Project CAIR: Statistical Analysis of Analytes

Mark Hutchinson, Tory Madden & Gill Bedwell

2025-06-05

Assay panel labelled 1

Load the Data

```
########################
# ASSAY 1
######################
# Load the data from the Excel file
file_path <- here("R&D3plex_LX200_20240222_1.xlsx")
data <- read_excel(file_path, sheet = "FI - Bkgd", range = "A62:F156")
## New names:
## * 'FI - Bkgd' -> 'FI - Bkgd...4'
## * 'FI - Bkgd' -> 'FI - Bkgd...5'
## * 'FI - Bkgd' -> 'FI - Bkgd...6'
# Rename columns for easier reference
colnames(data) <- c("Type", "Well", "Description", "IL1b", "IL6", "TNFa")</pre>
# Fill in missing Description values for the first 14 rows based on Type
data <- data %>%
 mutate(Description = ifelse(row_number() <= 14 & is.na(Description), Type, Description))</pre>
# Verify the changes
head(data, 20)
## # A tibble: 20 x 6
##
      Type Well Description IL1b
                                        IL6
                                              TNFa
      <chr> <chr> <chr>
                              <dbl>
                                      <dbl>
                                             <dbl>
##
##
   1 B
            A1
                  В
                                 7
                                        5
                                               6.5
  2 B
                                 7
##
            В1
                  В
                                               6
## 3 S1
            C1
                  S1
                              6074
                                     2284.
                                            5179.
## 4 S1
            D1
                  S1
                              5983
                                     2363
                                            5121.
## 5 S2
                                      730
            E1
                  S2
                              2511
                                            2015.
## 6 S2
            F1
                  S2
                              2622.
                                      762
                                            2108.
## 7 S3
                  S3
                                      239
                                             732.
            G1
                               846
## 8 S3
            H1
                  S3
                               894.
                                      240.
                                             744.
## 9 S4
            A2
                  S4
                               263
                                      73.5 238.
## 10 S4
            B2
                  S4
                               272
                                      78
                                             259.
## 11 S5
            C2
                                       25.5
                                            82.8
                  S5
                                87
```

```
26.5
## 12 S5
          D2
                S5
                            84
                                          83.8
## 13 S6
          E2
                S6
                            27 8.5
                                          27.8
## 14 S6
          F2
                S6
                            30
                                   9.5 26.8
## 15 C1
           G2
                IQC
                             6 100.
                                          59.8
                             7
                                  97.5 56.8
## 16 C1
                IQC
          H2
## 17 X1
        A3
                CAIR_05
                             540 1646. 277.
## 18 X1 B3
                CAIR 05
                             556. 1684. 276.
## 19 X2
                CAIR_13
                             434 2166
           C3
                                         478.
## 20 X2
           D3
                CAIR_13
                             419 2132.
                                        454.
# Load the expected concentrations from the Excel file
exp_conc <- read_excel(file_path, sheet = "Exp Conc", range = "D65:F76", col_names = FALSE)
## New names:
## * '' -> '...1'
## * '' -> '...2'
## * '' -> '...3'
# Set the correct column names
colnames(exp_conc) <- c("IL1b", "IL6", "TNFa")</pre>
\# Extract the standard data and add expected concentrations
standard data <- data %>%
 filter(grepl("^S", Type)) %>%
 mutate(IL1b_exp = exp_conc$IL1b,
        IL6_exp = exp_conc$IL6,
        TNFa_exp = exp_conc$TNFa)
```

Calculate Mean and %CV for Replicates

Distribution of %CV for Each Analyte


```
##
      Description CV_IL1b CV_IL6 CV_TNFa
      <chr>
                            <dbl>
                                     <dbl>
##
                     <dbl>
##
    1 CAIR_60
                     14.3
                            9.14
                                    10.1
##
    2 IQC
                     10.9
                            2.14
                                    3.64
##
    3 CAIR_19
                      9.62
                            5.45
                                    7.25
    4 S6
                      7.44
                            7.86
                                     2.59
##
##
    5 CAIR_24
                      6.47
                            5.29
                                     3.43
                                     2.52
    6 CAIR_105
                      6.28
                            2.11
##
    7 CAIR_43
                      5.67
                            3.81
                                     2.72
    8 CAIR_104
                                    4.60
##
                      5.63
                            0.786
                            2.17
##
    9 CAIR_14
                      5.25
                                    0.431
                                     0.893
## 10 CAIR_73
                      5.11 3.20
## # i 37 more rows
##
## Call:
## lm(formula = IL1b_exp ~ poly(IL1b, 2), data = standard_data)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
   -63.039 -22.197
                      0.325
                            21.051
                                     53.632
##
```

