An Introduction to *p***-Adic Numbers**

Trevor Hyde

Fun fact: .99999... = 1

Proof 1: Let x = .99999...

$$10x = 9.99999... = 9 + .99999... = 9 + x.$$

So 9x = 9, hence x = 1.

Fun fact: .99999... = 1

Proof 2: Recall the geometric series formula,

$$1 + x + x^2 + x^3 + \ldots = \frac{1}{1 - x}$$
.

Remember that .99999 . . . is a shorthand for

$$.99999\ldots = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \ldots = \frac{9}{10} \left(1 + \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \ldots \right)$$

Applying the geometric series formula, we get

$$\frac{9}{10}\left(1+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\ldots\right)=\frac{9}{10}\left(\frac{1}{1-\frac{1}{10}}\right)=1.$$

Proof 1: Let
$$x = ...99999$$
.

Proof 1: Let
$$x = ...99999$$
.

$$\begin{array}{r}
1111\\
\dots 99999\\
+ 1\\
\dots 00000
\end{array}$$

So
$$x + 1 = 0$$
, hence $x = -1$.

Proof 2: Let
$$x = ...99999$$
.

$$x = \dots 99999 = \dots 99990 + 9 = 10x + 9.$$

So
$$-9x = 9$$
, hence $x = -1$.

Proof 3: Let's use the geometric series formula.

$$\dots 99999 = 9 + 9 \cdot 10 + 9 \cdot 10^{2} + 9 \cdot 10^{3} + \dots$$

$$= 9(1 + 10 + 10^{2} + 10^{3} + \dots)$$

$$= 9\left(\frac{1}{1 - 10}\right)$$

$$= -1.$$

```
Let's compute (\dots 99999)^2.
```

```
...99999 \times ...99999
```

Let's compute $(\dots 99999)^2$.

```
...8888
...99999
×...99999
```

Let's compute $(\dots 99999)^2$.

```
...99999
×...99999
...9991
...991
...91
```

Let's compute $(\dots 99999)^2$.

So
$$(...99999)^2 = 1$$
.

Conundrum!

What's going on here???

Common sense tells us that ...99999 is not a number...

...but these "proofs" make it feel like there's something there.

Conundrum!

Two options:

- 1. Pretend like you never saw this. Never think about this again. Repress the memories.
- 2. Keep an open mind. Embrace the mystery of the unknown. Chase this crazy idea down the rabbit hole.

Power series

Ex:
$$1 + x + x^2 + x^3 + \dots \quad 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots$$

Power series = Really really long polynomial

Think of a power series more like a number than like a function: we can do algebra with power series without plugging anything in for x.

Formal power series

We can add and multiply power series, it doesn't matter where they converge!

Addition:

$$(a_0 + a_1x + a_2x^2 + \dots) + (b_0 + b_1x + b_2x^2 + \dots) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 + \dots$$

Multiplication:

$$(a_0 + a_1x + a_2x^2 + \dots) \cdot (b_0 + b_1x + b_2x^2 + \dots) =$$

$$(a_0b_0) + (a_1b_0 + a_0b_1)x + (a_2b_0 + a_1b_1 + a_0b_2)x^2 + \dots$$

Formal power series

The geometric series formula holds for formal power series.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$

The expression " $\frac{1}{1-x}$ " just means an element which when multiplied by 1-x gives 1.

$$(1-x)(1+x+x^2+x^3+\ldots) = 1+x+x^2+x^3+\ldots$$

 $-x-x^2-x^3-\ldots = 1$

Numbers as polynomials

Integers written in decimal \approx polynomials in the "variable" 10

Digits \approx coefficients

 $3729 \quad \approx \quad 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10 + 9$

Only difference: we have "carries" when we do arithmetic with numbers.

If integers are like polynomials...

...then what are like power series?

10-adic numbers!

10-adic numbers are formal power series in the "variable" 10.

Ex:
$$2+3\cdot 10+7\cdot 10^2+1\cdot 10^3+\dots$$
 $1+10+2\cdot 10^2+6\cdot 10^3+\dots$

Only allow "coefficients" in $\{0, 1, \dots, 8, 9\}$.

Addition and multiplication work just like for power series, except we might have to carry.

Key observation: If a and b are 10-adic numbers, then the coefficient of 10^n in a + b or $a \cdot b$ only depends on the coefficients of 10^k in a and b with $k \le n$.

What about subtraction?

Not sure if

$$-(2+3\cdot 10+7\cdot 10^2+1\cdot 10^3+\ldots)=-2-3\cdot 10-7\cdot 10^2-1\cdot 10^3-\ldots$$

or whether this even makes sense...

$$-1 = 9 + 9 \cdot 10 + 9 \cdot 10^2 + \dots$$

If a is a 10-adic number, then $-a = (-1) \cdot a$.

$$-1 = 9 + 9 \cdot 10 + 9 \cdot 10^2 + \dots$$

Example: If $a = 2 + 3 \cdot 10 + 7 \cdot 10^2 + ...$, then

$$-a = (9 + 9 \cdot 10 + 9 \cdot 10^{2} + \dots) \cdot (2 + 3 \cdot 10 + 7 \cdot 10^{2} + \dots)$$
$$= 8 + 6 \cdot 10 + 2 \cdot 10^{2} + \dots$$

Question: Can you find a shortcut for computing the 10-adic expansion of -m for a positive integer m?

b-adic integers \mathbb{Z}_b

Every integer has a base b expansion for any $b \ge 2$.

b-adic integers:

$$\mathbb{Z}_b = \{a_0 + a_1b + a_2b^2 + \dots : a_k \in \{0, 1, \dots, b-1\}\}$$

We can also write a *b*-adic integer as a number that goes on forever to the left.

$$\dots 1984537192 \in \mathbb{Z}_{10} \\ \dots 10101011010 \in \mathbb{Z}_2 \\ \dots 3130340214 \in \mathbb{Z}_5$$

Zero divisors

Important property of \mathbb{Z} **:** If mn = 0, then m = 0 or n = 0.

