esp@cenet - Document Bibliography and Aostract

CERAMIC FILTER AGGREGATE AND HONEYCOMB FILTER

Patent Number:

JP2001096117

Publication date:

2001-04-10

Inventor(s):

ONO KAZUSHIGE; TSUJI MASAHIRO

Applicant(s):

IBIDEN CO LTD

Requested Patent:

Application Number: JP19990277123 19990929-

Priority Number(s):

IPC Classification:

B01D46/00; B01D39/20; F01N3/02

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic filter aggregate excellent in strength. SOLUTION: A ceramic filter aggregate 9 constitutes a part of an exhaust gas cleaning apparatus 1 and is constituted by mutually bonding the outer peripheral surfaces of a plurality of columnar honeycomb filters F1 each comprising a porous ceramic sintered body through ceramic seal material layers 15 to integrate the honeycomb filters F1. Each of the corner parts of the outer peripheral surface of each honeycomb filter F1 becomes a chamfered R-surface 18 of which the curvature R is 0.3-2.5.

Data supplied from the esp@cenet database - I2

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-96117

(P2001-96117A)

(43)公開日 平成13年4月10日(2001.4.10)

(51) Int.Cl.7		識別記号	FΙ		テーマコード(参考)	
* *	_	302	B01D 46/	00 302	3 G 0 9 0	
	39/20		39/	20 D	4D019	
F01N	3/02	301	F01N 3/	02 3 0 1 B	4 D 0 5 8	

審査請求 未請求 請求項の数4 OL (全 10 頁)

(21)出願番号	特顧平11-277123	(71)出願人 000000158 イビデン株式会社	
(22)出顧日	平成11年9月29日(1999.9.29)	使阜県大垣市神田町2丁目1番地 (72)発明者 大野 一茂	
		検阜県揖斐郡揖斐川町北方1の1 イビデン 株式会社大垣北工場内	
		(72)発明者 辻 昌宏 岐阜県投撃郡投斐川町北方1の1 イビデ ン 株式会社大垣北工場内	
		(74)代理人 100068755 弁理士 恩田 博宜 (外1名)	

最終頁に続く

(54) 【発明の名称】 セラミックフィルタ集合体、ハニカムフィルタ

(57)【要約】

【課題】 強度に優れたセラミックフィルタ集合体を提供すること。

【解決手段】 このセラミックフィルタ集合体9は、排気ガス浄化装置1の一部を構成する。セラミック集合体9は、セラミック焼結体からなる複数のハニカムフィルタF1の外周面同士をセラミック質シール材層15を介して接着することにより、各ハニカムフィルタF1を一体化したものである。各ハニカムフィルタF1の外周面における角部は、面取りが施されたアール面18となっている。アール面18の曲率はR=0.3~2.5である。

【特許請求の範囲】

【請求項1】セラミック焼結体からなる複数の角柱状ハ ニカムフィルタの外周面同士をセラミック質シール材層 を介して接着することにより、前記各ハニカムフィルタ を一体化してなる集合体であって、各ハニカムフィルタ の外周面における角部を面取りが施されたアール面と し、そのアール面の曲率をR=0.3~2.5としたこ とを特徴とするセラミックフィルタ集合体。

【請求項2】前記ハニカムフィルタは多孔質炭化珪素焼 結体からなること特徴とする請求項1に記載のセラミッ 10 クフィルタ集合体。

【請求項3】前記ハニカムフィルタは四角柱状であっ て、かつフィルタ軸線方向に直交する方向に沿って互い にずらした状態で配置されていることを特徴とする請求 項1または2に記載のセラミックフィルタ集合体。

【請求項4】セラミック焼結体からなり、セラミックフ ィルタ集合体の構成部材として用いられる角柱状ハニカ ムフィルタであって、外周面における角部を面取りが施 されたアール面とし、そのアール面の曲率をR=0.3 ~2.5としたことを特徴とするハニカムフィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、セラミック焼結体 からなる複数のハニカムフィルタを接着して一体化した 構造のセラミックフィルタ集合体、及びその構成部材で あるハニカムフィルタに関するものである。

[0002]

【従来の技術】自動車の台数は今世紀に入って飛躍的に 増加しており、それに比例して自動車の内燃機関から出 される排気ガスの量も急激な増加の一途を辿っている。 特にディーゼルエンジンの出す排気ガス中に含まれる種 々の物質は、汚染を引き起こす原因となるため、現在で は世界環境にとって深刻な影響を与えつつある。また、 最近では排気ガス中の微粒子(ディーゼルバティキュレ ート) が、ときとしてアレルギー障害や精子数の減少を 引き起こす原因となるとの研究結果も報告されている。 つまり、排気ガス中の微粒子を除去する対策を講じるこ とが、人類にとって急務の課題であると考えられてい

[0003] このような事情のもと、従来より、多様多 40 種の排気ガス浄化装置が提案されている。一般的な排気 ガス浄化装置は、エンジンの排気マニホールドに連結さ れた排気管の途上にケーシングを設け、その中に微細な 孔を有するフィルタを配置した構造を有している。フィ ルタの形成材料としては、金属や合金のほか、セラミッ クがある。セラミックからなるフィルタの代表例として は、コーディエライト製のハニカムフィルタが知られて いる。最近では、耐熱性・機械的強度・捕集効率が高 い、化学的に安定している、圧力損失が小さい等の利点 があることから、多孔質炭化珪素焼結体をフィルタ形成 50 て、前記ハニカムフィルタは多孔質炭化珪素焼結体から

材料として用いることが多い。

【0004】ハニカムフィルタは自身の軸線方向に沿っ て延びる多数のセルを有している。排気ガスがフィルタ を通り抜ける際、そのセル壁によって微粒子がトラップ される。その結果、排気ガス中から微粒子が除去され

【0005】しかし、多孔質炭化珪素焼結体製のハニカ ムフィルタは熱衝撃に弱い。そのため、大型化するほど フィルタにクラックが生じやすくなる。よって、クラッ クによる破損を避ける手段として、複数の小さなフィル タ個片を一体化して1つの大きなセラミックフィルタ集 合体を製造する技術が近年提案されている。

