Задачи за ЕК

Задача 1. (03.03) Функцията f, дефинирана върху списъци, удовлетворява равенствата:

$$\begin{split} &f(x,y,[\])=[\]\\ &f(x,[\],[a])=[x@[a]]\\ &f(x,y,[a|z])=f(x@[a],[\],y@z)@f(x,y@[a],z), \text{ and } y\neq[\]\ \lor\ z\neq[\]. \end{split}$$

(Тук @ е операцията конкатенация.) Докажете, че f е тотална функция.

Задача 2. (03.03) В множеството \mathbb{N}^* на всички крайни редици от естествени числа дефинираме релацията \prec по следния начин. За всеки две редици α и β полагаме

$$\alpha \prec \beta$$

точно когато α може да се получи от β след замяната на число n от β с редица от числа (m_1, \ldots, m_k) , такива че $m_i < n$ за всяко $i = 1, \ldots, k$. Нека \prec^* е рефлексивното и транзитивно затваряне на релацията \prec . Докажете, че (\mathbb{N}^*, \prec^*) е фундирано множество.

Задача 3. (18.03) Опишете всички преднеподвижни точки на оператора Γ , дефиниран като:

$$\Gamma(f)(x)\simeq egin{cases} 0, & ext{ako } x=0 \ f(x+1), & ext{иначе}. \end{cases}$$

Задача 4. (26.03) Докажете, че програмата вдясно пресмята 91-функцията на Маккарти $f\colon \mathbb{Z} \longrightarrow \mathbb{Z}$, която се дефинираше рекурсивно по следния начин:

$$f(x) \simeq \begin{cases} x - 10, & \text{ako } x > 100 \\ f(f(x + 11)), & \text{ako } x \le 100. \end{cases}$$

Задача 5. (15.04) Докажете, че най-малката неподвижна точка на оператора

$$\Gamma(f)(x)\simeq egin{cases} rac{x}{2}, & ext{ако } x ext{ е четно} \ f(f(3x+1)), & ext{иначе} \end{cases}$$

е тотална функция.

Задача 6. (18.04) Да фиксираме произволна функция $h \in \mathcal{F}_2$ и да означим с $\Gamma \colon \mathcal{F}_2 \longrightarrow \mathcal{F}_2$ следния оператор:

$$\Gamma(f)(x,y) \simeq \begin{cases} 0, & \text{ако } h(x,y) \simeq 0 \\ f(x,y+1)+1, & \text{ако } h(x,y) > 0 \\ \neg !, & \text{ако } \neg !h(x,y). \end{cases}$$

Докажете, че Γ има единствена неподвижна точка и намерете явния ѝ вид.