

第九章可编程控制器原理及应用

Programmable Logic Controller (PLC)

异步电动机继电接触控制电路

单向启停控制电路

异步电动机继电接触控制电路

星型-三角型启动控制电路

继电接触控制系统缺点:

- 1.可靠性不高,大量使用机械触点。
- 2.通用性和灵活性差,当改变工艺流程时,原有的控制电路就要改变。
- 3.功能也只限于简单的逻辑控制(如开关的通断,线圈的通、断电、定时等), 体积庞大。

PLC概述

可编程控制器 (Programmable Logic Controller, 简称PLC)

是根据传统继电接触控制系统的特点,结合计算机技术发展起来的一种

在工业环境下应用的专业控制装置,其控制逻辑可以通过编程改变。

PLC简单应用

梯形图控制程序

PLC特点

PLC作为在工业环境下应用的专业控制装置,与计算机和继电接触控制系统相比有下列明显的技术特点:

- 1.可靠性高。
 - 1) 采用光电隔离技术, 抗干扰能力强; 2) 采用信号屏蔽和滤波技术;
 - 3) 具有故障自诊断功能; 4) 采用多重系统冗余
- 2. 丰富的I/O接口;
- 3. 采用模块化结构,系统配置灵活,便于现场维护和系统的扩展。
- 4. 编程简单易学。采用梯形图或逻辑语言,编制和修改灵活方便。
- 5. 安装简单,维修方便。
- 6. 系统配置灵活方便,可进行功能扩展,容量扩展等
- 7. 具有通信功能,可组成网络化控制系统。

PLC硬件系统组成

- > 中央处理器模块
- > 存储器模块
- ➤ 数字I/O模块
- ➤ 模拟I/O模块
- ➤ 特殊I/O模块
- > 电源模块
- > 网络通讯模块
- > 编程器模块

PLC系统软件

PLC软件包括 系统软件 用户程序

1.系统软件:实现对系统硬件的监控与诊断,统一协调系统中各部分工作,解释用 户程序代码,管理外设等。系统软件通常不对外公开,用户也不能对其修改。

2.用户程序: 由用户自己根据控制要求编写的程序。

通常所说的编程是指用户程序的编写,对使用者而言,编程时完全可以不考虑内部 的复杂结构,只要把PLC看成由许多的"软继电器"构成的"逻辑部件",理解 "逻辑部件"的多少、名称、特点等主要数据就可以进行编程。

PLC程序编写

PLC提供的编程语言分为三类

- 1.梯形图
- 2.语句表
 - 3.功能图

▶ 梯形图

梯形图在形式上类似继电接触控制电路,用常开、常闭、线圈等图形符号连接而成。每一个接点(常开或常闭点)或线圈均对应一个编号。<u>编号的字母描述了器件的性质,后面</u>的数字确定了该器件的地址。

PLC程序编写

- 1. 梯形图中的继电器不是物理继电器,是"软继电器",
- 2. 梯形图按从左到右,自上而下的顺序排列,每一逻辑行起始于左母线,然后是触点的串、并连接,最后是线圈与右母线相连接。

- 3. 左、右侧竖母线,相当于电源的正负极,但不是真正接电源,只是形象地表示导通时构成回路,即形象地描述线圈接通的条件。
- 4. 每个线圈所在的回路称为一个梯级,每个梯级流过的电流不是物理电流,而是"概念电流"。
- 5. 输入继电器用于接收外部输入信号,而不能由PLC内部其他继电器的触点来驱动。 因此梯形图中只出现输入继电器的触点,而不出现其线圈。

L基础教研室

PLC程序编写

- 6.输出继电器输出程序执行结果提供给外部输出设备,当梯形图中的输出继电器线圈接通时,就有信号输出,但不是直接驱动输出设备,而是通过输出接口的继电器、晶体管或晶闸管才能实现。输出继电器的接点可供内部使用。
- 7. 同一"软继电器"的接点可使用多次,但线圈只能使用一次。
- 8. 每个梯级必须有接点和线圈两种元素组成。
- 9. 一段梯形图的结尾要有结束表示符 (ED)

