

专业的投资工具 权威的财经资讯

表资理财首选新浪财经APP

科技首页

创事记

互联网

电信

IT业界

投稿

在我的世界打造一台计算机有多难? 复旦大神花了一年

2019-05-19 13:44:29 创事记 6 微博 作者:

作者简介

欢迎关注"创事记"微信订阅号: sinachuangshiji

文/栗子 晓查

来源:量子位 (ID:QbitAI)

一块小小的CPU里有多少个晶体管?几十亿个。

单枪匹马造出一个CPU乃至完整的电脑需要多长时间?有位大牛在《我的世界》游戏 里用实际行动回答了这个问题:可能要花费一年多。

这篇造计算机的教程一经转载就在知乎上火了。

在Minecraft中,造出一台计算机有多难?

我的世界 84% 知友推荐·9,442 人评价

Minecraft 是一款沙盒类独立视频游戏,官方中文译名为我的世界, ...

作者文章

马斯克发布脑机接口系统! 芯片直连大脑, 网 友炸了

这就是黑客帝国?

详细>>

推荐阅读

在世界表情包日提问: 年轻人为什么离不开表情

在第五个世界表情包日提 问:如果不用表情包,你还 能发信息么? 详细>>

这并不是一篇游戏攻略,而是来自复旦大学的**季文瀚**,写的一篇课程论文。他在大二时就有了大胆的设想,经过一年的精心营造,建起了一个计算机雏形,取名 Alpha21016。

虽然它不能与现实中的计算机相比,只能实现一些简单的功能,但这台计算机体积惊人,光看它复杂的结构就已经能感受工程量的巨大。

有网友感叹,发课程论文可惜了,简直可以发学术论文啊。

这台计算机能做什么

季文瀚计算机使用的是**哈佛结构**,而非更常见的冯·诺依曼结构。程序储存器和数据储存器分开放置。程序储存器1kb,数据储存器0.5kb。

它可以实现各种函数运算:加减乘除、三角函数还有矩阵运算。它包含一个16bit的CPU和一个32bit的浮点运算单元 (FPU)。

从硬件上看,它是个超大规模集成电路,逻辑门总数大概在5万-10万门之间。光是存储器堆叠起来就有8层。

上天保佑搞迷信的互联网人

当代互联网人最大的迷信, 难道不是我在哪个厂,哪个 厂风水就最好吗? 详细>>

独角兽也未能幸免,2019"阵亡"新经济公司大盘点

这是新经济公司最好的时代,也是最坏的时代。 详细 >>

十年前的今天, 贾君鹏没有回家吃饭

那一年,最年长的90后只有 19岁。 详细>>

新闻热榜

01 上天保佑搞迷信的互联网人

02 中国互联网公司亏损能力排行

03 2019阵亡新经济公司大盘点

04 十年前贾君鹏没有回家吃饭

05 全民 "网红梦" , 反噬年轻人

06 在快手上造飞机的人

07 半导体界的隐世老人

08 年轻人为什么离不开表情包?

09 自动驾驶路测争夺战升温

10 Libra大战美国国会

新浪科技意见反馈留言板

& 400-052-0066 欢迎批评指正

新浪简介 | 广告服务 | About Sina 联系我们 | 招聘信息 | 通行证注册

产品答疑 | 网站律师 | SINA English

Copyright © 1996-2019 SINA Corporation All Rights Reserved 新浪公司 版权所有

要造出这样一台计算机,数字电路、微机原理、汇编语言、编译原理都不能少。想想你挂过哪几门课,从学会到熟练运用就更难了。

有了专业知识的支持,就能将计算机拆解成基本的部件。

我们都知道计算机的基础是数字电路,数字电路的基础是"门",季文瀚用游戏里基本的"红石电路"搭建出了逻辑门。

从逻辑门出发,再搭建出组合电路、时序电路、触发器,有了这些就能组成CPU的一些基本单元,最终造出整个计算机。

现实世界中,晶体管是数字电路的基础;在《我的世界》中,红石电路是构成复杂电路的基本单元。

红石电路玩家,只用火把和方块,就能造出基本的**逻辑门**:或门和非门。或门和非门的组合可以造出与门、异或门等任意逻辑门。

但仅仅知道怎么制造逻辑门离造出计算机还很远,可能大致相当于造出汉字笔画到写出《红楼梦》的距离。

季文瀚先给自己的CPU架构画了一个草图:

