UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE INFORMÁTICA PÓS - GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

CLOVES ALVES DA ROCHA FLÁVIO DA SILVA NEVES MILTON VINICIUS MORAIS DE LIMA

ANÁLISE DE SENTIMENTOS NO TWITTER

Trabalho apresentado ao curso de Mestrado em Ciência da Computação como requisito parcial à avaliação da disciplina de Recuperação Inteligente de Informação (IN1152), ministrada pela professora Flávia de Almeida Barros.

RECIFE – PE DEZEMBRO -2015

RESUMO

Neste projeto foi realizado uma análise de sentimentos de várias empresas multinacionais de serviços online (*Google, Apple, Microsoft e Twitter*) utilizando o *CoreLNP*. O método de pesquisa aplicado foi o experimento controlado, sendo organizados em dois experimentos e executados em paralelo, o primeiro experimento tem a sua base de dados rotulada, já o segundo não tem, sendo assim...

SUMÁRIO

1. INTRODUÇÃO

1.1. Contextualização

Na atualidade as opiniões têm grande influência sobre o comportamento das pessoas e o mundo corporativo não foge desta afirmação. Várias decisões, por mais que sejam simples, são frequentemente baseadas em opiniões de pessoas próximas, por exemplo, a compra de um carro, qual roupa comprar, o melhor filme entre outros. Devido a alta concorrência no mundo dos negócios, muitas empresas estão se baseando em várias estratégias de negócios, dentre essas, apontamos para a opinião de seus clientes para seus produtos e serviços. A opinião dos clientes esta tão grande que várias empresas têm focado ações para obter esse tipo de informação. Embora este tipo de ação possa trazer resultados satisfatórios, envolve muito custo e seu retorno pode ser demorado muitas vezes. O tempo de resposta também e alta, devido ao longo período de coleta dessas informações, em sua maioria em seu estado bruto.

No mundo a *web* é o maior repositório de informações existentes nos dias atuais. Pessoas podem interagir todos os dias numa enorme quantidade de dados com conteúdos diversos.

1.2. Motivação

Com o grande volume de informações produzidas diariamente, implica a necessidade de métodos e ferramentas capazes de processar automaticamente essa demanda, não apenas publicações, mas também as opiniões e o que os usuários têm expressado. Como então filtrar essas informações já que ocorrem num fluxo constante? Como recuperar apenas o que se deseja? Como resumir com clareza os dados imensos que foram encontrados?

A mineração de sentimento ou analise subjetiva [20, 34, 23] é uma disciplina que une mineração de dados, linguística computacional, recuperação de informações, inteligência artificial entre outras. Ela é definida como uma disciplina computacional que envolvem opiniões, sentimentos, emoções, subjetividade, entre outros.

1.3. Objetivo do Trabalho

O objetivo principal deste é analisar os sentimentos com ênfase em empresas multinacionais de serviços online (*Google, Apple, Microsoft e Twitter*) utilizando o *CoreLNP*, ferramenta desenvolvida na linguagem *Python*, com estudo de caso à partir do Twitter.

1.4. Estrutura do Trabalho

Para atender ao objetivo descrito na seção anterior, além desta Introdução o presente relatório é apresentado com a seguinte distribuição dos assuntos:

- O Capítulo 2 constituem as *Descrições do Sistema* apresentado e utilizado neste trabalho, tendo com premissas os objetivos e a base documentos utilizada.
- O Capítulo 3 descreve o *Protótipo* implementado, sua *Arquitetura do Sistema*, Representação dos documentos e o sistema em uso.
- O Capítulo 4 contém a Avaliação do Sistema e os resultados obtidos.
- O Capítulo 5 apresenta as conclusões acerca da validade do trabalho e possibilidades que ainda podem ser exploradas.

