```
pip install pandas
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.0.3)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-p
ackages (from pandas) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (f
rom pandas) (2023.4)
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages
(from pandas) (2024.1)
Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.10/dist-packages (
from pandas) (1.25.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from
python-dateutil>=2.8.2->pandas) (1.16.0)
Creating Pandas Series
In [2]:
import pandas as pd
import numpy as np
ser = pd.Series()
data = np.array(['g', 'p', 'r', 'e', 'c'])
ser = pd.Series(data)
print("Pandas Series:\n", ser)
Pandas Series:
   q
1
     р
2
     r
3
     е
4
     С
dtype: object
In [5]:
import numpy as np
import pandas as pd
info= np.array(['p','a','n','d','a','s'])
print(info)
ser=pd.Series(info)
print(ser)
['p' 'a' 'n' 'd' 'a' 's']
0
     р
1
     а
2
     n
3
     d
4
     а
5
     S
dtype: object
Accessing data from Series
```

In [1]:

```
3 e
4 c
dtype: object
```

Creating DataFrame

Empty dataframe

```
In [7]:
# import pandas as pd
import pandas as pd
df = pd.DataFrame()
print(df)
Empty DataFrame
Columns: []
Index: []
In [8]:
import pandas as pd
lst = ['Assam', 'Andhra Pradesh', 'Bhopal', 'Delhi', 'Maharastra', 'Tamilnadu', 'Karnata
df = pd.DataFrame(lst)
print(df)
0
           Assam
1 Andhra Pradesh
2
          Bhopal
3
           Delhi
4
     Maharastra
5
       Tamilnadu
       Karnataka
In [9]:
import pandas as pd
data = {'Name':['Tom', 'nick', 'krish', 'jack'], 'Age':[20, 21, 19, 18]}
df = pd.DataFrame(data)
print(df)
   Name Age
0
    Tom 20
1
   nick
          21
          19
2
 krish
3
         18
  jack
In [10]:
data['Age']
Out[10]:
[20, 21, 19, 18]
In [11]:
import pandas as pd
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
df = pd.DataFrame(dict)
print(df)
    name degree score
0 aparna
          MBA
```

```
In [12]:
import pandas as pd
data = {
  "calories": [420, 380, 390],
  "duration": [50, 40, 45]
df = pd.DataFrame(data)
print(df)
  calories duration
0
      420
       380
1
                  40
                  45
2
       390
```

Giving names to index

```
In [13]:
```

1 pankaj BCA

2 sudhir M.Tech

3

Geeku MBA

40

80

98

day1 420 50 day2 380 40 day3 390 45

In [17]:

```
import pandas as pd
data=pd.read_csv("cocoa.csv")
data
```

Out[17]:

	Company \n(Maker- if known)	Specific Bean Origin\nor Bar Name	REF	Review\nDate	Cocoa\nPercent	Company\nLocation	Rating	Bean\nType	i Bean\n(
0	A. Morin	Agua Grande	1876	2016	63%	France	3.75		Sao
1	A. Morin	Kpime	1676	2015	70%	France	2.75		
2	A. Morin	Atsane	1676	2015	70%	France	3.00		
3	A. Morin	Akata	1680	2015	70%	France	3.50		
4	A. Morin	Quilla	1704	2015	70%	France	3.50		
	•••					•••			
1790	Zotter	Peru	647	2011	70%	Austria	3.75		
1791	Zotter	Congo	749	2011	65%	Austria	3.00	Forastero	С
1792	Zotter	Kerala State	749	2011	65%	Austria	3.50	Forastero	
1793	Zotter	Kerala State	781	2011	62%	Austria	3.25		
1794	Zotter	Brazil, Mitzi Blue	486	2010	65%	Austria	3.00		

4

In [18]:

data.tail()

Out[18]:

	Company \n(Maker- if known)	Specific Bean Origin\nor Bar Name	REF	Review\nDate	Cocoa\nPercent	Company\nLocation	Rating	Bean\nType	E Bean\n(
1790	Zotter	Peru	647	2011	70%	Austria	3.75		
1791	Zotter	Congo	749	2011	65%	Austria	3.00	Forastero	С
1792	Zotter	Kerala State	749	2011	65%	Austria	3.50	Forastero	
1793	Zotter	Kerala State	781	2011	62%	Austria	3.25		
1794	Zotter	Brazil, Mitzi Blue	486	2010	65%	Austria	3.00		E
4)

In [19]:

data.head(20)

Out[19]:

