

EL TEST DE PRIMALIDAD DE FERMAT

Alan Reyes-Figueroa Teoría de Números

(AULA 14) 19.AGOSTO.2024

El teorema de Euler-Fermat tiene muchas aplicaciones y es fundamental para gran parte de lo que se hace en teoría de números.

Cálculo de potencias: Como mínimo, puede ser un dispositivo que ahorra trabajo en ciertos cálculos.

Ejemplo: Se pide hallar 5³⁸ (mod 11).

Como φ (11) = 10, y (5, 11) = 1 entonces del Teorema de Euler-Fermat, sabemos que 5º0 \equiv 1 (mod 11). Así

$$5^{38} \equiv 5^{3(10)+8} \equiv (5^{10})^3 \cdot 5^8 \equiv (1)^3 \cdot 5^8 \equiv 5^8 \equiv (5^2)^4 \equiv 3^4 \equiv 81 \equiv 4 \pmod{11}.$$

Ejemplo: Calcular 7⁹¹ (mod 100).

Sabemos que 100 = $2^2 \cdot 5^2$. Entonces $\varphi(100) = \varphi(2^2) \cdot \varphi(5^2) = 2(1) \cdot 5(4) = 2 \cdot 20 = 40$.

Como (7,100) = 1, por el Teorema de Euler-Fermat tenemos que $7^{40} \equiv 1 \pmod{100}$. Entonces

$$7^{91} \equiv 7^{2(40)+11} \equiv (7^{40})^2 \cdot 7^{11} \equiv 7^{11} \pmod{100}.$$

Ahora calculamos $7^{11} \pmod{100}$ usando el algoritmo de exponenciación binaria: Observe que $11 = 2^3 + 2^1 + 2^0 = (1011)_2$. Entonces

$$7^1 \equiv 7 \pmod{100},$$
 $7^2 \equiv 49 \pmod{100},$
 $7^4 \equiv 49^2 \equiv 2401 \equiv 1 \pmod{100},$
 $7^8 \equiv 1^2 \equiv 1 \pmod{100}.$

De ahí que

$$7^{91} \equiv 7^{11} \equiv 7^8 \cdot 7^2 \cdot 7^1 \equiv 1 \cdot 49 \cdot 7 \equiv 343 \equiv 43 \pmod{100}.$$

Ejemplo: Existen infinitos números enteros de la forma 2000...0009, que son múltiplos de 2009.

Observe primero que el problema es equivalente a encontrar infinitos valores de $k \in \mathbb{N}$ tales que $2 \cdot 10^k + 9 \equiv 0 \pmod{2009}$. Pero

$$2 \cdot 10^k + 9 \equiv 0 \pmod{2009} \iff 2 \cdot 10^k + 9 \equiv 2009 \pmod{2009}$$

 $\iff 2 \cdot 10^k \equiv 2000 \pmod{2009}$
 $\iff 10^k \equiv 1000 \equiv 10^3 \pmod{2009}$
 $\iff 10^{k-3} \equiv 1 \pmod{2009}$,

ya que (2,2009) = 1 y (1000,2009) = 1.

Como (10,2009)=1, por el Teorema de Euler-Fermat, tenemos que $10^{\varphi(2009)}\equiv 1\pmod{2009}$, esto implica que $10^{t\varphi(2009)}\equiv 1^t\equiv 1\pmod{2009}$, para todo $t\in\mathbb{N}$. Basta entonces hacer k-3=t(2009), de modo que cualquier número de la forma $n=2\cdot 10^{3+t\varphi(2009)}+9$, $t\in\mathbb{N}$, satisface la condición requerida.

Ejemplo: No existen soluciones enteras para la ecuación $x^3 \equiv 2 \pmod{103}$.

Observe que 103 es primo. Entonces φ (103) = 102.

Supongamos que existe una solución $x \in \mathbb{Z}$ de $x^3 \equiv \mathbf{2} \pmod{103}$. En particular, 103 $\nmid x$.

Elevando ambos lados de la congruencia anterior a $\varphi(103)/3=\frac{102}{3}=34$, obtenemos

$$(x^3)^{34} \equiv x^{102} \equiv x^{\varphi(103)} \equiv 1 \pmod{103},$$

debido al Teorema de Euler-Fermat.

Por otro lado,

$$(x^3)^{34} \equiv 2^{34} \equiv (2^{14})^2 \cdot 2^6 \equiv (7)^2 \cdot 64 \equiv 49 \cdot 64 \equiv 3136 \equiv 46 \pmod{103},$$

lo que es una contradicción, pues 1 $\not\equiv$ 46 (mod 103). Portanto, no existe tal solución.

Tests de primalidad: Otro uso del teorema de Euler-Fermat es como herramienta para probar la primalidad de un determinado entero *n*.

En este caso aplicamos el Pequeño Teorema de Fermat. Si pudiera demostrarse que la congruencia $a^n \equiv a \pmod{n}$ no se cumple para alguna elección de a, entonces n debe ser necesariamente compuesto.

Como ejemplo, veamos n=117. El cálculo se mantiene bajo control si seleccionando un entero pequeño para a, digamos, a=2.

Como 27 \equiv 128 \equiv 11 (mod 117), resulta

$$2^{117} \equiv 2^{7(16)+5} \equiv (2^7)^{16} \cdot 2^5 \equiv 11^{16} \cdot 2^5 \equiv (121)^8 \cdot 2^5 \equiv 4^8 \cdot 2^5 \equiv 2^{21} \pmod{117}.$$

Pero $2^{21} \equiv (2^7)^3 \equiv 11^3 \pmod{117}$, lo que conduce a

$$2^{117} \equiv 2^{21} \equiv 11^3 \equiv (11)^2 \cdot 11 \equiv 4 \cdot 11 \equiv 44 \not\equiv 1 \pmod{117}.$$

Esto muestra que 117 no es primo. De hecho, 117 = $3^2 \cdot 13$.

El Recíproco de Teorema de Fermat, no vale, esto es, si $a^{n-1} \equiv 1 \pmod{n}$, para algún entero a, no necesariamente n es primo.

Para ver esto, precisamos del siguiente lema:

Lema

Si p y q son primos distintos, y $a^p \equiv a \pmod{q}$, $a^q \equiv a \pmod{p}$, entonces $a^{pq} \equiv a \pmod{pq}$.

<u>Prueba</u>: Del Pequeño Teorema de Fermat, tenemos que $(a^q)^p \equiv a^q \pmod{p}$. Además, por hipótesis $a^q \equiv a \pmod{p}$. Combinando estas congruencias, se tiene $a^{pq} \equiv a \pmod{p}$. Análogamente, se muestra que $a^{pq} \equiv a \pmod{q}$.

Esto muestra que $p \mid a^{pq} - a$ y $q \mid a^{pq} - a$. Como p y q son primos distintos, entonces $pq \mid a^{pq} - a$, de modo que $a^{pq} \equiv a \pmod{pq}$.

Ejemplo: Vamos a mostrar que $2^{340} \equiv \pmod{341}$.

Observe que 2¹⁰ \equiv 1024 \equiv 31 \cdot 33 + 1. Por lo tanto, $2^{11} \equiv 2 \cdot 2^{10} \equiv 2 \cdot 1 \equiv 2 \pmod{31},$

$$y$$
 $2^{31} = 2 \cdot (2^{10})^3 \equiv 2 \cdot (1)^3 \equiv 2 \pmod{11}.$

Explotando el lema, $2^{341} \equiv 2^{11\cdot 31} \equiv 2 \pmod{341}$, de modo que al cancelar un factor 2, obtenemos $2^{340} \equiv 1 \pmod{341}$, y el recíproco del Teorema de Fermat es falso.

Los matemáticos chinos hace 25 siglos afirmaban que n es primo si y sólo si $n \mid 2^n - 2$ (de hecho, este criterio evale para $n \le 340$). Nuestro ejemplo de n = 341 es el contraejemplo (descubierto en 1819).

La situación en la que $n \mid 2^n - 2$, sin n ser primo, ocurre con suficiente frecuencia. Un entero compuesto n se llama **pseudoprimo** siempre que $n \mid 2^n - 2$. Hay infinitos pseudoprimos, por ejemplo: 341, 561, 645 y 1105.

