▼ 5. Домашнее задание по теме Pandas – продвинутый

Формулировка задания:

Необходимо загрузить и обработать предложенный датасет (Титаник), провести аналитику данных с помощью фреймворка Python Pandas.

Планируемый результат:

- 1. Датасет загружен в Colab
- 2. В датасете отсутствуют пустые ячейки
- 3. Представлена простая аналитика по датасету

Описания плана работы:

- 1. Создать новый ноутбук в Colab
- 2. Сохранить датасет в Google диске и загрузить в ноутбук Colab https://www.kaggle.com/datasets/yasserh/titanic-dataset/code

*Загрузить датасет по ссылке из интернета (репозитория Kaggle)

3. Перечень и описание столбцов:

```
Поле
          Описание
Survived | выжил (1-да, 0- нет)
Pclass
          Класс круиза
          ФИО
Name
Sex
         Пол
          Возраст
Age
         Число братьев, сестер или супругов на борту у человека
SibSp
Parch
          Количество родителей или детей, с которыми путешествовал каждый пассажир
Ticket
          Номер билета
Fare
          Цена билета
```

Cabin | Номер каюты Embarked | Порт посадки

- 4. Определить количество пустых ячеек
- 5. *Заполнить пустые ячейки используя любую логику замещения данных
- 6. Если пункт 5 не выполнен, то удалить строки имеющие пустые ячейки.
- 7. По каждому признаку произвести аналитику:
 - 1. Количество уникальных значений
 - 2. Минимальное и максимальное значение
- 8. *C помощью аналитики определить влияние всех признаков на признак Survived (выживание).

Пример: Parch и SibSP отрицательно влияли на выживание при крушении, так как чем больше эти параметры тем ниже процент выживания (одиночке выжить проще).

Результатом домашнего задания будет Таблица в Colab с комментариями в качестве ответов на пункты ДЗ.

Перечень инструментов, необходимых для реализации деятельности:

- 1) Google Colab https://colab.research.google.com/
- 2) *PyCharm

```
# подключение библиотек
import pandas as pd
import seaborn as sns

#чтоб не подключать диск с датасетом, загружаю по ссылке
import gdown
shareUrl = 'https://drive.google.com/file/d/1HtY8F6wKSBVn8CKS0OGmVDsynlAwhI7f/view?usp=sharing'
token = shareUrl[32:shareUrl.find('/view?usp=sharing')]
url = f'https://drive.google.com/uc?export=download&id={token}'
gdown.download(url, 'Titanic-Dataset.csv', quiet=False)
```

Downloading...
загрузка данных
df = pd.read_csv('/content/Titanic-Dataset.csv')
df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

```
# 4. Определить количество пустых ячеек print(df.isna().sum()) print(f'Total: {df.isna().sum().sum()}')
```

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtyne: int64	

dtype: int64
Total: 866

посмотрим информацию по таблице print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

```
Non-Null Count Dtype
          Column
          PassengerId
                       891 non-null
                                        int64
          Survived
                       891 non-null
                                        int64
      1
          Pclass
                       891 non-null
                                        int64
      3
                       891 non-null
                                       object
          Name
                                       object
      4
          Sex
                       891 non-null
          Age
                       714 non-null
                                        float64
      6
          SibSp
                       891 non-null
                                        int64
          Parch
                       891 non-null
                                        int64
                       891 non-null
                                       object
          Ticket
      9
          Fare
                       891 non-null
                                       float64
                       204 non-null
                                        object
      10
         Cabin
          Embarked
                       889 non-null
                                        object
      11
     dtypes: float64(2), int64(5), object(5)
     memory usage: 83.7+ KB
     None
# 5. *Заполнить пустые ячейки используя любую логику замещения данных
# 6. Если пункт 5 не выполнен, то удалить строки имеющие пустые ячейки.
# для возраста возьмем среднее значение
# для порта первое значение
# каюту удалим т.к. большая часть значений пустая
df = df.fillna({'Age' : df.Age.mean()})
df = df.drop(labels='Cabin', axis=1)
df = df.fillna(method='ffill')
print(df.isna().sum())
     PassengerId
                    0
     Survived
                    0
     Pclass
                    0
                    0
     Name
     Sex
                    0
     Age
     SibSp
     Parch
                    0
     Ticket
     Fare
                    0
     Embarked
     dtype: int64
```

