Record Display Form

First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

L16: Entry 34 of 50

File: DWPI

Print

Oct 17, 1991

DERWENT-ACC-NO: 1991-311651

DERWENT-WEEK: 199143

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Mfr. of small metal particles - comprises dropping drops of melt through

cooling liq. of heat-stable oil to solidify

INVENTOR: KADESCH, K; RUTHARDT, R

PATENT-ASSIGNEE:

ASSIGNEE CODE HERAEUS GMBH W C **HERA**

PRIORITY-DATA: 1990DE-4012197 (April 14, 1990)

Search Selected Search ALL

תמ	TO	NITT.	– FA	MT	TV	

PATE	NT-FAMILY:				
	PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
	DE 4012197 A	October 17, 1991		000	
	DE 4012197 C2	August 18, 1994		005	B22F009/06
	WO 9116160 A	October 31, 1991		000	

APPLICATION-DATA:

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
DE 4012197A	April 14, 1990	1990DE-4012197	
DE 4012197C2	April 14, 1990 ·	1990DE-4012197	

INT-CL (IPC): B22F 1/00; B22F 9/06; B23K 35/30; C22C 1/04

ABSTRACTED-PUB-NO: DE 4012197A

BASIC-ABSTRACT:

Mfr. of metal particles comprises allowing a metal melt to fall dropwise from a melting crucible through a current of cooling liq.. The product is in the form of small spheres of at least 50 micro m dia. and of a very narrow particle size distribution. The method relies heavily on the appts. and control of conditions in which molten metal flows through a narrow orifice then into a stream of cooling fluid (heat stable oil) whose temp. is adjusted so that the molten metal spheres solidify on the surface.

USE/ADVANTAGE - Useful in pelletising solder or Au/Sn alloys is an economic and efficient method.

In an example, an Sn/Au alloy (20% wt.Sn) was melted in a crucible (1) by an electric-dip heater (7) to a temp. of 340 deg. C. The liq. in the region (4) which acts as a heat carrier is flowing continuously via circuit (5) from room temp. and develops a temp. gradient in the area below the nozzle capillary (2), aided by the cooling coil (9). The force of gravity and about 150mb pressure forces out the metal in a stream of molten drops (13), these harden on the surface then fall to the bottom of the container where they solidify fully. Below the base of the container the solid spheres (10) accumulate and are removed into a sluice device (8) which is emptied from time to time into a sphere reservoir (11). The alloy spheres produced ranged from 485-515 micro m in dia.@(5pp)@es ABSTRACTED-PUB-NO:

DE 4012197C EQUIVALENT-ABSTRACTS:

<u>Particulate metals are mfd.</u> by melting the metal in a crucible (1) with a capillary (2) in the base, from which metal is introduced dropwise into a vessel (3) contg. a liq. with high density and large heat capacity, stable at metal m.pt. Pref. an oil is used. Liquid enters (5) at the base of the vessel and leaves (6) at the top, flowing against the falling direction of the droplets, so that they solidify at least at the surface whole falling crucible and vessel are pref. of glass.

ADVANTAGE - Spherical particles are produced with a narrow side distribution and diameters more than 50mm.

CHOSEN-DRAWING: Dwg.1/1

TITLE-TERMS: MANUFACTURE METAL PARTICLE COMPRISE DROP DROP MELT THROUGH COOLING LIQUID HEAT STABILISED OIL SOLIDIFICATION

DERWENT-CLASS: M22 M26 P53 P55

CPI-CODES: M22-H01;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1991-134967 Non-CPI Secondary Accession Numbers: N1991-238828

Previous Doc Next Doc Go to Doc#

® BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 40 12 197 A 1

(5) Int. Cl.⁵: **B 22 F 9/06**

DEUTSCHES PATENTAMT

2) Aktenzeichen: P 40 12 197.6 2) Anmeldetag: 14. 4. 90

Offenlegungstag: 17. 10. 91

DE 40 12 197 A

(7) Anmelder:

W.C. Heraeus GmbH, 6450 Hanau, DE

(7) Erfinder:

