3.10 Контрольные вопросы и задачи

- 1. Докажите, что число $\sqrt{5}$ является иррациональным.
- 2. Проверьте, что \mathbb{Z} и \mathbb{Q} индуктивные множества.
- 3. Докажите, что произведение натуральных чисел натуральное число.
- 4. Докажите свойства модуля 1-6.
- 5. Проверьте, что рациональные числа Q удовлетворяют всем аксиомам действительных чисел, кроме аксиомы полноты.
- 6. Покажите, что $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$.
- 7. Удовлетворяет ли множество [0,1] аксиомам множества вещественных чисел?

4 ОГРАНИЧЕННОСТЬ ЧИСЛОВЫХ МНОЖЕСТВ. СУПРЕМУМ И ИНФИМУМ. ПРИНЦИП АРХИМЕДА

4.1 Ограниченность числовых множеств

Определение 4.1.1 *Множеество* $X \subset \mathbb{R}$ *называется ограниченным сверху, если*

$$\exists M \in \mathbb{R} : \forall x \in X \Rightarrow x \leq M.$$

 $\mathit{Число}\ M$ называется верхней границей для X.

Mножество $X \subset \mathbb{R}$ называется ограниченным снизу, если

$$\exists m \in \mathbb{R} : \forall x \in X \Rightarrow x \geq m.$$

Определение 4.1.2 Множество $X \subset \mathbb{R}$ называется ограниченным, если

$$\exists M, m \in \mathbb{R} : \forall x \in X \Rightarrow m \le x \le M.$$

Пример 4.1.1 Пусть $A = \{x \in \mathbb{R} : 0 \le x < 1\}$. Ясно, что это множество ограничено как сверху, например, числом 1, так и снизу, например, числом 0.

Ниже приведена лемма, которая будет часто использоваться в дальнейшем.

Лемма 4.1.1 Множество $X \subset \mathbb{R}$ ограничено тогда и только тогда, когда

$$\exists C > 0, C \in \mathbb{R} : \forall x \in X \Rightarrow -C \le x \le C.$$

Доказательство. Необходимость. Пусть множество X ограничено, то есть

$$\exists M, m \in \mathbb{R} : \forall x \in X \Rightarrow m \le x \le M.$$

Положив $C = \max\{|m|, |M|\}$, получается

$$\forall x \in X \Rightarrow -C \le x \le C.$$

Достаточность очевидна, так как можно положить $m=-C,\,M=C.$

Определение 4.1.3 Элемент $M \in X \subset \mathbb{R}$ называется максимальным (наибольшим) элементом множества X, если

$$\forall x \in X \Rightarrow x \leq M$$
.

 Πpu этом nuuym, что $M = \max X$.

Элемент $m \in X \subset \mathbb{R}$ называется минимальным (наименьшим) элементом множества X, если

$$\forall x \in X \Rightarrow x \ge m.$$

 Πpu этом nuwym, что $M = \min X$.

Пример 4.1.2 Пусть $A = \{x \in \mathbb{R} : 0 \le x < 1\}$. Легко понять, что $\min A = 0$. Однако, множество A не имеет максимального элемента.

Определение 4.1.4 Пусть $X \subset \mathbb{R}$ ограничено сверху и не пусто. Наименьший элемент множества верхних границ называется супремумом (или точной верхней гранью) множества X и обозначается $\sup X$. B свою очередь наибольший элемент множества нижних границ называется инфимумом (или точной нижней гранью) множества X и обозначается $\inf X$.

Пример 4.1.3 Пусть $A = \{x \in \mathbb{R} : 0 \le x < 1\}$. Множество его верхних границ – множество $[1, +\infty)$, а значит $\sup A = 1$. Множество нижених границ $(-\infty, 0]$, а значит $\inf A = 0$.

В отличие от максимума и минимума, супремум и инфимум всегда существуют, что показывают следующие утверждения.

