

Andrew Reid

d

Overview

I. The optimization of action

- An abstract example simulated annealing
- A somewhat more concrete example foraging

II. Some biology

- The noradrenergic system
- Physiology of the locus coeruleus tonic vs. phasic modes
- The classic model arousal

III. Some cognitive neuroscience

- Decision making
- Working memory
- Short- and long-term utility
- Adaptation & novelty
- Reinforcement learning

Overview

IV. Research ideas

- Role in reinforcement learning model?
- Modelling clinical disorders
- Pharmacological interventions

I. The optimization of action

A thought exercise - annealing

I. The optimization of action

A thought exercise - **simulated** annealing (**stationary** environment)

I. The optimization of action

A thought exercise - **simulated** annealing (**changing** environment)

I. The optimization of action

Something a bit more concrete - foraging behaviour

I. The optimization of action

Something a bit more concrete - foraging behaviour

I. The optimization of action

Something a bit more concrete - adaptive behaviour

Predator encroachment

O

I. The optimization of action

Something a bit more concrete - adaptive behaviour

I. The optimization of action

Something a bit more concrete - adaptive behaviour

Selective adaptation to predators \bar{T} =41

Why are we talking about gazelles and lions!?

- Annealing is an apt metaphor for **all** adaptive behaviour
- Optimization is an evolutionary necessity; it consists of:
 - Making **decisions** based on the relative utility of actions
 - **Exploring** unknown territory (high temperature state)
 - **Exploiting** known resources (low temperature state)
 - Adapting to changing environments (selective regulation of temperature)
- Hypothesis: optimization in mammals is accomplished largely through neuromodulators (particularly catecholamines)
 - **Dopamine**: evaluation of reward prediction errors (Dr. den Ouden) this constitutes the **valuation** signal
 - **Norepinephrine**: evaluation of salience; including novelty, utility, and volatility (this lecture) this constitutes the **temperature** signal

d

II. Some biology

The noradrenergic system

Norepinephrine (NE; Greek) = Noradrenaline (Latin)

Catecholamine synthesis chain

The vast majority of NE producing cells are localized in the **locus coeruleus (LC)**

Performance

II. Some biology

Physiology

Two modes of firing:

- **Tonic:** baseline mean firing rates of LC neurons
- Phasic: transient, synchronized, robust firing of LC neurons

Tonic LC activity

II. Some biology

Physiology

Two modes of firing:

- **Tonic:** baseline mean firing rates of LC neurons
- Phasic: transient, synchronized, robust firing of LC neurons
- LC firing has the effect of gain modulation

II. Some biology

LC activity is next to impossible to directly measure in humans

- However, it is closely related to pupil dilation, which can be used as a proxy measure
- Pupillometry can be used to estimate both tonic (baseline) and phasic (transient) firing

II. Some biology

The classic role of NE and (peripheral) epinephrine is arousal and stress

- Dense reciprocal connectivity of LC with the amygdala (fear response)
- Strong connectivity of LC with hypothalamus and thus pituitary and adrenal glands (via the **HPA axis**), resulting in rapid release of peripheral epinephrine ("adrenaline rush")

II. Some biology

Aversive video viewing results in robust BOLD activation of the salience network

• This is **NE-dependent** (blocked by propranolol)

II. Summary

- Norephinephrine is synthesized directly from **dopamine**; this biochemical similarity reinforces the idea that they are functionally closely related
- Most NE neurons are located in the locus coeruleus (LC), which has diffuse connectivity both in descending (brainstem, spinal cord) and ascending (neocortex, thalamus, amygdala, hippocampus, cerebellum) directions
- LC firing has **tonic** and **phasic** modes; these have an inverted-U relationship.

