Cinématique du solide et des solides en contact

Table des matières

Ĺ	champ des treesses a all seriae		
	1.1	Modèle du solide	
	1.2	Formule de Varignon	
	1.3	Torseur cinématique	
2	Mo	uvments d'un solide	
	2.1	Solide en translation	
	2.2	Solide en rotation autour d'u axe fixe	
	2.3	Solide en rotation autour d'un axe de direction fixe	
	2.4	Mouvement général d'un solide	
	2.5	Mouvement plan	
3	Con	ntacts entre solides	
	3.1	Nature de contact	
	3.2	Vitesse de glissement	
	3.3	Roulement et pivotement	
	3.4	Roulement sans glissement	
Į.	Lois de composition des vitesses et des accélérations		
		Loi de composition des vitesses	
		Loi de composition des accélérations	

1 Champ des vitesses d'un solide

1.1 Modèle du solide

•Définition : Un solide (solide indéformable) est un système matériel indéformable, la distance entre deux points quelconque du système reste constante au cours du temps.

1.2 Formule de Varignon

- A et B deux points fixes du solide (S)
- R : référentiel galiléen
- R' : référentiel lié au solide
- $\overrightarrow{\omega}(R'/R)$: vecteur rotation du solide dans (R)

•
$$\left(\frac{\overrightarrow{AB}}{dt}\right)_R = \left(\frac{\overrightarrow{AB}}{dt}\right)_{R'} + \overrightarrow{\omega}(R'/R) \wedge \overrightarrow{AB} = \overrightarrow{\omega}(R'/R) \wedge \overrightarrow{AB}$$

•
$$\left(\frac{\overrightarrow{AB}}{dt}\right)_R = \overrightarrow{v}(B/R) - \overrightarrow{v}(A/R)$$

$$\overrightarrow{v}(B/R) = \overrightarrow{v}(A/R) + \overrightarrow{\omega}(R'/R) \wedge \overrightarrow{AB}$$

1.3 Torseur cinématique

Le champ des vitesses d'un solide est décrit par un torseur cinématique dont les éléments de réduction sont

- Résultante : vecteur rotation du solide $\overrightarrow{\omega}$
- Moment : vitesse en un point dus solide \overrightarrow{v}
- •Remarque :le solide est un système à 6 degrés de liberté
 - 3 degrés de liberté de translation, associés aux aux trois coordonnées d'un point d'un solide
 - 3 degrés de liberté d'orientation , associés aux rotaions d'axes liés au solide

2 Mouvments d'un solide

2.1 Solide en translation

• Définition : Un solide est en translation dans un référentiel R si le vecteur de rotation du solide dans R est nul.

$$\overrightarrow{\omega}(S/R) = \overrightarrow{0}$$

On peut distinguer entre

- translation rectiligne : les points du solide décrivent une courbe rectiligne
- translation circulaire : les points du solide décrivent des cercles.

2.2 Solide en rotation autour d'u axe fixe

• (S) en rotation de l'axe (Oz) de (R)

• $\overrightarrow{\omega}$: vecteur rotation de (S) par rapport à (R)

• O: un point de l'axe de rotation (Oz)

$$\overrightarrow{v}(O/R) = \overrightarrow{0}$$

$$\overrightarrow{v}(M/R) = \overrightarrow{\omega}(S/R) \wedge \overrightarrow{OM}$$

2.3 Solide en rotation autour d'un axe de direction fixe

Lorsque un solide est en rotation autour d'un axe de direction fixe, son mouvement se décompose en :

- une rotation dans son référntiel barycentrique autour d'un axe de même direction
- ullet une translation de son centre d'inartie G
- •Exemple : roue qui roule sur un plan la roue présente deux dégrés de liberté
 - l'abscisse x du centre de masse
 - l'angle $\theta = (\overrightarrow{e}_x, \overrightarrow{GM})$ où M est un point fixe sur la roue

2.4 Mouvement général d'un solide

- •Axe instantané de rotation : l'axe instantané de rotation est le lieu des points du solide où le vecteur vitesse \overrightarrow{v} est colinéaire au vecteur vitesse angulaire $\overrightarrow{\omega}$.
- ▶ le mouvement le plus général d'un solide est la composition, à chaque instant, d'une rotation à vitesse angulaire $\overrightarrow{\omega}$ autour de l'axe instantané de rotation et d'une translation de vitesse \overrightarrow{v} le long de cet axe.
- ▶ on parle du mouvement hélicoïdal si $\overrightarrow{\omega}$ et \overrightarrow{v} sont constants.

