TEAM ID: PNT2022TMID52372

Dataset has been downloaded and saved

Import required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding
from keras.optimizers import Adam
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
```

Read the Dataset

from keras.utils import pad_sequences
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping

```
In [ ]:

df = pd.read_csv('/content/spam.csv', delimiter = ',' , encoding = 'latin-1')
    df.head()

Out[ ]:
```

	v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
0	ham	Go until jurong point, crazy Available only	NaN	NaN	NaN
1	ham	Ok lar Joking wif u oni	NaN	NaN	NaN
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	NaN	NaN	NaN
3	ham	U dun say so early hor U c already then say	NaN	NaN	NaN
4	ham	Nah I don't think he goes to usf, he lives aro	NaN	NaN	NaN

Preprocessing the Dataset

le = LabelEncoder()
Y = le.fit transform(Y)

```
In []:
df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'],axis = 1,inplace = True)
In []:
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
In []:
X = df.v2
Y = df.v1
```

```
Y = Y.reshape(-1, 1)

In []:

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25)

In []:

max_words = 1000
max_len = 150
tok = Tokenizer(num_words = max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts to sequences(X train)
```

Create Model and Add Layers

```
In [ ]:
```

```
inputs = Input(shape=[max_len])
layer = Embedding(max_words,50,input_length=max_len)(inputs)
layer = LSTM(128)(layer)
layer = Dense(128)(layer)
layer = Activation('relu')(layer)
layer = Dropout(0.5)(layer)
layer = Dense(1)(layer)
layer = Activation('sigmoid')(layer)
model = Model(inputs=inputs,outputs=layer)
model.summary()
```

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 150)]	0
embedding (Embedding)	(None, 150, 50)	50000
lstm (LSTM)	(None, 128)	91648
dense (Dense)	(None, 128)	16512
activation (Activation)	(None, 128)	0
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 1)	129
activation_1 (Activation)	(None, 1)	0
		:========

sequences_matrix = pad_sequences(sequences, maxlen = max_len)

Total params: 158,289 Trainable params: 158,289 Non-trainable params: 0

Create Model

```
In [ ]:
```

```
model = RNN()
```

Compiling the Model

In []:

```
model.compile(loss='binary_crossentropy',optimizer=Adam(),metrics=['accuracy'])
```

Training the Model

Test set

Loss: 0.052 Accuracy: 0.989

```
In [ ]:
model.fit(
  sequences matrix,
  Y train,
  batch size = 128,
  epochs=10,
  validation split = 0.2,
  callbacks=[EarlyStopping(monitor = 'val loss', min delta = 0.0001)])
Epoch 1/10
- val loss: 0.0804 - val_accuracy: 0.9821
Epoch 2/10
- val_loss: 0.0843 - val_accuracy: 0.9821
Out[]:
<keras.callbacks.History at 0x7fcc62da8710>
Save the model
In [ ]:
model.save('Spam sms classifier.h5')
Test the model
In [ ]:
test sequences = tok.texts to sequences(X test)
test sequences matrix = pad sequences(test sequences, maxlen = max len)
In [ ]:
accr = model.evaluate(test sequences matrix, Y test)
In [ ]:
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accr[0],accr[1]))
```