MATH2621 — Higher Complex Analysis. XIII Inverses of exponential and related functions

This lecture?

In this lecture, we discuss the inverse functions for the exponential, hyperbolic and trigonometric functions,

This lecture?

In this lecture, we discuss the inverse functions for the exponential, hyperbolic and trigonometric functions, such as

$$\cosh(z) = \frac{\exp(z) + \exp(-z)}{2}$$
 and $\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$.

This lecture?

In this lecture, we discuss the inverse functions for the exponential, hyperbolic and trigonometric functions, such as

$$\cosh(z) = \frac{\exp(z) + \exp(-z)}{2}$$
 and $\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$.

We will also use square roots: remember that

$$PV \sqrt{z} = \exp(\frac{1}{2} \log(z));$$

equivalently, PV \sqrt{z} is the choice of square root with argument in $(-\pi/2,\pi/2]$.

Fix w in \mathbb{C} . Find all z in \mathbb{C} such that

(a)
$$\exp(z) = w$$
, (b) $\cosh(z) = w$, (c) $\sinh(z) = w$.

Answer.

Fix w in \mathbb{C} . Find all z in \mathbb{C} such that

(a)
$$\exp(z) = w$$
, (b) $\cosh(z) = w$, (c) $\sinh(z) = w$.

Answer. (a) If exp(z) = w, then we may write

$$z = \mathsf{Log}(w) + 2\pi i k,$$

where $k \in \mathbb{Z}$.

Fix w in \mathbb{C} . Find all z in \mathbb{C} such that

(a)
$$\exp(z) = w$$
, (b) $\cosh(z) = w$, (c) $\sinh(z) = w$.

Answer. (a) If exp(z) = w, then we may write

$$z = \operatorname{Log}(w) + 2\pi i k,$$

where $k \in \mathbb{Z}$.

Alternatively, we may write

$$z = \log(w),$$

where log is multi-valued.

Answer to Exercise 1

(b) If
$$cosh(z) = w$$
, then $exp(z) + exp(-z) = 2w$, so
$$(exp(z))^2 - 2w(exp(z)) + 1 = 0,$$

whence

$$\exp(z) = \frac{2w \pm PV \sqrt{(2w)^2 - 4}}{2} = w \pm PV \sqrt{w^2 - 1}.$$

Noting that $(w + PV \sqrt{w^2 - 1})(w - PV \sqrt{w^2 - 1}) = 1$, we conclude that

$$z = \pm \log(w + \text{PV}\sqrt{w^2 - 1}) + 2\pi ik$$

for some $k \in \mathbb{Z}$.

Answer to Exercise 1

(b) If
$$cosh(z) = w$$
, then $exp(z) + exp(-z) = 2w$, so
$$(exp(z))^2 - 2w(exp(z)) + 1 = 0,$$

whence

$$\exp(z) = \frac{2w \pm PV \sqrt{(2w)^2 - 4}}{2} = w \pm PV \sqrt{w^2 - 1}.$$

Noting that $(w + PV \sqrt{w^2 - 1})(w - PV \sqrt{w^2 - 1}) = 1$, we conclude that

$$z = \pm \log(w + \text{PV}\sqrt{w^2 - 1}) + 2\pi ik$$

for some $k \in \mathbb{Z}$.

Each step of the argument is reversible, so all such z solve $\cosh(z) = w$.

We could also write

$$z = \ln \left| w \pm \text{PV} \sqrt{w^2 - 1} \right| + i \operatorname{Arg} \left(w \pm \text{PV} \sqrt{w^2 - 1} \right) + 2\pi i k,$$

where $k \in \mathbb{Z}$ and we take the same choice of \pm in both In and Arg,

We could also write

$$z = \ln \left| w \pm \text{PV} \sqrt{w^2 - 1} \right| + i \operatorname{Arg} \left(w \pm \text{PV} \sqrt{w^2 - 1} \right) + 2\pi i k,$$

where $k \in \mathbb{Z}$ and we take the same choice of \pm in both In and Arg, or

$$z = \log\left(w + \sqrt{w^2 - 1}\right),\,$$

where both log and square root are multi-valued.

Note that cosh is even, so if cosh(z) = w, then cosh(-z) = w too. We can see that more clearly in solutions such as

$$z = \pm \log\left(w + \text{PV }\sqrt{w^2 - 1}\right) + 2\pi i k,$$

where $k \in \mathbb{Z}$, or

$$z = \pm \log(w + \text{PV}\sqrt{w^2 - 1}).$$

where log is multi-valued.

Note that cosh is even, so if cosh(z) = w, then cosh(-z) = w too. We can see that more clearly in solutions such as

$$z = \pm \log\left(w + \text{PV }\sqrt{w^2 - 1}\right) + 2\pi i k,$$

where $k \in \mathbb{Z}$, or

$$z = \pm \log(w + \text{PV}\sqrt{w^2 - 1}).$$

where log is multi-valued.

 \wedge

The exponential function

The principal candidate for an inverse for the exponential is . . .

Definition

The *principal branch* of the complex logarithm is the function Log from $\mathbb{C}\setminus\{0\}$ to \mathbb{C} , given by

$$Log(z) = \ln|z| + i \operatorname{Arg}(z),$$

where Arg(z) takes values in the range $(-\pi, \pi]$.

The exponential function

The principal candidate for an inverse for the exponential is . . .

Definition

The *principal branch* of the complex logarithm is the function Log from $\mathbb{C} \setminus \{0\}$ to \mathbb{C} , given by

$$Log(z) = \ln|z| + i \operatorname{Arg}(z),$$

where Arg(z) takes values in the range $(-\pi, \pi]$.

By properties of the exponential, if $z = re^{i\theta}$, then

$$e^{\operatorname{Log}(z)} = e^{\ln(r) + i\theta} = re^{i\theta} = z$$
:

however, if z = x + iy, then

$$Log(e^z) = ln |e^z| + i Arg(e^z) = x + i Arg(e^{iy}) = x + iy + 2\pi ik,$$

for some $k \in \mathbb{Z}$; it may be that $Log(e^z) \neq z$.

Given $\theta \in \mathbb{R}$, we define the ray R_{θ} and the horizontal strip S_{θ} in the complex plane by

$$R_{\theta} = \{ w \in \mathbb{C} : \operatorname{Arg}(w) - \theta \in 2\pi\mathbb{Z} \}$$

$$S_{\theta} = \{ z \in \mathbb{C} : \theta < \operatorname{Im}(z) < \theta + 2\pi \}.$$

The exponential map exp takes horizontal lines to rays, and is one-to-one and onto from the open horizontal strip S_{θ} to $\mathbb{C} \setminus R_{\theta}$.

The exponential map exp takes horizontal lines to rays, and is one-to-one and onto from the open horizontal strip S_{θ} to $\mathbb{C} \setminus R_{\theta}$. We may define an inverse function \log_{θ} from $\mathbb{C} \setminus R_{\theta}$ to S_{θ} :

$$\log_{\theta}(w) = \ln|w| + i \arg_{\theta}(w),$$

where $arg_{\theta}(w)$ is the argument in the range $(\theta, \theta + 2\pi)$.

A zoo of inverse functions

As θ varies, we get different inverse functions. These inverse functions are *branches* of the complex logarithm, and the rays R_{θ} are *branch cuts*.

A zoo of inverse functions

As θ varies, we get different inverse functions. These inverse functions are *branches* of the complex logarithm, and the rays R_{θ} are *branch cuts*. The point 0, which is common to all the branch cuts, is called a *branch point*.

A zoo of inverse functions

As θ varies, we get different inverse functions. These inverse functions are *branches* of the complex logarithm, and the rays R_{θ} are *branch cuts*. The point 0, which is common to all the branch cuts, is called a *branch point*.

Different branches of the logarithm differ by a constant in connected open sets where they are both defined.

Differentiability

Lemma

For any branch \log_{θ} of the complex logarithm,

$$\log_{\theta}'(w) = \frac{1}{w}$$

for all $w \in \mathbb{C} \setminus R_{\theta}$.

Proof. We may use the Cauchy–Riemann equations.

Differentiability

Lemma

For any branch \log_{θ} of the complex logarithm,

$$\log_{\theta}'(w) = \frac{1}{w}$$

for all $w \in \mathbb{C} \setminus R_{\theta}$.

Proof. We may use the Cauchy-Riemann equations.

Alternatively, we can use the formula for the derivative of an inverse function to prove this.

Differentiability

Lemma

For any branch \log_{θ} of the complex logarithm,

$$\log_{\theta}'(w) = \frac{1}{w}$$

for all $w \in \mathbb{C} \setminus R_{\theta}$.

Proof. We may use the Cauchy-Riemann equations.

Alternatively, we can use the formula for the derivative of an inverse function to prove this.

The notation \log_{θ} is not standard, and we will not use it any more. Rather, we use the expression "the branch of the logarithm with imaginary part in $(\theta, \theta + 2\pi)$ ".

A multi-valued inverse function

A different sort of "inverse function" of the exponential function is the "multi-function" (resp. function) log from $\mathbb{C}\setminus\{0\}$ to (resp. the power set of) \mathbb{C} given by

$$\log(z) = \ln|z| + i\arg(z).$$

This is a "multifunction" in the sense that it takes multiple values, because arg(z) takes multiple values.

Complex powers

We define complex powers of complex numbers using exponentials and logarithms.

Definition

Given $z \in \mathbb{C} \setminus \{0\}$ and $\alpha \in \mathbb{C}$, we define

$$z^{\alpha} = \exp(\alpha \log(z)).$$

The *principal branch of* z^{α} is found by using Log, the principal branch of the logarithm:

$$PV z^{\alpha} = \exp(\alpha \operatorname{Log}(z)).$$

The possible values of the multi-valued function z^{α} are $\exp(\alpha \operatorname{Log}(z) + 2\pi i k \alpha)$ where $k \in \mathbb{Z}$. Different values of k may give very different values of z^{α} .

A lemma

Lemma

The function $z\mapsto \mathsf{PV}\,z^\alpha$ is differentiable in $\mathbb{C}\setminus(-\infty,0]$, and its derivative is $\alpha\,\mathsf{PV}\,z^\alpha/z$.

Proof. It suffices to differentiate $\exp(\alpha \operatorname{Log}(z))$, which is differentiable where Log is differentiable.

Compute the possible values of i^i ; which is the principal value? Answer.

Compute the possible values of i^i ; which is the principal value? Answer. By definition, the possible values are

$$i^{i} = \exp(i\log(i)) = \exp(i(i\frac{\pi}{2} + 2\pi ik)) = \exp(-\frac{\pi}{2} - 2\pi k),$$

where $k \in \mathbb{Z}$. When k = 0 we get the principal value:

$$PV i^i = e^{-\pi/2}.$$

Δ

Compute the possible values of i^i ; which is the principal value? Answer. By definition, the possible values are

$$i^{i} = \exp(i\log(i)) = \exp(i(i\frac{\pi}{2} + 2\pi ik)) = \exp(-\frac{\pi}{2} - 2\pi k),$$

where $k \in \mathbb{Z}$. When k = 0 we get the principal value: $\mathsf{PV}\,i^i = e^{-\pi/2}$.

 \triangle

Often we write e^z rather than $\exp(z)$. Note that this is ambiguous, since complex powers are multi-valued! Arguably, $\exp(z)$ is better notation.

Compute the possible values of i^i ; which is the principal value? Answer. By definition, the possible values are

$$i^{i} = \exp(i\log(i)) = \exp(i(i\frac{\pi}{2} + 2\pi ik)) = \exp(-\frac{\pi}{2} - 2\pi k),$$

where $k \in \mathbb{Z}$. When k = 0 we get the principal value: PV $i^i = e^{-\pi/2}$.

 \triangle

Often we write e^z rather than $\exp(z)$. Note that this is ambiguous, since complex powers are multi-valued! Arguably, $\exp(z)$ is better notation.

For what a and b is a^b single-valued?

The inverse hyperbolic sine

A little while ago, we defined the hyperbolic sine and cosine, and established some of their properties. Now we consider the inverse function(s) of sinh.

Find all z in \mathbb{C} such that $\sinh(z) = w$.

Answer.

Find all z in \mathbb{C} such that sinh(z) = w.

Answer. If sinh(z) = w, then exp(z) - exp(-z) = 2w, so, writing e^z instead of exp(z),

$$(e^z)^2 - 2we^z - 1 = 0,$$

Find all z in \mathbb{C} such that sinh(z) = w.

