Introduction Fondement théorique Algorithme et Implémentation Résultats Améliorations et applications à la Cryptologie Références

Projet de Cryptographie : l'algorithme de Schoof Comptage de points sur une courbe elliptique

P-Aug. BERTHET, Marc RENARD

Université de Paris

8 juin 2021

- Introduction
 - Notations
- 2 Fondement théorique
 - Lois sur R
 - Morphisme de Fröbenius
 - Borne de Hasse
 - Polynômes de division
- Algorithme et Implémentation
- 4 Résultats
 - Résultats dans \mathbb{F}_{37}
 - Résultats sur d'autres corps finis de forme \mathbb{F}_p
 - Résultats sur d'autres corps finis de forme \mathbb{F}_q
- 5 Améliorations et applications à la Cryptologie
- 6 Références

- IntroductionNotations
- 3 Algorithme et Implémentation
- 4 Résultats
- 5 Améliorations et applications à la Cryptologie
- 6 Références

Notations

On utilisera les notations suivantes :

- $E(C, \mathbb{K})$: la courbe elliptique E d'équation C sur le corps \mathbb{K} de cardinal q,
- P(x, y), un point de la courbe E,
- (x_k, y_k) , les coordonnées de kP
- $\pi(P)$, le morphisme de Fröbenius, de trace t, appliqué à P,
- $\bar{E}[I]$, le groupe des points de I-torsion de la courbe E,
- ψ_I , le *I*-ième polynôme de division de la courbe *E* ,
- O, le point à l'infini de la courbe E,
- \bar{t}_l , l'estimation de t modulo l,
- \bar{q} , la valeur de q modulo l.

Lois sur R Morphisme de Fröbeniu Borne de Hasse Polynômes de division

- Introduction
- 2 Fondement théorique
 - Lois sur R
 - Morphisme de Fröbenius
 - Borne de Hasse
 - Polynômes de division
- Algorithme et Implémentation
- 4 Résultats

Lois sur R Morphisme de Fröbenius Borne de Hasse Polynômes de division

Lois sur R

Definition

Soient $P_1 = a_1(x) + y * a_2(x)$ et $P_2 = b_1(x) + y * b_2(x)$ deux éléments de R. On a :

$$P_1 + P_2 = (a_1(x) + b_1(x)) + y * (a_2(x) + b_2(x))$$

$$P_1 * P_2 = (a_1 * b_1 + a_2 * b_2 * (x^3 + A * x + B)) + y * (a_1 * b_2 + a_2 * b_1)$$

Morphisme de Fröbenius

Definition

On appelle morphisme de Fröbenius sur E, noté π , l'endomorphisme de courbe elliptique (ou encore isogénie) suivant :

$$\pi: E \to E$$

$$\pi(x, y) \mapsto Q = (x^q, y^q)$$

 $\pi(O) \mapsto O$

Ce morphisme a pour équation caractéristique le polynôme suivant :

$$X^2 - tX + q = 0,$$

avec t la trace de l'endomorphisme et q son déterminant.

Lois sur R Morphisme de Fröbenius Borne de Hasse Polynômes de division

Borne de Hasse

Theorem

Borne de Hasse. Soit E une courbe elliptique sur \mathbb{F}_q . Alors on a l'égalité suivante :

$$|E(\mathbb{F}_q)| = q + 1 - t$$
, avec $|t| < 2\sqrt{q}$,

avec q le cardinal de , et t la trace du morphisme de Fröbenius sur E.

Lois sur R Morphisme de Fröbeniu Borne de Hasse Polynômes de division

Polynômes de division

Definition

On appelle I-ième polynôme de division d'une courbe E, noté ψ_I , le polynôme dont les racines sont les points du groupe $\bar{E}[I]$.

Lois sur R Morphisme de Fröbeniu Borne de Hasse Polynômes de division

Propriété

Lemma

Soit $P(x_p, y_p)$ un point de la courbe E et k un scalaire positif. Alors le point $R(x_r, y_r) = k * P$ est donné par :

$$x_r = x_p - (\psi_{k-1} * \psi_{k+1})/(\psi_k^2),$$

 $y_r = (\psi_{2k})/(2 * \psi_k^4).$

- Introduction
- 2 Fondement théorique
- 3 Algorithme et Implémentation
- 4 Résultats
- 5 Améliorations et applications à la Cryptologie
- 6 Références

Initialisation

```
a = ffgen(q,v);
e = [0,0,0,E[1],E[2]];
P = [[a^0*'x,0],[0,a^0]];
[S,DIV_POL] = gen_s_and_div_pols( q , e );
L = List(); \\ liste des Mod(t,l)
```


Cas I=2

Pour $I \in S \setminus \{2\} \mid$ étape 1 : init tour I

```
I = S[i];
q | l = q % | l;
if (q \mid > = (1/2), q \mid = q \mid -1);
phi I = mapget(DIV POL, I);
P \mod phi \ I = Mod(P, phi \ I);
frob2p = frob ell(frob ell(P mod phi l,q,E,
   phi 1),q,E,phi 1);
qlp = div_pol_mul(P mod phi I, q I, E, DIV POL
   phi 1);
                                                     Université de Paris
                                       (日) (日) (日) (日)
```