A tibble: 47 x 4

```
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                 1198.35
## (Intercept)
                               11.47 104.47 3.42e-15 ***
                               39.74 147.38 < 2e-16 ***
## poly(IL1b, 2)1 5856.39
## poly(IL1b, 2)2
                  543.90
                               39.74
                                     13.69 2.49e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 39.74 on 9 degrees of freedom
## Multiple R-squared: 0.9996, Adjusted R-squared: 0.9995
## F-statistic: 1.095e+04 on 2 and 9 DF, p-value: 5.762e-16
##
## Call:
## lm(formula = IL6_exp ~ poly(IL6, 2), data = standard_data)
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -11.8997 -0.7412
                      0.0356
                              1.4436 13.0685
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                 197.228
                            1.891 104.280 3.48e-15 ***
## (Intercept)
## poly(IL6, 2)1 967.919
                              6.552 147.734 < 2e-16 ***
## poly(IL6, 2)2 -13.317
                              6.552 -2.033
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.552 on 9 degrees of freedom
## Multiple R-squared: 0.9996, Adjusted R-squared: 0.9995
## F-statistic: 1.091e+04 on 2 and 9 DF, p-value: 5.856e-16
##
## Call:
## lm(formula = TNFa_exp ~ poly(TNFa, 2), data = standard_data)
##
## Residuals:
                 1Q
                     Median
       Min
                                   3Q
                                           Max
## -16.2455 -1.5107 -0.7625
                               3.5380 13.7323
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  439.398
                               2.742 160.22 < 2e-16 ***
                               9.500 226.52 < 2e-16 ***
## poly(TNFa, 2)1 2151.909
## poly(TNFa, 2)2 145.681
                               9.500
                                     15.34 9.31e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.5 on 9 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
## F-statistic: 2.577e+04 on 2 and 9 DF, p-value: < 2.2e-16
```


Table 1: Increasing CV values with decreasing expected concentration

Type	Well	$IL1b_exp$	CV_IL1b_fitted	${\rm IL6}_{\rm exp}$	CV_IL6_fitted	${\rm TNFa}_{\rm exp}$	CV_TNFa_fitted
S1	C1	4800.00	0.9349825	790.00	1.6820623	1760.00	0.6967211
S1	D1	4800.00	1.1299642	790.00	1.4839377	1760.00	0.7543601
S2	E1	1600.00	1.2807619	263.33	1.5802649	586.67	2.3968155
S2	F1	1600.00	3.7906003	263.33	2.5919339	586.67	2.6944934
S3	G1	533.33	10.7194518	87.78	1.4678301	195.56	1.8078734
S3	H1	533.33	4.6100689	87.78	0.8448837	195.56	0.1676885
S4	A2	177.78	9.9894885	29.26	7.1988377	65.19	6.0756277
S4	B2	177.78	6.8899609	29.26	1.2043863	65.19	2.4396745
S5	C2	59.26	17.2096369	9.75	2.7623629	21.73	2.8514815
S5	D2	59.26	15.4271226	9.75	6.1341502	21.73	3.9224877
S6	E2	19.75	52.4941609	3.25	16.6895767	7.24	16.8856669
S6	F2	19.75	54.1397922	3.25	23.7369677	7.24	14.4573864

Interpretation: VERY poor fit at lower end of expected concentrations.

Use weighting strategy to address poor fit at lower end of concentration range

```
##
## Call:
## lm(formula = IL1b_exp ~ poly(IL1b, 2), data = standard_data,
      weights = weight_IL1b)
##
##
## Weighted Residuals:
      Min
            1Q Median
                               3Q
                                      Max
## -2.7653 -0.6808 0.4037 1.2363 1.8214
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  1196.68
                               14.90 80.302 3.65e-14 ***
## poly(IL1b, 2)1 5847.84
                               87.30 66.989 1.86e-13 ***
## poly(IL1b, 2)2
                   455.14
                               50.68
                                      8.981 8.69e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.492 on 9 degrees of freedom
## Multiple R-squared: 0.9985, Adjusted R-squared: 0.9982
## F-statistic: 3011 on 2 and 9 DF, p-value: 1.916e-13
##
## Call:
## lm(formula = IL6_exp ~ poly(IL6, 2), data = standard_data, weights = weight_IL6)
## Weighted Residuals:
##
                 1Q
                     Median
## -0.52694 -0.07176 0.07097 0.13621 0.48419
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
```

```
1.325 148.846 < 2e-16 ***
## (Intercept)
                197.148
                           8.030 120.523 9.47e-16 ***
## poly(IL6, 2)1 967.752
                            4.397 -3.647 0.00534 **
## poly(IL6, 2)2 -16.038
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.3268 on 9 degrees of freedom
## Multiple R-squared: 0.9996, Adjusted R-squared: 0.9995
## F-statistic: 1.035e+04 on 2 and 9 DF, p-value: 7.45e-16
##
## Call:
## lm(formula = TNFa_exp ~ poly(TNFa, 2), data = standard_data,
##
      weights = weight_TNFa)
##
## Weighted Residuals:
       Min
                1Q Median
## -0.78286 -0.13576 -0.01197 0.23114 0.52182
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           2.356
                                     186.5 < 2e-16 ***
                 439.285
## poly(TNFa, 2)1 2151.353
                             13.921 154.5 < 2e-16 ***
## poly(TNFa, 2)2 140.615
                             7.768 18.1 2.18e-08 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.3894 on 9 degrees of freedom
## Multiple R-squared: 0.9997, Adjusted R-squared: 0.9997
## F-statistic: 1.624e+04 on 2 and 9 DF, p-value: < 2.2e-16
```


Back-calculate standard curve observed values with weighted model

```
## # A tibble: 12 x 11
##
            Well
                   IL1b_exp Fitted_IL1b_weighted CV_IL1b_weighted IL6_exp
##
      <chr> <chr>
                       <dbl>
                                              <dbl>
                                                                 <dbl>
                                                                          <dbl>
             C1
                                                                 0.280
                                                                         790
    1 S1
                      4800
                                             4813.
##
    2 S1
                      4800
                                             4719.
                                                                 1.71
                                                                         790
##
             D1
                                                                         263.
    3 S2
             E1
                      1600
                                             1627.
                                                                 1.64
##
##
    4 S2
             F1
                      1600
                                             1711.
                                                                 6.47
                                                                         263.
##
    5
      S3
             G1
                       533.
                                              496.
                                                                 7.61
                                                                          87.8
##
    6 S3
             H1
                       533.
                                              525.
                                                                 1.52
                                                                          87.8
##
    7
      S4
             A2
                       178.
                                              153.
                                                                15.8
                                                                          29.3
             В2
                       178.
                                                                          29.3
##
    8
      S4
                                              159.
                                                                12.1
##
    9
      S5
             C2
                        59.3
                                               55.7
                                                                 6.39
                                                                           9.75
## 10 S5
             D2
                        59.3
                                               54.1
                                                                 9.62
                                                                           9.75
## 11 S6
             E2
                        19.8
                                               22.9
                                                                13.9
                                                                           3.25
## 12 S6
             F2
                        19.8
                                               24.6
                                                                19.6
                                                                           3.25
## # i 5 more variables: Fitted_IL6_weighted <dbl>, CV_IL6_weighted <dbl>,
       TNFa_exp <dbl>, Fitted_TNFa_weighted <dbl>, CV_TNFa_weighted <dbl>
```

^{##} Warning in styling_latex_scale(out, table_info, "down"): Longtable cannot be
resized.

Table 2: Less dramatic increase in CV values with decreasing expected concentration

Type	Well	IL1b_exp	CV_IL1b_weighted	IL6_exp	CV_IL6_weighted	TNFa_exp	CV_TNFa_weighted
S1	C1	4800.00	0.2797202	790.00	1.7528756	1760.00	0.5972466
S1	D1	4800.00	1.7148201	790.00	1.3752796	1760.00	0.8452870
S2	E1	1600.00	1.6424497	263.33	0.9979349	586.67	1.9230086
S2	F1	1600.00	6.4662283	263.33	3.1451082	586.67	3.1309133
S3	G1	533.33	7.6064360	87.78	1.1670563	195.56	1.3844900
S3	H1	533.33	1.5184838	87.78	0.5418493	195.56	0.2554541
S4	A2	177.78	15.8221186	29.26	8.6450569	65.19	6.9094498
S4	B2	177.78	12.1193517	29.26	2.4270113	65.19	1.8247720
S5	C2	59.26	6.3857884	9.75	3.0166959	21.73	1.4367081
S5	D2	59.26	9.6227409	9.75	0.8027859	21.73	0.2552600
S6	E2	19.75	13.9342562	3.25	0.4890223	7.24	4.6419982
S6	F2	19.75	19.6445872	3.25	10.4872180	7.24	1.3891033

Predict values for unknown samples

```
## # A tibble: 78 x 12
##
      Type Well Description IL1b
                                        IL6  TNFa Predicted_IL1b Predicted_IL6
##
      <chr> <chr> <chr>
                                <dbl> <dbl> <dbl>
                                                            <dbl>
##
    1 X1
             ΑЗ
                   CAIR_05
                                 540 1646.
                                             277.
                                                             313.
                                                                            571.
##
    2 X1
             ВЗ
                   CAIR_05
                                 556. 1684.
                                             276.
                                                              322.
                                                                            584.
##
   3 X2
             СЗ
                   CAIR_13
                                 434
                                      2166
                                             478.
                                                              251.
                                                                            739.
##
   4 X2
            D3
                   CAIR_13
                                 419
                                      2132.
                                             454.
                                                              242.
                                                                            728.
   5 X4
                   CAIR_20
                                 434. 2416.
                                             677.
##
            GЗ
                                                              251.
                                                                            818.
##
    6 X4
            НЗ
                   CAIR_20
                                 412. 2334.
                                             653.
                                                              238.
                                                                            792.
##
   7 X5
                   CAIR_44
                                 450
                                      2648.
                                             477.
                                                              260.
                                                                            889.
             Α4
##
    8 X5
            B4
                   CAIR_44
                                 427
                                      2592.
                                             460.
                                                              247.
                                                                            872.
## 9 X6
             C4
                   CAIR_42
                                1030
                                      2750.
                                             814.
                                                              609.
                                                                            920.
## 10 X6
            D4
                   CAIR_42
                                1026. 2675
                                             789.
                                                              607.
                                                                            898.
```

^{## #} i 68 more rows

^{## #} i 4 more variables: Predicted_TNFa <dbl>, Check_IL1b <chr>, Check_IL6 <chr>,

^{## #} Check_TNFa <chr>

Interpolate values for samples flagged as "out of range"

Weighted Standard Curve (red) and data points. Black: standards.

Calculate means and multiply by 30

Save results

```
# Save the unknown raw values to a CSV file
write.csv(unknown_data, here("unknown_raw_values.csv"), row.names = FALSE)

# Save the mean of the duplicates to a CSV file
readr::write_rds(mean_duplicates, here("luminex_results.rds"))
write.csv(mean_duplicates, here("luminex_results.csv"), row.names = FALSE)
```

