Тесты по курсу «Операционные системы» для студентов 2 курса специальности прикладная математика Побегайло А. П.

Блок 1 – выбрать 1 вопрос

- 1. Физические устройства, из которых состоит компьютер, называются:
 - потребляемыми ресурсами;
 - логическими ресурсами;
 - монопольными ресурсами;
 - разделяемыми ресурсами.
 - + аппаратными или физическими ресурсами;
- 2. Программы и данные, которые хранятся в памяти компьютера, называются:
 - потребляемыми ресурсами;
 - физическими ресурсами;
 - монопольными ресурсами;
 - + информационными или логическими ресурсами;
 - разделяемыми ресурсами.
- 3. Операционная система это комплекс программ, которые обеспечивают:
 - надежность работы компьютера;
 - графический интерфейс для пользователя;
 - + доступ пользователей к ресурсам компьютера;
 - хранение данных и программ;
 - безопасность работы с компьютером.
- 4. Операционная система это комплекс программ, которые обеспечивают:
 - оптимизацию ресурсов компьютера;
 - сохранение ресурсов компьютера;
 - + разделение ресурсов компьютера между пользователями;
 - тестирование ресурсов компьютера;
 - трассировку ресурсов компьютера.
- 5. Программа, которая работает под управлением операционной системы, называется:
 - + пользовательской программой;
 - потоком;
 - исполняемым файлом;
 - загрузочным файлом;
 - объектным файлом.
- 6. Если под управлением операционной системы, может одновременно исполняться только одна программа, то такая операционная система называется:
 - однопроцессорной;
 - реального времени;
 - надежной;
 - однооконной;
 - + однопрограммной.
- 7. Если под управлением операционной системы, может одновременно исполняться несколько пользовательских программ, то такая операционная система называется:
 - надежной;

- + мультипрограммной;
- мультипроцессорной;
- реального времени;
- мультиоконной.
- 8. Если операционная система может работать только на компьютере с одним процессором, то такая операционная система называется:
 - реального времени;
 - + однопроцессорной;
 - однодисковой;
 - однооконной;
 - однопрограммной.
- 9. Если операционная система может работать на компьютере с несколькими процессорами, то такая операционная система называется:
 - мультидисковой;
 - мультипрограммной;
 - + мультипроцессорной;
 - реального времени;
 - мультиоконной.
- 10. Операционная система, предназначенная для управления объектами в режиме реального времени, называется:
 - надежной;
 - объектно-ориентированной;
 - промышленной;
 - + реального времени;
 - управляющей.
- 11. Доступ к объектам Windows выполняется посредством:
 - ссылок;
 - указателей;
 - + дескрипторов, которые имеют тип HANDLE;
 - обработчика исключений;
 - базового сервиса операционной системы.
- 12. После завершения работы с объектом его дескриптор нужно закрыть, используя функцию:
 - Close;
 - Destroy;
 - CloseObject;
 - + CloseHandle;
 - Destruct.

Блок 2 – выбрать 1 вопрос

- 13. Потоком управления называется:
 - + последовательность инструкций, исполняемых во время работы программы;
 - поток команд, которые исполняет процессор;
 - последовательность управляющих инструкций, которые исполняет процессор;
 - поток управляющих сигналов от внешнего устройства;
 - поток сигналов прерывания от контроллера прерываний.