[#] добавлю новое поле для удобства поиска корреляции

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0	370376	7.7500

891 rows × 12 columns

#7. По каждому признаку произвести аналитику:

```
# 1. Количество уникальных значений
```

```
# 2. Минимальное и максимальное значение
category_cols = df.select_dtypes(include=['object'])
category_cols_names = category_cols.columns.tolist()
print(f'категориальные столбцы: {category_cols_names}\n')
for col in category_cols_names:
    print(f'информация о столбце {col}:')
    print(f'количество уникальных значений: {category_cols[col].nunique()}')
    print(f'масимальное значение: {category_cols[col].max()}')
    print(f'минимальное значение: {category_cols[col].min()}')
```

небольшая неоднозначность по заданию: "По каждому признаку" если признак это категориальный параметр то max и min для этого малоинформативен # поэтому дополнительно выведу информацию по числовым значениям

```
category int = df.select dtypes(include=['int64','float64']) #выбрали столбцы с интервальные переменными
category int names = category int.columns.tolist()
print(f'\n\nинтервальные столбцы: {category int names}\n')
for col in category int names:
    print(f'информация о столбце {col}:')
    print(f'количество уникальных значений: {category int[col].nunique()}')
    print(f'makcumym: {category int[col].max()}')
    print(f'минимум: {category int[col].min()}')
     категориальные столбцы: ['Name', 'Sex', 'Ticket', 'Embarked']
     информация о столбце Name:
     количество уникальных значений: 891
     масимальное значение: van Melkebeke, Mr. Philemon
     минимальное значение: Abbing, Mr. Anthony
     информация о столбце Sex:
     количество уникальных значений: 2
     масимальное значение: male
     минимальное значение: female
     информация о столбце Ticket:
     количество уникальных значений: 681
     масимальное значение: WE/P 5735
     минимальное значение: 110152
     информация о столбце Embarked:
     количество уникальных значений: 3
     масимальное значение: S
     минимальное значение: С
     интервальные столбцы: ['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'is male']
     информация о столбце PassengerId:
     количество уникальных значений: 891
     максимум: 891
     минимум: 1
     информация о столбце Survived:
     количество уникальных значений: 2
     максимум: 1
     минимум: 0
     информация о столбце Pclass:
     количество уникальных значений: 3
     максимум: 3
     минимум: 1
```

информация о столбце Age: количество уникальных значений: 89 максимум: 80.0 минимум: 0.42 информация о столбце SibSp: количество уникальных значений: 7 максимум: 8 минимум: 0 информация о столбце Parch: количество уникальных значений: 7 максимум: 6 минимум: 0 информация о столбце Fare: количество уникальных значений: 248 максимум: 512.3292 минимум: 0.0 информация о столбце is_male: количество уникальных значений: 2 максимум: 1 минимум: 0 df.describe(include = 'all')

```
# 8. *C помощью аналитики определить влияние всех признаков на признак Survived (выживание). # потстроим матрицу корреляций
```

потстроим матрицу корреляции
matrix_corr = df.corr();

вывод корреляционной матрицы sns.heatmap(matrix_corr, annot=True, cmap='coolwarm');

