Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro June 4, 2024

1 Introduction

1.1

To minimise

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2, \qquad (1.1)$$

setting its derivative as zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} \left(y(x_n, \mathbf{w}) - t_n \right). \tag{1.2}$$

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.3}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right).$$
 (1.4)

Therefore,

$$\sum_{i=0}^{M} A_{ij} w_j = T_i \tag{1.5}$$

where

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j},$$

$$T_i = \sum_{n=1}^{N} x_n^{i} t_n.$$
(1.6)

1.2

To minimise

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2,$$
(1.7)

setting its derivative as zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.8)

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.9}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right) + \lambda w_i.$$
 (1.10)

Therefore,

$$\sum_{j=0}^{M} \tilde{A}_{ij} w_j = T_i \tag{1.11}$$

where

$$\tilde{A}_{ij} = \sum_{n=1}^{N} x_n^{i+j} + \lambda \delta_{ij},$$

$$T_i = \sum_{n=1}^{N} x_n^i t_n.$$
(1.12)

1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively. The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.13)

Substituting $p(a|r) = \frac{3}{10}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{1}{2}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(a) = \frac{17}{50}. (1.14)$$

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.15)

Here,

$$p(g, o) = p(o|g)p(g),$$

$$p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g).$$
(1.16)

Substituting $p(o|r) = \frac{2}{5}$, $p(r) = \frac{1}{5}$, $p(o|b) = \frac{1}{2}$, $p(b) = \frac{1}{5}$, $p(o|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives $p(g, o) = \frac{9}{50}$ and $p(o) = \frac{9}{25}$. Therefore,

$$p(g|o) = \frac{1}{2}. (1.17)$$

1.5

By the definition,

$$var f(x) = E (f(x) - Ef(x))^{2}.$$

$$(1.18)$$

The right hand side can be written as

$$E((f(x))^{2} - 2f(x)Ef(x) + (Ef(x))^{2}) = E(f(x))^{2} - (Ef(x))^{2}.$$
 (1.19)

Therefore,

$$\operatorname{var} f(x) = \operatorname{E} (f(x))^{2} - (\operatorname{E} f(x))^{2}.$$
 (1.20)

1.6

By the definition,

$$cov(x,y) = Exy - ExEy, (1.21)$$

where the right hand side can be written as

$$\int xyf(x,y)dxdy - \int xf(x)dx \int yf(y)dy.$$
 (1.22)

If x and y are independent, by the definition

$$f(x,y) = f(x)f(y), \tag{1.23}$$

then

$$\int xyf(x,y)dxdy = \int f(x)dx \int f(y)dy.$$
 (1.24)

Therefore,

$$Exy = ExEy, (1.25)$$

and thus

$$cov(x,y) = 0. (1.26)$$