Appunti di Fisica

di:

Facchini Luca

Corso tenuto dal prof. Iuppa Roberto Università degli Studi di Trento

A.A. 2024/2025

Autore:
FACCHINI Luca
Mat. 245965
Email:luca.facchini-1@studenti.unitn.it
luca@fc-software.it

Corso: Fisica [145011]

CDL: Laurea Triennale in Informatica

Prof. Iuppa Roberto

Email: roberto.iuppa@unitn.it

Sommario

Appunti del corso di Reti, tenuto dal prof. Iuppa Roberto presso l'Università degli Studi di Trento. Corso seguito nell'anno accademico 2024/2025.

Indice

1	Cin	natica I	1
	1.1	Nozioni Preliminari	1
	1.2	Moti in una dimensione e grafico orario	
		1.2.1 Esercizio sulle grandezze fisiche	
		1.2.2 Problema de "Il lancio del sasso" (M.R.U.A e M.R.U)	5
		1.2.3 Moto armonico	
	1.3	Moti in due dimensioni	8
		1.3.1 Vettori e definizioni	8
		1.3.2 Accelerazione nel piano e ascissa curvilinea	1
		1.3.3 Moto Circolare Uniforme (M.C.U.)	2
		1.3.4 Moto Parabolico	
2	Din	mica 1	5
	2.1	tre principi fondamentali	5
\mathbf{A}	ppen	ice A: Note delle lezioni	7
		24 febbraio 2025	7
	A.2	26 febbraio 2025	7

Capitolo 1

Cinematica

Nel seguente capitolo andremo ad analizzare la cinematica, ovvero la branca della fisica che si occupa di descrivere il moto di un punto nello spazio. Per fare ciò andremo ad analizzare le grandezze fisiche che descrivono il moto di un punto nello spazio e come queste siano collegate tra loro.

1.1 Nozioni Preliminari

Sistema di riferimento Un sistema di riferimento è un insieme di regole che permettono di determinare la posizione di un punto nello spazio. Un sistema di riferimento è composto da un'origine, da un insieme di assi e da un'unità di misura. Definiamo un sistema di riferimento in quattro assi: x, y, z e t dove t rappresenta il tempo.

Definizione 1.1 (Spazio-Tempo Euclideo). Lo spazio-tempo euclideo (S) è un sistema di riferimento in quattro assi, x, y, z e t, dove t rappresenta il tempo. Lo spazio-tempo euclideo è definito come:

$$S(O_z, x, y, z; O_t, t)$$

dove O_z è l'origine degli assi spaziali e O_t è l'origine dell'asse temporale.

1.2 Moti in una dimensione e grafico orario

Per descrivere i moti in una dimensione possiamo utilizzare un grafico non affine, quindi non lineare, che rappresenta la posizione di un punto in funzione del tempo. Questo grafico è detto grafico orario.

Definizione 1.2 (Grafico Orario). Il grafico orario è un grafico cartesiano che esprime la posizione di un punto che si muove in una dimensione in funzione del tempo.

Vediamo come al momento t_i il me l'evento E_i sia in posizione x_i . Al momento t_i il punto

punto sia in posizione P_i e di verifica come l'evento E_i sia in posizione x_i . Al momento t_f il punto è in posizione P_f e l'evento E_f è in posizione x_f . Ora possiamo definite lo spostamento:

Definizione 1.3 (Spostamento). Lo spostamento è la variazione di posizione di un punto in un intervallo di tempo. Lo spostamento è definito come:

$$S_{i \to f} = x_f - x_i$$
$$\Delta x_{i \to f} = x_f - x_i$$

Da notare come lo spostamento non descrive ne' la traiettoria ne' la distanza percorsa dal punto ma solo la variazione di posizione, infatti il punto potrebbe aver compiuto un percorso "non diretto". Inoltre nello spostamento ha un verso definito e come conseguenza scrivere $S_{i\to f} \neq S_{f\to i}$.

Definizione 1.4 (Distanza Percorsa). La distanza percorsa è la lunghezza della traiettoria percorsa da un punto in un intervallo di tempo. La distanza percorsa è definita come:

$$d(P_i, P_f) = |x_f - x_i|$$

Notiamo come la distanza percorsa sia sempre positiva in quanto è la lunghezza della traiettoria percorsa dal punto. Inoltre la distanza percorsa non ha un verso definito, infatti $d(P_i, P_f) = d(P_f, P_i)$. Ora per descrivere il moto di un punto possiamo definire la velocità media:

Definizione 1.5 (Velocità media). La velocità media è la variazione di posizione di un punto in funzione del tempo. La velocità media è definita come:

$$v_m = \frac{\Delta x}{\Delta t} = \frac{\Delta x_{i \to f}}{\Delta t_{i \to f}}$$

Da notare come la velocità media non tiene conto del moto del punto in un intervallo di tempo, ma solo della variazione di posizione. Inoltre la velocità media ha un verso definito in quanto trattiamo lo spostamento (il quale ha un verso definito).

Per descrivere il moto di un punto in un instante t di tempo possiamo definire la velocità istantanea:

Definizione 1.6 (Velocità istantanea). La velocità istantanea è la variazione di posizione di un punto in un istante di tempo. La velocità istantanea è definita come:

$$v_i(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Dal punto di vista matematico la velocità istantanea è la derivata della posizione rispetto al tempo. Dunque i punti dove si passa da un movimento "in avanti" ad un movimento "all'indietro" sono i punti in cui la velocità istantanea è nulla ovvero i punti di massimo e minimo della funzione posizione, inoltre

il punto in cui la velocità istantanea è nulla è detto punto di inversione. Inoltre la velocità istantanea è una funzione continua in quanto la derivata di una funzione continua è anch'essa continua.

È vero che in un determinato periodo di tempo io possa aumentare o diminuire la velocità, per questo motivo definiamo la funzione di accelerazione:

Definizione 1.7 (Accelerazione). L'accelerazione è la variazione di velocità di un punto in funzione del tempo. L'accelerazione è definita come:

$$a = \frac{\Delta v}{\Delta t} = \frac{\Delta v_{i \to f}}{\Delta t_{i \to f}}$$

Da notare come l'accelerazione non tiene conto del moto del punto in un intervallo di tempo, ma solo della variazione di velocità. Inoltre l'accelerazione ha un verso definito in quanto trattiamo la variazione di velocità (la quale ha un verso definito).

Relazione tra posizione, velocità e accelerazione Come già detto la velocità è la derivata della posizione rispetto al tempo e l'accelerazione è la derivata della velocità rispetto al tempo, è vero inoltre che la posizione è l'integrale della velocità rispetto al tempo e questa è l'integrale dell'accelerazione rispetto al tempo. Dunque possiamo scrivere:

$$x(t)$$
 posizione (1.1)

$$v(t) = \frac{dx}{dt}$$
 velocità (1.2)

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$
 accelerazione (1.3)

Al contrario possiamo scrivere:

$$v(t) = v_0 + \int_{t_0}^t a(T)dT \tag{1.4}$$

$$x(t) = x_0 + \int_{t_0}^t v(T)dT = x_0 + \int_{t_0}^t dT \left[v_0 + \int_{t_0}^T a(\tau)d\tau \right]$$
 (1.5)

Ora le dimensioni fisiche (e non le unità di misura) di queste grandezze sono:

$$[x] = [L]$$
$$[v] = \left[\frac{L}{T}\right]$$
$$[a] = \left[\frac{L}{T^2}\right]$$

ed le rispettive unità di misura sono:

$$[x] = [m]$$
$$[v] = \left[\frac{m}{s}\right]$$
$$[a] = \left[\frac{m}{s^2}\right]$$

1.2.1 Esercizio sulle grandezze fisiche

Andiamo ora ad analizzare uno strumento importante per la risoluzione di esercizi fisici, ovvero l'analisi dimensionale. L'analisi dimensionale è uno strumento che ci permette di capire se un'equazione è corretta o meno e ci può suggerire come risolvere un problema. Vediamo un esempio:

Problema 1.1. Sia un punto che si muove lungo un asse x in funzione del tempo t, questo al momento $t_0 = 0$ si trova al punto $x(t_0) = x(0) = x_0 = 0$ e la sua velocità in questo punto è $v(t_0) = v(0) = v_0 > 0$. La sua accelerazione è descritta dalla funzione a(x) = -Ax - B con A, B > 0. Determinare il momento in cui il punto si ferma (x_{stop})

Analizziamo l'equazione dell'accelerazione:

$$a(x) = -Ax - B$$

notiamo come questa abbia come dimensioni fisiche:

$$a(x) = -Ax$$
 $-B$

$$\left[\frac{L}{T^2}\right] = [?][L] - [?]$$

da queste possiamo dedurre che A ha dimensioni fisiche $\left[\frac{1}{T^2}\right]$ e B ha dimensioni fisiche $\left[\frac{L}{T^2}\right]$. Ora l'equazione dello spazio in funzione del tempo è:

$$\frac{d^2x}{dt^2} = -Ax - B$$

dunque dobbiamo trovare una funzione x(t) tale che soddisfi questa equazione differenziale, in quanto dobbiamo mantenere una funzione sullo spazio ed ottenere il parametro A all'esterno ipotizziamo che la funzione sia:

$$x(t) = X_0 \sin(\sqrt{A}t + \varphi) =$$
$$= A \sin(\sqrt{A}t + \varphi)$$

Prima di calcolare le derivate di questa funzione verifichiamo che effettivamente questa funzione soddisfi la dimensionalità:

$$[x] = [L]$$

$$[A] = [L]$$

$$\left[\sqrt{A}\right] = \left[\frac{1}{T}\right]$$

$$[t] = [T]$$

$$[\varphi] = [1]$$

$$\left[\sqrt{A}t + \varphi\right] = [1] \checkmark$$

$$[A] [\sin([1])] = [L] \checkmark$$

ora verifichiamo che questa funzione soddisfi l'equazione differenziale, calcoliamo la derivata prima e la derivata seconda:

$$\frac{dx}{dt} = A\sqrt{A}\cos(\sqrt{A}t + \varphi)$$
$$\frac{d^2x}{dt^2} = -A\underbrace{A\sin(\sqrt{A}t + \varphi)}_{x(t)}$$

verifichiamo come anche queste derivate soddisfino la dimensionalità:

$$\begin{bmatrix} \frac{dx}{dt} \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} \frac{L}{T} \end{bmatrix}$$
$$\begin{bmatrix} \frac{L}{T} \end{bmatrix} = [\mathcal{A}] \left[\sqrt{A} \right] [\cos([1])]$$
$$\begin{bmatrix} \frac{L}{T} \end{bmatrix} = [L] \left[\frac{1}{T} \right] [1] \checkmark$$

$$\begin{bmatrix} \frac{d^2x}{dt^2} \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} \frac{L}{T^2} \end{bmatrix}$$
$$\begin{bmatrix} \frac{L}{T^2} \end{bmatrix} = [A] [A] [\sin([1])]$$
$$\begin{bmatrix} \frac{L}{T^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{T^2} \end{bmatrix} [L] [1] \checkmark$$

Dunque queste derivate soddisfano la dimensionalità, ma manca ancora il parametro -B nell'equazione dell'accelerazione, dunque dobbiamo modificare la funzione x(t) in modo che soddisfi anche questa condizione, partiamo dal fatto nella prima funzione possiamo aggiungere/sottrarre solo una quantità di dimensionalità [L] e notiamo come in quanto $[B] = \begin{bmatrix} L \\ T^2 \end{bmatrix}$ ed $[A] = \begin{bmatrix} 1 \\ T^2 \end{bmatrix}$ allora:

$$\left[\frac{B}{A}\right] = \left[\frac{\frac{L}{Z^{\mathbb{Z}}}}{\frac{1}{Z^{\mathbb{Z}}}}\right] = [L]$$

Dunque $\frac{B}{A}$ può essere aggiunto alla funzione x(t) in quanto ha le stesse dimensioni fisiche di x(t), dunque la funzione x(t) diventa:

$$x(t) = A\sin(\sqrt{A}t + \varphi) - \frac{B}{A}$$

questo non comporta alcun cambiamento alle derivate in quanto queste sono in funzione di t ed A e B sono delle costanti. Possiamo però notare come la derivata seconda di questa può essere riscritta come:

$$\frac{d^2x}{dt^2} = -A\left(A\sin(\sqrt{A}t + \varphi)\right)$$
$$= -A\left(x(t) + \frac{B}{A}\right)$$
$$= -Ax(t) - B$$

Abbiamo quindi trovato la funzione x(t) che soddisfa l'equazione differenziale, verifichiamo che nel punto x_0 questa soddisfi le condizioni iniziali per la posizione e la velocità:

$$x(0) = A\sin(\varphi) - \frac{B}{A} = 0 \tag{1.6}$$

$$\frac{dx}{dt}(0) = v(0) = A\sqrt{A}\cos(\varphi) > 0 \tag{1.7}$$

Per A>0 allora per 1.6 $\sin(\varphi)=\frac{B}{AA}$ e per 1.7 $\cos(\varphi)>0$ queste condizioni in aggiunta a quelle di A,B>0 ci permettono di dire che

$$\begin{cases} \mathcal{A} > 0 \\ 0 < \varphi < \frac{\pi}{2} \end{cases}$$

ora dobbiamo trovare il momento in cui il punto si ferma (x_{stop}) , ovvero il momento in cui la velocità è nulla $(v(t_{\text{stop}}) = v_{\text{stop}} = 0)$.

$$v(t_{\text{stop}}) = \sqrt{A}\mathcal{A}\cos(\sqrt{A}t_{\text{stop}} + \varphi) = 0$$
$$\sqrt{A}\mathcal{A} \neq 0 \Rightarrow \cos(\sqrt{A}t_{\text{stop}} + \varphi) = 0$$
$$\sqrt{A}t_{\text{stop}} + \varphi = \frac{\pi}{2}$$
$$t_{\text{stop}} = \left(\frac{\pi}{2} - \varphi\right)\frac{1}{\sqrt{A}}$$

ed al momento t_{stop} la posizione del punto è:

$$x_{\text{stop}} = A \sin \left[\sqrt{A} \frac{1}{\sqrt{A}} \left(\frac{pi}{2} - \mathcal{Y} \right) + \mathcal{Y} \right] - \frac{B}{A}$$
$$= A \sin \left(\frac{\pi}{2} \right) - \frac{B}{A}$$
$$= A - \frac{B}{A}$$

Vedi A.2

1.2.2 Problema de "Il lancio del sasso" (M.R.U.A e M.R.U)

Questo classico problema viene usato per definire il Moto Rettilineo Uniformemente Accelerato ed il Moto Rettilineo Uniforme

Problema 1.2. Una coppia di amici vuole misurare l'altezza di un precipizio. Decidono di farlo lanciando un sasso verso il basso e misurando il tempo che impiega a raggiungere il fondo. Sappiamo che il tempo tra il rilascio del sasso grave¹ ed il rumore dell'impatto è di t_a secondi. Calcolare l'altezza del precipizio.

Avendo definito il sistema di riferimento con origine la cima del precipizio (dove sono gli amici) ed un verso "puntante" il fondo.

Il problema può essere diviso in due parti:

I Il moto del masso grave

II Il moto del suono

Mentre la prima parte è descritta da una accelerazione costante a(t) = g, una velocità iniziale nulla v(0) = 0, una posizione iniziale x(0) = 0 e una posizione finale $x(t_f) = x_f$. La seconda parte è descritta da una velocità costante $v(t) = v_s$ e una posizione iniziale $x(t) = x_f$ e una posizione finale x(t) = 0. Allora possiamo scrivere la posizione del masso grave come:

$$a = g$$

$$v(t) = v_0 + \int_0^t a(T)dT$$

$$= v_0 + gt$$

$$z(t) = z_0 + \int_0^t v(T)dT$$

$$= z_0 + \int_0^t (v_0 + gT)dT$$

$$= \underbrace{z_0}_0 + \underbrace{v_0}_0 t + \frac{1}{2}gt^2$$

$$= \frac{1}{2}gt^2$$

Da notare come tutto ciò può essere scritto solo se $t < t_f$ in quanto il masso non può andare oltre il fondo del precipizio.

Assumendo che il sasso venga lasciato perpendicolarmente al suolo allora possiamo scrivere la posizione del suono come:

$$v(t) = v_s$$

$$z(t)|_{t>t_f} = z_f + \int_{t_f}^t v_s dT$$

$$= z_f + v_s(t - t_f)$$

A questo punto definendo come t_a il tempo tra il rilascio del sasso e l'impatto (amico), t_f come il tempo del fondo del precipizio e t_0 come il tempo di rilascio del sasso, e dunque definito che $\Delta t_a = \Delta t_{mg} + \Delta t_{ms}$ possiamo scrivere:

$$\begin{cases} Z_f = \frac{1}{2}gt_f^2 \\ \frac{1}{2}gt_f^2 - v_s(t_s - t_f) = 0 \end{cases} = \begin{cases} / \\ t_f^2 + 2\frac{v_s}{g}t_f - 2\frac{Z_f}{g} = 0 \end{cases}$$

