Solar Radiation Prediction

Battery: Solar storage Vasileios Papadopoulos

Motivation

- Estimate levels of solar radiation
- Why:
 - Solar energy fluctuations
 - Predictability, easier integration to conventional production
- How:
 - Analyze samples from 4 months period (1-9-2016 31/12-2016)
 - Machine learning model(s)

The Data

- HI-SEAS weather station, Hawaii
- Collected data/features (32686 rows):
 - Solar radiation [W/m^2]
 - Temperature [F]
 - Atmospheric pressure [Hg]
 - Humidity [%]
 - Wind speed [miles/h]
 - Wind direction [degrees]
 - Time sun rise
 - Tlme sun set
- Response variable:
 - Solar radiation [W/m^2]

Approach

- Challenge:
 - Time Series
 - Cyclicity
 - Seasonality
- Feature Engineering
 - Deal with Time
- Models
 - Simple Linear Regression
 - Random Forest
 - Gradient Boosting
- Metrics:
 - o R-Squared, Mean-Squared Error, CV

Train/Test Split

- Begin Sep. End Nov.
 - As train set (70%)
- Begin Dec. End Dec.
 - As test set (30%)
- Training Set, TimeSeriesSplit:
 - 3 Folds to 'simulate' seasonality

Explore - Distribution

Feature Engineering: Time

2 cases

- Sun_is_up feature:
 - 0 when outside of [SunRise SunSet]
 - 1 when during [SunRise SunSet]
 - Band pass filter, hard cut-off

- Rel time feature:
 - (Current_time SunRise_time) / Daylight_duration
 - Daylight_duration = SunRise_time SunSet_time
 - Rel time < 0, if before sunrise
 - Rel_time = 0 at exact sunrise time
 - Rel time (0,1) between sunrise and sunset, *linear*
 - Rel time = 1 at exact sunset time
 - Rel_time > 1 if after sunset

Typical solar radiation dist.

Explore - Correlation

Models

- Multivariate Linear Regression
- Random Forest
 - 3 folds Cross Validation (sklearn.timeseriessplit)
 - Randomized best hyper-parameters search
- Gradient Boosting
 - 3 folds Cross Validation (sklearn.timeseriessplit)
 - Randomized best hyper-parameters search

Feature Importance

Results - Metrics

0.25

MLR

Sun is up: R^2 metric

train test

Random Forest

Gradient Boosting /

10000

MLR

Random Forest

Gradient Boosting

Sun is up: CV MSE metric

combination model/feature

"model": "GradientBoosting", "feature_case": "rel_time",
"cv_mse": "9792.25", "train_mse": "8253.57", "test_mse": "8690.75", "test r2": "0.91"

Future work

- Feature Engineering
 - Model time within daylight period as bell-shaped
 - Exclude samples outside daylight period
 - Since solar radiation in practically zero during night hours
- Models
 - Try more models
 - XGBoost...
 - SVR

Questions