Теорема 4.1.1 (Принцип точной грани) Пусть $X \subset \mathbb{R}$, не пусто и ограничено сверху (снизу). Тогда существует единственный $\sup X$ ($\inf X$). Доказательство. Пусть множество X ограничено сверху. Тогда множество его верхних границ B не пусто. B силу определения верхней границы,

$$\forall b \in B \ \forall x \in X \Rightarrow x \le b.$$

Согласно аксиоме непрерывности

$$\exists c : x < c < b, \quad \forall x \in X, \ \forall b \in B.$$

Ясно, что $c \in B$. C другой стороны, в силу неравенства $c \leq b$ для всех $b \in B$, получается, что $c = \min B$. Тем самым, $c = \sup X$. Доказательство единственности остается в качестве упраженения. Случай, когда множество X ограничено снизу, рассматривается аналогично.

Замечание 4.1.1 Если множеество не ограничено сверху (снизу), то полагают $\sup X = +\infty$ (inf $X = -\infty$).

Следствие 4.1.2 У любого непустого множества $X \subset \mathbb{R}$ существуют супремум и инфимум (может быть, равные $\pm \infty$).

Установим связь между максимумом (минимумом) и супремумом (инфимумом).

Лемма 4.1.2 Пусть существует $\max X$, тогда $\sup X = \max X$. Аналогично, если существует $\min X$, то $\inf X = \min X$.

Доказательство. Рассмотрим первое утверждение. Пусть $M = \max X$, тогда M — верхняя граница множества X. Кроме того, M, очевидно, наименьшая верхняя граница. Значит, $M = \sup X$. \square В теории часто бывает удобно использовать следующие равносильные определения супремума и инфимума.

Лемма 4.1.3 Для супремума и инфимума можно дать следующие эквивалентные определения:

$$s = \sup X \Leftrightarrow (\forall x \in X \Rightarrow s \ge x) \land (\forall s' < s \ \exists x \in X : x > s'), \tag{1}$$

$$i = \inf X \Leftrightarrow (\forall x \in X \Rightarrow i \le x) \land (\forall i' > i \ \exists x \in X : x < i').$$
 (2)

Доказательство. Рассмотрим (1). Ясно, что супремум удовлетворяет правой части выражения (1). Обратно, утверждение ($\forall x \in X \Rightarrow s \geq x$) гарантирует, что s – верхняя граница для X, а утверждение ($\forall s' < s \; \exists x \in X : x > s'$), что s – наименьшая из верхних границ.

Второй пункт доказывается аналогично.

4.2 Принцип Архимеда

С помощью принципа точной грани можно доказать важную теорему.

Теорема 4.2.1 *Множество целых чисел* \mathbb{Z} *не ограничено ни сверху, ни снизу.*

Доказательство. От противного, пусть множество \mathbb{Z} ограничено сверху. Тогда, согласно теореме 4.1.1, у множества \mathbb{Z} существует конечная верхняя грань

$$M = \sup \mathbb{Z} < +\infty.$$

Поскольку M-1 < M, то по свойству верхней грани 4.1.3, $\exists k \in \mathbb{Z} : M-1 < k \leq M$, а из левого неравенства получим M < k+1. Но $(k+1) \in \mathbb{Z}$ в силу определения множества \mathbb{Z} , а также и k+1 > M. Это противоречит ограниченности \mathbb{Z} сверху.

Аналогично доказывается неограниченность снизу.

Следствие 4.2.2 Множество \mathbb{N} не ограничено сверху.

Теорема 4.2.3 (Принцип Архимеда) Пусть $x \in \mathbb{R}$, x > 0. Для любого $y \in \mathbb{R}$ существует единственное целое $k \in \mathbb{Z}$ такое, что

$$(k-1)x \le y < kx.$$

Доказательство. Пусть $T = \{l \in \mathbb{Z} : \frac{y}{x} < l\}$. Это множество не пусто, так как множество \mathbb{Z} не ограничено сверху. Кроме того, T ограничено снизу. Значит, по принципу точной грани у него есть $m = \inf T \in \mathbb{R}$. По свойству нижней грани, $\exists k \in \mathbb{Z} : m \le k < m+1$. Тогда $k = \min T$. Значит,

$$k - 1 \le \frac{y}{x} < k$$

и в силу положительности x мы получаем требуемое.

Следствие 4.2.4 Для любого $\varepsilon > 0$ существует натуральное число n такое, что $0 < \frac{1}{n} < \varepsilon$.