- 14. Контекстом потока называется:
 - команды, исполняемые потоком;
 - объекты синхронизации, доступные в потоке;
 - переменные, к которым поток не имеет доступа;
 - данные, которые поток изменяет;
 - + содержимое памяти, к которой поток имеет доступ.
- 15. Поток находится в состоянии готовности, если:
 - проинициализированы все переменные, доступные потоку;
- + потоку доступны требуемые ресурсы, но не выделен квант процессорного времени;
 - потоку доступны требуемые ресурсы и выделен квант процессорного времени;
 - потоку не доступны требуемые ресурсы и выделен квант процессорного времени;
 - поток ждет сигнал на начало работы.
- 16. Поток находится в состоянии «блокирован», если:
 - не проинициализированы переменные, доступные потоку;
 - потоку доступны требуемые ресурсы и не выделен квант процессорного времени;
- + потоку не доступны требуемые ресурсы и не выделен квант процессорного времени;
 - потоку не доступны требуемые ресурсы и выделен квант процессорного времени;
 - поток ждет сигнал на начало работы.
- 17. Поток находится в состоянии выполнения, если:
 - проинициализированы все переменные, доступные потоку;
- + потоку доступны требуемые ресурсы и выделен квант процессорного времени;
 - потоку доступны требуемые ресурсы и не выделен квант процессорного времени;
 - потоку не доступны требуемые ресурсы и выделен квант процессорного времени;
 - поток получил сигнал на начало работы.
- 18. Исполняемое на компьютере приложение вместе со всеми ресурсами, требуемыми для его исполнения, называется:
 - потоком;
 - пользователем;
 - оператором;
 - + процессом;
 - процедурой.
- 19. Все ресурсы, доступные процессу, называются:
 - + контекстом процесса;
 - монопольными ресурсами;
 - системными ресурсами;
 - потребляемыми ресурсами;
 - повторно-используемыми ресурсами.
- 20. Какой из следующих ресурсов должен обязательно принадлежать процессу:
 - принтер;
 - дисплей:
 - + главный поток;
 - мьютекс;

- клавиатура.
- 21. Какой из следующих ресурсов должен обязательно принадлежать процессу:
 - + адресное пространство;
 - дисплей;
 - мьютекс;
 - мышка;
 - клавиатура.

Блок 3 – выбрать 1 вопрос

- 22. В операционных системах Windows функция CreateThread создает:
 - процесс;
 - консоль;
 - файл;
 - + поток;
 - программу.
- 23. В операционных системах Windows функция ExitThread завершает:
 - процесс;
 - консольное приложение;
 - + поток;
 - программу;
 - графическое приложение.
- 24. В операционных системах Windows функция TerminateThread аварийно завершает:
 - процесс;
 - консольное приложение;
 - программу;
 - графическое приложение;
 - **+** поток.
- 25. В операционных системах Windows функция SuspendThread:
 - завершает исполнение потока;
 - + приостанавливает исполнение потока;
 - аварийно завершает исполнение потока;
 - возобновляет исполнение потока;
 - задерживает исполнение потока на заданный интервал времени.
- 26. В операционных системах Windows функция ResumeThread:
 - завершает исполнение потока;
 - приостанавливает исполнение потока;
 - аварийно завершает исполнение потока;
 - + возобновляет исполнение потока;
 - запускает поток.
- 27. В операционных системах Windows функция Sleep:
 - завершает исполнение потока;
 - приостанавливает исполнение потока;
 - аварийно завершает исполнение потока;
 - возобновляет исполнение потока;
 - + задерживает исполнение потока на заданный интервал времени.

- 28. В операционных системах Windows функция CreateProcess создает: поток; + процесс;
 - процесс
 - консоль;
 - файл;
 - программу.
- 29. В операционных системах Windows функция ExitProcess завершает:
 - + процесс;
 - консольное приложение;
 - поток:
 - программу;
 - графическое приложение.
- 30. В операционных системах Windows функция TerminateProcess аварийно завершает:
 - консольное приложение;
 - программу;
 - + процесс;
 - графическое приложение;
 - поток.
- 31. Объект ядра операционной системы Windows называется наследуемым, если:
 - он наследует свойства объектов предков;
 - его свойства наследуют объекты потомки;
 - + к нему имеют доступ дочерние процессы;
 - к нему имеет доступ любой процесс;
 - к нему имеют доступ все потоки процесса.
- 32. Изменить свойства наследования объекта Windows можно, используя функцию:
 - ChangeHandleInformation;
 - ModifyHandleInformation;
 - + SetHandleInformation;
 - ResetHandleInformation.
 - GetHandleInformation.
- 33. Определить, является ли объект Windows наследуемым можно, используя функцию:
 - ViewHandleInformation;
 - ShowHandleInformation;
 - KnowHandleInformation;
 - SetHandleInformation;
 - + GetHandleInformation.

