Module: Sécurité Informatique

Groupe: 1 **Membres:**

- · Benkedadra Mohamed
- Benkorreche Mohamed El Amine

LINÉARITÉ

La Linéarité:

- La Linéarité en cryptographie est un concept un peux difficile a comprendre
- Quelque chose est linière donc quelque chose est prédictible
- Exemples:

MANIPULATION DES BITS

Le Masquage:

- Un maque : est un nombre en bit qui est utilisé pour choisir un sous ensemble d'un nombre en bit du même taille
- Chaque nombre de n-bit a 2ⁿ − 1 masques possibles (nb de 4bit a 2⁴ − 1 donc 15)
- Un nombre est masqué a l'aide des opérations binaires (AND, OR, XOR ..etc)
- On prend des 1 pour les cases qu'on veux et des 0 pour les autres.
- Un exemple de masquage :
 - $x = 101101101001 \rightarrow longeur = 12 bits \rightarrow 4095 masques possibles$
 - si on veux prendre le sous ensemble des cinq premiers nombres a gauche, on utilise l'opération AND entre le masque y et la valeur x :

```
y = 111110000000
d'où :
x AND y = 101100000000
```

PARITÉ

La Parité:

- La parité d'un nombre est un bit, utilisé pour être sure qu'un nombre est pair ou impair
- Pour la calculer :
 - 1re méthode:
 - On transforme le nombre en base 2 (en bit)
 - On compte le nombre des 1, la parité égale à :
 - 1 si le nombre compter est impair
 - 0 sinon
 - Par exemple : 10110 → p = 1
 - 2eme méthode:
 - On fait un ⊕ (xor) entre chaque pair de bit
 - Par exemple :

$$10 \rightarrow 1 \oplus 0 = 1$$

 $1010 \rightarrow (1 \oplus 0) \oplus (1 \oplus 0) = 0$
 $11100 \rightarrow ((1 \oplus 1) \oplus (1 \oplus 0)) \oplus 0 = 1$

CHIFFREMENT PAR BLOC

SPN:(Réseaux de Substitution-Permutation - Substitution-Permutation Network)

- Une des méthodes les plus facile pour approcher le chiffrement par bloc
- Existence R-1 messages semi-chiffré (M)

Fonctions des Rounds :

•
$$W_1 = G(W_0, K_1) => M = P-BOX[S-BOX[P \oplus K_0]]$$

• $W_2 = G(W_0, K_2) => C = P-BOX[S-BOX[M \oplus K_1]]$
• $W_1 = P-BOX[S-BOX[W_1, K_1]]$

Cryptanalyse

Cryptanalyse:

- une technique dans le domaine de cryptographie, qui consiste de casser un algorithme
- Il y existe quatre type d'attaque dans la cryptanalyse :
 - <u>Attaque sur un texte chiffré seul</u>: l'attaquer a accès a des exemples du texte chiffré. Et essaye de trouvé le texte clair a l'aide de quelques informations.
 - <u>Attaque à texte clair connu</u>: l'attaquer a accès a des exemples de texte clair et leurs textes chiffrés, et il essaye de trouvé la clé de chiffrement (comme la cryptanalyse linière).
 - <u>Attaque à texte clair choisi</u> l'attaquer peux choisir du texte clair et le chiffré au but de trouvé des méthodes pour faiblir l'algorithme
 - Attaque à texte chiffré choisi : l'attaquer peux choisir du texte chiffré puis demande son texte clair. Après, il les utilise afin de faiblir l'algorithme (l'inverse de l'attaque a texte clair choisi avec le même but).

Cryptanalyse Linière:

- Introduit par « Mitsuru Matsui » lors du « EUROCRYPT » de 1993, comme une meilleur méthode pour cassé le DES.
- Appartient au « Attaques a Texte Clair Connu »
- Essaye de trouvé la clé de chiffrement a l'aide des exemplaires P/C (Clair/Chiffré)
- Utilisé généralement avec les algorithmes de chiffrement par bloc
- Seul, elle n'ai pas très efficace pour les algorithmes de chiffrement moderne
- Idéal pour la cryptanalyse académique, ou en sais tous sur l'algorithme.
- Consiste de :
 - Trouver les parties non-linières de l'algorithme de chiffrement par bloc
 - Introduire la linéarité au parties non-linières a l'aide des approximations linières
 - Augmenter la précision de chaque approximation linière.
 - Trouver les meilleurs approximations pour chaque partie non-linière du l'algorithme

Implémentation:

- Bien analyser l'algorithme, et comprendre comment il marche.
- Trouver toutes les parties (opérations) non-linières .
- Pour chaque partie-non linière :
 - Faire des approximations linières .
 - Trouvé la meilleur approximation .
- Pour chaque round WR = G (WR-1, KR):
 - trouver les messages semi-chiffrés M pour chaque Kr des Kr possible.
 - Trouvé les meilleurs Kr (le Kr qui calcule le plus grand nombre de M correctement)
 - Essayer de deviner K^{r+1}
- Après qu'on trouve tous les Kr :
 - Tester tous les couples P/C avec l'ensemble (K0, K1,, Kr)
 - Si tous les couples sont correcte donc les clés sont correcte.

Exemple:

• prenant l'algorithme suivant :

les P, K, C, M ... etc ont une longueur de 4bit disant qu'on a 16 P et leurs 16 C , chiffré a l'aide de l'algorithme

- 1- analyse de l'algorithme :
 - XOR est linière, parce que :
 A = B ⊕ C → B = A ⊕ C → C = A ⊕ B d'où le xor est prédictible
 - La seul partie non-linière est le S-BOX. d'où, il faut qu'on fait l'approximation Linière du S-BOX.

