IRS2183/IRS21834(S)PbF

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4 A/1.8 A
- RoHS compliant

Description

The IRS2183/IRS21834 are high voltage, high speed power MOSFET and IGBT drivers with dependent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum

Packages

Feature Comparison

· outur	Journa					
Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	ton/toff (ns)	
2181	HIN/LIN	no	none	COM	180/220	
21814	I IIIN/LIIN	110	none	Vss/COM	100/220	
2183	HIN/LIN	ves	Internal 400	СОМ	180/220	
21834	I IIIN/LIIN	yes	Program 400-5000	Vss/COM	100/220	
2184	IN/SD	ves	Internal 400	COM	680/270	
21844	114/30	yes	Program 400-5000	Vss/COM	000/270	

driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

IRS2183/IRS21834(S)PbF

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage	-0.3	620 (Note 1)		
Vs	High-side floating supply offset voltage		V _B - 20	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	20 (Note 1)	V
V_{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3	V
DT	Programmable deadtime pin voltage (IR21	834 only)	V _{SS} - 0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN & LIN)		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IR21834 only)	V _{CC} - 20	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns	
		(8-lead PDIP)	_	1.0	W
P _D	Package power dissipation @ T _A ≤ +25 °C	(8-lead SOIC)	_	0.625	
טי	Tackage power dissipation & TA \$ +25 C	(14-lead PDIP)	_	1.6	
		(14-lead SOIC)	_	1.0	
		(8-lead PDIP)	_	125	
D+b	Thermal registeres innetion to embient	(8-lead SOIC)	_	200	,
Кијд	Rth _{JA} Thermal resistance, junction to ambient		_	75	°C/W
		(14-lead SOIC)	_	120	•
TJ	Junction temperature	_	150		
Ts	Storage temperature	-50	150	°C	
TL	Lead temperature (soldering, 10 seconds)		_	300	

Note 1: All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
VS	High-side floating supply offset voltage	Note 2	600	
VHO	High-side floating output voltage	Vs	VB	
Vcc	Low-side and logic fixed supply voltage	10	20	
V_{LO}	Low-side output voltage	0	V _{CC}	V
V _{IN}	Logic input voltage (HIN & LIN)	V _{SS}	V _{CC}	
DT	Programmable deadtime pin voltage (IR21834 only)	V _{SS}	Vcc	
V _{SS}	Logic ground (IR21834 only)	-5	5	
TA	Ambient temperature	-40	125	°C

Note 2: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C, DT = V_{SS} unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions	
ton	Turn-on propagation delay	_	180	270		Vs = 0V	
toff	Turn-off propagation delay	_	220	330		Vs = 0V or 600V	
MT	Delay matching ton - toff	_	0	35			
t _r	Turn-on rise time	_	40	60	ns	Vs = 0 V	
tf	Turn-off fall time	_	20	35		VS = 0 V	
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	280	400	520		R _{DT} = 0 Ω	
וט	HO turn-off to LO turn-on (DTHO-LO)		5	6	μs	$R_{DT} = 200 \text{ k}\Omega \text{ (IR21834)}$	
MDT	Deadtime matching = DTLO-HO - DTHO-LO	_	0	50	ns	R _{DT} =0 Ω	
MDT	Deadtime matching = DTLO-HO - DTHO-LO	_	0	600	110	$R_{DT} = 200k\Omega (IR21834)$	