【0006】上述の集合体を製造する一般的な方法を簡 単に紹介する。まず、押出成形機の金型を介してセラミ ック原料を連続的に押し出すことにより、四角柱状のハ ニカム成形体を形成する。ハニカム成形体を等しい長さ に切断した後、その切断片を焼成してフィルタとする。 焼成工程の後、フィルタの外周面同士をセラミック質シ ール材層を介して接着することにより、複数のフィルタ を束ねて一体化する。以上の結果、所望のセラミックフ ィルタ集合体が完成する。

【0007】そして、セラミックフィルタ集合体の外周 面には、セラミックファイバ等からなるマット状の断熱 材が巻き付けられる。この状態で、集合体は排気管の途 上に設けられたケーシング内に収容される。

[8000]

20

【発明が解決しようとする課題】ところが、従来技術の ハニカムフィルタは全体的に角張った形状をしているた め、外周面における角部に応力が集中しやすく、そこに 欠け(チッピング)が生じることがあった。また、角部 を起点としてシール材層側にクラックが発生することも あり、それが原因でセラミックフィルタ集合体が破壊に 至るおそれがあった。また、集合体の破壊に至らない場 合であっても、排気ガスのリークによって処理効率が低 下しやすいという問題があった。

【0009】本発明は上記の課題に鑑みてなされたもの であり、その目的は、強度に優れたセラミックフィルタ 集合体、ハニカムフィルタを提供することにある。

[0010]

【課題を解決するための手段】上記の課題を解決するた めに、請求項1に記載の発明では、セラミック焼結体か らなる複数の角柱状ハニカムフィルタの外周面同士をセ ラミック質シール材層を介して接着することにより、前 記各ハニカムフィルタを一体化してなる集合体であっ て、各ハニカムフィルタの外周面における角部は面取り が施されたアール面となっており、そのアール面の曲率 がR=0.3~2.5であることを特徴とするセラミッ クフィルタ集合体をその要旨とする。

【0011】請求項2に記載の発明は、請求項1におい

なるとした。請求項3に記載の発明は、請求項1または2において、前記ハニカムフィルタは四角柱状であって、かつフィルタ軸線方向に直交する方向に沿って互いにずらした状態で配置されているとした。

【0012】請求項4に記載の発明では、セラミック焼結体からなり、セラミックフィルタ集合体の構成部材として用いられる角柱状ハニカムフィルタであって、外周面における角部を面取りが施されたアール面とし、そのアール面の曲率をR=0.3~2.5としたことを特徴とするハニカムフィルタをその要旨とする。

【0013】以下、本発明の「作用」について説明する。請求項1~3に記載の発明によると、ハニカムフィルタの外周面における角部が好適曲率範囲のアール面になっていることから、当該箇所への応力集中が回避される。従って、ハニカムフィルタの角部の欠けや、角部を起点としたシール材層のクラックが防止され、セラミックフィルタ集合体が破壊しにくくなる。前記曲率Rが0、3以下であると、角部への応力集中を十分に回避することができず、欠けやクラックの発生につながりやすい。逆に、Rが2、5を超えると、ハニカムフィルタの20断面積が減少する結果、集合体の濾過能力が低下してしまう

[0014] 請求項2に記載の発明によると、このハニカムフィルタは多孔質体からなるので、濾過能力が高くかつ圧力損失が小さい。しかも、炭化珪素焼結体からなるので、耐熱性及び熱伝導性に優れている。

【0015】請求項3に記載の発明によると、四角柱状のハニカムフィルタをフィルタ軸線方向に直交する方向に沿って互いにずらした状態で配置することにより、シール材層が十字状に交わる箇所ができなくなる。その結果、集合体の破壊強度が向上するばかりでなく、集合体の径方向に沿った熱伝導性が向上する。

【0016】請求項4に記載の発明によると、外周面における角部が好適曲率範囲のアール面になっていることから、当該箇所への応力集中が回避され、もって角部の欠けが防止される。前記曲率Rが0.3以下であると、角部への応力集中を十分に回避することができず、欠けの発生につながりやすい。逆に、Rが2.5を超えると、フィルタ断面積が減少する結果、濾過能力が低下してしまう。

[0017]

【発明の実施の形態】以下、本発明を具体化した一実施 形態のディーゼルエンジン用の排気ガス浄化装置1を 図1~図5 に基づき詳細に説明する。

【0018】図1に示されるように、この排気ガス浄化 装置1は、内燃機関としてのディーゼルエンジン2から 排出される排気ガスを浄化するための装置である。ディ ーゼルエンジン2は、図示しない複数の気筒を備えてい る。各気筒には、金属材料からなる排気マニホールド3 の分岐部4がそれぞれ連結されている。各分岐部4は1 本のマニホールド本体5 にそれぞれ接続されている。従って、各気筒から排出された排気ガスは一箇所に集中す ス

【0019】排気マニホールド3の下流側には、金属材料からなる第1排気管6及び第2排気管7が配設されている。第1排気管6の上流側端は、マニホールド本体5に連結されている。第1排気管6と第2排気管7との間には、同じく金属材料からなる筒状のケーシング8が配設されている。ケーシング8の上流側端は第1排気管6の下流側端に連結され、ケーシング8の下流側端は第2排気管7の上流側端に連結されている。排気管6、7の途上にケーシング8が配設されていると把握することもできる。そして、この結果、第1排気管6、ケーシング8及び第2排気管7の内部領域が互いに連通し、その中を排気ガスが流れるようになっている。

【0020】図1に示されるように、ケーシング8はその中央部が排気管6、7よりも大径となるように形成されている。従って、ケーシング8の内部領域は、排気管6、7の内部領域に比べて広くなっている。このケーシング8内には、セラミックフィルタ集合体9が収容されている。

【0021】集合体9の外周面とケーシング8の内周面との間には、断熱材10が配設されている。断熱材10はセラミックファイバを含んで形成されたマット状物であり、その厚さは数mm~数十mmである。断熱材10は熱膨張性を有していることがよい。ここでいう熱膨張性とは、弾性構造を有するため熱応力を解放する機能があることを指す。その理由は、集合体9の最外周部から熱が逃げることを防止することにより、再生時のエネルギーロスを最小限に抑えるためである。また、再生時の熱によってセラミックファイバを膨張させることにより、排気ガスの圧力や走行による振動等のもたらすセラミックフィルタ集合体9の位置ずれを防止するためである。

