k.b.j.

- **9.1.** Pieņemsim pretējo. Tā kā $\frac{x+y}{x} = 1 + \frac{y}{x}$ un $\frac{x+y}{y} = 1 + \frac{x}{y}$, tad x dalās ar y un y dalās ar x; tāpēc x = y. Bet tad $MKD(x,y) = MKD(x,x) = x \neq x + y$.
- 9.2. No dotā seko $ab^2+a=c+1$ un 2ab=c+1, tātad $ab^2+a=2ab$ un $a(b-1)^2=0$. Tāpēc b=1. Tagad no vienādības $ab=\frac{c+1}{2}$ seko $a=\frac{c+b}{2}$.
- **9.3.** Apskatīsim r.l. ievilktu regulāru 12-stūri: A₁A₂...A₁₂. Katrā no trijstūriem A₁A₅A₉, A₂A₆A₁₀, A₃A₇A₁₁, A₄A₈A₁₂ ir vismaz divas baltas virsotnes, tātad pavisam balto virsotņu ir vismaz astoņas. Tās sadalās pa trīs kvadrātiem A₁A₄A₇A₁₀, A₂A₅A₈A₁₁, A₃A₆A₉A₁₂. Ja katrā kvadrātā būtu augstākais divas baltas virsotnes, tad kopā to nebūtu vairāk par 6 pretruna.
- **9.4.** Apzīmēsim ar M un N malu AB un BC viduspunktus. Tad $XM = \frac{1}{2}AB, \quad YN = \frac{1}{2}BC \quad (mediāna \quad pret \quad hipotenūzu) \quad un$ $MN = \frac{1}{2}AC \quad (viduslīnija). \ Tāpēc$ $XY \leq XM + MN + NY \leq \frac{1}{2}AB + \frac{1}{2}CA + \frac{1}{2}BC = \frac{1}{2}\left(AB + BC + CA\right),$

9.5. Apzīmēsim lodīšu daudzumu kastēs attiecīgi ar b,s,m. No nosacījuma par sarkano kasti seko, ka s≤5 (pat sešu **vismazāko** numuru vidējais aritmētiskais ir (1+2+3+4+5+6):6=3½>3, un, pievienojot lielākus numurus, tas augs). Skaidrs, ka pastāv vienādības

$$b + s + m = 27$$

15b + 3s + 18m = 1 + 2 + ... + 27 = 378

No šejienes $(15b+3s+18m)-3(b+s+m)=378-3\cdot 27=297$, tāpēc 12b+15m=297 un **4b+5m=99**. Tiešas pārbaudes ceļā pārliecināsimies, ka (b;m) var būt (21;3), (16;7), (11;11), (6;15), (1;19); atbilstošās s vērtības ir attiecīgi 3;4;5;6;7, Tā kā $s \le 5$, divas pēdējās iespējas atkrīt. Pierādīsim, ka trīs pirmās tiešām pastāv:

baltajā kastē	5; 6;; 25	7; 8;; 14; 16; 17;; 23	10; 11;; 20
sarkanajā kastē	2; 3; 4	1; 2; 4; 5	1; 2; 3; 4; 5
melnajā kastē	1; 26; 27	3; 6; 15; 24; 25; 26; 27	6; 7; 8; 9; 21;; 27

- **10.1.** No VA VĢ nevienādības $1+ab \ge 2\sqrt{ab}$; līdzīgi $1+ac \ge 2\sqrt{ac}$ un $1+bc \ge 2\sqrt{bc}$. Sareizinot šīs nevienādības, iegūstam vajadzīgo.
- **10.2.** Apzīmējam 3 pēdējo ciparu veidoto skaitli ar y, bet pēc nosvītrošanas palikušo skaitli ar a. Tad $0 \le y < 1000$ un $a^3 = 1000a + y$. Tāpēc
 - 1) $a^3 \ge 1000a$, $a^2 \ge 1000$ un $a \ge 32$,
 - 2) $a^3 < 1000a + 1000$ un $a(a^2 1000) < 1000$.

