PARTE TEÓRICA Para aprobar hay que sumar por lo menos 5 puntos en esta parte.

(1) 3,5 pts.

(a) Definir transformación lineal entre dos espacios vectoriales.

(b) Sean U, V, W espacios vectoriales y $T: U \to V$ y $S: V \to W$ transformaciones lineales. Probar que $S \circ T : U \to W$ es lineal.

(c) Sea $T:U\to V$ una transformación lineal inversible. Probar que la función inversa $T^{-1}:V\to U$ es lineal.

(d) Sea $T:V \to W$ una transformación lineal entre espacios vectoriales de dimensión finita y sean \mathcal{B}_V y \mathcal{B}_W bases de Vy Wrespectivamente. Probar que existe una matriz Atal que

$$[T(\alpha)]_{\mathcal{B}_{W}} = A[\alpha]_{\mathcal{B}_{V}}, \qquad \forall \ \alpha \in V.$$

(2) 3,5pts. Sea V un espacio producto interno.

(a) Demostrar que si $\{\alpha_1,\ldots,\alpha_k\}$ es un conjunto ortonormal, entonces $\{\alpha_1,\ldots,\alpha_k\}$ es un conjunto linealmente independiente.

(b) Dado un subespacio W de V, definir W[⊥].

(c) Demostrar que si W tiene dimensión finita entonces V = W ⊕ W[⊥].

(3) 3 pts. Decidir si las siguientes afirmaciones son verdaderas o falsas. En cada caso justificar.

(a) Existe una funcional lineal f: R⁵ → R cuyo núcleo tiene dimensión 3.

(b) Si v y w son dos vectores linealmente dependientes en \mathbb{R}^3 , entonces $v \times w = 0$.

 \mathbb{N} (c) Sea $B \in M_{n \times n}(\mathbb{R})$ tal que $B^2 = 0$. Si $c \in \mathbb{R}$ es un autovalor de B, entonces c = 0.

(d) Existe una base $\{A_1, A_2, A_3, A_4\}$ del espacio vectorial $M_{2\times 2}(\mathbb{R})$ de matrices 2×2 , tal que det $A_i=1$ para todo i = 1, ..., 4.

Ejercicio para libres:

Calcule la inversa de

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & -2 & -3 \end{pmatrix}.$$

Apellido v N.

The state of the s					Condición:			Carrera:	
P1	P2	P3	P4	TOTAL	TI	T2	Т3	TOTAL	NOTA

ÁLGEBRA y ÁLGEBRA II Examen Final: 19/12/06

PARTE PRÁCTICA, Para aprobar hay que sumar por lo menos 5 puntos en esta parte.

(1) 2,5 pts. Sea π el plano de \mathbb{R}^3 que pasa por los puntos A = (1,0,1), B = (-1,2,0), C = (1,1,-1).

(a) Determinar las ecuaciones implícita y paramétrica de π .

- (b) Calcular la distancia entre π y el punto P = (1, 2, -5).
- (c) Calcular el volumen del tetraedro con vértices P, A, B y C.
- (2) 3,5pts. Sea T: R³ → R⁴ la transformación lineal cuya matriz en las bases canónicas de R³ y R⁴ respectivamente es:

$$[T]_{C_4}^{C_3} = \begin{pmatrix} 2 & 0 & 4 \\ 2 & -1 & 5 \\ -1 & 0 & -2 \\ -1 & 1 & -3 \end{pmatrix}$$
.

(a) Dar una base de Nu (T).

(b) Describir implicitamente Im (T) y dar una base de este subespacio.

(c) Sea $U: \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal cuya matriz en las bases $\mathcal{B}_3 = \{(1,1,0), (0,1,-1), (0,0,1)\}$ y $\mathcal{B}_4 = \{(1,0,0,1), (0,1,0,0), (1,0,1,0), (0,2,0,1)\}$ es:

$$[U]_{\mathcal{B}_4}^{\mathcal{B}_3} = \begin{pmatrix} 2 & 0 & 4 \\ 2 & -1 & 5 \\ -1 & 0 & -2 \\ -1 & 1 & -3 \end{pmatrix}.$$

Determinar U(x, y, z) para todo $(x, y, z) \in \mathbb{R}^3$.

- (d) Dar una base de Nu (U).
- (e) Describir implicitamente Im (U) y dar una base de este subespacio.
- (3) 1,5pts. Calcular los autovalores de la matriz

$$A = \begin{pmatrix} 1 & i & 0 \\ i & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}.$$

Decidir si esta matriz es semejante a una matriz diagonal.

(4) 2,5pts. Para $\alpha = (x_1, x_2)$ y $\beta = (y_1, y_2)$ en \mathbb{R}^2 , se define

$$(\alpha, \beta) = x_1 y_1 - x_2 y_1 - x_1 y_2 + 4x_2 y_2.$$

- (a) Probar que (,) es un producto interno en R².
 (b) Sea (a,b) ∈ R², (a,b) ≠ (0,0), y sea W el subespacio generado por (a,b). Encontrar W¹ usando este producto interno.
- (c) Hallar una base ortonormal de R2, según este producto interno.