Конспект 4. Дифференцируемость сложной ФНП. Дифференциал ФНП.

1 Дифференциремость сложной ФНП

Теорема 1 (о дифференцируемости сложной ФНП) //многа букафф Пусть $\vec{\varphi} = \{\varphi_1(\vec{x}), \dots, \varphi_m(\vec{x})\}$ – дифференцируема в $\vec{x}^0 \in \mathbb{R}^n$ $f(\vec{y}) = f(y_1, \dots, y_m)$ – дифференцируема в $\vec{y}^0 = (\varphi_1(\vec{x}^0), \dots, \varphi_m(\vec{x}^0)) \in \mathbb{R}^m$ Тогда $\phi(\vec{x}) = f(\varphi_1(\vec{x}), \dots, \varphi_m(\vec{x})$ дифференцируема в \vec{x}^0 и

$$\frac{\partial \phi}{\partial x_i}(\vec{x}^0) = \sum_{j=1}^m \frac{\partial f}{\partial y_j}(\vec{y}^0) \frac{\Delta \varphi_j}{\partial x_i}$$
, где , $\forall i \in (1,\dots,n)$

Доказательство 1 (о дифференцируемости сложной ФНП) Будет позже.

2 Дифференциал ФНП

Определение 2.1 Пусть $f(x): \mathbb{R}^n \to \mathbb{R}$ дифференцируема в $\vec{x}^0 \in \mathbb{R}^n$, тогда

$$\Delta f = \underbrace{\sum_{\partial f}^{\partial x_i} (\vec{x}^0) \Delta x_i}_{\text{d}f(\vec{x}^0)} + o(\|\vec{x}\|)$$

$$df=rac{\partial f}{\partial x}+rac{\partial f}{\partial y}$$
 — для случая $f:\mathbb{R}^2 o\mathbb{R}$ $\Delta x=dx,\,\Delta y=dy$ $df=rac{\partial f}{\partial x}dx+rac{\partial f}{\partial y}dy$

2.1 Геометрический смысл дифференциала ФНП

Геометрический смысл дифференциала $\Phi \Pi - \vec{n} = \{dx, dy, dz\}$ является нормалью к касательной плоскости в точке (x_0, y_0, z_0) для любой кривой $f(\vec{r}) : \mathbb{R}^3 \to \mathbb{R}$