Conditions on Relations

The Clowder Project Authors

July 29, 2025

This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

10.1	Functional and Total Relations	2
	10.1.1 Functional Relations	2
	10.1.2 Total Relations	2
10.2	Reflexive Relations	3
	10.2.1 Foundations	3
	10.2.2 The Reflexive Closure of a Relation	4
10.3	Symmetric Relations	6
	10.3.1 Foundations	6
	10.3.2 The Symmetric Closure of a Relation	6
10.4	Transitive Relations	8
	10.4.1 Foundations	8
	10.4.2 The Transitive Closure of a Relation	9
10.5	Equivalence Relations	11
	10.5.1 Foundations	11
	10.5.2 The Equivalence Closure of a Relation	11
10.6	Quotients by Equivalence Relations	13
	10.6.1 Equivalence Classes	13
	10.6.2 Quotients of Sets by Equivalence Relations	13
A	Other Chapters	18

10.1 Functional and Total Relations

10.1.1 Functional Relations

Let A and B be sets.

Definition 10.1.1.1.1. A relation $R: A \rightarrow B$ is **functional** if, for each $a \in A$, the set R(a) is either empty or a singleton.

Proposition 10.1.1.1.2. Let $R: A \rightarrow B$ be a relation.

- 1. *Characterisations*. The following conditions are equivalent:
 - (a) The relation *R* is functional.
 - (b) We have $R \diamond R^{\dagger} \subset \chi_B$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

• *Item 1a* \Longrightarrow *Item 1b*: Let $(b,b') \in B \times B$. We need to show that

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

i.e. that if there exists some $a \in A$ such that $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, then b = b'. But since $b \sim_{R^{\dagger}} a$ is the same as $a \sim_{R} b$, we have both $a \sim_{R} b$ and $a \sim_{R} b'$ at the same time, which implies b = b' since R is functional.

- *Item 1b* \Longrightarrow *Item 1a*: Suppose that we have $a \sim_R b$ and $a \sim_R b'$ for $b, b' \in B$. We claim that b = b':
 - Since $a \sim_R b$, we have $b \sim_{R^{\dagger}} a$.
 - **–** Since $R ⋄ R^{\dagger} ⊂ χ_B$, we have

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

and since $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, it follows that $[R \diamond R^{\dagger}](b,b') = \text{true}$, and thus $\chi_{B}(b,b') = \text{true}$ as well, i.e. b = b'.

This finishes the proof.

10.1.2 Total Relations

Let *A* and *B* be sets.

Definition 10.1.2.1.1. A relation $R: A \rightarrow B$ is **total** if, for each $a \in A$, we have

 $R(a) \neq \emptyset$.

Proposition 10.1.2.1.2. Let $R: A \rightarrow B$ be a relation.

- 1. *Characterisations*. The following conditions are equivalent:
 - (a) The relation R is total.
 - (b) We have $\chi_A \subset R^{\dagger} \diamond R$.

Proof. Item 1, Characterisations: We claim that *Items 1a* and *1b* are indeed equivalent:

• *Item 1a* \Longrightarrow *Item 1b*: We have to show that, for each $(a, a') \in A$, we have

$$\chi_A(a,a') \preceq_{\{\mathsf{t},\mathsf{f}\}} [R^{\dagger} \diamond R](a,a'),$$

i.e. that if a=a', then there exists some $b\in B$ such that $a\sim_R b$ and $b\sim_{R^{\dagger}} a'$ (i.e. $a\sim_R b$ again), which follows from the totality of R.

• *Item 1b* \Longrightarrow *Item 1a*: Given $a \in A$, since $\chi_A \subset R^{\dagger} \diamond R$, we must have

$${a} \subset [R^{\dagger} \diamond R](a),$$

implying that there must exist some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a$ (i.e. $a \sim_R b$) and thus $R(a) \neq \emptyset$, as $b \in R(a)$.

This finishes the proof.

10.2 Reflexive Relations

10.2.1 Foundations

Let A be a set.

Definition 10.2.1.1.1. A **reflexive relation** is equivalently:

- An \mathbb{E}_0 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$.
- A pointed object in $(\text{Rel}(A, A), \chi_A)$.

