Midterm

Michael Nelson

Throughout this homework, $\|\cdot\|$ denotes the ℓ_2 -norm (except in part 1 of problem 1 where we use the ℓ_{∞} norm). If $v, w \in \mathbb{R}^n$, then we set $\langle v, w \rangle = v^{\top} w$. Also we set $\varepsilon = \varepsilon_{\text{mach}}$ to be the machine coefficient. The exam took me roughly 6 hours to finish.

Problem 1

Exercise 1. Solve the following.

- 1. Let $f(x) = x_1^2 \ln x_2$ where $x_2 > 0$. Find the relative condition number of f. If $x_1 \approx 1$, for what values of x_2 is this evaluation ill-conditioned?
- 2. Let $A \in \mathbb{R}^{n \times n}$ and (λ, v) be an eigenpair such that $Av = \lambda v$. Let $(\widehat{\lambda}, \widehat{v})$ be a numerically computed approximation to (λ, v) . Assume that $||v|| = ||\widehat{v}|| = 1$. Find the vector x such that $(\widehat{\lambda}, \widehat{v})$ is an eigenpair of $A + \Delta A$, where $\Delta A = x\widehat{v}^H$. Give the expression of $||\Delta A||$ (should not contain x), and explain why $||A\widehat{v} \widehat{\lambda}\widehat{v}|| \leq O(||A||\varepsilon)$ means $(\widehat{\lambda}, \widehat{v})$ is computed by a backward stable algorithm.

Solution 1. 1. In this part of the problem, we use the ℓ_{∞} norm $\|\cdot\|_{\infty} = \|\cdot\|$. Since f is differentiable we see that

$$\kappa_{f}(x) = \frac{\|J_{f}(x)\| \|x\|}{|f(x)|}$$

$$= \frac{\|(2x_{1} \ln x_{2} | x_{1}^{2}/x_{2})\| \|x\|}{|x_{1}^{2} \ln x_{2}|}$$

$$= \frac{(|2x_{1} \ln x_{2}| + |x_{1}^{2}/x_{2}|) \max\{|x_{1}|, |x_{2}|\}}{|x_{1}^{2} \ln x_{2}|}$$

$$= \frac{(|2 \ln x_{2}| + |x_{1}/x_{2}|) \max\{|x_{1}|, |x_{2}|\}}{|x_{1} \ln x_{2}|},$$

$$= \frac{2 \max\{|x_{1}|, |x_{2}|\}}{|x_{1}|} + \frac{\max\{|x_{1}|, |x_{2}|\}}{|x_{2} \ln x_{2}|},$$

Thus we have

$$\kappa_f(\mathbf{x}) = \begin{cases} \frac{2x_2}{|x_1|} + \frac{1}{\ln x_2} & \text{if } x_2 \ge |x_1| \\ 2 + \frac{|x_1|}{x_2 |\ln x_2|} & \text{if } |x_1| \ge x_2 \end{cases}$$

Now we assume that $x_1 \approx 1$. Then

$$\kappa_f(\mathbf{x}) \approx \begin{cases} 2x_2 + \frac{1}{\ln x_2} & \text{if } x_2 \ge x_1 \approx 1\\ 2 + \frac{1}{x_2 |\ln x_2|} & \text{if } x_2 \le x_1 \approx 1 \end{cases}$$

Let us analyze for which x_2 is this problem is ill-conditioned. First we consider the case where $x_2 \ge x_1 \approx 1$. Then the problem is ill-conditioned if and only if

$$\kappa_f(x) = 2x_2 + \frac{1}{\ln x_2}$$

is large, which happens if and only if x_2 is large. Next we consider the case where $0 < x_2 \le x_1 \approx 1$. Then the problem is ill-conditioned if and only if

$$2 + \frac{1}{x_2 \left| \ln x_2 \right|}$$

is large, which happens if and only if $\frac{1}{x_2|\ln x_2|}$ is large which happens if $x_2 \approx 0$ or $x_2 \approx 1$.

2. We have

$$(A + \Delta A)\widehat{v} = \widehat{\lambda}\widehat{v} \iff (A + x\widehat{v}^{\top})\widehat{v} = \widehat{\lambda}\widehat{v}$$

$$\iff A\widehat{v} + x\|\widehat{v}\|^2 = \widehat{\lambda}\widehat{v}$$

$$\iff A\widehat{v} + x = \widehat{\lambda}\widehat{v}$$

$$\iff x = \widehat{\lambda}\widehat{v} - A\widehat{v}.$$

Thus we have

$$\|\Delta A\| = \|x\| \|\widehat{v}\|$$

$$= \|x\|$$

$$= \|\widehat{\lambda}\widehat{v} - A\widehat{v}\|.$$

In particular, $\|\widehat{\lambda}\widehat{v} - A\widehat{v}\| = O(\|A\|\varepsilon)$ means

$$\frac{\|\Delta A\|}{\|A\|} = \frac{\|\widehat{\lambda}\widehat{v} - A\widehat{v}\|}{\|A\|} = O(\varepsilon),$$

which shows that $(\hat{\lambda}, \hat{v})$ is computed by a backward stable algorithm.

