Scilab Textbook Companion for Digital Electronics: Circuits And Systems by V. K. Puri¹

Created by
Rishav Dutta
B.Tech
Electronics Engineering
NIT Durgapur
College Teacher
Prof. Sabyasachi Sengupta,iit Kharagpur
Cross-Checked by
Mukul R. Kulkarni

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Electronics: Circuits And Systems

Author: V. K. Puri

Publisher: Tata McGraw Hill, New Delhi

Edition: 1

Year: 1997

ISBN: 0-07-463317-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Number systems and binary codes	5
2	Boolean algebra logic gates karnaugh map and minimization	94
3	Wave shaping clipping clamping and sweep circuits	107
5	Sequential circuits flip flops and multivibrators	112
8	D to A and A to D converters	115

List of Scilab Codes

Exa 1.1.a	decimal to binary conversion	5
Exa 1.1.b	binary to decimal conversion	5
Exa 1.2	binary to decimal conversion	6
Exa 1.3	binary to decimal conversion	8
Exa 1.4	decimal to binary conversion	9
Exa 1.5	decimal to octal conversion	J
Exa 1.6	octal to decimal conversion	1
Exa 1.7	binary to octal conversion	1
Exa 1.8.a	decimal to binary conversion	2
Exa 1.8.b	binary to decimal conversion	2
Exa 1.9.a	decimal to binary conversion	3
Exa 1.9.b	decimal to binary conversion	4
Exa 1.9.c	decimal to binary conversion	5
Exa 1.9.d	binary to decimal conversion	5
Exa 1.10.a	hex to decimal conversion	S
Exa 1.10.b	decimal to hex conversion	6
Exa 1.11	hex to binary and decimal conversion 1'	7
Exa 1.12	hex to binary and octal and decimal conversion 1'	7
Exa 1.13.a	hex to decimal conversion	3
Exa 1.13.b	hex to decimal conversion	3
Exa 1.14.a	addition of two binary numbers	9
Exa 1.14.b	addition of two binary numbers	9
Exa 1.14.c	addition of two binary numbers	3
Exa 1.15.a	subtraction of two binary numbers	7
Exa 1.15.b	subtraction of two binary numbers	1
Exa 1.16.a	multiplication of two binary numbers	5
	multiplication of two binary numbers	9
	division of two binary numbers 4)

Exa	1.17.b	division of two binary numbers
Exa	1.18.a	binary to hex conversion
Exa	1.18.b	decimal to octal conversion 48
Exa	1.18.c	binary to decimal conversion 48
Exa	1.19.a	decimal to octal conversion
Exa	1.19.b	decimal to octal conversion 51
Exa	1.19.c	decimal to octal conversion
Exa	1.20.a	decimal to signed binary number conversion 53
Exa	1.20.b	decimal to signed binary system conversion 54
Exa	1.20.c	decimal to signed binary system conversion 54
Exa	1.21.a	subtraction using ones complement
Exa	1.21.b	subtraction using ones complement
Exa	1.21.c	subtraction using ones complement
Exa	1.21.d	subtraction using ones complement
Exa	1.21.e	subtraction using ones complement
Exa	1.22.a	subtraction using two complement
Exa	1.22.b	subtraction using two complement 63
Exa	1.22.c	subtraction using two complement 64
Exa	1.22.d	subtraction using two complement
Exa	1.22.e	subtraction using two complement 69
Exa	1.22.f	subtraction using two complement
Exa	1.23.a	BCD to decimal equivalent conversion
Exa	1.23.b	BCD to decimal equivalent conversion
Exa	1.24.a	binary to gray code conversion
Exa	1.24.b	binary to gray code conversion
Exa	1.24.c	binary to gray code conversion 80
Exa	1.25.a	subtraction using ones complement 81
Exa	1.25.b	gray code to binary conversion 81
Exa	1.25.c	decimal to BCD conversion 82
Exa	1.25.d	subtraction using ones complement
Exa	1.26	finding equivalent in decimal for excess 3 code 84
Exa	1.27.a	gray code to binary conversion
		gray code to binary conversion
Exa	1.27.c	gray code to binary conversion
		constructing an even parity 7 bit hamming code 88
Exa	1.28.b	constructing an even parity 7 bit hamming code 89
	1.29	locating error in hamming code and correcting it 91
Exa	2.8.a	simplification of boolean expression

Exa	2.8.b	simplification of boolean expression
Exa	2.9.a	simplification of boolean expression
Exa	2.9.b	simplification of boolean expression
Exa	2.9.c	simplification of boolean expression
Exa	2.10.a	simplification of boolean expression
Exa	2.10.b	simplification of boolean expression
Exa	2.10.c	simplification of boolean expression
	2.11	simplification of boolean expression
Exa	2.13.a	simplification of boolean expression
Exa	2.13.b	simplification of boolean expression
Exa	2.29	finding SOP
Exa	2.30	finding POS
Exa	2.31.a	conversion to canonical SOP
Exa	2.31.b	conversion to canonical POS
Exa	2.32	finding SOP and POS
Exa	2.33	finding SOP and POS
Exa	2.34	finding maxterms and minterms
Exa	2.35	finding maxterms
Exa	2.36	finding required data
Exa	2.37	finding SOP
Exa	2.38	finding sum of minterms and product of maxterms
Exa	3.1	finding required data
Exa	3.2	finding maximum amplification
Exa	3.3.a	finding clamping level voltage
Exa	3.3.b	finding clamping level voltage
Exa	3.4	finding output voltage
Exa	3.6	finding resistance and capacitance
Exa	3.7	finding peak voltage
Exa	5.1	finding required time
Exa	5.2	finding frequency and duty cycle
Exa	5.3	finding frequency and duty cycle
Exa	8.1	finding binary equivalent weights
Exa	8.2	calculating required data
Exa	8.3	calculating required data
Exa	8.4	finding required data
Exa	8.5	calculating required data
Exa	8.6	calculating required data
Exa	8.7	calculating value of resistors

Exa 8.8	finding value of resistor	120
Exa 8.9	finding required data	120
Exa 8.10	finding required data	121
Exa 8.11	calculating output voltages	122
Exa 8.12	finding output voltages	122
Exa 8.13	calculating maximum scale voltage	123
Exa 8.14	finding required data	123
Exa 8.15	calculating number of bits	124
Exa 8.16	finding resolution	125
Exa 8.17	calculating required data	125
Exa 8.18	calculating conversion time	126
Exa 8.19	finding resolution	127
Exa 8.20	finding number of bits	127
Exa 8.21	calculating maximum conversion time	128
Exa 8.22	finding error in voltage	128
Exa 8.23	finding aperture time	129
Exa 8.24	finding quantisation error	129
Exa 8.25	finding digital output in binary form	130

Chapter 1

Number systems and binary codes

Scilab code Exa 1.1.a decimal to binary conversion

```
//decimal to binary conversion//
//example 1.a//
clc
//clears the command window//
clear
//clears//
//decimal to binary conversion//
a=dec2bin(1993)
disp('binary equivalent of decimal number:')
disp(a)
//answer in binary form//
```

Scilab code Exa 1.1.b binary to decimal conversion

```
1 //binary to decimal conversion//
2 //example 1.b//
```

```
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //binary to decimal conversion//
8 a=bin2dec('11111001001')
9 disp('decimal equivalent of binary number:')
10 disp(a)
11 //answer in decimal form//
```

Scilab code Exa 1.2 binary to decimal conversion

```
1 //binary to decimal conversion//
2 //example 2//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 p = 1;
8 // initialising //
9 q = 1;
10 z = 0;
11 b = 0;
12 \quad w = 0;
13 f = 0;
14 //bin= input ( Enter the binary no to be converted
     to its decimal equivalent : )
15 //accepting the binary input from user//
16 bin =11.0111;
17 d = modulo(bin , 1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22 while (a >0)
```

```
23 //Loop to take the binary bits of integer into a
      matrix //
24 r = modulo (a ,10) ;
25 b(1,q) = r;
26 \text{ a=a} / 10;
27 a= floor ( a ) ;
28 q = q + 1;
29 end
30 \text{ for m} = 1: q -1
31 // multipliying the bits of integer position values
      and adding //
32 c=m-1;
33 f=f+b(1,m)*(2^c);
34 end
35 while (d >0)
36 // Loop to take the binary bits of decimal into a
     matrix //
37 e = modulo (d, 2)
38 \text{ w(1,p)=e}
39 d = d / 10;
40 d = floor (d)
41 p=p +1;
42 end
43 for n =1: p -1
44 // multipliying the bits of decimal with their
      position values and adding//
45 z=z+w(1,n)*(0.5)^{(11-n)};
46 end
47 z = z *10000;
48 //rounding of to 4 decimal values//
49 z = round(z);
50 z = z / 10000;
51 x=f+z;
52 disp ('The Decimal equivalent of the binary number
      given is ');
53 disp (x);//result is displayed//
```

Scilab code Exa 1.3 binary to decimal conversion

```
1 //binary to decimal conversion//
2 //example 3//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 p = 1;
8 // initialising //
9 q = 1;
10 z = 0;
11 b = 0;
12 \quad w = 0;
13 f = 0;
14 //bin= input (Enter the binary no to be converted
     to its decimal equivalent : )
15 //accepting the binary input from user//
16 bin =1100.11;
17 d = modulo(bin , 1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22 while (a >0)
23 //Loop to take the binary bits of integer into a
      matrix //
24 r = modulo (a ,10) ;
25 b(1,q) = r;
26 \text{ a=a} / 10;
27 a= floor ( a );
28 q=q+1;
29 end
30 \text{ for m} = 1: q -1
```

```
31 // multipliying the bits of integer position values
      and adding //
32 c=m-1;
33 f=f+b(1,m) *(2^c);
34 end
35 while (d >0)
36 // Loop to take the binary bits of decimal into a
      matrix //
37 e = modulo (d, 2)
38 \text{ w(1,p)=e}
39 d = d / 10;
40 d = floor (d)
41 p=p +1;
42 end
43 for n =1: p -1
44 // multipliying the bits of decimal with their
      position values and adding//
45 z=z+w(1,n)*(0.5)^{(11-n)};
46 \, \text{end}
47 z = z *10000;
48 //rounding of to 4 decimal values//
49 z = round(z);
50 z = z / 10000;
51 x=f+z;
52 \text{ disp } (x)
53 //result is displayed//
```

Scilab code Exa 1.4 decimal to binary conversion

```
1 //decimal to binary conversion//
2 //example 4//
3 clc
4 //clears the command window//
5 clear
6 //clears//
```

```
7 //decimal to binary conversion//
8 q = 0;
9 b=0;
10 s = 0;
11 //enter the decimal number to be converted//
12 a = 27/32;
13 d=modulo(a,1); // separating decimal and integer part
14 a=floor(a); //removing decimal part//
15 while (a>0)
16 //taking integer part into a matrix and converting
      to equivalent binary//
17 x = modulo(a, 2)
18 b=b+(10^q)*x
19 \ a=a/2
20 a = floor(a)
21 q = q + 1
22 \text{ end}
23 for i=1:10
24 //for values after decimal that should be converted
      to binary //
25 d = d * 2
26 q = floor(d)
27 s=s+q/(10^i);
28 if d>=1 then
29
       d=d-1
30
     end
31
    end
32 \text{ k=b+s};
33 disp('the binary equivalent of the given decimal
      number is ')
34 disp(k); // displaying the result //
```

Scilab code Exa 1.5 decimal to octal conversion

```
//decimal to octal conversion//
//example 5//
clc
//clears the command window//
clear
//clears//
//decimal to octal conversion//
x=1993
a=dec2oct(x)
disp('the number in octal form is:')
disp(a)
```

Scilab code Exa 1.6 octal to decimal conversion

```
//Octal to decimal conversion//
//example 6//
clc
//clears the command window//
clear
//clears//
//octal to decimal conversion//
x='3711'
a=oct2dec(x)
disp('the number in decimal form :')
disp(a)
```

Scilab code Exa 1.7 binary to octal conversion

```
1 //binary to octal conversion//
2 //example 7//
3 clc
4 //clears the control window//
5 clear
```

```
6 //clears//
7 //binary to octal conversion//
8 x='11111001001'
9 a=bin2dec('11111001001')
10 //binary to decimal conversion//
11 z=dec2oct(a)
12 //decimal to octal conversion//
13 disp('the number in octal form:')
14 disp(z)
```

Scilab code Exa 1.8.a decimal to binary conversion

```
//decimal to binary conversion//
//example 8.a//
clc
//clears command window //
clear
//clears//
//decimal to binary conversion//
x=1996
a=dec2bin(1996)
disp('the result in binary form is')
disp(a)
```

Scilab code Exa 1.8.b binary to decimal conversion

```
// binary to decimal conversion//
// example 8.b//
clc
// clears command window //
clear
// clears//
x='11111001100'
```

Scilab code Exa 1.9.a decimal to binary conversion

```
1 //decimal to binary conversion//
2 //example 9.a//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //decimal to binary conversion//
8 q=0;
9 b=0;
10 \text{ s=0};
11 //enter the decimal number to be converted//
12 a = 274.1875;
13 d=modulo(a,1); // separating decimal and integer part
14 a=floor(a);//removing decimal part//
15 while (a>0)
16 //taking integer part into a matrix and converting
     to equivalent binary//
17 x = modulo(a, 2)
18 b=b+(10^q)*x
19 a=a/2
20 a = floor(a)
21 q = q + 1
22
       end
23
   for i=1:10
   //for values after decimal that should be converted
        to binary //
25
    d=d*2
```

```
26
   q=floor(d)
27
    s=s+q/(10^i);
28
    if d \ge 1 then
29
       d=d-1
30
     end
31
    end
32 \text{ k=b+s};
33 disp('the binary equivalent of the given decimal
      number is ')
34 disp(k); // displaying the result //
```

Scilab code Exa 1.9.b decimal to binary conversion

```
1 //decimal to binary conversion//
2 //example 9.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //decimal to binary conversion//
8 q = 0;
9 b = 0;
10 s = 0;
11 //enter the decimal number to be converted//
12 a = .65625;
13 d=modulo(a,1); // separating decimal and integer part
14 a=floor(a); //removing decimal part//
15 while (a>0)
16 //taking integer part into a matrix and converting
      to equivalent binary//
17
   x = modulo(a, 2)
   b=b+(10^q)*x
18
19
    a=a/2
20
   a=floor(a)
```

```
q=q+1
21
22
       end
23
    for i=1:10
    //for values after decimal that should be converted
24
        to binary //
25
    d=d*2
26
   q=floor(d)
    s=s+q/(10^i);
27
28
    if d \ge 1 then
29
       d=d-1
30
     end
31
    end
32 \text{ k=b+s};
33 disp('the binary equivalent of the given decimal
      number is: ')
34 disp(k); // displaying the result //
```

Scilab code Exa 1.9.c decimal to binary conversion

```
1 //decimal to binary conversion//
2 //example 9.c//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //decimal to binary conversion//
8 a=dec2bin(624)
9 disp('binary equivalent of decimal number:')
10 disp(a)
11 //answer in binary form//
```

Scilab code Exa 1.9.d binary to decimal conversion

```
//binary to decimal conversion//
//example 9.d//
clc
//clears command window //
clear
//clears//
a=bin2dec('11010');//binary to decimal conversion//
printf('actual age is=%d years',a);//person's actual age is displayed//
```

Scilab code Exa 1.10.a hex to decimal conversion

```
//hex to decimal conversion//
//example 10.a//
clc
//clears the command window//
clear
//clears//
//hex to decimal conversion//
x='7C9'
a=hex2dec(x)
disp('the number in decimal form is:')
disp(a)
```

