Junior Balkan MO 2002

Targu Mures, Romania

- 1 The triangle ABC has CA = CB. P is a point on the circumcircle between A and B (and on the opposite side of the line AB to C). D is the foot of the perpendicular from C to PB. Show that $PA + PB = 2 \cdot PD$.
- Two circles with centers O_1 and O_2 meet at two points A and B such that the centers of the circles are on opposite sides of the line AB. The lines BO_1 and BO_2 meet their respective circles again at B_1 and B_2 . Let M be the midpoint of B_1B_2 . Let M_1 , M_2 be points on the circles of centers O_1 and O_2 respectively, such that $\angle AO_1M_1 = \angle AO_2M_2$, and B_1 lies on the minor arc AM_1 while B lies on the minor arc AM_2 . Show that $\angle MM_1B = \angle MM_2B$.

Ciprus

- 3 Find all positive integers which have exactly 16 positive divisors $1 = d_1 < d_2 < \ldots < d_{16} = n$ such that the divisor d_k , where $k = d_5$, equals $(d_2 + d_4)d_6$.
- 4 Prove that for all positive real numbers a, b, c the following inequality takes place

$$\frac{1}{b(a+b)} + \frac{1}{c(b+c)} + \frac{1}{a(c+a)} \ge \frac{27}{2(a+b+c)^2}.$$

Laurentiu Panaitopol, Romania