

[S61898]
6G Computing Architecture:
Distributed, Software Defined Accelerated and Al-enabled

Shiku Hirai, NTT Network Service Systems Laboratories Rajesh Gadiyar, NVIDIA

NVIDIA Delivers Best Value 5G DataCenter

High Performance | High Utilization | Al Native

EFFICIENT PERFORMANCE

Power : Watts/Gbps Cost : \$/Gbps

MULTI-TENANCY

Highest utilization & ROI

AI MONETIZATION

Increase revenue with same assets Reduce OPEX with AI optimization

SW Defined, Scalable and Accelerated DC for 5G adv. and 6G

Contents

- NTT Labs 6G network architecture study
 - ➤ Previous Architecture Transition (4G→5G+MEC)
 - Architecture Evolution toward 6G
- Introduction of related research activities
 - dUPF Implementation on DPU (BlueField-3)
 - Performance Evaluation
 - Planned Future Development

> End-to-End HW acceleration leveraging MGX GH200 Platform

NTT Labs 6G network architecture study

Previous Architecture Transition (4G-5G+MEC)

Architecture Evolution toward 6G

Ref:

Published 6G White Paper (Next G Alliance)

Sourced from:

Next G Alliance Report: 6G Distributed Cloud and Communications Systems

NTT Labs Architecture Research Scope

UPF is one of the key functions to link mobile and service domains.

- → <u>Distributed UPF (dUPF) on DPU (BlueField-3)</u>
 - Lightweight, high-performance, energyefficient and reliable

Dynamic control of vRAN and MEC unified platform.

- → End-to-End HW Acceleration leveraging MGX GH200
 - Including mobile access, core, and apps

INC: In-Network Computing UPF: User Plane Function

vRAN: virtualized Radio Access network

Introduction of related research activities

- dUPF Implementation on DPU (BlueField-3)
- End-to-End HW acceleration leveraging MGX GH200 Platform

dUPF Architecture on DPU (BlueField-3)

Performance Evaluation #1

Performance Evaluation #2

(a) vUPF

(b) dUPF

DPDK: Data Plane Development Kit

Planned Future Development

Advanced data processing based on memory-centric architecture

RDMA: Remote Direct Memory Access RoCE: RDMA over Converged Ethrenet

RTP: Real-time Transport Protocol 13

Combining UPF with RDMA function

Prototype that combines UPF with RDMA using DOCA RDMA Library

Number of N3 received packets that are bundled in one RDMA transmission

E2E acceleration leveraging MGX GH200 Platform (O) NTT

Dynamic control of vRAN and MEC unified platform:

End-to-End HW acceleration including mobile access, core, and apps

AI video analysis

RU: Radio Unit MFH: Mobile Front Haul

Summary

- NTT Labs is working on designing future 6G network architecture.
- dUPF is a key function to connect mobile and service domains in the distributed architecture. BlueField DPUs have the capability to realize lightweight, high-performance, energy-efficient, and reliable dUPF.
- E2E acceleration and resource sharing between multiple applications are important requirements for telecom operators toward 6G. We expect the high performance and flexible infrastructure like MGX GH200 in the age of AI-native.
- We will input our efforts to related standardization and OSS communities such as 3GPP, ESTI NFV, O-RAN, and LF OPI ,etc.