Probability and Statistics: MA6.101

Tutorial 11

Topics Covered: Probability Inequalities, Statistics (Classical and Bayesian)

Probability Inequalities

- Q1: A biased coin, which lands heads with probability 1/10 each time it is flipped, is flipped 200 times consecutively. Give an upper bound on the probability that it lands heads at least 120 times.
- Q2: Show that convergence in mean square implies convergence in probability.
- Q3: Chebyshev Inequality states that: If X is any random variable, then for any b>0 we have:

$$P(|X - EX| \ge b) \le \frac{Var(X)}{b^2}.$$

Let $X \sim Binomial(n, p)$. Using Chebyshev's inequality, find an upper bound on $P(X \ge \alpha n)$, where $p < \alpha < 1$. Evaluate the bound for $p = \frac{1}{2}$ and $p = \frac{3}{4}$. Calculate using Markov's inequality for the similar parameters, and comment on the betterness of the bounds obtained.

Statistics

Classical/Frequentist Methods

- Q1: Prove that maximising the likelihood is the same as maximising the log likelihood. [Hint: Start by taking 2 different values of the parameter; one maximises the likelihood function, and the other maximises the log-likelihood function].
- Q2: Let X_1, X_2, \ldots, X_n be a random sample from a Geometric(p) distribution. Suppose we observe the data $\{x_1, x_2, x_3, x_4\} = \{2, 1, 7, 3\}$. The probability mass function of the Geometric distribution is given by:

$$P_X(x;p) = p(1-p)^{x-1}$$

Find the maximum likelihood estimate (MLE) of p

- Q3: In the Cilantro experiment, assume 55 out of 100 people said Cilantro tastes like soap. Find the maximum likelihood estimate for p, the true proportion of people who feel that way.
- Q4: Let $\mathcal{D} = \{x_1, ..., x_n\}$ denote i.i.d samples from a uniform random variable U[0, a], where a is unknown. Find an MLE estimate for the unknown parameter a.
- Q5: Assume our data $\mathbf{Y} = (y_1, y_2, ..., y_n)^T$ given X is independently identically distributed, i.i.d. $Y|X = x \sim Exponential(\lambda = x)$, and we chose the prior to be $X \sim Gamma(\alpha, \beta)$.
 - a. Find the likelihood of the function, $L(\mathbf{Y}; X) = f_{\mathbf{Y}|X}(y_1, y_2, ..., y_n|x)$.
 - b. Using the likelihood function of the data, show that the posterior distribution is $Gamma(\alpha + n, \beta + \sum_{i=1}^{n} y_i)$.
 - c. Write out the PDF for the posterior distribution, $f_{X|\mathbf{Y}}(x|\mathbf{y})$.
- Q6: Let X_1, \ldots, X_n be a random sample from a Poisson(λ) distribution.
 - (a) Find the likelihood function, $L(x_1, \ldots, x_n; \lambda)$

- (b) Find the log-likelihood function and use that to obtain the MLE for λ , $\hat{\lambda}_{\text{ML}}$.
- Q7: Suppose you are trying to fit a distribution

$$P(X = x | \theta) = (\frac{\theta}{2})^{|x|} (1 - \theta)^{1-|x|}$$

where the support set is $\{-1,0,1\}$ and θ is a real number in the range [0,1].

(a) Define an estimator as

$$T(X) = 2$$
 if $x = 1$ otherwise $T(X) = 0$.

Show that T(X) is an unbiased estimator of θ .