2. DESCRIÇÃO DO SISTEMA

2.1 Objetivos e Funcionamento

O sistema realiza a análise de sentimentos no Twitter buscando a opinião dos usuários sobre uma determinada empresa. Desta forma é possível que uma empresa possa identificar o nível de aceitação na rede social mencionada anteriormente. O funcionamento do sistema é descrito com os seguintes passos:

- É utilizado um corpus previamente rotulado com os tweets, este corpus serve para teste e treinamento (CoreNLP, 2015);
- O corpus é salvo em formato "csv";
- Em seguida os dados são estruturados nas seguintes descrições: ("NomeEmpresa", "Polaridade", "Id"), respectivamente, conforme figura 1.

Figura 1: Exemplo do corpus de entrada para o sistema

2.2 Base de Documentos Utilizada

Como mencionado no Item anterior, foi utilizado um corpus já rotulado com 5.513 tweets, divididos nas polaridades: Positive, Negative, Neutral e Irrelevant, a respeito de 4 empresas, *Google, Apple, Twitter* e *Microsoft*. Este corpus é foi etiquetado no ano de 2011. Abaixo é descrito na tabela 1 o corpus rotulado com as empresas citadas.

Topic	# Positive	# Neutral	# Negative	# Irrelevant	Twitter Search Term
Apple	191	581	377	164	@apple
Google	218	604	61	498	#google
Microsoft	93	671	138	512	#microsoft
Twitter	68	647	78	611	#twitter

Tabela 1: Corpus Rotulado com 5.513 tweets

3. PROTÓTIPO

Como descrito na seção anterior exploramos a ferramenta Stanford CoreNLP[18]. O CoreNLP fornece um conjunto de linguagem natural, que integra a maior parte das etapas de processamento de linguagem natural, assim analisando a estrutura gramatical das sentenças, sistemas de resolução de correferências, análise de sentimento e ferramentas de aprendizagem de máquina. A ferramenta possui suporte para análise de textos em Inglês.

3.1. Arquitetura do Sistema

Segundo Josiane 2015[xx] O processamento de texto é feito através das seguintes etapas:

- O texto de entrada passa por um processo de anotação.
- O processo de anotação é representado por uma sequência de tokens, que em seguida são agrupados em sentenças. Os tokens são rotulados com suas partes do discurso, são gerados os lemas, é feito o reconhecimento das entidades (se são nomes de empresas, pessoas, lugares etc.) e é fornecida uma análise sintática completa, incluindo uma representação de dependências baseada em análise probabilística. Com base nestas informações, é possível fazer análise de sentimento aplicando um modelo composicional baseado em um classificador e implementar detecção de menções e resolução de correferências.
- Na saída é obtida uma anotação contendo todas as informações analisadas pelos anotadores, estruturadas em um arquivo XML.
- O texto de entrada passa por um processo de anotação.
- O processo de anotação é representado por uma sequência de tokens, que em seguida são agrupados em sentenças.
- Os tokens são rotulados com suas partes do discurso, são gerados os lemas,
- É feito o reconhecimento das entidades (se são nomes de empresas, pessoas, lugares etc.)
- É fornecida uma análise sintática completa, incluindo uma representação de dependências baseada em análise probabilística.
- Com base nestas informações, é possível fazer análise de sentimento aplicando um modelo composicional baseado em um classificador e implementar detecção de menções e resolução de correferências.
- Na saída é obtida uma anotação contendo todas as informações analisadas pelos anotadores, estruturadas em um arquivo XML.

Abaixo é mostrada a figura da Arquitetura do Sistema conforme Stanford:

Figura 2 - Arquitetura do CoreNLP

Fonte: http://nlp.stanford.edu/software/corenlp.shtml#About

3.2. Representação dos Documentos

Os documentos foram representados no formato csv e classificados em relação a um dos 4 diferentes tópicos. Cada entrada contém:

- Tweet ID
- Texto Tweet
- Tweet data de criação
- Tópico usado para sentimento
- Rótulo Sentiment: "positivo", "neutro", "negativo", ou "irrelevante".

A quebra dos tópicos e os dados está representada na tabela 1.

