数据特征分析技能—— 分布分析

分布分析法又称**直方图法**。它是将搜集到的质量数据进行分组整理,绘制成频数分布直方图,用以*描述质量分布状态*的一种分析方法

import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline

data = pd.read_csv(r'E:\DataScience\Python\统计分析技能\深圳罗湖二手房息.csv',engine='python')

data.head()

	房屋编码	小区	朝向	房屋单价	参考首付	参考总价	经度	纬度
0	605093949	大望新平村	南北	5434	15.0	50.0	114.180964	22.603698
1	605768856	通宝楼	南北	3472	7.5	25.0	114.179298	22.566910
2	606815561	罗湖区罗芳村	南北	5842	15.6	52.0	114.158869	22.547223
3	605147285	兴华苑	南北	3829	10.8	36.0	114.158040	22.554343
4	606030866	京基东方都会	西南	47222	51.0	170.0	114.149243	22.554370

plt.scatter(data['经度'], data['纬度'],# 按照地理位置显示 s=data['房屋单价']/500, # 按照单价显示大小 c=data['参考总价'], cmap='Reds',alpha=0.5,) # 按照总价显示颜色 plt.grid(linestyle='--')

极差

针对定量数据

极差

def d range(df,*cols):

krange=[]

for col in cols:

krange.append(df[col].max() - df[col].min())

return krange

key1 = '参考首付'

key2 = '参考总价'

k = d range(df,key1,key2)

print('%s 的极差为: %.2f\n%s 的极差为: %.2f%(key1,k[0],key2,k[1]))

参考首付的极差为: 52.50 参考总价的极差为: 175.00

data['参考总价'].hist(bins=10, figsize=(10,6),edgecolor='black') plt.grid(linestyle='--')

频率分布情况

频率的分布情况

gcut = pd.cut(data[key1],10,right=False) # right: 是否包括末端值 gcut_count = gcut.value_counts(sort=False) data['%s 区间'%key1] = gcut.values data.head()

	房屋编码	小区	朝向	房屋单价	参考首付	参考总价	经度	纬度	参考首付区间
0	605093949	大望新平村	南北	5434	15.0	50.0	114.180964	22.603698	[12.75, 18.0)
1	605768856	通宝楼	南北	3472	7.5	25.0	114.179298	22.566910	[7.5, 12.75)
2	606815561	罗湖区罗芳村	南北	5842	15.6	52.0	114.158869	22.547223	[12.75, 18.0)
3	605147285	兴华苑	南北	3829	10.8	36.0	114.158040	22.554343	[7.5, 12.75)
4	606030866	京基东方都会	西南	47222	51.0	170.0	114.149243	22.554370	[49.5, 54.75)

区间出现的频率

df1 = pd.DataFrame(gcut count)

dfl.rename(columns={gcut_count.name:'频数'},inplace=True)

df1['频率'] = df1['频数'] / df1['频数'].sum()

df1['累计频率'] = df1['频率'].cumsum()

df1['频率%'] = df1['频率'].apply(lambda x: '%.2f%%'%(x*100))

df1['累计频率%'] = df1['累计频率'].apply(lambda x: '%.2f%%'%(x*100))

df1.style.bar(subset=['频率','累计频率'],width=100)

	频数	频率	累计频率	频率%	累计频率%
[7.5, 12.75)	14	0.186667	0.186667	18.67%	18.67%
[12.75, 18.0)	17	0.226667	0.413333	22.67%	41.33%
[18.0, 23.25)	1	0.0133333	0.426667	1.33%	42.67%
[23.25, 28.5)	2	0.0266667	0.453333	2.67%	45.33%
[28.5, 33.75)	4	0.0533333	0.506667	5.33%	50.67%
[33.75, 39.0)	2	0.0266667	0.533333	2.67%	53.33%
[39.0, 44.25)	3	0.04	0.573333	4.00%	57.33%
[44.25, 49.5)	4	0.0533333	0.626667	5.33%	62.67%
[49.5, 54.75)	8	0.106667	0.733333	10.67%	73.33%
[54.75, 60.052)	20	0.266667	1	26.67%	100.00%

绘制直方图

其实是平常并不必要那么麻烦的计算区间啊什么的,直接使用 plt.hist 就可以了

直方图

df1['频率'].plot(kind='bar',figsize=(16,6),width=0.8, rot=0, color='k',grid=True,alpha=0.6)

定性字段的频率分布

方法相似

```
df2 = data['朝向'].value_counts()
print(df2)
```

统计票频率

```
df2_cx = pd.DataFrame(df2)
df2_cx.rename(columns={df2.name:'频数'}, inplace=True)
df2_cx['频率'] = df2_cx['频数'] / df2_cx['频数'].sum()
df2_cx['累计频率'] = df2_cx['频率'].cumsum()
print(df2_cx)
```

df2 cx.style.bar(subset=['频率','累计频率'], color='#d65f5f',width=100)

```
南北
     29
南
     20
东
      8
东南
      4
北
西南
西北
      3
东西
东北
Name: 朝向, dtype: int64
          频率 累计频率
南北 29 0.386667 0.386667
南 20 0.266667 0.653333
东 8 0.106667 0.760000
东南 5 0.066667 0.826667
北 4 0.053333 0.880000
西南 4 0.053333 0.933333
西北 3 0.040000 0.973333
东西 1 0.013333 0.986667
东北 1 0.013333 1.000000
```

	频数	频率	累计频率
南北	29	0.386667	0.386667
南	20	0.266667	0.653333
东	8	0.106667	0.76
东南	5	0.0666667	0.826667
北	4	0.0533333	0.88
西南	4	0.0533333	0.933333
西北	3	0.04	0.973333
东西	1	0.0133333	0.986667
东北	1	0.0133333	1

绘制频率直方图和饼图

plt.show()

建议在分析数据分布的时候,在**尽量不选用饼图**,特别是在差别不明显的时候,饼图并不容易看出大小差异。**直方图或者柱状图**可以做替代。