### ЛАБОРАТОРНАЯ РАБОТА № 5

### ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ

**Цель работы.** Исследование временных и частотных характеристик элементарных звеньев.

**Методические рекомендации.** До начала работы студенты должны получить от преподавателя вариант задания и файл с математическими моделями элементарных звеньев. Лабораторная работа рассчитана на 2 часа.

**Теоретические сведения.** Типовыми динамическими звеньями называются простейшие составные части системы, поведение которых описывается обыкновенными дифференциальными уравнениями 0-2-го порядка:

$$a_1\ddot{y} + a_1\dot{y} + a_0y = b_1\dot{g} + b_0g,$$
 (5.1)

где g = g(t) - входная переменная звена, y = y(t) -выходная переменная;  $a_i, b_i$ -постоянные коэффициенты (параметры). С использованием оператора дифференцирования s = d/dt уравнение (5.1) запишется в виде

$$a_2 s^2 y + a_1 sy + a_0 y = b_1 sg + b_0 g$$

или

$$y = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0} \cdot g = W(s) \cdot g,$$

где W(s)-передаточная функция звена (5.1).

Переходным процессом называется изменение во времени переменных (сигналов) динамической системы или звена: y = y(t),  $\dot{y} = \dot{y}(t)$ , обусловленное начальными условиями или входным воздействием.

Переходной функцией системы или звена y=h(t) называется переходный процесс выходной переменной при единичном входном воздействии g=1(t) и нулевых начальных условиях. По графику переходной функции может быть определена математическая модель исследуемого динамического звена и ее параметры.

*Интегрирующее звено (интегратор)* описывается дифференциальным уравнением:

$$\dot{y} = k \cdot g$$
 или  $y = \frac{k}{s} \cdot g$ ,

где k- коэффициент усиления, а его переходная функция  $h(t) = k \cdot t \cdot 1(t)$ .



*Интегрирующее звено с замедлением* описывается дифференциальным уравнением:

$$T\ddot{y}+\dot{y}=kg$$
 или  $y=\frac{k}{s(Ts+1)}\cdot g$ 

где T- постоянная времени, а его переходная функция

$$h(t) = k \cdot [t - T(1 - e^{-\frac{t}{T}})] \cdot 1(t).$$

*Изодромное звено* описывается дифференциальным уравнением:

$$\dot{y} = k(Tg+g)$$
 или  $y = \frac{k(Ts+1)}{s} \cdot g$ ,

а его переходная функция -

$$h(t) = k \cdot (t + T) \cdot 1(t).$$

Реальное дифференцирующее звено описывается дифференциальным уравнением

$$Ty+y=k\dot{g}$$
 или  $y=\frac{ks}{Ts+1}\cdot g$ 

а его переходная функция -

$$h(t) = \frac{k}{T} \cdot e^{-\frac{t}{T}} \cdot 1(t).$$

Апериодическое звено 1-го порядка описывается дифференциальным уравнением:

$$Ty + y = k \cdot g$$
 или  $y = \frac{k}{T_{S+1}} \cdot g$ ,

а его переходная функция -

$$h(t) = k(1 - e^{-\frac{t}{T}}) \cdot 1(t).$$



h(t)





*Апериодическое звено 2-го порядка* описывается дифференциальным уравнением:

$$T_2^2 \ddot{y} + T_1 \dot{y} + y = k \cdot g$$
 или  $y = \frac{k}{T_2^2 s^2 + T_1 s + 1} \cdot g$ ,

где  $T_1$ ,  $T_2$  - постоянные времени, причем  $T_1 > 2$   $T_2$ . При этом корни характеристического уравнения  $T_2^2$   $s^2 + T_1 s + 1 = 0$  будут вещественными и отрицательными.

Знаменатель передаточной функции апериодического звена 2-го порядка разлагается на множители:

$$y = \frac{k}{(T_2s+1)(T_4s+1)} \cdot g,$$

где 
$$T_3 = \frac{T_1}{2} + \sqrt{\frac{T_1^2}{4} - T_2^2}$$
,  $T_4 = \frac{T_1}{2} - \sqrt{\frac{T_1^2}{4} - T_2^2}$ 

Апериодическое звено второго порядка эквивалентно двум звеньям первого порядка, включенным последовательно друг за другом, с общим коэффициентом усиления k и постоянными времени  $T_3$ ,  $T_4$ . Его переходная функция имеет вид

$$h(t) = k(1 - \frac{T_3}{T_3 - T_4} e^{-\frac{t}{T_3}} + \frac{T_4}{T_3 - T_4} e^{-\frac{t}{T_4}}) \cdot 1(t).$$



Колебательное звено описывается тем же дифференциальным уравнением, что и апериодическое звено второго порядка. Однако корни характеристического уравнения  $T_2^2 s^2 + T_1 s + 1 = 0$  должны быть комплексными, что будет выполняться при  $T_1 < 2 T_2$ .

