Iterative Methods for Sparse Linear Systems

Luca Bergamaschi

*=[berga@dmsa.unipd.it - http://www.dmsa.unipd.it/~berga.

Department of Mathematical Methods and Models
for Scientific Applications
University of Padova

Summary

- Nonlinear systems of equations. A few examples
- Newton's method for f(x) = 0.
- Newton's method for systems.
- Local convergence. Exit tests.
- Global convergence.Backtracking. Line search algorithms
- Two computationally useful variants: the Inexact Newton method and the Quasi Newton method.

A few examples

A few examples

Intersection of curves in \mathbb{R}^n . For example find the intersection between a circle and a hyperbole

$$\begin{cases} x^2 + y^2 = 4 \\ xy = 1 \end{cases}$$

A few examples

Intersection of curves in \mathbb{R}^n . For example find the intersection between a circle and a hyperbole

$$\begin{cases} x^2 + y^2 = 4 \\ xy = 1 \end{cases}$$

Flow equation in porous media (Richards' equation).

$$\frac{\partial \psi}{\partial t} - \vec{\nabla} \cdot \left(K(\psi) \vec{\nabla} \psi \right) = f \tag{1}$$

A few examples

Intersection of curves in \mathbb{R}^n . For example find the intersection between a circle and a hyperbole

$$\begin{cases} x^2 + y^2 = 4 \\ xy = 1 \end{cases}$$

Flow equation in porous media (Richards' equation).

$$\frac{\partial \psi}{\partial t} - \vec{\nabla} \cdot \left(K(\psi) \vec{\nabla} \psi \right) = f \tag{1}$$

Unconstrained optimization

$$\min G(\boldsymbol{x}) \implies \text{solve } \boldsymbol{G}'(\boldsymbol{x}) = 0$$

Newton's method

Given a function $f \in C^1$, we aim at finding one solution of the equation

$$f(x) = 0$$

Given x_k , an approximation to the solution ξ , we correct it to find $x_{k+1} = x_k + s$

We impose the condition $f(x_{k+1}) = 0$ and expand $f(x_{k+1})$ in Taylor series neglecting the terms of order greater or equal than 2.

$$0 = f(x_{k+1}) = f(x_k) + sf'(x_k)$$

from which

$$s = -\frac{f(x_k)}{f'(x_k)}.$$

The Newton's method can therefore be written as

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Newton's method for system of nonlinear equations

Let us now solve the following nonlinear system

$$\begin{cases}
F_1(x_1, x_2, \dots, x_n) &= 0 \\
F_2(x_1, x_2, \dots, x_n) &= 0 \\
\dots &= 0 \\
F_n(x_1, x_2, \dots, x_n) &= 0
\end{cases} \tag{1}$$

more sinthetically

$$F(x) = 0$$

where

$$m{F} = \left(egin{array}{c} F_1 \ F_2 \ \dots \ F_n \end{array}
ight) \qquad m{x} = \left(egin{array}{c} x_1 \ x_2 \ \dots \ x_n \end{array}
ight)$$

Let us assume that F be differentiable in an open subset Ω of \mathbb{R}^n .

Newton's method for system of nonlinear equations

As in the scalar case, we try to correct an approximation x_k as $x_{k+1} = x_k + s$.

Let us impose $F(\mathbf{x}_{k+1}) = 0$ and as before expand in Taylor series the function $F(\mathbf{x}_{k+1})$.

$$0 = \mathbf{F}(\mathbf{x}_{k+1}) = \mathbf{F}(\mathbf{x}_k) + F'(\mathbf{x}_k)\mathbf{s}$$

where $F'(\mathbf{x}_k)$ is the Jacobian of system (7) evaluated in \mathbf{x}_k i. e.

$$(F'(\boldsymbol{x}))_{ij} = \frac{\partial F_i}{\partial x_j}(\boldsymbol{x})$$

As before the problem is to compute the increment ${\bf s}$ which is now a vector of n components.

$$\mathbf{s} = -\left(F'(\mathbf{x}_k)\right)^{-1} \mathbf{F}(\mathbf{x}_k)$$

The *k*th iteration of the Newton's method is thus written as

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \left(F'(\boldsymbol{x}_k)\right)^{-1} \boldsymbol{F}(\boldsymbol{x}_k)$$

