ROBEM I Find the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$.

SOLION. By observation, we know that $x \equiv 2 \pmod{30}$ is one of the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$. Besides, $30 = 2 \times 3 \times 5$, we consider all the solution of

$$\begin{cases} 6x^3 + 27x^2 + 17x + 20 & \equiv 0 \pmod{2} \\ 6x^3 + 27x^2 + 17x + 20 & \equiv 0 \pmod{3} \\ 6x^3 + 27x^2 + 17x + 20 & \equiv 0 \pmod{5} \end{cases}$$

Since $x \equiv 0 \pmod{2}, x \equiv 1 \pmod{2}$ are all the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{2}$, $x \equiv 2 \pmod{3}$ is all the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{3}$, $x \equiv 0 \pmod{5}$, $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{5}$ are the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{5}$, and the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 20 \pmod{5}$ are at most 3, then $x \equiv 0 \pmod{5}$, $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{5}$ are all the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{5}$. By Chinese Remainder Theorem, we get to know that $x \equiv \sum_{i=1}^3 M_i' M_i a_i \pmod{30}$ are all the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$, where $M_1 = 15, M_2 = 10, M_3 = 6, M_1' = 1, M_2' = 1, M_3 = 1, a_1 \in \{0, 1\}, a_2 = 2, a_3 \in \{0, 1, 2\}$. Therefore, $x \equiv 20 \pmod{30}$, $x \equiv 20 \pmod{30}$. \square

ROBEM II Find the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{225}$.

SOUTHOW. Since $225 = 3^2 \times 5^2$, firstly we consider $\equiv 0 \pmod{15}$.

$$\begin{cases} 31x^4 + 57x^3 + 96x + 191 & \equiv 0 \pmod{3^2} \\ 31x^4 + 57x^3 + 96x + 191 & \equiv 0 \pmod{5^2} \end{cases}$$

To find the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{3^2}$, we consider $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{3}$. By observation, we get to know the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{3}$ are $x \equiv 1, 2 \pmod{3}$. Since $f'(x) = 124x^3 + 171x^2 + 96$, $3 \nmid f'(1) = 391$, $3 \nmid f'(2) = 1772$, then suppose $f(1+3k) \equiv 0 \pmod{3^2}$, for $f(1+3k) \equiv 0 \pmod{3^2}$, so $f(1) + 3kf'(1) \equiv 0 \pmod{3^2}$, $f(2) + 3kf'(2) \equiv 0 \pmod{3^2}$, then f(2) + 32x +

To find the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{5^2}$, we consider $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{5}$. By observation, we get to know the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{3}$ are $x \equiv 1, 2 \pmod{5}$. Since $f'(x) = 124x^3 + 171x^2 + 96$, $5 \nmid f'(1) = 391$, $5 \nmid f'(2) = 1772$, then suppose $f(1 + 5k) \equiv 0 \pmod{5^2}$, $f(2 + 5t) \equiv 0 \pmod{5^2}$, so $f(1) + 5kf'(1) \equiv 0 \pmod{5^2}$, $f(2) + 5kf'(2) \equiv 0 \pmod{5^2}$, then $75 + 391k \equiv 0 \pmod{5}$, $75 + 391k \equiv 0 \pmod{5}$, then $75 + 391k \equiv 0 \pmod{5}$, then 75 + 3

By Chinese Remainder Theorem, we get to know that $x \equiv \sum_{i=1}^{2} M'_i M_i a_i \pmod{225}$, where $M_1 = 25, M_2 = 9, M'_1 = 4, M'_2 = 14, a_1 \in \{4, 5\}, a_2 \in \{0, 17\}$, then $x \equiv 76, 67, 50, 167 \pmod{225}$.

ROBEM III Prove: $5x^2 + 11y^2 \equiv 1 \pmod{m}$ has solution for all $m \in \mathbb{N}$.

