

How to make good predictions

Jonas Ammeling

Common Questions

How do we split the data?

What is a good validation strategy?

How do we know our model generalizes well to unseen data?

Pessimistic bias

If a model has not reached its capacity, the performance estimate on the test set would be pessimistically biased

Bias-Variance Tradeoff

 "The price to pay for achieving low bias is high variance" (Geman 1992)

- Variance Decomposition (Neal et al. 1992:
 - Variance due to optimization
 - Variance due to sampling

The Holdout Method

Simplest and most common evaluation technique

- Typically performed as 3-way holdout method
 - Training set for optimization
 - Validation set for hyperparameter tuning and model selection
 - Test set for evaluating predictive performance
- Problems
 - Single performance estimate is subject to high bias and variance depending on the choice of data splits

- Repeated holdout evaluation with random data splits
- More robust performance estimate
 - Averaging over multiple runs reduces variance due to sampling

Model: 3-NN Classifier

Dataset: IRIS (150 Instances)

• Model: Resnet18 (11.7 M)

Data: CIFAR10 (60K Images)

1.0 -

- Model: Resnet18 (11.7 M)
- Data: MIDOG (150 Images, 1721 MFs)

- Repeated holdout evaluation with random data splits
- More robust performance estimate
 - Averaging over multiple runs reduces variance due to sampling
- Problems

13

- Some samples may never be part of the test set
- (Performance estimates become dependent due to repeated use across repititions)

K-Fold Cross-Validation

 Most preferred technique for model evaluation and model selection

- Reduces pessimistic bias by using all samples for training and testing compared to standard holdout evaluation
- Test folds are non-overlapping compared to MCCV
- Guarantees that each sample is used for testing compared to **MCCV**

K-Fold Cross-Validation

• K-Fold CV on MIDOG for K = [3, 5, 10]

- Models
 - Resnet18 (11.7 M)
 - Resnet50 (25.6 M)
 - Efficientnet_b0 (5.3 M)
 - Densenet121 (8 M)
- External validation on MIDOG 2 (without hBC)

K-Fold Cross-Validation

Thank you!

References

- Geman, Stuart & Bienenstock, Elie & Doursat, René. (1992).
 Neural Networks and the Bias/Variance Dilemma. Neural Computation. 4.
- Neal, Brady & Mittal, Sarthak & Baratin, Aristide & Tantia, Vinayak & Scicluna, Matthew & Lacoste-Julien, Simon & Mitliagkas, Ioannis. (2018). A Modern Take on the Bias-Variance Tradeoff in Neural Networks.