	L#	Hits	Search Text	DBs
1	L1	360962	<pre>(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item)</pre>	USPAT; US-PGPUB
2	L2	360976	<pre>(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item suboperand consituent)</pre>	USPAT; US-PGPUB
3	L3	271330	(portion part set subset) near20 (operand pack\$2 composite compound)	USPAT; US-PGPUB
4	L4	1556	2 near30 3	USPAT; US-PGPUB
5	L5	325714	(shuff1\$3 reshuff1\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near10 (element item suboperand consituent)	USPAT; US-PGPUB
6	L6	237043	<pre>(portion part set subset) near10 (operand pack\$2 composite compound)</pre>	USPAT; US-PGPUB
7	L7	875	5 near20 6	USPAT; US-PGPUB
8	L11	150	7 and (operand data).ab,ti.	USPAT; US-PGPUB
9	L12	57	4 and (operand data).ab,ti. not 11	USPAT; US-PGPUB
10	L13	226532	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item suboperand consituent)	EPO; JPO; DERWENT; IBM_TDB
11	L14	115651	(portion part set subset) near20 (operand pack\$2 composite compound)	EPO; JPO; DERWENT; IBM_TDB
12	L15	575	13 near30 14	EPO; JPO; DERWENT; IBM_TDB
13	L16	49	15 and (operand data).ab,ti.	EPO; JPO; DERWENT; IBM_TDB

274'tt9'S

Ŕ

1661 'T Inf

59-

	Docum ent ID	σ	Title	Current OR
1	US 20030 20041 9 A1		Non-copy shared stack and register file device and dual language processor structure using the same	712/202
2	US 20030 19352 5 A1	⊠	Expedited selection of items from a list within a drop down menu of an eye diagram analyzer	345/810
3	US 20030 18530 9 A1	⊠	Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel	375/257
4	US 20030 17710 5 A1	⊠	Gene expression programming algorithm	706/13
5	US 20030 15440 0 A1	☒	Method and network element for providing secure access to a packet data network	713/201
6	US 20030 15207 6 A1	☒	Vertical instruction and data processing in a network processor architecture	370/389
7	US 20030 13121 9 A1	☒	Method and apparatus for unpacking packed data	712/225
8	US 20030 08089 1 A1	☒	Resistance changeable device for data transmission system	341/155
9	US 20030 06545 9 A1	×	Expandable intelligent electronic device	702/62
10	US 20030 02075 7 A1	⊠	DISPLAY CONTROL APPARATUS AND DISPLAY CONTROL SYSTEM FOR SWITCHING CONTROL OF TWO POSITION IDICATION MARKS	345/790
11	US 20030 01670 3 A1	☒	Method, device and software for digital inverse multiplexing	370/535
12	US 20020 19674 8 A1	⊠	Radio link and method for operating it	370/310
13	US 20020 17820 0 A1	⊠	Circuit for selectively providing maximum or minimum of a pair of floating point operands	708/495
14	US 20020 15699 7 A1	⊠	Method for mapping instructions using a set of valid and invalid logical to physical register assignments indicated by bits of a valid vector together with a logical register list	712/217
15	US 20020 12410 4 A1	⊠	Network element and a method for preventing a disorder of a sequence of data packets traversing the network	709/238
16	US 20020 12222 8 A1	⊠	Network and method for propagating data packets across a network	398/98
17	US 20020 12222 5 A1	Ø	Multiport wavelength division multiplex network element	398/34

Sheet 155 of 157

	Docum ent ID	ט	Title	Current OR
18	US 20020 11214 7 A1	⊠	Shuffle instructions	712/223
19	US 20020 11198 7 A1	Ø	Data exchange system comprising portable data processing units	709/201
20	US 20020 09770 0 A1	⊠	Apparatus, and associated method, for utilizing antenna information determinative of antenna operation in a wireless mesh network	370/338
21	US 20020 09478 0 A1	Ø	Method and apparatus for signaling among a plurality of agents	455/41. 2
22	US 20020 08770 9 A1	Ø	Stream processing node	709/231
23	US 20020 08557 4 A1	×	Stream switch fabric	370/412
24	US 20020 06934 6 A1	⊠	METHOD FOR MAPPING INSTRUCTIONS USING A SET OF VALID AND INVALID LOGICAL TO PHYSICAL REGISTER ASSIGNMENTS INDICATED BY BITS OF A VALID VECTOR TOGETHER WITH A LOGICAL REGISTER LIST	712/216
25	US 20020 06773 1 A1	Ø	Dynamic data tunnelling	
26	US 20020 06601 3 A1	⊠	Maintaining end-to-end synchronization on a telecommunications connection	713/151
27	US 20020 06364 1 A1	×	Dual mode data compression for operating code	341/87
28	US 20020 06233 1 A1	⊠	A METHOD AND APPARATUS FOR COMPUTING A PACKED SUM OF ABSOLUTE DIFFERENCES	708/524
29	US 20020 06099 1 A1	Ø	Method and apparatus for improving the transmission quality in a packet-oriented data transmission network	370/286
30	US 20010 05401 5 A1	⊠	Method for facilitating the exchange of information over a computer network	705/26
31	US 20010 05315 0 A1	×	Packet processor with programmable application logic	370/392
32	US 20010 04205 8 A1	⊠	APPARATUS AND METHOD FOR MANAGING MEMORY USE BY SOFTWARE OBJECTS	707/1
33	US 20010 01864 6 A1	⊠	USB simulation apparatus and storage medium	703/13
34	US 66282 23 B2	☒	esistance changeable device for data transmission system 3	
35	US 65742 44 B1	⊠	Determining time stamps in a data acquisition system	370/503

	Docum ent	ט	Title	Current
	US US		Method and apparatus for load apportionment among physical	
36	65530 05 B1 US	☒	interfaces in data routers	370/285
37	65457 20 B1	⊠	Method for the display of teletext headers	348/468
38	US 65386 75 B2	☒	Display control apparatus and display control system for switching control of two position indication marks	345/856
39	US 65164 06 B1	☒	Processor executing unpack instruction to interleave data elements from two packed data	712/225
40	US 64771 85 B1	☒	Demultiplexing and decoding apparatus for coded audio and video data	370/536
41	US 64386 76 B1	☒	Distance controlled concatenation of selected portions of elements of packed data	712/22
42	US 64112 27 B1	☒	Dual mode data compression for operating code	341/65
43	US 64053 04 B1	☒	Method for mapping instructions using a set of valid and invalid logical to physical register assignments indicated by bits of a valid vector together with a logical register list	712/216
44	US 63856 45 B1	☒	Data exchange system comprising portable data processing units	709/208
45	US 63779 70 B1	☒	Method and apparatus for computing a sum of packed data elements using SIMD multiply circuitry	708/603
46	US 63667 32 B1	☒	Machine readable recording medium, reproduction apparatus, and method for setting pre-reproduction parameters and post-reproduction parameters for video objects	386/95
47	US 63567 07 B1	☒	Multimedia optical disk, reproduction apparatus and method for achieving variable scene development based on interactive control	386/95
48	US 63269 67 B1	☒	Image creating apparatus, image creating method, and computer-readable recording medium containing image creating program	345/427
49	US 63112 80 B1	☒	Low-power memory system with incorporated vector processing	713/320
50	US 62955 97 B1	☒	Apparatus and method for improved vector processing to support extended-length integer arithmetic	712/8
51	US 62887 23 B1	☒	Method and apparatus for converting data format to a graphics card	345/644
52	US 62818 61 B1	×	Spatial light modulator and directional display	345/32
53	US 62566 34 B1	☒	Method and system for purging tombstones for deleted data items in a replicated database	707/100
54	US 62438 03 B1	⊠	Method and apparatus for computing a packed absolute differences with plurality of sign bits using SIMD add circuitry	712/210
55	US 62364 10 B1	⊠	Efficient methods for the evaluation of a graphical programming language	345/440
56	US 62264 46 B1	☒	Machine readable recording medium, reproduction apparatus and method for controlling selection of menu items within a video object	386/95
57	US 61853 65 B1	⊠	Multimedia optical disk, reproduction apparatus and method for achieving variable scene development based on interactive control	386/95
58	US 61484 27 A	⊠	Method and apparatus for test data generation	714/738

	Docum ent ID	ט	Title	Current OR		
59	US 61225 92 A	Ø	Navigation apparatus with enhanced positional display function	701/201		
60	US 61216 34 A	☒	Nitride semiconductor light emitting device and its manufacturing method	257/86		
61	US 61158 12 A	Ø	Method and apparatus for efficient vertical SIMD computations	712/300		
62	US 60946 56 A	×	Data exchange system comprising portable data processing units	707/100		
63	US 60726 67 A	Ø	Method and apparatus for analysis of magnetic characteristics of magnetic device, magnetic head, and magnetic recording and reproducing apparatus	360/110		
64	US 60526 90 A	⊠	Coherent data structure with multiple interaction contexts for a smart card	707/101		
65	US 60414 04 A	⊠	Dual function system and method for shuffling packed data elements	712/210		
66	US 60382 12 A	⊠	Method and system for optimizing the connection set up time in high speed communication networks for recovering from network failure	370/216		
67	US 60321 70 A	×	Long instruction word controlling plural independent processor operations	708/620		
68	US 60237 59 A	×	System for observing internal processor events utilizing a pipeline data path to pipeline internally generated signals representative of the event	712/227		
69	US 60231 47 A	×	Hand held computerized data collection terminal with rechargeable battery pack sensor and battery power conservation	320/114		
70	US 60141 47 A		Computer machine architecture for creating images from graphical elements and a method of operating the architecture	345/620		
71	US 60119 19 A	⊠	Method of providing efficiency to a graphical programming language with alternative form determination and cost of execution estimation	717/114		
72	US 60088 12 A	Ø	Image output characteristic setting device	345/418		
73	US 59908 30 A	⊠	Serial pipelined phase weight generator for phased array antenna having subarray controller delay equalization	342/368		
74	US 59387 19 A	×	Navigation apparatus with enhanced positional display function	701/207		
75	US 59366 77 A	⊠	Microbuffer used in synchronization of image data	348/512		
76	US 59205 41 A	⊠	Data disc having both data and data retrieval information stored thereon and method for retrieving data recorded on the data disc	369/275 .3		
77	US 59150 67 A	⊠	Multimedia optical disc facilitating branch reproduction to parental lock sections using reduced control information and a reproducing device for said disc	386/70		
78	US 59095 88 A	☒	Processor architecture with divisional signal in instruction decode for parallel storing of variable bit-width results in separate memory locations	712/23		
79	US 59095 62 A	Ø	ackup FIFO in-line storage			
80	US 59076 91 A	Ø	al pipelined interconnect 7			
81	US 59076 58 A	Ø	Multimedia optical disk, reproduction apparatus and method for achieving variable scene development based on interactive control	386/95		

AIDEO DECOMBREZZION

No. 08/473,813 filed on Jun. 7, 1995. This application is a divisional of U.S. application Ser.

