

8232

**Addendum Report for the
AREE 70, AREE 69B, and Cold Spring Brook
Supplemental Sampling Event**

**Base Realignment and Closure
Environmental Evaluation (BRAC EE)
Fort Devens, Massachusetts**

Submitted to

**U.S. Army Environmental
Center (USAEC)
Aberdeen, Maryland**

**Revision 0
November 1995**

DISTRIBUTION STATEMENT A

**Approved for public release;
Distribution Unlimited**

**Arthur D. Little, Inc.
Acorn Park
Cambridge, Massachusetts
02140-2390**

ADL Reference 67065-13

**DAAA15-91-D-0016
Delivery Order 0005**

19971002 091

**Addendum Report for the
AREE 70, AREE 69B, and
Cold Spring Brook
Supplemental Sampling
Event**

Arthur D Little

**Base Realignment
and Closure
Environmental
Evaluation (BRAC EE)
Fort Devens,
Massachusetts**

Robert Lambe 11-9-95
Program Manager, Robert Lambe Date

Submitted to
**U.S. Army Environmental
Center (USAEC)**
Aberdeen, Maryland

Richard Waterman 11-14-95
Task Manager, Richard Waterman Date

Revision 0
November 1995

Arthur D. Little, Inc.
Acorn Park
Cambridge, Massachusetts
02140-2390

Distribution unlimited approved for public release.

ADL Reference 67065-13

DAAA15-91-D-0016
Delivery Order 0005

This document is printed on
recycled paper and is recyclable.

DTIG QUALITY ASSURANCE 4

Table of Contents

List of Acronyms and Abbreviations	iv
Executive Summary	v
1.0 Introduction	1
1.1 Project's Objective	1
1.2 Field Investigation Techniques	2
1.2.1 Surface Water Sampling	2
1.2.2 Sediment Sampling	3
1.2.3 Ground Water Sampling	3
1.2.4 Data Quality Objectives and Quality Assurance/Quality Control ..	3
2.0 Storm Sewer System Evaluation (AREE 70)	4
2.1 Storm System Number 9	4
2.1.1 System Description	4
2.1.2 Sampling Procedure and Observations	4
2.1.3 Nature and Extent of Contamination	4
2.1.4 Conclusions and Recommendations	4
2.2 Storm System Number 14	5
2.2.1 System Description	5
2.2.2 Sampling Procedures and Observations	5
2.2.3 Nature and Extent of Contamination	6
2.2.4 Conclusions and Recommendations	6
2.3 Storm System Number 21	7
2.3.1 System Description	7
2.3.2 Sampling Procedures and Observations	7
2.3.3 Nature and Extent of Contamination	7
2.3.4 Conclusions and Recommendations	7
2.4 Storm System Number 25	8
2.4.1 System Description	8
2.4.2 Sampling Procedures and Observations	8
2.4.3 Nature and Extent of Contamination	8
2.4.4 Conclusions and Recommendations	8
3.0 Past Spill Sites Study (AREE 69B)	10
3.1 Background	10
3.2 Sampling Procedures and Observations	10
3.3 Nature and Extent of Contamination	10
3.4 Conclusions and Recommendations	11
4.0 Cold Spring Brook (Study Area 73)	13
4.1 Sites Requiring Further Investigation	13
5.0 Selected References	14

Table of Contents

List of Figures

- Figure 1: Storm Sewer System Number 9 Sample Locations
- Figure 2: Storm Sewer System Number 14 Sample Locations
- Figure 3: Storm Sewer System Number 21 Sample Locations
- Figure 4: Storm Sewer System Number 25 Sample Locations
- Figure 5: AREE 69B, Building 2602 Sample Locations

List of Tables

- Table 1: Summary of Sampling Activities
- Table 2: Comparison of 1993 and 1995 Data - 1993 and 1995 Sample Results
- Table 3: Ground Water Monitoring Well Samples, AREE 69B

List of Appendices

- Appendix A: Data Summary Tables - Supplemental Sampling Event
- Appendix B: Field Sampling Forms - Supplemental Sampling Event

List of Acronyms and Abbreviations

AOC	Area of Concern
AREE	Area Requiring Environmental Evaluation
B&M	Boston & Maine
Cl-	Chloride
DDD	1,1-dichloro-2, 2-bis(p-chlorophenyl)ethane
DDE	Dichlorophenyl-dichloro-ethylene
DDT	Dichlorodiphenyltrichloroethane
DQO	Data Quality Objective
HPLC	High-Performance Liquid Chromatography
IRDMIS	Installation Restoration Data Management Information System
MCP	Massachusetts Contingency Plan
PCB	Polychlorinated biphenyl
PID	Photoionization Detector
QAPjP	Quality Assurance Project Plan
SA	Study Area
SO ₄	Sulfate
SOP	Standard Operating Procedure
SVOC	Semivolatile Organic Compound
TOC	Total Organic Carbon
TPHC	Total Petroleum Hydrocarbons
TSS	Total Suspended Solid
USA-###	United States Army - Standard Operating Procedure Number
USAEC	United States Army Environmental Center
UST	Underground Storage Tank

Executive Summary

Basewide environmental investigations were performed on Fort Devens from 1993 through 1995 in support of Base Realignment and Closure Environmental Evaluation activities. Seven basewide programs or Areas Requiring Environmental Evaluation (AREEs), were investigated during this time period. Supplemental sampling at select sites was recommended in the final reports for two AREEs, AREE 70 (Storm Sewer Evaluation) and AREE 69 (Past Spill Sites). This supplemental sampling event was performed in support of those recommendations.

Of the 55 systems investigated in the Storm Sewer Evaluation, 11 were recommended for further action. Seven of the systems requiring further action were included in the ongoing Lower Cold Spring Brook Site Investigation (Study Area [SA] 73). The remaining 4 systems, 9, 14, 21, and 25 were investigated as part of this sampling event. The objective of this sampling event was to determine if elevated concentrations of contaminants detected in these storm sewers in 1993 were anomalies or the result of a continual contaminant source. One site from the Past Spill Sites study required further investigation, AREE 69B at Building 2602. The five existing ground water monitoring wells at the site were resampled to determine any changes in the concentration of total petroleum hydrocarbons (TPHC).

Samples in each storm sewer system were analyzed for contaminants that were identified as being elevated in the 1993 storm sewer evaluation. The 1995 sample results were compared to the 1993 results. Of the four storm sewer systems investigated in this supplemental study, samples collected from systems 9 and 21 indicated a substantial decrease in contamination and these systems are recommended for no further action. Systems 14 and 21 indicated reduced concentrations of contaminants of concern or no changes in the concentration of contaminants. The 1995 sampling at System 14, which was a system of concern in 1993, indicated that the contaminants detected in 1993 are either no longer elevated or their concentration remain unchanged. The 1995 sample results from System 25 indicate reduced concentrations of metals, which were the contaminants of concern in 1993, and the concentration of semivolatile organic compounds have not increased over time. As a result, both systems 14 and 25 are recommended for no further action.

The ground water sampling event at AREE 69B indicated a different pattern of contamination when compared to the 1993 data. The concentration of TPHC decreased in the wells located immediately adjacent to the existing underground storage tanks (USTs). However, a strong petroleum odor and sheen was detected in one of the wells closest to the tank, well UST-01. The concentration of TPHC increased in the farthest downgradient well. All other wells indicated no change or a decrease in the concentration of TPHC. Additional sampling is recommended for these wells combined with an assessment of the local ground water to determine if there are any further fluctuations in the data.

Executive Summary

As part of this investigation, five additional surface water and sediment samples were collected in Cold Spring Brook near Storm Drain System Number 9. These samples were collected to support the ongoing Cold Spring Brook investigation (SA 73). The data associated with Cold Spring Brook will be analyzed and reported on by ABB Environmental Services as part of the SA 73, Lower Cold Spring Brook Site Investigation.

1.0 Introduction

A Supplemental Sampling Event was performed in response to recommendations from the Area Requiring Environmental Evaluation (AREE) 70 and AREE 69 final reports. In addition, samples were collected around the outfall of Storm Sewer System 9 in Cold Spring Brook to support the ongoing Study Area (SA) 73, Lower Cold Spring Brook Site Investigation. The sample event presented in this report was performed in accordance with the *Memorandum Work Plan, AREE 70, AREE 69B, and Cold Spring Brook Supplemental Sampling Event, Base Realignment and Closure Environmental Evaluation (BRAC EE) Fort Devens, Massachusetts, Revision 0, June 1995* (Arthur D. Little, 1995a).

AREE 70

The initial Storm Sewer Evaluation performed in 1993 studied 55 systems, 11 of which were recommended for further investigation. These systems were recommended for further investigation because the storm water and sediment samples indicated concentrations of contaminants above expected concentrations. Seven systems numbers 1, 2, 3, 4, 5, 6, and 7 were recommended for inclusion in the ongoing SA 73 Lower Cold Spring Brook Site Investigation. The remaining four systems numbers 9, 14, 21, and 25 were included in this investigation.

AREE 69

The Past Spill Sites Study, AREE 69, was conducted during the summer of 1993. AREE 69B investigated a fuel oil spill from an existing underground storage tank (UST) at Building 2602. Based upon elevated concentrations of total petroleum hydrocarbons (TPHCs) in the ground water monitoring wells surrounding the UST, additional sampling was recommended. The five existing ground water monitoring wells at AREE 69B were sampled during this event.

1.1 Project's Objective

AREE 70

The objective of this Supplemental Sampling Event was to determine whether the concentrations of contaminants found during the previous Storm Sewer Study were still elevated above expected concentrations. The 1993 sampling event indicated that concentrations of certain contaminants were elevated above expected levels within storm sewer systems 9, 14, 21, and 25. These systems had no known associated sources of contamination such as AREEs, SAs, and Areas of Concern (AOCs) that would contribute to the elevated concentrations of the detected contaminants. As a result, the 1995 sampling event targeted those areas in the storm sewer system that had elevated contamination in 1993. Only those sample points that indicated elevated contamination were sampled. Sampling targeted the contaminants that were elevated in 1993. Both surface water and sediment samples were included in the sampling.

1.0 Introduction

AREE 69

The objective of the Supplemental Sampling Event at AREE 69B was to determine if there were any fluctuations in the TPHC contamination detected in the ground water monitoring wells located near Building 2602. In 1993, samples from two wells, UST-01 and UST-02, located near the existing UST indicated TPHC contamination exceeding Massachusetts Contingency Plan (MCP) Method 1 GW-1 standards. The same monitoring wells sampled in 1993 were resampled in 1995 to determine if the contamination is still elevated above regulated levels and the disposition of the contamination.

Lower Cold Spring Brook Site Investigation SA 73

ABB Environmental Services, Inc., requested that Arthur D. Little, Inc., to perform additional sampling in the vicinity of the outfall of Storm Sewer System Number 9 and in Cold Spring Brook. The results of this sampling will be used to support the SA 73 Lower Cold Spring Brook Site Investigation. Five locations were sampled for surface water/sediment and ponded water. These samples were analyzed for semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), inorganics, total organic carbon (TOC), and TPHC. In addition, analyses of water samples included dissolved metals, total suspended solids (TSS), chloride (Cl⁻), sulfate (SO₄²⁻), total hardness, and alkalinity. This report does not include the laboratory's analytical data for these samples. All sample results and laboratory data was submitted to ABB Environmental Services, and will be included in the SA 73 Lower Cold Spring Brook Site Investigation report.

1.2 Field Investigation Techniques

Sediment, surface water, and ground water samples were collected from the above sample locations and were analyzed by a United States Army Environmental Center (USAEC) performance-demonstrated laboratory for the specified compounds as outlined in Table 1. Field work was conducted on July 10 and 11, 1995. If the storm sewer was dry, water samples were not collected. All samples were collected in accordance with Standard Operating Procedures (SOPs) which are included in the *Final Quality Assurance Project Plan (QAPjP), Fort Devens, Massachusetts, Volumes I and II* (Arthur D. Little, Inc., 1993b, 1993c). Quality Assurance samples were collected in accordance with the QAPjP during this Supplemental Sampling Event.

