ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ELITON TRINDADE GOMES

PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS

Trabalho de Conclusão de Curso apresentado ao Departamento de Física de Ji-Paraná, Universidade Federal de Rondônia, Campus de Ji-Paraná, como parte dos quesitos para a obtenção do Título de Bacharel em Física, sob orientação do Prof. Dr. Marco Polo Moreno de Souza.

JI-PARANÁ, RO MÊS E ANO DA DEFESA

ATA DE AVALIAÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO DE (LICENCIATURA PLENA/BACHARELADO) EM FÍSICA

Aos xxx dias do mês de xxx do ano de xxx, às xxx, no xxx, reuniu-se a Banca Julgadora composta pelo professor orientador Dr. Marco Polo Moreno de Souza e pelos examinadores Nome do professor da banca e Nome do professor da banca, para avaliarem o Trabalho de Conclusão de Curso, do Curso de Bacharelado em Física, intitulado "PROPAGAÇÃO DE PULSOS DE LUZ EM SISTEMAS ATÔMICOS", do discente *ELITON TRINDADE GOMES*. Após a apresentação, o candidato foi arguido pelos integrantes da Banca Julgadora por xxx (xxx) minutos. Ao final da arguição, a Banca Julgadora, em sessão reservada, aprovou o candidato com nota xxx (xxx), em uma avaliação de 0 (zero) a 10 (dez). Nada mais havendo a tratar, a sessão foi encerrada às xxx, dela sendo lavrada a presente ata, assinada por todos os membros da Banca Julgadora.

Prof. Dr. Marco Pol	lo Moreno de Souza - DEFIJI/CJP/UNIF
	Orientador
D C M 1	
Prof. Nome do pr	rofessor da banca - DEFIJI/CJP/UNIR
D C M 1	rofessor da banca - DEFIJI/CJP/UNIR

DEDICATÓRIA

Digite a dedicatória aqui.

AGRADECIMENTOS

Digite os agradecimentos aqui.

EPÍGRAFE

Digite a epígrafe aqui.

RESUMO

O resumo em língua portuguesa deverá conter no mínimo 150 e no máximo 500 palavras. Bla Bla

Palavras-chave: palavra-chave 1. palavra-chave 2. palavra-chave 3.

LISTA DE TABELAS

4.1	Funções trigonométricas e hiperbólicas.	 12
5.1	Funções trigonométricas e hiperbólicas.	 15

LISTA DE FIGURAS

4.1	ggggggggggggg	12
5.1	Espectro de um laser de femtossegundos.	15

SUMÁRIO

1	Intr	odução	-					
2	Med	Mecânica Quântica e Operador Densidade (ρ)						
	2.1	Matriz densidade	3					
		2.1.1 Propriedades do Operador Densidade						
		2.1.2 Evolução Temporal do Operador Densidade	(
3	Can	npo Eletromagnético	7					
4	Hea	ding on level 0 (chapter)	9					
	4.1	Heading on level 1 (section)	Ç					
		4.1.1 Heading on level 2 (subsection)						
	4.2	Lists						
		4.2.1 Example for list (itemize)	10					
			11					
		4.2.3 Example for list (description)	11					
	4.3	Equações	12					
	4.4	Tabelas	12					
	4.5	Códigos	13					
	4.6	Citação	13					
5	Out	ro capítulo	15					
6	Con	clusão	17					
Tí	tulo d	lo Primeiro Apêndice	21					
Tí	tulo d	lo Segundo Apêndice	23					

1 INTRODUÇÃO

Digite a introdução aqui.

2 MECÂNICA QUÂNTICA E OPERADOR DENSIDADE (p)

Neste capitulo nos dedicamos a apresentar o formalismo do operador densidade, desenvolvido por J.von Neumann em 1977, e suas vantagens em relação ao representação de autoestados e autovetores no estudo de sistema quânticos [1].

2.1 MATRIZ DENSIDADE

Como sabemos, o formalismo usual da mecânica quântica, onde trabalhamos com autoestados e autovetores (formalismo de Dirac), nos permite fazer previsões sobre um conjunto de sistemas físicos elaborados de forma idêntica [2]. Em termos mais específicos, garantimos que todos o sistemas membros deste ensemble seja caracterizado por um mesmo ket de estados $|\alpha\rangle$. Assim, este formalismo não é válido se considerarmos, por exemplo, que 70% desses sistemas são caracterizados pelo ket de estado $|\alpha\rangle$ e 30% pelo ket de estado $|\beta\rangle$ (ensemble misto). Para lidar com essa situação, precisamos introduzir o conceito de operador densidade, que nos permitirá descrever quantitativamente conjuntos de sistemas quântico para ensemble puros ou, até mesmo, ensemble mistos completamente aleatórios.