The present invention relates generally to a new and INLISODUCITON

 serial pipeline processing system of the present invensystem for decoding a plurality of MPEC audio and video 10 signals and, more particularly, to a new and improved improved system for decoding a plurality of audio and video

reconfigurable pipeline processor. adaptive decompression circuits and the like positioned as a form of control tokens and data tokens, to a plurality of unique and specialized interactive interfacing tokens, in the tion comprises a single two-wire bus used for carrying

PRIOR ART

fively. greater and lesser importance to image reproduction respecsequences correspond to compressed video data of relatively sequences wherein the high and low priority codeword the codewords CW into high and low priority codeword to the respective channels. Thereafter the processor parses determines the number of bits in each block to be allocated the number of bits in predetermined blocks of data and processor, responsive to the codewords CW and T, counts represented by codewords CW. The priority selection data and associated codewords T. defining the types of data cally layered codewords CW representing compressed video to high definition video source signals provides hierarchichannels for transmission. A compression circuit responsive compressed video codewords between high and low priority mission includes a priority selection processor for parsing encoding/decoding a HDTV signal for e.g. terrestrial trans-U.S. Pat. No. 5,111,292 discloses an apparatus for

processor and to the compute modules with a second bus. comprises a shared memory which is coupled to the host the compute modules and a host processor. The device memory, and an arbitration mechanism. A first bus couples modules has a processor, dual port memory, scratch-pad compute modules coupled in parallel. Each of the compute modules, in a preferred embodiment, for a total of four 724. The apparatus comprises a plurality of compute One prior art system is described in U.S. Pat. No. 5,216,

the compact disc during playback, thereby avoiding unpreprovide an average number selected to minimize pauses of data determined by a reverse frame sequence analysis to of bytes per frame is withered by the addition of auxiliary distributions and formatted to form data frames. The number variable length coded according to their respective statistical the data stream. The data stream segments are individually according to fill code type and placed in other segments of amplitude indications for the regions are grouped together segment of a data stream. Region fill codes conveying pixel locations of the regions are grouped together in a first thresholds. Region descriptive codes conveying the size and decoding time estimates are made to optimize compression optimum fill coding methods specific to each region. Region regions of a frame are individually analyzed to select at conventional video frame rates. During compression, transmission, recorded on compact disc media and decoded digital video signal that is compressed, formatted for U.S. Pat. No. 4,785,349 discloses a full motion color

dictable seek mode latency periods characteristic of compact

subsequent display. and decoded region pixels are stored in a bit map for the fill code type (e.g., relative, absolute, dyad and DPCM) plurality of region specific decoders selected by detection of s descriptive data and applied with region fill codes to a data stream. Region location data is derived from region rately variable length decoding individual segments of the sive to statistical information in the code stream for sepadiscs. A decoder includes a variable length decoder respon-

can be written back into the image store with shifted with a factor greater than or less than I of the luminance and can be read out in blocks of variable size, can be amplified that the content of the image store in the coder and decoder each operated with feed back to themselves in a manner such in the coder as well as the image store in the decoder are way for all picture elements (pixels). Both the image store image store of a decoder at the receiver store, in the same an into the image store of a coder at the transmitter and in the half-tone expressed as a defined luminance value is written the system, a uniform, prescribed gray scale value or picture acquired quad-tree division structure. Upon initialization of an amplification factor, a shift factor, and an adaptively $_{\rm 15}$ and whereby the frame-to-frame information is composed of coded at time t-1 is present in an image store as a reference, coded, whereby a predecessor frame from a scene already signals, whereby a picture signal supplied at time is to be model-assisted reduction of image data for digital television U.S. Pat. No. 4,922,341 discloses a method for scene-

addresses, whereby the blocks of variable size are organized

tional error check data. Thereafter, the high and low priority applied to a forward error check circuit for applying addidetection check bits. The respective transport blocks are port block includes a header, codewords CW and error high and low priority codewords, respectively. Each transsequences, forms high and low priority transport blocks of processor, responsive to the high and low priority codeword tance to image reproduction respectively. A transport pressed video data of relatively greater and lesser impor-40 and low priority codeword sequences correspond to comhigh and low priority codeword sequences wherein the high the codewords CW and T, parses the codewords CW into the codewords CW. A priority selection circuit, responsive to ated codewords T, defining the types of data represented by words CW representing compressed video data and associsource signals for providing hierarchically layered codea compression circuit responsive to high definition video encoding/decoding an HDTV signal. The apparatus includes U.S. Pat. No. 5,122,875 discloses an apparatus for according to a known quad tree data structure.

opposite field of data for unavailable data may be used to ing the even and odd fields of data and substituting the unavailable odd/even field data. Independently decompressnot available, even/odd field data is substituted for the ing intervals when valid decompressed odd/even field data is odd and even fields are independently decompressed. Durpression modes and then interleaved for transmission. The 55 compressed in sequences of intraframe and interframe comodd and even fields of the video signal are independently system for decompressing compressed image data wherein U.S. Pat. No. 5,146,325 discloses a video decompression modulates respective carriers for transmission. 50 data are applied to a modem wherein quadrature amplitude

video data into transport blocks for signal transmission. The system that includes apparatus for segmenting encoded U.S. Pat. No. 5,168,356 discloses a video signal encoding start-up and channel changes.

advantage to reduce image display latency during system

	Docum ent ID	ŭ	Title	Current OR
82	89 A	×	Packet network interface	370/232
83	US 58929 60 A	Ø	Method and computer system for processing a set of data elements on a sequential processor	712/7
84	US 58807 40 A	⊠	System for manipulating graphical composite image composed of elements selected by user from sequentially displayed members of stored image sets	345/629
85	US 58780 54 A	Ø	Method and apparatus for test data generation	714/739
86	US 58600 19 A	☒	Data driven information processor having pipeline processing units connected in series including processing portions connected in parallel	712/26
87	US 58597 89 A	×	Arithmetic unit	708/603
88	US 58191 01 A	☒	Method for packing a plurality of packed data elements in response to a pack instruction	712/22
89	US 58060 68 A	⊠	Document data processor for an object-oriented knowledge management system containing a personal database in communication with a packet processor	707/103 R
90	US 58025 19 A	Ø	Coherent data structure with multiple interaction contexts for a smart card	707/100
91	US 57937 56 A	☒	Method and apparatus for organizing and recovering information communicated in a radio communication system	370/311
92	US 57908 67 A	☒	Compiler with extended redundant copy elimination	717/155
93	US 57782 50 A	⊠	Method and apparatus for dynamically adjusting the number of stages of a multiple stage pipeline	712/32
94	US 57648 73 A	⊠	Lazy drag of graphical user interface (GUI) objects	345/769
95	US 57451 21 A	Ø	Methods and apparatus for optimizing the composition of graphical elements	345/619
96	US 57428 79 A	Ø	Method and apparatus for reproducing documents with variable information	399/139
97	US 57244 94 A	Ø	Optimization method for the efficient production of images	345/592
98	US 57242 58 A	Ø	Neural network analysis for multifocal contact lens design	702/108
99	81 A	⊠	Data processing system for processing one and two parcel instructions	712/205
10	31 A	×	System for generation of a composite raster-vector image	382/199
10	US 1 57130 32 A	Ø	Compound document processing system	715/515
10	US 2 57109 32 A	×	Parallel computer comprised of processor elements having a local memory and an enhanced data transfer mechanism	712/14
10	21 A	⊠	Microprocessor control system which selects operating instructions and operands in an order based upon the number of transferred executable operating instructions	712/200
10	US 4 56803 32 A	Ø	Measurement of digital circuit simulation test coverage utilizing BDDs and state bins	703/13

that picture.

field compressed data. The interleaved sequence provides occurs midway between successive fields of intraframe odd

bus. The method handles assigning portions of the image for the host processor and to the compute modules with a second the device comprises a shared memory which is coupled to bus couples the compute modules and host processor. Lastly, scratch-pad memory, and an arbitration mechanism. A first of the compute modules has a processor, dual port memory, for a total of four compute modules coupled in parallel. Each plurality of compute modules, in a preferred embodiment, decompression in real-time. The apparatus comprises a method for processing video data for compression/ U.S. Pat. No. 5,212,742 discloses an apparatus and

each of the processors to operate upon.

derives, after a certain processing-system delay, an ongoing

at a relatively high frame rate (e.g., 30 frames per second).

high-resolution image data from an ongoing input series of

first and second circuit apparatus, in response to relatively

employing minimum hardware structure. Specifically, the employing minimum system processing delay and/or

perform cost-effective hierarchical motion analysis (HMA)

the same given number of novel motion-vector stages,

stages, together with a second circuit apparatus, comprising

comprising a given number of prior-art image-pyramid

backward-facing keyframe is used for the generation of

ward direction. When this sequence is played in reverse, the

seeme information when the images are played in the for-

The intraframe may also be used for generation of complete

compressed frames are linked in reverse for reverse play.

forward play, and the second keyframe and the intermediate

least one intermediate compressed frame are linked for

backward-facing" keyframe. The first keyframe and the at

just prior to the second scene change, known as a

plete scene information for an image displayed at the time

images and generating a second keyframe containing com-

detecting a second scene change in the sequence of moving

at least one frame being known as an interframe. Finally,

tion from the first image for at least one image following the

mediate compressed frame containing difference informa-

one intermediate compressed frame, the at least one inter-

video data. The process then comprises generating at least

tion for a first image. The first keyframe is known, in a crating a first læyframe containing complete scene informa-

scene change in the sequence of moving images and gen-

moving images. The method comprises detecting a first

frame redundancy in a computer system for a sequence of

optimal visual quality given the number of bits allocated to

regions of a picture in a video sequence so as to provide

and adaptively quantize transform coefficients in different

video sequences, allocate bits to the pictures in a sequence, ously adaptively pre-process the incoming digital motion

cooperating components or subsystems that operate to vari-

proposed ISO/IEC MPEG standards. Included are three

for implementing an encoder suitable for use with the

U.S. Pat. No. 5,231,484 discloses a system and method

U.S. Pat. No. 5,267,334 discloses a method of removing

35 intraframe, and it is normally present in CCIIT compressed preferred embodiment, as a "forward-facing" keyframe or

complete scene information.

U.S. Pat. No. 5,276,513 discloses a first circuit apparatus,

65 successive given pixel-density image-data frames that occur

60 in real-time, with minimum system processing delay and/or

5 transmitted. signal for decoding without increasing the amount of data receivers with twice the number of entry points into the

sion such that the intraframe even field compressed data U.S. Par. No. 5,185,819 discloses a video compression

independently compressed data are interleaved for transmisinterframe compression modes. The odd and even fields of independently compressed in sequences of intraframe and system having odd and even fields of video signal that are bits per second.

obtained an effective data transfer rate in excess of 40,000 applied quadrature coding to 1440 pixel logmap images and mental video telephone transmitted 4 frames per second, frame synchrony once the first frame is detected. An experiwith the sampling period so the receiver is unlikely to lose frame period. The frame period is relatively low compared 55 the first frame and then acquires subsequent frames every the continuous case in which the receiver synchronizes to IFT algorithm implements a fast discrete approximation to receiver need not be synchronized with the transmitter. An receiver can continuously receive each channel, then the pixels are connected directly to a bank of oscillators and the phase and magnitude of the received signal. If the sensor and calibration signals enabling the receiver to detect both the can carry two pixels. Some channels are reserved for special consists of two carrier waves in quadrature, so each channel 768 channels spaced about 3.9 Hz apart. Each channel example a 3 KHz voice quality telephone line is divided into channels, and assigns one or two pixels to each channel, for center. The transmitter divides the frequency band into the human eye with a greater concentration of pixels at the 40 first image in time in the sequence of moving images. This logmap image is designed to match the sensor geometry of band-limited analog channels. The pixel organization in the for transmitting logmap video images through telephone line

U.S. Pat. No. 5,175,617 discloses a system and method (DOCT) of the padded kernel matrix. being followed by forming the discrete odd cosine transform padded to equal the number of samples of a data block, this number of components, for a linear-phase filter, and zerorepresentation of the kernel is modified by reduction of the ing of excess samples from regions of overlap. The spatial followed by a savings of designated samples, and a discard-

biocks of processed data samples. The blocks are overlapped

provided an inverse transformation resulting in a set of

data and filter kernel in the frequency domain, there is filtering operation involving multiplication of transforms of

In the case of sharpening, accomplished by a convolution or

data sampling set without an increase in spectral bandwidth.

after which inverse transformation produces an enlarged value are inserted into the array of frequency components

interpolation, additional frequency components of zero

representing the original block of data. In the case of

mation to produce a reduced-size matrix of sample points

terms is reduced, this being followed by inverse transfor-

altered. In the case of decimation, the number of frequency

processes, after which the number of frequency terms is

transform (DECT) in both the decimation and interpolation

data samples are transformed by the discrete even cosine

as that employed in a IPEG compression system. Blocks of

This is accomplished by an array transform processor such

the functions of decimation, interpolation, and sharpening.

a field of image data samples to provide for one or more of

transport headers embedded within encoded video data in

The re-entry points are maximized by providing secondary

on the occurrence of a loss or corruption of transmitted data.

receiver can determine re-entry points into the data stream

receiver by virtue of providing header data from which a

transport block format enhances signal recovery at the

respective transport blocks.

U.S. Pat. No. 5.168,375 discloses a method for processing

	Docum ent ID	ט	Title	Current OR		
105	US 56755 81 A	Ø	Simulating user interference in a spread spectrum communication network	370/252		
106	US 56712 26 A	×	Multimedia information processing system	370/474		
107	US 56492 23 A	☒	Word based text producing system	715/534		
108	US 56445 68 A	☒	Method and apparatus for organizing and recovering information communicated in a radio communication system	370/311		
109	US 56405 24 A	☒	Method and apparatus for chaining vector instructions	712/222		
110	US 56195 41 A	☒	Delay line separator for data bus	375/360		
111	US 56173 19 A	Navigation apparatus with enhanced positional display function Efficient point-to-point and multi-point routing mechanism				
112	US 56028 41 A	transmission networks				
113	US 56024 73 A	⊠	Method and apparatus for analysis of magnetic characteristics of magnetic device, magnetic head, and magnetic recording and reproducing apparatus	324/209		
114	US 55985 47 A	Ø	Vector processor having functional unit paths of differing pipeline lengths	712/2222		
115	US 55965 70 A	☒	System and method for simulating interference received by subscriber units in a spread spectrum communication network	370/252		
116	US RE353 11 E	☒	Data dependency collapsing hardware apparatus	708/521		
117	US 55175 84 A	☒	Method and apparatus for high-speed implementation of scaling, dithering, and data remapping operations with a single processor	382/276		
118	US 55153 03 A	☒	Hand-held computerized data collection terminal with rechargeable battery pack sensor and battery power conservation	361/683		
119	US 54811 03 A		Packet bar code with data sequence encoded in address/data packets	235/494		
120	US 54756 80 A		Asynchronous time division multiplex switching system	370/412		
121	US 54406 87 A	⊠	Communication protocol for handling arbitrarily varying data strides in a distributed processing environment	709/236		
122	US 54332 02 A	☒	High resolution and high contrast ultrasound mammography system with heart monitor and boundary array scanner providing electronic scanning	600/444		
123	US 54126 97 A	☒	Delay line separator for data bus	375/360		
124	US 53157 08 A	☒	Method and apparatus for transferring data through a staging memory	711/119		
125	US 52972 55 A	⊠	rallel computer comprised of processor elements having a cal memory and an enhanced data transfer mechanism			
126	US 52874 49 A	⊠	Automatic program generation method with a visual data structure display	345/161		
127	US 52614 12 A	Ø	Method of continuously monitoring blood pressure	600/485		

having a fixed width address field. The system contains a is disclosed wherein the tokens are of a fixed one word width ing. More particularly, a token based data-flow architecture processing system specifically designed for image process-2 October/November 1984, discloses a real-time signal for Digital Image Processing, Wescon Technical Papers: No. The article, Chong, Yong M., A Data-Flow Architecture

tion Quantization Process. Transformation Process and a Discrete Cosine Transformaoperation of the CODEC to execute a Discrete Cosine writing of an address into the address buffer to initiate the pressed image data. A local controller is responsive to the addresses in the image memory stores a block of decomblock of addresses within an image memory. Each block of addresses, each of which identifies an initial address of a buffer and an address buffer. The address buffer stores including an image data input buffer, an image data output for a sequential process-pipeline which has a first processing U.S. Pat. No. 5,289,577 discloses a method and apparatus

compression step randorn noise can be removed before performing the second beenqo-usuqour unuper is remembered so that the pseudorepresenting a 2x2 array of pixels. The seed value for the values are quantized and packed into a single 32-bit word random number is added to all components. The resulting chrominance components are averaged and a pseudoaccepts 4:2:2 YCrCb data from the video digitizer. The two computer is also described. The first compression step first compression step on a host processor in a personal time. A compression algorithm suitable for performing the computational resources to perform this algorithm in realpression algorithm to be achieved without requiring the storage reduction benefits of a highly sophisticated comhigher compression ratio. The two-step approach allows the a ni siluson that madiinogla osnomi onom yllanoitatuquoo time, the data is further compressed in non-realtime using a efficient method and stored to a hard-disk. At some later An image is captured in realtime and compressed using an applications, which compresses and stores data in two steps. tor image compression suitable for personal computer U.S. Pat. No. 5,287,420 discloses a method and apparatus

quantization step size and determining desired bit allocaimage. Various methods are described for updating the data bits for a plurality of sectors, for example describing an the quantization step size to target a final desired number of with the particular group of data. The system then readjusts of bits expended, for a selected number of sectors associated expended is compared with the accumulated desired number each sector of data, the accumulated actual number of bits data will vary significantly. At the end of the transmission of quantization step, the number of bits required to describe the ST. The coefficients can be quantized, and depending upon the coding, to generate a sequence of coefficients for each block. of blocks. The blocks are encoded, for example, using DCT data is divided into sectors, each sector including a plurality image to be transmitted over a communications channel. The to quantize coefficients which describe, for example, an the image only once, updates the anqutization step size used deliver the desired number of bits per frame, while coding for enabling a realtime video encoding system to accurately U.S. Pat. No. 5.283,646 discloses a method and apparatus

between each pair of successive image frames. vector-data frame is indicative of image motion occurring frames that occur at the same given frame rate. Each output series of successive given pixel-density vector-data

certain of the stages for recognizing certain of the toleens as in token format. A token decoder circuit is positioned in 65 single two-wire interface for carrying both control and data machine. Control tokens and DATA Tokens pass over the two-wire interface arranged as a pipeline processing apparatus utilizing a plurality of stages interconnected by a may include an MPRG video decompression method and More importantly, various embodiments of the invention

display circuitry which includes upsampling and video timaddress generation unit, appropriate prediction circuitry and (IDCT), a synchronous DRAM controller with an associated Machine (MSM), an Inverse Discrete Cosine Transform rating a Huffman Decoder and a Microprogrammable State may include a Start Code Detector, a Video Parser incorpocontrol and DATA tolecns. The major elements of the system adapted for use in a two-wire pipeline system having various stage coupled to a CODEC through a plurality of buffers, 50 vides a new and improved method and apparatus particularly Briefly, and in general terms, the present invention pro-

