

## **ISO/IEC JTC 1 N 9437**

2008-12-01

## ISO/IEC JTC 1 **Information Technology**

**Document Type: Proposed NP** 

**Document Title:** SC 25 Proposal for a New Work Item ISO/IEC 14165-261: Information

technology - Fibre Channel - Part 261: Link services (FC-LS)

**Document Source:** SC 25 Secretariat

Reference:

This document is circulated to JTC 1 National Bodies for concurrent **Document Status:** 

> review. If the JTC 1 Secretariat receives no objections to this proposal by the due date indicated, we will so inform the SC 25

Secretariat.

**Action ID: ACT** 

**Due Date:** 2009-03-01

No. of Pages: 209

Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932;

Facsimile: 1 212 840 2298; Email: lrajchel@ansi.org



# ISO/IEC JTC 1/SC 25 N 1611

Date: 2008-11-27

# Replaces ISO/IEC JTC 1/SC 25 N/A

#### PROPOSAL FOR A NEW WORK ITEM

Pages 210

| Date of presentation of proposal: 2008-10-09 | Proposer: ISO/IEC JTC 1/SC 25 |  |
|----------------------------------------------|-------------------------------|--|
| Secretariat: Germany                         | ISO/IEC JTC 1 N 9437          |  |
| DIN                                          | ISO/IEC JTC 1/SC 25 N 1611    |  |

A proposal for a new work item shall be submitted to the secretariat of the Subcommittee of the ISO/IEC joint technical committee concerned with a copy to the Secretariat of ISO/IEC/JTC 1 and the ISO Central Secretariat.

**Presentation of the proposal** - to be completed by the proposer. Guidelines for proposing and justifying a new work item are given in ISO Guide 26.

|   | justifying a new work item are given in ISO Guide 26.                                                                                                                                                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Title ISO/IEC 14165-261: Information technology – Fibre Channel – Part 261: Link services (FC-LS)                                                                                                                                                                  |
|   | <b>Scope</b> This standard describes Fibre Channel Extended Link Services and ancillary functions and services required to support the Fibre Channel Extended Link Services.                                                                                       |
|   | <b>Purpose and justification</b> The Fibre Channel Link Services standard along with the Fibre Channel Framing and Signaling - 2 standard (14165-252) are companion standards that supersede the Fibre Channel Framing and Signaling standard (ISO/IEC 14165-251). |
|   | Programme of work                                                                                                                                                                                                                                                  |
|   | If the proposed new work item is approved, which of the following document(s) is (are) expected to be developed?X_ a single International Standard with a prospective number 14165-261                                                                             |
|   | more than one International Standard (expected number:) a multi-part International Standard consisting of parts an amendment or amendments to the following International Standard(s)                                                                              |
|   | And which standard development track is recommended for the approved new work item?                                                                                                                                                                                |
|   | a. Default Timeframe                                                                                                                                                                                                                                               |
|   | Xb. Accelerated Timeframe                                                                                                                                                                                                                                          |
|   | c. Extended Timeframe                                                                                                                                                                                                                                              |
|   | Relevant documents to be considered                                                                                                                                                                                                                                |
|   | Co-operation and liaison                                                                                                                                                                                                                                           |
|   | Preparatory work offered with target date(s) INCITS 433:2007 (FC-LS)                                                                                                                                                                                               |
| ĺ | Signature: Dr Walter von Pattay, Secretary of the ISO/IEC, ITC 1/SC 25                                                                                                                                                                                             |

Secretary - ISO/IEC JTC 1 / SC 25 - Dr.-Ing. Walter P. von Pattay Member of ZVEI FV 7 & FV 8, Germany

Tel.: +49/89/923 967 57 , Tfx.: +49/89/923 967 59 (only on request)

EM: Walter@Pattay.com

Home page: "http://www.iec.ch/sc25"

| Will the service of a maintenance agency or registration authority be required?NO  - If yes, have you identified a potential candidate? |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Are there any known requirements for coding?NOIf yes, please specify on a separate page                                                 |
| Does the proposed standard concern known patented items?NO If yes, please provide full information in an annex                          |

#### Comments and recommendations of the JTC 1/SC 25 Secretariat -

In accordance with Resolution SC 25:16/20, see SC 25 N 1099A, the acceptance of this NWIP authorizes passing to FCD stage the attached text that is an existing national or regional standard in the domain of WG 4.

Comments with respect to the proposal in general, and recommendations thereon: It is proposed to assign this new item to JTC 1/SC 25. Project number: 1.25.13.13.35

**Voting on the proposal** - Each P-member of the ISO/IEC joint technical committee has an obligation to vote within the time limits laid down (normally three months after the date of circulation).

The vote shall be sent to the Secretary of ISO/IEC JTC 1 / SC 25 - Dr.-Ing. Walter P. von Pattay, Member of ZVEI FV 7 & FV 8, Germany,

Tel.: +49/89/923 967 57, Tfx.: +49/89/923 967 59 (on request only), EM: Walter@Pattay.com

| Date of circulation: 2008-11-27 | Closing date for voting: 2009-02-28 | Signature of Secretary: Dr. Walter P. von Pattay |
|---------------------------------|-------------------------------------|--------------------------------------------------|
| 2000 11 27                      | 2000 02 20                          | 211 Traiter 1 Torri allay                        |

| Criterion                                       | Validity                                               | Explanation |
|-------------------------------------------------|--------------------------------------------------------|-------------|
| A. Business Requirement                         |                                                        |             |
| A.1 Market Requirement                          | Essential _X_<br>Desirable<br>Supportive               |             |
| A.2 Regulatory Context                          | Essential<br>Desirable<br>Supportive<br>Not Relevant X |             |
| B. Related Work                                 |                                                        |             |
| B.1 Completion/Maintenance of current standards | Yes _X_<br>No                                          |             |
|                                                 | Yes<br>No_ X                                           |             |
| B.3 Other Source of standards                   | Yes<br>No_X_                                           |             |
| C. Technical Status                             |                                                        |             |
| C.1 Mature Technology                           | Yes _X<br>No                                           |             |

| Yes<br>No X _  |                                                                                                                       |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
| Yes<br>No X _  |                                                                                                                       |
| operability    |                                                                                                                       |
| Yes<br>No_X_   |                                                                                                                       |
| Yes<br>No_X_   |                                                                                                                       |
| Human Function | ing and Context of Use                                                                                                |
| Yes            | Not applicable                                                                                                        |
| NoX            |                                                                                                                       |
| Yes            | Not applicable                                                                                                        |
| NoX            |                                                                                                                       |
|                |                                                                                                                       |
|                | No X _ Yes No X _  perability Yes No_X _ Yes No_X _ Human Function Yes No_X _ Yes |

#### **Notes to Proforma**

- **A. Business Relevance.** That which identifies market place relevance in terms of what problem is being solved and or need being addressed.
- A.1 Market Requirement. When submitting a NP, the proposer shall identify the nature of the Market Requirement, assessing the extent to which it is essential, desirable or merely supportive of some other project.
- A.2 Technical Regulation. If a Regulatory requirement is deemed to exist e.g. for an area of public concern e.g. Information Security, Data protection, potentially leading to regulatory/public interest action based on the use of this voluntary international standard the proposer shall identify this here.
- **B.** Related Work. Aspects of the relationship of this NP to other areas of standardisation work shall be identified in this section.
- B.1 Competition/Maintenance. If this NP is concerned with completing or maintaining existing standards, those concerned shall be identified here.
- B.2 External Commitment. Groups, bodies, or fora external to JTC 1 to which a commitment has been made by JTC for Co-operation and or collaboration on this NP shall be identified here.
- B.3 External Std/Specification. If other activities creating standards or specifications in this topic area are known to exist or be planned, and which might be available to JTC 1 as PAS, they shall be identified here.
- **C. Technical Status.** The proposer shall indicate here an assessment of the extent to which the proposed standard is supported by current technology.
- C.1 Mature Technology. Indicate here the extent to which the technology is reasonably stable and ripe for standardisation.
- C.2 Prospective Technology. If the NP is anticipatory in nature based on expected or forecasted need, this shall be indicated here.
- C.3 Models/Tools. If the NP relates to the creation of supportive reference models or tools, this shall be indicated here.

#### D. Conformity Assessment and Interoperability

D.1 Indicate here if Conformity Assessment is relevant to your project. If so, indicate how it is addressed in your project plan.

D.2 Indicate here if Interoperability is relevant to your project. If so, indicate how it is addressed in your project plan

#### E. Adaptability to Culture, Language, Human Functioning and Context of Use

NOTE: The following criteria do not mandate any feature for adaptability to culture, language, human functioning or context of use. The following criteria require that if any features are provided for adapting to culture, language, human functioning or context of use by the new Work Item proposal, then the proposer is required to identify these features.

E.1 Cultural and Linguistic Adaptability. Indicate here if cultural and natural language adaptability is applicable to your project. If so, indicate how it is addressed in your project plan.

ISO/IEC TR 19764 (Guidelines, methodology, and reference criteria for cultural and linguistic adaptability in information technology products) now defines it in a simplified way:

"ability for a product, while keeping its portability and interoperability properties, to:

- be internationalized, that is, be adapted to the special characteristics of natural languages and the commonly accepted rules for their se, or of cultures in a given geographical region;
- take into account the usual needs of any category of users, with the exception of specific needs related to physical constraints"

Examples of characteristics of natural languages are: national characters and associated elements (such as hyphens, dashes, and punctuation marks), writing systems, correct transformation of characters, dates and measures, sorting and searching rules, coding of national entities (such as country and currency codes), presentation of telephone numbers and keyboard layouts. Related terms are localization, jurisdiction and multilingualism.

E.2 Adaptability to Human Functioning and Context of Use. Indicate here whether the proposed standard takes into account diverse human functioning and diverse contexts of use. If so, indicate how it is addressed in your project plan.

#### NOTE:

- Human functioning is defined by the World Health Organization at <a href="http://www3.who.int/icf/beginners/bg.pdf">http://www3.who.int/icf/beginners/bg.pdf</a> as: <<a href="http://www3.who.int/icf/beginners/bg.pdf"><a href="http://www3.who.int/icf/beginners/bg.pdf">http://www3.who.int/icf/beginners/bg.pdf</a> as: <a href="http://www3.
- Content of use is defined in ISO 9241-11:1998 (Ergonomic requirements for office work with visual display terminals (VDTs) –
  Part 11: Guidance on usability) as:

   Users, tasks, equipment (hardware, software and materials), and the physical and societal environments in which a product is used.>>
- 3. Guidance for Standard Developers to address the needs of older persons and persons with disabilities).

**F. Other Justification** Any other aspects of background information justifying this NP shall be indicated here

ISO/IEC JTC 1/SC 25 N 1611: 2008-11-27

ANSI<sup>®</sup> INCITS 433-2007

American National Standard for Information Technology –

Fibre Channel – Link Services (FC-LS)

Secretariat

**Information Technology Industry Council** 

Approved July 5, 2007

American National Standards Institute, Inc.

#### **Abstract**

This standard describes the Link Services requirements. The Physical Interface requirements are described in Fibre Channel-Physical Interfaces - 2 (FC-PI-2). The Framing and Signaling requirements are described in Fibre Channel-Physical Framing and Signaling - 2 (FC-FS-2). This standard is recommended for new implementations but does not obsolete the existing Fibre Channel standards.

# American National Standard

Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgement of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

**CAUTION NOTICE:** This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

**CAUTION:** The developers of this standard have requested that holders of patents that may be required for the implementation of the standard disclose such patents to the publisher. However, neither the developers nor the publisher have undertaken a patent search in order to identify which, if any, patents may apply to this standard. As of the date of publication of this standard, following calls for the identification of patents that may be required for the implementation of the standard, notice of one or more such claims has been received. By publication of this standard, no position is taken with respect to the validity of this claim or of any rights in connection therewith. The known patent holder(s) has (have), however, filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license. Details may be obtained from the publisher. No further patent search is conducted by the developer or publisher in respect to any standard it processes. No representation is made or implied that this is the only license that may be required to avoid infringement in the use of this standard.

Published by

American National Standards Institute, Inc. 25 West 43rd Street, New York, NY 10036

Copyright © 2007 by Information Technology Industry Council (ITI) All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of ITI, 1250 Eye Street NW, Washington, DC 20005.

## Contents

|              | Pa                                           | age      |
|--------------|----------------------------------------------|----------|
| Foreword     |                                              | ix       |
| Introduction | on                                           | . xii    |
| 1            | Scope                                        | 1        |
| 2            | Normative References                         | 1        |
| 2.1          | Overview                                     | 1        |
| 2.2          | Approved references                          | 1        |
| 2.3          | References under development                 | 1        |
| 2.4          | Other references                             | 2        |
| 3            | Definitions and conventions                  | 3        |
| 3.1          | Overview                                     | 3        |
| 3.2          | Definitions                                  | 3        |
| 3.3          | Editorial Conventions                        | 11       |
| 3.4          | State Machine notation                       | 11       |
| 3.5          | Abbreviations and acronyms                   |          |
| 3.6          | Symbols                                      |          |
| 3.7          | Keywords                                     | 14       |
| 3.8          | T10 Vendor ID fields                         | 15       |
| 4            | Extended Link Services                       | 17       |
| 4.1          | Introduction                                 | 17       |
| 4.2          | Extended Link Service requests               | 17       |
| 4.2.1        | Introduction                                 | 17       |
| 4.2.2        |                                              | 22       |
| 4.2.3        |                                              | 23       |
| 4.2.4        | Echo (ECHO)                                  | 26       |
| 4.2.5        | Estimate Credit (ESTC)                       | 27       |
| 4.2.6        | Establish Streaming (ESTS)                   | 28       |
| 4.2.7        | Login (FLOGI/PLOGI)                          | 29       |
| 4.2.8        | Logout (LOGO)                                | 30       |
| 4.2.9        | Read Connection Status (RCS)                 | 31       |
| 4.2.10       | Read Link Error Status Block (RLS)           | 33       |
| 4.2.11       | Read Timeout Value (RTV)                     | 35       |
| 4.2.12       | Reinstate Recovery Qualifier (RRQ)           | 36       |
| 4.2.13       | Request Sequence Initiative (RSI)            | 38       |
| 4.2.14       |                                              |          |
| 4.2.14       | Test (TEST)Fabric Address Notification (FAN) | 39<br>40 |
| 4.2.16       | Loop Initialize (LINIT)                      | 41       |
| 4.2.17       | Loop Status (LSTS)                           | 43       |
| 4.2.17       | Registered State Change Notification (RSCN)  | 45       |
| 4.2.10       | · · · · · · · · · · · · · · · · · · ·        | 49       |
|              | State Change Registration (SCR)              |          |
| 4.2.20       | Process login (PRLI)                         | 50       |
| 4.2.21       | Process logout (PRLO)                        | 56       |

|                  |                                                   | Page |
|------------------|---------------------------------------------------|------|
| 4.2.22           | Test Process Login State (TPLS)                   | 60   |
| 4.2.23           | Request Node Identification Data (RNID)           | 63   |
| 4.2.24           | Registered Link Incident Report (RLIR)            | 71   |
| 4.2.25           | Link Incident Record Registration (LIRR)          | 78   |
| 4.2.26           | Get Alias_ID (GAID)                               | 81   |
| 4.2.27           | Fabric Activate Alias_ID (FACT)                   | 82   |
| 4.2.28           | Fabric Deactivate Alias_ID (FDACT)                |      |
| 4.2.29           | N_Port Activate Alias_ID (NACT)                   | 85   |
| 4.2.30           | N_Port Deactivate Alias_ID (NDACT)                |      |
| 4.2.31           | Discover N_Port/Service Parameters (PDISC)        |      |
| 4.2.32           | Discover F_Port Service Parameters (FDISC)        | 88   |
| 4.2.33           | Discover Address (ADISC)                          | 89   |
| 4.2.34           | Third Party Process Logout (TPRLO)                | 92   |
| 4.2.35           | Clock Synchronization Request (CSR)               | 94   |
| 4.2.36           | Clock Synchronization Update (CSU)                | 98   |
| 4.2.37           | Report Port Buffer Conditions (RPBC)              | 99   |
| 4.2.38           | Report node FC-4 Types (RNFT)                     | 100  |
| 4.2.39           | Scan Remote Loop (SRL)                            | 100  |
| 4.2.39<br>4.2.40 | Set Bit-error Reporting Parameters (SBRP)         | 102  |
| 4.2.40<br>4.2.41 | Report Port Speed Capabilities (RPSC)             | 104  |
| 4.2.41<br>4.2.42 | Read Exchange Concise (REC)                       | 107  |
| 4.2.42<br>4.2.43 | Exchange Virtual Fabrics Parameters (EVFP)        | 110  |
| 4.2.43<br>4.2.44 |                                                   | 117  |
|                  | Link Keep Alive (LKA)                             |      |
| 4.2.45           | Define FFI Domain Topology Map (FFI_DTM)          | 118  |
| 4.2.46           | Request FFI Domain Topology Map (FFI_RTM)         | 119  |
| 4.2.47           | FFI AE Principal Switch Selector (FFI_PSS)        | 121  |
| 4.2.48           | FFI Map Update Registration (FFI_MUR)             | 122  |
| 4.2.49           | FFI Registered Map Update Notification (FFI_RMUN) | 123  |
| 4.2.50           | FFI Suspend Map Updates (FFI_SMU)                 | 125  |
| 4.2.51           | FFI Resume Map Updates (FFI_RMU)                  | 126  |
| 4.3              | Extended Link Service Reply Sequences             | 127  |
| 4.3.1            | Overview                                          | 127  |
| 4.3.2            | LS_ACC                                            | 127  |
| 4.3.3            | Reply Sequence                                    | 127  |
| 4.3.4            | Link Service Reject (LS_RJT)                      | 127  |
| E                |                                                   | 122  |
| 5                | FC-4 Link Service                                 | 132  |
| 6                | Login and Service Parameters                      | 133  |
| 6.1              | Introduction                                      | 133  |
| 6.2              | Fabric Login                                      | 134  |
| 6.2.1            | Introduction                                      | 134  |
| 6.2.2            | Explicit Fabric Login                             | 134  |
| 6.2.3            | SOFs                                              | 136  |
| 6.2.4            | Frequency                                         | 137  |
| 6.2.5            | Fabric Login completion - Originator              | 137  |
| 6.2.6            | Fabric Login completion - Responder               | 137  |
| 6.3              | N_Port Logic                                      | 137  |
| 6.3.1            | Introduction                                      | 137  |
| 6.3.2            | Explicit N_Port Login                             | 139  |
| 6.3.3            | SOFs                                              | 141  |

ii 8

|                                                                                      |                                                                                                                                                                                                                                          | Page                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 6.3.4<br>6.3.5<br>6.3.6                                                              | Frequency  N_Port Login completion - Originator  N_Port Login completion - Responder                                                                                                                                                     | 142<br>142<br>142                                    |
| 6.4<br>6.4.1<br>6.4.2<br>6.4.3<br>6.4.4<br>6.4.5                                     | Logout                                                                                                                                                                                                                                   | 142<br>142<br>142<br>143<br>143<br>144               |
| 6.5                                                                                  | Extended Login Processing                                                                                                                                                                                                                | 145                                                  |
| 6.6<br>6.6.1<br>6.6.2<br>6.6.3<br>6.6.4<br>6.6.5<br>6.6.6<br>6.6.7<br>6.6.8<br>6.6.9 | Service Parameters  ELS and LS_ACC Payload  Common Service Parameters  Port_Name  Node_ or Fabric_Name  Class Service Parameters  Vendor Version Level  Services Availability  Login Extension  Clock Synchronization Quality of Service | 146<br>148<br>156<br>157<br>157<br>171<br>171<br>172 |
| 7                                                                                    | Process Login/Logout                                                                                                                                                                                                                     | 178                                                  |
| 7.1<br>7.1.1<br>7.1.2<br>7.1.3<br>7.1.4                                              | Process Login                                                                                                                                                                                                                            | 178<br>178<br>180<br>181<br>182                      |
| 7.2                                                                                  | Process Logout                                                                                                                                                                                                                           | 183                                                  |
| 8                                                                                    | Virtual Fabrics N_Port Support                                                                                                                                                                                                           | 184                                                  |
| 8.1                                                                                  | Overview                                                                                                                                                                                                                                 | 184                                                  |
| 8.2                                                                                  | Enabling VFT Tagging on N_Ports                                                                                                                                                                                                          | 184                                                  |
| 8.3                                                                                  | Configuration Information                                                                                                                                                                                                                | 187                                                  |
| 8.4<br>8.4.1<br>8.4.2<br>8.4.3<br>8.4.4                                              | Exchange Virtual Fabrics Parameters Processing  Overview  Changing the VFT Tagging Model  Adding or Removing Virtual Fabrics  Changing the Port VF_ID                                                                                    | 187<br>187<br>190<br>190<br>191                      |
| Tables                                                                               |                                                                                                                                                                                                                                          |                                                      |
| 1                                                                                    | ISO and American Conventions                                                                                                                                                                                                             | 11                                                   |
| 2                                                                                    | Extended Link Services Routing Bits and Information Categories.                                                                                                                                                                          | 17                                                   |
| 3                                                                                    | ELS_Command codes                                                                                                                                                                                                                        | 18                                                   |
| 4                                                                                    | Responses to Received ELSs                                                                                                                                                                                                               | 22                                                   |
| 5                                                                                    | ADVC Payload                                                                                                                                                                                                                             | 24                                                   |
| 6                                                                                    | ADVC LS_ACC Payload                                                                                                                                                                                                                      | 25                                                   |

|    |                               | Page |
|----|-------------------------------|------|
| 7  | ECHO Payload                  | 26   |
| 8  | ECHO LS_ACC Payload           | 27   |
| 9  | ESTC Payload                  | 27   |
| 10 | ESTS Payload                  | 28   |
| 11 | ESTS LS_ACC Payload           | 29   |
| 12 | LOGO Payload                  | 31   |
| 13 | LOGO LS_ACC Payload           | 31   |
| 14 | RCS Payload                   | 32   |
| 15 | RCS LS_ACC Payload            | 32   |
| 16 | Connection Status Codes       | 33   |
| 17 | RLS Payload                   | 34   |
| 18 | RLS LS_ACC Payload            | 35   |
| 19 | RTV Payload                   | 35   |
| 20 | RTV LS_ACC Payload            | 36   |
| 21 | RRQ Payload                   | 37   |
| 22 | RRQ LS_ACC Payload            | 38   |
| 23 | RSI Payload                   | 39   |
| 24 | RSI LS_ACC Payload            | 39   |
| 25 | TEST Payload                  | 40   |
| 26 | FAN Payload                   | 41   |
| 27 | LINIT Payload                 | 42   |
| 28 | Initialization Function       | 42   |
| 29 | LINIT LS_ACC Payload          | 42   |
| 30 | LINIT Status                  | 43   |
| 31 | LSTS Payload                  | 43   |
| 32 | LSTS LS_ACC Payload           | 44   |
| 33 | Loop State                    | 45   |
| 34 | RSCN Payload                  | 47   |
| 35 | Generic affected Port_ID page | 48   |
| 36 | RSCN Event Qualifier values   | 48   |
| 37 | Address Format                | 49   |
| 38 | RSCN LS_ACC Payload           | 49   |
| 39 | SCR Payload                   | 50   |
| 40 | Registration Function         | 50   |
| 41 | SCR LS_ACC Payload            | 50   |

iv

|    |                                                    | Page |
|----|----------------------------------------------------|------|
| 42 | PRLI Payload                                       | 51   |
| 43 | PRLI service parameter page format                 | 52   |
| 44 | PRLI LS_ACC Payload                                | 53   |
| 45 | PRLI LS_ACC service parameter response page format | 54   |
| 46 | PRLI accept response code                          | 55   |
| 47 | PRLO Payload                                       | 56   |
| 48 | PRLO logout parameter page format                  | 57   |
| 49 | PRLO LS_ACC Payload                                | 58   |
| 50 | PRLO LS_ACC logout parameter response page format  | 58   |
| 51 | PRLO accept response code                          | 59   |
| 52 | TPLS Payload                                       | 60   |
| 53 | TPLS image pair ID page format                     | 61   |
| 54 | TPLS LS_ACC Payload                                | 61   |
| 55 | TPLS response page format                          | 62   |
| 56 | TPLS accept response code                          | 63   |
| 57 | RNID Payload                                       | 64   |
| 58 | Node Identification Data Format                    | 64   |
| 59 | RNID Accept Payload                                | 65   |
| 60 | Node Identification Data Format                    | 65   |
| 61 | Common Identification Data                         | 66   |
| 62 | General Topology Specific Identification Data      | 67   |
| 63 | Associated Type                                    | 68   |
| 64 | Multi-function device bit definitions              | 69   |
| 65 | Node Management                                    | 70   |
| 66 | IP Version                                         | 70   |
| 67 | RLIR Payload                                       | 72   |
| 68 | Link Incident Record Format                        | 73   |
| 69 | Common Link Incident Record Data                   | 74   |
| 70 | Time Stamp Format values                           | 75   |
| 71 | Incident Qualifier                                 | 75   |
| 72 | Incident Code values                               | 77   |
| 73 | RLIR LS_ACC Payload                                | 78   |
| 74 | LIRR Payload                                       | 79   |
| 75 | Registration Function                              | 80   |
| 76 | Link Incident Record-Registration Format           | 80   |

|     |                                           | Page |
|-----|-------------------------------------------|------|
| 77  | LIRR LS_ACC Payload                       | 81   |
| 78  | GAID Payload                              | 81   |
| 79  | NP_List Entry Format                      | 82   |
| 80  | Get Alias_ID LS_ACC Payload               | 82   |
| 81  | Fabric Activate Alias_ID Payload          | 83   |
| 82  | Fabric Activate Alias_ID LS_ACC Payload   | 84   |
| 83  | Fabric Deactivate Alias_ID Payload        | 84   |
| 84  | Fabric Deactivate Alias_ID LS_ACC Payload | 85   |
| 85  | N_Port Activate Alias_ID Payload          | 86   |
| 86  | N_Port Activate Alias_ID LS_ACC Payload   | 87   |
| 87  | N_Port Deactivate Alias_ID Payload        | 87   |
| 88  | N_Port Deactivate Alias_ID LS_ACC Payload | 88   |
| 89  | ADISC Request payload                     | 90   |
| 90  | ADISC LS_ACC Payload                      | 91   |
| 91  | Response summary to FDISC/PDISC           | 92   |
| 92  | TPRLO Payload                             | 93   |
| 93  | TPRLO logout parameter page               | 93   |
| 94  | TPRLO LS_ACC Payload                      | 94   |
| 95  | CSR Payload                               | 95   |
| 96  | CSR Clock Sync Mode Meaning               | 95   |
| 97  | CSR LS_ACC Payload                        | 96   |
| 98  | CSU Clock Sync Mode Meaning               | 97   |
| 99  | CSU Payload                               | 98   |
| 100 | Clock Count Field Meaning                 | 98   |
| 101 | RPBC Payload                              | 99   |
| 102 | ELS Buffer Parameters Field               | 100  |
| 103 | RPBC LS_ACC Payload                       | 100  |
| 104 | RNFT Payload                              | 101  |
| 105 | RNFT LS_ACC Payload                       | 101  |
| 106 | RNFT FC-4 Entry                           | 102  |
| 107 | SRL Payload                               | 103  |
| 108 | Flag field definitions                    | 103  |
| 109 | SRL LS_ACC Payload                        | 104  |
| 110 | SBRP Payload                              | 105  |
| 111 | SBRP LS_ACC Payload                       | 106  |

|     | Page                                        |
|-----|---------------------------------------------|
| 112 | RPSC Payload                                |
| 113 | RPSC LS_ACC Payload107                      |
| 114 | REC Payload109                              |
| 115 | REC LS_ACC Payload109                       |
| 116 | EVFP Request Payload110                     |
| 117 | EVFP Message Codes111                       |
| 118 | EVFP Accept Payload111                      |
| 119 | LS_RJT Reason Codes for EVFP112             |
| 120 | EVFP_SYNC Message Payload113                |
| 121 | Descriptor Format113                        |
| 122 | Descriptor Control Codes                    |
| 123 | Descriptor Types114                         |
| 124 | Tagging Administrative Status Descriptor114 |
| 125 | Administrative Tagging Modes115             |
| 126 | Tagging Mode Negotiation115                 |
| 127 | Port VF_ID Descriptor115                    |
| 128 | Locally-Enabled VF_ID List Descriptor116    |
| 129 | Vendor Specific Descriptor116               |
| 130 | LKA Payload117                              |
| 131 | LKA LS_ACC Payload118                       |
| 132 | FFI_DTM Payload119                          |
| 133 | FFI_DTM LS_ACC Payload119                   |
| 134 | FFI_RTM Payload120                          |
| 135 | FFI_RTM LS_ACC Payload120                   |
| 136 | FFI_PSS Payload121                          |
| 137 | FFI_PSS LS_ACC Payload122                   |
| 138 | FFI_MUR Payload122                          |
| 139 | Registration Function                       |
| 140 | FFI_MUR LS_ACC Payload123                   |
| 141 | FFI_RMUN Payload124                         |
| 142 | FFI_SMU Payload125                          |
| 143 | FFI_SMU LS_ACC Payload125                   |
| 144 | FFI_RMU Payload126                          |
| 145 | FFI_RMU LS_ACC Payload126                   |
| 146 | LS_RJT Reason Codes                         |

|     |                                                                 | Page |
|-----|-----------------------------------------------------------------|------|
| 147 | LS_RJT Reason Code Explanations                                 | 129  |
| 148 | Effects of FLOGI, FDISC, & LOGO on Permanent Port Name (PPN)    | 144  |
| 149 | FLOGI, PLOGI or LS_ACC Payload                                  | 147  |
| 150 | Common Service Parameter applicability                          | 148  |
| 151 | Common Service Parameters - FLOGI                               | 150  |
| 152 | Common Service Parameters - PLOGI and PLOGI LS_ACC              | 151  |
| 153 | Common Service Parameters - FLOGI LS_ACC                        | 151  |
| 154 | Clock Synchronization Applicability                             | 154  |
| 155 | Class Service Parameters Applicability                          | 157  |
| 156 | Class Service Parameters - FLOGI                                | 160  |
| 157 | Class Service Parameters - PLOGI and PLOGI LS_ACC               | 160  |
| 158 | Class Service Parameters - FLOGI LS_ACC                         | 160  |
| 159 | Intermix Mode Support                                           | 161  |
| 160 | Stacked Connect-request support Login Bits                      | 162  |
| 161 | Sequential delivery support                                     | 162  |
| 162 | Fabric Login Priority and Preemption Support                    | 163  |
| 163 | Class 2 and 3 Preference Bit Function                           | 164  |
| 164 | Relationship between Preferred delivery and sequential delivery | 164  |
| 165 | DiffServ QoS bit definition                                     | 165  |
| 166 | Initial Process_Associator Bits Definition                      | 166  |
| 167 | ACK_0 Support Conditions (Initiator Control)                    | 167  |
| 168 | ACK_0 Support Conditions (Recipient Control)                    | 168  |
| 169 | Error Policy Bits Definition                                    | 169  |
| 170 | Categories per Sequence Bits Definition                         | 169  |
| 171 | Login Extension Page format                                     | 173  |
| 172 | Page Code Definitions                                           | 173  |
| 173 | Vendor Specific Page format                                     | 173  |
| 174 | N_Port Clock Synchronization QoS                                | 174  |
| 175 | FLOGI/PLOGI CS_QoS_Request                                      | 174  |
| 176 | Fx_Port Clock Synchronization QoS                               | 176  |
| 177 | Virtual Fabrics Bit Usage                                       | 184  |

viii 14

## ISO/IEC JTC 1/SC 25 N 1611: 2008-11-27

|         |                                  | Page |
|---------|----------------------------------|------|
| Figures |                                  |      |
| 1       | State Machine Example            | 12   |
| 2       | Illustration of parameters       | 104  |
| 3       | LS_RJT format                    | 128  |
| 4       | Image/Group of Related Processes | 178  |
| 5       | Image pairs                      | 179  |
| 6       | Logical N_Port Initialization    | 185  |
| 7       | A Generic EVFP Transaction       | 188  |

Foreword (This foreword is not part of American National Standard ANSI INCITS 433-2007.)

The Fibre Channel Link Services (FC-LS) standard describes in detail the Fibre Channel Link Services introduced in FC-FS-2. In addition, this document describes any ancillary functions and services required to support the Fibre Channel Link Services.

This standard was developed by the INCITS Fibre Channel T11 Technical Committee (FC-TC) of Accredited Standards Committee INCITS during 2003-2006. The standard's approval process started in 2006. This document includes annexes that are informative and are not considered part of the standard.

Requests for interpretation, suggestions for improvements or addenda, or defect reports are welcome. They should be sent to the INCITS Secretariat, Information Technology Industry Council, 1250 Eye Street, NW, Suite 200, Washington, DC 20005-3922.

This standard was processed and approved for submittal to ANSI by the International Committee for Information Technology Standards (INCITS). Committee approval of the standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, INCITS had the following members:

Karen Higginbottom, Chair Jennifer Garner, Secretary

| Organization Represented AIM Global          | Name of Representative Dan Mullen Charles Biss (Alt.)            |
|----------------------------------------------|------------------------------------------------------------------|
| Apple Computer, Inc                          | David Michael                                                    |
| EMC CorporationFarance, Inc.                 | Gary Robinson ` ´                                                |
| GS1 US                                       |                                                                  |
| Hewlett-Packard Company                      | Karen Higginbottom<br>Steve Mills (Alt.)<br>Scott Jameson (Alt.) |
| IBM Corporation                              |                                                                  |
| IEEE                                         |                                                                  |
| Intel                                        |                                                                  |
| Lexmark International                        |                                                                  |
| Microsoft Corporation                        |                                                                  |
| National Institute of Standards & Technology |                                                                  |

### Introduction

FC-LS is one of the Fibre Channel family of standards. This family includes ANSI INCITS 373-2003, FC-FS, which specifies the Framing and Signalling Interface. ANSI INCITS 418-2006, FC-SW-4, is related to Fabric requirements. ANSI INCITS 332:1999, FC-AL-2, specifies the arbitrated loop topology.

FC-LS defines requests and replies that comprise the set of Fibre Channel Extended Link Services (ELSs).

# American National Standard for Information Technology —

# Fibre Channel — Link Services (FC-LS)

#### 1 Scope

FC-LS describes in detail the Fibre Channel Extended Link Services.

#### 2 Normative References

#### 2.1 Overview

The following standards contain provisions that, through reference in the text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below.

For electronic copies of some standards, visit ANSI's Electronic Standards Store (ESS) at www.ansi.org. For printed versions of all standards listed here, contact Global Engineering Documents, 15 Inverness Way East, Englewood, CO; 80112-5704, (800) 854-7179.

Additional availability contact information is provided below as needed.

#### 2.2 Approved references

ANSI INCITS 332-1999, Fibre Channel-Arbitrated Loop-2 (FC-AL-2)

ANSI INCITS 332-1999/AM1-2003, Fibre Channel-Arbitrated Loop-2 (FC-AL-2) Amendment 1

ANSI INCITS 373-2003, Fibre Channel - Framing and Signaling (FC-FS)

ANSI INCITS 387-2004, Fibre Channel - Generic Services - 4 (FC-GS-4)

ANSI INCITS 384-2004, Fibre Channel - Switch Fabric - 3 (FC-SW-3)

ANSI INCITS 374-2003, Fibre Channel - Single Byte Command Set - 3 (FC-SB-3)

#### 2.3 References under development

At the time of publication, the following referenced standards were still under development. For information on the current status of the documents, or regarding availability, contact the relevant standards body or other organization as indicated.

ANSI INCITS Project 1619-D, Fibre Channel - Framing and Signaling (FC-FS-2)

**ANSI INCITS 433-2007** 

ANSI INCITS Project 1677-D, Fibre Channel Generic Services 5 (FC-GS-5)

ANSI INCITS Project 1674-D, Fibre Channel - Switch Fabric - 4 (FC-SW-4)

ANSI INCITS Project 1560-D, Fibre Channel - Protocol - 3 (FCP-3)

#### 2.4 Other references

IETF Request for Comments (RFCs) may be obtained directly from the IETF web site at ht-tp://www.ietf.org/rfc.html:

RFC 768, User Datagram Protocol, August1980.

RFC 791, Internet Protocol, September 1981.

RFC 793, Transmission Control Protocol, September 1981.

RFC 854, Telnet Protocol Specification, May 1983.

RFC 1157, A Simple Network Management Protocol (SNMP), May 1990.

RFC 1901, Introduction to Community-based SNMPv2, January 1996

RFC 2373, IP Version 6 Addressing Architecture, July 1998.

RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, December 1998.

RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, June 1999.

RFC 2818, HTTP Over TLS, May 2000.

RFC 4338, Transmission of IPv6, IPv4, and Address Resolution Protocol (ARP) Packets over Fibre Channel, January 2006.

#### 3 Definitions and conventions

#### 3.1 Overview

For FC-LS, the following definitions, conventions, abbreviations, acronyms, and symbols apply.

#### 3.2 Definitions

- **3.2.1** acknowledged class: Any class of service that acknowledges a transfer.
- **3.2.2** address identifier: An address value used to identify source (S\_ID) or destination (D\_ID) of a frame (see FC-FS-2).
- **3.2.3 AE Principal Switch:** An AE Switch has no Uplinks and assumes the primary role of distributing the Domain Topology Map in an Avionics Fabric (see FC-SW-4).
- **3.2.4 AE Secondary Principal Switch:** An AE Switch that is capable of becoming the AE Principal Switch (see FC-SW-4).
- **3.2.5 AE Switch:** An AE-Capable Switch that has activated at least one AE\_Port. AE Switches are required to implement the requirements defined for Fast Fabric Intialization in FC-SW-4.
- **3.2.6** Alias\_ID: An address identifier recognized by one or more Nx\_Ports or the Alias Server, if the Nx\_Port has registered with the Alias Server as a member of a group. An Alias\_ID may be common to multiple Nx\_Ports (see FC-FS-2).
- **3.2.7** Alias\_Token: A 12-byte field to indicate the type of Alias\_ID and certain properties associated with the Alias ID (see FC-GS-5).
- **3.2.8 Arbitrated Loop topology:** A Fibre Channel topology where L\_Ports use arbitration to gain access to the loop (see FC-AL-2).
- 3.2.9 Association Header: See FC-FS-2.
- **3.2.10** Avionics Fabric: A Fibre Channel Fabric that contains at least one AE Switch and supports all the requirements defined for Fast Fabric Intialization in FC-SW-4.
- **3.2.11 buffer-to-buffer credit (BB\_Credit):** The limiting value for BB\_Credit\_CNT in the buffer-to-buffer flow control model (see FC-FS-2).
- **3.2.12 buffer-to-buffer Credit\_Count (BB\_Credit\_CNT):** A counter used in the buffer-to-buffer flow control model (see FC-FS-2).
- **3.2.13 B\_Port:** A bridge port is a Fabric inter-element port used to connect bridge devices with E\_Ports on a switch. The B\_Port provides a subset of the E\_Port functionality (see FC-SW-3.).
- **3.2.14 buffer:** A logical construct that holds a single frame.
- **3.2.15 circuit:** A bi-directional path within the Fabric.
- **3.2.16 class of service:** Type of frame delivery service used by the communicating Nx\_Ports that may also be supported through a Fabric (see FC-FS-2).

- **3.2.17 Class 1 service:** A service that establishes a dedicated connection between two communicating Nx Ports (see FC-FS-2).
- **3.2.18 Class 2 service:** A service that multiplexes frames at frame boundaries to or from one or more Nx\_Ports with acknowledgement provided (see FC-FS-2).
- **3.2.19 Class 3 service:** A service that multiplexes frames at frame boundaries to or from one or more Nx\_Ports without acknowledgement (see FC-FS-2).
- **3.2.20 Class 6 service:** A service that allows an Nx\_Port to establish simultaneous dedicated connections with multiple Nx\_Ports (see FC-FS-2).
- **3.2.21 Class F service:** A service that multiplexes frames at frame boundaries with acknowledgement provided. The service is used for control and coordination of the internal behavior of the Fabric (see FC-SW-3).
- **3.2.22 Class N service:** A class of service other than Class F (see FC-SW-3).
- **3.2.23 Common Controlling Entity:** The entity that controls and manages the resources for a Hunt Group (see FC-FS-2).
- **3.2.24 concatenation:** A logical operation that "joins together" strings of data and is represented with the symbol "||". Two or more fields are concatenated to provide a reference of uniqueness (e.g., S\_ID||X\_ID).
- **3.2.25 Connection Initiator:** The Nx\_Port that initiates a Class 1 or 6 Connection with a destination Nx\_Port through a connect-request and also receives a valid response from the destination Nx\_Port to complete the Connection establishment (see FC-FS-2).
- **3.2.26 Connection Recipient:** The destination Nx\_Port that receives a Class 1 or 6 connect-request from the Connection Initiator and accepts establishment of the Connection by transmitting a valid response (see FC-FS-2).
- **3.2.27 connectionless buffers:** Receive buffers participating in connectionless service and capable of receiving connectionless frames (see FC-FS-2).
- **3.2.28 connectionless frames:** Frames participating in connectionless service (i.e., Class 1 or Class 6 frames with SOFc1, Class 2, and Class 3 frames referred to individually or collectively) (see FC-FS-2).
- **3.2.29 connectionless service:** Communication between two Nx\_Ports performed without a dedicated connection.
- **3.2.30 continuously increasing relative offset:** The condition of operation that requires frames ordered by SEQ\_CNT within a Sequence to have a larger relative offset value in each frame (see FC-FS-2).
- **3.2.31 Core N\_Port\_Name:** An N\_Port\_Name associated with the Physical N\_Port of a VFT Tagging N\_Port, and not with any other FC\_Port within the scope of its Name\_Identifier format (see FC-FS-2).
- **3.2.32 Core Switch\_Name:** In a Virtual Fabric capable Switch, the Switch\_Name identifying the physical Switch (see FC-SW-4).

- **3.2.33** Credit: The maximum number of buffers available at a recipient to receive frames from a transmitting FC Port (see FC-FS-2).
- **3.2.34** data block: An ordered string of application data contained in a single Information Category.
- **3.2.35** data frame: An FC-4 Device\_Data frame, an FC-4 Video\_Data frame, or a Link\_Data frame (see FC-FS-2).
- **3.2.36 dedicated connection:** A communicating circuit guaranteed and retained by the Fabric for two given Nx Ports for a Class 1 or Class 6 connection.
- **3.2.37 Destination\_Identifier (D\_ID):** The address identifier used to indicate the targeted destination Nx\_Port of the transmitted frame (see FC-FS-2).
- **3.2.38 destination Nx\_Port:** The Nx\_Port designated by the Destination\_Identifier of a frame..
- **3.2.39 discard policy:** An error handling policy where a Sequence Recipient is able to discard Data frames received following detection of a missing frame in a Sequence (see FC-FS-2).
- **3.2.40 Domain Controller:** The entity that controls activity within a given domain. Each Domain Controller is allocated an address (see FC-SW-3.).
- **3.2.41 Domain\_ID:** The highest or most significant hierarchical level in the three-level addressing hierarchy (i.e., the most significant byte of the address identifier) (see FC-FS-2 and FC-SW-3).
- **3.2.42 Domain Topology Map:** An entity within the Avionics Fabric that unambiguously describes the Domain\_IDs and all of the Inter-Switch Links of the Avionics Fabric. The Domain\_IDs and all of the Inter-Switch Links shall remain unchanged for the duration of a mission (see FC-SW-4).
- **3.2.43 end-to-end Credit (EE\_Credit):** The limiting value for EE\_Credit\_CNT in the end-to-end flow control model (see FC-FS-2).
- **3.2.44** end-to-end Credit\_Count (EE\_Credit\_CNT): A counter used in the end-to-end flow control model (see FC-FS-2).
- **3.2.45 E\_Port:** A Fabric expansion port that connects to another E\_Port or B\_Port to create an Inter-Switch Link (see FC-SW-3).
- **3.2.46** Exchange: The unit of protocol activity that transfers information between a specific Originator Nx\_Port and specific Responder Nx\_Port using one or more related non-concurrent Sequences that may flow in the same or opposite directions. The Exchange is identified by an OX ID and a RX ID (see FC-FS-2).
- **3.2.47** Exchange\_Identifier (X\_ID): A collective reference to OX\_ID and RX\_ID (see FC-FS-2).
- **3.2.48 Exchange Status Block:** A logical construct that contains the status of an Exchange. An Originator Nx\_Port has an Originator Exchange Status Block and the Responder Nx\_Port has a Responder Exchange Status Block for each active Exchange (see FC-FS-2).
- **3.2.49 exclusive connection:** A Class 1 or Class 6 dedicated connection without Intermix (see FC-FS-2).

- **3.2.50 F\_Port:** The LCF within the Fabric that attaches to an N\_Port through a link. An F\_Port is addressable by the N\_Port attached to it, with a common well-known address identifier (FFFFEh) (see FC-FS-2).
- **3.2.51 Fabric:** The entity that interconnects Nx\_Ports attached to it and is capable of routing frames by using the D\_ID information in a FC-2 frame header (see FC-FS-2).
- **3.2.52 Fabric Controller:** The logical entity responsible for operation of the Fabric identified by the well-known address FFFFDh (see FC-SW-4).
- **3.2.53 F\_Port Controller:** The entity at the well-known address FFFFFEh (see FC-SW-4).
- **3.2.54** Fabric\_Name: A Name\_Identifier associated with a Fabric (see FC-FS-2).
- **3.2.55** Fast Fabric Initialization (FFI): A technique that provides accelerated initialization of an Avionics Fabric through the distribution of the Domain Topology Map. The Domain Topology Map is distributed to all AE Switches via the AE Principal Switch using the FFI request Sequence (see FC-SW-4).
- **3.2.56 FC-4 TYPE**: An FC-4 protocol associated with the value in the Type field in the header of a data frame (see FC-FS-2).
- **3.2.57 FC\_Port:** A port that is capable of transmitting or receiving Fibre Channel frames according to the requirements defined in this standard. FC\_Ports include N\_Ports, NL\_Ports, Nx\_Ports, L Ports, FL Ports, Fx Ports, E Ports, and B Ports.
- **3.2.58 FFI Link State Record:** For an individual AE Switch, a description of the Domain and all the AE Port Inter-Switch Link connections of that Switch (see FC-SW-4).
- **3.2.59 FFI SW\_ILS**: An AE specific SW\_ILS command that distributes the Domain Topology Map throughout the Avionics Fabric or for reporting changes in link status and error conditions (see FC-SW-4).
- **3.2.60** Fibre Channel interaction space: The set of Fibre Channel ports, devices, and Fabrics that are connected by Fibre Channel links or are accessible by a common instance of an administrative tool or tools.
- **3.2.61 FL\_Port:** An F\_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see FC-AL-2).
- **3.2.62** frame: An indivisible unit of information used by FC-2 (see FC-FS-2).
- **3.2.63 F\_Port\_Name:** A Name\_Identifier associated with an F\_Port (see FC-FS-2).
- **3.2.64 Fx\_Port:** A switch port capable of operating as an F\_Port or FL\_Port (see FC-AL-2).
- **3.2.65 Hunt Group:** A set of Nx\_Ports with a common Alias\_ID managed by a Common Controlling Entity. The management and initialization of Hunt Groups is outside the scope of this standard (see FC-FS-2).
- **3.2.66 Hypertext Transfer Protocol:** A protocol for communicating various formats of text with embedded links and display controls (see RFC 2616).

- **3.2.67 Infinite buffer:** A terminology to indicate that at FC-2 level, the amount of buffer available at the Sequence Recipient is unlimited.
- **3.2.68** Information Category: The category to which the frame Payload belongs (e.g., Solicited Data, Unsolicited Data, Solicited Control and Unsolicited Control). Information category is indicated by the INFORMATION field in the frame header if the value of the ROUTING field in the frame header is 0000b (Device\_Data), 0010b (Extended Link Services), 0011b (FC-4 Link\_Data), 0100b (Video\_Data), or 1111b (Extended Routing) (see FC-FS-2).
- **3.2.69 Information Unit:** An organized collection of data specified by an upper level to be transferred as a single Sequence by FC-2.
- **3.2.70 initial relative offset:** A relative offset value specified at the sending end by an upper level for a given data block and used by the sending FC-2 in the first frame of that data block (see data block, and relative offset). Initial relative offset value may be zero or non-zero (see FC-FS-2).
- **3.2.71 Intermix:** A service that interleaves Class 2 and Class 3 frames on an established Class 1 or Class 6 Connection (see FC-FS-2).
- **3.2.72 Internet Protocol:** A protocol for communicating data packets between identified endpoints on a multipoint network. It is in wide use in versions 4 and 6. (see RFC 791, RFC 2373, and RFC 2460).
- **3.2.73 IP Address:** An identifier of an endpoint in Internet Protocol.
- **3.2.74 link:** Two unidirectional fibres transmitting in opposite directions and their associated transmitters and receivers.
- **3.2.75** Link Control Facility (LCF): A hardware facility that attaches to an end of a link and manages transmission and reception of data. It is contained within each FC\_Port (see FC-FS-2).
- **3.2.76 local Fx\_Port:** The Fx\_Port to which an Nx\_Port is directly attached by a link or an Arbitrated Loop (see remote Fx\_Port).
- **3.2.77 Logical F\_Port:** In a VFT Tagging F\_Port, the part of the Link Control Facility that processes frames for one Virtual Fabric.
- **3.2.78 Logical N\_Port:** In a VFT Tagging N\_Port, the part of the Link Control Facility that processes frames for one Virtual Fabric, and has one or more N\_Port\_IDs in that Virtual Fabric (see FC-FS-2).
- **3.2.79** Loop Fabric Address (LFA): An address identifier used to address an FL\_Port for the purpose of loop management (see FC-SW-4).
- 3.2.80 Loss-of-signal: See FC-FS-2.
- **3.2.81** L\_Port: A port that contains Arbitrated Loop functions associated with Arbitrated Loop topology (see FC-AL-2).
- **3.2.82 Multi-function device:** A device that provides more than one function.
- **3.2.83 Name\_Identifier:** A 64-bit identifier, with a 60-bit value preceded by a 4-bit Network\_Address\_Authority Identifier, used to identify entities in Fibre Channel (e.g., Nx\_Port, node, F\_Port, or Fabric) (see FC-FS-2).

- **3.2.84** NAS server: A device that connects to a network and provides file access services.
- **3.2.85 Network\_Address\_Authority (NAA):** An organization such as IEEE that administers network addresses (see FC-FS-2).
- **3.2.86** Network\_Address\_Authority (NAA) identifier: A four-bit identifier defined to indicate a Network\_Address\_Authority (NAA) (see FC-FS-2).
- **3.2.87 NL\_Port:** An N\_Port that contains the Loop Port State Machine defined in [], FC-AL-2. It may be attached via a link to one or more NL\_Ports and zero or more FL\_Ports in an Arbitrated Loop topology. Without the qualifier "Public" or "Private," an NL\_Port is assumed to be a Public NL\_Port.
- **3.2.88** node: A collection of one or more Nx\_Ports controlled by a level above FC-2 (see FC-FS-2).
- **3.2.89** Node\_Name: A Name\_Identifier associated with a node (see FC-FS-2).
- **3.2.90** N\_Port: A hardware entity that includes a LCF but not Arbitrated Loop functions associated with Arbitrated Loop topology, and has the ability to act as an Originator, a Responder, or both. Well-known addresses are considered to be N\_Ports (see FC-AL-2 and FC-FS-2).
- **3.2.91** N\_Port\_ID: A topology (see FC-FS-2) unique address identifier of an Nx\_Port. The identifier may be assigned by the Fabric during the initialization procedure or by other procedures not defined in this standard. The identifier is used in the S\_ID and D\_ID fields of a frame (see FC-FS-2).
- **3.2.92** N Port Name: A Name Identifier associated with an Nx Port (see FC-FS-2).
- **3.2.93** Nx\_Port: A port capable of operating as an N\_Port or Public NL\_Port, but not as a Private NL\_Port. By use of the term Nx\_Port, this standard neither specifies nor constrains the behavior of Private NL\_Ports (see FC-AL-2).
- **3.2.94 open:** The period of time starting when a Sequence or an Exchange is initiated until that Sequence or Exchange is normally terminated (see FC-FS-2).
- **3.2.95 Originator:** The logical function associated with an Nx\_Port responsible for originating an Exchange.
- **3.2.96 Originator Exchange\_ID (OX\_ID):** An identifier assigned by an Originator to identify an Exchange (see FC-FS-2).
- **3.2.97 Payload:** Contents of the Data Field of a frame, excluding Optional Headers and fill bytes, if present (see FC-FS-2).
- **3.2.98 Permanent Port Name:** The Permanent Port Name is the Name\_Identifier associated with a physical Nx\_Port (see FC-GS-5).
- **3.2.99 Policy:** The rule used to determine how frames not received are handled during error recovery (see FC-FS-2).
- **3.2.100 Port VF\_ID:** A configurable VF\_ID that is associated with any untagged frame received by a VF capable N\_Port or F\_Port (see FC-FS-2).
- **3.2.101** Private NL\_Port: An NL\_Port that does not attempt a Fabric Login and does not transmit OPN(00,x) (see FC-AL-2).

- **3.2.102 Process\_Associator:** A value used in the Association\_Header to identify a process or a group of processes within a node. Process\_Associator is the mechanism a process uses to address another communicating process. Process\_Associator is a generic reference to Originator Process\_Associator and Responder Process\_Associator (see FC-FS-2).
- **3.2.103** Public NL\_Port: An NL\_Port that attempts a Fabric Login (see FC-AL-2).
- **3.2.104 random relative offset:** The relationship specified between relative offset values contained in frame (n) and frame (n+1) of an Information Category within a single Sequence. For a given Information Category I within a single Sequence, initial relative offset (ROI) value for a frame (n+1) is unrelated to that of the previous frame (n) (see FC-FS-2).
- **3.2.105 relative offset:** The displacement, expressed in bytes, of the first byte of a Payload related to an upper level defined origin for a given Information Category (see continuously increasing relative offset, random relative offset and)(see FC-FS-2).
- **3.2.106 relative offset space:** A virtual address space defined by the sending upper level for a set of information carried in one or more information units.
- **3.2.107** remote Fx\_Port: Relative to an Nx\_Port that is communicating through a Fabric to a remote Nx\_Port, the Fx\_Port to which the remote Nx\_Port is directly attached (see local Fx\_Port).
- **3.2.108 Responder:** The logical function in an Nx\_Port responsible for supporting the Exchange initiated by the Originator in another Nx\_Port.
- **3.2.109** Responder Exchange\_ID (RX\_ID): An identifier assigned by a Responder to identify an Exchange and meaningful only to the Responder.
- **3.2.110 Secured Hypertext Transfer Protocol:** A protocol for communicating various formats of text with embedded links and display controls used in combination with a subordinate protocol that provides security features (see RFC 2818).
- **3.2.111 Sequence:** A set of one or more Data frames with a common Sequence\_ID (SEQ\_ID), transmitted unidirectionally from one Nx\_Port to another Nx\_Port with a corresponding response, if applicable, transmitted in response to each Data frame (see FC-FS-2).
- **3.2.112** Sequence\_ID (SEQ\_ID): An identifier used to identify a Sequence (see FC-FS-2).
- **3.2.113 Sequence Initiator:** The Nx\_Port that initiates a Sequence and transmits Data frames to the destination Nx\_Port (see FC-FS-2).
- **3.2.114** Sequence Recipient: The Nx\_Port that receives Data frames from the Sequence Initiator and, if applicable, transmits responses (i.e., Link\_Control frames) to the Sequence Initiator (see FC-FS-2).
- **3.2.115 Sequence Status Block:** A logical construct that tracks the status of a Sequence. Both the Sequence Initiator and the Sequence Recipient have a Sequence Status Block for each concurrently active Sequence (see FC-FS-2).
- **3.2.116 Simple Network Management Protocol:** A protocol for communicating simply structured management information. It is in wide use in versions 1 and 2. (see RFC 1157, RFC 1901).
- **3.2.117 Source\_Identifier (S\_ID):** The address identifier used to indicate the source Nx\_Port of the transmitted frame (see FC-FS-2).

- **3.2.118 source Nx\_Port:** The Nx\_Port where a frame is originated.
- **3.2.119 Storage access device:** A device that provides storage management and access for heterogeneous hosts and heterogeneous devices (e.g., a medium changer device).
- **3.2.120 Storage subsystem:** An integrated collection of storage controllers, storage devices, and necessary software, that provides storage services to one or more hosts.
- **3.2.121 streamed Sequence:** A new sequence initiated by a Sequence Initiator in any class of service for an Exchange while it already has Sequences Open for that Exchange (see FC-FS-2).
- **3.2.122** T10 Vendor ID: A character string that uniquely identifies a vendor. See 3.7.
- 3.2.123 TCP Port Number: An identifier of a destination in Transmission Control Protocol.
- **3.2.124 Telnet:** A protocol for communicating control of a character-oriented terminal over Transmission Control Protocol (see RFC 854).
- **3.2.125** Transmission Control Protocol: A protocol communicating reliable flow-controlled byte streams over Internet Protocol allowing independent concurrent streams to multiple destinations at any IP Address (see RFC 793).
- **3.2.126 UDP Port Number:** An identifier of a destination in User Datagram Protocol.
- **3.2.127** Upper Level: A level above FC-2.
- **3.2.128** Upper Level Protocol (ULP): The protocol user of FC-4 (see FC-FS-2).
- **3.2.129 User Datagram Protocol:** A protocol communicating a packet stream with no incremental reliability over Internet Protocol allowing multiple independent concurrent destinations at any IP Address (see RFC 768).
- **3.2.130 VFT Tagging F\_Port:** An F\_Port that has enabled processing of Virtual Fabric Tagging Headers.
- **3.2.131 VFT Tagging N\_Port:** An N\_Port that has enabled processing of Virtual Fabric Tagging Headers (see FC-FS-2).
- 3.2.132 Virtual Fabric Tagging Header (VFT Header): See FC-FS-2.
- **3.2.133 Virtualization device:** A device that integrates one or more entities (either logical or physical), along with any additional functionality, for the purpose of providing a useful abstraction (e.g., a SCSI logical unit virtualization device).
- **3.2.134** Wavelength division multiplexer: A device that modulates/demodulates each of several data streams (e.g., Fibre Channel protocol data streams) to/from a different part of the light spectrum in an optical fiber.
- **3.2.135 Well-known addresses:** Those address identifiers explicitly defined in this standard or other standards to access services (e.g. name server).
- **3.2.136** word: A string of four contiguous bytes occurring on boundaries that are zero modulo 4 from a specified reference.

