

Walchand College of Engineering (Government Aided Autonomous Institute)

Vishrambag, Sangli. 416415

Computer Algorithms

M1: Introduction

24-25

D B Kulkarni

Information Technology Department

Assignment

Profiling

Tools

- 1. gprof with call graph
- 2. perf in linux
- 3. LTTng- Linux Tracing Toolbox next generation
- 4. VTune
- 5. Valgrind

Manholes

Why are they circular in shape?

Division?

Computer Algorithms TY IT 24-25 Sem I DBK

Faulty coin problem...

Statement: Given n similar coins and balance find

- With least usage of balance, the only faulty (different weight) coin

Schedule

3 Lect/week Mon (08:00-9:00AM), Tue (08:00-9:00AM), Wed (08:00-9:00AM) Online till Aug 15

- 60 mins session
 - 5 mins Doubts/discussion/warmup
 - 20 mins session I
 - 5 mins break
 - 20 mins session II
 - 10 Discussion & attendance

Computer Algorithms TY IT 24-25 Sem I DBK

Algorithm

- What is an algorithm? –Pseudocode, logic
- Phases- Devise, Validate, Analyze, Test (DVAT)
- Properties:
 - Written in simple English, statement, description
 - Should accept all possible input- Generic
 - Platform (s/w, H/w independent)
 - **Terminate**
- Algorithm evaluation
 - Priori- Performance analysis
 - Posteriori- Performance measurement

Algorithm: Analysis

- Analysis: Primitive operation (comparison/item manipulations/#of use of function(module))
 - Complexity
 - Time
 - Space
- > Asymptotic notations:
 - Big O (upper bound)
 - Omega (lower bound)
 - Theta (both bound)
- > Strategies
 - Iterative
 - Recursive

TY IT 24-25 Sem I DBK Computer Algorithms 8/64

Algorithm Analysis: Growth of Function

BIG O' NOTATION TIME COMPLEXITY

TY IT 24-25 Sem I DBK Computer Algorithms 9/64

Algorithm Analysis: Asymptotic notations

f(n)=O(g(n))

Upper Bound

Lower Bound

$$f(n)=\Theta(g(n))$$

LU (both) Bound

Algorithms: Examples

- Finding largest and smallest
- Finding largest and second largest
- 3. Knapsack problem

Computer Algorithms TY IT 24-25 Sem I DBK

Examples: Finding largest and smallest

Finding largest and smallest

- > (N-1) comparisons for each (smallest and largest) Total (2N-2)?
- \rightarrow (-3N/2-2)

Computer Algorithms TY IT 24-25 Sem I DBK

Examples: Finding Winner and Runner-up

Finding Winner and Runner-up

(N-1) comparisons to find Winner, (N-2) for Runner-up= Total (3N-2)

- Find Winner (N-1)
- Runner-up could be found by finding winner between all payers who lost to the winner ($-\log N_7 - 1$)
- \rightarrow Total N-2+($rlog N_7$)

13/64 Computer Algorithms TY IT 24-25 Sem I DBK

Knapsack problem

https://www.youtube.com/watch?v=33k8EPNriTM

TY IT 24-25 Sem I DBK Computer Algorithms 14/64

Knapsack problem

Knapsack (Bag)

- Weight handling capacity of Knapsack M
- Items to be inserted
- Item (wheat, jowar, rice...) Weight and profit/utilization factor given

Optimization

- Best the one which carries max profit!!!
- Best the one which has least weight!!!

Fractional Knapsack Problem

Fractional Knapsack

Fractional part of item/s are allowed to be added into the knapsack

Fractional Knapsack Problem: Put the items X_i (with weight w_i and profit p_i)in a knapsack of capacity M to get the maximum profit, given the weights and values of n items.

Maximise $\sum_{i=1}^{n} wipi$ with constraint of $(\sum_{i=1}^{n} wixi) \leq M$

- Strategies
 - Add item with min weight X
 - Add item with max profit X
 - Add item based on profit/weight ---Correct result

Fractional Knapsack: Example

Item (M=100)	1. Sugar	2. Tea	3. Masala	4. Salt	
Weight	60	10	30	80	
Profit	30	40	10	20	

Optimal:

Greedy Approach 1: Less weight: Sort items w^- 2,3,1-p80

Greedy Approach 2: More profit: Sort items pv-2,1,3/8(4)-p77.5

Greedy Approach 3:

