EXERCICE I : SYNTHÈSE DE LA CARVONE À PARTIR DU LIMONÈNE (4 points)

La peau des oranges contient une huile essentielle constituée principalement d'un des énantiomères du limonène : le R-limonène, qui est responsable de leur odeur caractéristique. Le R-limonène sert de matière première pour produire des arômes dans l'industrie agroalimentaire, comme la R-carvone.

R-limonène R-carvone

Dans cet exercice, on s'intéresse à la synthèse de la R-carvone à partir du R-limonène.

Données:

> caractéristiques physiques :

taractorical quee priyer quee i							
Espèce chimique	R-limonène	nitrosochlorure de limonène	R-carvone	eau			
Masse molaire moléculaire (g.mol ⁻¹)	136,0	201,5	150,0	18,0			
Masse volumique (g.mL ⁻¹)	0,84	-	0,96	1,0			

données de spectroscopie infrarouge :

aoimicee ao epeca	ooopio minaroag	, .		
Liaison	O – H	C – H	C = O	C = C
Nombre d'onde (en cm ⁻¹)	3200 – 3400	2900 – 3200	1660 – 1725	1640 – 1660

1. Extraction du limonène

L'extraction de cette huile essentielle peut se faire par hydrodistillation. À partir de l'écorce de six oranges, on recueille 3,0 mL d'huile essentielle que l'on analyse par spectrophotométrie.

Spectre infrarouge de l'huile essentielle obtenue à partir des écorces d'orange

D'après : Chimie des couleurs et des odeurs, M. Capon, Culture et techniques.

- **1.1.** Représenter la formule semi-développée du R-limonène.
- **1.2.** Montrer que le spectre infrarouge de l'huile essentielle recueillie est compatible avec la structure du R-limonène.

2. Synthèse de la R-carvone

La synthèse de la R-carvone s'effectue à partir du R-limonène en trois étapes schématisées ainsi :

La première étape de cette synthèse est décrite ci-dessous.

La réaction entre le limonène et le chlorure de nitrosyle NOCl en excès permet, après filtration, de recueillir un produit sous forme solide : le nitrosochlorure de limonène.

À l'issue de la synthèse, on recueille un mélange constitué de deux phases : une phase aqueuse et une phase organique constituée principalement de R-carvone. Cette phase organique est séparée de la phase aqueuse à l'aide d'une ampoule à décanter, puis la phase organique est séchée.

- **2.1.** La R-carvone est une molécule chirale. Justifier.
- **2.2.** Indiquer la catégorie de la réaction mise en jeu lors de la première étape de la synthèse. Justifier.
- 2.3. Le schéma de l'ampoule à décanter utilisée à l'issue de l'étape 3 de la synthèse est donné ci-contre. Identifier la phase (phase 1 ou phase 2) où se situe la R-carvone. Justifier.

3. Des oranges à la carvone

On fait l'hypothèse que l'huile essentielle recueillie par hydrodistillation (partie 1.) est uniquement constituée de R-limonène. Le rendement de la synthèse effectuée (partie 2.) est de 30%.

- **3.1.** Vérifier que la quantité de matière de R-limonène nécessaire à la synthèse de 13 g de R-carvone est égale à 0,29 mol.
- **3.2.** Estimer le nombre d'oranges nécessaire pour synthétiser 13 g de R-carvone à partir du R-limonène extrait des peaux d'orange.

Le candidat est invité à prendre des initiatives et à présenter la démarche suivie même si elle n'a pas abouti.

La démarche suivie est évaluée et nécessite donc d'être correctement présentée.