Блок 4 – выбрать 1 вопрос

- 34. Процесс, который выполняется в случае, если нет других активных пользовательских процессов, называется:
 - нормальным;
 - реального времени;
 - рабочим;
 - + фоновым;
 - драйвером.

- 35. В операционных системах Windows для изменения приоритета процесса используется функция:
 - ChangeProcessPriority;
 - + SetPriorityClass;
 - SetProcessPriority;
 - ChangePriorityClass;
 - ChangePriority.
- 36. В операционных системах Windows определить приоритет процесса можно при помощи функции:
 - GetProcessPriority;
 - + GetPriorityClass;
 - GetProcessPriority;
 - ViewPriorityClass;
 - ViewPriority.
- 37. Приоритет потока, который учитывается операционной системой Windows при выделении потокам квантов процессорного времени, называется:
 - низшим;
 - реальным;
 - высшим;
 - + базовым:
 - нормальным.
- 38. В операционных системах Windows для изменения уровня приоритета потока используется функция:
 - ChangeThreadPriority;
 - + SetThreadPriority;
 - SetBasePriority;
 - ChangeBasePriority;
 - ModifyThreadPriority.
- 39. В операционных системах Windows определить уровень приоритета потока можно при помощи функции:
 - + GetThreadPriority;
 - GetBasePriority;
 - SetThreadPriority;
 - ViewThreadPriority;
 - ShowThreadPriority.
- 40. Процессы обслуживаются в порядке их поступления на обработку (постановки в очередь). Такая стратегия планирования непрерываемых процессов называется:
 - SPN (shortest process next);
 - + FCFS (first come first served);
 - RR (round robin);
 - SRT (shortest remaining time);
 - SMP (symmetrical multiprocessing).
- 41. Для исполнения из очереди выбирается процесс с наименьшим ожидаемым временем исполнения. Такая стратегия планирования непрерываемых процессов называется:
 - + SPN (shortest process next);

- FCFS (first come first served);
- RR (round robin);
- SRT (shortest remaining time);
- SMP (symmetrical multiprocessing).
- 42. Прерванные процессы ставятся в конец очереди. Очередь обслуживается по алгоритму FIFO. Такая стратегия планирования прерываемых процессов называется:
 - SPN (shortest process next);
 - FCFS (first come first served);
 - + RR (round robin);
 - SRT (shortest remaining time);
 - SMP (symmetrical multiprocessing).
- 43. Для исполнения из очереди выбирается процесс с наименьшим ожидаемым временем завершения работы. Такая стратегия планирования прерываемых процессов называется:
 - SPN (shortest process next);
 - FCFS (first come first served);
 - RR (round robin);
 - + SRT (shortest remaining time);
 - SMP (symmetrical multiprocessing);

Блок 5 – выбрать 1 вопрос

- 44. Действие, которое не прерывается во время своего исполнения и контекст которого изменяется только самим действием, называется:
 - командой;
 - инструкцией;
 - критической секцией;
 - + атомарным;
 - мьютексом.
- 45. Синхронизацией параллельных процессов называется:
 - обмен данными между параллельными процессами;
 - обмен управляющими сигналами между параллельными процессами;
- + упорядочивание управляющих сигналов, которыми обмениваются параллельные процессы;
 - ожидание управляющего сигнала;
 - получение управляющего сигнала.
- 46. Атомарное действие, которое выполняется только при условии наступления некоторого события, называется:
 - + условным;
 - необходимым;
 - достаточным;
 - простым;
 - сложным.
- 47. Безусловное выполнение атомарного действия называется:
 - критической секцией;
 - + взаимным исключением;
 - мьютексом;
 - событием;

