Stadium

A Distributed Metadata-private Messaging System

Nirvan Tyagi Yossi Gilad Derek Leung

Matei Zaharia Nickolai Zeldovich

SOSP 2017

Previous talk: Anonymous broadcast

This talk: Private messaging

Problem: Communication metadata Alice Bob (oncologist)

Related work

Metadata-private systems with **cryptographic security** limited in throughput.

Dissent [OSDI'12], Riposte [S&P'15]

Pung [OSDI'16], Atom [SOSP'17]

~ 1.5 - 65 K messages / min

Related work

Metadata-private systems with **cryptographic security** limited in throughput.

Dissent [OSDI'12], Riposte [S&P'15]

~ 1.5 - 65 K messages / min

Pung [OSDI'16], Atom [SOSP'17]

Throughput increased by relaxing guarantees to **differential privacy**.

Vuvuzela [SOSP'15]

~ 2 M messages / min

Related work

Metadata-private systems with **cryptographic security** limited in throughput.

Dissent [OSDI'12], Riposte [S&P'15]

~ 1.5 - 65 K messages / min

Pung [OSDI'16], Atom [SOSP'17]

Throughput increased by relaxing guarantees to **differential privacy**.

Vuvuzela [SOSP'15]

~ 2 M messages / min

Stadium [SOSP'17]

> 10 M messages / min

First metadata-private messaging system to scale horizontally

Vuvuzela: Differentially private messaging

• Dead-drops: virtually hosted addresses at which user messages are exchanged

Vuvuzela: Differentially private messaging

- Dead-drops: virtually hosted addresses at which user messages are exchanged
- Mixnet: servers re-randomize and permute messages

Vuvuzela: Differentially private messaging

- Dead-drops: virtually hosted addresses at which user messages are exchanged
- Mixnet: servers re-randomize and permute messages
- Noise: servers add fake messages to obscure adversary observations

Scaling limitations

- Every server handles all messages
- Running a server is expensive (e.g. 2M users / minute = 1.3 Gbps)

Challenge: How to distribute workload across untrustworthy servers?

- 1. How to mix messages?
- 2. How to add noise?

Stadium design

Collaborative noise generation + verifiable parallel mixnet

Stadium design

Collaborative noise generation + verifiable parallel mixnet

Stadium design

Collaborative noise generation + verifiable parallel mixnet

Contributions

- Stadium design
 - Parallel mixnet
 - Collaborative noise generation
 - Verifiable processing including fast zero-knowledge proofs of shuffle
- Multidimensional differential privacy analysis
- Implementation and evaluation of prototype

10 M messages/min with per-server costs of ~100 Mbps

Parallel mixnets with cryptographic security of mixing have large depth.

- Iterated butterfly topology [ICALP '14] as used by Atom [SOSP '17]
- Large depth not good for low latency applications

Stadium uses 2-layer mixnet with differential privacy analysis.

• Trace messages by modeling likely paths through mixnet (Borisov [PET '05])

- Trace messages by modeling likely paths through mixnet (Borisov [PET '05])
- Even if links are padded with dummy messages, adversary can incorporate adversary-known inputs and outputs to infer uneven routing

- Trace messages by modeling likely paths through mixnet (Borisov [PET '05])
- Even if links are padded with dummy messages, adversary can incorporate adversary-known inputs and outputs to infer uneven routing

- Trace messages by modeling likely paths through mixnet (Borisov [PET '05])
- Even if links are padded with dummy messages, adversary can incorporate adversary-known inputs and outputs to infer uneven routing

Add noise messages to provide differential privacy for uneven routings.

- Adversary manipulates padding through known message injection
- Unlike padding, noise messages are independent of adversary action

Noising internal links not helpful if messages aren't mixed.

Adversary learns path of all messages through compromised servers

Noising internal links not helpful if messages aren't mixed.

• Adversary learns path of all messages through compromised servers

Ensure mixing by organizing providers into small groups of servers.

 Probability of compromise with random assignment falls exponentially with group size

Problem: Scaling noise generation

Vuvuzela server

of fake messages

Problem: Distributed noise generation

Stadium servers Aggregate # of fake messages

Problem: Distributed noise generation

	Additive	Discrete	Non-negative
Laplace	×	×	×
Gaussian	✓	×	×
Poisson	✓	✓	✓

Poisson provides all properties nicely

Multidimensional analysis for reducing noise requirements

- When a user changes communication pattern, only a few links are affected
- Reduce noise by a factor of $\frac{1}{\sqrt{n}}$ where $\frac{1}{n}$ is probability link is affected

Verifiable processing pipeline

- Ensure noise messages stay in system
- Utilize various cryptographic zero knowledge proofs of integrity
- Hybrid verification scheme
- Zero knowledge proof of shuffle is bottleneck processing cost
 - Multicore Bayer-Groth verifiable shuffle on Curve 25519
 - ~ 20X performance speedup over state of the art
 - E.g. 100K ciphertext shuffle speedup from 128 seconds to ~7 seconds

Implementation

- Prototype
 - Control and networking logic in Go (2500 lines of code)
 - Verifiable processing protocols in C++ (9000 lines of code)
 - Highly optimized Bayer-Groth verifiable shuffle implementation
 - Available at github.com/nirvantyagi/stadium

Evaluation

• Recall goal: horizontal scalability with inexpensive servers

What is the cost of operating a Stadium server?

Does Stadium horizontally scale?

Evaluation methodology

- Deploy Stadium on up to 100 Amazon c4.8xlarge EC2 VMs
 - 36 virtual cores, 60 GB memory
 - US East region
 - Message size: 144 B
- Extrapolate scaling patterns to larger deployment sizes

Operating costs of a Stadium server are relatively small

88 - 173 Mbps 6-13% of Vuvuzela's 1.3Gbps

- Bandwidth is dominant cost
- Operating costs ~ \$110 / month*
- Top 300 of relays in Tor offer > 140 Mbps

Messages are effectively distributed across servers to reduce latency

Conclusion

- Stadium: high-throughput, horizontally-scaling, metadata-private system
 - Verifiable parallel mixnet resistant to traffic analysis
 - Fast zero-knowledge proofs of shuffle
 - Collaborative noise generation with Poisson distribution
- Multidimensional differential privacy analysis
- Implementation and evaluation of prototype

Prototype at github.com/nirvantyagi/stadium

Reserve Slides

Differential Privacy

 $\Pr[Alice\ talking\ to\ Bob] \le \epsilon \times \Pr[Alice\ not\ talking\ to\ Bob] + \delta$

Differential Privacy

 $\mathsf{Pr}[\mathsf{Alice}\ \mathsf{talking}\ \mathsf{to}\ \mathsf{Bob}] \leq \epsilon \times \mathsf{Pr}[\mathsf{Alice}\ \mathsf{not}\ \mathsf{talking}\ \mathsf{to}\ \mathsf{Bob}] + \delta$

of 2-message dead-drops

Differential Privacy

 $\mathsf{Pr}[\mathsf{Alice}\ \mathsf{talking}\ \mathsf{to}\ \mathsf{Bob}] \leq \epsilon \times \mathsf{Pr}[\mathsf{Alice}\ \mathsf{not}\ \mathsf{talking}\ \mathsf{to}\ \mathsf{Bob}] + \delta$

