Homework 4

ALECK ZHAO

October 9, 2017

Chapter 3: Metrics and Norms

6. If d is any metric on M, show that $\rho(x,y) = \sqrt{d(x,y)}$, $\sigma(x,y) = \frac{d(x,y)}{1+d(x,y)}$, and $\tau(x,y) = \min\{d(x,y),1\}$ are also metrics on M.

Proof. ρ : Clearly ρ is non-negative since d is non-negative by being a metric, and

$$\rho(x,y) = 0 = \sqrt{d(x,y)} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric, and finally

$$\begin{split} \rho(x,y) + \rho(y,z) &= \sqrt{d(x,y)} + \sqrt{d(y,z)} \\ \Longrightarrow \left[\rho(x,y) + \rho(y,z) \right]^2 &= d(x,y) + d(y,z) + 2\sqrt{d(x,y)}d(y,z) \\ &\geq d(x,z) + 2\sqrt{d(x,y)}d(y,z) \geq d(x,z) \\ \Longrightarrow \rho(x,y) + \rho(y,z) \geq \sqrt{d(x,z)} = \rho(x,z) \end{split}$$

 σ : Clearly σ is non-negative since d is non-negative, and

$$\sigma(x,y) = 0 = \frac{d(x,y)}{1 + d(x,y)} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric. Now, define $F(t) = \frac{t}{1+t}$. Then $F'(t) = \frac{1}{(1+t)^2} > 0$ so F is increasing, and we have

$$F(t) + F(s) = \frac{t}{1+t} + \frac{s}{1+s} = \frac{t+ts+s+st}{(1+t)(1+s)} = \frac{s+t+2st}{1+s+t+st}$$
$$= \frac{s+t+st}{1+s+t+st} + \frac{st}{1+s+t+st} = F(s+t+st) + \frac{st}{1+s+t+st}$$
$$\geq F(s+t)$$

since F is increasing since $F'(t) = (1+t)^{-2} > 0$. Thus,

$$\sigma(x,y) + \sigma(y,z) = F(d(x,y)) + F(d(y,z)) \ge F(d(x,y) + d(y,z))$$

$$\ge F(d(x,z)) = \sigma(x,z)$$

 τ : Clearly τ is non-negative since d and 1 are non-negative, and

$$\tau(x,y) = 0 = \min \{d(x,y), 1\} \iff d(x,y) = 0 \iff x = y$$

It is also symmetric because d is symmetric. Suppose that

$$\begin{split} \tau(x,y) + \tau(y,z) &< \tau(x,z) \\ \min \left\{ d(x,y), 1 \right\} + \min \left\{ d(y,z), 1 \right\} &= m_1 + m_2 < \min \left\{ d(x,z), 1 \right\} \\ &\implies m_1 + m_2 < 1, \quad m_1 + m_2 < d(x,z) \end{split}$$

If $m_1 + m_2 < 1$, then we must have $m_1 = d(x,y)$ and $m_2 = d(y,z)$, but since d is a metric, $m_1 + m_2 = d(x,y) + d(y,z) \ge d(x,z)$, so it is impossible for both conditions to be true. Contradiction, so $\tau(x,y) + \tau(y,z) \ge \tau(x,z)$, and τ is a metric.

15. We define the diameter of a nonempty subset A of M by $diam(A) = \sup \{d(a,b) : a,b \in A\}$. Show that A is bounded if and only if diam(A) is finite.

Proof. (\Longrightarrow): If A is bounded, then $\exists x_0 \in M$ and $C < \infty$ such that $d(a, x_0) \le C$ for all $a \in A$. Then $\operatorname{diam}(A) = \sup \{d(a, b) : a, b \in A\} \le \sup \{d(a, x_0) + d(x_0, b) : a, b \in A\} \le 2C < \infty$

(\iff): If diam(A) is finite, say s = diam(A). Then take any $x_0 \in A \subset M$, and take C = s. Since s is the supremum, it follows that

$$C = s = \sup \{d(a, b) : a, b \in A\} \ge d(a, x_0)$$

for any $a \in A$, so A is bounded, as desired.

22. Show that $||x||_{\infty} \leq ||x||_2$ for any $x \in \ell_2$, and that $||x||_2 \leq ||x||_1$ for any $x \in \ell_1$.

