Utorok: 14:00

Vzorové riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **011100** (postupnosti sa môžu prekrývať, v tomto prípade 1010101 je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnot'te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Utorok: 14:00

Riešenie

Zadaná postupnosť: 011100

Prechodová tabuľka pre automat typu Moore

	Nový stav		Y	Čo je
stav	x=0	x=1		splnené?
S0	S 1	S0	0	Nič
S 1	S 1	S2	0	"0"
S2	S 1	S 3	0	"01"
S 3	S 1	S4	0	"011"
S4	S5	S0	0	"0111"
S5	S6	S2	0	"01110"
S6	S 1	S2	1	"011100"

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej):

Kódovanie stavov

		<u>z3</u>		
		z2		-
	S0	S1	S5	S4
z1	S2	S3	S6	X

Stav	Z1Z2Z3
S0	000
S 1	010
S2	100
S3	110
S4	001
S5	011
S6	111

Utorok: 14:00

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

	Nový		
stav	x=0	x=1	Y
000	010	000	0
010	010	100	0
100	010	110	0
110	010	001	0
001	011	000	0
011	111	100	0
111	010	100	1

Budiace fu

unkcie pro	e D preklápac	ie obvody (D-	PO) a výstupi	ná funkcia
			z 3	
		z 2		
	010	010	111	011
z 1	010	010	010	XXX
	110	001	100	XXX
X	000	100	100	000
•		D1,D2,1		'
		,		
			z 3	
		z2		
	0	0	1	0
z 1	0	0	0	X
	1	0	1	X
X	0	1	1	0
		D1	1	
			z3	
		z2		
	1	1	1	1
z 1	1	1	1	X
	1	0	0	X
X	0	0	0	0
		D2		
			z 3	
		z2		
	0	0	1	1
z 1	0	0	0	X
	0	1	0	X
X	0	0	0	0
_	_	D3		
			z3	
		z2		
	0	0	0	0
z 1	0	0	1	X
•		Y = Z1.	<i>Z</i> 3	

Utorok: 14:00

Budiace funkcie pre JK preklápacie obvody (JK-PO)

		0->0 0 0->1 1 1-> <u>0</u> X	K X X 1 0	
1	0	Z2 0	Z3	0
X Z1	0 X X 0	X X 1 $= X. Z2. \overline{Z3} + X$	X X 1	X X 0
		Z2	<u>Z3</u>	V
Z1 X	X 1 0 X	X	X	X X X
	1	$X1 = X.Z2.\overline{Z3}$ $Z2$	+ \bar{X} _Z3	
Z1	1	X X X	X X X	X X
X	0	X $J2 = \bar{X} + Z1$	Z3	0
Z1	X X X X	Z2 0 0 1	0 0	X X
X	X	K2 = X	1	X X
		Z2	Z3	_
Z1	0	0	X X X	X X X
	0	1	1 37	T 7

J3 = X.Z1.Z2

Utorok: 14:00

			Z3	
		Z 2		
_	X	X	0	0
Z1	X	X	1	X
	X	ΙX	1	X
X	X	X	1	1
		K3 = Z1 +	X	

Espresso

```
# Budiace funkcie J a K
J1 = (x&z2&!z3) | (z2&z3);
K1 = (x&z2&!z3) | (!x);

J2 = (!x) | (z1);
K2 = (x);
J3 = (x&z1&z2);
K3 = (z1) | (x);
```

Poznámka: Riešenia sú totožné s Espressom.

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = X.Z2.\overline{Z3} + Z2.Z3 = ((X \uparrow Z2 \uparrow (Z3 \uparrow)) \uparrow (Z2 \uparrow Z3))$$

$$K1 = X.Z2.\overline{Z3} + \overline{X} =$$

$$= ((X \uparrow Z2 \uparrow (Z3 \uparrow)) \uparrow (X \uparrow))$$

$$J2 = \overline{X} + Z1 = ((X \uparrow) \uparrow Z1)$$

$$K2 = X$$

$$J3 = X.Z1.Z2 = ((X \uparrow Z1 \uparrow Z2) \uparrow (X \uparrow Z1 \uparrow Z2))$$

$$K3 = Z1 + X = (Z1 \uparrow X)$$

$$Y = Z1.Z3 = ((Z1 \uparrow Z3) \uparrow (Z1 \uparrow Z3))$$

Vyjadrenie k počtu logických členov obvodu: 11 členov NAND a 3 preklápacie obvody JK Vyjadrenie k počtu vstupov do logických členov obvodu: 36 (24 v kombinačnej časti a 12 v pamäťovej časti).

Utorok: 14:00

Schéma:

Zhodnotenie

Ako prvé sme vytvorili prechodovú tabuľku a graf pre automat typu Moore. Následne sme tieto stavy kódovali. Navrhli sme budiace funkcie pre D preklápacie obvody (D-PO), výstupnú funkciu a budiace funkcie pre JK preklápacie obvody (JK-PO). Najprv sme mali na obvod navrhnuté vlastné riešenie avšak Espresso ponúklo lepšie riešenie. Podobali sa, ale pre lepšie prepojenie obvodov, sme si vybrali riešenie Espressa. Výslednú schému sme nakreslili v nástroji LOGISIM a otestovali podla stavov.