ALPIDE

Threshold Scans and Noise Occupancy

Maurice Donner

21. July 2020

Inject well-defined amount of charge in a selected number of pixels

- \rightarrow Then read out hits and repeat
 - Injections are performed multiple times per pixel
 - Use only a representative fraction of the Chip (~1-5%)

Parameters used:

For each charge point on the x-axis, perform 50 Injections, then plot hit probability. (S-Curve scan)

Example:

$$p_{\mathsf{Hit}}(q_{\mathsf{inj}}) = \frac{1}{2} \left(1 + \mathsf{Erf}\left[\frac{q_{\mathsf{inj}} - \mu}{\sqrt{2}\sigma} \right] \right)$$

 \leftarrow Corresponds to a threshold value of roughly 100 e^-

3/8

Maurice Donner ALPIDE 21. July 2020

Definition of Threshold:

The Threshold is the minimum amount of charge to be deposited inside the sensitive region of the chip to create a sufficiently strong signal in order for the readout electronics to register an event

On ALPIDE: Threshold is defined mainly by two parameters: VCASN and ITHR. While increasing ITHR increases the Threshold, augmenting VCASN decreases it.

Maurice Donner ALPIDE 21. July 2020 4 / 8

After Scan has completed: Distribution of Thresholds

- Extract mean of all pixels

The Plot shows Thresholds of pixels in DAC, where one DAC value corresponds to 10 electrons, i.e. most pixels will register a hit, if the charge injected is higher than 150 electrons

After Scan has completed: Distribution of Thresholds

The Plot shows Thresholds of pixels in DAC, where one DAC value corresponds to 10 electrons, i.e. most pixels will register a hit, if the charge injected is higher than 150 electrons

- Extract mean of all pixels
- Repeat with different settings and compare

Charge Threshold for different configurations of the main parameters VCASN and ITHR

101 -					
103 -					140.58 +- 4.62
105 -	74.23 +- 4.38	86.36 +- 4.59	98.3 +- 4.65		
107 -	65.75 +- 4.51	76.8 +- 4.59	87.49 +- 4.52	98.0 +- 4.57	
109 -	59.38 +- 4.53	69.71 +- 4.67	79.72 +- 3.93	89.4 +- 4.82	98.89 +- 4.4
112 -	52.21 +- 4.61	61.93 +- 4.54	71.25 +- 4.66	80.33 +- 4.46	89.14 +- 5.04
	60	70	80 ITHR	90	100

After Scan has completed: Distribution of Thresholds

The Plot shows Thresholds of pixels in DAC, where one DAC value corresponds to 10 electrons, i.e. most pixels will register a hit, if the charge injected is higher than 150 electrons

- Extract mean of all pixels
- Repeat with different settings and compare

Charge Threshold for different configurations of the main parameters VCASN and ITHR

	1				
101	105.84 +- 5.0			154.54 +- 4.87	170.44 + 5.72
103	86.33 +- 4.63				140.58 +- 4.62
105 N	74.23 +- 4.38	86.36 +- 4.59	98.3 +- 4.65		
NCASN 107	65.75 +- 4.51	76.8 +- 4.59	87.49 +- 4.52	98.0 +- 4.57	
109	59.38 +- 4.53	69.71 +- 4.67	79.72 +- 3.93	89.4 +- 4.82	98.89 +- 4.4
112	52.21 + 4.61	61.93 +- 4.54	71.25 +- 4.66	80.33 +- 4.46	89.14 +- 5.04
	60	70	80 ITHR	90	100

For cosmic muons at 50 GeV: Energy Deposit ~0.0286 MeV 7900 e-h-pairs

Noiseoccupancy Scan

Trigger the whole pixel matrix (!) without any input of charge, and return the number of hits.

• If Threshold is low enough for electronic noise to produce a hit, measurements taken will be affected by a fake hit rate.

6/8

Maurice Donner ALPIDE 21. July 2020

Noiseoccupancy Scan

Trigger the whole pixel matrix (!) without any input of charge, and return the number of hits.

 If Threshold is low enough for electronic noise to produce a hit, measurements taken will be affected by a fake hit rate.

Noiseoccupancy Scan

Trigger the whole pixel matrix (!) without any input of charge, and return the number of hits.

• If Threshold is low enough for electronic noise to produce a hit, measurements taken will be affected by a fake hit rate.

Enlarging the depletion zone by applying a Back-Bias voltage, will have a significant effect on Noise, as is typical for semiconductor detectors

Progress on Cosmics

Event Plotting

- Trying to create nice Looking (correctly scaled) 3D- Plots of cosmic tracks
- Writing an Event oranizer for the huge amount of measurements performed

Track analysis

 Fitting lines to cosmics to determine valid and invalid tracks

Plane Alignment

- Using Tracks to align the Telescope based on cosmic data
- Comparing results to Testbeam Data from 2019 and 2020
- Investigating differences in alignment after Transport

