Datascience Corona Statistic

Datascience Project by Yasin Sahin and Sven Oberwalder

Table of Contents

- Covid Status
- Initial Data Analysis and Import
 - Std-Analysis for Dataset 1
 - Std-Analysis for Dataset 2
- Data Cleaning
 - Duplicate Data
 - Null Values
- Data Preparation
 - Numerical Values
 - Nominal Values
 - Normalized Values
- Visualization with Seaborn
 - Color Palette
 - Correlation
 - Pairplot
 - Boxplots and Violinplots
 - Barchart
 - Transformation for future graphs
 - Histograms and KDEs (Kernel Density Estimation))
 - Correlation (again))
- Summary

Covid Status

This Data Science project by Sven Oberwalder and Yasin Sahin analyzes the development of the corona pandemic based on input data provided by Statistik Austria

The Datasets can be found here:

Dataset 1

Dataset 2

Additional Info

This project was version controlled by GitHub and can be accessed through the public repo here

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.colors import ListedColormap
```

Initial Data Analysis and Import

Dataset 1 has following attributes:

- **C-BEZIMST-0** Politischer Bezirk (PolBez)
- C-ALTGRIMST-0 10-years age group (Altersgr)
- C-GLIMST-0 Country of Birth (GebLand)
- **C-C11-0** Sex (Geschl)
- **C-IMST-0** COVID-19 vaccinated-recovered-status (GeimpftGenesen)
- **F-DATA** Number of records (Anz)

Dataset 2 has following attributes:

- **C-B00-0** Federal country (Bundesland)
- **C-BILIMST-0** Education (Bildung)
- C-ALTGRIMST-0 10-years age group (Altersgr)
- **C-ESIMST-0** Economic status (ErwerbStatus)
- C-IMST-0 COVID-19 vaccinated-recovered-status (GeimpftGenesen)
- F-DATA Number of records (Anz)

In below code, the datasets need to be imported and the attributes must be renamed to more meaningful names. Since the data is separated by semi-colons (;), we need to specify that when importing the csv-files. Furthermore, a simple Std-Analysis has to be conducted, to ensure the progress.

```
In [2]: #import datasets
         dataset1 = pd.read_csv("./data/dataset1.csv", sep=";")
        dataset2 = pd.read_csv("./data/dataset2.csv", sep=";")
         #rename attributes
         dataset1.rename(columns={"C-BEZIMST-0": "PolBez",
                                  "C-ALTGRIMST-0": "Altersgr",
                                  "C-GLIMST-0": "GebLand",
                                  "C-C11-0": "Geschl",
                                  "C-IMST-0": "GeimpftGenesen",
                                  "F-DATA": "Anz"}, inplace=True)
         dataset2.rename(columns={"C-B00-0": "Bundesland",
                                  "C-BILIMST-0": "Bildung",
                                  "C-ALTGRIMST-0": "Altersgr"
                                  "C-ESIMST-0": "ErwerbStatus",
                                  "C-IMST-0": "GeimpftGenesen",
                                  "F-DATA": "Anz"}, inplace=True)
```

Std-Analysis for Dataset 1

```
In [3]: dataset1.sample(5)
```

				_
\cap	4	- 1	$^{-}$	т.
U	ш	- 1	- 5	1.0

	PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Anz
22946	BEZIMST-412	ALTGRIMST-3	GLIMST-2	C11-2	IMST-3	51
28589	BEZIMST-601	ALTGRIMST-3	GLIMST-2	C11-1	IMST-1	148
41287	BEZIMST-904	ALTGRIMST-9	GLIMST-2	C11-2	IMST-2	145
17993	BEZIMST-325	ALT10IMST-1	GLIMST-2	C11-1	IMST-4	2
3763	BEZIMST-201	ALT10IMST-3	GLIMST-2	C11-1	IMST-4	317

We immediately recognize that all values have a certain code (Except for Anz)

In [4]: dataset1.head(5)

Out[4]:

	PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Anz
0	BEZIMST-101	ALTGRIMST-1	GLIMST-1	C11-1	IMST-1	1
1	BEZIMST-101	ALTGRIMST-1	GLIMST-1	C11-1	IMST-3	80
2	BEZIMST-101	ALTGRIMST-1	GLIMST-1	C11-1	IMST-4	216
3	BEZIMST-101	ALTGRIMST-1	GLIMST-1	C11-2	IMST-1	2
4	BEZIMST-101	ALTGRIMST-1	GLIMST-1	C11-2	IMST-3	86

In [5]: dataset1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53961 entries, 0 to 53960
Data columns (total 6 columns):

Column Non-Null Count Dtype ------------0 PolBez 53961 non-null object Altersgr 53961 non-null object 1 53961 non-null object 2 GebLand Geschl 53961 non-null object 4 GeimpftGenesen 53961 non-null object 5 53961 non-null int64

dtypes: int64(1), object(5)

memory usage: 2.5+ MB

There are no null-values for this dataset, which is positive for future analysis.

In [6]: dataset1.describe()

Out[6]:

	Anz
count	53961.000000
mean	642.049703
std	2171.148389
min	1.000000
25%	44.000000
50%	169.000000
75%	508.000000
max	70338.000000

Std-Analysis for Dataset 2

In [7]: dataset2.sample(5)

Out[7]:		Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
	1173	B00-8	BILIMST-3	ALT10IMST-6	ESIMST-2	IMST-2	98
	1229	B00-8	BILIMST-99	ALT10IMST-5	ESIMST-2	IMST-2	3
	705	B00-5	BILIMST-3	ALT10IMST-7	ESIMST-1	IMST-1	3609
	81	B00-1	BILIMST-3	ALT10IMST-6	ESIMST-1	IMST-2	2025
	1045	B00-7	BILIMST-4	ALT10IMST-6	ESIMST-1	IMST-3	1646

Same here: Every value is its own code and needs to be converted, to understand the dataset better.

In [8]: dataset2.head(5)

Out[8]:		Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
	0	B00-1	BILIMST-1	ALT10IMST-4	ESIMST-1	IMST-1	611
	1	B00-1	BILIMST-1	ALT10IMST-4	ESIMST-1	IMST-2	285
	2	B00-1	BILIMST-1	ALT10IMST-4	ESIMST-1	IMST-3	396
	3	B00-1	BILIMST-1	ALT10IMST-4	ESIMST-1	IMST-4	472
	4	B00-1	BILIMST-1	ALT10IMST-4	ESIMST-2	IMST-1	471

In [9]: dataset2.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1404 entries, 0 to 1403
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	Bundesland	1404 non-null	object
1	Bildung	1404 non-null	object
2	Altersgr	1404 non-null	object
3	ErwerbStatus	1404 non-null	object
4	GeimpftGenesen	1404 non-null	object
5	Anz	1404 non-null	int64

dtypes: int64(1), object(5)
memory usage: 65.9+ KB

No null-values in this dataset too.