Correct Approach: Less weight/profit: Sort items (w/p) ^-2,1,3-p80

TY IT 24-25 Sem I DBK Computer Algorithms 17/64

0-1 Knapsack problem

- Fraction of item not allowed
- > Approach?
- > You cannot break an item, either pick the complete item or don't pick it (0-1 property).
- Brute force method: Consider all subsets of weight where sum is <M, select the one with highest profit
- Dynamic programming approach

TY IT 24-25 Sem I DBK Computer Algorithms 18/64

Dynamic programming Approach

- > Determine the structure of an optimal solution
 - Decompose the problem into sub-problems
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.
- Construct an optimal solution from computed information

TY IT 24-25 Sem I DBK Computer Algorithms

Messages transmission

Communication Plain, **Secure**

- Encode a message composed of a string of characters
- Codes used by computer systems
 - ASCII
 - uses 8 bits per character
 - can encode 256 characters
 - Unicode
 - 16 bits per character
 - can encode 65536 characters
 - includes all characters encoded by ASCII
- ♦ ASCII and Unicode are *fixed-length codes*
 - all characters represented by same number of bits

TY IT 24-25 Sem I DBK Computer Algorithms 20/64

Problem

Suppose that we want to encode a message constructed (only) from the symbols A, B, C, D, and E using a fixed-length code

- How many bits are required to encode each symbol?
 - at least 3 bits are required
 - 2 bits are not enough (can only encode four symbols)

How many bits are required to encode the message ACDBADDCDBAC?

- there are twelve symbols, each requires 3 bits
- ◆ 12*3 = 36 bits are required

ACDBADDCDBAC

00 10 11 01 00 11 11 10 11 01 00 10

Fixed-length codes: Analysis

- Benefit: Simple
- Drawback:
 - Same number of bits used to represent all characters: 'a' and 'e' occur more frequently than 'q' and 'z'
 - Wasted space: Unicode uses twice as much space as ASCII, inefficient for plain-text messages containing only ASCII characters
- Potential solution: use variable-length codes
 - variable number of bits to represent characters when frequency of occurrence is known
 - short codes for characters that occur frequently

TY IT 24-25 Sem I DBK Computer Algorithms 22/64

Variable-length codes

- The advantage of variable-length codes over fixed-length is short codes can be given to characters that occur frequently
 - on average, the length of the encoded message is less than fixed-length encoding
- Potential problem: how do we know where one character ends and another begins?
 - not a problem if number of bits is fixed!

TY IT 24-25 Sem I DBK Computer Algorithms 23/64

Coding (confuse)

◆ The following code can not be used

Symbol	Code		
Р	0		
Q	1		
R	01		
S	10		
Т	11		

As the pattern 1110 can be decoded as
 1110 (QQQP), 1110 (QTP), 1110 (QQS), or 1110 (TS)

TY IT 24-25 Sem I DBK Computer Algorithms 24/64

Prefix property

 A code has the prefix property if no character code is the prefix (start of the code) for another character

Example:

Symbol	Code		
Р	000		
Q	11 01		
R			
S	001		
Т	10		

01001101100010

RSTQPT

- 000 is not a prefix of 11, 01, 001, or 10
- ♦ 11 is not a prefix of 000, 01, 001, or 10 ...

TY IT 24-25 Sem I DBK Computer Algorithms 25/64

- Design a variable-length prefix-free code such that the message DEAACAAAABA can be encoded using 22 bits
- Possible solution:
 - A occurs eight times while B, C, D, and E each occur once
 - represent A with a one bit code, say 0
 - remaining codes cannot start with 0
 - represent **B** with the two bit code 10
 - remaining codes cannot start with 0 or 10
 - represent C with 110
 - represent **D** with 1110
 - represent E with 11110

TY IT 24-25 Sem I DBK Computer Algorithms 26/64

Encoded message

DEAACAAAAB

A

Symbol	Code			
Α	0			
В	10 110			
С				
D	1110			
E	11110			

1110111100011000000 100

22 bits

TY IT 24-25 Sem I DBK Computer Algorithms 27/64

Another possible code

DEAACAAAABA

Symbol	Code			
Α	0			
В	100			
С	101			
D	1101			
E	1111			

1101111100101000001000

22 bits

Another possible code ...contd

DEAACAAAABA

Symbol	Code		
Α	0		
В	100		
С	101		
D	110		
E	111		

11011100101000001000

20 bits

TY IT 24-25 Sem I DBK Computer Algorithms 29/64

What code to use?

Question: Is there a variable-length code that makes the most efficient use of space?

Answer: Yes!