Remark 10.2.1.1.2. In detail, a relation *R* on *A* is **reflexive** if we have an inclusion

$$\eta_R \colon \chi_A \subset R$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a \in A$, we have $a \sim_R a$.

¹Note that since Rel(A, A) is posetal, reflexivity is a property of a relation, rather than extra

Definition 10.2.1.1.3. Let *A* be a set.

- 1. The **set of reflexive relations on** A is the subset $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.
- 2. The **poset of relations on** A is is the subposet $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.

Proposition 10.2.1.1.4. Let R and S be relations on A.

- 1. *Interaction With Inverses.* If *R* is reflexive, then so is R^{\dagger} .
- 2. *Interaction With Composition.* If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, *Interaction With Inverses*: Clear. *Item* 2, *Interaction With Composition*: Clear.

10.2.2 The Reflexive Closure of a Relation

Let *R* be a relation on *A*.

Definition 10.2.2.1.1. The **reflexive closure** of \sim_R is the relation $\sim_R^{\text{refl}2}$ satisfying the following universal property:³

(*) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{refl}} \subset \sim_S$.

Construction 10.2.2.1.2. Concretely, \sim_R^{refl} is the free pointed object on *R* in $(\text{Rel}(A, A), \chi_A)^4$, being given by

$$R^{\text{refl}} \stackrel{\text{def}}{=} R \coprod^{\mathbf{Rel}(A,A)} \Delta_A$$

= $R \cup \Delta_A$
= $\{(a,b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } a = b\}.$

Proof. Clear.

Proposition 10.2.2.1.3. Let R be a relation on A.

structure

²Further Notation: Also written R^{refl}.

³Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

⁴Or, equivalently, the free \mathbb{E}_0 -monoid on *R* in (N_•(Rel(*A*, *A*)), χ_A).

1. Adjointness. We have an adjunction

$$\left((-)^{\text{refl}} \dashv \stackrel{\leftarrow}{\boxtimes}\right): \quad \mathbf{Rel}(A, A) \underbrace{\stackrel{(-)^{\text{refl}}}{\sqsubseteq}}_{\stackrel{\leftarrow}{\boxtimes}} \mathbf{Rel}^{\text{refl}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{refl}}(R^{\mathsf{refl}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{refl} = R$.
- 3. Idempotency. We have

$$(R^{\text{refl}})^{\text{refl}} = R^{\text{refl}}.$$

4. Interaction With Inverses. We have

$$\begin{pmatrix}
Rel(A, A) & \xrightarrow{(-)^{\text{refl}}} & Rel(A, A) \\
\begin{pmatrix}
R^{\dagger}
\end{pmatrix}^{\text{refl}} & = \begin{pmatrix}
R^{\text{refl}}
\end{pmatrix}^{\dagger}, & \begin{pmatrix}
& & \\
& & \end{pmatrix}^{\dagger} & \downarrow \\
& & & \\
Rel(A, A) & \xrightarrow{(-)^{\text{refl}}} & Rel(A, A).
\end{pmatrix}$$

5. Interaction With Composition. We have

$$\begin{split} \operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) &\stackrel{\diamond}{\to} \operatorname{Rel}(A,A) \\ (S \diamond R)^{\operatorname{refl}} &= S^{\operatorname{refl}} \diamond R^{\operatorname{refl}}, \quad \underset{(-)^{\operatorname{refl}} \times (-)^{\operatorname{refl}}}{\overset{\circ}{\to}} & \underset{(-)^{\operatorname{refl}} \times (-)^{\operatorname{refl}}}{\overset{\circ}{\to}} \\ \operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) &\stackrel{\diamond}{\to} \operatorname{Rel}(A,A). \end{split}$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 10.2.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, *Idempotency*: This follows from *Item 2*.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.2.1.1.4.

10.3 Symmetric Relations

10.3.1 Foundations

Let A be a set.

Definition 10.3.1.1.1. A relation *R* on *A* is **symmetric** if we have $R^{\dagger} = R$.

Remark 10.3.1.1.2. In detail, a relation *R* is symmetric if it satisfies the following condition:

 (\star) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.

Definition 10.3.1.1.3. Let *A* be a set.

