6. Кривые второго порядка

6.1. Эллипс

Опр. Эллипс — это множество всех точек плоскости, сумма расстояний каждой из которых до данных точек F_1 и F_2 постоянна и равна 2a для данного a>0, причем $2a>|\overline{F_1F_2}|=2c$.

Составим уравнение произвольного эллипса.

Введем систему координат с центром O в середине отрезка $\overline{F_1F_2}$ и ортонормированным базисом $\overrightarrow{e_1},\overrightarrow{e_2}$ таким, что $\overrightarrow{e_1}$ сонаправлен с $\overrightarrow{OF_2}$.

Тогда в $O\overrightarrow{e_1}\overrightarrow{e_2}$ имеем $F_1(-c,0)$, $F_2(c,0)$ и для всякой точки M(x,y), принадлежащей эллипсу, $|\overline{F_1M}|+|\overline{F_2M}|=2a>2c$, и a>c. Получаем, что $\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$, возводя в квадрат, $a\sqrt{(x-c)^2+y^2}=a^2-cx$, снова возводя в квадрат, $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$. Обозначим $b^2=a^2-c^2>0$ так как a>c. Получаем $b^2x^2+a^2y^2=a^2b^2$ или

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (каноническое уравнение эллипса) (1)

Покажем, что любая точка удовлетворяющая (1), принадлежит нашему эллипсу. Пусть M(x,y) удовлетворяет уравнению. Выразим из него $y^2=\left(1-\frac{x^2}{a^2}\right)(a^2-c^2)$ и подставим в $|\overline{F_1M}|=\sqrt{(x+c)^2+\left(1-\frac{x^2}{a^2}\right)(a^2-c^2)}=\sqrt{x^2+2xc+c^2+a^2-c^2-x^2+\frac{x^2c^2}{a^2}}=\sqrt{2xc+a^2+\frac{x^2c^2}{a^2}}=\left|a+\frac{c}{a}x\right|$ и аналогично $|\overline{F_2M}|=\left|a-\frac{c}{a}x\right|$. Но $\frac{x^2}{a^2}\leqslant 1$ из уравнения, поэтому $|x|\leqslant a$, и $0\leqslant \frac{c}{a}<1$ из определения. Следовательно модули можно снять и получить равенство $|\overline{F_1M}|+|\overline{F_2M}|=2a$, т.е. M принадлежит эллипсу по определению. Таким образом, доказана

Teop 1. Для любого эллипса существует аффинная система координат, в которой он имеет уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ для некоторых $a \geqslant b > 0$.

Если $F_1=F_2$, то $c=0,\, a=b$ и уравнение такого эллипса $x^2+y^2=a^2$ есть уравнение окружности.

Эллипс симметричен относительно начала координат и осей координат, т.к. из принадлежности ему точки M(x,y) следует, что точка $N(\pm x, \pm y)$ также ему принадлежит.

Все точки располагаются в области $-a\leqslant x\leqslant a, -b\leqslant y\leqslant b,$ т.к. $x^2\leqslant a^2,$ $y^2\leqslant b^2.$ Точки (a,0),(-a,0),(0,b),(-b,0) называются вершинами, а a и b — большой и малой полуосями.

Опр. Число $\varepsilon=rac{c}{a}$ называется **эксцентриситетом** эллипса (1).

Опр. Прямая, перпендикулярная прямой F_1F_2 (при условии $F_1\neq F_2$) и отстоящая от центра эллипса на $d=\frac{a}{\varepsilon}$, называется **директрисой** эллипса (1).

Уравнения директрис: $x=\pm \frac{a}{\varepsilon}=\pm \frac{a^2}{c}.$

Теор 2. Для любой точки M эллипса (1) $\frac{|\overline{F_1M}|}{|\overline{MN_1}|} = \frac{|\overline{F_2M}|}{|\overline{MN_2}|} = \varepsilon$, где MN_1 и MN_2 — перпендикуляры из M к директрисам $x = -\frac{a}{\varepsilon}$ и $x = \frac{a}{\varepsilon}$ соответственно.

Док-во.
$$|F_1M|=\left|a+\frac{c}{a}x\right|=|a+\varepsilon x|,$$
 $|MN_1|=\sqrt{\left(-\frac{a}{\varepsilon}-x\right)^2}=\left|\frac{a}{\varepsilon}+x\right|=\frac{|a+\varepsilon x|}{\varepsilon}$, т.е. $\frac{|\overline{F_1M}|}{|\overline{MN_1}|}=\varepsilon$. Аналогично со вторым.

