Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa

Equações Diofantinas I

Exemplo 1. Em Gugulândia, o jogo de basquete é jogado com regras diferentes. Existem apenas dois tipo de pontuações para as cestas: 5 e 11 pontos. É possível um time fazer 39 pontos em uma partida?

Sejam x e y os números de cestas de 5 e 11 pontos, respectivamente. O problema se resume em descobrirmos se existem inteiros não negativos x e y tais que 5x + 11y = 39. Ao invés de testarmos os valores de x e y, somemos 11 + 5 em ambos os lados da equação:

$$5(x+1) + 11(y+1) = 55.$$

Como 5 | 55 e 5 | 5(x+1), segue que 5 | 11(y+1) e, com mais razão, 5 | y+1 pois mdc(5,11)=1. Do mesmo modo, $11 \mid x+1$. Assim,

$$55 = 5(x+1) + 11(y+1) \ge 5 \cdot 11 + 11 \cdot 5 = 110,$$

pois $x+1,y+1\geq 1$. Obtemos uma contradição.

Exemplo 2. Qual o menor inteiro positivo m para o qual todo número maior que m pode ser obtido como pontuação no jogo de basquete mencionado anteriormente?

Como já sabemos que 39 não é possível, é natural começarmos procurando os números maiores que 39 que não podem ser pontuações. Veja que:

$$40 = 5 \cdot 8 + 11 \cdot 0$$

$$41 = 5 \cdot 6 + 11 \cdot 1$$

$$42 = 5 \cdot 4 + 11 \cdot 2$$

$$43 = 5 \cdot 2 + 11 \cdot 3$$

$$44 = 5 \cdot 0 + 11 \cdot 4$$

Ao somarmos 5 a cada uma dessas representações, obteremos representações para os próximos 5 números. Repetindo esse argumento, poderemos escrever qualquer número maior que 39 na forma 5x + 11y com x e y inteiros não negativos. Concluímos assim que m = 39. Poderíamos mostrar que todo número maior que 44 é da forma 5x + 11y com x e y inteiros não negativos de outro modo. Se n > 44, considere o conjunto:

$$n-11\cdot 0, n-11\cdot 1, n-11\cdot 2, n-11\cdot 3, n-11\cdot 4.$$

Como mdc(11,5)=1, o conjunto anterior é um sistema completo de restos módulo 5 e consequentemente existe $y \in \{0,1,2,3,4\}$ tal que

$$n - 11 \cdot y = 5x$$

Como n > 44, segue que x > 0.

Exemplo 3. Quais e quantos são os inteiros positivos n que não podem ser obtidos como pontuação nesse jogo de basquete?

Precisaremos relembrar um teorema da aula 03:

Teorema 4. (Bachet-Bèzout) Se d = mdc(a,b), então existem inteiros x e y tais que

$$ax + by = d$$
.

A primeira observação que fazemos é que uma vez encontrados inteiros x e y, qualquer múltiplo de d pode ser representado como uma combinação linear de a e b:

$$a(kx) + b(ky) = kd.$$

Isso é particularmente interessante quando mdc(a,b)=1, onde obtemos que qualquer inteiro é uma combinação linear de a e b. Veja que isso não entra em conflito com os exemplos anteriores pois os inteiros x e y mencionados no teorema podem ser negativos.

A próxima propopsição conterá o que procuramos:

Proposição 5. Todo inteiro positivo k pode ser escrito(de modo único) de uma e, somente uma, das seguintes formas:

$$11y - 5x$$
, ou $11y + 5x$, com $0 \le y < 5$ e $x \le 0$

Pelo teorema de Bachet-Bèzout, existem m e n tais que 5m + 11n = 1. Sejam q e r o quociente e resto da divisão de kn por 5, i.e., kn = 5q + r, $0 \le r < 5$. Assim,

$$k = 5(km) + 11(kn)$$

$$= 5(km) + 11(5q + r)$$

$$= 5(km + 11q) + 11r.$$

Basta fazer x = km + 11q e r = y.

Para ver a unicidade, suponha que $11m \pm 5n = 11a \pm 5b$ com $0 \le m, a < 5$. Então $11(m-a) = 5(\pm b \pm n)$. Usando que mdc(11,5) = 1, segue que $5 \mid m-a$. A única opção é termos m=a pois o conjunto $\{0,1,2,3,4\}$ é um scr. Consequentemente $\pm 5n = \pm 5b$ e n=b.

Sendo assim, os elementos do conjunto

$$B(5,11) = \{11y - 5x \in \mathbb{Z}_+^*; 0 \le y < 5 \text{ e } x > 0\}$$

constituem o conjunto das pontuações que não podem ser obtidas. Seus elementos são:

$$y = 1 \Rightarrow 11y - 5x = 1,6$$

 $y = 2 \Rightarrow 11y - 5x = 2,7,12,17$
 $y = 3 \Rightarrow 11y - 5x = 3,8,13,18,23,28$
 $y = 4 \Rightarrow 11y - 5x = 4,9,14,19,24,29,34,39$

A quantidade de tais inteiros é

$$20 = \frac{(5-1)}{2} \cdot \frac{(11-1)}{2}.$$

Vale o resultado geral:

Proposição 6. Dados os inteiros positivos a e b com mdc(a,b) = 1, existem exatamente

$$\frac{(a-1)}{2} \cdot \frac{(b-1)}{2}$$

números inteiros não negativos que não são da forma $ax + by com x, y \ge 0$.

Provaremos tal resultado em uma aula futura fazendo o uso da função parte inteira.

Exemplo 7. Suponha agora que as pontuações das cestas do basquete de Gugulândia tenham mudado para a e b pontos com 0 < a < b. Sabendo que existem exatamente 35 valores impossíveis de pontuações e que um desses valores é 58, encontre a e b.

Perceba que devemos ter mdc(a,b)=1 pois caso contrário qualquer valor que não fosse múltiplo de mdc(a,b) não seria uma pontuação possível e sabemos que existe apenas um número finito de tais valores. Em virtude da proposição anterior, $(a-1)(b-1)=2\cdot 35=70$. Analisemos os possíveis pares de divisores de 70 tendo em mente que a < b:

$$(a-1)(b-1) = 1 \cdot 70 \Rightarrow (a,b) = (2,71)$$

 $(a-1)(b-1) = 2 \cdot 35 \Rightarrow (a,b) = (3,36)$
 $(a-1)(b-1) = 5 \cdot 14 \Rightarrow (a,b) = (6,15)$
 $(a-1)(b-1) = 7 \cdot 10 \Rightarrow (a,b) = (8,11)$

Não podemos ter (a, b) = (2, 71) pois $58 = 2 \cdot 29$. Excluindo os outros dois casos em que $mdc(a, b) \neq 1$, temos a = 8 e b = 11.

A equação ax+by=c é um exemplo de uma equação diofantina, i.e., uma equação em que buscamos valores inteiros para as variáveis. Tais equações recebem esse nome em homenagem ao matemático grego Diofanto.

Exemplo 8. Determine todas as soluções inteiras da equação 2x + 3y = 5.

Por paridade, 3y é ímpar, donde y = 2k + 1 para algum inteiro k. Daí,

$$x = \frac{5 - 3(2k + 1)}{2} = 1 - 3k,$$

e consequentemente todas as soluções da equação são da forma (x, y) = (1 - 3k, 2k + 1).

Exemplo 9. Determine todas as soluções inteiras da equação 5x + 3y = 7.

Analisando agora módulo 3, $5x \equiv 7 \equiv 1 \pmod{3}$. Essa condição impõe restrições sobre o resto de x na divisão por 3. Dentre os possíveis restos na divisão por 3, a saber $\{0,1,2\}$, o único que satisfaz tal congruência é o resto 2. Sendo assim, x é da forma 3k + 2 e

$$y = \frac{7 - 5(3k + 2)}{3} = -1 - 5k,$$

consequentemente, todas as soluções da equação são da forma (x,y)=(3k+2,-1-5k).

Notemos que para a solução da congruência x=2, obtemos a solução (x,y)=(2,1) da equação. Baseado nesses exemplos, é natural imaginarmos que conhecendo uma solução da congruência consigamos descrever todas as outras.

Teorema 10. A equação ax + by = c, onde a, b, c são inteiros, tem uma solução em inteiros (x, y) se, e somente se, d = mdc(a, b) divide c. Nesse caso, se (x_0, y_0) é uma solução, então os pares

$$(x_k, y_k) = \left(x_0 + \frac{bk}{d}, y_0 - \frac{ak}{d}\right), \quad k \in \mathbb{Z}$$

são todas as soluções inteiras da equação.

Dada a discussão anterior, resta apenas encontrarmos a forma das soluções. Se (x, y) é outra solução, podemos escrever:

$$ax + by = ax_0 + by_0$$

$$a(x - x_0) = b(y_0 - y)$$

$$\frac{a}{d}(x - x_0) = \frac{b}{d}(y_0 - y)$$

Como mdc(a/d, b/d) = 1, temos $b/d \mid x - x_0$ e assim podemos escrever $x = x_0 + bk/d$. Substituindo na equação original obtemos $y = y_0 - ak/d$.

Exemplo 11. Encontre todas as soluções inteiras da equação 21x + 48y = 6

O sitema é equivalente à 7x + 16y = 2. Uma solução é (x, y) = (-2, 1). Pelo teorema anterior, todas as soluções são da forma:

$$(x_k, y_k) = (-2 + 16k, 1 - 7k).$$

Exemplo 12. Resolva nos inteiros a equação 2x + 3y + 5z = 11

Podemos transformar esse problema isolando qualquer uma das variáveis no problema que já sabemos resolver. Por exemplo, podemos resolver 2x + 3y = 11 - 5z. Supondo z fixo, podemos encontrar a solução particular (x,y) = (4-z,1-z). Assim, todas as soluções são da forma:

$$(x,y) = (4-z+3k, 1-z-2k),$$

ou seja, as soluções da equação original são da forma (x, y, z) = (4 - z + 3k, 1 - z - 2k, z) com k e z inteiros.

Vamos estudar agora alguns outros exemplos de equações diofantinas não lineares:

Exemplo 13. Prove que a equação $2^n + 1 = q^3$ não admite soluções (n,q) em inteiros positivos.

É facil ver que a equação não admite soluções se n=1,2,3. Assim, podemos supor que n>3. Fatorando, temos:

$$(q-1)(q^2+q+1) = 2^n$$
,

e consequentemente q=2 ou q=2k+1, para algum $k\in\mathbb{N}$. Claramente, q=2 não produz solução. Então q=2k+1 e $q^3-1=8k^3+12k^2+6k$ é uma potência de 2, maior ou igual a 16. Entretanto:

$$8k^3 + 12k^2 + 6k = 2k(4k^2 + 6k + 3).$$

não é uma potência de 2, pois $4k^2 + 6k + 3$ é ímpar. Assim, a equação $2^n + 1 = q^3$ não admite soluções inteiras positivas.

Exemplo 14. (URSS 1991) Encontre todas as soluções inteiras do sistema $\begin{cases} xz - 2yt = 3 \\ xt + yz = 1. \end{cases}$

Uma boa estratégia será aplicar alguma manipulação algébrica, como somar as equações, multiplicá-las, somar um fator de correção, entre outras para obtermos alguma fatoração envolvendo esses números. Nesse problema, vamos elevar ambas as equações ao quadrado.

$$\left\{ \begin{array}{ll} x^2z^2 - 4xyzt + 4y^2t^2 & = & 9 \\ x^2t^2 + 2xytz + y^2z^2 & = & 1. \end{array} \right.$$

Multiplicando a segunda por dois e somando com a primeira, temos:

$$x^{2}(z^{2} + 2t^{2}) + 2y^{2}(z^{2} + 2t^{2}) = 11$$

 $(x^{2} + 2y^{2})(z^{2} + 2t^{2}) = 11.$

Como cada uma das parcelas acima é um inteiro não-negativo, temos dois casos:

$$\begin{cases} x^2 + 2y^2 &=& 11 \\ z^2 + 2t^2 &=& 1 \end{cases} \Rightarrow (x, y, z, t) = (\pm 3, \pm 1, \pm 1, 0).$$
 ou
$$\begin{cases} x^2 + 2y^2 &=& 1 \\ z^2 + 2t^2 &=& 11 \end{cases} \Rightarrow (x, y, z, t) = (\pm 1, 0, \pm 3, \pm 1).$$

Logo, as únicas soluções possíveis são as quádruplas $(\pm 1, 0, \pm 3, \pm 1)$ e $(\pm 3, \pm 1, \pm 1, 0)$.

Problemas Propostos

Problema 15. Encontre todas as soluções de 999x - 49y = 5000.

Problema 16. Encontre todos os inteiros x e y tais que 147x + 258y = 369.

Problema 17. Encontre todas as soluções inteiras de 2x + 3y + 4z = 5.

Problema 18. Encontre todas as soluções inteiras do sistema de equações:

$$20x + 44y + 50z = 10$$
$$17x + 13y + 11z = 19.$$

Problema 19. (Torneio das Cidades 1997) Sejam a,b inteiros positivos tais que $a^2 + b^2$ é divisível por ab. Mostre que a = b.

Problema 20. Encontre uma condição necessária e suficiente para que

$$x + b_1 y + c_1 z = d_1$$
 e $x + b_2 y + c_2 z = d_2$

tenham pelo menos uma solução simultanea em inteiros x, y, z, assumindo que os coeficientes são inteiros com $b_1 \neq b_2$.

Problema 21. (AMC 1989) Seja n um inteiro positivo. Se a equação 2x + 2y + n = 28 tem 28 soluções em inteiros positivos x, y e z, determine os possíveis valores de n.