fx-991CE X

Návod k použití

CASIO Světová vzdělávací webová stránka

http://edu.casio.com

Příručky v různých jazycích jsou k dispozici na webu http://world.casio.com/manual/calc

Veškerou uživatelskou dokumentaci si ponechte při ruce pro budoucí použití.

OBSAH

O tomto manuálu	2
Inicializace kalkulátoru	2
Upozornění	2
Začínáme	3
Výpočtový režim	4
Vstupní a výstupní formáty	5
Nastavení konfigurace kalkulátoru	6
Zadávání výrazů a hodnot	8
Přepínání výsledků výpočtů	.10
Základní výpočty	. 10
Historie výpočtu a zopakování	. 12
Používání funkcí paměti	.13
Výpočty funkcí	. 14
Funkce QR Code	. 17
Výpočty komplexních čísel	. 18
Užití CALC	. 18
Užití SOLVE	.19
Statistické výpočty	
Výpočty se základem n	.23
Výpočty rovnic	
Výpočty matic	. 25
Vytvoření číselné tabulky	. 27
Výpočty vektorů	
Výpočty nerovnic	. 29
Výpočty poměrů	
Výpočty rozdělení	. 31
Používání tabulky	.33
Atomová hmotnost (Period tabulka)	. 37
Vědecké konstanty	. 37
Metrické převody	.38
Chyby	. 38
Dříve než budete předpokládat poruchu kalkulátoru	.40
Výměna baterieVýměna baterie	.40
Technické údaje	.41
■■ Často kladené otázky ■■	43
Referenční list	. 44

- CASIO Computer Co., Ltd. není v žádném případě odpovědná vůči komukoli za jakýkoli případ speciálního, kolaterálního, náhodného nebo následného poškození, které může vzniknout ve spojení s nebo jako důsledek koupě či používání tohoto produktu a položek, které k němu patří.
- Kromě toho, CASIO Computer Co., Ltd. nepřebírá žádnou zodpovědnost za jakékoli stížnosti od kterékoli třetí strany vyplývající z užívání tohoto produktu a položek s ním spojených.

O tomto manuálu

- Pokud není vysloveně uvedeno, všechny vzorové operace v tomto manuálu předpokládají, že je kalkulátor ve svém původním standardním nastavení. Použijte proceduru pod "Inicializace kalkulátoru" k navrácení kalkulátoru do jeho původního standardního nastavení.
- Obsah tohoto manuálu podléhá změnám bez upozornění.
- Zobrazení a ilustrace (jako např. označení kláves), které jsou v tomto návodu k použití, slouží pouze pro ilustrační účely a mohou se poněkud lišit od skutečných věcí, které představují.
- Názvy společnosti a výrobků užité v tomto manuálu mohou být registrované ochranné známky nebo ochranné známky jejich příslušných vlastníků.

Inicializace kalkulátoru

Následující proceduru proveďte, když chcete kalkulátor inicializovat a vrátit výpočtový režim včetně konfigurace (vyjma nastavení Language a Kontrast) do jejich původního nastavení. Vezměte na vědomí, že tato operace vymaže všechna data z paměti kalkulátoru.

9 (RESET) (Inicial vše) (Ano)

Upozornění

Bezpečnostní upozornění

Baterie

- Baterie držte z dosahu malých dětí.
- Používejte pouze baterie specifikované pro tento kalkulátor v tomto manuálu.

Upozornění pro používání

- I když kalkulátor pracuje normálně, vyměňte baterii nejméně jednou každé tři roky (LR44). Vybitá baterie může začít vytékat, a tak způsobit poškození a nesprávnou funkci kalkulátoru. Nikdy nenechávejte vybitou baterii v kalkulátoru. Nezkoušejte používat kalkulátor pokud je baterie úplně vybitá.
- Baterie dodávaná s tímto kalkulátorem se během dopravy a skladování pomalu vybíjí. Z tohoto důvodu může být třeba dřívější výměna než obvykle.
- Vyvarujte se používání a skladování kalkulátoru na místech s teplotními extrémy a vysokou vlhkostí a prašností.
- Nevystavujte kalkulátor nadměrným nárazům, tlaku nebo ohýbání.
- Nikdy nezkoušejte kalkulátor rozebírat.
- Zevnějšek kalkulátoru čistěte pomocí měkkého suchého hadříku.
- Když budete vyhazovat kalkulátor nebo baterie, dělejte to podle zákonů a nařízení platných ve Vaší oblasti.

Začínáme

Před použitím kalkulátoru posuňte pevný kryt směrem dolů, abyste jej mohli odejmout a poté jej připevněte na zadní stranu kalkulátoru jak je ukázáno na vedlejším obrázku.

Zapnutí a vypnutí

Stisknutím N kalkulátor zapnete. Stisknutím AC (OFF) kalkulátor vypnete.

Následující klávesovou operací zobrazíte obrazovku Kontrast:

(SETUP) (SETUP)

Označení kláves

Stisknutím klávesy IIII nebo IIII a následným stiskem další klávesy provedete alternativní funkci druhé klávesy. Alternativní funkce je označena textem vytištěným nad klávesou.

(1) Základní funkce klávesy (2) Alternativní funkce

Tato barva:	Význam:
Žlutá	Stiskem stiskem dané klávesy provedete příslušnou funkci.
Červená	Stiskem (APM) a následným stiskem dané klávesy vložíte příslušnou proměnnou, konstantu, funkci nebo symbol.
Purpurová (nebo uzavřen v purpurových závorkách [1]	Pro zpřístupnění funkce vstupte do režimu Komplexní.
Modrá (nebo uzavřen v modrých závorkách Г1)	Pro zpřístupnění funkce vstupte do režimu Číselná soust.

Čtení displeje

Pokud se indikátor ▶ nebo ▷ objeví napravo od vloženého výrazu (1) nebo výsledku výpočtu (2), znamená to, že zobrazovaný výsledek výpočtu pokračuje vpravo. Pomocí ▶ a ◆ posouvejte zobrazený řádek. Uvědomte si, že pokud budete chtít posunout vložený výraz zatímco indikátory ▶ a ▷ jsou zobrazeny, budete pro posun potřebovat stisknout nejprve ☎ a potom použít ▶ a ◆ k posouvání.

• V následující tabulce jsou popsány některé typické indikátory, které se zobrazují v horní části displeje (3).

S	Klávesnice byla posunuta stiskem klávesy SHFT. Stiskem jakékoli klávesy dojde k posunu zpět na základní klávesnici a tento indikátor zmizí.
A	Byl nastaven režim vstupu alpha stiskem klávesy APPA. Stiskem jakékoli klávesy dojde k vystoupení z režimu vstupu alpha a tato indikace zmizí.
D/R/G	Ukazuje aktuální nastavení Jednotka úhlu (D: Stupeň (D), R: Radián nebo G: Grad) v nabídce nastavení.
FIX	V účinnosti je stanovený počet desetinných míst.
SCI	V účinnosti je stanovený počet platných číslic.
M	V nezávislé paměti je uložena hodnota.
→ <u>x</u>	Kalkulátor je připraven na vložení názvu proměnné, aby k ní mohl přiřadit hodnotu. Tato indikace se objeví po stisknutí
√⊑•	Ukazuje, že je vybráno Mat vst/Mat výs nebo Mat vst/Des výs pro Vstup/Výstup v nabídce nastavení.
	Displej právě ukazuje mezivýsledek výpočtu několikanásobného výrazu.
*	Tento indikátor je zobrazen, když je kalkulátor napájen přímo ze svých solárních článků, buď zcela nebo v kombinaci s baterií.

Užívání nabídky

Některé z operací kalkulátoru se provádějí z nabídky. Nabídka se zobrazí stisknutím OPTN nebo SHIFT a potom (SETUP). Níže jsou popsány operace v obecné nabídce.

 Položku z nabídky můžete vybrat stiskem číselné klávesy, která odpovídá číslu na jeho levé straně na obrazovce nabídky.

- K zavření nabídky bez výběru stiskněte AC.

Výpočtový režim

Níže jsou popsány režimy výpočtu tohoto kalkulátoru.

Yżeobecné (Výpočty)	výpočty
----------------------	---------

₽∠	(Komplexní)	Výpočty komplexních čísel
2 8 10 16	(Číselná soust)	Výpočty obsahující specifické číselné systémy (binární, osmičkový, desítkový, hexadecimální)
[88]	(Matice)	Výpočty matic
14	(Vektor)	Výpočty vektorů
咿	(Statistika)	Statistické a regresní výpočty
<u> </u>	(Rozdělení)	Výpočty rozdělení
***	(Tab editor)	Tabulkové výpočty
<u>==</u>	(Tabulka hodnot)	Generování tabulky čísel na základě jedné nebo dvou funkcí
X Y = 0	(Rovnice/Funkce)	Výpočty rovnic a funkcí
ХУ >0	(Nerovnost)	Výpočty nerovnic
D:D	(Poměr)	Výpočty poměrů

Vyberte výpočtový režim, který vhodný pro typ výpočtu, který chcete provést.

- 1. Stisknutím www zobrazte hlavní nabídku.
- 2. Pomocí kurzorových kláves posuňte zvýraznění na požadovanou ikonu.

3. Stisknutím (se zobrazí výchozí obrazovka režimu, jehož ikonu jste vybrali.

Poznámka: Počáteční standardní výpočtový režim je režim Výpočty.

Vstupní a výstupní formáty

Před zahájením výpočtu na kalkulátoru je třeba nejdříve podle následujících pokynů určit formáty, které se mají použít pro zadání výpočetního vzorce a pro výsledku výpočtu.

- 1. Stiskněte (SETUP) 1 (Vstup/Výstup).
- 2. Stiskněte některou číselnou klávesu (1 až 4).

1 (Mat vst/Mat výs)	Vstup: Přirozené zobrazení; Výstup: Formát, který zahrnuje zlomek, √ nebo π*1
2 (Mat vst/Des výs)	Vstup: Přirozené zobrazení; Výstup: Převedeno na desítkovou hodnotu

3 (Řád vst/Řád výs)	Vstup: Lineární*2; Výstup: Desetinné nebo zlomek
4 (Řád vst/Des výs)	Vstup: Lineární*2; Výstup: Převedeno na desítkovou hodnotu

^{*1} Desetinný výstup bude použit, když tyto formáty nelze z nějakého důvodu použít pro výstup.

Příklady zobrazení formátu Vstup/Výstup

Poznámka: Počáteční výchozí nastavení vstupního/výstupního formátu je Mat vst/Mat výs.

Nastavení konfigurace kalkulátoru

Změny nastavení kalkulátoru

- 1. Stisknutím 뙈 🎹 (SETUP) zobrazte nabídku nastavení.
- 2. Pomocí a posouvejte nabídku nastavení a potom zadejte číslo zobrazené vlevo od položky, jejíž nastavení chcete změnit.

Položky a dostupné možnosti nastavení

"•" ukazuje počáteční výchozí nastavení.

Vstup/Výstup 1 Mat vst/Mat výs*; 2 Mat vst/Des výs; 3 Řád vst/Řád výs; 4 Řád vst/Des výs Určuje formát, který má kalkulátor použít pro zadání vzorce a pro výstup výsledku výpočtu.

Jednotka úhlu 1 Stupeň (D)*; 2 Radián; 3 Grad Určuje stupně, radiány nebo gradiány jako úhlové jednotky pro vloženou hodnotu a zobrazení výsledku výpočtu.

Formát čísel Určuje počet číslic pro zobrazení výsledku výpočtu.

1 Pev(Fix) (FIX): Hodnota, kterou zvolíte (od 0 do 9) určuje počet desetinných míst pro zobrazení výsledků výpočtů. Výsledky výpočtů jsou před zobrazením zaokrouhleny na určené desetinné místo.

Příklad: $100 \div 7$ SHFT $= (\approx)^*$ 14,286 (Pev(Fix) 3)

2 Věd(Sci) (SCI): Hodnota, kterou zvolíte (od 0 do 9) určuje počet platných číslic pro zobrazení výsledků výpočtů. Výsledky výpočtů jsou před zobrazením zaokrouhleny na určené desetinné místo.

Příklad: 1 \div 7 SHFT = (≈)* 1,4286 × 10⁻¹ (Věd(Sci) 5)

^{*2} Veškeré výpočty, včetně zlomků a funkcí, se zadávají do jednoho řádku. Stejný vstupní formát, jako pro modely bez Přirozeného zobrazení (modely S-V.P.A.M. atd.)

3 Norm: Zobrazuje výsledky výpočtů v exponenciálním formátu, když
spadají do následujících rozsahů.
1 Norm 1*: $10^{-2} > x , x \ge 10^{10},$ 2 Norm 2: $10^{-9} > x , x \ge 10^{10}$
Příklad: 1 \div 200 $ᡣ$ = (≈)* 5 × 10 ⁻³ (Norm 1), 0,005 (Norm 2)
* Stisknutím ☐ (≈) místo ☐ po vložení výpočtu se zobrazí výsledek
výpočtu v desetinné formě.
Tech symbol 1 Zapnut; 2 Vypnut* Určuje, zda se mají být výsledky
výpočtů zobrazovat v technických symbolech či nikoli.
Poznámka: Když je pro toto nastavení vybráno Zapnut, v horní části
displeje je zobrazen indikátor (E).
Výsledek zlomku 1 ab/c ; 2 d/c • Určuje bud smíšený zlomek nebo nepravý zlomek pro zobrazení zlomku ve výsledcích výpočtu.
Komplexní $1a+bi^*$; $2r\angle\theta$ Určuje pravoúhlé souřadnice nebo polární
souřadnice pro výsledky výpočtů režimu Komplexní a rozlišení režimu
Rovnice/Funkce.
Poznámka: V horní části displeje je zobrazen indikátor <i>i</i> , když je vybráno <i>a</i>
$+bi$ pro nastavení Komplexní. \angle je zobrazeno, když je vybráno $r\angle\theta$.
Statistika 1 Zapnut; 2 Vypnut* Určuje, zda zobrazí nebo nezobrazí sloupec Cetn (frekvence) ve Statistickém editoru režimu Statistika.
Tab editor Pro konfigurování nastavení režimu Tab editor.
1 Autom výpočet: Určuje, zda mají být vzorce automaticky přepočítávány
či nikoli.
1 Zapnut*; 2 Vypnut Aktivuje nebo deaktivuje automatické přepočítávání.
2 Zobrazit buňku: Určuje, zda má být vzorec v poli úprav zobrazen tak
jak je nebo jako hodnota výsledku jeho výpočtu.
■ Vzorec*: Zobrazí vzorec tak jak je.
2 Hodnota: Zobrazí hodnotu výsledku výpočtu vzorce.
Rovnice/Funkce 1 Zapnut*; 2 Vypnut Určuje, zda mají být používána
komplexní čísla ve výstupu řešení režimu Rovnice/Funkce či nikoli.
Tabulka hodnot $1f(x)$; $2f(x),g(x)$ Určuje, zda použít pouze funkci
f(x) nebo dvě funkce $f(x)$ a $g(x)$ v režimu Tabulka hodnot.
Odděl číslic 1 Zapnut; 2 Vypnut* Určuje, zda má být znak
oddělovače použit ve výpočetních výsledcích či nikoli.
Víceřád písmo 1 Normální písmo; 2 Malé písmo Určuje velikost
zobrazovaného písma, když je Řád vst/Řád výs nebo Řád vst/Des výs
vybráno pro Vstup/Výstup. Když je vybráno Normální písmo, lze zobrazit až
čtyři řádky; když je vybráno Malé písmo, lze zobrazit až šest řádků.
Language 1 Česky*; 2 Magyar; 3 Polski; 4 Slovensky Určuje
jazyk, který bude použit pro nabídky a zprávy kalkulátoru.
QR Code Určuje verzi QR Code, který se zobrazí stisknutím (QR).
1 Verze 3: Určuje QR Code verze 3.
2 Verze 11*: Určuje QR Code verze 11.
Inicializace nastavení kalkulátoru (vyjma nastavení Language a
Kontrast)
(Ano) (RESET) (Data nastavení) (Ano)

Zadávání výrazů a hodnot

Základní pravidla pro zadávání

Když stisknete , bude automaticky vyhodnocena priorita v pořadí výpočtu a výsledek se objeví na displeji.

$$4 \times \sin 30 \times (30 + 10 \times 3) = 120$$

- *1 Vložení uzavírající kulaté závorky se vyžaduje pro sin a další funkce, jejichž součástí jsou závorky.
- *2 Tyto symboly násobení (x) mohou být vynechány.
- *3 Uzavírající kulatá závorka hned před operací 🗏 může být vynechána.

