《基础物理实验》实验报告

实验名称 RLC 电路的谐振与暂态过程 指导教师 李梦朝 姓 名 陈苏 学号 2022K8009906009 分班分组及座号 1-03-5 号 (例: 1-04-5 号) 实验日期 2023 年 11 月 20 日 实验地点 教学楼 709 调课/补课 □是 成绩评定

实验目的

- 1. 研究RLC串联和并联电路的谐振现象, 了解其相频特性和幅频特性;
- 2. 观察RLC电路的暂态过程, 学习阻尼振动的规律.

实验仪器

标准电感, 电感箱, 标准电容, 电容箱, 标准电阻, 电阻箱, 函数信号发生器, 示波器 (RIGOL MSO1104), 数字万用表等.

实验原理

1. 串联谐振

图 1 串联谐振电路图

如图所示, 电路由电阻R, 电感L, 电容C串联在信号发生器两端组成. 设电源电压的峰值为u, 频率为 $f = 2\pi/\omega$, 则稳定时的总阻抗Z为

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2},$$

电流i为

$$i = \frac{u}{Z} = \frac{u}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}},$$

电压u与电流i之间的相位差 φ 为

$$\varphi = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right).$$

则当改变电源电压的频率f时,电路中的电流等测量随之改变,规律如图所示.

图 2 串联谐振电路参数随频率变化规律图

当f逐渐增加时,存在一个特殊的点 f_0 : 当 $f < f_0$ 时,Z逐渐减小,i逐渐增大,而 $\varphi < 0$,电路呈电容性;

当 $f > f_0$ 时, Z逐渐增大, i逐渐减小, 而 $\varphi > 0$, 电路呈电感性. 当 $f = f_0$, 即

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

时有 $\varphi > 0$,且Z达到极小值 $Z_0 = R$,i达到极大值i = u/R. 这种状态称为串联谐振,对应的频率称为谐振频率. 此时电路的品质因数Q为

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C},$$

以及

$$Q = \frac{f_0}{\Delta f_{1/2}},$$

其中 $\Delta f_{1/2}$ 是当i减小到极大值的 $1/\sqrt{2}$ 对应的两个f的差. Q越大, 表征着电路的储耗能特性和选频特性越好.

2. 并联谐振

图 3 并联谐振电路图

如图所示, 电路由电阻R和电感L串联, 再与电容C并联在信号发生器两端组成. 设RLC间电压的峰值为u, 电源频率为 $f=2\pi/\omega$, 则稳定时的总阻抗Z为

$$Z = \sqrt{\frac{\left(\frac{R}{\omega C}\right)^2 + \left(\frac{L}{C}\right)^2}{\left(\frac{1}{\omega C} - \omega L\right)^2 + \left(\frac{R}{\omega C}\right)^2}} = \sqrt{\frac{R^2 + (\omega L)^2}{\left(1 - \omega^2 LC\right)^2 + (\omega RC)^2}},$$

电流i为

$$i = \frac{u}{Z} = \frac{u}{\sqrt{\frac{R^2 + (\omega L)^2}{(1 - \omega^2 LC)^2 + (\omega RC)^2}}},$$

电压u与电流i之间的相位差φ为

$$\varphi = \arctan\left(\frac{\omega L - \omega C(R^2 + (\omega L)^2)}{R}\right).$$

则当改变电源电压的频率f时,电路中的电流等测量随之改变,规律如图所示.

图 4 并联谐振电路参数随频率变化规律图

当f逐渐增加时,存在特殊的点 f_p 和 f_p' : 当 $f < f_p$ 时, $\varphi > 0$,电路呈电感性; 当 $f > f_p$ 时, $\varphi < 0$,电路呈电容性; 当 $f < f_p'$ 时,Z逐渐增大,i逐渐减小;当 $f > f_p'$ 时,Z逐渐减小,i逐渐减小,i

$$f_p = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2},$$

则当

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \gg 1$$

时,有 ω_P ~ ω_0 .

