

大物期末复习讲座

签到二维码

目录

力学

• 运动学

坐标系 (自然坐标系)

求导

相对运动→绝对运动=相对运动+牵连运动

力学

- 牛顿定律变力做功→积分
- 功能关系动能定理、能量守恒定律利用势能求保守力→求负梯度
- 冲量与动量 计算变力冲量

力学

刚体力学

平动+转动

物理量	质点、平动	刚体、转动
速度	线速度 $\vec{v} = \frac{d\vec{r}}{dt}$	质心速度 \vec{v}_c 和角速度 $\vec{\omega}$
加速度	线加速度 $\vec{a} = \frac{d\vec{v}}{dt}$	质心加速度 \vec{a}_c 和角加速度 $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$
惯性	质量 m ,描述质点对平动的惯性.	转动惯量 I ,描述刚体对转动的惯性.
力	$ec{F}$	力 \vec{F} 和力矩 $\vec{\tau} = \vec{r} \times \vec{F}$
动力学	$ec{F}=mec{a}$	平动: $\vec{F} = M\vec{a}_c$; 转动: $\vec{\tau} = I\vec{\alpha}$
动量	动量 $\vec{p} = m\vec{v}$, 描述质点的运动状态.	质心动量 $ec{P}=Mec{v}_c$ 和角动量 $ec{L}=Iec{\omega}$
守恒定律	合外力为零时动量守恒	合外力矩为零时角动量守恒
动能	动能 $T = \frac{1}{2}mv^2$	平动动能 + 转动动能 $T = \frac{1}{2}Mv_c^2 + \frac{1}{2}I\omega^2$

从表格中读者可能已经注意到了,在刚体的学习中,有一个思想贯穿始终,那就是: **刚体 = 刚体质心的平动 + 刚体绕质心的转动**

练习 4.15 一具有光滑转轴的定滑轮,半径为 R,质量为 $\frac{m}{4}$,质量均匀分布在定滑轮的边缘上. 一轻绳跨过该定滑轮,轻绳与滑轮间无相对滑动,其左端有一质量为 m 的人爬在轻绳上,而 右端则系了一质量为 $\frac{m}{2}$ 的重物,如图所示.试求:当人相对于轻绳匀速向上攀爬时,重物上 升的加速度.

解
$$a=\frac{2}{7}g$$

对人列牛顿第二定律方程: $mg - T_1 = ma$ 对重物列牛顿第二定律方程: $T_2 - \frac{1}{2}mg = \frac{1}{2}ma$

对滑轮列转动定律方程: $(T_1-T_2)R=rac{1}{4}mR^2\beta$ (注意题目条件,质量均匀分布在滑轮的边 缘, 所以转动惯量和圆环的转动惯量等价)

$$a = \beta R$$
解得 $a = \frac{2}{7}g$

狭义相对论

尺缩公式、钟慢公式、洛伦兹变换

S'系中同地不同时→找到原时 (最短) →用钟慢公式计算S 系时间 $t_0 - t_1'$

$$\Delta t = t_B - t_A = \frac{t_2' - t_1'}{\sqrt{1 - \beta^2}} = \frac{\Delta t'}{\sqrt{1 - \beta^2}}$$

S'系中长度固定不变→找到原长(最长)→用尺缩公式计算S系长度 $\Delta x = \Delta x' \sqrt{1-\beta^2}$

其他S→S'和S'→S 对每个事件用洛伦兹变换,然后作差

洛伦兹变换

例题 5.1 飞船以 u = 0.6c 飞离地球. 假设头部向尾部发出一个光讯号. 飞船上经 $\Delta t' = 1\mu s$ 后尾部接受器接收到该信号, 求地面上观察者测得光讯号到达船尾的时间 Δt .

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}}$$

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \beta^2}}$$

$$x = \frac{x' + vt'}{\sqrt{1 - \beta^2}}$$

$$t = \frac{t' + \frac{v}{c^2}x'}{\sqrt{1 - \beta^2}}$$

以飞船参考系为 S' 系,地面系为 S 系. 在飞船系中,事件 A: 发出光,事件 B,接受光. 在 S 系中,对 A: $(\beta = \frac{u}{c})$

$$x_A = \frac{x_A' + ut_A'}{\sqrt{1 - \beta^2}} \quad t_A = \frac{t_A' + \frac{u}{c^2}x_A'}{\sqrt{1 - \beta^2}}$$

对 B:

$$x_B = \frac{x_B' + ut_B'}{\sqrt{1 - \beta^2}}$$
 $t_B = \frac{t_B' + \frac{u}{c^2}x_B'}{\sqrt{1 - \beta^2}}$

S系中的时间差:

$$\Delta t = t_B - t_A = \frac{(t_B' - t_A') + \frac{u}{c^2}(x_B' - x_A')}{\sqrt{1 - \beta^2}}$$

在 S' 系中,光沿 x' 负方向: $x'_B - x'_A = -c(t'_B - t'_A)$ 代入得

$$\Delta t = \frac{1-\beta}{\sqrt{1-\beta^2}}(t_B' - t_A') = \sqrt{\frac{1-\beta}{1+\beta}}\Delta t' = 0.5\mu s$$

狭义相对论

狭义相对论动力学

静能 $E_0 = mc^2$ 总能 $E = mc^2$ 总能量之和不变(即能量守恒)碰撞、衰变、分裂过程中动量守恒

动能
$$E_k = E - E_0 = mc^2 - m_0c^2$$

15. 设有两个静止质量均为m 的粒子,以大小相等、方向相反的速度 v 相撞,合

成一个复合粒子,则该复合粒子的静止质量 $M_0 =$ 运动速度 为_____。

谢谢大家

