DVA104

Data Structures, Algorithms, and Program Development

Gabriele Capannini

gabriele.capannini@mdh.se

Mälardalen University

October 1, 2018

Trees

Trees are a very common data structure used for:

- representing the file folders structure
- evaluating arithmetical expressions
- compiling a program
- performing effective search
- 0 . . .

Trees: Terminology

Trees are special type of graphs so that they inherit many terms. Some new ones are listed here:

- Root is the top node and is unique.
- Child is a node directly connected to another one moving downward.
- Parent is the reverse relation of child.
- Siblings are nodes sharing the same parent.
- Leaves is a node having no children.
- An empty tree is a tree without nodes.
- Node depth is the number of edges in its path from the root.
- Level of a node is its depth +1.
- A tree level is the set of nodes at the same level.
- Degree of a node is its number of children.

Trees: Terminology (example)

- \circ $\stackrel{\frown}{(\mathsf{A})}$ is the root.
- B, D, E, G, H are leaves.

- D is child of C henceis parent of D.
- B and C are siblings.
- Depth of (D) is 2 since its path from (A) consists of 2 edges: (A) (C) (D).
- The level 3 of the tree consists of D, E, F.
- Degree of (C) is 3.

Trees are recursive!

Example:

- (A) is the root of the tree of which nodes are: (A), (B), (C), (D), (E), (F), and (G).
- o (C) is the root of the subtree of which nodes are: (C), (D), (E), (F), and (G).
- D is the root of the subtree of which nodes are: D, F, and G.
- (F) is the root of the subtree with only one node: (F).

A subtree is a tree as well! 🧌

Binary Search Tree (BST)

- A binary tree is a tree of which nodes have a degree ≤ 2 .
- So at most two subtrees can be generated by each node of a binary tree (a.k.a. left- and right-subtree).
- A Binary Search Tree (BST) is a Binary Tree (BT) of which nodes are associated to a value (a.k.a. key). Moreover, in a BST, nodes are kept sorted: let k be a node, all keys stored in its left-subtree are less than k, while keys that are equal or greater than k are stored in the right-subtree.

Example: In the BST on the right, all values grater than 3 and less than 7 are stored in the right-subtree of 3 and the left-subtree of 7.

BST: how to search for a value?

Building a BST

In the beginning we have an empty tree:

...Then we insert 5 which has no children:

... Then we insert 3 which is less than 5:

Building a BST (continued)

... Then we insert 8 which is greater than 5:

... Then we insert 4 which is less than 5 and greater than 3:

Building a BST (continued)

... Then we insert 9 which is greater than 5 and 8:

 \dots Finally we insert 2 and 7:

Searching in a BST is fast!

- In both cases, we found the answer by visiting 3 nodes while the tree contains 7 nodes.
- We also needed to visit a lot fewer nodes for entering a new item.

Searching in a BST (final version)

Does the tree T contains the value k?

```
1: function TREEHASVALUE(T, k):
      if T == \emptyset then
2:
          return NO
3:
      end if
4:
      if T.key == k then
5:
          return YFS
6:
7:
      end if
      if k < T.key then
8:
          return TREEHASVALUE(T.left, k)
9:
10:
      else
11:
          return TREEHASVALUE(T.right, k)
12.
      end if
13: end function
```

Insertion into a BST

Insert the value k in the tree T.

```
1: function TREECREATENODE(key k):
       return node such that key=k, left=\varnothing, and right=\varnothing
2:
3: end function
1: function TREEINSERTVALUE(T, k):
       if T == \emptyset then
2:
           T \leftarrow \text{TREECREATENODE}(k)
3:
       end if
4:
       if T.key == k then
5:
6:
           Raise exception
       end if
7:
       if k < T.key then
8:
           TREEINSERT VALUE (T.left, k)
9:
       else
10:
11:
           TREEINSERT VALUE (T.right, k)
       end if
12:
13: end function
```

BST: test

Is the following tree a BST?

BSTs as Arrays

BSTs (as well as BTs) can be easily implemented by means of an array:

- root is registered in the first position, i.e., 0
- left child of the node stored in position i is in position 2i + 1
- right child of the node stored in position i is in position 2i + 2

Cons:

- When array is full you need to resize it which can be costly.
- Array has 'holes' if the tree is not complete.

About Complete BTs

Definition: a binary tree is complete if all levels are completely filled except possibly the last level that has all keys as left as possible.

Example:

BSTs as Linked Lists

BTs can be also implemented by means of a LL.

Example of a tree node with integer keys:

```
struct btreenode {
   int key;
   treeNode* left;
   treeNode* right;
};
typedef struct btreenode BTNode;
```

When a new node is created left and right are NULL which means that, initially, a new node has no children:

```
BTNode* createNewBTNode(const int key) {
  BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));
  newnode->left = newnode->right = NULL;
  newnode->key = key;
  return newnode;
}
```

BSTs as Linked Lists (continued)

Example:

 $\emptyset = NULL$

- Each pointer points to a whole BTNode not only to key.
- Memory management is simplified but, now, each node needs more memory to be stored.