Definición

De manera más general, un entero compuesto n para el cual $a^n \equiv a \pmod{n}$ se llama un **pseudoprimo** en la base a. (Cuando a=2, simplemente se dice que n es un pseudoprimo).

Ejemplo: 91 es el menor pseudoprimo para la base 3, mientras que 217 es el menor pseudoprimo en la base 5.

Observaciones:

- Se ha demostrado (1903) que hay infinitos pseudoprimos para cualquier base dada.
- Estos "primos impostores" son mucho más raros que los verdaderos primos. De hecho, hay sólo 247 pseudoprimos menores de un millón, en comparación con 78,498 primos.
- El primer ejemplo de un pseudoprimo par, a saber, el número 161,038 = $2 \cdot 73 \cdot 1103$ fue encontrado en 1950.

El **test de primalidad de Fermat** es un algoritmo probabilístico que hace uso del Pequeño Teorema de Fermat.

Resulta que el recíproco de este teorema suele (con alta probabilidad) ser verdad: si p es compuesto, entonces a^{p-1} es poco probable que sea congruente con 1 (mod p) para un valor arbitrario de a. Sin embargo, los pseudoprimos fallan este test.

<u>Idea</u>: Tome $a \in \mathbb{Z}$, (a, n) = 1 al azar. Si $a^{n-1} \equiv 1 \pmod{n}$, entonces n tiene alta probabilidad de ser primo.

Observe que si a=1, la congruencia $a^{n-1}\equiv a\pmod n$ es trivial. También la congruencia $a^{n-1}\equiv a\pmod n$ se satisface de forma trivial si a=n-1, y n es impar. Por esta razón, usualmente se elige un candidato 1< a< n-1.

Cualquier a que satisface $a^{n-1} \equiv a \pmod{n}$ cuando n es compuesto se llama un **mentiroso de Fermat** (Fermat liar). En este caso n es un pseudoprimo para la base a. Si elegimos a tal que $a^{n-1} \not\equiv a \pmod{n}$, a se llama un **testigo de Fermat** (Fermat witness) para la no primalidad de n.

Algoritmo: (Test de Primalidad de Fermat)

Inputs: $n \in \mathbb{Z}^+$, n > 3, un entero a testar su primalidad, k número de réplicas del test. Output: o si n es compuesto, en caso contrario responde, primo con alta probabilidad. For i = 1, 2, ..., k:

Pick a randomly in the range [2, n-2]. If $a^{n-1} \not\equiv 1 \pmod{n}$: then return O. return probably prime.

El Test de Fermat es muy simple, sin embargo tiene fallas.

Existen números compuestos n que son pseudoprimos para cada base a; es decir, $a^{n-1} \equiv 1 \pmod{n}$, para todos los enteros a con (a, n) = 1. Estos números se conocen como **números de** CARMICHAEL (descubiertos en 1910).

El menor de estos números excepcionales es $561 = 3 \cdot 11 \cdot 17$. Carmichael indicó otros tres: $1105 = 5 \cdot 13 \cdot 17$, $2821 = 7 \cdot 13 \cdot 31$ y $15841 = 7 \cdot 31 \cdot 73$. Dos años más tarde presentó 11 adicionales.

Para ver que $561 = 3 \cdot 11 \cdot 17$ es un número de Carmichael, un pseudoprimo absoluto, observe que (a, 561) = 1 prodcuce

$$(a,3) = 1, \quad (a,11) = 1, \quad (a,17) = 1.$$

Aplicando el Teorema de Euler-Fermat, obtenemos las congruencias

$$a^2 \equiv 1 \pmod{3}, \quad a^{10} \equiv 1 \pmod{11}, \quad a^{16} \equiv 1 \pmod{17},$$

que a su vez producen

$$a^{560} \equiv (a^2)^{280} \equiv (1)^{280} \equiv 1 \pmod{3},$$
 $a^{560} \equiv (a^{10})^{56} \equiv (1)^{56} \equiv 1 \pmod{11},$ $a^{560} \equiv (a^{16})^{35} \equiv (1)^{35} \equiv 1 \pmod{17}.$

Siendo 3, 11 y 17 primos, esto da lugar a la congruencia $a^{560} \equiv 1 \pmod{561}$, siempre que (a, 561) = 1. Así, 561 es un número de Carmichael.