Precalculus Lecture 2 Trigonometry Definitions

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Trigonometry
 - Definition of the Trigonometric Functions
 - Basic Computations with Trigonometric Functions
 - Reference Angles
 - Geometric Interpretation of the Trigonometric Functions
 - Periodicity and Symmetries of the Trig Functions

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Todor Milev

Lecture 2

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = X$$

$$\sin \theta = y$$
.

Todor Milev

4/23

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = X$$

$$\sin \theta = y$$
.

Todor Milev

4/23

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = X$$

$$\sin \theta = y$$
.

Definition (additional trigonometric functions)

The functions tangent, cotangent, secant and cosecant of the angle θ . denoted by $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$, are defined by

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$

$$\csc \theta = \frac{1}{\sin \theta}.$$

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = X$$

$$\sin \theta = y$$
.

Definition (additional trigonometric functions)

The functions tangent, cotangent, secant and cosecant of the angle θ , denoted by $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$, are defined by

$$\tan \theta = \frac{\sin \theta}{\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$

$$\csc \theta = \frac{1}{\sin \theta}.$$

Todor Miley

Lecture 2

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = x$$

$$\sin \theta = y$$
.

Definition (additional trigonometric functions)

The functions tangent, cotangent, secant and cosecant of the angle θ , denoted by $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$, are defined by

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}.$$

Todor Miley

Lecture 2

4/23

Definition of the trigonometric functions

- For an angle-measure θ we selected geometric angle with initial arm on x axis and terminal arm selected by traveling θ units on the unit circle.
- Let (x, y) be the intersection of the terminal arm of the geometric angle with the unit circle.

Definition (sin and cos)

The sine and cosine functions of the angle θ , denoted by $\sin \theta$ and $\cos \theta$, are defined by

$$\cos \theta = X$$

$$\sin \theta = y$$
.

Definition (additional trigonometric functions)

The functions tangent, cotangent, secant and cosecant of the angle θ , denoted by $\tan \theta$, $\cot \theta$, $\sec \theta$, $\csc \theta$, are defined by

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$

$$csc \theta = \frac{1}{\sin \theta}.$$

Todor Miley

Lecture 2

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

• The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.

Todor Milev

Lecture 2

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

Todor Milev

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.

Todor Milev

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

Trigonometric Functions and Right Angle Triangles

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

Todor Milev Lecture 2 Trigonometry Definitions 2020

Trigonometric Functions and Right Angle Triangles

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

Todor Miley Lecture 2 Trigonometry Definitions 2020

Trigonometric Functions and Right Angle Triangles

- The trigonometric functions can be defined without requesting that the pt. (x, y) on the terminal arm of the angle lie on the unit circle.
- To do so we rescale by the distance *r* from the origin.
- The trig functions of acute θ (between 0 and $\frac{\pi}{2}$) can be interpreted as ratios of sides of right angle triangle with angle θ .

Todor Milev Lecture 2 Trigonometry Definitions 2020

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse = ?

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2}$$

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25}$$

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

$$\sin \theta = \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = ? \cos \theta = \tan \theta =$$

$$\csc \theta = \sec \theta = \cot \theta =$$

Todor Milev

Lecture 2

Trigonometry Definitions

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \cos \theta = \tan \theta =$$
 $\csc \theta = \sec \theta = \cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = ?$ $\tan \theta =$ $\csc \theta =$ $\cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta =$
 $\csc \theta =$ $\sec \theta =$ $\cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = ?$
 $\csc \theta = \sec \theta = \cot \theta =$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$
$$\csc \theta = \quad \sec \theta = \quad \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5}$$
 $\cos \theta = \frac{4}{5}$ $\tan \theta = \frac{3}{4}$ $\csc \theta = \mathbf{?}$ $\sec \theta = \cot \theta = \mathbf{?}$

 3 Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of $\theta.$

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \quad \cot \theta = \frac{3}{4}$$

 $^{\rm 3}$ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of $\theta.$

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$
$$\csc \theta = \frac{3}{3} \quad \sec \theta = ? \quad \cot \theta =$$

Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$
$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{4}{5} \quad \cot \theta = \frac{3}{4}$$

Todor Milev

Lecture 2

Trigonometry Definitions

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{5}{4} \quad \cot \theta = ?$$

³ Let the angle θ be as indicated in the figure. Find the values of the six trigonometric functions of θ .

