Quantum Computing Cheat Sheet

1 States

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{bmatrix} \alpha\\\beta \end{bmatrix}, \quad |\alpha|^2 + |\beta|^2 = 1$$
$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix} \quad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix}$$
$$|\Phi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|00\rangle \pm |11\rangle) \quad |\Psi^{\pm}\rangle = \frac{1}{\sqrt{2}} (|01\rangle \pm |10\rangle)$$

2 Unitary Operators

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle & |+\rangle \mapsto |+\rangle \\ |1 \rangle \mapsto |1 \rangle & |-\rangle \mapsto |-\rangle \qquad - \\ X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |1 \rangle & |+\rangle \mapsto |+\rangle \\ |1 \rangle \mapsto |0 \rangle & |-\rangle \mapsto -|-\rangle \qquad - \\ X = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto i|1 \rangle & |+\rangle \mapsto -i|-\rangle \\ |1 \rangle \mapsto -i|0 \rangle & |-\rangle \mapsto i|+\rangle \qquad - \\ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle & |+\rangle \mapsto |-\rangle \\ |1 \rangle \mapsto -|1 \rangle & |-\rangle \mapsto |+\rangle \qquad - \\ Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle & |+\rangle \mapsto |+\rangle \\ |1 \rangle \mapsto -|1 \rangle & |-\rangle \mapsto |1 \rangle \qquad - \\ I = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle \\ |1 \rangle \mapsto e^{i\theta} |1 \rangle \qquad - \\ I = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle \\ |1 \rangle \mapsto e^{i\pi/4} |1 \rangle \qquad - \\ I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \qquad \begin{vmatrix} 0 \rangle \mapsto |0 \rangle \\ |1 \rangle \mapsto e^{i\pi/4} |1 \rangle \qquad - \\ I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0$$

 $|11\rangle \mapsto |10\rangle \qquad |--\rangle \mapsto |+-\rangle$

$$CNOT_{1,0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{ll} |01\rangle \mapsto |11\rangle & |+-\rangle \mapsto |+-\rangle \\ |10\rangle \mapsto |10\rangle & |-+\rangle \mapsto |--\rangle \\ |11\rangle \mapsto |01\rangle & |--\rangle \mapsto |-+\rangle \end{array}$$

 $|00\rangle \mapsto |00\rangle \qquad |++\rangle \mapsto |++\rangle$

$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{ll} |00\rangle \mapsto |00\rangle & |++\rangle \mapsto |++\rangle \\ |01\rangle \mapsto |10\rangle & |+-\rangle \mapsto |-+\rangle \\ |10\rangle \mapsto |01\rangle & |-+\rangle \mapsto |+-\rangle \\ |11\rangle \mapsto |11\rangle & |--\rangle \mapsto |--\rangle \end{array}$$

$$CSWAP = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{l} |000\rangle \mapsto |000\rangle \\ |001\rangle \mapsto |001\rangle \\ |010\rangle \mapsto |010\rangle \\ |011\rangle \mapsto |011\rangle \\ |100\rangle \mapsto |100\rangle \\ |101\rangle \mapsto |110\rangle \\ |110\rangle \mapsto |110\rangle \\ |111\rangle \mapsto |111\rangle \\ |111\rangle \mapsto |111\rangle \end{array}$$

$$TOFFOLI = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c} |000\rangle \mapsto |000\rangle \\ |001\rangle \mapsto |001\rangle \\ |010\rangle \mapsto |010\rangle \\ |011\rangle \mapsto |011\rangle \\ |100\rangle \mapsto |100\rangle \\ |101\rangle \mapsto |101\rangle \\ |110\rangle \mapsto |111\rangle \\ |111\rangle \mapsto |111\rangle \\ |111\rangle \mapsto |110\rangle \end{array}$$

3 Operator identities

$$X^2 = Y^2 = Z^2 = H^2 = I$$

$$T^2 = S \qquad S^2 = Z$$

$$XY = iZ$$
 $YX = -iZ$ $ZX = iY$ $XZ = -iY$ $YZ = iX$ $ZY = -iX$

$$HX = ZH$$
 $SX = XZS$
 $HZ = XH$ $SZ = ZS$

$$HXH = Z$$
 $SXS^{\dagger} = Y$
 $HYH = -Y$ $SYS^{\dagger} = -X$
 $HZH = X$ $SZS^{\dagger} = Z$

$$(H \otimes H) \operatorname{CNOT}_{0,1}(H \otimes H) = \operatorname{CNOT}_{1,0}$$

$$= \begin{array}{c} X \\ \hline X \\ \hline \end{array}$$

$$(X \otimes I)$$
CNOT_{0,1} = CNOT_{0,1} $(X \otimes X)$

$$\begin{array}{cccc} & & & & \\ \hline & & & & \\ \hline -X & & & & \\ \hline \end{array} \hspace{1cm} = \hspace{1cm} \begin{array}{cccc} & & & \\ \hline & & & \\ \hline \end{array} \hspace{1cm} X \hspace{1cm} \begin{array}{ccccc} & & & \\ \hline \end{array}$$

$$(I \otimes X)$$
CNOT_{0,1} = CNOT_{0,1} $(I \otimes X)$

$$(Z \otimes I)$$
CNOT_{0,1} = CNOT_{0,1} $(Z \otimes I)$

$$= \overline{Z}$$

$$(I \otimes Z)$$
CNOT_{0,1} = CNOT_{0,1} $(Z \otimes Z)$

$$\mathrm{SWAP} = \mathrm{CNOT}_{0,1} \mathrm{CNOT}_{1,0} \mathrm{CNOT}_{0,1}$$