Instituto Superior de Engenharia de Lisboa Área Departamental de Engenharia da Eletrónica e Telecomunicações e de Computadores MEIC/MEET/MERCM/LEIM - Segurança em Redes de Computadores (SRC) - 2017/07/20

Nome:______; Número______; Número_______; Occente: Vítor Almeida Curso: LEIM ☐ MEIC ☐ MEET ☐ MERCM ☐

	Nas questões de resposta múltipla assinale com um V (verdadeira), um F (falsa) ou não ponha nada (neste caso nem conta nem desconta na cotação).
V	F
1)	se pretende cifrar e uma sequência aleatória com a mesma dimensão do texto em claro a cifrar. Devido ao facto
	de ser necessário gerar uma sequência aleatória da mesma dimensão do texto em claro a cifrar e ser necessário enviar essa sequência aleatória para o destino onde vai ser decifrado o texto cifrado esta forma de cifrar não é muito prática.
2)	Um ataque de phising, por vezes também referido como phishing, é um ataque à segurança:
	Passivo Ativo # Por interceção Por interrupção Por modificação Por fabricação # O princípio de Kerckhoffs sobre "segurança através da obscuridade" é utilizado atualmente nos sistemas criptográficos? Sim, hoje em dia segue-se cada vez mais o princípio de Kerckhoffs divulgando os algoritmos mantendo secretas as chaves usadas. A força de uma cifra deve estar no algoritmo usado, o qual pode e deve ser público, e nas chaves
۵\	usadas as quais se devem manter secretas e não no secretismo do algoritmo usado.
4)	Qual o requisito para que a cifra de Vernam pudesse ser considerada one-time pad? Chave aleatória usada uma única vez
5)	Tendo em consideração as cifras clássicas indique quais das seguintes afirmações estão corretas:
_	□Numa cifra de substituição mona alfabética a modificação aplicada aos diferentes símbolos do bloco é sempre a esma #
	 Numa cifra de polialfabética a permutação difere de símbolo para símbolo dentro do mesmo bloco # A cifra de Vigenère não mantém a frequência dos caracteres e por isso é uma cifra de substituição monoalfabética A difusão através de transposição é um método usado para dissipar a estrutura estatística do texto em claro no cifrado #
	RO CITADO # Indique duas vantagens do uso do MAC em relação ao uso de uma função <i>hash</i> ?

Um MAC é um *hash* protegido com uma chave.

- 1) O MAC fornece autenticação, desde que a chave de autenticação seja conhecida apenas por emissor e recetor.
- 2) Maior proteção nos ataques de força bruta mais difíceis, já que eles não podem necessariamente ser pré calculados.
- 7) O modo CBC-MAC é uma forma de garantir confidencialidade, autenticação e/ou integridade de mensagens? A dimensão do resultado depende da dimensão do texto em claro?

Fornece autenticação entre pares (os quais conhecem a chave k). Para calcular CBC-MAC de uma mensagem m, divide-se a mensagem m em x blocos e para cada bloco faz o xor deste com um vetor de inicialização, o primeiro é zero. O resultado de cada xor é cifrado com uma chave secreta k numa cifra de bloco E, dando origem ao próximo vetor de inicialização. O resultado tem sempre a mesma dimensão fixa e depende apenas da cifra usada.