Доказательство. Достаточно положить в принципе Архимеда $y=1,\;x=arepsilon.$

Следствие 4.2.5 Пусть $x \in \mathbb{R}$. Если $\forall \varepsilon > 0 \Rightarrow 0 \leq x < \varepsilon$, то x = 0.

Доказательство. Пусть x>0. Тогда, по предыдущему следствию, найдется $n\in\mathbb{N}$ такое, что $\frac{1}{n}< x$. Но тогда положив $\varepsilon=\frac{1}{n}$ получим, что $x>\varepsilon$, что противоречит условию.

Следствие 4.2.6 Для любого числа $x \in \mathbb{R}$ существует единственное $k \in \mathbb{Z}$ такое, что $k \le x < k+1$.

Доказательство. Это сразу следует из принципа Архимеда, если положить в нем x=1.

Определение 4.2.1 Указанное число k называется целой частью числа x u обозначается [x]. Величина $\{x\} = x - [x]$ называется дробной частью числа x.

Лемма 4.2.1 (О плотности множества рациональных чисел) $\Pi ycmb$ $a,b \in \mathbb{R},\ a < b.$ Тогда существует $q \in \mathbb{Q}:\ a < q < b.$

Доказательство. Так как (b-a)>0, то существует $n\in\mathbb{N}$ такое, что $\frac{1}{n}<(b-a)$. Положим $q=\frac{[na]+1}{n}\in\mathbb{Q}$, тогда

$$q \le \frac{na+1}{n} = a + \frac{1}{n} < a + (b-a) = b.$$

С другой стороны,

$$q > \frac{na+1-1}{n} = a,$$

что и завершает доказательство.

Лемма 4.2.2 (О плотности множества иррациональных чисел) Пусть $a, b \in \mathbb{R}$, a < b. Тогда существует $i \in \mathbb{I}$: a < i < b.

Доказательство. Было доказано, что $\sqrt{2} \in \mathbb{I}$. Для чисел $a-\sqrt{2} < b-\sqrt{2}$, по только что доказанному, существует $q \in \mathbb{Q}$ такое, что $a-\sqrt{2} < q < b-\sqrt{2}$ или $a < q + \sqrt{2} < b$. Ясно, что число $q + \sqrt{2}$ иррационально.

4.3 Контрольные вопросы и задачи

- 1. Покажите, что каждое индуктивное множество не ограничено.
- 2. Постройте графики функций $f = [x], f = \{x\}.$
- 3. Существует ли какое-либо иррациональное число, которое больше любого натурального? А меньше любого целого?
- 4. Изобразите графически характеристические свойства супремума и инфимума.
- 5. Докажите, что число q+i, где $q \in \mathbb{Q}, i \in \mathbb{I}$ иррационально.

5 ТЕОРЕМА КАНТОРА. ЛЕММА БОРЕЛЯ-ЛЕБЕГА. ЛЕММА О ПРЕДЕЛЬНОЙ ТОЧКЕ. МОЩНОСТЬ

5.1 Теорема Кантора

Определение 5.1.1 Пусть $I_n = [a_n, b_n], \ a_n \leq b_n$. Говорят, что система I_n – система вложенных отрезков, если

$$I_1 \supset I_2 \supset \cdots \supset I_n \supset \ldots$$

Теорема 5.1.1 (Кантора) Система вложенных отрезков имеет непустое пересечение, т.е.

$$\bigcap_{i=1}^{\infty} I_i \neq \varnothing.$$

Кроме того, если $\forall \varepsilon > 0$, найдется отрезок, длина которого меньше ε , то пересечение будет точкой, т.е.

$$\bigcap_{i=1}^{\infty} I_i = \{a\}.$$

Доказательство. Пусть

$$X = \{a_1, a_2, \dots, a_n, \dots\}, \quad Y = \{b_1, b_2, \dots, b_n, \dots\},\$$

тогда они не пусты, и $\forall i, k \in \mathbb{N} \Rightarrow a_i \leq b_k$, то есть левый конец любого отрезка системы не больше, чем правый конец любого отрезка системы. Значит, по аксиоме непрерывности,

$$\exists c : a_i \le c \le b_k \ \forall i, k \in \mathbb{N}.$$

В частности,

$$a_i \le c \le b_i \ \forall i \in \mathbb{N},$$

а значит $\forall i \in \mathbb{N} \Rightarrow c \in I_i$, то есть

$$c \in \bigcap_{i=1}^{\infty} I_i \Rightarrow \bigcap_{i=1}^{\infty} I_i \neq \varnothing.$$

