$STA108_TermProjectEdits$

Gabriel Jones

2023-11-23

Warning: package 'leaps' was built under R version 4.3.2

Single Linear Regression Models & Analysis

Life Expectancy Analysis

Response QQ Plot

Life Expectancy \sim Land Area

Table 1: Life Expectancy \sim Land Area

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept) Land Area	68.6437149 0.0000002	0.9344772 0.0000004	73.4568137 0.4899179	

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Birth Rate}$

Table 2: Life Expectancy \sim Birth Rate

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	88.2252805	1.0469920	84.26548	0
Birth Rate	-0.8837966	0.0431595	-20.47747	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Cell}$

Table 3: Life Expectancy \sim Cell

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	54.262300	1.5330388	35.39526	0
Cell	0.158516	0.0150848	10.50833	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $Life\ Expectancy \sim CO2$

Table 4: Life Expectancy $\sim CO2$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	65.3529718	0.9840266	66.413824	0
CO2	0.6216755	0.1064559	5.839747	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Elderly Population}$

Table 5: Life Expectancy \sim Elderly Population

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	58.987283	1.2078486	48.836652	0
Elderly Population	1.312309	0.1336064	9.822199	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $Life\ Expectancy \sim GDP$

Table 6: Life Expectancy \sim GDP

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	64.2487516	0.8867131	72.457200	0
GDP	0.0003399	0.0000395	8.610075	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Life Expectancy \sim Health

Table 7: Life Expectancy \sim Health

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	60.6696446	2.3307451	26.030150	0.0000000
Health	0.7392994	0.1977105	3.739303	0.0002644

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Internet}$

Table 8: Life Expectancy \sim Internet

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	60.725099	0.8927376	68.02122	0
Internet	0.286114	0.0230849	12.39400	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Population}$

Table 9: Life Expectancy \sim Population

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	68.7894859	0.9058768	75.9369106	0.0000000
Population	0.0004438	0.0059454	0.0746386	0.9406045

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 ${\bf Life\ Expectancy} \sim {\bf Rural}$

Table 10: Life Expectancy \sim Rural

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	81.2538126	1.4694641	55.294859	0
Rural	-0.2878945	0.0300757	-9.572321	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Transformations

New Models

Life Expectancy $\sim \log(CO2)$

Table 11: Life Expectancy $\sim \log(\text{CO2})$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	65.423520	0.6397774	102.25981	0
$\log(\text{CO2})$	4.622899	0.3473506	13.30903	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Life Expectancy ~ log(Elderly Population)

Table 12: Life Expectancy $\sim \log(\text{Elderly Population})$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	50.37800	1.8762682	26.85011	0
log(Elderly Population)	10.29956	0.9816733	10.49184	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Life Expectancy $\sim \log(GDP)$

Table 13: Life Expectancy $\sim \log(\text{GDP})$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	22.885285	3.0930132	7.399026	0
$\log(\text{GDP})$	5.374861	0.3563291	15.083980	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Life Expectancy $\sim \log(Internet)$

Table 14: Life Expectancy $\sim \log(\text{Internet})$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	53.175799	1.1599814	45.84194	0
$\log(\text{Internet})$	5.882667	0.3858553	15.24579	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


State All Rsq

Table 15: R Squared Values

XVar	Rsq	Adj.Rsq	Trans.Rsq
Birth Rate	0.7417423	0.7399734	NA
Cell	0.4306327	0.4267329	NA
CO2	0.1893512	0.1837988	0.5481698
Elderly Population	0.3978775	0.3937534	0.4298627
GDP	0.3367658	0.3322231	0.6091308
Health	0.0873995	0.0811488	NA
Internet	0.5127019	0.5093643	0.6141996
Land Area	0.0016413	-0.0051968	NA
Population	0.0000382	-0.0068109	NA
Rural	0.3855977	0.3813895	NA

