Intelligence Artificielle

3 mai 2013

1h30 - Aucun document autorisé

Aucun matériel électronique n'est autorisé - Les télephones sont formellement interdits Le barême est donné à titre indicatif et peut être modifié

Exercice 1 (4 points) – Questions de cours

- 1. Définir ce qu'est une **stratégie de recherche** dans un algorithme de recherche dans un espace d'états. Quand dit-on qu'une telle stratégie est **complète**? **optimale**?
- 2. Définir ce qu'est une **procédure d'inférence** en logique propositionnelle. Quand dit-on qu'une telle procédure est **complète**? **valide**?
- 3. Expliquez ce qu'est un environnement épisodique, puis ce qu'est un environnement séquentiel

Exercice 2 (4 points) – Planification

Soient les actions STRIPS suivantes :

Action(Lever Action(Doucher

 $PRECOND: AuLit \\ PRECOND: Debout \land Nu \\$

Action(Habiller Action(Déjeuner

PRECOND : Debout \land Nu PRECOND : Debout \land Faim EFFET : Habillé $\land \neg$ Nu) EFFET : Rassasié $\land \neg$ Faim)

Etat initial: Je suis au lit

Etat final: Je veux être prêt à sortir (propre, habillé et rassasié).

- 1. Donnez en STRIPS l'état initial et l'état final de ce problème
- 2. Trouvez un plan partiellement ordonné permettant de résoudre ce problème
- 3. Donnez 2 plans d'actions totalement ordonnés à partir de ce plan partiellement ordonné

Exercice 3 (4 points) – Logique du premier ordre

Soit la base de connaissances suivante. Prouvez par résolution que si Sophie est sérieuse, elle va reussir son module d'IA.

Vocabulaire : etudiant(x) : x est étudiant, matiere(x) : x est une matière (appelé aussi module), travaille(x, x) : x travaille la matière x0, serieux(x1) : x2 est sérieux, reussi(x2, x3) : x4 a réussi le module x4.

- 1. etudiant(Sophie)
- 2. matiere(IA)
- 3. $\forall x \text{ etudiant}(x) \Rightarrow (\exists m \text{ matiere}(m) \land \text{travaille}(x, m))$
- 4. $\exists x \, \text{etudiant}(x) \land (\forall m \, \text{matiere}(m) \Rightarrow \text{travaille}(x, m))$
- 5. $\forall x \text{ etudiant}(x) \land \text{serieux}(x) \Rightarrow \text{travaille}(x, IA)$
- 6. $\forall x \forall m \text{ etudiant}(x) \land \text{matiere}(m) \land \text{travaille}(x, m) \Rightarrow \text{reussi}(x, m)$

Exercice 4 (3 points) – Logique du premier ordre

Traduire en logique des prédicats les phrases suivantes. N'oubliez pas de préciser le vocabulaire utilisé.

- 1. Tous les acteurs admirent au moins un acteur
- 2. Un acteur est admiré par tous les acteurs
- 3. Sophie admire un et un seul acteur
- 4. Au moins deux acteurs admirent tous les acteurs

Exercice 5 (5 points) – Apprentissage automatique

Soit *f* la fonction définie de la manière suivante:

$$f(x) = \begin{cases} -x log(x) - (1-x) log(1-x) & \text{si } x \in]0,1[\\ 0 & \text{si } x = 0 \text{ ou } x = 1 \end{cases}$$

Soient Set(1-5) et Set(6-10) les deux ensembles d'exemples de la table 1.

<i>Set</i> (1 – 5)							Set (6 – 10)						
	а	b	С	d	e	classe		а	b	С	d	e	classe
1	0	1	0	1	1	+	6	1	0	1	1	1	+
2	1	1	0	0	1	-	7	0	1	1	0	1	-
3	0	0	0	1	1	+	8	0	0	1	0	0	+
4	1	1	1	1	1	-	9	0	1	0	1	0	-
5	1	0	0	1	0	+	10	1	0	1	0	1	+

Table 1: Les ensembles Set(1-5) et Set(6-10)

- 1. a. Dessiner la courbe définie par la fonction f.
- 1. b. Calculer *E* l'entropie de Set(1-5).

Pour faciliter les calculs éventuels, on pourra utiliser log(2) = 0.7, log(3) = 1.1, log(5) = 1.6.

Sur Set(1-5), on va construire Tree(1-5) avec le principe de minimisation de l'entropie.

- 2. a. Calculer E(a) et E(b), les entropies à priori des attributs a et b.
- 2. b. Calculer E(c) et E(d).
- 2. c. Calculer E(e) et en déduire l'attribut minimisant l'entropie.
- 3. Terminer la construction de Tree(1-5).
- 4. Tester Tree(1-5) sur l'ensemble Set(6-10).
- 5. Sans utiliser a et b, construire un arbre de décision Decide(1-5) sur Set(1-5).
- 6. Tester Decide(1-5) sur Set(6-10).
- 7. Conclure.