# Prediction in MLM

Model comparisons and regularization PSYC 575

October 13, 2020 (updated: 30 October 2021)

#### **Learning Objectives**

- Describe the role of **prediction** in data analysis
- Describe the problem of overfitting when fitting complex models
- Use **information criteria** to compare models

## Prediction

## Yarkoni & Westfall (2017)<sup>1</sup>

 "Psychology's near-total focus on explaining the causes of behavior has led [to] ... theories of psychological mechanism but ... little ability to predict future behaviors with any appreciable accuracy" (p. 1100)

### Prediction in Data Analysis

- Explanation: Students with higher SES receive higher quality of education prior to high school, so schools with higher MEANSES tends to perform better in math achievement
- Prediction: Based on the model, a student with an SES of 1 in a school with MEANSES = 1 is expected to score 18.5 on math achievement, with a prediction error of 2.5

### Can We Do Explanation Without Prediction?

- "People in a negative mood were more aware of their physical symptoms, so they reported more symptoms."
- And then . . .
- "Knowing that a person has a mood level of 2 on a given day, the person can report anywhere between 0 to 10 symptoms"
- Is this useful?

### Can We Do Explanation Without Prediction?

- "CO<sub>2</sub> emission is a cause of warmer global temperature."
- And then . . .
- "Assuming that the global CO<sub>2</sub> emission level in 2021 is 12 Bt, the global temperature in 2022 can change anywhere between -100 to 100 degrees"
- Is this useful?

#### Predictions in Quantitative Sciences

- It may not be the only goal of science, but it does play a role
  - Perhaps the most important goal in some research
- A theory that leads to no, poor, or imprecise predictions may not be useful
- Prediction does not require knowing the causal mechanism, but it requires more than binary decision of significance/nonsignificance

## Example (M1)

• A subsample of 30 participants

#### Level 1:

$$symptoms_{ti} = \beta_{0i} + \beta_{1i} \bmod 1\_pmc_{ti} + e_{ti}$$

#### Level 2:

$$\beta_{0i} = \gamma_{00} + \gamma_{01} \mod 1_{pm_i} + \gamma_{02} \mod 1_{pm_i} + \gamma_{03} \mod 1_{pm_i} \times \mod 1_{pm_i} \times \dim i + u_{0i}$$
  
 $\beta_{1i} = \gamma_{10} + \gamma_{11} \mod i + u_{1i}$ 

#### Two Types of Predictions

 Cluster-specific: For a person (cluster) in the data set, what is the predicted symptom level when given the predictors (e.g., mood1, women) and the person- (cluster-)specific random effects (i.e., the u's)?

```
> (obs1 <- stress_data[1, c("PersonID", "mood1_pm", "mood1_pmc",
"women")])
  PersonID mood1_pm mood1_pmc women
1    103    0    0 women
> pred1 <- predict(m1, newdata = obs1)
[1] 0.3191718</pre>
For person v
a day with m
predicted to
```

For person with ID 103, on a day with mood = 0, she is predicted to have 0.32 symptoms

#### Two Types of Predictions

 Unconditional/marginal: for a new person not in the data, given the predictors but not the u's

```
> predict(m1, newdata = obs1, re.form = NA)
[1] 0.9219858
```

For a random person who's a female and with an average mood = 0, on a day with mood = 0, she is predicted to report 0.92 symptom

#### **Prediction Errors**

- Prediction error = Predicted  $Y(\tilde{Y})$  Actual Y
- For our observation:

$$\tilde{e}_{ti} = \tilde{Y}_{ti} - Y = 0.32 - 0 = 0.32$$

#### Average In-Sample Prediction Error

- Mean squared error (MSE):  $\sum \sum \tilde{e}_{ti}^2/N$
- In-sample MSE: average squared prediction error when using the same data to build the model and compute prediction
- Here we have in-sample MSE = 1.04
  - The average squared prediction error is 1.04 symptoms

# Overfitting

### Overfitting

- When a model is complex enough, it will reproduce the data perfectly (i.e., in-sample MSE)
- It does so by capturing all idiosyncrasy (noise) of the data



## Example (M2)

- 35 fixed effects
- In-sample MSE = 0.76
  - Reduction of 27%
- Some of the coefficient estimates were extremely large

#### Out-Of-Sample Prediction Error

- A complex model tends to overfit as it captures the noise of a sample
  - But we're interested in something generalizable in science
- A better way is to predict another sample not used for building the model (i.e., the remaining 75 participants)
- Out-of-sample MSE:
  - M1: 1.84
  - M2: 2.47
- So M1 is more generalizable, and should be preferred