Newton's method for system of nonlinear equations

Some observations:

- The Jacobian matrix $F'(\mathbf{x}_k)$ must be invertible.
- Local convergence of the Newton's method can be proved provided that the initial approximation x_0 is sufficiently close to the solution.
- Computation of x_{k+1} starting from x_k requires inversion of (possibly large and sparse) Jacobian matrix. This operation is inefficient as known. In practice vector \mathbf{s} is evaluated by solving the following linear system

$$F'(\boldsymbol{x}_k)\mathbf{s} = -\boldsymbol{F}(\boldsymbol{x}_k)$$

 \blacksquare F' is often non symmetric, so GMRES iterative method is suggested for the solution of the Newton system

Algorithm

Let us write a first version of the Algorithm, by taking into account previous comments.

Algorithm Newton 1

Given an initial approximation \mathbf{x}_0 , k := 0.

repeat until convergence

- solve: $F'(\boldsymbol{x}_k)\mathbf{s} = -\boldsymbol{F}(\boldsymbol{x}_k)$
- $\mathbf{z}_{k+1} := \mathbf{z}_k + \mathbf{s}$
- k := k + 1

Standard Assumptions

- **Equation** F(x) = 0 has one solution which we call x^* .
- Function F' is Lipschitz continuous: there exists a real number γ such that

$$||F'(y) - F'(x)|| \le \gamma ||y - x||$$

 $\blacksquare F'(\mathbf{x}^*)$ is invertible.

Notazioni. Let us define:

 \blacksquare the error at iteration k: $e_k = x_k - x^*$

Theorem 1

Let the standard assumption hold, then for every $\boldsymbol{x} \in \Omega$

$$F(\mathbf{x}) - F(\mathbf{x}^*) = \int_0^1 F'(\mathbf{x}^* + t(\mathbf{x} - \mathbf{x}^*))(\mathbf{x} - \mathbf{x}^*)dt$$

Proof

It is the fundamental theorem of calculus

Lemma 1 (Banach Lemma)

If A, B are matrices such that ||I - BA|| < 1 then

$$||A^{-1}|| \le \frac{||B||}{1 - ||I - BA||}$$

Lemma 2

Let the standard assumption hold. Then there is δ such that for all x satisfying $||x - x^*|| < \delta$:

$$||F'(\boldsymbol{x})^{-1}|| \le 2||F'(\boldsymbol{x}^*)^{-1}||$$

Proof

$$||I - F'(\mathbf{x}^*)^{-1}F'(\mathbf{x})|| = ||F'(\mathbf{x}^*)^{-1}(F'(\mathbf{x}^*) - F'(\mathbf{x})) \le \gamma ||F'(\mathbf{x}^*)^{-1}|| ||\mathbf{x}_k - \mathbf{x}^*||$$

$$\le \gamma \delta ||F'(\mathbf{x}^*)^{-1}||$$

Choose $\delta < \frac{1}{2\gamma \|F'(\boldsymbol{x}^*)^{-1}\|}$ so that $\|I - F'(\boldsymbol{x}^*)^{-1}F'(\boldsymbol{x})\| < 1/2$ and apply the Banach

Lemma with $A = F'(\mathbf{x})$ and $B = F'(\mathbf{x}^*)^{-1}$.

Theorem 2

There exists $\delta > 0$ such that if $\|\mathbf{e}_0\| < \delta$ then

$$\|\mathbf{e}_{k+1}\| \le K \|\mathbf{e}_k\|^2$$
 with $K = \gamma \|(F'(\mathbf{x}^*))^{-1}\|$

Proof

By Theorem 1

$$\boldsymbol{e}_{k+1} = \boldsymbol{e}_k - F'(\boldsymbol{x}_k)^{-1} \boldsymbol{F}(\boldsymbol{x}_k) = F'(\boldsymbol{x}_k)^{-1} \int_0^1 \left(F'(\boldsymbol{x}_k) - F'(\boldsymbol{x}^* + t\boldsymbol{e}_k) \right) \boldsymbol{e}_k dt$$

Now by the standard assumptions

$$\|e_{k+1}\|$$
 $\leq \|F'(\mathbf{x}_k)^{-1}\| \int_0^1 \gamma(1-t) \|e_k\|^2 dt$ $\leq \frac{1}{2} \gamma \|F'(\mathbf{x}_k)^{-1}\| \|e_k\|^2$ $\leq \text{(by Lemma 2)} \quad \gamma \|F'(\mathbf{x}^*)^{-1}\| \|e_k\|^2 = K \|e_k\|^2$

- Convergence is only local ($\|e_0\| < \delta$).
- As in the scalar case convergence is quadratic

Exit test

When to stop the algorithm?

Theoretically we should stop when $\|e_{k+1}\| < \varepsilon$ (absolute error) or when $\|e_{k+1}\| < \varepsilon \|e_0\|$ (relative error); where ε is a fixed tolerance. As usual the error vector is not known as the exact solution x^* is not known.

Exit test on the (relative) residual. Stop when

$$\frac{\|oldsymbol{F}(oldsymbol{x}_k)\|}{\|oldsymbol{F}(oldsymbol{x}_0)\|} < arepsilon$$

Test on the difference. Stop when

$$\|\mathbf{s}\| = \|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\| < \varepsilon$$

Exit test

Motivations

■ Test on the residual. It can be shown that for δ sufficiently small holds:

$$\frac{1}{4\kappa} \frac{\|\mathbf{e}_k\|}{\|\mathbf{e}_0\|} \le \frac{\|\mathbf{F}(\mathbf{x}_k)\|}{\|\mathbf{F}(\mathbf{x}_0)\|} \le 4\kappa \frac{\|\mathbf{e}_k\|}{\|\mathbf{e}_0\|}$$

where $\kappa = \|F'(\mathbf{x}^*)\| \|(F'(\mathbf{x}^*))^{-1}\|$ is the condition number of $F'(\mathbf{x}^*)$. If $F'(\mathbf{x}^*)$ is well conditioned ($\kappa \approx 1$), the test on the residual is similar to the test on the relative error.

Test on the difference

$$||x_{k+1} - x_k|| = ||x_{k+1} - x^* + x^* - x_k|| = ||e_k|| + O(||e_k||^2)$$

The difference at step k+1 has the same order of magnitude as the error at previous step k. (Exit on the difference is a pessimistic test).

Example

$$\|\mathbf{F}(\mathbf{x}^{(0)})\| = 3.16 \qquad \|\mathbf{F}(\mathbf{x}^{(1)})\| = 3.58$$

Example

Global Convergence

- Convergence of Newton's method not guaranteed. Frequently Newton's step moves away from the solution
- To avoid divergence we accept Newton's step if the following condition holds: $\|F(\mathbf{x}_{k+1})\| < \|F(\mathbf{x}_k)\|$
- If the above condition is not satisfied, then the Newton step is reduced ⇒ "backtracking" or "linesearch".

```
Algorithm: Newton 2. Given an initial approximation \mathbf{x}_0, k := 0. repeat until convergence solve: F'(\mathbf{x}_k)\mathbf{s} = -\mathbf{F}(\mathbf{x}_k)

• \mathbf{x}_t := \mathbf{x}_k + \mathbf{s}

if ||F(\mathbf{x}_t)|| < ||F(\mathbf{x}_k)|| then \mathbf{x}_{k+1} := \mathbf{x}_t

else \mathbf{s} := \mathbf{s}/2, go to (•)
```

Example

Newton con backtracking

$$\begin{cases} x^2 + y^2 - 4 = 0 \\ xy - 1 = 0 \end{cases} \qquad \boldsymbol{x}^{(0)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$k x_1^{(k)} x_2^{(k)} \|e^{(k)}\| x^{(k+1)} - x^{(k)} \frac{\|e^{(k+1)}\|}{\|e^{(k)}\|^2}$$

2.5

- $0 \quad 0.000000000 \quad 1.000000000 \quad 0.106597 \times 10^{+01}$
- 1 0.500000000 1.750000000 0.106397 \times 10 $^{+0}$
 - $0.182705 \times 10^{+00}$ 0.901388E+01

