UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS BLUMENAU

Modelagem Cinemática do Manipulador Kuka KR3 R540

Alunos Júlio Joel da Costa Neto (15102945)

Luiz Otávio Limurci dos Santos (15102951)

Disciplina BLU3704 - Introdução à Robótica Industrial

Professor Marcelo R. Petry

Conteúdo

	~					
2	Características e Aplicações					
	2.1	Espaç	o de Trabalho			
₹	Modelo Cinemático do Manipulador					
•			<u>-</u>			
	3.1	_	ão de Denavit-Hartenberg			
	3.2	Cinem	nática Direta			
	3.3	Cinem	nática Inversa			
		3.3.1	Posição do punho esférico			
		229	Orientação do punho esférico			

1 Introdução

A KUKA AG é uma empresa de atuação internacional, com sede localizada em Augsburg - ALE. Possui mais de treze mil empregados espalhados pelo globo fornecendo soluções de automação inteligentes. Produzindo desde componentes individuais até sistemas totalmente automatizados, os principais clientes são da industria automotiva e indústria geral. O modelo KR3 Agilus, disponível no laboratório de informática industrial da UFSC-Blumenau, possui tamanho compacto, oferecendo maior produtividade por metro quadrado. É utilizado quando se vê necessário ciclos de produção curtos com máximo rendimento, utilizado principalmente no ramo eletrônico. Pesando 26kg, possui capacidade de carga de 3kg, alcance máximo 541mm e 6 graus de liberdade, ou eixos acionáveis.

2 Características e Aplicações

O robô Kuka KR3 R540 possui como arranjo cinemático a estrutura de um manipulador antropomórfico. Isto significa que as 3 primeiras juntas são de revolução, tal configuração dá maior destreza e precisão no posicionamento do punho dentro do espaço de trabalho. Já as três últimas juntas, estão arranjadas num punho esférico, categorizado pelo encontro dos eixos de rotação num mesmo ponto, conferindo maior destreza e possibilitando o desacoplamento entre posição e orientação do efetuador quando deseja-se obter as equações cinemáticas do robô.

Estas características de grande destreza e precisão possibilitam sua aplicação nas áreas de embalagem e separação de pedidos, fixação, paletização, brasagem, manuseio em outras máquinas, entre outras.

2.1 Espaço de Trabalho

O espaço de trabalho de um robô é definido como o volume total alcançado pelo efetuador a medida que o manipulador se movimenta. Este depende da geometria dos elos, tipos e combinações de juntas e restrições de movimento. As figuras 1, 2 e 3 representam o espaço de trabalho do robô estudado, com ferramenta Festo HGPLE-14-30-3 de 120.32mm (centro da garra).

Figura 1: Espaço de trabalho, vista lateral

Figura 2: Espaço de trabalho, vista superior

Figura 3: Espaço de trabalho, vista isométrica

3 Modelo Cinemático do Manipulador

3.1 Notação de Denavit-Hartenberg

Proposto por Denavit e Hartenberg em 1955, esta notação permite caracterizar as relações de transformação através de 4 parâmetros obtidos no conjunto elo-junta. São eles

- 1. a_i : Comprimento do elo, distância entre o eixo z_{i-1} e z_i ao longo de x_i .É uma constante
- 2. d_i : Offset, distância entre O_{i-1} e O_i ao longo de z_{i-1} . É uma variável para juntas prismáticas.
- 3. θ_i : Ângulo da junta, ângulo entre o eixo x_{i-1} e x_i ao longo de z_{i-1} . È uma variável para juntas de revolução.
- 4. α_i : Torção do elo, ângulo entre o eixo z_{i-1} e z_i ao longo de x_i . É uma constante

A partir da obtenção dos parâmetros citados acima, pode-se determinar uma matriz de transforação homogênea dada por

$$A_i = Rot(z_{i-1}, \theta_i) Trans(z_{i-1}, d_i) Trans(x_i, a_i) Rot(x_i, \alpha_i)$$
 (1)

Matematicamente, (1) é dada por

$$A_{i} = \begin{bmatrix} \cos \theta_{i} & -\sin \theta_{1} \cos \alpha_{i} & \sin \theta_{1} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \theta_{1} \cos \alpha_{i} & -\cos \theta_{1} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2)

Aplicando estas técnicas no robô Kuka KR3, levando em consideração as especificações de *mastering position* e para os eixos de rotação definidos no manual:

Figura 4: Eixos de referência Kuka KR3

Temos os seguintes parâmetros de Denavit-Hartenberg:

θ_i	d_i	\mathbf{a}_i	α_i
$\theta_1 + \frac{\pi}{2}$	-345	-20	$-\frac{\pi}{2}$
$\theta_2 + \pi$	0	260	0
$\theta_3 - \frac{\pi}{2}$	0	20	$\frac{\pi}{2}$
$\theta_4 - \frac{80\pi}{180}$	-260	0	$-\frac{\pi}{2}$
θ_5	0	0	$\frac{\pi}{2}$
$\theta_6 + \pi$	-75	0	π

3.2 Cinemática Direta

É um método que, a partir da matriz de transformação de Denavit-Hartenberg, permite a obtenção da postura do efetuador em função das

coordenadas das juntas. Com base nos parâmetros obtidos em 3.1, a matriz de cinemática direta do robô Kuka KR3 da origem até a ferramenta é dada pela multiplicação das matrizes de transformação homogênea (2) em ordem:

$$A_{1} = \begin{bmatrix} \cos\left(\theta_{1} + \frac{\pi}{2}\right) & 0 & -\sin\left(\theta_{1} + \frac{\pi}{2}\right) & -20\cos\left(\theta_{1} + \frac{\pi}{2}\right) \\ \sin\left(\theta_{1} + \frac{\pi}{2}\right) & 0 & \cos\left(\theta_{1} + \frac{\pi}{2}\right) & -20\sin\left(\theta_{1} + \frac{\pi}{2}\right) \\ 0 & -1 & 0 & -345 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -\cos\left(\theta_{2}\right) & \sin\left(\theta_{2}\right) & 0 & -260\cos\left(\theta_{2}\right) \\ -\sin\left(\theta_{2}\right) & -\cos\left(\theta_{2}\right) & 0 & -260\sin\left(\theta_{2}\right) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} \cos\left(\theta_{3} - \frac{\pi}{2}\right) & 0 & \sin\left(\theta_{3} - \frac{\pi}{2}\right) & 20\cos\left(\theta_{3} - \frac{\pi}{2}\right) \\ \sin\left(\theta_{3} - \frac{\pi}{2}\right) & 0 & -\cos\left(\theta_{3} - \frac{\pi}{2}\right) & 20\sin\left(\theta_{3} - \frac{\pi}{2}\right) \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} \cos\left(\theta_{4} - \frac{4\pi}{9}\right) & 0 & -\sin\left(\theta_{4} - \frac{4\pi}{9}\right) & 0 \\ \sin\left(\theta_{4} - \frac{4\pi}{9}\right) & 0 & \cos\left(\theta_{4} - \frac{4\pi}{9}\right) & 0 \\ 0 & -1 & 0 & -260 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} \cos\left(\theta_{5}\right) & 0 & \sin\left(\theta_{5}\right) & 0 \\ \sin\left(\theta_{5}\right) & 0 & -\cos\left(\theta_{5}\right) & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{6} = \begin{bmatrix} -\cos\left(\theta_{6}\right) & -\sin\left(\theta_{6}\right) & 0 & 0 \\ -\sin\left(\theta_{6}\right) & \cos\left(\theta_{6}\right) & 0 & 0 \\ 0 & 0 & -1 & -75 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{0} = A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5} \cdot A_{6} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

onde n, o, a são vetores ortonormais que representam a orientação, e p é um vetor que representa a posição do manipulador.

Se for considerada a ferramenta, multiplicamos (3) pela matriz da ferramenta A_f e obtemos (4).

$$A_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 120.32 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_f^0 = T_6^0 \cdot A_f \tag{4}$$

3.3 Cinemática Inversa

É um método no qual a partir de uma posição e orientação desejada para o efetuador, deseja-se descobrir qual a rotação necessária em cada junta para que o manipulador faça o movimento.

Este é um problema complexo pois podem existir múltiplas soluções, de acordo com o número de graus de liberdade e parâmetros de Denavit-Hartenberg não nulos. Por conta da quantidade de soluções ser variável, não existem algorítimos genéricos de solução numérica. Os métodos numéricos disponíveis são iterativos, lentos e convergem para uma das soluções possíveis. Outra alternativa é a solução analítica, que pode ser alcançada de maneira algébrica ou geométrica. Em ambos os casos, encontra-se todas as possíveis soluções para o problema.

Para simplificar a análise de cinemática inversa, o problema pode ser dividido em duas partes: posição e orientação do punho esférico. A posição do centro do punho depende somente dos ângulos θ_1 , θ_2 e θ_3 , que foram determinados de forma geométrica. Já a orientação do punho, ângulos θ_4 , θ_5 e θ_6 , foi determinada através do método algébrico.

3.3.1 Posição do punho esférico

A análise geométrica foi realizada utilizando como base a figura 5.

Figura 5: Análise geométrica do robô

Analisando θ_1 :

O ângulo θ_1 pode ser calculado através da projeção da origem do punho esférico(P4) \vec{p}_{04} no plano x_0y_0 .

