第六节 重味夸克

一、J/ Ψ粒子和粲夸克的发现

在J/Ψ粒子发现之前,人们只知道存在3 味夸克,即u,d,s. 在研究K 介子的弱衰变性质时,为了解释在一级弱作用过程中不出现奇异数改变中性弱流的贡献,1970年 Gla-show,lliopoulos和Maiani提出了一个被称为GIM 机制的唯象模型方案,认为自然界应存在第四味夸克,称为粲夸克,用c 来表示,理论并预言c 的质量应约为1.5 GeV 左右.

1974年,Brookhaven实验室和Stanford直线加速器中心同时在实验中发现一个新粒子. 丁肇中等人在Brookhaven实验室的质子轰击铍靶的实验中发现一个长寿命的重粒子,他们命名为J粒子.同时,Richter等人在Stanford直线加速器中心的电子正电子对撞实验中也发现了一个长寿命的重粒子;他们命名为Ψ粒子.他们发现的是同一个粒子,现在称为J/Ψ粒子。

Nobel Prize 1976

Ting

Richter

J/psi粒子的主要性质如下:

$$I^{G}J^{PC} = 0^{-1}^{-1}$$
 $M = 3.097 GeV$, $\Gamma = 93.4 keV$, $\Gamma(e^{+}e^{-}) = 5.26 keV$

相对于其他轻矢量介 ρ , ω , ϕ

$$I^{G}J^{PC} = 1^{+}1^{--}$$
 $M = 0.775GeV$, $\Gamma = 149MeV$, $\Gamma(e^{+}e^{-}) = 6.85keV$
 $I^{G}J^{PC} = 0^{-}1^{--}$ $M = 0.783GeV$, $\Gamma = 8.44MeV$, $\Gamma(e^{+}e^{-}) = 0.60keV$

$$I^{G}J^{PC} = 0^{-1}^{--}$$
 $M = 1.020 GeV$, $\Gamma = 4.26 MeV$, $\Gamma(e^{+}e^{-}) = 1.26 keV$

- 1) J/psi粒子的总宽度小2-3个量级;
- 2) 纯轻子宽度(电磁衰变)则是相当

J/Ψ粒子的发现引起人们的极大兴趣:

- a) GIM 机制预言应该存在第四味夸克——称作粲夸克, 其质量应该在1.5GeV 左右;
- b) J/Ψ作为一个强子, 其宽度与其他已知的矢量介子相比小2-3 个量级, 其电磁衰变分宽度和其它矢量介子的电磁衰变分宽度由相同的量级, 这说明它们的电磁衰变性质相似。J/Ψ粒子后面应该有新的物理。
- c) 在J/Ψ粒子发现前不久, Politzer和Appelquist在势模型基础上就提出,如果粲夸克存在,正反粲夸克应该构成非相对论的束缚态,并且和电子偶素有相似的能谱结构。因此人们认为J/Ψ粒子很可能是J=1的质量最低的正反粲夸克态。
- d) 如果利用原子物理的标记方式,

$$n^{2S+1}L_I, L \rightarrow S, P, D, F \cdots$$

粲夸克偶素也可以用来标记,那么 J/Ψ 应该为 1^3 态,那么还应该存在质量更低的 1^1S_0 和其他 n>=2 的态。实际上在 J/Ψ 发现后两周,就发现了 $\Psi'(3686)$ (2^3S_1)。随后又发现了其他态;

- e) 如果粲夸克存在,那么可以将u,d,s的SU(3) 味道对称性扩充到u,d,s,c的SU(4) 对称性,则应该存在含有若干(反)粲夸克的重子和介子多重态,如图。 1975年已经有含粲重子态存在的迹象($\Lambda_c^+ = udc, \Sigma_c^{++} = uuc$);1976年发现了含粲介子态($D^0 = c\overline{u}, D^+ = c\overline{d}$),1977年又发现了含粲奇异介子 $D_s^+ = c\overline{s}$,这一系列的实验发现都表明粲夸克的存在毋庸置疑。
- f) 如果说在J/Ψ粒子发现之前人们对夸克模型还有怀疑,那么在此之后人们更进一步接受了夸克模型。

确定了J/Ψ粒子的夸克组分——正反粲夸克对,我们就可以解释它的窄宽度了: 质量最轻的含粲D介子质量为1970MeV,两个D介子的阈能为3740MeV,所以 J/Ψ不能衰变到D介子末态,它的强衰变末态只能是由u,d,s夸克组成的轻强子。

J/Ψ的强子衰变的费曼图可以画作,

根据OZI 规则,这个过程有夸克湮灭, 费曼图中的夸克线断裂成两部分,所以概率受到压低。如果进一步考虑QCD 的动力 学机制,这两部分实际上是通过三个(硬) 胶子连起来的,是强耦合常数的高阶图, 所以受到压低。

 $J/\psi \rightarrow \pi^+\pi^-\pi^0$

不仅J / Ψ,其他质量低于两个D介子阈能的粲夸克偶素都有类似的情况。

二、底夸克偶素和底夸克的发现

1977年在电子正电子对撞实验中又发现了一个长寿命的重粒子,命名为 Y 粒子,这粒子的主要性质如下:

$$I^{G}J^{PC} = 0^{-}1^{-},$$

 $M = (9460.4 \pm 0.2)MeV,$
 $\Gamma = 53keV, \Gamma(Y \rightarrow e^{+}e^{-}) = 1.32keV$

Γ粒子也是寿命出奇地长. 实验和理论的研究给出和 J/Ψ 粒子类似, Γ粒子是由一对正反底夸克(b) 作为价粒子的介子,底夸克的质量约为4.6GeV左右. Γ粒子所有的强衰变道都是0ZI 禁戒过程而受到压低,分支比最大的衰变道也是二级电磁衰变的 e^+e^- 道, $\mu^+\mu^-$ 道和 $\tau^+\tau^-$ 道. 含底夸克b的最轻的粒子是 B^0 和 B^+ 粒子,其质量为m=(5279)MeV,因此 Γ粒子不可能衰变为一对正反B介子。

它和 J/Ψ 粒子类似,也只能通过把b 和 \overline{b} 湮没掉的Zweig禁戒过程作强衰变,衰变概率被大大地压低,表现出突出的"重质量,窄宽度"性质. 同样 Γ (2S), Γ (3S) 也具有同样的性质。 Γ (4S) 以及更高质量的态则可以衰变到两个B介子。因而具有很大的宽度。

THE BOTTOMONIUM SYSTEM

T (11020)

T (10860)

T (48)

$B\bar{B}$ threshold

6.11

量子力学给出,通过散射所能分辨的空间间隔与散射时的动量成反比,即低能散射时分辨间隔大,高能散射时分辨间隔小. 低能散射时,由于分辨间隔大,对于强子内部结构不可能观察得很细致,只能看到强子作为一个整体。在高能散射时,由于分辨间隔小,对于强子内部结构就可以观察得很细致,看到内部结构的具体细节. J/Ψ粒子和 Γ粒子是质量很重的粒子,研究它们结构性质时所涉及的散射过程能量动量变化尺度是GeV 量级,这对应于分辨间隔小于0.2fm, 因此人们可以对J/Ψ粒子和 Γ粒子的内部结构进行比轻介子细致得多的实验研究.

另一方面,由于粲夸克和底夸克很重,它们和相应的反夸克组成J/Ψ粒子和 Γ 粒子时可以近似地按非相对论性运动来处理.这在理论处理上大大简化,并能得到足够好的精确度,只有在精确讨论某些特殊性质时,才需要进一步考虑相对论性的修正.一对正反夸克作为价粒子的介子称为夸克偶素.由于上面实验和理论两方面的原因,尽管重夸克偶素发现得很晚,对它们内部结构性质的研究要比对轻介子内部结构性质的研究细致深入得多.