0.160790

Iterative Methods – p.17/29

Inexact Newton Methods

- Idea: try to avoid oversolving the linear systems at every Newton iteration.
- **Example.** Discretized Richards' equation (steady state)

$$A(\psi)\psi = \boldsymbol{b}(\psi), \qquad \boldsymbol{F}(\boldsymbol{x}) = A(\boldsymbol{x})\boldsymbol{x} - \boldsymbol{b}(\boldsymbol{x}), \qquad F' = A + \frac{\partial(A)}{\partial \boldsymbol{x}}\boldsymbol{x}$$

- \blacksquare F' has the same size and sparsity pattern as A.
- A single iteration with the Newton's method:
 - solve: $F'(\boldsymbol{x}_k)\mathbf{s} = -\boldsymbol{F}(\boldsymbol{x}_k)$
 - $oldsymbol{x}_{k+1} := oldsymbol{x}_k + \mathbf{s}$
 - k := k + 1
- Solve the linear system with an iterative method of choice with variable tolerance. Formally:

$$||F'(\mathbf{x}_k)\mathbf{s} + F(\mathbf{x}_k)|| \le \eta_k ||F(\mathbf{x}_k)||$$

Inexact Newton Methods

Convergence results:

- If $\eta_k \to 0$ then convergence of the Inexact Newton Methods is superlinear.
- If in addition $\eta_k = O(\|F(\mathbf{x}_k)\|)$ then again we obtain quadratic convergence.

Practical choices for η_k . Fix a maximum tolerance η_{max} .

$$\eta_k = \left\{egin{array}{l} \min(\eta_{ ext{max}}, \|oldsymbol{F}(oldsymbol{x}_k)\|) \ \min(\eta_{ ext{max}}, \gamma rac{\|oldsymbol{F}(oldsymbol{x}_k)\|^2}{\|oldsymbol{F}(oldsymbol{x}_{k-1})\|^2}) \end{array}
ight.$$

- Convergence of Newton iterations still very rapid
- Linear system solution very cheap especially at the first Newton steps.

Quasi-Newton Methods

Motivation: Jacobian matrix

■ Not always explicitly available (sometimes function *F* is known as a set of data)

or

 \blacksquare Differentiation of F may be too costly to be afforded at every Newton iteration

A possible answer to this problem is given by the quasi-Newton methods which compute a sequence of approximate Jacobians possibly starting from the 'true' initial Jacobian.

Instead of solving

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{F}'(\mathbf{x}_k)^{-1}\mathbf{F}(\mathbf{x}_k)$$

we solve

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - B_k^{-1} \boldsymbol{F}(\boldsymbol{x}_k)$$

Quasi-Newton Methods

Sequence of B_k can be constructed in many ways. The simplest approach is due to Broyden:

$$B_{k+1} = B_k + rac{(oldsymbol{y} - B_k oldsymbol{s}) oldsymbol{s}}{oldsymbol{s}^T oldsymbol{s}}$$

$$B_k + rac{oldsymbol{F}(oldsymbol{x}_{k+1})oldsymbol{s}}{oldsymbol{s}^Toldsymbol{s}}$$

where $y = F(\mathbf{x}_{k+1}) - F(\mathbf{x}_k)$. the Broyden upate formula satisfies:

- 1. the secant condition, namely $B_{k+1}s = y$.
- 2. B_{k+1} is the closest matrix to B_k in the Frobenius norm among all the matrices satisfying the secant condition.

$$B_{k+1} = \begin{array}{c} \operatorname{argmin} \\ B: Bs = y \end{array} \|B - B_k\|$$

Convergence Results

Definition . A sequence x_n converges superlinearly to x^* if there are $\alpha > 1$ and K > 0 such that

$$\|\boldsymbol{x}_{k+1} - \boldsymbol{x}^*\| \le K \|\boldsymbol{x}_k - \boldsymbol{x}^*\|^{\alpha}$$

Let us now define the error in jacobian approximations:

$$E_k = \mathbf{B}_k - F'(\mathbf{x}^*)$$

The first Theorem states that the difference between the exact and the approximate Jacobian does not grow with the Newton iteration. This property is also called *bounded deterioration*.

