Consumer Debt Moratoria

Bulent Guler Yasin Kürşat Önder Indiana University Ghent University

Mauricio Villamizar
Central Bank of Colombia

Jose Villegas
Ghent University

lune 29th 2024

2024 Annual Meeting Society for Economic Dynamics

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'ar
 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- · One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions

Motivation, why is it important?

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an 2:280
- · A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Moratorium policies (Covid-19)

• Moratorium policies gained prominence in the wake of the 2020 pandemic.

Moratorium policies (Covid-19)

 Debt moratoria remains largely unexplored in both empirical and theoretical contexts.

What do we do? Related Literature

TWO MAIN CONTRIBUTIONS:

- 1. (Empirical) Estimate the causal impact of mortgage moratorium on households.
 - · We use administrative credit registry data from Colombia.
 - Exploit a eligibility discontinuity for households to receive a moratorium in mortgages during 2020.
 - Estimate the local causal effect on consumption, delinquency behavior and debt accumulation for stressed households.
- 2. (Quantitative) Study the aggregate implications of a debt moratorium policy
 - · Use an heterogeneous agent life-cycle incomplete market model (Arslan, Guler, Kuruscu (2023)).
 - In our model PE response of consumption is consistent the estimates for the local effect on consumption.
 - We use the model for long-run analysis and policy counterfactual comparisons.

Preview of Main Findings

- 1. Moratoria improved economic conditions stressed households
 - ↑ Consumption ⇒ credit card purchases (also car expenditures, and household investment)
 - → Delinquency probability ⇒ existent mortgages, credit card debt, car loan debt.
- 2. Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Welfare improving: lower decline aggregate consumption. Generates positive effects for financial system: banks' profits and net-worth increase.
 - Debt forgiveness generate largest welfare gains but really detrimental for financial system in long-run.
 - Payment suspension with interest rates are not accrued is welfare improving and most beneficial for banks.

Empirical Strategy

Empirical Strategy

The Colombian Case

Data

- Colombian credit registry from Q1-2019 to Q4-2020.
 - · Quarterly loan level data.
 - Information on loans for all bank-individual pairs: issuance date, outstanding balance, interest rate, maturity, delinquency days, credit rating.
 - We can identify mortgages treated by moratoria in 2020.
- We employ 172,841 existent-mortgages (i.e. originated by 2019Q4) at the end of 2020:Q1
 - ⇒ 26 private banks & 172,020 individuals.
- Match treatment information to all household loans during 2020Q2-2021Q4:
 - 902,977 credit cards, and 18,306 car loans.
 - 8,846 new mortgages, and 4,407 new can loans.

The Debt Moratorium Policy

- Enacted in March 2020 ⇒ mitigate the effects of the COVID-19 Pandemic
- Treatment
 - 1. Duration \leq 120 days
 - 2. Grace periods on principal and interest payments
 - 3. Interest rate accrues \Longrightarrow we will have a policy suggestion on this
 - 4. Delinquency days reset
 - 5. Credit rating remain frozen
- Eligibility: all loans with \leq 60 days past due as of 29/02/2020
 - First covid case: March 6th NO ANTICIPATION!!!
- \cdot Existent Mortgage \Longrightarrow Eligible + apply for Debt Moratorium Policy \Longrightarrow Treated

Empirical Strategy

Identification

• Household "i" existent mortgage with bank "j" (i.e. originated by 2019Q4)

$$\implies$$
 run_{ij} = 60 days – delinquency days_{ij}

Stressed households ⇒ at least one day of delinquency on existent mortgage

• Eligible and Ineligible households within 5 days of the threshold.

Identification (NElig-Elig.Distrib) (Pre-Treat.Distrib.) (manipulation

• IDENTIFICATION ⇒ compare barely eligible and non-eligible households
 ⇒ Non-parametric Local Polynomial Approach (Calonico et al. (2014))

Empirical Strategy

RD Estimates: Household Consumption

• We proxy non-durable consumption by CC purchases.

CC purchases_{it} = Δ CC debt_{it} + CC repayment_{it}

· Upward jump CC purchases when moving along the eligibility cutoff

- Upward jump CC purchases when moving along the eligibility cutoff
 - ⇒ Explained by Eligible-Treated households

Moratoria and CC Expenditures ET (ENT) NE (Treat-plots) (Treat-RD)

• Effect of moratoria on CC at end of the quarter of treatment (2020-Q2).

	CC Expe	enditure	Mortgage Payment	
	(log)	(USD)	(USD)	
Fuzzy-RD	2.10**	691.6*	-893.6***	
	(1.06) (376.3)		(78.2)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	
<u> </u>			<u> </u>	

Moratoria and CC Expenditures ET Ent NE Treat-plots Treat-RD

 Households receiving moratoria increase CC expenditure by 2.10 % relative to non-treated ones.

	CC Expe	enditure	Mortgage Payment	
	(log)	(USD)	(USD)	
Fuzzy-RD	2.10** 691.6*		-893.6***	
	(1.06) (376.3)		(78.2)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

Moratoria and CC Expenditures (ET (ENT) NE (Treat-plots) (Treat-RD)

- Better interpret magnitude of the effect, we estimate "MPC out of the moratoria"
 - Increase CC expenditure: 692 USD
 - Drop mortgage payments: 894 USD

	CC Expe	enditure	Mortgage Payment		
	(log)	(USD)	(USD)		
Fuzzy-RD	RD 2.10** 691. 6 (1.06) (376.		-893.6***		
			(78.2)		
		First Stage			
D_{ij}	0.27***	0.27***	0.18***		
	(0.041)	(0.035)	(0.010)		
Observations	16,504	16,504	149,867		
Bandwidth (in days)	19.2	28.5	22.3		

Moratoria and CC Expenditures ET Ent NE Treat-plots Treat-RD

• Better interpret magnitude of the effect, we estimate "MPC out of the moratoria" Semi-elasticity from moratoria: $0.77 = \frac{692}{894}$

Elasticity from moratoria: $0.12 = 0.77 \times 0.16$

	CC Expe	nditure	Mortgage Payment		
	(log)	(USD)	(USD)		
Fuzzy-RD	2.10**	691.6*	-893.6***		
	(1.06)	1.06) (376.3) (78.2)			
	First Stage				
D_{ij}	0.27***	0.27***	0.18***		
	(0.041)	(0.035)	(0.010)		
Observations	16,504	16,504	149,867		
Bandwidth (in days)	19.2	28.5	22.3		

Dynamic Estimates: CC Expenditure (Manip.) Donut (Cutoffs) (Pre-Mortgages) (Pre-CarLoans) (Pre-CC.) (Participation)

 Dynamic effect ⇒ RD estimate cross-section CC purchases at each quarter before/after receiving moratoria.

	T-2	Т	T+1	T+2	T+3		
Fuzzy-RD	-1.07	2.10**	4.24*	0.66	-0.49		
	(1.90)	(1.06)	(2.47)	(1.66)	(2.63)		
	First Stage						
D_{ij}	0.26***	0.27***	0.29***	0.25***	0.28***		
	(0.029)	(0.041)	(0.042)	(0.037)	(0.033)		
All Observations	17,344	16,504	17,954	19,696	20,630		
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9		

- \cdot T \Longrightarrow contemporaneous effect.
- $T + \tau \implies$ effect τ quarters after receiving debt moratoria.
- $T + 2 \Longrightarrow pre-policy differences$.

	T-2	Т	T+1	T+2	T+3
Fuzzy-RD	-1.07	2.10**	4.24*	0.66	-0.49
	(1.90)	(1.06)	(2.47)	(1.66)	(2.63)
		First	Stage		
D_{ij}	0.26***	0.27***	0.29***	0.25***	0.28***
	(0.029)	(0.041)	(0.042)	(0.037)	(0.033)
All Observations	17,344	16,504	17,954	19,696	20,630
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9

• No differences in CC purchases before policy implementation.

	T-2	Т	T+1	T+2	T+3	
Fuzzy-RD	-1.07	2.10**	4.24*	0.66	-0.49	
	(1.90)	(1.06)	(2.47)	(1.66)	(2.63)	
	First Stage					
D_{ij}	0.26***	0.27***	0.29***	0.25***	0.28***	
	(0.029)	(0.041)	(0.042)	(0.037)	(0.033)	
All Observations	17,344	16,504	17,954	19,696	20,630	
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9	

Dynamic Estimates: CC Expenditure (Manip.) Donut (Cutoffs) (Pre-Mortgages) (Pre-CarLoans) (Pre-CC.) (Participation)

• Effect of moratorium on consumption disappears after two quarters.