其中每一个方框都代表一个或若干个硬件单元,小一点的大约一两百个门电路,大的 有几千个门电路。这个密密麻麻的部分,也只是架构的右半部分而已:

知道了CPU的基本架构,再按照架构图分别造出每个部分,比如CPU的重要模块"算数逻辑单元"(ALU)和"指令寄存器"(IR),工程量很大。

算数逻辑单元还能进一步拆解,它的加法器由数个全加器组成,上面基本的逻辑门可以组成加法器中最基本的**全加器**(下图)。

全加器也是计算机的一个核心部件。

同时,《我的世界》还提供的基于活塞机械的断路,用信号控制电路的通断,也就是继电器。利用继电器和逻辑门的组合可以造出存储器。

计算器→单片机→计算机

大概是因为太复杂,季文瀚一开始也没想直接搭个计算机。

最初,他的目标是造出一台16 bit的简单计算器。

但做到一半,他就觉得可以实现更复杂的东西,于是想改成**单片机**:这是具有"**图灵 完备性**",可以执行一切计算机程序的简单计算机。

他规划了指令集架构, 储存器架构, 以及指令发射方式等等。

后来,触发器、可读写储存器、缓冲队列等等重要电路,季文翰都设计成功了。

有了这些,少年又做了更雄伟的计划:做个16 bit的CPU。

CPU旁边,还有一个包含超越函数的单精度32 bit浮点处理器 (FPU)。

这里,**计算器**作为片外系统,并没有被抛弃。季文翰把16 bit计算器,改成了完全时序逻辑电路控制、且有溢出判断的计算器——这在Minecraft红石电路玩家里,已是**前所未有。**

它借用CPU的ALU部分进行运算,并经过总线传输数据。

CPU和计算器的大部分硬件,都在这张表格里:

英文名(缩写)	中文全称	特性
Program Counter	程序计数器	9bit, 最大寻址512单元, 支持指令跳转, 自动加1
MAR	储存器地址寄存器	9bit, 最大寻址512单元
MDR	储存器数据寄存器	16bit, 支持储存器读写数据
General Register	通用寄存器	暂定为12个
Address Decoder	地址译码器	将地址码译成储存器行列信号并控制储存器读写
Pre-Decoder	预译码器	第一级指令译码机制用于执行指令跳转和偏移
BPU	分支预测单元	为了减少流水线冒泡动态预测分支指令
Offset Address Unit	偏移地址单元	计算偏移地址输出至地址列队
Address Queue	地址队列	接受跳转地址并输出至PC
PC STACK	程序计数器栈区	用于部分指令如Call,Return弹压地址
Clock	时钟发生器	CPU总时钟信号发生器
Instruction Buffer	指令缓冲队列	3单元共6byte,支持指令按同一方向压入和弹出
Instruction Register	指令寄存器	接受指令缓冲队列弹出指令并送往指令译码器
Instruction Decoder	指令译码器	将指令译码并将时序控制信号输出至指令发射端
Issue Port	指令发射端	将信号分发至EU个单元的控制单元
Flag Register	标志位寄存器	暂时还未定共有多少标志位
Stack	栈	4个寄存器共8byte,支持弹压栈
ACC	累加器	储存X操作数以及部分ALU运算结果
Y Register	Y寄存器	储存Y操作数
Adder	整数加减法器	支持16bit带符号整数加减法
Multiplier	整数乘法器	支持16bit带符号整数乘法
Divider	整数除法器	支持16bit带符号整数除法
Logic Unit	布尔逻辑单元	支持按位与或非异或逻辑运算
Overflow Trap	乘法器溢出中断	有两个部分共同执行溢出判断输出至计算器和F&I
Sequential Control	除法器时序控制器	时序电路控制除法器运算推进避免电脑压力过大
INC&DEC	加一减一单元	ALU的一部分,用于加一减一循环指令
Shift Unit	移位器	可执行算数或逻辑左右移位-15至15位
OPU	乱序执行单元	在执行除法时将非数据相关指令并发
Data Bus	数据总线	折线状环形3D总线,由总线清存单元控制
BIOS	基本输入输出系统	计算机开机后首先控制显示器并输出信息的单元
FPU	浮点处理器	协处理器,目前已完工部分ALU
Faults & Interrupts	异常中断响应	发生异常时接管CPU并执行保护指令的单元
Calculator CU	计算器控制器	完全时序控制,交互式IO管理
Calculator Keyboard	计算器键盘	输入端和指令发射端
Input Register	输入寄存器	将操作数输入EU
Output Register	输出寄存器	将结果从EU输出
Keyboard Decoder	键盘译码器	接受计算器键盘信号并译码
Screen Control	显示器控制器	接受键盘译码器信号输出图像信息
BCD→BIN	BCD转BIN运算器	接受输入译码器的BCD码转化成BIN码输出
BIN→BCD	BIN转BCD运算器	接受EU的BIN码转化成BCD码输出至显示器
Instruction RAM	程序储存器	1kh 按字读写
Data RAM	数据储存器	512byte,按字或字节读写