Questa equazione di secondo grado ha come soluzione:

$$t_f = -\frac{v_s}{g} \pm \sqrt{\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}}$$

la cui unica soluzione valida è:

$$t_f = -\frac{v_s}{g} + \sqrt{\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}}$$

¹Soggetto alla gravità

Questo è il tempo che impiega il sasso a raggiungere il fondo del precipizio, ora possiamo calcolare l'altezza del precipizio:

$$Z_f = \frac{1}{2}g\left(-\frac{v_s}{g} + \sqrt{\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}}\right)^2$$

$$= \frac{1}{2}g\left(\frac{v_s}{g} - \sqrt{\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}}\right)^2$$

$$= \frac{1}{2}g\left(\frac{v_s^2}{g} - 2\frac{v_s}{g}\sqrt{\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}} + \left(\left(\frac{v_s}{g}\right)^2 + 2\frac{Z_f}{g}\right)\right)$$

1.2.3 Moto armonico

Il moto armonico è descritto dalla seguente funzione di posizione:

$$x(t) = A\sin(\omega t + \varphi)$$

dove:

- \bullet A è l'ampiezza del moto
- $\bullet \ \omega$ è la pulsazione del moto
- $\bullet \ \varphi$ è la fase iniziale del moto

come conseguenza possiamo ricavare la posizione in funzione del tempo:

$$\begin{array}{c|c} L & X \\ \hline 0 & A\sin(\varphi) \\ -\frac{\varphi}{\omega} & A\sin(\frac{\varphi}{\varphi}\omega - \varphi) = 0 \\ -\frac{\varphi}{\omega} + \frac{\pi}{2\omega} & A \\ -\frac{\varphi}{\omega} + \frac{\pi}{2\omega} & 0 \\ -\frac{\varphi}{\omega} + \frac{3\pi}{2\omega} & -A \end{array}$$

Tabella 1.1: Posizione in funzione del tempo del moto armonico

come possiamo notare dall'equazione di posizione in funzione del tempo il moto armonico è periodico con periodo $T=\frac{2\pi}{\omega}$ e frequenza $f=\frac{1}{T}=\frac{\omega}{2\pi}$.

Al variare del parametro φ (fase) il moto armonico può essere traslato lungo l'asse t, se invece è il parametro A (ampiezza) a variare il moto armonico può essere "allargato" o "restringo" lungo l'asse x, ovvero i massimi saranno A e i minimi -A. Infine se è il parametro ω (pulsazione) a variare il moto armonico può essere "allungato" o "accorciato" lungo l'asse t, ovvero la distanza (temporale) tra due massimi consecutivi sarà $T = \frac{2\pi}{\omega}$.

Derivate Come accennato la velocità è la derivata della posizione rispetto al tempo:

$$v(t) = \frac{dx}{dt} = A\omega\cos(\omega t + \varphi)$$

e l'accelerazione è la derivata della velocità rispetto al tempo:

$$a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2} = -A\omega^2 \sin(\omega t + \varphi)$$

Analisi dimensionale Possiamo notare come la funzione di posizione del moto armonico soddisfi la dimensionalità:

$$[A] = [x(t)] = [L]$$
$$[\omega t] = [1] \Rightarrow [w] = \left[\frac{1}{T}\right]$$
$$[\omega] = \left[\frac{1 \text{ radiante}}{\text{sec}}\right]$$

[&]quot;Appunti di Fisica" di Luca Facchini

Problema 1.3 (1.26). In un moto armonico semplice, con pulsazione $\omega = 1.55 \frac{rad}{s}$ e ampiezza A = 7 cm, si osserva che al tempo t = 0 il punto si trova in posizione x(0) = 2.72 cm. Calcolare:

- a. la fase iniziale φ
- b. il periodo d'oscillazione T
- c. la velocità iniziale v(0)

Per prima calcoliamo la fase iniziale φ and ando a sfruttare la posizione iniziale ed la legge di posizione del moto armonico:

$$x(0) = A\sin(\varphi)$$

$$\frac{x(0)}{A} = \sin(\varphi)$$

$$\arcsin\left(\frac{x(0)}{A}\right) = \varphi$$

$$\arcsin\left(\frac{2.72}{7}\right) = \varphi$$

$$\varphi \approx 0.39$$

Ora possiamo calcolare il periodo d'oscillazione T andando a sfruttare la definizione di periodo:

$$T = \frac{2\pi}{\omega}$$

$$\frac{2\pi}{\omega} = \frac{2\pi}{1.55}$$

$$T \approx 4.07 \text{ 4 secondi e spicci ~prof. Iuppa}$$

Infine avendo calcolato la fase iniziale φ possiamo calcolare la velocità iniziale v(0) andando ad utilizzare la derivata prima della posizione:

$$v(0) = \frac{dx}{dt}(0)$$

$$= A\omega \cos(\omega t + \varphi)$$

$$= 7 \cdot 1.55 \cos(0.39)$$

$$v(0) \approx 10.5 \text{ cm/s}$$

1.3 Moti in due dimensioni

Andiamo ora ad analizzare i moti in due dimensioni, ovvero i moti di un punto nello spazio.

1.3.1 Vettori e definizioni

Per descrivere i moti in due dimensioni possiamo utilizzare i vettori, in particolare per descrivere come un punto si muove nello spazio in funzione del tempo usiamo il **vettore posizione**:

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

Definizione 1.8 (Vettore Posizione). Il vettore posizione (\vec{r}) è un vettore che descrive la posizione di un punto nello spazio in funzione del tempo, questo è un vettore di due dimensioni.

