1. 已知 f(x) 的一个原函数为 $(1+\sin x)\ln x$,求 $\int xf'(x)dx$

解:
$$\int xf'(x)dx = xf(x) - \int f(x)dx = x((1+\sin x)\ln x)' - (1+\sin x)\ln x + c$$

= $x\left(\cos x \ln x + \frac{1+\sin x}{x}\right) - (1+\sin x)\ln x + c$

2. 设
$$f(\sin^2 x) = \frac{x}{\sin x}$$
, 求 $\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx$

解: 令
$$x = \sin^2 t$$
, $t \in [0, \frac{\pi}{2})$,

$$\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx = -\int \frac{\sin t}{\cos t} f(\sin^2 t) 2 \sin t \cos t dt$$

$$= \int \frac{\sin t}{\cos t} \cdot \frac{t}{\sin t} 2 \sin t \cos t dt$$

$$= 2 \int t \sin t dt = 2(-t \cos t + \int \cos t dt)$$

$$= 2(-t \cos t + \sin t) + c$$

$$= 2(-\sqrt{1-x} \arcsin \sqrt{x} + \sqrt{x}) + c$$

3. 已知 $\frac{\sin x}{x}$ 是 f(x)的一个原函数,求 $\int x^3 f'(x) dx$

解:
$$\int x^3 f'(x) dx = x^3 f(x) - 3 \int x^2 f(x) dx = x^3 \left(\frac{\sin x}{x}\right)' - 3 \int x^2 \left(\frac{\sin x}{x}\right)' dx$$
$$= x^3 \left(\frac{x \cos x - \sin x}{x^2}\right) - 3 \int x^2 \left(\frac{x \cos x - \sin x}{x^2}\right) dx$$
$$= x^2 \cos x - x \sin x - 3 \int (x \cos x - \sin x) dx$$
$$= x^2 \cos x - x \sin x - 3 \int x \cos x dx + 3 \int \sin x dx$$
$$= x^2 \cos x - 4x \sin x - 6 \cos x + c$$

4. 呂知
$$f(x) = \frac{e^x + e^{-x}}{2}$$
, 求 $\int \left[\frac{f'(x)}{f(x)} + \frac{f(x)}{f'(x)} \right] dx$

解:
$$f'(x) = \frac{e^x - e^{-x}}{2}$$

$$\int \left[\frac{f'(x)}{f(x)} + \frac{f(x)}{f'(x)} \right] dx = \int \left[\frac{e^x - e^{-x}}{e^x + e^{-x}} + \frac{e^x + e^{-x}}{e^x - e^{-x}} \right] dx = \int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx + \int \frac{e^x + e^{-x}}{e^x - e^{-x}} dx$$

$$= \int \frac{1}{e^x + e^{-x}} d(e^x + e^{-x}) + \int \frac{1}{e^x - e^{-x}} d(e^x - e^{-x})$$

$$= \ln(e^x + e^{-x}) + \ln|e^x - e^{-x}| + c = \ln|e^{2x} - e^{-2x}| + c$$

5. 设 f(x) 的一个原函数 $F(x) = \ln^2(x + \sqrt{1 + x^2})$, 求 $\int x f'(x) dx$

解:
$$\int xf'(x)dx = xf(x) - \int f(x)dx = xF'(x) - F(x) + c$$

6.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \dots + \frac{1}{\sqrt{4n^2 - n^2}} \right)$$

解:
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{4n^2 - 1^2}} + \frac{1}{\sqrt{4n^2 - 2^2}} + \dots + \frac{1}{\sqrt{4n^2 - n^2}} \right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{4 - \left(\frac{i}{n}\right)^2}} = \int_0^1 \frac{1}{\sqrt{4 - x^2}} dx$$

因为 $f(x) = \frac{1}{\sqrt{4-x^2}}$ 在[0,1]上连续,所以在[0,1]上可积. 现在对

$$[0,1]$$
 n 等分, $[0,\frac{1}{n}]$, $[\frac{1}{n},\frac{2}{n}]$,…, $[\frac{n-1}{n},\frac{n}{n}]$, $x_0=0$, $x_1=\frac{1}{n}$,…, $x_n=\frac{n}{n}$

$$\Delta x_i = \frac{1}{n}$$
, $\xi_i = \frac{i}{n}$ $(i = 1, 2, \dots, n)$, \mathbb{N}

$$\int_{0}^{1} \frac{1}{\sqrt{4 - x^{2}}} dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{\sqrt{4 - \left(\frac{i}{n}\right)^{2}}} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\sqrt{4 - \left(\frac{i}{n}\right)^{2}}}$$

7.
$$\lim_{n\to\infty}\frac{1^5+2^5+\cdots+n^5}{n^6}=$$
 ().

B.
$$\frac{1}{6}$$
.

C.
$$\frac{1}{5}$$
.

$$\lim_{n \to \infty} \frac{1^5 + 2^5 + \dots + n^5}{n^6} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^5 = \int_0^1 x^5 dx = \frac{1}{6}$$

8.
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \frac{i}{n}} = \int_{0}^{1} \frac{1}{1+x} dx = \ln 2$$

9.
$$\lim_{n \to \infty} \sqrt[n]{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdot \dots \cdot f\left(\frac{n}{n}\right)}$$
, $f(x) > 0$

$$\lim_{n\to\infty} \sqrt[n]{f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdot \dots \cdot f\left(\frac{n}{n}\right)} = \lim_{n\to\infty} \left(f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdot \dots \cdot f\left(\frac{n}{n}\right)\right)^{\frac{1}{n}}$$

$$= e^{\lim_{n\to\infty}\frac{1}{n}\ln\left(f\left(\frac{1}{n}\right)\cdot f\left(\frac{2}{n}\right)\cdot \cdot \cdot \cdot f\left(\frac{n}{n}\right)\right)}$$

$$\lim_{n\to\infty} \frac{1}{n} \ln \left(f\left(\frac{1}{n}\right) \cdot f\left(\frac{2}{n}\right) \cdot \dots \cdot f\left(\frac{n}{n}\right) \right) = \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln f\left(\frac{i}{n}\right) = \int_{0}^{1} \ln f(x) dx$$

$$\lim_{n\to\infty} \sqrt[n]{f\left(\frac{1}{n}\right)\cdot f\left(\frac{2}{n}\right)\cdots f\left(\frac{n}{n}\right)} = e^{\int_0^1 \ln f(x) dx}$$

$$10. \quad \lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}$$

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=\lim_{n\to\infty}\sqrt[n]{\frac{n!}{n^n}}=\lim_{n\to\infty}\left(\frac{1}{n}\cdot\frac{2}{n}\cdot\dots\cdot\frac{n}{n}\right)^{\frac{1}{n}}=e^{\lim_{n\to\infty}\frac{1}{n}\ln\left(\frac{1}{n}\cdot\frac{2}{n}\cdot\dots\cdot\frac{n}{n}\right)}$$

$$\lim_{n\to\infty}\frac{1}{n}\ln\left(\frac{1}{n}\cdot\frac{2}{n}\cdot\dots\cdot\frac{n}{n}\right) = \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\ln\left(\frac{i}{n}\right) = \int_{0}^{1}\ln x dx = -1$$

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}=e^{-1}$$

11. 若 f(x) 在 [a,b] 上非负、连续,且不恒为零,则 $\int_a^b f(x) dx > 0$.

证明:由已知,至少存在 $x_0 \in [a,b]$,使 $f(x_0) > 0$

若 $x_0 \in (a,b)$, 因为 $\lim_{x \to x_0} f(x) = f(x_0) > 0$, 由保号性知, 存在 $\delta > 0$,

 $x \in [x_0 - \delta, x_0 + \delta]$,使f(x) > 0,于是由积分中值定理有

$$\int_{x_0 - \delta}^{x_0 + \delta} f(x) dx = f(\xi) 2\delta > 0, \quad \xi \in [x_0 - \delta, x_0 + \delta]$$

所以

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0} - \delta} f(x) dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx + \int_{x_{0} + \delta}^{b} f(x) dx > 0$$

若 $x_0 = a$, 即f(a) > 0

因为 $\lim_{x\to a^+} f(x) = f(a) > 0$,由保号性知,存在 $\delta > 0$, $x \in [a, a+\delta]$,

使 f(x) > 0,于是由积分中值定理有

$$\int_{a}^{a+\delta} f(x) dx = f(\xi) \delta > 0, \quad \xi \in [a, a+\delta]$$

所以

$$\int_{a}^{b} f(x) dx = \int_{a}^{a+\delta} f(x) dx + \int_{a+\delta}^{b} f(x) dx > 0$$

若 $x_0 = b$,即f(b) > 0可类似证明.

12.
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \frac{n}{n^2+3^2} + \dots + \frac{n}{n^2+n^2}\right)$$

$$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \frac{n}{n^2 + 3^2} + \dots + \frac{n}{n^2 + n^2} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + \left(\frac{i}{n}\right)^{2}} = \int_{0}^{1} \frac{1}{1 + x^{2}} dx = \frac{\pi}{4}$$