NOTES ON SET THEORY

XINGZHI HUANG

1. Preliminaries

Definition 1.1 (Syntax of one-order logic). A **signature** σ is a set of relation symbols, function symbols and constant symbols, each with a specified arity. A **first-order language** \mathcal{L} over a signature σ consists of:

- 1. a countable set of variables x_0, x_1, x_2, \ldots
- 2. the symbols in σ
- 3. the logical symbols $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists, =$
- 4. the punctuation symbols (,), and ,.

The terms and formulas of \mathcal{L} are defined inductively as follows:

- 1. every variable and constant symbol is a term
- 2. if f is an n-ary function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term
- 3. if R is an n-ary relation symbol and t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is an atomic formula
- 4. if φ and ψ are formulas, then so are $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$ and $(\varphi \leftrightarrow \psi)$
 - 5. if φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.

A variable x is free in a formula φ if it is not bound by a quantifier in φ . A formula with no free variables is called a sentence.

2. Axioms

Axiom 2.1 (Axiom of Extensionality). Two sets are equal if and only if they have the same elements:

$$\forall A \forall B (\forall x (x \in A \iff x \in B) \iff A = B).$$

Axiom 2.2 (Axiom of Empty Set). There exists a set with no elements, denoted by \emptyset .

$$\exists A \forall x (x \notin A).$$

Axiom 2.3 (Axiom of Pairing). For any sets A and B, there exists a set $\{A, B\}$ whose elements are exactly A and B.

$$\forall A \forall B \exists C \forall x (x \in C \iff (x = A \lor x = B)).$$

Axiom 2.4 (Axiom of Union). For any sets A and B, there exists a set $A \cup B$ whose elements are exactly the elements of A or B.

$$\forall A \forall B \exists C \forall x (x \in C \iff (x \in A \lor x \in B)).$$

Axiom 2.5 (Axiom of Power Set). For any set A, there exists a set $\mathcal{P}(A)$ whose elements are exactly the subsets of A.

$$\forall A \exists B \forall x (x \in B \iff x \subseteq A).$$

Axiom 2.6 (Subset Axiom Schema/Axiom of Separation). For any set A and any formula $\varphi(x, t_0, \ldots, t_n)$ not involving A, there exists a set whose elements are exactly the elements of A that satisfy $\varphi(x, t_0, \ldots, t_n)$.

$$\forall t_0, \dots, t_n \forall A \exists B \forall x (x \in B \iff (x \in A \land \varphi(x, t_0, \dots, t_n))).$$

Remark 2.7 (Intersection and Union). We can define the intersection/union of a set of sets A as follows(Not strictly):

$$\bigcap_{B\in A}B:=\{x:\forall B\in A(x\in B)\},\quad \bigcup_{B\in A}B:=\{x:\exists B\in A(x\in B)\}.$$

Remark 2.8 (Function). A function f from a set A to a set B, denoted by f: $A \to B$, is a subset of $A \times B$ such that for every $a \in A$, there exists a unique $b \in B$ such that $(a,b) \in f$. The set A is called the domain of f and the set B is called the codomain of f. The element b is called the image of a under f, denoted by f(a).

Axiom 2.9 (Axiom of Choice). For any relation R, there exists a function f such that for every x, if there exists a y where dom(f) = dom(R) and $ran(f) \subseteq ran(R)$, and $(x, f(x)) \in R$.

3. Natural Numbers

Definition 3.1. Let S be a set, we define the successor of S as $S^+ = S \cup \{S\}$.

Remark 3.2. Denote $0 = \emptyset$, $1 = 0^+ = \{\emptyset\}$, $2 = 1^+ = \{\emptyset, \{\emptyset\}\}$, $3 = 2^+ = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$, and so on.

Definition 3.3 (Inductive Set). A set A is called inductive if $\emptyset \in A$ and for every $x \in A$, $x^+ \in A$.

Axiom 3.4 (Axiom of Infinity). There exists an inductive set.

$$\exists A(\emptyset \in A \land \forall x (x \in A \to x^+ \in A)).$$

Theorem 3.5. There exists a set ω consisting of exactly the natural numbers.

Proof. Suppose A is an inductive set. We use the subset axiom instead of the intersection because the set of all inductive sets may not exist. Let

$$\omega = \{x \in A : \forall B(B \text{ is inductive} \to x \in B)\}.$$

We can show that every element in ω is either \emptyset or the successor of an element in ω . Thus, ω consists of exactly the natural numbers.

