

Xết tập hợp
$$R^n=R\times R\times \cdots \times R$$
 n lần
$$=\{X=(x_1,x_2,\ldots,x_n)\,|\,x_1,x_2,\ldots,x_n\in R\}$$
 vector
$$R^1=R$$

$$R^2=R\times R=\{X=(a,b)\,|\,a,b\in R\}$$

$$R^3=R\times R\times R=\{X=(a,b,c)\,|\,a,b,c\in R\}$$


```
Xét :  \begin{array}{c} \checkmark \text{ Tập hợp } \textit{\textbf{V}} \neq \emptyset; \\ u, v \in \textit{\textbf{V}}: \text{các vector} \\ \checkmark \text{ Trường số } \textit{\textbf{K}}, \, \lambda \in \textit{\textbf{K}} \end{array}
```

Phép cộng hai vector: " + " :
$$V imes V \longrightarrow V$$
 $(u,v) \longmapsto u+v.$

I.1 Định nghĩa không gian vector

 \simeq Cấu trúc đại số $(V,+,\bullet)$

gọi là không gian vector (KGVT) trên trường K nếu thỏa mãn 8 tiên đề sau:

(1)
$$u + v = v + u$$
, $\forall u, v \in V$.

(2)
$$(u+v)+w=u+(v+w), \forall u, v, w \in V$$
.

(3)
$$\exists \theta \in V : u + \theta = u, \forall u \in V$$
.

$$(4) \forall u \in V, \exists -u \in V: u + (-u) = \theta.$$

(5)
$$\lambda(u+v) = \lambda u + \lambda v, \ \forall u, v \in V, \ \forall \lambda \in \mathbb{K}.$$

(6)
$$(\lambda + \mu)u = \lambda u + \mu u, \ \forall u \in V, \ \forall \lambda, \mu \in \mathbb{K}.$$

(7)
$$(\lambda \mu)u = \lambda(\mu u), \ \forall u \in V, \ \forall \lambda, \mu \in \mathbb{K}.$$

(8)
$$1u = u, \forall u \in V$$
.

I.1 Định nghĩa không gian vector

3.1.3 Ví du

- \bullet Tập các số thực $\mathbb R$ với 2 phép toán cộng và nhân là không gian vector.
 - i. Vector không θ là số không 0.
 - ii. Vector đối của u là số -u. v.v...

- Tập $\mathbb{R}^2=\{(x,y)/x,y\in\mathbb{R}\}$ với 2 phép toán cộng và nhân vô hướng (x,y)+(x',y')=(x+x',y+y') $\lambda(x,y)=(\lambda x,\lambda y)$ là không gian vector.
 - i. Vector không θ là cặp 2 số không (0,0).
 - ii. Vector đối của u=(x,y) là cặp số -u=(-x,-y). v.v...

- Tập $\mathbb{R}^3 = \{(x,y,z)/x,y,z \in \mathbb{R}\}$ với 2 phép toán cộng và nhân vô hướng $(x,y,z)+(x',y',z')=(x+x',y+y',z+z'); \lambda(x,y,z)=(\lambda x,\lambda y,\lambda z)$ là không gian vector.
 - i. Vector không θ là bộ 3 số không (0,0,0).
 - ii. Vector đối của u=(x,y,z) là bộ 3 số -u=(-x,-y,-z). v.v...

- Tập hợp các ma trận cấp $m \times n$: $M_{m \times n}$ với 2 phép toán cộng 2 ma trận và nhân một số với một ma trận là không gian vector.
 - i. Vector không θ là ma trận không O.
 - ii. Vector đối của u = A -A. v.v...

I.1 Định nghĩa không gian vector

- Tập hợp các đa thức bậc nhỏ hơn $n+1:P_n[t]$ với 2 phép toán cộng 2 đa thức và nhân một số với một đa thức là không gian vector.
 - i. Vector không θ là đa thức đồng nhất không

ii. Vector đối của u=x(t)

I.2 Một số tính chất của không gian vector

$$\forall u, v, w \in (V, +, \bullet), \alpha \in K$$

- 1. Chỉ có duy nhất một vector $\theta \in V$ sao cho: $u + \theta = \theta + u = u$
- 2. Tồn tại duy nhất vector đối của u là -u sao cho: $u + (-u) = \theta$

3.
$$u + v = u + w \Rightarrow v = w$$

4.
$$0.u = \theta$$
, $(-1).u = -u$

5.
$$\alpha \cdot \theta = \theta$$

6.
$$\alpha u = \theta \Rightarrow \begin{vmatrix} \alpha = 0 \\ u = \theta \end{vmatrix}$$

I.3 Không gian vector con

- \sim Cho KGVT $(V,+,\bullet)$ trên K & xét $\phi \neq W \subset V$
- ™ W thừa hưởng phép + và nhân từ K có sẵn trên V
- $(W,+,\bullet)$ là 1 KGVT con của $(V,+,\bullet)$ nếu nó thỏa 2 điều kiện

$$\begin{cases}
\forall \alpha, \beta \in W : (\alpha + \beta) \in W \\
\forall c \in K, \forall \alpha \in W : (c\alpha) \in W
\end{cases}$$
(*)

