WHAT WE CLAIM IS:

1. A compound selected from the group consisting of a compound of the formula R. R.

formula
$$R_1$$
 R_2 CH_3 ZO CH_3 $CH_$

wherein A is nitrogen or $N \to 0$, R_1 and R_2 are individually selected from the group consisting of hydrogen and alkyl of 1 to 18 carbon atoms, R is selected from the group consisting of hydrogen and $-(CH_2)_mOB$, Hal is halogen, m and n are individually an integer

from 1 to 8, B is hydrogen or $-C-Ar_2OR-(CH_2)_n-Ar$, Ar is a mono- or polycyclic aryl or heteroaryl, Z is hydrogen or acyl of an organic carboxylic acid of up to 18 carbon atoms and its non-toxic, pharmaceutically acceptable acid addition salts.

2. A compound of claim 1 wherein R_1 and R_2 are hydrogen.

25

10

- 3. A compound of claim 1 wherein A is nitrogen.
- 4. A compound of claim 1 wherein Hal is fluorine.
- 5 5. A compound of claim 1/wherein R is hydrogen.
 - Ø. A compound of claim 1 wherein R is -CH₂OH.

'nο

20

7. A compound of claim 1 selected from the group consisting of [3aS-(3aR*,4S*,7R*,9S*,10S*,11S*,13S*,15S*,15aS*)]-4-ethyl-7-fluoro-3a,4,10,11,12,13,15,15a-octahydro-11-methoxy-3a,7,9,11,13,15-hexamethyl-10-[[3,4,6-trideoxy-3-(dimethyl-amino)-beta.-D-xylo-hexopyranosyl]oxy]-14,1-(nitriloethano)-2H-oxacyclotetradecino[4,3-d]oxazole-2,6,8(9H)-trione and

[3aS-(3aR*,4S*,7R*,9S*,1QS*,11S*,13S*,15S*,15aS*,17R*)]-4-ethyl-7-fluoro-3a,4,10,11,12,13,15,15a-octahydro-17-hydroxymethyl)-11-methoxy-3a,7,9,11,13,15-hexamethyl-10-[[3-4,6-trideoxy-3-(dimethylamino)-.beta.-D-xylohexopyranosyl]oxy]-14,1-nitriloethano)-2H-oxacyclotetradecino[4,3-d]oxazole-2,6,8(9H)-trione.

- 7
 8. An antibiotic composition comprising an antibiotically effective amount of a compound of claim 1 and an inert pharmaceutical carrier.
- 9. An antibiotic composition comprising an antibiotically

- 10. A method of treating bacterial infections in warm-blooded animals comprising administering to warm-blooded animals an antibiotically effective amount of a compound of claim 1.
- 11. A method of treating bacterial infections in warm-blooded animals comprising administering to warm-blooded animals an antibiotically effective amount of a compound of claim 7.

10

20

12. A process for the preparation of a compound of claim 1 comprising reacting a compound of the formula

II

wherein Hal is halogen and OM is a protected hydroxyl with a compound of the formula

$$\begin{array}{c} \text{(CH}_2\text{)mOH} \\ \text{H}_2\text{N} & \\ \text{NCH}_2\text{C}_6\text{H}_5 \end{array}$$

III

wherein m is an integer from 1 to 8 to obtain a compound of the

10 formula

20

oetleeg. Loosee

deprotecting the 2'-hydroxyl to obtain a compound of the formula

V

(CH₂)mOH

OMe

10

20

reacting the latter with a debenzylating agent to obtain a compound of the formula

0

0

reacting the latter with a cyclization agent to form a compound of the formulae

Q4 cont 5

R₁ (CH₂)_mOH

wherein R is $-(CH_2)_m$ -OH and optionally subjecting the latter to an aralkylating or acylating agent to obtain a compound of claim 1

IA

wherein B is $-(CH_2)_n$ -Ar or $-\overset{\parallel}{C}$ -Ar.

12

13. A compound selected from the group consisting of

IV

V

VI

10

PERDEL TOOS

5

where the substituents are defined as in claim 1/2.