Esame di Calcolo Numerico — 14 Febbraio 2022

Corso di Laurea in Ingegneria Chimica

Tempo a disposizione: 2 ore. È consentito consultare appunti e testi (cartacei).

Esercizio 1 (15 punti) Consideriamo la funzione $\Phi(x) = x^{1/3}$ sull'insieme $[0, +\infty)$

- 1. Determinare tutti i punti fissi (in $[0, +\infty)$) della funzione Φ .
- 2. Scrivere una function xn =puntofisso(x0, n) che, dati in ingresso $x_0 \ge 0$ e n > 0, applica n passi del metodo di punto fisso $x_{k+1} = \Phi(x_k)$ alla funzione Φ definita qui sopra, restituendo il valore x_n ottenuto dopo l'ultimo passo. Riportare sul foglio il codice della funzione.
- 3. Chiamare la funzione con $x_0 = 1.5$, e (utilizzando Matlab) calcolare il valore di $e_n = |x_n 1|$ per n = 4, 5, 6. Calcolare infine i rapporti e_5/e_4 e e_6/e_5 . Riportare sul foglio questi valori. Cosa indicano i valori ottenuti sull'ordine di convergenza del metodo?

Esercizio 2 (15 punti) Data una funzione $\alpha : \mathbb{R} \to \mathbb{R}$, consideriamo il problema ai valori iniziali

$$y' = \alpha(t)y, \quad y(0) = y_0 = 1, \quad [a, b] = [0, 1].$$
 (1)

Vogliamo approssimare la soluzione di questo problema tramite un metodo numerico a un passo che opera in questo modo:

- A partire da y_n , calcola un valore intermedio $z_n \approx y(t_n + \frac{h}{2})$ utilizzando un passo del metodo di Eulero *implicito* con passo $\frac{h}{2}$.
- Successivamente, a partire da z_n , calcola l'approssimazione $y_{n+1} \approx y(t_{n+1})$ utilizzando un passo del metodo di Eulero esplicito con passo $\frac{h}{2}$.
- 1. Scrivere una function [t, Y] = metodomisto(alpha, N) che applica il metodo qui sopra al problema (1), ricevendo in ingresso il numero di passi N e una function handle che calcola $\alpha(t)$. Riportare sul foglio il codice della funzione.
- 2. Per $\alpha(t) = -2t$ e $N \in \{10, 20, 40\}$, riportare l'errore globale massimo $\max_{n=1,\dots,N} |y_n y(t_n)|$ tra la soluzione numerica e quella esatta (quest'ultima si può calcolare tramite Matlab con $\exp(-t.^2)$). Cosa indicano i valori ottenuti sull'ordine di convergenza del metodo?
- 3. Calcolare la funzione di stabilità R(q) del metodo. Il metodo è A-stabile?

Soluzioni

Esercizio 1 (15 punti)

- 1. Stiamo cercando le soluzioni di $x_* = x_*^{1/3}$. Elevando al cubo otteniamo $x_*^3 = x_*$, che ha soluzioni $x_* = -1, 0, 1$. Di queste solo le ultime due stanno nell'intervallo $[0, +\infty)$.
- 2. Una possibile soluzione è la seguente.

```
function xn = puntofisso(x0, n)
xn = x0;
for k = 1:n
    xn = xn^(1/3);
end
\Rightarrow x = puntofisso(1.5, 4); e4 = abs(x-1)
    0.0050
\Rightarrow x = puntofisso(1.5, 5); e5 = abs(x-1)
    0.0017
\Rightarrow x = puntofisso(1.5, 6); e6 = abs(x-1)
   5.5635e - 04
>> e5/e4, e6/e5
ans =
    0.3328
ans =
    0.3331
```

I due valori riportati sono entrambi vicini a 1/3; anche le iterate successive confermano che la successione numericamente converge a $1/3 = |\Phi'(1)|$. Il fatto che $\lim_{k\to\infty} \frac{e_{k+1}}{e_k}$ tenda a una costante compresa (strettamente) tra 0 e 1 indica che la convergenza è lineare (ordine 1).

Esercizio 2 (15 punti)

3. Indichiamo con $s_n = t_n + \frac{h}{2}$ il punto medio tra t_n e $t_{n+1} = t_n + h$.

Un passo del metodo di Eulero implicito a partire da $y_n \approx y(t_n)$ con lunghezza $\frac{h}{2}$ produce un'approssimazione della soluzione al tempo $s_n = t_n + \frac{h}{2}$ data da

$$y(s_n) \approx z_n = y_n + \frac{h}{2}f(s_n, z_n) = y_n + \frac{h}{2}\alpha(s_n)z_n.$$

Un passo del metodo di Eulero esplicito a partire da $z_n \approx y(s_n)$ con lunghezza $\frac{h}{2}$ produce un'approssimazione della soluzione al tempo $t_{n+1} = s_n + \frac{h}{2}$ data da

$$y(t_{n+1}) \approx y_{n+1} = z_n + \frac{h}{2}f(s_n, z_n) = z_n + \frac{h}{2}\alpha(s_n)z_n.$$

Abbiamo quindi le equazioni

$$z_n = y_n + \frac{h}{2}\alpha(s_n)z_n,$$

$$y_{n+1} = z_n + \frac{h}{2}\alpha(s_n)z_n,$$

da cui possiamo risolvere ottenendo

$$z_n = \frac{y_n}{1 - \frac{h}{2}a},$$

$$a = \alpha \left(t_n + \frac{h}{2}\right),$$

$$y_{n+1} = \left(1 + \frac{h}{2}a\right)z_n.$$

Una possibile implementazione è la seguente.

```
function [t, Y] = metodomisto(alpha, N)
a = 0;
b = 1;
h = (b-a)/N;
t = a:h:b;
Y = zeros(1, N+1);
Y(1) = 1;
for n = 1:N
    a = alpha(t(n) + h/2);
    Z = (1 - h/2 * a) \ Y(n);
    Y(n+1) = (1 + h/2 * a) * Z;
end
```

2. I risultati ottenuti con l'implementazione qui sopra sono i seguenti.

```
\Rightarrow [t, Y] = metodomisto(@(t) -2*t, 10);
\Rightarrow E10 = max(abs(Y-exp(-t.^2)))
E10 =
   6.1199e-04
\Rightarrow [t, Y] = metodomisto(@(t) -2*t, 20);
\Rightarrow E20 = max(abs(Y-exp(-t.^2)))
E20 =
   1.5321e-04
\Rightarrow [t, Y] = metodomisto(@(t) -2*t, 40);
\Rightarrow E40 = max(abs(Y-exp(-t.^2)))
E40 =
   3.8316e-05
>> E10 / E20, E20 / E40
ans =
     3.9944
ans =
     3.9986
```

I valori calcolati si avvicinano a $4 = 2^2$, suggerendo che il metodo ha ordine di convergenza 2.

3. Applicando il metodo al problema test $y' = \lambda y$, otteniamo

$$y_{n+1} = \frac{1 + \frac{h}{2}\lambda}{1 - \frac{h}{2}\lambda} y_n,$$

quindi la funzione di stabilità è

$$R(q) = \frac{1 + \frac{q}{2}}{1 - \frac{q}{2}},$$

la stessa del metodo dei trapezi. (Questo metodo però non coincide con il metodo dei trapezi!) La regione di stabilità del metodo è il semipiano negativo Re(q) < 0, esattamente come nel metodo dei trapezi, quindi il metodo è A-stabile. Non è sufficiente dire che il metodo è implicito per concludere che è A-stabile.