Onde Fluidi e Termodinamica

Riassunto da:

"FISICA: Meccanica e Termodiamica - P. Mazzoldi, M. Nigro, C. Voci"

corso A Università degli studi di Torino, Torino Maggio 2024

Indice

1		Onde			
	1.1	Onde	piane armoniche	3	
			Propagazione dell'energia in una barra solida		
			Energia per unità di volume	4	
			Intensità dell'onda	5	
		1.1.2	Propagazione dell'energia in una corda tesa	5	
			Energia per unità di lunghezza		
	1.2	Onde	sonore		
		1.2.1	Pressione	6	
		1.2.2	Potenza	7	
			Intensità		

Onde

1.1 Onde piane armoniche

Un tipo molto importante di onda piana è l'onda armonica la cui forma si scrive

$$\xi(x, t) = \xi_0 \sin(kx \mp \omega t + \delta)$$

dove k è il **numero d'onde**.

Periodo spaziale Fissato un tempo $t=t_0$, definiamo la lunghezza d'onda λ come la periodicità spaziale dell'onda. Essendo λ lo spazio tra due creste d'onda possiamo calcolarla come $\lambda=x_2-x_1=2\pi/k$, da cui si deduce che k è uguale al numero di lunghezze d'onda in un intervallo spaziale pari a 2π metri.

In generale il periodo spaziale può essere espresso tramite λ o k.

-Lunghezza d'onda λ -

La lungheza d'onda è lo spazio percorso dalla perturbaione nell'intervallo di tempo di un periodo T.

$$\lambda = \frac{2\pi}{k} = \nu T$$

Periodo temporale Fissato unpunto nello spazio $x = x_0$, definiamo il periodo $T = t_2 - t_2$

$$T = \frac{2\pi}{\omega}$$

come l'intervallo temporale tra due istanti nei quali l'onda, essendo armonica, assume lo stesso valore. Sapendo che la pulsazione è la velocità dell'onda nel percorrere un giro (2π) , i due periodi dono legati dalla relazione

$$\lambda = \nu T$$

Quindi possiamo esprimere il periodo temporale tramite T, f, ω .

Tutte le espressioni della funzione d'onda sono:

$$\xi(x,t) = \xi_0 \sin(kx \mp \omega t + \delta) \qquad \xi(x,t) = \xi_0 \sin\left[2\pi \left(\frac{x}{\lambda} \mp \frac{t}{T}\right) + \delta\right] \qquad \xi_0 \sin\left[\frac{2\pi}{\lambda} (x \mp \nu t) + \delta\right]$$

1.1.1 Propagazione dell'energia in una barra solida

La propagazione di un campo che descrive in'onda è sempre accompagnato da una propagazione di energia. Osserviamo prima il fenomeno del flusso di energia legato alla propagazione di un'onda piana armonica in una barra solida andando a calcolare la potenzia media e l'energia per untià di volume ad essa associata.

Per prima cosa mettiamo in evidenza le equazioni che entrano in gioco:

Onda: $\xi(x, t) = \xi_0 \sin(kx - \omega t)$

Forza:
$$F = -ES \frac{\partial \xi}{\partial x}$$

L'espressione della potenza è

$$\mathcal{P} = F \cdot \vec{u}$$

$$= -ES \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial t}$$

$$= -ES [k\xi_0 \cos(kx - \omega t)] [-\omega \xi_0 \cos(kx - \omega t)]$$

$$= ESk\omega \xi_0^2 \cos^2(kx - \omega t)$$

La potenza quindi è una cosinusoide traslata in alto di una sua ampiezza (con avvallamenti tangenti all'asse orizzontale). la potenza media è espirmibile come la retta che interseca la cosinusoide alla quota pari a metà la sua ampiezza; poi ricordandoci che

$$v = \sqrt{E/\rho} \qquad E = v^2 \rho$$

$$\mathcal{P}_m = \frac{1}{2} E S k \omega \xi_0^2$$

$$= \frac{1}{2} (v^2 \rho) S \left(\frac{\omega}{v}\right) \omega \xi_0^2$$

$$\mathcal{P}_m = \frac{1}{2} \rho \omega^2 \xi^2 S v$$
(1.1)

Energia per unità di volume

Considero l'elemento infinitesimo di massa $dm = \rho dV = \rho S dx$ descrive un moto armonico con

Posizione:
$$\xi(x,t) = \xi_0 \sin(kx - \omega t)$$

Velocità
$$v(x,t) = \frac{\partial \xi}{\partial t} = \omega \xi_0 \cos(kx - \omega t)$$

Quindi l'energia meccanica risulta pari all'energia cinetica massima assunto dall'elemento dm, che si trova utilizzando la velocità massima $v_{\text{max}} = \omega \xi_0$:

$$dU = \frac{1}{2}(dm)v_{\text{max}}^2 = \frac{1}{2}\rho S(dx)\omega^2 \xi_0^2 = \frac{1}{2}\rho(dV)\omega^2 \xi_0^2$$

Chiamiamo densità di energia per unità di volume il valore

$$W = \frac{dU}{dV} = \frac{1}{2}\rho\omega^2\xi_0^2$$

con la quale possiamo esprimere la potenza media come

$$\mathscr{P}_m = \mathscr{W} S v \tag{1.2}$$

Intensità dell'onda

Definiamo l'intensità di un'onda come potenza media per unità di superficie, quindi

$$I = \frac{\mathscr{P}_m}{S} = \frac{1}{2}\rho\omega^2\xi_0^2\nu$$

1.1.2 Propagazione dell'energia in una corda tesa

Studiamo ora lo stesso fenomeno ma in una corda tesa. La situazione è simile con la differenza che l'onda ora è trasversale.

Per prima cosa mettiamo in evidenza le equazioni che entrano in gioco:

Onda:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Forza: F = T

L'espressione della potenza è

$$\mathcal{P} = F \cdot \vec{u}$$

$$= T \frac{\partial \xi}{\partial t} \cos\left(\frac{\pi}{2} + \alpha\right) \qquad \cos\left(\frac{\pi}{2} + \alpha\right) = \sin \alpha \approx \tan \alpha = \frac{\partial \xi}{\partial x}$$

$$= T \frac{\partial \xi}{\partial t} \frac{\partial \xi}{\partial x}$$

$$= T k \omega \xi_0^2 \cos^2(kx - \omega t)$$

Trovo la potenza media come prima esprimendo k e T come

$$\boxed{v = \sqrt{T/\mu} \qquad T = v^2 \mu} \qquad \boxed{k = \frac{\omega}{v}}$$

$$\mathscr{P}_m = \frac{1}{2} \mu \omega^2 \xi^2 v \qquad (1.3)$$

Energia per unità di lunghezza

Considero l'elemento infinitesimo di massa $dm = \mu dx$ descrive un moto armonico con

Posizione:
$$\xi(x, t) = \xi_0 \sin(kx - \omega t)$$

Velocità
$$v(x,t) = \frac{\partial \xi}{\partial t} = \omega \xi_0 \cos(kx - \omega t)$$

Quindi l'energia meccanica risulta pari all'energia cinetica massima assunto dall'elemento dm, che si trova utilizzando la velocità massima $v_{\text{max}} = \omega \xi_0$:

$$dU = \frac{1}{2}(dm)v_{\text{max}}^2 = \frac{1}{2}\mu(dx)\omega^2\xi_0^2$$

Chiamiamo densità di energia per unità di lunghezza il valore

$$W = \frac{dU}{dx} = \frac{1}{2}\mu\omega^2\xi_0^2$$

con la quale possiamo esprimere la potenza media come

$$\mathscr{P}_m = \mathcal{W} \, v \tag{1.4}$$

1.2 Onde sonore

Consideriamo ora delle onde sonore come onde di spostamento sempre accompagnate da onde di pressione:

Spostamento:
$$\xi = \xi_0 \sin(kx - \omega t)$$

Pressione:
$$dp = -\beta \frac{\partial \xi}{\partial x}$$

1.2.1 Pressione

L'espressione della pressione era stata ricavata nel capitolo sulle onde nei gas (??)

$$p(x,t) = p_0 - \beta \frac{\partial \xi}{\partial x}$$
 \rightarrow $dp(x,t) = p(x,t) - p_0 = -\beta \frac{\partial \xi}{\partial x}$

Sviluppando la derivata parziale, e ricordando alcune equivalenze

$$v = \sqrt{\frac{\beta}{\rho_0}} \to \beta = v^2 \rho_0$$

$$k = \frac{\omega}{v}$$

troviamo

$$dp = -\beta k \xi_0 \cos(kx - \omega t)$$

$$= v^2 \rho_0 \frac{\omega}{v} \cos(kx - \omega t)$$

$$= \rho_0 v \omega \xi_0 \cos(kx - \omega t)$$

$$= \Delta p_{\text{max}} \sin(kx - \omega t - \pi/2)$$

Le onde di pressione sono quindi in ritardo di $\pi/2$.

1.2.2 Potenza

$$\mathscr{P} = \overrightarrow{F} \cdot \overrightarrow{v} = (dp)Sv = -\beta \frac{\partial \xi}{\partial x} S \frac{\partial \xi}{\partial t}$$

$$\begin{split} \mathcal{P} &= \beta k \xi_0 \cos(kx - \omega t) S\omega \xi_0 \cos(kx - \omega t) \\ &= v^2 \rho_0 \frac{\omega}{v} \xi_0 \cos(kx - \omega t) S\omega \xi_0 \cos(kx - \omega t) \\ &= \rho_0 v \omega^2 S \xi_0^2 \cos^2(kx - \omega t) \end{split}$$

Si ottiene quindi una potenza media pari a metà la sua ampiezza

$$\mathscr{P}_m = \frac{1}{2} \rho_0 v \omega^2 S \xi_0^2$$

1.2.3 Intensità

Ricordando che l'intensità è la potenza per unità di superficie:

$$I = \frac{\mathcal{P}_m}{S} = \frac{1}{2} \rho_0 v \omega^2 \xi_0^2$$

Riconosciamo che $\Delta p_{\rm max}$ = $\rho_0 \nu \omega \xi_0$ e che quindi possiamo scrivere l'intensità come

$$I = \frac{(\rho_0 \nu \omega \xi_0)^2}{2\rho_0 \nu} = \frac{\Delta p_{\text{max}}^2}{2\rho_0 \nu}$$
 (1.5)