

金属铁铝的计算

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

(经典之题) \mathbf{wg} 铁粉和铝粉的混合物,加足量盐酸后,再和过量的 NaOH 反应,然后过滤,将沉淀完全收集后,放蒸发皿中加热,直至被加热的物质质量不再变化,取出蒸发皿中的物质称量仍为 \mathbf{wg} 。求原混合物中铝粉的质量分数是 ()

A. 30%

B. 50%

C. 70%

D. 90%

学习目标	 熟练掌握常见的金属计算的一些技巧; 学会关于氢氧化铝沉淀的计算; 能够熟练应用守恒法进行解题。
& 重难点	掌握常见的金属计算中的一些解题技巧

根深蒂固

一、可溶性铝盐与强碱溶液反应的有关计算

1.	1. 基础方程式			
	强碱不足量时:		;	
	强碱足量时:			
	综合上述两式可得:			
2.	2. 求产物 Al(OH) 3的量			
	当 $n(Al^{3+}):n(OH^-)\geq 1:3$ 时, $n[Al(OH)_3]=$ n	OH-);		
	当 1:4 <n(al³+):n(oh⁻)<1:3 n[al(oh)<sub="" 时,="">3]=_</n(al³+):n(oh⁻)<1:3>	<u> </u> ;		
	当 n(Al³+):n(OH⁻)≤1:4 时,n[Al(OH)₃]=	0		
3.	3. 求反应物碱的量			
	$\stackrel{\text{\tiny "}}{=}$ n[Al(OH) ₃]=n(AI ³⁺) $\stackrel{\text{\tiny "}}{=}$, n(OH ⁻)=n(AI ³⁺)	Al ³⁺);		
	当 n[Al(OH) ₃] <n(al<sup>3+)时,若碱不足,n(OH⁻)=</n(al<sup>	n[Al(OH)3]	•	
	若碱过量, n(OH-)=		;	
[4	【练一练】			
1.	1. (经典之题) 向 30 mL 1 mol·L ⁻¹ 的 AlCl ₃ 溶液中	逐渐加入浓度为 4 m	ol·L-1的 NaOH 溶	液,
若	若产生 0.78 g 白色沉淀,则加入的 NaOH 溶液的体	识可能为()		
	A. 3 <u>mL</u> B. 7.	5 <u>mL</u>		
	C. 15 mL D. 1	7.5 <u>mL</u>		
2.	2. 向 20mL2mol/LAlCl₃溶液中加入 30mLNaOH 溶液	,充分反应后得到 0.7	78g 白色沉淀,则	NaOH
溶	容液的物质的量浓度为()			
	A. 1 mol/L B. 2mol/L C	C. 5mol/L	D. 8mol/L	

二、离子守恒法在金属计算中的应用

【例1】将3.9g 镁铝合金,投入到500mL2mol/L的盐酸中,金属完全溶解,再加入4mol/L的NaOH溶液,若要生成的沉淀最多,加入的这种NaOH溶液的体积是()

- A. 125mL
- B. 200mL
- C. 250mL
- D. 560mL

【例 2】往 m mL 0.25mol/L 的 AlCl₃溶液中加入金属钾(已知 2K+2H₂O→2KOH+H₂↑),完全反应后恰好只形成 KCl 和 KAlO₂溶液。加入钾的物质的量是()

- A. 2.5m 10 4mol
- B. 5.0m 10 4mol
- C. 7.5m 10 4mol
- D. m 10^{-3} mol

【例 3】向一定量 FeO、Fe 和 Fe₃O₄的混合物中加入 $100\text{mL}\ 1.5\ \text{mol}\cdot\text{L}^{-1}$ 的盐酸,使混合物完全溶解,放出 224mL(标准状况)气体,再向反应后的溶液中加入 $1\ \text{mol}\cdot\text{L}^{-1}$ NaOH 溶液,要使铁元素完全沉淀下来,所加入 NaOH 溶液的体积最少为(

