

Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks

Tao Wu¹, Thomas Tie Luo²

¹Missouri University of Science and Technology (now with ByteDance, CA, USA)

²Department of Electrical and Computer Engineering & Department of Computer Science, University of Kentucky

Presenter: Thomas Tie Luo

Background

Adversarial examples (AEs):

• Inputs to a deep learning model that have been intentionally modified in small, often imperceptible ways to cause the model to make wrong predictions.

"Making a pig fly" isn't that hard:

Background

Transfer-based black-box attacks

- The most **realistic** attacks requires little knowledge about target models
- The key is to generate "transferable" (generalizable) AEs

The gap

- Many such transferrable attacks have been proposed and shown to be successful (among CNNs)
- However, transferring across heterogeneous architectures (e.g., CNNs, ViTs, MLPs) has been rather ineffective

Our empirical finding:

Attack Success Rate Across Models and Methods

Hypothesis

- Inspired by the observation of receptive fields of CNNs as compared to ViTs, we hypothesize that:
- The poor adversarial transferability is due to CNNs' inadequacy in attending to long-range dependencies and large contexts.

Inductive bias

Raghu, Maithra, et al. "Do vision transformers see like convolutional neural networks?" NeurIPS (2021).

Method

- Introduce long-range dependencies into CNNs
 - by proposing a Feature Permutation Attack (FPA)
- Permute feature maps inside the surrogate model during the process of generating AEs:

• **FPA-N:** neighborhood

Rearrange pixels within a feature map randomly

 $\begin{matrix} \boldsymbol{x} + \\ \epsilon \mathrm{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \end{matrix}$

Exchange each pixel with one of its four neighboring pixels (randomly chosen)

"gibbon"

Difference?

- FPA-R: directly introduces global (long-range) dependency
- **FPA-N:** much more indirect, preserves local spatial relationship more

- Since there are many feature maps in a CNN, which particular feature maps to permute? By how much?
 - !: Location (layer/block)
 - γ : ratio of channels
 - \blacksquare p: permutation probability per iteration

Experiments

- Target models under attack: 7 CNNs, 4 ViTs, 3 MLPs
 - CNNs: VGG-19 [22], ResNet-152 [10], Inception v3 [23], DenseNet121 [11], MobileNet v2 [21], WRN [37], PNASNet [15].
 - ViTs: ViT-B [7], DeiT-B [27], Swin-B [17], BEiT-B [1].
 - MLPs: Mixer-B [25], Res-MLP [26], gMLP [16].
- Surrogate model: ResNet-50
- 5,000 correctly classified test images from the ImageNet validation set (to generate AEs)
- **FPA-R:** l = 5, y = 0.3, p = 0.2 (equiv: 6% of channels permuted)
- **FPA-N:** l = 2, y = 0.6, p = 0.5 (equiv: 30% of channels permuted)

Results

- ASR: attack success rate
- FPA-N achieves the highest ASR in all 14 cases
 - +14.57 points on Swin-B (compared to the best non-FPA method)
 - +14.48 points on Res-MLP (compared to the best non-FPA method)
- FPA-R: the overall runner-up

Method)

-+hod)

--thod

Method	VGG-19	ResNet-152	Inception-V3	${ m DenseNet}121$	MobileNet-V2	WRN	PNASNet	ViT-B	DeiT-B	Swin-B	BEiT-B	Mixer-B	Res-MLP	gMLP	Average
I-FGSM	43.26%	23.65%	21.54%	49.35%	38.21%	45.32%	18.91%	4.38%	4.03%	4.96%	3.78%	8.76%	7.94%	7.12%	18.99%
MI-FGSM	52.89%	31.56%	32.16%	58.62%	50.35%	54.69%	29.32%	6.82%	5.86%	7.88%	6.76%	11.58%	10.92%	11.26%	27.83%
DIM	67.85%	41.25%	38.95%	70.26%	65.26%	68.42%	35.46%	10.49%	10.35%	11.06%	12.10%	15.68%	15.34%	14.82%	36.94%
TIM	46.78%	29.14%	27.83%	51.35%	48.31%	49.63%	25.34%	5.23%	5.65%	6.04%	4.97%	9.68%	10.03%	8.95%	26.08%
$_{\mathrm{SIM}}$	52.82%	35.68%	33.68%	58.96%	54.16%	58.47%	29.65%	9.35%	10.23%	10.56%	11.05%	11.65%	12.14%	10.98%	31.79%
Admix	66.95%	43.62%	39.46%	68.47%	59.21%	65.61%	30.49%	8.79%	9.62%	10.26%	11.67%	13.60%	13.43%	13.09%	34.63%
SGM	63.46%	46.52%	39.26%	71.26%	57.26%	64.18%	31.25%	11.24%	10.42%	10.96%	11.53%	14.82%	15.48%	15.67%	36.66%
LinBP	66.31%	50.18%	37.89%	69.43%	63.48%	68.14%	32.06%	12.06%	10.36%	11.23%	10.85%	14.62%	14.85%	15.21%	37.53%
FPA-R (ours)	56.83%	43.04%	35.62%	66.59%	58.72%	60.84%	28.89%	16.39%	14.85%	15.68%	17.32%	18.46%	19.15%	19.52%	37.70%
FPA-N (ours)	70.25%	52.38 %	42.85%	75.43%	69.48%	72.34%	39.74%	25.38%	24.64 %	$\boldsymbol{25.80\%}$	$\boldsymbol{26.19\%}$	30.16%	$\boldsymbol{31.43\%}$	$\boldsymbol{30.82\%}$	$\boldsymbol{45.59\%}$