6.2. Гипербола

Опр. Гипербола — это множество всех точек плоскости, абсолютная величина разности расстояний каждой из которых до данных точек F_1 и F_2 постоянно и равно 2a для данного a>0, причем $2a<|\overline{F_1F_2}|=2c$.

Составим уравнение произвольной гиперболы.

Введем систему координат с центром O в середине отрезка $\overline{F_1F_2}$ и ортонормированным базисом $\overrightarrow{e_1}, \overrightarrow{e_2}$ таким, что $\overrightarrow{e_1}$ сонаправлен с $\overrightarrow{OF_2}$.

Тогда в $O\overrightarrow{e_1}\overrightarrow{e_2}$ имеем $F_1(-c,0)$, $F_2(c,0)$ и для всякой точки M(x,y), принадлежащей гиперболе, $||\overline{F_1M}|-|\overline{F_2M}||=2a<2c$, и a< c. Отсюда получаем $|\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}|=2a$, или $\sqrt{(x+c)^2+y^2}=\pm 2a+\sqrt{(x-c)^2+y^2}$, возводя в квадрат, $\pm a\sqrt{(x-c)^2+y^2}=a^2-xc$, снова возводя в квадрат, $(c^2-a^2)x^2-a^2y^2=a^2(c^2-a^2)$. Обозначим $b^2=c^2-a^2>0$ так как a< c. Получаем $b^2x^2-a^2y^2=a^2b^2$, или

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (каноническое уравнение гиперболы) (2)

Покажем, что любая точка удовлетворяющая (2), принадлежит нашей гиперболе. Пусть M(x,y) удовлетворяет уравнению. Выразим из него $y^2=\left(\frac{x^2}{a^2}-1\right)(c^2-a^2)$ и подставим в $|\overline{F_1M}|=\ldots=\left|\frac{c}{a}x+a\right|$ и аналогично $|\overline{F_2M}|=\left|\frac{c}{a}x-a\right|$. Но $\frac{x^2}{a^2}\geqslant 1$, поэтому $|x|\geqslant a$, а это означает $x\geqslant a$ или $x\leqslant -a$. Заметим еще, что $1<\frac{c}{a}$.

Если $x\geqslant a$, то $|F_1M|=\frac{c}{a}x+a$, $|F_2M|=\frac{c}{a}x-a$; если $x\leqslant -a$, то $|F_1M|=-\frac{c}{a}x-a$, $|F_2M|=-\frac{c}{a}x+a$. В обоих случаях $||\overline{F_1M}|-|\overline{F_2M}||=2a$ и M по определению принадлежит гиперболе.

Teop 3. Для любой гиперболы существует аффинная система координат, в которой она имеет уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ для некоторых a>0 и b>0.

Гипербола симметрична относительно начала координат и осей координат, т.к. из принадлежности ей точки M(x,y) следует, что точка $N(\pm x, \pm y)$ также ей принадлежит.

Все точки располагаются в области $x\leqslant -a,\, a\leqslant x,$ т.к. $x^2\geqslant a^2.$ Точки $(a,0),\, (-a,0)$ называются вершинами, а a и b — действительной и мнимой полуосями.

Возьмем произвольно прямую y=kx с угловым коэффициентом k= tg α и подставим этот y в (2) чтобы найти ее пересечения с гиперболой (2): $x^2(b^2-k^2a^2)=a^2b^2$. Получившееся уравнение разрешимо при $b^2-k^2a^2>0$, т.е. $|k|<\frac{b}{a}$, или $-\frac{b}{a}< k<\frac{b}{a}$.

§ Парабола 4

Покажем, что $y=\pm \frac{b}{a}x$ — асимптоты: $y_2-y_1=\frac{b}{a}x-\sqrt{\frac{b^2x^2}{a^2}-b^2}=\frac{b}{a}x-\frac{b}{a}\sqrt{x^2-a^2}=\frac{b}{a}(x-\sqrt{x^2-a^2})=^*$ домножим верх и низ на $x+\sqrt{x^2-a^2},$ получим $^*=\frac{ab}{x+\sqrt{x^2-a^2}}\to 0$ при $x\to +\infty.$

Опр. Число $\varepsilon = \frac{c}{a}$ называется **эксцентриситетом** гиперболы (2).

