

Fonte da imagem: https://cutt.ly/D4jVvQY

Sistema Binário

OBJETIVOS (continuação)

- → Compreender os conceitos do que seria a aritmética computacional:
 - Representação de números ✓;
 - Conversões entre bases √.
- → Como trabalhar com a aritmética não decimal ou aritmética binária ✓.
- → Aritmética Octal, Hexadecimal ✓.
- → Representação Numérica:
 - Binário mais significativo e menos significativo ✓;
 - Conhecer os números fracionários na arquitetura de computadores ✓;
 - Ser capaz de realizar a representação numérica computacional;
 - Forma dos complementos de 1 e de 2 de um número binário.
- → Divisão e Multiplicação.
- → Ponto Fixo e Ponto Flutuante.

Sistema Binário

Na aula 04 e 05 vimos as formas de cálculos para a "Conversão de Bases e Aritmética I (soma e subtração)".

Hoje analisaremos:

- A vírgula binária (MSB e LSB),
- A representação de números binários com sinal negativo e positivo";
- As formas de "complementos de 1 e 2".

Sistema Binário

Binário Mais e Menos Significativo

Valores Posicionais	8	4	2	1		$\frac{1}{2}$	1 4	$\frac{1}{8}$
Expoente de "b^"	2 ³	2 ²	2 ¹	2 0		2-1	2 -2	2 -3
	Ţ	Ţ	ļ	ļ		1	ļ	Ţ
Valor Binário	1	0	1	1	•	1	0	1
	1				1			1
	MSB	Vírgula Binária LSB						
Valores posicionais de Base 2 ⇒ Binário com vírgula								

Fonte: Adaptada pelo autor (2023)

- → MSB (Most Significant Bit): Posição mais a esquerda do bit binário mais significativo.
- → LSB (Less Significant Bit): Posição mais a direita do bit binário menos significativo.

Sistema Binário – Binário Mais e Menos Significativo

O **ponto**, considerado a **v**írgula binária, possui a mesma função da vírgula decimal: separar a parte **inteira** do número de sua parte **fracionária**.

Valores Posicionais	→	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	1 8
Expoente de "b^"	→	2 ³	2 ²	2 ¹	2 0		2-1	2 -2	2 -3
		ţ	Ţ	1	Ţ		Ţ	Ţ	Ţ
Valor Binário	→	1	0	1	1	•	1	0	1
		1	† † †						
		MSB	B Vírgula Binária LSB						
Valores posicionais de Base 2 ⇒ Binário com vírgula									

Fonte: Adaptada pelo autor (2023)

- → À esquerda da vírgula binária estão as potências de 2 com expoente positivo (+).
- → À direita da vírgula binária estão as potências de 2 com expoente negativo (-) com os valores antes da vírgula/ponto.
- → IMPORTANTE: Não existe expoente zero negativo.

Para descobrir, precisamos somar os produtos do valor de cada dígito (0 ou 1) pelo seu respectivo valor posicional (**peso**).

Sistema Binário – Binário Mais e Menos Significativo

Passo 1 – Analisar os valores posicionais:

Valores Posicionais ——	→ 8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	1 8
Expoente de "b^" —	→ 2 ³	2 ²	21	2 ⁰		2-1	2-2	2 -3
	Ţ	Ţ	1	1		Ţ	Ţ	Ţ
Valor Binário —	→ 1	0	1	1	•	1	0	1
	1				1			1
	MSI	Vírgula Binária LSB						
Valores posicionais de Base 2 ⇒ Binário com vírgula								

Fonte: Adaptada pelo autor (2023)

- → Valores positivo \Rightarrow 2³ = 8 | 2² = 4 | 2¹ = 2 | 2⁰ = 1
- \rightarrow Valores negativos \Rightarrow 2⁻¹ = ½ = 0,5 | 2⁻² = ¼ = 0,25 | 2⁻³ = ½ = 0,125

Entendo o que foi feito:

Ao valores foram convertidos para a linguagem decimal, $\mathbf{b_{10}}$, com base nos expoentes positivo e negativos.

Sistema Binário – Binário Mais e Menos Significativo

Passo 2 – Calcular:

Valores Posicionais —	→	8	4	2	1		$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
Expoente de "b^" —	→	2 ³	2 ²	2 ¹	2 ⁰		2-1	2 -2	2 -3
		ļ	Ţ	ļ	ļ		Ţ	Ţ	Ţ
Valor Binário —	→ [1	0	1	1	•	1	0	1
		1				1			1
		MSB	Vírgula Binária L						
Valores posicionais de Base 2 ⇒ Binário com vírgula									

Fonte: Adaptada pelo autor (2023)

$$\Rightarrow$$
 N = n * b^{\(\)}

$$\Rightarrow$$
 N = (1011.101)₂ =((1 * 2³) + (0 * 2²) + (1 * 2¹) + (1 * 2⁰)) + ((1 * 2⁻¹) + (0 * 2⁻²) + (1 * 2⁻³)) =

$$\Rightarrow$$
 N = (1011.101)₂ = (8 + 0 + 2 + 1) + (0,5 + 0 + 0,125) =

$$\Rightarrow$$
 N = (1011,.101)₂ = 11 + 0,625 = 11,625

$$\Rightarrow$$
 N = (1011.101)₂ = (11,625)₁₀

Sistema Binário – Binário Mais e Menos Significativo

Relembrando a Soma

Na soma de valores binários com vírgula é igual ao processo de soma sem vírgula com as mesmas regras da soma binária.

