Lösungen Aufgaben 3.3

- **1.** Es ist ein 3 to 8 Decoder in Logisim aufzubauen. In diesem Fall soll der Decoder selbst wieder aus zwei 2 to 4 Decodern und nötigen Basis-Toren (NOT, AND, OR) aufgebaut sein.
- a) Notieren Sie die Wahrheitstabelle eines 2 to 4 Decoders, der einen Enable- und zwei Selektoreingänge S0 und S1 aufweist. Der jeweils ausgewählte Ausgang Yi soll (für Enable = 1) eine 1 aufweisen. Enable = 0 bewirke, dass alle Ausgänge auf 0 stehen.

Enable	S1 S0	Y3 Y2 Y1 Y0
0	X X	0 0 0 0
1	0 0	0 0 0 1
1	0 1	0 0 1 0
1	1 0	0 1 0 0
1	1 1	1 0 0 0

b) Wie sieht der 2 to 4 Decoder mit Grundgattern realisiert aus?

c) Testen Sie den 3 to 8 Decoder (mit Enable, S0 bis S2 und Yi-Ausgängen) in Logisim auf Korrektheit. Für Enable = 0 sollten alle Ausgänge 0 aufweisen.

Überlegungen mittels der Wahrheitstabelle des 3:8-Decoders:

Enable	S2	S1	S0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	х	X	X	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

Enable und Ausgänge **hoch-aktiv**.

In der Wahrheitstabelle des 3:8-Decoders lassen sich die Teile der Wahrheitstabellen der 2:4-Decoder finden. Rot: oberer Decoder, blau: unterer Decoder. Mit diesen und den AND-Toren wurde obige Schaltung aufgebaut.

2. Für einen elektronischen Würfel soll eine Decodierschaltung zu Ende entworfen werden. Mit einem angeschlossenen Würfel können 8 verschiedene Muster angezeigt werden:

a) Vervollständigen Sie die Wahrheitstabelle.

S2 :	S2 = MSB, S: Augenzahl								
S2	S1	S0	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	1
0	1	1	1	0	0	1	1	0	0
1	0	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0	1
1	1	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

- b) Charakterisieren Sie in Worten jede KKNF vorerst *allgemein*. Beschreiben Sie dann in Worten das Gatter der ersten Stufe der KKNF für Y3 dieses Decoders (Typ, Anzahl Eingänge).
 - Bei jeder KKNF handelt es sich um eine Konjunktion von Disjunktionen. Beim interessierenden Gattertyp für Y3 handelt es sich um ein 3-Input OR, von denen 3 benötigt werden.
- c) Unten finden Sie eine nicht fertig implementierte Decodierschaltung mit Multiplexern. Vervollständigen Sie die Schaltung für alle Spalten Y0 bis Y6, so dass die Wahrheitstabelle erfüllt wird. Tipp: An den interessierenden Multiplexern sind alleine die Eingänge In0 bis In7 mit korrekten Werten zu versehen.

Vgl. loesungenAufgaben_3.3.circ