3. 暂态过程

图 5 暂态过程电路图

如图所示, 在充电状态时, 电路由电阻R, 电感L, 电容C串联在直流电压源两端组成; 在放电状态, 电路由电阻R, 电感L, 电容C直接串联组成. 设电容两端的电压为 u_C , 则放电状态的电路方程为

$$\frac{d^2u_C}{dt^2} + \frac{R}{L}\frac{du_C}{dt} + \frac{1}{LC}u_C = 0,$$

初始条件为 $u_C = E$, $du_C/dt = 0$. 设阻尼系数 ζ 为

$$\zeta = \frac{R}{2} \sqrt{\frac{C}{L}},$$

则方程的解分为三种情况:

(I) 当 ζ < 1,

$$u_C = E\sqrt{\frac{1}{1-\zeta^2}} \cdot e^{-t/\tau} \cos(\omega t + \varphi),$$

其中

$$\tau = \frac{2L}{R},$$

$$\omega = \sqrt{\frac{1-\zeta^2}{LC}},$$

称为欠阻尼振荡.

(II) $\mbox{ } \mbox{ } \mbox$

$$u_C = E\left(1 + \frac{t}{\tau}\right) \cdot e^{-t/\tau},$$

其中

$$\tau = \frac{2L}{R},$$

称为临界阻尼振荡, 是过阻尼和欠阻尼的分界点.

(III) $\mbox{$\overset{}{=}$} \zeta > 1$,

$$u_C = E\sqrt{\frac{1}{1-\zeta^2}} \cdot e^{-t/\tau} \sinh(\beta t + \varphi),$$

其中

$$\tau = \frac{2L}{R},$$

$$\omega = \sqrt{\frac{\zeta^2 - 1}{LC}},$$

称为过阻尼振荡.

三种振荡的模式如图所示. 将图像平移和翻转即得到充电状态的图像.

图 6 阻尼振荡的三种模式

实验步骤与实验数据

1. 测量串联谐振的相频和幅频特性

电路如图 1 所示. 取L = 0.1 H, C = 0.05 μF, $R = 100\Omega$. 保持总电压幅值恒定为 $u_{Ampl} = 2V$.改变函数发生器的输出频率,找到谐振频率 f_0 . 用数字万用表测量u, u_L , u_C 的有效值,并计算

$$Q = \frac{u_L}{u} = \frac{u_C}{u}.$$

表 1 谐振时Q值测量表

u_L/V	u_C/V	u/V	Q
5.52	5.52	0.468	11.8

测量相频特性曲线和幅频特性曲线. 保持总电压幅值恒定为 $u_{Ampl}=2V$, 用示波器测量 u_R 的幅值 $u_{R,Ampl}$, 计算电路电流幅值

$$i_{\mathrm{Ampl}} = \frac{u_{R,\,\mathrm{Ampl}}}{R},$$

以及 CH2 通道相对于 CH1 通道的时间差 Δt ,并计算相位差

$$\phi = f\Delta t$$
,

绘制相频特性和幅频特性曲线. 作出电路的 $\phi-f$ 曲线和i-f曲线,并在图像中利用 $Q=f_0/\Delta f_{1/2}$ 来估算Q.

注意:

- (1) 在测量时间差时, 要等 AVERAGE 平均一段时间, 输出稳定后再读数.
- (2) 由于函数发生器有内阻,外部阻抗的改变可能导致总电压输出u的改变,因此每当调整一次频率,就需要调整信号发生器输出电压的幅值. 用示波器 CH1 通道测量总电压u, 用 CH2 通道测量电阻两端电压u_B.
 - (3) 总电压峰峰值不可以超过 3.0V, 防止串联谐振的电压过高.
 - (4) 按照电路图测量时, 示波器的两个通道必须共地.

图 7 串联谐振示波器波形示意图 CH1 (黄色) 为u, CH2 (蓝色) 为uR

表 2 串联谐振幅频和相频特性测量表

信号发生器输出		示波器测量			1 /0	; /m A
$V_{ m pp}/{ m V}$	f/kHz	$u_{ m Ampl}/{ m V}$	$\Delta t/\mu$ s	$u_{R,\mathrm{Ampl}}/\mathrm{V}$	φ/°	$i_{\rm Ampl}/{ m mA}$
1.977	1.880	2.00	-116.2	0.349	-78.64	3.49
2.142	2.000	2.00	-95.78	0.556	-68.96	5.56
2.204	2.080	2.00	-79.25	0.752	-59.34	7.52
2.470	2.150	2.00	-57.65	1.08	-44.62	10.8
2.650	2.190	2.00	-39.70	1.32	-31.30	13.2
2.740	2.220	2.00	-24.21	1.36	-19.35	13.6
2.820	2.240	2.00	-10.76	1.45	-8.677	14.5
2.770	2.250	2.00	-2.375	1.46	-1.924	14.6
2.850	2.260	2.00	3.402	1.49	2.768	14.9
2.850	2.275	2.00	16.27	1.53	13.33	15.3
2.760	2.300	2.00	28.27	1.41	23.41	14.1
2.470	2.360	2.00	51.87	1.01	44.07	10.1
2.250	2.430	2.00	67.51	0.802	59.06	8.02
2.100	2.620	2.00	74.76	0.397	70.51	3.97
2.060	3.180	2.00	67.64	0.204	77.43	2.04

图 8 串联谐振的幅频特性图

图 9 串联谐振的相频特性图

可以看出在串联谐振电路中,随着f增加,i先增大后减小,而 ϕ 从-90°开始逐渐增加到+90°. 在发生谐振时,i达到最大值, $\phi=0$.

从图中估算出 f_0 ~2.26 kHz, $\Delta f_{1/2}$ ~0.22 kHz. 则有Q=10.2.

2. 测量并联谐振的相频特性和幅频特性曲线

电路如图 3 所示. 取L=0.1 H, C=0.05 μF, $R'=5000\Omega$ (R'是为测量总电流i而接入的). 保持总电压幅值恒定为 $u_{0, Ampl}=2$ V. 用 CH1 通道测量电源电压 u_0 ,用 CH2 通道测量电阻两端电压的幅值 $u_{R', Ampl}$,并计算总电流

$$i_{\text{Ampl}} = \frac{u_{R', \text{ Ampl}}}{R'},$$

用示波器的 MATH 功能计算 CH1, CH2 两通道的差, 即为总电压 $u = u_0 - u_{R'}$. 测量其幅值 u_{Ampl} , 以及 CH2 通道相对于 MATH 的时间差 Δt , 并计算相位差

$$\phi = f\Delta t$$
,

改变函数发生器的输出频率f,找到谐振频率 f_0 .

测量相频特性曲线和幅频特性曲线. 用示波器测出相位差 ϕ , 和对应的u和 $u_{R'}$. 作出电路的u-f, i-f 和 $\phi-f$ 曲线.

注意:

(1)(2)(3)(4) 同上节.

(5) 示波器无法直接测量 MATH 的延迟时间 (Dly), 需要手工用 Cursor 功能读数.