Осталось доказать вторую часть утверждения. От противного, пусть

$$c_1, c_2 \in \bigcap_{i=1}^{\infty} I_i, \ c_1 \neq c_2.$$

Предположив, что $c_1 < c_2$, получается, что $a_n \le c_1 < c_2 \le b_n$ или $0 < c_2 - c_1 \le b_n - a_n < \varepsilon$. Согласно следствию 4.2.5 выходит, что $c_2 - c_1 = 0$. Противоречие.

Замечание 5.1.1 Условие, что рассматриваются отрезки, важно. Например, для интервалов данная теорема не верна. Пусть $U_n = \left(0, \frac{1}{n}\right)$. Очевидно, что

$$\bigcap_{n=1}^{\infty} U_n = \varnothing.$$

Действительно, пусть $x \in \bigcap_{n=1}^{\infty} U_n$. Тогда, согласно следствию 4.2.4, существует $n \in \mathbb{N} : \frac{1}{n} < x$, а значит $x \notin U_n$. Противоречие.

5.2 Лемма Бореля-Лебега

Определение 5.2.1 Говорят, что система интервалов U_{α} покрывает отрезок [a,b], если

$$\forall x \in [a, b] \ \exists \alpha_0 : x \in U_{\alpha_0}.$$

Лемма 5.2.1 (Бореля - Лебега) Из любого покрытия отрезка интервалами можно выделить конечное покрытие.

Доказательство. От противного. Пусть существует покрытие, из которого нельзя выделить конечное покрытие отрезка $I_0 = [a, b]$. Разделим I_0 пополам. Тогда хотя бы одна из полученных частей не допускает конечного покрытия. Назовем ее I_1 . Теперь разделим I_1 пополам, и снова хотя бы одна из двух частей не допускает конечного покрытия. Назовем ее I_2 . Продолжая это процесс дальше, получим систему вложенных отрезков

$$I_0 \supset I_1 \supset \cdots \supset I_n \supset \ldots,$$

причем длина $|I_n|$ отрезка I_n равна

$$|I_n| = \frac{1}{2} \cdot |I_{n-1}| = \frac{b-a}{2^n}$$

По теореме Кантора,

$$\exists c \in \bigcap_{i=0}^{\infty} I_i,$$

значит существует интервал (α, β) из покрытия такой, что $c \in (\alpha, \beta)$. Положим $\varphi = \min(c - \alpha, \beta - c)$. Покажем, что в системе существуют отрезки сколь угодно малой длины. Так как

$$2^{n} = (1+1)^{n} = 1 + n + \dots > n \Rightarrow \frac{1}{2^{n}} < \frac{1}{n},$$

то согласно следствию 4.2.4 для любого $\varepsilon > 0$ найдется номер n, что

$$\frac{b-a}{2^n} < \varepsilon.$$

Тем самым, так как в системе существуют отрезки длины меньше, чем φ , то интервал (α, β) покрывает их. Это противоречит построению.

Замечание 5.2.1 Рассмотрение отрезка существенно. Например, если взять интервал U=(0,1), то интервалы $U_n=(0,1-\frac{1}{n})$ образуют покрытие U, из которого нельзя выделить конечного покрытия. Детальная проверка оставляется читателю.

5.3 Лемма о предельной точке

Определение 5.3.1 Точка $x_0 \in \mathbb{R}$ называется предельной точкой множества E, если для любой окрестности $U(x_0)$ точки x_0 множество $U(x_0) \cap E$ бесконечно.

Замечание 5.3.1 *Множество предельных точек множества* E *будем обозначать* E'.

Пример 5.3.1 Пусть E = (0, 1]. Ясно, что E' = [0, 1].

Пример 5.3.2 Пусть $E = \{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\}$. Легко установить, что данное множество имеет лишь одну предельную точку 0, то есть $E' = \{0\}$.

Примеры выше показывают, что предельная точка для множества E может как принадлежать множеству E, так и не принадлежать.

Определение 5.3.2 Точка $x_0 \in E$, не являющаяся предельной для множества E, называется изолированной для E.

Пример 5.3.3 Все точки множества E примера 5.3.2 являются изолированными.

Лемма 5.3.1 (О предельной точке) Любое бесконечное ограниченное подмножество X множества действительных чисел \mathbb{R} имеет хотя бы одну предельную точку.

Доказательство. От противного. Пусть множество предельных точек X' пусто. Так как X ограничено, то найдется отрезок [a,b] такой, что $X \subset [a,b]$.

Достаточно показать, что хотя бы одна точка отрезка является предельной для X. От противного, пусть

$$\forall x \in [a,b] \; \exists U(x) : U(x) \cap E$$
 либо конечно, либо пусто.

Данная система окрестностей U(x), $x \in [a, b]$ образует открытое покрытие отрезка [a, b]. По лемме Бореля-Лебега из этой системы можно выделить конечное покрытие $U(x_1), \ldots, U(x_n)$. Но тогда

$$E \subset [a,b] \subset \bigcup_{i=i}^{n} U(x_i),$$

где последнее объединение с одной стороны содержит E, с другой стороны

$$\left(\bigcup_{i=i}^n U(x_i)\right) \cap E$$

не более чем конечно. Это противоречит бесконечности множества E. \square Легко доказать следующее замечание.

Замечание 5.3.2 Если бесконечное подмножество X множества действительных чисел \mathbb{R} не ограничено, то оно имеет предельную точку в $\overline{\mathbb{R}}$.

5.4 Немного о замкнутых множествах

Ниже приведены некоторые факты, касающиеся замкнутых множеств. Более детально они будут изучены в разделе функций многих переменных.

Определение 5.4.1 Говорят, что множество $E \subset \mathbb{R}$ замкнуто, если оно содержит все свои предельные точки, то есть $E' \subset E$.

В дальнейшем будет дано другое, эквивалентное определение замкнутому множеству.

Пример 5.4.1 Отрезок [a,b] является замкнутым множеством. Интервал (a,b) или полуинтервал [a,b) замкнутыми множествами не являются. Пустое множество \varnothing и все множество $\mathbb R$ замкнуты в $\mathbb R$.

Пример 5.4.2 Любое конечное множество является, очевидно, замкнутым, так как множество его предельных точек пусто.

Лемма 5.4.1 Любое непустое ограниченное сверху (снизу) замкнутое множество $E \subset \mathbb{R}$ имеет максимальный (минимальный) элемент.

Доказательство. Пусть E замкнуто и ограничено сверху. По принципу верхней грани существует $M = \sup E$. Достаточно показать, что $M \in E$. От противного, пусть $M \notin E$ и $U(M) = (\alpha, \beta)$ – окрестность точки M. По определению супремума, если $\varepsilon_1 = M - \alpha$, то

$$\exists x_1 \in E : M - \varepsilon_1 < x_1 \leq M.$$

Так как $M \notin E$, то на самом деле

$$M - \varepsilon_1 < x_1 < M$$
.

Пусть $\varepsilon_2 = M - x_1$, тогда аналогично

$$\exists x_2 \in E : M - \varepsilon_2 < x_2 < M, \quad x_1 < x_2.$$

Продолжая процесс, получается, что пересечение $U(M) \cap E$ бесконечно (оно содержит бесконечное множество $\{x_1, x_2, ...\}$), то есть M – предельная для E. Но, в силу замкнутости $E, M \in E$. Противоречие.

Следствие 5.4.1 Любое конечное множество имеет максимальный и минимальный элементы.

Доказательство. Ограниченность конечного множество легко доказывается с помощью метода математической индукции, а далее утверждение следует из доказанной выше леммы.

Следствие 5.4.2 Во всяком интервале содержится бесконечное число как рациональных, так и иррациональных чисел.

Доказательство. Пусть в интервале (a,b) лишь конечное число рациональных чисел. Пусть x — наименьшее из них, тогда в интервале (a,x) нет рациональных чисел, что противоречит лемме 4.2.1.

Аналогично доказывается утверждение об иррациональных числах.