```
In [10]:
          dataset2.describe()
Out[10]:
                         Anz
                  1404.000000
          count
                  3414.423789
                  5746.310880
             std
            min
                     1.000000
            25%
                   310.500000
            50%
                  1375.500000
            75%
                  3926.000000
            max 55581.000000
```

Data Cleaning

In this section, the input data will be cleaned. For this manner, any wrong, missing, or irrelevant informations will be treated accordingly.

To Be marked The Column Altersgr uses an age gap interval of 10 years to inform us about the age of the adressed person. However, the first interval currently named ALT10IMST-1 only has a 5 year gap (from 0 - 4 years) to especially adress babys and small children

Dataset 1

There is already a csv which helps us convert these codes into values we can understand. The reason we do not import these values from the csv directly, is that the values are too long. We hereby keep the values steady and simple.

- GeimpftGenesen is converted into more meaningful names
- For Altersgr we type in the exact age group
- For GebLand: GLIMST-1 stands for people born in Austria, and GLIMST-1 for people born outside of Austria

• Geschl is also being converted into m (male) and f (female)

```
In [11]: bundeslandDict = {
             "B00-1": "Burgenland",
             "B00-2": "Kärnten",
             "B00-3": "Niederösterreich",
             "B00-4": "Oberösterreich",
             "B00-5": "Salzburg",
             "B00-6": "Steiermark"
             "B00-7": "Tirol",
             "B00-8": "Vorarlberg",
             "B00-9": "Wien"
         geimpftGenesenDict = {"IMST-4": "NICHTS", #nothing (NICHTS)
                                 "IMST-1": "IMPF", #vaccinated (geIMPFt)
                                 "IMST-3": "GEN", #recovered (GENesen)
                                 "IMST-2": "IMPF + GEN"} #vaccinated + recovered (geIMPFt und
         ageGapDict = {"ALT10IMST-1": "0 - 4",
                        "ALT10IMST-2": "5 - 14"
                        "ALT10IMST-3": "15 - 24"
                        "ALT10IMST-4": "25 - 34",
                        "ALT10IMST-5": "35 - 44",
                        "ALT10IMST-6": "45 - 54"
                        "ALT10IMST-7": "55 - 64"
                        "ALT10IMST-8": "65 - 74",
                        "ALT10IMST-9": "75 - 84",
                        "ALT10IMST-10": "85+"}
         dataset1["GebLand"] = dataset1["GebLand"].map({"GLIMST-1": "INLAND",
                                                          "GLIMST-2": "AUSLAND"})
         dataset1["Geschl"] = dataset1["Geschl"].map({"C11-1": "m",
                                                       "C11-2": "f"})
         dataset1["GeimpftGenesen"] = dataset1["GeimpftGenesen"].map(geimpftGenesenDict)
         dataset1["Altersgr"] = dataset1["Altersgr"].map(ageGapDict)
         dataset1.sample(10)
```

Out[11]:		PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Anz
	1276	BEZIMST-104	85+	AUSLAND	m	IMPF	15
	52618	B00-6	85+	INLAND	m	NICHTS	949
	25388	BEZIMST-417	5 - 14	AUSLAND	f	IMPF	32
	48053	BEZIMST-919	0 - 4	INLAND	m	IMPF	27
	37148	BEZIMST-707	55 - 64	INLAND	f	NICHTS	622
	34657	BEZIMST-702	NaN	AUSLAND	f	NICHTS	29
	10794	BEZIMST-308	NaN	INLAND	f	IMPF + GEN	310
	21580	BEZIMST-408	75 - 84	INLAND	f	IMPF	1717
	7708	BEZIMST-210	75 - 84	INLAND	m	NICHTS	99
	11632	BEZIMST-309	75 - 84	AUSLAND	f	NICHTS	5

Dataset 2

Out[12]:	Bundesland		Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
	778 Steiermark		Pflichtschule	25 - 34	aktiv	NICHTS	3311
	793	Steiermark	Pflichtschule	45 - 54	aktiv	GEN	2702
	50	Burgenland	Lehrabschluss/BMS	45 - 54	aktiv	GEN	2350
	1342	Wien	Akademie/Hochschule	25 - 34	aktiv	GEN	7803
	606	Oberösterreich	Unknown	45 - 54	aktiv	IMPF + GEN	2
	815	Steiermark	Lehrabschluss/BMS	35 - 44	aktiv	IMPF	25012
	1013	Tirol	BHS/AHS/Kolleg	45 - 54	aktiv	GEN	1579
	656 Salzbur		Lehrabschluss/BMS	25 - 34	inaktiv	NICHTS	1357
	1107	Vorarlberg	Pflichtschule	45 - 54	aktiv	NICHTS	1556
	152	Kärnten	Pflichtschule	25 - 34	aktiv	GEN	1254

Duplicate Data

