Application of Variational EM to Wireless system

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

March 14, 2024

Recap of last lecture and today's agenda

- Recap of last class
 - Discussed variational EM (VEM) algorithm
- Today's agenda
 - Apply VEM algorithm to wireless system
 - Ref: Variational Approximation for Bayesian Inference [Life after the EM algorithm], IEEE Signal Processing Magazine Nov. 2008, Dimitris G. Tzikas, Aristidis C. Likas, and Nikolaos P. Galatsanos.

5G mMTC systems model (recap)

ullet Consider a mMTC system with M single-antenna mMTC devices and N-antenna base-station (BS)

- Only few mMTC active devices transmit data which BS need to process
- BS does not know which devices are active. All active M mMTC devices transmit simultaneously
- Total number of mMTC devices $M \gg N$ and number of active mMTC devices $K < N \ll M$
- ullet Received signal assuming all devices are active ${f y} = {f H} {f x} + {f n}$
- Tx signal $\mathbf{x} = [x_1, \dots, x_M]^T$, rx signal $\mathbf{y} = [y_1, \dots, y_N]^T$, and noise $\mathbf{n} = [n_1, \dots, n_N]^T$
- Sparse transmit vector \mathbf{x} contains only $K \ll M$ non-zero values $\mathbf{x} = [1,0,1,0,0,0,\cdots,0]^T$

EM for 5G mMTC systems

- 5G mMTC data model is y = Hx + n with unknown noise variance β^{-1}
- Likelihood is Gaussian $p(\mathbf{y}|\mathbf{H}, \mathbf{x}, \beta) = \mathcal{N}(\mathbf{H}\mathbf{x}, \beta^{-1}\mathbf{I})$.
- ullet We assumed ${f x}$ as latent variable, and ${m lpha}$ and ${m eta}$ as parameters
- We assumed following sparsity-promoting prior on latent variable x

$$p(\mathbf{x}|oldsymbol{lpha}) = \mathcal{N}(0, (\mathsf{diag}(oldsymbol{lpha}))^{-1}) = \prod_{m=1}^{M} \mathcal{N}(0, lpha_m^{-1})$$

- First calculated posterior distribution of x, which we recall from lecture 10, was
 - Gaussian with $p(\mathbf{x}|\mathbf{y},\mathbf{H},\beta) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}},\boldsymbol{\Sigma}_{\mathbf{x}})$ covariance matrix and mean (note them)

$$\mathbf{\Sigma}_{\mathbf{x}} = \left(eta \mathbf{H}^T \mathbf{H} + \mathsf{diag}(oldsymbol{lpha})
ight)^{-1}$$
 and $oldsymbol{\mu}_{\mathbf{x}} = eta \mathbf{\Sigma}_{\mathbf{x}} \mathbf{H}^T \mathbf{y}$

• Computed $\mathbb{E}_{\mathbf{x}}$ of log of CDLL under pos. dis. $p(\mathbf{x}|\mathbf{y},\mathbf{H},\beta)$ and maximized it to calculate α , β

$$egin{array}{lcl} lpha_i^{new} &=& rac{1}{oldsymbol{\Sigma_x}(i,i) + (oldsymbol{\mu_x}(i))^2} \ (eta^{new})^{-1} &=& rac{1}{N} \left(||\mathbf{y} - \mathbf{H} oldsymbol{\mu_x}||^2 + \mathrm{Tr}[\mathbf{H}^T \mathbf{H} oldsymbol{\Sigma_x}]
ight) \end{array}$$

Variational EM for 5G mMTC systems (1)

- Our 5G mMTC data model is y = Hx + n with unknown noise variance β^{-1}
- Likelihood is Gaussian $p(\mathbf{y}|\mathbf{H},\mathbf{x},\beta) = \mathcal{N}(\mathbf{H}\mathbf{x},\beta^{-1}\mathbf{I})$
- We now not only assume **x** as latent variable, but also α and β
 - Allows freedom in system design, which further encourages sparse solution
- We still assume the same prior on x

$$p(\mathbf{x}|oldsymbol{lpha}) = \mathcal{N}(0, (\mathsf{diag}(oldsymbol{lpha}))^{-1}) = \prod_{m=1}^M \mathcal{N}(0, lpha_m^{-1})$$

• Assume Gamma prior over
$$\alpha$$
 and β , which we recall is conjugate for the precision of a Gaussian
$$p(\alpha) \stackrel{(a)}{=} \prod_{m=1}^{M} \operatorname{Gamma}(\alpha_m|a,b) = \prod_{m=1}^{M} \frac{b^a}{\Gamma(a)} (\alpha_m)^{a-1} e^{-b\alpha_m}$$

$$p(\beta) = \operatorname{Gamma}(\beta|c,d)$$

- Equality (a) is because we assume each α_m is independently distributed
- a, b, c, d are parameter, but we fix them, and do not calculate them
- Treat \mathbf{x} , $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ as latent variables, such that $\mathbf{Z} = \{\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}\}$ and $\boldsymbol{\theta} = \{\}$

Variational EM for 5G mMTC systems (2)

- If the current estimate for the parameters is denoted θ^{old} , then variational EM algorithm is
 - **1** E step: use current parameter values $heta^{old}$ to find posterior of latent variables

$$ho(\mathbf{Z}|\mathbf{X}, oldsymbol{ heta}^{old}) = q^*(\mathbf{Z}) = \prod_{i=1}^M q_i^*(\mathbf{Z}_i),$$
 where

$$\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i
eq j} \left[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{ heta})
ight] + ext{constant}$$

 $oldsymbol{0}$ Use $p(\mathbf{Z}|\mathbf{X}, oldsymbol{ heta}^{old})$ to find expectation of CDLL evaluated for some general $oldsymbol{ heta}$

$$\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{old})$$

 $oldsymbol{0}$ M step: determine the revised parameter estimate $oldsymbol{ heta}^{new}$ by maximizing expected value of CDLL

$$oldsymbol{ heta}^{ extit{new}} = rgmax \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ extit{old}}).$$

- ullet Since, we do not have $oldsymbol{ heta}$, there is only variational E step, and no M step
 - Recall $\mathbf{Z} = \{\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}\}$ and $\boldsymbol{\theta} = \{\}$, and $\mathbf{X} = \{\mathbf{y}, \mathbf{H}\}$
- We accordingly need to calculate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old})$, which is now joint distribution $p(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\beta}|\mathbf{y}, \mathbf{H})$
 - Its calculation can be easily shown to be intractable
- Using variational (mean field) approximation, with independent $\mathbf{x}, \alpha, \beta$, posterior is $p(\mathbf{x}, \alpha, \beta | \mathbf{y}, \mathbf{H}) \approx q(\mathbf{x}, \alpha, \beta) = q(\mathbf{x})q(\alpha)q(\beta)$

Variational E step for calculating q(x) (1)

According to variational EM algorithm derived earlier, we have

$$\log q_i^*(\mathsf{Z}_i) = \mathbb{E}_{i \neq i} [\log p(\mathsf{X}, \mathsf{Z}|\theta)] + \text{constant}$$

• In this case, it reduces to

$$\log q(\mathbf{x}) = \mathbb{E}_{\alpha,\beta} \left[\log p(\mathbf{y}, \mathbf{H}, \mathbf{x}, \alpha, \beta) \right] + \text{constant}$$

$$= \mathbb{E}_{\alpha,\beta} \left[\log p(\mathbf{y}|\mathbf{H}, \mathbf{x}, \alpha, \beta) + \log p(\mathbf{x}|\alpha) + \underbrace{\log p(\alpha) + \log p(\beta)}_{\text{remove terms independent of } \mathbf{x}} \right] + \text{constant}$$

$$= \mathbb{E}_{\alpha,\beta} \left[\log p(\mathbf{y}|\mathbf{H}, \mathbf{x}, \beta) + \log p(\mathbf{x}|\alpha) \right] + \text{constant}$$

$$= \mathbb{E}_{\alpha,\beta} \left[\log \mathcal{N}(\mathbf{H}\mathbf{x}, \beta^{-1}\mathbf{I}) + \log \mathcal{N}(\mathbf{0}, \operatorname{diag}(\alpha)^{-1}) \right]$$

$$= \mathbb{E}_{\alpha,\beta} \left[-\frac{\beta}{2} (\mathbf{y} - \mathbf{H}\mathbf{x})^T (\mathbf{y} - \mathbf{H}\mathbf{x}) - \frac{1}{2} \sum_{m=1}^{M} \alpha_m x_m^2 \right] + \text{constant}$$

