Rotacije opisane s kvaternioni Seminar

Timotej Mlakar Fakulteta za matematiko in fiziko Oddelek za matematiko

12. marec 2023

1 Uvod

Rotacije \mathbb{R}^3 navadno opisujemo z linearnimi preslikavami oziroma njim pripadajočimi matrikami. Zaradi narave matričnega množenja so lahko take operacije precej računsko časovno in prostorsko zahtevne. Tako lahko rotacije \mathbb{R}^3 predstavimo kot stranske učinke transformacij $\mathbb{E}^4 \simeq \mathbb{H}$.

Najprej se spomnimo rotacij na $\mathbb{R}^2 \simeq \mathbb{C}$. Naj bo $w = \frac{v}{|v|}$ za poljuben $v \in \mathbb{C}$. Preslikava $\varphi : \mathbb{C} \to \mathbb{C} : \varphi(z) = wz$ je bijektivna preslikava, ki zavrti celotno kompleksno ravnino za kot arg(z) okoli izhodišča.

Če v zapišemo v polarnem zapisu kot $|z|e^{i\theta}$, je tedaj preslikava

$$\varphi: [0, 2\pi] \times \mathbb{C} \to \mathbb{C}:$$

 $\varphi(\theta, z) = ze^{i\theta}$

zvezno odvedljiva na $[0, 2\pi] \times \mathbb{C}$. Za fiksen $z \in \mathbb{C}$ preslikava φ opiše krožnico z radijem |z|, za fiksen θ pa preslikava opiše rotacijo ravnine za kot θ .

Vemo torej, da se vsak $z\in\mathbb{C}$ da zapisati v polarnih koordinatah. Spomnemo se zapisa

$$z = |z|e^{i\theta} = |z|\cos\theta + |z|i\sin\theta,$$

kjer je $\theta \in \mathbb{R}$. Zapis ni enoličen, saj nam vsaka $\theta' = \theta + 2k\pi$; $k \in \mathbb{Z}$ opiše isto kompleksno število. Tak zapis bomo v podobnem smislu uporabili kasneje.

Definiramo $\Phi: \mathbb{R}^2 \to \mathbb{C}: (x,y) \mapsto x+iy$. S preprostim računom pokažemo, da je Φ izomorfizem.

Vidimo, da namesto množenja vektorja z matriko lahko rotacijo realne ravnine predstavimo s preprostim množenjem dveh kompleksnih števil. To motivira podobni razmislek za rotacije v \mathbb{R}^3 .

2 Kvaternionska algebra

2.1 Definicije in oznake

Definicija 1 Naj bo V 4-razsežen vektorski prostor nad R. Izberemo bazo $\{1, i, j, k\}$. Elementi V so oblike $\mathbf{q} = q_0 \mathbf{1} + q_1 i + q_2 j + q_3 k = q_0 + \vec{q}$. Vektorski prostor V opremimo z operacijo množenja tako, da definiramo množenje njegovih baznih elementov, in sicer:

$$\begin{aligned} \mathbf{11} &= \mathbf{1}, \quad \mathbf{1}i = i, \quad \mathbf{1}j = j, \quad \mathbf{1}k = k, \\ &ij = k, \quad jk = i, \quad ki = j, \\ &i^2 = j^2 = k^2 = ijk = -1\mathbf{1}. \end{aligned}$$

 $Tedaj\ V\ postane\ 4$ -razsežna algebra nad \mathbb{R} . Označimo \mathbb{H} in jo imenujemo Kvaternionska algebra.

3 Eulerjeva funkcija

Definicija 2 Za vse $n \in \mathbb{N}$ s $\varphi(n)$ označimo število celih števil iz množice $\{1, 2, \ldots, n\}$, ki so tuja številu n. Preslikavo $\varphi : \mathbb{N} \to \mathbb{N}$ imenujemo Eulerjeva funkcija.

