实变函数第九次作业

16231057 王延鹏

June 25, 2020

7.2

6

Proof.

若函数 $f\in L^p(E)$ 和 $g\in L^q(E)$ 是一般函数 (非规范化),即 $\|f\|_p\neq 1$, $\|g\|_q\neq 1$ 。根据题设 Holder 不等式对于标准函数成立,那么将 f 和 g 规范化后

$$\int_{E} \left| \frac{f}{\left\| f \right\|_{p}} \cdot \frac{g}{\left\| g \right\|_{q}} \right| \leq \left\| \frac{f}{\left\| f \right\|_{p}} \right\|_{p} \left\| \frac{g}{\left\| g \right\|_{q}} \right\|_{q}$$

根据积分的性质和范数的齐次性,两边可以把分母中的 $\|f\|_p$ 和 $\|g\|_q$ 约去,得到

$$\int_{E} |f \cdot g| \le ||f||_p ||g||_q$$

10

Proof.

 \Leftarrow

首先证明存在非零常数 α 和 β ,这里和 Holder 不等式证明类似,假设 $\|f\|_p = \|g\|_q = 1$,根据 Young 不等式

$$\int_E \lvert f \cdot g \rvert \leq \int_E (\frac{\lvert f \rvert^p}{p} + \frac{\lvert g \rvert^q}{q}) = 1$$

若 Holder 中等式成立,即 $\int_{E} |f\cdot g| = 1,\,$ 那么 Young 不等式中的等号也成立

$$|f \cdot g| = \frac{|f|^p}{p} + \frac{|g|^q}{q}$$

根据第 9 题的结论,Young 不等式中的等号成立当且仅当 $a^p=b^q$,所以

$$|f|^p = |g|^q$$

这时 $\alpha = \beta = 1$, 如果 f 和 g 不是规范化的函数,上面的证明规范化 f 和 g 之后成立,即

$$\left|\frac{f}{\|f\|_p}\right|^p = \left|\frac{g}{\|g\|_q}\right|^q$$

综上可以得出

$$\alpha = \|g\|_q^q \quad \beta = \|f\|_p^p$$

 \Rightarrow

由上面得到的 α 和 β , 有

$$\begin{split} \int_{E} |f \cdot g| &= \int_{E} (|f|^{p})^{\frac{1}{p}} |g| \\ &= \int_{E} (\frac{|g|^{q}}{||g||_{q}^{q}} ||f||_{p}^{p})^{\frac{1}{p}} |g| \\ &= \int_{E} \frac{||f||_{p}}{||g||_{q}^{\frac{q}{p}}} |g|^{\frac{q}{p}+1} \\ &= \frac{||f||_{p}}{||g||_{q}^{\frac{p}{q}}} \int_{E} |g|^{q} \\ &= ||f||_{p} ||g||_{q} \end{split}$$

18

Proof.

首先,对于任意的 p 和 ϵ , 令 $E' = \{x \in E : |f(x)| \ge ||f||_{\infty} - \epsilon\}$,那么

$$\|f\|_{p} \geq (\int_{E'} |f|^{p})^{\frac{1}{p}} \geq (\int_{E'} (\|f\|_{\infty} - \epsilon)^{p})^{\frac{1}{p}} = (\|f\|_{\infty} - \epsilon) m(E')^{\frac{1}{p}}$$

由于 $\lim_{p \to \infty} \lVert f \rVert_p$ 的可能不存在,根据 $m(E') < m(E) < \infty$,可以得出

$$\lim_{p\to\infty}\inf\lVert f\rVert_p\geq \lVert f\rVert_\infty-\epsilon$$

另一方面,由 $\|f\|_{\infty}$ 是有限的,根据推论 2.8,对于任意 r ,存在 <math display="inline">M ,使得 $\|f\|_r < M$

$$||f||_p = (\int_E |f|^p)^{\frac{1}{p}} \le (\int_E |f|^r ||f||_\infty^{p-r})^{\frac{1}{p}} = ||f||_\infty^{\frac{p-r}{p}} (\int_E |f|^r)^{\frac{1}{p}} = ||f||_\infty^{\frac{p-r}{p}} ||f||_r^{\frac{p-r}{p}}$$

类似地,可以得到

$$\lim_{p \to \infty} \sup \|f\|_p \le \|f\|_{\infty}$$

综上可以得到

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

19

Proof.