Definiamo ora il **modulo** di un vettore:

Definizione 1.9 (Modulo di un vettore). Il modulo di un vettore $(|\vec{v}|)$ è la lunghezza del vettore, ovvero la distanza tra l'origine e la coda del vettore. Questa è definita come:

$$|\vec{v}|^2 = \sum_{i=1}^n v_i^2$$

dove v_i è la componente i del vettore ed n è la dimensione del vettore.

Molto spesso sarà necessario avere un vettore di lunghezza unitaria, ovvero un vettore che ha modulo 1, ma che mantenga la direzione ed il verso del vettore originale, questo vettore è detto **versore**:

Definizione 1.10 (Versore). Il versore (\hat{v}) è un vettore di lunghezza unitaria che mantiene la direzione e il verso del vettore originale. Il versore è definito come:

$$\hat{v} = \frac{\vec{v}}{|\vec{v}|}$$

Ora possiamo definire le operazioni tra vettori:

Definizione 1.11 (Somma di vettori). La somma di due vettori $(\vec{v} + \vec{u})$ è un vettore che ha come componenti la somma delle componenti dei due vettori. La somma di due vettori è definita come:

$$\vec{v} + \vec{u} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} + \begin{bmatrix} u_x \\ u_y \end{bmatrix} = \begin{bmatrix} v_x + u_x \\ v_y + u_y \end{bmatrix}$$

Graficamente la somma di due vettori è la costruzione di un parallelogramma con i due vettori come lati, il vettore somma è la diagonale del parallelogramma. Questo lo possiamo fare grazie alla **regola** de trasporto ovvero la regola che ci permette di trasportare un vettore in un altro punto dello spazio mantenendo direzione e verso per poi sommarlo ad un altro vettore.

Definizione 1.12 (Prodotto scalare). Il prodotto scalare tra un vettore e uno scalare $(\vec{v} \cdot \alpha)$ è un vettore che ha come componenti il prodotto delle componenti del vettore per lo scalare. Il prodotto scalare è definito come:

$$\vec{v} \cdot \alpha = \begin{bmatrix} v_x \\ v_y \end{bmatrix} \cdot \alpha = \begin{bmatrix} v_x \alpha \\ v_y \alpha \end{bmatrix}$$

Questa operazione è usata per il calcolo del versore.

Definizione 1.13 (Angolo tra due vettori). L'angolo tra due vettori (\vec{v} e \vec{u}) è l'angolo tra i due vettori, ovvero l'angolo tra i due versori. L'angolo tra due vettori è definito come:

$$\cos(\theta) = \frac{\vec{v} \cdot \vec{u}}{|\vec{v}| |\vec{u}|} \Rightarrow \theta = \arccos\left(\frac{\vec{v} \cdot \vec{u}}{|\vec{v}| |\vec{u}|}\right)$$

In questa definizione usiamo il prodotto scalare tra due vettori, questo prodotto è definito come:

Definizione 1.14 (Prodotto scalare). Il prodotto scalare tra due vettori $(\vec{v} \cdot \vec{u})$ è uno scalare che ha come valore la somma dei prodotti delle componenti dei due vettori. Il prodotto scalare è definito come:

$$\vec{v} \cdot \vec{u} = \sum_{i=1}^{n} v_i u_i$$

dove v_i e u_i sono le componenti i dei due vettori ed n è la dimensione dei vettori.

Quando descriviamo il movimento del punto nello spazio possiamo descrivere il moto con il **raggio** vettore:

Definizione 1.15 (Raggio vettore). Il raggio vettore (\vec{r}) è un vettore che descrive la posizione di un punto nello spazio in funzione del tempo. Il raggio vettore è definito come:

$$\vec{v}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = x\hat{v}_x + y\hat{v}_y$$

Di conseguenza possiamo definire la velocità e l'accelerazione come:

Definizione 1.16 (Velocità). La velocità (\vec{v}) è la derivata del raggio vettore rispetto al tempo. La velocità è definita come:

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dx} \\ \frac{dy}{dx} \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} = v_x \hat{v}_x + v_y \hat{v}_y$$

Definizione 1.17 (Accelerazione). L'accelerazione (\vec{a}) è la derivata della velocità rispetto al tempo. L'accelerazione è definita come:

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} = \begin{bmatrix} \frac{dv_x}{dt} \\ \frac{dv_y}{dt} \end{bmatrix} = \begin{bmatrix} a_x \\ a_y \end{bmatrix} = a_x \hat{v}_x + a_y \hat{v}_y$$

Anche per i vettori la posizione in funzione del tempo può essere scritta come l'integrale della velocità rispetto al tempo:

$$\rho(t) = \vec{\rho}_0 + \int_{t_0}^t \vec{v}(T)dT$$

e la velocità in funzione del tempo può essere scritta come l'integrale dell'accelerazione rispetto al tempo:

$$\vec{v}(t) = \vec{v}_0 + \int_{t_0}^t \vec{a}(T)dT$$

Coordinate Polari Le coordinate polari sono un sistema di coordinate che permette di descrivere un punto nello spazio con due coordinate: il raggio (ρ) e l'angolo (θ) . Queste coordinate sono collegate alle coordinate cartesiane tramite le relazioni:

$$x = \rho \cos(\theta)$$
$$y = \rho \sin(\theta)$$

e le coordinate cartesiane sono collegate alle coordinate polari tramite le relazioni:

$$\rho = \sqrt{x^2 + y^2}$$
$$\theta = \arctan\left(\frac{y}{x}\right)$$

Per passare dalle coordinate polari alle coordinate cartesiane usiamo le seguenti relazioni:

$$\vec{r}(x,y) \to \left(\rho,\varphi\right) = \left(\sqrt{x^2 + y^2}, \arctan\left(\frac{y}{x}\right)\right)$$
$$\vec{r}(x,y) = \left(\rho\cos\varphi, \rho\sin\varphi\right) \leftarrow \left(\rho,\varphi\right)$$

