Contents

0	Wh	nat is a Random Variable?
1		screte Random Variables
	1.1	Distributions
		1.1.1 Joint Distribution
		1.1.2 Marginal Distribution
		1.1.3 Conditional Distribution
	1.2	Families of Discrete Random Variables
		1.2.1 Bernoulli Distribution
		1.2.2 Binomial Distribution
		1.2.3 Geometric Distribution
		1.2.4 Poisson Distribution
		1.2.5 Multinomial Distribution
2	Cor	ntinuous Random Variables
	2.1	Distributions
		2.1.1 Joint Distribution
		2.1.2 Marginal Distribution
		2.1.3 Conditional Distribution
		2.1.4 Uniform Distribution
		2.1.5 Normal (Gaussian) Distribution
		2.1.6 Exponential Distribution
3	Pro	operties and Quantities of Random Variables and Events
,	3.1	Independence
	3.2	Conditional Probability
	0.2	3.2.1 Product Rule
		3.2.2 Chain Rule
		3.2.3 Law of Total Probability
		3.2.4 Bayes' Theorem
	3.3	Union and Intersection of Events
	3.4	Expectation
	5.4	3.4.1 Law of Total Expectation
		3.4.2 Law of Iterated Expectation
	2 5	
	3.5	Variance
	0.0	3.5.1 Law of Total Variance
	3.6	Covariance
	3.7	Correlation
	3.8	Moments
4	ML	LE and MAP
	4.1	Maximum Likelihood Estimation (MLE)
	12	Maximum A Posteriori (MAP) Estimation

Probability Reference

5	Limit Theorems				
	5.1	Sample Mean and Variance	11		
	5.2	Weak Law of Large Numbers	11		
	5.3	Strong Law of Large Numbers	12		
	5.4	Central Limit Theorem	12		
6	Concentration Inequalities				
	6.1	Markov's Inequality	12		
	6.2	Chebyshev's Inequality	12		
	6.3	Hoeffding's Inequality	12		
	6.4	Chernoff's Inequality	13		
	6.5	Normal Distribution Tail Bound	13		

0 What is a Random Variable?

Despite it's name, a random variable is not a variable; it is a function. Consider a set of outcomes Ω from an experiment. A random variable $X:\Omega\to\mathbb{R}$ will take a variable an outcome $\omega\in\Omega$ and map it to a real number. For example, consider the set of outcomes for two coins tosses $\Omega=\{HH,HT,TH,TT\}$ and let X be the number of heads from these two coin tosses. Then $X(HH)=2,X(\{HT,TH\})=1$, and X(TT)=0. Now, we can ask the question, "what is the **probability** that I flip two heads?", or "what is $\Pr(X(HH)=2)$?" Specifying the outcomes in the argument of X is redundant, so instead we use shorthand notation $\Pr(X=2)$ or $p_X(2)$.

1 Discrete Random Variables

As stated in the previous section, a random variable X is a mapping from the outcome space Ω to \mathbb{R} . As a result, range(X) $\subset \mathbb{R}$. A random variable is discrete if range(X) is countable. A set is countable if it is either finite or countably infinite ($\exists f : \Omega \to \mathbb{N}$).

1.1 Distributions

Let $x \in S$, where S is a set in \mathbb{R} . A probability distribution $\Pr(X = x)$ must satisfy three requirements:

- 1. $0 \le \Pr(X = x) \le 1 \ \forall x$
- 2. $\sum_{x \in S} \Pr(X = x) = 1$
- 3. Let $T \subset S$, then $\Pr(X \in T) = \sum_{x \in T} \Pr(X = x) \ \forall T$

Pr(X = x) is also called the probability mass function (pmf) $p_X(x)$ for a discrete random variable X; for brevity, $p_X(x)$ will be used throughout this document to indicate the probability that X takes on the value x. Furthermore, the cumulative mass function (cmf) can be determined from the pmf:

$$F(a) = \Pr(X \le a) = \sum_{x \le a} p_X(x)$$

1.1.1 Joint Distribution

A joint probability distribution represents the probability of X and Y according to a joint distribution $p_{XY}(x,y)$. In other words, $p_{XY}(x,y)$ can be used to find the probability of X = x and Y = y, i.e. $p_{XY}(x,y) = \Pr(X = x \cap Y = y)$. If X and Y are independent random variables, then $p_{XY}(x,y) = p_X(x)p_Y(y)$.