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO								
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						

Somar o binário de base 2 com vírgula => (11,011) ₂ + (10,110) ₂							0)2				
Transporte ou Vai um				1	1	1		1			Decimal
Parcelas da Soma					1	1	,	0	1	1	3,375 ₁₀
Transporte ou Vai um					0	0		1			
Parcelas da Soma	+				1	0	,	1	1	0	2,75 ₁₀
Somatória				1	1	0	,	0	0	1	6,125 ₁₀

A soma de $(11,011)_2 + (10,110)_2 = (110,001)_2$ ou $(6,125)_{10}$

Sistema Binário

Representação de números binários com Sinal negativo / positivo.

Sistema Binário - Representação de números binários com sinal

Como sabemos, os computadores e as calculadoras trabalham com **números negativos e positivos**, necessários para os cálculos que engloba os valores "Reais".

Para que a leitura negativa ou positiva acrescenta-se a esquerda do binário mais um bit, denominado bit de sinal, onde:

- Se o valor for "0" no bit de sinal, representará um valor positivo;
- Se o valor for "1" no bit de sinal, representará um valor negativo.

Sistema Binário - Representação de números binários com sinal

Exemplo:

- O registrador A contém os bits
 O110100₂, o bit O mais à esquerda do
 MSB, "A₆" é um bit de sinal positivo ao binário (110100)₂ que está sendo armazenado pelo registrador A.
- Ao contrário, no registrador B o armazenamento binário assume uma posição de valor negativa devido ao bit 1 a esquerda do MSB, "B₆".

Chamamos esse modelo de representação de "Sistema Sinal-Magnitude".

Sistema Binário

Complementos de 1 e 2 de um binário

Na aritmética binária para a representação de números binários com sinal, os cálculos são elaborados através dos "Sistemas de Complementos de 2 e 1", sendo o de complemento de 2 o mais utilizado e o de complemento de 1 o mais simples de calcular.

Complemento de 1:

→ O complemento de 1 de um valor binário é obtido pela substituição de cada bit do número binário através de seu complemento, se for "0" troca-se para "1" e vice-versa, por exemplo:

(101101) ₂	=> Número binário original				
=> Onde for 0 (zero) no original passa a ser 1.					
$(010010)_2$	=> Complementando cada bit para obter o complemento de 1				

Sistema Binário – Complementos de 1 e de 2 de um binário

Complemento de 2:

- → Já, o complemento de 2 de um número binário é mais trabalhoso que o complemento de 1, onde:
 - 1. Inicialmente faz-se o complemento de 1 do número binário.
 - 2. Após o complemento de 1 adiciona-se 1 bit na posição do bit menos significativo, mais a direita, para se somado e completar o cálculo.

	Exemplo de Complemento de 2 do Binário 101101 ₂								
	(101101) ₂ => Número binário original								
	$(0\ 1\ 0\ 0\ 1\ 0)_2$	=> Complementando cada bit para obter o complemento de 1							
_	→+1	=> Adicionando 1 para obter o complemento de 2							
	(0 1 0 0 1 1) ₂ => Complemento de 2 do número binário original								

Sistema Binário

Representação de números com sinal em complemento de 2

A representação de números com sinal no sistema de complemento de 2 trabalha os cálculos da seguinte forma:

- → Se o número for positivo: a magnitude é representada na forma binária direta, e um bit
 de sinal 0 será colocado a esquerda do MSB (binário mais significativo).
- → Se o número for negativo: a magnitude é representada na forma do complemento de
 2, e um bit de sinal 1 será colocado a esquerda do MSB (binário mais significativo).
 - ⇒ Caso o complemento de 2 seja positivo receberá *um bit de sinal 0* a esquerda do MSB.

VAMOS ANALISAR NA FORMA GRÁFICA

Sistema Binário - Representação de números com sinal usando complemento de 2

101101	=> Número binário original.
(0 1 0 0 1 0) ₂	=> Complementando cada bit para obter o complemento de 1.
+1	=> Adicionando 1 para obter o complemento de 2.
0100112	=> Complemento de 2 do número binário original.