$$\stackrel{(a)}{=} -\frac{\mathbb{E}_{\beta}}{2} \left[\beta \right] (\mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{H}^T \mathbf{H}\mathbf{x}) - \frac{1}{2} \sum_{m=1}^{M} \mathbb{E}_{\alpha} [\alpha_m] x_m^2 + \text{constant}$$

$$\stackrel{(b)}{=} -\frac{1}{2} \mathbf{x}^T \left[\mathbb{E}_{\beta} [\beta] \mathbf{H}^T \mathbf{H} + \mathbb{E}_{\alpha} [\mathbf{A}] \right] \mathbf{x} + \mathbb{E}[\beta] \mathbf{y}^T \mathbf{H}\mathbf{x} + \text{constant}$$

Variational E step for calculating q(x) (2)

- Here $\mathbf{A} = \operatorname{diag}(\alpha)$
- ullet Equality (a): Mean field approximation according to which lpha and eta are independently distributed
- Equality (b): By rearranging the terms and by ignoring terms independent of x
- We have from the last slide

$$q(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^T \left[\mathbb{E}_{\beta}[\beta] \mathbf{H}^T \mathbf{H} + \mathbb{E}_{\alpha}[\mathbf{A}] \right] \mathbf{x} + \mathbb{E}[\beta] \mathbf{y}^T \mathbf{H} \mathbf{x} + \text{constant}$$
$$= -\frac{1}{2}\mathbf{x}^T \left[\mathbb{E}_{\beta}[\beta] \mathbf{H}^T \mathbf{H} + \mathbb{E}_{\alpha}[\mathbf{A}] \right] \mathbf{x} + \mathbb{E}[\beta] \mathbf{x}^T \mathbf{H}^T \mathbf{y} + \text{constant}$$

By comparing it with standard Gaussian expression,¹ we get

$$egin{array}{lll} q(\mathbf{x}) &=& \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_{\mathbf{x}},oldsymbol{\Sigma}_{\mathbf{x}}), \ \mathbf{x} &=& [\mathbb{E}_{eta}[eta]\mathbf{H}^T\mathbf{H}+\mathbb{E}_{lpha}[\mathbf{A}]]^{-1}, & oldsymbol{\mu}_{\mathbf{x}} &=& \mathbb{E}_{eta}[eta]oldsymbol{\Sigma}_{\mathbf{x}}\mathbf{H}^T\mathbf{y} \end{array}$$

- These updates are same as the EM-SBL updates derived earlier
 - ullet Extra expectation over lpha and eta because we assumed them as random variables
- ullet To calculate the expectations, we need posterior $q(\alpha)$ and $q(\beta)$ which we now calculate

$$\mathbf{1} - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^T \mathbf{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) = -\frac{1}{2} \mathbf{x}^T \mathbf{\Sigma}_{\mathbf{x}}^{-1} \mathbf{x} + \mathbf{x}^T \mathbf{\Sigma}_{\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}} + \text{constant}$$

Variational E step for calculating $q(\alpha)$ (1)

ullet For calculating q(lpha), we again take expectation of log of CDLL

$$\begin{array}{lcl} \log q(\alpha) & = & \mathbb{E}_{\mathbf{x},\beta}[\log p(\mathbf{y},\mathbf{H},\mathbf{x},\alpha,\beta)] + \mathrm{constant} \\ & = & \mathbb{E}_{\mathbf{x},\beta}[\log p(\mathbf{y}|\mathbf{H},\mathbf{x},\beta) + \log p(\mathbf{x}|\alpha) + \log p(\alpha) + \log p(\beta)] + \mathrm{constant} \end{array}$$