表上的40个硬件,除了指令译码器、指令发射端、异常中断响应没有做完,其他都做好了。还有一些小的硬件单元没有列出来。

目前,CPU的ALU、主储存器、和寄存器等**EU部分**已经完工,内部环状总线已竣工, **CU部分**,也就是最繁琐的部分,还没有完工。

肉眼可见的威力

季文翰说,虽然还没完全竣工,但CPU已经可以执行许多种机器指令 (以MOV为主):通用寄存器赋值,按字/字节+立即数/间接/直接寻址。

其中,最容易用肉眼感受到威力的,还是借用CPU的ALU完成运算的**计算器。**

他在视频里展现了**加减乘除,正余弦**,以及**平方根**的计算。

从养着小猪的地方走楼梯下来,就是计算器的所在地了。这里有两排按钮,还有显示 屏,如上图。

屏幕后面,可以看到运转的电路。

先做加减乘除。比如加法:

减法也是同理。只不过,负号和减号在这里分成了两个按钮。

乘法和除法的运算量比较大:三位数乘三位数,大概需要20秒;除法更慢一些,电脑还会卡。

下图就是除法,因为打了**反除号**(\),所以被除数在右边。左下是商,右下是余数。

空间限制了算力,所以计算器要有**溢出判断**,超过 \pm 32627的范围就会报错,显示"E"。

不论是输入的数还是计算结果,超出范围都会报错:

除以"0",也会报错。

注意,计算机用二进制来计算,算好之后还要从二进制转成十进制,才是最终的答案。这里用到了**BCD/BIN**转换算法,把二进制BIN码,转成十进制BCD码。

四则运算做完了,还有**正余弦**,用的是Cordic旋转迭代算法:

需要多次迭代, 所以运算比较慢, 大概花了两分钟。

相比之下开根号就快许多,用的是快速平方根算法:

20秒 (就) 开好了。

计算能力就展示到这里。

而机智的你可能已经也感受到了,显示器对于一台计算机有多重要。那么:

显示器怎么做?

游戏空间太狭窄,造显卡是不现实的: 2×2个红石灯,就是游戏能控制的最小像素了。

所以,季文翰做了**字符显示器**。

首先,用**七段显示器**来表示数字。

△一个"日"字,是7根小棒组成的

比如, "4"就有左上、右上、中、右下,一共四根小棒。

每根小棒又由三个方块组成。把这些方块的活塞往回抽,就显示出凹陷的"4"了。

而每个十进制数,都可以对应二进制的四位数,比如3是0011,9是1001。输入二进制数,屏幕就能显示成十进制。

数字搞定了,还有其他字符。季文翰用了自己设计的缩减版ASCII码,只有不到64个字符:

