3. ESTRATEGIAS DE BÚSQUEDA INFORMADAS

IA 3.2 - Programación III

1° C - 2023

Lic. Mauro Lucci

Estrategias de búsqueda no informadas:

- Breadth First Search (BFS).
- 2. Depth First Search (DFS).
- 3. Uniform Cost Search (UCS).
- Iterative Deepening Search (IDS).

No usan información adicional más allá de la definición del problema. Todo lo que hacen es expandir nodos siguiendo algún orden particular y distinguir estados objetivos de no-objetivos.

¿Cómo podemos guiar la búsqueda para encontrar soluciones de forma más eficiente?

Estrategias de búsqueda informadas

- Saben si un estado no-objetivo es **más prometedor** que otro y lo expanden antes.
- Usan conocimiento específico del problema, más allá de la definición del problema en sí.
- Incorporan una **función heurística** h donde, para cada nodo n, $h(n) = \cos to estimado del camino de menor costo desde el estado en el nodo <math>n$ a un estado objetivo.
- Si n es un nodo objetivo, entonces h(n) = 0.

Ejemplo – Problema de camino más corto

Distancia en línea recta a San Juan desde:

Buenos Aires = 997 Rosario = 747 Córdoba = 417 San Luis = 284 Mendoza = 148 San Juan

Búsqueda avara primero el mejor

Greedy Best-First Search (GBFS)

Intenta encontrar rápidamente una solución.

Los nodos del árbol de búsqueda se expanden según su cercanía a un nodo objetivo.

Dada una función heurística h, se expande siempre el nodo n de la frontera con el menor costo h(n).

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	_	{A}	-
1	А	8	
2			
3			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2			
3			

747 В: Rosario 300 997 Α: Bs. As. 284 **C:** San Luis 793

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2	С	{B}	
3			

747 В: Rosario 300 997 Α: Bs. As. 284 **C:** San Luis 793

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	С	{B}	{B,D,E,F,G,H}
3			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2	С	{B}	{B,D,E,F,G,H}
3	Н	{B,D,E,F,G}	FIN

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	0	{B,C}
2	С	{B}	{B,D,E,F,G,H}
3	Н	{B,D,E,F,G}	FIN

Ejemplo – Completitud

Encontrar el camino más corto de Bs. As. a San Juan en el siguiente mapa:

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	
2			
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2			
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2	С	{B}	
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	С	{B}	{B,D,E,F,G}
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	С	{B}	{B,D,E,F,G}
3	G	{B,D,E,F}	
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	С	{B}	{B,D,E,F,G}
3	G	{B,D,E,F}	{B,D,E,F,H}
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	С	{B}	{B,D,E,F,G}
3	G	{B,D,E,F}	{B,D,E,F,H}
4	Н	{B,D,E,F}	CONTINÚA

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	С	{B}	{B,D,E,F,G}
3	G	{B,D,E,F}	{B,D,E,F,H}
4	Н	{B,D,E,F}	CONTINÚA

Ejemplo – Optimalidad

Encontrar el camino más corto de Córdoba a Mendoza en el siguiente mapa:

Valores heurísticos:

Córdoba = 498 San Luis = 232San Juan = 143Mendoza = 0

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			

498 A: Córdoba. 0

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	
2			
3			

498 A: Córdoba. 0

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2			
3			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	С	{B}	
3			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	0	{B,C}
2	С	{B}	{B,D,E,F}
3			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	С	{B}	{B,D,E,F}
3	F	{B,D,E}	FIN

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	_	{A}	-
1	А	0	{B,C}
2	С	{B}	{B,D,E,F}
3	F	{B,D,E}	FIN

Encontramos una solución subóptima. El camino Córdoba → San Luis → Mendoza tiene costo 687 < 758

Sea un problema descrito por el siguiente espacio de estados, donde A es el estado inicial y F es el estado objetivo.

