Hospital Readmission Analysis

Axel Houte, Thomas Hédan, Minji Kim – DIA3

Python For Data Analysis

Summary

Dataset
Variables
Visualizations
Link between readmission and variables

Decision	ı trees		
Bagging			
Gradien	t boosting		
Why re-	sample ?		
Use agai	in the same r	nodels	
Conclus	ion		

Dataset: Diabetes 130 US hospitals for years 1999–2008

Readmitted: Days to inpatient readmission. Values: "<30" if the patient was readmitted in less than 30 days, ">30" if the patient was readmitted in more than 30 days, and "No" for no record of readmission

VARIABLES

Encounter ID: Unique identifier of an encounter **Patient number**: Unique identifier of a patient

Race Values: Caucasian, Asian, African American, Hispanic, and other

Gender Values: male, female, and unknown/invalid

Age Grouped in 10-year intervals: 0, 10), 10, 20), ..., 90, 100)

Weight: Weight in pounds

Admission type: Integer identifier corresponding to 9 distinct values, for example, emergency, urgent, elective, newborn, and not available

Discharge disposition: Integer identifier corresponding to 29 distinct values, for example, discharged to home, expired, and not available

Admission source: Integer identifier corresponding to 21 distinct values, for example, physician referral, emergency room, and transfer from a hospital

Time in hospital: Integer number of days between admission and discharge

Payer code: Integer identifier corresponding to 23 distinct values, for example,

Blue Cross/Blue Shield, Medicare, and self-pay Medical

Medical specialty: Integer identifier of a specialty of the admitting physician, corresponding to 84 distinct values, for example, cardiology, internal medicine, family/general practice, and surgeon

Number of lab procedures: Number of lab tests performed during the encounter **Number of procedures**: Numeric Number of procedures (other than lab tests) performed during the encounter

Number of medications: Number of distinct generic names administered during the encounter

Number of outpatient: visits Number of outpatient visits of the patient in the year preceding the encounter

Number of emergency: visits Number of emergency visits of the patient in the year preceding the encounter

Number of inpatient visits: Number of inpatient visits of the patient in the year preceding the encounter

Number of diagnoses: Number of diagnoses entered to the system 0%

Glucose serum test result Indicates the range of the result or if the test was not taken. Values: ">200," ">300," "normal," and "none" if not measured

A1c test result Indicates the range of the result or if the test was not taken. Values: ">8" if the result was greater than 8%, ">7" if the result was greater than 7% but less than 8%, "normal" if the result was less than 7%, and "none" if not measured.

Change of medications: Indicates if there was a change in diabetic medications (either dosage or generic name).

Values: "change" and "no change"

Diabetes medications: Indicates if there was any diabetic medication prescribed. Values: "yes" and "no" 24 features for medications Values: "up" if the dosage was increased during the encounter, "down" if the dosage was decreased, "steady" if the dosage did not change, and "no" if the drug was not prescribed

Created and dropped variables

Created	Dropped
 readmitted: yes values in the readmitted column non-readmitted: no values and >30 values in the readmitted column 	 encounter_code weight, payer_code, medical_specialty (columns with high null values) diag_1, diag_2, diag_3 examide, citoglipton (always the same value) useless_drugs

Visalulizations

Link between readmission and variables

Indicates if there was any diabetic medication prescribed. Values: "yes" and "no"

Indicates the range of the result or if the test was not taken. Values: ">200," ">300," "normal," and "none" if not measured

Link between readmission and variables

Indicates if there was a change in diabetic medications (either dosage or generic name). Values: "change" and "no change"

Indicates the range of the result or if the test was not taken. Values: ">8" if the result was greater than 8%, ">7" if the result was greater than 7% but less than 8%, "normal" if the result was less than 7%, and "none" if not measured.

Decision tree before resampling

Bagging

```
Random Forest:
Best training accuracy = 0.9097956517607404
Best parameters : {'max_features': 25, 'n_estimators': 150}
Validation accuracy = 0.9103586882959742
test repartition :
 0.0 44455
1.0
        4306
Name: readmitted, dtype: int64
Confusion matrix :
 [[44303 4219]
 [ 152 87]]
 0.9098
 0.9097
 0.9096
 0.9095
 0.9094
 0.9093
               110
                       120
                               130
                                                150
       100
                                       140
```

Random Forest before resampling

0.89

0.88

0.87

0.86

0.85

0.84

0.83

25

```
Random Forest:
Best training accuracy = 0.9110398655386754
Best parameters : {'max_features': 'sqrt', 'n_estimators': 111}
Validation accuracy = 0.9116507044564304
test repartition:
 0.0
       44455
       4306
1.0
Name: readmitted, dtype: int64
Confusion matrix :
 [[44444 4297]
     11
 0.91
 0.90
```

100

125

175

150

Gradient Boosting before resampling

```
Gradiant boosting:
Best training accuracy = 0.91118341765789
52
Best parameters : {'learning rate': 0.1,
'max depth': 3, 'n estimators': 20, 'rando
m state': 1, 'subsample': 1}
Validation accuracy = 0.911773753614569
test repartition :
0.0
       44455
1.0
       4306
Name: readmitted, dtype: int64
Confusion matrix :
 [[44454 4301]
            5]]
```


Why resample?

91.10%

Non-readmitted patients of the training sample

Only 8.89%

Readmitted patients of the training sample

Before resampling

After resampling

Decision tree after resampling

```
Random Forest:
Best training accuracy = 0.9197740515070603
Best parameters : {'criterion': 'entropy', 'max_depth': 16}
Validation accuracy = 0.9181037876998189
test repartition:
1.0
       12741
0.0
      12657
Name: readmitted, dtype: int64
Confusion matrix :
 [[12260 1683]
   397 11058]]
pred = model tree.predict(X)
print('Confusion matrix : \n', confusion matrix(pred, y))
Confusion matrix :
 [[62791 4899]
 [ 702 1266]]
```

Random Forest after resampling

```
: pred = rf.predict(X)
print('Confusion matr

Confusion matrix :
  [[63480 1222]
  [ 13 4943]]
```

```
Random Forest:
Best training accuracy = 0.9501614490549226
Best parameters : {'criterion': 'entropy', 'max_features':
'sqrt', 'n estimators': 300}
Validation accuracy = 0.9499960626821009
test repartition :
1.0
     12741
      12657
0.0
Name: readmitted, dtype: int64
Confusion matrix :
 [[12644 1257]
    13 11484]]
0.95015
0.95010
0.95005
0.95000
0.94995
```

0.94990

250

260

270

280

290

300

Gradient Boosting after resampling

```
Gradiant boosting:
Best training accuracy = 0.94425524062566
88
Best parameters : {'learning_rate': 1, 'l
oss': 'deviance', 'max depth': 3, 'n estim
ators': 200, 'random state': 1, 'subsampl
e': 1}
Validation accuracy = 0.943066383179778
test repartition :
 1.0
       12741
0.0
    12657
Name: readmitted, dtype: int64
Confusion matrix :
 [[12535 1324]
                        : pred = gb.predict(X)
   122 11417]]
                          print('Confusion mate
                          Confusion matrix :
```

[[63229 5668]

497]]

264

Thank you!

Do you have any questions?