Network Models

Ufuk Bahçeci

v0.23.11.01

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 1 / 134

Network Models

MIT License

Copyright (c) 2023 Ufuk Bahçeci

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Network Models

Author

 Ufuk Bahçeci, Ph. D. (Industrial Engineering, University of Galatasaray)

3 / 134

Table of Contents

Introduction

Graph Terminology

Network Problems

4 / 134

Definition

Graph

Given a list of locations, a graph is a structured representation of the locations and the relationships between them.

5 / 134

Network Flow

Definition

Network flow

Network flow is the sending of a certain amount of assets from one location to another on the graph.

6/134

Mathematical Programming

Definition

Mathematical programming

Mathematical programming is the optimization of problems formulated as minimization (or maximization) of an objective function subject to a set of constraints.

Combinatorial Optimization

Definition

Combinatorial optimization

Combinatorial optimization is a class of mathematical programming, where optimization is performed over a discrete set of feasible solutions.

8 / 134

Network Flow Problem

Definition

Network flow problem

Network flow problems are mathematical programming problems that can be converted into combinatorial optimization problems dealing with network flows.

9 / 134

Mathematical Optimization

Mathematical Optimization

- Linear programming
 - Simplex algorithm
 - Duality
- Decomposition methods
 - Dantzig-Wolfe (complicating constraints, column(extreme point) generation, duality gap between upper and lower bounds)
 - Benders (complicating variables, cut generation, duality gap between upper and lower bounds)
- Mixed-integer programming
 - Branch-and-bound (BaB)
 - ▶ BaB + Cutting planes = Branch-and-cut
 - ► BaB + Column(variable for pricing, extreme point for decomposition) generation = Branch-and-price
 - ▶ BaB + Cutting planes + Column generation = Branch-price-and-cut

 Vfuk Bahceci
 Network Models
 v0.23.11.01
 10 / 134

Mathematical Optimization

Mathematical Optimization

- Constraint programming
 - ► Constraint propagation
 - Domain reduction
- Combinatorial optimization
 - Some problems are easy to solve
 - ★ Special fast algorithms
 - Some problems are hard to solve
 - ★ Mixed-integer programming
 - Heuristics

11 / 134

Motivations

Network Flow Problems

- Network flow problems
 - Combinatorial optimization
 - Wide application area in Operations Research
 - Special fast algorithms suitable for large problem instances
 - Network flow problem as an embedded subproblem

Graph Definition

Graph [1]

A graph G(V, E) consists of a set of vertices V and edges E. Edges are used to model the relationship between vertices.

13 / 134

v0.23.11.01

Ufuk Bahçeci Network Models

Graph Definition

Graph [2]

A graph G(N, A) consists of a set of nodes N and arcs A. Arcs are used to model the relationship between nodes.

14 / 134

Definition

Subgraph

A graph G'(V', E') is a subgraph of G(V, E) if $V' \subset V$ and $E' \subset E$.

15 / 134

Example

The Euler's problem

• Is it possible to start from a vertex, move along all edges, traversing every edge only once, and finally return to the starting vertex?

17 / 134

Example

The Hamilton's problem

 Is it possible to start from a vertex, visit each of all vertices exactly once, and finally return to the starting vertex?

19 / 134

Directed edges, multiple edges and loops

- E_1 and E_2 are multiple edges
- E₃ is a loop
- \bullet E_4 is a directed edge
- $V_2(\text{tail})$ and $V_3(\text{head})$ are the endpoints of the edge(arc) E_4 .

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 20 / 134

Graph types [1]

Туре	Edges	Multiple edges	Loops
Simple graph	Undirected	×	X
Multigraph	Undirected	✓	X
Pseudograph	Undirected	✓	/
Simple directed graph	Directed	×	X
Directed multigraph	Directed	✓	/
Mixed graph	Directed and undirected	✓	/

A multigraph

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 22 / 134

Definitions

Complete graph [1]

Complete graph is a simple graph where each pairs of distinct vertices are connected.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 23 / 134

A complete graph

Definitions

Bipartite simple graph [1]

A simple graph G(V, E) is bipartite if $\exists V_1, V_2 : V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$ such that every edge in E connects a vertex in V_1 to a vertex in V_2 .

