Pecal extended Integral (It is that most general)

If $A \subseteq \mathbb{R}^n$ open, $f: A \to \mathbb{R}$ chn

if $f \geqslant 0$, define $\int_A f:=\sup_{D \subseteq \mathcal{T}_c} \int_D f$ $D \subseteq A$ relax, define $\int_A f:=\int_A f^+ - \int_A f^-$ Temporory problem: for f bld. $f: A \to \mathbb{R}$ chn & bld.

We have 2 defs of $\int_A f$ Need to show they are equal (ordinary) (extended)

Before that: will write them as ord $\int_A f$, ext $\int_A f$ Recall any open f is f in f

The Critonian of ext. inthe

If $A \subseteq R^n$ open $f: A \to R$ ch. $\{C_n\} \subseteq J_c$ defined above.

Then:

ext $\int_A f$ exists $\bigoplus_{N\to\infty} \{C_n\} f\}_{N=1}^\infty$ is bold

In this sense, $\int_A f = \lim_{N\to\infty} \int_{C_n} f$ In particular, f is intitle on f if f is

Pf (ave f for f is intitle on f is non-strict increasing so it conv. if f bold.

Suppose that f intitle on f is apply f in f is f in f in

Conversely, if $\lim_{N\to\infty} \int_{C_N} f = 1$ $\lim_{N\to\infty} \int_{C_N} f < \infty$ Since increasing, $M = \lim_{N\to\infty} \int_{C_N} f$ Take any $D \subseteq ABLD \in J_C$ Note that $D \subseteq A = \bigcup_{N=1}^{\infty} C_N$ By openess, $\exists N_0$ st. $D \subseteq \bigcup_{N=1}^{\infty} C_N^{\circ} \subseteq C_{N_0} \subseteq C_{N_0}$ So $\int_{A} f = \int_{C_N} f \in M$ So $\int_{A} f = \int_{I} \int_{I} \int_{C_N} f = \int_{I} \int_{I}$

The let A bold, open in IR1 $f: A \rightarrow \mathbb{R}$ bold. cbn $2J \neq bdd$ open A, extended integral \Rightarrow (a) ext $\int_A f \Rightarrow$ must exists (B to Pintole Ry = ord $\int_A f$)

Cb) if ord $\int_A f \Rightarrow$ ord $\int_A f = ext \int_A f$ Pf (a) let $|f| \leq M$ on ALet $D \subseteq A$ and $D \in \mathcal{J}_C \Rightarrow$ $\leq \int_D M = M \, m_y(D)$ So ext $\int_A f \Rightarrow$.

(b) $Cosel f \geqslant 0$ Let $B \supseteq A$ be a box

So $Cord \int_A f = \int_B f_A \, where \, f_A \, is \, be \, extension \, of \, f \, by \, 0$ Let $D \subseteq A \, d \, D \in \mathcal{J}_C$ $\Rightarrow \int_D f = \int_D f_A \leq \int_B f_A = ord \int_A f$ To show the reverse inequality, Let P be any partition on PLet $P = \bigcup_{R \in R} R$:

(D: union of subboxes completely contained in A)

Taking the sup over P ord
$$\int_A f \le \operatorname{ext} \int_A f$$

(b)
$$\frac{(ase)}{f} = f_{+} - f_{-}$$

Since $ard \int_{A} f = \frac{1}{2} \Rightarrow ard \int_{A} f_{+}, ard \int_{A} f_{-}$
Note $ard \int_{A} f = ard \int_{A} f_{+} - ard \int_{A} f_{-}$
 $= art \int_{A} f_{+} - ard \int_{A} f_{-} = ard \int_{A} f_{-}$

Corollary Let $S \subseteq \mathbb{R}^n$ be bold (not necessarily open) and $f: S \to \mathbb{R}$ bolds con If $ord S_s f = 0$ ord $f = ext S_s f$ If hw 12: ord f = 0 ord f = 0

D

If hw 12: ord
$$f = 0$$
 ord $f = 0$ ord $f = 0$ ord $f = 0$ ord $f = 0$