1 Problem 2

Exercise 2. Solve the following:

- 1. Assume that $U, V \in \mathbb{R}^{n \times p}$ (p < n) have full rank, and $V^{\top}U$ is nonsingular. Show that $P = 1 U(V^{\top}U)^{-1}V^{\top}$ is a projector, and find the range and null space of P. What can we say about P and ||P|| if range(U) = range(V)?
- 2. Let $x \in \mathbb{R}^n$ and consider the vector $z = (0_{n-1}, \|x\|, x)^{\top} \in \mathbb{R}^{2n}$. Find the Householder reflector $H = 1 2vv^{\top}$ that reduces z such that Hz is a multiple of e_1 (sufficient to find the expression of v). For $y = (0_n, x)^{\top} \in \mathbb{R}^{2n}$, give the simplified expression of Hy.
- 3. Given a 6×4 matrix A with all nonzero entries, illustrate the procedure of Golub-Kahan bidiagonalization, and explain how to compute all singular values of A.

Solution 2. 1. Observe that

$$\begin{split} P^2 &= (1 - U(V^\top U)^{-1}V^\top)(1 - U(V^\top U)^{-1}V^\top) \\ &= 1 - 2U(V^\top U)^{-1}V^\top + (U(V^\top U)^{-1}V^\top)(U(V^\top U)^{-1}V^\top) \\ &= 1 - 2U(V^\top U)^{-1}V^\top + U(V^\top U)^{-1}(V^\top U)(V^\top U)^{-1}V^\top \\ &= 1 - 2U(V^\top U)^{-1}V^\top + U(V^\top U)^{-1}V^\top \\ &= 1 - U(V^\top U)^{-1}V^\top \\ &= P. \end{split}$$

It follows that *P* is a projector. We have

$$x \in \operatorname{range}(P) \iff Px = x$$
 since P is a projector
$$\iff x - U(V^\top U)^{-1}V^\top x = x$$

$$\iff U(V^\top U)^{-1}V^\top x = 0$$
 since $U \colon \mathbb{R}^p \to \mathbb{R}^n$ is injective
$$\iff V^\top x = 0$$
 since $(V^\top U)^{-1} \colon \mathbb{R}^p \to \mathbb{R}^p$ is injective
$$\iff x \in \operatorname{null}(V^\top).$$

Thus we have $\operatorname{range}(P) = \operatorname{null}(V^{\top})$. Similarly we claim that $\operatorname{null}(P) = \operatorname{range}(U)$. To see this, first suppose $x \in \operatorname{range}(U)$, so x = Uy. Then

$$Px = x - U(V^{T}U)^{-1}V^{T}x$$

$$= Uy - U(V^{T}U)^{-1}V^{T}x$$

$$= U(y - (V^{T}U)^{-1}V^{T}x)$$

$$= U(y - (V^{T}U)^{-1}V^{T}Uy)$$

$$= U(y - y)$$

$$= 0$$

implies $x \in \text{null}(P)$. Thus range $(U) \subseteq \text{null}(P)$. Conversely, suppose that $x \in \text{null}(P)$. Then

$$0 = Px$$

$$= x - U(V^{T}U)^{-1}V^{T}x$$

$$= x - Uy$$

where $y = (V^{\top}U)^{-1}V^{\top}x$ implies $x \in \text{range}(U)$. Thus $\text{null}(P) \subseteq \text{range}(U)$. Thus we have shown

$$range(P) = null(V^{\top})$$
 and $null(P) = range(U)$.

We now assume that range(U) = range(V). In this case, one has the decomposition

$$\mathbb{R}^n \cong \text{null}(P) \oplus \text{range}(P) = \text{range}(V) \oplus \text{null}(V^\top). \tag{1.1}$$

