# Explanations can be manipulated and geometry is to blame

**Authors**: Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann, Klaus-Robert Müller, Pan Kessel

Presented by: Chelsea (Zixi) Chen, Tessa Han, Vignav Ramesh

# Introduction

#### **Motivation**

Understand and verify aspects of ML models

Aid decision making in high-stakes scenarios

→ Reliable explanations of models!

Can we always trust model explanations?

# **Summary / Contribution**

- Manipulate explanations!
- Provide a theoretical understanding of such nonrobustness and derive a bound
- Introduce smoothing to increase explanation robustness!



 $\|h(p)\| \leq |\lambda_{max}| \ d_g(p, p_0) \leq \beta \ C \ d_g(p, p_0),$ 

?



## **Background + Related Work**

- Interpretation of Neural Networks is Fragile [Ghorbani et al.]
  - Complex decision boundary
- The (un)reliability of saliency methods [Kindermans et al.]
  - Input invariance
- Sanity checks for saliency maps [Adebayo et al.]
  - Randomization test (Wednesday)

- Fairwashing Explanations with Off-Manifold Detergent [Anders et al.]
  - O Low-dimensional data manifold v.s. High-dimensional embedding space

# Methodology

#### **Notation**

- Neural network  $g: \mathbb{R}^d \to \mathbb{R}^K$  with relu non-linearities
- Classifies input image x into K categories, predicted class  $k = \arg\max_i g(x)_i$
- Explanation map:  $h: \mathbb{R}^d \to \mathbb{R}^d$
- Target map:  $h^t \in \mathbb{R}^d$
- Manipulated image:  $x_{adv} = x + \delta x$

## **Properties of Manipulated Image**

- 1. The output of the network stays approximately constant, i.e.  $g(x_{adv}) \approx g(x)$ .
- 2. The explanation is close to the target map, i.e.  $h(x_{adv}) \approx h^t$ .
- 3. The norm of the perturbation  $\delta x$  added to the input image is small, i.e.  $\|\delta x\| = \|x_{adv} x\| \ll 1$  and therefore not perceptible.

#### **Explanation Methods**

- Vanilla gradients:  $h(x) = \frac{\partial g}{\partial x}(x)$ 
  - Quantifies how infinitesimal perturbations in each pixel change the prediction
- Gradient  $\times$  Input:  $h(x) = x \odot \frac{\partial g}{\partial x}(x)$ 
  - For linear models, this measure gives the exact contribution of each pixel to the prediction
- Integrated Gradients:  $h(x) = (x \bar{x}) \odot \int_0^1 \frac{\partial g(\bar{x} + t(x \bar{x}))}{\partial x} dt$
- Guided Backpropagation
- Layer-wise Relevance Propagation
- Pattern Attribution
  - Standard backpropagation upon element-wise multiplication of the weights with learned patterns

#### **Manipulation Method**

Obtain manipulated images by optimizing the loss function



with respect to  $x_{adv}$  using gradient descent

# **Manipulation Method**

• The gradient with respect to the input  $\nabla h(x)$  of the explanation often depends on the vanishing second derivative of the relu non-linearities. This causes problems during optimization of the loss function:

$$\left\| \partial_{x_{adv}} \left\| h(x_{adv}) - h^t \right\|^2 \propto \frac{\partial h}{\partial x_{adv}} = \frac{\partial^2 g}{\partial x_{adv}^2} \propto \text{relu}'' = 0$$

Solution: replace relu with softplus

$$\operatorname{softplus}_{\beta}(x) = \frac{1}{\beta} \log(1 + e^{\beta x})$$

# **Experiments**

#### **Experimental Setup**

- Apply algorithm to 100 randomly selected images for each explanation method
- Use VGG-16 network pre-trained on ImageNet
- For each run, we randomly select two images from the test set.
  - One of the two images is used to generate a target explanation map
  - O The other image is perturbed by our algorithm with the goal of replicating the target using a few thousand iterations of gradient descent
- Comparable results obtained for ResNet-18, AlexNet, and Densenet-121 + CIFAR-10 dataset

|                                       | Original Map | Target Map | Manipulated Map | Perturbed Image | Perturbations |                                              |
|---------------------------------------|--------------|------------|-----------------|-----------------|---------------|----------------------------------------------|
| Gradient                              |              |            | 4.0             |                 |               |                                              |
| Gradient<br>x<br>Input                |              |            |                 |                 |               | Original Image  Image used to produce Target |
| Layerwise<br>Relevance<br>Propagation | 9            |            |                 |                 |               |                                              |
| Integrated<br>Gradients               | 100          |            |                 |                 |               |                                              |
| Guided<br>Backpropagation             | 8 7          | <b>8</b>   | <b>8</b> 2      |                 |               |                                              |
| Pattern<br>Attribution                |              |            |                 |                 |               |                                              |



# **Theoretical Analysis**

#### Intuition

Why are explanations vulnerable and unreliable?