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, DT= V_{SS} and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: HIN and LIN. The V_O , I_O , and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	I Definition		Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HIN & logic "0" for LIN	2.5	_	_		10.7/1- 00.7/
V _{IL}	Logic "0" input voltage for HIN & logic "1" for LIN	_	_	0.8	V	$V_{CC} = 10 \text{ V to } 20 \text{ V}$
Voh	High level output voltage, V _{BIAS} - V _O	_	_	1.4	V	I _O = 0 A
V _{OL}	Low level output voltage, VO	_	_	0.2		I _O = 20 mA
ILK	Offset supply leakage current	_	_	50		V _B = V _S = 600 V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150	μA	\/ = 0 \/ or 5 \/
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	$V_{IN} = 0 \text{ V or 5 V}$
I _{IN+}	Logic "1" input bias current	_	25	60		HIN = 5 V, LIN = 0 V
I _{IN} -	Logic "0" input bias current	_	_	5.0	μA	HIN = 0 V, LIN = 5 V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold	0.0	0.9	9.0		
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V	Ī
V _{BSUV} -	threshold	7.4	0.2	9.0	,	
VCCUVH	Hyptoronia	0.3	0.7			
V _{BSUVH}	Hysteresis	0.3	0.7			
lo	Output high chart circuit pulsed current	1.4	1.9			$V_O = 0 V$,
l _{O+}	Output high short circuit pulsed current	1.4	1.9	_	Α	PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current		1.8 2.3	_	,,	V _O = 15 V,
٠٠-						PW ≤ 10 μs

IRS2183/IRS21834(S)PbF

Functional Block Diagrams

Lead Definitions

Symbol	Description
LUNI	Logic input for high-side gate driver output (HO), in phase (referenced to COM for IRS2183
HIN	and VSS for IRS21834)
LIN	Logic input for low-side gate driver output (LO), out of phase (referenced to COM for IRS2183
LIIN	and VSS for IRS21834)
DT	Programmable deadtime lead, referenced to VSS (IRS21834 only)
Vss	Logic ground (IRS21834 only)
V _B	High-side floating supply
НО	High-side gate driver output
٧s	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate driver output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

Figure 4A. Turn-On Propagation Delay vs. Temperature

Figure 4B. Turn-On Propagation Delay vs. Supply Voltage

Figure 5A. Turn-Off Propagation Delay vs. Temperature

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

IRS2183/IRS21834(S)PbF

Figure 6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

IRS2183/IRS21834(S)PbF

Figure 8A. Deadtime vs. Temperature

Figure 8B. Deadtime vs. Supply Voltage

Figure 8C. Deadtime vs. $R_{\rm DT}$

Figure 9A. Logic "1" Input Voltage vs. Temperature

Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

Figure 10A. Logic "0" Input Voltage vs. Temperature

Figure 10B. Logic "0" Input Voltage vs. Supply Voltage

Figure 11A. High Level Output Voltage vs. Temperature (I_o = 0 m A)

Figure 11B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

Figure 12A. Low Level Output vs. Temperature

Figure 12B. Low Level Output vs. Supply Voltage

Figure 13A. Offset Supply Leakage Current vs. Temperature

Figure 13B. Offset Supply Leakage Current vs. $V_{\rm B}$ Boost Voltage

Figure 14A. V_{BS} Supply Current vs. Temperature

Figure 14B. $\rm V_{BS}$ Supply Current vs. $\rm V_{BS}$ Floating Supply Voltage

Figure 15A. V_{CC} Supply Current vs. Temperature

Figure 15B. $V_{\rm cc}$ Supply Current vs. $V_{\rm cc}$ Supply Voltage

Figure 16A. Logic "1" Input Bias Current vs. Temperature

Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 17A. Logic "0" Input Bias Current vs. Temperature

Figure 17B. Logic "0" Input Bias Current vs. Voltage

Figure 18. $V_{\rm CC}$ and $V_{\rm BS}$ Undervoltage Threshold (+) vs. Temperature

Figure 19. $\rm V_{CC}$ and $\rm V_{BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 20A. Output Source Current vs. Temperature

Figure 20B. Output Source Current vs. Supply Voltage

Figure 21A. Output Sink Current vs. Temperature

Figure 21B. Output Sink Current vs. Supply Voltage

Figure 22. IRS2183 vs. Frequency (IRFBC20), $R_{\text{oate}} \text{=} 33~\Omega,~V_{\text{CC}} \text{=} 15~\text{V}$

IRS2183/IRS21834(S)PbF

Figure 23. IRS2183 vs. Frequency (IRFBC30), $\rm R_{gate} = 22~\Omega,~V_{CC} = 15~V$

