Birla Institute of Technology and Science Pilani, K K Birla Goa Campus First Semester 2024-2025 Quiz-1(Open Book)

Course Title: Mathematics-I (MATH F111)	Max. Marks: 75
Date: Sept 21, 2024	Duration: 60 min.

INSTRUCTIONS: A (1) Each question is worth 5 marks. (2) Each question has 4 alternative answers. Write the correct choice (A, B, C, or D) in the table provided in this question paper using a pen only, and submit it to the invigilator. (3) **Do not encircle** (\bigcirc) or tick \checkmark your answers on the question itself; this will be considered invalid. (4) Answers written in pencil or any overwriting will be treated as invalid. (5) No rough work should be done on the question paper.

Student's Name	ID No.	Roll No.

Write answers in this table														
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
В	С	В	A	С		С	С	С	С	D	Α	В	D	D

For Evaluator's use only					
No. of Correct Ans	No. of Incorrect Ans	Marks awarded			

- 1. The distance between the points with polar coordinates $(2, \frac{\pi}{3})$ and $(4, \frac{2\pi}{3})$ is (A) 5 (B) $\sqrt{12}$ (C) $\sqrt{2}$ (D) None of these.
- 2. Which of the following represents the area (bounded) inside both the polar curves $r = 3 + \cos(\theta)$ and $r = 5 3\cos(\theta)$?

(A)
$$\int_{0}^{\pi/3} (3 + \cos(\theta))^{2} d\theta + \int_{\pi/3}^{\pi} (5 - 3\cos(\theta))^{2} d\theta$$
 (B)
$$\int_{-\pi/3}^{\pi/3} \frac{1}{2} (3 + \cos(\theta))^{2} - (5 - 3\cos(\theta))^{2} d\theta$$
 (C)
$$\int_{0}^{\pi/3} (5 - 3\cos(\theta))^{2} d\theta + \int_{\pi/3}^{\pi} (3 + \cos(\theta))^{2} d\theta$$
 (D) None of these.

3. Let $r = 4(1 + \cos(\theta))$, $0 \le \theta \le \pi/2$ be a curve in polar form. Determine the point (r, θ) at which the slope of the tangent line to the curve is -1.

- (A) $(4(1+\sqrt{1/2}),\pi/4)$ (B) $(4(1+\sqrt{3}/2),\pi/6)$ (C) $(0,\pi)$ (D) None of these.
- 4. The number of points of intersection of the curves $r=5-3\cos(\theta)$ and $r=1+\theta$ when $0\leq\theta\leq2\pi$ is
- (A) 1 (B) 2 (C) 3 (D) None of these.
- 5. Suppose $x_n = \frac{n}{4} \left[\frac{n}{4}\right]$, where [n] is the greatest integer less than or equal to n. Suppose $y_{n+1} = \frac{5y_n}{2+y_n}$ for all $n \in \mathbb{N}$ with $y_1 = 1$. Which of the following is TRUE?
 - $y_{n+1} = \frac{y_n}{2+y_n}$ for all $n \in \mathbb{N}$ with $y_1 = 1$. Which of the following is TRUE! (A) x_n is convergent and y_n is not convergent (B) Both x_n and y_n are divergen
 - (A) x_n is convergent and y_n is not convergent (B) Both x_n and y_n are divergent (C) x_n is not convergent and y_n is convergent (D) Both x_n and y_n are convergent.
- 6. For a positive integer n, let a_n, b_n, c_n, d_n be the real numbers such that

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right)^n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right),$$

where A^n denotes multiplying the matrix A by itself n times. Then $\lim_{n\to\infty} \frac{a_n}{b_n}$ is

(A) 1 (B) e (C) $\frac{3}{2}$ (D) Limit doesn't exist.

7.	Let (x_n) and (y_n) be sequences of positive real numbers such that $\left(\frac{x_n}{n}\right)$ is monotonically increasing and $(2^n y_n)$ is monotonically decreasing. Then								
	(A) x_n converges to 0, but y_n is divergent (C) x_n doesn't converge to 0 and y_n converge	(B) B	oth x_n and y_n converge to 0 (D) None of these.						
8.	Suppose $A := \sum_{n=2}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))}$ and $B := \sum_{n=2}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))}$	$= \sum_{n=100}^{\infty} \frac{1}{(\ln(n))^{\sqrt{\ln(n)}}}.$	Which of the following is						
	true? (A) Both A and B are convergent (C) Both A and B are divergent	` /	invergent and B is divergent ergent and B is convergent.						
9.	Consider the series $\sum_{n=1}^{\infty} \frac{n^d}{c^n}$, and consider the	following combination	as of c and d values:						
	(I) $c = 1$, $d = -1$. (II) $c = 2$, $d = 1$. (III) $c = 1$.	c = 1, d = -2. Then	the series converges for:						
	(A) I and II (B) I and III	(C) II and III	(D) None of these.						
10.	Let $A := \sum_{n=2}^{\infty} \frac{\sin\left((2n+1)\frac{\pi}{2}\right)}{n\ln n}$ and $B := \sum_{n=2}^{\infty} (-1)^n \sin\left(\frac{\pi}{2}\right)$	$(-1)^n \frac{n!}{(n+2)!}$. Which	of the following is true?						
	(A) Both A and B are absolutely convergent (B) A is absolutely convergent and B is conditionally convergent (C) A is conditionally convergent and B is absolutely convergent (D) Both A and B are conditionally convergent.								
11.	Find all possible values of x for which the se	ries $\sum_{n=1}^{\infty} \frac{9+x^n}{5^n}$ conver	ges.						
	(A) It is not possible to find such x because (C) $ x < 1$		(B) $x > 0$ (D) $-5 < x < 5$						
12.	Let R be the radius of convergence and IO following is true for the power series expansion								
	(A) R is 1 and IOC is $(1,3)$ (C) R is 4 and IOC is $(-2,6)$		(B) R is 2 and IOC is $[0,4)$ (D) None of these						
13.	The $\lim_{t\to\infty} \left(\frac{t^2 \sin(\frac{1}{t})}{\sqrt{t^2+1}} \hat{\mathbf{i}} + \sin\left(\frac{\pi}{2} + \frac{1}{t}\right) \hat{\mathbf{j}} \right)$ is								
	(A) \hat{j} (B) $\hat{i} + \hat{j}$ (C) L	imit doesn't exist	(D) None of these.						
14.	4. Consider the vector-valued function $r(t) = (2\cos(t) - \cos(2t))\hat{\mathbf{i}} + (2\sin(t) - \sin(2t)\hat{\mathbf{j}} + \hat{\mathbf{k}}$ for $0 \le t \le 2\pi$. Then $r(t)$ fails to be smooth at how many points of the domain?								
	(A) 4 (B) 5	(C) 6	(D) None of these.						
15.	5. Let s be the arc length parameter of a curve $r(t)$ and $r(s) = \frac{1}{\sqrt{2}}\sin(s/4)\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\cos(s/4)\hat{\mathbf{j}} + \left(\frac{s}{a}\right)\hat{\mathbf{k}}$ be the arc length parametrization of the curve. Then the value of a can be								
	(A) $a = \pm 1$ (B) $a = \pm \sqrt{2}$	(C) $a = \pm \sqrt{3}$	(D) None of these.						

	Recheck request after exam:								