Lab 11. Forecasting with Tableau

2. When the script is opened, type the following code install.packages("Rserve", repos='http://cran.us.r-project.org'), select it and click on


```
or press [*Ctrl*] + [*R*]:
```


3. When the installation is completed you will receive the message that the Rserve package is successfully unpacked:

4. Get back to script and type the following code:

```
library(Rserve)
Rserve()
```


5. Select the code and click on

```
or press [*Ctrl*] + [*R*].
```

6. Open Tableau and in the main menu toolbar navigate to Help | Settings and

Performance | Manage External``Service Connection... as shown in the following screenshot:

7. In the External Service Connection dialog box, from the Server drop-down menu, choose localhost. The** ``Port ** field should contain the value of ** 6311. **Click on the Test Connection button:

8. If you went through all of the steps outlined

above you will get the message that the connection between Tableau and R is successful:

9. Click on ox to exit the** External Service Connection ** dialog box.

How it works...

In this recipe, we installed the R software on our computer. Also, we installed the Rserve package, loaded its library, and initialized it. Essentially, Rserve is a connector between R and Tableau Desktop.

After that, we configured and tested the Rserve connection. When all of this was done, we were ready to write R syntax in Tableau calculated field. We have the following four different scripts at our disposal:

- SCRIPT REAL: This script returns real numbers
- SCRIPT INT: This script returns integers
- SCRIPT STR: This returns strings
- SCRIPT_BOOL: This script returns Boolean Within this script, we are allowed to write regular R syntax and the result of the calculation will be saved in a calculated field. This calculated field can be further used in the same manner as any other calculated field in Tableau.

Note

In order to use R functionality in a workbook, the reader needs to have an R Tableau connection. This holds for locally shared workbooks and for workbooks published on Tableau Server. As of 2019, Tableau supports RSserve connections, which means secure Rserve is being hosted remotely from Tableau Server, and the data is protected in transit.

There's more...

- A concrete example of performing analysis that requires writing R syntax will be covered in the next recipes, [Forecasting based on multiple regression] and [Regression with random forest], and other recipes in Advanced Analytics with Tableau. However, any of these chapters do not have the ambition to serve as an introduction in R language. Because of that, readers are encouraged to learn R in parallel by referring to the following links:
- https://www.statmethods.net/index.html
- https://www.r-bloggers.com/

However, readers without any previous experience in R should be able to perform all the recipes.

Forecasting based on multiple regression

In the first recipe of this lab, [Basic forecasting and statistical inference], we learned how to perform forecasting with simple linear regression. In this recipe, we will learn how to perform forecasting based on multiple regression. Multiple regression is a type of forecasting procedure in which we use more than one variable to predict the

outcome variable that we are interested in. In this recipe, our goal is to predict the level of cortisol at the highest effort during the physical exercise, based on cortisol level at rest and cortisol level at the beginning of the test. In the dataset that we are going to use, we have some respondents with missing data for cortisol level during physical exertion. Our aim is to use the result of our regression analysis to approximate cortisol level for those respondents and use these predicted values for further analysis. For this recipe, we need to employ R functionality in Tableau.

Getting ready

For this recipe, we will need the hormonal_response_to_excercise.csv dataset. Variables that we are going to use are Cortmax (the level of cortisol at the maximum level of physical excretion), Cortrest (cortisol level at rest), Cortp (the level of cortisol at the beginning of the test), and Achtmax (the level of adrenocorticotropic hormone at the beginning of the test). Before the start, make sure that R is installed on your machine, that Rserve is installed, loaded and initialized, and that connection between R and Tableau is configured. For detailed instruction on this, please refer to the [Using R within Tableau] recipe.

How to do it...

 In the main menu toolbar, navigate to Analysis | Create Calculated Field... and type the following code:

```
SCRIPT_REAL('
mydata <- data.frame(y=.arg1, x1=.arg2, x2=.arg3);
reg <- lm(y ~ x1 + x2, data = mydata);
save(reg, file = "C:/Users/Slaven/Documents/mymodel.rda")
prob <- predict(reg, newdata = mydata, type = "response")'
,
AVG([Cortmax]),AVG([Cortrest]), AVG([Cortp]))</pre>
```

2. Name the field CortmaxPred as shown in the following screenshot:

```
Results are computed along Table (across).
SCRIPT_REAL(
'
mydata <- data.frame (y=.arg1, x1=.arg2, x2=.arg3);
reg <- lm(y ~ x1 + x2, data = mydata);
save (reg, file = "C:/Users/Slaven/Documents/mymodel.rda")
prob <- predict(reg, newdata = mydata, type = "response")'
,
AVG([Cortmax]), AVG([Cortrest]), AVG([Cortp]))</pre>
```

- 3. Drag and drop CortmaxPred from Measures to the Columns shelf.
- 4. Drag and drop Achtp from Measures to the Rows shelf.
- 5. In the main menu, go to ** Analysis **and deselect Aggregate Measures.
- 6. In the same menu, choose **Trend Lines** and select** Show ``Trend Lines ** and you will see the following output:

How it works...

