Q1: Are lake and terrestrial primary productivity coherent?

Jonathan Walter, Grace Wilkinson, Rachel Fleck, Michael Pace 4/17/2019

This document organizes for openness and reproducibility analyses of the temporal coherence of interannual variation in lake primary productivity with terrestrial primary productivity in the landscape surrounding the lake.

Data import

Data produced in 'ms1_prep.Rmd' are loaded. load("/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/RData files/ms1_analysis_inprogress1.RDat any(sapply(analysislakes\$lakedata, function(x){any(is.infinite(x))})) ## [1] FALSE any(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})) ## [1] FALSE which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})) ## named integer(0) analysislakes\$lakeinfo[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})),] ## [1] lagoslakeid nhd_lat gnis_name ## [4] nhd_long lake_area_ha lake_perim_meters ## [7] nhd_ftype nhd_fcode hu4_zoneid ## [10] hu12_zoneid state zoneid elevation m ## [13] start end ## <0 rows> (or 0-length row.names) # image(accndvi) # points(lakepts.prj[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))})),]) dbuff[which(sapply(analysislakes\$lakedata, function(x){any(is.na(x))}))] ## numeric(0) analysislakes\$lakeinfo<-analysislakes\$lakeinfo[!sapply(analysislakes\$lakedata, function(x){any(is.na(x) analysislakes\$lakedata<-analysislakes\$lakedata[!sapply(analysislakes\$lakedata, function(x){any(is.na(x) analysislakes\$lakeinfo\$tslength<-analysislakes\$lakeinfo\$end-analysislakes\$lakeinfo\$start+1 # analysislakes\$lakedata<-analysislakes\$lakedata[!analysislakes\$lakeinfo\$tslength < 20] # analysislakes\$lakeinfo<-analysislakes\$lakeinfo[!analysislakes\$lakeinfo\$tslength < 20,] source("~/GitHub/AquaTerrSynch/AnalysisCode/bandtest_coh.R")

tsranges < -rbind(c(2,4),c(4,Inf),c(2,Inf))

```
coh.chlaXaccndvi<-NULL
coh.chlaXmaxndvi<-NULL
for(lind in 1:length(analysislakes$lakedata)){
  lakedat.ii<-cleandat(analysislakes$lakedata[[lind]], as.numeric(colnames(analysislakes$lakedata[[lind
  chlaXaccndvi<-coh(lakedat.ii[1,], lakedat.ii[2,], as.numeric(colnames(analysislakes$lakedata[[lind]])</pre>
                    norm="powall", sigmethod="fast", nrand=10000)
  chlaXmaxndvi<-coh(lakedat.ii[1,], lakedat.ii[3,], as.numeric(colnames(analysislakes$lakedata[[lind]])
                    norm="powall", sigmethod="fast", nrand=10000)
  for(rind in 1:nrow(tsranges)){
    chlaXaccndvi<-bandtest.coh(chlaXaccndvi, tsranges[rind,])</pre>
    chlaXmaxndvi<-bandtest.coh(chlaXmaxndvi, tsranges[rind,])</pre>
  }
  coh.chlaXaccndvi<-rbind(coh.chlaXaccndvi, c(t(as.matrix(chlaXaccndvi$bandp[,3:5]))))</pre>
  coh.chlaXmaxndvi<-rbind(coh.chlaXmaxndvi, c(t(as.matrix(chlaXmaxndvi$bandp[,3:5]))))</pre>
}
coh.chlaXaccndvi<-as.data.frame(coh.chlaXaccndvi)</pre>
coh.chlaXmaxndvi<-as.data.frame(coh.chlaXmaxndvi)</pre>
colnames(coh.chlaXaccndvi) <-paste0("accndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
colnames(coh.chlaXmaxndvi) <-paste0("maxndvi",c("p.ts1","phi.ts1","coh.ts1","p.ts2","phi.ts2","coh.ts2",
coh.chlaXaccndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
coh.chlaXmaxndvi$lagoslakeid<-analysislakes$lakeinfo$lagoslakeid
#short timescales
hist(coh.chlaXaccndvi$accndvicoh.ts1, main="Accumulated NDVI, short timescales", xlab="Coherence", ylab
```

Accumulated NDVI, short timescales

Maximum NDVI, short timescales

hist(coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts1<0.2]/pi, main="Accumulated NDVI, sho

[1] -0.1573764 -0.8240104 -0.7892870 -0.7185325 -0.9310910 -0.8435071

[7] -0.2280369 0.5324496

phicls<-c(-1,-.75,-0.25,0.25,0.75,1)

Accumulated NDVI, short timescales

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvip.ts1<0.2]/pi, main="Maximum NDVI, short
#long timescales
hist(coh.chlaXaccndvi\$accndvicoh.ts2, main="Accumulated NDVI, long timescales", xlab="Coherence", ylab=</pre>

Accumulated NDVI, long timescales

Maximum NDVI, long timescales


```
quantile(coh.chlaXaccndvi$accndvicoh.ts2)
                   25%
                                        75%
                                                  100%
## 0.06700155 0.35635453 0.56072757 0.75753276 0.96052338
quantile(coh.chlaXmaxndvi$maxndvicoh.ts2)
                              50%
##
          0%
                   25%
                                        75%
                                                  100%
## 0.04123391 0.35832298 0.61507443 0.78760333 0.96402244
alpha=0.05
sum(coh.chlaXaccndvi$accndvip.ts2<alpha)/nrow(coh.chlaXaccndvi)</pre>
## [1] 0.05185185
sum(coh.chlaXmaxndvi$maxndvip.ts2<alpha)/nrow(coh.chlaXmaxndvi)</pre>
## [1] 0.05925926
print(coh.chlaXaccndvi$accndviphi.ts2[coh.chlaXaccndvi$accndvip.ts2<alpha]/pi)</pre>
## [7] 0.89471121
print(coh.chlaXmaxndvi$maxndviphi.ts2[coh.chlaXmaxndvi$maxndvip.ts2<alpha]/pi)</pre>
## [1] 0.69982097 -0.97179292 -0.04190360 0.02097044 -0.67004320 -0.58501674
## [7] -0.31373024 -0.33804686
```

hist(coh.chlaXaccndvi\$accndviphi.ts1[coh.chlaXaccndvi\$accndvip.ts2<0.2]/pi, main="Accumulated NDVI, lon

Accumulated NDVI, long timescales

#hist(coh.chlaXmaxndvi\$maxndviphi.ts1[coh.chlaXmaxndvi\$maxndvicoh.ts2>0.6]/pi, main="Maximum NDVI, shor
states<-readOGR("~/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp")</pre>

```
## OGR data source with driver: ESRI Shapefile
## Source: "/Users/jonathanwalter/Box Sync/NSF EAGER Synchrony/Data/statesp020.shp", layer: "statesp020
## with 2895 features
## It has 9 fields
## Integer64 fields read as strings: STATESP020 DAY_ADM YEAR_ADM
getstates<-c("Minnesota", "Iowa", "Wisconsin", "Illinois", "Missouri", "Michigan", "Indiana", "Ohio", "lagosstates<-states[states@data$STATE %in% getstates,]

plot(lagosstates, main="Lakes selected for analysis")
points(analysislakes$lakeinfo$nhd_long, analysislakes$lakeinfo$nhd_lat, pch=16, cex=1, col="blue")</pre>
```

Lakes selected for analysis


```
cohplotdata<-left_join(analysislakes$lakeinfo, coh.chlaXaccndvi, by="lagoslakeid")
pal<-viridis(100)
par(mar=c(1,0,2,0))
plot(lagosstates, main="Lakes by short timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.tcolorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)</pre>
```

Lakes by short timescale coherence


```
plot(lagosstates, main="Lakes by long timescale coherence")
points(cohplotdata$nhd_long, cohplotdata$nhd_lat, pch=16, cex=1, col=pal[round(cohplotdata$accndvicoh.t
colorbar.plot(x=mean(par("usr")[1:2]),y=par("usr")[3],strip=1:100,col=pal,horizontal = T)
```

Lakes by long timescale coherence

#Need to add: depth, average growing season Chlorophyll-a, TSI(chla) categories, pct ag #agriculture -- is 500m buffer best? Other options include 100m buffer (probably too small) and hu12 wa # pct.ag<-lagosne_select(table="buffer500m.lulc", vars=c("lagoslakeid","buffer500m_nlcd2001_pct_82","bu pct.ag<-lagosne_select(table="hu12.lulc", vars=c("hu12_zoneid","hu12_nlcd2001_pct_82","hu12_nlcd2006_pc pct.ag<-pct.ag[pct.agshu12_zoneid %in% analysislakesslakeinfoshu12_zoneid,] pct.ag.avg<-data.frame(hu12_zoneid=pct.ag\$hu12_zoneid, pct.ag=rowMeans(pct.ag[,2:4])) #depth depth<-lagosne_select(table="lakes_limno", vars=c("lagoslakeid", "maxdepth"))</pre> depth<-depth[depth\$lagoslakeid %in% analysislakes\$lakeinfo\$lagoslakeid,] #use max depth because it's mo #qrowing season Chlorophyll-a chla<-lagosne_select(table="epi_nutr", vars=c("lagoslakeid","samplemonth","chla"))</pre> chla<-chla[chla\$lagoslakeid %in% analysislakes\$lakeinfo\$lagoslakeid,]</pre> gs.chla<-chla[chla\$samplemonth %in% 5:9,] avg.chla<-aggregate(chla ~ lagoslakeid, data=gs.chla, FUN=mean, na.rm=T)</pre> #Chlorophyll-a TSI class #TSI(CHL) = 9.81 ln(CHL) + 30.6tsi.chl<-data.frame(lagoslakeid=avg.chla\$lagoslakeid, tsi=9.81 * log(avg.chla\$chla) + 30.6) tsi.chl\$tsi.cat<-rep("lake",nrow(tsi.chl))</pre>

tsi.chl\$tsi.cat[tsi.chl\$tsi < 40]<-"oligotrophic"

```
tsi.chl$tsi.cat[tsi.chl$tsi >=40 & tsi.chl$tsi < 50]<-"mesotrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >=50 & tsi.chl$tsi < 70]<-"eutrophic"
tsi.chl$tsi.cat[tsi.chl$tsi >= 70] <-"hypereutrophic"
#CV of terrestrial NDVI
cv.accndvi<-NULL
for(lake in 1:length(analysislakes$lakedata)){
  tmp<-analysislakes$lakedata[[lake]] [rownames(analysislakes$lakedata[[lake]])=="accndvi",]</pre>
  cv.accndvi<-c(cv.accndvi, sd(tmp)/mean(tmp))</pre>
 # rm(tmp)
}
cv.accndvi<-data.frame(lagoslakeid=as.numeric(names(analysislakes$lakedata)), cv.accndvi=cv.accndvi)
#huc2 and huc4 watershed codes
huc_codes<-read.csv("/Users/jonathanwalter/GitHub/AquaTerrSynch/AnalysisCode/match_huc_codes.csv", colC
#state info
states<-lagosne_select(table="state", vars=c("state_zoneid","state_name"))</pre>
predictors<-analysislakes$lakeinfo</pre>
predictors<-left_join(predictors, depth, by="lagoslakeid")</pre>
predictors<-left_join(predictors, pct.ag.avg, by="hu12_zoneid")</pre>
## Warning: Column `hu12_zoneid` joining factors with different levels,
## coercing to character vector
predictors<-left_join(predictors, avg.chla, by="lagoslakeid")</pre>
predictors<-left_join(predictors, tsi.chl, by="lagoslakeid")</pre>
predictors<-left_join(predictors, states, by="state_zoneid")</pre>
## Warning: Column `state_zoneid` joining factors with different levels,
## coercing to character vector
predictors<-left_join(predictors, cv.accndvi, by="lagoslakeid")</pre>
#predictors<-left_join(predictors, huc_codes, by="hu4_zoneid")</pre>
for(nn in 1:ncol(predictors)){
  if(is.factor(predictors[,nn])){
    predictors[,nn]<-factor(predictors[,nn])</pre>
  }
}
str(predictors)
## 'data.frame': 135 obs. of 22 variables:
## $ lagoslakeid
                      : num 211 249 618 906 969 ...
## $ gnis_name
                       : chr NA NA "Butternut Lake" "Sparkling Lake" ...
## $ nhd lat
                       : num 44.5 43.7 45.9 46 45.8 ...
## $ nhd long
                      : num -73.3 -73.4 -89 -89.7 -89.3 ...
## $ lake_area_ha
                      : num 113496.4 30 504.7 63.7 210.2 ...
## $ lake_perim_meters: num 1042251 3494 13134 3777 9402 ...
## $ nhd_ftype : int 390 390 390 390 390 390 390 390 390 ...
## $ nhd_fcode
                      : int 39004 39004 39004 39004 39004 39004 39004 39004 39004 ...
```

```
$ hu4 zoneid
                       : Factor w/ 28 levels "HU4_10", "HU4_12",...: 17 17 11 8 12 10 10 10 10 10 ...
                               "HU12_17646" "HU12_16835" "HU12_13309" "HU12_13098" ...
##
    $ hu12_zoneid
                       : chr
    $ state zoneid
                               "State 17" "State 5" "State 9" "State 9" ...
    $ elevation_m
                               28.8 28.2 514.5 494.7 503.3 ...
##
                       : num
##
    $ start
                        : num
                               1989 1990 1993 1989 1994 ...
##
    $ end
                               2010 2010 2013 2011 2013 ...
                        : num
##
    $ tslength
                               22 21 21 23 20 21 21 21 21 22 ...
                        : num
    $ maxdepth
                               97 NA 12.8 20 11.6 ...
##
                        : num
##
    $ pct.ag
                        : num
                               2.5298 0.4199 0.0976 0.3029 6.6886 ...
##
    $ chla
                               5.39 7.94 2.44 1.86 2.04 ...
                        : num
    $ tsi
                       : num
                              47.1 50.9 39.4 36.7 37.6 ...
                               "mesotrophic" "eutrophic" "oligotrophic" "oligotrophic" ...
##
    $ tsi.cat
                        : chr
                        : Factor w/ 10 levels "Maine", "Michigan", ...: 9 6 10 10 10 2 2 2 2 2 ...
    $ state_name
                        : num 0.0572 0.0542 0.0443 0.0561 0.0417 ...
    $ cv.accndvi
hist(predictors$tslength)
```

