L1. Tc. Ing. Inform., Academic year 2023 – 2024

ANALYSIS I, TUTORIAL 3 / Real-valued Function with a real variable Limit and Continuity

Exercise 1. Determine if the following expressions are functions or not:

- f_1 defined over $[0, \pi/2]$ as $f_1(x)^2 + \cos(x) = 0$.
- f_2 defined over \mathbb{R} as $f_2(x)^3 + e^{2x+1} = 0$.

Exercise 2. Determine the domain of the following functions:

$$f_1(x) = \frac{x+1}{x^4 - x^2 + 1}, \quad f_2(x) = \cos\left(\frac{1}{1 - e^{x^2}}\right), \quad f_3(x) = \frac{\sin(x)}{\cos(2x)}, \quad f_4(x) = \sqrt{1 - 2\sin(2x)},$$

$$f_5(x) = \frac{1}{e^{2x} + e^x - 1}, \quad f_6(x) = \sqrt{\cos(x)^2 + \cos(x) + 1}, \quad f_7(x) = \ln(1 - \sin(x)).$$

Exercise 3. Using the definition of the limit, show that :

$$\lim_{x \to 0} \frac{1}{1+x} = 1, \quad \lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0, \quad \lim_{x \to 2} \frac{1}{(x-2)^2} = +\infty, \quad \lim_{x \to 0^+} \frac{[x]}{x} = 0.$$

Exercise 4. Determine the set of $x \in \mathbb{R}$ such as $[x] \in \{0, -3, 1/2\}$ and represent the graph of the function f defined over [-1, 1] with value in \mathbb{R} by f(x) = [2x].

Exercise 5. Calculate the following limits:

$$\lim_{x \to 3} \frac{1}{2x - 6}, \qquad \lim_{x \to 0^{+}} \left(1 + \frac{1}{\sqrt{x}}\right)(x - 3), \qquad \lim_{x \to 3} \frac{1 - 4x}{x - 3}, \qquad \lim_{x \to 2} \frac{x^{3} - 8}{4 - 2x},$$

$$\lim_{x \to +\infty} \frac{\sqrt{x} + 2 - 3x}{x + 1}, \qquad \lim_{x \to -\infty} \frac{2x + 5}{\sqrt{1 - x}}, \qquad \lim_{x \to +\infty} \left[\frac{1}{x}\right] \ln(x), \qquad \lim_{x \to +\infty} \frac{[x]}{[2x]},$$

$$\lim_{x \to +\infty} e^{2x} - e^{x}, \qquad \lim_{x \to +\infty} \sqrt{x - 1} - \sqrt{x + 1}, \qquad \lim_{x \to 0} x^{2} \sin\left(e^{x} + \ln(x)\right), \qquad \lim_{x \to 1} \frac{x^{3} - 1}{x^{2} - 1},$$

$$\lim_{x \to +\infty} \sqrt{\frac{1}{x^{2}} - 1} - \frac{1}{x}, \qquad \lim_{x \to +\infty} \frac{xe^{x} + 2e^{x} - 5}{e^{x} - 3}, \qquad \lim_{x \to +\infty} \frac{x^{2} + x \sin(x)}{x^{2} + x \cos(x)}, \qquad \lim_{x \to 0} x^{2} + \frac{\sqrt{x^{2}}}{x},$$

$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x} + \sqrt{x}} - \sqrt{x}, \qquad \lim_{x \to -\infty} \sqrt{x^{2} + 5x} - \sqrt{x^{2} - 1}, \qquad \lim_{x \to 0} \frac{\sin(x)}{\sin(3x)}, \qquad \lim_{x \to 0} \frac{x^{2} \sin(1/x)}{\sin(x)}.$$

Exercise 6. Let f be a real-valued function with a real variable defined and increasing over \mathbb{R} satisfies $(f \circ f)(x) = x$ for every $x \in \mathbb{R}$. Show that f(x) = x for any $x \in \mathbb{R}$.

Exercise 7. [From: Claude Bernard Lyon 1 University, fall 2023-2024] Let f, g and h be the function defined by

$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \qquad g: \mathbb{R}^* \to \mathbb{R} \qquad h: \mathbb{R} \setminus \{1\} \to \mathbb{R}$$
$$x \mapsto \frac{x}{x-1} \qquad x \mapsto \frac{1}{x} \qquad x \mapsto \frac{1}{x-1}$$

we set respectively by G_g , G_g and G_h the graphe of f, g and h.

• Provide $a, b \in \mathbb{R}$ so that

$$\forall x \in \mathbb{R} \setminus \{1\}: \quad \frac{x}{x-1} = a + \frac{b}{x-1}.$$

- Let T_1 the translation by the vector $\overrightarrow{u} = (0,1)$ in the plan $(x \circ y)$, show that the image of G_g by T_1 is G_h .
- Let T_2 the translation by the vector $\overrightarrow{v} = (0,1)$ in the plan (xoy), show that the image of G_h is G_f .
- Deduce the transformation that transform G_g into G_f .

Exercise 8.

- Let f be an even real-valued function with a real variable defined at 0, show that f(0) = 0.
- Show that if f is odd and even at the same time, then f is zero everywhere.

Exercise 9. Show that every real-valued function with a real variable can be decomposed as the sum of an odd function and an even one.

Exercise 10. Study the continuity of the following functions:

$$f(x) = \begin{cases} x \left[\frac{1}{x} \right] & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}, \quad g(x) = \begin{cases} \frac{x^2 - 1}{\sqrt{x} - 1} & \text{if } x \geq 1, \\ \frac{\sin(x - 1)}{x - 1} & \text{if } x < 1. \end{cases}$$

Exercise 11. Let f be the function defined by

$$f(x) = [x] + \sqrt{x - [x]}.$$

- Show that for any $x \in \mathbb{R}$ we have $x [x] \in [0, 1[$.
- Determine \mathcal{D}_f the domain of the function f.
- Study the continuity of the function f at $x_0 \in \mathbb{R}$.
- Show that for any $x \in \mathcal{D}_f$ we have $0 \le f(x) x \le 1$, and provide the limit of f at $+\infty$ and $-\infty$.

Exercise 12. Study the possible continuous extension of the following functions

$$f(x) = \frac{\sin(x)}{x}, \quad g(x) = \frac{x(x-1)}{\sqrt{1-x} - \sqrt{x}}, \quad h(x) = \frac{\sin(x)}{\sqrt{x} - x}$$

$$k(x) = \begin{cases} \frac{\ln(x)}{x-1} & \text{if } x > 1, \\ \frac{\sin(x-1)}{x-1} & \text{if } x < 1. \end{cases}, \quad l(x) = \begin{cases} \frac{\cos(x) - 1}{x} & \text{if } x > 0, \\ \frac{e^x - 1}{x} & \text{if } x < 0. \end{cases}$$

Exercise 13. Let a > 0, f and g be functions defined over $v =]x_0 - a$, $x_0 + a[$ such that f bounded over v and g(x) goes to zero as x tends to x_0 . Show that f(x)g(x) has zero as limit at x_0 .

Exercise 14. Let f be a real-value function with a real variable continuous over \mathbb{R} satisfies :

$$\lim_{x \to -\infty} f(x) = l_1 \in \mathbb{R}, \quad \lim_{x \to +\infty} f(x) = l_2 \in \mathbb{R}.$$

Show that f is bounded over \mathbb{R} .

Exercise 15. Show that any real-valued polynomial with a real variable and odd degree has a real root.