CP3.1

(Average Cat>

< Average Dog>

CP.3.6

Eigenpet 1 → (a) cat

Eigenpet 3 → (b) dog

Eigenpet 2 → (c) eyes

Eigenpet 4 → (d) pute noise

CP.3.7

	K=50	k=10 6	K= 200	K=400
Linear discriminant training	7-17%	5,9%	4_4%	3 -1 %
Linear discriminat test	7,3%	8.8 %	8 - 3 %	9.80/0
perception training	8 %	5,60/.	4-4%	3.4%
Perceptron	0			
test	8.5%	8,50/0	9 %	9.5%

K=400 resulted in the best minimum rates for training sets.

Training ethor rates tend to decrease as k increases from so to 400.

However, test ethor rates tend to stay similar as k increases from so to 400.

.. Traing error rates are affected by # of data.

But test error rates are not affected by # of data.