Theorem 3.6. The set ω is the smallest inductive set, i.e., ω is an inductive set and for any inductive set A, $\omega \subseteq A$.

Definition 3.7. A set A is called transitive if it satisfies the following equivalent conditions:

- 1. for every $x \in A$, if $y \in x$, then $y \in A$;
- 2. $A \subseteq \mathcal{P}(A)$;
- 3. $\bigcup A \subseteq A$.

Theorem 3.8. Every natural number is a transitive set.

4. Arithmetic of Natural Numbers

Theorem 4.1. Let A be a set, $F: A \to A$, $a \in A$. There exists a unique function $f: \omega \to A$ such that.

$$f(0) = a, \quad f(n^+) = F(f(n))$$

for every $n \in \omega$.

Corollary 4.2. Let \mathbb{N} be the set of natural numbers with $e \in \mathbb{N}$. There exist unique functions $\sigma : \mathbb{N} \to \mathbb{N}$ such that:

- 1. $\sigma(0) = e;$
- 2. $\sigma(n^+) = (\sigma(n))^+$ for every $n \in \mathbb{N}$.

Definition 4.3. We can define $A_m : \mathbb{N} \to \mathbb{N}$ as follows:

$$A_m(0) = m, \quad A_m(n^+) = (A_m(n))^+$$

Definition 4.4. For $m, n \in \mathbb{N}$, we define the addition of m and n as:

$$m+n=A_m(n).$$

where $+(-,-): \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is a function defined by recursion.

Theorem 4.5. The addition on \mathbb{N} satisfies the following properties:

- 1. m + 0 = m for every $m \in \mathbb{N}$;
- 2. $m + n^+ = (m+n)^+$ for every $m, n \in \mathbb{N}$;
- 3. m+n=n+m for every $m,n\in\mathbb{N}$;
- 4. (m+n)+k=m+(n+k) for every $m,n,k\in\mathbb{N}$.

Definition 4.6. We can define $M_m: \mathbb{N} \to \mathbb{N}$ as follows:

$$M_m(0) = 0, \quad M_m(n^+) = M_m(n) + m$$

Theorem 4.7. The multiplication on \mathbb{N} satisfies the following properties:

- 1. $m \cdot 0 = 0$ for every $m \in \mathbb{N}$;
- 2. $m \cdot n^+ = m \cdot n + m$ for every $m, n \in \mathbb{N}$;
- 3. $m \cdot n = n \cdot m \text{ for every } m, n \in \mathbb{N};$
- 4. $(m \cdot n) \cdot k = m \cdot (n \cdot k)$ for every $m, n, k \in \mathbb{N}$;
- 5. $m \cdot (n+k) = m \cdot n + m \cdot k$ for every $m, n, k \in \mathbb{N}$.

5. Integers

Definition 5.1 (Equivalence Relation). A relation R on a set A is called an equivalence relation if it satisfies the following properties:

- 1. Reflexivity: for every $a \in A$, $(a, a) \in R$;
- 2. Symmetry: for every $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$;
- 3. Transitivity: for every $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

Definition 5.2 (Equivalence Class). Let R be an equivalence relation on a set A. For every $a \in A$, the equivalence class of a is defined as:

$$[a] = \{b \in A : (a, b) \in R\}.$$

Definition 5.3. A function $f: A \to B$ where A and B are sets equipped with equivalence relations R_A and R_B respectively is called compatible with the equivalence relations if for every $a_1, a_2 \in A$, if $(a_1, a_2) \in R_A$, then $(f(a_1), f(a_2)) \in R_B$.

Theorem 5.4. Let $f: A \to B$ be a function compatible with the equivalence relations R_A and R_B . Then f induces an unique well-defined function $\bar{f}: A/R_A \to B/R_B$ defined by:

$$\bar{f}([a]) = [f(a)]$$

for every $[a] \in A/R_A$.

Definition 5.5 (Integers). We define the set of integers \mathbb{Z} as the set of equivalence classes of the relation R on $\mathbb{N} \times \mathbb{N}$ defined by:

$$((a,b),(c,d)) \in R \iff a+d=b+c.$$

Definition 5.6 (Addition). We define the addition on \mathbb{Z} as follows:

$$[(a,b)] + [(c,d)] = [(a+c,b+d)]$$

for every $[(a,b)], [(c,d)] \in \mathbb{Z}$.

