Análisis Matemático I

Pedro Sánchez Terraf Ana Andrés Martín Agustín Luciana José Luis

FaMAF, 18 de marzo de 2024

Novedades

Cambio fecha de parcial

■ Primer parcial: 22 de abril.

Contenidos estimados para hoy

- Repaso
- Caracterizaciones de supremo e ínfimo
- 3 Arquimedianidad
- A Relación entre supremo y máximo
- Infimos y ejemplos
- 6 Densidad
- 7 Conclusión

- $lue{z}$ es cota superior de A si $\forall a \in A, a \leq z$.
- y es cota inferior de A si $\forall a \in A, y \leq a$.
- A está acotado superiormente $\iff \exists z \in \mathbb{R}, z$ es cota superior de A.
- A está acotado inferiormente \iff $\exists y \in \mathbb{R}, \ y$ es cota inferior de A.

- **z** es cota superior de A si $\forall a \in A, a \leq z$.
- y es cota inferior de A si $\forall a \in A, y \leq a$.
- A está acotado superiormente $\iff \exists z \in \mathbb{R}, z$ es cota superior de A.
- A está acotado inferiormente \iff $\exists y \in \mathbb{R}, \ y$ es cota inferior de A.

Ejemplo

El conjunto de cotas superiores de [0,1) es $[1,\infty)$.

- $lue{z}$ es cota superior de A si $\forall a \in A, a \leq z$.
- y es cota inferior de A si $\forall a \in A, y \leq a$.
- A está acotado superiormente $\iff \exists z \in \mathbb{R}, z$ es cota superior de A.
- A está acotado inferiormente \iff $\exists y \in \mathbb{R}, \ y$ es cota inferior de A.

Ejemplo

El conjunto de cotas superiores de [0,1) es $[1,\infty)$.

Axioma del Supremo

P13 Todo conjunto $\neq \varnothing$ acotado superiormente tiene cota superior mínima.

- **z** es cota superior de A si $\forall a \in A, a \leq z$.
- y es cota inferior de A si $\forall a \in A, y \leq a$.
- A está acotado superiormente $\iff \exists z \in \mathbb{R}, z$ es cota superior de A.
- A está acotado inferiormente \iff $\exists y \in \mathbb{R}, \ y$ es cota inferior de A.

Ejemplo

El conjunto de cotas superiores de [0,1) es $[1,\infty)$.

Axioma del Supremo

P13 Todo conjunto $\neq \varnothing$ acotado superiormente tiene cota superior mínima.

Definición

Si $A \neq \emptyset$ es acotado superiormente, su **supremo**, $\sup A$, es el mínimo de sus cotas superiores.

- lacksquare z es cota superior de A si $\forall a \in A, a \leq z$.
- y es cota inferior de A si $\forall a \in A, y \leq a$.
- A está acotado superiormente $\iff \exists z \in \mathbb{R}, z$ es cota superior de A.
- A está acotado inferiormente \iff $\exists y \in \mathbb{R}, \ y$ es cota inferior de A.

Ejemplo

El conjunto de cotas superiores de [0,1) es $[1,\infty)$.

Axioma del Supremo

P13 Todo conjunto $\neq \varnothing$ acotado superiormente tiene cota superior mínima.

Definición

Si $A \neq \emptyset$ es acotado superiormente, su **supremo**, $\sup A$, es el mínimo de sus cotas superiores. Análogamente con "inferiormente" e **ínfimo**, $\inf A$.

 \blacksquare $\sup A$ es la mínima cota superior de A.

- \blacksquare sup A es la mínima cota superior de A.
- \blacksquare s es el mínimo de $C \iff$

- \blacksquare sup A es la mínima cota superior de A.
- s es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

- \blacksquare sup A es la mínima cota superior de A.
- s es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

Luego, $s = \sup A$ equivale a que s sea cota de A y si c es cualquier cota superior de A, entonces $s \le c$.

- \blacksquare sup A es la mínima cota superior de A.
- s es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

Luego, $s = \sup A$ equivale a que s sea cota de A y si c es cualquier cota superior de A, entonces $s \le c$.

Caracterización del supremo

Son equivalentes:

- $s = \sup A;$
- **2** s es cota superior de A y $\forall t < s, \ \exists a \in A, \ t < a;$ (Demo

(Demostramos)

- \blacksquare sup A es la mínima cota superior de A.
- s es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

Luego, $s = \sup A$ equivale a que s sea cota de A y si c es cualquier cota superior de A, entonces $s \le c$.

Caracterización del supremo

Son equivalentes:

- 1 $s = \sup A$;
- **2** s es cota superior de A y $\forall t < s, \ \exists a \in A, \ t < a;$ (Demostramos)
- **3** s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, \ s \varepsilon < a;$ (Ejercicio)

- \blacksquare sup A es la mínima cota superior de A.
- s es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

Luego, $s = \sup A$ equivale a que s sea cota de A y si c es cualquier cota superior de A, entonces $s \le c$.

Caracterización del supremo

Son equivalentes:

- 1 $s = \sup A$;
- **2** s es cota superior de A y $\forall t < s, \exists a \in A, t < a;$
 - (Demostramos)
- 3 s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, \ s \varepsilon < a;$

(Ejercicio)

4 s es cota superior de A y $\forall t < s, \exists a \in A, t \leq a;$

(Apunte)

- \blacksquare sup A es la mínima cota superior de A.
- **s** es el mínimo de $C \iff s \in C$ y $\forall c \in C, s \leq c$.

Luego, $s = \sup A$ equivale a que s sea cota de A y si c es cualquier cota superior de A, entonces s < c.

Caracterización del supremo

Son equivalentes:

- 1 $s = \sup A$;
- 2 s es cota superior de A y $\forall t < s, \exists a \in A, t < a;$
- 3 s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, s \varepsilon < a;$
- s es cota superior de A y $\forall t < s, \exists a \in A, t < a;$
- s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, s \varepsilon \leq a$.

(Demostramos)

(Ejercicio)

(Apunte)

(Ídem)

Son equivalentes:

- **2** s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, \ s \varepsilon < a$.

Son equivalentes:

- **2** s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, \ s \varepsilon < a$.

Teorema (\mathbb{R} es arquimediano)

 \mathbb{N} no está acotado superiormente.

Son equivalentes:

- **2** s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, \ s \varepsilon < a.$

Teorema (\mathbb{R} es arquimediano)

 \mathbb{N} no está acotado superiormente.

Corolario

- **1** Para todo $\varepsilon > 0$, existe $n \in \mathbb{N}$ tal que $0 < \frac{1}{n} < \varepsilon$.
- ${\bf 2} \ {\mathbb Z}$ no está acotado superior ni inferiormente.

Son equivalentes:

- **2** s es cota superior de A y $\forall \varepsilon > 0, \exists a \in A, s \varepsilon < a$.

Teorema (\mathbb{R} es arquimediano)

 \mathbb{N} no está acotado superiormente.

Corolario

- **1** Para todo $\varepsilon > 0$, existe $n \in \mathbb{N}$ tal que $0 < \frac{1}{n} < \varepsilon$.
- ${\bf 2} \ {\mathbb Z}$ no está acotado superior ni inferiormente.

Ejercicio

Si $N\subseteq Z\subseteq \mathbb{R}$ y Z está acotado superiormente, entonces N está acotado superiormente.

■ s es el máximo de $A \iff s \in A$ y $\forall a \in A, s \leq a$;

- s es el máximo de $A \iff s \in A$ y $\forall a \in A, s \leq a$; equivalentemente,
- lacksquare s es el máximo de $A\iff s\in A$ y s es cota superior de A.

- s es el máximo de $A \iff s \in A$ y $\forall a \in A, s \leq a$; equivalentemente,
- s es el máximo de $A \iff s \in A$ y s es cota superior de A.

Lema

- $Si A \neq \emptyset$ está acotado superiormente y $\sup A \in A$, entonces $\sup A = \max A$.
- Si A tiene máximo, entonces $\max A = \sup A$ y luego $\sup A \in A$.

- s es el máximo de $A \iff s \in A$ y $\forall a \in A, s \leq a$; equivalentemente,
- s es el máximo de $A \iff s \in A$ y s es cota superior de A.

Lema

- $Si A \neq \emptyset$ está acotado superiormente y $\sup A \in A$, entonces $\sup A = \max A$.
- Si A tiene máximo, entonces $\max A = \sup A$ y luego $\sup A \in A$. Luego,
- $si \sup A \notin A$, entonces A no tiene máximo.

Todo lo dicho vale dualmente para ínfimos.

Todo lo dicho vale **dualmente** para ínfimos.

- $x = \sup A \iff x$ es cota superior de A y $\forall t < x, \exists a \in A, t < a$.
- $x = \sup A \iff x$ es cota superior de A y $\forall t < x, \exists a \in A, t \leq a$.
- Si $A \neq \emptyset$ está acotado superiormente y $\sup A \in A$, entonces $\sup A = \max A$.
- Si A tiene máximo, entonces $\max A = \sup A$ y luego $\sup A \in A$.
- ... etcétera.

Todo lo dicho vale dualmente para ínfimos.

- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t > a.$
- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t \geq a.$
- Si $A \neq \emptyset$ está acotado inferiormente y $\inf A \in A$, entonces $\inf A = \min A$.
- Si A tiene mínimo, entonces $\min A = \inf A$ y luego $\inf A \in A$.
- ...etcétera.

Todo lo dicho vale dualmente para ínfimos.

- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t > a.$
- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t \geq a.$
- Si $A \neq \emptyset$ está acotado inferiormente y $\inf A \in A$, entonces $\inf A = \min A$.
- Si A tiene mínimo, entonces $\min A = \inf A$ y luego $\inf A \in A$.
- ... etcétera.

Análisis de A := (0, 1)

Todo lo dicho vale dualmente para ínfimos.