Zgled 1 Tabela 1 prikazuje izračun prvih šest vrednosti funkcije $\varphi(n)$. V n-ti vrstici so krepko natisnjena števila med 1 in n, ki so tuja številu n. Slika 1 pa grafično prikazuje prvih 100 vrednosti funkcije $\varphi(n)$.

n	$\{1,2,\ldots,n\}$	$\varphi(n)$
1	$\{1\}$	1
2	$\{1, 2\}$	1
3	$\{1, 2, 3\}$	2
4	$\{1, 2, 3, 4\}$	2
5	$\{1,2,3,4,5\}$	4
6	$\{1, 2, 3, 4, 5, 6\}$	2

Tabela 1: Vrednosti funkcije $\varphi(n)$ za $n = 1, 2, \dots, 6$

Slika 1: Vrednosti funkcije $\varphi(n)$ za $n = 1, 2, \dots, 100$

Računanje $\varphi(n)$ po definiciji je pri velikem n zelo zamudno. Vendar ima Eulerjeva funkcija lepe lastnosti, zaradi katerih lahko njeno vrednost izračunamo tudi pri velikem argumentu, če ga le znamo razcepiti na prafaktorje.

Če je p praštevilo, med števili $1, 2, \ldots, p$ edinole število p ni tuje številu p, torej je $\varphi(p) = p - 1$. Skoraj prav tako preprosto lahko poiščemo vrednost $\varphi(n)$, če je n potenca nekega praštevila.

Trditev 1 Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) = p^k - p^{k-1}$.

Dokaz: Število a je tuje številu p^k natanko tedaj, ko ni večkratnik praštevila p. Med števili $1, 2, \ldots, p^k$ je natanko $p^k/p = p^{k-1}$ večkratnikov števila p, torej je $\varphi(p^k) = p^k - p^{k-1}$.

Izrek 1 Eulerjeva funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Zapišimo vsa števila med 1 in ab v obliki tabele z a vrsticami in b stolpci:

Za vsako število velja, da je tuje številu ab natanko tedaj, ko je tuje številu a in tuje številu b. Vrednost $\varphi(ab)$ lahko torej dobimo tako, da preštejemo, koliko je v gornji tabeli števil, ki so tuja tako številu a kot tudi številu b.

Števila v posameznem stolpcu dajejo vsa isti ostanek pri deljenju z b. Torej so bodisi vsa tuja številu b bodisi mu ni tuje nobeno od njih. Stolpcev, katerih elementi so tuji številu b, je toliko, kot je takih števil v prvi vrstici tabele, teh pa je ravno $\varphi(b)$.

Različna števila v posameznem stolpcu dajo različne ostanke pri deljenju z a. Če namreč števili k_1b+r in k_2b+r , kjer je $0 \le k_1, k_2 \le a-1$, dasta isti ostanek pri deljenju z a, je njuna razlika $(k_1-k_2)b$ deljiva z a. Ker sta števili a in b tuji, sledi, da je z a deljiva razlika k_1-k_2 . To pa je možno le, če je $k_1=k_2$, saj je $-(a-1) \le k_1-k_2 \le a-1$. Ker je dolžina stolpca enaka a, dobimo pri deljenju elementov stolpca z a ravno vse možne ostanke $0,1,\ldots,a-1$. Torej je v vsakem stolpcu $\varphi(a)$ števil tujih a.

To velja tudi za $\varphi(b)$ stolpcev, katerih elementi so tuji številu b. Potemtakem je v gornji tabeli $\varphi(b)\varphi(a)$ števil, ki so tuja tako številu b kot tudi številu a. Torej je $\varphi(ab) = \varphi(a)\varphi(b)$, kar pomeni, da je Eulerjeva funkcija multiplikativna.

Zgled 2 Izračunajmo $\varphi(10^k)$. Ker je $10^k = 2^k 5^k$, je po izreku 1 in trditvi 1

$$\varphi(10^k) \ = \ \varphi(2^k)\varphi(5^k) \ = \ (2^k - 2^{k-1})(5^k - 5^{k-1}) \ = \ 4 \times 10^{k-1}.$$

Posledica 1

$$\varphi(n) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right),$$

kjer p preteče vse različne prafaktorje števila n.

