Local version of the Riemann-Roch-Grothendieck theorem

Speaker: finski siarhei

Let's recall Characteristic classes and Riemann-Roch-Grothendieck (RRG) theorem.

Let X be a compact complex manifold. (Most of the time, we won't need X to be compact), let E be a holomorphic vector bundle over X.

We would like to define $ch(E) \in H^{\bullet}_{DR}(X)$ and Td(E).

Let L be a line bundle. Associated to it is the first Chern class $c_1(L) \in H^2(X)$. This is compatible with pullbacks.

When $E = \bigoplus L_i$, define $Ch(E) = \sum Ch(L_i) = \sum e^{c_1(L_i)} \in H^{2\bullet}(X)$, where the exponential function is defined by the usual formal power series.

The Todd class $\mathrm{Td}(E)$ is defined as $\prod_{i=1}^n rac{c_1(L_i)}{1-e^{-c(L_i)}}$

Given a short exact sequence

$$0
ightarrow E_0
ightarrow E_1
ightarrow E_2
ightarrow 0,$$

we have

$$\operatorname{Ch}(E_1) = \operatorname{Ch}(E_2) + \operatorname{Ch}(E_0)$$

and

$$\operatorname{Td}(E_1) = \operatorname{Td}(E_0) \cdot \operatorname{Ch}(E_2)$$

Orauert's theorem

- Given a proper holomorphic map $f: X \to Y$ of compact manifolds and a vector bundle E/X, the sheaves $R^{\bullet}\pi_*E^{[1]}$ are coherent sheaves over Y.
- If X is a projective manifold, and $\mathcal E$ is a coherent sheaf on X, then there is a global resolution

$$0 \to E_n \to E_{n-1} \to \cdots \to E_0 \to \mathcal{E} \to 0$$

by vector bundles.

In particular, we can define the Chern character $Ch(E) = \sum_i Ch(E_i)(-1)^i$. This definition is not dependent on the choice of global resolution and it is a well defined class in $H^{\bullet}(X)$.

Rrg theorem

Let $f: X \to Y$ be a holomorphic and smooth map of smooth projective manifolds and let E/X be a vector bundle. Then (in $H^{\bullet}(Y)$), we have

$$\sum_{i=1}^n (-1)^i\operatorname{Ch}(R^if_*E)\cdot\operatorname{Td}(TY)=f_*(\operatorname{Ch}(E)\cdot\operatorname{Td}(TX))$$

[1-1]

Example

For example, let $i:D \to Y$ be a smooth divisor in Y. Let us apply the RRG theorem for X=D, $E=\mathcal{O}_D$, and f=i. Now i is a finite map, so $R^j\pi_*\mathcal{O}_Y=\begin{cases} 0 & \text{if } g\geq 1\\ i_*\mathcal{O}_Y & \text{otherwise} \end{cases}$

The RRG theorem says that

$$\operatorname{ch}(i_*\mathcal{O}_D)\cdot\operatorname{Td}(TY)=i_*(\operatorname{Td}(TD)).$$

Let us verify this by hand. We have the short exact sequence

$$0 o \mathcal{O}(-D) \xrightarrow{s_D ext{(multiplication by the canonical section)}} \mathcal{O}_Y o i_*\mathcal{O}_D o ext{Res.}$$

We have $\operatorname{Ch}(i_*\mathcal{O}_D)=1-e^{-c_1(\mathcal{O}(D))}.$ We also have

$$c_1(D) \cdot rac{1 - e^{-c_1(\mathcal{O}(D))}}{c_1(D)} \cdot \mathrm{Td}(TY) = i_*(\mathrm{Td}(TD)).$$

Moreover, the LHS above equals

$$i_*\left(rac{1-e^{c_1(D)|_D}}{c_1(D)|_D}\cdot \mathrm{Td}(TY|_D)
ight)$$

Writing $TY|_D = TD \oplus N$ and $N = c_1(D)|_D$, we have that

$$\mathrm{Td}(TY|_D)=\mathrm{Td}(TY)\cdot\mathrm{Td}(N)$$

Example

As for another example, let Y be a point. The theorem says that

$$\sum (-1)^i \dim H^i(X,E) = \int \operatorname{Ch}(E) \operatorname{Td}(TX))$$

which is the Riemann-Roch-Hirzebruch formula.

Example

Degree 1 piece or RRG. Knudsen and Mumford associated to a general coherent sheaf \mathcal{E} on X the determinant bundle $\det \mathcal{E}$, which is a line bundle on X.

When $\mathcal{E} = E$ is a vector bundle, $\det E = \wedge^{\text{top}} E$.