Sistema Binário - Representação de números com sinal usando complemento de 2

Exemplo de cálculo de sinal em complemento de 2 para o decimal (+9)₁₀

Modelo 01 – Complemento de 2 Positivo:

- 1. Passa-se o decimal $(+9)_{10}$ para o formato binário de 8 bits ou $(00001001)_2$;
- 2. Faz-se o complemento de 2 obtendo como resultado o valor de $(11110111)_2$ ou $(-9)_{10}$.

Processo descrito pelo Modelo 01							
$(00001001)_2$	=> Binário de 8 bits representando +9 ₁₀ devido ao MSB						
$(11110110)_2$ => Obtendo o complemento de 1 igual a -9 ₁₀ devido ao MSB							
+ 1	=> Adicionando 1 para obter o complemento de 2						
(11110111)2	=> Complemento de 2 de +9 ₁₀ será -9 ₁₀ devido ao MSB						

Sistema Binário - Representação de números com sinal usando complemento de 2

Exemplo de cálculo de sinal em complemento de 2 para o número decimal $(-9)_{10}$

Modelo 02 – Complemento de 2 Negativo:

- Iniciar pelo resultado da representação negativa, (-9₁₀ ou 11110111₂), e obter o valor inverso do complemento de 2, que é 00001001₂ ou +9₁₀.
 - ⇒ Útil para verificar se o resultado está correto.

Processo descrito pelo Modelo 02							
(11110111)2	=> Binário de 8 bits representando -9₁₀ devido ao MSB						
$(00001000)_{2}$	=> Obtendo o complemento de 1 igual a +9 ₁₀ devido ao MSB						
+ 1	=> Adicionando 1 para obter a negação do complemento de 2						
(00001001)2	=> Complemento de 2 de -9 ₁₀ será +9 ₁₀ devido ao MSB						

Sistema Binário

Binário com sinal usando complemento de 2

- → O sistema de complemento de 2, no geral, se trata de um processo simples de transformação como no de complemento de 1, mas requer mais atenção e raciocínio lógico.
- → Poderão existir alguns casos especiais em complemento de 2 que necessitará de um pouco mais de raciocínio lógico, nesse sentido, sempre que um número com sinal tiver o valor de 1 em seu bit de sinal e todos os bits de magnitude forem = 0, sua equivalência em decimal será -2 com expoente N ou -2^N, onde N será o número de bits da magnitude, por exemplo:
 - $1000_2 = -2^3 = -8_{10} \Rightarrow$ Sinal = 1 e magnitude "000", o expoente de N = "3".
 - $10000_2 = -2^4 = -16_{10} \Rightarrow$ Sinal = 1 e magnitude "0000", o expoente de N = "4".
 - $100000_2 = -2^5 = -32_{10} \Rightarrow$ Sinal = 1 e magnitude "00000", o expoente de N = "5".
 - $1000000_2 = -2^6 = -64_{10} \Rightarrow \text{Sinal} = 1$ e magnitude "000000", o expoente de N = "6".
 - $10000000_2 = -2^7 = -128_{10} \Rightarrow$ Sinal = 1 e magnitude "0000000", o expoente de N = "7".

Sistema Binário – Sinal usando complemento de 2

- → A tabela, ao lado, procura relacionar todos os números com sinal que podem ser representados com quatro bits utilizando o sistema de complemento de 2 com três bits de magnitude ou N = 3.
- \rightarrow A sequência se inicia em $-2^{N} = -2^{3} = -8_{10} = 1000_{2}$ e;
- \rightarrow Termina em +2^N 1 = +2³ 1 = +7₁₀ = 0111₂.

IMPORTANTE:

Não se esqueça, as magnitudes abrangem além de "N = 3", conforme apresentado no slide 18.

$$1000_{2} = -2^{3} = -8_{10}$$

$$10000_{2} = -2^{4} = -16_{10}$$

$$100000_{2} = -2^{5} = -32_{1}$$

$$1000000_{2} = -2^{6} = -64_{10}$$

$$10000000_{2} = -2^{7} = -128_{10}$$

Tabela: Adaptada pelo autor. *Fonte:* Tocci, Widmer e Moss (2011, p. 258).

Sistema Binário

Adição e Subtração no sistema de complemento de 2

As próximas informações demonstram e analisam como as **operações booleanas de adição e subtração** são realizadas pelas máquinas digitais que utilizam a representação em complemento de 2 para números negativos.

Será impossível o uso de uma calculadora digital, sendo necessário o uso de lápis e papel para os cálculos.

Sistema Binário

TABELA ou MULETA?

