General Notes

CS, ML and Stats Patrick Daly

1. Computer Science

- (a) Algorithms
- (b) Data Structures
- (c) Linux

2. Machine Learning (combine with stats?)

(a) Supervised

- i. Ordinary Least Squares
- ii. Logistic Regression
- iii. Linear Discriminant Analysis
- iv. Support Vector Machines
- v. K-Nearest Neighbors
- vi. Gaussian Process
- vii. Decision Trees
- viii. Random Forest
- ix. Naive Bayes
- x. Deep Learning
 - A. Deep Feedforward Networks
 - B. Convolutional Networks
 - C. Recurrent Networks
 - D. Long Short-Term Memory (LSTM)
 - E. Autoencoders

(b) Unsupervised

- i. Gaussian Mixture Models
- ii. K-Means
- iii. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
- iv. Spectral Clustering
- v. Hierarchical Clustering
- vi. Factor Analysis
- vii. Independent Component Analysis (ICA)
- viii. Principal Component Analysis
- ix. Non-Negative Matrix Factorization (NMF)

- x. Latent Dirichlet Allocation (LDA)
- xi. PCA
- xii. Outlier Dectection?

3. Linear Algebra

- (a) Norms
 - i. Euclidean or Frobenius (L^2)
 - ii. Manhatten (L^1)
 - iii. Infinity (L^{∞})
 - iv. Nuclear (L^0)
 - v. Spectral
- (b) Special Matrices & Vectors
 - i. Diagonal
 - ii. Symmetric
 - iii. Positive Definite
 - iv. Positive Semi-Definite
 - v. Negative Definite
 - vi. Negative Semi-Definite
- (c) Eigendecomposition
- (d) Singular Value Decomposition (SVD)
- (e) Principal Component Analysis (PCA)
- (f) Independent Component Analysis (ICA)
- (g) Canonical Component Analysis (CCA)
- (h) Factor Analysis

4. Statistics

- (a) Probability Theory
- (b) Distributions
 - i. Discrete
 - A. Binomial
 - B. Geometric
 - C. Uniform
 - D. Exponential

- E. Poisson
- ii. Continuous
 - A. Normal
 - B. Log-Normal
 - C. Laplace
 - D. Gamma
- (c) Combinatorics