1.2.1 Surface Water Sampling

The USAEC SOP for surface water sampling, USA-1001, was followed during this sampling event. Surface water samples were collected from two-thirds the depth below the water surface, when possible. The surface water samples were collected before collecting the sediment sample. All sampling equipment was decontaminated prior to use following the procedure outlined in ADL-1009. All sample bottles were triple rinsed with water representative of that being sampled prior to being filled with

1.0 Introduction

the sample. A stainless-steel bomb sampler was used to collected water samples from manholes. If the sample was collected from a water column of less than 12 inches, such as an outfall, the sample container was directly submerged into the water column, without disrupting the turbidity of the sample. Following collection, each sample was wiped dry and placed on ice for shipment (Arthur D. Little, 1993b).

1.2.2 Sediment Sampling

Sediment samples were collected from manholes using a stainless-steel Pulnar grab sampler. If the location was an outfall, the sample was collected with a stainless-steel spoon. Following collection, each sample was wiped dry and placed on ice for shipment (Arthur D. Little, 1993b).

1.2.3 Ground Water Sampling

Arthur D. Little's sampling team followed USAEC SOP USA-1011 for ground water monitoring. The headspace of the well was monitored with a photoionization detector (PID) as soon as the well cap was removed and every 15 minutes thereafter. The ground water surface elevation and the depth to well bottom was then recorded. If free phase product existed, then an interface probe was used to measure the level of petroleum on top of the ground water. All measurements were made in accordance with SOP ADL-4012. The purge volume was computed and the well was purged until five unit volumes were removed. During the purge process, temperature, pH, and conductivity were recorded at five intervals. If during the purge process the well went dry and the ground water recovery rate was fast, the well was evacuated one more time before sampling. If the well did not have a fast recovery rate, then the ground water was sampled as soon as a sufficient volume was available. Purge water was collected in 55-gallon drums. Following ground water collection, each sample was wiped dry and placed on ice for shipment. For a more detailed description of this process, refer to the SOP, USA-1011 (Arthur D. Little, 1993c).

1.2.4 Data Quality Objectives and Quality Assurance/Quality Control

Every effort was taken to minimize the impact of comparing the sample data from 1993 to that collected in 1995. The data quality objectives (DQOs) that were used during this investigation were the same as applied to the AREE Supplemental Site Evaluations and to the AREE 70 investigation. In addition, the same quality assurance program presented in the *Final Quality Assurance Project Plan, Fort Devens, Massachusetts, Volumes I and II* (Arthur D. Little, Inc., 1993b, 1993c) applied to this sampling event. Furthermore, to ensure data quality and consistency between the sampling events, samples were collected using the same sample techniques that were used during the 1993 sampling event. To further reduce potential variability in the data, the same subcontracted USAEC performance-demonstrated laboratory and laboratory methods were used for both sampling events. As a result, the main variable in the data is the temporal variable for comparing data collected between 1993 and 1995.

2.0 Storm Sewer System Evaluation (AREE 70)

2.1 Storm System Number 9

2.1.1 System Description

This is an extensive system that drains residential areas, unpaved railroad tracks, and unpaved storage yards located near the intersection of Bates Service Road and Cavite Street. The system runs east along Cavite Street, then drains south along Saratoga Street and discharges into Cold Spring Brook at the junction of Saratoga Street and Barnum Road. This system drains areas used for a variety of activities including industrial, residential, and commercial.

During the AREE 70 investigation in 1993, two compounds were detected and indicated as isolated elevated analytes. The semivolatile compound pyrene and the pesticide dichlorodiphenyl trichloroethane (DDT). Both compounds were detected in the sample collected from location 9D, which is located adjacent to the Buena Vista Housing Area. This sample location is a manhole and there are no known sources of contamination in the area. Additional sampling at location 9D in System Number 9 was recommended in the final AREE 70 report to determine if the elevated concentrations of pyrene and DDT were from a continual source.

2.1.2 Sampling Procedure and Observations

One sediment sample was collected at Storm Sewer System 9D; there was no water available to sample. The sediment sample consisted of a considerable amount of organic matter including leaves and pine needles. The sediment was a silty sand. The sample was collected with a Pulnar Grab Sampler from 0 to 5 inches in depth. Prior to filling the sample bottles, the sediment sample was mixed into a composite using a stainless-steel bowl and spoon. The sediments samples were analyzed for pesticides, PCBs, and SVOCs. See Figure 1 for a map depicting sample locations and results.

2.1.3 Nature and Extent of Contamination

Pyrene and DDT were the only compounds of concern for System Number 9. The concentration of pyrene was 3.0 $\mu\text{g/g}$ and DDT was detected at .0035 $\mu\text{g/g}$. Both of these concentrations are below the detected levels from the 1993 sampling event. Refer to Table 2 for a comparison of the 1993 and 1995 data.

2.1.4 Conclusions and Recommendations

In 1993, pyrene and DDT were the only outliers identified in this storm sewer system. The cause of the elevated concentrations of these compounds is unknown. This sample location is in the middle of the Buena Vista Housing areas and there are no AOCs, SAs, nor AREEs adjacent to this location. As a result, confirmatory sampling was recommended to determine if these contaminants were anomalies. The 1993 sampling event suggested that the contaminants could be a result of runoff from grassy areas and roadways.

2.0 Storm Sewer System Evaluation (AREE 70)

The 1995 data does not indicate that there is a continual source of contamination to this storm sewer system. The pyrene concentration has decreased significantly over time from 13 to 3.0 $\mu\text{g/g}$. DDT has also decreased in concentration from 0.022 to .0035 $\mu\text{g/g}$.

Comparison of data collected from 1993 and 1995 indicates that there is not a continual source of contamination to sample location 9D in Storm Sewer System Number 9. Therefore, it is assumed that the contamination detected in 1993 may have occurred from roadway and grassy area runoff. This data indicates that the 1993 detection was an anomalous reading since the concentrations of these analytes have decreased over time. This site is recommended for no further action.

2.2 Storm System Number 14

2.2.1 System Description

This system drains an area occupied by barracks and an unpaved vehicle storage area located at the junction of Market and Carey Streets. Drainage flows from south to north and discharges through two outfalls into the Shepley's Hill Landfill area. The two outfalls are designated 14A and 14C.

Elevated concentrations of metals and pesticides were detected in the samples from the two outfalls of System 14 during the 1993 AREE 70 sampling event. Storm Sewer System 14 was designated as a system of concern because it had three or more compounds exceeding expected concentrations. The sediment samples had 1,1-dichloro-2, 2-bis(p-chlorophenyl)ethane (DDD), dichlorophenyl-dichloro-ethylene (DDE) and DDT exceeding expected levels and the storm water samples had DDD, DDE, DDT, total pesticides, arsenic, barium, lead, and vanadium exceeding expected concentrations. The 1993 sampling event did not identify a definite source for these contaminants. AREE 61Z, building 202, was identified as a potential source, but it was determined to be an unlikely contributor because these contaminants would be an unlikely result of motor pool operations. As a result, additional sampling of the two outfall locations 14A and 14 C was recommended. See Figure 2 for a map depicting the sample locations.

2.2.2 Sampling Procedures and Observations

One sediment sample was collected from each storm sewer system outfall 14A and 14C. There was no water available to sample at either outfall. The sediment at outfall 14A was moist, dark brown, silty sand. The sample was collected inside the mouth of the outfall from 0 to 6 inches deep. The sediment at outfall 14C was light yellow/brown, coarse sand and gravel, with a trace of silt. The sample was collected about 10 feet from the mouth of the outfall, where the sediments settled. The sample was collected from 0 to 4 inches in depth. The samples were mixed in a stainless-steel bowl with a spoon to obtain a composite. Samples collected from outfalls 14A and 14C were analyzed for metals and pesticides.

2.0 Storm Sewer System Evaluation (AREE 70)

2.2.3 Nature and Extent of Contamination

Only sediment samples were analyzed for outfalls 14A and 14C. Samples were analyzed for DDD, DDE, DDT, arsenic, barium, lead, and vanadium. DDD and DDE, primary column detections on the High-Performance Liquid Chromatography (HPLC) column, were not confirmed on the second column at location 14A. This indicates that the levels are interferences and, therefore, are determined to be non-detections. At sample location 14C, DDD, DDE, and DDT concentrations were not detected.

At sample location 14A, arsenic and lead were detected at 15 and 140 $\mu\text{g/g}$, respectively. This appears to be a slight increase in concentration from the 1993 sampling event. Barium and vanadium were detected at 67.5 and 40.5 $\mu\text{g/g}$, respectively. At sample location 14C, arsenic, barium, lead, and vanadium were detected at 7.97, 24.9, 10.1, and 14.2 $\mu\text{g/g}$ respectively. These concentrations are below the levels detected in 1993. Refer to Table 2 for a comparison of the data.

2.2.4 Conclusions and Recommendations

The media of primary concern at the outfalls for System 14 is the sediment since there was no water for sampling and data comparison. The 1993 sampling event identified the concentrations of DDD, DDE, and DDT as being elevated above the expected levels for these compounds. The 1995 sampling data indicated a significant decrease in the concentrations of these compounds from 1993. DDT was detected and confirmed at 0.105 $\mu\text{g/g}$ at sample location 14A. This level is below the value reported in 1993. The 1995 result was flagged for poor ending calibration results due to interferences present in the samples; this indicates that the quantitation should be considered as an estimate.

Arsenic concentrations increased slightly at both outfalls sampled at System 14. The concentration of arsenic at outfall 14A was 9.51 $\mu\text{g/g}$ in 1993 and 15 $\mu\text{g/g}$ in 1995. The concentration of lead at outfall 14C was 3.4 $\mu\text{g/g}$ in 1993 and is 7.97 $\mu\text{g/g}$ in 1995. Lead concentrations increased from 52 $\mu\text{g/g}$ in 1993 to 140 $\mu\text{g/g}$ in 1995 at outfall 14A and decreased in concentration at 14C, having dropped from 45 $\mu\text{g/g}$ to 10.1 $\mu\text{g/g}$. Concentrations of barium and vanadium are either the same as in 1993 or have decreased in concentration at both outfalls.

Examining the acceptable limits for determining the comparability of data under the quality assurance program, it is reasonable to assume a 100 percent relative percent difference when examining the data and comparing data sets. This assumption is reasonable given that two years have passed since the collection of the first data set. When examining the concentration of arsenic and lead using a 100 percent relative percent difference, the concentrations of arsenic and lead have not changed significantly over time. Barium and vanadium do not appear to be elevated significantly.

2.0 Storm Sewer System Evaluation (AREE 70)

Storm Sewer System 14 is recommended for no further action. The concentration of pesticides has decreased over the last two years. Furthermore, the metal contaminants are not elevated significantly to cause concern and arsenic is a naturally occurring element in the region. As a result, there does not appear to be a continual source of contamination to Storm Sewer System 14.

2.3 Storm System Number 21

2.3.1 System Description

This system collects runoff from the south side of the parade ground and drains to the east, under MacArthur Avenue and discharges into Willow Brook. This system is comprised of three subsystems that all drain into Willow Brook.

In 1993, chemical analyses of the samples collected from the system's outfall, location 21A, showed elevated concentrations of semivolatile compounds, in particular anthracene in sediment. This system was identified as an isolated elevated analyte system since only anthracene was detected as an outlier to the data set. However, sample location 21A was the sample point where the highest SVOC concentrations were detected. The 1993 sampling event did not identify a definite source for the SVOCs. Additional sampling was recommended for sample point 21A to identify whether there is a continual source for the SVOCs.

2.3.2 Sampling Procedures and Observations

One sediment sample was collected from Storm Sewer System 21A; there was no water available to sample. The sediment was light brown, coarse sand, with a trace of fine gravel. The sample was collected 1 foot from the outfall, about 0 to 3 inches deep, at the edge of Willow Brook. The brook was dry and had litter, discarded chairs and toys, strewn about in it. The sediment was collected with a stainless-steel spoon and well mixed in a stainless-steel bowl. The composite samples were analyzed for SVOC. See Figure 3 for a map depicting the sample location.

2.3.3 Nature and Extent of Contamination

The main SVOC of concern is anthracene. This compound was detected at a concentration of 1.0 $\mu\text{g/g}$. All of the other SVOCs of concern were detected at or near the detection limit of the analytical instrument. Refer to Table 2 for a comparison of the data.

