VSLI Lab Report

Assignment 1

Md Sahil Roll- 001710501029

Description

The following circuit has two inputs a and b, 1 bit each. c is the output bus which is of 8 bits. If we consider most significant bit as the first output bit of the output bus, then first bit is the AND of a and b, the second output bit is the OR of a and b, the third output bit is the INVERTER of a, the fourth output bit is the INVERTER of b, the fifth output bit is the NAND of a and b, the sixth output bit is the NOR of a and b, the seventh output bit is the XOR of a and b, and the eighth(least significant bit) output bit is the XNOR of a and b.

Block Diagram

Circuit Diagram

Truth Table

а	b	c(7)	c(6)	c(5)	c(4)	c(3)	c(2)	c(1)	c(0)
		AND	OR	NOT a	NOT b	NAND	NOR	XOR	XNOR
0	0	0	0	1	1	1	1	1	0
0	1	0	1	1	0	1	0	0	1
1	0	0	1	0	1	1	0	0	1
1	1	1	1	0	0	0	0	1	0

Code

Entity

```
entity a1 is
  Port ( a : in STD_LOGIC;
     b : in STD_LOGIC;
     c : out STD_LOGIC_VECTOR (7 downto 0));
end a1;
```

Architecture

architecture Behavioral of a1 is

```
begin

c(0) \le a \text{ xnor b};

c(1) \le a \text{ xor b};

c(2) \le a \text{ nor b};

c(3) \le a \text{ nand b};

c(4) \le a \text{ not b};

c(5) \le a \text{ not a};

c(6) \le a \text{ or b};

c(7) \le a \text{ and b};

end Behavioral;
```

Test Bench

```
ENTITY a1_test_bench IS
END a1_test_bench;
ARCHITECTURE behavior OF a1_test_bench IS
   COMPONENT a1
   PORT(
     a: IN std_logic;
     b: IN std_logic;
     c: OUT std_logic_vector(7 downto 0)
    );
   END COMPONENT;
  signal a : std_logic := '0';
  signal b : std_logic := '0';
  signal c : std_logic_vector(7 downto 0);
BEGIN
  uut: a1 PORT MAP (
      a => a,
      b => b,
     c => c
    );
  stim_proc: process
begin
    a<='0';
    b<='0';
    wait for 1 ps;
    a < = '0';
    b<='1';
    wait for 1 ps;
    a < = '1';
    b < = '0';
    wait for 1 ps;
    a < = '1';
    b<='1';
     wait for 1 ps;
  end process;
END;
```

Timing Diagram

