Annotated slides

2425-MA140 Engineering Calculus

Week 07, Lecture 3 The Fundamental Theorem of Calculus

Dr Niall Madden University of Galway

Thursday, 30 October, 2025

Suimeálaithe Tá tairisigh na suin	neila figtha ar lir.				Consta	Integrals nts of integration omitted
f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$	Γ	f(x)	$\int f(x)dx$
$x^v (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	cos² x	$\frac{1}{2} \left[x + \frac{1}{2} \sin 2x \right]$		$\frac{1}{x\sqrt{x^2-a^2}}$	$\frac{1}{a} \sec^{-1} \frac{x}{a}$
$\frac{1}{x}$	In x	sin ² x	$\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]$		$\frac{1}{\sqrt{x^2 + a^2}}$	$ \ln \frac{x + \sqrt{x^2 + a^2}}{a} $
e ^x e ^{ex}	$\frac{e^x}{a}e^{ax}$	$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\frac{x}{a}$		$\frac{1}{a^2-x^2}$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $
a^s	$\frac{a^n}{\ln a}$	$\frac{1}{x^2 + a^2}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$		$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $
cos.x	sin x			L	γ.s. – α	, "
sin x tan x	- cos x In sec x	Suimeáil	$\int u dv = u$	(ntegration by parts

h

Today's joke (with thanks to Julie M).

Me peeling potatoes

$$\sum_{k=1}^{n} f(x_k) \cdot \Delta x \qquad \int f(x) dx$$

MA140 — W07-3 2/24

The exciting topics that await us in today:

- 1 Recall from yesterday:
- 2 Fundamental Thm of Calculus: Part 1
- 3 FTC1+Chain Rule
- 4 Antiderivatives
 - Indefinite Integrals
 - Common functions
 - Properties
- 5 The Fundamental Thm of Calculus: Part 2
- 6 Exercises

See also: Sections 4.10 (Antiderivatives) and 5.3 (Fundamental Theorem of Calculus) of Calculus by Strang & Herman: math.libretexts.org/Bookshelves/Calculus/Calculus_(OpenStax)

Recall from yesterday:

Let f(x) be function defined on an interval [a, b]. The **definite** integral of f from a to b is

rom a to b is
$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} hf(x_i), \quad \text{"delta } x \text{"} = \text{"h"}$$

where h = (b-a)/n and $x_i = a+ih$. It is the area of the region in space bounded by y = 0, y = f(x), x = a, and x = b.

MA140 — W07-3 4/24

Recall from yesterday:

Given a function, f, we can define another, F as

$$F(x) = \int_{a}^{x} f(t)dt.$$

That is, the variable in F is the upper limit of integration on the right.

MA140 — W07-3 5/24

Recall from yesterday:

Example

Let $f(t) \equiv 1$, and $F(x) = \int_0^x f(t)dt$. Give a formula for F(x), using the "area" meaning of the definite integral.

Fundamental Thm of Calculus: Part 1

Fundamental Theorem of Calculus: Part 1 (FTC1)

Let f(x) be a continuous function on [a, b]. If as

$$F(x) = \int_{a}^{x} f(t)dt$$
, then $\left(\frac{dF}{dx}(x) = f(x)\right)$.

I.e., F'(x) = f(x) for $x \in [a, b]$.

Roughly: <u>f is the derivative its own integral</u>. You can find a proof in Section 5.3 of the textbook.

MA140 — W07-3 7/24

Fundamental Thm of Calculus: Part 1

Example

Let
$$g(x) = \int_1^x \frac{1}{t^3 + 1} dt$$
. Find $g'(x)$.

By the FTC 1:
$$g'(x) = \frac{1}{x^3+1}$$

Note: the correct answer is
$$\frac{1}{x^3+1}$$
 and not $\frac{1}{t^3+1}$

MA140 — W07-3 8/24

FTC1+Chain Rule

Sometimes the limit of integration is a more complicated function of x. In that case, we can apply the **Chain Rule**, along with the FTC1.