Передаточная функция колебательного звена обычно представляется в виде

$$y = \frac{k}{T^2 s^2 + 2\zeta T s + 1} \cdot g,$$

где  $2\pi T$ - период свободных колебаний при отсутствии затухания,  $\zeta$  - параметр затухания, лежащий в пределах  $0 < \zeta < 1$ . Переходную функцию данного звена можно представить в виде

инного звена можно представить в виде 
$$h(t) = k[1 - e^{-\sigma t}(\cos\omega t + \frac{\sigma}{\omega}\sin\omega t)] \cdot 1(t),$$



где  $\sigma = \frac{\zeta}{T}$ ,  $\omega = \frac{1}{T}\sqrt{1-\zeta^2}$ . Параметр  $\omega$  легко определяется по графику переходной функции, а параметр  $\sigma$  находится посредством выражения

$$\sigma = \frac{\omega}{\pi} \ln \frac{a_1}{a_2}.$$

Консервативное звено является частным случаем колебательного звена при  $\zeta=0$ . Тогда корни характеристического уравнения  $T^2 s^2 + 1 = 0$  будут чисто мнимые. Передаточная функция колебательного звена имеет вид

$$y = \frac{k}{T^2 s^2 + 1} \cdot g,$$

а его переходная функция -

$$h(t) = k(1 - \cos \omega t) \cdot 1(t),$$

где 
$$\omega = \frac{1}{T}$$
.



 $\mathit{Импульсной}$  переходной или весовой функцией (функцией веса) y = w(t), называют функцию, описывающую реакцию системы (звена) на единичное импульсное воздействие при нулевых начальных условиях. Математически единичная импульсная функция описывается дельта-функцией:

$$\delta(t) = \frac{d}{dt} \mathbf{1}(t),$$

или импульс бесконечно большой амплитуды и бесконечно малой длительности, удовлетворяющий условию

$$\int_{-\infty}^{\infty} \delta(t) dt = 1.$$

Учитывая определение дельта-функции, получим связь весовой и переходной функций:

$$w(t) = \frac{d}{dt}h(t).$$

Переходную и импульсную переходную функции называют *временными функциями* (временными характеристиками).

Если на вход устойчивого линейного звена с передаточной функцией W(s) подается гармонический сигнал  $g(t)=g_m\sin\omega t$ , где  $\omega$  — угловая частота, а  $g_m$  — амплитуда, то на его выходе в установившемся режиме будет гармонический сигнал  $y(t)=y_m\sin(\omega t+\psi)$  той же частоты  $\omega$ , но, в общем случае, с другой амплитудой  $y_m$  и ненулевым фазовым сдвигом  $\psi$  (см. рис.5.1, где  $\varphi=\psi/\omega$  — временной интервал, соответствующий фазовому сдвигу  $\psi$ ).



Рис. 5.1. Реакция устойчивого линейного звена на гармонический сигнал

Для аналитического описания частотных свойств динамических звеньев используется *частотная передаточная функция*  $W(j\omega)$ , которая для фиксированной частоты  $\omega$  представляет собой комплексное число, модуль которого равен отношению амплитуды выходного сигнала к амплитуде входного сигнала, а аргумент — сдвигу фаз между входным и выходным сигналами. В более общей формулировке частотная передаточная функция определяется как отношение изображений Фурье выходного и входного сигналов. Формальное правило получения аналитического выражения для частотной передаточной функции по известной передаточной функции W(s) состоит в подстановке  $s=j\omega$ , т.е.  $W(j\omega)=W(s)|_{s=j\omega}$ , что соответствует переходу от изображения Лапласа к изображению Фурье.

Частотная передаточная функция (ЧПФ) может быть представлена в виде:

$$W(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

или

$$W(j\omega) = U(\omega) + jV(\omega)$$
,

где  $U(\omega)$  — вещественная часть,  $V(\omega)$  — мнимая часть,  $A(\omega) = \sqrt{U^2(\omega) + V^2(\omega)}$  — модуль, а  $\psi(\omega) = arg \frac{V(\omega)}{U(\omega)}$  — аргумент (фаза) ЧПФ.



Рис. 5.2. Амплитудно-частотная характеристика



Рис. 5.3. Фазовая частотная характеристика

С помощью частотной передаточной функции могут быть легко построены следующие частотные характеристики.

Амплитудно-частотная характеристика (АЧХ) — зависимость  $A(\omega)$  при изменении частоты  $\omega$  от 0 до  $+\infty$  (см. рис.5.2) .



Рис. 5.4. Амплитудно-фазовая частотная характеристика



Рис. 5.5. Логарифмические амплитудная и фазовая частотные характеристики

Фазовая частотная характеристика (ФЧХ) — зависимость  $\psi(\omega)$  при изменении частоты  $\omega$  от 0 до +∞ (см. рис.5.3).

Амплитудно-фазовая частотная характеристика ( $A\Phi$ ЧX) — годограф, соответствующий частотной передаточной функции при изменении частоты от 0 до  $+\infty$ , построенный на комплексной плоскости (U,V) (см. рис.5.4). При этом за положительное значение фазы понимается направление вращения от вещественной оси против часовой стрелки.