Answer. If sinh(z) = w, then exp(z) - exp(-z) = 2w, so, writing e^z instead of exp(z),

$$(e^z)^2 - 2we^z - 1 = 0,$$

whence

$$e^z = \frac{2w \pm PV(4w^2 + 4)^{1/2}}{2} = w \pm PV(w^2 + 1)^{1/2}$$

$$z = \text{Log}(w \pm \text{PV}(w^2 + 1)^{1/2}) + 2\pi ik$$

= $\ln |w \pm \text{PV}(w^2 + 1)^{1/2}| + i \operatorname{Arg}(w \pm \text{PV}(w^2 + 1)^{1/2}) + 2\pi ik$

where $k \in \mathbb{Z}$; we must take the same choice of \pm in both the In part and in the Arg part.

Answer to Exercise 3

Alternatively, we may note that

$$(w + PV(w^2 + 1)^{1/2})(w - PV(w^2 + 1)^{1/2}) = w^2 - (w^2 + 1) = -1;$$

hence e^z is $w + \mathsf{PV}(w^2+1)^{1/2}$ or $-(w + \mathsf{PV}(w^2+1)^{1/2})^{-1}$, and either

$$z = \text{Log}(w + \text{PV}(w^2 + 1)^{1/2}) + 2\pi i k$$

or

$$z = -\log(w + PV(w^2 + 1)^{1/2}) + 2\pi ik + \pi i.$$

This is a better answer because there is less room for ambiguity.

Answer to Exercise 3

Alternatively, we may note that

$$(w + PV(w^2 + 1)^{1/2})(w - PV(w^2 + 1)^{1/2}) = w^2 - (w^2 + 1) = -1;$$

hence e^z is $w + PV(w^2 + 1)^{1/2}$ or $-(w + PV(w^2 + 1)^{1/2})^{-1}$, and either

$$z = \text{Log}(w + \text{PV}(w^2 + 1)^{1/2}) + 2\pi i k$$

or

$$z = -\log(w + PV(w^2 + 1)^{1/2}) + 2\pi ik + \pi i.$$

This is a better answer because there is less room for ambiguity.

We may also write

$$z = \log(w + PV(w^2 + 1)^{1/2})$$
 or $-\log(w + PV(w^2 + 1)^{1/2}) + \pi i$,

where log is multi-valued.

The inverse hyperbolic sine

The principal branch of the inverse hyperbolic sine function is given by

$$PV \sinh^{-1} w = Log(w + PV(w^2 + 1)^{1/2}).$$

The inverse hyperbolic sine

The principal branch of the inverse hyperbolic sine function is given by

$$PV \sinh^{-1} w = Log(w + PV(w^2 + 1)^{1/2}).$$

It is easy to check that for any complex number w,

$$sinh PV sinh^{-1} w = w;$$

however, it need not be true that $PV \sinh^{-1} \sinh z = z$.

The inverse hyperbolic sine

The principal branch of the inverse hyperbolic sine function is given by

$$PV \sinh^{-1} w = Log(w + PV(w^2 + 1)^{1/2}).$$

It is easy to check that for any complex number w,

$$sinh PV sinh^{-1} w = w;$$

however, it need not be true that $PV \sinh^{-1} \sinh z = z$. What are the possible values of $PV \sinh^{-1} \sinh z - z$?

More on the inverse hyperbolic sine

Both the logarithm and the square root are possible causes of discontinuity. The function $PV(w^2+1)^{1/2}$ is continuous as long as w^2+1 is not in the interval $(-\infty,0]$, and the logarithm is continuous as long as $w+PV(w^2+1)^{1/2}$ is not in the interval $(-\infty,0]$.

More on the inverse hyperbolic sine

Both the logarithm and the square root are possible causes of discontinuity. The function $PV(w^2+1)^{1/2}$ is continuous as long as w^2+1 is not in the interval $(-\infty,0]$, and the logarithm is continuous as long as $w+PV(w^2+1)^{1/2}$ is not in the interval $(-\infty,0]$.

On the one hand, if w^2+1 is not in $(-\infty,0]$, then w^2 is not in $(-\infty,-1]$. So one possible discontinuity is when $w=i\nu$, where $|\nu|\geq 1$.

Discontinuities of the inverse hyperbolic sine

On the other hand, we may try to solve the equation $w + PV(w^2 + 1)^{1/2} = -t$ for $t \in [0, \infty)$; we get

$$PV(w^{2} + 1)^{1/2} = -t - w$$

$$w^{2} + 1 = t^{2} + w^{2} + 2tw$$

$$w = \frac{1 - t^{2}}{2t},$$

and so w is real.

