algorithm that takes our input an instance of the problem and determines whether the answer to that instance is "yes" or "no"

Closur Properties of recursive and Recursively. Enumerable languages.

Theorem 1

The complement of a recursive language is recursive Proof

- * Let 2 be a recursive language and M a tuing machine that halls on all inputs and accepts 2.
- * Construct M' from M so that it M enters: a final state on input w then M' halts without accepting.
- * It M halls without accepting, M' enters a final state.
- * Since one of these two events occurs, M' is an algorithm.
- * Clearly L(M') is the complement of L and thus the complement of L is a recursive language.

Theorem 2

- * The union of two removive language is
- * The union of two recursively enumerable language is recursively enumerable.

Proof:

- * Let 1, and La be recursive languages accepted by algorithms M, and M2.
- * We construct M, which first simulates .M,
- * If M, accepts then M accepts.
- * If M, rejects then M simulates Ma and accepts
- * Since both M, and M2 are algorithms, M is generaled to half.
- * Clearly M accepts L, UL2.

construction does not work.

- * Since M, may not halt.
- * Instead. M can simultaneously simulate M, and
 Ma on separate tapes.
- * If either accepte, then M accepts.

Theorem 3:

If a Language L and its complement I are both recursively Enumerable, then L (and hence I) is recursive.

Proof

- * Let M, and M2 accept L and I respectively.
- * Construct M to simulate simultaneously M and M2
- * M accepts w if 'M, accepts w and rejects w

exactly one of M, Or M2 will accept.

* Thus M will always say either 'yes' or 'no'

* Since M is an algorithm that accepts L, it

follows that I is recursive.

UNIVERSAL TURING MACHINE:

* Diagnolization is used to show the Peoblem