UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea/Colegiul	
I montanen cove Bini	

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Geometrie plană și în spațiu și trigonometrie M2E

VARIANTA E

1. Ecuația cercului cu centrul C(1,-1) și de rază 2 este: (6 pct.)

a)
$$x^2 + y^2 - 2x + 2y - 4 = 0$$
; b) $x^2 + y^2 - x + y = 0$; c) $x^2 + y^2 - 2x + 2y - 1 = 0$; d) $x^2 + y^2 = 4$;

e)
$$x^2 + y^2 - 4x - 4y = 0$$
; f) $x^2 + y^2 - 2x + 2y - 2 = 0$.

2. Aria unei sfere de volum $\frac{4\pi}{3}$ este: (6 pct.)

a) 8; b)
$$\frac{3\pi}{2}$$
; c) 4; d) 4π ; e) 3π ; f) 2π .

3. Se consideră vectorii $\vec{u} = m\vec{i} + 3\vec{j}$, $\vec{v} = 2\vec{i} - \vec{j}$, $m \in \mathbb{R}$. Vectorii sunt perpendiculari dacă și numai dacă: (6 pct.)

a)
$$m = 5$$
; b) $m = \frac{2}{3}$; c) $m = 2$; d) $m = \frac{1}{2}$; e) $m = 0$; f) $m = \frac{3}{2}$.

4. Se consideră triunghiul ABC cu BC = 2, $AB = \sqrt{2}$, $AC = 1 + \sqrt{3}$. Să se calculeze $\cos A$. (8 pct.)

a) 0; b)
$$-\frac{\sqrt{2}}{2}$$
; c) $-\frac{1}{2}$; d) $\frac{\sqrt{2}}{2}$; e) $\frac{\sqrt{3}}{2}$; f) $\frac{1}{2}$.

5. Să se determine ecuația planului care trece prin punctul A(1,1,1) și este paralel cu planul x-z+5=0. (8 pct.)

a)
$$2x + y - z = 0$$
; b) $2x - y - z = 0$; c) $x - z + 1 = 0$; d) $x - y = 0$; e) $x + y + z - 3 = 0$; f) $x - z = 0$.

6. Fie un tetraedru regulat de muchie l. Să se calculeze distanța dintre mijloacele a două muchii opuse. (8 pct.)

a)
$$\frac{l}{\sqrt{3}}$$
; b) $\frac{l}{5}$; c) $l\sqrt{3}$; d) $\frac{l}{\sqrt{2}}$; e) $\frac{l}{4}$; f) $l\sqrt{2}$.

7. Să se determine volumul conului circular drept cu raza bazei 2 și înălțimea 3. (4 pct.)

a)
$$6\pi$$
; b) π ; c) 10π ; d) 4π ; e) 3π ; f) 12π .

8. În triunghiul ABC dreptunghic în A se dau AB = 2 și BC = 3. Să se calculeze tg B. (4 pct.)

a)
$$\frac{\sqrt{5}}{2}$$
; b) $\sqrt{5}$; c) $\frac{1}{2}$; d) $\frac{1}{\sqrt{5}}$; e) 1; f) $\frac{\sqrt{3}}{2}$.

9. Fie vectorii $\vec{u} = \vec{i} + \sqrt{3}\vec{j}$ și $\vec{v} = \sqrt{3}\vec{i} + \vec{j}$. Să se calculeze vectorul $\vec{u} - 2\vec{v}$. (4 pct.)

a)
$$\sqrt{3}\vec{i} + 2\vec{j}$$
; b) $\vec{0}$; c) $(1 - \sqrt{3})\vec{i} + (\sqrt{3} - 1)\vec{j}$; d) $(1 - 2\sqrt{3})\vec{i} + (\sqrt{3} - 2)\vec{j}$; e) $\vec{i} + 3\vec{j}$; f) $(1 + \sqrt{3})\vec{i} - 3\vec{j}$.

10. Fie $\sin \alpha = \frac{4}{5}$, $0 < \alpha < \frac{\pi}{2}$. Să se calculeze $\cos \alpha$. (4 pct.)

a)
$$\frac{1}{5}$$
; b) $-\frac{1}{5}$; c) $\frac{3}{5}$; d) 0; e) $\frac{1}{2}$; f) $-\frac{3}{5}$.

11. Fie $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. Să se calculeze z^6 . (4 pct.)

a) i; b) 1; c) -1; d) 0; e) 1+i; f)
$$1+i\sqrt{3}$$
.

12. Fie $E(x) = \sin 2x - \cos x + \lg \frac{3x}{2}$. Să se calculeze $E\left(\frac{\pi}{6}\right)$. (4 pct.)

a)
$$\frac{\sqrt{3}}{2}$$
; b) 2; c) $\frac{1}{2}$; d) 1; e) 0; f) $\frac{\sqrt{2}}{2}$.

- 13. Să se determine distanța dintre punctele A(5,0) și B(1,4). (4 pct.)
 - a) 5; b) 4,5; c) 4; d) $\sqrt{6}$; e) $3\sqrt{2}$; f) $4\sqrt{2}$.
- 14. O piramidă patrulateră regulată are latura bazei l și înălțimea h. Să se calculeze volumul piramidei. (4 pct.)

a)
$$\frac{l^2h}{3}$$
; b) $\frac{\pi l^2h}{3}$; c) $\frac{l^2h}{2}$; d) $\frac{\pi l^2h}{6}$; e) $\frac{l^2h}{4}$; f) l^2h .

15. Un paralelipiped dreptunghic are înălțimea 4, aria bazei 6 și o latură a bazei 3. Să se calculeze lungimea diagonalei paralelipipedului. (4 pct.)

a)
$$\sqrt{29}$$
; b) $\sqrt{43}$; c) $\sqrt{6}$; d) $\sqrt{61}$; e) $\sqrt{5}$; f) $\sqrt{13}$.

- 16. Să se determine numărul soluțiilor ecuației $\cos x = \sin x$ situate în intervalul $[0,2\pi]$. (4 pct.)
 - a) 2; b) 4; c) 3; d) 1; e) 6; f) 0.
- 17. Să se determine coordonatele mijlocului segmentului AB unde A(2,1) și B(1,0). (4 pct.)

a) (1,3); b)
$$\left(\frac{1}{3}, \frac{2}{3}\right)$$
; c) $\left(\frac{1}{4}, \frac{1}{4}\right)$; d) (2,0); e) $\left(\frac{3}{2}, \frac{1}{2}\right)$; f) (3,1).

- 18. Să se determine raza cilindrului circular drept de volum 3 și înălțime $\frac{1}{3\pi}$. (4 pct.)
 - a) $\sqrt{2}$; b) 6π ; c) 6; d) 3; e) 18; f) 3π .