In this recipe, we learned how to utilize R facility within Tableau. If you have some experience with R, you might notice that the syntax looks pretty standard with an exception at the beginning and at the end. Actually, the R syntax is wrapped, so that Tableau can be used to recognize it.

Also, it is important to notice that we need to assign arguments that are going to be used. .arg1 represent the first variable from the left-hand side mentioned in the bottom line of the syntax (in our case, it is Cortmax), the .arg2 variable represent the second one (Cortrest), and so on.

There's more...

In the syntax for this recipe, you might have noticed the following line of code:

```
save(reg, file = "C:/Users/Slaven/Documents/mymodel.rda")
```

This line created a .rda file on your hard drive, witch contains our regression model. Once you have saved the model, you can reuse it with another data set. Let's say we receive a new data set with data which contains information about cortisol level at the beginning of the test and at rest, but no information on the cortisol level at the point of maximum exertion. Thanks to our model, which predicts the level of cortisol at the point of maximum exertion, we can estimate its value for the new subjects. We just need to load our model by creating a calculated field with the following line of code:

```
SCRIPT_REAL('
mydata <- data.frame(y=.arg1, x1=.arg2, x2=.arg3);
load ("C:/Users/Slaven/Documents/mymodel.rda")
prob <- predict(reg, newdata = mydata, type = "response")'
,
AVG([Cortmax]),AVG([Cortrest]), AVG([Cortp]))</pre>
```

The new calculated field will contain the predicted values of Cortmax. However, keep in mind that the new data set has to contain a field named the same as the variable we were predicting in the original data set (in this case, Cortmax) for the script to work, even if it is completely empty. Also, make sure that all the other fields are also named exactly the same as in the original data set, where the model was created.

Regression with random forest

In the previous recipe, [Forecasting based on multiple regression], we learned how to use multiple variables in order to predict the variable that we are interested in. Sometimes, we have a lot of variables and we are not sure which ones we should choose as predictors. Also, predictor variables can be related among themselves in different ways, which complicates the setup of the model and the interpretation of the results. In recent years, random forest algorithm has gained popularity among analysts and data scientists, as they provide a solution to these problems. The random forest algorithm is based on decision tree approach. This approach can be used to predict both discrete class membership (classification) and exact values of a continuous variable (regression). In this recipe, we will cover the latter. Regression-based on decision tree works by iteratively splitting cases in the dataset into increasingly homogeneous groups. Looping through all variables the algorithm searches for the one that splits cases into the groups. so that cases within each group are as similar as possible with regards to the predicted variable. This process continues, resulting in the three with more and more branches and data that is partitioned into smaller and smaller subsamples. Random forest is an enhanced version of the decision tree algorithm that builds many decision threes using randomly selected subsamples of both variables and cases.

Results obtained by each of the trees are compiled into a final single solution. Visualized in R, a random forest model looks like this:

Note

It is not possible to create a tree chart like the one shown above in Tableau --- it is possible to create it directly in R though. You can learn how in the next lab,

Advanced Analytics with Tableau.

We will use the hormonal_response_to_excercise.csv dataset. Our main task will be to predict the level of adrenocorticotropic hormone at the maximum level of physical exertion. In order to take into consideration different factors that can influence an ACHTspike during exercise, we are going to include the following variables in our model: cortisol level at rest, alcohol and tobacco consumption, height, age, and weight. This variable can be also interrelated: for example, smoking and drinking, height, and weight. Baseline cortisol may be also related to tobacco and alcohol consumption. For this reason, the random forest can make our life easier.

Getting ready

In order to perform this recipe make sure that you installed R, and that you have activated the Rserve package and connect it to Tableau (for detailed instruction see the recipe, [Using R within Tableau]). You will also need to connect to hormonal_response_to_excercise.csv and open a new blank worksheet.

How to do it...

1. Launch R, open a new script and type install.packages("rpart", repos='http://cran.us.rproject.org') .

2. Select the text, and click on

```
or press [*Ctrl*] + [*R*].
```

3. When the installation process is completed, load the package by typing the following line:

```
library(rpart)
```


4. Select the text, and click on

```
or press [*Ctrl*] + [*R*].
```

- 5. In Tableau, in the main menu toolbar, click on Analysis and then click on Create Calculated Field....
- 6. Rename the field from Calculation 1 to Random Forest and type the following expression into the formula space:

```
SCRIPT_REAL('library(rpart);
fit = rpart(Achtmax ~ Cortrest + Alcohol + Tobacco + Height + Age + Weight,
method="anova", data.frame(Achtmax = .arg1, Cortrest = .arg2, Alcohol=.arg3, Tobacco
=.arg4, Height =.arg5, Age =.arg6, Weight=.arg7));
t(data.frame(predict(prune(fit,0.05), type = "vector")))[1,]',
AVG([Achtmax]),
AVG([Cortrest]),
AVG([Alcohol]),
AVG([Height]),
AVG([Height]),
AVG([Meight]))
```

The preceding code is shown in the following screenshot:

Random Forest X

```
Results are computed along Table (across).
SCRIPT_REAL('library(rpart);
fit = rpart(Achtmax ~ Cortrest + Alcohol + Tobacco + Height + Age + Weight,
method="anova", data.frame(Achtmax = .arg1, Cortrest = .arg2, Alcohol=.arg3, Tobacco
t(data.frame(predict(prune(fit,0.05), type = "vector")))[1,]',
AVG([Achtmax]),
AVG([Cortrest]),
AVG([Cortrest]),
AVG([Alcohol]),
AVG([Height]),
AVG([Height]),
AVG([Meight]))
```

Default Table Calculation

The calculation is valid.

