

Conception Electronique pour le Traitement de l'Information

Capter des photons

TD7 - Photodétection

Julien VILLEMEJANE

Qu'est-ce qu'une photodiode?

Transforme une grandeur physique observée (mesurande) vers une autre grandeur physique utilisable (électrique)

Qu'est-ce qu'une photodiode?

Caractéristiques d'une photodiode

Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit	
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};\ T_{\sf stg}$	- 40 + 100	°C	
Sperrspannung Reverse voltage	V_{R}	20	V	
Verlustleistung Total power dissipation	P_{tot}	150	mW	

Characteristics

Photocurrent $I_{\rm P}$ = $f(E_{\rm v})$, $V_{\rm R}$ = 5 \lor Open-Circuit Voltage $V_{\rm O}$ = $f(E_{\rm v})$ SFH 229

Capacitance

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit	
		SFH 229	SFH 229 FA		
Fotostrom Photocurrent V = 5 V Normlight/standard light A	7	29 (> 19)			
$V_{\rm R}$ = 5 V, Normlicht/standard light A, T = 2856 K, $E_{\rm V}$ = 1000 lx $V_{\rm R}$ = 5 V, λ = 950 nm, $E_{\rm e}$ = 1 mW/cm ²	I_{P} I_{P}	28 (≥ 18) -	_ 20 (≥ 10.8)	μΑ μΑ	
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	λ _{S max}	860	900	nm	
Spektraler Bereich der Fotoempfindlichkeit $S = 10\%$ von S_{max} Spectral range of sensitivity $S = 10\%$ of S_{max}	λ	380 1100	730 1100	nm	
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	0.3	0.3	mm ²	
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	0.56 × 0.56	0.56 × 0.56	mm× mm	
Halbwinkel Half angle	φ	±17	±17	Grad deg.	

Saint-Étienne

Bordeaux

Caractéristiques d'une photodiode

Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op}; T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	20	V
Verlustleistung Total power dissipation	P_{tot}	150	mW

Photocurrent $I_P = f(E_v)$, $V_R = 5 \text{ V}$ Open-Circuit Voltage $V_O = f(E_v)$ SFH 229

Capacitance

Directional Characteristics

$$S_{\text{rel}} = f(\varphi)$$

Saint-Étienne

Bordeaux

Transmission par la lumière

(b) Récepteur simple

Montage simple / Fonction de transfert

Montage simple / Réponse en fréquence « théorique »

Montage simple / Réponse en fréquence « expérimentale »

Montage simple / Modèle

Montage simple / Modèle

Montage simple / Modèle

Capacité linéique C_{cab} ≈ 100 pF / m R_{osc} ≈ 1 MΩ

Cosc ≈ 10 pF

SFH206

Capacitance

 $C = f(V_R), f = 1 MHz, E = 0$

Pour
$$V_R = 5 V$$

 $C_{PHD} = 20 pF$

Saint-Étienne

Montage simple / pour résumer

Montage transimpédance / Fonction de transfert

Montage transimpédance / Rép. fréquence « théorique »

$$V_{S} = R_{T} \cdot I_{photo}$$

Montage transimpédance / Rép. fréquence « expérimentale »

INSTITUT d'OPTIQUE GRADUATE S CHOOL

ParisTech

CéTI / Capter des photons

Montage transimpédance / Modèle de l'ALI

$$V_s(j\omega) = A(j\omega) \cdot [V+(j\omega) - V-(j\omega)]$$

Où
$$\underline{A}(j\omega) = \frac{Av}{1 + \underline{j} \underline{\omega}}$$

$$\omega_c = GBW / Av$$

Montage transimpédance / Rép. fréquence « expérimentale »

Gain Peaking

Montage transimpédance vs simple

Pour Cosc+Ccab = 1pF, 10pF et 100pF

Montage transimpédance / pour résumer

$$\frac{\boldsymbol{V}_{\scriptscriptstyle S}}{\boldsymbol{I}_{\scriptscriptstyle Phd}} = \frac{\boldsymbol{R}_{\scriptscriptstyle T} \cdot \boldsymbol{A}_{\scriptscriptstyle 0}}{\big(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{\scriptscriptstyle 0}}\big) \cdot \big(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{\scriptscriptstyle c}}\big) + \boldsymbol{A}_{\scriptscriptstyle 0}}$$

En utilisant le modèle du premier ordre pour l'amplificateur intégré $(A_{_0},\,w_{_0})$

Gain-peaking:
$$f_T = \sqrt{f_C \cdot GBP}$$
 avec $f_C = \frac{1}{2 \cdot \pi \cdot R_{PhD} \cdot C_{PhD}}$

simple

$$R_{eq} = \frac{R_{phd} \cdot R_{e}}{R_{phd} + R_{e}}$$

$$C_{eq} = C_{phd} + C_{e}$$

$$f_C = \frac{1}{2 \cdot \pi \cdot R_{eq} \cdot C_{eq}}$$

Montage transimpédance / Gain peaking

Signal carré à 10kHz / GBF : offset +4.8V / Amp = 3.3V

Montage transimpédance / Gain peaking

Signal carré à 10kHz / GBF: offset +4.8V / Amp = 3.3V

Signal numérique comparé (LM311)

Signal carré à 10kHz / GBF : offset +4.8V / Amp = 3.3V

Erreurs!!

