CSE555: Introduction to Pattern Recognition

Midterm Exam

(100 points, Closed book/notes)

There are 5 questions in this exam.

Page 3 is the Appendix that contains some useful formulas.

- 1. (15pts) Bayes Decision Theory.
 - (a) (5pts) Assume there are c classes w_1, \dots, w_c , and one feature vector \mathbf{x} , give the Bayes rule for classification in terms of a priori probabilities of the classes and class-conditional probability densities of \mathbf{x} .
 - (b) (10pts) Suppose we have a two-classes problem $(A, \sim A)$, with a single binary-valued feature $(\mathbf{x}, \sim \mathbf{x})$. Assume the prior probability P(A) = 0.33. Given the distribution of the samples as shown in the following table, use Bayes Rule to compute the values of posterior probabilities of classes.

	A	$\sim A$
x	248	167
$\sim {f x}$	82	503

- 2. (25pts) Fisher Linear Discriminant.
 - (a) (5pts) What is the Fisher linear discriminant method?
 - (b) Given the 2-d data for two classes:

$$\omega_1 = [(1,1), (1,2), (1,4), (2,1), (3,1), (3,3)]$$
 and $\omega_2 = [(2,2), (3,2), (3,4), (5,1), (5,4), (5,5)]$ as shown in the figure:

- i. (10pts) Determine the optimal projection line in a single dimension.
- ii. (10pts) Show the mapping of the points to the line as well as the Bayes discriminant assuming a suitable distribution.

3. (20pts) Suppose $p(x|w_1)$ and $p(x|w_2)$ are defined as follows:

$$p(x|w_1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
, $\forall x$
 $p(x|w_2) = \frac{1}{4}$, $-2 < x < 2$

- (a) (7pts) Find the minimum error classification rule g(x) for this two-class problem, assuming $P(w_1) = P(w_2) = 0.5$.
- (b) (10pts) There is a prior probability of class 1, designated as π_1^* , so that if $P(w_1) > \pi_1^*$, the minimum error classification rule is to always decide w_1 regardless of x. Find π_1^* .
- (c) (3pts) There is no π_2^* so that if $P(w_2) > \pi_2^*$, we would always decide w_2 . Why not?
- 4. (20pts) Let samples be drawn by successive, independent selections of a state of nature w_i with unknown probability $P(w_i)$. Let $z_{ik} = 1$ if the state of nature for the kth sample is w_i and $z_{ik} = 0$ otherwise.
 - (a) (7pts) Show that

$$P(z_{i1}, \dots, z_{in}|P(w_i)) = \prod_{k=1}^{n} P(w_i)^{z_{ik}} (1 - P(w_i))^{1 - z_{ik}}$$

(b) (10pts) Given the equation above, show that the maximum likelihood estimate for $P(w_i)$ is

$$\hat{P}(w_i) = \frac{1}{n} \sum_{k=1}^{n} z_{ik}$$

- (c) (3pts) Interpret the meaning of your result in words.
- 5. (20pts) Consider an HMM with an explicit absorber state w_0 and unique null visible symbol v_0 with the following transition probabilities a_{ij} and symbol probabilities b_{jk} (where the matrix indexes begin at 0):

$$a_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.5 & 0.1 \end{pmatrix} \qquad b_{jk} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.7 & 0.3 \\ 0 & 0.4 & 0.6 \end{pmatrix}$$

- (a) (7pts) Give a graph representation of this Hidden Markov Model.
- (b) (10pts) Suppose the initial hidden state at t = 0 is w_1 . Starting from t = 1, what is the probability it generates the particular sequence $\mathbf{V}^3 = \{v_2, v_1, v_0\}$?
- (c) (3pts) Given the above sequence V^3 , what is the most probable sequence of hidden states?

2

Appendix: Useful formulas.

• For a 2×2 matrix,

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

the matrix inverse is

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

 \bullet The scatter matrices \mathbf{S}_i are defined as

$$\mathbf{S}_i = \sum_{\mathbf{X} \in D_i} (\mathbf{X} - \mathbf{m}_i) (\mathbf{X} - \mathbf{m}_i)^t$$

where \mathbf{m}_i is the d-dimensional sample mean.

The within-class scatter matrix is defined as

$$\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$$

The between-class scatter matrix is defined as

$$\mathbf{S}_B = (\mathbf{m}_1 - \mathbf{m}_2)(\mathbf{m}_1 - \mathbf{m}_2)^t$$

The solution for the W that optimizes $J(\mathbf{W}) = \frac{\mathbf{W}^t \mathbf{S}_B \mathbf{W}}{\mathbf{W}^t \mathbf{S}_W \mathbf{W}}$ is

$$W = \mathbf{S}_W^{-1}(\mathbf{m}_1 - \mathbf{m}_2)$$