第一章 普通点集拓扑

1.1 拓扑空间与连续函数

1.1.1 拓扑空间

定义 1.1.1. 集合 X 上的一个拓扑 T 谓 X 的一满足如下条件的子集族:

- 1. $\{\emptyset, X\} \in \mathcal{T}$;
- 2. T 中元素的任意并仍在 T 中;
- 3. T 中元素的有限交仍在 T 中。

定义 1.1.2. X 的所有子集构成的拓扑谓离散拓扑。

定义 1.1.3. 由 X 和 \emptyset 构成的拓扑谓密着拓扑。

定义 1.1.4. 由 X 本身与所有满足 X-U 为有限集的 U 构成的拓扑谓有限补拓扑。

定义 1.1.5. $T' \supset T$ 则 T' 细于 T, 反之则谓粗于。

如果把开集比做石子, 把石子打碎就得到更细的拓扑。

1.1.2 拓扑的基

定义 1.1.6. 基 B 谓满足如下条件的子集族:

- 1. 对任意 $x \in X$, 存在 $B \in \mathcal{B}$ 满足 $x \in B$;
- 2. 对任意 $x \in B_1 \cap B_2$, 存在 B 满足 $x \in B$ 且 $B \subset B_1 \cap B_2$ 。

注意此定义不针对具体的拓扑。

例 1.1.1. 平面上的圆域和矩形域构成的集族都构成基。

定义 1.1.7. 满足定义1.1.6的 \mathcal{B} 生成的拓扑为所有满足对 $x \in U$,存在 $x \in \mathcal{B} \subset U$ 的 U 的集族。

可以直接验证上述定义构成一个拓扑。对所有x取对应的 $x \in B_x$ 后将诸 B_x 并起,可得等价的表述

定理 1.1.1. 若 \mathcal{B} 为 \mathcal{T} 的基,则 \mathcal{T} 为 \mathcal{B} 中元素并的族。

定理 1.1.2. 设 C 为开集族,若对于任意开集 U 中任意 x,存在 $C \in C$ 满足 $x \in C \subset U$,则 C 为 T 的基。

证明. 容易验证 \mathcal{C} 为基。再分别证 $\mathcal{C} \subset \{U\}$ 与 $\{\cup C\} \supset \{U\}$ 。

定理 1.1.3. 设 \mathcal{B} 于 \mathcal{B}' 分别生成 \mathcal{T} 与 \mathcal{T}' , 则 \mathcal{T}' 细于 \mathcal{T} 当且仅当对任意 $x \in \mathcal{B}$ 存在 $x \in \mathcal{B}' \subset \mathcal{B}$ 。

证明. 强行带入定义,即任意 U 均在 T' 内即可。

定义 1.1.8. $\mathbb R$ 上的 (a,b) 生成的拓扑谓标准拓扑。

定义 1.1.9. \mathbb{R} 上 [a,b) 生成的拓扑谓下限拓扑,记作 \mathbb{R}_{ℓ} 。

定义 1.1.10. \mathbb{R} 上 (a,b) 与 (a,b) – $\left\{\frac{1}{n}\right\}$ 生成的拓扑谓 K-拓扑,记作 \mathbb{R}_K 。

引理 1.1.1. \mathbb{R}_{ℓ} 与 \mathbb{R}_{K} 严格细于标准拓扑,但它们之间不可比较。

证明. \mathbb{R}_K 严格细于的证明只需考虑 x=0 与 $B=(-1,1)-\{1/n\}$,同一个集合可证 \mathbb{R}_ℓ 不细于 R_K 。

定义 1.1.11. 子基 S 谓满足 $\cup S = X$ 的集族。

定义 1.1.12. 子基生成的拓扑谓 S 中有限交的所有并。

可以直接验证 $\{\cap S\}$ 为一个基,故其确实生成一拓扑。

1.1.3 序拓扑

定义 1.1.13. 具有全序关系的 X 上的序拓扑谓所有 (a,b), $(a, \max X]$, $[\min X,b)$ 生成的拓扑。

例 1.1.2. \mathbb{Z}_+ 上的序拓扑是离散拓扑。然而 $X=\{1,2\}\times\mathbb{Z}_+$ 的字典序拓扑下单点集 1×1 并非开集。

定义 1.1.14. 全序集 X 中 a 决定的射线谓开射线 $(a,+\infty)$, $(-\infty,a)$, $[a,+\infty)$, $(-\infty,a]$ 。

