Segundo Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

31 de julho de 2022

Sumário

mirodução				
1.1	O Transistor			
1.2	Obtendo a resistencia de Theve-			
	nin/Norton			
1.3	Obtendo a tensao de Thevenim e a			
	corrente de Norton			
1.4	Resultados Preliminares			

1 Introdução

Neste relatório, vamos discutir transistores, e como controlar a passagem de corrente alta por um circuito a partir de uma corrente mais baixa conectada em um transistor.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

1.1 O Transistor

Neste caso o transistor impediria passagem de corrente no circuito maior ate haver uma tensao minima de aproximadamente 0.7V no circuito menor

Podemos tambem olhar pra ele da seguinte maneira:

Que nos da uma situação em que se o potencial em I_E for maior que o potencial em I_B nos ativamos a fonte de corrente com βI_B

Podemos ver entao β como a proporcao entre a corrente no circuito principal e a corrente no circuito de ativacao.

$$I_E = I_B + \beta I_B \tag{1}$$

1.2 Obtendo a resistencia de Thevenin/Norton

Primeiro vale lembrar que a resisencia de Thevenin e a de Norton sao iguais. Logo obtendo uma tambem obteremos a outra.

Neste caso, resolvendo o sistema vamos obter que esta resistencia en igual a R_c

$$R_c = R_{th} = R_{no} \tag{2}$$

1.3 Obtendo a tensao de Thevenim e a corrente de Norton

Basta obtermos um deles, pois temos a seguinte relacao:

$$V_{th} = I_{no} * R_{th/no} \tag{3}$$

E vou usar a convenção que a soma de todas correntes de saem de um no $eh = a \ 0$ para simplificar os calculos e minimizar erros de sinal

Isto me da as seguintes equações:

$$\frac{V_b - V_{cc}}{R_1} + \frac{V_b}{R_2} - I_b = 0$$

$$\frac{V_e - V_{cc}}{R_e} + I_b + \beta * I_b = 0$$

$$-\beta * I_b + \frac{V_c}{R_c} = 0$$

$$V_b + V_b e^0 - V_e = 0$$
(4)

1.4 Resultados Preliminares

As simplificacoes e resolucoes das equacoes (4) foram feitas em python e estao dentro do zip enviado e na pasta do github mencionada na introducao As resolucoes foram analisando o caso particular em que $V_{cc}=10V,~R_1=220\Omega,~R_2=1500\Omega,~R_e=1500\Omega,~R_c=1500\Omega,~\beta=100,~V_{be0}=0.7V$

Observação: Na aula foi feito $R_1=200\Omega$, e no roteiro o $R_1=220\Omega$ entao resultados obtidos são um pouco diferentes dos resultados de aula, porem testando com $R_1=200\Omega$ obtenho exatamente os mesmos valores obtidos em aula.

Resultados para potencia de Thevenim maxima

V_{th}	\rightarrow	5.66V
R_{th}	\rightarrow	1500Ω
I_{no}	\rightarrow	0.00377A
R_{no}	\rightarrow	1500Ω
G_{no}	\rightarrow	0.00067S
R_{max}	\rightarrow	1500Ω
P_{max}	\rightarrow	0.00534W
$P_{V_{cc}}$	\rightarrow	0.1W