 Hypotheses: the tonic mode is more closely related to **exploration**; the phasic mode is more closely related to **exploitation**
- Robust NE release is associated with **arousal** and the **stress response**; in human fMRI, this preferentially activates the **salience network**

III. Some cognitive neuroscience

Decision making — (monkey) two-alternative forced choice task

Time (s)

III. Some cognitive neuroscience

Decision making — (monkey) two-alternative forced choice task

Synchronous (phasic) LC firing

- Time-locked to stimulus (cue) for correct, but not incorrect trials
- Time-locked to response (lever release) for both correct and incorrect trials
- Suggests LC phasic response executes a decision (which has already been made by higher-level areas such as OFC and ACC)

Decision making — mutual inhibition model

Decision making — mutual inhibition model

Target:

$$dx_1 = [-\gamma x_1 - f(\beta x_2) + f(\mu_1)]dt + f(\sigma)dW_1$$

Distractor:

$$dx_2 = [-\gamma x_2 - f(\beta x_1) + f(\mu_2)]dt + f(\sigma)dW_2$$

Decision making — mutual inhibition model

Firing rate decays with rate γ

$$dx_{1} = [-\gamma x_{1} - f(\beta x_{2}) + f(\mu_{1})]dt + f(\sigma)dW_{1}$$
$$dx_{2} = [-\gamma x_{2} - f(\beta x_{1}) + f(\mu_{2})]dt + f(\sigma)dW_{2}$$

Decision making — mutual inhibition model

Firing rate decays with lamoid function

$$dx_{1} = [-\gamma x_{1} - f(\beta x_{2}) + f(\mu_{1})]dt + f(\sigma)dW_{1}$$

$$dx_{2} = [-\gamma x_{2} - f(\beta x_{1}) + f(\mu_{2})]dt + f(\sigma)dW_{2}$$

Lateral inhibition with weight β

III. Some cognitive neuroscience

Decision making — mutual inhibition model

$$dx_{1} = [-\gamma x_{1} - f(\beta x_{2}) + f(\mu_{1})]dt + f(\sigma)dW_{1}$$

$$dx_{2} = [-\gamma x_{2} - f(\beta x_{1}) + f(\mu_{2})]dt + f(\sigma)dW_{2}$$

Lateral inhibition with weight β

III. Some cognitive neuroscience

Decision making — mutual inhibition model

$$\mathrm{d}x_1=[-\gamma x_1-f(\beta x_2)+f(\mu_1)]\mathrm{d}t+f(\sigma)\mathrm{d}W_1$$

$$\mathrm{d}x_2=[-\gamma x_2-f(\beta x_1)+f(\mu_2)]\mathrm{d}t+f(\sigma)\mathrm{d}W_2$$
 Mean input μ

III. Some cognitive neuroscience

Decision making — mutual inhibition model

$$dx_{1} = [-\gamma x_{1} - f(\beta x_{2}) + f(\mu_{1})]dt + f(\sigma)dW_{1}$$

$$dx_{2} = [-\gamma x_{2} - f(\beta x_{1}) + f(\mu_{2})]dt + f(\sigma)dW_{2}$$

IMpathnioiputwith magnitude σ

Phasic

high gain

III. Some cognitive neuroscience

Working memory — semantic cued recall

Similar to mutual inhibition model, multiple units

Tonic

low gain

0.8

0.6

0.4

0.8

LC 0.6

firing rate 0.4

Phasic

high gain

III. Some cognitive neuroscience

Working memory — semantic cued recall

Tonic

low gain

0.8

0.8

Utility — (human) auditory discrimination task

Pitch discrimination task

- Increasing difficulty with increasing reward
- Utility ∝ reward difficulty
- "Escape" option where subject can choose to restart at low difficulty/reward
- Tonic (baseline) NE appears to increase as short-term utility decreases
- Phasic NE (dilation) appears to decrease as expected long-term utility decreases

Utility — theoretical relationships

- While long-term (expected) utility is high, poor short-term utility (e.g., performance errors) is compensated by larger phasic NE on subsequent trials
- If expected long-term utility decreases (e.g., with the observation of repeatedly poor outcomes), so will the phasic response; the LC will shift towards a tonic firing mode

Adaptation — (monkey) two-alternative forced choice with cue reversal

III. Some cognitive neuroscience

Adaptation — (rat) sequential decision task with cue change

Idazoxan: boosts tonic NE*

^{*} Not super selective; likely also has effects on DA and 5-HT

Novelty — (rat) novel hole-board exploration

- Rats were placed in a "hole-board" apparatus
- Day 1/2: holes contained no objects

Novelty — (rat) novel hole-board exploration

- Rats were placed in a "hole-board" apparatus
- Day 1/2: holes contained no objects
- Day 3: some holes contained (novel) objects

Holes with and without novel objects on Day 3

III. Some cognitive neuroscience

- Stable block (stable statistics over 90 trials)
- Volatility block (changing statistics every 20 trials)

