A Matrix-Algebra

In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw. Matrix-Algebra. Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die "Einführung in die Moderne Matrix-Algebra" von Schmidt & Trenkler (2006).

A.1 Definition und elementare Operationen

Definition A.1 Reelle Matrix

Ein nach n Zeilen und p Spalten geordnetes Schema A von $n \cdot p$ Elementen $a_{ij} \in \mathbb{R}$

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

heißt reelle Matrix der Ordnung $n \times p$, der Dimension $n \times p$ oder kurz $n \times p$ Matrix. Kurzschreibweise: $\mathbf{A} = (a_{ij}), i = 1, \dots, n, j = 1, \dots, p$.

Zwei $n \times p$ Matrizen $\mathbf{A} = (a_{ij})$ und $\mathbf{B} = (b_{ij})$ sind genau dann gleich, wenn für alle i, j gilt: $a_{ij} = b_{ij}$.

Die Zeilen von A können als Vektoren des \mathbb{R}^p (sog. Zeilenvektoren) und die Spalten als Vektoren des \mathbb{R}^n (sog. Spaltenvektoren) angesehen werden. Dabei wird der i-te Zeilenvektor von A mit $a^i = (a_{i1}, \ldots, a_{ip})$ und der j-te Spaltenvektor mit

$$a_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix}$$

bezeichnet.

Definition A.2 Transponierte Matrix

Sei $\mathbf{A} = (a_{ij})$ eine $n \times p$ Matrix. Dann ist die transponierte Matrix \mathbf{A}' definiert als diejenige Matrix, die man durch das Vertauschen der Zeilen und Spalten von \mathbf{A} erhält:

$$\mathbf{A}' = \begin{pmatrix} a_{11} \ a_{21} \cdots a_{n1} \\ a_{12} & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{1p} \ a_{2p} \cdots a_{np} \end{pmatrix}$$

Die Matrix A' ist von der Ordnung $p \times n$.

Beispiel A.1

Betrachte die 3×4 Matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 1 & 6 \\ 1 & 0 & 3 & 2 \\ 9 & 3 & 4 & 3 \end{pmatrix}.$$

Die transponierte von \boldsymbol{A} ist gegeben durch die 4×3 Matrix

$$\mathbf{A}' = \begin{pmatrix} 2 & 1 & 9 \\ 4 & 0 & 3 \\ 1 & 3 & 4 \\ 6 & 2 & 3 \end{pmatrix}.$$

 \triangle

Definition A.3 Quadratische Matrix

Eine Matrix A heißt quadratisch, falls sie von der Ordnung $n \times n$ ist. Die Diagonale, welche aus den Elementen a_{11}, \ldots, a_{nn} besteht, heißt Hauptdiagonale.

Definition A.4 Diagonalmatrix

Eine quadratische Matrix D heißt Diagonalmatrix, wenn ihre Einträge unter- und oberhalb der Hauptdiagonalen Null sind, d.h. D besitzt folgende Gestalt:

$$m{D} = egin{pmatrix} d_1 & 0 & \dots & 0 \\ drain & \ddots & drain \\ drain & \ddots & drain \\ 0 & \dots & \dots & d_n \end{pmatrix}$$

Schreibweise: $\mathbf{D} = \operatorname{diag}(d_1, \dots, d_n)$.

Definition A.5 Einheitsmatrix

Die Diagonalmatrix

$$\boldsymbol{I}_n = \operatorname{diag}(1, \dots, 1) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & & 1 \end{pmatrix}$$

heißt Einheitsmatrix.

Definition A.6 Symmetrische Matrix

Eine quadratische Matrix A heißt symmetrisch, wenn A = A' gilt.

Offenbar ist jede Diagonalmatrix, also auch die Einheitsmatrix, eine symmetrische Matrix.

Beispiel A.2

Ein Beispiel für eine symmetrische Matrix ist gegeben durch

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 & 8 \\ 3 & 2 & 7 & 5 \\ 1 & 7 & 6 & 6 \\ 8 & 5 & 6 & 0 \end{pmatrix}.$$

 \triangle

Definition A.7 Summe und skalare Multiplikation von Matrizen

Die Summe $\mathbf{A} + \mathbf{B}$ zweier $n \times p$ Matrizen $\mathbf{A} = (a_{ij})$ und $\mathbf{B} = (b_{ij})$ ist definiert als:

$$\boldsymbol{A} + \boldsymbol{B} = (a_{ij} + b_{ij}).$$

Die Multiplikation von \boldsymbol{A} mit einem Skalar $\lambda \in \mathbb{R}$ ist definiert als

$$\lambda \mathbf{A} = (\lambda \, a_{ij}).$$

Beispiel A.3

Betrachte die Matrizen

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$
 und $B = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 0 \\ -1 & 2 & -4 \end{pmatrix}$.

Dann gilt für die Summe von \boldsymbol{A} und \boldsymbol{B} :

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1+1 & 2+4 & 3+2 \\ 3+3 & 5+1 & 2+0 \\ 1-1 & 2+2 & 2-4 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 5 \\ 6 & 6 & 2 \\ 0 & 4-2 \end{pmatrix}.$$

 \triangle

Satz A.1 Rechenregeln

Für beliebige $n \times p$ Matrizen A, B, C und beliebige Skalare $r, k \in \mathbb{R}$ gilt:

- 1. Assoziativgesetz für die Addition: A + (B + C) = (A + B) + C.
- 2. Kommutativgesetz: A + B = B + A.
- 3. Distributivgesetze für die skalare Multiplikation: $(k+r)\mathbf{A} = k\mathbf{A} + r\mathbf{A}$ bzw. $k(\mathbf{A} + \mathbf{B}) = k\mathbf{A} + k\mathbf{B}$.
- 4. Assoziativgesetz für die skalare Multiplikation: $(kr)\mathbf{A} = k(r\mathbf{A})$.
- 5. (kA)' = kA'.
- 6. (A + B)' = A' + B'.

