Homework 1

John J Li

2021 January 26

Problem 1:

(a)
$$((p \land q) \lor p) \land q$$

$$\begin{array}{c} ((p \wedge q) \vee p) \wedge q \\ ((p \vee p) \wedge (q \vee p)) \vee p \\ (\cancel{(p \vee p)} \wedge (q \vee p)) \vee p \\ q \wedge q \vee p \wedge q \\ \cancel{q \wedge q} \vee p \wedge q \\ p \wedge q \end{array}$$

Not a tautology because $p \wedge q$ can be false.

(b)
$$p \rightarrow (p \lor q)$$

$$\begin{aligned} p &\to (p \lor q) \\ \neg p \lor (p \lor q) \\ (\neg p \lor p) \lor (\neg p \lor q) \end{aligned}$$

This is a tautology because $\neg p \lor p$ is always true and so $(\neg p \lor p) \lor (\neg p \lor q)$ is always true as well.

(c)
$$(\neg p \lor q) \to (p \to q)$$

Let
$$A \equiv (p \rightarrow q)$$

 $(\neg p \lor q) \rightarrow (p \rightarrow q)$
 $(p \rightarrow q) \rightarrow (p \rightarrow q)$
 $A \rightarrow A$

This is a tautology because the statement is conditionally comparing the same things.

Problem 2:

(a)
$$x \in \mathbb{R}$$
 and if $x < 5$, then $x = 5$

$$x \in \mathbb{R} \mid x < 5 \to x = 5 = \{x \ge 5\}$$

(b) $z \in \mathbb{R}$ and $2 \in \{x \in \mathbb{R} \mid x \cdot z < 2\}$

$$\boxed{\{z \in \mathbb{R} \mid 2 \in \{x \in \mathbb{R} \mid x \cdot z < 2\}\} = \{z < 2\}}$$

(c) $n \in \mathbb{Z}$ and $n \in \{2^i \mid i \in \mathbb{Z}^+\}$

$$\{0, 1, 2, 3...\}$$

Problem 3:

(a) $x \notin A \setminus (B \cup C)$

$$x \notin A \setminus (B \cup C)$$

$$x \notin A \land \neg (x \notin B \lor x \notin C)$$

$$x \notin A \land x \in B \land x \in C$$

$$x \not\in A \land x \in B \land x \in C$$

(a) $x \in A \setminus (B \setminus C)$

$$x \in A \setminus (B \setminus C)$$

$$x \in A \land \neg (x \in B \land \neg (x \in C))$$

$$x \in A \land (x \notin B \lor x \in C)$$

$$x \in A \land (x \notin B \lor x \in C)$$

Problem 4:

(a) $\emptyset \subseteq \{\emptyset\}$

This statement is true.

(b)
$$(\{1,\emptyset\} \cap \{2,\emptyset\}) \subseteq \{1,2\}$$

This statement is false because $(\{1,\emptyset\} \cap \{2,\emptyset\}) \equiv \{\emptyset\}$ which is not a subset of $\{1,2\}$.

Problem 5:

(a)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
$$A \wedge \neg (B \vee C) = (A \wedge \neg B) \wedge (A \wedge \neg C)$$
$$A \wedge \neg B \wedge \neg B \wedge \neg B \wedge \neg B$$

(b)
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

$$(A \wedge \neg B) \vee (B \wedge \neg A) = (A \vee B) \wedge \neg (A \wedge B)$$

$$(A \vee B) \wedge (A \vee \neg A) \wedge (\neg B \vee B) \wedge (\neg B \vee \neg A) = (A \vee B) \wedge (\neg A \vee \neg B)$$

$$(A \vee B) \wedge (A \vee \neg A) \wedge (\neg B \vee \neg B) \wedge (\neg B \vee \neg A) = (A \vee B) \wedge (\neg A \vee \neg B)$$

$$(A \vee B) \wedge (A \vee \neg A) \wedge (\neg A \vee \neg B) = (A \vee B) \wedge (\neg A \vee \neg B)$$

Problem 6:

$$(p \to q) \land (\neg p \to q) \equiv p \leftrightarrow q$$
$$(\neg p \lor q) \land (p \lor \neg q) \equiv (p \to q) \land (q \to p)$$
$$\boxed{(\neg p \lor q) \land (\neg q \lor p) \equiv (\neg p \lor q) \land (\neg q \lor p)}$$

Problem 7:

(a) If
$$x + y < 2$$
 and $y + z = 2$, then $x^2 + y^2 + z^2 = 2$ or $x^2 \ge y^2$.

Converse

If
$$x^2 + y^2 + z^2 = 2$$
 or $x^2 \ge y^2$, then $x + y < 2$ and $y + z = 2$.

Contrapositive:

If
$$x + y \le 2$$
 or $y + z \ne 2$, then $x^2 + y^2 + z^2 \ne 2$ and $x^2 < y^2$

(b) If two integers x, y are both even, then at least one of $x^2 + y$, $y^2 + x$ is even.

Converse:

If at least one of $x^2 + y$, $y^2 + x$ is true, then the two integers x, y are both even.

Contrapositive:

If two integers x, y are both odd, then both $x^2 + y$, $y^2 + x$ are odd.

Problem 8:

(a) $P(x): x < 2 \to x > 2$

3

(b) $P(x): x \in \mathbb{Z}^+ \to x = 0$

-1

(c) $P(x): (x^2 + 1 = x) \rightleftharpoons x < 2$

-1

Problem 9:

(a) X says "Both of us are knaves".

X is a knave while Y is a knight. This is because this statement is always false – knaves cannot tell the truth so we know X and Y are not both knaves. Therefore, X and Y could both be knights but since we know X is lying, we can conclude that Y is a knight.

(b) Y says "Either I am a knave or X is a knight"

X and Y can be both knights or Y is a knave and X is a knight.

(c) X says "I am a knave but Y isn't"

This statement is always false; we can automatically conclude that y is also a knave. So both X and Y are knaves – since knights can't say they are knaves.

Problem 10:

The number of words we use to define the smallest positive integer which cannot be described in fewer than sixteen words is 16. 16 is a subset of A since we can described 16 in fewer than sixteen words.

4