

J.R. Esteban

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, GRUPO 721, 2018-2019

Ejercicios 19 a 22

- **19.** Sean (X, d) un espacio métrico y $A, B \subset X$.
- 1. Supongamos que $A\subset B$. Demostrar que A es compacto en (X,d) si y sólo si es compacto en el subespacio métrico (B,d).
- 2. Demostrar que si A es cerrado en (X,d) y B es compacto en (X,d), entonces $A \cap B$ es compacto en (X,d).
- 3. Demostrar que la intersección de una colección arbitraria de subconjuntos de X compactos en (X, d) es compacta en (X, d).
- 4. Demostrar que la unión de un número finito de subconjuntos de X compactos en (X, d) es compacta en (X, d).
- **20.** Considérese el espacio métrico $(\mathbb{Q},|\cdot|)$, formado por \mathbb{Q} con la métrica heredada de $(\mathbb{R},|\cdot|)$. Dados $a,b\in\mathbb{R}\setminus\mathbb{Q}$, sea

$$J = \left\{ \, q \in \mathbb{Q} \, : \, a < q < b \, \right\}.$$

 ${\bf Demostrar:}$

- 1. J es cerrado y acotado en $(\mathbb{Q}, |\cdot|)$.
- \mathbb{Z}^2 . J no es compacto en $(\mathbb{Q}, |\cdot|)$.

$$g(t) = \begin{cases} (1+t, \sqrt{1-(1+t)^2}), & -2 \le t \le 0, \\ (1-t, \sqrt{1-(1-t)^2}), & -2 \le t \le 0. \end{cases}$$

Comprobar que g es sobreyectiva desde [-2,2] sobre \mathbb{S}^1 .

1. Demostrar que ninguna función continua $f:\mathbb{S}^1\longrightarrow\mathbb{R}$ puede ser inyectiva en \mathbb{S}^1 .

- 2. Sean $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ continua y $z_0 \in \mathbb{R}^2$. Demostrar que todo entorno de z_0 contiene puntos p y q, con $p \neq q$, tales que $\|h(p)\|_2 = \|h(q)\|_2$.
- 3. Considérese g definida solamente en los $t \in [-2,0)$. Demostrar que g es continua e inyectiva en [-2,0), pero que su inversa no es continua en \mathbb{S}^1 .
- **22.** A. Considérese la función $f(x)=\frac{1}{x}$ definida en los $x\in I=(0\,,1]$. Demostrar que no existe ninguna función g(x) continua en $[0\,,1]$ y tal que g(x)=f(x) en todo $0 < x \le 1$.
- B. Sean (X,d_1) e (Y,d_2) espacios métricos y $\Omega\subset X$. Considérese una función

$$f:\Omega\subset X\longrightarrow Y$$

continua en Ω . Demostrar que a lo sumo existe una función

$$F: \overline{\Omega} \subset X \longrightarrow Y$$

continua en $\overline{\Omega}$ y tal que F(x) = f(x) en cada $x \in \Omega$.

C. Supongamos que (Y, d_2) es completo y que la función

$$f\,:\,\Omega\subset X\longrightarrow Y$$

es uniformemente continua en Ω .

- Demostrar que si {x_n}_n ⊂ Ω es de CAUCHY en (X, d₁), entonces {f(x_n)}_n es de CAUCHY en (Y, d₂).
 Definimos una función
 F: Ω̄ ⊂ X → Y
 como sigue: Para cada x ∈ Ω̄,

$$F:\overline{\Omega}\subset X\longrightarrow Y$$

$$F(x) = \lim_{n \to \infty} f(x_n)$$

 $F(x) = \lim_{n \to \infty} f(x_n)$ cuando $\{x_n\}_n \subset \Omega$ satisface $\lim_{n \to \infty} x_n = x$.

- 3. Demostrar que F está bien definida en $\overline{\Omega}$ y que F(x)=f(x) en cada
- 4. Demostrar que F es uniformemente continua en $\overline{\Omega}$.