Definition A.8 Matrixmultiplikation

Das Produkt der $n \times p$ Matrix $\boldsymbol{A} = (a_{ij})$ mit der $p \times m$ Matrix $\boldsymbol{B} = (b_{ij})$ ist die $n \times m$ Matrix

$$oldsymbol{AB} = oldsymbol{C} = (c_{ik}) \quad ext{mit} \quad c_{ik} = \sum_{j=1}^p a_{ij} b_{jk}.$$

Ausführlich erhalten wir demnach

$$\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} \sum_{j} a_{1j}b_{j1} & \cdots & \sum_{j} a_{1j}b_{jm} \\ \vdots & \ddots & \vdots \\ \sum_{j} a_{nj}b_{j1} & \cdots & \sum_{j} a_{nj}b_{jm} \end{pmatrix}.$$

Man beachte, dass zwei Matrizen A und B nur dann multiplizierbar sind, wenn die Anzahl der Spalten von A gleich der Anzahl der Zeilen von B ist. Im Allgemeinen ist die Matrixmultiplikation darüberhinaus nicht kommutativ, d.h. es gilt $B \cdot A \neq A \cdot B$.

Beispiel A.4

Betrachte die Matrizen

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 und $B = \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix}$.

Dann erhalten wir für das Produkt

$$\boldsymbol{A} \cdot \boldsymbol{B} = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 1 \ 1 \cdot 2 + 2 \cdot 2 \\ -1 \cdot 3 + 4 \cdot 1 \ 3 \cdot 2 + 4 \cdot 2 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 1 & 14 \end{pmatrix}.$$

Die Matrixmultiplikation ist nicht kommutativ

$$B \cdot A = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 3 & -1 \cdot 2 + 2 \cdot 4 \\ 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ 7 & 10 \end{pmatrix} \neq A \cdot B.$$

 \triangle

Beispiel A.5

Falls $a \in \mathbb{R}$ und $b \in \mathbb{R}$ zwei Skalare sind, ist bekannt, dass

$$a \cdot b = 0$$

genau dann gilt, wenn entweder a=0 oder b=0 ist. Diese Tatsache wird auch in vielen Beweisen verwendet. Wir zeigen im Folgenden in einem Gegenbeispiel dass für Matrixprodukte aus

$$A \cdot B = 0$$

keineswegs folgt, dass \boldsymbol{A} oder \boldsymbol{B} Nullmatrizen sein müssen. Wir betrachten dazu die Matrizen

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 16 \\ 1 & -3 & -7 \\ -2 & 2 & 2 \end{pmatrix}$$

und

$$\mathbf{B} = \begin{pmatrix} -2 & -4 & -8 \\ -3 & -6 & -12 \\ 1 & 2 & 4 \end{pmatrix}.$$

Für das Produkt $\boldsymbol{A} \cdot \boldsymbol{B}$ erhalten wir

$$\begin{pmatrix} 2 & 4 & 16 \\ 1 & -3 & -7 \\ -2 & 2 & 2 \end{pmatrix} \begin{pmatrix} -2 & -4 & -8 \\ -3 & -6 & -12 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Das Produkt der beiden Matrizen ist also die Nullmatrix, obwohl es sich bei keinem der beiden Faktoren um die Nullmatrix handelt.

 \triangle

Satz A.2 Darstellung von Summen als Matrixprodukte

Seien $x, y \in \mathbb{R}^n$ und 1 der $n \times 1$ Vektor, dessen Einträge sämtlich aus Einsen besteht. Dann gilt:

1.
$$\sum_{i=1}^{n} x_i = \mathbf{1}' \mathbf{x} = \mathbf{x}' \mathbf{1}$$
.

$$2. \sum_{i=1}^{n} x_i y_i = \mathbf{x}' \mathbf{y} = \mathbf{y}' \mathbf{x}.$$

$$3. \sum_{i=1}^{n} x_i^2 = \boldsymbol{x}' \boldsymbol{x}.$$

Satz A.3 Rechenregeln für die Matrixmultiplikation

Für Matrizen A, B und C passender Ordnungen gilt:

1.
$$A(B+C) = AB + AC$$
.

2.
$$(AB)C = A(BC)$$
.

3.
$$(AB)' = B'A'$$
.

4.
$$AI_n = A$$
 bzw. $I_nA = A$.

Definition A.9 Kroneckerprodukt

Seien \boldsymbol{A} und \boldsymbol{B} Matrizen der Ordnungen $n \times p$ und $r \times q$. Dann ist das Kroneckerprodukt von \boldsymbol{A} und \boldsymbol{B} definiert als diejenige Matrix \boldsymbol{C} der Ordnung $nr \times pq$ mit

$$C = A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1p}B \\ \vdots & \vdots & & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{np}B \end{pmatrix}.$$

Beispiel A.6

Betrachte die beiden Matrizen

$$\boldsymbol{A} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$$

und

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix}.$$

Das Kronckerprodukt der beiden Matrizen ist dann gegeben durch

$$A \otimes B = \begin{pmatrix} 2 \cdot B & 4 \cdot B \\ 1 \cdot B & 3 \cdot B \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 & 4 \\ 8 & 6 & 16 & 12 \\ 1 & 1 & 3 & 3 \\ 4 & 3 & 12 & 9 \end{pmatrix}.$$

Δ

Satz A.4 Rechenregeln für das Kroneckerprodukt

Seien A, B, C und D Matrizen passender Ordnungen sowie k ein Skalar. Dann gelten die folgenden Rechenregeln:

- 1. $k(\mathbf{A} \otimes \mathbf{B}) = (k\mathbf{A}) \otimes \mathbf{B} = \mathbf{A} \otimes (k\mathbf{B})$.
- 2. $\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C}$.
- 3. $A \otimes (B + C) = (A \otimes B) + (A \otimes C)$.
- 4. $(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$.
- 5. $(AB) \otimes (CD) = (A \otimes C)(B \otimes D)$.