所有开射线构成 X 的序拓扑的子基。

1.1.4 积拓扑

定义 1.1.15. $X \times Y$ 上的积拓扑谓所有 $U \times V$ 的集族 \mathcal{B} 生成的拓扑, 其中 $U \to V$ 为 $X \to Y$ 中的开集。

定理 1.1.4. 若 \mathcal{B} 与 \mathcal{C} 分别为 \mathcal{X} 与 \mathcal{Y} 的基、则 $\mathcal{B} \times \mathcal{C}$ 为 $\mathcal{X} \times \mathcal{Y}$ 的基。

定义 1.1.16. 投射 $\pi_1(x,y) = x$, $\pi_2(x,y) = y$ 。

定理 1.1.5. 如下的 S 构成 $X \times Y$ 的一子基, 其中 U 和 V 分别为 X 与 Y 中的开集。

$$S = \{\pi_1^{-1}(U)\} \cup \{\pi_2^{-1}(V)\}.$$

1.1.5 子空间拓扑

定义 1.1.17. 对 X 的子集 Y 定义子空间拓扑, 其中 U 为 X 中的开集。

$$\mathcal{T}_Y = \{Y \cap U\}.$$

定理 1.1.6. 若 \mathcal{B} 为 X 的一个基,则

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

谓 Y 的子空间拓扑的一个基。

引理 1.1.2. 若 Y 为 X 中开集而 U 为 Y 中开集,则 U 为 X 中开集。

定理 1.1.7. 若 $A \subset X$, $B \subset Y$, 则 $A \times B$ 的积拓扑与其自 $X \times Y$ 继承的子空间拓扑相符。

然而,对于序拓扑无类似结论。

例 1.1.3. 考虑 $X = \mathbb{R}$ 而 Y = [0,1], Y 上的序拓扑与子空间拓扑相符。

例 1.1.4. 考虑 $X = \mathbb{R}$ 而 $Y = [0,1) \cup \{2\}$,子空间拓扑中 $\{2\}$ 为开集,二者不符。

例 1.1.5. 考虑 $X = \mathbb{R}^2$ 而 $Y = [0,1] \times [0,1]$,则 $\frac{1}{2} \times \left(\frac{1}{2},1\right]$ 为子空间拓扑的开集但不是序拓扑的开集。

定义 1.1.18. 子集 Y 称为凸的,如果对 Y 中 a < b 皆有 $(a,b) \subset Y$ 。

定理 1.1.8. 设 X 为全序集, Y 为凸子集, 则子空间拓扑与序拓扑一致。

证明. 借助开射线构造子基后证明其相互包含即可。

1.1.6 闭集与极限点

定义 1.1.19. 若 X - A 为开集,则 A 为闭集。

例 1.1.6. \mathbb{R} 中 [a,b] 为闭集, \mathbb{R}^2 中 \mathbb{R}^2_+ 为闭集,有限补拓扑中 X、 \varnothing 、有限集为闭集。

例 1.1.7. 离散拓扑每一个集合都是开集也都是闭集, $Y = [0,1] \cup (2,3)$ 中两个分量都同时是开集和闭集。

定义 1.1.20. 对于拓扑空间 X, 成立

- 1. \emptyset 、X 都是闭集;
- 2. 闭集的任意交仍为闭集;
- 3. 闭集的有限并仍为闭集。

定理 1.1.9. $A \rightarrow X$ 的子空间 Y 的闭集当且仅当有闭集 C 满足 $A = Y \cap C$ 。

定理 1.1.10. $A \neq Y$ 的闭集, $Y \neq X$ 的闭集, 则 $A \neq X$ 的闭集。

Hausdorff 空间

定义 1.1.21. 集合的内部 \mathring{A} 是包含于其内的所有开集的并,闭包 \overline{A} 是其外所有闭集的交。

显然开集的内部是本身,闭集的闭包也是本身。注意 (0,1) 在其本身中的闭包和在 $\mathbb R$ 中的闭包不同,所称闭包都是指父空间闭包。

定理 1.1.11. $Y 中 \overline{A}^Y = \overline{A} \cap X$ 。

定义 1.1.22. 两集合相交,如果它们的交非空。

定义 1.1.23. 含有 x 的开集称为其邻域。

定理 1.1.12. $x \in \overline{A}$ 当且仅当每一个邻域与 A 相交。

证明. 如果存在反例 U, 则 X - U 会成为包含 A 的闭集。

推论 1.1.1. $x \in \overline{A}$ 当且仅当含有 x 的每一个基元素与 A 相交。

例 1.1.8. $A = \{0,1\}, \overline{A} = [0,1], A = \mathbb{Q}, \overline{A} = \mathbb{R}, \overline{\{1/n\}} = \{1/n\} \cup \{0\}, \overline{A} = \mathbb{R}$

极限点

定义 1.1.24. 若 x 的任何一个邻域包含 A 中其他点,则 x 为 A 的极限点。

例 1.1.9. A = (0,1], [0,1] 中的点均为其极限点。 $A = \mathbb{Q}$, \mathbb{R} 中的点均为其极限点。 $A = \{1/n\}$, 0 为其极限点。

定理 1.1.13. $\overline{A} = A \cup A'$, 其中 A' 为极限点集合。

证明. 参考定理1.1.12。

推论 1.1.2. A 为闭集当且仅当 $A' \subset A$ 。

Hausdorff 空间

定义 1.1.25. 如果对于x 的任意邻域 U, 存在N, 使得当 n > N, $x_n \in U$, 则 $\{x_n\}$ 收敛到点 x。

 \mathbb{R}^2 和 \mathbb{R} 中的序列最多收敛至一点,然而其他拓扑空间不一定。

定义 1.1.26. 若 X 中任意两不同点存在无交邻域,则称 X 为一 Hausdorff 空间(Hausdorff space)。

定理 1.1.14. Hausdorff 空间中有限集为闭集。

证明. 只证单点集。由于隔离邻域的存在,易见其他点都不在闭包内。 \Box 比 Hausdorff 条件更弱的,有 T_1 公理。

定义 1.1.27. 若 X 中有限集为闭,则 X 满足 T_1 公理。

定理 1.1.15. 若 X 满足 T_1 公理,则 x 为 A 的极限点当且仅当 x 的任意 邻域与 A 有无限交点。

证明. 如果有一个邻域只有有限交点, 挖掉还是开集, 但不再与 A 相交。 \Box

定理 1.1.16. 若 X 为 Hausdorff 空间,则 X 中的序列最多收敛至一点。

证明. 如果有两个点, 在定义中取隔离邻域即可。

定理 1.1.17. 每一个具有序拓扑的全序集,两个 Hausdorff 空间的积, Hausdorff 空间的子空间是 Hausdorff 空间。

证明. 全序集可选取中间元分割,中间元不存在的直接射线可分割。

1.1.7 连续函数

函数的连续性

定义 1.1.28. 函数 $f: X \to Y$ 称为连续的,如果开集的原像为开集。

为了证明函数连续,只需要证明基的原像为开集即可。

例 1.1.10. 上述定义等价于 $\epsilon - \delta$ 定义。

证明. 如果 $\epsilon - \delta$ 定义成立,则 f(x) 的 ϵ -邻域的原像包含 x 的 δ -邻域,故任意开集的原像均为开集。如果拓扑定义成立,则显而易见。

例 1.1.11. $f: \mathbb{R} \to \mathbb{R}_{\ell}$ 的 f(x) = x 不是连续函数,但其逆连续。

定理 1.1.18. 对于 $f: X \to Y$, 下列条件等价:

- 1. f 连续;
- 2. 对 X 的任意子集 A 有 $f(\overline{A}) \subset \overline{f(A)}$;
- 3. 对 Y 中任意闭集 B 有 $f^{-1}(B)$ 为闭集;
- 4. 对任意 x 与 f(x) 的邻域 V, 存在 x 的邻域 U 满足 $f(U) \subset V$ 。

证明. $1 \Rightarrow 2$: 若 y 在 f(A) 外一开集内,则原像为 f(A) 外一开集。 $2 \Rightarrow 3$: 闭集 $f(A) = \overline{f(A)} \supset f(\overline{A})$,故 $A = \overline{A}$ 。 $3 \Rightarrow 1 与 1 \Rightarrow 4 \Rightarrow 1$ 显然。

同胚

定义 1.1.29. 如果一个一一映射和它的逆都连续,则称之为同胚。

定义 1.1.30. 如果 X 的性质于与之同胚的 Y 都成立,则称之为拓扑性质。

定义 1.1.31. 映入子空间的同胚称为嵌入。

例 1.1.12. $F(x) = x/(1-x^2)$ 与 $G(y) = 2y/\left(1+(1+4y^2)^{1/2}\right)$ 为 (-1,1) 与 $\mathbb R$ 问同胚。

M 1.1.13. [0,1) 弯曲到圆周的映射连续而非同胚。其扩张连续而非嵌入。

构造连续函数

定理 1.1.19. 下列函数皆连续:

- 1. 常值函数;
- 2. 子空间到父空间的内射;
- 3. 连续函数的复合;
- 4. 连续函数限制定义域到一子空间的结果;
- 5. 连续函数限制或扩大值域至包含像集的子空间或父空间的结果;
- 6. 若 X 可写为开集的并, 且 f 在每个分量上连续。

定理 1.1.20 (黏结引理). 设 $X = A \cup B$ 且二者为闭集,并且 $f: A \to Y$ 与 $g: B \to Y$ 连续且在 $A \cap B$ 上相等,则 h 连续,

$$h(x) = \begin{cases} f(x), x \in A, \\ g(x), x \in B. \end{cases}$$

证明. 由定理1.1.18, 注意闭集被映回闭集即可。

例 1.1.14. 对 x > 0, h(x) = x, x < 0, h(x) = x/2, 则 h 连续。

定理 1.1.21. $f: A \to X \times Y$ 连续的充分必要条件为 f_X 与 f_Y 连续。

证明. 注意连续的拓扑定义等价于对基连续即可。

例 1.1.15. 向量场连续当且仅当分量连续。

1.1.8 积拓扑

定义 1.1.32. X 的元素的 J-串为 $x: J \to X$, 其全体记作 X^J 。

例如, $\mathbb{R}^3 \cong \mathbb{R}^{\{1,2,3\}}$ 。

定义 1.1.33. A_i 的笛卡尔积 $\prod A_i$ 为各取一元构成之 J-串的集合。

定义 1.1.34. 基由 $\prod U_{\alpha}$ 构成 $\prod X_{\alpha}$ 的称为箱拓扑。

定义 1.1.35. 子基由 $\{\pi^{-1}(U_{\alpha})\}$ 构成的称为积拓扑。

定理 1.1.22. 箱拓扑的基由所有 $\prod U_{\alpha}$ 构成,积拓扑的基由 $\prod U_{\alpha}$ 构成但 U_{α} 中只有有限个非 X_{α} 。

定理 1.1.23. $\prod B_{\alpha}$ 构成箱拓扑的积, $\prod B_{\alpha}$ 中若 B_{α} 中只有有限个非 X_{α} 则构成积拓扑的基。

例 1.1.16. \mathbb{R}^n 的积拓扑与箱拓扑一致。

定理 1.1.24. $\prod A_{\alpha}$ 在两种拓扑下都是 $\prod X_{\alpha}$ 的同种拓扑的子空间。

定理 1.1.25. 若每个 X_{α} 都是 Hausdorff 的,则两拓扑下 $\prod X_{\alpha}$ 都如此。

定理 1.1.26. 在 $\prod X_{\alpha}$ 的两种拓扑下都有 $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$.

证明. 若 x 在 $\prod \overline{A_{\alpha}}$ 内,则诸 $\prod U_{\alpha}$ 均有 $\prod A_{\alpha}$ 的元素,故 x 在 $\overline{\prod A_{\alpha}}$ 内。若 x 在 $\overline{\prod A_{\alpha}}$ 外 U_{α} 内,则 $\pi^{-1}(U_{\alpha})$ 包含 x 且为开集,故在 $\overline{\prod A_{\alpha}}$ 外。 \square

定理 1.1.27. 积拓扑下 $f: A \to \prod X_{\alpha}$ 连续当且仅当各个分量连续。

证明. 注意连续的拓扑定义等价于对基成立即可。

例 1.1.17. 对箱拓扑下 $\mathbb R$ 的可数无限积 $\mathbb R^\omega$, $f(t)=(t,t,t,\cdots)$ 不连续。注 意 $(-1,1)\times (-1/2,1/2)\times -1/3,1/3$ 被映回 0 即可。

1.1.9 度量拓扑

定义 1.1.36. 集合 X 的一个度量 d 是一个函数 $d: X \times X \to \mathbb{R}$,满足正定、对称与三角不等式。

定义 1.1.37. 以全体 ϵ -球为基的拓扑称为度量拓扑。

容易验证全体 ϵ -球构成基。由这一定义,开集可视作满足任意 $y \in U$ 都有某 $B(x,\epsilon) \subset U$ 的集合 U。

例 1.1.18. 若 x = y, d(x,y) = 1, 否则 d(x,y) = 0 诱导出离散拓扑。

例 1.1.19. d(x,y) = |x-y| 诱导 \mathbb{R} 上的序拓扑。

定义 1.1.38. 若 X 的拓扑由某度量诱导,则称 X 为度量空间。

定义 1.1.39. 度量空间的子集 A 为有界的, 若 $d(a_1, a_2)$ 一致有界。A 的直径谓 $\dim A = \sup \{d(a_1, a_2)\}$ 。

定理 1.1.28. 由度量 d 诱导的度量

$$\bar{d}(x,y) = \min \left\{ d(x,y), 1 \right\}$$

谓标准有界度量。

定义 1.1.40. 分类验证三角不等式即可。

定义 1.1.41. 对 \mathbb{R}^n 中的点, $d(x,y) = \|x - y\| = \left(\sum (x_i - y_i)^2\right)^{1/2}$ 诱导 欧氏度量, $\rho(x,y) = \max\{|x_i - y_i|\}$ 诱导平方度量。

欧式度量的三角不等式是熟知的结论。平方度量由

$$d_3 = |x_k - z_k| \le |x_k - y_k| + |y_k - z_k| \le d_1 + d_2$$

验证三角不等式。注意同理可证若 X 上度量 d_1 和 Y 上度量 d_2 可以生成 $X \times Y$ 上一度量 $d_3 = \max{\{d_1, d_2\}}$ 。

欧式度量和平方度量的基元素分别为圆域和方域。由定理1.1.3立得

定理 1.1.29. 度量拓扑 T' 细于 T 当且仅当对于任意 x 与 ϵ , 存在 ϵ' 满足

$$B'(x,\epsilon') \subset B(x,\epsilon)$$
.

定理 1.1.30. 欧氏度量和平方度量诱导 \mathbb{R}^n 上的积拓扑。

证明. 直接验证不难, 但由 $\rho \le r \le \sqrt{n}\rho$ 可立得欧式与平方拓扑等价。 \square

定义 1.1.42. 对 \mathbb{R}^J 中的点定义

$$\rho\left(\boldsymbol{x},\boldsymbol{y}\right) = \sup\left\{\bar{d}\left(x_{\alpha},y_{\alpha}\right) \mid \alpha \in J\right\},\,$$

可得一致度量,诱导出一致拓扑。

定理 1.1.31. 一致拓扑细于积拓扑, 粗于箱拓扑。J 为无限集则两两不同。

证明. 玩弄基元素的大小可证其粗细。J 无限时, $(-1,1)^J$ 在一致拓扑下为开,积拓扑下非开。 $\prod (-1/n,1/n)$ 在箱拓扑下为开,一致拓扑下非开。 \square

定理 1.1.32. 对 \mathbb{R} 的可数无限积 \mathbb{R}^{ω} 定义

$$D\left(\boldsymbol{x},\boldsymbol{y}\right)=\sup\left\{ \frac{\bar{d}\left(x_{i},y_{i}\right)}{i}\right\} ,$$

可诱导 \mathbb{R}^{ω} 上的积拓扑。

证明. 设 \mathbb{R}^{ω} 的某基 B 的分量在 j 后均为 \mathbb{R} ,则某 $B(x,\epsilon/j)$ 包含其内。反 之也可以选择这样的基包含于 B(x,1/j) 内。

类似证明可仿照得到

定理 1.1.33. 可度量化空间的可数积仍可度量化。

例 1.1.20. 在 $X \times Y = \mathbb{R}^2$ 上定义 $d = \min\{y_2 - y_1, 1\}$, 如果两点共 x, 否则 $d = 1 + (x_1 - x_2)$, 则 d 诱导字典序拓扑。

例 1.1.21. 易见度量空间的子空间仍为度量空间,且子空间的度量直接限制定义域可得。

1.1.10 连续函数与度量拓扑

定理 1.1.34. 度量空间到度量空间的 $f:X\to Y$ 的连续性等价于 ϵ - δ 条件。证明. 仿照例1.1.10可得。

引理 1.1.3 (序列引理). 若 A 中有收敛于 x 的序列,则 $x \in \overline{A}$ 。若 X 为度量空间,逆命题成立。

定理 1.1.35. 度量空间之间的 $f: X \to Y$ 连续的充要条件谓 $x_n \to x$ 等价于 $f(x_n) \to f(x)$ 。

证明. 若拓扑条件成立,则 f(x) 的小邻域原像都会包含 x 的邻域,故包含 $\{x_n\}_{n>N}$ 。若序列条件成立,结合序列引理与定理1.1.18即可。

注意上述定理对满足下列条件的空间也可以直接适用。

定义 1.1.43. 如果 x 有邻域 $\{U_n\}$ 满足任意邻域 U 都有某 U_n 含于其内,则称 X 在 x 处有可数基。如果处处都有则称 X 满足第一可数性公理。

引理 1.1.4. 加减乘除是其定义域内的连续函数。

定理 1.1.36. 连续函数加减乘的结果连续, 恒非零的除亦连续。

定义 1.1.44. 若 $\{f_n\}$ 关于度量 $d(f,g) = \sup\{|f-g|\}$ 收敛于 f,则称其一致收敛。

定理 1.1.37. 一致收敛的连续函数列收敛于连续函数。

证明. 对给定的 ϵ , 存在 δ 和 N 使得当 $|x-y| < \delta$, 诸变差皆小于 δ 。

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f(y) - f_N(y)|.$$

推论 1.1.3. 若 $x_n \to x$ 而 $\{f_n\}$ 一致收敛于 f, 则 $f_n(x_n) \to f(x)$ 。

例 1.1.22. 箱拓扑的 \mathbb{R}^{ω} 不满足序列引理因此不可度量化。 $0 \in \mathbb{R}_{+}^{\omega}$ 但 $\prod (-x_{ii}, x_{ii})$ 排斥所有 x_i 。

例 1.1.23. 不可数个 ℝ 的积空间不可度量化。

证明. 考虑 \mathbb{R}^J 由那些知有有限个零分量的 $\{0,1\}$ 序列的子空间,易见 0 在 其内。然而,能有幸为零的分量指标仅有可数个,故存在恒 1 的指标。 \square

1.1.11 商拓扑

定义 1.1.45. 满射 $p: X \to Y$ 称为商映射,如果 $U \neq Y$ 的开集当且仅当 $p^{-1}(U) \neq X$ 的开集。

易见开集也可以改为闭集。

定义 1.1.46.~X 的子集 C 为饱和的,如果它是纤维的并。

商映射等价于饱和开集映射到开集。易见开映射和闭映射(把开集映射 到开集或者把闭集映射到闭集)都是商映射。

例 1.1.24. $[0,1] \cup [2,3]$ 到 [0,2] 的黏贴映射是闭映射但不是开映射。

例 1.1.25. $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ 是开映射但不是闭映射, 因为 $\{y = 1/x\}$ 被映射到开集。

例 1.1.26. π_1 在 $A = \mathbb{R} \times 0 \cup [0, \infty) \times \mathbb{R}$ 上的限制是商映射,但不是开映射或者闭映射。 $A - (-\infty, 0] \times 0$ 是开集,但是被映射到闭集。 $\{y = \pm \tan x\}$ 图像左侧是闭集,但被映射到开集。

定义 1.1.47. 满射 $p: X \to A$ 的像 A 上存在一拓扑使得 X 为商映射,此 拓扑谓商拓扑。

例 1.1.27. $y = \operatorname{sgn}(x)$ 在点集上可以诱导一个商拓扑 $\{\{\{-1\}, \{1\}\}, 0\}$ 。

定义 1.1.48. X^* 为 X 的分拆,则 $\pi: X \to X^*$ 诱导的商拓扑使 X^* 为商空间。

例 1.1.28. 将单位圆盘将圆周视为等价类,则商空间同胚于球面。

例 1.1.29. 将矩形四角和对边上对应点视为等价类,则商空间同胚于环面。

由例1.1.26知商映射在子空间的限制未必是商映射,但仍然有

定理 1.1.38. 设商映射 $p: X \to Y$ 与饱和子空间 A, 则 p 在其上的限制 $q: A \to p(A)$ 仍为商映射,如果

- 1. A 为开集或闭集;
- 2. 或者 p 为开映射或闭映射。

证明. 先验证,如果 $V \subset p(A)$,则 $q^{-1}(V) = p^{-1}(V)$ 。如果 $U \subset X$,则 $p(U \cap A) = p(U) \cap p(A)$ 。都有 $q^{-1}(V)$ 是开的 $\Rightarrow V$ 在 p(A) 中为开。 \square

商映射的复合仍为商映射,但乘积不一定,Hausdorff 空间的商空间也不一定是 Hausdorff 空间。

定理 1.1.39. 商映射 p 与纤维上的映射 g 诱导 f 满足 $f \circ p = g \circ f$ 连续当且仅当 g 连续, f 为商映射当且仅当 g 为商映射。

证明. 若 p 和 g 为商映射,证明 $f^{-1}(V)$ 为开集 $\Rightarrow V$ 为开集即可。

推论 1.1.1. 设 $g: X \to Z$ 为连续满射, X^* 为各纤维的集, 取商拓扑, 则

1. g 诱导的 $f: X^* \to Z$ 一一连续, 其为同胚当且仅当 g 为商映射;

