

Esquema de calificación

Mayo de 2018

Química

Nivel medio

Prueba 2

Este esquema de calificaciones es propiedad del Bachillerato Internacional y **no** debe ser reproducido ni distribuido a ninguna otra persona sin la autorización del centro global del IB en Cardiff.

P	Pregunta		Respuestas	Notas	Total
1.	а		$n(H_2SO_4) = 0.0500 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3} = 0.00500/5.00 \times 10^{-3} \text{ mol} $		1
1.	b		$H_2SO_4(aq) + Mg(OH)_2(s) \rightarrow MgSO_4(aq) + 2H_2O(I)$	Acepte ecuación iónica.	1
1.	С		«n(H ₂ SO ₄) = $\frac{1}{2}$ × n(NaOH) = $\frac{1}{2}$ (0,02080 dm ³ × 0,1133 mol dm ⁻³)» 0,001178/1,178 × 10 ⁻³ «mol» ✓		1
1.	d		$n(H_2SO_4)$ reaccionaron «= 0,00500 – 0,001178» = 0,00382/3,82 × 10 ⁻³ «mol» \checkmark	P	1
1.	е		$n(Mg(OH)_2)$ «= $n(H_2SO_4)$ =» = 0,00382/3,82 × 10 ⁻³ «mol» \checkmark $m(Mg(OH)_2)$ «= 0,00382 mol × 58,33 g mol ⁻¹ » = 0,223 «g» \checkmark	Adjudique [2] por la respuesta final correcta.	2
1.	f		% Mg(OH) ₂ «= $\frac{0.223 \text{ g}}{1.24 \text{ g}}$ × 100» = 18,0 «%» ✓	La respuesta debe mostrar tres cifras significativas.	1

Pregunta	Respuestas	Notas	Total
2. a	$E_{a(con\ catalizador)}$ $E_{a(sin\ catalizador)}$ $E_{a(sin\ catalizador)}$ $Energía\ «cinética»$ $Energía\ «cinética»$ $Energía\ «cinética»$ $Energía\ «cinética»$ $Energía\ «cinética»$ $E_{a(sin\ catalizador)}$ $F_{a(sin\ catalizador)}$ $F_{a(con\ catalizador)} < E_{a(sin\ catalizador)}$	M1: Acepte "velocidad" como rótulo del eje x. Acepte "número de partículas", "N", "frecuencia" o "« densidad de» probabilidad" como rótulo para el eje y. No acepte "energía potencial" como rótulo para el eje x. M2: No acepte que la curva toque el eje x a altas energías. No asigne M2 si hay 2 curvas. M3: Ignore sombreados debajo de la curva.	3

Р	Pregunta		Respuestas	Notas	Total
2.	b	i	Tiempo curva comenzando en el origen, más empinada Yalcanzando el mismo volumen máximo ✓		1
2.	b	ii	la velocidad disminuye O la reacción se ralentiza ✓ «ácido etanóico» parcialmente disociado/ionizado «en solución/agua» O menor [H+] ✓	Acepte "ácido débil" o "mayor pH".	2

Р	Pregunta		Respuestas	Notas	Total
2.	С		 «pH» convierte «un amplio rango de [H⁺]» en una escala «logarítmica»/números simples O «pH» evita el uso de exponencial/notación científica O «pH» convierte números pequeños en valores «generalmente» entre 0/1 y 14 O «pH» permite una comparación fácil de los valores de [H⁺] ✓ 	Acepte "usa valores entre 0/1 y 14". No acepte "más fácil de usar". No acepte "más fácil para los cálculos".	1
2.	d		«las especies» no se diferencian en un «solo» protón/H ⁺ O la base conjugada de H₃PO₄ es H₂PO₄ ⁻ «no HPO₄² ⁻ » O el ácido conjugado de HPO₄² ⁻ es H₂PO₄ ⁻ «no H₃PO₄» ✓	No acepte "hidrógeno/H" en lugar de "H ⁺ /protón".	1

Р	regun	ıta	Respuestas	Notas	Total
3.	а	i	Energía		1
3.	а	ii	4 niveles que convergen a mayor energía ✓ n = 4 n = 3 n = 2 n = 1 flechas (dirigidas hacia abajo) desde n = 3 hacia n = 2 Y n = 4 hacia n = 2 ✓		1

Р	Pregunta		Respuestas	Notas	Total
3.	b	i	el mismo número de capas/nivel energético «exterior»/apantallamiento Y la carga nuclear/número de protones/la carga nuclear efectiva aumenta «causando una atracción mayor hacia los electrones exteriores» ✓	□	1
3.	b	ii	 K⁺ 19 protones Y CI⁻ 17 protones O K⁺ tiene «dos» protones más ✓ el mismo número de electrones/isoelectrónicos «por lo tanto están más atraídos» ✓ 		2
3.	С	i	1 1111111		1
3.	С	ii	Ánodo (electrodo positivo): Cu(s) → Cu ²⁺ (aq) + 2e ⁻ \checkmark Cátodo (electrodo negativo): Cu ²⁺ (aq) + 2e ⁻ → Cu (s) \checkmark	Acepte "Cu(s) – 2e ⁻ → Cu ²⁺ (aq)". Acepte ⇔ para →. Adjudique [1 máximo] si las ecuaciones están en los electrodos equivocados.	2
3.	С	iii	circuito «externo»/cable Y desde el electrodo positivo/ánodo hacia el electrodo negativo/cátodo ✓	Acepte "a través de la fuente/batería" en vez de "circuito".	1

Р	Pregunta		Respuestas	Notas	Total
4.	а		enlaces rotos: $4(C-H) + 2(H-O) / 4(414) + 2(463) / 2582 \text{ «kJ» } \checkmark$ enlaces formados: $3(H-H) + C = O / 3(436) + 1077 / 2385 \text{ «kJ» } \checkmark$ $\Delta H = \sum ER_{\text{(enlaces rotos)}} - \sum EF_{\text{(enlaces formados)}} = 2582 - 2385 \text{»} = \text{«+» } 197 \text{ «kJ» } \checkmark$	Adjudique [3] por la respuesta final correcta. Adjudique [2 máximo] para "–197 «kJ»".	3
4.	b	i	 ΔH [⊕] para cualquier elemento = 0 «por definición» O no se requiere energía para formar un elemento «en su forma estable» a partir de sí mismo √ 		1
4.	b	ii	$\Delta H^{\ominus} = \sum \Delta H^{\ominus}_{f \text{ (productos)}} - \Delta H^{\ominus}_{f} \sum \text{ reactivos)} = -111 + 0 - (-74,0) + (-242) $ $= \text{ "+" 205 "kJ" } \checkmark$		1
4.	b	iii	«las entalpías de enlace» son valores medios «calculados con compuestos similares» O «las entalpías de enlace» no son específicas para estos compuestos ✓		1

Р	Pregunta		Respuestas	Notas	Total
5.	а		 Q: las concentraciones no son las del equilibrio Y K_c: son las concentraciones del equilibrio O Q: «medido» en cualquier momento Y K_c: «medido» en el equilibrio √ 		1
5.	b		Q	No adjudique M2 sin M1.	2
6.	а	i	enlaces polares «entre H y elemento del grupo 16» O diferencia de electronegatividad «entre H y los elementos del proup16» ✓ distribución asimétrica de la carga/nube electrónica O forma no-lineal/doblada/de V/angular «debido a los pares libres» O enlaces polares/los dipolos no se cancelan ✓	M2: No acepte "momento dipolar neto" sin explicación adicional. Acepte "«forma/distribución de carga» asimétrica".	2

(continúa...)

(Pregunta 6a continuación)

Р	Pregunta		Respuestas	Notas	Total
6.	а	ii	el número de electrones aumenta 🗸 aumentan las fuerzas de London/dispersión/dipolo instantáneo-dipolo inducido 🗸	M1: Acepte "la M _r /A _r aumenta" o "las moléculas aumentan su tamaño/masa/superficie".	2
6.	b		Geometría de dominio electrónico: tetraédrica ✓ Geometría molecular: doblada/en forma de V/angular ✓	Ambos puntos se pueden adjudicar por diagramas claros. La geometría del dominio electrónico requiere un diagrama en 3D mostrando la distribución tetraédrica.	2

F	Pregunta	Respuestas	Notas	Total
7.	а	Evidencia física:	M1:	
		«longitud/fuerzas de» enlaces C-C iguales	Acepte "todos los ángulos de enlaces	
		0	C–C–C son iguales".	
		hexágono regular		
		0		
		«todos» los enlaces C-C son de orden de enlace 1,5		
		0		
		«todos» C–C son intermedios entre enlace simple y doble ✓		
		Evidencia química:		
		sufre reacción de sustitución «no de adición»		2
		0		
		no decolora/reacciona con el agua de bromo		
		0		
		forma solo un isómero 1,2-disustituído «la presencia de enlaces dobles alternados originaría dos isómeros»		
		0		
		es más estable de lo que se espera «en comparación con la molécula hipotética 1,3,5-ciclohexatrieno»		
		0		
		La variación de entalpía de hidrogenación/combustión es menos exotérmica que la predicha «para 1,3,5-ciclohexatrieno» ✓		

Р	Pregunta		Respuestas	Notas	Total
7.	b	i	$3CH_3CH_2CH_2OH (I) + Cr_2O_7^{2-} (aq) + 8H^+ (aq) \rightarrow 3CH_3CH_2CHO (aq) + 2Cr^{3+} (aq) + 7H_2O (I)$ reactivos y productos correctos ✓ ecuación ajustada ✓		2
7.	b	ii	Aldehído: por destilación «eliminado de la mezcla de reacción tan pronto como se forma» ✓ Ácido carboxílico: «calentar la mezcla a» reflujo «para alcanzar la oxidación completa a –COOH» ✓	Acepte diagramas claros o descripción de los procesos.	2
7.	С	i			1
7.	С	ii	A: C-H «en los alcanos, alquenos, arenos» Y B: C=O «en los aldehídos, cetonas, ácidos carboxílicos y ésteres» ✓		1

(continúa...)

(Pregunta 7c continuación)

Pregunt	а	Respuestas	Notas	Total
7. c	iii	Dos cualesquiera de: O CH ₃ O C ₆ H ₅ COOCH ₃ ✓ O CH ₃ COOC ₆ H ₅ ✓ O HCOOCH ₂ C ₆ H ₅ ✓	No penalice el uso de la estructura de Kekulé en vez del grupo fenilo. Acepte las siguientes estructuras: H ₃ C CH ₃ CH ₃ Asigne [1 máximo] para 2 ésteres alifáticos/lineares correctos con la formula molecular C ₈ H ₈ O ₂ .	2
7. c	iv	C ₆ H ₅ COOCH ₃ «señal a 4 ppm (rango 3,7–4,8 en la tabla de datos) debido al grupo alquilo sobre el éster» ✓		1