1 Kinetische Gastheorie

1.1 Energieverteilung und wahrscheinlichste Energie

Wir betrachten die Energieverteilung (E_K ist die kinetische Energie)

$$f(E_K) dE_K = \frac{2\pi}{(\pi kT)^{3/2}} \cdot \sqrt{E_K} \cdot e^{-\frac{E_K}{kT}} dE_K,$$
(1)

die sich aus f(v)dv ergibt. Die erste Ableitung

$$f'(E_K) = \frac{2\pi}{(\pi kT)^{3/2}} \cdot e^{-\frac{E_K}{kT}} \left(\frac{1}{2\sqrt{E_K}} - \frac{\sqrt{E_K}}{kT} \right) \stackrel{!}{=} 0$$
 (2)

wird null gesetzt, woraus folgt, dass $E_K = \frac{1}{2}kT$. Daraus folgt, wie bereits des öfteren erwähnt, dass die Temperatur ein Maß für die Kinetische Energie ist. Für T = 20 °C ist $E_K = 2.02 \times 10^{-21}$ J.

1.2 Zusammenstöße in einem N_2 Kolben

Wir betrachten einen Kolben mit reinem N_2 bei einer Temperatur von 217 K und einem Druck von 0.05 atm, $\sigma=0.43\,\mathrm{nm}^2$. Bewegt sich nur ein Teilchen, so kann die Zahl der Zusammenstöße pro Sekunde mit

$$z_1 = \sqrt{2}\sigma < v > \frac{p}{kT} \tag{3}$$

berechnet werden. Die mittlere Geschwindigkeit

$$\langle v \rangle = \sqrt{\frac{8RT}{\pi M}}$$
 (4)

ergibt sich aus der Boltzmann Verteilung. Es ergeben sich $z_1=4.8\times 10^8\,\mathrm{St\"oBe/s}$. Die Gesamtzahl aller Zusammenst\"oße kann mit

$$z_{11} = \frac{1}{\sqrt{2}}\sigma \langle v \rangle \left(\frac{p}{kT}\right)^2 \tag{5}$$

berechnet werden. Es ergeben sich also $z_{11} = 4.02 \times 10^{32} \, \text{Stöße/s}.$

Florian Kluibenschedl

1.3 Freiheitsgrade und Beitrag zur inneren Energie

Die Anzahl an möglichen Freiheitsgraden setzt sich aus den Freiheitsgraden der Translation, Rotation und Schwingung zusammen $(FG_G = FG_T + FG_R + FG_S)$. Für die Freiheitsgrade der Schwingung gilt $FG_S = 3N - 3 - FG_R$. Jeder Freiheitsgrad trägt mit $\frac{1}{2}kT$ zur inneren Energie bei, also $U = \frac{1}{2}\left(FG_T + FG_R + 2FG_S\right)kT$. In der folgenden Tabelle wird dies für einige Moleküle festgehalten (U bei $1000\,\mathrm{K})$.

Tabelle 1: Moleküle und ihre zugehörigen Freiheitsgrade

	FG_T	FG_R	FG_S	FG_G	U
$\overline{\mathrm{CO}_2}$	3	2	4	9	$8.97 \times 10^{-20} \mathrm{J}$
Ar	3	0	0	3	$2.07 \times 10^{-20} \mathrm{J}$
C_2H_2	3	2	7	12	$1.31 \times 10^{-19} \mathrm{J}$
N_2	3	2	1	6	$4.83 \times 10^{-20} \mathrm{J}$
${\rm H_2O}$	3	3	3	9	$8.28 \times 10^{-20} \mathrm{J}$

Florian Kluibenschedl Seite 2