2.3.4 Conclusions and Recommendations

Comparison of data collected in 1993 and 1995 indicates that there is not a continuous source of contamination to Storm Sewer System 21. Anthracene decreased in concentration from 11 $\mu\text{g/g}$ to 1.0 $\mu\text{g/g}$. In addition, all other SVOCs decreased in concentration from 1993 to 1995. This data indicates that the 1993 detection was an anomalous reading since the concentrations of these analytes have decreased over time. This site is recommended for no further action.

2.0 Storm Sewer System Evaluation (AREE 70)

2.4 Storm System Number 25

2.4.1 System Description

This system drains a wooded area located to the south of Lovell Trailer Park, where Hoff and Lovell Streets intersect. The system flows to the east and discharges into the Nashua River via a drainage swale.

The 1993 sampling event detected selenium as an isolated elevated analyte. However, there were also a number of SVOCs detected at the outfall. The Final AREE 70 report did not indicate that selenium was of concern because there was no identifiable source of selenium in the area. Additional sampling was recommended, however, to determine whether the concentrations of SVOCs were from a continual source.

2.4.2 Sampling Procedures and Observations

One sediment sample was collected at the outfall of Storm Sewer System 25A and one sediment sample was collected from beneath the storm sewer grate at sample location 25B. No water was present to sample at either location. The sediment sample at sample location 25A was collected using a stainless-steel spoon from the top 0 to 6 inches. The sample was mixed in a stainless-steel bowl. The top inch of the sediment consisted of coarse sand and fine gravel, underlain by primarily silt with some sand. The sediment sample at 25B was collected with a Pulnar Grab Sampler. The sample was collected from the top 2 inches of sediment. There was a considerable amount of organic matter including pine needles at the sample point. The sediment was hard, dry, and primarily silt with some coarse sand. The samples from both locations were analyzed for SVOCs and metals. See Figure 4 for a map depicting the sample locations.

2.4.3 Nature and Extent of Contamination

Selenium, the isolated elevated analyte in the 1993 sampling, was reported at the detection limit of the analytical instrument at a concentration of 0.45 µg/g. A number of SVOCs were detected in samples collected from sample locations 25A and 25B. Sample point 25A had slightly higher concentrations of SVOCs with acenaphthylene detected at 9 µg/g, benzo(a)anthracene at 60 µg/g, benzo(a)pyrene at 30 µg/g, chrysene at 50 µg/g, fluoranthene at 2 µg/g, and phenanthrene at 100 µg/g. Sample point 25B had lower concentrations of SVOCs with acenaphthylene detected at 9 µg/g, benzo(a)anthracene at 40 µg/g, benzo(a)pyrene at 10 µg/g, chrysene at 40 µg/g, fluoranthene at 50 µg/g, and phenanthrene at 30 µg/g. Refer to Table 2 for a comparison of the 1993 and 1995 data.

2.4.4 Conclusions and Recommendations

Storm Sewer System 25 had one outlier for selenium when it was sampled in 1993. The system also had a number of SVOCs detected within the system. Additional sampling was recommended to determine whether there was a continual source of contamination to System 25.

2.0 Storm Sewer System Evaluation (AREE 70)

Storm Sewer System 25 was identified in 1993 as an isolated elevated analyte system for selenium. Selenium was not detected in the 1995 samples. Selenium was reported at the instrument detection limit at a concentration of 0.45 $\mu\text{g/g}$. As a result, the selenium detected in 1993 appears to be an anomaly in the data set and there is no continual source of selenium to the system. The data appears to indicate that some SVOCs have increased in concentration from 1993. Specifically, acenaphthylene, benzo(a)anthracene, benzo(a)pyrene, chrysene, and phenanthrene all increased in concentration since 1993 at both sample points 25A and 25B. Fluoranthene decreased in outfall 25A, but increased slightly in outfall 25B.

Examining the acceptable limits for determining the comparability of data under the quality assurance program, it is reasonable to assume a 100 percent relative percent difference when examining the data and comparing data sets. This assumption is conservative for SVOCs given that two years have passed since the collection of the first data set. Typically, an even higher relative percent difference could be applied to account for the time between sampling events. When examining the concentration of the SVOCs using a 100 percent relative percent difference, the concentrations of these compounds has not changed significantly over time. Therefore, the SVOCs do not appear to be elevated significantly.

Storm Sewer System 25 is located within the U.S. Army Enclave at Fort Devens, an area being retained by the Army. There is no known continual source of contamination to System 25. All buildings in the area and petroleum storage tanks have been removed. Furthermore, the system does not service any existing structures in the area. As a result, the detection of SVOCs are, most likely, residual contaminants from past operations in the area. In addition, when comparing the concentrations of the SVOCs to the entire AREE 70 data set, the concentrations are not high enough to identify the system as a system of concern. As a result, no further action is recommended for Storm Sewer System 25.

3.0 Past Spill Sites Study (AREE 69B)

3.1 Background

AREE 69B investigated a spill at building 2602. The initial spill was reported in 1990 as the result of an underground fuel tank overfill. This site was given the designation AREE 69B during the initial AREE 69 study. The AREE 69 Supplemental Site Evaluation, performed in 1994, did not identify any residual contamination in the soils around the site. During the sampling of the existing ground water monitoring wells UST-01 and UST-02, located upgradient and north of the spill area, next to the existing USTs, free-phase product was identified. All five monitoring wells, GE-01, GE-02, GE-03, UST-01, and UST-02, were sampled to determine fluctuations in petroleum contamination in the ground water (Arthur D. Little, 1993d, 1995b). During the 1994 sampling event, monitoring wells UST-01 and UST-02 had the highest concentration of TPHC, exceeding MCP limits. See Figure 5 for a map depicting the location of the monitoring wells.

As a result of the 1994 sampling event it was recommended that the five existing ground water monitoring wells be resampled to determine any fluctuations in the TPHCs and tested for the presence of free-phase petroleum product.

3.2 Sampling Procedures and Observations

All five wells at AREE 69B, including GE-01, GE-02, GE-03, UST-01, and UST-02, were sampled for TPHCs on July 11, 1995. The sampling procedures discussed in section 1.2.3 of this report were followed. In addition, the wells were tested for free-phase product. During the sampling, a strong petroleum odor and sheen was identified in the purge water for UST-01. No odor or sheen was identified in the other ground water monitoring wells.

3.3 Nature and Extent of Contamination

The ground water monitoring wells located closest to the UST are UST-01 and UST-02. These wells had TPHC detections of 397 and 110 µg/L, respectively. The downgradient wells GE-01, GE-02, and GE-03 had varying concentrations of TPHC. GE-01 detected TPHC at a concentration of 100 µg/L, the detection limit for TPHC. GE-02 detected TPHC at a concentration of 1,130 µg/L, and GE-03 detected TPHC at a concentration of 100 µg/L, the detection limit. Refer to Table 3 for a comparison of the data.

3.0 Past Spill Sites Study (AREE 69)

3.4 Conclusions and Recommendations

The data from the ground water monitoring wells sampled during the Supplemental Site Evaluation for AREE 69 sites showed that in 1994, the highest level of contamination was in the wells closest to the UST, wells UST-01 and UST-02. These wells exceeded the MCP limits for TPHC contamination in ground water. By comparison, the 1995 sampling event had only one well exceeding MCP limits, GE-02. This well is located the farthest from the UST. TPHC concentrations in well GE-02 increased from 290 to 1,130 µg/L. By comparison, TPHC concentration in monitoring well UST-01 decreased from 7,200 to 397 µg/L and TPHC in UST-02 decreased from 9,600 to 110 µg/L. However, a strong petroleum odor and a sheen were detected in monitoring well UST-01 during sampling. The TPHC concentrations in monitoring wells GE-01 and GE-03 decreased significantly or remained constant. Both wells detected TPHC at a concentration of 100 µg/L, which is the method detection limit.

A significant seasonal variance in the ground water levels in the monitoring wells was noted. Furthermore, when comparing the interseasonal variance from one year to the next, a significant difference in the ground water levels was noted. This area of Fort Devens is known to have wide variations in ground water levels. The bedrock in this area is relatively close to the surface and is not highly fractured. This area also has had a number of construction projects over the history of the base, including the construction of building 2602, that has most likely disturbed the regional ground water regime. As a result, it is difficult to make a definite conclusion regarding the potential for contamination existing at AREE 69B. Some contamination existing near UST-01 in the vicinity of the UST fill pipes is the most likely scenario. However, given the variability in the TPHC detection method and the variability in the ground water levels, it is unlikely that there is TPHC contamination farther downgradient that would be of concern. In addition, based upon the AREE 69B Supplemental Site Investigation, there were no other contaminants that exceeded MCP limits (Arthur D. Little, 1995b).

In order to ensure that there is no residual contamination at AREE 69B, the following actions are recommended:

- 1) Examine the water level measurements for wells UST-01, UST-02, GE-1, GE-2 and GE-3. Water levels were measured quarterly from 1992 to 1995. This data may give some insight into the local ground water flow.
- 2) Collect one additional round of ground water samples during the winter of 1995-96. The samples will be examined for TPHC, SVOCs, volatile organic compounds, metals, and PCBs/pesticides.

3.0 Past Spill Sites Study (AREE 69)

- 3) Examine the monitoring well construction logs/diagrams, if they exist, to determine the reliability of the wells.
- 4) Examine the tank installations as-built drawings, if they exist, and any associated monitoring results.

This data will be used in conjunction with previously collected data regarding the release at AREE 69B. A final determination regarding the site will be made after reviewing all data in aggregate.

4.0 Cold Spring Brook (Study Area 73)

The USAEC through ABB Environmental Services, Inc. requested that Arthur D. Little perform additional sampling of Storm Sewer System Number 9 and Cold Spring Brook. The results will be used in the ongoing SA 73 Lower Cold Spring Brook Site Investigation. The sample locations and sample parameters were specified by ABB. The results of this sampling event will be evaluated and reported by ABB. The following is a description of the sample locations. Figure 1 and Table 1 provide the sample locations and the sample identification for the samples collected. All sample results have been given to ABB and the data will be incorporated into the SA 73 site investigation and will not be reported in this document.

Samples were collected by Arthur D. Little's personnel and were submitted to a USAEC performance-demonstrated laboratory for analysis. The data was included in the Installation Restoration data Management Information System (IRDMIS) and sent to ABB Environmental Services.

4.1 Sites Requiring Further Investigation

The samples that were collected in proximity to the discharge area for Storm Sewer System 9 in the area of sample location 9A. Sediment and surface water samples were collected from each location with the exception of location 9L, where only sediment was collected. Each sample location is described in detail below:

- Within the ponded area downstream of the Boston & Maine (B&M) Railroad right-of-way, approximately 10 to 20 feet from the pond's outlet (location 9H).
- Within the low lying/wet area immediately upstream (west) of the B&M Railroad right-of-way (location 9L).
- Within the channel of Cold Spring Brook upstream of its final passage under Patton Road (i.e., west of Patton Road, location 9J).
- Within the drainage swale north of Dakota Street (i.e., upstream of the culvert that runs under Dakota Street, location 9K).
- At the piped outlet of Storm Sewer System 9 at the edge of the asphalt parking lot adjacent to the Commissary (location 9L).

5.0 Selected References

ABB Environmental Services, Inc. 1993. *Fort Devens Feasibility Study for Group 1A Sites, Final Remedial Investigation Addendum Report*. December.

Arthur D. Little. 1995a. *Memorandum Work Plan, AREE 70, AREE 69B, and Cold Spring Brook Supplemental Sampling Event, Base Realignment and Closure Environmental Evaluation (BRAC EE) Fort Devens, Massachusetts, Revision 0* Prepared for the U.S. Army Environmental Center. June.

Arthur D. Little. 1995b. *Final Past Spill Sites Report (AREE 69), Base Realignment and Closure Environmental Evaluation (BRAC EE), Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. June

Arthur D. Little. 1994a. *Final Supplemental Work Plan - Appendix B, Base Realignment and Closure Environmental Evaluation (BRAC EE), Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. June.

Arthur D. Little. 1994b. *Final Storm Sewer System Evaluation (AREE 70) Report, Base Realignment and Closure Environmental Evaluation (BRAC EE), Fort Devens, Massachusetts, Volume I of II*. Prepared for the U.S. Army Environmental Center. June.

Arthur D. Little. 1993a. *Draft Supplemental Work Plan, Base Realignment and Closure Environmental Evaluation (BRAC EE), Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. April.

