Simulation (exacte) de processus aléatoires Exemples en C++

Vincent Lemaire vincent.lemaire@upmc.fr

Rappels sur la programmation générique

Mouvement Brownien et dérivés...

Mouvement Brownien Pont Brownien et Brownien biasé Black-Scholes

Ornstein-Uhlenbeck

CIR

Processus de Poisson

Processus de Lévy

Brownien + Poisson composé
Brownien subordonné

Processus gaussien stationnaire

One dimensional SDE

Rappels sur la programmation générique

Evolution du C au C++ :

- POO (objets, héritages, polymorphisme dynamique)
- Prog. générique (template, polymorphisme statique)
- Nouvelle librairie standard : la STL (Standard Template Library).

Pourquoi utiliser la STL?

- C'est standard...
- Structures de données pratiques : conteneurs
- Algorithmes préprogrammés : algorithmes (tri, recherche...)
- Nouveau concept (pour ne plus utiliser de pointeurs) : itérateurs
- Existe des versions optimisées / parallélisées
- Utilisée par de nombreuses bibliothèques

Le futur? Surement BOOST qui reprend et développe de nombreux concepts de la STL.

typedef, typename, template

▶ **typedef** : existe aussi en C, permet de définir un nouveau type à partir d'un autre type, en gros : copier/coller à la compilation.

Permet d'écrire un code plus court, plus lisible! A utiliser!

Syntaxe : **typedef** ancientypelongetcomplique NouveauType

typedef, typename, template

typedef: existe aussi en C, permet de définir un nouveau type à partir d'un autre type, en gros: copier/coller à la compilation.
Permet d'écrire un code plus court, plus lisible! A utiliser!
Syntaxe: typedef ancientypelongetcomplique NouveauType

- typename : mot-clé indiquant que le « terme » suivant est un type. Deux usages :
 - Lorsqu'il y a un litige possible sur le « terme » qui suit. Exemple : dans la classe abstraite processus.
 - Dans l'argument d'un template pour définir le ou les noms des types génériques (peut-être remplacé par le mot-clé class).
 Exemple : template <typename T1, typename T2 = T1>

typedef, typename, template

▶ **typedef** : existe aussi en C, permet de définir un nouveau type à partir d'un autre type, en gros : copier/coller à la compilation.

Permet d'écrire un code plus court, plus lisible! **A utiliser!**Syntaxe : **typedef** ancientypelongetcomplique NouveauType

- typename : mot-clé indiquant que le « terme » suivant est un type. Deux usages :
 - Lorsqu'il y a un litige possible sur le « terme » qui suit.
 Exemple : dans la classe abstraite processus.
 - Dans l'argument d'un template pour définir le ou les noms des types génériques (peut-être remplacé par le mot-clé class).

Exemple : template < typename T1, typename T2 = T1>

- ▶ **template** : mot-clé permettant de définir une fonction ou une classe *générique* i.e. qui ne dépend pas du type de certains éléments.
 - A la compilation, autant de versions que nécessaires sont codées par le compilateur.
 - Syntaxe : précède la déclaration et la définition de la fonction ou de la classe.

Classe abstraite: processus

```
template <tvpename T>
   struct processus
       typedef std::pair<double, T> state;
       typedef std::list<state> result_type;
       typedef typename result_type::iterator iter;
       typedef typename result_type::const_iterator cst_iter;
       processus(int size = 0) : value(size) {};
       virtual result_type operator()() = 0;
        result_type current() const { return value; };
10
       template <typename S>
       friend std::ostream& operator<<(std::ostream &o,</pre>
12
                                         const processus<S> &p);
       protected:
14
            result_type value;
```

Classe abstraite: processus - 2 -

- Utilise les conteneurs pair et list de la STL.
- Surcharge l'opérateur () par une fonction virtuelle pure : il ne peut pas exister d'objet de cette classe, c'est une classe abstraite.
- Surcharge de l'opérateur << (injection) par une fonction amie, voici une définition possible de cette fonction :

- headers nécessaires : iostream, list, utility.
- Attention aux const... On ne peut pas utiliser un iterateur non constant car l'objet p est passé (par référence) comme étant constant (non modifié par la fonction).

