16 - Il Teorema dell'Omeomorfismo

ho Proposizione 16.1: Caratterizzazione delle funzioni di classe C^1 a valori reali

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $A \subseteq X$ aperto.

Sia $f:A o\mathbb{R}$.

Sono equivalenti le seguenti affermazioni:

- 1. f è di classe C^1 , ossia f è G-derivabile in A, e f' è continua in A.
- 2. f è G-derivabile in A, e \dot{f} è continua in A.

Dimostrazione

Basta mostrare che, se f è G-derivabile in A, la continuità di f' in A equivale alla continuità di \dot{f} in A.

Ciò segue dal fatto che $f' = (X \to X^* : \mathbf{x} \mapsto \langle \mathbf{x}, \cdot \rangle) \circ \dot{f}$, e la mappa $X \to X^* : \mathbf{x} \mapsto \langle \mathbf{x}, \cdot \rangle$ è un'isometria lineare per la [Proposizione 10.15], dunque un omeomorfismo.

Infatti, se \dot{f} è continua, si ha f' continua in quanto composizione di due funzioni continue; viceversa, se f' è continua, si ha $\dot{f} = (X \to X^* : \mathbf{x} \mapsto \langle \mathbf{x}, \cdot \rangle)^{-1} \circ f'$, continua in quanto composizione di due funzioni continue.

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\mathbf{x}_0 \in X$.

Sia $f: X \to \mathbb{R}$ la funzione definita ponendo $f(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_0\|^2$ per ogni $\mathbf{x} \in X$.

Si hanno i seguenti fatti:

- f è di classe C^1 , e si ha $f'(\mathbf{x}) = 2\langle \mathbf{x} \mathbf{x}_0, \cdot
 angle$ per ogni $\mathbf{x} \in X$.
- Se $(X, \langle \cdot, \cdot \rangle)$ è di Hilbert, si ha $\dot{f}(\mathbf{x}) = 2(\mathbf{x} \mathbf{x}_0)$ per ogni $\mathbf{x} \in X$ (dove \dot{f} denota la derivata nel senso dato per funzioni a valori reali).

Osservazioni preliminari

La mappa $X o X^*: \mathbf{x} \mapsto \langle \mathbf{x}, \cdot
angle$ è continua.

Infatti, fissato $\mathbf{x}_0 \in X$, per ogni $\mathbf{z} \in X$ si ha

$$|\langle \mathbf{x}, \mathbf{z} \rangle - \langle \mathbf{x}_0, \mathbf{z} \rangle| = |\langle \mathbf{x} - \mathbf{x}_0, \mathbf{z} \rangle|$$
 Per bilinearità di $\langle \cdot, \cdot \rangle$

$$\leq \|\mathbf{x} - \mathbf{x}_0\| \cdot \|\mathbf{z}\|$$

Per la disuguaglianza di Cauchy-Schwartz

Dunque si ha $\|\langle \mathbf{x}, \cdot \rangle - \langle \mathbf{x}_0, \cdot \rangle\|_{X^*} \le \|\mathbf{x} - \mathbf{x}_0\|$, per definizione di $\|\langle \mathbf{x}, \cdot \rangle - \langle \mathbf{x}_0, \cdot \rangle\|_{X^*}$.

Poiché si ha anche $\lim_{\mathbf{x} \to \mathbf{x}_0} \|\mathbf{x} - \mathbf{x}_0\| = 0$, segue allora per confronto che

$$\lim_{\mathbf{x} o \mathbf{x}_0} \langle \mathbf{x}, \cdot
angle = \langle \mathbf{x}_0, \cdot
angle.$$

Dimostrazione

Si provi che f è G-derivabile in X, con $f'(\mathbf{x}) = \langle 2(\mathbf{x} - \mathbf{x}_0), \cdot \rangle = 2\langle \mathbf{x} - \mathbf{x}_0, \cdot \rangle$ per ogni $\mathbf{x} \in X$;

Fissato $\mathbf{x} \in X$, si ha

$$\lim_{\lambda o 0} rac{f(\mathbf{x} + \lambda \mathbf{v}) - f(\mathbf{x})}{\lambda} = \lim_{\lambda o 0} rac{\|\mathbf{x} + \lambda \mathbf{v} - \mathbf{x}_0\|^2 - \|\mathbf{x} - \mathbf{x}_0\|^2}{\lambda}$$
 Per definizione di f

$$=\lim_{\lambda o 0}rac{\lambda^2\|\mathbf{v}\|^2+2\lambda\langle\mathbf{x}-\mathbf{x}_0,\mathbf{v}
angle}{\lambda}$$

Per definizione di $\|\cdot\|$ come norma indotta da $\langle\cdot,\cdot\rangle$, e per bilinearità di $\langle\cdot,\cdot\rangle$

$$=\lim_{\lambda o 0}\lambda\|\mathbf{v}\|^2+2\langle\mathbf{x}-\mathbf{x}_0,\mathbf{v}
angle=2\langle\mathbf{x}-\mathbf{x}_0,\mathbf{v}
angle.$$

Dunque,
$$f'(\mathbf{x}) = \langle 2(\mathbf{x} - \mathbf{x}_0), \cdot \rangle$$
.

