Lógica informática (2015–16)

Tema 12: Resolución en lógica de primer orden

José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado

Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla

Tema 12: Resolución en lógica de primer orden

- 1. Introducción
- 2. Unificación
- 3. Resolución de primer orden

Tema 12: Resolución en lógica de primer orden

- Introducción
 Ejemplos de consecuencia mediante resolución
- 2. Unificación
- 3. Resolución de primer orden

Ejemplos de consecuencia mediante resolución

Ejemplo 1: $\{\forall x \ [P(x) \to Q(x)], \exists x \ P(x)\} \models \exists x \ Q(x)$ se reduce a $\{\{\neg P(x), Q(x)\}, \{P(a)\}, \{\neg Q(z)\}\}\$ es inconsistente. Demostración: 1 $\{\neg P(x), Q(x)\}$ Hipótesis P(a)**Hipótesis** $3 \left\{ \neg Q(z) \right\}$ **Hipótesis** 4 $\{Q(a)\}$ Resolvente de 1 y 2 con $\sigma = [x/a]$ Resolvente de 3 y 4 con $\sigma = [z/a]$

Ejemplos de consecuencia mediante resolución

► Ejemplo 2:

$$\{ \forall x \ [P(x) \to Q(x)], \forall x \ [Q(x) \to R(x)] \} \models \forall x \ [P(x) \to R(x)]$$
 se reduce a
$$\{ \{\neg P(x), Q(x)\}, \{\neg Q(y), R(y)\}, \{P(a)\}, \{\neg R(a)\} \}$$
 es inconsistente.

Demostración:

Tema 12: Resolución en lógica de primer orden

- Introducción
- 2. Unificación

Unificadores Composición de sustituciones Comparación de sustituciones Unificador de máxima generalidad Algoritmo de unificación

3. Resolución de primer orden

Unificadores

Unificadores

- Def.: La sustitución σ es un unificador de los términos t₁ y t₂ si t₁σ = t₂σ.
- ▶ Def.: Los términos t_1 y t_2 son unificables si tienen algún unificador.
- ▶ Def.: t es una instancia común de t_1 y t_2 si existe una sustitución σ tal que $t = t_1 \sigma = t_2 \sigma$.
- ► Ejemplos:

t_1	t ₂	Unificador	Instancia común
f(x,g(z))	f(g(y),x)	[x/g(z),y/z]	f(g(z),g(z))
f(x,g(z))	f(g(y),x)	[x/g(y), z/y]	f(g(y),g(y))
f(x,g(z))	f(g(y),x)	[x/g(a), y/a]	f(g(a),g(a))
f(x,y)	f(y,x)	[x/a, y/a]	f(a,a)
f(x,y)	f(y,x)	[y/x]	f(x,x)
f(x,y)	g(a, b)	No tiene	No tiene
f(x,x)	f(a, b)	No tiene	No tiene
f(x)	f(g(x))	No tiene	No tiene

 Nota: Las anteriores definiciones se extienden a conjuntos de términos y de literales.

Composición de sustituciones e identidad

- Composición de sustituciones:
 - ▶ Def.: La composición de las sustituciones σ_1 y σ_2 es la sustitución $\sigma_1\sigma_2$ definida por $x(\sigma_1\sigma_2) = (x\sigma_1)\sigma_2$, para toda variable x.
 - ▶ Ejemplo: Si $\sigma_1 = [x/f(z,a), y/w]$ y $\sigma_2 = [x/b, z/g(w)]$, entonces

$$-x\sigma_1\sigma_2=(x\sigma_1)\sigma_2=f(z,a)\sigma_2=f(z\sigma_2,a\sigma_2)=f(g(w),a)$$

$$-y\sigma_1\sigma_2=(y\sigma_1)\sigma_2=w\sigma_2=w$$

$$-z\sigma_1\sigma_2=(z\sigma_1)\sigma_2=z\sigma_2=g(w)$$

$$- w\sigma_1\sigma_2 = (w\sigma_1)\sigma_2 = w\sigma_2 = w$$

Por tanto, $\sigma_1 \sigma_2 = [x/f(g(w), a), y/w, z/g(w)].$

- ▶ Def.: La substitución identidad es la sustitución ϵ tal que, para todo x, $x\epsilon = x$.
- Propiedades:
 - 1. Asociativa: $\sigma_1(\sigma_2\sigma_3) = (\sigma_1\sigma_2)\sigma_3$
 - 2. Neutro: $\sigma \epsilon = \epsilon \sigma = \sigma$.

