

WHAT IS CLAIMED IS:

1. A method for fabricating a semiconductor device, comprising
the steps of:

crystallizing a semiconductor film comprising amorphous
silicon;

forming a gate insulating film on said semiconductor film;

forming a gate electrode on said gate insulating film, said gate
electrode having tapered side edges; and

10 forming source and drain regions in said semiconductor film
by ion doping.

2. A method according to claim 1 wherein said crystallizing said
semiconductor film is performed by a laser irradiating.

15 3. A method according to claim 1 wherein said source and drain
regions are formed by said ion doping with at least one of phosphorus and
boron.

4. A method according to claim 1 wherein said forming said gate
electrode is performed by a wet etching.

5. A method according to claim 1 wherein said semiconductor
film comprising amorphous silicon has a thickness of 50 to 150 nm.

20 6. A method for fabricating a semiconductor device, comprising
the steps of:

forming a semiconductor film comprising amorphous silicon on an insulating surface;

introducing boron into at least a portion of said semiconductor film, said portion being to become at least a channel region;

5 crystallizing said semiconductor film;

forming a gate insulating film on said semiconductor film;

forming a gate electrode on said gate insulating film; and

forming source and drain regions in said semiconductor film

by ion doping.

Sig D1
7. A method according to claim 6 wherein said channel region is substantially intrinsic type or n-type.

8. A method according to claim 6 wherein said crystallizing said semiconductor film is performed by a laser irradiating.

15 9. A method according to claim 6 wherein said source and drain regions are formed by said ion doping with at least one of phosphorus and boron.

10. A method according to claim 6 wherein said forming said gate electrode is performed by a wet etching.

20 11. A method according to claim 6 wherein said semiconductor film comprising amorphous silicon has a thickness of 50 to 150 nm.

Sub B3
12. A method for fabricating a semiconductor device, comprising the steps of:

forming a semiconductor film comprising amorphous silicon
on an insulating surface;

introducing boron into at least a portion of said semiconductor
film, said portion being to become at least a channel region;

5 crystallizing said semiconductor film;

 forming a gate insulating film on said semiconductor film;

 forming a gate electrode on said gate insulating film, said gate
electrode having tapered side edges; and

 forming source and drain regions in said semiconductor film

10 by ion doping.

*Suz
02*

13. A method according to claim 12 wherein said channel region
is substantially intrinsic type or n-type.

14. A method according to claim 12 wherein said crystallizing
said semiconductor film is performed by a laser irradiating.

15 15. A method according to claim 12 wherein said source and drain
regions are formed by said ion doping with at least one of phosphorus and
boron.

*Mur
C62*

16. A method according to claim 12 wherein said forming said
gate electrode is performed by a wet etching.

20 17. A method according to claim 12 wherein said semiconductor
film comprising amorphous silicon has a thickness of 50 to 150 nm.

DKS B 5
18. A method for fabricating a semiconductor device, comprising the steps of:

forming a semiconductor film comprising amorphous silicon on an insulating surface;

introducing boron into at least a portion of said semiconductor film, said portion being to become at least a channel region;

crystallizing said semiconductor film; and

forming source and drain regions in said semiconductor film by ion doping.

18 S 5 D 3 7 19. A method according to claim 18 wherein said channel region is substantially intrinsic type or n-type.

20. A method according to claim 18 wherein said crystallizing said semiconductor film is performed by a laser irradiating.

15 21. A method according to claim 18 wherein said source and drain regions are formed by said ion doping with at least one of phosphorus and boron.

22. A method according to claim 18 wherein said semiconductor film comprising amorphous silicon has a thickness of 50 to 150 nm.

20 23. A method for fabricating a semiconductor device, comprising the steps of:

forming a semiconductor film comprising amorphous silicon on an insulating surface;

introducing boron into at least a portion of said semiconductor film, said portion being to become at least a channel region;
crystallizing said semiconductor film;
forming a gate insulating film on said semiconductor film;
5 forming a gate electrode on said gate insulating film; and
forming source and drain regions in said semiconductor film by ion doping which is performed through said gate insulating film.

Skip
Df 24. A method according to claim 23 wherein said channel region is substantially intrinsic type or n-type.

10 25. A method according to claim 23 wherein said crystallizing said semiconductor film is performed by a laser irradiating.

26. A method according to claim 23 wherein said source and drain regions are formed by said ion doping with at least one of phosphorus and boron.

mult C7 15 27. A method according to claim 23 wherein said forming said gate electrode is performed by a wet etching.

28. A method according to claim 23 wherein said semiconductor film comprising amorphous silicon has a thickness of 50 to 150 nm.

20 29. A method for fabricating a semiconductor device, comprising the steps of:
forming a semiconductor film comprising amorphous silicon on an insulating surface;

introducing boron into at least a portion of said semiconductor film, said portion being to become at least a channel region; crystallizing said semiconductor film by laser irradiation; forming a gate insulating film on said semiconductor film; forming a gate electrode on said gate insulating film; and forming source and drain regions in said semiconductor film by ion doping.

5

*Sub
DS*

30. A method according to claim 29 wherein said channel region is substantially intrinsic type or n-type.

10

31. A method according to claim 29 wherein said source and drain regions are formed by said ion doping with at least one of phosphorus and boron.

*with
G10*

32. A method according to claim 29 wherein said forming said gate electrode is performed by a wet etching.

15

33. A method according to claim 29 wherein said semiconductor film comprising amorphous silicon has a thickness of 50 to 150 nm.

*Add
B7*
*Add
E11*
*Add
D7*
*Add
G19*