If *b* is composite, then \mathbb{Z}_b doesn't have this property!

Example: In \mathbb{Z}_{10} we have

$$(\dots 9879186432)(\dots 8212890625) = 0.$$

If p is prime, then \mathbb{Z}_p has no zero divisors.

This is one reason people focus on the *p*-adics.

Let's tour the strange world of *p*-adics!

Periodic p-adics

In \mathbb{Z}_5 we have

$$\dots 444444 = -1.$$

Can we figure out the values of other periodic numbers?

Let
$$x = ... 13131313$$
. Then

$$10^2x = \dots 13131300$$
$$10^2x + 13 = 13131313$$

$$10^2x + 13 = x$$
.

So $x = \frac{13}{1 - 10^2}$ (written in base 5).

$$x = -\frac{8}{24} = -\frac{1}{3}$$
 (base 10)

Periodic p-adics

In \mathbb{Z}_5 we have

$$\dots 444444 = -1.$$

Can we figure out the values of other periodic numbers?

Let x = ... 13131313. Then

$$10^2x = \dots 13131300$$
$$10^2x + 13 = \dots 13131313$$
$$10^2x + 13 = x.$$

So $x = \frac{13}{1-10^2}$ (written in base 5).

$$x = -\frac{8}{24} = -\frac{1}{3}$$
 (base 10).

Periodic *p*-adics

... 13131313 =
$$-\frac{1}{3}$$
 in \mathbb{Z}_5

There are fractions in \mathbb{Z}_p !

Questions:

- 1. Which fractions are in \mathbb{Z}_p ?
- 2. Can you characterize the periodic *p*-adic numbers?

pth powers

Let
$$p = 5$$
.

$$\lim_{n\to\infty}2^{5^n}\stackrel{?}{=}$$

Our gut reaction might be to say " ∞ !" or "does not exist!" but in the *p*-adic world, stranger things can happen.

2^{5^n}	n
2	0
112	1
2220212	2
0321212	3
1331212	4
1431212	5
2431212	6
2431212	7

pth powers

Things get even weirder when replace 2 with other numbers.

$\lim_{n \to \infty} b^{5^n}$	b
0000001	1
2431212	2
2013233	3
444444	4
0000000	5
0000001	6
2431212	7
2013233	8

$\lim_{n\to\infty}b^{5^n}$	b
444444	9
0000000	10
0000001	11
2431212	12
2013233	13
444444	14
0000000	15
0000001	16

What's the deal with . . . 2431212 and . . . 2013233? **Hint:** $(\dots 2431212)^2 = (\dots 2013233)^2 = \dots 4444444$.

$\overline{\mathbb{Z}_p}$ is a tree

We can visualize \mathbb{Z}_p as the leaves of a tree. Here's an example when p=2.

Think of a *p*-adic number as directions for how to get from the root to a leaf.

Distance in \mathbb{Z}_p

Define the *distance* d(a,b) between $a,b\in\mathbb{Z}_p$ to be

$$d(a,b)=\frac{1}{p^k}$$

when a and b have the same first k digits/differ for the first time at the k+1th digit.

So a and b are "close" if they have a lot of digits in common.

A p-adic number is "small" if it starts with lots of 0's.

Ex:
$$d(\dots 232143, \dots 012143) = \frac{1}{5^4}$$

p-adic disks

The *disk* centered at $a \in \mathbb{Z}_p$ with radius $r = \frac{1}{p^k}$ is

$$\begin{aligned} \textit{D}(\textit{a},\textit{r}) &= \{\textit{b} \in \mathbb{Z}_p : \textit{d}(\textit{a},\textit{b}) \leq \textit{r}\} \\ &= \{\textit{b} \in \mathbb{Z}_p : \text{ the first } \textit{k} \text{ digits of } \textit{b} \text{ agree with } \textit{a}\} \end{aligned}$$

"Every point in a p-adic disk is the center."

"If two disks overlap, then one is contained inside the other."

p-adic triangles

If $a, b, c \in \mathbb{Z}_p$ are three distinct points, we can think of them as forming the vertices of a triangle in \mathbb{Z}_p .

Two possibilities:

"Every p-adic triangle is isosceles."

Questions

Here are some questions for you to think about.

1.
$$(\dots$$
 1216213 $)^2=2$ in \mathbb{Z}_7 , so $\sqrt{2}\in\mathbb{Z}_7!$ For which primes p is $\sqrt{2}\in\mathbb{Z}_p$?

- 2. \mathbb{Q} is the field of fractions of \mathbb{Z} . Can you find a simple description of \mathbb{Q}_p , the field of fractions of \mathbb{Z}_p ? How does \mathbb{Q}_p fit into the tree picture?
- 3. The units in $\mathbb Z$ are ± 1 . Can you describe all the units in $\mathbb Z_p$? Hint: there are a lot more.

Thanks!

