Reduce:

Replace each prime by a smaller cube contained in it.

- $|\underline{F}| = |F|$ after reduce
- Since some of cubes of <u>F</u> are not prime, Expand can be applied to <u>F</u> to yield a different cover that may have fewer cubes.
- $|\underline{F}| \leq |F|$ after Expand
- Move from locally optimal solutions to a better one.

- Gives two possibilities for decreasing the size of cover
 - The reduced cube can be covered by a neighboring cube after the EXPAND.
 - The reduced cube can expand in different direction to cover some neighboring cube.

Definition:

Smallest cube $\underline{C_i}$ is a cube containing all minterms in $\underline{C_i}$ not covered by D and $\underline{F} \setminus \underline{C_i}$

$$F(i) = (F \setminus C_i) \cup D$$

 $\underline{C_i} = \text{smallest cube containing } (C_i \cap F(i)')$ $= \underbrace{SCC(C_i \cap F(i)')}$

 $(F \setminus C_i) \cup \underline{C_i}$ is still a cover.

$$\underline{C}_{i} = SCC(C_{i} \cap F(i)')$$

$$?= SCC(C_{i}) \cap SCC(F(i)')$$

$$?= C_{i} \cap SCC(F(i)')$$

$$Ex:$$

$$F = C_{1} + C_{2}$$

SCC(F(1)') = 1

 $C_1 \cap 1 = C_1$

 $F(1) = F - C_1 = C2$

But, $SCC(C_1 \cap F(1)') = a \text{ single vertex } x$ so $C_1 \cap SCC(F(1)') \neq SCC(C_1 \cap F(1)')$

$$\underline{C_i} = SCC(C_i \cap \overline{F(i)}) = C_i \cap SCC(\overline{F(i)_{C_i}})$$

$$SCC(\overline{F(i)_{C_i}})$$

- 1. Complementation
- 2. Smallest cube containing problem
 - => Find a cube containing the complement of a cover

Find a Cube Containing the Complement of a Cover

• Proposition: The smallest cube c containing the complement of a cover F, $F \neq 1$, satisfies

$$I(C)_i = 0 \text{ if } x_i \subseteq F$$

$$1 \text{ if } x_i' \subseteq F$$

$$2 \text{ otherwise}$$

For general function, the above test employ difficult covering test. However, if it is a unate function, all test can be done easily.

Proposition: Let F be a unate cover. Then $x_i \subseteq F$ if and only if there exists a cube, $c_i \in F$, such that

$$I(x_i) \subseteq I(c_k)$$

pf: A single output unate cover contains all primes of that function.

ex:

Find the smallest cube containing F'.

$$x_1 \notin F$$

2 2 0

$$x_1' \notin F$$

$$\longrightarrow$$
 $c_1 = 2$

$$x_2 \in F$$

$$\rightarrow$$
 $c_2 = 0$

$$x_3' \in F$$

$$\rightarrow$$
 $c_3 = 1$

$$\underline{C} = (201)$$

Smallest Cube Containing Problem

• Let
$$\overline{F(i)} = g$$

 $SCC(g)$
 $= SCC(x_jSCC(g_{xj}) + x_j'SCC(g_{xj'}))$

• R-merge

Let a and b be two cubes. Then, the smallest cube C containing {a, b} is a U b , where U denotes the coordinate wise union.

ex:
$$a = 0 1 2 1$$

 $b = 1 1 2 0$
 $a \cup b = 2 1 2 2$

ex:

$$F = 2\ 2\ 2\ 0$$

$$1\ 2\ 1\ 2$$

$$1\ 1\ 2\ 2$$

$$0\ 0\ 2\ 2$$

$$0\ 2\ 1\ 2$$
reduce $C_1 = 2\ 2\ 2\ 0$

$$F(1) = 1 \ 2 \ 1 \ 2$$
$$1 \ 1 \ 2 \ 2$$
$$0 \ 0 \ 2 \ 2$$
$$0 \ 2 \ 1 \ 2$$

$$F(1)_{C1} = \begin{array}{rrr} 1 & 2 & 1 & 2 \\ & & 1 & 1 & 2 & 2 \\ & & 0 & 0 & 2 & 2 \\ & & & 0 & 2 & 1 & 2 \end{array}$$

$$\underline{c_1} = SCC(\overline{F(1)_{c_1}}) \cap c_1$$

$$= 2 \ 2 \ 0 \ 2 \cap 2 \ 2 \ 2 \ 0$$

$$= 2 \ 2 \ 0 \ 0$$

- order dependent
 - reduce the largest cube
 - reduce those cubes that are nearest to it.
- compute pseudo distance
 (the number of mismatch)
 Ex:
 0 1 0 1

 $0\ 2\ 1\ 1$ PD = 2