Multifactor Models

Table 16: Forward Selection Predictiors

	Include
(Intercept) population rural	TRUE FALSE TRUE

	Include
health	TRUE
internet	TRUE
birth_rate	TRUE
elderly_pop	TRUE
co2	FALSE
gdp	FALSE
cell	FALSE

Table 17: Forward Selection Algorithm | nbest=5 $\,$

	population	rural	health	internet	birth_rate	elderly_pop	co2	gdp	cell
1(1)					*				
2 (1)				*	*				
3 (1)		*		*	*				
4 (1)		*	*	*	*				
5 (1)		*	*	*	*	*			
6 (1)		*	*	*	*	*			*
7 (1)		*	*	*	*	*	*		*
8 (1)		*	*	*	*	*	*	*	*

Table 18: Backward Elimination Predictiors

	Include
(Intercept)	TRUE
population	FALSE
rural	TRUE
health	TRUE
internet	TRUE
birth_rate	TRUE
elderly_pop	TRUE
co2	FALSE
gdp	FALSE
cell	FALSE

Table 19: Backward Elimination Algorithm | nbest=5 $\,$

	population	rural	health	internet	birth_rate	elderly_pop	co2	gdp	cell
1(1)					*				
2 (1)				*	*				
3 (1)		*		*	*				
4 (1)		*	*	*	*				
5 (1)		*	*	*	*	*			
6 (1)		*	*	*	*	*		*	
7 (1)		*	*	*	*	*	*	*	
8 (1)		*	*	*	*	*	*	*	*

Assess Multicollinearity

Warning: 'select_()' was deprecated in dplyr 0.7.0.

i Please use 'select()' instead.

Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was

generated.

Table 20: VIF Values

	LandArea	Population	Rural	Health	Internet	BirthRate	ElderlyPop	CO2	GDP	Cell
LandArea	Inf	1.260	1.022	1.002	1.009	1.010	1.016	1.023	1.011	1.002
Population	1.260	Inf	1.006	1.010	1.000	1.004	1.001	1.001	1.002	1.009
Rural	1.022	1.006	Inf	1.023	1.775	1.550	1.231	1.791	2.306	1.675
Health	1.002	1.010	1.023	Inf	1.084	1.062	1.161	1.008	1.093	1.009
Internet	1.009	1.000	1.775	1.084	Inf	2.672	1.750	2.659	3.283	1.999
BirthRate	1.010	1.004	1.550	1.062	2.672	Inf	2.549	2.973	2.799	1.823
ElderlyPop	1.016	1.001	1.231	1.161	1.750	2.549	Inf	1.401	1.627	1.270
CO2	1.023	1.001	1.791	1.008	2.659	2.973	1.401	Inf	4.304	2.087
GDP	1.011	1.002	2.306	1.093	3.283	2.799	1.627	4.304	Inf	2.175
Cell	1.002	1.009	1.675	1.009	1.999	1.823	1.270	2.087	2.175	Inf

Best Model

Table 21: Best Model Summary

Estimate	Std. Error	t value	$\Pr(> t)$	RSq
82.2440751	3.8475946	21.375452	0.0000000	0.7837944
-0.0460924	0.0245643	-1.876394	0.0626535	NA
0.2307352	0.1063916	2.168734	0.0317680	NA
1.5883390	0.5275125	3.010998	0.0030829	NA
-0.7054330	0.0816440	-8.640350	0.0000000	NA
-1.5119081	1.0341320	-1.462007	0.1459489	NA
	82.2440751 -0.0460924 0.2307352 1.5883390 -0.7054330	82.2440751 3.8475946 -0.0460924 0.0245643 0.2307352 0.1063916 1.5883390 0.5275125 -0.7054330 0.0816440	82.2440751 3.8475946 21.375452 -0.0460924 0.0245643 -1.876394 0.2307352 0.1063916 2.168734 1.5883390 0.5275125 3.010998 -0.7054330 0.0816440 -8.640350	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Best Model Residual Plot

