Project Tungsten Bringing Spark Closer to Bare Metal

Reynold Xin @rxin Spark Conference Japan Feb 8, 2016

Storage

Network

CPU

2010 Storage 50+MB/s (HDD)

1Gbps

CPU ~3GHz

Network

Network

CPU

databricks

2010

10 2016

500+MB/s

(SSD)

10Gbps

~3GHz

Storage 50+MB/s (HDD)

1Gbps

~3GHz

Storage

Network

CPU

databricks

2010

50+MB/s

(HDD)

1Gbps

~3GHz

2016

500+MB/s

(SSD)

10Gbps

~3GHz

10X

10X

On the flip side その一方で

Spark IO has been optimized Spark のIOは最適化された

- Reduce IO by pruning input data that is not needed
 不要な入力データを排除することによる IO の削減
 New shuffle and network implementations (2014 sort record)

新しいシャッフルとネットワークの実装 (2014年ソート記録)

Data formats have improved データフォーマットが改善された

• E.g. Parquet is a "dense" columnar format Parquet は「密」なカラムナフォーマット

Goals of Project Tungsten Project Tungsten のゴール

Substantially improve the **memory and CPU** efficiency of Spark backend execution and push performance closer to the limits of modern hardware.

Spark の「バックエンドの実行」のメモリとCPU効率を実質的に改善することと、性能をモダンなハードウェアの限界に近づけること

Note the focus on "execution" not "optimizer": very easy to pick broadcast join that is 1000X faster than Cartesian join, but hard to optimize broadcast join to be an order of magnitude faster.

「最適化」ではなく「実行」に注目していることに注意: broadcast join を Cartesian joinより 1000 倍早くするのはとても簡単だが、 broadcast join を ケタ違いに早くなるよう最適化するのは難しい

Phase 1 Foundation 立ち上がり

Memory Management Code Generation Cache-aware Algorithms Phase 2
Order-of-magnitude Faster
ケタ違いの高速化

メモリ管理 コード生成 (ハードウェア)キャッ シュを意識したアル ゴリズム Whole-stage Codegen Vectorization **全ステージ コード生成 ベクトル化**

Phase 1 Laying The Foundation

Optimized data representations 最適化されたデータ表現

Java objects have two downsides:

- Space overheads
- Garbage collection overheads

Java オブジェクトには2つのマイナス面がある

- ・空間のオーバーヘッド
- ガベージコレクションのオーバーヘッド

Tungsten sidesteps these problems by performing its own manual memory management.

Tungsten はこれらの問題を、独自のメモリ管理を行うことで回避する

The overheads of Java objects

Java オブジェクトの オーバーヘッド

"abcd"

Native: 4 bytes with UTF-8 encoding

Java: 48 bytes

ネイティブ:UTF-8エンコーディングで4バイト

Java: 48バイト

```
java.lang.String object internals:
OFFSET
        SIZE
               TYPE DESCRIPTION
                                                      VALUE
                     (object header)
                                                                   12 byte object header
                     (object header)
                                                                     12バイト:オブジェクトヘッダ
                     (object header)
                                                                   20 bytes of overhead + 8 bytes for chars
                     String.value
                                                                  20バイトのオーバーヘッド+ 8バイトの文字
8 byte hashcode
    16
                 int String.hash
    20
                 int String.hash32
                                                                  8バイト: ハッシュコード
Instance size: 24 bytes (reported by Instrumentation API)
             インスタンスサイズ: 24バイト (Instrumentation API による)
```

sun.misc.Unsafe

安全性のチェックを行わずに直接的にメモリを操作する JVM 内部 API (すなわち "unsafe")

on- と off-heap メモリの両方でデータ構造をビルドする際にこのAPIを利用している

JVM internal API for directly manipulating memory without safety checks (hence "unsafe")

We use this API to build data structures in both on- and offheap memory

Code generation 表現ロジックの汎用的な評価は JVM

上では非常にコストが高い Generic evaluation of expression logic is very expensive on the JVM

- Virtual function calls 仮想関数呼び出し Interpreted Projection
- Branches based on expression type インタプリタ射影
- Object creation due to primitive boxing 型表現に基づくブランチ
- プリミティフのボクシングに起因する - Memory consumption by the boxed

primitive objects

プリミティブをボクシングしたオ_{Hand written} Generating custom by to 1000 かいます。 ままき

eliminate these overheads

Evaluating "a + a + a" (query time in seconds) "a + a + a" **の評価** (問い合わせ時間(秒)) 36.65 Code gen 9.36 コード生成 9.33

カスタムバイトコードの生成によりこれらのオーバーヘッドを排除できる

Code generation

Tungsten uses the Janino compiler to reduce code generation time Tungsten はコードの生成時間を減らすために Janino コンパイラを利用する

Spark 1.5 added ~100 UDF's with code gen:

Spark 1.5 は code gen で~100 の UDF を追加した:

AddMonths ArrayContains Ascii Base64 Bin CheckOverflow CombineSets Contains CountSet Crc32 DateAdd	DateDiff DateFormatClass DateSub DayOfMonth DayOfYear Decode Encode EndsWith Explode Factorial FindInSet FormatNumber	FromUnixTime GetArrayItem GetJsonObject GetMapValue Hex InSet InitCap IsNaN IsNotNull IsNull LastDay Length	Like Lower MakeDecimal Md5 Month MonthsBetween NaNv1 NextDay Not PromotePrecision Quarter RLike	Second Sha1 Sha2 ShiftLeft ShiftRight ShiftRightUnsig ned SortArray SoundEx StartsWith StringInstr StringRepeat	StringSplit StringTrim StringTrimLeft StringTrimRight TimeAdd TimeSub ToDate ToUTCTimestamp TruncDate UnBase64 Unhex UnixTimestamp
	FormatNumber FromUTCTimestamp	Length Levenshtein	RLike Round	StringRepeat StringReverse StringSpace	UnixTimestamp

AlphaSort Cache-friendly Sorting

AlphaSort キャッシュフレンドリーなゾート

Idea: minimize random memory accesses

アイデア: ランダムメモリアクセスの最小化

- Store prefixes of sort keys inside the sort pointer array
- Short-circuit by comparing prefixes first
- Swap only pointers and prefixes

- ソートのポインタ配列の中にソートキー のプレフィックスを格納
- ・先にプレフィックスを比較することによる 短絡評価(ショートサーキット)
- ・ポインタとプレフィックスのみのスワップ

Phase 2 Order-of-magnitude Faster

select count(*) from store_sales
where ss_item_sk = 1000

Volcano Iterator Model

```
Standard for 30 years: almost
  all databases do it
 30年間標準
   ほぼすべてのデータベースが行っている
Each operator is an "iterator"
  that consumes records from
  its input operator
 各オペレータは入力オペレータからの
 レコードを消費する「イテレータ」
```

```
class Filter {
  def next(): Boolean = {
    var found = false
    while (!found && child.next()) {
      found = predicate(child.fetch())
    return found
  def fetch(): InternalRow = {
    child.fetch()
```


call stack to process a row 一行を処理するためのコールスタック

Downside of the Volcano Model ボルケーノモデルの欠点

- 1. Too many virtual function calls
 - o at least 3 calls for each row in Aggregate

仮想関数呼び出しが多すぎる

Aggregateで少なくとも3回の呼び出し

- 2. Extensive memory access
 - o "row" is a small segment in memory (or in L1/L2/L3 cache) メモリアクセスが広範

「行」はメモリ(またはL1/L2/L3キャッシュ)中の小さな断片

- 3. Can't take advantage modern CPU features
 - SIMD, pipelining, prefetching . . .

モダンなCPUの機能の恩恵が受けられない SIMD、パイプライン、プリフェッチ、・・・

```
What if we hire a college freshman to
implement this query in Java in 10 mins?
もし10分間で Java でこのクエリを実装するために、大学1年生を雇ったら?
select count(*) from store sales
where ss item sk = 1000
var count = 0
for (ss_item_sk in store_sales) {
  if (ss_item_sk == 1000) {
    count += 1
```

Volcano model 30+ years of database research

ボルケーノモデル

30年以上のデータベースの研究

VS

college freshman hand-written code in 10 mins

大学1年生10分間の手書きのコード

How does a student beat 30 years of research? どうして学生が30年の研究に勝ったのか?

Volcano

- 1. Many virtual function calls 大量の仮想関数呼び出し
- 2. Data in memory (or cache) データをメモリに(もしくはキャッシュに)
- 3. No loop unrolling, SIMD, pipelining ループ展開、SIMD、パイプラインが無い

hand-written code

- 1. No virtual function calls 仮想関数呼び出しがない
- 2. Data in CPU registers データを CPU のレジスタに
 - Compiler loop unrolling, SIMD, pipeliningコンパイラによるループ展開、SIMD、パイプライン

Whole-stage Codegen 全ステージョード生成

Fusing operators together so the generated code looks like hand optimized code:

複数のオペレータを一括で扱い結合することで、生成されたコードが手動で最適化されたコードのよう にみえる

- Data stays in registers, rather than cache/memory
- Minimizes virtual function calls
- Compilers can unroll loops and use SIMD instructions
 - データはキャッシュ / メモリよりもレジスタの中に残る
 - 仮想関数呼び出しを最小化する
 - コンパイラがループを展開することができ、SIMD命令を使う
- databricks

Whole-stage Codegen: Spark as a "Compiler"

全ステージ コード生成:「コンパイラ」としての Spark

But there are things we can't fuse しかし結合させることができないものがある

Complicated I/O

複雑な 1/〇

• CSV, Parquet, ORC, ...

CSV, Parquet, ORC, ...

外部とのインテグレーション

External integrations

•Python, R, scikit-learn, TensorFlow, など

• Python, R, scikit-learn, TensorFlow, etc.

Don't want to compile a CSV reader inline for every query! クエリごとに CSV reader をコンパイルしたくない!

Vectorization

ベクトル化

In-memory Row Format メモリ内の行フォーマット

1 john 4.1

2 mike 3.5

3 sally 6.4

Why Vectorization? なぜベクトル化?

- 1. Modern CPUs are better at doing one thing over and over again (rather than N different things over and over again)
 モダンな CPU はひとつのことを何度も何度も行うのが得意 (N 個の異なることを何度も何度も行うよりも)
- 2. Most high-performance external systems are already columnar (numpy, TensorFlow, Parquet) so it is easier to integrate with ハイパフォーマンスな外部システムの多くは、既にカラムナ (numpy, TensorFlow, Parquet) であるため、インテグレートするのがより簡単

Phase 1 Spark 1.4 - 1.6 Phase 2 Spark 2.0+

Memory Management
Code Generation
Cache-aware Algorithms

Whole-stage Codegen Vectorization

メモリ管理 コード生成 キャッシュを意識したアルゴリズム

全ステージ コード生成 ベクトル化

ありがとうございました

@rxin