Arthur D. Little. 1993b. *Final Quality Assurance Project Plan, Volume I, Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. June.

Arthur D. Little. 1993c. *Final Quality Assurance Project Plan, Volume II: Standard Operating Procedures, Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. June.

Arthur D. Little. 1993d. *Draft Past Spill Sites Report (AREE 69), Base Realignment and Closure Environmental Evaluation (BRAC EE), Fort Devens, Massachusetts*. Prepared for the U.S. Army Environmental Center. October.

Reed, S. 1995. Letter from S. Reed of ABB Environmental Services, Inc., to Charles A. George of the U.S. Army Environmental Center. April 3.

Arthur D Little

TITLE

FIGURE 1
STORM SEWER SYSTEM NO.9 SAMPLING LOCATIONS

PREPARED FOR

USAEC

SCALE

1 IN. = 500 FT.

DATE

NOV. 1995

DWG. NO.

67065-181

SOURCE

ADL. INC.

SHEET 1 OF 1

Table 1: Summary of Sampling Activities

Site ID	Field Sample ID	Site Description	Sample Location	Media	Analytes
SSD-95-09D	DX090400	Storm Sewer 9	Catch Basin 9D	Sediment	SVOCs, PCBs/Pesticides
SSD-95-09H	DX090800	Storm Sewer 9	10-20 ft from outlet of ponded area downstream of B&M right-of-way	Sediment	SVOCs, TOC, TPHC, Inorganics, PCBs/Pesticides
SSW-95-09H	WX0908X1	Storm Sewer 9	10-20 ft from outlet of ponded area downstream of B&M right-of-way	Surface Water	SVOCs, TOC, TPHC, Inorganics, Dissolved Metals, PCBs/Pesticides, TSS, Cl ⁻ , Sulfate, Alkalinity, Hardness
SSD-95-09I	DX090900	Storm Sewer 9	Within low-lying wetland, west of B&M right-of-way	Sediment	SVOCs, TOC, TPHC, Inorganics, PCBs/Pesticides
SSW-95-09I	WX0909X1	Storm Sewer 9	Within low-lying wetland, west of B&M right-of-way	Surface Water	SVOCs, TOC, TPHC, Inorganics, Dissolved Metals, PCBs/Pesticides, TSS, Cl ⁻ , Sulfate, Alkalinity, Hardness
SSD-95-09J	DX091000	Storm Sewer 9	Channel west of Patton Road	Sediment	SVOCs, TOC, TPHC, Inorganics, PCBs/Pesticides
SSW-95-09J	WX0910X1	Storm Sewer 9	Channel west of Patton Road	Surface Water	SVOCs, TOC, TPHC, Inorganics, Dissolved Metals, PCBs/Pesticides, TSS, Cl ⁻ , Sulfate, Alkalinity, Hardness
SSD-95-09K	DX091100	Storm Sewer 9	In drainage swale upstream of culvert under Dakota Street	Sediment	SVOCs, TOC, TPHC, Inorganics, PCBs/Pesticides

Table 1: Summary of Sampling Activities**Page 2 of 2**

Site ID	Field Sample ID	Site Description	Sample Location	Media	Analytics
SSW-95-09K	WX0911X1	Storm Sewer 9	In drainage swale upstream of culvert under Dakota Street	Surface Water	SVOCs, TOC, TPHC, Inorganics, Dissolved Metals, PCBs/Pesticides, TSS, Cl-, Sulfate, Alkalinity, Hardness
SSD-95-09L	DX091200	Storm Sewer 9	At piped outlet of Storm Drain Number 9	Sediment	SVOCs, TOCs, TPHC, Inorganics, PCBs/Pesticides
SSW-95-09L	WX0912X1	Storm Sewer 9	At piped outlet of Storm Drain Number 9	Surface Water	SVOCs, TOC, TPHC, Inorganics, Dissolved Metals, PCBs/Pesticides, TSS, Cl-, Sulfate, Alkalinity, Hardness
SSD-95-14A	DX140100	Storm Sewer 14	Outfalls 14A and 14C	Sediment	Filtered and Unfiltered Metals, PCBs/Pesticides
SSD-95-14C	DX140300				
SSD-95-21A	DX210100	Storm Sewer 21	Outfall 21A	Sediment	SVOCs
SSD-95-25A	DX250100	Storm Sewer 25	Outfall 25A, Internal Sample at 25B	Sediment	Filtered and Unfiltered Metals, SVOCs
UST-01	GXUT01_*	AREE 69B	Monitoring Well UST-01	Ground Water	TPHC
UST-02	GXUT02_*	AREE 69B	Monitoring Well UST-02	Ground Water	TPHC
GE-01	GXGE01_*	AREE 69B	Monitoring Well GE-01	Ground Water	TPHC
GE-02	GXGE02_*	AREE 69B	Monitoring Well GE-02	Ground Water	TPHC
GE-03	GXGE03_*	AREE 69B	Monitoring Well GE-03	Ground Water	TPHC

* The blanks are reserved for the depth at which the sample will be collected. The blanks will be filled in on the day of the sampling event.

Table 2: Comparison of 1993 and 1995 Data

Site ID	SSD-95-09D	SSD-93-09D	SSD-95-14A	SSD-93-14A	SSD-95-14C	SSD-93-14C
Sample Date	7/9/95	8/19/93	7/10/95	8/19/93	7/10/95	8/19/93
Semivolatile Organics						
<i>Polynuclear Aromatics</i>						
Pyrene	3.0	13.0	--	--	--	--
<i>Pesticides</i>						
DDD	.0027 (LT)	.043	.035 (ND)	0.27	.0027 (LT)	.026
DDE	.0027 (LT)	.005	.027 (ND)	0.055	.0027 (LT)	.008
DDT	.0035 (LT)	.022	.105 (est.)	0.68	.0035 (LT)	.10
<i>Metals</i>						
Arsenic	--	--	15	9.51	7.97	3.4
Barium	--	--	67.5	71.4	24.9	45.8
Lead	--	--	140	52	10.1	45
Vanadium	--	--	40.5	44.2	14.2	30.6

Note: All results are recorded in $\mu\text{g/g}$

ND = Not detected

LT = Less than

GT = Greater than

est. = Estimate

Table 2: Comparison of 1993 and 1995 Data (continued)

Site ID	SSD-95-21A 7/10/95	SSD-93-21A 8/23/95	SSD-95-25A 7/10/95	SSD-93-25A 8/24/93	SSD-95-25B 7/10/95	SSD-93-25B 8/24/93
Semivolatile Organics						
<i>Polynuclear Aromatics</i>						
Acenaphthylene	--	--	9.0	3.6	9.0	0.37
Anthracene	1.0 (LT)	11	--	--	--	--
Benz(a)anthracene	0.5	15	60	12	40	2.2
Benzo(a)pyrene	2.0 (LT)	11	30	12	10	--
Chrysene	0.5	13	50	16	40	2.4
Fluoranthene	0.5	6.2	2	6.2 (GT)	50	2.6
Phenanthrene	0.4	12	100	26	30	3.2
Pyrene	0.6	6.2	--	--	--	--
<i>Metals</i>						
Selenium	--	--	0.449 (LT)	1.07	0.449	--

Note: All results are recorded in $\mu\text{g/g}$

ND = Not detected

LT = Less than

GT = Greater than

est. = Estimate

Table 3: Ground Water Monitoring Well Samples, AREE 69B

Sample Location	1995 TPHC $\mu\text{g}/\text{L}$	1994 TPHC $\mu\text{g}/\text{L}$
UST - 01	397	7,200
UST - 02	110	9,600
GE - 01	100	2,300
GE - 02	1,130	290
GE - 03	100	100