Hoặc
$$\forall c \in K, \forall \alpha, \beta \in W : (c\alpha + \beta) \in W$$

ký hiệu
$$(W,+,\bullet) \leq (V,+,\bullet)$$
 hay $W \leq V$

I.3 Không gian vector con

Ta thấy muốn chứng minh W là *không gian vector con* của V ta cần CM W $\neq \emptyset$ và (*) hoặc W $\neq \emptyset$ và (**)

Ví dụ 1: CM tập $W = \{(x,0) \in \mathbb{R}^2\} \subset \mathbb{R}^2$ là không gian vector con của \mathbb{R}^2

Thậy vậy, với mọi $u,v\in W$ thì u=(a,0),v=(b,0) ta có:

$$u+v=(a,0)+(b,0)=(a+b,0)=(x,0)\in W$$

$$\lambda u = \lambda(a,0) = (\lambda a,0) = (x,0) \in W, \forall \lambda.$$

I.3 Không gian vector con

Ví dụ 2
$$V=\{f:R\to R\mid f \text{ khả vi mọi cấp}\}$$

$$W=\{f\in V\mid 2f\text{"}-3f\text{'}+5f=O\}$$
 kiểm chứng $W\leq V$

- ${}_{\cong}$ Trước hết, ta có $\phi \neq W \subset V$ (do có hàm $O \in W$)
- Tiếp theo, xét $g,h\in W$, và $c\in R$. Ta CM $(cg+h)\in W$

Thật vậy, do
$$g, h \in W$$

$$\Rightarrow c(2g''-3g'+5g)+(2h''-3h'+5h)=O$$

$$\Rightarrow c(2g''-3g'+5g)+(2h''-3h'+5h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h')+5(cg+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h')+5(cg+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h')+5(cg+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h)+5(cg'+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h)+5(cg'+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h)+5(cg'+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h)+5(cg'+h)=O$$

$$\Rightarrow 2(cg''+h'')-3(cg'+h)+5(cg'+h)=O$$

≥ KL:

I.3 Không gian vector con

 Bài Tập: Kiểm tra các tập sau đây có là không gian vector con của các không gian vector tương ứng không?

$$U = \left\{ (x, y, z) \in R^3 / 2x - y + 3z = 0 \right\}$$

$$W = \left\{ (x, y) \in R^2 / x - 2y = 1 \right\}$$

$$M = \left\{ x(t) = at^2 + bt + c \in P_2[t] / a - b + c = 0 \right\}$$

$$N = \left\{ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} / a_{11} + a_{12} - a_{21} + 2a_{22} = 0 \right\}$$

II.1 Tổ hợp tuyến tính

Cho các vector $x_1, x_2, ..., x_m \in V$, với V là KGVT trên trường K Các hệ số $\lambda_1, \lambda_2, ..., \lambda_m \in K$

Vector
$$x = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_m x_m$$

là tổ hợp tuyến tính của hệ vector $\{x_1, x_2, \dots, x_m\}$

=> Vector x biểu thị tuyến tính được qua hệ vector $\{x_1, x_2, \dots, x_m\}$

Lưu ý:

Ta có thể thành lập vô số tổ hợp tuyến tính từ hệ vector $\{x_1, x_2, \dots, x_m\}$

II.1 Tổ hợp tuyến tính

Ví dụ: Cho
$$x_1 = (1, -2), x_2 = (3, 1), x_3 = (5, -3)$$

Ta có:
$$2(1,-2) + (3,1) = (5,-3)$$

hay
$$2x_1 + x_2 = x_3$$

Vậy
$$x_3$$
 là tổ hợp tuyến tính của hệ (x_1, x_2)

hay x_3 biểu thị tuyến tính được qua hệ (x_1, x_2)

II.1 Tổ hợp tuyến tính

Ví dụ. Trong không gian vector \mathbb{R}^2 ,

xét 3 vector
$$x_1 = (-1,0), x_2 = (0,-1), x_3 = (1,1)$$
. Khi đó:

$$2(-1,0)+2(0,-1)+2(1,1)=(0,0)$$

$$3(-1,0)+3(0,-1)+3(1,1)=(0,0)$$

Vậy vector không heta biểu thị tuyến tính được qua hệ $\{x_1, x_2, x_3\}$ bằng hai cách

$$\theta = 2x_1 + 2x_2 + 2x_3;$$

$$\theta = 3x_1 + 3x_2 + 3x_3.$$

II.1 Tổ hợp tuyến tính

Nhận xét:

- (1) Cách biểu diễn $x = \sum_{i=1}^n \lambda_i x_i$ nói chung không duy nhất.
- (2) Vector không θ thì biểu thị tuyến tính được qua mọi hệ vector (x_1, x_2, \dots, x_n) .

