

Objectif

Complexité de problèmes d'optimisation en nombres entiers

Exercice 1 [3-SAT]

Soit \mathbb{V} l'ensemble de variables propositionnelles $\{x_1, \ldots, x_n\}$. Considérons le problème 3-**SAT** suivant :

3**-SAT**

INSTANCE : Une formule propositionnelle ϕ sur $\mathbb V$ telle que :

$$\phi = \bigwedge_{k=1}^{m} C_k$$

où, pour chaque j, C_j est une clause à 3 littéraux.

- ${\tt QUESTION}$: Existe-il une affectation sur ${\tt V}$ telle que ϕ soit vraie?
- 1. Démontrer que le problème 3-SAT est NP-COMPLET.
- 2. En déduire la complexité de la variante suivante :

EXACT-3SAT

INSTANCE : Une formule propositionnelle ϕ sur $\mathbb V$ telle que :

$$\phi = \bigwedge_{k=1}^{m} C_k$$

où, pour chaque j, C_j est une clause à 3 littéraux exactement.

 ${\mathbb G}$ QUESTION : Existe-il une affectation sur ${\mathbb V}$ telle que ϕ soit vraie?

Exercice 2 [Vertex-Cover]

Soit $G = \langle V, E \rangle$ un graphe non orienté. Un sous-ensemble C de V est qualifié de *couverture* dans G si la condition suivante est satisfaite :

$$\forall e = (uv) \in E : u \in C \text{ ou } v \in C.$$

Le problème de la couverture des arêtes du graphe ${\it G}$ par ses sommets s'énonce comme suit :

VERTEX-COVER

- INSTANCE : Un entier K; Un graphe non orienté $G = \langle V, E \rangle$.
- \square QUESTION: Existe-il une Couverture C dans G de taille au plus K?
- 1. Démontrer que le problème Vertex-Cover est NP-Complet.
- 2. En déduire la complexité du problème **SET-COVERING** :

SET-COVERING

- INSTANCE : Un entier K; Un sous-ensemble E; Une famille finie $\mathcal{F} = \{E_1, \dots, E_m\}$ de sous-ensembles de E.
- QUESTION : Existe-il une sous-famille de $\mathcal{G} = \{E_{i_1}, \dots, E_{i_s}\}$ de \mathcal{F} telle que :

Exercice 3 [STABLE-SET]

Soit $G = \langle V, E \rangle$ un graphe non orienté. Un sous-ensemble S de V est qualifié d'ensemble S de S si la condition suivante est satisfaite :

$$\forall u, v \in S : (u, v) \notin E$$
.

Le problème du stable s'énonce comme suit :

STABLE-SET

- INSTANCE : Un entier K; Un graphe non orienté $G = \langle V, E \rangle$.
- \square QUESTION: Existe-il un stable S dans G de taille au moins K?
- 1. Démontrer que le problème STABLE-SET est NP-COMPLET.
- 2. En déduire la complexité du problème, **SET-PACKING**, suivant :

SET-PACKING

- INSTANCE : Un entier K; Un sous-ensemble E; Une famille finie $\mathcal{F} = \{E_1, \dots, E_m\}$ de sous-ensembles de E.
- QUESTION : Existe-il une sous-famille de $\mathcal{G} = \{E_{i_1}, \dots, E_{i_s}\}$ de \mathcal{F} telle que :

$$s \geq K$$
,
$$\bigcup_{j=1}^{s} E_{i_{j}} = E$$
,
$$\forall i, j \in \{i_{1}, \dots, i_{s}\} \ i \neq j \Rightarrow E_{i} \cap E_{j} = \emptyset$$
.

Exercice 4 [KNAPSACK]

Le problème du sac-à-dos, est le problème d'optimisation suivant :

$$\max \sum_{j=1}^{n} u_{j}x_{j}$$
s.c.
$$\sum_{j=1}^{n} w_{j}x_{j} \leq B,$$

$$x \in \{0,1\}^{n}.$$
(1)

Considérons la version décision suivante de (1), dite KNAPSACK :

KNAPSACK

- INSTANCE: Trois entiers n, B et K; Deux vecteurs d'entiers $u=(u_1,\ldots,u_n)$ et $w=(w_1,\ldots,w_n)$.
- QUESTION: Existe-il un vecteur x appartenant à $\{0,1\}^n$ tel que:

$$\sum_{j=1}^{n} u_j x_j \ge K,$$

$$\sum_{j=1}^{n} w_j x_j = B.$$

- 1. Démontrer que le problème KNAPSACK est NP-COMPLET.
- 2. Que peut-on en déduire sur la complexité du problème d'optimisation (1)?

Exercice 5

[QUADCONST-SAT]

Considérons le problème de satisfaction de contraintes quadratiques suivant :

0-1QUADCONST-SAT

INSTANCE: Les contraintes suivantes:

$$x^T Q_j x + a_j^T x \leq b_j, j = 1, \ldots, m,$$

où Q_i sont des matrices symétriques, a_i des vecteurs appartenant à \mathbb{R}^n et b_i des réels.

- QUESTION: Existe-il un vecteur x appartenant à $\{0,1\}^n$ satisfaisant toutes les contraintes ci-dessus?
- 1. Démontrer que le problème QUADCONST-SAT est NP-COMPLET.
- 2. Qu'en est-il du problème

QUADCONST-SAT

INSTANCE: Les contraintes suivantes:

$$x^T Q_j x + a_j^T x \leq b_j, j = 1, \ldots, m,$$

où Q_i sont des matrices symétriques, a_i des vecteurs appartenant à \mathbb{R}^n et b_i des réels.

QUESTION: Existe-il un vecteur x appartenant à \mathbb{R}^n satisfaisant toutes les contraintes ci-dessus?