

Efficient routing on multi-socket x86 machines

Jakub Słociński

Agenda

- About me
- About servers
- Network connection
- vRouter made in OVH
- Tuning
- Summary

About me

R&D network engineer vRouter tech leader

Server solutions Architecture and technology

NUMA

- NUMA (Non-Uniform Memory Access)
 - Single memory space for all CPUs
 - Fast access to local memory
 - Slower access to remote memory and I/O ports
 - Better scalability
- Platform architecture in terms of networking?

X9QRi-F Block Diagram

NUMA

Performance

- PCle 3.0
 - 8 GT/s = 7,877 Gbps (per signal-line)
 - 40 PCle lines: 315,08 Gbps per CPU
- Memory [1]
 - 90 GB/s = 720 Gbps (DDR4, Haswell E5-2670v3)
 - Latest CPUs: up to ~2.7 Tbps (EPYC) or ~3.3 Tbps (MCDRAM, Knights Landing)!
- QPI/UPI/HT3 [2]
 - QPI: 9,6 GT/s * 16 bit = 153,6 Gbps (19,2 GB/s in both directions)
 - 2 QPI links in Skylake E5 and 3 links for E7
 - UPI: 10,4 GT/s (3 links in Skylake-SP Platinum and some Gold)
 - HT3.1: 6,4 GT/s * 16 bit = 102,4 Gbps (12,8 Gbps in both directions)

Network Interface Cards (NICs)

src: www.wikipedia.org

NICs

Ports:

- 1x, 2x, 4x (verify number of PCIe lines)
- 1, 10, 25, 40, 50, 100, 200 GbE

Types:

- NIC: up to 200 Mpps! [1]
- FPGA
- SmartNIC (FPGA or SoC) [2]
 - 50 Gbps @1000Bpp
 - 100 Gbps @500Bpp

Router – architecture

Data Plane

Linux kernel *

- Tx: 14,8 Mpps
- Rx: 12 Mpps (experimental patches) (eBPF drop: 9 Mpps in lab)
- IPv4 fw: 1 2 Mpps (on a single core) ⊗

Kernel bypass

- Intel DPDK, netmap, PF_RING ZC, snabb, PFQ, ...

Delegate network functions – SmartNIC

- Offloads:
 tx, rx, checksum, Iso, tso, QinQ, vxlan, ...
- More:
 OpenVSwitch, eBPF, tunneling, LB, ...

wire-speed								
	84 B	1500 B						
10 Gbps	14,88 Mpps	0,83 Mpps						
40 Gbps	59,5 Mpps	3,33 Mpps						
200 Gbps	297,6 Mpps	16,66 Mpps						

^{*} src: Jesper Brouer @netdev1.1

Linux kernel networking

App kernel space ring buffers driver socket NIC #1 RX/TX queue RX/TX queue

Kernel bypass (DPDK)

SmartNIC

OVH vRouter

Functions and software

Router function definition

- BGP, VRF, DHCP relay, VRF
- Symmetric traffic (inbound/outbound)
- AntiDDoS modules
- Redundancy: VRRP, BGP
- Extra: IPSec z VRF

Software

- CP: Bird (multi-NUMA!), keepalived, ISC DHCP relay (patched), strongswan
- DP: 6Wind's DPDK (more than 2 years of cooperation)

More: delivery, monitoring, management, ...

Hardware

- Intel Server Board S2600 (dualsocket, 4x PCIe x16, 2133 MHz ECC DDR4)
- CPU (Xeon E5)
 - 2667v3 (8c @3,6GHz)
 - 2687Wv4 (12c @3,5GHz)
 - 2650v4 (12c @2,9GHz)
 - **–** ...
- Mellanox Connect-X4 (40/100GbE)
- Intel X520 (10GbE)
- Dysk SSD (config, OS, logs buffer)

Basic tuning – don't miss it!

OS / DPDK [1]

- Use all DRAM slots with at least 4GB, fastest supported by MB
- Memory size depends on supported protocols, interfaces, size of tables (routing, neighbors)
- Use supported NIC, Intel or Mellanox preferred
- Disable CPU power-saving and TurboBoost in BIOS
- Define the max CPU frequency instead of auto setting
- Disable virtualisation in BIOS if not needed
- Update the BIOS/NIC firmware!

CPU

Core-Port allocation in DPDK/FastPath

```
: ${FP_MASK:=1-5,17-21}
: ${FP_PORTS:='0000:03:00.0 0000:03:00.1 0000:05:00.0 0000:05:00.1'}
: ${CORE_PORT_MAPPING:=c1=0/c2=0/c3=2/c4=2/c17=0/c18=0/c19=2/c20=2}
```

```
# numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 2
                                                     node
node 0 size: 64340 MB
                                                       0:
                                                                                           19
node 0 free: 42428 MB
                                                       1:
                                                                10
                                                                    17
                                                                         17
                                                                             19
                                                                                  19
                                                                                      19
                                                                                           19
node 1 cpus: 8 9 10 11 12 13 14 15 24 25 26 27 28 2
                                                       2:
                                                                         12
                                                                             19
                                                                                  19
                                                                                           19
node 1 size: 64495 MB
                                                                17
                                                                    12
                                                                         10
                                                                             19
                                                                                  19
                                                                                           19
node 1 free: 61449 MB
                                                           19 19
                                                                    19
                                                                         19
                                                                             10
                                                                                  12
                                                                                           17
                                                       4:
node distances:
                                                           19
                                                                19
                                                                    19
                                                                         19
                                                                                  10
                                                                                           17
node
                                                                19
                                                                    19
                                                                         19
                                                                                           12
  0:
     10 21
                                                               19
                                                                    19
                                                                        19
                                                                                  17
                                                                                           10
  1:
     21 10
```

Core allocation for apps (Control Plane per numa)

NUMA: tools

```
lstopo
dmidecode
lspci -tv
lscpu
hwloc-info -v
numactl
```

/proc/cpuinfo
/sys/bus/pci/devices/*/numa_node
/sys/devices/system/node/node*

mlc (intel memory latency checker)

More:

NUMA

PBR for NUMA

- BIRD routing daemon
- Routing tables: main / numa0 / numa1
- Functions: if_numa0() / if_numa1()
- Control protocols:
 - direct_numa0/1: paths for direct-connected links (per-numa)
 - kernel_numa0/1/main: table sync Bird <> kernel
 - pipe_numa0/1: copy from main => numaX if_numaX()
 - pipe_xnuma0/1: copy from main => numa1/0 (cross numa) + tag (no BGP)
 - bgp_numa0/1_peer1/2: BGP sessions from numa0/1 for peer 1 and 2

NUMA: CP - DP

Numa0: Control Plane

Numa1: Data Plane

Pros:

- Separate CPU for CP
- All CPU cores allocated for Data Plane
- Unequal-CPU?

Cons:

- All control traffic (incl. ICMP!) is a cross-NUMA traffic
- Unequal-CPU doesn't (always) work (at least for S2600CW) ⊗

NUMA: other ideas

- Multi-host interfaces
- Breakout cables 40g->4x10G (compatibility!)
- NumaSCALE etc.
- Multi-CPU inside single NUMA (w00t?):
 AMD EPYC and Infinite Fabric

AMD Epyc 7601: 32c/64t @2.2-3.2 GHz, 64MB L3 cache, 2666MHz RAM ~4*300Gbps Infinite fabric 128x PCle lines

LAB tests:	8500 bpp		685bpp		85bpp	
ports	Gbps	Mpps	Gbps	Mpps	Gbps	Mpps
2x 2x10GbE Intel 82599	30,0	0,4	28,0	5,0	10,0	15,0
2x 40GbE MCX4	80,0	1,3	78,0	14,0	14,5	22,0
2x 100GbE MCX4	172,0	2,5	138,0	25,0	30,0	40,0

Summary

- Wisely choose hardware for the needs
- Sometimes 2x40 != 80 [Gbps]
- Proper software and it's config may have strong impact
- NUMA allows you to scale better but don't bet on autosetup!
- Lack of CPU/core/ht numbering standard doesn't help
- Ask your vendor for details
- Don't trust single tool
- Be master of your hardware ©

Thanks!

Questions?

@KubaAtOvh

meetup.com/Wroclaw-Net-IP-Meetup / netip.me

ovh.pl/jobs

