Politecnico di Milano STATISTICS (079086), 2009/2010, Prof. A.Barchielli Problem set n. 3

15th April 2010

Exercise 1 Let (X_1, X_2, X_3, X_4) be a random sample from a Uniform distribution over the interval $(\theta-1, \theta+1)$, with θ unknown.

- (a) Compute the mean and variance of X_i . $(E(X_i) = \theta; V(X_i) = 1/3)$
- (b) Set

$$Y = \frac{X_1 + 3X_2}{8} + \frac{X_3 + X_4}{4}.$$

Compute the mean and variance of Y. $[E(Y) = \theta; V(Y) = 3/32]$

(c) Set

$$Z = \frac{X_1 + X_2 + X_3 + X_4}{4}.$$

Compute the mean and variance of Z. $[E(Z) = \theta; V(Z) = 1/12]$

(d) Which one, between Y and Z, is the best estimator of θ ? [Z].

Exercise 2 Let (X_1, \ldots, X_n) be a random sample from a discrete distribution such that

$$p(-1) = \frac{\theta}{2}, \quad p(0) = 1 - \theta, \quad p(1) = \frac{\theta}{2}$$

- (a) For which values of θ the function p is a density? [We need $0 \le p_i \le 1$ and $\sum p_i = 1$; thus, $0 \le \theta \le 1$]
- (b) Compute the mean and variance of X_1 . $[E(X) = 0; V(X) = \theta]$

Consider two estimators of θ , defined respectively as $G_n = \frac{1}{n} \sum_{i=1}^n |X_i|$ and $T_n = |X_n|$.

- (c) Are G_n and T_n unbiased? [The estimator U_n of θ is said to be unbiased if $E(U_n) = \theta$. Both G_n and T_n are unbiased]
- (d) Compute the MSE of the two estimators G_n and T_n and say what happens if $n \to \infty$. $[MSE_{U_n} = Var(U_n) + [E(U_n) \theta]^2$; hence, $MSE_{G_n} = \frac{\theta(1-\theta)}{n}$ and $MSE_{T_n} = \theta(1-\theta)$. Note that $MSE_{G_n} \to 0$ for $n \to \infty$
- (e) Which estimator is better? Why? $[G_n \text{ is better since its MSE is smaller for any } n > 1 \text{ and moreover goes to } 0 \text{ for } n \to \infty]$

Exercise 3 X_1 is a sample from a Poisson distribution with parameter λ . Consider the following estimators for λ : $T_1(X_1) = X_1$ and $T_2(X_1) = 1$. Which one is the best according to the MSE? [T_2 is better than T_1 for $0.381 \le \lambda \le 2.618$; for all other values of λ , T_1 is better]

Exercise 4 Let (X_1, X_2, X_3) be a random sample from a Bernoulli distribution. The following estimator has been proposed to estimate the mean μ of the distribution:

$$T = \frac{1}{12}X_1 + 3(X_2 + X_3).$$

- a) Shows that T is biased and compute its MSE. $[MSE_T = Var(T) + [E(U_n) \theta]^2 = (\frac{1}{12^2} + 9 + 9)Var(X_1) + (\frac{73}{12}\mu \mu)^2 = 18.0069\mu(1 \mu) + 25.84\mu^2]$
- b) Compute the constant c such that W=cT is an unbiased estimator of μ , and compute its MSE. $[c=\frac{12}{73};\ MSE_W=\left(\frac{12}{73}\right)^218.0069\mu(1-\mu)]$
- c) Which of the two estimators is the best? [W]

Exercise 5 The number of people entering a Computer Shop in the center of Milan every day is a Poisson random variable with parameter λ . If during 30 days the total number of people who have entered the shop have been 1050, which is the maximum likelihood estimate of λ ? Find also the maximum likelihood estimator of $1/\lambda$; is it unbiased?

Exercise 6 Let $(X_1, ..., X_n)$ be a random sample from a Gaussian population with mean μ and variance $\sigma^2 = 16$.

- a) Knowing that n=9 and $\overline{x}=5$, compute the confidence interval for μ at level 90%. [The confidence interval for μ is given by: $(\overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}};\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}})$. Using the data above we have the interval (2.807; 7.193)]
- b) Compute the confidence interval for μ at level 95%. [(2.387; 7.613)]
- c) Determine the smaller sample size n such that the confidence interval for μ at level 95% is not longer than 4. [The length of the confidence interval is given by $2z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}$. With the data above, we need $n \ge 16$]

Exercise 7** Let X_1, \ldots, X_n be i.i.d. $\sim f(x, \theta) = \frac{1}{\theta} e^{-x/\theta} \mathbf{1}_{(0,\infty)}(x)$, where $\theta > 0$.

- 1. Find the density of the sample mean \bar{X} [$\bar{X} \sim Gamma(n, \theta/n)$];
- 2. Find the density of the random variable $\frac{2n\bar{X}}{\theta}$ $\left[\frac{2n\bar{X}}{\theta}\sim Gamma(n,2)\equiv\chi^2(2n)\right]$;
- 3. Let $\alpha = 5\%$, n = 3 and $\theta = 2$: determine k such that $P(\bar{X} \leq k) = \alpha$ [Use the fact that $\frac{2n\bar{X}}{\theta}$, from the tables we have $k \simeq 1.64/3$]
- 4. Let n=3 and $\theta=1.49$: calculate $P(\bar{X}>1.64/3)$ $[P(\chi_6^2>2.2013)=1-F_{\chi_6^2}(2.2013)\simeq 1-0.1=0.9]$