Designs of Algorithms and Programming for Massive Data

DS8001

Andriy Miranskyy

Sep. 12, 2016

Outline

- Introduction
- Learning objectives
- Quiz

Who am I?

- Andriy Miranskyy is an assistant professor at the Department of Computer Science, Ryerson University.
- Research interests: mitigating risks in software engineering
 - Focusing on software quality assurance, program comprehension, software requirements, project risk management, Big Data, and Green IT.
- Ph.D. in Applied Math. at the University of Western Ontario.
- 15 years of software engineering experience in information management and pharmaceutical industries.
- Prior to joining Ryerson in January of 2014 worked in the IBM Information Management division at the IBM Toronto Software Laboratory.
- http://www.scs.ryerson.ca/~avm/

How to get in touch?

- Send email to <u>avm@ryerson.ca</u>
 - Expect response within 24 hours
- Please
 - Include [DS8001] into the subject line
 - Send email from your @ryerson.ca account
 - University policy

Who are you?

- Program
- Background
 - Economist
 - Computer Scientist
 - Biologist
 - Finance
 - Etc.

Preliminary Course Description

Available on D2L

Course Syllabus

- To introduce students to the theory and design of algorithms to acquire and process large dimensional data.
- Advanced data structures, graph algorithms, and algebraic algorithms.
- Complexity analysis, complexity classes, and NPcompleteness, approximation algorithms and parallel algorithms.
- Study of algorithmic techniques and modeling frameworks that facilitate the analysis of massively large amounts of data.
- Introduction to information retrieval, streaming algorithms and analysis of web searches and crawls.

Prerequisites

 Undergraduate-level data structures and algorithms course(s)

Objectives

Goal

- To develop skills and knowledge enabling to design algorithms for processing large volumes of data
- Outcome. At the end of the course you will be able
 - To analyze algorithms and suggest potential ways to parallelize them;
 - To identify existing or design new algorithms required to process massive data.

Books for the course

- Mandatory ones: none
 - Could not find anything suitable
- Books that may be helpful
 - Kuan-Ching Li, Hai Jiang, Laurence T. Yang, Alfredo Cuzzocrea, (eds.) "Big Data: Algorithms, Analytics, and Applications" Chapman & Hall/CRC Big Data Series, 2015.
 - Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
 Clifford Stein "Introduction to Algorithms", 3rd Edition, MIT Press, 2009
 - Cleve B. Moler, Numerical Computing with MATLAB, Revised Reprint, 2nd edition, Society for Industrial and Applied Mathematics, 2008.
 - http://www.mathworks.com/moler/chapters.html

Evaluation

Labs/Assignments 30%

• Midterm test 20%

• Project 30%

• Final exam 20%

• Total 100%

Project

- Individual or Team work
- Topic: I am open to your ideas (but will need to vet them)
 - E.g., parallelize an algorithm that you use on a regular basis to process "massive data"
- Deliverables: Report and Presentation

What is Massive Data

 The course is called "Designs of Algorithms and Programming for Massive Data"

- We know what the algorithms are...
- But what is Massive Data?
- These days the buzzword for large volumes of Data is Big Data

Big Data

- Big Data: "data sets so large or complex that traditional data processing applications are inadequate."¹
- Big Data technology and services market growth²
 - Compound annual rate of 27%
 - From \$9.8 billion in 2012 to \$32.4 billion in 2017

- 1. http://en.wikipedia.org/wiki/Big_data
- 2. D. Vesset, "Worldwide Big Data Technology and Services 2013–2017 Forecast," IDC Market Analysis, 244979, Dec. 2013.

Big Data Characteristics

- 4 Vs
 - Velocity: needs to be processed in real time
 - Volume: mountain-ranges of historical data
 - Variety: structured or unstructured
 - Veracity: have to be cleaned
- Give people a dictionary and some free time...
 - Validity / Variability / Volatility : inconsistency
 - Value : but it is useful?
 - Your V goes here ☺

Big Data is a moving target...

IBM 350

Big Data is a moving target...

IBM 350:

- Announced in 1956 (60 years ago)
- 3.75 megabytes of storage (5 million characters)
 - Capacity could have been bigger, but marketing department thought that there would be no demand for such a massive product
- Available for rent for \$3,200 per month
- Design motivated by the need for real time accounting in business
- Weight: > 1000kg
- https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drive s#IBM_350

What is considered big nowadays?

- Yours truly was part of the the team at IBM that built 3PB relational database and got a Guinness world record for it.
 - Which was overturned next year ☺. Remember the moving target?
 - The database engine used was IBM DB2 which is a definition of a traditional enterprise tool
 - However it did require the skillset that a classic
 DBA might not have

Rule of thumb (very informal)

From the *volume* perspective, whatever you cannot fit on a single modern computer can be considered Big Data. These days it is somewhere around 25 Tb.

Note that I am ignoring here other Big Data V-characteristics (velocity, veracity, etc.)

Massive data ≠ Massive computations

- For example, think of project of finding prime numbers: http://www.mersenne.org
- "GIMPS celebrated its 20th anniversary with the discovery of the largest known prime number, 2^{74,207,281}-1. It has [...] 22,338,618 digits -- almost 5 million digits longer than the previous record prime number." Jan. 7, 2016

Today's Numbers	
Teams	1,027
Users	162,132
CPUs	1,342,899
TFLOP/s	262.767
GHz-Days	131,384

Big Data Generators

- Examples
 - Genetics
 - Physics
 - Social nets
 - Finance
- Enterprise¹ and smaller systems can generate Big
 Data in the form of logs and traces

```
#How to generate 2PB of raw text with 2 lines ☺ For i from 1 to 1E14 : log.debug("I am in the for-loop")
```

Typical answers to V-challenges

- Parallelize
 - On CPU cores of a single computer
 - On a cluster of computers
- Approximate
 - Sample data

Names & Photo

Take photo now

Do introduction on Monday

Please check if you can access from your device

https://goo.gl/forms/nPbs7akSDSzCoRPw1

Quiz

- https://goo.gl/forms/AelP00JlNasZR0qy2
 - 15 minutes

