

# **Approach to a Patient of Bleeding Disorder**

**Dr. Salwa Bakr Hassan**

Ass. Prof . & Consultant

Laboratory Hematologist

College of Medicine

PNU

2014-2015

# Objectives

By the end of this lecture the student must be able to:

- Take a history of a patient with bleeding disorder
- Evaluate Clinically cases with bleeding disorders
- Enlist laboratory tests to evaluate cases with bleeding disorders

# Normal Hemostasis



## 1ry Hemostasis:

Requires normal vascular endothelium, platelets, vWF & fibrinogen.

## 2ry Hemostasis:

Requires normal coagulation cascades

The bleeding disorders results from :

- Abnormality of vessel,
- Platelets,
- or coagulation



**Figures 2a and 2b** shows scattered petechiae and purpura and **figure 2c** shows a large ecchymosis

# **Types of Bleeding Disorders:**

- 1- Vessel interaction disorder (e.g.: vascular disorders , Thrombocytopenia, Platelet Function Defects, von Willebrand Disease) .
- 2- Coagulation disorders (e.g. Congenital as Hemophilia, Acquired as liver disease, Vitamin K deficiency, DIC, Factor VIII Inhibitor).
- 3-Hyperfibrinolysis (e.g.: Liver disease, Trauma, Major Surgery).
- 4-Congenital disorder of fibrinogen (e.g. Afibrinogenemia, Hypofibrinogenemia, Dysfibrinogenemia) .

# Platelet Disorders

## Causes of thrombocytopenia:

- Production failure
  - Congenital thrombocytopenia i.e. Wiscott-Aldrich syndrome
  - Pancytopenia ( Aplastic anaemia, malignant infiltration)
- Increased peripheral consumption/ destruction
  - Immune (ITP, SLE, drugs)
  - non-immune (DIC, TTP, HUS)
- Splenic pooling (sequestration)
  - Hypersplenism
- Dilutional
  - Massive blood transfusion

## Disorders of Platelet Function:

### a) Inherited:

- Glycoprotein defect e.g. Glanzmanns thrombasthenia, Bernard Soulier syndrome and Von Willebrands disease.
- Granule defect e.g Grey platelet syndrome

### a) Acquired: eg. aspirin ingestion, uraemia and in myeloproliferative disorders.

# **Disorders of the Coagulation Cascade**

- **Inherited Bleeding Disorders** e.g. Hemophilia A (Factor VIII deficiency), Hemophilia B (Factor IX deficiency), Von Willebrand disease and congenital fibrinogen deficiency.
- **Acquired Bleeding Disorders** e.g. liver disease, vitamin K deficiency, DIC and anticoagulant therapy.

# Disorders of vessels and supporting tissues

- Diagnosed by exclusion.
- If all investigations are found normal, the patient should be investigated for blood vessel wall abnormalities.
- Hess test +ve (capillary fragility test)

Blood vessel disorders :

- Hereditary e.g hereditary hemorrhagic telangiectasia and Ehlers-Danlos Syndrome, or
- Acquired e.g aging, Henoch-Schonlein purpura, scurvy, Cushing's syndrome and corticosteroid

# Is the bleeding worth?;

## RED FLAG

### INFANT:

- Scalp bleeding at birth
- Bleeding from circumcision
- Delayed bleeding from umbilical cord
- Bleeding from blood sample
- Subcutaneous tissue/muscle swelling >3-4 cm
- Associated with immunizations during first year of life

### SKIN BLEEDING:

- Skin bruise > 2 cm in diameter in size
- Located in upper extremities or trunk
- Petechiae located in face or extremities
- Associated with hematoma

### MUCOSAL BLEEDING:

- Require medical intervention after dental work (suture, transfusion, iron therapy)

### BLEEDING CHALLING:

- bleeding longer than 5-10 min after minor cut
- any bleeding require sutures
- poor wound healing and excessive scaring

### NOSE BLEEDING:

- Last longer than 10-15 min
- Require medical interventions (cauterization, transfusion, packing)

### MENORRAHGLIA:

- Menses >7 days duration
- > 1-2 days of heavy flow
- Blood clot >1" in diameter

# **Menorrhagia; Bleeding Score Assessment**

- 3 best predictor for abnormal menstrual blood flow:
    - Frequently changed pads/tampon that are completely soaked with blood
    - Large clot > 1" in diameter
    - Low ferritin level
  - MENORRHAGIA SCORING SYSTEM:
  - Pictorial blood assessment chart (PBAC) >100

# Evaluation for the patient

■ The establish the cause in a case of a bleeding patient, 3 key questions should be directed :

■ Local vs. systemic defect (nature of bleeding)

- Location: single vs. multiple sites
- Nature of bleeding , Severity: Spontaneous? Appropriate to trauma?,

■ Hereditary vs. acquired disorder

- Age of onset
- Family history (dominant/ recessive)
- Associated systemic disease
- Drugs

■ Pattern of bleeding :

Primary v.s. secondary hemostatic disorders.

# Patterns of Bleeding Symptoms

---

|                                         | Platelet disorders                                              | Coagulation factor disorders              |
|-----------------------------------------|-----------------------------------------------------------------|-------------------------------------------|
| <b>Site of bleeding</b>                 | Skin<br>Mucous membranes<br>(epistaxis, gum, vaginal, GI tract) | Deep in soft tissues<br>(joints, muscles) |
| <b>Petechiae</b>                        | Yes                                                             | No                                        |
| <b>Ecchymoses “bruises”</b>             | Small, superficial                                              | Large, deep                               |
| <b>Hemarthrosis / muscle bleeding</b>   | Extremely rare                                                  | Common                                    |
| <b>Bleeding/after minor cuts</b>        | Yes                                                             | No                                        |
| <b>Bleeding after surgery or trauma</b> | Immediate,<br>usually mild                                      | Delayed (1-2 days),<br>often severe       |

# Nature of bleeding

## (a) Sites of bleeding ( superficial /deep tissue)

may suggest where in the coagulation defect

## ( B) Severity of bleeding

- (i) Spontaneous bleeding usually, is seen in severe bleeding disorders,
- (ii) History of bleeding only after major trauma or surgery suggests a mild bleeding disorder,

## (C) Timing of episodes:

- (i) Immediate : Bleeding uncontrolled from the onset suggests a defect in primary homeostasis.
- (ii) Delayed: Bleeding after apparent initial homeostasis are consistent with factor deficiency,
  - A marked delay in bleeding after the initiating event is sometimes seen in **factor XIII deficiency**,



Primary Hemostatic defect

Secondary Hemostatic defect

# What is the diagnosis?



# **Hereditary vs. acquired disorder**

## **Clues to congenital disorders :**

- (a) Excessive bleeding initiated by common childhood trauma  
e.g; circumcision, tooth extraction.
- (b) History of bleeding disorder in family and “when mode of inheritance can be determined:
  - It may suggest specific diagnosis as well.  
e.g. X-linked in hemophilia A & B.
  - Autosomal inheritance with low factor VIII C level suggests Von Willebrand disease.

## **Clues to acquired disorders :**

- Exposure to potentially causative factors.
- onset of bleeding episodes: Patients giving history of bleeding tendency in recent times

## Medical History

- Review of all medical conditions and their treatment can provide insight into possible nature of bleeding disorders e,g, :
- (a) **Liver disease, Vitamin K deficiency** seen in malnourished or hagic disease of newborn, antibiotics, **Uraemia**, disease abnormal protein, **Malignancy**, Acquire inhibitors.
- (b) **Immune mediated diseasea** seen in association with Systemic lupus erythematosus (SLE) and HIV infection,
- (c) **Consumptive coagulopathy, Disseminated Intravascular coagulation (DIC)** - most commonly seen in septicemia.

## Medications

Careful review of all the medications is critical in evaluating a coagulation abnormality.

- (1) **Aspirin** leading to platelet abnormality
- (2) Over dosage of **oral anticoagulant** (warfarin)
- (3) Incidental **Heparin** used for flushing Intravenous access lines (HIT),
- (4) Acquired factor **inhibitors associated with medications** e.g. penicillin,

# Evaluation of bleeding disorders

Can be divided into two parts clinical and laboratory:

## I. Clinical Evaluation

- (a) Present history
- (B) Past history
- (c) Family history
- (d) Physical examination

## 2. Laboratory Evaluation

- (a) Screening tests
- (b) Specific tests

# Clinical Evaluation of Bleeding Patients

- 85% of correct diagnosis can be made by a careful history taking and physical examination.
- A meticulous history is essentially necessary in two circumstances.
  - (a) When clinical finding or past medical history points to a disorder of homeostasis.
  - (b) In patients who do not show obvious homeostatic disorder but who are scheduled for major surgery.

# Bleeding History Taking

Questions with the four “W's”, who, when, where and what are crucial.

- **Who**: who is the patient, sex, age, race, consanguineous marriage and family history of abnormal bleeding?
- **When**: when did the bleeding occur, i.e. onset of bleeding? Is it related to drug ingestion or any underlying disorder? Did it develop after surgery or trauma?
- **Where** : sites of bleeding, skin, muscle etc.
- **What**: description of the type of bleeding.