Definition A.10 Orthogonale Matrix

Eine quadratische Matrix A heißt orthogonal, wenn AA' = A'A = I gilt.

Satz A.5 Eigenschaften orthogonaler Matrizen

Sei \mathbf{A} eine orthogonale Matrix. Dann gilt:

- 1. Die Zeilenvektoren bzw. die Spaltenvektoren bilden ein Orthonormalsystem, d.h. die Vektoren besitzen Länge Eins und sind paarweise orthogonal.
- 2. AB ist orthogonal, wenn A und B orthogonal sind.

Definition A.11 Idempotente Matrix

Eine quadratische Matrix A heißt idempotent, wenn gilt: $AA = A^2 = A$. Eine spezielle, in der Statistik wichtige idempotente Matrix ist die $n \times n$ Matrix

$$C := I_n - \frac{1}{n} \mathbf{1} \mathbf{1}'.$$

Es gelten die folgenden Aussagen:

1. Multiplikation von \boldsymbol{C} mit einem beliebigen $n \times 1$ Vektor \boldsymbol{a} ergibt

$$Ca = \begin{pmatrix} a_1 - \bar{a} \\ \vdots \\ a_n - \bar{a} \end{pmatrix},$$

d.h. man erhält den mittelwertszentrierten Vektor.

2. Multiplikation von C mit einer $n \times m$ Matrix A liefert

$$CA = \begin{pmatrix} a_{11} - \bar{a}_1 & \cdots & a_{1m} - \bar{a}_m \\ \vdots & & \vdots \\ a_{n1} - \bar{a}_1 & \cdots & a_{nm} - \bar{a}_m \end{pmatrix},$$

wobei $\bar{a}_1, \dots, \bar{a}_m$ die Mittelwerte der Spalten von A sind.

- 3. C1 = 0.
- 4. $\mathbf{1}'C = \mathbf{0}'$.
- 5. 11'C = C11' = 0.
- 6. $\sum_{i=1}^{n} (x_i \bar{x})^2 = x'Cx$ wobei $x = (x_1, \dots, x_n)'$.

Satz A.6 Eigenschaften idempotenter Matrizen

Für idempotente Matrizen \boldsymbol{A} und \boldsymbol{B} gilt:

- 1. AB = BA, also AB idempotent.
- 2. I A ist idempotent.
- 3. A(I A) = (I A)A = 0.

A.2 Der Rang einer Matrix

Definition A.12 Zeilenrang, Spaltenrang, Zeilenraum, Spaltenraum Sei A eine $n \times p$

Matrix. Die Maximalzahl linear unabhängiger Spaltenvektoren des \mathbb{R}^n heißt Spaltenrang von A, geschrieben $\operatorname{rgs}(A)$. Der von den (linear unabhängigen) Spaltenvektoren aufgespannte Unterraum heißt Spaltenraum, geschrieben S(A). Es gilt:

$$S(\mathbf{A}) = \left\{ z \in \mathbb{R}^n : z = \mathbf{A}x = \sum_{i=1}^p a_i x_i, x \in \mathbb{R}^p \right\}$$

Entsprechend kann man den Zeilenrang $\operatorname{rgz}(A)$ von A als die Maximalzahl linear unabhängiger Zeilen von A definieren. Der von den (linear unabhängigen) Zeilen aufgespannte Unterraum Z(A) heißt Zeilenraum. Es gilt:

$$Z(\mathbf{A}) = \left\{ z \in \mathbb{R}^p : z = \mathbf{A}' x = \sum_{i=1}^n (a^i)' x_i, x \in \mathbb{R}^n \right\}$$

Satz A.7 Spaltenrang = Zeilenrang Spaltenrang und Zeilenrang einer $n \times p$ Matrix A sind gleich, d.h.

$$rgs(\mathbf{A}) = rgz(\mathbf{A}).$$

Definition A.13 Rang einer Matrix

Der Rang $rg(\mathbf{A})$ einer $n \times p$ Matrix \mathbf{A} ist definiert als

$$rg(\mathbf{A}) := rgs(\mathbf{A}) = rgz(\mathbf{A}) \le min\{n, p\}$$

Gilt $rg(\mathbf{A}) = min\{n, p\}$, so besitzt \mathbf{A} vollen Rang und wird als regulär bezeichnet. Für $rg(\mathbf{A}) = n$ ($rg(\mathbf{A}) = p$) heißt \mathbf{A} zeilenregulär (spaltenregulär).

Satz A.8 Allgemeine Rangbeziehungen

Für Matrizen A, B und C passender Ordnungen gilt:

- 1. $\operatorname{rg}(\boldsymbol{A}) = \operatorname{rg}(-\boldsymbol{A})$.
- 2. $\operatorname{rg}(\mathbf{A}') = \operatorname{rg}(\mathbf{A})$.
- 3. $\operatorname{rg}(\boldsymbol{A} + \boldsymbol{B}) \le \operatorname{rg}(\boldsymbol{A}) + \operatorname{rg}(\boldsymbol{B})$.
- 4. $\operatorname{rg}(\boldsymbol{A}\boldsymbol{B}) \leq \min \{\operatorname{rg}(\boldsymbol{A}), \operatorname{rg}(\boldsymbol{B})\}.$
- 5. $rg(I_n) = n$.

