430.523: Random Signal Theory

Electrical and Computer Engineering, Seoul National Univ. Spring Semester, 2018 Homework #2, Due: In class @ April 11

Note: No late homework will be accepted.

Problem 1) X, Y, and Z are independent and uniformly distributed RVs defined over (0, 10). Compute $P(X \ge YZ)$.

Problem 2) Prove a rectified linear unit (a.k.a. ReLu) has the transfer function y = xu(x) where u(x) = 1 for $x \ge 0$. Suppose X is uniform over (0, 2). Plot the CDF $F_Y(y)$.

Problem 3) Let X_1 , X_2 , and X_3 be i.i.d. continuous random variables with the CDF F(x). Also, let $Y_i = F(X_i)$ be the random variables where $F(X_i)$ is the CDF of X_i . Find the joint distribution of Y_1 , Y_2 , and Y_3 .

Problem 4) Let X_1, X_2, \dots, X_n be i.i.d. random variables. Also, let $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ be the order statistic of X_i . Suppose that $Y_i = g(X_{(i)})$ where g is some monotonically increasing and invertible function.

- (a) Find the distribution of Y_1
- (b) Find the distribution of Y_n
- (c) Find the joint distribution of Y_1 and Y_n
- (d) Are Y_1 and Y_n independent?

Problem 5) Show that if X and Y are independent gamma RVs with parameter (α, λ) and (β, λ) , respectively, then the X + Y is also gamma RV with parameters $(\alpha + \beta, \lambda)$.

Problem 6) X and Y are independent gamma RVs with parameter (α, λ) and (β, λ) , respectively.

Compute the joint density of U = X + Y and $V = \frac{X}{X+Y}$.

Hint: U will be gamma distributed with parameters $(\alpha + \beta, \lambda)$ (see also previous problem) and V will be beta distributed with parameters (α, β) and they will be independent each other.

Problem 7) The joint pdf of RVs X and Y is defined as

$$f_{X,Y}(x,y) = \alpha e^{-5y}$$

where 0 < x < 2 and y > 0.

- (a) Find α
- (b) Find the marginal pdfs of X and Y.
- (c) What is the covariance of X and Y?

Problem 8) Show that $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$