- A. 90mL
- B. 100mL
- C. 150mL
- D. 200mL

【结论】

离子守恒法在解有关离子反应计算题时的应用技巧:在离子反应中,元素的种类不变,同种元素对应离子反应前后的物质的量守恒;在复杂离子反应或多步离子反应中,运用离子守恒的思路,选取具有守恒特征的某一离子,找出其在始态和终态物质中的等量关系,即可迅速求解。

三、金属的其他计算技巧

技巧一: 极值法

对数据不足而感到无从下手的计算或混合物组成判断的题目,采用极端假设(即为某一成分或者为恰好完全反应)的方法以确定混合体系中各物质的名称、质量分数、体积分数。

技巧二: 差量法

量法是依据化学反应前后的某些"差量"(固体质量差、溶液质量差、气体体积差气体物质的量之差等)与反应物或生成物的变化量成正比而建立的一种解题法。

技巧三: 守恒法

- 1、质量守恒
- 2、得失电子守恒

知识点 1: 氢氧化铝沉淀的计算			
【例 1】向含有 amol AlCl3溶液中加入含有 bmol KOH 溶液,生成沉淀的物质的量可能是			
()			
①amol ②bm	ol ③a/3mol ④b/3mol	⑤0mol ⑥(4a	a-b)mol
A. 13456	В. 12345	C. 1456	D. 1145
变式 1: 向 50mL 1mol	/L AlCl3溶液中加入 1.5mol/I	L NaOH 溶液 amL, 充	分反应后,生成的沉淀为
0.02mol,则 a 的数	效值可能是 ()		
A. 40	B. 65	C. 90	D. 120
变式 2: 向 a molNaOH	溶液中逐滴加入 b mol AlCl₃剂	容液,试回答:	
(1) 依次写出溶液	中发生反应的化学方程式:		
	111 111 111 111 111 111 111 111 111 111		
(2) 若 $a+b=1$,	当 a 取不同值时,生成物可能	能有以下情况:	
	H) ₃ 时, a 的取值范围是		
	O2时, a 的取值范围是	2007 - 2007 (
	O ₂ , 部分是 Al(OH) ₃ , a 的取		
	为	成的各物质的量(包括	舌水)为 <u>mol</u>
(用含 b 的式子表示	THE RESERVE OF THE PROPERTY OF		
④在上述条件	下,若要生成 7.8g 沉淀,则	a 的值等于或	·°
▼ → → → + + + + + + + + + + + + + + + +			
【方法提炼】	减后房坐生免之租 者。	甘加州石泥泞药工物	山顶次次的亚轨棒加
	碱反应发生的方程式,在此		
U铂离丁与少里的 UH 结	合产生沉淀;②产生的氢氧(化钴傚 UH 浴卉,剩余	一部分讥萨。
知识点 2: 离子守恒	法		
		中 五年7 章 体积化	会 不正 1 くの I I (人二 火 人 L V)
	到 150mL 某浓度的稀 H ₂ SO.		
	剩余,为了中和过量的硫酸,		生机灰,共相柱 4mol/L 的
***************************************	原硫酸的物质的量浓度为		D 12 1/7
A. $1.5 \underline{\text{mol/L}}$	B. 0.5 mol/L	C. 2 mol/L	D. 1.2 mol/L

变式 1: 将 5.1g 镁铝合金投到 4mol/L 盐酸 150ml 中,合金全部溶解。向所得的溶液中加入 3mol/L 的氢氧化钠溶液,要使沉淀量最多,则应该加入氢氧化钠溶液的体积至少为多少?

变式 2: 已知氯化铁溶液中通入硫化氢可发生反应: $2FeCl_3 + H_2S \rightarrow 2FeCl_2 + S \downarrow + 2HCl$ 。在标准状 况下,向 100mLFeCl3溶液中通入 a L 的 H₂S 气体恰好反应后,再加入足量的铁粉充分反应。所得溶 液经测定金属阳离子的浓度为 3mol/L, 若反应过程中溶液体积不变, 则原 FeCl3溶液的物质的量浓 度为()

A. 1.5mol/L B. 1mol/L C. 2mol/L

D. 无法确定

【方法提炼】

有些计算题涉及到的化学反应较多,若出现一些标志性的语言,比如"溶液的某某离子恰好沉 淀"等,这时去考虑溶液中的溶质,若溶液中的溶质成分比简单含一种或两种,这时可以从溶质的 阴阳离子之间的关系入手进行解题。

