ADL Homework2 report

Q1: Data processing (2%)

- 1. Tokenizer (1%):
 - a. Describe in detail about the tokenization algorithm you use. You need to explain what it does in your own ways.

做Multiple Choice時,將每個question都複製成四份再各自接上四個可能的paragraphs,再將這四個pairs透過選定的tokenizer轉換成encoding,Tokenizer 則會負責將所有pairs 做padding、truncation成一樣的max_length = 512。

而做Question Answering時會依據Multiple Choice產生的relevant讀取正確的context, 接著把question和context接在一起, 中間用special token連接, 並透過選定的tokenizer轉換成encoding, Tokenizer 一樣會負責將所有pairs做padding、truncation成一樣的max_length = 512, 還有透過doc_stride審視整個context, 以免因max_length斷句問題導致錯誤的結果。

2. Answer Span (1%):

a. How did you convert the answer span start/end position on characters to position on tokens after BERT tokenization?

透過tokenizer中的return_offsets_mapping讓我們可以將answer span轉回token的start/end position,若是較長的sequence被拆開也能透過return_overflowing_tokens mapping回去,加上start/end position的判斷即可完成。

b. After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position?

Model的輸出可能不是很按照前後順序, 所以需要多去判斷start/end position的順序是否合理, 將 start > end的情況去除掉, 並找出最佳的pair成為最後的輸出。

Q2: Modeling with BERTs and their variants (4%)

- 1. Describe (2%)
 - a. your model (configuration of the transformer model)

Multiple Choice

```
"_name_or_path": "bert-base-chinese",
"architectures": [
 "BertForMultipleChoice"
"attention_probs_dropout_prob": 0.1,
"classifier dropout": null,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden size": 768,
"initializer range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max position embeddings": 512,
"model type": "bert",
"num attention heads": 12,
"num_hidden_layers": 12,
"pad token id": 0,
"pooler_fc_size": 768,
"pooler num attention heads": 12,
"pooler num fc layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position embedding type": "absolute",
"torch_dtype": "float32",
"transformers version": "4.22.2",
"type_vocab_size": 2,
"use cache": true,
"vocab size": 21128
```

```
"_name_or_path": "bert-base-chinese",
"architectures": [
 "BertForQuestionAnswering"
"attention_probs_dropout_prob": 0.1,
"classifier dropout": null,
"directionality": "bidi",
"hidden act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate size": 3072,
"layer_norm_eps": 1e-12,
"max position embeddings": 512,
"model_type": "bert",
"num attention heads": 12,
"num_hidden_layers": 12,
"pad token id": 0,
"pooler fc size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers version": "4.22.2",
"type_vocab_size": 2,
"use cache": true,
"vocab_size": 21128
```

b. performance of your model.

Multiple Choice

```
{
    "epoch": 1.0,
    "eval_accuracy": 0.9617813229560852,
    "eval_loss": 0.13923248648643494,
```

```
"eval_runtime": 122.5067,

"eval_samples": 3009,

"eval_samples_per_second": 24.562,

"eval_steps_per_second": 3.077,

"train_loss": 0.17984692554227993,

"train_runtime": 2579.5809,

"train_samples": 21714,

"train_samples_per_second": 8.418,

"train_steps_per_second": 1.052
}
```

Qusetion Answering

```
{
    "eval_EM": 0.7896311066799602
}
```

c. the loss function you used.

Multiple Choice:使用 Cross Entropy Loss

Qusetion Answering:使用 Cross Entropy Loss

d. The optimization algorithm (e.g. Adam), learning rate and batch size.

Multiple Choice

Optimizor: AdamW

learning rate: 3e-5

batch size: 2

epoch: 1

Qusetion Answering

Optimizor:AdamW

learning rate: 3e-5

batch size: 2

epoch: 1

- 2. Try another type of pretrained model and describe (2%)
 - a. your model

Multiple Choice (使用同樣的pre-trained model)

```
" name or path": "bert-base-chinese",
"architectures": [
"BertForMultipleChoice"
"attention_probs_dropout_prob": 0.1,
"classifier dropout": null,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer range": 0.02,
"intermediate size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num attention heads": 12,
"num hidden layers": 12,
"pad_token_id": 0,
"pooler fc size": 768,
"pooler_num_attention_heads": 12,
"pooler num fc layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers version": "4.22.2",
"type vocab size": 2,
"use cache": true,
"vocab size": 21128
```

Qusetion Answering (使用 hfl/chinese-roberta-wwm-ext)

```
"_name_or_path": "hfl/chinese-roberta-wwm-ext",
"architectures": [
 "BertForQuestionAnswering"
],
"attention_probs_dropout_prob": 0.1,
"bos token id": 0,
"classifier dropout": null,
"directionality": "bidi",
"eos token id": 2,
"hidden act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden size": 768,
"initializer range": 0.02,
"intermediate size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num attention heads": 12,
"num hidden layers": 12,
"output_past": true,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler num fc layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers version": "4.22.2",
"type_vocab_size": 2,
"use cache": true,
"vocab size": 21128
```

b. performance of your model

Multiple Choice

```
"epoch": 1.0,
  "eval_accuracy": 0.9617813229560852,
  "eval_loss": 0.13923248648643494,
  "eval_runtime": 122.5067,
  "eval_samples": 3009,
  "eval_samples_per_second": 24.562,
  "eval_steps_per_second": 3.077,
  "train_loss": 0.17984692554227993,
  "train_runtime": 2579.5809,
  "train_samples": 21714,
  "train_samples_per_second": 8.418,
  "train_steps_per_second": 1.052
}
```

Qusetion Answering

c. the difference between pretrained model (architecture, pretraining loss, etc.)

chinese-roberta-wwm-ext-large 改善Bert模型, 使用Whole Word Masking在中文分詞效果更佳, 再加上large本身就比base大, 能夠有效提升準確率。

Q3: Curves (1%)

- 1. Plot the learning curve of your QA model
 - a. Learning curve of loss (0.5%)

b. Learning curve of EM (0.5%)

Q4: Pretrained vs Not Pretrained (2%)

 Train a transformer model from scratch (without pretrained weights) on the dataset (you can choose either MC or QA)

Describe

The configuration of the model and how do you train this model
 選用QA測試 train from scratch, model_type為bert, tokenizer為bert-base-chinese, 讀模型時使用from_config而非from_pretraine。

model = AutoModelForQuestionAnswering.from_config(config)

```
"architectures": [
 "BertForQuestionAnswering"
"attention probs dropout prob": 0.1,
"classifier_dropout": null,
"hidden act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden size": 768,
"initializer_range": 0.02,
"intermediate size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num attention heads": 12,
"num hidden layers": 12,
"pad token id": 0,
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers version": "4.22.2",
"type vocab size": 2,
"use cache": true,
```

```
"vocab_size": 30522
}
```

the performance of this model v.s. BERT

This model:

Epoch: 3

Evaluation metrics: 0.06347623795280824

loss: 4.27301466464996345

Bert:

Epoch: 1

Evaluation metrics: 0.7896311066799602

loss: 0.843793592755209

Q5: Bonus: HW1 with BERTs (2%)

- Train a BERT-based model on HW1 dataset and describe
 - a. your model
 - b. performance of your model.
 - i. Intent classification (1%)
 - ii. Slot tagging (1%)
 - c. the loss function you used.
 - d. The optimization algorithm (e.g. Adam), learning rate and batch size.