$09\text{-}04\text{-}05\text{-}04\text{-}Matrix Theory}$

Created on 20241206.

Last modified on 2024 年 12 月 21 日.

目录

4 目录

Chapter 1 Overall

 $\begin{array}{c} {\rm Matrix\ Theory} \\ {\rm Augmented\ matrix} \end{array}$

Chapter 2 Matrix Space

2.0.1 Matrix

2.0.1.1 Defination

If we have a serious of x, we have a serious of b, like this:

$$A_{mn} \cdot X_{nt} = B_{mt} \Longrightarrow \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_{11} & \cdots & x_{1t} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nt} \end{bmatrix} = \begin{bmatrix} b_{11} & \cdots & b_{1t} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mt} \end{bmatrix}$$
(2.1)

The normal definition of the product of two matrix is as above.

2.0.1.2 Complex Matrices

2.0.1.2.1 Conjugate Transposition for matrix $C \in \mathbb{C}^{m \times n}$, we mark the Conjugate Transposition as C^H , where $c_{ji}^T = \overline{c}_{ij}$

in representation, C = A + iB. Usually 4 real matrix multiplications are needed to calculate (C + iD)(E + iF), actually 3 multiplications are enough. (C + iD)(E + iF) = (C + D)(E - F) + CF - DE + i(DE + CF)

2.0.1.3 Multiplication

There are 6 views sorting with the loop order, we fully understand that. for example, we can think the order jki(j is the outer, i is the inner) as follows

$$i: | \cdot = |$$
 $k: [|] | = \sum |$
 $j: [|] [|] = [|]$

$$(2.2)$$

We collect the 6 vews into one table as fallows.

Order innerLoop MiddleLoop dataAccess view comment S-S:dot rowV-M $oldsymbol{A}_{lpha:}, [oldsymbol{X}_{:eta}], oldsymbol{B}_{lpha:}$ $[-] \cdot [|||] = [-]$ ijk dot view → [S-S:dot M-columnV $[oldsymbol{A}_{lpha:}],oldsymbol{X}_{:eta},oldsymbol{B}_{:eta}$ $[\equiv] \cdot [\parallel] = [\parallel]$ dot view ↓→ jik $oldsymbol{A}_{lpha:}, [oldsymbol{X}_{eta:}], oldsymbol{B}_{lpha:}$ $[_]gaxpy[\equiv] = [_]$ ikj S-rowV:saxpy rowV-M:gaxpy useOfA → [$\begin{array}{c} [|||]gaxpy[|] = [|] \\ \sum [||outProd[_|] = \sum [\equiv] \end{array}$ jki colV-S:saxpy M-colV:gaxpy $[oldsymbol{A}_{:lpha}],oldsymbol{X}_{:eta},oldsymbol{B}_{:lpha}$ useOfB ↓→ $egin{aligned} oldsymbol{A}_{:lpha}, oldsymbol{X}_{eta:}, \sum oldsymbol{B}_{row} \ oldsymbol{A}_{:lpha}, oldsymbol{X}_{eta:}, \sum oldsymbol{B}_{col} \end{aligned}$ S-rowV:saxpy colV-rowV:outP on $A \mid outProd \rightharpoonup$ kij $\sum[|]outProd[_] = \sum[|||]$ colV-rowV:outP on $X \mid outProd \rightharpoonup$ kji colV-S:saxpy

Table 2.1: $A_{ik}X_{kj} = B_{ij}$

Table 2.2: $\boldsymbol{A}_{ik}\boldsymbol{X}_{kj} = \boldsymbol{B}_{ij}$

Order	InnerLoop	MiddleLoop	OuterLoop
ijk	(rowV, colV) = S	(rowV,[colV]) = rowV	collection
jik	(rowV, colV) = S	([rowV], colV) = rowV	collection
ikj	(S, colV) = colV	$(rowV, [colV]) = \sum colV$	collection
jki	(colV, S) = colV	$([colV], colV) = \sum colV$	collection
kij	(S, rowV) = rowV	(colV, rowV) = [rowV]	collection and $\sum [rowV]$
kji	(colV, S) = colV	(colV, rowV) = [colV]	collection and $\sum [colV]$

 $^{^{1}\}sum$ comes with k.

