Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2023-24

Απόδοση ΚΜΕ

(Μέτρηση και τεχνικές βελτίωσης απόδοσης)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας

- Απόδοση υπολογιστικού συστήματος
 - Η απόδοση εξαρτάται από όλα τα επιμέρους τμήματα του συστήματος
 - Υλικό και λογισμικό
- Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας
 - Πόσο γρήγορα εκτελείται ένα πρόγραμμα;
 - Πώς επηρεάζει η αρχιτεκτονική της (Κ)ΜΕ την απόδοση;
 - Πόσο γρηγορότερα εκτελείται ένα πρόγραμμα μετά από μια αρχιτεκτονική αλλαγή;

Χρόνος απόκρισης – Ρυθμός Ολοκλήρωσης

- Χρόνος απόκρισης (response time)
 - Συνολικός χρόνος για την ολοκλήρωση των εργασιών ενός
 προγράμματος (από την έναρξη μέχρι τη λήξη)
- Ρυθμός ολοκλήρωσης (throughput)
 - Ρυθμός ολοκλήρωσης έργου σε συγκεκριμένο χρόνο
- Τα δύο μεγέθη είναι αλληλένδετα
 - Συνήθως η βελτίωση του ενός επιδρά θετικά και στο άλλο

Χρόνος Εκτέλεσης (Execution Time)

- Χρόνος εκτέλεσης στην (Κ)ΜΕ
 - Ο χρόνος για τον οποίο η ΚΜΕ εκτελεί εντολές του προγράμματος
 - Όχι χρόνος για αναμονή Ε/Ε ή για άλλες διεργασίες
- Συνιστώσες
 - Χρόνος προγράμματος χρήστη
 - Για το πρόγραμμα καθεαυτό
 - Χρόνος συστήματος
 - Λειτουργίες ΛΣ για την εξυπηρέτηση του προγράμματος

Εκτέλεση προγράμματος

- Χρόνος εκτέλεσης ενός προγράμματος (execution time)
 - Αύξηση απόδοσης ⇔ Μείωση χρόνου εκτέλεσης
 - Εκτέλεση σε έναν υπολογιστή X:

Σύγκριση εκτέλεσης σε δύο συστήματα

- Συγκρίνοντας αποδόσεις για την εκτέλεση του ίδιου προγράμματος
 - Έστω υπολογιστές X και Y
 - Εάν:

 $A\pi \delta \delta \sigma \eta(X) > A\pi \delta \delta \sigma \eta(Y)$

Τότε (και αντίστροφα):

Χρόνος Εκτέλεσης(Χ) < Χρόνος Εκτέλεσης(Υ)

Σύγκριση εκτέλεσης σε δύο συστήματα

- Υπολογισμός του λόγου των χρόνων εκτέλεσης
 - Όταν σε υπολογιστές X και Y για το ίδιο πρόγραμμα είναι:

Τότε:

Ο Χ είναι η φορές γρηγορότερος από τον Υ

- Παράδειγμα
 - Ο Χ εκτελεί ένα πρόγραμμα σε 10 sec και ο Υ σε 15 sec. Πόσο πιο γρήγορος είναι ο Χ;

Σύγκριση εκτέλεσης σε δύο συστήματα

- Υπολογισμός του λόγου των χρόνων εκτέλεσης
 - Όταν σε υπολογιστές X και Y για το ίδιο πρόγραμμα είναι:

Τότε:

Ο Χ είναι η φορές γρηγορότερος από τον Υ

- Παράδειγμα
 - Ο Χ εκτελεί ένα πρόγραμμα σε 10 sec και ο Υ σε 15 sec. Πόσο πιο γρήγορος είναι ο Χ;
 - Ο Χ είναι 1.5 φορές γρηγορότερος

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

- Κύκλος ρολογιού (περίοδος)
 - Clock Cycle (CC)
 - Η διάρκεια ενός κύκλου ρολογιού (περίοδος ρολογιού) κατά τον οποίο η ΚΜΕ εκτελεί τις μικρότερες βασικές λειτουργίες
 - Απόλυτα σταθερό μέγεθος
- Ρολόι (clock)
 - Περιοδικό σήμα (εναλλάσσεται συνεχώς μεταξύ 0 και 1)
 - Ο παλμός κάθε υπολογιστικού συστήματος, συγχρονίζει τις λειτουργίες του συστήματος