Dokaz: Naj bo $n=\prod_{i=1}^r p_i^{k_i}$, kjer so p_1,p_2,\ldots,p_r različna praštevila in $k_1,k_2,\ldots,k_r\in\mathbb{N}$. Po izreku 1 in trditvi 1 je potem

$$\begin{split} \varphi(n) &= \prod_{i=1}^r \varphi\left(p_i^{k_i}\right) \ = \ \prod_{i=1}^r \left(p_i^{k_i} - p_i^{k_i-1}\right) \\ &= \left(\prod_{i=1}^r p_i^{k_i}\right) \times \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right) \ = \ n \times \prod_{n \mid n} \left(1 - \frac{1}{p}\right). \end{split} \quad \Box$$

Trditev 2 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d\mid n} \varphi(d) = n, \tag{1}$$

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Za vse delitelje d števila n označimo

$$A_d = \left\{ \frac{kn}{d}; \ k \in \mathbb{Z}, \ 0 \le k < d, \ D(k, d) = 1 \right\}.$$

Recimo, da je $k_1n/d_1 = k_2n/d_2$, kjer je $D(k_1,d_1) = D(k_2,d_2) = 1$. Potem je $k_1d_2 = k_2d_1$, od koder sledi, da d_1 deli d_2 in obratno, kar pomeni, da je $d_1 = d_2$. Od tod zaključimo, da so si množice A_d paroma tuje, torej je

$$\left| \bigcup_{d \mid n} A_d \right| = \sum_{d \mid n} |A_d| = \sum_{d \mid n} \varphi(d).$$

Po drugi strani pa je

$$\bigcup_{d \mid n} A_d = \{0, 1, \dots, n-1\}.$$

Res, naj bo $kn/d \in A_d$. Ker d deli n, je število kn/d celo, iz $0 \le k < d$ pa sledi $0 \le kn/d < n$, torej $kn/d \in \{0,1,\ldots,n-1\}$. Vzemimo zdaj še poljuben $j \in \{0,1,\ldots,n-1\}$ in označimo: k=j/D(n,j), d=n/D(n,j). Potem je $j=kD(n,j)=kn/d \in A_d$.

To pa pomeni, da je
$$\left|\bigcup_{d\mid n} A_d\right| = n$$
 in izrek je dokazan. \square

Izrek 2 (Eulerjev izrek) Naj bosta $n \in \mathbb{N}$ in $a \in \mathbb{Z}$ tuji števili. Potem je $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Dokaz: Naj bodo $k_1, k_2, \ldots, k_{\varphi(n)}$ vsa števila med 1 in n, ki so tuja n. Če za indeksa $i, j \in \{1, 2, \ldots, \varphi(n)\}$ velja $k_i a \equiv k_j a \pmod{n}$, sledi $n | (k_i a - k_j a)$ in zato $n | (k_i - k_j)$, saj sta števili n in a tuji. To pa je mogoče le, če je i = j. Števila $k_1 a, k_2 a, \ldots, k_{\varphi(n)} a$ so torej med seboj paroma nekongruentna po modulu n. Ker so tuja številu n, je množica njihovih ostankov pri deljenju z n enaka množici $\{k_1, k_2, \ldots, k_{\varphi(n)}\}$. Zato je $k_1 a \cdot k_2 a \cdots k_{\varphi(n)} a \equiv k_1 \cdot k_2 \cdots k_{\varphi(n)}$ (mod n), od tod pa po krajšanju s produktom $k_1 \cdot k_2 \cdots k_{\varphi(n)}$, ki je tuj številu n, dobimo $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Posledica 2 (mali Fermatov izrek) Naj bo p praštevilo in $a \in \mathbb{Z}$ celo število, ki ni deljivo s p. Potem je

$$a^{p-1} \equiv 1 \pmod{p}$$
.

4 Möbiusova funkcija

Definicija 3 Za vse $n \in \mathbb{N}$ naj bo

$$\mu(n) = \begin{cases} 0, & \check{c}e \ n \ deljiv \ s \ kvadratom \ pra\check{s}tevila, \\ (-1)^r, & sicer, \end{cases}$$

kjer je r število različnih prafaktorjev števila n. Preslikavo $\mu: \mathbb{N} \to \mathbb{Z}$ imenujemo Möbiusova funkcija.

