ICCS200: Assignment 1

Hasdin Ghogar (Harvey)

hghogar@gmail.com

Recitation: Your recitation section
The date

2: Hello, Definition

1)
$$\lim_{x \to \infty} \frac{f(n)}{g(n)} = \frac{n}{n \log n}$$

$$\lim_{x \to \infty} \frac{n}{n log n} = 0$$

since
$$0 < \infty$$

Therefore from definition f(n) = n is O(nlogn)

2) Let A and B be a real number

$$\lim_{x \to \infty} d(n)/f(n) = A$$

$$\lim_{x \to \infty} e(n)/g(n) = B$$

$$\lim_{x \to \infty} e(n)/g(n).d(n)/f(n) = A.B$$

since A and B are real number therefore $A.B < \infty$

Therefore
$$\lim_{x\to\infty} e(n)/g(n).d(n)/f(n) < \infty$$

3) We loop n time from 0 to n-1, the total number of loops= 1000.k.n(n-1)/2

$$O(n^2)$$

4) If
$$h(n) = O(n^4)$$
 it is $< \infty$

$$\lim_{x \to \infty} 16n^2 + 11n^4 + 0.1n^5/n^4 = \infty$$

$$O(n^4)$$
 is not Big-Oh of h(n)

3: How Long Does This Take?

(a) For programA, prod = prod.C takes k constant

Z	
n	k
$\frac{n}{2}$	k
	k
	k
1	k

$$= \log_2 n + 1$$

$$=\Theta(\log_2 n)$$

(b) For programB, prod = prod.C takes k constant

Z	
1	k
3	k
	k
	k
3^n	k

$$=\log_3 n$$

$$=\Theta(\log_3 n)$$

4: Halving Sum

(2) Cost to allocate $Y = \frac{z}{2}.k_1$

Cost to read each value = $z.k_2$

Cost to add values= $\frac{z}{2}.k_2$

Cost to add values to array $Y = \frac{z}{2} \cdot k_2$

Cost to assign Y to Z = C

Total cost for one iteration = $2z \cdot k_2 + \frac{z}{2} \cdot k_1 + C$

(3) Let $A = 2z \cdot k_2 + \frac{z}{2} \cdot k_1$

Z	
$n = 2^p$	$A.(2^p) + C$
$n = (2^{p-1})$	$A.(2^{p-1}) + C$
	•
	•
n = (2)	A.(2) + C

$$= (A.(2^p) + C) + (A.(2^{p-1}) + C) + \ldots + (A.(2) + C)$$

$$= A.2(2^p) + p.C$$

since
$$n = 2^p$$

= $A.2(n-1) + (\log_2 n).C$
= $2.(\frac{k_1}{2} + 2.k_2).(n-1) + (\log_2 n).C$

5: Random Permutation

(1)
$$\inf[\] \text{ perm} = \text{new int}[n]; -> \Theta(n)$$

$$\text{Random rng} = \text{new Random}(); -> O(1)$$

$$\text{for (int i=0;i O(1)$$

$$\text{for (int i=0;i
$$\text{int t} = \text{rng.nextInt}(i+1); -> O(1).n$$

$$\text{if (i!=t)} \ \{ \text{ swp(perm, t, i); } \} -> O(1)$$

$$\}$$

$$\text{return perm; -> O(1)}$$

$$\text{Therefore Running time of mkPerm} = \Theta(n)$$
 (2)$$

n	Running time(Average of 10 trials)
100,000	10.0357148
200,000	17.0696323
400,000	30.0938004
800,000	40.3386635
1,600,000	75.3559396
3,200,000	157.8987411
6,400,000	328.9085858

(3) The graph/data supports the analysis in part 2.