Figure 24. IRS2183 vs. Frequency (IRFBC40), $\rm R_{\rm qate} = 15~\Omega,~V_{\rm CC} = 15~V$

Figure 25. IRS2183 vs. Frequency (IRFPE50), $\rm R_{\rm gate} {=} 10~\Omega, \, \rm V_{\rm CC} {=} 15~V$

Figure 26. IRS21834 vs. Frequency (IRFBC20), $\rm R_{oate} = 33~\Omega,~V_{CC} = 15~V$

Figure 27. IRS21834 vs. Frequency (IRFBC30), $\rm R_{gate} = 22~\Omega,~V_{CC} = 15~V$

Figure 28. IRS21834 vs. Frequency (IRFBC40), $\rm R_{\rm qate} = 15~\Omega,~V_{\rm CC} = 15~V$

Figure 29. IRS21834 vs. Frequency (IRFPE50), $\rm R_{\rm oate} {=} 10~\Omega,~V_{\rm CC} {=} 15~V$

Figure 30. IRS2183S vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{CC} = 15~V$

Figure 31. IRS2183S vs. Frequency (IRFBC30), $\rm R_{gate} {=} 22~\Omega, \, \rm V_{CC} {=} 15~V$

Figure 32. IRS2183S vs. Frequency (IRFBC40), R_{oate} =15 Ω , V_{CC} =15 V

Figure 33. IRS2183S vs. Frequency (IRFPE50), $\rm R_{\rm gate} {=} 10~\Omega, \, \rm V_{\rm CC} {=} 15~V$

Figure 34. IRS21834S vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{CC} = 15~V$

Figure 35. IRS21834S vs. Frequency (IRFBC30), $\rm R_{\rm gate} = 22~\Omega,~V_{\rm CC} = 15~V$

Figure 36. IRS21834S vs. Frequency (IRFBC40), $\rm R_{gate}{=}15~\Omega,\,V_{CC}{=}15~V$

Figure 37. IRS21834S vs. Frequency (IRFPE50), $\rm R_{gate} {=} 10~\Omega, \, \rm V_{CC} {=} 15~V$

Case outlines

IRS2183/IRS21834(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	Ме	tric	Im p erial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

M etric		Im p	erial
Min	Max	Min	Max
329.60	330.25	12.976	13.001
20.95	21.45	0.824	0.844
12.80	13.20	0.503	0.519
1.95	2.45	0.767	0.096
98.00	102.00	3.858	4.015
n/a	18.40	n/a	0.724
14.50	17.10	0.570	0.673
12.40	14.40	0.488	0.566
	Min 329.60 20.95 12.80 1.95 98.00 n/a 14.50	Min Max 329.60 330.25 20.95 21.45 12.80 13.20 1.95 2.45 98.00 102.00 n/a 18.40 14.50 17.10	Min Max Min 329.60 330.25 12.976 20.95 21.45 0.824 12.80 13.20 0.503 1.95 2.45 0.767 98.00 102.00 3.858 n/a 18.40 n/a 14.50 17.10 0.570

IRS2183/IRS21834(S)PbF

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN
Metric Impe Min Мах Min 7.90 8.10 0.311 0.318 3.90 0.153 0.161 4.10 15.70 16.30 0.618 0.641 7.40 7.60 0.291 0.299 6.40 6.60 0.252 0.260 9.60 0.370 0.378 1.50 0.059 n/a n/a 1.50 1.60 0.059 0.062

REEL	DIME	: NS	ION:	<u>S F</u>	OR	14SO	IC	; N

	M e	tric	lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2183PbF 8-Lead SOIC IRS2183SPbF 8-Lead SOIC Tape & Reel IRS2183STRPbF 14-Lead PDIP IRS21834PbF 14-Lead SOIC IRS21834SPbF 14-Lead SOIC Tape & Reel IRS21834STRPbF

International

Rectifier

SOIC8 &14 are MSL2 qualified.
d qualified for the industrial level.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 11/27/2006