

Lecture #18

MSI Components

Lecture #18: MSI Components

- 1. Introduction
- 2. Decoders
- 3. Encoders
- 4. Demultiplexers
- 5. Multiplexers

1. Introduction (1/2)

- An integrated circuit (referred to as an IC, a chip or a microchip) is a set of electronic circuits on one small flat piece (or 'chip') of semiconductor material.
- Scale of integration: the number of components fitted into a standard size IC

Name	Signification	Year	#transistors	#logic gates
SSI	Small-scale integration	1964	1 to 10	1 to 12
MSI	Medium-scale integration	1968	10 to 500	13 to 99
LSI	Large-scale integration	1971	500 to 20000	100 to 9999
VLSI	Very large-scale integration	1980	20k to 1m	10k to 99999
ULSI	Ultra-large-scale integration	1984	1m and more	100k and more

1. Introduction (2/2)

- Four common and useful MSI circuits:
 - Decoder
 - Demultiplexer
 - Encoder
 - Multiplexer
- Block diagrams of the above MSI circuits:

2. Decoders (1/5)

- Codes are frequently used to represent entities, eg: your name is a code to denote yourself (an entity!)
- These codes can be identified (or decoded) using a decoder. Given a code, identify the entity.
- Convert binary information from n input lines to (a maximum of) 2ⁿ output lines.
- Known as n-to-m-line decoder, or simply n:m or $n \times m$ decoder ($m \le 2^n$).
- May be used to generate 2^n minterms of n input variables.

2. Decoders (2/5)

 Example: If codes 00, 01, 10, 11 are used to identify four light bulbs, we may use a 2-bit decoder.

- This is a 2×4 decoder which selects an output line based on the 2-bit code supplied.
- Truth table:

X	Y	$\mathbf{F_0}$	$\mathbf{F_1}$	\mathbf{F}_2	\mathbf{F}_3
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

2. Decoders (3/5)

- From truth table, circuit for 2×4 decoder is:
- Note: Each output is a minterm (X'·Y', X'·Y, X·Y' or X·Y) of a 2variable function

X	Y	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$
0	0	1	0 1 0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

2. Decoders (4/5)

Design a 3×8 decoder.

X	y	Z	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	\mathbf{F}_3	$\mathbf{F_4}$	\mathbf{F}_{5}	$\mathbf{F_6}$	\mathbf{F}_7
0	0	0	1	0	0	0	0	0	0	0
0			0						0	0
			0						0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
			0						1	0
1	1	1	0	0	0	0	0	0	0	1

Only 1 of the outputs can be a 1, the rest must be off

2. Decoders (5/5)

In general, for an n-bit code, a decoder could select up to 2ⁿ lines:

2. Decoders: Implementing Functions (1/3)

- A Boolean function, in sum-of-minterms form ⇒
 - decoder to generate the minterms, and
 - an OR gate to form the sum.
- Any combinational circuit with n inputs and m outputs can be implemented with an n:2ⁿ decoder with m OR gates.
- Good when circuit has many outputs, and each function is expressed with a few minterms.

2. Decoders: Implementing Functions (2/3)

Example: Full adder

$$S(x, y, z) = \sum m(1,2,4,7)$$

$$C(x, y, z) = \sum m(3,5,6,7)$$

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2. Decoders: Implementing Functions (3/3)

$$S(x, y, z) = \Sigma m(1,2,4,7)$$

 $C(x, y, z) = \Sigma m(3,5,6,7)$

2. Decoders with Enable (1/2)

- Decoders often come with an enable control signal, so that the device is only activated when the enable, E = 1.
- Truth table:

E	X	Υ	F ₀	F ₁	F_2	F ₃
1	0	0	1 0 0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
_1	1	1	0	0	0	1
0	d	d	0	0	0	0

Circuit of a 2×4 decoder with enable:

2. Decoders with Enable (2/2)

- In the previous slide, the decoder has a one-enable control signal, i.e. the decoder is enabled with E=1.
- In most MSI decoders, enable signal is zero-enable, usually denoted by E' or Ē. The decoder is enabled when the signal is zero (low).