Treated households \(\tau \) CC purchases:

- 2.10% in quarter moratoria started.
- 4.24% one quarter after. ⇒ liquidity mitigation + treatment timming and duration.

	T-2	Т	T+1	T+2	T+3	
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)	
	First Stage					
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)	
All Observations	17,344	16,504	17,954	19,696	20,630	
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9	

Empirical Strategy

RD Estimates: Delinquency

• Effect of the moratoria on existent (old) household debt delinquency.

 $Delinquent_{ijt} = 1 \{ delinquency \ days_{ijt} \ge 30 \}$

	T-2	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05	-0.54***	-0.40***	-0.30***	-0.22***
	(0.096)	(0.037)	(0.035)	(0.038)	(0.043)
Car Loans	-0.14	-0.26**	-0.22*	-0.11	-0.04
	(0.126)	(0.118)	(0.130)	(0.121)	(0.131)
Credit Cards	0.10	-0.12***	-0.08**	-0.04	-0.06
	(0.242)	(0.042)	(0.035)	(0.039)	(0.037)

• No differences in delinquency behaviour before policy implementation.

	T-2	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	- <mark>0.05</mark> (0.096)	-0.54*** (0.037)	-0.40*** (0.035)	-0.30*** (0.038)	-0.22*** (0.043)
Car Loans	-0.14 (0.126)	-0.26** (0.118)	-0.22* (0.130)	-0.11 (0.121)	-0.04 (0.131)
Credit Cards	0.10 (0.242)	-0.12*** (0.042)	-0.08** (0.035)	-0.04 (0.039)	-0.06 (0.037)

- Existent mortgages ⇒ ↓ delinquency probability:
 - 0.54 pp. in quarter of treatment \Longrightarrow result of delinquency days reset.
 - 0.22-0.40 pp. over the next three quarters after treatment ends.

	T-2	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05 (0.096)	-0.54*** (0.037)	-0.40*** (0.035)	-0.30*** (0.038)	-0.22*** (0.043)
Car Loans	-0.14 (0.126)	-0.26** (0.118)	-0.22* (0.130)	-0.11 (0.121)	-0.04 (0.131)
Credit Cards	0.10 (0.242)	-0.12*** (0.042)	-0.08** (0.035)	-0.04 (0.039)	-0.06 (0.037)

- Credit card debt and car loans \implies cross-loan effect of the policy on delinquency behaviour in the short run
 - Moratoria mitigate households liquidity problems ⇒ repay debt RD estimates

	T-2	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05 (0.096)	-0.54*** (0.037)	-0.40*** (0.035)	-0.30*** (0.038)	-0.22*** (0.043)
Car Loans	-0.14 (0.126)	-0.26** (0.118)	-0.22* (0.130)	-0.11 (0.121)	-0.04 (0.131)
Credit Cards	0.10 (0.242)	-0.12*** (0.042)	-0.08** (0.035)	-0.04 (0.039)	-0.06 (0.037)

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks Bank-Bartik-IV ⇒ ↓ delinquency probability.
- RD design generally pick up local effects (LATE).
 - RD estimates for consumption ⇒ informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks \bigoplus \downarrow delinquency probability.
- RD design generally pick up local effects (LATE).
 - RD estimates for consumption \Longrightarrow informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks \bigoplus \downarrow delinquency probability.
- RD design generally pick up local effects (LATE).
 - RD estimates for consumption \Longrightarrow informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies.

QUANTITATIVE MODEL

Quantitative Model

Model

Setup

- Benchmark model: Arslan, Guler, Kuruscu (2023)
- Five sectors: households (more), financial intermediaries (borrow internationally, lend mortgages), rental companies, firms, and the government (pay-as-you-go pension system).
- No aggregate uncertainty, individuals are subject to iid shocks. These shocks lead to heterogeneity in income, wealth, housing tenure and mortgage debt across households.
- We study the effects moratoria in response to unexpected and persistent shock, but perfect foresight is assumed along transition.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.
 - Mortgages are long-term perpetuities with geometrical decreasing coupons.
 - If moratoria starts at t+1, unpaid coupon is paid (with interest) when payment suspension is over.

