Policy-based Adaptation of Context Provisioning in Ambient Intelligence

Alexandru Sorici^{1,2} Gauthier Picard¹ Olivier Boissier¹ Adina Magda Florea²

¹Laboratoire Hubert Curien UMR CNRS 5516, Institut Henri Fayol, MINES Saint-Etienne, France

²University Politehnica of Bucharest, Department of Computer Science, 313 Splaiul Independentei, 060042 Bucharest, Romania

6th International Symposium on Ambient Intelligence, Salamanca, 2015

Outline

- Introduction
 - Context Provisioning
 - Research Objectives
- CONSERT Middleware
 - Architecture
 - Context Provisioning Policy Definition
 - Provisioning Protocols and Policy Execution
- 3 Conclusions and Future Work

Outline

- Introduction
 - Context Provisioning
 - Research Objectives
- CONSERT Middleware
 - Architecture
 - Context Provisioning Policy Definition
 - Provisioning Protocols and Policy Execution
- 3 Conclusions and Future Work

Introduction: Context Provisioning

Introduction: Context Provisioning

Definition

Context Provisioning is the process of managing the units involved in enabling the flow of context information from producers to consumers thereof.

Introduction: Context Provisioning

Definition

Context Provisioning is the process of managing the units involved in enabling the flow of context information from producers to consumers thereof.

- Main Life Cycle
 - Context Acquisition
 - Context Modeling / Reasoning / Coordination
 - Context Dissemination

- Complementary Functionality
 - Context Producer Discovery
 - Mobility Management (e.g. interaction session, handovers)
 - Context Access Management
 - Provisioning Adaptability (structural, functional)
 - ...

Introduction: Context Provisioning Issues

 What is a good abstraction for the fundamental units of context management?

Introduction: Context Provisioning Issues

- What is a good abstraction for the fundamental units of context management?
- What is a good mechanism to engineer the adaptability of the context provisioning process?

Introduction: Context Provisioning Issues

- What is a good abstraction for the fundamental units of context management?
- What is a good mechanism to engineer the adaptability of the context provisioning process?
- How to support application development by ensuring flexibility and ease of use of the adaptation mechanism?

Introduction: Main Goals

- Develop a Context Management Middleware (CMM) based on design principles from the Multi-Agent Systems, Semantic Web and Software Service Component domains.
 - **Agents**: units of **control encapsulation** for each provisioning aspect with **potential for increased autonomy**.
 - Guide and adapt agent provisioning behavior through declarative policies.
- Why these objectives?

Introduction: Main Goals

- Develop a Context Management Middleware (CMM) based on design principles from the Multi-Agent Systems, Semantic Web and Software Service Component domains.
 - **Agents**: units of **control encapsulation** for each provisioning aspect with **potential for increased autonomy**.
 - Guide and adapt agent provisioning behavior through declarative policies.
- Why these objectives?

Outline

- Introduction
 - Context Provisioning
 - Research Objectives
- CONSERT Middleware
 - Architecture
 - Context Provisioning Policy Definition
 - Provisioning Protocols and Policy Execution
- Conclusions and Future Work

CONSERT Middleware Architecture

- CONSERT = CONtext asSERTion [Sorici et al., 2015b]
- Multi-Agent Based Architecture: use MAS design principles as a good fit for this engineering problem

CONSERT Middleware Architecture

- CONSERT = CONtext asSERTion [Sorici et al., 2015b]
- Multi-Agent Based Architecture: use MAS design principles as a good fit for this engineering problem
- Why Agents?
 - Conceive the provisioning units as: autonomous, reactive, proactive and socially interacting entities
 - Exploit research into message-based, communicative-act centric interaction protocols to address communication infrastructure concerns
 - \Rightarrow
 - Good encapsulation of the logic for each provisioning aspects with potential for increased provisioning autonomy
 - Message based communication with complete handling of success and failure cases

CONSERT Middleware Architecture

CONSERT Middleware Agents

Multi-Agent Based Architecture: 4 provisioning agents $+\ 1$ management agent

Provisioning Agents

- CtxSensor Agent: manage interactions with sensors (based on sensing policies), communicate with CtxCoord to send updates and receive provisioning tasking commands
- CtxCoord Agent: coordinate processing of context information
 - Create and control CONSERT Engine
 - Use coordination policies to determine what sensor updates and inferences are active and how (e.g. with which frequency) updates must be sent

CONSERT Middleware Agents

Provisioning Agents

- CtxQueryHandler Agent: disseminate context information, answer to queries and subscriptions. Can work in local or federated mode.
- CtxUser Agent: connection with application logic
 - Send gueries and subscriptions
 - Act as prosumer: provide static or profiled ContextAssertions

Management Agent

- OrgMgr Agent:
 - Control deployment and life cycle of provisioning agents (i.e. create, start, stop, destroy provisioning agents)
 - \bullet Maintain overview of distributed deployment (if the case) + manage query/updates routing

Context Provisioning Policies

- Guide the behavior of provisioning agents (especially CtxCoord and CtxSensor)
- Consist of a set of parameters (key-value attributes) and a set of control rules (developer defined)
- Implemented using Semantic Web Technologies
 - Ontology-based parameter vocabulary
 - SPARQL-based rule definition

