CS 376: HW 4 - Continuous Systems

Fred Eisele

15 October 2014

This problem set is taken from [1] chapter 2 : Problem 6. This system makes use of a helicopter model, Figure 1.

Figure 1: the helicopter plant model (SimuLink)

This Simulink model corresponds to the following mathematical model.

$$\forall t \in \mathbb{R}, \qquad y_1(t) = ax_1(t) \tag{1}$$

 \dots and for the Integrator \dots

$$\forall t \in \mathbb{R}, \qquad y_2(t) = i + \int_0^t x_2(\tau) \,\mathrm{d}\tau$$
 (2)

The following expresses the mapping to the helicopter model. Notice that the memory carrying element in the models is the integrator in all cases.

$$a=\frac{1}{I_{yy}}$$
 characteristic of the helicopter $\in \mathbb{R}_+$ (3)
 $i=\dot{\theta}(0)=0$ initial resting angular velocity (4)
 $x_i=T_y$ total y torque $\in \mathbb{R}$ (5)
 $y_2=\dot{\theta}$ output angular velocity (6)
 $y_1=x_2$ cascade composition (7)

$$T_{tail}$$
 follows T_{top} (8)

The tail-rotor torque compensates for the top-rotor torques.

Using Simulink and its continuous-time modeling component I have built a model of the helicopter control system shown in Figure 2. This model has an upper section that models a system with a proportional (P)-controller and a lower section that models a proportional-integrator (PI)-controller. The P-controller subsystem illustrates problem a) with the lower PI-controller subsystem illustrates problem b). These are placed together so that the inputs and outputs may be shared and displayed together. In this model the value of a=5 and $T_top=4$ are arbitrarily choosen.

Figure 2: the control systems models (SimuLink)

1 P-controller system

Given some reasonable input parameters the actual angular velocity, $\dot{\theta}$, is shown as a function of time. The initial and operating conditions specify that the desired angular velocity is zero, $\phi(t) = 0$, and that the top-rotor torque is non-zero, $T_{top}(t) = bu(t) = 4$ moving to that value as a step function at time t = 1. Given are plots for several values of K_p .

Once the T_{top} has changed a new stable but typically non-zero $\dot{\theta}$ is approached asymtotically (from the text the value approached is b/K_p). The value of the new follows K_p as can be observed from the progression Figure 3 \rightarrow $Figure 4 \rightarrow$ Figure 5.

The Figure 6 illustrates the convergence.

Figure 3: $K_p = 100, K_i = 12$

2 PI-controller system

The lower portion of Figure 2 replaces the proportional (P) controller of the upper system with a proportional-integrator (PI) controller. This alternative controller has an additional parameter associated with the integrator, K_i . Experiment with this new value shows that the error is corrected for over time, recalling that the integrator has memory.

A larger value of K_i can be observed to cause a more rapid asymptotic convergence of $\dot{\theta}$ to the control-value, $\Psi=0$ after T_{top} changes. This behavior can be seen by comparing Figure 7 to Figure 8 where K_p is held constant and K_i is changed.

Figure 4: $K_p = 40, K_i = 12$

References

[1] Edward Lee. Introduction to Embedded Systems : A Cyber-Physical Systems Approach. 2011-2012.

Figure 5: $K_p = 30, K_i = 12$

Figure 6: $K_p = 30, K_i = 12$

Figure 7: $K_p = 30, K_i = 120$

Figure 8: $K_p = 30, K_i = 24$