MONTE- CARLO SIMULATIONS

1 Pathmia - Beale.

2 ArXiv 1101.3281

Our objective here is to simulate the 2D Ising model on a lattice and thereby compute the 'exitical coefficients'.

SAMPLING .

At a given temperature, various microscopic states occur with a probability distribution $P_e(\beta) = e^{-\beta E}$ where E is the total energy of the entire single' configuration.

An average of any quantity Q is provided by $\langle Q \rangle = \sum_{\{s_i\}} Q e^{-\beta E}$

For using (nearest neighbor) $E = -7 \sum_{i=1}^{n} S_{i}S_{j}$

Thus It is average can be found after randomly aboosing \mathbb{R}^{t} .

micro states $\mathcal{A} = \{S_i\}$ and thereafter performing average, over a collection of samples $\{X_i\}$ weighted by \mathbb{C}^{-BE} .

The idea in MC is: instead of choosing configs randomly and then with them with $P_r(\beta)$, choose configurations with a probability $e^{-\beta E}$ and weigh them evenly.

Choose a sample \rightarrow keep it or throw it away with probability $P_r(B)$.

(Decision is made using a (pseudo) random no generator and comparing it with $P_r(B)$ [More later]).

Principle of Detailed Balonce

Consider dynamics - time evolution.

- → System prepared in a given microstate and allowed Hamiltonian time Lrobution, at some temperature (B).
- > Ergodicity ensures system moves over various microstates, and equilibrates at late times.

Let $P_{\alpha}(\beta_{3}^{2} \propto)$ = Poobability system in microstate \propto when in equilibrium at temperature β .

-> Out-of-equilibrium dynamics -> Allow discreet time steps.

Assume Markovian process: Each time-step only determined by config 9n previous time step.

Allow the system to avolve according to discrete stochastic rate agn.

Probability during out-of-equilibrium dynamies. $P(\beta_3^{\circ} \propto_3^{\circ} t = t+1) = \sum_{\alpha'} P(\beta_3^{\circ} \propto_3' t) W(\alpha' \rightarrow \alpha). \longrightarrow \mathbb{R}^{d}$

{ A random }

> walk in the

(Space of

where $W(\alpha' \to \alpha)$ is the <u>stationary</u> transition probability from microstat α' to α .

To ensure Ergodicity: $\lim_{t\to\infty} P(\beta; \alpha, t) = P_{eq}(\alpha)$

① We need a balance condition of $[take t \rightarrow \infty | limito of sate eqn.]$

$$\sum_{\alpha'} P_{eq}(\beta; \alpha') W(\alpha' \rightarrow \alpha) = P_{eq}(\alpha) \sum_{\alpha'} W(\alpha \rightarrow \alpha') \begin{cases} \text{If this is 1} \\ \text{eq. (1) is} \\ \text{satisfied} \end{cases}$$

probability of going from

a given state to any other state of.

2) Every microstate should be reachable starting from another in finite time.

special way to satisfy the balance condition

is detailed balance

$$P_{eq}(\beta; \alpha) W(\alpha \rightarrow \alpha') = P_{eq}(\beta; \alpha') W(\alpha' \rightarrow \alpha).$$

Time reversability

we can write

$$W(\alpha \rightarrow \alpha') = e(-\beta \Delta E) W(\alpha' \rightarrow \alpha).$$

Im general W has 2 factors W= Wselect Waccept One spin is selected atatime with equal

=> Sample states by performing a stochastic random walk among

equilibrium mierostates.
$$W(\alpha \Rightarrow \alpha') = min(1, e^{-\beta \Delta E})$$

Metropolis Algorithm: A solution to detailed balance condition.

$$W(x \rightarrow x) = 1$$

if
$$\Delta E = E_{\alpha} - E_{\alpha'} \leq 0$$
.

$$W(\alpha \rightarrow \alpha') = \exp(-\beta \Delta E)$$
 if $\Delta E > 0$.

Implementation of steps in a Computer (keep 2D Ising in mind).

be explicitly evaluated if we know all the spins.

- Start with $\alpha = \alpha$. at t=0 for a given β : α . Can be all up for any β .
- Ensure periodic boundary conditions.
- Flip spin no. 1 (S_1) [going from $\alpha \rightarrow \alpha'$] \rightarrow evaluate $\exp(-\beta \Delta E)$. keep new config with probability

$$W(\alpha \rightarrow \alpha') = 1$$
 if $\Delta E = E_{\alpha} - E_{\alpha'} \leq 0$.
 $W(\alpha \rightarrow \alpha') = \exp(-\beta \Delta E)$ if $\Delta E > 0$.

Determine by selecting a random no.

hetween 0-1, it r < exp(BDE) then accept.

4	Repeat 1 MC step	for spins locate	ed at <u>all</u> sites \Rightarrow 1MC <u>cycle</u> .
	1 MC cycle =	1 'time' step	[Monte-Carlo time].

(5) Repeat MC cycle for large t_m (eg. $t_m \sim 10^3 - 10^4$ - more near PT). This is Step for equilibriation.

Store/compute physical quantity and throwaway (eg).

Stort collecting sample configurations after t_m.

→ Wait for to in between sollection of sample to vemove auto-correlations between samples. [Collect independent samples]. You may consider auto correlations in Energy/magnetization. [Q]

Auto correlation in $Q = A_0(t_0) = \frac{\langle Q(i+t_0)Q(i) \rangle - \langle Q \rangle}{\langle Q^2 \rangle - \langle Q \rangle^2}$ averages are over reference.

Ingeneral, $A_{Q}(t_{0}) \sim e^{-t/\tau_{Q}}$ $T_{Q}^{(m)} := Anto coneation fine.$

Waiting time between Sample collection $C_Q = t_m^{(g)} (10^2)$ Equilibriation time $t_m^{(g)}$ a few orders of magnitude more than auto correlation time.

F) Collect large (N) no of samples (N=10K). for a set of values of Temperature (to ensure sample average = actual average).

Conside T at an interval of 0.2 for a reasonable range which includes To

(8) Measure physical quantities from sample after averaging (for every T).
eg: Probability distribution of magnetization below & above to

Histogram

Distribution.

Ex. plot probability distribution of Energy.

 $m = \frac{1}{N} \sum_{o} S_{i}$

m=0 m=1 (sample)

As we increase L (no. of lattice points) transition becomes sharper.

m=±1 are treated uniformly

$$\chi = \frac{\partial m}{\partial h} \Big|_{h \to 0} = \frac{N}{T} \left(\langle m^2 \rangle - \langle ImI \rangle^2 \right)$$

Maxima shifts towards To value as we increase L.

- (10) After ploting m, X, C for the system
 - (i) estimate the scaling exponents α, β, ℓ .
 - (ii) Also estimate the reniversal ratios χ_{+}/χ_{-} , C_{+}/c_{-}

For computing scaling coefficients (for eg.X), you may use the following method:

Similarly, find the exponent below Tc.

As we increase to we have a better fit to straight line near to. (In Log-log plot).

(1) Two point function near Tc.:

$$G_{i}(r_{j}) = \frac{1}{L} \left\langle \left(S_{i} - \left\langle S_{i} \right\rangle - \left\langle S_{j} \right\rangle \right) \left(S_{j} - \left\langle S_{j} \right\rangle \right) \right\rangle$$

where < > denotes average over all sample confige at a given temperature T.

One of the points in 2pt func. is averaged over all lattic points.

For large of display a log-log plot of G(r;) to obtain scaling coefficient y.