

2ª AVALIAÇÃO - GTI - ESTATÍSTICA - Valor: 2 pontos

NOME:

Não será aceita nenhuma resposta sem o desenvolvimento, portanto apresente todos os seus cálculos! OBS.: Considere 2 casas decimais após a vírgula.

$$\bar{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \qquad \bar{X} = \frac{\sum_{i=1}^{k} f_{i} X_{i}}{\sum_{i=1}^{k} f_{i}} \qquad M_{d} = X_{\left(\frac{n+1}{2}\right)} \qquad M_{d} = \frac{X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}}{2}$$

$$\bar{X}_{G} = \frac{n}{\sum_{i=1}^{n} \frac{1}{X_{i}}} \qquad \bar{X}_{H} = \sqrt[n]{\prod_{i=1}^{n} X_{i}}$$

$$s^{2}(X) = \frac{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}{n-1} \qquad s^{2}(X) = \frac{\sum_{i=1}^{k} X_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} X_{i} f_{i}\right)^{2}}{\sum_{i=1}^{k} f_{i}}}{\sum_{i=1}^{k} f_{i} - 1} \qquad s(X) = \sqrt{s^{2}(X)}$$

$$s(\bar{X}) = \frac{s(X)}{\sqrt{n}} \qquad CV(\%) = \frac{s(X)}{X} \cdot 100 \qquad AT = X_{(n)} - X_{(1)}$$

1. (0,4 pontos) Durante um dia de fiscalização num posto policial foram levantados os seguintes dados acerca da quantidade de passageiros transportados nos veículos de passeio averiguados:

Número de passageiros	1	2	3	4	5	6
Número de veículos	30	10	28	17	10	5

Analisando a tabela podemos afirmar que a mediana do número de passageiros é maior do que ambas, a média e a moda? Justifique sua resposta.

2. (0,6 pontos) Duas metodologias de ensino, A e B, foram aplicadas a um grupo homogêneo de 129 alunos. Foram 69 alunos na turma que utilizou a metodologia A e os restantes 60 a metodologia B. Após um período adequado, os alunos foram submetidos a uma avaliação cuja nota mínima era 1 e a nota máxima 10. A tabela a seguir apresenta os resultados (o número de alunos e as notas), por metodologia.

Número de	e alu	nos c	om r	otas	de 1	a 10	por	metod	ologia	Į.
]	Nota				
Metodologia	1	2	3	4	5	6	7	8	9	10
A	0	1	4	2	3	7	4	12	16	20
В	1	2	5	2	4	0	0	15	17	14

Pede-se:

a. (0,2 pontos) A nota média por metodologia.

b. (0,2 pontos) Qual das duas amostras é mais homogênea (A ou B)? Justifique sua resposta.

c. (0,2 pontos) Qual nota média foi estimada com uma maior precisão? Justifique sua resposta.

(1 ponto) Nos itens a seguir assinale (V) se estiver inteiramente correto ou assinale (F) caso contrário e indique e corrija onde estiver errado (0,2 pontos cada item),
() Para duas amostras A e B, foram calculados os erros padrão das médias e obtidas respectivamente as seguintes estimativas 1,20 e 2,5. Desta forma, conclui-se que a média da amostra B é mais precisa ou é uma estimativa associada a uma maior precisão.
() A média geométrica dos valores {5, 12, 25, 40} é aproximadamente igual a 15,65.
() A média harmônica dos valores 60 e 90 é igual a 75.
() A amplitude total da amostra {5,12, 25, 40, 2, 51} é igual a 39.
() Para a amostra de valores {10, 10, 10, 10, 15, 15, 2, 2, 2, 2, 0, 30, 30}, o valor mediano é igual a 15.