Appendix A: Data Summary Tables - Supplemental Sampling Event

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
GE-01	GXGEO100	CGW	WELL	07/10/95	ATRB			0.0	4181		Total Petroleum Hydrocarbons	1,130,000	UGL	
GE-02	GXGEO200	CGW	WELL	07/10/95	ATRB			0.0	4181		Total Petroleum Hydrocarbons	100,000	LT	UGL
GE-03	GDGEO300	CGW	WELL	07/10/95	ATRB	D		0.0	4181		Total Petroleum Hydrocarbons	100,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATVF			0.0	1602		Total Suspended Solids	774,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRZ			0.0	2340		Total Hardness	232,000,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATOZ	F		0.0	3102		Alkalinity	139,000,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRB			0.0	4181		Total Petroleum Hydrocarbons	100,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Aluminum	8,870,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Antimony	60,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Barium	39,500	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Beryllium	2,410	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Cadmium	6,780	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Calcium	55,300,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Chromium	21,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Cobalt	25,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Copper	22,100	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Iron	22,300,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Magnesium	24,700,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Manganese	549,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Nickel	32,100	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Potassium	2,380,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Silver	10,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Sodium	9,520,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Thallium	125,000	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Vanadium	27,600	LT	UGL
GE-03	GXGEO300	CGW	WELL	07/10/95	ATRY			0.0	SS12		Zinc	50,100	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATOZ			0.0	TT09		Chloride	18,000,000	UGL	
GE-03	GXGEO300	CGW	WELL	07/10/95	ATOZ			0.0	TT09		Sulfate	53,000,000	UGL	
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Aldrin	0.001	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	U		0.0	LH17		Chlordane	0.068	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Diechlorin	0.005	UGG	
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	C2		0.0	LH17		Endosulfan I	0.001	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T		0.0	LH17		Endosulfan II	0.001	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Endrin	0.006	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Endrin aldehyde	0.000	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Hepachlor	0.002	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Isodrin	0.001	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Lindane	0.003	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG			0.0	LH17		Methoxychlor	0.035	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T		0.0	LH17		PCB 1016	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T		0.0	LH17		PCB 1221	0.100	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T		0.0	LH17		PCB 1232	0.100	ND	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1242	0.100	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1248	0.100	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1254	0.047	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1260	0.047	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	Torphene	0.226	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	alpha-BHC	0.002	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	beta-BHC	0.007	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	delta-BHC	0.008	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDD	0.002	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDE	0.002	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDT	0.003	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2,4-Trichlorobenzene	0.400	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2-Dichlorobenzene	0.080	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,3-Dichlorobenzene	0.080	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,4-Dichlorobenzene	0.070	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4,5-Trichlorophenol	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4,6-Trichlorophenol	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dichlorophenol	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dimethylphenol	6.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrophenol	9.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrophenol	3.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chloronaphthalene	0.500	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chlorophenol	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methyl-4,6-dinitrophenol	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylnaphthalene	0.060	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylphenol	0.200	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitroaniline	6.000	ND	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitrophenol	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3,3'-Dichlorobenzidine	3.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Methyl-4-chlorophenol	0.500	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Nitroaniline	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Bromophenylphenyl Ether	6.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Chlorophenylphenyl Ether	0.080	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Methylphenol	0.300	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Nitrophenol	0.500	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Nitrophenol	7.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthene	0.080	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthylene	0.400	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Anthracene	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[a]anthracene	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[a]pyrene	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[b]fluoranthene	0.400	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[b]phenanthrene	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[k]fluoranthene	4.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[k]phenanthrene	0.060	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzyl alcohol	0.400	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Bis(2-chlorothoxy) methane	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Butylbenzyl phthalate	4.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Chrysene	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-butyl phthalate	3.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-octyl phthalate	0.500	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dibenz[a,h]anthracene	0.600	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dibenzofuran	0.800	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Diethyl phthalate	0.500	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dimethyl phthalate	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluoranthene	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorobenzene	0.300	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorobutadiene	0.200	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25		2.000	LT	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorocyclopentadiene	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachloroethane	4.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ	NB			0.0	LM25	Hexadecanoic acid / Palmitic	5.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Indeno[1,2,3-C,D]pyrene	5.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Isophorone	0.800	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitroso-di-n-propylamine	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitrosodiphenylamine	0.600	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Naphthalene	1.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Nitrobenzene	4.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ	NB			0.0	LM25	Octadecanoic acid / Stearic	0.700	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pentachlorophenol	2.000	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenanthrene	4.000	UGG	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenol	0.100	LT	UGG
SSD-95-09D	DX090400	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pyrene	3.000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATSX	D			0.0	B9	Arsenic	17.700	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATSZ	D			0.0	JD20	Selenium	0.449	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATSY	DB			0.0	JD21	Lead	140.000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB	N		0.0	JS12	Aluminum	9,990,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Antimony	19,600	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Barium	59,100	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Beryllium	0.427	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Cadmium	19,500	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Calcium	3,910,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Chromium	31,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Cobalt	9,990	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Copper	50,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Iron	20,700,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Magnesium	3,790,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Manganese	530,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Nickel	44,400	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Potassium	1,690,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Silver	0.803	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Sodium	631,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	D			0.0	JS12	Thallium	34,300	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB			0.0	JS12	Vanadium	41,700	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATRX	DB	I		0.0	JS12	Zinc	433,000	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	UD			0.0	LH17	Aldrin	0.013	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Chlordane	0.068	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	CD			0.0	LH17	Dieldrin	0.007	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	DU			0.0	LH17	Endosulfan I	0.006	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	UD			0.0	LH17	Endosulfan II	0.001	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Endrin	0.006	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Endrin aldehyde	0.000	ND	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Heptachlor	0.002	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Heptachlor epoxide	0.001	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Isodrin	0.003	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Lindane	0.001	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Methoxychlor	0.035	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	PCB 1016	0.100	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	TD			0.0	LH17	PCB 1221	0.100	ND	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	TD			0.0	LH17	PCB 1232	0.100	ND	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	TD			0.0	LH17	PCB 1242	0.100	ND	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	QC Test Qualls Code	Data Qualls Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	TD			0.0	LH17	PCB 1248	0.100	ND	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	ZCD			0.0	LH17	PCB 1254	1.160	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	PCB 1260	0.047	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	Toaphene	0.226	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	alpha-BHC	0.002	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	beta-BHC	0.007	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	D			0.0	LH17	delta-BHC	0.008	LT	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	C2D			0.0	LH17	p,p'-DDD	0.035	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	UD			0.0	LH17	p,p'-DDE	0.026	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATMG	C2D			0.0	LH17	p,p'-DDT	0.087	UGG	UGG
SSD-95-14A	DD140100	CSE	STSW	07/10/95	ATQB	D			0.0	Y9	Mercury	0.270	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATSX				0.0	B9	Arsenic	15.000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATSZ				0.0	JD20	Selenium	0.449	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Aluminum	9,860.000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Antimony	19,680	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Barium	67,500	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Beryllium	0.427	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cadmium	13,200	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Calcium	2,840.000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Chromium	50,700	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cobalt	8,880	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Copper	44,100	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Iron	19,900,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Magnesium	3,650,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Manganese	287,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Nickel	48,500	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Potassium	1,600,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Silver	0.803	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Sodium	147,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Thallium	34,300	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Vanadium	40,500	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATRX	B	1		0.0	JS12	Zinc	328,000	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U			0.0	LH17	Aldrin	0.013	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U			0.0	LH17	Chlordane	0.068	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	C			0.0	LH17	Die�din	0.007	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U2			0.0	LH17	Endosulfan I	0.006	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U2			0.0	LH17	Endosulfan II	0.001	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	Endrin	0.006	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	Endrin Aldehyde	0.008	ND	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	2			0.0	LH17	Heptachlor	0.002	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	C			0.0	LH17	Heptachlor epoxide	0.011	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	Isodrin	0.003	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	Lindane	0.001	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	Methoxychlor	0.035	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1016	0.100	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1221	0.100	ND	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1232	0.100	ND	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	T			0.0	LH17	PCB 1242	0.100	ND	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	ZC			0.0	LH17	PCB 1254	1.160	UGG	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	ZC			0.0	LH17	PCB 1260	0.047	LT	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG				0.0	LH17	Toxaphene alpha-BHC	0.226	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG				0.0	LH17	beta-BHC	0.002	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG				0.0	LH17	delta-BHC	0.007	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U2			0.0	LH17	p,p'-DDD	0.008	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	U			0.0	LH17	p,p'-DDE	0.035	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATMG	C2			0.0	LH17	p,p'-DDT	0.027	LT	UGG
SSD-95-14A	DX140100	CSE	STSW	07/10/95	ATQB				0.0	LH17	0.105	LT	UGG	
SSD-95-14A	DX140100	CSE	STSW	07/10/95					0.0	Y9	Mercury	0.281	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATSX				0.0	B9	Arsenic	7.970	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATSZ				0.0	JD20	Selenium	0.449	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATSY	B			0.0	JD21	Lead	10.100	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B		N	0.0	JS12	Aluminum	7,060,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Antimony	19,600	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Barium	24,900	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Beryllium	0.427	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cadmium	1,200	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Calcium	997,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Chromium	21,100	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cobalt	4,840	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Copper	91,500	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Iron	14,900,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Magnesium	4,120,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Manganese	195,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Nickel	14,400	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Potassium	1,670,000	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Silver	0.803	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Sodium	59,400	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Thallium	34,300	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Vanadium	14,200	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Zinc	31,400	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Aldrin	0.001	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Chlordane	0.068	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Dieldrin	0.001	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Endosulfan I	0.001	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Endosulfan II	0.000	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Endrin	0.006	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Endrin aldehyde	0.000	ND	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Heptachlor	0.002	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Heptachlor epoxide	0.001	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Isodrin	0.003	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Lindane	0.001	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	Methoxychlor	0.035	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1016	0.100	ND	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1221	0.100	ND	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1232	0.047	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1242	0.226	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1248	0.002	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1254	0.047	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	PCB 1260	0.047	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	0.0226	LT	UGG	
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	0.002	LT	UGG	

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	beta-BHC	0.007	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	delta-BHC	0.008	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDD	0.002	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDE	0.002	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATMG				0.0	LH17	p,p'-DDT	0.003	LT	UGG
SSD-95-14C	DX140300	CSE	STSW	07/10/95	ATQB				0.0	Y9	Mercury	0.050	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2,4-Trichlorobenzene	0.400	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2-Dichlorobenzene	0.080	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,3-Dichlorobenzene	0.080	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,4-Dichlorobenzene	0.070	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4,5-Trichlorophenol	1.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4,6-Trichlorophenol	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dichlorophenol	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dimethylphenol	6.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrophenol	9.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrotoluene	3.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chloronaphthalene	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chlorophenol	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,6-dinitrophenol	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methyl-4,6-dinitrophenol	0.060	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylnaphthalene	0.200	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylphenol	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitroaniline	6.000	ND	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitrophenol	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3,3'-Dichlorobenzidine	3.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Methyl-4-Chlorophenol	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Nitroaniline	6.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Bromophenylphenyl Ether	0.300	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Chlorophenylphenyl Ether	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Methylphenol	7.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Nitrophenol	0.080	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthene	0.300	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthylene	1.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Anthracene	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[a]anthracene	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[a]pyrene	0.600	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benz[b]fluoranthene	0.400	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzog[ghi]perylene	0.300	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzok[fl]uoranthene	0.060	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzyl alcohol	0.400	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Bis(2-chloroethoxy) methane	1.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Bis(2-ethylhexyl) phthalate	4.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Butylbenzyl phthalate	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Chrysene	3.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di- <i>n</i> -butyl phthalate	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di- <i>n</i> -octyl phthalate	0.500	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluoranthene	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluorene	0.200	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorobenzene	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorocyclohexadiene	1.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachloroethane	4.000	LT	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ	NB			0.0	LM25	Hexadecanoic acid / Palmitic Indeno[1,2,3-C,D]pyrene	2.000	UGG	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Isophorone	5.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitrosodi-n-propylamine	0.800	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitrosodiphenylamine	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Naphthalene	0.600	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Nitrobenzene	1.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Octadecanoic acid / Stearic	4.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pentachlorophenol	0.600	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenanthrene	2.000	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenol	0.400	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pyrene	0.100	LT	UGG
SSD-95-21A	DX2101X1	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pyrene	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	1,2,4-Trichlorobenzene	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	1,2-Dichlorobenzene	0.400	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	1,3-Dichlorobenzene	0.400	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	1,4-Dichlorobenzene	0.300	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4,5-Trichlorophenol	5.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4,6-Trichlorophenol	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4-Dichlorophenol	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4-Dimethylphenol	30.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4-Dinitrophenol	50.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2,4-Dinitrooluene	10.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Chloronaphthalene	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Chlorophenol	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Methyl-4,6-dinitrophenol	8.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Methylnaphthalene	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Methylphenol	1.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Nitroaniline	30.000	ND	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	2-Nitrophenol	10.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	3,3'-Dichlorobenzidine	20.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	3-Methyl-4-Chlorophenol	9.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	3-Nitroaniline	30.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	4-Bromophenylphenyl Ether	0.400	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	4-Chlorophenylphenyl Ether	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	4-Methylphenol	30.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	4-Nitrophenol	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Acenaphthene	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Acenaphthylene	7.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Anthracene	7.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Benz[a]anthracene	40.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Benz[al]pyrene	30.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Benz[b]fluoranthene	50.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Benz[g]phenylene	20.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Benzyl alcohol	40.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Bis(2-chloroethoxy) methane	10.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Di-n-butyl phthalate	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Di-n-octyl phthalate	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Dibenz[a,h]anthracene	4.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Dibenzofuran	2.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Diethyl phthalate	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D			0.0	LM25	Dimethyl Phthalate	60.000	LT	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Fluorene	0.600	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Hexachlorobenzene	0.800	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Hexachlorobutadiene	10.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Hexachlorocyclopentadiene	5.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Hexachloroethane	20.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Indeno[1,2,3-C,D]pyrene	40.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Isophorone	10.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			N-Nitrosodi-n-propylamine	3.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			N-Nitrosodiphenylamine	7.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Naphthalene	20.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Nitrobenzene	8.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Pentachlorophenol	70.000	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Phenanthrene	0.500	LT	UGG
SSD-95-25A	DD250100	CSE	STSW	07/10/95	ATMJ	D		LM25			Phenol	70.000	LT	UGG
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATSA						Arsenic	2.350	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATQH						Mercury	0.100	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATSB						Lead	4.470	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATSC						Selenium	2.550	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Aluminum	112,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Antimony	60,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Barium	2,820	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Beryllium	1,120	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Cadmium	6,780	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Calcium	105,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Chromium	16,800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Cobalt	25,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Copper	18,800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Iron	77,500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Magnesium	135,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Manganese	9,670	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Nickel	32,100	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Potassium	1,240,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Silver	10,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Sodium	279,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Thallium	125,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Vanadium	27,600	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATRY						Zinc	18,000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Aldrin	0.007	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Dieldrin	0.007	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Endosulfan I	0.002	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Endosulfan II	0.007	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Endrin	0.017	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Endrin aldehyde	0.050	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Hepachlor	0.229	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Hepachlor epoxide	0.006	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Isodrin	0.002	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Lindane	0.002	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						Methoxychlor	0.075	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						PCB 1016	0.385	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						PCB 1221	0.385	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH						PCB 1232	0.385	ND	UGL

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Flag Code	Lot	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	PCB 1242	0.385	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	PCB 1248	0.385	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	PCB 1254	0.176	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	PCB 1260	0.176	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	Toxaphene	1.640	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	alpha-BHC	0.002	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	alpha-Chlordane	0.031	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	beta-BHC	0.009	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	delta-BHC	0.003	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	p,p'-DDD	0.008	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	p,p'-DDE	0.003	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATMH	T	R	R	0.0	UH20	p,p'-DDT	0.002	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,2,3-Trichlorobenzene	5.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,2,4-Trichlorobenzene	2.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,2-Dichlorobenzene	1.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,2-Diphenylhydrazine	13.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,3-Dichlorobenzene	3.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	RV	R	R	0.0	UM25	1,3-Dinitrobenzene	10.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,4-Dichlorobenzene	1.500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	1,4-Orthoane	27.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,3,6-Trichlorophenol	1.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,5-Trichlorophenol	2.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,6-Trichlorophenol	3.600	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4-Dichlorophenol	8.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4-Dimethylphenol	4.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4-Dinitrophenol	18.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,5,6-Tetrachlorophenol	5.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,6,Trichlorophenol	8.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,6-Dinitroaniline	6.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,6-Dinitrooluene	2.600	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Chloronaphthalene	2.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Chlorophenol	50.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Methyl-4,6-dinitrophenol	1.300	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Methyl-4-naphthalene	3.600	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4-Dinitrotoluene	31.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,4,6-Tetrachlorophenol	8.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,5,6-Tetrachlorophenol	5.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,4,6,Trichlorophenol	21.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,6-Dinitrotoluene	8.500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2,6-Dinitrophenol	15.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Nitroaniline	2.900	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	2-Nitrotoluene	22.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	3,3'-Dichlorobenzidine	1.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	3,5-Dinitroaniline	10.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	3-Methyl-4-Chlorophenol	5.300	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	3-Nitroaniline	15.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	3-Nitrotoluene	23.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Bromophenylphenyl Ether	31.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Chloroaniline	5.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Chlorophenylmethyl Sulfide	5.100	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Chlorophenylmethyl Sulfone	13.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Chlorophenylmethyl Sulfoxide	5.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Chlorophenylphenyl Ether	5.900	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Methylphenol	9.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	4-Nitroaniline	14.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Acenaphthene	10.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Acenaphthylene	5.100	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Aldrin	13.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Anthracene	5.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Atrazine	5.900	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Benz[a]anthracene	9.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Benzo[a]pyrene	14.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	R	0.0	UM25	Benzo[b]fluoranthene	10.000	LT	UGL