Scilab code Exa 1.10.b decimal to hex conversion

```
1 //decimal to hex conversion//
2 //example 10.b//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //decimal to hex conversion//
```

```
8 x=2047
9 a=dec2hex(2047)
10 disp('the result in hex form is:')
11 disp(a)
```

Scilab code Exa 1.11 hex to binary and decimal conversion

```
//hex to binary and decimal conversion//
//example 11//
clc
//clears the command window//
clear
//clears//
//decimal conversion//
x='CD42'
a=hex2dec('CD42');//hex to decimal conversion//
disp(a);//answer displayed in decimal form//
//binary conversion//
b=dec2bin(a);//dedcimal to binary conversion//
disp(b);//answer displayed in binary form//
```

Scilab code Exa 1.12 hex to binary and octal and decimal conversion

```
//hex to binary, octal and decimal conversion//
//example 12//
clc
//clears the command window//
clear
//clears//
//decimal conversion//
x='100'
d=hex2dec(x);//hex to decimal conversion//
b=dec2bin(d);//decimal to binary conversion//
```

```
11 o=dec2oct(d);//decimal to octal conversion//
12 disp(d);//answer in decimal form//
13 disp(b);//answer in binary form//
14 disp(o);//answer in octal form//
```

Scilab code Exa 1.13.a hex to decimal conversion

```
1 //hex to decimal conversion//
2 //example 13.a//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 x='D2763'
8 a=hex2dec('D2763')
9 disp('the result in decimal form:')
10 disp(a)
```

Scilab code Exa 1.13.b hex to decimal conversion

```
//hex to decimal conversion//
//example 13.b//
clc
//clears the command window//
clear
//clears//
x='B3D8'
a=hex2dec('B3D8')
disp('the result in decimal form:')
disp(a)
```

Scilab code Exa 1.14.a addition of two binary numbers

```
1 //addition of two numbers//
2 // example 14.a//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //addition of two binary numbers//
8 //binary to decimal conversion//
9 x=bin2dec('100101')
10 y=bin2dec('100101')
11 z = x + y
12 //addition//
13 = dec2bin(z)
14 //decimal to binary conversion//
15 disp('the addition of two binary numbers is:')
16 disp(a)
```

Scilab code Exa 1.14.b addition of two binary numbers

```
//addition of two binary numbers//
//example 14.b//
clc
//clears the command window//
clear
//clears //;//decimal equivalent of the first binary number//
//addition of two binary numbers//
p = 1;
// initialising //
q = 1;
z = 0;
z = 0;
w = 0;
```

```
14 	 f = 0;
15 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
16 //accepting the binary input from user//
17 bin =1011.01;
18 d = modulo(bin , 1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin) ;
22 //removing the decimal part//
23 while (a >0)
24 //Loop to take the binary bits of integer into a
      matrix //
25 r = modulo (a ,10) ;
26 b(1,q) = r;
27 \text{ a=a } /10;
28 a= floor ( a ) ;
29 q = q + 1;
30 \, \text{end}
31
   for m = 1: q - 1
    // multipliying the bits of integer position values
32
        and adding //
33
    c=m-1;
    f=f+b(1,m)*(2^c);
34
35
    end
36
    while (d > 0)
37
    // Loop to take the binary bits of decimal into a
       matrix //
    e = modulo (d, 2)
38
39
    w(1,p)=e
40
    d = d / 10;
41
    d= floor (d)
42
    p=p +1;
43
    end
44
    for n = 1: p - 1
    // multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
```

```
47 end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 \text{ x1=f+z};
53 disp ('The Decimal equivalent of the first binary
      number given is ');
54 disp (x1);
55 //to find decimal equivalent of second binary number
56 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
57 p = 1;
58 // initialising //
59 q = 1;
60 z = 0;
61 b = 0;
62 \text{ w} = 0;
63 	 f = 0;
64 //accepting the binary input from user//
65 bin =1001.11;
66 d = modulo(bin , 1);
67 //separating the decimal part and the integer part//
68 d=d *10^10;
69 a = floor (bin);
70 //removing the decimal part//
71 while (a >0)
72 //Loop to take the binary bits of integer into a
      matrix //
73 r = modulo (a ,10) ;
74 b(1,q) = r;
75 \text{ a=a } /10;
76 a= floor (a);
77 q=q +1;
78 end
79 for m = 1: q -1
   // multipliying the bits of integer position values
80
```

```
and adding //
81
     c=m-1;
     f=f+b(1,m)*(2^c);
82
83
     end
84 while (d >0)
85
    // Loop to take the binary bits of decimal into a
        matrix //
     e = modulo (d, 2)
86
    w(1,p)=e
87
    d = d / 10;
88
    d= floor (d)
89
90
    p=p +1;
91
    end
92
    for n = 1: p - 1
    // multipliying the bits of decimal with their
93
        position values and adding//
     z=z+w(1,n)*(0.5)^{(11-n)};
94
95
     end
96 z = z *10000;
97 //rounding of to 4 decimal values//
98 z = round(z);
99 z = z / 10000;
100 \text{ x2=f+z};
101 disp ('The Decimal equivalent of the second binary
       number given is ');
102 disp (x2);
103 res=x1+x2; // addition //
104 //decimal to binary conversion//
105 q = 0;
106 b=0;
107 \text{ s} = 0;
108 //enter the decimal number to be converted//
109 \text{ a=res};
110 d=modulo(a,1); // separating decimal and integer part
111 a=floor(a);//removing decimal part//
112 while (a>0)
113 //taking integer part into a matrix and converting
```

```
to equivalent binary//
114 x = modulo(a, 2)
115 b=b+(10^q)*x
116 \ a=a/2
117 a = floor(a)
118 q = q + 1
119 end
120 \quad for \quad i=1:10
121 //for values after decimal that should be converted
       to binary //
122 d=d*2
123 q = floor(d)
124 \text{ s=s+q/(10^i)};
125 if d>=1 then
126
        d=d-1
127
      end
128
     end
129 k=b+s;
130 disp('the addition of two binary numbers is')
131 disp(k); // displaying the result //
```

Scilab code Exa 1.14.c addition of two binary numbers

```
//addition of two binary numbers//
//example 14.c//
clc
//clears the command window//
clear
//clears //;
//addition of two binary numbers//
//decimal equivalent of the first binary number//
p = 1;
// initialising //
representation of two binary numbers of the first binary number//
representation of two binary numbers of the first binary number//
representation of two binary numbers of the first binary number of the fi
```

```
13 \ b = 0;
14 \text{ w = 0};
15 	 f = 0;
16 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
17 //accepting the binary input from user//
18 bin =1100.011;
19 d = modulo(bin , 1);
20 //separating the decimal part and the integer part//
21 d=d *10^10;
22 a = floor (bin);
23 //removing the decimal part//
24 while (a >0)
25 //Loop to take the binary bits of integer into a
      matrix //
26 r = modulo (a ,10) ;
27 b(1,q) = r;
28 a=a /10;
29 a= floor ( a );
30 q=q+1;
31 end
32
    for m = 1: q -1
33
    // multipliying the bits of integer position values
        and adding //
34
    c=m-1;
35
    f=f+b(1,m)*(2^c);
36
    end
37
    while (d >0)
    // Loop to take the binary bits of decimal into a
38
       matrix //
    e = modulo (d, 2)
39
40
    w(1, p) = e
    d = d / 10;
41
42
    d= floor (d)
43
    p=p +1;
    end
44
    for n = 1: p -1
45
    // multipliying the bits of decimal with their
46
```

```
position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
47
48 end
49 z = z *10000;
50 //rounding of to 4 decimal values//
51 z = round(z);
52 z = z / 10000;
53 x1=f+z;
54 disp ('The Decimal equivalent of the first binary
     number given is ');
55 disp (x1);
56 //to find decimal equivalent of second binary number
57 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
58 p = 1;
59 // initialising //
60 q = 1;
61 z = 0;
62 b = 0;
63 \text{ w} = 0;
64 	 f = 0:
65 //accepting the binary input from user//
66 bin =1011.011;
67 d = modulo(bin , 1);
68 //separating the decimal part and the integer part//
69 d=d *10^10;
70 a = floor (bin);
71 //removing the decimal part//
72 while (a >0)
73 //Loop to take the binary bits of integer into a
     matrix //
74 r = modulo (a ,10) ;
75 b(1,q) = r;
76 \text{ a=a } /10;
77 a= floor ( a ) ;
78 q=q+1;
79 end
```

```
for m = 1: q -1
80
     // multipliying the bits of integer position values
81
         and adding //
     c=m-1;
82
83
     f=f+b(1,m)*(2^c);
84
     end
     while (d > 0)
85
     // Loop to take the binary bits of decimal into a
86
        matrix //
     e = modulo (d, 2)
87
    w(1,p)=e
88
89
    d = d / 10;
90
    d= floor (d)
91
    p=p +1;
92
     end
93
    for n = 1: p - 1
    // multipliying the bits of decimal with their
94
        position values and adding//
     z=z+w(1,n)*(0.5)^{(11-n)};
95
96
     end
97 z = z *10000;
98 //rounding of to 4 decimal values//
99 z = round(z);
100 z = z / 10000;
101 \text{ x2=f+z};
102 disp ('The Decimal equivalent of the second binary
       number given is ');
103 \text{ disp } (x2);
104 res=x1+x2; // addition //
105 q=0; // binary conversion of the decimal answer begins
       here //
106 b = 0;
107 \text{ s} = 0;
108 //enter the decimal number to be converted//
110 d=modulo(a,1); // separating decimal and integer part
111 a=floor(a);//removing decimal part//
```

```
112 while (a>0)
113 //taking integer part into a matrix and converting
       to equivalent binary//
114 x = modulo(a, 2)
115 b=b+(10^q)*x
116 \ a=a/2
117 a = floor(a)
118 q = q + 1
119
        end
120
     for i = 1:10
     //for values after decimal that should be converted
121
         to binary //
122
     d=d*2
123
    q=floor(d)
     s=s+q/(10^i);
124
     if d \ge 1 then
125
        d=d-1
126
127
      end
128
     end
129 k=b+s;
130 disp('the addition of two numbers give:')
131 disp(k); // displaying the result //
```

Scilab code Exa 1.15.a subtraction of two binary numbers

```
1 //subtraction of two binary numbers//
2 //example 15.a//
3 clc
4 //clears the command window//
5 clear
6 // clears //;
7 //decimal equivalent of the first binary number//
8 p =1;
9 // initialising //
10 q =1;
```

```
11 z = 0;
12 \ b = 0;
13 \text{ w} = 0;
14 	 f = 0;
15 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
16 //accepting the binary input from user//
17 bin1=110.01;
18 d = modulo(bin1 ,1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin1);
22 //removing the decimal part//
23
   while (a >0)
    //Loop to take the binary bits of integer into a
24
       matrix //
    r = modulo (a ,10) ;
25
26
    b(1,q) = r ;
    a=a /10;
27
28
    a= floor ( a ) ;
29
    q=q+1;
30
    end
31
    for m = 1: q -1
    // multipliying the bits of integer position values
32
        and adding //
33
    c=m-1;
    f=f+b(1,m) *(2^c);
34
35
    end
    while (d > 0)
36
    // Loop to take the binary bits of decimal into a
37
       matrix //
38
    e = modulo (d, 2)
39
    w(1, p) = e
40
    d = d / 10;
    d= floor (d)
41
42
    p=p +1;
43
    end
44
    for n = 1: p - 1
```

```
// multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
47
    end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 x1=f+z;
53 disp ('The Decimal equivalent of the first binary
      number given is ');
54 \text{ disp } (x1);
55 //to find decimal equivalent of second binary number
     //
56 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
57 p = 1;
58 // initialising //
59 q = 1;
60 z = 0;
61 b = 0;
62 \text{ w} = 0;
63 	 f = 0;
64 //accepting the binary input from user//
65 bin2=100.10;
66 	 d = modulo(bin2,1);
67 //separating the decimal part and the integer part//
68 d=d *10^10;
69 a = floor(bin2);
70 //removing the decimal part//
71
    while (a > 0)
72
    //Loop to take the binary bits of integer into a
       matrix //
73
    r = modulo (a , 10) ;
74
   b(1,q) = r ;
75
   a=a /10;
76
   a= floor ( a );
77
   q=q+1;
```

```
78
     end
79
     for m = 1: q -1
     // multipliying the bits of integer position values
80
         and adding //
     c=m-1;
81
82
     f=f+b(1,m)*(2^c);
83
     end
84
    while (d > 0)
85
    // Loop to take the binary bits of decimal into a
       matrix //
     e = modulo (d, 2)
86
    w(1,p)=e
87
88
    d = d / 10;
89
    d= floor (d)
90
    p=p+1;
91
     end
    for n = 1: p - 1
92
93
    // multipliying the bits of decimal with their
        position values and adding//
     z=z+w(1,n)*(0.5)^{(11-n)};
94
95
     end
96 z = z *10000;
97 //rounding of to 4 decimal values//
98 z = round(z);
99 z = z / 10000;
100 \text{ x2=f+z};
101 disp ('The Decimal equivalent of the second binary
      number given is ');
102 disp (x2);
103 res=x1-x2; // subtraction //
104 q=0; //binary conversion of the decimal answer begins
        here //
105 b=0;
106 \text{ s} = 0;
107 //enter the decimal number to be converted//
108 \text{ a=res};
109 d=modulo(a,1); // separating decimal and integer part
       //
```

```
110 a=floor(a);//removing decimal part//
111 while (a>0)
112 //taking integer part into a matrix and converting
      to equivalent binary//
113 x = modulo(a, 2)
114 b=b+(10^q)*x
115 \ a=a/2
116 \quad a = floor(a)
117 q = q + 1
118
        end
119
    for i=1:10
120
     //for values after decimal that should be converted
         to binary //
121
     d=d*2
122
    q=floor(d)
    s=s+q/(10^i);
123
     if d \ge 1 then
124
125
        d=d-1
126
      end
127
     end
128 \text{ k=b+s};
129 disp('the subtraction of two numbers give:')
130 disp(k); // displaying the result //
```

