

Exercise sheet 11

Discussion: Thursday, 11.02.2016.

Exercise 11.1 Let P be a polytope with (symmtric) facet data $\{(\mathbf{u}_i, \phi_i), (-\mathbf{u}_i, \phi_i) : 1 \le i \le m\}$. Show that P is centrally symmetric (w.r.t. some point).

Exercise 11.2 Let $K, L \in \mathcal{K}^n$. The set

$$K \sim L = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} + L \subseteq K \}$$

is called Minkwoski difference of K and L. Show that

$$K \sim L = \{ \boldsymbol{x} \in \mathbb{R}^n : \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le h(K, \boldsymbol{u}) - h(L, \boldsymbol{u}) \text{ for all } \boldsymbol{u} \in S^{n-1} \}.$$

Is (in general) $h(K, \mathbf{u}) - h(L, \mathbf{u})$ the support function of $K \sim L$?

Exercise 11.3 For $K, B \in \mathcal{K}^n$, let $r(K, B) = \max\{r > 0 : K \sim r B \neq \emptyset\}$ be the inradius of K w.r.t. B and we set

$$K_{\rho} := \begin{cases} K + \rho B, & \rho \ge 0, \\ K \sim (-\rho)B, & -r(K, B) \le \rho \le 0. \end{cases}$$

Show that $(1 - \lambda)K_{\rho} + \lambda K_{\sigma} \subseteq K_{(1-\lambda)\rho + \lambda\sigma}$.

Exercise 11.4 Let $K, L \in \mathcal{K}^n$, $\mathbf{0} \in K \cap L$, $p \geq 1$, and let

$$f(u) := [h(K, u)^p + h(L, u)^p]^{1/p}$$
.

Show that $h(K_f, \mathbf{u}) = f(\mathbf{u})$ for all $\mathbf{u} \in S^{n-1}$ where K_f is the Wulff-shape w.r.t. f.

Exercise sheet 10

Discussion: Thursday, 04.02.2016.

Exercise 10.1 Let $K \in \mathcal{K}_o^n$, t > 0. Show that

$$N(K, t B_n) \le N(K, 4t B_n) N(B_n, (t/16)K^*),$$

 $N(B_n, t K) \le N(B_n, 4t K) N(K^*, (t/16)B_n).$

Hence, e.g., if $B_n \subseteq 4K$ then $N(B_n, K) \le N(K^*, \frac{1}{16}B_n)$.

There is a theorem by Artstein-Milman-Szarek saying that there exists absolut constants $\alpha, \beta > 0$ such that for all $K \in \mathcal{K}_o^n$

$$N(B_n, \alpha^{-1}K^*)^{\frac{1}{\beta}} \le N(K, B_n) \le N(B_n, \alpha K^*)^{\beta}.$$

Exercise 10.2 Let $K \in \mathcal{K}_o^n$, $r = (\operatorname{vol}(K)/\operatorname{vol}(B_n))^{1/n}$ and let $\operatorname{N}(K, rB_n) \leq e^{cn}$ for an absolute constant c. Then K is in M-position with constant c.

Exercise 10.3 Let $K \in \mathcal{K}^n$ be centered, i.e., the centroid is at the origin and let K - K be in M-position with constant C. Then $K \cap (-K)$ is in M-position with constant c(C) depending only on C.

Exercise 10.4 There exists an universal constant $c_1 > 0$ such that for $K \in \mathcal{K}^n$ with $\mathbf{0} \in K$ we have

$$\operatorname{vol}(K)\operatorname{vol}(K^{\star}) \ge c_1^n \operatorname{vol}(B_n)^2.$$

Exercise sheet 9

Discussion: Thursday, 21.01.2015.