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau)y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

- · Only mortgage pricing is affected by individual default risk.
 - repayment: $m = d(r_l + \delta_m)$
 - debt next period: $d' = (d m)(1 + r_l)$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{\prime h}(a,z,j) = \max_{c,d,h,d' \geq 0} \left\{ u(c,h) + \beta E V^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h(1 - \phi)$$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,\alpha' \geq 0} \left\{ u(c,h) + \beta EV^{h}(\alpha',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h(1 - \phi)$$

$$m \leq \varsigma w(1 - \tau) y(j, z).$$

Homeowner Choices

- · Once a households is a homeowner, then has four options
 - 1. Stays as a homeowner see
 - 2. Refinance mortgage (subject to mortgage origination cost) see
 - 3. Sell house (subject to transaction cost) see
 - 4. Defaults \Longrightarrow becomes inactive renter \Longrightarrow
- · Refinancing or selling the house requires full prepayment of mortgage

Firms

· Perfectly competitive firm produces final output

$$\max_{K_t, N_t, u_t} \mathbb{Z}_t K_t^{\alpha} \left(N_t u_t \right)^{1-\alpha} - \left(r_{k,t} + \delta_k \right) K_t - \left(1 + \zeta r_{l,t+1} \right) w_t N_t$$

• Wage per efficiency of labor (w_t) is defined as:

$$w_t = \underbrace{\bar{w}_t}_{\text{base rate}} + \underbrace{\vartheta \frac{u_t^{1+\psi}}{1+\psi}}_{\text{convex adjustment cost}}$$

Banks

• Perfectly competitive risk averse banks. They borrow from the international market (r_t) and lend to households (long-term mortgages) and firms (short-term working capital)

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_t^B + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

 L_t Total lending to firms and households \Longrightarrow Banks make same return on each loan

- Banks don't face aggregate risk
- Law of large numbers apply for households

Banks

Perfectly competitive risk averse banks.

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_{t}^{B} + L_{t+1} = \omega_{t} + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

$$(1 - \phi_{t+1}) (1 + r_{\ell,t+1}) L_{t+1} \geq (1 + r_{t+1}) B_{t+1}$$

Endogenous leverage constraint

Banks can default and steal fraction of assets (Gertler and Kiyotaki (2010))

$$\phi_t = \xi^{1-\beta_L} \left((1+r_{t+1})/(1+r_{\ell,t+1}) - (1-\phi_{t+1}) \right)^{\beta_L}$$

· Negative aggregate productivity shock.

 $\cdot\downarrow$ productivity $\Longrightarrow\downarrow$ labor income (\downarrow utilization rate).

 $\cdot \downarrow$ labor income $\Longrightarrow \downarrow$ consumption.

 $\cdot \downarrow$ labor income $\Longrightarrow \downarrow$ house prices (new housing demand).

 $\cdot\downarrow$ house prices $\Longrightarrow\downarrow$ household debt in short-run.

 $\cdot \uparrow$ house prices and income growth $\Longrightarrow \uparrow$ household debt in long-run.

 $\cdot\downarrow$ lending $\Longrightarrow\uparrow$ valuation of existing mortgages $\Longrightarrow\uparrow$ bank net worth in short-run.

 $\cdot\downarrow$ assets liquidation value (prepay mortgages) $\Longrightarrow\downarrow$ bank net worth in medium-run.

Quantitative Model

Model Results

Moment matching to Colombia's Data external param internal param

• Model is calibrated to Colombia targeting the averages of 2010 to 2019.

Statistic	Data	Model
Capital- quarterly GDP ratio	8	8
Homeownership rate–aggregate	43%	43%
Mortgage debt to quarterly GDP ratio	112%	112%
Share of housing services in GDP	15%	15%
House price- quarterly rental price ratio	30	30
Utilization rate	1	1
Bank leverage ratio	10	10
Lending premium	0.375%	0.375%

PE effect of Debt Moratoria

- · Link between empirical estimates and model.
- We validate model by replicating the empirical estimates on consumption.
- We compute consumption response to a debt suspension in partial equilibrium setting:
 - 1. Aggregate productivity shock replicates output drop around COVID time in Colombia.
 - 2. No mortgage payments for 2 quarters $\Longrightarrow m=0$ but interest accrues $\Longrightarrow d'=d$ (1 + r_l).
 - 3. Compute consumption average elasticity for mortgage holders at the end of the second quarter relative to steady state.

