IB-LBM coding session: brief introduction

Department of Microstructure Physics and Metal Forming 40237 Düsseldorf, Germany

t.krueger@mpie.de

LBM Workshop (Edmonton, Canada), August 22-26, 2011

General comments

- General comments
- 2 Part 1: deformable particle (sphere/RBC)
- Part 2: quasi-rigid cylinder

Outline

- General comments
- 2 Part 1: deformable particle (sphere/RBC
- Part 2: quasi-rigid cylinder

IB-LBM coding sessions

part 1: deformable particle (sphere/RBC) in simple shear flow

Part 1: deformable particle (sphere/RBC)

- tank-treading/tumbling
- lateral migration

part 2: rigid cylinder in Poiseuille flow

- streamline penetration
- Kármán vortex street

Model properties (1)

- D2Q9 BGK lattice Boltzmann model
- Ladd/Guo forcing
- immersed boundary method with bi-linear interpolation
- elastic forcing model

Model properties (2)

deformable cylinder

- elastic springs between neighboring nodes
- elastic 'bending springs' between neighboring links
- freely moving in space

rigid cylinder

- elastic penalty force for each node, $\boldsymbol{F}_i \propto -(\boldsymbol{x}_i \boldsymbol{x}_i^0)$
- fixed in space ⇒ no translation/rotation

Algorithm structure

simulation initialization

- specify simulation parameters (user)
- allocate memory and initialize variables

Algorithm structure

Part 2: quasi-rigid cylinder

simulation initialization

- specify simulation parameters (user)
- allocate memory and initialize variables

simulation loop

- compute node forces from deformation via constitutive model
- spread node forces to fluid lattice
- perform LBM including external forcing
- interpolate fluid velocity to nodes
- update node positions
- write data to disk if desired
- go back to first step

Remarks

code and compiler

- single file, parameters hard-coded ⇒ compile after change
- o compiler call:

execute without parameters: ./binary

folders and files

- write VTK data into folders
 - vtk fluid
 - vtk_particle
 - ⇒ ParaView
- write ASCII data for force, position, velocity into data.dat
 ⇒ gnuplot, Tecplot

Outline

- General comments
- 2 Part 1: deformable particle (sphere/RBC)
- Part 2: quasi-rigid cylinder

Tank-treading in shear flow

- find valid parameters for tank-treading
- observe tank-treading rotation and streamlines
- visually inspect results with ParaView

Lateral migration in Poiseuille flow

- find valid parameters for lateral migration
- observe migration velocity
- visually inspect results with ParaView

Hints

- compile with preprocessor command
 - #define DEFORMABLE_CYLINDER or #define DEFORMABLE_RBC
- small system size recommended, e.g., 30 × 30 (faster)
- use small particle rigidities (deformability important)
- for lateral migration
 - zero wall velocity
 - finite gravity
 - position particle close to one wall
- for tank-treading
 - finite wall velocity
 - zero gravity
 - position particle on centerline

Outline

- General comments
- Part 1: deformable particle (sphere/RBC
- 3 Part 2: quasi-rigid cylinder

Steady flow around cylinder

- find valid parameters for stready flow
- visually inspect results with ParaView

Kármán vortex street

- find valid parameters for vortex street
- identify & investigate numerical problems
- obtain lift & drag forces
- visually inspect results with ParaView

Hints

- compile with preprocessor command #define RIGID_CYLINDER
- large system size recommended, e.g., 300×60 (more stable)
- use higher particle rigidity (rigidity important)
- for vortex street
 - zero wall velocity
 - finite gravity
 - position particle close to but not on centerline
- for steady flow
 - zero wall velocity
 - finite gravity
 - position particle on centerline