**3.2.137** Worldwide Name: A Name Identifier that is worldwide unique (see FC-FS-2).

#### 3.3 Editorial Conventions

In this standard, a number of conditions, mechanisms, sequences, parameters, events, states or other terms are printed with the first letter of each word in uppercase and the rest lowercase. This indicates that they have a special meaning in the context of this standard. The meaning is either described in the relevant text, in the glossary of this standard, or in a referenced standard (e.g., Exchange and Class). Any use of these terms in lowercase indicates that the words have the normal technical English meanings.

Lists sequenced by letters (e.g., a-red, b-blue, c-green) show no priority relationship between the listed items. Numbered lists (e.g., 1-red, 2-blue, 3-green) show a priority ordering between the listed items.

The ISO convention of numbering is used (i.e., the thousands and higher multiples are separated by a space and a comma is used as the decimal point.) A comparison of the American and ISO conventions are shown in table 1.

| ISO         | American    |
|-------------|-------------|
| 0,6         | 0.6         |
| 1 000       | 1,000       |
| 1 323 462,9 | 1,323,462.9 |

Table 1 - ISO and American Conventions

In case of any conflict between figure, table, and text, the text, then tables, and finally figures take precedence. Exceptions to this convention are indicated in the appropriate sections.

In all of the figures, tables, and text of this document, the most significant bit of a binary quantity is shown on the left side. Exceptions to this convention are indicated in the appropriate sections.

If a field or a control bit in a frame is specified as reserved, the entity that sends the frame shall set the field or control bit to zero, and the entity that receives the frame shall not check that field or control bit.

When the value of the bit or field is not relevant, x or xx appears in place of a specific value.

Unless stated otherwise: numbers that are not immediately followed by lower-case b or h are decimal values; numbers immediately followed by lower-case b (xxb) are binary values; and numbers or upper case letters immediately followed by lower-case h (xxh) are hexadecimal values.

#### 3.4 State Machine notation

State machines in this standard should use the style shown in figure 1.

These state machines make three assumptions:

a) Time elapses only within discrete states.



Figure 1 – State Machine Example

- b) State transitions are logically instantaneous, so the only actions taken during a transition are setting flags and variables and sending signals. These actions complete before the next state is entered.
- c) Every time a state is entered, the actions of that state are started. Note that this means that a transition that points back to the same state repeats the actions from the beginning. All the actions started upon entry complete before any tests are made to exit the state.
- d) When Virtual Fabrics are used there is a different state for each Virtual Fabric negotiated to be used on a link. The state Px for Virtual Fabric K is denoted Px(k).

#### 3.5 Abbreviations and acronyms

Abbreviations and acronyms applicable to this standard are listed. Definitions of several of these items are included in 3.2.

ABTS Abort Sequence
ACK Acknowledgement
ADVC Advise Credit

**AE** Avionics Environment

AL\_PA Arbitrated Loop Physical Address

BA\_ACC Basic Accept

**BB\_Credit** buffer-to-buffer Credit

**BB\_Credit\_CNT** buffer-to-buffer Credit\_Count

BB\_SCs buffer-to-buffer State Change (SOF)
BB\_SCr buffer-to-buffer State Change (R\_RDY)
BB\_SC\_N buffer-to-buffer State Change Number

**BSY** busy

Credit\_CNT Credit\_Count

**CR\_TOV** Connection Request\_Timeout value

DF\_CTL Data\_Field Control D\_ID Destination\_Identifier

DSCP Differentiated Services Code Point E D TOV Error Detect Timeout value

EE\_Credit end-to-end Credit
EE\_Credit\_CNT end-to-end Credit\_Count
ELS Extended Link Service

**ELS\_Command** Extended Link Service Command

**EOFdt** End-of-Frame Disconnect Terminate (see FC-FS-2)

**EOFt** End-of-Frame Terminate (see FC-FS-2)

ESB Exchange Status Block
ESTC Estimate Credit
ESTS Establish Streaming
FACT Fabric Activate Alias
F\_BSY Fabric\_Port\_Busy

**F\_BSY(DF)** F\_BSY response to a Data frame

F BSY(LC) F BSY response to any Link Control except P BSY

FC Fibre Channel

FC-2 FC-2 level (see FC-FS-2)
FC-4 FC-4 level (see FC-FS-2)
FCS Frame Check Sequence
F\_CTL Frame Control (see FC-FS-2)
FDACT Fabric Deactivate Alias
FFI Fast Fabric Initialization

FLOGI Fabric Login
F\_RJT Fabric Reject
GAID Get Alias\_ID
HBA Host Bus Adapter
hex hexadecimal notation
HG\_ID Hunt Group Identifier
HTTP Hypertext Transfer Protocol

HTTPS Secured Hypertext Transfer Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol
LCF Link Control Facility
LCR Link Credit Reset

LESB Link Error Status Block (see FC-FS-2)
LFA Loop Fabric Address (see FC-AL-2)

LILP Loop Initialization Loop Position (see FC-AL-2)
LIP Loop Initialization Primitive (see FC-AL-2)
LISA Loop Initialization Soft Assigned (see FC-AL-2)

**LOGO** Logout

Link Reset Primitive Sequence (see FC-FS-2)

**LRR** Link Reset Response Primitive Sequence (see FC-FS-2)

LS\_ACC Link Service Accept

m Metre
MB MegaByte
ms millisecond
μs microsecond
N/A not applicable

NAA Network\_Address\_Authority
NACT N\_Port Activate Alias
NAS Network Attached Storage
NDACT N\_Port Deactivate Alias

NOP No Operation

**NOS** Not Operational Primitive Sequence (see FC-FS-2)

#### **ANSI INCITS 433-2007**

**ns** nanosecond

**OLS** Offline Primitive Sequence (see FC-FS-2)

OX\_ID Originator Exchange\_ID

**P\_BSY** N\_Port\_Busy

**PDISC** Discover N\_Port Service Parameters

PLOGI N\_Port Login
P\_RJT N\_Port\_Reject
PRLI Process Login
PRLO Process Logout

**R A TOV** Resource Allocation Timeout value (see FC-FS-2)

RCS Read Connection Status

**R\_CTL** Routing Control

**RJT** reject

RMC Remove Connection
RNC Report node Capability

RO relative offset R\_RDY Receiver\_Ready

**R\_T\_TOV** Receiver\_Transmitter\_Timeout value

RTV Read Timeout Value
RX ID Responder Exchange ID

**s** second

SBCCS Single Byte Command Code Sets
SCR State Change Registration

SEQ\_CNT Sequence Count
SEQ\_ID Sequence ID

S\_ID Sequence\_ID

S\_ID Source\_Identifier

**SNMP** Simple Network Management Protocol

SOF Start-of-Frame (see FC-FS-2)
SSB Sequence Status Block

TCP Transmission Control Protocol
TPLS Test Process Login Status

TYPE Data structure type
UDP User Datagram Protocol
ULP Upper Level Protocol
WWN Worldwide\_Name
X\_ID Exchange\_Identifier

#### 3.6 Symbols

Unless indicated otherwise, the following symbols have the listed meaning.

|| concatenation

m micro (e.g.,  $\mu$ m = micrometer)

L >> Received from Link

#### 3.7 Keywords

**3.7.1 expected:** A keyword used to describe the behavior of the hardware or software in the design models assumed by this standard. Other hardware and software design models may also be implemented.

- **3.7.2 ignored:** A keyword used to describe an unused bit, byte, word, field or code value. The contents or value of an ignored bit, byte, word, field or code value shall not be examined by the receiving device and may be set to any value by the transmitting device.
- **3.7.3 invalid:** A keyword used to describe an illegal or unsupported bit, byte, word, field or code value. Receipt of an invalid bit, byte, word, field or code value shall be reported as an error.
- **3.7.4 mandatory:** A keyword indicating an item that is required to be implemented as defined in this standard.
- **3.7.5 may:** A keyword that indicates flexibility of choice with no implied preference (equivalent to "may or may not").
- **3.7.6** may not: A keyword that indicates flexibility of choice with no implied preference (equivalent to "may or may not").
- **3.7.7 meaningful:** A control field or bit that shall be applicable and that shall be interpreted by the recipient.
- **3.7.8 not meaningful:** A control field or bit that shall be ignored by the recipient.
- **3.7.9 obsolete:** A keyword indicating that an item was defined in prior Fibre Channel standards but has been removed from this standard.
- **3.7.10 optional:** A keyword that describes features that are not required to be implemented by this standard. However, if any optional feature defined by this standards is implemented, then it shall be implemented as defined in this standard.
- **3.7.11 reserved:** A keyword referring to bits, bytes, words, fields and code values that are set aside for future standardization. A reserved bit, byte, word or field shall be set to zero, or in accordance with a future extension to this standard. Recipients are not required to check reserved bits, bytes, words or fields for zero values. Receipt of reserved code values in defined fields shall be reported as error.
- **3.7.12 restricted:** A keyword referring to bits, bytes, words, and fields that are set aside for use in other Fibre Channel standards. A restricted bit, byte, word, or field shall be treated as a reserved bit, byte, word or field for the purposes of the requirements defined in this standard.
- **3.7.13 shall:** A keyword indicating a mandatory requirement. Designers are required to implement all such mandatory requirements to ensure interoperability with other products that conform to this standard.
- **3.7.14 should:** A keyword indicating flexibility of choice with a strongly preferred alternative; equivalent to the phrase "it is strongly recommended".
- **3.7.15 x** or **xx**: The value of the bit or field is not relevant.

#### 3.8 T10 Vendor ID fields

A T10 Vendor ID shall be a string of one to eight characters that is recorded in an informal list of Vendor IDs maintained by INCITS Technical Committee T10 (see http://www.t10.org).

A field described as containing a T10 Vendor ID shall contain the first character of the T10 Vendor ID in the most significant byte of the field, and successive characters of the T10 Vendor ID in successive characters.

#### **ANSI INCITS 433-2007**

sively less significant bytes of the field. Any bytes of the field not filled by characters of the T10 Vendor ID shall be filled with ASCII space characters (20h).

#### 4 Extended Link Services

#### 4.1 Introduction

An Extended Link Service (ELS) request solicits a destination Nx\_Port to perform a function. An ELS reply shall be transmitted in response to an ELS request, unless otherwise specified. Each request or reply is composed of a single Sequence with the ELS\_Command code being specified in the first word of the Payload of the first frame of the Sequence. If Zoning is active in the Fabric (see FC-GS-5), an ELS response from a well-known address (e.g., the Domain Controller) shall only include data relating to Nx Ports that are in the same zone(s) as the requesting Nx Port.

Each Sequence may be composed of one or more frames. Normal rules for Exchange and Sequence management apply to ELS frames, Sequences, and Exchanges. An Accept (LS\_ACC) to an ELS shall terminate the Exchange by setting the Last Sequence bit to one on the last frame of the reply. An ELS request and the corresponding reply shall be performed within a single Exchange. Normal rules for Exchange and Sequence management as defined in FC-FS-2 shall apply.

The TYPE field for ELS frames shall be set to 01h.

The R\_CTL shall be set as specified in table 2.

Table 2 – Extended Link Services Routing Bits and Information Categories

| R_CTL                                                                  |             |                             |
|------------------------------------------------------------------------|-------------|-----------------------------|
| ROUTING                                                                | INFORMATION | Description                 |
|                                                                        | 0001b       | Solicited Data <sup>a</sup> |
| 0040                                                                   | 0010b       | Request                     |
| 0010b                                                                  | 0011b       | Reply                       |
|                                                                        | Others      | Reserved                    |
| This value is only used by the Clock Synchronization Update (CSU) ELS. |             |                             |

The first byte of the Payload (ELS\_Command code) of the request or reply Sequence shall be as shown in table 3. The remainder of the Payload is ELS unique. Subsequent frames, if any, for a request or reply Sequence shall only contain additional Payload in the Payload field (i.e., the ELS\_Command code is not repeated in each frame).

#### 4.2 Extended Link Service requests

#### 4.2.1 Introduction

A Sequence Initiator shall transmit an ELS Sequence in order to solicit the destination Nx\_Port to perform a link-level function or service. Unless otherwise noted, Extended Link Service requests shall not be issued prior to completion of N\_Port Login. Table 3 applies to ELSs sent to or received by all valid addresses, including well known addresses. FLOGI is required before all ELSs if a Fabric is present.

The LFA is used as the destination ID (D\_ID) in the LINIT and LSTS ELS Request Sequences, and is used as the source ID (S\_ID) in the Reply Sequences. No other Sequences shall be directed to a LFA.

Table 3 – ELS\_Command codes

| Value<br>(Bits 31-24) | Description                                      | Abbr.  | Reference | N_Port<br>Login<br>Required |
|-----------------------|--------------------------------------------------|--------|-----------|-----------------------------|
| 01h                   | Link Service Reject                              | LS_RJT | 4.3.4     | N/A                         |
| 02h                   | Link Service Accept                              | LS_ACC | 4.3.2     | N/A                         |
| 03h                   | N_Port Login                                     | PLOGI  | 4.2.7     | No                          |
| 04h                   | F_Port Login                                     | FLOGI  | 4.2.7     | No                          |
| 05h                   | Logout                                           | LOGO   | 4.2.8     | No                          |
| 06h                   | Abort Exchange - obsolete                        | ABTX   | N/A       | N/A                         |
| 07h                   | Read Connection Status                           | RCS    | 4.2.9     | Yes                         |
| 08h                   | Read Exchange Status Block - obsolete            | RES    | N/A       | N/A                         |
| 09h                   | Read Sequence Status Block - obsolete            | RSS    | N/A       | N/A                         |
| 0Ah                   | Request Sequence Initiative                      | RSI    | 4.2.13    | Yes                         |
| 0Bh                   | Establish Streaming                              | ESTS   | 4.2.6     | Yes                         |
| 0Ch                   | Estimate Credit                                  | ESTC   | 4.2.5     | Yes                         |
| 0Dh                   | Advise Credit                                    | ADVC   | 4.2.3     | Yes                         |
| 0Eh                   | Read Timeout Value                               | RTV    | 4.2.11    | Yes                         |
| 0Fh                   | Read Link Error Status Block                     | RLS    | 4.2.10    | Yes                         |
| 10h                   | Echo                                             | ЕСНО   | 4.2.4     | No                          |
| 11h                   | Test                                             | TEST   | 4.2.14    | Yes                         |
| 12h                   | Reinstate Recovery Qualifier                     | RRQ    | 4.2.12    | Yes                         |
| 13h                   | Read Exchange Concise                            | REC    | 4.2.42    | Yes                         |
| 14h                   | Reserved for legacy implementations <sup>a</sup> |        |           |                             |
| 20h                   | Process Login                                    | PRLI   | 4.2.20    | Yes                         |

<sup>&</sup>lt;sup>a</sup> Some early implementations of FCP-2 may have used the value 14h for SRR (Sequence Retransmission Request). This code is permanently reserved in this standard to avoid conflicts with such implementations. See FCP-3 for the standard implementation of SRR as an FC-4 Link Service.

Table 3 – ELS\_Command codes (Continued)

| Value<br>(Bits 31-24) | Description                                                     | Abbr.      | Reference | N_Port<br>Login<br>Required |
|-----------------------|-----------------------------------------------------------------|------------|-----------|-----------------------------|
| 21h                   | Process Logout                                                  | PRLO       | 4.2.21    | Yes                         |
| 22h                   | State Change Notification - obsolete                            | SCN        | N/A       | N/A                         |
| 23h                   | Test Process Login State                                        | TPLS       | 4.2.22    | Yes                         |
| 24h                   | Third Party Process Logout                                      | TPRLO      | 4.2.34    | Yes                         |
| 25h                   | Login Control List Management - obsolete                        | LCLM       | N/A       | N/A                         |
| 30h                   | Get Alias_ID                                                    | GAID       | 4.2.26    | No                          |
| 31h                   | Fabric Activate Alias_ID                                        | FACT       | 4.2.27    | No                          |
| 32h                   | Fabric Deactivate Alias_ID                                      | FDACT      | 4.2.28    | No                          |
| 33h                   | N_Port Activate Alias_ID                                        | NACT       | 4.2.29    | No                          |
| 34h                   | N_Port Deactivate Alias_ID                                      | NDACT      | 4.2.30    | No                          |
| 40h                   | Quality of Service Request - obsolete                           | QoSR       | N/A       | N/A                         |
| 41h                   | Read Virtual Circuit Status - obsolete                          | RVCS       | N/A       | N/A                         |
| 50h                   | Discover N_Port Service Parameters                              | PDISC      | 4.2.31    | Yes                         |
| 51h                   | Discover F_Port Service Parameters                              | FDISC      | 4.2.32    | Yes                         |
| 52h                   | Discover Address                                                | ADISC      | 4.2.33    | Yes                         |
| 53h                   | Report node Capability - obsolete                               | RNC        | N/A       | N/A                         |
| 54h                   | Fibre Channel Address Resolution Protocol<br>Request - obsolete | FARP_REQ   | N/A       | N/A                         |
| 55h                   | Fibre Channel Address Resolution Protocol<br>Reply - obsolete   | FARP_REPLY | N/A       | N/A                         |
| 56h                   | Read Port Status Block - obsolete                               | RPS        | N/A       | N/A                         |
| 57h                   | Read Port List - obsolete                                       | RPL        | N/A       | N/A                         |
| 58h                   | Report Port Buffer Condition                                    | RPBC       | 4.2.37    | Yes                         |

<sup>&</sup>lt;sup>a</sup> Some early implementations of FCP-2 may have used the value 14h for SRR (Sequence Retransmission Request). This code is permanently reserved in this standard to avoid conflicts with such implementations. See FCP-3 for the standard implementation of SRR as an FC-4 Link Service.

Table 3 – ELS\_Command codes (Continued)

| Value<br>(Bits 31-24) | Description                          | Abbr. | Reference | N_Port<br>Login<br>Required |
|-----------------------|--------------------------------------|-------|-----------|-----------------------------|
| 60h                   | Fabric Address Notification          | FAN   | 4.2.15    | No                          |
| 61h                   | Registered State Change Notification | RSCN  | 4.2.18    | No                          |
| 62h                   | State Change Registration            | SCR   | 4.2.19    | No                          |
| 63h                   | Report node FC-4 Types               | RNFT  | 4.2.38    | Yes                         |
| 68h                   | Clock Synchronization Request        | CSR   | 4.2.35    | No                          |
| 69h                   | Clock Synchronization Update         | CSU   | 4.2.36    | No                          |
| 70h                   | Loop Initialize                      | LINIT | 4.2.16    | No                          |
| 71h                   | Loop Port Control - obsolete         | LPC   | N/A       | No                          |
| 72h                   | Loop Status                          | LSTS  | 4.2.17    | No                          |
| 77h                   | Vendor Specific                      |       |           | N/A                         |
| 78h                   | Request node Identification Data     | RNID  | 4.2.23    | No                          |
| 79h                   | Registered Link Incident Report      | RLIR  | 4.2.24    | Yes                         |
| 7Ah                   | Link Incident Record Registration    | LIRR  | 4.2.25    | Yes                         |
| 7Bh                   | Scan Remote Loop                     | SRL   | 4.2.39    | Yes                         |
| 7Ch                   | Set Bit-error Reporting Parameters   | SBRP  | 4.2.40    | Yes                         |
| 7Dh                   | Report Port Speed Capabilities       | RPSC  | 4.2.41    | Yes                         |
| 7Eh                   | Query Security Attributes            | QSA   | see FC-SP | see FC-SP                   |
| 7Fh                   | Exchange Virtual Fabrics Parameters  | EVFP  | 4.2.43    | N/A                         |
| 80h                   | Link Keep Alive                      | LKA   | 4.2.44    | No                          |

<sup>&</sup>lt;sup>a</sup> Some early implementations of FCP-2 may have used the value 14h for SRR (Sequence Retransmission Request). This code is permanently reserved in this standard to avoid conflicts with such implementations. See FCP-3 for the standard implementation of SRR as an FC-4 Link Service.

Table 3 – ELS\_Command codes (Continued)

| Value<br>(Bits 31-24) | Description                            | Abbr.    | Reference | N_Port<br>Login<br>Required |
|-----------------------|----------------------------------------|----------|-----------|-----------------------------|
| 90h                   | Authentication ELS                     | AUTH_ELS | see FC-SP | see FC-SP                   |
| 97h                   | Request Fabric Change Notification     | RFCN     | see FC-SP | see FC-SP                   |
| A0h                   | Define FFI Domain Topology Map         | FFI_DTM  | 4.2.45    | Yes                         |
| A1h                   | Request FFI Domain Topology Map        | FFI_RTM  | 4.2.46    | Yes                         |
| A2h                   | FFI AE Principal Switch Selector       | FFI_PSS  | 4.2.47    | Yes                         |
| A3h                   | FFI Map Update Registration            | FFI_MUR  | 4.2.48    | Yes                         |
| A4h                   | FFI Registered Map Update Notification | FFI_RMUN | 4.2.49    | Yes                         |
| A5h                   | FFI Suspend Map Updates                | FFI_SMU  | 4.2.50    | Yes                         |
| A6h                   | FFI Resume Map Updates                 | FFI_RMU  | 4.2.51    | Yes                         |
| Others                | Reserved                               |          |           |                             |

Some early implementations of FCP-2 may have used the value 14h for SRR (Sequence Retransmission Request). This code is permanently reserved in this standard to avoid conflicts with such implementations. See FCP-3 for the standard implementation of SRR as an FC-4 Link Service.

An ELS Protocol is composed of an ELS request Sequence and, for some requests, an ELS Reply Sequence. The last Data frame of an ELS request Sequence with a Reply Sequence shall transfer the Sequence Initiative to the Recipient in order to allow the reply to be transmitted (see FC-FS-2). If an ELS request Sequence that has a Reply Sequence is transmitted without the transfer of Sequence Initiative, the Recipient shall abort the Exchange and not perform the request.

The following ELS requests and their replies shall be supported by an Nx\_Port (all others are optional for purposes of this standard, other standards or Technical Reports may require further ELS support):

- a) FLOGI
- b) PLOGI
- c) LOGO

An Nx\_Port receiving an ELS request shall respond to it in accord with table 4, depending on its N\_Port Login state with the Nx\_Port sending the ELS request and the PLOGI requirement for the ELS specified in table 3.

**N\_Port Login** Logged in with Source N\_Port? Required? (see table 3) Yes No If a reply sequence is defined for the Yes ELS, originate a LOGO ELS Exchange to the sender of the received ELS or reply with an LS RJT ELS Sequence Respond as appropriate for the ELS with a reason code of "Unable to and the current state of the Nx Port perform command request" and a reason code explanation of "N Port Login required". If a reply sequence is not defined for the ELS, it shall be discarded Respond as appropriate for the ELS Respond as appropriate for the ELS No and the current state of the Nx Port. and the current state of the Nx Port.

Table 4 - Responses to Received ELSs

An Nx\_Port is not required to generate and send the PLOGI ELS request. However, if an Nx\_Port receives a PLOGI ELS request, the Nx\_Port shall respond with a LS\_ACC Link Service Reply, or with LS\_RJT. LS\_RJT shall not be issued with a reason code of "Command not supported" in response to a PLOGI.

NOTE 1 – If an Nx\_Port that does not generate PLOGI, is in a point-to-point topology, and has an N\_Port\_Name greater than the other Nx\_Port's, the other Nx\_Port may timeout, waiting to receive PLOGI.

There is one ELS request Sequence in which a collision is possible with the other Nx\_Port involved in the same target Exchange. This request is Request Sequence Initiative (RSI) (e.g., Nx\_Port (A) may transmit an RSI request to Nx\_Port (B) at the same time that Nx\_Port (B) transmits an RSI request to Nx\_Port (A) for the same target Exchange).

If such an instance occurs, the Originator Nx\_Port of the target Exchange shall reject the RSI request sequence with an LS\_RJT with a reason code of "command already in progress". The Responder Nx\_Port of the target Exchange shall honor and process the RSI request Sequence normally.

### 4.2.2 Sequence and Exchange management

Extended Link Service communication shall observe all relevant rules of FC-FS-2.

All ELS requests, excluding ESTS, ESTC, and ADVC, and the corresponding replies shall be performed within a single Exchange, intended exclusively for the purpose of ELS processing (see FC-FS-2 for the procedure using ESTS, ESTC, and ADVC). The Advise Credit request may also be performed in a separate Exchange. Most ELS protocols are performed as a two Sequence Exchange. Each of these two Sequence Exchanges consist of a request Sequence by the Originator, transfer of Sequence Initiative, and a reply Sequence from the Responder that terminates the Exchange by setting the Last Sequence bit (bit 20) in F CTL.

More than one frame may be used to form a request or reply Sequence.

The following rules regarding Sequence and Exchange management apply to ELSs in addition to the rules specified in FC-FS-2:

a) Request and Reply Sequences may be sent in any class of service;

NOTE 2 – Not all of the classes make sense for all ELSs, but there is no restriction.

- b) Reply frames and Sequences shall be transmitted in the same class as the request;
- c) If Login has not been completed successfully, the default Login values shall be used;
- d) If Login has completed successfully, the Originator of the Exchange shall use the Discard multiple Sequences Error Policy for all ELS Exchanges (see FC-FS-2);
- e) The Originator of an ELS Exchange shall detect an Exchange error following Sequence Initiative transfer if the Reply Sequence is not received within a timeout interval of 2 X R A TOV;
- f) If the Exchange Originator of an ELS Exchange detects an Exchange error, it shall abort the Exchange using ABTS-LS and retry the protocol of the aborted Exchange with a different Exchange;
- g) If the Sequence Initiator aborts a Sequence using ABTS due to receiving an ACK with the Abort Sequence bits set to 01b, the Sequence Initiator shall retry the Sequence after the BA\_ACC is received for the aborted Sequence one time only. If the retry fails, the ELS Exchange shall be aborted using ABTS-LS;
- h) If the Sequence Initiator attempts to abort a Sequence using ABTS and it detects an E\_D\_TOV waiting for the ACK frame in response to the ABTS, it shall abort the Exchange using ABTS-LS, if conditions permit, and retry the original ELS with a different Exchange; and
- i) If the Sequence Initiator attempts to abort a Sequence using ABTS-LS and it detects an E\_D\_TOV waiting for the ACK frame in response to the ABTS-LS, it may retry the original ELS with a different Exchange.

### 4.2.3 Advise Credit (ADVC)

## 4.2.3.1 Description

The ADVC ELS is used to advise the destination Nx\_Port of the estimated end-to-end Credit that the source Nx\_Port requests to be allocated. The ADVC ELS request shall be a separate Sequence. It may also be requested in a separate Exchange. See FC-FS-2 for the usage of this ELS. The ADVC request may also be used independently from the Estimate Credit procedure (see FC-FS-2).

#### 4.2.3.2 Protocol

- a) Advise Credit Request Sequence
- b) LS ACC or LS RJT Reply Sequence

#### 4.2.3.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Credit revision. The D\_ID field designates the destination Nx\_Port.

**Payload:** The format of the Payload is shown in table 5. The Payload shall contain the requested end-to-end Credit in the end-to-end Credit field of the appropriate Class Service Parameters (see 6.6.5) as indicated by the Class Validity bit. For each class in which a revised end-to-end Credit is requested, the Class Validity bit shall be set to one. The recipient shall ignore the other Service Parameter fields.

Table 5 - ADVC Payload

| Bits<br>Word | 31         | 24 | 23  | 16              | 15    |        | 08 | 07  | •• | 00 |
|--------------|------------|----|-----|-----------------|-------|--------|----|-----|----|----|
| 0            | ADVC (0Dh) |    | 00h |                 | 00h   |        |    | 00h |    |    |
| 1            | MSB        |    |     | Common Serv     |       | meters |    |     |    |    |
|              |            |    | _   | (16 b           | ytes) |        |    |     |    |    |
| 4            |            |    | _   |                 |       |        |    | LSB |    |    |
| 5            | MSB        |    | _   |                 | _Name |        |    |     |    |    |
| 6            |            |    |     | (8 b)           | ytes) |        |    | LSB |    |    |
| 7            | MSB        |    | _   |                 | Name  |        |    |     |    |    |
| 8            |            |    |     | (8 b)           |       | LSB    |    |     |    |    |
| 9            | MSB        |    | =   | Class 1 Service |       | neters |    |     |    |    |
|              |            |    | =   | (16 b           |       |        |    |     |    |    |
| 12           |            |    |     |                 |       |        |    | LSB |    |    |
| 13           | MSB        |    | _   | Class 2 Service |       | neters |    |     |    |    |
|              |            |    | =   | (16 b           | ytes) |        |    |     |    |    |
| 16           |            |    |     |                 |       |        |    | LSB |    |    |
| 17           | MSB        |    | _   | Class 3 Service |       | neters |    |     |    |    |
|              |            |    | =   | (16 b           | ytes) |        |    |     |    |    |
| 20           |            |    |     |                 |       |        |    | LSB |    |    |
| 21           | MSB        |    | _   |                 | erved |        |    |     |    |    |
|              |            |    | _   | (16 b           |       |        |    |     |    |    |
| 24           |            |    |     |                 |       | LSB    |    |     |    |    |
| 25           | MSB        |    | _   | Vendor Ve       |       | vel    |    |     |    |    |
|              |            |    | =   | (16 b           | ytes) |        |    |     |    |    |
| 28           |            |    |     |                 |       |        |    | LSB |    |    |

# 4.2.3.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies rejection of the ADVC command.

**LS\_ACC**: LS\_ACC signifies successful completion of the ADVC function and permanently replaces the end-to-end Credit in effect for the current N\_Port Login.

The format of the LS\_ACC Payload is shown in table 6. The Payload shall contain the revised end-to-end Credit allocated in the Credit field for the appropriate Class Service Parameters as indicated by the Class Validity bit. The revised end-to-end Credit shall replace the end-to-end Credit for the current Login for the Nx\_Port transmitting the LS\_ACC Sequence (see clause 6). For each class in which a revised end-to-end Credit is updated, the Class Validity bit shall be set to one. The recipient shall ignore the other Service Parameter fields. This revised end to-end Credit value is determined by the destination Nx\_Port based on its buffering scheme, buffer management, buffer availability, and Nx\_Port processing time (see FC-FS-2).

Table 6 - ADVC LS\_ACC Payload

| Bits<br>Word | 31  | 24 | 23         | ••      | 16    | 15        |        | 80  | 07  | <br>00 |
|--------------|-----|----|------------|---------|-------|-----------|--------|-----|-----|--------|
| 0            | 02h |    | 00h        |         |       | 00h       |        |     | 00h |        |
| 1            | MSB |    | _          | Commor  |       |           | neters |     |     |        |
|              |     |    | _          |         | (16 b | ytes)     |        |     |     |        |
| 4            |     |    |            |         |       |           |        |     | LSB |        |
| 5            | MSB |    | _          | N       |       | _Name     |        |     |     |        |
| 6            |     |    |            |         | (8 b) | /tes)     |        |     | LSB |        |
| 7            | MSB |    | _          |         |       | Name      |        |     |     |        |
| 8            |     |    |            |         | (8 b) |           | LSB    |     |     |        |
| 9            | MSB |    | _          | Class 1 |       | e Param   | neters |     |     |        |
|              |     |    |            |         | (16 b |           |        |     |     |        |
| 12           |     |    |            |         |       |           |        |     | LSB |        |
| 13           | MSB |    | _          | Class 2 |       | e Param   | neters |     |     |        |
|              |     |    | _          |         | (16 b | ytes)     |        |     |     |        |
| 16           |     |    |            |         |       |           |        |     | LSB |        |
| 17           | MSB |    | _          | Class 3 |       | e Param   | neters |     |     |        |
|              |     |    | _          |         | (16 b | ytes)     |        |     |     |        |
| 20           |     |    |            |         |       |           |        |     | LSB |        |
| 21           | MSB |    | _          |         | Rese  |           |        |     |     |        |
|              |     |    | _          |         | (16 b | ytes)     |        |     |     |        |
| 24           |     |    |            |         |       |           |        | LSB |     |        |
| 25           | MSB |    | _          | Vend    |       | rsion Lev | /el    |     |     |        |
|              |     |    | (16 bytes) |         |       |           |        |     |     |        |
| 28           |     |    |            |         |       |           | LSB    |     |     |        |

#### 4.2.4 Echo (ECHO)

### 4.2.4.1 Description

The Echo ELS requests the Recipient to transmit the Payload contents that follows the ELS\_Command back to the Initiator of the Echo command in the same order as received using the LS\_ACC Reply Sequence. The Echo ELS Request provides a means to transmit a Data frame and have the Payload content returned for a simple loopback diagnostic function. The Echo command shall be transmitted as a one frame Sequence and the LS\_ACC Reply Sequence is also a one frame Sequence.

#### 4.2.4.2 Protocol

- a) Echo Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.4.3 Request Sequence

**Addressing:** The D\_ID field designates the destination of the request while the S\_ID field designates the source of the request.

**Payload:** The format of the Payload is shown in table 7. If a Login with the destination Nx\_Port does not exist, the maximum size of the ECHO data field shall be the default Buffer-to-buffer Receive Data\_Field Size - 4 (i.e., 124 bytes). If a Login with the destination Nx\_Port exists, the ECHO data field size is limited by the smallest Receive Data\_Field Size supported by the destination Nx\_Port, the Fabric, and the source Nx\_Port for the class of service being used - 4 (i.e., the ECHO data field in the LS\_ACC frame shall be equal in size to the ECHO data field size in the ECHO Request Sequence).

**Bits** 31 24 23 80 07 00 16 15 Word 0 ECHO (10h) 00h 00h 00h MSB 1 ECHO data (up to max frame length - 4, any byte boundary) LSB n

Table 7 – ECHO Payload

#### 4.2.4.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies rejection of the ECHO command.

**LS\_ACC:** LS\_ACC signifies successful completion of the ECHO function. The format of the LS\_ACC Payload is shown in table 8. The Payload shall contain the ECHO data contained in the Payload of the ECHO Request frame.

Table 8 - ECHO LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15                 |     | 80  | 07  | <br>00 |
|--------------|-----|--------|-----|--------|--------------------|-----|-----|-----|--------|
| 0            | 02h |        | 00h |        | 00h                |     |     | 00h |        |
| 1            | MSB |        |     | ECHO   | O data             |     |     |     |        |
|              |     |        | •   |        | me leng            |     |     |     |        |
| n            |     |        | Exc |        | boundar<br>of ECHC | • / | ad. | LSB |        |

## 4.2.5 Estimate Credit (ESTC)

### 4.2.5.1 Description

The ESTC ELS is used to estimate the minimum Credit required to achieve the maximum bandwidth for a given distance between an Nx\_Port pair.

The class of the SOF of the ESTC Request identifies the class for which Credit is being estimated. The destination Nx\_Port shall acknowledge Data frames as specified by its Login parameters. See FC-FS-2 for the usage of this frame.

#### 4.2.5.2 Protocol

- a) Estimate Credit Request Sequence
- b) No Reply Sequence

#### 4.2.5.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting the Credit estimate. The D\_ID field designates the destination Nx\_Port specified in the Establish Streaming frame.

**Payload:** The format of the Payload is shown in table 9. The first word of the Payload of the first frame of the Sequence shall contain the ELS\_Command code. The content of the Payload after the ELS\_Command and for subsequent frames shall be valid data bytes.

Table 9 - ESTC Payload

| Bits<br>Word | 31     |       | 24 | 23  | <br>16 | 15      | <br>80 | 07  | <br>00 |
|--------------|--------|-------|----|-----|--------|---------|--------|-----|--------|
| 0            | ESTC ( | (0Ch) |    | 00h |        | 00h     |        | 00h |        |
| 1            | MSB    |       |    |     |        | data    |        |     |        |
|              |        |       |    | •   | (see F | C-FS-2) |        |     |        |
| n            |        |       |    | -   |        |         |        | LSB |        |

#### 4.2.5.4 Reply Sequence

None.

### 4.2.6 Establish Streaming (ESTS)

### 4.2.6.1 Description

The ESTS ELS requests a temporary allocation of Credit known as Streaming Credit large enough to perform continuous streaming of Data frames. The SOF of the ESTS Request identifies the class for which Credit is being estimated. See FC-FS-2 for the usage of this frame.

#### 4.2.6.2 Protocol

- a) Establish Streaming Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.6.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Streaming. The D\_ID field designates the destination Nx\_Port addressed.

Payload: The format of the Payload is shown in table 10.

Table 10 - ESTS Payload

| Bits<br>Word | 31       | 24  | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|----------|-----|-----|--------|-----|--------|-----|--------|
| 0            | ESTS (0B | Bh) | 00h |        | 00h |        | 00h |        |

#### 4.2.6.4 Reply Sequence

LS\_RJT: LS\_RJT signifies rejection of the ESTS command

**LS\_ACC**: LS\_ACC signifies successful completion of the ESTS function. The format of the LS\_ACC Payload is shown in table 11. The Payload shall contain Streaming Credit allocated in the Nx\_Port end-to-end Credit field of the appropriate Class Service Parameters (see 6.6.5). The Class Validity bit, when set to one, identifies the class that contains the Streaming Credit. The recipient shall ignore the other Service Parameter fields.

Table 11 - ESTS LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23                   |            | 16       | 15      |        | 08 | 07  | <br>00 |
|--------------|-----|--------|----------------------|------------|----------|---------|--------|----|-----|--------|
| 0            | 02h |        | 00h                  |            |          | 00h     |        |    | 00h |        |
| 1            | MSB |        |                      | Commo      | on Servi | ce Para | meters |    |     |        |
|              |     |        | -                    |            | (16 b    | ytes)   |        |    |     |        |
| 4            |     |        |                      |            |          |         |        |    | LSB |        |
| 5            | MSB |        | -                    |            |          | _Name   |        |    |     |        |
| 6            |     |        |                      |            | (8 b)    | ytes)   |        |    | LSB |        |
| 7            | MSB |        | -                    |            | node     |         |        |    |     |        |
| 8            |     |        |                      |            | (8 b)    |         | LSB    |    |     |        |
| 9            | MSB |        | -                    | Class      | 1 Servi  |         |        |    |     |        |
|              |     |        | -                    | (16 bytes) |          |         |        |    |     |        |
| 12           |     |        |                      |            |          |         |        |    | LSB |        |
| 13           | MSB |        | •                    | Class      |          | e Paran | neters |    |     |        |
|              |     |        | -                    |            | (16 b    | ytes)   |        |    |     |        |
| 16           |     |        |                      |            |          |         |        |    | LSB |        |
| 17           | MSB |        | -                    | Class      | 3 Servi  | e Paran | neters |    |     |        |
|              |     |        | -                    |            | (16 b    | ytes)   |        |    |     |        |
| 20           |     |        |                      |            |          |         |        |    | LSB |        |
| 21           | MSB |        | •                    |            | Rese     |         |        |    |     |        |
|              |     |        | -                    | (16 bytes) |          |         |        |    |     |        |
| 24           |     |        |                      |            |          |         |        |    |     |        |
| 25           | MSB |        | Vendor Version Level |            |          |         |        |    |     |        |
|              |     |        | (16 bytes)           |            |          |         |        |    |     |        |
| 28           |     |        |                      |            |          |         |        |    | LSB |        |

# 4.2.7 Login (FLOGI/PLOGI)

# 4.2.7.1 Description

The FLOGI/PLOGI ELS shall transfer Service Parameters from the initiating Nx\_Port to the FC\_Port associated with the D\_ID. The FLOGI frame provides the means by which an Nx\_Port may request Login with the Fabric (see 6.2). The PLOGI frame provides the means by which an Nx\_Port may request Login with another Nx\_Port prior to other Data frame transfers (see 6.3).

In order to Login with the Fabric and determine the Fabric operating characteristics, an Nx\_Port shall specify the D\_ID as the well-known F\_Port\_ID (i.e., FFFFEh).

In order to direct the Login ELS frame to a Fibre Channel Service, an Nx\_Port shall specify the N\_Port\_ID for the Nx\_Port providing the service or the appropriate well-known Address Identifier (see FC-FS-2).

When an Nx\_Port receives a Login from an Nx\_Port, all open Sequences with the Nx\_Port performing Login shall be abnormally terminated.

### 4.2.7.2 Protocol

- a) FLOGI or PLOGI Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.7.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Login. If unidentified, as in Fabric Login, binary zeros are used. The D\_ID field designates the destination Nx\_Port or Fx\_Port of the Login.

**Payload:** The format of the Payload is shown in table 149. The Service Parameters are defined in 6.6

# 4.2.7.4 Reply Sequence

LS\_RJT: LS\_RJT signifies rejection of the FLOGI or PLOGI Request Sequence

**LS\_ACC**: LS\_ACC signifies successful completion of the FLOGI or PLOGI Request Sequence. The format of the LS\_ACC Payload is shown in table 149. The Service Parameters are defined in 6.6.

# 4.2.8 Logout (LOGO)

#### 4.2.8.1 Description

The LOGO ELS provides a method for explicitly removing service between two Nx\_Port\_IDs or between an N\_Port\_ID and a Fabric. Logout releases resources, identifiers, and relationships associated with maintaining Service between an Nx\_Port\_ID and a destination Nx\_Port\_ID or Fabric.

If the S\_ID and D\_ID of a LOGO ELS are both Address\_Identifiers of Nx\_Ports, the LOGO requests removal of service between the N\_Port\_ID specified in the LOGO Payload and the N\_Port\_ID specified in the D\_ID. The N\_Port\_ID in the LOGO Payload may differ from the S\_ID. This allows an Nx\_Port to Logout its old Identifier using a new Identifier after its N\_Port\_ID has changed. Both the source Nx\_Port and the destination Nx\_Port of the Logout Request Sequence shall abnormally terminate all open Exchanges (see clause 6) that used the N\_Port\_ID indicated in the Payload of the Logout Request Sequence.

If either the S\_ID or D\_ID of a LOGO ELS is the F\_Port well-known address (FFFFFEh), the LOGO ELS requests Fabric logout and release of the previously assigned N\_Port\_ID specified in the LOGO Payload. An Nx\_Port that requests or accepts explicit logout from the Fabric shall implicitly log out the N\_Port\_ID indicated in the Payload of the Logout Request Sequence from all other Nx\_Port\_IDs and abnormally terminate all open Exchanges (see clause 6) that used the N\_Port\_ID indicated in the Payload of the Logout Request Sequence.

#### 4.2.8.2 Protocol

- a) Logout Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.8.3 Request Sequence

**Addressing:** For an explicit Nx\_Port Logout, the S\_ID field designates the source Nx\_Port\_ID requesting Logout and the D\_ID field designates the destination Nx\_Port of the Logout Request. For an explicit Fabric Logout originated by an Nx\_Port, the S\_ID field shall be the Nx\_Port\_ID to be logged out (i.e., the same as the N\_Port\_ID in the Payload) and the D\_ID shall be the F\_Port Well-known address (i.e., FFFFFEh). For an explicit Fabric Logout originated by the Fabric, the S\_ID field shall be the F\_Port Well-known address (i.e., FFFFFEh) and the D\_ID shall be the Nx\_Port\_ID to be logged out (i.e., the same as the N\_Port\_ID in the Payload).

Payload: The format of the Payload is shown in table 12.

**Bits** 31 24 23 16 15 08 07 00 Word 0 LOGO (05h) 00h 00h 00h 1 Reserved N\_Port\_ID 2 MSB N\_Port\_Name 3 (8 bytes) LSB

Table 12 - LOGO Payload

# 4.2.8.4 Reply Sequence

LS RJT: LS RJT signifies rejection of the LOGO command.

**LS\_ACC:** LS\_ACC signifies that service has been removed for the N\_Port\_ID indicated in the payload of the LOGO ELS. When the LOGO ELS requested Fabric Logout, LS\_ACC signifies that the N\_Port\_ID specified in the Payload of the LOGO ELS has been logged out from the Fabric and released. The format of the LS\_ACC Payload is shown in table 13.

Table 13 - LOGO LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.9 Read Connection Status (RCS)

#### 4.2.9.1 Description

The RCS ELS requests the Fabric Controller to return the current dedicated connection status for the Nx\_Port specified in the Payload of the RCS frame. The RCS Request provides the means by which an Nx\_Port may interrogate the Fabric for the Connection status of other Nx\_Ports within the Fabric.

In order to direct the RCS ELS Request frame to the Fabric, an Nx\_Port specifies the D\_ID as the Fabric Controller (i.e., FFFFDh).

#### 4.2.9.2 Protocol

- a) Read Connection Status Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.9.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Connection status. The D\_ID field is the Fabric Controller, (FFFFDh).

**Payload:** The format of the Payload is shown in table 14. The first word of the Payload shall contain the ELS\_Command code. The second word shall contain the N\_Port\_ID for which Connection status is being requested.

Table 14 - RCS Payload

| Bits<br>Word | 31     |      | 24 | 23      |     | 16 | 15  | <br>08 | 07  | <br>00 |
|--------------|--------|------|----|---------|-----|----|-----|--------|-----|--------|
| 0            | RCS (0 | )7h) |    | 00h     |     |    | 00h |        | 00h |        |
| 1            | Reserv | ed   |    | N_Port_ | _ID |    |     |        |     |        |

### 4.2.9.4 Reply Sequence

LS\_RJT: LS\_RJT signifies rejection of the RCS command.

**LS\_ACC**: LS\_ACC signifies that the Fabric has completed the request. The format of the LS\_ACC Payload is shown in table 15.

Table 15 - RCS LS ACC Payload

| Bits<br>Word | 31 24             | 23        | 16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-------------------|-----------|----|-----|--------|-----|--------|
| 0            | 02h               | 00h       |    | 00h |        | 00h |        |
| 1            | Connection Status | N_Port_ID |    |     |        |     |        |

The Connection Status Codes are defined in table 16.

Bits 23 through 0 specify the address identifier of the Nx\_Port involved in a dedicated connection with the other Nx\_Port specified by the RCS ELS Request Sequence frame (i.e., the Connection established bit is set to one).

Table 16 - Connection Status Codes

| Name                    | Bit Number | Value | Definition                                                                                                                                                                                                                |
|-------------------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connect-Request         |            | 0     | The specified Nx_Port is either not Connected, or is involved in an Established Connection based on the setting of the Connection established bit.                                                                        |
| delivered               | 31         | 1     | A connect-Request has been delivered to the specified Nx_Port, but the Nx_Port has not yet responded with a proper response frame and a dedicated connection does not yet exist.                                          |
|                         |            | 0     | No connect-Request is stacked for the specified Nx_Port on behalf of the requesting Nx_Port.                                                                                                                              |
| Connect-Request stacked | 30         | 1     | One or more connect-Requests are stacked, but have not been delivered to the specified Nx_Port on behalf of the requesting Nx_Port                                                                                        |
|                         |            | 0     | The specified Nx_Port in the RCS Request is not in a dedicated connection                                                                                                                                                 |
| Connection established  | 29         | 1     | The specified Nx_Port is involved in a dedicated connection. The address identifier in bits 23-0 identifies the other Nx_Port involved in the dedicated connection.                                                       |
|                         |            | 0     | The N_Port specified in the RCS frame is not functioning in Intermix mode.                                                                                                                                                |
| Intermix mode           | 28         | 1     | The N_Port specified in the request is functioning in Intermix mode. An N_Port is functioning in Intermix mode if both the N_Port and the F_Port have both previously indicated that each supports Intermix during Login. |

# 4.2.10 Read Link Error Status Block (RLS)

# 4.2.10.1 Description

The RLS ELS requests an FC\_Port to return the identified Link Error Status Block (LESB) associated with the Port\_ID specified in the Payload. This provides the Nx\_Port transmitting the request with information regarding Link Errors detected within the designatedFC\_Port.

### 4.2.10.2 Protocol

- a) Read Link Error Status Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.10.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting the LESB. The D\_ID field shall be set as follows:

- a) to any Domain Controller well known address (FFFCxxh);
- b) to the F\_Port well known address (FFFFEh); or
- c) to any Nx\_Port logged in with the S\_ID address.

Payload: The format of the Payload is shown in table 17.

Table 17 – RLS Payload

| Bits<br>Word | 31     |     | 24 | 23      | ••  | 16 | 15  | <br>80 | 07  | <br>00 |
|--------------|--------|-----|----|---------|-----|----|-----|--------|-----|--------|
| 0            | RLS (C | Fh) |    | 00h     |     |    | 00h |        | 00h |        |
| 1            | Reserv | /ed |    | N_Port_ | _ID |    |     |        |     |        |

The requested LESB is identified as follows:

- a) If the D\_ID is a Domain Controller well known address (FFFCxxh), the N\_Port\_ID field shall be set to an N\_Port\_ID withihn the associated domain. The LESB requested is for the F\_Port that the N\_Port\_ID is logged in with;
- b) if the D\_ID is the F\_Port well known address (FFFFFEh), the N\_Port\_ID field is not meaningful and the LESB request is for the local Fx Port that the S ID is logged in with; or
- c) for all other D\_IDs, the N\_Port\_ID field is not meaningful and the LESB requested is for the Nx Port assigned to the D\_ID.

### 4.2.10.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies rejection of the RLS command. The LS\_RJT reason code and reason code explanation are set as follows:

- a) If an FC\_Port does not support the LESB, it shall reply with an LS\_RJT specifying a reason code of "Unable to perform command request" (09h) and should respond with a reason code explanation of "Request not supported" (2Ch); or
- b) if the N\_Port\_ID is not logged in with an F\_Port within the domain, the Domain Controller should reply with an LS\_RJT specifying a reason code of "Logical error" (03h) and reason code explanation "Invalid N\_Port\_ID" (1Fh).

**LS\_ACC**: LS\_ACC signifies that the FC\_Port has transmitted the requested data. The format of the LS\_ACC Payload is shown in table 18. The format of the Link Error Status Block is specified in FC-FS-2.

Table 18 - RLS LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  |      | 16      | 15        |     | 80 | 07  | <br>00 |
|--------------|-----|--------|-----|------|---------|-----------|-----|----|-----|--------|
| 0            | 02h |        | 00h |      |         | 00h       |     |    | 00h |        |
| 1            | MSB |        |     | Link | Error S | Status Bl | ock |    |     |        |
|              |     |        | _   |      |         | C-FS-2)   |     |    |     |        |
| 6            |     |        | •   |      | (24 k   | oytes)    |     |    | LSB |        |

# 4.2.11 Read Timeout Value (RTV)

### 4.2.11.1 Description

The RTV ELS requests an FC\_Port to return the R\_A\_TOV and the E\_D\_TOV in the LS\_ACC. The LS\_ACC returns the value that the FC\_Port uses for R\_T\_TOV. This provides the FC\_Port transmitting the RTV ELS with information regarding these values from another FC\_Port. Usage of R\_A\_TOV, E\_D\_TOV and R\_T\_TOV requirements are given in FC-FS-2.

### 4.2.11.2 Protocol

- a) Read Timeout Value (RTV) Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.11.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting the timeout interval values. The D\_ID field designates the destination FC\_Port to which the request is being made.

Payload: The format of the Payload is shown in table 19.

Table 19 - RTV Payload

| Bits<br>Word | 31     |     | 24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|--------|-----|----|-----|--------|-----|--------|-----|--------|
| 0            | RTV (0 | Eh) |    | 00h |        | 00h |        | 00h |        |

## 4.2.11.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies rejection of the RTV command.

**LS\_ACC**: LS\_ACC returns the requested R\_A\_TOV and E\_D\_TOV values. The format of the LS\_ACC Payload is shown in table 20. E\_D\_TOV Timeout values are specified as a count of either 1 ms or 1 ns increments, depending on the setting of the E\_D\_TOV Resolution (see FC-FS-2).

Table 20 - RTV LS\_ACC Payload

| Bits<br>Word | 31       | ••                                                        | 24 | 23  |  | 16 | 15      |  | 80 | 07 |  | 00 |  |  |
|--------------|----------|-----------------------------------------------------------|----|-----|--|----|---------|--|----|----|--|----|--|--|
| 0            | 02h      |                                                           |    | 00h |  |    | 00h 00h |  |    |    |  |    |  |  |
| 1            | Resource | Resource_Allocation_Timeout Value (R_A_TOV) (see FC-FS-2) |    |     |  |    |         |  |    |    |  |    |  |  |
| 2            | Error_De | Error_Detect_Timeout Value (E_D_TOV) (see FC-FS-2)        |    |     |  |    |         |  |    |    |  |    |  |  |
| 3            | Timeout  | Timeout Qualifier                                         |    |     |  |    |         |  |    |    |  |    |  |  |

The Timeout Qualifier word is defined as follows:

- a) Bits 31-27: Reserved
- b) Bit 26: E\_D\_TOV Resolution

If the E\_D\_TOV Resolution bit is zero, the value specified in the E\_D\_TOV field shall indicate a count of 1 ms increments. If the E\_D\_TOV Resolution bit is one, the value specified in the E\_D\_TOV field shall indicate a count of 1 ns increments.

- c) Bits 25-20: Reserved
- d) Bit 19: R T TOV Value

If this bit is set to zero, the value of R\_T\_TOV shall be the default value of 100 milliseconds. If it is set to one, the value of R\_T\_TOV shall be 100 microseconds.

e) Bits 18-0: Reserved

# 4.2.12 Reinstate Recovery Qualifier (RRQ)

## 4.2.12.1 Description

The RRQ ELS shall be used to notify the destination Nx\_Port that the Recovery\_Qualifier shall be available for reuse. The Recovery\_Qualifier (S\_ID, D\_ID, OX\_ID, RX\_ID, and low SEQ\_CNT minus high SEQ\_CNT) shall be associated with an Exchange in which the Abort Sequence or Abort Exchange was previously performed.

In the case of Abort Exchange (i.e., ABTS-LS), the ESB and Recovery\_Qualifier are immediately available for reuse. In the case of Abort Sequence Protocol, the Recovery\_Qualifier is purged.

A request to Reinstate the Recovery\_Qualifier shall only be accepted if the Originator Nx\_Port N\_Port\_ID or the Responder Nx\_Port N\_Port\_ID of the target Exchange is the same as the N\_Port\_ID of the Nx\_Port that makes the request. If the RRQ Request is not accepted, an LS\_RJT with reason code "Unable to perform command request" and reason code explanation "Invalid Originator S\_ID" shall be returned.

A separate Exchange shall be used to reinstate the Recovery\_Qualifier. The Payload shall contain the OX\_ID and RX\_ID for the Exchange Recovery\_Qualifier, in addition to the S\_ID of the Nx\_Port

that originated the Exchange being aborted. Resources associated with the OX ID in the Originator, and with the RX\_ID in the Responder, shall be released following transmission and reception of the LS ACC reply Sequence if the Exchange had been aborted with ABTS-LS.

Both the Originator and Responder shall ensure that the OX ID and RX ID pair being terminated is currently associated with the OX\_ID and RX\_ID pair specified in the RRQ Request.

The Recovery\_Qualifier range shall be timed out for an R\_A\_TOV timeout period (i.e., RRQ shall not be transmitted until an R A TOV timeout period after BA ACC for ABTS has been received) by the Nx Port that transmitted and successfully completed the ABTS frame.

### 4.2.12.2 Protocol

- a) Reinstate Recovery Qualifier Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.12.3 Request Sequence

Addressing: The D ID field designates the destination Nx Port of the RRQ Request Sequence while the S\_ID field designates the source Nx\_Port that is requesting that the Recovery\_Qualifier be reinstated.

Exchange: A separate Exchange is required.

SEQ ID and SEQ CNT: The SEQ ID and the SEQ CNT shall be appropriate for an open Sequence.

Table 21 - RRQ Payload

Payload: The format of the Payload is shown in table 21.

| Bits<br>Word | 31      |     | 24 | 23       |            | 16       | 15   | •• | 08 | 07  |  | 00 |
|--------------|---------|-----|----|----------|------------|----------|------|----|----|-----|--|----|
| 0            | RRQ (12 | 2h) |    | 00h      |            |          | 00h  |    |    | 00h |  |    |
| 1            | Reserve | ed  |    | Exchan   | ge Ori     | ginator  | S_ID |    |    |     |  |    |
| 2            | OX_ID   |     |    |          |            |          |      |    |    |     |  |    |
| 3            | MSB     |     |    | А        | ssocia     | ation_He |      |    |    |     |  |    |
|              |         |     |    | •        | (32 bytes) |          |      |    |    |     |  |    |
| 10           |         |     |    | <u>-</u> |            |          |      |    |    | LSB |  |    |

## 4.2.12.4 Reply Sequence

**LS RJT:** LS RJT signifies rejection of the RRQ command.

**LS\_ACC**: LS\_ACC signifies that the destination Nx\_Port reinstated the Recovery\_Qualifier. The format of the LS\_ACC Payload is shown in table 22.

Table 22 – RRQ LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

### 4.2.13 Request Sequence Initiative (RSI)

### 4.2.13.1 Description

The RSI ELS is used to request that Sequence Initiative be passed to the Sequence Recipient of an Exchange in progress. A request to pass Sequence Initiative shall only be accepted if the Originator Nx\_Port or the Responder Nx\_Port of the target Exchange makes the request. A separate Exchange shall be used to perform the Request Sequence Initiative. The Payload shall contain the OX\_ID and RX\_ID for the target Exchange, in addition to the S\_ID of the Nx\_Port that originated the Exchange. The LS\_ACC Reply is sent subsequent to the transfer of Sequence Initiative on the target Exchange.

Transmission of RSI is allowed while the identified Exchange is open. Both the Originator and Responder shall ensure that the OX\_ID and RX\_ID pair for which Sequence Initiative is being passed are currently associated with the OX\_ID and RX\_ID pair specified in the RSI Request.

If there is a Sequence active for the target Exchange, the Sequence Initiator of the active Sequence of the target Exchange shall terminate them and transfer Sequence Initiative as follows:

- a) If there is an active Sequence for which the last Data frame has not been transmitted, the Sequence Initiator of the target Exchange shall terminate the Sequence by transmitting a Data frame with the End Sequence and Sequence Initiative bits set to one in F CTL.
- b) If there are no Data frames to be sent for the active Sequence, the Sequence Initiator of the target Exchange shall transmit a NOP Basic Link Service frame (see FC-FS-2) with the End\_Sequence and Sequence Initiative bits set to one in F\_CTL.

If there is no Sequence active, the Sequence Initiator of the target Exchange shall transfer Sequence Initiative by initiating a new Sequence consisting of a single NOP Basic Link Service frame (a one frame Sequence) with the End Sequence and Sequence Initiative bits set to 1 in F CTL.

The LS\_ACC to the Exchange requesting Sequence Initiative shall be transmitted after Sequence Initiative has been passed (see FC-FS-2) on the target Exchange.

#### 4.2.13.2 Protocol

- a) Request Sequence Initiative Request Sequence
- b) LS ACC or LS RJT Reply Sequence

#### 4.2.13.3 Request Sequence

**Addressing:** The D\_ID field designates the destination Nx\_Port of the Exchange for which Sequence Initiative is being requested and the S\_ID field designates the source Nx\_Port that is requesting Sequence Initiative.

**Exchange:** A separate Exchange is required other than the Exchange for which Sequence Initiative is being requested in order to properly track status.

**SEQ\_ID** and **SEQ\_CNT**: The SEQ\_ID and the SEQ\_CNT shall be appropriate for an open Sequence.

Payload: The format of the Payload is shown in table 23.

Table 23 - RSI Payload

| Bits<br>Word | 31     |     | 24 | 23         |                               | 16 | 15    |  | 08 | 07  |  | 00 |  |  |
|--------------|--------|-----|----|------------|-------------------------------|----|-------|--|----|-----|--|----|--|--|
| 0            | RSI (0 | ۹h) |    | 00h        |                               |    | 00h   |  |    | 00h |  |    |  |  |
| 1            | Reserv | ed  |    | Originat   | nator S_ID                    |    |       |  |    |     |  |    |  |  |
| 2            | OX_ID  |     |    |            |                               |    | RX_ID |  |    |     |  |    |  |  |
| 3            | MSB    |     |    | А          | Association_Header (optional) |    |       |  |    |     |  |    |  |  |
|              |        |     |    | (32 bytes) |                               |    |       |  |    |     |  |    |  |  |
| 10           |        |     |    | •          |                               |    |       |  |    | LSB |  |    |  |  |

#### 4.2.13.4 Reply Sequence

LS\_RJT: LS\_RJT signifies rejection of the RSI command.

**LS\_ACC**: LS\_ACC signifies that the destination Nx\_Port has transferred the Sequence Initiative for the target Exchange. The format of the LS\_ACC Payload is shown in table 24.

Table 24 – RSI LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

### 4.2.14 Test (TEST)

### 4.2.14.1 Description

The TEST ELS shall consist of a single Sequence being transmitted from the Sequence Initiator to the Sequence Recipient. The Test Request may be used in diagnostic or testing procedures to provide system loading. There is no Reply Sequence. The Payload may consist of any frame size up to the maximum allowable for the class and other normal Sequence and frame limitations.

#### 4.2.14.2 Protocol

- a) Test Request Sequence
- b) No Reply Sequence

#### 4.2.14.3 Request Sequence

**Addressing:** The D\_ID field designates the destination of the request while the S\_ID field designates the source of the request.

Payload: The format of the Payload is shown in table 25.

Table 25 - TEST Payload

| Bits<br>Word | 31     |       | 24 | 23  |    | 16      | 15        |  | 80  | 07  | <br>00 |
|--------------|--------|-------|----|-----|----|---------|-----------|--|-----|-----|--------|
| 0            | TEST ( | (11h) |    | 00h |    |         | 00h       |  |     | 00h |        |
| 1            | MSB    |       |    |     |    | TES     | Γ data    |  |     |     |        |
|              |        |       |    | •   |    |         | ata Field |  |     |     |        |
| n            |        |       |    | •   | aı | ny byte | boundar   |  | LSB |     |        |

The Payload size is limited by the smallest Data Field size supported by the destination Nx\_Port and the Fabric for the class being used.

#### 4.2.14.4 Reply Sequence

none

### 4.2.15 Fabric Address Notification (FAN)

#### 4.2.15.1 Description

The FAN ELS shall be sent by a Fabric F\_Port (FFFFFEh) to all known previously logged in (via FLOGI) attached NL\_Ports following an initialization event. This initialization event is typically Loop Initialization on an Arbitrated Loop, though other events that may cause a port to change its ID may also be considered. The F\_Port Controller shall report the F\_Port\_Name and Fabric\_Name as they were reported in the prior FLOGI, and shall report the current Loop Fabric Address. The F\_Port Controller shall send this ELS using the default login parameters (i.e., the parameters that are in effect prior to a FLOGI Request).

The attached ports may use this information to authenticate active Exchanges and operating parameters (e.g., login BB\_Credit).

The F\_Port Controller shall report identical information to all attached NL\_Ports. If the information changes in any way before the F\_Port Controller is able to send the service to all attached ports, the F\_Port Controller shall begin a new initialization event.

The attached NL\_Ports shall not initiate a Reply Sequence to this ELS.

### 4.2.15.2 Protocol

- a) Fabric Address Notification Request Sequence
- b) No Reply Sequence

#### 4.2.15.3 Request Sequence

**Addressing:** The S\_ID is the Fabric Controller (FFFFEh) sending the FAN. The D\_ID is the NL\_Port receiving the FAN.

**Payload:** The format of the FAN Request Payload is shown in table 26.

Table 26 - FAN Payload

| Bits<br>Word | 31     |      | 24 | 23      |                | 16      | 15    | <br>80 | 07  | <br>00 |
|--------------|--------|------|----|---------|----------------|---------|-------|--------|-----|--------|
| 0            | FAN (6 | 60h) |    | 00h     |                |         | 00h   |        | 00h |        |
| 1            | Reserv | ed   |    | Loop Fa | abric <i>P</i> | Address |       |        |     |        |
| 2            | MSB    |      |    | _       |                | F_Port  | _Name |        |     |        |
| 3            |        |      |    |         |                | (8 b    | ytes) |        | LSB |        |
| 4            | MSB    |      |    |         |                | Fabric  | _Name |        |     |        |
| 5            |        |      |    |         |                | (8 b    | ytes) |        | LSB | _      |

#### 4.2.15.4 Reply Sequence

none

### 4.2.16 Loop Initialize (LINIT)

### 4.2.16.1 Description

The LINIT ELS requests the start of Loop Initialization on a designated loop. The FL\_Port connected to the loop addressed by the Loop Fabric Address shall originate a LIP of the type specified in the Payload and begin the Initialization Process as described in FC-AL-2. The LS\_ACC Reply Sequence shall not be initiated before the FL\_Port has transitioned from the OPEN-INIT to MONITORING State, and the Fabric Controller has completed sending any FAN ELS (see FC-AL-2). If the LINIT ELS is received by a non-FL\_Port, the port shall originate an LS\_RJT with a reason code of "Command not supported".

#### 4.2.16.2 Protocol

- a) Loop Initialize Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.16.3 Request Sequence

**Addressing:** The S\_ID designates the Nx\_Port requesting Loop Initialization of the loop. The D\_ID field shall be the Loop Fabric Address (LFA) of the loop to be initialized.

Payload: The format of the LINIT Request Payload is shown in table 27.

Table 27 - LINIT Payload

| Bits<br>Word | 31          | 24  | 23                      |  | 16  | 15       |     | 80  | 07       |     | 00 |
|--------------|-------------|-----|-------------------------|--|-----|----------|-----|-----|----------|-----|----|
| 0            | LINIT (70h) | 00h |                         |  | 00h |          |     | 00h |          |     |    |
| 1            | Reserved    |     | Initialization Function |  |     | LIP byte | e 3 |     | LIP byte | e 4 |    |

The Initialization Function field defines modifications of the initialization to be performed. The format of the Initialization Function is shown in table 28.

Table 28 – Initialization Function

| Function                                                                                                                                      | Value   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Normal Initialization - The Fabric determines the best method by which to complete the initialization.                                        | 0       |
| Force Login - The L_bit shall be set in the Loop Initialization Soft Assigned (LISA) Sequence to force all affected L_Ports to perform FLOGI. | 1       |
| Reserved                                                                                                                                      | 2 - 255 |

The LIP Byte 3 field is the 3rd byte of the LIP to be originated. The LIP Byte 4 field is the 4th byte of the LIP Primitive Sequence to be originated. LIP Byte 3 and LIP Byte 4 should only be set to values permitted by FC-AL-2.

# 4.2.16.4 Reply Sequence

LS\_RJT: LS\_RJT signifies the rejection of the LINIT command

**LS\_ACC**: LS\_ACC signifies acceptance of the LINIT Request and completion of Loop Initialization. The format of the LS\_ACC Payload is shown in table 29.

Table 29 - LINIT LS\_ACC Payload

| Bits<br>Word | 31     |     | 24 | 23  | <br>16 | 15  | <br>08 | 07     | <br>00 |
|--------------|--------|-----|----|-----|--------|-----|--------|--------|--------|
| 0            | 02h    |     |    | 00h |        | 00h |        | 00h    |        |
| 1            | Reserv | /ed |    |     |        |     |        | Status |        |

The format of the Status field is shown in table 30.

Table 30 - LINIT Status

| State                                                    | Value |  |
|----------------------------------------------------------|-------|--|
| Reserved                                                 | 0     |  |
| Success - The requested function was completed.          | 1     |  |
| Failure - The requested function could not be completed. | 2     |  |
| Reserved                                                 | 3-255 |  |

# 4.2.17 Loop Status (LSTS)

### 4.2.17.1 Description

The LSTS ELS is used to request the Fabric Controller to report on the state of the specified loop.

#### 4.2.17.2 Protocol

- a) Loop Status Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.17.3 Request Sequence

**Addressing:** The S\_ID is the Nx\_Port requesting status for the specified loop. The D\_ID field shall be the Loop Fabric Address (LFA) of the loop for which status is being requested.

Payload: The format of the LSTS Payload is shown in table 31.

Table 31 - LSTS Payload

| Bits<br>Word | 31         | 24 | 23  | •• | 16 | 15  | •• | 08 | 07  | <br>00 |
|--------------|------------|----|-----|----|----|-----|----|----|-----|--------|
| 0            | LSTS (72h) |    | 00h |    |    | 00h |    |    | 00h |        |

#### 4.2.17.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the LSTS command.

**LS\_ACC**: LS\_ACC supplies the requested status for the identified Loop. The format of the LS\_ACC Payload is shown in table 32.

Table 32 - LSTS LS\_ACC Payload

| Bits<br>Word | 31     |     | 24 | 23                 |                                                    | 16        | 15       |         | 08  | 07         | •• | 00 |  |  |  |
|--------------|--------|-----|----|--------------------|----------------------------------------------------|-----------|----------|---------|-----|------------|----|----|--|--|--|
| 0            | 02h    |     |    | 00h                |                                                    |           | 00h      |         |     | 00h        |    |    |  |  |  |
| 1            | Reserv | /ed |    | Failed I           | Failed Receiver FC-FLA Compliance Level - obsolete |           |          |         |     | Loop State |    |    |  |  |  |
| 2            | MSB    |     |    | Curi               | ent Pu                                             | ıblic Loc | map      |         |     |            |    |    |  |  |  |
|              |        |     |    |                    | (16 bytes)                                         |           |          |         |     |            |    |    |  |  |  |
| 5            |        |     |    | -                  |                                                    |           |          |         |     | LSB        |    |    |  |  |  |
| 6            | MSB    |     |    | Curr               | ent Pri                                            | vate Lo   | op Devid | ces bit | map |            |    |    |  |  |  |
|              |        |     |    | •                  |                                                    | (16 b     | ytes)    |         |     |            |    |    |  |  |  |
| 9            |        |     |    | _                  |                                                    |           |          |         |     | LSB        |    |    |  |  |  |
| 10           | MSB    |     |    | AL_PA Position Map |                                                    |           |          |         |     |            |    |    |  |  |  |
|              |        |     |    | -                  | (128 bytes)                                        |           |          |         |     |            |    |    |  |  |  |
| 41           |        |     |    | •                  |                                                    |           |          |         |     | LSB        |    |    |  |  |  |

The Payload fields are defined as follows:

- a) **Failed Receiver field:** The Failed Receiver field shall contain the AL\_PA of the L\_Port that detected the Loop Failure. This field is valid only if the Loop State indicates a Loop Failure. This field shall be set to 00h if the FL\_Port detected the failure. This field shall be set to F7h if the Fabric Controller is unable to determine the port that detected the failure.
- b) Compliance Level field: obsolete.

c) Loop State field: The format of the Loop State field is shown in table 33.

Table 33 – Loop State

| State                                                                                                                                | Value   |
|--------------------------------------------------------------------------------------------------------------------------------------|---------|
| Reserved                                                                                                                             | 0       |
| Online – The loop is not performing Loop<br>Initialization, and no Failure has been detected.                                        | 1       |
| Loop Failure - A Loop Failure has been detected.<br>The AL_PA that detected the failure is reported in the<br>Failed Receiver field. | 2       |
| Initialization Failure - The FL_Port has not been able to complete Loop Initialization.                                              | 3       |
| Initializing - The loop is currently performing Loop Initialization.                                                                 | 4       |
| Reserved                                                                                                                             | 5 - 255 |

- d) **Current Public Loop Devices:** The format of the Current Public Loop Devices field follows the AL\_PA bit mapped format defined in FC-AL-2. If a bit is set to one in this field, then a Loop Device that has performed FLOGI is present at the identified location. This field is valid only when the value in the Loop State field is Online.
- e) Current Private Loop Devices: The format of the Current Private Loop Devices field follows the AL\_PA bit mapped format defined in FC-AL-2. If a bit is set to one in this field, then a Loop Device is present at the identified location. This field is valid only when the value in the Loop State field is Online.
- f) AL\_PA Position Map: The format of the AL\_PA Position Map field follows the AL\_PA position map format defined in FC-AL-2 for the Loop Initialization Loop Position (LILP) Sequence. If Byte 0 of the first word of the AL\_PA position map is set to zero, then no AL\_PA position map is available. This field is valid only when the value in the Loop State field is Online.

### 4.2.18 Registered State Change Notification (RSCN)

#### 4.2.18.1 Introduction

A RSCN ELS shall be sent to registered Nx\_Ports when an event occurs that may have affected the state of one or more Nx\_Ports, or the ULP state within the Nx\_Port. The term, state, is used here to refer to any condition of an Nx\_Port that is considered important enough to notify other Nx\_Ports of a change in that state. The definition of important is specific to an Nx\_Port implementation, but should include the Login state or Link state. The RSCN additionally provides an indication of the change of state that is being reported.

RSCN is intended to provide a timely indication of changes in nodes to avoid the considerable traffic that polling may generate. RSCN may be used to indicate a failed node, allowing the release of resources tied up by the failed node. RSCN may also be used to notify interested nodes of new devices coming online, and of changes within an online node that affect the operation of the system (e.g.,

more storage has become available). The sender of the RSCN Request may coalesce several events into a single report.

A RSCN Request may be sent by the Fabric to notify registered Nx\_Ports of changes detected by the Fabric. The Fabric Controller (FFFFDh) issues the RSCN Request to the registered Nx\_Ports. An Nx\_Port may also issue a RSCN Request to the Fabric Controller or another Nx\_Port to indicate changes of state within the Nx\_Port that are not otherwise detectable by the Fabric.

The Payload of a RSCN Request includes a list containing the addresses of the affected Nx\_Ports. The RSCN includes a summary indication of the type of state change being reported to assist in analyzing the change. The sending of RSCN between Nx\_Ports, neither of which are the Fabric Controller, is permitted.

## 4.2.18.2 RSCNs issued by the Fabric Controller

The Fabric Controller shall issue an RSCN Request to all registered Nx\_Ports for an affected Nx\_Port when the Fabric detects an event. The Fabric Controller shall ensure that any Fabric-provided resources (e.g., the Name Service) have received updates to reflect changes caused by the event, prior to issuing the RSCN for the event. An event may include any of the following:

- a) an implicit Fabric Logout of the affected Nx\_Port, including Loss-of-Signal, NOS, and OLS, or when the Fabric receives a FLOGI that contains new or different information from a port that had already completed FLOGI;
- b) a loop initialization of the affected L\_Port, and the L\_bit was set in the LISA Sequence;
- c) a Fabric Login from an affected Nx\_Port not previously logged in;
- d) the Fabric path between the affected Nx\_Port and any other Nx\_Port has changed (e.g., a change to the Fabric routing tables that affects the ability of the Fabric to deliver frames in order, or an E Port initialization or failure);
- e) any other Fabric-detected state change of the affected Nx Port;
- f) the affected Nx\_Port issues an RSCN Request to the Fabric Controller.

A registered Nx\_Port that receives an RSCN Request may perform any operation to determine the nature of the state change. These operations include the PDISC ELS, the ADISC ELS, a query to the Name Service, or a ULP query. The Fabric may accumulate affected Nx\_Port addresses for subsequent delivery to reduce the volume of RSCN traffic.

#### 4.2.18.3 RSCN issued by the affected Nx Port

An Nx\_Port shall issue an RSCN Request to the Fabric Controller or the Nx\_Port that has registered for receipt of RSCN Requests or both when an event is detected by an Nx\_Port. Fabric Controllers are implicitly registered to receive RSCNs after a successful implicit or explicit FLOGI. Nx\_Ports, neither of which are the Fabric Controller, that request RSCNs are hereafter called registered Nx\_Ports. Unless it is providing a service associated with a well known address an Nx\_Port shall only issue RSCNs with an event qualifier of 2h or 0h. An event may include any of the following:

- a) a failure within the affected Nx\_Port;
- b) any other important state change of the affected Nx\_Port (e.g., an event defined by a FC-4).

#### 4.2.18.4 RSCN initiative

An affected Nx\_Port shall issue one RSCN Request for all state changes that occur prior to the initiation of the RSCN Request; multiple RSCN Requests shall not be queued for initiation. An RSCN Request shall be considered initiated when the SOF of the first frame of the RSCN Request Sequence has been transmitted.

## 4.2.18.5 RSCN registration

A node (Fabric Controller, service, Nx\_Port) shall only issue RSCN requests to Nx\_Ports that have registered with the node to be notified of state changes. These registrations shall be performed using the State Change Registration (SCR) ELS.

#### 4.2.18.6 Protocol

- a) RSCN Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.18.7 Request Sequence

**Addressing:** If the Fabric is using RSCN to notify a registered Nx\_Port of a state change (see 4.2.18.2), the S\_ID is the Fabric Controller, (FFFFFDh) and the D\_ID is the address of the registered Nx\_Port destination. If an affected Nx\_Port is using RSCN to notify the Fabric or a registered Nx\_Port of a state change (see 4.2.18.3), the S\_ID designates either the Nx\_Port indicating a state change to the Fabric Controller or the registered Nx\_Port and the D\_ID is either the Fabric Controller, (FFFFFDh) or the address of the registered Nx\_Port destination.

Payload: The format of the RSCN Request Payload is shown in table 34.

31 00 **Bits** 24 23 16 80 07 15 Word Page Length (04h) 0 RSCN (61h) Payload Length 1 affected Port\_ID pages (1 to 255 pages, 4 bytes each) Ν

Table 34 - RSCN Payload

The RSCN Payload fields are defined as follows:

- a) Page Length: This field is the length in bytes of an affected Port\_ID page. This value is fixed at 04h.
- b) Payload Length: This field is the length in bytes of the entire Payload, inclusive of the word 0. This value shall be a multiple of 4 bytes. The minimum value of this field is 8 bytes. The maximum value of this field is 1024 bytes.
- c) Affected Port\_ID Pages: Each affected Port\_ID page contains the ID of the Nx\_Port, Fabric Controller, E\_Port, domain, or area for which the event was detected. The RSCN Payload

shall contain one or more of these pages. The generic format of the affected Port\_ID page is shown in table 35.

Table 35 - Generic affected Port\_ID page

| Bit in Byte<br>Byte | 7                              | 6                             | 5          | 4     | 3 | 2 | 1 | 0 |  |  |
|---------------------|--------------------------------|-------------------------------|------------|-------|---|---|---|---|--|--|
| 0 (Bits 31 - 24)    | reserved                       | reserved RSCN Event Qualifier |            |       |   |   |   |   |  |  |
| 1 (Bits 23 - 16)    | affected F                     | Port_ID by                    | rte 1 (Dom | nain) |   |   |   |   |  |  |
| 2 (Bits 15 - 08)    | affected Port_ID byte 2 (Area) |                               |            |       |   |   |   |   |  |  |
| 3 (Bits 07 - 00)    | affected Port_ID byte 3 (Port) |                               |            |       |   |   |   |   |  |  |

A) **RSCN Event Qualifier:** The RSCN Event Qualifier values are shown in table 36.

Table 36 - RSCN Event Qualifier values

|                                                                                                                                                                                                                                                                           |           | Va     | lue   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-------|-------|
| RSCN event Qualifier                                                                                                                                                                                                                                                      | Bit 5     | Bit 4  | Bit 3 | Bit 2 |
| Event is not specified                                                                                                                                                                                                                                                    | 0         | 0      | 0     | 0     |
| CHANGED NAME SERVER OBJECT - An object maintained by the Name Server has changed state for the port, area or domain indicated by the affected Port_ID.                                                                                                                    | 0         | 0      | 0     | 1     |
| CHANGED PORT ATTRIBUTE - An internal state of the port specified by the affected Port_ID has changed. The change of state is identified in a protocol specific manner.                                                                                                    | 0         | 0      | 1     | 0     |
| CHANGED SERVICE OBJECT - An object maintained by the service identified by the well-known address contained in affected Port_ID has changed state. This Event Qualifier value shall not be used by services accessed through N_Port_ID that are not well-known addresses. | 0         | 0      | 1     | 1     |
| CHANGED SWITCH CONFIGURATION - Switch configuration has changed for the area or domain specified by the affected Port_ID.                                                                                                                                                 | 0         | 1      | 0     | 0     |
| REMOVED OBJECT - The port, area or domain indicated by the affected Port_ID is no longer accessible on the Fabric.                                                                                                                                                        | 0         | 1      | 0     | 1     |
| Reserved                                                                                                                                                                                                                                                                  | All Other | Values |       |       |

B) Address Format: The format of the Address Format field is shown in table 37.

Table 37 – Address Format

| Format                                                                                                                                                                                                                                     | Value |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Port Address - Bytes 1, 2, and 3 of the affected Port_ID are valid, and indicate a single Nx_Port or service with a well-known address.                                                                                                    | 0     |
| Area Address Group - Bytes 1 and 2 of the affected Port_ID are valid, and indicates a group of addresses that encompass an Area of E_Port or Nx_Port addresses. Byte 3 shall be zero. Any links and ports within the area may be affected. | 1     |
| Domain Address Group - Byte 1 of the affected Port_ID is valid, and indicates a group of addresses that encompass a Domain. Bytes 2 and 3 shall be zero. Any links and ports within the domain may be affected.                            | 2     |
| Fabric Address Group - This format indicates a group of addresses that encompass the entire Fabric of Nx_Port addresses. Bytes 1, 2 and 3 shall be zero. Any links and ports within the area may be affected.                              | 3     |

#### 4.2.18.8 Reply Sequence

LS\_RJT: LS\_RJT signifies the rejection of the RSCN command

**LS\_ACC**: LS\_ACC signifies acceptance of the RSCN Request. The format of the LS\_ACC Payload is shown in table 38.

Table 38 – RSCN LS\_ACC Payload

| Bits<br>Word | 31  | •• | 24 | 23  | •• | 16 | 15  | •• | 08 | 07  | •• | 00 |
|--------------|-----|----|----|-----|----|----|-----|----|----|-----|----|----|
| 0            | 02h |    |    | 00h |    |    | 00h |    |    | 00h |    |    |

### 4.2.19 State Change Registration (SCR)

### 4.2.19.1 Description

The SCR ELS requests the Fabric Controller or Nx\_Port to add the Nx\_Port that is sending the SCR Request to the list of Nx\_Ports registered to receive the RSCN ELS.

### 4.2.19.2 Protocol

- a) State Change Registration Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.19.3 Request Sequence

**Addressing:** The S\_ID designates the Nx\_Port requesting registration for State Change Notification. The D\_ID designates either the Fabric Controller, FFFFDh, or the address of the Nx\_Port from which RSCNs are desired.

Payload: The format of the SCR Request Payload is shown in table 39.

Table 39 - SCR Payload

| Bits<br>Word | 31     |      | 24 | 23  | <br>16 | 15  | <br>80 | 07       |         | 00      |
|--------------|--------|------|----|-----|--------|-----|--------|----------|---------|---------|
| 0            | SCR (6 | 62h) |    | 00h |        | 00h |        | 00h      |         |         |
|              | Reserv | ed   |    |     |        |     |        | Registra | ation F | unction |

Registration Function: The format of the Registration Function field is shown in table 40.

Table 40 – Registration Function

| Function                                                                                                                                | Value   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|
| Reserved                                                                                                                                | 0       |
| Fabric Detected registration - Register to receive all RSCN Requests issued by the Fabric Controller for events detected by the Fabric. | 1       |
| Nx_Port Detected registration - Register to receive all RSCN Requests issued for events detected by the affected Nx_Port.               | 2       |
| Full registration - Register to receive all RSCN Requests issued. The RSCN Request shall return all affected N_Port_ID pages.           | 3       |
| Reserved                                                                                                                                | 4 - 254 |
| Clear registration - Remove any current RSCN registrations.                                                                             | 255     |

# 4.2.19.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the SCR command.

**LS\_ACC**: LS\_ACC signifies acceptance of the SCR Request and registration for RSCN. The format of the LS\_ACC Payload is shown in table 41.

Table 41 - SCR LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.20 Process login (PRLI)

#### 4.2.20.1 Introduction

The PRLI ELS is used to establish the operating environment between a group of related processes at the originating Nx\_Port and a group of related processes at the responding Nx\_Port (see 7.1).

#### 4.2.20.2 Protocol

- a) Process Login Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.20.3 Request Sequence

**Addressing:** The S\_ID field designates the Nx\_Port requesting Process Login. The D\_ID field designates the destination Nx\_Port of the Process Login.

**Payload:** The format of the Payload is shown in table 42.

Table 42 – PRLI Payload

| Bits<br>Word | 31      |      | 24 | 23                     |       | 16 | 15      |        | 08 | 07 | <br>00 |
|--------------|---------|------|----|------------------------|-------|----|---------|--------|----|----|--------|
| 0            | PRLI (2 | 20h) |    | Page L                 | ength |    | Payload | d Leng | th |    |        |
| 1            |         |      |    |                        |       |    |         |        |    |    |        |
|              |         |      |    | Service Parameter page |       |    |         |        |    |    |        |
| N            |         |      |    | •                      |       |    |         |        |    |    |        |

The Payload Field are defined as follows:

- a) Page length: Byte 1 of word 0 contains an 8-bit value that specifies the length of the Service Parameter page. The right-most two bits shall be zeros. The minimum Page Length value is 12 (see table 43).
- b) **Payload length:** Bytes 2-3 of word 0 contain a 16-bit value that specifies the length of the PRLI Payload. The right-most two bits shall be zeros. The value specified shall be greater than or equal to 16, and less than or equal to 65 532 (see table 43).
- c) **Service parameter page:** Words 1:N of the PRLI Payload contain the Service Parameter page. The Service Parameter page contains Service Parameters for a single image pair and is

associated with either a single FC-4 TYPE or is common to all FC-4 TYPE codes for the specified image pair. The format of PRLI Service Parameter pages is specified in table 43.

Table 43 – PRLI service parameter page format

| Item                                    | Word                                   | Bit   |
|-----------------------------------------|----------------------------------------|-------|
| TYPE Code or Common Service Parameters* | 0                                      | 31-24 |
| TYPE Code Extension                     | 0                                      | 23-16 |
| Originator Process_Associator Validity  | 0                                      | 15    |
| Responder Process_Associator Validity   | 0                                      | 14    |
| Establish Image Pair                    | 0                                      | 13    |
| Reserved                                | 0                                      | 12-0  |
| Originator Process_Associator           | 1                                      | 31-0  |
| Responder Process_Associator            | 2                                      | 31-0  |
| Service Parameters (optional per FC-4)  | 3 - 63 as<br>sepcified by<br>each FC-4 | 31-0  |

The PRLI service parameter page format fields are defined as follows:

- a) TYPE code or common service parameters: Identifies the protocol associated with this Service Parameter page. If byte 0 of the first word of a Service Parameter page contains the value 00h, the Service Parameter page contains Service Parameters common to all FC-4 Types at that image pair or Nx\_Port pair. If byte 0 of the first word of a Service Parameter page contains the value other than 00h, the Service Parameter page contains Service Parameters for the FC-4 TYPE indicated.
- b) **TYPE code extension:** Reserved for future use.
- c) Originator Process\_Associator validity:
  - 0 = not meaningful
  - 1 = meaningful
- d) Responder Process\_Associator validity:
  - 0 = not meaningful
  - 1 = meaningful
- e) Establish Image Pair:
  - 0 = Exchange Service Parameters only
  - 1 = Establish image pair and exchange Service Parameters

- **f)** Originator Process\_Associator: Identifies the process or group of processes within the Originator (see FC-FS-2).
- **g)** Responder Process\_Associator: Identifies the process or group of processes within the Responder (see FC-FS-2).
- h) **Service Parameters:** No Common Service Parameters are currently specified. The length of the optional Service Parameters may be from 0 to 60 words as specified in the respecitive FC-4 standard (see 7.1.1). The first three words of each PRLI service parameter page shall be as specified in table 43, words 0 to 2.

### 4.2.20.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies rejection of the PRLI Request

**LS\_ACC**: LS\_ACC signifies successful completion of the PRLI Request. The format of the LS\_ACC Payload is shown in table 44.

Bits 31 24 23 16 15 80 07 00 Word 02h 0 Page Length Payload Length 1 Service Parameter Response page .. Ν

Table 44 - PRLI LS\_ACC Payload

The LS\_ACC Payload fields are defined as follows:

- a) Page length: Byte 1 of word 0 contains an 8-bit value that specifies the length of the Service Parameter Response page. The right-most two bits shall be zeros. The value shall be the same value as in the Page Length field of the PRLI Request.
- b) **Payload length:** Bytes 2-3 of word 0 contain a 16-bit value that specifies the length of the PRLI LS\_ACC Payload. The right-most two bits shall be zeros. The value specified shall be greater than or equal to 16, and less than or equal to 65 532.
- c) Service parameter response page: Words 1:N of the PRLI LS\_ACC Payload contain the Service Parameter Response page. The Service Parameter Response page contains Service Parameter responses for a single image pair or Nx\_Port pair and is associated with a single FC-4 TYPE or common to all FC-4 Types at that image pair or Nx\_Port pair.

The format of PRLI LS ACC Service Parameter Response pages is described in table 45.

Table 45 - PRLI LS\_ACC service parameter response page format

| Item                                           | Word                                      | Bit   |
|------------------------------------------------|-------------------------------------------|-------|
| TYPE Code or Common Service Parameters*        | 0                                         | 31-24 |
| TYPE Code Extension                            | 0                                         | 23-16 |
| Originator Process_Associator Validity         | 0                                         | 15    |
| Responder Process_Associator Validity          | 0                                         | 14    |
| Image Pair Established                         | 0                                         | 13    |
| Reserved                                       | 0                                         | 12    |
| Response Code (see table 46)                   | 0                                         | 11-8  |
| Reserved                                       | 0                                         | 7-0   |
| Originator Process_Associator                  | 1                                         | 31-0  |
| Responder Process_Associator                   | 2                                         | 31-0  |
| Service Parameter Response (optional per FC-4) | 3 - 63 as<br>specified<br>by each<br>FC-4 | 31-0  |

The PRLI LS ACC service parameter response page format fields are defined as follows:

- a) TYPE code or common service parameters: Identifies the protocol associated with this Service Parameter Response page. If byte 0 of the first word of a Service Parameter Response page contains the value 00h, the Service Parameter page contains Service Parameters common to all FC-4 Types at that image pair or Nx\_Port pair. If byte 0 of the first word of a Service Parameter Response page contains a value other than 00h, the Service Parameter page contains Service Parameters for the FC-4 TYPE indicated.
- b) TYPE code extension: Reserved for future use.
- c) Originator Process\_Associator validity:

0 = not meaningful

1 = meaningful

# d) Responder Process\_Associator validity:

0 = not meaningful

1 = meaningful

- e) **Image Pair Established:** Image Pair Established is valid only if bit 13 was set to one on the corresponding Service Parameter page of the PRLI Request.
  - 0 = Image pair not established, see response code for additional information
  - 1 = Image pair established
- f) **Response code:** The response code field contains an encoded binary value indicating the result of the PRLI Request. The meanings of the encoded response code values are shown in table 46.
- g) Service parameter response: Provides feedback to the Originator as to the resultant state of the Service Parameters as returned by the Responder. The length of the PRLI LS\_ACC service parameter repsonse may be 0 to 60 words long as specified in the respective FC-4 standard (see 7.1.1). The first three words of each PRLI LS\_ACC service parameter response page shall be as specified in table 45, words 0 to 2.

Table 46 - PRLI accept response code

| Encoded Value<br>Word 0, Bits 11-8 | Description                                                                                                                                                                            |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000b                              | Reserved                                                                                                                                                                               |
| 0001b                              | Request executed                                                                                                                                                                       |
| 0010b                              | The Exchange recipient has no resources available for establishing image pairs between the specified source and destination Nx_Ports. The PRLI Request may be retried.                 |
| 0011b                              | Initialization is not complete for the Exchange recipient. The PRLI Request may be retried.                                                                                            |
| 0100b                              | The Exchange recipient corresponding to the Responder Process_Associator specified in the PRLI Request and PRLI LS_ACC response does not exist. The PRLI Request shall not be retried. |
| 0101b                              | The Exchange recipient has a predefined configuration that precludes establishing this image pair. The PRLI Request shall not be retried.                                              |
| 0110b                              | Request executed conditionally. Some Service Parameters were not able to be set to their requested state (see table 43)                                                                |
| 0111b                              | Obsolete                                                                                                                                                                               |
| 1000b                              | Service Parameters are invalid                                                                                                                                                         |
| 1001b to 1111b                     | Reserved                                                                                                                                                                               |

# 4.2.21 Process logout (PRLO)

# 4.2.21.1 Description

The PRLO ELS is used to request invalidation of the operating environment between an image at the initiating Nx\_Port and an image at the recipient Nx\_Port. PRLO frees resources committed by a previous PRLI function (see 7.2).

### 4.2.21.2 Protocol

- a) Process Logout Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.21.3 Request Sequence

**Addressing:** The S\_ID field designates the Nx\_Port requesting Process Logout. The D\_ID field designates the destination Nx\_Port of the Process Logout.

**Payload:** The format of the Payload is shown in table 47.

Table 47 – PRLO Payload

| Bits<br>Word          | 31                                                                              |                                                       | 24 | 23        |  | 16 | 15 |  | 08 | 07 |  | 00 |
|-----------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|----|-----------|--|----|----|--|----|----|--|----|
| 0                     | PRLO                                                                            | PRLO (21h) Obsolete (10h) <sup>a</sup> Payload Length |    |           |  |    |    |  |    |    |  |    |
| 1                     |                                                                                 | Logout Parameter page                                 |    |           |  |    |    |  |    |    |  |    |
|                       |                                                                                 |                                                       |    | (4 words) |  |    |    |  |    |    |  |    |
| N                     |                                                                                 |                                                       |    |           |  |    |    |  |    |    |  |    |
| <sup>a</sup> This fie | <sup>a</sup> This field is obsolete, but shall be set to 10h for compatibility. |                                                       |    |           |  |    |    |  |    |    |  |    |

The PRLO Payload fields shall be defined as follows:

- a) Payload length: The Payload length shall be 20.
- b) Logout parameter page: Words 1:N of the PRLO Payload contain the Logout Parameter page. The Logout Parameter page contains logout parameters for a single image pair and is associated with either a single FC-4 TYPE or is common to all FC-4 TYPE codes for the specified image pair.

The format of PRLO Logout Parameter pages is described in table 48.

Table 48 – PRLO logout parameter page format

| Word | Bit                        |
|------|----------------------------|
| 0    | 31-24                      |
| 0    | 23-16                      |
| 0    | 15                         |
| 0    | 14                         |
| 0    | 13-0                       |
| 1    | 31-0                       |
| 2    | 31-0                       |
| 3    | 31-0                       |
|      | 0<br>0<br>0<br>0<br>0<br>0 |

a If byte 0 of the first word of a Logout Parameter page is set to the value 00h, the Logout Parameter page is common to all FC-4 Types at that image pair.

The PRLO logout parameter page format fields shall be defined as follows:

- a) TYPE code or common logout parameters: Identifies the protocol associated with this Logout Parameter page. If byte 0 of the first word of a Logout Parameter page contains the value 00h, the Logout Parameter page contains Logout Parameters common to all FC-4 Types at that image pair or Nx\_Port pair. If byte 0 of the first word of a Logout Parameter page contains the value other than 00h, the Logout Parameter page contains Logout Parameters for the FC-4 TYPE indicated.
- b) TYPE code extension: Reserved for future use.
- c) **Originator Process\_Associator validity:** Identifies the process or group of processes within the Originator (see FC-FS-2).
  - 0 = not meaningful
  - 1 = meaningful
- d) Responder Process\_Associator validity: Identifies the process or group of processes within the Responder (see FC-FS-2).
  - 0 = not meaningful
  - 1 = meaningful

# 4.2.21.4 Reply sequence

- LS\_RJT: LS\_RJT signifies rejection of the PRLO Request
- LS ACC: LS ACC signifies successful completion of the PRLO Request

LS ACC Payload: The format of the LS ACC Payload is shown in table 49.

Table 49 - PRLO LS\_ACC Payload

| Bits<br>Word | 31                                                                              |                                | 24 | 23 |  | 16 | 15 |  | 08 | 07 |  | 00 |
|--------------|---------------------------------------------------------------------------------|--------------------------------|----|----|--|----|----|--|----|----|--|----|
| 0            | 02h Obsolete (10h) <sup>a</sup> Payload Length                                  |                                |    |    |  |    |    |  |    |    |  |    |
| 1            |                                                                                 | Logout Parameter Response page |    |    |  |    |    |  |    |    |  |    |
|              |                                                                                 |                                |    | _  |  |    |    |  |    |    |  |    |
| N            |                                                                                 |                                |    |    |  |    |    |  |    |    |  |    |
| a This fie   | <sup>a</sup> This field is obsolete, but shall be set to 10h for compatibility. |                                |    |    |  |    |    |  |    |    |  |    |

The PRLO LS\_ACC Payload fields shall be defined as follows:

- a) Payload length: The Payload length shall be 20 (see table 50).
- b) Logout parameter response page: Words 1:N of the PRLO LS\_ACC Payload contain the Logout Parameter Response page. The Logout Parameter Response page contains a logout parameter response for a single image pair and is associated with a single FC-4 TYPE or common to all FC-4 Types at that image pair or Nx\_Port pair.

The format of PRLO LS ACC Logout Parameter Response pages is described in table 50.

Table 50 - PRLO LS\_ACC logout parameter response page format

| Item                                               | Word | Bit   |
|----------------------------------------------------|------|-------|
| TYPE Code or Common Logout Parameters <sup>a</sup> | 0    | 31-24 |
| TYPE Code Extension                                | 0    | 23-16 |
| Originator Process_Associator Validity             | 0    | 15    |
| Responder Process_Associator Validity              | 0    | 14    |
| Reserved                                           | 0    | 13-12 |
| Response Code (see table 51)                       | 0    | 11-8  |
| Reserved                                           | 0    | 7-0   |
| Originator Process_Associator                      | 1    | 31-0  |
| Responder Process_Associator                       | 2    | 31-0  |
| Reserved                                           | 3    | 31-0  |
|                                                    |      |       |

a If byte 0 of the first word of a Logout Parameter page is set to the value 00h, the Logout Parameter page is common to all FC-4 Types at that image pair.

The PRLO LS\_ACC logout parameter response page format fields shall be defined as follows:

- a) TYPE code or common logout parameters: Identifies the protocol associated with this Logout Parameter Response page. If byte 0 of the first word of a Logout Parameter Response page contains the value 00h, the Logout Parameter page contains Logout Parameters common to all FC-4 Types at that image pair or Nx\_Port pair. If byte 0 of the first word of a Logout Parameter Response page contains a value other than 00h, the Logout Parameter page contains Logout Parameters for the FC-4 TYPE indicated.
- b) **TYPE code extension:** Reserved for future use.
- c) **Originator Process\_Associator validity:** Identifies the process or group of processes within the Originator (see FC-FS-2).
  - 0 = not meaningful 1 = meaningful
- d) **Responder Process\_Associator validity:** Identifies the process or group of processes within the Responder (see FC-FS-2).
  - 0 = not meaningful 1 = meaningful
- e) **Response code:** The Response code field contains an encoded binary value indicating the result of the PRLO Request and the status of the image pair. The meanings of the encoded Response code values are shown in table 51.

Table 51 - PRLO accept response code

| Encoded Value<br>Word 0, Bits 11-8 | Description                                                                                                                                                                            |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0000b                              | Reserved                                                                                                                                                                               |
| 0001b                              | Request executed                                                                                                                                                                       |
| 0010b - 0011b                      | Reserved                                                                                                                                                                               |
| 0100b                              | The Exchange recipient corresponding to the Responder Process_Associator specified in the PRLO Request and PRLO LS_ACC response does not exist. The PRLO Request shall not be retried. |
| 0101b - 0110b                      | Reserved                                                                                                                                                                               |
| 0111b                              | Obsolete                                                                                                                                                                               |
| 1000b                              | Obsolete                                                                                                                                                                               |
| 1001b - 1111b                      | Reserved                                                                                                                                                                               |

## 4.2.22 Test Process Login State (TPLS)

### 4.2.22.1 Description

The TPLS ELS is used to determine whether image pairs are established for the image pairs specified by the combination of the S\_ID || Originator Process\_Associator || D\_ID || Responder Process\_Associator. Upon receiving a TPLS Request, the receiving Nx\_Port checks whether it has an image pair established for each specified image.

TPLS verifies the Login state for the source Nx Port at the destination Nx Port.

The LS\_ACC Reply Sequence confirms the successful completion of the TPLS function and indicates whether or not an image pair is established for the source specified by the S\_ID and image pair(s) contained in the Payload. The Payload of the LS\_ACC Reply indicates the state of the image pair.

### 4.2.22.2 Protocol

- a) Test Process Login State Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.22.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port associated with the image pair. The D\_ID field designates the destination Nx\_Port associated with the image pair.

Payload: The format of the Payload is shown in table 52.

Table 52 - TPLS Payload

| Bits<br>Word                                                                    | 31     |                                                       | 24 | 23 |           | 16 | 15 |  | 08 | 07 |  | 00 |
|---------------------------------------------------------------------------------|--------|-------------------------------------------------------|----|----|-----------|----|----|--|----|----|--|----|
| 0                                                                               | TPLS ( | TPLS (23h) Obsolete (10h) <sup>a</sup> Payload Length |    |    |           |    |    |  |    |    |  |    |
| 1                                                                               |        | Image Pair ID page                                    |    |    |           |    |    |  |    |    |  |    |
|                                                                                 |        |                                                       |    | •  | (4 words) |    |    |  |    |    |  |    |
| N                                                                               |        |                                                       |    |    |           |    |    |  |    |    |  |    |
| <sup>a</sup> This field is obsolete, but shall be set to 10h for compatibility. |        |                                                       |    |    |           |    |    |  |    |    |  |    |

- a) Payload length: The Payload length sall be 20.
- b) Image pair ID page: Words 1:N of the TPLS Payload contain the Image Pair ID pages. The Image Pair ID page contains parameters required to identify a single image pair. The format of Image Pair ID pages is described in table 53.

Table 53 – TPLS image pair ID page format

| Item                                   | Word | Bit   |
|----------------------------------------|------|-------|
| Reserved                               | 0    | 31-16 |
| Originator Process_Associator Validity | 0    | 15    |
| Responder Process_Associator Validity  | 0    | 14    |
| Reserved                               | 0    | 13-0  |
| Originator Process_Associator          | 1    | 31-0  |
| Responder Process_Associator           | 2    | 31-0  |
| Reserved                               | 3    | 31-0  |

a) **Originator Process\_Associator validity:** Identifies the process or group of processes within the Originator (see FC-FS-2).

0 = not meaningful

1 = meaningful

b) **Responder Process\_Associator validity:** Identifies the process or group of processes within the Responder (see FC-FS-2).

0 = not meaningful

1 = meaningful

# 4.2.22.4 Reply sequence

LS\_RJT: LS\_RJT signifies rejection of the TPLS Request.

**LS\_ACC**: LS\_ACC signifies successful completion of the TPLS Request. The format of the LS\_ACC Payload is shown in table 54.

Table 54 - TPLS LS\_ACC Payload

| Bits<br>Word | 31                                                                              |                    | 24 | 23                                         |  | 16 | 15 |  | 08 | 07 |  | 00 |
|--------------|---------------------------------------------------------------------------------|--------------------|----|--------------------------------------------|--|----|----|--|----|----|--|----|
| 0            | (02h)                                                                           |                    |    | Obsolete (10h) <sup>a</sup> Payload Length |  |    |    |  |    |    |  |    |
| 1            |                                                                                 | TPLS Response page |    |                                            |  |    |    |  |    |    |  |    |
|              |                                                                                 |                    |    | (4 words)                                  |  |    |    |  |    |    |  |    |
| N            |                                                                                 |                    |    |                                            |  |    |    |  |    |    |  |    |
| a This fie   | <sup>a</sup> This field is obsolete, but shall be set to 10h for compatibility. |                    |    |                                            |  |    |    |  |    |    |  | ·  |

- a) **Payload length:** Bytes 2-3 of word 0 contain a 16-bit value that specifies the length of the TPLS LS\_ACC Payload. The value shall be 20.
- b) **TPLS response page:** Words 1:N of the TPLS Payload contain the Image Pair ID page. The TPLS Response page contains TPLS response information associated with a single image pair.

The format of TPLS Response pages is described in table 55.

Table 55 - TPLS response page format

| Item                                   | Word | Bits  |
|----------------------------------------|------|-------|
| Reserved                               | 0    | 31-16 |
| Originator Process_Associator Validity | 0    | 15    |
| Responder Process_Associator Validity  | 0    | 14    |
| Reserved                               | 0    | 13-12 |
| Response Code (see table 56)           | 0    | 11-8  |
| Reserved                               | 0    | 7-0   |
| Originator Process_Associator          | 1    | 31-0  |
| Responder Process_Associator           | 2    | 31-0  |
| Reserved                               | 3    | 31-1  |
| Image Pair State                       | 3    | 0     |

a) **Originator Process\_Associator validity:** Identifies the process or group of processes within the Originator (see FC-FS-2).

0 = not meaningful

1 = meaningful

b) **Responder Process\_Associator validity:** Identifies the process or group of processes within the Responder (see FC-FS-2).

0 = not meaningful

1 = meaningful

c) Response code: The Response code field contains an encoded binary value indicating the result of the PRLI Request and the status of the image pair. The meanings of the encoded Response code values are shown in table 56.

Table 56 - TPLS accept response code

| Encoded Value<br>Word 0, Bits 11-8 | Description      |
|------------------------------------|------------------|
| 0000b                              | Reserved         |
| 0001b                              | Request executed |
| 0010b - 0110b                      | Reserved         |
| 0111b                              | Obsolete         |
| 1000b - 1111b                      | Reserved         |

### d) Image pair state:

- 1 = image pair established
- 0 = image pair not established

## 4.2.23 Request Node Identification Data (RNID)

#### 4.2.23.1 Introduction

The RNID ELS is an ELS for acquiring Node Identification Data. The normal response shall be an Accept (ACC) ELS Sequence with Node Identification Data in its payload. If the recipient Nx\_Port or Fx\_Port does not support the RNID ELS, it shall reply with an LS\_RJT ELS Sequence with a reason code of "Command not supported". If the recipient Nx\_Port or Fx\_Port does not support the requested Node Identification Data format, it shall either reply with an LS\_RJT ELS Sequence with a reason code of "Unable to perform command request" and reason code explanation of "Unable to supply requested data" or reply with an Accept ELS Payload containing only the Common Identification Data.

If an Nx\_Port sends an RNID ELS and receives an LS\_RJT Sequence with a reason code of "Unable to perform command request" and reason code explanation of "Unable to supply requested data", the ULP may cause the Nx\_Port to retry the RNID ELS with a different Node Identification Data Format request if an Nx\_Port sends an RNID ELS and receives a reply with an Accept ELS containing only Common Identification Data (see Table 61) in its payload, the ULP usage of the Common Identification Data and any further discovery processing is beyond the scope of this standard.

The RNID ELS may be sent to any Nx\_Port or Fx\_Port in the Fabric. If the destination is known to be an Fx\_Port, then the RNID ELS shall be sent to the Fabric Controller (FFFFDh). If an RNID ELS is sent to the Fabric Controller (FFFFDh), the reply shall represent the Fabric Controller node that contains the Fx\_Port to which the requesting FC port is attached. If the receiving FC port has been determined to be an Nx\_Port, then the RNID ELS shall be sent to that Nx\_Port.

# 4.2.23.2 Protocol

a) Request Node-Identification (RNID) request Sequence

b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.23.3 Request Sequence

**Addressing:** The S\_ID field designates the requesting source port or the Fabric Controller (FFFFDh). The D\_ID field designates the Nx\_Port or Fx\_Port receiving the RNID request or the Fabric Controller (FFFFDh).

Payload: The format of the RNID Payload is shown in table 57.

Table 57 - RNID Payload

| Bits<br>Word | 31 24<br>Byte 0                    | 23 16<br>Byte 1 | 15 08<br>Byte 2 | 07 00<br>Byte 3 |
|--------------|------------------------------------|-----------------|-----------------|-----------------|
| 0            | RNID (78h)                         | 00h             | 00h             | 00h             |
| 1 1          | Node Identification<br>Data Format | Reserved        |                 |                 |

**Node Identification Data Format:** The format of the Node Identification Data field is shown in table 58.

**Table 58 – Node Identification Data Format** 

| Value     | Description                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 00h       | Shall be set when the requesting Nx_Port is requesting Common Identification Data only (see table 61).                                      |
| 01h – DEh | For Specific Indentification Data corresponding to a specific ULP (e.g., FC-SB-3), shall be set to the FC-4 TYPE (see FC-FS-2) of that ULP. |
| DFh       | Shall be used if the General Topology Discovery format (see 4.2.23.5) is to be returned in the RNID Accept Payload.                         |
| E0h – FFh | Shall be used to indicate that Specific Node Identification Data in a vendor specific format is to be returned.                             |

# 4.2.23.4 Reply Sequence

LS\_RJT: Signifies the rejection of the RNID request

**LS\_ACC:** Signifies acceptance of the RNID request and presents Node Identification Data Format. The format of the Accept Payload is shown in table 59.

| <b>Table 59 -</b> | - RNID | Accept | : Payload |
|-------------------|--------|--------|-----------|
|-------------------|--------|--------|-----------|

| Bits<br>Word | 31 24<br>Byte 0                    | 23 16<br>Byte 1                                   | 15 08<br>Byte 2                              | 07 00<br>Byte 3 |  |  |  |  |
|--------------|------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------|--|--|--|--|
| 0            | 02h                                | 00h                                               | 00h                                          | 00h             |  |  |  |  |
| 1            | Node Identification<br>Data Format | Common<br>Identification Data<br>Length (0 or 16) | Reserved Specific Identification Data Length |                 |  |  |  |  |
| 2            | Common Identification Data         |                                                   |                                              |                 |  |  |  |  |
|              | (0 bytes or 16 bytes)              |                                                   |                                              |                 |  |  |  |  |
| 5            |                                    |                                                   |                                              |                 |  |  |  |  |
| 6            | Specific Identification Data (m)   |                                                   |                                              |                 |  |  |  |  |
|              | (0 - max bytes)                    |                                                   |                                              |                 |  |  |  |  |
| m            |                                    |                                                   |                                              |                 |  |  |  |  |

a) **Node Identification Data Format:** The value of the Node Identification Data Format field is shown in table 60.

Table 60 – Node Identification Data Format

| Value     | Description                                                                                                                                                                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h       | The RNID Accept Payload only contains the Common Identification Data (see table 61).                                                                                                                                                                                                |
| 01h – DEh | The RNID Accept Payload may contain the Common Identification Data and shall contain the Specific Identification Data for the ULP that is assigned an FC-4 frame type (see FC-FS-2) equal to the value of the Node Identification Data Format from the RNID Payload (see table 58). |
| DFh       | The RNID Accept Payload shall contain the Common Identification Data and General Topology Discovery format Specific Identification Data.                                                                                                                                            |
| E0h – FFh | The RNID Accept Payload may contain the Common Identification Data and shall contain vendor specific Specific Identification Data.                                                                                                                                                  |

- b) Common Identification Data Length: When Common Node Identification Data is included in the RNID Accept payload, the Common Identification Data length shall specify 16 bytes as the size of the Common Identification Data field. When the ULP indicates in the Node Identification Data Format that no (see table 60) Common Node Identification Data is to be included in the RNID Accept payload, the Common Identification Data length shall be set to zero.
- c) Specific Identification Data Length: The Specific Identification Data Length field indicates the number of bytes in the Specific Identification Data field. The length is determined by the Node Identification Data Format requested for the respective ULP. This value shall be a multiple of 4. The minimum value of this field is zero bytes. The maximum value of this field is 252 bytes.

LSB

3

d) **Common Identification-Data:** The format of the Common Identification Data field is shown in table 61.

| Bits<br>Word | 31  | <br>Byte 0 | 24 | 23            | <br>Byte 1 | 16 | 15 | <br>Byte 2 | 80 | 07 | <br>Byte 3 | 00 |
|--------------|-----|------------|----|---------------|------------|----|----|------------|----|----|------------|----|
| 0            | MSB |            |    | N_Port_Name   |            |    |    |            |    |    |            |    |
| 1            |     |            |    | (8 bytes) LSB |            |    |    |            |    |    |            |    |
| 2            | MSB |            |    | Node Name     |            |    |    |            |    |    |            |    |

Table 61 – Common Identification Data

A) **N\_Port\_Name:** The N\_Port\_Name field provides the Name\_Identifier (see FC-FS-2) of the Nx Port or Fx Port to which the RNID ELS was directed.

(8 bytes)

- B) **Node\_Name**: The Node\_Name field provides the Name\_Identifier (see FC-FS-2) of the node associated with the Nx\_Port or Fx\_Port indicated in the N\_Port\_Name field.
- e) Specific Identification Data: The format of the Specific Identification Data field shall be dependent on the Node Identification Data Format field (see Table 58). If the value of the Node Identification Data Format field is set to DFh (see 4.2.23.5). For all other values of the Node Identification Data Format field the standard for the related ULP defines the format, fields used, and size of the parameters.

NOTE 3 – The information in the Specific Identification Data should only be used to determine the product identity of a node. The information in the Specific Identification Data should not be used to determine the functional characteristics or the service capabilities of a node.

### 4.2.23.5 General Topology Discovery format:

When the Node Identification Data Format field in the RNID LS\_ACC Payload (see table 60) indicates the General Topology Discovery format (DFh) the RNID LS\_ACC payload shall contain the following:

- a) Node Identification Data Format field set to DFh;
- b) Common Identification-Data length set to 16;
- c) Specific Identification-Data length set to 52;
- d) Common Node Identification Data (see table 61);
- e) Specific Identification Data (see table 62).

| Bits<br>Word | 31 24<br>Byte 0          | 23 16<br>Byte 1 | 15 08<br>Byte 2   | 07 00<br>Byte 3 |  |  |  |  |
|--------------|--------------------------|-----------------|-------------------|-----------------|--|--|--|--|
| 0            | MSB                      | Vendor          | Unique            |                 |  |  |  |  |
|              |                          | (16 b           | oytes)            |                 |  |  |  |  |
| 3            |                          | _               |                   | LSB             |  |  |  |  |
| 4            | Associated Type          |                 |                   |                 |  |  |  |  |
| 5            | Physical Port Number     |                 |                   |                 |  |  |  |  |
| 6            | Number of Attached       | Nodes           |                   |                 |  |  |  |  |
| 7            | Node Management          | IP Version      | UDP/TCP Port Numb | er              |  |  |  |  |
| 8            | MSB                      | IP Ac           | ldress            |                 |  |  |  |  |
|              |                          | (16 bytes)      |                   |                 |  |  |  |  |
| 11           |                          | LSB             |                   |                 |  |  |  |  |
| 12           | Reserved Vendor Specific |                 |                   |                 |  |  |  |  |

Table 62 – General Topology Specific Identification Data

- a) **Associated Type:** The Associated Type (see table 63) is the type of Fibre Channel functionality associated with the node of the Nx\_Port or Fx\_Port receiving the RNID request (e.g., switch, hub, storage device).
- b) **Physical Port Number:** A vendor unique value that identifies the physical port that has a Fibre Channel link attached.
- c) Number of Attached Nodes: The number of nodes attached to the Nx\_Port, or Fx\_Port, receiving the RNID request. The minimum value is one. The maximum value is 126. For any Nx\_Port receiving the RNID, the Number of Attached Nodes shall be set to one. For any FL\_Port receiving the RNID, the Number of Attached Nodes shall be set to the number of nodes known to that FL\_Port (i.e., the number of loop devices know to that FL\_Port).
- d) **Node Management:** The Node Management field contains the protocol by which a Node Management Entity for the responding node may be accessed (see table 65).

.

