TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

# TC7S66F, TC7S66FU

## **BILATERAL SWITCH**

The TC7S66 is a high Speed C<sup>2</sup>MOS BILATERAL SWITCH fabricated with silicon gate C<sup>2</sup>MOS technology.

It consists of a high speed switch capable of controlling either digital or analog signals while maintaining the C<sup>2</sup>MOS low power dissipation.

Control input (C) is provided to control the switch The switch turns ON while the C linput is high, and the switch turns OFF while low.

Input is equipped with protection circuits against static discharge or transient excess voltage.

#### **FEATURES**

| • | High Speed            | t <sub>pd</sub> = 7ns (Typ.) at<br>V <sub>CC</sub> = 5V |
|---|-----------------------|---------------------------------------------------------|
| • | Low Power Dissipation | $I_{CC} = 1\mu A$ (Max.) at $Ta = 25$ °C                |
| • | High Noise Immunity   | $V_{NIH} = V_{NIL}$<br>= 28% $V_{CC}$ (Min.)            |
| • | Low ON Resistance     | $R_{ON} = 100\Omega$ (Typ.) at $V_{CC} = 9V$            |
| • | Low T.H.D             | THD = $0.05\%$ (Typ.)                                   |

• Pin and Function Compatible with TC4S66F



Weight SSOP5-P-0.95 : 0.016g (Typ.) SSOP5-P-0.65A : 0.006g (Typ.)

#### **MAXIMUM RATINGS**

| CHARACTERISTIC                     | SYMBOL            | RATING                     | UNIT |
|------------------------------------|-------------------|----------------------------|------|
| DC Supply Voltage                  | Vcc               | -0.5~13                    | V    |
| Control Input Voltage              | V <sub>IN</sub>   | -0.5~V <sub>CC</sub> + 0.5 | V    |
| Swith I/O Voltage                  | V <sub>I</sub> /O | -0.5~V <sub>CC</sub> + 0.5 | ٧    |
| Control Diode Current              | l <sub>CK</sub>   | ± 20                       | mΑ   |
| Output Diode Current               | lok               | ± 20                       | mΑ   |
| Through I/O Current                | lΤ                | ± 12.5                     | mΑ   |
| DC V <sub>CC</sub> /Ground Current | lcc               | ± 25                       | mΑ   |
| Power Dissipation                  | PD                | 200                        | mW   |
| Storage Temperature                | T <sub>stg</sub>  | <b>- 65∼150</b>            | °C   |
| Lead Temperature (10s)             | TL                | 260                        | °C   |

#### **MARKING**



#### LOGIC DIAGRAM



## PIN ASSIGNMENT (TOP VIEW)



## TRUTH TABLE

| CONTROL | SWITCH FUNCTION |
|---------|-----------------|
| I       | ON              |
| L       | OFF             |

#### **RECOMMENDED OPERATING CONDITIONS**

| CHARACTERISTIC           | SYMBOL                          | RATING                                                                                                                                                                                     | UNIT |
|--------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Supply Voltage           | Vcc                             | 2~12                                                                                                                                                                                       | V    |
| Control Input Voltage    | VIN                             | 0~V <sub>CC</sub>                                                                                                                                                                          | V    |
| Switch I/O Voltage       | V <sub>I</sub> /O               | 0~V <sub>CC</sub>                                                                                                                                                                          | ٧    |
| Operating Temperature    | T <sub>opr</sub>                | - 40~85                                                                                                                                                                                    | °C   |
| Input Rise and Fall Time | t <sub>r</sub> , t <sub>f</sub> | $0 \sim 1000 \text{ (V}_{CC} = 2.0\text{V)}$<br>$0 \sim 500 \text{ (V}_{CC} = 4.5\text{V)}$<br>$0 \sim 400 \text{ (V}_{CC} = 6.0\text{V)}$<br>$0 \sim 250 \text{ (V}_{CC} = 10.0\text{V)}$ | ns   |

## DC ELECTRICAL CHARACTERISTICS

| PARAMETER                                         | SYMBOL           | TEST CONDITION                                                                                                             |      | Т    | a = 25° | ,C    | Ta = -4 | UNIT   |       |
|---------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|------|------|---------|-------|---------|--------|-------|
| PARAMETER                                         | 3 TIVIBOL        |                                                                                                                            | Vcc  | MIN. | TYP.    | MAX.  | MIN.    | MAX.   | CIVII |
|                                                   |                  |                                                                                                                            | 2.0  | 1.5  | _       | I —   | 1.5     | _      |       |
| High-level Control                                | \/               |                                                                                                                            | 4.5  | 3.15 | _       | —     | 3.15    | _      |       |
| Input Voltage                                     | VIHC             | <u> </u>                                                                                                                   | 9.0  | 6.3  | _       | —     | 6.3     | _      |       |
|                                                   |                  |                                                                                                                            | 12.0 | 8.4  | _       | —     | 8.4     | _      | v     |
|                                                   |                  |                                                                                                                            | 2.0  | _    | _       | 0.5   | _       | 0.5    | V     |
| Low-Level Control                                 | V <sub>ILC</sub> | _                                                                                                                          | 4.5  | —    | _       | 1.35  | _       | 1.35   |       |
| Input Voltage                                     |                  |                                                                                                                            | 9.0  | l —  | _       | 2.7   | _       | 2.7    |       |
|                                                   |                  |                                                                                                                            | 12.0 | —    | _       | 3.6   | _       | 3.6    |       |
|                                                   | RON              | $V_{IN} = V_{IHC}$<br>$V_{I/O} = V_{CC}$ to GND<br>$V_{I/O} \le 1$ mA                                                      | 4.5  | _    | 192     | 340   | _       | 400    |       |
|                                                   |                  |                                                                                                                            | 9.0  | l —  | 110     | 170   | _       | 200    |       |
|                                                   |                  |                                                                                                                            | 12.0 | —    | 90      | 160   | _       | 180    |       |
| ON Resistance                                     |                  |                                                                                                                            | 2.0  | _    | 320     | _     | _       | _      | Ω     |
|                                                   |                  | V <sub>IN</sub> = V <sub>IH</sub> C                                                                                        | 4.5  | l —  | 140     | 200   | _       | 260    |       |
|                                                   |                  | $V_{I/O} = V_{CC}$ or GND                                                                                                  | 9.0  | l —  | 100     | 150   | _       | 190    |       |
|                                                   |                  | $V_{I/O} \le 1 \text{mA}$                                                                                                  | 12.0 | —    | 90      | 140   | _       | 180    |       |
| Input / Output<br>Leakage Current<br>(SWITCH OFF) | lOFF             | V <sub>OS</sub> = V <sub>CC</sub> or GND<br>V <sub>IS</sub> = GND or V <sub>CC</sub><br>V <sub>IN</sub> = V <sub>ILC</sub> | 12.0 | _    | _       | ± 100 |         | ± 1000 | nΑ    |

## DC ELECTRICAL CHARACTERISTICS

| PARAMETER                                                  | SYMBOL          | L TEST CONDITION                                                               |                    | Ta = 25°C |      |                   | Ta = -4     | UNIT                 |         |
|------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------|--------------------|-----------|------|-------------------|-------------|----------------------|---------|
| TANAMETER                                                  | JIWIBOL         | TEST CONDITION                                                                 | Vcc                | MIN.      | TYP. | MAX.              | MIN.        | MAX.                 |         |
| Switch Input<br>Leakage Current<br>(SW ON, Output<br>OPEN) | lιz             | V <sub>OS</sub> = V <sub>CC</sub> or GND<br>V <sub>IN</sub> = V <sub>IHC</sub> | 12.0               | _         |      | ± 100             | _           | ± 1000               | nΑ      |
| Control Input<br>Current                                   | I <sub>IN</sub> | V <sub>IN</sub> = V <sub>CC</sub> or GND                                       | 12.0               | _         |      | ± 100             | _           | ± 1000               |         |
| Quiscent Device<br>Current                                 | lcc             | V <sub>IN</sub> = V <sub>CC</sub> or GND                                       | 6.0<br>9.0<br>12.0 | 111       |      | 1.0<br>4.0<br>8.0 | _<br>_<br>_ | 10.0<br>40.0<br>80.0 | $\mu$ A |

## AC ELECTRICAL CHARACTERISTICS ( $C_L = 50pF$ , Input $t_r = t_f = 6ns$ )

| PARAMETER                        | SYMBOL                               | TEST CONDITION                                         |      | Ta = 25°C |      |      | $Ta = -40 \sim 85^{\circ}C$ |      | UNIT  |
|----------------------------------|--------------------------------------|--------------------------------------------------------|------|-----------|------|------|-----------------------------|------|-------|
| TANAMETER                        | STIVIBOL                             | TEST CONDITION                                         |      | MIN.      | TYP. | MAX. | MIN.                        | MAX. | CIVIT |
| Phase difference                 |                                      |                                                        | 2.0  | _         | 20   | 75   | _                           | 100  |       |
|                                  |                                      |                                                        | 4.5  | —         | 7    | 15   | —                           | 20   |       |
| between input                    | ∮I- <b>O</b>                         | _                                                      | 9.0  | —         | 4    | 12   | —                           | 15   |       |
| and output                       |                                      |                                                        | 12.0 | _         | 4    | 11   | _                           | 14   |       |
|                                  |                                      |                                                        | 2.0  | <b> </b>  | 20   | 150  | _                           | 190  |       |
| Output Enable                    | tPZL                                 | D 1kO                                                  | 4.5  | —         | 13   | 30   | —                           | 38   |       |
| Time                             | tPZH                                 | $R_L = 1k\Omega$                                       | 9.0  | —         | 9    | 18   | _                           | 33   | ns    |
|                                  |                                      |                                                        | 12.0 | _         | 8    | 18   | _                           | 27   |       |
|                                  |                                      | $R_L = 1k\Omega$                                       | 2.0  | —         | 40   | 170  | —                           | 220  |       |
| Output Disable                   | t <sub>PLZ</sub><br>t <sub>PHZ</sub> |                                                        | 4.5  | —         | 11   | 35   | —                           | 44   |       |
| Time                             |                                      |                                                        | 9.0  | —         | 10   | 30   | —                           | 38   |       |
|                                  |                                      |                                                        | 12.0 | _         | 9    | 27   | _                           | 33   |       |
|                                  | _                                    | $R_L = 1k\Omega$ $C_L = 15pF$ $V_{OUT} = 1/2 \ V_{CC}$ | 2.0  | l —       | 30   | l —  | l —                         | _    | MHz   |
| Maximum Control                  |                                      |                                                        | 4.5  | l —       | 30   | l —  | l —                         | _    |       |
| Input Frequency                  |                                      |                                                        | 9.0  | l —       | 30   | l —  | l —                         | _    |       |
|                                  |                                      |                                                        | 12.0 | —         | 30   | —    | —                           | _    |       |
| Control Input                    | C <sub>IN</sub>                      | _                                                      | _    | _         | 5    | 10   | _                           | 10   | _     |
| Capacitance                      | -114                                 |                                                        |      |           |      |      |                             |      |       |
| Switch Terminal<br>Capacitance   | CI/O                                 | _                                                      | _    | _         | 6    | -    | _                           | _    | pF    |
| Feedthrough<br>Capacitance       | C <sub>IOS</sub>                     | _                                                      | _    | _         | 0.5  |      | _                           | _    |       |
| Power Dissipation<br>Capacitance | C <sub>PD</sub>                      | (Note 1)                                               | _    | _         | 15   | _    | _                           | _    | _     |

Note 1 : C<sub>PD</sub> is defined as the value of internal equivalent Capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation :  $I_{CC}(opr) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$ 

# ANALOG SWITCH CHARACTERISTICS (GND = 0V, Ta = 25°C)

| PARAMETER                                       | SYMBOL | TEST CONDITION                                                                                                                                                           |            | TYP.         | UNIT |
|-------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------|
| Total Harmonic<br>Distortion (T.H.D)            | _      |                                                                                                                                                                          | 4.5<br>9.0 | 0.05<br>0.04 | %    |
| Maximum Propagation<br>Frequency<br>(SWITCH ON) | fMAX   | Adjust $f_{IN}$ voltage to obtain 0dBm at $V_{OS}$ Increase $f_{IN}$ frequency until dB Meter reads $-3$ dB. $R_L = 50\Omega$ $C_L = 10$ pF, $f_{IN} = 1$ MHz, Sine Wave | 4.5<br>9.0 | 200<br>200   | MHz  |
| Feedthrough<br>(SWITCH ON)                      | _      | $V_{in}$ is ceintered at $V_{CC}/2$ Adjust input for 0dBm $R_L = 600\Omega$ , $C_L = 50 pF$ $f_{IN} = 1 MHz$ , Sine Wave                                                 | 4.5<br>9.0 | - 60<br>- 60 | dB   |
| Crosstalk<br>(CONTROL SWITCH)                   | -      | $R_L = 600\Omega$ , $C_L = 50pF$<br>IN = 1MHz, PULSE ( $t_r = t_f = 6ns$ )                                                                                               | 4.5<br>9.0 | 60<br>100    | mV   |

Note: These characteristics are determined by design of devices.

# PACKAGE DIMENSIONS

SSOP5-P-0.95

Unit: mm





Weight: 0.016g (Typ.)

# PACKAGE DIMENSIONS

SSOP5-P-0.65A







Weight: 0.006g (Typ.)

#### RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.