NHL-SCI-21 US

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-169538

(43)公開日 平成9年(1997)6月30日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	ΡI			技術表示箇所	
C 0 3 C 3/091		•	C 0 3 C	3/091			
G 0.2 F 1/1333	500		G02F	1/1333	500	•	
G09F 9/30	3 1 6		G09F	9/30	3 1 6 3	D .	
			審査請求	未 計求	請求項の数 9	OL (全 5 頁)	
(21)出願番号	特顧平7-311019		(71) 出願人	. 0000000)44		
		•		旭硝子	朱式会社		
(22)出願日	平成7年(1995)11月29日			東京都	千代田区丸の内	2丁目1番2号	
			(72)発明者	f 西沢 :	学		
(31) 優先権主張番号	特顧平6-296522			神奈川	具横浜市神奈川	区羽沢町1150番地	
(32)優先日	平6 (1994)11月30日	i		旭硝子	株式会社中央研	究所内	
(33)優先権主張国	日本(JP)		(72)発明者	中尾 :	中尾 泰昌		
(31)優先権主張番号				神奈川県横浜市神奈川区羽沢町1150番			
(32) 優先日	平7 (1995)10月20日	1		旭硝子	株式会社中央研	究所内	
(33)優先権主張国	日本 (JP)		(74)代理人	、 弁理士	泉名 謙治		
Contract of Manager					• •		

(54) 【発明の名称】 無アルカリガラス及び液晶ディスプレイパネル

(57)【要約】

【課題】歪点≥640℃、熱膨張係数30~45×10 -7/℃で、BHFによる白濁なく、耐酸性もすぐれる無 アルカリガラスを得る。

【解決手段】モル%表示でSiO2 60~72、Al2 O3:5~16、B2 O3:5~10未満、MgO:0~6、CaO:0~2.5、SrO:1~9、BaO:1~5からなる。

(0Pm 51-2009

【特許請求の範囲】

【請求項1】モル%表示で実質的に、SiO2:60~ 72%, A12 O3:5~16%, B2 O3:5~10 %未満、MgO:0~6%、CaO:0~2.5%、S rO: 1~9%, BaO: 1~5%, MgO+CaO+ SrO+BaO: 7~18%からなる無アルカリガラ

【請求項2】リンを実質的に含有しない請求項1の無ア ルカリガラス。

【請求項3】PbO、As2 O3 及びSb2 O3 を実質 10 的に含有しない請求項1又は2の無アルカリガラス。

【請求項4】歪点が640℃以上である請求項1~3の いずれかの無アルカリガラス。

【請求項5】熱膨張係数が30×10-7/℃~45×1 0-7/℃である請求項1~4のいずれかの無アルカリガ ラス。

【請求項6】モル%表示で実質的に、SiO2:66~ 70%, A12 O3:9~14%, B2 O3:6~9 % MgO: 1~5% SrO: 2~8% BaO: 1 ~5%、MgO+SrO+BaO:9~16%からな り、リン及びCaOを実質的に含有しない請求項1~5 のいずれかの無アルカリガラス。

【請求項7】歪点が650℃以上である請求項1~6の いずれかの無アルカリガラス。

【請求項8】熱膨張係数が30×10⁻⁷/℃~40×1 0-1/℃である請求項1~7のいずれかの無アルカリガ ラス。

【請求項9】請求項1~8のいずれかの無アルカリガラ スをセルを形成する一対の基板のうちの少なくとも一方 の基板として使用した液晶ディスプレイパネル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各種ディスプレイ・ やフォトマスク用基板ガラスとして好適な、アルカリ金 属酸化物を実質上含有せずフロート成形可能な、無アル カリガラス及びそれを用いた液晶ディスプレイパネルに 関する。

[0002]

