Comunicação por Computador

Trabalho prático nº3

15 de abril de 2020

Grupo nº 4

Filipa Alves dos Santos (A83631)

Guilherme Pereira Martins (A70782)

Luís Miguel Arieira Ramos (A83930)

Rui Alves dos Santos (A67656)

Mestrado Integrado em Engenharia Informática
Universidade do Minho

Índice de conteúdos

1. Questões e Respostas (Parte I)	3
1.1. Alínea a	
1.2. Alínea b	
1.3. Alínea c	
1.4. Alínea d	
1.5. Alínea e	
1.6. Alínea f	
1.7. Alínea g	7
1.8. Alínea h	
1.9. Alínea i	
1.10. Alínea j	1(
2. Demonstração (Parte II)	

1. Questões e Respostas

Parte I: Consultas ao serviço de nomes DNS

1.1) - a) Qual o conteúdo do ficheiro/etc/resolv.conf e para que serve essa informação?

```
→ ~ cat /etc/resolv.conf

# Dynamic resolv.conf(5) file for glibc resolver(3) generated by resolvconf(8)

# DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN

nameserver 192.168.1.1

search lan
```

Figura 1 – Conteúdo do ficheiro resolv.conf

O ficheiro resolv.conf contém os servidores pré-definidos de resolução de nomes de domínio, isto é, configura o DNS *resolver* do sistema. O nameserver contém o endereço do servidor DNS local e o campo search serve para tentar auto-completar nomes e formar paths com o domínio que tem guardado que, neste caso, é lan.

1.2) - b) Os servidores www.sapo.pt. e www.vahoo.com. têm enderecos IPv6? Se sim, quais?

```
nslookup -query=AAAA www.sapo.pt
Server: 192.168.1.1
Address: 192.168.1.1#53
Non-authoritative answer:
                 has AAAA address 2001:8a0:2102:c:213:13:146:142
www.sapo.pt
Authoritative answers can be found from:
sapo.pt nameserver = dns01.sapo.pt.
sapo.pt nameserver = ns2.sapo.pt.
sapo.pt nameserver = ns.sapo.pt.
sapo.pt nameserver = dns02.sapo.pt.
ns.sapo.pt internet address = 212.55.154.202
ns2.sapo.pt internet address = 212.55.154.194
dns01.sapo.pt internet address = 213.13.28.116
dns02.sapo.pt internet address = 213.13.30.116
dns01.sapo.pt has AAAA address 2001:8a0:2106:4:213:13:28:116
dns02.sapo.pt has AAAA address 2001:8a0:2206:4:213:13:30:116

    nslookup -query=AAAA www.yahoo.com

           192.168.1.1
192.168.1.1#53
Server:
Address:
Non-authoritative answer:
www.yahoo.com canonical name = atsv2-fp-shed.wg1.b.yahoo.com.
atsv2-fp-shed.wg1.b.yahoo.com has AAAA address 2a00:1288:110:1c::3
atsv2-fp-shed.wg1.b.yahoo.com has AAAA address 2a00:1288:110:1c::4
Authoritative answers can be found from:
wg1.b.yahoo.com nameserver = yf4.a1.b.yahoo.net.
wg1.b.yahoo.com nameserver = yf3.a1.b.yahoo.net.
wg1.b.yahoo.com nameserver = yf2.yahoo.com.
wg1.b.yahoo.com nameserver = yf1.yahoo.com.
yf4.a1.b.yahoo.net internet address = 68.142.254.15
yf3.a1.b.yahoo.net internet address = 68.142.254.15
yf1.yahoo.com internet address = 68.142.254.15
yf2.yahoo.com internet address = 68.180.130.15
```

Figura 2 - Endereços IPv6 de www.sapo.pt. e www.yahoo.pt.

Para esta alínea, utilizamos o *record* AAAA, que serve para obtermos o endereço IPv6 de um servidor, em vez do IPv4. Concluímos assim que estes servidores têm endereços IPv6, que são os seguintes:

- <u>www.sapo.pt:</u> 2001:8a0:2102:c:213:13:146:142
- <u>www.yahoo.com:</u> 2a00:1288:110:1c::3 e 2a00:1288:110:1c::4

1.3) - c) Quais os servidores de nomes definidos para os domínios: "uminho.pt.", "pt." e "."?

Para determinarmos os nomes dos servidores para os domínios pedidos, utilizamos o nslookup novamente, desta vez com o *record* NS (name server). Nas imagens seguintes apresentamos os resultados, com os servidores de nomes assinalados para cada domínio.

```
→ nslookup -query=NS uminho.pt.
Server: 192.168.1.1
Address:
                 192.168.1.1#53
Non-authoritative answer:
uminho.pt nameserver = dns.uminho.pt.
uminho.pt
                 nameserver = ns02.fccn.pt.
uminho.pt nameserver = dns2.uminho.pt.
uminho.pt nameserver = dns3.uminho.pt.
Authoritative answers can be found from:
dns.uminho.pt internet address = 193.137.16.75
dns2.uminho.pt internet address = 193.137.16.145
dns3.uminho.pt internet address = 193.137.16.65
ns02.fccn.pt internet address = 193.136.2.228
dns.uminho.pt has AAAA address 2001:690:2280:1::75
dns2.uminho.pt has AAAA address 2001:690:2280:801::145
dns3.uminho.pt has AAAA address 2001:690:2280:1::65
ns02.fccn.pt has AAAA address 2001:690:a80:4001::200
```

Figura 3 - Servidores para o domínio "uminho.pt."

```
→ nslookup -query=NS pt.
Server: 192.168.1.1
Address:
              192.168.1.1#53
Non-authoritative answer:
       nameserver = ns2.nic.fr.
       nameserver = d.dns.pt.
pt
       nameserver = ns.dns.br.
pt
       nameserver = g.dns.pt.
pt
       nameserver = h.dns.pt.
pt
       nameserver = a.dns.pt.
pt
pt
       nameserver = f.dns.pt.
       nameserver = b.dns.pt.
pt
       nameserver = c.dns.pt.
pt
       nameserver = e.dns.pt.
Authoritative answers can be found from:
f.dns.pt internet address = 162.88.45.1
ns.dns.br internet address = 200.160.0.5
internet address = 185.39.210.1
d.dns.pt
c.dns.pt internet address = 204.61.216.105
```

```
a.dns.pt internet address = 185.39.208.1
e.dns.pt internet address = 193.136.192.64
h.dns.pt internet address = 194.146.106.138
f.dns.pt has AAAA address 2600:2000:3009::1
ns.dns.br has AAAA address 2001:12ff:0:a20::5
b.dns.pt has AAAA address 2001:678:20::23
g.dns.pt has AAAA address 2001:690:a80:4001::100
ns2.nic.fr has AAAA address 2001:660:3005:1::1:2
```

Figura 4 - Servidores para o domínio "pt."

```
→ - nslookup -query=NS .
Server: 192.168.1.1
Address:
                 192.168.1.1#53
Non-authoritative answer:
        nameserver = b.root-servers.net.
        nameserver = g.root-servers.net.
        nameserver = f.root-servers.net.
        nameserver = j.root-servers.net.
        nameserver = k.root-servers.net.
        nameserver = a.root-servers.net.
        nameserver = m.root-servers.net.
        nameserver = c.root-servers.net.
        nameserver = h.root-servers.net.
        nameserver = i.root-servers.net.
         nameserver = d.root-servers.net.
        nameserver = 1.root-servers.net.
        nameserver = e.root-servers.net.
Authoritative answers can be found from:
a.root-servers.net internet address = 198.41.0.4
                        internet address = 199.9.14.201
b.root-servers.net
                        internet address = 192.33.4.12
c.root-servers.net
d.root-servers.net
                        internet address = 199.7.91.13
e.root-servers.net
                        internet address = 192.203.230.10
f.root-servers.net
                          internet address = 192.5.5.241
                         internet address = 192.112.36.4
g.root-servers.net
h.root-servers.net
                        internet address = 198.97.190.53
i.root-servers.net
                        internet address = 192.36.148.17
                        internet address = 192.58.128.30
i.root-servers.net
                        internet address = 193.0.14.129
k.root-servers.net
1.root-servers.net internet address = 199.7.83.42
m.root-servers.net internet address = 202.12.27.33
a.root-servers.net has AAAA address 2001:503:ba3e::2:30
b.root-servers.net has AAAA address 2001:500:200::b
```

Figura 5 - Servidores para o domínio "."

