2013 年概率统计期末考试题

一、 :	填空题	(每小题3分,	共5小题,	满分 15 分)
-------------	-----	---------	-------	----------

- 1. 设随机事件 A, B, C相互独立, 且 P(A) = 0.5, P(B) = 0.25, P(C) = 0.2, 则随机事件 A, B, C至少有一个不发生的概率为______
- 2. 设随机变量 X 服从正态分布 N(0,1) , 则随机变量 Y = |X| 的概率密度

$$f_{Y}(y) =$$

3. 设 X, Y 是随机变量, EX = 2, DX = 25, EY = 1, DY = 16, $\rho_{XY} = 0.4$ 则

$$E(2X-3Y+4)^2 =$$
_____.

- 4. 设某种溶液中杂质的浓度服从 $N(\mu,\sigma^2)$, 今取样4次,测得平均值 $\bar{x}=0.834$,样本标 准差 s = 0.0003,则 μ 的置信度为 0.95 的置信区间为
- 5. 设随机变量 X. Y 相互独立, 且均服从参数为 8 的指数分布, 则

$$P\{\min(X,Y) \le 1\} =$$
______.

注:可选用的部分数值: $t_{0.05}(4) = 2.1318$, $t_{0.025}(3) = 3.1824$, $t_{0.025}(4) = 2.7764$, $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$.

二、选择题(每小题 3 分,共 5 小题,满分 15 分)

1 . 设 机变 X 与 Y 相 互 独 立 P(X=1) = P(Y=1) = p, P(X=0) = P(Y=0) = 1 - p , (0 ,

Z = $\begin{cases} 1, & X + Y$ 为偶数 0, & X + Y 为奇数 \end{cases} 要使 $X \ni Z$ 独立,则 p 的值应等于

(A)
$$1/2$$
. (B) $1/4$. (C) $1/3$. (D) $2/3$.

2. 下列函数可作为概率密度函数的是

下列函数可作为概率密度函数的是
$$(A) \ f(x) = \begin{cases} 2(1-|x|), & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

$$(B) \ f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$(C) f(x) = \begin{cases} x, & -1 < x < 0 \\ 3x/4, & 0 \le x < 2. \\ 0, & 其他 \end{cases}$$
 (D) $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, & x \le 0 \end{cases}$ ($\lambda > 0$).

3. 设 X_1, X_2, \dots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 其中 \bar{X} 为样本均值, S^2 为样本方差, S^{*2} 为样本的二阶中心矩,则

(A)
$$\frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1)$$
.
(B) $\frac{\overline{X} - \mu}{S^*} \sqrt{n-1} \sim t(n-1)$.
(C) $\frac{nS^2}{\sigma^2} \sim \chi^2(n-1)$.
(D) $\frac{\overline{X} - \mu}{S} \sqrt{n-1} \sim t(n-1)$.

4. 设随机变量 $X \sim U[1,\ 7]$, $Y \sim B(8,\ 0.5)$,且 $\rho_{xy} = 1/\sqrt{6}$,则根据切比雪夫不等式 有

$$P(X-3 < Y < X+3) \ge$$
_____.

(A) $\frac{1}{4}$.

(B) $\frac{1}{6}$.

(C) $\frac{2}{3}$.

(D) $\frac{5}{6}$.

5. 设 X_1, X_2, \dots, X_n 是来自总体N(0, 1) 的简单随机样本,则下列统计量的分布中不正确的是

(A)
$$\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n)$$
. (B) $\sqrt{n-1}X_{n} / \sqrt{\sum_{i=1}^{n-1} X_{i}^{2}} \sim t(n-1)$.
(C) $\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N(0, 1)$. (D) $(\frac{n}{2} - 1) \sum_{i=1}^{2} X_{i}^{2} / \sum_{i=3}^{n} X_{i}^{2} \sim F(2, n-2)$.

- 三、(9分) 今从装有一等品 2 件, 二等品 4 件的甲箱子中任取 2 件产品, 然后将 2 件产品 放入含有 3 件一等品 2 件二等品的乙箱中, 再从乙箱中任取 1 件产品, 求:
 - (1) 从乙箱中取到1件一等品的概率;
 - (2)已知从乙箱中取出1件一等品的条件下,从甲箱中取出1件一等品和1件二等品的概率。
- 四、(9分)设随机变量 X 和 Y 的联合分布在以点(0, 1),(1, 0),(1, 1) 为顶点的三角形区域内服从均匀分布。求:(1)随机变量 Z=2X+Y 的概率密度 $f_{z}(z)$;(2) 方差 DZ.
- 五、(9分) 在区间[0, 1]上任取n个点 X_1, X_2, \cdots, X_n ,记 $X_{(1)} = \min \left\{ X_1, X_2, \cdots, X_n \right\}$, $X_{(n)} = \max \left\{ X_1, X_2, \cdots, X_n \right\}, \quad X = X_{(n)} X_{(1)}. \quad 求 EX \ .$

六、(9分) 设总体X 的概率密度为

$$f(x;\theta) = \begin{cases} \theta^2 x^{-3} e^{-\theta/x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

其中 $\theta>0$ 为未知参数, X_1,X_2,\cdots,X_n 为来自总体X的简单随机样本。求:

- (1) θ 的矩估计量; (2) θ 的最大似然估计量。
- 七、 $(4\ \mathcal{G})$ 在 x 轴上有一个质点可以在整个数轴的整数点上游动,记 X_n 表示时刻 n 时质点的位置。该质点移动的规则是:每隔单位时间,分别以概率 p 及概率

$$q = 1 - p$$
 (0 < p < 1) 向正

的及负的方向移动一个单位。假设质点在时刻t=0时,位于a,即 $X_0=a$ (a>0),而在0和a+b (b>0) 处各有一个吸收壁(即质点移动到0 和a+b 时,将不能再移动)。求质点的初始位置为a而最终在a+b被吸收的概率 u_a .

(提示:
$$u_n = pu_{n+1} + qu_{n-1}$$
, $n = 1, 2, \dots, a+b-1$. $u_0 = 0$, $u_{a+b} = 1$)