17. Support Vector Machines (SVM)

Bruce E. Shapiro

Getting Started in Machine Learning

Copyright (c) 2019. May not be distributed in any form without written permission.

Last revised: March 23, 2019

■ Consider \mathbb{R}^2 : y = a + bx

- Consider \mathbb{R}^2 : y = a + bx
- Let $x \to x_0$, $y \to x_1$, $b \to w_0$ then $x_1 = a + w_0 x_0$

- Consider \mathbb{R}^2 : y = a + bx
- Let $x \to x_0$, $y \to x_1$, $b \to w_0$ then $x_1 = a + w_0 x_0$
- $\blacksquare \ \, \ln \, \mathbb{R}^d : x_{d-1} = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-2} x_{d-2}$

- Consider \mathbb{R}^2 : y = a + bx
- Let $x \to x_0$, $y \to x_1$, $b \to w_0$ then $x_1 = a + w_0 x_0$
- $\blacksquare \text{ In } \mathbb{R}^d : x_{d-1} = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-2} x_{d-2}$
- Rearrange: $0 = a + w_0x_0 + w_1x_1$
- In \mathbb{R}^d : $0 = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-1} x_{d-1}$

- Consider \mathbb{R}^2 : y = a + bx
- Let $x \to x_0$, $y \to x_1$, $b \to w_0$ then $x_1 = a + w_0 x_0$
- In \mathbb{R}^d : $x_{d-1} = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-2} x_{d-2}$
- Rearrange: $0 = a + w_0x_0 + w_1x_1$
- In \mathbb{R}^d : $0 = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-1} x_{d-1}$
- In general: $0 = a + \mathbf{w}^\mathsf{T} \mathbf{x}$

- Consider \mathbb{R}^2 : y = a + bx
- Let $x \to x_0$, $y \to x_1$, $b \to w_0$ then $x_1 = a + w_0 x_0$
- $\blacksquare \ \, \ln \, \mathbb{R}^d : x_{d-1} = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-2} x_{d-2}$
- Rearrange: $0 = a + w_0x_0 + w_1x_1$
- In \mathbb{R}^d : $0 = a + w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_{d-1} x_{d-1}$
- In general: $0 = a + \mathbf{w}^\mathsf{T} \mathbf{x}$
- In \mathbb{R}^2 suppose the line $0 = a + \mathbf{w}^\mathsf{T} \mathbf{x}$ separates the classes. Then for any point \mathbf{x} in the plane,

$$a + \mathbf{w}^\mathsf{T} \mathbf{x} \begin{cases} > 0 & \text{points in cluster 1} \\ = 0 & \text{points on the line} \\ < 0 & \text{points in cluster 2} \end{cases}$$

■ The vector **w** is perpendicular to the line $0 = a + \mathbf{w}^\mathsf{T} \mathbf{x}$ Proof in \mathbb{R}^2 . The hyperplane separating the clusters becomes a line $0 = a + bx - y = a + w_0x_0 + w_1x_1$ in \mathbb{R}^2 . Then Consider

$$\mathbf{w} = (w_0, w_1) = (b, -1)$$

where b is the slope. A vector parallel to the line is

$$\mathbf{v} = (1, b)$$

Hence $\mathbf{v} \cdot \mathbf{w} = 0$.

Support Vectors

- Let η be a real number. Sweep the vector η **w** along the line of separation.
- At some point(s) η **w** will point to a data point on either side of the line. Find

$$M = \min_{j} |\eta \mathbf{w}|$$

- This distance is called the **support** and the vector is the **support vector**
- Find the line with the minimum total support

Python Example - Car Cylinder Classification (1/5)

Read auto-mpg data

```
import pandas as pd

data=pd.read_fwf("https://archive.ics.uci.edu/ml/
    machine-learning-databases/auto-mpg/auto-mpg.data",
    header=None, na_values="?")

data.columns=("mpg", "cyl", "displ", "hp", "weight", "accel",
    "model", "origin", "carname")

data = data.dropna(axis=0)
```

Python Example - Car Cylinder Classification (1/5)

Read auto-mpg data

```
import pandas as pd

data=pd.read_fwf("https://archive.ics.uci.edu/ml/
    machine-learning-databases/auto-mpg/auto-mpg.data",
    header=None, na_values="?")

data.columns=("mpg", "cyl", "displ", "hp", "weight", "accel",
    "model", "origin", "carname")

data = data.dropna(axis=0)
```

5 features, 3 classes

```
import numpy as np
cars=np.array(data[["cyl","mpg","displ","hp","weight",
    "accel"]])
cars=np.array([line for line in cars
    if line[0] in [4,6,8]])
Y=cars[:,0]/2-2
X=cars[:,1:]
```

Python Example - Car Cylinder Classification (2/5)

Find principal components

```
from sklearn.decomposition import PCA
pca=PCA(n_components=5)
pca.fit(X)
comps=pca.components_
explain=pca.explained_variance_ratio_
for comp, frac in zip(comps,explain):
    print(round(100*frac,4),"percent:", np.round(comp,3))
```

Two components are sufficient.

Python Example (3/5) -Transform and Scale

Transform, 2 components $X \rightarrow P$

```
pca=PCA(n_components=2)
pca.fit(X)
P=pca.transform(X)
```

Scale, $\mathbf{P} \rightarrow \mathbf{Q}$

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
Q=scaler.fit_transform(P)
```

Python Example (4/5) - Function to Evaluate

```
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
def svm evaluate(classifier, X, Y, N):
    errs=[]
    for j in range(N):
        XTRAIN, XTEST, YTRAIN, YTEST=train test split(X,Y)
        classifier.fit(XTRAIN, YTRAIN)
        YP=classifier.predict(XTEST)
        errs.append(1-accuracy_score(YTEST, YP))
    return (np.mean (errs), np.std(errs))
```

Python Example - Results (5/5)

```
Linear Kernel mean error=0.05474 sd=0.02003
Polynomial Kernel mean error=0.02835 sd=0.01626
RBF Kernel mean error=0.02804 sd=0.01624
Sigmoid Kernel mean error=0.07021 sd=0.02703
```

SVM Decision Boundary - Different Kernels

References

MPG data from: Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science.