Approximation Linière:

- Considérant le S-BOX suivant :
- On trouve tous les masques possible du S-BOX,
 - dans notre cas, l'entrée du S-BOX est de 4 bit, donc les masques d'entrée possibles sont [0001,0010,...,1111], et la même chose pour les masques de sortie.
- On dessine un tableau ou les lignes sont les masques d'entrées et les colonnes sont les masques de sorties, et on initialise les cases par 0.

```
S-BOX:
0 \rightarrow 9
                        8 \rightarrow 13
                       9 \rightarrow 7
1 \rightarrow 11
                       10 \rightarrow 3
2 \rightarrow 12
3 \rightarrow 4
                        11 \rightarrow 8
4 \rightarrow 10
                       12 \rightarrow 15
5 \rightarrow 1
                       13 \rightarrow 14
6 \rightarrow 2
                       14 \rightarrow 0
7 \rightarrow 6
                        15 \rightarrow 5
```

 On masque chaque entrée possible (de 0000 a 1111) par un masque d'entrée et on calcule ça parité p1. On masque ça sortie par un masque de sortie et en calcule ça parité p2.

si p1 égale a p2 → ajouter 1 dans la case [masque entrée][masque sortie] sinon → rien faire

01	02	03								11	12	13	14	15	
01 00	00						00				00		00	00	
02 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
03 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
04 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
05 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
06 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
07 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
08 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
09 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
10 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
11 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
12 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
13 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
14 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
15 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	1

Tableau d'approximation Initial

01				05								13		15	
01 08			10	10				10		10				12	
02 04	06	06	80	80	10	06	04	80	10	10	80	80	10	06	
03 08	10	06	06	10	80	80	06	10	80	80	04	04	06	10	
04 06	10	12	80	06	06	80	06	80	04	10	06	80	80	06	
05 06	10	04	06	04	80	10	80	06	06	80	10	80	80	10	
06 06	80	06	80	10	80	10	10	12	06	80	06	12	10	80	
07 10	12	06	10	80	10	80	80	10	80	10	10	80	06	04	
08 10	80	06	10	04	06	04	80	10	80	06	06	80	10	80	
09 10	80	06	80	10	80	06	06	04	06	80	06	12	06	80	
10 06	10	80	14	80	80	10	80	06	10	80	06	80	80	10	
11 10	06	80	80	06	10	80	10	80	80	14	06	80	80	10	
12 08	10	10	06	06	80	80	06	10	12	80	80	12	06	10	
13 08	10	10	80	80	14	06	80	80	06	06	80	80	10	10	
14 08	04	80	10	06	10	10	06	10	06	06	80	80	04	80	
15 04	80	80	80	80	80	04	12	80	80	80	80	80	04	80	

Tableau d'approximation final

Meilleur Approximation Linière:

- On trouve la meilleur approximation par trouvé la case qui contient la plus grande valeur.
 On prend ça colonne et ça ligne comme « meilleur approximation ».
- Par exemple dans notre cas :
 - La valeur 14 est la plus grande
 Les cases ([masque entrée][masque sortie]) contenant cette valeur sont :
 [11][11]
 [10][04]
 [13][06]

on prend une. par exemple [11][11].

• Remarque :

si on utilise XOR dans notre algorithme, il est conseiller de prendre aussi les cases contenant les valeur \leq (nombre des entrées possibles – plus grande valeur trouvé) dans ce cas par exemple, (16 - 14) = 2, alors tous les valeurs ≤ 2

Attaque Linière :

- On commence par prendre tous les valeurs possibles de Ko
- initialiser chaque case par le 0
- Pour chaque K₀:
 - On calcule la série des M des P qu'on a déjà
 - On passe chaque M dans le S-BOX
 - On masque chaque M par le masque d'entrée de la meilleur approx et en calcule la parité p1
 - On masque chaque sortie de M du S-BOX par le masque de sortie de la meilleur approx et en calcule la parité p2
 - Si p1 égale à p2 on ajoute 1 dans la case du Ko utiliser pour la calculer
 - Sinon on soustrait 1 de la case du Koutiliser pour la calculer

- \rightarrow Tableau Initial des Score des K₀: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- → Tableau final des Score des K⁰ : [0, 4, 0, 12, -4, 0, -12, 0, 0, -12, 0, -4, 12, 0, 4]
- On trouve la plus grande valeur dans le tableau : dans ce cas c'est la valeur 12
- Les meilleurs K⁰ sont les cases qui ont la valeur 12, donc 3 et 12
- Pour chaque Kº trouvé, on calcule un M a l'aide d'un des P qu'on a déjà(P4 par exemple).
 Maintenant, on a un M calculer a l'aide de Kº = 3 et un autre a l'aide de Kº = 12.
- Pour chaque M calculer on calcule K¹ a l'aide du C du P utiliser pour calculer ce M (dans notre cas, c'est C4)

```
K^1 = S\text{-BOX-INVERSE} (C4) \oplus M = 8 \rightarrow \text{pour } K^0 = 3

K^1 = S\text{-BOX-INVERSE} (C4) \oplus M = 5 \rightarrow \text{pour } K^0 = 12

d'où on as trouvé K = (3,8) ou K = (5,12)
```

- Pour chaque couple K on chiffre tous Les P qu'on a déjà et on teste si il sont égaux a leurs C. Si oui, on a trouvé le couple (K⁰,K¹). Si non, l'attaque linière a échoué.
- Dans notre cas, on trouve K = (3,12).

Code:

- Python: https://github.com/LogX7/linear-crypto
- C: http://theamazingking.com/linear1.c

Ressources:

- The Amazing King Blog: theamazingking.com
- Wikipedia: Linière Cryptanalysis / Cryptanalysis / Block Ciphers.
- StackExchange : crypto.stackexchange.com