} * H_{segment} = 0.95 * 2.1 * 3.2 = 6.384 m²

Wind Shear on segment (Shear_{seg}) = $A_{\text{segment}} * P_{\text{wind}} = 6.384 * 1280.664 / 9810 = 0.833T$


```
Lever arm (L_{segment}) = 1.6m
```

Wind moment on segment (
$$M_{seg}$$
) = Shear_{wind} * $L_{segment}$ =0.833 * 1.6 = 1.333T-m

Segment no: 2 from 3.5 to 5.5

Height (
$$H_{\text{segment}}$$
) = 5.5 - 3.5 = 2m

Diameter (
$$D_{\text{segment}}$$
) = 1.8m

Shape Factor
$$(S_{segment}) = 0.9$$

Area (A_{segment}) = S_{segment} * D_{segment} * H_{segment} = 0.9 * 1.8 * 2 =
$$3.24$$
m²

Wind Shear on segment (Shear_{seg}) =
$$A_{segment} * P_{wind} = 3.24 * 1280.664 / 9810 = 0.423T$$

Lever arm
$$(L_{\text{segment}}) = 4.2 \text{m}$$

Wind moment on segment
$$(M_{seg}) = Shear_{wind} * L_{segment} = 0.423 * 4.2 = 1.776T-m$$

Segment no: 3 from 5.5 to 10

Height
$$(H_{segment}) = 10 - 5.5 = 4.5 m$$

Diameter
$$(D_{\text{segment}}) = 1.5 \text{m}$$

Shape Factor
$$(S_{\text{segment}}) = 0.85$$

Area
$$(A_{\text{segment}}) = S_{\text{segment}} * D_{\text{segment}} * H_{\text{segment}} = 0.85 * 1.5 * 4.5 = 5.738 \text{m}^2$$

Wind Shear on segment (Shear_{seg}) =
$$A_{\text{segment}} * P_{\text{wind}} = 5.738 * 1280.664 / 9810 = 0.749T$$

Lever arm
$$(L_{segment}) = 7.45m$$

Wind moment on segment
$$(M_{seg}) = Shear_{wind} * L_{segment} = 0.749 * 7.45 = 5.58T-m$$

Segment no: 4 from 10 to 12.1

Height
$$(H_{\text{segment}}) = 12.1 - 10 = 2.1 \text{m}$$

Diameter
$$(D_{\text{segment}}) = 1.5 \text{m}$$

Shape Factor
$$(S_{\text{segment}}) = 0.85$$

Area
$$(A_{\text{segment}}) = S_{\text{segment}} * D_{\text{segment}} * H_{\text{segment}} = 0.85 * 1.5 * 2.1 = 2.678 \text{m}^2$$

Wind Shear on segment (Shear
$$_{\rm seg})$$
 = $A_{\rm segment}$ * P $_{\rm wind}$ =2.678 * 1321.973/ 9810 = 0.361T

Lever arm $(L_{\text{segment}}) = 10.75 \text{m}$

Wind moment on segment
$$(M_{seg}) = Shear_{wind} * L_{segment} = 0.361 * 10.75 = 3.879T-m$$

Total Wind Shear $(Shear_{wind}) = \sum Shear_{seg} = 2.366T$

Total Wind Moment
$$(Moment_{wind}) = \sum M_{seg} = 12.569T - m$$

Factored Wind Shear $(Shear_{wind}) * 1.2 = 2.839T$

Factored Wind Moment ($Moment_{wind}$) * 1.2 = 15.083T - m

4 Computed Seismic Forces

Lever arm $(L_{seis}) = CG - TOP = 104 - 100.3 = 3.7m$

Factored Seismic Shear DBE = Seis Coeff DBE * Dead Wt * 1.05 = 0.25 * 11 = 2.888T

Factored Seismic Shear MCE = Seis Coeff MCE * Dead Wt * 1.05 = 0.35 * 11 = 4.043T

Factored Seismic Moment DBE = L_{seis} * Seismic Shear DBE = 3.7 * 2.888 = 10.684T-m

Factored Seismic Moment MCE = $L_{\rm seis}$ * Seismic Shear MCE = 3.7 * 4.043 = 14.957T-m

5 Load combinations

Load combinations generated from Input data. All loadings at top of pedestal.

Load Combination No. 1: 1 * Operating Vertical Load (p)= 11 Horizontal Load (v)= 0 Moment (m)= 0 Factor of Safety Overturning (FOSO) =1.5

Factor of Safety Sliding (FOSO) =2.0

Load Combination No. 2 : 1 * Operating + 1 * Wind Vertical Load (p)= 11

Horizontal Load (v)= 1.54

Moment (m) = 5.73

Factor of Safety Overturning (FOSO) =1.5

Factor of Safety Sliding (FOSO) =2.0

Load Combination No. 3 : 1 * Empty + 1 * Wind

Vertical Load (p)= 3.5

Horizontal Load (v)= 1.54

Moment (m)= 5.73

Factor of Safety Overturning (FOSO) =1.5

Factor of Safety Sliding (FOSO) =2.0

Load Combination No. 4 : 1 * Hydrotest (Field) + 0.25 * Wind

Vertical Load (p)= 13.20

Horizontal Load (v)= 0.3850

Moment (m) = 1.4325

Factor of Safety Overturning (FOSO) =1.5

Factor of Safety Sliding (FOSO) =2.0

Load Combination No. 5 : 1 * Operating + 1 * Seismic DBE

Vertical Load (p)= 11

Horizontal Load (v)= 2.54

Moment (m)= 9.26

Factor of Safety Overturning (FOSO) =1.5

Factor of Safety Sliding (FOSO) =2.0

Load Combination No. 6 : 1 * Operating + 1 * Seismic MCE

Vertical Load (p)= 11

Horizontal Load (v)=5.69

Moment (m)= 10.54

Factor of Safety Overturning (FOSO) =1

Factor of Safety Sliding (FOSO) =1

6 Base Pressure Calculations

(Note: D_f specified here is medium diagonal but as longest diagonal is used for base pressure calculations. D has been adjusted at various places by multiplying by 1.0824 to get the required dimension.)

