101 : Groupe opérant sur un ensemble. Exemples d'applications.

Dans cette leçon, G désigne un groupe de neutre 1, et X désigne un ensemble.

I. Action d'un groupe sur un ensemble

A. Définitions et premiers exemples

Définition 1 ([R] 19, [U] 27). Une action de G sur X est une application $G \times X \to X$ définie par $(g,x) \mapsto g \cdot x$ vérifiant

- 1. $\forall (g, g') \in G^2, \forall x \in X, g' \cdot (g \cdot x) = (g'g) \cdot x$
- 2. $\forall x \in X, 1 \cdot x = x$

Pour signigier que G agit sur X, on note $G \circlearrowleft X$.

Exemple 2 ([R] 19, [U] 28). — $\mathfrak{S}(X) \circlearrowleft X$ par $\sigma \cdot x = \sigma(x)$

- Si E est un espace vectoriel, alors $GL(E) \circlearrowleft E$ par $\varphi \cdot x = \varphi(x)$
- $-(g,x)\mapsto x$ est une action de G sur X, appelée action triviale.

Proposition 3 ([R] 19, [U] 28). La donnée d'une action $(g,x) \mapsto g \cdot x$ de G sur X équivaut à la donnée d'un morphisme $\varphi: G \to \mathfrak{S}(X), g \mapsto [x \mapsto g \cdot x],$ appelé morphisme associé à l'action de G sur X.

Définition 4 ([R] 19/21, [U] 29). *Soit* $x \in X$. *Alors* :

- L'orbite de x est l'ensemble $Orb(x) = \{g \cdot x \mid g \in G\}$ (aussi noté $G \cdot x$);
- Le stabilisateur de x est l'ensemble $Stab(x) = \{g \in G \mid g \cdot x = x\}.$

Proposition 5 ([U] 34/37). 1. $G \circlearrowleft G$ par $g \cdot h = ghg^{-1}$ (on l'appelle action par conjugaison). Le stabilisateur de $h \in G$ est appelé centralisateur de h, et est noté C(h).

2. G agit sur l'ensemble de ses sous-groupes par $g \cdot H = gHg^{-1}$ (action par conjugaison). Le stabilisateur de $H \leq G$ est appelé normalisateur de H, et est noté N(H).

Définition 6 ([R] 20, [U] 29/31). On dit que l'action de G sur X est transitive si elle n'a qu'une seule orbite, i.e. si $\forall (x,y) \in X^2, \ \exists \ g \in G : g = g \cdot x.$

On dit que l'action de G sur X est fidèle si φ est injective.

Exemple 7 ([U] 31). — $\mathfrak{S}_n \circlearrowleft \llbracket 1, n \rrbracket$ transitivement par $\sigma \cdot i = \sigma(i)$

- $G \circlearrowleft G$ fidèlement par $g \cdot h = gh$ (on l'appelle action par translation à gauche)
- Soit H un sous-groupe de G. L"'action de G sur G/H définie par $g \cdot xH = gxH$, appelée action par translation à gauche, est transitive.

Proposition 8 ([R] 21). Pour tout $x \in X$, Stab(x) est un sous-groupe de G.

Proposition 9 ([U] 30). $xRy \iff \exists g \in G : g = g \cdot x$ définit une relation d'équivalence sur X dont les classes sont les orbites de l'action de G sur X.

Corollaire 10 ([U] 30). Les orbites partitionnent X.

Exemple 11 ([U] 41). Soit $\sigma \in \mathfrak{S}_n$. Le groupe $\langle \sigma \rangle$ agit sur $[\![1,n]\!]$ par $\sigma^k \cdot i = \sigma^k(i)$. Les orbites non ponctuelles sont les supports des cylches dans la décomposition en produit de cycles à supports disjoints de σ .

Dans cette leçon, G désigne un groupe de neutre 1, et X B. Cas d'un groupe et d'un ensemble finis

Dans ce paragraphe, on suppose G et X finis. On pose $n = \operatorname{Card}(G)$.

Théorème 12 (de Caylay - [R] 21, [U] 31). G s'identifie à un sous-groupe de \mathfrak{S}_n .

Proposition 13 ([R]?, [U]?). $\forall (x,y) \in X^2, y \in Orb(x) \implies \exists g \in G : Stab(y) = g Stab(x)g^{-1}.$

Théorème 14 (Relation orbite-stabilisateur - [R] 21). Pour tout $x \in X$, $G/\operatorname{Stab}(x)$ et $\operatorname{Orb}(x)$ sont équipotents (cela reste vrai si G est infini). Par conséquent,

$$Card(G) = Card(Stab(x)) Card(Orb(x))$$

Théorème 15 (Équation aux classes - [R] 21). Soit $\{x_1, \ldots, x_r\}$ un système de représentants pour les orbites. Alors.

$$\operatorname{Card} X = \sum_{i=1}^{r} \operatorname{Card}(\operatorname{Orb}(x_i)) = \sum_{i=1}^{r} \frac{\operatorname{Card} G}{\operatorname{Card}(\operatorname{Stab}(x_i))}$$

Exemple 16 ([R] 22). Si Card G est une puissance d'un nombre premier, alors son centre $Z(G) := \{g \in G \mid \forall h \in G, ghg^{-1} = h\}$ n'est pas réduit à $\{1\}$.

Corrolaire ([R] 23) : tout groupe d'ordre p^2 avec p premier est abélien.

