

Differences between populations: Origins and quantifying

Recap: Calculating genotype/ allele frequencies, and testing HW

MN blood type in Navajo

- MM: 305 0.845 $p(M) = 0.845 + \frac{1}{2}(0.144) = 0.917$

- MN: 52 0.144 $q(N) = 0.011 + \frac{1}{2}(0.144) = 0.083$

- NN: 4 0.011

TOTAL: 361

HW Predicted:

MM $p^2 = 0.841$

MN 2pq = 0.152

NN $q^2 = 0.007$

Recap: Wahlund effect in mixed population

MN blood type for Aborigine + Navajo

- MM: 327 0.300 p(M) = 0.423

- MN: 268 0.246 q(N) = 0.577

- NN: 496 0.454

TOTAL: 1091

MM $p^2 = 0.179$

e to HW MN 2pq = 0.488

NN $q^2 = 0.333$

Populations differ...

- May have different allele & genotype frequencies
- May have alleles at some genes not found in other populations if
 - Very recent new mutation, or
 - Complete isolation

Difference(s) arose via mutation, then spread

- Ancestors aa bb
- Population splits into two groups
 - In #1, newmutation to A
 - In #2, newmutation to B
- New mutations spread

Groups within species are different yet related

 May have alleles not found in other groups

 May have very different genotype/ allele frequencies

How to quantify?

- Simplest to quantify- all individuals differ
 - "Fixed" difference
 - Population 1: all AA
 Population 2: all aa

How to quantify?

- Simplest to quantify- all individuals differ
 - "Fixed" difference
 - Population 1: all AA
 Population 2: all aa

How to quantify?

- More common- frequency differences of alleles & genotypes
 - Population 1 p(A)=0.7
 - Population 2 p(A)=0.5
- Measure differences between
 POPULATIONS not INDIVIDUALS
 - Can't be applied to individual
- How "quantify"?

Deviation from HW allows you to quantify allele freq differences!

- Assume two populations at HW
 - If sample each by itself, see HW
 - If sample both together, see deviation from HW
 - Wahlund effect

 How big the deviation is from HW when sampling both together quantifies difference in allele frequencies

Measure we'll use: F_{ST}

- F_{ST} ranges from 0 to 1
 - 0 : no allele frequency differences
 - $0 < F_{ST} < 1$: allele frequencies differ somewhat
 - 1: "fixed" difference between populations

• $F_{ST} = \frac{HW \text{ predicted } 2pq - \% \text{ observed hetz}}{HW \text{ predicted } 2pq}$