Footing

$$\begin{split} & Area \; factor(F_{area}) = 0.828427 \\ & Section \; Modulus \; factor \; (n\text{-}n \; axis)(F_{smnn}) = 0.101142 \\ & Section \; Modulus \; factor \; (m\text{-}m \; axis)(F_{smmm}) = 0.093443 \end{split}$$

Pedestal

Area factor (P_{area})= 0.828427 Section Modulus factor (P_{sm}) = 0.101142

OCTAGON NOMOGRAPH

Design calculation for Load Combinations No. = 1

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: Normal

Gross Bearing Pressure $(\sigma_{gross}) = \sigma_{net} + h_n * \gamma_{dry} = 16 + 0.6 * 1.8 = 17.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 1.65 m

Area of Footing $(A_{\rm f})=(F_{\rm area})*(D_{\rm f})^2=0.828*1.65^2=2.255m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 1.65^3 = 0.42m^3$

Shear Force at BOF (V) = 0 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 0 + 0 * (100.3 - 98) = 0T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 2.255 * 2.5 * 0.35 = 1.973T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 *$ (100.3 - 98 - 0.35) = 10.995T

Weight of Soil above Footing $(W_s) = (0.828 * 1.65^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 0T$

Total Structural Weight $(W) = W_f + W_p + W_s = 1.973 + 10.995 + 0 = 12.969T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 12.969 = 23.969T

Eccentricity (e) = M/P = 0/23.969 = 0m

Eccentricity Ratio $(e/D_{\rm f}) = 0/1.65 = 0$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_f) = 0/1.0824 = 0$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1$

 $P_{\text{max}} = P/A + M/Z = 23.969/2.255 + 0/0.42 = 10.627T/m^2$

 $P_{\min} = P/A - M/Z = 23.969/2.255 - 0/0.42 = 10.627T/m^2$

Moment at BOF value too small. Skipping Overturning Check.

Shear at BOF value too small. Skipping Sliding Check.

Contact Area = 2.255 m^2 .

Percentage Contact Area = 2.255 / 2.255 * 100 = 100%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 1.0) * 1.00) * (1.5 - 1.0)$ (98), (0.35)) = 1.184T

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 1.0) *$

98 - 0.35) = 8.401T

Weight of Soil above Footing $(W_{swt}) = (0.828*(1.65*1.65)-0.828*(1.65*1.65))*((100-99.5)*1.8+(99.5)*1.9+(9$ -98 - 0.35*(0.8) = 0T

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 1.184 + 8.401 + 0 = 9.585T$

Validation Report for Vertves 6.0.0-evaluation-1

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 9.585 = 20.585T

Eccentricity (e_{wt}) = $M_{wt}/P_{wt} = 0 / 20.585 = 0 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0 / 1.65 = 0$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0/1.0824 = 0$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1$

 $P_{max} = P/A + M/Z = 20.585 / 2.255 + 0 / 0.42 = 9.127 T/m^2$

 $P_{min} = P/A - M/Z = 20.585 / 2.255 - 0 / 0.42 = 9.127 T/m2$

Moment at BOF value too small. Skipping Overturning Check.

Shear at BOF value too small. Skipping Sliding Check.

Contact Area = 2.255 m^2 .

Percentage Contact Area = 2.255 / 2.255* 100 = 100%.

Bearing Check Calculation Finished with Finalized foundation size 1.65 m

Design calculation for Load Combinations No. = 2

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: Wind

Gross Bearing Pressure $(\sigma_{gross}) = (1+25.0/100)*\sigma_{net} + h_n * \gamma_{dry} = (1+25.0/100)16 + 0.6*1.8 = 21.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 1.955 m

Area of Footing $(A_f) = (F_{\text{area}}) * (D_f)^2 = 0.828 * 1.955^2 = 3.166m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 1.955^3 = 0.698m^3$

Shear Force at BOF (V) = 1.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 5.73 + 1.54 * (100.3 - 98) = 9.272T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 3.166 * 2.5 * 0.35 = 2.77T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 1.955^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 2.705T$

Total Structural Weight $(W) = W_f + W_p + W_s = 2.77 + 10.995 + 2.705 = 16.471T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 16.471 = 27.471T

Eccentricity (e) = M/P = 9.272/27.471 = 0.338m

Eccentricity Ratio $(e/D_{\rm f}) = 0.338/1.955 = 0.173$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.173/1.0824 = 0.16$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 2.379$

 $P_{\text{max}} = P/A + M/Z = 27.471/3.166 + 9.272/0.698 = 21.956T/m^2$

 $P_{\min} = P/A - M/Z = 27.471/3.166 - 9.272/0.698 = -4.604T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.379 * 27.471/3.166 = 20.638T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (27.471 * 1.955/2)/9.272 = 2.896.

Sliding FOS = $(\mu * P)/H = 27.471 * 0.32/1.54 = 5.708$.

Contact Area = 3.053 m^2 .

Percentage Contact Area = 3.053 / 3.166 * 100 = 96.407%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 1.955 * 1.955 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 1.0) * 1.955 * (2.5 * (0) + (2.5 - 1.0) * (2.5 + 1.0)$

(98), (0.35) = 1.662T

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 1.0) *$ 98 - 0.35) = 8.401T

Weight of Soil above Footing $(W_{swt}) = (0.828*(1.955 * 1.955)-0.828*(1.65 * 1.65))*((100 - 1.955)-0.828*(1.65 * 1.65))*((100 - 1.955)-0.828*(1.65 * 1.65))*((100 - 1.955)-0.828*(1.65 * 1.65))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.65))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955))*((100 - 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.65 * 1.955)-0.828*(1.95 *$ 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 1.658T

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 1.662 + 8.401 + 1.658 =$ 11.721T

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 11.721 = 22.721T

Eccentricity (e_{wt}) = M_{wt}/P_{wt} = 9.272 / 22.721 = 0.408 m

Eccentricity Ratio $(e_{wt}/D_f) = 0.408 / 1.955 = 0.209$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.209/1.0824 = 0.209$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 2.927$

 $P_{\rm max} = P/A + M/Z = 22.721 \; / \; 3.166 + 9.272 \; / \; 0.698 = 20.456 \; T/m2$

 $P_{min} = P/A - M/Z = 22.721 / 3.166 - 9.272 / 0.698 = -6.104 T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.927 * 22.721/3.166 = 21.005T/m2$

 $P_{\min} = 0 \text{ T/m2}$

Overturnign FOS= (P * D/2)/M = 22.721 * 1.955/2/9.272 = 2.395.