Poznámka

- Kurzor změní tvar na ■, pokud pro vložení zbývá 10 nebo méně bytů.
 Pokud se to stane, vhodně ukončete vkládaný výraz a pak stiskněte ■.
- Provedete-li výpočet, který obsahuje operace dělení i násobení, ve kterých je vynecháno znaménko násobení, budou automaticky vloženy závorky, jak je uvedeno v následujících příkladech.
 - Když je symbol násobení vynechán bezprostředně před počáteční závorkou nebo za koncovou závorkou.

Příklad: $6 \div 2(1 + 2) \rightarrow 6 \div (2(1 + 2))$

 Když je symbol násobení vynechán bezprostředně před proměnnou, konstantou atd.

Příklad: $2 \div 2\sqrt{2} \rightarrow 2 \div (2\sqrt{2})$

Posloupnost předností výpočtů

Přednost pořadí vkládaných výpočtů je vyhodnocena podle níže uvedených pravidel. Pokud je přednost dvou výrazů stejná, výpočet se provádí zleva doprava.

1	Výrazy v kulatých závorkách
2	Funkce, které mají závorky (sin(, log(, atd., funkce, které mají argument vpravo, funkce, které vyžadují koncovou závorku za argumentem)
3	Funkce, kterým předchází vstupní hodnota $(x^2, x^3, x^{-1}, x!, o'', o, r, g, w, t)$, technické symboly $(m, \mu, n, p, f, k, M, G, T, P, E)$, mocniny (x^{\blacksquare}) , odmocniny $(\sqrt[n]{\square})$
4	Zlomky
5	Záporné znaménko ((-)), symboly se základem n symboly (d, h, b, o)
6	Příkazy metrických převodů (cm \blacktriangleright in atd.), odhadované hodnoty režimu Statistika (\widehat{x} , \widehat{y} , \widehat{x}_1 , \widehat{x}_2)
7	Násobení tam, kde je vynecháno znaménko pro násobení
8	Permutace (n P r), kombinace (n C r), symbol komplexního čísla polární souřadnice (\angle)
9	Skalární součin (•)
10	Násobení (x), dělení (÷)

11	Přičítání (+), odčítání (-)
12	and (logický operátor)
13	or, xor, xnor (logické operátory)

Zadávání výrazu s použitím formátu přirozeného zobrazení (pouze Mat vst/Mat výs nebo Mat vst/Des výs)

Vzorce a výrazy, které obsahují zlomky a/nebo speciální funkce, například $\sqrt{\ }$, lze zadávat ve formátu přirozeného zobrazení pomocí šablon, které se zobrazí stisknutím určitých kláves.

Příklad: $3\frac{1}{2} + 5\frac{3}{2}$

- 1. Stiskněte SHFT 書(■号).
 - Bude zadána šablona kombinovaného zlomku.

2. Zadejte hodnoty do polí celého čísla, čitatele a jmenovatele šablony.

 $3\frac{1}{2}$

3. Stejným způsobem zadejte zbytek výrazu.

 $3\frac{1}{2} + 5\frac{3}{2}$

Tip: Když se kurzor vstupu nachází v poli pro zadávání šablony (kombinované zlomky, integrace (∫) a suma (Σ)), stisknutím (Σ) přejde na bezprostředně následující pozici (napravo) šablony, zatímco stisknutím (Σ) přejde na bezprostředně předcházející pozici (nalevo).

$$3\frac{1}{2}$$
 $3\frac{1}{2}$

Poznámka

- Když stisknete a získáte výsledek výpočtu, část výrazu, kterou jste vložili, může být oříznutá. Pokud opět potřebujete vidět celý vložený výraz, stiskněte a potom pomocí a posunujte vložený výraz.
- Vnořené funkce a závorky jsou povoleny. Pokud vložíte příliš mnoho funkcí a/nebo závorek, bude další vkládání znemožněno.

Vracení operací zpět (pouze Mat vst/Mat výs nebo Mat vst/Des výs):
Chcete-li vrátit poslední operaci klávesy, stiskněte (UNDO). Chcete-li opakovat operaci klávesy, kterou jste právě vrátili, znovu stiskněte (UNDO).

Užití hodnot a výrazů jako argumentů (pouze Mat vst/Mat výs nebo Mat vst/Des výs)

Příklad: Chcete-li zadat $1 + \frac{7}{6}$ a potom změnit na $1 + \sqrt{\frac{7}{6}}$

1 **+** 7 **=** 6 **◆ ◆ ◆ ♦ SHIFT DEL** (INS)

 $1+\sqrt{\frac{7}{6}}$

Stisknutím SHIFT DEL (INS) ve výše uvedeném příkladu se $\frac{7}{6}$ stane argumentem funkce zadané další operací klávesy ($\sqrt{\ }$).

Přepisovací vstupní režim (pouze Řád vst/Řád výs nebo Řád vst/Des výs)

V režimu přepisu bude text, který jste vložili, nahrazen textem, kde je aktuálně umístěn kurzor. Mezi režimy vložení a přepisu můžete přepínat pomocí těchto operací: SHIFT DEL (INS). V režimu vkládání se kurzor zobrazuje jako "I" a v přepisovém režimu jako "_".

Přepínání výsledků výpočtů

Když je Mat vst/Mat výs nebo Mat vst/Des výs vybráno pro Vstup/Výstup v nabídce nastavení, opakovaným stisknutím 🖭 se bude přepínat aktuálně zobrazovaný výsledek výpočtu mezi desetinnou formou a formou zlomku, jeho formou $\sqrt{}$ a desetinnou formou nebo jeho formou π a desetinnou formou.

 $\pi \div 6 = \frac{1}{6}\pi = 0.5235987756$ (Mat vst/Mat výs)

SHIFT
$$\mathbf{x}\mathbf{10}^{x}(\pi)$$
 \div 6

$$\frac{1}{6}\pi \leftarrow \text{S+D} \rightarrow 0,5$$

 $\frac{1}{6}\pi \leftarrow \text{S+D} \rightarrow 0,5235987756}$ $\frac{1}{6}\pi \leftarrow \text{S+D} \rightarrow 0,5235987756}$ $(\sqrt{2} + 2) \times \sqrt{3} = 5,913591358 = \sqrt{6} + 2\sqrt{3}$ (Mat vst/Des výs)

Bez ohledu na to co je vybráno pro Vstup/Výstup v nabídce nastavení, se opakovaným stisknutím 🕪 bude přepínat aktuálně zobrazovaný výsledek výpočtu mezi desetinnou formou a formou zlomku.

Důležité

- U některých výsledku výpočtu stisk klávesy 🖭 nezmění zobrazovanou hodnotu.
- Nelze přepínat z desetinné formy na formu smířených zlomků, pokud je celkový počet použitých číslic ve smíšeném zlomku (včetně celého čísla, čitatele, jmenovatele a symbolu oddělovače) větší než 10.

Výpočet výsledku desetinné hodnoty, když je vybráno Mat vst/Mat výs nebo Řád vst/Řád výs

Po zadání výpočtu stiskněte SHFT = (≈) místo = .

Základní výpočty

Výpočty se zlomky

Upozorňujeme vás, že metoda zadávání zlomků závisí na aktuálním nastavení Vstup/Výstup v nabídce nastavení.

Poznámka

- Míchání zlomků a desetinných hodnot ve výpočtu, když je vybráno něco jiného, než Mat vst/Mat výs, způsobí, že výsledek bude zobrazen jako desetinná hodnota.
- Zlomky jsou ve výsledcích výpočtů zobrazeny po jejich vykrácení.
- Chcete-li přepnout výsledek výpočtu mezi formátem nepravého zlomku a smíšeného zlomku, stiskněte SHFT S+D (a b + d c).

Výpočty s procenty

Vložením hodnoty a stisknutím (%) se ze zadané hodnoty stanou procenta.

<u> </u>		
$150 \times 20\% = 30$	$150 \times 20 \text{ SHIFT Ans } (\%) \equiv$	30
Spočítejte kolik procent z 880	O je 660. (75%)	
	$660 \div 880 \text{ SHIFT Ans} (\%) \equiv$	75
Snižte 3500 o 25%. (2625)		
	$3500 - 3500 \times 25$ SHIFT Ans (%)	2625

Výpočty se stupni, minutami, sekundami (šedesátková soustava)

Následující syntaxe je určena pro zadávání hodnoty v šedesátkové soustavě: {stupně} •••• {minuty} •••• {sekundy} •••• Upozorňujeme vás, že vždy musíte vložit nějakou hodnotu pro stupně a minuty, i když jsou třeba nulové.

2°20'30" + 9'30" = 2°30'00"

2°30'0" + 0°30'0" = 2°30'0"

Převeďte 2°30'0" na ekvivalent v desítkové soustavě.

(Převádí z desítkové soustavy do šedesátkové.) 2°30'0"

Několikanásobné výrazy

Pro spojení dvou nebo více výrazů můžete použít dvojtečku (:) a poté tyto výrazy postupně zleva doprava vyhodnocovat tisknutím klávesy

 $3 + 3 : 3 \times 3$ $3 + 3 : 3 \times 3$

Poznámka: Zadáním dvojtečky (:), když je vybráno Řád vst/Řád výs nebo Řád vst/Des výs pro nastavení Vstup/Výstup v nabídce nastavení bude provedena operace nového řádku.

Používání technického tvaru čísel

Převeďte hodnotu 1234 do technického	1234	1234
tvaru s posunutím desetinné značky vpravo	ENG	$1,234\times10^{3}$
a potom vlevo.	ENG	1234×10^{0}
	SHIFT ENG (\leftarrow)	$1,234\times10^{3}$
	SHIFT ENG (\leftarrow)	$0,001234\times10^{6}$

Poznámka: Výše uvedený výsledek výpočtu se zobrazí, když je vybráno Vypnut pro nastavení Tech symbol v nabídce nastavení.

Používání technických symbolů

Tento kalkulátor podporuje používání 11 technických symbolů (m, μ , n, p, f, k, M, G, T, P, E), které lze používat pro zadání hodnoty nebo pro zobrazení výsledku výpočtu.

Zobrazení výsledků výpočtu s technickými symboly

V nabídce nastavení změňte nastavení Tech symbol na Zapnut.

Příklad zadání a výpočtů s použitím technických symbolů

Zadání 500k

500 PTN 3 (Tech symbol) 1:m 2: # 3:n 4:p 5:f 6:k 7:M 8:G 9:T A:P B:E

6(k)**≡** 500k

Výpočet 999k (kilo) + 25k (kilo) = 1,024M (Mega) = 1024k (kilo) = 1024000

999 \bigcirc 3 (Tech symbol) \bigcirc (k) \bigcirc

25 (Tech symbol) 6 (k) = 1,024M

ENG $1024 \mathrm{k}$ ENG 1024000SHIFT ENG (\leftarrow) $1024 \mathrm{k}$

Prvočíselný rozklad

Aby bylo možné kladné celé číslo rozložit v režimu Výpočty na prvočísla, nemůže být delší, než 10 číslic.

Prvočíselný rozklad čísla 1014

1014 = 1014

SHIFT •••• (FACT) 2×3×13²

Chcete-li znovu zobrazit nerozloženou hodnotu, stiskněte (FACT) nebo (E).

Poznámka: Typy níže popsaných hodnot nelze rozkládat, i když obsahují 10 nebo méně číslic.

- Jedno z prvočísel hodnoty je 1018081 nebo vyšší.
- Dvě nebo více prvočísel hodnoty mají více než tři číslice.

Část, kterou nelze rozložit, bude na displeji uvedena v kulatých závorkách.

Historie výpočtu a zopakování

Historie výpočtu

▲ a/nebo ▼ v horní části displeje ukazuje, že existuje další obsah historie výpočtu nad a/nebo pod. Pro procházení obsahu paměti historie výpočtu použijte ▲ a ▼.

2 + 2 = 4 2 + 2 = 4 3 + 3 = 6 3 + 3 = 6

Poznámka: Obsah paměti historie výpočtu se vymaže kdykoli stisknete M, když změníte na jiný výpočtový režim, když změníte nastavení Vstup/Výstup nebo kdykoli provedete operaci RESET ("Inicial vše" nebo "Data nastavení").

Zopakování

Když je na displeji zobrazen výsledek výpočtu, můžete stisknutím nebo upravit výraz, který jste použili pro předchozí výpočet.

$4 \times 3 - 7 = 5$	(Pokračování)	● DEL DEL - 7=	5
Používání fun	kcí paměti		
Paměť posledního Poslední obdržený výsled posledního výsledku).	lek výpočtu je uchovává	n v Ans (paměti	
Podělení výsledku 14 x 1	3 číslem 7 14 ⋉ 13 ≡	18	32
		Ans÷7	
(Pokračování)	2	26
123 + 456 = <u>579</u> 789 - <u>579</u> = 210	(Pokračování		79 10
Proměnné (A, B, C Proměnným můžete přiřad	dit hodnotu a použít pror	měnné ve výpočtech.	
Přiřazení výsledku výpočt	'	3 + 5 ™ →(A)	8
Vynásobení obsahu prom		⊃(A) × 10 = *1 8	30
Zobrazení obsahu promě	<u> </u>		
(Pokračování)	SHIFT STO (RECALL)*2 E=:	8 B=Γ(2) 8,14159265 D=0,42857142 1.3 F=Γ(7) 7,2115×m ¹⁰ x=7.3 2°15′18"	
	(A)=		8
Vymazání obsahu proměr	nne A 0 570 (→(A)		0
Chcete-li zadat x jako nebo x. *2 Stisknutím FFF STO (RE jsou aktuálně přiřazený obrazovce jsou hodno	ásledujícím způsobem: s á odpovídá názvu požac název proměnné, můžet	dované proměnné. e stisknout (APHA) (x) ovka s hodnotami, které , E, F, M, x a y. Na této mátu "Norm 1" Formát	
Nezávislá paměť (l Výsledky výpočtů můžete Indikace "M" na displeji z nenulová hodnota.	přičíst nebo odečíst od		
Vymazání obsahu M		O (STO) (M+) (M)	0
Připočtení výsledku 10 x		čování) 10×5 M+ 5	50
Odečtení výsledku 10 + 5	· · · · · · · · · · · · · · · · · · ·		

×3**+**2**=**

 $4 \times 3 + 2 = 14$

15

35

90

3

Zobrazení obsahu M

(Pokračování) SHIFT STO (RECALL) M+ (M)

Poznámka: Proměnná M se používá pro nezávislou paměť. M lze rovněž vyvolat a použít v zadávaném výpočtu.

Vymazání obsahu všech pamětí

Paměť posledního výsledku (Ans), nezávislá paměť a obsahy všech proměnných jsou zachovány dokonce, když stisknete (AC), změníte režim kalkulátoru nebo kalkulátor vypnete. Pokud chcete vymazat obsahy všech pamětí, provedte následující postup.

SHIFT 9 (RESET) 2 (Paměť) = (Ano)

Výpočty funkcí

Poznámka: Pro přerušení probíhajícího výpočtu před zobrazením výsledku, stiskněte **AC**.

Pi π: π je zobrazováno jako 3,141592654, ale pro vnitřní výpočty se používá $\pi = 3,14159265358980$.

Základ přirozeného logaritmu e: e je zobrazováno jako 2,718281828, ale pro vnitřní výpočty se používá e = 2,71828182845904.

sin, cos, tg, sin⁻¹, cos⁻¹, tg⁻¹: Před provedením výpočtů specifikujte úhlovou jednotku.

 $\sin 30^\circ = \frac{1}{2}$ (Jednotka úhlu: Stupeň (D)) $\sin 30$) \equiv

sinh, cosh, tgh, sinh⁻¹, cosh⁻¹, tgh⁻¹: Zadejte funkci z nabídky, která se zobrazí stisknutím (Hyperbol funkce)*¹. Nastavení úhlových jednotek nemá vliv na výpočet.

*1 V závislosti na režimu výpočtu je třeba stisknout PTN 🖎 📵.

°, °, g: Tyto funkce určují úhlovou jednotku. ° určuje stupeň, r radián a g gradián. Vložte funkci z nabídky, které se objeví, když provedete následující klávesovou operaci: OPTN 2 (Jednotka úhlu)*2.

 $\pi/2$ radiány = 90° (Jednotka úhlu: Stupeň (D))

(SHIFT $\times 10^{\circ}$ (π) \div 2) OPTN 2 (Jednotka úhlu) 2 (r) \equiv

*2 V závislosti na režimu výpočtu je třeba stisknout PTN 🖎 🔼.

10[■], e[■]: Exponenciální funkce.

 $e^5 \times 2 = 296,8263182$

log: Logaritmické funkce. Použijte المجالة الم

b). Zakiad 10 je standardnim nastavenim, pokud za a neviozite neco jine $\log_{10}1000 = \log 1000 = 3$ SHFT \bigcirc (log) 1000 \bigcirc

 $\log_2 16 = 4$ SHIFT \bigcirc (log) 2 SHIFT \bigcirc (;) 16 \bigcirc = 4

K zadání lze rovněž použít klávesu . ale pouze, když je vybráno Mat vst/Mat výs nebo Mat vst/Des výs pro Vstup/Výstup v nabídce nastavení. V tomto případě musíte pro základ vložit hodnotu.

tomto případě musíte pro základ vložit hodnotu. $\log_2 16 = 4$ $\log_2 16 = 4$

In: Přirozený logaritmus se základem *e*.

 $\ln 90 \ (= \log_e 90) = 4,49980967$ $\boxed{\ln 90} \ \boxed{\equiv}$ 4,49980967

 $x^2, x^3, x^4, \sqrt{}, \sqrt[3]{}, \sqrt[3]{}, \sqrt[3]{}, x^{-1}$: Mocniny, odmocniny a převrácené hodnoty. $(1 + 1)^{2+2} = 16$ (1+1) x²2+2= 16 $(5^2)^3 = 15625$ $(5x^2)$ SHIFT $x^2(x^3)$ 15625 $\sqrt[5]{32} = 2$ (Mat vst/Mat výs) SHIFT $x^{\bullet}(\sqrt[4]{\Box})$ 5 \bigcirc 32 $\boxed{\blacksquare}$ 2 (Řád vst/Řád výs) $5 \text{ SHIFT } x^{\bullet} (\sqrt[\bullet]{\Box}) 32) \equiv$ 2 $\sqrt{2} \times 3 = 3\sqrt{2} = 4.242640687...$ (Mat vst/Mat výs) **2 ≥ 3 = 2 ≥ 3 = 3** $3\sqrt{2}$ (Řád vst/Řád výs) **2 ≥** 3 **=** 3 4,242640687 ∫, dde, E: Tyto funkce využívají Gauss-Kronrodovy metody k provádění číselné integrace, aproximace derivativu na základě centrální diferenciální metody a výpočtu sumy specifikovaného rozsahu f(x). Syntaxe zadání (1) Když je vybráno Mat vst/Mat výs nebo Mat vst/Des výs $\int_{a}^{b} \int_{a}^{b} f(x)dx \qquad \frac{d}{dx} \qquad \frac{d}{dx}(f(x))\Big|_{x=a} \qquad \sum_{x=a}^{b} (f(x))$ (2) Když je vybráno Řád vst/Řád výs nebo Řád vst/Des výs $\int (f(x); a; b; tol) \frac{d}{dx} \frac{d}{dx} \left(f(x); a; tol \right) = \sum (f(x); a; b)$ f = tol určuje toleranci, která je 1 × 10⁻⁵, když není nic vloženo pro tol. $\frac{d}{dx}$: tol určuje toleranci, která je 1×10^{-10} , když není nic vloženo pro tol. $\Xi = : a$ a b jsou celá čísla, která mohou být určena v rozmezí -1 \times 10¹⁰ < $a \le b < 1 \times$ 10^{10} . Opatření pro integrační a diferenciální výpočty • Když používáte trigonometrickou funkci v f(x), specifikujte "Radián" jako úhlovou jednotku. • Menší hodnota tol zvyšuje přesnost, ale také zvyšuje čas na výpočet. Při určování tol použijte hodnotu, která je 1 × 10⁻¹⁴ nebo větší. Výpočet integrace obyčejně vyžaduje značné množství času. V závislosti na obsahu f(x), na pozitivních a negativních hodnotách v oblasti integrace nebo na oblasti integrace může dojít k výpočtové chybě, která přesahuje toleranci, a kalkulátor zobrazí chybovou zprávu. • Při derivativních výpočtech body, které nenásledují za sebou, náhlé výkyvy, extrémně velké nebo malé body, inflexní body a inkluzní body, které nemohou být rozlišeny, nebo diferenciální body nebo výsledek diferenciálního výpočtu, který se blíží nule, mohou způsobit nízkou přesnost nebo chybu. $\ln(x)dx$ (Mat vst/Mat výs) In ALPHA (x) (x) (x) 1 (x) ALPHA (x) (x)1 (Řád vst/Řád výs) In ALPHA (x) SHIFT (x)1 SHIFT) (;) ALPHA $\times 10^{x}$ (e)) = 1 Pro získání derivace v bodě $x = \pi/2$ pro funkci $y = \sin(x)$ (Jednotka úhlu: Radián) SHIFT $(\frac{d}{dx})$ sin ALPHA (x) ...(1) (Mat vst/Mat výs) (Pokračování podle (1)) \blacksquare SHIFT $\times 10^{7}(\pi)$ \blacksquare 2 \blacksquare 0 (Řád vst/Řád výs) (Pokračování podle (1)) SHIFT () (;) SHIFT $\times 10^{x}$ (π) = 2) = 0

$$\sum_{x=1}^{5} (x+1) = 20$$

(Mat vst/Mat výs)

SHIFT
$$\mathfrak{X}(\Xi^{\bullet})$$
 ALPHA $\mathfrak{D}(x)$ $+$ 1 \bullet 1 \bullet 5 \equiv

 $(\check{\mathsf{R}}\mathsf{ad}\;\mathsf{vst}/\check{\mathsf{R}}\mathsf{ad}\;\mathsf{výs}) \qquad \qquad \mathsf{SHIFT}\;\; \boldsymbol{x}\;(\;\;\boldsymbol{\Xi}\boldsymbol{-}\;\;)\; \mathsf{ALPHA}\;\;\boldsymbol{)}\;(x)\;\boldsymbol{+}\; 1$

SHIFT () (;) 1 (SHIFT () (;) 5 () (=)

Pol, Rec: Pol převádí pravoúhlé souřadnice na polární souřadnice, zatímco Rec převádí polární souřadnice na pravoúhlé souřadnice.

- Před provedením výpočtů specifikujte úhlovou jednotku.
- Výsledek výpočtu pro r a θ a pro x a y jsou přiřazeny proměnným x a y.
- Výsledek výpočtu θ je zobrazen v intervalu -180° < θ ≤ 180°.

 $\begin{array}{c|c}
P(r;\theta) \\
\hline
\theta \\
X
\end{array}$

20

20

Převod pravoúhlých souřadnic $(\sqrt{2}; \sqrt{2})$ na polární souřadnice (Jednotka úhlu: Stupeň (D))

(Mat vst/Mat výs)

Převod polárních souřadnic ($\sqrt{2}$; 45°) na pravoúhlé souřadnice (Jednotka úhlu: Stupeň (D))

(Mat vst/Mat výs)

SHIFT \blacksquare (Rec) \checkmark 2 \blacksquare SHIFT \bigcirc (;) 45 \bigcirc \blacksquare x=1; y=1

x!: Funkce faktoriál.

(5 + 3)! = 40320

(5+3) SHIFT x''(x!) = 40320

Abs: Funkce absolutní hodnoty.

 $|2 - 7| \times 2 = 10$

(Mat vst/Mat výs)

SHIFT ((Abs) 2 - 7 ► × 2 = 10

(Řád vst/Řád výs)

SHIFT ((Abs) 2 - 7) × 2 = 10

Ran#: Funkce, která generuje pseudo náhodné číslo v intervalu 0,000 až
0,999. Výsledek je zobrazen jako zlomek, když je Mat vst/Mat výs vybráno

pro Vstup/Výstup v nabídce nastavení. Výpočet náhodných tříčíslicových celých čísel

1000 SHIFT (Ran#) = 459

(Výsledek se po každém provedení liší.)

RanInt#: Funkce, která generuje pseudo náhodné celé číslo mezi stanovenou počáteční a koncovou hodnotou.

Generovat náhodná celá čísla v rozmezí od 1 do 6

ALPHA ▶ (RanInt) 1 SHIFT) (;) 6) =

2

(Výsledek se po každém provedení liší.)

nPr, nCr: Funkce permutace (nPr) a kombinace (nCr).

Pro určení možného počtu permutací a kombinací, když jsou vybráni čtyři lidé ze skupiny deseti lidí

Permutace:

10 SHIFT \times (nPr) 4 =

5040

Kombinace:

10 SHIFT \div (nCr) 4 =

210

Rnd: Použitím funkce Rnd budou hodnoty desetinných zlomků argumentu zaokrouhleny podle aktuálního nastavení Formát čísel. Například vnitřní a zobrazený výsledek Rnd(10 ÷ 3) je 3,333, když je nastavení Formát čísel nastaveno na hodnotu Pev(Fix) 3. Použitím nastavení Norm 1 nebo Norm 2 bude argument zaokrouhlen na 11. číslici mantisy.

Provádění následných výpočtů, když je vybráno Pev(Fix) 3 pro počet zobrazovaných číslic: $10 \div 3 \times 3$ a Rnd($10 \div 3$) \times 3 (Mat vst/Des výs)

10**÷**3**×**3**≡**

10,000

SHIFT **0** (Rnd) 10 **÷** 3 **) ×** 3 **≡**

9,999

Funkce QR Code

Tento kalkulátor dokáže zobrazovat symboly QR Code*, které lze načítat pomocí chytrého zařízení.

* QR Code je registrovaná ochranná známka společnosti DENSO WAVE INCORPORATED v Japonsku a v dalších zemích.

Důležité

- Postupy uvedené v této části předpokládají, že použité chytré zařízení je vybaveno čtečkou QR Code, která dokáže načítat více symbolů QR Code, a že se dokáže připojit k Internetu.
- Při snímání kódu QR Code zobrazeného tímto kalkulátorem pomocí chytrého zařízení bude toto zařízení přesměrováno na webové stránky CASIO.

Poznámka: Kód QR Code lze zobrazit stisknutím (QR), když je zobrazena obrazovka nastavení, nabídek, chyby, výsledku výpočtu v jakémkoli výpočtovém režimu nebo tabulky. Podrobnosti viz webové stránky CASIO (wes.casio.com).

Zobrazení kódu QR Code

Příklad: Zobrazení kódu QR Code pro výsledek výpočtu v režimu Výpočty kalkulátoru a jeho nasnímání pomocí chytrého zařízení

- 1. Proveďte výpočet v režimu Výpočty.
- 2. Stisknutím SHFT OPTN (QR) zobrazíte kód QR Code.
 - Čísla v pravém dolním rohu displeje ukazují číslo aktuálního kódu QR Code a celkový počet symbolů kódu QR Code. Chcete-li zobrazit další kód QR Code, stiskněte nebo

Poznámka: Zatímco kalkulátor vytváří kód QR Code, je v horní části displeje zobrazen indikátor **III**.

Chcete-li se vrátit na předchozí kód QR Code, opakovaně stiskněte

- nebo , dokud se nezobrazí požadovaný kód.
- 3. Pomocí chytrého zařízení nasnímejte kód QR Code na displeji kalkulátoru.
 - Snímání kódu QR Code najdete v návodu na použití vaší čtečky kódů QR Code.

V případě potíží při snímání kódu QR Code: Po zobrazení kódu QR Code upravte kontrast zobrazení kódu QR Code pomocí (a). Toto nastavení kontrastu se týká pouze zobrazení kódu QR Code.

Důležité

- V závislosti na používaném chytrém zařízení a/nebo aplikaci čtečky kódů QR Code se můžete setkat s potížemi při snímání symbolů kódů QR Code vytvořených tímto kalkulátorem.
- Když je položka "QR Code" nastavena na "Verze 3", jsou omezeny režimy kalkulátoru, ve kterých lze zobrazovat symboly kódů QR Code. Pokusíte-li se zobrazit kód QR Code v režimu, který nepodporuje zobrazení kódu QR Code, zobrazí se zpráva "Není podporováno (Verze 3)". Nicméně kód QR Code vytvořený v tomto nastavení je čitelnější pro chytré zařízení.

• Další informace viz webové stránky CASIO (wes.casio.com).

Ukončení zobrazení kódu QR Code: Stiskněte AC nebo SHIFT OPTN (QR).

