IRT - SystemX Génération de scénarios pour les véhicules autonomes

Valérie Garcin, Nicoletta Prencipe, Suzanne Schlich, Dorine Tabary

SEME, Semaine d'Études Mathématiques et Entreprises de Bordeaux

26-30 octobre 2020

Présentation du problème

- Scénario : ensemble de paramètres du véhicule autonome et de son environnement.
- ▶ Objectif : élaborer une méthode mathématique permettant de générer les 1000 scénarios les plus pertinents obéissant à de multiples nécessités :
 - règles logiques entre paramètres;
 - pondération par criticité et probabilité.

Générer les scénarios sans travail préalable entraîne une explosion combinatoire de 2⁴⁵ solutions.

Les données

Criticité et probabilité :

Pour chaque critère : 2 niveaux de criticités (A et B). 5 niveaux de probabilité (A, B, C, D et E) Choix de valeurs pour la criticité : A = 1, B = 0, 5Choix de valeurs de probabilité : A = 0.9, B = 0.7, C = 0.5, D = 0.3, E = 0.1

$$A = 0.9, B = 0.7, C = 0.5, D = 0.3, E = 0.1$$

Implications :

Matrice de taille 45×45 , telle que l'entrée (i, j) vaut 1 si le paramètre *i* implique le paramètre *i*

Exclusions :

Création d'une matrice 45×45 , telle que l'entrée (i, j) vaut 1 si les paramètres i et j s'excluent dans un scénario.

Les outils utilisables

Pour résoudre les problèmes combinatoires, il existe 2 principales heuristiques de programmation basées sur des fonctions objectif :

Programmation Linéaire

- ► **A partir** d'une fonction linéaire + variables
- Contraintes = Relations linéaires entre les variables
- Construit la solution (exploration d'un arbre)

Les outils utilisables

Pour résoudre les problèmes combinatoires, il existe 2 principales heuristiques de programmation basées sur des fonctions objectif :

Programmation Linéaire

- ► **A partir** d'une fonction linéaire + variables
- Contraintes = Relations linéaires entre les variables
- Construit la solution (exploration d'un arbre)

Programmation Par Contraintes

- ▶ A partir de variables de décisions et de contraintes
- Contraintes = Relations directes entre variables (limitant leurs valeurs)
- Filtre les solutions (propagation des contraintes)

Les outils utilisables

Pour résoudre les problèmes combinatoires, il existe 2 principales heuristiques de programmation basées sur des fonctions objectif :

Programmation Linéaire

- ► **A partir** d'une fonction linéaire + variables
- Contraintes = Relations linéaires entre les variables
- Construit la solution (exploration d'un arbre)

Programmation Par Contraintes

- ▶ A partir de variables de décisions et de contraintes
- Contraintes = Relations directes entre variables (limitant leurs valeurs)
- Filtre les solutions (propagation des contraintes)

Notre choix : La PPC! Simple, rapide et efficace

Les données Analyse des outils Implémentation de la méthode

Une programmation par contrainte en 2 étapes

Les données Analyse des outils Implémentation de la méthode

Une programmation par contrainte en 2 étapes

Filtrage, en amont de la génération des scénarios

Une programmation par contrainte en 2 étapes

- Filtrage, en amont de la génération des scénarios
 - * l'exclusion, $\overline{A \wedge B}$, * l'implication, $\overline{A \wedge \overline{B}}$.

Une programmation par contrainte en 2 étapes

- Filtrage, en amont de la génération des scénarios
 - * l'exclusion, $\overline{A \wedge B}$,
 - * l'implication, $\overline{A \wedge \overline{B}}$.
- ► Filtrage des scénarios selon leur pertinence

Pertinence des scénarios

On a les données suivantes :

P(i): **probabilité** du critère i

C(i): **criticité** du critère i

Pertinence des scénarios

- On a les données suivantes :
 - P(i) : **probabilité** du critère i C(i) : **criticité** du critère i
- On définit la **probabilité** et la **criticité** d'un scénario s :

$$\mathsf{Proba}(\mathsf{s}) = \prod_{i \in \mathsf{s}} P(i) \prod_{i \notin \mathsf{s}} (1 - P(i))$$
 $\mathsf{Crit}(\mathsf{s}) = \frac{1}{45} \sum_{i \in \mathsf{s}} C(i)$

