

MACHINE LEARNING COURSE

PRESENTED BY ABDEL RAHMAN ALSABBAGH

FINAL LECTURE #6 - SAT - 27.5.2023

In the name of Allah, the most gracious, the most merciful, we start:)

Today's Quote

"The winds of change may blow away everything in their path, but the lingering effect remains, shaping the landscape of our lives."

- ChatGPT

- Support Vector Machines (SVMs).
- Kernel Functions.
- Decision trees.
- Random forests.
- Ensemble learning.
- Evaluation metrics.
- Code practice.

Source: StatQuest by Josh Starmer.

Based on these observations, we can pick a threshold...

...but what if this was our training data and we had tons of overlap?

Kernal Functions in SVMs

Some commonly used kernel functions & their shape:

Polynomial
$$K(a,b) = (1 + \sum_{j} a_j b_j)^d$$

Radial Basis Functions

$$K(a,b) = \exp(-(a-b)^2/2\sigma^2)$$

Saturating, sigmoid-like:

$$K(a,b) = \tanh(ca^T b + h)$$

Many for special data types:

String similarity for text, genetics

Polynomial Kernel Function

The Kernel Trick

This **trick**, calculating the high-dimensional relationships without actually transforming the data to the higher dimension, is called **The Kernel Trick**.

The Kernel Trick reduces the amount of computation required for Support Vector Machines by avoiding the math that transforms the data from low to high dimensions...

Decision Trees

Random Forest

Ensemble Learning

Ensemble Learning

Confusion Matrix

Positive Negative TP FN

PREDICTED VALUE

- True Positive (TP): Observation is positive, and is predicted to be positive.
- False Negative (FN): Observation is positive, but is predicted negative.
- True Negative (TN): Observation is negative, and is predicted to be negative.
- False Positive (FP): Observation is negative, but is predicted positive.

$$Accuracy = \frac{TrueNegatives + TruePositive}{TruePositive + FalsePositive + TrueNegative + FalseNegative}$$

$$Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

The proportion of True predictions on the total of predictions made.

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive}$$
$$= \frac{True \ Positive}{Total \ Predicted \ Positive}$$

The proportion of True Positives among the total of Positive Predictions.

$$\begin{aligned} \text{Recall} &= \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \end{aligned}$$

The proportion of True Positive among the total number of actual Positives.

F1 Score =
$$\frac{\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}}{\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}}$$

The harmonic mean of Precision and Recall.

Metric Name	Metric Forumla	Code	When to use
Accuracy	$\mathbf{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$	<pre>tf.keras.metrics.Accuracy()</pre>	Default metric for classification problems. Not the best for imbalanced classes.
Precision	$\mathbf{Precision} = \frac{tp}{tp + fp}$	<pre>tf.keras.metrics.Precision()</pre>	Higher precision leads to less false positives.
Recall	$\mathbf{Recall} = \frac{tp}{tp + fn}$	<pre>tf.keras.metrics.Recall()</pre>	Higher recall leads to less false negatives.
F1-score	F1-score = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$	sklearn.metrics.f1_score()	Combination of precision and recall, usually a good overall metric for a classification model.
Confusion matrix	NA	Custom function or sklearn.metrics.confusion_matrix()	When comparing predictions to truth labels to see where model gets confused. Can be hard to use with large numbers of classes.

We're Almost Finished

Let's code!

Final Project

- Document each of the following steps in your notebook.
- Choose a dataset of your choice from Kaggle.com.
- Preprocess the data acquired (clean it, normalize the data if needed, do feature engineering, etc...) and prepare it for the ML model. Explain every single step.
- Make a comparison study between 3 types of models on the dataset used. Use
 different hyperparameters and features and try to obtain the highest results
 possible.
- Get the results and analyze why certain models performed better that others.
- Submit a .pynb file with data used.

Deadline: I/6, 6 PM.

Good luck!

Final Project

Use our colleague "Basel"s tool to help you in your project: https://clickml.streamlit.app/

Final Project

I would also love to have your feedback of the course for the purpose of future improvements!

THANK YOU

WISHING YOU ALL THE BEST IN YOUR UPCOMING ENDEAVORS!

SABBAGH@IEEE.ORG

CONNECT ON LINKEDIN

