Name:	Roll Numb
ranic.	Kon Numb

Roll Number:_____

Quiz-2

Max. Time: 20 min Max. Points: 20

Note: Solve all parts. Limit your written responses to the provided space.

- Q.1. [8] Choose by putting a check mark on the most appropriate option. Note: No cutting/overwriting allowed.
- i. If $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is $n \times n$, has at least one solution for each \mathbf{b} in \mathbb{R}^n , then the solution is unique for each \mathbf{b} .
- (A) True (B) False
- ii. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is onto \mathbb{R}^m if every vector **x** in \mathbb{R}^n maps onto some vector in \mathbb{R}^m .
- (A) True (B) False
- iii. If there is a **b** in \mathbb{R}^n such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent, then the transformation $T: \mathbf{x} \to \mathbf{A}\mathbf{x}$ is not one-to-one.
- (A) True (B) False
- iv. The columns of the standard matrix for a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ are not the images of the columns of I_n .
- (A) True (B) False
- v. Not every elementary matrix is invertible.
- (A) True (B) False
- vi. Product of invertible matrices is invertible and is given by the product of their inverses in the reverse order.
- (A) True (B) False
- vii. If an $n \times n$ matrix can be row reduced to some echelon matrix such that all rows have pivot positions, then its inverse does exist.
- (A) True (B) False
- viii. An $n \times n$ matrix is invertible if it has at most n pivots.
- (A) True (B) False

Q.2.[6+6]

- a) Determine the standard matrix of linear transformation for the following:
- i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that maps e_2 to $e_2 0.5e_1$ (but leaves e_1 unchanged) and then reflects the result through the **vertical** \mathbf{x}_2 axis.

Solution:
$$T(\mathbf{e_1}) = -\mathbf{e_1}$$
 and $T(\mathbf{e_2}) = \mathbf{e_2} + \mathbf{0}$. $5\mathbf{e_1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \mathbf{0}$. $5\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Therefore, standard matrix for linear transformation is: $[T(\mathbf{e_1}) \ T(\mathbf{e_2})] = \begin{bmatrix} -1 & 0.5 \\ 0 & 1 \end{bmatrix}$

ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ that does horizontal contraction by a factor of **0.5** followed by a vertical expansion of **1.5**.

Solution:

$$A = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$$

b) Determine if the following matrix is invertible.

$$A = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$

Solution: Row reduce *A* to echelon form to check the number of pivot positions, which should be 4 if the matrix is invertible.

$$A = \begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & -1 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} -1 & -3 & 0 & 1 \\ 0 & -4 & 8 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since *A* has 4 pivots, it is invertible.

Name:	Roll Number: