

Técnicas avanzadas de Machine Learning

Alberto Julián Rigau

© de esta edición: Fundació IL3-UB 2021

Agenda

- 1. Relación entre los temas
- 2. Plan de tutorías y actividades
- 3. Actividades
- 4. T7.1 Support Vector Machines

Relación entre los temas

Plan de tutorías y actividades - Noviembre

Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16 7.1 SVM, AI1	17	18	19 Tut 1 17:00 (7.1 SVM, A I	•	21
22 Al1	23 7.2 NN, 7.3 E Al2	24 DL,	25	26 Tut 2 17:00 (7.2 NN, 7.3 I	•	28
29 Al2	30 7.4 Imagen, Al3	1	2	3 Tut 3 17:00 (7.4 Imagen,	•	5

Plan de tutorías y actividades - Diciembre

Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
29 Al2	30 7.4 Imagen, AI3	1	2	3 Tut 3 17:00 (7.4 Imagen,	· ·	5
6 AI3	7 7.5 Texto, AI4, AG1	8	9	10 Tut 4 17:00 (7.5 Texto, Al	•	12
13 Al4	14	15	16	17 Tut 5 17:00 (7.5 Texto, AC	•	19
20 AG1	21	Test Test	23	24	25	26
27	28	29	30	31	1	2

Actividades

AI1 SVM (T7.1)

Al2 Frameworks de Deep Learning (T.7.3)

AI3 Style Transfer (T7.4)

Al4 Generación de texto con LSTM (T7.5)

AG1 Análisis de sentimiento con LSTM (T7.5)

Test – 16 preguntas

T7.1 SVM: Clasificación Binaria, Hiperplanos y Separabilidad lineal

Ecuación del hiperplano: $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$

Si se cumple, la distancia euclídea de un punto cualquiera x^* al hiperplano se obtiene sustituyendo las coordenadas del punto en la ecuación del hiperplano:

$$x^* = (x_1^*, x_2^*, \dots, x_p^*)$$

$$\beta_0 + \beta_1 x_1^* + \beta_2 x_2^* + \dots + \beta_p x_p^* = d$$

T7.1 SVM: Clasificador de Margen Máximo

Idea: Cuanto mejor separe el conjunto de entrenamiento, mejor separará el conjunto de prueba

Clase y_i asignada a cada observación x_i :

$$y_1, y_2, \ldots, y_n \in \{1, -1\}$$

Maximizar M para $\beta_0, \beta_1, \ldots, \beta_p$

Sujeto a las siguientes restricciones:

$$\sum_{j=1}^{p} \beta_j^2 = 1$$

$$y_i(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}) \ge M$$
 para cada $i = 1, ..., n$

T7.1 SVM: Clasificador de Vectores Soporte. Soft Margin y vulneraciones

Maximizar M para β_0 , β_1 ,..., β_p , ϵ_1 ,..., ϵ_n

Restricciones:

$$y_i(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip}) \ge M(1 - \epsilon_i)$$

para todo $i=1,...,n$

$$\sum_{j=1}^{p} \beta_j^2 = 1 \qquad \epsilon_i \ge 0, \sum_{i=1}^{n} \epsilon_i \le C$$

- Observaciones rojas:
 - 3, 4, 5 y 6 están en el lado correcto del margen: $\{\epsilon 3, \epsilon 4, \epsilon 5, \epsilon 6\} = 0$
 - 2 está sobre el margen: ϵ 2 = 0
 - 1 está en el lado incorrecto del margen: $0 < \epsilon 1 < 1$
 - 11 está en el lado incorrecto del hiperplano: $\epsilon 1 > 1$
 - 2, 1 y 11 son vectores soporte

- Observaciones azules:
 - 7 y 10 están en el lado correcto del margen: $\{\epsilon 7, \epsilon 10\} = 0$
 - 9 está sobre el margen: ϵ 9 = 0
 - 8 está en el lado incorrecto del margen: $0 < \epsilon 8 < 1$
 - 12 está en el lado incorrecto del hiperplano: ϵ 12 > 1
 - 9, 8 y 12 son vectores soporte

T7.1 SVM: Definición alternativa del parámetro C

Definición clásica: $\epsilon_i \geq 0, \sum_{i=1}^n \epsilon_i \leq C$

Al aumentar C, aumenta el margen

Definición nueva (sklearn): Regularization parameter. The strength of the regularization is inversely proportional to C

Al aumentar C, disminuye el margen

Tenemos dos efectos opuestos dependiendo de qué definición del parámetro C estemos considerando, por lo que debemos verificar qué definición se implementa en el modelo o paquete con el que estemos trabajando.

T7.1 SVM: Conjuntos de datos no tratables con Clasificadores de Vector Soporte

T7.1 SVM: Máquina de Vectores Soporte. Kernel Lineal y Polinómico

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x_i)$$

K es el **kernel** que transforma el espacio de entrada de manera no lineal al nuevo espacio de características.

Kernel Lineal
$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i < x, x_i >$$

Kernel Polinómico de grado "d"
$$K(x_i, x_{i'}) = (1 + \sum_{i=1}^{p} x_{ij} x_{i'j})^d$$

T7.1 SVM: Máquina de Vectores Soporte. Kernel Radial o Gaussiano

Kernel Radial o Gaussiano

$$K(x_i, x_{i'}) = exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2)$$

$$\gamma = \frac{1}{2\sigma^2} > 0$$
C=1
90 SV

Este kernel suele utilizarse cuando se dispone de **pocas características** y muchos datos de entrenamiento

T7.1 SVM: Actividades

Actividad guiada

Detección de Cáncer de Mama. Dataset "Breast Cancer Wisconsin"

Se compara la accuracy con varios tipos de Kernel y varios parámetros

Actividad individual

Clasificación de imágenes.

Se compara la accuracy con:

- dos dataset: MNIST y Fashion-MNIST
- dos tipos de Kernel: Lineal y Gaussiano

Nota: si los modelos tardan mucho en entrenar, se puede reducir el tamaño de los dataset a la mitad (10.000 imágenes)

