

Geh Si Rong, Lee Meng Chin, Teo Zhan Rui, Wee Zi Jian

TABLE OF CONTENTS

Problem Statement

The West Nile virus (WNV) is a mosquito-borne illness that can cause severe neurological disease and death in humans.

Since 2004, the Chicago Department of Public Health has increased surveillance and control efforts in a bid to prevent transmission of this virus.

Given weather, location, testing, and spraying data, our goal is to **predict whether the WNV is present** in a given location.

Based on our predictions, we will devise a cost effective strategy to deploy pesticides in WNV-hotspots.

Pre-Processing: Train / Test

- Train: 10,506 rows, 12 columns (2007, 2009, 2011, 2013)
- Test: 116,293 rows, 11 columns (2008, 2010, 2012, 2014)
- Relevant columns:
 - Date
 - Species
 - Longitude
 - Latitude
 - WNV present
- Set date as index
- Assign nearest weather station to each trap
- Group by mosquito species
- Convert species to categorical features

Pre-Processing: Weather

- 2,944 rows, 22 columns
- Daily data from May-October 2007-2014
- Impute missing values ('M') and trace values ('T') with 0 or mean
- Convert weather conditions (CodeSum) to categorical variables
- Compute 14 day rolling average/sum of various weather data
- Compute lagged (3, 5, 7, 10 days) versions of rolling weather data
- Assign weather data to train/test data based on nearest weather station

Pre-Processing: Spray

- 14,835 rows, 4 columns
- 2011 and 2013 spray locations and dates
- Based on plots of sprayed locations vs WNV presence, spraying does not appear to reduce WNV presence in subsequent months

Pre-Processing: Spray

- 2011 and 2013 train data locations were checked if they had been sprayed within a certain radius within the past 10 days
- Spraying within 10m, 30m and 50m of a location within the last 10 days has marginal effect on the number of mosquitoes caught or the presence of WNV
- Since spray data for 2008, 2010, 2012 and 2014 is unavailable as well, spray data will not be used in modelling

Sprayed radius	within last	10 days vs \	WNV						
	wnv	wnv_binary	num_mos						
sprayed_10m_binary									
0	0.077421	0.064742	14.662800						
1	0.115385	0.115385	11.384615						
sprayed_30m_binary									
0	0.077114	0.064170	14.647205						
1	0.103896	0.103896	13.370130						
sprayed_50m_binary									
0	0.076364	0.063497	14.640280						
1	0.109524	0.104762	13.828571						

EDA: Mosquito Counts

- 3/7 species found with WNV
 - Most frequently caught species
- Species expected to be an important feature in predicting WNV

EDA: WNV Positive/ Negative Counts

WNV-negative vs WNV-positive

9,955

551

- Imbalanced classes
 - Minority class was resampled using
 SMOTE

EDA: WNV-Positive by Date

- WNV-Season: Jul to Sep
- Huge spikes in 2007 and 2013

EDA: WNV-Positive by Location

EDA: WNV-Positive by Location

EDA: Temperature

- Immediate & delayed impacts observed
- Impact of Temperature
 - ↑ Reproduction
 - ↑ Biting
 - ↑ Virus replication
- Optimal temperature: 75.2 77°F

EDA: Dew Point

- Peak between July and September
- High dew points linked to higher WNV counts

EDA: Wet Bulb

- Peak between July and September
- Wet bulb humidity relationship
- High humidity offsets higher temperatures

2013-06

2011-06

2011-07

EDA: Precipitation

- Precipitation encourages breeding
- Spike in WNV-positive counts after heavy precipitation (2009, 2011, 2013)

EDA: Wind

- Lower wind speeds show higher WNV numbers
- Mosquitoes caught by traps during lower wind speeds

EDA: Weather Conditions

- Weather conditions with highest correlation to WNV:
 - Thunderstorm
 - Thunderstorm / rain
 - Vicinity thunderstorm
 - o Rain
 - Mist
 - Haze

EDA: Top Features

- Temperature-related features most correlated with one another
- Rolling average and time lags increase correlation between weather features and WNV

	- 12 (2) (2) (3) (4) (4) (4)
wnv	1.000000
wetbulb_rolling_14_lag_10	0.118518
dewpoint_rolling_14	0.118297
dewpoint_rolling_14_lag_10	0.117584
tmax_rolling_14_lag_10	0.107532
wetbulb_rolling_14	0.106450
tavg_rolling_14_lag_10	0.106093
tmin_rolling_14_lag_10	0.101629
species_PIPIENS	0.094056
tmin_rolling_14	0.082480
ts_rolling_14	0.080939

Modelling

Models Tested:

- Logistic Regression
- K-Nearest Neighbors
- Random Forest

- Extra Trees
- Support Vector Machine
- XGBoost

Grid Search with Pipeline:

- 1) standard scaler
- 2) resampling with SMOTE
- 3) classifier

Modelling Results

	LR	KNN	RF	ET	svc	XGB
train_acc	0.818826	0.974271	0.898951	0.910162	0.880890	0.915546
val_acc	0.795181	0.740469	0.823425	0.821004	0.812502	0.823421
test_acc	0.820431	0.775824	0.857993	0.849129	0.855147	0.855532
train_auc	0.741826	0.909938	0.500000	0.504373	0.809036	0.793339
test_auc	0.746211	0.695973	0.504386	0.508772	0.782165	0.736855
train_recall	0.781341	0.944606	0.000000	0.008746	0.854227	0.685131
test_recall	0.780702	0.535088	0.008772	0.017544	0.798246	0.578947

Optimize for ROC AUC and Recall

Kaggle Submission Score

Using SVC with SMOTE, our best parameters are:

'sampling_strategy': 'auto',

'svc C': 0.2,

'svc__degree': 3,

'svc__kernel': 'poly'

Kaggle Set

Kaggle Score: 0.683

Final Model: Support Vector Machine

Drawback:

- polynomial kernel does not produce coefficients
- Rely on second best model for examine features

confusion matrix for SVC

Cost Benefit Analysis

Estimated Epidemic Cost:

- Nationwide: \$778 million over 15 years
- Louisiana (2005): \$20 million
- Sacramento, California (2005): \$2.98 million
- Average cost per infected person: \$18,000 \$61,000
 (depending on severity)

Cost of spraying:

- Vector Control Cost: \$701, 790
- 15 prevented WNV cases would justify the cost

But is this enough?

Cost Benefit Analysis

Optimise spraying for weather conditions and months:

- Lower wind speeds (reduces spray drift)
- Temperatures below 86°F (30°C)
- Humidity above 45%
- July to September

Cost Benefit Analysis

Alternative Measures

- Eliminate mosquito breeding grounds
- Insect repellent
- Long-sleeve shirts and long pants

Conclusion / Recommendations

- Pesticide spraying is not enough
- Combination of spraying and alternative measures
- Spray in the right weather conditions
- Get data on number of WNV cases reported for better prediction

THANK YOU

