Отчет о выполнении лабораторной работы 3.6.1 Спектральный анализ электрических сигналов

Маслов Артем, Дедков Денис группа Б01-108 01.10.2022

В работе изучен...

Оборудование и приборы

Генератор сигналов специальной формы $AKИ\Pi$ -3409/4, Цифровой осциллограф SIGLENT $AKИ\Pi$ 4131/1.

Введение

Ход работы

Калибровка оптического пирометра

Для калибровки шкалы приборов было проведено сравнение показаний пирометра с показаниями термопары модели АЧТ.

Постоянная термопары была получена из графика, приведенного в лабораторной работе:

$$\Psi = (39 \pm 1) \text{ мкВ/дел.}$$

Для уменьшения случайной погрешности, мы провели целую серию измерений. В таблице приведены полученные значения. Сравнение случайной ошибки ($\sim 0.5^{\circ}C$) с ошибкой пирометра в данном диапазоне температур ($\sim 10^{\circ}C$) позволяет не учитывать её при расчете погрешностей. Оценка ошибки измерения термопары можно оценить суммой случайной погрешности ($\sim 0.015~\rm mkB$) и ошибки округления ($\sim 0.005~\rm mkB$). Однако основную неточность в измерении финальной температуры вносит неизвестная температура комнаты. Относительная погрешность вычисленной температурой будет совпадать с относительной ошибкой измерения напряжения.

$T_p, {}^{\circ}C V, \text{ MB } T_t, {}^{\circ}C$ 947.0 36.4 936.5 937.0 36.4 935.0 939.0 36.3 934.5 939.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 933.5 938.0 36.3 932.5 939.0 36.3 932.5 939.0 36.3 932.5				
937.0 36.4 935.0 963.0 0.56 2.12 1.19 939.0 36.3 934.5 1102.0 0.59 2.39 1.41 939.0 36.3 933.5 1057.0 0.57 2.19 1.25 938.0 36.3 933.5 1198.0 0.64 2.88 1.84 938.0 36.3 933.5 1288.0 0.69 3.40 2.33 938.0 36.3 933.3 1424.0 0.75 4.17 3.13 939.0 36.3 932.5 1750.0 0.99 7.36 7.30	$T_p, {}^oC$	V, MB	$T_t, {}^oC$	$T, {}^{o}C$ I , A V , B W , B T
1907 0 1 10 9 05 0 92	937.0 939.0 939.0 938.0 938.0 938.0	36.4 36.3 36.3 36.3 36.3 36.3	935.0 934.5 933.5 933.5 933.5 933.3	963.0 0.56 2.12 1.19 1102.0 0.59 2.39 1.41 1057.0 0.57 2.19 1.25 1198.0 0.64 2.88 1.84 1288.0 0.69 3.40 2.33 1424.0 0.75 4.17 3.13 1556.0 0.84 5.22 4.37

Таблица 1: Проверка закона Стефана-Больцмана. Эксперимент по нагреванию вольфрамовой нити..

Выражения, полученные для температур, измеренных термопарой (T_t) и пирометром (T_p) соответственно:

$$T_t = (934 \pm 5) \, {}^{o}C, \ T_p = (939 \pm 12) \, {}^{o}C.$$

Выражения для температур отлично согласуются в пределах ошибок измерений.

Проверка закона Стефана-Больцмана

Для проверки выполнения закона Стефана-Больцмана, проведена обработка данных эксперимента по нагреву вольфрамовой нити лампы накаливания. Собранные данные приведены в таблице.

Измеренная яркостная температура преобразуется в термодинамическую температуру с помощью графика зависимости $T(T_{\rm ярк})$. Мощность, потребляемая лампой, легко оценивается с использованием закона Джоуля-Ленца: W=UI. Эта мощность равна рассеянной по закона сохранения энергии. График зависимости рассеиваемой мощности от температуры приведена на рисунке 2.

Для точного вычисления степени в законе Стефана-Больцмана, проведем линеаризацию зависимости W(T):

$$\ln W = \ln(\varepsilon_T S\sigma) + n \ln T.$$

График получившейся зависимости изображен на рисунке 2. Подсчет коэффициентов проведем методом наименьших квадратов (МНК):

Рис. 1: Зависимость W(T).

Рис. 2: Зависимость $\ln W(\ln T)$.

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
7.46e+00	3.40e-02	1.01e+00	5.29e-01	1.33e-01	3.92	0.18	-28.20	1.37

Таблица 2: Статистическая обработка зависимости $\ln W(\ln T)$.

Тогда финальное выражение для степени в законе Стефана-Больцмана:

$$n = (3.92 \pm 0.18).$$

Оценка коэффициента Стефана-Больцмана

Для оценки коэффициента Стефана-Больцмана, нужно учесть тот факт, что вольфрамовая нить черным телом не является. А значит, следует уточнить закон Стефана-Больцмана множителем серого тела ε_T . В ней же приведена зависимость коэффициента ослабления ε_T для вольфрама.

Коэффициента Стефана-Больцмана легко рассчитать по следующей формуле:

$$\sigma = \frac{W}{\varepsilon_T(T) \cdot S \cdot T^4}$$

Погрешность же, по правилам оценки погрешностей косвенных вычислений, можно оценить суммой относительных ошибок каждой величины:

$$\delta_{\sigma} \approx \sqrt{\epsilon_S^2 + (4\epsilon_T)^2}$$

График с крестами погрешностей показан на рисунке 3. Видно, что при увеличении температуры, коэффициент Стефана-Больцмана уменьшается.

Pис. 3: Зависимость $\ln W(\ln T)$.

Вывод

В работе была проверена калибровка оптического пирометра путем сравнения измеренной температуры АЧТ с показаниями термопары. Показания термопары (T_p) и пирометра (T_p) хорошо согласуются:

$$T_t = (934 \pm 5) \, {}^{o}C, \ T_p = (939 \pm 12) \, {}^{o}C.$$

Был экспериментально вычислен показатель степени в законе Стефана-Больцмана. В пределах точности эксперимента n сходится с теоретическим значением:

$$n = (3.92 \pm 0.18).$$

Также были вычислены коэффициенты σ при различных температурах. Значения по порядку сходятся с эталонным значением. Также приведен график зависимости σ от температуры (см. рис. 3).