EE116C/CS151B Homework 2

Problem 1

As: CPU time = Sum (instruction counts * CPI) * seconds/cycles

Thus:

Old CPU time = (500m*1+300m*10+100m*3)*CT = 3800m*CT; New CPU time = (500m*0.75*1+300m*10+100m*3)*1.1CT = 4042.5m*CT; Thus the new CPU time is larger than the old one. So it is not a good design.

Problem 2

When operating normally, the ALU does subtraction based on the equation:

$$A - B = A + (-B)$$

In those cases, the CarryIn is set to 1 as part of the computation of -B. Since the malfunction causes CarryIn to be 0, the result for subtraction will always be one less than it should be. Specifically, instead of computing A - B, the ALU will compute A - B - 1.

A user/programmer will observe incorrect results for all instructions that require the ALU to perform subtraction. Specifically:

- A) The sub instruction will compute Rs Rt 1 instead of Rs Rt.
- B) The beg instruction will branch whenever Rs = Rt + 1 instead of whenever Rs = Rt.
- C) The slt instruction will set Rd to 1 whenever Rs < Rt + 1 instead of whenever Rs < Rt.

Problem 3

A modular 1-bit adder:

Truth table for the 1-bit adder:

X	Y	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Karnaugh map for S:

	S				
		00	01	11	10
X	0	0	1	0	1
	1	1	0	1	0

$$S = \overline{XY}Cin + \overline{XY}\overline{Cin} + X\overline{YCin} + XYCin$$

Karnaugh map for Cout:

1	Cout		YCin			
			00	01	11	10
	X	0	0	0	1	0
		1	0	1	1	1

$$Cout = YCin + XY + XCin$$

problem 4

