MSFM, Fixed Income Derivatives (33601)

© Yuri Balasanov, iLykei, 2015

Homework Assignment on Statistical Model

This assignment helps understanding construction of the statistical model of interest rates and its properties

This assignment is individual

1. Prepare the data (5%)

Fund the project data are in the file StatisticalModelData2014.csv.

The format of the data is shown below:

```
##
            USGG3M USGG6M USGG2YR USGG3YR USGG5YR USGG10YR USGG30YR
## 1/5/1981
           13.52 13.09 12.289
                                  12.28 12.294
                                                 12.152
                                                         11.672
## 1/6/1981 13.58 13.16 12.429
                                  12.31 12.214
                                                 12.112
                                                         11.672
## 1/7/1981 14.50 13.90 12.929
                                  12.78 12.614
                                                 12.382
                                                         11.892
## 1/8/1981 14.76 14.00 13.099
                                  12.95 12.684
                                                 12.352
                                                         11.912
## 1/9/1981 15.20 14.30 13.539
                                  13.28 12.884
                                                 12.572
                                                         12.132
## 1/12/1981 15.22 14.23
                         13.179
                                  12.94 12.714
                                                 12.452
                                                         12.082
```

2. Estimate the 3-factor model using PCA (15%)

- 2.1. Define factor and factor loadings
- 2.2. Calculate relative importance of factors (see slide 17)
- 2.3. Plot and interpret the shapes of factor loadings (see slide 18)
- 3. Calculate historical volatilities and correlation coefficients of factors (15%)

- 3.1. Use the whole period of history to calculate $Var[\Delta f_i(t)], Cor[\Delta f_i(t), \Delta f_i(t)], i = 1, 2, 3$, where $\Delta f_i(t)$ is a one-day increment of the factor (see slides 20,27)
- 3.2. Calculate the same varibles using a rolling window approximately 1 month
- 4. Find historical estimates of volatilities of the first 3 factors corresponding to the last month of the observed period (10%)
- 5. Calculate time series of each of 7 rates predicted by the model (5%)
- 6. Fit parametric forms from slide 32 to each of the first 3 vectors of factor loadings (10%)

Include parameters a, b in the report.

Hint. You can use the following parameter values as initial guesses.

```
Loading.1
```

```
##
         а
## 1 0.320 0.070
## 2 0.006 0.285
## 3 36.550 -0.292
```

```
Loading.2
```

```
а
## 1 0.650 -1.130
## 2 0.004 0.539
```

```
Loading.3
```

```
##
## 1 4.200e-01 -1.920
## 2 5.000e-08 0.620
## 3 5.000e-01 -0.410
## 4 2.876e+00 3.035
```

Hint. Restrict optimization to searching a > 0.

- 7. Calculate time series of instantaneous forward rates with maturity 5 years and discount bonds with maturity 4.5 years for the whole period of observation. Calculate the histograms of one-day increments (20%)
- 8. Calculate correlations between the short rate and instantaneous forward rates (20%)
- 8.1. See slides 34-36.
- 8.2. Calculate

$$Cor(\Delta F(t, 0), \Delta F(t, \tau))$$

as function of τ for increasing $\tau > 0$.

- 8.3. Repeat the calculations using one-, two- and three-factor models.
- 8.4. Plot the graph of correlations.