化学物质基本概念・考点・「离子方程式正误判断」

1. 一、注意是否符合反应事实

离子反应必须符合客观事实,而命题者往往设置不符合「反应原理」的陷阱

1.
$$Fe \xrightarrow{Cl_2 \setminus Br_2} Fe^{3+}$$
 ; $Fe \xrightarrow{I_2 \setminus S \setminus H_2(\sharp \P (\ell \ell \ell \ell))} Fe^{2+}$; 稀 $HNO_3 + \begin{cases} Fe(\not \! \bot \ell \ell) \longrightarrow Fe^{3+} \\ Fe(\not \! \bot \ell \ell) \longrightarrow Fe^{2+} \end{cases}$; $Fe(\mathring{\pi} L) = Re(\mathring{\pi} L) = Re$

- 2. 金属和氧化性酸(如 HNO_3 、浓 H_2SO_4)反应不放 H_2
- 3. Na 不能置换出 $CuSO_4$ 溶液中的 Cu (先与 H_2O 反应生成 NaOH)
- 4. 忽略氧化还原

例如:
$$Na_2$$
 $\overset{-2}{S}$ $+$ HNO_3 \longrightarrow H_2 S \uparrow $+$ Na $\overset{-2}{S}$ O_3 $(imes)$: $\overset{-2}{S}$ 有很强的还原性,遇到稀硝酸,一定会发生氧化还原反应

5. 忽略相互促进的水解反应(完全双水解)

常见的双水解的离子:

$$\mathrm{Al}_3^+:\mathrm{HCO}_3^-\,,\ \mathrm{CO}_3^{2-}\,,\ \mathrm{HS}^-\,,\ \mathrm{S}_2^-\,,\ \mathrm{ClO}^-\,,\ \mathrm{AlO}_2^-$$

$$\mathrm{Fe}_3^+:\mathrm{HCO}_3^-,\ \mathrm{CO}_3^{2-},\ \mathrm{ClO}^-,\ \mathrm{AlO}_2^-$$

$$\mathrm{Fe_2^+}:\mathrm{AlO_2^-}$$
 , $\mathrm{NH_4^+}$, $\mathrm{SiO_3^{2-}}$

例如:
$$\mathrm{Fe_3^+} + \mathrm{CO_3^{2-}}$$
 不会生成 $\mathrm{Fe_2(CO_3)_3} \downarrow$, 因为会发生完全双水解, 应生成

$$\mathrm{Fe_2(OH)_3}\downarrow + \mathrm{CO_2}\uparrow$$

6. 忽略络合反应

三价铁离子和硫氰根离子反应:
$$\mathrm{Fe^{3+}} + \mathrm{SCN^-} \xrightarrow{\mathrm{Fe(SCN)}} + 2$$

铜离子遇到足量的浓氨水:
$$\mathrm{Cu}^{2+} + \mathrm{NH_3} \cdot \mathrm{H_2O} \xrightarrow{\mathrm{Cu}(\mathrm{NH_3})_4} {}^{2+}$$

银离子遇到足量的浓氨水:
$$Ag^+ + NH_3 \cdot H_2O \xrightarrow{Ag(NH_3)_2} +$$

2. 二、注意是否满足三守恒 (原子守恒、电荷守恒、电子得失守恒)

1. 强电解质的电离(强酸、强碱、绝大多数盐)用「 = 」;弱电解质的电离、盐类的水解用「 ← → 」,盐类水解后的产物不写

「 \downarrow 」或「 \uparrow 」;若两种离子相互促进水解,可以进行到底,则要写「=」;可逆反应要用「 \Longrightarrow 」表示

 $Mg^{2+}+2\,H_2O \Longrightarrow Mg(OH)_2\downarrow +2\,H^+ \qquad (\times):Mg^{2+}$ 水解程度很弱,不足以形成沉淀,因此不标沉淀符号

2. 产物中形成胶体时应备注「(胶体)」,不可写「↓」

$$\mathrm{Fe^{3+}} + 3\,\mathrm{H_2O} \stackrel{\Delta}{=} \mathrm{Fe(OH)_3}$$
(胶体) $+ 3\,\mathrm{H^+}$

3. ${
m NH_4^+}$ 与 ${
m OH^-}$ 反应时,若条件为浓溶液或加热,生成 ${
m NH_3}$ 且要注明「 \uparrow 」;若为稀溶液,则生成 ${
m NH_3\cdot H_2O}$

4. 四、注意离子的拆分是否正确

1. 强 酸 (高 中 六 大 强 酸: $HClO_4$ 、HI、HBr、HCl、 HNO_3 、 H_2SO_4) 、 可 溶 强 碱 (NaOH、KOH、 $Ba(OH)_2$)、可溶性盐的化学式

必须拆分,需要注意的是浓硝酸、浓盐酸的化学式可拆分,浓硫酸的化学式不拆分

2. 弱电解质(弱酸、弱碱、水等)、沉淀、气体、单质、弱酸的酸式酸根离子在离子方程式中都不能 拆分成离子,氧化物在水溶液

中不能拆分成 O^{2-}

3. 对于微溶性的强电解质(如 ${
m Ca(OH)_2}$ 、 ${
m CaSO_4}$ 、 ${
m MgCO_3}$ 等),在反应物中是否拆分视情况而定