8) Tendo em consideração os algoritmos de <i>hash</i> indique quais das seguintes afirmações estão corretas: Uma das características de uma função <i>hash</i> segura é produzir uma saída com comprimento fixo # O resultado da aplicação de uma função <i>hash</i> é facilmente invertido se a chave usada estiver disponível
☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐
9) O Diffie-Hellman:
Permite gerar uma chave simétrica # Permite gerar a chave privada para um certificado digital Utiliza certificados digitais para passar o valor dos parâmetros necessários à sua geração Usa IPSec quando se pretende fazer passar uma chave de modo criptograficamente seguro Responda às seguintes questões assumindo o algoritmo de criptografia assimétrica. Considere que se escolhe como nº primos 29 e 17 e que se usa a tabela anterior de conversão de letras para números (Nota: O padding usado no RSA evitaria algumas fragilidades no uso da tabela acima mas neste exercício ignore-se).
a) Determine o totiente de n.
$\Phi(n) = (p-1)(q-1) = 28 \times 16 = 448$
b) Verifique se o valor 3 é primo relativo de Φ (n).
n=pq=29x17=493
$\Phi(n) = (p-1)(q-1) = 28 \times 16 = 448$
'3' é primo relativo do totiente, isto é gcd(448,3)=1, 448 é divisível por 1,2,4,7,8, O único divisor entre primos
relativos deve ser o 1, o que é verdade neste caso pois 3 é divisível por 1 e 3 apenas.
c) Determine qual a informação a publicar para que terceiros possam enviar mensagens cifradas usando este algoritmo. Assuma e=3.
Corresponde ao n=pxq=17x29=493 e ao e=3; (e=3, n=493)
d) Verifique se a chave privada pode ser d=299.
Ou seja d = $e^{-1} \mod \Phi$ (n)
 299 e 448 são primos relativos se 299xe=1 mod (448) ou seja 299x3=897=1 mod (448) pois 448x2=896 e) Qual a informação a publicar para que um destinatário possa verificar a autenticidade de um texto que receba autenticado usando um hash bem definido e a cifra assimétrica do exemplo? e=3 e n=493, o destinatário necessita conhecer a chave pública do emissor e o valor n resultante da
multiplicação dos dois números primos p e q.
11) Considere que Alice pretende enviar uma foto pelo Facebook, de forma a que seja vista apenas por um grupo
de amigos (N) e não por todos. Tanto a Alice como cada um dos seus amigos possuem chaves privadas e públicas.
Indique quais as respostas que são verdadeiras:
Alice deve cifrar uma cópia com a sua chave pública
Alice deve cifrar uma cópia com a sua chave privada

☐☐ Alice deve cifrar N cópias com a chave pública de cada um dos seus amigos #☐☐ Alice deve cifrar N cópias com a chave privada de cada um dos seus amigos
12) Considere o uso do HMAC-SHA1 com a chave K:
□ A chave K serve para cifrar o resultado do <i>hash</i> □ O HMAC-SHA1 permite a verificação de integridade e autenticação # □ O HMAC-SHA1 é tão seguro como calcular o SHA-1 (chave mensagem) □ O tamanho da saída do HMAC não depende do tamanho da chave K usada # □ Se possuir a chave é possível obter o texto em claro a partir do valor do HMAC 13) Tendo em consideração os certificados digitais indique quais das seguintes afirmações estão corretas: □ No certificado está disponível a chave pública do dono do certificado # □ Um certificado público x.509 é assinado com a chave pública do utilizador □ Um certificado público x.509 é assinado com a chave privada da autoridade de certificação # □ Uma assinatura realizada antes da revogação de um certificado mantém-se válida para testar a autenticação após a revogação do mesmo #, para verificação apenas; não serve para assinar □ Um certificado digital de chave pública serve para atestar a chave pública do utilizador cujo certificado é assinado com a chave privada do emissor # 14) IEEE 802.1x:
□□ As mensagens IEEE802.1x "correm" sobre IP □□ Utiliza como protocolo de autenticação o EAP □□ As mensagens EAP enviadas pelo servidor de autenticação terminam no Suplicante # □□ As mensagens EAP enviadas pelo servidor de autenticação terminam no Autenticador □□ Todos os pacotes IP que chegam a uma porta de um <i>switch</i> que use IEEE802.1x têm de estar devidamente autenticados para que a porta os deixe passar 15) RADIUS:
□ A user-password P é cifrada através de P XOR MD5(Request Authenticator) □ As mensagens access-request são autenticadas através do campo Request-Authenticator □ O Request-Authenticator deve ser temporalmente e globalmente único (sem haver repetições) □ As mensagens access-accept e access-reject enviadas pelo servidor de autenticação vão autenticadas □ É possível lançar um ataque ao segredo partilhado S se o atacante conseguir efetuar uma tentativa de autenticação com uma user-password conhecida # 16) Tendo em consideração as seguintes afirmações indique quais é que estão corretas:
 □ O 802.1x permite utilizar vários protocolos de cifra □ No protocolo PPTP, o canal de dados do PPP corresponde a um canal GRE sobre IP # □ Quando se utiliza PPP e se pretende autenticação, se usar CHAP não pode usar EAP # □ Quando se utiliza o PPP uma máquina recebe o seu endereço IP através de NCP-IPCP # □ No 802.1x o suplicante e o servidor de autenticação têm de ter conhecimento da chave secreta do utilizador # 17) Quais as principais fragilidades do PPTP? □ Utilização de MD4 # □ Mensagens não autenticadas # □ Só suporta IP como protocolo acima □ Utilização do canal de controlo da ligação sobre TCP sem segurança #
18) Para que a criação de um novo SA IKEv2 com PFS (Perfect Foward Secrecy) devem obrigatoriamente se
trocados:
 Novos nonces Novos certificados Novas chaves privadas Novas chaves de sessão Novos valores para o Diffie-Hellman #