Definition A.14 Nullraum

Der Nullraum $N(\mathbf{A})$ einer $n \times p$ Matrix \mathbf{A} ist definiert als die Menge

$$N(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{R}^p : \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

Definition A.15 Zeilenraum, Spaltenraum

Der Zeilenraum Z(A) einer $n \times p$ Matrix A ist der durch die Zeilen von A aufgespannte Unterraum des \mathbb{R}^n :

$$Z(\mathbf{A}) := \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{A}\mathbf{y} \text{ für ein } \mathbf{y} \in \mathbb{R}^p \}.$$

Analog lässt sich der Spaltenraum (als Teilraum des \mathbb{R}^p) definieren.

Satz A.9 Eigenschaften des Nullraums

Sei \boldsymbol{A} eine $n \times p$ Matrix. Dann gilt:

- 1. Der Nullraum ist ein Unterraum des \mathbb{R}^p .
- 2. $\operatorname{rg}(\boldsymbol{A}) + \dim(N(\boldsymbol{A})) = p$ bzw. $\dim(N(\boldsymbol{A})) = p \operatorname{rg}(\boldsymbol{A})$. Die Dimension des Nullraums $N(\boldsymbol{A})$ wird als Defekt von \boldsymbol{A} bezeichnet.
- 3. Der Nullraum $N(\mathbf{A})$ ist das orthogonale Komplement des Zeilenraums $Z(\mathbf{A})$ von \mathbf{A} .
- 4. N(A'A) = N(A).

Definition A.16 Inverse einer Matrix

Sei \boldsymbol{A} eine quadratische Matrix. Eine Matrix \boldsymbol{A}^{-1} heißt Inverse zur Matrix \boldsymbol{A} , falls gilt:

$$AA^{-1} = A^{-1}A = I$$

Satz A.10 Existenz und Eindeutigkeit der Inversen

Die Inverse einer quadratischen $n \times n$ Matrix \boldsymbol{A} existiert genau dann, wenn $\operatorname{rg}(\boldsymbol{A}) = n$ gilt, also wenn \boldsymbol{A} regulär ist. Die Inverse ist dann eindeutig bestimmt und die Matrix \boldsymbol{A} heißt invertierbar.

Satz A.11 Rechenregeln für Inverse

Seien $\boldsymbol{A},\,\boldsymbol{B}$ und \boldsymbol{C} invertierbare Matrizen gleicher Ordnung und $k\neq 0$ ein Skalar. Dann gilt

- 1. $(A^{-1})^{-1} = A$.
- 2. $(k\mathbf{A})^{-1} = k^{-1}\mathbf{A}^{-1} = \frac{1}{k}\mathbf{A}^{-1}$.
- 3. $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$.
- 4. $(AB)^{-1} = B^{-1}A^{-1}$.
- 5. $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.
- 6. **A** symmetrisch \Rightarrow A^{-1} symmetrisch.
- 7. Für eine Diagonalmatrix $\mathbf{A} = \operatorname{diag}(a_1, \dots, a_n)$ gilt

$$A^{-1} = \operatorname{diag}(a_1^{-1}, \dots, a_n^{-1}).$$

- 8. Falls \boldsymbol{A} orthogonal ist, gilt $\boldsymbol{A}^{-1} = \boldsymbol{A}'$.
- 9. Sei \boldsymbol{A} partitioniert in

$$oldsymbol{A} = egin{pmatrix} oldsymbol{A}_{11} & oldsymbol{A}_{12} \ oldsymbol{A}_{21} & oldsymbol{A}_{22} \end{pmatrix}$$

und seien die Submatrizen A_{11} und A_{22} quadratisch und invertierbar. Dann gilt

$$A^{-1} = \begin{pmatrix} B^{-1} & -B^{-1}A_{12}A_{21}^{-1} \\ -A_{22}^{-1}A_{21}B^{-1} & A_{22}^{-1} + A_{22}^{-1}A_{21}B^{-1}A_{12}A_{22}^{-1} \end{pmatrix}$$
 mit
$$B = A_{11} - A_{12}A_{22}^{-1}A_{21},$$
 und
$$A^{-1} = \begin{pmatrix} A_{11}^{-1} + A_{11}A_{12}C^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}C^{-1} \\ -C^{-1}A_{21}A_{11}^{-1} & C^{-1} \end{pmatrix}$$
 mit
$$C = A_{22} - A_{21}A_{11}^{-1}A_{12}.$$

A.3 Determinante und Spur einer Matrix

Definition A.17 Determinante

Die Determinante einer quadratischen Matrix \boldsymbol{A} der Ordnung $n \times n$ ist definiert als

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{-ij}|,$$

wobei A_{-ij} die $n-1 \times n-1$ dimensionale Matrix bezeichnet, die durch Streichung der i-ten Zeile und der j-ten Spalte aus A entsteht. Für skalare Matrizen $A = (a_{11})$ der Ordnung 1×1 gilt $|A| = a_{11}$.

Beispiel A.7

- 1. Für eine 2×2 Matrix gilt $|A| = a_{11}a_{22} a_{12}a_{21}$
- 2. Für eine 3×3 Matrix gilt $|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} a_{13}a_{22}a_{31} a_{23}a_{32}a_{11} a_{33}a_{12}a_{21}$.

