Algorithm Design & Analysis

Natthapong Jungteerapanich

Dynamic Programming

Revisiting Divide and Conquer

- Divide and conquer is a powerful algorithm design technique. It involves breaking down a
 problem into subproblems, solve the subproblems, and then combine the solutions to the
 subproblems to obtain the solution to the original problem.
- This process can be naturally implemented using recursion. But for many problems, a simple non-recursive implementation is possible. For example, binary search:

```
def binsearch rec(A,lo,hi,x):
  if hi<lo:
    return None
  else:
    mid = (hi+lo)//2
    if x == A[mid]:
      return mid
    elif x < A[mid]:</pre>
      return binsearch_rec(A,lo,mid-1,x)
    else:
      return binsearch_rec(A,mid+1,hi,x)
```

```
def binsearch(A,lo,hi,x):
    while lo<=hi:
        mid = (hi+lo)//2
    if x == A[mid]:
        return mid
    elif x < A[mid]:
        hi = mid-1
    else:
        lo = mid+1
    return None</pre>
```

Revisiting Divide and Conquer

• For some problems, mainly those involving breaking down and solving two or more subproblems, a non-recursive implementation is possible but more complicated.

```
function quick_sort(A,lo,hi)
  if lo>=hi then
    return
  else
    pivot = select_pivot(A,lo,hi)
    mid1,mid2 = partition(A,lo,hi,pivot)
    quick_sort(A,lo,mid1-1)
    quick_sort(A,mid2+1,hi)
```

```
function merge_sort(P[0...N-1])
  if N <= 1 then
    return P
  else
    M = [N/2]
    SL = merge_sort(P[0...M-1])
    SR = merge_sort(P[M...N])
    return merge(SL,SR)</pre>
```

- Notice that in each D&C algorithm that we studied so far, a problem is divided into subproblems that are non-overlapping, i.e. completely separate.
- Consider the following problem.
- **Problem**: How many bit strings of length N that do <u>not</u> have two consecutive 0s are there?
- Let us define a bit string of length n ($n \ge 0$) to be "good" if and only if it does not contain any two consecutive 0s.
- Let G_n be the set of all good bit strings of length n.
- Since all bit strings of length 0 or 1 are good, we have

$$|G_0| = |\{\epsilon\}| = 1$$
 and $|G_1| = |\{0,1\}| = 2$.

- Assume that $n \ge 2$. Let us partition G_n into two classes: GA_n and GB_n
 - GA_n contains good bit strings ending with 0 and
 - GB_n contains good bit strings ending with 1:

GA_n = Good bit strings ending with 0	GB_n = Good bit strings ending with 1
• Example: 10110, 01010, 11110, 11010	• Example: 10101, 10111, 01011, 01101

GA_n = Good bit strings ending with 0 $(n \ge 2)$

- Example: 10110, 01010, 11110, 11010
- This set GA_n must contain all good bit strings of the form

where u is a good bit string of length n-2.

• Hence, $|GA_n| = |G_{n-2}|$.

GB_n = Good bit strings ending with 1 ($n \ge 2$)

- Example: 10101, 10111, 01011, 01101
- This set G_n must contain all good bit strings of the form

$$u$$
 1

where u is a good bit string of length n-1. Hence, $|GB_n| = |G_{n-1}|$.

- Thus, in total, $|G_n| = |GA_n| + |GB_n| = |G_{n-1}| + |G_{n-2}|$, where $n \ge 2$.
- If we let $g(n) = |G_n|$ for each $n \ge 0$, we can describe g recursively as follows:

$$g(0) = 1$$

 $g(1) = 2$
 $g(n) = g(n-1) + g(n-2)$ $(n \ge 2)$

This function can be directly implemented using recursion.

```
function g(n)
  if n==0 then
    return 1
  else if n==1 then
    return 2
  else
    return g(n-1)+g(n-2)
print(g(N))
```

Let's draw a recursion tree of g(6).

More Efficient Implementations

How can we improve the implementation of this function? There are 2 methods.

Method 1: Memorizing the computed sub-problem solutions

```
memo = \{0:1, 1:2\}
function g(n)
  if n is a key in memo
    return memo[n]
  else
    memo[n] = g(n-1)+g(n-2)
    return memo[n]
print(g(N))
```


save g(6)

More Efficient Implementations

- **Method 2:** Perform the computation in a bottom-up manner, storing computed solutions in a table.
- For example, to computing g(6), we iteratively compute g(0), g(1), ..., g(5), g(6)

```
g[0...N] = Array of length N+1
g[0] = 1
g[1] = 2
for i from 2 ... N
    g[i] = g[i-1]+g[i-2]
print(g[N])
```

n	g(n)
0	1
1	2
2	2 + 1 = 3
3	3 + 2 = 5
4	5 + 3 = 8
5	8 + 5 = 13
6	13 + 8 = 21

More Efficient Implementations

- This method can consume more space. But in many cases, we can save space by storing only the computed solutions that will be used later on.
- In the previous example, to find g(n), we only need g(n-1) and g(n-2). Earlier computed solutions, i.e. g(n-3), g(n-4), ..., can be forgotten.
- In the following program, g2 stores g(k-2) and g1 stores g(k-1).

```
if N==0 then print(1)
else if N==1 then print(2)
else
    k = 2
    g2,g1 = 1,2
    while k<=N
        k = k+1
        g2,g1 = g1,(g1+g2)
    print(g1)</pre>
```

- You are given a set S of positive integers and a positive integer Y. Determine whether there is a subset of S whose sum equals to Y.
- For example, suppose $S = \{8, 6, 7, 5, 3, 10, 9\}$ and Y = 15.
 - -7+5+3=15
 - Also, 10 + 5 = 15 and 8 + 7 = 15
- How about $S' = \{11, 6, 5, 1, 7, 13, 12\}$ and Y = 15?
 - There is no subset of S' whose sum equals 15.

We are given the initial set $S_0 = \{x_1, ..., x_N\}$ and the initial value Y_0 .

Step 1. Define the function that we need to compute. For any subset S of S_0 and any positive integer Y.

check(S,Y) = True if there is a subset of S whose sum equals to Y.

check(S, Y) = False otherwise.

Step 2. Write a recurrence equation describing the function.

$$check(S,Y) = check(S - \{x_k\},Y) \lor check(S - \{x_k\},Y - x_k)$$
 if $Y \ge x_k$
$$check(S,Y) = check(S - \{x_k\},Y)$$
 if $Y < x_k$

where x_k is the last element in S.

$$check(\{\}, Y) = True \text{ if } Y = 0$$

$$check(\{\}, Y) = False \text{ if } Y \neq 0$$

Step 3. Simplify the arguments of the function. Notice that the first argument of *check* is a set containing elements $x_1, ..., x_k$ for some $k \le N$. So, we can instead represent the first argument by the integer k such that

$$check'(k, Y)$$
 means $check(\{x_1, ..., x_k\}, Y)$ and

check'(0, Y) means $check(\{\}, Y)$

We can thus simplify the arguments

$$check'(k,Y) = check'(k-1,Y) \lor check'(k-1,Y-x_k)$$
 if $Y \ge x_k$ $check'(k,Y) = check'(k-1,Y)$ if $Y < x_k$ $check'(0,Y) = True$ if $Y = 0$ $check'(0,Y) = False$ if $Y \ne 0$

Our goal is to find $check'(N, Y_0)$, which equals to $check(S_0, Y_0)$.

Let us see how we evaluate check'(k,Y) in the bottom-up manner. Suppose $S_0 = \{1,2,4,5\}$ and $Y_0 = 8$. We compute check'(k,Y) where $0 \le k \le 4$ and $0 \le Y \le 8$ First, check'(0,Y) = True if Y = 0; otherwise, check'(0,Y) = False.

		Y = 0	1	2	3	4	5	6	7	8
x_k	k = 0	Т	F	F	F	F	F	F	F	F
1	1	Т								
2	2	Т								
4	3	Т								
5	4	Т								

```
For k=1, we have x_k=1 and thus check'(1,Y)=check'(0,Y)\vee check'(0,Y-1) \qquad \qquad \text{if }Y\geq 1 \\ check'(1,Y)=check'(0,Y) \qquad \qquad \text{if }Y<1
```

		Y = 0	1	2	3	4	5	6	7	8
x_k	k = 0	T	F	F -	F	F	F -	F	F	F
1	1	T	T	F	F	F	F	F	F	F
2	2	Т								
4	3	Т								
5	4	Т								

For
$$k=2$$
, we have $x_k=2$ and thus
$$check'(2,Y)=check'(1,Y)\vee check'(1,Y-2) \qquad \text{if } Y\geq 2$$

$$check'(2,Y)=check'(1,Y) \qquad \text{if } Y<2$$

		Y = 0	1	2	3	4	5	6	7	8
x_k	k = 0	Т	F	F	F	F	F	F	F	F
1	1	T	T	F	F	F	F	F	F	F
2	2	T	T	T	T	F	F	F	F	F
4	3	Т								
5	4	Т								

```
For k=3, we have x_k=4 and thus check'(3,Y)=check'(2,Y)\vee check'(2,Y-4) \qquad \text{if } Y\geq 4 check'(3,Y)=check'(2,Y) \qquad \text{if } Y<4
```


For k=4, we have $x_k=5$ and thus $check'(4,Y)=check'(3,Y)\vee check'(3,Y-5) \qquad \text{if } Y\geq 5 \\ check'(4,Y)=check'(3,Y) \qquad \text{if } Y<5$

We have found that check'(4,8) = True. This implies there is a subset of S_0 whose sum equals to 8.

x_k		Y = 0	1	2	3	4	5	6	7	8
2	2	Т	Т	Т	Т	F	F	F	F	F
4	3		- 	 	⊢	⊢	T	T	T	F
5	4	T	T	T	T	T	T	T	T	T

Which elements of S_0 add up to 8? We can find them by tracing back from check'(4,8).

		Y = 0	1	2	3	4	5	6	7	8
x_k	k = 0		F 1	F	F	F	F	F	F	F
1	1	Т		F 2	F _	F	F	F	F	F
2	2	Т	Т	Т	T	F	F	F	F	F
4	3	Т	Т	Т	T	Т	T 5	Т	Т	F
5	4	Т	Т	Т	Т	Т	T	T	Т	+ (†)

- Suppose you have a wooden stick of length N (where N is a positive integer), and you want to cut the stick into one or more pieces and sell the pieces to maximize the profit.
 - There is a condition that the length of each piece must be a positive integer.
 - You are given the selling price $P_i \ge 0$ of a stick of length i.
 - There is a cost of $C \ge 0$ Baht for each cut you make.
- For example, suppose N=5, the cutting cost C=10, and the selling price P_i for a piece of length i is as follows.

i	1	2	3	4	5
P_i	30	40	120	130	150

- If we don't cut at all (just sell the entire stick of length 5), our profit will be 150 Baht.
- If we cut into 2 pieces of length 2 and 3, our profit will be 40 + 120 10 = 150 Baht.
- If we cut into 3 pieces of length 1, 2, 2, our profit will be 30 + 40 + 40 20 = 90 Baht.
- If we cut into 5 pieces, each of length 1, our profit will be $5 \cdot 30 40 = 110$ Baht.

