

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

2. Übung zur Vorlesung Algorithmen auf Graphen Musterlösungen

Aufgabe 1: Wir analysieren die Struktur des gegebenen Graphen:

a) Die Ein- und Ausgangsgrade sind aus der nachfolgenden Tabelle ersichtlich:

Knoten	$\mid a \mid$	b	c	d	e	f	g	h
Eingangsgrad	2	1	1	2	1	3	3	1
Ausgangsgrad	2	3	3	1	2	1	1	1

b) Die Adjazenzlisten lauten:

$$\begin{split} \ell_a &= \{e,f\} \ , \quad \ell_b = \{a,c,f\} \ , \quad \ell_c = \{b,d,g\} \ , \quad \ell_d = \{h\} \\ \ell_e &= \{a,f\} \ , \quad \ell_f = \{g\} \ , \quad \ell_g = \{d\} \ , \quad \ell_h = \{g\} \ . \end{split}$$

Der Graph besitzt |E| = 14 Kanten. Die Formel ist also wegen

$$\sum_{v \in V} |\ell_v| = 2 + 3 + 3 + 1 + 2 + 1 + 1 + 1 = 14$$

korrekt.

c) Der Graph besitzt drei Zyklen, nämlich

$$a \rightarrow e \rightarrow a$$

sowie

$$b \rightarrow c \rightarrow b$$

und

$$d \rightarrow h \rightarrow g \rightarrow d$$
.

Aufgabe 2: Die Analyse ergibt beim zweiten Graph die folgenden Ergebnisse:

a) Die Ein- und Ausgangsgrade sind aus der nachfolgenden Tabelle ersichtlich:

Knoten	a	b	c	d	e	f	g	h
Eingangsgrad	3	2	1	2	0	3	1	1
Ausgangsgrad	0	3	1	1	3	1	3	1

b) Die Adjazenzlisten lauten:

$$\ell_a = \emptyset$$
 , $\ell_b = \{a, c, f\}$, $\ell_c = \{d\}$, $\ell_d = \{g\}$
 $\ell_e = \{a, b, f\}$, $\ell_f = \{a\}$, $\ell_g = \{b, f, h\}$, $\ell_h = \{d\}$.

Der Graph besitzt |E| = 13 Kanten. Die Formel ist also wegen

$$\sum_{v \in V} |\ell_v| = 0 + 3 + 1 + 1 + 3 + 1 + 3 + 1 = 13$$

korrekt.

c) Der Graph	besitzt zwei	"einfache"	Zyklen,	nämlich
--------------	--------------	------------	---------	---------

$$b \rightarrow c \rightarrow d \rightarrow g \rightarrow b$$

und

$$d \rightarrow g \rightarrow h \rightarrow d$$
.

Aufgabe 3: Wir zeigen beide Richtungen der Äquivalenz durch Widerspruchsbeweise:

" \Longrightarrow ": X ist nach Voraussetzung eine Knotenüberdeckung. Wir nehmen nun an, dass $V\setminus X$ keine stabile Menge ist. Dann existieren zwei Knoten $u,v\in V\setminus X$ (also $u,v\notin X$), die über eine Kante $\{u,v\}\in E$ miteinander verbunden sind. Wegen $u,v\notin X$ wäre dann aber keiner der beiden Kantenknoten in X vertreten. Also wäre X doch keine Knotenüberdeckung.

" —": Umgekehrt sei jetzt $V \setminus X$ eine stabile Menge. Angenommen, X ist keine Knotenüberdeckung. Dann gibt es mindestens eine Kante $\{u,v\} \in E$ mit $u \notin X$ (also $u \in V \setminus X$) und $v \notin X$ (also $v \in V \setminus X$). Wegen der Stabilität von $V \setminus X$ würde daraus aber $\{u,v\} \notin E$ folgen, ein Widerspruch.

Aufgabe 4: In einem ungerichteten azyklischen Graph mit 721 Knoten und 691 Kanten gibt es genau 721-691=30 Zusammenhangskomponenten. Mindestens eine dieser Komponenten muss mindestens 25 Knoten enthalten, da es sonst nur maximal $30 \cdot 24 = 720$ Knoten geben könnte.

Alternativ kann man auch (ein wenig komplizierter) mit den 691 Kanten argumentieren. Mindestens eine der Zusammenhangskomponenten muss nämlich mindestens 24 Kanten enthalten, da es sonst nur maximal $30 \cdot 23 = 690$ Kanten geben könnte. Wegen der Zyklenfreiheit von G stellt diese Komponente auf ihrer Knotenmenge einen Baum dar, der folglich mindestens 24 + 1 = 25 Knoten miteinander verbindet.