TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee(이상훈)

gcccompil3r@gmail.com

학생 - 문한나

mhn97@naver.com

FPGA

fpga? 각종 트랜지스터를 논리적으로 프로그래밍한 것 디지털 칩도 결국 내부는 아날로그이기 때문에 복잡해질수록 사람이 하기 힘듦

실습)GPIO회로 프로그래밍

vivado를 실행한 후 프로젝트를 만든다

project name과 location을 설정한 후 next

Project Type

Specify the type of project to create.

0 0 0	BTL Project You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis, implementation, design planning and analysis. Do not specify sources at this time Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and implementation. Do not specify sources at this time J/O Planning Project Do not specify design sources. You will be able to view part/package resources. Imported Project Create a Vivado project from a Synplify, XST or ISE Project File. Example Project Create a new Vivado project from a predefined template.
?	< <u>B</u> ack

RTL Project로 설정한 후 next

Add Sources

Target language와 Simulator language를 Verilog로 바꿔준 후 Next

Boards에서 Zybo로 설정

(?)

만약 없다면 https://reference.digilentinc.com/reference/software/vivado/board-files 에서 다운

< Back

<u>F</u>inish

Cancel

No Board Connectors

압축을 푼 후 vivado-boards-master/new/board_files폴더 안에 zybo 파일을

xilinx/Vivado/2017.1/data/boards/board_file 폴더로 이동

프로젝트 생성 후 왼쪽 Project Manager에서 Create Block Design

이름과 경로설정 후 ok

Diagram에서 +를 눌러 추가

ZYNQ7 선택

Run Block Automation

그리고 GPIO를 추가해준다

GPIO를 더블클릭하여 Board Interface가 Custom인지 확인한다

그리고 우측 상단에서 Run Connection Automation을 누른 후 GPIO를 선택하고 Custom으로 바꿔준다.

Run Connection Automation을 다시한번 눌러준다.

GPIO 더블클릭

IP Configuration에서 GPIO Width를 1로 바꿔준다

구성이 끝난 후 Project Manager에서 Add Sources를 해준다

Create a new constraints file and add it to your project									
<u>F</u> ile type:	■ XDC	~							
F <u>i</u> le name:	test	8							
Fil <u>e</u> location:									
?	OK Cand	el							

Create File을 누른다

Type은 XDC로 하고 이름과 경로 설정 후 OK

사용할 핀을 설정한다. (데이터시트 참조)

ZYBO™ FPGA Board Reference Manual

Pmod JA (XADC)	Pmod JB (Hi-Speed)	Pmod JC (Hi-Speed)	Pmod JD (Hi-Speed)	Pmod JE (Std.)	Pmod JF (MIO)
JA1: N15	JB1: T20	JC1: V15	JD1: T14	JE1: V12	JF1: MIO-13
JA2: L14	JB2: U20	JC2: W15	JD2: T15	JE2: W16	JF2: MIO-10
JA3: K16	JB3: V20	JC3: T11	JD3: P14	JE3: J15	JF3: MIO-11
JA4: K14	JB4: W20	JC4: T10	JD4: R14	JE4: H15	JF4: MIO-12
JA7: N16	JB7: Y18	JC7: W14	JD7: U14	JE7: V13	JF7: MIO-0
JA8: L15	JB8: Y19	JC8: Y14	JD8: U15	JE8: U17	JF8: MIO-9
JA9: J16	JB9: W18	JC9: T12	JD9: V17	JE9: T17	JF9: MIO-14
JA10: J14	JB10: W19	JC10: U12	JD10: V18	JE10: Y17	JF10: MIO-15

Table 9. Pmod pinout.

그리고 래핑한다

Generate Bitstream

Export Hardware

Launch SDK

프로젝트를 만든다

프로젝트 생성 후 src폴더에서 main.c 파일을 생성한 후 코딩