Ví dụ.
$$\theta=(0,0,0)=0(1,2,4)+0(2,0,1)+0(-1,4,8)$$
 suy ra $\theta=0x_1+0x_2+\cdots+0x_n,$ $\forall x_1,x_2,\ldots,x_n.$

II.2 Hệ độc lập và phụ thuộc tuyến tính

Nếu:
$$\theta = 0x_1 + 0x_2 + ... + 0x_n$$

=> Vector không (θ) biểu thị tuyến tính tầm thường qua hệ vector $\{x_1, x_2, ..., x_n\}$

Nếu:
$$\theta = \lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = \sum_{i=1}^n \lambda_i x_i \qquad (\lambda_i \neq 0)$$

=> Vector không (θ) biểu thị tuyến tính không tầm thường qua hệ vector $\{x_1, x_2, ..., x_n\}$

II.2 Hệ độc lập và phụ thuộc tuyến tính

Cho hệ n vector $X = \{x_1, x_2, ... x_n\} \subset V$

X: là hệ độc lập tuyến tính nếu vector không *chỉ biểu thị tuyến* tính tầm thường qua hệ vector X

X: là hệ phụ thuộc tuyến tính nếu vector không *có thể biểu thị* tuyến tính không tầm thường qua hệ vector X

Ví dụ: Cho
$$x_1=(1,2); x_2=(3,7); \quad x_3=(2,4)$$
 Ta có $4(1,2)+0(3,7)-2(2,4)=(0,0)$ Suy ra, hệ vector $\{x_1,x_2,x_3\}$ là phụ thuộc tuyến tính.

II.2 Hệ độc lập và phụ thuộc tuyến tính

Phương pháp xét sự độc lập của hệ vector $X = \{x_1, x_2, ..., x_n\}$

xét đẳng thức:

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = \theta$$

- Đưa đẳng thức trên về hệ phương trình tuyến tính thuần nhất.
- Tìm hạng của ma trận hệ số của hệ phương trình tuyến tính thuần nhất:
 - ➤ Nếu r(A) =n: hệ chỉ có nghiệm tầm thường => hệ vector X độc lập tuyến tính
 - ➤ Nếu r(A) <n: hệ có nghiệm không tầm thường => hệ vector X phụ thuộc tuyến tính

II.2 Hệ độc lập và phụ thuộc tuyến tính

Ví dụ. Cho không gian vector $V=\mathbb{R}^3$ và hệ

$${x_1 = (1, 1, 1), x_2 = (1, 1, 0), x_3 = (1, 0, 0)}.$$

Xét sự độc lập của hệ vector trên.

Xét đẳng thức:
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = \theta$$
 $\Leftrightarrow \lambda_1(1,1,1) + \lambda_2(1,1,0) + \lambda_3(1,0,0) = (0,0,0)$ $\Leftrightarrow (\lambda_1 + \lambda_2 + \lambda_3, \lambda_1 + \lambda_2, \lambda_1) = (0,0,0)$ $\Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$

Vậy hệ vector trên độc lập tuyến tính trong \mathbb{R}^3 .

II.2 Hệ độc lập và phụ thuộc tuyến tính

Ví dụ:

Cho không gian vector $V = \mathbb{R}^2$ và hệ 3 vector

$${x_1 = (1, -2), x_2 = (1, 4), x_3 = (3, 5)}.$$

Xét sự độc lập tuyến tính của hệ vector trên.

Xét đẳng thức:
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = \theta$$

$$\lambda_1(1,-2) + \lambda_2(1,4) + \lambda_3(3,5) = (0,0)$$
 $\Leftrightarrow (\lambda_1 + \lambda_2 + 3\lambda_3, -2\lambda_1 + 4\lambda_2 + 5\lambda_3) = (0,0)$

II.2 Hệ độc lập và phụ thuộc tuyến tính

$$\Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 + 3\lambda_3 = 0 \\ -2\lambda_1 + 4\lambda_2 + 5\lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = -3\lambda_3 \\ -2\lambda_1 + 4\lambda_2 = -5\lambda_3 \end{cases}$$

$$\Leftrightarrow egin{cases} \lambda_1 = -rac{7}{6}\lambda_3 \ \lambda_2 = -rac{11}{6}\lambda_3 \end{cases}$$

 $\Leftrightarrow \begin{cases} \lambda_1 = -\frac{7}{6}\lambda_3 \\ \lambda_2 = -\frac{11}{6}\lambda_3 \end{cases} \qquad \qquad \text{Từ đây ta có thể chọn ra rất nhiều bộ} \\ \{\lambda_1,\lambda_2,\lambda_3\} \text{ không đồng thời bằng 0} \\ \text{thỏa mãn điều kiện này} \end{cases}$

Hê vector trên là phụ thuộc tuyến tính

II.2 Hệ độc lập và phụ thuộc tuyến tính

Ví du.

