CHAPTER - 20

Vector Algebra and Three Dimensional Geometry

EE24BTECH11061 - Rohith Sai

1 A. FILL IN THE BLANKS

1) Let OA = a, OB = 10a + 2b and OC = b where \mathbf{O} , \mathbf{A} and \mathbf{C} are non-collinear points. Let \mathbf{p} denote the area of the quadrilateral OABC, and let \mathbf{q} denote the area of the parallelogram with OA and OC as adjacent sides. If p = kq, then $\mathbf{k} = \dots$ (1997 - 2 Marks)

2 B. True/False

- 1) Let **A**, **B** and **C** be unit vectors suppose that $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \cdot \mathbf{C} = 0$, and that the angle between **B** and **C** is $\frac{\pi}{6}$. Then $\mathbf{A} = \pm 2 (\mathbf{B} \times \mathbf{C})$. (1981 2 Marks)
- 2) If $\mathbf{X} \cdot \mathbf{A} = 0$, $\mathbf{X} \cdot \mathbf{B} = 0$, $\mathbf{X} \cdot \mathbf{C} = 0$ for some non-zero vector \mathbf{X} , then $[\mathbf{A} \ \mathbf{B} \ \mathbf{C}] = 0$ (1983 1 Mark)
- 3) The points with position vectors $\mathbf{a} + \mathbf{b}$, $\mathbf{a} \mathbf{b}$ and $\mathbf{a} + \mathbf{k}\mathbf{b}$ are collinear for all real values of \mathbf{k} . (1984 1 Mark)
- 4) For any three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} , $(\mathbf{a} \mathbf{b}) \cdot ((\mathbf{b} \mathbf{c}) \times (\mathbf{c} \mathbf{a})) = 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$. (1989 1 Mark)

3 C. MCQs with One Correct Answer

- 1) The scalar $\mathbf{A} \cdot ((\mathbf{B} + \mathbf{C}) \times (\mathbf{A} + \mathbf{B} + \mathbf{C}))$ equals:
 - a) 0
 - b) [A B C] + [B C A]
 - c) [A B C]
 - d) None of these

(1981 - 2 Marks)

1

- 2) For non-zero vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| = |\mathbf{a}| |\mathbf{b}| |\mathbf{c}|$ holds if and only if
 - a) $\mathbf{a} \cdot \mathbf{b} = 0$, $\mathbf{b} \cdot \mathbf{c} = 0$
 - b) $\mathbf{b} \cdot \mathbf{c} = 0$, $\mathbf{c} \cdot \mathbf{a} = 0$
 - c) $\mathbf{c} \cdot \mathbf{a} = 0$, $\mathbf{a} \cdot \mathbf{b} = 0$
 - d) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \cdot \mathbf{a} = 0$

(1982 - 2 Marks)

- 3) The volume of the parallelopiped whose sides are given by $OA = 2\mathbf{i} 2\mathbf{j}$, $OB = \mathbf{i} + \mathbf{j} \mathbf{k}$, $OC = 3\mathbf{i} \mathbf{k}$, is
 - a) $\frac{4}{13}$

- b) 4
- c) $\frac{2}{7}$
- d) None of these

(1983 - 1 Mark)

- 4) The points with position vectors $60\mathbf{i} + 3\mathbf{j}$, $40\mathbf{i} 8\mathbf{j}$, $a\mathbf{i} 52\mathbf{j}$ are collinear if
 - a) a = -40
 - b) a = 40
 - c) a = 20
 - d) None of these

(1983 - 1 Mark)

- 5) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three non coplanar vectors and $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are vectors defined by the relations $\mathbf{p} = \frac{\mathbf{b} \times \mathbf{c}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}, \mathbf{q} = \frac{\mathbf{c} \times \mathbf{a}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}, \mathbf{r} = \frac{\mathbf{a} \times \mathbf{b}}{[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]}$ then the value of the expression $(\mathbf{a} + \mathbf{b}) \cdot \mathbf{p} + (\mathbf{b} + \mathbf{c}) \cdot \mathbf{q} + (\mathbf{c} + \mathbf{a}) \cdot \mathbf{r}$ is equal to
 - a) 0
 - b) 1
 - c) 2
 - d) 3

(1988 - 2 Marks)

- 6) Let **a**, **b**, **c** be distinct non-negative numbers. If the vectors **ai** + **aj** + **ck**, **i** + **k** and **ci** + **cj** + **bk** lie in a plane, then **c** is
 - a) the Arithmetic Mean of a and b
 - b) the Geometric Mean of **a** and **b**
 - c) the Harmonic Mean of a and b
 - d) equal to zero

(1993 - 1 Mark)

- 7) Let **p** and **q** be the position vectors of **P** and **Q** respectively, with respect to **O** and $|\mathbf{p}| = p$, $|\mathbf{q}| = q$. The points **R** and **S** divide PQ internally and externally in the ratio 2: 3 respectively. If OR and OS are perpendicular then
 - a) $9p^2 = 4q^2$
 - b) $4p^2 = 9q^2$
 - c) 9p = 4q
 - d) 4p = 9q

(1994)

- 8) Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$, $\beta \mathbf{i} + \gamma \mathbf{j} + \alpha \mathbf{k}$, $\gamma \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$
 - a) are collinear
 - b) form an equilateral triangle
 - c) form a scalene triangle
 - d) form a right angles triangle

(1994)

- 9) Let $\mathbf{a} = \mathbf{i} \mathbf{j}$, $\mathbf{b} = \mathbf{j} \mathbf{k}$, $\mathbf{c} = \mathbf{k} \mathbf{i}$. If \mathbf{d} is a unit vector such that $\mathbf{a} \cdot \mathbf{d} = 0 = [\mathbf{b} \ \mathbf{c} \ \mathbf{d}]$, then \mathbf{d} equals
 - a) $\pm \frac{i+j-2k}{\sqrt{6}}$

- 10) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non coplanar unit vectors such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{(\mathbf{b} + \mathbf{c})}{\sqrt{2}}$, then the angle between \mathbf{a} and \mathbf{b} is
 - a) $\frac{3\pi}{4}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{2}$ d) π

(1995S)