Analysis of metabolomics, methylation and transcriptomic of Breast cancer

Fadhl Alakwaa

https://github.com/FADHLyemen/Metabolomics_signature

https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.9b00755

New Cancer Cases, 2020

• https://seer.cancer.gov/statfacts/html/common.html

Breast cancer mortality rate (2020) Female

• https://seer.cancer.gov/statfacts/html/common.html

Breast cancer subtypes

- Subtyping based on transcriptomic omics data.
- Treatment based on subtyping.
- Could we use other omics data for subtyping?
- Non-invasive and cheaper.

The Cancer Genome Atlas Program (TCGA)

Pipeline

- Tools: K-means, SAM, PAM
- https://github.com/FADHLyemen/Metabolomics signature

Conclusion

- Generally, metabolome-defined BC subtypes were different from the well-known receptor- or transcriptome-defined subtypes.
- We identified a strong association BC clusters identified from metabolomics and methylation data.
- Our proposed pipeline revealed clusters characterized by unique metabolic signatures that may potentially stratify BC patients and tailor precision treatment.

The tumor subtypes are classified ast:

Luminal A: ER+ and/or PR+, HER2-, low Ki67

Luminal B: ER+ and/or PR+, HER2+ (or HER2- with high Ki67)

TNBC: ER-, PR-, HER2- cytokeratin 5/6+ and/or HER1 (EGFR)+

HER2+: ER-, PR-, HER2+

'These are the most common profiles for each subtype. However, not all tumors within each subtype will have all these features.

TNBC: Triple-negative breast cancer.

Adapted from [102].