depois para 2 atm

Ex 2: Um gás de chaminé a T_g=1000K e P_T=1atm, com 10% de vapor H₂O e 20% de CO₂ por volume, flui sobre um banco de tubos disposto segundo um arranjo triangular equilátero, tendo os tubos D=7,6cm e espaçamento S=2D. Os tubos são mantidos a uma T_w=500K uniforme e são considerados negros. Calcule o intercâmbio líquido de calor radiante entre a mistura gasosa e os tubos, por m² da superfície da parede dos tubos.

Hipóteses:

Regime permanente Propriedades constantes Troca térmica somente radiativa Sem geração de energia

a) Para 1 atm:

101.40	V=5,67.108 Whm 2 K1
201. CO2	8, 99 BES - 18 - 48
D=7,6.10 ² m	· Rogime Permanente, propriedades consta
S-20	tes, troca términa somente radiativa
	and the gath mortalist size
· Comprimento equivalente L +	tabela 13.1
L=3,0(5-0)	
L = 3,0(20-D) = 3D =	1
- 10(20-D) - 3D=	3,0.7,6.10 m
T= 2'0(50-D) = 2D=	3,0.7,6.10 m
	3,0.7,6.10 m
L=Q298m	3,0.7,6.10 m
L=Q228m	Also a sett cook on also
L=Q298m	•(co ₂)
L=0,228m -Agual -Prosão: Pw=0,1. Pe=01.1atm Pw=0,1atm	Pressoo Pc=Q2.Pe= Q2.latin Pc=Q2atm
L=0,228m -Agual -Pressão: Pw=0,1. Pe=0,1. Jatm Pw=0,1atm	Pressoo Pc=Q2.Pe= Q2.latin Pc=Q2atm
L=0,228m -Agual -Pressão: Pw=0,1. Pe=0,1. Jatm Pw=0,1atm	0[CO2] -Pressoo Pc=Q2.Pe= Q2.latm Pc=Q2atm Pc=Q2atm Pc.L=Q2atm 0,238m → Pc.L=Q0456 matm
L=Q228m -Agual -Pressão: Pw=Q1. Pe=Q1. 1atm Pw=Q1atm Pw-Q1atm Pw.L=Q1atm, Q208 m ⇒ PwL=Q0008 n	Pressoo Pc=Q2.Pe= Q2.latin Pc=Q2atm
L=0,228m -Agual -Pressão: Pw=0,1. Pe=0,1. Jatm Pw=0,1atm	0[CO2] -Pressoo Pc=Q2.Pe= Q2.latm Pc=Q2atm Pc=Q2atm Pc.L=Q2atm 0,238m → Pc.L=Q0456 matm

Figura 13.5a usada para achar ϵ_g (1000K) e α_g (500K) da água

Figura 13.4a usada para achar ϵ_g (1000K) e α_g (500K) da CO₂

Figuras 13.6 usadas para encontrar $\Delta \epsilon$ e $\Delta \alpha$:

