3. Лабораторная работа №3

3.1. Цель лабораторной работы

В лабораторной работе реализуются повороты в трехмерном пространстве с помощью матриц, кватернионов и формулы Родрига.

3.2. Задания

Во всех заданиях нужно строить грани многогранника, соединяя вершины в определенном порядке — против часовой стрелки, если смотреть на лицевую сторону грани.

3.2.1. Задание №1

Следуя **примеру 3-4** [1, с. 122] осуществить поворот параллелепипеда на 90 градусов вокруг оси Oy, а затем на -90 градусов вокруг оси Ox. Должны получиться изображения, похожие на рисунки 4. Вычисления сверяйте с примером из книги или с таблицами 2.

Рис. 4: (а) исходное положение; (b) поворот вокруг Oy на 90 градусов, (c) поворот вокруг Ox на -90 градусов.

Таблица 2: Координаты вершин из примера 3-4 [1, с. 122]

$\mid x \mid$	$\mid y \mid$	z	$x \mid$	$\mid y \mid$	z	$\mid x \mid$	$\mid y \mid$	
0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0
3	0	1	1	0	-3	3	1	0
3	2	1	1	2	-3	3	1	-2
0	2	1	1	2	0	0	1	-2
3	0	0	0	0	-3	3	0	0
3	2	0	0	2	-3	3	0	-2
0	2	0	0	2	0	0	0	-2

3.2.2. Задание №2

Следуя **примеру 3-5** [1, с. 124] осуществить повороты призмы вокруг координатных осей. В результате должны быть получены рисунки, похожие на рис. 5 и рис. 6. Вычисления сверяйте с примером из книги или с таблицами 3.

Рис. 5: (а) исходное положение призмы; (b) поворот вокруг Oy на 90 градусов, (c) поворот вокруг Ox на 90 градусов.

Рис. 6: Композиция поворотов призмы. Синяя призма получается из исходной поворотами на 90 градусов вокруг Oy, затем вокруг Ox, а красная призма — поворотами на 90 градусов вокруг Ox, затем вокруг Oy. Изображение показывает некоммутативность вращений в пространстве

Таблица 3: Координаты вершин из примера 3-5 [1, с. 124]. Первые три таблицы показываю координаты вершин призм с рисунка 5, последняя двойная таблица — двух призм с рисунка 6. Координаты x_1,y_1,z_1 относятся к синей призме, а x_2,y_2,z_2 — к красной.

			1.01.	_			_	-		 _						
$\mid x \mid$	y			$\mid x \mid$	$\mid y \mid$	z	x	$\mid y \mid$	z	$ x_1 $	$\mid y_1 \mid$	$ z_1 $	x_2	$\mid y_2 \mid$	$ z_2 $	
0	0	1		1	0	0	0	-1	0	1	-1	0	0	-1	0	
2	0	1		1	0	-2	2	-1	0	1	2	-1	0	-1	-2	
2	3	1		1	3	-2	2	-1	3	1	2	3	3	-1	-2	
0	2	1		1	2	0	0	-1	2	1	0	2	2	$\mid -1 \mid$	0	
0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0		0	0	-2	2	0	0	0	2	-1	0	0	-2	
2	3	0		0	3	-2	2	0	3	0	2	3	3	0	-2	
0	2	0		0	2	0	0	0	2	0	0	2	2	0	0	

3.2.3. Задание №3

Данное задание основывается на **примере 3-10** из [1, с. 137], однако отличается от него. Дан куб, с отсеченной вершиной, координаты вершин приведены в таблице 4. Необходимо повернуть куб на угол -45 градусов вокруг оси вращения, проходящей через вершину номер 5 и через середину грани с вершинами 2,3 и 9. Для вычислений использовать формулу Родрига (удобнее всего матричную форму) и, отдельно, кватернионы. Должно получиться изображение, похожее на рисунок 7

Рис. 7: Усеченный куб после поворота вокруг оси вращения на угол -45 градусов. Обратите внимание, что на данном рисунке куб изображен не в косоугольной проекции и ось Oz направленна как обычно вверх, а не к читателю/зрителю как в книге [1].

Таблица 4: Координаты вершин усеченного куба. Обратите внимание, что в отличие из примера 3-10 [1, с. 137] куб перенесен в начало координат.

	I- / /	
x	y	z
0	0	1
1	0	1
1	0.5	1
0.5	1	1
0	1	1
0	0	0
1	0	0
1	1	0
0	1	0
1	1	0.5

3.2.4. Задание №4

Рассмотреть теперь оригинальный **пример 3-10** и выполнить вычисления с помощью формулы Родрига для него. Следует учитывать следующие моменты.

- Координаты вершин усеченного куба задаются радиус-векторами (векторы точки). Все радиус-векторы по определению исходят из начала координат.
- Ось вращения задается свободным вектором (вектор-направление). Ось вращения по своей сути это некоторая прямая, вокруг которой происходит вращение, Данная прямая не обязательно проходит через начало координат.
- Все формулы, которые описывают вращения вокруг произвольной оси, предполагают, что ось вращения проходит через начало координат.
- Таким образом, для корректного применения формулы Родрига необходимо вначале переместить куб и ось вращения так, чтобы основание направляющего вектора оси вращения оказалось в начале координат, выполнить поворот и перенести получившиеся точки обратно.

Список литературы

1. Podжерс Д., Adamc А. Математические основы машинной графики / под ред. Ю. М. Баяковский, В. А. Галактионова, В. В. Мартынюк ; пер. с англ. П. А. Монахов, Г. В. Олохтонова, Д. В. Волков. — Москва : Мир, 2001.-604 с. — ISBN 5030021434.