New work and A tutorial on SOT

Zhipeng Zhang

NLPR, CASIA

Contents

- Which paper should a fresher read?
- Which Github-repo should you fork?
- Advances in Siamese Tracking
- Our new paper: Ocean/Ocean+
- Challenges and future study
- Q&A

Papers to read

[survey] Marvasti-Zadeh S M, et al. Deep learning for visual tracking: A comprehensive survey.

[Siam 开山] Luca Bertinetto, et.al Fully-Convolutional Siamese Networks for Object Tracking.

[Siam 突破] Li, Bo, et al. High performance visual tracking with siamese region proposal network.

[Siam 突破] Zhang Z, et al. Deeper and wider siamese networks for real-time visual tracking.

[Siam 突破] Li B, Siamrpn++: Evolution of siamese visual tracking with very deep networks.

[Siam 突破] Wang Q et al, Fast online object tracking and segmentation: A unifying approach.

[Siam 突破] Zhang Z,Ocean: Object-aware anchor-free tracking.

[Siam 开山] Luca Bertinetto, et.al Fully-Convolutional Siamese Networks for Object Tracking.

[CF 开山] David S. Bolme et al, Visual Object Tracking using Adaptive Correlation Filters.

[CF 突破] J. F. Henriques, et al, High-speed tracking with kernelized correlation filters.

[CF 突破] Martin Danelljan, et al. Learning Spatially Regularized Correlation Filters for Visual Tracking.

[CF 突破] Martin Danelljan, et al. ECO: Efficient Convolution Operators for Tracking.

[CF 突破] Martin Danelljan, et al. ATOM: Accurate Tracking by Overlap Maximization.

Github to Fork

[Results Comparison] https://github.com/JudasDie/Comparison

[Papers Collection] https://github.com/foolwood/benchmark_results

[TracKit] https://github.com/researchmm/TracKit [SiamDW/Ocean/Ocean+]

[SiamFC++] https://github.com/MegviiDetection/video_analyst

[SiamRPN++] https://github.com/STVIR/pysot

[SiamMask] https://github.com/foolwood/SiamMask

[Pytracking] https://github.com/visionml/pytracking [ATOM/DIMP/PrDiMP]

[VOT] https://github.com/votchallenge

[GOT10K] https://github.com/got-10k/toolkit

[FairMOT] https://github.com/ifzhang/FairMOT

[TnesorRT] https://github.com/NVIDIA/TensorRT

SiamFC: Time is life

SiamRPN: Detection to Tracking

- ☐ Region Proposal
- Detection matters
- ☐ Acc.! Acc.! Acc.!

SiamDW/SiamRPN++: Going deeper and wider

Figure 3. Illustration of our proposed framework. Given a target template and search region, the network ouputs a dense prediction by fusion the outputs from multiple Siamese Region Proposal (SiamRPN) blocks. Each SiamRPN block is shown on right.

SiamMask: Segmentation to Tracking

- Segmentation Matters
- ☐ Rotated Box
- ☐ Pixel! Pixel! Pixel!

SiamRCNN: rethinking where should we go

Figure 2: Overview of Siam R-CNN. A Siamese R-CNN provides re-detections of the object given in the first-frame bounding box, which are used by our Tracklet Dynamic Programming Algorithm along with re-detections from the previous frame. The results are bounding box level tracks which can be converted to segmentation masks by the Box2Seg network.

- ReID Matters
- ☐ Sequential Reasoning
- Lost! Lost! Lost!

Ocean: Object-aware Anchor-Free Tracking

Background

Booming of Siamese Tracking

RPN based approaches

[CVPR'18] SiamRPN

[ECCV'18] DaSiam

[CVPR'19] SiamDW, SiamRPN++, SiamMask, C-RPN

[CVPR'20] SiamAtt

Motivation

How does anchor work?

Why anchor regression fails?

Positive anchors:

large overlap between Anchor (red) and GT (green)

Weak classification:

small overlap between
Anchor (red) and GT (green)

Positive anchors → Good regression (yellow)

Weak classification -> Regression Fails (yellow)

Method

Anchor-free regression

Object-aware classification

Consider more samples in the training of regression network.

Learn object-aware feature with the predicted bounding boxes.

Framework

- Feature extraction: ResNet50 conv1-conv4
- Feature combination: Parallel layers with different dilated strides at x and y axis
- Target localization: anchor-free regression + object-aware classification

Results & Ablations

Results

Ablations

$\# \mathrm{Num}$	Components	EAO			
1	baseline	0.358			
2	+ centralized sampling	0.396	1 2 noir	.2 points	c
3	+ feature combination	0.438	~		
4	+ object-aware classification	0.467	2 ار	.9 points	5
(5)	+ online update	0.489			

#Num	Dilated Kernels	EAO	
<u> </u>	Φ_{11}	0.425	2.1 into
2	$\Phi_{11}\Phi_{11}$	0.433	2.1 points
3	$\Phi_{11}\Phi_{12}$	0.446	4.2 points
4	$\Phi_{11}\Phi_{21}$	0.443	n i
5	$\varPhi_{11}\varPhi_{12}\varPhi_{21}$	0.467	

Towards Accurate Pixel-wise Object Tracking by Attention Retrieval

Motivation

• Trend of SOT Community

Pounding Poy > Mask (VOT20)

Bounding Box --> Mask (VOT2020)

Weakness of existing Tracking-Segmentation Methods

Cascaded Structure: Box → Mask (Accurate)

Too Slow!

Box error → Mask error

Parallel Structure [SiamMask/D3S]: segmentation branch (Fast)

Background clutter → False positive predictions

Method

Attention Retrieval Network (ARN)

- > Soft spatial constraints -> suppress negative influence of background clutter
- > Only matrix multiplication > Very fast
- ➤ Use initial mask → infuse the information of the mask in the starting frame

Method

Multi-resolution Multi-stage Segmentation (MMS)

- ➤ Reusing predicted mask →
 further suppress background
 clutter
- > Small Channels in MSP > fast

Framework

Results & Ablations

Results

Ablations

	SiamMask [39]	D3S [26]	Ours	Ours-M
FPR (%) ⊥	42.1	28.2	19.1	17.0

Table 4. Ablation experiments on false-positive ratio. "Ours" and "Ours-M" indicate w/wo multi-stages pathway(MSP).

Table 6. Ablation experiments on multi-stage pathway (MSP). We present the results of $\mathcal{J}\&\mathcal{F}$ on DAVIS16 and segmentation accuracy in VOT2020.

Demo

CASIA

Ocean

Ocean+

Challenges & Future Study

Challenges

- Siamese can't go deeper
- > Trackers are too Slow
- ➤ No essential novelty/improvement
- > A new framework is required

Future Study

- Tacking and Segmentation
- Merging MOT and SOT
- > Involve other learning method (e.g. Self-training)

https://github.com/researchmm/TracKit

https://github.com/JudasDie/Comparision

