Влияние КЭШа на скорость работы программы

Анна Субботина

- промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью
- * доступ к данным в кэше осуществляется быстрее, чем выборка исходных данных из более медленной памяти или удаленного источника, однако её объём существенно меньше памяти

- * состоит из набора записей
- * каждая запись имеет идентификатор соответствия между элементами данных в кэше и их копиями в памяти
- попадание/промах кэша

- * При модификации данных в кэше происходит обновление данных в памяти это управляется политикой записи
- немедленная запись
- * отложенная (обратная) запись при вытеснении, на данных хранится флаг "dirty", промах вызывает двойное обращение к памяти

- * Кэш центрального процессора разделён на несколько уровней
- * Кэш-память уровня N+1, как правило, больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N

- * L1 cache
- * является неотъемлемой частью процессора, поскольку расположен на одном с ним кристалле и входит в состав функциональных блоков
- * в современных процессорах обычно L1 разделен на два кэша кэш команд (инструкций) и кэш данных (Гарвардская архитектура)
- * L1 работает на частоте процессора, и, в общем случае, обращение к нему может производиться каждый такт

- * L2 cache
- * тоже расположен на одном кристалле с процессором
- * объём L2 от 128 кбайт до 1-12 Мбайт
- * кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования при общем объёме кэша в п Мбайт на каждое ядро приходится по n/c Мбайта, где с количество ядер процессора

- * L2 cache
- * кэш третьего уровня наименее быстродействующий, но он может быть очень большим более 24 Мбайт
- * L3 медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память
- * вмногопроцессорных системах находится в общем пользовании и предназначен для синхронизации данных различных L2

- части кэша минимального размера линии кэша (8 512 байт)
- * протоколы взаимодействия между кэшами, которые сохраняют согласованность данных протоколы когерентности кэшей

- * алгоритм кэш-когерентности MESI (x86)
- * к каждой линии кэша приписываются 2 бита принимающие значения: modified, exclusive, shared, invalid

- * Modified линия присутствует только в текущем кэше (dirty-bit)
- * Exclusive линия присутствует только в текущем кэше и соответствует своей копии в памяти
- * Shared линия может присутствовать в других кэшах и соответствует своей копии в памяти
- * Invalid линия недействительна

- операция чтения может быть из линии кэша в любом состоянии, кроме invalid
- * операция записи может быть из кэша в состоянии exclusive или shared (если shared, то остальные надо пометить invalid)
- * линию в состоянии invalid можно удалить
- * линию в состоянии modified надо записать в память

- * Фальшивое разделение
- * Пример: область памяти в одну линию кэша, два потока
- * один читает, другой модифицирует -> пересчитывание данных

- Общие правила при написании программ:
- * конверсии из формата в формат и многоуровневых структур следует избегать
- разделяемые данные допустимы (чтение через кэш)
- * изменяемы данные допустимы при условии локальности
- изменяемых и разделяемых данных следует избегать

ЗАДАНИЕ

- * Написать программу блочного перемножения матриц
- * Измерить время выполнения перемножения для разных величин блоков (256, 512, 1024, 1025)

Вопросы?