Sliding FOS = $(\mu * P)/H = 22.721 * 0.32/1.54 = 4.721$.

Contact Area = 2.356 m^2 .

Percentage Contact Area = 2.356 / 3.166* 100 = 74.413%.

Bearing Check Calculation Finished with Finalized foundation size 1.955 m

Design calculation for Load Combinations No. = 3

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: Wind

Gross Bearing Pressure $(\sigma_{gross}) = (1+25.0/100)*\sigma_{net} + h_n * \gamma_{dry} = (1+25.0/100)16 + 0.6*1.8 = 21.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 2.035 m

Area of Footing $(A_f) = (F_{\text{area}}) * (D_f)^2 = 0.828 * 2.035^2 = 3.431m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 2.035^3 = 0.787m^3$

Shear Force at BOF (V) = 1.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 5.73 + 1.54 * (100.3 - 98) = 9.272T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 3.431 * 2.5 * 0.35 = 3.002T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.035^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 3.491T$

Total Structural Weight $(W) = W_f + W_p + W_s = 3.002 + 10.995 + 3.491 = 17.488T$

Total Vertical Load at BOF (P) = axial Load + W = 3.5 + 17.488 = 20.988T

Eccentricity (e) = M/P = 9.272/20.988 = 0.442m

Eccentricity Ratio $(e/D_{\rm f}) = 0.442/2.035 = 0.217$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.217/1.0824 = 0.201$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 2.865$

 $P_{\text{max}} = P/A + M/Z = 20.988/3.431 + 9.272/0.787 = 17.892T/m^2$

 $P_{\min} = P/A - M/Z = 20.988/3.431 - 9.272/0.787 = -5.657T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.865 * 20.988/3.431 = 17.526T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (20.988 * 2.035/2)/9.272 = 2.303.

Sliding FOS = $(\mu * P)/H = 20.988 * 0.32/1.54 = 4.361$.

Contact Area = 2.726 m^2 .

Percentage Contact Area = 2.726 / 3.431 * 100 = 79.446%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.035 * 2.035 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 -$

Validation Report for Vertves 6.0.0-evaluation-1

(98), (0.35)) = 1.801T

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.035*2.035)-0.828*(1.65*1.65))*((100-99.5)*1.8+(99.5-98-0.35)*0.8) = 2.139T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 1.801 + 8.401 + 2.139 = 12.342T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 3.5 + 12.342 = 15.842T

Eccentricity (e_{wt}) = M_{wt}/P_{wt} = 9.272 / 15.842 = 0.585 m

Eccentricity Ratio $(e_{wt}/D_f) = 0.585 / 2.035 = 0.288$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.288/1.0824 = 0.288$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 4.491$

 $P_{\rm max} = P/A + M/Z = 15.842 \; / \; 3.431 + 9.272 \; / \; 0.787 = 16.392 \; T/m2$

 $P_{min} = P/A - M/Z = 15.842 / 3.431 - 9.272 / 0.787 = -7.157 T/m2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 4.491 * 15.842/3.431 = 20.739T/m2$

 $P_{\min} = 0 \text{ T/m2}$

Overturnign FOS= (P * D/2)/M = 15.842 * 2.035/2/9.272 = 1.738.

Sliding FOS = $(\mu * P)/H = 15.842 * 0.32/1.54 = 3.292$.

Contact Area = 3.004 m^2 .

Percentage Contact Area = 3.004 / 3.431*100 = 87.566%.

Bearing Check Calculation Finished with Finalized foundation size 2.035 m

Design calculation for Load Combinations No. = 4

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: ServiceWind

Gross Bearing Pressure $(\sigma_{gross}) = (1 + 25.0/100)\sigma_{net} + h_n * \gamma_{dry} = (1 + 25.0/100)16 + 0.6 * 1.8 = 21.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 1.65 m

Area of Footing $(A_f) = (F_{area}) * (D_f)^2 = 0.828 * 1.65^2 = 2.255m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 1.65^3 = 0.42m^3$

Shear Force at BOF (V) = 0.385 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 1.433 + 0.385 * (100.3 - 98) = 2.318T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 2.255 * 2.5 * 0.35 = 1.973T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 1.65^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 0T$

Total Structural Weight $(W) = W_f + W_p + W_s = 1.973 + 10.995 + 0 = 12.969T$

Total Vertical Load at BOF (P) = axial Load + W = 13.2 + 12.969 = 26.169T

Eccentricity (e) = M/P = 2.318/26.169 = 0.089m

Eccentricity Ratio $(e/D_{\rm f}) = 0.089/1.65 = 0.054$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_f) = 0.054/1.0824 = 0.05$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1.4$

 $P_{\text{max}} = P/A + M/Z = 26.169/2.255 + 2.318/0.42 = 17.125T/m^2$

 $P_{\min} = P/A - M/Z = 26.169/2.255 - 2.318/0.42 = 6.08T/m^2$

Overturnign FOS = (P * D/2)/M = (26.169 * 1.65/2)/2.318 = 9.314.

Sliding FOS = $(\mu * P)/H = 26.169 * 0.32/0.385 = 21.75$.

Contact Area = 2.255 m^2 .