Table 63 – Associated Type

| Value (hex) | Туре                                                                    |
|-------------|-------------------------------------------------------------------------|
| 00 00 00 00 | Reserved                                                                |
| 00 00 00 01 | Unknown                                                                 |
| 00 00 00 02 | Other (none of the following)                                           |
| 00 00 00 03 | Hub                                                                     |
| 00 00 00 04 | Switch                                                                  |
| 00 00 00 05 | Gateway                                                                 |
| 00 00 00 06 | obsolete                                                                |
| 00 00 00 07 | obsolete                                                                |
| 00 00 00 09 | Storage device (i.e., disk drive, CD-ROM drive, tape drive).            |
| 00 00 00 0A | Host                                                                    |
| 00 00 00 0B | Storage subsystem (e.g., raid, library)                                 |
| 00 00 00 0E | Storage Access Device (e.g., Media changer)                             |
| 00 00 00 11 | NAS server                                                              |
| 00 00 00 12 | Bridge                                                                  |
| 00 00 00 13 | Virtualization device                                                   |
| xx xx xx FF | Multi-function device (see table 64 for values to fill in for xx xx xx) |
| All Others  | Reserved                                                                |

Table 64 - Multi-function device bit definitions

| Bit position | Function                        |
|--------------|---------------------------------|
| 31           | Hub                             |
| 30           | Switch                          |
| 29           | Gateway                         |
| 28           | Storage device                  |
| 27           | Host                            |
| 26           | Storage subsystem               |
| 25           | Storage access device           |
| 24           | Wavelength division multiplexer |
| 23           | NAS server                      |
| 22           | Bridge                          |
| 21           | Virtualization device           |
| 20-8         | Reserved                        |

**Table 65 - Node Management** 

| Value     | Protocol            | Reference                                                                                                                        |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 00h       | IP/UDP/SNMP         | See RFC 791, RFC 2460, RFC 768, RFC 1157, and RFC 1901                                                                           |
| 01h       | IP/TCP/Telnet       | See RFC 791, RFC 2460, RFC 793 and RFC 854                                                                                       |
| 02h       | IP/TCP/HTTP         | See RFC 791, RFC 2460, RFC 793, and RFC 2616                                                                                     |
| 03h       | IP/TCP/HTTPS        | See RFC 791, RFC 2460, RFC 793, and RFC 2818                                                                                     |
| 04h       | IP/TCP/HTTP/X<br>ML | See RFC 791, RFC 2460, RFC 793, RFC 2616, CIM <sup>a</sup> , XML <sup>b</sup> , CIM-XML <sup>c</sup> , and CIM-HTTP <sup>d</sup> |
| 05h - FFh | Reserved            |                                                                                                                                  |

<sup>&</sup>lt;sup>a</sup> Distributed Management Task Force, Common Information Model (CIM) in XML, Version 2.2, June 14, 1999

e) IP Version: The IP versions are shown in table 66.

Table 66 - IP Version

| Value     | Version             | Description                                                                                                                      |
|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 00h       | None                | Indicates that this port is not providing IP support, and the Node Management, UDP Port, and IP Address fields shall be ignored. |
| 01h       | IPv4 (IP version 4) | See RFC 791                                                                                                                      |
| 02h       | IPv6 (IP version 6) | See RFC 2460                                                                                                                     |
| 03h - FFh | Reserved            |                                                                                                                                  |

- f) **UDP/TCP Port Number:** The numerical value used in UDP (see RFC 768) or TCP (see RFC 793) to distinguish among multiple destinations at the same IP address.
- g) **IP Address:** The IP address by which a Node Management Entity for the responding node may be reached. If the IP version field is set to one, the IPv4 address shall be stored in the least significant word of the IP field and the remainder shall be set to zero.

<sup>&</sup>lt;sup>b</sup> World Wide Web consortium, *Extensible Markup Language (XML) 1.0*, Second Edition, October, 6, 2000

<sup>&</sup>lt;sup>c</sup> Distributed Management Task Force, *Specification for the Representation of CIM in XML (CIM-XML)*, Version 2.0, July 20, 1999

Distributed Management Task Force, Specification for CIM Operations over HTTP (CIM-HTTP), Version 1.0, August 11, 1999

## 4.2.24 Registered Link Incident Report (RLIR)

## 4.2.24.1 Description

The following terms are used to reference the ports, nodes, and records related to link incident reporting:

- a) incident port: The port on which the link incident occurred and that detected the link incident.
- b) connected port or connected node: The port or node connected directly to the incident port by a Fibre Channel link.
- c) reporting port: The port that sends the Link Incident Record.
- d) registered port: A port that is registered with the reporting port to receive link incident reports.
- e) reporting node: The node that creates the Link Incident Record describing the incident on the incident port.

The RLIR ELS shall provide a method for a reporting Nx\_Port to send a Link Incident Record to a registered Nx\_Port. The normal response to an RLIR ELS Sequence shall be a LS\_ACC ELS Sequence with no Payload. If the recipient Nx\_Port does not support the RLIR ELS, it shall reply with an LS\_RJT ELS Sequence with a reason code of "Command not supported". If the recipient Nx\_Port is unable to accept the specified Link Incident Record type, it shall reply with an LS\_RJT ELS Sequence with a reason code of "Unable to perform command request".

A port shall recognize a link incident when a condition is detected for which an incident code (see table 72) is defined. When a link incident is recognized and a recipient of Link Incident Records is registered for the incident port, a Link Incident Record that contains information related to the link incident shall be created. When a Link Incident Record is generated, the reporting port shall use the link incident reporting procedure to pass the Link Incident Record to a registered port. The link incident reporting mechanism, if any, for a port that does not use this link incident reporting procedure is beyond the scope of this standard.

After a Link Failure is detected, the reporting node may delay recognizing and considering this link failure as a reportable link incident condition, for a specific period of time. Some FC-4 protocols may be capable of transparently recovering from a Link Failure condition, and may not generate a Link Incident Record. If the Link Failure condition persists for longer than the FC-4 specified time out period, then a Link Incident Record is generated and reported.

# 4.2.24.2 Link Incident reporting procedure

The incident port's reporting node shall generate one Link Incident Record for each link incident. The number of Link Incident Records a reporting node may hold is vendor specific. If the incident port's reporting node attempts to generate a Link Incident Record but does not have resources to hold the record, the oldest Link Incident Record shall be discarded, and the new Link Incident Record shall be retained.

The port selected as the reporting port by the reporting node shall present the Link Incident Records by sending RLIR ELSs to ports registered as valid recipients of Link Incident Records. After sending all required RLIR ELSs containing the Link Incident Record, the port may discard the Link Incident Record.

The reporting port shall select ports from the registrant list for each Link Incident Record Format. The RLIR shall first be sent to all registered ports that have registered to always receive RLIRs. If no registered ports are registered to always receive RLIR or if RLIR was not successfully transmitted to at least one of those ports registered to always receive RLIRs, then the reporting port shall send the RLIR to a registered port selected from among those that have registered to conditionally receive RLIR. If RLIR is not successfully transmitted to the selected registered port registered to conditionally receive RLIR, the sending port shall select another port, if any, from the established registration list. The RLIR ELS is considered successfully transmitted if a LS\_ACC is received for the RLIR within 2xR\_A\_TOV.

If a reporting port is not able to successfully deliver a RLIR ELS to a registered port, the registered port's registration for the incident port may be discarded. If a reporting node is not able to successfully deliver an RLIR ELS through a particular reporting port, it may select a different reporting port and try again. If no registration is established, it is vendor specific as to whether the incident port's reporting node generates and retains or discards the Link Incident Record.

### 4.2.24.3 Protocol

- a) RLIR Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.24.4 Request Sequence

**Addressing:** The S\_ID designates the reporting port that is providing the Link Incident Record. The D\_ID field designates the registered port.

Payload: The format of the RLIR Payload is shown in table 67.

Table 67 - RLIR Payload

| Bits<br>Word | 31                              |         | 24                            | 23            |                                                                         | 16 | 15      |        | 08      | 07                                    |  | 00 |
|--------------|---------------------------------|---------|-------------------------------|---------------|-------------------------------------------------------------------------|----|---------|--------|---------|---------------------------------------|--|----|
| 0            | RLIR (7                         | 79h)    |                               | 00h           |                                                                         |    | 00h     |        |         | 00h                                   |  |    |
| 1            | Link Incident Record<br>Format  |         |                               |               | ommon Link cident Record ength  Common Link Incident- Descriptor Length |    |         |        | ngth    | Specific Link Incide<br>Record Length |  |    |
| 2            | MSB Common Link Incident Record |         |                               |               |                                                                         |    |         |        |         |                                       |  |    |
|              | (m) (m=4 or 16)                 |         |                               |               |                                                                         |    |         |        |         |                                       |  |    |
| m+1          |                                 |         |                               | •             |                                                                         |    |         |        |         | LSB                                   |  |    |
| 0            | Commo                           | on Linl | k Incider                     | nt Descr      | iptor                                                                   |    |         |        |         |                                       |  |    |
| m+2          | IQ                              |         |                               | IC            |                                                                         |    | EPAI (c | Iomain | /area d | of ISL)                               |  |    |
| m+3          |                                 | _       | Specific Link Incident Record |               |                                                                         |    |         |        | _       |                                       |  |    |
|              |                                 |         |                               | (0-max bytes) |                                                                         |    |         |        |         |                                       |  |    |
| n            |                                 |         |                               | -             |                                                                         |    |         |        |         |                                       |  | _  |

 a) Link Incident Record Format: The format of the Link Incident Record-Format field is shown in table 68.

Table 68 - Link Incident Record Format

| Description                 | Value     |
|-----------------------------|-----------|
| Common Link Incident Record | 00h       |
| Specific-coded value        | 01h - FFh |

If the length of the Specific Link Incident Record is zero, the Link Incident Record Format field shall be set to zero. If the length of the Specific Link Incident Record is not zero, the Link Incident Record Format field shall be set to the FC-4 TYPE (see FC-FS-2) associated with the format of the Specific Link Incident Record. A value of zero in the Specific-coded value field indicates that only the Common Link Incident Record and the Common Link Incident Descriptor are being reported and that the Specific Link Incident Record Length shall be zero.

- b) Common Link Incident Record Length: When only the incident port's Name\_Identifiers (i.e., the N\_Port\_Name and the Node\_Name) are included in the RLIR ELS Payload, the Common Link Incident Record length shall specify 16 bytes, indicating the size of the Common Link Incident Record field. When the additional Common Link Incident Record fields are included in the Payload, the Common Link Incident Record Length shall specify 64 bytes. The link identified by the N\_Port\_Name and the Node\_Name shall be one end of the link for which the report is being made. The report may be passed through that link or by any other path to the node that has registered to receive RLIR ELSs.
- c) Common Link Incident Descriptor Length: The Common Link Incident Descriptor length shall be set to 4h, specifying the number of bytes in the Link Incident Descriptor field.
- d) Specific Link Incident Record Length: The Specific Link Incident Record Length shall be specified according to the Link Incident Record Format indicated for the respective ULP. The length shall specify the number of bytes in the Specific Link Incident Record field. This value shall be a multiple of 4. The minimum value of this field is 0. The maximum value of this field is 252.
- e) Common Link Incident Record: If the Common Link Incident Length field value is 16 (i.e., m=4), then the Common Link Incident Record shall contain only the first four words (i.e., the Incident port N\_Port\_Name and Incident port Node Name fields) in table 69. If the Common Link Incident Length field value is 64 (i.e., m=16), then the Common Link Incident Record shall contain all the words specified in table 69. Optional fields (i.e., words 4 through 15) that have unknown values shall be set to zero. The Common Link Incident Record format is specified in table 69.

| Bits<br>Word | 31      | ••      | 24     | 23     |        | 16        | 15       |       | 08 | 07     | ••     | 00     |  |  |  |
|--------------|---------|---------|--------|--------|--------|-----------|----------|-------|----|--------|--------|--------|--|--|--|
| 0            | MSB     |         |        |        | Incide | nt port I |          |       |    |        |        |        |  |  |  |
| 1            |         |         |        | =      |        |           |          | LSB   |    |        |        |        |  |  |  |
| 2            | MSB     |         |        | _      | Incide | ent port  |          |       |    |        |        |        |  |  |  |
| 3            |         |         |        |        |        |           |          | LSB   |    |        |        |        |  |  |  |
| 4            | Inciden | t Port  | Туре   | Obsole | ete    |           |          |       |    |        |        |        |  |  |  |
| 5            | MSB     |         |        | _ (    | Connec | ted por   | t N_Port | _Name | )  |        |        |        |  |  |  |
| 6            |         |         |        |        |        |           |          |       |    | LSB    |        |        |  |  |  |
| 7            | MSB     |         |        | _      | Conne  | cted po   | rt Node_ | Name  |    |        |        |        |  |  |  |
| 8            |         |         |        |        |        |           |          |       |    | LSB    |        |        |  |  |  |
| 9            | MSB     |         |        | _      |        | Fabric_   | _Name    |       |    |        |        |        |  |  |  |
| 10           |         |         |        |        |        |           |          |       |    | LSB    |        |        |  |  |  |
| 11           | Inciden | t Port  | Number |        |        |           |          |       |    |        |        |        |  |  |  |
| 12           | Transa  | ction I | D      |        |        |           |          |       |    |        |        |        |  |  |  |
| 13           | reserve | ed      |        |        |        |           |          |       |    | Time S | tamp l | Format |  |  |  |
| 14           | MSB     |         |        |        |        | Time      | Stamp    |       |    |        |        |        |  |  |  |
| 15           |         |         |        |        |        |           |          |       |    | LSB    |        |        |  |  |  |

Table 69 - Common Link Incident Record Data

- A) Incident port N Port Name: The Name Identifier that is the incident port's N Port Name.
- B) Incident port Node\_Name: The Name\_Identifier that is the incident port's Node\_Name.
- C) **Incident Port Type:** The value in the Incident Port Type field specifies the type of the incident port. Port Type values are defined in FC-GS-3. A value of zero in the field indicates the Incident Port Type is unknown or unspecified.
- D) **Connected Port N\_Port\_Name:** The Name\_Identifier that is the connected port's N Port Name.
  - aa) If the incident port is an L\_Port in a private loop, the connected port shall be the port associated with the link incident, if known.
  - bb) If the incident port is an L\_Port in a public loop, the connected port shall be the FL\_Port.
  - cc) If the incident port is an Nx\_Port connected to a Fabric, the connected port shall be the F\_Port.
  - dd) If the incident port is an FL\_Port, the connected port shall be the port associated with the link incident, if known.
  - ee) If the connected port's N\_Port\_Name is unknown or unspecified, the Connected Port N Port Name may be zero

- E) Connected Port Node\_Name: The Name\_Identifier that is the Node\_Name of the port described by the Connected Port N\_Port\_Name. If the connected port is an Fx\_Port, the Node\_Name may be the Fabric\_Name, the Node\_Name of the local Fabric element, or unspecified. If the Node\_Name is unknown or unspecified, the corresponding field shall be zero.
- F) **Fabric\_Name:** The Fabric\_Name of the incident port's Fabric. For Nx\_Port devices this is the value obtained in the FLOGI LS\_ACC Payload. Private loop devices do not have a Fabric Name and shall report zeros.
- G) **Incident Port Number:** The vendor specific identification of the incident port within the unit having Fibre Channel ports. When this field is presented in the Common Link Incident Record, the Incident Port Number shall be valid.
- H) **Transaction ID:** A 32-bit value that starts at one and is incremented by one for each link incident record generated by the reporting node. Applications receiving link incident records may use this value to eliminate duplicates or detect missing records. The value of zero shall be used only to indicate that the Transaction ID is unknown or unspecified.
- I) **Time Stamp Format:** This field specifies the format of the Time Stamp field as shown in table 70.
- J) **Time Stamp:** The time stamp value in the format specified by the Time Stamp Format field. If the Time Stamp Format value is 0, the Time Stamp field is unknown or unspecified and may have any value.

**Table 70 – Time Stamp Format values** 

| Value      | Meaning                                                                                                                                                                  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h        | The Time Stamp field is unknown or unspecified.                                                                                                                          |
| 01h        | Time Server: The 64-bit time stamp is reported in units of seconds and fractions of a second. The time stamp uses the value obtained from the Time Server (see FC-GS-4). |
| 02h        | Clock synchronization format: The 64-bit time stamp is reported as defined for the Clock Synchronization Update (CSU) ELS.                                               |
| 03h to FFh | reserved                                                                                                                                                                 |

### f) Common Link Incident Descriptor:

A) Incident Qualifier (IQ): This field (byte 0 of the Common Link Incident Descriptor) qualifies the manner in which the contents of the Link Incident Record shall be interpreted. The meaning is defined in table 71.

Table 71 - Incident Qualifier

| Bits | Meaning   |
|------|-----------|
| 31   | Reserved. |

**Table 71 – Incident Qualifier(Continued)** 

| Bits  |                                                                                                                                                                                                  | Meaning                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 30    | Reserv                                                                                                                                                                                           | ved.                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 29    | Switch: When set to one, indicates that the incident port is a port on a switch node. When se to zero, indicates that the incident port is not a port on a switch node.                          |                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| 28    | When (E_Po                                                                                                                                                                                       | sion Port: set to one, indicates that the switch port is an Inter-Switch-Link Expansion port rt). When zero, bit 28 indicates that the switch port is not an Inter-Switch-Link sion port.                                                                                                    |  |  |  |  |  |  |  |  |
| 27-26 | Bits 27                                                                                                                                                                                          | ty Indication: 7-26 constitute a two-bit code that identifies the severity indication for the link nt. The codes and their meanings are as follows:                                                                                                                                          |  |  |  |  |  |  |  |  |
|       | Code                                                                                                                                                                                             | Meaning                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|       | Informational report: Indicates link incident notification of an informational purpose.                                                                                                          |                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|       | Link degraded but operational:  Indicates if the link associated with the incident port is not in a Link-Fail Offline State as a result of the event that generated the Link Incident Reference. |                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|       | 2                                                                                                                                                                                                | Link not operational: Indicates if the link associated with the incident port is in a Link-Failure or Offline State as a result of the event that generated the Link Incident Record.                                                                                                        |  |  |  |  |  |  |  |  |
|       | 3                                                                                                                                                                                                | Reserved.                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 25    | When subjec                                                                                                                                                                                      | sembly type: set to one, specifies that the type of subassembly used for the port that is the to fthis Link Incident Record is a laser. When set to zero, specifies that the type assembly used for the port that is the subject of this Link Incident Record is not r.                      |  |  |  |  |  |  |  |  |
| 24    | When that pr                                                                                                                                                                                     | lentification: set to one, specifies that the Specific-Link Incident Record Data is in a format ovides field-replaceable-unit (FRU) identification. When set to zero, specifies e Specific-Link Incident Record Data is not in a format that provides field-eable-unit (FRU) identification. |  |  |  |  |  |  |  |  |

- B) Incident Code (IC): This field (byte 1 of the Common Link Incident Descriptor) contains the incident code that describes the incident that was observed by the incident node.
  - aa) Bit 23 is reserved.
  - bb) Bits 22-16 is the value that specifies the type of incident that was observed. The values specified and their meanings are shown in table 72.

Table 72 - Incident Code values

| Value     | Meaning                                                                                                                                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h       | Reserved.                                                                                                                                                                                                                                                                     |
| 01h       | Implicit incident: A condition, caused by an event known to have occurred within the incident port, has been recognized by the incident port. The condition affects the attached link in such a way that it may cause a link incident to be recognized by the connected port. |
| 02h       | Bit-error-rate threshold exceeded:<br>The incident port has detected that the Error Interval Count equals the Error Threshold (see FC-FS-2).                                                                                                                                  |
| 03h       | Link Failure - Loss-of-Signal or synchronization: The incident port has recognized a Loss-of-Synchronization condition, and it persisted for more than the R_T_TOV timeout period (see FC-FS-2).                                                                              |
| 04h       | Link Failure - NOS recognized:<br>The NOS has been recognized by the incident port (see FC-FS-2)                                                                                                                                                                              |
| 05h       | Link Failure - Primitive Sequence timeout: The incident port has recognized either a Link-Reset-Protocol timeout (see FC-FS-2), or a timeout when timing for the appropriate response while in the LF1 State and after NOS is no longer recognized (see FC-FS-2).             |
| 06h       | Link Failure - Invalid Primitive Sequence for port state: The incident port recognized either a LR or LRR Primitive Sequence while in the OL3 State (see FC-FS-2).                                                                                                            |
| 07h       | Link Failure - Loop Initialization time out: The incident port failed to complete loop initialization within the normal loop time out period (see FC-AL-2).                                                                                                                   |
| 08h       | Link Failure – receiving LIP(F8): The incident port is receiving LIP(F8) indicating some other port on the loop is experiencing a Loss-of-Signal condition.                                                                                                                   |
| 09h - FFh | Reserved.                                                                                                                                                                                                                                                                     |

- C) Expansion Port address identifier (EPAI): When bits 29 and 28 of the IQ field of the Common Link Incident Descriptor word of the RLIR payload (see table 67) of the Payload are both ones, indicating that the incident port is an Inter-Switch-Link Expansion port (word 0 bits 15-0 of the Common Link Incident Descriptor) contain the Domain and Area address identifiers (DDAAh) of the connected Expansion port on this Inter-Switch-Link.
- D) **Specific Link Incident Record:** The format of the Specific Link Incident Record Field is dependent on the Link Incident Record Format. Specific Link Incident Record formats are defined in the specification for the specific FC-4 (e.g., FC-SB-3) indicated by the Link Incident Record Format.

## 4.2.24.5 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the RLIR Request

**LS\_ACC**: LS\_ACC signifies acceptance of the RLIR Request and its Link Incident Record. The format of the LS ACC Payload is shown in table 73.

Table 73 - RLIR LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | •• | 16 | 15  | •• | 08 | 07  | <br>00 |
|--------------|-----|--------|-----|----|----|-----|----|----|-----|--------|
| 0            | 02h |        | 00h |    |    | 00h |    |    | 00h |        |

# 4.2.25 Link Incident Record Registration (LIRR)

# 4.2.25.1 Description

See 4.2.24.1 for terms related to link incident reporting.

The LIRR ELS requests the recipient to add or remove this source Nx\_Port to or from the list of Nx\_Port's registered to receive the Registered Link Incident Report (RLIR) ELS. The normal response to a LIRR ELS Sequence shall be a LS\_ACC ELS Sequence with no Payload. If the recipient Nx\_Port does not support the LIRR ELS, it shall reply with a LS\_RJT ELS Sequence with a reason code of "Command not supported". If the recipient Nx\_Port is unable to perform the requested LIRR registration function or the specified format is not supported, it shall reply with a LS\_RJT ELS Sequence with a reason code of "Unable to perform command request".

When an Nx\_Port is registering or de-registering with the Fabric for receipt of Link Incident Records from the Fabric, the LIRR ELS shall be sent to the Management Server (FFFFAh).

### 4.2.25.2 Registration for Link Incident Records

To obtain and process Link Incident Records, a ULP shall register it's port with other ports of interest. The term 'ports of interest' refers to all ports that the registered port may address and for which the port requires their Link Incident Records.

An Nx\_Port shall attempt to register as a valid recipient of subsequent Link Incident Records by sending a LIRR ELS as soon as the requesting Nx\_Port has determined its address identifier and has determined the address identifiers for the ports of interest. The ULP shall indicate the format of Link Incident Records of interest that are being registered. The recipient Nx\_Port shall respond with a LS ACC ELS with no Payload.

When a registered ULP is no longer interested in receiving Link Incident Records from any port or ports of interest, it shall send a LIRR ELS to de-register their port as a valid recipient of Link Incident Records. The ULP shall indicate the format of Link Incident Records that are being de-registered.

If a LIRR ELS requesting a de-registration function for a port that is not registered is received, the recipient port accepts the request by sending a LS\_ACC ELS and performs no further action. If a LIRR ELS requesting a registration for a port that is already registered for the specified format, the recipient port shall accept by sending a LS\_ACC ELS request and perform no further action.

The recipient of a LIRR ELS shall maintain a separate established registration list of valid Link Incident Record recipients for each registration format specified. The size of the established registration

list maintained by each port for each specified format is vendor specific. If the established registration list is full when an add registration function occurs, the port does not accept this registration, and rejects this request indicating "unable to perform command request".

A Logout occurring between a node and a valid-registered-recipient node shall cause de-registration of the valid-recipient port in the established registration list maintained by the port.

# 4.2.25.3 Responsibilities of Valid-Registered Recipients

A valid-registered recipient shall be capable of receiving and processing Link Incident Records that are generated according to the Link Incident reporting procedure (see 4.2.24.2). The usage and coordination of Link Incident Records by ULPs is beyond the scope of this standard.

If a valid registered recipient receives a Link Incident Record for a format that does not match its registration format, the recipient port shall reject the RLIR ELS with a reason code of "Unable to perform command request".

### 4.2.25.4 Protocol

- a) LIRR Request Sequence
- b) LS ACC or LS RJT Reply Sequence

# 4.2.25.5 Request Sequence

**Addressing:** The S\_ID designates the source port requesting registration for Link Incident Records. The D\_ID field designates the port receiving the registration request.

Payload: The format of the LIRR Payload is shown in table 74.

Table 74 - LIRR Payload

| Bits<br>Word | 31      |         | 24      | 23       |                    | 16               | 15      |    | 80 | 07  | <br>00 |
|--------------|---------|---------|---------|----------|--------------------|------------------|---------|----|----|-----|--------|
| 0            | LIRR (  | 7Ah)    |         | 00h      |                    |                  | 00h     |    |    | 00h |        |
| 1            | Registr | ation F | unction | Link Inc | ident I<br>ation F | Record-<br>ormat | Reserve | ed |    |     |        |

The LIRR Payload field shall be defined as follows:

a) **Registration Function:** The Registration function shall specify the mode of registration (i.e., whether the recipient node adds or removes the sending Nx\_Port to or from its list of registered

nodes, hereafter referred to as the established registration list). The format of the Registration Function field is shown in table 75.

Table 75 – Registration Function

| value     | Function                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h       | Reserved                                                                                                                                                                                                                                                                                                                                                                                       |
| 01h       | Set registration – conditionally receive: The source port is registered as a valid recipient of subsequent RLIR ELSs for the format specified. The port is added to the appropriate format specific established registration list. This source port is chosen as the recipient of a link incident record only if no other recipients from this established registration list have been chosen. |
| 02h       | Set registration – always receive: The source port is registered as a valid recipient of subsequent RLIR ELSs for the format specified. The port is added to the appropriate format specific established registration list. This source port is always chosen as a recipient of a link incident record.                                                                                        |
| 03h - FEh | Reserved                                                                                                                                                                                                                                                                                                                                                                                       |
| FFh       | Clear registration: The source port is de-registered as a valid recipient of subsequent RLIR ELSs for the format specified (i.e., remove from the established registration list).                                                                                                                                                                                                              |

b) **Link Incident Record-Registration Type:** The type of the requested Link Incident Record Registration is shown in table 76.

Table 76 – Link Incident Record-Registration Format

| Value     | Description          |
|-----------|----------------------|
| 00h       | Common Format        |
| 01h - FFh | Specific-coded value |

A Link Incident Record Registration Format of 00h specifies that only the Common Link Incident Record and the Link Incident Descriptor is reported. If the Link Incident Record Registration format is non-zero, it shall be set to the Specific-coded value (FC-4 Device Type) of the registration format being requested for a specific client ULP (e.g., see FC-SB-3). The Specific-coded value uses the TYPE codes defined in FC-4 data structures of this standard. These codes allow clients to define and register for Link Incident Record formats for their own particular usage according to the unique FC-4 protocol.

### 4.2.25.6 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the LIRR Request

**LS\_ACC**: LS\_ACC Signifies acceptance of the LIRR Request and the registration for RLIR ELSs. The format of the LS\_ACC Payload is shown in table 77.

Table 77 - LIRR LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

## 4.2.26 Get Alias\_ID (GAID)

# 4.2.26.1 Description

The GAID ELS shall be sent to the Fabric Controller by the Alias Server (see FC-FS-2) to request a unique Alias\_ID to be associated with the Alias Group indicated in the passed Alias\_Token.

### 4.2.26.2 Protocol

- a) GAID Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.26.3 Request Sequence

**Addressing:** The S\_ID designates the Alias Server (FFFF8h). The D\_ID field designates the Fabric Controller (FFFFDh).

**Payload:** The format of the Payload is shown in table 78.

Table 78 - GAID Payload

| Bits<br>Word | 31              |        | 24 | 23        |    | 16     | 15    |  | 08 | 07  | <br>00 |
|--------------|-----------------|--------|----|-----------|----|--------|-------|--|----|-----|--------|
| 0            | GAID (          | 30h)   |    | 00h       |    |        | 00h   |  |    | 00h |        |
| 1            | MSB             |        |    | _         |    | Alias_ | Token |  |    |     |        |
| 2            |                 |        |    |           |    | (12 b  | ytes) |  |    |     |        |
| 3            |                 |        |    |           |    |        |       |  |    | LSB |        |
| 4            |                 |        |    | Alias_SP  |    |        |       |  |    |     |        |
|              |                 |        |    |           |    | (80 b  | ytes) |  |    |     |        |
| 23           |                 |        |    |           |    |        |       |  |    |     |        |
| 24           | NP_Lis<br>(Numb |        |    | entries = | n) |        |       |  |    |     |        |
| 25           | NP_Lis          | st (1) |    |           |    |        |       |  |    |     |        |
|              |                 |        |    |           |    |        |       |  |    |     |        |
| 24 + n       | NP_Lis          | st (n) |    |           |    |        |       |  |    |     |        |

a) Alias Group Token (Alias\_Token): This is the token identifying the Alias Group. See FC-GS-5 for a description of the Alias\_Token.

b) Alias Group Service Parameters (Alias\_SP): The Alias\_SP defines the Service Parameters to be used for all operations with this Alias Group. The Service Parameters are passed as defined by the Common Service Parameters and the appropriate Class Service Parameters (see 6.6).

NOTE 4 – This field is used by the Fabric Controller to ensure that the Service Parameters to be used by the Alias Group are not in conflict with the Fabric Service Parameters.

- c) Nx\_Port List Length (NP\_List\_Length): The NP\_List\_Length specifies the number of entries in the following NP\_List.
- d) Nx\_Port List (NP\_List): The NP\_List contains one entry for each N\_Port\_ID to be included in the Alias Group. The N\_Port\_ID shall not be an Alias\_ID. The format of each NP\_List entry is as shown in table 79.

Table 79 – NP\_List Entry Format

| Bits<br>Word | 31    |     | 24 | 23       |    | 16 | 15 | <br>08 | 07 | <br>00 |
|--------------|-------|-----|----|----------|----|----|----|--------|----|--------|
| 0            | Reser | ved |    | N_Port_l | ID |    |    |        |    |        |

NOTE 5 – The Fabric Controller uses the NP\_List to determine whether it supports an Alias Group composed of these Nx\_Ports (e.g., if the Fabric does not support an Alias Group that spans Domains, and the NP\_List contains Nx\_Ports in multiple Domains, the request may be rejected). Alternatively, the Fabric may form an Alias Group from the Nx\_Ports within a single Domain.

## 4.2.26.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the GAID Request. An LS\_RJT shall be returned if an Alias\_ID is not generated. A reason code of "Unable to perform command request" shall be generated, along with a reason code explanation given in table 147.

**LS\_ACC:** The format of the Payload for the LS\_ACC indicating that this request has been successfully completed is shown in table 80.

Table 80 – Get Alias ID LS ACC Payload

| Bits<br>Word | 31                     |  | 24 | 23  |  | 16 | 15  |  | 80 | 07  |  | 00 |
|--------------|------------------------|--|----|-----|--|----|-----|--|----|-----|--|----|
| 0            | 02h                    |  |    | 00h |  |    | 00h |  |    | 00h |  |    |
| 1            | Alias Group Identifier |  |    |     |  |    |     |  |    |     |  |    |

The Alias Group Identifier field contains the Alias\_ID that the Nx\_Port shall recognize, in addition to its native address identifier.

### 4.2.27 Fabric Activate Alias ID (FACT)

### 4.2.27.1 Description

The FACT ELS shall be sent to the Fabric Controller by the Alias Server (see FC-FS-2) to cause it to assign the passed Alias\_ID as an Alias\_ID for the passed Nx\_Ports.

#### 4.2.27.2 Protocol

- a) FACT Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

## 4.2.27.3 Request Sequence

**Addressing:** The S\_ID designates the Alias Server (FFFF8h). The D\_ID field designates the Fabric Controller (FFFFDh).

**Payload:** The Payload of the request contains a list of the Nx\_Ports for which the Alias\_ID is to be recognized and the Alias\_ID to be recognized as an Alias\_ID. The format of the Payload is shown in table 81.

**Bits** 31 24 23 07 00 16 15 80 Word FACT (31h) 00h 00h 0 00h Alias ID 1 NP\_List\_Length 2 (Number of NP\_List entries = n) 3 NP List (1) 2 + n NP List (n)

Table 81 - Fabric Activate Alias ID Payload

- a) Alias Group Identifier (Alias\_ID): This is the Alias\_ID that the Fabric shall recognize for the Nx\_Ports in the list, in addition to their native address identifiers.
- b) **Nx\_Port List Length (NP\_List\_Length):** The NP\_List\_Length specifies the number of entries in the following NP\_List.
- c) Nx\_Port List (NP\_List): The NP\_List contains one entry for each Nx\_Port for which the Alias\_ID is to be assigned as an Alias\_ID. The N\_Port\_ID shall be right aligned within the NP\_List entry (i.e., the high-order byte of the entry shall be ignored and the low-order 3 bytes shall contain the N\_Port\_ID).

### 4.2.27.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FACT Request. n LS\_RJT with a reason code of "Unable to perform command request" shall be returned if an Alias\_ID is not activated as an Alias\_ID.

**LS\_ACC**: The format of the Payload for the LS\_ACC indicating that this request has been successfully completed is shown in table 82.

Table 82 - Fabric Activate Alias\_ID LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.28 Fabric Deactivate Alias\_ID (FDACT)

# 4.2.28.1 Description

The FDACT ELS shall be sent to the Fabric Controller by the Alias Server (see FC-FS-2) to request that it deassign the indicated Alias\_ID as an Alias Group identifier for the passed Nx\_Ports. When there are no longer any Nx\_Ports for which the Alias\_ID is active, the Fabric Controller shall free up the Alias\_ID for subsequent reassignment.

### 4.2.28.2 Protocol

- a) FDACT Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.28.3 Request Sequence

**Addressing:** The S\_ID designates the Alias Server (FFFF8h). The D\_ID field designates the Fabric Controller (FFFFDh).

**Payload:** The Payload of the request contains the Alias\_ID to be deactivated, and the list of Nx Ports for which this Alias ID is to be deactivated. The format of the Payload is shown in table 83.

Table 83 - Fabric Deactivate Alias ID Payload

| Bits<br>Word | 31 24 23 16 15 08 07    |             |  |           |    |  |  |  |  |  |  | 00 |
|--------------|-------------------------|-------------|--|-----------|----|--|--|--|--|--|--|----|
| 0            | FDACT (32h) 00h 00h 00h |             |  |           |    |  |  |  |  |  |  |    |
| 1            | Alias_I                 | )           |  |           |    |  |  |  |  |  |  |    |
| 2            | NP_List                 |             |  | entries = | n) |  |  |  |  |  |  |    |
| 3            | NP_List                 | t (1)       |  |           |    |  |  |  |  |  |  |    |
|              |                         |             |  |           |    |  |  |  |  |  |  |    |
| 2 + n        | NP_List                 | NP_List (n) |  |           |    |  |  |  |  |  |  |    |

- a) Alias Group ID (Alias ID): This is the Alias ID to be deactivated.
- b) **Nx\_Port List Length (NP\_List\_Length):** The NP\_List\_Length specifies the number of entries in the following NP\_List.

c) Nx\_Port List (NP\_List): The NP\_List contains one entry for each Nx\_Port for which the Alias\_ID is to be deactivated as an Alias\_ID. The N\_Port\_ID shall be right aligned within the NP\_List entry (i.e., the high-order byte of the entry shall be ignored and the low-order 3 bytes shall contain the N\_Port\_ID).

## 4.2.28.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FDACT Request. An LS\_RJT with a reason code of "Unable to perform command request" shall be returned if the Alias\_ID is not deactivated as an Alias\_ID.

**LS\_ACC**: The format of the Payload for the LS\_ACC indicating that this request has been successfully completed is shown in table 84.

Table 84 - Fabric Deactivate Alias ID LS ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.29 N\_Port Activate Alias\_ID (NACT)

## 4.2.29.1 Description

The NACT ELS shall be sent to an Nx\_Port by Alias Server (see FC-FS-2) to cause it to assign the passed Alias\_ID as an Alias\_ID.

### 4.2.29.2 Protocol

- a) NACT Request Sequence
- b) LS\_ACC or LS\_RJT

## 4.2.29.3 Reply Sequence

**Addressing:** The S\_ID designates the Alias Server (FFFF8h). The D\_ID field designates the Nx\_Port receiving the NACT.

**Payload:** The Payload of the request contains the Alias\_Token of the Alias Group that the Nx\_Port is joining, the Service Parameters associated with that Alias Group, and the Alias\_ID to be assigned to the Nx\_Port. The format of the Payload is shown in table 85.

| Bits<br>Word | 31      |       | 24 | 23       | <br>16 | 15    | <br>80 | 07  | <br>00 |
|--------------|---------|-------|----|----------|--------|-------|--------|-----|--------|
| 0            | FACT    | (33h) |    | 00h      |        | 00h   |        | 00h |        |
| 1            | MSB     |       |    |          | Alias_ | Token |        |     |        |
| 2            |         |       |    |          | (12 b  | ytes) |        |     |        |
| 3            |         |       |    | •        |        |       |        | LSB |        |
| 4            | Alias_I | ID    |    |          |        |       |        |     |        |
| 5            |         |       |    |          | Alias  | s_SP  |        |     |        |
|              |         |       |    | <u>-</u> |        | ytes) |        |     |        |
| 24           |         |       |    | •        |        |       |        |     |        |

Table 85 - N\_Port Activate Alias\_ID Payload

- a) Alias Group Token (Alias\_Token): This is the token identifying the Alias Group. It contains the Alias\_Class and Alias\_Qualifier of the Alias Group the Nx\_Port is being requested to join. The Nx\_Port validates that it supports that particular Alias Class. See FC-GS-5 for a description of the Alias Token.
- b) Alias Group Identifier (Alias\_ID): The Alias Group Identifier field contains the Alias\_ID that the Nx\_Port shall recognize, in addition to its native address identifier.
- c) Alias Group Service Parameters (Alias\_SP): The Alias\_SP defines the Service Parameters to be used for all operations with this Alias Group (see FC-FS-2).

NOTE 6 – These Service Parameters may differ from those passed during Login.

For Multicast Groups, only the Common Service Parameters and Class 3 Service Parameters are used. For Hunt Groups, all Service Parameters may be used.

The Nx\_Port shall transmit a LS\_ACC to notify the Alias Server if the Nx\_Port:

- a) Supports the Alias\_Class in the Alias\_Token.
- b) Supports the Alias Group Service Parameters specified in Alias\_SP.
- c) Has assigned the passed Alias\_ID as an Alias\_ID for this Nx\_Port.

# 4.2.29.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the NACT Request. An LS\_RJT shall be returned if the Alias\_ID is unable to be activated as an Alias\_ID. A reason code of "Unable to perform command request" shall be generated, along with a reason code explanation given in table 147.

**LS\_ACC:** The format of the Payload for the LS\_ACC indicating that this request has been successfully completed is shown in table 86. If the Nx\_Port is unable to perform all of the above functions, it shall send an LS\_RJT as a reply.

Table 86 – N\_Port Activate Alias\_ID LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.30 N\_Port Deactivate Alias\_ID (NDACT)

## 4.2.30.1 Description

The NDACT ELS shall be sent to an Nx\_Port by Alias Server (see FC-FS-2) to cause it to deactivate the passed Alias\_ID as an Alias\_ID.

### 4.2.30.2 Protocol

- a) NDACT Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

## 4.2.30.3 Request Sequence

**Addressing:** The S\_ID designates the Alias Server (FFFF8h). The D\_ID field designates the Nx Port receiving the NDACT.

**Payload:** The Payload of the request contains, among other parameters, the Alias\_ID to be deactivated by the Nx\_Port. The format of the Payload is shown in table 87. The Nx\_Port shall transmit a LS ACC to notify the Alias Server of a deactivation of an Alias ID.

Table 87 - N Port Deactivate Alias ID Payload

| Bits<br>Word | 31       |         | 24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|----------|---------|----|-----|--------|-----|--------|-----|--------|
| 0            | NDACT    | Γ (34h) |    | 00h |        | 00h |        | 00h |        |
| 1            | Alias_II | D       |    |     |        |     |        |     |        |

Alias Group Identifier (Alias\_ID): The Alias Group Identifier field shall contain the Alias\_ID that the Nx\_Port no longer recognizes.

# 4.2.30.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the NDACT Request. An LS\_RJT shall be returned if the Alias\_ID is unable to be deactivated as an Alias\_ID. A reason code of "Unable to perform command request" shall be generated, along with one of the reason code explanations in table 147.

**LS\_ACC**: The format of the Payload for the LS\_ACC indicating that this request has been successfully completed is shown in table 88. If the Nx\_Port is unable to perform all of the above functions, it shall send an LS\_RJT as a reply.

Table 88 - N\_Port Deactivate Alias\_ID LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.31 Discover N\_Port/Service Parameters (PDISC)

# 4.2.31.1 Description

The PDISC ELS shall transfer Service Parameters from the initiating Nx\_Port to the Nx\_Port associated with the D\_ID without affecting the operating environment between the two ports. This provides the means for exchange of Service Parameters without terminating open Sequences or open Exchanges.

### 4.2.31.2 Protocol

- a) PDISC Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

## 4.2.31.3 Request Sequence

The Payload in PDISC and the LS\_ACC are, except for the ELS\_Command, identical to the Payloads in PLOGI (see 4.2.7) and the corresponding LS\_ACC (see 4.3.2). The interchange of PDISC information shall not modify the operating environment or Service Parameters between the two ports. Service Parameters contained in PDISC shall be ignored and no error condition shall be reported.

# 4.2.31.4 Reply Sequence

A response shall not be sent to a PDISC if a LR or loop initialization occurs before the LS\_ACC is sent. An LS\_ACC for a PDISC shall be ignored if a LR or loop initialization occurred between the PDISC and the LS\_ACC.

# 4.2.32 Discover F\_Port Service Parameters (FDISC)

### 4.2.32.1 Description

The FDISC ELS shall transfer Service Parameters from the initiating Nx\_Port to the Fx\_Port at well-known F\_Port\_ID (i.e., FFFFEh). This provides the means for the exchange of Service Parameters and the assignment of an additional N\_Port\_IDs without changing service parameters.

### 4.2.32.2 Protocol

- a) FDISC Sequence
- b) LS\_ACC, LS\_RJT Reply Sequence

## 4.2.32.3 Request Sequence

The Payload in FDISC and the corresponding LS\_ACC are, except for the ELS\_Command, identical to the Payloads in FLOGI (see 4.2.7) and the LS\_ACC (see 4.3.2). When the S\_ID of the FDISC ELS is equal to zero, the FDISC ELS shall transfer an N\_Port Name and node name, and request the assignment and login of an additional N\_Port\_ID. The FDISC ELS with an S\_ID equal to zero shall only be sent by an N\_Port with at least one N\_Port\_ID that is currently logged in with the Fabric, and the assignment of an additional N\_Port\_ID shall not modify the Service Parameters between the two ports.

When the S\_ID of the FDISC ELS is set to a previously-assigned N\_Port\_ID, the FDISC ELS shall contain the N\_Port\_Name and node name corresponding to that N\_Port\_ID. The interchange of FDISC information shall not modify the operating environment or Service Parameters between the two ports. Service Parameters contained in FDISC shall be ignored and no error condition shall be reported.

### 4.2.32.4 Reply Sequence

When the S\_ID of the FDISC ELS is zero, the D\_ID field of the LS\_ACC shall be set to the additional N\_Port\_ID being assigned. When the Fabric sends the LS\_ACC, it shall consider Fabric Login to have occurred for the additional N\_Port\_ID.

When the S\_ID of the FDISC ELS is not zero and is currently logged in, the D\_ID of the LS\_ACC shall be set to the S\_ID of the FDISC ELS.

If an FDISC ELS with an S\_ID set to zero is received by a F\_Port Controller and no N\_Port ID is logged in, or if the S\_ID is set to a non-zero N\_Port\_ID that is not currently logged, then an F\_RJT with the reason code set to 'Login required' shall be returned to the S\_ID of the FDISC ELS if it was issued in Class 1, or Class 2, and the FDISC ELS shall be discarded if it was issued in Class 3.

### 4.2.33 Discover Address (ADISC)

### 4.2.33.1 Description

The ADISC ELS shall exchange addresses and identifiers of communicating Nx\_Ports.

### 4.2.33.2 Protocol

- a) ADISC Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

## 4.2.33.3 Request Sequence

The ADISC Request payload format is shown in table 89.

Table 89 - ADISC Request payload

| Bits<br>Word | 31     | ••    | 24 | 23            |        | 16      | 15       |       | 80 | 07  | •• | 00 |
|--------------|--------|-------|----|---------------|--------|---------|----------|-------|----|-----|----|----|
| 0            | ADISC  | (52h) |    | 00h           |        |         | 00h      |       |    | 00h |    |    |
| 1            | Reserv | ⁄ed   |    | Hard Ad       | ddress | of Orig |          |       |    |     |    |    |
| 2            | MSB    |       |    |               | N_Po   | rt_Nam  |          |       |    |     |    |    |
| 3            |        |       |    | -             |        | (8 b)   |          | LSB   |    |     |    |    |
| 4            | MSB    |       |    |               | Node   | _Name   | of Origi | nator |    |     |    |    |
| 5            |        |       |    | (8 bytes) LSB |        |         |          |       |    |     |    |    |
| 6            | Reserv | /ed   |    | N_Port_       | _ID of | Origina |          |       |    |     |    |    |

- a) Hard Address of Originator: A 24-bit L\_Port\_ID that consists of:
  - A) the 8-bit Domain address in the most significant byte;
  - B) the 8-bit Area address in the next most significant byte; and
  - C) the 8-bit AL\_PA that an L\_Port attempts to acquire in the LIHA sequence during loop initialization in the least significant byte (see FC-AL-2).

If an L\_Port does not have a hard address, or if a port does not have FC-AL-2 capability, it shall report zeroes in this field.

- b) **N\_Port\_Name of Originator:** The 8-byte N\_Port\_Name of the Originator.
- c) Node\_Name of Originator: The 8-byte Node\_Name of the Originator.
- d) **N\_Port\_ID of Originator:** The 24-bit S\_ID used in the header of the ADISC Request frame.

### 4.2.33.4 Reply Sequence

The LS ACC Payload format is shown in table 90.

Table 90 - ADISC LS ACC Payload

| Bits<br>Word | 31     |    | 24 | 23         |        | 16     | 15      |        | 80 | 07  | 00 |
|--------------|--------|----|----|------------|--------|--------|---------|--------|----|-----|----|
| 0            | 02h    |    |    | 00h        |        |        | 00h     |        |    | 00h |    |
| 1            | Reserv | ed |    | Hard A     | ddress | of Res | ponder  |        |    |     |    |
| 2            | MSB    |    |    |            | N_Por  | t_Name | of Res  | oonder |    |     |    |
| 3            |        |    |    | -          |        | (8 b   | ytes)   |        |    | LSB |    |
| 4            | MSB    |    |    |            | Node   | _Name  | of Resp | onder  |    |     |    |
| 5            |        |    |    | <u>-</u> ' |        | (8 b   | ytes)   |        |    | LSB |    |
| 6            | Reserv | ed |    | N_Port     | _ID of | Respor | der     |        | •  |     | _  |

- a) Hard Address: A 24-bit L\_Port\_ID that consists of:
  - A) the 8-bit Domain address in the most significant byte;
  - B) the 8-bit Area address in the next most significant byte; and
  - C) the 8-bit AL\_PA that an L\_Port attempts to acquire in the LIHA sequence during loop initialization in the least significant byte (see FC-AL-2).

If an L\_Port does not have a hard address, or if a port does not have FC-AL-2 capability, it shall report zeroes in this field.

- b) **N\_Port\_Name of Responder:** The 8-byte N\_Port\_Name of the Responder.
- c) Node\_Name of Responder: The 8-byte Node\_Name of the Responder.
- d) **N\_Port\_ID** of **Responder:** The 24-bit S\_ID used in the header of the ADISC LS\_ACC frame.

A response shall not be sent to an ADISC if an LR or loop initialization occurs before the LS\_ACC is sent. An LS\_ACC for a ADISC shall be ignored if an LR or loop initialization occurred between the ADISC and the LS\_ACC.

Table 91 summarizes the responses to FDISC, PDISC and ADISC.

|             | Responding    | Responding<br>Nx_Port | Responding F_Port<br>Controller |         |  |  |
|-------------|---------------|-----------------------|---------------------------------|---------|--|--|
| ELS command | Port Status   | Class 1, 2, or 3      | Class 1, or 2                   | Class 3 |  |  |
| FDISC       | Logged in     | LS_RJT <sup>c</sup>   | LS_ACC                          | LS_ACC  |  |  |
|             | Not Logged in | LS_RJT <sup>c</sup>   | F_RJT <sup>b</sup>              | Discard |  |  |
| PDISC       | Logged in     | LS_ACC                | LS_RJT <sup>c</sup>             | Discard |  |  |
|             | Not Logged in | LS_RJT <sup>a</sup>   | F_RJT <sup>b</sup>              | Discard |  |  |
| ADISC       | Logged in     | LS_ACC                | LS_RJT <sup>c</sup>             | Discard |  |  |
|             | Not Logged in | LS_RJT <sup>a</sup>   | F_RJT <sup>b</sup>              | Discard |  |  |

Table 91 - Response summary to FDISC/PDISC

# 4.2.34 Third Party Process Logout (TPRLO)

### 4.2.34.1 Description

The TPRLO ELS is used to invalidate the operating environments (i.e., remove image pairs and associated resources) at the recipient Nx\_Port for the specified TYPE.

TPRLO has the same effect on the recipient Nx\_Port as if all Nx\_Ports that have performed Process Login with the recipient Nx\_Port for the specified TYPE, performed PRLO with the recipient Nx\_Port.

### 4.2.34.2 Protocol

- a) TPRLO Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.34.3 Request Sequence

**Addressing:** The S\_ID field designates the Nx\_Port initiating TPRLO. The D\_ID field designates the destination Nx\_Port of the TPRLO.

<sup>&</sup>lt;sup>a</sup> A LOGO ELS sequence or an LS\_RJT ELS Sequence with the reason code set to "Unable to perform command request" and the reason code explanation set to "N\_Port Login required" shall be returned.

b An F\_RJT with the Reject reason code set to "Login required" shall be returned.

c A LOGO ELS Sequence or an LS\_RJT ELS Sequence with the reason code set to"Command not supported" and the reason code explanation set to "Request notsupported" shall be returned.

Payload: The TPRLO format is shown in table 92.

Table 92 - TPRLO Payload

| Bits<br>Word          | 31         |                                                         | 24 | 23      |        | 16              | 15       |        | 08 | 07 |  | 00 |
|-----------------------|------------|---------------------------------------------------------|----|---------|--------|-----------------|----------|--------|----|----|--|----|
| 0                     | TPRLC      | (24h)                                                   |    | Obsolet | e (10h | ı) <sup>a</sup> | Payloa   | d Leng | th |    |  |    |
| 1                     |            |                                                         |    |         | Logo   | out Para        | ameter p | age    |    |    |  |    |
|                       |            |                                                         |    | _       |        | (4 w            | ords)    |        |    |    |  |    |
| n                     |            |                                                         |    |         |        |                 |          |        |    |    |  |    |
| <sup>a</sup> This fie | ld is obse | is obsolete, but shall be set to 10h for compatibility. |    |         |        |                 |          |        |    |    |  |    |

- a) Payload length: The payload length shall be 20.
- b) Logout parameter page: Words 1:N of the TPRLO Payload contain the Logout Parameter page. The Logout Parameter page contains logout parameters for a single image pair and is associated with either a single FC-4 TYPE or is common to all FC-4 TYPE codes for the specified image pair.

The TPRLO Logout parameter page is shown in table 93.

Table 93 – TPRLO logout parameter page

| Item                                                           | Word | Bit   |
|----------------------------------------------------------------|------|-------|
| TYPE Code or Common Service Parameters                         | 0    | 31-24 |
| TYPE Code Extension                                            | 0    | 23-16 |
| Third Party Originator Process _Associator Validity - obsolete | 0    | 15    |
| Responder Process_Associator Validity - obsolete               | 0    | 14    |
| Third Party Originator N_Port_ID Validity - obsolete           | 0    | 13    |
| Global Process Logout                                          | 0    | 12    |
| Reserved                                                       | 0    | 11-0  |
| Third Party Originator Process_Associator - obsolete           | 1    | 31-0  |
| Responder Process_Associator - obsolete                        | 2    | 31-0  |
| Reserved                                                       | 3    | 31-24 |
| Third Party Originator N_Port_ID - obsolete                    | 3    | 23-0  |

a) **TYPE Code or Common Logout Parameters:** Identifies the protocol associated with this TPRLO Logout Parameter page. If byte 0 of the first word of a TPRLO Logout Parameter page contains the value 00h, the TPRLO Logout Parameter page contains logout parameters com-

mon to all FC-4 Types at that image pair or Nx\_Port pair. If byte 0 of the first word of a TPRLO Logout Parameter page contains the value other than 00h, the TPRLO Logout Parameter page contains logout parameters for the FC-4 TYPE indicated.

- b) TYPE code extension: Reserved for future use.
- c) Global Process Logout: The Global Process Logout bit shall be set to one, and specifies:
  - A) only the TYPE code and TYPE code extension fields shall have meaning, along with the Global Process Logout bit itself;
  - B) all image pairs for all Nx\_Ports with which Process Login has been performed shall be removed from the recipient Nx\_Port for the specified TYPE; and
  - C) all resources associated with the establishment of all image pairs of the specified TYPE at the recipient Nx Port shall be released.

The TPRLO LS\_ACC Payload format is shown table 94.

**Bits** 31 80 00 24 23 16 15 07 Word 0 02h Obsolete (10h)a Payload Length 1 Logout Parameter page (4 words) n This field is obsolete, but shall be set to 10h for compatibility.

Table 94 - TPRLO LS\_ACC Payload

- a) **Payload Length:** The Payload Length field specifies the length of the TPRLO LS\_ACC payload. The Payload Length value shall be 20.
- b) **Logout Parameter page:** The TPRLO LS\_ACC Logout Parameter page format is the same as the TPRLO Request Logout Parameter page format (see table 93) and the field values shall be set to the values received in the TPRLO Request Logout Parameter page.

### 4.2.35 Clock Synchronization Request (CSR)

#### 4.2.35.1 Description

The CSR ELS is used to request the Clock Synchronization Server to either send or to quit sending periodic Clock Synchronization Update (CSU) ELS frames or Clock Synchronization primitives, depending on the method implemented (see FC-FS-2).

#### 4.2.35.2 Protocol

- a) Clock Synchronization Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.35.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Clock Synchronization updates. The D\_ID field designates either the Clock Synchronization Server (FFFF6h) or the Fabric Controller (FFFFFDh).

Payload: The format of the Payload is shown in table 95.

Table 95 - CSR Payload

| Bits<br>Word | 31    |                  | 24   | 23                              |     | 16 | 15 |     | 08 | 07  |             | 00     |  |
|--------------|-------|------------------|------|---------------------------------|-----|----|----|-----|----|-----|-------------|--------|--|
| 0            | С     | SR (68           | sh)  |                                 | 00h |    |    | 00h |    | 00h |             |        |  |
| 1            | Clock | Sync             | Mode | CS_Accuracy CS_Implemented_M SB |     |    |    |     |    |     | pleme<br>SB | nted_L |  |
| 3            |       | CS_Update_Period |      |                                 |     |    |    |     |    |     |             |        |  |

a) **Clock Sync Mode:** The meaning of the Clock Sync Mode byte in the CSR Payload is defined in table 96;

Table 96 - CSR Clock Sync Mode Meaning

| Value     | When sent to the Clock Sync Server                                                                                                                                                             | When sent to the Fabric Controller                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h       | Enable Clock Synchronization service to this client. The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields are not meaningful in the CSR Request.               | Return Quality of Service parameters. The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields are not meaningful in the CSR Request.               |
| 01h       | Enable Clock Synchronization service to this client. The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields contain the requested Quality of Service parameters. | Return Quality of Service parameters. The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields contain the requested Quality of Service parameters. |
| 02h – FEh | Reserved                                                                                                                                                                                       | Reserved                                                                                                                                                                        |
| FFh       | Disable Clock Synchronization service to this client                                                                                                                                           | Reserved                                                                                                                                                                        |

b) **CS\_Accuracy (Mantissa and Exponent):** This field contains the CS\_Accuracy\_Mantissa (Bits 23-21) and CS\_Accuracy\_Exponent (Bits 20-16). These bits indicate the requested accuracy of the Clock Synchronization value as it leaves the server port. Specifically, the request is that the Clock Count value is always within the range of:

T\_reference 
$$\pm$$
 (0.5 + CS\_Accuracy\_Mantissa \* 2<sup>-4</sup>)\*  $2^{(CS\_Accuracy\_Exponent-30)}$ ,

where

- A) T reference is the clock reference value internal to the server;
- B) CS Accuracy Mantissa is a value from 000b to 111b; and
- C) CS\_Accuracy\_Exponent is a value from 00000b to 11111b;

Example #1, if CS\_Accuracy Mantissa and Exponent = 001b and 01011b, respectively, the Clock Synchronization value as it exits the server is requested to be within the range of:

T reference ± 1,073 μsec

Example #2, if CS\_Accuracy Mantissa and Exponent = 111b and 11000b, respectively, the Clock Synchronization value as it exits the server is requested to be within the range of:

T\_reference ± 14,65 msec

- c) CS\_Implemented\_MSB: This field is a value that is constrained to the range of 0 to 63. These bits indicate the requested most significant bit position within the 64-bit Clock Count field (e.g., a value of '110111b' indicates that the client requests that the highest bit that contains meaningful information be the MSB of byte 1 of the Clock Count field);
- d) CS\_Implemented\_LSB: This field is a value that is constrained to the range of 0 to 63. These bits indicate the requested least significant bit position within the 64-bit Clock Count field (e.g., a value of 001000b indicates that the client requests that the lowest bit that contains meaningful information be the LSB of byte 6 of the Clock Count field); and
- e) **CS\_Update\_Period:** This field is a value. It represents the requested time, in microseconds, between consecutive updates from the Clock Synchronization server.