Histogram of predictors\$tslength

Histogram of predictors\$lake_area_ha

hist(log10(predictors\$lake_area_ha))

Histogram of log10(predictors\$lake_area_ha)

Histogram of predictors\$lake_perim_meters

hist(log10(predictors\$lake_perim_meters))

Histogram of log10(predictors\$lake_perim_meters)

log10(predictors\$lake_perim_meters)

table(predictors\$nhd_fcode)

##

```
## 39000 39004 39009 39010 39012 43601
## 1 110 14 3 6 1
```

table(predictors\$hu12_zoneid)

```
## HU12_10463 HU12_10471 HU12_10488 HU12_10493 HU12_10499 HU12_10676
                       2
                                 1
           1
                                            1
## HU12_10700 HU12_10785 HU12_10862 HU12_10863 HU12_10865 HU12_11197
## HU12 11495 HU12 11509 HU12 11514 HU12 11515 HU12 11522 HU12 11768
           1
                      1
                                 2
                                            1
                                                       1
## HU12_11816 HU12_11826 HU12_11829 HU12_11889 HU12_11938 HU12_11978
## HU12_12113 HU12_12125 HU12_12225 HU12_13098 HU12_13100 HU12_13125
           1
                      1
                                 1
                                            5
                                                       1
## HU12_13164 HU12_13192 HU12_13234 HU12_13241 HU12_13244 HU12_13261
                      1
                                 1
                                                       1
## HU12_13300 HU12_13304 HU12_13309 HU12_13354 HU12_13360 HU12_13370
                                 2
           1
                      1
## HU12_13374 HU12_13376 HU12_13388 HU12_13413 HU12_13616 HU12_13624
                      1
## HU12 13628 HU12 13633 HU12 13634 HU12 14494 HU12 14495 HU12 14496
                     1
                                 1
                                                       1
## HU12_14497 HU12_14533 HU12_148 HU12_1494 HU12_15183 HU12_15280
                                 1
## HU12 15296 HU12 15315 HU12 15329 HU12 1537 HU12 15856 HU12 16122
## HU12_16125 HU12_1615 HU12_1621 HU12_16347 HU12_16746 HU12_16747
## HU12_16749 HU12_16835 HU12_16882 HU12_17143 HU12_17178 HU12_17235
## HU12_17401 HU12_17407 HU12_17433 HU12_17477 HU12_17488 HU12_17504
                      1
                                 1
                                            1
## HU12_17512 HU12_17513 HU12_17541 HU12_17646 HU12_17651 HU12_17655
   HU12_1802 HU12_18174 HU12_1819 HU12_1828 HU12_18730 HU12_1896
##
##
            1
                      1
                                 1
                                            1
                                                       1
## HU12_19726 HU12_1980 HU12_19842 HU12_20279 HU12_2173 HU12_2200
   HU12 2239 HU12 2410 HU12 2412 HU12 2429 HU12 4337 HU12 4347
##
##
           1
                      1
                                 1
                                            1
               HU12_488
                          HU12_509
                                     HU12_542
##
    HU12 442
                                                HU12_581
##
```