Comparación de sustituciones

- ▶ Def.: La sustitución σ_1 es más general que la σ_2 si existe una sustitución σ_3 tal que $\sigma_2 = \sigma_1 \sigma_3$. Se representa por $\sigma_2 \leq \sigma_1$.
- ▶ Def.: Las sustituciones σ_1 y σ_2 son equivalentes si $\sigma_1 \leq \sigma_2$ y $\sigma_2 \leq \sigma_1$. Se representa por $\sigma_1 \equiv \sigma_2$.
- ▶ Ejemplos: Sean $\sigma_1 = [x/g(z), y/z], \sigma_2 = [x/g(y), z/y]$ y $\sigma_3 = [x/g(a), y/a]$. Entonces,
 - 1. $\sigma_1 = \sigma_2[y/z]$
 - 2. $\sigma_2 = \sigma_1[z/y]$
 - 3. $\sigma_3 = \sigma_1[z/a]$
 - 4. $\sigma_1 \equiv \sigma_2$
 - 5. $\sigma_3 \leq \sigma_1$
- ► Ejemplo: $[x/a, y/a] \le [y/x]$, ya que [x/a, y/a] = [y/x][x/a, y/a].

Unificador de máxima generalidad

- Def.: La sustitución σ es un unificador de máxima generalidad (UMG) de los términos t₁ y t₂ si
 - σ es un unificador de t_1 y t_2 .
 - $-\sigma$ es más general que cualquier unificador de t_1 y t_2 .
- Ejemplos:
 - 1. [x/g(z), y/z] es un UMG de f(x, g(z)) y f(g(y), x).
 - 2. [x/g(y), z/y] es un UMG de f(x, g(z)) y f(g(y), x).
 - 3. [x/g(a), y/a] no es un UMG de f(x, g(z)) y f(g(y), x).
- Nota: Las anterior definición se extienden a conjuntos de términos y de literales.

Unificación de listas de términos

- Notación de lista:
 - (a_1,\ldots,a_n) representa una lista cuyos elementos son a_1,\ldots,a_n .
 - \triangleright (a|R) representa una lista cuyo primer elemento es a y resto es R.
 - () representa la lista vacía.
- Unificadores de listas de términos:
 - ▶ Def.: σ es un unificador de (s_1, \ldots, s_n) y (t_1, \ldots, t_n) si $s_1 \sigma = t_1 \sigma, \ldots, s_n \sigma = t_n \sigma$.
 - ▶ Def.: (s_1, \ldots, s_n) y (t_1, \ldots, t_n) son unificables si tienen algún unificador.
 - ▶ Def.: σ es un unificador de máxima generalidad (UMG) de $(s_1 \ldots, s_n)$ y $(t_1 \ldots, t_n)$ si σ es un unificador de $(s_1 \ldots, s_n)$ y $(t_1 \ldots, t_n)$ más general que cualquier otro.
- Aplicación de una sustitución a una lista de ecuaciones:

$$(s_1 = t_1, \ldots, s_n = t_n) \sigma = (s_1 \sigma = t_1 \sigma, \ldots, s_n \sigma = t_n \sigma).$$

Algoritmo de unificación de listas de términos

- ▶ Entrada: Lista de ecuaciones $L = (s_1 = t_1, ..., s_n = t_n)$ y sustitución σ .
- ► Salida:

Un UMG de las listas $(s_1 \ldots, s_n)\sigma$ y $(t_1 \ldots, t_n)\sigma$, si son unificables; "No unificables", en caso contrario.

Algoritmo de unificación de listas de términos

- ▶ Procedimiento unif(L, σ):
 - 1. Si L = (), entonces unif $(L, \sigma) = \sigma$.
 - 2. Si L = (t = t | L'), entonces unif $(L, \sigma) = \text{unif}(L', \sigma)$.
 - 3. Si $L = (f(t_1, ..., t_m) = f(t'_1, ..., t'_m)|L')$, entonces $unif(L, \sigma) = unif((t_1 = t'_1, ..., t_m = t'_m|L'), \sigma)$.
 - 4. Si L = (x = t|L') (ó L = (t = x|L')) y x no aparece en t, entonces unif $(L, \sigma) = \text{unif}(L'[x/t], \sigma[x/t])$.
 - 5. Si L = (x = t|L') (ó L = (t = x|L')) y x aparece en t, entonces unif (L, σ) = "No unificables".
 - 6. Si $L = (f(t_1, ..., t_m) = g(t'_1, ..., t'_m)|L')$, entonces unif $(L, \sigma) =$ "No unificables".
 - 7. Si $L = (f(t_1, ..., t_m) = f(t'_1, ..., t'_p)|L')$ y $m \neq p$, entonces unif $(L, \sigma) =$ "No unificables".

Algoritmo de unificación de dos términos

- Entrada: Dos términos t₁ y t₂.
- Salida: Un UMG de t₁ y t₂, si son unificables; "No unificables", en caso contrario.
- ▶ Procedimiento: unif($(t_1 = t_2), \epsilon$).
- ► Ejemplo 1: Unificar f(x, g(z)) y f(g(y), x):

 unif $((f(x, g(z)) = f(g(y), x)), \epsilon)$ = unif $((x = g(y), g(z) = x), \epsilon)$ por 3

 = unif $((g(z) = x)[x/g(y)], \epsilon[x/g(y)])$ por 4

 = unif((g(z) = g(y)), [x/g(y)]) por 3

 = unif((x = y), [x/g(y)]) por 3

 = unif((x = y), [x/g(y)]) por 4

 = unif((x = y), [x/g(y)]) por 4

 = unif((x = y), [x/g(y)]) por 5

Ejemplos de unificación

```
▶ Ejemplo 2: Unificar f(x, b) v f(a, v):
            unif((f(x,b)=f(a,y),\epsilon)
       = unif((x = a, b = y), \epsilon)
                                                por 3
       = unif((b = v)[x/a], \epsilon[x/a])
                                                por 4
       = unif((b = v), [x/a])
       = unif((), [x/a][v/b])
                                                por 4
       = [x/a, y/b]
                                                por 1
▶ Ejemplo 3: Unificar f(x,x) y f(a,b):
            \operatorname{unif}((f(x,x)=f(a,b)),\epsilon)
       = unif((x = a, x = b), \epsilon)
                                                 por 3
       = unif((x = b)[x/a], \epsilon[x/a])
                                                 por 4
       = unif((a = b), [x/a])
       = "No unificable"
                                                 por 6
```

Ejemplos de unificación

☐ Algoritmo de unificación

- Unificación

```
▶ Ejemplo 4: Unificar f(x, g(y)) y f(y, x):
```

$$\mathsf{unif}((f(x,g(y))=f(y,x)),\epsilon)$$

= unif(
$$(x = y, g(y) = x), \epsilon$$
)
= unif($(g(y) = x)[x/y], \epsilon[x/y]$)

$$= \operatorname{unif}((g(y) = y), [x/y])$$

= "No unificable" por 5
• Ejemplo 5: Unificar
$$j(w, a, h(w))$$
 y $j(f(x, y), x, z)$

unif
$$((j(w, a, h(w)) = j(f(x, y), x, z))\epsilon)$$

$$unif((j(w, a, h(w)) = j(f(x, y), x, z))\epsilon)$$

$$= unif((w = f(x, y), a = x, h(w) = z), \epsilon)$$

= unif(
$$(a = x, h(f(x, y)) = z), [w/f(x, y)]$$
)
= unif($(h(f(x, y)) = z)[x/a], [w/f(x, y)][x/a]$)

= [w/f(a, v), x/a, z/h(f(a, v))]

= unif(
$$(a = x, h(f(x, y)) = z)$$
, $[w/f(x, y)$
= unif($(h(f(x, y)) = z)[x/a]$, $[w/f(x, y)]$

= unif((
$$a = x, h(f(x, y)) = z$$
), [$w/f(x, y)$])
= unif(($h(f(x, y)) = z$)[x/a] [$w/f(x, y)$][x/a]

= unif(
$$(w = f(x, y), a = x, h(w) = z), \epsilon$$
)
= unif($(a = x, h(w) = z)[w/f(x, y)], \epsilon[w/f(x, y)]$)
= unif($(a = x, h(x, y)) = z$) $[w/f(x, y)]$)

unif((h(f(a, y)) = z), [w/f(a, y), x/a])unif((), [w/f(a, y), x/a][z/h(f(a, y))])

$$(x,y)$$
, $\epsilon[w/f(x,y)]$)
 (x,y) , (x,y)

por 3

por 4

por 5

$$[(x,y)], \epsilon[w/f(x,y)])$$

 $[(x,y)], \epsilon[w/f(x,y)])$

por 3

 $por_{16/31}$

Ejemplos de unificación

```
► Ejemplo 6: Unificar j(w, a, h(w)) y j(f(x, y), x, y)

unif((j(w, a, h(w)) = j(f(x, y), x, y))\epsilon)

= unif((w = f(x, y), a = x, h(w) = y), \epsilon) por 3

= unif((a = x, h(w) = y)[w/f(x, y)], \epsilon[w/f(x, y)]) por 4

= unif((a = x, h(f(x, y)) = y), [w/f(x, y)]) por 4

= unif((h(f(x, y)) = y)[x/a], [w/f(x, y)][x/a]) por 4

= unif((h(f(a, y)) = y), [w/f(a, y), x/a])

= \text{"No unificable"} por 5
```

Ejemplo 7: Unificar f(a, y) y f(a, b): $unif((f(a, y) = f(a, b), \epsilon))$ $= unif((a = a, y = b), \epsilon) \quad \text{por } 3$ $= unif((y = b), \epsilon) \quad \text{por } 2$ $= unif((), [y/b]) \quad \text{por } 4$ $= [y/b] \quad \text{por } 1$

Tema 12: Resolución en lógica de primer orden

- 1. Introducción
- 2. Unificación
- 3. Resolución de primer orden
 Separación de variables
 Resolvente binaria
 Factorización
 Demostraciones por resolución
 Adecuación y completitud de la resolución
 Decisión de no-consecuencia por resolución

Separación de variables

- ▶ Def.: La sustitución $[x_1/t_1, ..., x_n/t_n]$ es un renombramiento si todos los t_i son variables.
- ▶ Prop.: Si θ es un renombramiento, entonces $C \equiv C\theta$.
- ▶ Def.: Las cláusulas C₁ y C₂ están separadas si no tienen ninguna variable común.
- ▶ Def.: Una separación de las variables de C_1 y C_2 es un par de renombramientos (θ_1, θ_2) tales que $C_1\theta_1$ y $C_2\theta_2$ están separadas.
- ▶ Ejemplo: Una separación de variables de $C_1 = \{P(x), Q(x, y)\}$ y $C_2 = \{R(f(x, y))\}$ es

$$(\theta_1 = [x/x_1, y/y_1], \theta_2 = [x/x_2, y/y_2]).$$

Resolvente binaria

▶ Def.: La cláusula C es una resolvente binaria de las cláusulas C_1 y C_2 si existen una separación de variables (θ_1, θ_2) de C_1 y C_2 , un literal $L_1 \in C_1$, un literal $L_2 \in C_2$ y un UMG σ de $L_1\theta_1$ y $L_2^c\theta_2$ tales que

$$C = (C_1\theta_1\sigma \setminus \{L_1\theta_1\sigma_1\}) \cup (C_2\theta_2\sigma \setminus \{L_2\theta_2\sigma\}).$$

► Ejemplo: Sean

$$C_{1} = \{\neg P(x), Q(f(x))\}, \quad C_{2} = \{\neg Q(x), R(g(x))\},$$

$$L_{1} = Q(f(x)), \qquad L_{2} = \neg Q(x),$$

$$\theta_{1} = [x/x_{1}], \qquad \theta_{2} = [x/x_{2}],$$

$$L_{1}\theta_{1} = Q(f(x_{1})), \qquad L_{2}^{c}\theta_{2} = Q(x_{2}),$$

$$\sigma = [x_{2}/f(x_{1})]$$

Entonces, $C = \{\neg P(x_1), R(g(f(x_1)))\}$ es una resolvente binaria de C_1 y C_2 .

