Amendments to the Specification

Please replace the paragraph at pages 60 and 61, beginning at line 20 on page 60 and ending on line 2 on page 61, with the following:

The amine oxidase domain of trAPAO contains several key features shared by this class of enzymes, including an amino-terminal dinucleotide (ADP) binding region characterized by a beta-alpha-beta stretch containing three invariant glycines (G -X-G-X-X-G) in the beta-alpha turn. In trAPAO, this sequence is (DVVVVGAGLSG) SEO ID NO: 34. This region is involved in FAD binding. Absent are several features unique to the mammalian amine oxidases, including several essential cysteine residues (Wu et al., Mol Pharm 43:888 (1993)), one of which (Cys-406 of MAO-A) is involved in covalent binding of FAD, and a carboxy-terminal extension that has been demonstrated to be involved in transporting to and anchoring the MAO in the outer mitochondrial membrane. The Aspergillus enzyme MAO-N has been demonstrated to contain non-covalent FAD, and also lacks the conserved cysteine. Therefore it is possible that the Exophiala APAO enzyme has a non-covalent FAD. The Aspergillus MAO-N has a carboxy-terminal tripeptide Ala-Arg-Leu that is involved in peroxisomal targeting and localization; this sequence is absent from Exophiala APAO.

Please replace the paragraph at pages 63, beginning at line 5, with the following:

The enzyme activities of fumonisin esterase and AP amine oxidase can be combined in a single polypeptide by using the open reading frames together either with or without a spacer region between the two polypeptides. This creates a hybrid protein with dual enzyme activities that can be exported as a unit to the apoplast, and will allow both enzyme activities to be conveniently localized to the same area of the cell wall. The two cDNA's can be combined in either order, but the preferred method is to link them in the order NH₃-Esterase:Amine Oxidase-COOH. The spacer, if present, may consist of a short stretch of amino acids such as GGGSGGGS (SEQ ID NO: 35), or a set of amino acids that comprises a protease cleavage site that can be acted on by an apoplastic protease. This would result in the production of stoichiometric amounts of both esterase and APAO enzymes in the apoplast.