Chapter 3.5: Trigonometric Equations

Expected Skills:

• Be able to solve trigonometric equations.

Practice Problems:

For problems 1-7, find all values of θ which satisfy the following equations.

1.
$$2\sin x + \sqrt{3} = 0$$

$$\theta = \frac{4\pi}{3} + 2\pi k$$
 or $\theta = \frac{5\pi}{3} + 2\pi k$, where k is any integer.

2.
$$2\cos^2\theta - \cos\theta - 1 = 0$$

$$\theta = \frac{2\pi}{3} + 2\pi k$$
, $\theta = \frac{4\pi}{3} + 2\pi k$, or $\theta = 2\pi k$, where k is any integer.

$$3. \sin(2\theta) + \cos\theta = 0$$

$$\theta = \frac{\pi}{2} + \pi k$$
, $\theta = \frac{7\pi}{6} + 2\pi k$, or $\theta = \frac{11\pi}{6} + 2\pi k$, where k is any integer.

$$4. \sin \theta - \cos (2\theta) = 0$$

$$\theta = \frac{3\pi}{2} + 2\pi k$$
, $\theta = \frac{\pi}{6} + 2\pi k$, or $\theta = \frac{5\pi}{6} + 2\pi k$, where k is any integer.

5.
$$\sec^2 \theta - 2 = 0$$

$$\theta = \frac{\pi}{4} + \frac{\pi}{2}k$$
, where k is any integer.

6.
$$|\tan \theta| = \sqrt{3}$$

$$\theta = \frac{\pi}{3} + \pi k$$
 or $\theta = \frac{2\pi}{3} + \pi k$, where k is any integer.

7.
$$\tan 4\theta = -1$$

$$\theta = \frac{3\pi}{16} + \frac{\pi}{4}k$$
, where k is any integer.

In Math 122, you will study the polar coordinate system. In the polar coordinate system, we identify the location of a point in the plane as an ordered pair (r, θ) where r is the distance of the point from the origin and θ is the angle from the positive x-axis. In this coordinate system, we often describe curves by expressing r as a function of θ , $r = f(\theta)$.

8. The curve $r=2-2\cos\theta$ is called a cardioid, shown in red below. The curve r=3 is the blue circle shown below.

Find the angles α and β at which these curves intersect where $0 < \alpha < \beta < 2\pi$

$$\alpha = \frac{2\pi}{3}$$
 and $\beta = \frac{4\pi}{3}$

9. The curve $r = \sin(3\theta)$ describes the rose, shown below.

(a) Find all values of θ in the interval $[0, \pi]$ at which the curve passes through the origin. (Hint: At these points, r = 0.)

$$\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi$$

(b) Find all values of θ in the interval $[0, \pi]$ which correspond to the "tips" of the rose petals. (Hint: At these points, either r=1 or r=-1.)

$$\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$