# 4.2.35.4 Reply Sequence

**LS RJT:** LS RJT signifies rejection of the CSR command.

**LS\_ACC:** LS\_ACC signifies that the Clock Synchronization Server agrees to perform the action requested in the CSR Payload. The format of the LS\_ACC Payload is shown in table 97. The Clock Sync Mode item in the CSR LS\_ACC Payload shall contain the value that was received in the Clock Sync Mode item of the CSR Payload.

Table 97 - CSR LS ACC Payload

| Bits<br>Word | 31    |                  | 24   | 23                            |     | 16 | 15 |        | 08    | 07          |        | 00 |  |
|--------------|-------|------------------|------|-------------------------------|-----|----|----|--------|-------|-------------|--------|----|--|
| 0            |       | 02h              |      |                               | 00h |    |    | 00h    |       | 00h         |        |    |  |
| 1            | Clock | Sync             | Mode | CS_Accuracy CS_Implementer SB |     |    |    | nted_M | CS_Im | pleme<br>SB | nted_L |    |  |
| 2            |       | CS_Update_Period |      |                               |     |    |    |        |       |             |        |    |  |

 a) Clock Sync Mode: The meaning of the Clock Sync Mode byte in the CSR Payload is defined in table 98:

Table 98 - CSU Clock Sync Mode Meaning

| Hex Value | Meaning                                               |
|-----------|-------------------------------------------------------|
| 00h       | Clock synchronization service enabled to this client  |
| 01h - FEh | Reserved                                              |
| FFh       | Clock synchronization service disabled to this client |

b) CS\_Accuracy (Mantissa and Exponent): This field consists of two values, CS\_Accuracy\_Mantissa (Bits 23-21) and CS\_Accuracy\_Exponent (Bits 20-16). These bits indicate the accuracy of the Clock Synchronization value as it leaves the server port. Specifically, the server shall supply a CS\_Accuracy value such that the Clock Count value is always within the range of:

T\_reference ± (0.5 + CS\_Accuracy\_Mantissa \* 2<sup>-4</sup>)\* 2<sup>(CS\_Accuracy\_Exponent-30)</sup>,

#### where

- A) T\_reference is the clock reference value internal to the server;
- B) CS\_Accuracy\_Mantissa is a value from 000b to 111b; and
- C) CS\_Accuracy\_Exponent is a value from 00000b to 11111b;

Example #1, if CS\_Accuracy Mantissa and Exponent = 001b and 01011b, respectively, the Clock Synchronization value as it exits the server shall always be within the range of:

T reference ± 1,073 μsec

Example #2, if CS\_Accuracy Mantissa and Exponent = 111b and 11000b, respectively, the Clock Synchronization value as it exits the server shall always be within the range of:

T\_reference ± 14,65 msec

- c) CS\_Implemented\_MSB: This field is a value that is constrained to the range of 0 to 63. It represents the most significant bit position within the Clock Count field that shall contain meaningful information (e.g., a value of 110111b indicates that the MSB of byte 1 of the Clock Count field is the highest bit that contains meaningful information);
- d) CS\_Implemented\_LSB: This field is a value that is constrained to the range of 0 to 63. It represents the least significant bit position within the Clock Count field that shall contain meaningful information (e.g., a value of 001000b indicates that the LSB of byte 6 of the Clock Count field is the lowest bit that contains meaningful information); and
- e) **CS\_Update\_Period:** This field is a value. It represents the time, in microseconds, between consecutive updates from the Clock Synchronization server.

# 4.2.36 Clock Synchronization Update (CSU)

# 4.2.36.1 Description

The CSU ELS is used by the Clock Synchronization Server to send its current clock value to its clients (see FC-FS-2).

### 4.2.36.2 Protocol

- a) Clock Synchronization Update Request Sequence
- b) No Reply Sequence

# 4.2.36.3 Request Sequence

**Information Category:** The Information Category value (Header word 0, bits 24-27) shall indicate Solicited Data (0001b).

**Addressing:** The S\_ID field designates the Clock Synchronization Server well-known address (FFFF6h). The D\_ID field designates the Nx\_Port(s) that is/are to receive the clock information.

Payload: The format of the Payload is shown in table 99.

Table 99 - CSU Payload

| Bits<br>Word | 31 |        | 24 | 23 | <br>16 | 15      |        | 08 | 07 | <br>00 |
|--------------|----|--------|----|----|--------|---------|--------|----|----|--------|
| 0            | С  | SU (69 | h) |    |        | R       | eserve | ed |    |        |
| 1            |    |        |    |    | Clock  | c Count |        |    |    |        |
| 2            |    |        |    | •  | (8 b   | oytes)  |        |    |    |        |

The meaning of the Clock Count field is given in table 100.

Table 100 - Clock Count Field Meaning

| Byte Number | Meaning                     |
|-------------|-----------------------------|
| 0           | Counter value, byte 0 (MSB) |
| 1           | Counter value, byte 1       |
| 2           | Counter value, byte 2       |
| 3           | Counter value, byte 3       |
| 4           | Counter value, byte 4       |
| 5           | Counter value, byte 5       |
| 6           | Counter value, byte 6       |
| 7           | Counter value, byte 7 (LSB) |

The bit values are derived from clock frequencies that are used in 1Gbits/s Fibre Channel and shall be defined as follows. The value of the Bit 7 in Word 2 shall be equal to 1/106,25MHz, roughly 9,4

ns. Every other bit value is a binary multiple of this value. The next most significant bit is 2x that value, or 18,8ns. The next least significant value is  $\frac{1}{2}$  that value, or 4.7ns. The overall least significant bit is 73,5ps. The overall range that may be represented is  $1,36 \times 10^9$  sec, approximately equal to 43 years.

The Clock Count value shall represent the time at which the most significant bit was placed on the link by the CSU ELS originator.

Any bits outside the range of CS\_Implemented\_MSB to CS\_Implemented\_LSB shall be set to zero. This applies to both the Clock Sync Server and to the Fabric.

# 4.2.36.4 Reply Sequence

none.

### 4.2.37 Report Port Buffer Conditions (RPBC)

## 4.2.37.1 Description

The RPBC ELS shall provide a method for a Port to report its buffer conditions. The normal response to an RPBC ELS Sequence shall be a LS\_ACC ELS Sequence. If the recipient Port does not support the RPBC ELS, it shall reply with an LS\_RJT ELS Sequence with a reason code of "Command not supported".

### 4.2.37.2 Protocol

- a) Report Port Buffer Conditions (RPBC) Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

#### 4.2.37.3 Request Sequence

**Addressing:** The S\_ID designates the source port that is requesting port buffer conditions. The D\_ID field designates the recipient that is to process the RPBC request and report buffer conditions.

Payload: The format of the RPBC Payload is shown in table 101.

Table 101 – RPBC Payload

| Bits<br>Word | 31                                  |          | 24     | 23       | •• | 16 | 15 |  | 08 | 07 | •• | 00 |  |
|--------------|-------------------------------------|----------|--------|----------|----|----|----|--|----|----|----|----|--|
| 0            | RPBC (                              | (58h)    |        | Reserved |    |    |    |  |    |    |    |    |  |
| 1            | ELS Bu                              | ıffer Pa | ramete | rs       |    |    |    |  |    |    |    |    |  |
| 2            | Reserved Originator S_ID - obsolete |          |        |          |    |    |    |  |    |    |    |    |  |

The ELS Buffer Parameter field contained in word 1 of the RPBC Payload relates to the ELS buffer conditions of the sender of the RPBC ELS and the contents are shown in table 102.

Table 102 - ELS Buffer Parameters Field

| Bits  | Field Name                         |
|-------|------------------------------------|
| 31    | Multi-frame ELS sequence supported |
| 30-12 | Reserved.                          |
| 11-00 | ELS Receive Data Field Size        |

The Multi-frame ELS sequence supported bit indicates that the port either supports multi-frame ELS's (bit 31=1) or does not support multi-frame ELS's (bit 31=0).

The ELS Receive Data Field Size field (word 1, bits 11-0) specifies the largest ELS frame that may be received by the FC\_Port responding with the RPBC LS\_ACC. Values shall be a multiple of four bytes, and less than 128 or greater than 2 112 are invalid. For each class of service, the maximum usable ELS Receive Data Field Size is the lessor of the reported ELS Receive Data Field Size or the Buffer-to-buffer Receive Data Field Size reported during Login.

## 4.2.37.4 Reply Sequence

LS\_RJT: LS\_RJT signifies rejection of the RPBC command

**LS\_ACC**: LS\_ACC signifies acceptance of the RPBC Request and its Accept Payload. The format of the RPBC LS\_ACC Payload is shown in table 103.

Table 103 – RPBC LS\_ACC Payload

| Bits<br>Word | 31      |         | 24      | 23      |    | 16 | 15 | <br>08 | 07 | <br>00 |
|--------------|---------|---------|---------|---------|----|----|----|--------|----|--------|
| 0            | 02h     |         |         | Reserve | ed |    |    |        |    |        |
| 1            | ELS Buf | ffer Pa | ıramete | rs      |    |    |    |        |    |        |

The ELS Buffer Parameter field contained in word 1 of the RPBC LA\_ACC Payload relates to the ELS buffer conditions of the sender of the RPBC ACC ELS and the contents are shown in table 102.

## 4.2.38 Report node FC-4 Types (RNFT)

## 4.2.38.1 Description

The RNFT ELS provides for the exchange of supported FC-4 protocol lists. It may be used any time after N\_Port Login to verify that the remote Nx\_Port supports a given FC-4 protocol.

The RNFT requests a list of the FC-4 protocols supported by the responder, and the RNFT LS\_ACC provides the requested list to the source of the of the RNFT.

A specific FC-4 may require that its Nx\_Ports support RNFT, and therefore may conclude that a remote Nx\_Port that returns LS\_RJT with reason code of "Command not supported" does not support that FC-4.

#### 4.2.38.2 Protocol

- a) Report node FC-4 Types (RNFT) Request sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.38.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting the FC-4 Types information. The D\_ID field designates the destination Nx\_Port to which the request is being made.

**Payload:** The format of the request Payload is shown in table 104.

Table 104 – RNFT Payload

| Bits<br>Word | 31     |       | 24 | 23      |    | 16 | 15     |         | 80 | 07    | <br>00 |
|--------------|--------|-------|----|---------|----|----|--------|---------|----|-------|--------|
| 0            | RNFT   | (63h) |    | Reserve | ed |    | Maximu | ım Size | Э  |       |        |
| 1            | Reserv | /ed   |    |         |    |    |        |         |    | Index |        |

- a) Maximum Size: Bytes 2-3 of Word 0 contain a 16-bit value that specifies the maximum length of the RNFT LS\_ACC that the originator is able to accept. The value zero implies the RNFT LS\_ACC may be any size.
- b) **Index:** Byte 3 of Word 1 contains an 8-bit value that specifies the index of the first FC-4 Entry to be returned in the RNFT Reply.

Each FC-4 protocol supported by the responder has an index in the range from zero to (List Length – 1) that should be used to specify a subset of the entries when the entire list does not fit into one reply. NOTE - The index of the entry for a particular FC-4 TYPE may not be consistent between subsequent RNFT Requests (e.g., due to additions or deletions of supported FC-4 TYPEs).

## 4.2.38.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies rejection of the RNFT command.

**LS\_ACC:** LS\_ACC Signifies that the destination Nx\_Port has transmitted the requested data. The format of the LS\_ACC Payload is shown in table 105.

Table 105 - RNFT LS\_ACC Payload

| Bits<br>Word | 31      |        | 24 | 23       |      | 16 | 15      |        | 80     | 07    | <br>00 |
|--------------|---------|--------|----|----------|------|----|---------|--------|--------|-------|--------|
| 0            | 02h     |        |    | Reserve  | ed   |    | Payload | d Leng | th (M) |       |        |
| 1            | Reserve | ed     |    | List Ler | igth |    | Reserv  | ed     |        | Index |        |
| 2            | FC-4 Eı | ntry 1 |    |          |      |    |         |        |        |       |        |
| **           |         |        |    |          |      |    |         |        |        |       |        |
| N+1          | FC-4 Eı | ntry N |    | •        |      | •  | •       |        | •      |       |        |

 a) Payload Length: Bytes 2-3 of Word 0 contain a 16-bit value that specifies the length M of the RNFT LS\_ACC Payload in bytes.

$$M = 8 + N*4$$

where

N is the number of FC-4 Entries contained in the Payload.

b) **List Length:** Byte 1 of Word 1 contains an 8-bit value that specifies the total number of FC-4 protocols supported by the responder.

If List Length exceeds Index+N then the originator may request additional records with another RNFT in which Index is increased by N.

- c) **Index:** Byte 3 of Word 1 contains an 8-bit value that specifies the index of the first FC-4 Entry returned in the RNFT reply.
- d) FC-4 Entry: The FC-4 Entry record contains a FC-4 Entry and is shown in table 106.

Table 106 - RNFT FC-4 Entry

| Bits<br>Word | 31     |     | 24 | 23     |         | 16 | 15 | <br>08 | 07 | <br>00 |
|--------------|--------|-----|----|--------|---------|----|----|--------|----|--------|
| 1            | FC-4 T | уре |    | FC-4 Q | ualifie | r  |    |        |    |        |

- A) **FC-4 Type:** The FC-4 TYPE code of a FC-4 protocol that is supported by the sending Nx Port. The values are defined in FC-FS-2.
- B) **FC-4 Qualifier:** The FC-4 Qualifier may be used to distinguish between two protocols that use the same FC-4 TYPE code.

For FC-4 type codes that are reserved or assigned for specific use in this standard (00h - 68h), the value of the FC-4 Qualifier shall be zero.

For Vendor specific FC-4 TYPE codes (E0h through FFh), the FC-4 Qualifier shall be selected from one of the 24-bit Company\_ID values assigned by the IEEE Registration Authority to the organization that defines the Vendor specific FC-4 protocol, and that Company\_ID shall be used to qualify that FC-4 TYPE in all implementations. It is up to the organization that defines the Vendor specific FC-4 protocol to assure that the protocol has a unique qualified FC-4 Type.

#### 4.2.39 Scan Remote Loop (SRL)

# 4.2.39.1 Description

The SRL ELS shall require a switch to scan attached loops to determine if any L\_Ports have been disabled or removed. If the switch determines any L\_Ports that are currently logged in with the Fabric have been removed or disabled it shall update the name server and send an RSCN to all registered Nx\_Ports.

The SRL Payload indicates whether the switch shall scan all attached loops or a single loop. If a single loop is to be scanned the Payload shall contain the FL\_Port\_ID of the loop to be scanned.

#### 4.2.39.2 Protocol

- a) Scan Remote Loop Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.39.3 Request Sequence

**Addressing:** The S\_ID field designates the source Nx\_Port requesting Scan Remote Loop. The D\_ID field designates the destination of the address identifier for the Domain Controller of the switch for which loops are being scanned. The format of the Domain Controller address is FFFCh || Domain\_ID. Domain\_ID is the Domain\_ID of the switch being queried.

Payload: The format of the Payload is shown in table 107.

Table 107 - SRL Payload

| Bits<br>Word | 31      |     | 24 | 23      | ••    | 16 | 15 | <br>08 | 07 | <br>00 |
|--------------|---------|-----|----|---------|-------|----|----|--------|----|--------|
| 0            | SRL (7B | Bh) |    | Reserve | ed    |    |    |        |    |        |
| 1            | Flag    |     |    | Flag Pa | ramet | er |    |        |    |        |

a) Flag: Byte 0 of word 1 indicates if the FL\_Port shall be scanned, if all FL\_Ports within the domain shall be scanned, or the scan period that all FL\_Ports within the domain shall be scanned. The meaning of bits 0-7 is given in table 108.

Table 108 – Flag field definitions

| Value<br>(hex) | Meaning                                                                                                          | Flag Parameter                    |
|----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 00             | All the FL_Ports within the domain shall be scanned.                                                             | Ignored                           |
| 01             | Only the loop attached to the FL_Port addressed in the address identifier of the FL_Port field shall be scanned. | Address identifier of the FL_Port |
| 02             | Enable periodic scanning for all FL_ports.                                                                       | Scan period <sup>a</sup>          |
| 03             | Disable periodic scanning for all FL_ports.                                                                      | Ignored                           |
| All Others     | Reserved                                                                                                         |                                   |

Scan period in seconds. If the scan period is set to zero the scan period is vendor specific. If the switch does not support this option it shall reject the SRL ELS with a reason code of "Unable to perform command request" and a reason code explanation of "Periodic Scanning not supported". If the switch does not support the selected value it shall reject the SRL ELS with a reason code of "Unable to perform command request" and a reason code explanation of "Periodic Scan Value not allowed".

b) Flag Parameter: See table 108.

## 4.2.39.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the SRL Request

**LS\_ACC**: LS\_ACC signifies acceptance of the SRL Request. If the period scanning is enabled then the switch shall return the value of the periodic scanning period in the LS\_ACC payloads Scan Period field. If the periodic scanning period is disabled then the switch shall set the LS\_ACC payload Scan Period field to zero.

Table 109 - SRL LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23     |       | 16 | 15 | <br>08 | 07 | <br>00 |
|--------------|-----|--------|--------|-------|----|----|--------|----|--------|
| 0            | 02h |        | Scan P | eriod |    |    |        |    |        |

# 4.2.40 Set Bit-error Reporting Parameters (SBRP)

# 4.2.40.1 Description

Set SBRP ELS is used to communicate a set of bit error reporting parameters to a Port or to all Ports in a particular Domain in a Fabric. There are 3 parameters, Error Interval, Error Window, and Error Threshold. Error Interval is the time period over which bit error bursts are integrated to produce a single reported error. An Error Window is composed of one or more Error Intervals. The Error Interval Count is the number of Error Intervals occurring in an Error Window. If the Error Interval Count is greater than or equal to the Error Threshold, a Registered Link Incident Report (RLIR) is generated with an Incident Code specifying Bit-error-rate threshold exceeded (see FC-FS-2). At the end of the Error Window, the count is set to zero and the process is repeated. See figure 2 for illustration of the parameters.



Any Error Interval with one or more errors is counted as a single error.

Figure 2 – Illustration of parameters

SBRP may be used to determine an acceptable set or the current set of bit error reporting parameters in the destination Port or Domain, without changing the settings.

The setting of parameters in a particular Port or Domain is done by a controlling entity that is outside the scope of this standard.

#### 4.2.40.2 Protocol

- a) Set Bit-error Reporting Parameters (SBRP) Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

<sup>\* =</sup> Bit Error

### 4.2.40.3 Request Sequence

**Addressing:** The S\_ID designates the source Nx\_Port requesting the bit error rate reporting parameters. The D\_ID designates the destination Nx\_Port or the Domain Controller (FFFCh || <Domain\_ID>). Domain\_ID is the Domain\_ID of the recipient switch) to process the SBRP ELS.

Payload: The format of the SBRP Payload is shown in table 110.

Table 110 - SBRP Payload

| Bits<br>Word | 31 28                       | 27 24       | 23      |  | 16 | 15 12                         | 11 08         | 07 03    | 02 00 |
|--------------|-----------------------------|-------------|---------|--|----|-------------------------------|---------------|----------|-------|
| 0            | SBRP (7C                    | h)          | 00h     |  |    | 00h                           |               | 00h      |       |
| 1            | Error Flags                 | S           |         |  |    | _                             | _             |          |       |
| 2            | Error<br>Window<br>exponent | Error Windo | w value |  |    | Error<br>Interval<br>exponent | Error Interva | al value |       |
| 3            | Error Threshold             |             |         |  |    |                               |               |          |       |

a) **Error Flags:** The following bits are mutually exclusive and only one bit shall be set for each instance of the SBRP ELS.

Bit 0 – Set Error Reporting Parameters: The bit is set to request that the destination set the Error Window, the Error Interval and the Bit-error Threshold parameters. If the destination is the Domain Controller then the request is for the switch to set all ports to the requested values.

Bit 1 – Report Error Reporting Parameters: The bit is set to request that the destination return the active parameters, currently being enforced.

Bits 2-31: Reserved

b) **Error Window exponent and Error Window value:** The Error Window is a time duration described by a 16-bit value. Twelve bits, Bits 28-16, are used for the base value. Four bits, Bits 31-28 are encoded to form the exponent. The product of the base value and the exponent yields the time duration in seconds. The encoded exponent is defined as follows:

0h represents 10<sup>0</sup>

1h represents 10<sup>-1</sup>

2h represents 10<sup>-2</sup>

•

٠

Fh represents 10<sup>-15</sup>

(e.g., a base value of 300h multiplied by an exponent of 0h would yield a value of 1 times  $10^{-0}$  or 300h seconds). The tolerance for the Error Window -0 to + 1 Error Interval.

- c) **Error Interval exponent and Error Interval value:** The Error Interval is a time duration in seconds and has the same, exact definitions for exponent and base value as Error Window (e.g., a base value of 15 multiplied by an exponent of 1h would yield a value of 15 times 10<sup>-1</sup> ot 1.5 seconds). The Error Interval has a tolerance of 50% to + 50%.
- d) **Error Threshold:** The Error Threshold fields specifies the basis for a comparison value with the Error Interval Count.

### 4.2.40.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the SBRP Request.

**LS\_ACC**: LS\_ACC signifies acceptance of the SBRP Request and presents SBRP data. The format of the LS\_ACC Payload is shown in table 111.

The LS ACC Payload conveys either:

- a) the current Bit Error Rate Reporting Parameters (i.e., the requestor is querying for currently set parameters) or,
- b) the accepted Bit Error Rate Reporting Parameters (a request to set the parameters was accepted) or,
- c) acceptable Bit Error Rate Report Parameters (a request to set the parameters was rejected because the parameters requested are not within the range supported by the port or switch).

| Bits<br>Word | 31                          | 30 28    | 27 24       | 23      | <br>16 | 15 12                         | 11 08        | 07 00    |
|--------------|-----------------------------|----------|-------------|---------|--------|-------------------------------|--------------|----------|
| 0            | 02h                         |          |             | 00h     |        | 00h                           |              | 00h      |
| 1            | SBRP<br>Request<br>Accepted | Reserved | d           |         |        |                               |              |          |
| 2            | Error<br>Window<br>exponent |          | Error Windo | w value |        | Error<br>Interval<br>exponent | Error Interv | al value |
| 3            | Error Thre                  | shold    |             |         |        |                               |              |          |

Table 111 - SBRP LS\_ACC Payload

a) SBRP Request Accepted: When a request to set the reporting parameters is indicated (request Payload word 1 bit 0 is set to one) and the recipient accepts the requested parameters, it shall set the SBRP Request Accepted bit to zero (Accepted) and echo the requested Error Window, Interval and Threshold parameters in words 2 and 3.

When a request to set the reporting parameters is indicated (i.e., request Payload word 1 bit 0 is set to one) and the recipient does not accept the parameters as requested the recipient shall set the SBRP Request Accepted bit to one and echo in words 2 and 3 those parameters that are accepted. Values not accepted by the recipient shall be set to zero.

When a request to report the parameters is indicated (request Payload word 1 bit 1 is set to one) the recipient shall set the SBRP Request Accepted bit to zero (Accepted) report the cur-

rent Bit Error Rate reporting parameters being enforced. If no Bit Error Rate reporting is being enforced, words 2 and 3 shall be set to zero.

# 4.2.41 Report Port Speed Capabilities (RPSC)

### 4.2.41.1 Description

The RPSC ELS shall provide a method for a Port to report its current and potential link operating speeds. The normal response to an RPSC ELS Sequence shall be a LS\_ACC ELS Sequence. If the recipient Port does not support the RPSC ELS, it shall reply with an LS\_RJT ELS Sequence with a reason code of "Command not supported".

### 4.2.41.2 Protocol

- a) RPSC Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

# 4.2.41.3 Request Sequence

**Addressing:** The S\_ID designates the source port that is requesting port speeds. The D\_ID field designates the recipient that is to process the RPSC request. If the recipient is a Domain Controller, the request is for all the ports within that domain.

Payload: The format of the RPSC Payload is shown in table 112.

Table 112 - RPSC Payload

| Bits<br>Word | 31         | 24 | 23  | ** | 16 | 15  | <br>80 | 07  | ** | 00 |
|--------------|------------|----|-----|----|----|-----|--------|-----|----|----|
| 0            | RPSC (7Dh) |    | 00h |    |    | 00h |        | 00h |    |    |

## 4.2.41.4 Reply Sequence

LS\_RJT: LS\_RJT signifies the rejection of the RPSC Request

**LS\_ACC**: LS\_ACC signifies acceptance of the RPSC Request and its Accept Payload. The format of the LS\_ACC Payload is shown in table 113.

Table 113 – RPSC LS\_ACC Payload

| Bits<br>Word | 31                               |                                  |           |          |    |  |         |                               | 80      | 07        |   | 00 |  |  |  |
|--------------|----------------------------------|----------------------------------|-----------|----------|----|--|---------|-------------------------------|---------|-----------|---|----|--|--|--|
| 0            | 02h                              | 02h Reserved                     |           |          |    |  |         | r of en                       | tries   |           |   |    |  |  |  |
| 1            | Port Sp                          | Port Speed Capabilities (Port 1) |           |          |    |  |         | Port Operating Speed (Port 1) |         |           |   |    |  |  |  |
| 2            | Port Sp                          | eed C                            | apabiliti | es (Port | 2) |  | Port Op | eratin                        | g Speed | d (Port 2 | ) |    |  |  |  |
| **           |                                  |                                  |           |          |    |  |         |                               |         |           |   |    |  |  |  |
| n            | Port Speed Capabilities (Port n) |                                  |           |          |    |  | Port Op | eratin                        | g Speed | d (Port n | ) |    |  |  |  |

- a) Number of Entries: Specifies the number of Port entries in the Payload.
- b) Port Speed Capabilities: Identifies the operating speed capabilities of the port

Bit 31 – 1 Gb capable

Bit 30 - 2 Gb capable

Bit 29 – 4 Gb capable

Bit 28 – 10 Gb capable

Bit 27 – 8 Gb capable

Bit 26 – 16 Gb capable

Bits 25 through 17 - reserved

Bit 16 - Unknown

c) Port Operating Speed: Identifies the current operating speed if set.

Bit 15 – 1 Gb Operation

Bit 14 – 2 Gb Operation

Bit 13 – 4 Gb Operation

Bit 12 – 10 Gb Operation

Bit 11 – 8 Gb Operation

Bit 10 – 16 Gb Operation

Bits 9 through 2 – reserved

Bit 1 - Unknown

Bit 0 – Speed not established.

# 4.2.42 Read Exchange Concise (REC)

### 4.2.42.1 Description

This ELS shall be used only for purposes specific to an FC-4. The REC (Read Exchange Concise) Extended Link Service requests an Nx\_Port to return Exchange information for the RX\_ID and OX ID originated by the S ID specified in the Payload of the request Sequence.

A Read Exchange Concise Request shall only be accepted if the Originator Nx\_Port N\_Port\_ID or the Responder Nx\_Port N\_Port\_ID of the target Exchange is the same as the N\_Port\_ID of the Nx\_Port that makes the request. If the REC Request is not accepted, an LS\_RJT with reason code "Unable to perform command request" and reason code explanation "Invalid Originator S\_ID" shall be returned.

The specification of OX\_ID and RX\_ID shall be provided for the destination Nx\_Port to locate the status information requested. A Responder destination Nx\_Port shall use the RX\_ID and verify that the OX\_ID is consistent, unless the RX\_ID is unassigned (i.e., RX\_ID = FFFFh). If the RX\_ID is unassigned in the request, the Responder shall identify the Exchange by means of the S\_ID specified in the Payload of the request Sequence and OX\_ID. An Originator Nx\_Port shall use the OX\_ID and verify that the RX\_ID is consistent.

If the destination Nx\_Port of the REC request determines that the Originator S\_ID, OX\_ID, or RX\_ID are inconsistent, then it shall reply with an LS\_RJT Sequence with a reason code of "Unable to perform command request" and a reason code explanation of "Invalid OX\_ID-RX\_ID combination".

The value of the Parameter field in the frame header of an REC ELS and an LS\_ACC in response to an REC ELS shall be specified by the FC-4 that sends the frame. The Relative offset present bit in the frame header of an REC ELS or an LS\_ACC in response to an REC ELS shall be set to zero.

#### 4.2.42.2 Protocol

- a) Read Exchange Concise (REC) Request Sequence
- b) LS\_ACC or LS\_RJT Reply Sequence

### 4.2.42.3 Request Sequence

**Addressing:** The S\_ID designates the source port that is requesting exchange information. The D\_ID field designates the recipient that is requested to provide exchange information.

Payload: The format of the REC Payload is shown in table 114.

Table 114 – REC Payload

| Bits<br>Word | 31 24<br>Byte 0 | 23 16<br>Byte 1     | 15 08<br>Byte 2 | 07 00<br>Byte 3 |
|--------------|-----------------|---------------------|-----------------|-----------------|
| 0            | REC (13h)       | 00h                 | 00h             | 00h             |
| 1            | Reserved        | Exchange Originator | S_ID            |                 |
| 2            | OX_ID           |                     | RX_ID           |                 |

**Exchange Originator S\_ID:** shall be set to the address identifier of the target Exchange Originator.

**OX\_ID:** shall be set to the Originator Exchange\_ID value of the target Exchange.

**RX\_ID:** shall be set to the Responder Exchange\_ID value of the target Exchange.

# 4.2.42.4 Reply Sequence

LS\_RJT: LS\_RJT signifies the rejection of the REC Request

**LS\_ACC**: LS\_ACC signifies acceptance of the REC Request and returns the requested exchange information. The format of the LS\_ACC Payload is shown in table 115.

Table 115 - REC LS\_ACC Payload

| Bits<br>Word | 31 24<br>Byte 0 | 23 16<br>Byte 1       | 15 08<br>Byte 2 | 07 00<br>Byte 3 |  |  |  |  |  |
|--------------|-----------------|-----------------------|-----------------|-----------------|--|--|--|--|--|
| 0            | LS_ACC (02h)    | 00h                   | 00h             | 00h             |  |  |  |  |  |
| 1            | OX_ID           |                       | RX_ID           |                 |  |  |  |  |  |
| 2            | Reserved        | Originator Address Id | Identifier      |                 |  |  |  |  |  |
| 3            | Reserved        | Responder Address I   | dentifier       |                 |  |  |  |  |  |
| 4            | FC4VALUE        |                       |                 |                 |  |  |  |  |  |
| 5            | E_STAT          |                       |                 |                 |  |  |  |  |  |

The Originator Address Identifier field shall be set to the address identifier of the Originator of the exchange about which information was requested.

The Responder Address Identifier field shall be set the address identifier of the Responder of the exchange about which information was requested.

The value of the FC4VALUE field shall be specified by the FC-4 that sends the LS\_ACC to a REC ELS.

E\_STAT shall be as defined in FC-FS-2 for the E\_STAT field in the Exchange Status Block for the exchange about which information was requested. The bits specifying whether the Exchange is complete (Bit 29) and whether the responder holds Sequence Initiative (Bit 30) shall be valid; the setting of other bits may not be valid.

# 4.2.43 Exchange Virtual Fabrics Parameters (EVFP)

## 4.2.43.1 EVFP Messages Structure

# 4.2.43.1.1 EVFP Request Sequence

Protocol: Exchange Virtual Fabrics Parameters (EVFP) Request Sequence

Format: FT-1

**Addressing:** For an N\_Port, the S\_ID field shall be set to FFFF0h, indicating the N\_Port Controller of the originating N\_Port. The D\_ID field shall be set to FFFFEh, indicating the F\_Port Controller of the destination F\_Port. For an F\_Port, the S\_ID field shall be set to FFFFEh, indicating the F\_Port Controller of the originating F\_Port. The D\_ID field shall be set to FFFF0h, indicating the N\_Port Controller of the destination N\_Port

**Payload:** Two types of EVFP messages are defined. All EVFP Request messages share the same message structure, shown in table 116.

**Bits** 31 24 23 16 15 80 07 00 Word 0 7Fh 00h 00h 00h 1 Protocol Version Transaction Identifier Message Code 2 **MSB** Core N\_Port\_Name / Core Switch\_Name 3 LSB 4 Reserved Message Payload Length 5 Message Payload .. Ν

Table 116 - EVFP Request Payload

**Protocol Version:** Shall be set to one.

**EVFP Message Code:** Specifies the EVFP message that is to be transmitted from the source to the destination. The defined EVFP message codes are shown in table 117.

**Table 117 – EVFP Message Codes** 

| Value      | Description | Reference |
|------------|-------------|-----------|
| 01h        | EVFP_SYNC   | 4.2.43.2  |
| 02h        | EVFP_COMMIT | 4.2.43.3  |
| all others | Reserved    |           |

**Transaction Identifier:** Uniquely identifies an EVFP transaction between two entities. The Transaction Identifier shall be set by the EVFP Initiator, and each subsequent EVFP message shall contain the same value, until the EVFP transaction is completed.

NOTE 7 – The usage of the Transaction Identifier is very similar to the usage of an OX\_ID when an Exchange Originator is enforcing uniqueness via the OX\_ID mechanism (see FC-FS-2), but it is not related in any way to the OX\_ID present in the Fibre Channel frames carrying the EVFP messages.

**Core N\_Port\_Name / Core Switch\_Name:** If the originating FC\_Port is an N\_Port, this field shall be set to its Core N\_Port\_Name. If the originating FC\_Port is an F\_Port, this field shall be set to the Core Switch Name of the Switch it belongs to.

**Payload Length:** Shall be set to the total length in bytes of the EVFP Payload (i.e., 20 + the Message Payload length).

# 4.2.43.1.2 EVFP Reply Sequence

Accept (LS ACC)

Signifies acceptance of the EVFP request.

Accept Payload: All EVFP Accept messages share the same message structure, shown in table 118.

Table 118 – EVFP Accept Payload

| Bits<br>Word | 31    |                        | 24   | 23                   |                        | 16 | 15                     |  | 08 | 07 |  | 00 |
|--------------|-------|------------------------|------|----------------------|------------------------|----|------------------------|--|----|----|--|----|
| 0            | 02h   |                        |      | 00h                  |                        |    | 00h 0                  |  |    |    |  |    |
| 1            | Proto | rsion                  | Mes  | Code                 | Transaction Identifier |    |                        |  |    |    |  |    |
| 2            | MSB   | MSB Core N_Port_Name / |      |                      |                        |    |                        |  |    |    |  |    |
| 3            |       |                        |      | Core Switch_Name LSB |                        |    |                        |  |    |    |  |    |
| 4            |       |                        | Rese | erved                |                        |    | Message Payload Length |  |    |    |  |    |
| 5            |       |                        |      |                      |                        |    |                        |  |    |    |  |    |
|              |       | Message Payload        |      |                      |                        |    |                        |  |    |    |  |    |
| N            |       |                        |      |                      |                        |    |                        |  |    |    |  |    |

The fields in table 118 are the same as defined in table 116.

Service Reject (LS\_RJT)
Signifies the rejection of the EVFP request

Table 119 shows the use of reason codes and reason code explanations under some error conditions.

Table 119 - LS\_RJT Reason Codes for EVFP

| Error Condition                | Reason Code                       | Reason Code Explanation   |  |  |  |
|--------------------------------|-----------------------------------|---------------------------|--|--|--|
| EVFP ELS not supported         | Command not supported             | No additional explanation |  |  |  |
| EVFP collision                 | Command already in progress       | No additional explanation |  |  |  |
| Protocol Version not supported | Protocol error                    | No additional explanation |  |  |  |
| EVFP_COMMIT before EVFP_SYNC   | Logical error                     | No additional explanation |  |  |  |
| Insufficient Resources         | Unable to perform command request | No additional explanation |  |  |  |
| Invalid Payload Message        | Protocol error                    | No additional explanation |  |  |  |

# 4.2.43.2 EVFP\_SYNC Message Payload

## 4.2.43.2.1 Overview

The EVFP\_SYNC Message Payload carries a list of descriptors. Each descriptor is self-identifying (see table 121). The format of the EVFP\_SYNC Message Payload is shown in table 120. This Message Payload is used in both EVFP\_SYNC Request and EVFP\_SYNC Accept.

Table 120 – EVFP\_SYNC Message Payload

| Bits<br>Word          | 31         |                                                                             | 24         | 23       |       | 16          | 15       |         | 80     | 07       |    | 00 |  |
|-----------------------|------------|-----------------------------------------------------------------------------|------------|----------|-------|-------------|----------|---------|--------|----------|----|----|--|
| 0                     |            |                                                                             |            | 44 T     |       | A alma in i | atratica | Ctatura | /222.4 | 0.40.0.0 | wa |    |  |
| 1                     |            | Descriptor #1 = Tagging Administrative Status (see 4.2.43.2.2) <sup>a</sup> |            |          |       |             |          |         |        |          |    |    |  |
| 2                     |            | Descriptor #2   Dort VE ID (200 4.2.43.2.2)b                                |            |          |       |             |          |         |        |          |    |    |  |
| 3                     |            | Descriptor #2 = Port VF_ID (see 4.2.43.2.3) <sup>b</sup>                    |            |          |       |             |          |         |        |          |    |    |  |
| 4                     |            | Descriptor #3 = Locally-Enabled VF_ID List (see 4.2.43.2.4) <sup>c</sup>    |            |          |       |             |          |         |        |          |    |    |  |
|                       |            |                                                                             |            |          |       |             |          |         |        |          |    |    |  |
| 132                   |            |                                                                             |            |          |       |             |          |         |        |          |    |    |  |
| •••                   |            |                                                                             |            |          |       |             |          |         |        |          |    |    |  |
| Н                     |            |                                                                             |            |          |       | •           |          |         |        |          |    |    |  |
|                       |            |                                                                             |            |          |       | Dagaria     |          |         |        |          |    |    |  |
| K                     |            | Descriptor #m                                                               |            |          |       |             |          |         |        |          |    |    |  |
| <sup>a</sup> Decripto | or #1 is ı | require                                                                     | d to be pr | esent in | EVFP_ | SYNC re     | quest.   |         |        |          |    |    |  |
| b Decripte            | or #2 is ı | require                                                                     | d to be pr | esent in | EVFP  | SYNC re     | quest.   |         |        |          |    |    |  |

All descriptors share the same format, shown in table 121.

**Table 121 – Descriptor Format** 

| Bits<br>Word | 31   |                  | 24      | 23   |        | 16   | 15                |  | 08 | 07 |  | 00 |  |
|--------------|------|------------------|---------|------|--------|------|-------------------|--|----|----|--|----|--|
| 0            | Desc | riptor C         | Control | Desc | riptor | Туре | Descriptor Length |  |    |    |  |    |  |
| 1            |      | ·                |         |      |        |      |                   |  |    |    |  |    |  |
|              |      | Descriptor Value |         |      |        |      |                   |  |    |    |  |    |  |
| М            |      |                  |         |      |        |      |                   |  |    |    |  |    |  |

Decriptor #3 is required to be present in EVFP\_SYNC request.

**Descriptor Control:** Specifies the behavior of the receiving entity if the descriptor is unsupported. The defined codes are shown in table 122.

**Table 122 - Descriptor Control Codes** 

| Value      | Description                                                                                            |  |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 01h        | Critical. Abort the EVFP transaction if the descriptor is unsupported. <sup>a</sup>                    |  |  |  |  |  |  |  |  |
| 02h        | Non critical. Skip the descriptor if unsupported and continue the EVFP transaction. <sup>a</sup>       |  |  |  |  |  |  |  |  |
| all others | Reserved                                                                                               |  |  |  |  |  |  |  |  |
| a The De   | a The Descriptor Control provides extensibility to the protocol. An implementation supporting a subset |  |  |  |  |  |  |  |  |

The Descriptor Control provides extensibility to the protocol. An implementation supporting a subset of the descriptors is able to process the unknown ones as specified by the Descriptor Control value.

**Descriptor Type:** Specifies the type of the descriptor. The defined descriptors are summarized in table 123.

Table 123 - Descriptor Types

| Value      | Description                              | Reference  |
|------------|------------------------------------------|------------|
| 01h        | Tagging Administrative Status Descriptor | 4.2.43.2.2 |
| 02h        | Port VF_ID Descriptor                    | 4.2.43.2.3 |
| 03h        | Locally-Enabled VF_ID List Descriptor    | 4.2.43.2.4 |
| F0h FEh    | Vendor Specific Descriptor               | 4.2.43.2.5 |
| all others | Reserved                                 |            |

Descriptor Length: Specifies the length in bytes of the Descriptor Value.

# 4.2.43.2.2 Tagging Administrative Status Descriptor

The format of the Tagging Administrative Status descriptor is shown in table 124.

**Table 124 – Tagging Administrative Status Descriptor** 

| Bits<br>Word | 31     |                             | 24       | 23    |                | 16    | 15                        |  | 08 | 07 |  | 00 |  |
|--------------|--------|-----------------------------|----------|-------|----------------|-------|---------------------------|--|----|----|--|----|--|
| 0            | Descri | ptor Co<br>01h              | ontrol = | Descr | iptor T<br>01h | ype = | Descriptor Length = 0004h |  |    |    |  |    |  |
| 1            |        | Administrative Tagging Mode |          |       |                |       |                           |  |    |    |  |    |  |

The defined Administrative Tagging Modes are shown in table 125.

**Table 125 – Administrative Tagging Modes** 

| Value      | Notation | Description                                                          |
|------------|----------|----------------------------------------------------------------------|
| 0000 0001h | OFF      | The FC_Port shall not perform VFT Tagging                            |
| 0000 0002h | ON       | The FC_Port may perform VFT Tagging if the peer does not prohibit it |
| 0000 0003h | AUTO     | The FC_Port may perform VFT Tagging if the peer request it           |

In absence of any explicit configuration, the default Administrative Tagging Mode of a VF capable N\_Port or F\_Port should be AUTO.

Table 126 shows how VFT tagging is negotiated between peer FC\_Ports.

**Table 126 – Tagging Mode Negotiation** 

|         |      | Peer Tagging Mode |             |             |  |  |  |  |
|---------|------|-------------------|-------------|-------------|--|--|--|--|
|         |      | OFF               | ON          | AUTO        |  |  |  |  |
| Local   | OFF  | Non Tagging       | Non Tagging | Non Tagging |  |  |  |  |
| Tagging | ON   | Non Tagging       | Tagging     | Tagging     |  |  |  |  |
| Mode    | AUTO | Non Tagging       | Tagging     | Non Tagging |  |  |  |  |

## 4.2.43.2.3 Port VF\_ID Descriptor

The format of the Port VF\_ID descriptor is shown in table 127.

Table 127 - Port VF\_ID Descriptor

| Bits<br>Word | 31     |                | 24       | 23    |                | 16     | 15                        |  | 80     | 07    |  | 00 |
|--------------|--------|----------------|----------|-------|----------------|--------|---------------------------|--|--------|-------|--|----|
| 0            | Descri | ptor Co<br>01h | ontrol = | Desci | iptor 7<br>02h | Гуре = | Descriptor Length = 0004h |  |        |       |  |    |
| 1            |        | Port Flags     |          |       |                |        |                           |  | Port \ | /F_ID |  |    |

Port Flags: Reserved. Shall be set to zero.

**Port VF\_ID:** The 12 least significant bit of this field shall be set to the Port VF\_ID. The four most significant bit shall be set to zero. In absence of any explicit configuration, the value 001h should be used as Port VF\_ID.

# 4.2.43.2.4 Locally-Enabled VF\_ID List Descriptor

The format of the Locally-Enabled VF ID List descriptor is shown in table 128.

Table 128 – Locally-Enabled VF\_ID List Descriptor

| Bits<br>Word | 31      |                | 24       | 23    |                | 16    | 15       |       | 08        | 07       |       | 00 |
|--------------|---------|----------------|----------|-------|----------------|-------|----------|-------|-----------|----------|-------|----|
| 0            | Descrip | otor Co<br>01h | ontrol = | Descr | iptor T<br>03h | ype = |          | Desci | riptor Le | ngth = ( | )200h |    |
| 1            |         |                |          |       |                |       |          |       |           |          |       |    |
|              |         |                |          |       |                | VF_ID | D Bitmap |       |           |          |       |    |
| 128          |         |                |          |       |                |       |          |       |           |          |       |    |

**VF\_ID Bitmap:** Each Virtual Fabric is identified by a bit in the VF\_ID Bitmap. The high-order bit represents VF\_ID zero, each successive bit represents the successive VF\_ID, and the low-order bit represents VF\_ID 4095. Virtual Fabric K is allowed on the Interconnect\_Port if the Kth bit of the VF\_ID Bitmap is set to one; is disallowed if the Kth bit of the VF\_ID Bitmap is set to zero. The bit representing the Control VF\_ID (see FC-FS-2) shall be set to zero.

The list of Virtual Fabrics operational over a link is computed by performing a bit-wise 'AND' between the received VF\_ID Bitmap and the locally configured VF\_ID Bitmap.

# 4.2.43.2.5 Vendor Specific Descriptor

The format of the Vendor Specific descriptor is shown in table 129.

**Table 129 – Vendor Specific Descriptor** 

| Bits<br>Word | 31 .            | 24         | 23   |         | 16      | 15       |   | 08       | 07       |   | 00 |
|--------------|-----------------|------------|------|---------|---------|----------|---|----------|----------|---|----|
| 0            | Descripto       | or Control | Desc | criptor | Туре    |          | С | escripto | or Lengt | h |    |
| 1            |                 |            |      |         | T40.\/a | n dou ID |   |          |          |   |    |
| 2            |                 |            |      |         | 110 Ve  | ndor ID  |   |          |          |   |    |
| 3            |                 |            |      |         |         |          |   |          |          |   |    |
|              |                 |            |      |         | Vendor  | Specific |   |          |          |   |    |
| N            | Vendor Specific |            |      |         |         |          |   |          |          |   |    |

**T10 Vendor ID:** Shall be set to the Vendor's T10 Vendor ID.

# 4.2.43.3 EVFP\_COMMIT Message Payload

Both EVFP\_COMMIT Request and EVFP\_COMMIT Accept have no Message Payload.

### 4.2.44 Link Keep Alive (LKA)

#### 4.2.44.1 Overview

The LKA ELS is used for traffic generation. It provides a means to generate traffic in order to confirm that the link is still intact and/or to ensure the link is not terminated due to lack of traffic. The LKA ELS was specifically designed to keep Fibre Channel backbone links alive (e.g., some TCP implementations will disconnect connections that are not used for some time period).

The LKA ELS is sent by a VE\_Port or B\_Access portal to a remote peer in order to determine the health of a link between them, or simply to generate traffic to keep a link from being terminated. Should a link be comprised of more than one physical or virtual connection, the LKA may be transmitted on each of the connections. If a connection is configured to handle only specific class(es) of traffic, the LKA shall be sent on a class of service the connection is configured for.

The LKA ELS request Sequence shall consist of a single frame requesting the recipient to reply using the ACC reply Sequence consisting of a single frame. The LKA ELS request frame shall indicate End\_Sequence and Sequence Initiative transfer as well as other appropriate F\_CTL bits as defined in FC-FS-2. The LKA ELS shall be transmitted as a single frame Sequence and the ACC reply Sequence is also a single frame Sequence. The LKA ELS shall be transmitted as an Exchange that is separate from any other Exchange. The LKA ELS is applicable to Class F, 2, 3, and 4.

The LKA ELS may be sent at any time. The LKA ELS should be sent at least every K\_A\_TOV if no traffic has been sent and/or received on the connection. The default value for K\_A\_TOV shall be 1/2 E D TOV.

If an accept is not received within E\_D\_TOV, a new LKA ELS may be transmitted in a new Exchange. The Exchange used for the previous LKA request shall be aborted.

Upon discovering an error (e.g. due to service reject or failure to receive a timely accept in response to one or more LKA ELS requests), the initiator shall initiate appropriate exception handling. The definition of appropriate exception handling is topology-specific.

### 4.2.44.2 Protocol

- a) Link Keep Alive request Sequence; and
- b) LS ACC or LS RJT reply Sequence.

#### 4.2.44.3 Request Sequence

**Addressing:** The S\_ID field shall be set to FFFFDh, indicating the Fabric Controller of the VE\_Port or B\_Access portal originating the request. The D\_ID field shall be set to FFFFDh, indicating the Fabric Controller of the remote peer.

Payload: The format of the LKA Request Payload is shown in table 130.

Table 130 - LKA Payload

| w | Bits<br>ord | 31 24 | 23 16 | 15 08 | 07 00 |
|---|-------------|-------|-------|-------|-------|
|   | 0           | 80h   | 00h   | 00h   | 00h   |

### 4.2.44.4 Reply Sequence

LS RJT: LS RJT signifies rejection of the LKA request.

**LS\_ACC:** LS\_ACC signifies that the connection is intact. The format of the LS\_ACC payload is found in table 131.

Table 131 – LKA LS\_ACC Payload

| Bits<br>Word | 31 24 | 23 16 | 15 08 | 07 00 |
|--------------|-------|-------|-------|-------|
| 0            | 02h   | 00h   | 00h   | 00h   |

# 4.2.45 Define FFI Domain Topology Map (FFI\_DTM)

## 4.2.45.1 Description

The FFI\_DTM ELS Request shall transfer a complete initial or replacement Domain Topology Map to the Domain Controller of the AE Principal Switch.

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal Switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_DTM request currently is not the AE Principal Switch, it shall respond with an LS\_RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS\_RJT reply with a reason code of "Command not supported".

### 4.2.45.2 Protocol

- a) FFI Domain Topology Map Request Sequence; and
- b) LS\_ACC or LS\_RJT Reply Sequence.

# 4.2.45.3 Request Sequence

**Addressing:** The S\_ID designates the Nx\_Port sending an FFI Domain Topology Map. The D\_ID designates the Domain Controller of the AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

Payload: The format of the FFI\_DTM Request Payload is shown in table 132.

Table 132 – FFI\_DTM Payload

| Bits<br>Word | 31       |         | 24   | 23      |     | 16      | 15       |        | 08       | 07       |       | 00 |
|--------------|----------|---------|------|---------|-----|---------|----------|--------|----------|----------|-------|----|
| 0            | FFI_DTN  | И (A0h  | )    | 00h     |     |         | Payload  | d Leng | th       |          |       |    |
| 1            | FFI Inca | rnatior | Numb | er      |     |         |          |        |          |          |       |    |
| 2            | Reserve  | d       |      | Reserve | ed  |         | Numbe    | of FF  | I Link S | tate Red | cords |    |
| 3            |          |         |      |         |     |         |          |        |          |          |       |    |
|              |          |         |      |         | FFI | Link St | ate Reco | rds    |          |          |       |    |
| n            |          |         |      |         |     |         |          |        |          |          |       |    |

**Payload Length:** This field is the length in bytes of the entire Payload, inclusive of the length of word 0. This value shall be a multiple of 4. The minimum value of this field is 28. The maximum value of this field is 65532.

FFI Incarnation Number: This field contains the new incarnation of the FFI Domain Topology Map.

**Number of FFI Link State Records:** This field shall specify the number of FFI Link State Records that follow this field. The minimum value is 2.

**FFI Link State Records:** This field contains all of the individual FFI Link State Records that describe the Domain Topology Map of the Avionics Fabric. The format of the FFI Link State Record is described in FC-SW-4.

## 4.2.45.4 Reply Sequence

**LS\_RJT:** LS\_RJT signifies the rejection of the FFI\_DTM Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC:** LS\_ACC signifies acceptance of the FFI\_DTM Request. The format of the LS\_ACC Payload for FFI\_DTM is shown in table 133.

Table 133 – FFI\_DTM LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.46 Request FFI Domain Topology Map (FFI\_RTM)

# 4.2.46.1 Description

The FFI\_RTM ELS Request shall request the Domain Controller of the AE Principal Switch to return the current Domain Topology Map in the LS\_ACC Reply Sequence.

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal Switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_RTM request currently is not the AE Principal Switch, it shall respond with an LS RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS\_RJT reply with a reason code of "Command not supported."

### 4.2.46.2 Protocol

- a) FFI Domain Topology Map Request Sequence; and
- b) LS\_ACC or LS\_RJT Reply Sequence.

# 4.2.46.3 Request Sequence

**Addressing:** The S\_ID field value identifies the Nx\_Port requesting the Domain Topology Map from the Domain Controller of the AE Principal Switch. The D\_ID designates the Domain Controller of the AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

**Payload:** The format of the FFI\_RTM Request Payload is shown in table 134.

Table 134 – FFI\_RTM Payload

| Bits<br>Word | 31     |        | 24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|--------|--------|----|-----|--------|-----|--------|-----|--------|
| 0            | FFI_R1 | ГМ (А1 | h) | 00h |        | 00h |        | 00h |        |

# 4.2.46.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FFI\_RTM Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC:** LS\_ACC signifies acceptance of a valid FFI\_RTM Request and that the AE Principal Switch has transmitted the requested data. The format of the LS\_ACC Payload for FFI\_RTM is shown in table 135.

Table 135 - FFI\_RTM LS\_ACC Payload

| Bits<br>Word | 31       |        | 24     | 23      |     | 16      | 15       |         | 08       | 07       |       | 00 |
|--------------|----------|--------|--------|---------|-----|---------|----------|---------|----------|----------|-------|----|
| 0            | 02h      |        |        | 00h     |     |         | Payload  | d Leng  | th       |          |       |    |
| 1            | FFI Inca | rnatio | n Numb | er      |     |         |          |         |          |          |       |    |
| 2            | Reserve  | ed     |        | Reserve | ed  |         | Numbe    | r of FF | I Link S | tate Red | cords |    |
| 3            |          |        |        |         |     |         |          |         |          |          |       |    |
|              |          |        |        |         | FFI | Link St | ate Reco | ords    |          |          |       |    |
| n            |          |        |        |         |     |         |          |         |          |          |       |    |

**Payload Length:** This field is the length in bytes of the entire Payload, inclusive of the length of word 0. This value shall be a multiple of 4 bytes. The minimum value of this field is 28 bytes. The maximum value of this field is 65532.

**FFI Incarnation Number:** This field contains the current incarnation of the FFI Domain Topology Map.

**Number of FFI Link State Records:** This field shall specify the number of FFI Link State Records that follow this field. The minimum value is 2.

**FFI Link State Records:** This field contains all of the individual FFI Link State Records that describe the Domain Topology Map of the Avionics Fabric. The format of the FFI Link State Record is described in FC-SW-4.

### 4.2.47 FFI AE Principal Switch Selector (FFI\_PSS)

# 4.2.47.1 Description

The FFI\_PSS ELS Request shall be sent to an AE Switch that is not currently the AE Principal Switch in order to command the recipient to become the AE Principal Switch.

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal Switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_PSS request currently is the AE Principal Switch or is not capable of becoming the AE Principal Switch, it shall respond with an LS\_RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS\_RJT reply with a reason code of "Command not supported".

#### 4.2.47.2 Protocol

- a) FFI AE Principal Switch Selector Request Sequence; and
- b) LS ACC or LS RJT Reply Sequence.

## 4.2.47.3 Request Sequence

**Addressing:** The S\_ID field value identifies the Nx\_Port requesting a change of AE Principal Switch. The D\_ID field value identifies the Domain Controller of an AE Switch that is not the current AE Principal Switch but is capable of becoming an AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

**Payload:** The format of the FFI\_PSS Request Payload is shown in table 136.

Table 136 – FFI\_PSS Payload

| Bi <sup>s</sup><br>Wo |   | 31     |         | 24 | 23  | <br>16 | 15  | <br>80 | 07  | <br>00 |
|-----------------------|---|--------|---------|----|-----|--------|-----|--------|-----|--------|
| 0                     | ) | FFI_PS | S (A2h) |    | 00h |        | 00h |        | 00h |        |

### 4.2.47.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FFI\_PSS Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC**: LS\_ACC signifies acceptance of the FFI\_ PSS Request. The format of the LS\_ACC Payload for FFI\_ PSS is shown in table 137.

Table 137 - FFI\_PSS LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | <br>08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|--------|-----|--------|
| 0            | 02h |        | 00h |        | 00h |        | 00h |        |

# 4.2.48 FFI Map Update Registration (FFI\_MUR)

# 4.2.48.1 Description

The FFI\_MUR ELS Request shall request the Domain Controller of the AE Principal Switch to add or remove the Nx\_Port that is sending the FFI\_MUR Request (S\_ID value) to/from the list of Nx\_Ports registered to receive the FFI\_RMUN ELS Requests (see 4.2.49).

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_MUR request currently is not the AE Principal Switch, it shall respond with an LS\_RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS RJT reply with a reason code of "Command not supported".

#### 4.2.48.2 Protocol

- a) FFI Map Update Registration Request Sequence; and
- b) LS ACC or LS RJT Reply Sequence.

## 4.2.48.3 Request Sequence

**Addressing:** The S\_ID designates the Nx\_Port requesting registration for FFI Map Update Notification. The D\_ID designates the Domain Controller of the AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

Payload: The format of the FFI MUR Request Payload is shown in table 138.

Table 138 – FFI\_MUR Payload

| Bits<br>Word | 31     |        | 24 | 23  | <br>16 | 15  | <br>08 | 07       |         | 00      |
|--------------|--------|--------|----|-----|--------|-----|--------|----------|---------|---------|
| 0            | FFI_MI | JR (A3 | h) | 00h |        | 00h |        | 00h      |         |         |
| 1            | 00h    |        |    | 00h |        | 00h |        | Registra | ation F | unction |

Registration Function: The format of the Registration Function field is shown in table 139.

