Experiential Learning Workshop on Networking

Mar 26, 2017

Dr. Ram P Rustagi
Dept of CSE
PES University
rprustagi@pes.edu

Exploration Topics

- Summary:
 - OSI Layers, Queuing, IP Address
- Exercise
 - Catching up with previous exercises.
- IP Routing
- Exercise 2
- Misc Content
- Summary

Exploration Topics

- Summary:
 - OSI Layers, Queuing, IP Address
- Exercise
 - Catching up with previous exercises.
- IP Routing
- Exercise 2
- Misc Content
- Summary

Queuing Delay: Case 4

- * Run a server program (server.py)
 - * It mimics processing (sleep) delay of N seconds
- Run the multiple invocations of client program.
- Note the delays in response
 - * Each client will have different response time.
 - Corresponds to queueing delay

Addressing Queuing Delay: Case 5

- * Run a server program (serverQ.py)
 - It mimics processing (sleep) delay of N seconds
 - Run multiple instances of server program
- * Run the multiple invocations of client program.
- Note the delays in response
 - Each client will talk to a different server.
 - No queueing delay

IP Addressing

- Assign IP Address to your machine
- Ping your neighbours
- Change your subnet
- See reachability
- Analyze IP packet header
- Change TTL
- Change default route.
- Access internet
- Assign ARP mapping
- access other hosts

IP Address Exercise - 3 (Routing)

- Connect 3 systems in following way
- Check connectivity
 - *A can reach B (el)
 - * C can reach B (e2)
 - * A can not reach C and vice versa
 - Requires routing

Exploration Topics

- Summary:
 - OSI Layers, Queuing, IP Address
- Exercise
 - Catching up with previous exercises.
- IP Routing
- Exercise 2
- Misc Content
- Summary

Routing Exercise - 4

- Connect 3 systems in following way
- Convert B into a router
 - sudo sysctl -w net.ipv4.ip forward=1
- On A
 - * sudo ip route add 10.1.1.64/26 via 10.1.1.62
- * On C
 - * sudo ip route add 10.1.1.0/26 via 10.1.1.65

Routing Exercise - 4

- * Do nc chat between A & C
- Do wireshark capture at A, and C
 - Identify the difference in Link layer headers
 - Note MAC Addresses
 - * Identify the difference in Network Headers
 - Note TTL and Checksum values

Routing Exercise - 5a

- * Add additional IP addresses to A, B & C as follows.
 - *A:10.2.1.1/24
 - *sudo ip addr add 10.2.1.1/24 dev <el>
 - **♦ B(el)**:10.2.1.201/24
 - **B(e2):**10.3.1.1/24
 - **C**:10.3.1.201/24
- * Define routing and check reachability of A & C

Routing Exercise - 5a

- Define routing to check reachability of A & C
- * Do nc chat between A & C(10.3.1.201)
 - ❖ On C, do nc −1 10.3.1.201 12345
 - *On A, do nc 10.3.1.201 12345
- Do wireshark capture at A & C
 - What is the source IP address?

Routing Exercise - 5b

- * From A using 10.1.1.1, ping C(10.3.1.201)
 - *ping -I 10.1.1.1 10.3.1.201
- * Analyze what happens using wireshark capture
- ♦ On C, run nc -u -l 22222
- ♦ On A, chat no u —s 10.1.1.1 10.3.1.201 22222
- * Analyze with wireshark

Routing Exercise - 6a

- Connect 4 systems in following way
- Convert B & C into router
- Assign your IP Addresses (3 networks)
- Define routing appropriately
- * Check reachability from each one to each other

Routing Exercise - 6b

- On A, define routing for network 3 only
 - Do not define routing for network 2
- On C, define routing for network I only
 - Do not define routing for network 2
- Check reachability between A to D
 - Can A & C also communicate
 - Can D & B also communicate

Routing Exercise - 7 (MITM)

- Let A & D chat (using nc)
- Do wireshark capture on B and C
 - Can you see the communication between A & D

Exercise - 8 (MITM)

- * Restore connectivity to as before in the lab.
 - Note B is not a router any more
- Should get IP Address 172.25.4.x/22
- * Note down your default router
 - *\$ip route show
- Objective::When A & C communicate, B can snoop
- Use ARP Spoofing to fool A & C go via B

Exercise - 8 MITM Contd.

- Convert B into a router
 - sudo sysctl -w net.ipv4.ip_forward=1
- Insstall ARP Sniffer on B
 - sudo apt-get install dsniff
- Issue ARP Spoof command on B for A & C
 - *arpspoof -i <el> -t <Address of A> -r
 <Address of C>
- * Run wireshark on B for IP address of A & C
 - * capture filter: host <A> or host <C>
- Let A & C chat
- * Read the chat in wireshark on B.

Thank You

19