根据 Holder 不等式

$$\max_{g \in L^q(E), \|g\|_q \leq 1} \int_E f \cdot g \leq \max_{g \in L^q(E), \|g\|_q \leq 1} \|f\|_p \|g\|_q = \|f\|_p$$

另一方面,如果 f=0,等式成立;如果 $f\neq 0$,函数 $f^*\in L^q(E)$,并且 $\|f^*\|_q=1$,那么

$$\|f\|_p = \int_E f \cdot f^* \le \max_{g \in L^q(E), \|g\|_q \le 1} \int_E f \cdot g$$

综上

$$||f||_p = \max_{g \in L^q(E), ||g||_q \le 1} \int_E f \cdot g$$

7.2

25

Proof.

首先令 $c=\min\{[m(E)]^{\frac{p_2-p_1}{p_1p_2}},[m(E)]^{\frac{1}{p_1}}\}$,由于 $\{f_n\}\to f$ 在 $L^{p_2}(E)$ 中收敛,那么对于任意的 $\frac{\epsilon}{c}>0$,存在 N,当 $n_0>N$ 时

$$\|f_{n_0} - f\|_{p_2} < \frac{\epsilon}{c}$$

由于 L^{p_2} 是完备的,所以对任意的 $n, f_n - f \in L^{p_2}(E)$,根据推论 2.8

$$||f_{n_0} - f||_{p_1} \le c||f_{n_0} - f||_{p_2} < \epsilon$$

所以 $\{f_n\} \to f$ 在 $L^{p_1}(E)$ 中收敛

28

Proof.

首先由 $\{f_n\} \to f$ a.e., 根据 Fatou 引理

$$\int_{E} |f - f_n|^p \le \lim_{k \to \infty} \inf \int_{E} |f_{n+k} - f_n|^p$$

根据推论 2.8, 由 $f_{n+k} - f_n \in L^{p+\theta}$, 并且 $p + \theta < \infty$ 所以

$$\lim_{k \to \infty} \inf \int_{E} |f_{n+k} - f_{n}|^{p} \leq [m(E)]^{\frac{\theta}{p(p+\theta)}} \lim_{k \to \infty} \inf \int_{E} |f_{n+k} - f_{n}|^{p+\theta}$$
$$= [m(E)]^{\frac{\theta}{p(p+\theta)}} \lim_{k \to \infty} \inf ||f_{n+k} - f_{n}||_{p+\theta}^{p+\theta}$$

根据题设 $\{f_n\}$ 在 $L^{p+\theta}(E)$ 是有界的,所以存在 M 满足,对于任意的 n

$$\int_{E} |f_{n}|^{p+\theta} = ||f_{n}||_{p+\theta}^{p+\theta} < M$$

综上可以得到

$$\int_{E} |f - f_{n}|^{p} \leq [m(E)]^{\frac{\theta}{p(p+\theta)}} \lim_{k \to \infty} \inf ||f_{n+k} - f_{n}||_{p+\theta}^{p+\theta}$$
$$\leq 2[m(E)]^{\frac{\theta}{p(p+\theta)}} M$$

由此 $\{(f-f_n)^p\}$ 在 E 上一致可积,根据 Vitali 收敛定理

$$\lim_{n \to \infty} \int_{E} |f - f_n|^p = 0$$

所以在 $L^p(E)$ 上 $\{f_n\} \to f$

29

Proof.

考虑 [a,b] 上 e^{x-a} 的泰勒展开,令

$$f_n = 1 + (x - a) + \frac{(x - a)^2}{2!} + \dots + \frac{(x - a)^n}{n!}$$

并且

$$||f_{n+1} - f_n||_{max} = \frac{(b-a)^n}{n!}$$

由于 $\sum_{k=0}^{\infty} \frac{(b-a)^k}{k!} = e^{b-a}$,所以 f_n 是快速柯西列,从而是柯西列,已知 f_n 是一致收敛到 e^x ,所以在 $\|\cdot\|_{max}$ 下 $\{f_n\} \to e^x$ 。假如 $e^x \in Poly[a,b]$,那么存在 m 使得, $e^x = \sum_{k=1}^m a_k x^k$,那么 $(e^x)^{(m+1)} = 0$,矛盾。所以 $e^x \notin Poly[a,b]$

7.4

37

Proof.

