3. Algebraické struktury (grupy, okruhy, obory integrity a tělesa, svazy a Booleovy algebry, univerzální algebry)

Klasifikace založená na grupách

Algebra (A, \cdot) typu (2) se nazývá **grupoid**.

Grupoid (H, \cdot) se nazývá **pologrupa** právě tehdy, když je · asociativní.

Pologrupa $(H,\cdot)/(H,\cdot,e)$ se nazývá **monoid** typu (2)/(2, 0), pokud e je neutrální prvek. Monoid je tedy asociativní algebra s neutrálním prvkem.

Monoid (G,\cdot) / $(G,\cdot,e,-1)$ se nazývá **grupa** typu (2)/(2, 0, 1) $\Leftrightarrow \forall x \in G$ je invertibilní, tj. $\forall x \in G \exists x^{-1} \in G : xx^{-1} = e$. Grupoid je tedy algebra, která je asociativní, má neutrální prvek a všechny prvky jsou invertibilní. Grupa, která je navíc i komutativní se nazývá **abelovská grupa**.

Algebra $(R,+,\cdot)$ / $(R,+,0,-,\cdot)$ se nazývá **okruh** typu (2,2)/(2,0,1,2) právě když je to vůči (R,+) abelovksá grupou, vůči (R,\cdot) pologrupa a operace · je distributivní nad +. Prvek 0 nazýváme **nulovým prvkem** okruhu vzhledem k +.

Okruh s jednotkovým prvek je algebra $(R,+,0,-,\cdot,1)$ typu (2,0,1,2,0), kde $(R,+,0,-,\cdot)$ je okruh a 1 je neutrální prvek vzhledem k ·, který nazýváme **jednotkovým prvkem** k násobení. Okruh s vlastností komutativity se nazývá **komutativní okruh**.

Komutativní okruh s jednotkovým prvkem se nazývá **obor integrity** ⇔:

 \square $R\setminus\{0\}\neq\emptyset$ (tj. $0\neq1$ je netriviální, nosná množina obsahuje aspoň dva prvky);

Okruh s jednotkovým prvkem $(R,+,0,-,\cdot,1)$ se nazývá **těleso**, pokud je netriviální a neobsahuje dělitele nuly.

Komutativní těleso se nazývá **pole** \Leftrightarrow $0 \neq 1 \land (R \setminus 0)$ je abelovská grupa. Každé pole je tak obor integrity.

Vlastnosti grup

Základní vlastnosti, které vnímáme na množině reálných čísel, jako součin, pravidla pro počítání s mocninami.

Buď G_i , e_i –1 je grupa a $a \in G$. Potom **kardiální číslo (řád prvku)** je množství různých mocnin a:

o
$$(a) = |\{a^0 = e, a^1, a^{-1}, a^2, a^{-2}, ...\}| = |\{a^k | k \in \mathbb{Z}\}|$$

Řádem grupy rozumíme |G| mohutnost nosné množiny, kdy $\forall a \in G : o(a) \leq G$.

Klasifikace založená na svazech

Svaz je algebra (V, \cap, \cup) typu (2, 2), kde platí, že \cap, \cup jsou komutativní i asociativní a platí **absorpční zákony** $X \cap (X \cup Y) = X$ a $X \cup (X \cap Y) = X$. Obecně nazýváme \cap průsekem a \cup spojením.

U svazů platí princip duality kdy svaz je (V, \cap, \cup) , právě když (V, \cup, \cap) je svaz.

Svaz je **distributivním svazem**, když platí distributivní zákon svazů, kde je \cup distributivní nad \cap , ale i \cap je distributivní nad \cup :

$$a \cap (b \cup c) = (a \cap b) \cup (a \cap c)$$
 a $a \cup (b \cap c) = (a \cup b) \cap (a \cup c)$

Prvek $0 \in V$ se nazývá **nulový prvek svazu** V (neutrální k \cup) $\Leftrightarrow \forall a \in V : a \cup 0 = a$ a prvek $1 \in V$ se nazývá **jednotkový prvek svazu** V (neutrální k \cap) $\Leftrightarrow \forall a \in V : a \cap 1 = a$. Svaz, který má oba tyto prvky, se nazývá **ohraničený svaz**.

Ohraničený svaz $(V, \cap, \cup, 1, 0)$ se nazývá **komplementární** $\Leftrightarrow \forall a \in V \exists a' \in V : a \cap a' = 0 \land a \cup a' = 1$. Prvek a' se nazývá **komplementem** a.

Distributivní a komplementární ohraničený svaz $(V, \cap, \cup, 1, 0)$ se nazývá **Booleův svaz**. Algebra $(B, \cap, \cup, 1, 0, 0)$ typu (2, 2, 0, 0, 1) se nazývá **Booleova algebra**.

Univerzální algebry

Buď A množina, $n \in \mathbb{N}_0$, pak zobrazení $\omega: A^n \to A$ nazýváme n-ární operaci na A. n je četnost (arita) operace.

pro
$$n \in \mathbb{N}0$$
: ω : { $A_n \to A$
 $A \times A \times ... A \to A$
 $(x_1, x_2, ..., x_n) \mapsto \omega x_1 x_2 ... x_n$
pro $n = 0$: ω : { $A_0 = \{\emptyset\} \to A$
 $\emptyset \mapsto \omega \emptyset$
pro $n = 2$: ω : { $A_2 \to A$
 $(x,y) \mapsto \omega xy = :x \omega y$

Buď A množina, $n \in \mathbb{N}_0, D \subseteq A^n$. Potom zobrazení $\omega: D \to A$ se nazývá n-ární parciální operace. Například dělení je parciální operace na množině \mathbb{R} , nelze dělit 0, neexistuje tedy zobrazení s 0 jakožto druhým operandem do \mathbb{R} .

Buď A množina, I množina indexů. Pro $i \in I$ buď $\omega_i n_i$ -ární operace na A, kde $n_i \in \mathbb{N}_0$. Potom $\mathfrak{A} = (A, (\omega_i)_{i \in I}) = (A, \Omega)$ označuje **univerzální algebru** s nosnou množinou A a souborem operací $(\omega_i)_{i \in I} =: \Omega$

Systém arit operace je soubor $nii \in I$ se nazývá **typ** algebry (A, Ω). Algebry téhož typu jsou podobné.

Například (\mathbb{Z} ,+,-,0,.,1) je algebra typu (2, 1, 0, 2, 0).

Buď A množina, o binární operace na A, pak prvek $e \in A$ se nazývá vzhledem k o:

② **neutrální**⇔ $\forall x$ ∈A: e∘x = x∘e = x.

Buď A množina, o binární operace na A, neutrální prvek e a $x \in A$. Potom prvek $y \in A$ se vůči x nazývá:

Ke každé operaci existuje nejvýše jeden neutrální prvek a inverzní prvek. Ke každé operaci inverzní prvek existovat nemusí (prvek není invertibilní), nebo může být prvek inverzní sám k sobě.

Asociativní zákon: Buď *A* množina, \circ binární operace na *A*, pak \circ se nazývá **asociativní** $\Leftrightarrow \forall x,y,z \in A: x \circ y \circ z = (x \circ y) \circ z.$

Komutativní zákon: Buď A množina, \circ binární operace na A, pak \circ se nazývá **komutativní** $\Leftrightarrow \forall x,y \in A: x \circ y = y \circ x.$

Distributivní zákon: Pokud jsou +,· binární operace nad *A*, potom · je **distributivní** nad + $\nearrow \forall x,y,z \in A$:

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

? ^

 $(y+z) \cdot x = y \cdot x + z \cdot x$