- 1. The **set of symmetric relations on** A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.
- 2. The **poset of relations on** *A* is is the subposet $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

Proposition 10.3.1.1.4. Let R and S be relations on A.

- 1. *Interaction With Inverses.* If R is symmetric, then so is R^{\dagger} .
- 2. *Interaction With Composition.* If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

10.3.2 The Symmetric Closure of a Relation

Let *R* be a relation on *A*.

Definition 10.3.2.1.1. The **symmetric closure** of \sim_R is the relation \sim_R^{symm} 5 satisfying the following universal property:

(*) Given another symmetric relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{symm}} \subset \sim_S$.

Construction 10.3.2.1.2. Concretely, \sim_R^{symm} is the symmetric relation on *A* defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

 $^{^5}$ Further Notation: Also written R^{symm} .

⁶Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

Proof. Clear.

Proposition 10.3.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\text{symm}} \dashv \stackrel{\leftarrow}{\bowtie}): \text{Rel}(A, A) \xrightarrow{\stackrel{(-)^{\text{symm}}}{\rightleftharpoons}} \text{Rel}^{\text{symm}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{symm}}(R^{\mathsf{symm}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{symm}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.
- 3. Idempotency. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}$$

4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{symm}} = (R^{\text{symm}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \qquad \downarrow^{(-)^{\dagger}}$$

$$Rel(A, A) \xrightarrow{(-)^{\text{symm}}} Rel(A, A)$$

$$Rel(A, A) \xrightarrow{(-)^{\text{symm}}} Rel(A, A).$$

5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\diamond} \operatorname{Rel}(A,A)$$

$$(S \diamond R)^{\operatorname{symm}} = S^{\operatorname{symm}} \diamond R^{\operatorname{symm}}, \quad (_{-})^{\operatorname{symm}} \times (_{-})^{\operatorname{symm}} \downarrow \qquad \qquad \downarrow (_{-})^{\operatorname{symm}}$$

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\diamond} \operatorname{Rel}(A,A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 10.3.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, *Interaction With Composition*: This follows from *Item 2* of *Definition 10.3.1.1.4*.

10.4 Transitive Relations

10.4.1 Foundations

Let A be a set.

Definition 10.4.1.1.1. A **transitive relation** is equivalently:⁷

- A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\mathbf{Rel}(A, A)), \diamond)$.
- A non-unital monoid in $(\text{Rel}(A, A), \diamond)$.

Remark 10.4.1.1.2. In detail, a relation *R* on *A* is **transitive** if we have an inclusion

$$\mu_R: R \diamond R \subset R$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a, c \in A$, the following condition is satisfied:

(*) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

Definition 10.4.1.1.3. Let *A* be a set.

- 1. The **set of transitive relations from** A **to** B is the subset $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.

Proposition 10.4.1.1.4. Let R and S be relations on A.

- 1. Interaction With Inverses. If R is transitive, then so is R^{\dagger} .
- 2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272].8

– There is some b ∈ A such that:

*
$$a \sim_R b$$
;

⁷Note that since Rel(A, A) is posetal, transitivity is a property of a relation, rather than extra structure.

⁸*Intuition:* Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

[•] If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:

10.4.2 The Transitive Closure of a Relation

Let *R* be a relation on *A*.

Definition 10.4.2.1.1. The **transitive closure** of \sim_R is the relation $\sim_R^{\text{trans} 9}$ satisfying the following universal property:¹⁰

(*) Given another transitive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{trans}} \subset \sim_S$.

Construction 10.4.2.1.2. Concretely, \sim_R^{trans} is the free non-unital monoid on *R* in $(\text{Rel}(A, A), \diamond)^{11}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \prod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \middle| \text{ there exists some } (x_1, \dots, x_n) \in R^{\times n} \right\}.$$
such that $a \sim_R x_1 \sim_R \dots \sim_R x_n \sim_R b$

Proof. Clear.

Proposition 10.4.2.1.3. Let *R* be a relation on *A*.