2. 若 Z 为 Hausdorff 空间,则 X^* 为 Hausdorff 空间。

证明. 注意一一的商映射等价于同胚。

例 1.1.30. 设 $X = [0,1] \times \{1,2,\cdots\}$, $Z = x \times (x/n)$ 其中 $x \in [0,1]$, 则 $g(x \times n) = x \times (x/n)$ 诱导出 X^* 为将 X 诸左端点粘合的空间,但 $f: X^* \to Z$ 不是同胚。

证明. 考虑 $x_n = (1/n) \times n$,则 $\{x_n\}$ 为闭集但是 $z_n = (1/n) \times 1/n^2$ 不是,因此 g 不是商映射。

例 1.1.31. 设 $p: X \to X^*$ 是将 \mathbb{R} 的 \mathbb{Z}_+ 粘合为 b 形成的商空间, $i: \mathbb{Q} \to \mathbb{Q}$ 为恒等映射,则 $p \times i$ 不是商映射。

证明. 假设 U_n 为 $n \times (\sqrt{2}/n)$ 附加其上方和下方的条带, $U = \cup U_n$,则 U 饱和但 $p \times i(U)$ 不是开集,因为某 $I_b \times I_\delta$ 的原像包含条带的缝隙。

1.2 连通性与紧致性

1.2.1 连通空间

定义 1.2.1. 拓扑空间 X 的一个分割,谓其一对无交非空开集其并为 X。

引理 1.2.1. 若 $Y \in X$ 的子空间,则其分割的分量彼此不包含对方的极限点。若存在一对并为 Y 的非空集合彼此不包含对方极限点,则亦构成分割。

证明. 注意分量既开又闭,故极限点自含。若存在这样的一对,则 A 中任意元素都存在小邻域在 B 外,故在 A 内,故 A 为开集。

例 1.2.1. 密着拓扑是连通的。

例 1.2.2. \mathbb{R} 的子空间 $[-1,0) \cup (0,1]$ 不是连通的。

例 1.2.3. ℚ 不是连通的。

例 1.2.4. $\{y=1/x\}$ 其中 x>0 和 $\{y=0\}$ 作为 \mathbb{R}^2 的子空间不是连通的。

引理 1.2.2. 连通子空间包含在分割的二者中一个内。

定理 1.2.1. 含有一个公共点的连通子空间族的并是连通的。

定理 1.2.2. A 为连通子空间,则 $A \subset B \subset \overline{A}$ 的 B 是连通的。

证明. 若 \overline{A} 被分拆为 $C \cup D$, 则 $A \subset C$ 而 D 为一个与 A 无交的邻域。 \square

定理 1.2.3. 连通空间的连续映射的像是连通的。

定理 1.2.4. 有限多个连通空间的积是连通的。

证明. 注意每个十字形是含有公共点的连通空间的并, 再将十字形并起。 □

例 1.2.5. 箱拓扑的 \mathbb{R}^{ω} 不连通,后者可分为有界序列和无界序列两开集。

例 1.2.6. 积拓扑的 \mathbb{R}^{ω} 连通,因为 $\mathbb{R}^{\omega} = \overline{\mathbb{R}^{\infty}}$,而 $\mathbb{R}^{\infty} \cong \bigcap (\mathbb{R}^n + (0,0,\cdots))$,被并的元素均连通且具有原点为公共点。

1.2.2 实直线上的连通子空间

定义 1.2.2. 若 L 是多于一个元素的全序集,且 L 具有上确界性质,且 $x < y \Rightarrow$ 存在 x < z < y,则 L 谓线性连续统。

定理 1.2.5. 若 L 为序拓扑的线性连续统,则 L 及其区间和射线都连通。

证明. L 的凸子集 Y 若分拆为 A 和 B,则其中的(不妨设)a < b 有 [a,b] 被分割为 $A_0 \cup B_0$ 。inf $B_0 \in B_0$ 或 inf $B_0 \in A_0$ 都会导致矛盾。

推论 1.2.1. ℝ 及其区间和射线都是连通的。

定理 1.2.6 (介值定理). 连通空间到序拓扑的全序集的映射 $f: X \to Y$,任何 f(a) 与 f(b) 之间的 r 存在 c 满足 f(c) = r。

例 1.2.7. 有序矩形是连通的, 只需验证上确界性质。分 $\sup \pi_1(A)$ 在 $\pi_1(A)$ 内或外取 $b \times c$ 或 $b \times 0$ 即可。

例 1.2.8. 良序集 X 有 $X \times [0,1)$ 关于字典序为线性连续统。

定义 1.2.3. X 中 x 到 y 到一条道路是连续的 $f:[a,b] \to X$ 满足 f(a)=x 与 f(b)=y。若 X 中任意两点之间都存在道路,则称之道路连通的。