Assay panel labelled 2

Load the Data

```
# Load the data from the Excel file
########################
# ASSAY 2
############################
file_path_2 <- here("R&D3plex_LX200_20240222_2.xlsx")</pre>
data_2 <- read_excel(file_path_2, sheet = "FI - Bkgd", range = "A61:F153")</pre>
## New names:
## * 'FI - Bkgd' -> 'FI - Bkgd...4'
## * 'FI - Bkgd' -> 'FI - Bkgd...5'
## * 'FI - Bkgd' -> 'FI - Bkgd...6'
# Rename columns for easier reference
colnames(data_2) <- c("Type", "Well", "Description", "IL1b", "IL6", "TNFa")</pre>
# Fill in missing Description values for the first 14 rows based on Type
data_2 <- data_2 %>%
 mutate(Description = ifelse(row_number() <= 14 & is.na(Description), Type, Description))</pre>
# Verify the changes
head(data_2, 20)
## # A tibble: 20 x 6
##
     Type Well Description IL1b
                                       IL6
                                            TNFa
##
     <chr> <chr> <chr>
                              <dbl> <dbl> <dbl>
## 1 B
                                7.5
                                       5
                                              7.5
           A1
                 В
## 2 B
           B1
                 В
                                7
                                       5
                                              6
## 3 S1
           C1
                 S1
                             6736. 2617
                                           5655.
## 4 S1
                 S1
                             6576. 2722. 5667.
           D1
## 5 S2
           E1
                 S2
                             2862.
                                     876. 2373.
## 6 S2
           F1
                                     885
                 S2
                             2915.
                                           2371.
## 7 S3
           G1
                 S3
                              970.
                                     270
                                           819.
                                            849.
## 8 S3
                 S3
                                     280.
           H1
                              956.
## 9 S4
           A2
                 S4
                              274.
                                      85
                                            262.
           B2
## 10 S4
                 S4
                              289.
                                      88.5 271.
## 11 S5
           C2
                              87.8 28
                                            91.3
                 S5
## 12 S5
           D2
                               97.3 29
                                             90.8
                 S5
```

```
## 13 S6
                S6
                            31.8 9.5 29.8
          E2
## 14 S6 F2
                S6
                            31.8 9
                                           30.3
## 15 C1 G2
                IQC
                             7.3 110
                                          64.3
## 16 C1
        H2
                IQC
                             7.8 110.
                                          66.3
                             430. 1934.
## 17 X1
         AЗ
                CAIR_86
                                          410.
## 18 X1 B3
                CAIR_86
                             427. 1962
                                          421.
## 19 X2 C3
                CAIR 47
                             328. 3246.
                                          474.
## 20 X2 D3
                CAIR_47
                             305. 3066
                                          466.
# Load the expected concentrations from the Excel file
exp_conc_2 <- read_excel(file_path_2, sheet = "Exp Conc", range = "D64:F75", col_names = FALSE)</pre>
## New names:
## * '' -> '...1'
## * ' ' -> '...2'
## * '' -> '...3'
# Set the correct column names
colnames(exp_conc_2) <- c("IL1b", "IL6", "TNFa")</pre>
# Extract the standard data and add expected concentrations
standard_data_2 <- data_2 %>%
 filter(grep1("^S", Type)) %>%
 mutate(IL1b_exp = exp_conc_2$IL1b,
        IL6_{exp} = exp_{conc_2}IL6,
        TNFa_{exp} = exp_{conc_2}TNFa
```

Calculate Mean and %CV for Replicates

Distribution of %CV for Each Analyte


```
##
      Description CV_IL1b CV_IL6 CV_TNFa
      <chr>
                            <dbl>
                                     <dbl>
##
                     <dbl>
##
    1 CAIR_205
                     12.4
                              6.03
                                     9.36
##
    2 S5
                      7.26
                              2.48
                                     0.388
##
    3 CAIR_223
                      6.60
                              4.09
                                     0.743
    4 CAIR_232
                      6.45
                              1.42
                                     4.10
##
                              2.70
                                     3.58
##
    5 CAIR_231
                      5.67
    6 CAIR_202
                      5.64
                              3.31
                                     5.34
##
    7 CAIR_252
                      5.52
                              2.18
                                     2.06
    8 CAIR_47
                              4.02
##
                      5.13
                                     1.20
##
    9 CAIR_236
                      5.03
                              5.11
                                     1.36
## 10 CAIR_240
                      5.03
                              2.40
                                     0.972
## # i 36 more rows
##
## Call:
## lm(formula = IL1b_exp ~ poly(IL1b, 2), data = standard_data_2)
##
## Residuals:
      {\tt Min}
##
               1Q Median
                              3Q
                                    Max
  -73.47 -28.46 -12.21
                          28.11
                                  86.45
##
```

A tibble: 46 x 4

```
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                               14.46
                                      82.87 2.75e-14 ***
## (Intercept)
                 1198.35
## poly(IL1b, 2)1 5851.51
                               50.09 116.81 1.25e-15 ***
## poly(IL1b, 2)2
                  586.95
                               50.09
                                     11.72 9.43e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 50.09 on 9 degrees of freedom
## Multiple R-squared: 0.9993, Adjusted R-squared: 0.9992
## F-statistic: 6891 on 2 and 9 DF, p-value: 4.634e-15
##
## Call:
## lm(formula = IL6_exp ~ poly(IL6, 2), data = standard_data_2)
## Residuals:
       Min
                 1Q
                    Median
                                   3Q
                                           Max
## -14.1776 -1.4145 -0.7718
                              1.3680 15.8617
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                 197.228
                            2.152 91.663 1.11e-14 ***
## (Intercept)
                              7.454 129.862 4.84e-16 ***
## poly(IL6, 2)1 967.937
## poly(IL6, 2)2
                              7.454 -0.733
                  -5.463
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.454 on 9 degrees of freedom
## Multiple R-squared: 0.9995, Adjusted R-squared: 0.9993
## F-statistic: 8432 on 2 and 9 DF, p-value: 1.869e-15
##
## Call:
## lm(formula = TNFa_exp ~ poly(TNFa, 2), data = standard_data_2)
##
## Residuals:
   Min
             1Q Median
                           3Q
                                 Max
## -5.143 -4.478 -2.418 3.519 11.755
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  439.398
                               1.717 255.97 < 2e-16 ***
                               5.946 361.38 < 2e-16 ***
## poly(TNFa, 2)1 2148.922
## poly(TNFa, 2)2 185.916
                               5.946
                                      31.27 1.72e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.946 on 9 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 6.579e+04 on 2 and 9 DF, p-value: < 2.2e-16
```


