

## Outline







**INTRODUCTION** 



METHODOLOGY



**RESULTS** 



**CONCLUSION** 



## **Executive Summary**



### **Summary of Methodologies**

Data collection and Data wrangling

Features engineering

Data preparation

Modelling



### **Summary of results**

Ensemble model as the best model of energy consumption prediction

EnergyStarScore is one of the most important feature

Data improvement and news features engineering

## Introduction

Project background and context

The growth of environmental concerns in the modern cities

High cost of environment sustaibility policies

Objective of Seattle City

Reduction of Seattle City CO2 Emission of nonresidential building

Reduce the cost of this policy

Question of interest

What are the determinants of energy consumption and CO2 emissions in non-residential buildings in the city of Seattle?

• Constraint: Energy consumption and CO2 anticipation with low cost

## Methodology









EXPLORATORY ANALYSIS



PREDICTIVE ANALYSIS (REGRESSION)



FEATURES IMPORTANCES ANALYSIS

## Data understanding and data wrangling

### Categorical features preview

- Selection of the candidates of interest
- Outliers drop with the feature outlier
- Filling Categorical Missing value

### Numerical features preview

- Droping numerical outlier
- Droping absud values
- Droping data leakage features



## Features Engineering

- Catagorical features engineering
  - Grouping categorical features categories by their statistical characteristics
  - Creation of Boolean features (parking, SecondUsage, ThirdUsage, SteamUse, GasUse)
  - Creation of Categorical features (MainEnergyUse)
- Numerical features engineering
  - Numerical features (LargestGFArate, SecondGFArate, ThirdGFArate, BuildingGFARate, ...)
  - Numerical Encoding (PrimaryGFAProportion, LargestGFAProportion, SecondGFAProportion, ThirdGFAProportion,...)



## Exploratory analysis



Relationship between categorical features and Target

Categorical distribution with the targets variables

Geographical location effect on targets variables



Relationship between features and targets variables

Correlation analysis

Numerical features and targets variables













# Predictive analysis (Regression)

- Building Model
  - Baseline definition
  - Model selection
- Model Evaluation
  - Metrics definition
  - Metrics calculation
- Best fit model
  - Hyperparameters tuning
  - Model comparison



Categorical features visualization

Numerical features visualization

### Predictive Analysis

**Model Building** 

**Model Selection** 

## Features importances

Features Importances without ESS

Features importances with ESS







Relationship between categorical features and target variables





Relationship between categorical features and target variables







13

## Exploratory Data Analysis: Numerical features relationship



## Predictive analysis: Model Building

#### **Energy Consumption**

|      | Dummy    | Elastic Net | SVR       | Random<br>Forest | Extra Tree | Gradient<br>Boosting | KNeighbors | Linear<br>Regression | Decision<br>Tree | XGB       | Lasso     | Ridge     | SGD         | AdaBoost  |
|------|----------|-------------|-----------|------------------|------------|----------------------|------------|----------------------|------------------|-----------|-----------|-----------|-------------|-----------|
| R²   | -0.000   | 5.391e-1    | -1.334e-1 | 6.921e-1         | 7.106e-1   | 7.354e-1             | 6.179e-1   | 5.786e-1             | 4.656e-1         | 7.118e-1  | 5.786e-1  | 5.791e-1  | -2.28574e+4 | 4.283e-1  |
| MAE  | 2.146e+6 | 1.435e+6    | 1.9868e+6 | 1.1322e+6        | 1.0965e+6  | 1.0699e+6            | 1.269e+6   | 1.3117e+6            | 1.4840e+6        | 1.1168e+6 | 1.3117e+6 | 1.3050e+6 | 2.6456e+8   | 1.8953e+6 |
| RMSE | 2.825e+6 | 1.918e+6    | 3.0078e+6 | 1.5676e+6        | 1.5197e+6  | 1.4533e+6            | 1.7463e+6  | 1.834e+6             | 2.0653e+6        | 1.5166e+6 | 1.834e+6  | 1.8329e+6 | 4.2715e+8   | 2.1362e+6 |
| МАРЕ | 1.567    | 9.648e-1    | 9.949e-1  | 6.406e-1         | 6.095e-1   | 6.034e-1             | 7.308e-1   | 7.216e-1             | 7.018e-1         | 6.302e-1  | 7.216e-1  | 7.179e-1  | 2.23092e+2  | 1.7299    |

#### **TOTAL GHG Emissions**

|                | Dummy | Elastic<br>Net | SVR   | Random<br>Forest | Extra Tree | Gradient<br>Boosting | KNeighbors | Linear<br>Regression | Decision<br>Tree | XGB   | Lasso | LassoCV | LassoLars<br>CV | Ridge | SGD           | AdaBoost |
|----------------|-------|----------------|-------|------------------|------------|----------------------|------------|----------------------|------------------|-------|-------|---------|-----------------|-------|---------------|----------|
| R <sup>2</sup> | -0.00 | 0.2517         | -0.06 | 0.3321           | 0.188      | 0.42                 | 0.31       | 0.4                  | -0.001           | 0.17  | 0.37  | 0.4122  | 0.41            | 0.40  | -<br>4.88e+11 | 0.2022   |
| MAE            | 38.42 | 32.26          | 34.94 | 28.75            | 31.48      | 27.57                | 29.51      | 28.83                | 34.7264          | 32.31 | 29.84 | 28.64   | 28.68           | 28.78 | 1.58e+7       | 38.2765  |
| RMSE           | 50.06 | 43.3           | 51.65 | 40.91            | 45.11      | 38.19                | 41.53      | 38.71                | 50.0879          | 45.66 | 39.69 | 38.37   | 38.45           | 38.58 | 3.49e+7       | 44.7128  |
| MAPE           | 2.64  | 2.07           | 1.66  | 1.32             | 1.3626     | 1.1939               | 1.37       | 1.36                 | 1.2660           | 1.61  | 1.58  | 1.36    | 1.37            | 1.36  | 6.75e+5       | 2.68     |