Scilab code Exa 1.15.b subtraction of two binary numbers

```
//subtraction of two binary numbers//
//example 15.b//
clc
//clears the command window//
clear
//clears //;//decimal equivalent of the first binary number//
p =1;
// initialising //
```

```
9 q = 1;
10 z = 0;
11 b = 0;
12 \quad w = 0;
13 f = 0;
14 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
15 //accepting the binary input from user//
16 bin =11.01111;
17 d =modulo(bin ,1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22
    while (a > 0)
23
    //Loop to take the binary bits of integer into a
       matrix //
24
    r = modulo (a ,10) ;
    b(1,q) = r ;
25
26
    a=a /10;
27
    a= floor ( a ) ;
28
    q=q+1;
29
    end
30
    for m = 1: q -1
    // multipliying the bits of integer position values
31
        and adding //
32
    c=m-1;
33
    f=f+b(1,m) *(2^c);
34
    while (d > 0)
35
36
    // Loop to take the binary bits of decimal into a
       matrix //
37
    e = modulo (d, 2)
38
    w(1,p)=e
39
    d = d / 10;
40
    d= floor (d)
41
    p=p +1;
42
    end
```

```
43
   for n = 1: p - 1
    // multipliying the bits of decimal with their
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
45
46
    end
47 z = z *10000;
48 //rounding of to 4 decimal values//
49 z = round(z);
50 z = z / 10000;
51 x1=f+z;
52 disp ('The Decimal equivalent of the first binary
      number given is ');
53 disp (x1);
54 //to find decimal equivalent of second binary number
55 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
56 p = 1;
57 // initialising //
58 q = 1;
59 z = 0;
60 \ b = 0;
61 \text{ w = 0};
62 	 f = 0;
63 //accepting the binary input from user//
64 \text{ bin } = 10.01001;
65 d = modulo(bin ,1);
66 //separating the decimal part and the integer part//
67 d=d *10^10;
68 a = floor (bin);
69 //removing the decimal part//
70
   while (a >0)
71
    //Loop to take the binary bits of integer into a
       matrix //
72
    r = modulo (a ,10) ;
73
   b(1,q) = r ;
   a=a /10;
74
    a= floor ( a );
75
```

```
76
    q=q+1;
77
    end
78
    for m = 1: q -1
    // multipliying the bits of integer position values
79
         and adding //
80
     c=m-1;
    f=f+b(1,m)*(2^c);
81
82
     end
    while (d >0)
83
    // Loop to take the binary bits of decimal into a
84
       matrix //
    e = modulo (d, 2)
85
86
    w(1, p) = e
87
    d = d / 10;
88
    d= floor (d)
89
    p=p +1;
    end
90
91
    for n = 1: p -1
    // multipliying the bits of decimal with their
92
        position values and adding//
93
    z=z+w(1,n)*(0.5)^{(11-n)};
94
    end
95 z = z *10000;
96 //rounding of to 4 decimal values//
97 z = round(z);
98 z = z /10000;
99 x2=f+z;
100 disp ('The Decimal equivalent of the second binary
      number given is ');
101 disp (x2);
102 res=x1-x2; // subtraction //
103 q=0; // binary conversion of the decimal answer begins
       here //
104 b = 0;
106 //enter the decimal number to be converted//
107 a=res;
108 d=modulo(a,1); // separating decimal and integer part
```

```
109 a=floor(a);//removing decimal part//
110 while (a>0)
111 //taking integer part into a matrix and converting
       to equivalent binary//
112 x = modulo(a, 2)
113 b=b+(10^q)*x
114 \ a=a/2
115 a = floor(a)
116 q = q + 1
117
        end
    for i=1:10
118
119
    //for values after decimal that should be converted
         to binary //
120
     d=d*2
     q=floor(d)
121
     s=s+q/(10^i);
122
123
     if d \ge 1 then
        d=d-1
124
125
      end
126
     end
127 \text{ k=b+s};
128 disp('the subtraction of two numbers give:')
129 disp(k); // displaying the result //
```

Scilab code Exa 1.16.a multiplication of two binary numbers

```
1 //multiplication of two binary numbers//
2 //example 16.a//
3 clc
4 //clears the command window//
5 clear
6 // clears //;//decimal equivalent of the first binary number//
7 p =1;
```

```
8 // initialising //
9 q = 1;
10 z = 0;
11 b = 0;
12 \quad w = 0;
13 f = 0;
14 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
15 //accepting the binary input from user//
16 \text{ bin } = 1.01;
17 d = modulo(bin , 1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22
    while (a > 0)
23
    //Loop to take the binary bits of integer into a
       matrix //
    r = modulo (a ,10) ;
24
25
    b(1,q) = r ;
26
    a=a /10;
27
    a= floor ( a ) ;
28
    q=q+1;
29
    end
30
    for m = 1: q -1
31
    // multipliying the bits of integer position values
        and adding //
32
    c=m-1;
    f=f+b(1,m)*(2^c);
33
34
    end
35
    while (d >0)
36
    // Loop to take the binary bits of decimal into a
       matrix //
37
    e = modulo (d, 2)
38
    w(1,p)=e
39
    d = d / 10;
    d= floor (d)
40
41
    p=p +1;
```

```
42
    end
   for n = 1: p - 1
43
    // multipliying the bits of decimal with their
44
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
45
46
    end
47 z = z *10000;
48 //rounding of to 4 decimal values//
49 z = round(z);
50 z = z / 10000;
51 x1=f+z;
52 disp ('The Decimal equivalent of the first binary
      number given is ');
53 \text{ disp } (x1);
54 //to find decimal equivalent of second binary number
55 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
56 p = 1;
57 // initialising //
58 q = 1;
59 z = 0;
60 \ b = 0;
61 \text{ w} = 0;
62 	 f = 0;
63 //accepting the binary input from user//
64 \text{ bin } = 10.1;
65 d = modulo(bin , 1);
66 //separating the decimal part and the integer part//
67 d=d *10^10;
68 = floor (bin);
69 //removing the decimal part//
70 while (a > 0)
   //Loop to take the binary bits of integer into a
71
       matrix //
   r = modulo (a ,10) ;
72
   b(1,q) = r ;
73
   a=a /10;
74
```

```
75
     a= floor ( a );
76
     q=q+1;
77
     end
    for m = 1: q - 1
 78
79
     // multipliying the bits of integer position values
         and adding //
80
     c=m-1;
     f=f+b(1,m) *(2^c);
81
82
     end
     while (d >0)
83
     // Loop to take the binary bits of decimal into a
84
        matrix //
85
     e = modulo (d, 2)
86
    w(1,p)=e
87
     d = d / 10;
    d= floor (d)
88
89
     p=p +1;
90
     end
91
    for n = 1: p - 1
92
     // multipliying the bits of decimal with their
        position values and adding//
     z=z+w(1,n)*(0.5)^{(11-n)};
93
94
    end
95 z = z *10000;
96 //rounding of to 4 decimal values//
97 z = round(z);
98 z = z / 10000;
99 x2=f+z;
100 disp ('The Decimal equivalent of the second binary
       number given is ');
101 disp (x2);
102 res=x1*x2; // multiplication //
103 q=0; // binary conversion of the decimal answer begins
        here //
104 b=0;
105 \text{ s} = 0;
106 //enter the decimal number to be converted//
107 \text{ a=res};
```

```
108 d=modulo(a,1);//separating decimal and integer part
109 a=floor(a);//removing decimal part//
110 while (a>0)
111 //taking integer part into a matrix and converting
       to equivalent binary//
112 x = modulo(a, 2)
113 b=b+(10^q)*x
114 \ a=a/2
115 a = floor(a)
116 q = q + 1
117
        end
118
     for i = 1:10
     //for values after decimal that should be converted
119
         to binary //
120
     d=d*2
    q=floor(d)
121
122
     s=s+q/(10^i);
     if d \ge 1 then
123
124
        d=d-1
125
      end
126
     end
127 \text{ k=b+s};
128 disp('the multiplication of two numbers give:')
129 disp(k); // displaying the result //
```

Scilab code Exa 1.16.b multiplication of two binary numbers

```
1 //multiplication of two binary numbers//
2 //example 16.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //;
7 //decimal equivalent of the first binary number//
```

```
8 p = 1;
9 // initialising //
10 q = 1;
11 z = 0;
12 \ b = 0;
13 \text{ w} = 0;
14 f = 0;
15 //bin=1st input (Enter the binary no to be
      converted to its decimal equivalent : )
16 //accepting the binary input from user//
17 bin =101.01;
18 d = modulo(bin ,1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin);
22 //removing the decimal part//
23
   while (a > 0)
24
   //Loop to take the binary bits of integer into a
       matrix //
25
    r = modulo (a ,10) ;
26
   b(1,q) = r ;
    a=a /10;
27
28
    a= floor ( a ) ;
29
    q=q+1;
30
    end
31
    for m = 1: q -1
32
    // multipliying the bits of integer position values
        and adding //
    c=m-1;
33
    f=f+b(1,m) *(2^c);
34
35
    end
36
    while (d > 0)
37
    // Loop to take the binary bits of decimal into a
       matrix //
    e = modulo (d, 2)
38
39
    w(1, p) = e
    d = d /10;
40
    d= floor (d)
41
```

```
42
   p=p +1;
43
   end
   for n = 1: p - 1
44
   // multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
47
   end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 x1=f+z;
53 disp ('The Decimal equivalent of the first binary
      number given is ');
54 \text{ disp } (x1);
55 //to find decimal equivalent of second binary number
     //
56 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
57 //accepting the binary input from user//
58 \text{ bin = '}11';
59 \text{ x2=bin2dec(bin)}
60 disp ('The Decimal equivalent of the second binary
     number given is ');
61 disp (x2);
62 res=x1*x2; // multiplication //
63 q=0; //binary conversion of the decimal answer begins
       here //
64 b = 0;
65 s = 0;
66 //enter the decimal number to be converted//
67 \text{ a=res};
68 d=modulo(a,1); //separating decimal and integer part
69 a=floor(a);//removing decimal part//
70 while (a>0)
71 //taking integer part into a matrix and converting
      to equivalent binary//
```

```
72 x = modulo(a, 2)
73 b=b+(10^q)*x
74 a = a/2
75 a = floor(a)
76 q = q + 1
77
        end
78
    for i = 1:10
    //for values after decimal that should be converted
79
        to binary //
80
    d=d*2
    q=floor(d)
81
    s=s+q/(10^i);
83
    if d \ge 1 then
84
        d=d-1
85
     end
86
    end
87 \text{ k=b+s};
88 disp('the multiplication of two numbers give:')
89 disp(k); // displaying the result //
```

Scilab code Exa 1.17.a division of two binary numbers

```
//division of two binary numbers//
//example 17.a//
clc
//clears the command window//
clear
//clears //;//decimal equivalent of the first binary number//
//bin=1st input (Enter the binary no to be converted to its decimal equivalent:)
//accepting the binary input from user//
bin = '1111001';//1st input//
x1=bin2dec(bin)
bin='1001';//2nd input//
```

```
12 \text{ x2=bin2dec(bin)}
13 res=x1/x2; // division //
14 q = 0;
15 b=0;
16 s = 0;
17 //enter the decimal number to be converted//
18 a=res;
19 d=modulo(a,1);//separating decimal and integer part
20 a=floor(a);//removing decimal part//
21
    while (a>0)
22
    //taking integer part into a matrix and converting
       to equivalent binary//
23
    x = modulo(a, 2)
    b=b+(10^q)*x
24
25
    a=a/2
    a=floor(a)
26
27
    q=q+1
28
       end
29
    for i=1:10
    //for values after decimal that should be converted
30
        to binary //
31
    d=d*2
32
    q=floor(d)
33
    s=s+q/(10^i);
34
    if d \ge 1 then
35
       d=d-1
36
     end
37
    end
38 \text{ k=b+s};
39 disp('the division of two numbers give:')
40 disp(k); // displaying the result //
```

Scilab code Exa 1.17.b division of two binary numbers

```
1 //division of two binary numbers//
2 //example 17.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //;//decimal equivalent of the first
     binary number //
7 p = 1;
8 // initialising //
9 q = 1;
10 z = 0;
11 b = 0;
12 \quad w = 0;
13 f = 0;
14 //bin= input (Enter the binary no to be converted
     to its decimal equivalent : )
15 //accepting the binary input from user//
16 bin =11.11;
17 d = modulo(bin ,1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22
   while (a >0)
    //Loop to take the binary bits of integer into a
23
       matrix //
24
    r = modulo (a ,10) ;
25
    b(1,q) = r ;
26
    a=a /10;
    a= floor ( a );
27
28
    q=q+1;
29
    end
30
    for m = 1: q -1
31
    // multipliying the bits of integer position values
        and adding //
32
    c=m-1;
33
    f=f+b(1,m)*(2^c);
34
    end
```

```
35
    while (d > 0)
    // Loop to take the binary bits of decimal into a
36
       matrix //
    e = modulo (d, 2)
37
    w(1,p)=e
38
39
    d = d / 10;
    d= floor (d)
40
41
    p=p +1;
42
    end
43
    for n = 1: p - 1
    // multipliying the bits of decimal with their
44
       position values and adding//
45
    z=z+w(1,n)*(0.5)^{(11-n)};
46
    end
47 z = z *10000;
48 //rounding of to 4 decimal values//
49 z = round(z);
50 z = z / 10000;
51 x1=f+z;
52 p = 1;
53 // initialising //
54 q = 1;
55 z = 0;
56 \ b = 0;
57 w = 0;
58 f = 0;
59 //bin=2nd input (Enter the binary no to be
      converted to its decimal equivalent : )
60 //accepting the binary input from user//
61 \text{ bin } = .101;
62 d = modulo(bin , 1);
63 //separating the decimal part and the integer part//
64 d=d *10^10;
65 a = floor (bin);
66 //removing the decimal part//
67
  while (a > 0)
    //Loop to take the binary bits of integer into a
       matrix //
```

```
69
     r = modulo (a ,10) ;
70
    b(1,q) = r ;
     a=a /10;
71
72
    a= floor ( a );
73
     q=q+1;
74
     end
75
     for m = 1: q -1
     // multipliying the bits of integer position values
76
         and adding //
77
     c=m-1;
     f=f+b(1,m)*(2^c);
78
79
     end
80
     while (d >0)
81
     // Loop to take the binary bits of decimal into a
        matrix //
     e = modulo (d, 2)
82
83
    w(1,p)=e
84
    d = d / 10;
     d= floor (d)
85
86
    p=p +1;
87
     end
88
    for n = 1: p - 1
     // multipliying the bits of decimal with their
89
        position values and adding//
     z=z+w(1,n)*(0.5)^{(11-n)};
90
91
     end
92 z = z *10000;
93 //rounding of to 4 decimal values//
94 z = round(z);
95 z = z / 10000;
96 \text{ x} 2 = f + z;
97 res=x1/x2; //division//
98 q = 0;
99 b = 0;
100 s = 0;
101 //enter the decimal number to be converted//
102 \text{ a=res};
103 d=modulo(a,1); // separating decimal and integer part
```

```
104 a=floor(a);//removing decimal part//
105 while (a>0)
106 //taking integer part into a matrix and converting
       to equivalent binary//
107 \text{ x=} \text{modulo}(a,2)
108 b=b+(10^q)*x
109 a = a/2
110 a = floor(a)
111 q = q + 1
112
        end
113
    for i=1:10
114
    //for values after decimal that should be converted
         to binary //
115
    d=d*2
    q=floor(d)
116
     s=s+q/(10^i);
117
118
     if d \ge 1 then
119
        d=d-1
120
      end
121
     end
122 k=b+s;
123 disp('the division of two numbers give:')
124 disp(k); // displaying the result //
```

Scilab code Exa 1.18.a binary to hex conversion

```
1 //binary to hex conversion//
2 //example 18.a//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 x='10100110'
8 a=bin2dec(x);//binary to decimal conversion//
```

```
9 res=dec2hex(a);//decimal to hex conversion//
10 disp('the number in hexadecimal form:')
11 disp(res);//answer displayed//
```

Scilab code Exa 1.18.b decimal to octal conversion

```
//decimal to octal conversion//
//example 18.b//
clc
//clears the command window//
clear
//clears//
x=6800
res=dec2oct(x);//decimal to octal conversion//
disp(res);//answer in octal form//
```

