SHOW ALL YOUR WORK! Give reasons to support your answers. No calculators allowed, but you may use one $8.5'' \times 11''$ sheet of notes with anything you like written on it.

- 1. Define a linear transformation $T: \mathbb{P}_2 \to R^3$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix}$.

 (a) Find the image under T of $\mathbf{p}(t) = 5 + 3t$. Plug in: $T(5 + 3t) = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$.

 - (b) Show that T is a linear transformation.

$$T(\mathbf{p}+\mathbf{q}) = \begin{bmatrix} (\mathbf{p}+\mathbf{q})(-1) \\ (\mathbf{p}+\mathbf{q})(0) \\ (\mathbf{p}+\mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(-1)+\mathbf{q}(-1) \\ \mathbf{p}(0)+\mathbf{q}(0) \\ \mathbf{p}(1)+\mathbf{q}(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(-1) \\ \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(-1) \\ \mathbf{q}(0) \\ \mathbf{q}(1) \end{bmatrix}.$$

- (c) Find the matrix for T relative to the basis $\{1, t, t^2\}$ for \mathbb{P}_2 and the standard basis for \mathbb{R}^3 . $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.
- (d) Is T one-to-one? Is T onto? Explain! By row reduction or computing the determinant, one easily sees that this matrix is nonsingular; hence, by the IMT, T is both one-to-one and onto.
- 2. Find the characteristic polynomial and the eigenvalues of the matrix $A = \begin{bmatrix} 5 & -2 & 5 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$.

Best to compute $|A - \lambda I|$ by expanding along the middle row. After routine comput tion one gets the eigenvalues $\lambda = -4, 1, \text{ and } 7.$

3. Show that if $T = \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$, then $\det T = (b-a)(c-a)(c-b)$.

Make sure you can explain why each equality of determinants is true!

$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{vmatrix} = \begin{vmatrix} b - a & b^2 - a^2 \\ c - a & c^2 - a^2 \end{vmatrix} = (b - a)(c - a) \begin{vmatrix} 1 & b - a \\ 1 & c - a \end{vmatrix}$$
 etc.

- 4. Prove or (use a counterexample to) Disprove and Salvage if possible:
 - (a) If A = QR, where Q has orthonormal columns, then $R = Q^T A$. If the columns of Q are orthonormal, then by definition $Q^T Q = I$. Hence, multiplying both sides of A = QR by Q^T yields $Q^T A = IR = R$.
 - (b) If $S = \{u_1, \ldots, u_p\}$ is an orthogonal set of vectors in \mathbb{R}^n , then S is linearly independent. False, since S may contain $\mathbf{0}$, e.g., $S = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{0} \right\}$ is orthogonal. However, any orthogonal set of *nonzero* vectors is linearly independent [§6.2, Thm. 4].
 - (c) If A and B are invertible $n \times n$ matrices, then AB is similar to BA. True, since $A^{-1}(AB)A = BA$.
 - (d) Each eigenvector of a square matrix A is also an eigenvector of A^2 . True. If $A\mathbf{v} = \lambda \mathbf{v}$ for some nonzero v, then $A^2\mathbf{v} = \lambda^2\mathbf{v}$ [Why?]. So \mathbf{v} is an eigenvector for A^2 (corresponding to the eigenvalue λ^2).
 - (e) There exists a 2×2 matrix with real entries that has no eigenvectors in \mathbb{R}^2 . True. Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then $\det(A \lambda I) = \lambda^2 + 1$, which has no real (only complex) roots.
 - (f) If A is row equivalent to the identity matrix I, then A is diagonalizable. The matrix A in the example above is a counterexample.
- 5. Decide whether each statement below is True of False. Justify your answer. For False statements, a counterexample is usually best. Extra credit for good salvages and more for proofs thereof!
 - (a) If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself. True. The projection of \mathbf{y} onto W is the vector in W that is closest to \mathbf{y} . If $\mathbf{y} \in W$, then that vector will be \mathbf{y} itself. One can also see this by noting that the formulae in §6.3, Thm. 8 and §6.2, Thm. 5 for expanding \mathbf{y} in terms of basis for W give the same coefficients.
 - (b) For an $m \times n$ matrix A, vectors in Nul A are orthogonal to vectors in Row A. True. By definition, $\mathbf{v} \in \text{Nul } A$ means that $A\mathbf{v} = 0$. But this just says that the result of taking the inner product of each row of A with \mathbf{v} is zero. Hence, \mathbf{v} is orthogonal to a basis for Row A, hence to any vector in Row A.
 - (c) The matrices A and A^T have the same eigenvalues, counting multiplicities. This is true since they have the same characteristic equation: $|A \lambda I| = |(A \lambda I)^T| = |A^T \lambda I|$.
 - (d) A nonzero vector can correspond to two different eigenvalues of A. False. If $Av = \lambda v$ and $Av = \mu v$ with $\lambda \neq \mu$, then $(\lambda \mu)v = 0 \implies \mathbf{v} = 0$, since $\lambda \mu \neq 0$.

- (e) The sum of two eigenvectors of a square matrix A is also an eigenvector of A. False. Take $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then e_1 is an eigenvector for $\lambda = 2$, and e_2 is an eigenvector for $\lambda = 3$. But $A(e_1 + e_2) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, which is not a multiple of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- (f) The singular values of an $m \times n$ matrix can be 3, 1, -1, -3. False, all singular values are positive!
- 6. If a $n \times n$ matrix A satisfies $A^2 = A$, what can you say about the determinant of A? Since the determinant is multiplicative, we get $D = \det A = \det A^2 = (\det A)^2$. The only solutions to $D^2 = D$ are D = 0 or 1, so $\det A = 0$ or 1.
- 7. Assume that matrices A and B below are row equivalent:

$$A = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 1 & 2 & -3 & 0 & -2 & -3 \\ 1 & -1 & 0 & 0 & 1 & 6 \\ 1 & -2 & 2 & 1 & -3 & 0 \\ 1 & -2 & 1 & 0 & 2 & -1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 & -13 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A. We get rank A = 5, so dim Nul A = 6 - 5 = 1. A basis for Col A is given by columns 1, 2, 3, 5, and 6 of A, while a basis for Row A is given by all five rows of B (not of A). To get a basis for Nul A, we further reduce B to echelon form:

$$B \sim \begin{bmatrix} 1 & 1 & -2 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \implies \text{Nul } A = \text{Span} \left\{ \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

8. Find the maximum value of $Q(\mathbf{x}) = 7x_1^2 + 3x_2^2 - 2x_1x_2$ subject to the constraint $x_1^2 + x_2^2 = 1$. (You do not need to compute a vector at which this maximum is attained.) This is equivalent to finding the maximum value of $\vec{x}^T A \vec{x}$ subject to the constraint $\vec{x}^T \vec{x} = 1$. By Theorem 6, this is the greatest eigenvalue λ_1 of the matrix of the quadratic form, namely

$$A = \begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix} \implies \lambda_1 = 5 + \sqrt{5} \text{ and } \lambda_2 = 5 - \sqrt{5}.$$

- 9. What would you have to know about the solution set of a homogenous system of 18 linear equations in 20 variables in order to know that every associated nonhomogeneous equation has a solution? Discuss! Let A be the matrix that represents this homogenous system in the form $A\mathbf{x} = \mathbf{0}$. In order for the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ to be **onto** \mathbb{R}^{18} , the matrix A must have rank 18. So by the rank-nullity theorem, dim Nul A = 2, which means that the solution set of the homogenous system is two-dimensional, so can be written as the span of a set of two linearly independent vectors.
- 10. Go back over your old homework and quizzes to review and make sure you understand any problem on which you lost points. Check!
- 11. Here are some specific tasks (modified from a list of Prof. Leibowitz) I expect you to be able to perform with demonstrated understanding:
 - (a) Given a matrix A, find the dimensions of and bases for $\operatorname{Col} A$, $\operatorname{Nul} A$, and $\operatorname{Row} A$. Use the relations among rank, $\dim \operatorname{Nul} A$, and size of A to understand properties of the associated linear transformation (one-to-one, onto, kernel, range).
 - (b) Use row reduction to solve linear equations, show that a given column vector is in the span of a given set of vectors, or compute the inverse of a matrix.
 - (c) Use row operations to reduce a matrix A to triangular form in order to calculate det A. Use properties to compute the determinant of related matrices.
 - (d) Diagonalize a given matrix and use the $A = PDP^{-1}$ factorization to calculate a power of A.
 - (e) Orthogonally diagonalize a real symmetric matrix, possibly representing a quadratic form, and compute constrained extrema of the form.
 - (f) Project a vector onto the subspace spanned by a given set of vectors, after verifying that they form an orthogonal set.
 - (g) Understand how to construct and use the singular value decomposition of an $m \times n$ matrix.
 - (h) Understand the theory of the course well enough to distinguish true statements from false ones, giving supporting evidence or counterexamples as appropriate.
 - (i) Show that a certain set of vectors is a subspace of a given space, or are eigenvectors of a certain matrix.
 - (j) Use various forms of the Invertible Matrix Theorem in context.