FORECASTING STAT0010

Alexandros Beskos

a.beskos@ucl.ac.uk

'Lecture 4' Outline

- Identification (so far)
- Backshift operator
- Invertibility
- Box-Jenkins
- Invertibility
- 6 Non-stationary processes

model identification with the ACF

Model	ACF
AR(1)	$ ho(k)=\phi_1^k$: exponential decay for $0<\phi_1<1$ (alternating exponential decay if $-1<\phi_1<0$)
AR(p)	exponential decay or damped sine wave
<i>MA</i> (1)	$ ho(1)=rac{- heta_1}{1+ heta_1^2}$: 'spike' at lag 1, then 0 for lags ≥ 2 (spike is positive if $ heta_1<0$ and negative if $ heta_1>0$)
MA(q)	spikes at lags 1 to q and 0 for lags $\geq q+1$
ARMA(p,q)	exponential decay or damped sine wave

(We'll see later how to distinguish between AR and ARMA.)

Remark 1

(For our purposes) It can be shown that for a large sample size T:

$$r(k) \stackrel{approx}{\sim} \mathcal{N}(0, 1/T)$$
,

for any k such that the theoretical ACF $\rho(k)=0$. This means that we can use the 95% confidence interval $(-1.96/\sqrt{T}, 1.96/\sqrt{T})$ (c.f. white noise remark, lecture 1) to test whether a given ACF value is a 'genuine' zero or not. I.e.,

- for each k s.t. $\rho(k) = 0$, we expect 95% of realisations of this time series to have r(k) inside interval
- observed values of r(k) that fall outside these limits are considered 'significantly' different from zero at the 5% level
- expect to get 5% of r(k) coeffs (for k s.t. $\rho(k) = 0$) outside the 95% confidence limits

Definition 2 (Backshift operator)

Let $\{Y_t\}$ be some process. Then the <u>backshift operator</u> (a.k.a lag operator) B is defined by

$$B^j Y_t = Y_{t-j}$$

By convention, $B := B^1$. Note that, e.g.

$$B^2Y_t = BBY_t = B(BY_t) = B(Y_{t-1}) = BY_{t-1} = Y_{t-2}$$
.

Example 3

In <u>backshift notation</u>, the AR(p) model $Y_t = \epsilon_t + \sum_{j=1}^{p} \phi_j Y_{t-j}$ can be written as $\phi(B)Y_t = \epsilon_t$, where $\phi(B)$ is the AR(p) characteristic polynomial.

To see this, write AR(p) as $Y_t = \epsilon_t + \sum_{i=1}^p \phi_i B^j Y_t$. I.e.

$$Y_{t} - \sum_{j=1}^{p} \phi_{j} B^{j} Y_{t} = \epsilon_{t}$$

$$\left(1 - \sum_{j=1}^{p} \phi_{j} B^{j}\right) Y_{t} = \epsilon_{t}$$

$$\phi(B) Y_{t} = \epsilon_{t}$$

Similarly (c.f. notes, Section 4.7), the MA(q) model can be written as $Y_t = \theta(B)\epsilon_t$, where $\theta(B) = 1 - \sum_{j=1}^q \theta_j B^j$ is the characteristic polynomial of the MA(q) model.

Remark 4

The ARMA(p, q) model can be written as $\phi(B)Y_t = \theta(B)\epsilon_t$.

Proposition 5

Let B be the backshift operator. Let a, $c \in \mathbb{R}$, and $\{X_t\}$ be some sequence. Then, $\forall i, j \in \mathbb{N} = \{0, 1, 2, ...\}$:

- Bc = c
- $B^j(cX_t) = cB^jX_t = cX_{t-j}$
- $(aB^{i} + cB^{j})X_{t} = aB^{i}X_{t} + cB^{j}X_{t} = aX_{t-i} + cX_{t-j}$
- $(1 aB)^{-1}X_t = \sum_{j=0}^{\infty} a^j B^j X_t = \sum_{j=0}^{\infty} a^j X_{t-j}, \quad \text{if } |a| < 1$

Proof \bigcirc - \bigcirc : by definition(!). For \bigcirc want: $(1-aB)^{-1}X_t = \sum_{i=0}^{\infty} a^i B^i X_t$. 'Proof' Consider:

$$(1 - aB) \left(\sum_{j=0}^{\infty} a^j B^j \right) X_t = \left(\sum_{j=0}^{\infty} a^j B^j - \sum_{j=0}^{\infty} a^{j+1} B^{j+1} \right) X_t$$

$$= \left(\sum_{j=0}^{\infty} a^j B^j - \sum_{j=1}^{\infty} a^j B^j \right) X_t$$

$$= \left(1 + \sum_{j\neq 1}^{\infty} a^j B^j - \sum_{j\neq 1}^{\infty} a^j B^j \right) X_t$$

$$= X_t$$

$$\sum_{j=0}^{\infty} a^j B^j = (1 - aB)^{-1}$$
, provided sum converges, i.e. $|a| < 1$

Remark 6

It can be shown that other expressions involving the backshift operator can often be manipulated as if B were a number or variable...

Example 7

An AR(2) model can be represented as an $MA(\infty)$ model.

AR(2): $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \epsilon_t$ can be written, in terms of the backshift operator, as:

$$(1 - \phi_1 B - \phi_2 B^2) Y_t = \epsilon_t.$$

Write the AR(2) characteristic polynomial as

$$\phi(B) = (1 - \lambda_1 B)(1 - \lambda_2 B),$$

—here λ_1^{-1} and λ_2^{-1} are roots of $\phi(B)$. Then

$$(1 - \lambda_1 B)(1 - \lambda_2 B) Y_t = \epsilon_t$$

$$Y_t = ((1 - \lambda_1 B)(1 - \lambda_2 B))^{-1} \epsilon_t$$

$$Y_t = \frac{1}{(1 - \lambda_1 B)(1 - \lambda_2 B)} \epsilon_t,$$

Now use partial fractions to deal with the RHS.

Partial fractions: find α_1, α_2 , s.t.

$$\frac{1}{(1-\lambda_1x)(1-\lambda_2x)} = \frac{\alpha_1}{1-\lambda_1x} + \frac{\alpha_2}{1-\lambda_2x}$$

Multiply both sides by denominator of LHS; then put $x = \lambda_1^{-1}$ to get $\alpha_1 = \lambda_1(\lambda_1 - \lambda_2)^{-1}$ and put $x = \lambda_2^{-1}$ to get $\alpha_2 = -\lambda_2(\lambda_1 - \lambda_2)^{-1}$ i.e.

$$\frac{1}{(1-\lambda_1x)(1-\lambda_2x)} = \frac{1}{\lambda_1-\lambda_2} \left(\frac{\lambda_1}{1-\lambda_1x} - \frac{\lambda_2}{1-\lambda_2x} \right)$$

I.e.
$$Y_t = \frac{1}{\lambda_1 - \lambda_2} (\lambda_1 (1 - \lambda_1 B)^{-1} - \lambda_2 (1 - \lambda_2 B)^{-1}) \epsilon_t$$

Now, provided $|\lambda_1|, |\lambda_2| < 1$:

$$Y_{t} = \frac{1}{\lambda_{1} - \lambda_{2}} \left(\lambda_{1} \sum_{j=0}^{\infty} \lambda_{1}^{j} B^{j} - \lambda_{2} \sum_{j=0}^{\infty} \lambda_{2}^{j} B^{j} \right) \epsilon_{t}$$

$$= \frac{1}{\lambda_{1} - \lambda_{2}} \sum_{j=0}^{\infty} (\lambda_{1}^{j+1} - \lambda_{2}^{j+1}) B^{j} \epsilon_{t}$$

$$= \frac{1}{\lambda_{1} - \lambda_{2}} \sum_{j=0}^{\infty} (\lambda_{1}^{j+1} - \lambda_{2}^{j+1}) \epsilon_{t-j}.$$

Theorem 8 (roots of AR(p) char. eqn. outside unit circle \Leftrightarrow stationarity)

Consider AR(p) process: $Y_t = \epsilon_t + \sum_{j=1}^p \phi_j Y_{t-j}$. Then $\{Y_t\}$ is (weakly) stationary iff all roots of AR characteristic equation:

$$\phi(x) := 1 - \phi_1 x - \phi_2 x^2 - \dots - \phi_p x^p$$
,

are outside unit circle.

'Sketch proof'

Let $\phi(B)Y_t = \epsilon_t$, with roots $\lambda_1^{-1}, \dots, \lambda_p^{-1}$, i.e.

$$\lambda_0(1-\lambda_1 B)(1-\lambda_2 B)\cdots(1-\lambda_p B)Y_t=\epsilon_t$$

Now $(1 - \lambda_n B)^{-1}$ exists $\Leftrightarrow \sum_{j=0}^{\infty} \lambda_n^j B^j$ converges \Leftrightarrow roots $|\lambda_n^{-1}| > 1$.

In this case we are allowed to write

$$Y_t = \lambda_0^{-1} (1 - \lambda_1 B)^{-1} (1 - \lambda_2 B)^{-1} \cdots (1 - \lambda_p B)^{-1} \epsilon_t$$

A result from calculus gives that if $\sum a_j^2 < \infty$, $\sum b_j^2 < \infty$ then $\sum (a*b)_j^2 < \infty$, where $(a*b)_j = \sum_{k=0}^j a_k b_{j-k}$.

This is useful because we have

$$(1 - \lambda_{p-1}B)^{-1}(1 - \lambda_p B)^{-1}\epsilon_t = \sum_{j=0}^{\infty} (a * b)_j \epsilon_{t-j}$$

with $a_j = \lambda_p^j$ and $b_j = \lambda_{p-1}^j$.

Thus Wolds theorem gives that $(1-\lambda_{p-1}B)^{-1}(1-\lambda_pB)^{-1}\epsilon_t$ is stationary.

Working similarly we obtain that Y_t is a stationary process.

Remark 9

- for finite order AR(p), stationarity imposes restrictions on the parameters ϕ_1, \ldots, ϕ_n .
- 2 for finite order MA(q), stationarity does not impose any restrictions on $\theta_1, \ldots, \theta_a$. However, ...

Example 10

Consider the two MA(1) models

model I:
$$Y_t = \epsilon_t - \theta_1 \epsilon_{t-1}$$

model II: $Y_t = \epsilon_t - \theta_1^{-1} \epsilon_{t-1}$

Recall model I has ACF with $\rho_{\rm I}(1) = -\theta_1(1+\theta_1^2)^{-1}$ and $\rho_{\rm I}(k)=0$, $\forall |k|\geq 2$. Model II has

$$ho_{\mathrm{II}}(1) = rac{- heta_1^{-1}}{1+ heta_1^{-2}} = rac{- heta_1}{1+ heta_1^2} =
ho_{\mathrm{I}}(1) \,.$$

and $\rho_{\rm II}(k)=0$, $\forall |k|\geq 2$. Hence $\rho_{\rm I}\equiv \rho_{\rm II}$. This is **not** a nice situation!

The Box-Jenkins methodology for forecasting

Model identification

• Look at data. Compute sample ACF. Try to deduce whether model is AR(p), MA(q), ARMA(p,q); decide on reasonable values for p and q.

Parameter estimation

• Using the model and values of (the model orders) p and q from the first step, estimate the unknown parameters, $\phi_1, \phi_2, \ldots, \phi_p$, $\theta_1, \ldots, \theta_q$, etc. and the variance of the white noise.

Verification

Check model obtained from 0 & 0

- Good? Goto
- Bad? Goto 4 & decide on new model

Forecasting

This uniqueness problem can be solved by asking the question: Under what conditions can we represent an MA model as an AR model?

Definition 11

An MA model is said to be <u>invertible</u> if it can be written as an AR model.

Theorem 12 (roots of MA(q) char. eqn. outside unit circle \Leftrightarrow invertible)

Consider MA(q) process: $Y_t = \epsilon_t - \sum_{j=1}^p \theta_j \epsilon_{t-j}$. Then $\{Y_t\}$ is invertible iff all roots of MA characteristic equation:

$$\theta(x) := 1 - \theta_1 x - \theta_2 x^2 - \ldots - \theta_q x^q,$$

are outside unit circle.

Proof See Theorem 8.

Example 13

$$MA(1)$$
: $Y_t = \epsilon_t - \theta_1 \epsilon_{t-1} =: \theta(B) \epsilon_t$

 $Y_t = (1 - \theta_1 B)\epsilon_t$. I.e if the MA(1) root $|\theta_1^{-1}| > 1$ then

$$\epsilon_t = (1 - \theta_1 B)^{-1} Y_t = \sum_{j=0}^{\infty} (\theta_1 B)^j Y_t = \sum_{j=0}^{\infty} \theta_1^j Y_{t-j}$$

Recall the two MA(1) models:

model I:
$$Y_t = \epsilon_t - \theta_1 \epsilon_{t-1}$$
, root $= \theta_1^{-1}$ model II: $Y_t = \epsilon_t - \theta_1^{-1} \epsilon_{t-1}$, root $= \theta_1$

Then, for $|\theta_1^{-1}| > 1$, model I is invertible and model II is not. The invertibility condition ensures ACF of MA models is unique (this holds for general MA(q) models, not just for MA(1)).

Theorem 14 (Summary of Theorems 8 & 12)

Let Y_t satisfy an ARMA(p,q) model, i.e. $\phi(B)Y_t = \theta(B)\epsilon_t$.

• If the roots of the AR(p) characteristic polynomial $\phi(B)$ are outside unit circle then Y_t is stationary; and

$$\exists \psi(B) = \frac{\theta(B)}{\phi(B)}, \quad \text{s.t. } Y_t = \psi(B)\epsilon_t$$

• If the roots of the MA(q) characteristic polynomial $\theta(B)$ are outside unit circle then Y_t is <u>invertible</u>; and

$$\exists \pi(B) = \frac{\phi(B)}{\theta(B)}, \quad \text{s.t. } \epsilon_t = \pi(B)Y_t$$

Example 15

See exercise sheet 4, questions 1 and 2!

Example 16 (MA representation of ARMA(1,1))

A stationary ARMA(1,1) model can written as

$$Y_t = \left(1 + (\phi_1 - \theta_1) \sum_{j=1}^{\infty} \phi_1^{j-1} B^j\right) \epsilon_t$$

To see this, write ARMA(1,1) as $(1-\phi_1B)Y_t=(1-\theta_1B)\epsilon_t$, i.e.

$$Y_t = (1 - \theta_1 B)(1 - \phi_1 B)^{-1} \epsilon_t$$
.

Assume $|\phi_1| < 1$ and the rest is left as an exercise.

Remark 17

Note also, that writing the model in terms of $\psi(B)\epsilon_t$ offers an alternative way to compute the ACF — recall lecture 3 used Yule-Walker for ARMA(1,1).

In e.g. above, write $Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_t$ with

$$\psi_j = \begin{cases} 1 \,, & j = 0 \\ (\phi_1 - \theta_1)\phi_1^{j-1} \,, & \text{oth.} \end{cases}$$

and use (from Wold) $\gamma(k) = \sigma^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+k}$.

Dealing with non-stationarity

Example 18

Consider the process

$$Y_t = \alpha_0 + \alpha_1 t$$
, $\alpha_0, \alpha_1 \in \mathbb{R}$.

In this case Y_t is not stationary, since (the 'mean function')

$$\mathbb{E}Y_t = \alpha_0 + \alpha_1 t \,,$$

which depends on t.

