CONVNET:

Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
	_			-1		_		
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
				-1	_	_		
				-1				
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

Filtering: The math behind the match

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.

Filtering: The math behind the match

Filtering: The math behind the match

$$\frac{1+1+1+1+1+1+1+1+1}{9} = 1$$

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

Pooling layer

A stack of images becomes a stack of smaller images.

Normalization

Keep the math from breaking by tweaking each of the values just a bit.

Change everything negative to zero.

Rectified Linear Units (ReLUs)

ReLU layer A stack of images becomes a stack of images with no negative values.

Learning

Q: Where do all the magic numbers come from? Features in convolutional layers Voting weights in fully connected layers

A: Backpropagation

Hyperparameters (knobs)

Convolution

Number of features

Size of features

Pooling

Window size

Window stride

Fully Connected

Number of neurons

Architecture

How many of each type of layer? In what order?

Time steps Intensity in each frequency band

Some ConvNet/DNN toolkits

<u>Caffe</u> (Berkeley Vision and Learning Center)

<u>CNTK</u> (Microsoft)

Deeplearning4j (Skymind)

TensorFlow (Google)

Theano (University of Montreal + broad community)

Torch (Ronan Collobert)

Many others