Homework 4

CST 311, Introduction to Computer Networks, Spring 2020

READ INSTRUCTIONS CAREFULLY BEFORE YOU START THE HOMEWORK.

This homework is due on Sunday, Apr 12, 2020.

Homework must be submitted electronically through iLearn on https://ilearn.csumb.edu by 11:55 pm on the due date. Late homeworks will not be accepted.

Homework must in pdf format only. Any other formats will not be accepted. You must submit a single file for the entire homework. The naming convention of the file should be HW4_yourlastname.pdf. **Put your name in the document as well.** Your homework submission should present the problems in the original order and be properly labeled.

This homework is worth 50 points. Each part of a question carries equal weight unless specified otherwise.

Name (1 p	oints):	Adam Ayala	
матте (т р	omis):	AUdiii Aydid	

Network Layer

- 1. (12 points) Suppose you want to send forward a datagram that is 5500B long over a network where the MTU is 820 B. Assume the header size is 20B.
 - a. How many fragments will it take to send the entire datagram across?

7

b. Draw all fragments and give the offset value and fragmentation flag of each fragment.

820	1	0
820	1	100
820	1	200
820	1	300
820	1	400
820	1	500
700	0	600

- 2. (12 points) Let's say you want to setup a network with 12000 hosts and assuming you are using classful addressing,
 - a. What kind of addresses would you give out to maximize address space utilization?

Class B would give 65,000+ hosts which would be way too many. Class C would give 254 hosts which is way too little. So, you would need to give 48 class C addresses. This would give you 12,192 hosts.

b. Give an example of address space for 12000 hosts.

192.0.0.1 - 192.0.47.63

- 3. (25 points) Suppose a router has built up the routing table shown in table below. The router can deliver packets directly over interfaces 0 and 1, or it can forward packets to routers R2, R3, or R4. Assume that the router does the longest prefix match. Describe what the router does with a packet addressed to each of the following destinations:
 - a. 128.96.171.92
 - i. Interface 0
 - b. 128.96.167.151
 - i. R2
 - c. 128.96.163.151
 - i. R4
 - d. 128.96.169.192
 - i. Interface 1
 - e. 128.96.165.121
 - i. R3

SubnetNumber	SubnetMask	NextHop
128.96.170.0	255.255.254.0	Interface 0
128.96.168.0	255.255.254.0	Interface 1
128.96.166.0	255.255.254.0	R2
128.96.164.0	255.255.252.0	R3
$\langle default \rangle$		R4