```
In [6]:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
%matplotlib inline
In [7]:
from sklearn.datasets import load_breast_cancer
In [31]:
diagnosis=load breast cancer()
In [32]:
diagnosis.keys()
Out[32]:
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
In [33]:
print(diagnosis['DESCR'])
.. _breast_cancer_dataset:
Breast cancer wisconsin (diagnostic) dataset
**Data Set Characteristics: **
    :Number of Instances: 569
    :Number of Attributes: 30 numeric, predictive attributes and the class
    :Attribute Information:
        - radius (mean of distances from center to points on the perimeter)
        - texture (standard deviation of gray-scale values)
        - perimeter
       - area
       - smoothness (local variation in radius lengths)
        - compactness (perimeter^2 / area - 1.0)
       - concavity (severity of concave portions of the contour)
       - concave points (number of concave portions of the contour)
        - symmetry
        - fractal dimension ("coastline approximation" - 1)
       The mean, standard error, and "worst" or largest (mean of the three
       largest values) of these features were computed for each image,
       resulting in 30 features. For instance, field 3 is Mean Radius, field
       13 is Radius SE, field 23 is Worst Radius.
        - class:
                - WDBC-Malignant
               - WDBC-Benign
    :Summary Statistics:
    radius (mean):
                                        6.981 28.11
                                        9.71 39.28
43.79 188.5
   texture (mean):
   perimeter (mean):
                                         143.5 2501.0
   area (mean):
   smoothness (mean):
                                         0.053 0.163
```

```
compactness (mean):
                                0.019 0.345
concavity (mean):
                                0.0 0.427
                                0.0
concave points (mean):
                                       0.201
symmetry (mean):
                                 0.106 0.304
                                0.05 0.097
fractal dimension (mean):
                                0.112 2.873
radius (standard error):
texture (standard error):
                                0.36 4.885
perimeter (standard error):
                               0.757 21.98
                                 6.802 542.2
0.002 0.031
area (standard error):
smoothness (standard error):
compactness (standard error):
                               0.002 0.135
concavity (standard error):
                               0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error):
                                0.008 0.079
fractal dimension (standard error): 0.001
                                       36.04
radius (worst):
                                 7.93
                                12.02 49.54
texture (worst):
perimeter (worst):
                                 50.41 251.2
area (worst):
                                 185.2 4254.0
                                 0.071 0.223
0.027 1.058
smoothness (worst):
compactness (worst):
                                0.0
                                       1.252
concavity (worst):
                                0.0 0.291
concave points (worst):
symmetry (worst):
                                0.156 0.664
fractal dimension (worst):
                                0.055 0.208
```

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street
:Date: November, 1995

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

.. topic:: References

- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

```
In [35]:
```

df=pd.DataFrame(diagnosis['data'],columns=diagnosis['feature_names'])

In [39]:

df.head(5)

Out[39]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	w perim
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 25.38	17.33	18
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 24.99	23.41	15
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 23.57	25.53	15
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 14.91	26.50	9
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 22.54	16.67	15

5 rows × 30 columns

•

In [54]:

df.describe()

Out[54]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	Ī
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798	
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060	
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960	
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700	
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540	
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120	
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440	

8 rows × 30 columns

| 1 | P

In [40]:

 $\textbf{from sklearn.preprocessing import} \ \texttt{MinMaxScaler}$

In [41]:

from sklearn.preprocessing import StandardScaler

In [42]:

scaler=StandardScaler()
scaler.fit(df)

Out[42]:

StandardScaler(copy=True, with_mean=True, with_std=True)

In [43]:

scaled data=scaler.transform(df)

```
In [44]:
scaled data
Out[44]:
array([[ 1.09706398, -2.07333501, 1.26993369, ..., 2.29607613,
       2.75062224, 1.93701461],
[1.82982061, -0.35363241, 1.68595471, ..., 1.0870843,
        -0.24388967, 0.28118999],
       [1.57988811, 0.45618695, 1.56650313, ..., 1.95500035,
         1.152255 , 0.20139121],
       [ 0.70228425, 2.0455738 , 0.67267578, ..., 0.41406869,
        -1.10454895, -0.31840916],
       [ 1.83834103, 2.33645719, 1.98252415, ..., 2.28998549,
         1.91908301, 2.21963528],
       [-1.80840125, 1.22179204, -1.81438851, ..., -1.74506282, -0.04813821, -0.75120669]])
In [45]:
from sklearn.decomposition import PCA
In [46]:
pca=PCA(n components=2)
pca.fit(scaled_data)
Out[46]:
PCA(copy=True, iterated power='auto', n components=2, random state=None,
    svd solver='auto', tol=0.0, whiten=False)
In [47]:
x pca=pca.transform(scaled data)
In [48]:
scaled data.shape
Out[48]:
(569, 30)
In [49]:
scaled data
Out[49]:
array([[ 1.09706398, -2.07333501, 1.26993369, ..., 2.29607613,
         2.75062224, 1.93701461],
        [ 1.82982061, -0.35363241, 1.68595471, ..., 1.0870843 ,
        -0.24388967, 0.28118999],
       [ 1.57988811, 0.45618695, 1.56650313, ..., 1.95500035,
         1.152255 , 0.20139121],
       [ 0.70228425, 2.0455738 , 0.67267578, ..., 0.41406869,
        -1.10454895, -0.31840916],
       [ 1.83834103, 2.33645719, 1.98252415, ..., 2.28998549,
       1.91908301, 2.21963528],

[-1.80840125, 1.22179204, -1.81438851, ..., -1.74506282,

-0.04813821, -0.75120669]])
```

In [50].

```
III [JU].
x_pca
Out[50]:
array([[ 9.19283683, 1.94858307],
         [ 2.3878018 , -3.76817174], [ 5.73389628, -1.0751738 ],
         [ 1.25617928, -1.90229671],
[10.37479406, 1.67201011],
[-5.4752433, -0.67063679]])
In [52]:
plt.figure(figsize=(8,6))
plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'])
plt.xlabel('First principle component')
plt.ylabel('Second principle component')
Out[52]:
Text(0, 0.5, 'Second principle component')
   12.5
   10.0
    7.5
Second principle component
    5.0
    2.5
    0.0
```

10

First principle component

-2.5

-5.0

-7.5

-5