Indeed, suppose $x \in \text{range}(V) \cap \text{null}(V^{\top})$. Choose y such that Vy = x. Then note that

$$||x||^2 = ||Vy||^2$$

$$= (Vy)^\top Vy$$

$$= y^\top V^\top Vy$$

$$= y^\top V^\top x$$

$$= 0$$

implies x = 0. Thus range $(V) \cap \text{null}(V^{\top}) = 0$. Furthermore, note that

$$\dim(\operatorname{range}(V)) = p$$
 and $\dim(\operatorname{null}(V^{\top})) = n - p$

since V has full rank. Thus we obtain the decomposition (1.1) as claimed. So every $x \in \mathbb{R}^n$ can be expressed uniquely as x = Vy + z where $y \in \mathbb{R}^p$ and where $z \in \text{null}(V^\top)$. In fact, we claim (1.1) is an orthogonal decomposition. Indeed, suppose $Vy \in \text{range}(V)$ and $z \in \text{null}(V^\top)$. Then note that

$$\langle Vy, z \rangle = (Vy)^{\top}z = y^{\top}V^{\top}z = 0.$$

Thus (1.1) is an orthogonal decomposition and P is the orthogonal projection map onto $\text{null}(V^{\top})$. In this case, we have ||P|| = 1. Indeed,

$$||Px|| = ||P^2x||$$

$$\leq ||P|| ||Px||$$

shows $||P|| \ge 1$. Conversely, by the Pythagorean theorem we have

$$||x||^2 = ||Px||^2 + ||x - Px||^2$$

 $\ge ||Px||^2,$

which implies $||Px|| \le x$ which implies $||P|| \le 1$.

2. Let $\hat{z} = z/\|z\|$ and let $v = \hat{z} - e_1$. Note that

$$\langle v, \widehat{z} \rangle = \langle \widehat{z} - e_1, \widehat{z} \rangle$$

$$= \langle \widehat{z}, \widehat{z} \rangle - \langle e_1, \widehat{z} \rangle$$

$$= 1 - 0$$

$$= 1.$$

Similarly note that since $\langle \hat{z}, e_1 \rangle = 0$, we have

$$||v||^2 = ||\widehat{z}||^2 + ||e_1||^2$$

= 1 + 1
= 2,

Therefore we have

$$H_{v}(z) = ||z||H_{v}(\widehat{z})$$

$$= ||z|| \left(\widehat{z} - 2\frac{\langle v, \widehat{z} \rangle}{||v||^{2}}v\right)$$

$$= ||z|| (\widehat{z} - v)$$

$$= ||z|| (\widehat{z} - (\widehat{z} - e_{1}))$$

$$= ||z||e_{1}$$

$$= \sqrt{2}||x||e_{1},$$
 since $||z||^{2} = 2||x||^{2}$.

In other words, $H = H_v = 1 - 2\hat{v}\hat{v}^{\top}$ where $\hat{v} = v/||v||$ is the Hausdorff reflector which reduces z such that

$$Hz = \sqrt{2} ||x|| e_1.$$

Now suppose that $y = (0_n, x)^\top \in \mathbb{R}^{2n}$, then we have

$$\begin{split} \langle v,y \rangle &= \langle \widehat{z} - e_1,y \rangle \\ &= \langle \widehat{z},y \rangle - \langle e_1,y \rangle \\ &= \langle \widehat{z},y \rangle \\ &= \frac{1}{\|z\|} \langle z,y \rangle \\ &= \frac{1}{\sqrt{2}\|x\|} \|x\|^2 \\ &= \frac{1}{\sqrt{2}} \|x\|, \end{split} \text{ since } \langle z,y \rangle = \|x\|^2 \end{split}$$

Thus we have

$$H_{v}(y) = y - 2\frac{\langle v, y \rangle}{\|v\|^{2}}v$$

$$= y - \langle v, y \rangle v$$

$$= y - \frac{1}{\sqrt{2}}\|x\| \left(\frac{z}{\|z\|} - e_{1}\right)$$

$$= y - \frac{1}{\sqrt{2}}\|x\| \left(\frac{z}{\sqrt{2}\|x\|} - e_{1}\right)$$

$$= y - \frac{z}{2} + \frac{1}{\sqrt{2}}\|x\|e_{1}$$

$$= \begin{pmatrix} \|x\|/\sqrt{2} \\ 0_{n-2} \\ -\|x\|/2 \\ x/2 \end{pmatrix}.$$

3. Let *A* be a 6×4 matrix with nonzero entries:

where the *'s indicate nonzero entries. The Golub-Kahan bidiagonalization procedure is illustrated as follows:

where the U_i and V_i are appropriately chosen Householder transformations. Thus we obtain

$$\begin{pmatrix} B \\ 0 \end{pmatrix} = UAV^{\top},$$

where *B* is a bidiagonal matrix:

$$B = \begin{pmatrix} b_1 & c_1 & 0 & 0 \\ 0 & b_2 & c_2 & 0 \\ 0 & 0 & b_3 & c_3 \\ 0 & 0 & 0 & b_4 \end{pmatrix}.$$

Thus to obtain the singular values of A, we just need to calculate the eigenvalues of

$$B^{\top}B = \begin{pmatrix} b_1^2 & b_1c_1 & 0 & 0 \\ b_1c_1 & b_2^2 + c_1^2 & b_2c_2 & 0 \\ 0 & b_2c_2 & b_3^2 + c_2^2 & b_3c_3 \\ 0 & 0 & b_3c_3 & b_4^2 + c_3^3 \end{pmatrix},$$

and the singular values of A will be the square root of the eigenvalues of $B^{\top}B$.