Consideremos o ensemble misto, onde uma fração de membros com população relativa w_1 é caracterizada por $|\alpha^{(1)}\rangle$; outra fração w_2 é caracterizada por $|\alpha^{(2)}\rangle$ e assim sucessivamente. Podemos dizer, com certa precisão, que um ensemble misto pode ser visto como uma mistura de ensembles puros. As populações w_i devem satisfazer a condição de normalização, ou seja:

$$\sum_{i} w_i = 1. \tag{2.1}$$

Não é necessário que $|\alpha^{(1)}\rangle$, $|\alpha^{(2)}\rangle$,..., $|\alpha^{(i)}\rangle$ sejam ortogonais entre si e o número de termos na soma em i na equação (2.1) não precisa ser igual ao número de dimensões N no espaço de Hilbert. Vamos supor que realizamos a medida de um operador \hat{A} em um ensemble misto. É possível calcular o valor médio se houver um número grande de medidas. O resultado é dado pela média sobre o ensembles, definida por:

$$[\hat{A}] = \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \hat{A} \sum_{a'} | a' \rangle \langle a' | | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | \hat{A} | a' \rangle \langle a' | | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle \langle a' | \alpha^{(i)} \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} \langle \alpha^{(i)} | a' \rangle^{*} \langle \alpha^{(i)} | a' \rangle a'$$

$$= \sum_{i} \sum_{a'} w_{i} | | \langle a' | \alpha^{(i)} \rangle | |^{2} a'.$$
(2.2)

Sendo que $|a'\rangle$ é um autovetor do operador \hat{A} e que $\langle \alpha^{(i)} | \hat{A} | \alpha^{(i)} \rangle$ trata-se do valor esperado habitual para \hat{A} em relação a um estado $|\alpha^{(i)}\rangle$. Vemos na equação (2.2) que este valores esperados precisam ser considerados pelas populações relativas w_i . E possível observar também que que $\|\langle a' | \alpha^{(i)} \rangle\|^2$ é a probabilidade do estado $|\alpha(i)\rangle$ de ser encontrado em um autoestado $|a'\rangle$ e que w_i identifica a probabilidade de encontrarmos uma estado quântico caracterizado por $|\alpha^{(i)}\rangle$.

Se aplicarmos uma base genérica ($|b'\rangle$), podemos rescrever a média sobre o ensemble (2.2) da seguinte forma:

$$[\hat{A}] = \sum_{i} w_{i} \langle \alpha^{(i)} | \sum_{b'} |b'\rangle \langle b'| \hat{A} \sum_{b''} |b''\rangle \langle b''| |\alpha^{(i)}\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \langle \alpha^{(i)} | b'\rangle \langle b'| \hat{A} |b''\rangle \langle b'' |\alpha^{(i)}\rangle$$

$$= \sum_{i} \sum_{b'} \sum_{b''} w_{i} \langle b'' | \alpha^{(i)}\rangle \langle \alpha^{(i)} | b'\rangle \langle b'| \hat{A} |b''\rangle$$

$$= \sum_{b'} \sum_{b''} \left(\sum_{i} w_{i} \langle b'' | \alpha^{(i)}\rangle \langle \alpha^{(i)} | b'\rangle\right) \langle b'| \hat{A} |b''\rangle. \tag{2.3}$$

O termo destacado entre parenteses é definido como elemento de matriz de um certo operador hermitiano, que denominamos **matriz densidade** ou ainda, **operador densidade** ρ , conforme equações (2.4) e (2.5):

$$\langle b''|\hat{\rho}|b'\rangle = \sum_{i} w_{i} \langle b''|\alpha^{(i)}\rangle \langle \alpha^{(i)}|b'\rangle \tag{2.4}$$

De forma geral, o operador densidade é definido como

$$\hat{\rho} \equiv \sum_{i} w_i \left| a^{(i)} \middle\langle a^{(i)} \right|. \tag{2.5}$$

Uma vez determinado o operador densidade do sistema, podemos caracterizar o ensemble quântico em questão, de modo a obter todas as informações físicas encerradas por tal operador. Substituindo (2.4) em (2.3), podemos rescrever o valor esperado de \hat{A} como:

$$[\hat{A}] = \sum_{b'} \sum_{b''} \langle b'' | \hat{\rho} | b' \rangle \langle b' | \hat{A} | b'' \rangle$$

$$= \operatorname{Tr}(\hat{\rho} \hat{A})$$
(2.6)

Onde a operação $Tr(\hat{\rho}\hat{A})$ corresponde ao traço do operador resultante do produto entre $\hat{\rho}$ e \hat{A} , ficando assim explicito o poder desta construção, pois o traço independe da representação e pode ser calculado usando uma base conveniente.

