Il livello di rete Routing

Liceo G.B. Brocchi - Bassano del Grappa (VI) Liceo Scientifico - opzione scienze applicate Giovanni Mazzocchin

- Il **livello fisico** si occupa dell'invio dei bit sotto forma di segnali su un canale
- Il **sottolivello MAC** si occupa dell'accesso ad un canale broadcast. È particolarmente importante nelle reti wireless, che sono naturalmente broadcast
- Il livello **data link** organizza i bit in frame ed effettua operazioni di error control e flow control tra macchine direttamente collegate da un canale fisico
- Il **livello di rete** permette lo scambio di pacchetti su un'intera rete, o addirittura su più reti

- Compiti del livello di rete:
 - inoltrare i pacchetti
 - evitare congestioni (congestion control). Pensate al traffico in un città, va gestito in qualche modo!
 - fornire un servizio best effort al livello superiore: sarà il livello di trasporto ad occuparsi di correggere errori, recuperare pacchetti perduti e riordinare sequenze di pacchetti arrivati al destinatario fuori sequenza
 - Quality of Service (QoS): diverse applicazioni richiedono diversi requisiti, ad esempio:
 - il trasferimento di file richiede banda elevata e non ha necessità particolari sulla latenza
 - l'online gaming richiede banda elevata e bassissima latenza
 - trasmettere i pacchetti da una rete ad un'altra. Anche lo switching a livello data link è una forma di instradamento, ma lavora su una singola rete. Internet è una rete di reti, quindi non funzionerebbe senza questo livello
 - nascondere ai livelli superiori i dettagli relativi alla struttura della rete

- **IP** (*Internet Protocol*) è il protocollo di rete più importante dello stack TCP/IP
- Fornisce un servizio connectionless
- Nei servizi connectionless i pacchetti vengono anche detti datagram

i nodi della rete sono i famosi <u>router</u>

Il routing (instradamento)

- La funzione principale del livello di rete è fornire un servizio best effort di instradamento dei pacchetti dal mittente al destinatario
- Un **algoritmo di routing** è quella componente del livello di rete che stabilisce su quale interfaccia di uscita inoltrare un pacchetto in ingresso
- La commutazione di pacchetto rende indispensabili gli algoritmi di routing: sappiamo già infatti che con il *packet switching*, la rete stabilisce la *route* in modo indipendente per ogni pacchetto

Il routing (instradamento)

- Un algoritmo di routing deve prima di tutto stabilire quale parametro ottimizzare. Potrebbe minimizzare:
 - la latenza media
 - il numero di hop per pacchetto
- Static routing: i path per ciascuna coppia di nodi della rete vengono calcolati a priori e non vengono più modificati
- **Dynamic routing**: i path cambiano in base ai cambiamenti nella topologia della rete (e.g. un router viene spento) e al traffico

Flooding

• Nel **flooding**, il router inoltra ciascun pacchetto su tutte le linee in uscita, tranne che su quella su cui è stato ricevuto

Flooding

• Nel **flooding**, il router inoltra ciascun pacchetto su tutte le linee in uscita, tranne che su quella su cui è stato ricevuto

- È stato il primo algoritmo di routing utilizzato da ARPANET
- È noto anche come **RIP** (**R**outing **I**nformation **P**rotocol)
- Ciascun router mantiene aggiornata una tabella (**routing table**) contenente:
 - il costo della best route nota verso ciascun nodo della rete
 - il *next-hop*: il nodo (parte della best route) su cui inoltrare il pacchetto per arrivare a ciascuna destinazione
- Ogni t millisecondi, ogni router manda la propria tabella aggiornata a tutti i suoi vicini
- La distanza potrebbe essere la latenza, il numero di hop, etc... in questo esempio useremo la <u>latenza</u>
 - ciascun router conosce la latenza verso i router vicini (quelli a cui è direttamente collegato)
- Si basa sull'algoritmo di Bellman-Ford

J's table at time t1

dest	delay	next-ho	
Α	6	Α	
В	20	Н	
С	25	K	
D	50	Α	
Е	10	K	
	etc		

delays J-neighbours

neighbour	delay		
Α	6		
1	8		
Н	4		
K	12		

A's vector		
dest	delay	
Α	0	
В	12	
•••	•••	
•••	•••	

I's vector		
dest	delay	
•••	•••	
В	36	
1	0	
•••	•••	

H's vector			
dest	delay		
•••	•••		
В	31		
Н	0		
•••	•••		

K's vector			
dest	delay		
•••	•••		
В	28		
K	0		
•••	•••		

- Per ogni destinazione, J calcola un nuovo delay sulla base dei vector ricevuti e dei delay noti verso i vicini
- Il delay verso i vicini va sommato ai delay dei vector ricevuti

- Per ogni destinazione, J calcola un nuovo delay sulla base dei vector ricevuti dai vicini
- Il nuovo next-hop corrisponderà al ritardo minimo
- Ricalcolo della route per la destinazione B

A's v	ector	l's vo	ector	H's v	ector	K's v	ector
dest	delay	dest	delay	dest	delay	dest	delay
В	12	В	36	В	31	В	28

```
min(delay J-A + 12, delay J-I + 36, delay J-H + 31, delay J-K + 28) = min(6 + 12, 8 + 36, 4 + 31, 12 + 28) = 18 -> next hop: A
```

Link state routing (routing dinamico)

- Il distance vector routing è stato abbandonato da ARPANET nel 1979, e sostituito dal **link state routing**
- Anche in questo caso serve una metrica di costo per i link che connettono i router (delay, costo inversamente proporzionale alla bandwidth etc...)
- Varianti del link state routing sono utilizzate ancora oggi sotto il nome di IS-IS e OSPF, componenti fondamentali di Internet
- Nel link state routing, ciascun router conosce l'intera topologia della rete
- Il link state routing si basa sull'algoritmo di Dijkstra

Link state routing (routing dinamico)

- Ciascun router deve:
 - 1. calcolare il costo per raggiungere tutti i propri vicini
 - 2. costruire un pacchetto contenente tutte le informazioni relative ai costi per raggiungere i vicini
 - 3. inviare il pacchetto a tutti i router della rete
 - 4. ricevere i pacchetti informativi da tutti i router della rete
 - 5. calcolare i cammini minimi verso tutti gli altri router, utilizzando l'algoritmo di Dijkstra