- The 'finite' in FSA refers to
 (a) Finite number of states
 - (b) Length of the string is finite
 - (c) Both (A) and (B)
 - (d) None
- 2. The language accepted by FSA can be
 - (a) Finite or Infinite
 - (b) Must be Finite (always)
 - (c) If it is infinite, then it must have infinite number of states
 - (d) Must be Infinite (always)
- 3. How many different FSAs are possible for the language $L = \Sigma^*, \Sigma = \{0, 1\}$
 - (a) Finitely many
 - (b) Infinitely many
 - (c) No FSA exists
- 4. Are there FSAs in which every state is a final state.
 - (a) YES
 - (b) NO
- 5. Let $\Sigma = \{0, 1\}$. Let L be the language defined over Σ such that the number of 0's is a multiple of 3 and the number of 1's is a multiple of 4. The number of states is
 - (a) 3
 - (b) 4
 - (c) 7
 - (d) 12
- 6. How many DFAs are possible for the language $\{x \mid x \text{ begins with } 0 \text{ and ends with } 1 \}$.
 - (a) It is unique and exactly one
 - (b) NO DFA exists
 - (c) at least 3 FAs
 - (d) None of the above
- 7. Tick all that are true. Let $\Sigma = \{1\}$. For the regular expression $(11111 + 111)^*$,
 - A. the language $L = \{\epsilon, 111, 11111, 1^8, 1^9, 1^{10}, 1^{11}, \dots\}$.
 - B. there exists a minimal DFA with 9 states
 - C. there exists a DFA with 8 states
 - D. there is no NFA with 7 states.

- 8. Consider a DFA with 4 states such that all states are final states. Then, which of the following are true
 - A. $L = \Sigma^*$.
 - B. Any minimal DFA has exactly one state.
 - C. $L \neq \Sigma^*$.
 - D. there exists an equivalent epsilon NFA with 4 states.
- 9. How many different two state DFAs are possible for $\Sigma = \{a, b, c\}$. A. 256
 - B. 512
 - C. 128
 - D. None of the above
- 10. Let L be a language over $\{a, b\}$ with the property that all strings in L are of odd length. Which of the following is (are) the regular expressions for L.
 - A. $(a + b)(aa + ab + ba + bb)^*(b + a)$
 - B. $(a + b)(aa + ab + ba + bb)^*$
 - C. $(a+b)(aa+ab+ba+bb)^* + (aa+ab+ba+bb)^*(b+a)$
 - D. $(aa + ab + ba + bb)^*(b + a)$
- 11. Tick all that are true. The regular expression for the set of strings over $\{0,1\}$ not containing 11 as a substring.
 - A. $(00 + 01 + 10)^*$
 - B. $0^* + 0^*1 + (0^*10^*)^*$
 - C. $\epsilon + 1 + 0^* + (0^*10^*)^*$
 - D. $(10+0)^* + (10+0)^*1$.