Cho không gian vector $oldsymbol{V} = oldsymbol{P}_2[t]$ và hệ vector

$$x_1(t) = t^2 - 2t - 1$$

$$x_2(t) = 2t^2 - t$$

$$x_3(t) = 3t - 5.$$

Xét sự độc lập của hệ vector trên.

Xét đẳng thức:
$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = \theta$$

$$\Leftrightarrow \lambda_1(t^2-2t-1)+\lambda_2(2t^2-t)+\lambda_3(3t-5) \equiv 0t^2+0t+0$$

II.2 Hệ độc lập và phụ thuộc tuyến tính

$$\lambda_{1}(t^{2}-2t-1)+\lambda_{2}(2t^{2}-t)+\lambda_{3}(3t-5) \equiv 0t^{2}+0t+0$$

$$(\lambda_{1}+2\lambda_{2})t^{2}+(-2\lambda_{1}-\lambda_{2}+3\lambda_{3})t+(-\lambda_{1}-5\lambda_{3}) \equiv 0t^{2}+0t+0$$

$$\Leftrightarrow \begin{cases} \lambda_{1}+2\lambda_{2}=0 \\ -2\lambda_{1}-\lambda_{2}+3\lambda_{3}=0 \\ -\lambda_{1}-5\lambda_{3}=0 \end{cases} A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & 3 \\ 1 & 0 & -5 \end{bmatrix}$$

II.2 Hệ độc lập và phụ thuộc tuyến tính

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & 3 \\ 1 & 0 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 3 \\ 0 & -2 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & -9 \end{bmatrix}$$

$$\Rightarrow r(A) = 3$$

Hệ chỉ có nghiệm tầm thường: $\lambda_1=\lambda_2=\lambda_3=0$

Vậy hệ vector trên độc lập tuyến tính trong $P_2[t]$.

II.2 Hệ độc lập và phụ thuộc tuyến tính

Ví dụ: Xét sự độc lập và phụ thuộc tuyến tính của hệ vector sau

$$X_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; X_{2} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}; X_4 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Xét đẳng thức:
$$\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 + \lambda_4 X_4 = \theta$$

$$\lambda_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \lambda_{3} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + \lambda_{4} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

II.2 Hệ độc lập và phụ thuộc tuyến tính

$$\lambda_{1} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \lambda_{3} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + \lambda_{4} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} = 0 \\ 2\lambda_{2} + 2\lambda_{3} + 2\lambda_{4} = 0 \\ 3\lambda_{3} + 3\lambda_{4} = 0 \end{cases} A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 4\lambda_{4} = 0 & 0 & 0 & 4 \end{cases}$$

Hệ chỉ có nghiệm tầm thường. Vậy hệ vectơ đã cho độc lập tuyến tính.

II.2 Hệ độc lập và phụ thuộc tuyến tính

Nhận xét: Hệ chứa véc tơ θ là hệ phụ thuộc tuyến tính. Tính chất

- 1) Hệ véc tơ chứa *hệ con phụ thuộc tuyến tính là hệ phụ thuộc tuyến tính*. Vì vậy, mọi hệ con của hệ độc lập tuyến tính là hệ độc lập tuyến tính.
- 2) Một hệ véc tơ là phụ thuộc tuyến tính khi và chỉ khi có một véc tơ là tổ hợp tuyến tính của các véc tơ còn lại.
- 3) Giả sử hệ $\{v_1, ..., v_n\}$ độc lập tuyến tính. Khi đó hệ $\{v_1, v_2, ...v_n, u\}$ phụ thuộc tuyến tính khi và chỉ khi u là tổ hợp tuyến tính của các véc tơ $\{v_1, ..., v_n\}$, khi đó ta có thể biểu diễn duy nhất $u = \beta_1 v_1 + ... + \beta_n v_n$.

II.3 Hạng của một hệ vector

1. Định nghĩa : Cho $S=\{v_1,v_2,\ldots,v_n\}\subset V$, với V là KGVT trên trường K Số tối đa các vector độc lập tuyến tính có thể rút ra từ S gọi là hạng của hệ S, kí hiệu r(S) hay rank(S)

2. Tính chất:

+) Nếu r(S) = r thì mọi vectơ của S đều biểu thị tuyến tính qua hệ con bất kì (của S) có r vectơ đltt.

+) Nếu
$$u = \sum_{i=1}^{m} \alpha_i v_i$$
 thì r(S) = r(S'), trong đó $S' = S \cup \{u\}$.

