Energía Potencial Angular

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

Este trabajo presenta una ecuación para calcular la energía potencial angular de una partícula.

Energía Potencial Angular

La energía potencial angular U_a de una partícula A sobre la cual actúa una fuerza resultante \mathbf{F}_a , está dada por:

$$U_a = -\int (\mathbf{r} \times \mathbf{F}_a) \cdot d(\mathbf{r} \times \mathbf{r}_a)$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección y \mathbf{r}_a es la posición de la partícula A.

Si \mathbf{F}_a es constante y como $\mathbf{F}_a = m_a \mathbf{a}_a$, entonces se deduce:

$$U_a = -m_a(\mathbf{r} \times \mathbf{a}_a) \cdot (\mathbf{r} \times \mathbf{r}_a)$$

donde m_a es la masa de la partícula A y \mathbf{a}_a es la aceleración constante de la partícula A.