1.1.2 Marginal Distribution

A marginal distribution only considers the probability distribution of one random variable X in the presence of other random variables. Let X, Y be two random variables, and let $y \in T$ where T is a set. Then,

$$p_X(x) = \sum_{y \in T} p_{XY}(x, y)$$

1.1.3 Conditional Distribution

The conditional distribution of a random variable is the probability distribution of that random variable after observing the outcome of a different random variable. The distribution is given by

$$p_{X|Y}(x \mid y) = \frac{p_{X|Y}(x,y)}{p_Y(y)}$$

Note that if X and Y are independent, then

$$p_{X|Y}(x \mid y) = \frac{p_{X|Y}(x,y)}{p_{Y}(y)} = \frac{p_{X}(x)p_{Y}(y)}{p_{Y}(y)} = p_{X}(x)$$

1.2 Families of Discrete Random Variables

1.2.1 Bernoulli Distribution

Define X such that X = 1 when an outcome is a success and X = 0 otherwise. Define $p = \Pr(X = 1)$, then $X \sim \text{Bernoulli}(p)$.

$$p_X(x) = \begin{cases} p & \text{if } X = 1\\ 1 - p & \text{if } X = 0 \end{cases}$$
$$\mathbb{E}[X] = p$$
$$\text{Var}(X) = p(1 - p)$$

1.2.2 Binomial Distribution

Suppose that n independent experiments are performed with either success X = 1 or failure X = 0. Define p to be the probability of success. Then $X \sim \text{Binomial}(n, p)$, and we may observe the probability of k successes.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
$$\mathbb{E}[X] = np$$
$$\operatorname{Var}(X) = np(1-p)$$

Additionally, consider n Bernoulli random variables $X_1, X_2, ..., X_n$. If $X = \sum_{i=1}^n X_i$, then X is a binomial random variable.

1.2.3 Geometric Distribution

Define X such that X = 1 when an outcome is a success and X = 0 otherwise. Define $p = \Pr(X = 1)$. The geometric distribution observes the number of Bernoulli trials k until the first success, and so $X \sim \text{Geometric}(p)$.

$$p_X(k) = (1-p)^{k-1}p$$

$$\mathbb{E}[X] = \frac{1}{p}$$

$$\operatorname{Var}(X) = \frac{1-p}{p^2}$$

1.2.4 Poisson Distribution

Define X such that X = k for $k \in \{0, 1, 2, 3, ...\}$. For some $\lambda > 0$, we may say that $X \sim \text{Poisson}(\lambda)$.

$$p_X(k) = \lambda^k \frac{e^{-\lambda}}{k!}$$
$$\mathbb{E}[X] = \lambda$$
$$Var(X) = \lambda$$

For large n and small p, the Poisson distribution where $\lambda = n \cdot p$ is a good approximation to the Binomial distribution.

1.2.5 Multinomial Distribution

The multinomial distribution generalizes the binomial distribution. Instead of a binary success or failure, there are k outcomes. n is the number of independent experiments. The pmf $p_X(\mathbf{x})$ accepts an n-length vector \mathbf{x} of possible outcomes, and each element in \mathbf{x} , x_i , has probability p_i of occurring (we require that $\sum_{i=1}^k p_i = 1$).

$$p(\mathbf{x}) = \frac{n!}{\prod_{i=1}^{n} (x_i!)} \prod_{i=1}^{n} p_i^{x_i}$$
$$\mathbb{E}[X_i] = np_i$$
$$\operatorname{Var}(X_i) = np_i(1 - p_i)$$

2 Continuous Random Variables

A random variable X is continuous if its cumulative distribution function (cdf) $F_X(x)$ is continuous for all $x \in \mathbb{R}$.