```
In [13]: dataset1["Anz"].sum()
Out[13]: 34645644
```

In the above code we can see that the sum of records is approximately 4 times the total population of Austria. This strongly suggests that there may be duplicate data. And exactly that is the case: In PolBez there are records for each province and also for each federal country. This duplicate is not necessary, since one province can easily be assigned to its federal country (e.g. BEZIMST-304 (= Wiener Neustadt) must be in B00-3 (=Niederoesterreich)). So the records for the federal countries can be removed.

```
In [14]: dataset1 = dataset1.loc[dataset1["PolBez"].map(lambda val: "BEZIMST" in val)] #only
```

Instead, we can add a new feature providing information about the federal country.

The above code still returns an amount which is twice as big as Austria's population.

Similarly, the column Altersgr has duplicate records for different age groups. Previously we mapped Altersgr to more readable strings, but left out the duplicate values that will be deleted in the next step. So we can simply drop the N/A records that emerge after mapping the column Altersgr.

```
In [16]: dataset1 = dataset1.dropna()
  dataset1["Anz"].sum()
Out[16]: 8661411
```

Now we have removed all duplicate values. Let's continue cleaning our data.

Null Values

```
In [17]: dataset1.isnull().sum()
         PolBez
Out[17]:
         Altersgr
                            0
         GebLand
                            0
         Geschl
                            0
         GeimpftGenesen
                            0
          Anz
          Bundesland
          dtype: int64
          dataset2.isnull().sum()
In [18]:
          Bundesland
Out[18]:
          Bildung
                            0
          Altersgr
                            0
          ErwerbStatus
                            0
          GeimpftGenesen
                            0
          Anz
          dtype: int64
          Since there are no null values, we are done cleaning our data and can save it into two
          datasets. korr1.csv for dataset1.csv and korr2.csv for dataset2.csv
          dataset1.to_csv("./output/korr1.csv", sep=";", index=False)
In [19]:
          dataset2.to_csv("./output/korr2.csv", sep=";", index=False)
          Now, lets look at our corrected values...
          korr1 = pd.read_csv("./output/korr1.csv", sep=";")
In [20]:
```

korr2 = pd.read_csv("./output/korr2.csv", sep=";")

0

korr1.head(5)			

Out[20]:		PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Anz	Bundesland
	0	BEZIMST-101	0 - 4	INLAND	m	IMPF	1	Burgenland
	1	BEZIMST-101	0 - 4	INLAND	m	GEN	80	Burgenland
	2	BEZIMST-101	0 - 4	INLAND	m	NICHTS	216	Burgenland
	3	BEZIMST-101	0 - 4	INLAND	f	IMPF	2	Burgenland
	4	BEZIMST-101	0 - 4	INLAND	f	GEN	86	Burgenland

In [21]: korr2.head(5)

	F 7	
()ıı+	1 7 1 1	
out		

	Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
0	Burgenland	Pflichtschule	25 - 34	aktiv	IMPF	611
1	Burgenland	Pflichtschule	25 - 34	aktiv	IMPF + GEN	285
2	Burgenland	Pflichtschule	25 - 34	aktiv	GEN	396
3	Burgenland	Pflichtschule	25 - 34	aktiv	NICHTS	472
4	Burgenland	Pflichtschule	25 - 34	inaktiv	IMPF	471

Data Preparation

Numerical Values

Dataset 1

- For Polbez we take the number in the value code (so BEZIMST-340 will be converted into 340)
- For Altersgr we take the mean value from the min and max of the age group (except for 85, it will stay 85 since there is no max)
- For GebLand we take 0 for INLAND and 1 for AUSLAND
- For Geschl we take 0 for m and 1 for f
- For GeimpftGenesen we take 0 for nothing , 1 for vaccinated, 2 for recovered, and 3 (1+2) for both vaccinated and recovered
- For Bundesland we should consider looking at the PolBez once more: As we already know, the first digit of the PolBez corresponds to the Bundesland. Because of this, we should keep these numbers for the sake of having consistent values. (If we look closer, we can also see that the states are numbered alphabetically so that's also what we are going to do (:)

```
"45 - 54": 49.5,
                     "55 - 64": 59.5,
                     "65 - 74": 69.5,
                     "75 - 84": 79.5,
                     "85+": 85.0}
geimpftGenesenToNumeric = {"NICHTS": 0, #nothing
                      "IMPF": 1, #vacc
                      "GEN": 2, #recov
                      "IMPF + GEN": 3} #vacc + recov
geblandToNumeric = dict((v, k) for k, v in enumerate(korr1["GebLand"].unique()))
geschlToNumeric = dict((v, k) for k, v in enumerate(korr1["Geschl"].unique()))
bundeslandToNumeric = dict((v, k + 1) for k, v in enumerate(np.sort(korr2["Bundesla
num1["PolBez"] = korr1["PolBez"].map(lambda val: int(val[-3:]))
num1["Altersgr"] = korr1["Altersgr"].map(altersgrToNumeric)
num1["GebLand"] = korr1["GebLand"].map(geblandToNumeric)
num1["Geschl"] = korr1["Geschl"].map(geschlToNumeric)
num1["GeimpftGenesen"] = korr1["GeimpftGenesen"].map(geimpftGenesenToNumeric)
num1["Bundesland"] = korr1["Bundesland"].map(bundeslandToNumeric)
num1["Anz"] = korr1["Anz"]
num1.sample(5)
```

Out[22]: PolBez Altersgr GebLand Geschl GeimpftGenesen Bundesland Anz 11600 79.5 1 1 620 0 6 2663 15267 908 49.5 Λ 212 8735 0 2 416 9.5 1 4 1537 1632 203 69.5 2 771

1

1

1

7 142

Let's look if our values are truly numerical:

69.5

```
In [23]:
        num1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 17694 entries, 0 to 17693
         Data columns (total 7 columns):
            Column
                           Non-Null Count Dtype
         --- -----
                            -----
            PolBez
         0
                            17694 non-null int64
                            17694 non-null float64
         1
             Altersgr
         2
             GebLand
                            17694 non-null int64
         3
             Geschl
                            17694 non-null int64
             GeimpftGenesen 17694 non-null int64
         5
             Bundesland
                            17694 non-null int64
                            17694 non-null int64
         dtypes: float64(1), int64(6)
         memory usage: 967.8 KB
```

So far so good: Everything's an int64 or float64, so we can do the same thing for dataset 2.

Dataset 2

12972

706

For Altersgr, Bundesland, and GeimpftGenesen we used the same dict as above to map our values to numerical ones.

- For ErwerbStatus we take 0 for inactive and 1 for active (common values to symbolize true/false)
- For Bildung we are going to order the values from 0-4 (lowest graduation-highest graduation)

```
In [24]: num2 = pd.DataFrame()

erwerbstatusToNumeric = {"inaktiv": 0, "aktiv": 1}

bildungToNumeric = {"Unknown": 0, "Pflichtschule": 1, "Lehrabschluss/BMS": 2, "BHS/
num2["Bundesland"] = korr2["Bundesland"].map(bundeslandToNumeric)
num2["Bildung"] = korr2["Bildung"].map(bildungToNumeric)
num2["Altersgr"] = korr2["Altersgr"].map(altersgrToNumeric)
num2["ErwerbStatus"] = korr2["ErwerbStatus"].map(erwerbstatusToNumeric)
num2["GeimpftGenesen"] = korr2["GeimpftGenesen"].map(geimpftGenesenToNumeric)
num2["Anz"] = korr2["Anz"]
num2.sample(5)
```

Out[24]:		Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
	891	6	4	49.5	0	1	974
	991	7	2	59.5	0	1	14677
	1173	8	3	49.5	0	3	98
	1276	9	2	29.5	1	1	18194
	1036	7	4	39.5	1	3	5986

We need to check again if the values are all numeric:

num1.to_csv("./output/num1.csv", index=False)

num2.to_csv("./output/num2.csv", index=False)

```
In [25]:
        num2.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1404 entries, 0 to 1403
        Data columns (total 6 columns):
         # Column Non-Null Count Dtype
         --- -----
                           -----
                          1404 non-null int64
         0 Bundesland
                          1404 non-null int64
1404 non-null float64
         1 Bildung
         2 Altersgr
            ErwerbStatus 1404 non-null int64
            GeimpftGenesen 1404 non-null int64
         5
                            1404 non-null int64
        dtypes: float64(1), int64(5)
        memory usage: 65.9 KB
        So let's save these numerical values into different csv-files.
```

Normalized Values

In [26]:

In this section, we will adjust our numerical values so that all of them are in the range of 0 - 1 (each column). First, we need to import the csv with the numerical data.

