Examen Final Regular

Apellido y Nombre:	
Mail:	LU:
¿Inscripto en esta mesa? (si o no):	

- 1. Sea \mathcal{C} la cónica cuya ecuación polar es $\mathcal{C}: r^2(1+\sin^2\theta) 4r(\cos\theta + \sin\theta) 12 = 0$.
 - a) Dar la ecuación cartesiana de C y determinar en qué puntos corta al eje x.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje x en los mismos puntos que \mathcal{C} y su vértice coincide con el centro de \mathcal{C} . Determinar el foco de \mathcal{P} .
 - c) Sea Q el punto derecho donde se cortan \mathcal{C} y \mathcal{P} . Dar la expresión segmentaria de la tangente de \mathcal{C} en dicho punto.
 - d) Graficar \mathcal{C} , \mathcal{P} , los focos, la directriz de \mathcal{P} y la tangente.
- 2. Sean π_1 y π_2 dos planos perpendiculares, con la misma traza tryz: 2y-z+1=0, y además π_1 pasa por $P(\frac{1}{2},-1,0)$.
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar las trazas, y los vectores normales \mathbf{n}_1 y \mathbf{n}_2 .
- 3. a) Dar la ecuación de la cuádrica S con centro $C(x_0, y_0, -1)$, que pasa por P(3, 0, 2), y su traza con el plano $\pi : z = -2$ es la cónica $C : x^2 3y^2 6x 6y + 6 = 0$.
 - b) Determinar el tipo de cuádrica, su centro, e indicar si tiene simetría respecto de algún plano coordenado. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 4. Sea la superficie de revolución $S: x^2 + z^2 + y \sqrt[3]{5y} = 0$.
 - a) Determinar el eje de rotación y una curva generatriz $\mathcal{C}.$
 - b) Determinar el volumen del sólido limitado por S para $0 \leq y.$
 - c) Graficar la superficie y la curva \mathcal{C} .

Justificar todas las respuestas.

Hojas entregadas:

Firma: