Kapitel L:V

V. Erweiterungen und Anwendungen zur Logik

- Produktionsregelsysteme
- □ Inferenz für Produktionsregelsysteme
- □ Produktionsregelsysteme mit Negation
- □ Regeln mit Konfidenzen
- □ Nicht-monotones Schließen
- □ Logik und abstrakte Algebren
- Verifikation
- Verifikation mit dem Hoare-Kalkül
- ☐ Hoare-Regeln und partielle Korrektheit
- Terminierung

Problemlösen mittels Logik

- Ausgangspunkt.
 Ein System der realen Welt und eine Frage dazu.
- Modellbildung.
 Abstraktion des Systems (→ Modell) und der Frage.
- 3. Formalisierung. Beschreibung von Modell und Frage als Formel α bzw. β .
- 4. Schlussfolgern bzw. Inferenz.
 - (a) Überprüfung ob $\alpha \models \beta$ gilt.
 - (b) Bestimmung möglicher Folgerungen β' aus α .

- \square Nach dem Schlussfolgerungsprozess weiß man $\alpha \wedge \beta$ bzw. $\alpha \cup \beta$.
- □ Das klassische Schlussfolgern basiert auf unserem Wissen über die Dinge.
- Beim klassischen Schlussfolgern nimmt unser Wissen immer weiter zu: Je mehr man weiß bzw. je "größer" α ist, um so mehr kann man folgern. Der Schlussfolgerungsprozess ist monoton.

Schlussfolgern in der klassischen Logik

(a) Gegeben: $\alpha = \{\gamma, \gamma \rightarrow \beta\}$

Schlussregel: Modus Ponens.

$$\gamma \wedge (\gamma \to \beta) \models \beta$$

Schlussfolgern in der klassischen Logik

(a) Gegeben: $\alpha = \{\gamma, \gamma \to \beta\}$

Schlussregel: Modus Ponens.

$$\gamma \wedge (\gamma \to \beta) \models \beta$$

(b) Gegeben: $\alpha = \{ \gamma \land \neg \delta, \ \gamma \land \neg \delta \rightarrow \beta \}$

Schlussregel: Modus Ponens.

$$\gamma \wedge \neg \delta \wedge (\gamma \wedge \neg \delta \rightarrow \beta) \models \beta$$

Schlussfolgern in der klassischen Logik

(a) Gegeben:
$$\alpha = \{\gamma, \gamma \rightarrow \beta\}$$

Schlussregel: Modus Ponens.

$$\gamma \wedge (\gamma \to \beta) \models \beta$$

(b) Gegeben:
$$\alpha = \{ \gamma \land \neg \delta, \ \gamma \land \neg \delta \rightarrow \beta \}$$

Schlussregel: Modus Ponens.

$$\gamma \wedge \neg \delta \wedge (\gamma \wedge \neg \delta \rightarrow \beta) \models \beta$$

(c) Gegeben:
$$\alpha = \{ \gamma \wedge \delta, \ \gamma \wedge \delta \rightarrow \beta \}$$

Schlussregel: Modus Ponens.

$$\gamma \wedge \delta \wedge (\gamma \wedge \delta \to \beta) \models \beta$$

- □ Die Mengenschreibweise bei den Formeln steht für eine logische UND-Verknüpfung.
- □ Schlussfolgern über Nicht-Wissen erfordert besondere Ableitungsprinzipien.
- □ Die zwei wichtigsten Ansätze hierzu sind Negation-as-Failure und das logische Schließen mittels Defaults (Default-Logik).

Schlussfolgern über Nicht-Wissen: Negation-as-Failure

Gegeben:
$$\alpha = \{\gamma, \ \gamma \land \neg \delta \rightarrow \beta\}$$

Ableitungsprinzip: $\mid_{\overline{naf}} \equiv \text{Modus Ponens} + \text{Negation-as-Failure}.$

$$\gamma \wedge (\gamma \wedge \neg \delta \to \beta) \mid_{naf} \beta$$

- Lässt sich eine Formel δ nicht aus α ableiten*, so darf *unter Vorbehalt* ihr Gegenteil, $\neg \delta$, konjunktiv zu α hinzugenommen werden. Aus semantischer Sicht ist dies gleichbedeutend damit, dass $\neg \delta$ vorläufig als wahr angenommen wird. Idee: Closed-World-Assumption. "Alles, was gilt, ist ableitbar." bzw. "Was nicht ableitbar ist, das gilt auch nicht."
- Durch Negation-as-Failure wird α (unter Vorbehalt, auf Basis aktuellen Wissens) so modifiziert, dass der Modus Ponens bzw. Resolution anwendbar wird (vgl. vorherige Folie zur klassischen Logik).
- □ Dieses Ableitungsprinzip findet in der Programmiersprache Prolog Verwendung, wobei statt des Modus Ponens das Resolutionsverfahren eingesetzt wird.
- (*) Bei Negation-as-Failure in Prolog wird versucht, δ mittels Backward-Chaining abzuleiten.