由于 \mathcal{G} 在 \mathcal{H} 中是稠密的,对于任意的 $h \in \mathcal{H}$, $\epsilon/2 > 0$,存在 $g \in \mathcal{G}$ 使得, $\|g - h\| < \epsilon/2$;同样地,由于 \mathcal{F} 在 \mathcal{G} 中是稠密的,对于上述中的 g 和 $\epsilon/2$,存在 $f \in \mathcal{F}$,使得 $\|f - g\| < \epsilon/2$ 。由于 $\|f - h\| \le \|f - g\| + \|g - h\| < \epsilon$,所以 \mathcal{F} 在 \mathcal{H} 中是稠密的

39

Proof.

由于 S 在 $L^q(E)$ 中是稠密的,所以对于任意的 $\epsilon > 0$,以及任意的 $h \in L^q(E)$,存在 $f \in S$

$$\|h - f\|_q < \frac{\epsilon}{\|g\|_p + 1}$$

因此,由 Holder 不等式,以及任意 $f \in \mathcal{S}$, $\int_E f \cdot g = 0$

$$\left| \int_{E} h \cdot g \right| \leq \left| \int_{E} f \cdot g \right| + \left| \int_{E} (h - f) \cdot g \right|$$

$$= \left| \int_{E} (h - f) \cdot g \right|$$

$$\leq \int_{E} \left| (h - g) \cdot g \right|$$

$$\leq \|h - f\|_{q} \|g\|_{p}$$

$$< \epsilon$$

由 ϵ 的任意性,可知对于任意的 $h\in L^q(E)$, $\int_E h\cdot g=0$ 。接下来使用反证法,若 $g\neq 0$,根据 Holder 不等式推论

$$\int_E g \cdot g^* = \left\|g\right\|_p \neq 0 \quad \sharp \pitchfork g^* \in L^q(E)$$

与任意 h, $\int_E h \cdot g = 0$ 矛盾, 所以 g = 0

41

Proof.

令 $\mathcal{S}_1 = (L^{p_2}(E), \|\cdot\|_{p_1})$, $\mathcal{S}_2 = (L^{p_2}(E), \|\cdot\|_{p_2})$ 。若 \mathcal{S}_1 是完备的,考虑 \mathcal{S}_1 和 \mathcal{S}_2 之间的恒等 映射 $\Phi: \mathcal{S}_1 \to \mathcal{S}_2$ 。由完备性可知 Φ 是连续映射,而且是满射。根据开映射定理的结论 $(\|\cdot\|_{p_1}$ 和 $\|\cdot\|_{p_2}$ 等价),存在 c>0 使得

$$||f||_{p_1} \ge c ||\Phi(f)||_{p_2} = c ||f||_{p_2} \quad \forall f \in L^{p_2}(E)$$

考虑 E 中一列集合 A_i ,满足 $\lim_{i\to\infty} m(A_i)=0$ 。令 χ_i 为 A_i 的示性函数。由于 E 是有限的,所以 $\|\chi_i\|_{p_2}<\infty$,从而 $\chi_i\in L^{p_2}(E)$ 。由上面的不等式可以得到,对于任意的 i

$$m(A_i)^{\frac{1}{p_1}} = \|\chi_i\|_{p_1} \ge c \|\chi_i\|_{p_2} = cm(A_i)^{\frac{1}{p_2}}$$

$$m(A_i)^{\frac{1}{p_1} - \frac{1}{p_2}} \ge c$$

这与 $\lim_{i\to\infty} m(A_i) = 0$ 矛盾,所以 S_1 不是完备的

43

(i) Proof.

证明 ℓ^p 是可分的,与无界区间 $L^p(E)$ 的证明类似。令 $A_n = (r_0, r_1, \ldots, r_n, 0, \ldots)$,其中 r_i 是有理数,令 $A = \bigcup A_i$,由于有理数可数, A_n 中由有限个可数的有理数组成,所以也是可数的,A 由可数个 A_i 组成,所以 A 也是可数的。

对于任意的 $x = (x_0, x_1, ...) \in \ell^p$, 有

$$\sum_{k=1}^{\infty} |x_i|^p < \infty$$

所以,对于任意的 $\epsilon > 0$,存在 $N \in \mathbb{N}$,当 n > N

$$\sum_{k=n}^{\infty} |x_i|^p < \epsilon/2$$

此外,由于有理数在 \mathbb{R} 上是稠密的,对于任意的 k < n,存在 r_k 使得 $|r_k - x_k|^p < \frac{\epsilon}{2n}$,所以存在 A 中的数列 $a = (r_0, \ldots, r_{n-1}, 0 \ldots)$,满足 $||a - x||_p < \epsilon$

(ii) Proof.

由 Cantor 定理,一个集合的幂集的势严格大于其本身的势,所以自然数的幂集一定不是可数的

考虑自然数集 \mathbb{N} 的一个子集 I,并定义 $\chi_I = (x_0, x_1, \dots)$,其中

$$x_i = \begin{cases} 1 & i \in I \\ 0 & i \notin I \end{cases}$$

根据上面的定义 $\chi_I \in \ell^{\infty}$,那么对于 \mathbb{N} 的两个不相同的子集 I 和 J, $\|\chi_I - \chi_J\|_{\infty} = 1$ 。考虑 \mathbb{N} 所有的子集,定义 $\mathcal{B} = \{B(\chi_I, \frac{1}{2}) : I \subset \mathbb{N}\}$,其中 $B(\chi_I, \frac{1}{2})$ 是以 χ_I 为球心, $\frac{1}{2}$ 为半径的球,并且根据定义 \mathcal{B} 中的球都是不相交的。

对于 ℓ^p 中任意的稠密子集 \mathcal{S} ,每个球中一定存在 \mathcal{S} 中的元素 e。由于球是不相交的,所以 \mathcal{S} 中至少有 $\#\mathcal{B}$ 个元素,由于 $\#\mathcal{B} = \#2^{\mathbb{N}}$,所以 \mathcal{S} 是不可数的。所以 ℓ^p 是不可分的

8.1

5

(i) Proof.

当 $1 \leq p < \infty$ 时,对于任意的 $f \in L^p(E)$ 。定义有限支集函数 g_n 满足在 $E \cap [-n,n]$ 上 $g_n = |f|$,在 $E \setminus [-n,n]$ 上 $g_n = 0$,所以 $\{g_n\}$ 点态收敛到 |f|。并且 $\int_E g_n^p \leq \int_E |f|^p < \infty$,所以 $g_n \in L^p(E)$ 。此外

$$|q_n - f|^p \le (|q_n| + |f|)^p \le 2^p |f|^p$$

由控制收敛定理 $||g_n - f||_p \to 0$, 所以是稠密的

(ii) Proof.

若 f=sin(x),那么 $f\in L^\infty(R)$,但是对于任意的有限支集函数 g, $\left\|sin(x)-g\right\|_\infty>\frac{1}{2}$,所以不是稠密的

6

Proof.

$$\Phi(x) = T(\chi_{[a,b]}), \ \ \forall \exists \ [c,d] \subset [a,b]$$

$$|\Phi(d) - \Phi(c)| = |T(\chi_{[c,d]})| \le ||T||_* ||\chi_{[c,d]}|| = ||T||_* (d-c)$$

由于 T 是有界线性泛函所以 $\|T\|_* < M$, 所以 $\Phi(x)$ 是满足 Lipschitz 条件的,从而绝对连续。那么 $\Phi(x) = \int_a^x g$, $T(\chi_{[c,d]}) = \int_a^b g \cdot \chi_{[c,d]}$,即 $T(f) = \int_a^b g \cdot f$ 对于所有 $L^1[a,b]$ 上的示性函数 f 成立,从而对于阶梯函数成立。

进一步,如果 $f\in L^1[a,b]$ 是简单函数,由于阶梯函数在 $L^1[a,b]$ 上是稠密的,所以在 $L^1[a,b]$ 下存在一列阶梯函数一致有界 $\{\varphi_n\}\to f$,由于 T 是线性有界泛函,根据 T 的连续性 $\lim_{n\to\infty}T(\varphi_n)=T(f)$ 。另一方面, φ_n 有界,g 可积,由控制收敛定理

$$\lim_{n \to \infty} \int_{a}^{b} \varphi_n \cdot g = \int_{a}^{b} f \cdot g$$

因此, $T(f) = \int_a^b g \cdot f$ 对于 $L^1[a,b]$ 上的简单函数 f 成立。对于 $L^1[a,b]$ 上的简单函数 f

$$\left| \int_a^b g \cdot f \right| = \left| T(f) \right| \le ||T||_* \cdot ||f||_p$$

那么根据 Lemma $4,\ g\in L^\infty$ 。从而对于任意的 $f\in L^1[a,b]$,线性泛函 $f\to \int_a^b f\cdot g$ 是有界的。那么根据 proposition $9,\ T$ 和 $f\to \int_a^b f\cdot g$,对于 $f\in L^1[a,b]$ 有界的,并且在 $L^1[a,b]$ 上的稠密子集中相等,从而 $L^1[a,b]$ 上相等。