显然道路连通蕴含连通。

例 1.2.9. \mathbb{R}^n 中的球是道路连通的, f(t) = (1-t)x + ty 是一条道路。

例 1.2.10. $\mathbb{R}^n - \{0\}$ 是连通的。

例 1.2.11. 单位球面是连通的,因为它可以从球由 $f: x \to x/||x||$ 得到。

例 1.2.12. 有序矩形 I_o^2 连通而非道路连通。在每个被映射到竖线的 $[a_i,b_i]$ 中选取有理数、只能得到可数竖线。

例 1.2.13. $S = \{x \times \sin(1/x)\}$ 的闭包 \overline{S} 连通而非道路连通。任何 S 到 $0 \times [-1,1]$ 的路径都必然震荡 $t_n \times (-1)^n$,故无法收敛,不可能连续。

1.2.3 分支与局部连通性

定义 1.2.4. X 中的连通等价类谓分支。

定理 1.2.7. X 的所有分支是 X 中无交的连通子空间,其并为 X,且任意连通子空间必定包含在某分量内。

证明. 如果某连通子空间和两个分量相交,那么 $x_1 \sim x_2$ 。

定义 1.2.5. X 中的道路连通等价类谓道路连通分支。

可以证明这是一个等价关系。

定理 1.2.8.~X 的道路连通分支是无交的道路连通子空间,其并为 X,且任意道路连通子空间必定包含在某分量内。

连通分支的闭包也是连通的,因此它们是闭集。如果只有有限分支,它们还会是开集。但道路连通不一定。

例 1.2.14. ℚ 的每个分支为单点集,但不是开集。

例 1.2.15. 拓扑学家的正弦曲线,两个道路分支一个纯开一个纯闭。

定义 1.2.6. 空间谓局部连通的,如果处处给定 U 有连通邻域 $V \subset U$ 。谓局部道路连通的,如果处处有道路连通邻域。

例 1.2.16. 这里的定义不能改成「每个x都存在连通邻域」,因为连通邻域的子开集不一定连通。见局部连通与无穷扫帚。

例 1.2.17. 区间的并是局部连通的, ℚ 不是局部连通的。

定理 1.2.9. 空间是局部连通的当且仅当任何开集的每一个分支都是开的。

证明. 后半句成立则显然, 前半句成立则对邻域取交可得内含的开集。 □

定理 1.2.10. 空间是局部道路连通的当且仅当开集的所有道路连通分量都是开的。

定理 1.2.11. 道路分支包含在分支内。局部道路连通则分支与道路分支同。 证明. 前句显然。后句若分支内有多个道路分支都是开的,则构成分割。□

1.2.4 紧致空间

定义 1.2.7. X 的子集族 \mathcal{C} 称为具有有限交性质 (finite intersection property), 如果 \mathcal{C} 的任意有限子族交非空。

定理 1.2.12. X 是紧致的当且仅当 X 中具有有限交性质的每一个闭集族 \mathcal{C} , 其交非空。

证明. 这些集合的补是一堆开集,这些开集中的任意有限个都不能覆盖 X,但 X 是紧致的,所以它们合起来也不能覆盖 X。

1.2.5 实直线上的紧致子空间

定理 1.2.13. 非空紧致 Hausforff 空间 X, 若无孤立点则不可数。

证明. 对于 X 的任意元素 x,由 Hausdorff 性质皆可以选取一非空开集 V,满足 $x \notin \overline{V}$ 。

假设有 $f: \mathbb{Z}_+ \to X$,则可以选取 V_1 其闭包不包含 x,且可选取 $V_2 \subset V_1$ 其闭包不包含 x_2 ,以此类推。考虑

$$\overline{V}_1 \supset \overline{V}_2 \supset \cdots,$$

由 x 的紧致性与定理1.2.12, 知其交非空故有元素 x 在诸 x_n 之外。

1.2.6 极限点紧致性

定义 1.2.8. 度量空间内的映射 f, 若

$$d\left(f\left(x\right) ,f\left(y\right) \right) < d\left(x,y\right) ,$$

则称 f 为收紧映射 (shrinking map)。

定义 1.2.9. 度量空间内的映射 f, 若

$$d(f(x), f(y)) \le \alpha d(x, y),$$

其中 $\alpha < 1$, 则称 f 为压缩映射 (contraction map)。

定理 1.2.14. 若 X 为完备度量空间,则压缩映射存在不动点。