**Table 139 – Registration Function** 

| Function                                                                                                                                                       | Value   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Reserved                                                                                                                                                       | 0       |
| Full registration - Register to receive FFI_RMUN Requests. If the requesting Nx_Port is already registered, this request is treated as a NOP function.         | 3       |
| Reserved                                                                                                                                                       | 4 - 254 |
| Clear registration – Remove the current FFI_RMUN registration, if any. If the requesting Nx_Port is not registered, this request is treated as a NOP function. | 255     |

# 4.2.48.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FFI\_MUR Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC**: LS\_ACC signifies acceptance of the FFI\_MUR Request and registration to receive FFI\_RMUN Requests. The format of the LS\_ACC Payload for FFI\_MUR is shown in table 140.

Table 140 - FFI\_MUR LS\_ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | •• | 80 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|----|----|-----|--------|
| 0            | 02h |        | 00h |        | 00h |    |    | 00h |        |

## 4.2.49 FFI Registered Map Update Notification (FFI\_RMUN)

### 4.2.49.1 Description

A unidirectional FFI\_RMUN Request shall be sent to registered Nx\_Ports (see 4.2.48) when the AE Principal Switch sends an Fast Fabric Initialization (FFI) Request Sequence initiated by the AE Principal Switch.

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal Switch. Support for this ELS is optional for Nx\_Ports. However, if the Nx\_Port invokes the FFI\_MUR ELS, it shall support receipt of the FFI\_RMUN Request.

FFI\_RMUN Request is intended to provide a timely indication of Map Updates to avoid the considerable time to discover any such failure.

Sending FFI\_RMUN Requests between Nx\_Ports is prohibited. Sending FFI\_RMUN Requests by a Domain Controller that is not an AE Principal Switch is prohibited.

# 4.2.49.2 Registration to Receive FFI\_RMUN Requests

See 4.2.48.

#### 4.2.49.3 Protocol

a) FFI\_RMUN Request Sequence.

### 4.2.49.4 Request Sequence

**Addressing:** The S\_ID is the Domain Controller of the AE Principal Switch (FFFCxxh) and the D\_ID is the address of the Registered Nx\_Port destination.

Payload: The format of the FFI\_RMUN Request Payload is shown in table 141.

Table 141 – FFI\_RMUN Payload

| Bits<br>Word | 31        | 2                      | 4 | 23      |                   | 16 | 15    |         | 08       | 07      | ••    | 00 |
|--------------|-----------|------------------------|---|---------|-------------------|----|-------|---------|----------|---------|-------|----|
| 0            | FFI_RMU   | JN (A4h)               |   | 00h     | Oh Payload Length |    |       |         |          |         |       |    |
| 1            | FFI Incar | FFI Incarnation Number |   |         |                   |    |       |         |          |         |       |    |
| 2            | Reserved  | t                      |   | Reserve | ed                |    | Numbe | r of FF | I Link S | tate Re | cords |    |
| 3            |           |                        |   |         |                   |    |       |         |          |         |       |    |
|              |           | FFI Link State Records |   |         |                   |    |       |         |          |         |       |    |
| n            |           |                        |   |         |                   |    |       |         |          |         |       |    |

**Payload Length:** This field is the length in bytes of the entire Payload, inclusive of the length of word 0. This value shall be a multiple of 4 bytes. The minimum value of this field is 28 bytes. The maximum value of this field is 65532.

**FFI Incarnation Number:** This field contains the current incarnation of the FFI Domain Topology Map.

**Number of FFI Link State Records:** This field shall specify the number of FFI Link State Records that follow this field. The minimum value is 2.

**FFI Link State Records:** This field contains all of the individual FFI Link State Records that describe the Domain Topology Map of the Avionics Fabric. The format of the FFI Link State Record is described in FC-SW-4.

# 4.2.49.5 Reply Sequence

LS\_RJT: none

LS ACC: none

### 4.2.50 FFI Suspend Map Updates (FFI\_SMU)

### 4.2.50.1 Description

The FFI\_SMU ELS Request shall request the Domain Controller of the AE Principal Switch, to suspend Domain Topology Map updates as specified in FC-SW-4. If Domain Topology Map updates are currently suspended, this request is treated as a NOP function. Successful execution of this ELS shall also suspend Registered Map Updates Notifications, if any (see 4.2.49).

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_SMU request currently is not the AE Principal Switch, it shall respond with an LS\_RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS\_RJT reply with a reason code of "Command not supported".

#### 4.2.50.2 Protocol

- a) FFI Suspend Map Updates Request Sequence; and
- b) LS\_ACC or LS\_RJT Reply Sequence.

### 4.2.50.3 Request Sequence

**Addressing:** The S\_ID field value identifies the Nx\_Port requesting suspension of Domain Topology Map updates by the Domain Controller of the AE Principal Switch. The D\_ID field value identifies the Domain Controller of the AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

Payload: The format of the FFI SMU Request Payload is shown in table 142.

Table 142 – FFI\_SMU Payload

| Bits<br>Word | 31     |        | 24 | 23  | •• | 16 | 15  | <br>08 | 07  | <br>00 |
|--------------|--------|--------|----|-----|----|----|-----|--------|-----|--------|
| 0            | FFI_SM | IU (A5 | h) | 00h |    |    | 00h |        | 00h |        |

### 4.2.50.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FFI\_SMU Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC:** LS\_ACC signifies acceptance of a valid FFI\_SMU Request and indicates that the Domain Controller of the AE Principal Switch has suspended Domain Topology Map updates. The format of the LS\_ACC Payload for FFI\_SMU is shown in table 143.

Table 143 - FFI SMU LS ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | ** | 16 | 15  | •• | 80 | 07  | •• | 00 |
|--------------|-----|--------|-----|----|----|-----|----|----|-----|----|----|
| 0            | 02h |        | 00h |    |    | 00h |    |    | 00h |    |    |

#### 4.2.51 FFI Resume Map Updates (FFI\_RMU)

### 4.2.51.1 Description

The FFI\_RMU ELS Request shall request the Domain Controller of the AE Principal Switch, to resume Domain Topology Map updates as specified in FC-SW-4. If Domain Topology Map updates are currently not suspended, this request is treated as a NOP function. Successful execution of this ELS shall also resume Registered Map Updates Notifications, if any (see 4.2.49).

Support for this ELS is mandatory for a Domain Controller in an AE Principal Switch or an AE Switch that is capable of becoming an AE Principal Switch. Support for this ELS is optional for Nx\_Ports.

If the Domain Controller that receives an FFI\_RMU request currently is not the AE Principal Switch, it shall respond with an LS\_RJT reply with a reason code of "Logical error".

If a destination receives this ELS Request that is not a Domain Controller, it shall respond with an LS\_RJT reply with a reason code of "Command not supported".

### 4.2.51.2 Protocol

- a) FFI Resume Map Updates Request Sequence; and
- b) b) LS\_ACC or LS\_RJT Reply Sequence.

## 4.2.51.3 Request Sequence

**Addressing:** The S\_ID field value identifies the Nx\_Port requesting resumption of Domain Topology Map updates by the Domain Controller of the AE Principal Switch. The D\_ID field value identifies the Domain Controller of the AE Principal Switch in the form FFFCxxh, where xx is the one-byte value assigned to the Domain Controller.

Payload: The format of the FFI RMU Request Payload is shown in table 144.

Table 144 – FFI RMU Payload

| Bits<br>Word | 31     |        | 24 | 23  | ** | 16 | 15  | •• | 08 | 07  | <br>00 |
|--------------|--------|--------|----|-----|----|----|-----|----|----|-----|--------|
| 0            | FFI_RN | ЛU (A6 | h) | 00h |    |    | 00h |    |    | 00h |        |

## 4.2.51.4 Reply Sequence

**LS\_RJT**: LS\_RJT signifies the rejection of the FFI\_RMU Request. The LS\_RJT reply contains an appropriate reject reason code.

**LS\_ACC:** LS\_ACC signifies acceptance of a valid FFI\_RMU Request and indicates that the Domain Controller of the AE Principal Switch has resumed Domain Topology Map updates. The format of the LS ACC Payload for FFI\_RMU is shown in table 145.

Table 145 - FFI RMU LS ACC Payload

| Bits<br>Word | 31  | <br>24 | 23  | <br>16 | 15  | •• | 08 | 07  | <br>00 |
|--------------|-----|--------|-----|--------|-----|----|----|-----|--------|
| 0            | 02h |        | 00h |        | 00h |    |    | 00h |        |

### 4.3 Extended Link Service Reply Sequences

#### 4.3.1 Overview

An ELS Reply Sequence shall signify that the ELS request Sequence is completed. The reply Sequence may contain data in the Payload following the ELS\_Command code word. The format and meaning of the Payload is specified in the request ELS definition.

#### 4.3.2 LS ACC

The Link Service Accept (LS\_ACC) ELS reply Sequence shall notify the originator of an ELS request that the ELS request Sequence has been completed. The Responder shall terminate the Exchange by setting the Last Sequence bit (Bit 20) in F\_CTL on the last Data frame of the reply Sequence. The first byte of the Payload shall contain 02h. The remainder of the Payload is unique to the ELS request.

Protocol: LS\_ACC is the reply Sequence for several ELSs as indicated in the applicable clause.

**Addressing:** The D\_ID field designates the source of the ELS Sequence being accepted while the S ID field designates the destination of the request Sequence being accepted.

**Payload:** The Payload content following the ELS\_Command code (02XXXXXXh) is defined within individual ELS requests.

#### 4.3.3 Reply Sequence

none

### 4.3.4 Link Service Reject (LS\_RJT)

#### 4.3.4.1 Description

The Link Service Reject (LS\_RJT) shall notify the transmitter of a Link Service request that the Link Service request Sequence has been rejected. A four-byte reason code shall be contained in the Data Field. Link Service Reject may be transmitted for a variety of conditions that may be unique to a specific Link Service request (e.g., if the Service Parameters specified in a Login frame were logically inconsistent or in error, a P\_RJT frame would not be transmitted in response, but rather a Link Service Reject).

#### 4.3.4.2 Payload

**Addressing:** The D\_ID field designates the source of the ELS request being rejected while the S\_ID field designates the destination of the request Data frame Sequence being rejected.

**Payload:** The first word of the Payload shall contain the ELS\_Command code (01000000h). The next four bytes of this field shall indicate the reason for rejecting the request (see figure 3 and tables 146 and 147). The first error condition encountered shall be the error reported.

NOTE 8 – The applicable ELSs column in table 147 is not necessarily complete (i.e., a given reply may contain a reason code explanation other than what is indicated for it in the table).

# Service Reject data definition - second word



Figure 3 – LS\_RJT format

Table 146 - LS\_RJT Reason Codes

| Encoded Value<br>(Bits 23-16) | Description                          | Explanation                                                                                                                             |
|-------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 01h                           | Invalid ELS_Command code             | The ELS_Command code in the Sequence being rejected is invalid.                                                                         |
| 03h                           | Logical error                        | The request identified by the ELS_Command code and Payload content is invalid or logically inconsistent for the conditions present.     |
| 05h                           | Logical busy                         | The Link Service is logically busy and unable to process the request at this time.                                                      |
| 07h                           | Protocol error                       | This indicates that an error has been detected that violates the rules of the ELS Protocol that are not specified by other error codes. |
| 09h                           | Unable to perform command request    | The Recipient of a Link Service command is unable to perform the request at this time.                                                  |
| 0Bh                           | Command not supported                | The Recipient of a Link Service command does not support the command requested.                                                         |
| 0Eh                           | Command already in progress          |                                                                                                                                         |
| FFh                           | Vendor specific error (See bits 7-0) | The Vendor specific error bits may be used by Vendors to specify additional reason codes.                                               |
| Others                        | Reserved                             |                                                                                                                                         |

# 4.3.4.3 Reply Sequence

none

Table 147 – LS\_RJT Reason Code Explanations

| Encoded<br>Value<br>(Bits 15-8) | Description                                 | Applicable ELSs                                                                                                                                                   |
|---------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h                             | No additional explanation                   | ADVC, ESTS, FLOGI, PLOGI, LOGO, RCS,<br>REC, RLS, RTV, RSI, PRLI, PRLO, TPLS,<br>TPRLO, GAID, FACT, FDACT, NACT,<br>NDACT, PDISC, FDISC, ADISC, RNC, CSR,<br>RNFT |
| 01h                             | Service Parm error - Options                | FLOGI, PLOGI                                                                                                                                                      |
| 03h                             | Service Parm error - Initiator Ctl          | FLOGI, PLOGI                                                                                                                                                      |
| 05h                             | Service Parm error - Recipient Ctl          | FLOGI, PLOGI                                                                                                                                                      |
| 07h                             | Service Parm error - Rec Data Field<br>Size | FLOGI, PLOGI                                                                                                                                                      |
| 09h                             | Service Parm error - Concurrent Seq         | FLOGI, PLOGI                                                                                                                                                      |
| 0Bh                             | Service Parm error - Credit                 | ADVC, FLOGI, PLOGI                                                                                                                                                |
| 0Dh                             | Invalid N_Port/F_Port_Name                  | FLOGI, PLOGI                                                                                                                                                      |
| 0Eh                             | Invalid node/Fabric Name                    | FLOGI, PLOGI                                                                                                                                                      |
| 0Fh                             | Invalid Common Service Parameters           | FLOGI, PLOGI                                                                                                                                                      |
| 11h                             | Invalid Association_Header                  | RRQ, RSI                                                                                                                                                          |
| 13h                             | Association_Header required                 | RRQ, RSI                                                                                                                                                          |
| 15h                             | Invalid Originator S_ID                     | REC, RRQ, RSI                                                                                                                                                     |
| 17h                             | Invalid OX_ID-RX_ID combination             | REC, RRQ, RSI                                                                                                                                                     |
| 19h                             | Command (request) already in progress       | PLOGI, RSI                                                                                                                                                        |
| 1Eh                             | N_Port Login required                       | see table 3                                                                                                                                                       |
| 1Fh                             | Invalid N_Port_ID                           | RCS, RLS                                                                                                                                                          |
| 21h                             | Obsolete                                    |                                                                                                                                                                   |
| 23h                             | Obsolete                                    |                                                                                                                                                                   |

Table 147 – LS\_RJT Reason Code Explanations(Continued)

| Encoded<br>Value<br>(Bits 15-8) | Description                                     | Applicable ELSs                                                                                           |
|---------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 25h                             | Obsolete                                        |                                                                                                           |
| 27h                             | Obsolete                                        |                                                                                                           |
| 29h                             | Insufficient resources to support Login         | FLOGI, PLOGI, FDISC                                                                                       |
| 2Ah                             | Unable to supply requested data                 | ADVC, ESTS, RCS, RLS, RTV                                                                                 |
| 2Ch                             | Request not supported                           | ADVC, ESTS, PRLI, PRLO, TPLS, TPRLO,<br>GAID, FACT, FDACT, NACT, NDACT,<br>PDISC, FDISC, ADISC, RNC, RNFT |
| 2Dh                             | Invalid Payload length                          | FLOGI, PLOGI                                                                                              |
| 30h                             | No Alias_IDs available for this Alias_ID Type   | Get Alias_ID                                                                                              |
| 31h                             | Alias_ID not activated (no resources available) | Fabric Activate Alias ID,<br>N_Port Activate Alias ID                                                     |
| 32h                             | Alias_ID not activated (invalid Alias_ID)       | Fabric Activate Alias ID,<br>N_Port Activate Alias ID                                                     |
| 33h                             | Alias_ID not deactivated (doesn't exist)        | Fabric Deactivate Alias ID,<br>N_Port Deactivate Alias ID                                                 |
| 34h                             | Alias_ID not deactivated (resource problem)     | Fabric Deactivate Alias ID,<br>N_Port Deactivate Alias ID                                                 |
| 35h                             | Service Parameter conflict                      | N_Port Activate Alias ID                                                                                  |
| 36h                             | Invalid Alias_Token                             | Get Alias_ID                                                                                              |
| 37h                             | Unsupported Alias_Token                         | N_Port Activate Alias ID                                                                                  |

Table 147 – LS\_RJT Reason Code Explanations(Continued)

| Encoded<br>Value<br>(Bits 15-8) | Description                         | Applicable ELSs |
|---------------------------------|-------------------------------------|-----------------|
| 38h                             | Alias Group cannot be formed        | Get Alias ID    |
| 40h                             | Obsolete                            |                 |
| 41h                             | Obsolete                            |                 |
| 42h                             | Obsolete                            |                 |
| 44h                             | Invalid Port/Node_Name              | LCLM            |
| 46h                             | Login Extension not supported       | PLOGI, FLOGI    |
| 48h                             | Authentication required (see FC-SP) | PLOGI, FLOGI    |
| 50h                             | Periodic Scan Value not allowed     | SRL             |
| 51h                             | Periodic Scanning not supported     | SRL             |
| Others                          | Reserved                            |                 |

#### 5 FC-4 Link Service

An FC-4 Link Service request solicits a destination Port (Fx\_Port or Nx\_Port) to perform a function or service in order to support an individual FC-4 Device\_Data protocol. The Information Category for a request shall be specified as Unsolicited Control. A FC-4 Link Service reply may be transmitted in answer to a FC-4 Link Service request. The Information Category for a reply shall be specified as Solicited Control. Each request or reply shall be composed of a single Sequence. The format of the request or reply shall be specified by the individual FC-4 being supported and is beyond the scope of this standard. Each Sequence may be composed of one or more frames.

The protocols supported by the FC-4 Link Services shall be performed within a single Exchange, intended exclusively for the purpose. FC-4 Link Service protocols are performed using a two Sequence Exchange. The protocols consist of a request Sequence by the Originator (Nx\_Port), transfer of Sequence Initiative (see FC-FS-2), and a reply Sequence from the Responder (Nx\_Port or Fx\_Port). The execution of a FC-4 Link Service may perform sequence abort functions and modify sequence initiative of other exchanges in a protocol specific manner. The Sequence Initiator and Sequence Recipient shall follow the rules for Sequence management and Recovery\_Qualifier reuse as specified in FC-FS-2. The following rules regarding Sequence and Exchange management apply to FC-4 Link Services in addition to the rules specified in FC-FS-2:

- a) FC-4 Link Services shall only be Exchanges originated following N\_Port Login.
- b) the Originator of the Exchange shall use the Discard multiple Sequences Exchange Error Policy (see FC-FS-2) for all FC-4 Link Service Exchanges.
- c) the Originator of an FC-4 Link Service Exchange shall detect an Exchange error following Sequence Initiative transfer if the reply Sequence is not received within a timeout interval equal to twice the value of R A TOV.
- d) if the Exchange Originator of an FC-4 Link Service Exchange detects an Exchange error, it shall abort the Exchange using ABTS and retry the protocol of the aborted Exchange with a different Exchange.
- e) if the Sequence Initiator aborts a Sequence using ABTS (Abort Sequence Protocol) due to receiving an ACK with the Abort Sequence bits (5-4) set to 01b, the Sequence Initiator shall re-try the Sequence after the Basic Accept (see FC-FS-2) is received for the aborted Sequence one time only.

R\_CTL bits 31-28 (Word 0) are set = to 0011b to indicate a FC-4 Link\_Data frame. The TYPE field for each FC-4 Link Service frame shall match the FC-4 Device\_Data TYPE field as specified in FC-FS-2.

# 6 Login and Service Parameters

#### 6.1 Introduction

The Login procedure is a method by which an Nx\_Port establishes its operating environment with a Fabric, if present, and other destination Nx\_Ports with which it communicates. Fabric Login and N\_Port Login are both accomplished with a similar procedure using different D\_IDs and possibly different S\_IDs.

Login between an Nx\_Port and the Fabric or between two Nx\_Ports is long-lived. The number of concurrent Nx\_Ports with which an Nx\_Port may be logged in with is a function of the Nx\_Port facilities available. There is no one to one relationship between Login and Class 1 dedicated connections.

Login between an Nx\_Port and the Fabric or between two Nx\_Ports may use an explicit or implicit method. When Login is referred to throughout other sections of this standard, either the explicit or implicit procedure may be used. Implicit Login is assumed to provide the same functionality as Explicit Login.

Explicit Login is accomplished using a Login (FLOGI or PLOGI) ELS (see 4.2.7) within a new Exchange to transfer the Service Parameters (contained in the Payload) of the Nx\_Port initiating the Login Exchange. The LS\_ACC contains the Service Parameters of the Responder (contained in the Payload).

Implicit Login is a method of defining and specifying the Service Parameters of destination Nx\_Ports by means other than the explicit use of the Login ELS. Specific methods of implicit Login are not defined in this standard.

Implicit Fabric Login, unlike Explicit Fabric Login, does not require the support, within an Nx\_Port, of the FLOGI Link Service request and reply. Implicit Fabric Login may be supported in a variety of ways, requiring varying levels of support within an Nx\_Port.

An Nx Port determines its own native N Port ID through explicit or implicit Login by

- a) the Fabric, if present,
- b) implicit definition, or
- c) assignment in the PLOGI Sequence transmitted to a destination Nx\_Port attached in a point-to-point topology.

Nx\_Ports may collect Address Identifiers from other potential destination Nx\_Ports from:

- a) a name server function, if present,
- b) implicit definition, or
- c) an alternate initialization procedure.

### 6.2 Fabric Login

#### 6.2.1 Introduction

Login with the Fabric is required for all Nx\_Ports, regardless of the class supported. Communication with other Nx\_Ports shall not be attempted until the Fabric Login procedure is complete.

Fabric Login accomplishes the following functions:

- a) It determines the presence or absence of a Fabric.
- b) If a Fabric is present, it provides the Nx\_Port with the specific set of operating characteristics associated with the entire Fabric, F\_Port\_Name and Fabric\_Name.
- c) If a Fabric is present, it provides the Fabric with the specific set of operating characteristics, N Port Name and Node Name of the Nx Port
- d) If a Fabric is present, the Fabric shall optionally assign or shall confirm the N\_Port\_ID of the Nx\_Port that initiated the Login.
- e) If a Fabric is present, it initializes the buffer-to-buffer Credit.
- f) If the Nx\_Port and the Fabric support Authentication, it enables the subsequent Nx\_Port to Fabric Authentication (see FC-SP).
- g) If the N\_Port and the Fabric support Virtual Fabrics, it enables the subsequent negotiation of Virtual Fabrics parameters (see 8.2).

# 6.2.2 Explicit Fabric Login

#### 6.2.2.1 Introduction

The explicit Fabric Login procedure shall require an Nx\_Port to transmit a Fabric Login (FLOGI) Link Service ELS (see 4.2.7).

Explicit Fabric Login replaces previous Service Parameters. The Login procedure shall follow the Exchange and Sequence management rules, the buffer-to-buffer flow control rules, and the end-to-end flow control rules as specified in FC-FS-2.

#### 6.2.2.2 Explicit Fabric Login Request

The Nx\_Port shall transmit the FLOGI in a new Exchange. The Payload of FLOGI contains the Service Parameters of the Nx\_Port, a 64-bit N\_Port\_Name of the Nx\_Port, and a 64-bit Node\_Name. The Service Parameters are as specified for F\_Port Login in 6.6. The applicability of the Service Parameters to Fabric Login are given in tables 150 and 155. The Nx\_Port shall assign an OX\_ID and set the D\_ID to the well-known F\_Port address (i.e., FFFFFEh).

If the Nx\_Port is unidentified, an Nx\_Port shall set the S\_ID in the FLOGI to 000000h or 0000h || YY. If the Nx\_Port sets the S\_ID to 000000h, the Nx\_Port is requesting the Fabric assign all 24 bits of the N\_Port\_ID. If the Nx\_Port sets the S\_ID to 0000h || YY, the Nx\_Port is requesting the Fabric assign the upper 16 bits, bits 23 to 8, and validate the lower 8 bits, bits 7 to 0, of the N\_Port\_ID. An example of the use of S\_ID of 0000h || YY is FC-AL-2. The lower 8 bits of the N\_Port\_ID are the AL\_PA.

#### 6.2.2.3 Responses to Explicit Fabric Login

The following are possible responses the Nx Port may receive when transmitting a FLOGI:

- a) LS\_ACC reply Sequence with OX\_ID equal to the OX\_ID of the FLOGI, and the Common Service N\_Port/F\_Port bit set to one (Fx\_Port) This is the normal response to a Fabric Login request. The D\_ID of the LS\_ACC shall be the N\_Port\_ID assigned by the Fabric. If the S\_ID in the FLOGI was 000000h, the D\_ID shall be XXXXXXX. If the S\_ID in the FLOGI was 0000h || YY, the D\_ID shall be XXXXYYY. If the S\_ID in the FLOGI was XXXXXXX, the D\_ID shall be same value of XXXXXXX. The Payload shall include the Service Parameters for the entire Fabric, a 64-bit F\_Port\_Name and 64-bit Fabric\_Name. The Service Parameters are as specified for F\_Port Login in 6.6. The applicability of the Service Parameters to Fabric Login are given in tables 150 and 155. The Nx\_Port may continue operation with other Nx\_Ports if the N\_Port\_ID, F\_Port\_Name, and Fabric\_Name are the same as in a previous Fabric Login or proceed to N\_Port\_Login.
- b) LS\_ACC reply Sequence with OX\_ID equal to the OX\_ID of the FLOGI, and the Common Service Nx\_Port/F\_Port bit set to zero (Nx\_Port) This indicates a point-to-point connection with another Nx\_Port. The D\_ID of the LS\_ACC shall be the S\_ID of the FLOGI. The Payload shall include the Service Parameters from the FLOGI with all classes marked invalid, a 64-bit N\_Port\_Name and 64-bit Node\_Name of the connected Nx\_Port. If the received N\_Port\_Name is less than its N\_Port\_Name, the Nx\_Port proceeds to N\_Port Login. If the received N\_Port\_Name is greater than its N\_Port\_Name, the Nx\_Port waits for PLOGI from the attached N\_Port.
- c) F\_BSY with OX\_ID equal to the OX\_ID of the FLOGI. The D\_ID shall be the S\_ID of the FLOGI. The Fabric is busy. The Nx\_Port may retry the FLOGI again later.
- d) P\_BSY Sequence with OX\_ID equal to the OX\_ID of the FLOGI. The D\_ID shall be the S\_ID of the FLOGI. This indicates a point-to-point connection with another Nx\_Port that is currently busy. The Nx\_Port may proceed to N\_Port Login after a delay to allow the destination Nx\_Port to become not busy.
- e) F\_RJT Sequence with OX\_ID equal to the OX\_ID of the FLOGI. The D\_ID shall be the S\_ID of the FLOGI. The Fabric has rejected the FLOGI request. The reason code contained in the Payload determines the Nx\_Port's action. If the reason code is "Class not supported", the Nx\_Port may originate a FLOGI in a different class. If the reason code is "Invalid S\_ID", the Nx\_Port may originate a FLOGI with a different S\_ID:
  - A) If the S\_ID of the rejected FLOGI was 000000h or 0000h || YY, the Nx\_Port may select a 24 bit value, XXXXXX, for its N\_Port\_ID by a method outside this standard and originate a FLOGI with this value in the S\_ID.
  - B) If the S\_ID of the rejected FLOGI was XXXXXX, the Nx\_Port may select a value of '00 00 00' or '00 00 yy', or a new value 'XX XX XX' for its N\_Port\_ID by a method outside this standard and originate a FLOGI with this value in the S\_ID.
- f) P\_RJT Sequence, with OX\_ID equal to the OX\_ID of the FLOGI. The D\_ID shall be the S\_ID of the FLOGI. This indicates a point-to-point connection with another Nx\_Port. The reason code contained in the Payload determines the Nx\_Port's action. If the reason code is "Class not supported", the Nx\_Port may proceed to N\_Port Login in a different class than used for the FLOGI. For other reason codes, the Nx\_Port should respond accordingly.

- g) LS\_RJT Sequence with OX\_ID equal to the OX\_ID of the FLOGI. The D\_ID of the LS\_RJT shall be the N\_Port\_ID assigned by the Fabric. If the S\_ID in the FLOGI was 000000h, the D\_ID shall be XXXXXXX. If the S\_ID in the FLOGI was 0000h || YY, the D\_ID shall be XXXXXYY. If the S\_ID in the FLOGI was XXXXXXX, the D\_ID shall be XXXXXXX. The reason code contained in the Payload determines the Nx\_Port's action. The Nx\_Port may alter the Service Parameters based on the reason code and originate a new FLOGI.
- h) No Response may indicate a delivery error, e.g., error on the physical transport. The Nx\_Port shall perform error recovery per FC-FS-2. The Nx\_Port may originate a new FLOGI after recovery.
- i) If the received N\_Port\_Name is equal to its N\_Port\_Name, then the Nx\_Port is connected to itself and this case is outside the scope of this standard. The FLOGI is discarded.

# 6.2.2.4 Nx\_Port response to FLOGI

If an Nx\_Port receives a FLOGI, the Nx\_Port shall respond to the received FLOGI with an LS\_ACC reply Sequence with the OX\_ID equal to the OX\_ID of the received FLOGI and the Common Service Parameter Nx\_Port/F\_Port bit set to zero (i.e., an Nx\_Port). This indicates a point-to-point connection with another Nx\_Port. The D\_ID of the LS\_ACC shall be the S\_ID of the received FLOGI. The Payload shall include the Service Parameters from the received FLOGI with all classes marked invalid, and the 64-bit N\_Port\_Name and 64-bit Node\_Name of the connected Nx\_Port. If the received N\_Port\_Name is less than its N\_Port\_Name, the Nx\_Port proceeds to N\_Port Login. If the received N\_Port\_Name is greater than its N\_Port\_Name, the Nx\_Port waits for PLOGI from the attached N\_Port.

#### 6.2.2.5 Relogin with the Fabric

During a Login with the Fabric, if the Nx\_Port was previously logged in with the Fabric and the N\_Port\_ID, F\_Port\_Name, and the Fabric\_Name are the same as the previous login, the Nx\_Port may continue current communications with other Nx\_Ports that it has established logins with; if the Nx\_Port detects that the N\_Port\_ID, F\_Port\_Name, and/or the Fabric\_Name has changed since the last Fabric Login, the Nx\_Port shall implicitly logout with all Nx\_Ports and wait an R\_A\_TOV timeout period before initiating or accepting communication with other Nx\_Ports. The timeout period shall start when the Nx\_Port detects the change. After waiting the timeout period, new N\_Port Logins are required before the Nx\_Port may communicate with other Nx\_Ports.

#### 6.2.3 SOFs

Fabric Login shall only be performed in Class 1, 2, or 3. Since the Fabric may not support all three classes, the FLOGI Sequence may require retry in a different Class with the appropriate SOF.

Fabric Login is valid for all supported classes as indicated by the validity bits in the FLOGI LS\_ACC Reply Sequence.

SOFc1 may be used to attempt Fabric Login or Fabric Relogin. SOFi1 is not allowed.

Class 6 shall not be used for Fabric Login since the D\_ID field requires an Alias\_ID multicast address.

Selection of the SOF for the FLOGI Sequence is based on the Classes supported by the originating Nx\_Port. The FLOGI Sequence is transmitted and the appropriate action is specified in 6.2.2.3. If an F\_RJT with reason code "Class of service not supported by entity at FFFFFEh" is received, another supported SOF shall be attempted until the Login procedure is complete or until all supported SOF

types have been attempted. If all supported SOF types have been attempted and the Fabric has rejected all or timed out, the Fabric and Nx\_Port are incompatible and outside intervention is required.

The Fabric shall remove all Class 1, and 6 connections to an N\_Port when the N\_Port performs a Fabric Login.

### 6.2.4 Frequency

Login between an Nx\_Port and the Fabric should be long-lived. If Implicit Logout with the Fabric has occurred, it is necessary to perform a new Login with the Fabric (see 6.4.4).

# 6.2.5 Fabric Login completion - Originator

The Originator of the FLOGI request considers Fabric Login to have ended when

- a) in Class 1, the Originator has transmitted the ACK (EOFt or EOFdt) to the LS\_ACC, or
- b) in Class 2, the Originator has transmitted the ACK (EOFt) to the LS\_ACC, or
- c) in Class 3, the Originator has received the LS\_ACC.

When Login is ended, the values of buffer-to-buffer Credit are initialized.

### 6.2.6 Fabric Login completion - Responder

The Responder of the FLOGI request considers Fabric Login to have ended when

- a) in Class 1, the Responder has received the ACK (EOFt or EOFdt) to the LS\_ACC, or
- b) in Class 2, the Responder has received the ACK (EOFt) to the LS\_ACC, or
- c) in Class 3, the Responder has transmitted the LS ACC.

When Fabric Login has ended successfully, the values of buffer-to-buffer Credit are initialized.

### 6.3 N\_Port Login

#### 6.3.1 Introduction

N\_Port Login follows the Fabric Login procedure. If a Fabric is present, as determined by performing the Fabric Login procedure, an Nx\_Port proceeds with N\_Port Login according to 6.3.2.2. If a Fabric is not present, as determined by performing the Fabric Login procedure, an Nx\_Port proceeds with N\_Port Login according to 6.3.2.4.

N\_Port Login accomplishes the following functions:

- a) It provides each Nx\_Port with the other Nx\_Port's operating characteristics, N\_Port\_Name and Node Name.
- b) If a Fabric is not present, it assigns the native N\_Port\_ID for both Nx\_Ports.
- c) If initializes the Nx\_Port end-to-end Credit.

d) In point-to-point topology or between NL\_Ports on the same loop, buffer-to-buffer Credit is initialized

N\_Port Login between two Nx\_Ports is complete when each Nx\_Port has received the Service Parameters of the other Nx\_Port. This may be accomplished by either implicit or explicit N\_Port Login.

An Nx\_Port is required to Login with each Nx\_Port with which it intends to communicate. This includes reserved and well-known address identifiers since they are considered to be N\_Ports (see FC-FS-2).

NOTE 9 - It is not required that an Nx\_Port provide the same Login information with each destination Nx\_Port or with the Fabric. However, an Nx\_Port should avoid using contradictory or conflicting parameters with different Login destinations.

The N\_Port Common Service Parameters during N\_Port Login are specified in 6.6.2 (See table 150 for applicability). The N\_Port Class Service Parameters during N\_Port Login are specified in 6.6.5 (See table 155 for applicability). Both the Common Service Parameters and Class Service Parameters apply to each Nx Port during N\_Port Login.

NOTE 10 – When an Nx\_Port (A) receives a PLOGI from another Nx\_Port (B), Nx\_Port (A) should verify that it is not already logged in with an Nx\_Port (C) with the same N\_Port\_Name but different Nx\_Port native address identifier and Node\_Name. If so, it should consider the prior Login to be ended and all open Sequences that it originated with or received from the destination Nx\_Port are terminated before accepting the new Login. Such a situation may arise if configuration changes have occurred.

N\_Port Login provides each Nx\_Port with the other Nx\_Port's Service Parameters. Knowledge of a destination Nx\_Port's receive and transmit characteristics is required for data exchanges. Service Parameters of destination Nx\_Ports are saved and used when communication with those Nx\_Ports is initiated. The Service Parameters interchanged between two Nx\_Ports may be asymmetrical. Saving the Service Parameters of destination Nx\_Ports with which an Nx\_Port communicates requires Nx\_Port resources. These resources should be released using the destination N\_Port Logout procedure (see 6.4).

Due to the resetting behavior of a PLOGI (e.g., termination of all open exchanges with the destination port), a port shall only send a PLOGI to a destination port if it is not logged in with the destination port. Examples of why a port is not logged in include:

- a) it has determined that a configuration change has occurred;
- b) it has lost knowledge of the login parameters with the destination port;
- the destination port has responded with a frame that indicates an error condition (e.g., LOGO, P\_RJT);
- d) the local port has logged out the destination port, either implicitly or explicitly, due to resource constraints; and
- e) the destination port failed to respond after 2 times R A TOV has expired.

A configuration change shall be determined by comparing the Port\_Name, Node\_Name, and Address\_Identifier received in the ACC from an ADISC or PDISC with the values previously established during the previous login process. A configuration change has occurred if either N\_Port\_Name or N\_Port\_ID do match and any of the three parameters do not match.

### 6.3.2 Explicit N Port Login

#### 6.3.2.1 Introduction

The explicit N\_Port Login procedure shall require an Nx\_Port to transmit a PLOGI Link request Sequence.

Explicit N\_Port Login replaces previous Service Parameters. The Login procedure shall follow the Exchange and Sequence management rules, the buffer-to-buffer flow control rules, and the end-to-end flow control rules as specified in FC-FS-2.

A well-behaved Nx\_Port shall Logout with another Nx\_Port prior to initiating a new N\_Port Login. However, if an Nx\_Port receives or transmits a PLOGI request with another Nx\_Port, it shall abnormally terminate open Sequences and respond to any new Sequences with that Nx\_Port as though a Logout had been previously performed. During the N\_Port Login procedure, other communication with the destination Nx\_Port shall not be initiated or accepted. Once the N\_Port Login procedure has been successfully completed, communication between the Nx\_Ports may be initiated or accepted, (e.g., if Nx\_Port(A) performs a PLOGI request with Nx\_Port(B) and Nx\_Port(B) transmits the LS\_ACC reply, then either Nx\_Port(A) or Nx\_Port(B) may initiate communication for other protocols. Nx\_Port(B) shall not be required to transmit a PLOGI request Sequence to Nx\_Port(A) unless it wishes to invalidate or alter the existing Login parameters).

# 6.3.2.2 N\_Port Login - Fabric present

The destination Nx\_Port explicit Login procedure requires transmission of a N\_Port Login (PLOGI) Link Service Sequence. The PLOGI is sent within an Exchange with an assigned OX\_ID, the D\_ID of the destination Nx\_Port and a S\_ID of originating Nx\_Port. The Payload of this Sequence contains the Service Parameters, N\_Port\_Name, and Node\_Name of the Nx\_Port originating the PLOGI Sequence. The N\_Port Service Parameters are as specified in 6.6. The applicability of the Service Parameters to N\_Port Login are given in tables 150 and 155.

The normal reply Sequence to a PLOGI Link Service Sequence by an Nx\_Port is a LS\_ACC Link Service Reply Sequence within the Exchange identified by the OX\_ID of the Login Sequence and the RX\_ID assigned by the Responder with a D\_ID of the originating Nx\_Port (PLOGI Sequence) and a S\_ID of the responding Nx\_Port. The Payload of the LS\_ACC contains the Service Parameters of the responding Nx\_Port.

#### 6.3.2.3 Responses to N Port Login - Fabric present

The following are possible responses the Nx\_Port may receive in response to transmitting a PLOGI with a Fabric present:

- a) LS\_ACC reply Sequence with OX\_ID equal to the OX\_ID of the PLOGI, and the Common Service N\_Port/F\_Port bit = 0 (Nx\_Port) This is the normal response to a N\_Port Login request. The D\_ID of the LS\_ACC shall be the S\_ID from the PLOGI. The S\_ID of the LS\_ACC shall be D\_ID from the PLOGI. The Payload shall include the Service Parameters for the destination Nx\_Port, a 64-bit N\_Port\_Name and a 64-bit Node\_Name. The N\_Port Service Parameters are as specified for in 6.6. The applicability of the Service Parameters to N\_Port Login are given in tables 150 and 155. The Nx\_Port may begin normal communication with the remote N\_Port.
- b) F\_BSY with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The Fabric is busy. The Nx\_Port may retry the PLOGI again later.

- c) F\_RJT Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The Fabric has rejected the PLOGI request. The reason code contained in the Payload determines the Nx\_Port's action. If the reason code is "Invalid D\_ID", N\_Port Login is not possible with the addressed Nx\_Port. The Nx\_Port may attempt Login with other destination Nx\_Ports. For other reason codes, the Nx\_Port should respond according to the code.
- d) P\_BSY Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The destination Nx\_Port is busy. The Nx\_Port may retry the PLOGI again later.
- e) P\_RJT Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The reason code contained in the Payload determines the Nx\_Port's action. If the reason code is "Class not supported", the Nx\_Port may attempt PLOGI in a different class. For other reason codes, the Nx\_Port should responded according to the code.
- f) PLOGI Sequence. The D\_ID is the N\_Port\_ID of receiving Nx\_Port. The S\_ID is the N\_Port\_ID of the originating Nx\_Port. The OX\_ID is as assigned by the originating Nx\_Port. The Payload shall include a 64-bit N\_Port\_Name and 64-bit Node\_Name of the Nx\_Port originating the PLOGI. This indicates a collision with N\_Port Login from the destination Nx\_Port. If the received N\_Port\_Name is less than the receiving Nx\_Port's N\_Port\_Name, the Nx\_Port sends LS\_RJT to the originating Nx\_Port with reason code "Command already in progress". If the received N\_Port\_Name is greater than its N\_Port\_Name, the Nx\_Port processes the received PLOGI.
- g) LS\_RJT Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID of the LS\_ACC shall be the N\_Port\_ID of the destination Nx\_Port. The reason code contained in the Payload determines the Nx\_Port's action. The Nx\_Port may alter the Service Parameters based on the reason code and originate a new PLOGI.
- h) No Response may indicate a delivery error, e.g., error on the physical transport. The Nx\_Port shall perform error recovery per FC-FS-2. The Nx\_Port may originate a new PLOGI after recovery.
- i) If the received N\_Port\_Name is equal to its N\_Port\_Name, then the Nx\_Port is connected to itself and this case is outside the scope of this standard.

### 6.3.2.4 N Port Login - No Fabric present

This procedure is based on the Nx\_Port discovering the Fabric is not present during an attempted Fabric Login (see 6.2.2.3). The destination N\_Port explicit Login procedure requires transmission of a PLOGI Link Service Sequence in a new Exchange.

Only one Nx\_Port in the point-to-point connection is required to transmit a PLOGI. If the N\_Port\_Names are exchanged during Fabric Login, the Nx\_Port with the highest N\_Port\_Name shall transmit the PLOGI.

If either Nx\_Port does not have access the N\_Port\_Name of the connected Nx\_Port, it may send a PLOGI. The processing requirements for responses received after transmitting a PLOGI resolves the condition of both Nx\_Ports transmitting PLOGI.

An Nx\_Port in a point-to-point configuration transmits PLOGI within a new Exchange. The S\_ID shall be different than the D\_ID. The Payload of this Sequence contains the Service Parameters, N\_Port\_Name, and Node\_Name of the Nx\_Port originating the PLOGI Sequence. The N\_Port Service Parameters are as specified for in 6.6. The applicability of the Service Parameters to N\_Port Login are given in tables 150 and 155.

### 6.3.2.5 Responses to N\_Port Login - No Fabric present

The following are possible responses the Nx\_Port may receive in response to transmitting a PLOGI in a point-to-point configuration:

- a) LS\_ACC reply Sequence with OX\_ID equal to the OX\_ID of the PLOGI, and the Common Service N\_Port/F\_Port bit = 0 (Nx\_Port). The D\_ID of the LS\_ACC shall be the S\_ID from the PLOGI. The S\_ID shall be the destination Nx\_Port's N\_Port\_ID assigned by the D\_ID in the PLOGI. The Payload shall include the Service Parameters for the destination Nx\_Port, a 64-bit N\_Port\_Name and a 64-bit Node\_Name. The N\_Port Service Parameters are as specified in 6.6. The applicability of the Service Parameters to N\_Port Login are given in tables 150 and 155. This is the normal response to a N\_Port Login request. The Nx\_Port may begin normal communication with the remote N\_Port.
- b) P\_BSY Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The destination Nx\_Port is busy. The Nx\_Port may retry the PLOGI again later.
- c) P\_RJT Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID shall be the S\_ID of the PLOGI. The reason code contained in the Payload determines the Nx\_Port's action. If the reason code is "Class not supported", the Nx\_Port may attempt N\_Port Login in a different Class. For other reason codes, the Nx\_Port should respond according to the code.
- d) LS\_RJT Sequence with OX\_ID equal to the OX\_ID of the PLOGI. The D\_ID of the LS\_ACC shall be the N\_Port\_ID of the destination Nx\_Port. The reason code contained in the Payload determines the Nx\_Port's action. The Nx\_Port may alter the Service Parameters based on the reason code and originate a new PLOGI.
- e) PLOGI Sequence. The D\_ID is the address identifier of receiving Nx\_Port. The S\_ID is the N\_Port\_ID of the originating Nx\_Port. The OX\_ID is as assigned by the originating Nx\_Port. The Payload shall include a 64-bit N\_Port\_Name and 64-bit Node\_Name of the Nx\_Port originating the PLOGI. This indicates a collision with N\_Port Login from the destination Nx\_Port. If the received N\_Port\_Name is less than the receiving Nx\_Port's N\_Port\_Name, the Nx\_Port sends LS\_RJT to the originating Nx\_Port with reason code "Command already in progress". If the received N\_Port\_Name is greater than its N\_Port\_Name, the Nx\_Port processes the received PLOGI.
- f) No Response may indicate a delivery error, e.g., error on the physical transport. The Nx\_Port shall perform error recovery per FC-FS-2. The Nx\_Port may originate a new PLOGI after recovery.
- g) If the received N\_Port\_Name is equal to its N\_Port\_Name, then the Nx\_Port is connected to itself and this case is outside the scope of this standard.

#### 6.3.3 SOFs

N\_Port Login is only supported in Class 1, 2, and 3. Since the destination Nx\_Port may not support all these classes for Login, the PLOGI Sequence may require retransmission in a different Class with the appropriate SOF in the same manner described for Fabric Login (see 6.2.3). Login is valid for all supported classes as indicated by the validity bits in the PLOGI LS\_ACC Reply Sequence.

### 6.3.4 Frequency

The frequency of N\_Port Login is installation dependent based on the frequency of configuration changes that may alter the N\_Port\_ID within an installation. Service Parameters of other Nx\_Ports are retained until the next N\_Port Login or until N\_Port Logout (implicit or explicit) is performed.

#### 6.3.5 N Port Login completion - Originator

The Originator of the PLOGI request considers Login to have ended when

- a) in Class 1, the Originator has transmitted the ACK (EOFt or EOFdt) to the LS\_ACC, or
- b) in Class 2, the Originator has transmitted the ACK (EOFt) to the LS\_ACC, or
- c) in Class 3, the Originator has received the LS\_ACC.

When N\_Port Login is ended with a Fabric present, the value of end-to-end Credit is initialized. When N\_Port Login is ended in a point-to-point topology, the values of buffer-to-buffer and end-to-end Credit are initialized.

### 6.3.6 N\_Port Login completion - Responder

The Responder of the PLOGI request considers Login to have ended when

- a) in Class 1, the Responder has received the ACK (EOFt or EOFdt) to the LS\_ACC, or
- b) in Class 2, the Responder has received the ACK (EOFt) to the LS ACC, or
- c) in Class 3, the Responder has transmitted the LS ACC.

When N\_Port Login is ended with a Fabric present, the value of end-to-end Credit is initialized. When N\_Port Login is ended in a point-to-point topology, the values of buffer-to-buffer and end-to-end Credit are initialized.

### 6.4 Logout

# 6.4.1 Introduction

The destination Logout procedure provides a method for removing service between two N\_Port\_IDs or between an N\_Port\_ID and a Fabric. Logout releases resources, identifiers, and relationships associated with maintaining service between an N\_Port\_ID and a destination N\_Port\_ID or Fabric. Explicit Nx\_Port Logout may be requested by an Nx\_Port to another Nx\_Port (see 6.4.2). Explicit Fabric Logout may be requested by an Nx\_Port to a Fabric (e.g., to remove a virtual N\_Port\_ID previously assigned by the Fabric) or by a Fabric to an Nx\_Port (see 6.4.3). Implicit Logout may occur between an Nx\_Port and the Fabric (see 6.4.4).

#### 6.4.2 Explicit N Port Logout

Logout is accomplished by transmitting a Logout (LOGO) Link Service request Sequence (see FC-FS-2) to a destination Nx\_Port. The Logout procedure is complete when the responding Nx\_Port transmits a LS\_ACC Link Service reply Sequence.

To explicitly Logout, the initiating Nx\_Port shall terminate other open Sequences that it initiated with the destination Nx\_Port prior to performing Logout, otherwise, the state of other open Sequences is

unpredictable. If an Nx\_Port receives a Logout request while another Sequence is open that was initiated from the requesting Nx\_Port, it may reject the Logout request using an LS\_RJT (Link Service Reject).

After an explicit Logout is performed with an Nx\_Port, the default Login Service Parameters specified in table 150 and table 155 shall be functional if Login was explicit. After an explicit Logout is performed with an Nx\_Port, the implicit Login Service Parameters shall be functional if Login was implicit.

### 6.4.3 Explicit Fabric Logout

Explicit Fabric Logout of an N\_Port\_ID shall be accomplished by transmitting a Logout (LOGO) Link Service request Sequence (see 4.2.8) from an Nx\_Port to an Fx\_Port (i.e., Well-known address FFFFFEh) or from an Fx\_Port to an Nx\_Port. The explicit Fabric Logout procedure shall be complete for the responding FC\_Port when it transmits a LS\_ACC Link Service reply Sequence. The explicit Fabric Logout procedure shall be complete for the requesting FC\_Port when it receives a LS\_ACC Link Service reply Sequence.

If an FC\_Port that does not support explicit Fabric Logout receives a LOGO that requests explicit Fabric Logout, it shall reject the explicit Fabric Logout request using an LS\_RJT with reason code "Command not supported" and reason code explanation "No additional explanation". If an FC\_Port that sends a LOGO that requests explicit Fabric Logout receives in reply an LS\_RJT with reason code "Command not supported" and reason code explanation "No additional explanation" the FC\_Port that sent the LOGO shall implicitly log out the other FC\_Port.

An Fx\_Port that supports N\_Port\_ID virtualization shall support explicit Fabric Logout originated by an Nx Port.

An Nx\_Port that has requested or accepted explicit Fabric Logout of an N\_Port\_ID shall implicitly log out the N\_Port\_ID with all other N\_Port\_IDs with which the N\_Port\_ID was logged in, and shall not originate frames from the N\_Port\_ID until after it has subsequently been reassigned the N\_Port\_ID by the Fabric. An Fx\_Port that has explicitly logged out an N\_Port\_ID shall neither originate nor route frames to the N\_Port\_ID until after it has completed a subsequent reassignment of the N\_Port\_ID.

### 6.4.4 Implicit Logout

If an Nx\_Port receives or transmits an NOS or OLS, it shall be implicitly logged out from the Fabric, if present, or attached Nx\_Port in a point-to-point topology. Communication with other Nx\_Ports shall not be accepted until the Fabric Login procedure is complete (implicit or explicit).

During Login with the Fabric, if the Nx\_Port detects that the N\_Port\_ID, F\_Port\_Name and/or the Fabric\_Name has changed since the last Fabric Login, and the Clean Address bit is zero, the Nx\_Port shall implicitly logout with all Nx\_Ports and wait an R\_A\_TOV timeout period before initiating or accepting communication with other Nx\_Ports. The timeout period shall start when the Nx\_Port detects the change. After waiting the timeout period, new N\_Port Logins are required before the Nx\_Port may communicate with other Nx\_Ports.

During Login with the Fabric, if the Nx\_Port detects that the N\_Port\_ID, F\_Port\_Name and/or the Fabric Name has changed since the last Fabric Login, and the Clean Address bit is set to one, the

Nx\_Port shall implicitly logout with all Nx\_Ports before initiating or accepting communication with other Nx\_Ports.

NOTE 11 – If an Nx\_Port receives OLS from the Fabric, the Fabric may be indicating configuration changes internal to the Fabric using the Online to Offline Protocol.

NOTE 12 – If an Nx\_Port is concerned that a partial Fabric Login may be in process using its link immediately preceding its attempted Fabric Login, it may wait an R\_A\_TOV in order to ensure that the response it receives from the Fx\_Port during Fabric Login is associated with its Login request.

#### 6.4.5 The effects of FLOGI, FDISC, and LOGO

The effects of FLOGI, FDISC, and LOGO on pre-existing Fabric Logins is summarized in table 148.

Table 148 - Effects of FLOGI, FDISC, & LOGO on Permanent Port Name (PPN)

|                                           |                                                                                                                                                                       | Condition of F_Port                                                                                                                                                                                                                                                           |                                                                          |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| ELS<br>Received<br>(with D_ID<br>FFFFFEh) | Condition 1:<br>FLOGI not completed,<br>or all IDs logged out                                                                                                         | Condition 2:<br>FLOGI Completed, & at least one ID<br>logged in                                                                                                                                                                                                               | Condition 3:<br>FDISC(s)<br>completed, & at<br>least one ID<br>logged in |
| FLOGI<br>S_ID=0 <sup>d</sup>              | - LS_ACC, assign first<br>N_Port ID.<br>- Set PPN of new<br>N_Port ID to Port_Name<br>in FLOGI request.                                                               | - Set BB_Credit to zero - Implicit logout of all logged-in N_Port IDs - Disassociate the logged-out N_Port IDs with PPN - Re-assign one N_Port ID - Set PPN of new N_Port ID to Port_Name in FLOGI request.                                                                   | - See Condition 2<br>(previous<br>column).                               |
| FLOGI<br>S_ID not = 0 <sup>d</sup>        | - Confirm or reject S_ID (see 6.2.2.3), "Response to Explicit Fabric Login." - If confirmed, set PPN of FLOGI S_ID (i.e. new N_Port ID) to Port_Name in FLOGI request | - Set BB_Credit to zero - Implicit logout of all logged-in N_Port IDs - Disassociate logged-out N_Port IDs with PPN - Confirm or reject S_ID (see 6.2.2.3), "Response to Explicit Fabric Login." - If N_Port_ID logged-in, set PPN of N_Port ID to Port_Name in FLOGI request | - See Condition 2<br>(previous<br>column).                               |

a If another N\_Port ID is currently logged in with the same Port Name as contained in the FDISC request payload, or if the Port Name is the same as the Permanent Port Name associated with another N\_Port, then the response should be LS\_RJT (Logical error, invalid port name).

When an FDISC with S\_ID=0 is received when no more N\_Port\_IDs are available, the F\_Port shall respond with an LS\_RJT with an LS\_RJT Reason Code of Unable to perform command request and an LS\_RJT Reason Code Explanation of insufficient resources.

<sup>&</sup>lt;sup>c</sup> Any assigned N\_Port ID may be individually logged out and disassociated with the Permanent Port Name, including the FLOGI-assigned N\_Port ID; Name Server attributes for the N\_Port ID are cleared. Other logged-in N\_Port IDs continue to be associated with their current Permanent Port Names. See FC-GS-5 for a definition of Permanent Port name.

Whenever a new N\_Port ID is assigned by either FLOGI or FDISC, or logged out, the nameserver database is updated and the applicable RSCNs are sent.

Table 148 – Effects of FLOGI, FDISC, & LOGO on Permanent Port Name (PPN)

|                                           |                                                                          | Condition of F_Port                                                                                                                                                                                                                                                                   |                                                                                                                                        |
|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ELS<br>Received<br>(with D_ID<br>FFFFFEh) | Condition 1:<br>FLOGI not completed,<br>or all IDs logged out            | Condition 2:<br>FLOGI Completed, & at least one ID<br>logged in                                                                                                                                                                                                                       | Condition 3:<br>FDISC(s)<br>completed, & at<br>least one ID<br>logged in                                                               |
| FDISC<br>S_ID=0 <sup>d</sup>              | - F_RJT (RC=login required) for Class 1, or Class 2 Discard for Class 3. | - If N_Port ID virtualization supported,<br>LS_ACC (D_ID = assigned N_Port ID), and<br>set PPN of new N_Port ID to Port_Name in<br>FLOGI request. <sup>a, b</sup><br>- If N_Port ID virtualization not supported,<br>LS_RJT (RC=command not supported,<br>RCE=Request not supported.) | - LS_ACC (D_ID<br>= assigned<br>N_Port ID), and<br>set PPN of new<br>N_Port ID to<br>Port_Name in<br>FLOGI request. <sup>a,</sup><br>b |
| FDISC<br>S_ID not = 0                     | - F_RJT (RC=login required) for Class 1, or Class 2 Discard for Class 3. | <ul> <li>- If S_ID logged-in, LS_ACC</li> <li>- if S_ID not logged-in:</li> <li>F_RJT (RC=login required) for Classes 1,2, or 4.</li> <li>- Discard for Class 3.</li> </ul>                                                                                                           | - See Condition 2<br>(previous<br>column).                                                                                             |
| OLS/NOS                                   | - Perform Primitive<br>Sequence Protocols<br>(see FC-FS-2).              | <ul> <li>Implicit logout of all logged-in N_Port IDs;</li> <li>Perform Primitive Sequence Protocols (see FC-FS-2).</li> <li>Dissasociate the logged-out N_Port IDs with PPN.</li> </ul>                                                                                               | - See Condition 2<br>(previous<br>column).                                                                                             |
| LOGOd                                     | - LS_ACC, no action                                                      | - If S_ID logged-in, log out the individual S_ID only, and disassociate only the logged-out N_Port ID with the PPN. <sup>c</sup> - if S_ID not logged-in, LS_ACC no action.                                                                                                           | - See Condition 2<br>(previous<br>column).                                                                                             |

<sup>&</sup>lt;sup>a</sup> If another N\_Port ID is currently logged in with the same Port Name as contained in the FDISC request payload, or if the Port Name is the same as the Permanent Port Name associated with another N\_Port, then the response should be LS\_RJT (Logical error, invalid port name).

# 6.5 Extended Login Processing

Support for an Extended Login request is specified by the Payload Bit (see 6.6.2.4.19) set to one in a PLOGI or FLOGI request and the associated LS\_ACC. An Extended Login request provides the following information:

b When an FDISC with S\_ID=0 is received when no more N\_Port\_IDs are available, the F\_Port shall respond with an LS\_RJT with an LS\_RJT Reason Code of Unable to perform command request and an LS\_RJT Reason Code Explanation of insufficient resources.

c Any assigned N\_Port ID may be individually logged out and disassociated with the Permanent Port Name, including the FLOGI-assigned N\_Port ID; Name Server attributes for the N\_Port ID are cleared. Other logged-in N\_Port IDs continue to be associated with their current Permanent Port Names. See FC-GS-5 for a definition of Permanent Port name.

Whenever a new N\_Port ID is assigned by either FLOGI or FDISC, or logged out, the nameserver database is updated and the applicable RSCNs are sent.

- a) Services Availability (see 6.6.7);
- b) Login Extension Data (see 6.6.8); and
- c) Clock Synchronization QoS (see 6.6.9).