Todos os dados do Twitter (tweets, datas de criação, tweet IDS) é coberto por Twitter [Termos de Serviço: Ref.https://dev.twitter.com/terms/api-terms]

3.3. Sistema em Uso

Para uso do sistema utilizamos o terminal Linux para executar a aplicação escrita na linguagem *Python*, onde fizemos adaptações necessárias em seu código fonte em que o *CoreNLP* necessitava criar uma conexão via https com a API do Twitter, além disso, utilização dos módulos *NLTK*, para processamento de linguagem natural, *Json*, *csv*, *getpass*, *time*, *os*, *urllib* e o *Phyton* para o Twitter.

A seguir é visualizada o sistema em execução utilizando um terminal Linux para a aplicação em *Phyton*. A figura 3 representa o início da execução, a figura 4 o fim da execução e a figura 5 ilustra o corpus de saída com os resultados respectivamente.

```
milton@vader ~/Downloads/sanders-twitter-0.2 $ python install.py

Input file [./corpus.csv]:
Results file [./full-corpus.csv]:
Raw data dir [./rawdata/]:
Input: ./corpus.csv
Output: ./full-corpus.csv
Raw data: ./rawdata/
--> downloading tweet #126415614616154112 (1 of 400)
    pausing 28 sec to obey Twitter API rate limits
```

Figura 3 - Inicio da Análise de Sentimento

```
opening: ./rawdata/126882436930994176.json
--> bad data in tweet #126882436930994176
opening: ./rawdata/126882291757752320.json
--> bad data in tweet #126882291757752320
opening: ./rawdata/126882264360558592.json
opening: ./rawdata/126882080050262016.json
--> bad data in tweet #126882080050262016
opening: ./rawdata/126881828337483776.json
opening: ./rawdata/126881827339243521.json

Missing 73 of 400 tweets!
Partial output in: ./full-corpus.csv
```

Figura 4 - Fim do processo da Análise de Sentimento

Topic	Sentiment	TweetId	TweetDate	TweetText
google	negative	672813403354899000	Fri Dec 04 16:23:10 +0000 2015	Google Scholar has got to be the wors
google	negative	672813259364397000	Fri Dec 04 16:22:35 +0000 2015	I'm lowkey upset that my future childre
google	negative	672812872347476000	Fri Dec 04 16:21:03 +0000 2015	I paid \$35 to have pictures of my feet
google	negative	672812795642044000	Fri Dec 04 16:20:45 +0000 2015	I wonder how many people today looks
google	negative	672812628759179000	Fri Dec 04 16:20:05 +0000 2015	The #AdWords grant program is very of
google	negative	672812594428813000	Fri Dec 04 16:19:57 +0000 2015	*sigh*
google	negative	672812094207709000	Fri Dec 04 16:17:58 +0000 2015	2 years later, Google engineer
google	negative	672811935994405000	Fri Dec 04 16:17:20 +0000 2015	My life is so sad, I'm visiting Disneyla
google	negative	672811470892200000	Fri Dec 04 16:15:29 +0000 2015	Hey @appannie, my account is showi
google	negative	672819710916973000	Fri Dec 04 16:48:14 +0000 2015	.@Google John Woolard: everything w
google	negative	672819589689057000	Fri Dec 04 16:47:45 +0000 2015	Today I had to Google what state Minr
google	negative	672819562774008000	Fri Dec 04 16:47:38 +0000 2015	This girl in class has been looking up
google	negative	672819495375778000	Fri Dec 04 16:47:22 +0000 2015	@iwakages no, I totally agree with you
google	negative	672819226005004000	Fri Dec 04 16:46:18 +0000 2015	Today I had to Bing something bc God
google	negative	672819180177982000	Fri Dec 04 16:46:07 +0000 2015	What happened to TIJ on Google play

Figura 5 - Exemplo do corpus de saída criado pelo sistema.

4. AVALIAÇÃO DO SISTEMA

4.1. Descrição dos Experimentos

Foram feitos dois experimentos controlados para realização dos testes do sistema, foram utilizados dois corpus, um com 400 tweets retirados do corpus disponibilizado no site do *CoreNLP*, que será chamado de "Experimento 1" ele estava dividido da seguinte maneira: Google 100, Apple 100, Twitter 100 e Microsoft 100 divididos nas quatro polaridade igualmente. A tabela 2 apresenta um exemplo de documento de entrada.

