ECE 490-ST Wireless Computing

Course Overview

Syllabus

- It's on blackboard
- Office Hours

- M 4:30-5:20

- T, Th 2:30-4:20

- F 12:30-1:20

But first ...

A Quiz!

Syllabus

- It's on blackboard
- Office Hours

- M 4:30-5:20

- T, Th 2:30-4:20

- F 12:30-1:20

Instructional Objectives

- Upon successful completion of ECE 490-ST, you should be able to:
 - Describe the key features of an RFID system and how they differ from traditional communication systems.
 - 2. Draw and use a Smith Chart to aid in engineering decisions.
 - 3. Describe the function and utility of a Vector Network Analyzer (VNA).
 - Create a link budget using a propagation model.
 - 5. Characterize a wireless power system.
 - 6. Design low-power microcontroller programs.
 - 7. Build a battery-free device.

VU – WiCPU Board

You will:

Solder it up.

Test it out.

Characterize it.

Use it.

Do a final project.

ECE 490-ST Wireless Computing

Who is your prof?

- Univ. of Louisville
 - Digital readout for wireless pressure sensor

IntelliRod Sensor

Duke University

Major Accomplishment: Saw the Blue Devils win 2 Nat'l.
 Championships

Smarthat – Worker Safety Helmet

Dragonfly neural/EMG

Improvements to tag data rate

Power harvesting from WiFi signals

Secure important materials

ECE 490-ST Wireless Computing

So ... What is wireless computing?

Wireless Computing

Emerging technology

Combines:

- Low-power computing
- Distributed computing
- Wireless power transfer
- Built on RFID technology
- Not exactly the same as IoT (Internet of Things)

Data: Implications of Historical Trends in the Electrical Efficiency of Computing
Koomey, Berard, Sanchez et al, IEEE Annals of the History of Computing, 2011

Wireless Computing

Emerging technology

Combines:

- Low-power computing
- Distributed computing
- Wireless power transfer
- Built on RFID technology
- Not exactly the same as IoT (Internet of Things)

Range scaling of far field WPT

Wireless Computing

Emerging technology

Combines:

- Low-power computing
- Distributed computing
- Wireless power transfer
- Built on RFID technology
- Not exactly the same as IoT (Internet of Things)

Intel WISP

- Key Components:
 - Wireless
 - No Battery
 - Talks to Sensors

Block Diagram of a Wireless Computer

In-Class Fun Times

So ... What is RFID?

- 1. System Reader, tags
- 2. Radio link
- 3. Radio (transceiver)
- 4. Tag (transponder)
- 5. Antennas
- 6. Protocols

Figure 1.1
Overview of this book.

So ... What is RFID?

- 1. System Reader, tags
- 2. Radio link
- 3. Radio (transceiver)
- 4. Tag (transponder)
- 5. Antennas
- 6. Protocols

Figure 1.1
Overview of this book.

So ... What is RFID?

- 1. System Reader, tags
- 2. Radio link
- 3. Radio (transceiver)
- 4. Tag (transponder)
- 5. Antennas
- 6. Protocols

KEY – no battery on tag

Figure 1.1
Overview of this book.

Under the RFID Umbrella

- Main goal of identification
- No transmitter
- No battery
- Simple circuitry
- Standing out of the noise

Under the RFID Umbrella

- Main differentiator is frequency
- Inductive coupling
 - Shorter distance (10's of cm)
 - Instantaneous communication (~4 ns)
 - A single magnetic transformer
- Radiative coupling
 - Larger distances (10-20 m)
 - Non-instantaneous communication (22 ns, 4 m)

LF – Low Frequency
125 kHz
HF – High Frequency
13.56 MHz
UHF – Ultra High Frequency
915 MHz

2450 MHz

Figure 2.14

Examples of tag antenna configuration designed for different operating frequencies.

