

				***	** **	***学	年第.	二学期	朋考试	试卷		
	课	程名	称:					课和	呈代码	7 :		
	开	课院	系:					考证	式形式			
	姓	名:	_		学号:	- :			专业			_
_	``	选择总	题 (每	- 题 3 :	分,共	30分	,请将	子答案	填入下	'表中))	
		1	2	3	4	5	6	7	8	9	10	
	-											
1.	于 A. C.	布丁模 α 粒 只有	型", 子很容 集中在	主要依 易穿透 很小空		内的正	B. 剪 电荷才	写验中区 能使 α	2月了盖 粒子产:	董革计数 生大角	散射	葡萄
2.	第-	一激发	态向基	态跃迁	〔(He) 任,发出 Ā	的光谱	绪的波	长为		价氦离	子(He ⁺	⁺)从
3.			模型,	-	个锂离子		产在n =			角动量)	为	
4.	这	时若做	光谱测	量,自	当加速 影够测得 120.9n	界光谱 线	的波长	为			更显著下 3.6nm	降,
	的(A .	磁场 (. 均匀	原子速 散开	度方向 B.	可与磁场 仍为 1	,梯度方 束	可向垂直 C.分	(), 会 ² 为2束	发现通过	寸磁场		梯度
6.					长的两个 S _{1/2} , ² P ₁				D.	${}^{1}S_{0}$, ${}^{3}F$	D ₂	
7.	到ī A.	高的次 ¹ P ₁ ,	ː序为 ³ P ₀ , ³ I	P_1 , 3P_2	电子组法	В.	${}^{3}P_{0}$,	${}^{3}P_{1}$, ${}^{3}P_{1}$	P_2 , 1P_1	 手态,	其能量	从低

本张	考	卷	.得分	:	
----	---	---	-----	---	--

8.	氢原子电子的波函一玻尔半径.则该A. 2h	电子的轨道角动量	量在 z 方向的分量	_				
9.	3d、5s 等轨道, 从 态能级分别高 2033 子组态为	【而形成单重态和 35.4cm ⁻¹ ,20349.3	三重态。若 Ca f cm ⁻¹ ,20371.0cm	1 个 4s 可被激发到 4p、 的某一个三重态能级比基 n ⁻¹ ,则形成该三重态的电				
10.		B.4s4p 电子组态从 4s4d 🛭		D. 4s5s 出的波长不同的光谱线				
	A. 6	B. 7	C. 8	D. 9				
=	、填空题(每空	3分,共30分	, 请将答案直	接填在本试卷中)				
	1. 基态碳原子,核外电子组态为 $1s^22s^22p^2$,其中的电子进行 LS 耦合,所能够形成的原子态用符号表示为							
为_的壳	原子态为	层跃迁,能够	; 若不考虑兰	的壳层,所形成的原子态在 $n = 2$ 的壳层,所形成 性好极的 电子从 $n = 3$ 的 同的光谱线的数目				
3.	电子自旋的朗德因	子 <i>g</i> _s =	,轨道的朗德	因子 $g_l =$				
为_		_nm; 若电子撞击	阳极的瞬间,将	ie(德布罗意)波长最短 其动能全部转化为电磁辐 (不考虑相对论效应)				
	黑体在加热过程中。 辐射本领增加了		大的波长 ,由 0.60	θμm变成了了0.40μm. 则				
	波长为 2000Å 的光 电压为	照在铝表面上. 已	人知铝的脱出功为	յ 4.2eV,则光电效应的遏				

三、(10%)自旋轨道耦合能

$$\hat{W} = -\hat{\vec{\mu}}_s \cdot \hat{\vec{B}} = \frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{2m_e^2 c^2 r^3} \hat{\vec{s}} \cdot \hat{\vec{L}}$$
 计算力学量 \hat{W} 与总角动量算符 \hat{J}_k 以及轨道角动量算符 \hat{L}_k 的对易子,

$$\begin{bmatrix} \hat{J}_k, \widehat{W} \end{bmatrix} = ? \\
[\widehat{L}_k, \widehat{W}] = ?$$

本张考卷得分:____

四、(10%)考虑宽度为α的一维无限深势阱

$$V(x) = \begin{cases} 0, & \text{if } |x| < \frac{a}{2}; \\ +\infty, & \text{if } |x| \ge \frac{a}{2}. \end{cases}$$

t = 0时在x = 0处释放一个点粒子.

- (1) 求粒子处于第二激发态和基态的几率之比.
- (2) 这个比值是否会随时间改变?

五、(10%)钠原子 $3^2P_{1/2} \rightarrow 3^2S_{1/2}$ 跃迁的光谱线波长为 589.6nm,在B = 2.5T的磁场中发生塞曼分裂. 问从垂直于磁场的方向观察,其分裂为多少条谱线,并给出各谱线波长.

