Instituto Tecnológico de Aeronáutica

CT-213

Laboratório 10 - Aprendizado por Reforço com Programação Dinâmica

Aluno: Pedro Elardenberg Sousa e Souza

Professor: Marcos Ricardo Omena de Albuquerque Maximo

Conteúdo

Introdução								
2.1	Equação de Bellman							
2.2	Avaliação de Política							
2.3	Iteração de Valor							
2.4	Iteração de Política							
Análise dos Resultados								
Alla	anse dos resultados							
	Avaliação de Política							
3.1								
3.1 3.2	Avaliação de Política							

1 Resumo

Neste Laboratório, foram implementados algoritmos de programação dinâmica no contexto de solução de um Processo Decisório de Markov (Markov Decision Process - MDP). Os algoritmos implementados foram avaliação de política (policy evaluation), iteração de política (policy iteration) e iteração de valor (value iteration).

O objetivo desses algoritmos neste contexto foi de avaliar políticas e determinar políticas ótimas para um $grid\ world$. Os algoritmos desenvolvidos resolvem o problema de Aprendizado por Reforço (Reinforcement Learning - RL) no caso em que o MDP é conhecido.

Os resultados foram então mostrados e discutidos neste relatório.

2 Introdução

2.1 Equação de Bellman

Os algoritmos desenvolvidos neste laboratório seguem-se dos resultados obtidos a partir da Equação de Bellman. Essa equação resolve o problema da tomada de decisão ótima no contexto de *Reinforcement Learning*, e também em outras áreas da ciência [1].

Quando se possui um problema se pode assumir que ele se comporta como um ambiente de Markov, ou seja, o estado seguinte do meu sistema depende apenas de seu estado inicial e a ação tomada naquele estado, não importando os processos anteriores, pode-se utilizar da Equação de Bellman de Expectativa para prever qual a função estado-valor v_{π} para cada um dos estados s ou qual função ação-valor q_{π} para cada estado s e ação a dado um desconto s.

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$
(1)

Em que E é a esperança ou valor esperado da expressão entre colchetes. Uma função estado-valor v_{π} pode ser escrita como se fosse uma combinação linear entre todas as ações que se pode tomar, dada uma política $\pi(a|s)$ vezes a função ação-valor q_{π} associada a cada ação dado que se está no estado s. Ou seja:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a) \tag{2}$$

O valor de $q_{\pi}(s, a)$ na equação 1, aplicando-se a esperança nos termos da expressão, obtém-se:

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) v_{\pi}(s')$$
(3)

Em que r(s,a) é a função de recompensa e $E_{\pi}[\gamma q_{\pi}(S_{t+1},A_{t+1})|S_{t}=s,A_{t}=a]$ equivale a tomar cada ação no estado s' que da função de dinâmica p(s'|s,a) que se pode chegar partindo de s vezes a função-valor v_{π} desses estados s'. Juntando as equações 2 e 3, obtém-se a Equação de Bellman de Expectativa:

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) + \left(r(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) v_{\pi}(s')\right)$$
(4)

Para se encontrar a política ótima, utiliza-se a Equação de Bellman de Otimalidade. Utilizando as equações 3 e 4 para encontrar a função valor ótima $v_*(s)$ e função ação-valor ótima $q_*(s,a)$:

$$v_{*}(s) = \max_{a} \left(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) v_{*}(s') \right)$$

$$q_{*}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} q_{*}(s', a')$$
(5)

2.2 Avaliação de Política

Juntando as equações 2 e 3, otém-se:

$$v_{\pi}(s) = \sum_{a \in A} r(s, a) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi(a|s) p(s'|s, a) v_{\pi}(s')$$
 (6)

Como o cálculo é feito sobre todos os estados s possíveis, pode-se usar o conceito de Programação Dinâmica para se calcular a função-valor que dá a avaliação da política do meu sistema. Reescrevendo, portanto, a equação 6:

$$v_{k+1}(s) = \sum_{a \in A} r(s, a) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi(a|s) p(s'|s, a) v_k(s')$$
 (7)

Partindo-se de uma função-valor qualquer, o sistema converge para a função-valor da política $v_{\pi}(s)$.

