0.1 Linear Transformations

Definition : Let (U, \oplus, \odot) and (V, \boxplus, \boxdot) be two vector spaces over the **same** field $(\mathbb{F}, \bigoplus, \odot)$. Then the map $T : U \to V$ is said to be a linear transformation (map), if

$$T(u_1 \oplus u_2) = T(u_1) \boxplus T(u_2) \ \forall u_1, u_2 \in U$$
 and $T(\alpha \odot u) = \alpha \boxdot T(u) \ \forall u \in U,$ and $\forall \alpha \in \mathbb{F}$

Theorem : Let (U, \oplus, \odot) and (V, \boxplus, \boxdot) be two vector spaces over the **same** field $(\mathbb{F}, \textcircled{\oplus}, \textcircled{\odot})$. Then the map $T: U \to V$ be a linear transformation

- (i) $T(0_U) = 0_V$
- (ii) $T(\ominus u) = \exists v \text{ where } v = T(u)$
- (iii) $T(\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n) = \alpha_1 \boxdot T(u_1) \boxplus \alpha_2 \boxdot T(u_2) \boxplus \ldots \boxplus \alpha_n \boxdot T(u_n)$

In other words, a linear map T transforms the zero of U into the zero of V and the negative of every $u \in U$ into the negative of T(u) in V.

Proof:

(i) We know that, $\forall u \in U \Rightarrow T(u) \in V$ and additive inverse of T(u) in $V, \Rightarrow \Box T(u) \in V$

$$\begin{array}{rl} u &= u \oplus 0_U \\ \Rightarrow T(u) &= T(u \oplus 0_U) \\ T(u) &= T(u) \boxplus T(0_U) \end{array}$$

Adding $\exists T(u) \in V$ (additive inverse of T(u)) both the sides (from left), we get,

Hence linear map T maps the zero of U into the zero of V.

(ii) We know that $\ominus u \oplus u = 0_U$ also from (i) part, $T(0_U) = 0_V$. Therefore, we have,

$$T(0_U) = T(\ominus u \oplus u)$$

 $\Rightarrow 0_V = T(\ominus u) \boxplus T(u)$

Adding $\exists T(u) \in V$ (additive inverse of T(u)) both the sides (from right), we get,

$$\begin{array}{ll} \Rightarrow 0_{V} \boxminus T(u) &= T(\ominus u) \boxminus T(u) \boxminus T(u) \\ \Rightarrow \boxminus T(u) &= T(\ominus u) \boxminus (T(u) \boxminus T(u)) \\ \Rightarrow \boxminus T(u) &= T(\ominus u) \boxminus 0_{V} \\ \Rightarrow \boxminus T(u) &= T(\ominus u) \end{array}$$

Hence, a linear map T transforms the negative of every $u \in U$ into the negative of T(u) in V.

(iii) From definition of T we know that,

$$T(\alpha \odot u) = \alpha \boxdot T(u)$$

and using the property

$$T(\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2) = \alpha_1 \boxdot T(u_1) \boxplus \alpha_2 \boxdot T(u_2)$$

Complete the proof by finite mathematical induction.

Remark In view of (iii), we get a standard technique of defining a linear transformation T on a finite-dimensional vector space. Suppose $B = \{u_1, u_2, \dots u_n\}$ is a basis for U. Then any vector $u \in U$ can be expressed uniquely in the form

$$u = \alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n$$

So, if $T: U \to V$ is a linear map, then

$$T(u) = T(\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n)$$

= $\alpha_1 \boxdot T(u_1) \boxplus \alpha_2 \boxdot T(u_2) \boxplus \ldots \boxplus \alpha_n \boxdot T(u_n).$

Thus T(u) is known as soon as $T(u_1), T(u_2), \ldots, T(u_n)$ are known. This is formalized in the following theorem.

Theorem A linear transformation T is completely determined by its values on the elements of a basis. Precisely, if $B = \{u_1, u_2, \ldots, u_n\}$ is an ordered basis for U and v_1, v_2, \ldots, v_n be n vectors (not necessarily distinct) in V, then there exists a unique linear transformation $T: U \to V$ such that $T(u_i) = v_i$ for $i = 1, 2, \ldots, n$.

Proof: Let $u \in U$. Then u can be expressed uniquely in the form

$$u = \alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n$$

We define

$$T(u) = \alpha_1 \boxdot v_1 \boxplus \alpha_2 \boxdot v_2 \boxplus \ldots \boxplus \alpha_n \boxdot v_n.$$

We now claim that this transformation T is the required transformation. To prove our claim, we have to show that

- (i) T is linear
- (ii) T satisfies $T(u_i) = v_i$ for i = 1, 2, ..., n, and
- (iii) T is unique.
 - (ii) is obvious, since

$$u_i = 0 \odot u_1 \oplus 0 \odot u_2 \oplus \ldots \oplus 0 \odot u_{i-1} \oplus 1_{\mathbb{F}} \odot u_i \oplus 0 \odot u_{i+1} \oplus \ldots \otimes u_n$$

and so

$$T(u_i) = 1_{\mathbb{F}} \boxdot v_i = v_i \ \forall i$$
.

(iii) follows, because if there were another such linear map S with $S(u_i) = v_i$, then

$$S(u) = S(\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n)$$

= $\alpha_1 \odot S(u_1) \boxplus \alpha_2 \odot S(u_2) \boxplus \ldots \boxplus \alpha_n \odot S(u_n).$
= $\alpha_1 \odot v_1 \boxplus \alpha_2 \odot v_2 \boxplus \ldots \boxplus \alpha_n \odot v_n$
= $T(u).$

This is true for every $u \in U$. $\Rightarrow S = T$

It only remains to prove (i), which is just a verification of the two relations

$$T(u \oplus v = T(u) \boxplus T(v) \text{ and } T(\alpha \odot u) = \alpha \boxdot T(u)$$

for arbitrary $u, v \in U$ and all scalars α in \mathbb{F} .

Let $u, v \in U$. Then

$$u = \alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n$$

$$v = \beta_1 \odot u_1 \oplus \beta_2 \odot u_2 \oplus \ldots \oplus \beta_n \odot u_n,$$

and we have

$$u \oplus v = (\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n) \oplus (\beta_1 \odot u_1 \oplus \beta_2 \odot u_2 \oplus \ldots \oplus \beta_n \odot u_n)$$
$$= (\alpha_1 \bigoplus \beta_1) \odot u_1 \oplus (\alpha_2 \bigoplus \beta_2) \odot u_2 \oplus \ldots \oplus (\alpha_n \bigoplus \beta_n) \odot u_n$$

Hence, by the definition of T, we have

$$T(u \oplus v) = (\alpha_1 \bigoplus \beta_1) \odot v_1 \oplus (\alpha_2 \bigoplus \beta_2) \odot v_2 \oplus \ldots \oplus (\alpha_n \bigoplus \beta_n) \odot v_n \oplus$$

Also,

$$T(u) \boxplus T(v) = (\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n) \boxplus (\beta_1 \odot v_1 \oplus \beta_2 \odot v_2 \oplus \ldots \oplus \bigoplus \beta_n \odot v_n)$$
$$= (\alpha_1 \bigoplus \beta_1) \odot v_1 \oplus (\alpha_2 \bigoplus \beta_2) \odot v_2 \oplus \ldots \oplus (\alpha_n \bigoplus \beta_n) \odot v_n$$

Therefore,

$$T(u \oplus v) = T(u) \boxplus T(v).$$

Again,

$$T(\alpha \odot u) = T(\alpha \odot (\alpha_1 \odot u_1 \oplus \alpha_2 \odot u_2 \oplus \ldots \oplus \alpha_n \odot u_n))$$

$$= T((\alpha \odot \alpha_1) \odot u_1 \oplus (\alpha \odot \alpha_2) \odot u_2 \oplus \ldots \oplus (\alpha \odot \alpha_n) \odot u_n)$$

$$= (\alpha \odot \alpha_1) \boxdot v_1 \boxplus (\alpha \odot \alpha_2) \boxdot v_2 \boxplus \ldots \boxplus (\alpha \odot \alpha_n) \boxdot v_n$$

$$= \alpha \boxdot (\alpha_1 \boxdot v_1 \boxplus \alpha_2 \boxdot v_2 \boxplus \ldots \boxplus \alpha_n \boxdot v_n)$$

$$= \alpha \boxdot T(u)$$

Definition Let (U, \oplus, \odot) and (V, \boxplus, \boxdot) be two vector spaces over the **same** field $(\mathbb{F}, \textcircled{\oplus}, \textcircled{\odot})$ and $T: U \to V$ be a linear transformation.

The kernel (null space) of T is the set $N(T) = \{u \in U | T(u) = 0_V\}$. It is also denoted as kerT. In other words, N(T) is the set of all those elements in U that are mapped by T into the zero of V. i.e the T-pre-image of 0_V . The Range space of T is the set $R(T) = \{T(u) \in V | u \in U\}$.

Example: Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} x_1 - x_2 \\ x_1 + x_3 \end{array} \right]$. In this case R(T) consists of vectors of the form

 $\left[\begin{array}{c} x_3 \\ x_1 - x_2 \\ x_1 + x_3 \end{array}\right].$ We want to determine the vectors of \mathbb{R}^2 that are of this form. For this, take vector $\left[\begin{array}{c} a \\ b \end{array}\right] \in \mathbb{R}^2$ and solve the equation

$$\left[\begin{array}{c} x_1 - x_2 \\ x_1 + x_3 \end{array}\right] = \left[\begin{array}{c} a \\ b \end{array}\right]$$

This means $x_1 - x_2 = a$ and $x_1 + x_3 = b$. Solving these, we get $x_2 = x_1 - a$, $x_3 = b - x_1$. Hence, $T \begin{bmatrix} x_1 \\ x_1 - a \\ b - x_1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$.

This shows that every vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$ is in R(T). In other words, $R(T) = \mathbb{R}^2$. So this is an onto map.

To determine the kernel, we solve the equation $T\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_1 + x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. This gives $x_1 = x_2 = -x_3$, i.e. all vectors

of the form $\left[\begin{array}{c} x_1 \\ x_1 \\ -x_1 \end{array} \right] \text{ will be mapped into zero. So } N(T) = \left\{ \left(\begin{array}{c} x_1 \\ x_1 \\ -x_1 \end{array} \right) \ \middle| \ x_1 \in \mathbb{R} \right\} = \left[\left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right) \right] \Rightarrow dim(N(T)) = 1$

. This is the subspace of \mathbb{R}^3 generated by $\left[\begin{array}{c} 1\\1\\-1\end{array}\right]$.