1.4) - d) Existe o domínio nice.software.? Será que nice.software. é um host ou um domínio?

Através do comando host, que encontra o endereço IP de um domínio, confirmamos que nice.software é um domínio e um host de endereço IP 213.212.81.71.

```
→ ~ host nice.software.
nice.software has address 213.212.81.71
```

Figura 6 - Host nice.software

1.5) - e) Qual é o servidor DNS primário definido para o domínio msf.org.? Este servidor primário (master) aceita queries recursivas? Porquê?

```
→ - dig msf.org SOA
; <<>> DiG 9.8.1-P1 <<>> msf.org SOA
;; global options: +cmd
;; Got answer:
  ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57136
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 4
;; QUESTION SECTION:
;msf.org.
                                  TN
                                          SOA
;; ANSWER SECTION:
msf.org.
                         2560
                                  IN
                                           SOA
                                                   ns1.dds.nl. postmaster.msf.org.
1407464621 16384 2048 1048576 2560
;; AUTHORITY SECTION:
                        7860 IN
7860 IN
7860 IN
msf.org.
                                                  ns4.dds-city.com.
                                          NS ns4.dds-cit
NS ns1.dds.nl.
msf.org.
                                         NS ns3.dds.amsterdam.
msf.org.
msf.org.
;; ADDITIONAL SECTION:
ns1.dds.nl. 6895 IN A
ns2.dds.eu. 6895 IN A
ns4.dds-city.com. 6895 IN A
                                                   91.142.253.70
                                                   85.158.249.55
ns4.dds-city.com. 6895 IN A
ns3.dds.amsterdam. 6895 IN A
                                                  85.158.250.40
                                                  81.21.136.2
;; Query time: 40 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Wed Apr 15 13:03:20 2020
;; MSG SIZE rcvd: 245
```

Figura 7 - Consulta do domínio msf.org

Com o comando dig e o *record* SOA, conseguimos obter informação administrativa sobre o domínio msf.org. . Observando a figura anterior, de acordo com a estrutura deste *record*, concluímos que ns1.dss.nl. é o DNS primário.

```
→ dig ns1.dds.nl.
; <<>> DiG 9.8.1-P1 <<>> ns1.dds.nl.
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36178
;; flags: qr rd ra; QUERY; 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 6
;; QUESTION SECTION:
;ns1.dds.nl.
                              IN
                                     A
;; ANSWER SECTION:
ns1.dds.nl.
                      3041
                              TN
                                     A
                                             91.142.253.70
;; AUTHORITY SECTION:
nl.
                       5926
                              IN
                                     NS
                                             ns3.dns.nl.
nl.
                       5926
                              IN
                                      NS
                                             ns1.dns.nl.
nl.
                       5926
                                     NS
                                             ns2.dns.nl.
                              IN
;; ADDITIONAL SECTION:
                                            194.146.106.42
ns2.dns.nl.
                       3566
                                     A
                                            194.0.25.24
ns3.dns.nl.
                      7634
                                     A
                              IN
                                     A
ns1.dns.nl.
                      1134 IN
                                            194.0.28.53
                                    AAAA 2001:67c:1010:10::53
ns2.dns.nl.
                      5926 IN
ns3.dns.nl.
                      9365
                              IN
                                     AAAA 2001:678:20::24
ns1.dns.nl.
                      2827
                              IN
                                     AAAA
                                             2001:678:2c:0:194:0:28:53
```

```
;; Query time: 92 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Wed Apr 15 13:06:30 2020
;; MSG SIZE rcvd: 234
```

Figura 8 - Consulta do servidor primário

Consultando o DNS primário (Figura 8), encontramos a flag "ra", que significa "recursion available", isto é, aceita queries recursivas.

1.6) - f) Obtenha uma resposta "autoritativa" para a questão anterior.