【従来の技術】従来、各種ディスプレイ用基板ガラス、 特に表面に金属又は酸化物薄膜等を形成させるもので は、以下の特性が要求される。

【〇〇〇3】(1)アルカリ金属酸化物を含有すると、 アルカリ金属イオンが薄膜中に拡散して、膜特性を劣化 させるため、実質的にアルカリ金属イオンを含まないこ と。

- (2) 薄膜形成工程で高温にさらされるので、ガラスの 変形及びガラスの構造安定化に伴う収縮を最小限に抑え るため、高い歪点を有すること。
- (3)半導体形成に用いられる各種薬品に対して充分な .化学耐久性を有すること。特にSiOェやSiNェのエ 50 038にはCaOを7~20モル%、特開平2-133

ッチングのためのフッ酸、フッ化アンモニウム等を主成 分とするバッファードフッ酸(BHF)に対して耐久性 があること。

(4) 内部及び表面に欠点(泡、脈理、インクルージョ ン、ピット、キズ、等)をもたないこと。

【0004】従来、各種ディスプレイやフォトマスク用 基板ガラスとしてコーニングコード7059ガラスが広 く用いられている。しかし、このガラスにはデイスプレ イ用として以下に示す不充分な点があった。

【0005】(1)歪点が593℃と低いので、ディス プレイ作製工程におけるガラスの収縮を低減するための 前熱処理を、工程前に行わなければならない。

(2)金属電極や透明導電膜(ITOなど)のエッチン グに用いる塩酸等への溶出量が多く、ディスプレイ作製 工程中で溶出物が再結晶するなどして、ディスプレイ作 製に困難がある。

【0006】上記要求に加えて、近年、ディスプレイが 大型化するに伴い次の2点が新たに要求されてきた。

【0007】(1)上記コード7059ガラスの密度は 2.76g/ccであり、さらに軽量化を図るため密度 の小さいものが必要である。

(2)上記コード7059ガラスの熱膨張係数が46× 10-7/℃であり、ディスプレイ作製時の昇降温速度を 上げ、生産効率を上げるため、さらに熱膨張係数の小さ いものが必要である。

【0008】B2 O3 に関しては、特開平1-1608 44にはB₂O₃を20~23カチオン%含有するもの が開示されているが、B2 O3 量が多く歪点が充分には 高くない。特開昭61-281041にはB2 O3 を 30 O. 1~4重量%、特開平4-175242にはB2 O 3 を 0. 1~5モル%、特開平4-325435にはB 2 O3 を0~3重量%、含有するものが開示されている が、B2 O3 量が少なくBHFに対する耐久性が充分で はない。

【0009】BaOに関しては、特開平4-32543 4にはBaOを10~20重量%、特開昭63-749 35にはBaOを10~22重量%、特開昭59-16 9953にはBaOを15~40重量%、含有するもの が開示されているが、BaOが多く熱膨張係数が大き 40 Vi.

【0010】MgOに関しては、特開昭61-1325 36にはMgOを6.5~12重量%、特開昭59-1 16147にはMgOを5~15重量%、特開昭60-71540にはMgOを5~17重量%、特開昭60-42246にはMgOを10~25モル%、含有するも のが開示されているが、MgOを多く含有したガラスは 分相がおきやすくなる。

【0011】 CaOに関しては、特開昭63-1763 32にはCaOを11~25重量%、特開昭58-32

334にはCaOを8~15重量%、特開平3-174 336にはCaOを7~12重量%、特開平6-407 39にはCaOを10~12重量%、特開平5-201 744にはCaOを18カチオン%以上、含有するもの が開示されているが、CaOを多量に含有するため熱膨 張係数が大きくなる傾向がある。

【0012】A12 O3 に関しては、特開昭61-23 6631にはA12 O3 を22.5~35重量%、含有 するものが開示されているが、Al2 O3 量が多く塩酸 等への薬品への溶出が多い。

【0013】P2 O5 に関しては、特開昭61-261 232、特開昭63-11543、にはP2 O5 を含有 するものが開示されているが、薄膜の半導体特性を悪化 させ好ましくない。

[0014]

【発明が解決しようとする課題】また、640℃以上 で、熱膨張係数が30~45×10⁻⁷/℃、密度2.7 0g/cc以下のガラスは、特開平6-263473に 開示されている。しかし、このガラスを常法に従って、 バッチ調合、溶解、成形して作成したガラスを高精細の 20 ポリシリコンタイプのTFTに適用すると、充分に特性 の良いトランジスタが得られない場合がある。

【0015】本発明の目的は、上記欠点を解決するとと もに、歪点が640℃以上で、熱膨張係数、密度が小さ く、BHFにより白濁をおこさず、塩酸等の薬品への耐 久性も優れ、熔解・成形が容易で、フロート成形が可能 な無アルカリガラスを提供することにある。

[0016]

【課題を解決するための手段】本発明は、モル%表示で 16%、B2 O3 : 5~10%未満、MgO: 0~6 %, CaO: 0~2. 5%, SrO: 1~9%, Ba 0:1~5%, MgO+CaO+SrO+BaO:7~ 18%からなる無アルカリガラスである。

[0017]

【発明の実施の形態】本発明の無アリカリガラスはアル カリ金属酸化物 (例えばNa2 O、K2 Oなど)を実質 的に含有しないものである。具体的にはアルカリ金属酸 化物が総量で0.5重量%以下、より好ましくは0.2 重量%以下とされる。

【0018】次に上記の通り各成分の組成範囲を限定し た理由について述べる。

【0019】SiO2 はその含有量が60%モル未満で は、歪点が充分に上げられないとともに、化学耐久性が 悪化し、熱膨張係数が増大する。72モル%超では熔解 性が低下し、失透温度が上昇する。より好ましい範囲は 66~70モル%である。

【0020】A12 O3 はガラスの分相性を抑制し、熱 膨張係数を下げ、歪点を上げる。その含有量が5モル% 未満ではこの効果があらわれず、16モル%超ではガラ 50 合量が7モル%未満では熔解を困難にさせる。18モル

スの熔解性が悪くなる。より好ましい範囲は9~14モ ル%である。

【0021】B₂ O₃ はBHFによる白濁発生を防止 し、高温での粘性を高くさせずに熱膨張係数と密度の低 下を達成できる。その含有量が5モル%未満ではBHF 性が悪化し、10モル%以上では耐酸性が悪くなる。よ り好ましい範囲は6~9モル%である。

【0022】MgOは必須成分ではないが、アルカリ土 類金属酸化物のうちでは熱膨張係数を低くし、かつ歪点 10 が低下しないため含有することができる。その含有量が 6モル%超ではBHFによる白濁やガラスの分相が生じ やすくなる。より好ましい範囲は1~5モル%である。 【0023】CaOは必須成分ではないが含有すること によりガラスの熔解性を向上させうる。その含有量が 2. 5モル%超では高精細ポリシリコンTFTの特性を 悪化させるおそれがある。

【0024】近年、液晶表示装置としてすでに商品化さ れているアモルファスシリコンタイプのTFTを使用し たものに対して、ポリシリコンタイプのTFTが提案さ れ、使用されてきている。ポリシリコンタイプのTFT は、(1)トランジスタの易動度を上げうるので、1画 素あたりの制御時間が短くない、LCDの高精細化が可 能になる、(2)画面周辺に駆動用ICを実装すること が可能になる、などの利点がある反面、作製工程での強 い熱処理(例えば、500~600℃×数時間)が必要 になる。このような高温では、ガラス中の不純物がTF Tに拡散して、リーク電流が増大、TFT特性を悪化さ せ、高精細のTFT作製を難しくするおそれがある。

【0025】このような不純物でもっとも問題視される 実質的に、 $SiO_2:60\sim7.2\%$ 、 $Al_2O_3:5\sim30$ のは、CaOの原料として使用される石灰石中のリンで ある。したがって、本発明の無アルカリガラス中に、リ ンは実質的に含まれないことが望ましい。ガラス中のリ ンを減らすためには、リン不純物の少ない高純度原料を 用いる方法も考えられるが、コスト的に不利がある。

> 【0026】本発明では、CaOの含有量を2.5モル %以下にしたので、TFT特性を悪化させることがな く、液晶表示パネル用として優れた特性のガラス基板が 得られる。Ca〇のより好ましい範囲は1.5モル%以 下であり、特に好ましくは、実質的に含有されない。

