2014 Mathematical Methods (CAS) Trial Exam 2 Solutions © Copyright itute.com

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
A	D	Е	D	Е	С	Α	D	В	D	D
12	13	14	15	16	17	18	19	20	21	22
A	D	С	A	В	A	A	D	С	С	A

Q1 The inverse of
$$y = \frac{x}{x-1}$$
 is $x = \frac{y}{y-1}$, $x(y-1) = y$,

$$xy - x = y$$
, $xy - y = x$, $y = \frac{x}{x - 1}$, .: $f^{-1}(x) = \frac{x}{x - 1}$

Q2
$$\log_a(1-x) = 1 - \log_a x$$
, $a > 0$ and $0 < x < 1$
 $\log_a(1-x) + \log_a x = 1$, $\log_a x(1-x) = 1$, $x(1-x) = a$,

$$x^2 - x + a = 0$$
, $x = \frac{1 \pm \sqrt{1 - 4a}}{2}$

$$1 - 4a > 0$$
 and $\sqrt{1 - 4a} < 1$, $0 < a < 0.25$

Q3
$$\frac{x+a}{x-b} \ge 0$$
 where $a, b \in R^+$,

either $x+a \ge 0$ and x-b > 0, i.e. $x \ge -a$ and x > b, i.e. x > b or $x+a \le 0$ and x-b < 0, i.e. $x \le -a$ and x < b, i.e. $x \le -a$.: the maximal domain is $(-\infty, -a] \cup (b, \infty)$

Q4
$$f(x) = \frac{x^2 - a}{x + \sqrt{a}} = \frac{\left(x + \sqrt{a}\right)\left(x - \sqrt{a}\right)}{x + \sqrt{a}} = x - \sqrt{a}$$
 for $x \neq -\sqrt{a}$

$$f(x) \neq -\sqrt{a} - \sqrt{a}$$
, i.e. $-2\sqrt{a}$

The range of
$$f(x)$$
 is $R \setminus \{-2\sqrt{a}\}$

Q5
$$y = mx - 2m = m(x - 2)$$

$$y = x^3 - 6x^2 + 8x = x(x^2 - 6x + 8) = x(x - 2)(x - 4)$$

The functions have the same x-intercepts, x = 2

For
$$y = x^3 - 6x^2 + 8x$$
, $\frac{dy}{dx} = 3x^2 - 12x + 8 = -4$ at $x = 2$

.: y = mx - 2m intersect $y = x^3 - 6x^2 + 8x$ once only when $m \le -4$

Q6
$$f(x) = x(x^2 - 1)$$

 $f(x-1) = (x-1)(x^2 - 2x)$
 $f(1-x) = (1-x)(-2x + x^2) = -(x-1)(x^2 - 2x)$

Q7
$$\cos A + \sin B = 0$$

f(1-x) = -f(x-1)

$$\sin B = -\cos A = -\sin\left(\frac{\pi}{2} - A\right) = \sin\left(A - \frac{\pi}{2}\right), \ B = A - \frac{\pi}{2}$$

Q8
$$f(x) = c - 9x + 6x^2 - x^3$$

When c = 0, $f(x) = -9x + 6x^2 - x^3 = -x(3-x)^2$, .: x-intercepts are at x = 0 and x = 3 (a local maximum)

Let
$$f'(x) = -9 + 12x - 3x^2 = -3(x-1)(x-3) = 0$$
,

local minimum point is (1, -4)

For three positive x-intercepts, c > 0 and c < 4

Q9
$$y = (1-x)^3 + x - 1 \rightarrow (2-x)^3 - (2-x) \rightarrow (2+x)^3 - (2+x)$$

= $(2+x)((2+x)^2 - 1) = (2+x)(1+x)(3+x)$ B

Q10
$$y = g(|x+a|)$$
 D

For x + a > 0, i.e. x > -a, y = g(x + a)

For x + a < 0, i.e. x < -a, y = g(-(x + a))

The two sections are reflection of each other in the line x = -a.

Q11 For
$$x < a$$
, $f(x) = 2x - 1$, $f'(x) = 2$

As $x \to a$, $f(x) \to 2a-1$, $f'(x) \to 2$

D

D

Е

C

For $x \ge a$, $f(x) = ax^2 + bx$, f'(x) = 2ax + b

As
$$x \to a$$
, $f(x) \to a^3 + ab$, $f'(x) \to 2a^2 + b$

Since f(x) is differentiable at x = a,

:
$$a^3 + ab = 2a - 1$$
 and $2a^2 + b = 2$: $a = 1$

Q12 A degree 4 polynomial may not have an inflection point,

e.g.
$$P(x) = x^4 + 4x^3 + 6x^2 + 4x + 1 = (x+1)^4$$

Q13
$$1 \le 2\sin\frac{\pi x}{2} < 2$$
, $x \in \left[\frac{1}{3}, 1\right] \cup \left(1, \frac{5}{3}\right]$

Q14
$$f(-x) = -f(x)$$
, : $\int_{-1}^{1} f(-x) dx = 0$

Translate by 1 unit in the positive x-direction,

$$\int_{-1+1}^{1+1} f(-(x-1)) dx = 0, \text{ i.e. } \int_{0}^{2} f(1-x) dx = 0$$

Q15
$$f(x) = \sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$

$$\sqrt{50} \approx \sqrt{49} + 1 \times \frac{1}{2\sqrt{49}} = \frac{99}{14}$$

Q17
$$\int_{a}^{a} \cos^{2}\theta \, d\theta = 2 \times \int_{0}^{a} \cos^{2}\theta \, d\theta = 2 \times \frac{1}{2} \int_{0}^{a} (1 + \cos 2\theta) \, d\theta$$

$$= \left[\theta + \frac{\sin 2\theta}{2}\right]_0^a = a + \frac{1}{2}\sin 2a = a + \sin a \cos a$$
 A

Q18
$$\mu = np = 9$$
, $\sigma^2 = npq = 6$, $\therefore 9q = 6$, $q = \frac{2}{3}$, $p = \frac{1}{3}$
 $Pr(X > 12) = Pr(X \ge 13) \approx 0.079$

Q19
$$L \begin{bmatrix} L & O \\ 0.15 & 0.10 \\ O & 0.85 & 0.90 \end{bmatrix}$$

Long run probability of on time =
$$\frac{0.85}{0.10 + 0.85} = \frac{17}{19}$$

Q20
$$\int_{-4}^{0} p \, dx + \int_{1}^{9p} 4p \, dx = 1$$
, where $p > 0$, $[px]_{-4}^{0} + [4px]_{1}^{9p} = 1$

$$4p + 36p^2 - 4p = 1$$
, $p = \frac{1}{6}$

Q21
$$Pr(B'|A) = 1 - Pr(B|A) = 1 - \frac{Pr(B \cap A)}{Pr(A)} = 1 - \frac{1}{2 Pr(A)}$$

Q22
$$2^x = 5^y = 100^z$$
, $2^x = 5^y = 10^{2z}$, $2^x = 5^y = 2^{2z} 5^{2z}$
 $\therefore x = \log_2(2^{2z} 5^{2z}) = 2z + 2z \log_2 5$ and
 $y = \log_5(2^{2z} 5^{2z}) = 2z \log_5 2 + 2z$

$$\therefore \frac{x-2z}{2z} = \log_2 5 \text{ and } \frac{y-2z}{2z} = \log_5 2$$

$$\therefore \frac{x-2z}{2z} = \frac{2z}{y-2z}, \ z = \frac{xy}{2(x+y)}$$

SECTION 2

Q1a Translations of 3 units to the left and 4 units downwards

Q1bi
$$y = 2$$
, $[-4, 4]$

Q1bii
$$x = -4$$
, $[-2, 2]$

Q1c WXYZ is similar to ABCD because the corresponding sides are dilated by the same factor, 2, e.g. WX = 2AB and WZ = 2AD

Q1d
$$2y = x^2 - 6x + 17$$
, $2y = x^2 - 6x + 9 - 9 + 17$,

$$2y = (x-3)^2 + 8$$
, $2(y-4) = (x-3)^2$

.: Translations of 3 units to the left and 4 units downwards will take the vertex of parabola *II* to the origin.

Q1e
$$2(y-4)=(x-3)^2 \rightarrow 2((y+4)-4)=((x+3)-3)^2$$

The new equation is $2y = x^2$.

Q1f
$$2y = x^2$$
, $\frac{2y}{4} = \frac{x^2}{4}$, $\left(\frac{y}{2}\right) = \left(\frac{x}{2}\right)^2$

.: $2y = x^2$ is the dilations of $y = x^2$ by the same factor of 2 vertically and horizontally, .: $2y = x^2$ and $y = x^2$ are similar.

