Title

D. Zack Garza

August 17, 2019

Contents

1	List	of Topi	cs
2	Gro	ups	
	2.1	Definit	ions
		2.1.1	Subgroup Generated by a set $A \ldots \ldots \ldots \ldots \ldots$
		2.1.2	Free Group on a set X
		2.1.3	Centralizer of an element or a subgroup
		2.1.4	Center of a group
		2.1.5	Normalizer of a subgroup
		2.1.6	Normal Core of a subgroup
		2.1.7	Normal Closure of a subgroup
		2.1.8	Group Action of a group on a set
		2.1.9	Transitive group actions
		2.1.10	Orbit of a set element
		2.1.11	Stabilizer of a set element
		2.1.12	Automorphisms of a group
			Inner Automorphisms of a group
			Outer Automorphisms of a group
			Conjugacy Class of an element
			Characteristic subgroup
			Simple group
			Commutator of an element, or of subgroups
	2.2		ıral Results
		2.2.1	Isomorphisms Theorems
	2.3	Misc R	
	2.4	Numer	ic Results
		2.4.1	Cauchy's Theorem
		2.4.2	Sylow Theorems: $ G = p^k m$ where $p \mid /m \dots \dots \dots \dots \dots \dots$
		2.4.3	Orbit-stabilizer Theorem
		2.4.4	Burnside's Lemma
		2.4.5	The class equation
		2.4.6	General facts
	2.5	-	on Groups
		251	•

		$2.5.2$ S_n				
		$2.5.3$ A_n	11			
		$2.5.4 D_n \dots \dots$	11			
3	Rings					
		Facts about ideals:				
	3.2	Maximal ideals	12			
		Prime ideals				
	3.4	Radicals	12			
	3.5	Other ideals	12			
	3.6	Orders less than 16:	13			

1 List of Topics

Chapters 1-9 of Dummit and Foote

- Left and right cosets
- Lagrange's theorem
- Isomorphism theorems
- Group generated by a subset
- Structure of cyclic groups
- Composite groups
 - -HK is a subgroup iff HK = KH
- Normalizer
 - $-HK \le H \text{ if } H \le N_G(K)$
- Symmetric groups
 - Conjugacy classes are determined by cycle types
- Group actions
 - Actions of G on X are equivalent to homomorphisms from G into Sym(X)
- Cayley's theorem
- Orbits of an action
- Orbit stabilizer theorem
- Orbits act on left cosets of subgroups
- Subgroups of index p, the smallest prime dividing |G|, are normal
- Action of G on itself by conjugation
- Class equation
- p-groups
 - Have non trivial center
- p^2 groups are abelian
- Automorphisms, the automorphism group
 - Inner automorphisms
 - $Inn(G) \cong Z/Z(G)$
 - $Aut(S_n) = Inn(S_n)$ unless n = 6
 - Aut(G) for cyclic groups
 - $-G \cong \mathbb{Z}_p^n$, then $Aut(G) \cong GL_n(\mathbb{Z}_p)$
- Proof of Sylow theorems
- A_n is simple for $n \geq 5$

- Recognition of internal direct product
- Recognition of semi-direct product
- Classifications:
 - -pq
- Free group & presentations
- Commutator subgroup
- Solvable groups
 - $-S_n$ is solvable for $n \leq 4$
- Derived series
 - Solvable iff derived series reaches e
- Nilpotent groups
 - Nilpotent iff all sylow-p subgroups are normal
 - Nilpotent iff all maximal subgroups are normal
- Upper central series
 - Nilpotent iff series reaches G
- Lower central series
 - Nilpotent iff series reaches e
- Fratini's argument
- Rings
 - I maximal iff R/I is a field
 - Zorn's lemma
 - Chinese remainer theorem
 - Localization of a domain
 - Field of fractions
 - Factorization in domains
 - Euclidean algorithm
 - Gaussian integers
 - Primes and irreducibles
 - Domains
 - * Primes are irreducible
 - UFDs
 - * Have GCDs
 - * Sometimes PIDs
 - PIDs
 - * Noetherian
 - * Irreducibles are prime
 - * Are UFDs
 - * Have GCDs
 - Euclidean domains
 - * Are PIDs
 - Factorization in Z[i]
 - Polynomial rings
 - Gauss' lemma
 - Remainder and factor theorem
 - Polynomials
 - Reducibility
 - Rational root test
 - Eisenstein's criterion

