Opgaven NLA3: Eigenwaardenproblemen

Nico Vervliet, KU Leuven

27 april 2018

1 Theoretische eigenschappen

Opgave 1 Beschouw de Rayleigh quotiënt iteratie.

Gegeven een matrix $A \in \mathbb{R}^{m \times m}$ en een vector $x \in \mathbb{R}^{m \times 1}$, met x een benadering voor een eigenvector van A. Toon aan dat de oplossing $\rho \in \mathbb{R}$ van het minimalisatieprobleem

$$\min_{\rho \in \mathbb{R}} ||Ax - \rho x||^2$$

overeenkomt met het Rayleigh quotiënt van x.

2 Inverse iteratie

Opgave 2 De inverse iteratie-methode laat toe een benadering x te vinden voor een eigenvector van de matrix A indien een goede benadering μ van de eigenwaarde λ gekend is, door de iteratie

$$x = \frac{b}{||b||}$$
for $k = 1, 2, ...$

$$(A - \mu I)y = x$$

$$x = \frac{x}{||x||}$$

een of meerdere keren uit te voeren, waarbij b een willekeurige vector is.

Theoretisch gezien is de benadering x voor de eigenvector des te beter naarmate μ een betere benadering is voor de eigenwaarde λ . Indien μ echter een erg goede benadering is voor de eigenwaarde μ , is de matrix van het stelsel bijna singulier (m.a.w. het stelsel is slecht geconditioneerd). We verwachten dan grote relatieve fouten op de oplossing y veroorzaakt door afrondingsfouten.

Nochtans blijkt de berekende x in dit geval steeds een goede benadering te zijn voor de eigenvector. Verklaar deze schijnbare tegenspraak. Voer hiervoor volgend experiment uit. Neem

$$A = P \cdot \begin{bmatrix} 1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 4 \end{bmatrix} \cdot P^T, \quad \text{met } P \text{ orthogonaal}$$

en $\mu = 2 + 10^{-5}$.

- Wat is het conditiegetal van $A \mu I$?
- Voer een iteratiestap uit van de inverse machtsmethode met een willekeurig rechterlid voor het stelsel. (Je kan hiervoor inviter gebruiken. Zie help inviter voor meer informatie.)
- Bepaal $||x e||_2$ met e de exacte eigenvector.
- Breng een perturbatie van grootte-orde 10^{-8} aan op de matrix $A \mu I$. Bepaal $||y y_{pert}||_2$ en $||x x_{pert}||_2$. Wat besluit je?

3 Defectieve matrices

Opgave 3 Beschouw de $n \times n$ matrix

$$A = \begin{bmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 \\ & & & 1 \end{bmatrix}.$$

- Wat zijn de eigenwaarden van deze matrix en wat de multipliciteit ervan?
- Perturbeer het element $a_{n,1}$ van deze matrix. Wat zijn de eigenwaarden?
- Wat is je besluit?