If a Login of 256 bytes or more is required when the buffer conditions of the destination port are unknown, a timeout may be avoided with the following procedure:

- 1) issue a Login request with the Payload Bit (see 6.6.2.4.19) set to zero;
- 2) if the Query Buffer Conditions bit (see 6.6.2.4.14) is set to one in the LS\_ACC, issue an RPBC ELS (see 4.2.37); and
- 3) if both the ELS Receive Data Field Size field in the RPBC LS\_ACC Payload and the Buffer-to-buffer Receive Data\_Field Size field in the Login LS\_ACC Payload are at least 256 bytes, issue a Login request with the Payload Bit set to one.

#### 6.6 Service Parameters

### 6.6.1 ELS and LS\_ACC Payload

Table 149 defines the Payload format for the FLOGI and PLOGI ELSs and the LS\_ACCs. The definitions of the parameters are applicable to PLOGI, FLOGI, PLOGI LS\_ACC and FLOGI LS\_ACC unless stated otherwise.

There are no separate Class 6 login Service Parameters as Class 1 service parameters are used instead.

NOTE 13 – The Link Service may further limit values supplied during Login as specified by individual Upper Level Protocols.

Table 149 - FLOGI, PLOGI or LS\_ACC Payload

| Bits<br>Word | 31    | 24             | 23         | 16                       | 15                |                 | 08     | 07  | 00 |
|--------------|-------|----------------|------------|--------------------------|-------------------|-----------------|--------|-----|----|
| 0            | ELS_0 | Command code   | )          |                          |                   |                 |        |     |    |
| 1            | MSB   |                | _          |                          |                   |                 |        |     |    |
|              |       |                | _          | Common Serv<br>(16 k     |                   |                 |        |     |    |
| 4            |       |                |            | (10 )                    | LSB               |                 |        |     |    |
| 5            | MSB   |                | _          | Port_                    |                   |                 |        |     |    |
| 6            |       |                |            | PUIL_                    | LSB               |                 |        |     |    |
| 7            | MSB   |                | _          | Node_ or F               | obrio No          | mo              |        |     |    |
| 8            |       |                |            | Node_ of F               | LSB               |                 |        |     |    |
| 9            | MSB   |                | - 01       | . 4                      | 0                 | D               |        |     |    |
|              |       |                | Class<br>- | s 1 and Class 6<br>(16 t | Service<br>oytes) | Param           | neters |     |    |
| 12           |       |                |            | (                        | ,,,               |                 |        | LSB |    |
| 13           | MSB   |                | _          | 01 0 0                   | D                 |                 |        |     |    |
|              |       |                | _          | Class 2 Servi            | ce Paran<br>ytes) | neters          |        |     |    |
| 16           |       |                |            | , -                      |                   | LSB             |        |     |    |
| 17           | MSB   |                | _          | Class 2 Cami             | Dove              |                 |        |     |    |
|              |       |                | _          | Class 3 Servi            | ce Paran<br>ytes) | neters          |        |     |    |
| 20           |       |                |            | ,                        |                   |                 |        | LSB |    |
| 21           |       |                |            |                          |                   |                 |        |     |    |
|              |       |                |            | Obs                      | olete             |                 |        |     |    |
| 24           |       |                |            |                          |                   |                 |        |     |    |
| 25           | MSB   |                | _          | Vendor Ve                | rcion Lo          | vol             |        |     |    |
|              |       |                | _          |                          | ytes)             | vei             |        |     |    |
| 28           |       |                |            | · .                      |                   |                 |        | LSB |    |
| 29           | MSB   |                | _          | Services A               |                   | ty <sup>a</sup> |        |     |    |
| 30           |       |                |            |                          | ytes)             |                 |        | LSB |    |
| 31           | Login | Extension Data | Length     | a                        |                   |                 |        |     |    |
| 32           |       |                | _          |                          |                   |                 |        |     |    |
| ••           |       |                | _          | Rese                     | erved             |                 |        |     |    |
| 61           |       |                |            |                          |                   |                 |        |     |    |
| 62           |       |                | _          | Clock Synchro            |                   | QoSa            |        |     |    |
| 63           |       |                |            | (8 b                     |                   |                 |        |     |    |
| 64 to n      |       |                |            | Login Extension          | on Data (         | (if any)        |        |     |    |

<sup>&</sup>lt;sup>a</sup> These fields are only present when the Payload Bit (see 6.6.2.4.19) is set to one. When the Payload bit is set to zero, these fields are not present in the Payload (i.e., the Payload is 116 bytes long).

#### 6.6.2 Common Service Parameters

### 6.6.2.1 Applicability

Table 150 defines the applicability, by class as well as by PLOGI, FLOGI, PLOGI LS\_ACC and FLOGI LS\_ACC, of the Common Service Parameters to N\_Port and Fabric Login. The Default Login Value column (see table 150) refers to the Login values to be used prior to a successful Login. These are words 1-4 in the Payload (see table 150).

Table 150 - Common Service Parameter applicability

|                                         |      |       |                     | LS<br>Pai | OGI a<br>PLOG<br>S_AC<br>rame<br>licab | GI<br>CC<br>eter | Pai<br>app | LOG<br>rame<br>licab | eter | FLOGI<br>LS_ACC<br>Parameter<br>applicability |       |   |  |
|-----------------------------------------|------|-------|---------------------|-----------|----------------------------------------|------------------|------------|----------------------|------|-----------------------------------------------|-------|---|--|
|                                         |      |       | Default<br>Login    | (         | Class                                  | 3                | (          | Class                | 8    | (                                             | Class |   |  |
| Service Parameter                       | Word | Bits  | Value               | 1a 2 3    |                                        |                  | <b>1</b> a | 2                    | 3    | <b>1</b> a                                    | 2     | 3 |  |
| FC-PH Version - obsolete                | 0    | 31-16 | 2020h               | n         | n                                      | n                | n          | n                    | n    | n                                             | n     | n |  |
| Buffer-to-buffer Credit                 | 0    | 15-0  | 0 or 1 <sup>d</sup> | у         | у                                      | у                | у          | у                    | у    | у                                             | у     | у |  |
| Common Features                         | 1    | 31-16 |                     |           |                                        |                  |            |                      |      |                                               |       |   |  |
| Continuously increasing relative offset | 1    | 31    | 0                   | у         | у                                      | у                | n          | n                    | n    | n                                             | n     | n |  |
| Clean Address                           | 1    | 31    | 0                   | n         | n                                      | n                | n          | n                    | n    | у                                             | у     | у |  |
| Multiple N_Port_ID Support              | 1    | 31    | 0                   | n         | n                                      | n                | у          | у                    | у    | n                                             | n     | n |  |
| Random relative offset                  | 1    | 30    | 0                   | у         | у                                      | у                | n          | n                    | n    | n                                             | n     | n |  |
| Virtual Fabrics bit                     | 1    | 30    | 0                   | n         | n                                      | n                | у          | у                    | у    | у                                             | у     | у |  |
| Valid Vendor Version Level              | 1    | 29    | 0                   | у         | у                                      | у                | у          | у                    | у    | n                                             | n     | n |  |
| Multiple N_Port_ID Assignment           | 1    | 29    | 0                   | n         | n                                      | n                | n          | n                    | n    | у                                             | у     | у |  |

#### Legend:

<sup>&</sup>quot;y" indicates yes, applicable (i.e., has meaning);

<sup>&</sup>quot;n" indicates no, not applicable (i.e., has no meaning)

<sup>&</sup>lt;sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.

b E\_D\_TOV resolution and the corresponding value are only meaningful in a point-to-point topology or when doing PLOGI with an NL\_Port on the same loop.

<sup>&</sup>lt;sup>c</sup> The Common Service Parameter applicability is specified in FC-SP.

d Default buffer-to-buffer credit = 1 for all ports but an L\_Port, and Buffer-to-buffer credit=0 for an L\_Port.

<sup>&</sup>lt;sup>e</sup> N\_Port/F\_Port=0 for an N\_Port, and N\_Port/F\_Port=1 for an F\_Port.

BB\_Credit Management=0 for an N\_Port or F\_Port, BB\_Credit Management=1 for an L\_Port

Table 150 - Common Service Parameter applicability(Continued)

|                                            |      |      |                     | LS<br>Par      | DGI a<br>PLOG<br>S_AC<br>rame<br>licab | GI<br>CC<br>eter | Pai<br>app | LOG<br>rame<br>licab | eter | FLOGI<br>LS_ACC<br>Parameter<br>applicability |    |    |  |
|--------------------------------------------|------|------|---------------------|----------------|----------------------------------------|------------------|------------|----------------------|------|-----------------------------------------------|----|----|--|
|                                            |      |      | Default<br>Login    | (              | Class                                  | 8                | (          | Class                | 8    | Class                                         |    |    |  |
| Service Parameter                          | Word | Bits | Value               | <b>1</b> a     | 2                                      | 3                | <b>1</b> a | 2                    | 3    | <b>1</b> a                                    | 2  | 3  |  |
| N_Port/F_Port                              | 1    | 28   | 0 or 1 <sup>e</sup> | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |
| BB_Credit Management                       | 1    | 27   | 0 or 1 <sup>f</sup> | у              | у                                      | у                | у          | у                    | у    | n                                             | n  | n  |  |
| E_D_TOV Resolution                         | 1    | 26   | 0                   | y <sup>b</sup> | y <sup>b</sup>                         | y <sup>b</sup>   | n          | n                    | n    | у                                             | у  | у  |  |
| Multicast supported by Fabric              | 1    | 25   | 0                   | n              | n                                      | n                | n          | n                    | n    | у                                             | у  | у  |  |
| Broadcast supported by Fabric              | 1    | 24   | 0                   | n              | n                                      | n                | n          | n                    | n    | у                                             | у  | у  |  |
| Hunt Group routing supported by Fabric     | 1    | 23   | 0                   | n              | n                                      | n                | n          | n                    | n    | у                                             | у  | у  |  |
| Query Data Buffer conditions               | 1    | 22   | 0                   | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |
| Security bit (see FC-SP)                   | 1    | 21   | 0                   | _c             | _c                                     | -c               | _c         | -c                   | _c   | -c                                            | -c | _c |  |
| Clock Synchronization Primitive<br>Capable | 1    | 20   | 0                   | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |
| R_T_TOV Value                              | 1    | 19   | 0                   | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |
| Dynamic Half Duplex<br>Supported           | 1    | 18   | 0                   | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |
| SEQ_CNT                                    | 1    | 17   | 0                   | у              | у                                      | у                | n          | n                    | n    | n                                             | n  | n  |  |
| Payload Bit                                | 1    | 16   | 0                   | у              | у                                      | у                | у          | у                    | у    | у                                             | у  | у  |  |

### Legend:

"y" indicates yes, applicable (i.e., has meaning);

- <sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.
- b E\_D\_TOV resolution and the corresponding value are only meaningful in a point-to-point topology or when doing PLOGI with an NL\_Port on the same loop.
- <sup>c</sup> The Common Service Parameter applicability is specified in FC-SP.
- d Default buffer-to-buffer credit = 1 for all ports but an L\_Port, and Buffer-to-buffer credit=0 for an L\_Port.
- <sup>e</sup> N\_Port/F\_Port=0 for an N\_Port, and N\_Port/F\_Port=1 for an F\_Port.
- f BB\_Credit Management=0 for an N\_Port or F\_Port, BB\_Credit\_Management=1 for an L\_Port

<sup>&</sup>quot;n" indicates no, not applicable (i.e., has no meaning)

Table 150 - Common Service Parameter applicability(Continued)

|                                             |      |       |                  | P<br>LS<br>Pai | DGI a<br>PLOG<br>S_AC<br>rame<br>licab       | GI<br>C<br>eter | Pai<br>app | LOG<br>rame<br>licab | ter | FLOGI<br>LS_ACC<br>Parameter<br>applicability |   |   |  |
|---------------------------------------------|------|-------|------------------|----------------|----------------------------------------------|-----------------|------------|----------------------|-----|-----------------------------------------------|---|---|--|
|                                             |      |       | Default<br>Login | Class          |                                              |                 | (          | Class                | 5   | Class                                         |   |   |  |
| Service Parameter                           | Word | Bits  | Value            | 1ª 2 3         |                                              |                 | 1ª 2 3     |                      |     | 1a                                            | 2 | 3 |  |
| BB_SC_N                                     | 1    | 15-12 | 0                | у              | у у у                                        |                 | у          | у                    | у   | у                                             | у | у |  |
| Buffer-to-Buffer Receive Data Field<br>Size | 1    | 11-0  | 128              | у              | у                                            | у               | у          | у                    | у   | у                                             | у | у |  |
| Nx_Port Total Concurrent<br>Sequences       | 2    | 31-16 | 1                | у              | у                                            | у               | n          | n                    | n   | n                                             | n | n |  |
| Relative offset by Info Category            | 2    | 15-0  | 0                | у              | у                                            | у               | n          | n                    | n   | n                                             | n | n |  |
| R_A_TOV                                     | 2    | 31-0  | 10 000           | n              | n                                            | n               | n          | n                    | n   | у                                             | у | у |  |
| E_D_TOV Value                               | 3    | 31-0  | 2 000            | yb             | y <sup>b</sup> y <sup>b</sup> y <sup>b</sup> |                 | n          | n                    | n   | у                                             | у | у |  |

### Legend:

### 6.6.2.2 Payload

The Common Service Parameters Payload for FLOGI is shown in table 151.

Table 151 - Common Service Parameters - FLOGI

| Bits<br>Word | 31     |                                 | 24       | 23   |  | 16 | 15   | ••   | 12                                               | 11       | ••   | 80  | 07 |  | 00 |  |  |
|--------------|--------|---------------------------------|----------|------|--|----|------|------|--------------------------------------------------|----------|------|-----|----|--|----|--|--|
| 0            | FC-PH  | Versio                          | n - obsc | lete |  |    | Buff | er-t | o-bu                                             | ffer (   | Cred | dit |    |  |    |  |  |
| 1            | Commo  | Common Features (see table 150) |          |      |  |    |      |      | BB_SC_N Buffer-to-buffer Receive Data Field size |          |      |     |    |  |    |  |  |
| 2            | Reserv | Reserved                        |          |      |  |    |      |      |                                                  | Reserved |      |     |    |  |    |  |  |
| 3            | Reserv | Res                             | erv      | ed   |  |    |      |      |                                                  |          |      |     |    |  |    |  |  |

<sup>&</sup>quot;y" indicates yes, applicable (i.e., has meaning);

<sup>&</sup>quot;n" indicates no, not applicable (i.e., has no meaning)

<sup>&</sup>lt;sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.

b E\_D\_TOV resolution and the corresponding value are only meaningful in a point-to-point topology or when doing PLOGI with an NL\_Port on the same loop.

<sup>&</sup>lt;sup>c</sup> The Common Service Parameter applicability is specified in FC-SP.

d Default buffer-to-buffer credit = 1 for all ports but an L\_Port, and Buffer-to-buffer credit=0 for an L\_Port.

<sup>&</sup>lt;sup>e</sup> N\_Port/F\_Port=0 for an N\_Port, and N\_Port/F\_Port=1 for an F\_Port.

f BB\_Credit Management=0 for an N\_Port or F\_Port, BB\_Credit\_Management=1 for an L\_Port

The Common Service Parameters Payload for PLOGI and PLOGI LS ACC is shown in table 152.

Table 152 – Common Service Parameters - PLOGI and PLOGI LS\_ACC

| Bits<br>Word | 31                                  |        | 24       | 23    |  | 16 | 15   | ••                                      | 12   | 11                                          |      | 80  | 07 |  |   | 00 |
|--------------|-------------------------------------|--------|----------|-------|--|----|------|-----------------------------------------|------|---------------------------------------------|------|-----|----|--|---|----|
| 0            | FC-PH                               | Versio | n - obsc | olete |  |    | Buff | er-t                                    | o-bu | ffer (                                      | Cred | dit |    |  |   |    |
| 1            | Common Features (see table 150)     |        |          |       |  |    |      | SC                                      | _N   | Buffer-to-buffer<br>Receive Data Field size |      |     |    |  |   |    |
| 2            | Reserved Total Concurrent Sequences |        |          |       |  |    |      | Relative offset by Information Category |      |                                             |      |     |    |  | / |    |
| 3            | E_D_T                               | OV     |          |       |  |    |      |                                         |      |                                             |      |     |    |  |   |    |

The Common Service Parameters Payload for FLOGI LS\_ACC is shown in table 153.

Table 153 – Common Service Parameters - FLOGI LS ACC

| Bits<br>Word | 31                              |  | 24 | 23 |  | 16 | 15 |                                   | 12 | 11                                          | •• | 80 | 07 |  | •• | 00 |
|--------------|---------------------------------|--|----|----|--|----|----|-----------------------------------|----|---------------------------------------------|----|----|----|--|----|----|
| 0            | FC-PH Version - obsolete        |  |    |    |  |    |    | Buffer-to-buffer Credit (Fx_Port) |    |                                             |    |    |    |  |    |    |
| 1            | Common Features (see table 150) |  |    |    |  |    |    | SC_                               | _N | Buffer-to-buffer<br>Receive Data Field size |    |    |    |  |    |    |
| 2            | R_A_TOV                         |  |    |    |  |    |    |                                   |    |                                             |    |    |    |  |    |    |
| 3            | E_D_TOV                         |  |    |    |  |    |    |                                   |    |                                             |    |    |    |  |    |    |

#### 6.6.2.3 Buffer-to-buffer Credit

The buffer-to-buffer Credit field (word 0, bits 15-0) defines the number of buffers available for holding Class 1 and Class 6 connect-request, Class 2, or Class 3 frames received. An FC\_Port tracks Buffer-to-buffer Credit as a single entity for all frames subject to buffer-to-buffer flow control (see FC-FS-2). Values in the Buffer-to-buffer Credit field are 1 to 32767. The value 0 is reserved.

For N\_Port Login, this field shall only be meaningful for an Nx\_Port in a point-to-point topology and between two NL Ports on the same loop.

#### 6.6.2.4 Common Features

#### 6.6.2.4.1 Continuously increasing relative offset

0 = not supported

1 = supported

If the continuously increasing relative offset bit (word 1, bit 31) is set to one, the Nx\_Port supplying this parameter shall be capable of supporting continuously increasing relative offset, if present (F\_CTL bit 3), within a Sequence on a frame by frame SEQ\_CNT basis. This bit shall only be applicable to those Information Categories in which an Nx\_Port supports relative offset (i.e., word 2, bits 15-0). See FC-FS-2 for the use of continuously increasing relative offset.

This bit shall be applicable to a Sequence Initiator in addition to a Sequence Recipient for all Classes of Service supported by the Nx Port.

#### 6.6.2.4.2 Clean Address

0 = No information

1 = Clean Address

The Clean Address bit (word 1, bit 31) provides an indication to an Nx\_Port as to whether the address it was assigned by the Fabric had been previously used by another device within R\_A\_TOV. If this bit is set to zero, the assigned address may or may not have been used by a previous device within R\_A\_TOV. If this bit is set to one, the assigned address has not been used by any other device within R\_A\_TOV, or has been assigned to the current device for a previous FLOGI and not been changed within R\_A\_TOV. This bit is only meaningful in the FLOGI LS\_ACC, it is not meaningful in the FLOGI request.

# 6.6.2.4.3 Multiple N\_Port\_ID Support

0 = not supported

1 = supported

The Multiple N\_Port\_ID Support bit (word 1, bit 31) shall be set to one to indicate that the N\_Port supplying this parameter is capable of requesting multiple N\_Port\_IDs using the FDISC ELS. The N\_Port\_ID Support bit shall be set to zero to indicate that the N\_Port supplying this parameter is not capable of requesting additional N\_Port\_IDs. This bit is only meaningful in the FLOGI request, it is not meaningful in the FLOGI LS\_ACC.

### 6.6.2.4.4 Random relative offset

0 = not supported

1 = supported

The random relative offset bit (word 1, bit 30) indicates that the Nx\_Port supplying this parameter shall be capable of supporting random relative offset values, if present (F\_CTL bit 3). Random values may increase, decrease, or otherwise fluctuate within a Sequence. This bit shall only be applicable to those Information Categories in which an Nx\_Port supports relative offset (i.e., word 3, bits 15-0). See FC-FS-2 for the use of random relative offset.

This bit shall be applicable to a Sequence Initiator in addition to a Sequence Recipient for all Classes of Service supported by the Nx\_Port.

#### 6.6.2.4.5 Virtual Fabrics bit

0 = not supported

1 = supported

The Virtual Fabrics bit (word 1, bit 30) indicates support for Virtual fabrics (see clause 8).

#### 6.6.2.4.6 Valid Vendor Version Level

0 = not valid

1 = Valid

In PLOGI, PLOGI LS\_ACC, and FLOGI, if the Valid Vendor Version Level bit (word 1, bit 29) is set to one, the Vendor Version Level (words 25 through 28 in table 149) contains valid information. If it is set to zero, the Vendor Version Level field is not meaningful.

### 6.6.2.4.7 Multiple N Port ID Assignment

0 = not supported

1 = supported

When the Multiple N\_Port\_ID Support bit (word 1, bit 31) in the FLOGI request is one, the Multiple N\_Port\_ID Assignment bit (word 1, bit 29) shall be set to one if the F\_Port supplying this parameter is capable of assigning multiple N\_Port IDs to the attached N\_Port using the FDISC ELS. The Multiple N\_Port\_ID Assignment bit shall be set to zero when the Multiple N\_Port\_ID Support bit in the FLOGI request is zero or to indicate that the F\_Port is not capable of assigning multiple N\_Port IDs to the attached N\_Port when the Multiple N\_Port ID Support bit in the FLOGI request is one. This bit is only meaningful in the FLOGI LS\_ACC, it is not meaningful in the FLOGI request.

NOTE 14 - The definition above has been modified from previous revisions of the standard.

#### 6.6.2.4.8 N Port/F Port

 $0 = Nx_Port$ 

1 = Fx Port

An Nx\_Port shall set tThe N\_Port/F\_Port bit (word 1, bit 28) to zero for PLOGI, PLOGI LS\_ACC and FLOGI. If an Nx\_Port is connected in a Fabric topology, the Fx\_Port shall set the N\_Port/F\_Port bit to one in the FLOGI LS\_ACC. If an Nx\_Port is connected in a point-to-point topology, the N\_Port shall set the N\_Port/F\_Port bit to zero in the FLOGI LS\_ACC.

#### 6.6.2.4.9 BB\_Credit Management

0 = BB\_Credit management specified in FC-FS-2 shall be used.

1 = Alternate BB\_Credit management specified in FC-AL-2 shall be used.

The BB\_Credit Management bit (word 1, bit 27) specifies the type of BB\_Credit Management to be used.

### 6.6.2.4.10 E\_D\_TOV Resolution

0 = 1 millisecond

1 = 1 nanosecond

The E\_D\_TOV resolution bit (word 1, bit 26) indicates the resolution of the E\_D\_TOV timer. If the bit is set to zero, the timer shall be in increments of 1 millisecond. If the bit is set to one, the timer shall be in increments of 1 nanosecond. See FC-FS-2 for the definition of E\_D\_TOV.

### 6.6.2.4.11 Multicast

0 = Multicast not supported by the Fabric

1 = Multicast supported by the Fabric

The Multicast bit (word 1, bit 25) indicates whether multicast is supported by the Fabric or not. It is only meaningful in the FLOGI LS\_ACC. For multicast requirements see FC-FS-2.

# 6.6.2.4.12 Broadcast

0 = Broadcast not supported by the Fabric

1 = Broadcast supported by the Fabric

The Broadcast bit (word 1, bit 24) indicates whether broadcast is supported by the Fabric or not. It is only meaningful in the FLOGI LS\_ACC. For broadcast requirements see FC-FS-2.

# 6.6.2.4.13 Hunt Group

0 = Hunt Groups not supported.

1 = Hunt Groups supported.

The Hunt Group bit (word 1, bit 23) indicates whether or not the Fabric supports Hunt Group routing. If it is set to zero, the Fabric shall not support Hunt Group routing. If it is set to one, the Fabric shall support Hunt Group routing (see FC-FS-2).

### 6.6.2.4.14 Query Buffer Conditions

0 = No buffer conditions to report.

1 = Buffer conditions to report.

The Query Buffer Conditions bit (word 1, bit 22) indicates whether or not the FC\_Port has unusual buffer conditions to report. A Report Port Buffer Conditions (RPBC) ELS may be issued to gather the buffer conditions. An FC\_Port shall only set the Query Buffer Conditions to 1 if the FC\_Port supports the RPBC ELS, and any of the following conditions are true:

- a) The ELS Receive Data Field Size field is different that the Buffer-to-buffer Receive Data\_Field Size field in the common service parameters, or
- b) multi-frame ELSs are not supported.

### 6.6.2.4.15 Clock Synchronization Primitive Capable

0 = not Clock Synchronization Primitive Capable

1 = Clock Synchronization Primitive Capable

The Clock Synchronization Primitive Capable bit (word 1, bit 20) indicates support for the Primitive method of Clock Synchronization (see FC-FS-2). If the bit is set to zero, the Primitive method of Clock Synchronization is not supported. If the bit is set to one, the meaning is as defined in table 154.

Table 154 – Clock Synchronization Applicability

| Туре                                             | Meaning if bit set to one                                                                                           |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Clock Synchronization Server (N_Port Login only) | The Clock Synchronization Server is capable of generating clock synchronization Primitive Signals (see FC-FS-2).    |
| Other FC_Ports (N_Port Login only)               | The FC_Port is capable of receiving the clock synchronization Primitive Signals (see FC-FS-2) and acting upon them. |
| Fabric (FLOGI LS_ACC only)                       | The Fabric is capable of receiving the clock synchronization Primitive Signals (see FC-FS-2) and acting upon them.  |

#### 6.6.2.4.16 R T TOV value

0 = Default value of 100 milliseconds.

1 = Short value of 100 microseconds.

The R\_T\_TOV value (word 1, bit 19) indicates support for the short value of R\_T\_TOV. If this bit is set to zero, the default value of 100 milliseconds is specified. If it is set to one, the value of 100 microseconds is specified.

#### 6.6.2.4.17 Dynamic Half Duplex Supported

0 = DHD not supported

1 = DHD supported

The Dynamic Half Duplex Supported bit (word 1, bit 18) indicates support for Dynamic Half Duplex. If it is set to zero, Dynamic Half Duplex is not supported. If it is set to one, the FC\_Port supports the reception of the DHD primitive.

NOTE 15 – DHD is applicable to FC-AL topologies. See FC-AL-2 for a description of DHD behavior.

#### 6.6.2.4.18 SEQ CNT

0 = Normal rules apply to SEQ\_CNT

1 = Continuously Increasing SEQ\_CNT shall be used.

SEQ\_CNT (word 1, bit 17) indicates the requirement on SEQ\_CNT. If the bit is set to zero, normal rules shall apply to SEQ\_CNT usage. If the bit is set to one, the Nx\_Port is guaranteeing that it shall transmit all frames within an Exchange using a continuously increasing SEQ\_CNT. Each Exchange shall start with SEQ\_CNT set to zero in the first frame, and every frame transmitted after that shall increment the previous SEQ\_CNT by one, even across transfers of Sequence Initiative. Any frames received from the other Nx\_Port in the Exchange shall have no effect on the transmitted SEQ\_CNT (see FC-FS-2).

# 6.6.2.4.19 Payload Bit

0 = Payload length is 116 bytes

1 = Payload length in bytes is 256 plus four times the value of the Login Extension Length field

The Payload Bit (word 1 bit 16) indicates the length of the FLOGI or PLOGI Payload. If it is set to zero, the Payload length shall be 116 bytes. If it is set to one, the Payload length in bytes shall be 256 plus four times the value of the Login Extension Length field.

If Payload Bit is 0 in PLOGI or FLOGI, then LS\_ACC sent in response shall have the Payload Bit set to 0.

### 6.6.2.5 BB\_SC\_N

The Buffer-to-buffer State Change Number (BB\_SC\_N) field (word 1, bits 15-12) specifies the Buffer-to-buffer State Change Number. It indicates that the sender of the PLOGI or FLOGI frame is requesting  $2^{BB_-SC_-N}$  number of frames to be sent between two consecutive BB\_SCs primitives, and  $2^{BB_-SC_-N}$  number of R\_RDY primitives to be sent between two consecutive BB\_SCr primitives. See FC-FS-2 for a description of the BB\_Credit recovery process.

#### 6.6.2.6 Buffer-to-buffer Receive Data Field size

The buffer-to-buffer Receive Data\_Field Size field (word 1, bits 11-0) specifies the largest frame Data\_Field Size that may be received by the Nx\_Port supplying the Service Parameters as a Sequence Recipient for:

- a) a connect-request (SOFc1),
- b) a Class 2 Data frame, or
- c) a Class 3 Data frame

The value shall be a multiple of four bytes. Values less than 256 or greater than 2 112 are invalid. An Fx\_Port shall support a Data Field size of at least 256 bytes.

#### 6.6.2.7 Total Concurrent Sequences

Total Concurrent Sequences field (word 2, bits 23 - 16) specifies the total number of Concurrent Sequences for all classes that the Nx\_Port is capable of supporting as a Recipient.

The Total Concurrent Sequences specified by an Nx\_Port shall be less than or equal to the sum of the Concurrent Sequences supported on a Class by Class basis (e.g., an Nx\_Port may specify that it is capable of supporting ten Concurrent Sequences in Class 2 and ten Concurrent Sequences in Class 3. However, the total number of Concurrent Sequences when both Class 2 and 3 are open may be fifteen).

### 6.6.2.8 Relative offset by category

The relative offset by category field (word 2, bits 15 - 0) shall indicate on a bit-position basis, whether or not relative offset shall be supported for the corresponding Information Category (e.g., if bit 14 = 1 and bit 2 = 1 and the others are set to zero, Information Category 1110b and 0010b frames shall be capable of using relative offset as a Sequence Recipient or a Sequence Initiator). See FC-FS-2 for definition of the Information Category field.

### 6.6.2.9 R A TOV

The R\_A\_TOV value shall be specified as a count of 1 ms increments. Therefore, a value of 0000000Ah specifies a time period of 10 milliseconds.

### 6.6.2.10 E\_D\_TOV

When the E\_D\_TOV Resolution bit (word 1, bit 26) is set to zero, the E\_D\_TOV value shall be specified as a count of 1 millisecond increments. When the E\_D\_TOV Resolution bit is set to one, the E\_D\_TOV value shall be specified as a count of 1 nanosecond increments (e.g., based on the setting of the E\_D\_TOV Resolution bit, a value of 0000000Ah specifies a time period of either 10 milliseconds or 10 nanoseconds).

For PLOGI, the E\_D\_TOV value in the LS\_ACC to the PLOGI shall be greater than or equal to the value in the PLOGI. The E\_D\_TOV value in the LS\_ACC shall be the value used by each Nx\_Port. See FC-FS-2 for definition of E\_D\_TOV.

### 6.6.3 Port Name

The Port\_Name is an eight-byte field (words 5-6) that identifies an FC\_Port. Each FC\_Port shall provide a Name\_Identifier that is unique within the Fibre Channel interaction space of the FC\_Port. Bits 63-60 specify the format of the Name Identifier. The formats are defined in FC-FS-2.

#### 6.6.4 Node or Fabric Name

Node\_Name is applicable to PLOGI, PLOGI LS\_ACC and FLOGI. Fabric\_Name is applicable to FLOGI LS\_ACC.

The Node\_Name or Fabric\_Name is an eight-byte field (words 7-8) that labels a Node or Fabric for identification purposes, such as diagnostics., The Node\_Name and Fabric\_Name are independent of and unrelated to network addressing. Each Node\_Name or Fabric\_Name shall be unique within the Fibre Channel interaction space . Bits 63-60 specify the format of the name. The formats are defined in FC-FS-2.

#### 6.6.5 Class Service Parameters

### 6.6.5.1 Applicability

Table 155 defines the applicability, by class as well as by PLOGI, FLOGI, PLOGI LS\_ACC and FLOGI LS\_ACC, of the Class Service Parameters to N\_Port and Fabric Login. The Class 1 and Class 6 Service Parameters are given in words 9 - 12. The Class 2 Service Parameters are given in words 13 - 16. The Class 3 Service Parameters are given in words 17 - 20. The words given in the second column and in the following subclauses are relative to the start of the specific class service parameters field (see table 155). The Default Login Value column (see table 155) refers to the Login values to be used prior to a sucessful Login.

|                                         |      |       | Default<br>Login | applicability |   |   | Pai<br>app | LOG<br>rame<br>licab | eter | FLOGI<br>LS_ACC<br>Parameter<br>applicability<br>Class |   |   |
|-----------------------------------------|------|-------|------------------|---------------|---|---|------------|----------------------|------|--------------------------------------------------------|---|---|
| Service Parameter                       | Word | Bits  | Value            | <b>1</b> ª    | 2 | 3 | <b>1</b> ª | 2                    | 3    | <b>1</b> ª                                             | 2 | 3 |
| Class Validity                          | 0    | 31    | 0                | у             | у | у | у          | у                    | у    | у                                                      | у | у |
| Service Options                         | 0    | 30-16 |                  |               |   |   |            |                      |      |                                                        |   |   |
| Intermix Mode                           | 0    | 30    | 0                | у             | n | n | у          | n                    | n    | у                                                      | n | n |
| Stacked Connect-Requests                | 0    | 29-28 | 0                | n             | n | n | n          | n                    | n    | у                                                      | n | n |
| Sequential delivery                     | 0    | 27    | 0                | n             | n | n | n          | у                    | у    | n                                                      | у | у |
| Simplex dedicated connection - obsolete | 0    | 26    | 0                | n             | n | n | n          | n                    | n    | n                                                      | n | n |
| Camp-On - obsolete                      | 0    | 25    | 0                | n             | n | n | n          | n                    | n    | n                                                      | n | n |
| Buffered Class 1 - obsolete             | 0    | 24    | 0                | n             | n | n | n          | n                    | n    | n                                                      | n | n |

Table 155 – Class Service Parameters Applicability

#### Leaend:

<sup>&</sup>quot;y" indicates yes, applicable (i.e., has meaning);

<sup>&</sup>quot;n" indicates no, not applicable (i.e., has no meaning)

<sup>&</sup>lt;sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.

Table 155 – Class Service Parameters Applicability (Continued)

|                                                 |           |       | Default        | LS<br>Pai<br>app | DGI a<br>PLOG<br>S_AC<br>rame<br>licab | CC<br>eter<br>oility | Pai<br>app |            | eter<br>pility | FLOGI<br>LS_ACC<br>Parameter<br>applicability<br>Class |        |        |
|-------------------------------------------------|-----------|-------|----------------|------------------|----------------------------------------|----------------------|------------|------------|----------------|--------------------------------------------------------|--------|--------|
| Samina Darameter                                | \A/o.rd   | Bits  | Login<br>Value | Class            |                                        |                      | 1a         | Class<br>2 | s<br>3         | 1a                                                     | s<br>3 |        |
| Service Parameter  Priority/Preemption          | Word<br>0 | 23    | 0              |                  |                                        |                      |            |            |                |                                                        | 2      |        |
| Preference                                      | 0         | 22    | 0              | у                | у                                      | У                    | у          | у          | У              | у                                                      | У      | У      |
| DiffServ QoS                                    | 0         | 21    | 0              | n<br>n           | У                                      | У                    | n          | У          | У              | n                                                      | У      | У      |
| Reserved                                        | 0         | 20-16 | 0              | n                | y<br>n                                 | y<br>n               | n<br>n     | y<br>n     | y<br>n         | n<br>n                                                 | y<br>n | y<br>n |
| Initiator Control                               | 0         | 15-0  | 0              | -''              |                                        |                      | ''         |            | <u> '''</u>    |                                                        | '''    |        |
| X_ID Reassignment - obsolete                    | 0         | 15-14 | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Initial Responder Process_Associator            | 0         | 13-12 | 0              | у                | у                                      | у                    | n          | n          | n              | n                                                      | n      | n      |
| ACK_0 capable                                   | 0         | 11    | 0              | у                | у                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| ACK_N Capable - obsolete                        | 0         | 10    | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| ACK generation assistance                       | 0         | 9     | 0              | у                | у                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Data compression capable - obsolete             | 0         | 8     | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Data compression history buffer size - obsolete | 0         | 7-6   | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Data Encryption Capable - obsolete              | 0         | 5     | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Clock Synchronization ELS capable               | 0         | 4     | 0              | у                | у                                      | у                    | у          | у          | у              | у                                                      | у      | у      |
| Reserved                                        | 0         | 3-0   | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Recipient Control                               | 1         | 31-16 |                |                  |                                        |                      | -          |            | -              |                                                        |        | ,      |
| ACK_0 Capable                                   | 1         | 31    | 0              | у                | у                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| ACK_N Capable - obsolete                        | 1         | 30    | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| X_ID interlock                                  | 1         | 29    | 1              | у                | у                                      | n                    | n          | n          | n              | n                                                      | n      | n      |
| Error policy support                            | 1         | 28-27 | 0              | у                | у                                      | у                    | n          | n          | n              | n                                                      | n      | n      |
| Reserved                                        | 1         | 26    | 0              | n                | n                                      | n                    | n          | n          | n              | n                                                      | n      | n      |

# Legend:

<sup>&</sup>quot;y" indicates yes, applicable (i.e., has meaning);

<sup>&</sup>quot;n" indicates no, not applicable (i.e., has no meaning)

<sup>&</sup>lt;sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.

Table 155 – Class Service Parameters Applicability (Continued)

|                                                 |      |       | Default | LS<br>Pai  | DGI a<br>PLOG<br>S_AC<br>rame<br>licab | SI<br>CC<br>eter | Pai<br>app | LOC<br>rame<br>licab | eter | FLOGI<br>LS_ACC<br>Parameter<br>applicability |   |   |
|-------------------------------------------------|------|-------|---------|------------|----------------------------------------|------------------|------------|----------------------|------|-----------------------------------------------|---|---|
|                                                 |      |       | Login   |            | Class                                  |                  |            | Class                |      |                                               | S |   |
| Service Parameter                               | Word | Bits  | Value   | <b>1</b> ª | 2                                      | 3                | <b>1</b> a | 2                    | 3    | <b>1</b> ª                                    | 2 | 3 |
| Categories per Sequence                         | 1    | 25-24 | 1       | у          | у                                      | У                | n          | n                    | n    | n                                             | n | n |
| Data compression capable - obsolete             | 1    | 23    | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Data compression history buffer size - obsolete | 1    | 22-21 | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Data decryption capable – obsolete              | 1    | 20    | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Clock Synchronization ELS capable               | 1    | 19    | 0       | у          | у                                      | у                | у          | у                    | у    | у                                             | у | у |
| Reserved                                        | 1    | 18-16 | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Reserved                                        | 1    | 15-12 | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Receive Data Field Size                         | 1    | 11-0  | 128     | у          | у                                      | у                | n          | n                    | n    | n                                             | n | n |
| Reserved                                        | 2    | 31-24 | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Concurrent Sequences                            | 2    | 23-16 | 1       | у          | у                                      | у                | n          | n                    | n    | n                                             | n | n |
| Nx_Port end-to-end Credit                       | 2    | 15-0  | 1       | у          | у                                      | n                | n          | n                    | n    | n                                             | n | n |
| Reserved                                        | 3    | 31-24 | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| Open Sequences per Exchange                     | 3    | 23-16 | 1       | у          | у                                      | у                | n          | n                    | n    | n                                             | n | n |
| Reserved                                        |      | 15-0  | 0       | n          | n                                      | n                | n          | n                    | n    | n                                             | n | n |
| CR_TOV                                          | 3    | 31-0  | 0       | n          | n                                      | n                | n          | n                    | n    | у                                             | n | n |

# Legend:

<sup>&</sup>quot;y" indicates yes, applicable (i.e., has meaning); "n" indicates no, not applicable (i.e., has no meaning)

<sup>&</sup>lt;sup>a</sup> The Class 1 Service Parameters shall be used for Class 6. Each has the same applicability as Class 1.

### 6.6.5.2 Payload

The Payload Class Service Parameters using FLOGI is shown in table 156.

Table 156 - Class Service Parameters - FLOGI

| Bits<br>Word | 31                |    | 24 | 23                |      | 16                        | 15                |  | 12 | 11 |  | 80 | 07 |  | 00 |
|--------------|-------------------|----|----|-------------------|------|---------------------------|-------------------|--|----|----|--|----|----|--|----|
| 0            | Service Options   |    |    |                   |      |                           | Initiator Control |  |    |    |  |    |    |  |    |
| 1            | Recipient Control |    |    |                   |      |                           | Reserved          |  |    |    |  |    |    |  |    |
| 2            | Reserve           | ed |    | Total C<br>Sequer | Nx_F | Nx_Port End-to-end Credit |                   |  |    |    |  |    |    |  |    |
| 3            | Reserve           | ed |    | Open S<br>Exchan  |      | nces per                  | er Reserved       |  |    |    |  |    |    |  |    |

The Payload Service Parameters using PLOGI and PLOGI LS\_ACC is shown in table 157.

Table 157 – Class Service Parameters - PLOGI and PLOGI LS\_ACC

| Bits<br>Word | 31                |        | 24    | 23                |  | 16      | 15                        |                         | 00 |  |  |  |  |
|--------------|-------------------|--------|-------|-------------------|--|---------|---------------------------|-------------------------|----|--|--|--|--|
| 0            | 0 Service Options |        |       |                   |  |         |                           | Initiator Control       |    |  |  |  |  |
| 1            | Recipie           | nt Cor | ntrol |                   |  |         | Reserved                  | Receive Data Field Size |    |  |  |  |  |
| 2            | Reserve           | ed     |       | Total C<br>Sequer |  | rent    | Nx_Port End-to-end Credit |                         |    |  |  |  |  |
| 3            | Reserve           | ed     |       | Open S<br>Exchan  |  | ices pe | Reserved                  |                         |    |  |  |  |  |

The Payload Parameters using FLOGI LS\_ACC is shown in table 158.

Table 158 - Class Service Parameters - FLOGI LS\_ACC

| Bits<br>Word | 31 16             | 15 00    |
|--------------|-------------------|----------|
| 0            | Service Options   | Reserved |
| 1            | Recipient Control | Reserved |
| 2            | Reserved          | Reserved |
| 3            | CR_TOV            |          |

# 6.6.5.3 Class validity

0 = Invalid - Class not supported

1 = Valid - Class supported

The Class validity bit (word 0, bit 31) shall indicate whether this Class is supported or not. If the Class validity bit is set to zero, this set of sixteen bytes shall be ignored. If the Class validity bit is one, this Class shall be supported.

The Class 1 and Class 6 Service Parameters are given in words 9 - 12. The Class 2 Service Parameters are given in words 13 - 16. The Class 3 Service Parameters are given in words 17 - 20.

There is no separate set of class service parameters for Class 6. The Class 1 service parameters are used for Class 6.

### 6.6.5.4 Service options

#### 6.6.5.4.1 Introduction

The service options shall specify optional features of a class of service supported by the port supplying the service parameters.

#### 6.6.5.4.2 Intermix Mode

0 = Intermix not requested

1 = Intermix requested

The Intermix Mode bit (word 0, bit 30) only has meaning in Class 1 and 6. It has no meaning in Class 2, and Class 3.

All N\_Ports and Fabrics supporting Class 1 shall support exclusive connections. An N\_Port supporting exclusive connections may only transmit and receive frames from the N\_Port to which an existing Class 1 Connection is pending or established. Exclusive connections require that the Fabric transmit an F\_BSY frame, as appropriate, in response to Class 2 frames and connect-request Data frames (SOFc1) issued by a third N\_Port targeted for one of the two N\_Ports engaged in a Class 1 Connection.

An Intermixed dedicated connection specifies that the Fabric may insert or extract Class 2 or Class 3 frames while a Class 1 Connection is established. Support for Intermix is optional by both N\_Ports and Fabrics. When an N\_Port performs Login with a Fabric, it shall request support for Intermix by setting the Intermix Mode bit to one. If the Fabric responds with bit 30 set to one in the LS\_ACC, Intermix shall be functional.

For Fabric Login, table 159 specifies the meaning of the combination of the Intermix Mode bit for the requesting N\_Port and the applicable F\_Port.

 Nx\_Port
 Fx\_Port
 Meaning

 0
 0
 Neither supports

 0
 1
 Fabric is capable of supporting, Intermix not functional

 1
 0
 Nx\_Port support requested, Fabric does not support

 1
 1
 Nx\_Port requested, Fabric is capable of supporting, Intermix is functional

Table 159 – Intermix Mode Support

For N\_Port Login, this bit indicates that Intermix is functional between the N\_Port setting this bit and the port to which it is attached. In a point-to-point topology if both N\_Ports indicate Intermix support, then Intermix is functional. Otherwise, Class 1 dedicated connections shall be removed before transmission of Class 2 or Class 3 frames.

See FC-FS-2 for Intermix requirements.

#### 6.6.5.4.3 Stacked Connect-requests

The Stack Connect-request bits (word 0, bits 29 - 28) are used in the Fabric Login procedure. They are only meaningful for Class 1 in the FLOGI LS\_ACC. They are not meaningful for other classes and other Class 1 login frames. Table 160 specifies the meaning of the combination of word 0 bits 29 and 28.

Word 0, bits 29 - 28

Ob
Stacked Connect-request not supported
Lock-Down Mode
Transparent Mode
Reserved

Table 160 - Stacked Connect-request support Login Bits

Support for stacked connect-requests is optional in both a Fabric and Nx\_Port. Both an Nx\_Port's and Fx\_Port's behavior change if stacked connect-requests are functional (see FC-FS-2).

### 6.6.5.4.4 Sequential delivery

- 0 = Out of order delivery allowed
- 1 = Sequential delivery requested

The Sequential delivery bit (word 0, bit 27) is only meaningful for the class 2 and 3 N\_Port Class Service Parameters in Fabric Login. Out of order frame delivery in class 2 and 3 is the default function by a Fabric. It is not meaningful for Class 1, or Class 6 or for N\_Port Login.

If this bit is set to one by an Nx\_Port, it is requesting that all frames delivered to the Nx\_Port requesting this function be delivered in the same order in which the frames were transmitted by the source Nx\_Port. If this bit is set to one by the Fx\_Port in the LS\_ACC, the Fx\_Port shall deliver Class 2 and 3 frames in the same order as transmitted from any one Nx\_Port in the absence of Fabric events (e.g., Fabric reconfiguration or zoning changes).

A Fabric supporting the sequential delivery feature routes Class 2 and 3 frames via a fixed route through the Fabric to provide in-order frame delivery. This feature does not imply any other alteration to the normal class of service functions (e.g., F\_BSY responses are still possible in Class 2 and Class 3 frames may still be discarded by the Fabric based on normal Class 2 and 3 rules).

If this bit is set to one, the Fabric attempts to maintain the order of delivery of both Data and Link\_Control (Class 2 only) frames to the Nx\_Port requesting this feature in the same order in which the frames were transmitted. Table 161 specifies the meaning of the combination of the Sequential delivery bit for the requesting Nx\_Port and the applicable Fx\_Port.

Table 161 – Sequential delivery support

| Nx_Port | Fx_Port                                                              | Meaning                                                                               |  |  |  |  |  |
|---------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| 0       | 0                                                                    | Neither supports                                                                      |  |  |  |  |  |
| 0       | 1 Fabric is capable of supporting, Sequential delivery is functional |                                                                                       |  |  |  |  |  |
| 1       | 0                                                                    | Nx_Port support requested, Fabric does not support                                    |  |  |  |  |  |
| 1       | 1                                                                    | Nx_Port requested, Fabric is capable of supporting, Sequential delivery is functional |  |  |  |  |  |

### 6.6.5.4.5 Priority/Preemption

0 = Priority/Preemption is not supported

1 = Priority/Preemption is supported

The Priority/Preemption bit (word 0, bit 23) has meaning in Class 1, 2, 3, and 6.

When an Nx\_Port performs Login with a Fabric, it shall request support for Priority and Preemption by setting the Priority and Preemption bit (word 0, bit 23) to one. If is set to one in the LS\_ACC, then both the Nx\_Port and Fabric have agreed that Priority and Preemption are available for use.

The set of values specified in table 162 give the meaning of the combination of the Priority and Preemption bit.

| Nx_Port | Fx_Port | Meaning                                                                                       |  |  |  |
|---------|---------|-----------------------------------------------------------------------------------------------|--|--|--|
| 0       | 0       | Neither supports Priority and Preemption                                                      |  |  |  |
| 0       | 1       | ric is capable of supporting Priority and Preemption                                          |  |  |  |
| 1       | 0       | Nx_Port support requested, Fabric does not support Priority and Preemption                    |  |  |  |
| 1       | 1       | Nx_Port requested, Fabric is capable of supporting Priority and Preemption, available for use |  |  |  |

Table 162 - Fabric Login Priority and Preemption Support

### 6.6.5.4.6 Preference

### 6.6.5.4.6.1 Nx Port

0 = non-zero CS CTL may be tolerated

1 = non-zero CS CTL shall be tolerated

When an Nx\_Port performs Login with another Nx\_Port, it shall indicate tolerance for non-zero CS\_CTL within the Class of Service by setting the Preference bit (word 0, bit 22) to one. The other Nx\_Port indicates tolerance for non-zero CS\_CTL by setting this bit to one in the LS\_ACC. An Nx\_Port that tolerates a non-zero CS\_CTL shall not reject or otherwise deprecate a frame solely because the CS\_CTL field is non-zero.

NOTE 16 – Even if an Nx\_Port never intends to set the PREF bit to any value other than zero, the Nx\_Port may still have reason to set the login Preference bit to one. Setting the bit to one indicates to the other Nx\_Port that the Nx\_Port shall accept frames with a non-zero CS\_CTL field value.

In Class 2 and 3, if this bit is set to one, the Nx\_Port shall tolerate the PREF field in the CS\_CTL field of the Frame\_Header. Tolerance for CS\_CTL as a Sequence Initiator means that the PREF field may specify Preference to the Fabric. Tolerance for CS\_CTL as a Sequence Recipient means that the Nx\_Port shall ignore the PREF field (see FC-FS-2).

This Preference Bit has no meaning in Class 1, and Class 6.

### 6.6.5.4.6.2 Fx\_Port

0 = Normal delivery

1 = Preferred delivery functional

If the Preference bit (word 0, bit 22) is set to one by an Nx\_Port, then it is requested that all frames transmitted by the Nx\_Port requesting this function be delivered according to the setting of the PREF field in the CS\_CTL field of the Frame\_Header. If this bit is set to one by the Fx\_Port, the Fx\_Port is indicating that it shall deliver Class 2 and 3 frames transmitted by the requesting Nx\_Port according to the setting of the PREF field.

NOTE 17 – An Fx\_Port that responds with bit 22 set to zero may not itself support Preferred delivery, but other Fabric Elements in the path to the destination may support it. An Nx\_Port may attempt Preferred delivery even if the Fx\_Port does not indicate support.

If this bit is set to one, the Fabric shall deliver both Data and Link\_Control (class 2 only) frames according to the setting of the PREF field in the CS\_CTL field of the frame header.

The Preference bit is not meaningful for Class 1, and Class 6.

Table 163 summarizes the function of the PREF bit for both Class 2 and Class 3.

Nx\_Port Fx Port Word 0, Bit 22 Word 0, Bit 22 Meaning Preferred delivery by the Fabric may be 0 0 functional Preferred delivery by the Fabric shall be 1 functional Nx\_Port support requested, Preferred delivery 0 by the Fabric may be functional Nx Port requested, Fabric agrees, Preferred delivery by the Fabric shall be functional

Table 163 - Class 2 and 3 Preference Bit Function

Table 164 summarizes the relationship between Preferred delivery and sequential delivery for both Class 2 and Class 3.

Table 164 – Relationship between Preferred delivery and sequential delivery

| Preference<br>Functional | Sequential<br>delivery<br>Functional | Meaning                                                                                                                                                                                                                                                                                                                                |
|--------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                        | 0                                    | Frames may be delivered in any order                                                                                                                                                                                                                                                                                                   |
| 0                        | 1                                    | Frames shall be delivered to a destination in the same order received from the source, PREF is ignored                                                                                                                                                                                                                                 |
| 1                        | 0                                    | Frames may be delivered in any order, but frames with PREF set to one may be delivered prior to frames with PREF set to zero                                                                                                                                                                                                           |
| 1                        | 1                                    | Frames with PREF set to one shall be delivered to a destination in the same order received from the source relative to each other, and may be delivered prior to frames with PREF set to zero; frames with PREF set to zero shall also be delivered to a destination in the same order received from the source relative to each other |

#### 6.6.5.4.7 DiffServ QoS

### 6.6.5.4.7.1 N Port Login

0 = DiffServ QoS not supported

1 = DiffServ QoS supported

When an Nx\_Port performs Login with another Nx\_Port, it shall indicate support for Differentiated Services QoS by setting the DiffServ QoS bit (word 0, bit 21) to one. The other Nx\_Port indicates support for Differentiated Services QoS by setting this bit to one in the LS\_ACC. Support of Differentiated Services QoS as an Exchange Originator means that the CS\_CTL/Priority Enable bit (F\_CTL bit 17) is set to zero to indicate that the DSCP field of the CS\_CTL field in the frame header (word 1, bits 29-24) specifies the Differentiated Services QoS policy. Support of Differentiated Services QoS as an Exchange Responder means that the CS\_CTL/Priority Enable bit (F\_CTL bit 17) is set to zero, indicates that the DSCP field of the CS\_CTL field in the frame header (word 1, bits 29-24) specifies the Differentiated Services QoS policy (see FC-FS-2).

The DiffServ QoS bit only has meaning for Classes 2 and 3.

## 6.6.5.4.8 F\_Port Login

0 = DiffServ QoS not Supported

1 = DiffServ QoS Supported

When doing Fabric Login, an Nx\_Port shall request support for Differentiated Services QoS by setting the DiffServ QoS bit (word 0, bit 21) to one. If the LS\_ACC reply from the Fx\_Port has this bit set to one, both the Nx\_Port and Fx\_Port have agreed that Differentiated Services QoS is available for use.

The set of values specified in table 165 give the meaning of the combination of Word 0, bit 21 between the requesting Nx Port and the responding Fx Port (see FC-FS-2).

The DiffServ QoS bit only has meaning for Classes 2 and 3.

Table 165 - DiffServ QoS bit definition

| Nx_Port | Fx_Port | Description                                                                                                                       |  |  |  |
|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0       | 0       | leither supports Differentiated Services QoS                                                                                      |  |  |  |
| 0       | 1       | x_Port is capable of supporting Differentiated Services QoS                                                                       |  |  |  |
| 1       | 0       | Ix_Port support requested, Fx_Port does not support Differentiated Services                                                       |  |  |  |
| 1       | 1       | Nx_Port requested, Fx_Port is capable of supporting Differentiated Services QoS, Differentiated Services QoS is available for use |  |  |  |

#### 6.6.5.5 Initiator control

### 6.6.5.5.1 Introduction

The Initiator Control Flags shall specify which protocols, policies or functions the Sequence Initiator function in the Nx Port supplying the Service Parameters requests of the recipient or is capable of as a Sequence initiator.

### 6.6.5.5.2 Initial Process Associator

The definition of the Initial Process Associator bits (word 0, bits 13-12) is shown in table 166.

Table 166 - Initial Process Associator Bits Definition

| Word 0, bits 13-12 | Meaning                                             |  |  |  |  |
|--------------------|-----------------------------------------------------|--|--|--|--|
| 00b                | Initial Process_Associator not supported            |  |  |  |  |
| 01b                | Initial Process_Associator supported                |  |  |  |  |
| 10b                | Reserved                                            |  |  |  |  |
| 11b                | Initial Process_Associator required (and supported) |  |  |  |  |

Initial Process Associator required indicates that the Nx Port supplying this parameter requires an Association Header at certain Sequence boundaries (see FC-FS-2) that contains a specific initial value in the Process Associator field. An Nx Port that supports Initial Process Associator shall supply an Association Header with an initial Responder Process Associator value at certain Sequence boundaries, such as when it originates an Exchange. If an Initial Process Associator is required or supported, then X\_ID interlock also is required in Class 1 and 2.

If the Responder Nx Port to the PLOGI request requires an Initial Process Associator and the Originator of the PLOGI request does not support an Initial Process Associator, the Responder shall transmit an LS\_RJT indicating the Initiator Control bits are in conflict. If the Responder Nx\_Port to the PLOGI request does not support an Initial Process Associator and the Originator of the PLOGI request has indicated that Initial Process Associator is required, the Responder shall transmit an LS RJT indicating the Initiator Control bits are in conflict. In either of these cases, the Nx Ports are unable to communicate.

These bits only have meaning for PLOGI and PLOGI LS\_ACC.

### 6.6.5.5.3 ACK 0 capability

0 = ACK 0 incapable

1 = ACK\_0 capable

The ACK 0 capability bit (word 0, bit 11) specifies if the Nx Port supplying these Class Service Parameters is capable of support for ACK 0 as a Sequence Initiator for acknowledgement of an entire Sequence in either Discard or Process Exchange Error Policies. As a Sequence Initiator an Nx Port receives and processes ACK frames in response to Data frame transmission. ACK 0 support is applicable to acknowledged class of service Sequences (see FC-FC-2).

The conditions under which ACK\_0 is supported are defined in table 167 and described in the following text.

| Nx_Port A<br>Word 0, Bit 11 | Nx_Port B<br>Word 1, Bit 31 | Nx_Port A as Sequence Initiator |  |  |  |  |
|-----------------------------|-----------------------------|---------------------------------|--|--|--|--|
| 0                           | 0                           | ACK_0 not supported             |  |  |  |  |
| 0                           | 1                           | ACK_0 not supported             |  |  |  |  |
| 1                           | 0                           | ACK_0 not supported             |  |  |  |  |
| 1                           | 1                           | ACK_0 supported                 |  |  |  |  |

Table 167 – ACK\_0 Support Conditions (Initiator Control)

If one Nx\_Port (e.g., Nx\_Port A) is capable of receiving ACK\_0 as a Sequence Initiator (word 0, bit 11 set to one) and the other Nx\_Port (e.g., Nx\_Port B) is capable of transmitting ACK\_0 as a Sequence Recipient (word 1, bit 31 set to one), ACK\_0 is supported when Nx\_Port A is the Sequence Initiator and Nx\_Port B is the Sequence Recipient. Otherwise, ACK\_0 shall not be supported while Nx\_Port A is the Sequence Initiator and Nx\_Port B is the Sequence Recipient. ACK\_0 usage shall take precedence over ACK\_1.