Para obtermos esta resposta, decidimos fazer nslookup do DNS primário diretamente e, como verificamos na Figura 9, verifica-se esta relação estabelecida na pergunta anterior.

```
→ ~ nslookup - ns1.dds.nl.

> msf.org
Server: ns1.dds.nl.
Address: 91.142.253.70#53

Name: msf.org
Address: 78.109.92.151

> > 
> quit
```

Figura 9 – Interrogação sobre ns1.dds.nl.

1.7) - g) Onde são entregues as mensagens de correio eletrónico dirigidas aos presidentes marcelo@presidencia.pt e bolsonaro@casacivil.gov.br?

Utilizando MX (Mail Exchanger) como query, executamos os seguintes comandos:

```
- nslookup -query=MX presidencia.pt.

Server: 192.168.1.1

Address: 192.168.1.1#53

Non-authoritative answer:
presidencia.pt mail exchanger = 50 mail1.presidencia.pt.
presidencia.pt mail exchanger = 10 mail2.presidencia.pt.

Authoritative answers can be found from:
presidencia.pt nameserver = ns02.fccn.pt.
presidencia.pt nameserver = ns2.presidencia.pt.
presidencia.pt nameserver = ns1.presidencia.pt.
mail1.presidencia.pt internet address = 192.162.17.31
mail2.presidencia.pt internet address = 192.162.17.32
ns2.presidencia.pt internet address = 192.162.17.6
ns02.fccn.pt internet address = 193.136.2.228
ns1.presidencia.pt internet address = 192.162.17.5
ns02.fccn.pt has AAAA address 2001:690:a80:4001::200
```

Figura 10 - Mail Exchanger do presidente Marcelo

```
→ nslookup -query=MX casacivil.gov.br

Server: 192.168.1.1

Address: 192.168.1.1#53

Non-authoritative answer:
casacivil.gov.br mail exchanger = 10 esa02.presidencia.gov.br.
casacivil.gov.br mail exchanger = 5

Authoritative answers can be found from:
casacivil.gov.br nameserver = alpha.planalto.gov.br.
casacivil.gov.br nameserver = alpha2.planalto.gov.br.
alpha.planalto.gov.br internet address = 170.246.255.10
alpha2.planalto.gov.br internet address = 170.246.255.11
```

Figura 11 - Mail Exchanger do presidente Bolsonaro

Assim, podemos concluir que:

- <u>marcelo@presidencia.pt:</u> as mensagens são entregues nos servidores mail2.presidencia.pt. e mail1.presidencia.pt.
- <u>bolsonaro@casacivil.gov.br:</u> as mensagens são entregues nos servidores esa02.presidencia. gov.br. e esa01.presidencia.gov.br.

1.8) - h) Que informação é possível obter, via DNS, acerca de whitehouse.gov?

