Tarea 2 - Introducción a la Ciencia de Datos

2023

Esta tarea es la continuación de la Tarea 1, por lo que se utilizarán los mismos datos y puede reutilizar cualquier parte del código.

En el <u>repositorio intro-cd</u> bajo la carpeta *Tarea_2*, se encuentra el notebook de referencia sobre el que deberá trabajar.

La entrega se debe dejar disponible en el mismo repositorio de la Tarea 1. Los archivos a evaluar deben estar en la *branch* principal (*main*). En dicha rama no debe haber *commits* posteriores a la fecha de entrega estipulada. Los archivos que deben estar presentes en el repositorio son:

- Un informe en formato PDF incluyendo todos los resultados relevantes, que será el trabajo a evaluar.
- Todo el código que haya sido implementado (al menos un notebook y posibles scripts adicionales), pero estos sólo serán revisados detalladamente en caso de que existan dudas referentes a la implementación. De todas maneras se evaluará la documentación de los notebooks, en el sentido que éstos deben ser comprendidos por otra persona, que por ejemplo, quisiera continuar o volver a correr los notebooks con los mismos datos.

Agregar un archivo *README.md* al repositorio, con indicaciones básicas, por ejemplo, indicando cual es el informe de cada tarea, notebooks o scripts utilizados para responder las preguntas y en caso de haber más de uno, indicar para qué se usó cada uno.

Recuerde que el propósito de la tarea es poner en práctica algunos conceptos clave de aprendizaje automático, y **no** necesariamente profundizar en técnicas específicas de procesamiento de lenguaje natural.

El foco debe estar en entender el proceso y la interpretación de los resultados a nivel conceptual, y no necesariamente en mejorar las métricas indefinidamente. Si los resultados no parecen buenos, la idea es generar hipótesis y buscar y formular posibles razones.

Parte 1: Dataset y representación numérica de texto

Para esta parte, se utilizará como referencia la sección <u>Extracting features from text files</u> de la documentación oficial de scikit-learn.

- En el notebook de la tarea, se crea un *Dataset* reducido de sólo 3 personajes. Se espera que utilice su propia versión de la función *clean_text()* de la Tarea 1.
 Parta los datos para generar un conjunto de test del 30% del total, utilizando muestreo estratificado.
 - **Sugerencia:** utilice el parámetro *stratify* de la función *train_test_split* de scikit-learn, fijando también *random state* para obtener resultados reproducibles.
- 2. Genere una visualización que permita verificar que el balance de párrafos de cada personaje es similar en train y test.

- 3. Transforme el texto del conjunto de entrenamiento, a la representación numérica (features) de conteo de palabras o bag of words. Explique brevemente cómo funciona esta técnica y muestre un ejemplo. En particular explique el tamaño de la matriz resultante, y la razón por la que es una sparse matrix.
 Sugerencia: puede ser útil imaginar qué sucedería con la memoria RAM requerida
 - si no estuviéramos trabajando con un conjunto de datos tan reducido.

 Explique brevemente qué es un *n-grama*. Obtenga la representación numérica Tern
- 4. Explique brevemente qué es un *n-grama*. Obtenga la representación numérica Term Frequency Inverse Document Frequency. Explique brevemente en qué consiste esta transformación adicional.
- 5. Muestre en un mapa el conjunto de entrenamiento, utilizando las dos primeras componentes PCA sobre los vectores de tf-idf. Analice los resultados y compare qué sucede si utiliza el filtrado de stop_words para idioma inglés, el parámetro use_idf=True y ngram_range=(1,2). Opcionalmente, también puede analizar qué sucede si no elimina los signos de puntuación.
 ¿Se pueden separar los personajes utilizando sólo 2 componentes principales?
 Haga una visualización que permita entender cómo varía la varianza explicada a medida que se agregan componentes (e.g. hasta 10 componentes).

Parte 2: Entrenamiento y Evaluación de Modelos

- Entrene el modelo Multinomial Naive Bayes, luego utilícelo para predecir sobre el conjunto de test, y reporte el valor de accuracy y la matriz de confusión. Reporte el valor de precision y recall para cada personaje. Explique cómo se relacionan estos valores con la matriz anterior.
 - ¿Qué problemas puede tener el hecho de mirar sólamente el valor de accuracy? Considere qué sucedería con esta métrica si el desbalance de datos fuera aún mayor entre personajes.
 - **Sugerencia:** utilice el método *from_predictions* de *ConfusionMatrixDisplay* para realizar la matriz.
- 2. Explique cómo funciona la técnica de validación cruzada o *cross-validation*. Interprete y complete el código de ejemplo para la búsqueda de hiper-parámetros. Genere una visualización que permita comparar las métricas (e.g. *accuracy*) de los distintos modelos entrenados, viendo el valor promedio y variabilidad de las mismas en todos los splits (e.g. en un gráfico de violín).
- 3. Elija el mejor modelo (mejores parámetros) y vuelva a entrenar sobre todo el conjunto de entrenamiento disponible (sin quitar datos para validación). Reporte el valor final de las métricas y la matriz de confusión. Discuta las limitaciones de utilizar un modelo basado en *bag-of-words* o *tf-idf* en cuanto al análisis de texto.
- 4. Evalúe al menos un modelo más (dentro de scikit-learn) aparte de Multinomial Naive Bayes para clasificar el texto utilizando las mismas features de texto. Explique brevemente cómo funciona y compare los resultados con el anterior.
- 5. Evalúe el problema cambiando al menos un personaje. En particular, observe el (des)balance de datos y los problemas que pueda generar, así como cualquier indicio que pueda ver en el mapeo previo con PCA. Puede ser útil comentar acerca de técnicas como sobre-muestreo y submuestreo, no es necesario implementarlo.
- 6. Busque información sobre al menos una técnica alternativa de extraer *features* de texto. Explique brevemente cómo funciona y qué tipo de diferencias esperaría en los resultados. No se espera que implemente nada en esta parte.

7. (Opcional) Entrenar el modelo de <u>fasttext</u> y comparar las predicciones en términos de accuracy y de la matriz de confusión, así como cualquier otra métrica que considere relevante. Mencione posibles ventajas y desventajas de utilizar este modelo.