27/03/2023 16:03 Estácio: Alunos

EMANUEL ROSEIRA GUEDES

202212181407 POLO JEREISSATI I - MARACANAÚ - CE

Check Point

avalie sua aprendizagem

Disc.: ESTRUTURANDO OS DADOS

202212181407

Aluno(a): EMANUEL ROSEIRA GUEDES

Acertos: 9 de 10

Um dos pilares do pensamento computacional versa sobre a capacidade de identificar um problema e quebrá-lo em pedaços menores e gerenciáveis de mais fácil análise, compreensão e solução. Acerca das quatro dimensões do pensamento computacional, assinale a alternativa que apresenta um exemplo do bom uso do pensamento computacional no ensino da Engenharia.

- Uma aula de campo para conhecer empresas da área de Engenharia.
- Uma disciplina que usa um sistema que permite ao aluno potencializar seus conhecimentos.
- Uma prova realizada no laboratório de informática.
- Um professor que utiliza o PowerPoint para preparar suas aulas.
- Um estudante que faz bom uso do Word para editar seus trabalhos.

A forma com que as empresas são administradas vem sofrendo alterações constantes. Sobre esse tema e o pensamento computacional, podemos afirmar que:

- Estão diretamente relacionados, pois, à medida que a tecnologia avança, os profissionais que atuam na empresa devem melhorar a forma de pensar.
- Estão pouco relacionados, pois apenas em alguns momentos ou em algumas áreas da empresa que o pensamento computacional pode ser aplicado.
- Não estão relacionados, pois as mudanças na administração de empresas ocorrem devido ao grande número de concorrentes.
- Estão parcialmente relacionados, pois apenas nos níveis mais altos da organização que o pensamento computacional é aplicado.
- Estão parcialmente relacionados, pois apenas empresas de tecnologia possuem essa relação direta.

O conceito de pensamento computacional compreende uma série de fatores que são conjugados para se alcançar um objetivo predefinido. Assinale a alternativa que melhor define pensamento computacional.

- Uma forma de estruturar a resolução de problemas complexos.
- Pensar como computadores.

7/03/20)23 16:0	6:03 Estacio: Alunos	
		Conhecer e saber usar as principais ferramentas da internet e editores de tex Saber programar em diversas linguagens. Substituir a utilização de computadores por raciocínio humano.	rto.
4	Qu	Questão	Resp. Correta
	apre segu Qual	na Carolina está adorando as aulas de Lógica Digital e tenta reproduzir em situa rendidos durante seus estudos. Recentemente, ela tentou reproduzir através diguinte situação hipotética: comprar legumes (A) e verduras (F), e ainda escolhe ual das expressões melhor representa esta ação? $ (A+F) \cdot (C+P) \\ (A\cdot F) \cdot (C+P) \\ A\cdot F+(C+P) \\ A\cdot F+C+P \\ A\cdot F\cdot C+P $	e uma expressão booleana a
5	Qu	Questão	Resp. Correta
		partir da expressão: A + (B . C). Escolha a única alternativa que representa uma (A + B) . (A + C) A A + B A + C (A . B) + (A . C)	expressão equivalente.
6	Qu	Questão	Resp. Correta
	OS V2	ssinale a alternativa que apresenta a sequência correta da saída (S) para a exprevalores de entrada são: = 010, B 110 e C=001. S = 100 S = 110 S = 010 S = 101 S = 101	ssão lógica S = AB + C, quando
7	Qu	Questão	Resp.

Analise as seguintes afirmações relacionadas a conceitos básicos sobre Programação:

I. Um procedimento é um conjunto de comandos para uma tarefa específica referenciada por um nome no algoritmo principal, retornando um determinado valor no seu próprio nome.

27/03/2023 16:03 Estácio: Alunos

II. Podem-se inserir módulos em um algoritmo. Para isso, pode-se utilizar "Procedimentos" ou "Funções". As ações das "Funções" e dos "Procedimentos" são hierarquicamente subordinadas a um módulo principal.

III. Cada "Função" ou "Procedimento" pode utilizar constantes ou variáveis do módulo principal ou definir suas próprias constantes ou variáveis.

IV. Uma variável global indica o endereço onde um valor é armazenado na memória do computador, enquanto um ponteiro representa um valor numérico real.

Indique a opção que contenha todas as afirmações verdadeiras.

```
□ II e III.
```

☐ III e IV.

□ Tell.

☑ II e IV.

□ lelll.

Considere o algoritmo em pseudocódigo, descrito a seguir.

```
Para i=0 até n

Inicio

j = 1
enquanto j<n
inicio
j = 2 x j
para k = 0 até j
inicio
execute f
fim
fim
fim
```

Calcule a complexidade do algoritmo, sabendo que a função f tem complexidade igual a $O(n^2)$.

```
\Box O(n<sup>3</sup>log(n))
```

- \square O(n³)
- \square O(n²log²(n))
- \bigcirc O(n⁴log(n))
- \square O(n⁵)

Leia as afirmativas a seguir considerando que f(n) e g(n) são funções positivas.

I- Se g(n) é O(f(n)), um algoritmo de função de complexidade de tempo f(n) possui Ordem de complexidade g(n).

II- Se g(n) é O(f(n)), f(n) é um limite superior para g(n).

III- Se a função g(n) = 7.log(n) + 6, então a função g(n) é O(log(n)).

27/03/2023 16:03 Estácio: Alunos

IV- Se g(n)= n^2 e f(n)= $(n+1)^2$ temos que g(n) é O(f(n)) e f(n) é O(g(n)).
V- Se g(n) = $2n+1$ e f(n) = $2n$ temos que g(n) = O(f(n)).
Assinale a alternativa que apresenta somente as afirmativas:
□ I, III, IV, V. ■ II, III, IV, V. □ II, III, V. □ I, II, IV, V.

Considere os algoritmos a seguir e as suas correspondentes complexidades indicadas:

Algoritmo	Complexidade	
I - Busca Sequencial de um elemento em um vetor	O(N)	
II - Busca, via pesquisa binária, de um elemento em um vetor ordenado de tamanho N	O (log ₂ N)	
III – Somar todos os números de um vetor	O (N)	
IV – Merge de duas listas	O(n ²)	
V - Inclusão de um elemento em um vetor ordenado de tamanho N, mantendo-se a ordenação	O(1)	

Estão corretas apenas as complexidades indicadas para os algoritmos:

- ☐ I, II e IV.
- □ II, III, IV e V.
- □ I, III, IV e V.
- I, II e III.
- ☐ II, III e V.