5 6

7 8

13

14

15161718

19

20

2122232425

26

2728

29303132

33

34353637

Inventing Time Travel: Theory and Applications of the Flux Capacitor

Vom Stuttgarter Zentrum für Simulationswissenschaften der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Emmett Brown

aus Hill Valley, California

rauptberienter. Troi. Di. Mibert Emisten	Hauptberichter:	Prof. Dr. Albert Einstein
--	-----------------	---------------------------

Mitberichter: Prof. Dr. Blaise Pascal

Prof. Dr. Marie Curie Prof. Dr. Charles Darwin

Tag der mündlichen Prüfung: 21. Oktober 2015

Institute for Advanced Time Travel

2015

Draft v209 (Oct 15, 10:04P) Commit eb41636 (Oct 15, 10:02P)

INVENTING TIME TRAVEL

Theory and Applications of the Flux Capacitor

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

34

35

36

37

66

It seems that it is not enough to have a good idea or insight. One needs, like Schoenberg, the appreciation and courage to develop the idea systematically, make its objects mathematically presentable by giving them names, and give them much exposure in many papers.

— Carl de Boor [Boo16]

COVER FIGURE A regular sparse grid in two dimensions (*dots*) as a subset of the full grid (*mesh*, *bottom*) with a bicubic B-spline (*mesh*, *top*).

Compiled as version v209 on October 15, 2018 at 10:04P. Committed as eb41636 on October 15, 2018 at 10:02P.

Copyright © 2015 Emmett Brown. This work is licensed under the *Creative Commons Attribution-ShareAlike 4.0 International License*.

Although this thesis was written with uttermost care, it cannot be ruled out that it contains errors. Please send any corrections and mistakes to thesis@example.com.

			1
			2
			3
			4 5
(Contents		6
			7
			8
			9
Li	sts of Figures, Tables, Algorithms, and Theorems	7	10
Δŀ	ostract/Kurzzusammenfassung	9	11
			12
Pr	reface	11	13
1	Introduction	13	14
	1.1 Bla	13	15
2	The Flux Capacitor	21	16
			17 18
3	Conclusion	25	19
A	Proofs	27	20
В	Bibliography	29	21
			22
			23
			24
			25
			26
			27
			28
			29 30
			31
			32
			33
			34
			35
			36

		:
	0 — 1 — 1 1	:
Li	sts of Figures, Tables,	4
A1	gorithms, and Theorems	
	Solitinis, and lines of the	
		(
Tic	et of Figures	10 1:
LIS	et of Figures	1.
1.1 1.2	This is a test caption.	15 1: 14
	This is a test caption. This is a test caption	16 1
		10
		1
Lis	et of Tables	19
1.1	This is a test table	14
		2:
Lis	et of Algorithms	2) 2
		2
1.1	Approximative Auswertung von Linearkombinationen auf dünnen Gittern, Zeilen 5, 6, 9, 10 nicht für stückweise lineare Basisfunktionen, <i>input</i> : Gitter	20
	$X = \{x_i\}_i$, Koeffizienten $\boldsymbol{\alpha} = (\alpha_i)_i$, Auswertungspunkt $\boldsymbol{x} \in [0,1]^d$, aktuelle	2
	Dimension $t \in \{1,, d\}$ (anfangs 1), Level und Index (ℓ, j) des aktuellen Punkts (für randlose Gitter anfangs (e, e)) und aktuelles Produkt b von 1D-	28
	Auswertungen (anfangs 1), output: $a \approx \widetilde{f}(x) = \sum_{k=1}^{N} \alpha_k \varphi_k(x)$ (für stück-	30
	weise lineare Funktionen sogar $a = \widetilde{f}(x)$)	16
		32
Lis	et of Theorems	3.
		3
1.1 1.2	Theorem (TODO Theorem)	14 30 17 31

1	1.3	Definition (TODO Definition)	17
2			
3			
4			
5			
6			
7			
8			
9			
LØ			
11			
L2			
L3			
14			
L5			
L6			
17			
L8			
L9			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			

Draft v209 (Oct 15, 10:04P) Commit eb41636 (Oct 15, 10:02P)

Abstract/Kurzzusammenfassung

Abstract

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

Kurzzusammenfassung

TODO: write Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. $\sin^2(\alpha) + \cos^2(\beta) = 1$. Der Text gibt lediglich den Grauwert der Schrift an $E = mc^2$. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$. Er muss keinen Sinn ergeben, sollte aber lesbar sein. $d\Omega = \sin\vartheta d\vartheta d\varphi$. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Preface

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

Stuttgart, October 21, 2015 Emmett Brown

1	
_	Introduction

Ah, Jesus Christ! Jesus Christ, Doc, you disintegrated Einstein!

— Marty McFly

TODO: write

Citations: [Boo72]

Hello World! Hello World!

Now I'm citing all references for demonstration purposes. TODO: don't cite everything

Here are some umlauts: äöüSS

I'm testing the glossary: non-uniform rational B-splines (NURBS) are very cool.

1.1 Bla

This is TODO: write defined TODO: write as a := 2b. This is the function f (which is defined as y =: f(x)).

2
3
4
5
6

Header 1	Header 2	Header 3	Header 4
bla	bla	bla	bla
bla	bla	bla	bla
bla	bla	bla	bla

TABLE 1.1 This is a test table.

$$10 (1.1) X \times Y$$

$$\begin{array}{ccc}
11 \\
12
\end{array} (1.2) & A \cdot \mathbf{x} = \mathbf{b}$$

13 (1.3)
$$\min_{\mathbf{x} \in [0,1]} \int_{\Omega} f(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

(1.4)
$$4(a+b)f(x)g(x)h(x)p(x)(c+d)fghf'g'h'$$

$$(1.5) f(x)\cos(x)g(x)$$

$$(1.6) f(x)\cos(x)g(x)$$

19 Tab. 1.1

Fig. 1.1

Fig. 1.1a

Fig. 1.1b

Fig. 1.2

Alg. 1.1

THEOREM 1.1 (TODO Theorem)

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{ab}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$.

