Six Weeks of **Thermodynamics**

Week 0 - Intro concepts (cover these in a handout/appendix)

- pressure, volume, density, all the units
- moles, molar masses, isotopes, numbers of things
- molecules
- · combinatorics and factorials
- large numbers, logarithms
- taylor approximation of log(1+x) for x<<1
- stirling's approximation

Week 1 - Temperature and Gases

- 1. The Zeroth Law
 - a temperature
 - b. thermal equilibrium + the 0th law
 - c. absolute temperature
- Gases
 - a. ideal gases and assumptions
 - b. real gas models
- 3. Kinetic Theory
 - Maxwell-Boltzmann distribution and speeds in a gas
 - b. relating pressure to energy
 - c. relating energy to temperature

Week 2 - Energy and Processes

- 4. Thermal energy
 - a. degrees of freedom
 - b. the equipartition theorem
 - c. monatomic/diatomic gas, solids, liquids
- 5. The First Law
 - a. heat, work, energy transfer
 - b. heat capacity, specific/molar/molecular
 - c. latent heat capacity
 - d. enthalpy
- 6. Ideal Gas Processes
 - a. isochoric, isobaric
 - b. isothermal
 - c. adiabatic

Week 3 - Kinetic Theory and Multiplicity

- 7. Rates of processes some more kinetic theory
 - a. molecular flux
 - b. mean free path
 - c. heat conduction
 - d. heat conductivity
- 8. Multiplicity
 - a. microstates and macrostates
 - b. multiplicity
 - c. two state systems
- 9. Ideal systems
 - a. Multiplicity of an Einstein Solid
 - i. assumptions
 - ii. state variables
 - iii. repetitive combinations
 - iv. high T limit, low T limit
 - b. Multiplicity of an Ideal Gas
 - assumptions (monatomic, one particle then many particles)
 - ii. state variables
 - iii. 'momentum' space
 - iv. quantising the spaces

Week 4 - Entropy

- 10. The Second Law
 - a. interacting systems
 - b. sharpness of multiplicity function
 - c. entropy
 - d. the second law, reversibility, irreversibility, other implications of entropy
- 11. Temperature
 - a. a true definition of temperature
 - b. the reason heat flows from a hotter object to a cooler object
 - non-standard entropy/energy curves (some interesting shit right there ey)
- 12. Thermodynamic Identity
 - (connecting entropy and other state variables mechanical/diffusive equilibrium)
 - b. Pressure and entropy
 - c. chemical potential
 - d. the differential thermodynamic identity

Week 5 - Heat Engines

- 13. Heat Engines
 - a. cyclic processes
 - b. Carnot Cycle
 - c. Other, Otto? Stirling?
 - d. (maximum) efficiency
- 14. Reverse Heat Engines
 - a. the idea of doing it all in reverse
 - b. coefficient of performance
 - c. throttling
- 15. Mid-semester Test on Weeks 1-4
 - a. takes place in-lecture
 - b. students get full 50 minutes?

Week 6 - Chemical Thermodynamics

- 16. Chemical Reactions
 - a. non-cyclic processes
 - b. free energy
 - c. free energy from reactions
 - d. spontaneity
- 17. Phase Changes
 - a. materials found in the most stable phase
 - b. P-T diagrams, critical/triple point
 - c. Clausius-Clapeyron relation

Things we didn't get time to treat properly

- 18. Statistical Distributions
 - a. Maxwell-Boltzmann Distribution
 - b. Bose-Einstein Distribution
 - c. Fermi-Dirac Distribution
 - d. Density of States

19.