

Università degli studi di Trieste

Master Degree in

Data Science and Scientific Computing

Covid-19 case-study

Statistical Analysis of Intensive Care in Veneto in Autumn and Winter 2020/2021

Final Project - STATISTICAL METHODS FOR DATA SCIENCE

Group A: Babaei Elham, De Santis Flavia, Doz Romina, Fodor Imola

Why study intensive care

- Insufficient ICU beds to deal with covid-19 patients and also patients with other pathologies
- Increasing ICU capacity requires more equipment (in particular ventilators) and pharmaceuticals, which might be in short supply
- Increasing ICU bed numbers without increasing staff could result in increased mortality. However, doctors and nurses are not easy to find.

Why a statistical analysis

- Derive low-term predictions to get an idea of what to expect in the following weeks
- Understand which are the most relevant factors that determine the increasing of ICU patients
- Suggest possible improvements in the management of the pandemic

The dataset

- The dataset was obtained by the official website of Protezione Civile starting from 01-09- 2020 to 23-01-2021 and considering only region Veneto
- Data regarding the place of the survey (latitude, longitude, exc...) have been removed
- Data regarding variables no longer populated have been removed, while notes were considered in evaluation of the dataset but not during the modeling procedure

terapia_intensiva	Intensive Care	Intensive_care
ricoverati_con_si ntomi	Hospitalised patients with symptoms	Hos_symp
data	Date of notification	Date
totale_ospedalizz ati	Total hospitalised patients	Total_Hos
isolamento_domi ciliare	Home confinement	Home_con
totale_positivi	Total amount of current positive cases	Total_pos
variazione_totale _positivi	Variation of current positive cases	Var_pos
nuovi_positivi	Variation of current cases	Var_cases
dimessi_guariti	Recovered	Recovered
deceduti	Death	Death
totale_casi	Total amount of cases	Total_cases
tamponi	Tests performed	Test
casi_testati	Total number of people tested	People

The dataset

- Blue variables are cumulative and therefore have been replaced by the corresponding daily changes
- Red variables have been removed because they are strongly correlated to other variables:

```
Total_hosp = Hos_symp + Intensive_care
```

- Two new variables have been added:
 - zone is a categorical variable describing the "color" of the area in the current date
 - lag_zone is the shifted zone (7 days before the current date)
 - season a categorical variable (0 = autumn, 1 = winter)

Quality of data

- Despite the fact that data was obtained by the official national source, the reliability depends on the procedures adopted to collect data. In this case, due to relatively frequent algorithm change and new or deleted variables, datagathering process does not guarantee the most accurate predictions possible
- The dependent variable, intensive care, is not always the effective measured value because there are many temporal misalignments of the information flow, as reported in the notes of the dataset.
- In the weekends or holidays data collection slow down and is retrieved on subsequential weekdays.

Explanatory analysis

- Before starting to create a statistical model, it is convenient to analyze the variables and their relationship with the independent variable.
- There is a strong correlation between the people tested and the number of tests performed, so only one of them can be used in the model. The number of tests is chosen, being more correlated to the response variable.

Explanatory analysis

• The other possible predictors are all correlated to the variable intensive care. However, home confinement is highly correlated with many covariates and so has been removed.

Model specification

- The aim is to find a model that describes a response variable (intensive care) using multiple predictors.
- The response variable is not normally distributed; it is discrete and non negative. So a simple linear regression model can't be used.
- At first, only the predictors of the original dataset will be used, later other covariates will be added.