知识点 3: 其他计算技巧

技巧一: 极值法

【例 1】20g由两种金属粉末组成的混合物,与足量的盐酸充分反应后得到11.2L氢气(标准状况), 这种金属混合物的组成可能是()

A. Mg和 Al

B. Al和Fe

C. Fe和 Zn

D. Zn和Cu

变式 1: 由锌、铁、镁、铝四种金属中的两种组成的混合物 10g, 与足量的盐酸反应生成的氢气在标 准状况下为11.2L,则混合物中一定含有的金属是())

A. 锌

B. 铁

C. 铝

D. 镁

变式 2: (双选) 实验室将 9g 铝粉跟一定量的金属氧化物粉末混合形成铝热剂。发生铝热反应之后, 所得固体中含金属单质为 18g,则该氧化物粉末可能是())

A. Fe₂O₃和 MnO₂

B. MnO2和 V2O5

C. Cr₂O₃和 V₂O₅

D. Fe₃O₄和 FeO

技巧二: 差量法			
【例1】将8g铁片放人10	00 <u>mL</u> 硫酸铜溶液中,	当溶液中的 Cu2-全部被	还原时,"铁片"的质量变为
8.2g, 则原硫酸铜溶液的特	勿质的量浓度为()	
A. 0.5mol·L ⁻ 1	B. 0.25mol·L ⁻ 1	C. 0.025mol·L ⁻ 1	D. 0.125mol·L
变式 1: 将质量为mg 的钥	片放入 CuSO4溶液中,	过一会儿取出干燥, 钗	扶片的质量变为 ng, 则被氧
化的铁的质量是()		
A. 8 (n-m) g	B. 8(m-n)g	C. 7(m-n)g	D. $7(n-m)g$
技巧三:守恒法			
【例 1】(经典之题)wg 针	失粉和铝粉的混合物,	加足量盐酸后,再和过量	的 NaOH 反应,然后过滤,
将沉淀完全收集后,放蒸	发皿中加热,直至被加	热的物质质量不再变化	,取出蒸发皿中的物质称量
仍为 wg。求原混合物中铝	3粉的质量分数是 ()	
A. 30%	B. 50%	C. 70%	D. 90%
变式 1: 将一块镁铝合金	溶于盐酸后,加入过量	氢氧化钠溶液, 过滤后	灼烧沉淀物,所得白色粉末
的质量等于原合金的质量,	,则该合金中镁和铝的	质量比是()	
A. 3:2	B. 2:3	C. 1:1	D. 2:1
【例2】某稀硝酸溶液中,	加入 5.6g 铁粉充分反应	立后, 铁粉全部溶解, 生	成 NO,溶液质量增加 3.2g,
所得溶液中 Fe ²⁺ 和 Fe ³⁺ 物质	质的量之比为()		
A. 4:1	B. 2:1	C. 1:1	D. 3:2
变式 1: 用盐酸酸化的 KN	IO3溶液表现出氧化性,	向该溶液中加入 5mL	1.5mol/L 的 FeCl2溶液, 完
全反应后被还原的 KNO ₃	为 2.5×10 ⁻³ nol,则 KNC)3的还原产物为()
A. NO ₂	B. NO	C. N ₂	$D. N_2O$
【方法提炼】			
找到对应的方法,对	号入座。		

瓜熟蒂落

1.	由两种金属组成的合 金不可能是(硫酸中,测得产生气体	5. 6L(标准状况),则原合
	A. Mg-Cu 合金	B. Mg-Fe 合金	C. Al-Zn 合金	D. Fe-Zn 合金
2.	(双选) 21g 金属混合	合物投入到足量稀盐酸。	中,待反应完毕后,得到	到11.2L(标准状况)H ₂ ,则
	混合物的组成不可能	的是()		
	A. Fe 和 Zn	B. Mg和 Na	C. Mg和Al	D. Al和 Zn
3.	一种由两种金属组成	的合金 8g,投入到足量	的稀硫酸中, 测得产生	气体为 5.6L,则原合金不可
	能是()			
	A. Mg-Cu 合金		B. Mg-Fe 合金	
	C. Al-Zn 合金		D. Fe-Zn 合金	
4.	将Cu片放入0.1mol/I	LFeCl3溶液中,反应一定	E时间后取出 Cu 片,溶液	
	则 Cu ²⁺ 与 Fe ³⁺ 的物质	的量之比为()	
	A. 3:2	B. 3:5	C. 4:3	D. 3:4
5.	1.4g 铁全部溶于盐酸	中,加入足量 NaOH 溶	液,得红棕色沉淀,过	滤后给红棕色沉淀加热(在
	空气中),最后得到约	工色物质的质量是 ()	
	A. 1g	B. 1.6g	C. 2g	D. 1.8g
6.				D. 1.8g 量百分含量为()
6.	由 FeSO4和 Fe2(SO4)3	组成的混合物中,含硫		量百分含量为()
6.7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a%	组成的混合物中,含硫B. (100-2a)%	为 a%,则所含铁的质 C. 1-3a%	量百分含量为()
	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a%	组成的混合物中,含硫B. (100-2a)%	为 a%,则所含铁的质 C. 1-3a%	量百分含量为 () D. 20%
	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是()	组成的混合物中,含硫 B. (100-2a)% AlCl ₃ 溶液中滴加 1mol	为 a%,则所含铁的质 C. 1-3a%	量百分含量为() D. 20% 至 3.9g,则加入溶液的体积可
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 mL	组成的混合物中,含硫B. (100-2a)% AlCl3溶液中滴加 1mol B. 200 mL	为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL	量百分含量为() D. 20% 至 3.9g,则加入溶液的体积可
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 <u>mL</u>	组成的混合物中,含硫B. (100-2a)% AlCl3溶液中滴加 1mol B. 200 mL	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶	量百分含量为()
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 <u>mL</u>	组成的混合物中,含硫B. (100-2a)% AlCl ₃ 溶液中滴加 1mol B. 200 <u>mL</u> 1mol/L 的 AlCl ₃ 溶液中。	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶	量百分含量为()
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 mL (双选) 若在 150mL 淀,则所加 NaOH 溶; A. 200mL	组成的混合物中,含硫B. (100-2a)% AlCl ₃ 溶液中滴加 1mol B. 200 mL 1mol/L 的 AlCl ₃ 溶液中。液的体积可能为(B. 300mL	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶) C. 400mL	量百分含量为()
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 mL (双选) 若在 150mL 淀,则所加 NaOH 溶; A. 200mL (双选) 将 amL 0.1m	组成的混合物中,含硫B. (100-2a)% AlCl ₃ 溶液中滴加 1mol B. 200 mL 1mol/L 的 AlCl ₃ 溶液中液的体积可能为(B. 300mL ol/L 硫酸铝溶液与 bmL	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶) C. 400mL 0.5mol/L 氢氧化钠溶液	量百分含量为()
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是() A. 150 mL (双选) 若在 150mL 淀,则所加 NaOH 溶; A. 200mL (双选) 将 amL 0.1m	组成的混合物中,含硫B. (100-2a)% AlCl ₃ 溶液中滴加 1mol B. 200 mL 1mol/L 的 AlCl ₃ 溶液中液的体积可能为(B. 300mL ol/L 硫酸铝溶液与 bmL	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶) C. 400mL 0.5mol/L 氢氧化钠溶液	量百分含量为()
7.	由 FeSO ₄ 和 Fe ₂ (SO ₄) ₃ A. 3a% 往 100mL、1mol/L 的 能是 () A. 150 mL (双选) 若在 150mL 淀,则所加 NaOH 溶 A. 200mL (双选) 将 amL 0.1m 沉淀,若已知 a、b、	组成的混合物中,含硫B. (100-2a)% AlCl3溶液中滴加 1mol B. 200 mL 1mol/L 的 AlCl3溶液中液的体积可能为(B. 300mL ol/L 硫酸铝溶液与 bmL c 中任意两个值,求另	i为 a%,则所含铁的质 C. 1-3a% /L 的 NaOH 溶液得沉淀 C. 300 mL 加入 1mol/L 的 NaOH 溶) C. 400mL 0.5mol/L 氢氧化钠溶液	量百分含量为()

10.	向一定量的 Fe、FeO、	Fe_2O_3 的混合物中,加	入 100mL1 moL / L 的 a	盐酸;恰好使混合物完全溶
	解并放出标准状况下 2	24mL 气体。向所得溶	液中加入 KSCN 溶液无	血红色出现, 若用足量的
	CO在高温下还原相同	质量的此混合物,能得	到单质铁的质量为()
	A. 11.2g	B. 2.8g	C. 5.6g	D. 无法计算
11.	向一定量的 Cu、Fe ₂ O ₃	的混合物中加入300 п	mL 1 mol/L 的 HCl 溶液	, 恰好使混合物完全溶解,
	所得溶液中加入KSCN	溶液后无红色出现,若	用过量的CO在高温下	还原相同质量的此混合物,
	固体的质量减少了()		
	A. 6.4 g	B. 4.8 g	C. 2.4 g	D. 1.6 g
12.	一定量的物质的量相等	的镁和铝的混合物,	分别放入足量的下列溶剂	夜中, 充分反应后, 放出的
	氢气最多的是()		
	A. 3mol/LHCl		B. 4mol/LHNO ₃	
	C. 8mol/LNaOH		D. 18.4mol/LH ₂ SO ₄	
15	田秘広歌添紹 Eag 和 I	S(OID) 协调	可想到160 磁角质	则原混合物中 FeS 的质量
13.	可能是()	(On)3日71年日初 28.3g	g, 可得到 1.0g 狐牛瓜,	则尿化百初中 1.63 的灰里
		B. 4.4g	C. 23.9g	D 176c
	A. 10.7g	D. 4.4g	C. 23.9g	D. 17.6g
16.	向铁和氧化铁的混合物	中加入足量的稀 H2SC	04, 充分反应后生成 Fes	SO4溶液,当生成的 Fe ²⁺ 和
	H ₂ 的物质的量之比为 4	:1 时,被氧化的铁与被	皮还原的铁离子的物质的)量之比是()
	A. 1:1	B. 2:1	C. 1:2	D. 1:3
17.	2.1g 镁铝合金完全溶于	足量盐酸,生成氢气	2.24L(标准状况下),	再向溶液中加入氢氧化钠溶
	液,生成沉淀的质量最	大是()		
	A. 2.9g	B. 4.6g	C. 5.5g	D. 6.9g
18.	有 10.2g 镁和铝的混和	粉末溶于 4mol/L 的盐	酸 500mL 中。若加入 2	mol/L 的氢氧化钠溶液,要
	使产生的沉淀的质量最	大,则需加入的氢氧化	比钠溶液的体积为()
	A. 100mL	B. 500mL	C. 1000mL	D. 1500mL
19.	将质量为 m g 的铁粉与	i铜粉的混合物,溶于	100mL 4mol/L HNO₃溶	液(过量),充分反应后所
	得的还原产物为 0.05m	ol NO,再向所得溶液。	中加入足量的 NaOH 溶液	夜至沉淀完全,则沉淀质量
	为()			
	A. 5.52g	B. (m+6.8) g	C. (m+2.55) g	D. $(m+12.0)$ g
20.	将 mg Al ₂ O ₃ 、Fe ₂ O ₃ 的?	昆和物溶解在过量的10	00mLpH 值为 1 的硫酸口	中,然后向其中加入 NaOH
	溶液使 Fe ³⁺ 、Al ³⁺ 刚好	全部转化成沉淀,用去	NaOH 溶液 100mL,贝	NaOH 溶液的浓度为(
)			
	A. 0.1mol/L	B. 0.05mol/L	C. 0.2mol/L	D. 无法计算