hist(predictors\$elevation_m)

Histogram of predictors\$elevation_m

hist(predictors\$maxdepth)

Histogram of predictors\$maxdepth

hist(log10(predictors\$maxdepth))

Histogram of log10(predictors\$maxdepth)

hist(predictors\$pct.ag)

Histogram of predictors\$pct.ag

hist(log10(predictors\$pct.ag))

Histogram of log10(predictors\$pct.ag)

hist(predictors\$chla)

Histogram of predictors\$chla

hist(log10(predictors\$chla))

Histogram of log10(predictors\$chla)

hist(predictors\$tsi)

Histogram of predictors\$tsi

table(predictors\$tsi.cat)

##

```
## eutrophic hypereutrophic mesotrophic oligotrophic
## 55 3 48 29
hist(predictors$cv.accndvi)
```

Histogram of predictors\$cv.accndvi

predictors\$cv.accndvi

```
predictors$log10_lake_area_ha<-log10(predictors$lake_area_ha)
predictors$log10_lake_perim_meters<-log10(predictors$lake_perim_meters)
predictors$log10_maxdepth<-log10(predictors$maxdepth)
predictors$log10_pct.ag<-log10(predictors$pct.ag+1)
predictors$log10_chla<-log10(predictors$chla)

modvars.accndvi<-left_join(predictors, coh.chlaXaccndvi, by="lagoslakeid")
modvars.accndvi$nhd_ftype<-factor(modvars.accndvi$nhd_ftype)
modvars.accndvi$tsi.cat<-factor(modvars.accndvi$tsi.cat)
modvars.accndvi$tslength<-modvars.accndvi$end-modvars.accndvi$start + 1

modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$maxdepth),]
modvars.accndvi<-modvars.accndvi[!is.na(modvars.accndvi$pct.ag),]

modvars.accndvi.phist<-modvars.accndvi[modvars.accndvi$accndvip.ts1<0.3,]
modvars.accndvi.philt<-modvars.accndvi[modvars.accndvi$accndvip.ts2<0.3,]
library(partykit)

## Loading required package: libcoin</pre>
```

predcoh.st<-predict.cforest(cforest.st, newdata=modvars.accndvi)</pre>

cforest.st<-cforest(accndvicoh.ts1 ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag + chla + tsi

Loading required package: mvtnorm

hist(predcoh.st)

Histogram of predcoh.st

hist(modvars.accndvi\$accndvicoh.ts1)

Histogram of modvars.accndvi\$accndvicoh.ts1

modvars.accndvi\$accndvicoh.ts1

plot(predcoh.st, modvars.accndvi\$accndvicoh.ts1, xlab="predicted", ylab="empirical", main="Coherence, statim=c(0,1), ylim=c(0,1))
abline(a=0,b=1)

Coherence, short ts

cor.test(predcoh.st,modvars.accndvi\$accndvicoh.ts1)

3.057602e-04

##

5.259568e-04

```
##
   Pearson's product-moment correlation
##
## data: predcoh.st and modvars.accndvi$accndvicoh.ts1
## t = 10.618, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  0.5792340 0.7648444
## sample estimates:
         cor
## 0.6829101
varimp.coh.st<-varimp.cforest(cforest.st)</pre>
print(varimp.coh.st)
##
        lake_area_ha lake_perim_meters
                                                 maxdepth
                                                                      pct.ag
##
        1.575424e-03
                          8.503891e-04
                                             8.139477e-04
                                                                1.220314e-03
##
                chla
                                               hu4 zoneid
                                                                  cv.accndvi
```

cforest.lt<-cforest(accndvicoh.ts2 ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag + chla + tsi
predcoh.lt<-predict.cforest(cforest.lt, newdata=modvars.accndvi)
hist(predcoh.lt)</pre>

