班级自动化 7 班 学号	姓名彭尚品	教师签字
实验日期2024/3/20	预习成绩	总成绩

实验名称 磁光效应及其在光通信中的应用

一、 预习

- 1. 简述采用磁光效应的非互易性制作光隔离器的原理。
- 2. 在光通信应用中,可以采用不同的光功率大小表示二进制"0"和"1",例如光功率高于某一数值时代表"1",低于这一数值时代表"0"。简述采用磁光效应实现这一功能的原理。
- 答:1.原理 1)当偏据光穿过某些介发时,如果在介质的光线播放的一个磁场, 经过介质后光的偏振面会转过一个醣 0=08L 其中上为介质的长度, B为磁感应强度, B光线播放的分量, 以是比例系数
 - 3一束线偏振光可以分解成两束同频等幅度的^{左旋} 偏振光和右旋偏振光。
 - 3) 6月光效应下光旋转动的只须被肠方向被而与光的线槽方向天然 长隔离器由一个磁光晶体和两个偏振片组成,正向光线过程或 光晶体后有光速过第二个偏振片。而反向光设有,无法通过
 - 2.原理 使光体次往过走已偏器、石兹岩晶体、梭偏器,通过改变晶体外线圈电流的从、改变石兹物,强度,从而改变输出光功率.

二、原始数据记录

1.

磁致旋光角与励磁电流大小的关系数据记录

电流大小 (A)	消光时偏振片 P ₂ 的角度读数θ	旋光角Δθ (包含正负号)	
0.00	16.2°	0.0°	
0.25	0.25 14.5° -1.7°		
0.50	0.50 13.2° -1.3°		
0.75	12.3°	-0.9°	
1.00	10.9°	-1.4°	
1.25	9.5°	-1.4°	
1.50	7.9°	-1.6°	
1.75	6.5°	-1.4°	
2.00	4.7°	-1.8°	
2.25	2.9°	-1.8°	
2.50	1.3°	-1.6°	
2.75	0.2°	-1.1°	

2.

磁致旋光角方向与光束传播方向的关系数据记录

电流大小 (A)	消光时偏振片 P_2 的角度读数 θ	旋光角Δθ(包含正负号)	
0.00	331.0°	0.0°	
0.25	329.0°	-2°	
0.50	327.0°	-2°	
0.75	324.8°	-2.2°	
1.00	322.5°	-2.3°	
1.25	320.5°	-2°	
1.50	318.2°	-2.3°	
1.75	317.5°	-0.7°	
2.00	315.5°	-2°	
2.25	312.2°	-3.3°	
2.50	310.5°	-1.7°	
2.75	308.9°	-1.6°	

磁致旋光角方向与励磁电流方向的关系数据记录

反向电流大小 (A)	消光时偏振片 P ₂ 的角度读数θ	旋光角Δθ(包含正负号)	
0.00	21.8°	0.0°	
0.25	23.0°	1.2°	
0.50	24.5°	1.5°	
0.75	26.0°	1.5°	
1.00	27.5°	1.5°	
1.25	29.2°	1.7°	
1.50	31.0°	1.8°	
1.75	32.1°	1.1°	
2.00	33.5°	1.4°	
2.25	34.7°	1.2°	
2.50	36.4°	1.7°	
2.75	37.8°	1.4°	

4.

磁光材料对不同波长的光的响应情况数据记录(选做)

波长 (nm) 电流大小 (A)	消光时偏振片 P2 的角度	旋光角Δθ(包含正负	
	电视入小(A)	读数θ	号)
	0.00		0.0°

3, O

三、数据处理及实验现象、结论

绘制各实验任务中偏振片 2 的角度变化值(即磁致旋光角)与励磁电流的关系曲线,注意正负号,根据结果总结磁致旋光角与磁感应强度大小、光束传播方向、磁场方向的关系;描述利用磁光效应调制音频信号的实验现象。

答:

根据实验现象说明,磁致旋光角的方向与光束传播的方向无关,与磁场的方向有关。磁致旋光角的大小与磁感应强度的大小成正比例关系。

调制音频信号的实验现象: 音频作为输入实时调节驱动电流的大小,使得磁场的大小随之变化,从而改变激光的偏振状态,被光电三极管接收后实现信号的调制。当将驱动电流调节到合适的值之后,能从音响里听到较为清晰的音乐声,同时杂音很小。

四、讨论题

如图 1 所示,一束偏振光穿过置于线圈之中、长度为 d 的磁光晶体,线圈中通有大小为 I 的电流,电流方向如箭头所示。在磁场作用下,偏振光的偏振方向发生旋转。请根据该结果,画出图 2 和图 3 中出射光的偏振方向,标出角度值。

