Μια πρόταση διδασκαλίας για την ανταλλαγή κλειδιού Diffie – Hellman (DHKE)

Παναγιώτης Γροντάς Καλλιτεχνικό Σχολείο Γέρακα

Ιστορικό

Αρχικά ως μέρος της ερευνητικής εργασίας

- 6ο ΓΕΛ Αχαρνών (2011-2012, 2013-2014)
- Με πρωτοβουλία των μαθητών

Μαθήματα επιλογής Α, Β, Γ Λυκείου

- Εφαρμογές υπολογιστών
- Εφαρμογές πληροφορικής (ΚΕΦ.10)

Σε μικρή μερίδα μαθητών Γ Γυμνασίου

Απαιτούμενος Χρόνος:

• 2-3 διδακτικές ώρες

Κίνητρο

Η ανάγκη αναδιάρθρωσης και αναβάθμισης των προγραμμάτων σπουδών

Το παράδοξο της Πληροφορικής στην εκπαίδευση

Πληροφορική ≠ Προγραμματισμός

Πρέπει να δωθεί βάρος σε θεμελιώδη προβλήματα

- ... με επιστημονικό βάθος
- ... με σημασία στην καθημερινή ζωή
- ... τα οποία είναι προσβάσιμα στους μαθητές

Ναι, υπάρχουν τέτοια προβλήματα

Και υπάρχει και πολύ υλικό ήδη διαθέσιμο

Γιατί DHKE;

Ενσωματωμένη σε συστήματα που χρησιμοποιούνται καθημερινά (SSL/TLS)

- Άρα **χρήσιμο**: εξηγεί ένα «φαινόμενο»
- Δεν είναι τεχνική γνώση

Θεμελιώδης Επιστημονική Γνώση

- Επίλυση προβλήματος 2500 ετών
- Κρυπτογραφία Δημοσίου Κλειδιού
- Βραβείο Turing 2015

This page is secure (valid HTTPS).

Απλό στην ουσία του

- Ιδιότητες δυνάμεων (εις διπλούν)
- ... διαθέσιμες και επιπλέον απλοποιήσεις

Εντυπωσιακό

• Επιτυγχάνει που φαίνεται αδύνατο

Γιατί DHKE; (2)

Ως μέρος μιας ευρύτερης εισαγωγής της κρυπτογραφίας στα προγράμματα σπουδών

- Παλαιότερες προτάσεις για συμμετρική κρυπτογραφία
- Εισαγωγή στη Κρυπτογραφία Δημοσίου Κλειδιού

Γιατί Κρυπτογραφία;

- Άμεση σχέση με θεμελιώδη προβλήματα της Πληροφορικής
- Διαθεματικότητα:
 - Μαθηματικά
 - Ιστορία
 - Ατομικές ελευθερίες στον σύγχρονο κόσμο
 - Εμπιστοσύνη πέρα από Μυστικότητα
- Ενδιαφέρει πολύ τους μαθητές!
 - Πρέπει να διδαχθεί υπεύθυνα και ισορροπημένα

Δημιουργία γενικού πλαισίου

Αποσαφήνιση εννοιών / μεθόδων κρυπτογραφίας

- Επίκληση γνώσων μαθητών:
 - Συμμετρική κρυπτογραφία
- Ιστορικά παραδείγματα:
 - Σπαρτιατική σκυτάλη
 - Κρυπτογράφημα Καίσαρα
 - Μηχανή Enigma
- Στόχος: να τονίσουμε:
 - τη σημασία και η μορφή του κλειδιού
 - την εκ των προτέρων συμφωνία κλειδιού στα συμμετρικά συστήματα
- Ερώτημα: Μπορεί να γίνει κάτι αντίστοιχο στο Διαδίκτυο;
- Γιατί όχι;

Πετυχαίνοντας το αδύνατο (με αναλογίες)

- Μυστική επικοινωνία σε ένα δωμάτιο γεμάτο κόσμο (ωτακουστές)
- Πρέπει μέσω μιας συζήτησης που παρακολουθούν και καταλαβαίνουν όλοι
- να δημιουργηθεί επιτόπου μία ξένη γλώσσα
- που να μην καταλαβαίνει κανένας άλλους
- Πρόκληση προς τους μαθητές, με επισήμανση της δυσκολίας

Η λύση (DH76): Ιδιότητες δυνάμεων

2. Επιλογή μυστικού εκθέτη α

2. Επιλογή μυστικού εκθέτη β

4.
$$k = (\gamma^{\beta})^{\alpha} = \gamma^{\alpha\beta}$$

4.
$$k = (\gamma^{\alpha})^{\beta} = \gamma^{\alpha\beta}$$

«Άχρηστες Λεπτομέρειες»: γ γεννήτορας κυκλικής ομαδας τάξης q, α , $\beta \in Zq$ «Απλά λέμε»: γ , α , β ειδικοί μεγάλοι αριθμοί