【0022】本実施形態において用いられるセラミックフィルタ集合体9は、上記のごとくディーゼルパティキュレートを除去するものであるため、一般にディーゼルパティキュレートフィルタ(DPF)と呼ばれる。図2、図4に示されるように、本実施形態の集合体9は、40 複数個のハニカムフィルタF1を束ねて一体化することによって形成されている。集合体9の中心部分に位置するハニカムフィルタF1は四角柱状であって、その外形寸法は33mm×33mm×167mmである(図3参照)。四角柱状のハニカムフィルタF1が複数個配置されてない異型のハニカムフィルタF1が複数個配置されている。その結果、全体としてみると円柱状のセラミックフィルタ集合体9(直径135mm前後)が構成されている。

【0023】これらのハニカムフィルタF1は、セラミック焼結体の一種である多孔質炭化珪素焼結体製であ

る。炭化珪素焼結体を採用した理由は、他のセラミック に比較して、とりわけ耐熱性及び熱伝導性に優れるとい う利点があるからである。炭化珪素以外の焼結体とし て、例えば窒化珪素、サイアロン、アルミナ、コーディ エライト、ムライト等の焼結体を選択することもでき る。

【0024】図3等に示されるように、これらのハニカ ムフィルタF1は、ハニカム構造を備えている。ハニカ ム構造を採用した理由は、微粒子の捕集量が増加したと きでも圧力損失が小さいという利点があるからである。 各ハニカムフィルタF1には、断面略正方形状をなす複 数の貫通孔12がその軸線方向に沿って規則的に形成さ れている。各貫通孔12は薄いセル壁13によって互い に仕切られている。セル壁13の外表面には、白金族元 素(例えばPt等)やその他の金属元素及びその酸化物 等からなる酸化触媒が担持されている。各貫通孔12の 開口部は、いずれか一方の端面9a.9bの側において 封止体 14 (ここでは多孔質炭化珪素焼結体) により封 止されている。従って、端面9a,9b全体としてみる と市松模様状を呈している。その結果、ハニカムフィル 20 タF 1 には、断面四角形状をした多数のセルが形成され ている。セルの密度は200個/インチ前後に設定さ $_{ ilde{e}}$ れ、セル壁13の厚さは0.3mm前後に設定され、セル ピッチは1.8㎜前後に設定されている。多数あるセル [~]のうち、約半数のものは上流側端面9aにおいて開口 し、残りのものは下流側端面9 b において開□してい

 $\{0025\}$ ハニカムフィルタF1の平均気孔径は 1μ m~ 50μ m、さらには 5μ m~ 20μ mであることが好ましい。平均気孔径が 1μ m未満であると、微粒子の堆積によるハニカムフィルタF1の目詰まりが著しくなる。一方、平均気孔径が 50μ mを越えると、細かい微粒子を捕集することができなくなるため、濾過能力が低下してしまう。

【0026】ハニカムフィルタF1の気孔率は30%~70%、さらには40%~60%であることが好ましい。気孔率が30%未満であると、ハニカムフィルタF1が緻密になりすぎてしまい、内部に排気ガスを流通させることができなくなるおそれがある。一方、気孔率が70%を越えると、ハニカムフィルタF1中に空隙が多くなりすぎてしまうため、強度的に弱くなりかつ微粒子の捕集効率が低下してしまうおそれがある。

【0027】図4、図5に示されるように、合計16個のハニカムフィルタF1は、外周面同士がセラミック質シール材層15を介して互いに接着されている。ここで、本実施形態のセラミッグ質シール材層15について詳細に述べる。

【0028】シール材層15の厚さは0.3mm〜3mm であることが好ましく、さらには0.5mm〜2mmであ ることかより好ましい。厚さが3mmを超えるようになる

と、たとえ熱伝導率が高くてもシール材層 15が依然として大きな熱抵抗となり、ハニカムフィルタF 1間の熱伝導が阻害されてしまう。しかも、集合体 9 においてハニカムフィルタF 1部分の占める割合が相対的に減るため、濾過能力の低下につながってしまう。逆に、シール材層 15の厚さが 0.3 mm未満であると、大きな熱抵抗にはならない反面、ハニカムフィルタF 1同士を接着する力が不足してしまい、集合体 9 が破壊しやすくなる。

【0029】前記シール材層15は、少なくとも無機繊維、無機バインダ、有機バインダ及び無機粒子からなり、かつ三次元的に交錯する前記無機繊維と無機粒子とを、前記無機パインダ及び有機パインダを介して互いに結合してなる弾性質素材からなることが望ましい。

【0030】前記シール材層15に含まれる無機繊維としては、シリカーアルミナファイバ、ムライトファイバ、アルミナファイバ及びシリカファイバから選ばれる少なくとも1種以上のセラミックファイバが挙げられる。これらのなかでも、特にシリカーアルミナセラミックファイバを選択することが望ましい。シリカーアルミナセラミックファイバは、弾性に優れるとともに熱応力を吸収する作用を示すからである。

【0031】この場合、シール材層15におけるシリカーアルミナセラミックファイバの含有量は、固形分で10重量%~70重量%、好ましくは10重量%~40重量%、より好ましくは20重量%~30重量%である。含有量が10重量%未満であると、弾性体としての効果が低下するからである。一方、含有量が70重量%を超えると、熱伝導率の低下を招くばかりでなく、弾力性も低下するからである。

【0032】シリカーアルミナセラミックファイバにおけるショット含有量は、1重量%~10重量%、好ましくは1重量%~5重量%、より好ましくは1重量%~3重量%である。ショット含有量を1重量%未満にすることは、製造上困難だからである。一方、ショット含有量が50重量%を超えると、ハニカムフィルタF1の外周面が傷付いてしまうからである。