19) Pretende criar uma VPN que permita evitar a análise de tráfego utilizando IPSec escolheria:
ESP com cifra
☐☐ Modo Túnel #
☐ Modo Transporte
☐ Números de sequência aleatórios
Security Parameters Index cifrados
ESP com autenticação em detrimento do AH
20) Quando chega um datagrama IPsec, usando o protocolo ESP, como é que o destino sabe se é ESP com
confidencialidade, com autenticação ou com autenticação e confidencialidade:
Pelo SA negociado #
Pelo campo protocolo do cabeçalho ESP
Pelo valor campo protocolo do cabeçalho IP
Pela existência, ou não, do campo "authentication data" na mensagem ESP
21) A pesquisa na base de dados das SA (SAD) quando chega um datagrama IPsec utiliza:
O SA negociado
☐ O sequence number
O security parameter index #
O valor do <i>socket</i> do datagrama (IP origem, porto origem, IP destino, porto destino, protocolo)
22) Para fornecer integridade o WEP utiliza:
☐☐ Um CRC protegido pelo RC4 #
RC4 sobre o campo de dados da trama
O WEP não dá nenhuma garantia de integridade
HMAC-MD5 da concatenação da trama com a chave partilhada
23) Qual dos protocolos que compõem o SSL/TLS fornece o mecanismo de garantia de integridade?
☐ Alert Protocol
SSL Record Protocol #
SSL Handshake Protocol,
Change Cipher Spec. Protocol,
24) Em SSL/TLS como são decididos quais os algoritmos criptográficos a usar numa ligação?
O servidor escolhe do conjunto de suites criptográficas que o cliente indica aquela que pretende usar.
25) Como é que um destinatário de um <i>email</i> no formato S/MIME tem acesso à chave de sessão, assumindo que o
conteúdo vem cifrado?
É enviada em claro no corpo do <i>email</i>
☐☐ É obtida a partir dos certificados ISO/ITU-T X.509v3
☐☐ Vem cifrado no corpo do <i>email</i> com a chave privada do recetor
☐☐ Vem cifrado no corpo do <i>email</i> com a chave pública do recetor #
☐☐ Vem cifrado no corpo do <i>email</i> com a chave privada do emissor
26) Se utilizar SPF (Sender Policy Framework) o servidor de email:
É garantida a confidencialidade das mensagens entre servidores de <i>email</i>
Obriga os clientes a utilizar SMIME para garantir a autenticação das mensagens
☐☐ Verifica no DNS qual a chave pública do servidor remetente e verifica a assinatura das mensagens recebidas
Consulta o DNS para verificar se o servidor que lhe está a enviar a mensagem de <i>email</i> está autorizado a fazê-lo
em nome do domínio do remetente #.