

Texto baseado nos livros:

Cálculo - v1 - James Stewart (Editora Cengage Learning)

Introdução ao Cálculo – Pedro Morettin et al. (Editora Saraiva)

Cálculo – v1 – Laurence D. Hoffmann et al. (Editora LTC)

INTEGRAIS

Anteriormente, usamos os problemas de tangente e de velocidade para introduzir a derivada, que é a ideia central do cálculo diferencial.

Neste capítulo, começaremos com os problemas de área e utilizaremos para formular a ideia de integral definida, que é o conceito básico do cálculo integral .

INTEGRAIS

Integrais podem ser usadas para resolver os problemas relativos a:

- volumes,
- comprimentos de curvas,
- predições populacionais,
- saída de sangue do coração,
- força sobre um dique,
- trabalho,
- excedente de consumo,
- beisebol,
- ... entre muitas outras aplicações.

INTEGRAIS

Há uma conexão entre o cálculo integral e o cálculo diferencial.

O Teorema Fundamental do Cálculo relaciona a integral com a derivada e veremos que isso simplifica bastante a solução de muitos problemas.

O PROBLEMA DA ÁREA

Começamos por tentar resolver o problema da área: achar a área de uma região S que está sob a curva y = f(x) de a até b.

Isso significa que S, ilustrada na Figura, está limitada pelo gráfico de uma função continua f (onde $f(x) \ge 0$), pelas retas verticais x = a e x = b e pelo eixo x.

O PROBLEMA DA ÁREA

Começamos por subdividir S em n faixas S_1 , S_2 ,..., S_n de igual largura, como na figura.

Note que o que consideramos intuitivamente como a área de *S pode ser* aproximado pela soma das áreas dos retângulos de base Δx e altura $f(x_i)$

$$(i = 1, 2, \dots n)$$
, que pode ser escrita como:

$$R_n = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x = \sum_{i=1}^n f(x_i) \Delta x$$

O PROBLEMA DA ÁREA Definição

Portanto, vamos definir a área A da região S da seguinte forma: A **área** da região S que está sob o gráfico de uma função continua f \acute{e} o limite da soma das áreas dos retângulos aproximantes:

$$A = \lim_{n \to \infty} R_n$$

$$= \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

O nome Teorema Fundamental do Cálculo (TFC) é apropriado, pois ele estabelece uma conexão entre os dois ramos do cálculo: o cálculo diferencial e o cálculo integral.

O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área.

O mentor de Newton em Cambridge, Isaac Barrow (1630-1677), descobriu que esses dois problemas estão, na verdade, estreitamente relacionados.

Ele percebeu que a derivação e a integração *são processos inversos*.

O Teorema Fundamental do Cálculo dá a relação inversa precisa entre a derivada e a integral.

Foram Newton e Leibniz que exploraram essa relação e usaram-na para desenvolver o cálculo como um método matemático sistemático.

Em particular, eles viram que o Teorema Fundamental os capacitava a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de somas, como fizemos anteriormente.

INTEGRAL DEFINIDA

Definição

A integral definida da função f de a a b é:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

desde que este limite exista.

Se ele existir, dizemos que f é **integrável** em [a, b].

NOTAÇÃO

Obs.

Na notação:
$$\int_a^b f(x) dx$$

f(x) é chamado **integrando**, a e b são ditos **limites de integração**, a é o **limite inferior**, b, o **limite superior**, e o símbolo dx indica simplesmente que a variável independente é x.

O processo de calcular uma integral é conhecido como integração

INTEGRAL DEFINIDA

Obs.

A integral definida:
$$\int_{a}^{b} f(x)dx$$

é um número, não depende de x.

De fato, em vez de x podemos usar qualquer outra letra sem mudar o valor da integral:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(r)dr$$

Obs.

A soma

$$\sum_{i=1}^{n} f(x_i) \Delta x$$

que ocorre na Definição é chamada **soma de Riemann**, em homenagem ao matemático Bernhard Riemann (1826-1866).

SOMA RIEMANN

Obs.

Se *f* assumir valores positivos e negativos, então a soma de Riemann é:

a soma das áreas dos retângulos que estão acima do eixo x e do *oposto* das áreas dos retângulos que estão abaixo do eixo x.

São as áreas dos retângulos cinzas menos as áreas dos retângulos azuis.

ÁREA RESULTANTE

Obs.

Uma integral definida pode ser interpretada como **área resultante**, isto é, a diferença das áreas:

 A_1 é a área da região acima do eixo x e abaixo do gráfico de f.

 A_2 é a área da região abaixo do eixo x e

acima do gráfico de f.

$$A = \int_a^b f(x)dx = A_1 - A_2$$

FUNÇÕES INTEGRÁVEIS

Obs.

Definimos a integral definida para uma função integrável, mas nem todas as funções são integráveis.

O teorema seguinte mostra que a maioria das funções que ocorrem comumente é de fato integrável.

FUNÇÕES INTEGRÁVEIS Teorema

Se f for continua em [a, b], ou tiver apenas um número finito de descontinuidades no interval dado, então f é integrável em [a, b]; ou seja, a integral definida existe.

$$\int_{a}^{b} f(x) dx$$

Ou seja, toda função continua num interval I é integrável em I.

Se f for continua em [a, b] e F é qualquer primitiva de f, isto é, F é uma função tal que F' = f, então:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Calcule a integral:

$$\int_{1}^{3} e^{x} dx$$

Solução: A função $f(x) = e^x$ é contínua em toda parte e sabemos que uma primitiva é $F(x) = e^x$

logo, pelo Teorema Fundamental, temos

$$\int_{1}^{3} e^{x} dx = F(3) - F(1)$$
$$= e^{3} - e$$

 Observe que o TFC diz que podemos usar qualquer primitiva F de f.