可编程控制器内部资源

1. 输入/输出继电器

- (1)输入继电器:用X表示输入接点,用X后数字表示输入地址。 作用:将外设(如启动、停止按钮、限位开关等)的信号送入PLC。 直接对应物理输入点,因此,输入继电器没有线圈。
- (2)输出继电器:用Y表示输出接点,Y后面的数字表示地址。 作用:输出PLC程序执行结果,并使外部设备(如电磁阀或电动机动作) 输出继电器的线圈只能使用一次,而接点可无限使用。

2.内部继电器

也称辅助继电器,用字母R表示。

这种继电器与外界没有联系,仅在PLC内部传递信号,线圈由PLC内部元素接点驱动,常开、常闭接点可无限使用。

可编程控制器内部资源

3.定时器

◆ 定时器用T表示。

松下FP0定时器的定时单位有四种:

如:时间设定值为30,

使用TML计时器,则设定时间为:

使用TMX定时器,则设定时间为:

$$30 \times 0.001 = 0.03$$
S

$$30 \times 0.1 = 3S$$

可编程控制器内部资源

◆ 接通定时器线圈时,开始计时,当累计时间达到预定值时,它的接点开始动作,当定时器线圈断电时,定时器接点复位,定时器数值复零。

当**X0**闭和,定时器线圈**T5**得电,定时器开始定时,定时时间为 $30\times0.1=3$ **S** ,**3S**时间到,**T5**接点动作,**Y0**线圈得电。

当**X0**断开,定时器线圈断电,定时器接点复位,定时器数值复零。

1. 鼠笼式电动机正反转控制

(1) 确定输入/输出点数

输入设备:停止按钮SB₁、正转按钮SB_F、反转按钮SB_R 接在PLC的三个输入端子上,分别分配X0、X1、X2来接收输入信号。

输出设备:正转接触器线圈KM_F、反转接触器线圈KM_R 接在两个输出端子上,分别分配Y1和Y2。

(2)输入/输出接点分配

输入 输出 SB1 \rightarrow X0 KMF \rightarrow Y1 KMR \rightarrow Y2 SBR \rightarrow X2

(3) 控制原理或过程

- 1)按下正转按钮SBF,电动机正转;或者,按下反转按钮SBR,则电动机反转。
- 2)无论按SBF或SBR,电动机均可起动,但在正转时如要求反转,或在反转时要求正转,都必须先按下停止按钮SB1,
- 3) 控制系统中的自锁和互锁触点是利用PLC内部的"软触点"实现的。

(4) 设计硬件接线图及梯形图

2. 三相电动机的Y-△启动控制

(1) 输入/输出点分配

输入			输出	
(停止)	SB1	Х1	KM1	Y1
(启动)	SB2	Х2	(三角) KM2 (星形) KM3	Y2
			(星形) KM3	Y3

(2) 控制要求

按下启动按钮SB2时,KM1与 KM3线圈接通,电机以Y形连接降 压启动;

在电机工作一段时间后, KM3断 开,KM2线圈接通,切换到三角 形连接,电机在额定电压下工作。

(3) 设计硬件接线图与梯形图

(4)控制过程分析

- 1. 启动时按下SB2,常开触点X2闭合,R0、Y1和Y3均接通,接触器KM1和KM3通,电动机星形启动。
- 2. 同时,常开触点R0接通定时器T0,开始延时,5S钟后动作,其常闭触点断开,使输出继电器线圈Y1 和Y3断开,即断开了KM1和KM3。
- 3. 同时,常开触点T0接通定时器T1开始延时,1S后动作,线圈Y2和Y1相继接通,即接通KM2和KM1, 电动机转换为三角形连接正常运行。

结束