J	56	:	48	÷	40	V	32	N	24	F	16	7	8	N	0
	57	11.00	49	= 1	41	W	33	0	25	G	17	8	9	0	1
	58	!	50	>	42	Х	34	P	26	Н	18	9	10	1	2
	59	?	51	<	43	Y	35	Q	27	Ι	19	A	11	2	3
	60	(52	1	44	Z	36	R	28	J	20	В	12	3	4
	61)	53	1	45	+	37	S	29	K	21	C	13	4	5
	62	"	54	9	46	-	38	T	30	L	22	D	14	5	6
=SD)	-33	[55		47	X	39	U	31	M	23	E	15	6	7

给每个字符编个号: 0, 1, 2, ..., 63。每个号码,都可以转成二进制数00000-1111111。

然后,显示出来长这样:

打开夜视, 萤火一般, 美不胜收。

其实,这些字是"印"在了显示器的键盘上,白天长这样:

也就是说, 计算机有了, 显示器有了, 键盘也有了。

而这样的杰作,居然来自一位"业余选手"。

"我学的不是计算机"

现在来回顾一下,从逻辑门到计算机,都要经历什么:

或门, 非门

→与门, 异或门

- →全加器,信号长度转换器,多态选择器,储存器单元,译码器单元,求补码单元,移位器单元
- →可读写储存器,译码器,加法器,移位器,时钟发生器
- →加减法器, 乘法器, 除法器, 可读写储存器阵列, 寄存器, 程序计数器
- →总线, ALU, CU
- →计算机

令人意外的是,造出这项复杂工程的季文瀚,是复旦大学2011级生命科学学院的本科生,没有受过系统地计算机科学专业教育。他说,看到国外玩家的作品很感兴趣,才自学了一些专业课。

大二便启动了Alpha21016计算机的开发,作为《网络虚拟环境与计算机应用》这门课的项目来做的。

从他对技术细节的解读来看,那时的季文翰,已经硬件和软件上拥有无比充分的准备。

普通人的话,可能了解逻辑电路的基础。**普通红石玩家**的话,可以把逻辑电路的基础知识,用来搭建简单或复杂的红石电路。

高阶红石玩家,也曾经在季文瀚的项目开始之前,造出过计算器。

但制造一台计算机,并没有多少人敢想。季文翰不但想到,还用了一整年去实现,几近完成。

毕竟,如果有个容量惊人的大脑,总归要拿来用的吧。

技术博客原文传送门:

http://blog.renren.com/blog/263123705/911088369

一期视频传送门:

 $https://v.youku.com/v_show/id_XNTkyNTg0NTEy.html\\$

二期视频传送门:

https://www.bilibili.com/video/av4221161/

新浪创事记公众号

汇聚行业犀利辣评(微信搜索sinochuangshiji或扫描二维码关注)

登录 | 注册

发布

相关新闻

冰箱是选择直冷冰箱还是风冷冰箱好? 对比一下才 直冷冰箱好还是风冷好

1.0万阅读

迷你世界:游戏卡顿怎么办?这三种问题,教你 轻松解决

6月22日 17:29 迷你世界

三星玄龙骑士G9显示器入手:体验VR一般的沉 浸

今天 15:31 三星

□ 4

1ms的VA屏? 144Hz曲面不到1干! HKC这波操作很6

6月28日 16:48 显示器 曲面 响应时间 高帧 刷新率

=

出售天猫店铺转让

天猫转让

4.7万阅读

[广告]

升级显卡需要关注的几个重点,缺一不可

6月28日 13:51 转接线 显卡接口 升级 显示器

还在买办公电脑主机? 你Out了!大家都是租 ,全新云..

便宜云主机

1.5万阅读

[广告]

不同玩家需求也各异? 微星的产品总有一款合适你

6月28日 09:51 微星 主板 散热 海皇 显示器

=

RTX显卡发布差不多两年了 有达到你的期待吗?

今天 01:09 NVIDIA GTX

券商股机构看好龙头券商股行情

券商股龙头股

2.5万阅读

广告

电脑显示器如何选?抓住这几个点就搞定了!

6月24日 19:28 面板 显示器 响应时间 刷新率 漏光

亲测!白开水里撒一把,排出"巨便",7天瘦到掉裤子

游戏加速新动力 GeForce GTX 1660 Super真香预警!

6月28日 15:03 显存 新动力 单元 规格 频率

=

家长多陪孩子"玩"这4种游戏,可提升孩子专注力,建议家长收藏

今天 10:22

=

办公游戏皆宜,GPD WIN max笔记本扩展您的世界

6月28日 18:26 扩展 插口 办公 游戏 移动办公

为2020欧洲杯做准备,海信超画质电视U7发布,这次有点不一样

6月27日 15:13 画质 海信 欧洲杯 体育赛事 爱好者

=

联合Liquid开发只为电竞打造 AW2521HFL显示器开箱

6月24日 17:05 电竞显示器

=

首发Tiger Lake! 宏碁发布新款 Swift 5 轻薄本: 6999元

三星Odyssey G9游戏显示器在全球推出 约售 11000元

6月24日 17:37 三星 显示器

=

NVIDIA成为目前唯一软硬件均支持 DX12 Ultimate的GPU厂商

6月24日 17:35 汽车技术 电影与游戏

=

聊聊关于电竞装备的那点事 助你快速制胜

6月24日 18:42 电竞 电竞游戏

双帆与雾洋: 腾讯TAD Sim 2.0的仿真大航海

6月24日 19:35 大航海 腾讯 仿真 自动驾驶 双帆

=

文旅新场景 | 兵马俑在线营业,欢迎来戳

6月24日 11:56 兵马俑 秦陵 秦文化 新文 博物院

=

泄露的微软文件和图像再次暗示Xbox拥有更多型号

6月26日 17:43 Xbox 微软

=

PS5主机强调"价值"而非"价格"体积变大是为了散热

6月22日 21:21 互联网+

=

畅享光追燃爆苏郡!iGame粉丝嘉年华苏州站 圆满落幕

6月24日 18:52 新冠肺炎

=

戴尔发布两款游戏显示器 兼容Nvidia G-Sync

6月24日 02:23 戴尔 G-Sync Nvidia

=

有意义的设计,设计师团队谈玄龙骑士G7和G9 的诞生

HKC疾风系列 SG27C144 Hz高刷 电竞体验很

6月22日 10:50 惠科

□ 3

=

戴尔宣布推一大批游戏硬件同时预告神秘的XPS 台式机

6月24日 01:23 戴尔 台式机

□ 1

悠悠把无声拍卖会当数字游戏,意外中奖乐坏悠 悠,关谷欲哭无泪

6月27日 17:34 关谷

=

漫步在嘈杂城市中你需要一个安静的dyplay耳

6月22日 15:01 TypeC 蓝牙

€ 8

从TRPG汲取养分

6月26日 18:44 赛博朋克2077

=

云哥玩狼人杀有自己的游戏逻辑!

6月25日 23:46 圭贤 厉旭

地下城手游预约破5000万,多少玩家会买账,6 月26日确定公测时间

6月25日 17:06 网游 地下城 公测

为big Navi让路? RX 5700 XT显卡首次跌破 400美元

6月21日 11:19 处理器 浮点 AMD GPU

游戏玩不上等急了? 《赛博朋克2077》官方数 字特典免费领取,解馋

6月25日 00:22 游戏评测 赛博朋克2077 steam

Ę

真香显示器? 小米显示器27英寸165Hz版体验

6月24日 14:23 小米

=

乘风破浪的海南,会成为年轻人的新选项吗

6月28日 22:41 海南

=

发现适合你的品质好货

[广告]

欢乐大作战来了! 欢乐集结号, 畅玩浴星 湖!!!

6月28日 22:31 星湖

=

iQOO又一款新机曝光,高刷新率+超大电池,你想要的它都有

6月23日 16:18 刷新率 电池 续航 游戏 骁龙

=

极致曲率 自由无拘!AOC V4系列让你感受全新"视界"

6月23日 10:04 曲率 视界 边框 显示器 支架

=

GET 啥是帧率和刷新率,才算对得起天天在刷的智能手机!

6月22日 11:07 刷新率 显示器 速率 图形卡 帧频

14.2mm单元+ 88ms延时, vivo TWS Neo这 波操作很稳

6月23日 15:16 单元 耳机 充电盒 皓月 音质

=

《托尼霍克职业滑板 1+2合集》公开了一段最 新的宣传视频……

6月24日 01:03

□ 5