Page 30, 从基变换和坐标变换的关系去探讨 w, v 和 dx, dy 的关系

叶卢庆*

2015年1月10日

我们知道, $T_p\mathbf{R}^3$ 中的有序基 $\alpha=(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3)$ 给定后,dx,dy,dz 成为 \mathbf{R}^3 中有序基 α 的三个坐标, 分别 代表 $T_p\mathbf{R}^3$ 中一个向量的横坐标, 纵坐标和竖坐标. \mathbf{R}^2 中的一组有序基 $\beta=(\mathbf{e}_1,\mathbf{e}_2)$ 给定后,w 和 v 成为 $T_q\mathbf{R}^2$ 中有序基 β 的两个坐标, 分别代表 $T_q\mathbf{R}^2$ 中一个向量的横坐标和纵坐标. 当我们确定了关系式

 $w = a_1 dx + b_1 dy + c_1 dz, v = a_2 dx + b_2 dy + c_2 dz,$

也就是

$$\begin{pmatrix} w \\ v \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

时,我们实际上确定了一个从 $T_p\mathbf{R}^3$ 到 $T_q\mathbf{R}^2$ 的线性变换 \mathcal{F} . 且

$$[\mathcal{F}]_{\alpha}^{\beta} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}.$$

而且, 在几何上, T_q \mathbf{R}^2 是由基 β 里的向量张成的.

^{*}叶卢庆 (1992—), 男, 杭州师范大学理学院数学与应用数学专业本科在读,E-mail:yeluqingmathematics@gmail.com