Factorización

- ▶ Def.: La cláusula C es un factor de la cláusula D si existen dos literales L_1 y L_2 en D que son unificables y $C = D\sigma \setminus \{L_2\sigma\}$ donde σ es un UMG de L_1 y L_2 .
- Ejemplo: Sean $D = \{P(x, y), P(y, x), Q(a)\}\$ $L_1 = P(x, y)$ $L_2 = P(v, x)$ $\sigma = [y/x]$ Entonces.

$$C = \{P(x,x), Q(a)\}\$$
 es un factor de D .

Factorización

Ejemplos de refutación por resolución

Refutación de

```
S = \{\{\neg P(x, f(x, y))\}, \{P(a, z), \neg Q(z, v)\}, \{Q(u, a)\}\}
       1 \{\neg P(x, f(x, y))\} Hipótesis
       2 \{P(a,z), \neg Q(z,v)\} Hipótesis
       3 \{Q(u,a)\}
                                  Hipótesis
       4 \{\neg Q(f(a, v), v)\} Resolvente de 1 v 2
                                  con \sigma = [x/a, z/f(a, y)]
       5
                                  Resolvente de 3 v 4
                                  con \sigma = [u/f(a, v), v/a]
▶ Refutación de S = \{\{P(x)\}, \{\neg P(f(x))\}\}
       1 \{P(x)\} Hipótesis
       2 \{\neg P(f(x))\} Hipótesis
                          Resolvente de 1 y 2 con
```

con $\theta_1 = \epsilon, \theta_2 = [x/x'], \sigma = [x/f(x')]$

Ejemplos de refutación por resolución

```
Refutación de S = \{\{P(x,y), P(y,x)\}, \{\neg P(u,v), \neg P(v,u)\}\}
1 \quad \{P(x,y), P(y,x)\} \qquad \text{Hipótesis}
2 \quad \{\neg P(u,v), \neg P(v,u)\} \qquad \text{Hipótesis}
3 \quad \{P(x,x)\} \qquad \text{Factor de 1 con } [y/x]
4 \quad \{\neg P(u,u)\} \qquad \text{Factor de 2 con } [v/u]
5 \quad \square \qquad \text{Resolvente de 3 y 4 con } [x/u]
```

Demostraciones de cláusulas por resolución

- ▶ Sea S un conjunto de cláusulas.
- ▶ La sucesión $(C_1, ..., C_n)$ es una demostración por resolución de la cláusula C a partir de S si $C = C_n$ y para todo $i \in \{1, ..., n\}$ se verifica una de las siguientes condiciones:
 - $-C_i \in S$;
 - existen j, k < i tales que C_i es una resolvente de C_j y C_k
 - existe j < i tal que C_i es un factor de C_j
- ▶ La cláusula *C* es demostrable por resolución a partir de *S* si existe una demostración por resolución de *C* a partir de *S*.
- ▶ Una refutación por resolución de *S* es una demostración por resolución de la cláusula vacía a partir de *S*.
- ▶ Se dice que *S* es refutable por resolución si existe una refutación por resolución a partir de *S*.

Demostraciones de fórmulas por resolución

- ▶ Def.: Sean S_1, \ldots, S_n formas clausales de las fórmulas F_1, \ldots, F_n y S una forma clausal de $\neg F$. Una demostración por resolución de F a partir de $\{F_1, \ldots, F_n\}$ es una refutación por resolución de $S_1 \cup \cdots \cup S_n \cup S$.
- ▶ Def.: La fórmula F es demostrable por resolución a partir de $\{F_1, \ldots, F_n\}$ si existe una demostración por resolución de F a partir de $\{F_1, \ldots, F_n\}$.
- Se representa por $\{F_1, \ldots, F_n\} \vdash_{Res} F$.
- Ejemplo: (tema 8 p. 21) $\{ \forall x \ [P(x) \to Q(x)], \exists x \ P(x) \} \vdash_{Res} \exists x \ Q(x)$ $1 \ \{ \neg P(x), Q(x) \} \ \text{Hipótesis}$
 - 2 $\{P(a)\}$ Hipótesis 3 $\{\neg Q(z)\}$ Hipótesis
 - 4 $\{Q(a)\}$ Resolvente de 1 y 2 con [x/a]
 - 5 \square Resolvente de 3 y 4 con [z/a]