Hierarchie des classes à venir

Mouvement Brownien

 Approximation (exacte aux instants de discrétisation) par une marche aléatoire (implémentée dans operator()):
 Par définition, on a

$$\forall 0 \leqslant s < t, \quad B_t = B_s + \sqrt{t - s}G,$$

où $G \sim \mathcal{N}(0;1)$.

► Construction récursive (implémentée dans la méthode affine) :

$$\forall h > 0, t \geqslant 0, \quad \mathcal{L}(B_t | B_{t-h} = a, B_{t+h} = b) \sim \mathcal{N}\left(\frac{a+b}{2}; \frac{h}{2}\right).$$

(construction de Paul Lévy du mouvement Brownien).

Classe brownian

10

12

```
struct brownian : public processus<double>
    brownian(int n, double T=1)
        : processus<double>(pow(2,n)+1), n(n), T(T),
          h(T/pow(2., n)), G(0, sqrt(h)) {};
    result_type operator()();
    result_type affine();
    friend struct black_scholes:
    protected:
        int n:
        double h, T;
        gaussian G;
```

Classe brownian, définition de l'opérateur ()

```
result_type brownian::operator()() {
   value.clear();
   state val_k(0,0);
   value.push_back(val_k);
   do {
      val_k.first += h;
      val_k.second += G();
      value.push_back(val_k);
   } while (val_k.first < T);
   return value;
};</pre>
```

Exercice: Ecriture en 5 lignes sans utiliser la variable temporaire val_k.

Classe brownian, définition de la méthode affine

```
result_type brownian::affine() {
       n++: h *= 0.5:
       G = gaussian(0, sgrt(0.5*h));
       iter precedent = value.begin(), current = ++value.begin();
       while (current != value.end()) {
           value.insert(current,
             state(0.5*((*current).first+(*precedent).first),
               0.5*((*current).second+(*precedent).second)+G()));
           precedent = current:
           current++;
10
       return value;
```

Remarque : Intérêt d'avoir choisi le conteneur list pour stocker la trajectoire value.

Exemple d'un programme de test

```
#include <iostream>
   #include <fstream>
   #include "process.hpp"
   using namespace std;
   template <typename T>
   void affiche(processus<T> &p, char name[]) {
       ofstream file;
       file.open(name);
       for (int k = 0; k < 100; k++) {
10
            p();
            file << p << endl;
12
        file.close():
14
   };
   int main() {
16
        init_alea();
       brownian B(5);
18
        affiche(B, "brown.dat");
        return 0:
```

100 trajectoires Browniennes

Pont Brownien et Brownien biasé

▶ Pont Brownien : on conditionne un Brownien sur [0,T] à l'évènement $\{B_T=y\}$ où y est un point fixé de \mathbf{R} ,

$$\mathcal{L}\left((X_t^y)_{t\in[0,T]}\right) \sim \mathcal{L}\left((B_t)_{t\in[0,T]}|B_T=y\right).$$

Simulation? Presque déjà faite...

▶ Brownien biasé : on conditionne un Brownien sur [0,T] à l'évènement $\{B_T \sim \mu\}$ où μ est une mesure de probabilité sur ${\bf R}$,

$$\mathcal{L}\left((X_t^{\mu})_{t\in[0,T]}\right) \sim \mathcal{L}\left((B_t)_{t\in[0,T]}|B_T \sim \mu\right).$$

Utilisé récemment pour la simulation exacte de diffusions.

Remarque : On pourrait « dériver » le pont Brownien du Brownien biaisé en considérant la loi $\mu(\mathrm{d}x)=\delta_y(\mathrm{d}x)$.

Dans la suite on écrit 2 classes distinctes.

Classe brownian_bridge

10

12

14

```
struct brownian_bridge : public brownian
    brownian_bridge(int n, double T = 1, double B_T = 0)
        : brownian(n, T), B_T(B_T) {};
    result_type operator()() {
        value.clear();
        value.push_back(state(0,0));
        value.push_back(state(T, B_T));
        int n_{tmp} = n: n = 0: h = T:
        for (int j = 0; j < n_tmp; j++) affine();
        n = n_{tmp}
        return value;
    };
    private:
        double B_T;
```

Arbre d'héritage de la classe

100 trajectoires du pont Brownien

Classe brownian_biased

10

12

14

```
struct brownian_biased : public brownian
    brownian_biased(int n, double T = 1, var_alea<double> &X)
        : brownian(n, T), X(X) {};
    result_type operator()() {
        value.clear();
        value.push_back(state(0,0));
        value.push_back(state(T, X()));
        int n_{tmp} = n: n = 0: h = T:
        for (int j = 0; j < n_tmp; j++) affine();
        n = n_{tmp}
        return value;
    };
    private:
        var_alea<double> &X:
```

100 trajectoires du Brownien biasé

Black-Scholes (dimension 1)

Soit $(X_t)_{t\geqslant 0}$ solution de

$$dX_t = rX_t dt + \sigma X_t dW_t, \quad X_0 = x_0 \in \mathbf{R}^+,$$

alors pour tout $t \geqslant 0$, on a

$$X_t = x_0 e^{\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t}.$$

- ightharpoonup X est un Brownien géométrique (transformation exponentielle d'un Brownien)
- ▶ Définition de la classe black_scholes :
 - par une classe dérivée
 - par une classe amie
- Avantages, inconvénients?

2

10

12

14

16

18

```
struct black_scholes : public brownian
    black_scholes(int n, double x0, double r, double s, double T=1)
        : brownian(n, T), bs(x0, r, s) {};
    result_type operator()() {
      brownian::operator()();
      std::transform(value.begin(), value.end(), value.begin(), bs);
      return value:
    };
    private:
      struct fun_bs : public std::unary_function<state, state> {
        fun_bs(double x0, double r, double s)
            : x0(x0), s(s), mu(r-0.5*s*s) {};
        state operator()(const state &x) {
            return state(x.first, x0*exp(mu*x.first + s*x.second));
        };
        private:
            double x0, s, mu;
      } bs:
```

10

12

14

16

18

```
struct black_scholes : public processus<double>
    black_scholes(int n. double x0. double r. double s. double T=1)
        : processus<double>(pow(2,n)+1), B(n, T), bs(x0, r, s) \{\};
    result_type operator()() {
      B();
      std::transform(B.value.begin(),B.value.end(),value.begin(),bs);
      return value:
    };
    private:
      brownian B:
      struct fun_bs : public std::unary_function<state, state> {
        fun_bs(double x0, double r, double s)
            : x0(x0), s(s), mu(r-0.5*s*s) {};
        state operator()(const state &x) {
            return state(x.first, x0*exp(mu*x.first + s*x.second));
        };
        private:
            double x0. s. mu:
      } bs:
```

100 trajectoires de Black-Scholes

Arbre d'héritage de la classe (version amie)

Ornstein-Uhlenbeck

Soit $(X_t)_{t\geqslant 0}$ solution de

$$dX_t = \lambda (\mu - X_t) dt + \sigma dW_t, \quad X_0 = x_0,$$

alors pour tout $t \geqslant 0$ on a

$$X_t = x_0 e^{-\lambda t} + \mu (1 - e^{-\lambda t}) + \sigma \sqrt{\frac{1 - e^{-2\lambda t}}{2\lambda}} G,$$

où $G \sim \mathcal{N}(0;1)$.

- Processus ergodique, de mesure invariante $\mathcal{N}\Big(\mu; \frac{\sigma^2}{2\lambda}\Big)$ (récurrent positif).
- ▶ Simulation exacte par une marche aléatoire.
- ▶ Dans le cas d'un Ornstein plus général (avec coefficient de diffusion non constant ou dirigé par un Lévy), il est important de discrétiser/simuler $e^{\lambda t}X_t$ plutôt que X_t ...

Ornstein-Uhlenbeck (simulation exacte)

6

10

12

14

16

18

```
struct ornstein_uhlenbeck : public processus<double>
    ornstein_uhlenbeck(int n, double x0, double lambda, double mu,
                       double s. double T = 1)
        : T(T), h(pow(2.,-n)), x0(x0), ret(exp(-lambda*h)),
          G(mu*(1-ret), s*s*(1-exp(-2*lambda*h))/(2*lambda)) {};
    result_type operator()() {
        value.clear();
        state val_k(0, x0);
        value.push_back(val_k);
        do {
            val_k.first += h:
            val_k.second = val_k.second*ret + G();
            value.push_back(val_k);
        } while (val_k.first < T);</pre>
        return value;
    };
   private:
        double x0. h. T. ret:
        gaussian G;
```

100 trajectoires d'Ornstein-Uhlenbeck

Square root process (CIR)

Let $(X_t)_{t\geq 0}$ solution of the SDE

$$dX_t = \alpha (b - X_t) dt + \sigma \sqrt{X_t} dW_t, \quad X_0 = x_0 > 0,$$

with $\alpha, b > 0$ and $2\alpha b \geqslant \sigma^2$. By Feller classification under theses conditions X(t) > 0 for all t, almost surely.

Proposition

The distribution of X_t given X_u (u < t) is, up to a scale factor, a noncentral chi-square distribution

$$X_t \sim \frac{\sigma^2 (1 - e^{-\alpha(t-u)})}{4\alpha} \chi_d^{\prime 2} \left(\frac{4\alpha e^{-\alpha(t-u)}}{\sigma^2 (1 - e^{-\alpha(t-u)})} X_u \right),$$

where $d = \frac{4b\alpha}{\sigma^2}$.

Noncentral chi-square distribution

A noncentral chi-square random variable $\chi_d'^2(\lambda)$ with d degrees of freedom and noncentrality parameter λ has distribution

$$\mathbf{P}\left[\chi_d'^2(\lambda) \leqslant y\right] = \sum_{j=0}^{+\infty} \left(e^{-\frac{\lambda}{2}} \frac{(\lambda/2)^j}{j!}\right) \frac{1}{2^{d/2+j} \Gamma(d/2+j)} \int_0^y e^{-z/2} z^{d/2+j-1} \, \mathrm{d}z,$$

and a central chi-square random variable $\chi^2_{
u}(\lambda)$ has distribution

$$\mathbf{P}\left[\chi_{\nu}^{2}(\lambda) \leqslant y\right] = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} \int_{0}^{y} e^{-z/2} z^{\nu/2-1} dz,$$

(special case of the gamma distribution with scale parameter $\beta=2$ and shape parameter $a=\nu/2$).

A general method to simulate $X \sim \chi_d'^2(\lambda)$ is to

- 1. simulate N a Poisson random variable with mean $\frac{\lambda}{2}$
- 2. simulate X as a chi-square random variable with d+2N degrees of freedom.

Processus de Poisson homogène

Soit $\left(N_t\right)_{t\geqslant 0}$ processus de Poisson d'intensité $\lambda>0$ (homogène) i.e. issu de 0 à valeurs dans ${\bf N}$ tel que

- \blacktriangleright $\forall t > 0, N_t \sim \mathcal{P}(\lambda t)$
- $\triangleright \forall s, t > 0, N_{t+s} N_t \perp N_t$

Caractérisation : Soit $(S_n)_{n\geq 0}$ une suite de v.a. i.i.d. $\sim \mathcal{E}(\lambda)$.

Alors $(N_t)_{t\geq 0}$ défini par

$$N_t = \sum_{n=1}^{+\infty} \mathbf{1}_{\{T_n \le t\}}, \quad T_n = S_1 + \dots + S_n,$$

est un processus de Poisson d'intensité λ .

Propriété : (utile pour la simulation)

$$\mathcal{L}\left((T_1,\ldots,T_k)|N_T=k\right)\sim \mathcal{L}\left((TU_{(1)},\ldots,TU_{(k)})\right),$$

où $(u_{(1)},\ldots,u_{(k)})$ est le vecteur ordonné.

Classe ppoisson par marche aléatoire

```
struct ppoisson : public processus<unsigned>
        ppoisson(double lambda, double T = 1.) : E(lambda), T(T) {};
        result_type operator()() {
            value.clear();
            state val_k(0, 0);
            value.push_back(val_k);
            val_k.first += E();
            while (val_k.first < T) {</pre>
                val_k.second += 1;
10
                value.push_back(val_k);
                val_k.first += E();
12
            };
            val_k.first = T;
14
            value.push_back(val_k);
            return value;
16
        };
       protected:
18
            double T:
            expo E;
```

Classe ppoisson par marche aléatoire

```
struct ppoisson_bis : public processus<unsigned>
        ppoisson_bis(double lambda, double T = 1.)
            : U(0,1), P(lambda*T), T(T) {};
        result_type operator()() {
            value.clear();
            value.push_back(state(0,0));
            std::vector<double> vect Uk(P()):
            std::generate(vect_Uk.begin(), vect_Uk.end(), U);
            std::sort(vect_Uk.begin(), vect_Uk.end());
10
            for (int k = 0; k < vect_Uk.size(); k++) {</pre>
                value.push_back(state(T*vect_Uk[k], k+1));
12
            value.push_back(state(T, P.current()));
14
            return value;
        };
16
        protected:
            double T;
18
            uniform U:
            poisson P:
```

100 trajectoires d'un Poisson homogène

Poisson composé

Soit $(X_t)_{t\geqslant 0}$ défini par

$$X_t = \sum_{n \geqslant 1} Y_n \mathbf{1}_{\{T_n \geqslant t\}},$$

οù

- $(Y_n)_{n\geq 0}$ suite de v.a. i.i.d. $\sim \nu \perp (T_n)_{n\geq 0}$.
- ▶ $(T_n)_{n\geqslant 0}$ est la suite des instants de sauts d'un processus de Poisson $(N_t)_{t\geqslant 0}$ d'intensité λ .

Alors $(X_t)_{t>0}$ est un processus de Poisson composé d'intensité λ et de loi de saut μ .

On le note aussi

$$X_t = \sum_{n=1}^{N_t} Y_n.$$

Simulation facile! (quand on utilise ce qui est déjà fait...)

Classe ppoisson par marche aléatoire

10

12

14

16

18

```
struct ppoisson_compose : public processus<double>
    ppoisson_compose(double lambda, var_alea<double> &X, double T=1)
        : N(lambda, T), X(X) {}:
    result_type operator()() {
      value.clear();
      state val_k = state(0,0);
      value.push_back(val_k);
      N();
      for (ppoisson::cst_iter i=N.value.begin();i!=N.value.end();i++)
          val_k.first = (*i).first;
          val_k.second += X();
          value.push_back(val_k);
      value.push_back(state(N.T, val_k.second));
      return value;
    protected:
        ppoisson N:
        var_alea<double> &X:
```


Brownien + Poisson composé

Soit $\left(X_{t}\right)_{t\geqslant0}$ défini par

$$X_t = \nu t + B_t + \sum_{k=1}^{N_t} Y_k,$$

avec $\nu \in \mathbf{R}$.

- simulation d'un Brownien de pas 2^{-n}
- ightharpoonup simulation d'un Poisson composé (d'instants de sauts T_k)
- algorithme « d'addition » :
 - parcourir les instants $t_j = j2^{-n}$
 - \blacktriangleright si $t_j < T_k < t_{j+1}$ on affine la trajectoire brownienne en T_k et on ajoute le saut puis on incrément k,
 - ▶ sinon facile!

A faire en exercice! Très bon exercice pour manipuler les itérateurs. (correction par mail si nécessaire).

Alternative : simulation en simultané du Brownien et du Poisson...

Très utilisé pour approcher des Lévy qu'on ne sait pas simuler de façon exacte.

Brownien subordonné

Changement de temps d'un Brownien par un processus de Lévy croissant (positif, appelé subordinateur) indépendant du Brownien.

$$X_t = B_{Y_t},$$

où $(Y_t)_{t\geqslant 0}$ est le subordinateur du processus de Lévy $(X_t)_{t\geqslant 0}$.

Si on sait simuler le subordinateur, aucune difficulté pour simuler le Lévy.

Exemples:

- Variance-Gamma: le subordinateur est un PAIS dont la loi des accroissements est la loi Gamma.
- Normal Inverse Gaussian: le subordinateur est un PAIS dont la loi des accroissements est la loi Inverse Gaussian.

Design possible en C++:

- une classe pais qui simule un PAIS par une marche aléatoire (de loi donnée), on pourra alors faire deriver brownian, ornstein_uhlenbeck, gamma, inverse_gaussian de cette classe
- une classe brownien_subordonne qui se construit avec un subordinateur en argument

By Cholesky

Generate a random vector $X=(X_0,X_{\frac{1}{n}},\quad,X_{\frac{n-1}{n}})$ from a zero mean stationary Gaussian process $(X_t)_{t\in[0,T]}$ with prescribed covariance function

$$\forall t \in [0, T], \quad \gamma(t) = \gamma(0, t) = \text{cov}(X_0, X_t).$$

Then $X \sim \mathcal{N}(0, \Sigma)$ where

$$\Sigma = \begin{pmatrix} \gamma(0) & \gamma(\frac{1}{n}) & \dots & \gamma(\frac{n-1}{n}) \\ \gamma(\frac{1}{n}) & \gamma(0) & \dots & \gamma(\frac{n-2}{n}) \\ \vdots & \vdots & & \vdots \\ \gamma(\frac{n-1}{n}) & \gamma(\frac{n-2}{n}) & \dots & \gamma(0) \end{pmatrix}$$