La continuità di f' segue dall'osservazione preliminare.

Se X è di Hilbert, si ha $\dot{f}(\mathbf{x}) = 2(\mathbf{x} - \mathbf{x}_0)$ per definizione di \dot{f} .

Proposizione 16.3: Caratterizzazione della continuità in spazi metrici

Siano (X, d) e (Y, ρ) due spazi metrici.

Sia $x_0 \in X$.

Sia $f: X \to Y$.

Sono equivalenti le seguenti affermazioni:

- 1. f è continua in x_0 ;
- 2. Ogni successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a x_0 , ammette un'estratta $\{x_{n_k}\}_{k\in\mathbb{N}}$ tale che $\lim_k f(x_{n_k})=f(x_0)$.

Dimostrazione

Se f è continua in x_0 , essendo una funzione tra spazi metrici essa è ivi anche sequenzialmente continua; allora, ogni successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a x_0 è essa stessa tale che $\lim_n f(x_n)=f(x_0)$.

Per acquisire il viceversa, si provi la contronominale.

Si supponga dunque che f non sia continua in x_0 .

Si provi l'esistenza di una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a x_0 tale che, per ogni estratta $\{x_{n_k}\}_{k\in\mathbb{N}}$ si abbia $\lim_k f(x_{n_k})\neq f(x_0)$.

Allora, essendo una funzione tra spazi metrici, f non è neanche sequenzialmente continua in x_0 .

Cioè, esiste una successione $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a x_0 , tale che $\lim_n f(x_n)\neq f(x_0)$.

Esiste dunque un intorno U di x_0 tale che, per ogni $\nu \in \mathbb{N}$, esiste $n_{\nu} \geq \nu$ tale che $f(x_{n_{\nu}}) \notin U$.

Segue allora la costruzione induttiva di un'estratta $\{x_{n_k}\}_{k\in\mathbb{N}}$, tale che $f(x_{n_k}) \notin U$ per ogni $k \in \mathbb{N}$.

Infatti, per k = 1 si costruisce $n_1 \ge 1$ tale che $f(x_{n_1}) \notin U$;

costruito n_k , si costruisce $n_{k+1} \geq n_k$ tale che $f(x_{n_{k+1}}) \notin U$.

La successione $\{x_{n_k}\}_{k\in\mathbb{N}}$ converge a x_0 , essendo estratta di $\{x_n\}_{n\in\mathbb{N}}$ convergente a x_0 . avendo $f(x_{n_k}) \notin U$ per ogni $k \in \mathbb{N}$, ogni estratta $\{x_{n_{k_r}}\}_{r\in\mathbb{N}}$ è tale che $\lim_r f(x_{n_{k_r}}) \neq f(x_0)$.

Proposizione 16.4: Legame tra convergenza forte e debole in uno spazio con prodotto scalare

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ una successione in X.

Sia $\mathbf{x} \in X$.

Sono equivalenti le seguenti affermazioni:

- 1. $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ converge fortemente a \mathbf{x} , vale a dire $\lim_n \|\mathbf{x}_n \mathbf{x}\| = 0$;
- 2. $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ converge debolmente a \mathbf{x} e $\lim_n \|\mathbf{x}_n\| = \|\mathbf{x}\|$.

Se $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ converge fortemente a \mathbf{x} , tale successione converge ivi anche debolmente (Si veda l'[Osservazione 1] del capitolo 8); inoltre, si ha $\lim_n \|\mathbf{x}_n\| = \|\mathbf{x}\|$ per continuità della norma.

Si supponga ora che $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ converge debolmente a \mathbf{x} e $\lim_n \|\mathbf{x}_n\| = \|\mathbf{x}\|$.

per definizione di $\|\cdot\|$ come norma indotta da $\langle\cdot,\cdot\rangle$, e per bilinearità di $\langle\cdot,\cdot\rangle$, si ha $\|\mathbf{x}_n - \mathbf{x}\|^2 = \|\mathbf{x}_n\|^2 + \|\mathbf{x}\|^2 - 2\langle\mathbf{x}_n,\mathbf{x}\rangle$, per ogni $n \in \mathbb{N}$.

Per ipotesi, si ha $\lim_n \|\mathbf{x}_n\| = \|\mathbf{x}\|$, dunque $\lim_n \|\mathbf{x}_n\|^2 = \|\mathbf{x}\|^2$; essendo $\langle \cdot, \mathbf{x} \rangle \in X^*$, per ipotesi di convergenza debole si ha $\lim_n \langle \mathbf{x}_n, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle = \|\mathbf{x}\|^2$.

Ne segue allora che $\lim_{n} \|\mathbf{x}_{n} - \mathbf{x}\|^{2} = \lim_{n} \|\mathbf{x}_{n}\|^{2} + \|\mathbf{x}\|^{2} - 2\langle\mathbf{x}_{n},\mathbf{x}\rangle = \|\mathbf{x}\|^{2} + \|\mathbf{x}\|^{2} - 2\|\mathbf{x}\|^{2} = 0$, dunque

 $\lim_n \|\mathbf{x}_n - \mathbf{x}\| = 0.$

Proposizione 16.5: Stime dei limiti massimo e minimo di una somma di successioni

Siano $\{\alpha_n\}_{n\in\mathbb{N}}, \{\beta_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ due successioni di numeri reali.

Si ha:

- $\lim \inf_n (\alpha_n + \beta_n) \geq \liminf_n \alpha_n + \liminf_n \beta_n;$
- 2. $\limsup_{n} (\alpha_n + \beta_n) \ge \limsup_{n} \alpha_n + \liminf_{n} \beta_n$.

Si ricordi che, data una successione $\{x_n\}_{n\in\mathbb{N}}$, si ha

$$\liminf_n x_n = \lim_n \inf_{k \in \mathbb{N} \, , \, k \geq n} x_n$$
 ;

$$\limsup_n x_n = \lim_n \sup_{k \in \mathbb{N} \ , \ k \geq n} x_n.$$

Si provi il punto 1.

Per ogni $n \in \mathbb{N}$, si ha

$$\inf_{k\in\mathbb{N}\,,\,k\geq n}(lpha_n+eta_n)\geq \inf_{k\in\mathbb{N}\,,\,k\geq n}lpha_n+\inf_{k\in\mathbb{N}\,,\,k\geq n}eta_n;$$

per confronto dei limiti segue allora che

$$\lim_n \inf_{k \in \mathbb{N} \ , \, k \geq n} (lpha_n + eta_n) \geq \lim_n \left(\inf_{k \in \mathbb{N} \ , \, k \geq n} lpha_n + \inf_{k \in \mathbb{N} \ , \, k \geq n} eta_n
ight)$$

$$=\lim_n \inf_{k\in\mathbb{N}\,,\,k\geq n} lpha_n + \lim_n \inf_{k\in\mathbb{N}\,,\,k\geq n} eta_n$$
 , ossia

$$\liminf_n (\alpha_n + \beta_n) \ge \liminf_n \alpha_n + \liminf_n \beta_n.$$

Si provi ora il punto 2.

Per ogni $n \in \mathbb{N}$, si ha

$$\sup_{k\in\mathbb{N}\,,\,k\geq n}\alpha_n=\sup_{k\in\mathbb{N}\,,\,k\geq n}(\alpha_n+\beta_n-\beta_n)$$

$$\leq \sup_{k \in \mathbb{N} \, , \, k \geq n} (\alpha_n + \beta_n) + \sup_{k \in \mathbb{N} \, , \, k \geq n} (-\beta_n)$$

$$=\sup_{k\in\mathbb{N}\,,\,k\geq n}(lpha_n+eta_n)-\inf_{k\in\mathbb{N}\,,\,k\geq n}eta_n$$
 ;

per confronto dei limiti segue allora che

$$egin{aligned} &\lim_n \sup_{k \in \mathbb{N} \;,\; k \geq n} lpha_n \leq \lim_n \left(\sup_{k \in \mathbb{N} \;,\; k \geq n} (lpha_n + eta_n) - \inf_{k \in \mathbb{N} \;,\; k \geq n} eta_n
ight) \ &= \lim_n \sup_{k \in \mathbb{N} \;,\; k \geq n} (lpha_n + eta_n) - \lim_n \inf_{k \in \mathbb{N} \;,\; k \geq n} eta_n \;, \; ext{ossia} \ &\lim\sup_n (lpha_n + eta_n) \geq \lim\sup_n lpha_n + \liminf_n eta_n. \end{aligned}$$

Proposizione 16.6: Convergenza del prodotto scalare

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio con prodotto scalare.

Siano $\mathbf{x}, \mathbf{y} \in X$.

Sia $\{\mathbf{x}_n\}_{n\in\mathbb{N}}\subseteq X$ una successione convergente a \mathbf{x} .