 \triangle

Die Determinante einer Matrix A lässt sich geometrisch interpretieren. Wir veranschaulichen die geometrische Interpretation anhand der Determinante der 2×2 Matrix

$$\boldsymbol{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}.$$

Die beiden Spaltenvektoren $a_1 = (4,1)'$ und $a_2 = (2,3)'$ der Matrix sind als Ortsvektoren in Abbildung A.1 abgebildet. Die Determinante von \boldsymbol{A} ist gegeben durch

$$|\mathbf{A}| = 4 \cdot 3 - 2 \cdot 1.$$

Die Determinante von \boldsymbol{A} ist also gleich dem Flächeninhalt des von den den beiden Spaltenvektoren gebildeten Parallelogramms. Diese Interpretation einer Determinante ist allgemeingültig. Bei 3×3 Matrizen handelt es sich bei der Determinante von \boldsymbol{A} um das Volumen des von den drei Spaltenvektoren aufgespannten Körpers. Für n>3 ergeben sich analoge Interpretationen.

Abb. A.1. Geometrische Veranschaulichung der Determinante einer 2×2 Matrix.

Im Folgenden wollen wir einige wichtige Eigenschaften von Determinanten zusammentragen. Wir beginnen mit der Determinante der transponierten Matrix A' einer Matrix A.

Satz A.12 Determinante der Transponierten

Für eine quadratische Matrix A gilt |A'| = |A|.

Satz A.13 Determinanten einiger bestimmter Matrizen

Sei \boldsymbol{A} eine quadratische Matrix. Dann gilt:

- 1. Wenn eine Zeile (Spalte) von \mathbf{A} aus Nullen besteht, dann gilt $|\mathbf{A}| = 0$.
- 2. Wenn \boldsymbol{A} zwei identische Zeilen (Spalten) besitzt, dann gilt $|\boldsymbol{A}|=0$.
- 3. Die Determinante einer Matrix in Dreiecksform ist das Produkt der Diagonalelemente. Eine Matrix besitzt Dreiecksform, wenn alle Elemente ober bzw. unterhalb der Hauptdiagonalen gleich Null sind.
- 4. |I| = 1

Satz A.14 Eigenschaften von Determinanten

Für die Determinante einer $n \times n$ Matrix \boldsymbol{A} gilt:

- 1. $|k\mathbf{A}| = k^n |\mathbf{A}|$.
- 2. $|\mathbf{A}| \neq 0 \iff \operatorname{rg}(\mathbf{A}) = n$.
- 3. $|AB| = |A| \cdot |B|$.
- 4. $|A^{-1}| = \frac{1}{|A|}$.
- 5. \mathbf{A} orthogonal $\Rightarrow |\mathbf{A}| = \pm 1$.

Definition A.18 Spur einer Matrix

Sei $\mathbf{A} = (a_{ij})$ eine quadratische $n \times n$ Matrix. Dann heißt die Summe der Diagonalelemente Spur von \mathbf{A} , in Zeichen

$$\operatorname{sp}(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii}.$$

Beispiel A.8

Wir betrachten die Matrix

$$\mathbf{A} = \begin{pmatrix} 6 - 4 - 10 & 4 \\ -5 & 2 & 8 - 5 \\ -2 & 4 & 7 - 3 \\ 2 - 3 & -5 & 8 \end{pmatrix}.$$

Als Spur von \boldsymbol{A} erhalten wir

$$sp(\mathbf{A}) = 6 + 2 + 7 + 8 = 23.$$

 \triangle

Satz A.15 Eigenschaften der Spur

Für die Spur der $n \times n$ Matrizen \boldsymbol{A} und \boldsymbol{B} gilt:

- 1. $\operatorname{sp}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{sp}(\boldsymbol{A}) + \operatorname{sp}(\boldsymbol{B}).$
- 2. $\operatorname{sp}(\mathbf{A}) = \operatorname{sp}(\mathbf{A}')$.
- 3. $\operatorname{sp}(k\mathbf{A}) = k \cdot \operatorname{sp}(\mathbf{A})$.
- 4. $\operatorname{sp}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{sp}(\boldsymbol{B}\boldsymbol{A})$. Dies bleibt auch für den Fall gültig, dass \boldsymbol{A} eine $n \times p$ und \boldsymbol{B} eine $p \times n$ Matrix ist.
- 5. Seien $x, y \in \mathbb{R}^n$. Dann gilt $\operatorname{sp}(xy') = \operatorname{sp}(yx') = \operatorname{sp}(x'y) = x'y$.

A.4 Verallgemeinerte Inverse

Definition A.19 Verallgemeinerte Inverse

Sei \boldsymbol{A} eine beliebige $n \times p$ Matrix mit $n \leq p$. Dann heißt die $p \times n$ Matrix \boldsymbol{A}^- verallgemeinerte Inverse oder g-Inverse (generalized Inverse) von \boldsymbol{A} falls gilt

$$AA^{-}A = A$$
.

Satz A.16 Existenz der verallgemeinerten Inversen

Zu jeder Matrix \boldsymbol{A} existiert eine verallgemeinerte Inverse, die aber im Allgemeinen nicht eindeutig ist.

Satz A.17 Eigenschaften der verallgemeinerten Inversen

Sei A^- eine verallgemeinerte Inverse der Matrix A. Dann gilt:

- 1. $\operatorname{rg}(\mathbf{A}) = \operatorname{rg}(\mathbf{A}\mathbf{A}^{-}) = \operatorname{rg}(\mathbf{A}^{-}\mathbf{A}).$
- 2. $\operatorname{rg}(\boldsymbol{A}) \leq \operatorname{rg}(\boldsymbol{A}^{-})$.
- 3. A regulär $\Rightarrow A^- = A^{-1}$. Insbesondere ist in diesem Fall die verallgemeinerte Inverse eindeutig.
- 4. A^-A und AA^- sind idempotent.