Topic	# positive	# Neutral	# Negative	# Irrelevant	Twitter Search Term
Apple	25	25	25	25	@apple
Google	25	25	25	25	#google
Microsoft	25	25	25	25	#microsoft
Twitter	25	25	25	25	#twitter

Tabela 2: Corpus Rotulado com 400 tweets

No segundo teste que chamaremos de "experimento 2" montamos nosso próprio corpus, fazendo a classificação manualmente, com 103 tweets mencionando a empresa Google, divididos da seguinte maneira, 36 positivos, 34 negativos e 33 neutros, como está descrito na tabela 3.

Topic	#Positive	# Neutral	# Negative	Twitter Search Term
Google	36	34	33	#google

Tabela 3: Corpus Rotulado Manualmente com 103 tweets

4.2. Descrição do Resultado dos Testes

Após a execução do experimento 1, dos 400 tweets usados para treinamento, 18,25% não foram retornados. Foram retornados os seguinte dados:

Topic	#Positive	# Neutral	# Negative	# Irrelevant	Twitter Search Term
Apple	17	20	20	19	@apple
Google	22	23	22	21	#google
Microsoft	19	22	21	23	#microsoft
Twitter	18	22	14	13	#twitter

Tabela 4: Resultados dos testes do experimento 1

Após a execução do experimento 2, dos 103 tweets usados para treinamento, 6,18% não foram retornados. A seguir estão descritos os seguinte dados retornados:

Topic	#Positive	# Neutral	# Negative	Twitter Search Term
Google	34	32	31	#google

Tabela 5: Resultados dos testes do experimento 2

Depois da execução da aplicação foi feita a comparação dos dados retornados (resultados) com para avaliar a eficiência do algoritmo, então foi elaborada a matriz de confusão para o experimento 2.

		Automático			
		Classe 1 (+)	Classe 2 (-)	Classe 3 (0)	
	Classe 1 (+)	24	7	3	
Manual	Classe 2 (-)	6	19	7	
	Classe 3 (0)	5	8	18	

Tabela 6: Matriz Confusão para avaliar classificadores.

		Automático			
		Classe 1 (+)	Classe 2 (-)	Classe 3 (0)	
	Classe 1 (+)	71%	22,79%	6,25%	
Manual	Classe 2 (-)	18,1%	59,75%	22,13%	
	Classe 3 (0)	16,43%	23,74%	58,81%	

Tabela 7: Precisão da análise.

5. CONCLUSÃO

O corpus realmente foi projetado para treinamentos e testes Twitter sentimento algoritmos de análise. Na etapa de instalação devido a restrição no Twitter Termos de Serviço, os tweets reais não podem ser distribuídos com o corpus sentimento. Um script na linguagem Python foi incluído para baixar todos os tweets rotulados.

Devido às limitações na API do Twitter, o processo de download levou cerca de 43 horas, assim tivemos que reduzir o escopo do corpus como apresentado na tabela 2.

Com o escopo do corpus reduzido o processo levou cerca de 4 horas no experimento 1 (tabela 2), já no experimento 2 (tabela 3) cerca de 50 minutos.

Esses dois experimentos foram controlados de formas semelhantes, todavia vale ressaltar que no experimento 1 obtivemos os dados previamente rotulados, enquanto no experimento 2 os dados formam rotulados "manualmente" sendo necessário uma análise individual de cada texto.

REFERÊNCIAS

- []SILVA. Josiane. **Detecção de Opiniões e Análise de Polaridade em Documentos Financeiros com Múltiplas Entidades**.. MANAUS-AM, Março de 2015.
- [] Recuperação de Informação **Conceitos e Tecnologia das Máquinas de Busca** 2ª Ed. 2013 Ricardo Baeza-yates, Berthier Ribeiro-neto Solicitação da professora
- [34]Tsytsarau, M. and Palpanas, T. (2012). Survey on mining subjective data on the web. Data Mining and Knowledge Discovery, 24(3):478–514.
- [20] Liu, B. (2012). Sentiment analysis and opinion mining. Morgan & Claypool Publishers.
- [23] Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and trends in information retrieval, 2(1-2):1–135.