

Chapter 1.1

- 1. Cloud
- 2. Virtualization
- 3. Container
- 4. Docker

Cloud Computing

Cloud Computing

- IT paradigm
- Set of principles and approaches
- On-demand delivery of compute power, database storage, applications, and other IT resources through a cloud services platform via network

Cloud Computing

Generally used to describe data centers available to many users over the Network

Before

After

Source Image: https://www.vmware.com/pdf/virtualization.pdf

Before

- Single OS image per machine.
- Software and hardware tightly coupled.
- Running multiple applications on same machine often creates conflict.
- Underutilized resources.
- Inflexible and costly infrastructure.

After

- Hardware-independence of operating system and applications.
- Virtual machines can be provisioned to any system.
- Can manage OS and application as a single unit by encapsulating them into virtual machines.

Guest Guest process

Host OS

Hardware

OS-level virtualization

Guest Guest process process Guest OS Guest OS Host OS (Hypervisor) Hardware

Hardware virtualization

Source Image: wikimedia.org

Source Image: abopen.com, line.17qq.com, hoangminhkhang.com

Container

Source Image: dw.com

Container

Virtual Machine	Container
Each VM runs its own OS	All containers share the host OS
Host OS can be different than the guest OS	Host OS and Container OS has to be the same (Linux Kernel)
Startup time in minutes	Startup time in milliseconds
VMs snapshots are used sparingly	Images are built incrementally on top of another like layers.
Fully isolated and hence more secure	Process-level isolation and hence less secure

Container

Source Image: researchgate.net

Docker

- Package Software into Standardized Units
 - Development
 - Shipment
 - Deployment

Host Operating System

Infrastructure

Containerized Applications

Source Image: docker.com

Docker

Client-Server Architecture

Practice 1

- Setup VirtualBox
- Create Ubuntu virtual machine
- Setup Docker inside VM
- Deploy WordPress with Command Line
 - Example: https://github.com/bitnami/bitnami-docker-wordpress#using-the-docker-command-line

Practice 2

- Deploy WordPress with Docker Compose
 - Example: https://github.com/bitnami/bitnami-docker-wordpress#run-the-application-using-docker-compose

Practice 3

- Create two Ubuntu virtual machines
- Setup Docker inside VMs
- Deploy WordPress with Command Line on two virtual machines
 - Example: https://github.com/bitnami/bitnami-docker-wordpress#run-the-application-using-docker-compose
 - Requirements:
 - MariaDB container on VM1
 - WordPress container on VM2