【0033】シリカーアルミナセラミックファイバの繊維長は、1mm~100mm、好ましくは1mm~50mm、より好ましくは1mm~20mmである。繊維長が1mm未満であると、弾性構造体を形成することができないからである。繊維長が100mmを超えると、繊維が毛玉化して無機微粒子の分散性が悪化するからである。また、シール材層15を3mm以下に薄くすることが困難になり、ハニカムフィルタF1間の熱伝導性の改善を図れなくなるからである。

【0034】前記シール材層15に含まれる無機バインダとしては、シリカゾル及びアルミナゾルから選ばれる少なくとも1種以上のコロイダルゾルが望ましい。そのなかでも、特にシリカゾルを選択することが望ましい。

その理由は、シリカゾルは入手しやすく、焼成により容 易にSiO、となるため、高温領域での接着剤として好 適だからである。しかも、シリカゾルは絶縁性に優れて いるからである。

【0035】この場合、シール材層15におけるシリカ ゾルの含有量は、固形分で1重量%~30重量%、好ま **しくは1重量%~15重量%、より好ましくは5重量%** ~9重量%である。含有量が1重量%未満であると、接 着強度の低下を招くからである。逆に、含有量が30重 量%を超えると、熱伝導率の低下を招くからである。 【0036】前記シール材層15に含まれる有機バイン ダとしては親水性有機高分子が好ましく、ポリビニルア ルコール、メチルセルロース、エチルセルロース及びカー ルボメトキシセルロースから選ばれる少なくとも 1 種以 上の多糖類がより好ましい。これらのなかでも、特にカ ルボキシメチルセルロースを選択することが望ましい。 その理由は、カルボキシメチルセルロースは、シール材 層15に好適な流動性を付与するため、常温領域におい て優れた接着性を示すからである。

【0037】この場合、シール材層15におけるカルボ 20 キシメチルセルロースの含有量は、固形分で0.1重量 %~5. 0重量%、好ましくは0. 2重量%~1. 0重 重%、より好ましくは0.4重量%~0.6重量%であ る。含有量が0.1重量%未満であると、十分にマイグ -レーションを抑制することができないからである。な お、「マイグレーション」とは、被シール体間に充填さ れたシール材層15が硬化する際に、シール材層15中 のパインダが、溶媒の乾燥除去に伴って移動する現象の ごとをいう。一方、含有量が5.0重量%を超えると、 高温によって有機バインダが焼失し、シール材層15の 強度が低下するからである。

【0038】前記シール材層15に含まれる無機粒子と しては、炭化珪素、窒化珪素及び窒化硼素から選ばれる 少なくとも 1 種以上の無機粉末またはウィスカーを用い た弾性質素材であることが好ましい。このような炭化物 や窒化物は、熱伝導率が非常に大きく、セラミックファ イバ表面やコロイダルゾルの表面及び内部に介在して熱 伝導性の向上に寄与するからである。

【0039】上記炭化物及び窒化物の無機粒子のなかで も、特に炭化珪素粉末を選択することが望ましい。その 40 理由は、炭化珪素は熱伝導率が極めて高いことに加え、 セラミックファイバと馴染みやすいという性質があるか ちである。しかも、本実施形態では、被シール体である ハニカムフィルタF1が同種のもの、即ち多孔質炭化珪 素製だからである。

【0040】との場合、炭化珪素粉末の含有量は、固形 分で3重量%~80重量%、好ましくは10重量%~6 0重量%、より好ましくは20重量%~40重量%であ る。含有量が3重量%未満であると、シール材層15の 熱伝導率の低下を招き、シール材層15が依然として大 50 では焼成温度を2100℃~2300℃に設定してい

きな熱抵抗となるからである。一方、含有量が80重量 %を超えると、髙温時における接着強度の低下を招くか らである。

【0041】炭化珪素粉末の粒径は、0.01μm~1 $0.0~\mu$ m、好ましくは $0.~1~\mu$ m \sim $1.5~\mu$ m、より好ま しくは0. 1μm~10μmである。粒径が100μm を超えると、接着力及び熱伝導性の低下を招くからであ る。一方、粒径が0.01μm未満であると、シール材 層15のコスト高につながるからである。

【0042】 ここでアール面18の曲率はR=0.3~ 2.5であることが必要であり、さらにはR=0.7~ 2. 5であることがよく、特にはR = 1. $0 \sim 2$. 0で あることがなおよい。

【0043】前記曲率Rが0.3以下であると、角部が 依然として角張っていることから、角部への応力集中を 十分に回避することができず、欠けやクラックの発生に つながりやすいからである。逆に、Rが2.5を超える と、ハニカムフィルタF1の断面積が減少する結果、有 効セル数が減ってしまい、集合体9の濾過能力の低下を 招くからである。

【0044】次に、上記のセラミックフィルタ集合体9 を製造する手順を説明する。まず、押出成形工程で使用 するセラミック原料スラリー、端面封止工程で使用する 封止用ペースト、フィルタ接着工程で使用するシール材 層形成用ペーストをあらかじめ作製しておく。

【0045】セラミック原料スラリーとしては、炭化珪 素粉末に有機バインダ及び水を所定分量ずつ配合し、か つ混練したものを用いる。封止用ペーストとしては、炭 化珪素粉末に有機バインダ、潤滑剤、可塑剤及び水を配 合し、かつ混練したものを用いる。シール材層形成用ペ ーストとしては、無機繊維、無機バインダ、有機バイン ダ、無機粒子及び水を所定分量ずつ配合し、かつ混練し たものを用いる。

【0046】次に、前記セラミック原料スラリーを押出 成形機に投入し、かつ金型を介してそれを連続的に押し 出す。その後、押出成形されたハニカム成形体を等しい 長さに切断し、四角柱状のハニカム成形体切断片を得 る。とこでハニカム成形体切断の各角部に対して面取り 加工を施し、所定曲率Rのアール面18を形成する。

【0047】さらに、切断片の各セルの片側開口部に所 定量ずつ封止用ペーストを充填し、各切断片の両端面を 封止する。続いて、温度・時間等を所定の条件に設定し て本焼成を行い、ハニカム成形体切断片及び封止体14 を完全に焼結させる。このようにして得られる多孔質炭 化珪素焼結体製のハニカムフィルタF 1 は、この時点で はまだ全てのものが四角柱状である。各角部の面取り加 工はこの時点で行われてもよい。

