SECOND YEAR: 2604 PLANETARY REMOTE SENSING 5

Scattering inside Earth's atmosphere
Dr. A. Battaglia
EOS-SRC, Dept. of Physics and Astronomy,
University of Leicester, U.K.

http://www2.le.ac.uk/departments/physics/research/e arth-observation-science

The photon journey

10 trajectories

Atmospheric phenomena

Can you explain these phenomena?

Interaction of Particle with E/M Radiation

$$\nabla \cdot \mathbf{D} = 0$$

$$\nabla \cdot \mathbf{E} = 0$$

$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = \mathbf{0}$$

Basically the problem is ``reduced" to solving Maxwell's equations with boundary conditions

Solution generally depends on

- Size, shape and composition of the particle (m=m_r+im_i)
- Wavelength, polarization and direction of the incident radiation (relative to the particle orientation)

For spheres the problem can be solved analytically → Mie theory (1908, ``Contributions to the optics of turbid media, particularly of colloidal metal solutions" in "Annalen der Physik)

Mie Scaling property

All scattering and absorption properties scale with the ratio of size of scattering particle (r) to wavelength (λ) of light:

Size parameter $x = 2\pi r/\lambda$

different regimes of atmospheric scattering need to be distinguished.

x << 1 Rayleigh scattering (single Dipole)</p>

0.1 < x < 50 "Mie" Scattering

x> 50 Geometric optics

Interaction of Particle with E/M Radiation: cross sections

Sphere, radius r, complex refractive index $m=m_r + im_i$ Geometric cross-section πr^2

Particle scattering/absorption is defined in terms of crosssectional areas σ & efficiency factors Q

 σ_e = effective area projected by the particle that determines extinction

Similarly σ_s , σ_a

The particles is absorbing and/or scattering some of the incident radiation \rightarrow absorbed/scattered power $P_{e,s,a}$

$$\sigma_{e,s,a} = \frac{P_{e,s,a}}{F_{inc}}$$

The efficiency factor then follows $Q_{e,s,a} = \frac{\sigma_{e,s,a}}{\pi r^2} = f(x,m)$

N.B.: Q can be larger than 1!!!

Extinction efficiency (non absorbing sphere)

Cloud droplets

Non-absorbing water sphere in the VIS (m=1.33+i0)

- a) Q_e rises to 4 at x=6 (r~λ), then dampening oscillations around 2
- b) $Q_e \rightarrow 2$ as $2\pi r/\lambda \rightarrow \infty$ extinction paradox

Implications of oscillations for color of scattered light. Assume r=const and λ rising (to the left!)

- x<6: red less extinguished than blue → reddening
- 6<x<12: blue less extinguished than red→blueing (needs particular narrow size distribution of aerosols).

Extinction efficiency vs wavelength

Looking into light source: maximum signal correpsonds to minimu extinction

- a) For aerosols and small haze (r<0.3µm) we still see reddening.
- b) For particles around 1 μm we could see greening!
- c) For typical cloud particles $(r\sim10\mu m)$ we see no colour- selective properties and $Q_e\sim2$: white clouds

Extinction and Scattering by Absorbing Spheres

Absorbing water sphere (m=1.33+im_i)

- a) Absorption largely reduces both the large and fine wiggles.
- b) Single scatter albedo strongly reduces with increasing m_i (it's 1 for m_i=0).
- c) For x>10 behaviour of ω with increasing m_i is unpredictable (can rise or fall).
- d) Forward scattering increases, with g starting at zero in the Rayleigh range.

Extinction Paradox

SCATTERING PROCESSES

■ Basic Considerations:

- Scattering removes fraction of radiation from one direction and directs it into other directions
- Photons passing through medium may encounter only one particle (single scattering) or many particles (multiple scattering)
- Scattering in the atmosphere occurs from molecules (Rayleigh scattering) and aerosol/cloud particles (Miescattering)

Main Parameters:

- Scattering cross section
 σ_s(effective area for scattering)
- Scattering phase function p(φ) (direction)

Scattering Angle and plane of scattering

Unit direction vector:

$$\vec{\xi} = (\cos\varphi\sin\theta, \sin\varphi\sin\theta, \cos\theta)$$

The angle formed between two direction vectors is given by:

$$\cos \Theta = \xi \bullet \xi'$$

= $\mu \mu' + (1 - \mu^2)^{1/2} (1 - {\mu'}^2)^{1/2} \cos(\varphi' - \varphi)$

with
$$\mu = \cos\theta$$

Viewed in 2-D (in a plane that contains the incident and scattered direction vectors)

Direction

Phase Function for spheres

Scattering only depends on the scattering angle

Phase function:
$$P(\cos\Theta) = \frac{4\pi}{\sigma_s} \frac{d\sigma_s(\cos\Theta)}{d\Omega}$$

$$P(\cos\Theta) = P(\theta, \phi, \theta', \phi')$$

Phase function is normalized:

$$\frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} P(\theta, \phi, \theta', \phi') \sin \theta \, d\theta \, d\phi = 1$$

Isotropic scattering:

$$P(\cos\Theta) = 1$$

A useful parameter to describe the PF shape is the asymmetry parameter

$$g \equiv \left\langle \cos\Theta\right\rangle = \int P \cos\Theta \, d\Omega$$

$$g = 1 \quad \text{-pure forward scatter}$$

$$g = 0 \quad \text{-isotropic or symmetric}$$

$$g = -1 \quad \text{-pure backscatter}$$

average cosine of the scattered direction

Scattering by small particles (e.g. visible on molecules)

Scattering by molecules is referred to as Rayleigh

scattering

$$\frac{2\pi r}{\lambda} = x << 1$$

- Oscillating dipole steadily accelerates charges radiates
 E/M wave Hertz Dipole (Grant&Phillips, Ch. 13):
- Scattered wave is proportional to the Polarizability α $\mathbf{p} = \alpha \mathbf{E}_0 \exp(i\omega t)$

$$\alpha \equiv \frac{\varepsilon - 1}{\varepsilon + 2} = \frac{m^2 - 1}{m^2 + 2}$$

ε= dielectric constant m=refractive index

Recent

Bremsstrahlung

Bremsstrahlung, i.e. "braking radiation", is electromagnetic radiation produced by the acceleration of a charged particle All classical electromagnetic radiation is ultimately generated by accelerating electrical charges.

normal to oscillation

γ angle between r and p

The Scattered Wave

Scattering plane

parallel to scat. plane

1.
$$\mathbf{E}_0 \perp \hat{\Omega}$$

2.
$$\mathbf{p} \parallel \mathbf{E}_0 \xrightarrow{\text{when } \alpha \text{ is }} \mathbf{p} \perp \hat{\Omega}$$

E lies on the scattering plane

3. \mathbf{E}_{scat}

in a plane spanned by \mathbf{p} and $\mathbf{\Omega}$ ' (scattered direction)

 \mathbf{E} Ω

5.
$$\left|\mathbf{E}_{scat}\hat{\Omega}'\right| \propto \left|\frac{d^2\mathbf{p}}{dt^2}\right| = \left|\alpha\mathbf{E}_0\frac{d^2}{dt^2}\exp(i\omega t)\right| \propto \omega^2$$

$$I_{scat} \propto \mathbf{E}_{scat}^2(\hat{\Omega}') \propto \begin{cases} \omega^4 \sin^2 \gamma & \parallel \\ \omega^4 & \perp \end{cases}$$

Scattered intensity: σ_s [Rayleigh] ~ λ^{-4}

- Very strong wavelength dependence
- Rayleigh scattering is very efficient for short (UV) wavelength

Rayleigh Scattering and polarization

- ☐ Intensity of scattered light will depend on orientation of E vector
 - I ~ cos²⊕ for E₁ and I ~ const. for E₁
 - Unpolarized light: superposition of 2 dipoles: I~ 1+cos²⊕
 - Close to isotropic for unpolarized light

