Algorithms basics

What is an Algorithm?

An **algorithm** is a finite sequence of well-defined instructions that can be used to solve a computational problem. It provides a step-by-step procedure that convert an input into a desired output.

Algorithms typically follow a logical structure:

- •Input: The algorithm receives input data.
- •Processing: The algorithm performs a series of operations on the input data.
- •Output: The algorithm produces the desired output.

What is the Need for Algorithms?

Algorithms are essential for solving complex computational problems efficiently and effectively. They provide a systematic approach to:

- Solving problems: Algorithms break down problems into smaller, manageable steps.
- Optimizing solutions: Algorithms find the best or near-optimal solutions to problems.
- Automating tasks: Algorithms can automate repetitive or complex tasks, saving time and effort.

Algorithms characteristics

- > Inputs and output
 - What does algorithm accept, and what are the result?
- > Algorithm complexity
 - > Space complexity How much memory does it require?
 - ➤ Time complexity How much time does it require to complete?

Big-O notation

Big O notation is a way to characterize the time or resources needed to solve a computing problem. It's particularly useful in comparing various computing algorithms and approaches under consideration, <u>such as those used in Machine Learning</u>.

Below is a table summarizing Big O functions. The four most commonly referenced and important to remember are:

- •O(1) Constant access time such as the use of a hash table.
- •O(log n) Logarithmic access time such as a binary search of a sorted table.
- •O(n) Linear access time such as the search of an unsorted list.
- •O(n^2) Nested iterations.
- •O(n log(n)) Multiple of log(n) access time such as using Quicksort or Merge sort.

Big-O notation table

Туре	Examples	Description
Constant	Hash table access	Remains constant regardless of the size of the data set
Logarithmic	Binary search of a sorted table	Increases by a constant. If n doubles, the time to perform increases by a constant, smaller than n amount
Sublinear	Search using parallel processing	Performs at less than linear and more than logarithmic levels
Linear	Finding an item in an unsorted list	Increases in proportion to n. If n doubles, the time to perform doubles
n log(n)	Quicksort, Merge Sort	Increases at a multiple of a constant
Quadratic	Bubble sort	Increases in proportion to the product of n*n
Exponential	Travelling salesman problem solved using dynamic programming	Increases based on the exponent n of a constant c
Factorial	Travelling salesman problem solved using brute force	Increases in proportion to the product of all numbers included (e.g., 1*2*3*4)
	Constant Logarithmic Sublinear Linear n log(n) Quadratic Exponential	Constant Hash table access Logarithmic Binary search of a sorted table Sublinear Search using parallel processing Linear Finding an item in an unsorted list n log(n) Quicksort, Merge Sort Quadratic Bubble sort Exponential Travelling salesman problem solved using dynamic programming Factorial Travelling salesman problem solved using