МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №1 по курсу «СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ АСОИУ»

Тема: «Разведочный анализ данных. Исследование и визуализация данных»

ИСПОЛНИТЕЛЬ:	Чертилин А.А. _{Фио}
группа ИУ5-22М	подпись
	""2019 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е. _{ФИО}
	подпись
	""2019 г.

Москва - 2018

Цель лабораторной работы

Цель лабораторной работы: изучение различных методов визуализация данных.

Задание

Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов на Kaggle.com. Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

Создать ноутбук, который содержит следующие разделы:

- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков. Сформировать отчет и разместить его в своем репозитории на github.

Описание датасета

Датасет HeHeart Disease UCI (болезни сердца)

Информация об атрибутах:

- 1. Возраст
- 2. Пол
- 3. Тип боли в груди (4 значения)
- 4. Кровяное давление в покое
- 5. Сыворотка холесторальная в мг / дл
- 6. Уровень сахара в крови натощак> 120 мг / дл
- 7. Результаты электрокардиографии в покое (значения 0,1,2)
- 8. Достигнута максимальная частота сердечных сокращений
- 9. Осуществление индуцированной стенокардии
- 10. Oldpeak = депрессия ST, вызванная физическими упражнениями относительно отдыха
- 11. Наклон пика упражнений сегмента ST
- 12. количество крупных сосудов (0-3), окрашенных по цвету

13. тал: 3 = нормально; 6 = исправленный дефект; 7 = обратимый дефект

Имена и номера социального страхования пациентов были недавно удалены из базы данных, заменены фиктивными значениями. Один файл был "обработан", тот, который содержит базу данных Кливленда. Все четыре необработанных файла также существуют в этом каталоге.

Результат выполнения

- ЛР1 Чертилин Андрей

Heart Disease UCI Болезни сердца

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt

matplotlib inline
sb.set(style='ticks')
```

▼ Загрузка файла

```
1 data = pd.read_csv('heart.csv', sep=",")
```

Основные характеристики датасета

1 data.head()

₽		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope
	0	63	1	3	145	233	1	0	150	0	2.3	0
	1	37	1	2	130	250	0	1	187	0	3.5	0
	2	41	0	1	130	204	0	0	172	0	1.4	2
	3	56	1	1	120	236	0	1	178	0	0.8	2
	4	57	0	0	120	354	0	1	163	1	0.6	2

▼ Размер датасета, столбцы и типы

```
1 data.dtypes
  age
                 int64
  sex
                 int64
                 int64
  ср
  trestbps
                 int64
  chol
                 int64
  fbs
                 int64
  restecq
                 int64
                 int64
  thalach
  exang
                 int64
  oldpeak
              float64
  slope
                 int64
                 int64
  ca
  thal
                 int64
                 int64
  target
  dtype: object
```

▼ Пустые значения

```
1 for column in data.columns:
       temp_null_count = data[data[column].isnull()].shape[0]
 3
       print('{} - {}'.format(column,temp_null_count))
_ age - 0
   sex - 0
   cp - 0
   trestbps - 0
   chol - 0
   fbs - 0
   restecg - 0
   thalach - 0
   exang - 0
   oldpeak - 0
   slope - 0
   ca - 0
   thal - 0
    target - 0
```

▼ Основные статистические характеристики

```
1 data.describe()
```

 \Box

	age	sex	ср	trestbps	chol	fbs	reste
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000

Уникальные значения для целевых признаков

```
่อเน
             უ.∪0∠ I U I
                        U.4000 I I
                                  1.002002 17.000140 01.000701
                                                                    U.JJU 190
                                                                               U.ט∠ט(
 1 data['age'].unique()
□→ array([63, 37, 41, 56, 57, 44, 52, 54, 48, 49, 64, 58, 50, 66, 43, 69, 59,
           42, 61, 40, 71, 51, 65, 53, 46, 45, 39, 47, 62, 34, 35, 29, 55, 60,
           67, 68, 74, 76, 70, 38, 77])
           64 000000
     750/
                       1 000000
                                 0.000000 440.000000 074.500000
                                                                    0.000000
                                                                               1 0000
 1 data['sex'].unique()
□ array([1, 0])
```

▼ Графическое исследование датасета

Диаграмма рассеяния

```
fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='age', y='sex', data=data)
```



```
fig, ax = plt.subplots(figsize=(10,10))
sb.scatterplot(ax=ax, x='age', y='cp', data=data, hue='sex')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f88e1e0dfd0>

▼ Гистограмма

1 sb.pairplot(data)

₽

<matplotlib.axes._subplots.AxesSubplot at 0x7f88dcf86278>

▼ boxplot

1 sb.boxplot(x=data['age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f88de635cc0>

Корреляция признаков

1 data.corr()

₽		age	sex	ср	trestbps	chol	fbs	restecg	t]
	age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.
	sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.
	ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.
	trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.
	chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.
	fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.
	restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.
	thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.
	exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.
	oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.
	slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.
	ca	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.
	thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.
	target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.

¹ data.corr(method='pearson')

	age	sex	ср	trestbps	chol	fbs	restecg	t
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.
ca	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.

▼ Корреляция с графиками

1 sb.heatmap(data.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x7f88de45a9e8>

¹ fig, ax = plt.subplots(figsize=(12,12))
2 sb.heatmap(data.corr(), annot=True, fmt='.3f')

