Echtzeitverarbeitung

R. Kaiser, K. Beckmann, R. Kröger

(HTTP: http://www.cs.hs-rm.de/~kaiser EMail: robert.kaiser@hs-rm.de)

Sommersemester 2022

2. Zeit und Ordnen

https://www.unterstufe.ch/hinweise.php?id=25668

2.0 Zeit und Ordnen

Inhalt

2. Zeit und Ordnen

- 2.1 Einführung
- 2.2 Zeitbegriff und Zeitsysteme
- 2.3 Rechneruhren
- 2.4 Globale Zeitbasis und Synchronisationsprotokolle
- 2.5 Logische Zeitmarken

Einführung

2.1

- Zeit als physikalische Größe
- Ordnen von Ereignissen aufgrund zeitlicher Ordnung
- Verteilte Systeme mit mehreren Uhren
- Probleme mit nicht-synchronisierten Rechneruhren (Bsp.)
 - Zeitstempel von Dateien (make)
 - zeitgesteuertes Ausführen von Aufträgen (cron)
- Globaler Zeitbegriff
 - Etablierung von systemweiter Zeit in verteilten Systemen durch Synchronisation von Rechneruhren
 - Synchronität mit realer Außenzeit
- Anwendungsprogrammierung
 - Nutzung von Zeitdiensten
 - Zeitmessung

Anwendungen

2.1

- korrekte Funktion zeitbezogener lokaler und verteilter Anwendungen
- korrektes Ordnen von Ereignissen in verteilten Systemen, z.B. für Prozessvisualisierung
- effizientere verteilte Algorithmen durch Verringerung des Kommunikationsaufwands (vgl. [Liskov])
- Leistungsmessung in verteilten Systemen
- verteilte Echtzeitsysteme benötigen Zeitbegriff einschließlich Synchronität mit realer Außenzeit

Zeitbgriff und Zeitsysteme

Verschiedene Zeitbegriffe im Laufe der Geschichte Astronomische Zeit

- basiert auf der gleichförmigen Bewegung von Himmelskörpern und deren Beobachtung
- Sonnenzeit
 - mittlere Dauer einer Erdumdrehung
 - Sonnentag: Zenit-Zenit (bis 1956)
 - ▶ 1 Sek = $\frac{1}{24 \cdot 60 \cdot 60}$ Sonnentag
 - wenig stabil (Abbremsung der Erdrotation, Schwankungen durch Massenverlagerungen)
- Sternzeit
 - mittlere Dauer der Umlaufzeit der Erde um die Sonne
 - ▶ 1 Sek = $\frac{1}{31.556.925.9747}$ Teil des trop. Jahres 1900 (ab 1957)

Physikalische Zeit

basiert auf (periodischen) physikalischen Prozessen klassische Beispiele:

- Kerzenuhr (Verbrennen von Wachs)
- Pendeluhr, Genauigkeit best: 10^{-7}
- Quarzuhr, Genauigkeit best: 10^{-9} , typisch: $10^{-5} \dots 10^{-6}$

Atomuhr

- Definition im SI-Einheitensystem (ab 1967):
 "Die Sekunde ist das 9.192.631.770fache der Periodendauer der dem Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes von Atomen des Nuklids ¹³³Cs entsprechenden Strahlung."
- Cäsium-133-Uhr, Genauigkeit best: 10^{-14} , typisch: 10^{-13} ($< 1\mu s$ pro Jahr)
- ullet Caesium-Fontäne, Genauigkeit $< 10^{-15}$

Physikalisch-Technische Bundesanstalt (PTB) 놎

- in Braunschweig
- Betrieb mehrerer Atomuhren (CS1-CS4, CSF1)
- Verantwortung f
 ür die gesetzliche Zeit in D (ab 1978)
- Betrieb von Verteildiensten

https://www.meinberg.de/images/xatomuhr.jpg.pagespeed.ic.388wJGqj54.jpg Foto: PTB

