Individuazione di una Base Primale Ammissibile*

Gabriele Vanoni

10 dicembre 2021

Consideriamo di avere un programma lineare:

$$\max_{Ax \le b} cx \tag{P}$$

e di voler trovare una base primale ammissibile, se esiste. Se non esiste, allora il problema è vuoto. Possiamo svolgere i seguenti passaggi, che consistono nel risolvere un altro problema lineare, sicuramente non vuoto, e di cui è semplice dare una base ammissibile primale.

- 1. Partiamo da una base B (non necessariamente ammissibile) di P. Ricordiamo che una base è semplicemente una sottomatrice quadrata di A con determinante diverso da zero. La corrispondente soluzione di base sarà $x_B = A_B^{-1} \cdot b_B$.
- 2. Consideriamo gli insiemi $H = \{i \mid A_i x_B \leq b_i\}$ dei vincoli soddisfatti da x_B e $J = \{i \mid A_i x_B > b_i\}$ dei vincoli non soddisfatti da x_B . Chiaramente $B \subseteq H$ e $J \cap B = \emptyset$.
- 3. Se $J=\emptyset$, allora x_B è soluzione di base ammissibile e abbiamo finito. Altrimenti costruiamo un problema ausiliario Q in maniera tale che x_B soddisfi tutti i vincoli. L'idea è semplicemente di sottrarre una quantità $\nu_i \geq 0$ ad ogni vincolo $i \in J$ in maniera tale da rendere il vincolo i soddisfacibile.

$$\begin{array}{lll}
\min \mathbf{1}\nu \\
A_H x & \leq b_H \\
A_J x - \mathbf{I}\nu & \leq b_J \\
\mathbf{I}\nu & \geq 0
\end{array} \tag{Q}$$

- 4. È immediato osservare che:
 - Q è non vuoto e $x = x_B, \nu = A_J x_B b_J$ è una soluzione di base ammissibile per Q (perché?).
 - Q non è illimitato (perché?).
 - La matrice associata a Q ha rango massimo (perché?).
- 5. Osserviamo, dati i vincoli e la funzione obiettivo, che il miglior valore ottimo possibile per ν è $\nu = \mathbf{0}$. In particolare, in questo caso da una soluzione $(x, \nu) = (x^*, \mathbf{0})$ avremmo che $x = x^*$ è soluzione di P (infatti se $\nu = \mathbf{0}$ allora $P \equiv Q$). Non solo, è valido anche il viceversa. Se $\nu^* \neq \mathbf{0}$, allora il P è vuoto. Riassumendo, data una soluzione (x^*, ν^*) ottima per Q, abbiamo due casi:
 - $\nu^* \neq \mathbf{0}$: allora P è vuoto.
 - $\nu^* = 0$: allora x^* è soluzione di base ammissibile primale per P.

^{*}Note basate sugli appunti dei corsi di Ricerca Operativa dell'Univesità di Pisa: http://groups.di.unipi.it/optimize/Courses/courses.html