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Benzol[ghi]perylene	15.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Benzol[ghi]anthracene	10.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Benzoic acid	3.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Benzyl alcohol	4.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Bis(2-chloroethoxy) methane	6.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Bis(2-chloroethyl) ether	0.680	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Bis(2-chloroisopropyl) ether	5.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Bis(2-ethylhexyl) phthalate	7.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Bromacil	2.900	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Butylbenzyl phthalate	28.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Chlordane	37.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Chlordecone / Kepone	20.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Chrysene	7.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Di-n-butyl phthalate	33.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Di-n-octyl phthalate	1.500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dibenz[ah]anthracene	12.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dibenzofuran	5.100	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dim bromochloropropane	12.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dicyclopentadiene	5.500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Die dridrin	26.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Diethyl phthalate	5.900	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Disiropentylmethyl Phosphonate	21.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dimethyl phthalate	2.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dimethylmethyl Phosphate	130.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Dithiane	3.300	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endosulfan I	23.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endosulfan II	42.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endosulfan sulfate	50.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endrin	18.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endrin aldehyde	5.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Endrin ketone	6.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Farnphur / Famophos / Warbex	20.000	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Fluoranthene	24.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Fluorene	9.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Heptachlor	38.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Heptachlor epoxide	12.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Hexachlorobenzene	8.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Hexachlorobutadiene	54.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Hexachlorocyclopentadiene	8.300	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Hexachloroethane	21.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Indeno[1,2,3-C]Dipyrene	7.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Indrin	2.400	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Isophorone	7.200	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Lindane	21.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Malathion	11.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Mirex	24.000	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	N-Nitrosodi-n-propylamine	6.800	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	N-Nitrosodimethylamine	9.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	N-Nitrosodiphenylamine	3.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Naphthalene	0.500	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	Nitrobenzene	3.700	LT	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1016	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1221	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1232	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1242	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1248	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1254	9.100	ND	UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V	R	0.0	UM25	PCB 1260	13.000	ND	UGL

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	QC Test Quals	Data Quals	Depth	Method	Compound Name	Value	Unit Meas
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Parathion	37.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Pentachlorophenol	9.100	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Phenanthrene	9.900	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Phenol	2.200	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Pyrene	17.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Supona	19.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Toxaphene	17.000	ND UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	Vapona	8.500	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	alpha-BHC	5.300	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	beta-BHC	17.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	delta-BHC	3.000	ND UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	p,p'-DDD	18.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	p,p'-DDE	14.000	LT UGL
SSD-95-25A	DR250100	CSE	RNSW	07/10/95	ATML	V		R	0.0	UM25	p,p'-DDT	18.000	LT UGL
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATSX				0.0	B9	Arsenic	10.700	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATSZ				0.0	JD20	Selenium	0.449	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATSY	B			0.0	JD21	Lead	130.000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B	N		0.0	JS12	Aluminum	6,870.000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Antimony	19,600	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Barium	14,800	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Beryllium	0.427	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cadmium	1,200	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Calcium	1,370.000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Chromium	21,800	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cobalt	4,250	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Copper	11,600	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Iron	14,300.000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Magnesium	2,960.000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Manganese	150,000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Nickel	12,400	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Potassium	689,000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Silver	0.803	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Sodium	58,100	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Thallium	34,300	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Vanadium	17,000	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATRX	B	I		0.0	JS12	Zinc	53,800	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	1,2,4-Trichlorobenzene	2,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	1,2-Dichlorobenzene	0.400	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	1,3-Dichlorobenzene	0.400	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	1,4-Dichlorobenzene	0.300	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2,4,5-Trichlorophenol	5,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2,4,6-Trichlorophenol	0,600	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2,4-Dichlorophenol	30,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2,4-Dimethylphenol	50,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2,4-Dinitrophenol	10,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Chloronaphthalene	2,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Chlorophenol	0,600	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Methyl-4,6-dinitrophenol	8,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Methylnaphthalene	0,300	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Nitrophenol	1,000	LT UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Nitroaniline	30,000	ND UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMI				0.0	LM25	2-Nitrophenol	10,000	LT UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3,3'-Dichlorobenzidine	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Methyl-4-Chlorophenol	9,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Nitroaniline	30,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Bromophenylphenyl Ether	0.400	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Chlorophenylphenyl Ether	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Methylphenol	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Nitrophenol	30,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	A-cenaphthene	4,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	A-cenaphthylene	9,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Anthracene	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzol[al]anthracene	60,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzol[al]pyrene	30,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzol[bf]fluoranthene	60,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzol[ghi]perylene	30,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzol[k]fluoranthene	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzyl alcohol	60,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Bis(2-chloroethoxy) methane	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Bis(2-ethylhexyl) phthalate	5,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Butylbenzyl phthalate	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Chrysene	50,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-butyl phthalate	10,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-octyl phthalate	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dibenz[ah]anthracene	6,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dibenzofuran	4,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Diethyl phthalate	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dimethyl phthalate	0.600	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluoranthene	2,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluorene	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorobenzene	0.800	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorobutadiene	10,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachlorocyclopentadiene	5,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Hexachloroethane	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Indeno[1,2,3-C,D]pyrene	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Isophorone	4,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitrosodi-n-propylamine	10,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	N-Nitrosodiphenylamine	3,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Naphthalene	7,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Nitrobenzene	20,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pentachlorophenol	8,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenanthrene	100,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Phenol	0.500	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Pyrene	90,000	LT	UGG
SSD-95-25A	DX250100	CSE	STSW	07/10/95	ATQB				0.0	Y9	Mercury	0.050	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATSX				0.0	B9	Arsenic	10,600	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATSZ				0.0	JD20	Selenium	0.449	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATSY	B			0.0	JD21	Lead	74,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Aluminum	4,700,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Antimony	19,600	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Barium	31,600	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Beryllium	0.427	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Cadmium	1,200	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Calcium	1,460,000	UGG	

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	QC Test Quals	Data Quals	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Chromium	11.900	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Cobalt	3.550	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Copper	14.900	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Iron	11,700,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Magnesium	1,370,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Manganese	506,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Nickel	11.300	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Potassium	784,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Silver	0.803	LT	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Sodium	107,000	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX				0.0	JS12	Thallium	34,300	LT	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Vanadium	17.900	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATRX	B			0.0	JS12	Zinc	83,600	UGG	
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2,4-Trichlorobenzene	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,2-Dichlorobenzene	0.400	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,3-Dichlorobenzene	0.400	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,4-Dichlorobenzene	0.300	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	1,4,5-Trichlorophenol	5,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4,6-Trichlorophenol	0.600	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dichlorophenol	0.600	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dimethylphenol	30,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrophenol	50,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dinitrotoluene	10,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chloronaphthalene	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Chlorophenol	0.600	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2,4-Dichlorophenol	8,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylnaphthalene	0.300	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Methylphenol	1,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitroaniline	30,000	ND	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	2-Nitrophenol	10,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3,3'-Dichlorobenzidine	20,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Methyl-4-Chlorophenol	9,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	3-Nitroaniline	30,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Bromophenylphenyl Ether	0.400	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Chlorophenylphenyl Ether	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Methylphenol	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	4-Nitrophenol	30,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthene	0.400	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Acenaphthylene	9,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Anthracene	7,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzo[a]anthracene	40,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzo[a]pyrene	10,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzo[b]fluoranthene	50,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzo[b]phenylene	20,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Benzo[k]fluoranthene	40,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Chrysene	10,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-butyl phthalate	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Di-n-octyl phthalate	5,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Dibenz[a,h]anthracene	4,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Diethoxyfuran	2,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Diethyl phthalate	0.600	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluoranthene	50,000	LT	UGG
SSD-95-25B	DX250200	CSE	STSW	07/10/95	ATMJ				0.0	LM25	Fluorene	2,000	LT	UGG

Site ID	Field Sample No.	Media Type	Site Type	Sample Date	Lot	Flag Code	Data Quals	QC Test Code	Depth	Method	Compound Name	Value	Meas Bool	Unit Meas
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Hexachlorobenzene	0.800	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Hexachlorobutadiene	10.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Hexachlorocyclopentadiene	5.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Hexachloroethane	20.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ	S			0.0	LM25	Hexadecanoic acid / Palmitic	10.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Indeno[1,2,3-C,D]pyrene	20.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Iophorone	4.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	N-Nitrosodi-n-propylamine	10.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	N-Nitrosodiphenylamine	3.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Naphthalene	7.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Niobenzene	20.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Octadecanoic acid / Stearic	7.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ	S			0.0	LM25	Pentachlorophenol	8.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Phenanthrene	30.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Phenol	0.500	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATMJ				0.0	LM25	Pyrene	60.000	LT	UGG
SSD-95-25B	DX250200	CSE	STS	07/10/95	ATQB				0.0	Y9	Mercury	0.074		UGG
UST-01	GXUT0100	CGW	WELL	07/10/95	ATRB				0.0	4181	Total Petroleum Hydrocarbons	397.000		UGL
UST-02	GXUT0200	CGW	WELL	07/10/95	ATRB				0.0	4181	Total Petroleum Hydrocarbons	110.000		UGL

Appendix B: Field Sampling Forms - Supplemental Sampling Event

Arthur D Little**Monitoring Well Sampling
Data Sheet**Well No. UST-01

Client

Project

Case No.

Date Sampled: 7/11/95 Sampled By: C. MayerDepth to Water: 17.69 Total Depth: 26.33O₂ LEL PID 0 ppmMeasuring Point: Notch on PRCEquipment: Bailex

WELL VOLUME (* use appropriate values in table for each code letter)

$$V_{\text{well}} \times [(D_{\text{Screen Bottom}} - D_{\text{Water}})] = 0.17 \times [(26.33 - 17.69)] = 1.47$$

ANNULAR VOLUME (ASSUME 30% POROSITY)

$$V_{\text{annulus}} \times [(D_{\text{Screen Bottom}} - D_{\text{Bottom of Seal}})] = 0.79 \times [(26.33 - 17.69)] = 6.83$$

WATER TO BE REMOVED

$$[(V_{\text{well}} + V_{\text{annulus}})] \times \text{Removal Multiplier} = [(1.47 + 6.83)] \times 5 = 41.48$$

WELL PURGING MEASUREMENTS

Time	Gallons Removed	pH	Conductivity	Turbidity	DO	Temperature
1006	1.5	5.9	1.0	10 *	1.4	13
1016	3	6.0	1.0	110	0.8	13
1024	5	5.8	1.0	200	0.1	13
1029	9	6.1	1.1	190	0.0	13
1037	14	6.0	1.1	200	1.5	13
1050	24	6.5	1.2	320	4.4	13
1255	30	6.8	1.1	690	4.3	13
1402	44	6.8	1.1	620	4.3	14
Post Sampling	46	6.6	1.1	battery died on Horiba.		

