

Dr. Giuseppe Maggiore

Concrete model of computation

Dr. Giuseppe Maggiore

Hogeschool Rotterdam Rotterdam, Netherlands

Concrete model of computation

Dr. Giuseppe Maggiore

Lecture topics

- We discuss a formal way to define computation
- We discuss the fundamental elements of a concrete computer
- We bridge what we have seen in the previous lecture with concrete descriptions

Concrete model of computation

Dr. Giuseppe Maggiore

Semantics

- Any language has semantics
- **Semantics** describe the *meaning* of sentences in the language
- Programming languages have formal semantics
- Formal semantics are expressed in a very logical, unambiguous format

Dr. Giuseppe Maggiore

Consider this program from the previous lecture:

```
take 3 steps forward
sit on the chair
turn left
slide 3 steps forward
```

what does each instruction do? Try to guess and discuss!

Concrete model of computation

Dr. Giuseppe Maggiore

Semantics of stdNt

- We start with a current instruction and a student state:
 - The current instruction (often called instruction pointer (IP) or program counter (PC)) is just the index of the current instruction:
 - the student state (usually just called *state*, or S, or σ) is whatever relevant attributes we track about the student (for example, his position and orientation in the room and whether or not he is sitting).
- Each instruction changes the PC and the S.

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
1	Standing	Forward	(0,0)

2 3 4 take 3 steps forward sit on the chair turn left slide 3 steps forward

what changes while running the current instruction? **Try to guess and discuss!**

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
2	Standing	Forward	(0,3)

2 3 4 take 3 steps forward sit on the chair turn left slide 3 steps forward

what changes while running the current instruction? **Try to guess and discuss!**

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
3	Sitting	Forward	(0,3)

2 3 4 take 3 steps forward sit on the chair turn left slide 3 steps forward

what changes while running the current instruction? **Try to guess and discuss!**

Concrete model of

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
4	Sitting	Left	(0,3)

take 3 steps forward sit on the chair turn left slide 3 steps forward

what changes while running the current instruction? Try to guess and discuss!

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
END	Sitting	Left	(-3,3)

1 2 3 take 3 steps forward
sit on the chair
turn left
slide 3 steps forward

what do we do now? Try to guess and discuss!

Concrete model of computation

Dr. Giuseppe Maggiore

A slight formalization

 We say that an instruction I is a function that, given a pair of PC and S, returns a new pair of PC and S

Concrete model of computation

Dr. Giuseppe Maggiore

- We say that an instruction I is a function that, given a pair of PC and S, returns a new pair of PC and S
- Do not panic now, math-y symbols incoming!

Concrete model of computation

Dr. Giuseppe Maggiore

- We say that an instruction I is a function that, given a pair of PC and S, returns a new pair of PC and S
- Do not panic now, math-y symbols incoming!
- $\bullet (PC,S) \stackrel{Instr}{\to} (PC',S')$

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction sit on the chair (we will shorten it to sit)
- How do we change the current instruction?
- How do we change the position of the resulting state depending on the orientation of the input state?

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction sit on the chair (we will shorten it to sit)
 - $(PC, S) \stackrel{sit}{\rightarrow} (PC + 1, S[Pose \mapsto Sitting])$
- We increment the current instruction index by one
- We change the pose of the resulting state independent on the input state
 - $\bullet \ S[Pose \mapsto Sitting] \ \text{is read as} \ \text{``S, where pose is sitting''}$

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction stand up (we will shorten it to stand)
- How do we change the current instruction?
- How do we change the position of the resulting state depending on the orientation of the input state?

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction stand up (we will shorten it to stand)
 - $(PC, S) \stackrel{stand}{\rightarrow} (PC + 1, S[Pose \mapsto Standing])$
- We increment the current instruction index by one
- We change the pose of the resulting state independent on the input state

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction take 3 steps forward (we will shorten it to fwd 3)
- How do we determine the next instruction index?
- How do we change the position of the resulting state?
 - Are there dependencies from the input state?

Dr. Giusepp Maggiore

PC	S.Pose	S.Orientation	S.Position
104	Standing	Left	(10,20)

103

104

take 3 steps forward

105 .