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 25 / 134

A bipartite simple graph

Graph Definitions

Matching [1]

A matching M in a simple graph G(V, E) is a subset of E, i.e. $M \subseteq E$ such that $\forall m, m' \in M$, all the endpoints of m and m' are distinct vertices.

Maximal matching

The maximal matching of G is the matching with the largest |M|.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

27 / 134

A simple graph

A maximal matching

Another maximal matching

Definitions

Adjacent vertices in an undirected graph

Two vertices are adjacent in an undirected graph G if they are endpoints of an edge in G.

31 / 134

Definitions

Adjacent vertices in a directed graph

In a directed graph G, the vertex v_1 is adjacent to the vertex v_2 if they are endpoints of a directed edge $E(v_1, v_2)$ in G.

Graph Definitions

An edge of an undirected graph G is incident with the vertices that are endpoints of this edge.

33 / 134

Graph Definitions

Degree of a vertex in an undirected graph [1]

The degree of a vertex v in an undirected graph G, deg(v) is equal to the number of edges incident with the vertex v, where a loop is equivalent to two edges.

34 / 134

Definitions

Given an undirected graph G(V, E)

$$\sum_{v \in V} deg(v) = 2|E|$$

35 / 134

Definitions

Degree of a vertex in a directed graph [1]

The indegree(outdegree) of a vertex v in a directed graph G, $deg^-(v)(deg^+(v))$ is equal to the number of edges with v as their terminal(initial) vertex.

36 / 134

Definitions

Given a directed graph G(V, E)

$$\sum_{v \in V} deg^{-}(v) = \sum_{v \in V} deg^{+}(v) = |E|$$

37 / 134

A mixed graph

Adjacency matrix

	v_1	v_2	<i>V</i> 3	V_4
V_1	0	2	0	1
V_2	2	0	2	1
V_3	0	2	0	1
V_4	0	1	0	1

A pseudograph

Incidence matrix

	E_1	E_2	E_3	E_4	E_5	E_6	E_7	E ₈
V_1	1	1	0	0	0	1	0	0
V_2	1	1	1	1	1	0	0	0
V_3	0	0	1	1	0	0	1	0
V_4	0	0	0	0	1	1	1	1

Graph Definitions

Isomorphism of graphs [1]

Two simple graphs G(V, E) and G'(V', E') are isomorphic if and only if there exists a permutation of V', denoted as V'^p , leading to $G'^p(V'^p, E')$, where G and G'^p have the same adjacency matrix.

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

42 / 134

Graph G(V, E)

 Jfuk Bahçeci
 Network Models
 v0.23.11.01
 43 / 134

Graph G'(V', E')

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 44 / 134

Definitions

Walk [2]

A walk is a series of vertices that are connected to each other by means of edges.

45 / 134

Definitions

Simple walk (trail) [1]

A simple walk (trail) is a walk that does not contain the same edge more than once.

46 / 134

Definitions

Directed walk [2]

A directed walk is a series of vertices that are connected to each other by means of edges in a way that respects the edge directions.

47 / 134

Definitions

Path [2], [1]

A path is a walk that visits each vertex in the walk only once. A path is also a trail.

48 / 134

Definitions

Directed path [2]

A directed path is a directed walk that visits each vertex in the directed walk only once.

49 / 134

Graph Definitions

Circuit [2], [1]

A circuit(closed walk) is a walk of length strictly positive that starts and ends at the same vertex. A simple circuit does not contain the same edge more than once.

50 / 134

Definitions

Cycle [2]

A cycle is a closed path.

51 / 134

Graph **Definitions**

Directed circuit

A directed circuit (closed directed walk) is a directed walk of length strictly positive that starts and ends at the same vertex. A simple directed circuit does not contain the same edge more than once.

Definitions

Directed cycle [2]

A directed cycle is a directed closed path.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 53 / 134

Definitions

Connected [1]

An undirected graph G(V, E) is connected when a walk exists between each pair of vertices $v, v' \in V^2$ and $v \neq v'$.

