Protyush Jaiswal 18EE30021

AIMS To implement an AVR coole to blink an LED on Proteins Soffmare on Atmiga 32. u.C. and inalyse it using a digital oscillosophe.

- Algorithm to make LED blink.
- -> AVR coole written in atmel studio.
- The hen file was obtained from the project I then the irrect was made in protes.
- -> Outfut observed in a digital oscilloscope.
- Analys Tinging Analysis was done for code

- Abgorithm Developed for LED blinking:

 PORT was initialized as output & stack points also initialized.
 - -> A main loop eluctoped for setting output pour
 - High of low with continuous delays in between.

 Delay subrodines defined and implemented

 as a moded brops where two registers were initialised

 to decreased to o.
 - Sequence in delay subrodine.

 I Control returned to mein look after execution of
 - delay subvoutine.

		Page:
Circuit Diagran	M: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Va Afmega 32	40
Digital Dscilbrupe Ins	- PBO > Ports	
Usci Wight TUT	- Jano	

	CYCE	s N	Explanation 1 contract
· INCLUDE "M32DEF.INC"	O	1	Adding board support foreign
· ORLY 0400	D	L	Directione to set pl at 0x 000 start
LDE RH, HE STH (RAMEND)	1	1	bad RHO SER with address of lut SRM to cation byte. It and steak
OUT SPM, RH	1	1	set upper pointer of
LDI RM, LOW (PAMEND)	1	1	bad RK SFR with address of penultrate SRM bocation.
our SPL, RH	1	1	Set lower byte of points to SRAM end.
LDI RHO, UNOI	J	1	Load RH with value 1
OUT DDER, RHG	1	1	Set Park des outifue
L 60 p =	D	1	11.9
LDI LH, 0 x01	1	1	Load SFR RK with value 1.
OUT PORTB, PA	1	1	. Set 150 the
RCALL DELAYS	2	1	Transfer control to DELAYI Subnortine
LDI RM, DAGO	L	1	had SPR KID
OUT PORB, R16	1	1	Set PRO as LOW Fransford Control to DELAYI Set both LODE
ECALL DELAYS	2	1	Kepeat man ap
RIMP LOOP			Delant Subsoutine
DELAYT:		1 .	
DELAYI: LDI est, UNFF LOOPI:		255	to define or it
LDI RA7, OXFF		255	Set inner loop 2. counter region. as ONFF for 2005 inner bop runs.
010	0	255×255	Derven how bot butter
DEC NA		2554XS	braich of amer was course
DEC RIS	1	255	Decream outer corp counter
DEC 1-14	0.5	(25741)	Branch H To Tune
BRNE LOOPS RET	4	1	Return to LOOT (main (00 p).
RET	ı		

Date: _	
Page:	

	Total Execution Time 6
-	A CLUB
	= E(cycle count) x (No. of executions in one non of Loop
	1 1 1 200 x / 200 (142. T) 47. T)
	= 6 + 10+2x 1+4+1 + 255x (1+0.5)+0.5)
	Delay cycle Court (D)
\parallel	
\parallel	= 195868 clock cycles
	Time period = = IMM2 = 1000.
	Time period = = = 1 = 4ps. Trecution Time = 195068 x 1 ps = 195.868 ms.
	Delay time = Dx +
	$=97926\mu s=97.926 ms.$
1	
)Iscussion:
	In this enperiment, programming a point controller was demonstrated with an enample of blinking led on
_	in this engineer with an enample of plinting led on
_	was demonstrated that Atmens?
	a mecrontroller Atmess?
1	The programming was done in Assembly language. Different Instruction sets were discursed.
	How the Stack pointer works and link between getting
	How the Stark points will to deviated.
_	the location of memories & registers.
	> How the subvortines work to also the different
	sprally, the disserved warefrom was observed in
	a digital oscillocope.
gases i des	a prince
_	

>

)

Pratyush Janson 185530021 ATM3 Implementation of Digitial FTR filters. All digtal linear, time-invariant (LTI) filten can be described a difference equation of the form: y[n] = = 5; n[n-]]+ = [-ar).y[n-i]. If my is an inequalic (I for no of ofor no), the output is called the filter's impulse response. Procedure : -The fifter was -> A low pass foller was implemental urslug factors in Matlas. - The order was set to 6 to the sampling fragueny was eset to 48000 Hz. s first the filter coefficients was exported to the output was plotted using a line enput.

Then the filter coefficients was changed to fixed point with numerator word leight as 8. and again the output was plotted asing a sem input.


```
clear;
fs = 48000;
T = 0.01;
ts = 1/fs;
t = 0:ts:T;
f1 = 500;
f2 = 16000;
% Input Signal
x = 2*sin(2*pi*f1*t)+0.2*sin(2*pi*f2*t);
% Filter Output with floating type filter arithmetic coefficients
figure(1);
plot(t,x);
hold;
y = filter(floating_coeffs,1,x);
plot(t,y,"r");
% Filter Output with fixed point filter arithmetic coefficients
figure(2);
plot(t,x);
hold;
y = filter(quant_coeffs,1,x);
plot(t,y,"r");
```


Page:
Divussion:
 De are sufficients with 128 seach that I bit range is convered because the coefficients have
 7 bit range is conversed scream -1 to 1.
 to be generated between -1 to 1.