Table 3: Increasing CV values with decreasing expected concentration

Type	Well	$IL1b_exp$	CV_IL1b_fitted	${\rm IL6}_{\rm exp}$	CV_IL6_fitted	${\rm TNFa}_{\rm exp}$	CV_TNFa_fitted
S1	C1	4800.00	1.5074925	790.00	2.0489487	1760.00	0.1789305
S1	D1	4800.00	1.8341263	790.00	1.7629914	1760.00	0.1064136
S2	E1	1600.00	0.6984172	263.33	0.4510414	586.67	0.8309207
S2	F1	1600.00	2.8813800	263.33	1.5033525	586.67	0.7328970
S3	G1	533.33	8.8814991	87.78	5.3106100	195.56	6.3954796
S3	H1	533.33	10.4937518	87.78	1.4649864	195.56	2.4332955
S4	A2	177.78	14.8462294	29.26	6.0514606	65.19	8.0286960
S4	B2	177.78	9.8778827	29.26	2.1393563	65.19	4.7275020
S5	C2	59.26	18.1764060	9.75	5.9849439	21.73	12.3568806
S5	D2	59.26	22.5955523	9.75	8.6474446	21.73	11.9937371
S6	E2	19.75	59.0325654	3.25	31.9787046	7.24	41.0512726
S6	F2	19.75	59.0325654	3.25	29.7560514	7.24	41.5327347

Interpretation: VERY poor fit at lower end of expected concentrations.

Use weighting strategy to address poor fit at lower end of concentration range

```
##
## Call:
## lm(formula = IL1b_exp ~ poly(IL1b, 2), data = standard_data_2,
      weights = weight_IL1b)
##
## Weighted Residuals:
      Min
             1Q Median
                               3Q
                                      Max
## -2.6663 -1.1596 0.6391 1.4917 2.5563
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                               18.43 64.891 2.47e-13 ***
## (Intercept)
                  1195.80
## poly(IL1b, 2)1 5840.21
                              107.66 54.246 1.24e-12 ***
                                       7.484 3.75e-05 ***
## poly(IL1b, 2)2
                   474.78
                               63.44
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.846 on 9 degrees of freedom
## Multiple R-squared: 0.9977, Adjusted R-squared: 0.9972
## F-statistic: 1966 on 2 and 9 DF, p-value: 1.299e-12
##
## Call:
## lm(formula = IL6_exp ~ poly(IL6, 2), data = standard_data_2,
##
      weights = weight_IL6)
##
## Weighted Residuals:
       Min
                 1Q Median
                                   3Q
## -0.44651 -0.22181 0.05319 0.27563 0.59621
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 197.120
                             1.538 128.206 5.43e-16 ***
                              9.298 104.076 3.54e-15 ***
## poly(IL6, 2)1 967.714
## poly(IL6, 2)2 -10.564
                              5.157 -2.048
                                            0.0708 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.3794 on 9 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9993
## F-statistic: 7676 on 2 and 9 DF, p-value: 2.853e-15
##
## Call:
## lm(formula = TNFa_exp ~ poly(TNFa, 2), data = standard_data_2,
      weights = weight_TNFa)
##
## Weighted Residuals:
             1Q Median
                               3Q
      Min
## -0.6629 -0.2917 0.1112 0.3118 0.8122
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  439.19
                              3.16 139.00 2.62e-16 ***
## poly(TNFa, 2)1 2147.14
                               18.55 115.77 1.36e-15 ***
## poly(TNFa, 2)2 165.36
                               10.58
                                     15.63 7.90e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5223 on 9 degrees of freedom
## Multiple R-squared: 0.9995, Adjusted R-squared: 0.9994
## F-statistic: 9022 on 2 and 9 DF, p-value: 1.379e-15
```


Back-calculate standard curve observed values with weighted model

```
## # A tibble: 12 x 11
##
            Well
                   IL1b_exp Fitted_IL1b_weighted CV_IL1b_weighted IL6_exp
##
      <chr> <chr>
                       <dbl>
                                              <dbl>
                                                                 <dbl>
                                                                          <dbl>
             C1
                                             4830.
                                                                        790
    1 S1
                      4800
                                                                 0.629
##
    2 S1
                      4800
                                             4680.
                                                                 2.57
                                                                         790
##
             D1
    3 S2
                                                                         263.
##
             E1
                      1600
                                             1670.
                                                                 4.20
##
    4 S2
             F1
                      1600
                                             1707.
                                                                 6.25
                                                                         263.
##
    5
      S3
             G1
                       533.
                                              508.
                                                                 4.89
                                                                          87.8
##
    6 S3
             H1
                       533.
                                              501.
                                                                 6.50
                                                                          87.8
##
    7
      S4
             A2
                       178.
                                              144.
                                                                23.7
                                                                          29.3
             В2
                       178.
                                              151.
                                                                          29.3
##
    8
      S4
                                                                17.4
##
    9
      S5
             C2
                        59.3
                                               52.0
                                                                13.9
                                                                           9.75
                                                                 4.60
## 10 S5
             D2
                        59.3
                                               56.7
                                                                           9.75
## 11 S6
             E2
                        19.8
                                               24.9
                                                                20.7
                                                                           3.25
                                               24.9
## 12 S6
             F2
                        19.8
                                                                20.7
                                                                           3.25
## # i 5 more variables: Fitted_IL6_weighted <dbl>, CV_IL6_weighted <dbl>,
       TNFa_exp <dbl>, Fitted_TNFa_weighted <dbl>, CV_TNFa_weighted <dbl>
```