Discontinuities of the inverse hyperbolic sine

On the other hand, we may try to solve the equation $w + \text{PV}(w^2 + 1)^{1/2} = -t$ for $t \in [0, \infty)$; we get

$$PV(w^{2} + 1)^{1/2} = -t - w$$

$$w^{2} + 1 = t^{2} + w^{2} + 2tw$$

$$w = \frac{1 - t^{2}}{2t},$$

and so w is real. But if w is real, then

$$w + PV(w^2 + 1)^{1/2} = w + (w^2 + 1)^{1/2} > 0,$$

and so $w + \text{PV}(w^2 + 1)^{1/2}$ is not in the interval $(-\infty, 0]$. Thus the only possible discontinuities are when w = iv, where v is real and $|v| \ge 1$.

Differentiability

Lemma

The principal branch of the inverse hyperbolic sine function is differentiable in $\mathbb{C} \setminus ([i,+i\infty) \cup (-i\infty,-i])$. Further,

$$\left(\mathsf{PV}\,\mathsf{sinh}^{-1}\right)'(w) = \frac{1}{\mathsf{PV}\,\sqrt{w^2+1}}\,.$$

Proof

Proof. We compute the derivative:

$$\frac{d \sinh^{-1}(w)}{dw} = \frac{d \log(w + PV(w^2 + 1)^{1/2})}{dw}$$
$$= \frac{1 + w/PV(w^2 + 1)^{1/2}}{w + PV\sqrt{w^2 + 1}}$$
$$= \frac{1}{PV(w^2 + 1)^{1/2}},$$

as required.

This is correct as long as we stay away from where Log is not differentiable, that is, z stays away from $[+i,+i\infty) \cup [-i,-i\infty)$.

The inverse hyperbolic cosine

Similarly, we define

$$PV \cosh^{-1}(w) = Log(w + PV(w + 1)^{1/2} PV(w - 1)^{1/2}).$$

Show that

$$\frac{d \, \mathsf{PV} \, \mathsf{cosh}^{-1}(w)}{dw} = \frac{1}{\mathsf{PV}(w+1)^{1/2} \, \mathsf{PV}(w-1)^{1/2}}$$

for most $w \in \mathbb{C}$. Where is $PV \cosh^{-1}$ not differentiable?

Answer.

Show that

$$\frac{d \, \mathsf{PV} \, \mathsf{cosh}^{-1}(w)}{dw} = \frac{1}{\mathsf{PV}(w+1)^{1/2} \, \mathsf{PV}(w-1)^{1/2}}$$

for most $w \in \mathbb{C}$. Where is $PV \cosh^{-1}$ not differentiable?

Answer. The calculation of the derivative is similar to that for $PV \sinh^{-1}$.

Show that

$$\frac{d \, \mathsf{PV} \, \mathsf{cosh}^{-1}(w)}{dw} = \frac{1}{\mathsf{PV}(w+1)^{1/2} \, \mathsf{PV}(w-1)^{1/2}}$$

for most $w \in \mathbb{C}$. Where is $PV \cosh^{-1}$ not differentiable?

Answer. The calculation of the derivative is similar to that for $PV \sinh^{-1}$.

The potential problems for differentiability are when $w-1\in (-\infty,0]$, and when $w+1\in (-\infty,0]$, and when $w+\operatorname{PV}(w-1)^{1/2}\operatorname{PV}(w+1)^{1/2}\in (-\infty,0]$. Observe that $w+\operatorname{PV}(w-1)^{1/2}\operatorname{PV}(w+1)^{1/2}=-a$ if and only if $\operatorname{PV}(w-1)^{1/2}\operatorname{PV}(w+1)^{1/2}=-a-w$, that is if $w^2-1=(w+a)^2$, or $w=-(a^2+1)/2a$. So the potential problems are when $w\in (-\infty,1]$. This is the branch cut. \triangle

The inverse trigonometric functions

We may define the inverse trigonometric functions using the formulae cos(iz) = cosh(z) and sin(iz) = i sinh(z).

The inverse trigonometric functions

We may define the inverse trigonometric functions using the formulae cos(iz) = cosh(z) and sin(iz) = i sinh(z).

For example, if $z = \cos^{-1}(w)$, then $w = \cos(z) = \cosh(iz)$, and so $iz = \cosh^{-1}(w)$.

What are the ranges of $sinh^{-1}$, cos^{-1} , and sin^{-1} ? Where are the branch cuts for cos^{-1} and sin^{-1} ?