Il vettore velocità può anche questo essere espresso in coordinate polari:

$$\frac{d}{dt}(\rho\cos(\varphi)) = \left(\frac{d}{dt}\rho\right)\cos(\varphi) + \rho\left(\frac{d}{dt}\cos(\varphi)\right)$$

$$= \rho\cos(\varphi) - \rho(\sin\varphi)\varphi$$

$$\frac{d}{dt}(\rho\sin(\varphi)) = \left(\frac{d}{dt}\rho\right)\sin(\varphi) + \rho\left(\frac{d}{dt}\sin(\varphi)\right)$$

$$= \rho\sin(\varphi) + \rho(\cos\varphi)\varphi$$

$$\vec{v} = (\rho\cos(\varphi) - \rho\varphi\sin(\varphi), \rho\sin(\varphi) + \rho\varphi\cos(\varphi))$$

A partire da questa possiamo calcolare l'accelerazione in coordinate polari:

$$\frac{d}{dt}(\rho\cos(\varphi) - \rho\varphi\sin(\varphi)) = \left(\frac{d}{dt}\rho\right)\cos(\varphi) - \rho\varphi\sin(\varphi) + \rho\left(\frac{d}{dt}\cos(\varphi)\right) - \rho\left(\frac{d}{dt}\varphi\right)\sin(\varphi) - \rho\varphi\cos(\varphi)$$

$$= \rho\cos(\varphi) - \rho\varphi\sin(\varphi) - \rho\varphi\sin(\varphi) - \rho\varphi\cos(\varphi) - \rho\varphi\cos(\varphi)$$

$$= \rho\cos(\varphi) - 2\rho\varphi\sin(\varphi) - 2\rho\varphi\cos(\varphi)$$

$$\frac{d}{dt}(\rho\sin(\varphi) + \rho\varphi\cos(\varphi)) = \left(\frac{d}{dt}\rho\right)\sin(\varphi) + \rho\varphi\cos(\varphi) + \rho\left(\frac{d}{dt}\sin(\varphi)\right) + \rho\left(\frac{d}{dt}\varphi\right)\cos(\varphi) - \rho\varphi\sin(\varphi)$$

$$= \rho\sin(\varphi) + \rho\varphi\cos(\varphi) + \rho\varphi\cos(\varphi) - \rho\varphi\sin(\varphi) + \rho\varphi\cos(\varphi)$$

$$= \rho\sin(\varphi) + 2\rho\varphi\cos(\varphi) - \rho\varphi\sin(\varphi)$$

$$\vec{a} = (\rho\cos(\varphi) - 2\rho\varphi\sin(\varphi) - 2\rho\varphi\cos(\varphi), \rho\sin(\varphi) + 2\rho\varphi\cos(\varphi) - \rho\varphi\sin(\varphi))$$

Tangente alla traiettoria

La tangente alla traiettoria è un vettore che ha come direzione la direzione della velocità in un punto della traiettoria, la quale è **sempre** tangente alla traiettoria in quel punto. Questo vettore è definito come:

$$\frac{V_y}{V_x} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = y'(x)$$

La direzione viene espressa tramite il versore: $\hat{v}_t = \vec{v} = |\vec{v}| \cdot \hat{v}_t$

1.3.2 Accelerazione nel piano e ascissa curvilinea

Come per il moto in una dimensione l'accelerazione è definita come la derivata della velocità rispetto al tempo, nel caso delle n dimensioni si verifica la seguente relazione:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt} (|\vec{v}| \cdot \hat{v_t})$$
$$= \frac{d|\vec{v}|}{dt} \cdot \hat{v_t} + |\vec{v}| \cdot \frac{d\hat{v_t}}{dt}$$

L'ultima parte di questa equazione, la quale corrisponde all'accelerazione, ci fà notare come nei moti su n dimensioni l'accelerazione non sia solo puramente correlata alla variazione della velocità: $\frac{d|\vec{v}|}{dt} \cdot \hat{v}_t$ ma anche alla variazione della direzione della velocità: $|\vec{v}| \cdot \frac{d\hat{v}_t}{dt}$. Questa seconda parte dell'accelerazione è detta accelerazione centripeta che dipende dalla velocità normale e dalla curvatura della traiettoria. Definiamo quindi alcuni concetti che ci permettono di descrivere meglio il moto in due dimensioni:

Definizione 1.18 (Velocità radiale). La velocità radiale $(\vec{v_r})$ è la componente della velocità che è parallela al raggio vettore. La velocità radiale è definita come:

$$\vec{v_r} = \vec{v} \cdot \hat{r}$$

Vettore rosso

Definizione 1.19 (Versore radiale). Il versore radiale (\hat{r}) è il versore che ha come direzione il raggio vettore. Il versore radiale è definito come:

$$\hat{r} = \frac{\vec{r}}{|\vec{r}|}$$

Vettore verde

Definizione 1.20 (Versore tangente alla traiettoria). Il versore tangente alla traiettoria $(\hat{v_t})$ è il versore che ha come direzione la tangente alla traiettoria. Il versore tangente alla traiettoria è definito come:

$$\hat{v_t} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = \frac{d\vec{r}}{ds}|\vec{v}|$$

Questo descrive la direzione della velocità tangenziale in un punto della traiettoria. Vettore blu

Definizione 1.21 (Versore tangente al versore radiale). Il versore tangente al versore radiale $(\hat{v_n})$ è il versore che ha come direzione la tangente al versore radiale. Il versore tangente al versore radiale è definito come:

$$\hat{v_n} = \frac{d\hat{r}}{dt}$$

Questo descrive la direzione della velocità normale in un punto della traiettoria. Vettore viola

Definizione 1.22 (Versore perpendicolare alla tangente della traiettoria). Il versore perpendicolare alla tangente della traiettoria $(\hat{v_b})$ è il versore che ha come direzione la perpendicolare alla tangente della traiettoria. Il versore perpendicolare alla tangente della traiettoria è definito come:

$$\hat{v_b} = \hat{v_t} \times \hat{r}$$

Questo descrive la direzione della velocità perpendicolare in un punto della traiettoria. Vettore giallo

Dunque la accelerazione tangenziale in

un punto è descritta dalla componente $\frac{d|\vec{v}|}{dt} \cdot \hat{v_t} = \vec{a_t}$ mentre la **accelerazione normale** in un punto è

descritta dalla componente $|\vec{v}| \cdot \frac{d\hat{v_t}}{dt} = \vec{a_n}$.