ACK\_0 capability may be asymmetrical for a single Nx\_Port (i.e., an Nx\_Port may be capable processing ACK\_0 as a Sequence Initiator, but not be capable of ACK\_0 transmission as a Sequence Recipient). Similarly, an Nx\_Port may be capable of generating ACK\_0 as a Sequence Recipient, but not be capable of ACK\_0 reception as a Sequence Initiator.

### 6.6.5.5.4 ACK generation assistance

- 0 = No ACK generation assistance is provided to Sequence Recipient.
- 1 = ACK generation assistance is provided to Sequence Recipient.

Usage of the ACK generation assistance bit (word 0, bit 9) is specified in FC-FS-2.

## 6.6.5.5.5 Clock synchronization ELS capable

- 0 = Initiator does not have clock synchronization ELS capability
- 1 = Initiator has clock synchronization ELS capability

The Clock synchronization ELS capable bit (word 0, bit 4) is only meaningful from the Clock Synchronization Server well-known address (i.e., FFFFF6h). This bit indicates support for the ELS method of Clock Synchronization. If this bit is set to zero, the Nx\_Port does not support the ELS method of Clock Synchronization. If this bit is set to one, the Nx\_Port is capable of generating the CSU ELS frames. See FC-FS-2.

### 6.6.5.6 Recipient control

### 6.6.5.6.1 Introduction

The Recipient Control Flags shall specify which protocols, policies or functions are supported by the Recipient Initiator function in the Nx\_Port supplying the Service Parameters when acting as a recipient of Data frames.

### 6.6.5.6.2 ACK 0 capability

 $0 = ACK_0 incapable$ 

1 = ACK\_0 capable

The ACK\_0 capability bit (word 1, bit 31) specifies that the Nx\_Port supplying these Class Service Parameters may or may not be capable of support for ACK\_0 as a Sequence Recipient for acknowledgement of an entire Sequence in either Discard or Process Exchange Error Policies. As a Sequence Recipient an Nx\_Port shall support infinite buffering and be capable of transmitting ACK\_0 frames in response to Data frame transmission. ACK\_0 support is applicable to acknowledged class of service Sequences (see FC-FS-2).

The conditions under which ACK\_0 is supported are defined in table 168 and described in the following text.

| Nx_Port A<br>Word 0, Bit 11 | Nx_Port B<br>Word 1, Bit 31 | Nx_Port A as Sequence Recipient |
|-----------------------------|-----------------------------|---------------------------------|
| 0                           | 0                           | ACK_0 not supported             |
| 0                           | 1                           | ACK_0 not supported             |
| 1                           | 0                           | ACK_0 not supported             |
| 1                           | 1                           | ACK_0 supported                 |

Table 168 – ACK\_0 Support Conditions (Recipient Control)

If one Nx\_Port (e.g., Nx\_Port A) is capable of receiving ACK\_0 as a Sequence Initiator (Word 0, Bit 11 set to one) and the other Nx\_Port (e.g., Nx\_Port B) is capable of transmitting ACK\_0 as a Sequence Recipient (Word 1, Bit 31 set to one), then ACK\_0 may be used when Nx\_Port A is the Sequence Initiator and Nx\_Port B is the Sequence Recipient. Otherwise, ACK\_0 shall not be supported while Nx\_Port A is the Sequence Initiator and Nx\_Port B is the Sequence Recipient.

ACK\_0 capability may be asymmetrical for a single Nx\_Port (i.e., an Nx\_Port may be capable processing ACK\_0 as a Sequence Initiator, but not be capable of ACK\_0 transmission as a Sequence Recipient. Similarly, an Nx\_Port may be capable of generating ACK\_0 as a Sequence Recipient, but not be capable of ACK\_0 reception as a Sequence Initiator). If an Nx\_Port sets both Word 0, bit 11 and Word 1, bit 31 to one, then it is capable of ACK\_0 support as either a Sequence Initiator or a Sequence Recipient.

## 6.6.5.6.3 **X\_ID** interlock

0 = X ID interlock not required

1 = X\_ID interlock required

X\_ID interlock (word 1, bit 29) only applies to Class 1 and Class 2. This bit indicates that the Nx\_Port supplying this parameter requires that an interlock be used during X\_ID assignment in Class 1 and 2. In X\_ID assignment, the Sequence Initiator shall set the Recipient X\_ID value to FFFFh in the first Data frame of a Sequence and the Recipient shall supply its X\_ID in the ACK frame corresponding to the first Data frame of a Sequence. The Sequence Initiator shall not transmit additional frames until the corresponding ACK is received. Following reception of the ACK, the Sequence Initiator continues transmission of the Sequence using both assigned X\_ID values (see FC-FS-2).

### 6.6.5.6.4 Error policy supported

The definition of the Error policy supported bits (word 1, bits 28-27) is shown in table 169.

Table 169 - Error Policy Bits Definition

| Word 1, bits 28-27 | Meaning                                     |  |  |  |  |
|--------------------|---------------------------------------------|--|--|--|--|
| 00b                | Only discard policy supported               |  |  |  |  |
| 01b                | Reserved                                    |  |  |  |  |
| 10b                | Both discard and process policies supported |  |  |  |  |
| 11b                | Reserved                                    |  |  |  |  |

These bits are set to specify the types of support possible for missing frame conditions processed by the destination Nx\_Port. The policy used for a given Exchange shall be specified as discard or process by the Exchange Originator (see FC-FS-2).

## 6.6.5.6.5 Categories per Sequence

The definition of the Categories per Sequence bits (word 1, bits 25-24) is shown in table 170.

Table 170 – Categories per Sequence Bits Definition

| Word 1, bits 25-24 | Meaning                         |  |  |  |
|--------------------|---------------------------------|--|--|--|
| 00b                | 1 Category/Sequence             |  |  |  |
| 01b                | 2 Categories/Sequence           |  |  |  |
| 10b                | Reserved                        |  |  |  |
| 11b                | More than 2 Categories/Sequence |  |  |  |

The setting of these bits shall specify that the Recipient is capable of processing one, two, or more than two Information Categories (R\_CTL bits 27-24 in the Frame\_Header) in a single Sequence. Bits 25-24 are applicable to each Class of Service since support for an individual Class may offer different capabilities in the same Nx Port.

When an Nx\_Port is acting as a Sequence Initiator, it shall restrict the number of Information Categories per Sequence based on the Sequence Recipient's capability as specified during N\_Port Login. An Nx\_Port's capability for processing Information Categories in a single Sequence may prohibit that Nx\_Port from communicating in certain FC-4 protocols.

Each FC-4 should allow the ability to communicate using only one Information Category per Sequence but always provide the ability to communicate using multiple Information Categories per Sequence where possible, and when performance may be enhanced.

## 6.6.5.6.6 Clock synchronization ELS capable

- 0 = Recipient does not have clock synchronization ELS capability
- 1 = Recipient has clock synchronization ELS capability

The Clock synchronization capable bit (word 1, bit 19) indicates support for the ELS method of Clock Synchronization. If this bit is set to zero, the Nx\_Port or Fabric does not support the ELS method of Clock Synchronization. If this bit is set to one, the Nx\_Port or Fabric is capable of receiving CSU ELS frames and acting upon them (see FC-FS-2).

### 6.6.5.7 Receive Data Field Size

The Receive Data\_Field Size is a value (word 1, bits 11-0) that specifies the largest Data\_Field Size for a frame (see FC-FS-2) that may be received by the Nx\_Port supplying the Service Parameters as a Sequence Recipient. Values less than 256 or greater than 2 112 are invalid. Values shall be a multiple of four bytes. An Nx\_Port shall support a Data Field size of at least 256 bytes.

In Class 1 and 6 the Receive Data\_Field size represents the largest Data\_Field size that an Nx\_Port is able to receive after a dedicated connection is established. The connect-request Data\_Field size is specified in the Buffer-to-Buffer Receive Data\_Field size in Common Service Parameters (see 6.6.2.6).

The Receive Data\_Field size for Class 2, and Class 3 shall be equal to or less than the Buffer-to-Buffer Receive Data\_Field size specified in the Common Service Parameters.

## 6.6.5.8 Concurrent Sequences

Concurrent Sequences (word 2, bits 23-16) shall specify the number of Sequence Status Blocks available in the Nx\_Port supplying the Service Parameters for tracking the progress of a Sequence as a Sequence Recipient. The maximum number of Concurrent Sequences that may be specified is 255 per Nx\_Port as a Recipient that may be allocated across all classes. The total number of Concurrent Recipient Sequences that may be open across all classes by a single Nx\_Port is specified in the Common Service Parameter field (see 6.6.2.7). Allowable values for this field is 01h - FFh. The value 00 is reserved.

NOTE 18 – The maximum number of open Sequences between two Nx\_Ports is the sum of the Concurrent Sequences fields reported in the PLOGI and LS\_ACC of the PLOGI.

IN Class 1 and 6, the SEQ\_ID values shall range from 0 to L, inclusively, where L is the value of the Concurrent Sequence field. During a Class 1 Connection an Nx\_Port shall support the maximum number of Concurrent Sequences specified during Login.

In Class 2 and 3, the SEQ\_ID values shall range from 0 to 255. In Class 2 an Nx\_Port may respond with a P\_BSY to a frame initiating a new Sequence if Nx\_Port resources are not available.

### 6.6.5.9 end-to-end Credit

The Nx\_Port End-to-end Credit field (word 2, bits 14-0) is the maximum number of Data frames that may be transmitted by an Nx\_Port without receipt of an accompanying ACK or Link\_Response frames. The minimum value of the Nx\_Port End-to-end Credit field is one. The Nx\_Port End-to-end Credit field specified is associated with the number of buffers available for holding the Data\_Field of a frame and processing the contents of that Data\_Field by the Nx\_Port supplying the Service Parameters. The Nx\_Port End-to-end Credit field is not applicable to Class 3 since ACK frames are not used.

In order to ensure frame identification integrity, the Nx\_Port end-to-end Credit field is defined as a 15-bit field while SEQ\_CNT is a 16-bit field. This ensures that end-to-end Credit never exceeds one-half of the maximum SEQ\_CNT. Bit 15 shall be set to zero.

Valid values for the Nx Port End-to-end Credit field are 1 to 32767. The value 0 is reserved.

### 6.6.5.10 Open Sequences per Exchange

The value of open Sequences per Exchange field (word 3, bits 23 - 16) shall specify the maximum number of Sequences that may be open at the Recipient at one time between a pair of Nx\_Ports for one Exchange. The value of X+2 specifies the number of instances of Sequence Status that shall be maintained by the Recipient for a single Exchange in the Exchange Status Block. This value is used for Exchange and Sequence tracking. The value of X limits the link facility resources required for error detection and recovery. The value of X is specified in bits 23-16 (see FC-FS-2).

NOTE 19 – The number of SSBs specified at X+2 to be retained in the ESB ensures that if Sequence streaming rules are followed, the ESB shall contain at least one "good" Sequence that ended normally. Another SSB position was allocated in order to allow for any race or timing conditions that might impact that "good" Sequence.

The open Sequences per Exchange field is valid for PLOGI and PLOGI LS\_ACC only.

## 6.6.5.11 CR\_TOV

The CR\_TOV value (word 3) shall be specified as a count of 1 ms increments (e.g., a value of 0000000Ah specifies a time period of 10 ms). See FC-FS-2 for CR\_TOV usage. CR\_TOV is applicable to Class 1 and 6. CR\_TOV is not applicable to other Classes. CR\_TOV is only meaningful in FLOGI LS\_ACC.

### 6.6.6 Vendor Version Level

Vendor Version Level field (words 25-28) specifies vendor-specific information. If the Valid Version Level bit in the Common Service Parameters field (word 1, bit 29) is set to one, the Vendor Version Level field contains valid information. If the Valid Version Level bit is set to zero, the Vendor Version Level field is not meaningful.

### 6.6.7 Services Availability

### 6.6.7.1 Introduction

This field returns information regarding the Fabric's ability to route to the defined well-known addresses. It is meaningful only for FLOGI LS\_ACC. Only bits 10 - 3 of word 30 are meaningful. Word 29 and bits 31 - 11 and 2 - 0 of word 30 are reserved (see FC-FS-2).

### 6.6.7.2 Multicast Server

When set to one, the Multicast Server bit (word 30, bit 10) shall indicate that the Fabric supports routing to the well-known Multicast Server address identifier (i.e., FFFFF5h). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Multicast Server address identifier. See FC-FS-2 for the specification of this server.

### 6.6.7.3 Clock Synchronization Server

When set to one, the Clock Synchronization Server bit (word 30, bit 9) shall indicate that the Fabric supports routing to the well-known Clock Synchronization Server address identifier (FFFF6h). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Clock Synchronization Server address identifier. See FC-FS-2 for the specification of this server.

### 6.6.7.4 Security Key Distribution Server

When set to one, the Security Key Distribution Server bit (word 30, bit 8) shall indicate that the Fabric supports routing to the well-known Key Distribution Server address identifier (FFFF7h). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Key Distribution Server address identifier.

### 6.6.7.5 Alias Server

When set to one, the Alias Server bit (word 30, bit 7) shall indicate that the Fabric supports routing to the well-known Alias Server address identifier (FFFF8h). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Alias Server address identifier.

### 6.6.7.6 Management Server

When set to one, the Management Server bit (word 30, bit 5) shall indicate that the Fabric supports routing to the well-known Management Server address identifier (i.e., FFFFFAh). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Management Server address identifier. See FC-GS-5 for the specification of this server.

#### 6.6.7.7 Time Server

When set to one, the Time Server bit (word 30, bit 4) shall indicate that the Fabric supports routing to the well-known Time Server address identifier (i.e., FFFFBh). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Time Server address identifier.

## 6.6.7.8 Directory Server

When set to one, the Directory Server bit (word 30, bit 3) shall indicate that the Fabric supports routing to the well-known Directory Server address identifier (i.e., FFFFCh). When set to zero, this bit shall indicate that the Fabric does not support routing to the well-known Directory Server address identifier. See FC-GS-5 for the specification of this server.

## 6.6.8 Login Extension

# 6.6.8.1 **General**

If a port does not support a Login request with the Payload Bit set to one, the port shall reject the Login request with an LS\_RJT. The reason code shall be set to "Logical error" with a reason code explanation of "Invalid Payload length".

If a port does not support a Login request with a non-zero Login Extension Data Length field, the port shall reject the Login request with an LS\_RJT. The reason code shall be set to "Logical error" with a reason code explanation of "Login Extension not supported".

If a port receives a Login request containing a page code that it does not support, the port shall reject the Login request with an LS\_RJT. The reason code shall be set to "Logical error" with a reason code explanation of "Login Extension not supported".

If a port does not support a LS\_ACC reply Sequence with the Payload Bit set to one, the port shall perform an explicit Logout with the port that sent the reply.

### 6.6.8.2 Login Extension Data Length

If the Login Extension Data Length field (word 31) is non-zero, a Login Extension follows the normal payload. The Login Extension Data Length field indicates the length of the Login Extension field in words. The Payload Bit (see 6.6.2.4.19) shall be set to one if this field is non-zero.

### 6.6.8.3 Login Extension format

n - 1

The Login Extension field is a sequence of zero or more Login Extension Pages. The length in words of the sequence of Login Extension Pages shall be equal to the value of the Login Extension Length field. The format of a Login Extension Page is given in Table 171. Word 0 of the first Login Extension Page, if present, is word 64 of the FLOGI/PLOGI/ACC payload.

**Bits** 31 24 23 16 15 80 07 00 Word 0 Page Length (n) Reserved Page Code 1 Page Code Specific Data

Table 171 – Login Extension Page format

**Page Length Field:** The length in words of the following page, including the word containing the page length and page code fields.

Page Code Field: The Page Code field specifies the type of page as shown in table 172.

| Page Code | Meaning         |
|-----------|-----------------|
| 00h - EFh | Reserved        |
| F0h       | Vendor Specific |
| F1h - FFh | Reserved        |

**Table 172 - Page Code Definitions** 

Vendor Specific Page: The format of the Vendor Specific Page is shown in table 173.

Table 173 – Vendor Specific Page format

| Bits<br>Word | 31                   |         | 24  | 23                               |  | 16 | 15    |      | 08 | 07     |        | 00   |
|--------------|----------------------|---------|-----|----------------------------------|--|----|-------|------|----|--------|--------|------|
| 0            | Page Le              | ength ( | (n) |                                  |  |    | Reser | rved |    | Page C | ode (F | -0h) |
| 1            | (MSB)                |         |     |                                  |  |    |       |      |    |        |        |      |
| 2            |                      |         |     | Vendor Identification Data (LSB) |  |    |       |      |    |        |        |      |
| 3            |                      |         |     |                                  |  |    |       |      |    |        |        |      |
|              | Vendor Specific Data |         |     |                                  |  |    |       |      |    |        |        |      |
| n - 1        |                      |         |     |                                  |  |    |       |      |    |        |        |      |

**Vendor Identification field:** The value of the Vendor Identification field shall be a T10 Vendor ID. The format and interpretation of the Vendor Specific Data field is vendor specific to the vendor identified by the value of the Vendor Identification field.

**Vendor Specific Data Field:** The Vendor Specific Data field contains vendor specific data and shall be padded to a word boundary.

# 6.6.9 Clock Synchronization Quality of Service

### 6.6.9.1 N Port Login

## 6.6.9.1.1 Applicability

The Clock Synchronization Quality of Service (QoS) field in PLOGI ELS or LS\_ACC (words 62-63) is only meaningful when sent to or received from the Clock Synchronization Server (i.e., FFFFF6h). This field contains meaningful information only if either the Clock Synchronization Primitive Capable bit of the Common features field (word 1, bit 20) is set to one; or if the Clock Synchronization ELS capable bit of one of the N\_Port Class Service Parameter Recipient control fields (word 1, bit 19) is set to one. If this field does not contain meaningful information, it shall be set to zero (see FC-FS-2).

The Clock Synchronization QoS field is defined in table 174.

 Bits Word
 31 ... 24
 23 ... 16
 15 ... 08
 07 ... 00

 62
 CS\_QoS\_Request
 CS\_Accuracy
 CS\_Implemented\_MS B
 CS\_Implemented\_LS B

 63
 CS\_Update\_Period

Table 174 – N\_Port Clock Synchronization QoS

### 6.6.9.1.2 CS QoS Request

For PLOGI and FLOGI Request, the meaning is defined in table 175. This field is not meaningful for PLOGI LS\_ACC and shall be set to zero.

| Word 62,<br>Bits 31-24 | Meaning                                                                                                                                   |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 00h                    | The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields are not meaningful in the FLOGI/PLOGI Request.       |
| 01h                    | The CS_Accuracy, CS_Implemented_MSB, CS_Implemented_LSB, and CS_Update_Period fields contain the requested Quality of Service Parameters. |
| 02h – FFh              | Reserved                                                                                                                                  |

Table 175 - FLOGI/PLOGI CS\_QoS\_Request

## 6.6.9.1.3 CS\_Accuracy (Mantissa and Exponent)

This field contains the CS\_Accuracy\_Mantissa (word 62, bits 23-21) and CS\_Accuracy\_Exponent (bits word 62, 20-16).

When sent to the Fabric during FLOGI, these bits indicate the accuracy that the Fabric is requested to maintain in passing along to the clients the clock synchronization value it receives from the Clock Synchronization Server (FFFFF6h).

When sent to the Clock Synchronization Server (FFFF6h), these bits indicate the requested accuracy of the clock synchronization value as it leaves the server port.

When received from the Clock Synchronization Server (i.e., FFFF6h), these bits indicate the accuracy of the clock synchronization value as it leaves the server port. Specifically, the server shall supply a CS\_Accuracy value such that the Clock Synchronization value is always within the range of:

T\_reference  $\pm$  (0.5 + CS\_Accuracy\_Mantissa \*  $2^{-4}$ )\*  $2^{(CS_Accuracy_Exponent-30)}$ , where

- a) T\_reference is the clock reference value internal to the server
- b) CS\_Accuracy\_Mantissa is a value from 000b to 111b'
- c) CS\_Accuracy\_Exponent is a value from 00000b to 11111b'

Example #1, if CS\_Accuracy Mantissa and Exponent are set to 001b and 01011b, respectively, the Clock Synchronization value as it exits the server shall always be within the range of:

T reference ± 1,073 μsec

Example #2, if CS\_Accuracy Mantissa and Exponent are set to 111b and 11000b, respectively, the Clock Synchronization value as it exits the server shall always be within the range of:

T\_reference ± 14,65 msec

### 6.6.9.1.4 Clock Synchronization Implemented MSB

The Clock Synchronization Implemented MSB field (word 62, bits 13 - 8) is a 6-bit value. Word 62, bits 15-14 are reserved and shall be set to zero.

When sent to the Clock Synchronization Server (i.e., FFFFF6h) during PLOGI, these bits indicate the requested most significant bit position within the 64-bit Clock Count field in the CSU ELS Payload.

When received from the Clock Synchronization Server (i.e., FFFF6h) this field represents the most significant bit position within the 64-bit Clock Count field that contains meaningful information.

NOTE 20 – The value in the Clock Count field shall wrap around to zero when an overflow occurs from the Clock Synchronization Implemented MSB.

(e.g., a value of 110111b indicates that the MSB of byte 1 of the Clock Count field is the highest bit that contains meaningful information).

### 6.6.9.1.5 Clock Synchronization Implemented LSB

The Clock Synchronization Implemented LSB field (word 62, bits 13 - 8) field is a 6-bit value. Word 62, bits 7-6 are reserved and shall be set to zero.

When sent to the Clock Synchronization Server (i.e., FFFF6h) during PLOGI, these bits indicate the requested least significant bit position within the 64-bit Clock Count field in the CSU ELS Payload.

When received from the Clock Synchronization Server (i.e., FFFFF6h), this field represents the least significant bit position within the 64-bit Clock Count field that contains meaningful information (e.g., a value of 001000b indicates that the LSB of byte 6 of the Clock Count field is the lowest bit that contains meaningful information).

### 6.6.9.1.6 Clock Synchronization Update Period

When sent to the Clock Synchronization Server (i.e., FFFF6h), the Clock Synchronization Update Period field (word 63) indicates the requested time, in microseconds, between consecutive updates from the Clock Synchronization server.

When received from the Clock Synchronization Server (i.e., FFFF6h), it represents the time, in microseconds, between consecutive updates from the Clock Synchronization server.

This field is not meaningful for FLOGI and shall be set to zero.

# 6.6.9.2 Fabric Login

### 6.6.9.2.1 Applicability

The Clock Synchronization Quality of Service field contains meaningful information only if either Word 1, bit 20 - Clock Synchronization Primitive Capable of the Common features field is set to one, or Word 1, bit 19 - Clock Synchronization ELS capable of the Recipient control field is set to one. If this field does not contain meaningful information, it shall be set to zero (see FC-FS-2).

The Fx\_Port Clock Synchronization Quality of Service field is illustrated in table 176.

**Bits** 31 00 24 23 16 15 80 07 Word CS\_Transfer\_Accurac CS\_Implemented\_MS | CS\_Implemented\_LS 62 Reserved 63 Reserved

Table 176 – Fx\_Port Clock Synchronization QoS

### 6.6.9.2.2 CS Transfer Accuracy

The CS\_Transfer\_Accuracy field contains CS\_Transfer\_Accuracy\_Mantissa (word 62, bits 23-21) and CS\_Transfer\_Accuracy\_Exponent (word 62, bits 20-16).

These bits indicate the accuracy that the Fabric maintains in passing along to the clients the clock synchronization value it receives from the Clock Synchronization Server. Specifically, the Fabric shall supply a CS\_Transfer\_Accuracy value such that the Clock Synchronization value supplied to the clients is always within the range of:

$$(T_server + T_fabric\_delay) \pm (0.5 + CS\_Accuracy\_Mantissa * 2^{-4})* 2^{(CS\_Accuracy\_Exponent-30)}$$
 where:

- a) T\_server is the value received from the Clock Synchronization Server
- T\_fabric\_delay is the time from when a given value was received from the server until the corresponding value is delivered to the client
- c) CS\_Accuracy\_Mantissa is a value from 000b to 111b'
- d) CS\_Accuracy\_Exponent is a value from 00000b to 11111b'

Example #1, if CS\_Transfer\_Accuracy Mantissa and Exponent are set to 001b and 01011b, respectively, the Clock Synchronization value supplied to the clients shall always be within the range of:

Example #2, if CS\_Transfer\_Accuracy Mantissa and Exponent are set to 111b and 11000b, respectively, the Clock Synchronization value supplied to the clients shall always be within the range of:

### 6.6.9.2.3 Clock Synchronization Implemented MSB

The Clock Synchronization Implemented MSB field (word 62, bits 13 - 8) is a 6-bit value that represents the most significant bit position within the 64-bit Clock Count field that contains meaningful information (e.g., a value of 110111b indicates that the MSB of byte 1 of the Clock Count field is the highest bit that contains meaningful information). Word 62, bits 15-14 are reserved and shall be set to zero.

This field refers to the capabilities of the Fabric in transferring the clock synchronization value that was received from the Clock Synchronization Server (i.e., FFFFF6h) to the clients. It does not refer to the capabilities of the Clock Synchronization Server itself.

### 6.6.9.2.4 Word 0, Bits 7-0 Clock Synchronization Implemented LSB

This Clock Synchronization Implemented LSB field (word 62, bits 5 - 0) is a 6-bit value that represents the least significant bit position within the 64-bit Clock Count field that contains meaningful information (e.g a value of 001000b indicates that the LSB of byte 6 of the Clock Count field is the lowest bit that contains meaningful information). Word 62, bits 7-6 are reserved and shall be set to zero.

This field refers to the capabilities of the Fabric in transferring the clock synchronization value that was received from the Clock Synchronization Server (i.e., FFFFF6h) to the clients. It does not refer to the capabilities of the Clock Synchronization Server itself.

# 7 Process Login/Logout

# 7.1 Process Login

#### 7.1.1 Introduction

The Process Login (PRLI) ELS request shall be used to establish the operating environment between a group of related processes at the originating Nx\_Port and a group of related processes at the responding Nx\_Port.

Establishing the operating environment may include the establishment of image pairs and the exchange of Service Parameters. The establishment of image pairs is FC-4 independent and is system structure dependent. The exchange of Service Parameters is FC-4 dependent, and if required by a particular FC-4, shall be specified in the corresponding FC-4 standard.

A Process Login remains in effect until a process logout occurs. The number of concurrent Process Logins in effect at an Nx\_Port is a function of the Nx\_Port facilities available. Process Login is separate from N\_Port Login. Process Login may be either implicit or explicit.

There are 2 types of Process Login:

- a) Implicit Process Login is a method of establishing an operating environment by means other than the explicit use of the PRLI Exchange. Specific methods of Implicit Process Login are not defined in this standard.
- b) Explicit Process Login is accomplished by using the PRLI ELS Sequence within a separate Exchange to establish an operating environment.

A group of related processes is known as an image and is identified by the Process\_Associator (see figure 4). The combination of the D\_ID, Responder Process\_Associator, S\_ID and Originator Process\_Associator identify the image pair (see figure 5). Either a single group or multiple groups of related processes may exist behind an Nx\_Port. A single group of related processes behind an Nx\_Port may be denoted by either an N\_Port\_ID only or N\_Port\_ID and Process\_Associator.



Figure 4 – Image/Group of Related Processes



Figure 5 – Image pairs

PRLI, if required, is performed after N\_Port Login is successful and prior to other FC-4 transfers. Examples of use of the Process Login function may include image initialization, image re-configuration, or when the Nx\_Port receives an indication that the image pair no longer exists. PRLI allows each image behind an Nx\_Port to separately manage its resources.

PRLI may be used to establish an operating environment between any of the following combinations of Nx Port facilities:

- a) two Nx\_Ports
- b) one Nx\_Port and one Nx\_Port image
- c) two Nx\_Port images

An image pair may be established or modified with a PRLI request and LS\_ACC reply Sequence set. Failure to establish a particular image pair does not affect existing image pairs or the ability to establish other image pair.

PRLI may also be used to exchange Service Parameters without establishing image pairs. However, if an image pair is currently established, a subsequent PRLI request targeted to the same Nx\_Port pair shall identify an image pair in order to modify Service Parameter settings for that image pair.

If a PRLI request is received for an established image pair, the established image pair is unaffected and the PRLI request is processed normally. This allows the exchange of Service Parameters for a FC-4 not specified when the original image pair was established. PRLO shall be used to remove an established image pair.

It shall be the responsibility of the ULPs to ensure that all active operations over an image pair have been properly terminated prior to issuing a PRLI request that replaces Service Parameters. If the replacement of Service Parameters affects any active operations, all open Sequences and Exchanges shall be terminated by invoking Abort Sequence (ABTS). Whether or not the replacement of Service Parameters affects an active operation shall be specified for each Service Parameter by the associated FC-4.

The Nx\_Port originating the PRLI request shall not consider the image pair to be established until it has taken the necessary action to establish the image pair, and has received an LS\_ACC reply Sequence indicating that the image pair has been established. The Nx\_Port responding to the PRLI request does not consider the image pair to be established until the necessary action is taken at the Nx\_Port to establish the image pair, and an LS\_ACC reply Sequence is sent.

If a link error is detected when a PRLI request is received, the appropriate response, if any, is made, and the image pair is not established. If the recipient Nx\_Port is not logged in with the requesting port it shall reply with a LOGO ELS Sequence, or with an LS\_RJT ELS Sequence with a reason code of "Unable to perform command request" and a reason code explanation of "N\_Port Login required". If an LS\_RJT is sent in response to a PRLI request for an image pair that is already established, the existing image pair is unaffected. If an LS\_RJT, P\_BSY, F\_BSY, P\_RJT, or F\_RJT response is received to a PRLI request, the PRLI request may be retried until the image pair is established. The number of retries is system dependent. In the case of LS\_RJT, whether or not the PRLI is retried depends on the LS\_RJT reason code.

In the event that there is an error in the response to establish an image pair, the originating Nx\_Port shall not assume that the requested action has or has not taken place. If the Nx\_Port that originates a PRLI request receives no valid response, the Nx\_Port should retry the request. The number of retries is system dependent.

### 7.1.2 PRLI/PRLO Relationships

### 7.1.2.1 Introduction

Process\_Associator (PA) images may exist in the following relationships. Any of these relationships may be established as a default condition using mechanisms not specified by this standard.

# 7.1.2.2 PA not supported

If one or both of the Originator and Responder do not support PAs, no valid PA is specified in any frame of any exchange.

The PRLI/PRLO should allow control over the enabling and disabling the specified services for the entire Nx\_Port.

# 7.1.2.3 PA required by originator, supported by responder

If the Originator requires PAs, the Originator is expected to communicate only when a valid PA is included in the initial Association\_Header. The Responder provides a final Association\_Header and provides other Association\_Headers as required. The PA establishes a routing to a particular Originator process (or group of related processes). There is no relationship between PAs identified through one Nx\_Port of a host system and another Nx\_Port from the same host. The PA may additionally be used by the FC-4 in a FC-4 dependent manner.

The PRLI request pages have valid Originator PA values and invalid Responder PA values. This PRLI informs the Responder of the Originator requirements and capabilities for each TYPE of FC-4.

The PRLI and PRLO may allow control over the enabling and disabling the access of each Originator Process to the Responder Nx\_Port. Communication with image pairs that have not been established is not allowed, even if both PAs exist and have the proper requirements and capabilities.

### 7.1.2.4 PA required by responder, supported by originator

If the Responder requires PAs, the Responder is expected to communicate only when a valid Responder PA is included in the initial Association\_Header. The Responder provides a final Association\_Header and provides other Association\_Headers as required. The PA establishes a routing to a particular Responder process. There is no relationship between PAs identified through one Nx\_Port of a host system and another Nx\_Port from the same host. The PA may additionally be used by the FC-4 in a FC-4 dependent manner.

The PRLI request pages have valid Responder PA values and invalid Originator PA values. The Responder PA values may be obtained through an informative PRLI operation or by other methods not specified.

The PRLI and PRLO may allow control over the enabling and disabling the access of each Responder Process to the Originating Nx\_Port. Communication with image pairs that have not been established is not allowed, even if both PAs exist and have the proper requirements and capabilities.

### 7.1.2.5 PA required by originator and responder

Communication should only take place between an Originator and a Responder when valid PAs are specified. The PA may additionally be used by the FC-4 in a FC-4 dependent manner.

The PRLI request pages shall have valid Originator and Responder PA values defined and shall have the Establish Image Pair bit set to one in order to create image pairs in an binding manner. The Responder PA values may be obtained through an informative PRLI operation or by other methods not specified.

PRLI and PRLO pages with complete Originator PA and Responder PA information enable or disable communication between the specified image pair. PRLI pages with incomplete Originator PA and Responder PA information are invalid. Communication with image pairs that have not been established is not allowed, even if both PAs exist and have the proper requirements and capabilities.

### 7.1.3 Mode of operation

### 7.1.3.1 Informative mode

Service Parameter information is exchanged enabling subsequent negotiation for image pair establishment.

### 7.1.3.2 Binding mode

Information is exchanged that explicitly establishes a relationship between processes in the communicating Nx\_Ports. The relationship does not allow any communication types or paths other than those established by the PRLI.

The use of a Binding PRLI page requires that the Originator have precise and detailed knowledge of the PAs and capabilities available in the Responder. That information may be obtained from Directory Services, implicitly from configuration information obtained outside the scope of FC, or by performing an Informative PRLI.

Binding or Informative mode is determined by the setting of the Establish Image Pair bit in the PRLI request page.

The Service Parameters included in a page may be either requirements or capabilities. Capabilities indicate those FC-4 properties that describe the role and state of the node in the FC-4 (e.g., channel or device for FC-SB-3, initiator or target for FCP-2, and similar values). Requirements indicate those FC-4 properties that shall be agreed upon by both nodes for operation with a FC-4.

### 7.1.4 Protocol

# 7.1.4.1 PA required by originator and responder

For each PRLI request page the Originator and Responder PA validity bits are set to one and valid Originator and Responder PAs are specified. Service Parameter requirements are set to those that correspond to the combined understanding expected to be agreed to by the Responder, given the knowledge that the Originator PA has of the Responder PA. Service Parameter capabilities are those of the Originator only. The specification of Service Parameters as either requirements or capabilities is specified in the corresponding FC-4 standard.

For each LS\_ACC response page, the Originator and Responder PA validity bits are set to one and valid Originator and Responder PAs are specified. Service Parameter requirements are set to those that are agreed to by the Responder. Service Parameter capabilities are those of the Responder only. Error responses are possible.

Each page identifies a Binding mode PRLI operation between one image at the Originator Nx\_Port and one image at the Responder Nx\_Port.

## 7.1.4.2 PA required by originator, supported by responder

For each PRLI request page the Originator PA validity bit is set to one and the Responder PA validity bit is set to zero. A valid Originator PA is specified. Service Parameter requirements are set to those that correspond to the combined understanding expected to be agreed to by the Responder, given the knowledge that the Originator PA has of the Responder PA. Service Parameter capabilities are those of the Originator only. The specification of Service Parameters as either requirements or capabilities is specified in the corresponding FC-4 standard.

For each LS\_ACC response page the Originator PA validity bit is set to one and the Responder PA validity bit is set to zero. The Originator PA is returned. Service Parameter requirements are set to those that are agreed to by the Responder. Service Parameter capabilities are those of the Responder only. Error responses are possible.

Each page identifies a Binding mode PRLI operation between one image at the Originator Nx\_Port and the Responder Nx\_Port.

### 7.1.4.3 PA supported by originator, required by responder

For each PRLI request page, the Originator PA validity bit is set to zero and the Responder PA validity bit is set to one. A valid Responder PA is specified. Service Parameter requirements are set to those that correspond to the combined understanding expected to be agreed to by the Responder, given the knowledge that the Originator PA has of the Responder PA. Service Parameter capabilities are those of the Originator only. The specification of Service Parameters as either requirements or capabilities is specified in the corresponding FC-4 standard.

For each LS\_ACC response page, the Originator PA validity bit is set to zero and the Responder PA validity bit is set to one. The Responder PA is returned. Service Parameter requirements are set to those that are agreed to by the Responder. Service Parameter capabilities are those of the Responder only. Error responses are possible.

Each page identifies a Binding mode PRLI operation between the Originator Nx\_Port and one image at the Responder Nx\_Port.

### 7.2 Process Logout

The Process Logout (PRLO) ELS request shall be used to request invalidation of the operating environment between an image at the initiating Nx\_Port and an image at the recipient Nx\_Port. PRLO frees resources committed by a previous PRLI function. ULP behavior following successful execution of the PRLO function is specified in the corresponding FC-4 standard.

Examples of PRLO usage include image re-configuration and TYPE-specific reset of Process Login Service Parameters.

TYPE-specific Service Parameter settings may be reset or image pairs removed with a PRLO request and LS\_ACC reply Sequence set. Other TYPE-specific Service Parameter settings or image pairs associated with the same or different image pairs or Nx\_Ports shall be unaffected. After TYPE-specific Service Parameter settings are reset or image pair is removed, Information Units may not be sent or received for the specified FC-4 TYPE using that image pair and Nx\_Port combination specified in the PRLO request.

If a PRLO request is received for an image pair or FC-4 TYPE that does not exist, the request is accepted, provided that no link errors are detected, and the LS\_ACC response is sent.

The Nx\_Port originating the PRLO request shall not consider an image pair to be removed until it receives an LS\_ACC reply Sequence. The Nx\_Port responding to the PRLO request shall not consider an image pair to be removed or TYPE-specific Service Parameter settings to be reset, as appropriate, until the LS\_ACC reply Sequence is sent. An Nx\_Port that receives a P\_BSY, F\_BSY, P\_RJT, or F\_RJT reply in response to a PRLO request may retry the PRLO request. The number of retries is system dependent.

Unless the requesting Nx\_Port receives a valid response to a PRLO request, that Nx\_Port shall not assume that the requested action has or has not taken place. If the Nx\_Port that originates a PRLO request receives no valid response, the Nx\_Port should retry the request. The number of retries is vendor unique.

A PRLO page identifies a particular image pair to logout by marking either or both the Originator Process Associator and the Responder Process Associator. Only that image pair is logged out. No further communication for the affected FC-4(s) is possible between these two images. It is the responsibility of the ULPs to ensure that all active operations over an image pair have been orderly and properly terminated prior to issuing a PRLO request. Following PRLO execution, all active Sequences and Exchanges shall be terminated by invoking Abort Sequence (ABTS). On-going operations and states for other image pairs are not affected.

If a ULP attempts to communicate over an image pair that has not been established or has been abnormally terminated, the communication shall be acknowledged in the normal manner. The Originator may then perform a PRLO operation for the affected image pair in order to properly terminate the operating environment at both the Originator and Responder.

# 8 Virtual Fabrics N\_Port Support

### 8.1 Overview

The Virtual Fabric Tagging Header (VFT\_Header, see FC-FS-2) allows Fibre Channel frames to be tagged with the Virtual Fabric Identifier (VF\_ID) of the Virtual Fabric (VF) to which they belong. Tagged frames (i.e., frames with a VFT\_Header) belonging to different Virtual Fabrics may be transmitted over the same physical link. The VFT\_Header may be supported by N\_Ports, F\_Ports and E\_Ports (see FC-FS-2).

# 8.2 Enabling VFT Tagging on N\_Ports

The use of Virtual Fabrics is negotiated when FLOGI is performed via the Virtual Fabrics bit of the FLOGI Common Service Parameters (see table 150).

When set to one in the FLOGI request, the Virtual Fabrics bit indicates that the sending N\_Port may negotiate Virtual Fabrics parameters. When set to one in the FLOGI LS\_ACC reply, the Virtual Fabrics bit indicates that the Fabric requires the N\_Port to initiate an EVFP transaction (see 4.2.43). Table 177 shows the usage of the Virtual Fabrics bit.

Requesting Nx\_PortF\_Port ConfigurationBehaviorVirtual Fabrics Bit = 0bVirtual Fabrics Not AllowedLS\_ACC with Virtual Fabrics Bit = 0bVirtual Fabrics Bit = 1bVirtual Fabrics Not AllowedLS\_ACC with Virtual Fabrics Bit = 0bVirtual Fabrics Bit = 0bVirtual Fabrics AllowedLS\_ACC with Virtual Fabrics Bit = 0bVirtual Fabrics Bit = 1bVirtual Fabrics AllowedLS\_ACC with Virtual Fabrics Bit = 1b

Table 177 - Virtual Fabrics Bit Usage

When the F\_Port requests the N\_Port to initiate an EVFP transaction, the D\_ID of the FLOGI LS\_ACC shall be set to 000000h. In this manner the link flow control parameters (e.g., Buffer-to-buffer Credit and Buffer-to-buffer Receive Data Field size) are negotiated, but no N\_Port\_ID is assigned to the N\_Port. The N\_Port may continue the initialization process by using the N\_Port Controller Well Known Address (i.e., FFFFF0h, see FC-FS-2) as S\_ID to perform an Authentication transaction or an

EVFP transaction. Figure 6 shows the initialization process to enable Virtual Fabrics and Logical N Ports.



Figure 6 - Logical N\_Port Initialization

**State P1: FLOGI.** The N\_Port performs FLOGI. The N\_Port\_Name of the Logical N\_Port associated with the Port VF\_ID shall be used by the N\_Port in the FLOGI request; the Fabric\_Name of the Virtual Fabric associated with the Port VF\_ID shall be used by the F\_Port in the FLOGI LS\_ACC.

**State P2: AUTH\_ELS.** In this state an Authentication transaction shall be performed (see FC-SP). If the FLOGI LS\_ACC had the Virtual Fabrics bit set to one and the D\_ID set to 000000h, then the N\_Port shall use the N\_Port Controller WKA as S\_ID, otherwise the N\_Port shall use the assigned Address Identifier as S\_ID.

**State P3: N\_Port.** The N\_Port continues its operations. The N\_Port may acquire additional N Port IDs by following the N Port ID virtualization procedure.

**Transition P1:P2.** Occurs when the FLOGI LS\_ACC has the Security bit set to one. If the FLOGI LS\_ACC has also the Virtual Fabrics bit set to one and the D\_ID set to 000000h, then the N\_Port shall use the N\_Port Controller WKA as S\_ID for the Authentication transaction performed in state P2.

**Transition P1:P3.** Occurs when the FLOGI LS\_ACC has both the Security bit and the Virtual Fabrics bit set to zero.

**Transition P2:P3.** Occurs when the Authentication transaction performed in state P2 completes successfully and the FLOGI LS\_ACC had the Virtual Fabrics bit set to zero.

**Transition P1:P4.** Occurs when the FLOGI LS\_ACC has the Security bit set to zero and the Virtual Fabrics bit set to one.

**Transition P2:P4.** Occurs when the Authentication transaction performed in state P2 completes successfully and the FLOGLLS ACC had the Virtual Fabrics bit set to one.

State P4: Process EVFP. The N\_Port shall initiate the EVFP processing as described in 8.4.1.

**Transition P4:P5**<sup>(k)</sup>. Occurs when the EVFP processing determined that VFT tagging is performed. There is a different state for each Virtual Fabric negotiated to be used on the link. The state for Virtual Fabric K is denoted P5<sup>(k)</sup>.

**State P5<sup>(k)</sup>: FLOGI.** In this state the FC frames transmitted by the N\_Port are tagged with the VFT\_Header carrying VF\_ID K. An FLOGI request, tagged with VF\_ID K, is transmitted. This FLOGI request shall carry the N\_Port\_Name of the Logical N\_Port associated with VF\_ID K and the operational parameters (e.g., timeout values, Classes of service) of Virtual Fabric K. The FLOGI LS\_ACC assigns an N\_Port\_ID in Virtual Fabric K to the Logical N\_Port associated with VF\_ID K. All parameters of the FLOGI request and the FLOGI LS\_ACC transmitted in this state are used as specified in clause 6, except that the following parameters in the Common Service Parameters are ignored and the values transmitted in state P1 are used instead:

- a) Buffer-to-buffer Credit (see 6.6.2.3);
- b) BB\_Credit Management (see 6.6.2.4.9);
- c) BB\_SC\_N (see 6.6.2.5); and
- d) Buffer-to-buffer Receive Data\_Field size (see 6.6.2.6).

**Transition P5**<sup>(k)</sup>:P6<sup>(k)</sup>. Occurs when the FLOGI processing in state P5 is completed, if the FLOGI LS ACC has the Security bit set to one.

**State P6<sup>(k)</sup>: AUTH\_ELS.** In this state the FC frames transmitted by the N\_Port are tagged with the VFT\_Header carrying VF\_ID K. The Logical N\_Port associated with VF\_ID K performs an Authenti-

cation transaction (see FC-SP) in Virtual Fabric K, by using its N\_Port\_Name or any other appropriate identity. The corresponding Logical F\_Port authenticates by using the Switch\_Name of the Virtual Switch associated with VF\_ID K or any other appropriate identity.

**Transition P5**<sup>(k)</sup>:P7<sup>(k)</sup>. Occurs when the FLOGI processing in state P5 is completed, if the FLOGI LS\_ACC has the Security bit set to zero.

**Transition P6**<sup>(k)</sup>:P7<sup>(k)</sup>. Occurs when the Authentication transaction performed in state P6<sup>(k)</sup> completes successfully.

**State P7<sup>(k)</sup>: Logical N\_Port.** In this state the N\_Port operates as VFT tagging N\_Port. FC frames transmitted by the N\_Port are tagged with the VFT\_Header carrying VF\_ID K. The Logical N\_Port continues its operations. The Logical N\_Port may acquire additional N\_Port\_IDs in Virtual Fabric K by following the N\_Port\_ID virtualization procedure.

**Transition P4:P1.** Occurs when the EVFP processing determined that VFT tagging is not performed and the N\_Port and F\_Port have the same Port VF\_ID. In state P1 the N\_Port shall repeat the FLOGI process with the Virtual Fabrics bit set to zero in the FLOGI request, in order to acquire an N\_Port\_ID in the Virtual Fabric identified by the Port VF\_ID.

**Transition P4:P8.** Occurs when the EVFP processing determined that VFT tagging is not performed and the N Port and F Port do not have the same Port VF ID.

State P8: Isolated. In this state the N Port is offline.

When VFT tagging is enabled on a link, a Link Reset (see FC-FS-2) shall not change the tagging process, while a Link Initialization (see FC-FS-2) shall stop the tagging process and reinitialize the link.

## 8.3 Configuration Information

A VF capable N Port shall maintain the following configuration parameters:

- Tagging Administrative Status, used to negotiate the VFT tagging operational mode of the N\_Port (see 4.2.43.2.2);
- b) Port VF\_ID (see 4.2.43.2.3); and
- Locally-Enabled VF\_ID List, used to negotiate the list of Virtual Fabrics operational over the N Port (see 4.2.43.2.4).

### 8.4 Exchange Virtual Fabrics Parameters Processing

### 8.4.1 Overview

The Exchange Virtual Fabrics Parameters ELS (EVFP) protocol allows a VF capable N\_Port and a VF capable F Port to:

- a) Negotiate the VFT Tagging operational mode;
- b) Verify the consistency of the two Port VF\_IDs; and
- c) Establish the list of operational Virtual Fabrics across the link.

**EVFP** Responder

#### **ANSI INCITS 433-2007**

**EVFP** Initiator

An EVFP transaction occurs between an EVFP Initiator and an EVFP Responder. An EVFP transaction (see figure 7) is identified by a unique Transaction Identifier (T\_ID), and consists of a synchronizing phase (EVFP\_SYNC) followed by a commit phase (EVFP\_COMMIT).

EVFP\_SYNC / T\_ID=Q (Tagging Administrative Status, Port VF\_ID, Locally-Enabled VF\_ID List) Enable reception of VFT tagged frames LS\_ACC / T\_ID=Q (Tagging Administrative Status, Port VF\_ID, Locally-Enabled VF ID List) Enable transmission and reception of VFT tagged frames EVFP\_COMMIT / T\_ID=Q (VFT tagged) **Enable transmission** of VFT tagged frames LS\_ACC / T\_ID=Q (VFT tagged)

Figure 7 - A Generic EVFP Transaction

The VF\_ID value FEFh is used by the EVFP protocol for certain operations and is referred to as Control VF\_ID. The EVFP protocol, during the N\_Port Initialization, proceeds as follows:

- 1) The EVFP Initiator shall start the EVFP transaction by sending the EVFP\_SYNC message (see 4.2.43.2) to the EVFP Responder. In the EVFP\_SYNC message, the EVFP Initiator shall specify the Transaction Identifier, and shall send its Core N\_Port\_Name if N\_Port or its Core Switch\_Name if F\_Port, together with its Tagging Administrative Status (see 4.2.43.2.2), Port VF\_ID (see 4.2.43.2.3) and Locally-Enabled VF\_ID List (see 4.2.43.2.4). On sending the EVFP\_SYNC message the EVFP Initiator enables the reception of VFT tagged frames;
- 2) The EVFP Responder shall reply with an LS\_ACC carrying its Core Switch\_Name if F\_Port or its Core N\_Port\_Name if N\_Port, together with its Tagging Administrative Status, Port VF\_ID and Locally-Enabled VF\_ID List. Then the EVFP Responder shall determine if VFT Tagging has to be enabled on the link, according to table 126. If VFT Tagging has to be enabled, the EVFP Responder shall go to step 3. If VFT Tagging has not to be enabled, the EVFP Responder shall check the received peer's Port VF\_ID:

- A) if the peer's Port VF\_ID is not equal to the local Port VF\_ID, on completion of the Exchange the EVFP protocol terminates and the EVFP Responder goes in Isolated state (transition P4:P8, see 8.2); or
- B) if the peer's Port VF\_ID is equal to the local Port VF\_ID, on completion of the Exchange the EVFP protocol terminates and the EVFP Responder goes in state P1 (transition P4:P1, see 8.2).

On receiving the EVFP\_SYNC LS\_ACC, the EVFP Initiator shall determine if VFT Tagging has to be enabled on the link, according to table 126. If VFT Tagging has to be enabled, on completion of the Exchange the EVFP Initiator shall go to step 4. If VFT Tagging has not to be enabled, the EVFP Initiator disables the reception of VFT tagged frames and shall check the received peer's Port VF\_ID:

- A) if the peer's Port VF\_ID is not equal to the local Port VF\_ID, on completion of the Exchange the EVFP protocol terminates and the EVFP Initiator goes in Isolated state (transition P4:P8, see 8.2); or
- B) if the peer's Port VF\_ID is equal to the local Port VF\_ID, on completion of the Exchange the EVFP protocol terminates and the EVFP Initiator goes in state P1 (transition P4:P1, see 8.2);
- 3) On completion of the EVFP\_SYNC Exchange, the EVFP Responder shall enable both transmission and reception of VFT tagged frames for the Virtual Fabrics operational on the link, computed as explained in 4.2.56.2.4. Transmission and reception of VFT tagged frames for the Control VF\_ID shall be implicitly enabled. Transmission and reception of VFT tagged frames for the EVFP Initiator's Port VF\_ID shall be also enabled on the link, to allow a successful completion of the EVFP protocol. Then the EVFP Responder shall send an EVFP\_COMMIT message (see 4.2.56.3), tagged with the EVFP Initiator's Port VF\_ID; and
- 4) On receiving the VFT tagged EVFP\_COMMIT, the EVFP Initiator shall enable both transmission and reception of VFT tagged frames for the Virtual Fabrics operational on the link, computed as explained in 4.2.56.2.4. Transmission and reception of VFT tagged frames for the Control VF\_ID shall be implicitly enabled. Transmission and reception of VFT tagged frames for the EVFP Initiator's Port VF\_ID shall be also enabled on the link, to allow a successful completion of the EVFP protocol. Then the EVFP Initiator shall send an EVFP\_COMMIT LS\_ACC message tagged with its Port VF\_ID.

When tagging is enabled the EVFP transaction completes successfully on completion of the EVFP\_COMMIT Exchange, for both the EVFP Initiator and EVFP Responder. If the computed set of VF\_IDs operational on the link does not include the EVFP Initiator's Port VF\_ID, transmission and reception of VFT tagged frames for such VF\_ID shall be disabled on the link upon completion of the EVFP transaction. When the EVFP transaction is completed the processing continues independently for each Virtual Fabric operational on the link, as shown by transitions P4:P5(k) (see 8.2). If the computed set of VF\_IDs operational on the link is NULL, the involved FC\_Ports remain in state P4 (see 8.2) until a new EVFP transaction is performed in the Control VF\_ID.

If an N\_Port and an F\_Port start an EVFP transaction at the same time, or if an FC\_Port is acting as an EVFP Initiator and receives an EVFP\_SYNC message from the designated EVFP Responder, one of the two EVFP transactions shall be aborted. The N\_Port shall remain the EVFP Initiator, while the F\_Port shall become the EVFP Responder. The FC\_Port that remains the EVFP Initiator shall reply to the received EVFP\_SYNC message with an 'EVFP collision' LS\_RJT (see 4.2.43.1.2). The FC\_Port that becomes the EVFP Responder shall reply to the received EVFP\_SYNC message and abort its own transaction upon receipt of the LS\_RJT.

The EVFP protocol is used also when some N\_Port or F\_Port configuration information (see 8.3) are changed by a management action. The EVFP messages may be carried in FC frames tagged with the Port VF\_ID if the EVFP protocol begins while the link is not performing VFT tagging (see 8.4.1). The EVFP messages are carried in FC frames tagged with the Control VF\_ID if the EVFP protocol begins while the link is performing VFT tagging (see 8.4.2 and 8.4.3).

### 8.4.2 Changing the VFT Tagging Mode

When a management action changes the Administrative Tagging Mode of a VF capable N\_Port or F\_Port that determined during initialization the peer supports the EVFP protocol, the FC\_Port shall determine if the link has to change its VFT Tagging mode (i.e., if it has to transition from tagging to untagging mode or from untagging to tagging mode) by acting as EVFP Initiator as follows. If the N\_Port or F\_Port is currently performing tagging, all EVFP protocol messages shall be tagged with the Control VF\_ID. If the N\_Port or F\_Port is currently not performing tagging, all EVFP protocol messages shall be untagged.

- 1) The EVFP Initiator shall start the EVFP transaction by sending the EVFP\_SYNC message to the EVFP Responder. The EVFP\_SYNC message shall carry the updated Tagging Administrative Status (see 4.2.43.2.2), Port VF\_ID, and the Locally-Enabled VF\_ID List; and
- 2) The EVFP Responder shall reply with an LS\_ACC carrying its Tagging Administrative Status, Port VF\_ID and Locally-Enabled VF\_ID List. The EVFP Responder shall determine if VFT Tagging has to be changed on the link, according to table 126. The EVFP Responder:
  - A) if VFT Tagging has not to be changed, on completion of the Exchange terminates the EVFP protocol; or
  - B) if VFT Tagging has to be changed, on completion of the Exchange shall perform a link initialization.

On receiving the EVFP\_SYNC LS\_ACC, the EVFP Initiator shall determine if VFT Tagging has to be changed on the link, according to table 126. The EVFP Initiator:

- A) if VFT Tagging has not to be changed, on completion of the Exchange terminates the EVFP protocol; or
- B) if VFT Tagging has to be changed, shall participate in the link initialization initiated by the EVFP Responder.

# 8.4.3 Adding or Removing Virtual Fabrics

When a management action changes the Locally-Enabled VF\_ID List over a tagging N\_Port or F\_Port, the FC\_Port shall initiate the EVFP protocol by acting as EVFP Initiator as follows. All EVFP protocol messages shall be tagged with the Control VF\_ID.

- 1) The EVFP Initiator shall start the EVFP transaction by sending the EVFP\_SYNC message to the EVFP Responder. The EVFP\_SYNC message shall carry the Tagging Administrative Status, Port VF ID, and the updated Locally-Enabled VF ID List (see 4.2.43.2.4);
- 2) The EVFP Responder shall reply with an LS\_ACC carrying its Tagging Administrative Status, Port VF\_ID and Locally-Enabled VF\_ID List. The EVFP Responder, depending on the resulting operational VF\_ID List (see 4.2.43.2.4):

- A) if the operational VF\_ID List did not change, on completion of the Exchange in the Control VF\_ID terminates the EVFP protocol; or
- B) if the operational VF\_ID List did change, on completion of the Exchange in the Control VF\_ID goes to step 3.

On receiving the EVFP\_SYNC LS\_ACC in the Control VF\_ID, the EVFP Initiator, depending on the resulting operational VF\_ID List:

- A) if the operational VF\_ID List did not change, on completion of the Exchange in the Control VF\_ID terminates the EVFP protocol; or
- B) if the operational VF\_ID List did change, on completion of the Exchange in the Control VF\_ID goes to step 4.
- 3) On completion of the EVFP\_SYNC Exchange in the Control VF\_ID, the EVFP Responder shall apply the updated operational VF\_ID List, enabling the added Virtual Fabrics and disabling the removed Virtual Fabrics. The removal of a Virtual Fabric should be treated as an implicit logout. Then the EVFP Responder shall send an EVFP\_COMMIT message; and
- 4) On receiving the EVFP\_COMMIT message, the EVFP Initiator shall apply the updated operational VF\_ID List, enabling the added Virtual Fabrics and disabling the removed Virtual Fabrics. The removal of a Virtual Fabric should be treated as an implicit logout. Then the EVFP Initiator shall send an EVFP\_COMMIT LS\_ACC message.

When the operational VF\_ID List changes, the EVFP transaction completes successfully on completion of the EVFP\_COMMIT Exchange for both the EVFP Initiator and EVFP Responder. When the EVFP transaction is completed, the updated operational VF\_ID List is operative.

## 8.4.4 Changing the Port VF\_ID

When a management action changes the Port VF\_ID of a tagging N\_Port or F\_Port, no changes are applied to the link.

When a management action changes the Port VF\_ID of a non tagging N\_Port or F\_Port, the FC\_Port shall perform a link initialization.

When a management action changes the Port VF\_ID of an N\_Port or F\_Port in Isolated state (i.e., state P8), the FC Port shall go in state P1 (see 8.2).