

UiO Department of Technology Systems University of Oslo

Mandatory assignment 3 Kim Mathiassen

Mandatory assignment 3

- 2 week project
- Group project with 3 (to 4) students per group (~4 groups)
- One or two groups may select the same topic
- Some topics can only be selected by one or two groups due to hardware availability
- Some topics involve both simulation and implementation on hardware, while other topics will only do simulation
- Manipulator forward kinematics, Jacobian and simplified model are available
- Kim and Eirik will be available week 47 and 48 in group sessions and lecture times
- Estimated 20-25 hours of work per student

1 - Motion control

- Implement joint space PD control with gravity compensation on the CrustCrawler
- Main components
 - Improve existing framework
 - Test on simulated robot
 - Test on real robot
 - Tune control parameters

2 - Force control

- Implement one of the force control methods in Chapter 9
- Main components
 - Extend the simulator with a force sensor
 - Add compliant object to the simulator
 - Test the force control by interacting with the compliant object

3 - Visual servoing

- Implement image-based visual servoing on simulated robot
- Main components
 - Add a camera to gazebo that can be velocity controlled
 - Add a object and extract visual features
 - Implement resolved velocity image-based visual servoing control

4 - Tele-operation

- Implement unilateral teleoperation with the real robot as the master and the simulated robot as the slave
- Main components
 - Implement a position controller on the simulated robot
 - Connect the master robot to the slave robot to control it

5 - Mobile robots - simulation

- Setup Turtle bot stage simulator, then plan and move to a pose
- Main components
 - Get the simulator up and running
 - Plan a trajectory to a pose
 - Implement a trajectory tracking method
 - Simulate moving the robot to a pose

6 – Mobile robots – real robot

- Move the robot to a pose
- Main components
 - Implement odometric localization
 - Implement motor control for each wheel
 - Implement posture regulation motion control
 - Test the system where the robot drives to a given pose