^{##} Warning in styling_latex_scale(out, table_info, "down"): Longtable cannot be
resized.

Table 4: Less dramatic increase in CV values with decreasing expected concentration

Type	Well	IL1b_exp	CV_IL1b_weighted	IL6_exp	CV_IL6_weighted	TNFa_exp	CV_TNFa_weighted
S1	C1	4800.00	0.6286797	790.00	2.1671731	1760.00	0.5450275
S1	D1	4800.00	2.5741493	790.00	1.5637815	1760.00	0.2660460
S2	E1	1600.00	4.2005198	263.33	1.5246932	586.67	2.6640785
S2	F1	1600.00	6.2491709	263.33	2.5626368	586.67	2.5691234
S3	G1	533.33	4.8940516	87.78	4.7085932	195.56	4.4019225
S3	H1	533.33	6.4997245	87.78	0.8387264	195.56	0.4558821
S4	A2	177.78	23.7196056	29.26	8.5627272	65.19	11.1845947
S4	B2	177.78	17.3898820	29.26	4.3817498	65.19	7.5222445
S5	C2	59.26	13.8994120	9.75	4.2550523	21.73	2.4402967
S5	D2	59.26	4.6041275	9.75	0.9197482	21.73	2.9642962
S6	E2	19.75	20.6933884	3.25	10.5221521	7.24	9.4791566
S6	F2	19.75	20.6933884	3.25	6.5431596	7.24	10.6731994

Predict values for unknown samples

```
## # A tibble: 76 x 12
##
      Type Well Description IL1b
                                        IL6  TNFa Predicted_IL1b Predicted_IL6
##
      <chr> <chr> <chr>
                                <dbl> <dbl> <dbl>
                                                             <dbl>
                                                                            <dbl>
##
    1 X1
             ΑЗ
                   CAIR_86
                                 430. 1934.
                                             410.
                                                              222.
                                                                            579.
##
    2 X1
             ВЗ
                   CAIR_86
                                 427. 1962
                                             421.
                                                              221.
                                                                            587.
##
   3 X2
             СЗ
                   CAIR_47
                                 328. 3246.
                                             474.
                                                                            948.
                                                              171.
##
   4 X2
            D3
                   CAIR_47
                                 305. 3066
                                             466.
                                                              159.
                                                                            898.
   5 X3
                   CAIR_67
                                 396. 2088
                                             358.
                                                              205.
##
            E3
                                                                            623.
##
    6 X3
            F3
                   CAIR_67
                                 390. 1995
                                             357.
                                                              202.
                                                                            596.
##
   7 X4
            GЗ
                   CAIR_96
                                 743. 3594
                                             882.
                                                                            1043.
                                                              386.
##
    8 X4
            НЗ
                   CAIR_96
                                 746. 3521
                                             871.
                                                              387.
                                                                            1023.
## 9 X5
             Α4
                   CAIR_130
                                 315. 1836
                                             542.
                                                              164.
                                                                             550.
## 10 X5
            B4
                   CAIR_130
                                 313. 1820
                                             543.
                                                              163.
                                                                             546.
```

^{## #} i 66 more rows

^{## #} i 4 more variables: Predicted_TNFa <dbl>, Check_IL1b <chr>, Check_IL6 <chr>,

^{## #} Check_TNFa <chr>

Interpolate values for samples flagged as "out of range"

Weighted Standard Curve (red) and data points. Black: standards.

Calculate means and multiply by 30

Save results

```
# Save the unknown raw values to a CSV file
write.csv(unknown_data_2, here("unknown_raw_values_2.csv"), row.names = FALSE)

# Save the mean of the duplicates to a CSV file
readr::write_rds(mean_duplicates_2, here("luminex_results_2.rds"))
write.csv(mean_duplicates_2, here("luminex_results_2.csv"), row.names = FALSE)
```