5.5 Мощность множества

Часто бывает важным выяснить, «одинаково» ли количество элементов в двух разных множествах. В случае конечных множеств этот вопрос может быть решен весьма просто: достаточно пересчитать элементы каждого множества. Проблема заключается в том, что описанный подход не применим к бесконечным множествам.

С другой стороны, если два конечных множества A и B имеют одинаковое количество элементов, то между элементами этих множеств можно установить биекцию $\varphi:A\to B$. Такой подход уже прекрасно применим и к бесконечным множествам.

Определение 5.5.1 Говорят, что множества A и B равномощны (эквивалентны), если существует биекция $\varphi: A \to B$.

Иными словами, множества называются равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Пример 5.5.1 Противоположные стороны прямоугольника равномощны: достаточно точкам одной стороны сопоставить противоположные точки другой стороны.

Пример 5.5.2 Гипотенуза прямоугольного треугольника равномощна каждому из его катетов (хотя они и имеют разные длины). Взаимно однозначное соответсвие – это проекция гипотенузы на катет.

Пример 5.5.3 Множество натуральных чисел \mathbb{N} и множество целых чисел \mathbb{Z} равномощны. Биекция может быть установлена, например, следующим образом:

$$1 \to 0, \ 2 \to 1, \ 3 \to -1, \dots, \ 2k \to k, \ 2k + 1 \to -k, \dots$$

 $u_{\Lambda}u$

$$\varphi(n) = \begin{cases} \frac{n}{2}, & n \text{ четно} \\ -\frac{n-1}{2}, & n \text{ нечетно} \end{cases}.$$

Пример 5.5.4 Пусть центр окружности радиуса R > 0 имеет координаты (0,R). Тогда часть окружности без точки N(0,2R) равномощна координатной оси Ox или, что то же самое, множеству вещественных чисел \mathbb{R} . Для установления взаимно однозначного соответствия, достаточно точке A на оставшейся части окружности сопоставить точку A' оси Ox, получающуюся пересечением луча NA и Ox (стереографическая проекция). Попробуйте написать аналитическое выражение для описанного соответствия самостоятельно.

Последний пример также показывает, что бесконечное ограниченное множество может быть равномощно неограниченному множеству.

Оказывается, введенное отношение равномощности является отношением эквивалентности.

Определение 5.5.2 Отношение ~ между элементами некоторого множества называется отношением эквивалентности, если оно обладает следующими свойствами:

1. Рефлексивность: $A \sim A$;

- 2. Симметричность: если $A \sim B$, то и $B \sim A$;
- 3. Транзитивность: если $A \sim B$ и $B \sim C$, то $A \sim C$.

Примеры отношений эквивалентности, известные из школы, таковы: отношение равенства на множестве треугольников, отношение подобия на множестве треугольников, отношение параллельности на множестве прямых и многие другие.

Лемма 5.5.1 Равномощность множеств является отношением эквивалентности.

Доказательство. В доказательстве нуждается только третье свойство. Пусть $\varphi_{AB}: A \to B, \, \varphi_{BC}: B \to C$ – соответсвующие биекции. Тогда

$$\varphi_{AC} = \varphi_{BC} \circ \varphi_{AB}$$

- биекция A на C, что легко проверяется по определению. \square Из курса алгебры хорошо известно, что отношение эквивалентности разбивает все множество на классы непересекающихся подмножеств. А значит, корректно ввести следующее определение.

Определение 5.5.3 Класс эквивалентности, к которому принадлежит множество A называется мощностью A, кардиналом или кардинальным числом множества A и обозначается |A| или card A.

Замечание 5.5.1 Обычно можность n-элементного множества A (или, что то же самое, соответствующего класса) обозначают числом n и nu-mym

$$|A| = \operatorname{card} A = n.$$

Определение 5.5.4 *Множество* A называется счетным, если оно равномощно множеству натуральных чисел, то есть $|A| = |\mathbb{N}|$.

Замечание 5.5.2 *Как было установлено ранее, множество целых чисел* \mathbb{Z} *счетно.*

Выясним некоторые свойства счетных множеств.

Теорема 5.5.1 Всякое бесконечное множество имеет счетное подмножество.

Доказательство. Пусть A – бесконечное множество, тогда в нем есть элемент a_1 . Множество $A \setminus \{a_1\}$ тоже бесконечно, значит в нем есть элемент a_2 . Множество $A \setminus \{a_1, a_2\}$ бесконечно, а значит в нем есть элемент a_3 . Продолжая такой процесс и далее (он не оборвется в силу бесконечности A), получим бесконечное множество

$$B = \{a_1, a_2, a_3, \dots\}.$$

Понятно, что искомая биекция $\varphi: \mathbb{N} \to B$ может быть построена, например, по правилу $\varphi(n) = a_n$.

Теорема 5.5.2 Всякое бесконечное подмножество счетного множества счетно.

Доказательство. Достаточно проверить, что каждое бесконечное подмножество A множества натуральных чисел, то в нем существует минимальный элемент (оно замкнуто и ограничено снизу). Его мы обозначим a_1 и сопоставим числу 1. Далее, в множестве $A \setminus \{a_1\}$ аналогично имеется минимальный элемент a_2 , ему мы сопоставим число 2. Так как A бесконечно, то, по принципу индукции, мы построим инъекцию $f: \mathbb{N} \to A$ по правилу $f(n) = a_n$. Осталось доказать, что f – сюръекция, то есть $f(\mathbb{N}) = A$.

Пусть $a \in A$. Множество $\{n \in \mathbb{N} : n \leq a\}$ конечно, а значит тем более конечно его подмножество $\{n \in E : n \leq a\}$. Пусть k – число элементов в последнем множестве. Тогда, по построению, $a_k = a$. \square Из последних двух теорем вытекает, что счетные множества – самые «бедные» бесконечные множества: их подмножества или счетны (если бесконечны), или конечны.

Определение 5.5.5 Множества, мощность которых либо конечна, либо счетна, называются не более чем счетными.

Теорема 5.5.3 Пусть элементы множества A расположены в виде бесконечной в обоих направлениях матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & \dots \\ a_{21} & a_{22} & \dots & a_{2n} & \dots \\ \vdots & \vdots & \ddots & \vdots & \vdots \end{pmatrix}.$$

Тогда А счетно.

Доказательство. Искомая биекция $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ может быть задана, например, так:

$$f(m,n) = m + \frac{(m+n-2)(m+n-1)}{2}.$$

Данная нумерация имеет простой наглядный смысл: мы нумеруем элементы таблицы «по диагоналям», где сумма (m+n) постоянна, постепенно переходя от одной диагонали к другой. Например $a_{11} \leftrightarrow 1$, $a_{12} \leftrightarrow 2$, $a_{21} \leftrightarrow 3$ и так далее.

Следствие 5.5.4 *Множество* $\mathbb{N} \times \mathbb{N}$ *счетно*.

Следствие 5.5.5 Не более чем счетное объединение не более чем счетных множеств не более чем счетно.

Доказательство. Пусть рассматривается множество

$$B = \bigcup_{i=1}^n A_i$$
 или $B = \bigcup_{i=1}^\infty A_i,$

где все A_i не более чем счетны. Запишем в первую строку матрицы элементы множества A_1 , во вторую – элементы множества $A_2 \setminus A_1$, и так далее: если задано множество A_k , то элементы множества $A_k \setminus \bigcup_{i=1}^{k-1} A_i$ запишем в k-ую строку матрицы. Тогда все элементы множества будут записаны в матрице, хотя некоторые клетки матрицы могут оказаться пустыми. Значит, B равномощно некоторому подмножеству счетного множества, а значит оно не более чем счетно.

Теорема 5.5.6 *Множеество рациональных чисел* \mathbb{Q} *счетно.*

Доказательство. Понятно, что количество рациональных чисел бесконечно. Рассмотрим множества

$$Q_{+} = \{x \in \mathbb{Q} : x > 0\}, \ Q_{-} = \{x \in \mathbb{Q} : x < 0\}.$$

Ясно, что $|Q_{+}| = |Q_{-}|$. Пусть

$$Q_q = \left\{ \frac{1}{q}, \frac{2}{q}, ..., \frac{n}{q}, ... \right\},$$

тогда Q_q не более чем счетно и

$$Q_+ = \bigcup_{q=1}^{\infty} Q_q.$$

Согласно предыдущему следствию, Q_+ не более чем счетно. Аналогично, Q_- не более чем счетно. Но

$$\mathbb{Q} = Q_+ \cup Q_- \cup \{0\},\$$

и по тому же следствию $\mathbb Q$ – не более чем счетно. Так как оно бесконечно, то оно счетно. \square

До сих пор у нас не было ни одного примера несчетных множеств.