Pie $a \ge 32$ šīs nevienādības kreisā puse ir pozitīva un augoša argumenta a funkcija; viegli pārbaudīt, ka jau $33(33^2-1000)=33\cdot89>1000$, tātad a<33. Tātad $32\le a<33$; tā kā a- naturāls skaitlis, tad **varētu būt** vienīgi a=32. Pārbaude (tā nepieciešama) parāda, ka a=32 der, jo $32^3=32768$.

10.3. a) skaidrs, ka skaitli 1 prasītajā veidā izteikt nevar, jo izteiksmes vērtība nav mazāka par 3.

b)
$$\text{ nemot } x = k, y = 1, z = 1, \text{ iegūstam } [x, y] + [y, z] + [z, x] = k + 1 + k = 2k + 1, k \in \mathbb{N}.$$

Tātad var izteikt visus nepāra skaitļus, kas lielāki par 1.

c) ja
$$n = [x, y] + [y, z] + [z, x]$$
, tad $[2x, 2y] + [2y, 2z] + [2z, 2x] = 2([x, y] + [y, z] + [z, x]) = 2n$.

Tātad, ja var izteikt skaitli n, tad var izteikt arī skaitli 2n. No šejienes un no b) seko: var izteikt visus pāra skaitļus, kas nav divnieka pakāpes.

d) pierādīsim, ka divnieka pakāpes 2^k , $k \in N$, tā izsacīt nevar. Tas ir acīmredzami pie k = 1 (skat. a) punktu). Pieņemsim, ka $k \ge 2$, un no pretējā pieņemsim, ka $2^k = \left[2^a \cdot x_1, 2^b \cdot y_1\right] + \left[2^b \cdot y_1, 2^c \cdot z_1\right] + \left[2^c \cdot z_1, 2^a \cdot x_1\right]$, kur $a \ge b \ge c$, x_1, y_1, z_1 - nepāra skaitļi. Skaidrs, ka k > a un k > b. Tad $2^k = 2^a \left[x_1, y_1\right] + 2^b \left[y_1, z_1\right] + 2^a \left[z_1, x_1\right]$ un $2^{k-b} = 2^{a-b} \left[x_1, y_1\right] + \left[y_1, z_1\right] + 2^{a-b} \left[z_1, x_1\right]$. Tā ir pretruna, jo kreisajā vienādības pusē ir pāra skaitlis, bet labajā — nepāra.

10.4.

Tā kā \angle AYC = \angle AXC, tad A, Y, X, C ir uz vienas riņķa līnijas. Tāpēc \angle YAX = \angle YCX un \angle XAC = \angle XYC; \angle CYN = \angle YCX un \angle AXM = \angle YAX (iekšējie šķērsleņķi). Tāpēc \angle NYX = \angle ₁ + \angle ₂ un arī \angle NMX = \angle ₁ + \angle ₂ (\triangle AMX ārējais leņķis). No \angle NYX = \angle NMX seko vajadzīgais.

10.5. Ir pavisam $2^{12} = 4096$ profesoru kopas; tās var apvienot pa 2048 pāriem (A, Ā) (kopa un tās papildinājums). Tā kā 2048 - 1 > 2008, tad eksistē tāda profesoru kopa S, ka ne S, ne \overline{S} nav tukša kopa un ne S, ne \overline{S} vēl nav padome.

Pieņemsim, ka S nevar kalpot par jaundibināmo padomi. Tad S nav kopīga locekļa ar kādu jau esošu padomi P. Tad \overline{S} satur padomi P kā apakškopu, tātad \overline{S} ir kopīgs loceklis ar katru jau esošu padomi; tātad par jauno padomi var kalpot \overline{S} .

11.1.

Kā redzams zīmējumā, pietiek ar 6 gājieniem. Ar 5 gājieniem tas nav izdarāms, jo pēc 5. gājiena zirdziņš būs uz balta lauciņa; ar ≤ 4 gājieniem nepietiek, jo tajos kopā zirdziņš būs pārvietojies pa labi un uz augšu par $\leq 4 \cdot 3 = 12$ vienībām, bet kopējam pārvietojumam jābūt vismaz 7 + 7 = 14.