Binário com Sinal em Compl. de 2 (C2)								
	ВА							
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sinal e Complemento						
	- Binário	C1	C2					
+8 ₁₀	0 1000	1 0111	1 1000					
+7 ₁₀	0111	1 000	1 001					
+6 ₁₀	0 110	1 001	1 010					
+5 ₁₀	0 101	1 010	1 011					
+4 ₁₀	0100	1 011	1 100					
+3 ₁₀	0011	1 100	1 101					
+210	0010	1 101	1 110					
+1 ₁₀	0001	1 110	1 111					
0	0000	1 111	1 0000					
-1 ₁₀	1 111	0000	0001					
-2 ₁₀	1 110	0001	0 010					
-3 ₁₀	1 101	0010	0011					
-4 ₁₀	1 100	0011	0 100					
-5 ₁₀	1 011	0 100	0 101					
-6 ₁₀	1 010	0 101	0 101					
-7 ₁₀	1 001	0 110	0111					
-8 ₁₀	1 1000	0 0111	0 1000					

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

A adição no sistema de complemento de 2 observa como o bit de sinal de cada número realizará a operação da "soma" binária subdivididos em quatro casos.

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

» Caso I: Adição de dois números positivos, o cálculo será feito diretamente pela tabela

da soma:

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						

+9	→	0	10012	9 ₁₀	1º parcela de 4 bits
+4	→	0	01002	4 ₁₀	2º parcela de 4 bits
+13	+	0	11012	13 ₁₀	Soma = +13
		1			<i>bits</i> de sinal

- → Os bits de sinal da 1º e da 2º linha são ambos 0.
- → O bit de sinal da soma também é 0, 3º linha, indicando um valor positivo.
- → As linha 1 e 2 possuem 4 bits, e necessário ao sistema do complemento de 2 para o cálculo.

Binário com Sinal em Compl. de 2 (C2)								
	ВА	ASE 2 (b ₂)						
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sinal e Complemento						
	- Binário	C1	C2					
+8 ₁₀	0 1000	1 0111	1 1000					
+7 ₁₀	0111	1 000	1 001					
+6 ₁₀	0 110	1 001	1 010					
+5 ₁₀	0 101	1 010	1 011					
+4 ₁₀	0 100	1 011	1 100					
+3 ₁₀	0 011	1 100	1 101					
+2 ₁₀	0 010	1 101	1 110					
+1 ₁₀	0 001	1 110	1 111					
0	0000	1 111	1 0000					
-1 ₁₀	1 111	0000	0001					
-2 ₁₀	1 110	0001	0 010					
-3 ₁₀	1 101	0010	0011					
-4 ₁₀	1 100	0011	0100					
-5 ₁₀	1 011	0 100	0101					
-6 ₁₀	1 010	0101	0101					
-7 ₁₀	1 001	0 110	0111					
-8 ₁₀	1 1000	00111	01000					

Prof. Ms. Celso Candido INTRODUÇÃO - AULA 06

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – Adição

» Caso II: Com um números positivos e outro menor e negativo, para o exemplo, temos uma adição de $+9_{10}$ com -4_{10} , onde o -4_{10} representa um valor de complemento de 2 negativo que será convertido para positivo via tabela e obtendo o valor de $+4_{10}$ = $(0100)_2$.

	1							REG	RAS DA SOMA E	INÁRIA –	TABELA PADRÃO
	_					0 + 0 =	0	\Rightarrow	Sem carry ou v	ai um par	a a próxima coluna/posição.
+9			1 001	9 ₁₀	1º parcela de 4 bits		1	\Rightarrow	Sem carry ou v	ai um par	a a próxima coluna/posição.
		\square				1+0=	1 ⇒		Sem carry ou vai um para a próxima coluna/posição.		
-4			1 100	-4 ₁₀	2º parcela de 4 <i>bits</i>		0	\Rightarrow			a a próxima coluna/posição.
						1+1+	1 = 1	\Rightarrow	Com carry ou v	ai um par	a a próxima coluna/posição.
+5	1	0	0101	+5 ₁₀	Soma = +5				Bina	rio com Sinal e	m Compl. de 2 (C2)
	7										BASE 2 (b ₂)
	`	_			A soma é positiva, então o bits de sina	l é 0.				O - Bit de	Novo bit de Sinal

→ Neste exemplo o bit de sinal da 2º linha é 1 (negativo), e que participa do processo de soma.

 \rightarrow Desconsiderar o vai 1 da soma 1 + 1.

→ O resultado da soma será 00101, ou +5₁₀.

- → Um *carry* (*X*) é gerado na última posição da soma, mas deve ser desconsiderado.
- \rightarrow Assim, a soma final é 00101₂, equivalente a +5₁₀.