2.1 Distributions

Let $A \subset \mathbb{R}$ be some set, then $\Pr(X \in A) = \int_A f_X(x) dx$, where $f_X(x)$ is the probability density function (pdf) of X. The pdf has three properties (assuming $A \in \mathbb{R}$):

- 1. $f_X(x) > 0 \ \forall x$
- $2. \int_{-\infty}^{\infty} f_X(x) dx = 1$
- 3. $\Pr(a \le X \le b) = F_X(b) F_X(a) = \int_a^b f(x) dx$

The third property is the definition of the cumulative density function (cdf), given by F(x), and has the following relationship to the pdf:

$$f(x) = \frac{dF_X(x)}{dx}$$

One thing to note about the pdf: $\Pr(X = a) = \Pr(a \le X \le a) = \int_a^a f_X(x) dx = 0$. In other words, the probability that a continuous random variable takes the value of a single real number is 0.

2.1.1 Joint Distribution

A joint probability distribution represents the probability of X and Y according to a joint distribution $f_{XY}(x,y)$. In other words, $f_{XY}(x,y)$ can be used to find the probability of X = x and Y = y, i.e. $f_{XY}(x,y) = \Pr(X = x \cap Y = y)$. If X and Y are independent random variables, then $f_{XY}(x,y) = f_X(x)f_Y(y)$.

2.1.2 Marginal Distribution

A marginal distribution only considers the probability distribution of one random variable X in the presence of other random variables. Let X, Y be two random variables. Then,

$$f_X(x) = \int_y f_{XY}(x, y)$$

2.1.3 Conditional Distribution

The conditional distribution of a random variable is the probability distribution of that random variable after observing the outcome of a different random variable. The distribution is given by

$$f_{X|Y}(x \mid y) = \frac{f_{X|Y}(x,y)}{f_Y(y)}$$

Note that if X and Y are independent, then

$$f_{X|Y}(x \mid y) = \frac{f_{X|Y}(x,y)}{f_{Y}(y)} = \frac{f_{X}(x)f_{Y}(y)}{f_{Y}(y)} = f_{X}(x)$$

2.1.4 Uniform Distribution

 $X \sim \text{Uniform}(\alpha, \beta)$ if, on the interval $[\alpha, \beta]$,

$$f_X(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & x < \alpha, x > \beta \end{cases}$$

$$\mathbb{E}[X] = \frac{\alpha + \beta}{2}$$

$$\text{Var}(X) = \frac{(\beta - \alpha)^2}{12}$$

$$F_X(x) = \frac{x - \alpha}{\beta - \alpha}$$

2.1.5 Normal (Gaussian) Distribution

If X is distributed normally, then $X \sim \mathcal{N}(\mu, \sigma^2)$. If $\mu = 0$ and $\sigma^2 = 1$, then X is distributed according to the standard normal distribution.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\mathbb{E}[X] = \mu$$

$$Var(X) = \sigma^2$$

The cdf of a normal distribution is not in closed form:

$$F_X(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right]$$

where, for some constant t,

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

2.1.6 Exponential Distribution

 $X \sim \text{Exponential}(\lambda)$ if, given parameter $\lambda > 0$,

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$
$$\mathbb{E}[X] = \frac{1}{\lambda}$$
$$\operatorname{Var}(X) = \frac{1}{\lambda^2}$$
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

3 Properties and Quantities of Random Variables and Events

This section will present other important properties of random variables. The notation for discrete random variables (for example, summation instead of integration, $p_X(x)$ instead of $f_X(x)$, etc.) will be used here, but the same properties apply to continuous random variables.

