Regneoppgaver 3

Mads Balto

February 2022

Oppgave 1

Vi har at $f_1=1485 {\rm KHz}$, og at $\Delta f \geq 9 {\rm KHz}$. Dette medfører at $f_2 \geq 1494 {\rm KHz}$. Vi bruker at $Q=\frac{f}{\Delta f}$, og finner en Q-faktor på 165 eller lavere.

Oppgave 2

a)

Vi bruker to arrays for k, en der k vokser lineært k_lin , og en som vokser logaritmisk k_log . massen er også en array, og regnes ut som produktet av massetetthetsarrayen og volumarrayen $(m=\rho V)$ der, bredden og tykkelsen forandrer seg lineært, og ganges med lengden dl. dette ganges så med massetetthetsarrayen ρ som også forandrer seg lineært. ved massearrayen konstruert så evaluerer vi vinkelfrekvensen $\omega = \sqrt{\frac{k}{m}}$. til slutt regner vi ut frekvensen $f = \frac{\omega}{2\pi}$. Bruker dette utrykket til å sammenligne frekvensene f_{lin} og f_{log} . Vi merker stor forskjell basert på om vi velger lineær forandring, eller logaritmisk forandring for k.

Figure 1: f_{log} og f_{lin} som funksjoner av posisjon

b)

Tar i bruk formelen for amplituderesonsans:

$$A = \frac{F/m}{\sqrt{()\omega_0^2 - \omega_f^2)^2 + (b\omega_f/m)^2}}$$

der $\omega_0^2 = \frac{k}{m}$, F = 1N, $\omega_f = 2\pi f$, og b bestemmes. b bestemmes slik at toppene for de forskjellige frekvensene kan skilles, der amplituderesponsen plottes som funksjon av posisjon. I figurene ser vi at toppene går fra å være for det meste

Figure 2: Amplituderesponsen som funksjon av tid. Her er $b=10^{-7}$

Figure 3: Amplituderesponsen som funksjon av tid. Her er $b = 10^{-8}$

overlappende, til å være ganske så separat i overgangen fra $b=10^{-7}$ til $10^{-8}.$

c)

Vi bruker at $Q=\frac{m\omega_0}{b}$ og ved valg av elementene i arraysa med indeks tilsvarende der frekvensen til f1 er størst, så finner vi at kvalitetsfaktoren $Q\approx75.45$.

d)

Vi bruker at $\Delta t = \frac{Q}{\omega_0}$ for å beregne hvor lenge øret vibrerer. Igjen bruker tilsvarende indeks der f $_1$ arrayenerstørst, Fårdaattidendettarforvibrasjonenåstoppeer $\Delta t = 0.04$ ms

Oppgave 3

a)

Vi har at

$$L\ddot{Q} + \dot{Q}R + \frac{Q}{C} = V_0 \cos(\omega t)$$

$$\Rightarrow L\ddot{Q} = V_0 \cos(\omega t) - R\dot{Q} - \frac{Q}{C}$$

Dette er analogt til mekaniske systemer:

$$F\cos(\omega_F t) - kz - b\dot{z} = m\ddot{z}$$

Da faller det ut at $m=L,\, k=\frac{1}{C},\, {\rm og}\ b=R,\, {\rm og}\ F=V_0.$ Dette medfører at:

$$\omega_0^2 = \frac{k}{m} = \frac{1}{LC}$$

$$\omega_F = \sqrt{w_0^2 - \frac{b^2}{2m^2}}$$

$$= \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}$$

$$\omega_0^2 - \omega_F^2 = \frac{R^2}{2L^2}$$

$$b\omega_F = (\sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}})R/L$$

Regner ut faseskift mellom påtrykt spenning og ladning på kondensatoren:

$$\cot \phi = \frac{\omega_0^2 - \omega_F^2}{\omega_F b/m} = \frac{\frac{R^2}{2L^2}}{(\sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}})R/L}$$
$$= \frac{R}{2L(\sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}})}$$

Regner ut amplituden for ladningsoscilasjonene:

$$A = \frac{F/m}{\sqrt{(\omega_0^2 - \omega_F^2)^2 + (b\omega_F/m)^2}}$$

$$= \frac{V_0/L}{\sqrt{(\frac{R^2}{2L^2})^2 - (\sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}})R/L)^2}}$$

$$= \frac{V_0/L}{\sqrt{\frac{R^4}{4L^4} - (\frac{1}{LC} - \frac{R^2}{2L^2})R^2/L^2}}$$

$$= \frac{V_0/L}{\sqrt{\frac{R^4}{4L^4} - \frac{R^2}{L^3C} + \frac{R^4}{2L^4}}}$$

$$= \frac{V_0/L}{\sqrt{(\frac{R^2}{L^2})\frac{3R^2}{4L^2} - \frac{1}{LC}}}$$

$$= \frac{V_0}{R\sqrt{\frac{3R^2}{4L^2} - \frac{1}{LC}}}$$

Regner ut Q verdi:

$$Q = \sqrt{\frac{mk}{b}} = \sqrt{\frac{L}{R^2c}}$$

Regner ut faseresonansfrekvensen:

$$f_{\rm ph.res.} = \frac{1}{2\pi}\omega_0 = \frac{1}{2\pi}\sqrt{\frac{1}{LC}}$$

regner ut ampltituderesonans-frekvensen:

$$f_{\text{amp.res}} = \frac{1}{2\pi} \omega_F = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{2L^2}}$$

b)

vi har at
$$Q=\sqrt{\frac{L}{R^2C}}$$
. Vi setter inn for $R=1\Omega, L=25\mu H,$ og $C=100nF$.
$$Q=\sqrt{\frac{25\cdot 10^{-6}}{1^2\cdot 10^210^{-9}}}=\sqrt{250}=5\sqrt{2}\sqrt{5}\approx 15.811$$

c)

vi vet at faseresonans er når $\omega_f = omega_0$. i for Faseresonansen så er altså $\cot \phi = 0$. Dette medfører at $\phi = \frac{\pi}{2}$. Vi vet at $Q = A\cos(\omega_F t)$, og da er strømmen $I = \frac{dq}{dt} = -A\omega_F\sin(\omega_F t) = A\omega_F\cos(\omega_F - \frac{\pi}{2})$. I faseresonans så blir dermed forskjellen i fasevinkel 0.