54 / 134

Definitions

Connected [1]

An directed graph G(V, E) is strongly connected when a directed walk exists between each pair of vertices $v, v' \in V^2$ and $v \neq v'$. Let G'(V', E') be the underlying undirected graph. G is weakly connected if G' is connected.

55 / 134

Definitions

Network [2]

A network is a graph where vertices and edges have associated properties in the form of numerical values.

Definitions

The length of a walk [1]

The length of a walk is equal to the sum of the weights of its edges.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 57 / 134

Graph Definitions

The number of walks [1]

Let A be the adjacency matrix of a graph G(V, E), then the cell with index (i, j) of the matrix A^d is equal to the number of walks of length $d \in \mathbb{Z}^+$ from v_i to v_i , where $v_i, v_i \in V^2$.

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

58 / 134

Definitions

Euler walk and circuit [1]

A simple circuit traversing all edges of a graph G is an Euler circuit. Similarly, a simple walk traversing all edges of a graph G is an Euler walk.

59 / 134

Can you find an Euler circuit in this multigraph?

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 60 / 134

Definitions

An Euler circuit exists..[1]

An Euler circuit exists in a connected multigraph G(V, E) with $|V| \ge 2$ if and only if $\forall v \in V$, $deg(v) \equiv 0 \pmod{2}$.

Definitions

An Euler walk exists..[1]

An Euler walk but not an Euler circuit exists in a connected multigraph G(V, E) if and only if $\exists v', v'' \in V^2$, $v' \neq v''$, $deg(v') \equiv 1 \pmod{2}$, $deg(v'') \equiv 1 \pmod{2}$, and $\forall v \in V \setminus \{v', v''\}$, $deg(v) \equiv 0 \pmod{2}$.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 62 / 134

Definitions

Chinese postman (route inspection) problem

Chinese postman problem looks for the shortest circuit traversing every edge of a connected multigraph at least once.

63 / 134

Definitions

Chinese postman problem

What if an Euler circuit exists in a connected multigraph?

64 / 134

Graph Definitions

Hamilton path and cycle [1]

A simple circuit visiting every vertex of a graph G exactly once is an Hamilton cycle. Similarly, a simple walk visiting every vertex of a graph G exactly once is an Hamilton path.

65 / 134

Can you find an Hamilton cycle in this multigraph?

Definitions (Dirac's theorem)

An Hamilton cycle exists..[1]

An Hamilton cycle exists in a graph G(V, E) if G is a simple graph with $|V| \ge 3$ and $\forall v \in V$, $deg(v) \ge \frac{|V|}{2}$.

67 / 134

Definitions

Traveling salesman problem

Traveling salesman problem looks for the shortest circuit visiting every vertex of a connected graph exactly once.

68 / 134

Graph Definitions

Traveling salesman problem

What about the feasible solutions of a traveling salesman problem if it is defined on a complete simple graph with more than 3 vertices? Is this problem feasible?

69 / 134

Definitions

Tree [2]

A connected graph that contains no cycle is called tree.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 70 / 134

A tree

Definitions

Forest [2]

A collection of trees is called forest.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 72 / 134

A forest

Definitions

The number of edges in a tree

If the graph G(V, E) is a tree than |E| = |V| - 1

74 / 134

Ufuk Bahçeci Network Models v0.23.11.01

Definitions

Planar graph [1]

A planar graph can be drawn in two dimensions without any edges intersecting each other.

75 / 134

Ufuk Bahçeci Network Models v0.23.11.01

Planar representation of a planar graph

Non-planar representation of a planar graph

Ufuk Bahçeci Network Models v0.23.11.01 77 / 134

Definitions

Euler's formula [1]

A connected planar simple graph G(V, E) has |E| - |V| + 2 regions.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 78 / 134

3(=5-4+2) regions of a planar graph

fuk Bahçeci Network Models v0.23.11.01 79 / 134

Map coloring example

80 / 134

Map coloring example I (5 colors)

Map coloring example II (4 colors)

Map coloring example III (4 colors)

Dual graph (III) (4 colors)

Definitions

The four color theorem [1]

The chromatic number (minimum number of colors) of a planar simple graph < 4.

