Information-Theoretic Methods in Computer Science (CS1.502)

Spring 2023, IIIT Hyderabad Assignment 3

Abhinav S Menon

Problem 1

Part 1

We define, for an arbitrary permutation τ ,

$$N_1(\sigma,\tau) = |\{1,2,3,4\} - \{\sigma(\tau(1)), \sigma(\tau(2)), \dots \sigma(\tau(k-1))\}| = |[4] - P(k)|,$$

where $k = \tau^{-1}(1)$.

We need to show that for all τ such that $\tau(1) = j$, we have $N_1(\sigma, \tau) = 5 - j$.

We note first that if $\tau(1) = j$, then $j = \tau^{-1}(1) = k$.

Now, since σ and τ are both permutations, their composition $(\sigma \circ \tau)$ must be one also. Therefore P(j), being a permutation of [j-1], must have exactly (j-1) elements.

Furthermore, since $P(j) \subseteq [4]$, we can say that

$$|[4] - P(j)| = 4 - |P(j)|.$$

Therefore $|N_1(\sigma, \tau)| = 4 - (j - 1) = 5 - j$, QED.

Part 2

We have shown in Part 1 that

$$|N_1(\sigma,\tau)| = 5 - \tau^{-1}(1).$$

Therefore, all τ such that $|N_1(\sigma,\tau)| = j$ are such that $\tau^{-1}(1) = 5 - j$, so $1 = \tau(5-j)$.

Therefore, the mapping of 5-j is fixed, and so it is left to map the set $[4]-\{5-j\}$ to $\{2,3,4\}$. The number of such permutations is $|S_3|=3!=6$, QED.

Question 2

Let $Y \sim \mathcal{N}(\mu, \sigma^2)$. Since entropy is independent of the mean, we can set $\mu = 0$ WLOG.

Let $X \sim P_X$ be an arbitrary r.v. with variance σ^2 .

Now, note that

$$D(X \mid\mid Y) = \int_{\mathbb{R}} p_X(t) \log \frac{p_X(t)}{p_Y(t)} dt$$
$$= \int_{\mathbb{R}} p_X(t) \log p_X(t) dt - \int_{\mathbb{R}} p_X(t) \log p_Y(t) dt$$
$$= -h(X) - I.$$

The value of I can be computed as follows:

$$\begin{split} I &= \int_{\mathbb{R}} p_X(t) \log p_Y(t) dt \\ &= \int_{\mathbb{R}} p_X(t) \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{t^2}{2\sigma^2}} \right) dt \\ &= \int_{\mathbb{R}} p_X(t) \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) dt + \int_{\mathbb{R}} p_X(t) \log e^{-\frac{t^2}{2\sigma^2}} dt \\ &= -\frac{1}{2} \log(2\pi\sigma^2) \int_{\mathbb{R}} p_X(t) dt - \frac{\log e}{2\sigma^2} \int_{\mathbb{R}} t^2 p_X(t) dt \\ &= -\frac{1}{2} \log(2\pi\sigma^2) \cdot 1 - \frac{1}{2} \log e \\ &= -\frac{1}{2} \log(2\pi e\sigma^2). \end{split}$$

Therefore

$$D(X || Y) = -h(X) + \frac{1}{2}\log(2\pi e\sigma^2).$$

Since KL-divergence is always nonnegative, we can conclude that

$$h(X) \le \frac{1}{2}\log(2\pi e\sigma^2),$$

QED.

Question 3

Consider the case where P_X and Q_X are binary distributions. Let $p=P_X(0)$ and $q=Q_X(0)$. Furthermore, let $p=\frac{1}{2}$ and $q=\frac{1}{2}+\varepsilon$.

Now, we have that

$$D_2(P_X \mid\mid Q_X) \ge \frac{k}{\ln 2} \mathrm{TV}(P_X, Q_X)^2.$$

From this, we can say that

$$g_p(q) = D_2(P_X || Q_X) - \frac{k}{\ln 2} \text{TV}(P_X, Q_X)^2 \ge 0,$$

i.e., 0 is a minimum of $g_p(q)$, and so $\frac{d}{dq}g_p(q) = 0$. Now,

$$g_p'(q) = 0 \implies \frac{p}{\ln 2} \log \frac{p}{q} + \frac{1-p}{\ln 2} \log \frac{1-p}{1-q} - \frac{k}{\ln 2} (p-q)^2 = 0$$

$$\implies -\frac{p}{q} + (1-p) \frac{1}{1-q} + 2k(p-q) = 0$$

$$\implies k = \frac{1}{2(p-q)} \left(\frac{p}{q} - (1-p) \frac{1}{1-q} \right)$$

$$\implies k = \frac{1}{2(p-q)} \left(\frac{p(1-q) - q(1-p)}{q(1-q)} \right)$$

$$\implies k = \frac{1}{2(p-q)} \left(\frac{p-q}{q(1-q)} \right)$$

$$\implies k = \frac{1}{2q(1-q)}$$

WLOG, we can say that $q \leq \frac{1}{2}$. Therefore,

$$q(1-q) \le \frac{1}{4}$$

$$\implies \frac{1}{q(1-q)} \ge 4$$

$$\implies k > 2,$$

QED.

Question 4

We have two probability distributions P_X, Q_X and a function $f: \mathcal{X} \to [0, B]$. We need to show that

$$|\mathbb{E}_{P_X}[f(X)] - \mathbb{E}_{Q_X}[f(X)]| \le B \cdot \mathrm{TV}(P_X, Q_X).$$

We can proceed as follows.

$$\begin{split} |\mathbb{E}_{P_X}[f(X)] - \mathbb{E}_{Q_X}[f(X)]| &= \left| \sum_{\mathcal{X}} P_X(x) f(x) - \sum_{\mathcal{X}} Q_X(x) f(x) \right| \\ &= \left| \sum_{\mathcal{X}} f(x) (P_X(x) - Q_X(x)) \right| \\ &= \left| \sum_{\mathcal{X}} (P_X(x) - Q_X(x)) \left(f(x) - \frac{B}{2} \right) + \sum_{\mathcal{X}} (P_X(x) - Q_X(x)) \cdot \frac{B}{2} \right| \\ &= \left| \sum_{\mathcal{X}} (P_X(x) - Q_X(x)) \left(f(x) - \frac{B}{2} \right) + 0 \cdot \frac{B}{2} \right| \\ &= \left| \sum_{P_X(x) > Q_X(x)} (P_X(x) - Q_X(x)) \left(f(x) - \frac{B}{2} \right) \right| \\ &- \sum_{P_X(x) \geq Q_X(x)} (Q_X(x) - P_X(x)) \left(f(x) - \frac{B}{2} \right) \right| \\ &\leq \left| \sum_{P_X(x) \geq Q_X(x)} (P_X(x) - Q_X(x)) \left(f(x) - \frac{B}{2} \right) \right| \\ &+ \left| \sum_{P_X(x) \leq Q_X(x)} (Q_X(x) - P_X(x)) \left(f(x) - \frac{B}{2} \right) \right| \\ &= \left| f(x) - \frac{B}{2} \right| \left| \sum_{\mathcal{X}} P_X(x) - Q_X(x) \right| \\ &\leq \frac{B}{2} \left| \sum_{\mathcal{X}} P_X(x) - Q_X(x) \right| \\ &= B \cdot \text{TV}(P_X, Q_X), \end{split}$$

QED.