GE1354 Tutorial Sheet

Analog to Digital Conversion

- 1. Convert the following binary numbers to decimal numbers and hexadecimal numbers
 - a) 10100011
 - b) 101101
 - c) 110100101010

Ans.

	From binary to	From binary to	
	decimal	hexadecimal	
a)	163	A3	
b)	45	2D	
c)	3370	D2A	

- 2. Convert the following decimal numbers to binary numbers and hexadecimal numbers
 - a) 112
 - b) 25673
 - c) 1000

From decimal to	From decimal to
binary	hexadecimal
01110000	70
0110010001001001	6449
0000001111101000	3E8
	binary 01110000 0110010001001001

- 3. Consider a 3-bit ADC. The conversion from analog voltage to digits is shown in Fig. Q3. The full-scale is 10V.
 - a) How much voltage does one LSB represent?
 - b) What is the possible range of voltage if the output is 010?
 - c) What is the maximum quantization error?
 - d) Derive an equation to convert an analog input to the output code in decimal and binary. Illustrate the results if the ADC value is 6 (in decimal).

Fig. Q3

Ans.

a)
$$1 LSB = 1 / (2^3) \times 10 V = 1.25V$$

b) If the output is 010, the possible range of analog input is:

$$[10 \times \frac{3}{16}, 10 \times \frac{5}{16}] = [1.875\text{V}, 3.125\text{V}], \text{ including } 1.875\text{V}, \text{ excluding } 3.125\text{V}]$$

- Quantization error is ± 0.5 LSB. Therefore, the maximum error is 1.25V / 2 = 0.625V.
- d) The ADC output in decimal can be expressed as

ADC value = Round
$$(\frac{8}{10}v_{in})$$

The ADC value (in decimal) can be converted into a binary representation as follows:

3 rd bit	2 nd bit	1 st bit
floor (ADC / 4)	rem (floor (ADC / 2) / 2)	rem (ADC / 2)

Note: rem (x/y) returns the reminder of the division, floor(x) returns the largest integer less than or equal to x.

For example, if ADC =6,

 3^{rd} bit : floor(6/4) = 1

 2^{nd} bit : rem(floor(6/2)/2) = rem(3/2)=1

 1^{st} bit : rem(6/2)=0

The answer is equal to 110

4*. Discuss how an ADC converter is implemented by a digital-to-analog (DAC) converter.