SOLITION. First of all, we consider all of the intergal solution of $5x^2 + 11y^2 = z^2$. After calculating, we get $x = 11s^2 - 22st - 5t^2$, $y = -11s^2 - 10st + 5t^2$, $c = 20t^2 + 44s^2$, $s, t \in \mathbb{Z}$. Let $t = 5, s = 3^{16} \prod_{p \in \mathbb{P}, 5 , then <math>x \equiv 11 - 110 - 125 = -224 \equiv 0 \mod 32$, $y \equiv -11 - 50 + 125 = 64 \equiv 0 \mod 32$, then $32^2 \mod z$. Let $x_1 = \frac{x}{32}$, $y_1 = \frac{y}{32}$, $z_1 = \frac{z}{32}$. If $\gcd(m, z_1) \neq 1$, then $\exists p \in \mathbb{P}$, $p \mid \gcd(m, z_1)$. If p > 5 or p = 3, then $p \in \mathbb{P}$, then $p \mid s$. Since $p \mid z_1 \mid z$, then $p \mid t$, then p = 5. Contradiction! If p = 2, then $2 \mid \frac{z}{32}$, then $16 \mid 5t^2 + 11s^2$. But $5t^2 + 11s^2 \equiv 125 + 11 \equiv 8 \mod 16$, Contradiction. If p = 5, then $5 \mid \frac{z}{32}$, then $5 \mid z$. Since $5 \mid 20t^2$, then $5 \mid 44s^2$, then $5 \mid s^2$. But obviously, $5 \mid s$. Contradiction! Thus $\gcd(m, z_1) = 1$. So $\exists w$ such that $wz_1 \equiv 1 \mod m$, then $5(wx_1)^2 + 11(wy_1)^2 = w^2z^2 \equiv 1 \mod m$.

ROBEM IV If $n \mid p - 1, n > 1, (a, p) = 1$, prove :

- 1. $x^n \equiv a \pmod{p}$ has solution $\iff a^{\frac{p-1}{n}} \equiv 1 \pmod{p}$.
- 2. If $x^n \equiv a \pmod{p}$ has solution, then it has n solution.
- SOUTHON. 1. " \Longrightarrow ":Since $\gcd(a,p)=1$, then $\gcd(x,p)=1$. Then $a^{\frac{p-1}{n}}\equiv x^{p-1}\equiv 1 \mod p$. " \Leftarrow ": Easy to know that there is at most $\frac{p-1}{n}$ different a satisfy $\exists x,x^n\equiv a \mod p$. For every a, there is at most n different x satisfy $x^n\equiv a \mod p$. And for every x satisfy $\gcd(x,p)=1$, there is a unique a satisfy $x^n\equiv a \mod p$. So $\sum_{x,a\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a,x\neq 0}1=\sum_{a\in\mathbb{Z}/p\mathbb{Z},a^{\frac{p-1}{n}}\equiv 1}\sum_{x\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a}1\leq p-1$. But $\sum_{x,a\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a,x\neq 0}1=\sum_{x\in\mathbb{Z}/p\mathbb{Z},x\neq 0}1=p-1$ So we get $\forall a:a^{\frac{p-1}{n}}\equiv 1 \mod p$, there is n different x satisfy $x^n\equiv a \mod p$.
 - 2. Have been proved above.

ROBEM V $n \in \mathbb{N}^+$, $\gcd(a, m) = 1$, $x^n \equiv a \pmod{m}$ has one solution $x \equiv x_0 \pmod{m}$. Prove all the solution of $x^n \equiv a \pmod{m}$ have the form of $x \equiv yx_0 \pmod{m}$, where y is the solution of $y^n \equiv 1 \pmod{m}$.

- SOLTHON. 1. First, we prove that $x \equiv yx_0 \pmod{m}$ is the solution of $x^n \equiv a \pmod{m}$. Since $x_0^n \equiv a \pmod{m}$, then $(yx_0)^n = y^nx_0^n \equiv x_0^n \equiv a \pmod{m}$.
 - 2. Second, we prove that the solution of $x^n \equiv a \pmod{m}$ have the form of $x \equiv yx_0 \pmod{m}$. Assume x is the solution of $x^n \equiv a \pmod{m}$, then $\gcd(x,m) = \gcd(x_0,m) = 1$, then $\exists b \text{ such that } bx_0 \equiv 1 \pmod{m}$. So $(bx_0)^n \equiv 1 \pmod{m}$. Then $b^n \equiv a^{-1} \pmod{m}$, then $(xb)^n \equiv 1 \pmod{m}$. Then $x \equiv xbx_0 \equiv (xb)x_0 \pmod{m}$. So let y = xb.

ROBEM VI jjjjjjllll lll

SOLTION. jjjjjj llll Problem I,