Homework 2

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University

Octover 23, 2020

Question 1

We are considering the linear regression model

$$Y = \beta_0 + \beta_1 X + \epsilon$$
,

where \hat{Y} is the estimated service time for a call, X is the number of copiers being serviced, and $\epsilon \sim N(0, \sigma^2)$. The least-squares estimator model is given by

$$\hat{Y} = -0.5802 + 15.0352X \tag{1}$$

Throughout this question, we will be using a variety of base R functions to easily obtain the desired measurements.

(a) The 95% confidence interval for the mean service time when there are six copiers is given by

$$E[Y] \in (86.8152, 92.44746).$$

Intuitively, this means that there are six copiers being serviced, we are 95% sure that the average service time for all service times falls within this range.

(b) The 95% prediction interval for the next service time when there are six copiers is

$$\hat{Y} \in (71.43628, 107.8264).$$

As expected, we notice that the prediction interval is significantly wider than the confidence interval.

(c)

- (d) The ANOVA table has been printed in Table 1.
- (e) To determine if there is any linear relationship between X and Y, we conduct an F-test, where $H_0: \beta_1 = 0$ against $H_a: \beta_1 \neq 0$. From Table 1, we see that the associated p-value is well below the significance level $\alpha = 0.05$, and so we reject H_0 . The data seems to indicate that there is in fact a linear relationship between X and Y.
- (f) The total variance explained by the model is known as the R^2 value, and is given by

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{76960}{80376} \approx 0.9575.$$

That is, bout 95.7% of Y's variation is explained by model (1), quite a significant reduction.

Source of Variation	df	Sum of Squares	Mean Square	f	$\Pr(>f)$
Copiers	1	76960	76960	968.66	$< 2.2 \times 10^{-16}$
Residuals	43	3416	79	_	_
Total	44	80376	_	_	_

Table 1: The ANOVA table for model (1).

Question 2