How To: Tester un moteur pas à pas avec A4988 et STM32 Nucleo-L476RG

1. Objectif

Expliquer comment connecter et contrôler un moteur pas à pas bipolaire à l'aide d'un driver A4988 et d'un microcontrôleur STM32 (Nucleo-L476RG).

2. Matériel nécessaire

- Carte STM32 Nucleo-L476RG
- Driver A4988
- Moteur pas à pas bipolaire (ex: 11HS18-0674S, 0.67 A)
- Alimentation externe pour le moteur (ex: 12V)
- Condensateur 100 μF (entre VMOT et GND du driver)

3. Branchement

Voici les différentes documentations pour les branchements du driver et du moteur

Ce moteur bipolaire a deux bobines :

Bobine 1:

 $A+ \rightarrow Fil noir (BLK)$

 $A- \rightarrow Fil \ vert \ (GRN)$

Bobine 2:

 $B+ \rightarrow Fil rouge (RED)$

 $B- \rightarrow Fil bleu (BLU)$

Ces bobines doivent être alimentées par le driver avec des signaux électriques appropriés pour faire tourner le moteur.

Schéma de câblage minimal pour connecter un microcontrôleur à un support de pilote de moteur pas à pas A4988 (mode pas complet).

Détails des branchements :

STEP: PA0 DIR: PA1

VMOT: +12V (alimentation moteur)

VDD: 3.3V (STM32)

Moteur: 4 fils connectés aux 1A/1B/2A/2B selon datasheet

Ajouter un condensateur 100 μF entre VMOT et GND du driver avant d'alimenter!

4. Réglage du courant sur le driver A4988

Le moteur supporte 0.67 A → on ajuste le potentiomètre du A4988 pour Vref ≈ 0.54 V

Vref=Imot×0.8=0.67×0.8≈0.54V

Ainsi, on alimente le driver (VMOT et VDD) et avec un multimètre (sonde noire sur GND, sonde rouge sur la vis du potentiomètre) on tourne jusqu'à 0.54 V.

5. Code STM32

```
#define STEP_PIN GPIO_PIN_0
#define DIR_PIN GPIO_PIN_1
#define STEP_PORT GPIOA

void step_motor(int steps, int delay_us) {
    for (int i = 0; i < steps; i++) {
        HAL_GPIO_WritePin(STEP_PORT, STEP_PIN, GPIO_PIN_SET); // Impulsion HIGH
        HAL_Delay(delay_us / 1000); // Attente (converti en ms si > 1000)
        HAL_GPIO_WritePin(STEP_PORT, STEP_PIN, GPIO_PIN_RESET); // Impulsion LOW
        HAL_Delay(delay_us / 1000);
    }
}
```

6. Conclusion

En suivant cette procédure, le moteur pas à pas est contrôlé de manière fluide avec un timer hardware.

Le bon réglage du courant et la précision des signaux PWM sont essentiels pour éviter les erreurs.

Le condensateur a un rôle important, il permet de stabiliser la tension et protège aussi le driver. Ainsi, il faut toujours l'installer avant d'alimenter un driver de moteur pas à pas !