Topologie et Calcul différentiel

Semaine 1 : Introduction du cours, rappels de calcul différentiel.

Mardi 14 Février 2023 (Bonne Saint-Valentin < 3)

Contenu du cours

Calcul différentiel

- Rappels: dérivée partielle, développement limité, différentielle, fonctions composées
- Théorème des fonctions implicites: théorie, applications à la physique,
- S'il reste du temps: théorème d'inversion locale, théorème des extrema liés, ...

Convexité

- Introduction: définitions, propriétés, liens avec le calcul différentiel
- Inégalités de convexité: inégalité de moyennes, inégalité de Cauchy-Schwarz, inégalité de Jensen,

Contenu du cours

Tolopologie

- Définitions: normes, distances, ouverts, fermés, bornés, adhérence, intérieur, frontière, voisinages, points isolés,
- Espaces métriques: étude de la continuité dans un espace muni d'une distance,
- Espaces compacts: espaces dans lesquels tout se passe bien avec la continuité.
- Espaces vectoriels normés: espace munis d'une norme, + spécifique qu'une distance, + de résultats intéressants de continuité,
- S'il reste du temps: Connexité, espaces complets,

Evaluation

Quatre critères de notation

- Projets: un projet en calcul différentiel et convexité (15%), un projet de topologie (15%)
- Notes de colle et QCM: 20%
- Attitude: 20% (présence en cours et TD, participation, intérêt)
- Examen: 30%

Innovations pédagogiques

Essayer des choses pour améliorer le cours

- Fiche de rétrocation: A la fin de chaque cours, des fiches sont à rendre pour dire ce que vous avez trouvé bien, moins bien, trop facile, trop difficile, trop ennuyeux, trop abstrait, trop cool, trop nul,
- Contenu des colles: Le programme de colle comportera chaque semaine des preuves de cours ainsi que des exercices à savoir refaire,
- Références: Un grand nombre de références de cours et d'exercices à disposition sur Moodle, pour vous entraîner, voire aller plus loin,
- Pas de correction en TD: Les étudiants en TD seront aidés par les professeurs, et une correction (totale ou avec des trous) sera fournie sur Moodle, mais pas de correction au tableau,
- Beaucoup de QCM: si possible un à chaque cours,
- Des slides: Les cours se font sur slides avec des à compléter pendant le cours par les (Du coup, maintemant, les sont supposés aller sur pour télécharger les du cours).

Chapitre 1 : Calcul différentiel

Dérivée partielle et différentielle

Notations

- Les vecteurs $x \in \mathbb{R}^n$ sont notés $x = (x_1, \dots, x_n)$
- La norme euclidienne est notée $|x| := \dots$
- Le produit scalaire canonique de deux vecteurs $(x, y) \in (\mathbb{R}^n)^2$ est noté $\langle x, y \rangle := \dots$

Définition

• Si f est une fonction définie sur un ensemble E à valeurs dans \mathbb{R}^p (fonction vectorielle), on note f_1, f_2, \ldots, f_p ses fonctions composantes. Alors :

$$\forall x \in E, \ f(x) = \dots$$

Boule ouverte, ensemble ouvert dans \mathbb{R}^n

Définition

- Soit $x \in \mathbb{R}^n$ et soit r > 0. La boule ouverte centrée en x de rayon r est définie par: BO $(x, r) = \{y \in \mathbb{R}^n : \dots \}$
- Un sous-ensemble O de \mathbb{R}^n est ouvert dans \mathbb{R}^n si:

$$\forall x \in \mathcal{O}, \dots, \dots$$

Continuité d'une fonction à plusieurs variables

Définitions

• Rappel : Une fonction $f:]a, b[\to \mathbb{R}$ est continue en $x \in]a, b[$ si

• Par analogie: Soit O un ensemble non vide ouvert dans \mathbb{R}^n et soit $f: O \to \mathbb{R}^p$. Une fonction f est dite continue en $x \in O$ si

$$\dots > 0, \dots > 0, \forall y \in \dots, (\dots \Rightarrow \dots)$$

- La fonction f est continue en $x \in O$ si, et seulement si, f_j est continue en $x \in O$ pour tout $j \in \{1, \dots, p\}$.
- La fonction f est dite continue sur O si
- On note $C^0(O, \mathbb{R}^p)$ l'ensemble des fonctions continues sur O.