Pertinence des scénarios

- On a les données suivantes :
 - P(i) : **probabilité** du critère i C(i) : **criticité** du critère i
- On définit la probabilité et la criticité d'un scénario s :

$$\mathsf{Proba}(\mathsf{s}) = \prod_{i \in \mathsf{s}} P(i) \prod_{i \notin \mathsf{s}} (1 - P(i))$$
 $\mathsf{Crit}(\mathsf{s}) = \frac{1}{45} \sum_{i \in \mathsf{s}} C(i)$

▶ On regroupe les deux dans une mesure de la **pertinence d'un scénario** en fonction d'un paramètre $t \in [0,1]$:

$$\pi_t(s) = t \operatorname{Crit}(s) + (1-t) \operatorname{Proba}(s)$$

Formalisation du CSP (Contraint Solving Problem)

$$\begin{cases} \chi = \{\chi_i = \text{``feature''}, i \in \{1, \dots, 45\}\} \\ D = \{D_i = \{0, 1\}, i \in \{1, \dots, 45\}\} \\ \mathcal{C} = \{C_1, C_2, C_3\} \end{cases}$$

- \triangleright χ est l'ensemble de variables ou paramètre du problème,
- D est l'ensemble des domaines des variables,
- C est l'ensemble de contraintes

$$C_1 = \{\overline{\chi_i \wedge \chi_j}\}_{\{i,j\} \in \mathcal{E}} \quad C_2 = \{\overline{\chi_i \wedge \overline{\chi_j}}\}_{(i,j) \in \mathcal{I}} \quad C_3 = \{\pi_t(s) \ge \alpha\}$$

FIGURE - Sortie Obtenue.

Les données Analyse des outils Implémentation de la méthode

α/t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
0.05	704	X	X	X	X	X	X	X	X	X	X
0.075	318	33102	29211	X	X	X	X	X	X	X	X
0.1	225	240	240	21450	X	X	X	X	X	X	X
0.125	169	169	169	169	15468	X	X	X	X	X	X
0.15	100	90	85	85	67	9564	X	Х	X	Х	Х
0.175	100	85	85	32	31	65	9397	X	Х	X	X
0.2	100	32	32	32	31	14	490	1873	X	X	X
0.225	30	29	28	14	14	10	10	580	12993	X	X
0.25	28	28	14	14	10	10	4	210	5127	X	X
0.275	28	14	14	10	10	10	4	0	698	40273	X
0.3	14	14	10	10	10	4	4	0	250	6643	X
0.325	14	10	10	10	4	4	4	0	0	201	4899
0.35	10	10	10	10	4	4	4	0	0	1	48
0.4	10	10	10	4	4	0	0	0	0	0	0
0.45	10	4	4	4	0	0	0	0	0	0	0
0.5	4	4	4	4	0	0	0	0	0	0	0
0.55	4	4	4	0	0	0	0	0	0	0	0
0.6	4	4	0	0	0	0	0	0	0	0	0
0.65	4	0	0	0	0	0	0	0	0	0	0
0.7	0	0	0	0	0	0	0	0	0	0	0

TABLE - Tableau des résultats obtenus (nombre de scénarios total).

Génération de scénarios

Le code fournit des scénarios selon deux variables : t et α .

Observations:

 Augmentation du nombre de scénarios selon t

Génération de scénarios

Le code fournit des scénarios selon deux variables : t et α .

Observations:

 Augmentation du nombre de scénarios selon t

Observations:

 Diminution du nombre de scénarios selon α

Enrichissement en terme de données

- Matrices des implications et des exclusions plus fournies possiblement validées par un expert en sécurité routière.
- Regroupement des paramètres par typologie (météo, voierie, véhicule autonome, état du conducteur, ...).
- Valeurs précises pour les probabilités/criticités à la place de plages de valeurs.

Autres pistes possibles :

- Choix différent de la fonction π implémentant un choix différent quant à la pertinence.
- Matrice de covariance entre les features pour une approche probabiliste.
- Ajouter comme paramètre le niveau d'autonomie du véhicule.

Enrichissement en terme de donnée Autres pistes possibles Conclusion

Merci pour votre attention!

Des questions?