Kadesch, Klaus, 6467 Hasselroth, DE; Ruthardt, Rolf, Dr., 6450 Hanau, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (S) Verfahren zur Herstellung teilchenförmigen Metalls, Anordnung zur Durchführung des Verfahrens und dessen Anwendung
- Die Erfindung betrifft ein Verfahren zur Herstellung von teilchenförmigem Metall, bei dem Metallschmelze aus einem Schmelztiegel tropfenweise in einen Flüssigkeitsstrom eingeleitet wird, in dem die Metallschmelzetropfen abgekühlt werden sowie eine Anordnung zur Durchführung des Verfahrens und dessen Anwendung. Die Aufgabe, ein kostengünstiges Verfahren zu entwickeln, mit dem es gelingt, Metalle in kugelige Teilchen mit enger Teilchengrößenverteilung und Durchmessern von mehr als 50 μm zu verformen und dafür eine einfache und raumsparende Vorrichtung zur Verfügung zu stellen, wird dadurch gelöst, daß der Flüssigkeitsstrom entgegen der Fallrichtung der Metallschmelzetropfen geleitet wird und der Abstand zwischen dem Auslauf der Metallschmelzetropfen aus dem Schmelztiegel und einer Erstarrungszone, in der die Metallschmelzetropfen wenigstens an ihrer Oberfläche erstarren, möglichst klein gehalten wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung von teilchenförmigem Metall, bei dem Metallschmelze aus einem Schmelztiegel tropfenweise in einen Flüssigkeitsstrom eingeleitet wird, in dem die Metallschmelzetropfen abgekühlt werden, eine Anordnung zur Durchführung des Verfahrens und dessen Anwendung.

Ein derartiges Verfahren und eine Vorrichtung für dessen Durchführung ist aus der US-PS 45 59 187 be- 10 le Öle als Kühlflüssigkeit bewährt. kannt. Bei dem bekannten Verfahren wird die Metallschmelze in einen Füssigkeitsstrom eingeleitet, dessen Strömungsgeschwindigkeit so ausgelegt ist, daß aus einer annähernd parallel zum Flüssigkeitsstrom angeordmöglichst feine Schmelzetropfen zerteilt wird. Die Schmelztropfen erstarren entweder ohne Einwirkung verformender Kräfte im Flüssigkeitsstrom oder sie werden vor der Erstarrung an einer quer zum Flüssigkeitsletzteren Fall entstehen Bruchstücke von Metallteilchen unterschiedlicher Form und Größe.

Die Erfindung hat sich als Aufgabe gestellt, ein kostengünstiges Verfahren zu entwickeln, mit dem es gelingt, Metallschmelze in kugelige Teilchen mit enger 25 Teilchengrößenverteilung und Durchmessern von mehr als 50 µm zu verformen und dafür eine einfache und raumsparende Vorrichtung zur Verfügung zu stellen.

Erfindungsgemäß wird diese Aufgabe bei dem eingangs angegebenen Verfahren dadurch gelöst, daß der 30 Flüssigkeitsstrom entgegen der Fallrichtung der Metallschmelzetropfen geleitet wird und der Abstand zwischen dem Auslauf der Metallschmelzetropfen aus dem Schmelztiegel und einer Erstarrungszone, in der die Metallschmelzetropfen wenigstens an ihrer Oberfläche er- 35 starren, möglichst klein gehalten wird.

Durch die Einleitung der Metallschmelzetropfen entgegen der Strömungsrichtung der Flüssigkeit erreicht man nämlich folgendes:

- a) eine verminderte Absinkgeschwindigkeit der Metallschmelzetropfen
- b) eine verminderte Abkühlgeschwindigkeit der Metallschmelzetropfen im Bereich des Auslaufs Bereich der Erstarrungszone (Gegenstromkühlung).

Dadurch ist es möglich, den Abstand zwischen dem der Zone, in der die Tropfen zumindest an der Oberfläche erstarrt sind, kurz zu halten und die Ausbildung einer exakten Kugelform aufgrund der Oberflächenspannung zwischen Flüssigkeit und Metallschmelze zu erleichtern.

Zur Verstärkung der Gegenstromkühlung hat es sich als vorteilhaft erwiesen, die Flüssigkeit im Bereich des Auslaufs der Metallschmelze mittels einer Heiz vorrichtung auf eine Temperatur aufzuheizen, die mindestens der Schmelztemperatur des Metalls entspricht, so daß 60 dadurch gleichzeitig eine Erstarrung der Metallschmelze im Auslauf verhindert wird.

Um einen geeigneten Temperaturgradienten innerhalb der Flüssigkeitssäule zu erhalten, wird die Flüssigkeit unterhalb der Erstarrungszone über einen Flüssigkeitszulauf kontinuierlich zugeführt und oberhalb des Auslaufs der Metallschmelze aus dem Schmelztiegel über einen Flüssigkeitsablauf kontinuierlich abgeführt. Dabei ist es zweckmäßig, die über den Flüssigkeitsablau abgeführte Flüssigkeit über ein Kühlaggregat dem Flüssigkeitszulauf wieder zuzuführen.

2

Im Sinne eines raschen Wärmeaustausches und einer 5 langsamen Absinkgeschwindigkeit ist es günstig, eine temperaturstabile Flüssigkeit mit hoher Dichte und/ oder mit hoher Wärmekapazität auszuwählen.

Für Metalle oder Metallegierungen mit einem Schmelzpunkt unter 400°C haben sich temperaturstabi-

Zur Verbesserung der Teilchengrößenhomogenität wird die Metallschmelze im Schmelztiegel mit einem Oberdruck beaufschlagt.

Zur Aufrechterhaltung einer geeigneten Temperaturneten Düse in Fließrichtung austretende Schmelze in 15 verteilung in der Flüssigkeit ist es zweckmäßig, daß ein den Flüssigkeitsstrom aufnehmender Behälter unterhalb des Auslaufs der Metallschmelzetropfen aus dem Schmelztiegel gekühlt wird.

Die Größe der Metallkügelchen, die nach diesem Verstrom angeordneten Prallfläche weiter zerkleinert. Im 20 fahren hergestellt werden, wird durch die Öffnungsweite des Auslaufs, die Strömungsgeschwindigkeit der Flüssigkeit sowie dem Überdruck auf die Metallschmelze im Schmelztiegel bestimmt. Bei einer Öffnungsweite des Auslaufs zwischen 0,03 und 3 mm, einer Strömungsgeschwindigkeit zwischen 0,5 und 5 cm/min. sowie einem Uberdruck zwischen 40 mbar und 4 bar sind Metallkügelchen mit einer Größe von 0,05 bis 5 mm herstellbar.

> Zur Durchführung des Verfahrens hat sich eine Anordnung bewährt, die erfindungsgemäß dadurch gekennzeichnet ist, daß der Abstand zwischen Bodenauslauf und der Erstarrungszone möglichst klein gehalten ist, und daß unterhalb der Erstarrungszone ein Flüssigkeitszulauf und oberhalb des Bodenauslaufs ein Flüssigkeitsablauf angeordnet ist.

Um die Ausbildung der Kugelform der aus dem Bodenauslauf austretenden Tropfen zu erleichtern, ist es zweckmäßig, daß zumindest der Bodenauslauf des Schmelztiegels innerhalb eines, den Flüssigkeitsstrom aufnehmenden Behälters angeordnet ist, und daß der Bodenauslauf und die Längsachse des Behälters so zueinander angeordnet sind, daß die aus dem Bodenauslauf austretenden Metallschmelzetropfen erstarren, ehe sie eine Begrenzungsfläche des Behälters berühren. Um die Zerteilung der Schmelze in Tropfen zu erreichen, ist und eine beschleunigte Abkühlgeschwindigkeit im 45 die Öffnung des Bodenauslaufs als Kapillare ausgebil-

> Zweckmäßigerweise ist die Kapillare auswechselbar in den Schmelztiegelboden eingesetzt.

Zur Entnahme der kugelförmigen Teilchen ist am Bo-Auslauf der Metallschmelze aus dem Schmelztiegel und 50 den des Behälters eine Schleusenvorrichtung angeschlossen, die einen kontinuierlichen Betrieb der Anordnung erlaubt.

> Zum Beobachten des Schmelzstandes oder des Verhaltens der Schmelze hat es sich als vorteilhaft erwiesen, daß der Schmelztiegel und/oder der Behälter zur Aufnahme der Kühlflüssigkeit aus einem temperaturbeständigen Glas besteht. Um eine ausreichend niedrige Viskosität der Schmelze zu gewährleisten, ist es nützlich, wenn zumindest der untere Teil des Schmelztiegels und der Bodenauslauf von einer Heizvorrichtung umschlossen sind. Hierfür hat sich ein innerhalb des Behälters angeordneter elektrischer Tauchsieder bewährt.

> Hinsichtlich der Anwendung ist dieses Verfahren besonders für die Herstellung von Lotkügelchen mit einem Durchmesser von 0,1 bis 1 mm geeignet. Insbesondere sind damit Lotkügelchen aus einer Gold-Zinn-Legierung mit einem Zinnanteil von 20-Gewichts-% herstellbar.

Anhand einer schematischen Darstellung wird die Durchführung des erfindungsgemäßen Verfahrens sowie die dazu verwendete Anordnung nachfolgend beispielhaft beschrieben.

Der untere Teil eines Schmelztiegels 1 taucht in einen 5 mit Flüssigkeit 4 gefüllten Behälter 3. Der Bodenauslauf des Schmelztiegels 1 besteht aus einer Kapillare 2 mit einem Innendurchmesser von ca. 300 µm. Die Kapillare 2 ist auswechselbar in dem Boden des Schmelztiegels 1 eingesetzt. Der Behälter 3 besitzt einen Zulauf 5 für die 10 Flüssigkeit 4 unterhalb und einen Ablauf 6 oberhalb der Kapillare 2. Sowohl der Schmelztiegel 1 als auch der Behälter 3 bestehen aus einem hochtemperaturbeständigen Glas. An den Behälter 3 ist eine Schleusenvorrichtung 8 angeschlossen. Der Schmelztiegel 1, der Behälter 15 3 und die Schleusenvorrichtung 8 sind vertikal angeordnet. Im Bereich des Zulaufs 5 für die Flüssigkeit befindet sich eine Kühleinrichtung mit Kühlschlangen 9. Der untere Teil des Schmelztiegels 1 und die Kapillare 2 befinden sich innerhalb der Heizzone eines elektrischen 20 Tauchsieders 7.

Mit der beschriebenen Anordnung werden kugelförmige Teilchen, wie nachstehend beschrieben, hergestellt:

Eine Zinn-Gold-Lotlegierung mit einem Zinnanteil von 25 20-Gewichts-% wird in den Schmelztiegel 1 eingefüllt mit einem geeigneten Flußmittel und Argon abgedeckt und mittels des elektrischen Tauchsieders 7 auf eine Temperatur von ca. 340°C erhitzt. Dabei dient die Flüssigkeit 4 im Bereich des Tauchsieders 7 als Wärmeüber- 30 träger. Aufgrund der Aufheizung der Flüssigkeit im Bereich des Schmelztiegels 1 und der kontinuierlichen Zufuhr von Flüssigkeit 4 mit Raumtemperatur über den Zulauf 5, bildet sich ein Temperaturgradient in der Flüssigkeitssäule unterhalb der Kapillare 2 aus, der durch 35 zusätzliche Kühlung des Behälters 3 im Bereich des Zulaufes '5 unterstützt wird. Unter dem Einfluß der Schwerkraft und eines zusätzlichen Stickstoff-Gasdrukkes von ca. 150 mbar auf die Schmelzoberfläche verläßt ein feiner Strom der Lotschmelze 13 die Kapillare 2 und 40 reißt in feine Metallschmelzetropfen 12 auf. Da die Flüssigkeit 4 im Bereich der Kapillare 2 eine etwa gleich hohe Temperatur wie die Lotschmelze 13 aufweist, wird sowohl ein "Zufrieren" der Kapillare 2 als auch ein Erstarren der Lotschmelze 13 in Tropfenform verhindert. 45 Während des Absinkens der Metallschmelzetropfen 12 in kältere Flüssigkeitsschichten, sorgt die Oberflächenspannung der Lotschmelze 13 gegenüber der Flüssigkeit 4 für die Ausbildung einer Kugelform der Metallschmelzetropfen 12. Die zu Lotkügelchen 10 erstarrten 50 Metallschmelzetropfen 12 werden am Boden des Gefä-Bes 3 gesammelt und von Zeit zu Zeit über die Schleusenvorrichtung 8 in den Sammelbehälter 11 ausgeschleust. Der Durchmesser der Lotkügelchen 10 lag zu ca. 20% innerhalb von 485 - 515 µm. 55

Patentansprüche

1. Verfahren zur Herstellung von teilchenförmigem Metall bei dem Metallschmelze aus einem 60 Schmelztiegel tropfenweise in einen Flüssigkeits-Strom eingeleitet wird, in dem die Metallschmelzetropfen abgekühlt werden, dadurch gekennzeichnet, zur Herstellung von kugelförmigen Teilchen der Flüssigkeits-Strom entgegen der Fallrichtung 65 der Metallschmelzetropfen geleitet wird und der Abstand zwischen dem Auslauf der Metallschmelzetropfen aus dem Schmelztiegel und einer Erstar-

rungszone, in der die Metallschmelzetropfen wenigstens an ihrer Oberfläche erstarren, möglichst klein gehalten wird.

Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Flüssigkeit im Bereich des Auslaufes mittels einer Heizvorrichtung auf eine Temperatur, die mindestens der Schmelztemperatur des Metalls entspricht, aufgeheizt wird.

3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Flüssigkeit unterhalb der Erstarrungszone über einen Flüssigkeitszulauf kontinuierlich zugeführt und oberhalb des Auslaufes über einen Flüssigkeitsablauf kontinuierlich abgeführt wird.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die über den Flüssigkeitsablauf abgeführte Flüssigkeit abgekühlt dem Flüssigkeitszulauf wieder zugeführt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, als Flüssigkeit eine solche mit hoher Temperaturbeständigkeit und mit hoher Dichte und/oder mit großer Wärmekapazität gewählt wird.

 Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Flüssigkeit ein temperaturstabiles Öl verwendet wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß während des Austretens der Metallschmelzetropfen die Metallschmelze im Schmelztiegel mit einem Überdruck beaufschlagt wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zur Aufrechterhaltung einer geeigneten Temperaturverteilung in der Flüssigkeit zwischen dem Auslauf der Metallschmelzetropfen aus dem Schmelztiegel und dem Flüssigkeitszulauf, die Flüssigkeit gekühlt wird.

9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Öffnungsweite des Auslaufs, die Strömungsgeschwindigkeit der Flüssigkeit sowie der Überdruck auf die Metallschmelze im Schmelztiegel so gewählt werden, daß Metallkügelchen mit einer Größe von 0,1 bis 1 mm entstehen.

10. Anordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, die einen elektrisch beheizten Schmelztiegel mit Bodenauslauf aufweist, der in einen Flüssigkeitsstrom hineinragt, dadurch gekennzeichnet, daß der Abstand zwischen Bodenauslauf und der Erstarrungszone möglichst klein gehalten ist, daß unterhalb der Erstarrungszone ein Flüssigkeitszulauf und oberhalb des Bodenauslaufs ein Flüssigkeitsablauf angeordnet ist.

11. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß zumindest der Bodenauslauf des Schmelztiegels innerhalb eines, den Flüssigkeitsstrom aufnehmenden, Behälters angeordnet ist.

12. Anordnung nach den Ansprüchen 10 oder 11, dadurch gekennzeichnet, daß der Bodenauslauf und die Längsachse des Behälters so zueinander angeordnet sind, daß die aus dem Bodenauslauf austretenden Metallschmelzetropfen erstarren, ehe sie eine Begrenzungsfläche des Behälters berühren.

13. Anordnung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die Öffnung des Bodenauslaufs als Kapillare ausgebildet ist.

14. Anordnung nach Anspruch 13, dadurch gekenn-

zeichnet, daß die Kapillare auswechselbar in den Schmelztiegelboden eingesetzt ist.

- 15. Anordnung nach Anspruch 12, dadurch gekennzeichnet, daß dem Behälter am Boden eine Schleusenvorrichtung zur Entnahme der kugelförmigen 5 Teilchen angeschlossen ist.
- 16. Anordnung nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß der Schmelztiegel aus einem temperaturbeständigen Glas besteht.
- 17. Anordnung nach den Ansprüchen 11, 12 oder 15 10 dadurch gekennzeichnet, daß der Behälter aus Glas besteht.
- 18. Anordnung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, zumindest der untere Teil des Schmelztiegels und der Bodenauslauf von einer Heizvorrichtung umschlossen sind.
- 19. Anordnung nach Anspruch 18, dadurch gekennzeichnet, die Heizvorrichtung ein innerhalb des Behälters angeordneter elektrischer Tauchsieder ist.
 20. Anwendung des Verfahrens nach den Ansprüchen 1 bis 9 zur Herstellung von Lotkügelchen mit einem Durchmesser von 0,1 bis 1 mm.
- 21. Anwendung des Verfahrens nach Anspruch 20 zur Herstellung von Lotkügelchen aus einer Gold-Zinnlegierung, mit einem Zinnanteil von 20 Gewichtsprozent.

Hierzu 1 Seite(n) Zeichnungen

30

35

40

45

50

55

60

- Leerseite -

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 40 12 197 A1 B 22 F 9/06

17. Oktober 1991

