*GX*____

Ollscoil na hÉireann, Gaillimh National University of Ireland, Galway Semester I Examinations 2017/ 2018

Exam Code(s) 4BCT, 1MDM, 4BS

Exam(s) B.Sc. in Computer Science & Information Technology

M.A. in Digital Media

B.Sc.

Module Code(s) CT404, CT336

Module(s) Graphics & Image Processing

Paper No.

Repeat Paper

External Examiner(s) Dr. Jacob Howe Internal Examiner(s) *Dr. Sam Redfern

Dr. Michael Schukat

Instructions: Answer any 3 questions.

All questions carry equal marks.

Duration 2 hours **No. of Pages** 5

Department(s)Information TechnologyCourse Co-ordinator(s)Dr. Des Chambers

Requirements:

MCQ Handout Statistical Tables Graph Paper Log Graph Paper Other Material

Q.1. (Graphics)

- (i) Discuss the fundamental mechanisms by which modern "hardware accelerated" graphics adapters provide improved graphics capabilities. [8]
- (ii) Many of the techniques used in real-time 3D graphics programming attempt to maximise the realism of the rendered scene while using a minimal number of polygons. With specific reference to this 'polygon budget', and using diagrams where appropriate, discuss each of the following four techniques:
 - Back-face culling [3]
 - Texture mapping and MipMapping [3]
 - Bump mapping and normal mapping [3]
 - Billboards [3]

Q.2. (Graphics)

(i) Presuming that the unit cube shown below is viewed using a 1-point perspective projection with the centre of projection located on the z axis at co-ordinate (0, 0, 30), calculate the (x, y) viewport (screen) co-ordinates of the 8 vertices.

For your reference, this matrix applies1-point perspective projection where the centre of projection lies on the z axis at co-ordinate (0, 0, Zcp):

$$[\mathbf{M}_{PERZ}] = \begin{bmatrix} & 1 & & 0 & & 0 & & 0 \\ & 0 & & 1 & & 0 & & 0 \\ & 0 & & 0 & & 0 & & -1/z_{cp} \\ & 0 & & 0 & & 0 & & 1 \end{bmatrix}$$

- (ii) Two powerful techniques for rendering shadows in realtime 3D environments are <u>radiosity</u>, and <u>ambient occlusion</u>. Explain these techniques, drawing attention to their suitability for pre-runtime computation. [6]
- (iii) With respect to 3D graphics rendering, define the terms: specular colour, diffuse colour, ambient lighting. Illustrate each term with a diagram. [6]

Q.3. (Graphics)

- (i) Describe the use of <u>extrusion</u> in X3D, referring to each of the seven fields used by the Extrusion node. Note that extrusion and other useful nodes from the X3D language are summarised on the final page of this exam paper. [5]
- (ii) The model pictured on the right is of an egg timer. Write X3D code to create an object similar to this. You should approximate the materials as well as the geometry. [8]
- (iii) Explain how you could modify this X3D code in order to animate the egg timer, so that sand appears to flow from the top cone into the bottom cone. You do not need to write out the full X3D code in your answer, however do be specific about the nodes you would use to do this.

Q.4. (Image Processing)

- (i) With respect to morphological image processing, outline the following operations: erosion, dilation, opening, and closing, as applied to binary images. [8]
- (ii) The image below is of blood cells, and it is required that a fully automated system is developed to accurately count the number of cells in images such as this. Present a suitable and robust set of image processing algorithms for this task. Explain why each step you have chosen is appropriate. [12]

Q.5. (Image Processing)

- (i) Edge Detection is an important image processing tool for identifying objects of interest in a scene. Discuss the following two edge detection techniques, indicating circumstances under which each would be useful:
 - compass edge detection [4]
 - boundary tracking (e.g. the Canny technique) [4]
- (ii) Discuss one common approach to improving an edge-detected image, prior to segmentation and further analysis. [4]
- (iii) The thresholded (i.e. binary) image below is of fungal growth in a laboratory. Presuming that the total length of growth is to be monitored over time via a series of such images, provide a suitable and robust set of algorithms for automating this task. Explain why each step you have chosen is appropriate. [8]

Some useful X3D nodes:

Node	Important Fields and Nested Nodes	
Shape	Nested Nodes: Appearance, Geometry Nodes (Box,	
	Sphere, Cone, Cylinder, Text, Extrusion, etc.)	
Appearance	Nested Nodes: Material, ImageTexture	
Material	Fields: diffuseColor, specularColor, emissiveColor,	
	ambientIntensity, transparency, shininess	
ImageTexture	Fields: url	
Transform	Fields: translation, rotation, scale, center.	
	Nested Nodes: Other Transforms, Shapes, Sensors	
TimeSensor	Fields: enabled, startTime, stopTime, cycleInterval,	
	loop	
PositionInterpolator	Fields: key, keyValue	
OrientationInterpolator	Fields: key, keyValue	
Extrusion	Fields: crossSection, spine, scale, orientation,	
	beginCap, endCap, creaseAngle	
Box	Fields: size	
Sphere	Fields: radius	
Cylinder	Fields: radius, height, side, top, bottom	
Cone	Fields: height, bottomRadius, side, bottom	
PointLight	Fields: on, location, radius, intensity,	
	ambientIntensity, color, attenuation	
ROUTE	Fields: fromNode, fromField, toNode, toField	

Some useful methods/properties of the Canvas 2D Context object:

Method/Property	Arguments/Values	Notes
fillRect	(Left, Top, Width, Height)	Draw a filled rectangle
beginPath	None	Start a stroked path
moveTo	(X, Y)	Move the graphics cursor
lineTo	(X, Y)	Draw a line from graphics
		cursor
stroke	None	End a stroked path
fillStyle	="rgb(R,G,B)"	Set fill colour
strokeStyle	="rgb(R,G,B)"	Set line colour
save	None	Save the current coordinate
		system
restore	None	Restore the last saved coord
		system
translate	(X, Y)	Translate the coordinate system
rotate	(angle)	Rotate the coordinate system
		clockwise, with angle in
		radians
scale	(X, Y)	Scale the coordinate system
		independently on the X and Y
		axes