E	X	Y	F ₀	F ₁	F_2	F ₃
1	0	0	1 0 0 0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	d	d	0	0	0	0

E'	X	Υ	F ₀	F ₁	F_2	F_3
0	0	0	1	0	0 0 1 0 0	0
0	0	1	0	1	0	0
0	1	0	0	0	1	0
0	1	1	0	0	0	1
1	d	d	0	0	0	0

Decoder with 1-enable

Decoder with 0-enable

2. Constructing Larger Decoders (1/4)

- Larger decoders can be constructed from smaller ones.
- Example: A 3×8 decoder can be built from two
 2×4 decoders (with one-enable) and an inverter.

1-enable decoder

2. Constructing Larger Decoders (2/4)

2. Constructing Larger Decoders (3/4)

Construct a 4×16 decoder from two 3×8 decoders with one-enable and an inverter.

 Note: The input w and its complement w' are used to select either one of the two smaller decoders.

2. Constructing Larger Decoders (4/4)

- Exercise: What modifications should be made to provide an ENABLE input for the 3×8 decoder and the 4×16 decoder created in the previous two examples?
- Exercise: How to construct a 4×16 decoder using five 2×4 decoders with enable?
- Decoders may also have zero-enable and/or negated outputs. (See next two slides.)
 - Normal outputs = active high outputs
 - Negated outputs = active low outputs

2. Standard MSI Decoder (1/2)

74138 (3-to-8 decoder)

74138 decoder module.

- (a) Logic circuit.
- (b) Package pin configuration.

2. Standard MSI Decoder (2/2)

any other way will disable the decoder, which will thus make everything 1

		11	NPUT	S		OUTPUTS							
	ENA	ABLE	S	ELEC	T								
	G1	Ğ2*	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
I	X	Н	X	×	×	Н	Н	Н	Н	Н	Н	Н	Н
Ц	L	X	×	×	X	н	Н	Н	Н	Н	Н	Н	Н
	Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
	Н	L	L	L	Н	н	L	Н	Н	Н	H	H	Н
1	Н	L	L	Н	L	н	Н	L	Н	Н	Н	H	Н
1	Н	L	L	Н	Н	н	Н	H	L	Н	H	H	Н
	Н	L.	Н	L	L	н	Н	Н	Н	L	H	H	Н
	Н	L	н	L	Н	н	Н	Н	Н	Н	L	Н	Н
	Н	L	н	Н	L	Н	Н	H	Н	H	Н	L	Н
1	Н	L.	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	L

74138 decoder module.

(c) Function table.

* $\overline{G}2 = \overline{G}2A + \overline{G}2B$ H = high level, L = low level, X = irrelevant (C)

74138 decoder module.

- (d) Generic symbol.
- (e) IEEE standard logic symbol.

Source: The Data Book Volume 2, Texas Instruments Inc., 1985

2. Decoders: Implementing Functions Revisit (1/2)

 Example: Implement the following function using a 3×8 decoder and an appropriate logic gate

$$f(Q,X,P) = \sum m(0,1,4,6,7) = \prod M(2,3,5)$$

- We may implement the function in several ways:
 - Using a decoder with active-high outputs with an OR gate: $f(Q,X,P) = m_0 + m_1 + m_4 + m_6 + m_7$
 - Using a decoder with active-low outputs with a NAND gate: $f(Q,X,P) = (m_0' \cdot m_1' \cdot m_4' \cdot m_6' \cdot m_7')'$
 - Using a decoder with active-high outputs with a NOR gate: $f(Q,X,P) = (m_2 + m_3 + m_5)' [= M_2 \cdot M_3 \cdot M_5]$
 - Using a decoder with active-low outputs with an AND gate:
 f(Q,X,P) = m₂' · m₃' · m₅'

2. Decoders: Implementing Functions Revisit

(2/2)

$$f(Q,X,P) = \Sigma m(0,1,4,6,7) = \prod M(2,3,5)$$

(a) Active-high decoder with OR gate.

(b) Active-low decoder with NAND gate.

(c) Active-high decoder with NOR gate.

(d) Active-low decoder with AND gate.

Reading

- Reducing Decoders
 - Read up DLD pages 136 140.

3. Encoders (1/4)

- Encoding is the converse of decoding.
- Given a set of input lines, of which <u>exactly one is high</u> and the rest are low, the <u>encoder</u> provides a code that corresponds to that high input line.
- Contains 2ⁿ (or fewer) input lines and n output lines.
- Implemented with OR gates.
- Example:

3. Encoders (2/4)

- Truth table:
- With K-map, we obtain:

$$D_0 = F1 + F3$$
$$D_1 = F2 + F3$$

Circuit:

Simple 4-to-2 encoder

$\overline{\mathbf{F_0}}$	$\mathbf{F_1}$	$\mathbf{F_2}$	F ₃	\mathbf{D}_1	$\mathbf{D_0}$
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1
0	0	0	0	X	X
0	0	1	1	X	X
0	1	0	1	X	X
0	1	1	0	X	X
0	1	1	1	X	X
1	0	0	1	X	X
1	0	1	0	X	X
1	0	1	1	X	X
1	1	0	0	X	X
1	1	0	1	X	X
1	1	1	0	X	X
1	1	1	1	X	X

3. Encoders (3/4)

- Example: 8-to-3 encoder.
 - At any one time, only one input line of an encoder has a value of 1 (high), the rest are zeroes (low).
 - To allow for more than one input line to carry a 1,we need priority encoder.

		Οι	ıtpı	ıts						
\mathbf{D}_0	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{D_4}$	\mathbf{D}_5	\mathbf{D}_{6}	\mathbf{D}_7	X	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

3. Encoders (4/4)

Example: 8-to-3 encoder.

An 8-to-3 encoder

Exercise: Can you design a 2ⁿ-to-n encoder without using K-map?
Hint is all binary

3. Priority Encoders (1/2)

- A priority encoder is one with priority
 - If two or more inputs or equal to 1, the input with the highest priority takes precedence.
 - If all inputs are 0, this input combination is considered invalid.
- Example of a 4-to-2 priority encoder:

	Inp	uts	Outputs			
D_0	D_1	D_2	D_3	f	g	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

3. Priority Encoders (2/2)

• Understanding "compact" function table

Inputs				Outputs		
D_0	D_1	D_2	D_3	f	g	V
0	0	0	0	Х	Χ	0
1	0	0	0	0	0	1
Χ	1	0	0	0	1	1
Χ	Χ	1	0	1	0	1
Χ	Χ	Χ	1	1	1	1

Exercise: Obtain the simplified expressions for f, g and V.

	Inp	uts	Outputs			
D_0	D ₁	D_2	D_3	f	g	V
0	0	0	0	Х	Χ	0
1	0	0	0	0	0	1
0	1	0	0	0	1	1
1	1	0	0	0	1	1
0	0	1	0	1	0	1
0	1	1	0	1	0	1
1	0	1	0	1	0	1
1	1	1	0	1	0	1
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Multiplexers and Demultiplexers

An application:

- Helps share a single communication line among a number of devices.
- At any time, only one source and one destination can use the communication line.

4. Demultiplexers (1/2)

- Given an input line and a set of selection lines, a demultiplexer directs data from the input to one selected output line.
- Example: 1-to-4 demultiplexer.

S_1	So	\mathbf{Y}_{0}	\mathbf{Y}_1	\mathbf{Y}_{2}	\mathbf{Y}_3
0	0	D	0	0	0
0	1	0	D	0	0
1	0	0	0	D	0
1	1	0	0	0	D

Lecture #18: MSI Components

 It turns out that the demultiplexer circuit is actually identical to a decoder with enable.

5. Multiplexers (1/4)

- A multiplexer is a device that has
 - A number of input lines
 - A number of selection lines
 - One output line
- It steers one of 2ⁿ inputs to a single output line, using n selection lines. Also known as a data selector.

5. Multiplexers (2/4)

Truth table for a 4-to-1 multiplexer:

\mathbf{I}_0	I_1	I_2	I_3	S_1	S_0	Y
$\overline{d_0}$	d_1	d_2	d_3	0	0	d_0
d_0	d_1	d_2	d_3	0	1	d_1
d_0	d_1	d_2	d_3	1	0	d_2
d_0	d_1	d_2	d_3	1	1	d_3

S_1	S_0	Y
0	0	I_0
0	1	\mathbf{I}_1
1	0	I_2
1	1	I_3

5. Multiplexers (3/4)

Output of multiplexer is

"sum of the (product of data lines and selection lines)"

$\overline{S_1}$	S_0	Y
0	0	I_0
0	1	\mathbf{I}_1
1	0	I_2
1	1	I_3

Example: Output of a 4-to-1 multiplexer is:

$$Y = I_0 \cdot (S_1 \cdot S_0) + I_1 \cdot (S_1 \cdot S_0) + I_2 \cdot (S_1 \cdot S_0) + I_3 \cdot (S_1 \cdot S_0)$$

Note:

Expressing

$$I_0'(S_1'S_0') + I_1'(S_1'S_0) + I_2'(S_1S_0') + I_3'(S_1S_0)$$

in minterms notation, it is equal to

$$l_0 \cdot m_0 + l_1 \cdot m_1 + l_2 \cdot m_2 + l_3 \cdot m_3$$

This is useful later (eg: slide 45).

5. Multiplexers (4/4)

- A 2ⁿ-to-1-line multiplexer, or simply 2ⁿ:1 MUX, is made from an n:2ⁿ decoder by adding to it 2ⁿ input lines, one to each AND gate.
- A 4:1 multiplexer circuit:

5. Multiplexer IC Package

Some IC packages have a few multiplexers in each package (chip). The selection and enable inputs are common to all multiplexers within the package.

5. Constructing Larger Multiplexers (1/4)

- Larger multiplexers can be constructed from smaller ones.
- An 8-to-1 multiplexer can be constructed from smaller multiplexers like this (note placement of selector lines):

S_2	S_1	S_0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

5. Constructing Larger Multiplexers (2/4)

- When $S_2S_1S_0 = 000$
- When $S_2S_1S_0 = 001$
- When $S_2S_1S_0 = 110$

5. Constructing Larger Multiplexers (3/4)

Another implementation of an 8-to-1 multiplexer using smaller multiplexers:

5. Constructing Larger Multiplexers (4/4)

 A 16-to-1 multiplexer can be constructed from five 4-to-1 multiplexers:

5. Standard MSI Multiplexer (1/2)

take note that F(x,y,z) is cba

	11	OUTPUTS			
SELECT		STROBE	V	w	
С	В	Α	Ğ	1	VV
Χ	X	Х	Н	L	Н
L	L	L	L	DO	DO
L	L	н	L	D1	D1
L	Н	L	L	D2	D2
L	Н	Н	L	D3	$\overline{D3}$
Н	L	L	L	D4	D4
Н	L	Н	L	D5	D5
Н	Н	L	L	D6	D6
Н	Н	Н	L	D7	D7

74151A 8-to-1 multiplexer. (a) Package configuration. (b) Function table.

5. Standard MSI Multiplexer (2/2)

74151A 8-to-1 multiplexer. (c) Logic diagram. (d) Generic logic symbol. (e) IEEE standard logic symbol.

Source: The TTL Data Book Volume 2. Texas Instruments Inc.,1985.

5. Multiplexers: Implementing Functions (1/3)

- Boolean functions can be implemented using multiplexers.
- A 2ⁿ-to-1 multiplexer can implement a Boolean function of n input variables, as follows:
 - 1. Express in sum-of-minterms form. Example: $F(A,B,C) = A' \cdot B' \cdot C + A' \cdot B \cdot C + A \cdot B \cdot C' \stackrel{3 \times 3}{\triangleright} = \sum m(1,3,5,6)$
 - 2. Connect *n* variables to the *n* selection lines.
 - 3. Put a '1' on a data line if it is a minterm of the function, or '0' otherwise.

5. Multiplexers: Implementing Functions (2/3)

• $F(A,B,C) = \Sigma m(1,3,5,6)$

This method works because:

Output =
$$I_0 \cdot m_0 + I_1 \cdot m_1 + I_2 \cdot m_2 + I_3 \cdot m_3 + I_4 \cdot m_4 + I_5 \cdot m_5 + I_6 \cdot m_6 + I_7 \cdot m_7$$

Supplying '1' to I_1, I_3, I_5, I_6 , and '0' to the rest:

