Section 11.2

- **16.** (a) $\binom{6}{3}(2^3) = \binom{6}{3}(2^{\binom{3}{2}})$ (b) $\binom{6}{4}(2^{\binom{4}{2}})$

 - (c) $\sum_{k=1}^{6} {6 \choose k} (2^{{k \choose 2}})$ (d) $\sum_{k=1}^{n} {n \choose k} (2^{{k \choose 2}})$

Section 12.1

- 4. $e = v \kappa$
- 16. (1) This graph has 9 = 3·4 3 = 3 + 3(4 2) vertices, so any spanning tree for it will have eight edges. There are 12 = 3·4 edges (in total) so we shall remove four edges. Two edges must be removed from one 4-cycle (a cycle on four vertices) and one edge from each of the other two 4-cycles. When two edges from a 4-cycle are removed one must be from the 3-cycle (induced by a, b, and c) otherwise, we get a disconnected subgraph. There are three ways to select the 4-cycle for removing two edges and three ways to select the edge not on the 3-cycle. We then select one edge from each of the remaining 4-cycles in 4·4 ways. So the number of nonidentical spanning trees for this graph is 3(4 1)(4²) = 144.
 - (2) Here the graph has $8 = 4 \cdot 3 4 = 4 + 4(3 2)$ vertices and $12 = 4 \cdot 3$ edges. There are $4(3-1)(3^3) = 216$ nonidentical spanning trees.
 - (3) This graph has $16 = 4 \cdot 5 4 = 4 + 4(5 2)$ vertices and $20 = 4 \cdot 5$ edges. There are $4(5-1)(5^3) = 2000$ nonidentical spanning trees.

_	/ 1
9	(a)
<i>a</i> .	100

Vertex	Level Number
p	35
8	36
t	36
v	37
w	38
x	38
y	39
z	39

- (b) The vertex u has 37 ancestors.
- (c) The vertex y has 39 ancestors.
- 4. (a) 5
- (b) 2.1.3
- (c) 4 (including the root)
- (d) 2.1.3.x, $1 \le x \le 5$; 2.1.3, 2.1.2, 2.1.1, 2.1, 2, 1.
- 10. (a) Here the maximum height is n-1.
 - (b) In this case n must be odd and the maximum height is (n-1)/2.
- 12. From Theorem 12.6 (c) we have

(a)
$$(\ell-1)/(m-1) = (n-1)/m \Longrightarrow (n-1)(m-1) = m(\ell-1) \Longrightarrow n-1 = (m\ell-m)/(m-1) \Longrightarrow n = [(m\ell-m)/(m-1)] + 1 = [(m\ell-m) + (m-1)]/(m-1) = (m\ell-1)/(m-1).$$

(b)
$$(\ell-1)/(m-1) = (n-1)/m \Longrightarrow \ell-1 = (m-1)(n-1)/m \Longrightarrow \ell = [(m-1)(n-1) + m]/m = [(m-1)n+1]/m.$$

20. The number of vertices at level h-1 is m^{h-1} . Among these we find $m^{h-1}-b_{h-1}$ of the l leaves of T. Each of the b_{h-1} branch nodes account for m leaves (at level h). Therefore, $l=m^{h-1}-b_{h-1}+mb_{h-1}=m^{h-1}+(m-1)b_{h-1}$.