§1 Оценка приращения дифференциального отображения

Утверждение 1. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \geqslant 2$. Тогда формула Лагранжа

$$f(b) - f(a) = f'(c)(b - a)$$

не работает.

Е.д. Пусть

$$f(t) := (\cos t, \sin t), b - a = 2\pi$$

Теорема 2 (об оценке приращения отображения). Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}^m$, G - выпуклое, f - дифференцируема,

$$\forall x \in G \ \|f'(x)\| \leqslant M$$

 $Tor \partial a \ \forall \ a, b \in G \ \|f(b) - f(a)\| \leqslant M \|b - a\|$

□ «Окружим» исходную функцию:

$$F = \psi \circ f \circ \varphi$$

где

$$\varphi: \mathbb{R}^n \to \mathbb{R}^m \qquad \qquad \varphi(t) := t(b-a) + a, \qquad \qquad t \in [0,1]$$

$$\psi: \mathbb{R}^m \to \mathbb{R} \qquad \qquad \psi(y) := \langle y, \ell \rangle, \qquad \qquad \ell = f(b) - f(a)$$

Заметим, что F — обычная вещественнозначная функция. Так что для неё работает формула Лагранжа:

$$\exists c \in [0,1]: F(1) - F(0) = F'(c)(1-0) = F'(c)$$

Тогда из свойств нормы (по ходу дела обозначим $\varphi(c)$ за x):

$$||F'(c)|| = ||\psi'(f(x)) \cdot f'(x) \cdot \varphi'(c)|| \le ||\psi'(f(x))|| \cdot ||f'(x)|| \cdot ||\varphi'(c)||$$

Здесь тонкость в обозначениях. Производные — вроде матрицы, поэтому их нормы — что-то странное на первый взгляд. На самом деле смысл немного иной.

$$dL(x,h) = f'(x) \cdot h$$

Таким образом, дифференциал — неплохое линейное отображение. А под «нормой производной» имеется в виду норма соответствующего линейного отображения.

Теперь давайте что-нибудь скажем про эти нормы.

1.
$$\varphi'(t) = (b - a) \Rightarrow \|\varphi'(c)\| = \|b - a\|$$

2.
$$\psi(y) = \langle y, l \rangle, \|\psi\| = \|\ell\|$$

Так что

$$||F'(c)|| \leqslant M \cdot ||\ell|| \cdot ||b - a||$$

С другой стороны:

$$F(1) - F(0) = \psi(f(b)) - \psi(f(a)) = \langle f(b), \ell \rangle - \langle f(a), \ell \rangle = \langle \ell, \ell \rangle = ||\ell||^2$$

В итоге, совмещая оба выражения, приходим к утверждению теоремы.

§ 2 Частные производные высших порядков

Определение 1. Пусть $f: G \subset \mathbb{R}^n \to \mathbb{R}$, существуют производные k-го порядка. Тогда

$$\partial_{i_1,\dots,i_{k+1}}^{k+1} f(x) := \partial_{i_{k+1}} (\partial_{i_1,\dots,i_{k+1}}^k f)(x)$$

3амечание 1. $C^p(G)$ — класс функций, определённых в G с непрерывной производной до p-го порядка включительно. Функции из C^1 ещё называются гладкими.

Теорема 1 (Зависимость производных *p*-го порядка от перестановки переменных). Пусть $f \in C^p(G)$, $x \in G$. При этом

$$i = \{i_1, \dots, i_p \mid i_k \in \{1, \dots, n\}\}\$$

$$j = \{j_1, \dots, j_p \mid j_k \in \{1, \dots, n\}\}\$$

$$j = \pi(i)$$

Тогда $\partial_i^p f(x) = \partial_i^p f(x)$

Замечание 1. Тут важно, что есть целая окрестность. Одной точки не хватит.

§ 3 «Многомерный» дифференциал высоких порядков

Определение 1. Пусть $f : G \subset \mathbb{R}^n \to \mathbb{R}, f \in C^p(G)$

$$d^{p} f(x) := \sum_{1 \leqslant i_{1} \leqslant \dots \leqslant i_{p} \leqslant n} \frac{\partial^{p} f}{\partial x_{i_{p}} \dots \partial x_{i_{p}}} dx_{i_{1}} \dots dx_{i_{p}}$$

Утверждение 1. Если частные производные можно переставлять, то

$$d^{p} f(x) = \sum_{\substack{\alpha_{i} \geqslant 0 \\ \sum \alpha_{i} = p}} \frac{p!}{\alpha_{1}! \cdots \alpha_{n}!} \frac{\partial^{p} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}} dx_{i_{1}} \cdots dx_{i_{p}}$$

§ 4 Формула Тейлора для функций многих переменных

Теорема 1. Пусть $f \in C^p(G), G \in \mathbb{R}^n, a \in G$. Пусть также $h \in \mathbb{R}^n$: $a + h \in G$. Тогда

$$f(a+h) = \sum_{k=0}^{p} \frac{1}{k!} d^{k} f(a,h) + R_{p}(h)$$

Остаток $R_p(h)$ можно представить несколькими способами:

- 1. В форме Пеано: $R_p(h) = o(\|h\|^p)$
- 2. В форме Лагранжа $R_p(h) = \frac{1}{(p+1)!} d^{p+1} f(a+\theta h,h), \ \theta \in (0,1)$