Computer Algorithms TY IT 24-25 Sem I DBK

Huffman coding

YouTube video: https://www.youtube.com/watch?v=dM6us854Jk0

- Binary tree
 - each leaf contains symbol (character)
 - label edge from node to left child with 0
 - label edge from node to right child with 1
- Code for any symbol obtained by following path from root to the leaf containing symbol
- Code has prefix property
 - leaf node cannot appear on path to another leaf
 - note: fixed-length codes are represented by a complete Huffman tree and clearly have the prefix property

TY IT 24-25 Sem I DBK Computer Algorithms 31/64

Huffman tree

- Find frequencies of each symbol occurring in message
- Begin with a forest of single node trees
 - each contain symbol and its frequency
- Do recursively
 - select two trees with smallest frequency at the root
 - produce a new binary tree with the selected trees as children and store the sum of their frequencies in the root
- Recursion ends when there is one tree
 - this is the Huffman coding tree

TY IT 24-25 Sem I DBK Computer Algorithms 32/64

Build the Huffman coding tree for the message
 This is his message

Character frequencies

Char	Α	G	M	Т	E	Н	_	I	S
Freq	1	1	1	1	2	2	3	3	5

Begin with forest of single trees

1

1

1 M

1 T 2

(2) H 3

3

5

TY IT 24-25 Sem I DBK Computer Algorithms 33/64

TY IT 24-25 Sem I DBK Computer Algorithms 34/64

TY IT 24-25 Sem I DBK Computer Algorithms 35/64

TY IT 24-25 Sem I DBK Computer Algorithms 36/64

TY IT 24-25 Sem I DBK Computer Algorithms 37/64

TY IT 24-25 Sem I DBK Computer Algorithms 38/64

TY IT 24-25 Sem I DBK Computer Algorithms 39/64

TY IT 24-25 Sem I DBK Computer Algorithms 40/64

42/64 **Computer Algorithms** TY IT 24-25 Sem I DBK

This is his message

S	11	
E	010	
Н	011	
_	100	
I	101	
Α	0000	
G	0001	
M	0010	
Т	0011	

TY IT 24-25 Sem I DBK Computer Algorithms 43/64

Huffman code - Online Tool

<u>Huffman Coding Calculator - Compression Tree Generator - Online (dcode.fr)</u>

https://www.dcode.fr/huffman-tree-compression

Questions

- 1. Given the instance of problem whether the coding will always be similar? Elaborate.
- 2. Given the encoded bit-string can we reform the message? Elaborate.

TY IT 24-25 Sem I DBK Computer Algorithms 44/64

Matrix Multiplication

$$\begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 2 & 5 \\ 1 & 9 \end{bmatrix} = \begin{bmatrix} (5*1)+(2*2)+(3*1) & (5*7)+(2*5)+(3*9) \\ (2*1)+(0*2)+(4*1) & (2*7)+(0*5)+(4*9) \end{bmatrix} = \begin{bmatrix} 12 & 72 \\ 6 & 50 \end{bmatrix}$$

- Suppose we have A, B matrices to be multiplied
 - That is, we want to compute the product A * B
 - Orders of matrix (rows*columns)
 - A(2x3)
 - •B(3x2)
- Compatibility Condition for Mat-Mult A(pxq) and A(rxs) is q=r
- # Columns of A = # Rows of B

TY IT 24-25 Sem I DBK Computer Algorithms 45/64

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

Can you write the algorithm to multiply two matrices?

TY IT 24-25 Sem I DBK Computer Algorithms 46/64

Algorithm to Multiply two Matrices

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY (A_{p \times q}, B_{q \times r})
1. for i \leftarrow 1 to p
```

- 2. **for** $j \leftarrow 1$ **to** r
- 3. $C[i,j] \leftarrow 0$
- 4. **for** $k \leftarrow 1$ **to** q
- 5. $C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$
- 6. return C

Scalar multiplication in line 5 dominates time to compute. Number of scalar multiplications = pqr

- Suppose we have a sequence or chain A₁, A₂, ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product $A_1A_2...A_n$
- There are many possible ways (parenthesizations) to compute the product

TY IT 24-25 Sem I DBK Computer Algorithms 48/64

- Example: consider the chain A₁, A₂, A₃, A₄ of 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

TY IT 24-25 Sem I DBK Computer Algorithms 49/64

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and
- There are 2 ways to parenthesize
 - $((AB)C) = D_{10\times5} \cdot C_{5\times50}$
 - AB ⇒ 10·100·5=5,000 scalar multiplications
 - DC \Rightarrow 10·5·50 =2,500 scalar multiplications
 - $(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$
 - BC \Rightarrow 100·5·50=25,000 scalar multiplications
 - AE ⇒ 10·100·50 =50,000 scalar multiplications

Total:

Total:

50/64 Computer Algorithms TY IT 24-25 Sem I DBK

For example, if A_1 is a 10 × 30 matrix, A_2 is a 30 × 5 matrix, and A_3 is a 5 × 60 matrix, then