21.	向一定量的 Fe、Fe ₂ O ₃ 的混	合物中加入 2mol/L 的 H	INO3溶液 250mL,反应5	完成后生成 NO1.12L
	(标准状况下), 再向反应	后溶液中加入 1mol/LNa	OH 溶液,要使铁元素完	至沉淀下来,所加入
	NaOH 溶液的体积最少是	()		
	A. 450mL	B. 500mL	C. 400mL	D. 不能确定
22.	将 26.2g 含 Fe ₂ O ₃ 和 Al ₂ O ₃	的混合物完全溶于 1L1m	nol/L 的硫酸溶液中,然	后加入 400mLNaOH
	溶液, 使溶液中的 Fe3+和 A	Al ³⁺ 恰好完全沉淀,则 N	aOH 溶液的物质的量浓	度为()
	A. 2mol/L	B. 3mol/L	C. 4mol/L	D. 5mol/L
23.	将 mg Al ₂ O ₃ 、Fe ₂ O ₃ 的混和	物溶解在过量的 100mL	pH 值为1的硫酸中,然	后向其中加入 NaOH
	溶液使 Fe ³⁺ 、Al ³⁺ 刚好全部	转化成沉淀,用去 NaO	H 溶液 100mL,则 NaO	H. 溶液的浓度为(
)			
	A. 0.1mol/L	B. 0.05mol/L	C. 0.2mol/L	D. 无法计算
24.	在 Al ₂ (SO ₄) ₃ 、K ₂ SO ₄ 和明矾	的混和溶液中,如果[SC	4 ²⁻]等于 0.2mol/L,当加	入等体积的 0.2mol/L
	的 KOH 溶液时,生成的沉	淀恰好溶解,则原混合	物中 K+的物质的浓度为	()
	A. 0.2mol/L	B. 0.25mol/L	C. 0.45mol/L	D. 0.225mol/L
25.	在由Fe、FeO和Fe2O3组成	的混合物中加入 100mL	2mol/L 的盐酸,恰好使	混合物完全溶解,并
	放出 448mL 气体(标准状)	兄),此时溶液中无 Fe ³	+。根据以上信息判断下	列说法不正确的是(
)			
	A. 混合物中 Fe 元素的质量	量分数为定值		
	B. FeO 的物质的量为定值			
	C. Fe 与 Fe ₂ O ₃ 的物质的量	之差为定值		
	D. 溶液中 n(Fe ²⁺)=0.1 mol			
26.	将 6 g 的过量铁粉加入 200	mLFe2(SO4)3和 CuSO4的	的混合溶液, 充分反应得	到 200 mL 0.5mol

- 26. 将 6 g 的过量铁粉加入 200 mLFe₂(SO₄)₃和 CuSO₄的混合溶液,充分反应得到 200 mL 0.5mo /LFeSO₄溶液和 5.2 g 固体沉淀物。试计算:
 - (1) 反应后生成铜的质量;
 - (2) 原 Fe₂(SO₄)₃溶液的物质的量浓度。

或 b 表示)

KEY	TELL EDUCATION 成长为梦相中的
27.	将 100ml 2mol/L 的氯化铝溶液跟 4mol/L 的氢氧化钠溶液混合后,得到 5.2gAl(OH)3沉淀。求用去氢氧化钠溶液多少毫升?
28.	在 200mL FeCl ₃ 和 FeCl ₂ 混合液中加入 0.56g 铁粉,恰好完全反应,使溶液中无 Fe ³⁺ ,此时向溶液中通入适量的氯气,正好将溶液中的 Fe ²⁺ 全部氧化为 Fe ³⁺ ,再继续向溶液中滴加足量的硝酸银溶液得到白色沉淀 43.05g。求原混合液中 FeCl ₃ 和 FeCl ₂ 的物质的量浓度。
29.	有一包铁粉和氧化铁的混合物共 19.2g,恰好溶于 150mL 某稀 H ₂ SO ₄ 中,反应完毕后不留残渣,向溶液中滴入 KSCN 溶液也不显红色,反应过程中共放出 3.36L 标况下的 H ₂ .求: (1)混合物中铁粉的质量? (2)稀硫酸的物质的量浓度至少是多少?
30.	在含 b mol AlCl₃的溶液中加入含 a mol NaOH 的溶液,则: (1) 当时 a≤b, 生成沉淀的物质的量为。 (2) 当 a、b 满足条件时,无沉淀生成。 (3) 当 a、b 分别满足、条件时,有沉淀生成,生成沉淀的物质的质量分别是和。