Percentage Contact Area = 2.255 / 2.255 * 100 = 100%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 1.184T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(1.65*1.65)-0.828*(1.65*1.65))*((100-99.5)*1.8+(99.5)*1.9+(9$

-98 - 0.35*(0.8) = 0T

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 1.184 + 8.401 + 0 = 9.585T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 13.2 + 9.585 = 22.785T

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 2.318 / 22.785 = 0.102 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.102 / 1.65 = 0.062$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.062/1.0824 = 0.062$

Pressure Coefficient from Nomograph (μ_{nomo}) = 1.5

 $P_{\text{max}} = P/A + M/Z = 22.785 / 2.255 + 2.318 / 0.42 = 15.625 T/m^2$

 $P_{\rm min} = P/A$ - M/Z = 22.785 / 2.255 - 2.318 / 0.42 = 4.58 T/m2

Overturnign FOS= (P * D/2)/M = 22.785 * 1.65/2/2.318 = 8.11.

Sliding FOS = $(\mu * P)/H = 22.785 * 0.32/0.385 = 18.939$.

Contact Area = 2.255 m^2 .

Percentage Contact Area = 2.255 / 2.255* 100 = 100%.

Bearing Check Calculation Finished with Finalized foundation size 1.65 m

Design calculation for Load Combinations No. = 5

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: DBE

Gross Bearing Pressure $(\sigma_{gross}) = (1 + 50.0/100)\sigma_{net} + h_n * \gamma_{dry} = (1 + 50.0/100)16 + 0.6 * 1.8 = 25.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 2.215 m

Area of Footing $(A_f) = (F_{\text{area}}) * (D_f)^2 = 0.828 * 2.215^2 = 4.064m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 2.215^3 = 1.015m^3$

Shear Force at BOF (V) = 2.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 9.26 + 2.54 * (100.3 - 98) = 15.102T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 4.064 * 2.5 * 0.35 = 3.556T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.215^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 5.373T$

Total Structural Weight $(W) = W_f + W_p + W_s = 3.556 + 10.995 + 5.373 = 19.924T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 19.924 = 30.924T

Eccentricity (e) = M/P = 15.102/30.924 = 0.488m

Eccentricity Ratio $(e/D_{\rm f}) = 0.488/2.215 = 0.22$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.22/1.0824 = 0.204$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 2.865$

 $P_{\text{max}} = P/A + M/Z = 30.924/4.064 + 15.102/1.015 = 22.48T/m^2$

 $P_{\min} = P/A - M/Z = 30.924/4.064 - 15.102/1.015 = -7.263T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.865 * 30.924/4.064 = 21.798T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (30.924 * 2.215/2)/15.102 = 2.268.

Sliding FOS = $(\mu * P)/H = 30.924 * 0.32/2.54 = 3.896$.

Contact Area = 3.153 m^2 .

Percentage Contact Area = 3.153 / 4.064 * 100 = 77.585%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.215 * 2.215 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 1.0) * Math.Min((99.5 - 1.0) * Math.Min((99.5 - 1.0) * (1.0) * (1.5 - 1.0) * (1.5 - 1.0) * (1.5 - 1.0) * (1.5 - 1.0) * (1.5$

Validation Report for Vertves 6.0.0-evaluation-1

(98), (0.35)) = 2.134T

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.215 * 2.215)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 3.292T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.134 + 8.401 + 3.292 = 13.828T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 13.828 = 24.828T

Eccentricity (e_{wt}) = M_{wt}/P_{wt} = 15.102 / 24.828 = 0.608 m

Eccentricity Ratio $(e_{wt}/D_f) = 0.608 / 2.215 = 0.275$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.275/1.0824 = 0.275$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 4.071$

 $P_{max} = P/A + M/Z = 24.828 / 4.064 + 15.102 / 1.015 = 20.98 T/m^2$

 $P_{\rm min} = P/A$ - M/Z = 24.828 / 4.064 - 15.102 / 1.015 = -8.763 T/m2

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 4.071 * 24.828/4.064 = 24.868T/m2$

 $P_{\min} = 0 \text{ T/m2}$

Overturnign FOS= (P * D/2)/M = 24.828 * 2.215/2/15.102 = 1.821.

Sliding FOS = $(\mu * P)/H = 24.828 * 0.32/2.54 = 3.128$.

Contact Area = 3.955 m^2 .

Percentage Contact Area = 3.955 / 4.064* 100 = 97.3%.

Bearing Check Calculation Finished with Finalized foundation size 2.215 m

Design calculation for Load Combinations No. = 6

Net Bearing Pressure $(\sigma_{\rm net}) = 16T/m^2$

Load Combination Classification: MCE

Gross Bearing Pressure $(\sigma_{gross}) = (1+100.0/100)\sigma_{net} + h_n * \gamma_{dry} = (1+100.0/100)16 + 0.6 * 1.8 = 33.08T/m^2$

Water Table elevation >Bottom of Foundation =>Water table effects shall be checked.

Pedestal size $(D_p) = 1.65m$

Initial Footing Size = $Pedestalsize(D_f) = 1.65m$

Incremental Footing Size = 2.565 m

Area of Footing $(A_f) = (F_{area}) * (D_f)^2 = 0.828 * 2.565^2 = 5.45m^2$

Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.093 * 2.565^3 = 1.577m^3$

Shear Force at BOF (V) = 5.69 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 10.54 + 5.69 * (100.3 - 98) = 23.627T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65^2 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 25.253 = 36.253T

Eccentricity (e) = M/P = 23.627/36.253 = 0.652m

Eccentricity Ratio $(e/D_f) = 0.652/2.565 = 0.254$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.254/1.0824 = 0.235$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 3.338$

 $P_{\text{max}} = P/A + M/Z = 36.253/5.45 + 23.627/1.577 = 21.635T/m^2$

 $P_{\min} = P/A - M/Z = 36.253/5.45 - 23.627/1.577 = -8.332T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 3.338 * 36.253/5.45 = 22.2T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (36.253 * 2.565/2)/23.627 = 1.968.

Sliding FOS = $(\mu * P)/H = 36.253 * 0.32/5.69 = 2.039$.

Contact Area = 5.436 m^2 .