【0048】なお、平均気孔径を6μm~15μmとし かつ気孔率を35%~50%とするために、本実施形態

る。また、焼成時間を0.1時間~5時間に設定している。また、焼成時の炉内雰囲気を不活性雰囲気とし、そのときの雰囲気の圧力を常圧としている。

【0049】次に、必要に応じてハニカムフィルタF1の外周面にセラミック質からなる下地層を形成した後、さらにその上にシール材層形成用ペーストを塗布する。そして、このようなハニカムフィルタF1を16個用い、その外周面同士を互いに接着して一体化する。

【0050】続く外形カット工程では、前記フィルタ接着工程を経て得られた断面正方形状の集合体9を研削し、外周部における不要部分を除去してその外形を整える。その結果、断面円形状のセラミックフィルタ集合体9とする。

【0051】次に、上記のセラミックフィルタ集合体9 による微粒子トラップ作用について簡単に説明する。ケ ーシング8内に収容されたセラミックフィルタ集合体9 には、上流側端面9 a の側から排気ガスが供給される。 第1排気管6を経て供給されてくる排気ガスは、まず、 上流側端面9aにおいて開口するセル内に流入する。次 いで、この排気ガスはセル壁13を通過し、それに隣接 20 しているセル、即ち下流側端面9bにおいて開口するセ ルの内部に到る。そして、排気ガスは、同セルの開口を 介してハニカムフィルタF1の下流側端面9bから流出 する。しかし、排気ガス中に含まれる微粒子はセル壁 1 3を通過することができず、そこにトラップされてしま う。その結果、浄化された排気ガスがハニカムフィルタ F1の下流側端面9bから排出される。浄化された排気 ガスは、さらに第2排気管7を通過した後、最終的には 大気中へと放出される。また、トラップされた微粒子 は、集合体9の内部温度が所定の温度に達すると、前記 30 触媒の作用により着火して燃焼するようになっている。 [0052]

【実施例】 (実施例1)

(1) α型炭化珪素粉末51.5重量%とβ型炭化珪素粉末22重量%とを湿式混合し、得られた混合物に有機パインダ(メチルセルロース)と水とをそれぞれ6.5 重量%、20重量%ずつ加えて混練した。次に、前記混練物に可塑剤と潤滑剤とを少量加えてさらに混練したものを押出成形することにより、ハニカム状の生成形体を得た。

【0053】(2)次に、この生成形体をマイクロ波乾燥機を用いて乾燥した後、各角部を削ることで面取りを施し、各角部にR=1.5のアール面18を形成した。その後、成形体の貫通孔12を多孔質炭化珪素焼結体製の封止用ペーストによって封止した。次いで、再び乾燥機を用いて封止用ペーストを乾燥させた。端面封止工程に続いて、この乾燥体を400℃で脱脂した後、さらにそれを常圧のアルゴン雰囲気下において2200℃で約3時間焼成した。その結果、多孔質炭化珪素焼結体製のハニカムフィルタF1を得た。

【0054】(3)セラミックファイバ(アルミナシリケートセラミックファイバ、ショット含有率3%、繊維長さ0.1mm~100mm)23.3重量%、平均粒径0.3μmの炭化珪素粉末30.2重量%、無機バインダとしてのシリカゾル(ゾルのSiQの換算量は30%)7重量%、有機バインダとしてのカルボキシメチルセルロース0.5重量%及び水39重量%を混合・混練した。この混練物を適当な粘度に調整することにより、シール材層15の形成に使用されるペーストを作製した。

【0055】(4)次に、ハニカムフィルタF1の外周面に前記シール材層形成用ペーストを均一に塗布するとともに、ハニカムフィルタF1の外周面同士を互いに密着させた状態で、50℃~100℃×1時間の条件にて乾燥・硬化させる。その結果、ハニカムフィルタF1同士をシール材層15の厚さを1.0mmに設定した。

【0056】(5)次に、外形カットを実施して外形を整えることにより、断面円形状のセラミックフィルタ集合体9を完成させた。次に、上記のようにして得られた集合体9に断熱材10を巻き付け、この状態で集合体9をケーシング8内に収容し、実際に排気ガスを供給した。そして、一定期間経過した後に集合体9を取り出して肉眼観察を行った。

【0057】その結果、各角部を起点としたシール材層 15のクラックは全く認められなかった。また、角部の 欠けも全く認められなかった。従って、実施例1の集合 体9は、極めて強度に優れていることが明らかとなっ た。

(実施例2,3)実施例2では、アール面18の曲率をR=0.4に設定し、それ以外の事項については基本的に実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。実施例3では、アール面18の曲率をR=2.4に設定し、それ以外の事項については基本的に実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。

【0058】次に、得られた2種の集合体9を、実施例 1のときと同様に一定期間使用し、その後で肉眼観察を 行ったところ、実施例1に匹敵する好適な結果が得られ 40 た。つまり、実施例2、3の集合体9も、極めて強度に 優れていることが明らかとなった。

(実施例4)実施例4では、セラミックファイバ(ムライトファイバ、ショット含有率5重量%、繊維長さ0.1mm~100mm)25重量%、平均粒径1.0μmの窒化珪素粉末30重量%、無機パインダとしてのアルミナゾル(アルミナゾルの換算量は20%)7重量%、有機パインダとしてのポリビニルアルコール0.5重量%及びアルコール37.5重量%を混合・混練したものを、前記シール材層形成用ペーストとして使用した。その以外の事項については実施例1に順ずるようにして、

セラミックフィルタ集合体 9 を作製した。 ここではシール材層 1 5 の厚さを 1 . 0 mmに設定し、各角部のアール面 1 8 の曲率を R = 1 . 5 に設定した。

[0059]次に、得られた集合体9を、実施例1のときと同様に一定期間使用し、その後で肉眼観察を行ったところ、実施例1に匹敵する好適な結果が得られた。つまり、実施例4の集合体9も、極めて強度に優れていることが明らかとなった。

