U.S.T.H.B - 06-02-2012 N. Bensaou - C. Ighilaza

Examen Final - durée 1h30 mn

Exercice 1.- a- Donnez (en justifiant votre réponse) la complexité de la fonction suivante: $f(n) = 10n^3 + 15n^4 + 3n^22^n$

- b- Les résultats suivants sont-ils corrects? Justifiez votre réponse.
 - (a) $10n^2 + 5 = O(n)$;
 - (b) $n^3 * 2^n + 6n^2 * 3^n = O(n^3 * 2^n)$:
 - (c) $2n^2 * 2^n + n^2 log n = \Theta(n^2 * 2^n)$
- c- Montrez que si $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$ avec $a_0 > 0$ alors $f(n) = \Omega(n^m)$

Exercice 2.- Soit S[1..n] un tableau d'entiers et x un entier donné.

- a- Écrire un algorithme naïf qui permet de vérifier s'il existe ou non dans S deux entiers x_1, x_2 tels que $x = x_1 + x_2$. Donnez sa complexité.
- b- Décrire un algorithme en $\Theta(n \log n)$ qui résoud ce problème. Justifiez correctement votre réponse.

Exercice 3.- a- Prouvez par induction sur n que $\sum_{i=0}^{i=n} F_i = F_{n+2} - 1$ où $F_i, i = 1, 2, \ldots, n, \ldots$ sont les nombres de Fibonacci ¹

b- Résoudre l'équation suivante:

$$T(n) = \begin{cases} 1 & \sin = 1\\ 7 * T(n/2) & \sin > 1 \end{cases}$$

Exercice 4.- Soit A[1..n] un tableau de n entiers donnés triés en ordre croissant.

- a- Écrire une algorithme qui détermine l'élément qui se répète le plus dans A ainsi que sa fréquence.
- b- Donnez un invariant de boucle pour cet algorithme.
- c- Prouvez sa validité. Prouvez sa complexité.
- d- Écrire une solution récursive pour ce même problème. Donnez l'invariant de boucle et la complexité.

$$F_n = \begin{cases} 1 & \sin = 0, 1 \\ F_{n-1} + F_{n-2} & \sin \ge 2 \end{cases}$$

¹Les nombres de Fibonacci sont définis par la récurrence suivante: