STRUKTUR ALJABAR

SEMIGRUP

Sistem aljabar (*S*, *) merupakan semigrup, jika

- 1. Himpunan *S* tertutup terhadap operasi *.
- 2. Operasi * bersifat asosiatif.

Contoh 1

(Z, +) merupakan sebuah semigrup.

Contoh 2

Misalkan himpunan bilangan asli *N*, didefinisikan operasi biner:

$$a * b = a + b + ab$$

Tunjukan bahwa (*N*, *) adalah suatu semigrup.

Penyelesaian:

1. Tertutup

Ambil sebarang $a, b \in N$, karena $a, b \in N$, dan $ab \in N$ maka

$$a * b = a + b + ab \in \mathbb{N}$$
.

Jadi, *N* tertutup terhadap operasi biner *.

2. Assosiatif

Ambil sebarang $a, b, c \in N$, maka

$$(a * b) * c = (a + b + ab) * c$$

= $(a + b + ab) + c + (a + b + ab) c$
= $a + b + ab + c + ac + bc + abc$

$$a * (b * c) = a * (b + c + bc)$$

= $a + (b + c + bc) + a (b + c + bc)$
= $a + b + c + bc + ab + ac + abc$

Maka untuk setiap $a, b, c \in N$ berlaku

$$(a * b) * c = a * (b * c).$$

Jadi, (*N*, *) merupakan suatu semigrup.

Jika operasi biner pada semigrup (S, *) tersebut bersifat komutatif, maka semigrup (S, *) disebut juga semigrup abel.

Contoh 3

(Z,+) merupakan sebuah semigrup abel.

Apakah (N, *) pada contoh 2 merupakan semigrup abel?

MONOID

Sistem aljabar (S, *) merupakan monoid, jika

- 1. Himpunan *S* tertutup terhadap operasi * .
- 2. Operasi * bersifat asosiatif.
- 3. Pada *S* terdapat elemen identitas untuk operasi * .

Contoh 4

(Z, +) merupakan sebuah monoid.

Jika operasi biner pada monoid (S,*) tersebut bersifat komutatif, maka monoid (S,*) disebut juga monoid abel.

Contoh 5

Sistem aljabar (Z,+) merupakan sebuah monoid abel.

GRUP

Sistem aljabar (*S*, *) merupakan monoid, jika

- 1. Himpunan *S* tertutup terhadap operasi * .
- 2. Operasi * bersifat asosiatif.
- 3. Pada *S* terdapat elemen identitas untuk operasi * .
- 4. Setiap anggota *S* memiliki invers untuk operasi * dan invers tersebut merupakan anggota *S* juga.

Contoh 6

(Z, +) merupakan sebuah grup.

Jika operasi biner pada grup (S,*) tersebut bersifat komutatif, maka grup (S,*) disebut juga grup abel.

Contoh 7

Sistem aljabar (Z, +) merupakan sebuah grup abel.

Contoh 8

Misalkan $G = \{-1, 1\}$. Tunjukan bahwa G adalah suatu grup abel terhadap perkalian biasa (G, \times) .

Penyelesaian:

Daftar Cayley $G = \{-1, 1\}$ terhadap (G, \times) sebagai berikut:

×	-1	1
-1	1	-1
1	-1	1

a. Tertutup

G tertutup terhadap operasi perkalian biasa × karena

$$-1 \times -1 = 1 \in G$$

$$-1 \times 1 = -1 \in G$$

$$1 \times -1 = -1 \in G$$

$$1 \times 1 = 1 \in G$$

b. Assosiatif

Ambil sebarang nilai dari G, misalkan a = -1, b = -1 dan $c = 1 \in G$, maka

$$(a \times b) \times c = (-1 \times -1) \times 1 = 1 \times 1 = 1$$

 $a \times (b \times c) = 1 \times (-1 \times -1) = 1 \times 1 = 1$

sehingga $(a \times b) \times c = a \times (b \times c) = 1$ maka G assosiatif.

- c. Adanya elemen identitas (e = 1) terhadap perkalian. Ambil sebarang nilai dari G,
 - misalkan $-1 \in G$ sehingga $-1 \times e = e \times (-1) = -1$
 - misalkan $1 \in G$ sehingga $1 \times e = e \times 1 = 1$ maka G mempunyai identitas.
- d. Adanya invers.
 - Ambil sebarang nilai dari G, misalkan $-1 \in G$, pilih $-1 \in G$, sehingga :

$$-1 \times (-1) = 1 = e$$
, maka $(-1)^{-1} = -1$

• Ambil sebarang nilai dari G, misalkan $1 \in G$, pilih $1 \in G$, sehingga :

$$1 \times 1 = 1 \times 1 = e$$
, maka $(1)^{-1} = 1$

maka ada invers untuk setiap anggota G.

e. Komutatif

Operasi × bersifat komutatif, karena

$$-1 \times 1 = -1$$
 dan $1 \times (-1) = -1$ sehingga $-1 \times 1 = 1 \times (-1) = -1$ Jadi, (G, ×) **merupakan** grup komutatif atau grup abel.