(実施例5)実施例5は、セラミックファイバ(アルミナファイバ、ショット含有率4重量%、繊維長さ0.1 10 mm~100mm)23重量%、平均粒径1μmの窒化硼素粉末35重量%、無機バインダとしてのアルミナゾル(アルミナゾルの換算量は20%)8重量%、有機バインダとしてのエチルセルロース0.5重量%及びアセトン35.5重量%を混合・混練したものを、前記シール材層形成用ペーストとして使用した。それ以外の事項については実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。ここではシール材層15の厚さを1.0mmに設定し、各角部のアール面18の曲率をR=1.5に設定した。20

【0060】次に、得られた集合体9を、実施例1のときと同様に一定期間使用し、その後で肉眼観察を行ったところ、実施例1に匹敵する好適な結果が得られた。

(比較例) 比較例では、各角部に対する面取り加工を施 さないようにし、それ以外の事項については基本的に実 施例1に順ずるようにして、セラミックフィルタ集合体 9を作製した。従って、集合体9を構成する各ハニカム フィルタF1は、角張ったものであった。

【0061】次に、得られた集合体9を、実施例1のときと同様に一定期間使用し、その後で肉眼観察を行ったところ、応力の集中によって複数箇所にクラックや欠けが生じていた。従って、強度に劣るものとなっていた。【0062】従って、本実施形態の各実施例によれば以下のような効果を得ることができる。

(1) 各実施例では、ハニカムフィルタF 1 の外周面における角部が好適曲率範囲のアール面 1 8 になっていることから、当該角部への応力集中を回避することができる。従って、ハニカムフィルタF 1 の角部の欠けや、角部を起点としたシール材層 1 5 のクラックが防止され、セラミックフィルタ集合体 9 が破壊しにくくなる。よっ40 て、強度に優れた集合体 9 を実現することが可能となり、これを用いた排気ガス浄化装置 1 は高強度かつ高濾過能力であって実用性に優れたものとなる。

[0063](2)各実施例では、多孔質体炭化珪素焼結体からなるハニカムフィルタ1を用いてる。従って、 濾過能力が高くかつ圧力損失が小さくて、しかも耐熱性 及び熱伝導性に優れた集合体9とすることができる。

【0064】(3) 各実施例では、いずれもシール材層 いた。勿論、本発明のセラミックフィルタ集合体は、排 15の厚さを0.3mm~3mmという好適範囲内に設 気ガス浄化装置用フィルタ以外のものとして具体化され 定している。このため、シール材層15が介在している 50 ることができ、例えば熱交換器用部材、高温流体や高温

にもかかわらず、ハニカムフィルタF1間の熱伝導は阻害されにくくなる。従って、使用時において熱が集合体9の全体に均一にかつ速やかに伝導し、集合体9内に温度差が生じにくくなる。よって、集合体9の均熱性が向上し、部分的な燃え残りの発生も回避される。そして、このような集合体9を使用した排気ガス浄化装置1は、排気ガスの処理効率に優れたものとなる。

【0065】また、シール材層15の厚さが上記範囲内であるならば、接着性や耐熱性等といった基本性能も維持されるため、シール材層15の製造が困難になることも回避できる。しかも、ハニカムフィルタF1同士を接着する力も備えているため、集合体9の破壊も回避できる。つまり、比較的製造しやすくて耐久性に優れた集合体9を実現することができる。

【0066】なお、本発明の実施形態は以下のように変更してもよい。

・ ハニカムフィルタF1の組み合わせ数は、前記実施 形態のように16個でなくてもよく、任意の数にすることが可能である。この場合、サイズ・形状等の異なるハ ニカムフィルタF1を適宜組み合わせて使用することも 勿論可能である。

【0067】・ 図6に示される別例のセラミックフィルタ集合体21のように、フィルタ軸線方向に直交する方向に沿って各ハニカムフィルタF1をあらかじめ互いにずらした状態にして、各ハニカムフィルタF1を接着しかつ一体化してもよい。このようにした場合には、ケーシング8への収容時にハニカムフィルタF1にずれが生じにくくなるため、集合体21の破壊強度が向上する。前記実施形態とは異なり、別例ではシール材層15が十字状に交わる箇所ができず、このことが破壊強度の向上に寄与しているものと考えられる。また、集合体21の径方向に沿った熱伝導性がさらに向上する結果、集合体21のよりいっそうの均熱化が図られる。

【0068】・ アール面18は角部に対する面取り加工により形成されてもよいほか、生成形体を金型成形する際に同時に形成されてもよい。

・ 外形カット工程前におけるハニカムフィルタF1の 形状は、実施形態のような断面正方形状の四角柱のみに 限定されることはない。例えば、図7に示される別例の ハニカムフィルタF2のような断面長方形状の四角柱で もよい。さらには、図8に示される別例のハニカムフィ ルタF3のように三角柱状にしたり、図9に示される別 例のハニカムフィルタF4のように六角柱状にしても構 わない。

【0069】・ 実施形態においては、本発明のセラミックフィルタ集合体を、ディーゼルエンジン2に取り付けられる排気ガス浄化装置用フィルタとして具体化していた。勿論、本発明のセラミックフィルタ集合体は、排気ガス浄化装置用フィルタ以外のものとして具体化されるとよができ、例えば熱交換器用部材、高温流体や高温

蒸気のための濾過フィルタ等として具体化されることが できる。

【0070】次に、特許請求の範囲に記載された技術的 思想のほかに、前述した実施形態によって把握される技 術的思想を以下に列挙する。

(1) 請求項1乃至3のいずれか1つにおいて、前記 集合体はディーゼルパティキュレートフィルタであるこ

【0071】(2) 請求項1乃至3、技術的思想1. 2のいずれか1つにおいて、前記シール材層は、少なくとも無機繊維、無機バインダ、有機バインダ及び無機粒子からなり、かつ三次元的に交錯する前記無機繊維と無機粒子とを、前記無機バインダ及び有機バインダを介して互いに結合してなる弾性質素材からなること。