Pour $I \in S \setminus \{2\}$ | étape 2 : si $\pi^2(P) \neq q_I P$

```
for (t = 1, (l-1)/2,
         Pqt = div pol mul(P mod phi I, t, E, DIV POL,
             phi I);
         Pqt = frob \ ell(Pqt,q,E,phi \ l);
         if (\text{mul law}(\text{add law}(\text{frob2p}[2],(-1)*\text{Pgt}[2]).
             add law((-1)*qlp[1], frob2p[1]), E, phi | |
            ==mul law(add law((-1)*glp[2], frob2p
             [2]),add law(frob2p[1],(-1)*Pqt[1]),E,
             phi I),
                  listput(L,1+q+Mod(t,l));
                  trouve = 1:
                  break();
         );
```

Pour $I \in S \setminus \{2\}$ | étape 2 : si $\pi^2(P) \neq q_I P$

Pour $I \in S \setminus \{2\}$ | étape 3 : si $\pi^2(P) = \pm q_I P$ et q n'est pas un carré modulo I

Pour $I \in S \setminus \{2\}$ | étape 3 : si $\pi^2(P) = \pm q_I P$ et q est un carré modulo I

Université de Paris

Pour $I \in S \setminus \{2\}$ | étape 4 : restes chinois sur L

```
 \begin{array}{l} t = chinese(L); \\ N = t.mod; \\ t = lift(t); \\ while( \ t < (q+1-2*sqrt(q)) \ \ ,t = t + N \ ); \\ return(t); \end{array}
```


- Introduction
- 2 Fondement théorique
- 3 Algorithme et Implémentation
- 4 Résultats
 - Résultats dans \mathbb{F}_{37}
 - Résultats sur d'autres corps finis de forme \mathbb{F}_p
 - ullet Résultats sur d'autres corps finis de forme \mathbb{F}_q

5 Améliorations et applications à la Cryptologie

Résultats dans F₃₇ Résultats sur d'autres corps finis de forme F

Résultats dans \mathbb{F}_{37}

(A mod 37, B mod 37)	(5,0)	(0,9)	(0,6)	(1,12)	(2,2)
$\#(E(\mathbb{F}_{37}))$	26	27	28	29	30
(A mod 37, B mod 37)	(2,8)	(3,6)	(1,13)	(1,18)	(1,8)
$\#(E(\mathbb{F}_{37}))$	31	32	33	34	35
(A mod 37, B mod 37)	(1,0)	(0,5)	(1,5)	(0,3)	(1,2)
$\#(E(\mathbb{F}_{37}))$	36	37	38	39	40
(A mod 37, B mod 37)	(1,16)	(1,9)	(2,9)	(1,7)	(2,14)
$\#(E(\mathbb{F}_{37}))$	41	42	43	44	45
(A mod 37, B mod 37)	(1,11)	(3,15)	(0,1)	(0,2)	(2,0)
$\#(E(\mathbb{F}_{37}))$	46	47	48	49	50

Résultats sur d'autres corps finis de forme \mathbb{F}_{p_i}

(A,B)	$\#(E(\mathbb{F}_p))$
(Mod(3,1031),Mod(2,1031))	1018
(Mod(3,32771),Mod(2,32771))	33117
(Mod(1,65537),Mod(5,65537))	65460
(Mod(1,100003),Mod(5,100003))	99707
(Mod(1,131101),Mod(5,131101))	131132
(Mod(2,190027),Mod(6,190027))	190183
(Mod(1,333517),Mod(2,333517))	332640

Résultats sur d'autres corps finis de forme \mathbb{F}_q

q	(A,B)	$\#(E(\mathbb{F}_q))$
25	(g^2,g^6)	27
49	(g^2,g^6)	55
125	(g^{10},g^{15})	108
625	(g^{10},g^{15})	577
$1331 = 11^3$	(g^{10},g^{15})	1274
$28561 = 13^4$	(g^{10},g^{15})	28800
$130321 = 19^4$	(g^{10},g^{15})	130969

- Introduction
- 2 Fondement théorique
- 3 Algorithme et Implémentation
- 4 Résultats
- 5 Améliorations et applications à la Cryptologie
- 6 Références

- Introduction
- 2 Fondement théorique
- 3 Algorithme et Implémentation
- 4 Résultats
- 5 Améliorations et applications à la Cryptologie
- 6 Références

Références

- Gregg Musiker. Schoof's Algorithm for Counting Points on $E(\mathbb{F}_a)$. 7 Décembre 2005.
- René Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de Bordeaux 7, 219-254, 1995.
- Luca Defeo. Algorithmique et Programmation en C, 2014-2019. Master Algèbre Appliquée à la Cryptologie et au Calcul Formel, UVSQ.
- Hankerson, Menezes, Vanstone. Guide to Elliptic Curves Cryptography. Springer.
- Mohammed Krir. Introduction aux Courbes Elliptiques. Master Algèbre Appliquée à la Cryptologie et au Calcul Formel, UVSQ.