Response variable

Intensive_care

Possible Predictors

Hos_symp

Date

Home_con

Var_cases

Recovered_today

Death_today

Test_today

Zone

Lag_zone

Season

- It is an extension of linear models, characterized by the following features:
 - linear predictor: $\lambda_i = \sum_{j=1}^p x_{ij} \beta_j$
 - link function: $g(E(y_i)) = \lambda_i$
 - the response variable belongs to exponential dispersion family
- The response variable of this problem (intensive care) is a count data and it is assumed to follow a poisson probability distribution in which observations are independent

Link function Linear predictor

$$\ln \lambda_i = b_0 + b_1 x_i$$
 $y_i \sim \mathrm{Poisson}(\lambda_i)$ Probability distribution

- The strategy used to select the predictors is the stepwise selection, considering the following measures:
- AIC: Akaike Information Criteria
- BIC: Bayesian Information Criteria
- **F test**: Occam's razor criteria)
- VIF: Variance Inflation Factor
- The link function is chosen to be the canonical link (default of GLM method)

Baseline model

 First of all we create a baseline model, by using some of the more important and influential variables:

AIC <db></db>	BIC <dbl></dbl>	Residual_deviance <dbl></dbl>	P_value <dbl></dbl>	
1307.41	1321.94	437.29	6.807533e-35	

1 row

• The P_value of F test is small so our model works better than the null model in which only intercept is included.

Adding the variable Death_today

AIC	BIC	Residual_deviance
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1282.38	1305.62	406.26

1 row

The above table shows that AIC and BIC are smaller compared to baseline model. So we <u>add</u>
 Death_today to the model.

Adding the variable Recovered_today

AIC <dbl></dbl>	BIC <dbl></dbl>	Residual_deviance
1281.09	1307.24	402.97

1 row

• The above table shows there is a negligible improvement in AIC and BIC. As the simpler model is prefered, we <u>do not add</u> *Recovered_today*.

AIC

Adding the variable Test_today

BIC

<dbl></dbl>		<dbl></dbl>		<dbl></dbl>
1273.46		1299.61		395.34
1 row				
vif(model.glm)				
poly(Death_to	4.9052 Hos_symp 10.4290		tion_cases, 2)1 5.1471 eath_today, 3)1 9.3075 Test_today 2.3227	poly(Variation_cases, 2)2 2.6281 poly(Death_today, 3)2 5.7127

 Although AIC and BIC are improved, we <u>do not add</u> Test_today because it causes to VIF greater than 10 for some variable.

Residual deviance

PREDICTION

EXTRA: Predicting on shifted data

- The current time (t) and future times (t+1, t+n) are forecast times and past observations (t-1, t-n) are used to make forecasts
- We could frame our forecast problem with an input sequence of 7 past observations to forecast 7 future observations and use the data as follows:

lag_deceduti <int></int>	deceduti	terapia_intensiva	date_only <date></date>	
2107	2122	9	2020-09-01	2
2116	2123	9	2020-09-02	20
2117	2123	12	2020-09-03	20
2119	2126	10	2020-09-04	20
2120	2130	9	2020-09-05	20
2120	2130	12	2020-09-06	20
2120			2020-09-07	20
2122		12	<mark>2020-09-08</mark>	2
2123	2133	12	2020-09-09	20
2123	2135	12	2020-09-10	2
4 5 6 14 Next	Previous 1 2 3			

			<i>□</i>
date_only <date></date>	terapia_intensiva <int></int>	lag_deceduti <int></int>	
2021-01-11	358	6813	
2021-01-12	359	6988	
2021-01-13	336	7114	
2021-01-14	328	7157	
2021-01-15	327	7263	
2021-01-16	338	7345	
2021-01-17	338	7389	
2021-01-18	336	7427	
2021-01-19	318	7593	
2021-01-20	315	7684	

EXTRA: Predicting on shifted data Prediction

- Shifted data + proved well-suited model
- terapia_intensiva ~ date_unix + poly(lag_nuovi_positivi,2) + as.numeric(type.convert(variazione_guariti_dimessi))
 + poly(lag_deceduti,3) + lag_nuovi_positivi

EXTRA: Predicting on shifted data Prediction

- Shifted by 14 data + new model
- terapia_intensiva ~ date_unix + ma_decessi + ma_tot_osp + as.numeric(type.convert(variazione_tot_osp)) + perc_esaurito_ti