Continuité d'une fonction à plusieurs variables

Propriété

Exemple

• Une fonction polynomiale, c'est-à-dire de la forme

$$(x_1,\ldots,x_n)\longmapsto \sum_{1\leq i_1,\ldots,i_n\leq N}\underbrace{a_{i_1,\ldots,i_n}}_{\in\mathbb{R}}x_1^{i_1}\cdots x_n^{i_n}$$

est continue sur \mathbb{R}^n (par exemple $(x, y, z) \mapsto x^2 + y^2 x + 3 x y z - 3z + 2$ est continue sur \mathbb{R}^3).

Continuité d'une fonction à plusieurs variables

Exercice

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

La fonction f est-elle continue en (0,0)?

Définition

Soit O un ouvert non vide de \mathbb{R}^n et soit $f: O \to \mathbb{R}^p$.

• On dit que f est admet une dérivée partielle par rapport à la j-ième variable en $x \in O$ si la fonction ci-dessous est dérivable en x_i :

$$... \mapsto f(.....)$$

• Si c'est le cas, le vecteur dérivée de \mathbb{R}^p obtenu (ou nombre dérivé si p=1) est noté

$$\frac{\partial f}{\partial x_j}(x)$$
 ou $\partial_j f(x)$

• Si f admet une dérivée partielle par rapport à la j-ième variable en tout $x \in O$, on définit la j-ième dérivée partielle de f par

$$\dots : \left\{ \begin{array}{ccc} O & \longrightarrow & \mathbb{R}^p \\ x & \longmapsto & \dots \end{array} \right.$$

Exercice

Justifier l'existence des dérivées partielles de ces fonctions, et les calculer.

- $f(x,y) = e^x \cos(y)$
- $f(x,y) = (x^2 + y^2)\cos(xy)$
- $f(x,y) = \sqrt{1 + x^2y^2}$

Définition

 Pour un vecteur v ∈ ℝⁿ non nul, on peut définir plus généralement (sous réserve d'existence) la dérivée directionnelle de f dans la direction v en x, notée ∂_vf(x), par^a

$$\partial_{V} f(x) = \dots$$

- En particulier, $\partial_j f(x)$ est la dérivée directionnelle de f dans la direction en x: $\partial_i f(x) =$
- Toujours sous réserve d'existence, la dérivée directionnelle de f dans la direction v est alors définie par

$$\partial_{\nu}f: \left\{ \begin{array}{ccc} O & \longmapsto & \mathbb{R}^{p} \\ v & \longmapsto & \partial_{\nu}f(x) \end{array} \right.$$

^aPour t assez petit, $x + t v \in O$ car

ATTENTION !! Une fonction peut admettre des dérivées partielles en un point sans y être continue.

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}$$

Montrer que f admet des dérivées partielles en (0,0)

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x, y) = \begin{cases} 1 & \text{si } 0 < y < x^2 \\ 0 & \text{sinon} \end{cases}$$

Montrer que f admet des dérivées directionnelles dans toutes les directions en (0,0) mais n'est pas continue en (0,0).

Développement limité

Notation

La notation

$$\mathop{o}_{h\to 0_{\mathbb{R}^n}}(|h|)$$

(qu'on appelle "petit o de h") désigne une fonction ϕ définie sur à valeurs dans \mathbb{R}^p telle que

$$\lim_{h\to 0_{\mathbb{R}^n}}\frac{|\phi(h)|}{|h|}=0$$

Exemple

• Si α et la la fonction f définie par

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \longmapsto & \mathbb{R} \\ x & \longmapsto & |x|^{\alpha} \end{array} \right.$$

Définition

• Soit O un ouvert non vide de \mathbb{R}^n et soit $x_0 \in O$. Une fonction $f:O \to \mathbb{R}^p$ est différentiable en $x_0 \in O$ s'il existe une application linéaire $df_{x_0} \in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^p)$ telle que, pour tout $h \in \mathbb{R}^n$ tel que $a \times b \in O$,

$$f(x_0 + h) = f(x_0) + \dots$$

Si c'est le cas, df_{x_0} s'appelle la différentielle de f en x_0 .