Scilab code Exa 1.18.c binary to decimal conversion

```
//decimal to binary conversion//
//example 18.c//
clc
//clears the command window//
clear
//clears //
//converting first binary input to decimal//
p = 1;
// initialising //
p q = 1;
z = 0;
w = 0;
f f = 0;
```

```
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 \text{ bin } = .0111;
17 d = modulo(bin , 1);
18 //separating the decimal part and the integer part//
19 d=d *10^10;
20 a = floor (bin);
21 //removing the decimal part//
22 while (a >0)
   //Loop to take the binary bits of integer into a
23
       matrix //
    r = modulo (a ,10) ;
24
25
    b(1,q) = r ;
26
    a=a /10;
27
    a= floor ( a ) ;
28
    q=q+1;
29
    end
30
    for m = 1: q -1
    // multipliying the bits of integer position values
31
        and adding //
32
    c=m-1;
    f=f+b(1,m)*(2^c);
33
34
    end
    while (d >0)
35
36
    // Loop to take the binary bits of decimal into a
       matrix //
37
    e = modulo (d, 2)
    w(1,p)=e
38
    d = d / 10;
39
40
    d= floor (d)
41
    p=p +1;
42
    end
    for n = 1: p -1
43
    // multipliying the bits of decimal with their
44
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
45
46
    end
47 z = z *10000;
```

```
48 //rounding of to 4 decimal values//
49 z= round (z);
50 z = z /10000;
51 d1=f+z;
52 disp('the number in binary form:')
53 disp(d1);//displaying the result//
```

Scilab code Exa 1.19.a decimal to octal conversion

```
1 //decimal to octal conversion//
2 // \text{example } 19.a//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //decimal to octal conversion//
8 q = 0;
9 b = 0;
10 s = 0;
11 //enter the decimal number to be converted//
12 a=4429.625;
13 d=modulo(a,1);//separating decimal and integer part
14 a=floor(a);//removing decimal part//
    while (a>0)
15
    //taking integer part into a matrix and converting
16
       to equivalent octal//
17
    x = modulo(a, 8)
18
   b=b+(10^q)*x
    a=a/8
19
   a=floor(a)
20
21
   q=q+1
22
       end
23
    for i = 1:10
24
        //for values after decimal that should be
```

```
converted to octal//
25     d=d*8
26     q=floor(d)
27     s=s+q/(10^i);
28     d=d-q
29     end
30     k=b+s;
31 disp('the octal equivalent of the given decimal number is')
32 disp(k);//displaying the result//
```

Scilab code Exa 1.19.b decimal to octal conversion

```
1 //decimal to octal conversion//
2 //example 19.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //decimal to octal conversion//
8 q = 0;
9 b = 0;
10 s = 0;
11 //enter the decimal number to be converted//
12 a = 791.125;
13 d=modulo(a,1);//separating decimal and integer part
14 a=floor(a);//removing decimal part//
15
   while (a>0)
    //taking integer part into a matrix and converting
16
       to equivalent octal//
   x = modulo(a, 8)
17
   b=b+(10^q)*x
18
19
    a=a/8
20
    a=floor(a)
```

```
q=q+1
21
22
       end
23
    for i=1:10
        //for values after decimal that should be
24
           converted to octal//
25
        d=d*8
26
        q=floor(d)
        s=s+q/(10^i);
27
28
        d=d-q
29
     end
30 \text{ k=b+s};
31 disp('the octal equivalent of the given decimal
      number is ')
32 disp(k); // displaying the result //
```

Scilab code Exa 1.19.c decimal to octal conversion

```
1 //decimal to octal conversion//
2 //example 19.c//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //decimal to octal conversion//
8 q = 0;
9 b=0;
10 s = 0;
11 //enter the decimal number to be converted//
12 a=11.9375;
13 d=modulo(a,1); // separating decimal and integer part
14 a=floor(a);//removing decimal part//
   while (a>0)
15
16
   //taking integer part into a matrix and converting
      to equivalent octal//
```

```
17
    x = modulo(a, 8)
18
    b=b+(10^q)*x
19
    a=a/8
20
   a=floor(a)
21
    q=q+1
22
       end
23
    for i = 1:10
        //for values after decimal that should be
24
            converted to octal//
25
        d=d*8
        q=floor(d)
26
        s=s+q/(10^i);
27
28
        d=d-q
29
     end
30 \text{ k=b+s};
31 disp('the octal equivalent of the given decimal
      number is')
32 disp(k); // displaying the result //
```

Scilab code Exa 1.20.a decimal to signed binary number conversion

```
//decimal to signed binary number//
//example 20.a//
//decimal to signed binary number system//

clc
//clears the command window//
clear
//clears//
x=+29
a=dec2bin(x,6)
//decimal to binary conversion//
disp('the answer is')
disp(a)
//since the number is positive it starts with a 0//
```

Scilab code Exa 1.20.b decimal to signed binary system conversion

```
//decimal to signed binary number//
//example 20.b//
clc
//clears the command window//
clear
//clears//
//decimal to signed binary number system//
x=-29
a=dec2bin(-x)
//decimal to binary conversion//
a=dec2bin(-x+bin2dec('100000'))
disp('the answer is:')
disp(a)
//since the number is negative it starts with a 1//
```

Scilab code Exa 1.20.c decimal to signed binary system conversion

```
//decimal to signed binary number//
//example 20.c//
clc
//clears the command window//
clear
//clears//
//decimal to signed binary number system//
x=-19
a=dec2bin(-x)
//decimal to binary conversion//
a=dec2bin(-x+bin2dec('100000'))
disp('the answer is:')
disp(a)
```

```
14 //since the number is negative it starts with a 1, msb indicates the \operatorname{sign}//
```

Scilab code Exa 1.21.a subtraction using ones complement

```
1 //subtraction using 1's complement//
2 //Example 21.a//
3 //subtraction in one's complement using 8 bits//
4 clc
5 //clears the window//
6 clear
7 //clears all the existing variables//
8 x = 11001
9 \text{ y=bin2dec}('11001')
10 z=bin2dec('10110')
11 c=(bitcmp(z,5));//finding 1's complement//
12 \ a=y+c+1
13 a=a-bin2dec('100000')
14 a=dec2bin(a,5);//converting the result to binary
      equivalent //
15 disp('the subtraction of two numbers give:')
16 disp(a); // displaying the result //
```

Scilab code Exa 1.21.b subtraction using ones complement

```
//subtraction using 1's complement//
//Example 21.b//
//subtraction in one's complement using 8 bits//
clc
//clears the window//
clear
//clears all the existing variables//
x='1011'
```

Scilab code Exa 1.21.c subtraction using ones complement

```
1 //subtraction using 1's complement//
2 //Example 21.c//
3 //subtraction in one's complement using 8 bits//
4 clc
5 //clears the window//
6 clear
7 //clears all the existing variables//
8 x = 11011
9 y=bin2dec('11011')
10 z=bin2dec('11001')
11 c=(bitcmp(z,5));//finding 1's complement//
12 \ a = y + c + 1
13 a=a-bin2dec('100000');
14 a=dec2bin(a);//converting the result to binary
      equivalent //
15 disp('the subtraction of two binary numbers give:')
16 disp(a); // displaying the result //
```

Scilab code Exa 1.21.d subtraction using ones complement

```
1 //subtraction using 1's complement//
```

```
2 //example 21.d//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //converting first binary input to decimal//
8 p = 1;
9 // initialising //
10 q = 1;
11 z = 0;
12 \ b = 0;
13 \quad w = 0;
14 f = 0;
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =10111.1;
18 d = modulo(bin , 1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a =floor(bin);
22 //removing the decimal part//
23 while (a >0)
24 //Loop to take the binary bits of integer into a
      matrix //
25 r = modulo (a ,10) ;
26 b(1,q) = r;
27 \text{ a=a } /10;
28 a= floor ( a );
29 q = q + 1;
30 \, \text{end}
31 \text{ for m} = 1: q -1
32 // multipliying the bits of integer position values
      and adding //
33 c=m-1;
34 f=f+b(1,m)*(2^c);
35 end
36 while (d >0)
```

```
37 // Loop to take the binary bits of decimal into a
      matrix //
38 e = modulo (d, 2)
39 \text{ w(1,p)=e}
40 d = d /10;
41 d = floor (d)
42 p=p +1;
43 end
44 \text{ for } n = 1: p - 1
45 // multipliying the bits of decimal with their
      position values and adding//
46 z=z+w(1,n)*(0.5)^{(11-n)};
47 end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 d1 = f + z;
53 //converting second binary input to its complement
      decimal number //
54 p = 1;
55 // initialising //
56 q = 1;
57 z = 0;
58 \ b = 0;
59 \text{ w} = 0;
60 f = 0;
61 //accepting 2nd binary input//
62 a=10011.1
63 s = 0;
64 d=modulo(a,1);//separating integer and decimal part
65 //since complement of decimal part is 0, we do not
      consider it further//
66 a=floor(a);//getting the integer part//
    for i=1:5
67
       x(i) = modulo(a, 10)
68
       if x(i) == 1 then
69
```

```
70
           x(i) = 0
71
       else
72
           x(i)=1
73
       end
74
       s=s+(x(i)*(2^(i-1)))
75
       a=a/10
76
       a=floor(a)
77 end
78 d2=s;//assigning the equivalent decimal value to d2
79 r=d1+d2+.5; //adding 1 to the decimal equivalents to
      find the result //
80 r=r-bin2dec('100000');
81 r=dec2bin(r);//converting the result to binary
      equivalent //
82 disp('the subtraction of two binary numbers give:')
83 disp(r); // displaying the result //
```

Scilab code Exa 1.21.e subtraction using ones complement

```
//subtraction using 1's complement//
//example 21.e//
clc
//clears the command window//
clear
//clears //
//converting first binary input to decimal//
p = 1;
// initialising //
p q = 1;
z = 0;
w = 0;
w = 0;
f = 0;
//bin= input (Enter the binary no to be converted)
```

```
to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =11011.00;
18 d = modulo(bin , 1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin);
22 //removing the decimal part//
23 while (a >0)
24
   //Loop to take the binary bits of integer into a
       matrix //
    r = modulo (a ,10) ;
25
26
   b(1,q) = r ;
27
    a=a /10;
28
    a= floor ( a ) ;
29
    q=q+1;
30
    end
31
    for m = 1: q -1
    // multipliying the bits of integer position values
32
        and adding //
33
    c=m-1;
    f=f+b(1,m)*(2^c);
34
35
    end
    while (d >0)
36
37
    // Loop to take the binary bits of decimal into a
       matrix //
38
    e = modulo (d, 2)
39
    w(1,p)=e
    d = d / 10;
40
41
    d= floor (d)
42
   p=p +1;
43
    end
44
    for n = 1: p -1
    // multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
47
    end
48 z = z *10000;
```

```
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z /10000;
52 d1=f+z;
53 //converting second binary input to its complement
      decimal number //
54 p = 1;
55 // initialising //
56 q = 1;
57 z = 0;
58 \ b = 0;
59 \text{ w} = 0;
60 \text{ f = 0};
61 \quad a = 10011.1
62 s = 0;
63 d=modulo(a,1);//separating integer and decimal part
64 //since complement of decimal part is 0, we do not
      consider it further//
65 a=floor(a);//getting the integer part//
66 \text{ for } i=1:5
67
       x(i) = modulo(a, 10)
       if x(i) == 1 then
68
            x(i)=0
69
       else
70
71
            x(i)=1
72
       end
       s=s+(x(i)*(2^(i-1)))
73
74
       a=a/10
75
       a=floor(a)
76 end
77 d2=s;//assigning the equivalent decimal value to d2
78 r=d1+d2+.25; //adding 1 to the decimal equivalents to
       find the result //
79 disp(r)
80 \text{ r=r-bin2dec}('100000')
81 q=0;
```

```
82 b = 0;
83 \text{ s} = 0;
84 //enter the decimal number to be converted//
86 d=modulo(a,1);//separating decimal and integer part
87 a=floor(a);//removing decimal part//
88 while (a>0)
    //taking integer part into a matrix and converting
89
        to equivalent binary//
90
     x = modulo(a, 2)
    b=b+(10^q)*x
91
92
     a=a/2
93
     a=floor(a)
94
    q=q+1
95
        end
     for i = 1:10
96
     //for values after decimal that should be converted
97
         to binary//
98
     d=d*2
     q=floor(d)
99
     s=s+q/(10^i);
100
     if d \ge 1 then
101
        d=d-1
102
103
      end
104
     end
105 \text{ k=b+s};
106 disp('the subtraction of two numbers give:')
107 disp(k); // displaying the result //
```

Scilab code Exa 1.22.a subtraction using two complement

```
1 //subtraction using 2's complement//
2 //Example 22.a//
3 //subtraction using 2's complement//
```

```
4 clc
5 //clears the console//
6 clear
7 //clears all exisiting variables//
8 a=bin2dec('11011')
9 b=bin2dec('11001')
10 \text{ x=bitcmp(b,5)}
11 //complement of the numbers//
12 z = 1
13 \quad u=x+z
14 //1 is added to the complements//
15 \text{ w=u+a}
16 \text{ w=w-bin2dec}('100000')
17 w=dec2bin(w);//coverting to binary form//
18 disp('the subtraction of two binary numbers give:')
19 disp(w); // displaying the result //
```

Scilab code Exa 1.22.b subtraction using two complement

```
1 //subtraction using 2's complement//
2 //Example 22.b//
3 //subtraction using 2's complement//
4 clc
5 //clears the console//
6 clear
7 //clears all exisiting variables//
8 a=bin2dec('11011')
9 b=bin2dec('01100')
10 x = bitcmp(b, 5)
11 //complement of the numbers//
12 z = 1
13 \quad u = x + z
14 //1 is added to the complements//
15 \text{ w=u+a}
16 \text{ w=w-bin2dec}('100000')
```

```
17 w=dec2bin(w);//coverting to binary form//
18 disp('the subtraction of two binary numbers give:')
19 disp(w);//displaying the result//
```

Scilab code Exa 1.22.c subtraction using two complement

```
1 //subtraction using 2's complement//
2 //example 22.c//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //converting first binary input to decimal//
8 p = 1;
9 // initialising //
10 \ q = 1;
11 z = 0;
12 \ b = 0;
13 \text{ w} = 0;
14 f = 0;
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =0.01111;
18 bin=bin*100000
19 y = 0;
20 \text{ for } i=1:4
       x(i) = modulo(bin, 10)
21
22
       y=y+(x(i)/(2^{(6-i)})
       bin=bin/10
23
       bin=floor(bin)
24
25 end
26 \, d1 = y
27 //converting second binary input to its complement
      decimal number//
```

```
28 a = .01001
29 a=a*100000
30 s = 0;
31 for i=1:4
32
       x(i) = modulo(a, 10)
       if x(i) == 1 then
33
34
            x(i) = 0
       else
35
            x(i)=1
36
37
       end
       s=s+(x(i)/(2^{(6-i)})
38
39
       a=a/10
40
       a=floor(a)
41 end
42 s = s + .5
43 d2=s;//assigning the equivalent decimal value to d2
44 d2=d2+.03125;
45 r=d1+d2; // result in decimal form //
46 r=r-bin2dec('1')
47 //converting to binary form//
48 q = 0;
49 b = 0;
50 s = 0;
51 //enter the decimal number to be converted//
52 \text{ a=r};
53 d=modulo(a,1);//separating decimal and integer part
54 a=floor(a);//removing decimal part//
55 while (a>0)
56 //taking integer part into a matrix and converting
      to equivalent binary//
    x = modulo(a, 2)
57
58
   b=b+(10^q)*x
59
    a=a/2
    a=floor(a)
60
61
    q=q+1
62
       end
```

```
63
    for i=1:10
    //for values after decimal that should be converted
64
        to binary //
    d=d*2
65
    q=floor(d)
66
67
    s=s+q/(10^i);
    if d \ge 1 then
68
69
       d=d-1
70
     end
71
    end
72 \text{ k=b+s};
73 disp('the subtraction of two binary numbers give:')
74 disp(k); //the result in binary form //
```