2.0.1.4 Transposition

Defination: $a_{ij}^T = a_{ji}$

Proposition 2.1.
$$(AB)^T = B^T A^T$$

Proof:
$$L = (a_{ik}b_{kj})^T = c_{ij}^T = c_{ji} = b_{jk}a_{ki} = R \square$$

Proposition 2.2. We take a look a the product with reflect $T: x \to T \cdot x$. $(Tx)^T Ty =$ $\boldsymbol{x}^T(\boldsymbol{T}^T\boldsymbol{T})\boldsymbol{y} = [(\boldsymbol{T}\boldsymbol{T}^T)\boldsymbol{x}]^T\boldsymbol{y}. \ 0 \leqslant \|\boldsymbol{T}\boldsymbol{T}^T\| < 1, \ \boldsymbol{T} \ is \ a \ contractive \ mapping.$

2.0.2operation

2.0.2.1 procuct

$$Ax = y$$

2.0.2.2 dot procuct AX = B

Focus on each element of B.

2.0.2.2.1 vector vector for vector, $x \cdot y = x^T y$,

¹ S for scalar, V for vector, M for matrix; colV for column vector; outP for out product.

 $[\]begin{array}{l} ^{2}\left[-\right]gaxpy[\equiv]=\left[-\right] \text{ is } \sum[\cdot]gaxpy[-]=\sum[-]. \\ ^{3}\left[|||]gaxpy[|]=\left[|\right] \text{ is } \sum[|]gaxpy[\cdot]=\sum[|]. \end{array}$

2.0.2.2.2 matrix matrix for matrix, this is the definition of the multiplication of the matrix, $A_{mn} * B_{mn} = [a_{ij} \cdot b_{ij}]_{mn}$

2.0.2.3 outer procuct AX = B

Focus on each element of X, with X is seperated as row by row.

2.0.2.3.1 vector vector
$$AX = B$$
 $xy^T := [x_i]_{m1} \cdot [y_j]_{1n} = [x_iy_j]_{mn}$

In row view, we have $i \to: \mathbf{A}_{i:} = x_i \cdot \mathbf{y}^T$, this notation means that for each i, we do the follows. And $\mathbf{A}_{i:}$ means the ith row of the row separation of \mathbf{A}

In column view, we have $j \to : \mathbf{A}_{:j} = \mathbf{x} \cdot y_j$

2.0.2.3.2 matrix matrix [|||]outerProduct[-] = [], we just sum each matrix M, where M = [||outerProduct[-]|.

$$X_{mk} \cdot Y_{kn} = k \rightarrow: outerProduct \ of(X_{:k}, Y_{k:})$$

We carefully focus on the use of each element of the matrix Y, like $A_{11}, A_{12}, A_{13}, \cdots$, we can see it is true.

2.0.2.3.3 question

Question 2.1. power function 001 solve $(xy^T)^k$. If k=1, easy. if k>1, and $=(y^Tx)^{k-1}xy^T$

Question 2.2. power function 002

solve $(\mathbf{X}\mathbf{Y}^T)^k, X, Y \in \mathbb{R}^{n \times 2}$. Same trick like power function 001.

2.0.2.4 saxpi

2.0.2.4.1 scalar scalar y = ax + y

2.0.2.4.2 scalar vector $y = a \cdot x + y$

2.0.2.4.3 matrix vector $y = A \cdot x + y$

2.0.2.4.3.1 view row: $[-] \cdot | = [-]$ This is the basic view of the dot product of the matrix. in view row first, we have:

Algorithm 1: saxpyMatrixVectorRowAlgo1

 $egin{aligned} ext{Input:} & A_{mn}, x, y \ ext{Output:} & y \end{aligned}$

1 Initialization: i = 0, j = 0;

2 for
$$i \leftarrow 0$$
 to $m-1$ do

3 | for
$$j \leftarrow 0$$
 to $n-1$ do
4 | $y_i \leftarrow A_{ij}x_j + y_i$
5 | end

6 end

7 return y;

We separate \mathbf{A} as row, $\mathbf{A}_{mn} = [\mathbf{r}_i^T, ...]^T$, the j range can be shinked, the algorithm is as follows. This means that, we operate each row at a time, and think each row is one whole object.