```
In [27]: num1 = pd.read_csv("./output/num1.csv")
num2 = pd.read_csv("./output/num2.csv")
```

Let's apply our formula to get normalized values from 0 to 1:

```
In [28]: norm1 = (num1 - num1.min()) / (num1.max() - num1.min())
    norm2 = (num2 - num2.min()) / (num2.max() - num2.min())
```

Let's see if all of these values are within 0 and 1 with a simple pandas function:

```
In [29]: norm1.describe()
```

Out[29]:		PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Bundesland	
ouc[25].		roibez	Aitersgr	Gebland	Geschi	Geimpridenesen	Duildesialid	
	count	17694.000000	17694.000000	17694.000000	17694.000000	17694.000000	17694.000000	17
	mean	0.508211	0.525914	0.488584	0.501187	0.492012	0.510456	
	std	0.318163	0.323962	0.499884	0.500013	0.372839	0.327328	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	0.256691	0.210843	0.000000	0.000000	0.000000	0.250000	
	50%	0.383212	0.572289	0.000000	1.000000	0.333333	0.375000	
	75%	0.738443	0.813253	1.000000	1.000000	0.666667	0.750000	
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	
4								

Looking good so far. Every min is 0 and every max is 1 (which was our goal). Now let's check norm2, too.

```
In [30]: norm2.describe()
```

Out + 1	raci	
Out	1001	

	Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
count	1404.000000	1404.000000	1404.000000	1404.000000	1404.000000	1404.000000
mean	0.504006	0.512821	0.493115	0.499288	0.491690	0.061415
std	0.322200	0.348880	0.371470	0.500178	0.372293	0.103388
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.250000	0.250000	0.000000	0.000000	0.000000	0.005569
50%	0.500000	0.500000	0.333333	0.000000	0.333333	0.024730
75%	0.750000	0.750000	0.666667	1.000000	0.666667	0.070619
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Now, it's time to save these datasets once more as norm1.csv and norm2.csv.

```
In [31]: norm1.to_csv("./output/norm1.csv", index=False)
    norm2.to_csv("./output/norm2.csv", index=False)
```

Nominal Values

In this section we will convert the values to only ordinal or nominal values and therefore get rid of any metric values. First, let's look at dataset 1.

Dataset 1

We can actually keep the values in PolBez , Altersgr , GebLand , Geschl , GeimpftGenesen , and Bundesland as they are from korr1 dataframe. For Anz however, we need to define a limit. Everything under this limit will be considered "low" (WENIG) and everything above (incl. the limit) is considered "high" (VIEL). Let's take the median value as the limit, so that (approx.) 50% of the values are "low" and 50% are "high".

```
In [32]: nom1 = pd.DataFrame()

nom1["PolBez"] = korr1.PolBez
nom1["Altersgr"] = korr1.Altersgr
nom1["GebLand"] = korr1.GebLand
nom1["Geschl"] = korr1.Geschl
nom1["GeimpftGenesen"] = korr1.GeimpftGenesen
nom1["Bundesland"] = korr1.Bundesland

anzLimit1 = korr1["Anz"].median()
nom1["Anz"] = korr1["Anz"].map(lambda x: "WENIG" if x < anzLimit1 else "VIEL")
nom1.sample(5)</pre>
```

Out[32]:		PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Bundesland	Anz
	16093	BEZIMST-913	75 - 84	INLAND	m	NICHTS	Wien	WENIG
	5917 BEZ		55 - 64	AUSLAND	f	IMPF + GEN	Niederösterreich	WENIG
	13507	BEZIMST-801	15 - 24	AUSLAND	f	GEN	Vorarlberg	WENIG
	1977	BEZIMST-205	85+	AUSLAND	f	GEN	Kärnten	WENIG
	7135	BEZIMST-405	55 - 64	AUSLAND	f	IMPF	Oberösterreich	WENIG

Dataset 2

Like the previous dataframe, we can leave Bundesland, Bildung, ErwerbStatus, and GeimpftGenesen from korr2 dataframe unchanged:

```
In [33]: nom2 = pd.DataFrame()

nom2["Bundesland"] = korr2.Bundesland
nom2["Bildung"] = korr2.Bildung
nom2["Altersgr"] = korr2.Altersgr
nom2["ErwerbStatus"] = korr2.ErwerbStatus
nom2["GeimpftGenesen"] = korr2.GeimpftGenesen

anzLimit2 = korr2["Anz"].median()
nom2["Anz"] = korr2["Anz"].map(lambda x: "WENIG" if x < anzLimit2 else "VIEL")

nom2.sample(5)</pre>
```

Out[33]:

	Bundesland	Bildung	Altersgr	ErwerbStatus	GeimpftGenesen	Anz
660	Salzburg	Lehrabschluss/BMS	35 - 44	aktiv	NICHTS	VIEL
1313	Wien	BHS/AHS/Kolleg	25 - 34	inaktiv	IMPF + GEN	VIEL
308	Niederösterreich	Pflichtschule	25 - 34	aktiv	NICHTS	VIEL
539	Oberösterreich	BHS/AHS/Kolleg	35 - 44	inaktiv	GEN	WENIG
1341	Wien	Akademie/Hochschule	25 - 34	aktiv	IMPF + GEN	VIEL

Visualization with Seaborn

Color Palette

Color palettes are essential when it comes to visualization. We should define a color palette for categorical data (nominal).

```
In [34]: colors = ["#3772FF", "#1b8a5a", "#edae7f", "#FF1053", "#F038FF"]
  cat_palette = sns.color_palette(colors)
  sns.palplot(cat_palette)
  plt.show()
```

We should also define a palette for "continuous" data (such as when depicting a heatmap). I really like the predefined "flare" palette, which is also a gradient when defining as_cmap=True.