Theorem.

$$||E_{k+1}|| \le ||E_k|| + \frac{\gamma}{2}(||\mathbf{e}_k|| + ||\mathbf{e}_{k+1}||)$$

Convergence Results and implementation

Theorem.

Let the standard assumption holds. Then there are δ and δ_B such that if $\|e_0\| < \delta$ and $\|E_0\| < \delta_B$ the Broyden sequence exists and $\mathbf{x}_n \to \mathbf{x}^*$ superlinearly.

This theorem states that we can make $||E_k||$ as small as we want by properly choosing the initial vector \mathbf{x}_0 and the initial Jacobian approximation B_0 .

If it is the case, the convergence of the iteration remains very fast (superlinear convergence).

Problem.

How to implement solution of Newton system with B_k^{-1} instead of $J(\mathbf{x}_k)^{-1}$? Note that even if B_0 is sparse B_1 is not.

Careful implementation should avoid inversion of dense matrices.

Need to compute $B_k^{-1} F(\mathbf{x}_k)$ without

- 1. Computing B_k^{-1} since we do not want to invert matrices.
- 2. Computing B_k since it is dense.

First result we will use: the Sherman Morrison formula: Theorem 1

$$(B + \boldsymbol{u}\boldsymbol{v}^T)^{-1} = \left(I - \frac{(B^{-1}\boldsymbol{u})\boldsymbol{v}^T}{1 + \boldsymbol{v}^T B^{-1}\boldsymbol{u}}\right)B^{-1}$$

In our context we can write B_{k+1}^{-1} in terms of B_k^{-1} as

$$B_{k+1} = \underline{B}_k + u_k v_k,$$

where we can define among the others

$$oldsymbol{u}_k = rac{oldsymbol{F}(oldsymbol{x}_{k+1})}{\|oldsymbol{s}_k\|}, \qquad oldsymbol{v}_k = rac{oldsymbol{s}_k}{\|oldsymbol{s}_k\|}, \qquad ext{so that}$$

$$B_{k+1}^{-1} = (B_k + u_k v_k^T)^{-1} = \left(I - \frac{(B_k^{-1} u_k) v_k^T}{1 + v_k^T B_k^{-1} u_k}\right) B_k^{-1}$$
$$= \left(I - w_k v_k^T\right) B_k^{-1}$$

Where we have defined $m{w}_k = rac{m{B_k}^{-1} m{u}_k}{1 + m{v}_k^T m{B_k}^{-1} m{u}_k}.$

Now by induction

$$\mathbf{B}_{k}^{-1} = \left(I - \mathbf{w}_{k-1} \mathbf{v}_{k-1}^{T}\right) \left(I - \mathbf{w}_{k-2} \mathbf{v}_{k-2}^{T}\right) \cdots \left(I - \mathbf{w}_{0} \mathbf{v}_{0}^{T}\right) B_{0}^{-1}$$

Important results: $s_k = -B_k^{-1} F_k$ is accomplished by

- 1. Solving the system $B_0 \boldsymbol{z}_0 = -\boldsymbol{F}_k$
- 2. Computing $\alpha_0 = \boldsymbol{w}_0^T \boldsymbol{z}_0$, then $\boldsymbol{z}_1 = \boldsymbol{z}_0 \alpha_0 \boldsymbol{w}_0$ Computing $\alpha_1 = \boldsymbol{w}_1^T \boldsymbol{z}_1$, then $\boldsymbol{z}_2 = \boldsymbol{z}_1 - \alpha_1 \boldsymbol{w}_1$

Computing $\alpha_{k-1} = \boldsymbol{w}_{k-1}^T \boldsymbol{z}_{k-1}$, then $\boldsymbol{z}_k = \boldsymbol{z}_{k-1} - \alpha_{k-1} \boldsymbol{w}_{k-1}$

Problem. We do not know how to compute w_j , $j = 1, \dots, k-1$.

