Niech Φ będzie dystrybuantą rozkładu N(0,1) ($\Phi(1) \approx 0.84$, $\Phi(1,64) \approx 0.95$, $\Phi(1,96) \approx 0.975$, $\Phi(3) \approx 0.999$, $\Phi(4) \approx 0.99997$). Dla niezależnych $\xi_1, \, \xi_2, \, \ldots$, o jednakowym rozkładzie, takim że $E\xi_1 = 0$ i $E\xi_1^2 = 1$,

$$\lim_{n} P\left(\frac{\xi_1 + \xi_2 + \ldots + \xi_n}{\sqrt{n}} \le x\right) = \Phi(x).$$

Zadanie 1. Rzucamy 100 razy monetą i orzeł wypada 70 razy. Czy możemy podejrzewać, że moneta nie jest symetryczna (tj. $p \neq 1/2$)?

Zadanie 2. Niech X_1, X_2, \ldots będą niezależne o jednakowym rozkładzie U(0,1). Oblicz

$$\lim_{n} \frac{X_1^3 + X_2^3 + \ldots + X_n^3}{n^3}.$$

Wskazówka: $(\xi_1 + \ldots + \xi_n)/n \to E\xi_1$ p.n., gdy ξ_n są niezależne o jednakowym rozkładzie i $E|\xi_1| < \infty$.

Zadanie 3. Wykazać <u>z definicji</u> warunkowej wartości oczekiwanej, że $E^{\mathcal{F}}E^{\mathcal{G}}\xi = E^{\mathcal{F}}\xi$ p.n., gdy $\mathcal{F} \subset \mathcal{G}$.

Własności operatora liniowego $E^{\mathcal{F}}$. Jeśli poniższe wyrażenia istnieją dla wartości bezwzględnych, to:

(i) $E(E^{\mathcal{F}}X) = EX$,

(v) $0 \le \xi_n \uparrow \xi \implies E^{\mathcal{F}} \xi_n \uparrow E^{\mathcal{F}} \xi \text{ p.n.},$

(ii) $E^{\mathcal{F}}\xi = \xi$ p.n., gdy ξ jest \mathcal{F} -mierzalna,

(vi) $E^{\mathcal{F}}\xi\eta=\xi E^{\mathcal{F}}\eta$ p.n., gdy ξ jest \mathcal{F} -mierzalna,

(iii) $\xi \ge 0 \implies E^{\mathcal{F}} \xi \ge 0 \text{ p.n.},$

(vii) $E(\xi E^{\mathcal{F}} \eta) = E(\eta E^{\mathcal{F}} \xi) = E(E^{\mathcal{F}} \xi)(E^{\mathcal{F}} \eta)$ p.n.,

(iv) $E|E^{\mathcal{F}}\xi| \leq E|\xi|$,

(viii) $E^{\mathcal{F}}E^{\mathcal{G}}\xi = E^{\mathcal{F}}\xi$ p.n., gdy $\mathcal{F} \subset \mathcal{G}$.

Zadanie 4. Wykazać, że jeśli $\xi \in L^2$ oraz $E^{\mathcal{F}}\xi = \eta$, gdzie η jest \mathcal{F} -mierzalna, to $E\xi\eta = E\eta^2$. Zaznaczyć, z których własności $E^{\mathcal{F}}$ tu korzystamy.

Wskazówka: $E^{\mathcal{F}}\xi \in L^2$ dla $\xi \in L^2$, więc nie ma kłopotu z całkowalnością.

Zadanie 5. Weźmy zmienne losowe $\xi_n \geq 0$. Zdefiniuj
my dwie własności:

(*) każdy podciąg $N' \subset \mathbb{N}$ zawiera podciąg $N'' \subset N'$, dla którego $\xi_n \to 0$ p.n. przy $n \to \infty$, $n \in N''$, (**) $E\{\xi_n \wedge 1\} \to 0$.

Wykazać, że (*) \implies (**). Wskazówka: założyć (*) i zaprzeczenie (**); może się przydać twierdzenie Lebesgue'a o zbieżności zmajoryzowanej.