Лабораторная работа № 11.

Teмa: Построение графиков и визуализация данных с использованием NumPy и Matplotlib.

Matplotlib — это библиотека для создания статических, анимированных и интерактивных графиков в языке программирования Python. Она предоставляет широкие возможности для визуализации данных и используется в различных областях, таких как научные исследования, анализ данных, машинное обучение, и другие.

Вот несколько ключевых аспектов Matplotlib:

1.	Простота использования:	Matplotlib обладает простым и интуитивно понятным пает ее доступной для широкого круга		
2.		пользователей. ет множество возможностей		
	Гибкость: Б	иб. для настройки графиков,		
3.		цвета, маркеры, шрифты и многое		
	предоставля П	од ругое. типов графиков: Matplotlib		
		оддерживает создание		
4. различных х графи		х графиков, таких как линейные графики, столбчатые		
	•	диаграммы, круговые		
	диаграммы, гистогр	паграммы, гистограм		
	графики и т.д.	tplotlib хорошо интегрируется с библиотекой NumPy,		
	Интеграция с)		
	NumPy:	зуализировать данные, хранящиеся в массивах NumPy.		

Пример создания простого графика с использованием Matplotlib:

```
import matplotlib.pyplot as plt
import numpy as np

# Создание данных
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)

# Построение графика
plt.plot(x, y)
plt.title('Пример графика c Matplotlib')
plt.xlabel('X-ось')
plt.ylabel('Y-ось')

# Отображение графика
plt.show()
```

Краткий мануал по библиотеке **Matplotlib** вы найдете в файле Python_matplotlib.pdf.

NumPy (Numerical Python) — это библиотека для языка программирования Python, предназначенная для выполнения операций с многомерными массивами и матрицами, а также предоставляющая функциональность для работы с линейной алгеброй, случайными числами и другими математическими операциями. Вот несколько ключевых аспектов NumPy:

1.	Многомерные массивы:	NumPy предоставляет numpy.ndarray , который объект является	
2.	Быстрые математические	ивом, позволяя эфф оперировать данными. эпечивает векто полнять математические операции, з явных циклов,	
3.4.	делает их быс операции на эффективными. линейной алгебры: таких как умножение мачет функции для определителя и операций		
	собственных значений. Интеграция с	иблиотеками: _с :ме научных вычислений ^{ется} основой дл других	

Пример использования NumPy для создания массива и выполнения операций:

```
import numpy as np

# Создание одномерного массива
arr = np.array([1, 2, 3, 4, 5])

# Умножение каждого элемента на 2
arr = arr * 2

# Вывод результата
print(arr)
```

Некоторые из методов **NumPy**, с примерами кода и комментариями:

numpy.linspace(start, stop, num): Создает массив равномерно распределенных значений от **start** до **stop** включительно с заданным числом элементов **num**. Он часто используется для создания оси х на графиках.

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100) # Создание массива из 100 чисел между 0 и
10
y = np.sin(x) # Вычисление синуса каждого элемента массива x

plt.plot(x, y) # Построение графика
plt.show() # Отображение графика
```

numpy.arange(start, stop, step): Создает массив значений, начиная с start, заканчивая **stop** (не включительно), с шагом **step**. Он также часто используется для создания оси х на графиках.

```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 10, 0.1) # Создание массива чисел с шагом 0.1 между
0 и 10

y = np.cos(x) # Вычисление косинуса каждого элемента массива x

plt.plot(x, y) # Построение графика
plt.show() # Отображение графика
```

numpy.random: предоставляет функции для генерации случайных чисел. Он может быть использован для создания случайных данных для построения графиков.

numpy.random.normal - это функция из подмодуля numpy.random библиотеки NumPy в Python, предназначенная для генерации случайных чисел из нормального распределения (гауссовского распределения).

```
import numpy as np

# Генерация случайных чисел из нормального распределения
mean = 0 # Среднее значение распределения
std_dev = 1 # Стандартное отклонение распределения
size = (3, 3) # Размерность массива случайных чисел

random_numbers = np.random.normal(mean, std_dev, size)
```

```
import numpy as np
import matplotlib.pyplot as plt

# Генерация 100 случайных чисел из нормального распределения
x = np.random.normal(0, 1, 100)
y = np.random.normal(0, 1, 100)

plt.scatter(x, y) # Построение точечного графика
plt.show() # Отображение графика
```

numpy.random.rand - это функция из подмодуля numpy.random библиотеки NumPy в Python, предназначенная для генерации случайных чисел из равномерного распределения в интервале [0, 1).

```
1 import numpy as np
  3 # Генерация случайных чисел из равномерного распределения
  4 size = (3, 3) # Размерность массива случайных чисел
  5 random_numbers = np.random.rand(*size)
  6 print(random numbers)
>>> %Run -c $EDITOR CONTENT
 [[0.40625179 0.66015179 0.23523556]
  [0.96799884 0.71258997 0.80533994]
  [0.38228954 0.08399615 0.42810239]]
  1 import numpy as np
  3 # Генерация случайных чисел из равномерного распределения
  4 size = (10) # Размерность массива случайных чисел
  5 random_numbers = np.random.rand(size)
  6 print(random_numbers)
>>> %Run -c $EDITOR_CONTENT
 [0.47956144 0.7276545 0.70799375 0.24366125 0.3639987 0.39183938
 0.22141719 0.16136106 0.33075089 0.09757296]
```

numpy.random.randint - это функция из подмодуля numpy.random библиотеки NumPy в Python, предназначенная для генерации случайных целых чисел из заданного диапазона.

```
import numpy as np

# Генерация случайных целых чисел из заданного диапазона
low = 1 # Нижняя граница диапазона (включительно)
high = 10 # Верхняя граница диапазона (исключительно)
size = (3, 3) # Размерность массива случайных чисел

random_integers = np.random.randint(low, high, size)
```

numpy.histogram: Этот метод позволяет создать гистограмму на основе данных. Он разбивает данные на интервалы и подсчитывает количество значений в каждом интервале.

```
import numpy as np
import matplotlib.pyplot as plt

# Генерация 100 случайных чисел из нормального распределения
data = np.random.normal(0, 1, 100)

plt.hist(data, bins=10) # Построение гистограммы с 10 интервалами
plt.show() # Отображение графика
```

Вариант 1	Вариант 2
Постройте график функции у = x ²	Постройте график функции y = 1 / x³
В файле shop.csv находится статистика продаж, расходов, заработной платы и прибыли по месяцам. Постройте столбчатую диаграмму продаж по месяцам.	В файле shop.csv находится статистика продаж, расходов, заработной платы и прибыли по месяцам. Постройте столбчатую диаграмму прибыли по месяцам.
В файле shop.csv находится статистика продаж, расходов, заработной платы и прибыли по месяцам. Постройте два графика на одном поле: заработной платы и прибыли.	В файле shop.csv находится статистика продаж, расходов, заработной платы и прибыли по месяцам. Постройте два графика на одном поле: расходов и продаж.