Binário com Sinal em Compl. de 2 (C2)								
	BA	SE 2 (b ₂)						
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sinal e Complemento						
	- Binário	C1	C2					
+810	0 1000	1 0111	1 1000					
+7 ₁₀	0111	1 000	1 001					
+610	0 110	1 001	1 010					
+510	0 101	1 010	1 011					
+4 ₁₀	0 100	1 011	1 100					
+310	0011	1 100	1 101					
+210	0 010	1 101	1 110					
+1 ₁₀	0001	1 110	1 111					
0	0000	1 111	1 0000					
-1 ₁₀	1 111	0000	0001					
-2 ₁₀	1 110	0001	0010					
-3 ₁₀	1 101	0010	0011					
-4 ₁₀	1 100	0011	0 100					
-5 ₁₀	1 011	0 100	0101					
-6 ₁₀	1 010	0101	0101					
-7 ₁₀	1 001	0 110	0111					
-8 ₁₀	1 1000	00111	01000					

Prof. Ms. Celso Candido

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

Caso III: Com um número positivos e outro maior e negativo, para o exemplo a soma de -9₁₀ com +4₁₀:

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO						
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.				
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.				

			1			
-9	1	1	0111	-9 ₁₀	1º parcela de 4 <i>bits</i>	
+4	†	0	0100	4 ₁₀	2º parcela de 4 <i>bits</i>	
-5	→	1	1011	-5 ₁₀	Soma = -5	
		Ĺ			bits de sinal negativo , gerou um carry 1	

	Processo descrito pelo item 1 e 2 (slide 17)							
(0 1 0 0 1) ₂	=> Binário de 4 bits representando +9 ₁₀ devido ao MSB.							
(10110) ₂	=> Obtendo o complemento de 1 igual a -9 ₁₀ devido ao MSB.							
+ 1	=> Adicionando 1 para obter o complemento de 2.							
(10111)2	=> Complemento de 2 de +9 ₁₀ será -9 ₁₀ devido ao MSB.							

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

 \rightarrow Treino – Caso I: Somar +8₁₀ com +6₁₀

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+0=1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	⇒	Com carry ou vai um para a próxima coluna/posição.					

+8		1	0	0	0	1º parcela de 4 bits
+6		0	1	1	0	2º parcela de 4 bits
						Soma =
						bits de sinal

Sistema Binário — Adição e Subtração no sistema de complemento de 2 — **Adição**

Treino – Caso II: Somar +7₁₀ com -6₁₀

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.						
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.						

+7	0	0	1	1	1	1º parcela de 4 bits
-6	1	1	0	1	0	2º parcela de 4 <i>bits</i>
	•					Soma =
						<i>bits</i> de sinal

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

» Treino – Caso III: Somar -7_{10} com $+6_{10}$

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

-7			1001		1º parcela de 4 bits
+6			0110		2º parcela de 4 <i>bits</i>
					Soma =
					bits de sinal

0	Obter o complemento de 1 e 2 do resultado da Soma						
(1 1 1 1) ₂	=> Binário de 4 bits representando -1 ₁₀ devido ao MSB.						
	=> Obtendo o complemento de 1 igual a +1 ₁₀ devido ao MSB.						
	=> Adicionando 1 para obter o complemento de 2.						
	=> Complemento de 2 de serão devido ao MSB.						

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

» Treino – Complemento de 1 para complemento de 2:

	Processo descrito pelo Modelo 01 (slide 17)							
0	$(1110)_2$ => Binário de 4 bits representando +14 ₁₀ devido ao MSB.							
	(0 0 0 1) ₂	=> Obtendo o complemento de 1 igual a +14 ₁₀ devido ao MSB.						
	+ 1 => Adicionando 1 para obter o complemento de 2.							
1	(0 0 1 0) ₂	=> Complemento de 2 de +14 ₁₀ será -14 ₁₀ devido ao MSB.						

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

- → Temos na soma de -9₁₀ com +4₁₀ um bit de sinal 1, negativo, obtendo um resultado de -5.
- → A soma é negativa, estando em complemento de 2, representado pelos últimos quatro bits (1011)₂.

			1		
-9	1	1	0111	-9 ₁₀	1º parcela de 4 <i>bits</i>
+4	1	0	0100	4 ₁₀	2º parcela de 4 <i>bits</i>
-5	+	1	1011	-5 ₁₀	Soma = -5
					bits de sinal negativo , gerou um carry 1

Processo descrito pelo item 1 e 2 (slide 17)							
(<mark>0</mark> 1 0 0 1) ₂	=> Binário de 4 bits representando +9 ₁₀ devido ao MSB.						
(10110) ₂	=> Obtendo o complemento de 1 igual a -9 ₁₀ devido ao MSB.						
+ 1	=> Adicionando 1 para obter o complemento de 2.						
(10111) ₂	=> Complemento de 2 de +9 ₁₀ será -9 ₁₀ devido ao MSB.						

→ Para verificar se o resultado está correto, foi calculado o completo de dois, conforme apresentado no slide 17, onde o seu valor **positivo**, conforme tabela de "Binário com Sinal usando Complemento de 2" é igual à (00101)₂ ou +5.