Tree traversal

Just like a LL or an array, we may want to visit every node in a tree.

However, depending on our purpose, it is not obvious in which order you want to visit the nodes in a tree.

For example:

- Should the nodes on top be visited before the bottom?
- Should we visit left-hand tree trees before right-hand tree trees?

Tree traversal (continued)

There are many (recursive) alternatives:

Pre-order (LR):

- visit the current node,
- 2. visit the left-subtree,
- 3. visit the right-subtree.

In-order (LR):

- 1. visit the left-subtree,
- 2. visit the current node,
- 3. visit the right-subtree.

Post-order (LR):

- 1. visit the left-subtree,
- 2. visit the right-subtree,
- 3. visit the current node.

Pre-order (RL):

- 1. visit the current node,
- 2. visit the right-subtree,
- 3. visit the left-subtree.

In-order (RL):

- 1. visit the right-subtree,
- 2. visit the current node,
- 3. visit the left-subtree.

Post-order (RL):

- 1. visit the right-subtree,
- visit the left-subtree,
- 3. visit the current node.

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5, 3

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5, 3, 2

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5, 3, 2, 4

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5, 3, 2, 4, 8

We want to print the following tree in Pre-order (LR) manner:

- 1: procedure VISIT(T)
- 2: PRINT(T.key)
- 3: VISIT(T.left)
- 4: VISIT(T.right)
- 5: end procedure

^{*}dashed orange boxes enclose trees on which a visit procedure is active.

Printed nodes: 5, 3, 2, 4, 8

Tree traversal (test)

What's the result in this case? Which kind of traversal are we performing?


```
void printBST(BTNode* tree) {
   if(!root)
    return;
   printBST(tree->left);
   printf("%d\n", tree->key);
   printBST(tree->right);
}
```


BST: removing a tree

Adding a node into a BST is 'easy'...

While removing can lead to different cases:

- remove a leaf,
- o remove a node with a child,
- o remove a node with two children.

Removing a leaf


```
typedef struct btreenode BTNode;
typedef BTNode* BTree;
void remove(BTree* tree /*double pointer*/, int key) {
    ...
}
BTree root;
...
remove(&root, 9); //initially tree points to root
```


first of all we traverse the tree until tree point to the pointer to

Removing a leaf (continued)

We recursively set tree with the address of the pointers belonging to the path from (5) to (9). For example, the first recursive call will look like:

```
BTNode* node = *tree;
...
if(key<node->key) // i.e. 9<5 is FALSE, go right
...
else
  remove(&node->right, 9); // first recursive call
```


in the second step, tree points to the right-subtree of (5)

Removing a leaf (continued)

We reached (9) and tree points to the right-subtree of (8):

```
BTNode* node = *tree;
if(key==node->key) // i.e. 9==9 is TRUE
{
  free(*tree); //free memory
  *tree = NULL; //update pointer
}
```


after removing (9) we get a tree like this

Removing nodes with one child

This time we want to remove a node like (8):

```
BTree root;
...
remove(&root, 8); //initially tree points to root
```


first of all we traverse the tree until we reach (8)...

Removing nodes with one child (continued

As in the previous case, we need to reach the node of which child points to the target value: in this case it is 8. In this case, however, 8 has a child:

Removing nodes with one child (continued

We replace the child-pointer pointed by tree with the child of the node to remove:

That is:

```
BTNode* tmp = *tree;
*tree = *tree->right;
free(tmp);
```

Notice that 'removing a leaf' is just a 'simplified' case of this since in that case *tree->right is NULL.

Removing nodes with two children

This time we want to remove a node like (5):

```
BTree root;
...
remove(&root, 5); //initially tree points to root
```


In this case we need to find a good candidate to replace (5): who?

Hint: remember the definition of BST!

Removing nodes with two children (continued)

Removing (5):

we can alternatively choose:

- the max value stored in the left-subtree, that is 4
- the min value stored in the right-subtree, that is 7

By the way, how to find the min and max value in a BST?

Removing nodes with two children (continued)

Removing (5):

Once the node has been replaced, we proceed by removing the copied one:

Note that removing such a node must fall in one of the two previous cases: 'removing a leaf' or 'removing a node with one child'.

Tree balancing

Questions:

- How does a BST look like if we insert the sequence 1,2,3,4,5?
- How many nodes are there in the tree?
- Is it still quick to search in this tree?
- Is it faster than a linked list?
- How many levels have the tree?

Answers:

- It looks like the next tree.
- There are 5 nodes.
- Searching is not faster than a LL.
- The tree has 5 levels.
- Such a tree is called unbalanced and it is not effective in searching.
- If the number of nodes equals the number of levels then the tree is a LL! (degenerate tree)

So, what is the min number of levels for a tree with 5 nodes?