- Step 1. Name the function that we would like to compute.
 - Define opt(n) to be the maximal profit that could be obtained from cutting and selling a stick of length n.
- **Step 2.** Write a recurrence equation for the function.
 - If the stick length n=1, it cannot be cut any further. Hence, $opt(n)=P_1$.
 - Given a stick of length n > 1, there n options for the first cut:
 - Not cutting at all \Rightarrow Maximal profit is P_n .
 - Cut 1 meter from the left end \Rightarrow Maximal profit is opt(1) + opt(n-1) C.
 - Cut 2 meters from the left end \Rightarrow Maximal profit is opt(2) + opt(n-2) C.
 - ...
 - Cut n-1 meters from the left end \Rightarrow Maximal profit is opt(n-1) + opt(1) C.
 - We choose a cut that maximizes the profit. Hence, for n > 1,

$$opt(n) = Max(\{P_n\} \cup \{opt(k) + opt(n-k) - C \mid 1 \le k \le n-1\})$$

- Here is an alternative equation
- Given a stick of length n > 1, there are n options for the leftmost cut:
 - Not cutting at all \Rightarrow Maximal profit is P_n .
 - Leftmost cut is 1 meter from the left end \Rightarrow Maximal profit is $P_1 + opt(n-1) C$.
 - Leftmost cut is 2 meter from the left end \Rightarrow Maximal profit is $P_2 + opt(n-2) C$.
 - ...
 - Leftmost cut is n-1 meter from the left end \Rightarrow Maximal profit is $P_{n-1}+opt(1)-C$.
- We choose the leftmost cut that maximizes the profit. Hence, for n > 1,

$$opt(n) = Max(\{P_n\} \cup \{P_k + opt(n-k) - C \mid 1 \le k \le n-1\})$$

- It can be shown that these two equations for opt(n) are equivalent.
- Here, we shall use this latter equation. The first equation can be implemented similarly.

Here's the full equation.

$$opt(1) = P_1 opt(n) = Max(\{P_n\} \cup \{P_k + opt(n-k) - C \mid 1 \le k \le n-1\})$$
 (n > 1)

- Step 3. Simplify the arguments.
 - Since the argument in our function opt(n) is already very simple, we will not be simplifying it any further.
 - Given the initial length N of the stick, the possible values of the argument n is $\{1, ..., N\}$.

- **Step 4.** Code the function.
 - Method 1: Recursion with memoization.

```
memo = \{1:P[1]\}
function opt(n)
  if n is a key in memo
    return memo[n]
  else
    max_profit = P[n]
    for k from 1 to n-1
      max_profit = max(max_profit, P[k]+opt(n-k)-C)
    memo[n] = max_profit
    return memo[n]
print(opt(N))
```

Method 2: Bottom-up implementation

```
opt[1...N] = Array of length n
opt[1] = P[1]
for n = 2 to N:
  max_profit = P[n]
  for k = 1 to n-1
   max_profit = max(max_profit, P[k]+opt[n-k]-C)
  opt[n] = max_profit
print(opt[N])
```

• From both implementations, we can determine the time complexity to be $\Theta(N^2)$.

• **Example.** Suppose N=5, the cutting cost C=10, and the selling price P_i for a piece of length i is as follows.

i	1	2	3	4	5
P[i]	30	40	120	130	150

Let us construct the table opt.

n	opt[n]
1	P[1] = 30
2	$Max\{40, 30 + 30 - 10\} = 50$
3	$Max\{120, 30 + 50 - 10, 40 + 30 - 10\} = 120$
4	$Max\{130, 30 + 120 - 10, 40 + 50 - 10, 120 + 30 - 10\} = 140$
5	$Max\{150, 30 + 140 - 10, 40 + 120 - 10, 120 + 50 - 10, 130 + 30 - 10\} = 160$

Suppose the problem also asks for the cutting positions that produces the optimal profit.

- **Step 5.** Extract the solutions.
 - While finding the optimal profit, we need to record the choices that lead to the optimal profit.

```
memo_profit = {1:P[1]}
memo_cuts = {1:[]}
function opt(n)
  if n is a key in memo_profit
    return (memo_profit[n],memo_cuts[n])
  else
    max_profit = P[n]
    max_cuts = []
    ...
```

```
for k from 1 to n-1
    (profit_nk,cuts_nk) = opt(n-k)
    if max_profit < P[k]+profit_nk-C
        max_profit = P[k]+profit_nk-C
        max_cuts = [k]+cuts_nk[n-k]

memo_profit[n] = max_profit

memo_cuts[n] = max_cuts

return memo[n]</pre>
```

```
opt profit[1...N] = Array of length n
opt_cuts[1...N] = Array of length n
opt_profit[1] = P[1]
opt_cuts[1] = []
for n = 2 to N:
  max_profit = P[n]
  max_cuts = []
  for k from 1 to n-1
    if max profit < P[k]+opt profit[n-k]-C</pre>
       max_profit = P[k]+opt_profit[n-k]-C
       max_cuts = [k] + opt_cuts[n-k]
  opt_profit[n] = max_profit
  opt_cuts[n] = max_cuts
print(opt_profit[N], opt_cuts[N])
```

• **Example.** Suppose N=5, the cutting cost C=10, and the selling price P_i for a piece of length i is as follows.

i	1	2	3	4	5
P_i	30	40	120	130	150

Let us construct the tables opt_profit and opt_cuts.

n	$opt_profit[n]$	$opt_cuts[n]$
1	P[1] = 30	
2	$Max\{40, 30 + 30 - 10\} = 50$	[1]
3	$Max\{120, 30 + 50 - 10, 40 + 30 - 10\} = 120$	
4	$Max\{130, 30 + 120 - 10, 40 + 50 - 10, 120 + 30 - 10\} = 140$	[1]
5	$Max\{150, 30 + 140 - 10, 40 + 120 - 10, 120 + 50 - 10, 130 + 30 - 10\} = 160$	[1, 1]

- Suppose we have M types of stamps with values $C_1, ..., C_M$ Bahts, where each C_i is a positive integer. If we need to pay the postage cost of N Bahts (N is a non-negative integer) using stamps, what is the least total number of stamps needed?
 - We assume that we have an unlimited supply for the stamp of each type.
- For example, suppose there are M=4 types of stamps, with the following values:

t	Type 1	Type 2	Type 3	Type 4
C_t	1	2	4	5

and the postage cost N = 7 Bahts.