2 Problem 3

Exercise 3. Solve the following:

- 1. Let $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, let $A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$. Show that $||A^{\dagger}|| = 1/\sigma_n(A)$ (assume that A has full column rank).
- 2. Let $A = \begin{pmatrix} A_1 & A_2 \end{pmatrix}^{\top}$ where $A_1 \in \mathbb{R}^{n \times n}$ is nonsingular. Show that $\sigma_n(A) \geq \sigma_n(A_1)$ (explore the relation between ||Ax||/||x|| and $||A_1x||/||x||$) and $||A^{\dagger}|| \leq ||A_1^{-1}||$.
- 3. Define the numerial rank of $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ as $\operatorname{rank}(A, \varepsilon) = \max\{k \mid \sigma_k \ge \varepsilon\}$ $(\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n)$. If A has numerical rank k < n for a given ε , find a numerically full rank B satisfying $\inf_{\operatorname{rank}(B,\varepsilon)=n} \|A B\|_F$ and show that $\|B A\|_F \le \varepsilon \sqrt{n k}$.

Solution 3. 1. Let $A = U\Sigma V^{\top}$ be an SVD of A where $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n, 0_{m-n})$ where $\sigma_1 \geq \cdots \geq \sigma_n$. Then

$$A^{\dagger} = (A^{\top}A)^{-1}A^{\top}$$

$$= (V\Sigma^{\top}U^{\top}U\Sigma V^{\top})^{-1}(V\Sigma^{\top}U^{\top})$$

$$= (V\Sigma^{\top}\Sigma V^{\top})^{-1}(V\Sigma^{\top}U^{\top})$$

$$= (\Sigma^{\top}\Sigma V V^{\top})^{-1}(V\Sigma^{\top}U^{\top})$$

$$= (\Sigma^{\top}\Sigma)^{-1}(V\Sigma^{\top}U^{\top})$$

$$= V((\Sigma^{\top}\Sigma)^{-1}\Sigma^{\top})U^{\top}$$

$$= V\Sigma^{\dagger}U^{\top},$$

shows that $A^{\dagger} = V \Sigma^{\dagger} U^{\top}$ is an SVD of A^{\dagger} , where we used the fact that $\Sigma^{\top} \Sigma$ is a diagonal matrix (and thus commutes with all other matrices) and where we set $\Sigma^{\dagger} = (\Sigma^{\top} \Sigma)^{-1} \Sigma^{\top}$. A straightforward computation shows that Σ^{\dagger} has the form:

$$\Sigma^{\dagger} = \begin{pmatrix} \operatorname{diag}(\sigma_1^{-1}, \dots, \sigma_n^{-1}) & 0_{m-n} \end{pmatrix}.$$

Thus the singular values of A^{\dagger} are $\sigma_1^{-1}, \ldots, \sigma_n^{-1}$. In particular, we have

$$||A^{\dagger}|| = \max\{\sigma_1^{-1}, \dots, \sigma_n^{-1}\} = \sigma_n^{-1}.$$

2. Observe that

$$||Ax||^2 = ||A_1x||^2 + ||A_2x||^2 \ge ||A_1x||^2$$

implies $||Ax|| \ge ||A_1x||$ for all x. Thus

$$\sigma_n(A) = \min \{ ||Ax|| / ||x|| \mid x \neq 0 \}$$

$$\geq \min \{ ||A_1x|| / ||x|| \mid x \neq 0 \}$$

$$= \sigma_n(A_1).$$

In particular, this implies

$$||A^{\dagger}|| = \sigma_n(A)^{-1} \le \sigma_n(A_1)^{-1} = ||A_1^{-1}||$$

by part 1 of this problem.

3. Let $A = U\Sigma V^{\top}$ be an SVD of A and set $B = U\widetilde{\Sigma}V^{\top}$ where $\widetilde{\Sigma} = \operatorname{diag}(\sigma_1, \dots, \sigma_k, \varepsilon, \dots, \varepsilon)$. Then note that

$$B - A = U(\widetilde{\Sigma} - \Sigma)V^{\top}$$

is an SVD of B-A where $\widetilde{\Sigma}-\Sigma=\mathrm{diag}(0_k,\varepsilon-\sigma_{k+1},\ldots,\varepsilon-\sigma_n)$. In particular, note that

$$||B - A||_{F} = \sqrt{(\varepsilon - \sigma_{k+1})^{2} + \dots + (\varepsilon - \sigma_{n})^{2}}$$

$$\leq \sqrt{\varepsilon^{2} + \dots + \varepsilon^{2}}$$

$$= (\sqrt{n - k})\varepsilon.$$