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

Caso IV: Com dois número negativos, vamos considerar a seguinte adição para o exemplo,
 -9₁₀ com -4₁₀:

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	⇒	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+0=1	⇒	Sem carry ou vai um para a próxima coluna/posição.					
1+1=0	⇒	Com carry ou vai um para a próxima coluna/posição.					
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

	1	1	1					
-9	†	1	0	1	1	1	-9 ₁₀	1º parcela de 4 bits
-4	→	1+0	1+1	1	0	0	-4 ₁₀	2º parcela de 4 bits
-13	1	1	0	0	1	1	-13 ₁₀	Soma = -13 ₁₀
	bits de sinal gerando um carry 1							
	 → Desconsiderar o carry 1. → O resultado da soma será 10011₂ ou -13₁₀. 							

- → Temos novamente um resultado negativo.
- → A sua forma é de complemento de 2 com um *bit* de sinal 1, negativo no MSB.
- → Se a negação de complemento de 2 for efetuada teremos como resultado $(01101)_2 = +13_{10}$.

ry ou var um para a proxima coluna, posiç								
Binário com Sinal em Compl. de 2 (C2)								
	BASE 2 (b ₂)							
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sinal e Complemento						
	- Binário	C1	C2					
+810	0 1000	1 0111	1 1000					
+7 ₁₀	0111	1 000	1 001					
+610	0 110	1 001	1 010					
+510	0 101	1 010	1 011					
+410	0 100	1 011	1 100					
+310	0 011	1 100	1 101					
+210	0 010	1 101	1 110					
+110	0 001	1 110	1 111					
0	0000	1 111	1 0000					
-1 ₁₀	1 111	0000	0001					
-2 ₁₀	1 110	0001	0 010					
-3 ₁₀	1 101	0010	0011					
-4 ₁₀	1 100	0011	0 100					
-5 ₁₀	1 011	0 100	0101					
-6 ₁₀	1 010	0101	0 101					
-7 ₁₀	1 001	0 110	0111					
-8 ₁₀	1 1000	00111	01000					

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

Treino – Caso IV:

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO							
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.					
1 + 1 = 0	⇒	Com carry ou vai um para a próxima coluna/posição.					
1 + 1 + 1 = 1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.					

	1	1		1	1			
-5	→	1	1	0	1	1		1º parcela de 4 bits
-7	→	1	1	0+1	0+0	1		2º parcela de 4 bits
-12	1	1	0	1	0	0		Soma = -12 ₁₀
	bits de sinal gerando um carry 1							
	 → Desconsiderar o carry 1. → O resultado da soma será (1 0100)₂ = -12₁₀ 							

- → Temos novamente um resultado negativo.
- → A sua forma é de complemento de 2 com um *bit* de sinal 1, negativo no MSB.
- \rightarrow Se a negação de complemento de 2 for efetuada teremos como resultado $(01101)_2 = +13_{10}$.

Binário com Sinal em Compl. de 2 (C2)								
	BASE 2 (b ₂)							
BASE 10 (b ₁₀)	- Bit de Sinal - MSB		Novo bit de Sinal e Complemento					
	- Binário	C1	C2					
+810	0 1000	1 0111	1 1000					
+7 ₁₀	0111	1 000	1 001					
+610	0110	1 001	1 010					
+510	0101	1 010	1 011					
+4 ₁₀	0 100	1 011	1 100					
+310	0011	1 100	1 101					
+210	0010	1 101	1 110					
+1 ₁₀	0001	1 110	1 111					
0	0000	1 111	1 0000					
-1 ₁₀	1 111	0000	0001					
-2 ₁₀	1 110	0001	0010					
-3 ₁₀	1 101	0 010	0011					
-4 ₁₀	1 100	0011	0 100					
-5 ₁₀	1 011	0 100	0101					
-6 ₁₀	1 010	0101	0101					
-7 ₁₀	1 001	0 110	0111					
-8 ₁₀	1 1000	00111	0 1000					

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

De positivo para negativo e vice-versa

→ Treino: $+7_{10}$ para -7_{10} :

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO				
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.		
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.		

0	0	1	1	1	= +7 ₁₀	Igualando o valor a 4 bits.
	1	0	0	0	Complemento de 1 de +7	
			+	1	1 Acrescentando +1	
1	1	0	0	1	= -7 ₁₀ Obtendo o complemento de 2	

O valor de $+7_{10}$ ou 0111_2 , em complemento de 1 passa a ser 1000_2 , para se chegar ao complemento, foi acrescido +1 a primeira coluna do complemento de 1, como resultado de 1001_2 ou -7_{10} .

O bit de sinal de +7 é igual "0" por ser positivo e o bit de sinal de -7 é igual "1" por ser negativo.

