ESTRUCTURAS ALGEBRAICAS. Hoja de problemas 1

1. Se consideran en \mathbb{R}^2 los dos ejes OX y OY. Sea

$$V = \{\iota, \, \sigma_0, \, \sigma_X, \, \sigma_Y\},\,$$

donde ι es la aplicación identidad en \mathbb{R}^2 ; σ_0 , σ_X y σ_Y son las simetrías respecto al origen, y respecto a los ejes OX y OY, respectivamente. Demostrad que (V, \circ) es un grupo, donde \circ es la composición de aplicaciones. Hallad la tabla de (V, \circ) , llamado el grupo de Klein.

2. En el intervalo G = (-1, 1) de la recta real se define la siguiente operación:

$$x * y = \frac{x + y}{1 + xy}$$

para $x, y \in G$. ¿Es (G, *) un grupo?

- 3. Sea $n \neq -1, 0, 1$. Demostrad que $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[a]_n : (a, n) = 1\}.$
- 4. Hallad los inversos de los siguientes elementos, cada uno en su grupo correspondiente.
 - (a) [11] en $(\mathbb{Z}/23\mathbb{Z})^{\times}$;
 - (b) [5] en $(\mathbb{Z}/31\mathbb{Z})^{\times}$.
- 5. Sea G un grupo. Demostrad que las siguientes condiciones son equivalentes.
 - (a) G es abeliano.
 - (b) $(ab)^2 = a^2b^2$ para todo $a, b \in G$.
 - (c) $(ab)^{-1} = a^{-1}b^{-1}$ para todo $a, b \in G$.
- 6. Demostrad que si un grupo G tiene orden par, entonces hay (al menos) un elemento $g \neq 1$ de G (distinto del neutro) que es su propio inverso, es decir, tal que $g^{-1} = g$.
- 7. Sean $x \vee q$ elementos de un grupo G. Demostrad que para todo $n \in \mathbb{N}$,

$$(xgx^{-1})^n = xg^nx^{-1}.$$

Deducid que g y xgx^{-1} tienen el mismo orden.

- 8. Encontrad un grupo G y elementos $a, b \in G$ tales que o(a) y o(b) sean coprimos pero $o(ab) \neq o(a)o(b)$.
- 9. Escribid la tabla de grupo de S_3 .
- 10. Hallad todos los elementos del grupo $S_3 \times \mathbb{Z}/2\mathbb{Z}$ y determinad el orden de cada uno. Hallad los elementos de orden 9 del grupo $S_3 \times \mathbb{Z}/3\mathbb{Z}$.
- 11. En el grupo D_6 escribimos r para la rotación de $2\pi/3$ alrededor del origen, y escribimos s para la reflexión en la línea de simetría que pasa por el vértice 1 y por el origen. Demostrad que
 - (i) o(r) = 3.
 - (ii) o(s) = 2.
 - (iii) $r^a \neq s$ para cualquier exponente $a \in \mathbb{Z}$.
 - (iv) $sr^a \neq sr^b \text{ si } a, b \in \{0, 1, 2\} \text{ con } a \neq b.$
 - (v) $D_6 = \{1, r, r^2, s, sr, sr^2\}.$
 - (vi) $sr^a = r^{-a}s$ para cualquier $a \in \mathbb{Z}$.

- (vii) D_6 no es abeliano.
- 12. Demostrad que un grupo G es abeliano si y solamente si la función $f: G \to G$ dada por $f(g) = g^{-1}$ es un homomorfismo.
- 13. Se define $f: D_6 \to \mathbb{Z}/2\mathbb{Z}$ mediante: $f(g) = [0]_2$ si g es una rotación y $f(g) = [1]_2$ si g es una simetría. Demostrad que f es un homomorfismo de grupos.
- 14. Dados grupos G_1 y G_2 escribimos $\text{Hom}(G_1, G_2)$ para el conjunto de homomorfismos $G_1 \to G_2$. Determinad los conjuntos

$$H_1 := \operatorname{Hom}(\mathbb{Z}, D_6) \text{ y } H_2 := \operatorname{Hom}(\mathbb{Z}/4\mathbb{Z}, D_6).$$

