Discrete Structures :: CS 207 :: Autumn 2021

Problem Set 7a

Released: October 17, 2021

- 1. **Degree Sequence.** In each of the following problems, either show that the given sequence cannot be the degree sequence of a graph, or give an example of a graph with that degree sequence.
 - (a) (1, 1, 1, 1, 0)
 - (b) (2, 2, 2, 2, 2)
 - (c) (3,3,2,2,1)
 - (d) (4,4,3,2,1)
 - (e) (4,3,3,3,3)
- 2. Define a pseudograph to be an undirected graph with one or more self-loops allowed in each node. The degree of a node in a pseudograph is defined by counting each self-loop as two edges incident on the node.

Show that every (sorted) sequence of non-negative integers with an even sum of its terms is the degree sequence of a pseudograph.

Hint: Construct such a graph by first adding as many self-loops as possible at each vertex. What does the residual degree sequence (i.e., degrees that remain to be satisfied) look like?

3. Regular Graphs.

(a) For any integer $n \geq 3$ and any even integer d with $2 \leq d \leq n-1$, show that there exists a d-regular graph with n nodes, by giving an explicit graph (V, E), where $V = \mathbb{Z}_n$ and E is formally defined using modular arithmetic. (You may find it convenient to use S_a to denote $\{1, \ldots, a\} \subseteq \mathbb{Z}_n$.)

Hint: What would you do for d = 2? Then consider adding additional edges for larger values of d.

(b) For any even integer $n \ge 2$ and any integer d with $1 \le d \le n-1$ show that there exists a d-regular graph with n nodes.

Hint: Use the previous part for even d. For odd d, use the previous part to first construct a (d-1)-regular graph, and find a way to add new edges so that all nodes have their degree incremented by 1.

- 4. A graph with vertices (v_1, \ldots, v_n) is said to be a graph realization of a sequence $d_1 \geq \ldots \geq d_n$ of non-negative integers, if for each i, $\deg(v_i) = d_i$ in the graph. There are efficient algorithms to check if a given sequence has a graph realization. In this problem you shall see one such algorithm.
 - a) Show that if $d_1 \geq \ldots \geq d_n$ has a graph realization, then it has a graph realization such that v_1 is adjacent to the d_1 nodes v_2, \ldots, v_{d_1+1} .

Hint: Among all the realizations, consider one which maximizes the sum of degrees of the nodes adjacent to v_1 . If its vertices cannot be relabelled to be of the required form, then there are nodes v_i , v_j with $d_i > d_j$ and v_1 adjacent to v_j but not adjacent to v_i .

b) Show that the sequence $d_1 \geq \ldots \geq d_n$ has a graph realization if and only if the sequence obtained by sorting $(d_2 - 1), \ldots, (d_{d_1+1} - 1), d_{d_1+2}, \ldots, d_n$ has a graph realization.

Note: This reduces the problem of checking realizability of n-long sequences to a problem of (n-1)-long sequences. This leads to a recursive algorithm.

5. Complement of a Graph. We define the *complement of a graph* as a graph which has the same vertex set, but with exactly those edges that are absent from the original graph. Formally, if G = (V, E), its complement $\overline{G} = (V, \overline{E})$, such that $\overline{E} = K_V - E$ where $K_V = \{\{a, b\} | a \in V, b \in V, a \neq b\}$.

Show that if a graph with n vertices is isomorphic to its complement, then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.

6. Match each graph on the left with a description of its compl	lement:
	(a) A graph with no edges.
(a) V	(b) A graph with a single edge.
(a) K_4	(c) A path with two edges.
(b) C_4	(d) A matching with two edges.
(c) $K_{1,3}$	(e) A graph isomorphic to its complement.
(d) P_4	(f) A complete graph.
	(g) A cyclic graph.
7. What is Wrong With this Proof?	
Claim: If every vertex in a graph has degree at least 1, then	the graph is connected.
Proof. We use induction. Let $P(n)$ be the proposition that then the graph is connected.	if every vertex in an n -vertex graph has degree at least 1,
Base case: There is only one graph with a single vertex and	it has degree 0. Therefore, $P(1)$ is vacuously true.
Inductive step: We must show that $P(n)$ implies $P(n+1)$ for	or all $n \geq 1$.
Consider an n -vertex graph G in which every vertex has deg that is, there is a path between every pair of vertices. Now graph H . Since x must have degree at least one, there is connected to every other node in the graph, x will be connected.	we add one more vertex x to G to obtain an $(n+1)$ -vertex an edge from x to some other vertex; call it y . Since y is
\square A. The proof needs to consider base case $n=2$.	
B. The proof needs to use strong induction.	
C. The proof should instead induct on the degree of each	ach node.
D. The proof only considers $(n+1)$ node graphs with n with minimum degree 1.	minimum degree 1 from which deleting a vertex gives a graph
E. The proof only considers n node graphs with minim gives a graph with minimum degree 1.	num degree 1 to which adding a vertex with non-zero degree
F. This is a trick question. There is nothing wrong wi	ith the proof!
8. Prove using Induction. Prove that for any positive integer n , for any triangle-free graph $G=(V,E)$ with $ V =2n$, it must be the case that $ E \leq n^2$.	
9. Walks and Paths. In this problem, you shall prove that for walk from a to b , then there is a path from a to b .	or any graph G and any two nodes a and b in G , if there is a
(a) Prove this using strong induction. Induct on the length	of the walk.
(b) Prove this using the well-ordering principle, and by propath from a to b .	oving a stronger statement: A shortest walk from a to b is a
10. Connectivity and Cycles. Show that if a graph has a cy which has the same connectivity relation (i.e., if there is a w the edge too there is such a walk).	
11. Show that any two maximum length paths in a connected gr	raph should have a common vertex.
Hint: Consider a shortest path that connects the two paths.	

12. **Triangle-Free and Claw-Free Graphs.** Recall that an *induced subgraph* of G is obtained by removing zero or more vertices of G as well as all the edges incident on the removed vertices. (No further edges can be removed.) Formally, G' = (V', E') is an induced subgraph of G = (V, E) if $V' \subseteq V$ and $E' = \{\{a, b\} \mid a \in V', b \in V', \{a, b\} \in E\}$.

A graph G is said to be H-free if no induced subgraph of G is isomorphic to H. For example, G = (V, E) is K_3 -free (or triangle free) if and only if there are no three distinct vertices a, b, c in V such that $\{\{a, b\}, \{b, c\}, \{c, a\}\} \subseteq E$.

Prove that the complement of a K_3 -free graph is a $K_{1,3}$ -free graph.

Hint: Prove the contrapositive.

13. If a graph G has chromatic number k > 1, prove that its vertex set can be partitioned into two nonempty sets V_1 and V_2 , such that

$$\chi(G(V_1)) + \chi(G(V_2)) = k$$

where $G(V_1)$ denotes the induced subgraph of G with vertex set V_1 .

14. The union of 2 graphs on the same vertex set $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is defined as $(V, E_1 \cup E_2)$. Prove that the chromatic number of the union of G_1 and G_2 is at most $\chi(G_1)\chi(G_2)$.

¹The graph $K_{1,3}$ is often called the "claw" graph. So this problem can be restated as asking you to prove that the complement of a triangle-free graph is a claw-free graph.