Q1g Consider a general parabola $y = a(x - h)^2 + k$. Two translations will move its vertex to the origin and its equation becomes $y = ax^2$, .: $ay = a^2x^2$, $(ay) = (ax)^2$. .: $y = ax^2$ is the

dilations of $y = x^2$ by the same factor of $\frac{1}{a}$ vertically and

horizontally..: all parabolas are similar to $y = ax^2$. Hence they are similar to each other.

Q2a
$$y = \frac{1}{a-b} (e^{-bt} - e^{-at})$$

When
$$t = \log_e 2$$
, $e^t = 2$

$$y = \frac{1}{a-b} \left(e^{-bt} - e^{-at} \right) = \frac{1}{a-b} \left(\left(e^{t} \right)^{-b} - \left(e^{t} \right)^{-a} \right) = \frac{1}{a-b} \left(2^{-b} - 2^{-a} \right)$$
$$= \frac{1}{(a-b)} \left(\frac{1}{2^{b}} - \frac{1}{2^{a}} \right) = \frac{1}{(a-b)} \left(\frac{2^{a} - 2^{b}}{2^{a} 2^{b}} \right) = \frac{2^{a} - 2^{b}}{(a-b)2^{a+b}}$$

Q2b
$$y = \frac{1}{a - b} (e^{-bt} - e^{-at})$$

 \mathbf{C}

When
$$t = 1$$
, $y = \frac{e-1}{e^2}$, $\frac{e-1}{e^2} = \frac{1}{a-b} \left(e^{-b} - e^{-a} \right)$

$$\therefore \frac{e-1}{e^2} = \frac{e^a - e^b}{(a-b)e^{a+b}} \dots (1)$$

When
$$t = 2$$
, $y = \frac{e^2 - 1}{e^4}$, $\therefore \frac{e^2 - 1}{e^4} = \frac{1}{a - b} \left(e^{-2b} - e^{-2a} \right)$

$$: \frac{e^2 - 1}{e^4} = \frac{e^{2a} - e^{2b}}{(a - b)e^{2(a + b)}} \dots (2)$$

Q2c Factorise both sides of (2):

$$\frac{(e-1)(e+1)}{e^2e^2} = \frac{(e^a - e^b)(e^a + e^b)}{(a-b)e^{a+b}e^{a+b}} \dots (3)$$

(3)/(1)
$$\frac{e+1}{e^2} = \frac{e^a + e^b}{e^{a+b}}$$

$$e^{-1} + e^{-2} = e^{-b} + e^{-a}$$
, $a = 2$ and $b = 1$

Q2di
$$y = \frac{1}{a-b} \left(e^{-bt} - e^{-at} \right), \frac{dy}{dt} = \frac{1}{a-b} \left(-be^{-bt} + ae^{-at} \right)$$

Q2dii For maximum y, let $\frac{dy}{dt} = \frac{1}{a-b} \left(-be^{-bt} + ae^{-at} \right) = 0$

:
$$a e^{-at} = b e^{-bt}$$
, $e^{(a-b)t} = \frac{a}{b}$, $(a-b)t = \log_e \frac{a}{b}$

$$\therefore t = \frac{1}{a - b} \log_e \frac{a}{b}$$

Q2diii If a = 2 and b = 1, y_{max} occurs when $t = \log_e 2$

From part a,
$$y_{\text{max}} = \frac{2^2 - 2^1}{(2 - 1)2^{2+1}} = \frac{1}{4}$$

Q2e

Q2f
$$y_{\text{first}} = e^{-t} - e^{-2t}$$
 for $t \ge 0$
 $y_{\text{second}} = e^{-(t-2)} - 2^{-2(t-2)}$ for $t \ge 2$
 $y = y_{\text{first}} + y_{\text{second}} = e^{-t} - e^{-2t} + e^{-(t-2)} - 2^{-2(t-2)}$ for $t \ge 2$

Q2h $t \approx 3.85$ by CAS

Q3ai
$$\int_{0}^{1000} 1000 (1 - \cos nx) dx = \frac{1000^{2}}{3}, \quad \int_{0}^{1000} (1 - \cos nx) dx = \frac{1000}{3}$$

$$\left[x - \frac{\sin nx}{n} \right]_{0}^{1000} = \frac{1000}{3}, \quad 1000 - \frac{\sin 1000n}{n} = \frac{1000}{3}$$

$$\frac{\sin 1000n}{n} = \frac{2000}{3}, \quad \therefore 3\sin 1000n = 2000n$$

Q3aii Use CAS to solve $3\sin 1000 n = 2000 n$ for n, $n \approx 0.001496$ $y \approx 1000 (1 - \cos (0.001496 x))$