POPULATION 1

POPULATION 2

— AA	100	AA	0
Aa	0	Aa	0
– aa	0	aa	100

TOTAL- AA: 100, Aa: 0, aa: 100

POPULATION 1

POPULATION 2

-AA100 AA

 Aa Aa

100 aa aa

TOTAL- AA: 100, Aa: 0, aa: 100

N = 200

AA: 100/200 = 0.5p(A) = 0.5; q(a) = 0.5

Aa: 0/200 = 0

aa: 100/200 = 0.5

POPULATION 1

POPULATION 2

0

-AA100 AA

 Aa Aa

100 aa aa

TOTAL- AA: 100, Aa: 0, aa: 100

N = 200

AA: 100/200 = 0.5p(A) = 0.5; q(a) = 0.5

Aa: 0/200 = 0HW 2pq = 0.50

aa: 100/200 = 0.5

POPULATION 1

POPULATION 2

- AA 100

AA 0

– Aa C

Aa C

– aa (

aa 100

TOTAL- AA: 100, Aa: 0, aa: 100

N = 200

AA: 100/200 = 0.5

p(A) = 0.5; q(a) = 0.5

Aa: 0/200 = 0

HW 2pq = 0.50

aa: 100/200 = 0.5

POPULATION 1

POPULATION 2

-AA100 AA

 Aa Aa

100 aa aa

TOTAL- AA: 100, Aa: 0, aa: 100

N = 200

AA: 100/200 = 0.5 p(A) = 0.5; q(a) = 0.5

Aa: 0/200 = 0HW 2pq = 0.50

aa: 100/200 = 0.5 (predicted-obs)/predicted

 $F_{ST} = (0.50-0)/(0.50) = 1.00$

• POPULATION 1 POPULATION 2

— AA	250	AA	490

– Aa 500 Aa 420

– aa250aa90

TOTAL- AA: 740, Aa: 920, aa: 340

aa

POPULATION 1

aa

POPULATION 2

90

- AA	250	AA	490
– Aa	500	Aa	420

TOTAL- AA: 740, Aa: 920, aa: 340 N=2000

250

AA: 740/2000 = 0.37 p(A) = 0.6; q(a) = 0.4

Aa: 920/2000 = 0.46

aa: 340/2000 = 0.17

POPULATION 1

POPULATION 2

- AA	250	AA	490
– Aa	500	Aa	420

– aa 250 aa 90

TOTAL- AA: 740, Aa: 920, aa: 340 N=2000

AA: 740/2000 = 0.37 p(A) = 0.6; q(a) = 0.4

Aa: 920/2000 = 0.46 HW 2pq = **0.48**

aa: 340/2000 = 0.17

POPULATION 1

POPULATION 2

- AA	250	AA	490
– Aa	500	Aa	420
– aa	250	aa	90

TOTAL- AA: 740, Aa: 920, aa: 340 N=2000

AA: 740/2000 = 0.37p(A) = 0.6; q(a) = 0.4

Aa: 920/2000 = **0.46** HW 2pq = 0.48

aa: 340/2000 = 0.17

POPULATION 1

POPULATION 2

- AA	250	AA	490
– Aa	500	Aa	420

– aa250aa90

TOTAL- AA: 740, Aa: 920, aa: 340 N=2000

AA: 740/2000 = 0.37 p(A) = 0.6; q(a) = 0.4

Aa: 920/2000 = **0.46** HW 2pq = **0.48**

aa: 340/2000 = 0.17

 $F_{ST} = (0.48 - 0.46)/(0.48) = 0.042$

Real data: Mixed population

MN blood type

OBSERVED

– MM: 327

0.300 p(M) = 0.423

– MN: 268

0.246 q(N) = 0.577

– NN: 496

0.454

 $F_{ST} =$

Real data: Mixed population

MN blood type **OBSERVED**

> p(M) = 0.423MM: 327 0.300

> - MN: 268 q(N) = 0.5770.246

NN: 496 0.454

 F_{st} = HW predicted 2pq – % observed hetz HW predicted 2pq

Real data: Mixed population

•	MN blood type	OBSERVED		EXPECTED
	– MM: 327	0.300	p(M) = 0.423	0.179
	– MN: 268	0.246	q(N) = 0.577	0.488

0.454

NN: 496

 $F_{ST} = \frac{HW \text{ predicted 2pq} - \% \text{ observed hetz}}{HW \text{ predicted 2pq}}$

0.333

Recap...

- F_{ST} larger comparing populations that are more different in allele frequencies
 - Aborigine & Navajo VERY different in allele frequencies

 If allele frequencies were identical, F_{ST} would be 0

If fixed different, F_{ST} would be 1

F_{ST} measures among human populations

Data from 1,110,338 SNPs, 2010 study

- •African Americans Europeans:
- •African Americans Chinese:
- •Europeans Chinese:

 $F_{ST} = 0.11$

$$F_{ST} = 0.15$$

$$F_{ST} = 0.11$$

F_{ST} among European populations is <0.01

BIG table of F_{ST} measures

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1 Red Sea														
2 East Asian	0.142													
3 Kalash	0.099	0.13												
4 Northeast Siberian	0.175	0.083	0.158											
5 North European	0.068	0.122	0.068	0.146										
6 Palaeoafrican	0.217	0.262	0.248	0.301	0.233									
7 Sub-Saharan	0.158	0.202	0.189	0.24	0.176	0.075								
8 Mediterranean	0.062	0.143	0.092	0.176	0.057	0.238	0.178							
9 Papuan	0.239	0.207	0.234	0.259	0.224	0.346	0.285	0.242						
10 Southeast Asian	0.144	0.034	0.133	0.106	0.125	0.263	0.203	0.146	0.212					
11 West Asian	0.062	0.122	0.063	0.15	0.036	0.223	0.166	0.062	0.222	0.125				
12 Indian	0.085	0.081	0.067	0.119	0.065	0.215	0.157	0.084	0.182	0.085	0.06			
13 Melanesian	0.219	0.173	0.213	0.227	0.203	0.329	0.268	0.221	0.144	0.174	0.201	0.162		
14 Amerindian	0.204	0.136	0.185	0.152	0.167	0.333	0.271	0.205	0.299	0.154	0.175	0.149	0.27	
15 Siberian/Central Asian	0.153	0.059	0.138	0.078	0.126	0.277	0.216	0.151	0.232	0.081	0.129	0.097	0.201	0.144

What is F_{ST} , in words?

- F_{ST} is the % heterozygous of randomly chosen alleles within populations (observed) relative to that expected in the entire species (2pq)
 - Measures difference in allele frequencies
 - If identical allele frequencies, $F_{ST} = 0$
 - If fixed for different alleles, F_{ST} = 1
- Why don't we see higher F_{ST} among human populations???

Some F_{ST} assumptions violated in humans

- Supposed to be applied to genes experiencing little/ no natural selection
- Susceptible to differences (and historic changes) in population size among groups

• ... but biggest reason **F**_{ST} values aren't larger...

Image Credits, Unit 6-1

- African children, © 2003 Thomas Schoch, CC by-SA 3.0, en.wikipedia.org
- Aborigines, © 2007 Mombas, CC by-SA 3.0, en.wikipedia.org
- World map, © 2005 David Monniaux, CC by-SA 3.0, en.wikipedia.org
- Green DNA w/ red mutation, © appler, all rights reserved, www.photoxpress.com
- Cladogram, © 2010 Dienekes, all rights reserved, http://dienekes.blogspot.com/
- Lightbulb, © 2010 Jacob Hnri 6, CC by-SA 3.0, en.wikipedia.org
- DNA SNP, © 2007 David Hall, CC by-SA 3.0, en.wikipedia.org
- Global diversity cartoon, © Dawn Hudson, all rights reserved, www.photoxpress.com
- FST table, © 2010 Dienekes, all rights reserved, http://dienekes.blogspot.com/
- Crowd, © 2006 SchuminWeb, CC by-SA 2.5, en.wikipedia.org