3. Functional groups

- Functional groups are atoms or groups of atoms that give an organic molecule its particular characteristics. (See Table 3.)
- The nomenclature of organic compounds with these functional groups follows the same rules as those previously outlined for hydrocarbons.
- If two or more functional groups occur in the same molecule then the order of priority for the principal functional group (highest to lowest) is carboxylic acid (-COOH), aldehyde (-CHO), ketone (-COC-), alcohol (-OH), amine (-NH₂), alkene (-C=C-), alkyne (-C=C-), halogen (F-, Cl-, Br-, I-) and alkyl group (methyl, ethyl etc).

Table 3 Structure and nomenclature of common functional groups

tructural ormula	Simplified formula	of common function Class of compound	Prefix or suffix to stem	Example		
! C=C	-СНСН-	alkene	ene	$ \begin{array}{ccc} H & H \\ & & \\ CH_3C = CCH_2CH_3 \end{array} $	H $ $ $CH_3C = CCH_2CH_3$	
				cis-2-pentene	H trans-2-pentene	
- C ≡ C -	-CC-	alkyne	yne	$CH_3C \equiv CCH_2CH_3$ 2-penty <i>ne</i>	$CH \equiv CCH_2CHBr_2$ 4,4-dibromo-1-butyne	
-F -Cl -Br		haloalkane	fluoro- chloro- bromo- iodo-	CH ₃ CF ₂ CH ₂ CHICH ₂ Cl-chloro-4,4-difluoro	CH ₃ CF ₂ CH ₂ CHICH ₂ Cl 1-chloro-4,4-difluoro -2-iodopentane	
_I _ O − H	–OH	alcohol	-ol or * hydroxy-	CH ₃ CH ₂ CH ₂ OH C 1-propan <i>ol</i>	CH ₃ CHOHCH ₂ COOH 3-hydroxybutanoic acid	
O - C - H	-СНО	aldehyde	—al	O CH ₃ CH ₂ CH ₂ C — H butan <i>al</i>	CHO \ CH ₃ CH ₂ CHCH ₂ CH ₃ 2-ethylbutan <i>al</i>	
O -C-	-CO-	ketone	-one	O CH3CCH3 propan <i>one</i>	CH ₃ CH ₃ CHCH ₂ COCH ₃ 4-methyl-2-pentan <i>one</i>	
О -С-О-Н	-соон	carboxylic acid	–oic acid	O CH ₃ CH ₂ CH ₂ C — OF butan <i>oic acid</i>	NH ₂ H CH ₃ CHCH ₂ COOH 3-aminobutan <i>oic aci</i>	
H I -N-H	-NH ₂	amine	-amine or*	CH ₃ CH ₂ CH ₂ NH ₂ 1-propan <i>amine</i>	CH ₂ OHCH ₂ CH ₂ NH ₂ 3-amino-1-propanol	
0 -C-0-	-coo-	ester	-oate	CH ₃ CH ₂ CH ₂ CH ₂ COOCH ₂ CH ₃ ethyl pentanoa CH ₃ CH ₂ CH ₂ OOCCH ₃ propyl ethanoate		

^{*} The optional prefix is usually used if a suffix of higher priority is already present in the name.

Set 14 Organic nomenclature

- 1. Name the functional group in each of the following organic structures.
 - a. O || CH₃C – OH
- f. O || CH₃C - O -CH₃
- k. CH₃COCH₂CH₃

- b. CH₃CH₂CH₂CI
- g. CH2CHCH2CH3
- l. CH₃CCCH₂CH₃

- c. CH₃CH₂OH
- h. CH₃CH(CH₃)CH₃
- m. CH₃COOCH₃

- $\begin{array}{ccc}
 & CH_2 \\
 & CH_2 & C = C \\
 & CH_2 & CH_2
 \end{array}$
- i. O ∥ CH₃C −H
- соон