+) Nếu mọi vectơ của hệ S đều biểu thị tuyến tính qua các vectơ của hệ $W = \{w_1, w_2, ..., w_n\} \subset V$ thì $r(S) \leq r(W)$

II.3 Hạng của một hệ vector

3. Phương pháp tìm hạng của một hệ vector

Tính hạng của một hệ vectơ theo hạng của ma trận

Trong \mathbb{R}^n cho hệ vectơ : $\mathbb{S} = \{v_1, v_2, ..., v_m\}$

$$v_{1} = (a_{11}, a_{12}, ..., a_{1n})$$
 $v_{2} = (a_{21}, a_{22}, ..., a_{2n})$
 \cdots

$$v_{m} = (a_{m1}, a_{m2}, ..., a_{mn})$$

$$= > \text{ta lập ma trận:}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$$

Định lý: Hạng của hệ vector S bằng hạng của ma trận A thành lập từ tọa độ của các vector của hệ S xem là các hàng của A hoặc xem là các cột của A

II.3 Hạng của một hệ vector

Hệ quả: Trong \mathbb{R}^n cho hệ vector $S = \{v_1, v_2, ..., v_m\}$ Ta có :

- ➤ Nếu m > n : hệ S pttt
- ➤ Nếu m<= n:</p>
 - Nếu r(S) =m : hệ S đltt
 - ■Nếu r(S) <m : hệ S pttt

II.3 Hạng của một hệ vector

Ví dụ:

a)
$$R^3: \alpha_1 = (1, 0, -2), \alpha_2 = (-4, -1, 5), \alpha_3 = (1, 3, 4)$$

$$\det A = \begin{vmatrix} 1 & 0 & -2 \\ -4 & -1 & 5 \\ 1 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ -4 & -1 & -3 \\ 1 & 3 & 6 \end{vmatrix} = 3 \neq 0$$

$$\Rightarrow r(A) = 3 = r(\{\alpha_1, \alpha_2, \alpha_3\})$$

Vậy hệ $\{\alpha_1,\alpha_2,\alpha_3\}$ đitt.

II.3 Hạng của một hệ vector

Ví du:

b)
$$R^4: \beta_1 = (1,3,0,3), \beta_2 = (3,2,-1,2), \beta_3 = (4,5,-1,5)$$

$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ 3 & 2 & -1 & 2 \\ 4 & 5 & -1 & 5 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 3 & 0 & 3 \\ 0 & -7 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow r(A) = 2 = r(\{\beta_1, \beta_2, \beta_3\}) < 3.$$

Vậy hệ $\{\beta_1, \beta_2, \beta_3\}$ pttt.

III.1 Hệ sinh của một không gian vector

Cho $S = \{u_1, u_2, ..., u_n\} \subset V$, V: KGVT trên trường K

1. Không gian con sinh bởi một họ vector

W= tập hợp <u>tất cả</u> các THTT của các vector của S gọi là bao tuyến tính của S

Kí hiệu: W= span(S), S: hệ sinh của W

$$W = span(S) = \left\{ \sum_{i=1}^{k} \lambda_i v_i \mid k \in \mathbb{N}, v_i \in S, \lambda_i \in K \right\}$$

W=span(S) là một không gian vector con của V: W≤S

III.1 Hệ sinh của một không gian vector

2. Hệ sinh của một không gian vector

Nếu
$$\forall u \in V$$
: $u = c_1 u_1 + c_2 u_2 + ... + c_n u_n$

Hệ S sinh ra V hay S là hệ sinh hữu hạn của V

Ví dụ: Trong không gian vector \mathbb{R}^2 , cho hệ vector

$$E = \{e_1 = (1,0); e_2 = (0,1)\}$$

Khi đó hệ vector E là hệ sinh của không gian vector \mathbb{R}^2

III.1 Hệ sinh của một không gian vector

2. Hệ sinh của một không gian vector

Ví dụ: Trong không gian vector \mathbb{R}^2 , cho hệ vector

$$E = \{e_1 = (1,0); e_2 = (0,1)\}$$

Khi đó hệ vector E là hệ sinh của không gian vector \mathbb{R}^2

Thật vậy, $\forall x \in \mathbb{R}^2$, khi đó,

$$x = (a,b) = a(1,0) + b(0,1) = ae_1 + be_2$$

III.2 Cơ sở và số chiều của một không gian vector

III.2.1 Khái niệm

- V có ít nhất 1 cơ sở
- tất cả các cơ sở khác của V đều có đúng n vector

Số chiều của không gian vector: số lượng vector n trong mỗi cơ

sở của V gọi là số chiều của V

Kí hiệu: $n = \dim V$

 \sim V: không gian n chiều Quy ước: $\dim\{\theta\}=0$ n>0: V: không gian hữu hạn chiều

III.2 Cơ sở và số chiều của một không gian vector

 $ightharpoonup Ví dụ 1 <math>R^n$ có 1 cơ sở thông dụng là

$$E_0 = \{ \mathcal{E}_1 = (1,0,0,\dots,0), \mathcal{E}_2 = (0,1,0,\dots,0),\dots, \mathcal{E}_n = (0,\dots,0,1) \}$$
 Vì E_0 đltt và

$$R^{n} = span(E_0) = \{\alpha = c_1 \varepsilon_1 + c_2 \varepsilon_2 + \dots + c_n \varepsilon_n \mid c_1, c_2, \dots, c_n \in R\}$$