2 Groups

2.1 Definitions

2.1.1 Subgroup Generated by a set A

- $\langle A \rangle = \{a_1^{\pm 1}, a_2^{\pm 1}, \cdots a_2^{\pm 1} : a_i \in A, n \in \mathbb{N}\}$ Equivalently, the intersection of all H such that $A \subseteq H \leq G$

2.1.2 Free Group on a set X

 \bullet Equivalently, words over the alphabet X made into a group via concatenation

2.1.3 Centralizer of an element or a subgroup

- $C_G(a) = \{g \in G : ga = ag\}$
 - $C_G(H) = \{g \in G : \forall h \in H, gh = hg\} = \bigcap_{h \in H} C_G(h)$
 - Note requires the same g on both sides!
- Facts:

$$-C_G(H) \leq G$$

$$-C_G(H) \leq N_G(H)$$

$$- C_G(G) = Z(G)$$

$$-C_H(a) = H \cap C_G(a)$$

2.1.4 Center of a group

- $Z(G) = \{g \in G : \forall x \in G, gx = xg\}$
- Facts

$$Z(G) = \bigcap_{a \in G} C_G(a)$$

2.1.5 Normalizer of a subgroup

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

- Equivalently, $\bigcup \{K : H \subseteq K \subseteq G\}$ (the largest $K \subseteq G$ for which $H \subseteq K$)
- Equivalently, the stabilizer of H under G acting on its subgroups via conjugation
- Differs from centralizer; can have gh = h'g
- Facts:

$$-C_G(H) \subseteq N_G(H) \le G$$

$$-N_G(H)/C_G(H) \cong A \leq Aut(H)$$

- Given $H \subseteq G$, let

$$S(H) = \bigcup_{g \in G} gHg^{-1}$$

, so |S(H)| is the number of conjugates to H. Then

$$|S(H)| = [G:N_G(H)]$$

* i.e. the number of subgroups conjugate to H equals the index of the normalizer of H.

2.1.6 Normal Core of a subgroup

•

$$H_G = \bigcap_{g \in G} gHg^{-1}$$

• Equivalently, $H_G = \langle N : N \leq G \& N \leq H \rangle$

- Largest normal subgroup that contains H

• Equivalently, $H_G = \ker \psi$ where $\psi: G \to Sym(G/H); \ g \sim (xH) = (gx)H$

• Facts:

 $-H_G \subseteq G$ and is an idempotent operation

2.1.7 Normal Closure of a subgroup

 $\bullet \ H^G=\{gHg^{-1}:g\in G\}$

• Equivalently,

$$H^G = \bigcap \{N : H \le N \le G\}$$

- (The smallest normal subgroup of G containing H)

2.1.8 Group Action of a group on a set

• Given as a function

$$\phi: G \times X \to X(g,x) \mapsto g \sim x$$

which gives rise to a function

$$\phi_q: X \to Xx \mapsto g \sim x$$

(which is a bijection) where \sim denotes a group element acting on a set element, and $\forall x \in X$,

$$-e \sim x = x$$

$$-(gh) \sim x = g \sim (h \sim x)$$

• Equivalently, a function

$$\psi: G \to Sym(X)g \mapsto \phi_q$$

_

$$\ker \psi = \bigcap_{x \in X} G_x$$

(intersection of all stabilizers)

• Interesting actions:

- Left multiplication of G on G:

$$\phi: G \to G \to G \qquad g \mapsto \phi_q: G \to G \qquad h \mapsto gh$$

- * $\mathcal{O}_x = G$ (transitive)
- $* G_x = e$
- G acting via conjugation on itself:

$$\phi: G \to G \to G \qquad g \mapsto \psi_g: G \to G \qquad \qquad h \mapsto ghg^{-1}$$

- * A common notation is $x^g = g^{-1}xg$ which obeys $(x^g)^h = x^{gh}$
- * $\mathcal{O}_x = [x]$ (Conjugacy classes, so not generally transitive)
- $* G_x = \{g \in G : gxg^{-1} = g\} = C_G(x)$
- G acting on $S = \{H : H \leq G\}$ via conjugation:

$$\phi: G \to S \to S$$
 $g \mapsto \psi_g: S \to S$ $H \mapsto gHg^{-1}$

- * $\mathcal{O}_H=[H]=\{gHg^{-1}:g\in G\}$, conjugate subgroups of H * $G_x=N_G(H)=\{g\in G:gHg^{-1}=H\}$

