ASYA SHKLYAR FEBRUARY 2018

RESEARCH COMPUTING INFRASTRUCTURE

POMONA COLLEGE

AGENDA

- INITIAL FINDINGS
- CONSIDERATIONS
- RECOMMENDATIONS
- INITIAL BUILDOUT
- NEXT STEPS
- LINKS TO DOCUMENTATION AND REFERENCES

INITIAL FINDINGS

- INTERVIEWED: 10 OUT OF 10 PLANNED DEPARTMENTS (AND GREW TO 13)
- SCHEDULED TO INTERVIEW: PHYSICS, BUSINESS
- ALL INTERVIEWED OWN INFRASTRUCTURE
- HALF OF THE INTERVIEWED HAVE REMOTE RESOURCES
- CLOUD USE ONE KNOWN CASE (LINGUISTICS)
- GPU INTEREST ALL, ESPECIALLY CHEMISTRY, MATHEMATICS, GEOLOGY, ECONOMICS
- 50+ SOFTWARE PACKAGES USED (COMMERCIAL AND OPEN SOURCE)

CONSIDERATIONS

- EXISTING APPLICATIONS ARE NOT PROFILED BUT LEANING TOWARDS RAM-HEAVY USAGE, MIN 256 GB
- THE ENVIRONMENT WILL BE USED BY BOTH FACULTY AND STUDENTS
- INTERACTIVE LOGIN TO NODES AND REMOTE VISUALIZATION ARE NEEDED
- EXISTING VMWARE ENVIRONMENT DOES NOT HAVE GPUS, ONLY HAS BLOCK STORAGE AND NO QOS OR NFS/CIFS
- MOST DATA IS SHARED INTERNALLY AND EXTERNALLY
- NO CENTRALIZED HOME DIRECTORIES PERMISSIONS ISSUES
- NO INFINIBAND EXPERTISE

RECOMMENDATIONS

- DO NOT BUILD THE HPC ENVIRONMENT USING THE EXISTING ENTERPRISE SETUP
- GET ONE OR TWO SYSTEMS THAT ARE BEST OF BREED AND EXPENSIVE, FULL OF HARDWARE AND FEATURES
- USE GPUS WHENEVER POSSIBLE TO ACCELERATE SOFTWARE AND MINIMIZE THE COST OF CPUS (NVIDIA DGX WITH VOLTA AND PASCAL WITH INDIVIDUAL CARDS)
- USE THE WINDOWS HOME DIRECTORIES FOR NOW (NEE DUNES SERVICES INSTALLED) BUT CONSIDER MOVING TO A ZFS NFS/CIFS APPLIANCE FOR HOSTING THE HPC HOME DIRECTORIES AND PROVIDING POSIX-COMPLIANT INTERFACE FOR USERS OR MOVE ALL HOME DIRECTORIES TO PURE STORAGE (ALL-FLASH)
- BUILD A PARALLEL FILE SYSTEM FOR SCRATCH SPACE AND HIGHER IO
- USE NVIDIA CLOUD (FREE WITH DGX/VOLTA CARDS)*
- USE MELLANOX ETHERNET SWITCHES (CAN BE CONVERTED TO INFINIBAND WITH A LICENSE
- CONSIDER BUILDING A DATA LAKE WITH DATA TRANSFER NODES
- * AWS COSTS STILL APPLY

NICE TO HAVE

MUST HAVE

PRICING

Bright Computing	20 nodes	\$10,000	Software
Latest CPU/ AMD Epic	1 x 2 socket	\$50,000	Hardware
Latest CPU/ Intel Skylake	1 x 2 socket	\$200,000	Hardware
NVIDIA GPU / Volta	1 x DGX	\$50,000	Hardware
NVIDIA GPU / Pascal	1 card	\$1,500	Hardware

HARDWARE CHOICES: DENSITY VS MORE RAM

HARDWARE CHOICES: CPU

SKYLAKE

28 core per socket

22-24 core per socket

SKYLAKE

22-24 core per socket

No hyper-threading

 $32 \times 2 = 64$ physical per server

 $32 \times 2 \times 2 = 128$ virtual per server

HARDWARE CHOICES: GPU

LATEST

OLDER

HARDWARE CHOICES: STORAGE

ROTATING DISK SSD/FLASH **INTEL OPTANE** 7200 RPM 10,000 RPM 15,0000 RPM 128-512 GB - 1 TB 2 TB - 10 TB 200-900 GB **UP TO 7.7 TB** SATA SAS NVME **M2 U2** SD

HARDWARE CHOICES: NETWORK

NEXT STEPS

- HAVE QUOTES FROM 3 VENDORS (PRESIDIO/CISCO/INTEL), (SILICON MECHANICS/AMD), MICROWAVE (DGX)
- CONTINUING INTERVIEWS, DISCOVERY, AND SOFTWARE INVENTORY
- WORKING WITH INFRASTRUCTURE ON VMWARE PROVISIONING PROCESS FOR USER VMS
- WORKING WITH INFRASTRUCTURE ON NETWORK PROVISIONING FOR HPC
- WORKING ON AD/UNIX SERVICES, LOG MANAGEMENT SOLUTION FOR HPC AND CHECK-MK INTEGRATION FOR MONITORING
- FIRST TECHNOLOGY WORKSHOP CONDUCTED, NEXT SCHEDULED MARCH 21 ST
- EXPERIMENT WITH CONTAINERIZING USER APPS (FIRST USE CASE GEOLOGY AND BIOLOGY) AND GPU SPEED UP OF APPLICATIONS
- TESTING TABLEAU FOR CHEMISTRY CURRICULUM
- MEDIA LAB: AR/VR

LINKS TO DOCUMENTATION AND REFERENCES

Pomona HPC MeindMeister: https://mm.tt/1014341182?t=Sb9Tlzgb3P

Cisco UCS B200 M5 Blade Server Data Sheet

NVIDIA Volta Tesla V100

NVIDIA GPU CLOUD

CMU: http://www.brightcomputing.com/solutions/academic-research

Storage Reference Architecture at UC Irvine

Mellanox Switches