- Some possible stamp sets with postage values of 7 Bahts.
 - 7 x Type 1 = 7 x 1 (7 stamps)
 - $-(1 \times Type 1) + (1 \times Type 2) + (1 \times Type 3) = (1 \times 1) + (1 \times 2) + (1 \times 4) (3 \text{ stamps})$
 - $(1 \times Type 2) + (1 \times Type 4) = (1 \times 2) + (1 \times 5) (2 \text{ stamps})$

- Step 1. Name the function that we would like to compute.
 - Define opt(n) to be the minimal number of stamps with the total value of n Bahts.
- **Step 2.** Write a recurrence equation for the function.
 - If n = 0, we do not need any stamp. Hence, opt(0) = 0.
 - Suppose $n \ge 1$. We form an optimal stamp set by picking one stamp into the set. Let us consider the possible choices for the first stamp.
 - If $n \ge C_1$, we can pick the stamp of Type $1 \Rightarrow$ Minimal number of stamps is $opt(n C_1) + 1$.
 - If $n \ge C_2$, we can pick the stamp of Type $2 \Rightarrow$ Minimal number of stamps is $opt(n C_2) + 1$.
 - ...
 - If $n \ge C_M$, we can pick the stamp of Type $M \Rightarrow$ Minimal number of stamps is $opt(n C_M) + 1$.
 - We make the choices that result in the minimal number of stamps. Hence, for $n \geq 1$,

$$opt(n) = Min \{ opt(n - C_t) + 1 \mid n \geq C_t \text{ and } 1 \leq t \leq M \}$$

Here's the full equation.

$$opt(0) = 0$$

$$opt(n) = Min \{ opt(n - C_t) + 1 \mid n \ge C_t \text{ and } 1 \le t \le M \}$$

$$(n \ge 1)$$

- Step 3. Simplify the arguments.
 - Since the argument in our function opt(n) is already very simple, we will not be simplifying it any further.
 - Given the initial postage cost of N Bahts, the possible values of the argument n is $\{0, ..., N\}$.

- **Step 4.** Code the function.
 - Method 1: Recursion with memoization.

```
memo = \{0:0\}
function opt(n)
  if n is a key in memo
    return memo[n]
  else
    min_stamp_count = Infinity
    for t from 1 to M
      if n >= C[t]
        min_stamp_count = min(min_stamp_count, memo[n-C[t]]+1)
    memo[n] = min_stamp_count
    return memo[n]
print(opt(N))
```

Method 2: Bottom-up implementation

```
opt[0...N] = Array of length n
opt[0] = 0
for n = 1 to N:
  min_stamp_count = Infinity
  for t = 1 to M
    if n >= C[t]
        min_stamp_count = min(min_stamp_count, opt[n-C[t]]+1)
    opt[n] = min_stamp_count
print(opt[N])
```

• From both implementations, we can determine the time complexity to be $\Theta(N \cdot M)$

• **Example.** Suppose the postage cost N=7 and there are M=4 stamp types with the following values:

t	Type 1	Type 2	Type 3	Type 4
C_t	1	2	4	5

• Let us construct the table *opt*.

n	opt[n]
0	0
1	opt[1-1] + 1 = 1
2	$Min\{opt[2-1]+1, opt[2-2]+1\} = Min\{2,1\} = 1$
3	$Min\{opt[3-1]+1, opt[3-2]+1\} = Min\{2,2\} = 2$
4	$Min\{opt[4-1]+1, opt[4-2]+1, opt[4-4]+1\} = Min\{3, 2, 1\} = 1$
5	$Min\{opt[5-1]+1, opt[5-2]+1, opt[5-4]+1, opt[5-5]+1\} = Min\{2,3,2,1\} = 1$
6	$Min\{opt[6-1]+1, opt[6-2]+1, opt[6-4]+1, opt[6-5]+1\} = Min\{2,2,2,2\} = 2$
7	$Min\{opt[7-1]+1, opt[7-2]+1, opt[7-4]+1, opt[7-5]+1\} = Min\{3,2,3,2\} = 2$

• You are given a sequence of n integers, $x_1, x_2, ..., x_n$, say

i	1	2	3	4	5	6	7	8	9	10
x _i	37	24	7	15	-8	29	-10	9	43	23

• and m pairs of indices (a,b) where $1 \le a \le b \le n$, say we have 1,000,000 pairs as follows:

 You are asked to write a program which, for each pair (a,b), compute the sum from a to b, precisely

$$sum(a,b) = x_a + x_{a+1} + ... + x_b.$$

For example, given the above input, the output should be

• A simple algorithm:

```
Pre-condition:
    - x[1...n] contains the given sequence of integers
    - a[1...m] and b[1...m] contains pairs of indices

for j = 1 ... m
    sum = 0
    for i = a[j] ... b[j]
        sum = sum + x[i]
    print(sum)
```

What is the time complexity of this algorithm in terms of n and m?

- If there are a large number of pairs (i.e. m is very large), there is a more efficient technique.
- First, compute the sum $s_i = x_1 + x_2 + ... + x_i$ for each $i \le n$. Define s_0 to be 0.
- For example, suppose x_i are

i	1	2	3	4	5	6	7	8	9	10
x _i	37	24	7	15	-8	29	-10	9	43	23

• Then s_i are

i											
S _i	0	37	61	68	83	75	104	94	103	146	169

• Then the sum from a to b, denoted sum(a, b) can be calculated easily by $sum(a, b) = s_b - s_{a-1}$

• A revised algorithm:

```
Pre-condition:
  - x[1...n] contains the given sequence of integers
  - a[1...m] and b[1...m] contains pairs of indices
// Compute the partial sums s<sub>i</sub>
s[0] = 0
for i = 1 \dots n
  s[i] = s[i-1] + x[i]
// Compute the sum for each pair of indices
for j = 1 \dots m
  sum = s[b[j]] - s[a[j]-1]
  print(sum)
```

What is the time complexity of this algorithm in terms of n and m?

Max 1D Range Sum

• Given a sequence of n integers, x_1 , x_2 , ..., x_n , find a pair (a,b) of indices which maximizes the partial sum, i.e.

```
sum(a,b) \ge sum(x,y) for all indices x, y where x \le y
```

• A straightforward implementation:

```
a = b = 1
max = x[a]

for i = 1 ... n
  for j = 1 ... n
   if(sum(i,j) > max)
      max = sum(i,j)
      a = i
      b = j
return (a,b)
```

What's the time complexity of this method?

Max 1D Range Sum – Kadane's Algorithm

• There is an O(n) algorithm to solve the Max 1D Range Sum problem. The algorithm described below is attributed to Jay Kadane.

```
// Kadane's Algorithm
sum = 0
max_sum = 0

for i = 1 ... n
   sum += x[i]
   max_sum = max(max_sum, sum)
   if(sum < 0) sum = 0

return max_sum</pre>
```

Try running the above algorithm on the array x =

Max 1D Range Sum – Kadane's Algorithm

• Try running Kadane's algorithm on the array x = [4, -5, 4, -3, 4, 4, -4, 4, -5]

	i	1	2	3	4	5	6	7	8	9
	x[i]	4	-5 I	4	-3	4	4	-4	4	-5 I
sum	0 —	4 —	1 0	4	1 -	→ 5 —	→ 9 —	→ 5 —	→ 9 —	4
max_sum	0	4 —	4 —	4 —	4	5	9 —	→ 9 —	→ 9 —	9

Now, instead of a sequence of integers, you are now given a n x n table of integers,

$$X_{1,1}, X_{1,2}, ..., X_{1,n},$$
 $X_{2,1}, X_{2,2}, ..., X_{2,n},$
...
 $X_{n,1}, X_{n,2}, ..., X_{n,n}$

• For example, suppose $x_{i,i}$ are given below

j i	1	2	3	4	5
1	7	-4	7	15	-8
2	3	2	-1	9	0
3	-2	2	2	1	1
4	6	4	0	1	7
5	-8	-2	-4	-8	-1

- You are then given m pairs of locations in the table, each written in the form (a, b, c, d), where (a,b) refers to a location in the table and similarly for (c, d) with the condition that $1 \le a \le c \le n$ and $1 \le b \le d \le n$.
- For each given tuple (a, b, c, d), you compute the sum from (a,b) to (c,d):

sum(a,b,c,d) =
$$\sum_{i=a}^{c} \sum_{j=b}^{d} x_{i,j}$$

For example, from the previous table,

sum
$$(2,1,4,3) = 3 + 2 + (-1) +$$

$$-2 + 2 + 2 +$$

$$6 + 4 + 0 = 16$$

A simple algorithm:

```
Pre-condition:
  - x[1...n, 1...n] contains the given n \times n table of
    integers.
  - a[1...m], b[1...m], c[1...m], d[1...m] describe m pairs of
    locations in the table.
for k = 1 \dots m
  sum = 0
  for i = a[k] \dots c[k]
    for j = b[k] \dots d[k]
      sum = sum + x[i,j]
  print(sum)
```

What is the time complexity of this algorithm in terms of n and m?

- We can use a similar technique as in the 1D range sum problem.
- First, compute the sum

$$s_{a,b} = \sum_{i=1}^{a} \sum_{j=1}^{b} x_{i,j}$$
 $1 \le a, b \le n$
 $s_{0,b} = s_{a,0} = s_{0,0} = 0$ $1 \le a, b \le n$

For example,

j i	1	2	3	4	5
1	7	-4	7	15	-8
2	3	2	-1	9	0
3	-2	2	2	1	1
4	6	4	0	1	7
5	-8	-2	-4	-8	-1

j i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	7	თ	10		
2	0	10	8	14		
3	0	8	8	16		
4	0					
5	0					

• We can compute s_{a,b} recursively:

$$s_{a,b} = s_{a-1,b} + s_{a,b-1} - s_{a-1,b-1} + x_{a,b}$$
 $1 \le a, b \le n$
 $s_{0,b} = s_{a,0} = s_{0,0} = 0$ $1 \le a, b \le n$

j i	1	2	3	4	5
1	7	-4	7	15	-8
2	3	2	-1	9	0
3	-2	2	2	1	1
4	6	4	0	1	7
5	-8	-2	-4	-8	-1

j i	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	7	3	10		
2	0	10	8	14		
3	0	8	8			
4	0					
5	0					

• Then we can compute sum(a, b, c, d) as follows

sum(a,b,c,d) =
$$s_{c,d} - s_{a-1,d} - s_{c,b-1} + s_{a-1,b-1}$$

j	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	7	3	10	25	
2	0	10	8	14	38	
3	0	8	8	16	41	
4	0					
5	0					

A revised algorithm:

```
Pre-condition:
  - x[1...n, 1...n] contains the given n x n table of integers.
  - a[1...m], b[1...m], c[1...m], d[1...m] describe m pairs of locations in the
table.
//Initialize s[0,0], s[i,0], s[0,i] to zero
s[0.0] = 0
for i = 1 \dots n
   s[0,i] = 0
   s[i.0] = 0
//Compute s[i,j]
for i = 1 ... n
  for j = 1 \dots n
    s[i,j] = s[i-1,j] + s[i,j-1] - s[i-1,j-1] + x[i,j]
//Compute the sum for each given pair of locations
for k = 1 \dots m
  sum = s[c[k],d[k]] - s[a[k]-1,d[k]] - s[c[k],b[k]-1] + s[a[k]-1,b[k]-1]
  print(sum)
```

What is the time complexity of this algorithm in terms of n and m?