11.2. Apzīmējam $a_n = \left| ... \right| \left| x - 1 \right| - 10 \left| -10^2 \right| - ... - 10^{n-1} \left| -10^n \right|$. Tad $a_{2007} = \mp 10^{2008}$. No $a_{2007} = \left| a_{2006} \right| - 10^{2007}$ seko, ka $\left| a_{2006} \right| = \mp 10^{2008} + 10^{2007}$. Tā kā $-10^{2008} + 10^{2007} < 0$, tad $\left| a_{2006} \right| = 10^{2008} + 10^{2007}$ un

Īsi atrisinājumi

Latvijas 58. matemātikas olimpiāde

 $a_{2006} = \mp (10^{2007} + 10^{2008})$. Līdzīgi turpinot (precīzs pierādījums ar indukciju), iegūstam, ka $|x-1| = 10^1 + 10^2 + ... + 10^{2008}$, no kurienes $x_1 = \underbrace{11...1}_{2009}$ un $x_2 = -\underbrace{11...1}_{2007}$ 09.

11.3. Kvadrāts nebeidzas ar "2", tātad n² beidzas ar "1". Ja priekšpēdējais cipars būtu 1, tad $n^2 = ...11 = ...00 + 11$ dotu atlikumu 3, dalot ar 4; tā nevar būt, jo $(2k)^2 = 4 \cdot k^2$ un $(2k+1)^2 = 4 \cdot (k^2+k) + 1$. Tāpēc priekšpēdējais cipars ir 2. Ja $n^2 = \underbrace{11...121}_{nep.skaits}$, tad n^2 dalās ar 11

saskaņā ar dalāmības pazīmi. Ja $n^2 = \underbrace{11...1}_{para skaits} 21$, tad n^2 , dalot ar 11, dod tādu pašu atlikumu kā

1-2+(1-1+1-1+...+1-1), t.i., atlikumu 10. Bet tas nevar būt:

$$(11k)^2 = 121k^2$$
 atl. 0

$$(11k \mp 1)^2 = 121k^2 \mp 22k + 1$$
 atl. 1

$$(11k \mp 2)^2 = 121k^2 \mp 44k + 4$$
 atl. 4

$$(11k \mp 3)^2 = 121k^2 \mp 66k + 9$$
 atl. 9

$$(11k \mp 4)^2 = 121k^2 \mp 88k + 16$$
 atl. 5

$$(11k \mp 5)^2 = 121k^2 \mp 110k + 25$$
 atl. 3.

11.4. Novelkam vēl perpendikulus CE un MF. Tad M ir taisnleņķa trapeces DBEC sānu malas DC viduspunkts, tātad atrodas uz viduslīnijas; tāpēc EF=FB. Tātad ΔΕΜΒ ir vienādsānu (augstums sakrīt ar mediānu), tātad ME=MB. Atliek ievērot, ka "simetrijas pēc" ME=MA.

11.5. Pieņemsim, ka i-tā krāsa sastopama x_i rindiņās un y_i kolonnās. Tad $x_i \cdot y_i \ge 10$. Tāpēc $x_i + y_i \ge 2\sqrt{x_i y_i} \ge 2\sqrt{10} \ge 2 \cdot 3,... > 6$, tātad $x_i + y_i \ge 7$. Tāpēc $(x_1 + y_1) + (x_2 + y_2) + ... + (x_{10} + y_{10}) \ge 70$. Ja katra rinda un katra kolonna saturētu ne vairāk par 3 krāsām, tad būtu ne vairāk kā

3 · (10 + 10) = 60 "gadījumu", kad kāda krāsa sastopama kādā rindā vai kolonnā − pretruna.

12.1. Pieņemsim, ka tādi skaitļi eksistē.

Ievērosim, ka $\frac{1}{a} = -\left(\frac{1}{b} + \frac{1}{c}\right) = -\frac{b+c}{bc} = -\frac{a}{bc} = \frac{a}{bc}$, tātad $a^2 = bc$. Tātad bc > 0, tātad b un c ir vai nu abi pozitīvi, vai abi negatīvi. Tas pats attiecas uz a un b. Tātad a, b, c vai nu visi pozitīvi, vai visi negatīvi. Bet tad nevar būt a + b + c = 0 - pretruna.