Q3bi Before reflection: $y = A \log_e \left(1 + \frac{x}{150} \right)$ After reflection: $x = A \log_e \left(1 + \frac{y}{150} \right)$, $\log_e \left(1 + \frac{y}{150} \right) = \frac{x}{A}$ $1 + \frac{y}{150} = e^{\frac{x}{A}}$, $y = 150 \left(e^{\frac{x}{A}} - 1 \right)$

Q3bii
$$\int_{0}^{1000} 150 \left(e^{\frac{x}{A}} - 1 \right) dx = \frac{1000^{2}}{3}, \quad \int_{0}^{1000} \left(e^{\frac{x}{A}} - 1 \right) dx = \frac{1000^{2}}{450}$$

$$\left[Ae^{\frac{x}{A}} - x \right]_{0}^{1000} = \frac{1000^{2}}{450}, \quad Ae^{\frac{1000}{A}} - 1000 - A = \frac{1000^{2}}{450}$$

$$A\left(e^{\frac{1000}{A}} - 1 \right) = \frac{29000}{9}, \quad e^{\frac{1000}{A}} = 1 + \frac{29000}{9A}$$

$$\therefore A \log_{e} \left(1 + \frac{29000}{9A} \right) = 1000$$

Q3biii Use CAS to solve $A \log_e \left(1 + \frac{29000}{9A} \right) = 1000$ for A, $A \approx 496.7$ $y \approx 496.7 \log_e \left(1 + \frac{x}{150} \right)$

Q3c Let D metres be the northerly distance between curve I and curve II.

$$D \approx 496.7 \log_e \left(1 + \frac{x}{150} \right) - 1000 \left(1 - \cos(0.001496 \ x) \right)$$

$$\frac{dD}{dx} = \frac{496.7 \times \frac{1}{150}}{1 + \frac{x}{150}} - 1000(0.001496\sin(0.001496x))$$

For longest distance, let $\frac{dD}{dx} = 0$

$$\frac{496.7}{150+x} - 1.496\sin(0.001496x) = 0$$

By CAS, $x \approx 417.633$, $D_{\text{longest}} \approx 472$ m

Q4a
$$\mu = 588.4$$
, $\sigma = 77.9$, $Pr(X > 583.6) \approx 0.525$, i.e. 52.5%

Q4b
$$\mu \mp \sigma = 588.4 \mp 77.9 = 510.5$$
, 666.3 ≈ 511 , 666

Q4c $\mu = 583.6$, $\sigma = 82.2$, Pr(510.5 < X < 666.3) ≈ 0.656 , i.e. 65.6%

Q4d Binomial distribution: n = 10, p = 0.525,

$$\Pr(X > 6) \approx 0.22$$

Q4e
$$\mu = 588.4$$
, $\sigma = 77.9$

$$Pr(X > 583.6 \mid X < 788) = \frac{Pr(583.6 < X < 788)}{Pr(X < 788)} \approx 0.522$$
, i.e.

52.2%

Q4f
$$Pr(X < 668) = 0.80$$
 and $Pr(X > 544) = 0.70$

$$\Pr\left(Z < \frac{668 - \mu}{\sigma}\right) = 0.80 \text{ and } \Pr\left(Z > \frac{544 - \mu}{\sigma}\right) = 0.70$$

$$\frac{668 - \mu}{\sigma} = 0.8416$$
, $\frac{544 - \mu}{\sigma} = -0.5244$

$$\mu \approx 591.6$$
 and $\sigma \approx 90.8$

Q4g In Vic.,
$$Pr(X < a) = 0.95$$
, $a \approx 720.47$
In NSW, $Pr(X > 720.47) \approx 0.08$, i.e. the top 8%, $x = 8$

Q4h
$$Pr(baaa) = 1 \times 0.4 \times 0.9 \times 0.9 \approx 0.32$$

Q4i
$$Pr(aaab) + Pr(aaba) + Pr(aaaa)$$

= 1×1×0.9×0.1+1×1×0.1×0.4+1×1×0.9×0.9 ≈ 0.94

Q4j
$$Pr(aaaa) = 1 \times 0.9 \times 1 \times 0.9 = 0.81$$

 $Pr(aaab) + Pr(abaa) = 1 \times 0.9 \times 1 \times 0.1 + 1 \times 0.1 \times 1 \times 0.9 = 0.18$
 $Pr(abab) = 1 \times 0.1 \times 1 \times 0.1 = 0.01$
 $E(X) = 4 \times 0.81 + 3 \times 0.18 + 2 \times 0.01 = 3.8$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors