

Distributed Global Scheduling in Datacenters **Smita Vijayakumar**

Evangelia Kalyvianaki

Anil Madhavapeddy

Systems Research Group (SRG) Department of Computer Science University of Cambridge

²/https://github.com/alibaba/clusterdata/

First Year Ph.D. Student sv440@cst.cam.ac.uk

Ph.D. Supervisor ek264@cst.cam.ac.uk

Ph.D. Supervisor avsm2@cst.cam.ac.uk

Underutilised Datacenter Resources Azure¹ ♦ 60% VMs have <= **20**% CPU usage! Alibaba² Average server CPU 50% * Memory <= **60**% **Underutilisation is expensive!**³ ¹[Resource Central, SOSP,'17]

³[Scalable system scheduling for HPC and big data, JPDC,17]

Proposed Direction Global Scheduling at Node Level **Up-to-Date Global View at Each Node Memory** Inspired by routing protocols **☑** BGP, OSPF, ... Global Timely 20 **Decentralised CPU Memory DC View Scheduling ☑** Resource data propagation Challenges **Global view convergence Global view convergence** 25 **CPU** Good for long and short jobs Volume and frequency of updates Time from local to global view Node C

