TAMIDS 2021 - Data Science Competition

Landon Buechner— Dr. Bhattacharya Team: Cluster One

> Texas A&M University April 14, 2021

Outline

- Data Aggregation
- Exploratory Data Analysis
- Preprocessing
- · Bayesian Hierarchical Modelling
- Campaign Strategy
- · Remarks / References

github.com/magi-1/presidential-elections

Objectives

Learning

Get hands on experience with Bayesian modelling.

Political Consulting

Within each state, how much money should be allocated to each expense category in order to maximize the odds of winning the election?

Useful for further analysis of election data and is available on my Github.


```
Source(s):
[ ] poll dem path = os.path.join(data path, 'Polling and Demographics')
     path = os.path.join(poll dem path, 'FiveThirtvEight')
polls = pd.read csv(os.path.join( path, 'POLLS.csv'))
    polls['electiondate'] = pd.to datetime(polls['electiondate'])
    polls['polldate'] = pd.to datetime(polls['polldate'])
    polls = polls.query("type simple == 'Pres-P' & polldate < electiondate")</pre>
    good cols = ['pollster rating id', 'location', 'polldate', 'samplesize', 'cand1 name', 'cand1 pct', 'cand2 name', 'cand2 pct', 'electiondate']
    polls = polls[good cols]
           pollster rating id location polldate samplesize cand1 name cand1 pct cand2 name cand2 pct electiondate
                                     IA 2000-01-04
                                                                                          Bradley
                                                                                                               2000-01-24
                                     IA 2000-01-04
                                                                      Gore
                                                                                          Bradley
                                                                                                                2000-01-24
                                     IA 2000-01-04
                                                                                          Forbes
                                                                      Bush
      276
                                     IA 2000-01-10
                                                                                           Bradley
                                                                                                                2000-01-24
                                     IA 2000-01-10
                                                                     Rush
                                                                                                               2000-01-24
     7644
                                    CA 2016-05-25
                                                                                          Sanders
                                                                                                                2016-06-07
     7645
                                     CA 2016-05-29
                                                                    Clinton
                                                                                          Sanders
                                                                                                                2016-06-07
     7646
                                    CA 2016-05-30
                                                                    Clinton
                                                                                          Sanders
                                                                                                               2016-06-07
                                     CA 2016-06-01
                                                                                          Sanders
                                                                                                               2016-06-07
     7647
                                                          400.0
                                                                    Clinton
     7648
                                    CA 2016-06-02
                                                                                          Sanders
     1616 rows × 9 columns
```

Inspiration

Dynamic Bayesian Forecasting of Presidential Elections in the States

Drew A. LINZER

An Updated Dynamic Bayesian Forecasting Model for the US Presidential Election

by Merlin Heidemanns, Andrew Gelman, and G. Elliott Morris

Published on Oct 27, 2020

Preprocessing

After some basic text processing, the raw FEC data set contains 2,515,044 unique expense types. Created custom mapping to financial categories using key words resulting in only 317,846 unclassified expenses (12.64%).

```
Total key words: 315
{'administration': 43,
'advertising': 40,
'consulting': 43,
'events': 68,
'media': 50,
'non-expenditure': 25,
'other': 0,
'travel': 46}
```


Preprocessing

```
administration": ["parking", "office", "desk", "computers", "lease", "rent", "audit", "cleaning", "janitor", "sanitation", "administration", "meeting", "board",
"consulting": ["consulting", "survey", "R&D", "hired", "planning", "consult", "advising", "advisor", "assistance", "aid", "external",
'media": ["host", "FOX", "MSNBC", "CNN", "server", "network", "footage", "editing", "recoding", "talking", "script", "commercial", "news",
   "americanairlines", "americanair", "bus", "transportation", "golfcart", "cart", "buggy", "scooter", "moped", "charging", "tesla", "repairs",
"events": ["event", "events", "party", "performance", "comedy", "comedian", "guest", "guestlist", "vip", "pamphlet", "speakers", "catering", "bingo",
advertising": ["stamps", "displays", "newspaper", "appealing", "garner", "cultivate", "sticker", "button", "buttons", "paper", "billboard", "board",
'non-expenditure": ["bitcoin", "btc", "void", "refund", "stopped", "billings", "billing", "expense", "fee", "expenses", "settlement", "pay", "payment",
```

Data

Covariates (Standardized):

- Total amount of money spent over the course of the election by both Democratic (DEM) and Republican (REP) campaigns in 7 unique expense categories, leading to 14 financial predictors.
- 10 additional demographic features for each state $i \in \mathcal{S}$ where \mathcal{S} is the index set for all 51 states.

$$X_i = (\text{expenses, demographics})_i \in \mathbb{R}^{24}$$

Response:

• The proportion of DEM voters θ_i in each state given the observed counts of DEM votes y_i and total turnout N_i .

$$y_i \sim \text{Binomial}(\text{logit}^{-1}X_i^T\beta_i, N_i)$$

Data

	year	state_po	candidate	candidatevotes	totalvotes	lastname
0	2000	AK	Al Gore	79004.0	285530	Gore
1	2000	AK	George W. Bush	167398.0	285530	Bush
2	2000	AL	Al Gore	695602.0	1672551	Gore

	DEM administration	DEM advertising	DEM consulting	DEM events	DEM media	DEM non- expenditure	DEM travel	REP administration	REP advertising
STATE									
AK	-0.168236	-0.147651	-0.402103	-0.192996	-0.400482	-0.170038	-0.297039	-0.224358	-0.21374
AL	-0.169202	-0.095724	-0.381720	-0.187772	-0.400482	-0.170201	-0.292454	-0.215521	-0.21374
AR	-0.166139	-0.147662	-0.334160	6.950017	-0.388596	-0.169912	-0.253917	-0.223641	-0.21374

Refer to processing.py to see exactly how the data was prepared for modelling.