Reinforcement learning — volatility

• Responses fit to **Rescorla-Wagner** learning rule:

$$r_{(i+1)} = r_{(i)} + \alpha \varepsilon_{(i)}$$

- r(i+1) is the expected next reward (or punishment!)
- r(i) is the expected current reward
- α is the **learning rate** (likely a NE signal)
- $\varepsilon(i)$ is the **prediction error** (likely a DA signal)

Reinforcement learning — volatility

• Responses fit to **Rescorla-Wagner** learning rule:

$$r_{(i+1)} = r_{(i)} + \alpha \varepsilon_{(i)}$$

- r(i+1) is the expected outcome probability at t=i+1
- r(i) is the expected outcome probability at t=i
- α is the **learning rate** (likely a NE signal)
- $\varepsilon(i)$ is the **prediction error** (likely a DA signal)
- Learning rate α was generally increased for the volatile block

- Increased phasic pupil response for higher volatility & surprise
- Phasic pupil response related to the learning rate
- Phasic pupil response related to surprise reaction time
- Decreased tonic response

- Increased phasic pupil response for higher volatility & surprise
- Phasic pupil response related to the learning rate
- Phasic pupil response related to surprise reaction time
- Decreased tonic response
- Wait, what!?!

- Individuals with high trait anxiety do not show this relationship between phasic pupil response and volatility
- Higher anxiety predicts lower effect
- Effect still there for surprise
- Suggests heritable differences in individual NE responses to volatility

Reinforcement learning — volatility

Q: Why don't we see increased tonic pupil diameter in the volatile condition?

Reinforcement learning — volatility

Q: Why don't we see increased tonic pupil diameter in the volatile condition?

- Aversive learning, rather than reward?
- Decreased short-term utility, intact long-term utility?
- This could explain lack of significant phasic effect for high anxiety group (anxiety may translate to a more pessimistic long-term outlook)

III. Some cognitive neuroscience

A systems-level model of NE function — adaptive gain theory

III. Summary

- In two-alternative forced choice **decision making** (monkeys), phasic LC firing is more tightly coupled to the response rather than the cue
- Phasic firing is thus likely an "execute" signal, based on performance monitoring by higher-level areas (such as ACC and OFC)
- This can be modelled as a **mutual inhibition model**, wherein two competing neural representations are biased by the global LC signal
- This model can be extended to simulate **working memory** tasks
- Phasic LC firing may represent decreases in short-term utility, while tonic firing represents decreases in long-term utility
- Tonic NE response is also likely important for **adaptation** to changing task contingencies, and **exploration** of novel environmental stimuli

III. Summary

- Finally, in a reinforcement learning framework, the phasic NE response appears to be important for gauging outcome **volatility** (i.e., by increasing transient pupil dilation)
- This result can be explained by considering the differential effects of short- and long-term utility

IV. Some research ideas

Role in reinforcement learning?

- Include tonic/phasic NE signals as variables in learning model
- Paradigms?
 - Challenging tasks, feedback (positive/negative/punishment), event-related
 - Examples: Learning the rules of a game, exploring a novel environment, encountering social scenarios, dealing with volatility

• Measurements?

- Pupil diameter, behavioural outcomes, neuroimaging
- Analysis?
 - Do reinforcement learning model parameters predict measurements?
 - What are our hypotheses?

Role in reinforcement learning?

IV. Some research ideas

- Example (idea): navigating a 3D maze, with hidden rewards/threats, using eye tracking
- Hypotheses?
 - High starting baseline pupil diameter, decreasing with experience
 - Low phasic pupil dilation at decision points, increasing with experience
 - Learning rate a over time corresponds to baseline diameter
 - **Errors ε** correspond to phasic dilation

IV. Some research ideas

Modelling clinical disorders

- LC/NE implicated in (for example): post-traumatic stress disorder (PTSD), anxiety disorders, attention deficit and hyperactivity disorder (ADHD), Alzheimer's disease
- How does the presence of these disorders (or genetic risk factors) alter cognitive performance (e.g., utility assessment, adaptation, exploration, decision making, working memory)? How is this related to LC function?

Measurements?

- Disease severity, behavioural performance, pupillometry, neuroimaging

• Analysis?