- \succeq Ta nói E_0 là <u>cơ sở chính tắc</u> của R^n
- Vậy dim $R^n =$ n
- \sim Ví dụ 2 tương tự $R_n[x]$ có cơ sở chính tắc là

$$\beta_0 = \{1, x, x^2, x^3, \dots, x^n\}$$
 và dim $R_n[x] = n + 1$

III.2.2 Cách tìm cơ sở của không gian vector

1. Nhận diện nhanh 1 cơ sở trong Rⁿ

a/ nếu
$$\frac{n=1}{n}$$
 , nghĩa là $R^1=R$ thì
$$\forall \alpha \in R \setminus \{0\} \text{ , ta có } \frac{a=\{\alpha\}}{n} \text{ là 1 cơ sở cho } R^1$$

b/ nếu
$$n=2$$
 , ứng với $R^2=\{(a,b)\,|\,a,b\in R\}$ và $\alpha_1,\alpha_2\in R^2$ sao cho α_1 và α_2 có tọa độ không tỷ lệ thì $a=\{\alpha_1,\alpha_2\}$ là 1 cơ sở của R^2

III.2.2 Cách tìm cơ sở của không gian vector

1. Nhận diện nhanh 1 cơ sở trong Rⁿ

c/ nếu
$$n \ge 2$$
 , và ta xét $a = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ (có n vector) trong R^n

🕦 Lập ma trận

$$A_a = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$ightharpoonup N ilde{\mathrm{e}}\mathrm{u} \qquad \det(A_a) \neq 0$$

$$\operatorname{Ne\'u} \left| \det(A_a) = 0 \right|$$

thì
$$\alpha$$
 là 1 cơ sở của \mathbb{R}^n

thì α không là 1 cơ sở của R^n

III.2.2 Cách tìm cơ sở của không gian vector

1. Nhận diện nhanh 1 cơ sở trong Rⁿ

Ví dụ trong
$$R^3$$
 cho
$$a = \{\alpha_1 = (-3,1,0), \alpha_2 = (5,4,3), \alpha_3 = (9,1,5)\}$$

$$\beta = \{\alpha_1 = (-3,1,0), \alpha_2 = (5,4,3), \alpha_4 = (7,9,6)\}$$

Lập

$$A_{a} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} -3 & 1 & 0 \\ 5 & 4 & 3 \\ 9 & 1 & 5 \end{pmatrix} \qquad A_{\beta} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{4} \end{pmatrix} = \begin{pmatrix} -3 & 1 & 0 \\ 5 & 4 & 3 \\ 7 & 9 & 6 \end{pmatrix}$$

III.2.2 Cách tìm cơ sở của không gian vector

1. Nhận diện nhanh 1 cơ sở trong Rⁿ

➣ Ví dụ (tt)

$$\Rightarrow |A_a| = \begin{vmatrix} -3 & 1 & 0 \\ 5 & 4 & 3 \\ 9 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 17 & 4 & 3 \\ 12 & 1 & 5 \end{vmatrix} = -\begin{vmatrix} 17 & 3 \\ 12 & 5 \end{vmatrix} = -49 \neq 0$$

$$\& |A_{\beta}| = \begin{vmatrix} -3 & 1 & 0 \\ 5 & 4 & 3 \\ 7 & 9 & 6 \end{vmatrix} = \begin{vmatrix} -3 & 1 & 0 \\ 5 & 4 & 3 \\ -3 & 1 & 0 \end{vmatrix} = -3 \begin{vmatrix} -3 & 1 \\ -3 & 1 \end{vmatrix} = 0$$

 $ightharpoonup ext{KL: } a$ là 1 cơ sở của R^3

 $|oldsymbol{eta}|$ không là cơ sở của $|R^3|$

III.2.2 Cách tìm cơ sở của không gian vector

2. Nhận diện cơ sở khi đã biết số chiều của không gian

$$a = \{\alpha_1, \alpha_2, ..., \alpha_n\} \subset V$$
 (a có đúng n vector)

🔈 Khi đó

$$\Leftrightarrow$$
 span(a)=V

III.2.2 Cách tìm cơ sở của không gian vector

- 3. Cách tìm cơ sở của KG con sinh bởi một hệ vector:
- Trong không gian vector V, cho hệ $S = \{u_1, \dots, u_p\} \subset V$
- W= span(S): không gian con của V
- Mọi hệ gồm r vector độc lập tuyến tính rút từ S là một cơ sở của W

III.2.2 Cách tìm cơ sở của không gian vector

3. Cách tìm cơ sở của KG con sinh bởi một hệ vector:

Ví dụ: Trong R^4 cho

$$\beta_1 = (1,3,0,3), \beta_2 = (3,2,-1,2), \beta_3 = (4,5,-1,5).$$

Tìm cơ sở của $W = \text{span}\{\beta_1, \beta_2, \beta_3\}.$

Giải:
$$A = \begin{bmatrix} 1 & 3 & 0 & 3 \\ 3 & 2 & -1 & 2 \\ 4 & 5 & -1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 3 \\ 0 & -7 & -1 & -7 \\ 0 & -7 & -1 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 3 \\ 0 & -7 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\Rightarrow r(A) = 2,$$

