UFCG/CCT/UAMAT	PERÍODO 2022.1
DISCIPLINA: Álgebra Linear I	TURNO: Tarde
PROFESSOR:	DATA: /
ALUNO(A):	

3º ESTÁGIO

1. Considere a transformação linear $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$, definida por

$$T\begin{pmatrix} x & y \\ z & w \end{pmatrix} = (x+y+z, w, 2w).$$

- a) (1,0 ponto) Calcule $\ker T$ e $\dim \ker T$.
- b) (1,0 ponto) Calcule dim $Im\ T$. A transformação T é sobrejetora? Justifique.
- 2. (2,0 pontos) Considere a transformação linear $T: \mathbb{R}^3 \longrightarrow M_{3\times 1}(\mathbb{R})$ definida por $T(x,y,z) = \begin{pmatrix} y \\ x-2y+z \\ 2x+y+z \end{pmatrix}.$ Mostre que T é um isomorfismo e determine T^{-1} .
- 3. (2,0 pontos) Seja $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ a transformação linear definida por F(x,y,z) = (2x y + z, 3x 2y z). Sendo $\beta = \{(1,1,1), (1,1,0), (1,0,0)\}$ e $\gamma = \{(1,1), (1,2)\}$ bases ordenadas de \mathbb{R}^3 e \mathbb{R}^2 , respectivamente, determine $[F]_{\gamma}^{\beta}$.
- 4. Sejam $\alpha = \{(-1,1),(0,1)\}$ e $\beta = \{(1,0,-1),(0,1,2),(1,2,0)\}$ bases ordenadas de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente, e seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ a transformação linear tal que

$$[T]^{\alpha}_{\beta} = \left(\begin{array}{cc} 1 & 0\\ 1 & 1\\ 0 & -1 \end{array}\right).$$

- a) (1,0 ponto) Encontre T(x,y).
- b) (1,0 ponto) Sendo γ a base canônica do \mathbb{R}^2 e $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ a transformação linear definida por S(x,y,z)=(x+y,z), calcule $[S\circ T]^\alpha_\gamma$.
- 5. (2,0 pontos) Determine o polinômio característico, os autovalores e os autoespaços do operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido por T(x,y,z) = (4x+y,x-z,y+4z).

BOA PROVA!