A.03.03 – Balanço de Energia

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-04-08 16h20m49s

- Balanço de Energia
 - Primeira Lei da Termodinâmica
 - Balanço de Energia

2 Tópicos de Leitura

Enunciado

- A 1ª lei da Termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Enunciado

- A 1ª lei da Termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Este princípio da conservação da energia:

• É exaustivamente confirmado em experimentos.

Logo, no universo observável:

• Não há processos físicos que criem energia,

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

• Unificou as conservações de massa e de energia;

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.
- Assim, a quantidade $E_{tot} = c^2 m + E_{outras}$ do universo é conservada.

A 1ª lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

• Princípio em variedade de deduções;

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.

A 1ª lei é central em Termodinâmica.

Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

— Jack P. Holman (SMU)

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

• "Energia é uma quantidade (escalar)

— Jack P. Holman (SMU)

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza

— Jack P. Holman (SMU)

A 1ª lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza
- e que possui unidades de kg·m²/s²."
 - Jack P. Holman (SMU)

A 1^a lei é matematicamente expressa por meio de balanço de energia.

40 + 40 + 43 + 43 +

A 1^a lei é matematicamente expressa por meio de balanço de energia.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) =$$

A 1^a lei é matematicamente expressa por meio de balanço de energia.

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação líquida de} \\ \text{energia no sistema} \end{array}\right),$$

A 1^a lei é matematicamente expressa por meio de balanço de energia.

Em um processo, o balanço de energia é dado por:

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação l\'iquida de} \\ \text{energia no sistema} \end{array}\right),$$

que matematicamente se escreve:

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$
, para um processo 1–2.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

Em um processo, o balanço de energia é dado por:

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação l\'iquida de} \\ \text{energia no sistema} \end{array}\right),$$

que matematicamente se escreve:

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$
, para um processo 1–2.

Assim, se E_1 , E_{ent} e E_{sai} são conhecidos, então: $E_2 = E_1 + E_{ent} - E_{sai}$.

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

40 + 40 + 43 + 43 +

$$d/dt(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \rightarrow \quad (1)$$

40 + 40 + 43 + 43 +

$$d/dt(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \rightarrow \quad (1)$$

$$\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt} \bigg|_{sign} \tag{4}$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt} \bigg|_{sin} \tag{5}$$

$$d/dt(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \rightarrow \quad (1$$

$$(\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt}\Big|_{sign})/m \quad \rightarrow \quad (4)$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt} \bigg|_{sin} \tag{5}$$

$$(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \neg \quad (1)$$

$$e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1 \tag{2}$$

$$(\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt}\Big|_{circ})/m \quad \rightarrow \quad (4)$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt} \bigg|_{circ} \tag{5}$$

$$(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \neg \quad (1)$$

$$(e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1)/m \quad \rightarrow \quad (2)$$

$$\left(\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt}\bigg|_{eigt}\right)/m \quad \rightarrow \quad (4)$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt} \bigg|_{sist} \tag{5}$$

$$(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \neg \quad (1)$$

$$(e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1)/m \quad \rightarrow \quad (2)$$

$$\left(\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt}\bigg|_{eigt}\right)/m \quad \rightarrow \quad (4)$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt} \bigg|_{sist} \tag{5}$$

$$(E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1) \quad \rightarrow \quad (1)$$

$$(e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1)/m \quad \rightarrow \quad (2)$$

$$\left(\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt}\bigg|_{sist}\right)/m \quad \rightarrow \quad (4)$$

$$\left(\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt}\Big|_{sist}\right)/m \quad \neg \quad (5)$$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 2-6 e 4-2.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