[0072](3) 請求項1乃至3、技術的思想1. 2のいずれか1つにおいて、前記シール材層は、固形分 で10重量%~70重量%のシリカーアルミナセラミッ クファイバ、1重量%~30重量%のシリカゾル、0. 1重量%~5. 0重量%のカルボメトキシセルロース及 び3重量%~80重量%の炭化珪素粉末からなること。 【0073】(4) 請求項1乃至3、技術的思想1乃 至3のいずれか1つにおいて、前記シール材層の厚さは 0. 3mm~3mmであること。従って、この技術的思 想4 に記載の発明によれば、十分な接着力を確保できる とともに、ハニカムフィルタ間での熱伝導が阻害されに くくなる。シール材層の厚さが3mmを超えるようにな ると、たとえ熱伝導率が高くてもシール材層が依然とし て大きな熱抵抗となり、ハニカムフィルタ間の熱伝導が 阻害されてしまう。逆に、シール材層の厚さが0.3m m未満であると、大きな熱抵抗にはならない反面、ハニ 30 カムフィルタ同士を接着する力が不足してしまい、集合 体が破壊しやすくなる。

【0074】(5) 内燃機関の排気管の途上に設けられたケーシング内に、セラミック焼結体からなる複数のハニカムフィルタの外周面同士をセラミック質シール材層を介して接着することにより前記各ハニカムフィルタを一体化してなるセラミックフィルタ集合体を収容するとともに、その集合体の外周面と前記ケーシングの内周*

* 面とがなす隙間に断熱材を充填した排気ガス浄化装置に おいて、各ハニカムフィルタの外周面における角部は面 取りが施されたアール面となっており、そのアール面の 曲率がR=0、3~2、5であることを特徴とする排気 ガス浄化装置。従って、この技術的思想5に記載の発明 によれば、高強度かつ高濾過能力であって実用性に優れ た装置を提供することができる。

[0075]

【発明の効果】以上詳述したように、請求項1~3に記 10 載の発明によれば、強度に優れたセラミックフィルタ集 合体を提供することができる。

【0076】請求項2に記載の発明によれば、濾過能力が高くかつ圧力損失が小さく、耐熱性及び熱伝導性に優れた集合体とすることができる。請求項3に記載の発明によれば、強度のさらなる向上及び集合体の均熱性向上を図ることができる。

【0077】請求項4に記載の発明によれば、強度に優れたセラミックフィルタ集合体を製造するうえで好適なハニカムフィルタを提供することができる。

20 【図面の簡単な説明】

【図1】本発明を具体化した一実施形態の排気ガス浄化 装置の全体概略図。

【図2】実施形態のセラミックフィルタ集合体の斜視 図。

【図3】実施形態のハニカムフィルタの斜視図。

【図4】前記排気ガス浄化装置の要部拡大断面図。

【図5】前記セラミックフィルタ集合体の要部拡大断面 図。

【図6】別例のセラミックフィルタ集合体の要部拡大断 30 面図。

【図7】別例のハニカムフィルタの斜視図。

【図8】別例のハニカムフィルタの斜視図。

【図9】別例のハニカムフィルタの斜視図。

[符号の説明]

9, 21…セラミックフィルタ集合体、15…セラミック質シール材層、18…アール面、F1, F2, F3, F4…ハニガムフィルタ。

【図5】

【図6】

[図4]

フロントページの続き

Fターム(参考) 3G090 AA03

4D019 AA01 BA05 BB10 BC12 BD06

CA01 CB01 CB04 CB06

4D058 JA32 JA35 JB06 KA06 KA08

KA11 KA23 SA08

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第2部門第1区分

【発行日】平成16年12月24日(2004.12.24)

【公開番号】特開2001-96117(P2001-96117A)

【公開日】平成13年4月10日(2001.4.10)

【出願番号】特願平11-277123

【国際特許分類第7版】

B01D 46/00

39/20 B 0 1 D

F 0 1 N 3/02

[FI]

B 0 1 D 46/00 3 0 2

39/20 B 0 1 D

3/02 3 0 1 B F 0 1 N

【手続補正書】

【提出日】平成16年1月29日(2004.1.29)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

セラミック焼結体からなる複数の角柱状ハニカムフィルタの外周面同士をセラミック質シ ール材層を介して接着することにより、前記各ハニカムフィルタを一体化してなる集合体 であって、各ハニカムフィルタの外周面における角部を面取りが施されたアール面とし、 そのアール面の曲率<u>半径</u>をR=0.3~2.5<u>mm</u>としたことを特徴とするセラミックフ ィルタ集合体。

【請求項2】

前記ハニカムフィルタは多孔質炭化珪素焼結体からなること特徴とする請求項1に記載の セラミックフィルタ集合体。

【請求項3】

前記ハニカムフィルタは四角柱状であって、かつフィルタ軸線方向に直交する方向に沿っ て互いにずらした状態で配置されていることを特徴とする請求項1または2に記載のセラ ミックフィルタ集合体。

【請求項4】

セラミック焼結体からなり、セラミックフィルタ集合体の構成部材として用いられる角柱 状ハニカムフィルタであって、外周面における角部を面取りが施されたアール面とし、そ のアール面の曲率<u>半径</u>をR=0.3~2.5<u>mm</u>としたことを特徴とするハニカムフィル タ。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】 0.010

【補正方法】変更

【補正の内容】

 $[0\ 0\ 1\ 0\]$

【課題を解決するための手段】

上記の課題を解決するために、請求項1に記載の発明では、セラミック焼結体からなる複

数の角柱状ハニカムフィルタの外周面同士をセラミック質シール材層を介して接着するこ とにより、前記各ハニカムフィルタを一体化してなる集合体であって、各ハニカムフィル タの外周面における角部は面取りが施されたアール面となっており、そのアール面の曲率 半径がR=0. $3\sim2$. 5 mm であることを特徴とするセラミックフィルタ集合体をその 要旨とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正の内容】

請求項4に記載の発明では、セラミック焼結体からなり、セラミックフィルタ集合体の構 成部材として用いられる角柱状ハニカムフィルタであって、外周面における角部を面取り が施されたアール面とし、そのアール面の曲率半径をR=0. $3\sim2$. 5 mm としたこと を特徴とするハニカムフィルタをその要旨とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 3