- Recalling that $p(\alpha) = \prod_{m=1}^M \mathsf{Gamma}(\alpha_m|a,b) = \prod_{m=1}^M \frac{b^a}{\Gamma(a)} (\alpha_m)^{a-1} e^{-b\alpha_m}$
- Also, recall $p(\mathbf{x}|\alpha) = \prod_{m=1}^{M} \mathcal{N}(0, \alpha_m^{-1})$. By retaining terms which are dependent on α , we get

$$\begin{split} \log q(\alpha) &= \mathbb{E}_{\mathbf{x},\beta}[\log p(\mathbf{x}|\alpha) + \log p(\alpha)] + \text{constant} \\ &= \frac{1}{2} \left(\sum_{m=1}^{M} \log \alpha_m - \sum_{m=1}^{M} \alpha_m \mathbb{E}[|x_m|^2] \right) + (a-1) \sum_{m=1}^{M} \log \alpha_m - b \sum_{m=1}^{M} \alpha_m + \text{constant} \\ &= \left(a - \frac{1}{2} \right) \sum_{m=1}^{M} \log \alpha_m - \sum_{m=1}^{M} \alpha_m \left(\frac{1}{2} \mathbb{E}[|x_m|^2] + b \right) + \text{constant} \\ &= \left(\tilde{a} - 1 \right) \sum_{m=1}^{M} \log \alpha_m - \sum_{m=1}^{M} \alpha_m \tilde{b}_m + \text{constant} \end{split}$$

Variational E step for calculating $q(\alpha)$ (2)

• We recall the standard form of a Gamma distribution

$$p(\alpha) = \prod_{m=1}^{M} \operatorname{Gamma}(\alpha_{m}|a,b) = \prod_{m=1}^{M} \frac{b^{a}}{\Gamma(a)} (\alpha_{m})^{a-1} e^{-b\alpha_{m}}$$

$$\Rightarrow \log(p(\alpha)) = (a-1) \sum_{m=1}^{M} \log \alpha_{m} - \sum_{m=1}^{M} b_{m} \alpha_{m} + \text{constant}$$
(1)

• Our posterior expression $q(\alpha)$ from last slide is

$$\log q(\alpha) = \tilde{a} \sum_{m=1}^{M} \log \alpha_m - \sum_{m=1}^{M} \tilde{b}_m \alpha_m + \text{constant}$$
 (2)

• Comparing (1) and (2), posterior of α is $q(\alpha) = \prod_{m=1}^{M} \operatorname{Gamma}(\alpha_m | \tilde{a}, \tilde{b}_m)$, where

$$\tilde{a} = a + \frac{1}{2}$$

$$\tilde{b}_m = b + \frac{1}{2} \mathbb{E}[|x_m|^2]$$

Variational E step for calculating $q(\beta)$

• Similarly, the posterior of β is $q(\beta) = \operatorname{Gamma}(\beta | \tilde{c}, \tilde{d})$, with

$$\tilde{c} = c + \frac{N}{2}$$
 $\tilde{d} = d + \frac{1}{2}\mathbb{E}[||\mathbf{y} - \mathbf{H}\mathbf{x}||^2]$

Variational EM algorithm for 5G mMTC system

1 Calculate posterior $q(\mathbf{x})$ as follows

$$\begin{array}{lcl} q(\mathbf{x}) & = & \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\mathbf{x}},\boldsymbol{\Sigma}_{\mathbf{x}}), \text{ with} \\ \boldsymbol{\Sigma}_{\mathbf{x}} & = & [\mathbb{E}_{\boldsymbol{\beta}}[\boldsymbol{\beta}]\boldsymbol{\mathsf{H}}^{\mathsf{T}}\boldsymbol{\mathsf{H}} + \mathbb{E}_{\boldsymbol{\alpha}}[\boldsymbol{\mathsf{A}}]]^{-1}, \qquad \boldsymbol{\mu}_{\mathbf{x}} = \mathbb{E}_{\boldsymbol{\beta}}[\boldsymbol{\beta}]\boldsymbol{\Sigma}_{\mathbf{x}}\boldsymbol{\mathsf{H}}^{\mathsf{T}}\mathbf{y} \end{array}$$

- ② Calculate $q(\alpha) = \prod_{m=1}^{M} \mathsf{Gamma}(\alpha_m | \tilde{a}, \tilde{b}_m)$ with $\mathbb{E}_{\alpha_m}[\alpha_m] = \tilde{a}/\tilde{b}_m$ • To calculate \tilde{b}_m , we will use posterior $g(\mathbf{x})$
- Calculate posterior of β is $q(\beta) = \operatorname{Gamma}(\beta | \tilde{c}, \tilde{d})$, with $\mathbb{E}_{\beta}[\beta] = \tilde{c}/\tilde{d}$ • To calculate \tilde{d} , we will use posterior $q(\mathbf{x})$
- Keep repeating above step till convergence

Proof of pudding is in the eating

