2/2

3/3

2/2

4/4

+12/1/38+

IPS - S7A - Jean-Matthieu Bourgcot

QCM2

IPS		
Quizz	du	13/11/2013

Nom et prénom :	
MANGUI, ANDRÉS	

... des résistances.
... des potentiels.

torisé. PDA Des

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.
Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
double rampe - flash - approximation successives - simple rampe approximation successives - flash - simple rampe - double rampe approximation successives - flash - double rampe - simple rampe flash - approximation successives - simple rampe - double rampe flash - approximation successives - double rampe - simple rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant $R_1 = R_C(26^{\circ}\mathrm{C}) = 1,1 \mathrm{k}\Omega$ L'étendu de mesure est $[-25^{\circ}\mathrm{C};60^{\circ}\mathrm{C}]$. Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Question $3 \bullet$ Quelle est la capacité d'un condensateur plan ? On note : \bullet ϵ : Permittivité du milieu entre les armatures. \bullet S : Surface des armatures. \bullet d : Distance entre les armatures.
$C = \frac{\epsilon S}{d} \qquad \qquad \Box \qquad C = \epsilon dS \qquad \qquad \Box \qquad C = \frac{\epsilon d}{S} \qquad \Box \qquad C = \frac{\epsilon}{Sd}$ Question 4 •
Le capteur sur la photo ci-contre permet de mesurer

... des températures. ... des courants.

...des différences de températures.

... des différences de potentiels.

	Question 5 • Pourquoi faire du sur-échantillonnage ?
2/2	Pour réduire le bruit de quantification Pour améliorer l'efficacité du filtre antirepliement. Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ? La course électrique. Le pas de bobinage
1/1	La taille des grains de la poudre utilisée La résistance maximale du potentiomètre La longueur du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des flux lumineux des courants des déformations des grands déplacements des résistances des températures.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des températures des déplacement linéaire des déplacements angulaires des courants des flux lumineux
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
2/3	Les impédances d'entrées sont élevés. De rejeter les perturbations de mode différentiel. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé. Le gain est fixé par une seule résistance.
	Les voies sont symétriques.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C=1\mathrm{ms}$. Quel est le pas de quantification de ce CAN ?
1/1	
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
6/6	Le système est oscillant $p_1 = A_0/\tau_C$ et $p_2 = -A_0/\tau_C$ $p = -(1 + A_0)/\tau_C$ Le système est instable $p = (A_0 + 1)/\tau_C$ $p = (A_0 + 1)/\tau_C$ Le système est stable