Nonlinear Dynamics and Chaos I. Problem set 4

1. Consider the discrete dynamical system

$$x_{n+1} = Ax_n + f(x_n, y_n),$$

 $y_{n+1} = By_n + g(x_n, y_n),$

where $x_n \in \mathbb{R}^c$, $y_n \in \mathbb{R}^d$, $A \in \mathbb{R}^{c \times c}$, $B \in \mathbb{R}^{d \times d}$; f and g are C^r functions with no linear terms. Assume that all eigenvalues of A have modulus one, and none of the eigenvalues of B have modulus one. Then the linearized system at the origin admits a center subspace E^c aligned with the x coordinate plane.

- (a) Derive a general algebraic equation for the center manifold W^c , which is known to exists by a theorem analogous to the center manifold theorem for continuous dynamical systems.
- (b) Find a cubic order approximation for the center manifold of the discrete system

$$x_{n+1} = x_n + x_n y_n,$$

$$y_{n+1} = \lambda y_n - x_n^2,$$

where $\lambda \in (0,1)$.

- (c) Reduce the dynamics to the center manifold and determine the stability of the origin. Verify your results by a numerical simulation of a few initial conditions near the origin.
- 2. Consider the quadratic Duffing equation

$$\dot{u} = v,
\dot{v} = \beta u - u^2 - \delta v,$$

where $\delta > 0$, and $0 \le |\beta| \ll 1$.

- (a) Construct a β -dependent center manifold up to quadratic order near the origin for small β values.
- (b) Construct a stability diagram for the reduced system on the center manifold using β as a bifurcation parameter.
- 3. Construct a cubic-order local approximation for the unstable manifold of the hyperbolic fixed point of the pendulum equation

$$\ddot{x} + \sin x = 0.$$