### DC Motors Making things move

Keith Chester @thekeithchester \





### Who am I?

- Degree in Robotics Engineering
- Runs Hardware Projects for Fusion Marketing
- Programmer
- Friendly neighborhood maker
- Organizer of node.jSTL, jSTL, Code for the People







## What are we covering?

- Brushed DC Motors
- Controlling Motors
- Servo Motors
- Torque

- Positional Feedback
- Stepper Motors
- Brushless DC Motors
- Calculating what motor we need

## The core concept - the simplest little motor



## Brushed DC Motors



### Brushed DC Motors

#### **PROS**

- Easy to control
- Easy to manufacture and thus cheaper
- Very common

#### **CONS**

- Limited total lifespan or required maintenance due to brushes
- Not as efficient

### Brushed DC Motors - structure





## Controlling DC Motors - simple



# H-Bridges



## Pulse Width Modulation (PWM)



### Positional Feedback -Potentiometers



### Positional Feedback - Encoders



### Quadrature Encoders



### Absolute Encoders







### Motor Controllers







### Servo

noun - sərvō -

An electrical motor with *integrated* positional feedback and control systems

# Hobby Servos





from Sparkfun

# "Servo signal"



# Stepper Motors





### Stepper Motors

#### **PROS**

- Precision Movement Control
- Easy to control movement
- Cheap due to 3d printers

#### **CONS**

- "Holding" torque takes tons of current
- Not fast or as torquey to equivalent weighted motors
- "Dumb" without additional sensors still

# Stepper Motors - Structure





Motors for Makers

# Stepper motors - "pulses" = "steps"



## Stepper Motors - step types

Full Step One Phase - what we just covered

**Full Step Two Phase** - both phases are on, motor goes *between* windings. Twice as much current, 30-40% more torque

**Half Step** - Alternates between one and two phase activations - *half the step* angle, 20% less torque

**Microstep** - Current is delivered in a sinusoidal wave, reducing step size to a tiny fraction of original. Smoothest possible motion. 30% torque reduction and slower

### Brushless DC Motors - BLDC



### Brushless DC Motors

#### **PROS**

- High speed and high torque
- Far less maintenance / longer lifetime
- More efficient

#### CONS

- More complex to control
- Higher price, though dropping

### BLDC - structure

\* Three phase motors



Outrunner BLDC



Inrunner BLDC

Motors for Makers

### Inrunners vs Outrunners

**Inrunners** - very high speed - very low torque



**Outrunners** - *very* high torque, used in drones/remote control cars



## BLDC - Controlling BLDCs





6 steps- 360 degrees 1 step - 60 degrees

Orientation of the motor matters for the phase

## ESCs - Electronic Speed Controllers



## Programming ESCs

- Auto-cutoff
- Brake
- Battery type (NiMH, LiPO, NiCd, LiFePO4)
- Timing how quickly pulsing to the BLDC occurs

- Acceleration
- Reverse
- Reverse Delay
- Current limiting

## Torque







The torque that rotates Gear B is equal to  $\boldsymbol{F}_{\!\!A} \times \boldsymbol{R}_{\!\!A}$ 

# Torque VS Current



# Shaft Connections









# Gearing







### Challenge - let's specify a motor

- Robot + payload = 50 lbs
- I want to go up at least a 10 degree incline
- I want to go at least walking speed (3.1 mph)
- Accelerate to its speed within 2 seconds
- We'll use 10 inch wheels

### WARNING

not overwhelming math ahead

#### The Formulas

$$P = I * V$$
  $T = F * r$   $v_{f} = a * t + v_{0}$   
 $P = T * \omega$   $F = m * a$   $g = 30.48$  f/s<sup>2</sup>

## Draw a Free Body Diagram



#### Forces happening



$$F_{gy} = m * g * cos(\Theta)$$

$$F_{gx} = m * g * sin(\Theta)$$

$$F_r = F_{orce}$$
 from motor

#### We must overcome!

$$F_{gx} = m * g * sin(\Theta)$$

$$T = F_r * r$$
  
 $T/r = F_r$ 

$$F_r - F_{gx} = F_{total}$$

$$(T/r)$$
 -  $m*g*sin(\Theta)$  =  $m*a$   
 $T/r$  =  $m*a$  +  $m*g*sin(\Theta)$ 

$$T = m^*(a+g^*sin(\Theta))^*r$$

## Convert Requirements (trust me)

| Freedom Units | Sensible Metric Units |  |  |
|---------------|-----------------------|--|--|
| 50 lbs        | 22.680 kg             |  |  |
| 3.1 mph       | 1.38 m/s              |  |  |
| Gravity       | 9.8 m/s²              |  |  |
| 10" wheels    | 0.254 meter wheels    |  |  |

# He Did The Math

## $T = m^*(a+g^*sin(\Theta))^*r$

$$v_f = a * t + v_0$$
1.38 m/s =  $a * 2 + 0$ 
1.38 m/s =  $2 * a$ 
 $a = 0.69$  m/s<sup>2</sup>

T = 22.68 \* (a + 9.8 \* sin(10)) \* 0.254

T = 22.68 \* (0.69 + 9.8 \* sin(10)) \* 0.254

T = 22.68 \* (0.69 + 1.702) \* 0.254

T = 22.68 \* 2.392 \* 0.254T = 13.80 Nm

13.80 / 2 = 6.89 Nm

## Torque conversions

| kg/cm | 70.26  |
|-------|--------|
| oz/in | 975.71 |
| lb/ft | 5.08   |

#### RPM to MPH with 10" wheels

| 100 rpm  | 2.98 MPH |
|----------|----------|
| 250 rpm  | 7.45 MPH |
| 500 rpm  | 14.88    |
| 1000 rpm | 29.8 MPH |

# Motor Shopping

| http://www.andymark.com/CIM-Mot<br>or-p/am-0255.htm         | \$28 | 2655 rpm | 172 oz-in  |
|-------------------------------------------------------------|------|----------|------------|
| http://www.andymark.com/product-<br>p/am-pgseries.htm       | \$55 | 75 rpm   | 6335 oz-in |
| http://www.andymark.com/NeveRe<br>st-p/am-neverest.htm      | \$28 | 105 rpm  | 593 oz-in  |
| http://www.robotmarketplace.com/p<br>roducts/0-pdx26.html   | \$85 | 900 rpm  | 2320 oz-in |
| http://www.robotmarketplace.com/p<br>roducts/0-e30-150.html | \$79 | 5600 rpm | 710 oz-in  |

#### But what if we geared down...?



2655 rpm @ 10 inches = 79.8 mph!!!

Geared down 10:1:

265.5 rpm @ 10 inches = 7.9 mph ...also giving us 1720 oz/in!

# Wait a minute... what's stall torque anyway? ... and no-load rpm? ... and efficiency?

#### Places to shop

- Andy Mark <a href="http://www.andymark.com">http://www.andymark.com</a>
- Robot Marketplace <a href="http://www.robotmarketplace.com">http://www.robotmarketplace.com</a>
- Robot Shop <a href="http://www.robotshop.com">http://www.robotshop.com</a>
- Trossen Robotics <a href="http://www.trossenrobotics.com">http://www.trossenrobotics.com</a>
- Super Droid Robots <a href="https://superdroidrobots.com">https://superdroidrobots.com</a>

# Questions?