Well	Annulus *	
	dia	V annulus
1.5"	4.0	0.29gal/ft
0.10gal/ft	6.5	0.46gal/ft
2"	7.25	0.59gal/ft
0.17gal/ft	7.75	0.69gal/ft
8.25	0.79gal/ft	
4"	8.25	0.64gal/ft
0.66gal/ft	10.25	1.06gal/ft
12.25	12.25	1.63gal/ft
6"	12.25	1.41gal/ft
1.5gal/ft		

SAMPLING

Sample ID	Analysis	Volume (ml)	Filtered (Y/N)	Preservation	Container	Time
GIXUTD100	TPH	1L	N	H ₂ SO ₄	amber glass	1440

Notes (include data on floaters/sinkers with measuring device, well condition, etc.)

* Turbidity readings had 0 instead of 0. But Horiba calibrated OK.

water had dead bugs in it.

Lunch break 1135 - 1240. Well dry at 40G removed.

* Assumes 30% porosity

Signature Carolyn Mayer Date 7-11-95 No. of Bottles 1

Arthur D Little**Monitoring Well Sampling Data Sheet**Well No. **UST-02**Client **USAEC**Project **Ft. Devens**Case No. **67065**Date Sampled: **7/11/95**Sampled By: **D. Vesper, C. Mayer**Depth to Water: **19.89'**Total Depth: **29.32'****O₂****LEL****PID Oppm**Measuring Point: **Notch on PVC**Equipment: **grundfos w/generator, then bailer**

WELL VOLUME (* use appropriate values in table for each code letter)

$$V_{\text{well}} \times [(\text{Depth Screen Bottom} - \text{Depth Water})] = \text{Gallons of Water (well)}$$

$$0.17 \times [(29.32 - 19.89)] = 1.60$$

ANNULAR VOLUME (ASSUME 30% POROSITY)

$$V_{\text{annulus}} \times [(\text{Depth Screen Bottom} - \text{Depth Bottom of Seal})] = \text{Gallons of Water (annulus)}$$

$$0.79 \times [(29.32 - 19.89)] = 7.45$$

WATER TO BE REMOVED

$$[(\text{Gallons of Water (well)} + \text{Gallons of Water (annulus)}) \times \text{Removal Multiplier}] = \text{Total Gallons to be Removed}$$

$$[(1.60 + 7.45) \times 5] = 45.25$$

$$45.25 \text{ Actual Gallons Removed}$$

$$15.25$$

WELL PURGING MEASUREMENTS

Time	Gallons Removed	pH	Conductivity	Turbidity	DO	Temperature
1320	0.5	7.5	0.52	990 ⁺	1.7	14
1333	7	7.3	0.37	990	1.9	14

Post Sampling

NA - Honba battery died

Well	Annulus *	
	V well	dia
1.5"	4.0	0.29gal/ft
0.10gal/ft	6.5	0.46gal/ft
2"	7.25	0.59gal/ft
0.17gal/ft	7.75	0.69gal/ft
8.25	8.25	0.79gal/ft
4"	8.25	0.64gal/ft
0.66gal/ft	10.25	1.06gal/ft
12.25	12.25	1.63gal/ft
6"	12.25	1.41gal/ft
1.5gal/ft		

SAMPLING

Sample ID	Analysis	Volume (ml)	Filtered (Y/N)	Preservation	Container	Time
SXU70200T	TPH	1L	N	H ₂ SO ₄	amber glass	1440

Notes (include data on floaters/sinkers with measuring device, well condition, etc.)

Generator was not working, so bailed.

* Turbidity readings had a 0 instead of 8, not sure why, it calibrated fine. At 1333, well went dry. At 1350 returned, bailed total of 15G, well dry. Waited for

* Assumes 30% porosity recharge and sampled.

Signature Carolyn Mayer Date 7/11/95 No. of Bottles 1

Arthur D Little**Monitoring Well Sampling
Data Sheet**Well No. **GE-01**Client **USAEC**

Project

Case No. **67065-**Date Sampled: **7/11/95** Sampled By: **D. Vesper, C. Mayer**Depth to Water: **20.17** Total Depth: **21.89'**O₂ / LEL / PID 0 ppmMeasuring Point: **Notch on PVC**Equipment: **baiter****WELL VOLUME** (* use appropriate values in table for each code letter)

$$V_{\text{well}} \times [(\text{Depth Screen Bottom} - \text{Depth Water})] = \text{Gallons of Water (well)}$$

$$0.17 \times [(21.89' - 20.17)] = .29$$

ANNULAR VOLUME (ASSUME 30% POROSITY)

$$V_{\text{annulus}} \times [(\text{Depth Screen Bottom} - \text{Depth Bottom of Seal})] = \text{Gallons of Water (annulus)}$$

$$0.79 \times [(21.89' - 20.17)] = 1.36$$

WATER TO BE REMOVED

$$[\text{Gallons of Water (well)} + \text{Gallons of Water (annulus)}] \times \text{Removal Multiplier} = \text{Total Gallons to be Removed}$$

$$[(.29 + 1.36)] \times 5 = 8.24$$

$$8.24 \text{ Actual Gallons Removed}$$

$$8.24 \text{ 2.70}$$

WELL PURGING MEASUREMENTS

Time	Gallons Removed	pH	Conductivity	Turbidity	DO	Temperature
0933	0.5	6.34	0.33	744	12.26	12.7
0942	2	6.30	0.32	540	5.8	12.0

Post Sampling

NA - Battery on tribia died.

Well	Annulus *	
	dia	V annulus
1.5"		
0.10gal/ft	4.0	0.29gal/ft
2"	6.5	0.46gal/ft
0.17gal/ft	7.25	0.59gal/ft
4"	7.75	0.69gal/ft
0.66gal/ft	8.25	0.79gal/ft
6"	10.25	0.64gal/ft
1.5gal/ft	12.25	1.06gal/ft
	12.25	1.63gal/ft

SAMPLING

Sample ID	Analysis	Volume (ml)	Filtered (Y/N)	Preservation	Container	Time
GX-GE0200	TPH	1L	N	H ₂ SO ₄	amber glass	1530

Notes (include data on floaters/sinkers with measuring device, well condition, etc.)
 No inside PVC cap. Initially water cloudy, chunks at bottom. Well dry at 2G.
 At 1300, bailed 42G, went dry again.

* Assumes 30% porosity

 Signature *Carolyn Mayer* Date **7/11/95** No. of Bottles **1**

Arthur D Little**Monitoring Well Sampling
Data Sheet**Well No. **GE-03**Client **USAEC**Project **F+D. Devens**Case No. **67065-**Date Sampled: **7-11-95**Sampled By: **D. Vesper, C. Mayer**Depth to Water: **14.19'**Total Depth: **26.90'****O₂****LEL****PID 0 ppm**Measuring Point: **Notch on PVC**Equipment: **bailer****WELL VOLUME** (* use appropriate values in table for each code letter)

$$V_{\text{well}} \times [(\text{Depth Screen Bottom} - \text{Depth Water})] = \text{Gallons of Water (well)}$$

$$0.17 \times [(26.90 - 14.19)] = 12.88$$

ANNULAR VOLUME (ASSUME 30% POROSITY)

$$V_{\text{annulus}} \times [(\text{Depth Screen Bottom} - \text{Depth Bottom of Seal})] = \text{Gallons of Water (annulus)}$$

$$0.79 \times [(26.90 - 15.5)] = 9.01$$

WATER TO BE REMOVED

$$[(\text{Gallons of Water (well)} + \text{Gallons of Water (annulus)}) \times \text{Removal Multiplier}] = \text{Total Gallons to be Removed}$$

$$[(12.88 + 9.01) \times 5] = 109.43$$

$$109.43 \times 0.33 = 33$$

WELL PURGING MEASUREMENTS

Time	Gallons Removed	pH	Conductivity	Turbidity	DO	Temperature
0958	0.5	7.2	0.31	300*	0.2	12
1004	2	6.6	0.31	570	0.6	11
1011	4	6.9	0.31	850	1.0	12
1026	8	6.9	0.31	990	1.3	11
1039	12	6.9	0.38	990	0.9	11
1103	20	7.0	0.40	990	2.1	11
1121	25	7.3	0.31	990	2.7	12
1236	32	7.8	0.31	640	3.1	12

Post Sampling

Horiba battery died - NA

Well	Annulus *	
	V well	dia
1.5"		
0.10gal/ft	4.0	0.29gal/ft
2"		
0.17gal/ft	6.5	0.46gal/ft
	7.25	0.59gal/ft
	7.75	0.69gal/ft
	8.25	0.79gal/ft
4"		
0.66gal/ft	8.25	0.64gal/ft
	10.25	1.06gal/ft
	12.25	1.63gal/ft
6"		
1.5gal/ft	12.25	1.41gal/ft

SAMPLING

Sample ID	Analysis	Volume (ml)	Filtered (Y/N)	Preservation	Container	Time
GXGEO300	TP17	1L	N	H ₂ SO ₄	amber glass	1500
GXGEO300	Hardness	500ml	N	HNO ₃	clear plastic	1500
GXGEO300	TSS	125ml	N	ice	clear plastic	1500
GXGEO300	AIK/Anions	125ml	N	ice	clear plastic	1500
GXGEO300	TPH/Dnp	1L	N	H ₂ SO ₄	amber glass	1500

Notes (include data on floaters/sinkers with measuring device, well condition, etc.)
 Cloudy, possible sheen in water. Well dry at 1021 (less than $\frac{1}{2}$ bailer). Take lunch then resumed
 bailer at 1230. Well dry at 1236. Recharge, sample.

* Turbidity on Horiba shows 0 instead of 0. Don't know why. It calibrated fine.

* Assumes 30% porosity

Signature *Carolyn Mayer* Date *7/11/95* No. of Bottles *5*

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**
 Date 7-10-95
 Client USAEC
 Project Ft. Devens
 Case No. 67065
LOCATIONSampling Location Description Cold Spring Brook, 9HType Of Water Body ~10' from mouth of ponded area in CSBChannel Width ~3.5' Channel Depth < 1' Est. Flow medium to fast

Discharge Points (Y/N) Location _____

Odors, Surface Sheen _____

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)**SAMPLING PROCEDURE**Equipment Used (Calibrated Y/N) Stainless Steel spoon + bowlSolvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water RinseDI Water Rinse
Solvent 1 Rinse
DI Water RinseDetergent Wash
DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
NA						→

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
WX0908X1	CSW	AIK/Anion	125ml	N	ICE	1615
WX0908X1	CSW	F. Met	1L	Y	HNO ₃	1615
WX0908X1	CSW	Met/Hard	1L	N	HNO ₃	1615
WX0908X1	CSW	PCB/PCB	5X 1L	N	ICE	1615
WX0908X1	CSW	SVOC	2X 1L	N	ICE	1615
WX0908X1	CSW	TOC	250ml	N	H ₂ SO ₄	1615
WX0908X1	CSW	TPH	1L	N	H ₂ SO ₄	1615
WX0908X1	CSW	TSS	125 ml	N	ICE	1615
WX0908X1	CSE	PCB/PCB	402	N	ICE	1625
DX090800	CSE	SVOC	402	N	ICE	1625
DX090800	CSE	TOC	402	N	ICE	1625
DX090800	CSE					

NOTES
 DX090800 CSE TPH Metals 402 N ICE 1625
 DX090800 CSE Metals 402 N ICE 1625
Signature Carolyn Mayer

Date 7-10-95 No. Of Bottles 15

Page 1 of 1

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**
 Date 7-10-95
 Client USAEC
 Project Ft. Devens
 Case No. 67065
LOCATIONSampling Location Description Cold Spring Brook, RIType Of Water Body Edge of BrookChannel Width 30' + Channel Depth 8-12" Est. Flow Stagnant

Discharge Points (Y/N) Location _____

Odors, Surface Sheen _____

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)**SAMPLING PROCEDURE**Equipment Used (Calibrated Y/N) Stainless Steel Cup, Spoon, 1/2 bowlSolvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

 DI Water Rinse
 Solvent 1 Rinse
 Solvent 2 Rinse
 Solvent 1 Rinse
 DI Water Rinse

 DI Water Rinse
 Solvent 1 Rinse
 DI Water Rinse

 Detergent Wash
 DI Water Rinse

 Other
GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
NA						

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
WX0909X1	CSW	AIK/Anion	125 ml	N	ice	1445
WX0909X1	CSW	F. Metals	1L	Y	H2SO4	1445
WX0909X1	CSW	Met/Hard	1L	N	HNO3	1445
WX0909X1	CSW	PCP/PCB	2 x 1L	N	ice	1445
WX0909X1	CSW	SVOC	2 x 1L	N	ice	1445
WX0909X1	CSW	TOC	350 ml	N	H2SO4	1445
WX0909X1	CSW	TPH	1L	N	H2SO4	1445
WX0909X1	CSW	TSS	125 ml	N	ice	1445
DX090900	CSE	PCP/PCB	4oz jar	N	ice	1445
DX090900	CSE	SVOC	4oz jar	N	ice	1445
DX090900	CSE	TOC	4oz jar	N	ice	1445

NOTES

DX090900	CSE	TPH	4oz jar	N	ice	1445
DX090900	CSE	Metals	4oz jar	N	ice	1445

Signature Carolyn Mayer

Date 7-10-95 No. Of Bottles 15

Page 1 of 1

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**
 Date 7-10-95
 Client USAEC
 Project Ft. Devens
 Case No. 67065
LOCATIONSampling Location Description Cold Spring Brook, 9JType Of Water Body Storm Culvert into a brookChannel Width 5-7' Channel Depth ~3' Est. Flow low

Discharge Points (Y/N) Location _____

Odors, Surface Sheen _____

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

surface water taken directly into bottle. Sampler waded into brook to take sample w/waders on. Samples taken ~5' from culvert in middle of water column ~about 1' down in flowing water. Sed. samples taken on southern bank of CSB, no water flow, sediments collected on bank. Lot of OM, twigs, silt and very fine sand. Used SS spoon + bowl to collect sediment samples.

