Question 1

$$C \subseteq D \subseteq \mathbb{R};$$

 $(f_n)_{n\in\mathbb{N}}$ is uniformly convergent on C; $\forall i\in\mathbb{N},\ f_i:D\to\mathbb{R}$ is continous

Show $\exists f$ such that $f_n \xrightarrow{\overline{C} \cap D} f$ and f is continous.

Proof. Fix any $\epsilon > 0$. Need to show that

$$\exists K > 0 \text{ s.t. } k \geq K \implies \forall x \in \overline{C} \cap D, |f_k(x) - f(x)| < \epsilon$$

So, fix any $x \in \overline{C} \cap D$.

As each f_i is given continous on D, $\exists \delta > 0$ such that

$$\forall y \in D, |x - y| \le \delta \implies |f_i(x) - f_i(y)| < \epsilon/2$$

So, in particular, for any sequence in C, $(c_n) \to x$,

$$\exists N \text{ such that } n \geq N \implies |c_n - x| < \delta$$

 $\implies |f_i(c_n) - f_i(x)| < \epsilon/2$

Now, as $f_i \stackrel{C}{\Longrightarrow} f$, $\exists \beta$ such that for any $c \in C$,

$$k \ge \beta \implies |f_k(c) - f(c)| < \epsilon/2$$

By triangle inequality,

$$|f_i(x) - f(x)| \le |f_i(x) - f_i(c_i)| + |f_i(c_i) - f(x)|$$

Thus, for $L > max\{\beta, N\}$, both (1) and (2) will hold:

$$i \ge L \implies \epsilon/2 + \epsilon/2 > |f_i(c_i) - f_i(x)| + |f_i(c_i) - f(x)|$$

 $\ge |f_i(x) - f(x)|$

Hence, the sequence uniformly converges to f on $\overline{C} \cap D$. And as $(f_i)_{i \in \mathbb{N}}$ is a sequence of continous functions on D, that uniformly converges to f, f is continous on $\overline{C} \cap D$. \square

Note: In case D were bounded, $\overline{C} \cap D$ would be compact. Then, Heine-Cantor Theorem would give the existence of f, and Uniform Limit Theorem would give it's continuity.

Question 2 Prove that $\sum x^n(1-x)$ converges pointwise on [0,1] but not uniformly. While $\sum (-1)^n x^n(1-x)$ converges uniformly on [0,1].

Proof. As $x^n(1-x) = x^n - x^{n+1}$, the first sum telescopes:

$$\sum_{i=1}^{k} x^{n} (1-x) = (x-x^{2}) + (x^{2}-x^{3}) + \dots + (x^{k}-x^{k+1}) = x-x^{k+1}$$

So, for x = 1, every partial sum is 0, and for $0 \le x < 1$,

$$\lim_{k \to \infty} \sum_{i=1}^{k} x^{i} (1 - x) = \lim_{k \to \infty} (x - x^{k+1}) = x$$

Thus, the series converges pointwise on [0,1]. Suppose it also converges uniformly to f. Then, as the k^{th} partial sum is $x - x^{k+1}$, a polynomial, and hence continous on [0,1], it's limit function, f must be continous on [0,1]. But, f is discontinous at 1 as

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} x = 1 \neq 0 = f(1)$$

The partial sums for the second series of functions,

$$\sum_{i=1}^{k} (-x)^n (1-x) = -x + 2[(-x)^2 + (-x)^3 + \dots + (-x)^k] + (-x)^{k+1}$$

So, for x = 1, every partial sum is 0, and for $0 \le x < 1$,

$$\lim_{k \to \infty} \sum_{i=1}^{k} (-x)^{i} (1-x) = x + 2 \lim_{k \to \infty} ((-x)^{k+1} + \sum_{i=1}^{k} (-x)^{i})$$

$$= x + 2 \lim_{k \to \infty} \frac{-x(1 - (-x)^{k})}{1+x}$$

$$= x + \frac{-2x}{1+x}$$

To show uniform convergence, try drichilet-test?

Question 3

 $a_n \& b_n$ are bounded, non-negative sequences; $a_n \to a > 0$

As a_n, b_n are bounded sequences, so is $a_n b_n$.

Hence, L:=lim sup a_nb_n and R:=lim sup b_n are real numbers