Universidad Nacional Autónoma De México

Facultad de Ingeniería

Grupo: 01

Curso: Base de Datos

Alumno: Ortiz Valles Joaquín Rafael

Profesor: Ing. Fernando Arreola Franco

Tarea: 5

1. Regla de la información

Todos los datos deben estar representados lógicamente en tablas (filas y columnas).

Ejemplo:

En una base de datos de biblioteca, los libros se almacenan en una tabla llamada Libros, con columnas como ISBN, Título, Autor, etc. Cada fila representa un libro.

2. Regla del acceso garantizado

Cada dato debe ser accesible de forma lógica mediante una combinación de nombre de tabla, valor de clave primaria y nombre de columna.

Eiemplo:

Para obtener el título del libro con ISBN = '978-0133970777', se usaría:

sal

SELECT Título FROM Libros WHERE ISBN = '978-0133970777';

3. Regla del tratamiento sistemático de valores nulos

El sistema debe soportar valores nulos para representar datos desconocidos o inaplicables, de manera independiente del tipo de dato.

Ejemplo:

En una tabla Empleados, la columna FechaBaja podría ser NULL si el empleado aún trabaja en la empresa.

4. Regla del catálogo en línea basado en el modelo relacional

El catálogo de la base de datos (metadatos) debe almacenarse en tablas y ser accesible con el mismo lenguaje de consulta que los datos.

Ejemplo:

En SQL, se puede consultar la estructura de una tabla con:

sql

DESCRIBE Libros; -- MySQL

SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME

= 'Libros'; -- SQL Server

5. Regla del sublanguage completo

El sistema debe admitir un lenguaje de consulta que permita definir estructuras, manipular datos, realizar transacciones y controlar accesos.

Ejemplo:

SQL permite:

DDL: CREATE TABLE, ALTER TABLE.

DML: SELECT, INSERT, UPDATE.

Control de transacciones: COMMIT, ROLLBACK.

6. Regla de actualización de vistas

Las vistas (tablas virtuales) deben ser actualizables por el sistema si son teóricamente modificables.

Ejemplo:

Si una vista VistaLibrosRecientes muestra libros publicados después de 2020, al hacer:

sql

UPDATE VistaLibrosRecientes SET Título = 'Nuevo Título' WHERE ISBN = '...'; La tabla base Libros debería actualizarse.

7. Regla de inserción, actualización y eliminación de alto nivel

El sistema debe permitir operaciones de inserción, actualización y eliminación en cualquier tabla o vista actualizable.

Ejemplo:

sql

INSERT INTO Libros (ISBN, Título) VALUES ('123', 'Ejemplo'); UPDATE Libros SET Título = 'Otro Ejemplo' WHERE ISBN = '123'; DELETE FROM Libros WHERE ISBN = '123';

8. Regla de independencia física de los datos

Los programas de aplicación no deben verse afectados por cambios en la estructura física de almacenamiento.

Ejemplo:

Si se migra la base de datos a un nuevo disco duro o se cambia el formato de almacenamiento, las consultas SQL siguen funcionando igual.

9. Regla de independencia lógica de los datos

Los programas de aplicación no deben verse afectados por cambios en la estructura lógica de las tablas (ej: agregar columnas).

Ejemplo:

Si se agrega una columna Género a la tabla Libros, las consultas existentes que no usen esa columna siguen funcionando.

10. Regla de independencia de integridad

Las reglas de integridad (restricciones) deben definirse en el catálogo y poder modificarse sin afectar las aplicaciones.

Ejemplo:

Definir una clave primaria en la tabla:

sql

ALTER TABLE Libros ADD PRIMARY KEY (ISBN);

Si luego se cambia a una clave compuesta (ISBN, Edición), las aplicaciones no deberían verse afectadas (si no dependían de la clave anterior).

11. Regla de independencia de distribución

La base de datos debe poder distribuirse en múltiples ubicaciones sin afectar a las aplicaciones.

Ejemplo:

Partir la tabla Libros en dos servidores: libros en español en uno y en inglés en otro. Las consultas deberían funcionar igual mediante vistas o particiones.

12. Regla de la no subversión

Si el sistema permite un lenguaje de bajo nivel, no debe poder omitir las reglas de integridad o seguridad.

Ejemplo:

Aunque se use una interfaz directa para acceder a los archivos de la base de datos, el sistema debe bloquear intentos de modificar datos sin pasar por las validaciones (ej: claves foráneas).

Bibliografía

- [1] E. F. Codd, "A relational model of data for large shared data banks," Communications of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970. doi: 10.1145/362384.362685.
- [2] E. F. Codd, "The relational model for database management: Version 2," Addison-Wesley, 1990.
- [3] E. F. Codd, "Does your DBMS run by the rules?," Computerworld, vol. 19, no. 26, pp. 49–64, Oct. 1985.
- [4] C. J. Date, An Introduction to Database Systems, 8th ed. Pearson, 2003.
- [5] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 7th ed. Pearson, 2016.
- [6] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts, 7th ed. McGraw-Hill, 2020.