【0027】SrOはガラスの分相を抑制し、BHFに よる白濁に対し比較的有用な成分であるため、1モル% 以上含有される。その含有量が9モル%超では熱膨張係 数が増大する。より好ましい範囲は2~8モル%であ

【0028】BaOはガラスの分相を抑制し、熔解性を 向上させ、失透温度を抑制する効果があるため本発明で は必須とする。その含有量が5モル%超では熱膨張係数 が増大し、耐酸性等の化学耐久性も劣化する。

【0029】MgO+CaO+SrO+BaOは、その

5

%超では密度が大きくなる。より好ましい範囲は $9\sim1$ 6モル%である。

【0030】本発明では、リンはTFT特性を悪化させるおそれがあるため、実質的に含有しないことが好ましい。

【0031】本発明のガラスは上記成分以外にガラスの 熔解性、清澄性、成形性を改善するため、ZnO、SO3、F、C1を総量で5モル%以下添加できる。

【0033】かくして、本発明のより好ましいガラスの 組成は、モル%表示で実質的に、SiO2:66~70 %、Al2O3:9~14%、B2O3:6~9%、M gO:1~5%、SrO:2~8%、BaO:1~5 %、MgO+SrO+BaO:9~16%からなり、リ ン及びCaOを実質的に含有しないものである。

【0034】本発明のガラスは、歪点が640℃以上であることが好ましく、より好ましくは650℃以上である。また、熱膨張係数が30×10⁻⁷/℃~45×10 -⁷/℃であることが好ましく、より好ましくは30×10⁻⁷/℃~40×10⁻⁷/℃である。さらに、密度2.70g/cc以下であることが好ましく、より好ましくは2.65g/cc以下である。

【0035】本発明のガラスは、例えば次のような方法で製造できる。すなわち、通常使用される各成分の原料を目標成分になるように調合し、これを熔解炉に連続的に投入し、1500~1600℃に加熱して熔融する。この熔融ガラスをフロート法により所定の板厚に成形し、徐冷後切断する。

[0036]

【実施例】各成分の原料を目標組成になるように調合し、白金坩堝を用いて1500~1600℃の温度で熔解した。熔解にあたっては、白金スターラを用い撹拌しガラスの均質化を行った。次いで熔解ガラスを流し出し、板状に成形後徐冷した。

【0037】表 $1\sim2$ には、こうして得られたガラス組成と熱膨張係数、高温粘度、失透温度、歪点、密度、耐酸性、耐BHF性、リーク電流(TFT特性)を示す。例 $1\sim10$ は実施例、例 $11\sim13$ は比較例である。

【0038】熱膨張係数は単位:10-7/℃で示し、高温粘度は粘度が102、104 ポイズとなる温度(単位:℃)で示し、失透温度は単位:℃で示し、密度は単位:g/ccで示した。歪点(単位:℃)はJIS R 3103に従って測定した。

【0039】耐酸性は、90℃の0.1規定のHC1中に20時間浸漬後の単位面積あたりの重量減少量(単位:mg/cm²)で示した。耐酸性は0.3mg/cm²以下、特には0.2mg/cm²以下、であることが好ましい。

【0040】耐BHF性は、NH4 F/HF混液(40 重量%NH4 F水溶液と50重量%HF水溶液とを体積 比で9:1に混合した液)中に25℃で20分浸漬後の 単位面積あたりの重量減少量(単位:mg/cm²)で 示した。耐BHF性は0.7mg/cm²以下、特には $O.6mg/cm^2$ 以下、であることが好ましい。 【0041】TFT特性は、例1、2、10~12につ いて、測定した。すなわち、電極長さ10μmのポリシ リコンタイプTFTをガラス基板上に作成し、ゲート電 圧を-5V、ソース電圧を0V、ドレイン電圧を+10 Vとしたときのリーク電流(単位:pA)を測定した。 リーク電流は数pA程度以下であることが好ましい。 【0042】例1~10のガラスは、熱膨張係数は30 ~40×10⁻⁷/℃の低い値を示し、歪点は630℃以 上と高い値を示し、高温での熱処理に充分耐えられる。 密度も2.70g/cc未満で従来のコーニングコード 7059ガラスの2.76g/ccより小さい。化学的 特性に関してもBHFにより白濁を生じにくく、耐酸性 にも優れる。熔解の目安となる102 ポイズに相当する 温度も比較的低く熔解が容易であり、成形性の目安とな る104 ポイズに相当する温度と失透温度の関係も良好 で、成形時に失透が生成するなどのトラブルがないと考 えられる。