# Questionnaire:

- Have you ever experienced a serious hemorrhagic complication **during or after surgical** procedure?
- Have you ever experienced excessive **vaginal bleeding** during or immediately after childbirth or perineal bleeding from an episiotomy?
- Have you ever experienced persistent **menorrhagia in absence of** fibroid or other uterine abnormality?
- Have you ever experienced brisk or prolonged bleeding after epistaxis or minor cuts or **exaggerated bruising after minor trauma**?
- Have you ever developed hemarthrosis, retroperitoneal hematoma **or soft tissue hematoma** in absence of major trauma?
- Have you ever experience **spontaneous** bleeding, **poor wound healing** or dehiscence of surgical wound?
- Has any member of your **family** experienced severe bleeding complication, perhaps **requesting transfusion of packed RBCs**?
- Do you have any **medical problems**?
- Do you take any **medications**?
- Have you noticed any **unusual rashes or easy bruising** ?

## **II- Physical examination:**

- To assess the sites and severity of the bleeding
- To evaluate whether the bleeding is part of a systemic illness, a local anatomical defect or a haemostatic disorder.
- To provide valuable clue as to where in the coagulation system is the defect

- Ecchymosis, Petechiae, epistaxis, deep soft tissue bleed, hemarthrosis, GI bleeding.
- Associated sign of “ Pallor, Jundice, fever, cachectic, Hepatosplenomegaly, abdominal mass, ..”
- Abnormal elasticity of skin or hyper extensibility of joints should be sought as evidence of an hereditary connective tissue disorder associated with vascular bleeding. Telangiectasia should be noted.
- Look for physical signs and symptoms of diseases related to **capillary fragility**

# **III- Laboratory evaluation:**

- Laboratory Studies: are guided by the history and physical finding in a patient
- However when no clues are available, a battery of appropriate tests often is the most expedient approach.

## **Screening tests of hemostasis:**

( To distinguishing a platelet disorder from a coagulation defect)

- Complete blood count (CBC) to assess platelet count,
- Peripheral blood smear examination,
- Prothrombin time (PT),
- Activated partial thromboplastin time (APTT),
- Thrombin time
- Bleeding time or platelet function analysis (PFA-100)

# Peripheral destruction: microangiopathic syndromes



- E.g (DIC, TTP, HUS).
- TTP is an emergency condition
- Syndrome of a pentad ( Fragmented RBCs, hemolytic anaemia, thrombocytopenia, renal failure, CNS involvement)

# Hereditary Thrombasthenia ; Bernard-Soulier Syndrome



- Defective binding of VWF to platelet due to deficiency of GP-Ib receptor .
- On blood smear the platelet seen larger than normal.

# Laboratory Evaluation of the Coagulation Pathways

Partial thromboplastin time  
(PTT)

Prothrombin time  
(PT)

*Intrinsic pathway*

*Extrinsic pathway*

Thrombin time  
(TT)

*Common pathway*

Thrombin

*Fibrin clot*

| Test                                           | Possible conditions                                                                                     |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Prolonged PT                                   | Factor VII deficiency, early oral anticoagulation therapy                                               |
| APTT                                           | Deficiency of Factors VIII, IX, XI, XII, and Prekallikrien, Von Willebrand disease, Lupus anticoagulant |
| Prolonged PT and APTT                          | Deficiency of Factors V, X, II, oral anticoagulants, vitamin K deficiency, liver disease.               |
| Prolonged PT, APPT and TT                      | Fibrinogen deficiency/disorder, liver disease, heparin.                                                 |
| Prolonged bleeding time or abnormal PFA result | Platelet function defect, Von Willebrand disease                                                        |

# Specific Tests

- Mixing studies
- Factor assays.
- Platelet aggregation test:
  - Platelet aggregation defect with all aggregating agent (ADP, collagen, epinephrin, AA ) except ristocetin =  
**GLANZMANN THROMBASTHENIA.**
  - Platelet aggregation defect with ristocetin only =  
**Bernard Soulier syndrome or VWD.**
- Von Willebrand disease study (VW Factor assay, RcoF assay, RIPA)
- Low platelet count : (Bone marrow examination, Platelet antibodies, & Screening tests for DIC)
- Fibrinolytic assays : Euglobin clot lysis test.

# Notes;

- If all investigations are found normal, the patient should be investigated for blood vessel wall abnormalities
- One should also be aware of conditions that may be associated with prolonged APTT but without a bleeding diathesis (F- XII deficiency).
- If all baseline-screening tests are normal then investigations for factor XIII deficiency and alpha 2-antiplasmin deficiency is demanded ( clot solubility test).

# Reference

- Chapters 25 - 26 , Essential Haematology by AV Hoffbrand, JE Pettit and PAH Moss, 6th Edition 2011, Blackwell Science