JuliaGPs + Turing.jl

Will Tebbutt

2023-09-22

Get set up

Who am I?

- Currently a postdoc with Hong
- ► I work on AD in Julia
- ▶ I used to work on GPs (approximate inference and software)

Objectives

- Understand available GP functionality
- Understand some common package design features
- ► Run + write some code

Outline

- ► GP refresher
- ► A complete example using JuliaGPs + Turing.jl
- ► A dive into the design of JuliaGPs
- ► Further examples
- Everything will be interactive

JuliaGPs

- Made to assist in our own research
- ► Useful composable components
- Extensible

JuliaGPs

Core Packages

- KernelFunctions.jl
- ► AbstractGPs.jl
- ► ApproximateGPs.jl (less stable)

$$f \sim \mathcal{GP}(0,\kappa)$$

$$f \sim \mathcal{GP}(0,\kappa)$$

$$f \sim \mathcal{GP}(0, \kappa)$$

 $\mathbf{f} := [f(x_1), ..., f(x_J)]^{\top}$

$$f \sim \mathcal{GP}(0, \kappa)$$

 $\mathbf{f} := [f(x_1), ..., f(x_J)]^{\top} \sim \mathcal{N}(0, K)$

$$f \sim \mathcal{GP}(0, \kappa)$$

$$\mathbf{f} := [f(x_1), ..., f(x_J)]^\top \sim \mathcal{N}(0, K) , K_{ij} := \kappa(x_i, x_j)$$

$$f \sim \mathcal{GP}(0, \kappa)$$

 $\mathbf{f} := [f(x_1), ..., f(x_J)]^{\top} \sim \mathcal{N}(0, K)$, $K_{ij} := \kappa(x_i, x_j)$
 $\mathbf{y} \mid \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \sigma^2 \mathbf{I})$

- ▶ Putting example from BDA (Gelman et al, 1995)
- ► *Incredibly* simple
- ► Non-Gaussian
- ► Small data

Row	distance Int64	n Int64	y Int64
1	2	1443	1346
2	3	694	577
3	4	455	337
4	5	353	208
5	6	272	149

$$f \sim \mathcal{GP}(0,\kappa)$$

$$\mathbf{f} := [f(x_1),...,f(x_J)]^{\top} \sim \mathcal{N}(0,K)$$
 , $K_{ij} := \kappa(x_i,x_j)$

```
f \sim \mathcal{GP}(0, \kappa)

\mathbf{f} := [f(x_1), ..., f(x_J)]^\top \sim \mathcal{N}(0, K), K_{ij} := \kappa(x_i, x_j)

\mathbf{y}_j \mid \mathbf{f}_j \sim \text{Binomial}(n_j, g(\mathbf{f}_j))
```

$$f \sim \mathcal{GP}(0, \kappa)$$

 $\mathbf{f} := [f(x_1), ..., f(x_J)]^\top \sim \mathcal{N}(0, K)$, $K_{ij} := \kappa(x_i, x_j)$
 $\mathbf{y}_j \mid \mathbf{f}_j \sim \text{Binomial}(n_j, g(\mathbf{f}_j))$
 $g(x) := (1 + e^{-x})^{-1}$

Go to code