Binário com Sinal em Compl. de 2 (C2)							
	BASE 2 (b ₂)						
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sina e Complemento					
	- Binário	C1	C2				
+810	0 1000	1 0111	1 1000				
+7 ₁₀	0111	1 000	1 001				
+610	0 110	1 001	1 010				
+510	0 101	1 010	1 011				
+410	0 100	1 011	1 100				
+310	0 011	1 100	1 101				
+210	0 010	1 101	1 110				
+1 ₁₀	0 001	1 110	1 111				
0	0000	1 111	1 0000				
-1 ₁₀	1 111	0000	0001				
-2 ₁₀	1 110	0001	0010				
-3 ₁₀	1 101	0 010	0011				
-4 ₁₀	1 100	0011	0100				
-5 ₁₀	1 011	0 100	0101				
-6 ₁₀	1 010	0 101	0101				
-7 ₁₀	1 001	0 110	0111				
-8 ₁₀	1 1000	0 0111	01000				

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

De positivo para negativo e vice-versa

 \rightarrow Treino: +4₁₀ para -4₁₀:

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO					
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			

0	1	0	0	= +4 ₁₀	Igualando o valor a 4 bits.
1	0	1	1 C1 Complemento de 1 de		Complemento de 1 de
		+	+ 1 C2 Acrescentar +1 a primeira colu		Acrescentar +1 a primeira coluna
1	1	0	0	= -4 ₁₀	Obtendo o complemento de 2

O valor de $+4_{10}$ ou 0100_2 , em complemento de 1 passa a ser 1011_2 , para se chegar ao complemento, foi acrescido +1 a primeira coluna do complemento de 1, como resultado de 1011_2 ou -4_{10} .

O bit de sinal de +4 é igual "0" por ser positivo e o bit de sinal de -4 é igual "1" por ser negativo.

Binário com Sinal em Compl. de 2 (C2)						
	BASE 2 (b ₂)					
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sina e Complemento				
	- Binário	C1	C2			
+8 ₁₀	0 1000	1 0111	1 1000			
+7 ₁₀	0 111	1 000	1 001			
+6 ₁₀	0 110	1 001	1 010			
+5 ₁₀	0 101	1 010	1 011			
+4 ₁₀	0 100	1 011	1 100			
+3 ₁₀	0 011	1 100	1 101			
+2 ₁₀	0 010	1 101	1 110			
+1 ₁₀	0001	1 110	1 111			
0	0000	1 111	1 0000			
-1 ₁₀	1 111	0000	0001			
-2 ₁₀	1 110	0001	0010			
-3 ₁₀	1 101	0010	0011			
-4 ₁₀	1 100	0011	0 100			
-5 ₁₀	1 011	0 100	0101			
-6 ₁₀	1 010	0101	0101			
-7 ₁₀	1 001	0 110	0111			
-8 ₁₀	1 1000	0 0111	0 1000			

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Adição**

De positivo para negativo e vice-versa

→ Treino: -6_{10} para $+6_{10}$:

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO				
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.		
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.		
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.		

1	1	0	1	0	= -6 ₁₀	Igualando o valor a 4 bits.
	0	1	0	1	1 0101 ₂ Complemento de 1 de	
			+	1 Acrescentar +1 a primeira coluna		
0	0	1	1	0	= +6 ₁₀	Obtendo o complemento de 2

O valor de -6_{10} ou 1010_2 , em complemento de 1 passa a ser 0101_2 , para se chegar ao complemento, foi acrescido +1 a primeira coluna do complemento de 1, como resultado de 0110_2 ou -6_{10} .

O bit de sinal de -6 é igual "1" por ser negativo e o bit de sinal de +6 é igual "0" por ser positivo.

No complemento de 1 apenas inverto os bits do binário original. No complemento de 2 após a inversão pelo complemento de se obtém

um processo de negação do número ou valor do binário original.

Binário com Sinal em Compl. de 2 (C2)					
	BASE 2 (b ₂)				
BASE 10 (b ₁₀)	- Bit de Sinal - MSB	Novo bit de Sina e Complemento			
	- Binário	C1	C2		
+810	0 1000	1 0111	1 1000		
+7 ₁₀	0111	1 000	1 001		
+610	0 110	1 001	1 010		
+510	0 101	1 010	1 011		
+410	0 100	1 011	1 100		
+310	0 011	1 100	1 101		
+210	0 010	1 101	1 110		
+1 ₁₀	0001	1 110	1 111		
0	0000	1 111	1 0000		
-1 ₁₀	1 111	0000	0001		
-2 ₁₀	1 110	0001	0 010		
-3 ₁₀	1 101	0010	0 011		
-4 ₁₀	1 100	0011	0 100		
-5 ₁₀	1 011	0 100	0 101		
-6 ₁₀	1 010	0 101	0 101		
-7 ₁₀	1 001	0 110	0111		
-810	1 1000	00111	01000		

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Subtração**

SUBTRAÇÃO NO SISTEMA DE COMPLEMENTO DE 2

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Subtração**

Subtração em Complemento de 2

- → A operação de subtração no sistema de complemento de 2 **envolve as regras da soma**.
- → Por apresentar característica parecidas a soma, o sistema de complemento de 2 é considerado como um dos métodos mais utilizados na subtração.
- → Esse processo permite que a adição e a subtração possam ser realizadas pelas mesmas regras.