Max 2D Range Sum

 Given an n x n table of integers, find a pair (a, b, c, d) of locations in the table which maximizes the partial sum, i.e.

sum(a, b, c, d)
$$\geq$$
 sum(x, y, x', y')
for all indices w, x, y, z where x \leq x' and y \leq y'

A straightforward implementation:

```
a = b = c = d = 1
max = x[a,b]

for i1 = 1 ... n
   for j1 = 1 ... n
   for i2 = i1 ... n
      for j2 = j1 ... n
      if(sum(i1,j1,i2,j2) > max)
          max = sum(i1,j1,i2,j2)
          a = i1; b = j1
          c = i2; d = j2
return (a,b,c,d)
```

Subsequences

- Given a sequence $p = [x_1, x_2, ..., x_n]$ $(n \ge 0)$, a subsequence of p is any sequence of elements in p that respects the ordering in p. Precisely, a subsequence of p is any sequence $[x_{i_1}, x_{i_2}, ..., x_{i_m}]$ where $m \ge 0$ and $1 \le i_1 < i_2 < \cdots < i_m \le n$.
- For example, suppose p = [3,1,4,6,9,6,7]. Then, the following are subsequences of p: [3,1,9,7], [4,9], [1,4,6,6,7], [6], []

But the following are not:

Increasing Sequences

- A sequence $p=[x_1,x_2,\dots,x_m]$ $(m\geq 0)$ of integers is said to be increasing if and only if $x_1\leq x_2\leq \dots \leq x_m$ or, equivalently, $i\leq j$ implies $x_i\leq x_j$ for all i,j where $1\leq i,j\leq m$.
- The sequence [1,4,6,6,7] is increasing, but [3,1,9,7] is not.

Longest Increasing Subsequence (LIS)

- **Problem.** Given a sequence p of integers, find a longest increasing subsequence of p.
- For example, suppose p = [3,1,4,6,9,6,7]. The following are some increasing subsequences of p:

- It can be shown that [3,4,6,6,7] and [1,4,6,6,7] are longest increasing subsequences of p.
- Let us apply dynamic programming to solve this problem.
- We shall begin with a simpler problem: finding the **length** of a longest increasing subsequence of the given sequence p.

DP Algorithm for LIS – First Attempt

- Step 1. Define the function opt(p), for any sequence p of integers, as follows opt(p) is the length of a longest increasing subsequence of p.
- Step 2. Write a recurrence equation describing the function opt(p).
 - Suppose p is a long sequence and $p = p' \cdot [x]$, where x is the last integer in p.

- An LIS of p is the longer of the following
 - a) an LIS of p' or
 - b) an LIS of p' that ends with an integer no larger than x, and then appended by x.
- We can let opt(p) be the greater of the lengths of the above subsequences.
- We can find the length of (a) from opt(p'). But we have no way to easily determine the length of (b) from opt(p').

- There seems to be no effective recurrence equations for the function *opt* we previously defined. We shall introduce an additional parameter to the function that allows us to define the function recursively.
- Step 1. Define the function opt(p,k), for any sequence p of integers and $1 \le k \le len(p)$, as follows

opt(p,k) is the length of a longest increasing subsequence of p that ends at index k.

- Step 2. Write a recurrence equation describing the function opt'(p,k).
 - If p is an empty sequence, then obviously opt'(p,k)=0. So let us focus on the case where p is non-empty.
 - Suppose k = 1. Then, opt(p, 1) is the length of a longest increasing subsequence of p ending at index 1. Obviously, such subsequence contains just p[1]. Hence, opt(p, 1) = 1.

- Suppose k > 1.

1	2	3	 k-1	k	
<i>p</i> [1]	<i>p</i> [2]	<i>p</i> [3]	 p[k-1]	p[k]	•••

- An LIS of p ending at index k must be of the form q + [p[k]] where q is a longest increasing subsequence of p[1 ... k-1] that ends with some integer $\leq p[k]$.
- Hence, we can write

$$opt(p,k) = 1 + Max \{ opt(p,i) \mid 1 \le i < k \text{ and } p[i] \le p[k] \}$$

If there all elements p[i] are greater than p[k] (hence, the set under the Max operator above is empty), then an LIS ending at index k contains just p[k]. Hence, in this case opt(p,k) = 1.

– The full equation is as follows. For any sequence p of integers and $1 \le k \le len(p)$,

$$\begin{split} opt(p,1) &= 1 \\ opt(p,k) &= 1 + Max \, \{ \, opt(p,i) \mid 1 \leq i < k \, \, and \, \, p[i] \leq p[k] \, \, \} \\ &\qquad \qquad \text{if } k > 1 \, \text{and there is some } i < k \, \, \text{where } p[i] \leq p[k] \\ opt(p,k) &= 1 &\qquad \qquad \text{if } k > 1 \, \, \text{and all } p[i] > p[k] \, \, \text{for all } i < k. \end{split}$$

- **Step 3.** Simplify the parameters of the recurrence equation.
 - Notice from the recurrence equation that the first parameter p remains unchanged. So, we can fix the list p (e.g. storing p in a global variable in the code) and omit it from the parameters of opt.
 - Fix a sequence p. For any integer k where $1 \le k \le len(p)$: opt(k) is the length of a longest increasing subsequence of p that ends at index k
 - The recurrence equation is then simplified to the following:

• An LIS of p will end at some index of p, which may not be at the last index. The length of an LIS of p is the maximum of opt(k) for all indices k. Precisely,

$$LIS(p) = Max \{ opt(k) \mid 1 \le k \le len(p) \}$$

DP Algorithm for LIS – Example

Find the length of an LIS of p = [9, 3, 2, 5, 7, 4, 8, 1]

k	1	2	3	4	5	6	7	8
p[k]	9	3	2 +1	5	7	4 +1	8	1
opt(k)	1	1	1	2 +1	3	2	4	1
				+1				

The length of an LIS of p is $Max\{opt(k) \mid 1 \le k \le 8\} = Max\{1,1,1,2,3,2,4,1\} = 4$.