Sia $\{\mathbf y_n\}_{n\in\mathbb N}\subseteq X$ una successione limitata, convergente debolmente a $\mathbf y$.

Allora, $\lim_{n} \langle \mathbf{x}_n, \mathbf{y}_n \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.

Dimostrazione

Essendo $\{\mathbf{y}_n\}_{n\in\mathbb{N}}$ limitata, sia M>0 tale che $\|\mathbf{y}_n\|\leq M$ per ogni $n\in\mathbb{N}$.

Per ogni $n \in \mathbb{N}$, si ha

$$\begin{aligned} |\langle \mathbf{x}_{n}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| &= |\langle \mathbf{x}_{n}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y}_{n} \rangle + \langle \mathbf{x}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| \\ &\leq |\langle \mathbf{x}_{n}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y}_{n} \rangle| + |\langle \mathbf{x}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| & \text{Disuguaglianza triangolare} \\ &= |\langle \mathbf{x}_{n} - \mathbf{x}, \mathbf{y}_{n} \rangle| + |\langle \mathbf{x}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| & \text{Bilinearità di } \langle \cdot, \cdot \rangle \\ &\leq ||\mathbf{x}_{n} - \mathbf{x}|| \cdot ||\mathbf{y}_{n}|| + |\langle \mathbf{x}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| & \text{Bilinearità di } \langle \cdot, \cdot \rangle \\ &\leq M||\mathbf{x}_{n} - \mathbf{x}|| + |\langle \mathbf{x}, \mathbf{y}_{n} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| & \text{Per costruzione di } M \end{aligned}$$

Poiché $\lim_{n} \|\mathbf{x}_n - \mathbf{x}\| = 0$ per convergenza di $\{\mathbf{x}_n\}_{n \in \mathbb{N}}$ a \mathbf{x} e $\lim_{n} |\langle \mathbf{x}, \mathbf{y}_n \rangle - \langle \mathbf{x}, \mathbf{y} \rangle| = 0$ per convergenza debole di $\{\mathbf{y}_n\}_{n \in \mathbb{N}}$ a \mathbf{y} , si ha la tesi.

Teorema 16.7: Teorema dell'omeomorfismo

Sia $(X, \langle \cdot, \cdot \rangle)$ uno spazio di Hilbert.

Sia $f:X o\mathbb{R}$ una funzione convessa, di classe C^1 .

Sia $\Phi: X \to X$ la funzione definita ponendo $\Phi(\mathbf{x}) = \mathbf{x} + \dot{f}(\mathbf{x})$ per ogni $\mathbf{x} \in X$.

 Φ è un omeomorfismo.

Osservazioni preliminari

Fissato $\mathbf{y} \in X$, si definisca la funzione $J_{\mathbf{y}}: X \to \mathbb{R}$ ponendo

$$J_{\mathbf{y}}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + f(\mathbf{x})$$
 per ogni $\mathbf{x} \in X$.

 $J_{\mathbf{y}}$ è strettamente convessa.

Infatti, f è convessa per ipotesi, e la mappa $X \to \mathbb{R} : \mathbf{x} \mapsto \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2$ è strettamente convessa per la [Proposizione 10.10]. Allora, $J_{\mathbf{y}}$ è strettamente convessa essendo somma di una funzione convessa e di una strettamente convessa.

 $J_{\mathbf{y}}$ è di classe C^1 , con $\dot{J}_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} - \mathbf{y} + \dot{f}(\mathbf{x})$ per ogni $\mathbf{x} \in X$.

Infatti, f è di classe C^1 per ipotesi, e la mappa $X \to \mathbb{R} : \mathbf{x} \mapsto \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2$ è di classe C^1 per la [Proposizione 16.2]. Allora, $J_{\mathbf{v}}$ è di classe C^1 essendo somma di funzioni di classe C^1 ;

dalla derivazione delle combinazioni lineari e dalla [Proposizione 16.2] segue allora $\dot{J}_{\mathbf{y}}(\mathbf{x}) = \mathbf{x} - \mathbf{y} + \dot{f}(\mathbf{x})$ per ogni $\mathbf{x} \in X$.

Si ha la disuguaglianza $J_{\mathbf{y}}(\mathbf{x}) \geq \frac{1}{2} \|\mathbf{x}\|^2 - (\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}\|) \|\mathbf{x}\| + \frac{1}{2} \|\mathbf{y}\|^2 + f(\mathbf{0})$ per ogni $\mathbf{x} \in X$.

