Отчёт по лабораторной работе № 4

Дисциплина: Архитектура компьютера

Румянцев Артём Олегович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Создание программы Hello world!	11 12
	4.4 Работа с компоновщиком LD	13
5	Выводы	16
6	Список литературы	17

Список иллюстраций

4.1	Перемещение между директориями	10
4.2	Создание пустого файла	10
4.3	Открытие файла в текстовом редакторе	10
4.4	Заполнение файла	11
4.5	Компиляция текста программы	11
4.6	Компиляция текста программы	12
4.7	Передача объектного файла на обработку компоновщику	12
4.8	Передача объектного файла на обработку компоновщику	13
4.9	Запуск исполняемого файла	13
4.10	Создание копии файла	13
4.11	Изменение программы	13
4.12	Компиляция текста программы	14
4.13	Передача объектного файла на обработку компоновщику	14
4.14	Запуск исполняемого файла	14
4.15	Создании копии файлов в другом каталоге	14
4.16	Добавление файлов на GitHub	15
4.17	Отправка файлов	15

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор, память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютера. В состав центрального процессора входят следующие устройства: - арифметико-логическое устройство (АЛУ) — выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти; - устройство управления (УУ) — обеспечивает управление и контроль всех устройств компьютера; регистры — сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций; регистры процессора делятся на два типа: регистры общего назначения и специальные регистры. Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблере используют регистры в каче- стве операндов. Практически все команды представляют собой преобразование данных хранящихся в регистрах процессора, это например пересылка данных между регистрами или между регистрами и памятью, преобразование (арифметические или логические

операции) данных хранящихся в регистрах. Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый регистр процессора архитектуры х86 имеет свое название, состоящее из 2 или 3 букв латинского алфавита. В качестве примера приведем названия основных регистров общего назначения (именно эти регистры чаще всего используются при написании программ): - RAX, RCX, RDX, RBX, RSI, RDI — 64-битные - EAX, ECX, EDX, EBX, ESI, EDI — 32-битные - AX, CX, DX, BX, SI, DI — 16-битные - AH, AL, CH, CL, DH, DL, BH, BL — 8-битные

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ). ОЗУ — это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процессора, предназначенное для хранения программ и данных, с которыми процессор непосредственно работает в текущий момент. ОЗУ состоит из одинаковых пронумерованных ячеек памяти. Номер ячейки памяти — это адрес хранящихся в ней данных. Периферийные устройства в составе ЭВМ: - устройства внешней памяти, которые предназначены для долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команд представляют собой многоразрядные двоичные комбинации из 0 и 1. В коде машинной команды можно выделить две части: операционную и адресную. В операционной части хранится код команды, которую необходимо выполнить. В адресной части хранятся данные или адреса данных, которые участвуют в выполнении данной операции. При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий, которая называется командным циклом процессора. Он заключается в следующем: 1. формирование адреса в памяти очередной команды; 2. считывание кода команды из памяти и её дешифрация; 3. выполнение команды; 4. переход к

следующей команде.

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. NASM — это открытый проект ассемблера, версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем. В NASM используется Intel-синтаксис и поддерживаются инструкции х86-64.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

С помощью утилиты mkdir создаю каталог, в котором буду работать и с помощью cd перехожу в него(рис. 1).

```
aorumyancev@Ubuntu:~$ mkdir -p ~/work/arch-pc/lab04
aorumyancev@Ubuntu:~$ cd ~/work/arch-pc/lab04
```

Рис. 4.1: Перемещение между директориями

Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch (рис. 2).

aorumyancev@Ubuntu:~/work/arch-pc/lab04\$ touch hello.asm

Рис. 4.2: Создание пустого файла

Открываю созданный файл в текстовом редакторе mousepad (рис. 3).

aorumyancev@Ubuntu:~/work/arch-pc/lab04\$ mousepad hello.asm

Рис. 4.3: Открытие файла в текстовом редакторе

Заполняю файл, вставляя в него программу для вывода "Hello word!". Так, как ассемблер не является высокоуровневым языком, каждая команда размещается на отдельной строке, так же обращаю внимание на регистр, так как Assembly чувствителен к нему. (рис. 4).

```
7
                                               ~/work/arch-pc/lab04/hello.asm - Mousepad
File Edit Search View Document Help
; hello.asm
SECTION .data
                                                          ; Начало секции данных
           hello: DB 'Hello world!',10 ; 'Hello World!' плюс
           helloLen: EQU $-hello
                                                          ; символ перевода строки
                                                        ; Длина строки hello
SECTION .text
                                                          ; Начало секции кода
           GLOBAL start
          ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла '1' - стандартный вывод
mov ecx,hello ; Адрес строки hello в есх
mov edx,helloLen ; Размер строки hello
int 80h ; Вызов ялра
start:
           mov eax,1 ; Системный вызов для выхода (sys_exit) mov ebx,0 ; Выход с кодом возврата '0' (без ошибок) int 80h ; Вызов ядра
```

Рис. 4.4: Заполнение файла

4.2 Работа с транслятором NASM

Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду nasm -f elf hello.asm, ключ -f указывает транслятору nasm, что требуется создать бинарный файл в формате ELF (рис. 5). Далее проверяю правильность выполнения команды с помощью утилиты ls: действительно, создан файл "hello.o".