- One problem that often pops up is determining the similarity or two strings.
- For example, consider the following pairs of strings

$$u_1 = BOAT$$
 and $v_1 = BOOT$
 $u_2 = BOAT$ and $v_2 = BATH$
 $u_3 = BOAT$ and $v_3 = BAT$
 $u_4 = BOAT$ and $v_4 = BARN$
 $u_5 = BOAT$ and $v_5 = BLOAT$

Can you order these pairs of strings from the most similar pair to the least similar pair?

- One way to rank the similarity of pairs of strings is to define and compute the edit distance of each string pair.
- One string distance measure, called the Levenshtein distance, counts the least number of the following editing operations to convert the first string into the second string:
 - Substitution: replace one character in the first string by another character
 - Deletion: delete one character from the first string
 - Insertion: insert one character into the first string
- The following are examples of shortest sequences of editing operations.

A shortest sequence of editing operations	Levenshtein's edit distance
$BO\underline{\underline{A}}T \xrightarrow{Subst} BO\underline{O}T$	1
$B \underbrace{\mathbf{O}}_{} AT \xrightarrow{Delete} BAT$	1
$BOAT \xrightarrow{Insert} B\underline{L}OAT$	1
$B \ \underline{O} AT \xrightarrow{Delete} BAT \xrightarrow{Insert} BAT \underline{H}$	2
$B \underbrace{{}^{O}}_{} AT \xrightarrow{Delete} BA \underbrace{{}^{Subst}}_{} BA \underbrace{R} \xrightarrow{Insert} BAR \underbrace{N}$	3

- One way to find the edit distance to try to "align" the two strings in order to minimize the mismatches. Such an alignment is called an optimal alignment.
- The following are examples of optimal alignments of BOAT and BARN.

$$\frac{B \quad O \quad A \quad T \quad \square}{B \quad \square \quad A \quad R \quad N} \qquad \frac{B \quad O \quad A \quad \square \quad T}{B \quad \square \quad A \quad R \quad N}$$

- Both of these alignments have 3 mismatches, the least possible.
- We can use dynamic programming to find an optimal alignment of the given pair of strings.
- We begin with the simpler problem: finding the number of mismatches in an optimal alignment. After that we shall look at how we can construct an optimal alignment.

- Step 1. Define the function. Let us define for each strings u and v (over some alphabet A): opt(u,v)= the number of mismatches in an optimal alignment of u and v.
 - For example, opt("BOAT", "BARN") = 3.
- **Step 2.** Write recurrence equation defining *opt*.
 - Let us first consider the basis case. Suppose one of the two strings is empty. For example, u is the empty string and v is a string of length m, say $v=v_1,\ldots,v_n$. Then, the optimal alignment of u and v involves inserting n characters into u. Similarly, if v is the empty string and $u=u_1,\ldots,u_m$ is a string of length m, then the optimal alignment involves m deletion.

$$\frac{\square \square \cdots \square}{v_1 \ v_2 \cdots v_n} \qquad \frac{u_1 \ u_2 \cdots u_m}{\square \square \cdots \square}$$

We can thus write the basis case of the recurrence equation.

$$opt(u, "") = |u|$$

 $opt("", v) = |v|$

Note: Here, |s| denotes the length of string s.

- Next, we consider the case in which both u and v are non-empty.
- An optimal alignment of u and v must be in one of the following form:

— Thus, the number of mismatches in an optimal alignment of u and v must be the least of the numbers of mismatches in the above 3 cases. We thus have the following equation.

$$opt(u[1 \dots m], v[1 \dots n]) = Min \begin{cases} opt(u[1 \dots m-1], v[1 \dots n-1]) & if \ u[m] = v[n] \\ opt(u[1 \dots m-1], v[1 \dots n-1]) + 1 & otherwise \\ opt(u[1 \dots m-1], v[1 \dots n]) + 1 \\ opt(u[1 \dots m-1], v[1 \dots n-1) + 1 \end{cases}$$

- Step 3. Simplify the parameters.
 - Suppose the initial arguments of the function are strings u and v, respectively. The arguments of subsequent recursive calls are prefixes of u and v.
 - Thus, instead of passing around prefix strings of u and v, we can fix the initial strings u and v (e.g. storing them in global variables) and instead pass the lengths of the prefix strings.
 - The function opt is thus revised as follows: For any non-negative integers m and n where $0 \le m \le |u|$ and $0 \le n \le |v|$,

opt(m, n) =the number of mismatches in an optimal alignment of u[1 ... m] and v[1 ... n].