Infatti, fissato $\mathbf{x} \in X$ si ha

$$J_{\mathbf{y}}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + f(\mathbf{x})$$
Per definizione di $J_{\mathbf{y}}$

$$= \frac{1}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{y}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle + f(\mathbf{x})$$
Per definizione di $\|\cdot\|$ come norma indotta da $\langle \cdot, \cdot \rangle$, e per bilinearità di $\langle \cdot, \cdot \rangle$

$$\geq \frac{1}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{y}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle + f(\mathbf{0}) + f'(\mathbf{0})(\mathbf{x})$$
Essendo f convessa e G -derivabile in A , si ha $f(\mathbf{x}) \geq f(\mathbf{0}) + f'(\mathbf{0})(\mathbf{x})$
per la [Proposizione 15.2]
$$= \frac{1}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{y}\|^2 - \langle \mathbf{x}, \mathbf{y} \rangle + f(\mathbf{0}) + \langle \dot{f}(\mathbf{0}), \mathbf{x} \rangle$$

$$f'(\mathbf{0})(\mathbf{x}) = \langle \dot{f}(\mathbf{0}), \mathbf{x} \rangle \text{ per definizione di } \dot{f}(\mathbf{0})$$

$$\geq \frac{1}{2} \|\mathbf{x}\|^2 + \frac{1}{2} \|\mathbf{y}\|^2 - \|\mathbf{x}\| \|\mathbf{y}\| + f(\mathbf{0}) - \|\dot{f}(\mathbf{0})\| \|\mathbf{x}\|$$

$$\langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\| \|\mathbf{y}\| \in \langle \dot{f}(\mathbf{0}), \mathbf{x} \rangle \geq -\|\dot{f}(\mathbf{0})\| \|\mathbf{x}\|$$
 per la disuguaglianza di Cauchy-Schwartz
$$= \frac{1}{2} \|\mathbf{x}\|^2 - (\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}\|) \|\mathbf{x}\| + \frac{1}{2} \|\mathbf{y}\|^2 + f(\mathbf{0})$$

 $J_{\mathbf{v}}$ è coerciva.

Infatti, per la disuguaglianza appena ottenuta si ha $J_{\mathbf{y}}(\mathbf{x}) \geq \frac{1}{2} \|\mathbf{x}\|^2 - \left(\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}\|\right) \|\mathbf{x}\| + \frac{1}{2} \|\mathbf{y}\|^2 + f(\mathbf{0})$ per ogni $\mathbf{x} \in X$; poiché $\lim_{\|\mathbf{x}\| \to +\infty} \frac{1}{2} \|\mathbf{x}\|^2 - \left(\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}\|\right) \|\mathbf{x}\| + \frac{1}{2} \|\mathbf{y}\|^2 + f(\mathbf{0}) = +\infty$, segue per confronto che $\lim_{\|\mathbf{x}\| \to +\infty} J_{\mathbf{y}}(\mathbf{x}) = +\infty$.

Dimostrazione

 Φ è continua;

infatti, essa è somma dell'identità su X, continua, con \dot{f} , continua per la [Proposizione 16.1] essendo f di classe C^1 .

Si provi ora che Φ è biunivoca.

Si fissi dunque $\mathbf{y} \in X$, e si mostri che esiste un unico $\mathbf{x} \in X$ tale che $\Phi(\mathbf{x}) = \mathbf{y}$.

Si osserva che $\Phi(\mathbf{x}) = \mathbf{y}$ se e solo se \mathbf{x} è di minimo assoluto per $J_{\mathbf{y}}$; infatti,

$$\Phi(\mathbf{x}) = \mathbf{y} \iff \mathbf{x} + \dot{f}(\mathbf{x}) = \mathbf{y}$$
 Per definizione di Φ

$$\iff \mathbf{x} - \mathbf{y} + \dot{f}(\mathbf{x}) = \mathbf{0}$$

$$\iff$$
 $\dot{J}_{\mathbf{y}}(\mathbf{x}) = \mathbf{0}$ $\mathbf{x} - \mathbf{y} + \dot{f}(\mathbf{x}) = \dot{J}_{\mathbf{y}}(\mathbf{x})$ dalle osservazioni preliminari

$$\leftarrow$$
 x è di minimo assoluto per $\dot{J}_{\mathbf{y}}$ \leftarrow segue dal teorema di Fermat ([Proposizione 12.6]) \Rightarrow segue dal [Corollario 15.2]

Basta quindi mostrare che $J_{\mathbf{y}}$ ammette un unico punto di minimo assoluto.

Dalle osservazioni preliminari segue che $J_{\mathbf{y}}$ è semi-continua inferiormente in quanto di classe C^1 , quasi-convessa in quanto strettamente convessa, e coerciva.

Per la [Proposizione 10.7], $J_{\mathbf{y}}$ ammette allora minimo assoluto; per la [Proposizione 10.9], tale minimo è unico.