2.3 Iteração de Valor

Com a mesma ideia, pode-se reescrever a Equação de Bellman de Otimalidade 5 nos termos da equação 7:

$$v_{k+1}(s) = \max_{a} \left(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) v_k(s') \right)$$
 (8)

Que converge para a função-valor da política ótima $v_*(s)$.

Por fim, quando o algoritmo tiver convergido, encontra-se a política ótima:

$$\pi_*(s) = \operatorname{greedy}(v_*(s)) \tag{9}$$

2.4 Iteração de Política

Ainda com a mesma ideia de usar Programação Dinâmica, para se encontrar a política ótima pode-se inicar com política e função-valor aleatórias e avaliar a política usando avaliação de política iterativa (equação 7) e em seguida melhorar a política agindo de forma gulosa em relação a $v_k(s)$.

Não é necessário calcular a função-valor ótima para cada política recalculada. Basta fazer o processo de cálculo descrito em 7 e aplicar a solução gulosa dessa solução a partir dele.

$$\pi'(s) = greedy(v_{\pi}(s)) \tag{10}$$

3 Análise dos Resultados

Os algoritmos de *Reinforcement Learning* implementados servem para resolver o problema de avaliar políticas e determinar políticas ótimas para um *grid world*, conforme ilustra a figura 1. esses algoritmos resolvem o problema de Aprendizado por Reforço no caso em que o modelo do Processo Decisório de Markov (MDP) é conhecido.

Figura 1: exemplo de política ótima em grid world

Os algoritmos implementados neste laboratório utilizam os conceitos de programação dinâmica e as fórmulas apresentadas na seção anterior. Assim, além das funções criadas para encontrar Avaliação de Política, Iteração de Valor e Iteração de Política, criou-se uma função auxiliar, chamada *value_pd*, que fazia os cálculos comuns a todos os algoritmos, ou seja, os valores dados pelas equações 2 e 3.

3.1 Avaliação de Política

Utilizando a equação 7, e utilizando uma política de escolha aleatória para cada estado, o método *policy_evaluation* retorna a seguinte avaliação:

```
random policy, except for the goal state, where policy always executes stop
/alue function:
[ -384.09, -3
                             -381.19,
                                                      -339.93
                                                                   -339.93]
   -380.45,
-374.34,
               -377.91,
-368.82,
                                                      -334.92,
-324.92,
                                                                   -334.93]
-324.93]
                            -374.65,
-359.85,
                                          -344.88,
                            -346.03,
                                                      -289.95,
                -358.18,
   -368.76,
                                                                   -309.941
                                         -250.02,
                                                      -229.99,
                            -315.05,
                -344.12,
                                                                      0.00]
   359.12,
                -354.12,
                                         -200.01,
                                                       145.00,
olicy:
SURDL
               SURDL
                            SURDL
                                                      SURDL
                                                                   SURDL
  SURDL
               SURDL
                            SURDL
                                                      SURDL
                                                                   SURDL
  SURDL
               SURDL
                            SURDL
                                         SURDL
                                                      SURDL
                                                                   SURDL
  SURDL
                            SURDL
                                                      SURDL
                                                                   SURDL
               SURDL
                                         SURDL
               SURDL
                                                      SURDL
                            SURDL
  SURDL
               SURDL
                                         SURDL
                                                      SURDL
                                                                     S
```

Figura 2: Avaliação de política aleatória para $\gamma=1.0$ e probabilidade de escolha correta da ação = 1.0

