# Spin-Dipole Oscillation and Polarizability of a Binary BEC

T. Bienaimé, E. Fava, G. Colzi, C. Mordini, S. Serafini,

C. Qu, S. Stringari, G. Lamporesi and G. Ferrari

BEC group, INO-CNR & University of Trento, Italy











MACRO conference Newcastle, September 14th, 2016











## Introduction: Bose-Bose miscible mixture without buoyancy

- 2-component BEC: 2 Zeeman levels  $|\uparrow\rangle$ ,  $|\downarrow\rangle$
- Caracterized by scattering lengths:
  - Intracomponent: a<sub>↑↑</sub>, a<sub>↓↓</sub>
     Intercomponent: a<sub>↑↓</sub>
- Important property: miscibility if  $a_{\uparrow\downarrow} < \sqrt{a_{\uparrow\uparrow}a_{\downarrow\downarrow}}$



- Even when miscible: buoyancy problem in harmonic trap when  $a_{\uparrow\uparrow} \neq a_{\downarrow\downarrow}$
- It prevents the study of the static and dynamic response in harmonic trap
- ullet Our system:  $|3^2S_{1/2},F=1,m_F=\pm 1
  angle$  states of sodium

$$\begin{array}{c|c} \hline \\ |1,-1\rangle \end{array} \begin{array}{c|c} \hline \\ |1,0\rangle \end{array} \begin{array}{c|c} \hline \\ |1,+1\rangle \end{array}$$

- Advantages
  - Miscible
  - Without buoyancy  $a_{\uparrow\uparrow}=a_{\downarrow\downarrow}\equiv a$
  - Close to the miscible/immiscible phase transition  $(a-a_{\uparrow\downarrow})/a=0.07\ll 1$
- Goals
  - Study the linear and dynamic response
  - Observe that these properties are drastically modified close to the phase transition despite
    the weakly interacting nature of the gas

## Spinor preparation



Goal: static and dynamic response of the system close to miscible/immiscible transition

#### Parameters:

$$\begin{split} N_{\uparrow} &= N_{\downarrow} \simeq 10^6 \\ \left[ \omega_x, \omega_y, \omega_z \right] / 2\pi &= [47.7, 207.2, 156.8] \text{ Hz} \\ a_{\uparrow \uparrow} &= a_{\downarrow \downarrow} = 54.54(20) a_0 \\ a_{\uparrow \downarrow} &= 50.78(40) a_0 \end{split}$$



Stabilization us MW dressing



## Spin-Dipole Polarizability: static measurement



Define SD polarizability:  $\mathcal{P}(x_0) \equiv \frac{d(x_0)}{2x_0}$ 



LDA calculation:  $\mathcal{P}(x_0 \to 0) = \frac{a + a_{\uparrow\downarrow}}{a - a_{\uparrow\downarrow}}$ 



## Spin-Dipole Oscillation: dynamic measurement





- We measure  $\omega_{\text{SD}}/\omega_x=0.218(2)$ 
  - LDA  $\omega_{SD} = 0.189(15)\omega_x$
- GPE  $\omega_{\text{SD}} = 0.213(17)\omega_{x}$
- ullet Sum rule approach links polarizability  ${\cal P}$  and SD mode frequency  $\omega_{
  m SD}$ :

$$\omega_{\text{SD}} = \frac{1}{\sqrt{\mathcal{P}}}\omega_x$$

## Outlook

## Dynamical instability



M. Abad et al., EPJD (2015)

## Finite temperature (four fluid model)



J. Armqitis et al., PRA (2015) K. L. Lee et al., PRA (2016)

## Magnetic soliton



C. Qu et al., PRL (2016)

# Coherent coupling between spin components

Many references and ideas...









#### **New Bose-Bose mixture**

Miscible, without buoyancy, vicinity to the miscible/immiscible transition



#### SD polarizability and oscillation

Close to the transition: large polarizability, softening of the SD mode.

More info: Arxiv: 1607.04574 (2016)

mail: tom.bienaime@unitn.it - web: http://bec.science.unitn.it/

# **Acknowledgments**

- BEC experiment @ Trento
  - T. Bienaimé
  - E. Fava
  - G. Colzi
  - C. Mordini
  - S. Serafini
  - G. Lamporesi
  - G. Ferrari
- Theoretical study @ Trento
  - C. Qu
  - S. Stringari
- Funding & Support