PE effect of Debt Moratoria

- We validate model by replicating the empirical estimates on consumption.
- Model captures one-third of the consumption elasticity we estimate for stressed households:
 - Model = 0.04
 - Data = 0.12
- We need to consider that model provides average elasticity for all mortgage holders including ricardian households (non-stressed).

- The aggregate impact of debt moratoria we turn on GE effect.
- Incorporating GE effects to explore the long-run impacts.
 - 1. Aggregate productivity shock replicates output drop around COVID time in Colombia.
 - 2. No mortgage payments for 2 quarters $\Longrightarrow m=0$ but interest accrues $\Longrightarrow d'=d$ (1 + r_l).
 - 3. Compute aggregate response in percentage deviations from steady state.

• Moratoria lowers drop in consumption and welfare ($\approx 7\%$).

· Moratoria lowers drop in housing prices (18%) and increase mortgage debt.

• Moratoria has positive impact on banks profitability specially in the long run.

· Gains increase with length of payment suspension to households 🔎

Policy Comparison <a>

· Compare alternative debt relief policies

Policy Comparison <a>

Moratoria + no interests accrued ⇒ welfare improving and beneficial for banks.

CONCLUSIONS

Conclusions

- This paper study implications of temporary payment debt suspension for households.
- Empirical strategy ⇒ LATE on stressed households
 - Exploit discontinuity in eligibility for Colombia debt moratoria policy.
 - Higher consumption ⇒ credit card purchases, household investment, and new car loans.
 - Drop in delinquency rates on existent mortgages, credit card debt and car loan debt.
- Quantative model ⇒ approximates RDD estimates when eliminating all price effects.
 - Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Long-term effects of the policy is beneficial for banks.
 - Larger welfare gains if policy stipulate debt forgiveness or moratoria with interest rate not accrued.

- · Impact of debt relief on financial distress on households
 - Dobbie and Song (2015) (consumer bankruptcy protection), Campbell et al.(2021) (mortgage design and maturity extension), Ganong and Noel (2020) (mortgage modifications), Dinerstein et al. (2024) (student loan moratoria)
- · Quantitative models with long-term debt and default
 - Hatchondo et al. (2022) (contingent convertible bonds and sovereign default), Önder et al. (2023) (corporate debt moratoria)

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Treated and non-Treated Mortgages (back)

Pre-treatment distribution of loans (back)

Enforcement of the policy back

Figure 6: Debt Moratoria on Existent Loans

Enforcement of the policy back

Treatment Biting: Existing Mortgages 2020q2

	During quarter of treatment			One quarter after treatment		
	Log(payment)	Delinq. (days)	Maturity (months)	Log(payment)	Delinq. (days)	Maturity (months)
Sharp-RD	-40.20*** (2.0)	-55.50*** (3.2)	0.76 (0.5)	6.69 (8.0)	-17.04*** (5.1)	1.51*** (0.3)
Observations	138,150	109,445	122,786	108,446	108,446	108,446
BW loc. poly.	9.5	17.0	30.0	21.9	24.2	46.4

Moratoria and New Mortgages (back)

Moratoria and New Car Loans (back)

Pre-existing differences in Household Consumption (back)

- What if we exploit the discontinuity before the implementation of the policy?
 ⇒ same measures of consumption for 2019Q4
- Observed jump in consumption around cutoff disappears

Moratoria and Durable Consumption (back)

· Durable Consumption: Log(new mortgage;it), Log(new car loan;it)

new mortgage_{ijt} (new car loan_{ijt}) = value of loan_{ij} at quarter of origination t_0

	New Cars	New Mortgages		
Fuzzy-RD	6.67**	3.78*		
	(0.6)	(2.2)		
	First Stage			
D_{ii}	0.14**	0.05**		
	(0.05)	(0.02)		
Observations	4,407	8,846		
Bandwidth (in days)	22.8	17.0		

Summary Statistics: Treated Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
Cred. Card purchases New car loan New mortgage	3.1 50.9 133.5	7.1 35.5 141.8	0.3 27.8 41.4	1.0 42.1 80.0	3.0 65.4 168.8	84,780 14,004 1,349
Existent Mortgages						
Outstanding amount Interest rate Repayment(received) Maturity Delinquency days Rating	66.1 10.7 1.1 11.4 16.3 5.9	71.9 2.4 1.8 5.8 19.6 0.5	23.6 9.5 0.0 6.9 1.0 6.0	44.4 10.7 0.6 11.2 7.0 6.0	76.7 12.5 1.4 15.8 26.0 6.0	117,060 117,058 117,060 117,060 117,060
Existent Car Loans						
Outstanding amount Interest rate Maturity Delinquency days Rating	32.8 13.6 12.0 13.7 5.5	29.7 5.5 5.4 47.6 1.2	13.0 11.5 7.9 0.0 6.0	25.3 13.8 12.1 0.0 6.0	42.3 16.2 16.6 10.0 6.0	11,849 11,182 11,849 11,849 11,849
Existent Cred. Card Debt						
Outstanding amount Interest rate Delinquency days Rating	5.4 23.4 11.0 5.9	7.8 7.2 52.9 0.3	1.0 23.5 0.0 6.0	2.6 26.1 0.0 6.0	6.1 27.2 0.0 6.0	633,377 616,722 633,377 633,377

Summary Statistics: Eligible Non-Treated Households back

	Mean	SD	P25	P50	P75	N _{obs}
Consumption						
Cred. Card purchases	2.8	4.1	0.3	1.1	3.2	24,990
New car loan	48.1	37.3	23.6	40.2	61.7	5,309
New mortgage	99.1	126.2	20.7	54.3	119.6	2,404
Existent Mortgages						
Outstanding amount	62.9	71.6	20.0	40.2	76.1	41,023
Interest rate	10.9	2.6	9.5	10.7	12.6	41,012
Repayment(received)	1.0	1.9	0.0	0.4	1.3	41,023
Maturity	10.3	5.8	5.7	9.8	14.4	41,023
Delinquency days	28.2	27.6	4.0	17.0	50.0	41,023
Rating	5.7	0.7	6.0	6.0	6.0	41,023
Existent Car Loans						
Outstanding amount	29.3	28.1	9.7	22.3	39.3	3,826
Interest rate	13.5	5.6	11.4	13.6	16.1	3,453
Maturity	11.4	5.4	7.2	11.3	16.0	3,826
Delinquency days	39.7	113.0	0.0	0.0	26.0	3,826
Rating	5.0	1.5	4.0	6.0	6.0	3,826
Existent Cred. Card Debt						
Outstanding amount	4.8	7.0	0.9	2.4	5.5	180,764
Interest rate	23.5	7.2	23.9	26.1	27.4	174,249
Delinquency days	24.4	112.3	0.0	0.0	0.0	180,764
Rating	5.8	0.5	6.0	6.0	6.0	180,764

Summary Statistics: Non-Eligible Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
Consumption						
Cred. Card purchases	1.3	3.1	0.2	0.4	1.1	3,042
New car loan New mortgage	19.8 60.8	25.0 80.5	2.7 18.5	9.6 38.3	30.8 67.1	1,630 5,093
Existent Mortgages						
Outstanding amount	57.9	66.4	19.5	37.0	67.7	14,758
Interest rate	10.9	2.9	9.5	11.0	12.8	14,758
Repayment(received) Maturity	1.6 10.6	2.4 5.9	0.0 6.0	0.8 9.7	1.9 15.1	14,758 14,758
Delinguency days	116.0	16.9	101.0	117.0	127.0	14,758
Rating	4.7	0.7	5.0	5.0	5.0	14,758
Existent Car Loans						
Outstanding amount	27.9	27.4	8.8	20.6	37.1	2,631
Interest rate	15.1	6.3	12.3	14.8	17.7	2,197
Maturity	12.6	5.3	8.7	12.9	17.2	2,631
Delinquency days Rating	177.9 3.2	187.5 1.4	19.0 2.0	113.0 3.0	283.0 4.0	2,631 2,631
	3.2	1.4	2.0	3.0	4.0	2,031
Existent Cred. Card Debt						
Outstanding amount	5.0	7.2	1.1	2.5	5.4	88,836
Interest rate	23.9	7.3 230.7	25.2 0.0	26.1 0.0	27.5	84,791
Delinquency days Rating	106.3 3.9	1.1	3.0	4.0	86.0 5.0	88,836 88,836

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Donut-hole sensitivity test back

- Test checks for additional "bunching" of observations around the cutoff
- Most estimates are robust to excluding 1, 2, and 3 days before/after the cutoff

Falsification - different cutoffs back

- · What if move the cutoff for delinquency days?
- no effects on consumption for placebo cutoffs

Testing for pre-policy differences in Existing Mortgages (back)

Variable	RD	Robu	st Inference	Bandwidth	Observations
variable	Estimator	p-value	95% Conf. Int.	(in days)	
Mortgages					
Log(Oustanding Debt)	0.07	0.09	[-0.02, 0.28]	7.58	180,896
Interest Rate	0.11	0.68	[-0.75, 1.14]	2.78	180,871
Deling days	-0.71	0.47	[-8.15, 3.75]	9.01	180,896
Delinquency probability	-0.04	0.48	[-0.09, 0.04]	7.26	180,896
Maturity	0.14	0.87	[-0.75, 0.88 <u>]</u>	12.16	180,896
Collateral	-0.26	0.30	[-0.64, 0.20]	24.57	178,916
Rating	0.19	0.15	[-0.06, 0.37]	5.07	175,285

Testing for pre-policy differences in Existing Car Loan Debt (back)

Variable	RD	Robu	st Inference	Bandwidth	Observations
variable	Estimator	p-value	95% Conf. Int.	(in days)	
Car Loans					
Log(Oustanding Debt)	-0.11	0.36	[-0.44, 0.16]	28.02	19,235
Interest Rate	-0.35	0.96	[-2.57, 2.46]	10.61	17,732
Deling days	-24.00	0.28	[-58.2, 17.0]	10.39	19,235
Delinquency probability	-0.06	0.19	[-0.21, 0.04]	23.35	19,235
Maturity	-0.34	0.51	[-1.78, 0.88]	42.25	19,235
Collateral	-0.08	0.77	[-0.47, 0.35]	29.64	18,952
Rating	0.16	0.56	[-0.31, 0.57]	20.67	19,235

Testing for pre-policy differences in Existing Credit Card Debt (back)

Variable	RD	Robu	st Inference	Bandwidth	Observations
variable	Estimator	p-value	95% Conf. Int.	(in days)	
Credit Card Debt					
Log(Oustanding Debt)	-0.22	0.56	[-0.76, 0.41]	3.48	138,566
Interest Rate	0.14	0.84	[-1.86, 1.50 <u>]</u>	6.06	136,566
Delinq days	-6.44	0.65	[-22.7, 14.1]	7.16	138,566
Delinquency probability	-0.03	0.48	[-0.10, 0.05]	10.39	138,566
Maturity	0.10	0.42	[-0.14, 0.34]	25.35	133,668
Rating	0.03	0.91	[-0.24, 0.27]	9.40	138,566

(Un)-Predictability of Treatment (back)

- Check which mortgage characteristics explain treatment status
- Only unning variable explain treatment choice consistently.

	Entire sample	BW=50	BW=40	BW=30	BW=20
Running	0.004***	0.026***	0.080***	0.061***	0.116***
	(0.000)	(0.000)	(0.002)	(0.003)	(0.017)
Expected Payment	0.724***	0.698**	0.531	0.353	0.027
	(0.131)	(0.282)	(0.488)	(0.648)	(0.544)
Loan Balance	0.000	0.002	0.005	0.003	0.003
	(0.003)	(0.006)	(0.008)	(0.011)	(0.013)
Collateral	0.000	0.002	-0.000	-0.002	0.004
	(0.001)	(0.002)	(0.002)	(0.002)	(0.005)
Maturity	0.010	0.032	0.037	-0.005	0.001
	(0.008)	(0.022)	(0.023)	(0.020)	(0.001)
Observations	75,215	32,755	22,508	12,027	4,767
R-squared	0.34	0.46	0.54	0.39	0.30

Moratoria and Debt Accumulation (back)

• Existent household debt: mortgages, car loans, credit card debt.