Percentage Contact Area = 5.436 / 5.45 * 100 = 99.744%.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 -$

Validation Report for Verties 6.0.0-evaluation-1

(98), (0.35)) = 2.861T

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 17.078T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 17.078 = 28.078T

Eccentricity (e_{wt}) = M_{wt}/P_{wt} = 23.627 / 28.078 = 0.841 m

Eccentricity Ratio $(e_{wt}/D_f) = 0.841 / 2.565 = 0.328$

Long Diagonal Adjustment – Eccentricity Ratio $(e/D_{\rm f}) = 0.328/1.0824 = 0.328$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 5.941$

 $P_{\rm max} = P/A + M/Z = 28.078 \; / \; 5.45 + 23.627 \; / \; 1.577 = 20.135 \; T/m2$

 $P_{\rm min} = P/A$ - M/Z = 28.078 / 5.45 - 23.627 / 1.577 = -9.832 T/m2

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 5.941 * 28.078/5.45 = 30.606T/m2$

 $P_{\min} = 0 \text{ T/m2}$

Overturnign FOS= (P * D/2)/M = 28.078 * 2.565/2/23.627 = 1.524.

Sliding FOS = $(\mu * P)/H = 28.078 * 0.32/5.69 = 1.579$.

Contact Area = 5.45 m^2 .

Percentage Contact Area = 5.45 / 5.45* 100 = 100%.

Bearing Check Calculation Finished with Finalized foundation size 2.565 m

7 Final Base Pressure Calculations

Maximum footing size across all load combinations = 2.565 m Area of Footing $(A_f) = (F_{area}) * (D_f)^2 = 0.828 * 2.565^2 = 5.45m^2$ Section Modulus of Footing $(Z_f) = (F_{smmm}) * (D_f)^3 = 0.101 * 2.565^3 = 0.42m^3$

Design calculation for Load Combinations No. = 1

Shear Force at BOF (V) = 0 T Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 0 + 0 * (100.3 - 98) = 0T - m

Without Water Table

Weight of Footing $(W_{\rm f}) = (A_{\rm f}) * \gamma_{\rm conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$ Weight of Pedestal $(W_{\rm p}) = (A_{\rm p}) * \gamma_{\rm conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 25.253 = 36.253T

Eccentricity (e) = M/P = 0/36.253 = 0m

Eccentricity Ratio $(e/D_f) = 0/2.565 = 0$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1$

Contact Area = 5.45.

Percentage Contact Area = 100.

 $P_{\text{max}} = P/A + M/Z = 36.253/5.45 + 0/1.707 = 6.651T/m^2$ $P_{\text{min}} = P/A - M/Z = 36.253/5.45 - 0/1.707 = 6.651T/m^2$

Moment at BOF value too small. FOS: Infinite.

Shear at BOF value too small. FOS: Infinite.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal (W_{pwt}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401T

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 21.579 = 32.579T

Eccentricity (e_{wt}) = $M_{wt}/P_{wt} = 0 / 32.579 = 0 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0 / 2.565 = 0$

Pressure Coefficient from Nomograph = 1

Contact Area = 5.45.

Percentage Contact Area = 100.

 $P_{max} = P/A + M/Z = 32.579 / 5.45 + 0 / 1.707 = 5.977 T/m2$

 $P_{min} = P/A - M/Z = 32.579 / 5.45 - 0 / 1.707 = 5.977 T/m2$

Moment at BOF value too small. FOS: Infinite.

Shear at BOF value too small. FOS: Infinite.

Calculated Pressure Diagram

Design calculation for Load Combinations No. = 2

Shear Force at BOF (V) = 1.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 5.73 + 1.54 * (100.3 - 98) = 9.272T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 25.253 = 36.253T

Eccentricity (e) = M/P = 9.272/36.253 = 0.256m

Eccentricity Ratio $(e/D_{\rm f}) = 0.256/2.565 = 0.1$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1.65$

Contact Area = 5.45.

Percentage Contact Area = 100.

$$P_{\text{max}} = P/A + M/Z = 36.253/5.45 + 9.272/1.707 = 12.084T/m^2$$

$$P_{\min} = P/A - M/Z = 36.253/5.45 - 9.272/1.707 = 1.219T/m^2$$

Overturnign FOS = (P * D/2)/M = (36.253 * 2.565/2)/9.272 = 5.015.

Sliding FOS = $(\mu * P)/H = 36.253 * 0.32/1.54 = 7.533$.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight (W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 21.579 = 32.579T

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 9.272 / 32.579 = 0.285 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.285 / 2.565 = 0.111$

Pressure Coefficient from Nomograph = 1.775

Contact Area = 5.45.

Percentage Contact Area = 100.

 $P_{max} = P/A + M/Z = 32.579 / 5.45 + 9.272 / 1.707 = 11.41 T/m2$

 $P_{min} = P/A - M/Z = 32.579 / 5.45 - 9.272 / 1.707 = 0.545 T/m2$

Overturnign FOS= (P * D/2)/M = 32.579 * 2.565/2/9.272 = 4.506.

Sliding FOS = $(\mu * P)/H = 32.579 * 0.32/1.54 = 6.77$.

Calculated Pressure Diagram

Design calculation for Load Combinations No. = 3

Shear Force at BOF (V) = 1.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 5.73 + 1.54 * (100.3 - 98) = 9.272T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$ Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 *$

Validation Report for Vertves 6.0.0-evaluation-1

2.5 * (100.3 - 98 - 0.35) = 10.995T

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 3.5 + 25.253 = 28.753T

Eccentricity (e) = M/P = 9.272/28.753 = 0.322m

Eccentricity Ratio $(e/D_{\rm f}) = 0.322/2.565 = 0.126$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1.91$

Contact Area = 5.444.

Percentage Contact Area = 99.885.

 $P_{\text{max}} = P/A + M/Z = 28.753/5.45 + 9.272/1.707 = 10.708T/m^2$

 $P_{\min} = P/A - M/Z = 28.753/5.45 - 9.272/1.707 = -0.157T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 1.91 * 28.753/5.45 = 10.076T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (28.753 * 2.565/2)/9.272 = 3.977.

Sliding FOS = $(\mu * P)/H = 28.753 * 0.32/1.54 = 5.975$.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T$

Total Vertical Load at BOF $(P_{wt}) = axialLoad + (W_{wt}) = 3.5 + 21.579 = 25.079T$

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 9.272 / 25.079 = 0.37 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.37 / 2.565 = 0.144$

Pressure Coefficient from Nomograph = 2.05

Contact Area = 5.339.

Percentage Contact Area = 97.947.

 $P_{max} = P/A + M/Z = 25.079 / 5.45 + 9.272 / 1.707 = 10.034 T/m^2$

 $P_{min} = P/A - M/Z = 25.079 / 5.45 - 9.272 / 1.707 = -0.831 T/m2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.05 * 25.079/5.45 = 9.433T/m2$

 $P_{min} = 0 T/m2$

Overturnign FOS= (P * D/2)/M = 25.079 * 2.565/2/9.272 = 3.469.

Sliding FOS = $(\mu * P)/H = 25.079 * 0.32/1.54 = 5.211$.

Calculated Pressure Diagram

Design calculation for Load Combinations No. = 4

Shear Force at BOF (V) = 0.385 T Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 1.433 + 0.385 * (100.3 - 98) = 2.318T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$ Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 13.2 + 25.253 = 38.453T

Eccentricity (e) = M/P = 2.318/38.453 = 0.06m

Eccentricity Ratio $(e/D_f) = 0.06/2.565 = 0.024$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 1.15$

Contact Area = 5.45.

Percentage Contact Area = 100.

 $P_{\text{max}} = P/A + M/Z = 38.453/5.45 + 2.318/1.707 = 8.413T/m^2$

 $P_{\min} = P/A - M/Z = 38.453/5.45 - 2.318/1.707 = 5.697T/m^2$

Overturnign FOS = (P * D/2)/M = (38.453 * 2.565/2)/2.318 = 21.275.

Sliding FOS = $(\mu * P)/H = 38.453 * 0.32/0.385 = 31.961$.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 1.0) *$

98 - 0.35) = 8.401T

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 13.2 + 21.579 = 34.779T

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 2.318 / 34.779 = 0.067 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.067 / 2.565 = 0.026$

Pressure Coefficient from Nomograph = 1.18

Contact Area = 5.45.

Percentage Contact Area = 100.

 $P_{max} = P/A + M/Z = 34.779 / 5.45 + 2.318 / 1.707 = 7.739 T/m^2$

 $P_{min} = P/A - M/Z = 34.779 / 5.45 - 2.318 / 1.707 = 5.023 T/m^2$

Overturnign FOS= (P * D/2)/M = 34.779 * 2.565/2/2.318 = 19.243.

Sliding FOS = $(\mu * P)/H = 34.779 * 0.32/0.385 = 28.907$.

Calculated Pressure Diagram

Design calculation for Load Combinations No. = 5

Shear Force at BOF (V) = 2.54 T

Moment at BOF (M) = Moment + Shear * (TOG - BOF) = 9.26 + 2.54 * (100.3 - 98) = 15.102T - m

Without Water Table

Weight of Footing $(W_f) = (A_f) * \gamma_{conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$

Weight of Pedestal $(W_p) = (A_p) * \gamma_{conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 25.253 = 36.253T

Eccentricity (e) = M/P = 15.102/36.253 = 0.417m

Eccentricity Ratio $(e/D_f) = 0.417/2.565 = 0.162$

Validation Report for Vertves 6.0.0-evaluation-1

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 2.25$

Contact Area = 5.105.

Percentage Contact Area = 93.665.

 $P_{\text{max}} = P/A + M/Z = 36.253/5.45 + 15.102/1.707 = 15.499T/m^2$

 $P_{\min} = P/A - M/Z = 36.253/5.45 - 15.102/1.707 = -2.196T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.25 * 36.253/5.45 = 14.966T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (36.253 * 2.565/2)/15.102 = 3.079.

Sliding FOS = $(\mu * P)/H = 36.253 * 0.32/2.54 = 4.567$.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{swt}) = (0.828*(2.565 * 2.565)-0.828*(1.65 * 1.65))*((100 - 99.5)*1.8+(99.5 - 98 - 0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 21.579 = 32.579T

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 15.102 / 32.579 = 0.464 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.464 / 2.565 = 0.181$

Pressure Coefficient from Nomograph = 2.46

Contact Area = 4.742.

Percentage Contact Area = 87.01.

 $P_{\text{max}} = P/A + M/Z = 32.579 / 5.45 + 15.102 / 1.707 = 14.825 T/m^2$

 $P_{min} = P/A - M/Z = 32.579 / 5.45 - 15.102 / 1.707 = -2.871 T/m2$

 P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 2.46 * 32.579/5.45 = 14.704T/m2$

 $P_{min} = 0 T/m2$

Overturnign FOS= (P * D/2)/M = 32.579 * 2.565/2/15.102 = 2.767.

Sliding FOS = $(\mu * P)/H = 32.579 * 0.32/2.54 = 4.104$.

Calculated Pressure Diagram

Design calculation for Load Combinations No. = 6

Shear Force at BOF (V) = 5.69 TMoment at BOF (M) = Moment + Shear * (TOG - BOF) = 10.54 + 5.69 * (100.3 - 98) = <math>23.627T - m

Without Water Table

Weight of Footing $(W_{\rm f}) = (A_{\rm f}) * \gamma_{\rm conc} * FdnDepth = 5.45 * 2.5 * 0.35 = 4.769T$ Weight of Pedestal $(W_{\rm p}) = (A_{\rm p}) * \gamma_{\rm conc} * (TOG - BOF - FdnDepth) = 0.828 * 1.65 * 1.65 * 2.5 * (100.3 - 98 - 0.35) = 10.995T$

Weight of Soil above Footing $(W_s) = (0.828 * 2.565^2 - 0.828 * 1.65^2) * 1.8 * (100 - 98 - 0.35) = 9.489T$

Total Structural Weight $(W) = W_f + W_p + W_s = 4.769 + 10.995 + 9.489 = 25.253T$

Total Vertical Load at BOF (P) = axial Load + W = 11 + 25.253 = 36.253T

Eccentricity (e) = M/P = 23.627/36.253 = 0.652m

Eccentricity Ratio $(e/D_f) = 0.652/2.565 = 0.254$

Pressure Coefficient from Nomograph $(\mu_{\text{nomo}}) = 3.42$

Contact Area = 5.416.

Percentage Contact Area = 99.366.

 $P_{\text{max}} = P/A + M/Z = 36.253/5.45 + 23.627/1.707 = 20.494T/m^2$

 $P_{\min} = P/A - M/Z = 36.253/5.45 - 23.627/1.707 = -7.191T/m^2$

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 3.42 * 36.253/5.45 = 22.748T/m^2$

 $P_{\min} = 0 \text{ T/m}^2$

Overturnign FOS = (P * D/2)/M = (36.253 * 2.565/2)/23.627 = 1.968.

Sliding FOS = $(\mu * P)/H = 36.253 * 0.32/5.69 = 2.039$.

With Water Table

Footing upper level = 98 + 0.35 = 98.35

Water table level = 99.5

Water table above footing

Validation Report for Vertves 6.0.0-evaluation-1

Weight of Footing $(W_{\text{fwt}}) = 0.828 * 2.565 * 2.565 * (2.5 * (0) + (2.5 - 1.0) * Math.Min((99.5 - 98), 0.35)) = 2.861T$

Weight of Pedestal $(W_{\text{pwt}}) = 0.828 * 1.65 * (2.5 * (100.3 - 99.5) + (2.5 - 1.0) * (99.5 - 98 - 0.35)) = 8.401\text{T}$

Weight of Soil above Footing $(W_{\rm swt}) = (0.828*(2.565*2.565)-0.828*(1.65*1.65))*((100-99.5)*1.8+(99.5-98-0.35)*0.8) = 5.815T$

Total Structural Weight $(W_{wt}) = (W_{swt}) + (W_{pwt}) + (W_{fwt}) = 2.861 + 8.401 + 5.815 = 21.579T$

Total Vertical Load at BOF (P_{wt}) = axialLoad + (W_{wt}) = 11 + 21.579 = 32.579T

Eccentricity $(e_{wt}) = M_{wt}/P_{wt} = 23.627 / 32.579 = 0.725 \text{ m}$

Eccentricity Ratio $(e_{wt}/D_f) = 0.725 / 2.565 = 0.283$

Pressure Coefficient from Nomograph = 3.935

Contact Area = 5.079.

Percentage Contact Area = 93.188.

 $P_{\rm max} = P/A + M/Z = 32.579 \; / \; 5.45 \; + \; 23.627 \; / \; 1.707 = 19.82 \; T/m2$

 $P_{\rm min} = P/A$ - M/Z = 32.579 / 5.45 - 23.627 / 1.707 = -7.865 T/m2

P_{min} is Negative, Pressure values shall updated using Nomograph coefficients.

 $P_{\text{max}} = \mu_{\text{nomo}} * P/A = 3.935 * 32.579/5.45 = 23.521T/m2$

 $P_{min} = 0 T/m2$

Overturnign FOS= (P * D/2)/M = 32.579 * 2.565/2/23.627 = 1.768.

Sliding FOS = $(\mu * P)/H = 32.579 * 0.32/5.69 = 1.832$.

Calculated Pressure Diagram

Section Used to cal-

culate the moment for reinforcement design.

8 Moment R/F Calculations

Validation Report for Verties 6.0.0-evaluation-1

Calculation for Footing Reinforcements

Calculation for Load Combination 1

For Reinforcement Steel of Grade 500N/mm2, Xumax/d (From IS456)= 0.46

Reinforcement design Depth (for Bottom R/f) = 0.27 m

Reinforcement design Depth (for Top R/f) = 0.27 m

Footing edge Length (a) = 0.751 m

Pedestal Size > Footing size edge Length.

Reinforcement design Width = 1.666 m

Mulim (Bottom R/f) = 119.982 Tm

Mulim (Top R/f) = 119.982 Tm

Without Water Table Case

Moment Pmin side = 0.79 Tm

Moment Pmax side = 0.79 Tm

Design Moment = 0.79 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.022

Minimum R/f required as per User Input. Providing Top R/f = 0.12

With Water Table Case

Moment Pmin side = 0.79 Tm

Moment Pmax side = 0.79 Tm

Design Moment = 0.79 Tm

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.022

Minimum R/f required . Providing Bottom R/f = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12

Calculation for Load Combination 2

Without Water Table Case

Moment Pmin side = -0.114 Tm

Moment Pmax side = 1.693 Tm

Design Moment = 1.693 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.002

Reinforcement received from Quadratic Solver = 0.048

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0

Reinforcement received from Quadratic Solver = 0.003

Minimum R/f provided at Top. = 0

Validation Report for Vertves 6.0.0-evaluation-1

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

With Water Table Case

Moment Pmin side = -0.114 Tm

Moment Pmax side = 1.693 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.002

Reinforcement received from Quadratic Solver = 0.048

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0

Reinforcement received from Quadratic Solver = 0.003

Minimum R/f provided at Top. = 0.12

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12

Calculation for Load Combination 3

Without Water Table Case

Moment Pmin side = -0.624 Tm

Moment Pmax side = -2.298 Tm

Design Moment = -2.298 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.003

Reinforcement received from Quadratic Solver = -0.063

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.017

Minimum R/f provided at Top. = 0

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

With Water Table Case

Moment Pmin side = -0.245 Tm

Moment Pmax side = 1.327 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.003

Validation Report for Verties 6.0.0-evaluation-1

Reinforcement received from Quadratic Solver = 0.037

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.017

Minimum R/f provided at Top. = 0.12

Bottom $R/f = \max$ (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve

Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve

Moment on Pmin side) = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12

Calculation for Load Combination 4

Without Water Table Case

Moment Pmin side = 0.643 Tm

Moment Pmax side = 1.095 Tm

Design Moment = 1.095 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.031

Minimum R/f required as per User Input. Providing Top R/f = 0.12

With Water Table Case

Moment Pmin side = 0.643 Tm

Moment Pmax side = 1.095 Tm

Design Moment = 1.095 Tm

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.031

Minimum R/f required . Providing Bottom R/f = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12

Calculation for Load Combination 5

Without Water Table Case

Moment Pmin side = -0.517 Tm

Moment Pmax side = -2.789 Tm

Design Moment = -2.789 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.004

Reinforcement received from Quadratic Solver = -0.077

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Validation Report for Vertves 6.0.0-evaluation-1

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.014

Minimum R/f provided at Top. = 0

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

With Water Table Case

Moment Pmin side = -0.337 Tm

Moment Pmax side = 2.282 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.004

Reinforcement received from Quadratic Solver = 0.064

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.014

Minimum R/f provided at Top. = 0.12

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12

Calculation for Load Combination 6

Without Water Table Case

Moment Pmin side = -0.674 Tm

Moment Pmax side = -4.422 Tm

Design Moment = -4.422 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.006

Reinforcement received from Quadratic Solver = -0.121

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.019

Minimum R/f provided at Top. = 0

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

With Water Table Case

Moment Pmin side = -0.071 Tm

Moment Pmax side = 3.878 Tm

Design moment is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = -0.006

Reinforcement received from Quadratic Solver = 0.11

Minimum R/f provided at Bottom. = 0.12

Minimum R/f required as per User Input. Providing Top R/f = 0.12

Design moment Top is less than MuLim. = Singly R/f design shall be performed.

Mu / bd2 = 0.001

Reinforcement received from Quadratic Solver = 0.019

Minimum R/f provided at Top. = 0.12

Bottom R/f = max (Bottom R/f due to +ve Moment in Pmax side, Bottom R/f due to -ve Moment doubly R/f on Pmin side) = 0.12

Top R/f = max (Top R/f due to +ve Moment doubly R/f in Pmax side, Top R/f due to -ve Moment on Pmin side) = 0.12

Bottom R/f = 0.12

Top R/f = 0.12

Bottom R/f (WT)= 0.12

Top R/f (WT)= 0.12 Section Used to calculate the Shear for reinforcement design.

9 Shear R/F Calculations

 $T_{\rm kscmax}$ based on Concrete Grade (Table 20 IS456)= 3.5 N/mm^2

Final Pt (Bottom) (Without Water Table) received from Moment Design = 0.12%

Final Pt (Bottom) (With Water Table) received from Moment Design = 0.12%

Final Pt (Top) (Without Water Table) received from Moment Design = 0.12%

Final Pt (Top) (With Water Table) received from Moment Design = 0.12%

Bottom Reinforcement Shear Check

Without Water Table

Shear Design for Load Combination No. = 1

Tv = Shear Force / (Width * depth) = 0.047 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 2

Tv = Shear Force / (Width * depth) = 0.103 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 3

Tv = Shear Force / (Width * depth) = -0.138 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 4

Tv = Shear Force / (Width * depth) = 0.065 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 5

Tv = Shear Force / (Width * depth) = -0.169 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 6

Tv = Shear Force / (Width * depth) = -0.267 N/mm2

Tv < Tcmax. Go ahead for shear check / design.

For Pt = 0.12% Tc = 0.265 N/mm²

Tv < Tc = Shear Check Pass.

With Water Table

Shear Design for Load Combination No. = 1

Tv = Shear Force / (Width * depth) = 0.047 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 2

Validation Report for Vertves 6.0.0-evaluation-1

Tv = Shear Force / (Width * depth) = 0.103 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 3

Tv = Shear Force / (Width * depth) = 0.081 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 4

Tv = Shear Force / (Width * depth) = 0.065 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 5

Tv = Shear Force / (Width * depth) = 0.139 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 6

Tv = Shear Force / (Width * depth) = 0.235 N/mm2

Tv < tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv < Tc = Shear Check Pass.

Top T/f Shear Design for Load Combination No. = 1 need not be checked.

Shear Design for Load Combination No. = 2

Without Water Table

Tv = Shear Force / (Width * depth) = 0.009 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv : Tc = Shear Check Pass.

Shear Design for Load Combination No. = 3

Without Water Table

Tv = Shear Force / (Width * depth) = 0.034 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For $Pt = 0.12\%Tc = 0.265 \text{ N/mm}^2$

Tv : Tc = Shear Check Pass.

Top T/f Shear Design for Load Combination No. = 4 need not be checked.

Shear Design for Load Combination No. = 5

Without Water Table

Tv = Shear Force / (Width * depth) = 0.03 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

Tv : Tc = Shear Check Pass.

Shear Design for Load Combination No. = 6

Without Water Table

Tv = Shear Force / (Width * depth) = 0.034 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12%Tc = 0.265 N/mm2

 $Tv \mid Tc = Shear Check Pass.$

Shear Design for Load Combination No. = 2 With Water Table

Tv = Shear Force / (Width * depth) = 0.009 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12Tc = 0.265

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 3 With Water Table

Tv = Shear Force / (Width * depth) = 0.017 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12Tc = 0.265

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 5 With Water Table

Tv = Shear Force / (Width * depth) = 0.022 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12Tc = 0.265

Tv < Tc = Shear Check Pass.

Shear Design for Load Combination No. = 6 With Water Table

Tv = Shear Force / (Width * depth) = 0.01 N/mm2

Tv; tcmax. Go ahead for shear check / design.

For Pt = 0.12Tc = 0.265

Tv < Tc = Shear Check Pass.

10 Pedestal Design

Pedestal Length (L)= 1.95 m

Effective Pedestal Length $L_{ex} = 2*L = 2*1.95 = 3.9 \text{ m}$

Slenderness Ratio = $L_{ex}/D = 3.9/1.65 = 2.364$

Gross area = 2.255 m2

Slenderness Ratio smaller than 3

Designed as Pedestal 0.15

Pt column % = 0.15