Scilab code Exa 1.22.d subtraction using two complement

```
1 //subtraction using 2's complement//
2 //example 22.d//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //converting first binary input to decimal//
8 p = 1;
9 // initialising //
10 q = 1;
11 z = 0;
12 \ b = 0;
13 \text{ w} = 0;
14 	 f = 0;
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =111.010;
18 d = modulo(bin , 1);
```

```
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin);
22 //removing the decimal part//
23 while (a >0)
24 //Loop to take the binary bits of integer into a
      matrix //
25 r = modulo (a ,10) ;
26 b(1,q) = r;
27 \text{ a=a } /10;
28 a= floor (a);
29 q = q + 1;
30 \text{ end}
31
   for m = 1: q -1
32
    // multipliying the bits of integer position values
        and adding //
33
    c=m-1;
    f=f+b(1,m)*(2^c);
34
35
    end
36
    while (d > 0)
    // Loop to take the binary bits of decimal into a
37
       matrix //
    e = modulo (d, 2)
38
39
    w(1,p)=e
40
    d = d / 10;
41
    d= floor (d)
42
    p=p +1;
43
    end
44
    for n = 1: p - 1
    // multipliying the bits of decimal with their
45
       position values and adding//
46
    z=z+w(1,n)*(0.5)^{(11-n)};
47
    end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 d1=f+z;
```

```
53 //converting second binary input to its complement
      decimal number //
54 a = 010.111;
55 s = 0;
56 d=modulo(a,1);//separating integer and decimal part
  //since complement of decimal part is 0, we do not
57
      consider it further//
58 a=floor(a);//getting the integer part//
59 for i=1:3
       x(i) = modulo(a, 10)
60
       if x(i) == 1 then
61
62
           x(i)=0
63
       else
64
           x(i)=1
65
       end
       s=s+(x(i)*(2^(i-1)))
66
       a=a/10
67
       a=floor(a)
68
69 end
70 d2=s;//assigning the equivalent decimal value to d2
71 d2=d2+.125; //since decimal is upto three places //
72 r = d1 + d2;
73 r=r-bin2dec('1000'); // step to ignore the msb//
74 //converting the result to its binary equivalent//
75 q = 0;
76 b=0;
77 s = 0;
78 //enter the decimal number to be converted//
79 \ a=r;
80 d=modulo(a,1);//separating decimal and integer part
81 a=floor(a);//removing decimal part//
82 while (a>0)
83 //taking integer part into a matrix and converting
      to equivalent binary//
84 x = modulo(a, 2)
```

```
85 b=b+(10^q)*x
86 \ a=a/2
87 a = floor(a)
88 q = q + 1
89
        end
90
     for i=1:10
    //for values after decimal that should be converted
91
         to binary //
92
     d=d*2
    q=floor(d)
93
    s=s+q/(10^i);
94
    if d \ge 1 then
96
        d=d-1
97
      end
98
     end
99 \text{ k=b+s};
100 disp('the subtraction of two binary numbers give:')
101 disp(k); //required result in binary form//
```

Scilab code Exa 1.22.e subtraction using two complement

```
//subtraction using 2's complement//
//example 22.e//
clc
//clears the command window//
clear
//clears //
//converting first binary input to decimal//
p = 1;
// initialising //
p = 1;
// initialising //
clears //
f = 0;
```

```
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =111.01;
18 d = modulo(bin , 1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin);
22 //removing the decimal part//
23
    while (a > 0)
24
    //Loop to take the binary bits of integer into a
       matrix //
25
    r = modulo (a ,10) ;
26
    b(1,q) = r ;
27
    a=a /10;
28
    a= floor ( a ) ;
29
    q=q+1;
30
    end
31
    for m = 1: q -1
32
    // multipliying the bits of integer position values
        and adding //
33
    c=m-1;
34
    f=f+b(1,m) *(2^c);
35
    end
36
    while (d >0)
37
    // Loop to take the binary bits of decimal into a
       matrix //
    e = modulo (d, 2)
38
    w(1, p) = e
39
40
    d = d / 10;
    d= floor (d)
41
42
    p=p +1;
43
    end
44
    for n = 1: p -1
    // multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
47
    end
```

```
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 d1=f+z;
53 //converting second binary input to its complement
      decimal number //
54 a=110.11;
55 s = 0;
56 d=modulo(a,1); //separating integer and decimal part
57 //since complement of decimal part is 0, we do not
      consider it further//
58 a=floor(a); // getting the integer part //
   for i=1:3
59
60
       x(i) = modulo(a, 10)
       if x(i) == 1 then
61
           x(i) = 0
62
63
       else
64
           x(i)=1
65
      end
       s=s+(x(i)*(2^{(i-1)}))
66
       a=a/10
67
       a=floor(a)
68
69 end
70 d2=s;//assigning the equivalent decimal value to d2
71 d2=d2+.25; //since decimal is upto three places //
72 r = d1 + d2;
73 r=r-bin2dec('1000'); // step to ignore the msb//
74 //converting the result to its binary equivalent//
75 q=0;
76 b=0;
77 s = 0;
78 //enter the decimal number to be converted//
79 \ a=r;
80 d=modulo(a,1);//separating decimal and integer part
      //
```

```
81 a=floor(a);//removing decimal part//
82 while (a>0)
83 //taking integer part into a matrix and converting
      to equivalent binary//
84 x = modulo(a, 2)
85 b=b+(10^q)*x
86 a=a/2
87 a = floor(a)
88 q = q + 1
89
        end
90 for i=1:10
    //for values after decimal that should be converted
91
         to binary //
92
    d=d*2
93
    q=floor(d)
    s=s+q/(10^i);
94
    if d \ge 1 then
95
        d=d-1
96
97
     end
98
     end
99 \text{ k=b+s};
100 disp('the subtraction of two binary numbers give:')
101 disp(k); //required result in binary form //
```

Scilab code Exa 1.22.f subtraction using two complement

```
1 //subtraction using 2's complement//
2 //example 22.f//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //converting first binary input to decimal//
8 p =1;
9 // initialising //
```

```
10 q = 1;
11 z = 0;
12 \ b = 0;
13 \text{ w} = 0;
14 	 f = 0;
15 //bin= input (Enter the binary no to be converted
      to its decimal equivalent : )
16 //accepting the first binary input from user//
17 bin =10111.1;
18 d =modulo(bin ,1);
19 //separating the decimal part and the integer part//
20 d=d *10^10;
21 a = floor (bin);
22 //removing the decimal part//
23
    while (a > 0)
24
    //Loop to take the binary bits of integer into a
       matrix //
    r = modulo (a ,10) ;
25
26
    b(1,q) = r ;
    a=a /10;
27
28
    a= floor ( a ) ;
29
    q=q+1;
30
    end
31
    for m = 1: q -1
    // multipliying the bits of integer position values
32
        and adding //
33
    c=m-1;
34
    f=f+b(1,m) *(2^c);
35
    end
    while (d > 0)
36
37
    // Loop to take the binary bits of decimal into a
       matrix //
38
    e = modulo (d, 2)
39
    w(1,p)=e
40
    d = d / 10;
41
    d= floor (d)
42
    p=p +1;
43
    end
```

```
44
   for n = 1: p - 1
    // multipliying the bits of decimal with their
45
       position values and adding//
    z=z+w(1,n)*(0.5)^{(11-n)};
46
47
    end
48 z = z *10000;
49 //rounding of to 4 decimal values//
50 z = round(z);
51 z = z / 10000;
52 d1=f+z;
53 //converting second binary input to its complement
      decimal number //
54 a=10011.1;
55 s = 0;
56 d=modulo(a,1); // separating integer and decimal part
57 //since complement of decimal part is 0, we do not
      consider it further//
58 a=floor(a);//getting the integer part//
    for i=1:5
59
       x(i) = modulo(a, 10)
60
       if x(i) == 1 then
61
62
           x(i) = 0
63
       else
64
           x(i)=1
65
       end
66
       s=s+(x(i)*(2^(i-1)))
67
       a=a/10
       a=floor(a)
68
69 end
70 d2=s;//assigning the equivalent decimal value to d2
71 d2=d2+.5; //since decimal is upto three places//
72 r = d1 + d2;
73 r=r-bin2dec('100000'); // step to ignore the msb//
74 //converting the result to its binary equivalent//
75 q = 0;
76 b=0;
```

```
77 s = 0;
78 //enter the decimal number to be converted//
80 d=modulo(a,1); //separating decimal and integer part
81 a=floor(a);//removing decimal part//
82 while (a>0)
83 //taking integer part into a matrix and converting
      to equivalent binary//
84 x = modulo(a, 2)
85 b=b+(10^q)*x
86 \, a=a/2
87 a = floor(a)
88 q = q + 1
89
        end
    for i=1:10
90
    //for values after decimal that should be converted
91
         to binary //
92
    d=d*2
93
    q=floor(d)
94
    s=s+q/(10^i);
    if d \ge 1 then
95
96
        d=d-1
97
     end
98
    end
99 k=b+s;
100 disp('the subtraction of two binary numbers give:')
101 disp(k); //required result in binary form //
```

Scilab code Exa 1.23.a BCD to decimal equivalent conversion

```
1 //BCD to decimal conversion//
2 //Example 23.a//
3 //subtraction using 2's complement//
4 clc
```

```
5 //clears the console//
6 clear
7 //clears all exisiting variables//
8 a=010000111001; //taking the BCD input //
9 z = 0;
10 d=modulo(a,10000)
11
       for j=1:4
         y(j) = modulo(d, 10)
12
13
         z=z+(y(j)*(2^{(j-1)}))
         d=d/10
14
15
         d=floor(d)
16
       end
17 b=a/10000
18 b = floor(b)
19 c = modulo(b, 10000)
20 z1=0
21 \text{ for } j=1:2
22
       y(j) = modulo(c, 10)
23
         z1=z1+(y(j)*(2^(j-1)))
         c=c/10
24
25
         c=floor(c)
26 end
27 e=b/10000
28 e = floor(e)
29 z2=0
30 \text{ for } j=1:3
31
       y(j) = modulo(e, 10)
         z2=z2+(y(j)*(2^(j-1)))
32
33
         e=e/10
         e=floor(e)
34
35 end
36 \quad r = z2 * 100 + z1 * 10 + z
37 printf('the decimal equivalent of BCD code is=\%d',r)
```

Scilab code Exa 1.23.b BCD to decimal equivalent conversion

```
1 //BCD to decimal conversion//
2 //Example 23.b//
3 //subtraction using 2's complement//
4 clc
5 //clears the console//
6 clear
7 //clears all exisiting variables//
8 a=1000010011111000; // taking the BCD input //
9 z = 0;
10 d=modulo(a,10000)
       for j=1:4
11
12
           y(j) = modulo(d, 10)
13
           z=z+(y(j)*(2^(j-1)))
           d=d/10
14
15
           d=floor(d)
16
       end
17 b=a/10000
18 b = floor(b)
19 z1=0
20 c = modulo(b, 10000)
21 for i=1:3
22
       y(i) = modulo(c, 10)
       z1=z1+(y(i)*(2^(i-1)))
23
24
       c=c/10
       c=floor(c)
25
26 \text{ end}
27 z2=0
28 e=b/10000
29 e = floor(e)
30 f=modulo(e,10000)
31 \text{ for } i=1:2
       y(i) = modulo(f, 10)
32
33
       z2=z2+(y(i)*(2^(i-1)))
34
       f=f/10
       f=floor(f)
35
36 end
37 \text{ g=e/}10000
38 g = floor(g)
```

Scilab code Exa 1.24.a binary to gray code conversion

```
1 //binary to gray code//
2 //Example 24.a//
3 //binary to gray code//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a = 110100
9 \text{ for } i=1:6
       x(i) = modulo(a, 10)
10
       a=a/10
11
12
       a=floor(a)
13 end
14 y(6) = x(6)
15 k=5
16 \text{ while}(k>0)
17
       if (bitand(x(k+1),x(k))==1) then
       a=bitand(x(k+1),x(k))
18
       y(k) = bitcmp(a, 1)
19
20 else
       y(k) = bitor(x(k+1), x(k))
21
22
       end
23
       k=k-1
```

```
24 end
25 //display//
26 z=0
27 for i=1:6
28    z=z+y(i)*(10^(i-1))
29 end
30 disp(z)
31 disp('equivalent gray code is displayed')
```

Scilab code Exa 1.24.b binary to gray code conversion

```
1 //binary to gray code//
2 //Example 24.b//
3 //binary to gray code//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a = 101101
9 \text{ for } i=1:6
10
       x(i) = modulo(a, 10)
11
       a=a/10
12
       a=floor(a)
13 end
14 y(6) = x(6)
15 k=5
16 \text{ while}(k>0)
17
       if (bitand(x(k+1),x(k))==1) then
18
       a=bitand(x(k+1),x(k))
       y(k) = bitcmp(a, 1)
19
20 else
21
       y(k) = bitor(x(k+1),x(k))
22
       end
23
       k=k-1
24 end
```

```
25 //display//
26 z=0
27 for i=1:6
28    z=z+y(i)*(10^(i-1))
29 end
30 disp(z)
31 disp('equivalent gray code is displayed')
```

Scilab code Exa 1.24.c binary to gray code conversion

```
1 //binary to gray code//
2 //Example 24.c//
3 //binary to gray code//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a=1110010
9 \text{ for } i=1:7
       x(i) = modulo(a, 10)
10
11
       a=a/10
12
       a=floor(a)
13 end
14 y(7) = x(7)
15 k=6
16 while(k>0)
17
       if (bitand(x(k+1),x(k))==1) then
18
       a=bitand(x(k+1),x(k))
19
       y(k) = bitcmp(a, 1)
20 else
       y(k) = bitor(x(k+1),x(k))
21
22
       end
23
       k = k - 1
24 end
25 // display//
```

```
26 z=0
27 for i=1:7
28     z=z+y(i)*(10^(i-1))
29 end
30 disp(z)
31 disp('equivalent gray code is displayed')
```

Scilab code Exa 1.25.a subtraction using ones complement

```
1 //subtraction using 1's complement//
2 //Example 25.a//
3 //subtraction in one's complement //
4 clc
5 //clears the window//
6 clear
7 //clears all the existing variables//
8 x = 10111101
9 y=bin2dec('1011101')
10 z=bin2dec('1101100')
11 c=bitcmp(z,7);//finding 1's complement//
12 \ a=y+c+1
13 a=dec2bin(a-(bin2dec('1000000')))
14 //binary conversion//
15 disp('binary form of the number obtained by adding
      1011101 to -1101100')
16 disp(a)
17 //result is displayed//
```

Scilab code Exa 1.25.b gray code to binary conversion

```
1 //gray code to binary conversion//
2 //Example 25.b//
3 //gray code to binary//
```

```
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a=1011010111001
9 for i=1:13
10
       x(i) = modulo(a, 10)
       a=a/10
11
12
       a=floor(a)
13 end
14 y(13) = x(13)
15 k = 12
16 \text{ while}(k>0)
     if (bitand(y(k+1),x(k))==1) then
17
       a=bitand(y(k+1),x(k))
18
       y(k) = bitcmp(a, 1)
19
20 else
21
       y(k) = bitor(y(k+1), x(k))
22
       end
23
       k=k-1
24 end
25 z = 0
26 \text{ for } i=1:13
       z=z+y(i)*(10^(i-1))
27
28 end
29 disp(z)
30 disp('equivalent binary code is displayed')
```