SUMMARY OF INVENTION

The present invention clearly fulfills this need. system obviating the deficiencies of the prior art systems. long felt need for a new and improved video decompression Accordingly, those skilled in the art have recognized a

reliable data transfer between the stages. interleaved between the occupied stages in order to ensure increase the clasticity of the pipeline, empty stages are timed data-transfer control at the same time. Finally, to module can autonomously perform data buffering and selfcompletely localized decision and, in addition, each subinterworkings between the submodules are determined by a pipeline climinates any centralized control since all the path problems in the logic circuit. The clastic nature of the decode complex decoding processing and to alleviate critical locate the decoder in the preceding stage in order to preon the operands in the present stage. It is also possible to casily provided in each stage to select operations to be done successive pipeline stages. Furthermore, a decoder is gencontrol a hand-shake mode of data transfer between the chain through which send and acknowledge signal lines data-transfer control circuits are interconnected to form a data-transfer control circuit associated with that stage. The tancously supplied with a triggering signal generated by a specific to the pipeline stages. The data latches are simula combinatorial logic circuit that carries out logic operations stages consists of a group of input data latches followed by prises a plurality of pipeline stages. Each of the pipeline having self-timed circuits. The asynchronous pipeline com-Vol. 23, No 1, February 1988, discloses an clastic pipeline nism by Self-Ilmed Circuits, IEEE J. of Solid-State Circuits, The article, Kimori, S. et al. An Elastic Pipeline Mecha-

the data. If unrecognized, the token is directed to an output stage, then the appropriate operations are performed upon number (MIN). If the MIN matches the MIN of the particular 10 each token to a specific data-flow processor using a module instruction for the data-flow processor. The system directs with the data. In this way, the identifier field acts as an the data such that the data-flow processor knows what to do data-flow processor, and the identifier field is used to label sor address field is used to direct the tokens to the correct a processor address field and an identifier field. The procesa tag. The tag field of the token is further broken down into fashion. The toleens contain a data field, a control field and plurality of identical flow processors connected in a ring

	Docum ent ID	σ	Title	Current OR	
128	US 52513 23 A	⋈	Vector processing apparatus including timing generator to activate plural readout units and writing unit to read vector operand elements from registers for arithmetic processing and storage in vector result register	712/5	
129	US 50519 40 A	Ø	Data dependency collapsing hardware apparatus	708/524	
130	US 50382 80 A	⊠	Information processing apparatus having address expansion function	712/237	
131	US 49740 70 A	Ø	Colorgraphic reproduction system	358/500	
132	US 48992 32 A	i intormation			
133	US 48903 10 A	903 Spectral type radiation imaging system		378/82	
134	US 48499 05 A	⊠	Method for optimized RETE pattern matching in pattern-directed, rule-based artificial intelligence production systems	706/48	
135	US 48253 63 A	☒	Apparatus for modifying microinstructions of a microprogrammed processor	712/211	
136	US 47962 01 A	⊠	Stored program controlled system for creating and printing graphics bearing packaging	345/585	
137	US 47791 92 A	Ø	Vector processor with a synchronously controlled operand fetch circuits	712/8	
138	US 47701 82 A	☒	NMR screening method	600/410	
139	US 47010 44 A	×	Image recording apparatus for composing plural partial original images into a single composite image	399/7	
1,40	US 46619 00 A	Ø	Flexible chaining in vector processor with selective use of vector registers as operand and result registers	712/4	
141	US 46512 74 A	Ø	Vector data processor	712/8	
142	US 45861 75 A	⊠	Method for operating a packet bus for transmission of asynchronous and pseudo-synchronous signals	370/449	
143	US 45049 00 A	⊠	Sequence instruction display system	700/26	
144	US 44596 64 A	☒	Multiprocessor computer system with dynamic allocation of multiprocessing tasks and processor for use in such multiprocessor computer system	709/105	
145	US 44256 30 A	☒	Sequence instruction display system	700/12	
146	US 43718 98 A	☒	Composite information recording apparatus	358/300	
147	US 42662 42 A	☒	Television special effects arrangement	348/588	
148	US 41527 65 A	US			
149	US 41288 80 A	☒	Computer vector register processing	712/4	

and the video time stamp by comparing synchronization time and for determining a timing error between system time time counter for providing a local copy of video decoding video time counter in synchronization with the first video synchronization time from the first circuit and has a second tracting system time. The second circuit is adapted to receive circuit is adapted to receive a video time stamp and subclock reference for keeping system time, and a first video first circuit has a time counter in communication with the reference for initializing system time in the first circuit. The synchronizing a first circuit and a second circuit has a clock

me aming enur. be passed directly to the second circuit in order to determine time. In this way, the clock reference signal does not have to synchronization time to the local copy of elementary stream between the system time and the time stamp by comparing elementary stream time and for determining a timing error stream time counter for providing a local copy of the time counter in synchronization with the first elementary from the first circuit and has a second elementary stream second circuit is adapted to receive synchronization time time to the time stamp and subtracting system time. The generates synchronization time by adding elementary stream is adapted to receive a time stamp, and the first circuit circuit for providing elementary stream time. The first circuit time, a first elementary stream time counter in the first 40 The system decoder is adapted to accept MPEG system communication with the clock reference for keeping system the first circuit, a first circuit having a time counter in circuit using a clock reference for initializing system time in apparatus for synchronizing a first circuit and a second

> by comparing the time stamp to the second time counter. CLUOR DELEWEED the local copy of system time and system time copy of system time and for determining the display timing synchronized with the first time counter, for keeping a local initialized by the clock reference in the video decoder 30 time in the system decoder and a second time counter communication with the clock reference for keeping system system time in the system decoder, a first time counter in determining display time, a clock reference for initializing system decoder and a video decoder using a time stamp for 25 counter. It further includes an apparatus for synchronizing a system time by comparing the time stamp to the second time timing error between the local copy of system time and copy of the system time and for determining the presentation synchronized with the first time counter, for keeping a local counter initialized by the clock reference in a second circuit beceping system time in a first circuit and a second time time counter in communication with the clock reference for reference for initializing system time in a first circuit, a first a time stamp for determining presentation time, a clock various features an apparatus for synchronizing time having, limitation, the present invention may include among its By way of example, and not necessarily by way of

a parallel Huffman decoder, and the like. asynchronous swing buffering, storing of video information, using a common processing block, time synchronization, system, including memory addressing, transforming data cessing techniques are disclosed for implementing the variety of unique supporting subsystem circuity and prosuch stage to handle an identified DATA Token. A wide responsive to a recognized control token for recombguring processing circuits are positioned in selected stages and are ognized control tokens along the pipeline. Reconfiguration control tokens pertinent to that stage and for passing unrec-

first circuit and a second circuit has the following steps: Another method for determining a timing error between a

65 second circuit. with the second circuit without passing system time to the KT2-X. Hence, the first circuit can be time synchronized synchronized time (X) and in accordance with the equation stream time (EIT2) and obtaining a timing error by using time counter for providing video decoding time. The first 60 second circuit and generating a synchronized elementary X=ET+TS-SY, providing synchronization time (X) to the and the system time (SY), in accordance with the equation using the elementary stream time (EI) , the time stamp (TS) , stream time (ET), obtaining synchronization time (X) by In another embodiment of the invention, an apparatus for 55 system time (SY), a time stamp (TS), and an elementary and a second circuit by providing the first circuit with a method for determining a timing error between a first circuit to determine the appropriate display time. There is also a stamp for the decoded picture with the second time counter 30 picture from the video data also compares the video time video time stamp. The video decoder while decoding a a gaissaq not bas at sarying rate and for passing a accepting the video data at a substantially constant rate and counter. The video decoder also has a decoder buffer for 45 second time counter in synchronization with the first time accepts the video data and the video time stamp, and has a counter representative of system time. The video decoder stamp from the stream. The system decoder has a first time streams and demultiplexing video data and the video time apparatus for using a system decoder and a video decoder. An alternative embodiment of the invention includes an

indicates when the compared value is outside acceptable Still another embediment of the invention includes an 35 acceptable parameters when a timing error is indicated and value, when compared against a threshold value, is within of timing error. Mext, it determines whether the compared and generates a compared value to determine an indicative indicated, comparing the time stamp toleen to a video time, further processing, determining if a time stamp token is threshold value. It then parses video data into tokens for video and for determining display time errors against a The present invention also has a process for decoding

time is restricted to 16 bits for controlling the elementary apparatus as described above wherein the synchronization decoder is restricted to 16 bits. Furthermore, there is an tary stream time counter located in the elementary stream apparatus as described above, wherein the second elemencounters are restricted to 16 bits. Likewise, there is an ratus described above wherein the elementary stream time Another embodiment of the invention includes an appa-

time stamp is inscrited back into the data stream stamp information is contained in the register and then the response to the picture start if the flag indicates valid time by checking the flag status. A time stamp is generated in if valid time stamp information is contained in the register sently examines the status of the register to determine the register. Mext, the method encounters a picture start and stamp is removed from the video data stream and placed in the packet header and placed into the register. Next, the time indicate valid time stamp information which is taken from the next step a register is provided having a flag used to time stamp refers to the first picture in the packet of data. In having a time stamp carried in packet header wherein the ing timing information by providing a video data stream The present invention also includes a method for provid-

to the second circuit in order to determine the timing error. the clock reference signal does not have to be passed directly time to the local copy of video decoding time. Accordingly,

	Docum ent ID	υ	Title	Current OR
150	US 36331 79 A		INFORMATION HANDLING SYSTEMS FOR ELIMINATING DISTINCTIONS BETWEEN DATA ITEMS AND PROGRAM INSTRUCTIONS	707/1

dling tables which are canonical (rather than algorithmically) there is no restriction to han-

which exist for some code tables. the ROM also has entries to identify illegal VLC patterns, examined. In addition to the complete MPBG code tables, smaller field selects which Huffman code table is to be The larger field is the bit-pattern to be decoded, and the The ROM address of the present invention is in two fields.

used for providing a word with fixed width, having a fixed In another embodiment of the invention, a procedure is

machine and an arithmetic core. and an apparatus for addressing memory, including a state ing data and having a substitution field and an address field. word, having a fixed number of bits, to be used for addressalso a procedure for addressing memory with a fixed width and having a width defining field and address field. There is number of bits to be used for addressing variable width data,

defining the address field with a plurality of bits defining the The procedure for addressing memory may also include the width of the width defining field and the address field. width word for addressing variable width data while varying to the size of the variable width data, and maintaining a fixed number of bits in the width defining field in direct relation relation to the size of the variable width data, varying the data, varying the size of bits in the address field in inverse address field with a plurality of bits defining the address of least one bit to serve as the termination marker, defining the an address field, providing the width defining field with at defining the fixed width word with a width defining field and number of bits to be used for addressing variable width data, providing a fixed width word having a predetermined fixed The procedure for addressing memory is characterized by

width of the address field and the width of the substitution addressing variable width data while inversely varying the addressing source, and maintaining a fixed width word for substitution field to indicate substituted bits from a separate between the address field and the substitution field, using the having at Icast one bit to serve as a termination marker field with a least one substitution bit, the substitution field address of the data, defining a variable width substitution

restored to its original position. of the word, and rotating the word until the partial word is be recognized as a partial word, restoring the remaining part the remaining part of the word so that the accessed word will be accessed to a least significant bit justification, extending and composed of partial words, rotating the partial word to providing a memory having words of predetermined width variable width data in a memony may be characterized by In accordance with the invention, a process for addressing

tution field and an address field, may be used. of bits, to be used for addressing data and having a substiing memory with a fixed width word, having a fixed number field and address field. In addition, a procedure for addressaddressing variable width data, and having a width defining fixed width, having a fixed number of bits to be used for for addressing memory wherein a word is provided with The invention may also include a method and apparatus

ing the steps of: reading from and writing to the RAM, the method comprisincluding an enable line that selectably enables and disables predetermined fixed burst length N of the RAM, the RAM The ROM has addresses which are controlled with a 60 from RAM a number M of words that is less than the The invention may also include a method of accessing

written to the RAM, M being less than N; and determining when M words have been read from or ordering N words to be read from or written to the RAM;

> passing system time to the second circuit. can be time synchronized with the second circuit without dance with the equation BI-X. In this way, the first circuit timing error by using synchronized time (X) and in accorsynchronized elementary stream time (ET) and obtaining a a senterating and generating a second circuit and generating a accordance with the equation X=TS-1, providing synchrousing the time stamp (TS) and the initial time (II), in initial time (II), obtaining a synchronization time (X) by providing the first circuit with a time stamp (TS), and an

time to the second circuit. synchronized with the second circuit without passing system equation VT2-X. Accordingly, the first circuit can be time using synchronized time (X) and in accordance with the time (VT) in the first circuit, and obtaining a time error by second circuit which is synchronized to the video decoding 20 circuit and generating a video decoding time (VT2) in the VTS-SY, providing synchronization time (X) to the second system time (SY), in accordance with the equation X=VT+ decoding time (VT), the video time stamp (VTS) and the (VT), obtaining synchronization time (X) by using the video (SY), a video time stamp (VTS), and a video decoding time following steps: providing the first circuit with a system time between a first circuit and a second circuit includes the Still another method for determining a timing error

sustain a high throughput. perser microprogrammable state Machine (MSM), and can 30 (M.Cs), and pass through tokens under the control of the Variable Length Codes (VI.Cs) and Fixed Length Codes Huffman decoder block will decode MPBG Huffman coded In accordance with the present invention, the parallel

combined VLC/PLC components. Vector deltas, all of which are present in the stream as are Escape-coded coefficients, Intra-DC values and Motion 0 external controller. Examples of such complex components the stream in a single cycle without the assistance of an facilitates decoding certain more complex components from non-canonical in nature. Practice of the invention also MPEG-2 transform coefficient table which is irregular or performance requirements and to handle the second technique is employed to decode Huffman codes to achieve In one embodiment of the invention a code lookup

the maximum VLC size which is 16 bits (DCT coefficient which is the 28-bit MPEG-1 Escape Coded Coefficient, and result of the maximum coded size which can be decoded, decoded, to a running total. The various word widths are a count is maintained by adding the size of each VIC, as it is according to the total count of bits decoded thus far, the subsequent VLCs, the selector effectively shifts the input 16 bits of these are passed to a Huffman Code ROM For selector outputs the top 28 bits of its 59-bit input and the top VLC with the ROM input. Hence, for a very first VLC, the data. A selector is used to align the beginning of the next data registers handling most significant and least significant To decode a VLC, input is first loaded into the two input

various different Huffman code tables required by MPPG. The "table select" input is used to select between the

yields decoded data. calculation, followed by the index-to-data operation that selector/shifter. The ROM performs a VLC table index

Since the index generation is performed in a look-up manner to bandle the Huffman codes which form the presented data. (CAM) operation with "don't care" matching implemented 63 The index calculation is a content addressable memory

	Docum ent ID	ט	Title	Current OR
1	US 20030 22338 1 A1		Method for controlling parties in real-time data communication	370/285
2	US 20030 22108 9 A1	⊠	Microprocessor data manipulation matrix module	712/221
3	US 20030 18994 7 A1	☒	Routing and rate control in a universal transfer mode network	370/428
4	US 20030 14481 0 A1	$_{81}$ Methods and apparatus for data analysis		702/108
5	US 20030 04846 6 A1	⊠	Image reading device, method of controlling the same, control program, storage medium and image forming apparatus provided with the image reading device	358/1.1 2
6	US 20030 04381 0 A1	⊠	System and method for communicating data using a common switch fabric	370/395 .1
7	US 20030 02865 7 A1	⊠	Directly addressed multicast protocol	709/230
8	US 20030 02625 2 A1	US 20030 Data packet structure for directly addressed multicast protocol		370/390
9	US 20020 18093 1 A1	☒	Method for determining vision defects and for collecting data for correcting vision defects of the eye by interaction of a patient with an examiner and apparatus therefor	351/211
10	US 20020 16390 5 A1	⊠	Remote control system	370/347
11	US 20020 12480 3 A1	⋈	System for optimising the production performance of a milk producing animal herd	119/14. 08
12	US 20020 10594 0 A1	⊠	Resource allocation in packet-format communication	370/349
13	US 20020 10591 7 A1	⊠	Method and apparatus for packet-based media communication	370/260
14	US 20020 09552 9 A1	⊠	Screening of data packets in a gateway	709/330
15	US 20020 06097 6 A1	⊠	Optical pickup device with a plurality of laser couplers	369/121
16	US 20020 05414 7 A1	Ø	GRAPHIC DATA PROCESSING APPARATUS USING DISPLAYED GRAPHICS FOR APPLICATION PROGRAM SELECTION	
17	US 20020 05414 5 A1	⊠	GRAPHIC DATA PROCESSING APPARATUS USING DISPLAYED GRAPHICS FOR PROGRAM SELECTION	345/810

HPS Trailer Page for

Walk-Up_Printing

UserID: d

Printer: cpk2_2c21_gbkbptr

Summary

Document	Pages	Printed	Missed	Copies
US006542988	14	14	0	1
US005717883	22	22	0	1
US005758051	16	16	0	1
US005915117	13	13	0	1
US005918005	23	23	0	1
US006006317	23	23	0	1
US006112019	79	79	0	1
Total (7)	190	190	0	-

	Docum			Current			
	ent ID	ŭ	Title	OR			
18	US 20020 01548 5 A1	⊠	Service and information management system for a telecommunications network	379/220 .01			
19	US 20020 00258 6 A1	Ø	Methods and apparatus for creating and hosting customized virtual parties via the internet	709/205			
20	US 66582 35 B1	×	Method for transmitting control information in a communication system	455/67 13			
21	US 65571 46 B1	65571 Method for the comparison of electrical circuits 46 B1					
22	US 64842 55 B1	Selective writing of data elements from packed data based upon a mask using predication					
23	US 63847 81 B1	⊠	Method and apparatus for calibrating a remote system which employs coherent signals	342/368			
24	US 62466 84 B1	⊠	Method and apparatus for re-ordering data packets in a network environment	370/394			
25	US 61817 66 B1	☒	Digital encoding of RF computerized tomography data	378/15			
26	US 61342 72 A	⊠	Data input/output apparatus of transport decoder	375/240 .27			
27	US 61219 03 A	☒	On-the-fly data re-compression	341/63			
28	US 61192 16 A	☒	Microprocessor capable of unpacking packed data in response to a unpack instruction	712/22			
29	US 59516 24 A	☒	Computer system to compress pixel bits	708/203			
30	US 59178 81 A	☒	Digital scan mammography apparatus utilizing velocity adaptive feedback and method	378/98 8			
31	US 57651 42 A	×	Method and apparatus for the development and implementation of an interactive customer service system that is dynamically responsive to change in marketing decisions and environments	705/26			
32	US 56755 26 A	×	Processor performing packed data multiplication	708/62			
33	US 56511 20 A	⊠	Graphic data processing apparatus using displayed graphics for application program selection	345/82:			
34	US 55028 00 A	×	Graphic data processing apparatus using displayed graphics for application program selection	345/619			
35	US 54230 16 A	☒	Block buffer for instruction/operand caches	711/123			
36	US 54228 79 A			370/236			
37	US 53918 65 A	☒	Optical pickup apparatus and optical grating assembly therefor	250/201 .5			
38	US 53396 03 A	⊠	Method for setting a folding station included in an apparatus for preparing items to be mailed, and apparatus for preparing items to be mailed and folding station adapted for carrying out such method				
39	US 53374 02 A	\boxtimes	Graphic data processing apparatus using displayed graphics for application program selection	345/619			

United States Patent [19]

[24] **LEOCESSOE SLEUCTURE AND METHOD**

Shen et al.