85 / 134

Ufuk Bahçeci Network Models

Graph coloring example

Minimum cost flow problem

Minimum cost flow problem

Let G(V,E) be a directed graph with costs $c_{vv'}$ and capacities $u_{vv'}$ defined on edges $vv'=e\in E$, where $v\neq v'$, v and $v'\in V$. Let $b_v>0$ be the supply and $b_v<0$ be the demand associated with each vertex $v\in V$. Moreover, $x_{vv'}$ denotes the amount of flow from a vertex v to another vertex v'. Then, minimum cost flow problem minimizes the total cost incurred from all flows in G satisfying both flow conservation constraints and flow limits.

□ > < □ > < □ > < □ > < □ >

Minimum cost flow problem

Minimum cost flow problem

$$\begin{aligned} \min \sum_{vv' \in E} c_{vv'} x_{vv'} \\ s.t. \sum_{v': vv' \in E} x_{vv'} - \sum_{v': v'v \in E} x_{v'v} = b_v \qquad \forall v \in V \\ 0 \leq x_{vv'} \leq u_{vv'} \qquad \qquad \forall vv' \in E \end{aligned}$$

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Minimum cost flow problem

Assumptions [2]

- $\forall e \in E, c_e \in \mathcal{Z}_0^+$
- $\forall v \in V$, $b_v \in \mathcal{Z}$ and $\sum_v b_v = 0$
- $\forall e \in E$, $u_e \in \mathcal{Z}_0^+$
- $\forall v, v' \in V^2$, \exists an uncapaciated directed path from v to v'

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 89 / 134

Definitions

Polynomial time algorithm

A polynomial time algorithm has a running time polynomial in the length (number of bits) of the input.

Pseudo-polynomial time algorithm

A pseudo-polynomial time algorithm has a running time polynomial in the numeric value (largest value) of the input.

90 / 134

Minimum cost flow problem

Pseudo-polynomial time algorithms [2]

- ullet Cycle-canceling with $\mathcal{O}(|E|CU)$ iterations
- Successive shortest path with $\mathcal{O}(|V|U)$ iterations
- Primal-dual algorithm with $\mathcal{O}(\min(|V|U, |V|C))$ iterations
- Out-of-kilter with $\mathcal{O}(|V|U)$ iterations
- Relaxation

where, $c_e \leq C$, $\forall e \in E$ and $u_e \leq U$, $\forall e \in E$

91 / 134

Ufuk Bahçeci Network Models v0.23.11.01

Minimum cost flow problem

Complexity of some minimum cost flow algorithms [3]

- Ford and Fulkerson, $\mathcal{O}(|V|^4CU)$
- Out-of-kilter, $\mathcal{O}(|E|^3 U)$
- Successive shortest path, $\mathcal{O}(|V|^2|E|U)$
- Cycle-cancelling, $\mathcal{O}(|V||E|^2CU)$
- Cost-scaling (generic), $\mathcal{O}(|V|^2|E|log(|V|C))$
- Cancel-and-tighten (dynamic trees), $\mathcal{O}(|V||E|log(|V|)min(log(|V|C,|E|log(|V|))))$
- Primal network simplex (dynamic trees), $\mathcal{O}(|V||E|log(|V|)min(log(|V|C,|E|log(|V|))))$
- Dual network simplex (Orlin), $\mathcal{O}(|E|(|E| + |V|log|V|)min(log(|E|U), |E|log(|V|)))$
- Dual network simplex (Armstrong and Jin), $\mathcal{O}(|V||E|log|V|(|E|+|V|log|V|))$

Ufuk Bahçeci Network Models v0.23.11.01 92 / 134

Minimum cost flow problem

Study of minimum cost flow algorithms [3]

Cost-scaling and primal network simplex were both efficient and robust.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 93 / 134

Minimum cost flow problem

Study of seven state-of-the-art algorithms [4]

- Simple cycle canceling
- Minimum mean cycle canceling
- Cancel and tighten
- Successive shortest path
- Capacity scaling
- Network simplex
- Cost scaling

where, network simplex was the fastest algorithm in $\approx 75\%$ of the studied cases

94 / 134

Maximum flow problem

Maximum flow problem

Let G(V,E) be a directed graph with capacities $u_{vv'} \geq 0$ defined on edges $vv' = e \in E$, where $v \neq v'$, v and $v' \in V$. Let $b_v > 0$ be the supply and $b_v < 0$ be the demand associated with each vertex $v \in V$. Moreover, $x_{vv'}$ denotes the amount of flow from a vertex v to another vertex v'. Then, maximum flow problem maximizes the amount of flow from the source vertex $s \in V$ to the sink vertex $t \in V$, $s \neq t$, and all flows in G satisfy both flow conservation constraints and flow limits.

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

Maximum flow problem

Maximum flow problem

 $max \alpha$

s.t.
$$\sum_{v':vv'\in E} x_{vv'} - \sum_{v':v'v\in E} x_{v'v} = \begin{cases} \alpha & \text{for } v=s \\ 0 & \forall v\in V\setminus\{s,t\} \\ -\alpha & \text{for } v=t \end{cases}$$
$$0 \le x_{vv'} \le u_{vv'} \quad \forall vv'\in E$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕へで

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 96 / 134

Maximum flow problem

Special case of minimum cost flow problem

- Maximum flow problem from s to t on G(V, E)
- Add $b_v = 0$, $\forall v \in V$
- Add $c_e = 0$, $\forall e \in E$
- ullet Add a new edge ts with $c_{ts}=-1$ and $u_{ts}=\infty$
- $E' = E \cup \{ts\}$
- Minimum cost flow problem on $G'(V, E') \equiv \text{Maximum flow problem}$ on G(V, E)

Ufuk Bahçeci Network Models v0.23.11.01 97 / 134

Maximum flow problem

Assumptions [2]

- $\forall e \in E$, $u_e \in \mathcal{Z}_0^+$
- ullet an uncapaciated directed path from s to t
- If $vv' \in E$ than $v'v \in E$
- No multiple edges

Maximum flow problem

Running times of maximum flow algorithms [2]

- Labeling, $\mathcal{O}(|V||E|U)$
- Capacity scaling, O(|V||E|log(U))
- Successive shortest path, $\mathcal{O}(|V|^2|E|)$
- Generic preflow-push, $\mathcal{O}(|V|^2|E|)$
- FIFO preflow-push, $\mathcal{O}(|V|^3)$
- Highest-label preflow-push, $\mathcal{O}(|V|^2\sqrt{|E|})$
- Excess scaling, $\mathcal{O}(|V||E| + |V|^2 log(U))$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 99 / 134

Minimum cost flow and maximum flow problems

Running time of an almost linear time algorithm [5] for minimum cost flows and maximum flows

- Demands, costs and capacities are bounded polynomially
- Demands, costs and capacities are integral
- Runs in $m^{1+\mathcal{O}(1)}$ time

100 / 134

Ufuk Bahçeci Network Models

Maximum flow problem

Feasible flow problem

$$\sum_{v':vv'\in E} x_{vv'} - \sum_{v':v'v\in E} x_{v'v} = b_v \qquad \forall v$$

$$0 \le x_{vv'} \le u_{vv'} \qquad \forall vv' \in E$$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 101 / 134

Maximum flow problem

Procedure to create a transformed network G'(V', E') [2]

- Add the vertex s
- $\forall v \in V$ with $b_v > 0$, add the edges sv with $u_{sv} = b_v$
- Add the vertex t
- $\forall v \in V$ with $b_v < 0$, add the edges vt with $u_{vt} = -b_v$
- $V' = V \cup \{s, t\}$
- $E' = E \cup \{sv : v \in V, b_v > 0\} \cup \{vt : v \in V, b_v < 0\}$

Maximum flow problem

Maximum flow problem on the transformed network G'(V', E')

$$max \quad \alpha$$

s.t.
$$\sum_{v':vv'\in E'} x_{vv'} - \sum_{v':v'v\in E'} x_{v'v} = \begin{cases} \alpha & \text{for } v=s\\ 0 & \forall v\in V'\setminus\{s,t\}\\ -\alpha & \text{for } v=t \end{cases}$$
$$0 \le x_{vv'} \le u_{vv'} \qquad \forall vv'\in E'$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 103 / 134

