Neural Network Architectures

Putting everything together

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #DeepLearning

Table of Contents

- Architectures: review
- Transfer learning
- Semi-supervised methods
- Image captioning

Architectures A recap on the popular ones

VGG-19

- Input shape: [n_{im,g}, 224,224,3]
- Output shape: $[n_{img}, 1000]$
- Total params: 143 667 240
- Input flow
 - Read image
 - Resize
 - Preprocess
- Predict
- Decode predictions

from tensorflow.keras.applications.vgg19 import \
 preprocess_input, VGG19, decode_predictions

Inception v3

- Input shape: $[n_{img},?,?,3]$
 - Originally ? = 299
- Output shape: $[n_{img}, 1000]$
- Total params: 23 851 784

from tensorflow.keras.applications.inception_v3 import \
InceptionV3, decode_predictions, preprocess_input

Inception-ResNet v2

- Input shape: $[n_{img},?,?,3]$
 - Originally ? = 299
 - We don't need to resize the image, just apply preprocessing
- Output shape: $[n_{img}, 1000]$
- Total params: 55 873 736

from tensorflow.keras.applications. inception_resnet_v2 \
import preprocess_input, InceptionResNetV2, decode_predictions

Transfer Learning

- For a new problem similar to another one that we have already solved, we can reuse the weights
- Prerequisites
 - Small training set on our new model
 - Similar task (i.e. image description)
- Algorithm
 - Remove the last r layers
 - "Freeze" the weights of the remaining layers (trainable = False)
 - I.e. use them as a fixed function
 - Add one or more (r') layers
 - Retrain the model (this will update only the last r' layers)

Object Localization

- Input: image; output: bounding box (x, y, w, h)
 - Regression
- Classification and localization
 - Simplest case: 1 object
 - Output a vector: $[p, x, y, w, h, c_1, c_2, ..., c_k]$
 - $p = 0 \Rightarrow$ no object detected; we don't care about the other numbers
 - $p = 1 \Rightarrow$ object detected; class: $c_1, ..., c_k$; bounding box x, y, w, h
 - Metrics: usually <u>IoU</u> (or Euclidean distance)
- Implementations: <u>YOLO</u> (You Only Look Once)
 - Also: <u>R-CNN</u> (Region-proposing network)

Semi-Supervised Methods

Venturing into unsupervised land

Autoencoders

- NNs which learn to reconstruct their input
 - We care about the latent representation h (like CNNs)
- Encoder / Decoder are simply NNs (can be CNNs, can use multiple layers)
- Main advantages
 - Dimensionality reduction
 - Denoising
- Loss function: difference between x and \tilde{y} (MSE works well)

Original Input

Latent Representation

Reconstructed Output

- Denoising autoencoder
 - Can be used for images, audio, text, etc.
 - Add noise to x to create x_{noise} , compare \tilde{y} to x (**not** to x_{noise})

One-Shot Learning

- Example: Facial recognition
 - Input: image of a face; background data: allowed faces
 - Output: Does the image match any of the allowed faces?
- We aren't allowed to train on many pictures
 - We usually have one picture per person
- This concept generalizes to other multi-class classification tasks
- Solution: Siamese networks
 - Two identical networks receive two images and compute two vectors
 - The distance between the vectors is their (dis)similarity score
 - Dimensionality reduction technique (also similar to clustering)

One-Shot Learning (2)

- Training: triplet loss function
 - Input images: anchor a, positive p, negative n
 - Output: vectors e_a , e_p , e_n

1x105x105 grayscale image

- Loss: low distance from e_a to e_p , high distance from e_a to e_n : $L(a,p,n) = \max(d(e_a,e_p) d(e_a,e_n) + m,0)$
 - \blacksquare m margin (similar to SVMs, allows us to distinguish better)

Novelty Detection

- Similar to one-class SVM (<u>Chalapathy et al., 2018</u>)
- Main idea
 - Assign a confidence score to samples
 - Loss function minimize distances
- Two approaches
 - If samples have a confidence score (as output)
 ⇒ we can learn even if we have samples of only one class

- If we don't have a confidence score, we can use similarity measures (i.e. similar embedding vectors)
 - Autoencoder

Image Captioning Describing images to humans

Image Captioning

- Vinyals et al., 2015 (code)
- Similar to machine translation
 - Encoder: CNN instead of RNN
 - Decoder: RNN (LSTM)

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Describes with minor errors

Somewhat related to the image

Image Captioning (2)

- Extension: <u>Karpathy and Li, 2015</u>
 - Goal: propose regions and describe them individually
 - R-CNN to get regions
 - Bi-directional RNN to generate sentences

Both embeddings use the same-dimensional space

Summary

- Architectures: review
- Transfer learning
- Semi-supervised methods
- Image captioning

Questions?