FPA is very flexible

- Can be seamlessly integrated with **probably any attack**
 - Any attack could serve as the base and gain significant attack strength

Method	VGG-19	ResNet-152	Inception-V3	DenseNet121	MobileNet-V2	WRN	PNASNet	ViT-B	DeiT-B	Swin-B	BEiT-B	Mixer-B	Res-MLP	gMLP	Average
MI-FGSM	52.89%	31.56%	32.16%	58.62%	50.35%	54.69%	29.32%	6.82%	5.86%	7.88%	6.76%	11.58%	10.92%	11.26%	27.83%
MI-FGSM + FPA-R	66.32%	49.13%	45.12%	71.56%	65.14%	69.10%	42.95%	18.26%	18.03%	17.95%	17.52%	21.06%	22.16%	22.53%	39.06%
MI-FGSM + FPA-N	75.46%	57.64%	38.95 %	80.05%	73.94 %	78.86%	49.14%	$\boldsymbol{27.95\%}$	$\boldsymbol{28.49\%}$	28.65 %	29.33 %	34.02 %	34.57%	33.13 %	47.87%
DIM	67.85%	41.25%	38.95%	70.26%	65.26%	68.42%	35.46%	10.49%	10.35%	11.06%	12.10%	15.68%	15.34%	14.82%	36.94%
$\mathrm{DIM} + \mathrm{FPA-R}$	75.61%	49.12%	46.35%	76.12%	74.31%	77.03%	45.61%	21.30%	19.16%	18.94%	23.15%	24.96%	23.84%	25.61%	42.94%
$\mathrm{DIM} + \mathrm{FPA-N}$	80.05 %	54.10 %	$\boldsymbol{50.23\%}$	79.96 %	77.56%	82.04%	49.34%	29.65%	31.49%	33.16%	$\boldsymbol{32.09\%}$	36.16%	$\boldsymbol{36.98\%}$	35.88 %	$\boldsymbol{50.62\%}$
Admix	66.95%	43.62%	39.46%	68.47%	59.21%	65.61%	30.49%	8.79%	9.62%	10.26%	11.67%	13.60%	13.43%	13.09%	34.63%
Admix + FPA-R	74.35%	48.13%	45.19%	75.49%	68.95%	76.01%	38.49%	17.53%	19.23%	20.15%	22.36%	25.16%	25.01%	24.69%	41.48%
Admix + FPA-N	79.64%	50.09%	51.29%	80.13%	76.95%	81.32%	44.68%	27.32%	28.96 %	30.40%	33.46 %	$\boldsymbol{32.68\%}$	$\boldsymbol{32.92\%}$	34.05%	$\boldsymbol{53.24\%}$

- Performance increases ~20, 14, and 19 points (see last column) by FPA-N
 - Even FPA-R achieves quite notable gains too

Ablation study

4

- *l*: Location (layer)
- γ : ration of channels

- FPA-N (triangular marker) is **not sensitive** to hyperparameter variation
- Dash-lines (horizontal) are vanilla attacks without FPA
- FPA-N consistently outperforms FPA-R, as FPA-N better preserves local contextual information.

Efficiency

 Our proposed permutation operation is executed solely through memory operations without requiring matrix computations, additional parameters, or FLOPs.

Methods	I-FGSM	MI-FGSM	DIM	TIM	SIM	Admix	SGM	FPA-R	FPA-N
Time (mins)	4.2	4.9	5.9	6.7	21.6	15.3	4.5	4.2	4.3

Table 3: Comparing wall clock runtime for FPA and baseline attacks on ImageNet.

Conclusion

- We hypothesize that the failure of heterogeneous adversarial transfer is due to CNN's inadequacy of modeling long-range dependencies
- We propose Feature Permutation Attack to address this limitation
- Flexible plug-in: probably any attack can serve as the base
- FPA improves attack success rates significantly (by 8-26 percentage points) even in the heterogeneous setting (from CNN to ViT and MLP)
- FPA is simple and efficient: it introduces zero FLOP and zero model parameters.

תודה Dankie Gracias Спасибо Köszönjük Grazie Dziękujemy Dėkojame Vielen Dank Paldies tos Täname teid 油油 Ďakujeme Kiitos . 感謝您 **Obrigado** Σας Ευχαριστούμ Bedankt Děkujeme vám ありがとうございます Tack

Comparison with related work

- Patchshuffle regularization
 - Input space
 - Patch-level permutation (shuffle within each patch; local scope)
 - A regularization technique (data augmentation)
- FPA (ours)
 - Feature space
 - Pixel-level permutation (global scope; long-range)
 - An adversarial attack

Kang, Guoliang, et al. "Patchshuffle regularization." arXiv preprint arXiv:1707.07103.