【0043】さらに、TFT特性については、リーク電流が10pA未満であり、近年のTFTの高集積化にも充分に耐えられる。

【0044】一方、例 $11\sim13$ は、リーク電流が十数 \sim 数+pA程度になっており、TFTが高集積化するに従って、問題となりうる。

0 [0045]

【表1】

6

7.				÷				8
例番号	1	2	3	4	5	6	7	8
SiO ₂ モル%	69. 0	69.0	67.0	70.0	68.0	70. 2	68.4	66.0
Al ₂ O ₈	11.0	11.0	13.0	10.0	12.0	12.0	11.2	12.0
B ₂ O ₃	8.0	8.0	8.0	8.0	9.0	9.8	7.1	7.0
Mg0	2.0	2.0	2.0	2.0	2.0	1.0	3.1	4.0
Ca0	0.0	2.0	2.0	2.0	1.0	2.0	1.0	2.0
Sr0	5.0	4.0	4.0	4.0	4.0	2.0	4.6	4.5
Ba0	5.0	4.0	4.0	4.0	4.0	3.0	4.6	4.5
Mg0+Ca0+Sr0+Ba0	12.0	12.0	12.0	12.0	11.0	8.0	13. 3	15.0
熱膨張係数	37	37	37	37	34	30	33	39
高温粘度								
102 ポイズ	1700	1730	1720	1740	1720	1780	1650	1720
104 ポイズ	1370	1360	1330	1360	1350	1370	1350	1300
失透温度	1320	1320	1320	1350	1310	1310	1320	1290
歪点	670	670	660	650	650	. 665	675	650
密度	2. 59	2.55	2. 56	2. 54	2. 53	2.42	2.61	2. 62
耐酸性	0.14	0.11	0.12	0.08	0. 24	0.28	0.09	0.08
耐BHF性	0.55	0.54	0. 55	0. 52	0. 51	0.49	0.53	0. 59
リーク電流	2	8						

[0046] 【表2】

例番号	9	10	1 1	1 2	1 3
SiO₂ モル%	65. 0	71.0	69.0	69.0	69.0
Al ₂ O ₃	13. 0	8.0	11.0	11.0	11.0
B ₂ O ₃	6.0	8.0	8.0	8.0	8.0
Mg0	4.0	1.0	2.0	2.0	0.0
CaO	2.0	0.0	4.0	6.0	8.0
Sr0	6.0	7.0	3.0	2.0	2.0
Ba0	4.0	5.0	3.0	2.0	2.0
MgO+CaO+SrO+BaO	16.0	13.0	12.0	12.0	12.0
熱膨張係数	39	40	36	35	37
高温粘度					
102 ポイズ	1700	1760	1740	1750	1760
10 ポイズ	1290	1320	1350	1340	1340
失透温度	1290	1240	1330	1300	1300
歪点	660	670	670	675	680
密度	2.65	2.62	2. 51	2.47	2. 49
耐酸性	0.07	0.06	0.10	0.10	0. 09
耐BHF性	0.60	0.51	0. 53	0. 53	0. 55
リーク電流			15	30	50

*【発明の効果】本発明によるガラスは、フロート法によ る成形が可能である。また、BHFによる白濁が生じに くく、耐酸性に優れ、耐熱性が高く、低い熱膨張係数を 有するのでディスプレイ用基板、フォトマスク基板とし て適する。特に、TFT特性に悪影響を与えにくいの で、、TFTタイプのディスプレイ基板等に好適であ 30 る。

[0048]

40

THIS PAGE BLANK (USPTO)