CS 305 Computer Networks

Chapter 2 Application Layer (3)

Jin Zhang

Department of Computer Science and Engineering

Southern University of Science and Technology

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

2.5 P2P applications

- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

examples:

- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from one server to N peers?

peer upload/download capacity is limited resource

File distribution time: client-server

- server transmission: must sequentially send (upload) N file copies:
 - time to send one copy: F/u_s
 - time to send N copies: NF/u_s
- client: each client must download file copy
 - d_{min} = min client download rate
 - min client download time: F/d_{min}

time to distribute F to N clients using client-server approach

increases linearly in N

 $D_{c-s} \ge max\{NF/u_s, F/d_{min}\}$

File distribution time: P2P

- server transmission: must upload at least one copy
 - time to send one copy: F/u_s
- client: each client must download file copy
 - min client download time: F/d_{min}

- clients: as aggregate must download NF bits
 - max upload rate (limiting max download rate) is $u_s + \Sigma u_i$

time to distribute F to N clients using P2P approach

$$D_{P2P} \geq max\{F/u_{s,}, F/d_{min,}, NF/(u_{s} + \Sigma u_{i})\}$$

increases linearly in N ...

... but so does this, as each peer brings service capacity

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, $u_s = 10u$, $d_{min} \ge u_s$

P2P file distribution: BitTorrent

- file divided into 256Kb chunks
- peers in torrent send/receive file chunks

P2P file distribution: BitTorrent

- peer joining torrent:
 - has no chunks, but will accumulate them over time from other peers
 - registers with tracker to get list of peers, connects to subset of peers ("neighbors")

- while downloading, peer uploads chunks to other peers
- peer may change peers with whom it exchanges chunks
- once peer has entire file, it may (selfishly) leave or (altruistically) remain in torrent

BitTorrent: requesting, sending file chunks

requesting chunks:

- at any given time, different peers have different subsets of file chunks
- periodically, Alice asks each peer for list of chunks that they have
- Alice requests missing chunks from peers, rarest first

sending chunks: tit-for-tat

- Alice sends chunks to those four peers currently sending her chunks at highest rate
 - other peers are choked by Alice (do not receive chunks from her)
 - re-evaluate top 4 every 10 secs
- every 30 secs: randomly select another peer, starts sending chunks
 - "optimistically unchoke" this peer
 - newly chosen peer may join top 4

BitTorrent: tit-for-tat

- (I) Alice "optimistically unchokes" Bob
- (2) Alice becomes one of Bob's top-four providers; Bob reciprocates
- (3) Bob becomes one of Alice's top-four providers

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks (CDNs)
- 2.7 socket programming with UDP and TCP

Video Streaming and CDNs: context

- video traffic: major consumer of Internet bandwidth
 - Netflix, YouTube: 37%, 16% of downstream residential ISP traffic
 - ~IB YouTube users, ~75M Netflix users
- challenge: scale how to reach ~ I B users?
 - single mega-video server won't work (why?)
- challenge: heterogeneity
 - different users have different capabilities (e.g., wired versus mobile; bandwidth rich versus bandwidth poor)
- solution: distributed, application-level infrastructure

Multimedia: video

- video: sequence of images displayed at constant rate
 - e.g., 24 images/sec
- digital image: array of pixels
 - each pixel represented by bits
- coding: use redundancy within and between images to decrease # bits used to encode image
 - spatial (within image)
 - temporal (from one image to next)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Multimedia: video

- CBR: (constant bit rate): video encoding rate fixed
- VBR: (variable bit rate):
 video encoding rate changes
 as amount of spatial,
 temporal coding changes
- examples:
 - MPEG I (CD-ROM) 1.5 Mbps
 - MPEG2 (DVD) 3-6 Mbps
 - MPEG4 (often used in Internet, < I Mbps)

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame i

temporal coding example: instead of sending complete frame at i+1, send only differences from frame i

frame i+1

Streaming stored video:

simple scenario:

How to deal with various available bandwidth of access network for different clients?

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- server:
 - divides video file into multiple chunks
 - each chunk stored, encoded at different rates
 - manifest file: provides URLs for different chunks

client:

- periodically measures server-to-client bandwidth
- · consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on available bandwidth at time)

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation, or overflow does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 1: single, large "mega-server"
 - single point of failure
 - point of network congestion
 - long path to distant clients
 - multiple copies of video sent over outgoing link

....quite simply: this solution doesn't scale

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN)
 - enter deep: push CDN servers deep into many access networks
 - close to users
 - used by Akamai, 1700 locations
 - bring home: smaller number (10's) of larger clusters in POPs near (but not within) access networks
 - used by Limelight

Content Distribution Networks (CDNs)

- CDN: stores copies of content at CDN nodes
 - e.g. Netflix stores copies of MadMen
- subscriber requests content from CDN
 - directed to nearby copy, retrieves content
 - may choose different copy if network path congested

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V

video stored in CDN at http://KingCDN.com/NetC6y&B23V

Chapter 2: outline

- 2.1 principles of network applications
- 2.2 Web and HTTP
- 2.3 electronic mail
 - SMTP, POP3, IMAP
- **2.4 DNS**

- 2.5 P2P applications
- 2.6 video streaming and content distribution networks
- 2.7 socket programming with UDP and TCP

Socket programming

goal: learn how to build client/server applications that communicate using sockets

socket: door between application process and endend-transport protocol

Socket programming

Two socket types for two transport services:

- UDP: unreliable datagram
- TCP: reliable, byte stream-oriented

Application Example:

- client reads a line of characters (data) from its keyboard and sends data to server
- server receives the data and converts characters to uppercase
- 3. server sends modified data to client
- 4. client receives modified data and displays line on its screen

Socket programming with UDP

UDP: no "connection" between client & server

- no handshaking before sending data
- sender explicitly attaches IP destination address and port # to each packet
- receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

 UDP provides unreliable transfer of groups of bytes ("datagrams") between client and server

Client/server socket interaction: UDP

Example app: UDP client

```
Python UDPClient
include Python's socket
                     from socket import *
library
                       serverName = 'hostname'
                       serverPort = 12000
create UDP socket for _____clientSocket = socket(AF_INET,
server
                                               SOCK_DGRAM)
get user keyboard
input _____ message = raw_input('Input lowercase sentence:')
Attach server name, port to
                      clientSocket.sendto(message.encode(),
message; send into socket
                                              (serverName, serverPort))
read reply characters from → modifiedMessage, serverAddress =
socket into string
                                               clientSocket.recvfrom(2048)
print out received string ---- print modifiedMessage.decode()
and close socket
                       clientSocket.close()
```

Example app: UDP server

Python UDPServer

```
from socket import *
serverPort = 12000
```

serverSocket = socket(AF_INET, SOCK_DGRAM)

bind socket to local port
number 12000

serverSocket.bind((", serverPort))

print ("The server is ready to receive")

loop forever — while True:

Read from UDP socket into
message, getting client's
address (client IP and port)

message, clientAddress = serverSocket.recvfrom(2048)
message, clientAddress = serverSocket.recvfrom(2048)
message, clientAddress = serverSocket.recvfrom(2048)
message, getting client's
modifiedMessage = message.decode().upper()

send upper case string ——— serverSocket.sendto(modifiedMessage.encode(), back to this client clientAddress)

Socket programming with TCP

client must contact server

- server process must first be running
- server must have created socket (door) that welcomes client's contact

client contacts server by:

- Creating TCP socket, specifying IP address, port number of server process
- when client creates socket: client TCP establishes connection to server TCP

- when contacted by client, server TCP creates new socket for server process to communicate with that particular client
 - allows server to talk with multiple clients
 - source port numbers used to distinguish clients (more in Chap 3)

application viewpoint:

TCP provides reliable, in-order byte-stream transfer ("pipe") between client and server

Client/server socket interaction: TCP

Example app: TCP client

Python TCPClient from socket import * serverName = 'servername' serverPort = 12000create TCP socket for server, remote port 12000 →clientSocket = socket(AF_INET(SOCK_STREAM) clientSocket.connect((serverName,serverPort)) sentence = raw_input('Input lowercase sentence:') No need to attach server -clientSocket.send(sentence.encode()) name, port modifiedSentence = clientSocket.recv(1024) print ('From Server:', modifiedSentence.decode()) clientSocket.close()

Example app:TCP server

Python TCPServer

from socket import * serverPort = 12000create TCP welcoming serverSocket = socket(AF_INET,SOCK_STREAM) socket serverSocket.bind((",serverPort)) server begins listening for serverSocket.listen(1) incoming TCP requests print 'The server is ready to receive' loop forever while True: server waits on accept() connectionSocket, addr = serverSocket.accept() for incoming requests, new socket created on return sentence = connectionSocket.recv(1024).decode() read bytes from socket (but capitalizedSentence = sentence.upper() not address as in UDP) connectionSocket.send(capitalizedSentence. close connection to this client (but *not* welcoming encode()) socket) connectionSocket.close()

Application Layer 2-37

Chapter 2: summary

our study of network apps now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP

- specific protocols:
 - HTTP
 - SMTP, POP, IMAP
 - DNS
 - P2P: BitTorrent
- video streaming, CDNs
- socket programming:TCP, UDP sockets

Chapter 2: summary

most importantly: learned about protocols!

- typical request/reply message exchange:
 - client requests info or service
 - server responds with data, status code
- message formats:
 - headers: fields giving info about data
 - data: info(payload) being communicated

important themes:

- control vs. messages
 - in-band, out-of-band
- centralized vs. decentralized
- stateless vs. stateful
- reliable vs. unreliable message transfer
- "complexity at network edge"