Optimization: Multi-objective optimization

Multi-objective optimization

In practice: vector of objectives that must be traded off in some way:

$$\min_{x \in \mathbb{R}^n} F(x)$$

s.t. $g(x) \le 0$
 $h(x) = 0$

with F a vector-valued function

- Pareto optimality
- ullet Algorithms (o scalar objective function)
 - weighted-sum strategy, ε -constraint method, goal attainment

Pareto optimality

$$\min_{x \in \mathbb{R}^n} F(x)$$

s.t. $g(x) \le 0$
 $h(x) = 0$

F is vector

- \rightarrow if components of F are competing, no unique solution!
- → non-inferior solution (=Pareto optimal point)

 x^* is $Pareto\ optimal\ if\ there\ does\ not\ exist\ another\ feasible\ point\ \tilde{x}\ such\ that$

$$F(\tilde{x}) \leqslant F(x^*)$$
 and $F_i(\tilde{x}) < F_i(x^*)$ for some i

Pareto optimality (continued)

Pareto optimality (continued)

A, B, C are feasible; D is infeasible

A, B are Pareto optimal (i.e., no \tilde{x} with $F(\tilde{x}) \leq F(x^*)$ and $F_i(\tilde{x}) < F_i(x^*)$)

Solution methods for multi-objective optimization

Methods for multi-objective optimization

- → generation and selection of Pareto optimal points
- → transformation into scalar objective
 - Weighted-sum strategy
 - ε -constraint method
 - Goal attainment method

Weighted-sum strategy

Weighted-sum strategy:

$$\min_{x} \sum_{i=1}^{m} w_{i} F_{i}(x)$$
s.t. $g(x) \leq 0$

$$h(x) = 0$$

Main problems:

- Assigning appropriate weighting coefficients w_i
- Not all Pareto optimal solutions are accessible by appropriate selection of weights w_i

Weighted-sum strategy (continued)

Line L_c : points for which $w^T F(x) = c$

Weighted-sum strategy (continued)

ightarrow Pareto-optimal points between F(P) and F(Q) are not accessible

ε -constraint method

ε -constraint method:

 \rightarrow minimize primary objective F_{i_p} and express other objectives in form of inequality constraints

$$\min_{x} F_{i_{p}}(x)$$
s.t. $F_{i}(x) \leq \varepsilon_{i}$ for $i = 1, ..., m$ with $i \neq i_{p}$

$$g(x) \leq 0$$

$$h(x) = 0$$

ε -constraint method (continued)

ε -constraint method (continued)

- \bullet ε -constraint method is able to identify Pareto optimal solutions that are not obtainable using weighted-sum technique
- Problems:
 - suitable selection of ε e.g., if ε is too small, then maybe no feasible solution
 - ▶ hard constraints are used in ε -constraint method \leftrightarrow expressing true design objectives

Goal attainment method

Goal attainment method:

Define vector of design goals:

$$F^{\text{goal}} = [F_1^{\text{goal}} \ F_2^{\text{goal}} \ \dots \ F_m^{\text{goal}}]^T$$

Allow objectives to be under- or overachieved \rightarrow designer can be relatively imprecise about initial design goals

Relative degree of under- or over-achievement of goals is controlled by weighting coefficients w

Goal attainment method (continued)

$$\min_{\gamma,x} \gamma$$
s.t. $F_i(x) - w_i \gamma \leqslant F_i^{\text{goal}}$ for $i = 1, \ldots, m$
 $g(x) \leqslant 0$
 $h(x) = 0$

- This problem can be solved using, e.g., SQP
- Term $w_i \gamma$ in inequality constraints introduces an element of slackness: $F_i(x) \leqslant F_i^{\text{goal}} + w_i \gamma$

To introduce hard constraint i': set $w_{i'} = 0$

Implemented in Matlab: fgoalattain

Summary

Multi-objective optimization: Standard form

$$\min_{x} F(x)$$
s.t. $g(x) \le 0$

$$h(x) = 0$$

- Pareto optimality
- Algorithms for multi-objective objective optimization problems:
 - weighted-sum strategy
 - \triangleright ε -constraint method
 - goal attainment
 - → scalar optimization problem

Test: Pareto optimal points

Consider vector-valued function F represented by feasible set Λ :

Which of the following red sets is the Pareto optimal set of F?

