Software work in mathematical biology at Georgia Tech

Maxie Dion Schmidt

maxieds@gmail.com
http://people.math.gatech.edu/~mschmidt34
 https://github.com/maxieds

Sandia National Labs Technical Presentation Spring 2022

Introduction - Applications of RNA research

- RNA sequencing utilized in cancer research and therapy
- mRNA vaccines are newly available to the public but have been studied for decades
- Allowed for the rapid development of a COVID-19 vaccine
- Research on RNA may eventually play a central role in medical applications

What is mathematical biology?

- Mathematical biology (MathBio) uses mathematical models as theoretical abstractions of the natural structure of living organisms
- ▶ In this talk we will discuss my work as a software engineering RA with the *Georgia Tech Discrete Mathematics and Molecular Biology* group (gtDMMB)

RNA basics

RNA basics

- ► RNA is a single-stranded molecule similar to DNA
- ► A strand of RNA has a backbone of alternating sugar (ribose) and phosphate groups
- ► Each sugar has one of four base types attached to it (A-U-C-G)
- ► Each of the **A**–**U**–**C**–**G** bases can fold to form bonds in pairs

Arc diagrams – Discussion example – S. Cerevisiae (yeast)

(Actual microscopic views)

(Radial view of 2D MFE structure)

RNA secondary structures

- ▶ RNA base sequence and can have more than one 2D or 3D structure
- Obtaining the 1D structure for organisms is easy via modern sequencing
- Characterizing 3D molecular conformations is still comparatively hard
- Understanding the 2D secondary structures (base pairings) remains a crucial component of ribonomics research
- ► RNA folding prediction programs generate 2D structures given the 1D base sequence

GTFoldPython software project

GTFold - Overview I

- Accurate and efficient RNA secondary structure prediction is an important open problem in computational molecular biology
- ▶ Input: The base sequence (FASTA) of the organism Output: MFE or suboptimal secondary structures (base pair data)
- GTFold is the first implementation of RNA secondary structure prediction by thermodynamic optimization for modern multi-core computers
- ► The speedup is useful to researchers working with very RNA sequences, such as RNA viral genomes

GTFold - Overview II

- Original GTFold produced command line only utilities
- Motivated by the need for a Python interface to get the same GTFold data
- Started work in the Fall of 2019 writing Python3 bindings for GTFold
- ► Hardest part of development work? Requirements for highly robust custom cross platform build scripts

GTFoldPython - Introduction

- ► GTFoldPython (GTFP): Python3 bindings based around the original GTFold sources written in C++
- Backend uses the Python3 C API
- ► Frontend interface is a wrapper library that uses CTypes to call the C API functions

GTFoldPython - Comparison - Python C API code

```
PyObject * GetMFEStructure(const char *baseSeq, ConsListCType_t consList, int consLength) {
         /* Error checking omitted ... */
         MFEStructRuntimeArgs_t rtArgs;
         InitMFEStructRuntimeArgs(&rtArgs);
         rtArgs.baseSeg = baseSeg:
         SetRTArgsSequenceLength(rtArgs, strlen(baseSeq));
         if(ParseGetMFEStructureArgs(consList, consLength, &rtArgs) != GTFPYTHON_ERRNO_OK) {
               FreeMFEStructRuntimeArgs(&rtArgs):
               return ReturnPythonNone():
10
11
         if(InitGTFoldMFEStructureData(&rtArgs) != GTFPYTHON ERRNO OK) {
12
               FreeMFEStructRuntimeArgs(&rtArgs);
13
               return ReturnPythonNone();
14
15
         double mfe = ComputeMFEStructure(&rtArgs):
16
         if(GetLastErrorCode() != GTFPYTHON_ERRNO_OK) {
17
               return ReturnPythonNone();
18
         if(WRITEAUXFILES) {
19
20
               ConfigureOutputFileSettings();
               save ct file(outputFile, baseSeq, mfe):
21
22
23
         char *dbMFEStruct = ComputeDOTStructureResult(rtArgs.numBases);
24
         PyObject *mfeTupleRes = PrepareMFETupleResult(mfe, dbMFEStruct);
25
         Free(dbMFEStruct):
26
         FreeMFEStructRuntimeArgs(&rtArgs);
27
         FreeGTFoldMFEStructureData(rtArgs.numBases);
         if(mfeTupleRes == NULL) {
28
29
               return ReturnPvthonNone():
30
31
         return mfeTupleRes:
```