Dunque, Φ è biunivoca;

inoltre, per quanto ottenuto si osserva che $\Phi^{-1}(\mathbf{y})$ è l'unico punto di minimo di $J_{\mathbf{y}}$, per ogni $\mathbf{y} \in X$.

Resta da provare che Φ^{-1} è continua.

Si fissi dunque $\mathbf{y} \in X$;

in virtù della [Proposizione 16.3], basta provare che ogni successione $\{\mathbf{y}_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a \mathbf{y} ammette un'estratta $\{\mathbf{y}_{n_k}\}_{k\in\mathbb{N}}$ tale che $\lim_k \Phi^{-1}(\mathbf{y}_{n_k}) = \Phi^{-1}(\mathbf{y})$.

Si fissi dunque una successione $\{y_n\}_{n\in\mathbb{N}}\subseteq X$ convergente a y.

Si osserva intanto che tale successione è limitata in quanto convergente; dunque, sia M > 0 tale che $\|\mathbf{y}_n\| \leq M$ per ogni $n \in \mathbb{N}$.

Per ogni $n \in \mathbb{N}$, si ponga $\mathbf{z}_n = \Phi^{-1}(\mathbf{y}_n)$; si ha

$$J_{\mathbf{y}_n}(\mathbf{x}) \geq J_{\mathbf{y}_n}(\mathbf{z}_n) \text{ per ogni } \mathbf{x} \in X$$
 Essendo $\mathbf{z}_n = \Phi^{-1}(\mathbf{y}_n)$ di minimo assoluto per $J_{\mathbf{y}_n}$
$$\Rightarrow J_{\mathbf{y}_n}(\mathbf{0}) \geq J_{\mathbf{y}_n}(\mathbf{z}_n)$$
 Per definizione di $J_{\mathbf{y}_n}$
$$\geq \frac{1}{2} \|\mathbf{z}_n\|^2 - (\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}_n\|) \|\mathbf{z}_n\| + \frac{1}{2} \|\mathbf{y}_n\|^2 + f(\mathbf{0})$$
 Per la disuguaglianza ottenuta tra le osservazioni preliminari
$$\Rightarrow 0 \geq \frac{1}{2} \|\mathbf{z}_n\|^2 - (\|\dot{f}(\mathbf{0})\| + \|\mathbf{y}_n\|) \|\mathbf{z}_n\|$$
 Per costruzione di M

Dall'ultima disuguaglianza ne viene che $\|\mathbf{z}_n\| \leq 2 \big(\|\dot{f}(\mathbf{0})\| + M \big)$ per ogni $n \in \mathbb{N}$.

Allora, $\{\mathbf{z}_n\}_{n\in\mathbb{N}}\subseteq \overline{B}(\mathbf{0},2(\|\dot{f}(\mathbf{0})\|+M));$

l'insieme $\overline{B}(\mathbf{0}, 2(\|\dot{f}(\mathbf{0})\| + M))$ è chiuso, convesso e limitato, dunque debolmente compatto per la [Proposizione 8.3] e la [Proposizione 9.2], dunque sequenzialmente debolmente compatto per il teorema di Eberlein-Schmulian ([Teorema 10.4]).

Ne segue che $\{\mathbf{z}_n\}_{n\in\mathbb{N}}$ ammette un'estratta $\{\mathbf{z}_{n_k}\}_{k\in\mathbb{N}}$ convergente debolmente a un certo $\mathbf{z}\in X$.

Si provi che $\mathbf{z} = \Phi^{-1}(\mathbf{y})$ e che la convergenza di $\{\mathbf{z}_{n_k}\}_{k \in \mathbb{N}}$ a \mathbf{z} è forte; così facendo, la tesi sarà acquisita in quanto $\lim_k \Phi^{-1}(\mathbf{y}_{n_k}) = \lim_k \mathbf{z}_{n_k} = \mathbf{z} = \Phi^{-1}(\mathbf{y})$.

Si provi dapprima che $\mathbf{z} = \Phi^{-1}(\mathbf{y})$, mostrando che \mathbf{z} è di minimo assoluto per $J_{\mathbf{y}}$; sia quindi $\mathbf{x} \in X$, e si mostri che $J_{\mathbf{v}}(\mathbf{x}) \geq J_{\mathbf{v}}(\mathbf{z})$.