MA140 — W07-3 9/24

Antiderivatives

Definition: Antiderivative

A function F is an antiderivative of f on [a, b] if F'(x) = f(x) for all x in [a, b]. Thus,

f is the derivative of $F \Leftrightarrow F$ is an antiderivative of f.

Note: If F is an antiderivative of f, then the most general antiderivative of f is F(x) + C

where C is an arbitrary constant, called a constant of integration.

- ▶ The word "arbitrary" here means that any choice is valid.
- ► The derivative of *C* is zero.

MA140 — W07-3 10/24

Antiderivatives

Examples:

ightharpoonup F(x) = x + C is an antiderivative of $f(x) \equiv 1$.

Since
$$F'(x) = \frac{d}{dx}(x+c) = \frac{d}{dx}(x) + \frac{d}{dx}(c)$$

= 1 + 0 = 1

► $F(x) = x^2 + C$ is an antiderivative of f(x) = ??? ...

Differentiate:
$$F'(x) = \frac{d}{dx}(x^2+c) = 2x + 0 = 2x$$
So $f(x) = 2x$

► F(x) = ???? is an antiderivative of $f(x) = 3x^2$.

$$F(x) = x^3 + C$$
 then $F'(x) = 3x^2 + 0$

Antiderivatives

Examples

Find all antiderivatives of the following functions

(i)
$$f(x) = \frac{1}{x}$$
 for $x > 0$.
(ii) $f(x) = \sin(x)$
(iii) $f(x) = e^{x}$.

(ii)
$$f(x) = \sin(x)$$

(iii)
$$f(x) = e^x$$
.

(i)
$$F(x) = \ln(x) + C$$
 " $\ln(x)$ is the $F'(x) = \frac{1}{2C}$.

Natural Log of x "

(ii)
$$f(x) = \sin(x)$$
. Recall $\frac{d}{dx}(\cos(x) = -\sin(x))$
so take $F(x) = -\cos(x) + ($.
(iii) $F(x) = e^{x} + ($

MA140 — W07-3 12/24

Definition: indefinite integral

Given a function f, the **indefinite integral** of f, denoted

$$\int f(x) \, \mathrm{d}x$$

is the general antiderivative of f. That is, if F is an antiderivative of f, then

$$\int f(x) \, \mathrm{d}x = F(x) + C.$$

Examples:

$$\int 2x \, dx = x^2 + C$$

$$\int 2x \, dx = x^2 + C$$

$$\int 3x^2 \, dx = x^3 + C$$

Spotting the pattern we can deduce...

Power Rule of Integration

If
$$n \neq -1$$
, then
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int x^n \, \mathrm{d}x = \frac{\lambda}{n+1} + C$$

If
$$n=-1$$
, note that $\frac{x^{n+1}}{n+1} = \frac{x^0}{0}$?? But $\int \frac{1}{x} dx = \ln(x) + C$.

Note: For n = -1, we have

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C.$$

Here is a list of the antiderivatives of some common functions.

Suimeálaithe

Tá tairisigh na suimeála fágtha ar lár.

meararme

 $f(x) \qquad \int f(x)dx$ $\cos^2 x \qquad \frac{1}{2} \left[x + \frac{1}{2} \sin 2x \right]$ $\sin^2 x \qquad \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]$ $\frac{1}{\sqrt{a^2 - x^2}} \qquad \sin^{-1} \frac{x}{a}$ $\frac{1}{2} \cos^{-1} \frac{x}{a}$

Suimeáil na míreanna

 $\int u dv = uv - \int v du$

Integrals

Constants of integration omitted.

$$f(x) \qquad \int f(x)dx$$

$$\frac{1}{x\sqrt{x^2 - a^2}} \qquad \frac{1}{a}\sec^{-1}\frac{x}{a}$$

$$\frac{1}{\sqrt{x^2 + a^2}} \qquad \ln \left| \frac{x + \sqrt{x^2 + a^2}}{a} \right|$$

$$\frac{1}{a^2 - x^2} \qquad \frac{1}{2a}\ln \left| \frac{a + x}{a - x} \right|$$

$$\frac{1}{\sqrt{x^2 - a^2}} \qquad \ln \left| \frac{x + \sqrt{x^2 - a^2}}{a} \right|$$

