ПОДБОР ПРОТОКОЛОВ ИНТЕРНЕТ ВЕЩЕЙ В КАЧЕСТВЕ ОСНОВНЫХ ПРИ ПЕРЕДАЧИ ИНФОРМАЦИИ С ДАТЧИКОВ СТАНКОВ ЧПУ

Хлебников А. А. 1 , Кудасов С. В. 2 , Курнасов Е. В. 3 2 февраля 2018 г.

1. (viruszold@gmail.com) 2. (lulu@gmail.com)

Аннотация

В данной работе проводится анализ популярных протоколов «Интернет вещей» по требованиям надежности, качества и применимости к задаче обеспечения съема информации с мобильных датчиков станков ЧПУ посредствам сетей передачи данных WiFi. Также проводится проверка в лабораторных условиях поведения протокла на более чем N датчиков в различных условиях работы.

Введение

В связи с широким распростарением принципов «Интернет вещей», стала появляться необходимость не просто взаимодействовать компонентам между собой, но и обеспечивать необходимую надежность, качество и быстроту передачи информации. В совокупности с применяемыми физическими средствами передачи, большую роль играет и программные протоколы передачи, а их большое количество и разнообразие приводит к сложному и не однозначному анализу [3].

Для какой задачи рассматриваем протоколы? Какой цели мы хотим добиться данной проверкой? Какие результаты хотим получить?

Протоколы

Разобьем, для удобства, необходимые нам протоколы по назначению: **a)** непосредственный, непрерывная передача информации **b)** системный, управления. И выясним, какие нам подходят для решения нашей задачи.

MQTT[7]

...

CoAP[6]

...

HTTP2

...

DDS[4]

. . .

XMPP[5]

. . .

Результат

Экспресс оценка. Отсеивание явно не нужного. MQTT, CoAP, HTTP2 почему?

Критерии оценки

Время отклика.

Условия с помехами.

Отношение служебной информации к полезной.

Испытательный стенд

Схема

Схема подключения стенда (идеального)

Схема подключения датчиков (идеальных)

Схема самого датчика (не идеального)?

Методы

Методы получения резльтатов. Средства их получения. Рассчеты.

Устройства

Описание обобщенного клиентского устройства. Клиент на $\Pi \ni BM$ (идельный клиент)

Описание встраемового устройства (идеального датчика) — генератор информации.

Условия

Идельная сеть.

Помехи.

Пропускная способность.

Объем данных.

Количество клиентов.

Проведение испытаний

Реализация клиентской части. Языки.

Настройка и сбор стенда. Сборка серверной части.

Воспроизведение разных условий работы сети.

Последовательность действий.

Результаты

Таблицы зависимости показателей.

ГраФики.

Заключение

Что получилось. Что выбрали и почему.

Список литературы

- [1] Califano, A., Butte, A. J., Friend, S., Ideker, T. & Schadt, E. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. *Nature Genetics* 44, 841–847 (2012).
- [2] Wang, R. et al. PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nature Biotechnology 30, 135–137 (2012).
- [3] Фам В. Д., Юльчиева Л. О., Киричек Р. В ИССЛЕДОВАНИЕ ПРОТО-КОЛОВ ВЗАИМОДЕЙСТВИЯ ИНТЕРНЕТА ВЕЩЕЙ. Информационные технологии в телекоммуникации Том 4 №1, 55–67 (2006).

- [4] OMG/DDS v1.4 the DDS specification. Object Management Group (2015).
- [5] ITU-T/ Extensible Messaging and Presence Protocol (XMPP): Core. RFC-3920 (2004).
- [6] ITU-T/ The Constrained Application Protocol (CoAP). RFC 7252 Proposed Standard (2014).
- [7] IBM/MQTT V3.1 Protocol Specification. International Business Machines Corporation Eurotech (2015).
- [8] STOMP Protocol Specification, Version 1.2. licensed under the Creative Commons Attribution v2.5 license (2012).