- синхронизацией.
- 48. Код, исполняемый внутри безусловного атомарного действия, называется:
 - + критической секцией;
 - взаимным исключением;
 - мьютексом;
 - событием;
 - синхронизацией.
- 49. Условное атомарное действие, которое содержит только условие, называется:
 - событием;
 - мьютексом:
 - взаимным исключением;
 - + условной синхронизацией;
 - булевым выражением.
- 50. Требование безопасности к решению задачи взаимного исключения формулируется следующим образом:
 - поток может находиться внутри критической секции ограниченное время;
- + в любой момент времени в критической секции может находиться только один поток;
 - поток ждет входа в критическую секцию конечное время;
 - любой поток получает доступ в критическую секцию за ограниченное время;
 - только один поток может использовать разделяемый ресурс.
- 51. Требование поступательности к решению задачи взаимного исключения формулируется следующим образом:
 - любой поток получает доступ в критическую секцию за ограниченное время;
- в любой момент времени в критической секции может находиться только один поток;
 - + любой поток может находиться в критической секции ограниченное время;
 - любой поток может войти в критическую секцию;
 - только один поток может использовать разделяемый ресурс.
- 52. Требование справедливости к решению задачи взаимного исключения формулируется следующим образом:
 - любой поток может находиться в критической секции ограниченное время;
- в любой момент времени в критической секции может находиться только один поток;
 - любой поток может войти в критическую секцию;
 - + любой поток получает доступ в критическую секцию за ограниченное время;
 - только один поток может использовать разделяемый ресурс.
- 53. Цикл ожидания while с атомарной командой микропроцессора, который ждёт разрешения на вход в критическую секцию, называется:
 - событием;
 - мьютексом:
 - семафором;
 - тупиком;
 - + активным ожиданием.

- 54. Цикл ожидания while с атомарной командой микропроцессора, который ждёт разрешения на вход в критическую секцию, называется:
 - + спин-локом;
 - мьютексом;
 - **-** замком;
 - тупиком;
 - событием.
- 55. Если очередь семафора обслуживается по алгоритму FIFO, то семафор называется:
 - считающим;
 - бинарным;
 - слабым:
 - + сильным;
 - примитивным.
- 56. Семафор, который может принимать только значения 0 или 1 называется:
 - считающим;
 - + бинарным;
 - слабым;
 - сильным;
 - примитивным.
- 57. Семафор, который может принимать положительные целочисленные значения, называется:
 - + считающим;
 - бинарным;
 - слабым;
 - сильным;
 - примитивным.

Блок 6 – выбрать 1 вопрос

- 58. Поток находится в тупике, если он:
 - + ждёт событие, которое никогда не произойдет;
 - ждёт освобождение ресурса, занятого другим процессом;
 - ждёт освобождения мьютекса;
 - ждёт, пока семафор примет положительное значение;
 - ждёт входа в критическую секцию.
- 59. Ресурс, который может использоваться одновременно несколькими потоками, называется:
 - перераспределяемым;
 - повторно-используемым;
 - системным;
 - + совместно-используемым;
 - монопольным.
- 60. Ресурс, который может использоваться одновременно только одним потоком, называется:
 - перераспределяемым;
 - повторно-используемым;
 - + монопольным;

- системным;
- совместно-используемым.
- 61. Ресурс, который может быть отобран у потока и перераспределен другому потоку, называется:
 - повторно-используемым;
 - монопольным;
 - системным;
 - + перераспределяемым;
 - потребляемым.
- 62. Ресурс, который перестает существовать после его использования потоком, называется:
 - повторно-используемым;
 - монопольным;
 - системным;
 - перераспределяемым;
 - + потребляемым.
- 63. Процесс, в котором потоки используют только повторно используемые ресурсы, находится в тупике тогда и только тогда, когда:
 - граф распределения ресурсов этого процесса содержит узел;
 - граф распределения ресурсов этого процесса не содержит узлов;
 - + граф распределения ресурсов этого процесса содержит цикл;
 - граф распределения ресурсов этого процесса не содержит циклов;
 - граф распределения ресурсов этого процесса является сильно связным.
- 64. Процесс, в котором потоки используют только потребляемые ресурсы, находится в тупике тогда и только тогда когда:
 - + граф распределения ресурсов этого процесса содержит узел;
 - граф распределения ресурсов этого процесса не содержит узлов;
 - граф распределения ресурсов этого процесса содержит цикл;
 - граф распределения ресурсов этого процесса не содержит циклов;
 - граф распределения ресурсов этого процесса является сильно связным.
- 65. Контрольной точкой потока называется точка, в которой:
 - останавливается отладчик;
 - значение переменной изменяется отладчиком;
 - происходит прерывание программы;
 - выбрасывается исключение;
 - + запоминается состояние контекста потока.
- 66. Транзакцией называется:
 - завершение выполнения функции;
 - завершение обработки исключения;
 - переход потока из одного состояния в другое;
 - отработка потоком кванта процессорного времени;
 - + изменение контекста потока между двумя контрольными точками.
- 67. Откатом называется:
 - повторный запуск программы;
 - повторный запуск транзакции;
 - замена транзакции;

- + отмена транзакции;
- запрещение транзакции.