```
(A_1A_2) A_3 \square (10\times30\times5) + (10\times5\times60) = 1500 + 3000 = 4500 \text{ operations}
A_1(A_2A_3) = (30 \times 5 \times 60) + (10 \times 30 \times 60) = 9000 + 18000 = 27000 \text{ operations}
```

- To multiply n matrices $\{A_1, A_2, A_3, \dots, A_n\}$, all combinations can be checked and least one can be accepted....brute force method.....complexity 2^n
- Dynamic programming approach has complexity of n^3

Computer Algorithms TY IT 24-25 Sem I DBK

- Matrix-chain multiplication problem
 - Given a chain $A_1, A_2, ..., A_n$ of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product $A_1A_2...A_n$ such that the total number of scalar multiplications is minimized
- Brute force method of exhaustive search takes time exponential in n

TY IT 24-25 Sem I DBK Computer Algorithms 52/64

The structure of an optimal solution

- Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} \dots A_j$
- An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k, where $1 \le k < n$
- First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$

TY IT 24-25 Sem I DBK Computer Algorithms 53/64

Key observation: parenthesizations of the sub chains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal (why?)

That is, the optimal solution to the problem contains within it the optimal solution to subproblems

Computer Algorithms TY IT 24-25 Sem I DBK

- Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i,j}$
 - Minimum cost to compute $A_{1,n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

TY IT 24-25 Sem I DBK Computer Algorithms 55/64

- $A_{i..j} = (A_i A_{i+1} ... A_k) \cdot (A_{k+1} A_{k+2} ... A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$
- Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$
- $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_k p_j \qquad \text{for } i \le k < j$
- -m[i, i] = 0 for i=1,2,...,n

TY IT 24-25 Sem I DBK Computer Algorithms 56/64

- But... optimal parenthesization occurs at one value of k among all possible i ≤ k < j
- Check all these and select the best one

```
m[i, j] = \begin{cases} 0 & \text{if } i=j \\ \min \{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j \end{cases}
```

TY IT 24-25 Sem I DBK Computer Algorithms 57/64

- To keep track of how to construct an optimal solution, we use a table s
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3, ... and so on
 - Computes the optimal cost bottom-up

TY IT 24-25 Sem I DBK Computer Algorithms 58/64

Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
    m[i, i] \leftarrow 0
for l \leftarrow 2 to n
    for i \leftarrow 1 to n-l+1
          j \leftarrow i+l-1
           m[i,j] \leftarrow \infty
           for k \leftarrow i to j-1
                  q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                  if q < m[i, j]
                         m[i,j] \leftarrow q
                         s[i, j] \leftarrow k
```

Takes $O(n^3)$ time

Requires $O(n^2)$ space

TY IT 24-25 Sem I DBK Computer Algorithms 59/64

Constructing Optimal Solution

- Our algorithm computes the minimum-cost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} ...$ A_j for the minimum cost

TY IT 24-25 Sem I DBK Computer Algorithms 60/64

Example

Show how to multiply this matrix chain optimally

- Solution on the board
 - Minimum cost 15,125
 - Optimal parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$

Matrix	Dimension		
A_1	30×35		
A_2	35×15		
A_3	15×5		
A_4	5×10		
A_5	10×20		
A_6	20×25		

TY IT 24-25 Sem I DBK Computer Algorithms 61/64

MCM Example

- For four matrices with vector p= $\{5,4,6,2,7\}$ such that $\{A_1(5x4),A_2(4x6),A_3(6x2),A_4(2x7)\}$ find anesthetization
- To find k such that m[1,4] is minimum

TY IT 24-25 Sem I DBK Computer Algorithms 62/64

MCM Example..contd...

Compute	Step 1	Step 2	Step 3
Phase 1	m[1,2],m[2,3],m[3,4]	m[1,3], m[2,4]	m[1,4]
Record	s[1,4]	s[1,s[1,4]] or s[s[1,4],4]	Parentisize

$$\begin{array}{lll} 1,2] &=& \min_{1 \le k < 2} (m[1,k] + m[k+1,2] + p_0 p_k p_2) & m[2,3] &=& \min_{2 \le k < 3} (m[2,k] + m[k+1,3] + p_1 p_k p_3) \\ &=& m[1,1] + m[2,2] + p_0 p_1 p_2 = 120. & =& m[2,2] + m[3,3] + p_1 p_2 p_3 = 48. \end{array}$$

$$M[2,4] = \min_{2 \le k \le 4} \{m[2,k] + m[k+1,4] + p_1 p_k p_4 \}$$

$$= \min\{(m[2,2] + m[3,4] + p_1 p_2 p_4), (m[2,3] + m[4,4] + p_1 p_3 p_4)\} = \min\{(254),(104)\}$$

$$= 104;$$

s[1,4]=3

MCM Example..contd...

MCM Example..contd...

- For m[i,j] let s[i,j]=k for optimal splitting (index for which m[i,j] is minimum)
- Lets split matrix chain A_iA_{i+1}.... A_j into (A_i...A_k)*(A_{k+1}...A_j) and compute m[i,k] and m[k+1,j]
 - For m[i,k] let s[i,k]=I for optimal splitting and for m[k+1,j] let s[k+1,j]=m be the
 value for optimal splitting
 - split matrix chain $A_i A_{i+1} \dots A_k$ into $(A_i \dots A_l)^* (A_{l+1} \dots A_k)$ and $A_{k+1} A_{k+2} \dots A_j$ into $(A_{k+1} \dots A_m)^* (A_{m+1} \dots A_i)$
 - Recurse
- Example
 - Minimum from which m[1,4] is calculated, will give value of corresponding k
 - Record this value as s[1,4]
 - m[1,s[1,4]] OR m[s[1,4]+1,4]
- Parenthesize

TY IT 24-25 Sem I DBK Computer Algorithms 65/64

Longest common sub-sequence (LCS)

Longest Common Subsequence (LCS)

Given two sequences x[1..m] and y[1..n], find a longest subsequence common to them both.

LCS(x,y) = BCBA

- Given two sequences $\{X,Y\}$, finding the longest <u>subsequence</u> common to both. $X=\{x_1,x_2,...x_n\}$ $Y=\{y_1,y_2,...y_m\}$
 - Sub-sequences are different from sub-string
- Complexity NP Hard problem with complexity 2^(lenth of sequence)

TY IT 24-25 Sem I DBK Computer Algorithms 66/64

LCS: Formula

- Let $Z=\{z_1,z_2,...,z_k\}$ be the LCS of X and Y
 - If $z_k = x_n = y_m$, then z_{k-1} is LCS of X_{n-1} and Y_{m-1}
 - X_n<> y_m
 - $z_k \ll x_{n \text{ then}}$ then Z_k is LCS of X_{n-1} and Y_m
 - $z_k \ll y_m$, then z_k is LCS of X_n and Y_{m-1}

Let the two sequences be $X=\{x_1,x_2,...x_i\}$ $Y=\{y_1,y_2,...y_j\}$ where $i \le n$ and $j \le m$

- Then Longest common sub-sequence (LCS) of X and Y is given as
- LCS(i,j) = 0, if i=0 OR j=0 = 1+LCS(i-1,j-1), if $x_i = y_j$ = max{LCS(i,j-1),LCS(i-1,j)}, if $x_i \neq y_j$
- To find Length of LCS & LCS

TY IT 24-25 Sem I DBK Computer Algorithms 67/64

LCS: Example

$$\begin{split} X_{i=5} = & \{A,C,A,D,B\}, \ Y_{j=4} = \{C,B,D,A\} \\ & LCS(i,j) = 0, & \text{if } i=0 \ OR \ j=0 \\ & = 1 + LCS(i-1,j-1), & \text{if } \ x_i = y_j \\ & = max\{LCS(i,j-1),LCS(i-1,j)\} \ \text{if } \ x_i \neq y_i \end{split}$$

	Y _j	y ₁ =C	y ₂ =B	y ₃ =D	y ₄ =A
X _i	0	0	0	0	0
$x_1 = A$	0	0	0	0	1
x ₂ =C	0	1	1	1	1
$x_3 = A$	0	1	1	1	2
$x_4 = D$	0	1	1	2	2
x ₅ =B	0	1	2	2	2

TY IT 24-25 Sem I DBK Computer Algorithms 68/64

LCS: Example $X=\{A,C,A,D,B\}, Y=\{C,B,D,A\}$

 $\{C,A\}\{C,D\}\{C,B\}$

Computer Algorithms TY IT 24-25 Sem I DBK

LCS:Homework Example

X={A,B,C,B,D,A,B}, Y{B,D,C,A,B,A}

TY IT 24-25 Sem I DBK Computer Algorithms 70/64

THANK YOU

TY IT 24-25 Sem I DBK Computer Algorithms 71/64