Погарифмические амплитудная и фазовая частотные характеристики (ЛАЧХ и ЛФЧХ). При построении логарифмической амплитудной частотной характеристики по оси ординат откладывается величина  $L(\omega) = 20 \lg A(\omega)$ , единицей измерения которой является децибел (дБ). По оси абсцисс откладывается частота  $\omega$  в логарифмическом масштабе (см. рис. 5.5). Ось ординат может пересекать ось абсцисс в произвольном месте. Поэтому ее проводят так, чтобы справа от нее отобразить интересующий диапазон частот. Точка пересечения ЛАЧХ с осью абсцисс называется частотой среза  $\omega_{cp}$ . В

инженерных расчетах используют асимптотические ЛАХ, которые можно построить практически без вычислительной работы. Подобные характеристики представляют собой ломанную линию, состоящую из отрезков, расположенных к оси абсцисс под углами, кратными  $\pm 20$  дБ/дек. Логарифмическая фазовая частотная характеристика отличается от ФЧХ только тем, что ось абсцисс строится в логарифмическом масштабе.

### Порядок выполнения работы

Построить передаточные функции исследуемых звеньев в соответствии с кодом варианта задания (см. табл. 5.1). Первые три цифры кода обозначают тип исследуемых звеньев (см. табл. 5.2), а последняя цифра — номер сочетания параметров исследуемых звеньев (см. табл. 5.3). Вывести аналитические выражения временных (переходной и весовой) и частотных (АЧХ, ФЧХ, АФЧХ и ЛАФЧХ) характеристик исследуемых звеньев. Привести графическое представление переходной и весовой характеристик, АЧХ, ФЧХ, АФЧХ и ЛАФЧХ исследуемых звеньев.

## Содержание отчета:

- 1. Передаточные функции исследуемых звеньев.
- 2. Аналитически рассчитанные временные характеристики, АЧХ, ФЧХ, АФЧХ и ЛАФЧХ исследуемых звеньев.
- 3. Графическое представление временных характеристик АЧХ, ФЧХ, АФЧХ и ЛАФЧХ исследуемых звеньев.
- 4. Листинги аналитических расчетов и графических представлений соответствующих временных и частотных характеристик.
  - 5. Выводы.

### Вопросы к защите работы

- 1. Перечислите способы, с помощью которых может быть задана динамическая система.
- 2. Назовите типовое динамической звено, если корни знаменателя его передаточной функции чисто мнимые, а числитель передаточной функции равен постоянной.
- 3. Назовите типовое динамической звено и параметры, если его переходная функция  $h(t) = 1 2e^{-t/2} + e^{-t}$ .
- 4. Динамической звено описывается дифференциальным уравнением  $4\ddot{y} + a\dot{y} + y = 3 \cdot g$ . При каких значения параметра a оно называется колебательным звеном?
- 5. Найдите переходную функцию динамической звена заданного дифференциальным уравнением  $\dot{y}+2\,y=1.5\cdot g$
- 6. Запишите аналитическое выражение для вещественной части ЧПФ апериодического звена 1-го порядка.
  - 7. Запишите аналитическое выражение для аргумента ЧПФ изодрома.
  - 8. Чему равно значение модуля ЧПФ на частоте среза
  - 9. Почему в выражении для  $L(\omega)$  присутствует множитель 20?

Таблица 5.1

# Коды вариантов задания

| № вар | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| код   | 1241 | 1272 | 2463 | 2674 | 4215 | 7216 | 6427 | 7622 | 2413 | 2716 | 4621 | 6725 |

| T ~     | _ | $\sim$ |
|---------|---|--------|
| Гаолица | ` | ,      |
| таолица | J | • 4    |

|   | Тип звена                           | Передаточная функция         |
|---|-------------------------------------|------------------------------|
| 1 | Апериодическое 1-го поряд-ка        | $\frac{k}{Ts+1}$             |
| 2 | Колебательное                       | $\frac{k}{T^2s^2+2\xi Ts+1}$ |
| 3 | Идеальное интегрирующее             | $\frac{k}{s}$                |
| 4 | Интегрирующее с замедлением         | $\frac{k}{s(1+Ts)}$          |
| 5 | Изодромное                          | $\frac{k(1+Ts)}{s}$          |
| 6 | Дифференцирующее с за-<br>медлением | $\frac{ks}{1+Ts}$            |
| 7 | Консервативное                      | $\frac{k}{1+T^2s^2}$         |

Таблица 5.3

|   | k  | T   | ξ    |
|---|----|-----|------|
| 1 | 5  | 0.1 | 0.1  |
| 2 | 2  | 0.5 | 0.15 |
| 3 | 10 | 2   | 0.25 |
| 4 | 8  | 4   | 0.3  |
| 5 | 15 | 0.2 | 0.2  |
| 6 | 4  | 8   | 0.45 |
| 7 | 3  | 5   | 0.4  |