Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент Войнова Алёна Игоревна группы 3630102/80201

Проверил к. ф.-м. н., доцент Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

1	Постановка задачи								
	1.1 Задание 1								
2	Теория								
	2.1 Распределения								
	2.1.1 Выборочные числовые характеристики								
	2.1.2 Характеристики положения								
	2.1.3 Характеристики рассеяния								
3	Реализация								
4	Результаты								
	4.1 Характеристики положения и рассеяния								
5	Обсуждение								
6	Приложения								

1 Постановка задачи

Для 5 распределений:

- 1. N(x,0,1) нормальное распределение
- 2. C(x,0,1) распределение Коши
- 3. $L(x,0,\frac{1}{\sqrt{2}})$ распределение Лапласа
- 4. P(k, 10) распределение Пуассона
- 5. $U(x,-\sqrt{3},\sqrt{3})$ равномерное распределение

1.1 Задание 1

Сгенерировать выборки размером 10, 100 и 1000 элементов.

 \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z}(1) \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2(2) \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}(1) \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} (2) \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}(3)$$
 (5)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10}(4) \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases} (5)$$

2.1.1 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины $x_1, x_2, ..., x_n$ [1, с. 411].

2.1.2 Характеристики положения

• Выборочное среднее

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1, \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l. \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей

Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при } np \text{ дробном,} \\ x_{(np)} & \text{при } np \text{ целом.} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i$$
, где $r \approx \frac{n}{4}$ (13)

2.1.3 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Реализация

Лабораторная работа выполнена с помощью средств языка программирования **Python** в среде разработки **Jupyter**. Исходный код лабораторной работы приведён в приложении.

4 Результаты

4.1 Характеристики положения и рассеяния

Мощность выборки указана в первом столбике справа.

Normal	\bar{x}	medx	z_R	z_Q	z_{tr}
E(z) = 10	0.0016	-0.0011	0.0085	-0.0049	0.0055
D(z) = 10	0.0997	0.1425	0.1875	0.1109	0.1647
E(z) = 100	-0.0053	-0.0018	-0.0083	-0.0045	-0.0068
D(z) = 100	0.0093	0.0147	0.0903	0.0114	0.0191
$\mathrm{E}(\mathrm{z}) = 1000$	0.0002	0.0004	0.0027	0.0009	0.0007
D(z) = 1000	0.001	0.0016	0.0581	0.0012	0.002

Таблица 1: Нормальное распределение

Cauchy	\bar{x}	medx	z_R	z_Q	z_{tr}
E(z) = 10	1.2235	0.0016	6.1494	-0.0196	2.5435
D(z) = 10	907.4583	0.3132	22469.7157	0.8644	1527.8722
$egin{aligned} \mathrm{E}(\mathrm{z}) &= 100 \ \mathrm{D}(\mathrm{z}) &= 100 \end{aligned}$	$1.9565 \\ 6060.7936$	$0.0119 \\ 0.0251$	97.4769 15128110.8008	$0.0166 \\ 0.0555$	4.4856 23401.4874
${f E}({f z}) = 1000 \ {f D}({f z}) = 1000$	0.1619 74.9162	$0.0017 \\ 0.0026$	75.7176 16842786.6595	$0.0024 \\ 0.0046$	0.055 107.6337

Таблица 2: Распределение Коши

laplace	X_	med(x)	z_R	z_Q	$z_{ m tr}$
E(z) = 10	-0.0068	0.0002	-0.019	-0.0001	-0.0063
D(z) = 10	0.1053	0.0748	0.4226	0.0959	0.1765
E(z) = 100	-0.0031	-0.0024	-0.0262	-0.0022	-0.005
D(z) = 100	0.0098	0.0059	0.4181	0.0097	0.0189
$\mathrm{E}(\mathrm{z}) = 1000$	-0.001	-0.0008	0.0144	-0.0005	-0.0036
D(z) = 1000	0.0009	0.0005	0.4368	0.0009	0.0018

Таблица 3: Распределение Лапласа

poisson	X_	med(x)	z_R	z_Q	z_tr
E(z) = 10	10.0278	9.869	10.304	9.9448	10.017
D(z) = 10	0.9922	1.3688	1.9806	1.1249	1.5921
E(z) = 100	9.9914	9.839	10.9265	9.9001	9.9863
D(z) = 100	0.1014	0.2176	0.9883	0.1489	0.2109
$\mathrm{E}(\mathrm{z}) = 1000$	9.9977	9.9915	11.703	9.9914	9.9939
D(z) = 1000	0.0102	0.0077	0.6508	0.0042	0.0211

Таблица 4: Распределение Пуассона

uniform	х_	med(x)	z_R	z_Q	z_tr
E(z) = 10	0.0128	0.0213	0.0061	0.0171	0.0108
D(z) = 10	0.101	0.2308	0.0475	0.1384	0.1747
$\mathrm{E}(\mathrm{z})=100$	-0.0049	-0.005	-0.0016	-0.0063	-0.0079
D(z) = 100	0.0097	0.029	0.0006	0.0145	0.021
$\mathrm{E}(\mathrm{z}) = 1000$	-0.0002	-0.0006	-0.0	-0.0007	-0.0001
D(z) = 1000	0.001	0.0029	0.0	0.0015	0.002

Таблица 5: Равномерное распределение

5 Обсуждение

Проанализировав полученные результаты, можно заметить, что для нормального распределения, распределения Лапласа и равномерного распределения (z) и D(z) для всех характеристик уменьшаются с ростом выборки.

В распеределении Пуассона значения E(z) для всех характеристик колеблется в районе 10, но в D(z), аналогично рассмотренным выше распределениям, наблюдается уменьшение значений при росте выборки.

Особо выделяется распределение Коши. Значения D(z) для \bar{x} и z_R , E(z) для z_R достигают больших порядков. Такое поведение дисперсии характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Приложения

URL: Выполненная лабораторная работа на GitHub

https://github.com/pikabol88/Math-Statistics/blob/main/Lab2.ipyn