```
In [35]: cont_palette = sns.color_palette("flare", as_cmap=True)
    sns.palplot(sns.color_palette("flare"))
    plt.show()
```


Correlation

Let us detect some correlation between our values. Since numerical values are better for clustering and finding correlation, we can use our num dataframes to detect some correlation. We should at least see a correlation between the features PolBez and Bundesland from num1, right?

```
In [36]: num1.corr()
```

Out[36]:		PolBez	Altersgr	GebLand	Geschl	GeimpftGenesen	Bundesland	Aı
	PolBez	1.000000	-0.007576	0.003521	-0.000854	0.004618	0.999188	0.08269
	Altersgr	-0.007576	1.000000	0.024892	0.002802	0.029775	-0.007483	-0.05635
	GebLand	0.003521	0.024892	1.000000	0.002542	-0.008020	0.003579	-0.40770
	Geschl	-0.000854	0.002802	0.002542	1.000000	0.000051	-0.000896	0.01218
	GeimpftGenesen	0.004618	0.029775	-0.008020	0.000051	1.000000	0.004582	-0.09115
	Bundesland	0.999188	-0.007483	0.003579	-0.000896	0.004582	1.000000	0.08289
	Anz	0.082690	-0.056352	-0.407700	0.012189	-0.091159	0.082894	1.00000
4								•

Well we were right with Bundesland, but with all these numbers, it sure looks complicated... Let's use colors instead!

This suggests that there is no concrete correlation except for Bundesland and PolBez. Except that, there is also a slight "color change" between Anz and GebLand. Let's look at that more closely:

```
In [38]: num1["Anz"].corr(num1["GebLand"])
Out[38]: -0.40769994363327905
```

This value suggests that the amount of people getting vaccinated/recovered/or both depends on where you have been born. But to be sure, you have to look at the causality here: We do not think that the mere amount (--> without any information whether the number of people is vaccinated/recovered/both/none) is not dependent on where you are coming from. Maybe this value is being produced, since there are more people born in Austria and currently living in Austria. This would lead to a bigger number in the column Anz for people who are born in Austria (and vice versa). The fact that the value is negative even supports my argumentation (INLAND has smaller value (0), Anz having higher value --> negative correlation)

Well we see more saturated cells than above when it comes to other features (but not that obvious). We sure can see in both graphs very slight correlations (<0.1). For example between <code>Bildung</code> and <code>GeimpftGenesen</code>. This might suggest that the education might have something to do with people getting vaccinated. There is also the fact that <code>Bildung</code> correlates with <code>Anz</code>, too, which also supports the argument that there might be a connection. There is also a higher saturation between <code>Anz</code> and <code>Erwerbstatus</code> which might suggest that there is a connection, too. But as above, without any additional information, this correlation lacks causality.

Pairplot

In [40]: sns.pairplot(num1, hue="GeimpftGenesen", palette=cat_palette[0:4])
plt.show()

Well this is the backlash you get when your dataset has too many nominal/ordinal values. In the above diagram you cannot really see certain groupings, clusters, or anything similar. This is because there are too many nominal/ordinal values and pairplots (scatterplots to be exact) work much better between two metric features (e.g. Length and Width).

```
In [41]: sns.pairplot(num2, hue="GeimpftGenesen", palette=cat_palette[0:4])
plt.show()
```


Same goes here, too many nominal/ordinal values. Well we could look at Bundesland and Anz, too. We can see that federal states 3 (Niederösterreich), 4 (Oberösterreich), and 6 (Steiermark) much more green at the top. That means the mere number is higher when it comes to these federal countries. Maybe because the population there is bigger? (P.S. most of these graphs just show blue dots because the dots overlap)

Boxplots and Violinplots

Let's see if we were right, when we argued that the education has something to do with vaccination cases:

With all of these boxplots one can really get overwhelmed. Instead, we should simplify the feature Bildung:

Out[43]: <seaborn.axisgrid.FacetGrid at 0x1e4af1c3690>

Well maybe our theory was wrong, These ranges look pretty evened out. Let's look at another theory of mine: Maybe the amount of vaccinated people is dependent on the economic status of a person.

In [44]: sns.catplot(data=korr2, kind="box", x="Anz", y="GeimpftGenesen", col="ErwerbStatus"
Out[44]:

We can see here that more economically active people go vaccinating, are recovering, or both than economically inactive people. (There might also be a chance that there are more economically active people alltogether). What I really found interesting is, is that the range of NICHTS is slightly bigger than GEN when it comes to economically inactive people. To be a hundred percent sure whether there is a connection between vaccination and economic status, we can look at a violin plot.

In [45]: sns.catplot(data=korr2, kind="violin", x="Anz", y="GeimpftGenesen", col="ErwerbStat
Out[45]: <seaborn.axisgrid.FacetGrid at 0x1e4b038b690>

If there was a higher density on the Blue violin plot when it comes to economically inactive people, we could say that there is an equal number of people but inactive ones choose not to vaccinate. Since the density is roughly the same, we can just say that there are more economically active people and have therefore a wider range in the boxplot.

Lastly, we would like to look at the ranges of the male/female population:

In [46]: sns.catplot(data=korr1, kind="box", x="Anz", y="GeimpftGenesen", col="Geschl", ori@
Out[46]: <seaborn.axisgrid.FacetGrid at 0x1e4aeefb690>

Well these ranges are evenly distributed amongst each group, too (boring...). But notice that there are so many outliers! Let's look at the density, too.

