Ex5.1 The Dual of Locally Free Module Sheaf.

 (X, \mathcal{O}_X) を ringed space とし、 \mathcal{E} を有限階数の locally free \mathcal{O}_X -module とする. また、 \mathcal{E} の双対を $\check{\mathcal{E}} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$ で定める. ($\mathcal{H}om$ は Ex1.15 で定義されている.) ($\check{\mathcal{E}}$) も同様である.

補題 Ex5.1.1

 $\mathcal{F} :: \mathcal{O}_X$ -module, $x \in X$ とする. このとき, x に対して n > 0 が存在して

$$(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}))_x \cong (\mathcal{F}_x)^{\oplus n} \cong \operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{E}_x,\mathcal{F}_x).$$

(証明). Ex5.7 の内容は使う. U :: open in X を十分小さく取れば $\mathcal{E}|_U$ は free module になる. したがって以下が成り立つ.

$$(\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F}))(U)$$

$$= \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{E}|_U, \mathcal{F}|_U)$$

$$\cong \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{O}_U^{\oplus n}, \mathcal{F}|_U)$$

$$\cong \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{O}_U, \mathcal{F}|_U)^{\oplus n}$$

$$\cong (\mathcal{F}|_U)^{\oplus n}$$

$$= \varinjlim_{W \supseteq U} (\mathcal{F}(W))^{\oplus n}$$

最後で \bigoplus と \varliminf が可換であることを用いた. このことから以下を得る.

$$\varinjlim_{U\ni x}\varinjlim_{W\supseteq U}(\mathcal{F}(W))^{\oplus n}=\varinjlim_{W\ni x}(\mathcal{F}(W))^{\oplus n}=(\mathcal{F}_x)^{\oplus n}.$$

あとは $\mathcal{O}_{X,x}$ -module の同型から最後の同型を得る.

$$(\mathcal{F}_x)^{\oplus n} \cong \mathrm{Hom}_{\mathcal{O}_{X,x}}((\mathcal{O}_{X,x})^{\oplus n}, \mathcal{F}_x) \cong \mathrm{Hom}_{\mathcal{O}_{X,x}}(\mathcal{E}_x, \mathcal{F}_x).$$

 \mathcal{O}_X -homomorphism を構成し、それが stalk で module の射として isomorphism になっていることを確認する.

(a) $(\check{\mathcal{E}}) \cong \mathcal{E}$.

写像 $\Phi: \mathcal{E} \to (\check{\mathcal{E}})$ を以下のように定める.

$$(\Phi_U(s))_V(\phi) = \phi(s|_V)$$
 where $U, V ::$ open in $X, V \subseteq U, s \in \mathcal{E}(U), \phi \in \operatorname{Hom}_{\mathcal{O}_V}(\mathcal{E}|_V, \mathcal{O}_V)$.

これが \mathcal{O}_X -homomorphism であることは明らか.

- (b) For any \mathcal{O}_X -module \mathcal{F} , $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F})\cong \check{\mathcal{E}}\otimes_{\mathcal{O}_X}\mathcal{F}$.
- (c) For any \mathcal{O}_X -module \mathcal{F}, \mathcal{G} , $\mathrm{Hom}_{\mathcal{O}_X}(\mathcal{E} \otimes \mathcal{F}, \mathcal{G}) \cong \mathrm{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathscr{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G}))$
- (d) Projection Formula.
- Ex5.2 Module Sheaves over the Spec of a valuation ring.
- Ex5.3 $\tilde{\Box}$ and Γ are Adjoint Pair.
- Ex5.4 The Original Definition of (Quasi-)Coherent Sheaves.
- Ex5.5 Is $f_*\mathcal{F}$ Coherent?
- Ex5.6 Support.
- Ex5.7 The Stalks of Locally Free Sheaves are Free.
- Ex5.8 $\phi(x) = \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_x} k(x)$.
- Ex5.9 Quasi-Finitely Generated Graded S-Modules.
- Ex5.10 Saturated Ideals and Closed Sub-Schemes.
- Ex5.11 The Segre Embedding.
- Ex5.12 Very Ample Invertible Sheaves.
- Ex5.13 The *d*-uple Embedding.
- Ex5.14 The *d*-uple Embedding is Projectively Normal.

これは ch I, Ex3.17b で私が考察したことの Scheme における一般化である.

- Ex5.15 Extension of Coherent Sheaves.
- Ex5.16 Tensor Operations on Sheaves.
- Ex5.17 Affine Morphisms.
- Ex5.18 Vector Bundles.