A informação que conseguimos obter acerca de whitehouse.gov está apresentada na Figura 12, descoberta através do comando dig. É posssível observar que se estão a utilizar as opções recursive available (flag ra) e recursive desirable (flag rd) e também conseguimos determinar que o endereço IPv4 (daí só um A) é 23.197.12.199. Toda a Authority Section mostra os servidores com permissão para responder a perguntas (queries) sobre o domínio whitehouse.gov. e a Aditional Section contém os IP's destes tais servidores.

```
→ dig whitehouse.gov
; <<>> DiG 9.8.1-P1 <<>> whitehouse.gov
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65172
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 12, ADDITIONAL: 12
;; QUESTION SECTION:
;whitehouse.gov.
                                         IN
                                                 A
;; ANSWER SECTION:
whitehouse.gov.
                       20
                               IN
                                                 23.197.12.199
                                         A
;; AUTHORITY SECTION:
whitehouse.gov. 7172
                                IN
                                        NS
                                                usw1.akam.net.
                   7172 IN NS asia9.akam.net.
7172 IN NS ns1-176.akam.net.
7172 IN NS ns1-145.akam.net.
7172 IN NS a22-66.akam.net.
7172 IN NS a20-65.akam.net.
NS zc.akam.net.
                                IN
                                        NS
                                               a3-67.akam.net.
whitehouse.gov.
whitehouse.gov.
whitehouse.gov.
whitehouse.gov.
whitehouse.gov.
whitehouse.gov.
                                IN
whitehouse.gov.
                        7172
                                        NS
                                               a1-61.akam.net.
                        7172
                                IN NS
whitehouse.gov.
                                               use6.akam.net.
whitehouse.gov.
                        7172
                                IN
                                       NS a5-64.akam.net.
whitehouse.gov.
                   7172
                                IN NS a12-64.akam.net.
```

```
;; ADDITIONAL SECTION:
a5-64.akam.net. 3260 IN A 95.100.168.64
a1-61.akam.net. 4231 IN A 193.108.91.61
use6.akam.net. 3143 IN A 2.16.40.65
a12-64.akam.net. 7230 IN A 184.26.160.64
a22-66.akam.net. 8741 IN A 23.211.61.66
ns1-176.akam.net. 3172 IN A 193.108.91.176
asia9.akam.net. 9120 IN A 95.100.175.65
a3-67.akam.net. 2014 IN A 96.7.49.67
zc.akam.net. 3633 IN A 184.26.160.66
usw1.akam.net. 8140 IN A 23.61.199.66
a20-65.akam.net. 5429 IN A 95.100.175.65
ns1-145.akam.net. 7528 IN A 193.108.91.145
;; Query time: 126 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Wed Apr 15 15:12:39 2020
;; MSG SIZE rcvd: 490
```

Figura 12 – Consulta sobre whitehouse.gov

1.9) - i) Consegue interrogar o DNS sobre o endereço IPv6 2001:690:a00:1036:1113::247 usando algum dos clientes DNS? Que informação consegue obter? Supondo que teve problemas com esse endereço, consegue obter um contacto do responsável por esse IPv6?

É possível interrogar o DNS sobre o endereço IPv6, como é demonstrado na Figura 13, e a informação que obtemos através da interrogação é o respetivo nome de domínio que neste caso é www.fccn.pt.

```
- nslookup 2001:690:a00:1036:1113::247

Server: 192.168.1.1

Address: 192.168.1.1#53

Non-authoritative answer: 7.4.2.0.0.0.0.0.0.0.0.3.1.1.1.6.3.0.1.0.0.a.0.0.9.6.0.1.0.0.2.ip6.arpa

Authoritative answers can be found from: 6.3.0.1.0.0.a.0.0.9.6.0.1.0.0.2.ip6.ARPA nameserver = ns01.fccn.pt. 6.3.0.1.0.0.a.0.0.9.6.0.1.0.0.2.ip6.ARPA nameserver = ns02.fccn.pt. ns01.fccn.pt internet address = 193.136.192.40

ns02.fccn.pt internet address = 193.136.2.228

ns01.fccn.pt has AAAA address 2001:690:a00:4001::200

ns02.fccn.pt has AAAA address 2001:690:a80:4001::200
```

Figura 13 - Interrogação sobre endereço IPv6

Mesmo que tenhamos problemas com o endereço, com apenas um nslookup do nome de domínio, é possível saber o contacto do responsável : hostmaster.fccn.pt.

```
- nslookup -q=SOA www.fccn.pt.

Server: 192.168.1.1

Address: 192.168.1.1#53

Non-authoritative answer:

*** Can't find www.fccn.pt.: No answer

Authoritative answers can be found from:

fccn.pt

origin = ns01.fccn.pt

mail addr = hostmaster.fccn.pt

serial = 2020040802

refresh = 21600

retry = 7200

expire = 1209600

minimum = 14400
```

Figura 14 - Consulta do endereço

1.10) - j) Os secundários usam um mecanismo designado por "Transferência de zona" para se atualizarem automaticamente a partir do primário, usando os parâmetros definidos no Record do tipo SOA do domínio. Descreve sucintamente esse mecanismo com base num exemplo concreto (ex: di.uminho.pt ou o domínio cc.pt que vai ser criado na topologia virtual).