Let us define $\boldsymbol{p} = \left(I - \boldsymbol{w}_{k-2} \boldsymbol{v}_{k-2}^T\right) \, \cdots \, \left(I - \boldsymbol{w}_0 \boldsymbol{v}_0^T\right) \boldsymbol{F}(\boldsymbol{x}_k)$ It follows that

$$\begin{aligned} \boldsymbol{s}_{k} &= -\boldsymbol{B}_{k}^{-1} \boldsymbol{F}_{k} = -\left(\boldsymbol{I} - \boldsymbol{w}_{k-1} \boldsymbol{v}_{k-1}^{T}\right) \boldsymbol{p} = \boldsymbol{w}_{k-1} (\boldsymbol{v}_{k-1}^{T} \boldsymbol{p}) - \boldsymbol{p} \\ B_{k-1}^{-1} \boldsymbol{u}_{k-1} &= B_{k-1}^{-1} \frac{\boldsymbol{F}_{k}}{\|\boldsymbol{s}_{k-1}\|} = \frac{\boldsymbol{p}}{\|\boldsymbol{s}_{k-1}\|} \\ \boldsymbol{w}_{k-1} &= \frac{B_{k-1}^{-1} \boldsymbol{u}_{k-1}}{1 + \boldsymbol{v}_{k-1}^{T} B_{k-1}^{-1} \boldsymbol{u}_{k-1}} = \frac{\boldsymbol{p}}{\|\boldsymbol{s}_{k-1}\| + \boldsymbol{v}_{k-1}^{T} \boldsymbol{p}} \end{aligned}$$

Now combining $m{s}_k = m{w}_{k-1}(m{v}_{k-1}^Tm{p}) - m{p}$ with $m{w}_{k-1} = \frac{m{p}}{\|m{s}_{k-1}\| + m{v}_{k-1}^Tm{p}}$ we obtain

$$\|m{s}_{k-1}\|m{w}_{k-1} = m{p} - m{w}_{k-1}m{v}_{k-1}^Tm{p}$$

hence

$$oldsymbol{w}_{k-1} = rac{oldsymbol{s}_k}{\|oldsymbol{s}_{k-1}\|}$$

Hence B_k^{-1} can be written in terms of sequence $\{s_j\}$ only as

$${m B_k}^{-1} = \prod_{j=0}^{k-1} \left(I + rac{m s_{j+1} m s_j^T}{\|m s_j\|_2^2}
ight)$$

NOTE: We know s_k as a function of B_k^{-1} and B_k^{-1} as a function of s_k .

let us write s_k as

$$\mathbf{s}_{k} = -B_{k}^{-1} \mathbf{F}_{k} = -\left(I + \frac{\mathbf{s}_{k} \mathbf{s}_{k-1}^{T}}{\|\mathbf{s}_{k-1}\|_{2}^{2}}\right) \prod_{j=1}^{k-2} \left(I + \frac{\mathbf{s}_{j+1} \mathbf{s}_{j}^{T}}{\|\mathbf{s}_{j}\|_{2}^{2}}\right) \mathbf{F}_{k}$$

$$= -\left(I + \frac{\mathbf{s}_{k} \mathbf{s}_{k-1}^{T}}{\|\mathbf{s}_{k-1}\|_{2}^{2}}\right) B_{k-1}^{-1} \mathbf{F}_{k}$$
(-4)

Finally we solve (4) to obtain

$$m{s}_k = rac{B_{k-1}^{-1} m{F}_k}{1 + m{s}_{k-1}^T B_{k-1}^{-1} m{F}_k / \|m{s}_{k-1}\|_2^2}$$

Broyden Algorithm (sketch)

■ INPUT:
$$x_0, B_0$$
. Set $k := 0, x := x_0$.

First step: Solve
$$B_0 s_0 = -F(x_0)$$

■ REPEAT until convergence

$$x := x + s_k$$

Solve
$$B_0 \boldsymbol{z} = -\boldsymbol{F}(\boldsymbol{x})$$

$$k := k + 1$$
.

FOR
$$j := 1$$
 TO $k-1$

$$lacksquare z := z + rac{oldsymbol{s}_{j+1}oldsymbol{s}_{j}^T}{\|oldsymbol{s}_{j}\|_2^2}$$

$$oldsymbol{s}_k := rac{oldsymbol{z}}{1 + oldsymbol{s}_{k-1}^T oldsymbol{z} / \|oldsymbol{s}_{k-1}\|_2^2}$$

END REPEAT

And this is also THE END of the course.