 \vec{p}_{04} pode ser obtido por uma translação d_6 sob o eixo $z_6,$ a partir da origem da junta 6 $\vec{p}_{06}.$

$$\vec{p}_{04} = \vec{p}_{06} - R_6^0 \cdot \begin{bmatrix} 0 \\ 0 \\ |d_6| \end{bmatrix} = \begin{bmatrix} \vec{p}_{06x} - |d_6|a_x \\ \vec{p}_{06y} - |d_6|a_y \\ \vec{p}_{06z} - |d_6|a_z \end{bmatrix}$$

Então, θ_1 pode ser calculado:

$$\theta_1 = atan2(\vec{p}_{04x}, -\vec{p}_{04y}) + n\pi$$
 onde $n = [-1, 0, 1].$ (5)

Analisando θ_3 :

Através do obtenção de \vec{p}_{14} , α e β é possível obter o ângulo σ , que é utilizado para calcular θ_3 .

$$\vec{p}_{14} = \vec{p}_{04} - \vec{p}_{01} = \begin{bmatrix} \vec{p}_{06x} - |d_6|a_x \\ \vec{p}_{06y} - |d_6|a_y \\ \vec{p}_{06z} - |d_6|a_z \end{bmatrix} - \begin{bmatrix} a_1 \cos(\theta_1) \\ a_1 \sin(\theta_1) \\ d_1 \end{bmatrix}$$

Considerando o triângulo retângulo formado por P2, P3 e P4, obtemos o ângulo α :

$$\alpha = atan2(|a_3|, |d_4|)$$

A hipotenusa do triângulo é dada por:

$$l_4 = \sqrt{{a_3}^2 + {d_4}^2}$$

 β é o ângulo entre l_4 e o elo 2:

$$\beta = a\cos(\frac{-a_2^2 - l_4^2 + |\vec{p}_{14}|^2}{-2 * a_2 * l_4})$$

Considerando que a soma dos ângulos internos de qualquer triângulo é igual à π , e ângulo adjacente à β é igual a $\pi - \beta$, então:

$$\sigma_1 = \pi - \alpha - (\pi - \beta) = \beta - \alpha$$

 $\sigma_2 = \beta + \alpha$

Com o conhecimento de σ_1 e σ_2 , existem 4 soluções possíveis para θ_3 :

$$\theta_3 = n(\pi - \sigma_1) \theta_3 = n(\pi - \sigma_2)$$
(6)

onde n = [-1, 1].

Analisando θ_2 :

O ângulo θ_2 pode ser calculado através de γ e ω , estes por sua vez são obtidos através de \vec{p}_{14} .

Para facilitar os cálculos, pode ser calculado $\hat{\vec{p}}_{14}$ em relação ao eixo de coordenadas da junta 2(K1).

$$\hat{\vec{p}}_{14} = (R_1^0)^{-1} \cdot \vec{p}_{14} = (R_1^0)^T \cdot \vec{p}_{14}$$

$$\gamma = atan2(\hat{\vec{p}}_{14y}, \hat{\vec{p}}_{14x}) \omega = acos(\frac{-a_2^2 - |\vec{p}_{14}|^2 + l_4^2}{-2*a_2*|\vec{p}_{14}|})$$

Com γ e ω , é possível calcular θ_2 :

$$\theta_2 = n(\gamma + \omega)
\theta_2 = n(\gamma - \omega)$$
(7)

onde n = [-1, 1].

3.3.2 Orientação do punho esférico

Através da multiplicação das matrizes de transformação homogênea A_4 , A_5 e A_6 obtemos a matriz T_6^4 , e desta utilizamos a submatriz de rotação R_6^4 para definir os ângulos θ_4 , θ_5 e θ_6 .

$$R_6^4 = A_4 \cdot A_5 \cdot A_6 = \begin{bmatrix} n_x & o_x & a_x \\ n_y & o_y & a_y \\ n_z & o_z & a_z \end{bmatrix}$$

$$R_{6}^{4} = \begin{bmatrix} n_{x} & o_{x} & -\cos(\theta_{4} - \frac{4\pi}{9})\sin(\theta_{5}) \\ n_{y} & o_{y} & -\sin(\theta_{4} - \frac{4\pi}{9})\sin(\theta_{5}) \\ \sin(\theta_{5})\cos(\theta_{6}) & \sin(\theta_{5})\sin(\theta_{6}) & -\cos(\theta_{5}) \end{bmatrix}$$

Para $\theta_5 \in (0, \pi)$:

$$\theta_{4} = atan2(-a_{y}, -a_{x})
\theta_{5} = atan2(\sqrt{a_{x}^{2} + a_{y}^{2}}, -a_{z})
\theta_{6} = atan2(o_{z}, n_{z})$$
(8)

Para $\theta_5 \in (-\pi, 0)$:

$$\theta_{4} = atan2(a_{y}, a_{x})
\theta_{5} = atan2(-\sqrt{a_{x}^{2} + a_{y}^{2}}, -a_{z})
\theta_{6} = atan2(-o_{z}, -n_{z})$$
(9)

4 Modelo e simulação no MATLAB

Um modelo do robô estudado foi desenvolvido no MATLAB utilizando a *Robotics Toolbox* de Peter Corke.

Os arquivos para simulação, bem como as orientações para sua utilização, podem ser encontrados no endereço https://github.com/juliojoel/kuka-kr3.

Referências

- [1] Corke, Peter. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Verlag NY, 1, 2011. ISBN: 3642201431
- [2] Craig, John J. *Robótica*. Pearson Brasil, 3, 2013. ISBN:9788581431284
- [3] KUKA e $rob\hat{o}$ KUKA KR3. Disponível em https://www.kuka.com/pt-br/sobre-a-kuka. Acessado em: 19-05-2018