PC	S.Pose	S.Orientation	S.Position
105	Standing	Left	(7,20)

Dr. Giusepp Maggiore

PC	S.Pose	S.Orientation	S.Position
104	Standing	Right	(10,20)

103

104

take 3 steps forward

105

PC	S.Pose	S.Orientation	S.Position
105	Standing	Right	(13,20)

Concrete model of computation

Dr. Giuseppe Maggiore

A slight formalization

 Consider instruction take 3 steps forward (we will shorten it to fwd 3)

```
 \begin{cases} (PC,S) \stackrel{f \, wd3}{\rightarrow} (PC+1,S[Position \mapsto S.Position + (0,3)]) & when & S.Orientation \\ (PC,S) \stackrel{f \, wd3}{\rightarrow} (PC+1,S[Position \mapsto S.Position - (0,3)]) & when & S.Orientation \\ (PC,S) \stackrel{f \, wd3}{\rightarrow} (PC+1,S[Position \mapsto S.Position + (3,0)]) & when & S.Orientation \\ (PC,S) \stackrel{f \, wd3}{\rightarrow} (PC+1,S[Position \mapsto S.Position - (3,0)]) & when & S.Orientation \\ \end{cases}
```

- We always increment the instruction by one
- We change the position of the resulting state depending on the orientation of the input state

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction if A then B else C
- How do we determine the next instruction index?
- How do we change the state?

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
24	Standing	Right	(10,20)

232425262728

if A is ''sunny'' then
 turn left by 90 * B degrees
otherwise
 turn left by 90 * C degrees

PC	S.Pose	S.Orientation	S.Position
25 ¹	Standing	Right	(10,20)

¹Assuming good weather

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
24	Standing	Right	(10,20)

232425262728

if A is ''sunny'' then
 turn left by 90 * B degrees
otherwise
 turn left by 90 * C degrees

8 | .

		S.Orientation	S.Position
27^{2}	Standing	Right	(10,20)

Concrete model of computation

Dr. Giuseppe Maggiore

A slight formalization

ullet Consider instruction if A then B else C (shortened by as if_{ABC})

$$\begin{cases} (PC,S) \overset{if_{ABC}}{\rightarrow} (loc(B),S) & when & (PC,S) \overset{A}{\rightarrow} \text{TRUE} \\ (PC,S) \overset{if_{ABC}}{\rightarrow} (loc(C),S) & when & (PC,S) \overset{A}{\rightarrow} \text{FALSE} \end{cases}$$

- We jump to the first instruction of the B block if the condition evaluates to TRUE
- We jump to the first instruction of the C block if the condition evaluates to FALSE
- We leave the state unchanged

Concrete model of computation

Dr. Giuseppe Maggiore

- Consider instruction while A do B
- How do we determine the next instruction index?
- How do we change the state?

Concrete model of

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
24	Standing	Right	(10,20)

while A is ''sunny'' do enjoy the day for another hour go back to work

PC	S.Pose	S.Orientation	S.Position
25 ³	Standing	Right	(10,20)

³As long as it is sunny

Concrete model of

Dr. Giuseppe Maggiore

PC	S.Pose	S.Orientation	S.Position
24	Standing	Right	(10,20)

while A is ''sunny'' do enjoy the day for another hour go back to work

PC	S.Pose	S.Orientation	S.Position
26 ⁴	Standing	Right	(10,20)

⁴When it stops being sunny

Concrete model of computation

Dr. Giuseppe Maggiore

A slight formalization

ullet Consider instruction while A do B (shortened by as $while_{AB})$

$$\begin{cases} (PC,S) \overset{while}{\rightarrow} AB \ (loc(B),S) & when \ (PC,S) \overset{A}{\rightarrow} \text{TRUE} \\ (PC,S) \overset{while}{\rightarrow} AB \ (lastloc(B)+1,S) & when \ (PC,S) \overset{A}{\rightarrow} \text{FALSE} \end{cases}$$

- We jump to the first instruction of the B block if the condition evaluates to TRUE
- We jump to after the last instruction of the B block if the condition evaluates to FALSE
- We leave the state unchanged

This is it!

Concrete model of computation

Dr. Giuseppe Maggiore

The best of luck, and thanks for the attention!