Maximum flow problem

Feasible flow problem

If α^* of the maximum flow problem on the transformed network G'(V', E') is equal to $\sum_{v \in V. \ b_v > 0} b_v$ than the flow problem is feasible.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 104 / 134

Maximum flow problem

Maximum flow problem with lower bounds on G(V, E)

 $max \alpha$

s.t.
$$\sum_{v':vv'\in E} x_{vv'} - \sum_{v':v'v\in E} x_{v'v} = \begin{cases} \alpha & \text{for } v=s \\ 0 & \forall v\in V\setminus\{s,t\} \\ -\alpha & \text{for } v=t \end{cases}$$
$$|v| \leq x_{vv'} \leq u_{vv'} \quad \forall vv'\in E$$

4□ > 4□ > 4 = > 4 = > = 90

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 105 / 134

Maximum flow problem

Procedure to create a circulation network $G^c(V, E^c)$ [2]

- Add the edge ts with $u_{ts}=\infty$
- $E^c = E \cup \{ts\}$

so that it is possible to send the flow from s to t back to s from t by using the edge ts with $u_{ts}=\infty$.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 106 / 134

Maximum flow problem

Circulation problem (a feasible flow of the maximum flow problem with lower bounds) [2]

$$\sum_{v':vv'\in E^c} x_{vv'} - \sum_{v':v'v\in E^c} x_{v'v} = 0 \qquad \forall v\in V$$
$$I_{vv'} \le x_{vv'} \le u_{vv'} \qquad \forall vv'\in E^c$$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 107 / 134

Maximum flow problem

Transformed
$$(x_{vv'} = x'_{vv'} + I_{vv'})$$
 circulation problem [2]

$$\sum_{v':vv' \in E^{c}} x'_{vv'} - \sum_{v':v'v \in E^{c}} x'_{v'v} = b_{v} \qquad \forall v \in V$$

$$0 \le x'_{vv'} \le u_{vv'} - I_{vv'} \qquad \forall vv' \in E^{c}$$

where
$$b_v = \sum_{v':v'v \in E^c} I_{v'v} - \sum_{v':vv' \in E^c} I_{vv'} \qquad \forall v \in V$$

4□ > 4□ > 4 ≥ > 4 ≥ > □
9

Ufuk Bahçeci Network Models v0.23.11.01 108 / 134

Maximum flow problem

Feasible flow problem

A feasible flow can be found by solving a maximum flow problem on the transformed network $G^{c'}(V', E^{c'})$.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 109 / 134

Maximum flow problem

Residual capacities on G(V, E) [2]

A residual capacity of an edge vv' is denoted as $r_{vv'} = (u_{vv'} - x_{vv'}) + (x_{v'v} - I_{v'v})$, where $x_{vv'}$'s and $x_{v'v}$'s are the feasible flows found in the previous step.

Maximum flow problem with residual capacities on G(V, E)

Solve the maximum flow problem with residual capacities on G(V, E). Note that the residual capacity $r_{vv'}$ denotes the maximum possible increase in flow for the edge vv'.

Find the solution of the maximum flow problem with lower bounds

Find the solution of the maximum flow problem with lower bounds on G(V, E) by increasing feasible flows found in the feasible flow problem by values from the maximum flow problem with residual capacities.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 110 / 134

Maximum flow problem

Minimum value problem [2] with lower bounds on G(V, E)

 $min \alpha$

s.t.
$$\sum_{v':vv'\in E} x_{vv'} - \sum_{v':v'v\in E} x_{v'v} = \begin{cases} \alpha & \text{for } v=s \\ 0 & \forall v\in V\setminus\{s,t\} \\ -\alpha & \text{for } v=t \end{cases}$$
$$\frac{I_{vv'}}{v} \leq x_{vv'} \leq u_{vv'} \quad \forall vv'\in E$$

4□▶ 4□▶ 4□▶ 4□▶ 3□ 900

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 111 / 134

Maximum flow problem

Solution method for minimum value problem

First find a feasible flow. Than solve the maximum flow problem, where capacities $r_{vv'}^{inv}$ are equal to $(x_{vv'}-l_{vv'})+(u_{v'v}-x_{v'v})$. Note that the capacity $r_{vv'}^{inv}$ denotes the maximum possible decrease in flow for the edge vv'. Finally, the solution of the minimum value problem with lower bounds on G(V,E) can be found by decreasing feasible flows by values from the maximum flow problem with capacities $r_{vv'}^{inv}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Shortest path problem

Shortest path problem

Let G(V, E) be a directed graph with costs $c_{vv'}$ defined on edges $vv' = e \in E$, where $v \neq v'$, v and $v' \in V$. Let $b_v > 0$ be the supply and $b_v < 0$ be the demand associated with each vertex $v \in V$. Moreover, $x_{vv'}$ denotes the amount of flow from a vertex v to another vertex v'. Then, shortest path problem minimizes the lengths of directed paths from a vertex s to all other vertices $t \in V$, $t \neq s$. Equivalently, shortest path problem minimizes the cost of sending an amount of unit flows from vertex s to all other vertices $t \in V$, $t \neq s$, where all flows in G are positive and satisfy the flow conservation constraints.

◆ロト ◆個ト ◆差ト ◆差ト を めんぐ

Shortest path problem

Shortest path problem

$$min \quad \sum_{vv' \in F} c_{vv'} x_{vv'}$$

s.t.
$$\sum_{v':vv'\in E} x_{vv'} - \sum_{v':v'v\in E} x_{v'v} = \begin{cases} |V-1| & \text{for } v=s\\ -1 & \forall v\in V\setminus\{s\} \end{cases}$$
$$0 \le x_{vv'} \quad \forall vv'\in E$$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 114 / 134

Shortest path problem

Special case of minimum cost flow problem

- Shortest path problem from vertex s to other vertices on G(V, E)
- Add $u_e = \infty$, $\forall e \in E$
- Minimum cost flow problem (with u_e) on $G(V, E) \equiv$ Shortest path problem from vertex s to other vertices on G(V, E)

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

Shortest path problem

Assumptions [2]

- $\forall e \in E, c_e \in \mathcal{Z}$
- \exists a directed path from vertex s to any vertex t, $t \in V$, $t \neq s$
- ∄ a negative cycle

Ufuk Bahçeci Network Models

116 / 134

Shortest path problem

Label-setting algorithms

• Once labels are set they are not allowed to be changed

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 117 / 134

Shortest path problem

Some graph features for label-setting algorithms [2]

- G(V, E) is a directed acyclic (does not contain any directed cycle) network with possibly negative c_e 's, $e \in E$
- or G(V, E) is a network with $c_e \ge 0$, $e \in E$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 118 / 134

Shortest path problem

Label-correcting algorithms

- Less restrictive problem formulations
- Less efficient than label-setting algorithms

Shortest path problem

Breadth-First Search

- It is a label-setting algorithm
- $\forall e \in E$, $c_e = 1$
- Runs in $\mathcal{O}(|V| + |E|)$ time [6]

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 120 / 134

Shortest path problem

Directed-acyclic graph algorithm

- It is a label-setting algorithm
- Runs in $\mathcal{O}(|V| + |E|)$ time [6]

Shortest path problem

Dijkstra's algorithm

- It is a label-setting algorithm
- $\forall e \in E, c_e \geq 0$
- ullet Original implementation runs in $\mathcal{O}(|V|^2)$ time [2]

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 122 / 134

Shortest path problem

Running times of variants [2] of Dijkstra's algorithm

- Dial, O(|E| + |V|C)
- d-Heap, $\mathcal{O}(|E|\log_d(|V|))$, $d = \frac{|E|}{|V|}$
- Fibonacci heap implementation, O(|E| + |V|log(|V|))
- Radix heap implementation, O(|E| + |V|log(|V|C))