## Hyperparameter tuning and Model selection

| Energy Consumption |                 |            |             |  |  |  |  |
|--------------------|-----------------|------------|-------------|--|--|--|--|
|                    | mean_test_score | test_score | train_score |  |  |  |  |
| Random Forest      | 0.628583        | 0.719983   | 0.917572    |  |  |  |  |
| Gradient Boosting  | 0.655375        | 0.709855   | 0.772623    |  |  |  |  |
| Extra Tree         | 0.655338        | 0.740479   | 0.813963    |  |  |  |  |
| XGB                | 0.651438        | 0.717441   | 0.788149    |  |  |  |  |
| Elastic Net        | 0.349125        | 0.409408   | 0.378343    |  |  |  |  |
| KNeighbors         | 0.560731        | 0.628901   | 0.716398    |  |  |  |  |
| Linear Regression  | 0.630524        | 0.578580   | 0.684501    |  |  |  |  |
| Lasso              | 0.635667        | 0.579087   | 0.683825    |  |  |  |  |
| Ridge              | 0.637002        | 0.577901   | 0.682150    |  |  |  |  |

| TOTAL GHG Emissions |                 |            |             |  |  |  |  |
|---------------------|-----------------|------------|-------------|--|--|--|--|
|                     | mean_test_score | test_score | train_score |  |  |  |  |
| Random Forest       | 0.327674        | 0.393327   | 0.754677    |  |  |  |  |
| Gradient Boosting   | 0.390514        | 0.447643   | 0.538767    |  |  |  |  |
| Extra Tree          | 0.371981        | 0.410987   | 0.540685    |  |  |  |  |
| XGB                 | 0.383194        | 0.420030   | 0.555418    |  |  |  |  |
| Elastic Net         | 0.117615        | 0.143895   | 0.128237    |  |  |  |  |
| KNeighbors          | 0.260316        | 0.325260   | 0.406968    |  |  |  |  |
| Linear Regression   | 0.373277        | 0.401896   | 0.410746    |  |  |  |  |
| Lasso               | 0.376755        | 0.405900   | 0.410340    |  |  |  |  |
| Ridge               | 0.377404        | 0.407571   | 0.409690    |  |  |  |  |

### Features importances Without ESS









### Model with ENERGYSTARSCORE

|                   | mean_test_score | test_score | train_score |  |
|-------------------|-----------------|------------|-------------|--|
| Random Forest     | 0.810030        | 0.841324   | 0.972957    |  |
| Gradient Boosting | 0.853881        | 0.866077   | 0.975143    |  |
| Extra Tree        | 0.816429        | 0.820377   | 0.956928    |  |
| XGB               | 0.827313        | 0.852216   | 0.942340    |  |
| Elastic Net       | 0.371047        | 0.423996   | 0.383837    |  |
| KNeighbors        | 0.696142        | 0.706665   | 1.000000    |  |
| Linear Regression | 0.758458        | 0.793009   | 0.808901    |  |
| Lasso             | 0.760788        | 0.794415   | 0.808391    |  |
| Ridge             | 0.762564        | 0.796845   | 0.804506    |  |

|                   | mean_test_score | test_score | train_score |  |
|-------------------|-----------------|------------|-------------|--|
| Random Forest     | 0.480830        | 0.416615   | 0.923479    |  |
| Gradient Boosting | 0.478084        | 0.504279   | 0.707597    |  |
| Extra Tree        | 0.494845        | 0.471096   | 0.838995    |  |
| XGB Regressor     | 0.478417        | 0.481708   | 0.777819    |  |
| Elastic Net       | 0.143629        | 0.184598   | 0.159149    |  |
| KNeighbors        | 0.328874        | 0.289181   | 1.000000    |  |
| Linear Regression | 0.450028        | 0.500401   | 0.503901    |  |
| Lasso             | 0.450395        | 0.508548   | 0.502631    |  |
| Ridge             | 0.450823        | 0.506174   | 0.503401    |  |

The overall best cross-validated score is :  $R^2 = 0.854$  The best model is **Gradient Boosting Regressor** with parameters:

- learning\_rate: 0.01

- - max\_depth: 5

- - n estimators: 1000

- - subsample: 0.3

The overall best cross-validated with GridSearchCV score is :  $R^2 = 0.854$  The best model is **Gradient Boosting Regressor** with parameters:

- learning\_rate: 0.01

- - max\_depth: 5

- - n\_estimators: 1000

- - subsample: 0.3

The overall best cross-validated with BayesSearch CVscore is :  $R^2 = 0.505$  The best model is **Extra Tree Regressor** with parameters:

- max\_features: 10

- - min\_samples\_leaf: 2

- - min\_samples\_split: 2

- - n estimators: 100

## Features importances with ESS







-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

PrimaryPropertyTyp



