Contrôle S2 Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

Répondez sur le document réponse. Soit le mot binaire sur 10 bits suivant : 10010110102.

- 1. Donnez sa représentation hexadécimale.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 3. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 4. Donnez la représentation binaire sur 8 bits non signés du nombre **128**₁₀.
- 5. Donnez la représentation binaire sur 8 bits signés du nombre -128₁₀.
- 6. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2⁴²?
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2^{42} ?
- 8. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2⁴² ?
- 9. Donnez, en puissance de deux, le nombre d'octets contenus dans **1 Mib**.
- 10. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **256 Kio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (7 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Contrôle S2

Exercice 3 (3 points)

Pour chaque question de cet exercice, seule une des cinq réponses suivantes est possible :

- La sortie est toujours à 0;
- La sortie est toujours à 1;
- · La sortie ne change jamais;
- La sortie bascule à chaque front descendant du signal d'horloge ;
- · On ne sait pas.

Soit une bascule JK maître-esclave:

- 1. Comment se comporte la sortie si J = K = 1?
- 2. Comment se comporte la sortie si J = 1 et K = Q?
- 3. Comment se comporte la sortie si $J = \overline{Q}$ et K = Q?

Exercice 4 (5 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Contrôle S2 2/4

om :			: Classe : .	
		DOCUMENT F	ÉPONSE À RENDRE	
<u>kercice 1</u>				
1.			6.	
2.			7.	
3.			8.	
4.			9.	
5.			10.	
xercice 2			· ·	
<u>Kertite 2</u>				
Nombre	S	E	M	
-88				
45,375				
0,375				
			-	
Représentation IEEE 754			Représentation assoc	iée
432100000000000_{16}				
	FFFFFFF	FFFFFFF ₁₆		
$7 \mathrm{FF} 000000000000_{16}$				
800240000000000_{16}				
xercice 3				
•				

Exercice 4

Figure 1

Figure 2

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.