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 123 / 134

Shortest path problem

Bellman-Ford-Moore algorithm

- It is a label-correcting algorithm
- $\exists e \in E, c_e < 0$
- FIFO implementation runs in $\mathcal{O}(|V||E|)$ time [7]

124 / 134

v0.23.11.01

Ufuk Bahçeci Network Models

Shortest path problem

Running times of label-correcting algorithms [2]

- Generic, $\mathcal{O}(\min(|V|^2|E|C,|E|2^{|V|}))$
- Modified, $\mathcal{O}(\min(|V||E|C, |E|2^{|V|}))$
- Modified FIFO, $\mathcal{O}(|V||E|)$
- Modified Dequeue, $\mathcal{O}(\min(|V||E|C, |E|2^{|V|}))$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 125 / 134

Shortest path problem

A shortest path simplex algorithm [8]

- Pseudo permanent labels
- Multiple pivot rule
- Runs in $\mathcal{O}(|V||E|)$ time

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 126 / 134

Shortest path problem

Floyd-Warshall algorithm

- It is an all-pairs (not only from one vertex s) label-correcting algorithm [2]
- Runs in $\mathcal{O}(|V|^3)$ time [2]

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 127 / 134

Shortest path problem

Johnson's algorithm

- It is an all-pairs (not only from one vertex s) label-correcting algorithm [6]
- Runs in $\mathcal{O}(|V|^2 log(|V|) + |V||E|)$ time [6]

128 / 134

Ufuk Bahçeci Network Models v0.23.11.01

Longest path problem

Longest path problem

• NP-hard (non-deterministic polynomial-time)

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 129 / 134

Longest path problem

Longest path problem

- G(V, E) is a directed acyclic graph
- Let E' = E
- $\forall e' \in E'$, $c_{e'} = -c_e$
- Shortest path problem on $G'(V, E') \equiv \text{longest path problem on } G(V, E)$

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 130 / 134

A few libraries

LEMON Graph Library (C++)

Library for Efficient Modeling and Optimization in Networks

NetworkX

A Python library for graphs and networks

Compressed sparse graph routines (scipy.sparse.csgraph)

Fast graph algorithms

References I

- [1] K. Rosen, *Discrete Mathematics and Its Applications*. McGraw-Hill, 2007.
- [2] R. Ahuja, T. Magnanti, and J. Orlin, *Network Flows: Theory, Algorithms, and Applications.* Prentice Hall, 1993.
- [3] P. Kovács, "Minimum-cost flow algorithms: An experimental evaluation," *Optimization Methods and Software*, vol. 30, no. 1, pp. 94–127, 2015. DOI: https://doi.org/10.1080/10556788.2014.895828.
- [4] P. Herrmann, A. Meyer, S. Ruzika, L. E. Schäfer, and F. von der Warth, "A machine learning based algorithm selection method to solve the minimum cost flow problem,", 2022. arXiv: 2210.02195 [cs.LG].

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 132 / 134

References II

- [5] L. Chen, R. Kyng, Y. P. Liu, R. Peng, M. P. Gutenberg, and S. Sachdeva, "Maximum flow and minimum-cost flow in almost-linear time," in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), 2022, pp. 612–623. DOI: https://doi.org/10.1109/FOCS54457.2022.00064.
- [6] M. Mahmoudi and A. Boloori, "Networks," in In Graph Theory for Operations Research and Management: Applications in Industrial Engineering. 2013, pp. 150–178. DOI: https://doi.org/10.4018/978-1-4666-2661-4.ch012.
- [7] A. Sedeño-Noda and C. González-Martín, "An efficient label setting/correcting shortest path algorithm," *Computational Optimization and Applications*, vol. 51, pp. 437–455, 2012. DOI: https://doi.org/10.1007/s10589-010-9323-9.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 133 / 134

References III

[8] A. Sedeño-Noda and C. González-Martín, "New efficient shortest path simplex algorithm: Pseudo permanent labels instead of permanent labels," *Computational Optimization and Applications*, vol. 43, pp. 437–448, 2009. DOI: https://doi.org/10.1007/s10589-007-9144-7.

 Ufuk Bahçeci
 Network Models
 v0.23.11.01
 134 / 134