Exercise 9.1 Let $v_1, \ldots, v_n \in \mathbb{R}^n$ and $|\cdot|$ be a norm. Show that

$$2^{-n}\sum_{oldsymbol{\epsilon}\in\{-1,1\}^n}\left|\sum_{i=1}^n\epsilon_ioldsymbol{v}_i
ight|\geq \max\{|oldsymbol{v}_1|,\ldots,|oldsymbol{v}_n|\}.$$

Exercise 9.2 Let $K, L \in \mathcal{K}^n$. For $\mathbf{v} \in \text{int}((K-L)/2)$ show hat

$$\psi(\mathbf{v}) = \operatorname{vol}\left((-\mathbf{v} + K) \cap (\mathbf{v} + L)\right)$$

is log-concave.

Exercise 9.3 Let $K \in \mathcal{K}_o^n$ and $\mathbf{t} \in \mathbb{R}^n$. Show that

$$\gamma_n(\boldsymbol{t} + K) \ge e^{-\|\boldsymbol{t}\|^2/2} \gamma_n(K).$$

Exercise 9.4 (Concentration of volume in convex bodies) Let $K \in \mathcal{K}^n$, vol(K) = 1, and $L \in \mathcal{K}^n_o$ such that vol $(K \cap L) = r > 1/2$. Then for $t \geq 1$

$$\operatorname{vol}\left(K\cap(t\,L)^c\right)\leq r\left(\frac{1-r}{r}\right)^{(t+1)/2},$$

where $A^c = \mathbb{R}^n \setminus A$ for a set $A \subset \mathbb{R}^n$.

First show that

$$\frac{2}{t+1}(t\,L)^c + \frac{t-1}{t+1}L \subseteq L^c.$$

and then ask Brunn or Minkowski or both.

Exercise sheet 8

Discussion: Thursday, 14.01.2015.

Exercise 8.1 Let $v \in S^{n-1}$, $t \in [0,1]$ and let $U = \{u \in S^{n-1} : |\langle v, u \rangle| \le t\}$. Then $\mu(U) \ge 1 - 4e^{-nt^2/4}$ and, in particular, for $t \ge 4/\sqrt{n}$ it holds

$$\mu(U) \ge 0.9.$$

Exercise 8.2 There exists always a δ -net on S^{n-1} consisting of at most $(4/\delta)^n$ points.

Exercise 8.3 For $K \in \mathcal{K}_o^n$ let $M(K) = \int_{S^{n-1}} |\boldsymbol{u}|_K d\mu(\boldsymbol{v})$.

i) Show that

$$M(K) M(K^{\star}) \ge 1.$$

ii) Show that $M(B_n^p) \ge (\sqrt{2/\pi}) n^{1/p-1/2}$ for $1 \le p < \infty$.

Rem.: For ii) Hölder and the next inequality might/could help.

Exercise 8.4 Let $\kappa_n = \text{vol}(B_n) = \pi^{n/2}/\Gamma(n/2+1)$. Show that

$$\sqrt{\frac{2\pi}{n}} \ge \frac{\kappa_n}{\kappa_{n-1}} \ge \sqrt{\frac{2\pi}{n+1}}.$$

Show first that $\gamma_n = \frac{\kappa_n}{\kappa_{n-1}}$ is a decresing function in n and consider $\gamma_n \gamma_{n-1}$.

Convex Geometry II

WS 2015/16

Exercise sheet 7

Discussion: Thursday, 07.01.2016.

Exercise 7.1 Show that K^n equipped with $\log d_{BM}(\cdot, \cdot)$ is a compact metric space, and that for $K, L \in \mathcal{K}_o^n$

$$d_{\mathrm{BM}}(K,L) = d_{\mathrm{BM}}(K^{\star}, L^{\star}).$$

Exercise 7.2 Let $B_n^p = \{ x \in \mathbb{R}^n : \sum_{i=1}^n |x_i|^p \le 1 \}$ with $B_m^{\infty} = [-1, 1]^n$. Show that for $1 \le p \le q \le 2$ or $2 \le p \le q \le \infty$

$$d_{BM}(B_n^p, B_n^q) = n^{1/p - 1/q}.$$

The Minkowski-sum of finitely many line segments is called a *zonotope* Z, i.e.,

$$Z = \sum_{i=1}^{m} \operatorname{conv} \{ \boldsymbol{v}_i, \boldsymbol{w}_i \}.$$

Exercise 7.3 Let Z be a zonotope. Then there exists a $c \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^n$, $1 \le i \le m$, such that

$$Z = c + \sum_{i=1}^{m} \operatorname{conv} \{-\boldsymbol{u}_i, \boldsymbol{u}_i\}.$$

For Z as above show that

$$\operatorname{vol}(Z) = 2^n \sum_{J \subseteq [m], |J| = n} |\det(\boldsymbol{u}_j : j \in J)|.$$

Exercise 7.4

- i) Show that the projection body (see Exercise sheet 4) of a polytope is a zonotope.
- ii) What is the projection body of the cube $[-1/2, 1/2]^n$?
- iii) What is the projection body of an ellipsoid?

WS 2015/16

Exercise sheet 6

Discussion: Thursday, 17.12.2015.

Exercise 6.1 Let K, L be 2-dimensional o-symmetric convex bodies. Show that the inequality $\operatorname{vol}(K) \leq \operatorname{vol}(L)$ is a consequence of either of the next two properties

- i) $\operatorname{vol}_1(K \cap \operatorname{lin} \{ \boldsymbol{u} \}) \leq \operatorname{vol}_1(L \cap \operatorname{lin} \{ \boldsymbol{u} \}) \text{ for all } \boldsymbol{u} \in S^1,$
- ii) $\operatorname{vol}_1(K|\operatorname{lin}\{\boldsymbol{u}\}^{\perp}) \leq \operatorname{vol}_1(L|\operatorname{lin}\{\boldsymbol{u}\}^{\perp})$ for all $\boldsymbol{u} \in S^1$.

Is symmetry needed?

Exercise 6.2 Let $K \in \mathcal{K}_c^n$ and let $c_1, c_2 \in \mathbb{R}_{>0}$ such that for all $\mathbf{u} \in S^{n-1}$

$$c_1 \leq \int_K \langle \boldsymbol{x}, \boldsymbol{u} \rangle^2 d\boldsymbol{x} \leq c_2.$$

Show that $\sqrt{c_1} \leq L_K \leq \sqrt{c_2}$.

Exercise 6.3 Let $K \subset \mathbb{R}^n$, $L \subset \mathbb{R}^m$ be two convex bodies in isotropic position, and let

$$M = \left(\frac{\mathbf{L}_L}{\mathbf{L}_K}\right)^{\frac{m}{n+m}} K \times \left(\frac{\mathbf{L}_K}{\mathbf{L}_L}\right)^{\frac{n}{n+m}} L \subset \mathbb{R}^{n+m}.$$

Show that M is in isotropic position and $L_{K\times L} = L_K^{\frac{n}{n+m}} L_L^{\frac{m}{n+m}}$.

Exercise 6.4 Let $\mathbf{a} \in \mathbb{Z}^n$, $\mathbf{a} \neq \mathbf{0}$, $\gcd(\mathbf{a}) = 1$ and let $S(\mathbf{a}) = \{\langle \mathbf{a}, \mathbf{z} \rangle : \mathbf{z} \in \mathbb{N}_{\geq 0}^n\}$. For $\mathbf{x} \in \mathbb{R}^n$ let $|\mathbf{x}|_0 = \#\{x_i \neq 0 : 1 \leq i \leq n\}$.

- i) Let $\|\boldsymbol{a}\| < 2^{n-1}$ and $\alpha \in S(\boldsymbol{a})$. Then there exists a $\boldsymbol{z} \in \mathbb{N}^n_{\geq 0}$ with $\langle \boldsymbol{a}, \boldsymbol{z} \rangle = \alpha$ and $|\boldsymbol{z}|_0 < n$.
- ii) Let $\alpha \in S(\boldsymbol{a})$. Then there exists a $\boldsymbol{z} \in \mathbb{N}^n_{\geq 0}$ with $\langle \boldsymbol{a}, \boldsymbol{z} \rangle = \alpha$ and $|\boldsymbol{z}|_0 \leq c \log_2 |\boldsymbol{a}|_{\infty}$, where c is an absolute constant and $|\boldsymbol{a}|_{\infty}$ is the maximum norm.

