CLAIMS

What is claimed is:

1	1. A power control system for a power amplifier, comprising:
2	a first power control loop comprising:
3	a variable attenuator for adjusting a gain applied to a signal in the first
4	power control loop;
5	a detector for providing a direct current (DC) baseband signal representing
6	an output of the power amplifier;
7	a first comparator for comparing the DC baseband signal to a first
8	reference signal and generating an error signal;
9	a second power control loop comprising:
10	a second comparator for comparing the error signal to a second reference
11	signal and generating a secondary control signal capable of controlling the variable
12	attenuator.
1	2. The power control system of claim 1, wherein the secondary control signal
2	is used to control the variable attenuator to reduce attenuation in the first power control
3	loop.
1	3. The power control system of claim 2, wherein the variable attenuator is a
2	variable gain amplifier (VGA) having a maximum gain of zero dB.
1	4. The power control system of claim 1, further comprising an adjustable
2	buck voltage converter responsive to the secondary control signal, the adjustable buck
3	voltage converter configured to reduce a power supplied to the power amplifier in
4	response to the secondary control signal.

1	5. The power control system of claim 4, wherein the adjustable buck voltage									
2	converter reduces supply current to the power amplifier until saturation of the power									
3	amplifier is detected.									
1	6. The power control system of claim 1, wherein the secondary control signal									
2	is used to control the variable attenuator to reduce attenuation in the first power control									
3	loop, and further comprising:									
4	an adjustable buck voltage converter responsive to the secondary control signal,									
5	the adjustable buck voltage converter configured to reduce the power supplied to the									
6	power amplifier in response to the secondary control signal until saturation of the power									
7	amplifier is detected.									
1	7. A method for operating a power control loop for a power amplifier,									
2	comprising:									
3	measuring a power level of a signal output from the power amplifier;									
4	generating an error signal by comparing the power level of the signal output from									
5	the power amplifier to a first reference signal; and									
6	deriving a secondary control signal.									
1	8. The method of claim 7, further comprising:									
2	using the secondary control signal to control a gain applied to the signal output									
3	from the power amplifier.									
1	9. The method of claim 8, wherein the gain applied to the signal output from									
2	the power amplifier is controlled by a variable attenuator, the variable attenuator									
3	configured to receive the signal output from the power amplifier.									

1	10. The method of claim 7, further comprising:
2	using the secondary control signal to control an adjustable buck voltage converter,
3	the adjustable buck voltage converter configured to provide a supply current to the power
4	amplifier.
1	11. The method of claim 10, wherein the adjustable buck voltage converter
2	reduces supply current to the power amplifier until saturation of the power amplifier is
3	detected.

1	12. The method of claim 7, further comprising:									
2	using the secondary control signal to control a gain applied to the signal output									
3	from the power amplifier; and									
4	using the secondary control signal to control an adjustable buck voltage converter,									
5	the adjustable buck voltage converter configured to provide a supply current to the power									
5	amplifier, wherein the adjustable buck voltage converter reduces supply current to the									
7	power amplifier until saturation of the power amplifier is detected.									
I	13. A system for operating a power control loop for a power amplifier,									
2	comprising:									
3	means for measuring a power level of a signal output from the power amplifier;									
1	means for generating an error signal by comparing the power level of the signal									
5	output from the power amplifier to a first reference signal; and									
5	means for deriving a secondary control signal.									
l	14. The system of claim 13, further comprising:									
2	means for using the secondary control signal to control a gain applied to the signal									
3	output from the power amplifier.									
l	15. The system of claim 14, wherein the gain applied to the signal output from									
2	the power amplifier is controlled by a variable attenuator means, the variable attenuator									
3	means for receiving the signal output from the power amplifier.									
1	16. The system of claim 13, further comprising:									
2	means for using the secondary control signal to control an adjustable buck voltage									
3	converter means, the adjustable buck voltage converter means for providing a supply									
ļ	current to the power amplifier.									

	17.	The syst	em of c	lair	n 16	, where	ein the adj	justabl	e buck vol	tage	COI	rvertei
means	reduces	supply	current	to	the	power	amplifier	until	saturation	of t	he	power
amplifi	ier is dete	ected.										

18. The system of claim 13, further comprising:

 means for using the secondary control signal to control a gain applied to the signal output from the power amplifier; and

means for using the secondary control signal to control an adjustable buck voltage converter means, the adjustable buck voltage converter means for providing a supply current to the power amplifier, wherein the adjustable buck voltage converter means reduces supply current to the power amplifier until saturation of the power amplifier is detected.