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO					
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 1 = 0	⇒	Com carry ou vai um para a próxima coluna/posição.			
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			

As regra da soma binária se aplica a subtração no sistema de complemento de 2.

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Subtração**

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO					
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1+0=1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1+1=0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			

- → Ao efetuar a subtração de um número binário é necessário seguir alguns procedimentos:
 - 1. Faz-se a operação de negação do subtraendo A intenção é alterar o subtraendo para o valor equivalente com sinal oposto.
 - 2. Adiciona o número obtido ao minuendo O resultado da adição representará a diferença entre o subtraendo e o minuendo.
- → Para que a operação seja bem sucedida é necessário que os dois binários booleanos possuam o mesmo número de bits em suas representações, e devendo acontecer para todas as operações aritméticas em complemento de 2.

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – **Subtração**

→ Exemplo: Calcular a operação onde: +4 (subtraendo) ou (0 0100)₂, onde o "0" mais a esquerda, bit de sinal, representa um valor positivo ⊕, que deverá ser subtraído de +9 (minuendo) ou (0 1001)₂, também com bit de sinal = "0".

→ Antes de iniciar precisamos negar
 (○) o subtraendo, (0 0100)₂,
 para obter seu negativo = (1 1100)₂, para isso será calculado o complemento de 1 e 2.

	REGRAS DA SOMA BINÁRIA – TABELA PADRÃO				
0 + 0 = 0	⇒ Sem carry ou vai um para a próxima coluna/posição.				
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 1 = 0	⇒	Com carry ou vai um para a próxima coluna/posição.			
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			

1	0	1001	(+9) ₁₀	Minuendo de 4 <i>bits (0 1001)</i> ₂
	1	1100	(-4) ₁₀	Subtraendo de 4 <i>bits (1 1100)</i> ₂
X	0	0101	+5 ₁₀	Soma = +5
	Ĺ			bits de sinal gerando um carry 1

- → Desconsiderar o carry 1.
- \rightarrow O resultado da soma será 00101_2 ou $+5_{10}$.

Sistema Binário – Adição e Subtração no sistema de complemento de 2 – Subtração

Entendo:

- \rightarrow Ao negar-se o **subtraendo** pelo cálculo em complemento de 2, torna-se igual a (-4)₁₀.
- \rightarrow Após a negação faz-se a soma (+9)₁₀ com (-4)₁₀, situação já vista no "Caso II".
- \rightarrow Para o **próximo** exemplo, agora teremos $(+9)_{10}$ ou $(01001)_2$, sendo **subtraído** de $(-4)_{10}$ ou $(1100)_2$.
- → Nesta operação de soma e subtração precisamos negar o (+9)₁₀, subtraendo, para obter (-9)₁₀ ou (1 0111)₂, através do complemento de 1 e 2, e somar com o minuendo (-4)₁₀.

REGRAS DA SOMA BINÁRIA – TABELA PADRÃO					
0 + 0 = 0	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
0 + 1 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 0 = 1	\Rightarrow	Sem carry ou vai um para a próxima coluna/posição.			
1 + 1 = 0	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			
1+1+1=1	\Rightarrow	Com carry ou vai um para a próxima coluna/posição.			

1	1	1 +1 1 0 0	(-4) ₁₀	Minuendo de 4 <i>bits</i> (11100) ₂
	1	0+0 1 1 1	(-9) ₁₀	Subtraendo de 4 <i>bits (10111)</i> ₂
X	1	0011	-13 ₁₀	Soma = -13 = (1 0011) ₂
				bits de sinal gerando um carry 1

- → Desconsiderar o *carry 1*.
- \rightarrow O resultado da soma será 10011 $_2$ ou -13 $_{10}$.

Bibliografia do Curso

Bibliografia Básica

TANENBAUM, A. S. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013 (e-book).

MONTEIRO, M. A. Introdução à organização de computadores. 4. ed. Rio de Janeiro: LTC, 2002.

STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 5. ed. São Paulo: Prentice-Hall, 2002.

Bibliografia Complementar

CORRÊA, A. G. D. [org.]. Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016 (e-book).

DELGADO, J.; RIBEIRO, C. Arquitetura de computadores. 5. ed. Rio de Janeiro: LTC, 2017 (e-book).

PAIXÃO, R. R. Arquitetura de computadores - PCs. São Paulo: Érica, 2014 (e-book).

WEBER, R. F. Fundamentos de arquitetura de computadores. 4. ed. Porto Alegre: Bookman, 2012 (e-book).

WIDMER, N. S.; MOSS, G. L.; TOCCI, R. J. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo: Pearson Education do Brasil, 2018 (e-book).

Conteúdo elaborado por:

Prof. Ms. Celso Candido celsoc@unicid.edu.br

Fim da Apresentação