Scilab code Exa 1.25.c decimal to BCD conversion

```
1 //decimal to BCD conversion//
2 //example 25.c//
3 clc
4 //clears the command window//
5 clear
```

Scilab code Exa 1.25.d subtraction using ones complement

```
1 //subtraction using 1's complement//
2 //Example 25.d//
3 //subtraction in one's complement//
4 clc
5 //clears the window//
6 clear
7 //clears all the existing variables//
8 x = 85
9 y = 32
10 c=bitcmp(y,7);//finding 1's complement//
11 \ a=x+c+1
12 \text{ a=a-bin2dec}('10000000')
13 res=dec2bin(a,7)
14 //binary conversion//
15 disp('binary form of the number obtained by adding
     85 to -32')
16 disp(res)
17 //result is displayed//
```

Scilab code Exa 1.26 finding equivalent in decimal for excess 3 code

```
1 //finding equivalent in decimal for five excess 3
      code numbers //
2 //example 26//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //first number in excess-3 code//
8 x = 1000
9 a=bin2dec('1000'); // conversion to binary //
10 y=a-3; //conversion to excess 3 code//
11 disp('equivalent decimal number for first excess 3
      code: ')
12 disp(y); // displaying result //
13 //second number in excess -3 code//
14 x = 0011
15 a=bin2dec('0011');//conversion to binary//
16 y=a-3; //conversion to excess 3 code//
17 disp('equivalent decimal number for second excess 3
      code: ')
18 disp(y); // displaying result //
19 //third number in excess 3-code//
20 x = 0100
21 a=bin2dec('0100');//conversion to binary//
22 y=a-3;//conversion to excess 3 code//
23 disp('equivalent decimal number for third excess 3
      code: ')
24 disp(y); // displaying result //
25 //fourth number in excess 3-code//
26 x = 0101
27 a=bin2dec('0101');//conversion to binary//
28 y=a-3; //conversion to excess 3 code//
29 disp('equivalent decimal number for fourth excess 3
      code: ')
30 disp(y); // displaying result //
31 //fifth number in excess 3-code//
```

```
32 x='0111'
33 a=bin2dec('0111');//conversion to binary//
34 y=a-3;//conversion to excess 3 code//
35 disp('equivalent decimal number for fifth excess 3 code:')
36 disp(y);//displaying result//
```

Scilab code Exa 1.27.a gray code to binary conversion

```
1 //gray code to binary conversion//
2 //Example 27.a//
3 //gray code to binary//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a = 101110
9 for i=1:6
       x(i) = modulo(a, 10)
10
       a=a/10
11
12
       a=floor(a)
13 end
14 y(6) = x(6)
15 k=5
16 \text{ while}(k>0)
     if (bitand(y(k+1),x(k))==1) then
17
       a=bitand(y(k+1),x(k))
18
19
       y(k) = bitcmp(a, 1)
20 else
       y(k) = bitor(y(k+1), x(k))
21
22
       end
       k=k-1
23
24 end
25 z = 0
26 \text{ for } i=1:6
```

```
27  z=z+y(i)*(10^(i-1))
28 end
29 disp(z)
30 disp('equivalent binary code is displayed')
```

Scilab code Exa 1.27.b gray code to binary conversion

```
1 //gray code to binary conversion//
2 //Example 27.b//
3 //gray code to binary//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a=111011
9 \text{ for } i=1:6
       x(i) = modulo(a, 10)
10
       a=a/10
11
12
       a=floor(a)
13 end
14 y(6) = x(6)
15 k=5
16 \text{ while}(k>0)
     if (bitand(y(k+1),x(k))==1) then
17
       a=bitand(y(k+1),x(k))
18
       y(k) = bitcmp(a,1)
19
20 else
21
       y(k) = bitor(y(k+1), x(k))
22
       end
       k=k-1
23
24 end
25 z = 0
26 \text{ for } i=1:6
27
       z=z+y(i)*(10^(i-1))
28 end
```

```
29 disp(z)
30 disp('equivalent binary code is displayed')
```

Scilab code Exa 1.27.c gray code to binary conversion

```
1 //gray code to binary conversion//
2 //Example 27.c//
3 //gray code to binary//
4 clc
5 //clears the console//
6 clear
7 //clears all existing variables//
8 a=1101110
9 \text{ for } i=1:7
       x(i) = modulo(a, 10)
10
       a=a/10
11
12
       a=floor(a)
13 end
14 y(7) = x(7)
15 k=6
16 while(k>0)
    if (bitand(y(k+1),x(k))==1) then
17
       a=bitand(y(k+1),x(k))
18
       y(k) = bitcmp(a, 1)
19
20 else
       y(k) = bitor(y(k+1), x(k))
21
22
       end
23
       k=k-1
24 end
25 z = 0
26 \text{ for } i=1:7
27
       z=z+y(i)*(10^(i-1))
28 end
29 disp(z)
30 disp('equivalent binary code is displayed')
```

Scilab code Exa 1.28.a constructing an even parity 7 bit hamming code

```
1 //constructing an even parity 7 bit hamming code//
2 //example 28.a//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 z=0100; //input//
8 a=0; b=0; c=0; d=0;
9 //taking the input//
10 for i=1:7
11
        x(i) = 0
12
        if (i==5) then
             x(i)=1
13
14
        \quad \text{end} \quad
15 end
16 //establishing even parity at positions 1,3,5,7//
17 \text{ for } i=3:7
18
        if (x(i)==1) then
19
             a=a+1
20
        end
21 end
22 d=modulo(a,2)
23 if (d==1) then
24
        x(1)=1
25 end
\frac{26}{2} //establishing even parity at positions \frac{2}{3}, \frac{6}{7}
27 \text{ for } i=3:7
28
        if (i==5) then
29
             continue
30
        end
        if (x(i)==1) then
31
             b=b+1
32
```

```
33
        end
34 end
35 d = modulo(b, 2)
36 if (d==1) then
37
        x(2) = 1
38 end
39 //establishing even parity at positions 4,5,6,7//
40 \text{ for } i=5:7
        if (x(i)==1) then
41
            c = c + 1
42
43
        end
44 end
45 d = modulo(c, 2)
46 if (d==1) then
        x(4)=1
47
48 end
49 //displaying the result//
50 disp('the required hamming code is:')
51 \text{ for } i=1:7
        printf('%d',x(i))
52
53 end
```

Scilab code Exa 1.28.b constructing an even parity 7 bit hamming code

```
//constructing an even parity 7 bit hamming code//
//example 28.b//
clc
//clears the command window//
clear
//clears//
z=1110;//input//
a=0;b=0;c=0;d=0;
//taking the input//
for i=1:7
x(i)=0
```

```
12
       if (i==3) then
13
            x(i)=1
14
       end
15
       if (i==5) then
16
            x(i)=1
17
       end
       if (i==6) then
18
            x(i)=1
19
20
       end
21 end
22 //establishing even parity at positions 1,3,5,7//
23 for i=3:7
       if (i==6) then
24
25
            continue
26
       end
27
       if (x(i)==1) then
            a=a+1
28
29
       end
30 end
31 d=modulo(a,2)
32 if (d==1) then
33
       x(1)=1
34 end
35 //establishing even parity at positions 2,3,6,7//
36 \text{ for } i=3:7
       if (i==5) then
37
38
            continue
39
       end
       if (x(i)==1) then
40
            b=b+1
41
42
       end
43 end
44 d = modulo(b, 2)
45 if (d==1) then
       x(2)=1
46
47 end
48 //establishing even parity at positions 4,5,6,7//
49 \text{ for } i=5:7
```

```
if (x(i)==1) then
50
51
            c = c + 1
52
        end
53 end
54 d = modulo(c, 2)
55 if (d==1) then
        x(4) = 1
56
57 end
58 //displaying the result//
59 disp('the required hamming code is:')
60 \text{ for } i=1:7
        printf('%d',x(i))
61
62 end
```

Scilab code Exa 1.29 locating error in hamming code and correcting it

```
1 //locating error in hamming code and correcting it//
2 //example 29//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 a=1111001
     b=0; c=0; d=0; e=0;
     for i=1:7
9
       x(8-i) = modulo(a, 10)
10
       a=a/10
11
12
       a=floor(a)
13 end
14 //checking even parity at positions 4,5,6,7//
15 \text{ for } i=4:7
       if (x(i)==1) then
16
17
            b=b+1
18
       end
19 end
```

```
20 d=modulo(b,2)
21 if (d==0) then
22
       r1=0
23 else
24
       r1=1
25 end
26 //checking even parity at positions 2,3,6,7//
27 \text{ for } i=2:7
28
       if (i==4) then
29
            continue
30
       end
31
       if (i==5) then
32
            continue
33
       end
       if (x(i)==1) then
34
35
            c = c + 1
36
       end
37 end
38 d = modulo(c, 2)
39 if (d==0) then
40
       r2=0
41 else
42
       r2=1
43 end
44 //checking even parity at positions 1,3,5,7//
45 for i=1:7
46
       if (i==2) then
47
            continue
48
       end
       if (i==4) then
49
50
            continue
51
       end
       if (i==6) then
52
53
            continue
54
       end
       if (x(i)==1) then
55
            e=e+1
56
57
       end
```

```
58 end
59 d = modulo(e, 2)
60 if (d==0) then
61
       r3=0
62 else
63
       r3=1
64 end
65 r=r1*(2^2)+r2*(2^1)+r3;//converting to equivalent
      decimal //
66 printf('error occurs at position=\%d\n',r)
67 // bit position at which error occurs has to be
     changed //
68 if (x(r)==1) then
69
       x(r)=0
70 else
       x(r)=1
71
72 end
73 //displaying the correct hamming code//
74 disp('the correct hamming code is:')
75 \text{ for } i=1:7
      printf('%d',x(i))
76
77 end
```

Chapter 2

Boolean algebra logic gates karnaugh map and minimization

Scilab code Exa 2.8.a simplification of boolean expression

```
1 //simplification of boolean expression//
2 //example 8.a//
4 //clears the command window//
5 clear
6 //clears//
7 disp('given Y=AB+AB', 'C(B', 'C', '+C)+A', 'C', ',')
8 disp('Y=AB+AB','B','CC','+AB','CC+A','C',',');//ON
     MULTIPLICATION//
9 disp('Y=AB+AB','C+A','+C',',');//CC','=0//
10 disp('Y=C''+AB+(A+A'')(A''+B''C)')
11 disp('Y=C''+AB+1.(A''+B''C)')
12 disp('Y=A''+A.B+C''+B''C')
13 disp('Y=(A''+A).(A''+B)+(C''+B'').(C''+C)')
14 disp('Y=1.(A''+B)+(C''+B'').1')
15 disp('the simplified expression is:')
16 disp('Y=A''+B+C''+B''');//required simplified
```

Scilab code Exa 2.8.b simplification of boolean expression

```
//simplification of boolean expression//
//example 8.b//
clc
//clears the command window//
clear
//clears//
disp('given Y=A''BC''+A''BC+AB''C''+ABC')
disp('Y=A''BC''+A''BC+AB''C''+ABC')
disp('Y=A''BC''+A''BC+AB''C''')
disp('Y=A''B(C+C'')+A''BC+AB''C''');//C+C''=1//
disp('Y=A''B+BC+AB''C''');//A+A''=1//
disp('Y=A''B+BC+AB''C''');//A+A''=1//
disp('Y=B.(A''+C)+AB''C''');//required simplified expression//
```

Scilab code Exa 2.9.a simplification of boolean expression

```
//simplification of boolean expression//
//example 9.a//
clc
//clears the command window//
clear
//clears//
//simplification of boolean expression//
disp('given Y=ABC''D''+ABC''D+ABCD''+ABCD')
disp('since D+D''=1,we get')
disp('Y=ABC''(D+D'')+ABC(D''+D)'')
disp('Y=ABC''+ABC')
disp('Y=ABC''+ABC'')
```

```
13 disp('the simplified expression is:')
14 disp('Y=AB');//C+C'=1//
15 //answer after simplification//
```

Scilab code Exa 2.9.b simplification of boolean expression

```
1 //simplification of boolean expression//
2 //example 9.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //simplification of boolean expression//
8 disp('given Y=AB+ABC''+A''BC+ABC')
9 disp ('on simplification we get')
10 disp ('Y=AB+ABC', '+A', 'BC+ABC+A', 'BC')
11 disp('Y=AB+AB(C+C'')+BC(A+A''))
12 disp('since x+x''=1, we get')
13 disp('Y=AB+AB+BC')
14 disp('Y=AB+BC')
15 disp('the simplified expression is:')
16 disp('Y=B(A+C)')
17 //answer after simplification//
```

Scilab code Exa 2.9.c simplification of boolean expression

```
1 //simplification of boolean expressions//
2 //example 9.c//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //simplification of boolean expression//
```

```
8 disp('given Y=AB(A''BC''+AB''C''+A''BC)')
9 disp('on multiplication')
10 disp('Y=ABA''BC''+ABAB''C''+ABA''BC')
11 disp('Y=AA''.BC''+AB''.B''C''+AA''.BC')
12 disp('since x.x''=0')
13 disp('Y=0.BC''+A.0.C''+0.BC')
14 disp('Y=0')
15 //answer after simplification//
```

Scilab code Exa 2.10.a simplification of boolean expression

```
//simplification of boolean expressions//
//example 10.a//
clc
//clears the command window//
clear
//clears//
//simplification of boolean expression//
disp('given Y=(A+B)''.(A''+B'')''')
disp('Y=(A''.B'').(A.B)');//applying De Morgan's law//
disp('Y=AA''.BB''')
disp('Y=AA''.BB''')
disp('Y=O');//since x.x''=0//
//simplified boolean expression//
```

Scilab code Exa 2.10.b simplification of boolean expression

```
1 //simplification of boolean expressions//
2 //example 10.b//
3 clc
4 //clears the command window//
5 clear
```

```
6 // clears //
7 // simplification of boolean expression //
8 disp('Y=ABC+A''B+ABC''')
9 disp('Y=AB(C+C'')+A''B')
10 disp('Y=B(A+A'')'); //C+C''=1//
11 disp('the simplified expression is:')
12 disp('Y=B'); // simplified expression //
```

Scilab code Exa 2.10.c simplification of boolean expression

```
//simplification of boolean expressions//
//example 10.c//
clc
//clears the command window//
clear
//clears//
//simplification of boolean expression//
disp('given Y=C(AB''+AB)+BC')
disp('Y=CA(B''+B)+BC')
disp('Y=CA+BC');//B+B''=1//
disp('the simplified expression is:')
disp('Y=C(A+B)')
simplified boolean expression//
```

Scilab code Exa 2.11 simplification of boolean expression

```
1 //simplification of boolean expressions//
2 //example 11//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //simplification of boolean expression//
```

```
8 disp('given Y=ABCD+ABCD''+A''BCD+A''BCD''')
9 disp('Y=BC(AD+AD''+A''D+A''D'')')
10 disp('Y=BC{A(D+D'')+A''(D+D'')}')
11 disp('Y=BC(A.1+A''.1)')
12 disp('BC(A+A'')')
13 disp('the simplified expression is:')
14 disp('Y=BC');//simplified boolean expression//
```

Scilab code Exa 2.13.a simplification of boolean expression

```
1 //simplification of boolean expressions//
2 //example 13.a//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 disp('given Z=(AB''C''+AB''C+ABC+ABC'')(A+B)')
8 disp('Z={}AB''(C+C'')+AB(C+C'')}(A+B)')
9 disp('Z=(AB','+AB)(A+B)')
10 disp('Z=A(B''+B)(A+B)')
11 disp('Z=A.1.(A+B)')
12 disp('Z=AA+AB')
13 disp('Z=A+AB')
14 disp('Z=A(1+B)')
15 disp('the simplified expression is:')
16 disp('A'); // simplified boolean expression //
```