Zgled 3 Tabela 2 prikazuje prvih nekaj vrednosti funkcije $\mu(n)$.

Tabela 2: Vrednosti funkcije $\mu(n)$

Izrek 3 Möbiusova funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Če je število ab deljivo s kvadratom praštevila, velja to tudi za a ali za b. V tem primeru je torej $\mu(ab) = 0 = \mu(a)\mu(b)$. Če pa število ab ni deljivo s kvadratom praštevila, velja to tudi za a in za b. Naj bo r število različnih prafaktorjev števila a, s pa število različnih prafaktorjev števila b. Potem je število različnih prafaktorjev števila ab enako ab0 e

Trditev 3 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$
 (2)

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Zadošča seštevati po tistih deliteljih d števila n, ki imajo same različne prafaktorje (sicer je $\mu(d)=0$). Imenujmo takšne delitelje enostavni. Naj bo r število različnih prafaktorjev števila n. Število enostavnih deliteljev števila n, ki imajo natanko k prafaktorjev, je potem $\binom{r}{k}$, prispevek takega delitelja h gornji vsoti pa znaša $\mu(d)=(-1)^k$. Torej je

$$\sum_{d \mid n} \mu(d) = \sum_{k=0}^{r} (-1)^k \binom{r}{k} = \begin{cases} 1, & r = 0, \\ 0, & r > 0 \end{cases} = \begin{cases} 1, & n = 1, \\ 0, & n > 1. \end{cases}$$

Opomba 1 Enačbo (2) bi lahko uporabili tudi za (rekurzivno) definicijo funkcije $\mu(n)$:

$$\mu(n) = \begin{cases} 1, & n = 1, \\ -\sum_{d \mid n, d < n} \mu(d), & n > 1. \end{cases}$$

Möbiusova funkcija igra pomembno vlogo pri Möbiusovem obratu, ki nam omogoča izraziti aritmetično funkcijo f(n), če poznamo funkcijo $g(n) = \sum_{d|n} f(d)$, kjer d preteče vse pozitivne delitelje števila n.

Izrek 4 (Möbiusov obrat) Za aritmetični funkciji f, g velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

Dokaz: Najprej vzemimo, da je $g(n) = \sum_{d|n} f(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\sum_{d|n} \mu\left(\frac{n}{d}\right) g(d) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sum_{k|d} f(k) = \sum_{k|n} f(k) \sum_{k|d|n} \mu\left(\frac{n}{d}\right)$$
$$= \sum_{k|n} f(k) \sum_{a|(n/k)} \mu(a) = f(n).$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke a = n/d, četrta pa sledi iz (2).

Vzemimo zdaj, da je $f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\begin{split} \sum_{d \mid n} f(d) &= \sum_{d \mid n} \sum_{k \mid d} \mu\left(\frac{d}{k}\right) g(k) &= \sum_{k \mid n} g(k) \sum_{k \mid d \mid n} \mu\left(\frac{d}{k}\right) \\ &= \sum_{k \mid n} g(k) \sum_{b \mid (n/k)} \mu\left(b\right) &= g(n). \end{split}$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke b = d/k, četrta pa sledi iz (2).

Zgled 4 • Iz enačbe (1) sledi z Möbiusovim obratom, da je

$$\varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d.$$

• Za vse $n \in \mathbb{N}$ s $\tau(n)$ označimo število vseh pozitivnih deliteljev števila n. Torej je $\tau(n) = \sum_{d \mid n} 1$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) = 1.$$

• Za vse $n \in \mathbb{N}$ s $\sigma(n)$ označimo vsoto vseh pozitivnih deliteljev števila n. Torej je $\sigma(n) = \sum_{d \mid n} d$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d) = n.$$

5 Kolobar aritmetičnih funkcij

Definicija 4 Za aritmetični funkciji $f, g: \mathbb{N} \to \mathbb{C}$ in za vse $n \in \mathbb{N}$ naj bo

$$(f * g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right).$$

Aritmetična funkcija f * g je Dirichletova konvolucija funkcij f in g.