Блок 7 – выбрать 1 вопрос

- 68. В операционных системах Windows объект CRITICAL SECTION служит для решения:
- + задачи взаимного исключения для потоков, работающих в контексте одного процесса;
- задачи взаимного исключения для потоков, работающих в контексте разных процессов;
- задачи взаимного исключения для потоков, работающих в контексте как одного, так и разных процессов;
- задачи условной синхронизации для потоков, работающих в контексте одного процесса;
- задачи условной синхронизации для потоков, работающих в контексте разных процессов.
- 69. Объекты ядра Windows, которые могут находиться в одном из двух состояний (сигнальном или несигнальном), называются объектами:
 - взаимного исключения;
 - сигнальными;
 - системными;
 - условной синхронизации;
 - + синхронизации.
- 70. Поток переходит в сигнальное состояние, когда он:
 - начинается;
 - + завершается;
 - прерывается;
 - блокируется;
 - засыпает.
- 71. Процесс переходит в сигнальное состояние, когда он:
 - прерывается;
 - блокируется;
 - начинается;
 - + завершается;
 - засыпает.
- 72. Функции ожидания ждут перехода объекта или объектов синхронизации в состояние:
 - + сигнальное;
 - несигнальное;
 - синхронное;
 - асинхронное;
 - готовности.
- 73. В операционных системах Windows для ожидания перехода объекта синхронизации в сигнальное состояние используется функция:
 - Wait;
 - Signal;
 - + WaitForSingleObject;
 - Resume;

- Synchronize.
- 74. В операционных системах Windows для инициализации критической секции служит функция:
 - DeleteCriticalSection;
 - EnterCriticalSection;
 - TryEnterCriticalSection;
 - + InitializeCriticalSection;
 - LeaveCriticalSection.
- 75. В операционных системах Windows для входа в критическую секцию служит функция:
 - DeleteCriticalSection;
 - + EnterCriticalSection;
 - TryEnterCriticalSection;
 - InitializeCriticalSection;
 - LeaveCriticalSection.
- 76. В операционных системах Windows для попытки входа в критическую секцию служит функция:
 - DeleteCriticalSection;
 - EnterCriticalSection;
 - + TryEnterCriticalSection;
 - InitializeCriticalSection:
 - LeaveCriticalSection.
- 77. В операционных системах Windows для выхода из критической секции служит функция:
 - DeleteCriticalSection;
 - EnterCriticalSection;
 - TryEnterCriticalSection;
 - InitializeCriticalSection:
 - + LeaveCriticalSection.
- 78. В операционных системах Windows для разрушения критической секции служит функция:
 - + DeleteCriticalSection;
 - EnterCriticalSection;
 - TryEnterCriticalSection;
 - InitializeCriticalSection;
 - LeaveCriticalSection.
- 79. В операционных системах Windows мьютекс переводится в несигнальное состояние функцией:
 - + WaitForSingleObject;
 - CloseMutex:
 - WaitMutex:
 - ReleaseMutex:
 - OpenMutex.
- 80. В операционных системах Windows мьютекс переводится в сигнальное состояние функцией:
 - WaitForSingleObject;

- CloseMutex:
- WaitMutex;
- + ReleaseMutex;
- OpenMutex.
- 81. В операционных системах Windows событие переводится в несигнальное состояние функцией:
 - SetEvent;
 - CloseEvent;
 - WaitEvent;
 - + ResetEvent;
 - OpenEvent.
- 82. В операционных системах Windows событие переводится в сигнальное состояние функцией:
 - + SetEvent;
 - CloseEvent;
 - WaitEvent;
 - ResetEvent;
 - OpenEvent.
- 83. В операционных системах Windows значение семафора уменьшается на единицу посредством функции:
 - ReleaseSemaphore;
 - DecreaseSemaphore;
 - DeleteSemaphore;
 - WaitSemaphore;
 - + WaitForSingleObject.
- 84. В операционных системах Windows значение семафора можно увеличить посредством функции:
 - + ReleaseSemaphore;
 - IncreaseSemaphore;
 - AddSemaphore;
 - WaitSemaphore:
 - WaitForSingleObject.

