16 - Writing Our Own Lemma Lean: First Steps

Tariq Rashid

November 25, 2024

Writing Our Own Lemmas

- Mathlib has many lemmas and theorems for us to use.
- We can also write our own.
- We'll create a small convenient lemma about the natural numbers.

Task

• If we pick a natural number b, then any other natural number a must be less than or equal to b, or greater than or equal to b+1.

• Let's create a lemma for natural numbers a and b

$$a \le b \lor b+1 \le a$$

• Example: setting b = 7 lemma says $a \le 7$ or $8 \le a$.

Maths

• Aim to use lemmas that exist in Mathlib to ease the transition to Lean.

$$a \le b \lor b+1 \le a$$

proof objective, $a, b \in \mathbb{N}$

$$a \le b \lor b < a$$
 known lemma, $a, b \in \mathbb{N}$ (1)
 $m+1 \le n \iff m < n$ known lemma, $m, n \in \mathbb{N}$ (2)

$$a \leq b \lor b+1 \leq a$$

apply lemma (2) to (1)

- Lemma (1) is already very close to our proof objective.
- Lemma (2) lets us rewrite b < a as $b + 1 \le a$, which gives us the proof objective.
- Both lemmas (1) and (2) exist in Mathlib.

```
import Mathlib.Tactic
lemma Nat.le_or_succ_le (a b: N): a ≤ b ∨ b + 1 ≤ a := by
  rw [Nat.le_or_succ_le]
  exact le_or_lt a b

example {c: N}: c ≤ 2 ∨ 3 ≤ c := by
  exact Nat.le_or_succ_le c 2
```

- lemma Nat.le_or_succ_le tells Lean we want to create a new lemma named Nat.le_or_succ_le.
 - Nat. prefix is conventional for lemmas about natural numbers.
 - le_or_succ_le tries to follow the naming convention to describe what the lemma is about.
- a and b declared as natural numbers, and states the lemma's proposal $a \le b \lor b + 1 \le a$.
- The round brackets (a b : N) require anyone using the lemma to always provide a and b as parameters.

 The first line of the proof rewrites the goal using Mathlib lemma Nat.add_one_le_iff. Let's see its definition:

```
theorem add_one_le_iff : n + 1 \leq m \leftrightarrow n < m :=
```

- The rw tactic is like "find and replace", so it looks at the goal
 a ≤ b ∨ b + 1 ≤ a and finds b + 1 ≤ a matches the LHS of
 the Nat.add_one_le_iff lemma. The matched b + 1 ≤ a is
 rewritten with the RHS of the lemma b < a.
- We'll see in the Infoview, the goal is now a ≤ b ∨ b < a.

 The final line of the proof applies Mathlib lemma le_or_lt. Let's look at its definition:

```
lemma le_or_lt (a b : \alpha) : a \leq b \vee b < a :=
```

- This matches the current goal exactly, so we can use exact to resolve the goal and complete the proof.
- Notice the definition of the Mathlib lemma le_or_lt (a b : α)
 uses round brackets requiring us to provide a and b when we use it.

Infoview

 Placing the cursor before rw [Nat.add_one_le_iff] shows the original proof goal.

$$\vdash$$
 a \leq b \lor b + 1 \leq a

 Moving the cursor to the start of the next line shows the rewritten goal.

$$\vdash$$
 a \leq b \lor b \lessdot a

 This proof goal now matches exactly the Mathlib lemma le_or_lt a b, and can be resolved with exact.

Minimal Example

- When writing your own lemmas, it is considerate to provide a **minimal** example showing how to use them.
- The provided example illustrates how to prove $c \le 2 \lor 3 \le c$ using our lemma.
- With a set to c , and b set to 2 , the lemma becomes $c \le 2 \lor 3 \le c$.
 - This matches the proof goal exactly, allowing us to use exact with our lemma to complete the proof.

Forwards & Backwards

- Maths and Lean proofs go in opposite directions:
 - maths proof starts with a lemma $a \le b \lor b < a$ and arrives at goal $a \le b \lor b + 1 \le a$.
 - Lean proof starts with the goal $a \le b \lor b + 1 \le a$ and arrives at equivalent known lemma $a \le b \lor b < a$.
- That's ok.
 - Lean tactics bias a little towards operating on current goal.
 - So we see more "backwards" proofs in Lean than pen-n-paper.

"Forwards" Lean Proof

 For interest only, this Lean proof follows the "forward" direction of the maths proof.

```
lemma Nat.le_or_succ_le (a b : \mathbb{N}): a \leq b \vee b + 1 \leq a := by have h : a \leq b \vee b < a := le_or_lt a b rw [\leftarrow Nat.succ_le] at h exact h
```

Easy Exercise

• Write a lemma for **integers** a and b that says

$$a \le b \lor b+1 \le a$$

- You can copy the provided lemma for natural numbers and modify it to work with integers.
- Create a minimal example illustrating how your lemma can prove the following for any integer c.

$$c \le -5 \lor -4 \le c$$