Algorithm 2: saxpyMatrixVectorRowAlgo2

Input: $A_{mn} = [r_i^T, ...]^T, x, y$

Output: y

- 1 Initialization: i = 0, j = 0;
- 2 for $i \leftarrow 0$ to m-1 do

$$y_i \leftarrow \boldsymbol{r}_i^T \cdot \boldsymbol{x} + y_i$$

4 end

5 return y;

2.0.2.4.3.2 view column: [|||]outerProduct[$_$] = [] $A_{mn}x = y$, we separate A column by column, x row by row, use outer product, focus on the use of x.

in column view, we add each column of A to the same output column to get the new y, and the weight of each column comes from each row of x

Algorithm 3: saxpyMatrixVectorColumnAlgo1

Input: A_{mn}, x, y

Output: y

- 1 Initialization: i = 0, j = 0;
- 2 for $j \leftarrow 0$ to n-1 do

$$egin{array}{c|cccc} \mathbf{3} & \mathbf{for} \ i \leftarrow 0 \ \mathbf{to} \ m-1 \ \mathbf{do} \\ \mathbf{4} & y_i \leftarrow A_{ij}x_j + y_i \\ \mathbf{5} & \mathbf{end} \end{array}$$

6 end

7 return y;

Also with column separation of $A_{mn} = [c_i, ...]$, we have the vector view algorithm:

Algorithm 4: saxpyMatrixVectorColumnAlgo2

Input: $A_{mn} = [c_i, ...], x, y$

Output: y

- 1 Initialization: i = 0, j = 0;
- 2 for $j \leftarrow 0$ to n-1 do
- $oldsymbol{y} \leftarrow oldsymbol{c}_i \cdot x_j + oldsymbol{y}$
- 4 end
- 5 return y;

2.0.3 properties

2.0.3.1 geometry properties

2.0.3.2 4 subspace

 $R(\mathbf{A})$: A 的列空间

N(A): A 的右零空间, 即满足 Ax = 0 的所有 x 在的空间

 $R(\mathbf{A}^T)$: A 的行空间

 $N(\mathbf{A}^T)$: A 的左零空间

Lemma 2.1.
$$N(A) = R(A^T)^{\perp}$$

 $\textit{proof: } \forall \boldsymbol{x} \in N(\boldsymbol{A}), \ \boldsymbol{\beta} \in R(\boldsymbol{A}^T), \ \textit{we have } \boldsymbol{x} \cdot \boldsymbol{\beta} = 0, \ \textit{which means that } \boldsymbol{x} \in R(\boldsymbol{A}^T)^{\perp}, \quad \Box.$

Chapter 3 Linear System

Normally, we consider vector space over the fields of real or complex numbers.

3.0.1 linear equation Ax = B

3.0.1.1 Defination

linear equation in n variables. $\sum_{i=1}^{i=n} a_i x^i = b$, which can be written as $\mathbf{a}^T \mathbf{x} = b$. We collect m equations and write like this:

$$\begin{bmatrix} \boldsymbol{a}_{1}^{T} \\ \vdots \\ \boldsymbol{a}_{m}^{T} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$(3.1)$$

Noticed that x_1 is only applied to the first column of the left matrix, we can say that \mathbf{x} is one point, or a specific composition, of the space spanned by the column vector of the matrix. Then it is easy to see that this equation has the solution, only if the vector \mathbf{b} is in the space spanned by the column vector of the matrix.