3.1 Independence

If either of the following two criteria are met $\forall x, y, z$ such that X = x, Y = y, and Z = z, then the two random variables X and Y are independent.

- 1. $p_{XY}(x,y) = p_X(x)p_Y(y)$
- 2. $p_{XY\mid Z}(x,y\mid z)=p_{X\mid Z}(x\mid z)p_{Y\mid Z}(y\mid z)$ (conditional independence between X and Y)

3.2 Conditional Probability

3.2.1 Product Rule

Let X and Y be two random variables. The definition of conditional probability is

$$p_{X|Y}(x \mid y) = \frac{p_{XY}(x,y)}{p_Y(y)}$$

By rearranging, we obtain the product rule for conditional probability:

$$p_{XY}(x,y) = p_{X|Y}(x \mid y)p_Y(y)$$

3.2.2 Chain Rule

The chain rule is essentially a generalized form of the product rule. Let $X_1, X_2, ..., X_n$ be random variables. Then,

$$p_{X_1,X_2,\dots,X_n}(x_1,\dots,x_n)$$

$$= p_{X_1}(x_1)p_{X_2\mid X_2}(x_2,x_1)p_{X_3\mid X_2,X_1}(x_3\mid x_2,x_1)\cdots p_{X_n\mid X_{n-1},X_{n-2},\dots,X_1}(x_n\mid x_{n-1},x_{n-2},\dots,x_1)$$

$$= \prod_{i=1}^n p_{X_i\mid X_{i-1},X_{i-2},\dots,X_1}(x_i\mid x_{i-1},x_{i-2},\dots,x_1)$$

3.2.3 Law of Total Probability

Let A be some event in a sample space, and let $B_1, B_2, ..., B_n$ be mutually exclusive events that partition the entire sample space. Then The Law of Total Probability states that

$$\Pr(A) = \sum_{i=1}^{n} \Pr(A \cap B_i) \Pr(B_i)$$

We can obtain something that looks like the Law of Total Probability for random variables as well. Let X and Y be random variables with a joint probability distribution $p_{XY}(x,y)$. Using the definition of conditional probability, the Law of Total Probability can be obtained.

$$p_X(x) = \sum_{y} p_{XY}(x, y) = \sum_{y} p_{Y|X}(y \mid x) p_Y(y)$$

3.2.4 Bayes' Theorem

Bayes' Theorem can be determined by equating both sides of the product rule:

$$p_{X|Y}(x \mid y)p_{Y}(y) = p_{XY}(x, y) = p_{Y|X}(y \mid x)p_{X}(x)$$
$$p_{X|Y}(x \mid y)p_{Y}(y) = p_{Y|X}(y \mid x)p_{X}(x)$$
$$p_{X|Y}(x \mid y) = \frac{p_{Y|X}(y \mid x)p_{X}(x)}{p_{Y}(y)}$$

In this case, $p_{X|Y}(x \mid y)$ is the posterior, $p_{Y|X}(y \mid x)$ is the likelihood, $p_X(x)$ is the prior, and $p_Y(y)$ is the normalization term. Using the Law of Total Probability, the normalization term can be substituted for:

$$p_{X|Y}(x \mid y) = \frac{p_{Y|X}(y \mid x)p_X(x)}{\sum_{x} p_{Y|X}(y \mid x)p_X(x)}$$

3.3 Union and Intersection of Events

Let A and B be two events in the same sample space. Then

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

and

$$Pr(A \cap B) = Pr(A) + Pr(B) - Pr(A \cup B)$$

3.4 Expectation

The expected value, or mean, of a random variable is given by

$$\mathbb{E}[X] = \sum_{x} x p_X(x)$$

Or, more generally, for some function g(X),

$$\mathbb{E}[g(X)] = \sum_{x} g(x) p_X(x)$$

For any two random variables X and Y, $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$. If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

