Exercise - DSS

Discrete Signals and Systems

Continuous-Time Systems

DSS-ex3-1 19.11.2020 Page 1

Prof. Dr. Uwe Meier

Problem 1 Proof, if the following systems are linear, time invariant, causal, and memoryless.

a)
$$y(t) = \sin[x(t-1)]$$
; x, t real

a)
$$y(t) = \sin[x(t-1)]$$
; x,t real b) $y(t) = a \cdot x(t) - b \cdot \frac{dy(t)}{dt}$; a,b,x,t real

c)
$$y(t) = a \cdot t^2 + x(t+3)$$
; a, x, t real

Problem 2 Which of the given unit impulse responses characterizes a stable LTI system?

a)
$$h(t) = \cos(t) \cdot u(t)$$

b)
$$h(t) = e^{at} \cdot u(t)$$
; a real

Problem 3 The given RC circuit shall be analyzed by solving the system's differential equation under the initial rest condition. The capacitor requires a steady voltage v_2 .

a) Compute
$$y(t) = v_2(t)$$
 for $x(t) = v_1(t) = \frac{1 \text{ Vs}}{T} \cdot \text{rect}\left(\frac{t - T/2}{T}\right)$

b) Compute $x(t) = v_1(t)$ and $y(t) = v_2(t)$ for $T \to 0$ and interpret the result.

Problem 4 A mechanical system shall be analyzed. Fixed at a ceiling is a spring (c), a damper (d) and a mass (m). An external force F stimulates the system. The spring is characterized by the relation $F_c = c \cdot y$. The distance y is measured from the relaxed position of the spring. A spring is able to store d energy according to $E_c = c \cdot y^2/2$. The damper is characterized by $F_d = d \cdot v$, where v is the velocity of the moving part. The damper dissipates energy.

- a) Derive a differential equation between the stimulation force F and the mass position y. Is the system linear?
- b) Derive a state-space representation.

Problem 5 Let x(t) be an input signal whose FOURIER transform is

$$X(j\omega) = \delta(\omega) + \delta(\omega - \pi) + \delta(\omega - 5)$$

and let
$$h(t) = u(t) - u(t-2)$$

be the unit impulse response of a system.

- a) Is x(t) periodic?
- b) Compute the output signal y(t). Is y(t) periodic?

Problem 6 Derive the frequency response of the circuit in problem 3 from the differential equation.

Problem 7 Consider a causal LTI system with frequency response

$$H(j\omega) = \frac{1}{3 + j\omega}$$

For a particular input x(t) this system is observed to produce the output signal

$$y(t) = e^{-3t} \cdot u(t) - e^{-4t} \cdot u(t)$$

- a) Determine and plot the magnitude and the phase response.
- b) Which properties of h(t) can be derived from the magnitude and the phase response?
- c) Determine the input signal x(t).

Answers

Problem 1

linear, time invariant, causal, memoryless

a) no, yes, yes, no; b) yes, yes, yes, no; c) no, no, no

Problem 2

a) not stable; b) stable for a < 0

Problem 3

a)
$$v_2 = 0$$
 for $t < 0$; $v_2 = \frac{1 \text{ Vs}}{T} \cdot \left(1 - e^{-t/\tau}\right)$ for $0 \le t < T$; $v_2 = \frac{1 \text{ Vs}}{T} \cdot \left(e^{T/\tau} - 1\right) \cdot e^{-t/\tau}$ for $t > T$

b)
$$x(t) = 1 \text{ Vs} \cdot \delta(t)$$
; $y(t) = 1 \text{ Vs} \cdot h(t) = u(t) \cdot \frac{1 \text{ Vs}}{\tau} \cdot e^{-t/\tau}$

Problem 4

a)
$$c \cdot y + d \cdot \frac{dy}{dt} + m \cdot \frac{d^2y}{dt^2} = m \cdot g + F$$
; no

$$\begin{bmatrix} \frac{\mathrm{d}\,z_1}{\mathrm{d}\,t} \\ \frac{\mathrm{d}\,z_2}{\mathrm{d}\,t} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{c}{m} & -\frac{d}{m} \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} \cdot x \; ; \; x = m \cdot g + F \; ; \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} y \\ \frac{\mathrm{d}\,y}{\mathrm{d}\,t} \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + 0 \cdot x$$

Problem 5

a) no; b)
$$y(t) = \frac{1}{\pi} \left(1 + \frac{\sin 5}{5} \cdot e^{j5(t-1)} \right)$$
; yes

Problem 6

$$H(\omega) = \frac{1}{1 + j\omega RC}$$

Problem 7

a)
$$|H(\omega)| = \frac{1}{\sqrt{9 + \omega^2}}$$
; $\varphi(\omega) = -\arctan\left(\frac{\omega}{3}\right)$

b) h(t) real with $h_e \neq 0$ and $h_o \neq 0$

c)
$$x(t) = e^{-4t} \cdot u(t)$$