<ipython-input-101-4366054f6d3c>:3: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
matrix_corr = df.corr();


```
print(df.groupby(['Survived', 'Sex']).size().transform(lambda x: x/x.sum()))
     При общем отношении ж-м
     Sex
     female
               0.352413
     male
               0.647587
     dtype: float64
     Среди выживших явно преобладает количество женщин
     Survived Sex
               female
                         0.090909
               male
                         0.525253
     1
               female
                         0.261504
               male
                         0.122334
     dtype: float64
print('Схожая ситуация наблюдается по соотношениям выживших пассажиров более дорогого класса')
print(df.groupby(['Pclass']).size().transform(lambda x: x/x.sum()))
print(df.groupby(['Survived', 'Pclass']).size().transform(lambda x: x/x.sum()))
     Схожая ситуация наблюдается по соотношениям выживших пассажиров более дорогого класса
     Pclass
          0.242424
          0.206510
          0.551066
     dtype: float64
     Survived Pclass
               1
                         0.089787
                         0.108866
                         0.417508
     1
                         0.152637
                         0.097643
                         0.133558
     dtype: float64
print(df.groupby(['Parch']).size())
print(df.groupby(['Survived', 'Parch']).size())
print(df.groupby(['Survived', 'Parch']).size() / df.groupby(['Parch']).size())
print('Количество выживших одиночек - по отношению к изначальному их числу, наоборт показывает меньший процент выживания по сравнению с людей
     Parch
          678
          118
```

```
2
      80
3
       5
4
       4
5
       5
       1
6
dtype: int64
Survived Parch
0
          0
                    445
                     53
          1
                     40
                      2
                      4
                      1
                    233
1
                     65
                     40
                      3
dtype: int64
Survived Parch
                    0.656342
          0
                    0.449153
                    0.500000
                    0.400000
                   1.000000
                    0.800000
                   1.000000
1
                    0.343658
                    0.550847
                    0.500000
                    0.600000
                    0.200000
dtype: float64
```

Количество выживших одиночек - по отношению к изначальному их числу, наоборт показывает меньший процент выживания по сравнению с людей с

```
print(df.groupby(['SibSp']).size())
print(df.groupby(['Survived', 'SibSp']).size())
print(df.groupby(['Survived', 'SibSp']).size() / df.groupby(['SibSp']).size())
print('Аналогичная ситуация и по соотношениям одиночек и семейных')
```

```
0
     608
1
     209
2
      28
3
      16
4
      18
5
       5
       7
8
dtype: int64
Survived SibSp
                   398
                    97
          1
          2
                    15
                    12
          4
                    15
          5
                     5
                     7
          0
                   210
1
          1
                   112
          2
                    13
          3
                     4
dtype: int64
Survived SibSp
                   0.654605
          0
                   0.464115
          1
          2
                   0.535714
                   0.750000
          4
                   0.833333
          5
                   1.000000
                   1.000000
          0
1
                   0.345395
                   0.535885
          1
          2
                   0.464286
                   0.250000
          3
          4
                   0.166667
dtype: float64
Аналогичная ситуация и по соотношениям одиночек и семейных
```

#для удобства анализа возраста добавим возрастную группу $df['age_group'] = df['Age'].apply(lambda x: 0 if x < 7 else 1 if x <= 18 else 2 if x < 55 else 3) <math>df$

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Er
0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0	373450	8.0500	
886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0	211536	13.0000	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0	112053	30.0000	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2	W./C. 6607	23.4500	
889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0	111369	30.0000	

```
print(df.groupby(['age_group']).size())
print(df.groupby(['Survived', 'age_group']).size())
print(df.groupby(['Survived', 'age_group']).size() / df.groupby(['age_group']).size())
print('По резултату видно что в первую очередь спасали детей и подростков')
```

dtype: int64
Survived age_group

0	0	0.297872
	1	0.597826
	2	0.635211
	3	0.690476
1	0	0.702128
	1	0.402174
	2	0.364789
	3	0.309524

dtype: float64

По резултату видно что в первую очередь спасали детей и подростков

Поле	Результат анализа на выживание
Pclass	Класс круиза влияет на резальтат - чем выше класс тем больше шансов выжить
Sex	Пол однозначно влияет на выживание - в первую очередь спасали женщин
Age	Возраст повлиял на результаты выживания - в первую очередь спасали детей и подростков
SibSp	По этому параметру верно обратное утверждение - у одиночки меньше шансов выжить
Parch	По этому параметру верно обратное утверждение - у одиночки меньше шансов выжить

• ×

✓ 0 сек. выполнено в 19:07