A.5 Eigenwerte und Eigenvektoren

Definition A.20 Eigenwert und Eigenvektor

Sei \boldsymbol{A} eine quadratische $n \times n$ Matrix. Dann heißt (die im Allgemeinen komplexe Zahl) $\lambda \in \mathbb{C}$ Eigenwert von \boldsymbol{A} , wenn ein (im Allgemeinen komplexer) Vektor $\boldsymbol{x} \in \mathbb{C}^n$ mit $\boldsymbol{x} \neq \boldsymbol{0}$ existiert, so dass gilt:

$$Ax = \lambda x$$
 bzw. $(A - \lambda I)x = 0$.

Der Vektor \boldsymbol{x} heißt dann Eigenvektor zum Eigenwert λ .

Bei der Berechnung der Eigenwerte einer Matrix \boldsymbol{A} spielt folgende Determinante eine herausragende Rolle:

Definition A.21 Charakteristisches Polynom

Sei \boldsymbol{A} eine quadratische $n\times n$ Matrix. Dann heißt

$$q(\lambda) := |\boldsymbol{A} - \lambda \boldsymbol{I}|$$

charakteristisches Polynom von A.

Bemerkung:

• Vergegenwärtigt man sich die Definition der Determinante (siehe Definition A.17), dann macht man sich leicht klar, dass $q(\lambda)$ tatsächlich ein Polynom vom Grad n ist. Wir können also $q(\lambda)$ äquivalent darstellen als

$$q(\lambda) = (-\lambda)^n + \alpha_{m-1}(-\lambda)^{m-1} + \dots + \alpha_1(-\lambda) + \alpha_0, \tag{A.1}$$

wobei die Skalare $\alpha_0, \ldots, \alpha_{m-1}$ zunächst unspezifiziert sind.

• Das Polynom $q(\lambda) := |A - \lambda I|$ lässt sich stets auch in die Gestalt

$$q(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \prod_{i=1}^{n} (\lambda_i - \lambda)$$
(A.2)

bringen, wobei $\lambda_1,\ldots,\lambda_n$ die Nullstellen des Polynoms sind. Nach dem Fundamentalsatz der Algebra hat dieses Polynom genau n nicht notwendig verschiedene und auch nicht notwendig reellwertige Nullstellen. Vergleiche hierzu zum Beispiel Bronstein, Semendjajew (1991) Seite 134.

Der folgende Satz liefert nun eine Berechnungsmöglichkeit für die Eigenwerte einer Matrix:

Satz A.18 Berechnung der Eigenwerte über das charakteristische Polynom

Die Eigenwerte einer quadratischen Matrix \boldsymbol{A} sind die Nullstellen des charakteristischen Polynoms, also die Lösungen von

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = 0.$$

Beispiel A.9

Betrachte die Matrix

$$\boldsymbol{A} = \begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix}.$$

Wir bestimmen die Eigenwerte von $\boldsymbol{A}.$ Dazu berechnen wir zunächst das charakteristische Polynom

$$|\boldsymbol{A} - \lambda \boldsymbol{I}| = \begin{vmatrix} 2 - \lambda & 1 \\ 2 & -2 - \lambda \end{vmatrix} = (2 - \lambda)(-2 - \lambda) - 2 \cdot 1 = \lambda^2 - 6.$$

Nullsetzen und Auflösen nach λ liefert die Eigenwerte

$$\lambda_1 = \sqrt{6},$$

$$\lambda_2 = -\sqrt{6}.$$

Δ

Beispiel A.10

Betrachte die Matrix

$$\boldsymbol{A} = \begin{pmatrix} 2 & -1 \\ 8 & -2 \end{pmatrix}.$$

Wir berechnen wieder das charakteristische Polynom

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & -1 \\ 8 & -2 - \lambda \end{vmatrix} = (2 - \lambda)(-2 - \lambda) + 8 = \lambda^2 + 4.$$

Nullsetzen liefert die komplexen Eigenwerte

$$\lambda_1 = 2i,
\lambda_2 = -2i.$$

 \triangle

Satz A.19 Eigenschaften von Eigenwerten

Für die Eigenwerte λ_i einer $n \times n$ Matrix gelten folgende Eigenschaften:

- $1. |\mathbf{A}| = \prod_{i=1}^{n} \lambda_i.$
- $2. \operatorname{sp}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_i.$
- 3. \boldsymbol{A} ist genau dann regulär, wenn alle Eigenwerte ungleich Null sind.
- 4. Die Matrizen \boldsymbol{A} und \boldsymbol{A}' besitzen dasselbe charakteristische Polynom und damit dieselben Eigenwerte.
- 5. Ist λ ein Eigenwert einer regulären Matrix \boldsymbol{A} , dann ist $\frac{1}{\lambda}$ ein Eigenwert von \boldsymbol{A}^{-1} .
- 6. Die Eigenwerte einer Diagonalmatrix \boldsymbol{D} sind gerade die Hauptdiagonalelemente.
- 7. Für die Eigenwerte λ_i einer orthogonalen Matrix \boldsymbol{A} gilt $\lambda_i = \pm 1$.
- 8. Die Eigenwerte einer idempotenten Matrix \boldsymbol{A} sind 1 oder 0.

Definition A.22 Eigenraum

Sei A eine quadratische Matrix und λ ein Eigenwert von A. Die Menge

$$\mathbf{A}_{\lambda} := \{ \mathbf{x} \in \mathbb{C}^n | \mathbf{x} \text{ Eigenvektor zu } \lambda \} \cup \{0\}$$

heißt Eigenraum zum Eigenwert λ . Jeder Eigenraum A_{λ} ist ein Unterraum des \mathbb{R}^n .