Γενικευμένο μοντέλο πρωτοκόλλου

Δημόσια συμφωνία βάσης

• Μπορεί να επιλεγούν αυθαίρετα

Επιλογή μυστικών πληροφοριών

(Ιδιωτική) Μίξη παραμέτρων 1 και μυστικού 2 και ανταλλαγή

(Ιδιωτική) Μίξη μυστικού 2 και μηνύματος 3

Επιλογή διδακτικών προσεγγίσεων για τη μίξη

- Κατανόηση
- Ασφάλεια

Μίξη με χρώματα (Singh -2001, Kahn Academy)

http://trycolors.com/

Συζήτηση για την ασφάλεια

Καταιγισμός Ιδεών (με καθοδήγηση):

- Τι πρέπει να προστατευθεί
- Επισήμανση διαχωρισμού δημοσίων από ιδιωτικά χρώματα
 - Πιθανές απαντήσεις:
 - Ιδιωτικά Χρώματα
 - Κοινό Χρώμα
- Τρόποι Επίθεσης:
 - Ανάκτηση Κοινού Χρώματος
 - Μέσω των ιδιωτικών χρωμάτων
 - Μόνο από τα δημόσια χρωμάτα
- Κατάταξη ως προς δυσκολία

Συζήτηση για την ασφάλεια (2)

Με ορολογία δυνάμεων

Επίθεση 1: Χωρίς τα ιδιωτικά κλειδιά (CDHP)

 \circ Υπολογισμός του $\gamma^{\alpha\beta}$ άπό τα γ^a , γ^β

Επίθεση 2: Διακριτός λογάριθμος (DLP)

- \circ Εύρεση α από γ^a
- \circ Εύρεση β από γ^{β}
- \circ Υπολογισμός γ $^{\alpha\beta}$

Κατάταξη ως προς τη δυσκολία (αναγωγή)

Ποιο από τα 2 προβλήματα λύνεται άμεσα αν λυθεί το άλλο;
(CDHP ≤ DLP)

Αν υπάρχει χρόνος ... πρόκληση για:

• Άλλες επιθέσεις (ΜΙΤΜ)

Δυσκολίες

Το όνομα μπερδεύει

• Δημιουργία όχι ανταλλαγή κλειδιού

Τι γίνεται μετά την ανταλλαγή;

- Η σημασία της προτετοιμασίας
- Συζήτηση για το ρόλο του κλειδιού

Σύγκρουση με προηγούμενες αναπαραστάσεις

- \circ Μήνυμα: Ο συμβολισμός για τη δύναμη (γ^{α}) μπερδεύει:
 - Προδιαγραφή πράξης: υπολογισμός δύναμης
 - Αποτέλεσμα πράξης: ένας αριθμός
 - Δημόσια πληροφορία: γ, αποτέλεσμα
 - Ιδιωτική πληροφορία: α
 - Εδώ βοηθούν τα χρώματα και αριθμητικά παραδείγματα

Δυσκολίες (2)

- Αδυναμία αποδοχής δυσκολίας διακριτού λογαρίθμου
 - Σύγχυση με συμβολισμό log (πάλι)
 - Μία συνηθισμένη συμβολική πράξη στην Β και Γ Λυκείου
 - Επειδή μπορώ να το συμβολίσω δε σημαίνει ότι μπορώ και να το υπολογίσω (εύκολα)
 - Διαφορά πραγματικών με ακέραιους
 - Για μεγάλους κατάλληλους ακέραιους λύση μόνο με εξαντλητικές δοκιμές

(Επιπλέον) Ωφέλη

Καλύτερη κατανόηση της έννοιας του υπολογισμού και διάκριση από την αναπαράστασή του

- Οι μαθητές νομίζουν ότι οι υπολογισμοί γίνονται αυτόματα
- Το μέγεθος της εισόδου επιδρά στον χρόνο ενός υπολογισμού

Εισαγωγή στον κατανεμημένο υπολογισμό

 Δύο οντότητες δουλεύουν ταυτόχρονα στην επίλυση ενός προβλήματος

(Επιπλέον) Ωφέλη (2)

Εισαγωγή στην ασυμμετρία κάποιων υπολογισμών

- Μία κατεύθυνση εύκολη
- Η άλλη δύσκολη

Εισαγωγή σε έννοιες της υπολογιστικής πολυπλοκότητας

- Δεν έχει νόημα η εξαντλητική δοκιμή λύσεων
- Πρακτικά τα επιλύσιμα προβλήματα γίνονται άλυτα (γ γυμνασίου)
- ... με θετικές και αρνητικές συνέπειες ...

Ερωτήσεις

