Orthogonal Complements and Minimization Problems

Lecture 18

Dept. of Math., SUSTech

2024.04

Inner Product Spaces

- Orthogonal Complements
- Orthogonal Projection
- Minimization Problems
- 4 Homework Assignment 18

We begin with the definition of Orthogonal Complements:

6.45 **Definition** orthogonal complement, U^{\perp}

If U is a subset of V, then the *orthogonal complement* of U, denoted U^{\perp} , is the set of all vectors in V that are orthogonal to every vector in U:

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0 \text{ for every } u \in U \}.$$

For example, if U is a line containing the origin in \mathbb{R}^3 , then U^{\perp} is the plane containing the origin that is perpendicular to U.

6.46 Basic properties of orthogonal complement

- (a) If U is a subset of V, then U^{\perp} is a subspace of V.
- (b) $\{0\}^{\perp} = V$.
- (c) $V^{\perp} = \{0\}.$
- (d) If U is a subset of V, then $U \cap U^{\perp} \subset \{0\}$.
- (e) If U and W are subsets of V and $U \subset W$, then $W^{\perp} \subset U^{\perp}$.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$V = U \oplus U^{\perp}$$
.

Proof. First we will show that $V = U + U^{\perp}$. To do this, suppose $v \in V$. Let e_1, e_2, \dots, e_m be an orthonormal basis of U. Obviously

$$v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m + v - \langle v, e_1 \rangle e_1 - \dots - \langle v, e_m \rangle e_m.$$

Let $u=\langle v,e_1\rangle e_1+\cdots+\langle v,e_m\rangle e_m$ and $w=v-\langle v,e_1\rangle e_1-\cdots-\langle v,e_m\rangle e_m$ It can be verified that $u\in U,\,w\in U^\perp$, and $U\cap U^\perp=\{0\}$. Thus

$$V = U \oplus U^{\perp}$$
.

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

$$\dim U^{\perp} = \dim V - \dim U.$$

Proof. The formula for dim U^{\perp} follows immediately from 6.47 and 3.78.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

$$U = (U^{\perp})^{\perp}.$$

Orthogonal Projection

We now define an operator P_U for each finite-dimensional subspace of V.

6.53 **Definition** orthogonal projection, P_U

Suppose U is a finite-dimensional subspace of V. The *orthogonal projection* of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows: For $v \in V$, write v = u + w, where $u \in U$ and $w \in U^{\perp}$. Then $P_U v = u$.

6.54 **Example** Suppose $x \in V$ with $x \neq 0$ and $U = \operatorname{span}(x)$. Show that

$$P_U v = \frac{\langle v, x \rangle}{\|x\|^2} x$$

for every $v \in V$.

6.55 Properties of the orthogonal projection P_U

Suppose U is a finite-dimensional subspace of V and $v \in V$. Then

- (a) $P_U \in \mathcal{L}(V)$;
- (b) $P_U u = u$ for every $u \in U$;
- (c) $P_{U}w = 0$ for every $w \in U^{\perp}$;
- (d) range $P_U = U$;
- (e) null $P_U = U^{\perp}$;
- (f) $v P_U v \in U^{\perp}$;
- $(g) P_U^2 = P_U;$
- (h) $||P_Uv|| \le ||v||$;
- (i) for every orthonormal basis e_1, \ldots, e_m of U,

$$P_{U}v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m.$$

Minimization Problems

The following problem often arises: given a subspace U of V and a point $v \in V$, find a point $u \in U$ such that ||v-u|| is as small as possible. The next proposition shows that this minimization problem is solved by taking $u = P_U v$.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of $V, v \in V$, and $u \in U$. Then

$$||v - P_U v|| \le ||v - u||.$$

Furthermore, the inequality above is an equality if and only if $u = P_U v$.

Minimizing the distance to a subspace

 $P_{U}v$ is the closest point in U to v.

Example

The last result is often combined with the formula 6.55(i) to compute explicit solutions to minimization problems.

6.58 **Example** Find a polynomial u with real coefficients and degree at most 5 that approximates $\sin x$ as well as possible on the interval $[-\pi, \pi]$, in the sense that

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx$$

is as small as possible. Compare this result to the Taylor series approximation.

Solution.

(a) Let $C_R[-\pi,\pi]$ denote the real inner product space of continuous real-valued functions on $[-\pi,\pi]$ with inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx.$$

(b) Let $v \in C_R[-\pi, \pi]$ be the function defined by $v(x) = \sin x$. Let U denote the subspace of $C_R[-\pi, \pi]$ consisting of the polynomials with real coefficients and degree at most 5. Our problem can now be reformulated as follows:

Find $u \in U$ such that ||v - u|| is as small as possible.

(c) u(x) is given as follows (using 6.55(i)):

$$u(x) = 0.987862x - 0.155271x^3 + 0.00564312x^5$$
.

Solution.

- (d) The polynomial u above is the best approximation to $\sin x$ on $[-\pi, \pi]$ using polynomials of degree at most 5.
- (e) Here "best approximation" means in the sense of minimizing

$$\int_{-\pi}^{\pi} |\sin x - u(x)|^2 dx.$$

(f) To see how good this approximation is, the next figure shows the graphs of both $\sin x$ and our approximation u(x) given by 6.60 over the interval $[-\pi, \pi]$.

Graphs on $[-\pi, \pi]$ of $\sin x$ (blue) and its approximation u(x) (red) given by 6.60.

Example

(g) Another well-known approximation to $\sin x$ by a polynomial of degree 5 is given by the Taylor polynomial

$$x - \frac{x^3}{3!} + \frac{x^5}{5!}.$$

Graphs on $[-\pi, \pi]$ *of* $\sin x$ *(blue) and the Taylor polynomial 6.61 (red).*

Homework Assignment 18

6.C: 5, 7, 8, 9, 11, 12, 14.