We consider $\lambda(E) = \otimes (\det R^i f_* E)^{(-1)^i}$. One thing that is true is that $\operatorname{Ch}_1(\mathcal{E}) = c_1(\det \mathcal{E})$. The RRG theorem can be re-written as

$$c_1(\lambda(E)) \cdot \operatorname{Td}(TY) = \pi_*(\operatorname{Ch}(E) \cdot \operatorname{Td}(X)) \tag{1}$$

We will refine the equation (1) under an assumption --- that f is a submersion.

Chern-Weil theory

"Pass characteristic classes to differential forms" representing them in DeRham cohomology $H^{\bullet}(X)$.

Given a complex vector bundle $E \to X$, let $\nabla^E : \mathcal{C}^\infty(X,E) \to \Omega^1(X,E)$ be an arbitrary connection, where $\Omega^1(X,E)$ denotes the 1-differential forms with values in E. The connection ∇^E can be extended in a unique way --- as

$$abla^E:\Omega^i(X,E) o\Omega^{i+1}(X,E)$$

--- in such a way that it respects the Leibniz rule.

Now we can define curvature:

$$R^E=(
abla^E)^2$$

Proposition

$$R^E \in \Omega^2(X,\operatorname{End}(E))$$

Proof: Let $f \in \mathcal{C}^{\infty}(X)$. Verify that $[R^E, f] = 0^{\text{[2]}}$:

$$[(\nabla^E)^2,f]=[\nabla^E,[\nabla^E,f]]=ddf=0$$

Now let \$ f\$ be a formal analytic function (there are no convergence conditions). The series $f(R^E)$ is an element of $\Omega^{2\bullet}(X,\operatorname{End}(E))$. Moreover, $\operatorname{Tr}^E[f(R^E)] \in \Omega^{2\bullet}(E)$

Proposition

- $\mathrm{Tr}[f(\Omega^E)]$ is closed
- The DeRham cohomology class is independent of the choice of ∇^E .

// Lemma

For $\alpha \in \Omega^{ullet}(X,\operatorname{End}(E))$, $d\operatorname{Tr}^E[lpha] = \operatorname{Tr}^E[[
abla^E,lpha]]$

Now we have $d\operatorname{Tr}[f(R^E)]=\operatorname{Tr}[[\nabla^E,f(R^E)]]=0.$

Thus, $\mathrm{Tr}[f(\Omega^E)]$ is closed.

To show that the DeRham cohomology class is independent of the choice of ∇^E , we show that

$$rac{d}{dt} {
m Tr}[f(r_t^E)] = {
m Tr}[(rac{d}{dt}
abla_t^2) f(R_t^E)].$$

The RHS equals

$$\mathrm{Tr}[[rac{d}{dt}
abla_t
abla_t]f(
abla_t^2)]=\mathrm{Tr}[[\Delta_t,rac{d}{dt}
abla_tf(
abla_t^2)]]=d\,\mathrm{Tr}[rac{d
abla}{dt}+f'(
abla_t^2)].$$

• •

Now let $E \to X$ be a holomorphic vector bundle over a complex manifold. Let h^E be a Hermitian metric on E. There exists a unique connection ∇^E such that $\nabla^{E,0} = \delta$ and ∇^E is Hermitian with respect to h^E . From now on, write

$$\operatorname{ch}(E, h^E) = \operatorname{ch}(E, \nabla^E)$$

Main question

Let $\pi:X\to B$ be a holomorphic submersion. Also assume that X and B are Kahler. Let $E\to X$ be a vector bundle. Let h^E be a Hermitian metric on E. Let g^{TX}/B be a Kahler metric on the fibers of π . In other words, $TX/B=TX/\pi^*TB$.

Can we find a Hermitian metric $\|\cdot\|$ on X such that

$$\lambda(E) = \otimes (\det R^i \pi_* E)$$

satisfies

$$\operatorname{c}_1(\lambda(E),\|\cdot\|)=\pi_*(\operatorname{Td}(TX/B,g^{\operatorname{TX}/B})\operatorname{Ch}(E,h^E))$$

holds pointwise?

Answer

In relative dimension 1, Quillen

...Bismut-Gillet-Soule

Bismut-Gillet-Soule have a series of three papers

We call $\|\cdot\|=\|\cdot\|_Q$ the **Quillen norm**

Quillen norm

Definition

 $\|\cdot\|_Q = \|\cdot\|_{L^2} \cdot \text{Analytic torsion}$

$$\lambda(E)_{\mathcal{B}} = \det H^i(X_{\mathcal{B}}, E)^{(-1)^i}$$

Now fix Y with a Riemannian metric g^{TY} and let E be a vector bundle on Y with a Hermitian metric h^E . There is the L^2 -metric given by

$$\langle s,s'
angle_{L^2}=\int_{y}\langle s(X),s'(X)
angle_{h^E}dv_{g^{ ext{TX}}}$$

where $s,s'\in\mathcal{C}^\infty(Y,E)$.

On $H^0(Y,E)$, $\|\cdot\|_{L^2}$ is just the restriction.

