What is claimed is:

5

15

- 1. A method for manufacturing a capacitor bottom electrode of a semiconductor device, the method comprising the steps of:
- a) preparing a semiconductor substrate obtained by a predetermined process;
- b) forming a sacrificial layer of low k dielectric material on the semiconductor substrate;
- 10 c) forming a photoresist pattern on the sacrificial layer;
 - d) etching the sacrificial layer by using the photoresist pattern as an etching mask, thereby forming an opening;
 - e) depositing a conductive layer on sides and a bottom face of the opening and a top face of the sacrificial layer;
 - f) forming a photoresist on the conductive layer, wherein a concave region of the conductive layer is completely filled with the photoresist;
- g) planarizing the conductive layer till a top face of the sacrificial layer is exposed; and
 - h) forming a bottom electrode by removing the sacrificial layer enclosing the bottom electrode by using O_2 plasma and by removing a residual photoresist.
- 25 2. The method as recited in claim 1, wherein the step h) is carried out by using O_2 plasma with plasma gas selected from the group consisting of N_2 , H_2 , CF_4 and NF_3 .

- 3. The method as recited in claim 1, wherein the conductive layer uses a material selected from the group consisting of tungsten, tungsten silicide, titanium nitride, polysilicon and the combination thereof by using an atomic layer deposition (ALD) method.
- 4. The method as recited in claim 1, wherein the step g) is carried out by using excited plasma having basic gas of Cl_2 and supplementary gas of O_2 .

10

5

- 5. The method as recited in claim 1, wherein the step g) is carried out by using excited plasma having basic gas of BCl_3 and supplementary gas of O_2 .
- 15 6. The method as recited in claim 1, wherein the step g) is carried out by using excited plasma having basic gas of SF_6/N_2 gas and supplementary gas of O_2 .
- 7. The method as recited in claim 1, wherein the bottom electrode has a shape of cylindrical type.