Output =
$$m_1 + m_3 + m_5 + m_6$$

```
From slide 34 (4:1 mux) 

Expressing  I_0 \cdot (S_1' \cdot S_0') + I_1 \cdot (S_1' \cdot S_0) + I_2 \cdot (S_1 \cdot S_0') + I_3 \cdot (S_1 \cdot S_0) 
in minterms notation, it is equal to  I_0 \cdot m_0 + I_1 \cdot m_1 + I_2 \cdot m_2 + I_3 \cdot m_3
```

5. Multiplexers: Implementing Functions (3/3)

Example: Use a 74151A to implement

$$f(x_1,x_2,x_3) = \Sigma m(0,2,3,5)$$

i	C	C B A			Y		
	xı	<i>x</i> ₂	<i>x</i> ₃	f			
()	0	0	()	1	$D_0 = 1$		
1	0	0	1	0	$D_1 = 0$		
2	0	1	()	1	$D_2 = 1$		
2 3	0	1	1	1	$D_3 = 1$		
4	. 1	0	()	0	$D_4 = 0$		
5	1	0	i	1	$D_5 = 1$		
6	1	ı	0	()	$D_6 = 0$		
7	1	1	1	()	$D_7 = 0$		

Realization of $f(x_1, x_2, x_3) = \sum m(0, 2, 3, 5)$.

- (a) Truth table.
- (b) Implementation with 74151A.

5. Using Smaller Multiplexers (1/6)

- Earlier, we saw how a 2ⁿ-to-1 multiplexer can be used to implement a Boolean function of n (input) variables.
- However, we can use a <u>single</u> smaller 2⁽ⁿ⁻¹⁾-to-1 multiplexer to implement a Boolean function of n (input) variables.
- Example: The function

 $F(A,B,C) = \Sigma m(1,3,5,6)$

can be implemented using a 4-to-1 multiplexer (rather than an 8-to-1 multiplexer).

5. Using Smaller Multiplexers (2/6)

Let's look at this example:

$$F(A,B,C) = \sum m(0,1,3,6) = A' \cdot B' \cdot C' + A' \cdot B' \cdot C + A' \cdot B \cdot C + A \cdot B \cdot C'$$

 Note: Two of the variables, A and B, are applied as selection lines of the multiplexer, while the inputs of the multiplexer contain 1, C, 0 and C'.

5. Using Smaller Multiplexers (3/6)

- Procedure
 - 1. Express Boolean function in sum-of-minterms form. Example: $F(A,B,C) = \sum m(0,1,3,6)$
 - 2. Reserve one variable (in our example, we take the least significant one) for input lines of multiplexer, and use the rest for selection lines.

Example: C is for input lines; A and B for selection lines.

5. Using Smaller Multiplexers (4/6)

3. Draw the truth table for function, by grouping inputs by selection line values, then determine multiplexer inputs by comparing input line (C) and function (F) for corresponding selection line values.

А	В	С	F	MUX input
0	0	0	1	
0	0	1	1	
0	1	Q	0	_
0	1	1	1	
1	0	0	0,	
1	0	1	O -	F 0
1	1	0	1	
1	1	1	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

5. Using Smaller Multiplexers (5/6)

Alternative: What if we use A for input lines, and B, C for selector lines?

5. Using Smaller Multiplexers (6/6)

Example: Implement the function below with 74151A:

$$f(x_1,x_2,x_3,x_4) = \Sigma m(0,1,2,3,4,9,13,14,15)$$

	C	В	A	88			Y
i	X_1	X_2	<i>X</i> ₃	X.,	f	f	
0	0	0	0	0	1		
	0	0	0	1	1	1	$D_0 = 1$
T	0	0	l	0	1		
72-307275070	0	0	1	1	1	1	$D_1 = 1$
2	0	1	0	0	1		
2	0	1	0	1	0	\vec{X}_{\bullet}	$D_2 = \overline{X}_4$
3	0	1	1	0	0	(8)	
	0	1	1	1	0	0	$D_3 = 0$
4	T	0	0	0	0		
3	1	0	0	1	1	X_4	$D_4 = X_4$
5	T	0	1	0	0		
	1	0	i	1	0	0	$D_5 = 0$
6	1	ī	0	0	0		
(S)	1	1	0	1	1	X_4	$D_6 = X_4$
7	1	I	1	0	1		
	1	I	1	1	1	ı	$D_7 = 1$
				(a)		

Peeking Ahead

End of File