Data Analysis Project 1 MA8701

Group 5: Yellow Submarine

15 February, 2021

In this project, we analyse a real dataset using shrinkage methods from part 1 of the MA8701 course.

Note on Open Science

To pursue the idea of reproducible research, the chosen dataset as well as the code for our analysis are publicly accessible:

- dataset: https://data.ub.uni-muenchen.de/2/1/miete03.asc
- code: https://github.com/FlorianBeiser/MA8701

The Data Set

For our project work we use the Munich Rent 2003 data set as described in https://rdrr.io/cran/LinRegInter active/man/munichrent03.html. The data set has 12 original covariates, where a brief introduction to these parameters is listed below (in brackets the type of the covariate is explicated), and 2053 observations are available:

- nmqm: rent per square meter (double)
- wfl: area in square meters (int)
- rooms: number of rooms (int)
- bj: year of construction (Factor)
- bez: district (Factor)
- wohngut: quality of location (int)
- wohnbest: high quality of location (int)
- ww0: hot water supply available (int)
- zh0: central heating (int)
- badkach0: tiled bathroom (int)
- badextra: high-quality bathroom (int)
- kueche: upscale kitchen equipment (int)

and the response

• nm: rental price (double).

The label "double" naturally stands for numerical values, "int" categorizes parameters with integer values, and "Factor" symbolize parameter taking a certain number of levels - where in contrast to integers a higher level does not necessarily mean an improvement.

Since the price per square meter nmqm multiplied with the area wfl directly gives the rental price nm which we define as the response in the system, it does not make sense to keep both values. Hence, we exclude nmqm from the data set to avoid it consuming all the significance in the coming data analysis.

Figure 1 shows the correlation between covariates ignoring the factorials and reveals that the dataset may suffer from a very light multi-colinearity.

Figure 1: Exploration of multi-colinearity in the data set

However, the factorial variable bj and bez introduce 44 and 25 levels, respectively, leading to relatively unclear dependencies between the full covariate set (including factorial variables) and the response, which makes this dataset suitable for a regression analysis and the application of shrinkage methods.

Data Analysis

Subsequently, we start with a plain linear regression model as reference such that we can particularly point out the benefits of shrinkage approaches. As shrinkage methods, we employ the ridge, the lasso and the group lasso. The latter approach seems to be very well suited for our data set, as it allows to take the factorial variables as a single unit for shrinkage.

Regression

We start the data analysis with a vanilla LM regression for reference using R's internal 1m functionality

The the regression results show a lot of significant covariates. As maybe expected, the area wfl is strongly related to the rent price, however confusingly, the significance of different levels of the years of construction bj and districts bez varies a lot. From those both observations, it is not possible, to extract clear data analysis results, which also would match our interpretation of the problem.

Ridge Shrinkage

As first shrinkage method, we consider the ridge regression that uses Tikhonov regularisation in the model, where we utilize the glmnet library for its implementation in R. Since ridge introduces the additional tuning parameter λ we perform cross validation for the model selection, i.e. for the choice of the optimal λ , where we follow the advice in the ELS to choose λ as the one with minimal CV-error plus one standard deviation of the CV-error.

In Figure 2 on the left, the cross validation for different values of the regularization parameter λ is shown. On the right, the coefficients for the individual covariates are depicted agains $\log \lambda$, where the optimal λ -choice is highlighted. As typical for ridge, the coefficients are shrinked towards 0, but all parameters remain positive weights. This makes the outcome still hard to interpret for our practical data set at hand.

Figure 2: Model selection for ridge shrinkage

Lasso

In contrast to the previous ridge regression, the lasso adds L_1 -regularisation to the regression problem. As before, the implementation in R relies on the glmnet library and the hyperparameter λ is tuned as aforementioned.

Figure 3: Model selection for lasso shrinkage

In Figure 3 on the left, the cross validation for different values of the regularization parameter λ is shown. On the right, we again see the model coefficients of the covariate set plotted against $\log \lambda$ where the optimal λ chosen by cross validation and the decision rule in ELS is highlighted. Finally and as expected, some coefficients are shrinked to 0. However for the optimal λ , some levels of the construction years bj and some of the districts bez are shrinked to 0 and other would be still significant. For the practical model problem, this is a non-intuitive behaviour.

Group lasso

The group lasso allows to gather some of the covariates and treat those with the same coefficient jointly in the L_1 -regularised problem. For the implementation in R we utilize the grplasso library. Naturally, we group the different levels of the factorial variables, i.e. the years of construction bj and the different levels for the districts bez together, respectively.

Again we employ the same model selection criterion via cross validation as above, but as grplasso does not contain a built in cv function of our knowledge, we implement it in R using the gglasso library. In the cross validation procedure, we can observe sudden jumps when a new group is included or shrinked from the model. Since the calculatations either include all or none of the levels of the factorial variables, this can lead to a jump in the number of parameters from 9 to 53 in a single step on the lambda grid.