六、(10%)能量为 0.41MeV 的 X 射线光子,与静止的自由电子碰撞, 反冲电子的速度为光速的 0.6 倍. 求散射光的波长以及散射角.

可能会用到的公式及物理常数

光速 $c = 2.99792458 \times 10^8 \text{m/s}$ Planck 常数 $h = 6.626069 \times 10^{-34} \text{J} \cdot \text{s}$

 $\hbar = h/2\pi = 1.0545716 \times 10^{-34} \text{J} \cdot \text{s} = 6.58212 \times 10^{-22} \text{MeV} \cdot \text{s}$

 $\hbar c = 197.3 \text{MeV} \cdot \text{fm}$ $hc = 1.24 \times 10^{-6} \text{m} \cdot \text{eV}$

真空磁导率 $\mu_0=4\pi\times 10^{-7} \text{N}\cdot \text{A}^{-2}$ 真空介电常数 $\varepsilon_0=8.85\times 10^{-12} \text{C}^2\cdot \text{J}^{-1}\cdot \text{m}^{-1}$

阿伏伽德罗常数 $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ 玻尔兹曼常数 $k = 8.62 \times 10^{-5} \text{eV} \cdot \text{K}^{-1}$

电荷单位 $e = 1.602 \times 10^{-19}$ C 原子单位 $1u = 1.66 \times 10^{27}$ kg = 931.5MeV/c²

电子质量 $m_e = 0.511 \text{MeV/c}^2 = 9.11 \times 10^{-31} \text{kg}$

电子的经典半径 $r_e = e^2/(4\pi\epsilon_0 m_e c^2) = 2.818 \times 10^{-15} m$

精细结构常数α = $e^2/(4\pi\epsilon_0\hbar c) \approx 1/137.036$

Stefan-Boltzmann 常数 $\sigma = 5.67 \times 10^{-8} \text{W}/(\text{m}^2 \cdot \text{K}^4)$

Wien 位移定律常数 $b = 2.898 \times 10^{-3} \text{m} \cdot \text{K}$

类氢原子能级的精细结构修正 $\Delta E_{nj} = E_n \frac{\alpha^2 Z^2}{n^2} \left(\frac{n}{1+1/2} - \frac{3}{4} \right)$

物质波 de Broglie 关系 $E = h\nu$, $\vec{p} = \hbar \vec{k}$, $p = h/\lambda$

Einstein 质能关系 $E = mc^2$, $E^2 = p^2c^2 + m^2c^4$

轨道角动量算符

$$\hat{\vec{L}} = -i\hbar \vec{r} \times \nabla, \qquad \hat{\vec{L}}^2 = -\hbar^2 \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right\}$$

薛定谔方程 $i\hbar \frac{\partial}{\partial t} \psi = \hat{H}\psi$

单粒子定态薛定谔方程 $\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right)u(\vec{r}) = Eu(\vec{r})$

力学量随时间的演化 $\frac{d\hat{A}(t)}{dt} = \frac{\partial \hat{A}(t)}{\partial t} + \frac{1}{i\hbar} [\hat{A}(t), \hat{H}]$

测不准关系 $\Delta x \Delta p_r \geq \hbar/2$

Bohr 半径 $a_{\infty} = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2} = r_e\alpha^{-2} = 0.529 \times 10^{-10} \text{m}$ Bohr 磁子 $\mu_B = \frac{e\hbar}{2m_e} = 0.927 \times 10^{-23} \text{J} \cdot \text{T}^{-1} = 5.788 \times 10^{-5} \text{eV} \cdot \text{T}^{-1}$

Rydberg 能量 $hcR_{\infty} = m_e c^2 \alpha^2 / 2 = 13.6 eV$

Rydberg 常数 $R_{\infty} = 1.0973731534(13) \times 10^7 \text{m}^{-1}$

单光子跃迁选择定则 $\Delta l_i = \pm 1$, $\Delta m_i = 0, \pm 1$, $\Delta l_{i\neq i} = 0$

多电子原子 LS 耦合跃迁选择定则

$$\Delta S=0; \ \Delta L=0,\pm 1; \ \Delta J=0,\pm 1$$
 $(J=0\rightarrow J=0$ 除外); $\Delta M_J=0,\pm 1$

朗德间隔定则 $E_{I+1} - E_I = \hbar^2 \zeta(L, S)(J+1)$

塞曼效应能级修正
$$E_{mag}^{(1)}=g_J\mu_BB_0M_J,\ g=1+(g_s-1)\frac{J(J+1)-L(L+1)+S(S+1)}{2J(J+1)}$$