Algorithm	Intuition	Bounds (T runtime, S space)		
QuickSelect	Randomized quicksort on half	$T(n) = \theta(n)$		
DetSelect	Median of medians, $\lceil \frac{g}{2} \rceil$ have $\lceil \frac{gsize}{2} \rceil$ elements \le or \ge the pivot	$T(n) \le O(n)$		
Kruskal MST	Sort edges, greedily pick avoiding cycle by using union-find	$T(n) \le O(m \log m)$ sort + UnionFind		
Prim MST	All edges into minheap, pick starting vertex, repeatedly add shortest edge $T(n) \leq O(m \log n) \qquad \text{pq}$ $T(n) \leq O(m + n \log n) \qquad \text{fibheap}$			
Union Find	Trees for connected components, union by rank, lazy path $T(n) \le O(\log n)$ worst F/U $T(n) \le O(\log^* n)$ amortized F			
Perfect Hashing	Method 1. Univ hash with $O(n^2)$ space M1. $S(n) = O(n^2)$ M2. $S(n) = O(n)$, $E[\Sigma_i(L_i)^2] < 2$ (squaring sizes) per bucket indicators to $P[\Sigma_i(L_i)^2] < 4n$			
Majority	Counter, different gangs shoot each other			
ε-heavy hitter	Count top k elements, decrement all buckets by 1 upon non-heavy hitter, $0 \le c_t(e) - e_t(e) \le \frac{t}{k+1} \le \varepsilon t$, $k = \lceil \frac{1}{\varepsilon} \rceil - 1$	$S(n) = (\log \Sigma + \log t) \ O(\frac{1}{\varepsilon})$ (elem, cnt) * (num elem)		
ε-heavy hitter with deletions	Idea: use hashtable for counts, error is $e_t(e) - c_t(e) = \sum_{e \neq e'} c_t(e') \ 1(h(e) = h(e'))$ and $E[error] \leq \frac{ S_t }{k} = \frac{ S_t }{num\ hashtable\ slots}$	$(\lg k)(\lg \Sigma)$ bits per hash fn k counters of at most $\lg t$ bits		
Misra-Gries	Apply boosting to reduce error, m hashtables each with their own counts, by Markov $P\{error > 2\frac{ S_i }{k}\} \le \frac{1}{2}$ hence $P\{all\ large\ error\} \le \frac{1}{2^m}$, so $P\{min\ of\ ests\ is\ small\ error\} = 1 - \frac{1}{2^m}$	For boosted final version, $S(n) = O(\frac{1}{\varepsilon} \lg \frac{1}{\delta}) \qquad km \text{ counters} \\ + (\lg \frac{1}{\varepsilon})(\lg \Sigma)O(\lg \frac{1}{\delta}) m \text{ hash fns}$		
	Picking $k = \frac{2}{\varepsilon}$ and $m = \lg \frac{1}{\delta}$ we get $P\{ best_t(e) - count_t(e) \le \varepsilon S_t \} \ge 1 - \delta$	TLDR: $\frac{1}{\delta}$ times polylog factors		
String Equality	Draw p from $[1, M = 2sN \lg(sN)]$ Send p , $x \mod p$, recv $x \mod p = ?y \mod p$ $2^N \ge D = y - x = p_1^{i_1} p_k^{i_k} \ge 2^k$ so $P \{false \ positive\} \le \frac{N}{\pi(M)} \le \frac{1}{s}$ $S(n) \le 2 \lg M$ send p , $x \mod p$ i.e. $S(n) = O(\log N)$			
Karp-Rabin	$m = text , n = pat $, pick $p \in [1, M = 2sn \lg(sn)]$, store $h_p(P), h_p(2^n)$, rolling hash in constant time $h_p(x') = (2h_p(x) - x_{hb}h_p(2^n) + x'_{lb}) \bmod p$	$T(n) = O(m+n)$ initial hash is $O(n)$, following hash $O(1)$ so $O(m)$ of those. $O(\log m + \log n)$ bits for p if $s = 100m$		

