In [9]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
df=pd.read_csv(r"C:/Users/DELL/\Downloads\used_cars_data.csv")
df

Out[9]:

Owner_T	Transmission	Fuel_Type	Kilometers_Driven	Year	Location	Name	S.No.	
F	Manual	CNG	72000	2010	Mumbai	Maruti Wagon R LXI CNG	0	0
F	Manual	Diesel	41000	2015	Pune	Hyundai Creta 1.6 CRDi SX Option	1	1
F	Manual	Petrol	46000	2011	Chennai	Honda Jazz V	2	2
F	Manual	Diesel	87000	2012	Chennai	Maruti Ertiga VDI	3	3
Sec	Automatic	Diesel	40670	2013	Coimbatore	Audi A4 New 2.0 TDI Multitronic	4	4
	•••					•••		
F	Manual	Diesel	89411	2011	Hyderabad	Volkswagen Vento Diesel Trendline	7248	7248
F	Automatic	Petrol	59000	2015	Mumbai	Volkswagen Polo GT TSI	7249	7249
F	Manual	Diesel	28000	2012	Kolkata	Nissan Micra Diesel XV	7250	7250
Т	Automatic	Petrol	52262	2013	Pune	Volkswagen Polo GT TSI	7251	7251
F	Automatic	Diesel	72443	2014	Kochi	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	7252	7252

7253 rows × 14 columns

In [10]: df.head()

Out[10]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
4 6								

In [11]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [12]: df.describe()

Out[12]:

```
S.No.
                          Year Kilometers_Driven
                                                         Seats
                                                                      Price
count 7253.000000 7253.000000
                                     7.253000e+03 7200.000000 6019.000000
                                                      5.279722
      3626.000000 2013.365366
                                     5.869906e+04
                                                                   9.479468
mean
      2093.905084
                       3.254421
                                     8.442772e+04
                                                      0.811660
                                                                  11.187917
  std
          0.000000 1996.000000
                                     1.710000e+02
                                                      0.000000
                                                                   0.440000
 min
 25% 1813.000000 2011.000000
                                     3.400000e+04
                                                      5.000000
                                                                   3.500000
 50%
      3626.000000 2014.000000
                                     5.341600e+04
                                                      5.000000
                                                                   5.640000
 75% 5439.000000 2016.000000
                                     7.300000e+04
                                                                   9.950000
                                                      5.000000
 max 7252.000000 2019.000000
                                     6.500000e+06
                                                     10.000000
                                                                 160.000000
```

```
In [13]: df.isnull().sum()
```

```
Out[13]: S.No.
                                    0
          Name
                                    0
          Location
                                    0
          Year
                                    0
                                    0
          Kilometers Driven
          Fuel_Type
                                    0
          Transmission
                                    0
          Owner_Type
                                    0
                                    2
          Mileage
          Engine
                                   46
          Power
                                   46
          Seats
                                   53
          New_Price
                                 6247
          Price
                                 1234
          dtype: int64
```

```
In [14]: | df.fillna(value=0,inplace=True)
```

```
In [15]: df=df[['Year','Price']]
#Taking only the selected two attributes from the dataset
df.columns=['year','price']
#Renaming the columns for easier writing of the code
```

```
In [16]: sns.lmplot(x='year',y='price',data=df,order=2,ci=None)
```

Out[16]: <seaborn.axisgrid.FacetGrid at 0x22adce76990>


```
In [17]: X=np.array(df['year']).reshape(-1,1)
In [18]: y=np.array(df['price']).reshape(-1,1)
In [19]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print(reg.score(X_test,y_test))
```

0.06439829841709799

```
In [20]: y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='b')
plt.plot(X_test,y_pred,color='k')
plt.show()
```



```
In [21]: df500=df[:][:500]
sns.lmplot(x='year',y='price',data=df500,order=1,ci=None)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x22adfa4f010>


```
In [22]: df500.fillna(method='ffill',inplace=True)
    X=np.array(df500['year']).reshape(-1,1)
    y=np.array(df500['price']).reshape(-1,1)
    df500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    reg=LinearRegression()
    reg.fit(X_train,y_train)
    print("Regression:",reg.score(X_test,y_test))
    y_pred=reg.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show
```

Regression: 0.17291193573932195

Out[22]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [23]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score: ",r2)
```