Definition A.23 Ähnliche Matrizen

Zwei Matrizen A und B heißen ähnlich (in Zeichen $A \sim B$), wenn eine reguläre Matrix C existiert, so dass $B = CAC^{-1}$ gilt.

Bemerkung:

Die Ähnlichkeit von Matrizen ist eine Äquivalenzrelation, d.h.es gilt:

- 1. $\boldsymbol{A} \sim \boldsymbol{A}$
- 2. $A \sim B \Longrightarrow B \sim A$
- 3. $A \sim B$ und $B \sim C \Longrightarrow A \sim C$

Satz A.20 Eigenwerte ähnlicher Matrizen

Für ähnliche Matrizen \boldsymbol{A} und \boldsymbol{B} gilt:

- 1. \boldsymbol{A} und \boldsymbol{B} haben dasselbe charakteristische Polynom und damit dieselben Eigenwerte.
- 2. Ist x Eigenvektor zum Eigenwert λ , so ist Cx Eigenvektor der Matrix $B = CAC^{-1}$.

Satz A.21 Eigenwerte und Eigenvektoren symmetrischer Matrizen

Sei \boldsymbol{A} eine symmetrische $n \times n$ Matrix. Dann gilt:

- 1. Alle Eigenwerte sind reell.
- 2. Die zu verschiedenen Eigenwerten gehörenden Eigenvektoren sind paarweise orthogonal.

Satz A.22 Spektralzerlegung

Sei \boldsymbol{A} eine symmetrische $n \times n$ Matrix mit $\operatorname{rg}(\boldsymbol{A}) = r$. Dann existiert eine $n \times r$ Matrix \boldsymbol{P} , so dass gilt:

$$P'AP = \operatorname{diag}(\lambda_1, \dots, \lambda_r)$$
 bzw. $A = P\operatorname{diag}(\lambda_1, \dots, \lambda_r)P'$.

Dabei sind die λ_i die von Null verschiedenen Eigenwerte von \boldsymbol{A} (Insbesondere entspricht der Rang von \boldsymbol{A} der Anzahl der von Null verschiedenen Eigenwerte). Die Spaltenvektoren von \boldsymbol{P} entsprechen den (paarweise orthonormalen) zugehörigen Eigenvektoren.

Satz A.23 Spektralzerlegung einer idempotenten Matrix

Sei \boldsymbol{A} eine symmetrische und idempotente $n \times n$ Matrix mit $\operatorname{rg}(\boldsymbol{A}) = r$. Dann existiert eine orthogonale Matrix \boldsymbol{A} so dass gilt

$$P'AP = I_r$$

Außerdem ergibt sich

$$rg(\mathbf{A}) = sp(\mathbf{A}).$$

A.6 Quadratische Formen

Definition A.24 Quadratische Form

Sei \boldsymbol{A} eine symmetrische $n \times n$ Matrix. Eine quadratische Form in einem Vektor $\boldsymbol{x} \in \mathbb{R}^n$ ist definiert durch:

$$Q(x) = x'Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j = \sum_{i=1}^{n} a_{ii}x_i^2 + 2\sum_{i=1}^{n} \sum_{j>i} a_{ij}x_ix_j.$$

Definition A.25 Definite Matrizen

Die quadratische Form x'Ax und die Matrix A heißen

- 1. positiv definit, falls x'Ax > 0 für alle $x \neq 0$. Schreibweise: A > 0.
- 2. positiv semidefinit, falls $x'Ax \ge 0$ und x'Ax = 0 für mindestens ein $x \ne 0$.
- 3. nichtnegativ definit, falls x'Ax bzw. A entweder positiv oder positiv semidefinit ist. Schreibweise: $A \ge 0$.
- 4. negativ definit, wenn $-\mathbf{A}$ positiv definit ist.
- 5. negativ semidefinit, wenn -A positiv semidefinit ist.
- 6. indefinit in allen anderen Fällen.

Satz A.24 Kriterium für die Definitheit einer Matrix

Sei A eine symmetrische Matrix mit den (reellen) Eigenwerten $\lambda_1, \ldots, \lambda_n$. Dann ist A genau dann

- 1. positiv definit, wenn $\lambda_i > 0$ für $i = 1, \ldots, n$,
- 2. positiv semidefinit, wenn $\lambda_i \geq 0$ für $i = 1, \ldots, n$ und mindestens ein $\lambda_i = 0$,
- 3. negativ definit, wenn $\lambda_i < 0$ für alle $i = 1 \dots, n$,
- 4. negativ semidefinit, wenn $\lambda_i \leq 0$ für $i = 1, \ldots, n$ und mindestens ein $\lambda_i = 0$,
- 5. indefinit, wenn \boldsymbol{A} mindestens einen positiven und einen negativen Eigenwert besitzt.

Satz A.25 Eigenschaften positiv definiter Matrizen

Sei *A* positiv definit. Dann gilt:

1. A ist regulär (und damit invertierbar).

- 2. A^{-1} ist positiv definit.
- 3. Für die Diagonalelemente a_{ii} , i = 1, ..., n gilt: $a_{ii} > 0$.
- 4. sp(A) > 0.
- 5. Sei B positiv semidefinit. Dann ist A + B positiv definit.

Satz A.26

Seien \boldsymbol{A} eine $n \times n$ und \boldsymbol{Q} eine $n \times m$ Matrix. Dann gilt:

- 1. Ist A nichtnegativ definit, so ist auch Q'AQ nichtnegativ definit.
- 2. Ist A positiv definit und Q spaltenregulär, so ist auch Q'AQ positiv definit.