Context Sensing Policies

- Specify initial settings for how sensed context information is updated
- 2 parameters: update-rate, update-mode (change-based, time-based)

Context Sensing Policies

- Specify initial settings for how sensed context information is updated
- 2 parameters: update-rate, update-mode (change-based, time-based)

Context Coordination Policies

- Define the adjustable aspects of the context provisioning process
- Allow for a rule-based mechanism for controlling the adjustment (adaptation)
- Control Parameters: Setup the CONSERT Engine, specify enabled updates and update modes
- Control Rules: alter control parameters according to dynamic use of context information

Provisioning Control Parameters

• Parameters may be general or context information type specific

Provisioning Control Parameters

• Parameters may be general or context information type specific

Parameter	Values	Role
assertion enabling	true/false	Specify if assertion updates are enabled by default.
ont. reasoning interval	number in seconds	Time span between calls to ontology reasoner.
TTL	number in seconds	Time to live for any <i>ContextAssertion</i> in the runtime storage
integrity constraint reso- lution	String in enumeration	Identifier of the service handling integrity constraint resolutions
uniqueness constraint resolution	String in enumeration	Identifier of the service handling uniqueness constraint resolutions
observation_window	number in seconds	Length of time window over which context usage statistics are computed
inference scheduling ser- vice	String in enumeration	Identifier of service providing priority scheduling for ContextDerivationRules

Provisioning Control Rules

- Make use of context knowledge base snapshots and CONSERT Engine usage statistics to express conditions for altering of provisioning control parameters
- Implemented as SPARQL Query Templates (using SPIN¹)

¹http://spinrdf.org

Provisioning Control Rules

- Make use of context knowledge base snapshots and CONSERT Engine usage statistics to express conditions for altering of provisioning control parameters
- Implemented as SPARQL Query Templates (using SPIN1)

```
CONSTRUCT {
                                                    coord:ControlPolicy
 _:b0 a :StopAssertionCommand.
                                                      coord:hasStopAssertionCommand [
 _:b0 :forContextAssertion ?assertion.
                                                        a :QueryAbsenceAssertionCancellation;
                                                        arg:contextAssertion ami:sensesLuminosity:
WHERE {
                                                        arg:elapsedTimeThreshold 300:
 ?stat a :AssertionSpecificStatistic.
                                                      ];
 ?stat :forContextAssertion ?assertion.
 ?stat :isDerivedAssertion true.
 ?stat :nrSubscriptions 0.
 ?stat :timeSinceLastQuery ?time.
 FILTER (?time > ?elapsedThreshold).
```

Figure: SPARQL expression of derivation cancellation rule template (left) and control rule assignment (right)

¹http://spinrdf.org

Context Provisioning Protocols - Sensing Chain

Context Provisioning Protocols - Request Chain

Context Provisioning Policy Execution

- CtxCoord agent uses control parameters to set up the CONSERT Engine and the default active CtxSensor agents
- CtxCoord agent runs control rules every observation_window seconds

Context Provisioning Policy Execution

- CtxCoord agent uses control parameters to set up the CONSERT Engine and the default active CtxSensor agents
- CtxCoord agent runs control rules every observation_window seconds
- CtxCoord agent requests snapshot of context knowledge base and context usage statistics from CONSERT Engine
- Control rules are partitioned into execution groups
 - Execution groups are run in a developer-specified order
 - Rule outcomes from later groups overwrite contradictory outcomes from rules in previous groups ⇒ ensure control rule output consistency.

Outline

- Introduction
 - Context Provisioning
 - Research Objectives
- CONSERT Middleware
 - Architecture
 - Context Provisioning Policy Definition
 - Provisioning Protocols and Policy Execution
- Conclusions and Future Work

Conclusions and Future Work

- CONSERT Middleware focuses on flexibility through agent-based encapsulation of provisioning aspects (more in [Sorici et al., 2015a])
- Address ease of development for context provisioning adaptation through declarative policies

Conclusions and Future Work

- CONSERT Middleware focuses on flexibility through agent-based encapsulation of provisioning aspects (more in [Sorici et al., 2015a])
- Address ease of development for context provisioning adaptation through declarative policies
- Exploit multi-agent potential for autonomy by introducing Context Level Agreements (CLAs)
 - CtxCoord, CtxSensor agents have individual goals (e.g. reduce workload, save energy) which are valued against request characteristics (e.g. required accuracy, needed freshness) from a CtxUser
 - Control of CLA establishment needs to be integrated in provisioning policies
 - Increase specificity level of control rules to individual context providers
 - Use observed Quality-of-Context to enhance expressiveness of control rule conditions

References I

Sorici, A., Picard, G., Boissier, O., and Florea, A. M. (2015a). Multi-agent based flexible deployment of context management in ambient intelligence applications.

In Practical Applications of Agents and Multi-Agent Systems, 2015 13th International Conference on, volume in print. Springer.

Sorici, A., Picard, G., Boissier, O., Zimmermann, A., and Florea, A. (2015b).

Consert: Applying semantic web technologies to context modeling in ambient intelligence.

Computers & Electrical Engineering.

THANK YOU!

Questions?