- **12.2.** Visu 4 krustpunktu koordinātes (x, y) apmierina **gan** nosacījumu $x = y^2 + y + b$, **gan** $y = x^2 + x + a$, tātad arī nosacījumu $x + y = (x^2 + y^2) + (x + y) + (a + b)$ jeb $x^2 + y^2 = -(a + b)$. Tātad visi 4 punkti atrodas attālumā $\sqrt{-(a + b)}$ no koordinātu sākumpunkta, kas tātad ir meklētās riņķa līnijas centrs.
- 12.3. Risinām vienādojumu $x^2 + (x+1)^2 = (x+a)^2$, $a \ge 2$, $a \in N$.

Tas pārveidojas par $x^2 + (2-2a)x + (1-a^2) = 0$, no kurienes $x = a - 1 + \sqrt{2a(a-1)} > 2(a-1)$.

Tā kā jābūt $x \le 200$, tad $2 \le a \le 101$; bez tam 2a(a-1) jābūt vesela skaitļa kvadrātam. Šķirojam divus gadījumus:

http://nms.lu.lv 3 2008.gada 19.marts

- 1) a nepāra skaitlis. Tad skaitļiem a un 2(a-1) nav kopīgu pirmreizinātāju (jo a un a-1 **nekad** nav kopīgu pirmreizinātāju); tāpēc tiem abiem jābūt kvadrātiem. Kā kandidāti der tikai a=9; 25; 49; 81. Pārbaude rāda, ka der tikai a=9; tad x=20 un y=29.
- 2) a pāra skaitlis. Tad skaitļiem 2a un a –1 nav kopīgu pirmreizinātāju; tāpēc gan 2a, gan a –1 jābūt kvadrātam. Kā kandidāti der tikai a=2; 8; 18; 32; 50; 72; 98. Pārbaude rāda, ka der tikai a = 2 un a = 50. Iegūstam \mathbf{x} =3; \mathbf{y} =4 un \mathbf{x} =119; \mathbf{y} =169.

12.4.

Punkti O un H atrodas $\triangle ABC$ iekšpusē, jo tas ir šaurleņķu. Ja N ir AB viduspunkts, tad $ON \perp AB$. Saskaņā ar doto $AE = \frac{1}{2}AB = AN$. No ievilkta un centra leņķa īpašībām $\angle NOA = \angle BCA$, tāpēc $\angle NAO = 90^{\circ} - \angle BCA$; arī $\angle EAH = 90^{\circ} - \angle BCA$, tātad $\angle NAO = \angle EAH$. Tāpēc $\triangle AON = \triangle AHE$ (lml). Tātad AO = AH un $\triangle OAH$ ir vienādsānu; tātad $\angle AOH = \angle AHO$. No tā un no $\angle NOA = \angle EHA$ seko $\angle PON = \angle QHE$. Tāpēc $\triangle OPN = \triangle HQE$ (lml); tāpēc arī OP = HQ, k.b.j.

12.5. Jā, Andris to var panākt. Vispirms parādīsim kā Andris var panākt, lai figūriņa pārbīdītos par attālumu $\frac{1}{2^{12}}$ pa labi, sākot ar sākotnējo pozīciju. Vispirms Andris nosauc skaitli $\frac{1}{2^{12}}$. Ja Maija bīda figūriņu pa labi, mērķis sasniegts. Ja Maija bīda figūriņu pa kreisi, Andris nosauc skaitli $\frac{1}{2^{11}}$. Ja Maija bīda figūriņu pa labi, mērķis sasniegts, jo $\left(-\frac{1}{2^{12}}\right) + \frac{1}{2^{11}} = \frac{1}{2^{12}}$. Ja Maija bīda figūriņu pa kreisi, Andris nosauc skaitli $\frac{1}{2^{10}}$, utt. Ja Maija n reizes bīdījusi figūriņu pa kreisi $(n \le 11)$, bet $(n+1) - \bar{a}$ reizē bīda to pa labi, tad kopējā pārbīde pa labi ir $\left(-\frac{1}{2^{12}}\right) + \left(-\frac{1}{2^{11}}\right) + ... \left(-\frac{1}{2^{13-n}}\right) + \frac{1}{2^{12-n}} = \frac{1}{2^{12}}$. Ja Andris sasniedz šo mērķi vairāk nekā $2008 \cdot 2^{12}$ reizes, figūriņa pārbīdījusies par attālumu vairāk nekā 2008 pa labi.