LCS LCS _{mn} longest	Knapsack $V(n, S)$ highest value $O(nS)$	MWIS (tree) $max\{U(r), N(r)\}$ $O(n)$
O(mn)	0 if k = 0	indep set = no edge both endpt in set
0 if i = 0 or j = 0	$V(k-1,B) if s_k > B$	use $U(v) = w_v + \sum_{u \in C(v)} N(u)$
$max\{LCS_{i-1,j}, LCS_{i,j-1}\} \text{ if } S_i \neq T_j$	$max\{v_k + V(k-1, B-s_k), V(k-1, B)\}\ else$	not use $N(v) = \sum_{u \in C(v)} max\{N(u), U(u)\}$
$1 + LCS_{i-1, j-1} if S_i = T_j$		

$\begin{array}{ccc} \underline{OBST} & C_{1,n} & O(n^3) / O(n^2) \\ 0 & \text{if } i > j \\ f_i & \text{if } i = j \\ \min_{i \leq k \leq j} f_{i,j} + C_{i,k-1} + C_{k+1,j} \text{ else} \\ \\ \text{where } f_{i,j} = \sum_{k=i}^j f_k \end{array}$	Dijkstra SSSP $O(m \log n)$ or $O(m + n \log n)$ while nodes unvisited: visit cheapest n, update neighbor costs to $min(old, n + edge)$ Can't do negative edges because we don't revisit visited nodes.	$\begin{array}{ll} \underline{\text{Bellman-Ford}} \ \text{SSSP} \ D_{v,n-1} \ O(mn) \\ 0 \qquad \qquad \qquad \qquad \text{if} \ k=0 \ \text{and} \ v=s \\ \infty \qquad \qquad \qquad \qquad \qquad \text{if} \ k=0 \ \text{and} \ v\neq s \\ \min\{D_{v,k-1}, \ \min_{x\in N(v)} D_{x,k-1} + len(x,v)\} \ \text{else} \\ \text{``Extend one edge at a time''} \\ \text{Can detect negative cycles}. \end{array}$
$\begin{aligned} & \underbrace{Matrix}_{B_{ij}} APSP \ O(n^3 \log n) \\ & B_{ij} = \min_k \{A_{ik} + A_{kj}\} \ \ (\leq 2 edges) \\ & C = B \times B \ \ (\leq 4 edges), \ \dots \\ & O(\log n) squarings, \ mult \ is \ O(n^3) \\ & \underbrace{Floyd-Warshall}_{for \ k \ in}_{l,n]: \ forall \ i,j: \\ & A_{ij} = \min\{A_{ij}, A_{ik} + A_{kj}\} \end{aligned}$	Johnson APSP $O(mn + n^2 \log n)$ Add dummy node with len 0 to every other, run Bellman to find shortest path, add that length of shortest path to all so that nonnegative, run Dijkstra from every node	$\frac{\text{TSP }}{len(x,t)} T(n) = O(n^2 2^n), \ S(n) = O(n2^n)$ $len(x,t) \qquad \text{if } S = \{x,t\}$ $\min_{t' \in S, \ t' \neq t, \ t' \neq x} C(S-t, \ t') + len(t', \ t) \ else$

MATH

Prime Number Theorem: $\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1$ $P\left\{x \text{ is prime } | x \in [n]\right\} \geq \frac{1}{\ln n}$ for $k \geq 4, \ n \geq 2k \lg k \Rightarrow \pi(n) \geq k$

$$\begin{split} &\ln(n+1) < H_n < 1 + \ln n \,, H_n \approx \log n \,, \ \, (\frac{n}{k})^k \le {n \choose k} \le (\frac{ne}{k})^k \,, \frac{x}{\ln x - 1} < \pi(x) < \frac{x}{\ln x - 1.1} \\ &\lim_{n \to \infty} \frac{f(n)}{g(n)} \colon 0 \le f \in O(g) < f \in o(g) \;; \; (0, \infty) = f \in \theta(g) \;; \; \infty > f \in \omega(g) \ge f \in \Omega(g) \end{split}$$