Resolverlo con la estrategia GBFS, donde la heurística estima los siguientes costos para los estados:

$$A = 6$$
, $B = 3$, $C = 2$, $D = 1$, $E = 5$, $F = 0$

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			
4			

6 A 0

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	{}	
2			
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	{}	{B,E}
2			
3			
4			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,E}
2	В	{E}	
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	{}	{B,E}
2	В	{E}	{E,C}
3			
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	A	{}	{B,E}
2	В	{E}	{E,C}
3	С	{E}	
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	A	{}	{B,E}
2	В	{E}	{E,C}
3	С	{E}	$\{E,D,F_2\}$
4			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	A	{}	{B,E}
2	В	{E}	{E,C}
3	С	{E}	$\{E,D,F_2\}$
4	F ₂	{E,D}	FIN

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	A	8	{B,E}
2	В	{E}	{E,C}
3	С	{E}	{E,D,F ₂ }
4	F ₂	{E,D}	FIN

Implementación

- ¿Cómo elegimos de la frontera el próximo nodo a expandir? El nodo n con el menor costo h(n).
- ¿Cómo lo logramos?

Al igual que en UCS, usando el TAD **cola de prioridad** para la frontera pero ordenando los nodos por la función heurística.

Algoritmo GBFS en grafos

```
1 function GRAPH-GBFS(problema, h) return solución o fallo
      raíz ← Nodo(estado = problema.estado-inicial, costo = 0)
3
      frontera ← ColaPrioridad()
      frontera.encolar(raíz, h(raíz.estado))
      alcanzados ← {raíz.estado: raíz}
6
      do
            if (frontera.vacía()) then return fallo
            nodo ← frontera.desencolar()
            if (problema.test-objetivo(nodo.estado)) then return solución(nodo)
            forall acción in problema.acciones(nodo.estado) do
10
                  hijo ← Nodo(estado = problema.resultado(nodo.estado, acción),
11
                              costo = nodo.costo + problema.c(nodo.estado, acción),
                              padre = nodo, acción = acción)
                  if hijo.estado is not in alcanzados or hijo.costo < alcanzados[hijo.estado].costo then
12
13
                        alcanzados[hijo.estado] = hijo
14
                        frontera.encolar(hijo, h(hijo.estado))
```

Performance de TREE-GBFS y GRAPH-GBFS

- Completitud. 🔽 (en árboles hay que detectar caminos cíclicos).
- Optimalidad. X
- Tiempo y memoria.
 - La cantidad de nodos generados puede reducirse drásticamente con una función heurística apropiada.

Entre UCS y GBFS

- UCS es óptima, pero genera todos los nodos con costo de camino menor al de una solución óptima.
- GBFS puede reducir drásticamente la cantidad de nodos generados con una función heurística apropiada, pero no es óptima.

Suena razonable combinarlas...

Búsqueda A*

A* Search

Combina las estrategias UCS y GBFS.

Dada una función heurística h, se expande siempre el nodo n de la frontera con la menor evaluación según una **función de evaluación** f definida por:

$$f(n) = n.costo + h(n),$$

es decir, f(n) es el costo estimado de la solución menos costosa que pasa por n.

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			
4			
5			

0+997=997

A: Bs. As.

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	
2			
3			
4			
5			

0+997=997 A: Bs. As.

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2			
3			
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	В	{C}	
3			
4			
5			

300+747=1047 В: Rosario 300 0+997=997 Α: Bs. As. 0 793+284=1077 **C:** San Luis 793

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	В	{C}	{C,D,E,F}
3			
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	{D,E,F,G,H,I,J,K}
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	{D,E,F,G,H,I,J,K}
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	{D,E,F,G,H,I,J,K}
4	Е	{D,F,G,H,I,J,K}	{D,F,G,H,I,J,K,L,M,N}
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	{D,E,F,G,H,I,J,K}
4	Е	{D,F,G,H,I,J,K}	{D,F,G,H,I,J,K,L,M,N}
5	К	{D,F,G,H,I,J,L,M,N}	FIN

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	8	{B,C}
2	В	{C}	{C,D,E,F}
3	С	{D,E,F}	{D,E,F,G,H,I,J,K}
4	E	{D,F,G,H,I,J,K}	{D,F,G,H,I,J,K,L,M,N}
5	К	{D,F,G,H,I,J,L,M,N}	FIN

Sea un problema descrito por el siguiente espacio de estados, donde A es el estado inicial y F es el estado objetivo.

