HOMEWORK 2: DUE SEP 5

For this week, please answer the following questions from the text. I've copied the problem itself below and the question numbers for your convenience.

- (1) (1.6) Let $a, b, c \in \mathbb{Z}$. Use the definition of divisibility to directly prove the following properties of divisibility.
 - (a) If $a \mid b$ and $b \mid c$, then $a \mid c$.
 - (b) If $a \mid b$ and $b \mid a$, then $a = \pm b$.
 - (c) If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$ and $a \mid (b-c)$.
- (2) (1.9.a) Use the Euclidean algorithm to compute gcd(291, 252) by hand.
- (3) (1.10.a) Use the extended Euclidean algorithm to find integers u, v such that

$$291u + 252v = \gcd(291, 252)$$

- (4) (1.11) Let a and b be positive integers.
 - (a) Suppose that there are integers u and v satisfying au + bv = 1. Prove that gcd(a, b) = 1.
 - (b) Suppose that there are integers u and v satisfying au + bv = 6. Is it necessarily true that gcd(a, b) = 6? If not, give a specific counterexample, and describe in general all the possible values of gcd(a, b).
 - (c) Suppose that (u_1, v_1) and (u_2, v_2) are two integral solutions to the equation au + bv = 1. Prove that $a \mid (v_2 v_1)$ and $b \mid u_2 u_1$.
 - (d) More generally, let $g = \gcd(a, b)$ and (u_0, v_0) be an integral solution to au + bv = g. Prove that every other solution has the form $u = u_0 + kg/g$ and $v = v_0 ka/g$ for some integer k.
- (5) (1.15) Let $m \geq 1$ be an integer and suppose that

$$a_1 \equiv a_2 \mod m \text{ and } b_1 \equiv b_2 \mod m.$$

Prove that

$$a_1 \pm b_1 \equiv a_2 \pm b_2 \mod m$$
 and $a_1 \cdot b_1 \equiv a_2 \cdot b_2 \mod m$.

- (6) (1.16) Write out the following tables for $\mathbb{Z}/m\mathbb{Z}$ and $(\mathbb{Z}/m\mathbb{Z})^*$ as done in Fig. 1.4 and 1.5 in the textbook.
 - (a) Make addition and multiplication tables for $\mathbb{Z}/3\mathbb{Z}$.
 - (b) Make addition and multiplication tables for $\mathbb{Z}/6\mathbb{Z}$.
 - (c) Make a multiplication table for the unit group $(\mathbb{Z}/9\mathbb{Z})^*$.
 - (d) Make a multiplication table for the unit group $(\mathbb{Z}/16\mathbb{Z})^*$.