2.1.9 Transitive group actions

- $\forall x, y \in X, \exists g \in G : g \sim x = y$
- Equivalent, actions with a single orbit

2.1.10 Orbit of a set element

$$\mathcal{O}_x = \{g \sim x : x \in X \} = \bigcup_{g \in G} \{g \sim x\}$$

- The set of all orbits is denoted X/G or $X_G = \{\mathcal{O}_x : x \in X\}$
- Partitions X according to the equivalence relation $x \cong y \iff \exists g \in G : g \sim x = y$
- G acts transitively on X when restricted to any single orbit

2.1.11 Stabilizer of a set element

- $G_x = \{g \in G : g \sim x = x\}$
- - $-G_x \leq G$, not usually normal
 - $-x, y \in \mathcal{O}_x \Rightarrow G_x$ is conjugate to G_y

2.1.12 Automorphisms of a group

• $Aut(G) = \{ \phi : G \to G : \phi \text{ is an isomorphism} \}$

2.1.13 Inner Automorphisms of a group

- $Inn(G) = \{ \phi_g \in Aut(G) : \phi_g(x) = gxg^{-1} \}$
- Also consider the map

$$\psi: G \to Aut(G)g \mapsto (\lambda: x \mapsto gxg^{-1})$$

Then $\operatorname{im} \psi = Inn(G), \ker \psi = Z(G)$

- Facts:
 - $-Inn(G) \leq Aut(G)$
 - $-Inn(G) \cong G/Z(G)$

2.1.14 Outer Automorphisms of a group

• Out(G) = Aut(G)/Inn(G)

2.1.15 Conjugacy Class of an element

•

$$[a] = \{gag^{-1} : g \in G\} = \bigcup_{g \in G} \{gag^{-1}\}$$

- Equivalently, $[a] = \mathcal{O}_a$ under G acting on itself via conjugation
- Facts:
 - Equivalence relation, partitions the group
 - |[a]| divides |G|
 - $-a \in Z(G) \Rightarrow [a] = \{a\}$

2.1.16 Characteristic subgroup

- $H \operatorname{char} G \iff \forall \phi \in Aut(G), \phi(H) = H$
 - i.e., H is fixed by all automorphisms of G.

2.1.17 Simple group

- G is simple $\iff H \subseteq G \Rightarrow H = e$ or G
 - No non-trivial normal subgroups

2.1.18 Commutator of an element, or of subgroups

- $[g,h] = ghg^{-1}h^{-1}$
- $[G, H] = \langle [g, h] : g \in G, h \in H \rangle$ (Subgroup generated by commutators)

2.2 Structural Results

- Cyclic \Rightarrow abelian
- G/Z(G) cyclic $\Rightarrow G$ is abelian
- Intersections of subgroups are also subgroups

2.2.1 Isomorphisms Theorems

- -*First Isomorphism Theorem**
 - Conditions:
 - $-\phi:G\to G'$ is a homomorphism.
 - Result:
 - $-\ker\phi \trianglelefteq G$
 - $-\operatorname{im}\phi \leq G'$
 - $-G/\ker\phi\cong\operatorname{im}\phi.$
 - Corollaries:

$$-\ker\phi=e\Rightarrow G\cong G'$$

- -*Second Isomorphism Theorem**
 - Conditions:

$$-N \subseteq G, H \subseteq G$$

- Results:
 - -HN < G
 - $-N\cap H \leq H$

$$\frac{H}{H \cap N} \cong \frac{HN}{N}$$

- Corrolaries:
 - (Weaker) Relaxing $N \subseteq G$ to $H \subseteq N(N)$ yields
 - * $N \cap H \subseteq G$ (Not normal)
 - $* N \cap H \leq H$
- -*Third Isomorphism Theorem**
 - Conditions:

$$-N \subseteq G, N \subseteq A \subseteq G$$

- Results:
 - $-A/N \leq G/N$
 - * Every subgroup of G/N is of this form for some such A

 $\frac{G/N}{A/N}\cong \frac{G}{A}$

- * Cancel the N!
- Corrolaries:
 - $-A \trianglelefteq G \Rightarrow A/N \trianglelefteq G/N$
 - * All normal subgroups of G/N are of this form for some A.