Exercise 4.4 could be helpful.

Exercise sheet 5

Discussion: Thursday, 03.12.2015.

For $K, L \in \mathcal{K}^n$ let

$$N(K, L) = \min\{|S| : S \subset \mathbb{R}^n \text{ with } K \subseteq S + L\}$$

$$\overline{N}(K,L) = \min\{|S| : S \subset K \text{ with } K \subseteq S + L\}$$

N(K, L) is called the *covering number* of K by L.

For $K, L \in \mathcal{K}^n$, L = -L let

$$M(K, L) = \max\{|S| : S \subset K \text{ with } |x_i - x_j|_L > 1 \text{ for all } x_i \neq x_j \in S\}.$$

M(K, L) is called the *separation number* of K by L.

Exercise 5.1 Show that

- i) for $K, L, M \in \mathcal{K}^n$, $K \subseteq L$: $N(K, M) \leq N(L, M)$, $N(M, L) \leq N(M, K)$, and $\overline{N}(M, L) \leq \overline{N}(M, K)$
- ii) for $K, L \in \mathcal{K}^n$: $\overline{N}(K, L L) \le N(K, L) \le \overline{N}(K, L)$.
- iii) for $K \in \mathcal{K}^n$, $\lambda > 0$: $N(K, \lambda B_n) = \overline{N}(K, \lambda B_n)$.
- iv) for $K, L, M \in \mathcal{K}^n$: $N(K, L) \leq N(K, M) N(M, L)$.

Exercise 5.2 Let $\mathcal{E}_1, \mathcal{E}_2 \in \mathcal{K}^n$ ellipsoids centered at the origin. Show that

$$N(\mathcal{E}_1, \mathcal{E}_2) = N(\mathcal{E}_2^*, \mathcal{E}_1^*).$$

Exercise 5.3 Let $K, L \in \mathcal{K}^n$. Show that

$$\overline{\mathbf{N}}(K, (K - K) \cap L) = \overline{\mathbf{N}}(K, L).$$

Exercise 5.4 Show that

$$M(K, 2L) \le N(K, L) \le \overline{N}(K, L) \le M(K, L)$$

Exercise 5.5 Let $K, L \in \mathcal{K}^n$, dim K, dim L = n. Show that $\operatorname{vol}(K)/\operatorname{vol}(L) \leq \operatorname{N}(K, L)$.

If L = -L then

$$N(K, L) \le 2^n \text{vol}(K + L/2)/\text{vol}(L).$$

Exercise 5.6 Let $K \in \mathcal{K}^n_c$ be in isotropic position. Then

$$c_1 L_K \le \operatorname{r}(K) \le \operatorname{R}(K) \le c_2 n L_K,$$

where $c_1, c_2 > 0$ are absolute constants.

Exercise sheet 4

Discussion: Thursday, 26.11.2015.

Exercise 4.1 Show that among all n-simplices of inradius 1 the regular simplex has minimal volume.

The inradius is the maximal radius of an n-dimensional ball contained in a body.

Exercise 4.2 Show that

$$\prod_{i=1}^{n} x_i^{x_i}$$

attains its minimum on the set $\{x \in \mathbb{R}^n_{\geq 0} : \sum_{i=1}^n x_i = \alpha\}, \ \alpha > 0$, if $x_1 = x_2 = \cdots = x_n$.

