

2. Ubung Betriebs- und Kommunikationssysteme Prof. Dr.-Ing. Jochen Schiller Sommersemester 2018

 $\begin{array}{c} {\rm Ausgabe~27.04.2018} \\ {\rm Abgabe~11.05.2018,~10:15Uhr} \end{array}$

Bitte beachten Sie die allgemeinen Hinweise auf Übungszettel 1

Aufgabe 1: Interrupts

Begriffe

Beschreiben Sie kurz **in eigenen Worten** den Unterschied zwischen Interrupts und Polling und legen Sie dabei auch die jeweiligen Vor- und Nachteile dar.

Abarbeitung von Interrupts

Die folgende Tabelle definiert eine Liste von Interrupts, die zu bestimmten Zeitpunkten auftreten und eine gegebene Zeit brauchen, um abgearbeitet zu werden:

Name	Priorität	Abarbeitungszeit	Ankunftszeit
	$(h\ddot{o}herer Wert := h\ddot{o}here Priorit\ddot{a}t)$	(in Zeitslots)	(Zeitslot)
I0	1	4	1
I1	1	1	2
I2	2	2	2
I3	3	3	3
I4	2	3	5
I5	3	2	6
I6	1	1	7

Stellen Sie in jeweils einer Tabelle dar, in welchem Zeitslot welcher Interrupt aktiv ist und abgearbeitet wird.

Gehen Sie dabei für

- (a) von einem System mit Sequential Interrupt Processing und für
- (b) von einem System mit Nested Interrupt Processing aus.

Tragen Sie ein x ein, falls kein Interrupt aktiv ist.

2. UDUNG Betriebs- und Kommunikationssysteme Prof. Dr.-Ing. Jochen Schiller Sommersemester 2018

Ausgabe 27.04.2018 Abgabe 11.05.2018, 10:15Uhr

Aufgabe 2: System Calls in C

In dieser Aufgabe sollen Sie nicht die stdio.h Bibliothek verwenden. Führen Sie Fehlerbehandlung durch und erläutern Sie im Quellcode (als Kommentar) warum Sie sich für genau diese Fehlerbehandlung entschieden haben.

- Machen Sie sich mit den Linux Low-Level-IO system calls open(), read() und write() vertraut (Stichwort man pages). Suchen Sie weiterhin system calls zum Erstellen von Ordnern und Löschen von Dateien heraus.
- 2. Schreiben Sie eine Funktion mit der Signatur int copy(char *sourcename, char *targetname), die den Inhalt einer Datei dann und nur dann in eine Zieldatei kopiert, wenn die Zieldatei noch nicht existiert.
- 3. Implementieren Sie unter Zuhilfenahme Ihrer copy Funktion einen einfachen kommandozeilenbasierten Papierkorb. Das Programm soll bei Ausführung dann und nur dann im aktuellen Verzeichnis den versteckten Unterordner .ti3_trashcan erstellen, wenn dieser Ordner noch nicht existiert. Unter Linux ist ein Ordner versteckt, wenn er mit einem Punkt beginnt. Folgende Funktionalitäten sollen implementiert werden:
 - (a) DELETE
 Der Aufruf ./trashcan -d filename verschiebt die Datei 'filename' in den versteckten Ordner.
 - (b) LIST

 Der Aufruf ./trashcan -1 listet alle im versteckten Ordner enthaltenen Dateien auf.
 - (c) RECOVER
 Der Aufruf ./trashcan -r filename verschiebt die Datei 'filename' aus dem versteckten Ordner in das aktuelle Verzeichnis.
 - (d) FINALLY DELETE
 Der Aufruf ./trashcan -f filename löscht die Datei 'filename' aus dem versteckten Ordner.