2.3 Misc Results

- G/N is abelian \iff $[G,G] \leq N$
- \bullet HK is not always a subgroup see conditions in 2nd Isomorphism theorem'
- $H \subseteq G, K \subseteq G$ and $H \cap K = e \Rightarrow hk = kh \forall h \in H, \in K$
 - Normal subgroups with trivial intersection commute
- $H \operatorname{char} G \Rightarrow H \unlhd G$

- Characteristic is a strictly stronger condition than normality
- H char K char $G \Rightarrow H$ char G
 - Characteristic is transitive
- $H \leq G, K \subseteq G, H \text{ char } K \Rightarrow H \subseteq G$
 - i.e., normality is **not** transitive, strengthening normality to char gives "weak transitivity"
- Recognizing (Internal) Direct Products: $H \leq G, K \leq G$
 - $-H \cap K = e$
 - $\forall g \in G, \exists h \in H, k \in K : g = hk$
 - $-H \subseteq G, K \subseteq G$
 - * **OR** Every element in H commutes with every element in K
- P Groups
 - $-\bigcap P = O_P(G)$ char G. And $O_P(G) \subseteq G$ as well.
 - $N ext{ } ext{ }$
 - $-P \cap Q = e$

2.4 Numeric Results

2.4.1 Cauchy's Theorem

• For any p dividing |G|, there is a subgroup of order p.

2.4.2 Sylow Theorems: $|G| = p^k m$ where $p \mid /m$

- At least one Sylow-p subgroup always exists: $\exists P \leq G$ with $|P| = p^k$
- All such subgroups are conjugate: $\forall P, P', \exists g \in G : gPg^{-1} = P'$
- n_p satisfies:
 - $-n_p$ divides m = [G:P]
 - $-n_p = 1 \mod p$
 - $-n_p = [G:N_G(P)]$ (Not as useful)
- Every p-subgroup of G is a p-subgroup of P (i.e. P is maximal and contains all subgroups of order p^l with $l \leq k$)

2.4.3 Orbit-stabilizer Theorem

- Given a group action, $G/G_x \cong \mathcal{O}_x$
- Gives the numeric result $|\mathcal{O}_x| = |G/G_x| = [G:G_x] = \frac{|G|}{|G_x|}$
- Also useful in the form $|G| = |\mathcal{O}_x||G_x|$
- Proof:
 - Use the map

$$\phi: G \to Xg \mapsto g \sim x$$

Where $\operatorname{im} \phi = \mathcal{O}_x$ and $\ker \phi = G_x$.

2.4.4 Burnside's Lemma

•

$$|X_G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

 $-|X_G|$ is the number of orbits

$$-X^g = \{x \in X : g \sim x = x\}$$

2.4.5 The class equation

•

$$|G| = |Z(G)| + \sum_{a \in A} [G : C_G(a)]$$

- Where $A = \{a_1, a_2, \dots, a_n : a_1 \in [a_1], a_2 \in [a_2], \dots \}$ is a set containing one element from each conjugacy class
- $[G:C_G(a)]$ is the number of elements in [a]
- Each element in Z(G) has a singleton conjugacy class

2.4.6 General facts

- $|G| = p \Rightarrow G$ is cyclic
- $|G| = p^e \Rightarrow Z(G) \neq e$
- $|G| = p^e$ (P-groups)
 - $-Z(G) \neq \{e\}$ (Use class equation)
- |G| = p
 - Always cyclic
 - * Proof: Any nontrivial cyclic subgroup's order is > 1 and divides p, so equals p.
- $|G| = p^2$
 - Always abelian
 - * Proof: |G/Z(G)| = 1, p. If p, it's cyclic, and G is abelian. Otherwise it's 1, so G = Z(G).
 - Two possibilities:
 - * Z_{p^2} (cyclic)
 - $* Z_p \times Z_p$
- |G| = pq
 - $-p \mid q-1 \ (q \neq 1 \mod p)$:
 - * One possibility:
 - · $G \cong Z_{pq}$ (cyclic)
 - * Facts:
 - $\cdot \exists P \subseteq G \text{ (A Sylow-} P \text{ subgroup)}$
 - -p divides q-1 $(q=1 \mod p)$:
 - * Two possibilities:

$$\begin{array}{ll} \cdot & G \cong Z_{pq} \text{ (cyclic)} \\ \cdot & G \cong Z_q \rtimes Z_p \end{array}$$

- Never simple
- $|G| = p^2q$
 - $-\exists P \unlhd G \text{ (A Sylow-}P \text{ subgroup)}$
- $|G| = p_1 p_2 p_3$ (distinct)
 - Not simple

2.5 Common Groups

2.5.1 S_3

 $S_3 = \langle (12), (23), (13) \rangle$

- $Z(S_3) = e$
- $Aut(S_3) = Inn(S_3)$, since

$$Z(G) = e = \ker \psi \Rightarrow Out(S_3) = Inn(S_3) \Rightarrow Aut(S_3) \cong S_3$$

2.5.2 S_n

 $S_n, n \ge 4$

- $Z(S_n) = e$
 - Let $\sigma(a) = b$, choose $\tau = (bc)$ so $\tau \sigma(a) = \tau(b) = c \neq b = \sigma(a0 = \sigma \tau(a))$
- Conjugacy classes are determined entirely by cycle structure
 - There are exactly p(n) of them (partition function)
- Disjoint cycles commute
- $\sigma \circ (a_1 \cdots a_k) \circ \sigma^{-1} = (\sigma(a_1), \cdots \sigma(a_k))$
- Every element is a product of disjoint cycles
- Every element is a product of transpositions
 - A cycle of length k can be written as k-1 transpositions
 - Parity of the cycle equals the parity of k-1.
- The order of an element is the lcm of the size of the cycles.

2.5.3 A_n

- Simple for $n \ge 5$
- Index 2 in S_n , so $A_n \subseteq S_n$

2.5.4 D_n

- $\langle a, b \mid a^n = b^2 = 1, bab^{-1} = a^{-1} \rangle \cong \langle r, s \rangle$
- D_n/N is always another dihedral group for any $N \leq D_n$
- All subgroups:
 - $-\langle r^{\bar{d}}\rangle \cong Z_{n/d}$ where d divides n (index 2d)
 - $-\langle r^d, r^i s \rangle \stackrel{\cdot}{\cong} D_{\frac{n}{d}}$ where d divides n and $0 \le i \le d-1$ (index d)

3 Rings

3.1 Facts about ideals:

- Intersections, products, and sums of ideals are ideals
- Not necessarily unions
- Every ring has proper maximal ideals
- Apply Z.L. to $\{I \leq R : I \neq R\}$
- Every proper ideal is contained in a maximal ideal

3.2 Maximal ideals

 $I \triangleleft R \text{ maximal if } \not\exists J \triangleleft R : I \subset J \subset R$

- Every nonzero ring has a maximal ideal (Krull's Theorem)
- R commutative $\implies R/I$ a field
- Union of maximal ideals = $R R^{\times}$
- $(X a) \leq R[X]$ is maximal for $a \in R$

3.3 Prime ideals

 $I \subseteq R \ prime \ \text{when} \ pq \in I \implies p \in I \lor q \in I$

- I prime $\iff R/I$ an integral domain,
- $(maximal \implies prime)$
- $rad(I^n) = I$

3.4 Radicals

 $I \triangleleft R \ radical \ when \ \forall a \in R, a^n \in I \implies a \in I$

- The nilradical: nilrad $(I) = \bigcap P$ such that $P \subseteq R$ is prime
- $rad(I) = \{x \in | \exists n : x^n \in I\}$
- rad(0) = nilrad(R)
- $rad(IJ) = rad(I) \cap rad(J)$
- $rad(I) = \bigcap J$ such that $I \subset J, J$ prime (i.e. intersection of all prime ideals containing I)

3.5 Other ideals

- $I \subseteq R$ primary when $pq \in I \implies a \in I \vee \exists n \in \mathbb{N} : b^n \in I$
- Prime \Longrightarrow primary
- $I \subseteq R$ principal when $\exists a \in R : I = \langle a \rangle$
- $I \subseteq R$ irreducible when $\not\exists \{J \subseteq R : I \subset J\} : I = \bigcap J$

