МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПТ2

Выполнил: Шепталин В. С.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 1 в соответствии с вариантом 25.

Рисунок 1 — 25 вариант задания (сигнал)

Таблица 1 — 25 вариант задания

f_{MI}	_N ÷ f _{MAX} , кГц	Вид линейного кода
	$0,2 \div 5,6$	ЧПИ

3 Выполнение работы.

3.1 В соответствии с вариантом задания были определены:

- $U_{\text{MAX}} = 2 \ B$ и $U_{\text{MIN}} = 2 \ B$;
- $U_{O\Gamma P} = U_{MAX} = 2 B$;
- f_{MIN} = 0,2 кГц и f_{MAX} = 5,6 кГц;
- $\Delta_{\rm ugon} = 0.25 {\rm B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{\text{MAX}}-U_{\text{MIN}})/\Delta_{\text{идоп}}.$ $N_{\text{MIN}}=4$ / 0.25=16

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 32$.

Было определено количество разрядов n в коде. $n = log_2 32 = 5$ бит.

Было расчитан шаг квантования по формуле $\delta = U_{O\Gamma P}/2^n = 2/2^5 = 0,063 \ B.$

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$) должна удовлетворять условию $F_{\rm A} \!\! \geq \! 2F_{\rm B}$). $F_{\rm A} = F_{\rm MAX} * 2 = 11,2$ к Γ ц

3.2 При частоте дескритизации 11,2 кГц ширина одного отсчета будет равна 1с / 11,2 кГц = 0,09мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,09мс \approx 11 отсчетов, для 6мс количество отсчетов равняется 66. Было определено Ubx(t), Ukb(t), $\Delta_{\text{KB}}(t)$ и N. Результат представлен в таблице 2.

Таблица 2 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t),B	ΔKB(t)	N	Двоичный код
1	0,12	0,13	-0,01	2	00010
2	0,37	0,38	-0,01	6	00110
3	0,67	0,69	-0,02	11	01011
4	0,90	0,95	-0,05	15	01111
5	1,16	1,20	-0,04	19	10011
6	1,37	1,39	-0,01	22	10110
7	1,53	1,58	-0,04	25	11001
8	1,70	1,70	-0,01	27	11011
9	1,79	1,83	-0,04	29	11101
10	1,85	1,89	-0,04	30	11110
11	1,87	1,89	-0,02	30	11110
12	1,85	1,89	-0,04	30	11110
13	1,80	1,83	-0,03	29	11101
14	1,70	1,76	-0,06	28	11100
15	1,60	1,64	-0,04	26	11010
16	1,44	1,45	-0,01	23	10111
17	1,26	1,32	-0,06	21	10101
18	1,09	1,13	-0,04	18	10010
19	0,89	0,95	-0,05	15	01111
20	0,69	0,69	-0,01	11	01011
21	0,52	0,57	-0,05	9	01001
22	0,31	0,32	0,00	5	00101
23	0,13	0,19	-0,06	3	00011
24	0,01	0,06	-0,05	1	00001

25	0,14	0,19	-0,05	3	00011
26	0,25	0,25	-0,01	4	00100
27	0,32	0,38	-0,06	6	00110
28	0,36	0,38	-0,02	6	00110
29	0,37	0,38	-0,01	6	00110
30	0,36	0,38	-0,02	6	00110
31	0,31	0,32	-0,01	5	00101
32	0,24	0,25	-0,01	4	00100
33	0,17	0,19	-0,02	3	00011
34	0,08	0,13	-0,05	2	00010
35	0,02	0,06	-0,04	1	00001
36	0,11	0,13	-0,01	2	00010
37	0,21	0,25	-0,05	4	00100
38	0,29	0,32	-0,03	5	00101
39	0,34	0,38	-0,04	6	00110
40	0,38	0,44	-0,06	7	00111
41	0,41	0,44	-0,03	7	00111
42	0,39	0,44	-0,05	7	00111
43	0,36	0,38	-0,02	6	00110
44	0,30	0,32	-0,01	5	00101
45	0,22	0,25	-0,03	4	00100
46	0,10	0,13	-0,02	2	00010
47	0,03	0,06	-0,03	1	00001
48	0,19	0,19	0,00	3	00011
49	0,38	0,38	0,00	6	00110
50	0,54	0,57	-0,03	9	01001
51	0,76	0,82	-0,06	13	01101
52	0,96	1,01	-0,04	16	10000
53	1,15	1,20	-0,05	19	10011
54	1,33	1,39	-0,06	22	10110
55	1,49	1,51	-0,02	24	11000
56	1,62	1,64	-0,01	26	11010
57	1,74	1,76	-0,02	28	11100
58	1,81	1,83	-0,01	29	11101
59	1,84	1,89	-0,05	30	11110
60	1,82	1,83	-0,01	29	11101
61	1,76	1,76	0,00	28	11100
		<u> </u>	I.	1	1

62	1,69	1,70	-0,01	27	11011
63	1,55	1,58	-0,03	25	11001
64	1,35	1,39	-0,04	22	10110
65	1,17	1,20	-0,03	19	10011
66	0,91	0,95	-0,03	15	01111

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью кода ЧПИ. Результат приведен на рисунках 2 — 8.

Рисунок 2 — Коды с 1 по 16

Рисунок 3 — Коды с 17 по 32

Рисунок 4 — Коды с 33 по 48

Рисунок 5 — Коды с 49 по 64

Рисунок 6 — Коды с 65 по 66

	4 Вывод	ц: было изучено	преобразование	аналогового сигна.	ла в цифровой
сигна	ил.				