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

Κύκλοι ρολογιού ανά εντολή

- Clocks Per Instruction (CPI)
 - Οι απαιτούμενοι κύκλοι ρολογιού για την ολοκλήρωση μιας εντολής
 - Ενδεχομένως διαφορετικό μέγεθος ανά τύπο εντολής
 - Σε προσεγγιστικούς υπολογισμούς χρησιμοποιείται ένα μέσο
 CPI
 - Σε λεπτομερείς υπολογισμούς χρησιμοποιούνται μεγέθη από προσομοιώσεις ή μετρήσεις μέσω μετροπρογραμμάτων
- Αριθμός εντολών
 - Instruction Count (IC)
 - Ο αριθμός των εντολών ενός προγράμματος

Χρόνος εκτέλεσης στην (Κ)ΜΕ

• Χρόνος Εκτέλεσης για ένα πρόγραμμα

- Τι μπορεί να κάνει ο σχεδιαστής ΚΜΕ για να βελτιώσει την απόδοση;
 - Να μειώσει τον κύκλο ρολογιού (CC)
 - Να μειώσει τον αριθμό κύκλων ανά εντολή (CPI)
 - Ο αριθμός εντολών δεν αλλάζει

Τύπος εντολής	A	В	C
CPI	1	2	3

Ακολουθία κώδικα	A	В	C
1	2	1	2
2	4	1	1

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

- Έχουμε να διαλέξουμε μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές;
 - Ποια είναι ταχύτερη;
 - Ποιο το μέσο CPI σε κάθε περίπτωση;

Τύπος εντολής	A	В	C
CPI	1	2	3

Ακολουθία κώδικα	A	В	C
1	2	1	2
2	4	1	1

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

- Έχουμε να διαλέξουμε μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές;

A:
$$2+1+2=5$$

B:
$$4+1+1=6$$

- Ποια είναι ταχύτερη;
- Ποιο το μέσο CPI σε κάθε περίπτωση;

Τύπος εντολής	A	В	C
СРІ	1	2	3

Ακολουθία κώδικα	A	В	C
1	2	1	2
2	4	1	1

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

- Έχουμε να διαλέξουμε μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές;
 κύκλοι ρολογιού = Σ(CPI,*IC,)

A:
$$2+1+2=5$$

B:
$$4+1+1=6$$

Ποια είναι ταχύτερη; A: 2*1+1*2+2*3 = 10

B:
$$4*1+1*2+1*3 = 9$$

Ποιο το μέσο CPI σε κάθε περίπτωση;

Τύπος εντολής	A	В	C
СРІ	1	2	3

Ακολουθία κώδικα	A	В	C
1	2	1	2
2	4	1	1

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

- Έχουμε να διαλέξουμε μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές; κύκλοι ρολογιού = Σ(CPI,*IC,)

A:
$$2+1+2=5$$

B:
$$4+1+1=6$$

Ποια είναι ταχύτερη; A: 2*1+1*2+2*3 = 10

A:
$$2*1+1*2+2*3 = 10$$

B: $4*1+1*2+1*3 = 9$

Ποιο το μέσο CPI σε κάθε περίπτωση;

A:
$$10/5 = 2$$

B: 9/6 = 1.5

Συσχέτιση με λογισμικό

• Ενώ το υλικό και η αρχιτεκτονική συνόλου εντολών (ISA) καθορίζει και τα τρία μεγέθη (IC, CPI και CC), τι συμβαίνει με το λογισμικό;

• Αλγόριθμος

- Καθορίζει το ΙC
- Ενδεχομένως καθορίζει το CPI, ευνοώντας ορισμένους τύπους εντολών (π.χ. κινητής υποδιαστολής)
- Γλώσσα προγραμματισμού Μεταγλωττιστής
 - Καθορίζει το IC (μετάφραση εντολών υψηλού επιπέδου)
 - Καθορίζει το CPI απαιτώντας/χρησιμοποιώντας συγκεκριμένους τύπους εντολών

Μετροπρογράμματα

Benchmarks

- Για τη μέτρηση της απόδοσης
- Και τη σύγκριση μεταξύ υπολογιστών
- Θα πρέπει να αντιπροσωπεύουν τις πραγματικές εφαρμογές
- Υπό ρεαλιστικές συνθήκες εκτέλεσης και δεδομένα εισόδου
- Χωρίς "εσωτερικές" ειδικές βελτιστοποιήσεις
- Δυνατότητα επανάληψης μέτρησης
- Διαφορετικά για ανόμοιες κλάσεις υπολογιστών
 - PCs, servers, embedded systems...

Ο «νόμος» του Amdahl

- «Η βελτίωση της συνολικής απόδοσης ενός συστήματος μέσω της εισαγωγής ενός νέου χαρακτηριστικού, περιορίζεται από το βαθμό χρήσης αυτού του νέου χαρακτηριστικού»
- Ερμηνεία συνέπειες
 - Οι περισσότερο χρησιμοποιούμενες περιπτώσεις πρέπει να είναι γρήγορες
 - Δεν ωφελεί η βελτιστοποίηση των σπάνιων περιπτώσεων
 - Η μη χρήση του νέου χαρακτηριστικού βελτίωσης εμποδίζει να επιτύχουμε την «τέλεια» απόδοση
 - Ακόμα κι όταν το ποσοστό μη χρήσης είναι ελάχιστο

Ο «νόμος» του Amdahl – Παράδειγμα

• Ένα πρόγραμμα τρέχει για 100 sec σε έναν υπολογιστή και εκτελεί πολλαπλασιασμούς για 80 sec. Πόσο πρέπει να βελτιώσω τη ταχύτητα του πολλαπλασιασμού για να πενταπλασιάσω τη συνολική απόδοση;

Ο «νόμος» του Amdahl – Παράδειγμα

- Ένα πρόγραμμα τρέχει για 100 sec σε έναν υπολογιστή και εκτελεί πολλαπλασιασμούς για 80 sec. Πόσο πρέπει να βελτιώσω τη ταχύτητα του πολλαπλασιασμού για να πενταπλασιάσω τη συνολική απόδοση;
 - Το πρόγραμμα εκτελεί 80 sec πολλαπλασιασμούς και 20 sec άλλες πράξεις
 - Για να πενταπλασιαστεί η συνολική απόδοση, ο λόγος των χρόνων εκτέλεσης (παλιό/νέο) θα πρέπει να είναι 5
 - Έστω ότι το κύκλωμα πολλαπλασιασμού γίνεται η φορές ταχύτερο. Οι πολλαπλασιασμοί τότε θα εκτελούνται σε 80/n sec

Ο «νόμος» του Amdahl – Παράδειγμα

- Ένα πρόγραμμα τρέχει για 100 sec σε έναν υπολογιστή και εκτελεί πολλαπλασιασμούς για 80 sec. Πόσο πρέπει να βελτιώσω τη ταχύτητα του πολλαπλασιασμού για να πενταπλασιάσω τη συνολική απόδοση;
 - Το πρόγραμμα εκτελεί 80 sec πολλαπλασιασμούς και 20 sec άλλες πράξεις
 - Για να πενταπλασιαστεί η συνολική απόδοση, ο λόγος των χρόνων εκτέλεσης (παλιό/νέο) θα πρέπει να είναι 5
 - Έστω ότι το κύκλωμα πολλαπλασιασμού γίνεται **n φορές** ταχύτερο. Οι πολλαπλασιασμοί τότε θα εκτελούνται σε 80/n sec

$$\frac{\mathsf{Xρόνος}\,\mathsf{Eκτέλεσης}(\pi\alpha\lambda\iota\acute{o})}{\mathsf{Xρόνος}\,\mathsf{Eκτέλεσης}(\mathsf{v\'eo})} = \frac{100\,\mathsf{sec}}{80/\mathsf{n} + 20\,\mathsf{sec}} = 5$$
 $\frac{\mathsf{vπάρχει}}{\mathsf{λ\'eoη}\,\mathsf{για}}$
το n;

ΚΜΕ ενός κύκλου (single-cycle)

- CPI = 1
 - Σε κάθε έναν κύκλο ρολογιού ολοκληρώνεται μια εντολή ή
 - κάθε εντολή απαιτεί έναν κύκλο ρολογιού
- Πόσο πρέπει να είναι το CC;
 - Ίσο με τη διάρκεια της μεγαλύτερης λειτουργίας
 - Της πιο χρονοβόρας εντολής μηχανής
 - Μη αποδοτικό σχήμα
 - Όλες οι εντολές μηχανής δεν απαιτούν τον ίδιο χρόνο

Υποθετικό παράδειγμα σε ΚΜΕ ενός κύκλου

Εντολή	IF	ID	EX	DM	WB	Σύνολο
Αριθμητική	200	50	100	0	50	400 ps
Διακλάδωση	200	50	100	0	0	350 ps
Ανάγνωση μνήμης	200	50	100	200	50	600 ps
Εγγραφή μνήμης	200	50	100	200	0	550 ps

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

- Για να μπορεί να ολοκληρωθεί κάθε είδος εντολών το CC θα πρέπει να είναι 600 ps
 - Ποια η βελτίωση της απόδοσης αν ήταν δυνατή η χρήση μεταβλητού CC;
 (προσοχή: πρακτικά αδύνατο!)
 - Θεωρείστε ότι το πρόγραμμα έχει τους εξής τύπους εντολών: 25% ανάγνωσης, 10% εγγραφής, 45% αριθμητικές, 20% διακλάδωσης

Υποθετικό παράδειγμα σε ΚΜΕ ενός κύκλου

Εντολή	IF	ID	EX	DM	WB	Σύνολο
Αριθμητική	200	50	100	0	50	400 ps
Διακλάδωση	200	50	100	0	0	350 ps
Ανάγνωση μνήμης	200	50	100	200	50	600 ps
Εγγραφή μνήμης	200	50	100	200	0	550 ps

25% ανάγνωσης, 10% εγγραφής, 45% αριθμητικές, 20% διακλάδωσης

- Και στις δύο περιπτώσεις είναι ίδιος ο αριθμός εντολών (IC) και ο αριθμός κύκλων ρολογιού ανά εντολή (CPI=1)
- Συνεπώς η απόδοση υπολογίζεται μόνο από τον λόγο των CC:

Χρόνος Εκτέλεσης (παλιό) =
$$\frac{CC(παλιό)}{CC(νέο)} = \frac{600ps}{CC(νέο)}$$
 πώς $\frac{πολογίζεται}{}$

Υποθετικό παράδειγμα σε ΚΜΕ ενός κύκλου

Εντολή	IF	ID	EX	DM	WB	Σύνολο
Αριθμητική	200	50	100	0	50	400 ps
Διακλάδωση	200	50	100	0	0	350 ps
Ανάγνωση μνήμης	200	50	100	200	50	600 ps
Εγγραφή μνήμης	200	50	100	200	0	550 ps

25% ανάγνωσης, 10% εγγραφής, 45% αριθμητικές, 20% διακλάδωσης

CC(νέο) = σταθμισμένος μέσος όρος CC ανά τύπο εντολής, ανάλογα με τη συχνότητα εμφάνισης του τύπου εντολών =

$$0,45*400 + 0,2*350 + 0,25*600 + 0,1*550 = 455ps$$

$$\frac{\mathsf{Xρόνος}\,\mathsf{Eκτέλεσης}(\pi\alpha\lambda\mathsf{i}\acute{o})}{\mathsf{Xρόνος}\,\mathsf{Eκτέλεσης}(\mathsf{v}\acute{e}o)} = \frac{\mathsf{CC}(\pi\alpha\lambda\mathsf{i}\acute{o})}{\mathsf{CC}(\mathsf{v}\acute{e}o)} = \frac{600\mathsf{ps}}{455\mathsf{ps}} = 1,32$$

ΚΜΕ πολλαπλών κύκλων (multi-cycle)

- CPI > 1
 - Κάθε εντολή μηχανής χωρίζεται σε έναν αριθμό βημάτων
 - Διαφορετικός αριθμός βημάτων για κάθε τύπο εντολών
 - Κάθε βήμα απαιτεί έναν κύκλο ρολογιού
- Πόση πρέπει να είναι η περίοδος του ρολογιού (CC);
 - Τση με τη διάρκεια ολοκλήρωσης του μεγαλύτερου βήματος
- Καταχωρητές για τη συγκράτηση αποτελεσμάτων μεταξύ βημάτων
- Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν για περισσότερες από μία φορές κατά την εκτέλεση μιας εντολής

Παράδειγμα: Εντολή load (βήμα IF)

Παράδειγμα: Εντολή load (βήμα ID)

Παράδειγμα: Εντολή load (βήμα ΕΧ)

Παράδειγμα: Εντολή load (βήμα DM)

Παράδειγμα: Εντολή load (βήμα WB)

Μονάδα Ελέγχου ΚΜΕ πολλαπλών κύκλων

- Δημιουργία σημάτων σε κάθε βήμα εκτέλεσης εντολής
- Μέθοδοι υλοποίησης
 - Αυτόματα πεπερασμένων καταστάσεων
 - Παραγωγή σημάτων ελέγχου ανάλογα με εισόδους και τρέχουσα κατάσταση
 - Μικροπρόγραμμα
 - Καθορισμός σημάτων μέσω μικροεντολών
 - Εσωτερικά στην ΚΜΕ
 - Για υλοποίηση σύνθετων εντολών με πολλά βήματα και πολλαπλά περάσματα από το datapath
 - Μερικές φορές είναι εγγράψιμο (updates, patches..)

Απόδοση ΚΜΕ πολλαπλών κύκλων

• Πλεονεκτήματα

- Δεν απαιτείται ο μέγιστος χρόνος για το CC
- Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν με πολλαπλό τρόπο κατά την εκτέλεση μιας εντολής

• Μειονεκτήματα

- Η μονάδα ελέγχου γίνεται πολυπλοκότερη
 - Η πολυπλοκότητα πιθανόν να ακυρώνει τα πλεονεκτήματα
- Σε κάθε βήμα, μερικά τμήματα μένουν ανενεργά
 - Πώς θα μπορούσαμε να τα εκμεταλλευτούμε;
 - 🔹 (στο επόμενο μάθημα...)