3.4.1 Law of Total Expectation

The Law of Total Expectation is similar to the Law of Total Probability, but is used to determine the expected value of a random variable. Let X be a random variable and let $A_1, A_2, ..., A_n$ be mutually exclusive events that partition the entire sample space. Then by the Law of Total Expectation,

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X \mid A_i] \Pr(A_i)$$

3.4.2 Law of Iterated Expectation

For two random variables X and Y,

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$$

3.5 Variance

Let $\mu = \mathbb{E}[X]$. The variance Var(X) of X is given by

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \sum_{x} (x - \mu)^2 p_X(x)$$

Alternatively,

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \left(\sum_x x^2 p_X(x)\right) - \left(\sum_x x p_X(x)\right)^2$$

The standard deviation is $\sqrt{\operatorname{Var}(X)}$.

3.5.1 Law of Total Variance

For two random variables X and Y,

$$Var(X) = \mathbb{E}[Var(X \mid Y)] + Var(\mathbb{E}[X \mid Y])$$

3.6 Covariance

Let $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$, and let n be the number of outcomes for X and Y. The covariance Cov(X,Y) is given by

$$Cov(X,Y) = \mathbb{E}[X - \mu_X]\mathbb{E}[Y - \mu_Y] = \sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)p_{X_iY_i}(x_i, y_i)$$

Note that Cov(X, X) = Var(X)

3.7 Correlation

The correlation of X and Y is a value between -1 and 1. A correlation of -1 indicates that the random variables are perfectly inversely related, 0 indicates no relationship, and 1 indicates that the two variables vary together perfectly. The correlation coefficient ρ_{XY} of X and Y is given by

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)\operatorname{Var}(Y)}$$

In general, random variables with 0 correlation does not mean those random variables are independent. However, independent random variables do have 0 correlation. Gaussian random variables are the exception to this rule: uncorrelated Gaussian random variables are independent, and independent Gaussian random variables are uncorrelated.

3.8 Moments

The moment generating function of a random variable X is defined as

$$M_X(t) = \mathbb{E}\left[e^{tX}\right] = \sum_x e^{tx} p_X(x)$$

for all $t \in \mathbb{R}$. Let k be an integer greater than 0, then the kth moment of X is $\mathbb{E}[X^k]$ and the kth central moment of X is $\mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^k\right]$. The kth moment may be calculated in the following way:

$$\mathbb{E}\left[X^k\right] = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0}$$

4 MLE and MAP

4.1 Maximum Likelihood Estimation (MLE)

Given a probability distribution $p_{X_i|Y}(x_i \mid y)$, it's often useful to estimate random variable Y in order to maximize the probability the joint distribution $p_{X_1,X_2,...,X_n|Y}(x_1,x_2,...,X_n \mid y)$, where all X_i are independent. The likelihood function is defined as

$$L(y \mid x_1, x_2, ..., x_n) = p_{X_1, X_2, ..., X_n \mid Y}(x_1, x_2, ..., x_n \mid y) = \prod_{i=1}^n p_{X_i \mid Y}(x_i \mid y)$$

Since $p_{X_i|Y}(x_i \mid y)$ is always between 0 and 1, this product often results in a very small number. As a result, it is more convenient to consider the loglikelihood:

$$l(y \mid x_1, x_2, ..., x_n) = \log (L(y \mid x_1, x_2, ..., x_n)) = \log \left(\prod_{i=1}^n p_{X_i \mid Y}(x_i \mid y) \right) = \sum_{i=1}^n \log(p_{X_i \mid Y}(x_i \mid y))$$

Using these equations, y may be computed

$$y = \underset{y}{\operatorname{arg max}} \ l(y \mid x_1, x_2, ..., x_n) = \underset{y}{\operatorname{arg max}} \sum_{i=1}^{n} \log(p_{X_i \mid Y}(x_i \mid y))$$

4.2 Maximum A Posteriori (MAP) Estimation

MAP Estimation is nearly identical to MLE, except that it utilizes the prior from Bayes' Theorem.

