Multilayer Perceptron Architecture

Understanding Neural Network Layers

Outline

- Feedforward Network Basics
- Input Layer Fundamentals
- Hidden Layers Exploration
- Output Layer Design
- Network Complexity Analysis
- Mathematical Representation
- Architectural Considerations
- Practical Implementation

Feedforward Network Basics

- Information flows from input to the output (unidirectional)
- No Loops/Cycles
- No Memory of Past Inputs(unlike RNNs)

Input Layer

- Main Purpose:
 - Take in the raw data
 - Ensures input shape is compatible with the architecture
- Doesn't transform the features
- Each feature/dimension of the input data corresponds to a node in input layer
- It distributes the input data to all the nodes in the first hidden layer (each input node is linked to every node in the first hidden layer)

Hidden Layer

- Lies between the input and the output layer
- Feature Extraction
 - The first hidden layer captures the basic features (e.g. edges in an image)
 - Deeper layers, extract more complex, abstract features (e.g. shapes, eyes, faces)
 - Eliminates the need for manual feature engineering
- # hidden layers = depth of the network
- # neurons/nodes per layer = Width of the network
- Networks with many hidden layers = Deep neural networks (DNNs)

Hidden Layer

- Tasks requiring abstract reasoning
 - **Depth** is important
- Tasks requiring fine-grained feature analysis
 - Width is important

Output Layer

- Final Layer of the network
- Produces the network predictions
- Structure
 - Regression
 - Scalar Output: Single Node
 - Vector Output: Multiple Nodes
 - Classification
 - # Nodes = # Classes
- Output values must often be postprocessed to get a meaningful result

Output Layer

- Some Designs:
 - Single Node (Regression)
 - Single Node (Binary Classification)
 - Multi-Node (Multi-Class Classification)
 - Multi-Node (Multi-Label Classification)
 - Custom

Overfitting vs. Underfiting

Complexity Trade-Offs

- Between the ability to learn and practical limits (i.e. Computation, Generalization, Interpretability)
- Complexity vs. Generalization
 - High Complexity: Learns well, Risk of overfitting
 - Low Complexity: Learns poorly, Risk of underfitting
- Depth vs. Width
 - Deeper Networks: Learn complex features, Risk of Vanishing/Exploding Gradients
 - Wider Network: Excel in capturing finegrained patterns, But can be computationally expensive, Risk of Overfitting

Complexity Trade-Offs

- Between the ability to learn and practical limits (i.e. Computation, Generalization, Interpretability)
- Accuracy vs. Efficiency
 - High Accuracy: Requires larger models, Increase computation, memory usage and energy consumption
 - Efficiency: Cut some part of the model, lose some accuracy in favor of faster inference and reduce resource requirments
- Interpretability vs. Complexity
 - Complex model: Nice but like a Black box
 - Simple model: Weak in complex tasks but interpretable

Complexity Trade-Offs

- Between the ability to learn and practical limits (i.e. Computation, Generalization, Interpretability)
- Robustness vs. Simplicity
 - Robust Model: Account for noisy or adversarial data, but computationally intensive and complex
 - Simple Model: Struggles with Noisy data but faster and easier to implement

Strategies in Managing the Trade-Offs

- Regularization
- Model Pruning
- Early Stopping
- Transfer Learning
- Automated Optimization
 - Neural Architecture Search (NAS)

- Each layer has neurons, with every neuron in that layer, linked to the neurons of the next
- For a given layer <u>"I"</u>
 - Input: x^{l-1}
 - Linear Transformation: $z^{l} = \omega^{(l)}x^{(l-1)} + b^{(l)}$
 - Non-Linear Transformation: $x^{(l)} = \phi(z^{(l)})$

• Weights:

- A matrix of learnable parameters $\omega^{(l)} \in \mathbb{R}^{n_l \times n_{l-1}}$
- Represents the strength of connections between neurons in layer "I-1" and "I"

Biases:

- A vector of learnable parameters, where $b^{(l)} \in \mathbb{R}^{n_l}$
- Allows the layer to shift the activation values → Enhancing flexibility

Activations:

• **ReLU**: $\phi(x) = max(0, x)$

• Sigmoid:
$$\phi(x) = \frac{1}{1 + e^{-x}}$$

• Tanh:
$$\phi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Softmax:
$$\phi(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

- Forward Propagation:
 - Input Layer

•
$$x^{(0)} = input$$

Hidden Layer:

•
$$x^{l} = \phi(\omega^{(l)}x^{(l-1)} + b^{l})$$

Output Layer

•
$$\hat{y} = \phi(\omega^{(L)}x^{(L-1)} + b^L)$$

Considerations

Input Layer

• Size: ~# features in input data

Hidden Layer

- Determine the network's depth and width
- **Shallow Networks**: Suitable for simpler tasks or smaller datasets.
- **Deep Networks**: Capture hierarchical relationships but require careful regularization and optimization.

Output Layer:

- Size: # output classes
- Activation functions should align with the task type (e.g., softmax for classification, linear for regression).

Considerations

Neurons per Layer

- Too Few Neurons: Can lead to underfitting, due to lack of ability in learning complex patterns
- Too Many Neurons: Can lead to overfitting, model memorizes the training data instead of generalizing
- **Practice**: For a funnel-shaped structure with fewer neurons in deeper layers

Regularization

- Dropout
- Weight Decay (L2 Regularization)
- Batch Normalization
- Early Stopping
- Data Augmentation

Practice

```
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
     super(MLP, self).__init__()
     self.layer1 = nn.Linear(input_size, hidden_size)
     self.layer2 = nn.Linear(hidden_size, output_size)
     self.activation = nn.ReLU()
     self.output_activation = nn.Softmax(dim=1) # For multi-class probabilities
def forward(self, x):
    x = self.activation(self.layer1(x))
    x = self.output_activation(self.layer2(x))
     return x
```