3.2 Iteração de Valor

Implementando o algoritmo de cálculo da equação 8, obteve-se o seguinte resultado:

```
Value iteration:
Value function:
     -10.00,
                              -8.00,
                  -9.00,
                                                       -6.00,
                                                                   -7.00]
                              -7.00,
                                                       -5.00,
      -9.00,
                  -8.00,
                                                                   -6.00]
                                           -5.00,
      -8.00,
                  -7.00,
                              -6.00,
                                                       -4.00,
                                                                   -5.00]
      -7.00,
                  -6.00,
                              -5.00,
                                                       -3.00,
                                                                   -4.00]
                                           -3.00,
                                                       -2.00,
                  -5.00,
                              -4.00,
      -7.00,
                                                                    0.00]
                  -6.00,
                                           -2.00,
                                                       -1.00,
Policy:
      RD
                  RD
                              D
                                                       D
                                                                   DL
      RD
                  RD
                              D
                                                       D
                                                                   DL
      RD
                  RD
                              RD
                                           R
                                                       D
                                                                   DL
      R
                  RD
                              D
                                                       D
                                                                   L
                                           RD
                  R
                              R
                                                       D
                  U
      R
                                           R
                                                       R
                                                                  SURD
                                                                          ]
```

Figura 3: Iteração de valor para $\gamma=1.0$ e probabilidade de escolha correta da ação =1.0

Observa-se que o algoritmo encontrou a solução ótima, que é dada pela distância, para cada célula, da célula do canto inferior direito, considerando os obstáculos assinalados em * do grid world.

3.3 Iteração de Política

Implementando o algoritmo de iteração política, utilizando as equações 7 e 10, obtém-se a política ótima e a função-valor ótima a ela associada, partindo de valores inicias nulos para cada função, como se vê na figura 4

```
Policy iteration:
Value function:
                  -9.00,
     -10.00,
                              -8.00,
                                                       -6.00,
                                                                    -7.00]
      -9.00,
                                                                   -6.001
                  -8.00,
                              -7.00,
                                                       -5.00,
      -8.00,
                  -7.00,
                              -6.00,
                                           -5.00,
                                                       -4.00,
                                                                    -5.00]
      -7.00,
                  -6.00,
                              -5.00,
                                                       -3.00,
                                                                    -4.00]
                              -4.00,
                                           -3.00,
                                                       -2.00,
                  -5.00,
      -7.00,
                  -6.00,
                                           -2.00,
                                                       -1.00,
                                                                    0.00]
Policy:
      RD
                  RD
                              D
                                                       D
                                                                   DL
                              D
                                                       D
      RD
                  RD
                                                                   DL
                  RD
                              RD
                                           R
                                                       D
      RD
                                                                   DL
      R
                  RD
                              D
                                                       D
                  R
                              R
                                           RD
                                                       D
      R
                  U
                                           R
                                                       R
                                                                  SURD
```

Figura 4: Iteração de política para $\gamma=1.0$ e probabilidade de escolha correta da ação =1.0

3.4 Comparação entre Grid Worlds diferentes

Por fim, utilizou-se um grid world com o desconto $\gamma=0.98$ e probabilidade de escolha correta da ação = 0.8, sendo aplicados os mesmos algoritmos. Os resultados obtidos são mostrados a seguir:

```
Evaluating random policy, except for the goal state, where policy always executes stop:
Value function:
                                                      -45.13,
-44.58,
     -47.19,
-46.97,
                 -47.11,
-46.81,
                              -47.01,
                                                                   -45.15]
-44.65]
                              -46.60,
     -46.58,
                 -46.21,
                              -45.62,
                                          -44.79,
                                                       -43.40,
                                                                   -43.63]
                 -45.41,
                                                      -39.87,
-32.96,
                              -44.42,
     -46.20,
                                                                   -42.17]
                 -44.31,
                              -41.64,
                                          -35.28
     -45.73,
                                                       -21.88,
                                                                     0.00]
                 -45.28,
                                          -29.68,
Policy:
[ SURDL
                SURDL
                                                     SURDL
                                                                  SURDL
                            SURDL
    SURDL
                SURDL
                            SURDL
                                                     SURDL
                                                                  SURDL
                                         SURDL
                                                                  SURDL
   SURDL
                SURDL
                            SURDL
                                                     SURDL
    SURDL
                SURDL
                            SURDL
                                                     SURDL
                                                                  SURDL
                SURDL
                             SURDL
                                         SURDL
                                                     SURDL
                                                                    S
    SURDL
                SURDL
                                         SURDL
                                                     SURDL
```

Figura 5: Avaliação de política aleatória para $\gamma=0.98$ e probabilidade de escolha correta da ação = 0.8

Percebe-se que a função-valor nesse caso ficou menor do que na configuração anterior. Isso se dá majoritariamente por causa do desconto γ , pois, no cálculo desta avaliação de política, a política usada é a de se tomar qual-

quer direção possível aleatoriamente em cada estado. Isso cria, naturalmente, alguns caminhos muito grandes, que não são atenuados pelo fator desconto. Assim, ao se calcular a esperança do retorno, a função dá um valor maior. Testando valores diferentes para a probabilidade de escolha correta da ação, vê-se que as penalidades ficam ligeiramente maiores, mas que são de menos influência que o valor do desconto.