Théorème 17 (Formule de Burnside - [R] 35). L'action de G sur X possède $\frac{1}{\operatorname{Card} G} \sum_{g \in G} \operatorname{Card}(\operatorname{Fix}(g))$ orbites, où $\operatorname{Fix}(g) = \{x \in X \mid g \cdot x = x\}$.

Exemple 18 ([C] 132). En moyenne, une permutation de [1, n] tirée aléatoirement a 1 point fixe.

Exemple 19 ([C] 132). Si G n'est pas abélien, alors la probabilité de tirer simultanément deux éléments qui commutent vaut $\frac{k}{n}$, avec k le nombre de classes de conjugaison de G.

Théorème 20 (de Cauchy - [R] 23). Soit p un nombre premier. Si $p \mid \operatorname{Card} G$, alors G admet un élément d'ordre p.

II. Applications

A. En géométrie : les isométries des polytopes

Théorème 21 ([R] 94). L'ensemble des isométries du plan conservant un triangle équilatéral est un groupe isomorphe à \mathfrak{S}_3 .

Proposition 22 ([R] 82). Soit C un cube. L'ensemble des isométries de l'espace conservant C est un groupe, noté Is(C). On note $Is^+(C)$ le sous-groupe de C formé de rotations.

Théorème 23 ([R] 85). $Is^+(\mathcal{C}) \cong \mathfrak{S}_4 \ et \ Is(\mathcal{C}) \cong \mathfrak{S}_4 \times \mathbb{Z}/2\mathbb{Z}$.

Théorème 24 ([R] 95). En notant \mathcal{T} le tétraèdre régulier, on a $Is^+(\mathcal{T}) \cong \mathcal{A}_4$ et $Is(\mathcal{T}) \cong \mathfrak{S}_4$.

B. Du côté des matrices

Dans ce paragraphe, K désigne un corps. On fixe $(n, m) \in (\mathbb{N}^*)^2$.

Proposition 25 ([R] 184/185/199/195/206). Les applications suivantes sont des actions :

- 1. Translation à gauche : $GL_n(K) \times \mathcal{M}_{n,m}(K) \rightarrow \mathcal{M}_{n,m}(K), (P,A) \mapsto PA$
- 2. Translation à droite : $GL_n(K) \times \mathcal{M}_{n,m}(K) \to \mathcal{M}_{n,m}(K)$, $(P,A) \mapsto AP^{-1}$
- 3. Similitude (ou conjugaison) : $GL_n(K) \times \mathcal{M}_n(K) \to \mathcal{M}_n(K), (P, A) \mapsto PAP^{-1}$
- 4. Équivalence (ou action de Steiniz) : $(GL_n(K) \times GL_m(K)) \times \mathcal{M}_{n,m}(K) \to \mathcal{M}_{n,m}(K),$ $((P,Q),A) \mapsto PAQ^{-1}$
- 5. Congruence: $GL_n(K) \times \mathcal{M}_n(K) \to \mathcal{M}_n(K), (P, A) \to {}^tPAP$

Proposition 26 ([R] 184/185/?/195/207). Dans l'ordre de la proposition précédente, les orbites sont caractérisées par :

- 1. le noyau de A
- 2. l'image de A
- 3. les molynômes minimal et caractéristique de A
- 4. Ca dépend de K...

Exemple 27. Diag(1,2,2) et Diag(1,1,2) ont même polynôme minimal mais ne sont pas semblables : il faut donc bien les deux informations!

C. Théorèmes de Sylow

Dans ce paragraphe, on se donne p premier, et on note $\operatorname{Card} G = p^{\alpha} m, \ m \wedge p = 1.$

Définition 28 ([U] 85). Un p-Sylow de G est un sous-groupe de G de cardinal p^{α} .

 $Syl_p(G)$ désigne l'ensemble des p-Sylow de G, et $n_p:=\mathrm{Card}(Syl_p(G)).$

Théorème 29 (de Sylow - [U] 87). Soit G un groupe d'ordre $p^{\alpha}m$, $m \wedge p = 1$. Alors,

- 1. $Syl_p(G) \neq$
- 2. G agit transitivement sur $Syl_n(G)$ par conjugaison
- 3. $n_p \equiv 1 [p]$

Définition 30. On dit que G est simple si les seuls sousgroupes de G distingués (i.e. fixe par l'action par conjugaison de G) sont $\{1\}$ et G.

Théorème 31 ([S] 277). Si G est simple et d'ordre 60, alors $G \cong \mathcal{A}_5$.

Développements

- Développement 1 : Théorème 23
- Développement 2 : Théorème 31

Références

- U Théorie des groupes, Félix Ulmer
- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- S Algèbre pour la licence 3, Szpirglas
- C Carnets de voyage en Algébrie, Caldero

FIGURE : Isometries du cube

414

102 : Groupe des nombres complexes de module 1. Racines de l'unité. Applications.

I. Les nombres complexes de module 1

Définition 1. L'ensemble des nombres complexes de module 1, aussi appelé cercle unité, est noté $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}.$

A. Autour de l'exponentielle

Définition 2 ([T] 43/44/45). Pour $z \in \mathbb{C}$, on définit :

- $-\exp(z) = e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ (l'exponentielle de z)
- $-\sin(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} (le \text{ sinus } de \ z)$
- $-\cos(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!}$ (le cosinus de z)

Proposition 3 ([T] 43/35/44). — exp, cos et sin sont des séries entières de rayon de convergence infini. En particulier, elles sont entières. De plus, exp' = exp.

- $-\forall z \in \mathbb{C}, e^{iz} = \cos(z) + i\sin(z)$
- $\forall \theta \in \mathbb{R}, |e^{i\theta}| = 1$

Proposition 4 ([T] 44/44). $-\theta \mapsto e^{i\theta}$ est périodique. On note τ sa période. C'est un morphisme de groupes surjectif de $(\mathbb{R}, +)$ dans (S^1, \times) .

— exp est un morphisme de groupes surjectif de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \times) . Son noyau est $i\tau\mathbb{Z}$.

Définition 5 ([T] 44). $\pi := \tau/2$. On admet que π est transcendant sur \mathbb{O} .

Proposition 6 ([T] 45). — Formules d'Euler : $\forall z \in \mathbb{C}$, $\cos(z) = \frac{e^z + e^{-z}}{2} \in \mathbb{R}$, $\sin(z) = \frac{e^z - e^{-z}}{2i} \in \mathbb{R}$

— Formule de Moivre : $\forall \theta \in \mathbb{R}, \forall n \in \mathbb{N}, (e^{i\theta})^n = e^{in\theta}$

Remarque 7 (c.f. Figure 1). \triangleright La formule de Moivre est fausse pour n non entier : $1 = (e^{2i\pi})^{1/2} \neq e^{i\pi} = -1$

 $> \cos^2 + \sin^2 = 1$

 $\triangleright \ \forall \theta \in \mathbb{R}, \cos(\theta) = \Re(e^{i\theta}) \ et \sin(\theta) = \Im(e^{i\theta})$

Application 8. Avec les formules de Moivre et d'Euler, pour tous $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$, $\cos(n\theta) \in \mathbb{R}[\cos(\theta)]$ et $\sin(n\theta) \in \mathbb{R}[\sin(\theta)]$.

(Appli : problème de trisection de l'angle - voir II. B)

Application 9 (Polynômes de Techebychev). Ce sont les polynômes tels que $\forall n \in \mathbb{N}, \forall \theta \in \mathbb{R}, \cos(n\theta) = T_n(\theta)$ et on $a: T_0 = 1, T_1 = X, \text{ et } \forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - Tn.$

Application 10 (Noyaux de Dirichlet et de Fejér). $\forall \theta \in \mathbb{R}/2\pi\mathbb{Z}, \forall n \in \mathbb{N}^*,$

$$D_N(\theta) := \sum_{n=-N}^{N} e^{in\theta}$$

$$K_n(\theta) := \frac{1}{N} \sum_{n=0}^{N-1} D_N(\theta) = \left(\frac{\sin(N\theta/2)}{\sin(\theta/2)}\right)^2$$

Théorème 11 ([R] 101). $\forall z \in S^1, \exists ! \theta \in]-\pi,\pi] : z = e^{i\theta}$

Définition 12 ([R] 102). Soit $z \in \mathbb{C}^*$. D'après théorème 11, il existe un unique $\theta \in]-\pi,\pi]$, appelé argument principal de z, noté $\arg(z)$, tel que $z=|z|e^{i\theta}$.

On appelle (un) argument de z tout réel θ tel que $z = |z|e^{i\theta}$. Les arguments de z sont congrus à $\arg(z)$ modulo 2π .

Définition 13 ([T] 63). On appelle détermination principale du logarithme complexe l'application :

$$\log : \mathbb{C} \setminus \mathbb{R}^- \longrightarrow B_{\pi} := \{ z \in \mathbb{C} \mid |\Im(z)| < \pi \}$$
$$z \longmapsto \ln(|z|) + i \arg(z)$$

Proposition 14. exp induit une bijection de B_{π} sur $\mathbb{C} \setminus \mathbb{R}^{-}$, de réciproque log.

Théorème 15 (de relèvement - ADMIS). Soit $I \subseteq \mathbb{R}$ un intervalle et $k \in \mathbb{N}$. Pour tout $f \in C^k(I, S^1)$, il existe $\varphi \in C^k(I, \mathbb{R})$ telle que $f = e^{i\varphi}$.

B. Les racines de l'unité

Définition 16 ([P] 80). Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$. On dit que z est une racine n-ième de l'unité $sir\ z^n=1$. On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. On dit que z est une racine de l'unité $sur\ z \in \mathbb{U} := \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$.

Proposition 17. $\mathbb{U}_n = \left\{ e^{i\frac{2k\pi}{n}} \mid k \in \mathbb{N} \right\} = \left\{ e^{i\frac{2k\pi}{n}} \mid 0 \le k \le n-1 \right\} = \langle \omega_n \rangle, \quad où \quad \omega_n := e^{i\frac{2\pi}{n}}. \quad En$ particulier, $\mathbb{U}_n \cong \mathbb{Z}/n\mathbb{Z}$.

Proposition 18. $\forall n \geq 2, \ \sum_{\omega \in \mathbb{U}} \omega = 0, \ \omega^n = 1, \ \overline{\omega_n} = \omega_n^{n-1}.$

Définition 19 ([P] 80). Soit $n \in \mathbb{N}^*$. On dit que $\zeta_n \in \mathbb{C}$ est une racine primitive n-ième de l'unité si $\mathbb{U}_n = \langle \zeta_n \rangle$. On note μ_n^* l'ensemble des racine primitives n-ièmes de l'unité, i.e. des générateurs de \mathbb{U}_n .

