

TRANSMISIÓN DE DATOS Y REDES DE COMPUTADORES¹

- 3er. curso de Grado en Ingeniería de Tecnologías de Telecomunicación –
 Examen de teoría – Febrero 2015

Nombre: Apellidos:

- 1. (2 ptos.: 2×1) Una empresa con varias sedes desea configurar sus equipos según el esquema mostrado. El proveedor de servicios de Internet le ha asignado el rango de direcciones 150.214.192.0/18. El número de equipos conectados en cada subred es de 124.
 - a) Asigne direcciones a las diferentes subredes (SR1-SR4), routers (RA, R1, R2) y a los dos equipos mostrados (H1, H2).

Subred/Dispositivo	Dirección/Máscara	Subred/Dispositivo	Dirección/Máscara	
SR1		R2_eth0		
SR2		R2_eth1		
SR3		R2_eth2		
SR4		RA_pp0		
R1_eth0		RA_eth0		
R1_eth1		H1		
R1_eth2		H2		

¹ Conteste a las distintas preguntas en las propias hojas grapadas, limitándose al espacio reservado para ello.

b) Se utiliza encaminamiento estático de tipo vector-distancia. Muestre las tablas de encaminamiento de los routers RA y R2 y el equipo H1 con la condición de que estas contengan el menor número de entradas

Destino	H1	RA	R2
			100 C
	S 82 83	asesb esist	12 2008 18 CE CU
			08 '80 CO

2. (1 pto.) En la red del esquema anterior, el usuario en H1 envía un mensaje ICMP de tipo ping con un tamaño total de 1.980 bytes a H2. Indique los valores de los campos de la cabecera IP del paquete original y de cada uno de los fragmentos que se recibirán en H2 según la siguiente tabla:

Paquete	Longitud cabecera	Longitud total	Protocolo	ID	MF	Offset
Original						
Fragmento 1					2.3	
	No. of the second				h	
					10	
		100			en product in a republica	

- 3. (1 pto.) Determine la tasa media, la tasa de pico, el tamaño máximo de ráfaga y los retardos máximos y mínimos para un cubo de permisos que utiliza testigos de 100 bytes y presenta los siguiente parámetros:

 - Tasa de generación de testigos = 10 s⁻¹
 Capacidad del cubo de testigos = 50 testigos
 - Capacidad del buffer (cubo) = 2 kB
 - Velocidad del enlace de salida = 2.000 Bps

- **4.** (2 ptos.: 2×1) Considere un enlace entre dos estaciones A y B utilizando HDLC de repetición selectiva con n=2 bits, t_{trama}=1 s, t_{prop}=0,5 s, t_{ack} = 0,2 s, t_{proc}=0 y t_{temp}=5 s. La transmisión es bidireccional, comenzando A a transmitir en t=0 y B en t= 0,2 s. Teniendo en cuenta que cada estación debe transmitir 5 tramas, se pide:
 - a) Represente el intercambio de tramas entre las estaciones, teniendo en cuenta que la 3ª trama enviada por A sufre errores de transmisión.

b) Represente el estado de las ventanas correspondientes en los instantes de tiempo 1,5 s, 5,5 s y 10 s.

