

fim:

2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST – LEIC-Taguspark 9 dezembro 2019

NÚMERO NOME

1. (1 + 2 + 2 valores) Considere o seguinte programa do PEPE-16.

PLACE 2000H WORD 5 var: pilha: **TABLE** 100H fim_pilha: PLACE 0 MOV R1, var JMP fim

1.° Semestre 2019/2020

int_0: **PUSH** R2 MOV R2, 3 **CALL** rotina POP R2 **RFE** int_3: **PUSH** R2 MOV R2, 1 **CALL** rotina POP R2 **RFE PUSH** rotina: R3 MOV R3, [R1] DI ADD R3, R2 MOV [R1], R3 POP R3

RET

- Complete os espaços em branco com o necessário para as interrupções 0 e 3 funcionarem corretamente;
- b) Suponha que os sinais X e Y ligam aos pinos de interrupção 0 e 3 do PEPE, respetivamente, e têm a evolução temporal indicada na figura seguinte. Os flancos dos sinais X e Y nos instantes t_1 e t_2 ocorrem simultaneamente.

Sabendo que o programa começa a executar em t₀, que entre t1 e t2 decorrem cerca de 4 segundos e que a evolução temporal está aproximadamente à escala, preencha a tabela seguinte com informação sobre os acessos à variável "var" entre to e t3 (tempo aproximado em que ocorre, se é leitura ou escrita, qual o valor lido ou escrito e qual a interrupção que causou o acesso). Respeite a ordem temporal dos acessos.

c) Responda novamente à mesma questão da alínea b), mas agora substituindo a instrução DI da "rotina" pela instrução EI (que faz o oposto da instrução DI).

Alínea b) (DI)					
Tempo	Leitura/escrita	Valor	Interrup.		
L		ļ .	l .		

Alínea c) (EI)					
Tempo	Leitura/escrita	Valor	Interrup.		

2. (2 valores) Como vai ter uma boa nota neste teste, merece um portátil novo, para correr aquele jogo novo em que cada *frame* gasta 30% do seu tempo em CPU e 70% em GPU (processador gráfico). Está indeciso entre um (A) que consegue 100 *frames*/seg neste jogo e outro (B) cujo CPU é cerca de 50% (1,5 vezes) mais rápido e cujo GPU é cerca de 30% (1,3 vezes) mais lento. Assumindo que todos os restantes fatores são iguais nos dois portáteis, qual portátil escolheria, A ou B? <u>Justifique</u>, calculando quantos *frames*/seg o portátil B conseguirá neste jogo (contas aproximadas!).

3. (2 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a informação em falta sobre o descodificador e cada dispositivo (<u>bits de endereço</u> a que liga, <u>capacidade</u>, <u>saída do descodificador</u> a que deve ligar e o <u>endereço de fim</u> da gama de endereços em que esse dispositivo está ativo, <u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Saída do descodificador	Início (hexadecimal)	Fim (hexadecimal)
Periférico	A0-A7			8000H	
RAM 1	A0-A10			0000Н	
ROM		4 Ki		6000H	
RAM 2		512		С000Н	

4. (2 valores) Considere o seguinte circuito, com barramentos de 8 bits. C é o *clock* (tanto do trinco como da báscula) e S é o sinal de seleção do *multiplexer* (S=0 seleciona a entrada X). Assumindo que os sinais C e S evoluem ao longo do tempo da forma indicada na tabela seguinte, preencha os valores estáveis no resto da tabela (escreva todas as células, mesmo que o valor se mantenha). Todos os valores de 8 bits estão representados em hexadecimal (não é preciso colocar o H).

5. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de verdade a partir da tabela de Karnaugh e escrevendo a expressão algébrica mais simplificada que lhe é equivalente.

A	В	C	D	Z
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

			CD					
		00	01	11	10			
	00	1	1		1			
AB	01	1	1	1	1			
AD	11		1	1				
	10	1			1			

6. (1,5 + 0,5 valores) Pretende-se construir um circuito microprogramado que implemente a operação potência (base elevada a expoente) por multiplicações sucessivas da base. O diagrama seguinte descreve o circuito. Os registos R1 e R2 recebem a base e o expoente, respetivamente. O registo R3 vai acumulando o resultado das multiplicações. A saída da ALU pode tomar uma de quatro possibilidades, consoante o valor de OP_ALU: soma (SOMA) e multiplicação (MUL) dos dois operandos, 0 (ZERO) e 1 (UM). O sinal nZ está ativo (vale 1) quando R2 é diferente de zero e o sinal PRONTO é ativado quando o resultado está pronto.

a) Preencha a tabela seguinte com os valores necessários para implementar a funcionalidade descrita.
Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Microinstruções	PRONTO	LOAD_R1	LOAD_R2	DEC_R2	OP_ALU	LOAD_R3	SEL_MICRO _SALTO	MICRO_ SALTO
0	R1 ← Base R2 ← Expoente								
1	R3 ← 1								
2	R3 ← R3 * R1								
3	R2 ← R2 - 1								
4	$(R2 != 0): MPC \leftarrow 2$								
1 5	$\begin{array}{l} PRONTO \; \leftarrow 1 \\ MPC \; \leftarrow 5 \end{array}$								

- b) Quantos bits de largura deve ter no mínimo a ROM de microprograma?
- 7. (1,5 + 1,5 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, com uma capacidade de 512 palavras (<u>blocos de 4 palavras</u>).
 - a) Indique o número de bits de cada um dos campos em que o endereço se divide para acesso à cache.

Etiqueta	
Índice	
Palavra dentro do bloco	
Byte dentro da palavra	

b) Na execução de instruções do tipo MOV R1, [R2], o núcleo do PEPE verificou que nuns casos o valor de R1 demorava 3 ns a obter, noutros 20 ns, e que em média demorava 6,4 ns. Qual a taxa de sucesso (*hit rate*) da *cache* com este programa?

8. (2 valores) Considere um processador com 32 bits de endereço, endereçamento de byte e suporte para memória virtual com páginas de 4Ki bytes. Assuma que a memória física tem uma capacidade de 4 Mi bytes e que a TLB é uma *cache* totalmente associativa de 4 entradas, cujo conteúdo é numa dada altura o indicado na tabela da esquerda. Acabe de preencher as outras duas tabelas para este exemplo concreto.

Válida	Página alterada	N° de página virtual	Nº de página física	
1	1	23BAH	68H	
0	0	7BAH	3BH	
1	1	158FCH	3AH	
1	0	2B5DH	3BH	

Dimensão do espaço virtual	
Número de páginas virtuais	
Número de páginas físicas	

Endereço virtual	Endereço físico
	3AB6CH
23BAE4AH	
	3B813H
	68A18H