GTFoldPython – Comparison – Wrapper library code

```
## Library initialization code:
if GTFPConfig.PLATFORM_DARWIN:
    GTFoldPython._libGTFoldHandle = ctypes.cdll.LoadLibrary("GTFoldPython.dylib")
else:
    GTFoldPython._libGTFoldHandle = ctypes.PyDLL("GTFoldPython.so",
                                    mode=ctypes.RTLD_GLOBAL, use_errno=True)
@staticmethod
def _WrapCTypesFunction(funcname, restype=None, argtypes=None):
    return GTFoldPython._libGTFoldHandle.__getattr__(funcname)
@staticmethod
def GetMFEStructure(baseSeq, consList = []):
    """Get the MFE and MFE structure (in DOTBracket structure notation)
    :param baseSeq: A string of valid bases (ATGU/X)
    :param consList: A list of constraints on the MFE structure
    :return: A tuple (MFE as double, MFE structure as string in DOTBracket notation)
    :rtvpe: tuple
    GTFoldPython._ConstructLibGTFold()
    resType = ctypes.py object
    argTypes = [ GTFPTypes.CStringType,
                 GTFPTypes.FPConstraintsListType(consList),
                 ctypes.c int 1
    libGTFoldFunc = GTFoldPvthon, WrapCTvpesFunction("GetMFEStructure", resTvpe, argTvpes)
    (mfe. mfeStruct) = libGTFoldFunc(GTFPTypes.CString(baseSeq),
                                     GTFPTypes.FPConstraintsList(consList),
                                     len(consList))
    return (float(mfe), str(mfeStruct))
```

GTFoldPython – Example – Find MFE and MFE structure

External Python3 script source:

Terminal output printed upon invoking the script above:

```
1 MFE -17.200 => MFE DOT STRUCT "((((((((((()))))))))))))))))
```

The RNAStructViz application

RNAStructViz: Graphical base pairing analysis

- ▶ RNAStructViz was a project developed by Professor Christine Heitsch and Dr. S. Cheney
- My first project working with the gtDMMB group in the Summer of 2018
 - Modernize the C++ source
 - Add support for enhanced graphics using the cairo library
 - Re-write the dated build scripts
 - Improve and support the project in the long term
- Key feature of RNAStructViz: Visualization and comparisons via arc diagrams of RNA secondary structures

RNAStructViz - Comparison of features

	RNAStructViz	FORNA	jviz.RNA	R-chie	RNAbows	VARNA		RNAStructViz	FORNA	jviz.RNA	R-chie	RNAbows	VARNA
Feature sets Software support \rightarrow							\downarrow Feature sets Software support \rightarrow						
Platform and availability —							■ Support for standard formats —						
Mac OSX support	V	1	/	1	/	1	CT files	V	X	1	1	Х	1
Linux / Unix support	V	1	1	1	1	1	Dot-bracket files	~	X	1	1	X	1
Windows support	X	1	1	1	1	1	Built-in file viewer	~	Х	X	Х	Х	1
Open source software	V	1	1	1	Х	/	Requires specialized format	×	1	X	Х	X	X
Requires external libraries	V	1	1	1	Х	1	Can edit sequence data	×	1	1	Х	1	1
Software usability criteria —						 Views and diagram type support — 							
Graphical user interface	V	1	1	1	1	1	Has comparison statistics	~	Х	√ **	1	1	Х
Web interface	×	1	Х	1	1	Х	Plots circular arc diagrams	~	Х	1	1	1	Х
Multi-window interface	V	Х	X	Х	Х	X	Plots radial diagrams	V	1	1	Х	Х	1
Compares 2 structures at once	V	1	Х	1	/	Х							
Compares 3 structures at once	V	1*	Х	Х	Х	X							

A comparison of selected features across related tools; an extended survey appears in the RNAStructViz WIKI.

RNAStructViz Screenshot – Loading sample structures I

RNAStructViz Screenshot – Loading sample structures II

RNAStructViz Screenshot – Arc diagram window

Arc diagram window - Discussion

- ► The bases from position #1 to #LengthOfBaseSequenceString at equidistant spacings around a circle
- ► The sequentially numbered base pairs are ordered around the circle counter-clockwise starting from the bottom
- ► An arc connecting paired bases is drawn within the circle

Arc diagram window – Zoom select

Arc diagram zoom – Radial layout visualization

Arc diagram zoom – CT segment visualization

Arc diagram window - Comparing multiple structures

RNAStructViz Screenshot – Statistics window

Wrapping up

Summary of accomplishments with gtDMMB software I

- Success modernizing and enhancing the source code for these projects in computational and mathematical biology
- Success in modernizing and extending build scripts to support installation on MacOS, Linux and Unix-based systems
- A few of the software projects we worked on:
 - RNAStructViz
 - GTFold (CMake for MacOS and Linux)
 - GTFoldPython

Summary of accomplishments with gtDMMB software II

- Application note re-introducing our new work on RNAStructViz published in *Bioinformatics* in 2021
- Sister RNA labs that helped with testing and/or use our software include:
 - Computational RNA Genomics Lab at University of California Davis
 - Laederach Lab at the University of North Carolina at Chapel Hill
 - Mathews Lab at the University of Rochester

Concluding remarks

The End

Questions?

Comments?

Feedback?

Thank you for your time!