Tentamen i TATA24 Linjär Algebra

2020-01-16 kl 14.00-19.00

Inga hjälpmedel. Ej räknedosa.

På del A och B (uppgift 1–6) ska endast svar ges. De ska lämnas på ett gemensamt papper. Varje uppgift på del A och B ger högst 1 poäng.

Uppgifterna på del C (uppgift 7–10) ger högst 3 poäng per uppgift, och till dessa krävs fullständiga och välmotiverade lösningar.

För betyg 3/4/5 krävs minst 2 poäng på del A, minst 2 poäng på del B, minst 2/3/4 uppgifter på del C som bedömts med minst 2 poäng vardera, samt minst 8/12/16 poäng totalt.

Godkänd kontrollskrivning ger 3 poäng på del A (uppgift 1–3) som då inte behöver lösas. Markera detta genom att skriva "G" i rutorna för uppgift 1–3.

Svar finns efter skrivningstidens slut på kursens hemsida.

Nedan ges \mathbb{R}^n alltid standardskalärprodukten, och standardbasen i \mathbb{R}^n ses som ett höger ON-system när lämpligt.

DEL A

- 1. Vilken punkt i det plan som ges av $x_1 x_2 + 2x_3 = -2$ ligger närmast punkten (3, -1, 6)?
- 2. Beräkna A^{-1} om $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & -1 & 1 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$.
- 3. Ange en ON-bas för det linjära höljet $[(-1,2,1,-1),(0,2,1,-2)] \subset \mathbb{R}^4$.

DEL B

- 4. Låt $F: \mathbb{R}^2 \to \mathbb{R}^2$ vara ortogonal projektion på linjen som har ekvationen $3x_1 + x_2 = 0$. Bestäm F:s avbildningsmatris i standardbasen för \mathbb{R}^2 .
- 5. Låt $\mathbf{f}_1 = 3\mathbf{e}_1 2\mathbf{e}_2$ och $\mathbf{f}_2 = -\mathbf{e}_1 + 4\mathbf{e}_2$, där \mathbf{e}_1 , \mathbf{e}_2 är standardbasen för \mathbb{R}^2 . Bestäm koordinaterna för $\mathbf{u} = \mathbf{e}_1 + 2\mathbf{e}_2$ i basen \mathbf{f}_1 , \mathbf{f}_2 .
- 6. En linjär avbildning $F: \mathbb{V} \to \mathbb{V}$ har avbildningsmatrisen $\begin{pmatrix} 2 & 2 \\ 3 & 7 \end{pmatrix}$ i någon bas för \mathbb{V} . Ange alla egenvärden för F.

VÄND!

Kurskod: TATA24

Provkod: TEN1

DEL C

- 7. En linjär avbildning $F: \mathbb{R}^4 \to \mathbb{R}^3$ har avbildningsmatrisen $A = \begin{pmatrix} 1 & 3 & 1 & 2 \\ -1 & -2 & 0 & -1 \\ 2 & 1 & -3 & 2 \end{pmatrix}$ i standardbaserna. Finn en bas för nollrummet N(F) och en bas för värderummet V(F).
- 8. Låt $A = \begin{pmatrix} -1 & -1 \\ 8 & 5 \end{pmatrix}$. Beräkna A^n för alla positiva heltal n.
- 9. Betrakta den kvadratiska formen $Q(\underline{\mathbf{e}}X)=2x_1^2+8x_1x_3+3x_2^2+8x_3^2$ på \mathbb{R}^3 .
 - (a) Finn en ON-bas $\underline{\mathbf{f}}$ för \mathbb{R}^3 som diagonaliserar Q och ange $Q(\underline{\mathbf{f}}Y)$. (2p)
 - (b) Bestäm alla nollställen till Q uttryckta i basen $\underline{\mathbf{e}}$. (Med andra ord, finn alla X sådana att $Q(\underline{\mathbf{e}}X) = 0$.) (1p)
- 10. Antag att \mathbb{V} är ett euklidiskt rum och att $F: \mathbb{V} \to \mathbb{V}$ är linjär.
 - (a) Vad är definitionen av att F är isometrisk? (1p)
 - I (b) och (c) antar vi nu att F är isometrisk.
 - (b) Visa att om $\lambda \in \mathbb{R}$ är ett egenvärde till F så gäller $\lambda = 1$ eller $\lambda = -1$. (1p)
 - (c) Antag att \mathbf{u} är en egenvektor till F och att $\mathbf{v} \in \mathbb{V}$ är ortogonal mot \mathbf{u} . Visa att $F(\mathbf{v})$ också är ortogonal mot \mathbf{u} .

LYCKA TILL!