A transferência de zona DNS é um dos vários mecanismos para replicar informação ao longo de vários DNS servers. Para explicarmos o processo, iremos usar o exemplo de di.uminho.pt:

```
→ ~ nslookup -q=SOA di.uminho.pt
Server:
                192.168.1.1
Address:
               192.168.1.1#53
Non-authoritative answer:
di.uminho.pt
        origin = dns.di.uminho.pt
        mail addr = dnsadmin.di.uminho.pt
        serial = 2020041401
        refresh = 28800
        retry = 7200
        expire = 28800
        minimum = 43200
Authoritative answers can be found from:
di.uminho.pt nameserver = ns1.eurotux.com.
di.uminho.pt nameserver = dns2.uminho.pt.
di.uminho.pt nameserver = dns3.uminho.pt.
di.uminho.pt nameserver = dns.uminho.pt.
di.uminho.pt nameserver = ns3.eurotux.com.
di.uminho.pt
                nameserver = marco.uminho.pt.
di.uminho.pt nameserver = alfa.di.uminho.pt.
dns2.uminho.pt internet address = 193.137.16.145
dns.uminho.pt internet address = 193.137.16.75
dns2.di.uminho.pt
                       internet address = 193.136.19.2
ns1.eurotux.com internet address = 194.107.127.1
alfa.di.uminho.pt internet address = 193.136.19.3
marco.uminho.pt internet address = 193.136.9.240
ns3.eurotux.com internet address = 216.75.63.6
dns3.uminho.pt internet address = 193.137.16.65
dns.di.uminho.pt internet address = 193.136.19.1
dns2.uminho.pt has AAAA address 2001:690:2280:801::145
dns.uminho.pt has AAAA address 2001:690:2280:1::75
dns2.di.uminho.pt
                       has AAAA address 2001:690:2280:28::2
dns3.uminho.pt has AAAA address 2001:690:2280:1::65
```

Figura 15 - Transferência de zona

Para explicar esta transferência, vamos explicar cada parâmetro relevante. Começando pelo **serial**, este guarda a data da última alteração feita à base de dados do servidor primário (2020/04/14). Este dado é importante para verificar se o servidor secundário está atualizado. Avançando para o **refresh**, este indica a frequência com que temos de verificar o serial (28800s), para sabermos se, entretanto, houve alguma alteração ou não. Já o **retry** é o tempo a esperar antes que se tente contactar o servidor primário novamente (isto é, um novo pedido de refresh), em caso de falha na 1ª tentativa (7200s).O **expire** dita quando tempo é que o servidor secundário tem de ficar à espera e a tentar comunicar com o primário (28800s) e, por fim, o **minimum** é o tempo mínimo que este processo fica gravado em memória (43200s).

2. Demonstração

Parte II: Instalação, configuração e teste de um domínio CC.PT

```
File Edit View Terminal Go Help

core@XubunCORE:~/Desktop$ /usr/sbin/named-checkconf -z /home/core/secundario/nam
ed.conf

zone localhost/IN: loaded serial 2

zone 127.in-addr.arpa/IN: loaded serial 1

zone 0.in-addr.arpa/IN: loaded serial 1

zone 255.in-addr.arpa/IN: loaded serial 1

core@XubunCORE:~/Desktop$ /usr/sbin/named-checkzone cc.pt /home/core/primario/db
.cc.pt

zone cc.pt/IN: loaded serial 2

OK

core@XubunCORE:~/Desktop$ /usr/sbin/named-checkzone 3.3.10.in-addr.arpa /home/co
re/primario/db.3-3-10.rev
zone 3.3.10.in-addr.arpa/IN: loaded serial 1

OK
```

Figura 16 - Teste na parte 2.1. (passo 6)

```
File Edit View Terminal Go Help
core@XubunCORE:~/Desktop$ nslookup - 127.0.0.1
> www.cc.pt
Server:
               127.0.0.1
Address:
               127.0.0.1#53
Name: www.cc.pt
Address: 10.3.3.3
> mail.cc.pt
Server: 127.0.0.1
Address: 127.0.0.1#53
Name: mail.cc.pt
Address: 10.3.3.3
> mail2.cc.pt
Server: 127.0.0.1
Address: 127.0.0.1#53
Name: mail2.cc.pt
Address: 10.3.3.2
> pop.cc.pt
Server: 127.0.0.1#53
Name: pop.cc.pt
Address: 10.3.3.2
```