Vậy 1 cơ sở của W là (1,3,0,3), (0,-7,-1,-7). (or (1,3,0,3), (3,2,-1,2))

III.2.2 Cách tìm cơ sở của không gian vector

3. Cách tìm cơ sở của KG con sinh bởi một hệ vector:

Ví dụ: Trong
$$R^3$$
 cho $\alpha_1 = (1,0,-2), \alpha_2 = (-4,-1,5), \alpha_3 = (1,3,4)$

Tìm cơ sở của
$$W = \text{span} \{ \alpha_1, \alpha_2, \alpha_3 \}.$$

Giải:

$$\det A = \begin{vmatrix} 1 & 0 & -2 \\ -4 & -1 & 5 \\ 1 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ -4 & -1 & -3 \\ 1 & 3 & 6 \end{vmatrix} = 3 \neq 0$$

$$\Rightarrow r(A) = 3$$

Vậy 1 cơ sở của W là $\alpha_1, \alpha_2, \alpha_3$.

III.2.2 Cách tìm cơ sở của không gian vector

3. Cách tìm cơ sở của KG con sinh bởi một hệ vector:

$$W = \{X = (a+2b+c+2d, a-b-c+d, 2a-5b-4c+d, 4a+2b+6d) \in \mathbb{R}^4 \mid a,b,c,d \in \mathbb{R}\}$$

$$ightharpoonup CM$$
 $W \leq R^4$ và chỉ ra 1 tập sinh (hệ sinh) S cho W

➣ Ta có

$$W = \{X = (a, a, 2a, 4a) + (2b, -b, -5b, 2b) + (c, -c, -4c, 0) + (2d, d, d, 6d) \mid a, b, c, d \in R\}$$
$$= \{X = a(1,1,2,4) + b(2, -1, -5, 2) + c(1, -1, -4, 0) + d(2,1,1,6) \mid a, b, c, d \in R\}$$

III.2.2 Cách tìm cơ sở của không gian vector

3. Cách tìm cơ sở của KG con sinh bởi một hệ vector:

$$\Rightarrow W = \{X = a\alpha_1 + b\alpha_2 + c\alpha_3 + d\alpha_2 \mid a,b,c,d \in R\}$$
 , với
$$\begin{cases} \alpha_1 = (1,1,2,4) \\ \alpha_2 = (2,-1,-5,2) \\ \alpha_3 = (1,-1,-4,0) \\ \alpha_4 = (2,1,1,6) \end{cases}$$

$$\Rightarrow W = < S > \text{, trong d\'o} \quad S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$$

$$\Rightarrow W < R^4$$

IV.1 Tọa độ vector theo cơ sở

- \cong Giả sử KGVT n chiều V có cơ sở là $E = \{e_1, e_2, ..., e_n\}$
- \succeq Với mỗi $E \in V$, ta đã biết <u>tồn tại duy nhất</u> các số $(x_1, x_2, ..., x_n)$ thỏa

$$x = x_1e_1 + x_2e_2 + \dots + x_ne_n$$

$$ightharpoonup \mathsf{K\acute{y}}$$
 hiệu $(x)_{/E} = (x_1, x_2, \dots, x_n)$ hay

$$[x]_{/E} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

& gọi là tọa độ của x theo cơ sở E

Ví dụ: Cho
$$F = \{f_1 = (1,1); f_2 = (1,0)\}$$
 là cơ sở của \mathbb{R}^2 và $x = (5,3)$. Tìm tọa độ của x đối với cơ sở chính tắc E và cơ sở F .

Ta có:
$$x = (5,3) = 5(1,0) + 3(0,1) = 5e_1 + 3e_2$$

Vậy:
$$(x)_{/E} = (5,3)$$

IV.1 Tọa độ vector theo cơ sở

Ví dụ: Cho $F = \{f_1 = (1,1); f_2 = (1,0)\}$ là cơ sở của \mathbb{R}^2 và x = (5,3). Tìm tọa độ của x đối với cơ sở chính tắc E và cơ sở F.