- Can model parameters predict disease outcomes?
- We saw an example with Browning et al. (anxiety, volatility & pupil diameter)

IV. Some research ideas

Modelling clinical disorders

- Example: Alzheimer's disease
- Early, highly prevalent LC-localized AD pathology
- Entorhinal cortex (fMRI) and navigational differences in young adults with AD risk mutations (APOE-ε4)
- Can we find similar differences in NE-related behaviour or LC function (such as pupillometry)?

IV. Some research ideas

- How does **selective pharmacological manipulation** of NE receptors affect behavioural performance?
- There are two sub-types and five sub-subtypes of NE receptor (α 1,2 and β 1,2,3)
- Many agonists and antagonists exist; some prominent ones:
 - Isoproterenol (β 1,2 agonist) main effect, increases NE response
 - Propranolol (β 1,2 antagonist) main effect, reduces NE response
 - Clonidine (α 2 agonist) main effect, reduces NE response
 - Idazoxan (α 2 antagonist) main effect, increases NE response

IV. Some research ideas

- Some complications...
 - Most pharmacological agents also have **peripheral** effects and other debilitating **side effects**
 - Some **contradictory** effects; e.g., propranolol reduces β receptor binding, but increases α binding by inhibiting NE reuptake. Likewise, clonidine can both inhibit and enhance NE release due to differential receptor effects
 - **Non-specificity**; e.g., changes to NE pharmacology will have effects on other neurotransmitter systems, especially other neuromodulators such as dopamine and 5-HT; e.g., propranolol is also a likely antagonist of 5-HT receptors, idazoxan is an agonist of DA and 5-HT receptors

IV. Some research ideas

- Example 1: attentional blink
- Propranolol (β1,2 antagonist)
- Reboxetine (NE reuptake inhibitor)
- T2: neutral or emotional

IV. Some research ideas

- Example 2: aging macaque monkeys
- Guanfacine administration (α 2 agonist)
- Enhanced attention and reduced distractibility
- DMS = delayed match to sample (working memory task)

Wrapping up

- Optimization is a universal requirement of adaptive organisms
- In higher order mammals (like us), neuromodulators such as NE are essential for this optimization; in particular, for determining an adaptive balance between **exploratory** and **exploitative** states
- NE has **tonic** and **phasic** firing modes, which have an inverted-U relationship
 - Phasic states correspond to higher attention and better cognitive performance; ideal for a **stationary** environment
 - Tonic states correspond to more vigilance and false alarms; ideal for a **changing** environment

Wrapping up

- In the two-alternative forced choice task, phasic LC firing is more tightly timelocked to the animal's **response**, and likely implements an **execute** signal
- Decision making and working memory tasks can be modelled as a mutual inhibition network, with a phasic LC burst acting to bias the competing neural representations towards the current network state
- LC signals may represent both **short-term** and **long-term utility** assessments, boosting subsequent phasic responses for short-term decreases in utility, but shifting towards the tonic mode when long-term utility flags for a given behaviour
- For rats, when task contingencies are **reversed**, LC firing shifts towards tonic mode; while pharmacological boosting of tonic NE enhances both **adaptation** and **exploration** of novel items in familiar environments

Wrapping up

- On the other hand, when task **volatility** is introduced in an aversive paradigm (electrical shock), humans show increased phasic LC firing (measured by transient pupil dilation), rather than a change in tonic response suggesting a short-term utility assessment
- Future studies might utilize **reinforcement learning** models, **clinical** models, and/or **pharmacological interventions** to better understand the specific role of NE signals in adaptive behaviour

References

- Aston-Jones & Cohen, Annu Rev Neurosci, 2005
- Browning et al, Nat Neuro, 2015
- Gilzenrat et al., Cogn Affect Behav Neurosci, 2010
- Hermans et al., Science, 2011
- Clayton et al., J Neurosci, 2004
- Usher et al., Science, 1999
- Holmes & Cohen, Topics Cog Sci, 2014
- Usher & Davelaar, Neural Networks, 2002
- Aston-Jones et al., Neuroscience, 1997
- Devauges & Sara, Behav Brain Res, 1990
- Kunz et al., Science, 2015

References

- Mansour et al., Behav Neurosci, 2002
- Braak et al., J Neuropathol Exp Neurol, 2011
- De Martino et al., Psychopharm, 2008
- O'Neill et al, Life Sci, 2000

