1. Пусть $A_1, A_2, \ldots, A_n, \ldots$ некоторые подмножества Ω , постройте минимальную σ -алгебру, включающую $A_1, A_2, \ldots, A_n, \ldots$

Для построения такой алгебры (назовем ее F) выполним минимальные требования:

- 1. $\emptyset \in F \implies F = \{\emptyset, A_1, \dots, A_n, \dots\}$.
- 2. $A \in F \implies \overline{A} \in F$. $F = \{\emptyset, \Omega, A_1, \overline{A_1}, \dots, A_n, \overline{A_n}, \dots\}$.
- 3. $A_1,A_2,\dots\in F\implies \cup_{i=1}^\infty A_i\in F$. Т.е. в F войдут всевозможные $2,3,\dots,n,\dots$ элементные объединения различных подмножеств из A_1,\dots,A_n,\dots
- **2.** Доказать, что алгебра, порожденная системой A_1, \ldots, A_n , где $A_i \subset \Omega, \ i=1,\ldots,n$ состоит в общем случае из 2^{2^n} элементов. Найти пример системы множеств, когда это не так.

Как показано в предыдущей задаче, такая алгебра будет в себя включать $\emptyset, \Omega, A_1, A_2, \ldots, A_n$ и всевозможные $2, 3, \ldots, n$ элементные объединения различных подмножеств из A_1, \ldots, A_n .

- 3. Сейчас либо солнечно, либо дождь, либо пасмурно без дождя. Соответственно множество Ω состоит из трёх исходов, $\Omega = \{,,\}$. Джеймс Бонд пойман и привязан к стулу с завязанными глазами, но он может на слух отличать, идет ли дождь.
 - 1. Как выглядит σ -алгебра событий, которые различает агент 007?

Агент может знать: идет дождь, не идет дождь - значит, σ -алгебра будет иметь вид {дождь, {пасмурно, солнечно}, \emptyset , Ω }.

2. Как выглядит минимальная алгебра, содержащая $A = \{\emptyset\}$?

Пусть алгебра содержит A. Тогда она должна содержать дополнение к $A-\Omega$ и их объединение - Ω . Значит, минимальная алгебра, содержащая A, будет $\{\emptyset,\Omega\}$.

- 3. Сколько различных σ -алгебр можно придумать для данного Ω ?
 - (а) Первое такое множество построено в первом пункте;
 - (b) Второе во втором;
 - (c) Третью σ -алгебру можно построить, если предположить, что агент умеет различать только солнечно на улице или нет (например, потому что он стал вампиром). Тогда σ -алгебра будет иметь вид $\{$ солнечно, $\{$ пасмурно, дождь $\}$, \emptyset , $\Omega \}$;
 - (d) Четвертая σ -алгебра строится аналогично первой и третьей агент знает только то, что на улице пасмурно. Она будет такой: {пасмурно, {солнечно, дождь}, \emptyset , Ω };

(е) Предположим, что агент знает уже два состояние погоды - (Б.О.О.) солнечно или пасмурно. Тогда в σ -алгебру попадет их пересечение - {пасмурно, солнечно} - и дополнение к пересечению -{дождь}. Значит, зная какие-то 2 состояния погоды, агент автоматически будет знать и 3-е. Поэтому это последняя различная σ -алгебра, которую можно построить на Ω : {солнечно, {пасмурно, дождь}, дождь, {пасмурно, солнечно}, пас-

мурно, {солнечно, дождь}, \emptyset , Ω }

Значит, таких монжеств всего 5.

- 4. Монеточка подкидывается бесконечное число раз: X_n равно 1, если при n-ом подбрасывании выпал орел, и 0, если решка. И ничего другого выпасть не может. Определим несколько σ -алгебр: $F_n =$ $\sigma(X_1, X_2, \dots, X_n), H_n := \sigma(X_n, X_{n+1}, X_{n+2}, \dots)$
 - 1. Приведите по два нетривиальных (т.е. Ω и \emptyset не называть) примера такого события A, что:
 - $A \in F_{2021}$: В F_{2021} будет содержаться событие "при первом подбросе монетки выпал орёл"т.е. $X_1 = 1$, т.к. если это не так, то дополнение к "при первом подбросе монетки выпала решка"всё равно будет лежать в сигма-алгебре - это пример первого собы-

Также в F_{2021} будет событие "в промежутке между 42 и 101 всегда выпадал орел"т.е. $\{X_{42}=1,X_{43}=1,\ldots,X_{101}=1\}$, т.к. объединение этих событий, либо их дополнений, должно лежать в сигма-алгебре - это 2 пример;

• $A \notin F_{2021}$: В данном случае нам известны исходы на 2021 подбрасываниях, но ничего не известно насчет $X_{2023} = A$ - поэтому это пример такого события;

Также ничего не известно о множестве $\{X_{2024}, X_{2024}, \dots, X_{2042}\}$ A - это второй такой пример;

• A лежит в каждой H_n : событие "хотя бы раз выпала решка"лежит в каждой H_n , т.к. даже если всегда выпадал орел, дополнение к каждому из этих событий - выпала решка - должно быть в σ алгебре;

Также событие "решка выпала бесконечное число раз"лежит в каждой H_n , т.к. монетка подбрасывается бесконечное количество раз и если откинуть конечное число n брасаний на бесконечность это никак не повлияет.

- 2. В какие из упомянутых σ -алгебр входят события:
 - $X_{45} > 0$: $F_n, \forall n \in \mathbb{N} \setminus \{1, 2, \dots, 44\}$; $H_n, \forall n \in \{1, 2, \dots, 45\}$;
 - $X_{45} > X_{2021}$: $F_n, \forall n \in \mathbb{N} \setminus \{1, 2, \dots, 2020\}$; $H_n, \forall n \in \{1, 2, \dots, 45\}$;

• $X_{45} > X_{2021} > X_{15}$: $min(X_{15}) = 0 \land X_{2023} \in \{0,1\} \implies X_{2023} = 1, X_{45} > 1 > 0$, но $X_{45} \in \{0,1\} \implies$ такое событие не могло случиться, значит оно невозможное, т.е. это \emptyset . \emptyset входит в любую σ -алгебру.

3. Упростите выражения:

- $F_{11} \cap F_{25} = \sigma(X_1, X_2, \dots, X_{11}) \cap \sigma(X_1, X_2, \dots, X_{25}) = \sigma(X_1, X_2, \dots, X_{11}) = F_{11}$ потому что F_{11} полностью содержится в F_{25} из построения σ -алгебры:
- $F_{11} \cup F_{25} = F_{25}$ потому что F_{11} полностью содержится в F_{25} из построения σ -алгебры;
- $H_{11}\cap H_{25}=\sigma(X_{11},X_{12},X_{13},\ldots,X_{25},X_{26},\ldots)\cap\sigma(X_{25},X_{26},X_{27},\ldots)=H_{25}$ из построяние следует, что H_{25} лежит в H_{11} ;
- $H_{11} \cup H_{25} = H_{11}$.