Sistema de numeración binario

Sistema binario

- Sistema que utilizan los ordenadores y dispositivos informáticos
- Se compone de 2 símbolos o dígitos {0, 1}
- Cada dígito tiene distinto valor dependiendo de la posición que ocupe.
- Valor de cada posición
 - El de una potencia _ de _ base _ 2,
 - Elevada a un exponente igual a la posición del dígito menos uno.

0	0	
1	1	
2	10	
3	11	
4	100	
5	101	
6	110	
7	111	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

- _De acuerdo con estas reglas, el número binario _ 1100 2 _ tiene un valor que se calcula así: _
- $_1 \cdot 2_3_ + 1 \cdot 2_2_ + 0 \cdot 2_1_ + 0 \cdot 2_0_ = 8 + 4 + 0 + 0 = _1210$
- Para expresar que ambas cifras describen la misma cantidad lo escribimos así:

Conversión decimal a binario

Ejemplo Cálculo del equivalente binario del número decimal 60_{10}

Por tanto, $60_{10} = 111100_2$

Conversión decimal a binario

- Proceso
- Realizar divisiones sucesivas por _ 2 _
- Al final, escribir los restos obtenidos en cada división en **orden** _ _ **inverso**
- Ejemplo
- para convertir al sistema binario el número 77_10_:
 - o 77:2 = 38 Resto: 1
 - 38:2 = 19 Resto: 0
 - 19:2 = 9 Resto: 1
 - 9:2 = 4 Resto: 1
 - 4:2 = 2 Resto: 0
 - 2:2 = 1 Resto: 0
 - 1:2 = 0 Resto: 1
- Tomando los restos en orden inverso obtenemos la cifra binaria:
- 77 10 _ _ = **1001101 2**

Convierte _ a _ binario _ _ los _ _ siguientes _ _ números _ _ decimales :

- 43
- 345
- 255

Conversión binario a decimal

1º. Construimos una tabla donde haya una columna con cada cifra del número binario:

1 0 1	0	1	1	1
-------	---	---	---	---

2º. Añadimos una fila con las potencias de dos, empezando de derecha a izquierda:

1	0	1	0	1	1	1
2 ⁶ = 64	2 ⁵ = 32	24= 16	2 ³ = 8	22= 4	21= 2	20= 1

$$64 + 0 + 16 + 0 + 4 + 2 + 1 = 87$$

_Convierte de sistema _ binario _ a sistema _ decimal :

- 1011 (11)
- 10011011 **(155)**
- 11011010 (218)

Dígitos necesarios

En el sistema binario necesitamos más digitos que en el sistema decimal.

Para 87 (decimal) = 1010111 (binario) necesitamos 7 dígitos

Para representar números grandes harán falta muchos más dígitos.

Ejemplo

Para representar números > 255 se necesitarán más de ocho dígitos (2 8 _ _ = 256)

255 es el número más grande que puede representarse con ocho dígitos.

Regla general

Con n dígitos binarios pueden representarse un máximo de $\mathbf{2} \mathbf{n} \underline{\hspace{0.2cm}}$ números.

Número más grande con *n* dígitos es **2 n** _ – 1_

Con 4 bits, pueden representarse un total de 16 números (2 4 = 16)

El mayor de dichos números es el 15, porque 2 4 _ -1 = 15_.

Nº Bits	Cant. Valores	Número min	Número max
0	1	0	0
1	2	0	1
2	4	0	3
3	8	0	7
4	16	0	15
5	32	0	31
6	64	0	63

N° Bits Cant. Valores		Número min	Número max	
7	128	0	127	
8	256	0	255	
9	512	0	511	
10	1024	0	1023	

Ejercicio:

Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio:

Dados dos números binarios: **01001000** y **01000100** ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?

Conversión binario a decimal