Log (Outstanding Balance_{iit})

	T-1	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	0.02 (0.12)	-0.01 (0.12)	-0.09 (0.14)	-0.13 (0.11)	- <mark>0.22***</mark> (0.12)
Car Loans	-1.21 (0.77)	-2.57** (1.10)	-2.00** (0.83)	-1.34 (0.84)	0.73 (0.92)
Credit Cards	0.22 (0.25)	-0.67*** (0.23)	-0.66** (0.28)	-0.41 (0.26)	-0.13 (0.37)

Exposure to Debt Moratoria and Bank Response (back)

	ΔProfit	ΔEquity	Δ Assets	ΔLiab.
Bartik-IV	0.46**	0.21***	0.37***	0.06
	(0.038)	(0.18)	(0.021)	(0.16)
		First	Stage	
B_{jt}	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)
F-first stage	26.06	26.06	26.06	26.06
Observations	200	200	200	200
Bank fixed effects Time-quarter fixed effects	√ ✓	√ √	√ ✓	√ ✓

Mortgages with moratoria (back)

• Coupon structure of a **non-contingent bond** issued at *t*:

Homeowner Stayer (back)

If remains homeowner

$$V^{hh}(a, h, d, z, j) = \max_{c, a' \ge 0} \left\{ u(c, h) + \beta EV^{h}(a', z', j', h, d) \right\}$$

subject to

$$c + \delta_h p_h h + a' + m = w(1 - \tau) y(j, z) + a(1 + r_k)$$

 $d' = (d - m)(1 + r_l),$

Homeowner Refinancer (back)

 \cdot If decide to refinance \Longrightarrow pay balance and get a new mortgage

$$V^{hf}(a,h,d,z,j) = \max_{c,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',h,d) \right\}$$

subject to

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h (1 - \phi)$$

Homeowner Seller back

 \cdot If sell house (rent or buy new house) \Longrightarrow pay balance and get a new mortgage

$$V^{hr}(a, h, d, z, j) = V^{r}(a + p_h h(1 - \varphi_s) - d, z, j)$$

Homeowner Defaulter (back)

If default

$$V^{h}(a,d,z,j) = \max_{c,s,a' \geq 0} \left\{ u(c,s) + \beta_{i} E\left[\pi V^{r}(a',z',j') + (1-\pi) V^{i}(a',z',j')\right] \right\}$$
(1)

subject to

$$c + a' + p_r s = a(1 + r_h) + w(1 - \tau)y(j, z) + \max\{(1 - \varphi_e)p_h h - d, 0\}.$$

Inactive renter (back)

$$V_{j}^{e}(a,z) = \max_{c,s,a' \geq 0} \left\{ u(c,s) + \beta \left[\pi E V_{j+1}^{r}(a',z') + (1-\pi)E V_{j+1}^{i}(a',z') \right] \right\}$$

subject to

$$c + a' + p_r s = w(1 - \tau)y(j, z) + a((1 + r_k))$$

Externally Set Parameters (back)

Parameter	Explanation	Value
σ	risk aversion	2
α	capital share	0.4
$ ho_arepsilon$	annual persistence of income	0.96
$\sigma_arepsilon$	annual std of innovation to AR(1)	0.19
$arphi_h$	selling cost for a household	7%
$arphi_e$	selling cost for foreclosures	25%
$arphi_f$	fixed cost of mortgage origination	8%
$arphi_m$	variable cost of mortgage origination	0.75
δ_h	annual housing depreciation rate	2.5%
π	quarterly prob. of being an active renter	3.6%
Ħ	housing supply	1
ψ	wage curvature	3
ϕ	down payment requirement	0.3
ζ	share of wage bill financed	1%
δ_k	quarterly capital depreciation rate	2.5%
δ_m	quarterly mortgage depreciation rate	2.5%

Internally Calibrated Parameters (back)

Parameter	Explanation	Value
β	discount factor	0.96
<u>h</u>	minimum house size	0.89
r	bank borrowing rate	1.5%
γ	weight of housing services in utility	0.19
κ	rental maintenance cost	0.06
ϑ	wage parameter	2.36
ξ	bank seizure rate	0.2
eta_{L}	bank discount factor	0.95

Aggregate Effect: all aggregate variables (back)

Introducing Moratoria: Other Outcomes (back)

Policy Comparison back

Increasing Moratoria Length (back)

