

Paper Reading

陈铮 2018.12.15

Introduction

□ 树形网络

- ☐ ICCV 2015
 - HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition
- ☐ CVPR 2018
 - HydraNets: Specialized Dynamic Architectures for Efficient Inference
- □ arXiv 2018
 - Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning

- ☐ ICCV 2015
 - HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition
- ☐ CVPR 2018
 - HydraNets: Specialized Dynamic Architectures for Efficient Inference
- □ arXiv 2018
 - Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, Yizhou Yu. HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition. ICCV 2015.

□ 训练共享层和粗分类网络

Training

- □ 计算混淆矩阵,通过谱聚类获得粗类别
- Overlapping

□ 用各个大类的数据训练细分类网络(共享层固定)

Training

□ 分类器 fine-tune

$$E = -\frac{1}{n} \sum_{i=1}^{n} log(p_{y_i}) + \frac{\lambda}{2} \sum_{k=1}^{K} (t_k - \frac{1}{n} \sum_{i=1}^{n} B_{ik})^2$$

Result

Figure 3: Case studies on ImageNet dataset. Each row represents a testing case. Column (a): test image with ground truth label. Column (b): top 5 guesses from the building block net ImageNet-NIN. Column (c): top 5 Coarse Category (CC) probabilities. Column (d)-(f): top 5 guesses made by the top 3 fine category CNN components. Column (g): final top 5 guesses made by the HD-CNN. See text for details.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, Yizhou Yu.

HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition. ICCV 2015.

- ☐ ICCV 2015
 - HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition
- □ CVPR 2018
 - HydraNets: Specialized Dynamic Architectures for Efficient Inference
- □ arXiv 2018
 - Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning

Ravi Teja Mullapudi, William R.Mark, Noam Shazeer, Kayvon Fatahalian. HydraNets: Specialized Dynamic Architectures for Efficient Inference. CVPR 2018.

Training

- □ 用修改版的 K-means 对小类进行聚类
- □ 每个大类包含的小类数相等

Result

□ 为减小计算量,对滤波器的数目,以及 ResNet 种 block 的重复次数进行一定的减少

Name	Layers	Stride	Channels
Init block	$\begin{array}{c} \text{conv } 3 \times 3 \\ \text{max pool } 3 \times 3 \end{array}$	2 2	64 64
Block 1	$\begin{array}{c} \text{sep conv } 3 \times 3 \\ \text{sep conv } 3 \times 3 \end{array}$	[1, 2] 1	$\begin{array}{c} 128 \times w \\ 128 \times w \end{array}$
Block 2	$\begin{array}{c} \text{sep conv } 3 \times 3 \\ \text{sep conv } 3 \times 3 \end{array}$	[1, 2] 1	$256 \times w$ $256 \times w$
Block 3	$\begin{array}{c} \text{sep conv } 3 \times 3 \\ \text{sep conv } 3 \times 3 \end{array}$	[1, 2] 1	$512 \times w$ $512 \times w$
Block 4	$\begin{array}{c} \text{sep conv } 3 \times 3 \\ \text{sep conv } 3 \times 3 \end{array}$	[1, 2] 1	$1024 \times w$ $1024 \times w$
Projection	conv 1 × 1	1	1024 ×w
Combiner	add sep conv 3 × 3	1	$1024 \times w$ $1024 \times w$
Prediction	avg pool 7×7 fully connected	1	$1024 \times w$ 1000

Model	Cont	figuration w	Params $(\times 10^6)$	$\begin{array}{c} \text{MADDs} \\ (\times 10^6) \end{array}$	Accuracy (Top-1)
ResSep-A	2	0.50	1.96	181	61.88
ResSep-B	3	0.50	2.68	290	65.27
ResSep-C	2	0.75	3.98	380	67.16
ResSep-D	3	0.75	5.58	620	69.90
ResSep-E	3	1.00	9.53	1060	72.02
ResNet-18		-	11.69	1800	69.30
MobileNet		-	4.2	569	70.60

Ravi Teja Mullapudi, William R.Mark, Noam Shazeer, Kayvon Fatahalian.

HydraNets: Specialized Dynamic Architectures for Efficient Inference. CVPR 2018.

- ☐ ICCV 2015
 - HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large Scale Visual Recognition
- □ CVPR 2018
 - HydraNets: Specialized Dynamic Architectures for Efficient Inference
- □ arXiv 2018
 - Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning

Roy, Deboleena, Priyadarshini Panda, and Kaushik Roy.

"Tree-CNN: A Hierarchical Deep Convolutional Neural Network for Incremental Learning."

Roy, Deboleena, Priyadarshini Panda, and Kaushik Roy.

Result

Tree-CNN A

Network B:[[]

Table 4: Training Effort and Test Accuracy comparison for Tree-CNN A against Network B for CIFAR-10 dataset

	B:I	B:II	B:III	B:IV	B:V	Tree-CNN A
Testing Accuracy	78.37	85.02	88.15	90.00	90.51	86.24
Normlaized Training Effort	0.40	0.85	0.96	0.99	1	0.60

Roy, Deboleena, Priyadarshini Panda, and Kaushik Roy.

Thank you for listening.