Si ha

$$J_{\mathbf{y}_{n_k}}(\mathbf{x}) \geq J_{\mathbf{y}_{n_k}}(\mathbf{z}_{n_k})$$
 per ogni $k \in \mathbb{N}$

Essendo $\mathbf{z}_{n_k} = \Phi^{-1}(\mathbf{y}_{n_k})$ di minimo assoluto per $J_{\mathbf{y}_{n_k}}$

$$\implies \frac{1}{2}\|\mathbf{x}-\mathbf{y}_{n_k}\|^2+f(\mathbf{x})\geq \frac{1}{2}\|\mathbf{z}_{n_k}-\mathbf{y}_{n_k}\|^2+f(\mathbf{z}_{n_k})$$
 per ogni $k\in\mathbb{N}$

Per definizione di $J_{\mathbf{y}_{n_k}}$

$$\implies \liminf_k rac{1}{2}\|\mathbf{x} - \mathbf{y}_{n_k}\|^2 + f(\mathbf{x}) \geq \liminf_k rac{1}{2}\|\mathbf{z}_{n_k} - \mathbf{y}_{n_k}\|^2 + f(\mathbf{z}_{n_k})$$

Per confronto dei limiti minimi

$$\implies rac{1}{2}\|\mathbf{x}-\mathbf{y}\|^2 + f(\mathbf{x}) \geq \liminf_k rac{1}{2}\|\mathbf{z}_{n_k} - \mathbf{y}_{n_k}\|^2 + f(\mathbf{z}_{n_k})$$

In quanto $\lim_k \mathbf{y}_{n_k} = \mathbf{y}$

$$0 \geq \liminf_k rac{1}{2} \|\mathbf{z}_{n_k} - \mathbf{y}_{n_k}\|^2 + \liminf_k f(\mathbf{z}_{n_k})$$

Per la [Proposizione 16.5]

$$\geq rac{1}{2} \|\mathbf{z} - \mathbf{y}\|^2 + f(\mathbf{z})$$

La successione $\{\mathbf{z}_{n_k}\}_{k\in\mathbb{N}}$ converge debolmente a \mathbf{z} ; la successione $\{\mathbf{z}_{n_k} - \mathbf{y}_{n_k}\}_{k\in\mathbb{N}}$ converge debolmente a $\mathbf{z} - \mathbf{y}$, in quanto $\{\mathbf{z}_{n_k}\}_{k\in\mathbb{N}}$ converge debolmente a \mathbf{z} e $\{\mathbf{y}_{n_k}\}_{k\in\mathbb{N}}$ converge fortemente, dunque debolmente, a \mathbf{y} ;

le funzioni $f \in X \to \mathbb{R} : \mathbf{x} \mapsto \frac{1}{2} ||\mathbf{x} - \mathbf{y}||^2$ sono debolmente semicontinue inferiormente, essendo continue e convesse (Capitolo 10, Lemma 2)

$$\implies J_{\mathbf{v}}(\mathbf{x}) \geq J_{\mathbf{v}}(\mathbf{z})$$

Per definizione di $J_{\mathbf{y}}$

Resta da provare che $\{\mathbf{z}_{n_k}\}_{k\in\mathbb{N}}$ converge fortemente a \mathbf{z} .

Avendo già acquisita la convergenza debole, in virtù della [Proposizione 16.4] basta mostrare che $\lim_{k} \|\mathbf{z}_{n_k}\| = \|\mathbf{z}\|$.

Si ha

$$J_{\mathbf{y}_{n_k}}(\mathbf{x}) \geq J_{\mathbf{y}_{n_k}}(\mathbf{z}_{n_k})$$
 per ogni $k \in \mathbb{N}$ e per ogni $\mathbf{x} \in X$

Essendo $\mathbf{z}_{n_k} = \Phi^{-1}(\mathbf{y}_{n_k})$ di minimo assoluto per $J_{\mathbf{y}_{n_k}}$

$$\implies J_{\mathbf{y}_{n_k}}(\mathbf{z}) \geq J_{\mathbf{y}_{n_k}}(\mathbf{z}_{n_k})$$
 per ogni $k \in \mathbb{N}$

$$\implies rac{1}{2}\|\mathbf{z}-\mathbf{y}_{n_k}\|^2+f(\mathbf{z})\geq rac{1}{2}\|\mathbf{z}_{n_k}-\mathbf{y}_{n_k}\|^2+f(\mathbf{z}_{n_k})$$
 per ogni $k\in\mathbb{N}$

Per definizione di $J_{\mathbf{y}_{n_k}}$

$$\implies \frac{1}{2}\|\mathbf{z}\|^2 + \frac{1}{2}\|\mathbf{y}_{n_k}\|^2 - \langle \mathbf{z}, \mathbf{y}_{n_k} \rangle + f(\mathbf{z}) \ge \frac{1}{2}\|\mathbf{z}_{n_k}\|^2 + \frac{1}{2}\|\mathbf{y}_{n_k}\|^2 - \langle \mathbf{z}_{n_k}, \mathbf{y}_{n_k} \rangle + f(\mathbf{z}_{n_k}) \quad \text{Per dependence}$$
per ogni $k \in \mathbb{N}$
norm biline