图 10 并联谐振示波器波形示意图

CH1 (黄色) 为u₀, CH2 (蓝色) 为u_{R'}, MATH (紫色) 为u

表 3 并联谐振幅频和相频特性测量表

信号发生	上器输出		1/0	; /m A			
$V_{ m pp}/{ m V}$	f/kHz	$u_{0,\mathrm{Ampl}}/\mathrm{V}$	$\Delta t/\mu$ s	$u_{R',\mathrm{Ampl}}/\mathrm{V}$	$u_{ m Ampl}/{ m V}$	φ/°	$i_{\rm Ampl}/{ m mA}$
2.216	2.050	2.00	113	1.05	1.76	83	0.210
2.110	2.150	2.00	95	0.524	1.91	74	0.105
2.060	2.200	2.00	85	0.288	1.91	67	0.0576
2.270	2.231	2.00	54	0.182	1.97	43	0.0364
2.260	2.240	2.00	32	0.157	2.09	26	0.0314
2.280	2.247	2.00	14	0.135	2.11	11	0.0270
2.280	2.250	2.00	0.8	0.113	2.10	1	0.0226
2.300	2.253	2.00	-11	0.116	2.09	-8.9	0.0232
2.300	2.256	2.00	-19	0.115	2.13	-15	0.0230
2.300	2.265	2.00	-47	0.135	2.15	-38	0.0270
2.290	2.275	2.00	-63	0.195	2.14	-52	0.0390
2.290	2.320	2.00	-93	0.442	2.08	-78	0.0884
2.290	2.400	2.00	-103	0.806	1.99	-89	0.161
2.260	2.600	2.00	-96	1.52	1.52	-90	0.304

图 11 并联谐振的u-f曲线

图 12 并联谐振的i-f曲线

图 13 并联谐振的 $\phi - f$ 曲线

可以看出在并联谐振电路中,随着f增加,u先增大后减小,i先减小后增大,而 ϕ 从+90°开始逐渐减小

到 -90° . 在发生谐振时, $f\sim2.25$ kHz, u达到最大值, i达到最小值, 在这附近某处 $\phi=0$.

3. 观察暂态过程

最大值

ŢД 底端值

电路如图 5 所示. 取L=0.1 H, C=0.2 μF, 函数发生器产生频率f=50Hz, 峰值E=2V的方波. 这样从低电平到高电平相当于充电,由高电平到低电平相当于放电. 用示波器 CH1 通道用测量总电压E, CH2 通道测量电容两端电压 u_C .

先将调节R = 0 Ω, 观察此时的 u_C 的波形. 然后逐渐增大R, 并测得临界电阻临界时的 R_C .

图 14-1 f = 50Hz, R = 0 Ω 时的暂态波形图总览 CH1 (黄色) 为E, CH2 (蓝色) 为 u_C

D 0.00000000ps **T**

图 14-2 f = 50Hz, R = 0 Ω 时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为 u_C

图 16 f = 50Hz, R = 1200 Ω时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为 u_C

图 15 f = 50Hz, R = 300 Ω时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为uC

图 17 f = 50Hz, R = 3000 Ω时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为uC

可以明显看出,当R=0 Ω 和R=300 Ω 处于欠阻尼振荡,当R=3000 Ω 处于过阻尼振荡. 在调整过程中估计出临界阻尼对应于R=1500 Ω . 而理论值 $\zeta=1$ 对应于

$$R = 2\sqrt{\frac{L}{C}} = 1414 \,\Omega,$$

理论与实际符合得较好.

再观察f = 250Hz, R = 2kΩ和f = 20Hz, R = 20kΩ的 u_C 波形.

图 18 f = 250Hz, R = 2kΩ时的暂态波形图 CH1(黄色) 为E, CH2(蓝色) 为uC

图 19 f = 250Hz, R = 1200 Ω时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为 u_C

图 20 f = 20Hz, R = 20kΩ时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为 u_C

图 21 f = 20Hz, R = 1200Ω时的暂态波形图 CH1 (黄色) 为E, CH2 (蓝色) 为uC

可以明显看出、当 $R = 2k\Omega$ 和 $R = 20k\Omega$ 处于过阻尼振荡.

实验结论

在本次实验中,我进一步熟悉了函数发生器和示波器操作方法,学习使用测量相位差和延迟时间.

实验时要注意等电路稳定后再测量,以及正确使用 AVERAGE 功能并打开带宽限制. 在测量串联和并联谐振时 (图 8,图 12),在谐振频率附近电压变化很小,以至于达到示波器的分度值,造成谐振频率测量的较大误差.而由于 MATH 的波形噪音很大,并联谐振电压和电流的测量 (图 11,图 12) 也有较大误差.

