МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №31

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ

ПРЕПОДАВАТЕЛЬ

доцент, канд. тех. наук

должность, уч. степень, звание

В Сосиб Е ОС. 19.202 2 Бойков В. И.

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 5

ОТОБРАЖЕНИЕ ИНФОРМАЦИИ НА ИНДИКАТОРЕ

по курсу: Микропроцессорные устройства систем управления

СТУДЕНТ ГР. №

Санкт-Петербург 2022

1. Цель работы

Освоить основные приемы табличного преобразования форматов представления чисел и приемы работы с семисегментными индикаторами.

2. Исходные данные

Таблица 1. Входные данные.

№	Индикация	АЦП, бит	Кнопка 1	Кнопка 2
17	16x	6	Y = X and $(-Y)$	Ввод Х

Три семисегментных индикатора \to P0, P1, P2 соответственно; Кнопки и выходные линии АЦП \to P3.

3. Результаты работы программы

На рисунке 3.1. представлен листинг кода программы:

```
yl equ 30h
yh equ 31h
xl equ 32h
xh equ 33h
org 0
jmp main
org 30h
main:
mov SP, #100
mov y1, #low(27) ;y1 -> 1B
mov yh, #high(27) ;yh -> 00
;кнопки будут висеть на портах РЗ.6 и РЗ.7
;activation
mov p0, #0
mov p1, #0
mov p2, #0
mov p3, #0ffh
;central loop
loop:
;формула
mov a, p3
anl a, #64
add a, #0
jz vvod
call form
jmp lo
vvod:
;ввод Х
mov a, p3
anl a, #128
add a, #0
jz wheel
call input
jmp lo
wheel:
mov a, xl
jz nl
jmp lo
nl:
mov a, p3
anl a, #63
```

```
add a, #0
jz lo
call ferrisWheel
jmp lo
lo: jmp loop
;========
;SubFunction
form:
loopForm:
jb p3.6, loopForm
clr c
mov a, #0
                      ;вычитание из нуля
subb a, yl
mov r3, a
                      ;
mov a, #0
subb a, yh
mov r4, a
mov a, r3
                      ;операция "И" и запись
anl a, xl
mov yl, a
                       ;
mov a, r4
                       ;
anl a, xh
                       ;
mov yh, a
                      ;разделение переменных для их последующего вывода
mov a, yl
anl a, #240
swap a
                      ;
mov r6, a
                       ;
mov a, yl
anl a, #15
                     ;
mov r5, a
mov p2, #63
mov p1, #63
mov p0, #63
loopView:
mov dptr, #tab
mov a, r5
movc a, @a+dptr
mov p2, a
mov a, r6
movc a, @a+dptr
mov p1, a
jb p3.6, loopView
ret
input:
loopInput:
jb p3.7, loopInput
;сохранение реальных чисел
mov a, xl
jnz null
mov xl, r2
jmp nil
null:
mov x1, #0
nil:
ret
ferrisWheel:
mov dptr, #tab
```

```
mov a, p3
clr acc.6
clr acc.7
loopTr16:
                    ;цикл перевода в 16-ную
mov b, #16
div ab
mov r1, a
                    ;второй разряд
mov r0, b
                    ;первый разряд
cjne r0, #16, d16
d16: jc write
jmp loopTr16
write:
swap a
orl a, r0
mov r2, a
mov a, r0
                    ;вывод первого разряда (единицы)
movc a, @a+dptr
mov p2, a
mov a, r1
                    ;вывод второго разряда (десятки)
movc a, @a+dptr
mov p1, a
mov a, #0
                    ;вывод третьего разряда (сотни)
movc a, @a+dptr
mov p0, a
ret
stop: jmp stop
tab: db 3fh,06h, 5bh, 4fh, 66h, 6dh, 7dh, 07h, 7fh, 6fh, 77h, 7ch, 39h, 5eh, 79h, 71h
      0 1 2 3
                              5 6 7 8 9
                                                      A
                                                           В
end
```