-6.894471e-04

-6.340181e-05

Histogram of predcoh.lt

hist(modvars.accndvi\$accndvicoh.ts2)

Histogram of modvars.accndvi\$accndvicoh.ts2

modvars.accndvi\$accndvicoh.ts2

Coherence, long st


```
cor.test(predcoh.lt,modvars.accndvi$accndvicoh.ts2)
```

hist(predphi.st)

```
##
   Pearson's product-moment correlation
##
## data: predcoh.lt and modvars.accndvi$accndvicoh.ts2
## t = 11.025, df = 129, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.5962244 0.7754058
## sample estimates:
         cor
## 0.6965185
varimp.coh.lt<-varimp.cforest(cforest.lt)</pre>
print(varimp.coh.lt)
##
        lake_area_ha lake_perim_meters
                                                 maxdepth
                                                                      pct.ag
##
       -0.0011828020
                          -0.0003966179
                                            -0.0014873815
                                                                0.0002196945
##
                chla
                                               hu4 zoneid
                                                                  cv.accndvi
##
        0.0007098654
                         -0.0002411120
                                            -0.0005973412
                                                                0.0004066143
cforest.phi.st<-cforest(cos(accndviphi.ts1) ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag + ch
                        data=modvars.accndvi.phist)
predphi.st<-predict.cforest(cforest.phi.st, newdata=modvars.accndvi.phist)</pre>
```

Histogram of predphi.st

hist(cos(modvars.accndvi.phist\$accndviphi.ts1))

Histogram of cos(modvars.accndvi.phist\$accndviphi.ts1)

cos(modvars.accndvi.phist\$accndviphi.ts1)

cos(phase), short ts


```
cor.test(predphi.st,cos(modvars.accndvi.phist$accndviphi.ts1))
```

```
##
   Pearson's product-moment correlation
##
##
## data: predphi.st and cos(modvars.accndvi.phist$accndviphi.ts1)
## t = 4.9932, df = 41, p-value = 1.146e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.3858582 0.7725893
## sample estimates:
        cor
## 0.614937
varimp.phi.st<-varimp.cforest(cforest.phi.st)</pre>
print(varimp.phi.st)
##
        lake_area_ha lake_perim_meters
                                                 maxdepth
                                                                      pct.ag
          0.14335061
                             0.10553978
                                               0.17409218
                                                                 -0.02426418
##
##
                chla
                                               hu4 zoneid
                                                                  cv.accndvi
##
         -0.06902430
                            -0.06675996
                                              -0.04438473
                                                                 -0.02740571
```

cforest.phi.lt<-cforest(cos(accndviphi.ts2) ~ lake_area_ha + lake_perim_meters + maxdepth + pct.ag + ch

data=modvars.accndvi.philt)
predphi.lt<-predict.cforest(cforest.phi.lt, newdata=modvars.accndvi.philt)</pre>

hist(predphi.lt)

Histogram of predphi.lt

hist(cos(modvars.accndvi.philt\$accndviphi.ts2))

Histogram of cos(modvars.accndvi.philt\$accndviphi.ts2)

cos(modvars.accndvi.philt\$accndviphi.ts2)

cos(phase), short ts


```
cor.test(predphi.lt,cos(modvars.accndvi.philt$accndviphi.ts2))
```

```
##
## Pearson's product-moment correlation
##
## data: predphi.lt and cos(modvars.accndvi.philt$accndviphi.ts2)
## t = 1.7412, df = 39, p-value = 0.08954
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.04260492  0.53224017
## sample estimates:
## cor
## 0.2685657
varimp.phi.lt-varimp.cforest(cforest.phi.lt)
print(varimp.phi.lt)
```

##	lake_area_ha lal	ke_perim_meters	maxdepth	<pre>pct.ag</pre>
##	0.10708894	0.08151034	-0.03946809	-0.04589118
##	chla	tsi	hu4_zoneid	cv.accndvi
##	-0 04451058	-0 12420187	0 15331937	-0 01685269