1. Adjointness. We have an adjunction

$$((-)^{\text{trans}} \dashv \overline{\Xi}): \quad \mathbf{Rel}(A, A) \underbrace{\overset{(-)^{\text{trans}}}{\succeq}}_{\Xi} \mathbf{Rel}^{\text{trans}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{trans}}(R^{\mathsf{trans}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{trans}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

*
$$b \sim_S c$$
;

– There is some d ∈ A such that:

*
$$c \sim_R d$$
;
* $d \sim_S e$.

⁹Further Notation: Also written R^{trans}.

 $^{^{10}}Slogan$: The transitive closure of R is the smallest transitive relation containing R.

¹¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on *R* in (N_•(Rel(*A*, *A*)), ⋄).

- 2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{\text{trans}} = R$.
- 3. Idempotency. We have

$$(R^{\text{trans}})^{\text{trans}} = R^{\text{trans}}$$
.

4. Interaction With Inverses. We have

$$\begin{pmatrix}
Rel(A, A) & \xrightarrow{(-)^{\text{trans}}} & Rel(A, A) \\
\begin{pmatrix}
R^{\dagger}
\end{pmatrix}^{\text{trans}} & = \begin{pmatrix}
R^{\text{trans}}
\end{pmatrix}^{\dagger}, & \begin{pmatrix}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

5. Interaction With Composition. We have

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\circ} \operatorname{Rel}(A,A)$$

$$(S \diamond R)^{\operatorname{trans}} \neq S^{\operatorname{trans}} \diamond R^{\operatorname{trans}}, \quad (_{-})^{\operatorname{trans}} \times (_{-})^{\operatorname{trans}} \downarrow \qquad (_{-})^{\operatorname{trans}} \downarrow$$

$$\operatorname{Rel}(A,A) \times \operatorname{Rel}(A,A) \xrightarrow{\circ} \operatorname{Rel}(A,A).$$

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 10.4.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, *Idempotency*: This follows from *Item 2*.

Item 4, Interaction With Inverses: We have

$$(R^{\dagger})^{\text{trans}} = \bigcup_{n=1}^{\infty} (R^{\dagger})^{\diamond n}$$

$$= \bigcup_{n=1}^{\infty} (R^{\diamond n})^{\dagger}$$

$$= (\bigcup_{n=1}^{\infty} R^{\diamond n})^{\dagger}$$

$$= (R^{\text{trans}})^{\dagger},$$

where we have used, respectively:

• Definition 10.4.2.1.2.

- Constructions With Relations, ?? of ??.
- Constructions With Relations, ?? of Definition 9.2.3.1.2.
- Definition 10.4.2.1.2.

This finishes the proof.

Item 5, *Interaction With Composition*: This follows from Item 2 of Definition 10.4.1.1.4.

П

10.5 Equivalence Relations

10.5.1 Foundations

Let *A* be a set.

Definition 10.5.1.1.1. A relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive. ¹²

Example 10.5.1.1.2. The **kernel of a function** $f: A \to B$ is the equivalence relation $\sim_{\text{Ker}(f)}$ on A obtained by declaring $a \sim_{\text{Ker}(f)} b$ iff f(a) = f(b).

Definition 10.5.1.1.3. Let A and B be sets.

- 1. The **set of equivalence relations from** A **to** B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.

10.5.2 The Equivalence Closure of a Relation

Let *R* be a relation on *A*.

Definition 10.5.2.1.1. The **equivalence closure**¹⁴ of \sim_R is the relation \sim_R^{eq15} satisfying the following universal property:¹⁶

¹²Further Terminology: If instead R is just symmetric and transitive, then it is called a **partial** equivalence relation.

¹³The kernel $Ker(f): A \rightarrow A$ of f is the underlying functor of the monad induced by the adjunction $Gr(f) + f^{-1}: A \rightleftharpoons B$ in **Rel** of Constructions With Relations, ?? of ??.

¹⁴Further Terminology: Also called the **equivalence relation associated to** \sim_R .

¹⁵Further Notation: Also written R^{eq} .

¹⁶Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

(*) Given another equivalence relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{eq}} \subset \sim_S$.