- 15. (i) Sea $\mathbb{R}_{>0} := \{r \in \mathbb{R} : r > 0\}$. Demostrad que $(\mathbb{R}_{>0}, \cdot)$ es un grupo. Encontrad un isomorfismo $(\mathbb{R}, +) \cong (\mathbb{R}_{>0}, \cdot)$.
 - (ii) Decidid si \mathbb{R} y \mathbb{R}^* son o no isomorfos, y si \mathbb{R}^* y \mathbb{C}^* son o no isomorfos.
 - (iii) Decidid si $\mathbb{Z}/6\mathbb{Z}$ y S_3 son o no isomorfos.
- 16. Sea $f: G \to H$ un homomorfismo de grupos. Demostrad que $f(g^a) = f(g)^a$ para todo $a \in \mathbb{Z}$.
- 17. Encontrad un ejemplo de grupos finitos (no-triviales) G y H y de un homomorfismo $f: G \to H$ con la propiedad que o(f(g)) < o(g) para todo $g \neq 1$.
- 18. Sea G un grupo y sea $\operatorname{Aut}(G)$ el conjunto de todos los isomorfismos $G \xrightarrow{\sim} G$. Demostrad que la composición de funciones \circ es una operación binaria sobre $\operatorname{Aut}(G)$ y que $(\operatorname{Aut}(G), \circ)$ es un grupo (el 'grupo de automorfismos' de G).
- 19. Sea A un grupo abeliano y $k \in \mathbb{Z}$.
 - (i) Demostrad que la función $f_k: A \to A$ dada por $f_k(a) := a^k$ es un homomorfismo.
 - (ii) En el caso k = -1, demostrad que f_{-1} es un automorfismo de A.
 - (iii) En el caso $A = \mathbb{Q}$, ¿para qué valores de k es f_k un automorfismo de \mathbb{Q} ?
- 20. Demostrad que para que un subconjunto distinto del vacío de un grupo finito sea subgrupo basta que sea cerrado para la operación. Encontrad un contraejemplo en un grupo infinito.
- 21. Sea $\{H_i : i \in I\}$ un conjunto (no-vacío) de subgrupos de un grupo G. Demostrad que el subconjunto $\bigcap_{i \in I} H_i$ de G es un subgrupo.
- 22. Sea G un grupo y $g \in G$ un elemento de orden finito. Demostrad que si $j \in \mathbb{Z}$ es relativamente primo con o(g) entonces $\langle g^j \rangle = \langle g \rangle$
- 23. Sea G un grupo y sean $g, g' \in G$ elementos de orden finito. Demostrad que si (o(g), o(g')) = 1 entonces $\langle g \rangle \cap \langle g' \rangle = \{1\}.$
- 24. Sea G el subgrupo de $GL_2(\mathbb{C})$ generado por las matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.
 - (a) Demostrad que o(A) = o(B) = 4; $A^2 = B^2$, y $BA = AB^3$.
 - (b) Demostrad que $G=\{1,B,B^2,B^3,A,AB,AB^2,AB^3\}$ con |G|=8.
 - (c) Observad que se puede calcular la tabla de grupo de G con los datos de (a).
 - (d) Demostrad que $G \cong Q_8$.
- 25. Sea H el subgrupo de $GL_2(\mathbb{R})$ generado por $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

