WHAT IS CLAIMED IS:

1	1. A circuit for providing write pre-compensation utilizing read signal
2	timing, comprising:
3	a first phase clock source for generating a first clock signal having a first phase
4	and being synchronized with a read signal of the read path;
5	a second phase clock source for generating a second clock signal having a second
6	phase at a predetermined phase difference with the first clock signal; and
7	a write pre-compensation circuit for using the first and second clock signals to
8	shift write data to achieve write data comprising a first desired pre-compensation.
1	2. The circuit of claim 1, wherein the second phase clock source generates
2	the second clock signal in response to a read phase select position signal from the read
3	path and a write phase select position signal.
1	3. The circuit of claim 2, wherein the write pre-compensation circuit further
2	comprises:
3	write logic for receiving write data;
4	a first and second latch, coupled to the write logic, the first and second latch
5	receiving the write data from the write logic and using the first clock signal to supply a
6	first data signal and using the second clock signal to supply a second data signal; and
7	a data selector, coupled to the write logic, for receiving a data select signal from the
8	write logic and outputting the first or second data signal based on a state of the data select
9	signal.

1	4. The circuit of claim 1, wherein the write pre-compensation circuit further	
2	comprises:	
3	write logic for receiving write data;	
4	a first and second latch, coupled to the write logic, the first and second latch	
5	receiving the write data from the write logic and using the first clock signal to supply a	
6	first data signal and using the second clock signal to supply a second data signal; and	
7	a data selector, coupled to the write logic, for receiving a data select signal from	
8	the write logic and outputting the first or second data signal based on a state of the data	
9	select signal.	
1	5. The circuit of claim 1 further comprising a coarse phase clock source,	
2	wherein the first and second phase clock sources are first and second fine phase clock	
3	sources, the first and second fine phase clock sources generating the first and second	
4	clock signals based on a coarse phase signal from the coarse phase clock source.	
1	6. The circuit of claim 1, wherein the second phase clock source follows the	
1	6. The circuit of claim 1, wherein the second phase clock source follows the	
2	phase of the first clock phase source during a read operation.	
1	7. The circuit of claim 6, wherein the phase difference between the second	
2	phase clock source and the first phase clock source is maintained.	
1	8. The circuit of claim 1, wherein the phase difference between the second	
2	phase clock source and the first phase clock source is maintained.	

1	9. The circuit of claim 1, wherein the first and second phase are changed to
2	provide write data comprising a second desired pre-compensation.
1	10. The circuit of claim 1 further comprising at least one additional phase
2	clock source, the at least one additional phase clock source providing at least one
3	additional pre-compensation state.
1	11. A magnetic storage device, comprising:
2	a magnetic storage medium for recording data thereon;
3	a motor for moving the magnetic storage medium;
4	a head for reading and writing data on the magnetic storage medium;
5	an actuator for positioning the head relative to the magnetic storage medium; and
6	a data channel for processing encoded signals on the magnetic storage medium,
7	the data channel comprising a first phase clock source for generating a first clock signal
8	having a first phase and being synchronized with a read signal of the read path, a second
9	phase clock source for generating a second clock signal having a second phase at a
10	predetermined phase difference with the first clock signal and a write pre-compensation
11	circuit for using the first and second clock signals to shift write data to achieve write data
12	comprising a first desired pre-compensation.
1	12. The magnetic storage device of claim 11, wherein the second phase clock
2	source generates the second clock signal in response to a read phase select position signal

from the read path and a write phase select position signal.

3

1	13. The magnetic storage device of claim 12, wherein the write pre-	
2	compensation circuit further comprises:	
3	write logic for receiving write data;	
4	a first and second latch, coupled to the write logic, the first and second latch	
5	receiving the write data from the write logic and using the first clock signal to supply a	
6	first data signal and using the second clock signal to supply a second data signal; and	
7	a data selector, coupled to the write logic, for receiving a data select signal from	
8	the write logic and outputting the first or second data signal based on a state of the data	
9	select signal.	
1	14. The magnetic storage device of claim 11, wherein the write pre-	
2	compensation circuit further comprises:	
3	write logic for receiving write data;	
4	a first and second latch, coupled to the write logic, the first and second latch	
5	receiving the write data from the write logic and using the first clock signal to supply a	
6	first data signal and using the second clock signal to supply a second data signal; and	
7	a data selector, coupled to the write logic, for receiving a data select signal from	
8	the write logic and outputting the first or second data signal based on a state of the dat	
9	select signal.	

