Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Интервальный анализ Отчёт по лабораторной работе №4

Выполнил:

Студент: Аникин Александр

Группа: 3630102/80201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Постановка задачи		2
	1.1	Получение решения по теореме Зюзина	2
	1.2	Получение формального решения ИСЛАУ субдифферен-	
		циальным методом Ньютона	2
2	Теория		
	2.1	Теорема Зюзина	2
	2.2	Субдифференциальный метод Ньютона	3
3	Pea	ализация	
4	Результаты		4
	4.1	Получение решения по теореме Зюзина	4
	4.2	Получение формального решения ИСЛАУ субдифферен-	
		циальным методом Ньютона	6
5	Обсуждения 1		10

1 Постановка задачи

1.1 Получение решения по теореме Зюзина

Выбрать ИСЛАУ 2×2 . Построить итерационную схему с разложением матрицы на диагональную и недиагональную части. Провести вычисления и привести иллюстрации:

- Брусов итерационного процесса
- Радиусов решения в зависимости от номера итерации

1.2 Получение формального решения ИСЛАУ субдифференциальным методом Ньютона

Для ИСЛАУ

$$\begin{pmatrix} [3,4] & [5,6] \\ [-1,1] & [-3,1] \end{pmatrix} \cdot x = \begin{pmatrix} [-3,3] \\ [-1,2] \end{pmatrix}$$
 (1)

построить итерационную схему субдифференциального метода Ньютона. Провести вычисления и привести иллюстрации:

- Брусов итерационного процесса
- Сравнить результаты с решением ИСЛАУ

$$\begin{pmatrix} [3,4] & [5,6] \\ [-1,1] & [-3,1] \end{pmatrix} \cdot x = \begin{pmatrix} [-3,4] \\ [-1,2] \end{pmatrix}$$
 (2)

2 Теория

2.1 Теорема Зюзина

Говорят, что квадартная интервальная $n \times n$ матрица **A** иммет диагональное преобладание, если для любого i = 1, 2, ..., n, если

$$\langle \mathbf{a}_{ii} \rangle > \sum_{j \neq i} |\mathbf{a}_{ij}|$$
 (3)

 $\langle \mathbf{a} \rangle$ - мигнитуда интервала.

Теорема Зюзина

Для ИСЛАУ

$$\mathbf{C}x = \mathbf{d} \tag{4}$$

где $\mathbf{C} \in KR^{n\times n}, \mathbf{d} \in KR^n$. Правильная проекция матрицы \mathbf{C} имеет диагональное преобладание. Тогда решение системы существует и единственно. Пусть $\mathbf{D} = diag\{\mathbf{c}_{11}, \mathbf{c}_{22}, ..., \mathbf{c}_{nn}\}, \mathbf{E}$ - матрица, полученная из \mathbf{C} занулением диагональных элементов. Тогда для некоторого x^0 итерационный процесс:

$$x^{k+1} = \text{inv}\mathbf{D}(\mathbf{d} \ominus \mathbf{E}\mathbf{x}^{(k)}), k = 0, 1, \dots$$
 (5)

в силу диагонального преобладания ${f C}$ будет сходиться к единственной неподвижной точке.

2.2 Субдифференциальный метод Ньютона

Рассматриваем ИСЛАУ:

$$\mathbf{C}x = \mathbf{d} \tag{6}$$

Отображение $si:KR^n\to R^{2n}$ вида

$$(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \to (\underline{x}_1, \underline{x}_2, ..., \underline{x}_n, \overline{x}_1, \overline{x}_2, ..., \overline{x}_n)$$
 (7)

называется простейшим погружением.

Для решения индуцированных уравнения G(y) = 0 такого что

$$G(y) = \operatorname{si}(\mathbf{C}\operatorname{si}^{-1}(\mathbf{y})) - \operatorname{si}(\mathbf{d})$$
(8)

в R^{2n} развит субдифференциальный метод Ньютона:

Выбираем некоторое начальное приближение $x^0 \in R^{2n}$. Если (k-1) приближение $x^{(k-1)} \in R^{2n}, k=1,2,...$ уже найдено, то вычисляем какойнибудь субградиент $D^{(k-1)}$ отображение G в точке $x^{(k-1)}$ и полагаем

$$x^{(k)} = x^{(k-1)} - \tau(D^{(k-1)})^{-1}G(x^{(k-1)})$$
(9)

где $\tau \in [0,1]$ - некотарая константа. Начальное приближение можно найти из решения "средней" системы.

$$\left(\operatorname{mid}\mathbf{C}\right)' \cdot x^{(0)} = \operatorname{sid} \tag{10}$$

где через ' обозначена точечная матрица вида:

$$A = \begin{pmatrix} A^+ & -A^- \\ -A^- & A^+ \end{pmatrix} \tag{11}$$

3 Реализация

Язык программирования: Python. Среда разработки: Visual Studio Code.

