To [4].	Voice Categorization - Case Study
In [1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns</pre>
	Data Set: Voice Data Set This database was created to identify a voice as male or female, based upon acoustic properties of the voice and speech. The dataset consists of 3800 recorded voice samples. The voice samples are pre-processed by
	acoustic analysis in R using the seewave and tuneR packages. The following acoustic properties of each voice are measured and included within the CSV:
	 meanfreq: mean frequency (in kHz) sd: standard deviation of frequency median: median frequency (in kHz) Q25: first quantile (in kHz)
	 Q75: third quantile (in kHz) IQR: interquantile range (in kHz) skew: skewness (see note in specprop description) kurt: kurtosis (see note in specprop description)
	 sp.ent: spectral entropy sfm: spectral flatness mode: mode frequency
	 centroid: frequency centroid (see specprop) peakf: peak frequency (frequency with highest energy) meanfun: average of fundamental frequency measured across acoustic signal minfun: minimum fundamental frequency measured across acoustic signal
	 maxfun: maximum fundamental frequency measured across acoustic signal meandom: average of dominant frequency measured across acoustic signal mindom: minimum of dominant frequency measured across acoustic signal maxdom: maximum of dominant frequency measured across acoustic signal
	 dfrange: range of dominant frequency measured across acoustic signal modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental frequencies divided by the frequency range label: male or female
In [2]: Out[2]:	<pre>df = pd.read_csv('voice-classification.csv') df.head() meanfreq sd median Q25 Q75 IQR skew kurt sp.ent sfm centroid meanfun minfun maxfun meandom mindom maxdom dfrange modindx label</pre>
	0 0.059781 0.064241 0.032027 0.015071 0.090193 0.075122 12.863462 274.402906 0.893369 0.491918 0.059781 0.015702 0.07812 0.007812 0.007812 0.007812 0.007812 0.00000 0.00000 male 1 0.066009 0.083829 0.036718 0.008701 0.131908 0.123207 30.757155 1024.927705 0.846389 0.478905 0.077316 0.098706 0.015656 0.271186 0.007990 0.007812 0.007812 0.0046875 0.0046512 male
	3 0.151228 0.072111 0.158011 0.096582 0.207955 0.111374 1.232831 4.177296 0.963322 0.727232 0.151228 0.088965 0.017798 0.250000 0.201497 0.007812 0.562500 0.554688 0.247119 male 0.135120 0.079146 0.124656 0.078720 0.206045 0.127325 1.101174 4.333713 0.971955 0.783568 0.135120 0.106398 0.016931 0.266667 0.712812 0.007812 5.484375 5.476562 0.208274 male 5 rows × 21 columns
In [3]:	<pre># Check the no. of records df.info() <class 'pandas.core.frame.dataframe'=""></class></pre>
	RangeIndex: 3168 entries, 0 to 3167 Data columns (total 21 columns): # Column Non-Null Count Dtype
	0 meanfreq 3168 non-null float64 1 sd 3168 non-null float64 2 median 3168 non-null float64 3 Q25 3168 non-null float64 4 Q75 3168 non-null float64 5 IQR 3168 non-null float64
	5
	11 centroid 3168 non-null float64 12 meanfun 3168 non-null float64 13 minfun 3168 non-null float64 14 maxfun 3168 non-null float64 15 meandom 3168 non-null float64
	16 mindom 3168 non-null float64 17 maxdom 3168 non-null float64 18 dfrange 3168 non-null float64 19 modindx 3168 non-null float64 20 label 3168 non-null object
In [4]:	dtypes: float64(20), object(1) memory usage: 519.9+ KB # Check the Basic Distribution of Data df.describe()
Out[4]:	
	mean 0.180907 0.057126 0.185621 0.140456 0.224765 0.084309 3.140168 36.568461 0.895127 0.408216 0.165282 0.180907 0.142807 0.036802 0.258842 0.829211 0.05282 std 0.029918 0.016652 0.036360 0.048680 0.023639 0.042783 4.240529 134.928661 0.044980 0.177521 0.077203 0.029918 0.032304 0.019220 0.030077 0.525205 0.063 min 0.039363 0.018363 0.010975 0.000229 0.042946 0.014558 0.141735 2.068455 0.738651 0.036876 0.000000 0.039363 0.055565 0.009775 0.103093 0.007812 0.004 25% 0.163662 0.041954 0.11087 0.208747 0.042560 1.649569 5.669547 0.861811 0.258041 0.118016 0.163662 0.116998 0.018223 0.253968 0.419828 0.007
	50% 0.184838 0.059155 0.190032 0.140286 0.225684 0.094280 2.197101 8.318463 0.901767 0.396335 0.186599 0.184838 0.140519 0.046110 0.271186 0.765795 0.023 75% 0.199146 0.067020 0.210618 0.175939 0.243660 0.114175 2.931694 13.648905 0.928713 0.533676 0.221104 0.199146 0.169581 0.047904 0.277457 1.177166 0.070 max 0.251124 0.115273 0.261224 0.247347 0.273469 0.252225 34.725453 1309.612887 0.981997 0.842936 0.280000 0.251124 0.237636 0.204082 0.279114 2.957682 0.458
	Checking whether there is any null values
In [5]: Out[5]:	<pre>df.isnull().sum() meanfreq 0 sd 0</pre>
	median 0 Q25 0 Q75 0 IQR 0 skew 0
	kurt 0 sp.ent 0 sfm 0 mode 0 centroid 0
	meanfun0minfun0maxfun0meandom0mindom0
	maxdom 0 dfrange 0 modindx 0 label 0 dtype: int64
	Get Shape and Distribution
In [6]:	<pre>print ("Shape of Data:" , df.shape) print("Total number of labels: {}".format(df.shape[0])) print("Number of male: {}".format(df[df.label == 'male'].shape[0])) print("Number of female: {}".format(df[df.label == 'female'].shape[0]))</pre>
	Shape of Data: (3168, 21) Total number of labels: 3168 Number of male: 1584 Number of female: 1584
In [7]:	<pre>X=df.iloc[:, :-1] print (df.shape) print (X.shape) (3168, 21) (3168, 20)</pre>
In [8]:	Converting label column (male/female) to 1/0 from sklearn.preprocessing import LabelEncoder
In [9]:	<pre># Get All rows, but only last column y=df.iloc[:,-1] # Encode label category # male -> 1</pre>
	<pre># male > 1 # female -> 0 gender_encoder = LabelEncoder() y = gender_encoder.fit_transform(y) y</pre>
	array([1, 1, 1,, 0, 0, 0]) # Scale the data to be between -1 and 1
	<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X)</pre>
	Train Test Split Split your data into a training set and a testing set.
In [11]:	
	Train a Model Now, it's time to train a Support Vector Machine Classifier
In [12]:	Now, it's time to train a Support Vector Machine Classifier. Call the SVC() model from sklearn and fit the model to the training data. from sklearn.svm import SVC
In [12].	<pre>from sklearn import metrics from sklearn.metrics import classification_report,confusion_matrix # ALL Default hyperparameters</pre>
In [14]:	
Out[14]:	svc_model.support_vectorsshape[0]/df.shape[0]*100 9.7853535353536
In [15]:	<pre>Model Evaluation print('Accuracy Score:') print(metrics.accuracy_score(y_test,y_pred))</pre>
In [16]:	<pre>print(metrics.accuracy_score(y_test,y_pred)) Accuracy Score: 0.9737118822292324 print(confusion_matrix(y_test,y_pred))</pre>
In [16]:	[[458 13] [12 468]] print(classification_report(y_test,y_pred))
	precision recall f1-score support 0 0.97 0.97 0.97 471 1 0.97 0.97 0.97 480
	accuracy 0.97 951 macro avg 0.97 0.97 9.97 951 weighted avg 0.97 0.97 0.97 951
	Let's see if you can tune the parameters to get even better (Probably, you would be satisfied with these results in real life because the data set is quite small, but the idea is you should practice using GridSearch.) Gridsearch
In [18]:	from sklearn.model_selection import GridSearchCV Create a dictionary called param_grid and fill out some parameters for C.
In [19]: In [20]:	Create a dictionary called param_grid and fill out some parameters for C. param_grid = {'C': [0.1,1, 10, 100], 'kernel': ['poly', 'linear', 'rbf', 'sigmoid']} grid = GridSearchCV(SVC(), param_grid)
In [20]: Out[20]:	<pre>grid = GridSearchCV(SVC(), param_grid) grid.fit(X_train, y_train) GridSearchCV(estimator=SVC(),</pre>
In [21]:	Now, take that grid model and create some predictions using the test set and create classification reports and confusion matrices for them. grid.best_params_
Out[21]: In [22]:	(ICL: 10 Ikornoll: Irbfl)
In [23]:	<pre>print('Accuracy Score:') print(metrics.accuracy_score(y_test,grid_predictions)) Accuracy Score:</pre>
In [24]:	<pre>0.9779179810725552 print(confusion_matrix(y_test,grid_predictions)) [[460 11]</pre>
In [25]:	[10 470]] print(classification_report(y_test,grid_predictions)) precision recall f1-score support
	0 0.98 0.98 0.98 471 1 0.98 0.98 0.98 480 accuracy 0.98 951
	macro avg 0.98 0.98 951 weighted avg 0.98 0.98 951