Задача

Доказать, что Σ является базой канонической топологии на \mathbb{R}^2 .

Каноническая топология на \mathbb{R}^2 это топология, базой которой служат открытые круги, т. е.

$$U^2\in T^2\iff egin{cases} U^2=\emptyset\ orall (x,y)\in U^2 &\exists V^2:V^2=ig\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilonig\}: &V^2\in U^2 \end{cases}$$

N₂1

Условие

 Σ^2 - все открытые круги $B^2((x_0,y_0),\epsilon)=ig\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilonig\}$

Решение

Для того, чтобы Σ^2 была базой канонической топологии T^2 , необходимо, чтобы $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists B^2((x_i,y_i),\epsilon) \in \Sigma^2: \quad x \in B^2 \subseteq U^2$

По условию, $\Sigma^2=\left\{B_i^2|i\in I\right\}$, где $B^2=\left\{(x,y)|(x-x_0)^2+(y-y_0)^2<\epsilon\right\}$, видим, что Σ^2 принадлежит топологии и является набором множеств открытых кругов.

Соответственно, для любого круга из U^2 сможем найти такой же круг из Σ^2 , который будет иметь в центре точку (x,y) и радиус ϵ .

Nº2

Условие

 Σ^∞ - все открытые квадраты $k((x_0,y_0),\epsilon)=\{(x,y)|\max{\{(x-x_0),(y-y_0)\}}<\epsilon\}$

Решение

Для того, чтобы Σ^2 была базой канонической топологии T^2 , необходимо, чтобы $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists k^2((x_i,y_i),\epsilon): \quad x \in k^2 \subseteq U^2.$

Необходимо, чтобы любая точка из любого круга $U^2((x_0,y_0),\epsilon_0)$ могла быть "окружена" квадратом $k^2((x_1,y_1),\epsilon_1)$.

Рассмотрим общий случай, когда нет гарантии, что круг имеет своим центром точку (x_1, y_1) .

Найдём такой квадрат, который будет иметь своим центром эту точку.

Пусть длина $ho=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$. (Евклидова метрика). Тогда для любой точки (x_1,y_1) можно выписать следующее уравнение: $\max{(|x-x_1|,\ |y-y_1|)}<rac{(\epsilon_0ho)}{\sqrt{2}}.$

Тем самым, для любой точки из U^2 найдётся такой квадрат, который будет описывать эту точку.

Ч. Т. Д.

Nº3

Условие

 Σ^1 - все открытые квадраты $k'((x_0)) = \{(x,y) | |x-x_0| + |y-y_0| < \epsilon \}$

Решение

Для того, чтобы Σ^2 была базой канонической топологии T^2 , необходимо, чтобы $\forall U^2 \in T^2 \quad \forall x(x_i,y_i) \in U^2 \quad \exists k'^2((x_i,y_i),\epsilon): \quad x \in k'^2 \subseteq U^2.$

Необходимо, чтобы любая точка из любого круга $U^2((x_0,y_0),\epsilon_0)$ могла быть "окружена" квадратом $k'^2((x_1,y_1),\epsilon_1)$.

Рассмотрим общий случай, когда нет гарантии, что круг имеет своим центром точку $(x_1,y_1).$

Найдём такой квадрат, который будет иметь своим центром эту точку.

Пусть длина $ho=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$. (Евклидова метрика). Тогда для любой точки (x_1,y_1) можно выписать следующее уравнение: $|x-x_1|+|y-y_1|<(\epsilon_0ho)$.

Тем самым, для любой точки из U^2 найдётся такой квадрат, который будет описывать эту точку.

Ч. Т. Д.

Подтверждающий графический материал

https://www.desmos.com/calculator/nh69sl5gvj

Как мы видим, любую точку из множества U^2 топологии можно окружить любой из вышеописанных фигур.