- The recurrence equation defining opt is as follows.

$$opt(m, 0) = m$$
 $opt(0, n) = n$

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$
 if $m,n > 0$

• Example. Let u = SPEAK and v = PARK.

$$opt(m,0) = m \qquad opt(0,n) = n$$

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$

		u n	Р	\boldsymbol{A}	R	K
		0	1	2	3	4
u n	0	0 +1	1 +1	2	3 +1	4
S	1	1	1 +1	2 +1	3 +1	4
P	2	2				
E	3	3				
A	4	4				
K	5	5				

• Example. Let u = SPEAK and v = PARK.

$$opt(m,0) = m \qquad opt(0,n) = n$$

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$

		u n	P	Α	R	K
		0	1	2	3	4
u n	0	0 +1	1 +1	2 +1	3 +1	4
S	1	1	1 +1 +1	2 +1	3 +1	4
P	2	2	1 +1	2 +1	3 +1	4
E	3	3				
A	4	4				
K	5	5				

• Example. Let u = SPEAK and v = PARK.

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$

opt(m,0) = m opt(0,n) = n

		un	P	\boldsymbol{A}	R	K
		0	1	2	3	4
u n	0	0 +1	1 +1	2 +1	3 +1	4
S	1	1 +0	1 +1	2 +1	3 +1	4
P	2	2	1 +1	2 +1 +1	3 +1	4
E	3	3 +1	2 +1	2 +1	3 +1	4
A	4	4				
K	5	5				

• Example. Let u = SPEAK and v = PARK.

$$opt(m,0) = m \qquad opt(0,n) = n$$

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$

		u n	P	A	R	K
		0	1	2	3	4
u n	0	0 +1	1 +1	2 +1	3 +1	4
S	1	1 +0	1 +1	2 +1	3 +1	4
P	2	2	1 +1	2 +1	3 +1	4
E	3	3	2	2 +1	3 +1	4
A	4	4	3 +1	2 +1	3 +1	4
K	5	5				

• Example. Let u = SPEAK and v = PARK.

$$opt(m,n) = Min \begin{cases} opt(m-1,n-1) & if \ u[m] = v[n] \\ opt(m-1,n-1) + 1 & otherwise \\ opt(m-1,n) + 1 \\ opt(m,n-1) + 1 \end{cases}$$

opt(m,0) = m

opt(0, n) = n

• Example. Let u = SPEAK and v = PARK.

		un	Р	Α	R	K
		0	1	2	3	4
u n	0	0	1	2	3	4
S	1	1 +0	1	2	3	4
P	2	2	1 +1	2	3	4
E	3	3	2 +0	2 +1	3	4
A	4	4	3	2 +1	3 +0	4
K	5	5	4	3	3	3

- **Example.** Let u = SPEAK and v = PARK.
- We have thus found that opt(5,4) = 3, which implies that the edit distance of u and v is 3.
- By tracing how the value opt(5,4) = 3 is obtained from opt(m,n) for smaller arguments m and n, we can deduce that there are two optimal alignments of u and v:

- Dynamic programming is effective for problems that possesses two key properties:
 optimal substructure and overlapping subproblem.
- Optimal substructure: A problem P can be decomposed into smaller subproblems P_1, \dots, P_k such that a solution of P is composed of solutions of P_1, \dots, P_k .
- In the sequence alignment problem, recall that an optimal alignment of 2 strings is one with the least number of mismatches. Suppose the following alignment A is an optimal alignment of strings u and v.

• Then, alignment B must be an optimal alignment for the subproblem u[1 ... m-1] and v[1 ... n-1]. Why? Because if B were <u>not</u> optimal, it would mean there is another alignment, say B', with fewer mismatches. By replacing alignment B with B', we would obtain an alignment of u and v with fewer mismatches than A, contradicting the assumption that A is optimal.

• In the coin-change problem, we would like to find a **minimal set of stamps** for the given postage cost N. Suppose N > 0 and S is a **minimal** set of stamps with the value of N. Since N > 0, S must contain at least one stamp. Suppose $S = S' \cup \{x\}$, where x is a stamp. Suppose the value of stamp x is C(x) and the value of S' is N - C(x).

• S' must be a minimal set of stamps with the value of N - C(x). Why? Because if S' were not smallest, hence, there were a smaller set of stamps, say S'', with the value N - C(x). Then, $S'' \cup \{x\}$ would be smaller than S but also have the value N. This contradicts the assumption that S is a minimal set of stamps with the value N.

- The shortest-path problem also has the optimal substructure property.
- From the graph below, a shortest path from A to F is $P = A \rightarrow B \rightarrow C \rightarrow F$. The path length is 3.
- If we look at the subpath $A \to B \to C$, this subpath must be a shortest path from A to C. Why? Because if there were a shorter path from A to C, we could replace the subpath $A \to B \to C$ in P by that shorter path. The new path would be shorter than P, contradicting the assumption that P is a shortest path from A to F.

- On the other hand, the **longest-path problem**, which involves finding a **longest simple path** (i.e. a longest path that does <u>not</u> visit any node more than once) fails the optimal substructure property.
- From the graph below, a longest simple path from A to F is $Q = A \rightarrow B \rightarrow C \rightarrow E \rightarrow F$. The path length is 4.
- If this problem were to satisfy the optimal structure property, the subpath $A \to B \to C \to E$ must have been a longest simple path from A to E. But it is not! Path $A \to B \to C \to F \to E$ is actually a longer simple path from A to E. Unfortunately, this latter path cannot be extended to become a longer simple path from A to F (because adding F to this path will result in a non-simple path).

- Overlapping subproblems: After breaking a problem P into subproblems $P_1, ..., P_k$, some of these subproblems are the same or overlap, i.e. having a common sub-subproblem.
- As we previously studied, the use of memoization or bottom-up computation when implementing DP can significantly speed up the computation over the naïve (top-down) recursive implementation.
- But for a problem which does not have this overlapping subproblem property, DP is no better than the naïve recursive implementation.
- For example, the problems of **sorting** an array of distinct integers or **searching** for an element in an array of distinct elements can be reduced to smaller subproblems (i.e. sorting or searching smaller arrays) but the subproblems are different and do not overlap.