Ascissa curvilinea

L'ascissa curvilinea (s) è la derivata dello spazio sul tempo, ovvero approssimando per tratti infinitesimi la traiettoria come una circonferenza allora:

$$\frac{d\varphi}{dt} = \frac{d\varphi}{ds}\frac{ds}{dt} = \frac{1}{R}|\vec{v}|$$

dove R è il **raggio di curvatura** il quale è definito come il raggio della circonferenza che meglio approssima la traiettoria in un punto.² Dunque in un punto da un punto della traiettoria possiamo ricavare l'accelerazione normale ed la velocità tangenziale.

Analizziamo la situazione nella quale l'accelerazione tangenziale è nulla, ovvero il modulo della velocità è costante ma la direzione cambia costantemente, in questo caso

$$\frac{dv}{dt} = 0 \Rightarrow \vec{a} = \frac{v^2}{R}\hat{V_n}$$

Dunque v è costante, $|\vec{a}| = \frac{v^2}{R}$ è costante e quindi R è costante, ovvero la traiettoria è una circonferenza.

1.3.3 Moto Circolare Uniforme (M.C.U.)

Nel moto circolare uniforme la velocità è costante, la direzione cambia costantemente e l'accelerazione è costante e diretta verso il centro della circonferenza. In questo moto viene definito il concetto di **velocità** angolare:

Definizione 1.23 (Velocità angolare). La velocità angolare (ω) è la velocità con la quale un punto si muove lungo la circonferenza. La velocità angolare è definita come:

$$\omega = \frac{d\varphi}{dt}$$

ne consegue che $ds = Rd\varphi$ e dunque $\omega = \frac{v}{R}$.

Dimostrazione. Dimostriamo che $\omega = \frac{v}{R}$:

$$\omega = \frac{d\varphi}{dt} = \frac{d\varphi}{ds}\frac{ds}{dt} = \frac{1}{R}v = \frac{v}{R} \Rightarrow v = R\omega$$

Il moto è descritto dalle seguenti equazioni che compongono il vettore posizione:

$$\begin{cases} x = R\cos(\varphi) = R\cos(\omega t) \\ y = R\sin(\varphi) = R\sin(\omega t) \end{cases}$$

e dunque la velocità in quanto derivata della posizione rispetto al tempo è:

$$\begin{cases} v_x = -R\sin(\omega t) \cdot \omega = -R\omega\sin(\omega t) \\ v_y = R\cos(\omega t) \cdot \omega = R\omega\cos(\omega t) \end{cases}$$

e l'accelerazione in quanto derivata della velocità rispetto al tempo è:

$$\begin{cases} a_x = -R\omega\cos(\omega t) \cdot \omega = -R\omega^2\cos(\omega) \\ a_y = -R\omega\sin(\omega t) \cdot \omega = -R\omega^2\sin(\omega t) \end{cases}$$

Notiamo come le somme dei quadrati delle velocità $v_x^2+v_y^2$ siano uguali al prodotto dei quadrati del raggio e della velocità angolare $R^2\omega^2$.

 $^{^2}$ Viene usata la lettera maiuscola R in quanto questo non può essere stabilito da noi ma dipende direttamente dalla traiettoria e dunque dal problema, si dice infatti che il centro della circonferenza è IMPOSTO dalla traiettoria.

Moto circolare uniforme come somma di moti armonici

Il moto circolare uniforme può essere descritto come la somma di due moti armonici ortogonali della stessa ampiezza e della stessa frequenza, infatti se:

$$\begin{cases} \varphi = \omega t \\ \rho = R \end{cases} \Rightarrow \vec{r} = R \begin{bmatrix} \cos(\omega t) \\ \sin(\omega t) \end{bmatrix}$$

3

1.3.4 Moto Parabolico

Anche il moto parabolico può essere descritto come la somma di due moti, in questo caso però viene sommato il moto rettilineo uniforme parallelo all'asse delle x con il moto uniformemente accelerato lungo l'asse delle y. Questo moto è descritto dalle seguenti equazioni:

$$\vec{v} = \begin{cases} x = v_{0x}t \\ y = v_{0y}t - \frac{1}{2}gt^2 \end{cases}$$

entrambe dipendono dalla velocità iniziale la quale può essere divisa nelle sue componenti come:

$$\begin{cases} v_{0x} = |v_0| \cos(\alpha) \\ v_{0y} = |v_0| \sin(\alpha) \end{cases}$$

dove α è l'angolo che la velocità iniziale forma con l'asse delle x, ci redimo conto che ci basta conoscere la velocità iniziale e l'angolo per descrivere il moto parabolico.⁴.

Scrivendo le equazioni del moto parabolico con la y in funzione del tempo possiamo ottenere la seguente equazione:

$$y = v_{oy} \frac{x}{v_{ox}} - \frac{1}{2}g \left(\frac{x}{v_{ox}}\right)^{2}$$
$$= \underbrace{-\frac{g}{2v_{ox}^{2}}}_{c} x^{2} + \underbrace{\frac{v_{oy}}{v_{ox}}}_{b} x + \underbrace{0}_{c}$$

Questa è proprio l'equazione di una parabola, ora a sarà sempre minore di 0 a meno di un cambio del sistema di riferimento e dunque la parabola sarà sempre concava verso il basso [1].