191 Tag Date of Patent: 27644,742 Patent Number: [II]

SLEIS6E	Gang et al	966T/E	66t'L6t'S
SLE/S6E	Nguyen et al	9661/1	289,184,2
SLE/S6E	Quattromani et al	\$661/11	865,174,2
SLE/S6E	Vidwans et sl.	\$661,01	SPL'E91'S
SLEIS6E	Shebanow et al.	1 661/8	LSY'SEE'S
	Kaufman et al		773,EIE,E
	Eicheneyer .		160,EIE,C
	Sugano		60E,10E,2
	lensen .	\$4661/E	664,662,8

OTHER PUBLICATIONS

Mike Johnson, Superscalar Microprocessor Design, 1991.

Herbert LLP Attorney, Agent, or Firm-Flehr Hohbach Test Albritton & Primary Examiner-William M. Treat

ABSTRACT

and backstepping. novel backtracking technique including processor backup conventional processor backup techniques as well as with a technique. Timeout checkpoint formation may be used with logical and physical register rename map checkpointing implemented with conventional checkpoints, or in a novel on instruction window size. Time-out checkpoints may be method eliminates processor state restoration dependency ber of instructions within a checkpoint boundary, end such instruction window size is greater than the maximum numpoint technique in the event of an exception so long as the pointed state faster than an instruction decode based checkcondition. The processor can restore time-out based checkbounds the time period for recovery from an exception number of instructions within a checkpoint boundary and for example. Time-out checkpointing limits the maximum of instructions issued or the number of clock cycles elapsed, attributes. Such time-out conditions may include the number processor state based merely on decoded Instruction formed rather than forming a checkpoint to store current time-out condition or interval since the last checkpoint was Time-out checkpoints are formed based on a predetermined

16 Claims, 60 Drawing Sheets

. Le 13 mewiel A 5991/8 001,255,	Ç
1133,206 3/1993 Mills .	
,093,908 3/1992 Beacom et al.	ς
. As 33 January 1991\21 44.270,	
. 1202, 945 6/1991 Mornison et al.	Ç
,003,462 3/1991 Blancr et al.	
,003,458 3/1991 Yamaguchi et al.	
.912,707 3/1990 Kogge et al.	
. 903,264 2/1990 Talgam et al	
.859,233 1/1990 Denman et al.	Þ
. incompit 7891/01 184,807,	Þ
U.S. PATENT DOCUMENTS	
References Cited	[95]
\$1.E81\Z9E	
Field of Search	[85]
LLS, CL	[52]
PF CF COCK 17/00	[TS]
Conúnsation of Ser. No. 398,299, Mar. 3, 1995, abandoned, which is a conúnnation of Ser. No. 390,885, Feb. 14, 1995, abandoned.	[63]
Related U.S. Application Data	
Filed: 100.7, 1995	[22]
ess, etc. 473,223	[17]
error (madama	
Campbell, Calif.	Fa.3
Assignee: Hal Computer Systems, Inc.,	[£/]
Shebanow, Plano, Tex.	
Sunnyvale, all of Calif.; Michael C.	
Szeto, Oakland; Miteen A. Patkar,	
Inventors: Gene W. Shen, Mountain View; John	[5]]
FOR A TIME-OUT CHECKPOINT	

5,271,013 12/1993 Gleeson.

5,269,017 12/1993 Hayden et al. . mort e991/11 170,182,2

SLEIS6E

	Docum ent ID	ט	Title	Current OR
40	US 53181 29 A	×	Method and device for setting up sondes against the wall of a cased well	166/336
41	US H0012 96 H	☒	Optical switching device and parallel processing architecture	385/16
42	US 52895 70 A	×	Picture image editing system for forming boundaries in picture image data in a page memory device	715/521
43	US 52415 33 A	⊠	Packet switching network with alternate trunking function	370/227
44	US 52107 43 A		Switching element with multiple operating modes and switching network incorporating a plurality of such switching elements, in particular for switching asynchronous time-division multiplex packets	370/422
45	US 50795 48 A		Data packing circuit in variable length coder	341/67
46	US 50238 24 A	⊠	Hand-held computerized data collection terminal with indented hand grip and conforming battery drawer	361/680
47	US 48906 24 A		Fetal heart rate counting system using digital signal processing	600/453
48	US 48171 21 A	Ø	Apparatus for checking baggage with x-rays	378/57
49	US 47617 53 A	⊠	Vector processing apparatus	708/520
50	US 47605 18 A	Ø	Bi-directional databus system for supporting superposition of vector and scalar operations in a computer	710/107
51	US 47348 05 A	☒	Magnetic head supporting mechanism	360/244 .8
52	US 45659 41 A	⊠	Oscillatory drive mechanisms for a ring laser gyro	310/328
53	US 45119 38 A	×	Magnetizable recording disk and disk file employing servo sector head positioning	360/77. 08
54	US 44411 65 A	⊠	Real-time ordinal-value filters utilizing complete intra-data comparisons	708/207
55	US 42033 45 A	⊠	Automatic visual teaching device for the learning of music or component parts thereof	84/478
56	US 41251 49 A	⊠	Heat exchange elements	165/10
57	US 38390 00 A		METHOD FOR CONTROLLING CURVATURE OF REGIONS IN A SHAPED THERMOPLASTIC SHEET	65/29.1 9

Sheet 1 of 60

Reorder Buffer Organization

(TRA ROIRY) FIG. 1

	Docum ent ID	σ	Title	Current OR
1	JP 20032 23007 A		METHOD FOR MAKING LITHOGRAPHIC PRINTING PLATE	
2	JP 20020 82968 A	: IVI	PICTURE READING SYSTEM AND PICTURE READING METHOD, AND STORAGE MEDIUM	
3	JP 20012 85094 A	Ø	RADIO RECEIVER	
4	JP 20012 45017 A	⊠	USB SIMULATION DEVICE AND STORAGE MEDIUM	
5	JP 20010 45278 A	⋈	IMAGE PROCESSOR	
6	JP 20002 22159 A		INFORMATION PROCESSOR, INFORMATION PROCESSING METHOD AND STORAGE MEDIUM STORING COMPUTER READABLE PROGRAM	
7	JP 20001 96963 A	⊠	SOLID-STATE IMAGE PICKUP DEVICE	
8	JP 20001 84229 A	Ø	IMAGE PROCESSOR	
9	JP 20000 90127 A	⊠	JAPANESE ANALYZING DEVICE	
10	JP 11291 435 A	Ø	PRINTING APPARATUS	
11	JP 10039 903 A		PROGRAM DEVELOPMENT SUPPORTING DEVICE	,
12	JP 07320 086 A	⊠	METHOD AND DEVICE FOR IMAGE GENERATION	
13	JP 06309 363 A	Ø	JAPANESE ANALYZING DEVICE	
14	JP 06006 686 A	×	IMAGE PICKUP DEVICE	
15	JP 04199 469 A		PICTURE GENERATION DEVICE FOR COMPUTER FOR CONTROL	
16	JP 04013 175 A	☒	SIMULATED VISUAL FIELD PRODUCING DEVICE FOR TRAIN OPERATION SIMULATOR	
17	JP 03022 735 A	. —	PACKET TRANSMITTER FOR VIDEO SIGNAL	
18	JP 03020 864 A	Ø	INFORMATION PROCESSOR HAVING VECTOR INSTRUCTION SET FOR FUZZY CALCULATION	
19	JP 01107 731 A	Ø	IMAGE SENSING APPARATUS	
20	JP 01049 164 A	⊠	INFORMATION RECORDING AND REPRODUCING DEVICE	

2†**2**'++9'S

any one of the executable instructions.

state1 state2 Conventional Checkpoint register stores state3 all state that aray be modified by state4 state5 state6 state7 s to te8 state9 state10

Checkpointed States comprise all states that may be modified by any one of the instructions in the instruction set:

	States that may be mouthed (mod) by thether by	mod	1	1	I	ı	1.	1		ı
--	--	-----	---	---	---	---	----	---	--	---

	State	mod
	es th	8
3	iat m	
mod	ay b	•
mod	States that may be modified (mod) by Instruction C:	1
1	(mod) b	I
mod	y Instru	ı
mod	ction C	ı
mod		i
ı		ı
mod ,		ı
тод		1

States	that	may	90	States that may be modified (mod) by instruction A.	(moo) o	y Instru	C LION W	•			
mod		ı		1	mod	ļ	ı	ı	I	ı	1
States	that	may	be	States that may be modified (mod) by Instruction B:	(mod) b	y Instru	iction E	3:			