Construction 10.5.2.1.2. Concretely, \sim_R^{eq} is the equivalence relation on *A* defined by

$$R^{\text{eq}} \stackrel{\text{def}}{=} ((R^{\text{refl}})^{\text{symm}})^{\text{trans}}$$

$$= ((R^{\text{symm}})^{\text{trans}})^{\text{refl}}$$

$$= \begin{cases} (a,b) \in A \times B & \text{there exists } (x_1,\ldots,x_n) \in R^{\times n} \text{ satisfying at least one of the following conditions:} \\ 1. \text{ The following conditions are satisfied:} \\ (a) \text{ We have } a \sim_R x_1 \text{ or } x_1 \sim_R a; \\ (b) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ (c) \text{ We have } b \sim_R x_n \text{ or } x_n \sim_R b; \\ 2. \text{ We have } a = b. \end{cases}$$

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 10.2.2.1.1, 10.3.2.1.1 and 10.4.2.1.1), we see that it suffices to prove that:

- 1. The symmetric closure of a reflexive relation is still reflexive.
- 2. The transitive closure of a symmetric relation is still symmetric.

which are both clear.

Proposition 10.5.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\operatorname{eq}} \dashv \overline{\Xi}): \operatorname{\mathbf{Rel}}(A, B) \underbrace{\overset{(-)^{\operatorname{eq}}}{-}}_{\Xi} \operatorname{\mathbf{Rel}}^{\operatorname{eq}}(A, B),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathrm{eq}}(R^{\mathrm{eq}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{eq} = R$.
- 3. Idempotency. We have

$$(R^{eq})^{eq} = R^{eq}$$
.

Proof. Item 1, Adjointness: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 10.5.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

10.6 Quotients by Equivalence Relations

10.6.1 Equivalence Classes

Let *A* be a set, let *R* be a relation on *A*, and let $a \in A$.

Definition 10.6.1.1.1. The **equivalence class associated to** a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$

$$= \{x \in X \mid a \sim_R x\}. \qquad \text{(since } R \text{ is symmetric)}$$

10.6.2 Quotients of Sets by Equivalence Relations

Let A be a set and let R be a relation on A.

Definition 10.6.2.1.1. The **quotient of** *X* **by** *R* is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{[a] \in \mathcal{P}(X) \mid a \in X\}.$$

Remark 10.6.2.1.2. The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:

- Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.
- Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{ x \in X \mid x \sim_R a \},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have [a] = [a]'.¹⁷

• *Transitivity.* If *R* is transitive, then [a] and [b] are disjoint iff $a \nsim_R b$, and equal otherwise.

Proposition 10.6.2.1.3. Let $f: X \to Y$ be a function and let R be a relation on X.

1. As a Coequaliser. We have an isomorphism of sets

$$X/\sim_R^{\operatorname{eq}} \cong \operatorname{CoEq}(R \hookrightarrow X \times X \stackrel{\operatorname{pr}_1}{\to} X),$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

2. As a Pushout. We have an isomorphism of sets 18

$$X/\sim_R^{\mathrm{eq}} \cong X \coprod_{\mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2)} X,$$

$$X/\sim_R^{\mathrm{eq}} \longleftarrow X$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$X \leftarrow \mathrm{Eq}(\mathrm{pr}_1,\mathrm{pr}_2).$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets 19,20

$$X/\sim_{\mathrm{Ker}(f)} \cong \mathrm{Im}(f).$$

$$\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2)\cong X\times_{X/\sim_R^{\operatorname{eq}}}X, \qquad \qquad \bigcup_{X} \longrightarrow X/\sim_R^{\operatorname{eq}}X$$

$$Ker(f): X \rightarrow X$$

 $^{^{17}}$ When categorifying equivalence relations, one finds that [a] and [a]' correspond to presheaves and copresheaves; see Constructions With Categories, ??.

¹⁸Dually, we also have an isomorphism of sets

¹⁹ Further Terminology: The set $X/\sim_{\text{Ker}(f)}$ is often called the **coimage of** f, and denoted by CoIm(f).

 $^{^{20}}$ In a sense this is a result relating the monad in **Rel** induced by f with the comonad in **Rel** induced by f, as the kernel and image

- 4. *Descending Functions to Quotient Sets, I.* Let *R* be an equivalence relation on *X*. The following conditions are equivalent:
 - (a) There exists a map

$$\overline{f}: X/\sim_R \to Y$$

making the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \bar{f}$$

$$X/\sim_R$$

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).
- 5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then \overline{f} is the *unique* map making the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow q \qquad \exists! \qquad f$$

$$X/\sim_R$$

commute.