Assay panel labelled 3

Load the Data

```
# Load the data from the Excel file
########################
# ASSAY 3
############################
file_path_3 <- here("R&D3plex_LX200_20240226_3.xlsx")
data_3 <- read_excel(file_path_3, sheet = "FI - Bkgd", range = "A63:F159")
## New names:
## * 'FI - Bkgd' -> 'FI - Bkgd...4'
## * 'FI - Bkgd' -> 'FI - Bkgd...5'
## * 'FI - Bkgd' -> 'FI - Bkgd...6'
# Rename columns for easier reference
colnames(data_3) <- c("Type", "Well", "Description", "IL1b", "IL6", "TNFa")</pre>
# Fill in missing Description values for the first 14 rows based on Type
data_3 <- data_3 %>%
 mutate(Description = ifelse(row_number() <= 14 & is.na(Description), Type, Description))</pre>
# Verify the changes
head(data_3, 20)
## # A tibble: 20 x 6
##
     Type Well Description IL1b
                                      IL6
                                           TNFa
##
     <chr> <chr> <chr>
                             <dbl> <dbl> <dbl>
## 1 B
                                      5
                                             7
           A1
                 В
                               8
## 2 B
           B1
                В
                               9
                                      6
                                             7
## 3 S1
           C1
                 S1
                            7064. 2796. 5902.
## 4 S1
                 S1
                            7124
                                   2896. 6097
           D1
## 5 S2
           E1
                S2
                            3022
                                    905
                                          2512.
           F1 S2
                                    942. 2659
## 6 S2
                            3268.
## 7 S3
           G1
                 S3
                            1068
                                    302. 934
## 8 S3
                S3
                                    306.
           H1
                            1129
                                           961
## 9 S4
           A2
                S4
                             312.
                                    89
                                           297
                                    99
## 10 S4
           B2
                 S4
                             344.
                                           320.
## 11 S5
           C2
                 S5
                            112. 32.5 106
                             110. 33.5 110
## 12 S5
         D2
                 S5
```

```
## 13 S6
                 S6
                             32.5 9.5
                                           32
          E2
## 14 S6
         F2
                 S6
                              36.5 10.5 36.5
## 15 C1
          G2
                IQC
                             7.5 114.
                                           65.5
## 16 C1
           H2
                IQC
                              7
                                   116
                                           66
                             602. 5256. 1412
## 17 X1
                 CAIR_255
          AЗ
## 18 X1
        В3
                 CAIR_255
                             606
                                  5287
                                        1393
## 19 X2
           C3
                 CAIR 143
                             403
                                   4845
                                        1006.
## 20 X2 D3
                 CAIR_143
                             410. 4805
                                        990.
# Load the expected concentrations from the Excel file
exp_conc_3 <- read_excel(file_path_3, sheet = "Exp Conc", range = "D66:F77", col_names = FALSE)</pre>
## New names:
## * '' -> '...1'
## * ' ' -> '...2'
## * '' -> '...3'
# Set the correct column names
colnames(exp_conc_3) <- c("IL1b", "IL6", "TNFa")</pre>
# Extract the standard data and add expected concentrations
standard_data_3 <- data_3 %>%
 filter(grep1("^S", Type)) %>%
 mutate(IL1b_exp = exp_conc_3$IL1b,
        IL6_{exp} = exp_{conc_3}IL6,
        TNFa_exp = exp_conc_3$TNFa)
```

Calculate Mean and %CV for Replicates


```
## # A tibble: 48 x 4
##
      Description CV_IL1b CV_IL6 CV_TNFa
##
                     <dbl>
                            <dbl>
                                     <dbl>
   1 CAIR_264
##
                      9.70
                            7.71
                                     8.74
##
    2 UKO-003-t0
                      9.34
                            5.60
                                      6.58
                                     4.22
    3 CAIR_265
                            5.54
##
                      8.48
##
    4 CAIR_251
                      8.34
                            5.27
                                     5.83
##
    5 B
                      8.32 12.9
                                     0
##
    6 S6
                      8.20
                            7.07
                                     9.29
    7 S4
                                     5.38
##
                      6.89
                            7.52
    8 UKO-008-t0
                      6.47
                            0.866
                                     1.90
   9 UKO-006-t0
                                     4.45
                      6.06
                            3.11
## 10 CAIR_262
                      5.64 4.53
                                     5.17
## # i 38 more rows
```

Use weighting strategy to address poor fit at lower end of concentration range

```
##
## Call:
## lm(formula = IL1b_exp ~ poly(IL1b, 2), data = standard_data_3,
```

```
##
      weights = weight_IL1b)
##
## Weighted Residuals:
                               ЗQ
      \mathtt{Min}
              1Q Median
                                      Max
## -3.8525 -0.1240 0.3216 1.1358 2.5646
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  1195.89
                               18.08 66.139 2.08e-13 ***
## poly(IL1b, 2)1 5832.05
                              105.18 55.449 1.02e-12 ***
## poly(IL1b, 2)2
                   548.85
                               61.37
                                       8.943 8.99e-06 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.811 on 9 degrees of freedom
## Multiple R-squared: 0.9978, Adjusted R-squared: 0.9973
## F-statistic: 2043 on 2 and 9 DF, p-value: 1.095e-12
##
## Call:
## lm(formula = IL6_exp ~ poly(IL6, 2), data = standard_data_3,
      weights = weight_IL6)
##
## Weighted Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.43112 -0.11951 -0.00572 0.09157 0.55933
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
                 197.145
                              1.354 145.61 < 2e-16 ***
## (Intercept)
## poly(IL6, 2)1 967.741
                              8.199 118.03 1.14e-15 ***
## poly(IL6, 2)2 -10.381
                              4.475
                                      -2.32
                                              0.0455 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.334 on 9 degrees of freedom
## Multiple R-squared: 0.9995, Adjusted R-squared: 0.9994
## F-statistic: 9901 on 2 and 9 DF, p-value: 9.077e-16
##
## Call:
## lm(formula = TNFa_exp ~ poly(TNFa, 2), data = standard_data_3,
##
       weights = weight_TNFa)
##
## Weighted Residuals:
       Min
                 1Q
                      Median
                                   3Q
## -1.36202 -0.13582 0.03788 0.34338 1.11893
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                  438.986
                               4.484
                                      97.90 6.14e-15 ***
## (Intercept)
## poly(TNFa, 2)1 2143.107
                              26.192
                                       81.82 3.08e-14 ***
                             14.892
## poly(TNFa, 2)2 195.728
                                       13.14 3.53e-07 ***
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7413 on 9 degrees of freedom
## Multiple R-squared: 0.999, Adjusted R-squared: 0.9988
## F-statistic: 4476 on 2 and 9 DF, p-value: 3.225e-14
```