Checkpoint State in Conventional Checkpointing Schemes

	Docum ent ID	ם	Title	Current OR
21	JP 63044 243 A	×	ADDRESS ARITHMETIC UNIT	
22	JP 62159 273 A	×	PROCESSOR FOR VECTOR INSTRUCTION	
23	JP 61062 174 A	×	INFORMATION PROCESSOR	
24	JP 61025 275 A	Ø	VECTOR INSTRUCTION PROCESSOR	
25	JP 59165 143 A	⊠	DATA PROCESSOR	
26	EP 94897 9 A2	Ø	Image creating apparatus, image creating method, and computer-readable recording medium containing image creating program	
27	WO 98435 86 A1	Ø	TITLE DATA NOT AVAILABLE	
28	US 20030 20046 3 A	☒	Network security provision method e.g. for packet switched network, involves selectively forwarding untrusted packet from specific network element of one system to other autonomous system based on set security rules	
29	US 20030 18466 5 A	⊠	Arrangement method of array of picture elements involves arranging additional set of pixels within non-uniformly spaced and non-uniformly sized gaps to reduce composite array of non-uniform pixels overlaying array of first set of pixels	
30	US 20020 11214 7 A	⊠	Computer system used in 3D graphics and signal processing application, copies each data element of selected set of data elements to specified data fields located in corresponding portion of destination operand	
31	US 20020 06233 1 A	⊠	Computer implemented method packed data element adding method in multimedia application, involves inserting each packet data element into one portion of partial product using corresponding partial product selector	
32	US 64249 21 B	⊠	Averaged hybridization array (HA) for correct determination of average relative transcript abundance for each array element of many HAs, and novel composite HAs formed from a number of user selected different HAs	
33	EP 10795 73 A	⊠	Method of managing calls over data network by selecting resource elements based on usage policy or network actual usage	
34	US 59908 30 A	⊠	Operation control apparatus for phased array antenna used in terrestrial, airborne and space-borne communication networks	
35	US 57782 50 A	Ø	Dynamic pipeline for microprocessor - includes control logic that controls first data selector to select either first set of data or first operation data as selected data	
36	DE 19619 058 A		Hand-held calculation aid - performs entry of operands per digit, with appropriate symbol entering respective position, selected from set of all available symbols through repeated activation of same button	
37	US 58809 79 A	⊠	Computer system for providing absolute difference of unsigned values - in which packed data sets are generated by subtracting between two sets of packed data elements stored in memory	
38	JP 08316 968 A	⊠	Asynchronous transfer mode switch - has scheduler which controls read-out of packet frame from packet memory which stores tag part with communication path identifier and data part, together with packet selection element, in single memory address	
39	US 53393 96 A		Parallel computer interconnection path selection - comparing next priority coordinate of first selected processing element with corresponding next priority coordinate of second coordinate set, and sequentially transferring data packet to next coordinate transforming crossbar switch	

Sheet 4 of 60

FIG. 4

	Docum			Current
	ent ID	Ū	Title	OR
40	EP 52736 6 A	×	Variable delay circuit for use in timing generator of IC tester - has main and corrected conversion tables from which control data is selected according to detected ambient temp.	
41	EP 39055 5 A	Ø	Reduced tape width multi-track tape recorder - controls width-wise alignment of combination head with tape using light emitters and receivers at side of tape	
42	SU 15682 33 A	⊠	Multi-functional logic converter for automated control system - has two extra switches with control inputs connected to output of comparator of first relay element	
43	GB 22147 56 A	☒	Demultiplexion appts. for data signal receiver channels - has switching elements, receiving gate signals, connected to each other and to associated latching appts.	
44	GB 22116 97 A	⊠	Self-routing switching element for asynchronous time switch - includes selectors receiving tagged packet signals and arbiters outputting transmitted packet signals, having signal path connections	
45	EP 31465 0 A	☒	Method for artificial intelligence production - passing tokens to descendant modes upon comparison match and maintaining patterns to ancestor nodes	
46	EP 30862 4 A	⊠	Solid state imaging device with line decimated output - has shaft register with linear part of serially connected image data holding elements in carousels	
47	EP 25912 3 A	×	Circular knitting machine control system - has multi-line communication bus receiving data from several control modules	
48	DE 35077 03 C	☒	Data carrier mfr. method - using removal or addition of elements to matrix to make characters prior to partial encapsulation	
49	EP 17159 2 A		Compiler optimisation by generating basis items and kill sets - for use during global common sub-expression elimination and code motion procedures	

FIG. 5

	-	(cache hit)	lood/store	floating point instruction	fixed point &	program control	
		fetch		fetch		fetch	3
		issue	· ·	issue		issue exec comp	23
		addr gen		execute		deactivate	<u> </u>
extcute		QCC633	coche	complete		commit	3
		return	dota	deactivate		retire	(5)
		complete		comit			<u> </u>
		deactivate		retire			3
		commit					3
		retire				• 45 	9
		ليستا			-		

	L#	Hits	Search Text	DBs
1	L1	360962	<pre>(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item)</pre>	USPAT; US-PGPUB
2	L2	360976	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item suboperand consituent)	USPAT; US-PGPUB
3	L3	271330	(portion part set subset) near20 (operand pack\$2 composite compound)	USPAT; US-PGPUB
4	L4	1556	2 near30 3	USPAT; US-PGPUB
5	L5	325714	<pre>(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near10 (element item suboperand consituent)</pre>	USPAT; US-PGPUB
6	L6	237043	(portion part set subset) nearl0 (operand pack\$2 composite compound)	USPAT; US-PGPUB
7	L7	875	5 near20 6	USPAT; US-PGPUB
8	L11	150	7 and (operand data).ab,ti.	USPAT; US-PGPUB
9	L12	57	4 and (operand data).ab,ti. not 11	USPAT; US-PGPUB

ORDER STATE ORDER STATE

Sheet 2 of 60

FIG. 2 (PRIOR ARI)

STATE AND RESTORATION

	L #	Hits	Search Text	DBs
	 	<u> </u>	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4)	HODAM
1	L1	360962	near20 (element item)	US-PGPUB
2	L2	360976	<pre>(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item suboperand consituent)</pre>	USPAT; US-PGPUB
3	L3	271330	(portion part set subset) near20 (operand pack\$2	USPAT;
<u> </u>		2/1330	composite compound)	US-PGPUB
4	L4	1556	2 near30 3	USPAT; US-PGPUB
5	L5	325714	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near10 (element item suboperand consituent)	
6	L6	237043	(portion part set subset) near10 (operand pack\$2 composite compound)	USPAT; US-PGPUB
7	L7	875	5 near20 6	USPAT; US-PGPUB
	7	150		USPAT:
8	L11	150	7 and (operand data).ab,ti.	US-PGPUB
9	L12	57	4 and (operand data).ab,ti. not 11	USPAT;
				US-PGPUB
10	L13	226532	(shuff1\$3 reshuff1\$3 arrang\$3 rearrang\$3 select\$3 cop\$4) near20 (element item suboperand consituent)	EPO; JPO; DERWENT; IBM TDB
11	L14	115651	(portion part set subset) near20 (operand pack\$2 composite compound)	EPO; JPO; DERWENT; IBM TDB
12	L15	575	13 near30 14	EPO; JPO; DERWENT; IBM TDB
13	L16	49	15 and (operand data).ab,ti.	EPO; JPO; DERWENT; IBM TDB
14	L18	461210	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4 reorder\$3 order\$3) near20 (element item)	USPAT; US-PGPUB
15	L19	343779	(portion part\$5 set subset) near20 (operand pack\$2 composite compound)	USPAT; US-PGPUB
16	L21	259532	(shuffl\$3 reshuffl\$3 arrang\$3 rearrang\$3 select\$3 cop\$4 reorder\$3 order\$3) near20 (element item)	EPO; JPO; DERWENT; IBM TDB
17	L22	184472		EPO; JPO; DERWENT; IBM TDB
18	L20	98	18 near30 19 and (operand data).ab,ti. not (11 12)	USPAT; US-PGPUB
19	L23	21	21 near30 22 and (operand data).ab,ti. not 16	EPO; JPO; DERWENT; IBM_TDB

Sheet 13 of 60

	Docum	7*	mi + 3 -	Current
	ent	Ū	Title	OR
1	US 20030 20848 7 A1		Content searching engine	707/6
2	US 20030 20350 2 A1	⊠	Near-field transform spectroscopy	436/16
3	US 20030 18812 8 A1	×	Executing stack-based instructions within a data processing apparatus arranged to apply operations to data items stored in registers	712/20
4	US 20030 11805 2 A1	⊠	System and method for reassembling packets in a network element	370/47
5	US 20030 11767 8 A1	☒	Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and new header insertion via opto-electrical processing	398/15
6	US 20030 11544 1 A1	☒	Method and apparatus for packing data	712/22
7	US 20030 05344 8 A1		Systems and methods for providing differentiated services within a network communication system	370/35
8	US 20030 04875 1 A1	⊠	Dual mode service platform within network communication system	370/23
9	US 20020 17422 8 A1	☒	Method and device for reserving transmission band on internet	709/22
10	US 20020 14602 8 A1	⋈	Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and re-insertion via a circulating optical path	370/43
11	US 20020 14602 7 A1	☒	Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and insertion via reflective single sideband optical processing	370/43
12	US 20020 14600 7 A1	. ⊠	Optical layer multicasting using a multiple sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing	370/39
13	US 20020 14600 6 A1	☒	Optical layer multicasting using multiple sub-carrier headers with header detection, deletion, and insertion via reflective single sideband optical processing	370/39
14	US 20020 14578 6 A1	Ø	Optical layer multicasting using a multicast switch to effect survivablity and security	398/98
15	US 20020 14578 5 A1	⊠	Optical layer multicasting using a single sub-carrier header and an optical multicasting switch	398/98
16	US 20020 14578 3 A1	⊠	Optical layer multicasting using a multiple sub-carrier header and a multicast switch with active header insertion via single sideband optical processing	398/70
17	US 20020 14140 9 A1	⊠	Optical layer multicasting	370/390

Sheet 7 of 60

	Docum ent ID	σ	Title	Current OR
18	US 20020 14140 8 A1	⊠	Optical layer multicasting using multiple sub-carrier headers with header detection, deletion, and insertion via transmit single sideband optical processing	370/390
19	US 20020 14101 9 A1	⊠	Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via single sideband optical processing	398/101
20	US 20020 14101 8 A1	☒	Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion	398/101
21	US 20020 14101 7 A1	⊠	Optical layer multicasting switch	398/101
22	US 20020 14101 5 A1	☒	Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing	398/98
23	US 20020 14101 4 A1	☒	Optical layer multicasting using a multiple sub-carrier header and multicasting switch	398/70
24	US 20020 13136 4 A1	☒	Handling of data packets	370/230
25	US 20020 09772 4 A1	☒	Processing of data packets within a network element cluster	370/392
26	US 20020 06858 8 A1	☒	Wireless base station and packet transfer apparatus for dynamically controlling data transmission rate	455/461
27	US 20020 01694 3 A1	☒	Code structure, encoder, encoding method, and associated decoder and decoding method and iteratively decodable code structure, encoder, encoding method, and associated iterative decoder and iterative decoding method	714/755
28	US 20020 01084 7 A1	☒	Executing partial-width packed data instructions	712/22
29	US 20010 04314 6 A1		Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	340/855 .8
30	US 20010 04261 7 A1	⊠	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/65. 1
31	US 20010 04202 3 A1	⊠	Product fulfillment system	705/26
32	US 20010 03328 1 A1	☒	Three-dimensional CAD system and recording medium for three-dimensional CAD system	345/420
33	US 20010 01772 3 A1	☒	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/82
34	US 20010 01341 1 A1	☒	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/65. 1