6. *Descending Functions to Quotient Sets, III.* Let *R* be an equivalence relation on *X*. We have a bijection

$$\frac{\operatorname{Hom}_{\mathsf{Sets}}(X/\sim_R, Y) \cong \operatorname{Hom}_{\mathsf{Sets}}^R(X, Y),}{\operatorname{Im}(f) \subset Y}$$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$\left(\operatorname{Gr}(f) + f^{-1}\right): A \xrightarrow{\int_{f^{-1}}^{\operatorname{Gr}(f)} B}$$

of Constructions With Relations, ?? of ??.

natural in $X,Y \in \text{Obj}(\mathsf{Sets})$, given by the assignment $f \mapsto \overline{f}$ of Items 4 and 5, where $\mathsf{Hom}^R_{\mathsf{Sets}}(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\text{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{ then} \\ f(x) = f(y) \end{array} \right\}.$$

- 7. *Descending Functions to Quotient Sets, IV.* Let *R* be an equivalence relation on *X*. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map \overline{f} is an injection.
 - (b) We have R = Ker(f).
 - (c) For each $x, y \in X$, we have $x \sim_R y$ iff f(x) = f(y).
- 8. *Descending Functions to Quotient Sets, V.* Let *R* be an equivalence relation on *X*. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map $f: X \to Y$ is surjective.
 - (b) The map $\overline{f}: X/\sim_R \to Y$ is surjective.
- 9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:
 - (a) The map f satisfies the equivalent conditions of Item 4:
 - There exists a map

$$\overline{f}: X/\sim_R^{\mathrm{eq}} \to Y$$

making the diagram

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \bar{f}$$

$$X/\sim_R^{\text{eq}}$$

commute.

• For each $x, y \in X$, if $x \sim_R^{eq} y$, then f(x) = f(y).

(b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

Proof. Item 1, *As a Coequaliser*: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro25c].

Item 5, *Descending Functions to Quotient Sets, II*: See [Pro25d].

Item 6, *Descending Functions to Quotient Sets, III*: This follows from Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro25b].

Item 8, *Descending Functions to Quotient Sets, V:* See [Pro25a].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item 8a \Longrightarrow Item 8b is clear.

Conversely, suppose that, for each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (*) There exist $(x_1, ..., x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - The following conditions are satisfied:
 - * We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - * We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \le i \le n-1$;
 - * We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

A Other Chapters

Preliminaries 10. Conditions on Relations

1. Introduction Categories

2. A Guide to the Literature 11. Categories

Sets

12. Presheaves and the Yoneda
3. Sets
Lemma

4. Constructions With Sets Monoidal Categories

 Monoidal Structures on the Category of Sets
 Constructions With Monoidal Categories

6. Pointed Sets Bicategories

7. Tensor Products of Pointed Sets
14. Types of Morphisms in Bicategories

8. Relations Extra Part

9. Constructions With Relations 15. Notes

References

[MSE 2096272] Akiva Weinberger. Is composition of two transitive relations transitive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/2096272 (cit. on p. 8).

[Pro25a] Proof Wiki Contributors. Condition For Mapping from Quotient Set To Be A Surjection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Surjection (cit. on p. 17).

[Pro25b] Proof Wiki Contributors. Condition For Mapping From Quotient Set To Be An Injection—Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_Set_to_be_Injection (cit. on p. 17).

[Pro25c] Proof Wiki Contributors. *Condition For Mapping From Quotient Set To Be Well-Defined — Proof Wiki*. 2025. URL: https:

References 19

//proofwiki.org/wiki/Condition_for_Mapping_from_
Quotient_Set_to_be_Well-Defined (cit. on p. 17).

[Pro25d]

Proof Wiki Contributors. *Mapping From Quotient Set When Defined Is Unique*—*Proof Wiki*. 2025. URL: https://proofwiki.org/wiki/Mapping_from_Quotient_Set_when_Defined_is_Unique (cit. on p. 17).