Báo cáo Project

Lớp TTNT-154016, Nhóm G07

1. Thông tin chung

Thành viên

- Đỗ Huy Đạt 20220024
- Đoàn Nguyễn Hải Nam 20220035
- Lê Minh Triết 20220045
- Đàm Hồng Thái 20183625

2. Đề xuất project (W2-3)

Bài toán

Phân Ioại Email Spam

Phương pháp

Sử dụng Decision Tree

Phân công

- ĐH Đạt: Xây dựng Decision Tree, đánh giá kết quả
- ĐNH Nam: Chuyển đổi dữ liệu thành vector, xây dựng Decision Tree
- LM Triết: Xây dựng Decision Tree, đánh giá kết quả
- ĐH Thái: Làm sạch, phân tích dữ liệu

3. Tiến độ giữa kỳ (W9)

Chương trình

Trước hết, nhóm xây dựng một Decision Tree đơn giản dựa trên chỉ số Gini để tạo cây. Mã nguồn lưu trong g7_decision_tree.py.

Mã nguồn cũng được triển khai trong cell dưới đây

```
In [1]: import numpy as np
        # Class đại diện cho một nút trong cây quyết định
        class TreeNode:
            def __init__(self, feature=None, threshold=None, left=None, right=None, value=N
                self.feature = feature # Đặc trưng sử dụng để chia dữ liệu
                self.threshold = threshold # Ngưỡng sử dụng để chia dữ Liệu
                self.left = left
                                          # Con trỏ tới nút con bên trái
                self.right = right
                                          # Con trỏ tới nút con bên phải
                self.value = value
                                          # Giá trị của nút nếu là nút lá
        # Hàm tính chỉ số Gini để đo độ thuần nhất của nút
        def gini(y):
            _, counts = np.unique(y, return_counts=True) # Tìm các lớp và số lượng phần tủ
            gini = 1.0 - sum((count / len(y)) ** 2 for count in counts) # Tính chỉ số Gini
            return gini
        class G07DecisionTree():
            def __init__(self, max_depth=10):
                self.max depth = max depth
                self.tree = TreeNode()
            # Hàm fit tree với datasets
            def fit(self, X, y):
                self.tree = self.build_tree_(X, y, depth=0, max_depth=self.max_depth)
            # Hàm dự đoán một tập dữ liệu
            def predict(self, X):
                return np.array([self.predict_tree_(self.tree, x) for x in X])
            # Hàm chia dữ liệu theo đặc trưng và ngưỡng
            def split_(self, X, y, feature, threshold):
                left_mask = X[:, feature] <= threshold # Mặt nạ để Lấy các phần tử nhỏ hơn
                right_mask = X[:, feature] > threshold # Mặt nạ để lấy các phần tử lớn hơn
                return X[left_mask], X[right_mask], y[left_mask], y[right_mask]
            # Hàm tìm đặc trưng và ngưỡng tốt nhất để chia dữ liệu
            def best_split_(self, X, y):
                best gini = 1.0
                best_feature = None
                best_threshold = None
                for feature in range(X.shape[1]): # Duyệt qua từng đặc trưng
                    thresholds = np.unique(X[:, feature]) # Tìm tất cả các ngưỡng duy nhất
                    for threshold in thresholds: # Duyệt qua từng ngưỡng
                        X_left, X_right, y_left, y_right = self.split_(X, y, feature, thres
                        if len(y_left) == 0 or len(y_right) == 0: # Néu một trong hai phần
                            continue
                        gini_left = gini(y_left) # Tính chỉ số Gini cho phần bên trái
                        gini_right = gini(y_right) # Tính chỉ số Gini cho phần bên phải
                        gini_split = (len(y_left) * gini_left + len(y_right) * gini_right)
                        if gini split < best gini: # Nếu Gini nhỏ hơn, cập nhật đặc trưng
                            best_gini = gini_split
                            best_feature = feature
                            best_threshold = threshold
                return best_feature, best_threshold
```

```
# Hàm xây dựng cây quyết định đệ quy
def build_tree_(self, X, y, depth=0, max_depth=10):
    if len(np.unique(y)) == 1: # Nếu tất cả các phần tử cùng một lớp, trả về n
        return TreeNode(value=y[0])
    if depth >= max_depth: # Nếu độ sâu đạt giới hạn, trả về nút lá
        return TreeNode(value=np.bincount(y).argmax()) # Trả về lớp phổ biến n
    feature, threshold = self.best_split_(X, y) # Tim đặc trưng và ngưỡng tốt
    if feature is None: # Nếu không tìm được đặc trưng tốt, trả về nút lá
        return TreeNode(value=np.bincount(y).argmax()) # Trả về lớp phổ biến n
    X_left, X_right, y_left, y_right = self.split_(X, y, feature, threshold) #
    left_child = self.build_tree_(X_left, y_left, depth + 1, max_depth) # Xây
    right_child = self.build_tree_(X_right, y_right, depth + 1, max_depth) # X
    return TreeNode(feature=feature, threshold=threshold, left=left_child, righ
# Hàm dự đoán giá trị dựa trên cây quyết định
def predict_tree_(self, node, X):
    if node.value is not None: # Nếu là nút lá, trả về giá trị của nút lá
        return node.value
    if X[node.feature] <= node.threshold: # N\u00e9u gi\u00e4 tri nh\u00f3 h\u00f3n ho\u00e4c b\u00e4ng ngu\u00f3</pre>
        return self.predict_tree_(node.left, X)
    else: # Nếu giá trị lớn hơn ngưỡng, duyệt cây con bên phải
        return self.predict_tree_(node.right, X)
```

Sau đây là kết quả chạy thử với bộ dữ liệu đầu vào đã được mã hóa TF-IDF sang vector (chi tiết sẽ được báo cáo đầy đủ sau)

```
In [8]: import pandas as pd
In []: X = pd.read_csv('tfidf.csv')
y = pd.read_csv('tfidfy.csv')
In [20]: X_train = X.head(200).to_numpy()
y_train = y.head(200).to_numpy()[:,0]
X_test = X.tail(200).to_numpy()
y_test = y.tail(200).to_numpy()[:,0]
In [21]: %%time
    dtree = G07DecisionTree(max_depth=12)
    dtree.fit(X_train, y_train)
    CPU times: total: 3min 27s
Wall time: 10min 38s
In [22]: y_pred = dtree.predict(X_test)
y_pred
```

Out[23]: 0.89

Kết quả, vấn đề gặp phải

Như vậy, nhóm G07 đã thử nghiệm Decision Tree đã xây dựng và đạt độ chính xác 89% khi mới chỉ huấn luyện trên 200 hàng đầu của datasets.

Tuy vậy, hạn chế vẫn còn khi huấn luyện 200 hàng đầu này đã mất khoảng 10 phút (với 3 phút 27 s CPU). Trong những tuần sau nhóm sẽ tập trung vào cải thiện thời gian fit cho datasets.