	Docum	σ	Title	Current
	ent ID	U	IICIA	OR
35	US 20010 01341 0 A1	Ø	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/65. 1
36	US 66577 57 B1	☒	High-throughput low-latency next generation internet network using optical label switching and high-speed optical header generation detection and reinsertion	
37	US 66313 89 B2	⊠	Apparatus for performing packed shift operations	708/209
38	US 66115 22 B1	☒	Quality of service facility in a device for performing IP forwarding and ATM switching	370/395 .21
39	US 65885 05 B2	Ø	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/250 .17
40	US 65805 37 B1	☒	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/79
41	US 65713 01 B1	☒	Multi processor system and FIFO circuit	710/31
42	US 65708 48 B1		System and method for congestion control in packet-based communication networks	370/230 .1
43	US 65457 81 B1	☒	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/51
44	US 65258 51 B2	☒	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/166
45	US 65258 50 B1	⊠	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/49
46	US 65224 35 B1	☒	High-throughput, low-latency next generation internet networks using optical label switching and high-speed optical header generation, detection and reinsertion	398/49
47	US 64972 80 B2	⊠	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/250 .07
48	US 64815 05 B2	⊠	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/387
49	US 64183 91 B1	⊠	Testing system for performing an operation of an application which controls testing equipment for testing a device under test and method for controlling the same	702/123
50	US 63595 69 B2	⊠	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	340/856 .3
51	US 63436 49 B1	×	Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation	166/250 .01
52	US 63398 19 B1	⊠	Multiprocessor with each processor element accessing operands in loaded input buffer and forwarding results to FIFO output buffer	712/16
53	US 62719 46 B1	⊠	Optical layer survivability and security system using optical label switching and high-speed optical header generation and detection	398/79
54	US 62330 75 B1	⊠	Optical layer survivability and security system	398/79
55	US 62302 53 B1	⊠	Executing partial-width packed data instructions	712/22
56	US 62197 75 B1	⊠	Massively parallel computer including auxiliary vector processor	712/11

	Docum ent ID	ט	Title	Current OR
57	US 62191 61 B1	☒	Optical layer survivability and security system	398/79
58	US 61924 67 B1	Ø	Executing partial-width packed data instructions	712/222
59	US 61606 51 A	☒	Optical layer survivability and security system using optical label switching and high-speed optical header reinsertion	398/79
60	US 61227 25 A	Ø	Executing partial-width packed data instructions	712/200
61	US 61116 73 A	☒	High-throughput, low-latency next generation internet networks using optical tag switching	398/79
62	US 61015 13 A	⊠	Method and apparatus for displaying database information according to a specified print layout and page format	715/527
63	US 60916 89 A	⊠	Optical pickup device with a plurality of laser couplers	369/112 .21
64	US 60788 69 A	⊠	Method and apparatus for generating more accurate earth formation grid cell property information for use by a simulator to display more accurate simulation results of the formation near a wellbore	702/6
65	US 60755 39 A	Ø	Method and apparatus for displaying CAD geometric object and storage medium storing geometric object display processing programs	345/419
66	US 60741 11 A	Ø	Printing system, photographing apparatus, printing apparatus and combining method	400/76
67	US 60184 97 A	⊠	Method and apparatus for generating more accurate earth formation grid cell property information for use by a simulator to display more accurate simulation results of the formation near a wellbore	367/72
68	US 60058 55 A	☒	Method and apparatus for providing variable rate data in a communications system using statistical multiplexing	370/335
69	US 59369 55 A	☒	Network for mutually connecting computers and communicating method using such network	370/389
70	US 59266 43 A	Ø	Data driven processor performing parallel scalar and vector processing	712/7
71	US 59078 42 A	☒	Method of sorting numbers to obtain maxima/minima values with ordering	707/7
72	US 58729 87 A	☒	Massively parallel computer including auxiliary vector processor	712/3
73	US 58354 92 A	⊠	Network for mutually connecting computers and communicating method using such network	370/389
74	US 58154 21 A	⊠	Method for transposing a two-dimensional array	708/520
75	US 57936 61 A	☒	Method and apparatus for performing multiply and accumulate operations on packed data	708/603
76	US 57574 32 A	☒	Manipulating video and audio signals using a processor which supports SIMD instructions	348/384 .1
77	US 56896 47 A	⊠	Parallel computing system with processing element number setting mode and shortest route determination with matrix size information	712/11
78	US 56778 62 A	⊠	Method for multiplying packed data	708/620

Sheet 10 of 60

	Docum ent ID	Ū	Title	Current OR
79	US 56236 85 A	☒	Vector register validity indication to handle out-of-order element arrival for a vector computer with variable memory latency	712/9
80	US 55749 33 A	☒	Task flow computer architecture	712/28
81	US 53616 81 A	⊠	Program controlled cooking system using video data collection	99/331
82	US 53155 08 A	Ø	Label generating and data tracking system for processing purchase orders	705/28
83	US 52088 06 A	Ø	ISDN terminal equipment operating with circuit switching mode and packet switching mode	370/352
84	US 51669 27 A	⊠	Adaptive pathfinding neutral network for a packet communication system	370/238
85	US 51518 30 A	⊠	Magnetic recording and reproducing apparatus and method of recording and reproducing	360/32
86	US 51135 21 A	⊠	Method and apparatus for handling faults of vector instructions causing memory management exceptions	714/15
87	US 50973 64 A	⊠	Magnetic recording and reproducing apparatus and method of recording and reproducing	360/32
88	US 50723 77 A	×	Data driven processor with data pairing apparatus combining a hash memory with counter directional data loops	711/216
89	US 50438 67 A	×	Exception reporting mechanism for a vector processor	712/222
90	US 50088 12 A	×	Context switching method and apparatus for use in a vector processing system	712/228
91	US 49492 50 A	Ø	Method and apparatus for executing instructions for a vector processing system	712/208
92	US 48666 68 A	Ø	Multiple memory loading system based on multilevel lists	711/148
93	US 48232 58 A	⊠	Index limited continuous operation vector processor	712/9
94	US 47713 80 A	⊠	Virtual vector registers for vector processing system	712/6
95	US 46384 96 A	☒	Secure reliable transmitting and receiving system for transfer of digital data	375/351
96	US 44843 04 A	⊠	Transaction execution system having keyboard and message customization, improved key function versatility and message segmentation	345/733
97	US 43193 36 A	⊠	Transaction execution system with improved key function versatility	705/21
98	US 38660 30 A		Two's complement parallel array multiplier	708/625

	Docum ent ID	υ	Title	Current OR
1	JP 20002 42647 A		METHOD AND SYSTEM FOR RETRIEVING RELATED INFORMATION	
2	JP 08030 767 A	Ø	ARITHMETIC UNIT	
3	JP 04030 272 A	⊠	GENERATING METHOD FOR SOLID AND VARIABLE PICTURE ELEMENT FORMING SHEET	
4	JP 03245 225 A	⊠	FLOATING DECIMAL-POINT ADDITION/SUBTRACTION DEVICE	
5	JP 02255 378 A	Ø	OPTICAL RECORDING MEDIUM	
6	JP 59084 314 A	☒	DEVICE FOR REPRODUCING INFORMATION RECORDING DISK	
7	WO 30656 64 A1	☒	A NETWORKING ELEMENT ADAPTED TO RECEIVE AND OUTPUT ALSO PREAMBLES OF DATA PACKETS OR FRAMES	
8	WO 30472 13 A1	☒	RADIO COMMUNICATION SYSTEM AND METHOD FOR THE OPERATION THEREOF	
9	EP 11894 10 A2	☒	Processing of data packets within a network cluster	
10	EP 10764 40 A1	☒	Method for transferring data over a packet switching network and a gateway	
11	WO 92151 50 A1	☒	SIGNAL PROCESSING APPARATUS AND METHOD	
12	WO 85007 14 A1	☒	SYSTEM FOR THE CORRECTION OF ERRORS OF DIGITAL SIGNALS CODED IN REED-SOLOMON CODE	
13	WO 20030 56766 A	Ø	Scheduling packets in data network by adjusting queue sizes according to assigned weights, link bandwidth and per-hop maximum delay	
14	EP 13220 81 A	⊠	Reassembling method for packets from traffic flows in network element, each packet having at least one data part, queuing each of at least one data part of packets of the traffic flows in single reassembly queue in sorted order	
15	DE 29719 815 U	⊠	Head cleaning element for chip-card reader arrangement - has cleaning wipe with material for receiving debris particles arranged in area of chip, whereby material is covered with cleaning compound for magnetic heads	
16	EP 46402 5 B	☒	Data capture device for TV - extracts digital data from composite video signal and allows selective string retrieval display information on screen	
17	EP 41949 9 B	☒	High-speed vector tailgating in computers with vector registers - has element-by-element writing simultaneously with reading but lagging by one element to avoid overwriting	
18	US 46384 96 A	⊠	Transmitting and receiving system for digital data transfer - forming data into composite signal with number of different signal and timing elements before transmission	
19	EP 17304 0 A	×	Vector processing system - has pipeline unit including stage comparing exponents of vectors from two registers and effecting digit alignment	
20	DE 34856 35 G	☒	High-speed digital data processor system for vectors - uses two CPUS connected by ports to access paths of central memory, and shared registers connected to internal information paths of CPU	
21	DE 26143 62 A		Composite output signal generating device - produces signal in dependence on digital signal with two parts using series of switching elements	

Sheet 12 of 60