Exercise 4.3 Let $K \in \mathcal{K}^n$. The set

$$\Pi(K) = \left\{ x \in \mathbb{R}^n : |\langle \boldsymbol{u}, \boldsymbol{x} \rangle| \le \operatorname{vol}_{n-1}(K|\boldsymbol{u}^{\perp}), \text{ for all } \boldsymbol{u} \in S^{n-1} \right\}$$

is called the projection body of K. Show that

- i) $h(\Pi(K), \boldsymbol{u}) = \operatorname{vol}_{n-1}(K|\boldsymbol{u}^{\perp}).$
- ii) $\Pi(A|K) = |\det A| A^{-\intercal}\Pi(K)$ for $A \in GL(n,\mathbb{R})$, and $\Pi(t+K) = \Pi(K)$ for $t \in \mathbb{R}^n$.

Exercise 4.4 (Bombieri&Vaaler) Let $\mathbf{a} \in \mathbb{Z}^n$, $\mathbf{a} \neq \mathbf{0}$, $\gcd(\mathbf{a}) = 1$. Show that there exists $a \mathbf{z} \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ with $\langle \mathbf{a}, \mathbf{z} \rangle = 0$ and $\max_{1 \leq j \leq n} |z_j| \leq \|\mathbf{a}\|^{1/(n-1)}$.

What could help is i) Minkowski's theorem, saying that every o-symmetric convex body with volume not less than $2^n \det \Lambda$ contains a non-trivial lattice point of a lattice Λ , and ii) the set $\{z \in \mathbb{Z}^n : \langle a, z \rangle = 0\}$ is an (n-1)-dimensional lattice of determinant $\|a\|$.

Exercise 4.5 (McMullen) Let L be a k-dimensional linear subspace with orthogonal complement L^{\perp} . Show that

$$\operatorname{vol}_k(C_n|L) = \operatorname{vol}_{n-k}(C_n|L^{\perp}).$$

For a zonotope $Z = \sum_{i=1}^m \operatorname{conv} \left\{ \boldsymbol{0}, \boldsymbol{v}_i \right\}$ the volume is given by

$$\operatorname{vol}(Z) = \sum_{J \subseteq [m], |J| = n} |\det(\boldsymbol{v}_j : j \in J)|.$$

WS 2015/16

Exercise sheet 3

Discussion: Thursday, 12.11.2015!!

A function $f: M \subseteq \mathbb{R}^n \to \mathbb{R}_{>0}$ is called *log-concave* if $\ln f$ is a concave function. It is called *centered* if $\int_M \mathbf{x} f(\mathbf{x}) d\mathbf{x} = \mathbf{0}$.

Exercise 3.1 Let $K \in \mathcal{K}^n$ be a centered convex bdoy, i.e., $\int_K \boldsymbol{x} \, \mathrm{d}\boldsymbol{x} = \boldsymbol{0}$, and let $L \subseteq \mathbb{R}^n$ be a k-dimensional linear subspace with orthogonal subspace L^{\perp} . For $\boldsymbol{y} \in \mathrm{relint}(K|L)$ let $f(\boldsymbol{y}) = \mathrm{vol}_{n-k}(K \cap (\boldsymbol{y} + L^{\perp}))$. Show that f is a centered log-concave function.

Exercise 3.2 Let $F, G : \mathbb{R}^n \to \mathbb{R}_{>0}$ be integrable log-concave functions. Then, their convolution

$$(F \star G)(\boldsymbol{x}) = \int_{\mathbb{R}^n} F(\boldsymbol{x} - \boldsymbol{y}) G(\boldsymbol{y}) d\boldsymbol{y}$$

is also a log-concave function.

The Prékopa-Leindler inequality might help.

