Introduction to language modelling

Marco Kuhlmann

Department of Computer and Information Science

Language modelling

- Language modelling is the task of predicting which word comes next in a sequence of words.
- More formally, given a sequence of words $w_1, ..., w_t$, we want to know the probability of the next word, w_{t+1} :

$$P(w_{t+1} \mid w_1, \dots, w_t)$$

• Here we are assuming that w_{t+1} comes from a fixed vocabulary V.

This allows language modelling to be treated as a classification task.

An alternative view on language models

- Rather than as predictive models, language models can also be viewed as models that assign probability to a piece of text.
 - How likely is it that this piece of text is written in Swedish? French?
- These two views are equivalent, as the probability of a sequence can be expressed as a product of conditional probabilities: *

$$P(w_1 \cdots w_N) = \prod_{t=1}^N P(w_t | w_1, \dots, w_{t-1})$$

* There are some subtleties here that we gloss over.

Language models for translation

Rank candidate translations for the following Chinese sentence:

他 向 记者 介绍了 主要 内容

he to reporters introduced main content

- he introduced reporters to the main contents
- he briefed to reporters the main contents
- he briefed reporters on the main contents

Evaluating language models

Intrinsic evaluation

How does the method or model score with respect to a given evaluation measure?

examples from text classification: precision and recall

Extrinsic evaluation

How much does the method or model help the application in which it is embedded?

predictive input, machine translation, speech recognition

- Intrinsic evaluation of language models is based on the likelihood that a model assigns to held-out data.
- Formally, we compute the cross-entropy between two probability distributions: a language model and the empirical distribution.
- This cross-entropy is usually presented as **perplexity**:

$$2^{-\frac{1}{N}\log_2 P(w_1\cdots w_N)}$$

Perplexity

Perplexity benchmarks

Model	Perplexity
Random guessing	33,278
Fixed-window bigram model (lab), 1 epoch	344
Fixed-window bigram model (lab), 2 epochs	333
Interpolated trigram model (advanced lab)	298
Recurrent neural network model (lab), 4 epochs	242
State-of-the art model (35M parameters)	40