Generating 25% Duty Cycle Clock with 50% Frequency

Chinmaya Sharma, chinmaya 24163@iiitd.ac.in

B.Tech. EVE (2024-2028), Indraprastha Institute of Information Technology, Delhi

Objective - To design a synchronous 25% duty-cycle clock generator with 50% frequency that produces a clock HIGH for exactly one input cycle and LOW for three cycles, using Verilog in eSim. Applications include clock gating, sampling systems, and power-efficient designs.

I. Circuit Details

The circuit is based on a 2-bit counter implemented with two D flip-flops. The outputs of the flip-flops represent the current state, and combinational logic generates the next state. A 4-to-1 multiplexer is used to produce the output HIGH for state 00 and LOW for all other states.

- Sequential block: 2-bit counter using D flip-flops with asynchronous reset.
- Combinational block: Next-state logic using addition.
- Output block: 4-to-1 multiplexer generating the 25% duty-cycle output.

II. Simulation Results

Simulation performed using Makerchip IDE using eSim. Output waveform demonstrates the correct 25% duty cycle (1 HIGH, 3 LOW).

PROJECT - LEARN - IDE -1 \TLV_version 1d: tl-x.org 3 * /* verilator lint_off UNUSED*/ /* verilator lint_off DECLFILENAME*/ / 5 //Your Verilog/System Verilog Code Starts Here: 8 - module duty_cycle(input clk, output reg out); reg [1:0] curr_state = 0; reg [1:0] next_state; always @(posedge clk) begin 13 15 16 always ∅(*) begin 17 case(curr_state) 18 2'b00: out = 1; 19 2'b01: out = 0; 2'b11: out = 0; 22 default: out = 0; 23 endcase 24 25 always @(*) begin

III. Netlist

Synthesis done using Yosys.

IV. Conclusion

The design successfully implements a 25% duty-cycle clock generator with 50% frequency. Simulation results match expected outputs, and the design is verified using Yosys synthesis. The circuit is compact and suitable for integration in larger digital systems requiring precise timing control.

GitHub Repository:

https://github.com/chinmaya24163/duty_cycle

REFERENCES

README.md:

https://github.com/chinmaya24163/duty_cycle/blob/main/README.md