Per definizione di
$$\|\cdot\|$$
 come norma indotta da $\langle\cdot,\cdot\rangle$, e per bilinearità di $\langle\cdot,\cdot\rangle$

$$\implies rac{1}{2}\|\mathbf{z}\|^2 - \langle \mathbf{z}, \mathbf{y}_{n_k}
angle + f(\mathbf{z}) \geq rac{1}{2}\|\mathbf{z}_{n_k}\|^2 - \langle \mathbf{z}_{n_k}, \mathbf{y}_{n_k}
angle + f(\mathbf{z}_{n_k})$$
 per ogni $k \in \mathbb{N}$

$$\implies rac{1}{2}\|\mathbf{z}\|^2+f(\mathbf{z})\geq rac{1}{2}\|\mathbf{z}_{n_k}\|^2-\langle\mathbf{z}-\mathbf{z}_{n_k},\mathbf{y}_{n_k}
angle+f(\mathbf{z}_{n_k})$$
 per ogni $k\in\mathbb{N}$

$$\implies rac{1}{2}\|\mathbf{z}\|^2 + f(\mathbf{z}) \geq \limsup_k rac{1}{2}\|\mathbf{z}_{n_k}\|^2 - \langle \mathbf{z} - \mathbf{z}_{n_k}, \mathbf{y}_{n_k}
angle + f(\mathbf{z}_{n_k})$$

$$0 \geq \limsup_k rac{1}{2} \|\mathbf{z}_{n_k}\|^2 + f(\mathbf{z}_{n_k}) - \liminf_k \langle \mathbf{z} - \mathbf{z}_{n_k}, \mathbf{y}_{n_k}
angle$$

$$0 \geq \limsup_k rac{1}{2} \|\mathbf{z}_{n_k}\|^2 + \liminf_k f(\mathbf{z}_{n_k}) - \liminf_k \langle \mathbf{z} - \mathbf{z}_{n_k}, \mathbf{y}_{n_k}
angle$$

$$\geq \limsup_k rac{1}{2} \|\mathbf{z}_{n_k}\|^2 + f(\mathbf{z})$$

Per bilinearità di
$$\langle \cdot, \cdot \rangle$$

$$\lim_{k}\inf f(\mathbf{z}_{n_{k}}) \geq f(\mathbf{z})$$
 in quanto $\{\mathbf{z}_{n_{k}}\}_{k\in\mathbb{N}}$ converge debolmente a \mathbf{z} , e avendo osservato precedentemente che f è debolmente semicontinua inferiormente;

$$\lim_{k} \langle \mathbf{z} - \mathbf{z}_{n_k}, \mathbf{y}_{n_k} \rangle = \langle \mathbf{0}, \mathbf{y} \rangle = 0$$
per la [Proposizione 16.6], essendo
$$\{\mathbf{y}_{n_k}\}_{k \in \mathbb{N}} \text{ convergente a } \mathbf{y}, \text{ mentre } \{\mathbf{z}_{n_k} - \mathbf{z}\}_{k \in \mathbb{N}} \text{ è limitata (in quanto è stato visto che } \{\mathbf{z}_n\}_{n \in \mathbb{N}} \text{ è limitata) e converge debolmente a}$$

$$\mathbf{0}$$

Confrontando primo e ultimo membro dell'ultima catena di disuguaglianze ricavata, si ottiene $|\Longrightarrow|\frac{1}{2}\|\mathbf{z}\|^2\geq \limsup_k \frac{1}{2}\|\mathbf{z}_{n_k}\|^2$.

D'altra parte, si ha $\liminf_k \frac{1}{2} \|\mathbf{z}_{n_k}\|^2 \ge \frac{1}{2} \|\mathbf{z}\|^2$, in quanto $\{\mathbf{z}_{n_k}\}_{k \in \mathbb{N}}$ converge debolmente a \mathbf{z} , e la mappa $X \to \mathbb{R} : \mathbf{x} \mapsto \frac{1}{2} \|\mathbf{x}\|^2$ è debolmente semicontinua inferiormente, essendo continua e convessa (Capitolo 10, Lemma 2).

Ne viene pertanto che $\lim_{k} \frac{1}{2} \|\mathbf{z}_{n_k}\|^2 = \frac{1}{2} \|\mathbf{z}\|^2$, cioè $\lim_{k} \frac{1}{2} \|\mathbf{z}_{n_k}\| = \frac{1}{2} \|\mathbf{z}\|$.

La dimostrazione è allora conclusa.

L