

IN THE CLAIMS

What is claimed is:

- 1 1. A mask identification circuit, comprising:
 - 2 a plurality of links arranged in series, each link having at least two
 - 3 inputs and at least two outputs, the inputs being directly coupled to the outputs
 - 4 in a first configuration, the inputs being cross coupled to the outputs in a
 - 5 second configuration.

- 1 2. The mask identification circuit of claim 1, wherein:
 - 2 each link includes at least two conductive lines, the two conductive
 - 3 lines of a link having a first orientation in the first configuration and a second
 - 4 orientation in the second configuration.
 - 5

- 1 3. The mask identification circuit of claim 2, wherein:
 - 2 the two conductive lines of at least one link are parallel to one another
 - 3 in the first and second configuration.

- 1 4. The mask identification circuit of claim 1, wherein:
 - 2 each link is formed on a different integrated circuit layer.

1 5. The mask identification circuit of claim 1, wherein:

2 at least one link includes a first conductive line and a second

3 conductive line, each conductive line having a downward contact to a link

4 formed on a lower integrated circuit layer and an upward contact to a link

5 formed on a higher integrated circuit layer.

1 6. The mask identification circuit of claim 5, wherein:
2 the upward contacts are diagonal to one another.

1 7. The mask identification circuit of claim 1, wherein:
2 the lower contacts are diagonal to one another.

1 8. A mask identification code circuit, comprising:

2 n mask identification (ID) bit circuits that each provide one bit of a
3 mask identification code, where n is an integer greater than 1, and the mask ID
4 bit circuits can provide more than n different mask identification codes.

1 9. The mask identification code circuit of claim 8, wherein:

2 each mask ID bit circuit includes a sense node that is coupled to one of
3 at least two different potentials by at least two signal paths.

1 10. The mask identification code circuit of claim 8, wherein:

2 each mask ID bit circuit includes a sense node that is coupled to a first
3 potential to identify one mask, to a second potential to identify a second mask
4 and to the first potential to identify a third mask.

1 11. The mask identification code circuit of claim 8, wherein:

2 each mask ID bit circuit includes a plurality of separate signal paths
3 cross coupled with one another to identify different masks.

1 12. The mask identification code circuit of claim 8, wherein:

2 each mask identification circuit includes a plurality of links, each link
3 being formed on a different integrated circuit layer.

13. The mask identification code circuit of claim 12, wherein:

2 each link of a mask identification circuit switches the potential
3 supplied to the sense node when switched between configurations, each link
4 including two conductive lines that are each coupled to a conductive line of
5 another link by only one contact in both a first and second configuration.

14. The mask identification code circuit of claim 8, wherein:

2 the mask ID bit circuits can provide 2^n different mask identification
3 codes with any combination of mask layer revisions.

1 15. A method for identifying integrated circuit masks, comprising the steps of:
2 forming mask bit identification (ID) circuits having interconnected
3 links on a plurality of integrated circuit layers that provide a signal path to a
4 sense node, each link being switchable between at least two configurations;
5 and
6 switching more than one link of a mask bit ID circuit from one
7 configuration to another to represent multiple mask changes.

1 16. The method of claim 15, wherein:
2 forming interconnected links includes forming two conductive lines
3 for each link, each conductive line having an upward contact and a downward
4 contact, the upward contacts of the two conductive lines being essentially
5 diagonal to one another, the downward contacts of the two conductive lines
6 being essentially diagonal to one another.

1 17. The method of claim 15, wherein:
2 switching a link from one configuration to another includes changing
3 the orientation of two conductive lines of the link.

1 18. The method of claim 17, wherein:
2 changing the orientation of the two conductive lines includes placing
3 the two conductive lines essentially perpendicular to a previous orientation.

1 19. The method of claim 15, wherein:

switching more than one link of a mask ID bit circuit includes switching the configuration of one link for one mask change and switching the configuration of a different link of the same mask ID bit circuit for another mask change.

1 20. The method of claim 15, wherein:

2 the links include one link comprising a polysilicon layer and another
3 link comprising an interconnect layer formed over the polysilicon layer.

1 21. A mask revision identification (ID) code circuit, comprising:
2 means for cross coupling at least two signal lines according to changes
3 in at least two integrated circuit masks to generate a mask ID code bit.

00000000000000000000000000000000