

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA – CAMPUS CAMPINA GRANDE					
CURSO:	CURSO ENGENHARIA DA COMPUTAÇÃO				
PERÍODO:		TURMA:			
DISCIPLINA:	PROGRAMAÇÃO E ESTRUTURAS DE DADOS				
DD055000D	OÉGAD DOGUA VAGOONGELOG	SEMESTRE LETIVO			

CÉSAR ROCHA VASCONCELOS

NOME:		

PROFESSOR:

Lista 02 – Alocação Dinâmica e Estruturas

- 1) Faça um programa simples que peça o nome completo do usuário (máximo 40 caracteres) e possa <u>alocar dinamicamente</u> esta cadeia de caracteres em memória no tamanho exato ao número de caracteres que compõem a cadeia digitada na entrada. Finalmente, o programa deve imprimir esta cadeia <u>utilizando apontadores</u>. Não esqueça de liberar a memória alocada no final!
- 2) Defina uma estrutura que modele um novo tipo Tcliente do mundo real. Use typedef para agilizar este processo. Esta estrutura deve conter: codigo, nome, idade, salario, rua, bairro e cep. Faça com que o programa receba estes dados do usuário e atribua as entradas digitadas por ele em cada um dos campos da estrutura (cuidado com estouro de capacidade dos vetores! O programa deve atribuir apenas a capacidade suportada pelos campos). Ao final, crie uma função imprimecliente que percorra a estrutura imprimindo cada um dos campos usando apontadores.
- 3) Vamos realizar modificações no programa anterior: (a) TCliente agora deve ter como um dos campos uma sub-estrutura aninhada TEndereco, a qual deve ser formada pelos campos rua, bairro e cep. Nesta questão, crie a estrutura <u>usando alocação dinâmica</u>. Considerando a definição do tipo acima, novas funções devem ser inseridas no sistema. Veja os novos protótipos de funções:
 - a) TCliente* lerCliente(void) (leitura deve ser feita dentro da função)
 - b) void imprimeCliente (TCliente *cliente) (o código ficará semelhante ao da função imprimeCliente da questão 2, mas, agora, você deve considerar a estrutura aninhada TEndereço e seus sub-campos na impressão, certo?)
 - c) void alterarEndereço(TCliente* cliente, char* rua, char*bairro, char*, unsigned int cep)
 - d) void destroiCliente (TCliente *cliente) (desalocar memória para a estrutura criada)