STAT 521: Assignment 7

Make sure to show your computation and/or attach appropriate output.

Problem 1

A researcher wishes to compare birth weights of infants among four groups of their mothers' smoking status: non-smokers, ex-smokers, < 1/2 pack/day, $\ge 1/2$ pack/day. Data is given as follows (See Assignment7.sas/R/py for computer analysis):

\begin{document}

	Non-smoker	Ex-smoker	$<\frac{1}{2}$ pack/d	$\geq \frac{1}{2} \operatorname{pack/d}$	
	8.56	7.39	5.97	7.03	
	8.47	8.64	6.77	5.24	
	6.39	8.54	7.26	6.14	
	9.26	5.37	5.74	6.74	
	7.98	9.21	8.74	6.62	
	6.84	6.63	6.30	7.37	
	7.87		5.52	4.94	
				6.34	
$\sum y$	55.37	45.78	46.30	50.42	$\sum \sum y = 197.87$
$\sum y^2$	444.00	359.81	313.68	322.75	$\sum \sum y^2 = 1440.23$
\bar{y}	7.91	7.63	6.61	6.30	$\bar{y}_{\cdot \cdot} = 7.07$
\overline{n}	7	6	7	8	28

- a) State the null and alternative hypotheses.
- b) Manually calculate sum of squares and complete the ANOVA table below.

Source	df	SS	MS	F
Treatment				
Error				
Total				

- c) Test the hypothesis. Use $\alpha = 0.05$. What is your conclusion?
- d) What are the assumptions that you are making to conduct the above test?
- e) Use SAS, R or Python to verify your results in part (b) and (c). Run Tukey's HSD test for multiple comparisons. Did you find any groups that were significantly different at $\alpha = 0.05$? For each of significant pairs (if any), report a 95% confidence interval of the mean difference. **Attach relevant output** and **report your findings**.

Problem 2

A researcher conducted a one-way ANOVA to test the null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$. The researcher had a balanced design with total number of subjects N = 20. Complete the ANOVA table below.

Source	df	SS	MS	F
Treatment		6750		
Error		8000		
Total				

Problem 3 (Biostats students only)

Uniform distribution:

One of the simplest types of continuous distributions is the $uniform\ distribution$. The probability density function (PDF) of a uniform random variable X is defined as:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{elsewhere} \end{cases}$$

Figure 1: The probability density function of Uniform(a, b)

A random variable X can take any value between a and b, and the density is constant over this range. We write this as:

$$X \sim Uniform(a, b)$$

A special case of the uniform distribution is when a = 0 and b = 1: $X \sim Uniform(0, 1)$. This is called the standard uniform distribution. The standard uniform distribution has a PDF of f(x) = 1 for 0 < x < 1 and f(x) = 0 otherwise.

Question: Use the definition of the expected value $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ (see Assignment #3) and show that $E(X) = \frac{a+b}{2}$ and $var(X) = \frac{(b-a)^2}{12}$ if $X \sim Uniform(a,b)$.

Problem 4 (Biostats students only)

Monte Carlo integration using R

Suppose we wish to solve a definite integral $I = \int_a^b g(x) dx$, a < b. Note that g(x) is any one-dimensional function, not necessarily a PDF. Sometimes g(x) is very complex and there may not be a closed-form solution. We can rewrite the integral as:

$$I = \int_{a}^{b} g(x) dx = I = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) dx$$

If we can find a random variable that has a well-known PDF of f(x) whose support is a < x < b, then by the definition of the expected value, the integral is equivalent to:

$$I = \int_{a}^{b} \frac{g(x)}{f(x)} f(x) dx = E\left[\frac{g(x)}{f(x)}\right]$$

in which a random variable X has a PDF $f(x) \ge 0$ for a < x < b and f(x) = 0 otherwise. An obvious choice of X is a uniform random variable $X \sim Uniform(a,b)$ with $f(x) = \frac{1}{b-a}$ for a < x < b. Then it follows:

$$I = E\left[\frac{g(x)}{f(x)}\right] = E\left[\frac{g(x)}{1/(b-a)}\right] = (b-a)E\left[g(x)\right]$$

What does this imply? Remember, from Assignment #6, you can approximate E[g(x)] as long as you can generate a large number of random values from $X \sim Uniform(a,b)$. If we take the average of all the random values of g(x) and multiply by (b-a), we can approximate the definite integral $I = \int_a^b g(x) dx$.

Example: Suppose we want to solve:

$$I = \int_0^2 \frac{2e^{-2x}}{(1 + e^{-2x})^2} \, dx$$

Let $g(x) = \frac{2e^{-2x}}{(1+e^{-2x})^2}$ and X be a uniform random variable $X \sim Uniform(0,2)$ whose PDF is $f(x) = \frac{1}{2}$ for 0 < x < 2. Then we can approximate the integral I as 2E[g(X)].

Now let's do this with R. First I'm going to produce one million random numbers from $X \sim Uniform(0,2)$. This can be done using runif() function. Its syntax is runif(n, a, b) where n is the number of random values you want to generate, and a and b are the range of x. In the code below, I assign values a = 0 and b = 2.

```
# Generate 1 million random number from X ~ Unif(0, 2)
a <- 0
b <- 2
x <- runif(10 ^ 6, a, b)
head(x)</pre>
```

[1] 0.5751550 1.5766103 0.8179538 1.7660348 1.8809346 0.0911130

Then for each value of x, I calculate g(x). For example, for the first uniform random value of 0.575155, we have $g(0.575155) = \frac{2e^{-2(0.575155)}}{\left(1+e^{-2(0.575155)}\right)^2} \approx 0.365$. For e^x , use exp() function.

```
# Calculate g(x)

g <- 2 * exp(-2 * x) / (1 + exp(-2 * x))^2

head(g)
```

[1] 0.36524937 0.07857294 0.27289256 0.05521215 0.04439313 0.49587208

Now, to approximate I = (b - a)E[g(x)], we calculate the mean of g and then multiply by b - a = 2.

```
# Take the average and multiply by (b - a)
(b - a) * mean(g)
```

[1] 0.4825734

In this case, I got $I \approx 0.4825734$. This is close to the correct answer of $I = \int_0^2 \frac{2e^{-2x}}{(1+e^{-2x})^2} dx = 0.4820138$.

Here's an exercise for you:

Approximate:

$$I = \int_{0.2}^{0.3} 15(3x)^4 e^{-(3x^5)} dx$$

Please submit your R code as well.