Блок 8 – выбрать 1 вопрос

- 85. Если данные могут передаваться по каналу только в одном направлении, то такой канал называется:
 - именованным;
 - анонимным;
 - дуплексным;
 - + полудуплексным;
 - ПОЧТОВЫМ ЯЩИКОМ.
- 86. Если данные могут передаваться по каналу в двух направлениях, то такой канал называется:
 - именованным;
 - анонимным;
 - + дуплексным;

- полудуплексным;
- почтовым ящиком.
- 87. Если при передаче сообщений в функциях send и receive явно указываются процессы отправитель и получатель, то такая адресация процессов называется:
 - +- прямой;
 - непосредственной;
 - косвенной;
 - относительной;
 - именованной.
- 88. Если при передаче сообщений в функциях send и receive указываются не адреса процессов, а имя канала передачи данных, то такая адресация процессов называется:
 - -- прямой;
 - непосредственной;
 - + косвенной;
 - относительной;
 - именованной.
- 89. Набор правил, по которым устанавливаются связи и передаются данные между процессами, называется:
 - интерфейсом;
 - + протоколом;
 - прототипом;
 - сигнатурой;
 - артефактом.
- 90. Если поток отправитель, отправив сообщение, блокируется до получения этого сообщения потоком получателем, то такое отправление сообщения называется:
 - прямым;
 - косвенным;
 - + синхронным;
 - асинхронным;
 - полудуплексным.
- 91. Если поток отправитель, отправив сообщение, продолжает свою работу, то такое отправление сообщения называется:
 - прямым;
 - косвенным;
 - синхронным;
 - + асинхронным;
 - дуплексным.
- 92. Если поток получатель, вызвавший функцию receive для получения сообщения, блокируется до тех пор, пока не получит сообщение, то такое получение сообщения называется:
 - прямым;
 - косвенным;
 - + синхронным;
 - асинхронным;
 - полудуплексным.

- 93. Рандеву называется:
 - асинхронный обмен данными в случае прямой адресации процессов;
 - асинхронный обмен данными в случае косвенной адресации процессов;
 - + синхронный обмен данными в случае прямой адресации процессов;
 - синхронный обмен данными в случае косвенной адресации процессов;
 - обмен данными между асинхронными процессами.
- 94. В операционных системах Windows анонимный канал создается посредством функции:
 - CreateFile;
 - CreateAnonimousPipe;
 - CreateNamedPipe;
 - + CreatePipe;
 - Create.
- 95. В операционных системах Windows именованный канал создается посредством функции:
 - Create;
 - CreateFile;
 - CreatePipe;
 - CreateAnonimousPipe;
 - + CreateNamedPipe.
- 96. В операционных системах Windows соединение сервера именованного канала с клиентом этого канала выполняется посредством функции:
 - Connect;
 - CreateFile\$
 - ConnectFile;
 - ConnectPipe;
 - + ConnectNamedPipe.
- 97. В операционных системах Windows определение клиентом свободного экземпляра именованного канала выполняется посредством функции:
 - Connect;
 - ConnectPipe:
 - ConnectNamedPipe;
 - WaitPipe;
 - + WaitNamedPipe.
- 98. В операционных системах Windows соединение клиента именованного канала с сервером по экземпляру этого канала выполняется посредством функции:
 - Connect;
 - ConnectPipe;
 - ConnectNamePipe;
 - + CreateFile;
 - OpenPipe.
- 99. В операционных системах Windows разрыв сервером связи с клиентом по экземпляру именованного канала выполняется посредством функции:
 - Disconnect;
 - DisconnectPipe;
 - DisconnectFile;

- + DisconnectNamedPipe;
- DisconnectWithPipe.

Блок 9 – выбрать 1 вопрос

- 100. Исполнительным устройством называется устройство, которое:
 - загружает исполняемые файлы в оперативную память;
 - контролирует работу других устройств;
 - исполняет пользовательские программы;
 - исполняет системные программы;
 - + функционально дополняет микропроцессор.
- 101. Контроллеры это устройства, которые:
 - контролируют исполнение программ;
 - контролируют работу центрального процессора;
 - управляют центральным процессором;
 - + управляют другими устройствами;
 - интерпретируют команды перехода.
- 102. Устройство управления центрального процессора выполняет:
 - арифметические операции с плавающими числами;
 - арифметические операции с целыми числами;
 - логические операции;
 - + команды перехода;
 - команды над строками.
- 103. Контекстом процессора называется:
 - состояние оперативной памяти;
 - состояние исполняемой процессором команды;
 - + состояние регистров процессора;
 - состояние управляющего устройства;
 - состояние арифметико-логического устройства.
- 104. Точкой прерывания программы называется точка, в которой происходит:
 - исполнение команды перехода;
 - возврат из подпрограммы;
 - вызов подпрограммы;
 - синхронизация потоков;
 - + перестановка контекста процессора.
- 105. Процесс перестановки контекста процессора называется:
 - сбросом контекста процессора;
 - сбросом регистров процессора;
 - + прерыванием программы;
 - прерыванием процессора;
 - процессом обработки прерывания.
- 106. Контроллер прерываний обрабатывает сигналы прерывания от:
 - шины данных;
 - адресной шины;
 - центрального процессора;
 - + внешних устройств;

- оперативной памяти.
- 107. Внешние прерывания могут прервать исполнение программы:
 - только после завершения операции ввода данных;
 - только после завершения операции вывода данных;
 - только при завершении исполнения команды микропроцессора;
 - + в любой точке прерывания;
 - во время исполнения любой команды микропроцессора.
- 108. По второму сигналу подтверждения прерывания по линии INTA от центрального процессора контроллер прерываний:
 - передает управление программе обработки прерывания;
 - передает управление микропроцессору;
 - + устанавливает на адресную шину адрес программы обработки прерывания;
 - устанавливает на шину данных код прерывания;
 - завершает свою работу.
- 109. На вход NMI микропроцессора поступает сигнал прерывания, который:
 - маскируется;
 - + не маскируется;
 - блокируется контроллером прерываний;
 - блокируется микропроцессором;
 - блокируется внешним устройством.

Блок 10 – выбрать 1 вопрос

- 110. Память, к которой процессор может непосредственно обращаться, используя адресную шину и шину данных, называется:
 - регистром;
 - виртуальной памятью;
 - + физической памятью;
 - накопителем на жестких дисках;
 - магнитной лентой.
- 111. Память, к которой имеет доступ процесс, называется:
 - + логической памятью процесса;
 - физической памятью процесса;
 - виртуальной памятью процесса;
 - реальной памятью процесса;
 - регистром процесса.
- 112. Блоки одинаковой длины, на которые разбивают виртуальную память, называются:
 - блоками виртуальной памяти;
 - + страницами виртуальной памяти;
 - сегментами виртуальной памяти;
 - адресами виртуальной памяти;
 - файлами подкачки.
- 113. Файлы, в которых хранятся страницы виртуальной памяти, называются:
 - файлами хранения виртуальных страниц:
 - файлами закачки виртуальных страниц;
 - файлами откачки виртуальных страниц;