2.5 Mouvement plan

Un solide est en mouvement plan si les vitesses de tous ses points sont colinéaires à un plan fixe donné.

3 Contacts entre solides

3.1 Nature de contact

Le contact entre deux solides peut se faire :

- selon une surface (un livre glisse sur une table plane)
- selon une ligne (cylindre roule sur un plan)
- en un point (boule en mouvement sur une table)

3.2 Vitesse de glissement

Considérons un contact ponctuel entre deus solides (S_1) et (S_2)

- \bullet I: intersection des surfaces des deux solides
- I_1 : point matériel appartenant au solide (S_1) et coïncidant à l'instant t avec I
- I_2 : point matériel appartenant au solide (S_2) et coïncidant à l'instant t avec I
- vitesse de glissement : On définit la vitesse de glissement de (S_2) par rapport à (S_1) par

$$\overrightarrow{v}_g(S_2/S_1) = \overrightarrow{v}(I_2) - \overrightarrow{v}(I_1)$$

•Remarque : la vitesse de glissement est indépendante du référentiel

3.3 Roulement et pivotement

• $\overrightarrow{\omega}(S_2/S_1)$: vecteur rotation du solide (S_2) par rapport à (S_1)

$$\overrightarrow{\omega}(S_2/S_1) = \overrightarrow{\omega}(S_2/R) - \overrightarrow{\omega}(S_1/R)$$

- $\overrightarrow{\omega}_T$: composante tangentielle de $\overrightarrow{\omega}(S_2/S_1)$, elle appartient au plan (π) tangente aux deux solides en point de contact I, on l'appelle vitesse angulaire de roulment
- $\overrightarrow{\omega}_N$: composante normale de $\overrightarrow{\omega}(S_2/S_1)$,on l'appelle vitesse angulaire de pivotement

$$\overrightarrow{\omega}(S_2/S_1) = \overrightarrow{\omega}_N + \overrightarrow{\omega}_T$$

3.4 Roulement sans glissement

Un solide (S_2) ,en contact avec (S_1) ,roule sans glisser lorsqu'en tout point de contact la vitesse de glissement est nulle.

$$\overrightarrow{v}_g(S_2/S_1) = \overrightarrow{0}$$

4 Lois de composition des vitesses et des accélérations

- R : référentiel absolue (référentiel d'étude)
- R': référentiel relatif en mouvement dans (R), caractérisé par le cevteur vitesse $\overrightarrow{v}(O'/R)$ et le vecteur vitesse angulaire $\overrightarrow{\omega}$
- M : point matériel

4.1 Loi de composition des vitesses

$$\overrightarrow{v}(M/R,t) = \overrightarrow{v}(M/R',t) + \overrightarrow{v}_e(M,t)$$

- $\overrightarrow{v}(M/R,t)$: vitesse absolue du point M

$$\overrightarrow{v}_e(M,t) = \overrightarrow{v}(O'/R,t) + \overrightarrow{MO'} \wedge \overrightarrow{\omega}(t)$$

• $\overrightarrow{v}(M/R',t)$: vitesse relative du point M

4.2 Loi de composition des accélérations

$$\overrightarrow{a}(M/R,t) = \overrightarrow{a}(M/R',t) + \overrightarrow{a}_e(M,t) + \overrightarrow{a}_c(M,t)$$

- $\overrightarrow{a}(M/R,t)$: accélération absolue du point M
- $\overrightarrow{a}(M/R',t)$: accélération relatif du point M
- $\bullet \ \overrightarrow{d}_{e}(M,t)$: accélération d'entraı̂nement du point M

$$\overrightarrow{a}_{e}(M,t) = \overrightarrow{a}(O'/R,t) + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{O'M}) + \frac{d\overrightarrow{\omega}}{dt} \wedge \overrightarrow{O'M}$$

 $\bullet \ \overrightarrow{a}_{c}(M,t)$: accélération de Coriolis

$$\overrightarrow{a}_c(M,t) = 2\overrightarrow{\omega} \wedge \overrightarrow{v}(M/R',t)$$

4.3 Composition des vecteurs rotations

- $\overrightarrow{\omega}(S/R)$: vecteur de rotation d'un solide dans (R)
- $\overrightarrow{\omega}(S/R')$: vecteur de rotation d'un solide dans (R')
- $\overrightarrow{\omega}(R'/R)$: vecteur de rotation de (R') par rapport à (R)

$$\overrightarrow{\omega}(S/R) = \overrightarrow{\omega}(S/R') + \overrightarrow{\omega}(R'/R)$$