澄清石灰水中 $Ca(OH)_2$ 以 Ca^{2+} 、 OH^- 的形式存在,可拆成离子形式,但石灰乳为悬浊液,有大量未溶固体, $Ca(OH)_2$ 在离子方程式中不拆分。微溶物在生成物中一般不拆分,用化学式表示

4. 可溶性多元弱酸的酸式酸根离子(如 HCO_3^- 、 HSO_3^- 、 HS^- 、 $HC_2O_4^-$ 、 $H_2PO_4^-$ 、 HPO_4^{2-} 等),一律保留酸式酸根离子的形式

例如在水溶液中 ${
m HSO_3^-}$ 写成 ${
m H}^+$ 、 ${
m SO_3^{2-}}$ 是错误的。值得注意的是 ${
m HSO_4^-}$ 在水溶液中要拆分成 ${
m H}^+$ 、 ${
m SO_4^{2-}}$

5. 五、注意是否漏写离子反应

判断离子方程式的书写正误时,要仔细审题,细心检查是否忽略了其他反应

 $CuSO_4$ 溶液和 $Ba(OH)_2$ 溶液反应: $Ba^{2+}+SO_4^{2-}=BaSO_4\downarrow\quad (\times)$:忽略了 $Cu^{2+}+2\,OH^-=Cu(OH)_2\downarrow$

6. 六、注意是否符合反应的「量」

注意离子方程式是否符合题设条件的要求,如过量、少量、等物质的量、一定浓度和体积混合以及滴加顺序对反应产物的影响

6.1 I与量有关的复分解反应

- - 1. 由 $SO_4^{2-}+Ba^{2+}=BaSO_4\downarrow$ 进行配平得出由 1 份 $NH_4Al(SO_4)_2$ 溶液 和 2 份 $Ba(OH)_2$ 溶液
 - 2. 由 $Al^{3+}+3OH^-=Al(OH)_3\downarrow$ 和 $NH_4^++OH^-=NH_3\cdot H_2O$ 可知,优先反应 Al^{3+} ,生成 1 份 $Al(OH)_3$
 - 3. 还剩余 1 份 $\mathrm{OH^-}$,与 $\mathrm{NH_4^+}$ 反应,生成 1 份 $\mathrm{NH_3 \cdot H_2O}$
- 2. 向 $NH_4Al(SO_4)_2$ 溶 液 滴 入 过 量 的 NaOH 溶 液: $NH_4^+ + Al^{3+} + 5OH^- = AlO_2^- + NH_3 \cdot H_2O + 2H_2O$ $(\sqrt{})$
 - 1. 优先反应 1 份 $\mathrm{Al^{3+}} + \mathrm{3\,OH^{-}} = \mathrm{Al(OH)_{3}} \downarrow$
 - 2. 其次反应 1 份 $\mathrm{NH_4^+} + \mathrm{OH^-} = \mathrm{NH_3} \cdot \mathrm{H_2O}$
 - 3. 最后反应 1 份 $Al(OH)_3 + OH^- = AlO_2^- + 2H_2O$
- 3. 向 $\mathrm{NH_4Fe(SO_4)_2}$ 饱 和 溶 液 中 滴 加 几 滴 (少 量) NaOH 溶 液 : $\mathrm{Fe^{3+}} + 3\,\mathrm{OH^-} = \mathrm{Fe(OH)_3} \downarrow$ ($\sqrt{}$)

由 $\mathrm{NH_4^+} + \mathrm{OH^-} = \mathrm{NH_3} \cdot \mathrm{H_2O}$ 和 $\mathrm{Fe^{3+}} + 3\,\mathrm{OH^-} = \mathrm{Fe(OH)_3} \downarrow$, $\mathrm{Fe^{3+}}$ 优先反应

6.2 II CO_2 少量与过量的比较

考虑反应物酸性与 $\mathrm{H_2CO_3}$ 、 $\mathrm{HCO_3^-}$ 的酸性强弱比较

酸性大小: $H_2CO_3(CO_2 + H_2O) > HClO > Ph-OH > HCO_3^-$

1. 将少量的 CO_2 通入 NaClO 溶液中: $2ClO^- + CO_2 + H_2O = 2HClO + CO_3^{2-}$ (\times)