Back-calculate standard curve observed values with weighted model

```
##
   # A tibble: 12 x 11
##
             Well
                    IL1b_exp Fitted_IL1b_weighted CV_IL1b_weighted IL6_exp
##
       <chr> <chr>
                       <dbl>
                                               <dbl>
                                                                  <dbl>
                                                                           <dbl>
    1 S1
             C1
                      4800
                                              4730.
                                                                          790
##
                                                                  1.48
##
    2 S1
             D1
                      4800
                                              4786.
                                                                  0.303
                                                                          790
    3 S2
##
             E1
                      1600
                                              1597.
                                                                  0.203
                                                                          263.
    4
      S2
             F1
                      1600
                                              1754.
                                                                  8.79
                                                                          263.
##
##
    5 S3
             G1
                       533.
                                               497.
                                                                  7.41
                                                                           87.8
                       533.
    6 S3
             H1
                                               527.
                                                                  1.24
                                                                           87.8
##
##
    7
      S4
             A2
                       178.
                                               144.
                                                                 23.8
                                                                           29.3
##
    8 S4
             B2
                       178.
                                                                 12.7
                                                                           29.3
                                               158.
    9
      S5
                        59.3
                                                                  4.91
                                                                             9.75
##
             C2
                                                56.5
                                                                            9.75
## 10 S5
             D2
                        59.3
                                                55.6
                                                                  6.52
             E2
                                                                             3.25
## 11 S6
                        19.8
                                                23.0
                                                                 14.3
             F2
                        19.8
                                                24.7
                                                                 20.1
                                                                             3.25
## 12 S6
## # i 5 more variables: Fitted_IL6_weighted <dbl>, CV_IL6_weighted <dbl>,
```

TNFa_exp <dbl>, Fitted_TNFa_weighted <dbl>, CV_TNFa_weighted <dbl>

Warning in styling_latex_scale(out, table_info, "down"): Longtable cannot be ## resized.

Table 5: Less dramatic increase in CV values with decreasing expected concentration

Type	Well	IL1b_exp	CV_IL1b_weighted	IL6_exp	CV_IL6_weighted	TNFa_exp	CV_TNFa_weighted
S1	C1	4800.00	1.4835407	790.00	1.8021971	1760.00	2.7402220
S1	D1	4800.00	0.3027015	790.00	1.5106838	1760.00	1.7257678
S2	E1	1600.00	0.2028650	263.33	1.4755248	586.67	1.3610164
S2	F1	1600.00	8.7851577	263.33	2.3937514	586.67	5.3238646
S3	G1	533.33	7.4094686	87.78	0.2203607	195.56	2.9281260
S3	H1	533.33	1.2396420	87.78	1.0793279	195.56	0.1778729
S4	A2	177.78	23.8154176	29.26	11.5327379	65.19	12.3469274
S4	B2	177.78	12.7221893	29.26	0.4421453	65.19	4.0734134
S5	C2	59.26	4.9128990	9.75	1.0159030	21.73	2.2072282
S5	D2	59.26	6.5201736	9.75	3.8491737	21.73	1.3053418
S6	E2	19.75	14.2589655	3.25	2.4694356	7.24	1.6923933
S6	F2	19.75	20.0972816	3.25	6.1275922	7.24	11.7516842

Predict values for unknown samples

```
## # A tibble: 80 x 12
```

IL6 TNFa Predicted_IL1b Predicted_IL6 ## Well Description IL1b <dbl> ## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> ## 1 X1 АЗ CAIR_255 602. 5256. 1412 274. 1397. ## 2 X1 ВЗ CAIR_255 606 5287 1393 276. 1405. ## 3 X2 СЗ CAIR_143 403 4845 1006. 184. 1297. 4 X2 CAIR_143 990. ## DЗ 410. 4805 187. 1287. ## 5 X3 E3 CAIR 257 958. 4519 1142. 442. 1217. ## 6 X3 CAIR_257 954 4604. 1153 F3 441. 1238. 7 X4 CAIR_212 437 4028. 602. 199. 1094. G3 CAIR_212 ## 8 X4 НЗ 418 4054. 611 190. 1101. ## 9 X5 CAIR_260 1056. 5508. 1378. 490. 1458. Α4 CAIR_260 ## 10 X5 В4 1116 5456. 1387 520. 1445.

i 70 more rows

i 4 more variables: Predicted_TNFa <dbl>, Check_IL1b <chr>, Check_IL6 <chr>,

Check_TNFa <chr>

Interpolate values for samples flagged as "out of range"

Weighted Standard Curve (red) and data points. Black: standards.

Calculate means and multiply by 30

Save results

```
# Save the unknown raw values to a CSV file
write.csv(unknown_data_3, here("unknown_raw_values_3.csv"), row.names = FALSE)

# Save the mean of the duplicates to a CSV file
readr::write_rds(mean_duplicates_3, here("luminex_results_3.rds"))
write.csv(mean_duplicates_3, here("luminex_results_3.csv"), row.names = FALSE)
```