Policy iteration:										
Value function:										
[-11.65,	-10.78,	-9.86,	* ,	-7.79,	-8.53]					
[-10.72,	-9.78,	-8.78,	*	-6.67,	-7.52]					
[-9.72,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]					
[-8.70,	-7.58,	-6.43,	*	-4.09,	-5.30]					
* ,	-6.43,	-5.17,	-3.87,							
[-8.63,	-7.58,	*	-2.69,		0.00]					
Policy:										
[Ď ,	D,	D ,	*	D,	D]					
[D ,	D ,	D ,	*	D ,	D j					
[RD ,	D ,	D ,	R,	D ,	D j					
į R ,	RD ,	D ,	*	D ,	L j					
* ,	R,	R ,	D ,	D ,	*]					
į R ,	U,	*	R ,	R ,	s i					

Figura 6: Iteração de valor para $\gamma=0.98$ e probabilidade de escolha correta da ação = 0.8

Neste caso, como a política é ótima, o desconto γ não é fator determinante na mudança dos valores. Assim, para uma probabilidade de escolha correta da ação menor, o algoritmo encontra caminhos um pouco mais longos em relação à situação anterior, obtendo-se penalidades maiores.

Value iteration:												
Value function:												
[-11.65,		-10.78,		-9.	-9.86,		* ,		-7.79,		53]
[-10.72,		-9.7	78, -8.78,		78,	* ,		-6.67,		-7.52]	
[-9.72,		-8.7	70,	-7.59,		-6.61,		-5.44,		-6.42]	
[-8.70,		-7.5	58,	-6.43,		* ,		-4.09,		-5.30]	
[* ,		-6.4	13,	-5.17,		-3.87,		-2.76,		*]	
[-8.63,		-7.5	58,	*		-2.69,		-1.40,		0.00]	
Policy:												
[D	,	D	,	D		*		D	,	D]
[D	,	D	,	D		*		D	,	D]
[RD	,	D	,	D		R		D	,	D]
[R	,	RD	,	D		*		D	,	L]
[*	,	R	,	R	,	D	,	D	,	*]
1	R	,	U	,	*		R		R	,	S]

Figura 7: Iteração de política para $\gamma=0.98$ e probabilidade de escolha correta da ação = 0.8

Para a iteração de política, o resultado é similar ao de iteração de valor, encontrando uma política "ótima" igual à da figura 6.

4 Conclusão

O presente laboratório mostrou que algoritmos de Reinforcement Learning são muito eficazes na avaliação de problemas que se encaixam num contexto em que o modelo de Processo Decisório de Markov é conhecido. Os algoritmos puderam ser treinados de forma a avaliar corretamente uma política, encontrar a função-valor ótima para cada estado e encontrar a política ótima para o problema dado.

A execução dos mesmos algoritmos com valores de desconto e probabilidade de escolha correta da ação diferentes mostra que o sistema consegue convergir para valores próximos do ótimo mesmo quando a probabilidade da escolha correta não é 1.0, dando a entender que, para sistemas em que essa probabilidade não pode ser definida, isto é, a incerteza é própria do problema, o problema ainda vai convergir para valores próximos. Um desconto menor que 1.0 ajuda ao modelo obter melhores resultados devido à desconsideração no longo prazo de caminhos muito grandes.

Referências

[1] Marcos Ricardo Omena de Albuquerque Maximo. Ct-213 - aula 11 - introdução ao aprendizado por reforço. Apostila, 2020. Curso CT-213 - Inteligência Artificial para Robótica Móvel, Instituto Tecnológico de Aeronáutica.