B. Tech Degree V Semester Examination November 2010

IT/CS/EC/CE/ME/SE/EB/EI/EE/FT 501 ENGINEERING MATHEMATICS IV

(2006 Scheme)

Time: 3 Hours

PART - A
(Answer ALL questions)

Maximum Marks: 100

 $(8 \times 5 = 40)$

- I. (a) Given that $f(x) = Kx^4e^{-x}$; $0 < x < \infty$ is a p.d.f. Determine the value of K.
 - (b) If X follows Poisson distribution with $P[X=2] = \frac{2}{3}P[X=1]$. Then find P[X=3].
 - (c) A random sample size 36 is taken from a normal population with sd. 3. Find the probability that the sample mean exceeds the population mean by atleast one.
 - (d) Let a random sample of size 17 from normal distribution $N(\mu, \sigma^2)$ yield $\bar{x} = 4.7$, $S^2 = 5.76$. Determine a 90%. C.I for μ .
 - (e) Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$.
 - (f) Compute the value of $\int_{4}^{5.2} \log x \ dx$ using Simpson's' $\frac{1}{3}^{rd}$ rule.
 - (g) Solve $\frac{dy}{dx} = x + y$; y(0) = 1 at x = .2 using Taylor's series method.
 - (h) Solve xy'' + y = 0 with boundary conditions y(1) = 1 and y(2) = 2.

 $(4 \times 15 = 60)$

PART - B

II. (a) Define binomial distribution. Find its mean and variance.

(7)

(b) In a normal distribution 31% of the items are under 45 and 45% are over 64. Find the mean and variance of the distribution.

(8)

(10)

(5)

OR

III. (a) Find the rank correlation coefficient for the following data.

X :	75	58	70	70	45	45	45	30	29	40
Y:	64	42	65	56	39	56	50	50	25	39

(b) If the regression equation between X and Y are 4x-5y+33=0 and 20x-9y=107. Find the correlation coefficient and means of the variable.

IV. (a) A random sample of size 10 taken from $N(\mu, \sigma)$ has S=4. Find a and b such that $P[a \le \sigma^2 \le b] = .95$

(b) An engineer is making engine parts with axle diameter .7 inches and s.d of .04 inches. A random sample of 10 parts shown a mean of .742 inches. Test the hypothesis. $H_0: \mu = .7 \ V_s \ H_1: \mu \neq .7$ at 5% level of significance.

(8)

V. (a) A continuous random variable X has a frequency function $f(x) = \frac{1}{\theta}$; $0 < x < \theta$. It is desired to test $H_0: \theta = 1$ V_x $H_1: \theta = 2$ using a single observation X and $X \ge .95$ is used as critical region. Evaluate probability of type I and II errors.

(6)

(b) Two independent random sample of size n = 10, $u_2 = 7$ were observed to have sample variances $S_1^2 = 16$, $S_2^2 = 3$. Using $\alpha = .01$. Test $H_0: \sigma_1^2 = \sigma_2^2 V_s$ $H_1: \sigma_1^2 \neq \sigma_2^2$.

VI. (a) Find the second difference of the polynomial $f(x) = x^4 - 12x^3 + 42x^2 - 30x + 9 \text{ with } h = 2.$

(9)

(7)

(b) Calculate f(1.02) from the following table.

 x
 :
 1
 1.1
 1.2
 1.3
 1.4

 f(x)
 :
 .8415
 .8912
 .932
 .9636
 .9855
 (8)

OR

VII. (a) Prove that $e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{E e^x}{\Delta^2 e^x}$; the interval of differencing being h.

(7)

(b) Find f'(.6) and f''(.6) from the following data.

x :	.4	.5	.6	.7	.8
у:	1.58	1.8	2.64	2.33	2.65

(8)

VIII. (a) Find by Runge Kutta method, an approximate value of y for x = .2 in steps of .1 if $\frac{dy}{dx} = x + y^2; y(0) = 1.$

(7)

(b) Solve $U_{xx} - 2U_t = 0$ given u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x). Assume h = 1. Find the values of U upto t = 5.

(8)

OH

IX. (a) Apply Euler's method to solve $\frac{dy}{dx} = \frac{y-x}{y+x}$; y(0) = 1 at x = .1.

(7)

(b) Solve the elliptical equation $U_{xx} + U_{yy} = 0$.

(8)