- $ightharpoonup \Sigma$ is a symmetric Toeplitz matrix, nonnegative definite.
- lacktriangle Cholesky transform provides a lower triangular matrix A (n imes n) satisfying

$$AA^t = \Sigma$$
 and $X = AG$

where $G \sim \mathcal{N}(0, \mathrm{Id}_n)$. Complexity is n^2 .

By Fast Fourier Transform

The essence of the simulation by FFT is the two steps:

1. Embed Σ in a circulant covariance matrix C $(m\times m)$ where $m\geqslant 2(n-1)$ (and $m=2^l)$

$$C = \begin{pmatrix} c_0 & c_1 & \dots & c_{m-1} \\ c_{m-1} & c_0 & \dots & c_{m-2} \\ \vdots & \vdots & & \vdots \\ c_1 & c_2 & \dots & c_0 \end{pmatrix}$$

2. By FFT (twice) generate a random vector $Y \sim \mathcal{N}(0,C)$ and extract $X = (Y_0, \dots, Y_{n-1}) \sim \mathcal{N}(0,\Sigma)$.

For the first step we can consider

$$c_j = \begin{cases} \gamma(\frac{j}{n}) & \text{if } 0 \leqslant j \leqslant \frac{m}{2} \\ \gamma(\frac{m-j}{n}) & \text{if } \frac{m}{2} \leqslant j < m-1. \end{cases}$$

Warning: It may happen that C fails to be nonnegative definite!

By Fast Fourier Transform

Proposition

The eigenvalues of a circulant matrix are

$$\lambda_k = \sum_{j=0}^{m-1} c_j e^{-\frac{2\pi i j k}{m}}, \quad k = 0, \dots, m-1.$$

And $C=Q\Lambda Q^*$ where $\Lambda=\operatorname{diag}\left\{\lambda_0,\ldots,\lambda_{m-1}\right\}$ is the diagonal matrix with the eigenvalues of C and $Q=(q_{jk})$,

$$q_{jk} = \frac{1}{\sqrt{m}} \exp\left(-\frac{2\pi i j k}{m}\right).$$

- lacktriangle simulate Q^*Z directly and computation of $W_j=\sqrt{\lambda_j}(Q^*Z)_j$,
- ightharpoonup computation (using FFT) of Y

$$Y_k = \frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} W_j e^{-\frac{2\pi i j k}{m}}, \quad k = 0, \dots, m-1.$$

By Fast Fourier Transform

Proposition

The random vector Q^*Z can be simulated directly using m independent random variables $\mathcal{N}(0,1)$, $(S_j,0\leqslant j\leqslant \frac{m}{2})$ and $(T_j,1\leqslant j\leqslant \frac{m}{2}-1)$

$$(Q^*Z)_0 = S_0,$$

$$(Q^*Z)_{\frac{m}{2}} = S_{\frac{m}{2}},$$

$$(Q^*Z)_j = \frac{1}{\sqrt{2}}(S_j + iT_j) \quad \forall j = 1, \dots, \frac{m}{2} - 1$$

$$(Q^*Z)_j = \frac{1}{\sqrt{2}}(S_j - iT_j) \quad \forall j = \frac{m}{2} + 1, \dots, m - 1$$

Fractional Brownian motion

Let $\left(B_t^H\right)_{t\geqslant 0}$ a fractional Brownian motion *i.e.* a zero mean Gaussian process with covariance function

$$r_H(t,s) = \frac{\sigma^2}{2} \left(|t|^{2H} + |s|^{2H} - |t-s|^{2H} \right)$$

where $H \in (0,1)$ is the *Hurst parameter* or self-similarity parameter).

