МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

Лабораторная работа

Диа- и парамагнетики

Выполнила: Карасёва Таисия Б02-001 Цель работы: измерение магнитной восприимчивости диа- и парамагнетиков.

В работе используются: электромагнит, аналитические весы, милливебметр, регулируемый источник постоянного тока, образцы.

Рис. 1: Экспериментальная установка.

Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов \gg ширина зазора \Rightarrow поле в средней части зазора можно считать однородным. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного напряжения. Градуировка электромагнита (связь между индукцией B в зазоре и силой тока I в обмотках) производиться при помощи милливеберметра.

Образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца - в зазоре, другой - вне (где можно пренебречь индукцией магнитного поля). При помощи весов измеряется перегрузка $\Delta P = F -$ сила, действующая на образец со стороны магнитного поля.

Инструмент	погрешность
Амперметр	0.05 A
Милливеберметр	0.05 мВ
Весы	10 мг

Таблица 1: Погрешности.

Диаметры образцов = 1 см

Теория

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. В работе, один конец тонкого длинного стержня помещатеся в зазоре электромагнита (область однородного поля), а другой - вне его (где магнитным полем можно пренебречь).

 μ — магнитная проницаемость образца, s— его площадь сечения, B_0 — поле в зазоре, x— глубина погружения образца, I— постоянный ток в обмотке электромагнита. Сила со стороны магнитного поля, необходимая для удержания образца в магнитном поле

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_I \tag{1}$$

Рис. 2: Образец в зазоре электромагнита.

где W_M - магнитная энергия системы при I = const (т.е. при $B_0 = const$) в зависимости от смещения образца x.

С учётом выражения для объёмной плотности магнитной энергии

$$\omega_M = \frac{B^2}{2\mu\mu_0} \tag{2}$$

магнитная энергия может быть рассчитана по формуле

$$W_M = \frac{1}{2\mu_0} \int\limits_V \frac{B^2}{\mu} dV \tag{3}$$

Систему можно условно разбить на 3 части (Рис. 3).

Рис. 3: К вычислению F_M .

Номер	область	магнитное поле
I	вне электроманита	$B_1 \approx 0$
II	погруженная в электромагнит	$B_2 \approx \mu B_0$
III	внани от сторуина	$R_{-} \sim R_{-}$

Таблица 2: К вычислению F_M .

При смещении стержня вглубь электромагнита на некоторое расстояние dx объём области II увеличивается на $dV_2 = Sdx$, а области III - уменьшается на на $dV_3 = -Sdx$. В пограничных участках II-III и I-II распределение поля не меняется. Изменение области I не учитываем, т.к. в ней нет поля

Изменение магнитной энергии при смещении образца на dx

$$dW_m(dx) = \frac{B_2^2}{2\mu\mu_0}sdx - \frac{B_3^2}{2\mu_0}sdx = (\mu - 1)\frac{B_0^2}{2\mu_0}sdx$$
 (4)

 \Downarrow

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} s \tag{5}$$

где $\chi=\mu-1$ - восприимчивость. Для парамагнетиков $\chi>0\Rightarrow$ они втягиваются в зазор, для диамагнетиков $\chi<0\Rightarrow$ они выталкиваются из зазора

Ход работы

- 1. Проверим работу цепи. Оцеим диапазон изменения тока через обмотки $I_{max} \approx 3~A$
- 2. Прокалибруем электромагнит. С помощью милливеберметра снимем зависимость магнитного потока $\Phi=BSN$, пронизывающего пробную катушку, находящуюся в зазоре, от тока $I.~SN=72~{\rm cm}^2$

Таблица 3: Калибровка электромагнита.

I, A										
Ф, мВ	0.7	1.5	2.2	2.9	3.5	4.2	4.9	5.6	6.0	6.5

Погрешность индукции магнитного поля $\sigma_B = \frac{\sigma_\Phi}{NS} \approx 10^{-4} \text{ Tл.}$

Рис. 4: Калибровка электромагнита.

Аппроксимирующая прямая постоена с помощью метода наименьших квадратов. Угловой коэффициент = $0.30\pm0.02~\frac{{\rm T_J}}{\Lambda}$

3. При нулевом токе через электромагнит подвесим к весам один из образцов так, чтобы он не касался наконечников электромагнита. Обнулим показания весов, чтобы измерять непосредсвенно перегрузки $\Delta P = F$

Таблица 4: Зависимость перегрузок от силы тока для алюминиевого образца.

I, A	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0
ΔP , Γ	0.001	0.002	0.006	0.009	0.014	0.020	0.027	0.033	0.040	0.047

Таблица 5: Зависимость перегрузок от силы тока для медного образца.

I, A	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0
ΔP , Γ	-0.001	-0.003	-0.003	-0.005	-0.006	-0.009	-0.011	-0.014	-0.017	-0.020

4. Построим графики $|\Delta P|(B^2)$

Рис. 5: Определению магнитной восприимчивости.

С помощью МНК найдём угловые коэффициенты для данных зависимостей

$$k_{Al} = 0.00057 \pm 0.00004$$

 $k_{Cu} = 0.00022 \pm 0.00002$

Тогда искомые магнитные восприимчивости

$$\chi_{Al} = \frac{2\mu_0 k_{Al}}{s}; \ \chi_{Cu} = -\frac{2\mu_0 k_{Cu}}{s}$$

$$\sigma_{\chi_{Al}} = \sigma_{k_{Al}} \frac{2\mu_0}{s}; \ \sigma_{\chi_{Cu}} = \sigma_{k_{Cu}} \frac{2\mu_0}{s}$$

Итого

$$\chi_{Al} = 18.4 \pm 1.2 \cdot 10^{-6}; \ \chi_{Cu} = -7.7 \pm 0.6 \cdot 10^{-6}$$

Вывод

В ходе работы с помощью построения градуировочной кривой между индукцией магнитного поля и тока в єлектромагните и измерений перегрузок, действующих на диа- и парамагнетики в магнитном поле

- (a) была подтверждена принадлежность меди к диамагнетикам (полученное значение магнитной восприимчивости < 0), и принадлежность алюминия к парамагнетикам (полученное значение магнитной восприимчивости > 0)
- (b) были определены магнитные восприимчивости обазцов алюминия и меди: $\chi_{Al}=18.4\pm1.2\cdot10^{-6}$; $\chi_{Cu}=-7.7\pm0.6\cdot10^{-6}$. Относительная погрешность составила 7% и 8% соответсвенно. Полученные значения отличаются от табличных ($\chi_{Al}=22.5\cdot10^{-6}$; $\chi_{Cu}=-9.6\pm0.6\cdot10^{-6}$) на $\approx 20\%$, что может быть объяснено непоределённостью сплава образцов.