- (a) Demostrad que o(A) = 2, o(B) = 4, $BA = AB^3$.
- (b) Demostrad que $H = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$ con |H| = 8.
- (c) Observad que se puede calcular la tabla de grupo de H con los datos de (a).
- (d) Demostrad que $H \cong D_8$.
- 26. Sea G abeliano. Demostrad que si $g, g' \in G$ tienen ordenes finitos y coprimos entonces o(gg') = o(g)o(g').
- 27. Sea G un grupo abeliano y $n \in \mathbb{N}$. ¿Es $G_n = \{x \in G : o(x) \text{ divide a } n\}$ un subgrupo de G? ¿Ocurre lo mismo si G no es abeliano?
- 28. Sea G un grupo abeliano de orden pq con con p y q primos distintos. Demostrad que G es cíclico.
- 29. Sea G un grupo de orden 8. Probad que o bien G es cíclico o $a^4 = 1$ para cada $a \in G$
- 30. Sea H un subgrupo de K, y K un subgrupo de un grupo G ¿Qué órdenes puede tener K si |H|=4 y |G|=24?
- 31. Encontrad el número de generadores de los grupos cíclicos de órdenes 6, 8, 12 y 60.
- 32. Encontrad el número de elementos de cada uno de los grupos cíclicos indicados:
 - i) El subgrupo de $\mathbb{Z}/30\mathbb{Z}$ generado por el 25.
 - ii) El subgrupo de \mathbb{C}^* generado por $\frac{1+i}{\sqrt{2}}$.
 - iii) El subgrupo de \mathbb{C}^* generado por 1+i.
- 33. Encontrad todos los órdenes de los subgrupos de $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$, y $\mathbb{Z}/17\mathbb{Z}$.
- 34. ¿Verdadero o falso?
 - i) Todo grupo cíclico es abeliano.
 - ii) Todo grupo abeliano es cíclico.
 - iii) El grupo aditivo Q es cíclico.
 - iv) Todo elemento de un grupo cíclico es generador.
 - v) Existe al menos un grupo no abeliano para cada orden finito.
 - vi) Todo grupo de orden menor o igual que 4 es cíclico.
 - vii) Todos los generadores de $\mathbb{Z}/20\mathbb{Z}$ son primos.
 - viii) Todo grupo cíclico de orden mayor que 2 tiene al menos dos generadores distintos.
- 35. Sean p y q números primos. Encontrad el número de generadores del grupo $\mathbb{Z}/pq\mathbb{Z}$.
- 36. Mostrad que en un grupo cíclico finito G de orden n, la ecuación $x^m = e$ tiene exactamente m soluciones para cada m que divida a n; Qué ocurre si 1 < m < n y m no divide a n?
- 37. Demostrad que el subgrupo de \mathbb{Q}/\mathbb{Z} generado por las clases de $\frac{3}{2}$ y de $\frac{1}{5}$ es isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.
- 38. Sea G un grupo abeliano y sean H y K subgrupos cíclicos finitos con |H| = r y |K| = s. Demostrad que si r y s son coprimos, entonces G contiene un subgrupo cíclico cuyo orden es rs.
- 39. Recordamos de 18 el grupo de automorfismos $\operatorname{Aut}(G)$ de un grupo G. Determinad los grupos de automorfismos $\operatorname{Aut}(G_i)$ de los siguientes grupos: $G_1 = \mathbb{Z}/12\mathbb{Z}$, $G_2 = \mathbb{Z}/5\mathbb{Z}$ y $G_3 = \mathbb{Z}/8\mathbb{Z}$. Decidid si $\operatorname{Aut}(G_i)$ es o no isomorfo a $\operatorname{Aut}(G_i)$ para cada par $i \neq j$.
- 40. Sean $J = \{a + bi : a, b \in \mathbb{Z}\}$ y $H = \{2a + 3bi : a, b \in \mathbb{Z}\}$, subgrupos de \mathbb{C} . Demostrad que el índice de H en J es 6.

- 41. Hallar el retículo de los subgrupos de los siguientes grupos:
 - a) el grupo de cuaterniones Q_8 .
 - b) el grupo $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - c) el grupo $\mathbb{Z}/4\mathbb{Z}$.
- 42. En el grupo D_6 consideramos los subgrupos $H = \{1, r, r^2\}$ y $H' = \{1, s\}$. Verificad las siguientes igualdades:
 - (i) $1H = rH = r^2H = H = Hr^2 = Hr = H1$.
 - (ii) $sH = (sr)H = (sr^2)H = \{s, sr, sr^2\} = H(sr^2) = H(sr) = Hs$.
 - (iii) 1H' = sH' = H' = H's = H'1.
 - (iv) $rH' = (sr^2)H' = \{r, sr^2\}.$
 - (v) $r^2H' = (sr)H' = \{r^2, sr\}.$
 - (vi) $H'r = H'(sr) = \{r, sr\}.$
 - (vii) $H'r^2 = H'(sr^2) = \{r^2, sr^2\}.$
- 43. Demostrad que no existe un homomorfismo sobreyectivo $D_6 \to \mathbb{Z}/3\mathbb{Z}$. (Sin embargo, en 13 habíamos construido un homomorfismo sobreyectivo $D_6 \to \mathbb{Z}/2\mathbb{Z}$.)