Figure 4: Model selection for group lasso

In Figure 4 on the left, the cross validation for different values of the regularization parameter λ is shown. (NB, in contrast to the previous packages, **gglasso** does not show **nzeros**, the number of active covariates per λ , in the head line above the plot) The jumps when a new group of covariates are included in the model are clearly visible. On the right, we again depict the coefficients of the covariates against the log λ and highlight the optimal hyperparameter. By construction, all levels of a factorial variable are shrinked to zero simultaneously. This means that either all levels remain in the model or all levels are excluded, which corresponds better to the practical interpretation of those variables.

Summary

```
## 14 x 4 sparse Matrix of class "dgCMatrix"
##
                 vanilla LS
                                   ridge general lasso group lasso
##
                 162.310441
                              189.426083
                                             119.818077
                                                         105.441191
   (Intercept)
## wfl
                   6.921638
                               4.218308
                                              6.395661
                                                           7.417871
##
  rooms
                 -12.919931
                               34.176508
                                                         -23.020781
## bj1998.5
                 119.079298
                              88.120257
                                             47.543100
## bj1999
                  47.001514
                               21.768019
## bez15
                 -85.041679
                              -16.891184
## bez16
                -109.255107
                              -45.710723
                                             -13.888054
## wohngut
                  24.911148
                              30.820570
                                             36.368780
                                                          37.895305
## wohnbest
                 123.264686
                             119.790433
                                             113.137794
                                                          64.116043
##
  Oww
                -173.087458
                            -142.866851
                                           -155.530513
                                                        -126.661696
##
  zh0
                 -82.624164
                              -82.303060
                                             -80.904162
                                                         -93.773532
                              -32.295839
                                             -32.094845
                                                         -37.658891
## badkach0
                 -34.489575
                  48.627634
                                                          38.736540
## badextra
                               63.433910
                                             39.534779
## kueche
                 101.861941
                              94.252417
                                             104.214296
                                                         106.457053
```

Lastly, we depict a subset of 14 parameter estimates from the methods presented in this report, with most of the grouped covariates for bez and bj removed for simplicity.

By including two estimated parameters from bez and bj, we demonstrate the non-intuitive behaviour of the general lasso. We observe that the bez and bj parameters not shrinked by the general lasso, corresponds to the highly significant covariates in the vanilla LS. Furthermore, there is a continuous shrinkage of the grouped covariates, starting from vanilla LS, shrinked in rigde and then further in general lasso, before finally resulting in zero for the grouped lasso. These trends are repeated for all parameter estimates in bez and bj, including the ones not listed above.

For the non grouped covariates however, the shrinkage is moving in a bumpy pace, by sometimes being shrinked and other times in fact increased when compared to the Vanilla LS.

@HMO How to explain this last part???? Do we need to include it? I am a true believer of the less you know the less you say

Inference

Can we afford a test set?

The data set is presumably too small to divide it into a training and a test set. We investigate this assumption by pretending an 80/20 training-test split for 100 different random splittings and keeping track of the response mean of the test set.

The variance of the test mean is more than 121, which means that depending on the split huge variations in the test data would be introduced, whereby the test data cannot be used for a proper representation of the original data set. This justifies why we cannot afford a split.

Bootstrapping

As seen before, we cannot afford a split into test and training set for our data set, therefore we use bootstrapping for inference. Bootstrap can be applied here to find the proportion of times each covariate is shrinked to zero. So it is a way of validation.

Figure 5: Boxplot of the bootstrapped general lasso coefficients

Figure 6: Boxplot of the bootstrapped group lasso selected coefficients

The boxplot 5 and 6 validates our motivation to use group lasso. The general lasso coefficients as depicted in 5 shows a huge variablity in the factorial variable regions, where bj and bez have large span over the coefficient range. While the group lasso as in 6 shrinks the corresponding coefficients to zero. It coincides with the efficacy of using grouplasso for this specific dataset with mulitple factorial covariates. Since many of

those coefficients are shrinked to zeros in the group lasso boxplot, as opposed to the general lasso boxplot, thereby it is logical to only include some of the coefficients where they show huge variation in the counterpart general lasso boxplot for the factorial covariates bj and bez as a comparison.

So to conclude, one can tell group lasso seems working suitably for this specific case where its categorical covariates have many groups. Ridge regression does not shrink any parameters dramatically while lasso does a bit on the shrinkage, but the most shrinked contributation is from group lasso.

Conclusion

In this project, we have chosen a practical data set which contains data on rental prices in Munich (two of the group members are practically familiar with the difficult housing situation in Munich and it was appealing to analyse this statistically). For the data analysis, the factorial variables needed special attention. A plain vanilla and ridge regression were not capable to give explainable outcomes. Likewise, the result of the lasso was contra-intuitive in the unclear handling of the factorial variables. Finally, the group lasso where a factorial variable can be arranged together leads to an interpretable shrinkage conclusion, where all variables except the factorial are selected for the optimal hyperparemeter choice. From the bootstrapping validation, it suffices to illustrate the reason why we choose the group lasso method for this specific method as it has many factorial covariates. It can also be concluded from the boxplots that the variability of the coefficients seem to be high enough which hinder the implementation of a test set.