1.1 BLA 15

18

19

202122

23

2425

26

27

28

29

30

31

32

33

34

35


```
1 function a = \text{GetAffectedBasisFunctions}(X, \alpha, x, t, \ell, j, b)
                                                                           → nichts tun, falls Gitterpunkt nicht vorhanden
            if x_{\ell,i} \notin X then return 0
            if t = d then
  3
                \begin{aligned} a &\leftarrow \alpha_{\boldsymbol{\ell},j} \cdot (b \cdot \varphi_{\ell_d,j_d}(x_d)) & \implies \text{letzte Dimension: Summanden zu Ergebnis addieren} \\ & \text{if } \boldsymbol{x}_{\boldsymbol{\ell},j}^{(\operatorname{rn}(d))} \in X \text{ then } \boldsymbol{a} \leftarrow \boldsymbol{a} + \alpha_{\boldsymbol{\ell},j}^{(\operatorname{rn}(d))} \cdot (\boldsymbol{b} \cdot \varphi_{\ell_d,j_d}^{(\operatorname{rn}(d))}(x_d)) \\ & \text{if } \boldsymbol{x}_{\boldsymbol{\ell},j}^{(\operatorname{ln}(d))} \in X \text{ then } \boldsymbol{a} \leftarrow \boldsymbol{a} + \alpha_{\boldsymbol{\ell},j}^{(\operatorname{ln}(d))} \cdot (\boldsymbol{b} \cdot \varphi_{\ell_d,j_d}^{(\operatorname{ln}(d))}(x_d)) \end{aligned}
  6
  7
                 a \leftarrow \mathsf{GABF}(X, \ \boldsymbol{\alpha}, \ \boldsymbol{x}, \ t+1, \ \boldsymbol{\ell}, \ \boldsymbol{j}, \ b \cdot \varphi_{\ell_t, j_t}(x_t)) \qquad \rightsquigarrow \text{ n\"{a}chste Dimension}
\mathbf{if} \ x_{\ell, j}^{(\mathrm{rn}(t))} \in X \ \mathbf{then} \ a \leftarrow a + \mathsf{GABF}(X, \ \boldsymbol{\alpha}, \ \boldsymbol{x}, \ t+1, \ \boldsymbol{\ell}, \ \boldsymbol{j}^{(\mathrm{rn}(t))}, \ b \cdot \varphi_{\ell_t, j_t}^{(\mathrm{rn}(t))}(x_t)
            10
11
       nächster Level
            else a \leftarrow a + GABF(X, \alpha, x, t, \ell^{(lc(t))}, j^{(lc(t))}, b)
12
13
            return a
ALGORITHM 1.1 Approximative Auswertung von Linearkombinationen auf dünnen Gittern,
                                        Zeilen 5, 6, 9, 10 nicht für stückweise lineare Basisfunktionen,
                                        input: Gitter X = \{x_i\}_i, Koeffizienten \alpha = (\alpha_i)_i, Auswertungspunkt
                                        x \in [0,1]^d, aktuelle Dimension t \in \{1,\ldots,d\} (anfangs 1), Level und
                                        Index (\ell, i) des aktuellen Punkts (für randlose Gitter anfangs (e, e)) und
                                        aktuelles Produkt b von 1D-Auswertungen (anfangs 1),
                                        output: a \approx \widetilde{f}(x) = \sum_{k=1}^{N} \alpha_k \varphi_k(x) (für stückweise lineare Funktionen
                                        sogar a = \widetilde{f}(x)
```

1.1 BLA 17

LEMMA 1.2 (TODO Lemma) *TODO*

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

DEFINITION 1.3 (TODO Definition)

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a}$ $\sqrt[n]{a}$ $\sqrt[n]{a}$ $\sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\sqrt[n]{a} = \sqrt[n]{a}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n}b$.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference

between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^nb}$.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the

1.1 BLA 19

alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

The Flux Capacitor

— Emmett Brown

TODO: write

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

shit.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the

alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$a\sqrt[n]{b} = \sqrt[n]{a^n b}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need

for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

3 Conclusion

TODO: write Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. $\sin^2(\alpha) + \cos^2(\beta) = 1$. If you read this text, you will get no information $E = mc^2$. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$. This text should contain all letters of the alphabet and it should be written in of the original language. $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$. There is no need for special contents, but the length of words should match the language. $a\sqrt[n]{b} = \sqrt[n]{a^n b}$.

A Proofs

This is an appendix chapter.

B Bibliography

[Boo16]	Boor, C. de: A comment on Ewal Quak's "About B-splines". Journal of Numerical Analysis
	and Approximation Theory 45.1 (2016), pp. 84–86.

- [Boo72] **Boor**, C. de: *On calculating with b-splines*. Journal of Approximation Theory 6.1 (1972), pp. 50–62. ISSN: 0021-9045. 10.1016/0021-9045(72)90080-9.
- [Bun04] **Bungartz**, H.-J.; **Griebel**, M.: *Sparse grids*. Acta Numerica 13 (2004), pp. 147–269. ISSN: 1474-0508. 10.1017/S0962492904000182.

All URLs have last been checked on October 21, 2015.