- e. NH₂CH₂CH₃
- j. CH₃CH₂CHO
- o. CH₃CH₂Br
- 2. Draw suitable structural formula for the following organic compounds.
 - a. 2,2-dimethylpentane
 - b. butanone (or 2-butanone)
 - c. propyl ethanoate
 - d. 2-butanol
 - e. 3-methylbutanoic acid
 - f. 3-methyl-1-butanol
 - g. cyclohexanone
 - h. cis-2,3-dichloro-2-pentene
 - i. 3,3,3-tribromopropanoic acid
 - j. 2,4-diethylhexanal
 - k. 1-bromo-3-ethylcyclopentene
 - 1. 3-ethylcyclohexanone

- m. 1,1,1-trichloro-4-methyl-2-pentyne
- n. ethyl methanoate
- o. trans-1,2-diaminoethene
- p. 3-amino-2-ethylpentanoic acid
- q. 3,4-diiodobenzoic acid
- r. 3-ethyl-2-methylheptanal
- s. 1-chloro-3,5-diethylcyclohexene
- t. cis-butendioic acid
- u. 3,4-dibromo-3-ethyl-2-pentanol
- v. ethyl propanoate
- w. 2-hydroxybenzoic acid
- x. butyl benzoate
- 3. The full structural formula for several organic compounds are shown below. Give the IUPAC name for these substances.

a. H H Cl | | | | H-C-C=C

- I. H H O H
 H C C C O C H
 H H H H

h. O C-H
H H H CI

ĤĤĤĤBr

c. H H H

| | | |

H-C-C-C-O-H

| | H H

H-C-H

| H-C-H

H

Η

i.

F

H

C

H - C

C = 0

H - C - C - H

H H

- 4. Condensed structural formula are shown here for some organic compounds. Give the IUPAC name for these substances. (It may be useful to write the full structural formula for these before attempting to name them.)
 - a. CH₃ |
 CH₂CICCH₂CH₂COOH |
 CH₃
- f. CH₃
 |
 CIC=CCI
 |
 CH₃

k. HCCl₂CCCH₂CHCH₃CH₃

- b. CH₃CCCHCH₃CH₃
- g. CH₃COCH₂CH₂CH₂CH₃
- l. CH₃(CH₂)₆COOH

c. CH₂CH₃

 m. O CH₃ CH₂CH₂CH₃

d. HCOOCH₂CH₃

- i. CBr₃CHCH₃CHOHCH₃
- n. CH3CHCH3CHO

- e. CH₃CH₂CH₂COOCH₃
- j. CI | CH₃CCCH₂CH₃ | CI

- o. COOH

 NH₂ CH₂CH₃
- 5. Examine the following pairs of compounds. Determine those pairs of compounds which represent:

and

- i. the same compound
- ii. structural isomers
- iii. geometric isomers, ie cis-trans isomers
- iv. different compounds that are not isomers.
- d C1 C C=C I H I
- b. Br Cl | C=C | H Cl
- c. H Cl C=C | |
- d. Br H | | H-C-C-H | | H Br

Classification of primary, secondary and tertiary alcohols is based upon the nature of the carbon atom to which the -OH functional group is attached.

2º (secondary) alcohol

1º (primary) alcohol

A 3° carbon is one bonded to three other carbon atoms. A 2° carbon is bonded to two other carbon atoms. A 1° carbon is bonded to a single carbon atom.

- g. CH₃COOCH₂CH₂CH₃
 - and

CH3CH2COOCH2CH3

- h. 2-pentene
- and
- cyclopentane

- i. propanone
- and
- propanal
- 6. Name the compounds described below.
 - a. The straight chain alkene of formula C_4H_8 that does not have geometric isomers.
 - b. The tertiary alcohol (see margin note) of molecular formula C₄H₁₀O.
 - c. The two esters of molecular formula $C_3H_6O_2$.
 - d. Two saturated hydrocarbons of molecular formula C4H8.
 - e. An aldehyde and a ketone of molecular formula C₃H₆O.
 - f. The aromatic compound with molecular formula C₇H₈.
- 7. Name the eight isomers of $C_5H_{12}O$ that contain an alcohol functional group. Classify these as 1° , 2° or 3° alcohols.
- 8. A student named several organic compounds as indicated below. Unfortunately, although each name specifies a correct structure, the name given does not correctly follow the IUPAC system of nomenclature. Use the given name to determine the structure and hence give the correct IUPAC name for each compound.
 - a. 4-hydroxy-1-pentanamine
- d. 1,1,1-trichloro-4-butanoic acid
- b. 2,2,2-trimethylethanoic acid
- e. 1-methyl-1,3,5-cyclohexatriene
- c. 3-propylpentanal
- f. trans-2,3-dibromopropane

92 Answers

2.

CH₃

The increase in mass occurring at electrode B is due to the reduction of copper: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ 11.

$$n(Cu) = \frac{m}{M} = \frac{0.972}{63.55} = 1.53 \times 10^{-2} \text{ mol Cu}$$
 and $n(e^{-}) = 2 \times n(Cu) = 3.06 \times 10^{-2} \text{ mol}$

The increase in mass at electrode D is due to the formation of X(s): $X(CN)_2(aq) + e^s \rightarrow X(s) + 2CN(aq)$ Also, the moles of electrons consumed at electrode B (3.06 x10⁻² mol) is the same as that consumed at electrode D.

$$n(X) = \frac{1}{1} n(e^{x}) = 3.06 \times 10^{-2} \text{ mol}$$
 and $M(X) = \frac{m}{n} = \frac{6.05}{3.06 \times 10^{-2}} = 198 \text{ g mol}^{-1} (3 \text{ SF})$

The metal has a molar mass of 198 g (3 SF) and is most probably gold (molar mass 197).

Unit 7 **Set 14** Organic nomenclature

j. aldehyde m. ester a. carboxylic acid d. ketone g. alkene

h. methyl ketone n. carboxylic acid e. amine or amino b. chloro o. bromo

i. aldehyde l. alkyne c. alcohol f. ester

COOH CBr₃CH₂C - OH CH3CCH2CH2CH3

CH₃ CH₂CH₃ CH₃ j. CH3CH2CH2CH2CHCHCHO CH3CH2CHCH2CHCHO CH₃CH₂CCH₃ CH₂CH₃ CH₂CH₃

CH2CH3 k. s. CH₃C - OCH₂CH₂CH₃

CH2CH3

CH₂CH₃

HOOC COOH CH2CH3 OH CH₃CHCH₂CH₃

CH3CHBrCBrCHOHCH3 ÇH₃ m. CH_3 CCl₃C ≡ CCHCH₃ CH₂CH₃ CH3CHCH2C - OH

CH₃ HC - OCH2CH3 CH₃CH₂C - OCH₂CH₃ CH₃CHCH₂CH₂OH

H NH₂ COOH c=cNH₂ H

 NH_2 COOCH2CH2CH2CH3 $CH_3C = CCH_2CH_3$ CH₃CH₂CHCH₂C - OH CH₂CH₃

g. 5,5-dichloro-2-pentyne d. methyl propanoate a. 1,1-dichloro-1-propene

h. 3-bromo-3-chloro-2-propylpropanal e. 5,5-dibromo-2-pentanone b. trans-1,2-dibromo-1-propene

f. 2-methylbutanoic acid i. 2,2-difluorocyclopentanone c. 2-methyl-1-butanol

- a, 5-chloro-4,4-dimethylpentanoic acid f. trans-2,3-dichloro-2-butene
- k. 1,1-dichloro-5-methyl-2-hexyne

- b. 4-methyl-2-pentyne
- g. 2-hexanone

l. octanoic acid

- c. 3-ethyl-1,2-difluorobenzene
- h. 2-amino-4-methyl-1-cyclohexanol
- m. 2-methyl-4-propylcyclopentanone

- d. ethyl methanoate
- i. 4,4,4-tribromo-3-methyl-2-butanol
- n. 2-methylpropanal

- e. methyl butanoate
- j. cis-2,3-dichloro-2-pentene
- o. 3-amino-5-ethylbenzoic acid

- a. geometric isomers
- d. same compound (C-C bond rotates)
- g. structural isomers

- b. same compound
- e. not isomers

h. structural isomers

- c. structural isomers
- f. structural isomers
- i. structural isomers

- a. 1-butene
- c. methyl ethanoate and ethyl methanoate
- e. propanone and propanal

- b. 2-methyl-2-propanol
- d. cyclobutane and methylcyclopropane
- f. methylbenzene (toluene)
- 1° alcohols: 1-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2,2-dimethyl-1-propanol
 - 2º alcohols: 2-pentanol, 3-pentanol, 3-methyl-2-butanol
 - 3º alcohols: 2-methyl-2-butanol
- a. 5-amino-2-pentanol
- c. 3-ethylhexanal
- e. methylbenzene (toluene)

- b. 2,2-dimethylpropanoic acid
- d. 4,4,4-trichlorobutanoic acid
- f. 1,2-dibromopropane

Reactions of hydrocarbons Unit 8 **Set 15**

- a. $2C_4H_{10}(l) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g)$
 - b. $CH_3(CH_2)_5CH = CH_2(l) + HCl(g) \rightarrow CH_3(CH_2)_5CHClCH_3(l)$
- The product must be 2-chlorooctane.
- c. $CH_3(CH_2)_4CH_3(l) + Br_2(aq) \rightarrow CH_3(CH_2)_4CH_2Br(l) + HBr(aq)$ d. $2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$
- e. $CH_2 = CH_2(g) + Br_2(aq) \rightarrow CH_2BrCH_2Br(l)$
- f. $CH_3CH_3(g) + 6Br_2(g) \rightarrow CBr_3CBr_3(l) + 6HBr(g)$
- g. $C_6H_6(l) + Br_2(aq) \rightarrow C_6H_5Br(l) + HBr(aq)$
- h. $2C_8H_{18}(l) + 17O_2(g) \rightarrow 16CO(g) + 18H_2O(g)$
- i. $CH \equiv CH(g) + 2H_2(g) \rightarrow CH_3CH_3(g)$
- i. $CH_3C \equiv CH(g) + HI(g) \rightarrow CH_3CI = CH_2(l)$
- The product must be 2-iodopropene.

k. $C_5H_8(l) + Br_2(aq) \rightarrow C_5H_8Br_2(l)$

- The product must be 1,2-dibromocyclopentane.
- l. $CH_3CH_2CH_3(g) + 8Cl_2(g) \rightarrow CCl_3CCl_2CCl_3(s) + 8HCl(g)$
- m. $CH_3(CH_2)_2C \equiv CH(l) + HI(g) \rightarrow CH_3(CH_2)_2CI_2CH_3(l)$
- The product must be 2,2-diiodopentane.

- a. i. combustion
- ii. CO2 and H2O
- iii. The gas burns producing heat and light.

- b. i. substitution
- ii. chlorooctane and HCl
- iii. The chlorine water slowly changes from pale yellow-green to colourless.

- c. i. addition
- ii. 1,2-dibromocyclobutane iii. The bromine solution quickly changes from red-brown to colourless.
- d. i. substitution
- ii. chlorobenzene and HCl iii. The chlorine water slowly changes from pale yellow-green to colourless.
- e, i. addition
- ii. 1,1,2,2-tetrabromohexane iii. The bromine solution quickly changes from red-brown to colourless.
- a. Yes. Propene will rapidly decolourise bromine water (red-brown to colourless). Propane does this much more slowly.
 - b. No. An addition reaction occurs in both cases so they both rapidly decolourise bromine water.
 - c. No. An addition reaction occurs in both cases so they both rapidly decolourise bromine water.
 - d. Yes. An addition reaction occurs with cyclohexene rapidly decolourising bromine water (red-brown to colourless). Benzene decolourises bromine water much more slowly (substitution).
 - e. No. A substitution reaction occurs in both cases so they both slowly decolourise bromine water.
 - f. Yes. Cyclohexene undergoes addition (rapidly decolourises bromine), while cyclohexane undergoes substitution (slowly decolourises bromine water).