# Υλοποίηση Δομής R\*-Tree

Τεχνική Αναφορά Υλοποίησης και Πειραματικής Αξιολόγησης

#### Ονόματα Φοιτητών:

Δεληγιαννάχης Χαράλαμπος (ΑΕΜ: 4383) Καραμουχτάρης Αλέξανδρος (ΑΕΜ: 4369)

# Contents

| 1 | Εισαγωγή                                          |   |
|---|---------------------------------------------------|---|
| 2 | Μεθοδολογία και Υλοποίηση                         |   |
|   | $2.1$ Βασική $\Delta$ ομή                         |   |
|   | 2.2 Διαδικασία Κλασικής Κατασκευής (Εισαγωγή 1-1) |   |
|   | 2.3 Μαζική Κατασκευή (Bulk Loading)               |   |
|   | 2.4 Ερωτήματα                                     |   |
|   | 2.5 Σειριαχή Αναζήτηση (Brute-force)              |   |
| 3 | Παραδείγματα Εκτέλεσης & Μετρήσεις                |   |
|   | 3.1 Εκτέλεση Bulk Loading                         |   |
|   | 3.2 Εκτέλεση Κλασικής Εισαγωγής                   |   |
|   | 3.3 Ερωτήματα Περιοχής (Range Query)              |   |
|   | 3.4 k-Nearest Neighbor Queries                    |   |
|   | 3.5 Skyline Query                                 | • |
| 4 | Σύγκριση Bulk Loading vs Κλασικής Εισαγωγής       |   |
| 5 | Συμπεράσματα                                      |   |

# 1 Εισαγωγή

Στην εργασία υλοποιήθηκε μια δομή  $R^*$ -Tree για αποδοτική αποθήκευση και αναζήτηση πολυδιάστατων δεδομένων (π.χ. γεωχωρικά σημεία). Η υλοποίηση υποστηρίζει εισαγωγή, διαγραφή, range queries, k-nearest neighbor (k-NN) queries, skyline queries, καθώς και δύο τεχνικές κατασκευής: κλασική (ένα-προς-ένα εισαγωγή) και μαζική (bulk loading).

### 2 Μεθοδολογία και Υλοποίηση

#### 2.1 Βασική Δομή

- Η δομή του  $R^*$ -Tree αποτελείται από εσωτερικούς κόμβους και φύλλα (TreeInternalNode, TreeLeafNode), οι οποίοι κληρονομούν από τη βασική κλάση TreeNode.
- Κάθε κόμβος διατηρεί το δικό του MBR (Minimum Bounding Rectangle) και αναφορά στον γονέα του.
- Τα φύλλα περιέχουν τα πραγματικά δεδομένα (συντεταγμένες + TreeRecordID), ενώ οι εσωτερικοί κόμβοι δείκτες σε παιδιά.
- Υποστηρίζεται δυναμικό split με κριτήρια overlap και area, καθώς και επανεισαγωγή (reinsertion) ώστε να διατηρείται η ισορροπία και η αποδοτικότητα του δέντρου.

### 2.2 Διαδικασία Κλασικής Κατασκευής (Εισαγωγή 1-1)

- Κάθε σημείο εισάγεται διαδοχικά μέσω της μεθόδου insert.
- Για κάθε εισαγωγή γίνεται επιλογή του "καταλληλότερου" υποκόμβου (με ελάχιστη αύξηση MBR).
- Σε περίπτωση υπερχείλισης κόμβου, γίνεται είτε reinsertion (μία φορά ανά split), είτε split με βάση κριτήρια  $R^*$  (overlap/area).

### 2.3 Μαζική Κατασκευή (Bulk Loading)

- Τα σημεία ταξινομούνται ως προς την πρώτη διάσταση.
- Ταξινομημένα, κατανέμονται σε φύλλα μεγέθους maxEntries.
- Γίνεται bottom-up συναρμολόγηση εσωτερικών κόμβων, μέχρι να υπάρξει μία ρίζα.
- Η bulk κατασκευή είναι πολύ ταχύτερη για μεγάλα σύνολα δεδομένων, λόγω αποφυγής επαναλαμβανόμενων splits/insertions.

### 2.4 Ερωτήματα

- Range Query: Επιστρέφει όλα τα σημεία εντός ενός MBR.
- k-NN Query: Επιστρέφει τα k κοντινότερα σημεία σε ένα σημείο αναφοράς, με χρήση ευκλείδειας απόστασης και προτεραιότητας (min-heap).