- (b) Now define another estimator as G(X) = |X|. Show that G(x) is also an unbiased estimator of θ .
- (c) Which of the estimators is better for θ ? Justify your answer.
- Q8: Using a rod of length μ , you lay out a square plot whose length of each side is μ . Thus, the area of the plot will be μ^2 (unknown). Based on n independent measurements X_1, X_2, \ldots, X_n of the length, estimate μ^2 . Assume that each X_i has mean μ and variance σ^2 .
 - (a) Show that \overline{X}^2 is not an unbiased estimator for μ^2 .
 - (b) For what value of k is the estimator $\overline{X}^2 kS^2$ unbiased for μ^2 ?
- Q9: Consider an experiment with two possible outcomes:
 - {Success}, with probability p
 - {Failure}, with probability 1-p

The probability of success, p, is known to lie within the interval $\left[\frac{1}{10}, \frac{1}{5}\right]$. Suppose the experiment is repeated independently n times. The estimator for p is defined as:

$$\widehat{p} = \frac{\text{Successes obtained}}{\text{Total experiments performed}}.$$

Our objective is to determine the minimum value of n such that the standard deviation of the estimator \widehat{p} is guaranteed to be less than $\frac{1}{100}$ for all $p \in \left[\frac{1}{10}, \frac{1}{5}\right]$.

Q10: Let X_1, X_2, \ldots, X_n be a random sample from the following distribution:

$$f_X(x) = \begin{cases} \theta\left(x - \frac{1}{2}\right) + 1 & \text{for } 0 \le x \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta \in [-2, 2]$ is an unknown parameter. We define the estimator $\hat{\Theta}_n$ as:

$$\hat{\Theta}_n = 12\overline{X} - 6$$

2

to estimate θ .

- (a) Is $\hat{\Theta}_n$ an unbiased estimator of θ ?
- (b) Is $\hat{\Theta}_n$ a consistent estimator of θ ?
- (c) Find the mean squared error (MSE) of $\hat{\Theta}_n$.

Bayesian Inference

Q11: Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a distribution with mean $E[X_i] = \theta$ and variance $Var(X_i) = \sigma^2$. Consider the following two estimators for θ :

1.
$$\hat{\Theta}_1 = X_1$$
 2. $\hat{\Theta}_2 = \overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$

Find $MSE(\hat{\Theta}_1)$ and $MSE(\hat{\Theta}_2)$ and show that for n > 1 we have $MSE(\hat{\Theta}_1) > MSE(\hat{\Theta}_2)$.

Q12: Let $X \sim Uniform(0,1)$. Suppose that we know

$$Y|X = x \sim Geometric(x)$$
.

Find the posterior density of X given Y = 2, $f_{X|Y}(x|2)$.

Q13: Let X be a continuous random variable with the following PDF:

$$f_X(x) = \begin{cases} 3x^2 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Also, suppose that $Y|X = x \sim Geometric(x)$. Find the MAP estimate of X given Y = 5.

Q14: Suppose $D = \{x_1, ..., x_n\}$ is a data set consisting of independent samples of a Bernoulli random variable with unknown parameter θ , i.e., $f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$ for $x_i \in \{0,1\}$. Obtain an expression for the posterior distribution on θ . Using this, obtain $\hat{\theta}_{MAP}$ and the conditional expectation estimator $\hat{\theta}_{CE}$.

(Hint:
$$\int_0^1 \theta^m (1-\theta)^r d\theta = \frac{m!r!}{(m+r+1)!}$$
)

- Q15: Suppose we have a prior $\theta \sim \mathcal{N}(4,8)$, and the likelihood function is $\phi(x_1|\theta) \sim \mathcal{N}(\theta,5)$. Suppose also that we have one measurement $x_1 = 3$. Show that the posterior distribution is normal.
- Q16: Suppose that the signal $X \sim N(0, \sigma_X^2)$, is transmitted over a communication channel. Assume that the received signal is given by:

$$Y = aX + bW$$
 where $W \sim N(0, \sigma_W^2)$

and W is independent of X.

- (a) Find the ML estimate of X, given Y=y is observed.
- (b) Find the MAP estimate of X, given Y=y is observed.
- Q17: Let Θ be a continuous random variable with pdf as $\frac{1}{6}$ for $\theta \in [4, 10]$ and 0 elsewhere. And we know that $X = \Theta + U[-1, 1]$. Find the conditional expectation estimator.
- Q18: Show that the conditional expectation estimator is the best guess, in terms of minimizing mean square error, i.e. show the following -

3

$$E[(\theta - E[\Theta|X])^2|X] \le E[(\theta - g(x))^2|X]$$