Inoltre il $\lim_{a\to\frac{\pi}{2}}y\to Indef$, ma il $\lim_{g\to 0}y\to \text{M.R.U.}[2]$, infine se la derivata prima della y fosse =0 e dunque 2ax+b=0 allora:

$$\begin{split} x &= -\frac{b}{2a} \\ &= -\frac{\frac{v_{oy}}{v_{oy}}}{\frac{g}{v_{bx}^{2}}} \\ &= -\frac{v_{oy}v_{ox}}{g} \\ &= \frac{v^{2}\sin(\alpha)\cos(\alpha)}{g} \\ &= \frac{v^{2}}{2q}\sin(2\alpha) \end{split}$$

Potrebbe essere utile la "gittata" [4] ovvero la distanza percorsa dal punto, questa la possiamo ricavare imponendo y=0: . . .

³Dimostrazione omessa

 $^{^4}$ Anche se nella realtà dovremmo considerare la resistenza dell'aria e la rotazione terrestre per la componente v_{0x}

Capitolo 2

Dinamica

Nel presente capitolo si analizzerà il moto di un corso a partire dai tre principi fondamentali della dinamica fino ad arrivare ad ...

2.1 I tre principi fondamentali

Andiamo ora ad enunciare i tre principi fondamentali della dinamica.

Legge 2.1 (Principio d'inerzia). In un sistema inerziale, mantiene il suo stato di moto rettilineo uniforme o quiete finché una forza esterna non agisce su questo

Da notare come questa legge vale solo ed esclusivamente nel caso nel quale il sistema di riferimento sia inerziale. In caso contrario questo principio non si applica.

Legge 2.2 (Principio di Newton). L'accelerazione che un corpo riceve è legata a questo mediante una costante numerica (m)

Quindi $\vec{a} = m\vec{F}$, spesso la constante m viene apposta al denominatore della formula, ottenendo $\vec{F} = m\vec{a}$. Questa è la forma più comune della legge di Newton, dove la forza (F) è uguale alla massa $(m)^1$, misurata in kg, per l'accelerazione (a) misurata in m/s^2 .

Legge 2.3 (Principio di azione e reazione). La forza che un corpo A esercita sul corpo B è uguale alla forza che il corpo B esercita sul corpo A, ma di verso opposto.

Questo principio è molto importante in quanto ci permette di capire come mai un corpo si muova. Infatti, se un corpo A esercita una forza su un corpo B, il corpo B eserciterà una forza uguale e di verso opposto su A, l'accelerazione d'altronde sarà diversa se le masse sono diverse.

Quantità di moto La quantità di moto è una grandezza vettoriale che descrive "quanto" movimento c'è in un sistema e dipende dalla massa e dalla velocità del corpo. È definito come segue:

$$\vec{p}=m\vec{v}$$

Ad esempio se un corpo di massa m=100g viaggia a v=360km/h la sua quantità di moto sarà $|\vec{p}|=0.1[kg]\cdot 100[m/s]=10[kg\cdot m/s]$

Impulso L'impulso è una grandezza vettoriale che descrive "quanto" una forza agisce su un corpo in uno specifico istante/intervallo di tempo. È definito come segue:

$$\vec{J} = \vec{P_f} - \vec{P_i} = \Delta \vec{p} = m_f \vec{v_f} - m_i \vec{v_i}$$

In regime di conservazione della massa, allora $m_f = m_i$ e quindi $\vec{J} = m\vec{v_f} - m\vec{v_i} = m(\vec{v_f} - \vec{v_i}) = m\vec{\Delta v}$ dove $\vec{\Delta v}$ è la variazione di velocità del corpo.

Inoltre visto il secondo principio (2.2) possiamo scrivere:

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} \Rightarrow \vec{F} = m\frac{d\vec{v}}{dt}$$

¹Sempre positiva

Questo è anche scrivibile usando la notazione:

$$\vec{F} = m \frac{\Delta \vec{v}}{\Delta t}$$

in questo caso $\vec{J} = \vec{F_{\rm imp}} \Delta t$ dove $\vec{F_{\rm imp}}$ è la forza impulsiva, in quanto stiamo trattando di un intervallo di tempo finito e non un infinitesimo.

Forza risultante La forza risultante è definita come la somma vettoriale di tutte le forze che agiscono su un corpo.

$$\vec{F_{1 \to c}} + \vec{F_{2 \to c}} + \dots + \vec{F_{N \to c}} = \sum_{i=1}^{N} \vec{F_{i \to c}} = \vec{R_c}$$

Dove $\vec{R_c}$ è la forza risultante che agisce sul corpo c, mentre $\vec{F_{i \to c}}$ è la forza che il corpo i esercita sul corpo c.

Se un corpo fosse in quiete ovvero $\vec{S_i} = \vec{S_f}$ dunque $\vec{v_i} = \vec{v_f} = 0$ allora $\vec{a_{tot}} = \vec{0}$ e quindi $\vec{R_c} = \vec{0}$.

Appendice A: Note delle lezioni

Di seguito sono riportate delle note delle lezioni ulteriori agli appunti stessi del corso.

A.1 24 febbraio 2025

Le tre regole del grafico orario:

- Il tempo non si ferma;
- Il tempo scorre sempre allo stesso, uniforme, modo per tutti;
- ullet Non si può andare più veloce della luce (c), non possono esistere dunque rette con pendenza maggiore di c.
- Non esiste ancora il teletrasporto.

A.2 26 febbraio 2025

Si noti come lo scopo del problema non fosse strettamente quello di trovare il punto nel quale il punto si ferma, ma di capire come l'analisi dimensionale possa aiutarci a risolvere un problema fisico.