- 1. $\rm H_2CO_3$ 电 离 出 的 第 一 个 $\rm H^+$ 用 于 制 备 $\rm HClO$, $\rm ClO^- + CO_2 + H_2O = HClO + HCO_3^-$
- 2. HCO_3^- 电离出的 H^+ 无法制备次氯酸($ClO^- + HCO_3^- \neq HClO + CO_3^{2-}$,弱酸不可制强酸)
- 2. 将少量的 CO_2 通入苯酚钠溶液中: $2C_6H_5O^- + CO_2 + H_2O = 2C_6H_5OH + CO_3^{2-}$ (×)
 - 1. H_2CO_3 电 离 出 的 第 一 个 H^+ 用 于 制 备 C_6H_5OH , $C_6H_5O^- + CO_2 + H_2O = C_6H_5OH + HCO_3^-$
 - 2. HCO_3^- 电离出的 H^+ 无法制备苯酚($C_6H_5O^- + HCO_3^- \neq C_6H_5OH + CO_3^{2-}$, 弱酸不可制强酸)
- 3. $ext{Na}_2 ext{S}$ 溶液吸收少量 $ext{CO}_2: ext{S}^{2-} + ext{CO}_2 + ext{H}_2 ext{O} = ext{CO}_3^{2-} + ext{H}_2 ext{S} \uparrow (imes)$ [已知: $K_{a1}(ext{H}_2 ext{CO}_3) > K_{a1}(ext{H}_2 ext{S}) > K_{a2}(ext{H}_2 ext{CO}_3)$]
 - 1. 由 $K_{a1}({
 m H_2CO_3})>K_{a1}({
 m H_2S})>K_{a2}({
 m HS^-})$, ${
 m H_2CO_3}$ 电离出的第一个 ${
 m H^+}$ 可参与反应 :

$$S^{2-} + CO_2 + H_2O = HS^- + HCO_3^-$$

2. 由 $K_{a1}({
m H_2S})>K_{a2}({
m H_2CO_3})$, ${
m HCO_3^-}$ 电离出的 ${
m H^+}$ 不参与反应(${
m HS^-}+{
m HCO_3^-}
eq {
m CO_3^{2-}}+{
m H_2S}$)

6.3 Ⅲ SO₂ 的少量与过量

SO_2 的性质:

1. 酸性: $SO_2 + H_2O \Longrightarrow H_2SO_3$

2. 还原性: $\overset{+4}{\mathrm{SO}}_{2} \overset{\text{氧化剂}}{\longrightarrow} \overset{+6}{\mathrm{SO}}_{4}^{2-}$

3. 氧化性:
$$\overset{+4}{\mathrm{S}}\mathrm{O}_2 + \mathrm{H}_2\overset{-2}{\mathrm{S}} \longrightarrow \overset{0}{\mathrm{S}}$$

- 1. 用过量氨水吸收工业尾气中的 ${
 m SO}_2: 2\,{
 m NH}_3\cdot{
 m H}_2{
 m O}+{
 m SO}_2{=}2\,{
 m NH}_4^++{
 m SO}_3^{2-}+{
 m H}_2{
 m O}$ ($\sqrt{}$

 - 1. ${
 m SO}_2$ 溶于水视为 ${
 m H}_2 {
 m SO}_3$ 2. 过量氨水中和 ${
 m H}_2 {
 m SO}_3$ 电离出的所有 ${
 m H}^+$
- 2. 将过量的 ${
 m SO}_2$ 通入次氯酸钠溶液中: ${
 m ClO}^- + {
 m SO}_2 + {
 m H}_2{
 m O} = {
 m Cl}^- + {
 m SO}_4^{2-} + 2\,{
 m H}^+ \quad (\sqrt{})$
 - 1. 少量的 ClO^- 视为 1 份, SO_2 溶于水视为 H_2 SO_3 2. ClO^- 为氧化剂, H_2SO_3 为还原剂
- 3. 将少量的 ${
 m SO}_2$ 通入次氯酸钠溶液中: ${
 m ClO}^- + {
 m SO}_2 + {
 m H}_2{
 m O} = {
 m Cl}^- + {
 m SO}_4^{2-} + 2\,{
 m H}^+ \quad (imes)$

 - 1. $\rm H^+$ 与 $\rm ClO^-$ 不能共存,发生反应 $\rm H^+ + ClO^- = HClO$ 2. $\rm 3\,ClO^- + SO_2 + H_2O = Cl^- + SO_4^{2-} + 2\,HClO$
- $Ba(ClO)_2$ 溶 4. 向 液 $\mathrm{SO}:\mathrm{SO}_2+\mathrm{Ba}^{2+}+2\,\mathrm{ClO}^-+\mathrm{H}_2\mathrm{O}=\mathrm{BaSO}_3\downarrow \ +2\,\mathrm{HClO} \quad (imes)$

1. $SO_2 + H_2O = SO_4^{2-} + H^+$ 2. $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$ 3. $H^+ + ClO^- = HClO$ 综上: $SO_2 + 3ClO^- + Ba^{2+} + H_2O = BaSO_4 \downarrow + Cl^- + 2HClO$

5. 向过量 ${
m SO}_2$ 溶液通入 ${
m K}_2{
m S}$ 溶液: $2\,{
m SO}_2+2\,{
m H}_2{
m O}+{
m S}^{2-}=2\,{
m HSO}_3^-+{
m H}_2{
m S}$ (imes)

$$\overset{+4}{\mathrm{S}}\mathrm{O}_2 + \mathrm{H}_2\overset{-2}{\mathrm{S}} \longrightarrow \overset{0}{\mathrm{S}}$$