SONA COLLEGE OF TECHNOLOGY (AUTONOMOUS INSTITUTION) DEPARTMENT OF INFORMATION TECHNOLOGY MINI PROJECT – U19ADS704 (2023-24)

DATE: 21/08/2023

BATCH NO:		
REGISTRATION NUMBER	STUDENT NAME	SIGNATURE
1920110006	DESILVA . S	
1920110022	KIRUTHIK RAAM . D.V	
1920110050	SREE DHARSHAN . S	
TITLE OF THE PROJECT:	AQUATIC TRASH DETECTION USING MACHINE	
	LEARNING	
DOMAIN NAME/AREA:	Machine Learning	
Algorithm/Technique used:	Image Segmentation, Object Detection, Convolutional	
_	Neural networks, Transfer Learning	
REFERENCE (JOURNAL/	AquaVision: Automating the detection of waste in	
ON LINE	water bodies using deep transfer learning	
RESOURCES/OTHERS)	By: Harsh Panwar, Pradeep Gupta, Mohammed	
	Khubeb Siddiqui and Ruben Morales-Mendez	
GUIDE NAME &	DR . J . AKILANDESWARI	
SIGNATURE		

ABSTRACT:

Aquatic trash detection presents a groundbreaking solution to the critical challenge of aquatic waste management. Aquatic trash detection employs cutting-edge algorithms, including Convolutional Neural Networks for pattern recognition, Transfer Learning for domain-specific adaptation, Data Augmentation for diversity, and Ensemble Learning for heightened accuracy. These techniques collectively empower Aquatic trash detection to automate waste detection in aquatic environments effectively. This innovation holds the potential to revolutionize waste management, safeguard aquatic life, and secure the future of our water ecosystems. This method can also find applications in aerial waste detection and the classification which will eventually help in cleaning various water bodies with less human efforts and great precision.