

TOR

DOL = Total contribution = Oty. sold x (S.P-VC)]-FO

Operating Leverage 2 PDF

Sales = 600L $\rightarrow P \cdot U$ (600 × 1L)

Variable cost 360L $\rightarrow P \cdot U$ (360 × 1L)

Contribution 240L -> Total

Operating profit 100L

Assume sales = 100000 units

(a) DOL = Total contribution = Oty. (SP-VC) & FC

PBIT

PBIT = 12 (600-380) = 240 L = [2.4 times] = 12 (600-360)]-140L

= 240 = 2.4 tim

(b) DOL= 2.4 means, for every 1.1. A in soles, PBIT internal change by 2.4.1.

(c) If sale 7 by 10.1. DOL = 1. DW PBIT

1. s in soles

: 2-4= 1/801 PBIT : 1/0 IN PBIT = 24.1.

101

(2) \$ 101. =) DOL = 1. D in PBIT 2,4 = -1. D'in PBIT .: 1. sin 1BIT = [-24]. * Degree of financial leverage (DFL) -> DFL shows the presence of fixed financial cost in revenue Stream. -> DFL shows the changes in PBIT on changes in EPS (comings for show). DFL = 1. A in EPS > 1 1. D in 8327 DFL = PBIT PBIT - Int. - Pacy. div (PBIT) Project cost = 8 co Earnings = 1 Cr ·1. A=50.1. 51 shares Alternative - I Alternative - I (501. loan & 50.1 equity) (100.4 equity) (104 eq. shales of so pack) Garnings 51.50% 1.54 PBIT PBI 100 1 . 5 Tax 14 1.5 Pool D. V Projet avai to 1 62

Q3

Date

Alternative - I DFL = 1/1 D in EPS = (15-10) ×100

= 5011. [1] DFL

Alternation I DFL = (22-12 × 100 = 83.33 = [1.67] DFL.

Indifference Point

The level of EBIT of at which EPS under two diff alternatives will be same.

Funding required for expansion = \$ 30,00,000

(i) \$3000,000 through Equity OR F15,00,000 through 101 del-

No. of House = 201

No. of shares = 30L No. of shares = 15L 100No. of shares = 15L 100No. of shares = 15L 100

No. of equity shares if financing is

No. of equity shares it financing is

only through equity

done through equity & debt

Indifference Point

Equity V/s Equity & Debt

EBIT = 2 Jrt. = 101. (15L)

 $\chi(1-t) = (\chi - int.)(1-t)$

 $\frac{1}{30,000} = (\chi - 1,50,000)(1 - 0.35)$

= 1.5L

 $\frac{0.65x}{30000} = \frac{0.65x}{15,000} - \frac{97500}{2.925 \times 10}$

: 9.75x = 2925000 => x=300000

fiction.	Equity	Equity & Doly
EBIT	3L	31_
-Int		1.51
E67	3L	1.51
- Tax@ 35.1.	1.05L	52.5 K
EAT	1.95 L	97.5 JL
- Pref. dir.		713 1
Profits available to No of shores	1.95 L	97.5 K
No of shares	3016	15 K
EPS	₹6.5	76.5
		To the last

(ii) F30L Horough	operity	VIS	13.1. Pref	Shares	for FIDE &
V			eg cay	oital for	720 L
No. of equity share	= 3.14		Time		

No. of equity shares = 30K No. of eq = 20K = 20L

Pref. div = 13.1. (102) = 11.34

$$N(1-t) = N(1-t) - Pref div$$
 N_1
 N_2

30,000 20000

-. 1.3x = 1.95x - 3,90,000

= 0.65x = 6 3.9L = [t = 6 L] + EBIT

			-	
	Verification			
		Equity	Equity & Dobt	
	E-817	GL	6L	
	- Int.	-	-	
	EBT	61	6L	
	- Tan@35.1.	2.16	2.16	
	EAT	3.9L	3.9L	
	- bef. div	_	1-32	
	Profit for eg share holder	3.92	2.66	
	No. of Shares	30K	20 K	
	EPS	13	13	
	(10			
	(III) 730L through equ	ity V/s	3:1. Pref shows for 10L (Subject to divine	
	3		(Subject to divin	end
	J		tan of ic 1)
	N, = 30L = 30/C		101. debentule of 101	
	N, = 30L = 30/C		eq. capital for 210L	
			N2 = 10L = 101c	
			Pref div = 13.1. (10L)=1.3 L	
	4	h	24	
	x(1-t) = (x-Interest) (1	-t) - Pref div (1+000)()	
	N,	N3	-t) - Pref div (1+00 DR)	
	where o	X = EBIT		
	1-6	= 1 - Tax Rate		
\parallel	N	= No. of equ	ity shares	
_		2: 10-1	of Gel shares	

Pref. div = Dividend on Bry. shares

Interest = Interest on Dependers.

(iv) 201 through equity & 10.1. debenture of 10L VIS Pref shares of 10L 10% debentues of 82 eg. capital for 126 Equity, Poel shares & deberture Equity and desentures Vls (x-Int) (1-t) = (x-Int)(1-t) - Pref div N

Date Page	-c
and egy	ity
y not?	.,

(S Irrelevena Theory

CAPITAL STRUCTURE THEORIES

	- Capital Aprictory and the continue of dela and anim
	- Capital Abouton includes a proportion of debt and equity - Whether the capital structure is aptimum or not?
-	aptimum capital structure maximizes the value of the firm
	I can a change in proportion of date and courty many 200
	the value of firm or not? -> Should a firm borrow in the terms of debt. Yes or No

If Yes, how much?

Capital Structure Theories

tal acture	CS Relevano Theory	

Net Income Approach -) NI approach shows the relationship blu leverage, cost of capital

and value of firm. -) NI approach states that there is a relationship blu capital Structure and value of the firm.

-) So according to NI approach, change in proportion of debt can result in change in value of the firm.

Assumptions Ky > cost of debt & Ke a cost of equity remains constant.

-> kd 5 ke

-> No tames

In order to bear this risk, shareholders will ask more return

4) So, if proportion debt increases, Ke also increases

* Net operating Approach

Value of unlevered firm (a) = EBIT (1-t)

= 21 (1-0.5)

= \(\frac{1}{6.66L} \)

Value of lowered firm (P) = Vadue of unlevered firm

+

(Debt)(1-t)

= 666666.67 + 5L (1-0.5) = 916666.67

91666667