The Issue

- > The planning problem:
 - · My performances as responsible of automation heavily depended on smooth planning.
 - Impossible yet because >50% of urgent and custom orders, great variability of products (>1000), large quantities (10s of thousands), no visibility in the future and little communication.
- > My idea:
 - Understood that accurately **estimating lead times and workloads** of orders was critical to:
 - Allocate the optimal resources on each order (manpower, space, time).
 - Forecast and plan the workload of the workshop.
 - · Quantify the impact of each parameter on productivity.
- > Constraints:
 - Data and planning spread between different branches.
 - Only tech-oriented engineer, solution had to be **simple** and **explainable** to catch on.
 - Largest hurdle: accompany innovations department to support new 4.0 technologies (data, Python) → motivation for my current internship in data and strategy consulting.

Impact

- > Direct results:
 - Optimize resource allocation to complete orders (7% productivity increase, no late deliveries).
 - Smooth globally production workload (from 70% variability to 10%).
 - Increase machine utilisation by 50%.

- > Indirect results:
 - First clean and complete dataset for other logistics analysts.
 - · Switch from push to just-in-time strategies.
 - · Plan staffing weeks instead of days in advance.
 - Explain productivity of the workshop, anticipate crises and quantify pricing → Analyses/tracking.
 - Scientifically organize the workshop (lean 6 sigma).

Mv Model

Objective

LVMH Order data vector → lead time value Regression algorithm (supervised)

The dataset

40k cleaned datapoints consolidated from the workshop's 6-month history and LVMH. 16 features about product, client & process

Categorical: Machine, country, actions required (labels, leaflet, cello)

Numerical: Product & label size, weight, quantity, number of tables and worker, seniority

The CatBoost algorithm

Why? Fast, suited for categorical and uneven data, widely used and well documented, handled missing and new data, **explanability** through shapley values

AI KPIs

R² = 0.93 RMSE = 12 min <15% error 90% of the time

 $\sigma \approx 0.18 \text{ manhours}$

BOLLORÉ

VAS AI Prediction

Machine planning for operations

Machine utilisation AI forecast - January/February

Weekly insights for the management team

Executive report: Week 51 simplified productivity by category breakdown

