Laborator 5: Modele matematice date prin ecuații diferențiale de ordinul II

Exercițiul 1 Se consideră ecuația diferențială ce descrie mișcarea oscilatorului armonic (fără frecare):

$$x'' + \omega_0^2 \ x = 0$$

- (a) Determinați soluția generală a ecuației;
- (b) În expresia soluției generale faceți substituția

$$c_1 = R\cos(\delta)$$

$$c_2 = R\sin(\delta)$$

şi simplificați expresia acesteia. (R- reprezintă amplitudinea mişcării, $\delta-$ reprezintă faza mişcării)

- (c) Determinați soluția ecuației ce satisface condițiile $x(0) = x_0$, $x'(0) = v_0$ și determinați R, amplitudinea mișcării, δ faza mișcării în funcție de ω_0 , x_0 și v_0 .
- (d) Determinați amplitudinea, faza, perioada mișcării $T=\frac{2\pi}{\omega_0}$ și reprezentați grafic soluțiile corespunzătoare următoarelor date:

(i)
$$\omega_0 = \sqrt{5}, x_0 = 2, v_0 = 3$$

(ii)
$$\omega_0 = 3$$
, $x_0 = 7$, $v_0 = 5$

Exercițiul 2 Se consideră ecuația diferențială ce descrie mișcarea oscilatorului armonic cu frecare

$$x'' + \lambda x' + \omega_0^2 x = 0$$

- (a) Determinați soluția generală a ecuației în cazul $\lambda^2 > 4\omega_0^2$ (cazul supra-amortizarii);
- (b) Determinați și reprezentați grafic soluția corespunzătoare datelor $\lambda = 25$, $\omega_0 = 10$ și condițiile inițiale x(0) = 1, x'(0) = 5;
- (c) Determinați soluția generală a ecuației în cazul $\lambda^2 = 4\omega_0^2$ (cazul amortizarii critice);
- (d) Determinați și reprezentați grafic soluția corespunzătoare datelor $\lambda = 20$, $\omega_0 = 10$ și condițiile inițiale x(0) = 1, x'(0) = 5;
- (e) Determinați soluția generală a ecuației în cazul $\lambda^2 < 4\omega_0^2$ (cazul amortizarii slabe);
- (f) Determinați și reprezentați grafic soluția corespunzătoare datelor $\lambda = 5$, $\omega_0 = 10$ și condițiile inițiale x(0) = 1, x'(0) = 5.

(Indicație: pentru specificarea ipotezelor se folosește comanda **assume**)

Exercițiul 3 Se consideră ecuația diferențială ce descrie mișcarea oscilatorului armonic (fără frecare) asupra căruia acținează o forță periodică de forma $F(t) = F_0 \cos(\omega t)$:

$$x'' + \omega_0^2 \ x = F_0 \cos(\omega t)$$

- (a) Determinați soluția generală a ecuației în cazul $\omega_0 \neq \omega$ (cazul de nerezonanță);
- (b) Determinați și reprezentați grafic soluția ecuației ce satisface x(0) = 0 și x'(0) = 0 pentru $\omega_0 = 5$, $\omega = 5.5$ și $F_0 = 2$ (soluție pulsatorie);
- (c) Determinați soluția generală a ecuației în cazul $\omega_0 = \omega$ (cazul de rezonanță);
- (d) Determinați și reprezentați grafic soluția ecuației ce satisface x(0) = 0 și x'(0) = 0 pentru $\omega_0 = \omega = 5$ și $F_0 = 2$;
- (e) Notăm cu $x(\cdot,\omega)$ soluția ecuației ce satisface condițiile x(0)=0, x'(0)=0. Arătați că

$$\lim_{\omega \to \omega_0} x(t, \omega) = x(t, \omega_0).$$