Schlussfolgern über Nicht-Wissen: Default-Logik [Doyle/McDermott 1980]

Gegeben:
$$\alpha = \{\gamma, \ \gamma \land M\delta \rightarrow \beta\}$$

Ableitungsprinzip: $|_{\overline{default}}| \equiv \text{Modus Ponens} + \text{Default}.$

$$\gamma \wedge (\gamma \wedge M\delta \to \beta) \mid_{default} \beta$$

Schreibweise: Default-Regel

$$\frac{\gamma \wedge M\delta}{\beta}$$

- Lässt sich eine Formel $\neg \delta$ nicht aus α ableiten*, so darf *unter Vorbehalt* ihr Gegenteil, δ , konjunktiv zu α hinzugenommen werden. Aus semantischer Sicht ist dies gleichbedeutend damit, dass δ als wahr angenommen wird. Idee: "Solange kein Widerspruch bei der Annahme eines Sachverhalts auftritt, gehe von seiner Gültigkeit aus." $M\delta \equiv$ "it is consistent to assume δ ."
- Das "M" (Modality) bei der Default-Logik kennzeichnet einen logischen Fakt, der defaultmäßig als vorhanden angesehen wird bzw. für den der Wert "wahr" angenommen wird. Dadurch wird α (unter Vorbehalt, auf Basis aktuellen Wissens) so modifiziert, dass der Modus Ponens anwendbar wird (vgl. vorherige Folie zur klassischen Logik).
- (*) Der Ableitungsprozess in der Default-Logik ist üblicherweise datengetrieben, also Forward-Chaining.

Schlussfolgern über Nicht-Wissen

Eine Besonderheit bei Schlussfolgern über Nicht-Wissen ist, dass bei Zunahme des Wissens über die Welt das folgerbare Wissen abnehmen kann: α wird größer, die Menge β der Folgerungen aus α jedoch kleiner.

Klassische, monotone Situation

Nicht-monotone Situation

□ Wenn man über "Nicht-Wissen" schlussfolgert nimmt die Menge der ableitbaren Fakten (= Wissen) nicht notwendiger Weise zu. Der Schlussfolgerungsprozess ist nicht-monoton. Üblich in diesem Zusammenhang ist deshalb der Begriff des nicht-monotonen Schließens.

Schlussfolgern über Nicht-Wissen

Beispiel:
$$\alpha = \{C, \ (C \to B), \ ((B \land \neg D) \to E)\}$$

Ableitungsprinzip: $\left|_{naf}\right| \equiv \text{Modus Ponens} + \text{Negation-as-Failure}$

Frage:
$$\beta = \{E\}$$
. Gilt $\alpha \mid_{\overline{naf}} \beta$?

Schlussfolgern über Nicht-Wissen

Beispiel: $\alpha = \{C, (C \to B), ((B \land \neg D) \to E)\}$

Ableitungsprinzip: \mid_{naf} \equiv Modus Ponens + Negation-as-Failure

Frage: $\beta = \{E\}$. Gilt $\alpha \mid_{naf} \beta$?

Zeitpunkt	t_1	t_2	t_2'
Weltwissen	D ist unbekannt	D ist wahr	$\neg D$ ist wahr
Folgerungen	B, E	B	B, E

Wie operationalisiert man nicht-monotones Schließen?

- \Box Kommt man von der Situation zum Zeitpunkt t_1 in die Situation zum Zeitpunkt t_2 , so darf unter der Annahme der Closed-World-Assumption E nicht in der Menge der abgeleiteten Fakten sein, denn E kann in dieser Situation nicht gefolgert werden.
- □ Die Mengenschreibweise bei den Formeln steht für eine logische UND-Verknüpfung.

Operationalisierung

(a) Jedes Mal, wenn sich das Weltwissen ändert, werden alle Folgerungen (abgeleitete Fakten) gelöscht und der Inferenzprozess von vorne gestartet:

Operationalisierung

(a) Jedes Mal, wenn sich das Weltwissen ändert, werden alle Folgerungen (abgeleitete Fakten) gelöscht und der Inferenzprozess von vorne gestartet:

(b) Die Menge der Folgerungen (ableitbaren Fakten) wird inkrementell konsistent bzgl. der Schlussregel gehalten:

□ Systeme, die dabei helfen, einen nicht-montonen Schlussfolgerungsprozess nachzubilden, heißen *Truth-Maintenance-Systeme* (TMS) oder auch *Reason-Maintenance-Systeme* (RMS). Zwei wichtige Vertreter sind das Justification-based TMS und das Assumption-based TMS.

Modellierung

Viele Modelle (z. B. in der Diagnose) lassen eine Aufteilung in folgende Mengen zu:

- □ R, universelle Formeln über die Welt (Regeln).
- \Box P_t , aktuelles Faktenwissen über die Welt zum Zeitpunkt t (Prämissen).
- \Box F_t , Folgerungen aus $R \cup P_t$.

Es gelte $P_1 \subset P_2$. Die beiden Konzepte zur Operationalisierung des nicht-monotonen Schließens lassen sich wie folgt illustrieren:

 \square Mit $P_1 \subset P_2$ gilt unmittelbar $F_1 \subseteq F_2$ für die monotone Situation. Für die nicht-monotone Situation lässt sich keine Aussage über die Relation zwischen F_1 und F_2 machen.