2.1.1 Propriedades do Operador Densidade

Vamos agora nos ater a algumas propriedade do operador densidade:

Primeira propriedade: O operador densidade é hermitiano, ou seja:

$$\hat{\rho} = \hat{\rho}^{\dagger} \tag{2.7}$$

Segunda propriedade: O operador densidade satisfaz a condição de normalização

$$\operatorname{Tr} \rho = \sum_{i} \sum_{b'} w_{i} \langle b' | \alpha^{(i)} \rangle \langle \alpha^{(i)} | b' \rangle$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \alpha^{(i)} \rangle$$

$$= 1 \tag{2.8}$$

Terceira propriedade: Podemos ainda substituir o operador \hat{A} pelo próprio operador densidade obtendo:

$$\operatorname{Tr}(\hat{\rho}^{2}) = \operatorname{Tr}(\hat{\rho}\hat{\rho})$$

$$= \sum_{i} w_{i} \langle \alpha^{(i)} | \left(\sum_{j} w_{j} | \alpha^{(j)} \rangle \langle \alpha^{(j)} | \right) | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \langle \alpha^{(i)} | \alpha^{(j)} \rangle \langle \alpha^{(j)} | \alpha^{(i)} \rangle$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} \langle \alpha^{(i)} | \alpha^{(j)} \rangle \langle \alpha^{(i)} | \alpha^{(i)} \rangle^{*}$$

$$= \sum_{i} \sum_{j} w_{i} w_{j} ||\langle \alpha^{(i)} | \alpha^{(j)} \rangle||^{2}. \tag{2.9}$$

Esse resultado precisa ser analisado, observando a desigualdade de Cauchy-Schwarz

$$\left\| \left\langle \alpha^{(i)} \middle| \alpha^{(j)} \right\rangle \right\|^2 \le \left\langle \alpha^{(i)} \middle| \alpha^{(i)} \right\rangle \left\langle \alpha^{(j)} \middle| \alpha^{(j)} \right\rangle \tag{2.10}$$

Como os kets $|\alpha^{(i)}\rangle$ são ortogonais, ou seja, $\langle \alpha^{(i)}|\alpha^{(i)}\rangle=\langle \alpha^{(j)}|\alpha^{(j)}\rangle=1$, obtemos a seguinte propriedade:

$$\operatorname{Tr}(\hat{\rho}^2) \le 1. \tag{2.11}$$

É possível observar que quando se trata de um ensemble puro, ou seja, um dos pesos w_i tem valor 1 e o restante de valor 0,

$$\hat{\rho} = \left| a^{(i)} \middle\langle a^{(i)} \right|. \tag{2.12}$$

 ${
m Tr}(\hat{
ho}^2)$ tem valor máximo, isto é,

$$Tr(\hat{\rho}^2) = 1 \tag{2.13}$$

Assim, é facil provar que o operador densidade de um ensemble puro puro é idempotente, ou seja:

$$\hat{\rho}^2 = \hat{\rho} \tag{2.14}$$

2.1.2 Evolução Temporal do Operador Densidade

Agora, precisamos determinar como o operador densidade evolui no tempo. Para isso, devemos supor que para um tempo t_0 o operador densidade corresponde a

$$\hat{\rho}(t_0) = \sum_{i} w_i \left| \alpha^{(i)} \middle\langle \alpha^{(i)} \right|. \tag{2.15}$$

Consideremos que o ensemble não sofre pertubação conforme evolui no tempo, ou seja, a populações relativas w_i se mantém estática. Assim, a alteração de $\hat{\rho}$ acontece unicamente pela evolução temporal dos kets de estado $|\alpha^{(i)}\rangle$.

$$|\alpha^{(i)}\rangle \text{ em } t_0 \to |\alpha^{(i)}, t_0; t\rangle$$
 (2.16)

Sabemos que $|\alpha^{(i)}, t_0; t\rangle$ que satisfaz equação de Schrödinger

$$i\hbar \frac{\partial}{\partial t} |\alpha^{(i)}, t_0; t\rangle = \hat{H} |\alpha^{(i)}, t_0; t\rangle,$$
 (2.17)

então podemos derivar a equação (2.15) de modo que :

$$\frac{\partial}{\partial t}\rho(\hat{t}) = \frac{\partial}{\partial t} \sum_{i} w_{i} \left|\alpha^{(i)}\right\rangle \left\langle \alpha^{(i)}\right|
= \sum_{i} w_{i} \frac{\partial}{\partial t} (\left|\alpha^{(i)}\right\rangle) \left\langle \alpha^{(i)}\right| + \sum_{i} w_{i} \left|\alpha^{(i)}\right\rangle \frac{\partial}{\partial t} (\left\langle \alpha^{(i)}\right|).$$
(2.18)