- $x = \sup A \iff x$ es cota superior de A y $\forall t < x, \exists a \in A, t < a$.
- $\blacksquare x = \sup A \iff x \text{ es cota superior de } A \text{ y } \forall t < x, \ \exists a \in A, \ t \leq a.$
- Si $A \neq \emptyset$ está acotado superiormente y $\sup A \in A$, entonces $\sup A = \max A$.
- Si A tiene máximo, entonces $\max A = \sup A$ y luego $\sup A \in A$.
- ... etcétera.

Análisis de A := (0, 1)

Todo lo dicho vale dualmente para ínfimos.

- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t > a.$
- $x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t \geq a.$
- Si $A \neq \emptyset$ está acotado inferiormente y $\inf A \in A$, entonces $\inf A = \min A$.
- Si A tiene mínimo, entonces $\min A = \inf A$ y luego $\inf A \in A$.
- ... etcétera.

Análisis de A := (0, 1)

Todo lo dicho vale dualmente para ínfimos.

- $\blacksquare x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t > a.$
- $x = \inf A \iff x \text{ es cota inferior de } A \text{ y } \forall t > x, \exists a \in A, t \geq a.$
- Si $A \neq \emptyset$ está acotado inferiormente y $\inf A \in A$, entonces $\inf A = \min A$.
- Si A tiene mínimo, entonces $\min A = \inf A$ y luego $\inf A \in A$.
- ... etcétera.

Análisis de $A \mathrel{\mathop:}= \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$

Todo lo dicho vale dualmente para ínfimos.

- $x = \sup A \iff x$ es cota superior de A y $\forall t < x, \exists a \in A, t < a$.
- $\blacksquare x = \sup A \iff x \text{ es cota superior de } A \text{ y } \forall t < x, \ \exists a \in A, \ t \leq a.$
- Si $A \neq \emptyset$ está acotado superiormente y $\sup A \in A$, entonces $\sup A = \max A$.
- Si A tiene máximo, entonces $\max A = \sup A$ y luego $\sup A \in A$.
- ... etcétera.

Análisis de $A \mathrel{\mathop:}= \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$

Densidad

Definición

 $D \subseteq \mathbb{R}$ es **denso** si y sólo si $\forall x \, y \in \mathbb{R}, \ \ x < y \implies \exists d \in D, \ x < d < y.$

Densidad

Definición

 $D \subseteq \mathbb{R}$ es **denso** si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y.$

Aula Virtual ► Encuestas ► Densidad (T. Mañana)

- ¿Es \mathbb{R} denso? ¿Lo es \mathbb{Z} ?
- Si D es denso, ¿es $D = \mathbb{R}$?

Densidad

Definición

 $D \subseteq \mathbb{R}$ es **denso** si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y.$

Aula Virtual ► Encuestas ► Densidad (T. Mañana)

- \blacksquare ¿Es $\mathbb R$ denso? ¿Lo es $\mathbb Z$?
- Si D es denso, ¿es $D = \mathbb{R}$?

Teorema

O es denso.

- $D \subseteq \mathbb{R}$ es denso si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y.$
- Q es denso.

- $D \subseteq \mathbb{R}$ es denso si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y$.
- Q es denso.

Teorema

 $\mathbb{R} \setminus \mathbb{Q} \neq \emptyset$. En particular, existe un irracional h entre 0 y 1.

- $D \subseteq \mathbb{R}$ es denso si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y$.
- Q es denso.

Teorema

 $\mathbb{R} \setminus \mathbb{Q} \neq \emptyset$. En particular, existe un irracional h entre 0 y 1.

Lema

Para todos los $r, s \in \mathbb{Q}$ tales que r < s, existe $j \in \mathbb{R} \setminus \mathbb{Q}$ tal que r < j < s.

- $D \subseteq \mathbb{R}$ es denso si y sólo si $\forall x y \in \mathbb{R}, \ x < y \implies \exists d \in D, \ x < d < y$.

Teorema

 $\mathbb{R} \setminus \mathbb{Q} \neq \emptyset$. En particular, existe un irracional h entre 0 y 1.

Lema

Para todos los $r, s \in \mathbb{Q}$ tales que r < s, existe $j \in \mathbb{R} \setminus \mathbb{Q}$ tal que r < j < s.

Teorema

 $\mathbb{R}\setminus\mathbb{Q}$ es denso.

Ejercicios para hoy

Con lo visto esta clase, pueden terminar el P1.

Ejercicios para hoy

Con lo visto esta clase, pueden terminar el P1.

Pregunta

Si partimos una recta en una "parte izquierda" y una "parte derecha", ¿cómo queda donde se partió?

Ejercicios para hoy

Con lo visto esta clase, pueden terminar el P1.

Pregunta

Si partimos una recta en una "parte izquierda" y una "parte derecha", ¿cómo queda donde se partió?

Respuesta

Toda partición $\mathbb{R} = I \cup D$ tal que $\forall r \in I, s \in D, r < s$ está determinada por un punto $a \in \mathbb{R}$, de manera que se da exactamente una de las siguientes:

- $\blacksquare I = (-\infty, a)$ y $D = [a, \infty)$, o bien.
- $\blacksquare I = (-\infty, a] \text{ y } D = (a, \infty).$

