MA 861: Combinatorics I

Amit Rajaraman

Last updated July 29, 2022

Contents

0	Notation and Prerequisites	2
_	Introduction1.1 Counting in S_n	3
	Problem Sheets 2.1 Problem Sheet 1	3

§0. Notation and Prerequisites

Given $n \in \mathbb{N}$, [n] denotes the set $\{1, \dots, n\}$.

§1. Introduction

Exercise 1.1. Recall that the number of k-subsets of [n] is $\binom{n}{k}$. Given a k-subset $S = \{x_1, \ldots, x_k\}$ of [n], we write $S < = \{x_1, \ldots, x_k\} < \text{to denote that } x_1 < x_2 < \cdots < x_k$. Determine the number of k-subsets $\{x_1, \ldots, x_k\} < \text{ of } [n]$ such that $x_i \cong i \mod 2$.

For example, for n = 6 and k = 3, we have the subsets $\{1, 4, 5\}, \{1, 2, 3\}, \{1, 2, 5\}, \{3, 4, 5\}$.

Broadly, there are three types of "answers": a formula, a recurrence, and a generating function. A great example of the second and third is the following.

p(n), the number of number partitions of n, is given by the generating function

$$\sum_{n \ge 0} p(n)x^n = \prod_{i \ge 1} \frac{1}{1 - x^i}.$$

Using this, a recursion may be obtained as well. We do *not* plug in values for x in the above. We merely look at the coefficient of x^n in it. We want the coefficient to be a finite sum for all n. If it is an infinite sum, convergence issues may arise.

1.1 Counting in S_n

Recall that S_n is generated by transpositions. A transposition (i,j) is a permutation σ defined by

$$\sigma(k) = \begin{cases} j, & k = i, \\ i, & k = j, \\ k, & \text{otherwise.} \end{cases}$$

In fact, S_n is generated by just "adjacent transpositions" $S_i = (i, i+1)$ for $1 \le i < n$. We have

$$S_i^2 = \operatorname{Id}$$

$$S_i S_{i+1} S_i = S_{i+1} S_i S_{i+1}$$

$$S_i S_j = S_j S_i \text{ if } |i-j| > 2.$$

What is the minimum number of adjacent transpositions required to generate a given transposition? This number is referred to as the *length* $\ell(\pi)$ of the transposition π . What is $\sum_{\pi \in S(n)} q^{\ell(\pi)}$?

§2. Problem Sheets

2.1. Problem Sheet 1

Problem 2.1.1. Let S(n,k) and s(n,k) be Stirling numbers of the second and first kind respectively. Show that for all n,k, we have $s(n,k) \ge S(n,k)$.

Solution

Let $X_{S(n,k)}$ be the set of partitions of [n] into exactly k parts and $X_{s(n,k)}$ the number of permutations of [n] with exactly k cycles. Recall that by definition, $|X_{S(n,k)}| = S(n,k)$ and $|X_{s(n,k)}| = s(n,k)$. It suffices to demonstrate an injection f from $X_{S(n,k)}$ to $x_{s(n,k)}$. We do so as follows. Let $\{\{x_{1,1},\ldots,x_{1,n_1}\},\ldots,\{x_{k,1},\ldots,x_{1,n_k}\}\}$ be a partition of [n] into exactly k parts, where $x_{i,j_1} < x_{i,j_2}$ for $j_1 < j_2$. Then, we have a corresponding permutation of [n] with exactly k cycles given by $(x_{1,1},\ldots,x_{1,n_1})\cdots(x_{k,1},\ldots,x_{k,n_k})$. This map is clearly an injection, so we are done.

Problem 2.1.2. Show that

$$S(n,k) = \sum_{r=1}^{k} (-1)^{k-r} \frac{r^n}{r!(k-r)!}.$$

Solution

S(n,k) is merely the number of surjective functions from [n] to [k]. The set of functions that are *not* surjective is

$$\bigcup_{i\in[n]}\{f\in[k]^{[n]}:i\not\in\Im(f)\}.$$

The size of the above is quite easily determined by the inclusion-exclusion principle to get

$$k^n - S(n,k) = \sum_{r=1}^{k-1} (-1)^{r+1} \cdot \underbrace{\binom{k}{r}}_{\text{choosing r elements in } [k] \text{ to "avoid"}} \cdot \underbrace{(k-r)^n}_{\text{counting functions that avoid the chosen}},$$

and the desideratum immediately follows.

Problem 2.1.3. Let $A_n(y) = \sum_k S(n,k)y^k$. Show that $A_n(y) = (y+yD)^n 1$ where $D = \frac{d}{dy}$ is the derivative operator.

Solution

Problem 2.1.4. Let D_n be the number of derangements in \mathfrak{S}_n and let $D(x) = \sum_{n \geq 0} D_n x^n / n!$ be its egf. Determine D(x).

Solution

A permutation $\pi \in \mathfrak{S}_n$ is a derangement iff it has no cycles of length 1. Define $f: \mathbb{N} \to \mathbb{N}_0$ by

$$f(k) = \begin{cases} 0, & k = 1, \\ 1, & \text{otherwise.} \end{cases}$$

By the earlier observation, $\pi \in \mathfrak{S}_n$ is a derangement iff $f(|C_1|) \cdots f(|C_k|) = 1$ where C_1, \dots, C_k are the cycles of π . Using Corollary 5.1.9 in [SF99], we get that

$$D(x) = \exp\left(\sum_{n \ge 2} \frac{x^n}{n}\right) = \exp\left(-x - \log(1-x)\right) = \frac{e^{-x}}{1-x}.$$

References

[SF99] Richard P. Stanley and Sergey Fomin. *Enumerative Combinatorics*, volume 2 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, 1999.