Proposition 20 ([P] 80, cf FIGURE 2).

$$\mu_n^* = \left\{ \omega_n^k \mid k \land n = 1 \right\}$$

Exemple 21. $\mathbb{U}_2 = \{\pm 1\}, \ \mathbb{U}_3 = \{1, e^{2i\pi/3}, e^{-2i\pi/3}\} = \{1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2}\}, \ \mathbb{U}_4 = \{\pm 1, \pm i\}.$

Proposition 22 ([P] 80, [Rb] 18). *Soit* $(n, d) \in (\mathbb{N}^*)^2$.

 $\triangleright \mathbb{U}_d \subseteq \mathbb{U}_n \iff d \mid n$

ightharpoonup Card $\mu_n^* = \varphi(n)$ (indicatrice d'Euler)

 $\triangleright \mathbb{U}_n = \sqcup_{d|n} \mu_d^*$

 $\triangleright n = \sum_{d|n} \varphi(d)$

Remarque 23. Soient $a \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$. Une racine nième de a est un nombre complexe z vérifiant $z^n = a$. Posons $z_0 := |a|^{\frac{1}{n}} \exp(i\frac{\arg a}{n})$, de sorte que $z_0^n = a$. Si $z^n = a$, alors $\left(\frac{z}{z_0}\right)^n = 1$, i.e. $\frac{z}{z_0} \in \mathbb{U}_n$, donc il existe $k \in [0, n-1]$ tel que $z = z_0 e^{i\frac{2k\pi}{n}}$.

Théorème 24 ([Rb] 114/132). Soit H un sous-groupe de S^1 . Si H est fini d'ordre n, alors $H = \mathbb{U}_n$. Sinon, H est dense dans S^1 .

Application 25 ([Rb] 132). $\overline{\{\cos(n) \mid n \in \mathbb{N}\}}$ = $\overline{\{\sin(n) \mid n \in \mathbb{N}\}}$ = [0, 1]

Théorème 26 (de Niven). Soit $r \in \mathbb{Q}$. Si $\cos(r\pi) \in \mathbb{Q}$, alors $r \in \{0, \frac{1}{3}, \frac{1}{2}\}$. Si $\sin(r\pi) \in \mathbb{Q}$, alors $r \in \{0, \frac{1}{6}, \frac{1}{2}\}$.

Corollaire 27. $\mathbb{U} \cap \mathbb{Q}[i] = \{\pm 1, \pm i\}$

C. Polynômes cyclotomiques

Soit $n \in \mathbb{N}^*$.

Définition 28 ([P] 80). On appelle n-ième polynôme cyclotomique le polynôme $\Phi_n := \prod_{\zeta \in \mu_n^*} (X - \zeta)$.

Exemple 29 ([P] e81). $\Phi_1 = X - 1$, $\Phi_2 = X + 1$, $\Phi_3 = X^2 + X + 1$, $\Phi_4 = X^2 + 1$, ...

Proposition 30 ([P] 80-83). $\triangleright \deg(\Phi_n) = \varphi(n)$

- $\triangleright X^n 1 = \prod_{d|n} \Phi_d$
- $\triangleright \Phi_n \in \mathbb{Z}[X]$
- $\triangleright \Phi_n$ est irréductible sur \mathbb{Q}
- $ightharpoonup \Phi_n$ est le polynôme minimal de $\zeta \in \mu_n^*$ sur \mathbb{Q}

Proposition 31. Pour tout p premier,

$$\Phi_p = \frac{X^p - 1}{X - 1} = X^{p-1} + X^{p-2} + \dots + X + 1$$

D. Applications

Théorème 32 (de Wedderburn - [P] 82). Tout corps fini est commutatif.

Théorème 33 (de Kronecker - [FGN] 213). Soit $P \in \mathbb{Z}[X]$ unitaire dont toutes les racines sont de module ≤ 1 , et tel que $P(0) \neq 0$. Alors toutes les racines de P sont des racines primitives de l'unité.

Corollaire 34 (théorème de Kronecker - [Go] 95). Soit $P \in \mathbb{Z}[X]$ irréductible sur \mathbb{Q} . Si toutes les racines de P sont de module ≤ 1 , alors P = X ou P est cyclotomique.

II. Liens avec la géométrie

A. Notion d'angle orienté

On note $S^1(0,1)$ le cercle unité de \mathbb{R}^2 pour la norme euclidienne, qui s'identifie à S^1 . Pour $z \in \mathbb{C}$, on note M_z le point de \mathbb{R}^2 d'affixe z.

On note $\mathcal B$ une base orthonormée de $\mathbb R^2$, que l'on décrète directe.

Proposition 35. $\forall (\overrightarrow{u}, \overrightarrow{v}) \in S^1(0,1)^2, \exists ! r \in SO(\mathbb{R}^2) : \overrightarrow{v} = r(\overrightarrow{u})$

Théorème 36 ([P] 146). On dispose des isomorphismes de groupes suivant :

$$\mathbb{R}/2\pi\mathbb{Z} \longrightarrow S^1 \qquad \longrightarrow SO_2(\mathbb{R}) \qquad \longleftarrow SO(\mathbb{R}^2)$$
 $\theta \longmapsto e^{i\theta} \qquad \longmapsto R(\theta) \qquad \longleftarrow r_{\theta}$

 $NB:R(\theta)$ est la matrice de rotation 2D d'angle θ (cos, -sin // sin, cos).

Corollaire 37. La relation $(\overrightarrow{u}, \overrightarrow{v}) \mathcal{R}(\overrightarrow{u'}, \overrightarrow{v'}) \iff \exists r \in SO(\mathbb{R}^2) : \overrightarrow{u'} = r(\overrightarrow{u}) \text{ et } \overrightarrow{v'} = r(\overrightarrow{v}) \text{ est une relation d'équivalence sur } (S^1)^2.$

Définition 38 ([P] 146 - FIGURE 3). Soit $(\overrightarrow{u}, \overrightarrow{v}) \in (S^2)^2$.

- $ightharpoonup On appelle angle orienté de <math>\overrightarrow{u}$ à \overrightarrow{v} la classe d'équivalence $de(\overrightarrow{u}, \overrightarrow{v}) dans(S^1)^2/\mathcal{R}$, que l'on note $(\widehat{\overrightarrow{u}}, \overrightarrow{v})$.
- ightharpoonup Une mesure $de(\widehat{\overrightarrow{u}}, \overrightarrow{v})$ est un réel θ tel que $\overrightarrow{v} = r_{\theta}(\overrightarrow{u})$.
- ightharpoonup La mesure principale $de(\widehat{\overrightarrow{u}}, \overrightarrow{v})$ est la mesure $de(\widehat{\overrightarrow{u}}, \overrightarrow{v})$ entre $-\pi$ et π .

Définition 39. On étend la définition aux couples de vecteurs non nuls $(\overrightarrow{u}, \overrightarrow{v})$ en posant :

$$(\widehat{\overrightarrow{u},\overrightarrow{v}}) := \left(\widehat{\frac{\overrightarrow{u}}{\|\overrightarrow{u}\|}, \frac{\overrightarrow{v}}{\|\overrightarrow{v}\|}}\right)$$

Remarque 40. Si $z_{\overrightarrow{u}}$ est l'affixe de $\overrightarrow{u} \in \mathbb{R}^2$, alors l'affixe de $r_{\theta}(\overrightarrow{u})$ est $e^{i\theta}z_{\overrightarrow{u}}$.

Remarque 41. En notant $\langle \cdot | \cdot \rangle$ le produit scalaire euclidien de \mathbb{R}^2 , on appelle écart angulaire entre deux vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} le réel $\alpha = \arccos\left(\frac{\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle}{\|\overrightarrow{u} \| \| \|\overrightarrow{v} \|}\right)$. Si θ est la mesure principale de $(\overrightarrow{u}, \overrightarrow{v})$, alors $\alpha = |\theta|$.

Plus précisement, si \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens (resp. de sens opposé), alors $\alpha = \theta = 0$ (resp. $\alpha = \theta = \pi$) et sinon, si $(\overrightarrow{u}, \overrightarrow{v})$ est directe, alors $\alpha = \theta$ et sinon $\alpha = -\theta$.

Proposition 42 ([Bu] 497). Une mesure de $(\overrightarrow{u}, \overrightarrow{v})$ est un réel θ vérifiant

$$e^{i\theta} = \frac{\langle \overrightarrow{u} \mid \overrightarrow{v} \rangle + i \det_{\mathcal{B}}(\overrightarrow{u}, \overrightarrow{v})}{\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\|}$$

Définition 43. Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls d'écart angulaire α . On dit que $(\overrightarrow{u}, \overrightarrow{v})$ est nul si $\alpha = 0$, plat si $\alpha = \pi$, droit si $\alpha = \pi/2$, aigu si $\alpha < \pi/2$ et obtus si $\alpha > \pi/2$.

B. Autour des polygônes réguliers - groupes diédraux, constructibilité

Soit n > 3.

Définition 44. Le polygône régulier à n côtés est le polygône convexe P_n du plan dont les sommets sont, dans l'ordre, les points d'affixes $1, \omega_n, \omega_n^2, \ldots, \omega_n^{n-1}$.

Proposition 45. L'ensemble des isométries du plan conservant P_n est un groupe, appelé groupe diédral d'ordre 2n et noté D_{2n} . Il est engendré par la rotation d'angle $\frac{2\pi}{n}$ centrée à l'origine (correspondant à $z \mapsto \omega_n z$ en termes d'affixes) et la symétrie d'axe (Ox) (correspondant à la conjugaison en termes d'affixes).

Définition 46 ([P] 68). On dit que $z \in \mathbb{C}$ est constructible si on peut tracer l'image de z dans le plan uniquement avec un compas et une règle non graduée. On dit que P_n est constructible si ω_n l'est.

Théorème 47 (de Gauss-Wantzel - FIGURES 2,4). P_n est constructible si, et seulement si, n est de la forme $n=2^mp_1\dots p_r$, avec $m\in\mathbb{N}$ et p_1,\dots,p_r des nombres premiers de Fermat (i.e. 3,5,17,257,65537).

C. Application : une caractérisation de 7

Théorème 48 (de Gauss-Lucas - [FGN] 225). Soit $P \in \mathbb{C}[X]$ non constant.

$$Z - \mathbb{C}(P') \subset Conv(Z_{\mathbb{C}}(P))$$

 $o\dot{u}$, $si\ Z_{\mathbb{C}}(P) = \{\alpha_1, \dots, \alpha_r\}$, alors:

$$Conv(Z_{\mathbb{C}}(P)) = \left\{ \sum_{k=1}^{r} \lambda_k \alpha_k \mid (\lambda_1, \dots, \lambda_r) \in [0, 1]^r, \sum_{k=1}^{r} \lambda_k = 1 \right\}$$

Application 49. 7 est le plus grand entier $n \geq 2$ tel que :

$$Z_{\mathbb{C}}((X+1)^n - X^n - 1) \subseteq \{z \in \mathbb{C} \mid |z| = 1\}$$

Développements

- Développement 1 : Théorème 33 et Corrolaire 34
- Développement 2 : Théorème 48 et Application 49

Références

- Rb Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- Rb Eléments d'analyse réelle, Rombaldi
 - P Perrin
- FGN Oraux X-ENS, Algèbre 1, 2è édition (Francinou)
 - T Analyse complexe, Tauvel
 - Bu Burg

105 : Groupe des permutations d'un ensemble fini. Applications.

I. Permutations d'un ensemble fini

A. Introduction

Définition 1 ([R] 37). Soit E un ensemble. On note $\mathfrak{S}(E)$ l'ensemble des bijections de E dans E. On l'appelle groupe symétrique de E. On notera plus simplement $\mathfrak{S}_n = \mathfrak{S}(\llbracket 1, n \rrbracket)$. On appelle permutation de E un élément de $\mathfrak{S}(E)$.

Proposition 2. $\mathfrak{S}(E)$ est un groupe pour la composition, de neutre l'identité de E.

Proposition 3 ([R] 39). Si E et F sont deux ensembles équipotents, alors $\mathfrak{S}(E)$ et $\mathfrak{S}(F)$ sont isomorphes (en tant que groupes).

Proposition 4 ([R] 39). Pour $n \geq 3$, \mathfrak{S}_3 n'est pas commutatif.

Dans toute la suite, on étudiera \mathfrak{S}_n pour $n \geq 3$.

Proposition 5 ([R] 40). $\#\mathfrak{S}_n = n!$

Notation ([U] 41). Soit $\sigma \in \mathfrak{S}_n$. On représentera σ par la matrice $2 \times n$:

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

B. Action naturelle de \mathfrak{S}_n sur $[\![1,n]\!]$, conséquences

Proposition 6 ([U] 41). \mathfrak{S}_n agit naturellement sur [1, n] par $\sigma \cdot i = \sigma(i)$. Le morphisme associé est l'identité de \mathfrak{S}_n .

Définition 7 ([U] 42). On note $Fix(\sigma)$ l'ensemble des points fixes de $\sigma \in \mathfrak{S}_n$. Son complémentaire dans [1, n] est appelé support de σ , et est noté $Supp(\sigma)$.

Proposition 8 ([U] 43). Soit $\sigma \in \mathfrak{S}_n$. Le sous-groupe $\langle \sigma \rangle$ agit sur [1, n] par restriction de l'action de \mathfrak{S}_n . Les orbites de cette action sont appelées σ -orbites. La réunion des σ -orbites ponctuelles est $\operatorname{Fix}(\sigma)$. Les σ -orbites non ponctuelles partitionnent $\operatorname{Supp}(\sigma)$.

Exemple 9. Soit $\sigma = (\frac{1}{2} \, \frac{2}{3} \, \frac{3}{5} \, \frac{4}{5})$. On a Supp $(\sigma) = \{1, 2\} \sqcup \{4, 5\} = \langle \sigma \rangle \cdot \{1\} \sqcup \langle \sigma \rangle \cdot \{4\}$.

Définition 10 ([U] 43). Un k-cycle $(2 \le k \le n)$ est une permutation n'ayant qu'une seule σ -orbite non ponctuelle $\{i_1,\ldots,i_k\}$. On la note $\sigma=(i_1,\ldots,i_k)$ pour signifier que $\forall j \notin \{i_1,\ldots,i_k\}, \ \sigma(j)=j \ \text{et} \ \sigma(i_j)=i_{j+1} \ \text{en regardant les}$ indices modulo k.

Un 2-cycle est appelé transposition.

Proposition 11 ([U] 43). $(i_1, i_2, ..., i_k)$ $(i_2, i_3, ..., i_k, i_1) = \cdots = (i_k, i_1, i_2, ..., i_{k-1})$

Proposition 12. Un k-cycle est d'ordre k.

C. Décomposition d'une permutation, conséquences

Proposition 13 ([U] 42). Deux permutations à supports disjoints commutent.

Théorème 14 ([U] 43). Toute permutation se décompose de manière unique (à l'ordre des facteurs près) comme produit de cycles à supports disjoints.

Algorithme 15 ([U] 43). Pour trouver une telle décomposition, il suffit de trouver les r-orbites.

- 1. On calcule $\sigma(1), \sigma^2(1), \ldots$ justqu'à trouver $\sigma^{k_1}(1) = 1$ (NB: $k_1 \leq n$);
- 2. On pose $i_2 = \min[1, n] \setminus (\langle \sigma \rangle \cdot \{1\})$, et de même on calcule $\sigma(i_2), \sigma^2(i_2), \ldots$ jusqu'à trouver $\sigma^{k_2}(i_2) = i_2$;
- 3. On itère jusqu'à épuiser [1, n].

 $\begin{array}{lll} On & a & alors & \sigma & = & (1,\sigma(1),\ldots,\sigma^{k_1-1}(1)) & \circ \\ (i_2,\sigma(i_2),\ldots,\sigma^{k_2-1}(i_2)) \circ \cdots \circ (i_j,\sigma(i_j),\ldots,\sigma^{k_j-1}(i_j)) & \end{array}$

Exemple 16. $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 6 & 5 \end{pmatrix} = (1, 3, 4)(5, 6)$

Proposition 17 ([R] 44). $(i_1, ..., i_k) = (i_1, i_2)(i_2, i_3)...(i_{k-1}, i_k)$

Corollaire 18 ([R] 44). Les transpositions engendrent \mathfrak{S}_n .

Proposition 19 ([R] 45). $\mathfrak{S}_n = \langle (i, i+1), 1 \leq i \leq n \rangle = \langle (1, i), 2 \leq i \leq n \rangle = \langle (1, 2), (1, 2, ..., n) \rangle$

Définition 20 ([U] 45). On appelle type de $\sigma \in \mathfrak{S}_n$ la liste croissante des cardinaux des σ -orbites.

Exemple 21. Le type de $(1,2,5)(3,4)(7,8) \in \mathfrak{S}_8$ est la liste [1,2,2,3].

Proposition 22 ([U] 46). Deux permutations sont conjuguées dans \mathfrak{S}_n si, et seulement si, elles ont le même type. Cela décrit donc les classes de conjugaison de \mathfrak{S}_n .

Proposition 23 ([U] 45). Si σ est du type $[l_1, \ldots, l_k]$, alors $\operatorname{ord}(\sigma) = l_1 \vee \cdots \vee l_k$.

D. Signature dune permutation, groupe alterné

Proposition 24 ([R] 47). Il existe un unique morphisme $\varepsilon: \mathfrak{S}_n \to \{\pm 1\}$ qui envoie les transpositions sur -1. On appelle signature de σ la quantité $\varepsilon(\sigma)$.

Corollaire 25. La signature d'un k-cycle est $(-1)^{k+1}$.

Proposition 26 ([R] 48). $\forall \sigma \in \mathfrak{S}_n$,

$$\varepsilon(\sigma) = \prod_{1 \le i \le j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

En particulier, la signature mesure le nombre d'inversions.

Définition 27 ([R] 48). On appelle n-ième groupe alterné le sous-groupe $A_n = \text{Ker}(\varepsilon)$. C'est l'ensemble des permutations dîtes paires.

Exemple 28. $A_3 = \{id, (1,2,3), (1,3,2)\}.$

Proposition 29. $\#A_n = \frac{n!}{2}$

Théorème 30 ([R] 49). Pour $n \geq 3$, les 3-cycles engendrent A_n , et y sont conjugués.

Théorème 31 ([R] 50). Pour $n \geq 5$, A_n n'admet pas de sous-groupe distingué non trivial.

trique

A. En géométrie : les isométries des polytopes

Théorème 32 ([R] 94). L'ensemble des isométries du plan conservant un triangle équilatéral est un groupe isomorphe à \mathfrak{S}_3 .

Proposition 33 ([R] 82). Soit C un cube. L'ensemble des isométries de l'espace conservant C est un groupe, noté Is(C). On note $\operatorname{Is}^+(\mathcal{C})$ le sous-groupe de $\operatorname{Is}(\mathcal{C})$ formé des rotations.

Théorème 34 ([R] 85). Is⁺(
$$\mathcal{C}$$
) $\cong \mathfrak{S}_4$ et Is(\mathcal{C}) $\cong \mathfrak{S}_4 \times \mathbb{Z}/2\mathbb{Z}$.

Théorème 35 ([R] 95). En notant \mathcal{T} le tétraèdre régulier, on $a : \operatorname{Is}(\mathcal{T}) \cong \mathfrak{S}_4$ et $\operatorname{Is}^+(\mathcal{T}) \cong \mathcal{A}_4$.

Chez les (actions de) groupes

Théorème 36 (de Cayley - [R] 53). Tout groupe fini d'ordre n est isomorphe à un sous-groupe de \mathfrak{S}_n .

Proposition 37. Comme pout tout corps (commutatif) K, $\mathfrak{S}_n \circlearrowleft GL_n(K)$, tout groupe de garde n est isomorphe à un sous-groupe de $GL_n(K)$.

Exemple 38. Soit $D_{2\times 4}$ le groupe des isométries du carré. Comme $\#D_{2\times 4}=8$, $D_{2\times 4}$ est isomorphe à un sous-groupe de \mathfrak{S}_8 . Noton φ un tel isomorphisme. Comme $D_{2\times 4}=\langle r,s\rangle$ $où \operatorname{ord}(r) = 4$, $\operatorname{ord}(s) = 2$ et $\operatorname{ord}(rs) = 2$, on $a \in \varphi(s) = 2$ $\varepsilon \circ \varphi(rs) = -1$, $donc \ \varepsilon \circ \varphi(r) = 1$.

C. Polynômes symétriques

Définition 39 ([R] 55). Un polynôme symétrique est un polynôme $P \in K[X_1, ..., X_n]$ tel que $\forall \sigma \in \mathfrak{S}_n$, $P(X_{\sigma(1)},\ldots,X_{\sigma(n)})=P(X_1,\ldots,X_n).$

Définition 40 ([R] 55). Les polynômes symétriques élémentaires sont les

$$\Sigma_{k,n} = \sum_{1 \le i_1 \le \dots \le i_k \le n} X_{i_1} \dots X_{i_k} \in K[X_1, \dots, X_n]$$

Théorème 41 (ADMIS - [R] 55). Pour tout polynôme symétrique $P \in K[X_1, \ldots, X_n]$, il existe un unique polynôme $Q \in$ $K[X_1,\ldots,X_n]$ tel que $P(X_1,\ldots,X_n)=Q(\Sigma_{1,n},\ldots,\Sigma_{n,n}).$

D. En algèbre (multi-)linéaire

Dans ce paragraphe, E est un \mathbb{K} -espace vectoriel de dimension finie n. On fixe une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E.