4 Результаты

4.1 Получение решения по теореме Зюзина

Возьмём матрицу

$$\mathbf{C} = \begin{pmatrix} [5,6] & [3,4] \\ [-1,1] & [2,3] \end{pmatrix} \tag{12}$$

и вектор $\mathbf{x} = ([1,2],[2,4])^T$ и построим вектор правых частей:

$$\mathbf{b} = \mathbf{C} \cdot x = \begin{pmatrix} [11, 28] \\ [2, 14] \end{pmatrix} \tag{13}$$

Будем рассмотривать систему:

$$\begin{cases} [5,6] \cdot x_1 + [3,4] \cdot x_2 = [11,28] \\ [-1,1] \cdot x_1 + [2,3] \cdot x_2 = [2,14] \end{cases}$$
(14)

В качестве начального приближения возьмём точку $\mathbf{x}^{(0)} = ([-10, 10], [-10, 10])^T$ Видно, что интервальная матрица \mathbf{C} имеет диагональное преобладание. Значит для ИСЛАУ 14 справедлива теорема Зюзина.

Критерий останова итерационного процесса 5 - малость изменения бруса на текущей итерации относительно бруса на предыдущей итерации: $\varepsilon < 10^{-16}$.

Процесс остановился после 52 итераций в точке $\mathbf{x} = ([1.0, 2.0], [2.0, 4.0])^T$. Приведём соответствующие иллюстрации:

Рис. 1: Положения брусов при итерациях

Рис. 2: График радиусов брусов в зависимости от номера итерации

4.2 Получение формального решения ИСЛАУ субдифференциальным методом Ньютона

Сначала рассмотрим решение системы 1.

Критерий останова итерационного процесса 9 - малость изменения бруса на текущей итерации относительно бруса на предыдущей итерации: $\varepsilon < 10^{-16}$. Параметр $\tau = 1$.

Процесс остановился после 4 итераций в точке $\mathbf{x} = ([0.0, 0.5], [-0.5, 0.167])^T$. Приведём соответствующие иллюстрации.

Рис. 3: Положения брусов при итерациях

Рис. 4: График радиусов брусов в зависимости от номера итерации

Теперь рассмотрим решение системы 1.2.

Итерационный процесс не сходится, а через 8 итерации уходит в цикл длиной 4 точки. Параметр $\tau=1$. Соответствующие иллюстрации для первых 100 итераций.

Рис. 5: Положения брусов при итерациях, $\tau = 1$

Рис. 6: График радиусов брусов в зависимости от номера итерации, $\tau=1$ Уменьшим параметр $\tau=0.1$. Соответствующие иллюстрации для пер-

вых 100 итераций.

Рис. 7: Положения брусов при итерациях, $\tau = 0.1$

Рис. 8: График радиусов брусов в зависимости от номера итерации, $\tau = 0.1$

Итерационный процесс также не сходится, как и в случае с $\tau=1$, а ходит по циклу той длины 5.

5 Обсуждения

Из результатов решения системы 14 видно, что итерационная схема с разложением матрицы на диагональную и недиагональную для системы, удовлетворяющей условию теормы Зюзина, сходиться. На рисунках 1 - 2 можно заметить, что до четвёртой итерации радиус бруса монотонно убывает и, достигнув минимального значения, которое сильно меньше радиуса бруса решения, на четвёртой итерации, затем постопенно начинает сходиться к решению системы.

Из результатов решения систем 1, 1.2 видно, что у субдифференциального метода Ньютона могут возникнуть проблемы со сходимостью. Итерационный процесс 9 для системы 1 сходится достаточно быстро. В свою очередь для системы 1.2 процесс не сходится, а зацикливается. В таком случае подбор параметра τ может улучшить ситуацию:

Рис. 9: Цикл брусьев при итерациях, система 1.2, $\tau=1$

Рис. 10: Цикл брусьев при итерациях, система 1.2, $\tau=0.1$ На рисунках 9 - 10 видно, что при значении $\tau=0.1$ брусья в цикле

изменяются на каждой итерации меньше, чем при $\tau=1$. Хотя радиус брусьев почти не менятеся при разных значениях τ , что видно на рисунках 6, 8. Также стоит отметить, что при $\tau=0.1$ средний брус в цикле $\mathbf{x}=([-0.15,0.8],[-0.4,0.13])$ достаточно близко к решению системы 1.2.