- + файлами подкачки виртуальных страниц;
- файлами замены виртуальных станиц.
- 114. Алгоритм FIFO для выталкивания страницы из реальной памяти на диск заключается в следующем:
- на диск выталкивается виртуальная страница, которая в последнее время не использовалась;
- на диск выталкивается виртуальная страница, которая наименее часто используется;
- на диск выталкивается виртуальная страница, которая дольше всего не использовалась;
- + на диск выталкивается виртуальная страница, которая была загружена первой;
 - на диск выталкивается виртуальная страница, которая была загружена последней.
- 115. Алгоритм LRU для выталкивания страницы из реальной памяти на диск заключается в следующем:
- на диск выталкивается виртуальная страница, которая меньше всего использовалась;
- на диск выталкивается виртуальная страница, которая в последнее время не использовалась;
- + на диск выталкивается виртуальная страница, которая дольше всего не использовалась;
 - на диск выталкивается виртуальная страница, которая была загружена первой;
 - на диск выталкивается виртуальная страница, которая была загружена последней.
- 116 Алгоритм NRU для выталкивания страницы из реальной памяти на диск заключается в следующем:
- на диск выталкивается виртуальная страница, которая меньше всего использовалась;
- +на диск выталкивается виртуальная страница, которая не использовалась в заданный интервал времени;
- -на диск выталкивается виртуальная страница, которая дольше всего не использовалась;
 - на диск выталкивается виртуальная страница, которая была загружена первой;
 - на диск выталкивается виртуальная страница, которая была загружена последней.
- 117. Алгоритм LFU для выталкивания страницы из реальной памяти на диск заключается в следующем:
- + на диск выталкивается виртуальная страница, которая меньше всего использовалась;
- на диск выталкивается виртуальная страница, которая в последнее время не использовалась;
- на диск выталкивается виртуальная страница, которая дольше всего не использовалась;
 - на диск выталкивается виртуальная страница, которая была загружена первой;
 - на диск выталкивается виртуальная страница, которая была загружена последней.
- 118. Множество страниц виртуальной памяти, которое выделяется процессу для работы и не выгружается из оперативной памяти, называется:
 - фиксированным множеством страниц процесса;
 - + рабочим множеством страниц процесса;

- загрузочным множеством страниц процесса;
- независимым множеством страниц процесса;
- закрытым множеством страниц процесса.
- 119. В операционных системах Windows резервирование или распределение области виртуальной памяти выполняется посредством функции:
 - + VirtualAlloc;
 - VirtualLock;
 - VirtualUnlock;
 - VirtualFree;
 - VirtualProtect.
- 120. В операционных системах Windows для блокирования страниц виртуальной памяти в реальной памяти используется функция:
 - VirtualAlloc;
 - + VirtualLock;
 - VirtualUnlock;
 - VirtualFree;
 - VirtualProtect.
- 121. В операционных системах Windows для разблокирования страниц виртуальной памяти в реальной памяти используется функция:
 - VirtualAlloc;
 - VirtualLock;
 - + VirtualUnlock;
 - VirtualFree;
 - VirtualProtect.
- 122. В операционных системах Windows для освобождения области виртуальной памяти используется функция:
 - VirtualAlloc;
 - VirtualLock;
 - VirtualUnlock;
 - + VirtualFree;
 - VirtualProtect.
- 123. В операционных системах Windows для изменения атрибутов доступа к области виртуальной памяти используется функция:
 - VirtualAlloc;
 - VirtualLock;
 - VirtualUnlock;
 - VirtualFree;
 - + VirtualProtect.
- 124. В операционных системах Windows узнать количество виртуальных страниц, которые входят в рабочее множество страниц процесса, можно посредством функции:
 - ViewProcessWorkingSetSize;
 - ShowProcessWorkingSetSize;
 - + GetProcessWorkingSetSize;
 - SetProcessWorkingSetSize:
 - ChangeProcessWorkingSetSize.

- 125. В операционных системах Windows минимальный и максимальный размеры рабочего множества страниц процесса можно изменить посредством функции:
 - ViewProcessWorkingSetSize;
 - ShowProcessWorkingSetSize;
 - GetProcessWorkingSetSize;
 - + SetProcessWorkingSetSize;
 - ChangeProcessWorkingSetSize.
- 126. В операционных системах Windows определить состояние области виртуальной памяти процесса можно посредством функции:
 - VirtualAlloc;
 - VirtualLock;
 - VirtualUnlock;
 - + VirtualQuery;
 - VirtualProtect.

На весь тест – 30 минут Оценка:

> 100% - 10 балов 90% - 9 балов 80% - 8 балов и т.д.