Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson, and Gianluca Bontempi

8/12/2015

IEEE CIDM 2015 Cape Town, South Africa







## **INTRODUCTION**

Introduction

- In several binary classification problems, the two classes are not equally represented in the dataset.
- ▶ In Fraud detection for example, fraudulent transactions are rare compared to genuine ones (less than 1% [2]).
- Many classification algorithms performs poorly in with unbalanced class distribution [5].
- ► A standard solution to unbalanced classification is rebalancing the classes before training a classifier.



- ▶ Undersampling is a well-know technique used to balanced a dataset.
- ► It consists in down-sizing the majority class by removing observations at random until the dataset is balanced.
- Several studies [11, 4] have reported that it improves classification performances.
- Most often, the consequences of undersampling on the posterior probability of a classifier are ignored.

#### In this work we:

- formalize how undersampling works.
- show that undersampling is responsible for a shift in the posterior probability of a classifier.
- study how this shift is linked to class separability.
- investigate how this shift produces biased probability estimates.
- show how to obtain and use unbiased (calibrated) probability for classification.

- ▶ Let us consider a binary classification task  $f : \mathbb{R}^n \to \{+, -\}$
- ▶  $X \in \mathbb{R}^n$  is the input and  $Y \in \{+, -\}$  the output domain.
- $\triangleright$  + is the minority and the majority class.
- ▶ Given a classifier K and a training set  $T_N$ , we are interested in estimating for a new sample (x, y) the posterior probability p(y = +|x).

#### ECT OF UNDERSAMPLING

▶ Suppose that a classifier K is trained on set  $T_N$  which is unbalanced.

Classification threshold

- ▶ Let **s** be a random variable associated to each sample  $(x,y) \in T_N$ , **s** = 1 if the point is sampled and **s** = 0 otherwise.
- ▶ Assume that **s** is independent of the input *x* given the class *y* (*class-dependent selection*):



Figure : Undersampling: remove randomly majority class examples. In red samples that are removed from the unbalanced dataset ( $\mathbf{s} = 0$ ).

Let  $p_s = p(+|x, s = 1)$  and p = p(+|x). We can write  $p_s$  as a function of p [1]:

$$p_s = \frac{p}{p + \beta(1 - p)} \tag{1}$$

where  $\beta = p(s = 1|-)$ . Using (1) we can obtain an expression of p as a function of  $p_s$ :

$$p = \frac{\beta p_s}{\beta p_s - p_s + 1} \tag{2}$$



Let  $\omega^+$  and  $\omega^-$  denote p(x|+) and p(x|-), and  $\pi^+$  ( $\pi_s^+$ ) the class priors before (after) undersampling. Using Bayes' theorem:

$$p = \frac{\omega^+ \pi^+}{\omega^+ - \delta \pi^-} \tag{3}$$

where  $\delta = \omega^+ - \omega^-$ . Similarly, since  $\omega^+$  does not change with undersampling:

$$p_s = \frac{\omega^+ \pi_s^+}{\omega^+ - \delta \pi_s^-} \tag{4}$$

Now we can write  $p_s - p$  as:

$$p_{s} - p = \frac{\omega^{+} \pi_{s}^{+}}{\omega^{+} - \delta \pi_{s}^{-}} - \frac{\omega^{+} \pi^{+}}{\omega^{+} - \delta \pi^{-}}$$
 (5)



Figure :  $p_s - p$  as a function of  $\delta$ , where  $\delta = \omega^+ - \omega^-$  for values of  $\omega^+ \in \{0.01, 0.1\}$  when  $\pi_s^+ = 0.5$  and  $\pi^+ = 0.1$ .

# WARPING AND CLASS SEPARABILITY II



Figure : Class distribution and posterior probability as a function of  $\beta$  for two univariate binary classification tasks with norm class conditional densities  $\mathcal{X}_{-} \sim \mathcal{N}(0,\sigma)$  and  $\mathcal{X}_{+} \sim \mathcal{N}(\mu,\sigma)$  (on the left  $\mu=3$  and on the right  $\mu=15$ , in both examples  $\sigma=3$ ). Note that p corresponds to  $\beta=1$  and  $p_s$  to  $\beta<1$ .

## ADJUSTING POSTERIOR PROBABILITIES

We propose to use correct  $p_s$  with p', which is obtained using (2):

$$p' = \frac{\beta p_s}{\beta p_s - p_s + 1} \tag{6}$$

Eq. (6) is a special case of the framework proposed by Saerens et al. [8] and Elkan [3] (see Appendix in the paper).



Figure : Posterior probabilities  $p_s$ , p' and p for  $\beta = \frac{N^+}{N^-}$  in the dataset with overlapping classes ( $\mu = 3$ ).

#### CLASSIFICATION THRESHOLD

Let  $r^+$  and  $r^-$  be the risk of predicting an instance as positive and negative:

$$r^{+} = (1 - p) \cdot l_{1,0} + p \cdot l_{1,1}$$
$$r^{-} = (1 - p) \cdot l_{0,0} + p \cdot l_{0,1}$$

where  $l_{i,j}$  is the cost in predicting i when the true class is j and p = p(y = +|x). A sample is predicted as positive if  $r^+ \le r^-$  [10]:

$$\hat{y} = \begin{cases} + & \text{if } r^{+} \leq r^{-} \\ - & \text{if } r^{+} > r^{-} \end{cases}$$
 (7)

Alternatively, predict as positive when  $p > \tau$  with  $\tau$ :

$$\tau = \frac{l_{1,0} - l_{0,0}}{l_{1,0} - l_{0,0} + l_{0,1} - l_{1,1}} \tag{8}$$

#### CORRECTING THE CLASSIFICATION THRESHOLD

When the costs of a FN  $(l_{0,1})$  and FP  $(l_{1,0})$  are unknown, we can use the priors. Let  $l_{1,0}=\pi^+$  and  $l_{0,1}=\pi^-$ , from (8) we get:

$$\tau = \frac{l_{1,0}}{l_{1,0} + l_{0,1}} = \frac{\pi^+}{\pi^+ + \pi^-} = \pi^+ \tag{9}$$

since  $\pi^+ + \pi^- = 1$ . Then we should use  $\pi^+$  as threshold with p:

$$p \longrightarrow \tau = \pi^+$$

Similarly

$$p_s \longrightarrow \tau_s = \pi_s^+$$

From Elkan [3]:

$$\frac{\tau'}{1-\tau'}\frac{1-\tau_s}{\tau_c} = \beta \tag{10}$$

Therefore, we obtain:

$$p' \longrightarrow \tau' = \pi^+$$

#### EXPERIMENTAL SETTINGS

- We denote as  $\hat{p}_s$ ,  $\hat{p}$  and  $\hat{p}'$  the estimates of  $p_s$ , p and p'
- ▶ Goal: understand which probability return the highest ranking (AUC), calibration (BS) and classification accuracy (G-mean).
- ▶ We use a 10-fold cross validation (CV) to test our models and we repeated the CV 10 times.
- We test several classification algorithms: Random Forest [7], SVM [6], and Logit Boost [9].
- We consider real-world unbalanced datasets from the UCI repository used in [1].

## LEARNING FRAMEWORK



Figure: Learning framework for comparing models with and without undersampling using Cross Validation (CV). We use one fold of the CV as testing set and the others for training, and iterate the framework to use all the folds once for testing.

Introduction

Table: Datasets from the UCI repository used in [1].

| Datasets     | N     | $N^+$ | $N^{-}$ | $N^+/N$ |
|--------------|-------|-------|---------|---------|
| ecoli        | 336   | 35    | 301     | 0.10    |
| glass        | 214   | 17    | 197     | 0.08    |
| letter-a     | 20000 | 789   | 19211   | 0.04    |
| letter-vowel | 20000 | 3878  | 16122   | 0.19    |
| ism          | 11180 | 260   | 10920   | 0.02    |
| letter       | 20000 | 789   | 19211   | 0.04    |
| oil          | 937   | 41    | 896     | 0.04    |
| page         | 5473  | 560   | 4913    | 0.10    |
| pendigits    | 10992 | 1142  | 9850    | 0.10    |
| PhosS        | 11411 | 613   | 10798   | 0.05    |
| satimage     | 6430  | 625   | 5805    | 0.10    |
| segment      | 2310  | 330   | 1980    | 0.14    |
| boundary     | 3505  | 123   | 3382    | 0.04    |
| estate       | 5322  | 636   | 4686    | 0.12    |
| cam          | 18916 | 942   | 17974   | 0.05    |
| compustat    | 13657 | 520   | 13137   | 0.04    |
| covtype      | 38500 | 2747  | 35753   | 0.07    |

Table : Sum of ranks and p-values of the paired t-test between the ranks of  $\hat{p}$  and  $\hat{p}'$  and between  $\hat{p}$  and  $\hat{p}_s$  for different metrics. In **bold** the probabilities with the best rank sum (higher for AUC and G-mean, lower for BS).

| Metric | Algo | $\sum R_{\hat{p}}$ | $\sum R_{\hat{p}_s}$ | $\sum R_{\hat{p}'}$ | $ ho(R_{\hat{p}},R_{\hat{p}_s})$ | $\rho(R_{\hat{p}}, R_{\hat{p}'})$ |
|--------|------|--------------------|----------------------|---------------------|----------------------------------|-----------------------------------|
| AUC    | LB   | 22,516             | 23,572               | 23,572              | 0.322                            | 0.322                             |
| AUC    | RF   | 24,422             | 22,619               | 22,619              | 0.168                            | 0.168                             |
| AUC    | SVM  | 19,595             | 19,902.5             | 19,902.5            | 0.873                            | 0.873                             |
| G-mean | LB   | 23,281             | 23,189.5             | 23,189.5            | 0.944                            | 0.944                             |
| G-mean | RF   | 22,986             | 23,337               | 23,337              | 0.770                            | 0.770                             |
| G-mean | SVM  | 19,550             | 19,925               | 19,925              | 0.794                            | 0.794                             |
| BS     | LB   | 19809.5            | 29448.5              | 20402               | 0.000                            | 0.510                             |
| BS     | RF   | 18336              | 28747                | 22577               | 0.000                            | 0.062                             |
| BS     | SVM  | 17139              | 23161                | 19100               | 0.001                            | 0.156                             |
|        |      |                    |                      |                     |                                  |                                   |

- ► The rank sum is the same for  $\hat{p}_s$  and  $\hat{p}'$  since (6) is monotone.
- ► Undersampling does not always improve the ranking (AUC) or classification accuracy (G-mean) of an algorithm.
- $\hat{p}$  is the probability estimate with the best calibration (lower rank sum with BS).
- $\hat{p}'$  has always better calibration than  $\hat{p}_s$ , then we should use  $\hat{p}'$  instead of  $\hat{p}_s$ .

Experiments

#### CREDIT CARDS DATASET

Real-world credit card dataset with transactions from Sep 2013, frauds account for 0.172% of all transactions.





## CONCLUSION

- ► As a result of undersampling,  $\hat{p}_s$  is shifted away from  $\hat{p}$ .
- ▶ This shift is stronger for overlapping distributions and gets larger for small values of  $\beta$ .
- ▶ Using (6), we can remove the drift in  $\hat{p}_s$  and obtain  $\hat{p}'$  which has better calibration.
- $\hat{p}'$  provides the same ranking quality of  $\hat{p}_s$ .
- ▶ Results from UCI and credit card datasets show that using  $\hat{p}'$  with  $\tau'$  we are able to improve calibration without losing predictive accuracy.

Credit card dataset: http://www.ulb.ac.be/di/map/

adalpozz/data/creditcard.Rdata Website: www.ulb.ac.be/di/map/adalpozz

Email: adalpozz@ulb.ac.be

Thank you for the attention

Research is supported by the *Doctiris* scholarship funded by Innoviris, Brussels, Belgium.



- A. Dal Pozzolo, O. Caelen, and G. Bontempi. When is undersampling effective in unbalanced classification tasks? In Machine Learning and Knowledge Discovery in Databases. Springer, 2015.
- [2] A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and G. Bontempi. Learned lessons in credit card fraud detection from a practitioner perspective. Expert Systems with Applications, 41(10):4915-4928, 2014.
- [3] C. Elkan. The foundations of cost-sensitive learning. In International Joint Conference on Artificial Intelligence, volume 17, pages 973–978, 2001.
- [4] A. Estabrooks, T. Jo, and N. Japkowicz. A multiple resampling method for learning from imbalanced data sets. Computational Intelligence, 20(1):18-36, 2004. [5] N. Japkowicz and S. Stephen.
- The class imbalance problem: A systematic study. Intelligent data analysis, 6(5):429-449, 2002. [6] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab-an s4 package for kernel methods in r.
- A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18-22, 2002.
- [8] M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural computation, 14(1):21-41, 2002.
- [9] J. Tuszynski. caTools: Tools: moving window statistics, GIF, Base64, ROC AUC, etc., 2013. R package version 1.16.
- [10] V. N. Vapnik and V. Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998. [11] G. M. Weiss and F. Provost.
- The effect of class distribution on classifier learning: an empirical study. Rutgers Univ, 2001.