Contoh 9

Misalkan $G = \{-1, 1\}$ adalah suatu himpunan. Apakah G merupakan suatu grup terhadap penjumlahan (G, +).

Penyelesaian:

Daftar Cayley G = {-1, 1} terhadap (G, +) sebagai berikut

+	-1	1
-1	-2	0
1	0	2

Berdasarkan daftar Cayley dari tabel di atas, operasi penjumlahan himpunan $G = \{-1, 1\}$ menghasilkan $\{-2, 0, 2\}$. Dikarenakan $\{-2, 0, 2\}$ adalah bukan merupakan anggota dari himpunan $G = \{-1, 1\}$, maka $G = \{-1, 1\}$ tidak tertutup terhadap operasi penjumlahan. Jadi, (G, +) bukan suatu grup.

TUGAS

1. Misalkan himpunan bilangan asli N, didefinisikan operasi biner:

$$x * y = x + y - xy.$$

- a. Apakah (N,*) adalah suatu semigrup?
- b. Apakah (N,*) adalah suatu monoid?
- 2. Misalkan $G = \{0, 1, 2, 3, 4, 5\}$ adalah merupakan himpunan dari Z_6 . Tunjukan bahwa G adalah suatu grup abel terhadap penjumlahan (G, +).

SUBGRUP

Misalkan (G,*) sebuah grup dan $H \subseteq G$. Jika (H,*) membentuk grup, maka (H,*) merupakan subgrup dari grup (G,*).

Contoh 1

(Z,+) merupakan sebuah grup.

Misalkan $A_2 = \{x \mid x = 3n, n \in Z \}$. Jelas bahwa $A_2 \subseteq Z$. Karena $(A_2,+)$ membentuk grup, maka $(A_2,+)$ merupakan subgrup dari grup (Z,+).

Contoh 2

Diketahui $Z_4 = \{0,1,2,3\}$ dan operasi biner \oplus didefinisikan sebagai

$$a \oplus b = \begin{cases} a+b & \text{jika } a+b < 4 \\ \\ a+b-4 & \text{jika } a+b \geq 4 \end{cases}$$

 (Z_4, \oplus) adalah sebuah grup.

Misalkan $B = \{0,2\}$. Jelas bahwa $B \subseteq Z_4$. (B, \oplus) merupakan subgrup dari grup (Z_4, \oplus) .

Sedangkan $C = \{0,1,2\}$. Jelas bahwa $C \subseteq Z_4$. (C, \oplus) bukan merupakan subgrup dari grup (Z_4, \oplus) .

SUBGRUP NORMAL

Misalkan (G,*) sebuah grup dan (H,*) merupakan subgrup dari grup (G,*).

Koset kiri dari H adalah himpunan

$$a*H = \{ a * h \mid \forall h \in H \}$$

dan koset kanan dari H adalah

$$H*a = \{ h * a \mid \forall h \in H \},\$$

untuk setiap $a \in G$.

Contoh 1

 (Z_4, \oplus) adalah grup dan $B = \{0, 2\}$ adalah subgrup dari (Z_4, \oplus) .

Koset kiri dari B adalah $a \oplus B$ untuk setiap $a \in \mathbb{Z}_4$:

$$0 \oplus B = \{0, 2\}$$
, $1 \oplus B = \{1, 3\}$, $2 \oplus B = \{0, 2\}$, dan $3 \oplus B = \{1, 3\}$. Jadi, koset kiri dari B adalah $\{0, 2\}$ dan $\{1, 3\}$.

Koset kanan dari B adalah B \oplus a untuk setiap a \in Z₄:

$$B \oplus 0 = \{0, 2\}, B \oplus 1 = \{1, 3\}, B \oplus 2 = \{0, 2\}, dan B \oplus 3 = \{1, 3\}.$$
 Jadi, koset kanan dari B adalah $\{0, 2\}$ dan $\{1, 3\}$.

Suatu subgrup (H,*) dari grup (G,*) merupakan subgrup normal jika untuk setiap $a \in G$ berlaku a*H = H*a (koset kiri H = koset kanan H, untuk setiap anggota G).

Contoh 2

 $B = \{0, 2\}$ yang merupakan subgrup dari (Z_4, \oplus) adalah subgrup normal dari (Z_4, \oplus) , karena untuk setiap $a \in Z_4$, $a \oplus B = B \oplus a$.

GRUP KUOSIEN

Himpunan koset dari subgrup normal H pada grup (G, *) membentuk grup kuosien di bawah operasi perkalian koset.

Contoh 3

Koset dari B = $\{0, 2\}$ yang merupakan subgrup dari (Z_4, \oplus) adalah $\{0, 2\}$ dan $\{1, 3\}$. Himpunan $\{\{0, 2\}, \{1, 3\}\}$ membentuk grup kuosien di bawah operasi perkalian koset.

\otimes	{0,2}	{1,3}
{0,2}	{0,2}	{1,3}
{1,3}	{1,3}	{0,2}