Large curvature of the NN output manifold!

#### [Ghorbani et al.]



#### **Theoretical Bound**

**Theorem 1** Let  $g: \mathbb{R}^d \to \mathbb{R}$  be a network with softplus<sub> $\beta$ </sub> non-linearities and  $\mathcal{U}_{\epsilon}(p) = \{x \in \mathbb{R}^d; ||x-p|| < \epsilon\}$  an environment of a point  $p \in S$  such that  $\mathcal{U}_{\epsilon}(p) \cap S$  is fully connected. Let g have bounded derivatives  $||\nabla g(x)|| \ge c$  for all  $x \in \mathcal{U}_{\epsilon}(p) \cap S$ . It then follows for all  $p_0 \in \mathcal{U}_{\epsilon}(p) \cap S$  that

$$||h(p) - h(p_0)|| \le |\lambda_{max}| d_g(p, p_0) \le \beta C d_g(p, p_0),$$
 (9)

where  $\lambda_{max}$  is the principle curvature with the largest absolute value for any point in  $\mathcal{U}_{\epsilon}(p) \cap S$  and the constant C > 0 depends on the weights of the neural network.

# Robustness via smoothing



$$\operatorname{softplus}_{\beta}(x) = \frac{1}{\beta} \log(1 + e^{\beta x})$$

## **Smoothing: Connections to SmoothGrad**

**Theorem 2** For a one-layer neural network  $g(x) = relu(w^T x)$  and its  $\beta$ -smoothed counterpart  $g_{\beta}(x) = softplus_{\beta}(w^T x)$ , it holds that

$$\mathbb{E}_{\epsilon \sim p_\beta} \left[ \nabla g(x - \epsilon) \right] = \nabla g_{\frac{\beta}{\|w\|}}(x) \,,$$
 where  $p_\beta(\epsilon) = \frac{\beta}{(e^{\beta \epsilon/2} + e^{-\beta \epsilon/2})^2}$ . SmoothGrad  $\beta$ -smoothing

$$\epsilon_i \approx \mathcal{N}(0, \sigma)$$
 with variance  $\sigma = \log(2) \frac{\sqrt{2\pi}}{\beta}$ 



Figure 4.  $\beta$ -smoothing makes explanations more robust.



Figure 4.  $\beta$ -smoothing makes explanations more robust.



Figure 4.  $\beta$ -smoothing makes explanations more robust.



Figure 5.  $\beta$ -smoothing 1) makes explanations more robust 2) is comparable to SmoothGrad

3) has a faster runtime than SmoothGrad



Figure 5.  $\beta$ -smoothing 1) makes explanations more robust 2) is comparable to SmoothGrad

3) has a faster runtime than SmoothGrad



Figure 5.  $\beta$ -smoothing 1) makes explanations more robust 2) is comparable to SmoothGrad

3) has a faster runtime than SmoothGrad



Figure 5.  $\beta$ -smoothing 1) makes explanations more robust

- 2) is comparable to SmoothGrad
- 3) has a faster runtime than SmoothGrad

# Conclusion

#### Critique

#### **Strengths**

- Thorough investigation: problem  $\rightarrow$  reason  $\rightarrow$  solution
- Extensive validation: various explanation methods, models, and datasets

#### Limitations

- Analyses focused on relu/softplus activation function
- Evaluation of robustness based on Pearson correlation coefficient

#### **Future directions & food for thought**

#### **Future directions**

- Extend empirical analyses to other tasks and data modalities
- Generalize theoretical analyses to propagation-based methods
- Modify model training process to make NNs less vulnerable to explanation manipulation
  - Low-curvature models [Srinivas et al., NeurlPS 2022]

#### Food for thought

- Might there be other reasons for explanations being sensitive to manipulation?
- What are other ways to evaluate robustness of explanations?
- Is it a good idea to trade-off faithfulness for better robustness?