Задача 1

I. $0 < \alpha - 1 \ll 1$

Нарисуем на графике правую часть уравнения, и левую при $\alpha \in \{2, 1, \frac{1}{2}\}$ (**рис. 1**). Вблизи нуля функции $\tanh \alpha x$ и $\arctan x$ ведут себя линейно: $\tanh \alpha x \sim \alpha x$, $\arctan x \sim x$. Так как функции слева и справа нечетны, помимо тривиального корня $\tilde{x}_0 = 0$ остальные (если существуют) связаны соотношением $\tilde{x}_i^+ = -\tilde{x}_i^-, \ \tilde{x}_i^+ > 0$. Отсюда и из графика можно сделать выводы, аналогичные выводам из конспекта семинара по задаче (1), причем интересует случай, когда

$$\alpha = 1 + \varepsilon > 1, \ 0 < \varepsilon \ll 1,$$

т. е. имеются две нетривиальные точки пересечения, и при малых ε корни уравнения малы.

 ${
m Puc.}\ 1$: График функций ${
m arctan}\ x$ и ${
m tanh}\ lpha x$ при различных lpha

Разложим обе части уравнения по степеням аргументов:

$$\tanh \alpha x \approx (1+\varepsilon)x - \frac{1}{3}(1+\varepsilon)^3x^3 + \frac{2}{15}(1+\varepsilon)^5x^5, \quad \arctan x \approx x - \frac{1}{3}x^3 + \frac{1}{5}x^5,$$

$$\varepsilon x - \frac{1}{3} ((1+\varepsilon)^3 - 1) x^3 + \frac{1}{5} (\frac{2}{3} (1+\varepsilon)^5 - 1) x^5 = 0.$$

Из $\varepsilon \ll 1$ следует $(1+\varepsilon)^n \approx 1+n\varepsilon$ и, следовательно,

$$\varepsilon x - \varepsilon x^3 + \left(\frac{2}{3}\varepsilon - \frac{1}{15}\right)x^5 = 0.$$

Разделим уравнение на x, домножим на 15 для удобства, произведем замену $y=x^2$ и решим приближенно полученное квадратное уравнение:

$$y^2(10\varepsilon - 1) - 15\varepsilon y + 15\varepsilon = 0,$$

$$\tilde{y} = \frac{15\varepsilon \pm \sqrt{15^2\varepsilon^2 - 60\varepsilon(10\varepsilon - 1)}}{2(10\varepsilon - 1)} = \frac{\pm 2\sqrt{15\varepsilon} \cdot \sqrt{1 - \frac{25}{4}\varepsilon} + 15\varepsilon}{2(10\varepsilon - 1)} \approx \pm \sqrt{15\varepsilon},$$

а так как y > 0:

$$\tilde{y} \approx \sqrt{15\varepsilon}$$
.

Подставляя полученный результат в $\varepsilon=\alpha-1$ и $x=\pm\sqrt{y}$, получаем ответ:

$$\tilde{x}_0 = 0, \ \tilde{x}_{1,2} \approx \pm \sqrt[4]{15(\alpha - 1)}$$

II. $\alpha \gg 1$

Найдем сначала положительный корень данного уравнения $\tilde{x}_1 > 0$. Так как $\alpha \gg 1$,

$$\tanh \alpha \tilde{x}_1 = \frac{e^{\alpha \tilde{x}_1} - e^{-\alpha \tilde{x}_1}}{e^{\alpha \tilde{x}_1} + e^{-\alpha \tilde{x}_1}} = 1 - \frac{2}{e^{2\alpha \tilde{x}_1} + 1} = 1 - \varepsilon, \ 0 < \varepsilon < 1.$$
 (1)

В грубом приближении $\tanh \alpha \tilde{x}_1 \approx 1, \ \tilde{x}_1 \approx \tan 1 \Rightarrow \varepsilon \ll 1$. Выразим \tilde{x}_1 через ε :

$$1 - \varepsilon = \arctan \tilde{x}_1, \quad \tilde{x}_1 = \tan (1 - \varepsilon) = \frac{\tan 1 - \tan \varepsilon}{1 + \tan 1 \tan \varepsilon}.$$

Пусть $\tan 1 = \beta$. Так как $\beta \tan \varepsilon \ll 1$,

$$\tilde{x}_1 = \beta \frac{1 - \frac{\tan \varepsilon}{\beta}}{1 + \beta \tan \varepsilon} = \beta - \frac{(\beta^2 + 1) \tan \varepsilon}{1 + \beta \tan \varepsilon} \approx \beta - (\beta^2 + 1)\varepsilon. \tag{2}$$

Теперь преобразуем (10) и подставим \tilde{x}_1 из (11):

$$\varepsilon = \frac{2}{e^{2\alpha \tilde{x}_1 + 1}}, \quad \tilde{x}_1 = \frac{1}{2\alpha} \ln \left(\frac{2}{\varepsilon} - 1 \right) \approx \beta - (\beta^2 + 1)\varepsilon.$$

Применим метод итераций к полученному уравнению. Возьмем $\varepsilon_1 = 0$, тогда:

$$\frac{1}{2\alpha}\ln\left(\frac{2}{\varepsilon_{n+1}}-1\right) = \beta - (\beta^2+1)\varepsilon_n, \quad \varepsilon_2 = \frac{2}{e^{2\alpha\beta}+1}, \quad \varepsilon_3 = \frac{2}{e^{2\alpha\beta}\left[e^{-(\beta^2+1)\frac{2}{e^{2\alpha\beta}+1}}\right]+1}.$$

Уже при $\alpha = 5$

$$\varepsilon_2 \approx 1.7 \cdot 10^{-7}, \ \frac{(\Delta \varepsilon)_2}{\varepsilon_2} = \frac{\varepsilon_3 - \varepsilon_2}{\varepsilon_2} \approx 10^{-5} \Rightarrow (\Delta \varepsilon)_2 \ll \varepsilon_2,$$

а следовательно

$$\varepsilon \approx \varepsilon_2 \approx 2e^{-2\alpha\beta}$$

является достаточным приближением.

Подставляя полученную величину в (11), получаем приближенное выражение для \tilde{x}_1 :

$$\tilde{x}_1 \approx \beta - 2e^{-2\alpha\beta}(\beta^2 + 1).$$

Так как в исходном уравнении правая и левая части — нечетные функции, $\exists \tilde{x}_2 = -\tilde{x}_1$: корень исходного уравнения, откуда, учитывая тривиальный корень $\tilde{x}_0 = 0$, ответ:

$$\tilde{x}_0 = 0, \ \tilde{x}_{1,2} \approx \pm (\beta - 2e^{-2\alpha\beta}(\beta^2 + 1)), \ \beta = \tan 1$$