在测量暂态过程时,发现在欠阻尼时电源信号并非完美的方波,这可能是元件与信号发生器内部电路一起振荡导致的.由于信号发生器输出精度和示波器测量精度有限,不能准确地从图像中推断谐振频率.可以考虑精度更高的直流可编程电源来输出信号.

附录 1: 实验数据

基础物理实验原始数据记录

实验名称 __ RLC 电路的谐振与暂态过程 ___

地点 <u>教学楼 709</u>

学生姓名____ 陈苏 学号 2022K8009906009 _ 分班分组座号 __ 1-03 -5 __ 号 (例: 1-04-5 号)

实验日期 2023 年 11 月 20 日

成绩评定 教师签字本格副

Q=11 8

1. RLC 串联电路的相频特性和幅频特性曲线 串联电路谐振频率 f= 2.25 K H 2

UL = 5.52 V UC= 5.52 VE 0,371 V

	+ + +	+ 06 YOU	-112	D _		Hotogy.	/
1 01	表 1: 串联	电路测试数据	Gt	1 -	100 52	U= 5.89¥ 1	1 = 0,468
发系	√f/KHz	电路测试数据 U(Vipp)/V	Sty(CH1 – CH	H2)φ/°	u _R (Vamp)/V	I _{MAX} /mA(计算)) 0-
1-977	1.88	2.00	-116-2 -78.	64°	349mV		/ a=
2,142		2.00	-95.78		556 mV		
2-204	2. 08	2. 00	-79.25		752 mV		
2-47	2. 15	2. 00	- 57.65		1.08 V	10.8	
2-65	2. 19	2. 00	-39.70		1.32V	13.2	
2.74	2. 22	2. 00	-24.21		1.361	13.6	
2.82	2. 24	2. 00	-19.76		1.45V	14.5	
2.85	2. 25	2. 00	-2.375	1.6070	1-29 V 1.46V	14.6	
		2. 00	+3. 402		1.49 V	14.9	
2.85	2. 275	2.00	+16.27		1.531	15.3	
2.76	2. 30	2. 00	t28.27		1-41 V		
2.4	7 2.36	2. 00	+51.87		1.01		
	5 2.43	2. 00	+67.51		gozmv		
2.10	200000000000000000000000000000000000000	2. 00	+7 4.78		397mV		
2.06	3. 18	2. 00	+67.64		ZofmV		. 5
	学生	:	•	助教:			-

2. RLC 并联电路的相频特性和幅频特性曲线

并联电路谐振频率 f=_2、ひり k Hz

表 2: 并联电路测试数据 CH2-(CH3/CH3) CH1: 电 ily; CH2: LC、

W 2. 712	K-ELD MILL SUIT CH	CHI	-H) /		
f/KHz	U(文字)/V / 保持不变 Δt/u	$\varphi/^{\circ}$	u(Vamp)/ V(CH1-CH2)	u _{R'} (Vamp) /mV	I_{MAX}/mA
2 216 V 2.050	2.0013.0		1.76	1.05V	
2.150	2.00195.00-19.0	70	¥ .91	1-914 524mV	
2.06V 2.200	2.00+85.00	na,	1.91	288	
2 27 V 2. 231	2.00-154,002	0 -	1.97	182	
2.26 1 2.240	2.00+32.00	٩	2.09	157787145	
2.28 V 2.247	2.00+14.08.5	7	2-11	140135	
2.28V 2.250	2.00 to.80 (p		2.10	135-113	
2 - 30 (/2. 253	2.00+11.00(.20	-	2.09	132 116	
2.30 V2. 256	2.00_+(9.00		2.13	115	
1 30 2.265	2.00 447.00		2.15	135	
2-29V 2.275	2.00 -+ 63.00	,	2.14	195	
2.29 2.320	2.00 -4 93.01)	2.08	442	
2.29 2.400	2.00 - 103.0	σ	1.99	806	
Z.26V2.600	2.00 -496.0		1.52	1.521	

学生:

助教:

附录 2: 预习报告

《基础物理实验》实验报告 预习报告

实验目的

- 1. 研究RLC电路的谐振现象,了解RLC电路的相频特性和幅频特性;
- 2. 观察RLC电路的暂态过程, 学习阻尼振动的规律.