22

Zeitsysteme

GMT: Greenwich Mean Time

- Lokale Ortszeitangaben (wahre und mittlere) üblich bis ca. 1880
- Probleme f
 ür Eisenbahn-Fahrpl
 äne
- "Greenwich Mean Time" gesetzliche Standardzeit in England ab 1880
- Ab 1.06.1891: deutsche und östereichisch/ungarische Eisenbahnverwaltungen führen die Zeit des 15. Längengrads als mitteleuropäische Eisenbahn-Zeit (M. E. Z.) ein.
- Deutsches Reich: gesetzliche Uhrzeit ab 1.04.1893 ist "die mittlere Sonnenzeit des fünfzehnten Längengrades östlich von Greenwich"
- Meridiankonferenz Washington 1884 definiert Greenwich als Null-Meridian und führt Zeitzonen ein →GMT Sonnenzeit
- ab 1.1.1925 Beginn des Tags um Mitternacht (für Astronomen bis da hin mittags)

UT: Universal Time

22

- Weltzeit abgeleitet aus Sternzeit (ab 1957) am Null-Meridian
- UT1: Berücksichtigung der Polschwankungen

TAI: Temps Atomique International

- mittlere Atomzeit seit 1.1.1958
- Betrieb von ca. 250 Atomuhren weltweit.
- weltweit koordiniert durch Bureau International de l'Heure (BIH)

UTC: Universal Time Coordinated

- heutiger Zeitstandard (ab 1972)
- basiert auf TAI, aber Anpassungen an UT1 durch "Schaltsekunde" bei mehr als 900 ms Unterschied
- Abweichung: 1 Sek in 300.000 Jahren

Zeitverteildienste

Langwellen-Radiosender

- z.B. in D: DCF77 (77.5 kHz, Frankfurt/Mainflingen)
- basierend auf Atomuhr CS-2 der PTB
- Sekundentakt
- aufmodulierter voller BCD-Zeitcode (58 Bit) in jeder Minute
- Genauigkeit
 - $ightharpoonup 2 \cdot 10^{-13}$ gemittelt über 100 Tage
 - ▶ 1-10 msec je Sek. (atmosphärische Störungen)

GEOS Satellitensystem

- Geostationary Operational Environment Satellite
- Genauigkeit ca. 0.5 msec

Zeitverteildienste (2)

GPS-Satellitensystem als Basis

- Global Positioning System, primär militärisch
- 24 Satelliten, Umlaufzeit 12 h, mind. 4 jederzeit "sichtbar"
- Cäsium-Uhren an Bord
- \bullet Synchronisation gegenüber Uhren anderer Satelliten durch Bodenstation auf ± 5 ns genau
- Standortbestimmung durch Unterschiede in Signallaufzeiten ($5ns \cong 1.5m$ mil.; $1\mu s \cong 300m$ zivil)
- künstliche Ungenauigkeiten in Krisenzeiten
- Differentielles GPS nutzt zusätzlich Bodenstationen mit bekannten Standorten (Geodäsie)

GPS-basierte Uhr

- GPS-Signal als Referenz einer PLL-Schaltung
- hochgenaue Sekundenimpulse (pps pulse-per-second)
- typ. Genauigkeit: ca. $1\mu s$ (nach ca. $\frac{1}{2}$ h Betrieb, z.B. Meinberg)

Zeitverteildienste (3)

Galileo-Satellitensystem der EU/ESA (bis 201x)

- europäisches, zu GPS kompatibles System (GPS III)
- bis zu 30 Satelliten
 - ▶ mit je 2 Atomuhren
 - senden Zeitsignal und Positionsdaten
 - globale Abdeckung

- Unterscheidung in globale, regionale, lokale Ebene
- kostenloser Dienst für Ortung, Navigation, Zeitsynchronisation (Genauigkeit ca. 4 m horizontal, 8 m vertikal)
- kommerzieller Dienst (Genauigkeit 1 m, Bewegungen 0.2 m/sec)
 (Vermessungswesen, Netzsynchronisation, Flottenmanagement)
- Safety-of-Life-Dienst, (sicherheitskritische Anwendungen in Luft- und Schifffahrt, Bahnverkehr)
- ▶ Dienst "von öffentlichem Interesse", (Signal mit sehr hoher Genauigkeit, Qualität, Zuverlässigkeit und Integrität für hoheitliche Anwendungen)

Zeitverteildienste (4)

Galileo-Satellitensystem der EU/ESA (Stand)

- Sicht 2004:
 Entwicklung bis 2006, Betrieb ab 2008 geplant
- Sicht 2006:
 Konzessionsvergabe bis 2008, Errichtung 2009/10,
 Betrieb ab 2010
- Sicht 2008: Konsortium zerbrochen, Betrieb ab 2013 im Auftrag der EU, Kosten ca. 3,6 Mrd. €
- Sicht 2011:
 21.10.11: die ersten beiden Satelliten mit Sojus-Rakete in Orbit gebracht.
- Sicht 2012: 13.10.12: zwei weitere Satelliten, neue Kostenschätzung: 5,0 Mrd. €, Probebetrieb ab 2013, Funktionsfähigkeit 2020 (?!?),
 - Bodentestbetrieb Region Berchtesgaden (virtueller Satellitenbetrieb)
- Sicht 2016:
 18 der vorgesehenen 30 Satelliten im Orbit. Letzte Satelliten sollen 2018 in ihre
 Umlaufbahn geschossen werden. System ist seit 15. Dezember 2016 allgemein zugänglich.

- Zeit modelliert als Zeitstrahl
 - ▶ Unendliche Menge T von Zeitpunkten mit
 - ▶ \mathbb{T} ist geordnet: $p, q \in \mathbb{T}$: p < q, p = q, p > q
 - T ist dicht:

$$p, q \in \mathbb{T}, p \neq q : \exists r \text{ zwischen } p \text{ und } q, \text{ d.h. für } p < q : p < r < q$$

- Zeitdauer als Intervall auf Zeitstrahl
- Ereignis findet zu einem Zeitpunkt statt
 (→ temporale Ordnung auf Ereignissen)
- Ereignisse finden gleichzeitig statt, wenn sie zu gleichem Zeitpunkt stattfinden
- Menge der Ereignisse nur partiell geordnet
 - wegen gleichzeitiger Ereignisse
 - ► Totale Ordnung konstruierbar mit zusätzlichem Kriterium (z.B. Knotennummer in verteilten Systemen)

Begriffe (nach Kopetz)

2.2

- Kausale Ordnung von Ereignissen
 - Ursache/Wirkungs-Beziehung
 - Aus kausaler Ordnung folgt temporale Ordnung der Ereignisse,
 - Umkehrung gilt nicht
 - Kausale Ordnung damit strenger als temporale Ordnung
- Einheitliche Empfangsordnung von Ereignissen (Delivery Order)
 - Kommunikationssystem stellt einheitliche Ordnung aller Nachrichten bei allen Empfängern sicher
 - Empfangsordnung muss nicht mit temporaler Ordnung oder Empfangsordnung übereinstimmen

Begriffe

Referenzzeit

- Approximation der wahren physikalischen Zeit
- Zähler der Referenzuhr zeigt immer korrekten Wert an

Abweichung, Genauigkeit (Accuracy)

- absolute oder relative Differenz zu einer Referenzzeit
- Offset als Zeitdifferenz zwischen zwei Uhren bzw. zur Referenzzeit

Auflösung/Granularität (Granularity)

• kleinste Zeitdauer zwischen zwei aufeinander folgenden anzeigbaren Zeitpunkten $(\frac{1}{f}$, wobei f Frequenz)

Stabilität (Stability)

- Frequenzschwankung einer Uhr
- Drift als Frequenzdifferenz zwischen zwei Uhren bzw. zur Referenzzeit

Präzision einer Menge von Uhren (Precision)

• Max. Offset zwischen irgend zwei Uhren der Menge

Veranschaulichung

Hardware einer lokalen Rechensystemuhr

Hardware einer lokalen Rechensystemuhr

Hardware einer lokalen Rechensystemuhr

Beispiel UNIX

2.3

- zwei 32-Bit (oder 64-Bit) Integer-Variablen
 - Anzahl Sekunden seit 1.1.1970
 - Anzahl μ s (oder ns) in der aktuellen Sekunde
- typ. 100 Interrupts/s
- bei Interrupt werden Variablen um nominelle Anzahl μ s erhöht
- Korrekturwert (Adjust-Wert) f
 ür Ausgleich der Drift des Quarzes
- Systemdienste settimeofday, adjtime

Prinzip der Korrektur

2.3

DCF77-Uhr für einfache Anforderungen an Systemzeit

Genauigkeit typisch: ± 2 msec

GPS-Uhr bei hohen Anforderungen (z.B. Messsystem)

• Genauigkeit typisch: ± 250 nsec

Atom-Uhr

2.3

- Rubidium / Caesium-Quellen
- Spezielle Zulassung erforderlich
- Montage in Rack
- z.T. ausschließlich für militärische Zwecke