To find the trigonometric functions, we need to know the length of the hypotenuse.

hypotenuse =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
.

Using the right angle triangle ratio interpretations of the trig functions, we can compute:

$$\sin \theta = \frac{3}{5} \quad \cos \theta = \frac{4}{5} \quad \tan \theta = \frac{3}{4}$$

$$\csc \theta = \frac{5}{3} \quad \sec \theta = \frac{4}{4} \quad \cot \theta = \frac{4}{3}$$

Todor Milev

Lecture 2

Trigonometry Definitions

$$\sin\theta = \qquad \qquad \tan\theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

 Label the hypotenuse with length 5 and the adjacent side with length 2.

$$\sin \theta = \tan \theta =$$
 $\csc \theta = \sec \theta =$

 $\cot \theta =$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.

$$\sin \theta = \tan \theta =$$
 $\csc \theta = \sec \theta =$

$$\cot \theta =$$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = ?$, so x = ?

$$\sin \theta = \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

Lecture 2

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta =$$
? $\tan \theta =$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = ?$$

$$\csc \theta = \sec \theta =$$

$$\cot\theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$. $\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$

$$\csc \theta =$$
? $\sec \theta =$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$. $\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$

$$\csc \theta = \frac{5}{\sqrt{21}} \quad \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}} \sec \theta =$$
?

$$\cot \theta =$$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$. $\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$

$$\csc \theta = \frac{5}{\sqrt{21}}$$
 $\sec \theta = \frac{5}{2}$

$$\cot\theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$. $\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$

$$\csc \theta = \frac{5}{\sqrt{21}} \quad \sec \theta = \frac{5}{2}$$

$$\cot \theta = ?$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$. $\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$

$$\csc \theta = \frac{5}{\sqrt{21}} \quad \sec \theta = \frac{5}{2}$$

$$\cot \theta = \frac{2}{\sqrt{21}}$$

Proposition

The angles of every triangle sum up to $\pi = 180^{\circ}$.

In other words, if α, β, γ are the angles indicated in the figure, then we have:

$$\alpha + \beta + \gamma = 180^{\circ}$$
.

Find the values of $\sin 45^{\circ}$, $\cos 45^{\circ}$, $\tan 45^{\circ}$.

Find the values of sin 45°, cos 45°, tan 45°.

• Draw the 45° angle in right angle triangle,

Todor Miley

Lecture 2

Find the values of $\sin 45^{\circ}$, $\cos 45^{\circ}$, $\tan 45^{\circ}$.

 Draw the 45° angle in right angle triangle, adjacent side of length 1.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

Todor Milev

Lecture 2

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ}$

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = ?$

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

Triangle has two equal angles

Lecture 2

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

Triangle has two equal angles ⇒ is isosceles

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

Triangle has two equal angles ⇒ is isosceles (has two equal sides).

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- ⇒ Opposite leg: length 1

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = ?

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

•
$$\sin 45^{\circ} = ?$$

$$\cos 45^{\circ} =$$
?

$$tan 45^{\circ} =$$
?

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

•
$$\sin 45^{\circ} = \frac{\text{opp}}{\text{hyp}} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} =$?

$$\tan 45^{\circ} =$$
?

Trigonometry

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles⇒is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

•
$$\sin 45^{\circ} = \frac{\text{opp}}{\text{hyp}} = \frac{\sqrt{2}}{2}$$
 $\cos 45^{\circ} = ?$

 $\tan 45^{\circ} =$ **?**

Todor Milev

Lecture 2

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

•
$$\sin 45^\circ = \frac{\text{opp}}{\text{hyp}} = \frac{\sqrt{2}}{2}$$
 $\cos 45^\circ = \frac{\text{adj}}{\text{hyp}} = \frac{\sqrt{2}}{2}$

 $\tan 45^{\circ} =$ **?**

Todor Milev

Lecture 2

Find the values of sin 45°, cos 45°, tan 45°.

Basic Computations with Trigonometric Functions

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- \bullet Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

$$\bullet \ \sin 45^\circ = \frac{\mathsf{opp}}{\mathsf{hyp}} = \frac{\sqrt{2}}{2} \qquad \cos 45^\circ = \frac{\mathsf{adj}}{\mathsf{hyp}} = \frac{\sqrt{2}}{2}$$

$$\tan 45^{\circ} =$$
?

Trigonometry

Example

Find the values of sin 45°, cos 45°, tan 45°.

- Draw the 45° angle in right angle triangle, adjacent side of length 1.
- Let γ be the angle indicated on the plot.
- Angles in triangle sum to 180°:

$$45^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}.$

- Triangle has two equal angles ⇒ is isosceles (has two equal sides).
- \Rightarrow Opposite leg: length 1 \Rightarrow length(hyp) = $\sqrt{1^2 + 1^2} = \sqrt{2}$.

Todor Miley

Lecture 2

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Todor Milev

Lecture 2

Find the values of $\sin 60^\circ, \cos 60^\circ, \tan 60^\circ, \sin 30^\circ, \cos 30^\circ, \tan 30^\circ.$ Construct a right angled $\triangle AHC$ as indicated:

Todor Miley

Lecture 2

Find the values of $\sin 60^\circ, \cos 60^\circ, \tan 60^\circ, \sin 30^\circ, \cos 30^\circ, \tan 30^\circ.$ Construct a right angled $\triangle AHC$ as indicated: angles $60^\circ, 90^\circ, \gamma$.

Find the values of $\sin 60^\circ$, $\cos 60^\circ$, $\tan 60^\circ$, $\sin 30^\circ$, $\cos 30^\circ$, $\tan 30^\circ$.

Construct a right angled $\triangle AHC$ as indicated: angles 60° , 90° , γ .

Find the values of $\sin 60^\circ$, $\cos 60^\circ$, $\tan 60^\circ$, $\sin 30^\circ$, $\cos 30^\circ$, $\tan 30^\circ$.

Construct a right angled $\triangle AHC$ as indicated: angles 60° , 90° , γ .

Find the values of $\sin 60^\circ, \cos 60^\circ, \tan 60^\circ, \sin 30^\circ, \cos 30^\circ, \tan 30^\circ.$ Construct a right angled $\triangle AHC$ as indicated: angles $60^\circ, 90^\circ, \gamma$. Angles in \triangle sum to 180° : $60^\circ + 90^\circ + \gamma = 180^\circ$

Find the values of $\sin 60^\circ, \cos 60^\circ, \tan 60^\circ, \sin 30^\circ, \cos 30^\circ, \tan 30^\circ.$

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles 60°, 90°, γ . Angles in \triangle sum to 180°:

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$.

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°)

Todor Miley

Lecture 2

Trigonometry Definitions

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$

Pythagorean theorem

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ} \ \gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ} \ \gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

Todor Milev

Lecture 2

Trigonometry Definitions

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

 $\sin 60^{\circ} = ?$

 $\cos 60^{\circ} = ?$

 $tan 60^{\circ} = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = 7$$

$$tan 60^{\circ} = ?$$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$\begin{array}{rcl} |AC| & = & |AB| = 1 + 1 = 2 \\ |CH| & = & \sqrt{|AC|^2 - |AH|^2} & | & \text{Pythagorean theorem} \\ & = & \sqrt{2^2 - 1^2} = \sqrt{3} \\ \sin 60^\circ & = & \frac{\sqrt{3}}{2} & \cos 60^\circ & = & \frac{1}{2} & \tan 60^\circ & = & ? \end{array}$$

Todor Milev

Lecture 2

Trigonometry Definitions

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} \cos 60^{\circ} = \frac{1}{2}$$

$$\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$$

Todor Miley

Lecture 2

Trigonometry Definitions

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ} \ \gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} \cos 60^{\circ} = \frac{1}{2} = \tan 60^{\circ} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

 $\sin 30^{\circ} = ?$

 $\cos 30^{\circ} = ?$

 $tan 30^{\circ} = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2} \cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^\circ = \frac{1}{2} \cos 30^\circ = ?$ $\tan 30^\circ = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^\circ = \frac{1}{2}$ $\cos 30^\circ = ?$ $\tan 30^\circ = ?$

Lecture 2

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}, \cos 30^{\circ}, \tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^\circ = \frac{1}{2}$ $\cos 30^\circ = \frac{\sqrt{3}}{2}$ $\tan 30^\circ = ?$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ} \ \gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles (= 60°) \Rightarrow its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^\circ = \frac{1}{2}$ $\cos 30^\circ = \frac{\sqrt{3}}{2}$ $\tan 30^\circ = ?$

Todor Milev

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles 60°, 90°, γ . Angles in \triangle sum to 180°:

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

Construct $\triangle HBC$ as indicated so that $\triangle HBC \cong \triangle HAC$. $\triangle ABC$ has three equal angles $(=60^{\circ}) \Rightarrow$ its sides are of equal length. Therefore

$$|AC| = |AB| = 1 + 1 = 2$$

 $|CH| = \sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
 $= \sqrt{2^2 - 1^2} = \sqrt{3}$
 $\sin 60^\circ = \frac{\sqrt{3}}{2}$ $\cos 60^\circ = \frac{1}{2}$ $\tan 60^\circ = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^\circ = \frac{1}{2}$ $\cos 30^\circ = \frac{\sqrt{3}}{2}$ $\tan 30^\circ = \frac{1}{\sqrt{3}}$

Todor Milev

Lecture 2

Trigonometry Definitions

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2} \qquad \cos 60^{\circ} = \frac{1}{2} \qquad \tan 60^{\circ} = \frac{\sqrt{3}}{1} = \sqrt{3}$$

 $\sin 30^{\circ} = \frac{1}{2} \qquad \cos 30^{\circ} = \frac{\sqrt{3}}{2} \qquad \tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

Find the values of $\sin 60^{\circ}$, $\cos 60^{\circ}$, $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$, $\tan 30^{\circ}$.

Construct a right angled $\triangle AHC$ as indicated: angles $60^{\circ}, 90^{\circ}, \gamma$. Angles in \triangle sum to 180° :

$$60^{\circ} + 90^{\circ} + \gamma = 180^{\circ}$$

 $\gamma = 180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}.$

$$|AC|$$
 = $|AB|$ = 1 + 1 = 2
 $|CH|$ = $\sqrt{|AC|^2 - |AH|^2}$ | Pythagorean theorem
= $\sqrt{2^2 - 1^2} = \sqrt{3}$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
 $\cos 60^{\circ} = \frac{1}{2}$ $\tan 60^{\circ} = \frac{\sqrt{3}}{1} = \sqrt{3}$
 $\sin 30^{\circ} = \frac{1}{2}$ $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

Observation

- If the hypotenuse of a right angle triangle is twice larger than one of the sides, then the angle opposite to that side is 30°.
- Conversely, in a right angle triangle with angle 30°, the hypotenuse is twice longer than the shorter of the two legs.

13/23

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

Todor Milev

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

Todor Milev

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse (> 90°) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse ($> 90^{\circ}$) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

To compute trigonometric functions from obtuse (> 90°) or negative angles, we can use the following visual aid.

Definition (Reference Angle)

Let θ be an angle in standard position. Its reference angle is the acute positive angle formed by the terminal arm and the x axis.

The computation of the reference angle α depends on the quadrant.

Observation

One can find the value of a trigonometric function of θ as follows.

- Find the reference angle α associated to θ .
- Find the trig function of α .
- Use the quadrant in which θ lies to affix an appropriate sign to the function value.

Todor Milev

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = \csc\left(\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right$$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = 0$$

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = \csc\left(\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right$$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = 0$$

$$\sin\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = \csc\left(\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right$$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right$$

Find the exact values of the trigonometric functions of

$$\theta = \frac{2\pi}{3} = 120^{\circ}.$$

$$\sin\left(\frac{2\pi}{3}\right) = ?$$
 $\cos\left(\frac{2\pi}{3}\right) =$ $\csc\left(\frac{2\pi}{3}\right) =$ $\sec\left(\frac{2\pi}{3}\right) =$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right$$

Find the exact values of the trigonometric functions of 2π

$$\theta = \frac{2\pi}{3} = 120^{\circ}.$$

$$\frac{\sin\left(\frac{2\pi}{3}\right)}{\frac{3}{2}} = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = \\ \csc\left(\frac{2\pi}{3}\right) = \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = 0$$

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = ?$$

$$\csc\left(\frac{2\pi}{3}\right) = \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = 0$$

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \qquad \tan\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = \cot\left(\frac{2\pi}{3}\right) = \cot\left(\frac$$

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\csc\left(\frac{2\pi}{3}\right) = \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = ?$$

$$\cot\left(\frac{2\pi}{3}\right) =$$

Example

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\csc\left(\frac{2\pi}{3}\right) = \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\cot\left(\frac{2\pi}{3}\right) =$$

Example

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\csc\left(\frac{2\pi}{3}\right) = ? \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

$$\cot\left(\frac{2\pi}{3}\right) =$$

Example

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) =$$

$$\tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\cot\left(\frac{2\pi}{3}\right) =$$

Example

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) = ?$$

$$\tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$
$$\cot\left(\frac{2\pi}{3}\right) =$$

Example

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \quad \tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) = -\frac{2}{1} = -2 \quad \cot\left(\frac{2\pi}{3}\right) =$$

Todor Milev

Lecture 2

Trigonometry Definitions

Example

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \quad \tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) = -\frac{2}{1} = -2 \quad \cot\left(\frac{2\pi}{3}\right) = ?$$

Example

Find the exact values of the trigonometric functions of $\theta = \frac{2\pi}{3} = 120^{\circ}$.

$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \quad \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \quad \tan\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{-1} = -\sqrt{3}$$

$$\csc\left(\frac{2\pi}{3}\right) = \frac{2}{\sqrt{3}} \quad \sec\left(\frac{2\pi}{3}\right) = -\frac{2}{1} = -2 \quad \cot\left(\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{3}}$$

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0 °	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	?										
cos	?										

sines and cosines in Quadrant I

and on the axes.

30° 45° 60° 90° 120° 135° 150° 180° 270° 360° Deg. 5π 3π 2π 3π π π π 0 2π Rad. 2 π $\overline{4}$ 3 4 6 3 sin 0 cos

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	?									
cos	1	?									

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$		_							
cos	1	$\frac{\sqrt{3}}{2}$									

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$?								
cos	1	$\frac{\sqrt{3}}{2}$?								

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	N \sqrt{2}								
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$								

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$?							
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$?							

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$							
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$							

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$?		.	J			
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$?						

Deg.	0 °	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$rac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1						
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0						

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	?					
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	?					

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	?					
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	?					

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle

45° 60° 270° Deg. 0° 30° 90° 120° 135° 150° 180° 360° 3π 2π 3π 5π 0 2π Rad. 6 π 2 2 3 4 6 $\sqrt{3}$ sin 0 ? 0 cos

One only needs to memorize sines and cosines in Quadrant I and on the axes.

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle

30° 45° 60° 270° Deg. 0° 90° 120° 135° 150° 180° 360° 3π 2π 3π 5π 0 2π Rad. 6 π 2 6 $\sqrt{3}$ sin 0 0 cos

Todor Miley

Lecture 2

Trigonometry Definitions

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$		_			
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$					

Quadrant I

Quadrant.II

One only needs to memorize sines and cosines in Quadrant I and on the axes.

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$?	_			
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$?				

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$				
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$				

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$?			
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$?			

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2			
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$			

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$?		
cos	1	$\frac{\sqrt{3}}{2}$	2 2	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$?		

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0		
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1		

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0		
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1		

 One only needs to memorize sines and cosines in Quadrant I and on the axes.

- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0		
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1		

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	?	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	?	

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	-1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	_1	0	

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	-1	
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	?
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	?

- One only needs to memorize sines and cosines in Quadrant I and on the axes.
- The remaining sines and cosines are extracted by
 - taking the sine/cosine of the reference angle
 - and adjusting the sign according to the quadrant.

Deg.	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

Geometric interpretation of all trigonometric functions

Fix unit circle, center O, coordinates (0,0).

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$.

Geometric interpretation of all trigonometric functions

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A.

Geometric interpretation of all trigonometric functions

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

 $\sin \theta$

 $\cos \theta$

 $\tan \theta$

 $\cot\theta$

 $\sec \theta$

Geometric interpretation of all trigonometric functions

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

 $\sin \theta$

 $\cos \theta$

 $\tan \theta$

 $\cot\theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

 $\cos \theta$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|}$$

 $\cos \theta$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|}$$

 $\cos \theta$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1}$$

 $\cos \theta$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

 $\cos \theta$

 $\tan \theta$

 $\cot\theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

 $\cos \theta$

 $\tan \theta$

 $\cot\theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}}$

 $\tan\theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|}$$

 $\tan\theta$

 $\cot \theta$

 $\sec \theta$

 $\csc \theta$

Lecture 2

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|}$

 $\tan\theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$
 $\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1}$

 $\tan\theta$

 $\cot \theta$

 $\sec \theta$

 $\csc \theta$

Lecture 2

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

 $\tan\theta$

 $\cot\theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\cot \theta$$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|}$$

$$\cot \theta$$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|}$$

 $\cot \theta$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1}$$

 $\cot \theta$

 $\sec \theta$

 $\csc \theta$

Lecture 2

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta$$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta$$

 $\sec \theta$

 $\csc \theta$

Lecture 2

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

 $\sec \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

∠OED = **?**

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $csc\theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $\csc \theta$

Lecture 2

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

 $\sec \theta$

 $csc\theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

SEC 0

 $\csc \theta$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$
$$= 90^{\circ} - \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $\csc \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $csc\theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $\csc \theta$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

 $\csc \theta$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$
$$= 90^{\circ} - \theta$$
$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$\angle OED = \frac{180^{\circ} - 90^{\circ} - \beta}{= 90^{\circ} - (90^{\circ} - \theta)}$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Todor Milev

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Todor Milev

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Todor Milev

 $csc\theta$

Lecture 2

Trigonometry Definitions

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

Todor Milev

 $csc\theta$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}}$$

$$\sec \theta$$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|}$$

$$\sec \theta$$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let *OB* intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|}$$

$$\sec \theta$$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1}$$

$$\sec \theta$$

 $\csc \theta$

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta$$

Todor Miley

$$\beta = 180^{\circ} - 90^{\circ} - \theta$$

$$= 90^{\circ} - \theta$$

$$\angle OED = 180^{\circ} - 90^{\circ} - \beta$$

$$= 90^{\circ} - (90^{\circ} - \theta)$$

$$= \theta$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}}$$

$$\csc \theta$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|}$$

$$\csc \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|}$$

$$\csc \theta$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1}$$

$$\csc \theta$$

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta$$

Todor Milev

Fix unit circle, center O, coordinates (0,0). Let $\angle DOB = \theta$. Let OB intersect the circle at point A. Coordinates of A are $(\cos \theta, \sin \theta)$.

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}}$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|}$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|}$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|} = \frac{|OE|}{1}$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|} = \frac{|OE|}{1} = |OE|$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|} = \frac{|OE|}{1} = |OE|$$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{|AC|}{|OA|} = \frac{|AC|}{1} = |AC|$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{|OC|}{|OA|} = \frac{|OC|}{1} = |OC|$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{|BD|}{|OD|} = \frac{|BD|}{1} = |BD|$$

$$\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{|DE|}{|OD|} = \frac{|DE|}{1} = |DE|$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{|OB|}{|OD|} = \frac{|OB|}{1} = |OB|$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{|OE|}{|DO|} = \frac{|OE|}{1} = |OE|$$

 Positive angles are obtained by rotating counterclockwise.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.
- $\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.
- $\sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta$.
- $\cos(-\theta) = \frac{x}{\epsilon} = \cos\theta$.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.
- $\bullet \sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$
- sin is an odd function.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- Positive angles are obtained by rotating counterclockwise.
- Negative angles are obtained by rotating clockwise.
- If (x, y) is on the terminal arm of the angle θ , then (x, -y) is on the terminal arm of $-\theta$.
- $\bullet \sin(-\theta) = \frac{-y}{r} = -\frac{y}{r} = -\sin\theta.$
- $\cos(-\theta) = \frac{x}{r} = \cos\theta$.
- sin is an odd function.
- cos is an even function.

$$\begin{array}{ll} \sin\theta = \frac{y}{r} & \csc\theta = \frac{r}{y} \\ \cos\theta = \frac{x}{r} & \sec\theta = \frac{r}{x} \\ \tan\theta = \frac{y}{x} & \cot\theta = \frac{x}{y} \end{array}$$

•
$$2\pi$$
 represents a full rotation.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\begin{aligned} \sin\theta &= \frac{y}{r} & \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} & \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} & \cot\theta &= \frac{x}{y} \end{aligned}$$

- 2π represents a full rotation.
- $\theta + 2\pi$ has the same terminal arm as θ .

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- 2π represents a full rotation.
- $\theta + 2\pi$ has the same terminal arm as θ .
- $\theta + 2\pi$ uses the same point (x, y) and the same length r.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- 2π represents a full rotation.
- $\theta + 2\pi$ has the same terminal arm as θ .
- $\theta + 2\pi$ uses the same point (x, y) and the same length r.
- $\sin(\theta + 2\pi) = \sin \theta$.

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

- 2π represents a full rotation.
- $\theta + 2\pi$ has the same terminal arm as θ .
- $\theta + 2\pi$ uses the same point (x, y) and the same length r.
- $\sin(\theta + 2\pi) = \sin \theta$.
- $\cos(\theta + 2\pi) = \cos\theta$.
- We say sin and cos are 2π -periodic.

Trigonometric Identities

Definition (Trigonometric Identity)

A trigonometric identity is an equality between the trigonometric functions in one or more variables that holds for all values of the involved variables in the domains of all of the expressions.

Todor Milev

Trigonometric Identities

Definition (Trigonometric Identity)

A trigonometric identity is an equality between the trigonometric functions in one or more variables that holds for all values of the involved variables in the domains of all of the expressions.

 By convention, when dealing with trigonometric identities we do not account for the domains of the involved expressions.

Todor Milev

Definition (Trigonometric Identity)

A trigonometric identity is an equality between the trigonometric functions in one or more variables that holds for all values of the involved variables in the domains of all of the expressions.

- By convention, when dealing with trigonometric identities we do not account for the domains of the involved expressions.
- For example, $\frac{\sin \theta}{\sin \theta} = 1$ is considered a valid trigonometric identity, although, when considered as a function, the left hand side is not defined for $\theta \neq 0$.

Todor Milev

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

•
$$\csc \theta = \frac{1}{\sin \theta}$$

•
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\begin{array}{ll} \sin\theta = \frac{y}{r} & \csc\theta = \frac{r}{y} \\ \cos\theta = \frac{x}{r} & \sec\theta = \frac{r}{x} \\ \tan\theta = \frac{y}{x} & \cot\theta = \frac{x}{y} \end{array}$$

$$\begin{aligned} \sin\theta &= \frac{y}{r} & \csc\theta &= \frac{r}{y} \\ \cos\theta &= \frac{x}{r} & \sec\theta &= \frac{r}{x} \\ \tan\theta &= \frac{y}{x} & \cot\theta &= \frac{x}{y} \end{aligned}$$

$$\sin^2\theta + \cos^2\theta$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2 \theta + \cos^2 \theta$$
$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$= \frac{r^2}{r^2}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$= \frac{r^2}{r^2}$$

$$= 1$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2 \theta + \cos^2 \theta$$

$$= \frac{y^2}{r^2} + \frac{x^2}{r^2}$$

$$= \frac{y^2 + x^2}{r^2}$$

$$= \frac{r^2}{r^2}$$

Therefore $\sin^2 \theta + \cos^2 \theta = 1$.

$$\begin{array}{ll} \sin\theta = \frac{y}{r} & \csc\theta = \frac{r}{y} \\ \cos\theta = \frac{x}{\xi} & \sec\theta = \frac{r}{x} \\ \tan\theta = \frac{y}{x} & \cot\theta = \frac{x}{y} \end{array}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\begin{array}{ll} \sin\theta = \frac{y}{r} & \csc\theta = \frac{r}{y} \\ \cos\theta = \frac{x}{t} & \sec\theta = \frac{r}{x} \\ \tan\theta = \frac{y}{x} & \cot\theta = \frac{x}{y} \end{array}$$

$$\sin^{2}\theta + \cos^{2}\theta = 1$$

$$\frac{\sin^{2}\theta}{\cos^{2}\theta} + \frac{\cos^{2}\theta}{\cos^{2}\theta} = \frac{1}{\cos^{2}\theta}$$

$$\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y}$$

$$\cos \theta = \frac{x}{f} \quad \sec \theta = \frac{r}{x}$$

$$\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y}$$

$$sin^{2} \theta + cos^{2} \theta = 1$$

$$\frac{sin^{2} \theta}{cos^{2} \theta} + \frac{cos^{2} \theta}{cos^{2} \theta} = \frac{1}{cos^{2} \theta}$$

$$tan^{2} \theta + 1 = sec^{2} \theta$$