EXTRA: Predicting on shifted data Details of the flow

- terapia_intensiva ~ date_unix + ma_decessi + ma_tot_osp + as.numeric(type.convert(variazione_tot_osp)) + perc_esaurito_ti
- NOTE: with the ultimate goal to have a good prediction; the data was not scaled

Model comparison

- GLM
 - Poisson
 - Quasi-Poisson
 - Negative binomial
- GAM
- Random Forest

	df <dbl></dbl>	AIC <dbl></dbl>
model.glm	8.00000	1282.379
model.glm.quasi	8.00000	NA
model.glm.nb	9.00000	1152.315
model.gam	12.54147	1036.664

The above table shows AIC improves considerably from the first GLM Poisson model to the Negative Binomial one, and gets even better for the GAM model

21

Model comparison

- Quasi-Poisson GLM is used we have overdispersion, i.e. the variance of Y is greater than its theoretical value
- In general, the quasi-likelihood approach allows to deal with overdispersion problems: it is
 possible to specify var(Yi) so that there is more variability with respect to the exponential
 family.
- Negative Binomial is an alternative model that can be considered when data exhibits overdispersion.
- Interpretation: probability to observe z failures until the pre-specified number of successes k is observed.
- Compared with Poisson: it has an extra parameter; it proves to be more flexible; mean is larger than variance and then it accommodates overdispersion; Poisson is a limiting case of negative binomial (if $p \rightarrow 1$ and $k \rightarrow 0$ then $kp \rightarrow \lambda$).
- Recall that negative binomial emerges as a mixture of Poisson when each unit Y is Poisson with mean λ and λ are drown from a Gamma distribution.

Model comparison

Covariates

- Zone_color
 - lag_zone_color
- Season
 - 0 for Summer
 - 1 for Autumn
 - 2 for Winter

Covariates

Covariates

After adding Zone_color

After adding lag_zone_color

After adding Season

aic	bic	RD	
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1269.217	1295.365	391.0946	

1 row

Predictive information criteria on model comparison

- MSE
- RMSE
- NRMSE

Predictive information criteria on model comparison

Prediction with covariates

Model comparison without covariates

models <chr></chr>	MSE <dbl></dbl>	RMSE <dbl></dbl>	NRMSE <dbl></dbl>
glm	14826.364	121.76356	0.3826636
glm.quasi	14826.364	121.76356	0.3826636
glm.nb	13616.123	116.68815	0.3667132
gam	17729.581	133.15247	0.4184553
rf	3185.755	56.44249	0.1773806

5 rows

Model comparison with covariates

MSE <dbl></dbl>	RMSE <dbl></dbl>	NRMSE <dbl></dbl>
13562.0959	116.45641	0.36598495
13562.0959	116.45641	0.36598495
11197.6030	105.81873	0.33255414
18710.8662	136.78767	0.42987954
404.3742	20.10906	0.06319628
	<dbl> 13562.0959 13562.0959 11197.6030 18710.8662</dbl>	<dbl> <dbl> 13562.0959 116.45641 13562.0959 116.45641 11197.6030 105.81873 18710.8662 136.78767</dbl></dbl>

5 rows

Prediction with covariates Season

Model comparison without Season

	df <dbl></dbl>	AIC <dbl></dbl>
model.glm1	8.0000	1277.932
model.glm.quasi1	8.0000	NA
model.glm.nb1	9.0000	1142.087
model.gam1	14.5545	1039.844

⁴ rows

Model comparison with Season

	df <dbl></dbl>	AIC <dbl></dbl>
model.glm1	9.00000	1269.217
model.glm.quasi1	9.00000	NA
model.glm.nb1	10.00000	1137.186
model.gaml	15.44354	1036.889

⁴ rows

Prediction without covariates

Prediction with covariates

References

- https://www.agenas.gov.it/covid19/web/index.php?r=site%2Fheatmap
- https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30161-2/fulltext
- https://towardsdatascience.com/generalized-linear-models-9cbf848bb8ab