階層 N-gram マッチ

天野晃

平成22年12月13日

1 N-gram とは

N-gram とは、文字列を長さ N のサブ文字列に分解したときの、そのサブ文字列である。たとえば、"N-gram"という文字列の、延べ 2-gram は、{"N-","-g","gr","ra","am"} である。複数の文字列へ拡張可能で、これを次の式で表す (ベクトル:サブ文字列)。

$$G(n, st1, st2, \dots) \tag{1}$$

さらに、その総出現数を次の式で表す (スカラ:0 もしくは自然数)。

$$F(n, st1, st2, \dots) \tag{2}$$

さらに、各要素における出現数を次の式で表す(スカラ:0もしくは自然数)。

$$F(e_i|n, st1, st2, \dots) \tag{3}$$

また、このとき、以下を満たしているべきである。

$$F(n, st1, st2, ...) = \sum_{i} F(e_i|n, st1, st2, ...)$$
(4)

パラメータ等 パラメータとしては、オーバーラップの長さ (前例では 1)、端部サブ文字列にワイルドカードを追加するか (前例では追加していない)、などがある。

2 N-gram マッチとは

N-gram マッチとは、ふたつ以上の文字列 (st1, st2, st3, ...) より生成されるそれぞれの N-gram において全てにマッチ (出現) する要素があることを言い (一般的に n-gram co-occurrence と呼ぶものであると思われる)、その数を次の式で表す (スカラ:0 もしくは自然数)。

$$M(n, st1, st2, st3, \dots) \tag{5}$$

図 1: 1-gram マッチの例

"a"と"a"のマッチは2回、"x"と"x"のマッチは1回、全てのマッチの合計は3回。

さらに、各要素におけるそれを次の式で表す (スカラ:0 もしくは自然数)。

$$M(e_i|n, st1, st2, st3, \dots) \tag{6}$$

また、このとき、以下を満たしているべきである。

$$M(n, st1, st2, st3, ...) = \sum_{i} M(e_i|n, st1, st2, st3, ...)$$
(7)

および

$$M(e_i|n, st1, st2, st3, ...) = F(e_i|n, st1) F(e_i|n, st2) F(e_i|n, st3) ...$$
 (8)

たとえば、st1 = "aax"、st2 = "abx"というふたつの文字列の 1-gram マッチの数 (M(n, st1, st2)) は、3(st1 のふたつの"a"が st2 の"a"とマッチ、双方の"x"がマッチ、計 3 回マッチ) となる (図 1)。

3 (N-gram を基にした)類似度の定義

N-gram を基にした複数の文字列 (st1, st2, st3, ...) 間の類似度を S とする。

3.1 定義.A

Sを次のように定義する (スカラ:実数)。

$$S(n, st1, st2, st3, ...) = \frac{M(n, st1, st2, st3, ...)^2}{M(n, st1, st1) \ M(n, st2, st2) \ M(n, st3, st3) \ ...}$$
(9)

たとえば、前述のst1、st2間の類似度は図2のようになる。

問題点 少なくともひとつの種類の、直観に反するような例が見付かっている: M(1,"abx","dex") と M(1,"aax","bbx") においては、いずれも文字列長が同じで、前後者ともマッチする文字はひとつのみであるが、類似度が異なる (前者は 0.11、後者は 0.04: \square 3)。

$$S(1,st1,st2) = \frac{\begin{pmatrix} a & a & x \\ a & 1 & 1 & 0 \\ b & 0 & 0 & 0 \\ x & 0 & 0 & 1 \end{pmatrix}^{2}}{\begin{vmatrix} a & a & x & & a & b & x \\ a & 1 & 1 & 0 & & a & 1 & 0 & 0 \\ a & 1 & 1 & 0 & & & b & 0 & 1 & 0 \\ x & 0 & 0 & 1 & & & x & 0 & 0 & 1 \end{pmatrix}} = \frac{9}{15}$$

図 2: 定義.A による N-gram ベースの類似度の例

自乗と掛け算は文字 (gram) がマッチした回数に対して行う。分子を自乗することにより値はつねに 0-1 となる。

図 3: 定義.Aによる直観とは異なる N-gram ベースの類似度の例

どちらもマッチする文字は x のみであるが、分母のマッチ数が異なるため異なる類似度を返す。

図 4: 定義.B による N-gram ベースの類似度の例

6は"aax"と"abx"の、3は、"aax"または"abx"の文字の総出現数。a-a、x-x のマッチに対し、 $\frac{1}{3}$ 、 $\frac{1}{2}$ と、重み付けが行われている。

3.2 定義.B

Sを次のように定義する (スカラ:実数)。

$$S(n, st1, st2, ...) = F(n, st1, st2, ...) \frac{\sum_{i} (M(e_i|n, st1, st2, ...) \times F(e_i|n, st1, st2, ...)^{-1})}{F(n, st1) F(n, st2) ...}$$
(10)

たとえば、前述のst1、st2の類似度は図4のようになる。

問題点後に述べるように階層化が容易ではない。

4 階層 N-gram マッチ

階層 N-gram マッチとは、以上のような単語レベルのマッチングあるいは類似度の計算を、さらに上位のフレーズ、センテンスレベルへ階層的に積み上げることを言う。

4.1 定義.A による階層 N-gram マッチ

定義.A による階層 N-gram マッチでは、ワード間の N-gram マッチを行った後、フレーズ間の"N-word"マッチを行い、その後に、センテンス間の"N-phrase"マッチを行う… というように階層的にマッチングを行なう。また、階層を越える度に、マッチの値に対し閾値を設け 0 または 1 にする (必須ではない)。たとえば、s1 ="aax abx abc axx"、s2 ="aax abx abx axx"というフレーズ、1-gram/2-word/閾値 0.5 の場合、図 5 のように行う。

4.2 定義.B による階層 N-gram マッチ

定義.Bによるマッチングの階層化はスマートには行えず、複雑な手順、もしくは、場当たり的なものとならざるを得ない。

									2		
			ſ		aax	abx	abc	axx			
				aax	1	0.6	0.27	0.64			
				abx	0.6	1	0.44	0.6			
				abx	0.6	1	0.44	0.6			
				axx	0.64	0.6	0.67	1			
		aax	abx	abc	axx			aax	abx	abx	$axx \rightarrow$
a	ax	1	0.6	0.27	0.64		aax	1	0.6	0.6	1
a	bx	0.6	1	0.44	0.6	×	abx	0.6	1	1	0.6
a	bc	0.27	0.44	1	0.67		abx	0.6	1	1	0.6
a	XX	0.64	0.6	0.67	1		axx	1	0.6	0.6	1
			ſ	aax	abx	abc	axx) 2			
			aax	1	1	0	1				
			abx	1	1	0	1				
			abx		1	0	1				
			axx		1	1	1				A^2
	aax	abx	abc	axx			aax	abx	abx	axx	$\rightarrow \frac{1}{3\times 9} =$
aax	1	1	0	1		aax	1	1	1	1	
abx	1	1	0	1	×	aby	1	1	1	1	
abc	0	0	1	1		abx	1	1	1	1	
axx	1	1	1	1		axx	1	1	1	1	

図 5: 定義.A による 2 階層 N-gram 類似度の例

ワードのマッチに 1-gram/閾値 0.5、フレーズのマッチに 2-word、を用いた。

ſ	•	aax	abx	abc	axx)	ſ	aax	abx	abc	axx)
	aax	1	0.78	0.44	0.89		aax	1	1	0	1	
	abx	0.78	1	0.67	0.78		abx	1	1	1	1	
	abx	0.78	1	0.67	0.78		abx	1	1	1	1	
	axx	0.89	0.78	0.33	1	J	axx	1	1	0	1	J 7
3×3 \rightarrow							3×3					$- = \frac{1}{9}$

図 6: 定義.B-2による 2 階層 N-gram 類似度の例

ワードのマッチに 1-gram、フレーズのマッチに 2-word/閾値 0.5、を用いた。

定義.B-1: (前掲の例で、)まず、aax-abx、abx-abc、abc-axx、… と 3×3 の行列内のセルに 2×2 の行列を含む形式の表を作成する。次に各セルの値を、対角要素を足して 2 で割ったものとする。こうして出来た表に定義.B を最適応する。

定義.B-2: 第二階層以上では、閾値以上で連続してn回マッチするその回数を総計し、探索空間の積で割る。定義.B-2によるマッチの例を図6に示す。