But, we can 'transform' the original non-stationary process to a stationary one by differencing. Consider:

$$Z_t := Y_t - Y_{t-1}$$

$$= \alpha_0 + \alpha_1 t - (\alpha_0 + \alpha_1 (t-1))$$

$$= \alpha_1,$$

which is now stationary.

Example 19

Consider an ARMA model where one (and only one) of the AR roots is equal to 1 and all the other roots are outside the unit circle. I.e. AR polynomial takes the form $\phi^*(B) := \phi(B)(1-B)$, where all the roots of $\phi(B)$ are outside the unit circle. We have:

$$\phi^*(B)Y_t = \phi(B)(1-B)Y_t = \theta(B)\epsilon_t$$

Again, define
$$Z_t := Y_t - Y_{t-1}$$
. I.e. $Z_t = (1-B)Y_t$, and we have $\phi(B)Z_t = \theta(B)\epsilon_t$.

and Z_t is stationary.

Lemma 20

 Y_t stationary $\Rightarrow Y_t - Y_{t-1}$ stationary.

Proof
$$Y_t = \frac{\theta(B)}{\phi(B)} \epsilon_t$$
. Put $Z_t := Y_t - Y_{t-1}$:
$$Z_t = (1 - B) \frac{\theta(B)}{\phi(B)} \epsilon_t$$

$$\phi(B) Z_t = (1 - B) \theta(B) \epsilon_t$$

Definition 21

Let $\{Y_t\}$ be some process. Then the <u>difference operator</u> (a.k.a backward difference operator) ∇ is defined by

$$\nabla Y_t = Y_t - Y_{t-1}.$$

The dth difference operator ∇^d is defined as

$$abla^d Y_t =
abla^{d-1}
abla Y_t$$
, where $abla^1 :=
abla$.

Example 22

$$\nabla^2 Y_t = \nabla \nabla Y_t = \nabla (Y_t - Y_{t-1}) = Y_t - 2Y_{t-1} + Y_{t-2}.$$

Remark 23

Note that the dth difference operator can be written in terms of the backshift operator:

$$\nabla^d = (1 - B)^d.$$

Example 24

$$\nabla^2 Y_t = (1 - B)^2 Y_t = (1 - 2B + B^2) Y_t = Y_t - 2Y_{t-1} + Y_{t-2}$$
.

Example 25

Consider AR(1) model

$$Y_t = \phi_1 Y_{t-1} + \epsilon_t$$
, $\epsilon \sim \mathcal{WN}(0, \sigma^2)$.

Stationary if $|\phi_1| < 1$. But, if $\phi_1 = 1$:

$$Y_t = Y_{t-1} + \epsilon_t$$
, [random walk]

which is non-stationary (exercise: prove using successive substitutions and using $Y_0 = 0$)

However, note the difference

$$Z_t := \nabla Y_t = \epsilon_t \sim \mathcal{WN}(0, \sigma^2),$$

is stationary.

Example 26

If an ARMA model has d-many AR roots = 1, then

$$\phi(B)(1-B)^d Y_t = \theta(B)\epsilon_t.$$

Now define $Z_t := (1 - B)^d Y_t = \nabla^d Y_t$ (i.e. take dth difference of Y_t). Then Z_t is stationary.

Remark 27

- In practice, 1st differencing is often found to be adequate to make a series stationary.
- Sometimes, 2nd differencing is required.
- 3rd or higher differencing is not usually required.

CAVEAT!

Over-differencing will cause non-invertibility!

Example 28

Consider (again) random walk $Y_t = Y_{t-1} + \epsilon_t$. Then first difference $\nabla Y_t = \epsilon_t$ is (stationary and) invertible. The second difference $\nabla^2 Y_t = \nabla \epsilon_t = \epsilon_t - \epsilon_{t-1}$ (is still stationary — c.f. Lemma 20) but is now not invertible — it is MA(1) with $\theta_1 = 1$.