Теорема 5.5.7 (Кантора) *Отрезок* [0,1] *несчетен.*

Доказательство. От противного. Пусть $a_1, a_2, ..., a_n, ...$ – произвольная нумерация чисел отрезка $I_0 = [0,1]$. Выберем отрезок $I_1 \subset I_0$, что $a_1 \notin I_1$. Далее, выберем отрезок $I_2 \subset I_1$, что $a_2 \notin I_2$. Продолжая такой процесс, получим систему вложенных отрезков

$$I_0 \supset I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots$$

которая, по теореме Кантора, имеет непустое пересечение. Пусть

$$c \in \bigcap_{n=0}^{\infty} I_n,$$

тогда $c \neq a_i \ \forall i \in \mathbb{N}$. Действительно, предполагая, что $c = a_k$, получаем противоречие с построением: $a_k \notin I_k$, а значит

$$a_k \notin \bigcap_{n=0}^{\infty} I_n.$$

Противоречие.

Определение 5.5.6 Мощность множеств, равномощных отрезку [0,1], называется континуумом.

Следствие 5.5.8 Произвольный отрезок, интервал, полуинтервал или луч имеют мощность континуум. Множество вещественных чисел \mathbb{R} имеет мощность континуум.

Доказательство. Докажем, например, что отрезок [0,1] и полуинтервал (0,1] равномощны. Биекцию $\varphi:(0,1]\to [0,1]$ построим так:

$$\varphi(1) = \frac{1}{2}, \ \varphi\left(\frac{1}{2}\right) = \frac{1}{2^2}, \ \dots, \ \varphi\left(\frac{1}{2^k}\right) = \frac{1}{2^{k+1}}, \ \dots,$$

остальные точки переводятся в себя. Остальные детали оставляем читателю. Для доказательства того, что $\mathbb R$ континуально можно рассмотреть такую биекцию:

$$\operatorname{tg} x: \left(0, \frac{\pi}{2}\right) \to \mathbb{R}.$$

Долгое время была актуальна так называемая гипотеза континуума: любое бесконечное подмножество \mathbb{R} либо континуально, либо счетно. Этот вопрос был окончательно решен в 1963 году О. Коэном. Было доказано, что гипотеза континуума не может быть ни доказана, ни опровергнута в рамках принятой аксиоматики теории множеств. Ситуация вполне аналогична независимости пятого постулата Евклида от остальных аксиом геометрии.

5.6 Контрольные вопросы и задачи

- 1. Покажите, что из системы отрезков, покрывающей отрезок, не всегда можно выделить конечную систему, покрывающую этот отрезок.
- 2. Покажите, что из системы отрезков, покрывающих интервал, не всегда можно выделить конечную систему, покрывающую этот интервал.
- 3. Покажите, что в множестве Q ни теорема Кантора, ни лемма о предельной точке, ни лемма Бореля-Лебега не верны.
- 4. Покажите, что любое вещественное число является предельной точкой множества рациональных чисел.

6 ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

6.1 Понятие предела последовательности

Определение 6.1.1 Функция $f: \mathbb{N} \to \mathbb{R}$, областью определения которой является множество натуральных чисел, называется последовательностью.

Обычно последовательности обозначают маленькими латинскими буквами, например x(n), y(n), причем чаще всего аргумент n пишется снизу, то есть x_n , y_n .

Определение 6.1.2 (ε – n определение предела последовательности) Число A называется пределом последовательности x_n , если для любого положительного числа ε существует натуральное число n_0 , зависящее от ε такое, что какое бы ни взять натуральное число n, большее n_0 , будет выполняться неравенство

$$|x_n - A| < \varepsilon$$
.

При этом пишут, что $\lim_{n\to\infty} x_n = A$, $x_n \xrightarrow[n\to\infty]{} A$ или $x_n \longrightarrow A$.