Machine Learning Models:

-Image Dataset:

Plant Disease Dataset

-Numeric Dataset:

GPA Prediction Dataset

Project Overview

Objective

- Plant Disease Classification

-Student Gpa Prediction

Key Models

-logistic regression & Knn for Plant Disease

-linear regression & knn for Gpa prediction

Image Dataset Documentation

Plant Disease Dataset

- Classes and Number of Samples:
 - Pepper Bell Bacterial Spot: 997
 - Pepper Bell Healthy: 1478
 - Potato Early Blight: 1000
 - Potato Late Blight: 1000
 - Tomato Early Blight: 1000
- Image Size
 - o 150x150
- Number of Training Samples
 - 4106
- Number of Testing Samples
 - 1369
- Number of Features (Pixels)
 - o 67500
- Results for Model Testing Data
 - Logistic Regression
 - Accuracy: 0.78
 - Precision: 0.78
 - Recall: 0.78
 - AUC: 0.94
 - KNN
 - Accuracy: 0.55
 - Precision: 0.69
 - Recall: 0.55
 - AUC: 0.81
 - Graphs for ROC are available in the Notebook

Linear Regression: GPA Prediction

1 Import Libraries

Python libraries: Pandas, NumPy, Scikit-learn, Matplotlib Preprocessing

Handle missing values, normalize numeric data, encode categorical features.

Linear Regression: Training and Testing

- Data Splitting
 Train-test split (e.g., 80% train, 20% test)
- Train the Model

 Use Scikit-learn's

 LinearRegression() function.
- Model Evaluation

 Metrics: MAE, MSE, R² Score.

KNN: Plant Disease Classification

1 Import Libraries

Python libraries: NumPy, TensorFlow, Keras, Matplotlib 2 Load Images

Use libraries like OpenCV or Keras to preprocess and label images.

3 Data Splitting

X (features): Image pixel data; Y (labels): Disease/healthy category.

KNN: Training and Testing

Train the Classifier
Use Scikit-learn's

Use Scikit-learn's KNeighborsClassifier().

Performance Evaluation

Metrics: Accuracy, Precision, Recall, F1 Score.

Comparison and Applications

Linear Regression

Predicts continuous values (GPA). Evaluation metrics: MAE, MSE, R² Score.

KNN Classifier

Predicts discrete categories (diseased/healthy). Evaluation metrics: Accuracy, Precision, Recall, F1 Score.