Définition 42 ([R] 545). Une forme k-linéaire sur E est une application $\varphi: E^k \to \mathbb{K}$ telle que pour tout $i \in [1, n]$, pour tout $(x_1,\ldots,x_k)\in E^k$, $\varphi(x_1,\ldots,x_{i-1},\cdot,x_{i+1},\ldots,x_k)$ est linéaire.

On note $\bigotimes^k E^*$ l'ensemble des formes k-linéaires sur E.

Proposition 43 ([R] 546). $(e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*)_{1 \leq i_1 < \cdots < i_k \leq n}$ est une base $de \bigotimes^k E^*$, où pour $(x_1, ..., x_k) \in E^k$, $e_{i_1}^* \otimes \cdots \otimes e_{i_k}^* (x_1, ..., x_k) = e_{i_1}^* (x_1) ... e_{i_k}^* (x_k)$.

Définition 44 ([R] 546). Une forme k-linéaire alternée est une forme k-linéaire $\varphi \in \bigotimes^k E^*$ telle que $\forall \sigma \in \mathfrak{S}_k$, $\forall (x_1, \dots, x_k) \in E^k, \ \varphi(x_{\sigma(1)}, \dots, x_{\sigma(k)}) = \varepsilon(\sigma)\varphi(x_1, \dots, x_k).$

On note $\bigwedge^k E^*$ l'espace des formes k-linéaires alternées sur E.

II. Quelques applications du groupe symé- Proposition 45. $(e_{i_1}^* \wedge \cdots \wedge e_{i_k}^*)_{1 \le i_1 \le \cdots \le i_k \le n}$ est une base $de \bigwedge^k E^*, \quad où \quad pour \quad (x_1, \dots, x_k) \in E^k, \quad e_{i_1}^* \wedge \dots \wedge e_{i_k}^*(x_1, \dots, x_k) = \sum_{\sigma \in \mathfrak{S}_k} \varepsilon(\sigma) e_{i_1}^*(x_{\sigma(1)}) \dots e_{i_k}^*(x_{\sigma(k)}).$

Corollaire 46. On $a \dim \left(\bigwedge^k E^* \right) = \binom{n}{k}$.

Définition 47. On appelle déterminant dans la base \mathcal{B} l'unique forme n-linéaire alternée $\det_{\mathcal{B}}$ sur E vérifiant $\det_{\mathcal{B}}(\mathcal{B}) = 1$. (La fammille $(\det_{\mathcal{B}})$ est une base de $\bigwedge^n E^*$.)

Proposition 48 ([R] 547). $\forall (x_1,\ldots,x_n) \in$ $\det_{\mathcal{B}}(x_1,\ldots,x_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) e_1^*(x_{\sigma(1)}) \ldots e_n^*(x_{\sigma(n)}).$

E. Résultats en probabilités

Définition 49 ([R] 51). On appelle dérangement une permutation sans point fixes.

Proposition 50. Notons d_n le nombre de dérangements de $[\![1,n]\!]$. Alors $d_n=n!\sum_{k=0}^n\frac{(-1)^k}{k!}$. En particulier, la probabilité de choisir un dérangement en tiant au hasard une permutation de [1, n] tend vers $\frac{1}{e}$ quand $n \to +\infty$.

Proposition 51 ([C]). Soit X la variable aléatoire qui compte le nombre de points fixes d'une permutation aléatoirement choisie dans \mathfrak{S}_n . Alors $\mathbb{E}[X] = \mathbb{V}[X] = 1$.

F. Groupes simples d'ordre 60

Dans ce paragraphe, on se donne p premier, et on note $\#G = p^{\alpha}m, m \wedge p = 1.$

Définition 52 ([U] 85). Un p-Sylow de G est un sous-groupe de G de cardinal p^{α} .

Notation. $Syl_n(G)$ désigne l'ensemble des p-Sylow de G, et $n_p = \# \operatorname{Syl}_p(G).$

Théorème 53 (de Sylow - [U] 87). Soit G un groupe d'ordre $p^{\alpha}m$, p premier et $m \wedge p = 1$.

- 1. $\operatorname{Syl}_p(G) \neq \emptyset$
- 2. G agit transitivement sur $Syl_n(G)$ par conjugaison
- 3. $n_p \equiv 1 [p] (donc \ n_p \mid m)$.

Définition 54. On dit que G est simple si les seuls sousgroupes de G distingués (i.e. fixe par l'action par conjugaison $de G) sont \{1\} et G.$

Théorème 55 ([S] - 277). Si G est simple et d'ordre 60, alors $G\cong \mathcal{A}_5$.

Développements

- Développement 1 : Théorème 34
- Développement 2 : Théorème 55

Références

- R Mathématiques pour l'agrégation Algèbre et géométrie, Jean-Étienne Rombaldi, 2e édition
- U Théorie des groupes, Félix Ulmer
- S Algèbre pour la licence 3, Szpirglas
- C Carnets de voyage en Algébrie, Caldero

