Programmable Peripheral The 8255 (PPI) Interface

Features of 8255

- ➤ It is programmable parallel I/O device
- ➤It is 40 pin IC
- >24 I/O lines arranged as
- > 3, 8-bit ports (port A, B, C).
- ➤ Port C can be used as 2, 4-bit ports.
- ➤ Direct bit set/reset capability is at port C
- > \$255 can operate in 3 modes:
- ❖ Mode 0 − simple i/o
- ❖Mode 1 − strobed i/o
- ❖ Mode 2 − strobed bidirectional i/o

PIN Diagram and description

PA4	PA5	PA6	PA2	1 1 1 1 1 1 1 1	00	10	D2	60	4 K	22	70	Vcc	PB7	PB6	PB5	PB4	PB3
40	39	38	37	d t	34	33	32	9	<u>ې رو</u>	78	27	26	25	24	23	22	21
								8255	ī								
-	N	ო	4۱	១៤) N	ω	ത	2,0	- 5	<u>ν</u> (0	4	15	16	7	19	19	20
PA3	PA2	PA1	8 (c)	210	and	,₹	4	PC7	1 0 2 0	ÖΟ	Ō	PC1	PC2	-	PBO	PB1	PB2
	This Manne	Fin Names	Data Bus (Bidirectional)	3T Reset Input	Chip Select	Read Input	Write Input	.1 Port Address	7-PA0 Port A (bit)	B7-PB0 Port B (bit)	27-PC0 Port C (bit)	+5V	000				
			J.	RESET	S	12	WR	40, A1	-YA7-	B7_	-L)	100	E				

Microprocessor

Dr. Gauri Shukla

PC7-PC4 1/O PB7-PB0 GROUP A PORT A GROUP B PORT C LOWER GROUP A GROUP B PORT C UPPER PORT B € 8 <u>£</u> 8 DATA BUS 8-BIT INTERNAL GROUP A CONTROL GROUP B CONTROL Block Diagram WRITE CONTROL LOGIC DATA BUS BUFFER READ GND +5 BI-DIRECTIONAL DATA BUS POWER A0 WR A1 CS RESET

8255 Truth Table

A ₁	A ₀	ED	WR	CS	Operations
					Input (Read) Operation
25	0	0	Н	0	Port A to Data Bus
0	7	0	٦	0	Port B to Data Bus
	0	0	7	0	Port C to Data Bus
					Output (Write) Operation
	0	-	0	0	Data Bus to Port A
0	П	-	0	0	Data Bus to Port B
ne av	0	,	0	0	Data Bus to Port C
	-	1	0	0	Data Bus to Control Register
					Disable Function
	×	×	×	Н	Data Bus Tri-stated
7	~	0	-	0	Illegal Condition
	×	,	,	0	Data Bus Tri-stated

8255 I/O mode

I/O operating modes

➤ Mode 0 – input mode

Microprocessor

I/O operating modes

➤ Mode 0 – output mode

Port A,B – Strobed input

Port A,B – Strobed output

Polling versus interrupts

➤ 8255 mode 1 status word format

*This/byte is read via an input read from port C

Dr. Gauri Shukla

Port A - Mode 2 I/O Port B - Mode 1 Output

8255 – mode 2 timing diagram

8255 – mode 2

Input port timing. Figure 9.16 is a timing diagram for mode 2 illustrating the then back to the peripheral by the 8255. The numbers in the diagram are keyed to the sequence of events as a data byte is first transferred to the 8255 by the peripheral and explanation. We begin with the peripheral outputting a byte to the 8255.

- Data is output by the peripheral.
- 2. The peripheral applies a STB pulse to the 8255.
 - 3. When the data is latched, IBF goes high.
- 4. After STB returns high with IBF still set, INTR goes high, requesting an interrupt if this feature is used.
- 5. Polling or interrupts can now be used to service the peripheral. The 8255 buffer is read when RD goes low.
 - 6. The falling edge of RD resets INTR.
 - 7. The rising edge of RD resets IBF.

8255 – mode 2

Output port timing. The following sequence occurs as the processor outputs a byte of data to the peripheral through the 8255.

- 8. Data is output by the processor and latched by the 8255 (note that the peripheral bus is in a high-impedance state at this time).
- 9. The rising edge of WR causes OBF to switch low ("the output buffer is full").
- The peripheral acknowledges OBF by causing ACK to go low.
- 11. On the falling edge of ACK the 8255 releases its data onto the bus.
- OBF returns high ("the output buffer is empty").
- 13. The rising edge of ACK sets INTR, requesting an interrupt if this feature is used.
- 14. Polling or interrupts can now be used to write the next data byte to the 8255.