Satz A.27

Sei \boldsymbol{B} eine $n \times p$ Matrix. Dann ist die Matrix $\boldsymbol{B'B}$ symmetrisch und nicht negativ definit. Sie ist positiv definit, wenn \boldsymbol{B} spaltenregulär ist. Neben $\boldsymbol{B'B}$ ist dann auch $\boldsymbol{BB'}$ nichtnegativ definit.

Satz A.28 Eigenwerte von B'B und BB'

Sei \boldsymbol{B} eine $n \times p$ Matrix mit $rg(\boldsymbol{B}) = r$. Dann gilt:

- 1. Sowohl BB' als auch B'B besitzen r von Null verschiedene Eigenwerte λ_j , $j = 1, \ldots, r$. Diese sind positiv und identisch für BB' und B'B.
- 2. Falls \boldsymbol{v} ein Eigenvektor von $\boldsymbol{B}'\boldsymbol{B}$ zum Eigenwert λ ist, dann ist

$$oldsymbol{u} := rac{1}{\sqrt{\lambda}} oldsymbol{B} oldsymbol{v}$$

ein Eigenvektor von BB' zum Eigenwert λ .

Satz A.29 Cholesky-Zerlegung

Jede symmetrische und positiv definite $n \times n$ Matrix \boldsymbol{A} lässt sich eindeutig darstellen als

$$A = LL'$$

wobei L die Gestalt einer unteren Dreiecksmatrix mit positiven Diagonalelementen besitzt. L heißt Cholesky-Faktor von A.

A.7 Differentiation von Matrixfunktionen

Definition A.26 Differentiation nach einem Skalar

Sei $\mathbf{A} = (a_{ij})$ eine $n \times p$ Matrix, deren Elemente differenzierbare Funktionen der reellen Variablen t seien. Dann heißt die Matrix

$$\frac{\partial \mathbf{A}}{\partial t} = \left(\frac{\partial a_{ij}}{\partial t}\right)$$

Ableitung von \boldsymbol{A} nach t.

Satz A.30 Rechenregeln

Sei \boldsymbol{A} und \boldsymbol{B} Matrizen passender Ordnungen. Dann gilt:

1.
$$\frac{\partial \mathbf{A}}{\partial a_{ij}} = e_i e'_j$$
, wobei $e_i = (0, \dots, \underbrace{1}_i, \dots, 0)'$.

$$2. \ \frac{\partial \mathbf{A'}}{\partial a_{ij}} = e_j e_i'.$$

3.
$$\frac{\partial AB}{\partial t} = \frac{\partial A}{\partial t}B + A\frac{\partial B}{\partial t}$$
 (Produktregel).

Satz A.31 Differentiation von Funktionalen einer Matrix

Sei \boldsymbol{A} eine quadratische Matrix, deren Elemente differenzierbare Funktionen der reellen Variablen t seien. Dann gilt:

1. Die Ableitung der Spur ist die Spur der Ableitung:

$$\frac{\partial \operatorname{sp}(\boldsymbol{A})}{\partial t} = \operatorname{sp}\left(\frac{\partial \boldsymbol{A}}{\partial t}\right).$$

2. Ist A invertierbar, so ergibt sich die Ableitung der Inversen als

$$\frac{\partial \boldsymbol{A}^{-1}}{\partial t} = -\boldsymbol{A}^{-1} \frac{\partial \boldsymbol{A}}{\partial t} \boldsymbol{A}^{-1}.$$

3. Ist \boldsymbol{A} invertierbar, so ergibt sich die Ableitung der logarithmierten Determinante als

$$\frac{\partial \log(|\mathbf{A}|)}{\partial t} = \operatorname{sp}\left(\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial t}\right).$$

Definition A.27 Differentiation nach einer Matrix

Sei $\mathbf{A} = (a_{ij})$ eine $n \times p$ Matrix und $f(\mathbf{A})$ eine differenzierbare reellwertige Funktion der np Elemente a_{ij} . Dann heißt die $n \times p$ Matrix

$$\frac{\partial f}{\partial \mathbf{A}} = \left(\frac{\partial f}{\partial a_{ij}}\right)$$

Ableitung von f nach A.

Satz A.32 Rechenregeln

Seien A und B Matrizen, f und g Funktionen von Matrizen sowie x und y Vektoren. Bei den folgenden Größen wird angenommen, dass sie existieren und von passender Ordnung sind. Dann gelten folgende Rechenregeln:

1.
$$\frac{\partial fg}{\partial \mathbf{A}} = \frac{\partial f}{\partial \mathbf{A}}g + f\frac{\partial g}{\partial \mathbf{A}}$$
.

$$2. \ \frac{\partial \operatorname{sp}(\boldsymbol{A})}{\partial \boldsymbol{A}} = I.$$

3.
$$\frac{\partial \operatorname{sp}(BA)}{\partial A} = B'$$
.

4.
$$\frac{\partial \operatorname{sp}(A'BA)}{\partial A} = (B + B')A$$
.

5.
$$\frac{\partial \operatorname{sp}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}')}{\partial \boldsymbol{A}} = \boldsymbol{A}'(\boldsymbol{B} + \boldsymbol{B}').$$

6.
$$\frac{\partial \operatorname{sp}(ABA)}{\partial A} = A'B' + B'A'$$
.

7.
$$\frac{\partial \boldsymbol{y}'\boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{y}$$
.

8.
$$\frac{\partial x'Ay}{\partial A} = xy'.$$

9.
$$\frac{\partial x'Ax}{\partial x} = (A + A')x.$$

10. Für symmetrisches \boldsymbol{A} gilt

$$\frac{\partial x'Ax}{\partial x} = 2Ax = 2A'x.$$