Scilab code Exa 2.13.b simplification of boolean expression

```
1 //simplification of boolean expressions//
2 //example 13.b//
3 clc
4 //clears the command window//
```

```
5 clear
6 // clears //
7 disp('given A=P+P'', 'QR''+(Q+R)''')
8 disp('A=P+P''QR''+Q''.R''');//DE MORGAN'S LAW//
9 disp('A=P+R''(P''Q+Q'')')
10 disp('A=P+R'', [P'', Q+Q'', (P+P'',)]')
11 disp('A=P+R'', [P'', (Q+Q'')+PQ'']')
12 disp('A=P+R'', [P''+PQ]')
13 disp('A=P+R'' {(P''+P).(P''+Q'')}')
14 disp('A=P+R''(P''+Q'')')
15 disp('A=P+P','R','+Q','R',',')
16 disp('A=(P+P'').(P''+R'')+Q''R'')
17 disp('A=1.(P+R'')+Q''R'')
18 disp('A=P+R''+Q''R''')
19 disp('A=P+R''+Q'',R''')
20 disp('A=P+R''(1+Q'')')
21 disp('the simplified expression is:')
22 disp('A=P+R'')
```

Scilab code Exa 2.29 finding SOP

```
1 //finding SOP//
2 //example 29//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 disp('f=summation(1,2,4,7)')
8 disp('f=001+0101+100+111')
9 disp('required SOP form:')
10 disp('f=A''B''C+A''BC''+AB'''C''+ABC'');
```

Scilab code Exa 2.30 finding POS

Scilab code Exa 2.31.a conversion to canonical SOP

```
1 //conversion to canonical SOP//
2 //example 31.a//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //conversion to canonical SOP//
8 disp('given Y=AB+A'', 'B'', +AC+A'', 'C''')
9 \operatorname{disp}('\sin \operatorname{ce} x+x''=1, \operatorname{we} \operatorname{get}')
10 disp('Y=AB(C+C'')+A''B''(C+C'')+AC(B+B'')+A''C''(B+B
      '')')
  disp ('Y=ABC+ABC''+A''B''C+A''B''C''+ACB''+ACB''+A''C
11
      ', 'B+A', 'C', 'B', ', ')
12 disp('since ABC and A''B''C'' appear twice, we write
      them once')
13 disp('Y=ABC+ABC''+A''B''C+A''B''C''+AB''C+A''BC''')
14 disp('the required SOP expression')
15 disp('Y=111+110+001+000+101+010')
16 disp('hence the required entries will be at the
      positions 0, 1, 2, 5, 6, 7
17 disp('f=summation(0,1,2,5,6,7)')
```

Scilab code Exa 2.31.b conversion to canonical POS

```
1 //conversion to canonical POS//
2 //example 31.b//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //conversion to canonical POS//
8 disp('given Y=AB+A'', 'B'', +AC+A'', 'C''')
9 disp('we use the complement of the previous example'
     )
10 disp('the entries will be at 3,4 i.e. 011,100
     positions')
11 disp('Y=A''BC+AB''C''')
12 disp('Y=(A''BC.AB''C'')'')
13 //de morgan's theorem//
14 disp('Y=(A+B''+C'').(A''+B+C)')
15 disp('the required POS expression')
```

Scilab code Exa 2.32 finding SOP and POS

```
1 // finding SOP and POS//
2 // example 32//
3 clc
4 // clears the command window//
5 clear
6 // clears//
7 disp('given f=A''.(B+C'')')
8 disp('f=(A''+BB''+CC'')(B+C''+AA'')')
9 disp('f=[(A''+B)(A''+B'')+CC''][(B+C''+A)(B+C''+A'')')
]')
```

```
10 disp('f = [C+(A''+B)(A''+B'')][C''+(A''+B)(A''+B)][(A+C''+B)]
                         B+C'') (A''+B+C'')
11 disp('f=(C+A''+B)(C+A''+B'')(C''+A''+B)(C'''+A''+B'')
                          (A+B+C', (A', +B+C), (A', +B
12 disp('f=(A''+B+C)(A''+B''+C'')(A''+B+C'')(A''+B''+C'')
                           ')(A+B+C'')
13 \operatorname{disp}('f = (100)(110)(101)(111)(001)')
14 disp('required POS form is:')
15 disp('f=product(1,4,5,6,7)');//required POS form//
16 disp('f=A''(B+C'')')
17 disp('f=A','B+A','C',')')
18 disp('f=A','B(C+C',')+A','C','(B+B',')')
19 disp('f=A''BC+A''BC''+A''BC''+A''B''C''')
20 disp('f=011+010+000')
21 disp('required SOP form is:')
22 disp('f=summation(0,2,3)');//required SOP form//
```

Scilab code Exa 2.33 finding SOP and POS

```
1 //finding SOP and POS//
2 //example 33//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 disp('given f=B'',C')
8 disp('f=(B''+AA''+CC'')(C+AA''+BB'')')
9 disp('f = ((B''+A)(B''+A'')+CC'')((C+A)(C+A'')+BB'')')
+(C+A)(C+A'') ] [B''+(C+A)+(C+A'')]'); //using
     distributive property //
11 disp('f=(A+B''+C)(A''+B''+C)(A+B''+C'')(A''+B''+C'')
     (A+B+C)(A''+B+C)');//using distributive property
     and retaining repeated factors only once //
12 disp('f = (010)(110)(011)(111)(000)(100)')
```

```
disp('required POS form:')
disp('f=product(0,2,3,4,6,7)')
//finding SOP//
disp('f=(A+A'').B''C')
disp('f=AB''C+A''BC')
disp('f=101+001')
disp('required SOP form:')
disp('f=summation(5,1)')
```

Scilab code Exa 2.34 finding maxterms and minterms

```
1 //finding maxterms and minterms//
2 //example 34//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 //finding minterms and maxterms//
8 disp('given Y=AC''+A''C')
9 disp('Y=A','C(B+B',')+AC','(B+B',')')
10 disp('Y=A','CB+A','CB','+AC','B+AC','B',',')
11 disp('these are the required minterms')
12 disp('the minterms indicate the positions 1,3,4,6')
13 disp('the maxterms indicate the positions 0,2,5,7')
14 //complementary of minterms//
15 disp('Y=(A+B+C)(A+B''+C)+(A''+B+C'')(A''+B''+C'')')
16 disp('these are the required maxterms')
```

Scilab code Exa 2.35 finding maxterms

```
1 //finding maxterms//
2 //example 35//
3 clc
```

```
4 //clears the command window//
5 clear
6 //clears//
7 disp('given f=product(0,3,5,6)')
8 disp('f=(000)(011)(101)(110)')
9 disp('required maxterms:')
10 disp('f=(A+B+C)(A+B''+C'')(A''+B+C'')(A''+B''+C)')
```

Scilab code Exa 2.36 finding required data

```
//finding required data//
//example 36//
clc
//clears the command window//
clear
//clears//
disp('f=A''B''C+A''BC''+AB''C+ABC''');//since f is 1
    at positions 1,2,5,6; this is the required SOP
    expression//
disp('f=(A+B+C)(A+B''+C'')(A''+B+C)(A''+B''+C'')');
//since f is 0 at 0,3,4,7; this is the required
    POS expression//
disp('sum of minterms=summation(1,2,5,6)')
disp('product of maxterms=product(0,3,4,7)')
```

Scilab code Exa 2.37 finding SOP

```
1 //finding SOP//
2 //example 37//
3 clc
4 //clears the command window//
5 clear
6 //clears//
```

```
7 disp('given f=AC')
8 disp('f=AC(B+B'')(D+D'')')
9 disp('f=ACBD+ACBD''+ACB''D+ACB''D''');//required sum
         of minterms//
10 disp('f=1111+1110+1011+1010')
11 disp('required SOP form:')
12 disp('f=summation(10,11,14,15)')
```

Scilab code Exa 2.38 finding sum of minterms and product of maxterms

```
1 //sum of minterms and product of maxterms//
2 //example 38//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 disp('given f=AB+A'', 'BC+C'', 'D')
8 disp('f=AB(C+C'')(D+D'')+AB''C(D+D'')+C''D(A+A'')(B+
     B',')')
9 disp('required sum of minterms:')
10 disp('f=ABCD+ABCD''+ABC''D+ABC'''D''+AB'''CD+AB'''CD'''+
     AB', 'C', 'D+A', 'BC', 'D+A', 'B', 'C', 'D')
11 disp('f=summation(1,5,9,10,11,12,13,14,15')
12 disp('therefore f=product(0, 2, 3, 4, 6, 7, 8)')
13 disp('required product of maxterms:')
14 disp('f=(A+B+C+D)(A+B+C''+D)(A+B+C''+D'')(A+B+C''+D''
      ') (A+B''+C+D) (A+B''+C''+D) (A+B'''+C'''+D''') (A'''+B+C
     +D),
```

Chapter 3

Wave shaping clipping clamping and sweep circuits

Scilab code Exa 3.1 finding required data

```
1 //finding required data//
2 // example 1//
3 clc
4 //clears the command window//
5 clear
6 // clears //
7 //finding time constant and time for capacitor to
      charge 90% of supplied voltage//
8 R=10^6; //resistance in ohms//
9 C=10^-5; //capacitance in farads//
10 T = R * C
11 printf('the time constant=\%f seconds\n',T)
12 //time constant is found out//
13 v = 90/100 * 10; //v = voltage at time t//
14 V=10; //voltage in volts //
15 //t = required time //
16 \texttt{disp}(\mbox{'from the formula v=}V*(1-\exp(-\,t\,/(R*C)\,))\,, \mbox{we get}
      the required time as: ')
17 t=-((R*C)*log(1-(v/V)))
```

Scilab code Exa 3.2 finding maximum amplification

```
1 //finding minimum amplification//
2 // \text{example } 2 //
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 r = .04 * 10^{-6}
8 //r is the rise time//
9 disp('rise time=(2*v)/(2*\%pi*f*V), hence')
10 //f=frequency in hetrz; v=output voltage in volts; V=
      required maximum output voltage in volts //
11 f = 400 * 10^3
12 \quad v = 6.28
13 V=(2*v)/(r*2*\%pi*f)
14 Vin=12.5; //input voltage//
15 \quad a=V/Vin
16 printf('minimum amplification required=%f',a)
```

Scilab code Exa 3.3.a finding clamping level voltage

```
//finding clamping level voltage//
//example 3.a//
clc
//clears the command window//
clear
//clears//
//charge=voltage/time//
```

Scilab code Exa 3.3.b finding clamping level voltage

```
//finding clamping level voltage//
//example 3.b//
clc
//clears the command window//
clear
//clears//
//charge=voltage/time//
disp('from equation ((V*4*10^-6)/20)=((5-V) *4000*10^-6)/(20*10^-3)), we get')
//resistance=20kohm;V=clamping level voltage; charge=voltage*capacitance//
V=20/8
printf('clamping level voltage=%f volt',V)
//the answer is displayed//
```

Scilab code Exa 3.4 finding output voltage

```
1 //finding output voltage//
2 //example 4//
3 clc
4 //clears the command window//
5 clear
6 //clears//
```

```
7 V1=10; // voltage source amplitude //
8 Rf=50; //forward rsistance //
9 r1=50;//internal resistance//
10 i=V1*Rf/(Rf+r1)
11 //current through diode during positive half cycle//
12 C=10^-6
13 T=(Rf+r1)*C; //time constant during conduction //
14 f=10*10<sup>3</sup>
15 T1=1/(2*f); //time duration during which input
      voltage is positive//
16 t=50*10^-6; //given time//
17 v=V1*(1-exp(-(t/T))); // voltage across capacitor
      after 50 micro sec //
18 Vo=((V1-v)*Rf)/(Rf+r1);//output voltage across diode
19 R=20*10^3; //resistance in series //
20 T2=(r1+R)*C; //time constant of discharging circuit //
21 V2=v*exp(-(t/T2));//voltage at the end of 50 micro
     sec//
22 printf('output voltage=%f volt', V2)
23 //result is displayed//
```

Scilab code Exa 3.6 finding resistance and capacitance

```
//finding load resistance and value of capacitor//
//example 6//
clc
//clears the command window//
clear
//clears//
Vo=15;//output voltage//
t=10*10^-3;//time duration//
tr=.05*10^-6;//rise time//
Rs=100*10^3;//source resistance//
C=50*10^-12;//output capacitance//
```

```
12 S=.05; //sag allowed //
13 //tr=.35/f2 where f2=upper cut off frequency //
14 //also tr=2.2*R*C where R=load resistance //
15 R=tr/(2.2*C)
16 printf('resistance=%f ohms\n',R)
17 //result is displayed //
18 Cs=t/(Rs*S); //Cs=source capacitor //
19 printf('capacitance=%f farad',Cs); //result is displayed //
```

Scilab code Exa 3.7 finding peak voltage

```
//finding peak voltage//
//example 7//
clc
//clears the command window//
clear
//clears//
T=250*10^-12;//time constant//
t=.05*10^-6;
Vo=100;//peak output voltage//
Vi=(Vo*t)/T;//peak voltage of generator//
printf('peak voltage=%f volt', Vi)
//result is displayed//
```

Chapter 5

Sequential circuits flip flops and multivibrators

Scilab code Exa 5.1 finding required time

```
//finding required time//
//example 1//
clc
//clears the command window//
clear
//clears//
R=10*10^3;//external resistance//
C=0.1*10^-6;//timing capacitor//
T=1.1*R*C;//time for which output remains high in monostable multivibrator using IC 555 timer//
printf('required time=%f seconds',T);//result is displayed
```

Scilab code Exa 5.2 finding frequency and duty cycle

```
1 //calculating frequency and duty cycle//
```

```
2 //example 2//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 Ra=10*10^3
8 Rb = 10 * 10^3
9 \quad C = .001 * 10^{-6}
10 T1=.693*(Ra+Rb)*C; // charging time constant //
11 T2=.693*Rb*C; // discharging time constant //
12 T=T1+T2; //total time//
13 f=1/T; // frequency //
14 printf('frequency=\%f hertz\n',f);//result is
      displayed //
15 D=T2/T; //duty cycle //
16 D = D * 100
17 printf('duty cycle=%f percent',D)
18 //result is displayed//
```

Scilab code Exa 5.3 finding frequency and duty cycle

```
1 //calculating frequency and duty cycle//
2 //example 3//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 Ra=6.8*10^3
8 Rb=3.3*10^3
9 C=.1*10^-6
10 T1=.693*(Ra+Rb)*C;//charging time constant//
11 T2= .693*Rb*C;//discharging time constant//
12 T=T1+T2;//total time//
13 f=1/T//frequency//
14 printf('frequency=%f hertz\n',f);//result is
```

Chapter 8

D to A and A to D converters

Scilab code Exa 8.1 finding binary equivalent weights

```
1 //finding binary equivalent weights//
2 //example 1//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 n=6; //no. of bits //
8 LSB1=1/((2^6)-1)
9 printf('weight of 1st lsb=\%f\n',LSB1)
10 LSB2=2*LSB1
11 printf('weight of 2nd lsb=\%f\n',LSB2)
12 LSB3=4*LSB1
13 printf('weight of 3rd lsb=\%f\n',LSB3)
14 LSB4=8*LSB1
15 printf('weight of 4th lsb=\%f\n',LSB4)
16 LSB5=16*LSB1
17 printf ('weight of 5th lsb=\%f \ n', LSB5)
18 MSB=32*LSB1
19 printf ('weight of msb=\%f', MSB)
20 //results are displayed//
```