Or we can write like this:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

$$(3.2)$$

The equation Ax = b has solution, means y 可由 A 的列向量线性表出。

If b = 0, called homogeneous linear equations, homogeneous because 所有非 0 项是 1 次的。 if $b \neq 0$, it is inhomogeneous. 显然 0 向量 (zero solution, or trivial solution) 是一个解. A 的列向量正交,只有零解;若 A 的列向量线性相关,有多解,即可按多种方式回到原点。

3.0.1.2 Number of solution

3.0.1.2.1 非齐次线性 n 元线性方程组解的个数等解集结构的研究,期待在不求解的情况下有所了解,就需要研究系数矩阵表示的 n 维向量空间的性质。

构造增广矩阵 [A,b] 后,初等行变换化为阶梯型,如??所示,解的个数讨论。

Figure 3.1: [number of solution]

总共有 n+1 列, 下面 r 行都是 0.

(1)d=0, 即最后一个个主元在第 n+1 列, 即存在方程 0=1, 无解, no solution。

(2)d=1, 即最后一个个主元在第 n 列, 唯一解, one solution, $tr A_{mn}=m$ 。

(3)d > 1,即最后一个个主元在第 t 列,t < n。高度 R 所在的行号记为 r。有无穷个解。解可以这样写出,共 R 行,即 R 个主元,每个主元都用所在行的常数项 d 和 n-r 个自由元表示出来。

根据主元的构造过程, t 的列号一定大于等于 r。

当 A_{ii} 都是主元的时候, $d \neq 1$, $tr A_{mn} < m$, inifinity solution,最后一行是解的超平面方程,图中 d 是解的维度, $d = n - tr A_{mn}$,如 d 为 3,有 3 列独立的,即解空间是三维的。齐次方程组的未知数个数大于方程个数,有无数解。

 $\det \mathbf{A} = 0$, no solution, or infinite solution. $\det \mathbf{A} \neq 0$, one solution.

3.0.1.2.2 齐次线性 一定有 0 解,因而当有非 0 解时,有无穷个解。n 列时,系数矩阵的秩 r < n。

方程个数 s < n 时,由于 $r \le s < n$,易知有无穷个解。

3.0.2 solve equation

 $A_{mn}x = y$ 求解方法,如消元法、迭代法等。

3.0.2.1 elimination 消元法

3.0.2.1.1 Gaussian Elimination 基础步骤的 O(n) 的,但是最终组合起来就是 $O(n^3)$ 的。 利用初等变换化(同解变换)为"阶梯形(或称上三角形)". 从下往上回代。

阶梯型: 1) 0 行在下方; 2) 每行首个非 0 元的列号随行号增大而严格增大。

简化阶梯型: 1) 阶梯型; 2) 主元是 1; 3) 主元所在列其他元素是 0.

简化阶梯型后,可直接写出一般解,如下方程,其中主变量是 x_1,x_3 ,其余是自由未知量。

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
(3.3)

 $Ans: x_1 = x_2 + 2; x_3 = -1$

3.0.3 排列

3.0.3.0.1 偶排列 如 2431, 顺序对有 24, 23, 逆序对有 21, 43, 41, 31, 逆序数是 4, 记为 $\tau(2431) = 4$, 是偶数则为偶排列。

Lemma 3.1. 对换改变奇偶性, 如 2431 是偶排列, 对换 4 和 1 后得到的 2134 是奇排列。证明: 对换 ab,

若 ab 相邻:偏序函数原来查询 (ab),记为 P(a,b),对换后改为 P(b,a),反号,而 b 更后面的元素相关的查询不受影响,因而改变符号;

若 ab 不相邻: 记为 $ax_1\cdots x_tb$, 经过 t 次对换变为 $x_1\cdots x_tab$, 经过 t+1 次对换变为 $bx_1\cdots x_ta$, 即改变符号。若 ab 不相邻, 还可以这样考虑: 对换前后,与 a 和 b 有关的查询为 $(a,[x_i,b]),(x_i,b)$, 对换后即将其中 a 和 b 互换, 影响的查询共有 2t+1 个, 即改变符号。即证。

Chapter 4 Eigenvalue problem

4.0.1 Eigenvalue of Linear transformation

《矩阵理论-陈大新》

4.0.2 Eigenvalue of special matrix

《矩阵理论-陈大新》

4.0.3 最小多项式

《矩阵理论-陈大新》

4.0.4 圆盘定理

《矩阵理论-陈大新》

$Chapter \, 5 \quad polynomial$

因式分解定理, 多项式的根, 多元多项式。

$Chapter\, 6 \quad operation$

代数运算、分块运算、乘法、秩

Chapter 7 Transformation

坐标变换、像与核、特征向量、特征子空间、商空间 正交变换规范变换 酉相似

7.0.1 Elementary Transformation

初等变换。

- 1) 交换两行: $A \xrightarrow{(i,j)} B$
- 2) 某行乘以不为 0 的数: $\mathbf{A} \xrightarrow{\lambda(i)} \mathbf{B}$
- 3) 某行乘以不为 0 的数加到另一行上: $\mathbf{A} \xrightarrow{\lambda(i)+(j)} \mathbf{B}$ 初等矩阵: 单位矩阵执行一系列初等变换得到的矩阵. 初等变换作用于矩阵 \mathbf{A} , 等于初等变换作用于单位阵之后得到的初等矩阵 \mathbf{E} 再作用于 \mathbf{A} .

7.0.2 Linear Transformation

线性变换

7.0.3 Base Transformation

[Defination: similarity] Transformation Simplification

The motivation is about the base. Changing the bases of a transformation can help simplify the computation. We want to compute $\mathbf{y} = \mathbf{B}\mathbf{x}$, in current base, \mathbf{B} is difficult to compute, we have a simple transformation \mathbf{A} , and we want to find a good base transformation \mathbf{P} where we have $\mathbf{P}\mathbf{y} = \mathbf{A}\mathbf{P}\mathbf{x}$, therefore we have $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. If $\exists \mathbf{P}$, we note as $\mathbf{A} \sim \mathbf{B}$.

Lemma 7.1. If $A \sim B$, then $\lambda_A = \lambda_B$.

[Prove] We use the defination of λ_A , for \mathbf{x} , we have $\mathbf{PBP}^{-1}\mathbf{x} = \lambda_A\mathbf{x}$, which means $\mathbf{B}(\mathbf{P}^{-1}\mathbf{x}) = \lambda_A(\mathbf{P}^{-1}\mathbf{x}) = \lambda_B(\mathbf{P}^{-1}\mathbf{x})$ \square .

For the simpest A is diag.

$Chapter 8 \quad Orthogonal$

8.1 Orthogonal matrix

正交矩阵和酉矩阵

$$\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I}$$

which means, $\mathbf{A}^T = \mathbf{A}^{-1}$

For complex matrix, we use conjugate transpose, and note as Unitary matrix.

8.2 Orthogonal Bases

8.2.1 Gram-Schmidt Algorithm: GS 正交化

normalize a given set $\{\alpha_i\}$ to $\{\beta_i\}$, such that $\beta_i\beta_j = 0, \forall i, j, \text{ and } span\{\alpha_i\} = span\{\beta_i\}$

Algorithm 5: Algorithm Normalize:GS

Input: $\{\alpha_i\}$

Output: a normalized base $\{\beta_i\}$

- 1 $\beta_1 = \alpha_1$;
- 2 $\beta_2 = \alpha_2 k_1 \beta_1$;
- 3 let $\beta_1\beta_2=0 \Rightarrow k_1=\frac{\beta_1\alpha_2}{\beta_1\beta_1}$;
- 4 keep doing, we have

$$oldsymbol{eta}_k = oldsymbol{lpha}_k - \sum_{i=1}^k rac{oldsymbol{eta}_i oldsymbol{lpha}_k}{oldsymbol{eta}_i oldsymbol{eta}_i} oldsymbol{eta}_i$$

return $\{\beta_i\}$;

8.2.1.1 description

In 1907, Erhard Schmidt introduced an orthogonalization algoritm, and he claimed the procedure was essentially the same as a paper by J. P. Gram in 1883.

form an orthogonal sequence \mathbf{q}_n from a linearly independent sequence \mathbf{x}_n of members from inner-product space by defining \mathbf{q}_n inductively as:

$$m{q}_1 = m{x}_1, m{q}_n = m{x}_n - \sum_{k=1}^{n-1} rac{}{||m{q}_k||^2} m{q}_k, n \geqslant 2.$$

8.2.1.2 proof

the construction is like this, first we have $q_1 = x_1$, then $q_2 = x_2 - k_1 q_1$.

for now, we have $span(\boldsymbol{q}_1, \boldsymbol{q}_2) = span(\boldsymbol{x}_1, \boldsymbol{x}_2)$. With constraints $<\boldsymbol{x}_1, \boldsymbol{x}_2> = 0, k_1 = \frac{<\boldsymbol{q}_1, \boldsymbol{x}_n>}{||\boldsymbol{q}_1||^2}$. Keep doing, like

 $q_3 = x_3 - k_1 q_1 - k_2 q_2$. From the construction, we can see it is right.

数学归纳法 (Mathematical Induction, MI)

8.2.1.3 least squares problems

8.2.1.4 projection problem

8.2.1.5 example

8.2.1.6 exercises

8.2.2 Householder Reflection

point p, hyperplane with normal n, the reflection of p about the plane:

$$egin{aligned} oldsymbol{q} &= oldsymbol{p} - 2 < oldsymbol{p}, oldsymbol{n} > oldsymbol{n} \ &= (oldsymbol{I} - 2 oldsymbol{n} oldsymbol{n}^T) oldsymbol{p} \ &= oldsymbol{H} oldsymbol{p} \end{aligned}$$

 $m{H}$ is Householder matrix.

Lemma 8.1. *H* is orthogonal.

[prove]

$$(\boldsymbol{H})_{ij} = \begin{cases} -2n_i n_j, & i \neq j \\ 1 - 2n_i n_j, & i = j \end{cases}$$

we calculate $c = ((\frac{1}{2}\mathbf{H})(\frac{1}{2}\mathbf{H}^T))_{ij}$. For $i \neq j$, we have,

$$c = + (-n_i n_0)(-n_j n_0) + \cdots$$

$$+ (\frac{1}{2} - n_i n_i)(-n_j n_i) + \cdots$$

$$+ (-n_i n_j)(\frac{1}{2} - n_j n_j) + \cdots$$

$$+ (-n_i n_{n-1})(-n_j n_{n-1}) = 0$$

For i = j, we have,

$$c = + (-n_i n_0)(-n_i n_0) + \cdots$$

$$+ (\frac{1}{2} - n_i n_i)(\frac{1}{2} - n_i n_i) + \cdots$$

$$+ (-n_i n_{n-1})(-n_i n_{n-1}) = \frac{1}{4} \quad \Box.$$

8.2.3 Application

When we need the reflection collinear to the vector $\mathbf{e}_1 = [1, 0, \cdots, 0]^T$, the normal of the reflection superplane is

$$m{n} = rac{m{p} - ||m{p}||m{e}_1}{||m{p} - ||m{p}||m{e}_1||}$$

and

$$m{H_1}m{A} = egin{bmatrix} lpha_1 & & \cdots & \\ 0 & & \\ drain & m{A'_1} \\ 0 & & \end{bmatrix} = egin{bmatrix} lpha_1 & & \\ 0 & m{A''_1} \\ drain & \\ 0 & \cdots \end{bmatrix}$$

$$m{H}_k = egin{bmatrix} m{I}_{k-1} & 0 \ 0 & m{H}_k' \end{bmatrix}, m{T}_k = egin{bmatrix} m{I}_{k-1} & 0 \ 0 & m{H}_k'' \end{bmatrix}$$

where \mathbf{H}'_k is the Householder of \mathbf{A}'_k , it is obviously orthogonal. And we have $\mathbf{H}_n \cdots \mathbf{H}_1 \mathbf{A} = \mathbf{R}$, therefore we have the QR decomposition of \mathbf{A}

$$A = H_1^T \cdots H_n^T R = QR$$

We want to rewrite each line, we can apply a householder \mathbf{H} to $\mathbf{A}_k''^T$, and then transpolate the result, $(\mathbf{H}\mathbf{A}_k''^T)^T = \mathbf{A}_k''\mathbf{H}$, we mark the row-Householder as \mathbf{T} , and we have

$$H_n \cdots H_1 A T_2 \cdots T_n = B$$

where B is the bidiagonal, therefore,

$$oldsymbol{A} = oldsymbol{H}_1^T \cdots oldsymbol{H}_n^T oldsymbol{B} oldsymbol{T}_n^T \cdots oldsymbol{T}_2^T$$

.

$Chapter\,9\quad special\ matrix$

- 9.1 schur 定理
- 9.2 正规矩阵
- 9.3 实对称矩阵和 Hermite 矩阵

$Chapter\, 10 \quad Decomposition$

10.1 Transformation Decomposition

If we have $y = Bx = P^{-1}APx = U\Sigma U^Tx$, where U is rotation or reflection, Σ is scaling, the transformation is simplified.

10.2 Eigen Decomposition

For square matrix.

10.2.1 Defination by transformation

 $A = U\Sigma U^{-1}$, where U is rotation or reflection, Σ is scaling.

10.2.2 Defination by defination

For the given transformation A, if $\exists v, \lambda$, such that $Av = \lambda v$, and maybe we have some equations with different λ , we collect as λ as a diagonal matrix, and the equations as $AQ = Q\lambda$, where $Q = [v_0, \dots, v_{n-1}]$, therefore we have $A = Q\lambda Q^T$, we call this is the Eigen Decomposition of A.

10.3 QR

10.3.0.0.1 QR factorization the construction is like this:

$$[m{a}_1,m{a}_2,\cdots,m{a}_n] = [m{q}_1,m{q}_2,\cdots,m{q}_n] \cdot egin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \ & r_{22} & & \ & & \ddots & \ 0 & 0 & 0 & r_{nn} \end{bmatrix}$$

 \Box .

10.4 SVD: Singular Value Decomposition

10.4.1 Defination

When the matrix is not square, the form $A = U\Sigma V^T$.

Lemma 10.1. C is the Gram matrix of A, $\Sigma^2 = \lambda_C$

 $[Prove] \ oldsymbol{C} = oldsymbol{A}^T oldsymbol{A} = oldsymbol{V} oldsymbol{\Sigma} oldsymbol{U}^T oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T = oldsymbol{V} oldsymbol{\Sigma}^2 oldsymbol{V}^T$

10.4.2 Algorithm 1: QR

Algorithm 6: SVD:QR

Input: A_{mn}

Output: U, Σ, V

- 1 $C = A^T A$;
- **2** use symmetric QR: $C = V \Sigma^2 V^T$;
- з $oldsymbol{U} = oldsymbol{A} oldsymbol{V} oldsymbol{\Sigma}^{-1}$;
- 4 return U, Σ, V ;

Chapter 11 Form

11.0.1 Jordan

Jordan 型、根子空间分解、循环子空间、多项式矩阵相抵不变量、特征方阵与相似标准型

11.0.1.1 不变子空间

《矩阵理论-陈大新》

11.0.1.2 特征值全 0 矩阵的 Jordan 标准型

《矩阵理论-陈大新》

11.0.1.3 Jordan 标准型计算

11.0.2 二次

配方法构造、对称方阵的相合、相合不变量

Chapter 12 参考文献说明

《矩阵理论-陈大新》[?]: 好的观点的来源。