# Estimating Out-of-Sample Prediction Error

### Approximating Out-Of-Sample Prediction Error

- But we usually don't have the luxury of a validation sample
- Possible solutions
  - Cross-validation
  - Information criteria
- They are basically the same thing; just with different approaches (brute-force and analytical)

## K-fold Cross-Validation (CV)

- E.g., 5-fold
- Splitting the data at hand
- M1: 5-fold MSE = 1.18
- M2: 5-fold MSE = 2.95

| Data                                        | Iteration 1         | Iteration 2         | Iteration 3         | Iteration 4         | Iteration 5         |
|---------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 1st Fold<br>110, 125, 518,<br>526, 559, 564 | Prediction<br>Error | Model<br>Building   | Model<br>Building   | Model<br>Building   | Model<br>Building   |
| 2nd Fold<br>130, 133, 154,<br>517, 523, 533 | Model<br>Building   | Prediction<br>Error |                     |                     |                     |
| 3rd Fold<br>103, 143, 507,<br>519, 535, 557 |                     | Model<br>Building   | Prediction<br>Error |                     |                     |
| 4th Fold<br>106, 111, 136,<br>137, 509, 547 |                     |                     | Model<br>Building   | Prediction<br>Error |                     |
| 5th Fold<br>131, 147, 522,<br>530, 539, 543 |                     |                     |                     | Model<br>Building   | Prediction<br>Error |

#### Leave-One-Out (LOO) Cross Validation

- LOO, or N-fold CV, is very computationally intensive
  - Fitting the model N times
- M1: LOO MSE = 1.23
- M2: LOO MSE = 3.37
- So M1 should be preferred

#### Information Criteria

- AIC: An Information Criterion
  - Or Akaike information criterion (Akaike, 1974)
- Under some assumptions,
  - Prediction error = deviance + 2p
  - where p is the number of parameters in the model

#### Information Criteria

- AIC: An Information Criterion
  - Or Akaike information criterion (Akaike, 1974)
- Under some assumptions,
  - Prediction error = deviance + 2p
  - where p is the number of parameters in the model
- (Marginal) AIC: predicting a new cluster
  - Most software reports this
- (Conditional) AIC: predicting a new observation of an existing cluster
  - Available in the "cAIC4" package in R

#### mAIC vs cAIC

#### **mAIC**

 Sensitive to differences at level 2

```
># df AIC
># fit_m1 10 399.4346
># fit_m2 43 399.9684
```

#### cAIC

 Sensitive to differences at level 1

```
># m1 m2
># 367.2822 388.6662
```

#### Summary

- More complex models are more prone to overfitting when the sample size is small
- A model with smaller out-of-sample prediction error should be preferred
- Out-of-sample prediction error can be estimated by
  - Cross-validation
  - Information criteria (e.g., AIC)

# Model Comparison

#### Comparing Models

- Previously, we talked about using the likelihood ratio test (LRT) to test two <u>nested</u> models, such as
  - $M_0: X_1, X_2$
  - $M_1: X_1, X_2, X_3, X_4$
  - Significant LRT suggested non-zero coefficients for at least one of  $X_3$  and  $X_4$ , holding constant  $X_1$  and  $X_2$
- However, LRT should not be used for non-nested models
  - $M_0: X_1, X_3$
  - $M_1: X_1, X_2, X_4$

## **Comparing Models**

- Also, LRT is not very useful for selecting the best models in a set of candidate models
- Instead, AIC is more useful

#### Model Comparison Example

- 1. mood1 and stressor, no random slopes
- mood1\_pm, mood1\_pmc, stressor\_pm, stressor, no random slopes
- 3. mood1\_pm, mood1\_pmc, stressor\_pm, stressor, random slopes
- 4. Model 3 + interaction terms: mood1\_pm:stressor\_pm, mood1\_pmc:stressor

#### Model Comparison Example

#### Marginal AIC

```
># df AIC
># m_1 5 404.2322
># m_2 7 403.5750
># m_3 12 410.2415
># m_4 13 414.3175
```

#### Conditional AIC

```
># m_1 m_2 m_3 m_4
># 369.3262 369.2557 369.2557 373.5176
```

Models 1 and 2 should be preferred

#### Using AIC

- In practice, model comparison should be based on both statistical performance and substantive considerations
  - E.g., some variables may be included due to theoretical importance
- Instead of just selecting one model with the best AIC, identify a few models with similar AICs
- Difference in AIC > 10 usually considered big

#### **Topics Not Covered**

- Other information criteria (e.g., BIC; there are hundreds of them)
- Classical regularization techniques (e.g., Lasso, ridge regression)
  - See bonus R code for Lasso with MLM
- Variable selection methods
- Model averaging
  - See also bonus R code