Figura 17 - Teste da parte 2.2. fora do core

```
oot@Portatil1:/tmp/pycore.38945/Portatil1.conf# nslookup - 10.3.3.1
 www.cc.pt
Server:
                10,3,3,1
Address:
                10.3.3.1#53
Name:
        www.cc.pt
Address: 10.3.3.3
 pop.cc.pt
Server:
                10.3.3.1
                10.3.3.1#53
Address:
Name:
        pop.cc.pt
Address: 10.3.3.2
 mail.cc.pt
                10.3.3.1
Server:
Address:
                10.3.3.1#53
Name:
        mail.cc.pt
Address: 10.3.3.3
```

Figura 18 - Teste do servidor primário dentro do core

```
root@Hermes:/tmp/pycore.38945/Hermes.conf# /usr/sbin/named-checkconf -z /home/core/secundario/named.conf
zone localhost/IN: loaded serial 2
zone 127.in-addr.arpa/IN: loaded serial 1
zone 0.in-addr.arpa/IN: loaded serial 1
zone 255.in-addr.arpa/IN: loaded serial 1
zone 255.in-addr.arpa/IN: loaded serial 1
root@Hermes:/tmo/pycore.38945/Hermes.conf#
```

Figura 19 - Teste dos ficheiros do servidor secundário

```
15-Apr-2020 14:41:13.723 zone 1.1.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:13.723 zone 3.3.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:13.723 zone 3.3.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:13.723 zone 4.4.10.in-addr.arpa/IN; Zone transfer deferred due to quota
15-Apr-2020 14:41:13.724 zone 2.2.10.in-addr.arpa/IN; zone transfer deferred due to quota
15-Apr-2020 14:41:13.724 transfer of '1.1.10.in-addr.arpa/IN' from 10.3.3.1#53; connected using 10.4.4.1#46987
15-Apr-2020 14:41:13.726 zone 1.1.10.in-addr.arpa/IN' from 10.3.3.1#53; connected using 10.4.4.1#57400
15-Apr-2020 14:41:13.726 zone 1.1.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.726 zone 4.4.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:3.726 zone 4.4.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:3.726 zone 1.1.10.in-addr.arpa/IN; sending notifies (serial 1)
15-Apr-2020 14:41:3.728 zone 3.3.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.728 zone 3.3.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.728 zone 3.3.10.in-addr.arpa/IN; Transfer started.
15-Apr-2020 14:41:3.730 transfer of '3.3.10.in-addr.arpa/IN; from 10.3.3.1#53; Transfer completed; 1 messages, 1 oreords, 283 bytes, 0.004 secs (70750 bytes/sec)
15-Apr-2020 14:41:3.730 transfer of '2.2.10.in-addr.arpa/IN; from 10.3.3.1#53; Transfer completed; 1 messages, 7 records, 235 bytes, 0.002 secs (117500 bytes/sec)
15-Apr-2020 14:41:3.732 zone 4.4.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.732 zone 4.4.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.732 zone 5.2.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14:41:3.732 zone 5.2.10.in-addr.arpa/IN; transferred serial 1
15-Apr-2020 14
```

Figura 20 - Transferência automática dos ficheiros do primário para o secundário (parte 2.2. - passo 4)

```
root@Portatil1:/tmp/pycore.38945/Portatil1.conf# nslookup - 10.4.4.1

> www.cc.pt
Server: 10.4.4.1
Address: 10.3.3.3

> mail.cc.pt
Server: 10.4.4.1
Address: 10.4.4.1
Address: 10.3.3.3

Name: mail.cc.pt
Address: 10.3.3.3

> mail2.cc.pt
Server: 10.4.4.1
Address: 10.3.3.3

> mail2.cc.pt

Server: 10.4.4.1
Address: 10.3.3.3

> mail2.cc.pt

Server: 10.4.4.1
Address: 10.3.3.3

Name: mail2.cc.pt
Address: 10.3.3.2

> ■
```

Figura 21 - Servidor secundário a funcionar