Билет 30

Автор1, ..., Aвтор<math>N

21 июня 2020 г.

Содержание

0.1	билет 50: Равномерная непрерывность отооражении. Теорема Кантора для отоо-	
	ражений метрических пространств	1

Билет 30 СОДЕРЖАНИЕ

0.1. Билет 30: Равномерная непрерывность отображений. Теорема Кантора для отображений метрических пространств.

Определение 0.1.

Пусть $\langle X, \rho_X \rangle$, $\langle Y, \rho_Y \rangle$ - метрические пространства, $E \subset X, f : E \mapsto Y$.

f называется равномерно непрерывной если

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in E \quad (\rho_X(x, y) < \delta \implies \rho_Y(f(x), f(y)) < \varepsilon).$$

Лемма.

Если f равномерно непрерывна, то f непрерывна.

Доказательство.

Чтобы показать непрерывность в точке a подставим x=a в определение.

Теорема 0.1 (Кантора).

Пусть $\langle X, \rho_X \rangle, \langle Y, \rho_Y \rangle$ - метрические пространства, $K \subset X$ - компакт, $f: K \mapsto Y$ - непрерывна.

Тогда f равномерно непрерывна.

Доказательство.

Путь $\exists \varepsilon > 0$ для которого ни одно δ не подходит. Возьмём $\delta = \frac{1}{n}$.

Так-как δ не подошло, $\forall n \quad \exists x_n, y_n \in K \quad \rho_X(x_n, y_n) < \delta$ и $\rho_Y(f(x_n), f(y_n)) \geqslant \varepsilon$.

 x_n - последовательность из компакта $\implies \exists x_{n_k}$ - сходящаяся подпоследовательность.

Пусть $a := \lim_{k \to \infty} x_{n_k}$.

 $\rho(x_{n_k}, a) \to 0, \ \rho(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \to 0.$

Тогда, по \triangle , $\rho(y_{n_k}, a) \to 0 \implies \lim_{k \to \infty} y_{n_k} = a$.

По непрерывности, $\exists \lambda > 0 \quad \rho_X(x,a) < \lambda \implies \rho_Y(f(x),a) < \frac{\varepsilon}{2}$.

Так-как подпоследовательности сходятся $\exists N \quad \rho(x_N,a) < \lambda, \ \rho(y_N,a) < \lambda$ (тут нужен только один элемент каждой последовательности).

Тогда, $\rho(f(x_N), f(y_N)) \stackrel{\triangle}{\leqslant} \rho(f(x_N), a)) + \rho(a, f(y_N)) < \varepsilon$. Противоречие с тем как брали x_n, y_n . Значит f равномерно непрерывна.