# Mediam and Order Statistics

- ▶ A computational problem that is similar to but "easier" than the sorting problem.
- ▶ Given *n* numbers, we are looking for the *k*th largest.
- ▶ If k = 1, or k = n, we are looking for the minimum or the maximum,
- ▶ If  $k = \lfloor \frac{n}{2} \rfloor$ , we are looking for the median.

#### Selection Problem

- ▶ INPUT: A set A of n (distinct) numbers and a number i.
- ▶ OUTPUT: The element  $x \in A$ , x is larger than exactly i-1 other elements of A.
- ▶ Selection problem can be solved in  $O(n \log n)$  time, since Sort and report.

## Minimum and Maximum

- Find the Minimum or the maximum can be done in  $\Theta(n-1)$  time.
- ▶ Lower bound is  $\Omega(n)$  time.
- Simultaneous minimum and maximum, a naive approach 2n-2, a better approach  $3\lceil \frac{n}{2} \rceil$ .

## Selection in Expected Linear Time

A Divide and Conquer approach

## Selection in Expected Linear Time

- Worst case running time T(n) = T(n-1) + n,
- ▶ Best case running time, balance partition  $T(n) = T(\lfloor \frac{n}{2} \rfloor) + n$

#### Selection in Worst Case Linear Time

- 1. We are looking for the kth largest.
- 2. Partition the *n* numbers into  $\lceil \frac{n}{5} \rceil$  groups.
- 3. Find the median for each group.
- 4. Find the median of these medians, let it be M.
- 5. Rearange the groups so that the groups have medians < M are to the left of M, the groups have medians > M are to the right of M.

draw the figure



- 1. There are 4 regions. We shall determine the region that **cannot** contains the answer (the kth largest one). Let r = Rank(M).
- 2. Case 0, if r = k, found.
- 3. Case 1, if r > k, region III cannot have the answer.
- 4. Case 2, if r < k, region I cannot have the asswer.
- 5. In either case, we can drop around  $\frac{1}{4}n$ .

- 1. Case 1, in the next iteration, we look for the kth largest in the set of  $\frac{3}{4}n$  numbers.
- 2. Case 2, in the next iteration, we look for the (k-r)th largest in the set of  $\frac{3}{4}n$  numbers.

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \text{ is smaller than a given constant} \\ T(\frac{n}{5}) + T(\frac{3}{4}n) + n \end{cases}$$

▶ It is bounded by *cn*.