Rechnerschnittstelle

- Erzeugung von Pulse-Per-Second (pps)-Signalen als Interrupts
- Kodierte Timecode-Signale, z.B. IRIG-Standard (Inter Range Instrumentation Group)

Genaue lokale Betriebssystem-Uhren

Verwendung einer externen Referenzzeitquelle Linux-Kern mit "Nano-Kernel-Patch"

- ullet Erhöhung der Auflösung der Systemuhr auf 1 ns (statt μ s)
- Standard in neueren Linux-Kernen
- Nutzung der pps-Signale der Referenzzeitquelle als Interrupts
- Korrektur der Systemuhr entsprechend Referenzzeit der Hardware-Uhr
- Varianz der Interrupt-Latenzzeiten beeinflusst Genauigkeit
- mehrere externe Zeitquellen an einem Rechner möglich zur weiteren Erhöhung der Genauigkeit
- ullet Genauigkeit: typisch $< 1~\mu {
 m s}$

Beispiel: David L. Mill's Uhren (Uni Delaware) 놎

http://doc.ntp.org/4.1.2/refclock.htm

- Spectracom 8170 WWVB Receiver
- Spectracom 8183 GPS Receiver
- Spectracom 8170 WWVB Receiver
- Spectracom 8183 GPS Receiver
- Hewlett Packard 105A Quartz Frequency Standard
- Hewlett Packard 5061A Cesium Beam Frequency Standard
- NTP primary time server rackety and pogo (elsewhere)

Kommerzielle Time Server

Time Server

- Dedizierter LAN-Netzwerkknoten zur Zeitsynchronisation
- Interne oder externe Referenzzeitguelle
- Unterstützung für Standard-Protokolle (s.u.) (NTP, SNTP, PTP/IEEE 1588)

Produkte in vielen Varianten

- Meinberg (D)
- IPCAS (D)
- Galleon (UK)
- ELPROMA (NL)
- Time Tools (UK)

Globale Zeitbasis und Synchronisationsprotokoll

Globale Zeitbasis und Synchronisationsprotokolle

- Abstraktion
- Approximiert durch lokale Zeiten eines Ensembles synchronisierter lokaler Uhren

Plausibilitätsbedingung für globale Granularität g

- Die globale Zeit heißt plausibel für die Granularität g, wenn
 - die sie lokal implementierenden Uhren des Ensembles eine beschränkte Präzision Π besitzen (max. Unterschied je zweier Uhren)
 - ▶ g > Π
- ightarrow Synchronisationsfehler ist kleiner als ein Tick der gedachten globalen Uhr
- \rightarrow für jedes Ereignis e unterscheiden sich die globalen Zeitmarken beliebiger lokaler Uhren j und k um maximal eine Einheit (Tick): $|t^j(e) t^k(e)| \leq 1$
 - Dies ist das optimal erreichbare Ergebnis

Folgerungen

- Wenn sich die globalen Zeitmarken zweier Ereignisse um max. einen Tick (Granularität g) unterscheiden, kann die korrekte temporale Ordnung nicht hergestellt werden.
- Ab Unterschied von zwei globalen Ticks ist korrekte temporale Ordnung möglich und durch die Zeitmarken gegeben
- Für die wahre Dauer d_{true} eines Zeitintervalls bei beobachteter Dauer d_{obs} gilt

$$(d_{obs}-2g) < d_{true} < (d_{obs}+2g)$$

 Für eine konsistente globale temporale Ordnung zweier globaler Ereignisse durch zwei lokale Knoten ist ein Abstand der Ereignisse von 3g notwendig

Synchronisationsprotokolle

Konstruktion einer verteilten Zeitbasis für Rechensysteme

- UTC-basierte externe Referenzzeitquelle
- lokale Uhren in den Rechensystemen
- Synchronisationsprotokoll

Probleme

- Nachrichtenverzögerung im Netzwerk nicht deterministisch
- Bearbeitung der Protokollnachrichten zeitlich nicht deterministisch

⇒keine exakte Synchronisation möglich

Algorithmus von Christian (1989)

- passiver Zeitserver (als Referenzzeitquelle)
- periodisches Abfragen der Zeit durch Klienten
- mittlere Roundtriplaufzeit (incl. Verarbeitungszeit auf dem Server) messen und berücksichtigen
- Schwächen:
 - "Rückwartsgehen" einer Uhr ist möglich
 - Schwankungen in Nachrichtenlaufzeiten

