

Course > Unit 6: ... > Proble... > 5. Cova...

5. Covariance of the multinomial

Problem Set due Apr 1, 2020 05:29 IST Completed

Problem 5. Covariance of the multinomial

3/3 points (graded)

Consider n independent rolls of a k-sided fair die with $k \geq 2$: the sides of the die are labelled $1,2,\ldots,k$, and each side has probability 1/k. Let the random variable X_i denote the number of rolls that result in side i. Thus, the random vector (X_1,\ldots,X_k) has a multinomial distribution.

- 1. Which of the following statements is correct? Try to answer without doing any calculations.
 - igcirc X_1 and X_2 are uncorrelated.
 - $igcap X_1$ and X_2 are positively correlated.
 - $igorup X_1$ and X_2 are negatively correlated.

2. Find the covariance, $cov(X_1, X_2)$, of X_1 and X_2 . Express your answer as a function of n and k using standard notation. *Hint:* Use indicator variables to encode the result of each roll.

3. Suppose now that the die is biased, with a probability $p_i \neq 0$ that the result of any given die roll is i, for $i=1,2,\ldots,k$. We still consider n independent rolls of this biased die and define X_i to be the number of rolls that result in side i.

Generalize your answer to part 2: Find $\operatorname{cov}(X_1, X_2)$ for this case of a biased die. Express your answer as a function of n, k, p_1, p_2 using standard notation. Write p_1 and p_2 as p_1 and p_2 , respectively, for example, $2p_1p_2$ must be entered as $2*p_1*p_2$.

STANDARD NOTATION

Solution:

- 1. The random variables X_1 and X_2 are negatively correlated. There is a fixed number, n, of rolls of the die. Intuitively, a large number of rolls that result in a 1 uses up many of the n total rolls, which leaves fewer remaining rolls that could result in a 2.
- 2. Let A_t (respectively, B_t) be a Bernoulli random variable that is equal to 1 if and only if the tth roll resulted in a 1 (respectively, 2). Note that $X_1=\sum_{t=1}^n A_t$ and $X_2=\sum_{t=1}^n B_t$, and so

$$\mathbf{E}\left[X_{1}
ight] = \mathbf{E}\left[X_{2}
ight] = \mathbf{E}\left[\sum_{t=1}^{n}A_{t}
ight] = n\mathbf{E}\left[A_{1}
ight] = rac{n}{k}.$$

Since a single roll of the die cannot result in both a 1 and a 2, at least one of A_t and B_t must equal 0. Thus, $\mathbf{E}\left[A_tB_t\right]=0$. Furthermore, since different rolls are independent, A_t and B_s are independent when $t\neq s$. Therefore,

$$\mathbf{E}\left[A_{t}B_{s}
ight]=\mathbf{E}\left[A_{t}
ight]\mathbf{E}\left[B_{s}
ight]=rac{1}{k}\cdotrac{1}{k}=rac{1}{k^{2}}\qquad ext{for}\quad t
eq s,$$

and so

$$\mathbf{E}\left[X_1X_2\right] \; = \; \mathbf{E}\left[\left(A_1+\cdots+A_n\right)\left(B_1+\cdots+B_n\right)\right]$$

$$egin{align} &=& \mathbf{E}\left[\sum_{t=s}A_{t}B_{t}+\sum_{t
eq s}A_{t}B_{s}
ight] \ &=& n\cdot0+n\left(n-1
ight)\cdot\mathbf{E}\left[A_{1}B_{2}
ight] \ &=& n\left(n-1
ight)\cdotrac{1}{k^{2}}. \end{split}$$

Thus,

$$egin{array}{lll} \operatorname{cov}\left(X_{1},X_{2}
ight) &=& \mathbf{E}\left[X_{1}X_{2}
ight] - \mathbf{E}\left[X_{1}
ight]\mathbf{E}\left[X_{2}
ight] \\ &=& n\left(n-1
ight) \cdot rac{1}{k^{2}} - rac{n}{k} \cdot rac{n}{k} \\ &=& -rac{n}{k^{2}}. \end{array}$$

The covariance of X_1 and X_2 is negative as expected.

3. We follow the same reasoning as in part 2. Let A_t (respectively, B_t) be a Bernoulli random variable that is equal to 1 if and only if the tth roll resulted in a 1 (respectively, 2). As in part 2, a single roll of the die cannot result in both a 1 and a 2, so $\mathbf{E}\left[A_tB_t\right]=0$. Different rolls of the die are independent, and so $\mathbf{E}\left[A_tB_s\right]=\mathbf{E}\left[A_t\right]\mathbf{E}\left[B_s\right]=p_1\cdot p_2$, for $t\neq s$. Thus,

$$egin{array}{lll} \mathbf{E}\left[X_1X_2
ight] &=& \mathbf{E}\left[\left(A_1+\cdots+A_n
ight)\left(B_1+\cdots+B_n
ight)
ight] \ &=& \mathbf{E}\left[\sum_{t=s}A_tB_t+\sum_{t
eq s}A_tB_s
ight] \ &=& n\cdot 0+n\left(n-1
ight)\cdot\mathbf{E}\left[A_1B_2
ight] \ &=& n\left(n-1
ight)p_1p_2. \end{array}$$

Note that
$$X_1=\sum_{t=1}^nA_t$$
 and $X_2=\sum_{t=1}^nB_t$, and so $\mathbf{E}\left[X_1
ight]=\mathbf{E}\left[\sum_{t=1}^nA_t
ight]=n\mathbf{E}\left[A_1
ight]=np_1.$ Similarly, $\mathbf{E}\left[X_2
ight]=np_2.$

Therefore,

$$\operatorname{cov}(X_1, X_2) = \mathbf{E}[X_1 X_2] - \mathbf{E}[X_1] E[X_2]$$

$$egin{array}{ll} &=& n \left(n - 1
ight) p_1 p_2 - \left(n p_1
ight) \left(n p_2
ight) \ &=& - n p_1 p_2. \end{array}$$

The covariance of X_1 and X_2 is again negative, even when the die is not fair.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 6: Further topics on random variables:Problem Set 6 / 5. Covariance of the multinomial

Covariance of the m	ultinomial	
Show all posts	∨ by recent act	tivity 🗸
Hint for 2:	nat problem - lecture 7, No. 14 very useful in understanding how to solve this problem. I am	2 new_
	out Deadlines dam, Greetings.Due to immense reshuffle in last 10 days here in India due to COVID-19,, for I	3
	about $cov(X1,X2) = E[X1X2] - E[X1]E[X2]$ property where is this property $cov(X1,X2) = E[X1X2] - E[X1]E[X2]$ shown in the lecture videos please?	2
•	ease have more problems and/or examples using indicator variables? eting this problem, indicator variables seem incredibly useful. Would very much like to practi	2
Hint: read As above.	carefully on the model & consider Var(X+Y)	3
-	ategy with Indicator random variable. ry useful strategy here with indicator random variable https://math.stackexchange.com/que	3
Hint: wikip	edia on multinomial distribution is needed	1
Defying an a BEAUTIFUL	d difficult but stil, _problem!!	1
? How to use	e indicator variables?	

	<u>l'm stuck on part 2 l'm using Cov (A,B) = E[X1*X2] - E[X1]*E[X2], and I think it's the E[X1*X2] term we sh</u>	6
2	Alternative approach	12
2	How to interpret bias of coin?	2
2	Covariance of X1 and X2	3
4		

© All Rights Reserved