Hodge theory

The Kodaira Laplacian \square^E is given as follows: take $\delta:\Omega^{0,i}(X,E)\to\Omega^{0,i+1}(X,E)$. Define $\square_i^E=\delta^*\delta+\delta\delta^*$. The Kodaira Laplacian preserves the degree of a differential form.

Hodge theory states the following:

- $\ker \Box_i$ is finite dimensional.
- $\ker \Box_i \cong H^i(X,E)$. More precisely, Given $s \in \ker \Box_i$, we have

$$\langle \Box s, s
angle = \langle \delta s, \delta
angle \langle \delta^*, \delta^* s
angle$$

...

Proof.

A. Let \Box_i be an elliptic operator. For $s \in \mathcal{C}^{\infty}(X, E)$, $\|s\|_{H^2} \subseteq C \cdot (\|\Box \cdot s\|_{L^2} + \|s\|_{L^2})$. In particular, if $\Box s = 0$, then $\ker \Box_i \cap B_{L^2}(0, 1) \subset B_{H^2}(0, C)$ for some constant C. We know that $B_{H^2}(0, C)$ embeds compactly into B(0, C).

B. We can decompose

$$\mathcal{C}^\infty(X,E) = \ker \square \oplus_\perp \operatorname{Im} \square.$$

It is also the case that

$$\operatorname{Im} \Box = \operatorname{Im} \delta \oplus \operatorname{Im} \delta^*$$
.

Moreover, $\operatorname{Im} \delta \subset \ker \delta$ and $\ker \delta \perp \operatorname{Im} \delta^*$, and if $\alpha = \delta^* \beta$, then

$$0 = \langle \delta \delta^* \beta, \beta \rangle = \langle \delta^* \beta, \delta^* \beta \rangle.$$

Analytic torsion

Analytic torsion is a spectral invariant of the fibers.

Given $E \to Y$ a vector bundle , g^{TY} a Riemannian metric, and h^E a Hermitian metric, \square is an operator $\Omega^{0,i}(X,E)$ and \square are essentially self-adjoint.

$$\operatorname{Spec}(\Box)$$

is discrete, so it consists of positive real numbers $\lambda_1, \ldots, \lambda_n$.

Weyl's law

Weyl's laws tells you about the growth of the λ_i 's:

$$\lambda_i \sim C \cdot \mathrm{vol}(M) \cdot i^{rac{2}{n}}.$$

Spin geometry

Let s be an eigenvalue of \square . We have

$$\|s\|_{H^2} \leq (\|\Box s\|_{L^2} + \|s\|_{L^2}) \leq c \ldots \|s\|_{L^2}$$

$$\|s\|_{H^{2k}} \subseteq \Lambda^k \|s\|_{L^2}$$

Now write

$$\det\square=\prod_{i=1}^\infty\lambda_i$$

But this does not make sense because the eigenvalues are growing. We use the zeta function to consolidate this:

$$\zeta(s) = \sum rac{1}{\lambda_i^s}$$

If converges and is holomorphic for $\operatorname{Re} s > \frac{n}{2} \$$

Fact

 ζ has a meromorphic extension to $\mathbb C$ and 0 is a holomorphic point of this extension.

This is important because

$$\zeta'(0) = \sum -\log(\lambda_i)$$

and we can define

$$\det \Box := \exp(-\zeta(0)).$$

Roy-Singer made this definition.

The Quillen norm is then defined by

$$\|\cdot\|_Q=\|\cdot\|_{L^2}\cdot T(X_{\mathcal{B}},E)=\prod (\det\square_i)^{rac{i\cdot (-1)^i}{2}}$$

Here, X o B is a fibration of Kahler manifolds, $g^{ ext{TX}/\Delta}$ is a rests of a Kahler metric

⊘ Theorem

(Quillen, Bismut-Gillet-Soule)

- $\|\cdot\|_Q$ is smooth
- $C_d(\lambda(E), \|\cdot\|_Q) = \pi_*(\operatorname{Td}(TX/B, g^{\operatorname{TX}})\operatorname{Ch}(E, h^E))$

⊘ Remark

RRG is a trivial consequence of this theorem; The above theorem says that certain characters coincide point-by-point whereas RRG is a statement that characters coincide

Why do we care?

There are a bunch of applications.

- It all started with arithmetic geometry --- with the arithmetic Riemann-Roch theorem of Gillet-Soule, Faltings, Bost
- Related to the theory of automorphic forms (Yoshikawa)
- Applications to mirror symmetry (there is something called BCOV torsion)
- Applications to dynamical systems (Kontsevich-Zorich)
- Applications to probability (Work of Dubidot)

See Also

Meta

References

Citations and Footnotes

- 1. I think that Siarhei means f when he write π . \leftarrow \leftarrow
- 2. The commutator of R^E and $f \leftarrow$