	Company \n(Maker- if known)	Specific Bean Origin\nor Bar Name	REF	Review\nDate	Cocoa\nPercent	Company\nLocation	Rating	Bean\nType	Bean\
0	A. Morin	Agua Grande	1876	2016	63%	France	3.75		Sa
1	A. Morin	Kpime	1676	2015	70%	France	2.75		
2	A. Morin	Atsane	1676	2015	70%	France	3.00		
3	A. Morin	Akata	1680	2015	70%	France	3.50		
4	A. Morin	Quilla	1704	2015	70%	France	3.50		
5	A. Morin	Carenero	1315	2014	70%	France	2.75	Criollo	Vei
6	A. Morin	Cuba	1315	2014	70%	France	3.50		
7	A. Morin	Sur del Lago	1315	2014	70%	France	3.50	Criollo	Vei
8	A. Morin	Puerto Cabello	1319	2014	70%	France	3.75	Criollo	Vei
9	A. Morin	Pablino	1319	2014	70%	France	4.00		
10	A. Morin	Panama	1011	2013	70%	France	2.75		F
11	A. Morin	Madagascar	1011	2013	70%	France	3.00	Criollo	Mada
12	A. Morin	Brazil	1011	2013	70%	France	3.25		
13	A. Morin	Equateur	1011	2013	70%	France	3.75		E
14	A. Morin	Colombie	1015	2013	70%	France	2.75		Cc
15	A. Morin	Birmanie	1015	2013	70%	France	3.00		
16	A. Morin	Papua New Guinea	1015	2013	70%	France	3.25		Pap
17	A. Morin	Chuao	1015	2013	70%	France	4.00	Trinitario	Vei
18	A. Morin	Piura	1019	2013	70%	France	3.25		
19	A. Morin	Chanchamayo Province	1019	2013	70%	France	3.50		

```
Cassifia Boon
In [20]:
data.describe()
Out[20]:
              REF Review\nDate
                                      Rating
count 1795.000000
                     1795.000000 1795.000000
mean 1035.904735
                     2012.325348
                                    3.185933
        552.886365
                                    0.478062
  std
                        2.927210
          5.000000
                     2006.000000
                                    1.000000
  min
        576.000000
                     2010.000000
                                    2.875000
 25%
 50%
      1069.000000
                     2013.000000
                                    3.250000
       1502.000000
                     2015.000000
                                    3.500000
 75%
  max 1952.000000
                     2017.000000
                                    5.000000
```

```
In [26]:
```

In [21]:

df=pd.read csv("iris.csv")

import pandas as pd

In [27]:

df

Out[27]:

sepal_length	sepal_width	petal_length	petal_width	target
5.1	3.5	1.4	0.2	0
4.9	3.0	1.4	0.2	0
4.7	3.2	1.3	0.2	0
4.6	3.1	1.5	0.2	0
5.0	3.6	1.4	0.2	0
6.7	3.0	5.2	2.3	2
6.3	2.5	5.0	1.9	2
6.5	3.0	5.2	2.0	2
6.2	3.4	5.4	2.3	2
5.9	3.0	5.1	1.8	2
	5.1 4.9 4.7 4.6 5.0 6.7 6.3 6.5 6.2	5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1 5.0 3.6 6.7 3.0 6.3 2.5 6.5 3.0 6.2 3.4	5.1 3.5 1.4 4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5 5.0 3.6 1.4 6.7 3.0 5.2 6.3 2.5 5.0 6.5 3.0 5.2 6.2 3.4 5.4	4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5.0 3.6 1.4 0.2 6.7 3.0 5.2 2.3 6.3 2.5 5.0 1.9 6.5 3.0 5.2 2.0 6.2 3.4 5.4 2.3

150 rows × 5 columns

In [28]:

df.head()

Out[28]:

	sepal_length	sepal_width	petal_length	petal_width	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0

```
        sepal_length
        sepal_width
        petal_length
        petal_width
        target

        3
        4.6
        3.1
        1.5
        0.2
        0

        4
        5.0
        3.6
        1.4
        0.2
        0
```

In [29]:

df.tail()

Out[29]:

	sepal_length	sepal_width	petal_length	petal_width	target
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

In [30]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 # Column
                 Non-Null Count Dtype
____
   sepal_length 150 non-null
0
                                 float64
   sepal_width
1
                  150 non-null
                                 float64
   petal_length 150 non-null
                                 float64
   petal_width
3
                  150 non-null
                                 float64
4
                  150 non-null
                                 int64
   target
dtypes: float64(4), int64(1)
memory usage: 6.0 KB
```

In [31]:

df.describe()

Out[31]:

	sepal_length	sepal_width	petal_length	petal_width	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667	1.000000
std	0.828066	0.433594	1.764420	0.763161	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

In [32]:

df.isnull().sum()

Out[32]:

```
sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
```

```
target 0
dtype: int64

In [33]:

df.shape

Out[33]:
(150, 5)

In [34]:

df.columns

Out[34]:

Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'target'], dtype='ob ject')

In []:
```