Parameter

Frequenz [GHz]	2400000000
Bandbreite [GHz]	100000000

Lichtgeschwindigkeit [m/s] 300000000

Wellenlänge [m]	0.125
lampda/2 [m]	0.063
lampda/4 [m]	0.031
Z_0 [Ohm]	50

Freiraumdämpfung

Sendedurchmesser d [m] 20

afs_dB -57.04 10*LOG(lampda/(4*PI()*d))^2

Link Budget [dBm]

Sender Ptx	4
Verluste	-1
Antennengewinn	
Freiraumdämpfung afs_dB	-57.04
Polarisationsverluste	-3
Antennengewinn	
Verluste	-1
Empfänger	-70
Delta	-12.0
pro Antenne	-6.0

Fläche maximal PCB in Simulation

Breite [m]	0.0155
Tiefe [m]	0.0073

Chu's Kugel

Frage: Handelt es sich um eine ESA?

k Wellenzahl 50.3 =2*PI()/lampda

a 0.009 k*a 0.43

Frage; kleiner als 0.5? Ja, es handelt sich um eine ESA

Harringtons's Gain Limit

Maximal möglicher Gewinn der Antenne

G_max 1.05 =(ka)^2+2ka

 G_{max_db} 0.20 =10*log_10(G_{max})

Erkenntnis; reicht solange grösser -6 dB

Chu's minimals (Qualitätsfaktor)

Minimal für eine linear polarisierte Antenne

Qmin $14.8 = (1/k*a)+1/(ka)^3$

Faktor für die Praxis 10 Qant 148.5