Exercise 3.3 Let $K, L \in \mathcal{K}^n$ with $\mathbf{0} \in \text{int } K, \text{int } L, \text{ and let } \lambda \in (0,1)$. Show that

i)
$$\operatorname{vol}(K^{\star}) = \frac{1}{n!} \int_{\mathbb{R}^n} e^{-h(K, \boldsymbol{x})} d\boldsymbol{x}.$$

ii) $\ln \operatorname{vol} \left[\lambda K + (1 - \lambda) L \right]^* \le \lambda \ln \operatorname{vol} K^* + (1 - \lambda) \ln \operatorname{vol} L^*.$

Here the Hölder inequality might help

Exercise 3.4 Let $Q \subset \mathbb{R}^{n-1} \times \{0\}$ be a polytope, $\mathbf{y} \in \mathbb{R}^n$, $y_n \neq 0$, and $P = \text{conv}\{Q, \mathbf{y}\}$ be the pyramid over Q with apex \mathbf{y} . Let c(P) be the centroid of P, and let $\mathbf{q} \in Q$ be the intersection of Q with the ray $\mathbf{y} + \lambda(c(P) - \mathbf{y})$, $\lambda \geq 0$. Then

$$|y - c(P)| = n|c(P) - q| = \frac{n}{n+1}|y - q|.$$

Exercise 3.5

- i) Let $P \in \mathcal{K}^n$ be an n-dimensional polytope, and let $Q_i \subset P$, $i \in I$, be polytopes forming a subdivision of P, i.e., $\bigcup_{i \in I} Q_i = P$ and $\dim(Q_i \cap Q_j) \leq n-1$, $i \neq j$. Find a relation between the centroids $c(Q_i)$ and c(P).
- ii) Let $S = \text{conv}\{\boldsymbol{v}_0,\ldots,\boldsymbol{v}_n\}$ be a n-dimensional simplex. Show that $c(P) = \frac{1}{n+1} \sum_{i=0}^n \boldsymbol{v}_i$.

Exercise 3.6 Let $K \in \mathcal{K}^n$ mit $c(K) = \mathbf{0}$.

i) For $\mathbf{u} \in \mathbb{R}^n$ let $w(K, \mathbf{u}) = h(K, \mathbf{u}) + h(K, -\mathbf{u})$. Show that

$$\frac{1}{n+1}w(K, \boldsymbol{u}) \leq h(K, \boldsymbol{u}) \leq \frac{n}{n+1}w(K, \boldsymbol{u}).$$

ii) Show that $-K \subset n K$.

WS 2015/16

Exercise sheet 2

Discussion: Thursday, 29.10.2015.

Exercise 2.1 Let $H(\boldsymbol{a},0)$ be a **0** containing hyperplane and let $K \in \mathcal{K}^n$ be symmetric with respect to $H(\boldsymbol{a},0)$. Let $\boldsymbol{v} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\} \in H(\boldsymbol{a},0)$. Show that $\operatorname{st}_{H(\boldsymbol{v},0)}(K)$ is still symmetric to $H(\boldsymbol{a},0)$.

Exercise 2.2 Similar to the first part of the proof of the Rogers-Shephard inequality show that for $K, L \in \mathcal{K}^n$ holds

$$\int_{\mathbb{R}^n} \operatorname{vol}(K \cap (\boldsymbol{x} - L)) \, d\boldsymbol{x} = \operatorname{vol}(K) \operatorname{vol}(L),$$

and conclude that that there exists a $x \in 2K$ such that

$$vol(K \cap (\boldsymbol{x} - K)) \ge 2^{-n}vol(K).$$

Hence every convex body K of vol $(K) = 2^n$ contains a centrally symmetric subset of volume at least 1.

Exercise 2.3 Let $K \in \mathcal{K}^n$ containing $\mathbf{0}$ in the interior and let $h(K, \cdot)$ be its support function. The function $\rho(K, \cdot) : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}_{\geq 0}$ given by

$$\rho(K, \mathbf{u}) = \max\{\rho > 0 : \rho \mathbf{u} \in K\}$$

is called radial function of K. Show that

$$h(K, \boldsymbol{u})\rho(K^{\star}, \boldsymbol{u}) = 1.$$

Exercise 2.4 Let $K \in \mathcal{K}^n$, K = -K, dim K = n, and let $L \subset \mathbb{R}^n$ be a k-dimensional linear subspace with orthogonal complement L^{\perp} . Show that

$$\binom{n}{k}^{-1} \le \frac{\operatorname{vol}(K)}{\operatorname{vol}_k(K \cap L) \cdot \operatorname{vol}_{n-k}(K|L^{\perp})} \le 1.$$

For the lower bound it might be useful to observe that for $\boldsymbol{x} \in (K|L^{\perp})$ a suitable translation of $(1 - \rho(K|L^{\perp}, \boldsymbol{x})^{-1})(K \cap L) + \boldsymbol{x}$ is contained in $K \cap (\boldsymbol{x} + L)$.