Рисунок 3.1. – Листинг кода программы

4. Результаты работы программы

Рисунок 4.1. – Окружение микроконтроллера после запуска моделирования

РП,	Д - п	poci	мотр)								X	1
	0	1	2	3	4	5	6	7	8	9	Α	0123456789A	
0 x	01	00	01	00	00	00	00	00	00	00	00	0 0	ī
1x	00	00	00	00	00	00	00	00	00	00	00	I and the second	
2x	00	00	00	00	00	00	00	00	00	00	00	I	
3x	1B	00	00	00	00	00	00	00	00	00	00	0	
4x	00	00	00	00	00	00	00	00	00	00	00	1	
5x	00	00	00	00	00	00	00	00	00	00	00	1	
6x	00	00	00	00	00	73	00	00	00	00	00	s	
7x	00	00	00	00	00	00	00	00	00	00	00	· ·	,
<												>	
00	00h: 01h (1) - 000000												

Рисунок 4.2. — РПД микроконтроллера после запуска моделирования (в ячейке 02h (**r2**) хранится число введенное с помощью АЦП; в ячейке 30h (**y1**) хранится первоначальное число Y в данном случае оно равно 27_{10} или $1B_{16}$)

РП,	Д - п	poci	иотр)								x
	0	1	2	3	4	5	6	7	8	9	Α	0123456789A
0x	0A	00	0A	00	00	00	00	00	00	00	00	
1x	00	00	00	00	00	00	00	00	00	00	00	I
2x	00	00	00	00	00	00	00	00	00	00	00	1
3x	1B	00	0A	00	00	00	00	00	00	00	00	0
4x	00	00	00	00	00	00	00	00	00	00	00	I
5x	00	00	00	00	00	00	00	00	00	00	00	ı
6x	00	00	00	00	00	5E	00	00	00	00	00	^
7x	00	00	00	00	00	00	00	00	00	00	00	· ·
<												>
00	00h: 0Ah (10) - 0 0 0 0 1 0 1 0											

Рисунок 4.3. – РПД после нажатия на кнопку «ввод X» число 0Ah записалось в ячейку 32h (\mathbf{xl})

После ввода x**l** блокируется доступ к кнопке «ввод X», так как в x**l** уже есть данные, но после повторного нажатия на данную кнопку данные очищаются и есть возможность задать данные заново.

РП,	Д - п	poci	иотр)													X
	0	1	2	3	4	5	6	7	8	9	A	0.	123	45	678	9A	
0 x	0F	03	3F	E5	FF	05	02	00	00	00	00	0]?e.	я[]			\wedge
1x	00	00	00	00	00	00	00	00	00	00	00	1					
2x	00	00	00	00	00	00	00	00	00	00	00	1					
3x	25	00	3F	00	00	00	00	00	00	00	00	olo	?				
4x	00	00	00	00	00	00	00	00	00	00	00	ı					
5x	00	00	00	00	00	00	00	00	00	00	00	ı					
6х	00	00	00	00	00	50	00	00	00	00	00	ı		P			
7x	00	00	00	00	00	00	00	00	00	00	00	ı					~
<																>	
05	h:	05h	(5	i) -	. [0 [0	0	0	1					Оч	исти	πь

Рисунок 4.4. – РПД после задания ввода числа 63 (3fh) \leftarrow ячейка 32h; после нажатия на кнопку «Формула» в ячейках 03h и 04h (r3 и r4) появляется число -Y; в ячейках 05h и 06h находится разложенное на разряды число Y после применения формулы; в ячейке 30h (yl) результат после нажатия кнопки «Формула»

Рисунок 4.6. – Ввод числа X

Рисунок 4.5. – Результат работы формулы

Таблица 2. Результаты работы программы.

Y, hex	-Y, hex	X, hex
1B	FFE5	3F
25	FFDB	37
13	FFED	32
20		

Результаты работы программы верны, в этом можно убедиться, если проверить вычисления на калькуляторе, например для числа **13h**:

Рисунок 4.6. – Отрицательное число Ү

Рисунок 4.7. – Операция «И»

5. Вывод

В результате выполнения данной лабораторной работы, основные приемы табличного преобразования форматов представления чисел и приемы работы с семисегментными индикаторами, также получили навыки перевода в другие системы счисления с помощью ассемблера 8051.