Proposition 5.7. The addition on \mathbb{Z} is well-defined and satisfies the following properties:

- 1. x + 0 = x for every $x \in \mathbb{Z}$;
- 2. x + y = y + x for every $x, y \in \mathbb{Z}$;
- 3. (x+y)+z=x+(y+z) for every $x,y,z\in\mathbb{Z}$.
- 4. For every $x \in \mathbb{Z}$, there exists $-x \in \mathbb{Z}$ such that x + (-x) = 0.
- 5. [(0,x)] + [(0,y)] = [(0,x+y)] for every $x,y \in \mathbb{N}$.

Definition 5.8. We define the multiplication on \mathbb{Z} as follows:

$$[(a,b)] \cdot [(c,d)] = [(ac+bd, ad+bc)]$$

for every $[(a, b)], [(c, d)] \in \mathbb{Z}$.

Proposition 5.9. The multiplication on \mathbb{Z} is well-defined and satisfies the following properties:

- 1. $x \cdot 1 = x$ for every $x \in \mathbb{Z}$;
- 2. $x \cdot y = y \cdot x$ for every $x, y \in \mathbb{Z}$;
- 3. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for every $x, y, z \in \mathbb{Z}$;
- 4. $x \cdot (y+z) = x \cdot y + x \cdot z$ for every $x, y, z \in \mathbb{Z}$;
- 5. $[(0,x)] \cdot [(0,y)] = [(0,xy)]$ for every $x, y \in \mathbb{N}$.

Definition 5.10. We define the order relation on \mathbb{Z} as follows:

$$[(a,b)] < [(c,d)] \iff b+c < a+d$$

for every $[(a,b)], [(c,d)] \in \mathbb{Z}$.

Proposition 5.11. The order relation on \mathbb{Z} is well-defined and satisfies the following properties:

- 1. For every $x, y \in \mathbb{Z}$, exactly one of the following holds: x < y, x = y, x > y;
- 2. For every $x, y, z \in \mathbb{Z}$, if x < y and y < z, then x < z;
- 3. For every $x, y, z \in \mathbb{Z}$, if x < y, then x + z < y + z;
- 4. For every $x, y, z \in \mathbb{Z}$, if 0 < x and 0 < y, then $0 < x \cdot y$.

6. Rational Numbers

Definition 6.1. We define the equivalence relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as follows:

$$((a,b),(c,d)) \in R \iff ad = bc.$$

Definition 6.2. We define the set of rational numbers \mathbb{Q} as the set of equivalence classes of the relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$.

Definition 6.3 (Addition). We define the addition on \mathbb{Q} as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc,bd)]$$

for every $[(a,b)], [(c,d)] \in \mathbb{Q}$.

Definition 6.4 (Multiplication). We define the multiplication on \mathbb{Q} as follows:

$$[(a,b)] \cdot [(c,d)] = [(ac,bd)]$$

for every $[(a,b)],[(c,d)] \in \mathbb{Q}$.

Definition 6.5 (Order Relation). We define the order relation on \mathbb{Q} as follows:

$$[(a,b)] < [(c,d)] \iff ad < bc$$

for every $[(a,b)], [(c,d)] \in \mathbb{Q}$.

7. Real Numbers

Strategy 1: Dedekind Cuts

Definition 7.1 (Dedkind Set). A subset A of \mathbb{Q} is called a Dedekind set if it satisfies the following properties:

- 1. A is non-empty and not equal to \mathbb{Q} ;
- 2. for every $x, y \in \mathbb{Q}$, if $x \in A$ and y < x, then $y \in A$;
- 3. for every $x \in A$, there exists $y \in A$ such that x < y.

Definition 7.2 (Real Numbers). We define the set of real numbers \mathbb{R} as the set of all Dedekind sets or the set of all Cauchy sequences in \mathbb{Q} .

Strategy 2: Cauchy Sequences

Definition 7.3 (Cauchy Sequence). A sequence (a_n) in \mathbb{Q} is called a Cauchy sequence if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for every m, n > N, $|a_n - a_m| < \epsilon$.

Definition 7.4. We define the equivalence relation R on the set of Cauchy sequences in \mathbb{Q} as follows:

$$((a_n),(b_n)) \in R \iff \lim_{n \to \infty} |a_n - b_n| = 0.$$

Definition 7.5 (Real Numbers). We define the set of real numbers \mathbb{R} as the set of equivalence classes of the relation R on the set of Cauchy sequences in \mathbb{Q} .

References