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ nasm -f elf hello.asm
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello.asm hello.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.5: Компиляция текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM

Ввожу команду, которая скомпилирует файл hello.asm в файл obj.o, использую ключ -о который задает имя объектному файлу, так же в файл будут включены символы для отладки (ключ -g), с помощью ключа -l будет создан файл листинга list.lst (рис. 6). Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ nasm -o obj.o -f elf -g -l list.lst hel
lo.asm
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello.asm hello.o list.lst obj.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.6: Компиляция текста программы

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD, чтобы получить исполняемый файл hello (рис. 7). Ключ -о задает имя создаваемого исполняемого файла. Далее проверяю с помощью утилиты ls правильность выполнения команды.

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 hello.o -o hello
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst obj.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.7: Передача объектного файла на обработку компоновщику

Выполняю следующую команду (рис. 8). Исполняемый файл будет иметь имя main, т.к. после ключа -о было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет имя obj.o

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 obj.o -o main
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o list.lst main obj.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.8: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю на выполнение созданный исполняемый файл hello (рис. 9).

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ./heĺlo
Hello world!
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.9: Запуск исполняемого файла

4.6 Выполнение заданий для самостоятельной работы.

С помощью утилиты ср создаю в текущем каталоге копию файла hello.asm с именем lab4.asm (рис. 10).

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ cp hello.asm lab4.asm
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.10: Создание копии файла

С помощью текстового редактора mousepad открываю файл lab4.asm и вношу изменения в программу так, чтобы она выводила мои имя и фамилию. (рис. 11).

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ mousepad lab4.asm
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.11: Изменение программы

Компилирую текст программы в объектный файл (рис. 12). Проверяю с помощью утилиты ls, что файл lab4.o создан.

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ nasm -f elf lab4.asm
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab4.asm lab4.o list.lst main obj.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.12: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD, чтобы получить исполняемый файл lab4 (рис. 13).

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ld -m elf_i386 lab4.o -o lab4
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ls
hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.13: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл lab4, на экран действительно выводятся мои фамилия и имя (рис. 14).

```
aorumyancev@Ubuntu:~/work/arch-pc/lab04$ ./lab4
Rumyancev Artem
aorumyancev@Ubuntu:~/work/arch-pc/lab04$
```

Рис. 4.14: Запуск исполняемого файла

Создаю копии файлов (рис.15)

```
aorumyancev@Ubuntu:~$ cp work/arch-pc/lab04/hello.asm work/study/2023-2024/"Архи
тектура компьютера"/arch-pc/labs/lab04
aorumyancev@Ubuntu:~$ cp work/arch-pc/lab04/lab4.asm work/study/2023-2024/"Архит
ектура компьютера"/arch-pc/labs/lab04
aorumyancev@Ubuntu:~$
```

Рис. 4.15: Создании копии файлов в другом каталоге

С помощью команд git add. и git commit добавляю файлы на GitHub.(рис. 17).

```
aorumyancev@Ubuntu:~/work/study/2023-2024/Архитектура компьютера/arch-pc$ git ad d.
aorumyancev@Ubuntu:~/work/study/2023-2024/Архитектура компьютера/arch-pc$ git commit -m "Add files for lab04"
[master 10ea635] Add files for lab04
8 files changed, 290 insertions(+), 36 deletions(-)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
rewrite labs/lab04/report/Makefile (83%)
create mode 100644 labs/lab04/report/report.docx
create mode 100644 labs/lab04/report/Л04_Румянцев_отчёт.docx
create mode 100644 labs/lab04/report/Л04_Румянцев_отчёт.md
create mode 100644 labs/lab04/report/Л04_Румянцев_отчёт.pdf
create mode 100644 labs/lab04
aorumyancev@Ubuntu:~/work/study/2023-2024/Архитектура компьютера/arch-pc$
```

Рис. 4.16: Добавление файлов на GitHub

Отправляю файлы на сервер с помощью команды git push (рис. 17).

```
aorumyancev@Ubuntu:~/work/study/2023-2024/Архитектура компьютера/arch-pc$ git pu sh
Enumerating objects: 17, done.
Counting objects: 100% (17/17), done.
Delta compression using up to 6 threads
Compressing objects: 100% (12/12), done.
Writing objects: 100% (12/12), 372.60 KiB | 2.74 MiB/s, done.
Total 12 (delta 3), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (3/3), completed with 2 local objects.
To github.com:aorumyancev/study_2023-2024_arch-pc.git
61d6ba5..10ea635 master -> master
aorumyancev@Ubuntu:~/work/study/2023-2024/Apхитектура компьютера/arch-pc$
```

Рис. 4.17: Отправка файлов

5 Выводы

При выполнении данной лабораторной работы я освоил процедуры компиляции и сборки программ, написанных на ассемблере NASM.

6 Список литературы

1. Архитектура компьютера. Лабораторная работа №4