- The capacity of a BST with 1 level is 1 (just the root)
- The capacity of a BST with 2 levels is 3 (root+2ch, i.e., 1+2)
- The capacity of a BST with 3 levels is 7 (i.e., 3+4)
- The capacity of a BST with 4 levels is 15 (i.e., 7+8)

In general, the capacity of a BST with L levels is $2^{L} - 1$

Hence the minimum number of levels for a BST with 5 nodes is 3! For example it could be:

- Is that BST sorted? Yes
- How many nodes? 5
- How many levels?
- Is it effective for searching? Yes, max 3 steps

If we can not store more than $2^L - 1$ nodes in a BST with L levels, how many levels do we need to store n nodes?

$$n \le 2^{L} - 1$$

$$n + 1 \le 2^{L}$$

$$\log_{2}(n + 1) \le \log_{2}(2^{L}) = L$$

$$L \ge \log_{2}(n + 1)$$

Answer: we need at least $log_2(n+1)$.

Since $log_2(n+1)$ may contain decimals and L should be an integer, we must round up the result: $\lceil log_2(n+1) \rceil$.

In C, round-up can be calculated using the ceil function: http://www.cplusplus.com/reference/cmath/ceil/

- A BST with n nodes on [log₂(n+1)] levels is said to be balanced (definition comes later).
- In the worst case, we need to visit $\lceil \log_2(n+1) \rceil$ nodes to find a given value, while in a LL this requires to visit n nodes:

For example, assume that we have stored about one million values, e.g., $n = 1048576 = 2^{20}$.

LL in the worst case, we need to test one million (i.e., 1048576) nodes to find a specific one.

BST we need to test $\lceil \log_2(n+1) \rceil$ that is 20 nodes (at most).

The following plot shows the number of *visited* nodes w.r.t. the number *n* of nodes stored in the data structure both for the LL and the balanced BST cases:

Application:

Do you remember ADTs Set?

```
addElement()
removeElement()
isInSet()
```

If we implemented this as a sorted balanced BST instead of an Array or LL then the <code>isInSet()</code> function would be much faster!

Definition: balanced tree means that the difference between the height of left- and right-subtree of each node is max 1, where the height of a (sub)tree is defined as the number of edges on the longest path between the root and a leaf.

According to the definition only the left one is balanced. Why?

Now, the question is: how do we get a tree balanced?

There are several variants of self-balanced BSTs:

- AVL trees
- Red/Black Trees

Otherwise we can:

- First, enter all values from the tree into a sorted array (in-order LR visit).
- Then, balance the tree (rebuild the tree with the same values).

Building a balanced BST

Assume we have a sorted array with the values to store in the tree, how can we build it balanced?

For example, we want to store the values from 1 to 10 in a BST.

- How can we build it balanced?
- Which value should be the root?

Position
$$\rightarrow$$
 0 4 9

The array has 10 entries (from position 0 to 9), '5' (in position 4) is almost in the middle: $4 = \lfloor (0+9)/2 \rfloor$.

Now, what should be the root of the right-subtree of (5)?

Position
$$\rightarrow$$
 0 5 6 7 8 9 10 9

The right-subtree has 5 entries (from position 5 to 9), '8' (in position 7) is in the middle: $7 = \lfloor (5+9)/2 \rfloor$.

We follow the same schema for adding `9' and `10' to the tree:

... Even for the left-subtree. For example, what should be the root of the left-subtree of (8)? The left-subtree covers the array positions from 5 to 6, hence we select the value in position 5 (since $\lfloor (5+6)/2 \rfloor = 5$).

We are building a balanced BST recursively. At each step:

- First, we choose the root from the given (sub)array.
- Then, we recursively apply the same procedure on the subarrays on the left and on the right of the chosen element for the left- and the right-subtree, respectively.

```
function BuildBST(node, array, first, last):

...

m \leftarrow \lfloor (first + last)/2 \rfloor

node.key \leftarrow array[m]

BuildBST(node.left, array, first, m-1)

BuildBST(node.right, array, m+1, last)

end function
```

What is the 'base-case' for this recursive function?

When `10' is added, *first* and *last* equal 9 so that even *m* is equal to 9. Hence , the recursive calls look like:

function BuildBST(node, array, first=9, last=9):

```
... m \leftarrow \lfloor (first + last)/2 \rfloor = \lfloor (9+9)/2 \rfloor = 9 node.key \leftarrow array[m] BUILDBST(node.left, array, first, m-1) BUILDBST(node.right, array, m+1, last) end function
```

The function is called twice on empty portions of *array* since first>m-1 and m+1>last, which makes no sense. Hence the function should preliminary check the values of first and first and

```
function BUILDBST(node, array, first, last): If first>last then exit
```

end function

Look at the following tree:

- Is it a BT?
- Is it a BST?
- Is it balanced?

The end...Questions?