Substituindo (2.17) em (2.18), obtemos

$$\frac{\partial}{\partial t}\rho(\hat{t}) = \frac{1}{i\hbar}\hat{H}\left(\sum_{i}w_{i}\left|\alpha^{(i)}\right\rangle\left\langle\alpha^{(i)}\right|\right) - \frac{1}{i\hbar}\left(\sum_{i}w_{i}\left|\alpha^{(i)}\right\rangle\left\langle\alpha^{(i)}\right|\right)\hat{H}$$

$$= \frac{1}{i\hbar}\hat{H}\hat{\rho} - \frac{1}{i\hbar}\hat{\rho}\hat{H}, \tag{2.19}$$

resultando na equação de **Liouville-von Neumann** que descreve a evolução temporal do operador densidade [1, 3]:

$$\frac{\partial}{\partial t}\rho(\hat{t}) = -\frac{1}{i\hbar}[\hat{\rho}, \hat{H}]. \tag{2.20}$$

Embora a equação (2.20) seja semelhante a equação de Heisenberg, exceto por um sinal negativo (-), é preciso lembrar que estamos trabalhando na formulação Schrödinger, visto que $\hat{\rho}$ é construído a partir de kets e bras que evoluem no tempo e obedece a equação de Schrödinger.

3 CAMPO ELETROMAGNÉTICO

Neste capitulo aplicaremos

4 HEADING ON LEVEL 0 (CHAPTER)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4.1 HEADING ON LEVEL 1 (SECTION)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4.1.1 Heading on level 2 (subsection)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Heading on level 3 (subsubsection)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullam-corper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque.

Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Heading on level 4 (paragraph) Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

4.2 LISTS

4.2.1 Example for list (itemize)

- First itemtext
- Second itemtext
- Last itemtext
- First itemtext
- Second itemtext

Example for list (4*itemize)

- First itemtext
 - First itemtext
 - * First itemtext
 - · First itemtext
 - · Second itemtext
 - * Last itemtext
 - First itemtext
- Second itemtext

4.2.2 Example for list (enumerate)

- 1. First itemtext
- 2. Second itemtext
- 3. Last itemtext
- 4. First itemtext
- 5. Second itemtext

Example for list (4*enumerate)

- 1. First itemtext
 - (a) First itemtext
 - i. First itemtext
 - A. First itemtext
 - B. Second itemtext
 - ii. Last itemtext
 - (b) First itemtext
- 2. Second itemtext

4.2.3 Example for list (description)

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext

Example for list (4*description)

First itemtext

First itemtext

First itemtext

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext

Exemplo de figura:

Figura 4.1: gggggggggggggggg

4.3 EQUAÇÕES

Exemplo de equação centralizada:

$$a^2 = b^2 + c^2. (4.1)$$

Exemplo de equação no texto: $e^{ix} = \cos x + i \sin x$. Citação de equação: 4.1.

4.4 TABELAS

Exemplo de tabela:

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 4.1: Funções trigonométricas e hiperbólicas.

4.5 CÓDIGOS

Exemplo de código (linguagem C):

```
#include<stdio.h>

int k;

main()

for (k=1; k<=5; k++)

printf("Física - UNIR - Ji-Paraná\n");
}</pre>
```

4.6 CITAÇÃO

Exemplo de citação:

Citando um trabalho: (ARAÚJO, 2004).

5 OUTRO CAPÍTULO

Digite aqui o conteúdo de outro capítulo.

$\sin x$	$\cos x$	$\tan x$
$\sec x$	$\csc x$	$\cot x$
$\arcsin x$	$\arccos x$	$\arctan x$
$\sinh x$	$\cosh x$	$\tanh x$

Tabela 5.1: Funções trigonométricas e hiperbólicas.

Figura 5.1: Espectro de um laser de femtossegundos.

6 CONCLUSÃO

Digite a conclusão do TCC aqui.

REFERÊNCIAS

- [1] J. Sakurai, J. Napolitano, and S. Dahmen, Mecânica quântica moderna. Bookman, 2013.
- [2] H.-P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
- [3] R. Field and A. Tokmakoff, 5.74 Introductory Quantum Mechanics II. Massachusetts Institute of Technology: MIT OpenCourseWare, Spring 2004.

TÍTULO DO PRIMEIRO APÊNDICE

Digite o primeiro apêndice aqui.

TÍTULO DO SEGUNDO APÊNDICE

Digite o segundo apêndice aqui.