^aC'est toujours le cas si *h* est car

Remarques

• Dire que f est différentiable en x_0 , c'est dire qu'elle admet

$$f(x_0+h) = \underbrace{\mathsf{terme\ constant}}_{f(x_0)} + \underbrace{\mathsf{terme\ lin\'eaire\ en\ }h}_{df_{x_0}(h)} + \underbrace{\mathsf{terme\ n\'egligeable}}_{\stackrel{O}{h\to 0_{\mathbb{R}^n}}(|h|)}$$

- Le terme $f(x_0) + df_{x_0}(h)$ est donc approximation locale de f en x_0 .
- On parle de LA différentielle de f en x_0 (si elle existe) car elle est

Propriété (Caractérisation de la différentielle)

Soit O un ouvert non vide de \mathbb{R}^n , soit $x_0 \in O$ et soit $f: O \to \mathbb{R}^p$ une fonction différentiable en x_0 . L'application linéaire $df_{x_0} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ telle que, pour tout $h \in \mathbb{R}^n$ tel que $x + h \in O$,

$$f(x_0 + h) = f(x_0) + df_{x_0}(h) + \underset{h \to 0_{\mathbb{R}^n}}{o}(|h|)$$

vérifie, pour tout $h \in \mathbb{R}^n$,

$$df_{x_0}(h) = \lim_{t \to 0} \frac{f(x_0 + t h) - f(x_0)}{t}$$

En particulier, cette application linéaire est unique.

Remarque

Autrement dit, $df_{x_0}(h)$ n'est rien d'autre que

Preuve

- Soit $h \in \mathbb{R}^n$ fixé. Si $h = 0_{\mathbb{R}^n}$,
- Supposons donc $h \neq 0_{\mathbb{R}^n}$, soit $t \in \mathbb{R}^*$ tel que $x + t h \in O$ (possible car).
- Puisque,

$$f(x_0 + t h) - f(x_0) = df_{x_0}(t h) + \underset{t \to 0}{o}(|t h|) = t df_{x_0}(h) + \underset{t \to 0}{o}(t)$$

puisque

• Il ne reste plus qu'à

Lien entre différentielle et dérivée (dimension 1)

Soit *I* un intervalle ouvert non vide de \mathbb{R} , soit $x_0 \in I$ et soit $f: I \to \mathbb{R}$.

$$f(x_0+h)=\dots$$

On en déduit que $df_{x_0}(h) = \dots$ pour tout $h \in \mathbb{R}$.

Lien entre différentielle et dérivées partielles

Soit O un ouvert non vide de \mathbb{R}^n , soit $x_0 \in O$ et soit $f: O \to \mathbb{R}^p$. Si f est différentiable en x_0 , alors elle admet des dérivées partielles en x_0 et

$$df_{x_0}: h \longmapsto \sum_{i=1}^n \partial_j f(x_0) h_j$$

Si c'est le cas, pour tout $h \in \mathbb{R}^n$ tel que $x_0 + h \in O$, $f(x_0 + h) = \dots$

Remarque

La réciproque est fausse: une fonction peut être continue et admettre des dérivées partielles en un point mais ne pas être différentiable en ce point Pire : Elle peut avoir des dérivées partielles des TOUTES les directions et ne pas être différentiable !!!

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x, y) = \begin{cases} x & \text{si } y = 0\\ 0 & \text{si } y \neq 0 \end{cases}$$

Montrer que f est continue en (0,0), qu'elle admet des dérivées directionnelles dans toutes les directions en (0,0) mais qu'elle n'est pas différentiable en (0,0).

Remarque (Utilité de la notion de différentielle)

Pourquoi introduire la notion de différentielle plutôt que de travailler seulement avec les dérivées partielles?

- L'idée centrale du calcul différentiel est de au voisinage d'un point x_0 , on approxime $f(x) f(x_0)$ par un terme, ce qui donne exactement la notion de différentielle.
- Les dérivées partielles sont, par définition, liées à La différentielle est une notion indépendante du choix
- La notion de différentielle se généralise à des espaces plus généraux que \mathbb{R}^n , on peut par exemple parler de différentielle sur des espaces de matrices, ou même sur des espaces de dimension infinie.

Fonction différentiable et différentielle sur un ouvert

Définition

Soit O un ouvert non vide de \mathbb{R}^n . Une fonction $f:O\to\mathbb{R}^p$ est différentiable sur O si f est différentiable en tout $x\in O$. L'application

$$df: \left\{ \begin{array}{ccc} O & \longrightarrow & \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p) \\ x & \longmapsto & df_x \end{array} \right.$$

est appelée différentielle de f.

Remarque

La différentielle df n'est pas linéaire (par rapport à x) en général. Par contre, si $x \in O$ est fixé, $df_x : h \mapsto df_x(h)$ est linéaire (par rapport à h).