$$L(y \mid x_1, x_2, ..., x_n) = \prod_{i=1}^{n} \frac{p_{X_i \mid Y}(x_i \mid y) p_Y(y)}{p_{X_i}(x_i)}$$

Since we are maximizing with respect to y, $p_{X_i}(x_i)$ is just a constant and can be ignored when finding the argmax.

$$y = \arg\max_{y} \log \left(\prod_{i=1}^{n} p_{X_{i}|Y}(x_{i} \mid y) p_{Y}(y) \right) = \arg\max_{y} \sum_{i=1}^{n} \log(p_{X_{i}|Y}(x_{i} \mid y) p_{Y}(y))$$

5 Limit Theorems

5.1 Sample Mean and Variance

Let $X_1, X_2, ..., X_n$ be independent random variables and have mean $\mathbb{E}[X_i] = \mu$ and variance $\text{Var}(X_i) = \sigma^2$. Then,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[X_{i}\right] = \mu$$

and

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) = \frac{\sigma^{2}}{n}$$

5.2 Weak Law of Large Numbers

The Weak Law of Large Numbers states that the sample mean of a collection of random variables will converge in probability to the expected value as the number of samples n increases. For any $\epsilon > 0$ and for i.i.d. random variables $X_1, X_2, ..., X_n$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| > \epsilon \right) = 0$$

5.3 Strong Law of Large Numbers

As the name implies, the Strong Law of Large Numbers is a stronger condition than the weak law of large numbers. It says that the sample mean of a collection of random variables will converge almost surely (with a probability of 1) to the expected value as the number of samples n increases. For i.i.d. random variables $X_1, X_2, ..., X_n$,

$$\Pr\left(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n X_i = \mu\right) = 1$$

5.4 Central Limit Theorem

For i.i.d. random variables $X_1, X_2, ..., X_n$ with the same mean μ and variance σ^2 . Let $X = \sum_{i=1}^n X_i$. Normalize X by subtracting its mean and standard deviation and let this new random variable be Z:

$$Z = \frac{X - \mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}} = \frac{\sum_{i=1}^{n} X_i - \mu}{\sigma \sqrt{n}}$$

As $n \to \infty, Z \to \mathcal{N}(0, 1)$.

6 Concentration Inequalities

Concentration inequalities are bounds that show the deviation of a random variable from the expected value or some other value. Thus, they provide information about where the mass (or density) of the random variables probability distribution is concentrated.

6.1 Markov's Inequality

$$\Pr(X \ge t) \le \frac{\mathbb{E}[X]}{t}$$

6.2 Chebyshev's Inequality

This inequality is derived directly from Markov's inequality; it provides a tighter bound. Given the variance σ^2 of a random variable X,

$$\Pr\left(|X - \mu| \ge t\right) \le \frac{\sigma^2}{t^2}$$

6.3 Hoeffding's Inequality

Let there be n random variables $X_1, X_2, ..., X_n$ where each $X_i \in [a_i, b_i]$, for $a_i, b_i \in \mathbb{R}$. Then,

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \ge t\right) \le \exp\left(\frac{-2nt^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$$

6.4 Chernoff's Inequality

Chernoff's inequality is obtained by applying Markov's inequality to the moment generating function:

$$\Pr\left(\sum_{i=1}^{n} X_i \ge r\right) \le e^{-tr} \mathbb{E}\left[\prod_{i=1}^{n} e^{tX_i}\right]$$

Where each X_i is i.i.d. Recall that the moment generating function e^{tX} depends on a free parameter t > 0. Thus, we can choose t such that the bound is minimized to ensure the tightest bound possible:

$$\Pr\left(\sum_{i=1}^{n} X_i \ge r\right) \le \min_{t>0} e^{-tr} \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_i}\right]$$

6.5 Normal Distribution Tail Bound

Let $X \sim \mathcal{N}(0,1)$, then

$$\Pr(X \ge t) \le \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$$