Ejemplos de demostraciones por resolución

```
Ejemplo: (tema 8 p. 21)
  \{\forall x [P(x) \to Q(x)], \forall x [Q(x) \to R(x)] \vdash_{Res} \forall x [P(x) \to R(x)]\}
       1 \{\neg P(x), Q(x)\} Hipótesis
       2 \{\neg Q(y), R(y)\} Hipótesis
                       Hipótesis
       3 \{P(a)\}
       4 \{\neg R(a)\}
                          Hipótesis
       5 \{Q(a)\}
                               Resolvente de 1 y 3 con [x/a]
       6 \{R(a)\}
                               Resolvente de 5 y 2 con [y/a]
                               Resolvente de 6 y 4
▶ Ejemplo: (tema 6 p. 55) \vdash_{Res} \exists x \ [P(x) \rightarrow \forall y \ P(y)]
       1 \{P(x)\}
                    Hipótesis
       2 \{\neg P(f(x))\} Hipótesis
                           Resolvente de 1 y 2 con \theta_2 = [x/x'], \sigma = [x/f(x')]
```

– Forma clausal:

5 🗆

Resolución de primer orden
Demostraciones por resolución

Ejemplos de demostraciones por resolución

```
▶ Ejemplo: \vdash_{Res} \forall x \; \exists y \; \neg (P(y,x) \leftrightarrow \neg P(y,y))
```

$$\neg \forall x \exists y \neg (P(y,x) \leftrightarrow \neg P(y,y))$$

$$\equiv \neg \forall x \exists y \neg ((P(y,x) \leftrightarrow \neg P(y,y)) \land (\neg P(y,y) \to P(y,x)))$$

$$\equiv \neg \forall x \exists y \neg ((\neg P(y,x) \lor \neg P(y,y)) \land (\neg \neg P(y,y) \lor P(y,x)))$$

$$\equiv \neg \forall x \; \exists y \; \neg ((\neg P(y,x) \lor \neg P(y,y)) \land (P(y,y) \lor P(y,x)))$$

$$\equiv \exists x \; \forall y \; \neg \neg ((\neg P(y,x) \lor \neg P(y,y)) \land (P(y,y) \lor P(y,x)))$$

Resolvente de 3 v 4

$$\equiv \exists x \ \forall y \ ((\neg P(y,x) \lor \neg P(y,y)) \land (P(y,y) \lor P(y,x)))$$

$$\approx \ \forall y \ ((\neg P(y,a) \lor \neg P(y,y)) \land (P(y,y) \lor P(y,a)))$$

$$\equiv \{\{\neg P(y,a), \neg P(y,y)\}, \{P(y,y), P(y,a)\}\}$$

- Refutación:
 - 1 $\{\neg P(y, a), \neg P(y, y)\}$ Hipótesis 2 $\{P(y, y), P(y, a)\}$ Hipótesis
- 2 $\{P(y,y), P(y,a)\}$ Hipotesis 3 $\{\neg P(a,a)\}$ Factor de 1 con [y/a]
- 3 $\{\neg P(a,a)\}$ Factor de 1 con $\lfloor y/a \rfloor$ 4 $\{P(a,a)\}$ Factor de 2 con $\lfloor y/a \rfloor$

Paradoja del barbero de Russell

En una isla pequeña hay sólo un barbero. El gobernador de la isla ha publicado la siguiente norma: "El barbero afeita a todas las personas que no se afeitan a sí misma y sólo a dichas personas". Demostrar que la norma es inconsistente.

