5)1

난독화에 강한 AI 기반 웹 쉘 탐지

소속 정보컴퓨터공학부

분과 D

팀명 문지기

참여학생 문정윤, 구지원, 차기은

지도교수 최윤호

과제 개요

웹쉘이란?

웹쉘(WebShell)은 업로드 취약점을 통하여 시스템에 명령을 내릴 수 있는 코드를 말합니다. Webshell은 대부분 서버스크립트 (PHP, ASP, JSP)로 만들어지며, 이 스크립트들은 웹 서버의 취약점을 통해 업로드 됩니다. 웹쉘이 서버에 업로드 될 시 해커들은 보안 시스템을 피하여 별도의 인증없이 시스템에 쉽게 접속이 가능합니다.

난독화란?

코드 난독화는 실행 가능한 코드를 수정하여 이해, 해석, 실행에 사용할 수 없도록 하는 것을 말한다. 공격자들은 시스템 관리자들이 웹쉘을 탐지하고 대응하는데 어려움을 겪도록 웹쉘에 난독화를 적용해 파일을 웹쉘이라고 판단하게 될 확률이 높아진다.

이 과제에서 우리는

난독화된 소스 코드를 비난독화하고 그 소스 코드로 부터 Opcode, AST 시퀀스를 생성하여 TextRank 알고리즘을 적용하여 특징을 추출한 뒤 RF, SVM, XGBoost 머신러닝 알고리즘을 활용하여 성능 평가를 수행한다. 최종적으로 해당 파일이 웹쉘 파일인지를 판단한다.

과제 결과

SVM

XGBoost	Precision	Recall	F1-score	Support
Normal file	0.98	0.93	0.95	355
Webshell file	0.88	0.96	0.92	191
Accuracy			0.94	546

Normal과 Webshell 두 클래스의 파일에서 우수한 성능을 보였습니다. 특히 웹 쉘 탐지에서는 정밀도(88%)와 재현율(96%)이 균형 있게 높아, 거의 모든 악성 웹 쉘을 정확하게 탐지할 수 있었습니다. 두 클래스의 F1-score도 95%, 92%로 매우 높아, 다른 모델들에 비해 전반적으로 가장 안정적인 성능을 나타냈습니다.

Random Forest	Precision	Recall	F1- score	Support	SVM	Precision	Recall	F1-score	Support
Normal file	0.96	0.90	0.93	355	Normal file	0.84	0.97	0.90	355
Webshell file	0.83	0.94	0.88	191	Webshell file	0.91	0.65	0.76	191
Accuracy			0.91	546	Accuracy			0.86	546

Random Forest

