Universidade de São Paulo Escola Politécnica Curso de Engenharia de XXX

O Efeito Borboleta

Rafael Ribeiro Correia, rafael.correia.poli@gmail.com Fabiano Shimura, fabianoshimura@hotmail.com

.

RELATÓRIO apresentado ao Professor Alexandre Roma do MAP/IME-USP como atividade da disciplina MAP3122 - Métodos Numéricos.

São Paulo - SP

Resumo

Este é um "boneco" de um relatório na forma próxima ao que gostaria. As seções não são as mesmas que pedi mas já representa um bom avanço. Modifiquem à vontade. Encontrei fazendo google it em "modelo de relatório em latex". Encontrei também sugestões de editores inteligentes: o Kile para usuários de linux e TeXnic-Center para usuários de Windows. Eu uso o Kile. O para windows eu não conheço. Consta que ambos são programas gratuitos.

Sumário

1	Introdução				
2	EDOs e Condições Inicias	2 3 3 3			
3	Metodologias	2			
4	Análise	2			
	4.1 Euler	2			
	4.1.1 Equações	2			
	4.1.2 Tabela	3			
	4.2 Runge-Kutta	3			
	4.2.1 Equações	3			
	4.2.2 Tabela	3			
	4.3 Gráficos	3			
5	Spline	6			
6	Conclusão	6			
7	Apêndice	6			
8	Exemplos de Equações	6			
	8.1 Equações simples	6			
	8.2 Equações com mais de uma linha	6			
	8.3 Sistema linear	6			
9	Tabelas	8			
	9.1 Tabela Simples	8			
	9.2 Tabela mais elaborada	8			
10	Edição	8			
11	Inserir figuras				
12	2 Conclusões				

1 Introdução

- $\bullet\,$ introduzir o problema a ser estudado
- apresentar trabalhos relacionados
- apresentar motivação

- apresentar objetivos
- último parágrafo deve conter a organização do documento
- novo item

2 EDOs e Condições Inicias

3 Metodologias

4 Análise

A seguir apresentaremos os gráficos obtidos a partir da resolução das equações diferenciais pelas metodologias aprensentadas no item anterior.

É importante notar que apresentamos apenas um gráfico para cada intervalo de tempo (apesar de termos duas metodologias) pois os resultados foram extremamente parecidos.

4.1 Euler

4.1.1 Equações

Equações Euler

$$\frac{dx}{dt} = -10x + 10y$$

$$\frac{dy}{dt} = 28x - y - xz$$

$$\frac{dz}{dt} = xy - \frac{8}{3}z$$

Discretização Euler

$$\Delta t = \frac{t_f - t_i}{n}$$

Aplicando nas equações

$$x_{k+1} = x_k + h(-10x_k + 10y_k)$$

$$y_{k+1} = x_k + h(28x_k - y_k - x_k z_k)$$

$$z_{k+1} = z_k + h(x_k y_k - \frac{8}{3}y_k)$$

Matriz

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} \begin{bmatrix} 1 - 10h & 10h & 0 \\ 28h & 1 - h & -hx \\ hy & -\frac{8}{3}h & 1 \end{bmatrix}$$
(1)

4.1.2 Tabela

4.2 Runge-Kutta

4.2.1 Equações

4.2.2 Tabela

4.3 Gráficos

0 < t < 1

0 < t < 2

0 < t < 4

0 < t < 8

0 < t < 16

0 < t < 32

0 < t < 64

0 < t < 128

- 5 Spline
- 6 Conclusão
- 7 Apêndice

8 Exemplos de Equações

Nesta seção serão apresentados diferentes exemplos de equações.

8.1 Equações simples

Sem numeração

$$\sum_{i=1}^{100} \frac{2^{i-1}}{4}$$

Com numeração

$$\int_{0}^{100} \sqrt[4]{\frac{2n}{7}} \tag{2}$$

$$M^{-1}(AD^{-1}A^T)M^{-T}\bar{y} = M^{-1}(AD^{-1}(r_d - X^{-1}r_a) + r_p), \tag{3}$$

8.2 Equações com mais de uma linha

min
$$c^T x$$
 (4)
s.a. $Ax = b$
 $x \ge 0$,

onde $A \in \mathbb{R}^{m \times n}, \, b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Referenciando a equação (4)

8.3 Sistema linear

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 (5)

$$d_i = \left\{ \begin{array}{ll} 1 & \text{se } i = 0 \\ 2 & \text{caso contrário} \end{array} \right\}$$

9 Tabelas

9.1 Tabela Simples

12	13	14
15	16	17

Tabela 1: Título da tabela

9.2 Tabela mais elaborada

	CCF preconditioner		Number of nonzeros	
Problem	η	$\frac{n(AD^{-1}A^T)}{nrow}$	FCC	Cholesky
ELS-19	-11	31	87750	3763686
SCR20	-12	31	103179	2591752
NUG15	-12	32	54786	6350444
PDS-20	15	5	625519	7123636

Tabela 2: Título da Tabela.

Referenciando a tabela 2.

10 Edição

Comando para preservar a formatação do texto.

11 Inserir figuras

Para citar referências bibliográficas [1], [2].

12 Conclusões

Apresentar as conclusões finais.

Agradecimentos Agradecimentos aos colaboradores, professores que eventualmente vocês procuraram para ajudar em algum aspecto do modelo de vocês, colega que ajudou a compor alguma parte do trabalho e assim por diante.

Referências

[1] I. Adler, N. K. Karmarkar, M. G. C. Resende, and G. Veiga. An implementation of Karmarkar's algorithms for linear programming. *Mathematical Programming*, 44:297–335, 1989.

[2] F. C. Carmo. Análise da influência de algoritmos de reordenação de matrizes esparsas no desempenho do método $CCCG(\eta)$. Dissertação de mestrado, Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, 2005.