- Portanto, podemos usar a mais simples, isto é,
- $F(x) = e^x$, em vez de $e^x + 7$ ou $e^x + C$.

TFC

Frequentemente usamos a notação:

$$\int_a^b f(x)dx = F(x)\Big|_a^b = F(b) - F(a)$$

Ache a área sob a parábola $y = x^2$ de 0 até 1.

Solução: Uma primitiva de $f(x) = x^2$ é $F(x) = \frac{x^3}{3}$.

A área A pedida é encontrada usando-se o Teorema Fundamental:

$$A = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$$

Calcule:
$$\int_{3}^{6} \frac{1}{x} dx$$

Uma primitiva de $f(x) = \frac{1}{x}$ é $F(x) = \ln |x|$, e, como $3 \le x \le 6$, podemos escrever $F(x) = \ln x$. Logo,

$$\int_{3}^{6} \frac{1}{x} dx = \ln x \Big|_{3}^{6} = \ln 6 - \ln 3$$

Encontre a área sob a curva cosseno para:

$$0 \le x \le \pi/2$$
.

Solução: Uma vez que uma primitiva de

$$f(x) = cosx \ \text{\'e} \ F(x) = senx$$
, temos:

$$A = \int_0^{\frac{\pi}{2}} \cos x dx = \operatorname{senx} \Big|_0^{\frac{\pi}{2}} = \operatorname{sen} \left(\frac{\pi}{2}\right) - \operatorname{sen}(0) = 1$$

Fica demonstrado que a área sob a curva cosseno de 0 até π/2 é sen (π/2) = 1. (Veja a figura.)

PROPRIEDADES DA INTEGRAL

Supondo que f e g sejam funções contínuas num intervalo [a , b], então:

- I. $\int_a^b c \, dx = c(b-a)$, onde c é qualquer constante
- **2.** $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- 3. $\int_a^b cf(x) dx = c \int_a^b f(x) dx$, onde c é qualquer constante
- **4.** $\int_a^b [f(x) g(x)] dx = \int_a^b f(x) dx \int_a^b g(x) dx$

Use as propriedades das integrais para calcular:

$$\int_0^1 (4+3x^2) dx$$

 Solução: Usando as Propriedades 2 e 3 das integrais, temos

$$\int_0^1 (4+3x^2) dx = \int_0^1 4 dx + \int_0^1 3x^2 dx$$
$$= \int_0^1 4 dx + 3\int_0^1 x^2 dx$$

$$\int_0^1 4 \, dx = 4(1-0) = 4$$

Já calculamos

$$\int_0^1 x^2 \, dx = \frac{1}{3}$$

Logo

$$\int_0^1 (4+3x^2) dx = \int_0^1 4 dx + 3 \int_0^1 x^2 dx$$
$$= 4 + 3 \cdot \frac{1}{3} = 5$$

PROPRIEDADE 5

A propriedade 5 nos diz como combinar integrais da mesma função em intervalos adjacentes:

Sendo $c \in [a, b]$, temos:

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

Se

$$\int_0^{10} f(x) dx = 17 \quad e \quad \int_0^8 f(x) dx = 12$$

$$\int_{8}^{10} f(x) \, dx$$

Pela Propriedade 5 temos:

logo,
$$\int_0^8 f(x) \, dx + \int_8^{10} f(x) \, dx = \int_0^{10} f(x) \, dx$$

$$\int_{8}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{0}^{8} f(x) dx$$
$$= 17 - 12$$
$$= 5$$

PROPRIEDADES COMPARATIVAS DA INTEGRAL

As propriedades a seguir, nas quais comparamos os tamanhos de funções e os de integrais, são verdadeiras somente se $a \le b$

//Digite a equação aqui.

6. Se
$$f(x) \ge 0$$
, $\forall x \in [a, b]$, então:
$$\int_a^b f(x) dx \ge 0$$

7.
$$Se\ f(x) \ge g(x)$$
, $\forall x \in [a,b]$, $ent\tilde{a}o: \int_a^b f(x)dx \ge \int_a^b g(x)dx$

INTEGRAIS INDEFINIDAS x DEFINIDAS

Devemos fazer uma distinção entre integral definida e indefinida.

Uma integral definida $\int_a^b f(x) dx$ é um número;

Uma integral indefinida $\int f(x)dx$ é uma função (ou uma família de funções)

Calcule

$$\int_{1}^{9} \frac{2t^2 + t^2 \sqrt{t - 1}}{t^2} dt$$

 Solução: Precisamos primeiro escrever o integrando em uma forma mais simples, efetuando a divisão:

$$\int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t - 1}}{t^{2}} dt = \int_{1}^{9} (2 + t^{1/2} - t^{-2}) dt$$

INTEGRAIS INDEFINIDAS

$$= \left(2t + \frac{2}{3}t^{\frac{3}{2}} + \frac{1}{t}\right)\Big|_{1}^{9}$$

$$= (2 \cdot 9 + \frac{2}{3} \cdot 9^{\frac{3}{2}} + \frac{1}{9}) - (2 \cdot 1 + \frac{2}{3} \cdot 1^{\frac{3}{2}} + \frac{1}{1})$$

$$= 18 + 18 + \frac{1}{9} - 2 - \frac{2}{3} - 1 = \frac{292}{9}$$