```
In [47]: sns.catplot(data=korr1, kind="violin", x="Anz", y="GeimpftGenesen", col="Geschl", c
Out[47]: <seaborn.axisgrid.FacetGrid at 0x1e4b39bfa50>
```


Well we can say that there is an equal range regarding the two genders. Even the median values do not vary between these two categories!

Barchart

Suppose we want to know how many people in each federal country is vaccinated:

```
In [48]: ax = sns.barplot(korr1.loc[korr1["GeimpftGenesen"] == "IMPF"], x="Anz", y="Bundesla
ax.bar_label(ax.containers[0], fontsize=10)
plt.show()
```


Alright so we see that Vienna has the most vaccinated people and Burgenland has the least vaccinated people. Let's look at the age groups now:

What is interesting is as the age groups get bigger (older), there are more female people getting vaccinated (Maybe because women live longer than men?).

Anz

Ou:

Transformation for future graphs

For our next analysis, we should transform our data so we have multiple values in one record. I think instead of one number Anz we should have number of vaccinated ImpfAnz, number of recovered GenAnz, number of vaccinated and recovered ImpfGenAnz, and number of people that are not vaccinated nor recovered NichtsAnz.

50]:		Bundesland	Bildung	Altersgr	ErwerbStatus	ImpfAnz	GenAnz	ImpfGenAnz	NichtsAnz
	0	Burgenland	GERING	25 - 34	aktiv	4805	2573	2763	2301
	4	Burgenland	GERING	25 - 34	inaktiv	1347	809	514	1107
	8	Burgenland	GERING	35 - 44	aktiv	7527	3246	4595	2718
	12	Burgenland	GERING	35 - 44	inaktiv	1530	765	558	1102
	16	Burgenland	GERING	45 - 54	aktiv	12622	2928	6426	2962
	•••								
	1320	Wien	HOCH	35 - 44	inaktiv	10547	4555	5240	5717
	1324	Wien	НОСН	45 - 54	aktiv	48166	8720	30227	7952
	1328	Wien	HOCH	45 - 54	inaktiv	7433	2267	2572	3874
	1332	Wien	НОСН	55 - 64	aktiv	39637	3940	17722	5402
	1336	Wien	НОСН	55 - 64	inaktiv	16032	1781	4099	4847

144 rows × 8 columns

→

Very well lets look at our pairplot once more:

```
In [51]: sns.pairplot(transKorr2, hue="ErwerbStatus", palette=cat_palette[0:2])
plt.show()
```


What really caught my attention here is the scatterplot between GenAnz and NichtsAnz. Let's take a closer look:

Scatterplots

```
In [52]: sns.scatterplot(data=transKorr2, x="NichtsAnz", y="GenAnz", hue="ErwerbStatus", pa]
Out[52]: <Axes: xlabel='NichtsAnz', ylabel='GenAnz'>
```


What can we see here? Well, first of all, there is quite a bit of "density" in the bottom left corner. We can also see that there are clusters forming. So, can we say that, a recovered person is more likely to be economically active since all the blue dots are at the top? Well, not really. Economic status describes a "personal" feature. The problem is that GenAnz and NichtsAnz are both the number of people recovered, and so on. So both of these features are not personal features and therefore do not have an influence whether one is economically active or not. This is the case in all other scatterplots above

But we can estimate if a **person group** is economically active/inactive alltogether, depending on the amount of people that are recovered and the amount of people that are not vaccinated nor recovered (of course given that all of them have the same economic status). The question is of course, is there a reason we would like to know that (use case).

A **person group** is a group of people with the same personal features (economic status, educational status, federal country, ... except the features which count the amount of people in these person groups (e.g. ImpfAnz))

Histograms and KDEs (Kernel Density Estimation)

Histograms are often used to see how often a certain value-range occurs. So suppose we want to know what is the most likely value of vaccinated people given there is a certain *person group*. To estimate that, we need a histogram. As we have already seen in the scatterplots above, there is quite a density in some corners. Let's see if we can detect it with our histogram, too:

```
In [53]: sns.histplot(data=transKorr2, x="ImpfAnz")
Out[53]: <Axes: xlabel='ImpfAnz', ylabel='Count'>
```


Wow, that's a huuge bump! What does this tell us? The amount of vaccinated people for a certain person group is pretty likely to be quite low. Now, let's also add a KDE to this graph:

```
In [54]: sns.histplot(data=transKorr2, x="ImpfAnz", kde=True)
Out[54]: <Axes: xlabel='ImpfAnz', ylabel='Count'>
```


We can also see the distribution of two features combined. This will look something like a heatmap but in reality it's just a fancy histogram:

```
In [55]: sns.histplot(data=transKorr2, x="ImpfAnz", y="GenAnz", cmap=cont_palette)
Out[55]: <Axes: xlabel='ImpfAnz', ylabel='GenAnz'>
```


This surely looks like our scatterplot in our last pairplot! Let's add a KDE to this one and see what it looks like