Ta có:
$$x = (5,3) = 3(1,1) + 2(1,0) = 3f_1 + 2f_2$$

Vậy:
$$(x)_{/F} = (3,2)$$

Ví dụ
$$V=R^3$$
 có cơ sở $a=\{\alpha_1=(-3,2,1),\alpha_2=(1,5,0),\alpha_3=(-2,-4,1)\}$ Cho $\alpha=(1,4,-2)\in R^3$ Phảt $\alpha=(c_1)$ $\alpha=(c_2)$ $\alpha=(c_2)$

$$\Rightarrow \begin{cases} -3c_1 + c_2 - 4c_3 = 1 \\ 2c_1 + 5c_2 - 4c_3 = 4 \end{cases} \qquad \begin{cases} c_1 = 1 \\ c_2 = -2 \\ c_1 + c_3 = -2 \end{cases}$$

$$\Rightarrow \left[\alpha\right]_a = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$

Ví dụ: Cho
$$F = \{f_1(t) = t^2 + 2t; f_2(t) = 3t - 1; f_3(t) = t^2 + 5\}$$
 là cơ sở của $\mathbf{P}_2[t]$ và $x(t) = 7t^2 + 3t + 21$. Tìm tọa độ của x đối với cơ sở F .

Ta có:
$$x(t) = x_1 f_1(t) + x_2 f_2(t) + x_3 f_3(t)$$

$$x(t) = x_1 f_1(t) + x_2 f_2(t) + x_3 f_3(t)$$

$$7t^2 + 3t + 21 = x_1(t^2 + 2t) + x_2(3t - 1) + x_3(t^2 + 5)$$

$$\Leftrightarrow \begin{cases} x_1 & + x_3 = 7 \\ 2x_1 + 3x_2 & = 3 \\ -x_2 + 5x_3 = 21 \end{cases} \Rightarrow \begin{cases} x_1 = 3 \\ x_2 = -1 \\ x_3 = 4 \end{cases}$$

Vậy:
$$(x)_{/F} = (3, -1, 4)$$

IV.2 Ma trận chuyển cơ sở

Giả sử trong KGVT n chiều V cho hai cơ sở

$$A=\{\alpha_1,\alpha_2,...,\alpha_n\}, B=\{\beta_1,\beta_2,...,\beta_n\}$$

và
$$x \in V$$
 có các tọa độ $[x]_{/A}, [x]_{/B}$

Định nghĩa: Ma trận P thỏa mãn hệ thức:

$$[x]_{A} = P[x]_{B}, \forall x \in V \quad (*)$$

gọi là ma trận chuyển cơ sở từ cơ sở A sang cơ sở B.

Khi đó công thức (*) được gọi là công thức biến đổi tọa độ của vector x giữa 2 cơ sở A và B.

IV.2 Ma trận chuyển cơ sở

Tìm ma trận P chuyển cơ sở từ A sang B:

Biểu diễn tuyến tính mỗi vector của B đối với A

$$\beta_{1} = a_{11}\alpha_{1} + a_{12}\alpha_{2} + \dots + a_{1n}\alpha_{n}$$

$$\beta_{2} = a_{21}\alpha_{1} + a_{22}\alpha_{2} + \dots + a_{2n}\alpha_{n}$$

$$\dots$$

$$\beta_{n} = a_{n1}\alpha_{1} + a_{n2}\alpha_{2} + \dots + a_{nn}\alpha_{n}$$

$$P = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}$$

IV.2 Ma trận chuyển cơ sở

Tính chất của ma trận chuyển cơ sở

TC1: Giả sử P là ma trận chuyển từ cơ sở A sang cơ sở B. Khi đó

- 1) P khả nghịch
- 2) P^{-1} là ma trận chuyển từ cơ sở B sang cơ sở A

IV.2 Ma trận chuyển cơ sở

Ví dụ

Trong R^3 cho 2 cở sở: E cơ sở chính tắc và

B={
$$\beta_1 = (1,-1,1), \beta_2 = (2,3,1), \beta_3 = (1,2,1)$$
}

- a) Tìm ma trận chuyển từ E sang B
- b) Tìm ma trận chuyển từ B sang E
- c) Cho $\alpha = (1,2,3)$. Tim $(\alpha)_{/B}$.

IV.2 Ma trận chuyển cơ sở

Ví dụ. a) Ta có
$$E=\{e_1=(1,0,0),e_2=(0,1,0),e_3=(0,0,1)\}$$

$$\beta_1=e_1-e_2+e_3 \qquad \Rightarrow P=\begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\beta_n=e_1+2e_2+e_3 \qquad \Rightarrow P=\begin{bmatrix} 1 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

b) Do đó ma trận chuyển từ B sang E:

$$P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 & 1 \\ 3 & 0 & -3 \\ -4 & 1 & 5 \end{bmatrix} = \dots$$

Bài tập 1:

Trong KGVT R^3 cho các vector $f_1 = (1, 2, 3), f_2 = (-1, 1, 0), f_3 = (2, 1, 1), x = (4, 6, -3)$

CMR: hệ vector $F = \{f_1, f_2, f_3\}$ là cơ sở của \mathbb{R}^3 , tìm tọa độ của vector x đối với cơ sở F.

Bài tập 2:

Trong KGVT R³ cho các vector

$$f_1 = (1, 2, 3), f_2 = (-1, 1, 0), f_3 = (2, 1, m)$$

Tìm m để hệ vector $F = \{f_1, f_2, f_3\}$ là cơ sở của R^3