Zdarzenie elementarne

Każdy możliwy wynik eksperymentu losowego nazywamy zdarzeniem elementarnym ω , a zbiór wszystkich możliwych wyników eksperymentu (wszystkich zdarzeń elementarnych) nazywamy zbiorem zdarzeń elementarnych i oznaczamy $\Omega, (\omega \in \Omega)$.

Aksjomaty prawdopodobieństwa

Dla danego zbioru zdarzeń elementarnych Ω oraz σ -ciała zdarzeń losowych \mathcal{F} , **prawdopodobieństwem** nazywamy funkcję $P: \mathcal{F} \to \mathcal{R}$ spełniającą:

- 1. Dla dowolnego zdarzenia losowego $A \in \mathcal{F}$, $P(A) \geqslant 0$.
- 2. $P(\Omega) = 1$.
- 3. Dla dowolnego nieskończonego ciagu zdarzeń losowych $A_1, A_2, \dots, \forall_{n \in \mathcal{N}} A_n \in \mathcal{F}$, parami rozłącznych, mamy $P(\bigcup_{n=1}^{\infty}) =$ $\sum_{n=1}^{\infty} P(A_n).$

Dla dowolnych zdarzeń A, B mamy $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Prawdopodobieństwo warunkowe

Prawdopodobieństwo A pod warunkiem że zaszło zdarzenie B: $P(A|B) = \frac{P(A \cup B)}{P(B)}$

Jeżeli $P(A_1 \cap \ldots \cap A_n) > 0$, to $P(A_1 \cap \ldots \cap A_n) > 0$ A_n) = $P(A_1) \prod_{i=2}^{n} P(A_i | A_1 \cap ... \cap A_{i-1}).$

Prawdopodobieństwo zupełne

Ciag zdarzeń nazywamy zupełnym, jeśli:

- 1. $\bigcup_i A_i = \Omega$,
- $2. \ \forall_{i\neq j} A_i \cap A_j = \emptyset,$
- 3. $\forall_i P(A_i) > 0$.

Twierdzenie

Jeśli zdarzenia tworzą układ zupełny, to P(X=a)=0 dla dowolnego $a\in R$ dla dowolnego zdarzenia B mamy P(B) =Własności funkcji gęstości: $\sum_{i} P(B|A_i)P(A_i)$

Regula Bayesa

Twierdzenie Niech A_i tworzą układ zupełny. Wtedy dla dowolnego zdarzenia losowego B, P(B) > 0 i dowolnego j zachodzi $P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_i P(B|A_i)P(A_i)}$

Niezależność zdarzeń

Definicja Zdarzenia są wzajemnie niezależne $\operatorname{gdy} P(A \cap B) = P(A) \cdot P(B)$

Jeżeli zdarzenia A i B sa niezależne, to nieza-

leżne sa również zdarzenia A i \overline{B} , \overline{A} i B, \overline{A} i Jeśli q jest ściśle monotoniczna i różniczko-

Zdarzenia są wzajemnie niezależne jeśli $P\left(\bigcap_{j=1}^k A_{i_j}\right) = \prod_{j=1}^k P(A_{i_j}).$

Jeśli $A_1 \dots$ są zdarzeniami wzajemnie niezależnymi, to $(\bigcup_{i=1}^{n} A_i) = 1 - \prod_{i=1}^{n} (1 - P(A_i))$

Łączenie prawdopodobieństw

szeregowe: $P(A_s) = \prod_{i=1}^n p_i$ równolegie: $P(A_r) = 1 - \prod_{i=1}^{n} (1 - p_i)$

Dystrybuanta

 $F(x) = P(X \leqslant x) = P(\{\omega \in \Omega : X(\omega) \leqslant x\})$ Własności:

 $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$ niemalejaca, prawostronnie ciagła $P(a < X \le b) = F(b) - F(a)$

Zmienne losowe dyskretne

p(a) = P(X = a) - funkcja prawdopodobieństwa, własności:

 $p(x) \geqslant 0, \sum_{x \in X} p(x) = 1$ Dystrybuanta dyskretna zmiennej X o no-

śniku χ : $F(x) = \sum_{\{x_i \in \chi : x_i \leq x\}} p(x_i)$. Przykład:

$$F(x) = \begin{cases} 0, x < 1\\ 0.4, 1 \le x < 2\\ 0.9, 2 \le x \end{cases}$$

Zmienne losowe ciagłe

 $P(X \in B) = \int_{B} f(x) dx$ $F(x) = \int_{-\infty}^{x} f(t) dt$ f(x) = F'(x) $P(a \leqslant X \leqslant b) = F(b) - F(a)$ $\forall_{x \in R} f(x) \ge 0, \int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = 1$

Funkcje zmiennych losowych

Dyskretne:

 $P(Y = y_i) = \sum_{\{x_j \in \chi: g(x_j) = y_i\}} P(X = x_j)$ Ciągłe: gęstość liniowej funkcji zm.los. $\forall_{a\neq 0}b \in Rf_{aX+b}(y) = \frac{1}{|a|}f_X\left(\frac{y-b}{a}\right)$ gestość kwadratu zm.los.

$$f_{X^{2}}(y) = \begin{cases} 0, x \leq 0 \\ \frac{1}{2\sqrt{y}} \left[f_{X}(\sqrt{y}) + f_{X}(-\sqrt{y}) \right], x > 0 \end{cases}$$

walna, to Y = g(X): $f_Y(y) = f_X(g^{-1}(y))$. $|q'(q^{-1}(y))|$

Doświadczenie Bernoulliego

Doświadczenie kończące się sukcesem z prawdopodobieństwem p lub porażką z prawdopodobieństwem 1-p.

Ciag n doświadczeń z prawd. sukcesu p oznaczamy b(n, p).

Prawdopodobieństwo uzyskania ciągu składajacego się z k sukcesów, przy założeniu niezależności: $p^k(1-p)^{n-k}$.

Prawdopodobieństwo uzyskania k sukcesów w n niezależnych doświadczeniach z $p \in [0,1]$: $b(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}.$

Poisson (fr. Ryba)

Dla $n \ge 25$ i $\lambda = n \cdot p \le 10$ możemy przybliżyć rozkładem Poißona: $b(k; n, p) \approx e^{-np} \frac{(np)^k}{k!}$, na przykład:

 $\sum_{k=0}^{14} b(k; 500, 0.02) \approx F(14; 500 \cdot 0.02)$, gdzie F jest dystrybuantą rozkładu Ryby, dostępna w tablicach.