```
In [56]: sns.kdeplot(data=transKorr2, x="ImpfAnz", y="GenAnz", cmap=cont_palette)
Out[56]: <Axes: xlabel='ImpfAnz', ylabel='GenAnz'>
```


Let's compare these graphs with the distribution of ImpfGenAnz . We should get approximately the same result, rigth?

In [57]: sns.histplot(data=transKorr2, x="ImpfGenAnz", kde=True)
Out[57]: <Axes: xlabel='ImpfGenAnz', ylabel='Count'>

Looking good!

Correlation (again)

I am not pleased with the correlation chapter above, since our values were so separated. Should we create another heatmap now? But first we need to transform our num2 dataframe as we did for korr2:

```
In [58]:
         def transform_num2(row):
             result_row = row
             temp_df = num2.loc[(num2["Bundesland"] == row["Bundesland"]) &
                                 (num2["Bildung"] == row["Bildung"]) &
                                 (num2["Altersgr"] == row["Altersgr"]) &
                                 (num2["ErwerbStatus"] == row["ErwerbStatus"])]
             result_row["ImpfAnz"] = temp_df.loc[temp_df["GeimpftGenesen"] == 1]["Anz"].sum(
             result_row["GenAnz"] = temp_df.loc[temp_df["GeimpftGenesen"] == 2]["Anz"].sum()
             result_row["ImpfGenAnz"] = temp_df.loc[temp_df["GeimpftGenesen"] == 3]["Anz"].s
             result_row["NichtsAnz"] = temp_df.loc[temp_df["GeimpftGenesen"] == 0]["Anz"].su
             result_row.drop(["GeimpftGenesen", "Anz"], inplace=True)
             return result_row
         transNum2 = num2.apply(transform_num2, axis=1)
         transNum2.drop_duplicates(inplace=True)
         transNum2
```

Out[58]:		Bundesland	Bildung	Altersgr	ErwerbStatus	ImpfAnz	GenAnz	ImpfGenAnz	NichtsAnz
	0	1.0	1.0	29.5	1.0	611.0	396.0	285.0	472.0
	4	1.0	1.0	29.5	0.0	471.0	303.0	173.0	456.0
	8	1.0	1.0	39.5	1.0	1170.0	532.0	597.0	531.0
	12	1.0	1.0	39.5	0.0	549.0	253.0	199.0	425.0
	16	1.0	1.0	49.5	1.0	2010.0	575.0	932.0	688.0
	•••						•••		
	1384	9.0	0.0	39.5	0.0	46.0	23.0	15.0	47.0
	1388	9.0	0.0	49.5	1.0	13.0	2.0	5.0	18.0
	1392	9.0	0.0	49.5	0.0	37.0	12.0	6.0	44.0
	1396	9.0	0.0	59.5	1.0	5.0	1.0	2.0	14.0
	1400	9.0	0.0	59.5	0.0	31.0	4.0	1.0	16.0

360 rows × 8 columns

```
◆
```

Looking sharp! Now create the heatmap for correlation and...

```
In [59]: sns.heatmap(transNum2.corr(), cmap=cont_palette)
   plt.show()
```


Haha! I knew it. We got something. Well the correlation between all the Anz -Features is logical: The more people there is in a certain group, the more our values are going to get bigger. Therefore, when a certain Anz -Feature is bigger, the othres are also bigger.

What I really found interesting here is, is that there is a slight correlation between Bildung (education) and ImpfAnz as well as ImpfGenAnz. The interesting factor that connects both of these features is that both of these person groups are vaccinated (or chose not to vaccinate because of various reasons). What if we add up both of these features? Will we get a bigger correlation? Let's find out!

```
In [60]: transNum2["Bildung"].corr(transNum2["ImpfAnz"])
Out[60]: 0.19783150785477005
```

So this is the correlation between these two.

```
In [61]: transNum2["Bildung"].corr(transNum2["ImpfGenAnz"])
Out[61]: 0.28602770613668754
```

Alright, now let's see the result we get when we combine these two:

```
In [62]: transNum2["Bildung"].corr(transNum2["ImpfGenAnz"] + transNum2["ImpfAnz"])
Out[62]: 0.23316936946347674
```

Well that's kind of disappointing... Well at least I tried to prove our theory. Now we will look at something different: There is also a stronger correlation between ErwerbStatus and the Anz -Features (especially ImpfGenAnz). This could also be a hint that one is more likely to get vaccinated when they are economically active. We should inspect the certain correlation value:

```
In [63]: transNum2["ErwerbStatus"].corr(transNum2["ImpfGenAnz"])
Out[63]: 0.4331320158379753
```

And I don't think this correlation does not lack causality. To be able to be in the office without having to conduct COVID-tests every day, you needed to be either vaccinated or recovered from this disease.

Summary

We hereby are finished with our Corona-Data-Analysis. First, we introduced our data, which was published by Statistik Austria. Then, we cleaned and prepared our data for the future analysis. Through various visualization techniques, we analyzed our data and discussed results. After we realized that our data is not optimal for some visualization techniques, we transformed our data, which was actually not a part of the task assignment. But for the sake of having clear results, we did that, too and applied critical analysis, discussions, and assumptions.