Výpočty komplexních čísel

Aby bylo možné provádět výpočty komplexních čísel, nejdříve přejděte do režimu Komplexní. Pro zadávání komplexních čísel můžete použít buď pravoúhlé souřadnice (a+bi) nebo polární souřadnice $(r \angle \theta)$. Výsledky výpočtů komplexních čísel jsou zobrazeny podle nastavení Komplexní v nabídce nastavení.

$$(1+i)^4 + (1-i)^2 = -4 - 2i \text{ (Komplexní: } a+bi)^*$$

$$(1+i)^4 + (1-i)^2 = -4 - 2i \text{ (Komplexní: } a+bi)^*$$

$$2 \angle 45 = \sqrt{2} + \sqrt{2}i \text{ (Jednotka úhlu: Stupeň (D), Komplexní: } a+bi)$$

$$2 \text{ (MIFT ENG } (\angle) \text{ 45} \implies \sqrt{2} + \sqrt{2}i$$

 $\sqrt{2} + \sqrt{2}i = 2\angle 45$ (Jednotka úhlu: Stupeň (D), Komplexní: $r\angle \theta$)

 $2 \bigcirc + \boxed{2} \bigcirc \text{ENG}(i) = 2 \angle 45$

Poznámka

- Pokud plánujete provést vstup a zobrazení výsledku výpočtu ve formátu polárních souřadnic, určete před začátkem výpočtu úhlovou jednotku.
- Hodnota θ výsledku výpočtu je zobrazena v rozsahu -180°< $\theta \le 180^\circ$.
- Zobrazení výsledku výpočtu, když je vybráno Řád vst/Řád výs nebo Řád vst/Des výs, bude ukazovat a a bi (nebo r a θ) na samostatných řádcích.

Příklad výpočtů v režimu Komplexní

Dosažení komplexně sdruženého čísla (Conjg) k 2 + 3i (Komplexní: a+bi)

Dosažení absolutní hodnoty (Abs) a argumentu (Arg) z 1 + i (Jednotka úhlu: Stupeň (D))

SHIFT ((Abs) 1
$$+$$
 ENG(i) $=$ $\sqrt{2}$ OPTN 1 (Argument) 1 $+$ ENG(i)) $=$ 45

Odmocnění skutečné části (ReP) a imaginární části (ImP) z 2 + 3i

Užití příkazu pro určení výstupního formátu výpočtů

$$\sqrt{2} + \sqrt{2}i = 2\angle 45$$
, $2\angle 45 = \sqrt{2} + \sqrt{2}i$ (Jednotka úhlu: Stupeň (D))

 $2 \triangleright + \sqrt{2}2 \triangleright \text{ENG}(i) \text{ OPTN} \bigcirc 1 (\triangleright r \angle \theta) \equiv 2\angle 45$
 $2 \text{ SHIFT} \text{ ENG}(\angle) 45 \text{ OPTN} \bigcirc 2 (\triangleright a + bi) \equiv \sqrt{2} + \sqrt{2}i$

Užití CALC

CALC umožňuje zadávat výpočetní výrazy, které obsahují jednu nebo více proměnných, přiřazovat hodnoty k proměnným a vypočítat výsledek. CALC lze používat v režimech Výpočty a Komplexní.

CALC lze používat k ukládání následujících typů výrazů.

- 2x + 3y, 2Ax + 3By + C, A + Bi atd.
- x + y : x (x + y) atd.
- $y = x^2 + x + 3$ atd.

^{*} Při odmocňování komplexního čísla celým číslem s použitím syntaxe $(a + bi)^n$ se hodnota mocniny může nacházet v následujícím rozsahu: -1 × $10^{10} < n < 1 \times 10^{10}$.

Poznámka: Během času od kdy stisknete (CALC) do doby než opustíte CALC stisknutím AC, byste měli pro vložení používat řádkové zadávání.

Uložení 3A + B a pak nahrazení následujících hodnot pro provedení výpočtu: A = 5, B = 10

Užití SOLVE

SOLVE užívá pro aproximaci řešení rovnic Newtonovu metodu. Všimnete si, že SOLVE muže být použit pouze v režimu Výpočty SOLVE podporuje zadávání rovnic v následujících formátech.

Příklady: y = x + 5, $x = \sin(M)$, xy + C (pokládáno za xy + C = 0)

Poznámka

- Pokud rovnice obsahuje vložené funkce, které zahrnují otevírající závorky (tak jako sin a log), neopomínejte uzavírající závorky.
- Během času od kdy stisknete SHIFT CALC (SOLVE) do doby než opustíte SOLVE stisknutím **AC**, byste měli pro vložení používat řádkové zadávání.

1 🔳

x²+B=0

 $\mathbf{x}^2 + \mathbf{B} = \mathbf{0}$

Řešení $x^2 + b = 0$ pro x když b = -2 $(ALPHA) (x) (x^2) + (ALPHA) (3) (B) (ALPHA) (CALC) (=) (0)$ $\mathbf{x}^2 + \mathbf{B} = \mathbf{0}\mathbf{I}$

SHIFT CALC (SOLVE)

Zadejte počáteční hodnotu pro

x (zde zadejte 1):

Přiřaďte -2 k B: (-)2(=)

Určete proměnnou, pro kterou chcete řešit (zde chceme řešit pro x, proto přesuňte zvýraznění na x):

Vyřešte rovnici:

- (1) Řešená proměnná
- (2) Řešení
- (3) (Levá strana) (Pravá strana) výsledek

- Řešení jsou vždy zobrazována v desetinném formátu.
- Čím blíže je výsledek (Levá strana) (Pravá strana) k nule, tím vyšší je přesnost řešení.

Důležité

- SOLVE provádí konvergence přednastaveného počtu časů. Pokud nemůže nalézt řešení, zobrazí potvrzovací obrazovku, která ukazuje "Pokračovat:[=]" s dotazem, zda chcete pokračovat. Stisknutím 🗏 pokračujte nebo stisknutím C zrušte operaci SOLVE.
- V závislosti na tom, co jste vložili jako počáteční hodnotu pro x (proměnná řešení), SOLVE nemusí být schopno získat řešení. Pokud se to stane, zkuste změnit počáteční hodnotu tak, aby byla blíže řešení.

- SOLVE nemusí být schopné určit správné řešení, dokonce i když takové existuje.
- SOLVE užívá Newtonovu metodu, tedy i když je více řešení, bude doručeno pouze jedno z nich.
- Díky omezením Newtonovy metody se těžko získávají řešení rovnic jako je následující: $y = \sin x$, $y = e^x$, $y = \sqrt{x}$.

Statistické výpočty

Chcete-li zahájit statistické výpočty, postupujte podle následujících kroků.

- 1. Stiskněte W., vyberte ikonu režimu Statistika a potom stiskněte =.
- 2. Na zobrazené obrazovce Vyberte typ nabídce vyberte typ statistického výpočtu stisknutím některé z následujících kláves.

1 (1 proměnná)	Jedna proměnná (x)
2 (y=a+bx)	Párová proměnná (x, y), lineární regrese
3 (y=a+bx+cx ²)	Párová proměnná (x, y), kvadratická regrese
4 (y=a+b·ln(x))	Párová proměnná (x, y), logaritmická regrese
	Párová proměnná (x, y), e exponenciální regrese
2 (y=a·b^x)	Párová proměnná (x, y), ab exponenciální regrese
③ ③ (y=a⋅x^b)	Párová proměnná (x, y), mocninná regrese
▼ 4 (y=a+b/x)	Párová proměnná (x, y), inverzní regrese

 Provedeném některé z výše uvedených kombinací kláves se zobrazí Statistický editor.

Poznámka: Když chcete změnit typ výpočtu po vstupu do režimu Statistika, provedením klávesové operace (CYV) (Vyberte typ) zobrazte obrazovku pro výběr typu výpočtu.

Zadávání dat se Statistickým editorem

Statistický editor zobrazuje jeden, dva nebo tři sloupce: jedna proměnná (x), jedna proměnná a frekvence (x, Cetn), párová proměnná (x, y), párová proměnná a frekvence (x, y, Cetn). Počet řádků dat, která lze zadat, závisí na počtu sloupců: 160 řádků pro jeden sloupec, 80 řádků pro dva sloupce, 53 řádků pro tři sloupce.

Poznámka

- Pro vložení množství (frekvence) stejných položek dat použijte sloupec Cetn (frekvence). Zobrazení sloupce Cetn může být zapnuto (zobrazeno) nebo vypnuto (nezobrazeno) použitím nastavení formátu Statistika v nabídce nastavení.
- Když je zobrazen Statistický editor, stisknutím tlačítka **AC** se zobrazí obrazovka statistických výpočtů pro provádění výpočtů na základě vstupních dat. Postup návratu z obrazovky statistických výpočtů do Statistického editoru závisí na vybraném typu výpočtu. Pokud jste vybrali jednu proměnnou, stiskněte **OPTN 3** (Data); pokud jste vybrali párovou proměnnou, stiskněte **OPTN 4** (Data).

Př 1: Výběr logaritmické regrese a zadání následujících dat: (170, 66), (173, 68), (179, 75)

OPTN 1 (Vyberte typ) 4 (y=a+b·ln(x))

Důležité: Všechna data aktuálně vložená ve Statistickém editoru jsou vymazána pokaždé, když opustíte režim Statistika, přepnete mezi typem statistického výpočtu jedné proměnné a párové proměnné, nebo změníte nastavení Statistika v nabídce nastavení.

Vymazání řádku: Ve Statistickém editoru posuňte kurzor k řádku, který chcete vymazat, a pak stiskněte **EL**.

Vložení řádku: Ve Statistickém editoru posuňte kurzor na místo, kam chcete vložit řádek, a pak proveďte následující klávesovou operaci: PTN 2 (Editor) 1 (Vložit řádek).

Vymazání všech obsahů Statistického editoru: Ve Statistickém editoru proveďte následující klávesovou operaci: OPTN 2 (Editor) 2 (Vymazat vše).

Zobrazení statistických hodnot na základě zadaných dat

Ze Statistického editoru:

OPTN 3 (Výp 1 proměnná nebo Výp 2 proměnnÉ)

Z obrazovky statistických výpočtů:

PTN 2 (Výp 1 proměnná nebo Výp 2 proměnnÉ)

Zobrazení výsledků regresivních výpočtů na základě zadaných dat (pouze data párových proměnných)

Ze Statistického editoru:

OPTN 4 (Výpočet regrese)

Z obrazovky statistických výpočtů:

OPTN 3 (Výpočet regrese)

Získání statistických hodnot ze zadaných dat

Operace uvedené v této části lze použít k vyvolávání statistických hodnot přiřazených k proměnným (σ_x , Σx^2 atd.) na základě dat zadaných pomocí Statistického editoru. Tyto proměnné lze rovněž používat ve výpočtech. Operace uvedené v této části jsou prováděny na obrazovce statistických výpočtů, která se zobrazí stisknutím \mathbf{AC} , když je zobrazen Statistický editor. Podporované statistické proměnné a klávesy, které byste pro jejich vyvolání měli stisknout, jsou ukázány níže. Proměnné, které jsou k dispozici pro statistické výpočty s jednou proměnou, jsou označeny hvězdičkou (*).

Sčítání: Σx^* , Σx^{2*} , Σy , Σy^2 , Σxy , Σx^3 , Σx^2y , Σx^4

Počet položek: n^* / Průměr: \overline{x}^* , \overline{y} / Populační rozptyl: σ_x^2 , σ_y^2 / Směrodatná odchylka souboru: σ_x^* , σ_y / Rozptyl vzorku: σ_x^2 , σ_y^2 /

Směrodatná odchylka vzorku: s_x^* , s_y OPTN (Proměnná) (1) až (8), (1) až (2) (3)

Minimální hodnota: $min(x)^*$, min(y) / **Maximální hodnota:** $max(x)^*$, max(y) Když je vybrán statistický výpočet jedné proměnné:

Když je vybrán statistický výpočet párové proměnné:

První kvantil: Q₁* / **Medián:** Med* / **Třetí kvantil:** Q₃* (Pouze pro statistické výpočty s jednou proměnnou)

OPTN **3** (Min/Max) **2** až **4**

Regresní koeficienty: a, b / Korelační koeficient: r / Odhadované hodnoty: \hat{x}, \hat{y}

OPTN 4 (Regrese) 1 až 5

Regresní koeficienty pro kvadratickou regresi: a, b, c / Odhadované hodnoty: $\hat{x}_1, \hat{x}_2, \hat{y}$

OPTN 4 (Regrese) 1 až 6

• \hat{x} , \hat{x}_1 , \hat{x}_2 a \hat{y} jsou příkazy, které zpracují argument, který je bezprostředně před nimi.

Př 2: Pro vložení dat s jednou proměnnou $x = \{1, 2, 2, 3, 3, 3, 4, 4, 5\}$, použijte sloupec Cetn pro určení počtu opakování pro každou položku $\{x_n\}$ Cetn $_n\} = \{1;1,2;2,3;3,4;2,5;1\}$ a spočítejte průměr.

OPTN 1 (Vyberte typ) 1 (1 proměnná)

1■2■3■4■5■ **> >** 1■2■3■2■

2 2 2 2 3 3 4 4 2 5 5 5 1

AC OPTN \bigcirc 2 (Proměnná) $\boxed{1}(\overline{x})$

3

Př 3: Pro výpočet korelačních koeficientů logaritmické regrese pro následující data párové proměnné a určení regresního vzorce: (x, y) = (20, 3150), (110, 7310), (200, 8800), (290, 9310). Určete Pev(Fix) 3 (tři desetinná místa) pro výsledky.

SHIFT MENU (SETUP) 3 (Statistika) 2 (Vypnut)

SHIFT MENU (SETUP) 3 (Formát čísel) 1 (Pev(Fix)) 3

 $\boxed{\textbf{OPTN}} \boxed{\textbf{1}} (Vyberte typ) \boxed{\textbf{4}} (y=a+b\cdot ln(x))$

AC (OPTN 4 (Regrese) 1 (a) =

AC OPTN ▼ 4 (Regrese) **2** (b) **=**

2 110 7310 3 200 8800 4 290 9310

> -3857,984 2357,532

0.998

Výpočet odhadovaných hodnot

Na základě regresního vzorce získaného ve statistickém výpočtu párové proměnné, očekávaná hodnota y může být spočítána pro danou hodnotu x. Odpovídající hodnota x (dvě hodnoty, x_1 a x_2 , v případě kvadratické regrese) může být také spočítána pro hodnotu y v regresním vzorci.

Př 4: Určení očekávané hodnoty pro y když x = 160 v regresním vzorci vytvořeném logaritmickou regresí z dat v Př 3. Určete Pev(Fix) 3 pro výsledek. (Proveďte následující operace po dokončení operací v Př 3.)

AC 160 OPTN \bigcirc 4 (Regrese) $\boxed{5}(\widehat{y})$

8106 898

Důležité: Výpočty regresního koeficientu, korelačního koeficientu a odhadované hodnoty mohou v případě velkého množství dat trvat značnou dobu.

Provádění výpočtů normálního rozdělení

Když je zvolen statistický výpočet jedné proměnné, můžete provést výpočet normálního rozdělení užitím funkcí ukázaných dole z nabídky, která se

P, Q, R: Tyto funkce vezmou argument *t* a určí pravděpodobnost standardního normálního rozdělení, jak je uvedeno poblíž.

▶*t*: Tato funkce je uvedena argumentem x. Vypočítává standardní náhodnou proměnnou pro datovou hodnotu x s použitím průměrné hodnoty (\overline{x}) a směrodatné odchylky souboru (σ_x) dat zadaných pomocí Statistického editoru.

$$x \blacktriangleright t = \frac{x - \overline{x}}{\sigma_x}$$

Př 5: Pro data jedné proměnné v Př 2 určete normalizovanou náhodnou proměnnou x = 2, a P(t) v daném bodě.

$$AC$$
 2 OPTN \bigcirc 4 (Norm rozdělení) 4 ($\triangleright t$) \equiv

P(Ans) 0,19324

Výpočty se základem n

Chcete-li provádět výpočty využívající desítkové, hexadecimální, binární a/ nebo osmičkové hodnoty, přejděte do režimu Číselná soust. Po přechodu do režimu Číselná soust stiskněte jednu z následujících kláves pro přepnutí číselných režimů: x²(DEC) pro desítkový, x³(HEX) pro hexadecimální, [9](BIN) pro binární nebo [n](OCT) pro osmičkový.

 $\overline{\text{Výpočet } 11_2} + 1_2$

log∎D(BIN)11 **+** 1 **=**

Poznámka

- Užijte následující klávesy pro vložení písmen A až F pro hexadecimální hodnoty: (-)(A), (3), (C), (C), (E), (T)(F).
- V režimu Číselná soust není podporováno vkládání zlomkových (desetinných) hodnot a exponent. Pokud má výsledek výpočtu zlomkovou část, je odříznuta.
- Podrobnosti o zadávání a výstupních rozsazích (32 bitů) jsou uvedeny níže.

Binární	Kladný:	000000000000000000000000000000000000
	Záporný:	1000000000000000000000000000000000000
Osmičkový	Kladný: Záporný:	$000000000000 \le x \le 17777777777$ $20000000000 \le x \le 37777777777$
Desítkový		$8 \le x \le 2147483647$
Hexadecimální	Kladný: Záporný:	$00000000 \le x \le 7FFFFFF$ $80000000 \le x \le FFFFFFF$

Určení číselného režimu konkrétní vložené hodnoty

Pro určení číselného režimu hodnoty, můžete vložit speciální příkaz okamžitě následující danou hodnotu. Speciální příkazy jsou: d (desítkový), h (hexadecimální), b (binární), a o (osmičkový).

Výpočet 10₁₀ + 10₁₆ + 10₂ + 10₃ a zobrazení výsledku jako desítkové hodnoty

AC x² (DEC) PTN 1 (d) 10 + PTN 2 (h) 10 +

Převádění výsledku výpočtů do jiné soustavy

Pro převedení aktuálně zobrazovaného výsledku výpočtu na jiný typ hodnoty můžete provést jakoukoli z následujících klávesových operací:

x² (DEC), x² (HEX), □□ (BIN), □□ (OCT).

Výpočet 15₁₀ × 37₁₀ v desítkovém režimu a následný převod výsledku na hexadecimální

AC x^2 (DEC) 15 **X** 37 **=**

555

x* (HEX)

0000022B

Logické operace a negace

Logické operace a negace se provádějí stisknutím OPTN a následným výběrem požadovaného příkazu (and, or, xor, xnor, Not, Neg) v zobrazené nabídce. V následujících příkladech je vše prováděno v binárním režimu ((BIN)).

Určení logické hodnoty AND ze 1010₂ a 1100₂ (1010₂ and 1100₂)

AC 1010 **OPTN 3** (and) 1100 **=**

Určení bitového doplňku ze 1010₂ (Not(1010₂))

AC OPTN 2 (Not) 1010) =

1111 1111 1111 1111 1111 1111 1111 0101

Poznámka: V případě záporné binární, osmičkové nebo hexadecimální hodnoty, kalkulátor převede hodnotu na binární, vytvoří dvojkový doplněk a pak převede zpět na původní číselnou základnu. Pro desítkové hodnoty kalkulátor pouze přidá záporné znaménko.

Výpočty rovnic

Chcete-li řešit rovnici v režimu Rovnice/Funkce, postupujte podle následujících pokynů.

- 1. Stiskněte W., vyberte ikonu režimu Rovnice/Funkce a potom stiskněte
- 2. Provedením jedné z následujících operací vyberte typ výpočtu.

Soustavy lineárních rovnic se dvěma, třemi nebo čtyřmi neznámými	Stiskněte 1 (Simult rovnice) a potom pomocí číselné klávesy (2 až 4) určete počet neznámých.
Kvadratické rovnice, rovnice třetího nebo čtvrtého stupně	Stiskněte 2 (Polynom rovnice) a potom pomocí číselné klávesy (2 až 4) určete stupeň polynomu.

- 3. Pro vložení hodnot koeficientů použijte editor koeficientů, který se objeví.
 - Chcete-li vyřešit například $2x^2 + x 3 = 0$, stiskněte **2** (Polynom rovnice) **2** v kroku 2. Pomocí zobrazeného editoru koeficientů zadeite 2 = 1 = -3 = 1.
 - Stisknutím **AC** budou všechny koeficienty vynulovány.
- 4. Po dosažení všech požadovaných hodnot stiskněte

 .

- Zobrazí řešení. Dalším stisknutím se zobrazí další řešení. Když je zobrazeno konečné řešení, stisknutím se vrátíte do editoru koeficientů.
- Pokud neexistuje řešení nebo existuje nekonečně mnoho řešení, zobrazí se zpráva. Stisknutím nebo se vrátíte na editor koeficientů.
- Můžete přiřadit aktuálně zobrazené řešení k proměnné. Po zobrazení řešení stiskněte (500) a potom klávesu, která odpovídá názvu proměnné, ke které jej chcete přiřadit.
- Pro návrat na editor koeficientů, zatímco není zobrazováno žádné řešení, stiskněte AC.

Poznámka: Řešení, která obsahují $\sqrt{\ }$, jsou zobrazena pouze v případě, když je vybrán typ výpočtu Polynom rovnice.

Změna aktuálního nastavení typu rovnic: Stiskněte PTN 1 (Simult rovnice) nebo PTN 2 (Polynom rovnice) a potom stiskněte 2, 3 nebo 4. Změna typu rovnic způsobí, že hodnoty všech koeficientů v editoru koeficientů se změní na nulu.

Příklady výpočtů v režimu Rovnice/Funkce

x + 2y = 3, $2x + 3y = 4$				-
OPTN 1 (Simult rovnice) 2	ſ	1x +	2у=	3
1=2=3=2=3=4=	1	2x +	Зу≓	4
			(x=)	-1
lacktriangle			(y=)	2
$x^2 + 2x - 2 = 0$				
PTN 2 (Polynom rovnice) 2				
1=2=	<u>-</u> 2		$(x_1 =)$	$-1 + \sqrt{3}$
		\bigcirc	$(x_2 =)$	$-1 - \sqrt{3}$
(Zobrazí souřadnici x místního minima $y = x^2 +$	-2x-2	2.*)		
			(x=)	-1
(Zobrazí souřadnici y místního minima $y = x^2 + x^2$	-2x-2	2.*)		
			(v=)	-3

^{*} Souřadnice x a y místního minima (nebo místního maxima) funkce $y = ax^2 + bx + c$ se zobrazí pouze v případě, když je jako typ výpočtu vybrána kvadratická rovnice.

Výpočty matic

Pro provedení výpočtů zahrnujících matice až o 4 řádcích a 4 sloupcích použijte režim Matice. Pro výpočet matice použijte speciální maticové proměnné (MatA, MatB, MatC, MatD) (viz následující příklad).

Příklad: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$

- 1. Stiskněte III), vyberte ikonu režimu Matice a potom stiskněte 🖃.
- 2. Stiskněte 1 (MatA) 2 (2 řádky) 2 (2 sloupce).
 - Zobrazí se maticový editor pro zadání základních prvků matice 2 x 2, které jste určili pro MatA.

- 3. Zadejte základní prvky MatA: 2 1 1 1 .
- 4. Proveďte tuto klávesovou operaci: OPTN 1 (Defin matici) 2 (MatB) 2 (2 řádky) 2 (2 sloupce).

- 5. Zadejte základní prvky MatB: 2 🖃 🕞 1 🖃 🕒 1 🖃 2 🖃 .
- 6. Stisknutím **AC** přejděte na obrazovku výpočtu a proveďte výpočet (MatA × MatB): **OPTN 3** (MatA) **X OPTN 4** (MatB) **=** .
 - Zobrazí se obrazovka MatAns (Paměť maticových odpovědí) s výsledky výpočtu.

Paměť maticových odpovědí (MatAns)

Kdykoli je výsledkem prováděného výpočtu v režimu Matice matice, obrazovka MatAns zobrazí výsledek. Výsledek bude také přiřazen k proměnné označené "MatAns".

Proměnná MatAns může být použita ve výpočtech jak je popsáno níže.

- Pro zadání proměnné MatAns do výpočtu proveďte následující klávesové operace: OPTN 1 (MatAns).
- Stisknutí jakékoli z následujících kláves, zatímco je zobrazena obrazovka MatAns, automaticky přepne na obrazovku výpočtů: 🛨, 🖃, 🕱, 😌, 🕱, 🕱, 🛣, 🛣, 🔞.

Přiřazování a editování dat maticové proměnné Přiřazení nových dat k maticové proměnné

- 1. Stiskněte OPTN 1 (Defin matici) a potom v zobrazené nabídce vyberte maticovou proměnnou, ke které chcete přiřadit data.
- 2. V zobrazeném dialogovém okně pomocí číselné klávesy (1 až 4) určete počet řádků.
- 3. V následujícím zobrazeném dialogovém okně pomocí číselné klávesy (1 až 4) určete počet sloupců.
- 4. Pro vložení základních prvků matice použijte maticový editor.

Úpravy základních prvků maticové proměnné

Stiskněte (Upravit matici) a potom v zobrazené nabídce vyberte maticovou proměnnou, kterou chcete upravit.

Kopírování obsahu maticové proměnné (nebo MatAns)

- 1. Pro zobrazení matice, kterou chcete kopírovat, použijte maticový editor.
- 2. Stiskněte a pak proveďte jednu z následujících klávesových operací pro určení místa určeného pro kopírování: (MatA), (MatB), (MatC) nebo (MatD).
 - Zobrazí se maticový editor s obsahem místa určení pro kopírování.

Příklady maticových výpočtů

V následujících příkladech je použito MatA = $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, MatB = $\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$

Výpočet determinantu MatA (Det(MatA))

AC OPTN © 2 (Determinant) MatA) =

.y(z) + iviaiA) 1]

Vytvoření matice identity 2×2 a její vložení do MatA (Identity(2) + MatA)

AC OPTN (Identita) 2) + MatA =

Poznámka: Jako argument příkazu Identita (počet rovin) lze specifikovat hodnotu od 1 do 4.

Výpočet transpozice MatB (Trn(MatB))

AC OPTN 3 (Transpozice) MatB) =

0 -1 -1 1 Invertování, odmocňování na druhou a na třetí MatA (MatA-1, MatA2, MatA3) **Poznámka:** K tomuto zadání nelze použít x. Pomocí x zadejte "-1", pomocí x určete odmocňování na druhou a pomocí (MIFT) x (x3) určete odmocňování na třetí.

Výpočet absolutní hodnoty každého základního prvku MatB (Abs(MatB))

Vytvoření číselné tabulky

V režimu Tabulka hodnot je vygenerována tabulka čísel na základě jedné nebo dvou funkcí.

Příklad: Vytvoření číselné tabulky pro funkce $f(x) = x^2 + \frac{1}{2}$ a $g(x) = x^2 - \frac{1}{2}$ v rozsahu $-1 \le x \le 1$, po krocích 0,5

- 1. Stiskněte (LENU), vyberte ikonu režimu Tabulka hodnot a potom stiskněte (E).
- 2. Nakonfigurujte nastavení pro vytvoření číselné tabulky ze dvou funkcí. SHITI MENU (SETUP) \bigcirc 2 (Tabulka hodnot) 2 (f(x),g(x))
- 3. Zadejte $x^2 + \frac{1}{2}$.

4. Zadejte $x^2 - \frac{1}{2}$.

5. Stiskněte . V zobrazeném dialogovém okně Rozsah tabulky zadejte hodnoty pro Začát (výchozí: 1), Konec (výchozí: 5), a Krok (výchozí: 1).

- 6. Stisknutím 🖃 vytvořte číselnou tabulku.
 - Stisknutím **AC** se vrátíte na obrazovku v kroku 3.

1	9(x) 0,5 -0,25 -0,5 -0,25
---	---------------------------------------

Tip

- V číselné tabulce, která je zobrazena v kroku 6, můžete změnit hodnotu v aktuálně zvýrazněné buňce x. Změnou hodnoty x budou odpovídajícím způsobem zaktualizovány hodnoty f(x) a g(x) na stejném řádku.
- Pokud se nachází hodnota v buňce x nad aktuálně zvýrazněnou buňkou x, stisknutím nebo bude do zvýrazněné buňky automaticky vložena stejná hodnota, jaká se nachází v buňce výše, plus hodnota

kroku. Podobně stisknutím \blacksquare bude automaticky vložena stejná hodnota, jaká se nachází v buňce výše, mínus hodnota kroku. Zároveň budou odpovídajícím způsobem zaktualizovány hodnoty f(x) a g(x) na stejném řádku.

Poznámka

- Budete-li po zpracování \square v kroku 4 výše pokračovat z kroku 5 bez zadání g(x), bude vytvořena číselná tabulka pouze pro f(x).
- Maximální počet řádků vytvořené číselné tabulky závisí na nastavení v nabídce nastavení tabulky. Pro nastavení "f(x)" je podporováno až 45 řádků, zatímco pro nastavení "f(x),g(x)" je podporováno 30 řádků.
- Operace vytvoření číselné tabulky způsobuje, že se změní obsah proměnné x.

Důležité: Zadání funkcí v tomto režimu je odstraněno při každé změně nastavení Vstup/Výstup v režimu Tabulka hodnot.

Výpočty vektorů

Pro provedení 2-dimenzionálních a 3-dimenzionálních výpočtů vektorů použijte režim Vektor. Pro výpočet vektorů použijte speciální vektorové proměnné (VctA, VctB, VctC, VctD) (viz následující příklad).

Příklad: (1, 2) + (3, 4)

- 1. Stiskněte W., vyberte ikonu režimu Vektor a potom stiskněte 🖃.
- 2. Stiskněte 1 (VctA) 2 (2 roviny).
 - Zobrazí se vektorový editor pro vložení 2-rovinného vektoru pro VctA.

VctA=			
	<u> </u>		
	0.3		

- 3. Zadejte základní prvky VctA: 1 = 2 = .
- 4. Proveďte tuto klávesovou operaci: OPTN 1 (Defin vektor) 2 (VctB) 2 (2 roviny).
- 5. Zadejte základní prvky VctB: 3■4■.
- 6. Stisknutím **AC** přejděte na obrazovku výpočtu a proveďte výpočet (VctA + VctB): **OPTN 3** (VctA) **+ OPTN 4** (VctB) **=** .
 - Zobrazí se obrazovka VctAns (Paměť vektorových odpovědí) s výsledky výpočtu.

VctAns=	e]	

Paměť vektorových odpovědí

Kdykoli je výsledkem prováděného výpočtu v režimu Vektor, obrazovka VctAns zobrazí výsledek. Výsledek bude také přiřazen k proměnné označené "VctAns".

Proměnná VctAns může být použita ve výpočtech jak je popsáno níže.

- Stisknutí jakékoli z následujících kláves, zatímco je zobrazena obrazovka VctAns, automaticky přepne na obrazovku výpočtů: +, -, ×.

Přiřazování a editování dat vektorové proměnné Přiřazení nových dat k vektorové proměnné

- 1. Stiskněte OPTN 1 (Defin vektor) a potom v zobrazené nabídce vyberte vektorovou proměnnou, ke které chcete přiřadit data.
- 2. V zobrazeném dialogovém okně stisknutím 2 nebo 3 určete rovinu vektoru.
- 3. Pro vložení základních prvků vektoru použijte zobrazený vektorový editor.

Úpravy základních prvků vektorové proměnné

Stiskněte (Upravit vektor) a potom v zobrazené nabídce vyberte vektorovou proměnnou, kterou chcete upravit.

Kopírování obsahu vektorové proměnné (nebo VctAns)

- 1. Pro zobrazení vektoru, který chcete kopírovat, použijte vektorový editor.
- 2. Stiskněte (m) a pak proveďte jednu z následujících klávesových operací pro určení místa určeného pro kopírování: (-)(VctA), (vctB), (VctC) nebo (vctD).
 - Zobrazí se vektorový editor s obsahem místa určení pro kopírování.

Příklady vektorových výpočtů

V následujících příklade je použito VctA = (1, 2), VctB = (3, 4) a VctC = (2, -1, 2).

VctA • VctB (Skalární součin vektorů)

AC VctA OPTN 2 (Skalární součin) VctB =

VctA·VctB

VctA × VctB (Vektorový součin)

AC VctA × VctB =

Výpočet absolutních hodnot VctC (Abs(VctC))

AC SHIFT ((Abs) VctC) =

Abs(VctC)

Určení úhlu, který tvoří VctA a VctB (Angle(VctA;VctB)), na tři desetinná místa (Pev(Fix) 3). (Jednotka úhlu: Stupeň (D))

SHIFT MENU (SETUP) 3 (Formát čísel) 1 (Pev(Fix)) 3

AC OPTN (3 (Úhel) VctA ();)
VctB) =

Angle(VctA;VctB) 10,305

Normalizace VctB (UnitV(VctB))

AC OPTN (Jednotk vektor) VctB) =

0,8

Výpočty nerovnic

Podle následujícího postupu lze řešit nerovnice 2., 3. nebo 4. stupně.

- 1. Stiskněte W., vyberte ikonu režimu Nerovnost a potom stiskněte =.
- 2. V zobrazeném dialogovém okně pomocí číselné klávesy (2 až 4) určete stupeň nerovnice.
- 3. V zobrazené nabídce pomocí kláves 1 až 4 vyberte typ a orientaci symbolu nerovnosti.
- 4. Pro vložení hodnot koeficientů použijte editor koeficientů, který se objeví.
 - Například chcete-li řešit $x^2 + 2x 3 < 0$, zadejte následující pro koeficienty (a = 1, b = 2, c = -3): 1 \square 2 \square \square 3 \square .
- 5. Po dosažení všech požadovaných hodnot stiskněte 🖃.
 - Zobrazí řešení.
 - Pro návrat na editor koeficientů, když jsou zobrazena řešení, stiskněte
 AC.

Změna typu nerovnice: Stisknutím (PTN) 1 (Polynomická) se zobrazí dialogové okno, ve kterém můžete vybrat stupeň nerovnice. Změna stupně nerovnice způsobí, že hodnoty všech koeficientů v editoru koeficientů se změní na nulu.

Příklady výpočtů v režimu Nerovnost

$$3x^3 + 3x^2 - x > 0$$

(Polynomická) 3 (3. stupeň nerovnosti) 1 (ax3+bx2+cx+d>0)

$$3 \equiv 3 \equiv \bigcirc 1 \equiv 3x^3 + 3x^2 - 1x$$

ax3+bx2+cx+d>0

Poznámka

 Když je v nabídce nastavení vybráno pro nastavení Vstup/Výstup něco jiného, než Mat vst/Mat výs, jsou řešení zobrazena jako na kopii obrazovky vedle.

- Na obrazovce řešení se zobrazí "Všech reál čísla", když je řešení nerovnice pouze číselné (například x² ≥ 0).
- Na obrazovce řešení se zobrazí "Žádné řešení", když pro nerovnici neexistuje řešení (například $x^2 < 0$).

Výpočty poměrů

V režimu Poměr lze určit hodnotu X ve výrazu poměru A : B = X : D (nebo A : B = C : X), pokud jsou hodnoty A, B, C a D známé. V následující části je uveden obecný postup v režimu Poměr.

- 1. Stiskněte WEND, vyberte ikonu režimu Poměr a potom stiskněte 🖃.
- 2. V zobrazené nabídce vyberte 1 (A:B=X:D) nebo 2 (A:B=C:X).
- 3. Na zobrazené nabídce editoru koeficientů zadejte až 10 číslic prokaždou povinnou hodnotu (A, B, C, D).
 - Například při řešení 3 : 8 = X : 12 pro X stiskněte 1 v kroku 1 a potom zadejte následující pro koeficienty (A = 3, B = 8, D = 12):
 3 = 8 = 12 = .
 - Stisknutím 🚾 budou všechny koeficienty resetovány na 1.
- 4. Po dosažení všech požadovaných hodnot stiskněte 🖃.
 - Zobrazí řešení (hodnotu X). Dalším stisknutím = se vrátíte do editoru koeficientů.

Důležité: Když je pro některý koeficient zadána hodnota 0, při provedení výpočtu dojde k chybě Matematická CHYBA.

Výpočet X v poměru 1 : 2 = X : 10

Změna typu výrazu poměru

Stiskněte (PTN) 1 (Vyberte typ) a potom v zobrazené nabídce vyberte požadovaný typ výrazu poměru.

Výpočty rozdělení

Postupy v následující části slouží k provádění řady různých typů výpočtů rozdělení.

- 1. Stiskněte W., vyberte ikonu režimu Rozdělení a potom stiskněte =.
- 2. V zobrazené nabídce vyberte typ výpočtu rozdělení stisknutím některé z následujících kláves .

1 (Normální HP)	Normální hustota pravděpodobnosti
2 (Normální DF)	Normální kumulativní rozdělení pravděpodobnosti
3 (Inverze norm)	Inverzní normální kumulativní rozdělení pravděpodobnosti
4 (Binomické HP)	Binomická pravděpodobnost
(Binomické DF)	Binomické kumulativní rozdělení pravděpodobnosti
(Poissonovo HP)	Poissonova pravděpodobnost
(Poissonovo DF)	Poissonovo kumulativní rozdělení pravděpodobnosti

- Pokud jste vybrali typ výpočtu Normální HP, Normální DF nebo Inverze norm, přejděte ke kroku 4 tohoto postupu. V případě ostatních typů výpočtu přejděte ke kroku 3.
- 3. V zobrazeném dialogovém okně vyberte metodu zadávání dat (x).
 - Chcete-li zadat více položek dat *x* současně, stiskněte **1** (Seznam). Chcete-li zadat jednu položku data, stiskněte **2** (Proměnná).
 - Pokud jste vybrali 1 (Seznam) výše, zobrazí se obrazovka se seznamem pro zadání položek dat x.
- 4. Zadejte hodnoty pro proměnné.
 - Proměnné, které vyžadují zadání dat, závisí na typu výpočtu vybraném v kroku 2 tohoto postupu.
- 5. Po zadání hodnot pro všechny proměnné stiskněte

 .
 - Zobrazí se výsledky výpočtu.
 - Když je zobrazen výsledek výpočtu, stisknutím se vrátíte na obrazovku pro zadávání proměnných.

Poznámka

- Pokud jste v kroku 3 tohoto postupu vybrali jinou možnost, než "Seznam", výsledek výpočtu bude uložen do paměti Ans.
- Přesnost výpočtu rozdělení je až šest platných číslic.

Změna typu výpočtu rozdělení: Stiskněte PM 1 (Vyberte typ) a potom vyberte požadovaný typ rozdělení.

Proměnné, které akceptují zadání

Následující proměnné výpočtu rozdělení akceptují hodnoty zadání.

Normální HP: x, σ, μ

Normální DF: Dolní, Horní, σ, μ

Inverze norm: Ploch, σ , μ (Koncové nastavení vždy vynecháno.)

Binomické HP, Binomické DF: x, N, p Poissonovo HP, Poissonovo DF: x, λ

x: data, σ : směrodatná odchylka ($\sigma > 0$), μ , λ : průměr, Dolní: dolní ohraničení, Horní: horní ohraničení, Ploch: hodnota pravděpodobnosti ($0 \le P$ loch ≤ 1), N: počet pokusů, p: pravděpodobnost úspěchu ($0 \le p \le 1$)

Obrazovka se seznamem

Lze zadat až 45 vzorků dat pro každou proměnnou. Výsledky výpočtů se rovněž zobrazují na obrazovce se seznamem.

- (1) Typ výpočtu rozdělení
- (2) Hodnota na aktuální pozici kurzoru
- (3) Data (x)
- (4) Výsledky výpočtu (P)

Úpravy údaje: Přemístěte kurzor na buňku, která obsahuje údaje, který chcete upravit, zadejte nový údaj a potom stiskněte **=**.

Odstranění údaje: Přesuňte kurzor na údaj, který chcete odstranit, a potom stiskněte EL.

Vložení údaje: Přesuňte kurzor na pozici, na kterou chcete vložit údaj, stiskněte PTN 2 (Editor) 1 (Vložit řádek) a potom vložte údaj.

Odstranění všech údajů: Stiskněte PTN 2 (Editor) 2 (Vymazat vše).

Příklady výpočtů v režimu Rozdělení

Výpočet normální hustoty pravděpodobnosti, když x = 36, $\sigma = 2$, $\mu = 35$

1. Následující klávesovou operací vyberte Normální HP.

OPTN 1 (Vyberte typ) 1 (Normální HP)Zobrazí se obrazovka pro zadávání

Normální HP)	Norm	iaini hP	
,	X	:0	
o zadávání	Ø	:1	
	μ	:0	

- 2. Zadejte hodnoty pro x, σ a μ . 36 \square 2 \square 35 \square
- 3. Stiskněte 🖃.

proměnných.

Zobrazí se výsledky výpočtu.

(*p*=) 0,1760326634

 Dalším stisknutím = nebo stisknutím se vrátíte na obrazovku pro zadávání proměnných v kroku 1 tohoto postupu.

Poznámka: Můžete přiřadit aktuálně zobrazené řešení k proměnné. Po zobrazení řešení stiskněte 30 a potom klávesu, která odpovídá názvu proměnné, ke které jej chcete přiřadit.

Výpočet binomické pravděpodobnosti pro data $\{10, 11, 12, 13\}$, když N = 15 a p = 0.6

- 1. Následující klávesovou operací vyberte Binomické HP. OPTN 1 (Vyberte typ) 4 (Binomické HP)
- 2. Vzhledem k tomu, že chcete zadat čtyři datové hodnoty (x), stiskněte **1** (Seznam) zde.
 - Zobrazí se obrazovka se seznamem.
- 3. Zadejte hodnotu pro x. 10 = 11 = 12 = 13 = 13
- 4. Po zadání všech hodnot stiskněte = .
 - Zobrazí se obrazovka pro zadávání proměnných.
- 5. Zadejte hodnoty pro N a p. 15 \square 0,6 \square
- 6. Stiskněte 🖃.
 - Znovu se zobrazí obrazovka se seznamem a výsledek výpočtu pro každou hodnotu x bude zobrazen ve sloupci P.

Stisknutím
se vrátíte na obrazovku pro zadávání proměnných v kroku 4 tohoto postupu.

Poznámka

- Změnou libovolné hodnoty x v kroku 6 výše uvedeného postupu budou vymazány výsledky všech výpočtů a vrátíte se ke kroku 2. V tomto případě všechny ostatní hodnoty x (vyjma té, kterou jste změnili) a hodnoty přiřazené k proměnným N a p zůstanou stejné. Znamená to, že můžete zopakovat výpočet po změně pouze jedné specifické hodnoty.
- Na obrazovce se seznamem lze přiřadit hodnotu v buňce k proměnné.
 Přemístěte kurzor na buňku, která obsahuje hodnotu, kterou chcete přiřadit, stiskněte so a potom stiskněte klávesu, která odpovídá názvu požadované proměnné.
- Pokud se zadaná hodnota nachází mimo povolený rozsah, zobrazí se chybová zpráva. Když se zadaná hodnota pro odpovídající údaj nachází mimo povolený rozsah, ve sloupci P obrazovky výsledku se zobrazí "ERROR".

Používání tabulky

Chcete-li provádět operace v této části, nejdříve přejděte do režimu Tab editor.

V režimu Tab editor lze provádět výpočty pomocí tabulky o 45 řádcích × 5 sloupcích (buňka A1 až E45).

- (1) Čísla řádků (1 až 45)
- (2) Písmena sloupců (A až E)
- (3) Kurzor buňky: Ukazuje aktuálně vybranou buňku.
- (4) Pole úprav: Ukazuje obsah buňky, ve které se aktuálně nachází kurzor buňky.

(1) (2)

A B C D

1 170 179 176 176
2 173 175 171 182
3 177 175 175 177
4 520

=Sum (A1:A3)

(3) (4)

Důležité: Při každém ukončení režimu Tab editor vypněte kalkulátor nebo stiskněte klávesu **(N)**, aby se vymazala veškerá zadání do tabulky.

Zadávání a upravování obsahu buněk

Do každé buňky lze zadat konstantu nebo vzorec.

Konstanty: Hodnota konstanty je pevná, jakmile dokončíte její zadání. Konstanta může být číselná hodnota nebo početní vzorec (například 7+3, sin30, A1×2 atd.), před kterým není rovnítko (=).

Vzorec: Vzorec, který začíná rovnítkem (=), například =A1×2, je proveden tak, jak je napsán.

Poznámka: Zadání konstanty do buňky zabere 10 bajtů paměti bez ohledu na počet zadaných znaků. V případě vzorce lze do každé buňky zadat až 49 bajtů. Zadání vzorce do buňky vyžaduje 11 bajtů navíc k bajtům dat aktuálního vzorce.

Zobrazení zbývajícího volného místa pro zadání: Stiskněte OPTN 4 (Volné místo).

Zadání konstanty a/nebo vzorce do buňky

Př 1: Do buněk A1, A2 a A3 zadejte konstanty 7×5, 7×6 a A2+7 v uvedeném pořadí. A potom zadejte následující vzorec do buňky B1: =A1+7.

- 1. Přemístěte kurzor buňky na buňku A1.
- 2. Proveďte následující klávesovou operaci.

 $7 \times 5 = 7 \times 6 = ALPHA (-)(A) 2 + 7 =$

3. Přemístěte kurzor buňky na buňku B1 a potom proveďte následující klávesovou operaci.

ALPHA
$$CALC(=)$$
 ALPHA $(-)$ (A) (A) (A)

	A	В	С	D	
1	35	42			
2	42				
3	49				
4					_
4					_

Poznámka: Můžete určit, zda má být vzorec v poli úprav zobrazen tak jak je nebo jako hodnota výsledku jeho výpočtu.

Úpravy stávajících dat buňky

- 1. Přemístěte kurzor buňky na buňku, jejíž obsah chcete upravit, a potom stiskněte PTN 3 (Upravit buňku).
 - Obsah buňky v poli úprav se změní ze zarovnání vpravo na zarovnání vlevo. V poli úprav se zobrazí textový kurzor, takže je možné upravovat jeho obsah.
- 2. Pomocí a přemísťujte kurzor po obsahu buňky a podle potřeby jej upravujte.
- 3. Chcete-li dokončit a použít provedené úpravy, stiskněte

 .

Zadání referenčního názvu buňky pomocí příkazu Uchopit

Příkaz Uchopit lze použít místo ručního zadání referenčního názvu (například A1) pomocí klávesové operace pro výběr a zadání buňky, na kterou chcete odkazovat.

Př 2: Pokračujte v Př 1 a zadejte následující vzorec do buňky B2: =A2+7.

- 1. Přemístěte kurzor buňky na buňku B2.
- 2. Proveďte následující klávesovou operaci.

	A	В	С	D
1	35	42		
2	42			
2 3	49			
4				
Nas	stav	/it:	[=]	

	A	В	С	D
1	35	42		
2	42	49		
3	49			
4				

Relativní a absolutní odkazy buňky

Existují dva typy odkazů buňky: relativní a absolutní.

Relativní odkaz buňky: Odkaz buňky (A1) ve formě vzorce, například =A1+7, je relativní, tzn. mění se podle buňky, ve které se nachází. Například pokud zkopírujete vzorec =A1+7 z buňky B1 a vložíte do buňky C3, bude do buňky C3 vložen vzorec =B3+7. Vzhledem k tomu, že zkopírováním a vložením se vzorec přesune o jeden sloupec (z B do C) a o dva řádky (z 1 na 3), změní se relativní odkaz buňky A1 ve vzorci na B3. Pokud se zkopírováním a vložením změní název relativního odkazu buňky tak, že je mimo rozsah buněk tabulky, bude písmeno příslušného sloupce a/ nebo číslo řádku nahrazeno otazníkem (?) a místo dat buňky se zobrazí "ERROR".

Absolutní odkaz buňky: Chcete-li, aby řádek nebo sloupec nebo řádkové a sloupcové části referenčního názvu buňky zůstaly stejné bez ohledu na to, kam je vložíte, je třeba vytvořit název absolutního odkazu buňky. Chcete-li vytvořit absolutní odkaz buňky, umístěte symbol dolaru (\$) před název sloupce a/nebo číslo řádku. Můžete použít jeden ze tří různých absolutních odkazů buňky: absolutní sloupec s relativním řádkem (\$A1), relativní sloupec s absolutním řádkem (A\$1) nebo absolutní řádek a sloupec (\$A\$1).

Zadání symbolu absolutního odkazu buňky (\$)

Při zadávání vzorce do buňky stiskněte (PTN) 1 (\$).

Vyjmutí a vložení dat tabulky

- 1. Přemístěte kurzor na buňku, jejíž data chcete vyjmout, a potom stiskněte OPTN 1 (Vyjm a vložit).
 - Tím přejdete na pohotovostní režim vkládání. Chcete-li zrušit pohotovostní režim vkládání, stiskněte .
- 2. Přemístěte kurzor na buňku, do které chcete vložit právě vyjmutá data, a potom stiskněte **=**.
 - Vložením dat budou současně odstraněna data z buňky, ve které jste provedli vyjmutí, a bude automaticky zrušen pohotovostní režim vkládání.

Poznámka: V případě vyjmutí a vložení se při vložení nemění odkazy buněk, bez ohledu na to, zda jsou relativní nebo absolutní.

Kopírování a vložení dat tabulky

- 1. Přemístěte kurzor na buňku, jejíž data chcete kopírovat a potom stiskněte PTN (**) (Kopír a vložit).
 - Tím přejdete na pohotovostní režim vkládání. Chcete-li zrušit pohotovostní režim vkládání, stiskněte **AC**.
- 2. Přemístěte kurzor na buňku, do které chcete vložit právě zkopírovaná data, a potom stiskněte **=**.
 - Pohotovostní režim vkládání zůstane aktivní, dokud nestisknete AC, takže můžete případně vložit zkopírovaná data do dalších buněk.

Poznámka: Když zkopírujete obsah buňky, která obsahuje vzorec s relativním odkazem, relativní odkaz se změní podle umístění buňky, do které je obsah vložen.

Odstranění zadaných dat z konkrétní buňky

Přesuňte kurzor buňky na buňku, jejíž obsah chcete odstranit, a potom stiskněte FEL.

Odstranění obsahu všech buněk v tabulce

Stiskněte PTN (Vymazat vše).

Používání proměnných (A, B, C, D, E, F, M, x, y)

Pomocí To lze přiřadit hodnotu buňky k proměnné. Lze rovněž použít To (RECALL) k zadání hodnoty přiřazené k proměnné do buňky.

Používání speciálních příkazů režimu Tab editor

Následující příkazy režimu Tab editor lze používat uvnitř vzorců nebo konstant. Tyto příkazy jsou uvedeny v nabídce, která se zobrazí stisknutím **OPTN**.

Min(Vrací minimum hodnot v určeném rozsahu buněk. Syntaxe: Min(počáteční buňka:koncová buňka)
Max(Vrací maximum hodnot v určeném rozsahu buněk. Syntaxe: Max(počáteční buňka:koncová buňka)
Mean(Vrací průměr hodnot v určeném rozsahu buněk. Syntaxe: Mean(počáteční buňka:koncová buňka)
Sum(Vrací sumu hodnot v určeném rozsahu buněk. Syntaxe: Sum(počáteční buňka:koncová buňka)

Př 3: Pokračujte v Př 1 a zadejte vzorec =Sum(A1:A3), který vypočte součet buněk A1, A2 a A3 do buňky A4.

1. Přemístěte kurzor buňky na buňku A4.

2. Zadejte =Sum(A1:A3).

3. Stiskněte = .

	A	В	С	D	ī
1	35	42			
2	42				
3	49				Г
4					_
=Sum(A1:A3)					

	A	В	С	D	Π
2	42				
3	49				
4	126				
5					
			-		

Dávkové zadávání stejného vzorce nebo konstanty do více buněk

Postupy uvedené v této části lze použít k zadání stejného vzorce nebo konstanty do konkrétní řady buněk. Použijte příkaz Vyplnit vzorec pro dávkové zadávání vzorce nebo příkaz Vyplnit hodnotu pro dávkové zadávání konstanty.

Poznámka: Pokud zadávaný vzorec nebo konstanta obsahují relativní odkaz, bude tento relativní odkaz zadán v souladu s horní levou buňkou určeného rozsahu. Pokud zadávaný vzorec nebo konstanta obsahují absolutní odkaz, bude tento absolutní odkaz zadán do všech buněk v určené rozsahu.

Dávkové zadání stejného vzorce do řady buněk

Př 4: Pokračujte v Př 1 a dávkově zadejte do buněk B1, B2 ad B3 vzorec, který zdvojnásobuje hodnotu buňky vlevo a potom odečte 3.

- 1. Přemístěte kurzor buňky na buňku B1.
- 2. Stiskněte OPTN 1 (Vyplnit vzorec).
 - Zobrazí se dialogové okno Vyplnit vzorec.
- 3. Do řádku "Vzorec" zadejte vzorec "=2A1-3": 2 APHA (-) (A) 1 -3 = .
 - Není nutné zadat rovnítko (=) na začátek.
- 4. Přemístěte zvýraznění na řádek "Rozsah" a určete B1:B3 jako rozsah dávkového zadání.

- 5. Stisknutím 🔳 proveďte zadání.
 - Bude zadáno =2A1-3 do buňky B1, =2A2-3 do buňky B2 a =2A3-3 do buňky B3.

Dávkové zadání stejné konstanty do řady buněk

Př 5: Pokračujte v Př 4 a dávkově zadejte do buněk C1, C2 a C3 hodnoty, které jsou trojnásobky hodnot vlevo.

- 1. Přemístěte kurzor buňky na buňku C1.
- 2. Stiskněte OPTN 2 (Vyplnit hodnotu).
 - Zobrazí se dialogové okno Vyplnit hodnotu.
- 3. Do řádku "Hodnota" zadejte konstantu B1×3: ALPHA •••• (B) 1 ×3 = .
- 4. Přemístěte zvýraznění na řádek "Rozsah" a určete C1:C3 jako rozsah dávkového zadání.

Vyplnit hodnotu Hodn :B1×3 Rozsah:C1:C3

- 5. Stisknutím E proveďte zadání.
 - Hodnoty výsledků jednotlivých výpočtů budou zadány do buněk C1, C2 a C3.

Přepočítání

Autom výpočet je položka nastavení. Dokončení automatického přepočítání může trvat dlouho v závislosti na obsahu tabulky. Když je funkce Autom výpočet deaktivována (Vypnut), může být případně nezbytné iniciovat přepočítání ručně.

Ruční přepočítání: Stiskněte PTN (Přepočítat).

Atomová hmotnost (Period tabulka)

Paměť našeho kalkulátoru obsahuje hodnoty atomových hmotností 118 prvků. Můžete zobrazit konkrétní hodnotu na obrazovce a dokonče používat hodnoty při výpočtech (vyjma režimu Číselná soust).

Zobrazení atomové hmotnosti z periodické tabulky

Příklad: Zobrazení atomové hmotnosti skandia (symbol: Sc, atomové číslo: 21)

- 1. Stiskněte SHFT 4 (ATOMIC).
 - Zobrazí se nabídka ATOMIC.
- 2. Stiskněte 1 (Period tabulka).
 - Zobrazí se periodická tabulka.
 - (1) Kurzor
 - (2) Atomové číslo
 - (3) Chemický symbol
 - (4) Atomová hmotnost*
- 4. Další stisknutím zobrazíte atomovou hmotnost skandia.

44,955908

* Hodnota atomové hmotnosti v hranatých závorkách ([]) představuje atomovou hmotnost nejznámějšího prvku mezi izotopy.

Zobrazení atomové hmotnosti zadáním atomového čísla

- 1. Stiskněte SHIFT 4 (ATOMIC) 2 (Atom hmotnost).
 - Bude zadán příkaz zobrazení atomové hmotnosti (AtWt).
- 2. Zadejte požadované atomové číslo a potom stiskněte =.

Poznámka: Atomové hmotnosti zobrazované vaším kalkulátorem vycházejí z údajů vydaných organizací IUPAC (International Union of Pure and Applied Chemistry) pro rok 2015.

Vědecké konstanty

Tento kalkulátor je vybaven 47 integrovanými vědeckými konstantami.

Příklad: Zadání vědecké konstanty c₀ (rychlost světla ve vakuu) a zobrazení její hodnoty

1. Stisknutím **AC SHFT 7** (CONST) zobrazíte nabídku kategorií vědeckých konstant.

1:Univerzální 2:Elektromag

3:Atom a jader

4:Fyzik-chemic

 Stisknutím 1 (Univerzální) zobrazíte nabídku vědeckých konstant v kategorii Univerzální.

|--|

3. Stiskněte $\mathfrak{3}(c_0) = \mathfrak{1}$.

299792458

Hodnoty vycházejí z doporučených hodnot CODATA (2014).

Metrické převody

Pomocí příkazů metrických převodů lze převádět mezi různými měrnými jednotkami.

Příklad: Převod 5 cm na palce (Řád vst/Řád výs)

1. Zadejte hodnotu, kterou chcete převést, a zobrazte nabídku metrických převodů.

2. V zobrazené nabídce kategorií převodů vyberte "Délka".

 Vyberte příkaz pro převod centimetrů na palce a potom proveďte převod.

Poznámka

- Vzorec pro převod dat je založen na "NIST zvláštní vydání 811 (2008)".
- Příkaz J►cal provádí převod hodnot při teplotě 15°C.

Chyby

Kalkulátor zobrazí chybové hlášení, kdykoli se během výpočtu z jakéhokoli důvodu objeví chyba. Po zobrazení chybového hlášení se stisknutím nebo vrátíte na obrazovku výpočtu. Kurzor bude umístěn na místo, kde se objevila chyba, připraven pro zápis.

Smazání chybového hlášení: Když se zobrazí chybové hlášení, stisknutím se vrátíte na obrazovku výpočtu. Uvědomte si, že tímto se také vymaže výpočet, který obsahoval chybu.

Chybová hlášení

Matematická CHYBA

- Mezivýsledek nebo konečný výsledek výpočtu, který provádíte, přesahuje povolený rozsah výpočtu.
- Zadání přesahuje povolený rozsah pro vstupní hodnotu (zvláště při užívání funkcí).
- Výpočet, který provádíte, obsahuje nepovolenou matematickou operaci (jako např. dělení nulou).
- → Zkontrolujte vkládané hodnoty, snižte počet číslic a zkuste výpočet znovu.

→ Když používáte nezávislou paměť nebo proměnnou pro argument funkce, přesvědčte se, že hodnota v paměti nebo hodnota proměnné nepřesahuje povolený rozsah pro danou funkci.

CHYBA zásobníku

- Výpočet, který provádíte, přesáhl kapacitu číselné či příkazové zásobníkové paměti.
- Výpočet, který provádíte, přesáhl kapacitu maticové nebo vektorové zásobníkové paměti.
- → Zjednodušte výpočtový výraz tak, aby výpočet nepřesáhl kapacitu zásobníkové paměti.
- → Zkuste rozdělit výpočet na dvě a více částí.

CHYBA syntaxe

Problém je ve formě výpočtu, který provádíte.

CHYBA argumentu

• Ve výpočtu, který provádíte, je problém s argumentem.

CHYBA rozměru (pouze režim Matice a Vektor)

- Matice nebo vektor, který se snažíte použít ve výpočtu byl vložen bez určení rozměrů.
- Pokoušíte se provést výpočet s maticemi nebo vektory, jejichž rozměry neumožňují takovýto typ výpočtu.
- → Určete rozměr matice nebo vektoru a pak proveďte výpočet znovu.
- → Zkontrolujte rozměry určené pro matice nebo vektory, abyste věděli, zda jsou slučitelné s výpočtem.

CHYBA proměnné (pouze funkce SOLVE)

- Pokus o provedení funkce SOLVE u zadání výrazu bez zadané proměnné.
- → Zadejte výraz obsahující proměnnou.

Nelze vyřešit (pouze funkce SOLVE)

- Kalkulátor nemůže získat řešení.
- → Zkontrolujte, zda zadaná rovnice neobsahuje chyby.
- → Zadejte hodnotu pro proměnnou řešení, která je blízko očekávaného řešení a zkuste znovu.

CHYBA rozsahu

- Pokus o vytvoření číselné tabulky v režimu Tabulka hodnot, jejíž podmínky způsobily překročení maximálního počtu povolených řádků.
- Během dávkového zadání v režimu Tab editor se zadání pro Rozsah nachází mimo povolený rozsah nebo se jedná o neexistující název buňky.
- → Zužte rozsah výpočtu tabulky změnou hodnot Začát, Konec a Krok a zkuste to znovu.
- → Pro Rozsah zadejte název buňky v rozsahu A1 až E45 s použitím následující syntaxe: "A1:A1".

Čas vypršel

- Aktuální diferenciální nebo integrační výpočet končí bez naplnění ukončovací podmínky.
- → Zkuste zvýšit hodnotu tol. Všimněte si, že toto také snižuje přesnost řešení.

Cyklická CHYBA (pouze režim Tab editor)

- V tabulce existuje kruhový odkaz (například "=A1" v buňce A1).
- → Změnou obsahu buňky odstraňte kruhové odkazy.

CHYBA paměti (pouze režim Tab editor)

 Pokoušíte se zadat údaj, který přesahuje povolenou kapacitu pro zadání (1700 bajtů).

- Pokoušíte se zadat údaj, jehož výsledkem je řetězec posloupných odkazů buněk (například buňka A2 odkazovaná z buňky A1, buňka A3 odkazovaná z buňky A2... atd.) Tento typ zadání vždy způsobí vygenerování této chyby, i když kapacita paměti (1700 bajtů) není překročena.
- Byla překročena kapacita paměti, protože byl zkopírován vzorec, který obsahuje relativní odkaz buňky nebo dávkové zadání vzorců používá relativní odkazy buněk.
- → Odstraňte nepotřebná data a zadejte data znovu.
- → Minimalizujte zadání, jehož výsledkem je řetězec posloupných odkazů buněk.
- → Zkraťte kopírovaný vzorec nebo vzorce dávkového zadání.

Dříve než budete předpokládat poruchu kalkulátoru...

Uvědomte si, že byste si měli udělat zvláštní kopie důležitých dat dříve, než začnete provádět tyto kroky.

- 1. Zkontrolujte výpočtový výraz, abyste se ujistili, že neobsahuje žádné chyby.
- 2. Ujistěte se, že používáte správný režim pro typ výpočtu, který se snažíte provést.
- 3. Pokud výše uvedené kroky problém nevyřeší, stiskněte klávesu ON.
 - To spustí na kalkulátoru proceduru, která zkontroluje, zda výpočtové funkce pracují správně. Pokud kalkulátor objeví jakékoli abnormality, automaticky inicializuje výpočtový režim a vymaže obsah paměti.
- 4. Obnovte počáteční výchozí nastavení režimu výpočtu a nastavení (vyjma nastavení Language a Kontrast) podle následujícího postupu: SHFT 9 (RESET) 1 (Data nastavení) (Ano).

Výměna baterie

Slabá baterie se projevuje ztlumeným zobrazením, i když je seřízený kontrast, nebo chybou v číslech, která se objevuje na displeji okamžitě poté, co kalkulátor zapnete. Pokud se to stane, vyměňte baterii za novou. **Důležité:** Vyjmutím baterie dojde k vymazání obsahu všech pamětí kalkulátoru.

- 1. Stisknutím [SHFT] AC (OFF) kalkulátor vypněte.
 - Abyste předešli nechtěnému zapnutí kalkulátoru během výměny baterie, nasuňte na přední část kalkulátoru pevný kryt.
- 2. Odmontujte šroubky a kryt ze zadní strany kalkulátoru.
- 3. Vyjměte baterii a potom vložte novou baterii tak, aby byly správně zorientovány póly plus (+) a mínus (-).
- 4. Nasaďte kryt.
- 5. Proveďte inicializaci kalkulátoru:
 - ON SHIFT 9 (RESET) 3 (Inicial vše) (Ano).
 - Nevynechte výše uvedený krok!

Technické údaje

Rozsah výpočtu a přesnost

Rozsah výpočtu	±1 × 10 ⁻⁹⁹ až ±9,999999999 × 10 ⁹⁹ nebo 0
Počet číslic pro vnitřní výpočty	15 číslic
Přesnost	Všeobecně ±1 na desátém místě pro jednoduchý výpočet. Přesnost pro exponenciální zobrazení je ±1 u poslední platné číslice. V případě po sobě jdoucích výpočtů se chyby kumulují.

Rozsahy vstupních hodnot pro funkce a přesnost

Funkce	Vstupní rozsah		
Stupeň (D		$0 \le x < 9 \times 10^9$	
sin <i>x</i> cos <i>x</i>	Radián	$0 \le x < 157079632,7$	
	Grad	$0 \le x < 1 \times 10^{10}$	
	Stupeň (D)	Stejné jako u sin x , s výjimkou když $ x = (2n - 1) \times 90$.	
tgx	Radián	Stejné jako u sin x , s výjimkou když $ x = (2n - 1) \times \pi/2$.	
	Grad	Stejné jako u sin x , s výjimkou když $ x = (2n - 1) \times 100$.	
$\sin^{-1}x$, $\cos^{-1}x$	$0 \le x \le 1$		
$tg^{-1}x$	$0 \le x \le 9,999999999 \times 10^{99}$		
sinhx, coshx	$0 \le x \le 230,2585092$		
sinh ⁻¹ x	$0 \le x \le 4,999999999 \times 10^{99}$		
cosh ⁻¹ x	$1 \le x \le 4.9$	99999999 × 10 ⁹⁹	
tghx	$0 \le x \le 9.9$	99999999 × 10 ⁹⁹	
tgh-1x	$0 \le x \le 9,999999999 \times 10^{-1}$		
logx, lnx	$0 < x \le 9,999999999 \times 10^{99}$		
10 ^x	$-9,999999999 \times 10^{99} \le x \le 99,99999999$		
e^x	$-9,999999999 \times 10^{99} \le x \le 230,2585092$		
\sqrt{x}	$0 \le x < 1 \times 10^{100}$		
x^2	$ x < 1 \times 10^{50}$		
<i>x</i> ⁻¹	$ x < 1 \times 10^{100}$; $x \neq 0$		

$\sqrt[3]{x}$	$ x < 1 \times 10^{100}$
<u>x!</u>	$0 \le x \le 69$ (x je celé číslo)
nPr	$0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r \text{ jsou celá čísla})$ $1 \le \{n!/(n-r)!\} < 1 \times 10^{100}$
nCr	$0 \le n < 1 \times 10^{10}, 0 \le r \le n \ (n, r \text{ jsou celá čísla})$ $1 \le n!/r! < 1 \times 10^{100} \text{ nebo } 1 \le n!/(n-r)! < 1 \times 10^{100}$
Pol(x; y)	$ x , y \le 9,9999999999999999999999999999999999$
$Rec(r; \theta)$	$0 \le r \le 9,999999999 \times 10^{99}$ θ : Stejné jako u sin x
0, "	$ a ,\ b,\ c<1\times10^{100}\ ;\ 0\le b,\ c$ Zobrazená hodnota sekund je vystavena chybě ±1 na druhém desetinném místě.
(), "	x < 1 × 10 ¹⁰⁰ Desítkové ↔ šedesátkové převody 0°0'0" ≤ $ x $ ≤ 9999999°59'59"
χ^{ν}	$x > 0$: -1 × 10 ¹⁰⁰ < $y \log x < 100$ x = 0: $y > 0x < 0: y = n, \frac{m}{2n+1} (m, n jsou celá čísla)Avšak: -1 × 10100 < y \log x < 100$
$\sqrt[x]{y}$	$y > 0$: $x \neq 0$, $-1 \times 10^{100} < 1/x \log y < 100$ y = 0: $x > 0y < 0: x = 2n+1, \frac{2n+1}{m} (m \neq 0; m, n jsou celá čísla)Avšak: -1 \times 10^{100} < 1/x \log y < 100$
$a^{b/c}$	Celé číslo, čitatel a jmenovatel musí mít celkem 10 číslic nebo méně (včetně symbolu oddělovače).
RanInt#(a; b)	$a < b$; $ a $, $ b < 1 \times 10^{10}$; $b - a < 1 \times 10^{10}$

- Přesnost se víceméně shoduje s tou, která byla výše popsána v odstavci "Rozsah výpočtu a přesnost".
- Funkce typu x^y , $\sqrt[3]{y}$, $\sqrt[3]{x}$, x!, nPr, nCr vyžadují následné vnitřní výpočty, které mohou způsobit kumulaci chyb, jež se objevují u každého jednotlivého výpočtu.
- Chyba je kumulována a má tendenci se zvětšovat v blízkosti singulárních a inflexních bodů funkcí.
- Rozsah pro výsledky výpočtu, který může být zobrazen ve formě π , když Mat vst/Mat výs vybrané pro Vstup/Výstup v nabídce nastavení je $|x| < 10^6$. Nicméně si všimněte, že vnitřní výpočtová chyba může znemožnit zobrazení některých výpočtů výsledků ve formě π . Také to může způsobit, že se výsledky výpočtu, které by měly být v desetinné formě, objeví ve formě π .

Technické údaje Napájení:

Vestavěná sluneční baterie; knoflíková baterie LR44 x 1

Přibližná životnost baterie:

2 roky (při 1 hodinovém provozu denně)

Provozní teplota: 0°C až 40°C

Rozměry: 11,1 (V) \times 77 (Š) \times 165,5 (T) mm **Přibližná hmotnost:** 90 g včetně baterie

■■ Často kladené otázky ■■

Jak mohu změnit výsledek ve tvaru zlomku, získaný dělením, na tvar desetinný?

→ Když je zobrazen výsledek výpočtu zlomku, stiskněte . Chcete-li, aby se výsledky výpočtů zobrazovaly primárně jako desetinné hodnoty, změňte nastavení Vstup/Výstup v nabídce nastavení na Mat vst/Des výs.

Jaký je rozdíl mezi pamětí posledního výsledku (Ans), nezávislou pamětí a pamětí proměnné?

→ Každý z těchto typů pamětí se chová jako "zásobník" pro dočasné uchování jednotlivé hodnoty.

Paměť posledního výsledku (Ans): Ukládá výsledek posledního výpočtu. Tuto paměť použijte pro přenesení výsledku jednoho výpočtu na další výpočet.

Nezávislá paměť: Tuto paměť použijte pro shrnutí výsledků vícenásobného počítání.

Paměť proměnných: Tato paměť je užitečná, pokud potřebujete použít stejnou hodnotu vícekrát v jednom nebo více výpočtech.

Jaká je klávesová operace, která uživatele přesměruje z režimu Statistika nebo Tabulka hodnot do režimu, ve kterém lze provádět aritmetické výpočty?

→ Stiskněte MENU 1 (Výpočty).

Jak lze obnovit původní výchozí nastavení kalkulátoru?

→ Chcete-li obnovit výchozí nastavení kalkulátoru (vyjma nastavení Language a Kontrast), postupujte podle následujících pokynů:

[SHFT] [9] (RESET) [1] (Data nastavení) [=] (Ano).

Proč je výsledek výpočtu funkce zcela odlišný od starších modelů kalkulátorů CASIO?

\rightarrow	U modelu s přirozeným zobrazením mu	, 0		
	užívá závorky, následován uzavřenými l	kulatými závorkam	i. Pokud p	Ο
	argumentu nestisknete D, aby se uzav	rřely kulaté závork	y, mohou k	oýt
	do argumentu zahrnuty nežádoucí hodr	noty nebo výrazy.		
Ī	Příklad: (sin 30) + 15 (Jednotka úhlu: Stu	upeň (D))		
(Starší model (S-V.P.A.M.):	sin 30 H	- 15 =	15,5
1	Model s přirozeným zobrazením:			
(Řád vst/Řád výs)	sin 30) +) 15 =	15,5
	Pokud zde nestisknete D podle násle	dujícího obrázku,	bude prov	eden
			výpočet si	n 45.
		sin 30 15 =	0.707106	7812

Referenční list

Vědecké konstanty आ 7 (CONST)

	- /	
1 : h	2: h	3 : C ₀
4 : ε ₀	5 : μ ₀	6 : Z ₀
7 : G	8 : I _P	9 : t _P
1: µ _N	2 : μ _B	3 : e
4 : 	5 : G ₀	6 : K _J
7 : R _K		
1: m _p	2: m _n	3 : m _e
4 : m _μ	5 : a ₀	6 : α
7 : r _e	8 : λ _C	9 : γ _p
$lackbox{A}:\lambda_{Cp}$	$oldsymbol{B}$: λ_{Cn}	C:R _∞
D : μ _p	$oldsymbol{E}$: μ_{e}	$oldsymbol{F}$: μ_{n}
Μ : μ _μ	$x: m_{\tau}$	
1 : u	2: F	3: N _A
4 : k	5 : V _m	6 : R
7 : C ₁	8 : C ₂	9: σ
1 : g	2: atm	3: R _{K-90}
4: K _{J-90}		
1: t		
	1: h 4: ϵ_0 7: G 1: μ_N 4: ϕ_0 7: R_K 1: m_p 4: m_μ 7: r_e A: λ_{Cp} D: μ_p M: μ_μ 1: u 4: k 7: c_1 1: g 4: K_{J-90}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Metrické převody SHIFT 8 (CONV)

mounding provous	<u> </u>	
1 (Délka)	1 : in►cm	2: cm►in
	3 : ft►m	4 : m►ft
	5 : yd►m	6 : m▶yd
	7: mile▶km	8 : km►mile
	9: n mile►m	A : m▶n mile
	B : pc►km	C: km▶pc
2(Plocha)	1 : acre►m²	②: m²►acre
3 (Objem)	1 : gal(US)►L	②: L►gal(US)
	3 : gal(UK)▶L	4 : L►gal(UK)
4 (Hmotnost)	1 : oz►g	2 : g►oz
	3 : lb►kg	4 : kg►lb
▼ 1(Tlak)	1 : atm▶Pa	②: Pa▶atm
	3 : mmHg▶Pa	4 : Pa▶mmHg
	5 : kgf/cm²►Pa	6 : Pa►kgf/cm²
	7: lbf/in²►kPa	8 : kPa►lbf/in²
② (Energie)	1 : kgf • m►J	②: J▶kgf·m
	3: J►cal	4 : cal►J
▼ 3 (Výkon)	1 : hp►kW	②: kW►hp
▼ 4 (Teplota)	1: °F▶°C	2 : °C▶°F

CASIO®

CE

Manufacturer: CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan

Responsible within the European Union: Casio Europe GmbH Casio-Platz 1 22848 Norderstedt, Germany www.casio-europe.com

SA1702-A

Printed in Thailand

© 2017 CASIO COMPUTER CO., LTD.