Trditev 4 Naj bodo f, g, h aritmetične funkcije. Potem velja:

- (i) f * q = q * f,
- (ii) (f * g) * h = f * (g * h),

(iii)
$$f * (q + h) = f * q + f * h$$
.

Dokaz:

(i) Trditev sledi iz zapisa Dirichletove konvolucije v simetrični obliki

$$(f * g)(n) = \sum_{de=n} f(d)g(e), \tag{3}$$

kjer seštevamo po vseh urejenih parih naravnih števil (d, e), katerih produkt je enak n.

(ii) Z uporabo enačbe (3) izračunamo

$$((f * g) * h)(n) = \sum_{de=n} (f * g)(d)h(e) = \sum_{de=n} \left(\sum_{ab=d} f(a)g(b)\right)h(e)$$

$$= \sum_{ab=n} f(a)g(b)h(e) = \sum_{ac=n} f(a)\sum_{be=c} g(b)h(e)$$

$$= \sum_{ac=n} f(a)(g * h)(c) = (f * (g * h))(n).$$

Četrto enakost smo dobili z uvedbo nove spremenljivke c = be.

(iii) Z uporabo enačbe (3) izračunamo

$$(f * (g+h))(n) = \sum_{de=n} f(d)(g+h)(e) = \sum_{de=n} f(d)(g(e) + h(e))$$

$$= \sum_{de=n} f(d)g(e) + \sum_{de=n} f(d)h(e)$$

$$= (f * g + f * h)(n). \square$$

Iz trditve 4 sledi, da je množica vseh aritmetičnih funkcij $f: \mathbb{N} \to \mathbb{C}$ z operacijama + in * komutativen kolobar. Imenujemo ga *Dirichletov kolobar* in označimo z \mathcal{D} .

Funkcija $\varepsilon \in \mathcal{D}$, ki za vse $n \in \mathbb{N}$ zadošča enačbi

$$\varepsilon(n) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$

je enica kolobarja \mathcal{D} , saj za vse $f \in \mathcal{D}$ in $n \in \mathbb{N}$ velja

$$(f * \varepsilon)(n) = \sum_{de=n} f(d)\varepsilon(e) = f(n)\varepsilon(1) = f(n).$$

Brez težav se lahko prepričamo tudi, da je \mathcal{D} cel kolobar in da je funkcija $f \in \mathcal{D}$ obrnljiva natanko tedaj, ko $f(1) \neq 0$.

Zdaj lahko enačbo (2) prepišemo v obliki

$$\mu * \mathbf{1} = \varepsilon,$$

kjer 1 označuje konstantno funkcijo z vrednostjo 1. Z drugimi besedami, Möbiusova funkcija je inverz konstantne funkcije 1 glede na Dirichletovo konvolucijo:

$$\mu = 1^{-1}$$
.

Möbiusov obrat lahko torej zapišemo v obliki

$$g = f * \mathbf{1} \iff f = g * \mu,$$

kjer njegova veljavnost postane očitna. Zgled 4 pa lahko prepišemo v obliki

$$\varphi * \mathbf{1} = \mathrm{id}_{\mathbb{N}} \implies \varphi = \mu * \mathrm{id}_{\mathbb{N}},$$

$$\tau = \mathbf{1} * \mathbf{1} \implies \mu * \tau = \mathbf{1},$$

$$\sigma = \mathrm{id}_{\mathbb{N}} * \mathbf{1} \implies \mu * \sigma = \mathrm{id}_{\mathbb{N}}.$$

Angleško-slovenski slovar strokovnih izrazov

proper pravi
pure pravi, čisti
versor versor, enotski kvaternion
dot product skalarni produkt
by-product stranski učinek

Literatura

- [1] M. Aigner in G. M. Ziegler, *Proofs from THE BOOK*, 2. izdaja, Springer, Berlin–Heidelberg–New York, 2001.
- [2] N. Calkin in H. S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360–363.
- [3] J. Grasselli, *Elementarna teorija števil*, DMFA založništvo, Ljubljana, 2009.