三、顶夸克

1. 顶夸克的产生

第六种夸克top直到1995年才被发现,几乎在b夸克发现的20年之后的质量非常大,有175GeV(第二重的底夸克只有不到5GeV)。它是在费米验室的1.8TeV的质子反质子对撞机上被发现的。在1010次碰撞中才会产一次。产生的图像如下

2. 顶夸克的衰变

top夸克产生之后,很快就会衰变掉。主要衰变方式是 $t \rightarrow W+b$,b夸克一般会碎裂成为一个强子喷注,而W粒子会衰变成为一对轻 $(W\rightarrow ev,~\mu v,~\tau v)$ 或者一对强子喷注($W^+\rightarrow q\overline{q}^+$)

从量纲分析就可以得到

$$\Gamma(t \to W^+ b) \sim G_F m_{top}^3$$

由于顶夸克质量很大,所以它的衰变宽度很大,有 Γ = 1.4GeV。 它的衰变时间 $1/\Gamma$ 因而就比典型的强作用时间尺度 $1/\Lambda$ (Λ =0.2GeV) 短了很多。

系统的寿命如此之短,根本不能象粲夸克和底夸克那样形成重夸克偶素。

四、重轻介子系统

1. D介子

赝标D介子

$J^P = 0^-$	$D^{^{+}}$	D^0	\overline{D}^0	D^-	D_s^+	D_s^-
夸克组分	$c\overline{d}$	с u	$\overline{c}u$	$\overline{c}d$	$c\overline{s}$	$\overline{c}s$
质量(MeV)	1869	1864	1864	1869	1968	1968

它们没有强衰变,只有 Δ C =1的弱衰变,例如, $D_s^+ \to K^0 K^+$, $D^0 \to K^- \pi^+$ 等。它们是质量最轻的带粲数的粒子因而寿命较长: $\tau = 10^{-12} s$ 还没有在实验上发现 Δ S=1, Δ C =0的Ds \to D π

矢量D介子

$J^P = 1^-$	D^{*_+}	D^{*_0}	\overline{D}^{*_0}	$D^{*_{-}}$	$D_{\scriptscriptstyle S}^{*_+}$	D_s^{*-}
夸克组分	$c\overline{d}$	$c\overline{u}$	$\overline{c}u$	$\overline{c}d$	$c\overline{s}$	$\overline{c}s$
质量(MeV)	2010	2007	2007	2010	2112	2112

宽度为keV的量级,电磁衰变 $D* \rightarrow D\gamma$,和 $D* \rightarrow D\pi$ 强衰变。

2. B介子

赝标B介子

$J^P = 0^-$	B^{+}	B^0	\overline{B}^0	B^{-}	B_s^0	\overline{B}_{s}^{0}
夸克组分	$\overline{b}u$	$\overline{b}d$	$b\bar{d}$	$b\overline{u}$	$\overline{b}s$	$b\overline{s}$
质量(MeV)	5279	5279	5279	5279	5368	5368

它们没有强衰变,只有 Δ B=1的弱衰变,例如, $B^0 \to D^-\pi^+$, $B_s^0 \to D_s^-\pi^+$ 等。它们是质量最轻的带粲数的粒子因而寿命较长: $\tau=10^{-12}s$

矢量B介子

$J^P = 1^-$	$oldsymbol{B}^{*_+}$	B^{*_0}	\overline{B}^{*_0}	$oldsymbol{B}^{*_{-}}$	B_s^{*0}	$oldsymbol{\overline{B}}^{*_0}_{s}$
夸克组分	$\overline{b}u$	$\overline{b}d$	$b\overline{d}$	$b\overline{u}$	$\overline{b}s$	$b\overline{s}$
质量(MeV)	5325	5325	5325	5325	5413	5413

宽度为keV的量级, 电磁衰变B* →Bγ。

重味介子的性质在某些方面很象氢原子。主要的质量被重夸克(原子核)携带。轻夸克(电子)的质量很小,围绕重夸克高速旋转。同样地,类似于原子的性质主要依赖于电子的数量和能级轨道,重味介子的性质也主要依赖于轻夸克的性质而不是重夸克。例如,在零级近似下,与重夸克的质量大小无关。重夸克质量的一级修正大小是 Λ/M 的量级。 $\Lambda=0.2 \, \mathrm{GeV}$ 是强相互作用的尺度参量,它刻画轻夸克的组分质量大小和胶子结合能大小。

$$M_{D_s} - M_D = 99 \pm 1 MeV,$$

 $M_{B_s} - M_B = 90 \pm 3 MeV$

差别只依赖于轻夸克的质量,而与重夸克几乎无关。

3. 重重介子

重重介子的例子是 $B_c^+(\overline{b}c)$ 和 $B_c^{*+}(\overline{b}c)$

双重夸克介子的特点是两个组分重夸克都参加弱衰变,因此衰变快,寿命相对较短。