Integration by parts

Properties of Integration

1. If k is a constant, then

$$\int kf(x) dx = k \int f(x) dx.$$

2. Integration is additive:

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$

$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx.$$

$$\int f(x) - g(x) dx = \int f(x) dx - \int g(x) dx.$$

Example

Evaluate the integral

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\int 2x^{2} + 9x^{2} dx = \int 2x^{2} dx + \int 9x^{2} dx \quad (Additive)$$

$$= 2 \int x^{2} dx + 9 \int x^{2} dx$$

$$= 2 \int \frac{x^{3}}{3} + C_{1} + 9 \frac{x^{8}}{8} + C_{2}$$

$$= \frac{2}{3} x^{3} + \frac{9}{8} x^{8} + C \quad (C = C_{1} + C_{2})$$

Example

Evaluate the integral

$$\int \frac{4}{1+x^2} \, \mathrm{d}x.$$

$$\int_{1+x^{2}}^{4} dx = 4 \int_{x^{2}+1}^{1} dx$$

$$= 4 \int_{x^{2}+a}^{2} dx \qquad a = 1$$

$$= 4 \cdot \frac{1}{a} \tan^{-1}(\frac{x}{a}) + C$$

$$= 4 \cdot \tan^{-1}(x) \cdot + C$$

MA140 — W07-3 19/24

The Fundamental Thm of Calculus: Part 2

Now that we know all about antiderivatves, we can see how the link to **definite integrals**

Theorem (The Fundamental Thm of Calculus, Part 2)

If f(x) is continuous on [a,b], and F(x) is any antiderivative of f(x), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Notation: We call write F(b) - F(a) as $F(x) \Big|_{x=a}^{x=b}$, or, more often, as $F(x) \Big|_{a}^{b}$.

MA140 — W07-3 20/24

The Fundamental Thm of Calculus: Part 2

Example: Show that
$$\int_{-1}^{1} (x^2 + 2) dx = \frac{14}{3}$$

$$f(0) = 2$$

$$f(0) = 2$$

$$f(x) = x^{2} + 2$$

$$\int_{-1}^{1} x^{2} + 2 \, dx = \int_{-1}^{1} x^{2} dx + 2 \int_{-1}^{1} \times dx$$

$$= \frac{1}{3} x^{3} \Big|_{-1}^{1} + 2 \Big|_{-1}^{1} = \frac{1}{3} - \left(-\frac{1}{3}\right) + 2 + 2$$

$$= \frac{14}{3} \left(\frac{1}{3}\right)$$
W07-3

The Fundamental Thm of Calculus: Part 2

Example: Show that
$$\int_{-1}^{1} (x^3 + x) dx = 0$$

Exer 7.3.1

Let $F(x) = \int_{x}^{2x} t \, dt$. Use the Fundamental Theorem of Calculus to evaluate F'(x).

Hint: we can split this into two integrals:

$$F(x) = \int_{x}^{2x} t \, dt = \int_{x}^{0} t \, dt + \int_{0}^{2x} t \, dt = -\int_{0}^{x} t \, dt + \int_{0}^{2x} t \, dt.$$

Now apply the FTC to each term, including the Chain Rule for the second.

MA140 — W07-3 23/24

Exercises

Exer 7.3.2

Evaluate the following integrals.

$$1. \int e^{2x} + \frac{1}{2x} \, \mathrm{d}x$$

$$2. \int \frac{3}{\sqrt{2-x^2}} \, \mathrm{d}x$$

Exer 7.3.3

Evaluate the definite integral $\int_{1}^{e} e^{2x} + \frac{1}{2x} dx$

Exer 7.3.4

Find two values of q for which $\int_{0}^{1} 2x + x^{2} dx = 0.$

MA140 — W07-3 24/24