Songs Generator App

Under the Supervision of:

Dr. Nada Ghneim

Eng. Massa Baali

A Senior Project by:
Amjad Almrai | Aous Abdulhamid

Table of Contents

Introduction

Lyrics Generator

Music Generator

Voice Synthesis

Project Application

Project Timeline

Difficulties & Future Vision

Used Technologies

Music has always been tied to technology.

Song = Music + Lyrics +Speech

The creation of songs, music, and speech is a significant aspect of human creativity.

Can we teach machines to convey their emotions and ideas through Al songs

Soul Composer: is an app that generate lyrics and music according to the user's selected mood (happy, sad, etc.), then generate voice based on the lyrics and music that our app developed.

Comparison

	Boomy	My Lyrics Maker	Melobytes	Sound raw	Soul Composer
Lyrics Generator	X	From Topic	According To Your Lyrics	X	✓
Music Generator	✓	✓	✓	✓	✓
Voice Synthesis	Record Your Voice	X	✓	X	✓
Mood Choice	✓			✓	✓
Save As Play List	X	✓	X		

Project Pipeline

User Authentication

User selects mood or emotion Lyrics will be inspired by emotions

Music will be produced according to emotions

The song can be added to the user's playlist.

Voice Synthesis will be created from the lyrics and music

Lyrics Generator

Structure

Model Objective: generate lyrics based on emotion

Dataset

Preprocessing

Architecture

Results

Data Set

We have collected all of the songs

from allmusic.com.

- Based on five emotions, five datasets
- has 200 songs, one for each emotion.

Preprocessing Data

Architecture

One Embedding Layer + two LSTM layers + two Dense layers with Relu

Output Layer

SoftMax Classification

HOW WILL THE MODEL DO IT?

Upon adding hyper parameters, lyrics is obtained.

(3) The output of the LSTM was sent to two dense layers.

The output of the embedding layer is then taken by the two LSTM layers.

Word index and sequence length are entered into embedding layer.

Results

Hyperparameters:

- * Activation : Relu and softmax
- Different epochs: for each five models
- **❖ Batch size:** 128
- optimization algorithm : Adam
- loss function: categorical crossentropy

After applying hyper parameters to our five models, we obtain varying degrees of accuracy (92–96%).

Music Generator

Structure

Model Objective: generate music depending on emotion from midi files

Dataset

Preprocessing

Architecture

Results

Data Set

- Our dataset POP909 includes piano tunes stored in the MIDI
 (Musical Instrument Digital Interface) format
- Using MuseScore3, we separate that dataset to five emotions.
- Each dataset contains between 50 to 85 midi file
- music21 (a toolkit for computer-aided musicology, MIT) These MIDI files data were extracted using a Python toolbox.

Preprocessing Data

All dataset will be transformed into music21 ______01 objects.

Extract chords from objects scores

Obtain notes and their duration. ______03

06

O4 — Choose the C major key

05

Mapping chords and durations to integers

Create Sequence Of Integers for chords and durations

Construct train and target sequences for chords and durations

18

Architecture

Two Embedding Layer + two LSTM layers + one Dense layers with tanh Function

Output Layer

SoftMax Classification

HOW WILL THE MODEL DO IT?

- 3 Dense layer changing the output's dimension to 1
 - Then, the two LSTM layers take the concatenated versions of both inputs.
 - Notes and durations are entered into two embedding layers.

Results

Hyperparameters:

- Activation : Tanh and softmax
- Different epochs: for each five models
- ❖ Batch size: 128
- optimization algorithm: RMSprop
- Learning rate: 0.01
- loss function: categorical crossentropy

After applying hyper parameters to our five models, we obtain varying degrees of accuracy (94–96%).

Voice Synthesis

Structure

Model's objective : is to generate voice from midifiles and lyrics.

Hidden Markov Models (HMMs) were used to create a singing voice synthesizer.

Data Set

Table 1: Singing voice database.

Singer	1 male (non-professional)		
Songs	60 Japanese children's songs		
	(about 72minutes in total)		
Sampling Rate	44.1kHz		
Quantization	16bit		

Table 2: Mel-cepstral analysis condition.

Sampling Rate	16kHz		
Frame Shift	5ms		
Window Length	25ms		
Window Function	Blackman Window		
Spectral Feature	24 mel-cepstral analysis [8]		

Voice Synthesizer

- In the training part, first we extract spectral and excitation parameters from a singing voice dataset and then they are modeled by context-dependent HMMs.
- Context-dependent state duration models and time-lag models are also estimated.
- In the synthesis part, first musical score to be synthesized is converted to a context-dependent label sequence.

Voice Synthesizer

- according to the label sequence, a song HMM is constructed by concatenating the context-dependent HMMs.
- spectral and excitation parameters are generated by HMM
- Finally, a speech waveform is synthesized directly from the generated spectral and excitation parameters using Mel Log Spectrum Approximation

Voice Synthesizer

Voice Synthesizer Example

We would want to express our gratitude to the doctors and listeners, in particular Dr. Nada and Dr. Masa, for guiding us during this journey.

Project Application

How We Do That?

User selects lyrics and music emotion, and API is called.

When an API detects an emotion, it sends it to a model, which then creates music and lyrics.

Generated music and lyrics are sent to the voice model. to generate a voice

Send music, lyrics and voice to the application, the user can now play it 1 2 3

Project Timeline

Building Lyrics

> Building Music

> > Voice

Synthesis

System Analysis

Impleme ntation

Testing and Report

Use case Diagram

© DIFFICULTIES & EUTURE VISION

Used Technologies

Application Building

Model Developing

THANKS!

For your time, attention, everything!