Exercise 2.5 Cauchy's surface are formula states that for $K \in \mathcal{K}^n$

$$F(K) = \frac{1}{\operatorname{vol}_{n-1}(B_{n-1})} \int_{S^{n-1}} \operatorname{vol}_{n-1}(K|\boldsymbol{u}^{\perp}) \, d\boldsymbol{u},$$

 $K|u^{\perp}$ denotes he orthogonal projection of K onto the hyperplane with normal u. Use it in order to show

$$F\left(\frac{1}{2}(K-K)\right) \ge F(K).$$

Exercise sheet 1

Discussion: Thursday, 22.05.2015.

Exercise 1.1 Let $K, K_i \in \mathcal{K}^n$, $i \in \mathbb{N}$, with $\mathbf{0} \in \text{int } K$. Show that $K_i \to K$ if and only if for all $\epsilon > 0$ there exists an $i_{\epsilon} \in \mathbb{N}$ such that for all $i \geq i_{\epsilon}$

$$(1 - \epsilon) K_i \subseteq K \subseteq (1 + \epsilon) K_i$$
.

Exercise 1.2 Let $K \in \mathcal{K}^n$. Show that the Steiner-symmetral $\operatorname{st}_H(K)$ of K with respect to a hyperplane H is a compact set.

Exercise 1.3 Show that the minimal width of a convex boy may descrease or increase under Steiner-symemmetrizations.

Exercise 1.4 Let $K \in \mathcal{K}^n$. Show that (without using Exercise 1.5)

$$\operatorname{vol}(K) \le \left(\frac{\operatorname{D}(K)}{2}\right)^n \operatorname{vol}(B_n).$$

Exercise 1.5 Let $K \in \mathcal{K}^n$. The functional

$$w(K) = \frac{1}{n \operatorname{vol}(B_n)} \int_{S^{n-1}} \left[h(K, \boldsymbol{u}) + h(K, -\boldsymbol{u}) \right] d\boldsymbol{u}$$

is called the mean width of K. Here the integration " $d\mathbf{u}$ " is meant with respect to the (n-1)-dimensional Hausdorff-measure. Let H be a hyperplane. Show that

$$w(\operatorname{st}_H(K)) \le w(K),$$

and conclude "Urysohn's inequality"

$$\operatorname{vol}(K) \le \left(\frac{\operatorname{w}(K)}{2}\right)^n \operatorname{vol}(B_n).$$

Rem: The mean width is a continuous functional on \mathcal{K}^n .

one more on the next page...

Exercise 1.6 Let T be an n-dimensional simplex, i.e., $T = \text{conv}\{v_0, \ldots, v_n\}$, $v_i \in \mathbb{R}^n$, and dim T = n.

- i) Let $H_{i,j}$, $i \neq j$, be the hyperplane through $\frac{1}{2}(\mathbf{v}_i + \mathbf{v}_j)$ and with normal vector $\mathbf{v}_i \mathbf{v}_j$ (orthogonal to the edge conv $\{\mathbf{v}_i, \mathbf{v}_j\}$). Show that $\operatorname{st}_{H_{i,j}}(T)$ is again an n-dimensional simplex.
- ii) Show that among all n-dimensional simplices T the ratio R(T)/r(T) becomes minimal for a regular simplex. Here it might be helpful to use the fact the surface area of the Steiner symmetral $\operatorname{st}_H(K)$ is strictly decreasing if K is not symmetric to the hypeprlane H.