Resolverlo con la estrategia A*, donde la heurística estima los siguientes costos para los estados:

$$A = 6$$
, $B = 3$, $C = 2$, $D = 1$, $E = 5$, $F = 0$

0+6=6	A	
0+0-0	0	

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1			
2			
3			
4			
5			

0+6=6	A
0-0-0	0

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	A	8	
2			
3			
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	()	{B,E}
2			
3			
4			
5			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,E}
2	В	{ E }	
3			
4			
5			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	_	{A}	-
1	Α	0	{B,E}
2	В	{ E }	{E,C}
3			
4			
5			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	0	{B,E}
2	В	{ E}	{E,C}
3	С	{ E }	
4			
5			

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	{}	{B,E}
2	В	{E}	{E,C}
3	С	{E}	$\{E,D,F_2\}$
4			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	0	{B,E}
2	В	{ E}	{E,C}
3	С	{ E }	{E,D,F ₂ }
4	D	{E,F₂}	
5			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	Α	{}	{B,E}
2	В	{E}	{E,C}
3	С	{E}	{E,D,F ₂ }
4	D	{E,F₂}	{E,F ₂ ,F ₃ }
5			

Nº	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	0	{B,E}
2	В	{ E }	{E,C}
3	С	{ E }	{E,D,F ₂ }
4	D	{E,F ₂ }	{E,F ₂ ,F ₃ }
5	F ₃	{E,F₂}	FIN

Respuesta

N°	Nodo actual	Frontera antes de expandir	Frontera después de expandir
0	-	{A}	-
1	А	8	{B,E}
2	В	{E}	{E,C}
3	С	{E}	$\{E,D,F_2\}$
4	D	{E,F ₂ }	{E,F ₂ ,F ₃ }
5	F ₃	{E,F₂}	FIN

Implementación

- ¿Cómo elegimos de la frontera el próximo nodo a expandir? El nodo n con la menor evaluación f(n).
- ¿Cómo lo logramos?

Al igual que en UCS y GBFS, usando el TAD **cola de prioridad** para la frontera pero ordenando los nodos por la función de evaluación f.

Algoritmo de búsqueda A* en grafos

```
1 function GRAPH-ASTAR(problema, h) return solución o fallo
      raíz ← Nodo(estado = problema.estado-inicial, costo = 0)
3
      frontera ← ColaPrioridad()
      frontera.encolar(raíz, raíz.costo + h(raíz.estado))
      alcanzados ← {raíz.estado: raíz}
6
      do
            if (frontera.vacía()) then return fallo
            nodo ← frontera.desencolar()
            if (problema.test-objetivo(nodo.estado)) then return solución(nodo)
            forall acción in problema.acciones(nodo.estado) do
10
11
                  hijo ← Nodo(estado = problema.resultado(nodo.estado, acción),
                              costo = nodo.costo + problema.c(nodo.estado, acción),
                              padre = nodo, acción = acción)
                  if hijo.estado is not in alcanzados or hijo.costo < alcanzados[hijo.estado].costo then
12
13
                        alcanzados[hijo.estado] = hijo
14
                        frontera.encolar(hijo, hijo.costo + h(hijo.estado))
```

Admisibilidad y Consistencia

Una función heurística h es:

- Admisible si, para todo nodo n, h(n) nunca sobrestima el costo de alcanzar un estado objetivo.
- Consistente si, para todo nodo n e hijo n' generado por una acción a, se cumple

$$h(n) \leq c(n,a,n') + h(n')$$
.

- **Ejemplo**. El costo de viaje en línea recta es una heurística admisible y consistente para el problema del camino más corto.
- Toda heurística consistente es admisible.

Performance de TREE-ASTAR y GRAPH-ASTAR

- Completitud.
- Optimalidad.

 - En grafos. ✓ si la heurística es consistente.

Resumen

- 🖵 Vimos dos estrategias de búsqueda informadas: GBFS y A*.
- GBFS expande siempre el nodo no expandido con menor costo heurístico h(n). No es óptima pero a menudo es bastante eficiente.
- A* expande siempre el nodo no expandido con menor costo de evaluación f(n) = n.costo + h(n). Es óptima si la heurística es admisible (en árboles) y consistente (en grafos).

¿Cómo generar buenas heurísticas para un problema?

Juego del 8 (8 Puzzle)

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Descripción

Objetivo. Alcanzar una configuración objetivo.

Reglas. Una ficha se puede mover de una casilla *A* a una casilla *B* si:

- 1. A está adyacente (verticalmente u horizontalmente) a B, y
- 2. B es una casilla vacía.

Formulación

- Estados. Matrices 3x3 con números del 1 al 8 y una casilla vacía. Hay 9! = 362.880 estados, de los cuales solo la mitad son alcanzables.
- Estado inicial. Cualquier estado puede ser designado como inicial.
- Acciones. \leftarrow , \uparrow , \rightarrow , \downarrow (a dónde se mueve el espacio vacío).
- Modelo transicional. Por ejemplo, ← intercambia en la matriz la casilla vacía con el elemento de la casilla de su izquierda.
- **Test objetivo.** Verificar si el estado coincide con la configuración deseada.
- Costo de camino. El costo individual es 1, luego el costo de camino es el número de pasos realizados.

Resolución mediante búsqueda

Dado un estado inicial generado aleatoriamente.

- Menor profundidad de un nodo objetivo: 22 pasos (en promedio).
- Factor de ramificación: 3 (en promedio).
- El árbol de búsqueda hasta el nivel 22 tiene aproximadamente
 3²³ 1 ≈ 94.143.178.826 ≈ 9,41 x 10¹⁰ nodos
- Es conveniente cambiar a una búsqueda en grafos, ya que el espacio de estados tiene sólo **181.440** estados.
- El juego del 15 (15 puzzle) tiene 10¹³ estados.
- Es necesario pasar a una búsqueda informada, para ello es necesario definir una buena heurística.

- 1. h_1 = número de fichas mal ubicadas.
 - **Ejemplo.** $h_1(n) = 8$ (todas están mal ubicadas).

2. h_2 = suma de las distancias en vertical y horizontal de las fichas a su posición objetivo. **Distancia de Manhattan.**

Ejemplo.
$$h_2(n) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$$

$$\uparrow$$
 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow

Ambas son admisibles.

Dado un nodo n con el siguiente estado:

calcular $h_1(n)$ y $h_2(n)$.

 $h_1(n) = 6$ (solamente las fichas 1 y 4 están bien ubicadas).

$$h_2(n) = 0 + 3 + 3 + 0 + 1 + 3 + 1 + 1 = 12$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

Ficha: 1 2 3 4 5 6 7 8

 h_1 vs. h_2

d	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	3644035	227	73
14	_	539	113
16	_	1301	211
18	_	3056	363
20	_	7276	676
22	_	18094	1219
24	-	39135	1641

Cada fila de la tabla reporta el número promedio de nodos generados por cada estrategia para 100 instancias aleatorias con solución de costo d.

h_1 vs. h_2

- ξh_2 es siempre mejor que h_1 ? **Si**.
- Para todo nodo n, $h_2(n) \ge h_1(n)$, luego h_2 domina a h_1 .
- A* con h_2 nunca expande más nodos que A* con h_1 .

¿Cómo generar heurísticas de este tipo?

Problemas relajados

Un **problema relajado** se obtiene quitando restricciones a las acciones de un problema.

Ejemplo

Una ficha se puede mover de una casilla A a una casilla B si:

1. A está adyacente (verticalmente u horizontalmente) a B, y

2. B es una casilla vacía.

 h_1 = número de fichas mal ubicadas. En este problema relajado, $h_1(n)$ da el **costo exacto** del camino de menor costo desde n al nodo objetivo.

Ejemplo

Una ficha se puede mover de una casilla A a una casilla B si:

- 1. A está adyacente (verticalmente u horizontalmente) a B, \forall
- 2. B es una casilla vacía.

 h_2 = distancia de Manhattan. En este problema relajado, $h_2(n)$ da el **costo exacto** del camino de menor costo desde n al nodo objetivo.

Admisibilidad y Consistencia

Sean P un problema con una heurística h y P' un problema relajado de P.

- El grafo de espacio de estados de P' tiene más arcos que el de P.
- Una solución óptima de P es una solución de P', pero P' puede tener mejores soluciones si los arcos adicionales proveen caminos más cortos.
- Si h(n) da el costo exacto del camino más corto desde n a un nodo objetivo en P', entonces h es **admisible** y **consistente** para P.
- Es crucial que P' pueda resolverse sin búsqueda. De lo contrario, los valores de h serían costosos de obtener.

Subproblema

Un **subproblema** consiste en resolver una parte de un problema más grande.

En general, se obtiene quitando restricciones del objetivo de un problema.

Ejemplo

Ubicar las fichas 1, 2, 3, 4 y la casilla vacía en su posición correcta.

La elección de 1-2-3-4 es arbitraria. Podría ser 5-6-7-8, 2-4-6-8, etc.

Modelo de bases de datos — Pattern database

Sea un subproblema P' de un problema P.

- El costo de una solución óptima de *P*' es una cota inferior del costo de una solución óptima de *P*.
- Un modelo de bases de datos almacena el costo de una solución óptima de P'
 para cualquier estado inicial.
- Dado un nodo n, se define una heurística h para P tal que h(n) es el costo almacenado en la base de datos para la configuración del subproblema correspondiente.
- h es admisible para P.
- Es crucial que P' pueda resolverse fácilmente mediante búsqueda, ya que debemos resolverlo para toda configuración inicial.

Modelo de bases de datos disjuntas

- ¿Las heurísticas obtenidas de las bases de datos 1-2-3-4 y 5-6-7-8 se pueden sumar? **No es tan sencillo**, las soluciones a estos subproblemas seguro comparten movimientos.
- Para poder sumarlos, en el subproblema 1-2-3-4 no debemos registrar el costo total, sino solamente el número de movimientos que involucran las fichas 1-2-3-4 (y análogamente con el subproblema 5-6-7-8).
- Los modelos de bases de datos disjuntas utilizan esta idea.
- Permiten resolver el 15-puzzle en milisegundos.

Heurística compuesta

Sean $h_1,...,h_m$ heuristicas para un problema y tales que ninguna domina la otra.

Se define la heuristica compuesta

$$h(n) = \max\{h_1(n), ..., h_m(n)\}.$$

Admisibilidad y Consistencia

- Si $h_1, ..., h_m$ son admisibles, entonces h es admisible.
- Si $h_1, ..., h_m$ son consistentes, entonces h es **consistente**.
- h domina a $h_1, ..., h_m$.

Resumen

- ☐ Vimos 3 formas de construir buenas heurísticas.
 - a. Relajando el problema.
 - b. Almacenando en una base de datos los costos de soluciones precomputadas para un subproblema.
 - c. Componiendo heurísticas disponibles.

Próximamente

Más allá de la búsqueda clásica...

Veremos algoritmos de **búsqueda local:** evalúan y modifican uno o varios estados actuales, en lugar de explorar sistemáticamente caminos desde un estado inicial