For any fixed h>0 the increments $B_h^H, B_{2h}^H-B_h^H, \dots$ form a stationary Gaussian sequence with covariance function

$$\gamma(n) = \frac{\sigma^2 h^{2H}}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right)$$

- if $H = \frac{1}{2}$ it is the standard Brownian motion
- lacktriangledown if $H>rac{1}{2}$ the increments are positively correlated
- if $H < \frac{1}{2}$ the increments are negatively correlated

Un mot sur std::complex et la FFT

Voici une version très naı̈ve de la FFT. Vérifier que la complexité est bien $n \log_2(n)$.

```
typedef std::vector< std::complex<double> > vec_comp;
vec_comp fft(vec_comp x) {
    if (x.size() == 1) { return x; }
    std::pair< vec_comp, vec_comp > xy = decoupe(x);
    vec_comp f_k_e = fft(xy.first, signe);
    vec_comp f_k_o = fft(xy.second, signe);
    vec_comp result(x.size());
    int m = x.size() / 2;
    std::complex<double> g =
        exp(-2*M_PI*std::complex<double>(0,1)/(double) x.size());
    for (int k = 0; k < x.size(); k++)
        result[k] = f_k_e[k % m] + pow(g, k) * f_k_o[k % m];
    return result;
};</pre>
```

La fonction decoupe renvoie une paire de vecteurs dont le premier est constitué des composantes paires et le second des composantes impaires.

Brownien fractionnaire (H = 0.3, 0.5, 0.7)

Exact simulation (Beskos and Roberts)

We consider the one dimensional SDE on $\left[0,T\right]$

$$dX_t = b(X_t) dt + dW_t, \quad X_0 = 0.$$

Let $\mathbb W$ the Wiener measure on $\mathscr C$ so that W is a BM and $\mathbb X$ the probability measure induced on $\mathscr C$ by $(X_t)_{t\in [0,T]}.$

We assume that b is C^1 bounded with bounded derivative.

By Girsanov

$$\frac{\mathrm{d}\mathbb{X}}{\mathrm{d}\mathbb{W}} = e^{\int_0^T b(W_t) \,\mathrm{d}W_t - \frac{1}{2} \int_0^T b^2(W_t) \,\mathrm{d}t}$$

Let $B(t) = \int_0^t b(u) du$. Itô's formula then gives

$$\int_0^T b(W_t) \, dW_t = B(W_T) - B(0) - \frac{1}{2} \int_0^T b'(W_t) \, dt$$

Exact simulation (Beskos and Roberts)

Proposition

Let $\mathbb Z$ the probability measure induced by the μ biased Brownian motion where μ is with density proportional to h

$$h(x) = e^{B(x) - \frac{x^2}{2T}}.$$

Then $\mathbb Z$ is equivalent to $\mathbb W$ and

$$\frac{\mathrm{d}\mathbb{Z}}{\mathrm{d}\mathbb{W}} = \frac{h(W_T)}{(1/\sqrt{2\pi T})e^{-W_T^2/(2T)}}.$$

It is easy to check that

$$\frac{\mathrm{d}\mathbb{X}}{\mathrm{d}\mathbb{Z}} = \frac{\mathrm{d}\mathbb{X}}{\mathrm{d}\mathbb{W}} \frac{\mathrm{d}\mathbb{W}}{\mathrm{d}\mathbb{Z}} \propto e^{-\int_0^T (\frac{1}{2}b^2(W_t) + \frac{1}{2}b'(W_t)) \, \mathrm{d}t}$$

Exact simulation (Beskos and Roberts)

- Let $\phi(x) = \frac{1}{2}(b^2(x) + b'(x)) k$ where k is such that $\phi \geqslant 0$.
- ▶ We choose the length *T* of the time interval such that

$$\forall u \in \mathbf{R}, \quad 0 \leqslant \phi(u) \leqslant T^{-1}.$$

▶ Let $H = \int_0^T \phi(W_t) dt$ so that

$$\frac{\mathrm{d}\mathbb{X}}{\mathrm{d}\mathbb{Z}}(\mathrm{d}\omega) = e^{-H(\omega)} \quad \text{and} \quad 0 \leqslant H \leqslant 1.$$

▷ Idea of the algorithm :

- 1. Simulate a realisation of the biased Brownian motion $X(\omega)$
- 2. Compute $H(\omega)$
- 3. Produce a binary indicator I such that $\mathbf{P}\left[I=1\mid\omega\right]=e^{-H(\omega)}$
- 4. If I = 0 go to 1.