- Representación: $\forall x$ [afeita(b, x) $\leftrightarrow \neg$ afeita(x, x)]
- Forma clausal:

$$\forall x \left[\mathsf{afeita}(b, x) \leftrightarrow \neg \mathsf{afeita}(x, x) \right] \\ \equiv \forall x \left[\left(\mathsf{afeita}(b, x) \to \neg \mathsf{afeita}(x, x) \right) \land \left(\neg \mathsf{afeita}(x, x) \to \mathsf{afeita}(b, x) \right) \right]$$

$$\equiv \forall x \left[\left(\neg \text{afeita}(b, x) \lor \neg \text{afeita}(x, x) \right) \land \left(\neg \neg \text{afeita}(x, x) \lor \text{afeita}(b, x) \right) \right]$$

Resolvente de 3 v 4

$$\equiv \forall x \left[\left(\neg \text{afeita}(b, x) \lor \neg \text{afeita}(x, x) \right) \land \left(\text{afeita}(x, x) \lor \text{afeita}(b, x) \right) \right]$$

$$\equiv \left\{ \left\{ \neg \text{afeita}(b, x), \neg \text{afeita}(x, x) \right\}, \left\{ \text{afeita}(x, x), \text{afeita}(b, x) \right\} \right\}$$

- Refutación: 1 $\{\neg \text{afeita}(b, x), \neg \text{afeita}(x, x)\}$ Hipótesis
 - 1 { $\neg \text{areita}(b, x)$, $\neg \text{areita}(x, x)$ } Hipotesis 2 {afeita(x, x), afeita(b, x)} Hipótesis
 - 3 $\{\neg afeita(b, b)\}\$ Factor de 1 con [x/b]4 $\{afeita(b, b)\}\$ Factor de 2 con [x/b]

Adecuación y completitud de la resolución

- Propiedades:
 - ▶ Si *C* es una resolvente de C_1 y C_2 , entonces $\{C_1, C_2\} \models C$.
 - ▶ Si *D* es un factor de *C* entonces $C \models D$.
 - ▶ Si \square ∈ S, entonces S es inconsistente.
 - Si el conjunto de cláusulas S es refutable por resolución, entonces S es inconsistente.
- ► Teor.: El cálculo de resolución (para la lógica de primer orden sin igualdad) es adecuado y completo; es decir,

Adecuado:
$$S \vdash_{Res} F \implies S \models F$$

Completo:
$$S \models F \implies S \vdash_{Res} F$$

Decisión de no-consecuencia por resolución

- ▶ Enunciado: Comprobar, por resolución, que $\forall x \ [P(x) \lor Q(x)] \not\models \forall x \ P(x) \lor \forall x \ Q(x).$
- ▶ Reducción 1: Comprobar que es consistente $\{ \forall x \ [P(x) \lor Q(x)], \ \neg(\forall x \ P(x) \lor \forall x \ Q(x)) \}$
- Reducción 2: Comprobar que es consistente $\{\{P(x), Q(x)\}, \{\neg P(a)\}, \{\neg Q(b)\}\}$
- Resolución:
 - 1 $\{P(x), Q(x)\}$ Hipótesis
 - 2 $\{\neg P(a)\}$ Hipótesis
 - 3 $\{\neg Q(b)\}$ Hipótesis
 - 4 $\{Q(a)\}$ Resolvente de 1 y 2
 - 5 $\{P(b)\}$ Resolvente de 1 y 3
- ► Modelo: $U = \{a, b\}, I(P) = \{b\}, I(Q) = \{a\}.$

Bibliografía

79 - 96.

- 1. Fitting, M. First-Order Logic and Automated Theorem Proving (2nd ed.) (Springer, 1996) pp. 137–141.
- 2. M.L. Bonet *Apuntes de LPO*. (Univ. Politécnica de Cataluña, 2003) pp. 34–40.
- 3. C.L. Chang y R.C.T. Lee *Symbolic logic and mechanical theorem proving* (Academic Press, 1973) pp. 70–99.
- 4. M. Genesereth *Computational Logic (Chapter 9: Relational Resolution)* (Stanford University, 2003)
- 5. S. Hölldobler *Computational logic.* (U. de Dresden, 2004) pp. 71–74.
- 6. M. Ojeda e I. Pérez Lógica para la computación (Vol. 2: Lógica de Primer Orden) (Ágora, 1997) pp. 138–164.
- 7. L. Paulson Logic and proof (U. Cambridge, 2002) pp. 50-61.
- 8. U. Schöning Logic for computer scientists (Birkäuser, 1989) pp.