Proof. We have

$$|x_k| \le \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2}$$

for all k (obvious once we square both sides), so it follows that

$$||x||_{\infty} = \sup |x_k| \le \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2} = ||x||_2$$

By Cauchy, we have

$$\begin{split} \sum_{i=1}^{\infty} |x_i \cdot x_i| &\leq \sum_{i=1}^{\infty} |x_i| \sum_{i=1}^{\infty} |x_i| \\ \Longrightarrow & \left\| x \right\|_2 = \left(\sum_{i=1}^{\infty} |x_i|^2 \right)^{1/2} \leq \sum_{i=1}^{\infty} |x_i| = \left\| x \right\|_1 \end{split}$$

23. The subset of ℓ_{∞} consisting of all sequences that converge to 0 is denoted by c_0 . Note that c_0 is actually a linear subspace of ℓ_{∞} ; thus c_0 is also a normed vector space under $\|\cdot\|_{\infty}$. Show that we have the following proper set inclusions: $\ell_1 \subset \ell_2 \subset c_0 \subset \ell_{\infty}$.

Proof. Suppose $x \in \ell_1$. Then $\sum_{i=1}^{\infty} |x_i| < \infty$. By Cauchy, we have

$$\sum_{i=1}^{\infty} |x_i \cdot x_i| \le \sum_{i=1}^{\infty} |x_i| \sum_{i=1}^{\infty} |x_i|$$

$$\implies \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2} \le \sum_{i=1}^{\infty} |x_i| < \infty$$

so $\ell_1 \subset \ell_2$. Then the reverse inclusion does not hold because for the sequence $x_n = \frac{1}{n}$, we have

$$\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi}{6} \quad \text{but} \quad \sum_{i=1}^{\infty} \frac{1}{i} \to \infty$$

2

Suppose $y \in \ell_2$, but y_n does not converge to 0. Clearly y must be bounded, otherwise it would not be in ℓ_2 . Then there exists some $\varepsilon > 0$ such that $|y_n| \ge \varepsilon$ infinitely often. Then $\sum_{i=1}^{\infty} |y_i|^2 \to \infty$, so $y \notin \ell_2$, contradiction. Thus $y_n \to 0 \implies y \in c_0$, as desired. The reverse inclusion does not hold for the sequence $y_n = \frac{1}{\sqrt{n}}$, since $y_n \to 0$ but $\sum_{i=1}^{\infty} \left(\frac{1}{\sqrt{i}}\right)^2 \to \infty$.

Finally, c_0 is a linear subspace of ℓ_{∞} , and the reverse inclusion does not hold if we consider the sequence $(1,0,1,0,1,0,\cdots)$. This is bounded, but does not converge to 0.

25. The same techniques can be used to show that $||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$ defines a norm on C([0,1]) for any 1 . State and prove the analogues of Lemma 3.7 and Theorem 3.8 in this case. (Does Lemma 3.7 still hold in this setting for <math>p = 1 and $q = \infty$?)

Lemma 3.7': Let 1 and let <math>q be defined by 1/p + 1/q = 1. Given $f, g \in C([0,1])$, we have $\int_0^1 |f(x)g(x)| \ dx \le \|f\|_p \|g\|_q$.

Proof. From Young's inequality, we have

$$\left| \frac{f(x)}{\|f\|_{p}} \right| \cdot \left| \frac{g(x)}{\|g\|_{q}} \right| \le \frac{1}{p} \left| \frac{f(x)}{\|f\|_{p}} \right|^{p} + \frac{1}{q} \left| \frac{g(x)}{\|g\|_{q}} \right|^{q}$$

$$\implies \int_{0}^{1} \left| \frac{f(x)g(x)}{\|f\|_{p} \|g\|_{q}} \right| dx \le \int_{0}^{1} \frac{1}{p} \left| \frac{f(x)}{\|f\|_{p}} \right|^{p} dx + \int_{0}^{1} \frac{1}{q} \left| \frac{g(x)}{\|g\|_{q}} \right|^{q} dx$$

$$= \frac{1}{p} + \frac{1}{q} = 1$$

$$\implies \int_{0}^{1} |f(x)g(x)| dx \le \|f\|_{p} \|g\|_{q}$$

as desired. If p=1 and $q=\infty$, the statement still holds. We have

$$\begin{split} \|g\|_q &= \sup_{0 \leq t \leq 1} |g(t)| \\ \Longrightarrow |f(x)| \, |g(x)| \leq |f(x)| \cdot \sup_{0 \leq t \leq 1} |g(t)| \\ \Longrightarrow \int_0^1 |f(x)g(x)| \, dx \leq \int_0^1 |f(x)| \cdot \sup_{0 \leq t \leq 1} |g(t)| \, dx \\ &= \|g\|_\infty \, \|f\|_1 \end{split}$$

Theorem 3.8': Let $1 . If <math>f, g \in C([0, 1])$, then $||f + g||_p \le ||f||_p + ||g||_p$.

Proof. Let q be the conjugate of p. By the triangle inequality and Holder's inequality, we have

$$\begin{split} |f(x) + g(x)|^p &= |f(x) + g(x)| \cdot |f(x) + g(x)|^{p-1} \\ &\leq |f(x)| \cdot |f(x) + g(x)|^{p-1} + |g(x)| \cdot |f(x) + g(x)|^{p-1} \\ \Longrightarrow \int_0^1 |f(x) + g(x)|^p \ dx &\leq \int_0^1 |f(x)| \cdot |f(x) + g(x)|^{p-1} \ dx + \int_0^1 |g(x)| \cdot |f(x) + g(x)|^{p-1} \ dx \\ &\leq \|f\|_p \left\| (f+g)^{p-1} \right\|_q + \|g\|_p \left\| (f+g)^{p-1} \right\|_q \end{split}$$

Now, since $1/p + 1/q = 1 \implies q = \frac{p}{p-1}$, we have

$$\begin{aligned} \left\| (f+g)^{p-1} \right\|_{q} &= \left(\int_{0}^{1} \left(f(x) + g(x)^{p-1} \right)^{\frac{p}{p-1}} dx \right)^{\frac{p-1}{p}} \\ &= \left(\left(\int_{0}^{1} \left| f(x) + g(x) \right|^{p} dx \right)^{1/p} \right)^{(p-1)} \\ &= \left\| f + g \right\|_{p}^{p-1} \end{aligned}$$

so it follows that

$$\int_{0}^{1} |f(x) + g(x)|^{p} dx = \|f + g\|_{p}^{p} \le (\|f\|_{p} + \|g\|_{p}) \cdot \|f + g\|_{p}^{p-1}$$

$$\implies \|f + g\|_{p} \le \|f\|_{p} + \|g\|_{p}$$

as desired. \Box

31. Give an example where $\operatorname{diam}(A \cup B) > \operatorname{diam}(A) + \operatorname{diam}(B)$. If $A \cap B \neq \emptyset$, show that $\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$.

Proof. Let $A = \{0\}$ and $B = \{1\}$ under the discrete metric. Then $\operatorname{diam}(A) = 0$ and $\operatorname{diam}(B) = 0$, but $\operatorname{diam}(A \cup B) = \operatorname{diam}(\{0,1\}) = 1$.

Take two points $x, y \in A \cup B$. If x and y are both in A, then $d(x, y) \leq \operatorname{diam}(A)$, so

$$diam(A \cup B) = \sup \{d(a, b) : a, b \in A \cup B\} \le diam(A)$$

and similarly if $x, y \in B$. WLOG $x \in A, y \in B$. Since $A \cap B \neq \emptyset$, take $z \in A \cap B \implies z \in A, z \in B$.

$$d(x,y) \le d(x,z) + d(y,z) \le \operatorname{diam}(A) + \operatorname{diam}(B)$$
 $\implies \operatorname{diam}(A \cup B) = \sup \{d(a,b) : a,b \in A \cup B\} \le \operatorname{diam}(A) + \operatorname{diam}(B)$

as desired. \Box

37. A Cauchy sequence with a convergent subsequence converges.

Proof. Suppose (x_n) is a sequence with a convergent subsequence $(x_{k_j}) \to y$. Let $\varepsilon > 0$. Since (x_n) is Cauchy, choose $N \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon/2$ for all $n, m \ge N$. Next, since $(x_{k_j}) \to y$, choose M such that $d(x_{k_j}, y) < \varepsilon/2$ for all $k_j \ge M$. Take $K = \max\{K, M\}$, so that $d(x_n, x_{k_j}) < \varepsilon/2$ and $d(x_{k_j}, y) < \varepsilon/2$ for all $n, k_j \ge K$. By the triangle inequality, we have

$$d(x_n, y) \le d(x_n, x_{k_j}) + d(x_{k_j}, y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for all n > K, as desired.