Boolean Algebra

LOGIC GATES

Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1) or false (0).

It is easier to communicate with computers using formal logic.

• **Boolean variable:** Takes only two values – either true (1) or false (0).

They are used as basic units of formal logic.

Boolean function and logic diagram

 Boolean function: Mapping from Boolean variables to a Boolean value.

Truth table:

- Represents relationship between a Boolean function and its binary variables.
- It enumerates all possible combinations of arguments and the corresponding function values.

 Boolean algebra: Deals with binary variables and logic operations operating on those variables.

 Logic diagram: Composed of graphic symbols for logic gates. A simple circuit sketch that represents inputs and outputs of Boolean functions.

Gates

The most basic gates are

Name	Graphic symbol	Algebraic function	Truth table	
Inverter	А — С	x = A'	A x 0 1 1 0	
AND	A — х	x = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1	True if both are true.
OR	$A \longrightarrow X$	x = A + B	A B x 0 0 0 0 1 1 1 0 1 1 1 1	True if either one is true.

Boolean function and truth table

Name	

Graphic symbol

Truth table

$$x = A \oplus B$$
 $0 0 0$
= A'B + AB' $0 1 1$
1 0 1

Parity check: True if only one is true.

NOR

Inversion of OR.

Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators and + which refer to logical AND and logical OR

Basic Identities of Boolean Algebra (Existence of 1 and 0 element)

$$(1)x + 0 = x$$

$$(2)x \cdot 0 = 0$$

$$(3)x + 1 = 1$$

$$(4)x \cdot 1 = 1$$

(Table 1-1)

Basic Identities of Boolean Algebra (Existence of complement)

$$(5) x + x = x$$

$$(6) x \cdot x = x$$

$$(7) x + x' = x$$

$$(8) x \cdot x' = 0$$

4

Basic Identities of Boolean Algebra (Commutativity):

$$(9) x + y = y + x$$

 $(10) xy = yx$

Basic Identities of Boolean Algebra (Associativity):

$$(11) x + (y + z) = (x + y) + z$$

 $(12) x (yz) = (xy) z$

4

Basic Identities of Boolean Algebra (Distributivity):

$$(13) \times (y + z) = xy + xz$$

 $(14) \times + yz = (x + y)(x + z)$

4

Basic Identities of Boolean Algebra (DeMorgan's Theorem)

$$(15) (x + y)' = x'y'$$

 $(16) (xy)' = x' + y'$

Basic Identities of Boolean Algebra (Involution)

$$(17) (x')' = x$$

Function Minimization using Boolean

Algebra

Examples:

(a)
$$a + ab = a(1+b)=a$$

(b)
$$a(a + b) = a.a + ab = a + ab = a(1+b) = a.$$

(c)
$$a + a'b = (a + a')(a + b) = 1(a + b) = a+b$$

(d)
$$a(a' + b) = a. a' + ab = 0 + ab = ab$$

Try

 \blacksquare F = abc + abc' + a'c

The other type of question

Show that;

1-
$$ab + ab' = a$$

2- $(a + b)(a + b') = a$

1-
$$ab + ab' = a(b+b') = a.1=a$$

2- $(a + b)(a + b') = a.a + a.b' + a.b + b.b'$
= $a + a.b' + a.b + 0$
= $a + a.(b' + b) + 0$
= $a + a.1 + 0$
= $a + a = a$

More Examples

- Show that;
 - (a) ab + abc = ab + ac
 - (b) (a + b)(a + b' + c) = a + bc
 - (a) ab + abc = a(b + bc)= a((b+b').(b+c))=a(b+c)=ab+ac
 - (b) (a + b)(a + b' + c)= (a.a + a.b' + a.c + ab + b.b' + bc)= ...

DeMorgan's Theorem

(a)
$$(a + b)' = a'b'$$

(b)
$$(ab)' = a' + b'$$

Generalized DeMorgan's Theorem

(a)
$$(a + b + ... z)' = a'b' ... z'$$

(b)
$$(a.b...z)' = a' + b' + ... z'$$

DeMorgan's Theorem

- F = ab + c'd'
- F' = ??

- F = ab + c'd' + b'd
- F' = ??

DeMorgan's Theorem

Show that: (a + b.c)' = a'.b' + a'.c'

More *DeMorgan's* example

Show that:
$$(a(b + z(x + a')))' = a' + b'(z' + x')$$

$$(a(b + z(x + a')))' = a' + (b + z(x + a'))'$$

$$= a' + b' (z(x + a'))'$$

$$= a' + b' (z' + (x + a')')$$

$$= a' + b' (z' + x'(a')')$$

$$= a' + b' (z' + x'a)$$

$$= a' + b' z' + b'x'a$$

$$= (a' + b'x'a) + b' z'$$

$$= (a' + b'x')(a + a') + b' z'$$

$$= a' + b'x' + b' z'$$

$$= a' + b'(z' + x')$$

-

More Examples

$$(a(b + c) + a'b)' = b'(a' + c)$$

 $ab + a'c + bc = ab + a'c$
 $(a + b)(a' + c)(b + c) = (a + b)(a' + c)$