实验仪器

标准电感, 电感箱, 标准电容, 电容箱, 标准电阻, 电阻箱, 函数信号发生器, 示波器, 数字万用表等.

实验原理

1. 串联谐振

图 1 串联谐振电路图

如图所示, 电路由电阻R, 电感L, 电容C串联在信号发生器两端组成. 设电源电压的峰值为u, 频率为 $f=2\pi/\omega$, 则稳定时的总阻抗Z为

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2},$$

电流i为

$$i = \frac{u}{Z} = \frac{u}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}},$$

电压u与电流i之间的相位差 φ 为

$$\varphi = \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right).$$

则当改变电源电压的频率f时,电路中的电流等测量随之改变,规律如图所示.

图 2 串联谐振电路参数随频率变化规律图

当f逐渐增加时,存在一个特殊的点 f_0 : 当 $f < f_0$ 时,Z逐渐减小,i逐渐增大,而 $\varphi < 0$,电路呈电容性;

当 $f>f_0$ 时,Z逐渐增大,i逐渐减小,而 $\varphi>0$,电路呈电感性. 当 $f=f_0$,即

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

时有 $\varphi > 0$,且Z达到极小值 $Z_0 = R$,i达到极大值i = u/R. 这种状态称为串联谐振, 对应的频率称为谐振频率. 此时电路的品质因数Q为

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C'}$$

以及

$$Q = \frac{f_0}{\Delta f_{1/2}},$$

0越大, 表征着电路的储耗能特性和选频特性越好,

2. 并联谐振

图 3 并联谐振电路图

如图所示,电路由电阻R和电感L串联,再与电容C并联在信号发生器两端组成。设RLC间电压的峰值为u,电源频率为 $f=2\pi/\omega$,则稳定时的总阻抗Z为

$$Z = \sqrt{\frac{\left(\frac{R}{\omega C}\right)^2 + \left(\frac{L}{C}\right)^2}{\left(\frac{1}{\omega C} - \omega L\right)^2 + \left(\frac{R}{\omega C}\right)^2}} = \sqrt{\frac{R^2 + (\omega L)^2}{(1 - \omega^2 LC)^2 + (\omega RC)^2}},$$

电流i为

$$i = \frac{u}{Z} = \frac{u}{\sqrt{\frac{R^2 + (\omega L)^2}{(1 - \omega^2 LC)^2 + (\omega RC)^2}}},$$

电压u与电流i之间的相位差 φ 为

$$\varphi = \arctan\left(\frac{\omega L - \omega C(R^2 + (\omega L)^2)}{R}\right)$$

则当改变电源电压的频率f时,电路中的电流等测量随之改变,规律如图所示.

图 4 并联谐振电路参数随频率变化规律图

当f逐渐增加时,存在特殊的点 f_p 和 f_p' : 当 $f < f_p$ 时, $\varphi > 0$,电路呈电感性;当 $f > f_p$ 时, $\varphi < 0$,电路呈电容性;当 $f < f_p'$ 时,Z逐渐增大,i逐渐减小;当 $f > f_p'$ 时,Z逐渐减小,i逐渐增大。而

$$f_p = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2},$$

则当

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \gg 1$$

时, 有 $\omega_P \sim \omega_0$.