1	15.	The magnetic storage device of claim 11 further comprising a coarse
2	phase clock so	ource, wherein the first and second phase clock sources are first and second
3	fine phase clo	ck sources, the first and second fine phase clock sources generating the first
4	and second cl	ock signals based on a coarse phase signal from the coarse phase clock
5	source.	
1	16.	The magnetic storage device of claim 11, wherein the second phase clock
2	source follow	s the phase of the first clock phase source during a read operation.
1	17.	The magnetic storage device of claim 16, wherein the phase difference
2	between the s	econd phase clock source and the first phase clock source is maintained.
1	18.	The magnetic storage device of claim 11, wherein the phase difference
2	between the se	econd phase clock source and the first phase clock source is maintained.
1	19.	The magnetic storage device of claim 11, wherein the first and second
2	phase are char	nged to provide write data comprising a second desired pre-compensation.
1	20.	The magnetic storage device of claim 11 further comprising at least one
2	additional pha	se clock source, the at least one additional phase clock source providing at
3	least one addi	tional pre-compensation state.

I	A method for providing write pre-compensation utilizing read signal		
2	timing, comprising:		
3	generating a first phase clock signal having a first phase and being synchronized		
4	with a read signal of a read path;		
5	generating a second phase clock signal having a second phase at a predetermine		
6	phase difference with the first clock signal; and		
7	using the first and second clock signals to shift write data to achieve write data		
8	comprising a first desired pre-compensation.		
1	22. The method of claim 21, wherein the generating the second clock signal is		
2	based on a read phase select position signal from the read path and a write phase select		
3	position signal.		
1	23. The method of claim 22, wherein the using the first and second clock		
2	signals to shift write data to achieve write data comprising a first desired pre-		
3	compensation further comprises:		
4	receiving write data;		
5	providing the write data to a first latch and a second latch;		
6	using the first clock signal to latch the first latch to supply a first data signal;		
7	using the second clock signal to latch the second latch to supply a second data		
8	signal; and		
9	outputting the first or second data signal based on a state of a received data selec		
10	signal.		

.1	24. The method of claim 21, wherein the write pre-compensation circuit	
2	further comprises:	
3	receiving write data;	
4	providing the write data to a first latch and a second latch;	
5	using the first clock signal to latch the first latch to supply a first data signal;	
6	using the second clock signal to latch the second latch to supply a second data	
7	signal; and	
8	outputting the first or second data signal based on a state of a received data selec	
9	signal.	
1	25. The method of claim 21, wherein the generating a first phase clock signal	
2	and generating a second phase clock signal further comprises:	
3	generating a coarse phase clock signal;	
4	generating the first and second phase clock signals based on the coarse phase	
5	clock signal.	
1	26. The method of claim 21, wherein the generating a first phase clock signal	
2	and generating a second phase clock signal further comprises generating the second the	
3	second phase clock signal with a phase that follows the phase of the first clock phase	
4	signal during a read operation.	
1	27. The method of claim 26, wherein the generating a first phase clock signal	
2	and generating a second phase clock signal further comprises maintaining the phase	
3	difference between the second phase clock signal and the first phase clock signal.	

- 1 28. The method of claim 21, wherein the generating a first phase clock signal 2 and generating a second phase clock signal further comprises maintaining the phase 3 difference between the second phase clock signal and the first phase clock signal.
- The method of claim 21, wherein the generating a first phase clock signal and generating a second phase clock signal further comprises changing the phase of the first and second phase clock signals to provide write data comprising a second desired pre-compensation.
- 30. The method of claim 21 further comprising generating at least one
 additional phase clock signal for providing at least one additional pre-compensation state.