R2 score: 0.17291193573932195

```
In [24]: plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[24]: <Axes: >


```
In [25]: import pandas as pd
   import numpy as np
   from sklearn import preprocessing
   import matplotlib.pyplot as plt
   import seaborn as sns
   sns.set(style="white")
   sns.set(style="whitegrid",color_codes=True)
   import warnings
   warnings.simplefilter(action='ignore')
```

In [27]: | db=pd.read_csv(r"C:\Users\DELL\Downloads\used_cars_data.csv")

Out[27]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_T
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	F
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	F
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	F
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	F
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Sec
							•••	
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	F
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	F
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	F
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Т
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	F
7253 rc	ows ×	14 columns						

In [32]: db.head()

Out[32]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
4 6								

In [33]: db.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [34]: db.describe()

Out[34]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [35]: db.shape

Out[35]: (7253, 14)

In [36]: db.isnull().sum()

Out[36]: S.No. 0
Name 0

0 Location 0 Year Kilometers_Driven 0 Fuel_Type 0 0 Transmission Owner_Type 0 2 Mileage Engine 46 Power 46

53

6247

1234

Price dtype: int64

New_Price

Seats

In [37]: db.duplicated().any()

Out[37]: False

```
In [38]: ax=db['Seats'].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
db['Seats'].plot(kind='density',color='violet')
ax.set(xlabel='Seats')
plt.xlim(-0,25)
plt.show()
```



```
In [39]: print(db["Seats"].mean(skipna=True))
print(db["Seats"].median(skipna=True))
```

5.2797222222222

5.0

```
In [40]: print(db["New_Price"].isnull().sum()/db.shape[0])
    print(db["Price"].isnull().sum()/db.shape[0])
    print(db["Mileage"].isnull().sum()/db.shape[0])
    print(db["Engine"].isnull().sum()/db.shape[0])
    print(db["Power"].isnull().sum()/db.shape[0])
```

- 0.8612987729215497
- 0.1701364952433476
- 0.0002757479663587481
- 0.006342203226251206
- 0.006342203226251206

```
In [41]:
         print(db['Engine'].value_counts())
         sns.countplot(x='Engine',data=db,palette='Set3')
         plt.xlim(-0,45)
         plt.show()
         Engine
         1197 CC
                     732
         1248 CC
                     610
         1498 CC
                     370
         998 CC
                     309
         1198 CC
                     281
         1489 CC
                       1
         1422 CC
                       1
         2706 CC
                       1
         1978 CC
                       1
         1389 CC
                       1
```

Name: count, Length: 150, dtype: int64


```
In [42]: data=db.copy()
         data['Seats'].fillna(db['Seats'].median(skipna=True),inplace=True)
         data.drop('New_Price',axis=1,inplace=True)
         data['Price'].fillna(db['Price'].median(skipna=True),inplace=True)
         data['Mileage'].fillna(db['Mileage'].value_counts().idxmax(),inplace=True)
         data.drop('Engine',axis=1,inplace=True)
         data.drop('Power',axis=1,inplace=True)
```

In [43]: data.isnull().any()
Out[43]: S.No. False

Name False Location False False Year Kilometers_Driven False Fuel_Type False Transmission False Owner_Type False False Mileage Seats False Price False dtype: bool

In [44]: data.head()

Out[44]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second

```
In [45]: plt.figure(figsize=(15,8))
    ax=db["Price"].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
    db["Price"].plot(kind='density',color='teal')
    ax.legend(['Mileage','Seats'])
    ax.set(xlabel='Price')
    plt.xlim(-9,80)
    plt.show()
```


In [46]: training=pd.get_dummies(data,columns=["S.No."])
 final_train=training
 final_train.head()

Out[46]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.(km/k(
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.6 ⁷ kmp
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmp
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmp
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmp

5 rows × 7263 columns

```
In [47]: sns.barplot(x='Price',y='Year',data=final_train,color='mediumturquoise')
plt.show()
```



```
In [48]: import seaborn as sns
   import matplotlib.pyplot as plt
   sns.barplot(x='Year',y='Seats',data=db,color='aquamarine')
   plt.show()
```


In []: