inverses

goal: characterize investible LTI-DE & how to use inverses for control

ref: Hespanha 19.4, 19.5, 19.7

o consider the LTI-DE
$$\dot{x}/\dot{x}^{\dagger} = A\dot{x} + B\dot{u}$$
, $\dot{x} \in \mathbb{R}^n$, $\dot{u} \in \mathbb{R}^k$ $\dot{y} = C\dot{x} + D\dot{u}$, $\dot{y} \in \mathbb{R}^m$ def: $LTI-DE$ $\dot{x}/\dot{x}^{\dagger} = A\dot{x} + B\dot{u}$, $\dot{x} \in \mathbb{R}^n$, $\ddot{u} \in \mathbb{R}^m$ $\ddot{y} = C\ddot{x} + D\ddot{u}$, $\ddot{y} \in \mathbb{R}^k$ left-inverse is an inverse for $(LTI-DE)$ if $G(s)G(s) = I_{kxk}$ \mathcal{I} $G(s)G(s) = I_{mxm}$ \mathcal{I} where $G(s) = C(sI-A)^{-1}B+D$ right-inverse $G(s) = C(sI-A)^{-1}B+D$

in which case well write $G = G^{-1}$

i.e.
$$\frac{y}{LTI-DE} = \frac{y}{3} = \frac{y}{LTI-DE} = \frac{y}{3}$$

i.e. $\frac{y}{V} = \frac{y}{V} = \frac{y}{V}$

i.e. $\frac{y}{V} = \frac{y}{V} = \frac{y}{V}$

LTI-DE $\frac{y}{V} = \frac{y}{V} = \frac{y}{V}$

LTI-DE $\frac{y}{V} = \frac{y}{V} = \frac{y}{V}$

onote: if (LTI-DE) and $(\overline{LTI-DE})$ are stable and $\overline{G}=\overline{G}^{-1}$ then $\lim_{t\to\infty} \|u(t)-\overline{y}(t)\|=0=\lim_{t\to\infty}\|y(t)-\overline{u}(t)\|$ $t\to\infty$ regardless of initial states x(0), $\overline{x}(0)\neq0$

thin: (LTI-DE) has an inverse \iff D is (square and) nonsingular in this case: $G^{-1}(s) = \overline{G}(s)$ where $\overline{G}(s) = \overline{C}(s\overline{I} - \overline{A})^{-1}\overline{B} + \overline{D}$ and $\overline{x}/\overline{x}^{+} = \overline{A} \times + \overline{B}g$, $\overline{A} = A - BD^{-1}C$, $\overline{B} = BD^{-1}$ $2 = \overline{C} \times + \overline{D}g$, $\overline{C} = -D^{-1}C$, $\overline{D} = D^{-1}$

Note: if D nonsingular: $y = Cx + Du \Leftrightarrow u = -D^{\dagger}Cx + D^{\dagger}y$ so $x/x^{\dagger} = Ax + Bu = (A - BD^{\dagger}C)x + BD^{\dagger}y$ i.e. $\overline{x}/\overline{x}^{\dagger} = (A - BD^{\dagger}C)\overline{x} + BD^{\dagger}y = \overline{A}\overline{x} + \overline{B}y$

~1.V - (V. DA C)V, A $u = -D^{-1}CX + D^{-1}Q = \overline{CX} + \overline{DY}$ · giver inverse (LTI-DE) of (LTI-DE), what should we do w/it? idea 1: oper-loop inversion to obtain desired input/atput xform Q(s) Q(S) $\frac{y}{z} = \frac{1}{z}$ (LTI-DE) $\frac{y}{z} = \frac{1}{z}$ $y = Q \cdot r$ idea 2: closed-loop inversion to obtain I/O xform Q(S) (LTI-DE)-1