Survival Analysis

Chao Cheng

November 1, 2022

Contents

1	Bas	Basic knowledge													1									
	1.1	Surviv	al and hazard																					1
	1.2	Censor	:																					2
		1.2.1	Right censor																					2
		1.2.2	Left censor.																					3
		1.2.3	Interval censor	or															_					9

1 Basic knowledge

1.1 Survival and hazard

Let T denote the time to an event that we are interested in. Then we know the c.d.f.

$$F_T(t) = P(T < t)$$
,

and the corresponding p.d.f.

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_T(t).$$

Here to simplify the discussion, we assume T is a continuous random variable. In the context of survival analysis, the *event* often refers to death. Then T represents the lifespan of the subject. So $F_T(t)$ represents the probability that the death occurs before t. In another word, we know the probability that the subject survives passes t is

$$S_T(t) = 1 - F_T(t) = P(T > t).$$

 $S_T(t)$ is often called the survival function? and clearly

$$f_T(t) = -\frac{\mathrm{d}}{\mathrm{d}t} S_T(t).$$

The **hazard function** h(t) is defined as

$$h\left(t\right) = \lim_{\Delta \to 0} \frac{P\left(T \le t + \Delta \middle| T > t\right)}{\Delta} = \lim_{\Delta \to 0} \frac{F_T\left(t + \Delta\right) - F_T\left(t\right)}{\Delta \cdot S_T\left(t\right)} = \frac{f_T\left(t\right)}{S_T\left(t\right)}.$$

h(t) represents the instant hazard? unified probability? that the subject will be dead instantly after t given the fact that it's alive at t. And the **cummulative hazard function** is

$$H(t) = \int_0^t h(x) dx = \int_0^t \frac{f_T(x)}{S_T(x)} dx = \int_0^t \frac{-dS_T(x)}{S_X(t)} = -\log(S_T(x))|_0^t = -\log(S_T(t)).$$

Proposition 1. The random variable H(T) follows unit exponential distribution EXP(1). *Proof.*

$$P(H(T) \le t) = P(-\log S(T) \le t)$$

$$= P(1 - F(T) \ge e^{-t})$$

$$= P(T \le F^{-1}(1 - e^{-t}))$$

$$= F(F^{-1}(1 - e^{-t}))$$

$$= 1 - e^{-t},$$

which is the c.d.f of EXP(1). Here to simplify the deduction we make some assumptions that

- F(t) is continuous.
- $F^{-1}(t)$ is well defined.

Also to simplify the notation and avoid confusion, we use $S(\cdot)$ and $F(\cdot)$ instead of $S_T(\cdot)$ and $F_T(\cdot)$ like before.

1.2 Censor

1.2.1 Right censor

• Type I: an i.i.d sample $T_1, \dots, T_n \sim F$ and a fixed constant c. And the observed data is (U_i, δ_i) for $i = 1, \dots, n$ where

$$U_i = \min(T_i, c)$$
$$\delta_i = 1_{T_i \le c}.$$

So the observed data consists of a random number, r, of uncensored observations, all of which are less than c. And n-r censored observations, all are c.

• Type II: an i.i.d sample $T_1, \dots, T_n \sim F$ and a pre-defined number of failure r. The observation is stopped when r failure occurs and the stopping time is c. The observed data is still the form (U_i, δ_i) for $i = 1, \dots, n$, the same as that in Type I censor. But in actuality, we observe the first r order statistics

$$T_{(1,n)},\cdots,T_{(r,n)}.$$

Note that here $(U_1, \delta_1), \dots, (U_n, \delta_n)$ are dependent whereas they are independent for Type I.

• Type III (Random censor): The underlying data is

$$c_1, \dots, c_n$$
 constant $T_1, \dots, T_n \sim F$.

And the observed data is (U_i, δ_i) for $i = 1, \dots, n$, where

$$U_i = \min (T_i, c_i)$$
$$\delta_i = 1_{T_i \le c_i}.$$

Note: for inference, c_i is often treated as constant. For study design or studying the asymptotic property, they are often treated as i.i.d random variables C_1, \dots, C_n .

1.2.2 Left censor

 T_i is censored when $T_i \leq l_i$.

1.2.3 Interval censor

 $l_i \leq T_i \leq u_i$, but only l_i and u_i are observed.

References