SAMPLING PROCEDUREEquipment Used (Calibrated Y/N) Stainless Steel Cup, Spoon, bowlSolvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water RinseDI Water Rinse
Solvent 1 Rinse
DI Water RinseDetergent Wash
DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
NA						

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
WX0910X1	CSW	AIK/Anions	125	N	1CE	1335
WX0910X1	CSW	F. Metals	1000	Y	HNO ₃	1335
WX0910X1	CSW	Metals/Hard	1000	N	HNO ₃	1335
WX0910X1	CSW	Res/PcB	2x1000	N	1CE	1335
WX0910X1	CSW	SVOC	2x1000	N	1CE	1335
WX0910X1	CSW	TOC	250	N	H ₂ SO ₄	1335
WX0910X1	CSW	TPH	1000	N	H ₂ SO ₄	1335
WX0910X1	CSW	TSS	125	N	1CE	1335
WX0910X1	CSW	All same parameters as above				1335
WD0910X1	CSW	Metals, TPH, TOC, Hardness				1335
DX0910X1	CSE	F. Metals				
		SVOC	402	N	1CE	1350

NOTES

DX0910X1	CSE	Metals	402	N	1CE	1350
DX0910X1	CSE	TPH/TOC	402	N	1CE	1350

Signature Carolyn Mayer

Date 7-10-95 No. Of Bottles 27

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**
 Date 7-10-95
 Client USNEC
 Project Ft. Deuchs
 Case No. 67065
LOCATION
 Sampling Location Description Cold Spring Brook 9K
 Type Of Water Body Storm Sewer System outfall in Cold Spring Brook
 Channel Width ~4-5' Channel Depth ~3' Est. Flow Slow
 Discharge Points (Y/N) Location _____
 Odors, Surface Sheen sheen
LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

*Sheen apparent in water.
 water collected in top of
 water column (in order to
 sample sheen). Sediments
 sampled at 0-6".*

SAMPLING PROCEDUREEquipment Used (Calibrated Y/N) Stainless Steel cup, SS spoon and bowlSolvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
 Solvent 1 Rinse
 Solvent 2 Rinse
 Solvent 1 Rinse
 DI Water Rinse

DI Water Rinse
 Solvent 1 Rinse
 DI Water Rinse

Detergent Wash
 DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
<u>NA</u>						→

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
WX0911X1	CSW	AIK/Anions	125	N	ICE	1125
WX0911X1	CSW	Metals/Hard	1000	N	HNO ₃	1125
WX0911X1	CSW	F. Metals	1000	Y	HNO ₃	1125
WX0911X1	SSW	Pest/PCB	2X1000	N	ICE	1125
WX0911X1	CSW	SVOC	2X1000	N	ICE	1125
WX0911X1	CSW	TOC	250	N	H ₂ SO ₄	1125
WX0911X1	CSW	TPH	1000	N	H ₂ SO ₄	1125
WX0911X1	CSW	TSS	125	N	ICE	1125
WD0911X1	CSW	Pest/PCB	2X1000	N	ICE	1125
WM0911X1	CSW	Pest/PCB	2X1000	N	ICE	1125
WZ0911X1	CSW	Pest/PCB	2X1000	N	ICE	1125

NOTES

DX091100	CSE	SVOC	402	N	ICE	1135
DX091100	CSE	Pest/PCB	402	N	ICE	1135
DX091100	CSE	Metals	402	N	ICE	1135
DX091100	CSE	TPH/TOC	402	N	ICE	1135

Signature

Calotya Mayer

Date 7-10-95 No. Of Bottles

80

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**

Date 7-10-95

Client USAEC

Project Ft. Devens

Case No. 67065

LOCATIONSampling Location Description Cold Spring Brook, 9LType Of Water Body Outfall into streamChannel Width ~4-5' Channel Depth 0' Water Est. Flow NA

Discharge Points (Y/N) Location _____

Odors, Surface Sheen _____

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

Sampled sediment at 0-4" immediately outside outfall. Lot of slightly decomposed organic matter. Some plastic. Dark brown, moist. No water.

SAMPLING PROCEDUREEquipment Used (Calibrated Y/N) Stainless Steel bowl + spoonSolvent 1 Used Liquinex Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water Rinse

DI Water Rinse
Solvent 1 Rinse
DI Water Rinse

Detergent Wash
DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
<u>NA</u>						

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
DX091200	CSE	Post/PCB	4oz	N	ICE	1100
DX091200	CSE	SVOC	4oz	N	ICE	1100
DX091200	CSE	TOC	4oz	N	ICE	1100
DX091200	CSE	TPH	4oz	N	ICE	1100
DX091200	CSE	Metals	4oz	N	ICE	1100
DR091200	CSE	TOC	4oz	N	ICE	1100
DR091200	CSE	TPH	4oz	N	ICE	1100
DD091200	CSE	TOC	4oz	N	ICE	1100
DD091200	CSE	TPH	4oz	N	ICE	1100

NOTESSignature Carolyn MayerDate 7-10-95 No. Of Bottles 9Page 1 of 1

Arthur D Little**Surface Water/Sediment Sampling Data Sheet**

Date 7-10-95

Client USAEC

Project Ft. Devens

Case No. 67065

LOCATIONSampling Location Description Storm Sewer System 14AType Of Water Body Storm Sewer Outfall

Channel Width _____ Channel Depth _____ Est. Flow _____

Discharge Points (Y/N) Location _____

Odors, Surface Sheen _____

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

No water. Sediment moist, dark brown silty sand, fine-medium sand. Collected inside mouth of outfall about 5-6" deep to concrete.

SAMPLING PROCEDUREEquipment Used (Calibrated Y/N) Stainless Steel spoon and bowlSolvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water RinseDI Water Rinse
Solvent 1 Rinse
DI Water RinseDetergent Wash
DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP	pH	COND	D.O.	FREE CL ⁻ Y/N	TURB	TIME
<u>NA</u>						

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
DX140100	CSE	Rest/PCB	402	N	ICE	0900
DX140100	CSE	Metals	402	N	ICE	0900
DD140100	CSE	Rest/PCB	402	N	ICE	0900
DD140100	CSE	Metals	402	N	ICE	0900
DM140100	CSE	Rest/PCB	402	N	ICE	0900
DM140100	CSE	Metals	402	N	ICE	0900
D2140100	CSE	Rest/PCB	402	N	ICE	0900
D2140100	CSE	Metals	402	N	ICE	0900

NOTESSignature Carolyn Mayer

Date 7-10-95 No. Of Bottles 8

Page 1 of 1

Arthur D Little

Surface Water/Sediment Sampling Data Sheet

Date 7-10-95
Client USAEC
Project Ft. Devens
Case No. 67065

LOCATION

Sampling Location Description Storm Sewer System 70, 14C

Type Of Water Body Storm Saur Outfall

Channel Width _____ Channel Depth _____ Est. Flow _____

Discharge Points (Y/N) Location

Odors, Surface Sheen

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

A hand-drawn map showing a residential area with several streets and landmarks. The map includes the following labels and features:

- Streets: "Crest St.", "Main St.", "S. 1st St.", and "S. 2nd St."
- Landmarks: "Sheep's Hill", "Landfill entrance", "P.T.C. wooded area", and "Dixie".
- Plot numbers: "14A", "203", and "511".

The map is oriented with the top pointing towards the bottom-left. A legend in the top right corner indicates orientation and camping location.

discharge/recharge points, etc.)
No water. Sediments:
Course sand and gravel,
light yellow/brown, trace of
silt. 0-1" diameter

Sample collected about 10' from
storm outfall about 3-4"
deep.

SAMPLING PROCEDURE

Equipment Used (Calibrated Y/N) Stainless Steel Spoon and Bowl

Solvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water Rinse

 DI Water Rinse
Solvent 1 Rinse
DI Water Rinse

Detergent Wash
 DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

FREE CL⁻
Y/N

TEMP pH COND D.O. Y/N TURB TIME

SAMPLING

NOTES

Signature Carolyn Mayer

Date 7-10-95 No. Of Bottles 2

Arthur D Little

Surface Water/Sediment Sampling Data Sheet

Date 7-10-95
Client USAEC
Project Ft. Detrick
Case No. 67065

LOCATION

LOCATION Sampling Location Description Storm Sewer System 21A

Type Of Water Body Storm Sewer Outfall into Willow Brook

Channel Width ~ 4.5' Channel Depth 0 no water Est. Flow NA

Discharge Points (Y/N) Location

Odors, Surface Sheen

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

No water. Light brown course sand, trace of fine gravel.
Sample taken 1' from outfall and about 2-3" deep. Willow Brook has lot of garbage in it (chairs, toys, etc...)

SAMPLING PROCEDURE

Equipment Used (Calibrated Y/N) Stainless Steel Bowl + Spoon

Solvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water Rinse

DI Water Rinse
 Solvent 1 Rinse
 DI Water Rinse

Detergent Wash
DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

FREE CLTM

TEMP pH COND D.O. Y/N TURB TIME

SAMPLING

NOTES

Signature Carolyn Mayer

Date 7-10-95 No. Of Bottles 1

Arthur D Little

Surface Water/Sediment Sampling Data Sheet

Date 7-10-95
Client CISDEC
Project F4, Devers
Case No. 67065

LOCATION

LOCATION Sampling Location Description Storm Sewer System 25B

Type Of Water Body Internal Storm Sewer System

Channel Width _____ Channel Depth _____ Est. Flow _____

Discharge Points (Y/N) Location

Odors, Surface Sheen

LOCATION DIAGRAM (Indicate orientation, sampling locations, discharge/recharge points,etc.)

No water. Sediments consisted of organic matter, silt w/ some coarse sand, lots of pine needles. Top 2" of dirt. Dirt was very hard and dry.

SAMPLING PROCEDURE

Equipment Used (Calibrated Y/N) Pulnar grab sampler, ss bowl + spoon

Solvent 1 Used Liquinox Solvent 2 Used _____ Other _____

Decontamination Procedures Used

□ DI Water Rinse
Solvent 1 Rinse
Solvent 2 Rinse
Solvent 1 Rinse
DI Water Rinse

DI Water Rinse
 Solvent 1 Rinse
 DI Water Rinse

Detergent Wash
 DI Water Rinse

Other

GROUND WATER CHARACTERISTIC

TEMP pH COND D.O. FREE CL₂ Y/N TURB TIME

SAMPLING

SAMPLE	MATRIX	METHOD	VOLUME (ml)	FILTERED (Y/N)	PRESERV.	TIME
DX250200	CSE	BNA	4.02	N	ice	0940
DX250200	CSE	Metals	4.02	N	ice	0940
DR250200	CSE	RES/PCB	4.02	N	ice	0900
DR250200	CSE	BNA	4.0	N	ice	0900
DR250200	CSE	Metals	4.0	N	ice	0900

NOTES

Signature

Carolyn Mayer

Date 7-10-95 No. Of Bottles 5