Опр. Прямая, перпендикулярная прямой F_1F_2 и отстоящая от центра гиперболы на $d=rac{a}{arepsilon}$, называется **директрисой** гиперболы (2).

Уравнения директрис: $x=\pm\frac{a}{\varepsilon}=\pm\frac{a^2}{c}.$

Теор 4. Для любой точки M гиперболы (2) $\frac{|\overline{F_1M}|}{|\overline{MN_1}|} = \frac{|\overline{F_2M}|}{|\overline{MN_2}|} = \varepsilon$, где MN_1 и MN_2 — перпендикуляры из M к директрисам $x = -\frac{a}{\varepsilon}$ и $x = \frac{a}{\varepsilon}$ соответственно.

6.3. Парабола

Опр. Парабола — это множество всех точек плоскости, расстояние каждой из которых до данной точки F равно расстоянию ее до данной прямой d, причем $F \notin d$.

Составим уравнение произвольной параболы.

Введем систему координат с центром O в середине перпендикуляра FD из F на d и ортонормированным базисом $\overrightarrow{e_1}, \overrightarrow{e_2}, \operatorname*{rge} \overrightarrow{e_1}$ сонаправлен с \overrightarrow{OF} .

Тогда в $O\overrightarrow{e_1}\overrightarrow{e_2}$, обозначив $p=|\overline{FD}|$, имеем $F\left(\frac{p}{2},0\right)$, $d:x=-\frac{p}{2}$. Для всякой точки M(x,y), принадлежащей параболе, $|\overline{MF}|=\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}$, а расстояние M до d равно $\sqrt{\left(x+\frac{p}{2}\right)^2}=\left|x+\frac{p}{2}\right|$. Приравняем и возведем в квадрат,

$$y^2 = 2px$$
 (каноническое уравнение параболы) (3)

Покажем, что любая точка удовлетворяющая (3), принадлежит нашей гиперболе. Допустим M(x,y) удовлетворяет уравнению. Подставим y^2 из (3) в

 $|\overline{MF}| = \sqrt{\left(x - \frac{p}{2}\right)^2 + 2px} = \sqrt{x^2 - px + \frac{p^2}{2^2} + 2px} = \left|x + \frac{p}{2}\right|$, а это есть расстояние от M до d. Показали, что M принадлежит параболе по определению.

Teop 5. Для любой параболы существует аффинная система координат, в которой она имеет уравнение $y^2 = 2px$ для некоторого p > 0.

Парабола симметрична относительно оси OF, т.к. из принадлежности ей точки M(x,y) следует, что точка $N(x,\pm y)$ также ей принадлежит.

Все точки располагаются в области $x\geqslant 0.$ Точка O(0,0) называется вершиной.

6.4. Уравнение в полярных координатах

Обозначим D ортогональную проекцию фокуса F на директрису d. Введем полярную систему координат $F\overrightarrow{i}$, в которой F — фокус, а $\overrightarrow{i}=\frac{\overrightarrow{DF}}{|\overrightarrow{DF}|}$.

Пусть точка $M(\rho,\varphi)$ принадлежит линии. По директориальному свойству $\rho=|\overline{FM}|=\varepsilon|\overline{NM}|$, где N — ортогональная проекция M на директрису. Но $|\overrightarrow{NM}|=|\overrightarrow{DM'}|$, где M' — ортогональная проекция M на прямую DF, и $|\overrightarrow{DM'}|=\overrightarrow{DM}\overrightarrow{i}$, т.к. $\overrightarrow{DM}=\overrightarrow{DM'}+\overrightarrow{M'M}$ и $\overrightarrow{DM'}\overrightarrow{M'M}=0$. Поэтому $\rho=\varepsilon\overrightarrow{DM}\overrightarrow{i}=\varepsilon(\overrightarrow{DF}+\overrightarrow{FM})\overrightarrow{i}=\varepsilon(|\overrightarrow{DF}|+\rho\cos\varphi)$. Обозначим число $p=\varepsilon|\overrightarrow{DF}|=\varepsilon\left|\frac{a}{\varepsilon}-c\right|=|a-\varepsilon c|=\frac{|a^2-c^2|}{a}=\frac{b^2}{a}$, которое называется фокальным параметром и не зависит от взятой точки, получим

$$\rho(1-\varepsilon\cos\varphi)=p.$$