3. 暂态过程

图 5 暂态过程电路图

如图所示, 在充电状态时, 电路由电阻R, 电感L, 电容C串联在直流电压源两端组成; 在放电状态, 电路由电阻R, 电感L, 电容C直接串联组成. 设电容两端的电压为 u_C , 则放电状态的电路方程为

$$\frac{d^2u_C}{dt^2} + \frac{R}{L}\frac{du_C}{dt} + \frac{1}{LC}u_C = 0,$$

初始条件为 $u_C = E$, $du_C/dt = 0$. 设阻尼系数 ζ 为

$$\zeta = \frac{R}{2} \sqrt{\frac{C}{L}},$$

则方程的解分为三种情况:

(I) 当 ζ < 1,

$$u_C = E \sqrt{\frac{1}{1 - \zeta^2}} \cdot e^{-t/\tau} \cos(\omega t + \varphi),$$

其中

$$\tau = \frac{2L}{R},$$

$$\omega = \sqrt{\frac{1 - \zeta^2}{LC}},$$

称为欠阻尼振荡.

(II) $\mbox{ } \mbox{ } \mbox$

$$u_C = E\left(1 + \frac{t}{\tau}\right) \cdot e^{-t/\tau},$$

其中

$$\tau = \frac{2L}{R}$$

称为临界阻尼振荡,是过阻尼和欠阻尼的分界点.

(III) 当 $\zeta > 1$,

$$u_C = E \sqrt{\frac{1}{1 - \zeta^2}} \cdot e^{-t/\tau} \sinh(\beta t + \varphi),$$

其中

$$\tau = \frac{2L}{R},$$

$$\omega = \sqrt{\frac{\zeta^2 - 1}{LC}}$$

称为过阻尼振荡.

三种振荡的模式如图所示.

图 6 阻尼振荡的三种模式

实验步骤与实验数据

1. 测量串联谐振的相频和幅频特性

电路如图 1 所示. 取L=0.1 H, C=0.05 μF, $R=100\Omega$. 保持总电压峰值恒定为u=2V, 用示波器 CH1 通道测量总电压u, 用 CH2 通道测量电阻两端电压u_R. 注意: 总电压峰峰值不可以超过 3.0V, 防止串联谐振的电压过高. 注意: 测量时示波器的两个通道必须共地.

改变函数发生器的输出频率, 找到谐振频率 f_0 . 用数字万用表测量u, u_l , u_c , 并计算 Q 值.

测量相频特性曲线和幅频特性曲线. 保持总电压峰值恒定为u=2V,用示波器测出相位差 ϕ ,和对应的 u_R . **注意**: **测量相位差时,要等 AVERAGE 输出稳定后再读数.** 作出电路的 $\phi-f$ 曲线和i-f 曲线. 利用 $Q=f_0/\Delta f_{1/2}$ 估算Q. 注意: 由于函数发生器有内阻,外部阻抗的改变可能导致总电压u的改变,需要根据情况调整输入电压.

2. 测量并联谐振的相频特性和幅频特性曲线

电路如图 3 所示. 取L=0.1 H, C=0.05 μF, $R'=5000\Omega$ (R'是为测量总电流i而接入的). 用 CH1 通 道测量总电压E, 用 CH2 通道测量电阻两端电压 $u_{R'}$. 用示波器的 MATH 功能计算 CH1, CH2 两通道测量值的差,即为总电压 $u=u_0-u_{B'}$.

改变函数发生器的输出频率f,找到谐振频率 f_0 .

测量相频特性曲线和幅频特性曲线. 保持电源电压峰值恒定为 $u_0=2V$,用示波器测出相位差 ϕ ,和对应的 $unu_{R'}$. 作出电路的 $\phi-f$ 曲线, u-f和i-f曲线.

3. 观察暂态过程

电路如图 5 所示. 取L=0.1 H, C=0.2 μF, 函数发生器产生频率f=50Hz, 峰峰值E=2V的方波. 这样从低电平到高电平相当于充电,由高电平到低电平相当于放电. 用示波器 CH1 通道用测量总电压E, CH2 用来测量电容两端电压为 u_C .

先将调节R=0 Ω, 观察此时的 u_c 的波形. 然后逐渐增大R, 并测得临界电阻临界时的 R_c . 观察f=250Hz, R=2kΩ Ω nf=20Hz, R=20kΩ的 u_c 波形.