Meeting Overview

Topics analysis→
 information retrieval

2. Hypotheses and questions

From topic analysis to information retrieval

GOAL: Topic → **Information**

Topic Analysis (treat it as black box function) Information retrieved described

```
Topic 1: 0.574*"flight" + 0.292*"seat" + 0.279*"air" + 0.262*"canada" + 0.144*"get" +
0.129*"service" + 0.129*"time" + 0.126*"fly" + 0.125*"hour" + 0.117*"toronto"
Topic 2: -0.744*"seat" + 0.380*"flight" + -0.144*"economy" + -0.136*"business" +
0.112*"hour" + -0.109*"new" + -0.105*"class" + 0.102*"air" + 0.094*"canada" +
0.090*"delay"
Topic 3: 0.542*"canada" + 0.541*"air" + -0.446*"flight" + -0.191*"good" + -0.095*"cabin"
+ 0.089*"fly" + -0.084*"food" + -0.084*"attendant" + -0.077*"economy" +
0.075*"passenger"
Topic 4: -0.294*"get" + 0.261*"good" + -0.258*"seat" + 0.193*"service" + 0.191*"canada"
+ 0.187*"food" + 0.186*"air" + -0.184*"toronto" + -0.184*"tell" + 0.175*"class"
Topic 5: 0.424*"flight" + 0.252*"seat" + -0.185*"passenger" + -0.169*"get" +
-0.158*"time" + -0.156*"airline" + -0.155*"check" + -0.151*"board" + -0.148*"staff" +
-0.147*"service"
```

```
Flight: e.g. had delay?
Seat: e.g. uncomfortable?
Service: e.g. good cust. Service?
Delay: e.g. yes/no?
Food: e.g. cold / delicious?
Economy class: e.g. cheap?
Business class: e.g. expensive?
Staff: e.g. friendly?
Passengers: e.g. noisy?
```

Introduction to word2vec

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Abstract

We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.

Word2Vec

What is it?

A continuous bag-of-words and skip-gram architectures for computing vector representations of words

How it works?

word2vec takes a text corpus as input and produces the word vectors as output. It first constructs a vocabulary from the training text data and then learns vector representation of words. The resulting word vector file can be used as features in many natural language processing and machine learning applications.

 So basically it finds distances between words in the vector space

Type of relationship	Word	Word Pair 1		Word Pair 2	
Common capital city All capital cities Currency City-in-state Man-Woman	Athens Astana Angola Chicago brother	Greece Kazakhstan kwanza Illinois sister	Oslo Harare Iran Stockton grandson	Norway Zimbabwe rial California granddaughter	
Adjective to adverb Opposite Comparative Superlative Present Participle	apparent possibly great easy think	apparently impossibly greater easiest thinking	rapid ethical tough lucky read	rapidly unethical tougher luckiest reading	
Nationality adjective Past tense Plural nouns Plural verbs	Switzerland walking mouse work	Swiss walked mice works	Cambodia swimming dollar speak	Cambodian swam dollars speaks	

Relationship Example 1		Example 2	Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zine: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

Other tools:

- Multiword phrase detection
- Similarity detection
- Summary (prioritized sentences)
- Summary keywords
- Part-of-speech syntactic parser
- doc2vec

Other concerns

- A.) Perform topic analysis on : <u>all airline reviews</u> vs <u>each airline company individually</u>
- B.) Topic words validation: topic words vs summary keywords. Does it make sense?
- C.) How to cluster topic words?
 - 1. Find a way to cluster words/topics
 - 2. When you see overlap, you found correlation
- D.) Adjective analysis: Adjectives describe the quality/ property of actions/ objects. How could we do a qualitative analysis with adjectives, to find out **HOW** is something?
- E.) Filter out garbage: How to identify topic words that are unrelated / make no sense to put in a summary