2025-03-07-blog-post.md 2025-03-06

Is the following proposition true?

proposition (Diagonally Dominant Matrix)

Let $A=[a_{ij}]\in \mathbb{R}^{n\times n}$ be a diagonally dominant matrix, $a_{ii}\geq \sum_{j=1,2,\ldots j}\$ \$\forall\$ \$i=1,2,\cdots,n\$. If there exist \$k\$ such that \$|a_{kk}|> \sum_{j\neq k}|s\$, then \$A_k\$ is linearly independent of \$A_j\$, \$\forall\$ \$j\neq k\$, where \$A_i=[a_{i1},a_{i2},\cdot\cdot,a_{in}]\$ is the i-th row of \$A\$.

I cannot prove that the proposition is true nor can I find a counterexample.