• Skyline Query: Υπολογίζει τα σημεία που δεν κυριαρχούνται (dominance) από άλλα στον χώρο.

#### 2.5 Σειριακή Αναζήτηση (Brute-force)

Για σκοπούς σύγκρισης, υλοποιήθηκε και σειριακή αναζήτηση (χωρίς χρήση ευρετηρίου) για όλα τα είδη ερωτημάτων. Οι μέθοδοι αυτές διατρέχουν ολόκληρο το αρχείο δεδομένων.

### 3 Παραδείγματα Εκτέλεσης & Μετρήσεις

#### 3.1 Εκτέλεση Bulk Loading

Η δομή κατασκευάστηκε με MAZIKH ΔΗΜΙΟΥΡΓΙΑ (bulk loading). Χρόνος δημιουργίας δομής: 120.54 ms

### 3.2 Εκτέλεση Κλασικής Εισαγωγής

Η δομή κατασκευάστηκε με **ΚΛΑΣΙΚΗ ΕΙΣΑΓΩΓΗ** (insertion). Χρόνος δημιουργίας δομής: 655.77 ms

### 3.3 Ερωτήματα Περιοχής (Range Query)

Table 1: Εκτέλεση Range Queries

| Περιοχή (ΜΒR)                                | R*-Tree (ms) | Σειριακό (ms) | Πλήθος Αποτελεσμάτων |
|----------------------------------------------|--------------|---------------|----------------------|
| $[41.48, 26.45] \omega \zeta [41.57, 26.54]$ | 1.44         | 7.91          | 132                  |
| $[41.40, 26.40] \omega \zeta [41.60, 26.60]$ | 2.07         | 14.88         | 267                  |
| [41.30, 26.30] ως [41.70, 26.70]             | 3.92         | 27.50         | 530                  |

#### Ενδεικτικό διάγραμμα (Χρόνος εκτέλεσης vs Εμβαδόν R):

| Εμβαδόν R      | R*-Tree (ms) | Σειριακό (ms) |
|----------------|--------------|---------------|
| Μικρή περιοχή  | 1.44         | 7.91          |
| Μεσαία περιοχή | 2.07         | 14.88         |
| Μεγάλη περιοχή | 3.92         | 27.50         |



Figure 1: Range Query: Χρόνος εκτέλεσης σε συνάρτηση με το εμβαδόν της περιοχής

### 3.4 k-Nearest Neighbor Queries

Table 2: Εκτέλεση k-NN Queries

Ενδεικτικό διάγραμμα (Χρόνος εκτέλεσης vs k):

| $\overline{k}$ | R*-Tree (ms) | Σειριακό (ms) |
|----------------|--------------|---------------|
| 1              | 0.78         | 6.04          |
| 5              | 1.12         | 6.37          |
| 10             | 1.30         | 6.92          |
| 20             | 1.47         | 7.58          |



Figure 2: k-NN Query: Χρόνος εκτέλεσης σε συνάρτηση με το k

#### 3.5 Skyline Query

Table 3: Εκτέλεση Skyline Query

| Μέθοδος  | Χρόνος (ms) | Αποτελέσματα |
|----------|-------------|--------------|
| R*-Tree  | 2.03        | 7            |
| Σειριακό | 9.12        | 7            |

# 4 Σύγκριση Bulk Loading vs Κλασικής Εισαγωγής

Table 4: Σύγκριση Bulk Loading και Κλασικής Εισαγωγής

| Μέθοδος Κατασκευής | Χρόνος (ms) | Παρατηρήσεις           |
|--------------------|-------------|------------------------|
| Κλασική Εισαγωγή   | 655.77      | Πολλά splits/reinserts |
| Bulk Loading       | 120.54      | Ταχύτερη για μεγάλα Ν  |

## 5 Συμπεράσματα

- Η χρήση του  $R^*$ -Tree προσφέρει δραματική επιτάχυνση σε range & kNN queries σε σχέση με σειριακή αναζήτηση.
- Το bulk loading είναι πολύ αποδοτικό για μεγάλη ποσότητα δεδομένων.
- Ο χρόνος για range/kNN queries αυξάνει υπογραμμικά με το μέγεθος της περιοχής ή το k αντίστοιχα, ενώ στη σειριακή αναζήτηση η αύξηση είναι γραμμική.
- Το skyline query ωφελείται επίσης σημαντικά από τη δομή, ειδικά σε μεγάλα σύνολα.