- 7. Click ox to exit the editor window and save the calculated field.
- 8. Drag and drop Random Forest from Measures into the Rows shelf.
- 9. Drag and drop the ID variable from Dimensions into the Columns shelf.
- 10. In the Marks card, change the mark type from Automatic to Circle using the drop-down menu.
- 11. Drag and drop ID from Dimensions to Label in the Marks card.
- 12. Drag and drop Random Forest from Measures to Color in the Marks card.
- 13. Rename the sheet to Random Forest Regression:

How it works...

In this recipe, we used the random forest algorithm to predict the level of ACHT during exercise. The subjects with high values of ACHT (389.86) are represented with dark blue circles at the top of the chart, while the rest of the respondents (with the average value of 325.14) are at the bottom of the chart (light blue cycles).

There's more...

In this recipe, we have created a model, and we can now save it and apply it to another dataset (for detailed explanation and instructions, see the recipe

Forecasting based on multiple regression). You might also want to try further evaluation the model by splitting the data into a training and a test set. It is a common practice in data modeling to use a part of the data set as the training set, on which the model is built (fitted). The model is then evaluated on the test set. If the fit that is observed for the training set is preserved in the test set, it is an indication that we did a good job. Otherwise, we need to reconsider our model.

Time series forecasting

Tableau has excellent capabilities for dealing with time series data. One of them is time series forecasting -- extrapolating values for points in time that are outside our dataset, based on the time points in our dataset for which we have the recorded values.

In this recipe, we will be using stock market prices of a soft drink company shares, stored in the <code>Stock_prices.csv</code> dataset.

Getting ready

To perform the steps in this recipe, make sure you are connected to the <code>Stock_prices.csv</code> dataset and open a new blank worksheet.

How to do it...

 Right-click on the Date field under Dimensions and from the drop-down menu select Convert to Continuous:

- 2. Drag and drop Date from Dimensions into the Columns shelf.
- 3. Drag and drop Adj.Close from Measures into the Rows shelf.
- 4. In the main menu toolbar, click on Analysis , navigate to Forecast and select Show Forecast:

5. Tableau will automatically place the **Forecast indicator** field in **Color** in the **Mar``ks** card. However, we can remove it from there:

- 6. Once again, navigate to Analysis in the main menu toolbar and under Forecast select Forecast Options....
- 7. Forecast Length is automatically set to Next 5 quarters, but we can change it by selecting Exactly or Until and selecting the desired period. Try changing the Forecast Length period and notice how the shaded area around the line expands as you increase the Forecast Length. However, let's leave it at 5 quarters:

8. Click ox to exit the

Forecast `Options window:

9. Finally, under Analysis in the main menu toolbar, navigate to Forecast and select Describe Forecast to see the performance of the forecast we have created:

How it works...

We have extrapolated the closing prices of the company's shares based on the prices we have recorded in our dataset. Let's explore the characteristics of the model we have created, by inspecting the content of the <code>Describe</code>

Forecast window.

In the **Summary** tab, we can see some basic information describing our forecast. The most important of these is quality---it describes how well the forecast fits our actual data and can take values of <code>Good</code>, <code>Ok</code>, and <code>Poor</code>.

In the Models tab, we can see the role of the Level, Trend, and Season components of our model. We can also see the quality metrics that provide information about the statistical quality of our model---[root mean squared error] ([RMSE]), **mean absolute error **, [mean absolute percentage error] ([MAPE]), and [Aikake Information Criterion] ([AIC]). Finally, in the Models tab, we can get the information about smoothing coefficients that were used to weight the data points according to their how recent they are, so that forecast errors are minimized as shown in the following screenshot:

Tableau allows us to choose the time period for which we wish to predict the values. We have chosen 5 quarters, but we can increase the period further. However, note that the precision of our prediction becomes smaller as our forecasting length period becomes longer. This is reflected by the prediction interval (the shaded area around the line), which becomes larger as we make our prediction period becomes longer.

There's more...

In the Forecast Options window, Tableau provides us with various option for customizing our forecast. We can choose how to aggregate our data under Source Data. By default, it is aggregated by Quarters, but in the drop-down menu, we can choose to aggregate across different time periods, such as Year or Month. Under Data Source, we can also choose how many time points to ignore. Finally, we can replace the null (missing) values with zeros if desired.

Under Forecast Model, we can change our model from Automatic to Automatic without Seasonality, or Custom model, in which case we can manually choose the trend and season.

Finally, we can select or deselect the box in front of **Show prediction intervals** in order to turn the prediction intervals on or off. We can also choose among the 90%, 95%, and 99% prediction intervals.