Hierarchical binomial-logit regression model with Gaussian prior

Model

$$y_i \sim \mathsf{Binomial}ig(heta_i, N_i)$$
 $\mathsf{logit}(heta_i) = X_i^T eta_i$ $eta_i \sim \mathcal{N}(eta^\mu, \, \lambda_2 \Sigma)$ $eta^\mu \sim \mathcal{N}(\, 0\,, \, \lambda_1 \mathbb{I}\,)$

Posterior

$$\pi(oldsymbol{eta} \mid X, \mid Y) \propto \prod_{i=1}^{51} \mathsf{Binomial}ig(y_i \mid heta_i, \mid N_i ig) \mathcal{N}(oldsymbol{eta}_i \mid \lambda_2 \Sigma \,) \mathcal{N}(oldsymbol{eta}^\mu \mid \lambda_1 \mathbb{I} \,)$$

MCMC (pymc3)

```
# Specifying Hierarchical Model and performing MCMC
with pm.Model() as Induv_Model:
beta_mu = pm.MvNormal('beta_mu', mu = np.zeros(num_vars), cov = Lambdal*np.eye(num_vars), shape = (num_vars,))
beta_offset = pm.MvNormal('offset', mu = np.zeros(num_vars), cov = Lambda2*np.eye(num_vars), shape = (num_vars,))
beta = pm.MvNormal('beta', mu = beta_mu+beta_offset, cov = Lambda2*np.eye(num_vars), shape = (num_states, num_vars))
thetas = pm.math.invlogit(pm.math.sum(X.values*beta, axis = 1))
likelihood = pm.Binomial("likelihood", observed = y, n = N, p = thetas)
```

Non-Centered Parameterization (Thomas Wiecki)

FEB 08, 2017

Why hierarchical models are awesome, tricky, and Bayesian

Improved: Gaussian mixture prior

Model

$$y_i \sim ext{Binomial}(heta_i, N_i) \ ext{logit}(heta_i) = X_i^T eta_i \ eta_i \sim \sum_{h=1}^K w_h \mathcal{N}_h (eta^\mu, \, \lambda_2 \Sigma\,) \ w \sim ext{Dirichlet}(\mathbf{1}_K) \ eta^\mu \sim \mathcal{N}(\,\mu, \, \lambda_1 \mathbb{I}\,)$$

Posterior

$$\pi(\beta, \ w \,|\, X, \ Y) \propto \prod_{i=1}^{51} \mathsf{Binomial}\big(\, y_i \,|\, \theta_i, \ N_i \,\big) \, \mathcal{N}(\beta_i \,|\, \lambda_2 \Sigma \,) \bigg[\sum_{h=1}^K w_h \, \mathcal{N}_h(\beta^\mu \,|\, \lambda_1 \mathbb{I} \,) \bigg] \pi(w)$$

Interpretation of Multimodal Posterior

- In any given state the democratic leaning sub-population will have a positive response to democratic advertisements while republicans would be less enthusiastic.
- There likely exists a rural and urban population with republican and Democratic leanings respectively with each state.
- In reality, there exists wide range of voter preferences leading to multiple underlying sub-populations all each a unique response to spending from both parties.

Latent Voter Classes

With a clear understanding of the existing voter classes and how they are distributed across states, a campaign can devise more targeted campaign strategies and optimize expenditures / investments.

- After inference, the posterior state level effects β_i can be decomposed in terms of the components of the mixture prior $\sum_{h=1}^K w_h \mathcal{N}_h(\beta^\mu, \lambda_2 \Sigma)$.
- Interpret components as latent voter classes with distinct preferences. Intuition tells us that there should be two dominating weights w_i corresponding to strong DEM/REP voter classes.

Compromise

I was unable to successfully perform inference on the model with the mixture prior so I ended up studying the initial model.

Posterior means $E[\beta_i]$:

	DEM administration	DEM advertising	DEM consulting	DEM events	DEM media	DEM non- expenditure	DEM travel
STATE							
AK	1.272752	-0.056417	-0.457699	-0.918774	-0.069939	-0.925169	0.748361
AL	0.597561	1.165061	0.065351	-0.809965	0.592967	0.584202	0.382308
AR	0.027215	1.002322	0.681456	0.429429	0.491575	-0.088991	0.697438
AZ	0.891648	-0.843566	0.985341	-0.289751	0.263400	0.746861	-0.527222
CA	-0.232016	0.456978	0.886225	-0.743411	-0.020625	-0.013290	0.062355

Insights / Strategy

Insights / Strategy

Insights / Strategy

Issues / Incomplete

- Create a 'utility' curve that displays various asset allocations and their respective expected voter turnout $E[\theta_i]$ (uniform, model informed, etc).
- · Did not validate model out of sample on previous elections. T
- My predictors are extremely watered down in terms of the diversity of transactions that make up each financial category.
- I did not model the joint distribution across elections (complexity explodes).
- · So much information not included (Re-elections, NLP, economic factors).
- MCMC diagnostics are questionable.

References / Data Sources

An Updated Dynamic Bayesian Forecasting Model for the US Presidential Election

Dynamic Bayesian Forecasting of Presidential Elections in the States

Post-Election Interview with Andrew Gelman and G. Elliott Morris

Why hierarchical models are awesome, tricky, and Bayesian

FEC Bulk Data

FiveThirtyEight Polling Data