Setze:
$$t_{local} = t_{SRV} + \frac{t_R}{2}$$

Algorithmus von Christian (1989)

- passiver Zeitserver (als Referenzzeitquelle)
- periodisches Abfragen der Zeit durch Klienten

lokaler Uhr

Zeit und Ordnen

- mittlere Roundtriplaufzeit (incl. Verarbeitungszeit auf dem Server) messen und berücksichtigen
- Schwächen:
 - "Rückwartsgehen" einer Uhr ist möglich
 - Schwankungen in Nachrichtenlaufzeiten

Berkeley UNIX timed

24

- basiert auf ICMP/IP
- etabliert "mittlere Netzwerkzeit" in allen Stellen
- Master/Slave-Algorithmus
 - aktiver Master: fragt aktuelle Zeiten aller Knoten ab, berechnet Mittel
 - verteilt Differenz (Offset) an jeden Client
- nutzt settimeofday() und adjtime() in den Knoten
- deutliche Schwächen
 - "Rückwartsgehen" einer Uhr ist möglich
 - ▶ keine Kompensation von Schwankungen in Nachrichtenlaufzeiten
 - keine Fehlerabschätzung
 - schlechte Skalierbarkeit
- Variante: Master mit ext. Referenzzeitquelle verteilt aktuelle Zeit statt berechnetem Mittelwert

24

Network Time Protocol (NTP)

- Entwicklung primär durch D. Mills (Univ. of Delaware) getrieben
- http://www.ntp.org
- Ziele:
 - hohe Genauigkeit
 - ▶ Berücksichtigung schwankender Nachrichtenlaufzeiten
 - ► Berücksichtigung von Rechnerausfällen durch Bezug zu mehreren Zeitservern (Peers)
 - Aussortieren offensichtlich unbrauchbarer Zeitquellen (false ticker)
 - eingeschränkte Authentifizierung, Verschlüsselung
 - hohe Skalierbarkeit
- Heute Internet Standard
 - ▶ RFC 1305, 1992, frühere Version RFC 1129, RFC 958 (1985)
 - > 1.000.000 Rechner, Router, usw.
 - Nutzt UDP. Port 123
 - UNIX ntpd, xntpd (Clients aber auch f
 ür fast alle anderen Systeme)
 - Zeitserver der PTB: ptbtime1.ptb.de, ptbtime2.ptb.de
- Genauigkeit:
 - ▶ im LAN <1 ms, Internet < ca. 10 ms

(Abbildung von Mills)

NTP(2)-Arbeitsweise

NTP(2)-Arbeitsweise

Server legen Zeit fest, Clients beziehen Zeit Hierarchiebildung der Server durch "Stratum"-Level

• Knoten mit externen Referenzzeitquellen bilden Stratum 1 -Server (Genauigkeit: $< 1~\mu s$ möglich)

Zeit und Ordnen

- Stratum n Server synchronisieren sich mit Stratum n-1 Servern, usw.
- im Internet (2015)
 - Jeweils ca. 300 aktive Stratum-1 und Stratum-2 Server
 http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
 - ▶ Praktisch: 4-stufige Hierarchie, Lastausgleich durch regionale NTP Pool Server
- Typische Strukturen:

Unternehmens-Zeitserver (fehlertolerant)

Abteilungs-Zeitserver (fehlertolerant)

Workstation

NTP(3)

Server legen Zeit fest, Clients beziehen Zeit Hierarchiebildung der Server durch "Stratum"-Level

• Knoten mit externen Referenzzeitquellen bilden Stratum 1 -Server (Genauigkeit: $< 1~\mu {\rm s}$ möglich)

Zeit und Ordnen

- Stratum n Server synchronisieren sich mit Stratum n-1 Servern, usw.
- im Internet (2015)
 - ► Jeweils ca. 300 aktive Stratum-1 und Stratum-2 Server http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
 - ▶ Praktisch: 4-stufige Hierarchie, Lastausgleich durch regionale NTP Pool Server
- Typische Strukturen:

Unternehmens-Zeitserver (fehlertolerant)

Abteilungs-Zeitserver (fehlertolerant)

Workstation

NTP(3)