Scilab code Exa 8.2 calculating required data

```
1 //calculating the required data//
2 //example 2//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 n=4;
8 WLSB1=1/(2<sup>4</sup>-1);//weight assigned to LSB//
9 printf ('weight assigned to LSB=\%f\n', WLSB1)
10 WLSB2=2*WLSB1; //weight assigned to 2nd LSB//
11 printf ('weight assigned to second LSB=\%f\n', WLSB2)
12 WLSB3=4*WLSB1; //weight assigned to 3rd LSB//
13 printf ('weight assigned to 3rd LSB=\%f\n', WLSB3)
14 / \text{high level } 1 = 10 \text{V} / \text{A}
15 V1=10*WLSB1; //change in output voltage due to change
       in LSB//
16 V2=10*8/15; //change in output voltage due to change
      in MSB//
17 printf('change in output voltage due to change in
      LSB=\%f \ volt \ n', V1)
18 printf('change in output voltage due to change in
      MSB=\%f \text{ volt } n', V2)
19 //results are displayed//
20 disp('Vo1=(20/R+40/R+80/R)/(1/R+2/R+4/R+8/R)')
21 \text{ Vol} = 140/15;
22 printf('output voltage for input 1110 = \%f volt\n', Vo1
23 disp('Vo2 = (10/R + 40/R + 80/R)/(1/R + 2/R + 4/R + 8/R)')
24 \text{ Vo2} = 130/15;
25 printf ('output voltage for input 1101=\%f volt', Vo2)
26 //results are displayed//
```

Scilab code Exa 8.3 calculating required data

```
1 //claculating the required data//
2 //example 2//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 disp('the full scale maximum voltage occurs when all
       input are at high level 1')
8 Vm=10; //full scale maximum output voltage //
9 printf('full scale maximum output voltage=%d volt\n'
      ,Vm);//result is displayed//
10 n=5
11 LSB=1/((2^n)-1);//weight of LSB//
12 V1=10*LSB; //change in output voltage due to LSB//
13 printf ('change in output voltage due to change in
      lsb=\%f volt \n', V1)
14 disp('analog output voltage for 11001 is given by Vo
      =(10/R+80/R+160/R)/(1/R+2/R+4/R+8/R+16/R)')
15 \text{ Vo} = 250/31;
16 printf ('analog output voltage for input 11001 = \%f
      volt \setminus n', Vo)
```

Scilab code Exa 8.4 finding required data

```
1 //calculating required data//
2 //example 4//
3 clc
4 //clears the command window//
5 clear
6 //clears//
```

```
7 a=bin2dec('10010')
8 Vo=9*10^-3;//output voltage//
9 k=Vo/a;//proportionality factor//
10 b=bin2dec('11011')
11 Vo1=k*b;//analog output voltage//
12 printf('analog output voltage=%f volt\n',Vo1);
13 //maximum 5 bit digital input is 11111 i.e. 31 in decimal//
14 Vm=k*31;//maximum full scale output voltage//
15 printf('maximum full scale output voltage=%f volt', Vm);
```

Scilab code Exa 8.5 calculating required data

```
1 //calculating required data//
2 //example 5//
3 clc
4 //clears the command window//;
5 clear
6 // clears //
7 LSB1=10; //change in output voltage due to LSB//
8 LSB2=2*LSB1; //change in output voltage due to second
      LSB / /
9 LSB3=4*LSB1; //change in output voltage due to third
     LSB / /
10 LSB4=8*LSB1; //change in output voltage due to fourth
      LSB / /
11 LSB5=16*LSB1; //change in output voltage due to fifth
      LSB//
12 Vmax=LSB1+LSB2+LSB3+LSB4+LSB5; //maximum full scale
     output which occurs at input 11111//
13 //all the voltage units are in mV//
14 printf ('maximum full scale output in mV at 1111=%d
      volt \ n', Vmax); // displaying the result //
15 R=10; // resolution in mV since smallest increment due
```

```
to change in LSB is 10mV//

printf('resolution=%d volt\n',R);//diaplaying the result//

S=10;//step size=resolution//

R1=S/Vmax*100;//percentage resolution//
printf('percentage resolution=%f percent',R1);// displaying the result//
```

Scilab code Exa 8.6 calculating required data

```
//calculating required data//
//example 6//
clc
//clears the command window//;
clear
//clears//
N=(2^8)-1;//no. of steps//
M=1000/N;//no. of steps in which motor speed can varied; motor speed varies from 0 to 1000rpm//
N1=450/M;//no. of steps required to reach 450rpm//
N2=round(N1);//rounding the no. of steps//
disp('For 115th step, speed of motor will be approximately 451rpm which gives an accuracy of .22%')
//displaying the answer//
```

Scilab code Exa 8.7 calculating value of resistors

```
1 // calculating values of resistors //
2 // example 7//
3 clc
4 // clears the command window //;
5 clear
```

```
6 //clears//
7 R1=10*10^3; //resistor in ohm for msb//
8 R=16*R1; //resistor for LSB//
9 R2=R/2; //resistor for 2nd LSB//
10 printf('resistor for lsb=%d ohm\n',R)
11 printf('resistor for 2nd lsb=%d ohm',R2)
```

Scilab code Exa 8.8 finding value of resistor

```
1 // calculating value of resistor//
2 //example 8//
3 clc
4 // clears the command window//;
5 clear
6 // clears//
7 R=640*(10^3);//resistor for LSB//
8 R1=R/32;//resistor for MSB; since 6 bit, hence LSB is divided by 32//
9 printf('resistor for msb=%d ohm',R1);//displaying result//
```

Scilab code Exa 8.9 finding required data

```
//calculating required data//
//example 9//
clc
//clears the command window//;
clear
//clears//
N=2^10-1;//no. of steps//
Vmax=10*10^-3*N;//maximum full scale output//
R=(10*10^-3)/Vmax*100;//percentage resolution//
printf('maximum full scale output=%f ampere\n',Vmax)
```

Scilab code Exa 8.10 finding required data

```
1 //calculating required data//
2 //example 10//
3 clc
4 //clears the command window//;
5 clear
6 //clears//
7 S=10/10<sup>3</sup>; // step size=weight of Ao in V//
8 printf('step size=%f volt\n',S);//displaying step
      size //
9 n=99; //no. of steps//
10 Vmax=S*n; //maximum full scale output//
11 printf('maximum full scale output=\%f volt\n', Vmax);
      //displaying full scale output//
12 R=S/Vmax*100; //percentage resolution //
13 printf('percentage resolution=\%f percent\n',R);//
      percentage resolution displayed //
14 \text{ Ao} = 10/10^3
15 Bo = 20/10^3
16 \text{ Co} = 40/10^3
17 \text{ Do} = 80/10^3
18 \quad A1 = 100/10^3
19 B1=200/10<sup>3</sup>
20 C1 = 400/10^3
21 D1=800/10<sup>3</sup>
22 //weight in V of different inputs//
23 //input for D1, C1, B1, A1 is 1101 and for Do, Co, Bo, Ao
      is 1011//
24 V=D1+C1+A1+Do+Bo+Ao; //analog output voltage//
25 printf('analog output voltage=%f volt',V);//result
      displayed //
```

Scilab code Exa 8.11 calculating output voltages

```
1 //calculating output voltages//
2 //example 11//
3 clc
4 //clears the command window//
5 clear
6 //clears//
7 V=10; //high input voltage //
8 VMSB=V/2; //output caused by MSB//
9 VMSB2=V/4; //output caused by second MSB//
10 VMSB3=V/8; //output caused by third MSB//
11 VMSB4=V/16; //output caused by fourth MSB//
12 VMSB5=V/32; //output caused by fifth MSB//
13 VMSB6=V/64; //output caused by sixth MSB//
14 printf('output caused by MSB=%f volt\n', VMSB)
15 printf ('output caused by second MSB=\%f volt \n', VMSB2
     )
16 printf ('output caused by third MSB=\%f \text{ volt } n', VMSB3)
17 printf ('output caused by fourth MSB=%f volt \n', VMSB4
18 printf ('output caused by fifth MSB=\%f volt\n', VMSB5)
19 printf ('output caused by sixth MSB=\%f volt\n', VMSB6)
20 //displaying the results//
```

Scilab code Exa 8.12 finding output voltages

```
1 // calculating required data//
2 // example 12//
3 clc
4 // clears the command window//
5 clear
```

```
6 //clears//
7 V=10;//high input voltage//
8 //first part//
9 //digital input is 101001//
10 Vo=(10*2^0+0+0+10*2^3+0+10*2^5)/2^6;//output voltage
//
11 printf('output voltage for digital input 101001=%f
    volt\n',Vo);//displaying the result//
12 //second part//
13 //digital input is 110001//
14 Vo1=(10*1+0+0+0+10*16+10*32)/64;//output voltage//
15 printf('output voltage for input 110001=%f volt',Vo1
    );//displaying the result//
```

Scilab code Exa 8.13 calculating maximum scale voltage

```
//calculating maximum full scale voltage//
//example 13//
clc
//clears the command window//;
clear
//clears//
//digital input is 111111111//
//high input level=10V//
Vo=10*(1+2+4+8+16+32+64+128)/256;//output voltage//
printf('maximum full scale voltage=%f volt',Vo);//
result displayed//
```

Scilab code Exa 8.14 finding required data

```
1 // calculating required data//
2 // example 14//
3 clc
```

```
4 //clears the command window//;
5 clear
6 // clears //
7 //part i//
8 //output high voltage=10V//
9 VMSB1=1/2*10; //output caused by MSB//
10 VMSB2=1/4*10; //output caused by second MSB//
11 VMSB3=1/8*10; //output caused by third MSB//
12 VLSB=1/16*10; //output caused by LSB//
13 printf('output caused by msb=\%f volt \ ', VMSB1)
14 printf ('output caused by second msb=\%f \ volt \ n', VMSB2
15 printf ('output caused by third msb=\%f \ n', VMSB3)
16 printf('output caused by lsb=\%f volt \ n', VLSB)
17 //displaying the results//
18 // part ii//
19 //input is 1011//
20 V=1*VMSB1+0+1*VMSB3+1*VLSB; //output voltage //
21 printf('output voltage at input 1011 = \% f \text{ volt } n', V);
     //displaying the result//
22 //3rd part//
23 Vo=VMSB1+VMSB2+VMSB3+VLSB;//full scale output
      voltage which occurs at 1111//
24 printf('full scale output voltage=%f volt', Vo);//
      displaying the result //
```

Scilab code Exa 8.15 calculating number of bits

```
1 // calculating no of bits//
2 // example 15//
3 clc
4 // clears the command window//;
5 clear
6 // clears//
7 disp('resolution=voltage corresponding to LSB')
```

```
8 //weight of LSB=1/2^n, where n=no. of bits//
9 disp('Voltage corresponding to LSB=1/2^n*10; which should be equal to resolution which is 10mv')
10 disp('therefore 2^n=1000')
11 disp('n=10');//nearest value of n which satisfies the equation is 10//
12 //result is displayed//
```

Scilab code Exa 8.16 finding resolution

```
//calculating required data//
//example 16//
clc
//clears the command window//;
clear
//clears//
V=10;//full scale voltage
W=1/2^12;//weight of LSB//
R=V*W;//resolution//
printf('resolution=%f volt\n',R);//result is displayed//
S=R;//step size//
R1=S/V*100;//percentage resolution//
printf('percentage resolution=%f percent',R1)
//result displayed//
```

Scilab code Exa 8.17 calculating required data

```
1 //calculating required data//
2 //example 17//
3 clc
4 //clears the command window//;
5 clear
```

```
6 // clears //
7 //n=no. of bits //
8 // resolution =1/2^n*5//
9 R=5*10^-3; // resolution //
10 V=5; // full scale output //
11 n=log((5*10^-3)/5)/log(.5)
12 //no. of bits //
13 n=round(n)
14 disp('no of bits:')
15 disp(n); // result is displayed //
16 S=1/2^n*5; // step size //
17 R1=S/V*100; // percentage resolution //
18 disp('percentage resolution:')
19 disp(R1)
20 // result is displayed //
```

Scilab code Exa 8.18 calculating conversion time

```
1 //calculating conversion time//
2 //example 18//
3 clc
4 //clears the command window//;
5 clear
6 //clears//
7 T=1/(1000*10^3);//time for one clock cycle//
8 \text{ disp}(T)
9 n=10; //no. of bits //
10 t=(2^n-1)*T; // conversion time for 10 bit A/D
      converter //
11 disp('conversion time for digital ramp A/D converter
12 disp(t); // displaying result //
13 t1=T*10;
14 disp ('conversion time for 10 bit successive
      approximation A/D converter: ')
```

Scilab code Exa 8.19 finding resolution

```
//calculating required data//
//example 19//
clc
//clears the command window//;
clear
//clears//
E=10;//change in input voltage//
n=8;//no. of bits//
R=E/((2^n)-1);//resolution//
disp('resolution:')
disp(R);//displaying result//
R1=(1/((2^n)-1))*100;//percentage resolution//
disp('percentage resolution:')
disp(R1);//displaying result//
```

Scilab code Exa 8.20 finding number of bits

```
1 //finding no. of bits//
2 //example 20//
3 clc
4 //clears the command window//;
5 clear
6 //clears//
7 E=10;//change in input voltage//
8 R=10^-3;//resolution//
9 n=log(E/R+1)/log(2);//no of bits//
10 n=n+1;
11 n=round(n)
12 disp('no of bits:')
```

Scilab code Exa 8.21 calculating maximum conversion time

```
//finding maximum conversion time//
//example 21//
clc
//clears the command window//;
clear
//clears//
c=2^10;//maximum no of counts//
f=2*10^-6;//counter advance rate of 1 count per second//
T=c*f;//conversion time//
disp('maximum conversion time:')
disp(T);//displaying result//
```

Scilab code Exa 8.22 finding error in voltage

```
//finding required data//
//example 22//
clears the command window//;
clear
//clears//
f=500;//frequency//
F=2*f;//aperture rate//
t=5*10^-6;//aperture time//
v=2*%pi*F*t;//error in voltage//
disp('error in voltage:')
disp(v);//displaying result//
V=v*100;//percentage error//
disp('percentage error:')
```

```
15 disp(V); // displaying result //
```

Scilab code Exa 8.23 finding aperture time

```
//finding aperture time//
//example 23//
clc
//clears the command window//;
clear
//clears//
a=.5;//percentage accuracy//
f=1000;//aperture rate//
t=a/(2*%pi)*10^-5;//aperture time//
disp('aperture time:')
disp(t);//displaying result//
```

Scilab code Exa 8.24 finding quantisation error

```
//calculating required data//
//example 24//
clc
//clears the command window//;
clear
//clears//
n=10;//no. of bits//
q=1/(2^n)*100;//quantization error expressed as percentage//
disp('quantization percentage error:')
disp(q);//displaying result//
```

Scilab code Exa 8.25 finding digital output in binary form

```
//finding digital output in binary form//
//example 25//
clc
//clears the command window//;
clear
//clears//
V=1.085;//analog input voltage//
R=20*10^-3;//resolution//
n=V/R;//no of steps//
n=round(n);//so that output voltage produced is less than analog input voltage//
num=dec2bin(n,8);//converting to binary//
disp('digital output:')
disp(num);//displaying result in binary form//
```