【補正方法】変更

【補正の内容】

以下、本発明の「作用」について説明する。請求項1~3に記載の発明によると、ハニカ ムフィルタの外周面における角部が好<u>適範</u>囲のアール面になっていることから、当該箇所 への応力集中が回避される。従って、ハニカムフィルタの角部の欠けや、角部を起点とし たシール材層のクラックが防止され、セラミックフィルタ集合体が破壊しにくくなる。前 記曲率<u>半径</u>Rが0.3<u>mm</u>以下であると、角部への応力集中を十分に回避することができ ず、欠けやクラックの発生につながりやすい。逆に、Rが2.5<u>mm</u>を超えると、ハニカ ムフィルタの断面積が減少する結果、集合体の濾過能力が低下してしまう。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更。

ゃ【補正の内容】

請求項4に記載の発明によると、外周面における角部が好<u>適範</u>囲のアール面になっている ことから、当該箇所への応力集中が回避され、もって角部の欠けが防止される。前記曲率 <u>半径</u>Rが0.3<u>mm</u>以下であると、角部への応力集中を十分に回避することができず、欠 けの発生につながりやすい。逆に、Rが2.5を超えると、フィルタ断面積が減少する結 果、濾過能力が低下してしまう。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正の内容】

ここでアール面 18の曲率半径はR=0. $3\sim2$. 5 \underline{mm} であることが必要であり、さら にはR=0. $7\sim2$. 5 mm であることがよく、特にはR=1. $0\sim2$. 0 mm であるこ とがなおよい。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0 0 4 3

【補正方法】変更

【補正の内容】

制記曲率<u>半径</u>Rが0.3<u>mm</u>以下であると、角部が依然として角張っていることから、角 部への応力集中を十分に回避することができず、欠けやクラックの発生につながりやすい **からである。逆に、Rが2.5mm**を超えると、ハニカムフィルタF1の断面積が減少す る結果、有効セル数が減ってしまい、集合体9の濾過能力の低下を招くからである。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0053

【補正方法】変更

【補正の内容】

(2) 次に、この生成形体をマイクロ波乾燥機を用いて乾燥した後、各角部を削ることで 面取りを施し、各角部に<u>曲率半径</u>R=1.5<u>mm</u>のアール面18を形成した。その後、成 形体の貫通孔12を多孔質炭化珪素焼結体製の封止用ペーストによって封止した。次いで 、再び乾燥機を用いて封止用ペーストを乾燥させた。端面封止工程に続いて、この乾燥体 を400℃で脱脂した後、さらにそれを常圧のアルゴン雰囲気下において2200℃で約 3時間焼成した。その結果、多孔質炭化珪素焼結体製のハニカムフィルタF1を得た。

【手続補正9】

【補正対象書類名】明細書

【補正対象項目名】 0057

【補正方法】変更

【補正の内容】

その結果、各角部を起点としたシール材層15のクラックは全く認められなかった。また 、角部の欠けも全く認められなかった。従って、実施例1の集合体9は、極めて強度に優 れていることが明らかとなった。

実施例2では、アール面18の曲率<u>半径</u>をR=0. 4 <u>mm</u>に設定し、それ以外の事項につ いては基本的に実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。 実施例3では、アール面18の曲率半径をR=2. 4 mmに設定し、それ以外の事項につ いては基本的に実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。

【手続補正10】

【補正対象書類名】明細書

【補正対象項目名】 0 0 5 8

【補正方法】変更

【補正の内容】

次に、得られた2種の集合体9を、実施例1のときと同様に一定期間使用し、その後で肉 **眼観察を行ったところ、実施例 1 に匹敵する好適な結果が得られた。つまり、実施例 2**, 3の集合体9も、極めて強度に優れていることが明らかとなった。

実施例4では、セラミックファイバ(ムライトファイバ、ショット含有率5重量%,繊維 長さ0.1mm~100mm) 25重量%、平均粒径1.0μmの窒化珪素粉末30重量% 、無機バインダとしてのアルミナゾル(アルミナゾルの換算量は20%)7重量%、有機 バインダとしてのポリビニルアルコール0.5重量%及びアルコール37.5重量%を混 合・混練したものを、前記シール材層形成用ペーストとして使用した。それ以外の事項に ついては実施例1に順ずるようにして、セラミックフィルタ集合体9を作製した。ここで

はシール材層15の厚さを1.0mmに設定し、各角部のアール面18の曲率<u>半径</u>をR=

1. 5 mm に設定した。

【手続補正11】

【補正対象書類名】明細書

【補正対象項目名】0059

【補正方法】変更

次に、得られた集合体 9 を、実施例 1 のときと同様に一定期間使用し、その後で肉眼観察 を行ったところ、実施例1に匹敵する好適な結果が得られた。つまり、実施例4の集合体 9も、極めて強度に優れていることが明らかとなった。

実施例5は、セラミックファイバ(アルミナファイバ、ショット含有率4重量%,繊維長 さ0.1mm~100mm) 23重量%、平均粒径1μmの窒化硼素粉末35重量%、無機 バインダとしてのアルミナゾル (アルミナゾルの換算量は20%) 8重量%、有機バイン ダとしてのエチルセルロース 0.5重量%及びアセトン 35.5重量%を混合・混練した ものを、前記シール材層形成用ペーストとして使用した。それ以外の事項については実施 例1に順ずるようにして、セラミックフィルタ集合体9を作製した。ここではシール材層 15の厚さを1.0mmに設定し、各角部のアール面18の曲率<u>半径</u>をR=1.5<u>mm</u>に 設定した。

【手続補正12】

【補正対象書類名】明細書

【補正対象項目名】0074

【補正方法】変更

【補正の内容】

(5) 内燃機関の排気管の途上に設けられたケーシング内に、セラミック焼結体からな る複数のハニカムフィルタの外周面同士をセラミック質シール材層を介して接着すること により前記各ハニカムフィルタを一体化してなるセラミックフィルタ集合体を収容すると ともに、その集合体の外周面と前記ケーシングの内周面とがなす隙間に断熱材を充填した 排気ガス浄化装置において、各ハニカムフィルタの外周面における角部は面取りが施され たアール面となっており、そのアール面の曲率半径がR=0. $3\sim2$. 5 mm であること を特徴とする排気ガス浄化装置。従って、この技術的思想5に記載の発明によれば、高強 度かつ高濾過能力であって実用性に優れた装置を提供することができる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.