What is claimed is:

2

3

wherein:

	What is claimed is.
1	1. A plasma display panel, comprising:
2	a phosphor layer between a pair of opposing substrates;
3	said phosphor layer emitting light through excitation by vacuum ultraviolet
4	radiation;
5	said phosphor layer containing spherical fine particles of a luminescent material
6	that is excited by vacuum ultraviolet radiation (VUV).
1	2. A plasma display panel as described in Claim 1, wherein:
2	said VUV-excited luminescent material is fine particles of a perfect sphere-shape.
1	3. A plasma display panel described in Claim 2, wherein:
2	said VUV-excited luminescent material has a particle size of 2 micrometers or
3	less.
1	4. A plasma display panel described in Claim 2 or 3, wherein:
2	said VUV-excited luminescent material is a BAM-type luminescent material
3	represented by BaMgAl ₁₀ O ₁₇ : Eu.
1	5. A process for producing a plasma display panel having a phosphor layer which
2	is placed between a pair of opposing substrates and which contains a VUV-excited
3	luminescent material which emits light through excitation by vacuum ultraviolet radiation
4	comprising:
5	a reaction step in which a metal ion solution of VUV-excited luminescent material
6	is atomized and formed into spherical fine particles under a heated atmosphere of 500-
7	1500 degrees C;
8	a baking step in which said spherical particles formed in said reaction step are
9	heated to a temperature greater than in said reaction step.
1	6. A process for producing a plasma display panel as described in Claim 5,

said heating temperature of said baking step is 1000-1700 degrees C.

1	7. A process for producing a plasma display panel as described in Claim 5 or 6,
2	wherein:
3	said baking step is conducted in an atmosphere of oxygen concentration of 0.02
4	ppm or less and water concentration of 0.5 ppm or less.
1	8. A process for producing a plasma display panel as described in Claims 5, 6 or 7
2	wherein:
3	in said reaction step, a fluxing agent or thickener is further added to said metal ion
4	solution.
1	9. A process for producing a plasma display panel as described in Claim 8,
2	wherein:
3	NH ₄ BF ₄ is added as said fluxing agent.
1	10. A VUV-excited luminescent material, comprising:
2	VUV-excited luminescent material which emits light through excitation by
3	vacuum ultraviolet radiation;
4	said VUV-excited luminescent material being fine particles of perfectly spherical
5	shape.
1	11. A process for producing VUV-excited luminescent material as described in
2	Claim 10, comprising:
3	a reaction step in which a metal ion solution containing a matrix substance and an
4	activator which constructs said VUV-excited luminescent material is atomized and
5	formed into spherical fine particles under a heated atmosphere of 500-1500 degrees C;
6	a baking step in which said spherical particles formed in said reaction step are
7	heated to a temperature greater than said reaction step.