- $I \subset R \iff 1, u \notin I \ (u \in R^{\times})$
- $\{I: I \leq R\}$ is a poset
- Zorn's lemma can be applied to $\{I \leq R : 1 \notin I\}$
- Every proper ideal is contained in a maximal ideal.
- Facts about units
- R^{\times} is closed under multiplication, but not under addition.
- $R R^{\times}$ an additive group $\iff R$ is a local ring
- Integral Domain
- Principal Ideal Domain
- (Prime \implies maximal) \implies UFD
- Unique Factorization Domain
- Field
- When (0) is the only proper ideal
- R/M a field \iff M maximal
- Localization
- Zorn's Lemma: For every poset P, every chain in P has an upper bound $\implies P$ has a maximal element.
- Noetherian: Every ideal is finitely generated
- iff the ascending chain condition for ideals holds

3.6 Orders less than 16:

(Normal: Diamond, grouped by conjugacy class)

• 1 (The trivial group)

$$- Z_1 = \{e\}$$

• 2 (One group)

$$-Z_2 \cong Z_3^{\times} \cong Z_4^{\times} \cong Z_6^{\times}$$
$$= \{e, a\}$$
$$* Cyclic$$

- * One element of order 2
- 3 (One group)

$$-Z_3 \cong A_3$$

 $\cong \{(), (123), 132)\}$
* Cyclic

* One element of order 3

Figure 1: img

- 4 (Two groups, both abelian)
 - $\begin{array}{ccc} \ Z_4 \cong Z_5^{\times} \cong Z_8^{\times} \cong Z_{10}^{\times} \cong Z_{12}^{\times} \\ * \ \mathrm{Cyclic} \end{array}$

 - * One element of order 4
 - $-Z_2 \times Z_2 \cong V_4 \cong D_2 \cong Z_8^{\times}$, which are all isomorphic to $\langle a, b \mid a^2 = b^2 = (ab)^2 = e \rangle \cong \langle (12)(34), (13)(24), (14)(23) \rangle$
 - * Not cyclic, but abelian
 - * All elements have order 2
 - * $V_4 \subseteq A_4 \le S_4$
- 5 (One group)

 - $-Z_5$ * Cyclic, one element of order 5
- 6 (Two groups)
 - $Z_6 \cong Z_7^{\times} \cong Z_9^{\times} \cong Z_{14}^{\times}$
 - * Cyclic, one element of order 6
 - $-S_3 \cong D_6$

Figure 2: File:S3latticeofsubgroups.png

$$\cong \langle a, b, c \mid a^2 = b^2 = c^3 = abc = e \rangle$$

- * Non-abelian (smallest one)
- 7 (One group)
 - $-Z_7$
 - * Cyclic, one element of order 7
- 8 (Five groups)

$$\begin{array}{l} -\ Z_8 \cong Z_{15}^\times \cong Z_{16}^\times \ (\text{cyclic}) \\ -\ Z_2 \times Z_4 \end{array}$$

Figure 3: img

* Abelian, one element of order 4 – $Z_2 \times Z_2 \times Z_2$

* Abelian, every element has order 2 - $D_8 \cong \langle r, s \mid r^4 = s^2 = e, srs^{-1} = r^{-1} \rangle$

$$\cong \{(), (1234), (13)(24), (1432), (13)(24), (14)(23), (12)(34)\} \leq S_4$$

$$- Q_8 \cong \langle i, j, k \mid i^2 = j^2 = k^2 = ijk \rangle$$

$$\cong \langle a, b, c \mid a^4 = b^4 = e, a^2 = b^2, ba = a^3b \rangle$$
* Every element has order 4

- * All subgroups are normal, but not abelian
- 9 (Two groups)

$$-Z_9$$

- $-Z_9$ $-Z_3 \times Z_3$ 10 (Two groups)
 - $-Z_{10} \cong Z_{11}^{\times} D_{10}$
- 11 (One group)
 - Z_{11}
- 12 (Five groups)

-
$$Z_{12}\cong Z_{13}^{ imes}$$

- $-Z_{12} \cong Z_{13}^{\times}$ 13 (One group)
 - $-Z_{13}$
- 14 (Two groups)
 - $-Z_{14}$
- 15 (One group)
 - Z_{15}
- 16 (Fourteen groups!)