- dynamisch festgelegte logische Verbindungsstuktur mit Backup-Verbindungen
 - spannende Bäume minimalen Gewichts basierend auf Server Level und Gesamtsynchronisationsverzögerung jedes Servers zu Primary Servern
- Beispiel Verbindungstopologie
- Nachrichtenaustausch zwischen Servern zwischen 64 sec und 1024 sec (17 min) je nach Qualität der Verbindung
- 64 Bit Zeitmarken
 - ▶ 32 Bit für Sekunden seit 1.1.1900 00:00:00
 - 32 Bit für Sekundenbruchteil
- Nutzung von settimeofday() und adjtime() zur Durchsetzung großer bzw. kleiner (<0.128 sec) Korrekturen.
- Kein Zurücksetzen der Uhr

NTP(3)

- dynamisch festgelegte logische Verbindungsstuktur mit Backup-Verbindungen
 - spannende Bäume minimalen Gewichts basierend auf Server Level und Gesamtsynchronisationsverzögerung jedes Servers zu Primary Servern
- Beispiel Verbindungstopologie
- Nachrichtenaustausch zwischen Servern zwischen 64 sec und 1024 sec (17 min) je nach Qualität der Verbindung
- 64 Bit Zeitmarken
 - 32 Bit für Sekunden seit 1.1.1900 00:00:00
 - 32 Bit für Sekundenbruchteil
- Nutzung von settimeofday() und adjtime() zur Durchsetzung großer bzw. kleiner (<0.128 sec)
 Korrekturen.
- Kein Zurücksetzen der Uhr

NTP(3)

- dynamisch festgelegte logische Verbindungsstuktur mit Backup-Verbindungen
 - spannende Bäume minimalen Gewichts basierend auf Server Level und Gesamtsynchronisationsverzögerung jedes Servers zu Primary Servern
- Beispiel Verbindungstopologie
- Nachrichtenaustausch zwischen Servern zwischen 64 sec und 1024 sec (17 min) je nach Qualität der Verbindung
- 64 Bit Zeitmarken
 - ▶ 32 Bit für Sekunden seit 1.1.1900 00:00:00
 - 32 Bit für Sekundenbruchteil
- Nutzung von settimeofday() und adjtime() zur Durchsetzung großer bzw. kleiner (<0.128 sec) Korrekturen.
- Kein Zurücksetzen der Uhr

Distributed Time Service (DTS)

- Teil von OSF DCE, ursprünglich von Digital entwickelt
- Besonderheit: Etablieren eines Zeitintervalls, das UTC enthält und Ungenauigkeit minimiert
- adjust im Verhältnis 1:100

2.4

Distributed Time Service (DTS)

- Teil von OSF DCE, ursprünglich von Digital entwickelt
- Besonderheit: Etablieren eines Zeitintervalls, das UTC enthält und Ungenauigkeit minimiert
- adjust im Verhältnis 1:100

2.4

Precision Time Protocol (PTP, IEEE 1588)

- Hauptsächlich für mess- und regelungstechnische Anwendungen
- Erreicht h\u00f6here Genauigkeit als NTP f\u00fcr Netze mit r\u00e4umlich begrenzter Ausdehnung
- Master-Slave-Verfahren
- Automatische Wahl der besten Uhr als Grandmaster-Clock
- Primär auf Ethernet-Netzen angewendet
- Timestamping-Unit kann als Teil des Netzwerk-Controllers (in Hardware) implementiert sein
- \Rightarrow Genauigkeit im ns-Bereich, in Software im μ s-Bereich
 - Ptpd als freie Implementierung
 - Verbesserte Version IEEE 1588-2008

 $t_2 - t_1 = offset + d$ $t_4 - t_3 = -offset + d$

offset =
$$\frac{(t_2 - t_1 - t_4 + t_3)}{2}$$

© R. Kaiser, K. Beckmann, R. Kröger, Hochschule RheinMain

EZV SS 22

Realzeit ist nicht immer notwendig Beispiele:

- Ordnen von Ereignissen (vor nach)
- zeitmarkenbasiertes Concurrency Control in Datenbanken

Lamport Zeitstempel

Relation happens-before

- Notation: $a \rightarrow b$ (a passiert-vor b)
- Ereignisse im selben Prozess sind linear geordnet
- Nachrichtenversand:
 - a sei Ereignis des Versendens einer Nachricht m
 - ▶ b sei Empfang der Nachricht m in einem anderen Prozess
 - ightharpoonup dann gilt: $a \rightarrow b$
- Relation ist transitiv:
 - ightharpoonup a
 ightharpoonup b. b
 ightharpoonup c
 ightharpoonup a
 ightharpoonup c
 ightharpoonup a
 ightharpoonup c
- Nebenläufigkeit:
 - ▶ falls weder $a \rightarrow b$ noch $b \rightarrow a$ gilt, heißen a und b nebenläufig

