Séminaire sur les mathématiques de l'apprentissage machine

Semaine I : Introduction aux réseaux profonds de neurones.

G. Roy-Fortin

Service des enseignements généraux École de technologie supérieure

18 septembre 2019

Une tâche

 Considérons une tâche simple pour un humain : classifier des chiffres manuscrits.

Figure – Chiffres tirés de la base de données MNIST.

- Très difficile à faire directement!
- L'apprentissage machine est un ensemble de techniques mathématiques et statistiques permettant à un algorithme d'apprendre par lui-même.

Le modèle humain

L'idée générale derrière un réseau de neurones est ... un réseau de neurones!

Figure - Neurones dans le cortex humain.

► On veut créer un système de neurones reliés entre eux et qui peuvent transmettre un signal plus ou moins actif.

Un exemple d'application : reconnaissance d'images

Une application centrale des réseaux de neurones : la reconnaissance d'image.

- ▶ ImageNet : 14 millions d'images classées sous 1000 étiquettes.
- Compétition : entraînement sur un sous-ensemble fixe d'images, test sur le reste.

Un réseau profond de neurones

► En général, un réseau profond de neurones (en anglais deep neural net) est un graphe de la forme :

Figure – Un réseau de neurones avec 3 couches cachées.

- ightharpoonup À chaque neurone on associe un biais b_i^ℓ
- $ightharpoonup \grave{\mathsf{A}}$ chaque connexion, on associe un poids w^ℓ_{jk}
- ullet $\ell=1,...,L$ sont les $\emph{couches}$ du réseau
- lacksquare a_j^ℓ : l'activation, ou puissance du signal, du j-ème neurone de la couche ℓ .

► On calcule l'activation d'un neurone via une fonction d'activation

$$a = \sigma(\mathbf{a}^T \cdot \mathbf{x} + b).$$

Pour le moment, on utilisera seulement la fonction d'activation sigmoïde : $x \mapsto \frac{1}{1 + e^{-x}}$.

Figure - La fonction sigmoïde

- Le but des fonctions d'activation : introduire une *non-linéarité* dans le réseau.
- ▶ Le modèle complet est en en fait une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$.

Déjà, on peut se poser des questions structurelles :

- Quelle architecture pour designer le réseau : nombres de neurones, de couches profondes etc.
- ▶ Quelle fonction d'activation : σ , ReLU, tangente hyperbolique etc.

Figure – La fonction ReLU: rectified linear unit.

Il y a, dans un certain sens, beaucoup (trop?) de liberté.

Un peu de terminologie

- ➤ On distingue les réseaux feedfoward : → et les réseaux dits récurrents : ↔.
- On distingue aussi l'apprentissage supervisé où on possède des données d'entraînement étiquetées de l'apprentissage non-supervisé
- La notion d'apprentissage *profond* vient simplement de l'existence des couches cachées dans le modèle.
- ► Moralement, la "profondeur" permet d'introduire une hiérarchisation des concepts.

Quel réseau pour notre tâche?

Entrée : un neurone / pixel. Sortie : 10 neurones, un pour chaque chiffre.

Figure - Notre premier réseau!

Si l'image d'entrée est $64 \times 64 = 4096$ pixels et avec 5 neurones dans la couche cachée, on a : $4096 * 5 + 5 * 10 \approx 20000$ poids et 4096 + 5 + 10 biais!

Apprendre via la descente de gradient

Comment mesurer cette performance?

- Notre but est de modifier les paramètres w, b du réseau pour que celui-ci augmente sa performance à la tâche considérée.
- On définit une fonction de coût

$$C = C(w, b) = \frac{1}{2n} \sum_{x} ||\mathbf{y}(x) - \mathbf{a}^{L}||_{L^{2}}^{2}.$$

- ightharpoonup x: donnée d'entraînement étiquetée, $\mathbf{y}(x)$: sortie désirée pour l'entrée x, \mathbf{a}^L : vecteur des activations à la sortie du réseau.
- ▶ On veut évidemment minimiser $C(w, b) \ge 0$!

On entraîne donc le réseau via les règles :

$$\begin{cases} w_k \mapsto w'_k = w_k - \eta \frac{\partial C}{\partial w_k}, \\ b_j \mapsto b'_j = b_j - \eta \frac{\partial C}{\partial b_j}. \end{cases}$$

Le nombre η est appelé taux d'apprentissage.

Puisque
$$C = \frac{1}{n} \sum_{x} C_{x}$$
, avec

$$C_x = \frac{1}{2}||\mathbf{y}(x) - a||_{L^2}^2,$$

calculer ∇C exige de balayer toutes les données d'entraînement!

Pour pallier cet obstace, on introduit la descente stochastique de gradient.

SGD: Stochastic Gradient Descent

- On choisit aléatoirement un mini-groupe de m données d'entraînement étiquetées : x₁, x₂, ..., x_m.
- ▶ On suppose que la fonction de coût *C* est telle que

$$\nabla C \approx \frac{1}{m} \sum_{j=1}^{m} \nabla C_{x_j} = \frac{1}{2m} \sum_{j=1}^{m} ||\mathbf{y}(x) - \mathbf{a}||_{L^2}^2.$$

On obtient alors

$$\begin{cases} w_k \mapsto w'_k = w_k - \eta \frac{1}{m} \sum_{j=1}^m \frac{\partial C_{x_j}}{\partial w_k}, \\ b_j \mapsto b'_j = b_j - \eta \frac{1}{m} \sum_{j=1}^m \frac{\partial C_{x_j}}{\partial b_j}. \end{cases}$$

Quelques questions

- Quel est l'espace des fonctions qu'on peut espérer engendrer avec des réseaux profonds?
- Quel rôle joue vraiment la profondeur d'un réseau?
- Interprétation des hyperparamètres et de leur impact sur l'apprentissage : qualité, vitesse etc.
- Dans quel espace vivent les données d'entrée ?

Comment calculer ∇C_x ?

Pour exécuter la descente stochastique de gradient, on doit calculer ∇C_x , qui est un vecteur qui contient toutes les dérivées partielles du type

$$\frac{\partial C}{\partial w_{jk}^{\ell}}, \ \frac{\partial C}{\partial b_j^{\ell}}.$$

La manière la plus directe de procéder est d'estimer

$$\frac{\partial C}{\partial w_{ik}^{\ell}} pprox \frac{C(w_{jk}^{\ell} + \epsilon) - C(w)}{\epsilon}.$$

Or, cette approche exige de calculer $C(w_{jk}^{\ell}+\epsilon)$ pour chaque paramètre! Et donc, si on a 30 000 poids et biais dans le réseau, il faudra faire autant de traversée complète du réseau.

Solution : propagation arrière!

Les quatre équations de la backpropagation

(BP1)
$$\delta^{L} = \frac{\partial C}{\partial a_{j}^{L}} \sigma'(z_{j}^{L})$$
(BP2)
$$\delta_{j}^{\ell} = \sum_{k} w_{kj}^{\ell+1} \delta_{k}^{\ell+1} \sigma'(z_{j}^{\ell})$$
(BP3)
$$\frac{\partial C}{\partial b_{j}^{\ell}} = \delta_{j}^{\ell}$$
(BP4)
$$\frac{\partial C}{\partial w_{ik}^{\ell}} = a_{k}^{\ell-1} \delta_{j}^{\ell}$$