Tutorial 5

Problem 1. Let G, H be groups where $G = \langle g_1, \dots, g_k \rangle$.

- a) Let $\varphi, \psi : G \to H$ be isomorphisms. Show that $\varphi = \psi$ if $\varphi(g_i) = \psi(g_i)$ for all i. That is to say, an isomorphism is uniquely determined by what it maps the generators of a group to.
- b) Suppose $\phi: G \to H$ is a bijective map such that $o(g_i) = o(\phi(g_i))$ for all i. [We know any isomorphism must have this property from Exercise 59.] Is ϕ necessarily an isomorphism? Prove it or give a counterexample.

Solution

- a) Any element of G must be a product of exponents of $g_1, ..., g_k$, which φ and ψ send to the same product of exponents of $\varphi(g_1), ..., \varphi(g_k)$.
- b) No: Consider the map $\varphi: G \to G, x \mapsto x^{-1}$. Then $o(x) = o(x^{-1}) = o(\varphi(x))$ for all $x \in G$, but we showed in PS2Q1 that this is not always an isomorphism.

Problem 2. Show that $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong \operatorname{U}(n)$.

Solution

For any automorphism φ on $\mathbb{Z}/n\mathbb{Z}$, if $\varphi([1]) = [t]$, then Q1a) tells us that we must have

$$\phi([\alpha])=\phi([1]^\alpha)=[t]^\alpha=[\alpha t].$$

In particular, note that $o(\phi([1])) = o([1]) = n$ means [t] must be a generator of $\mathbb{Z}/n\mathbb{Z}$. That is, [t] must be in U(n).

On the other hand, suppose $[t] \in U(n)$. Then we may define $\phi_{[t]}([k]) = [kt]$. This is a well-defined function [why?]. Since [t] is a generator, the image of this map is $\langle t \rangle = \mathbb{Z}/n\mathbb{Z}$. Since the sets are finite and of same size, the map is automatically injective. We may check that

$$\phi_{[t]}([a]+[b])=\phi_{[t]}([a+b])=[t(a+b)]=[ta+tb]=[ta]+[tb]=\phi_{[t]}([a])+\phi_{[t]}([b]).$$

Thus the set of automorphism is exactly $\phi_{[t]}$ where $[t] \in U(n)$. A natural candidate for showing that this set is isomorphic to U(n) is the map

$$f: U(n) \to Aut(\mathbb{Z}/n\mathbb{Z}), [t] \mapsto \phi_{[t]}.$$

We check that for any $r \in \mathbb{Z}/n\mathbb{Z}$,

$$\phi_{[s]} \circ \phi_{[t]}([r]) = \phi_{[s]}(\phi_{[t]}([r])) = \phi_{[s]}([tr]) = [str] = \phi_{[st]}(r)$$

So this map preserves the group structure. For bijectivity, note that both groups have order $\phi(n)$ and the map is injective because $\phi_{[s]}([1]) = [s] \neq \phi_{[t]}([1]) = [t]$ for any $[s] \neq [t]$.

Problem 3. For this problem, we fix n>2 and consider the group D_n . Let ψ be an automorphism on D_n .

- a) Show that $\psi(r) = r^{\alpha}$ for some a such that gcd(a, n) = 1.
- b) Show that $\psi(f) = fr^b$ for some b. That is, ψ cannot send f to a rotation.
- c) Show that $o(Aut(D_n)) = n\varphi(n)$.

Solution

- a) We know $o(\psi(r)) = o(r) = n$, so ψ must send r to another element of order n. When n > 2, all elements or the form fr^i have order 2 and hence cannot be the image of r under ψ . Then r must be mapped to some rotation in $\langle r \rangle$, which is isomorphic to $\mathbb{Z}/n\mathbb{Z}$. From Q2, we know it must be mapped to some element of the form r^{α} with $gcd(\alpha, n) = 1$.
- b) Note that $\psi(r)$ generates all of $\langle r \rangle$. So if f is also sent to a rotation, then $\psi(f) = \psi(r^k)$ for some k. Thus the map will not be injective and hence not an automorphism. As such, we must send f to another flip, meaning $\psi(f) = fr^b$ for some b.
- c) From a) and b), we have that any automorphism ψ on D_n satisfies

$$\psi(r)=r^{\alpha}\quad and\quad \psi(f)=fr^{b},$$

for gcd(n, a) = 1 and $0 \le b \le n - 1$. There are exactly $n\phi(n)$ choices for k and i, so it remains to show that these choices all yield automorphisms.

From 1a), we know if ψ is an automorphism, then the values $\psi(r)$ and $\psi(f)$ uniquely determine that of ψ . then we know the value of ψ on any element of D_n by

$$\psi(f^ir^j)=(fr^b)^i(r^\alpha)^j.$$

We claim that such a function is an isomorphism whenever gcd(k, n) = 1. Clearly this map is surjective (the image contains a rotation r^k of order n and a flip fr^i , so they together generate D_n) between finite sets of same size and hence is bijective.

We will liberally use the relations $r^m f = f r^{-m}$ and $(f r^m)^2 = e$.

Case 1. Checking isomorphism law for two rotations.

$$\psi(r^i\cdot r^j)=\psi(r^{i+j})=r^{\alpha(i+j)}=r^{\alpha i}r^{\alpha j}=\psi(r^i)\psi(r^j).$$

Case 2. Checking isomorphism law for rotation followed by a flip.

$$\begin{split} \psi(r^i\cdot fr^j) &= \psi(fr^{j-i}) = (fr^b)r^{\alpha(j-i)} = fr^{b-\alpha i}r^{\alpha j} = fr^{-\alpha i}r^br^{\alpha j} \\ &= r^{\alpha i}fr^b(r^{\alpha j}) = (r^{\alpha i})(fr^br^{\alpha j}) = \psi(r^i)\psi(fr^j). \end{split}$$

Case 3. Checking isomorphism law for flip followed by a rotation.

$$\psi(\mathsf{fr}^i \cdot r^j) = \psi(\mathsf{fr}^{i+j}) = (\mathsf{fr}^b) r^{\alpha(j+i)} = (\mathsf{fr}^b r^{\alpha i}) (r^{\alpha j}) = \psi(\mathsf{fr}^i) \psi(r^j).$$

Case 4. Checking isomorphism law for two flips.

$$\begin{split} \psi(\mathsf{f} r^i \cdot \mathsf{f} r^j) &= \psi(\mathsf{f}^2 r^{j-i}) = \psi(r^{j-i}) = r^{\alpha(j-i)} = r^{-\alpha i} r^{\alpha j} \\ &= r^{-\alpha i} (\mathsf{f} r^b)^2 r^{\alpha j} = (r^{-\alpha i} \mathsf{f} r^b) ((\mathsf{f} r^b) r^{\alpha j}) = (\mathsf{f} r^{\alpha i} r^b) ((\mathsf{f} r^b) r^{\alpha j}) \\ &= (\mathsf{f} r^{\alpha i+b}) ((\mathsf{f} r^b) r^{\alpha j}) = ((\mathsf{f} r^b) r^{\alpha i}) ((\mathsf{f} r^b) r^{\alpha j}) \\ &= \psi(\mathsf{f} r^i) \psi(\mathsf{f} r^j). \end{split}$$