Uhrenbedingung

- C(a) bezeichne die (logische) Zeit, zu der das Ereignis a stattfinde.
- $a \rightarrow b \Rightarrow C(a) < C(b)$

Algorithmus für logische Uhren nach Lamport (1978) Annahmen:

- Prozesse kommunizieren über Nachrichten (und nur über Nachrichten) miteinander
- jeder Prozess P hat eine logische Uhr C_P
- ullet jedes Ereignis e des Prozesses P erhält logischen Zeitstempel $\mathcal{C}_P(e)$
- zwei aufeinander folgende Ereignisse e_i und e_{i+1} eines Prozesses haben nie den gleichen Zeitstempel: $C_P(e_i) < C_P(e_i+1)$

Lamport-Uhren (2)

Beispiel:

Α		В		C
0		0		0
6 ~	_m1	8		10
12		16		20
18		24 ~	_m2	30
24		32		→ 40
30		40		50
36		48	m3_	_ 60
42		56 4		70
48	m4	- 64		80
54 4		72		90
60		80		100

Uhren mit unterschiedlichen Geschwindigkeiten ohne Korrektur

Uhren mit unterschiedlichen Geschwindigkeiten mit Korrektur

Lamport-Uhren (3)

Algorithmus:

- Berücksichtigung von Kausalität im Nachrichtenversand!
- Sendeereignis s einer Nachricht m in Prozess A:
 - ightharpoonup Zeitmarke $C_A(s)$
 - ▶ Versende Nachricht m zusammen mit aktuellem Zeitstempel des sendenden Prozesses $t = C_A(s)$
- Empfangsereignis e der Nachricht m in Prozess B:
 - ightharpoonup sei $C_B(alt)$ die Zeitmarke des letzten Ereignisses in B
 - Setze $C_B(e) := max\{C_B(alt), t\} + 1$
- Falls zwei Ereignisse in verschiedenen Prozessen die gleiche Zeitmarke haben sollten, ordne sie anhand der Prozessordnung
- Algorithmus erfüllt Uhrenbedingung
- Umkehrung gilt nicht: $C(a) < C(b) \Rightarrow a \rightarrow b$ ist falsch!
- Lamport-Uhren lösen nicht das Kausalitätsproblem

Vector Clocks

Vektor-Uhren, Mattern (Uni Kaiserslautern, 1989) Vektor-Uhren lösen o.a. Kausalitätsproblem Algorithmus:

- nachrichtenbasierte Kommunikation
- jeder Prozess P_i besitzt Uhr VC_i als Vektor von Zeitmarken
- lokales Ereignis in P_i :
 - $VC_i[i] := VC_i[i] + 1$, sonst unverändert
- Sendeereignis in P_i :
 - $VC_i[i] := VC_i[i] + 1$ (Erhöhe eigenen Ereigniszähler)
 - lacktriangle Versende Nachricht mit eigener Vektorzeit $vt = VC_i$
- Empfangsereignis in P_k :
 - $VC_k[j] := max\{VC_k[j], vt[j]\}$ für alle j
 - $VC_k[k] := VC_k[k] + 1$ (Erhöhe eigenen Ereigniszähler)

Vector Clocks (2)

Vergleich von Zeitmarkenvektoren

- $S \leq T :\Rightarrow S[i] \leq T[i]$ für alle i
- $S < T :\Rightarrow S \le T \text{ und } S \ne T$
- $S||T :\Rightarrow \neg(S < T) \text{ und } \neg(T < S)$

Nebenläufigkeit

• Ereignisse a und b sind nebenläufig $\Leftrightarrow VC(a)||VC(b)|$

Kausalität

• $a \rightarrow b \Leftrightarrow VC(a) < VC(b)$

Vector Clocks (3)

Beispiel

- kausal abhängige Ereignisse, z.B. $(0,0,1) \rightarrow (5,4,2)$, $(1,0,0) \rightarrow (2,6,2)$
- nebenläufige Ereignisse, z.B. (0,0,3)||(5,4,2)