$$\sum a_1 r^k = \frac{a_1}{1-r}, \sum_{k=0}^n r^k = \frac{1-r^{n+1}}{1-r}, \sum_{k=0}^n k r^k = \frac{r(n r^{n+1} - (n+1) r^n + 1)}{(r-1)^2}, \sum_{i=1}^n i = \frac{n(n+1)}{2}, \sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1), \sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}n(n+1)(2n+1)$$

Universal: $\forall x \neq y \ P_{h \leftarrow H} \{h(x) = h(y)\} \leq \frac{1}{M}$

k-Universal: $\forall x_1...x_k$ distinct, $v_1...v_k$ anything, $P_{h \leftarrow H} \{ \land h(x_i) = v_i \} = \frac{1}{M^k}$

k-Universal \Rightarrow m-Universal \forall $1 \le m \le k$

THEOREMS

 $T(n) = a T(\frac{n}{b}) + cn^k$ solves to $\theta(n^k)$ if $a < b^k$, $\theta(n^k \log n)$ if $a = b^k$, $\theta(n^{\log_b a})$ if $a > b^k$

 $T(n) \le T(a_1n) + T(a_2n) + \cdots + T(a_kn) + cn$ with $\Sigma a_i < 1$ implies $T(n) \subseteq O(n)$

All comparison-based sorts need at least $\lg(n!)$ compares to sort n elements

Amortized Cost := Actual Cost + $\Delta\Phi$, i.e. $A_i = c_i + \Phi(s_i) - \Phi(s_{i-1})$

most 3, and the actual cost is at most 3k+1, so the amortized cost is at most $\Delta\Phi+c_i=(3-3k)+(3k+1)=4$. Hence the proof.

Discrete	E[X]	Var[X]	$p_x(x)$	$E[X] = \sum_{x} x P \{X = x\}$	Markov
Bernoulli(p)	p	pq	p at 1, q at 0	$E[g(X)] = \sum_{x} g(x) P \{X = x\}$ $Var[X] = E[(X - E[X])^{2}]$	$P\left\{X \ge a\right\} \le \frac{E[X]}{a}$
Binomial(n, p)	np	npq	$\binom{n}{x} p^x q^{n-x}$	$Var[X] = E[X^2] - E[X]^2$	$\frac{\text{Chebyshev}}{P\{ X-\mu \ge k\sigma\}} \le \frac{1}{L^2}$
Geometric(p)	$\frac{1}{p}$	$\frac{q}{p^2}$	$q^{x-1}p$	$E[X] = \int_{-\infty}^{\infty} x f_x(x) dx$	$ 1 (M \mu \leq k0) \leq k^2$
$Poisson(\lambda)$	λ	λ	$\frac{e^{-\lambda}\lambda^x}{x!}$	$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f_x(x) dx$	$\frac{\text{Jensen}}{F(E[X]) \le E[F(X)]} \text{ for }$
Continuous	E[X]	Var[X]	$f_x(x)$	$F_{x}(x)$	Xrv, F convex
Uniform(a,b)	<u>b+a</u> 2	$\frac{(b-a)^2}{12}$	$\begin{array}{cc} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{else} \end{array}$	$\begin{array}{ll} \frac{x-a}{b-a} & x \in [a,b) \\ 0 \text{ if } x < a & 1 \text{ if } x > b \end{array}$	
Exponential(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda e^{-\lambda x} x \ge 0$ 0 else	$F_x(x) = 1 - e^{-\lambda x}$ $x \ge 0$ $F_x(x) = 0$ else	
$Normal(\mu, \sigma^2)$	μ	σ^2	$\frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2)$		