Perpendicular

☐ (Rayleigh) scattering polarizes light

- Dipole does not radiate in direction of oscillation
- maximum of polarisation for 90° scattering angle

$$P_{\text{unpolarized}}(\Theta) = 3/4(1 + \cos^2\Theta)$$

Scattering on Particles (Mie Scattering)

Explained by coherent scattering from many individual particles (dipoles) that form scattering particle

 Forward moving waves tend to be in phase and thus constructively add

Combination of 2 Dipoles

forward scattered

incident

backscattered

Sphere Scattering Phase Function

Non-absorbing water sphere in the VIS (m=1.33-i0), scale is arbitrary!

- For x=0.1 symmetric Rayleigh phase function
- Increasing x leads to increasing forward scattering (depends on m!)
- Number of large wiggles are ~equal to x.
- At x=3 forward scattering is already 100 times larger than sidewards scattering.
- Forward scattering becomes increasingly peaked.
- At x=100 backscattering at 140° starts to develop (rainbow), and at x=1000 also the secondary rainbow develops.
- At x>2000 usually geometric optics is valid but still some dependence on x.

Exticntion, absorption, scattering coefficients

Extinctions, absorptions and scatterings by ensemble of particles are obtained by simply adding (integrating over the size distribution)

Extinctions coefficient:

$$k_{e,a,s} = \int_{0}^{\infty} n(r) \pi r^{2} Q_{e,a,s}(r,\lambda) dr$$
1.0000

L²
0.1000

n(r)= dN/dr : particle size distribution

 π r²: geometric area of particle

Q: efficiency factor

Integration over particle distribution yields smooth behavior for extinctions coefficients

$$\varpi = \frac{k_s}{k_e}, \ P(\cos\Theta) = \frac{1}{k_s} \int_0^\infty n(r) Q_s(r) \pi r^2 P(\cos\Theta, r) dr$$
$$g = \frac{1}{k_s} \int_0^\infty n(r) Q_s(r) \pi r^2 g(r) dr$$

Trying to understand the complete Picture

Ideally, we want to know intensity at any point in any direction!

So what is the problem?

$$\frac{dI_{\lambda}(\xi)}{ds} =$$

$$\frac{dI_{\lambda}(\xi)}{ds} = - \\ -k_{a}(\lambda)I_{\lambda}(\xi)$$
 loss by absorption

$$\frac{dI_{\lambda}(\xi)}{ds} = -k_s(\lambda) I_{\lambda}(\xi) - k_a(\lambda) I_{\lambda}(\xi)$$
 loss by scattering loss by absorption

$$\frac{dI_{\lambda}(\xi)}{ds} = -k_s(\lambda)\,I_{\lambda}(\xi) - k_a(\lambda)\,I_{\lambda}(\xi) + k_a(\lambda)\,B_{\lambda}(T)$$
 loss by scattering loss by absorption gain by emission

ONE MORE SCATTERING EFFECT

- Light can also be scattered from outside into the viewing direction
- This term is difficult to calculate:

Leads to second signal (additional source) similar to emission term

$$\frac{dI_{\lambda}(\xi)}{ds} = -k_s(\lambda)I_{\lambda}(\xi) - k_a(\lambda)I_{\lambda}(\xi) + k_a(\lambda)B_{\lambda}(T) + \frac{k_s}{4\pi}\int_{\Omega}P(\Theta)I_{\lambda}(\xi')d\Omega$$
 loss by scattering absorption gain by emission
$$\mathbf{S_{MS}(\lambda)}$$

gain by multiple scattering

- Most general description of change in intensity after interaction with absorbing, scattering and emitting medium
- Equation is merely a statement of energy conservation
- In addition: boundary conditions for top (incoming flux) and bottom (reflection/emission) of atmosphere

$$\frac{dI_{\lambda}(\xi)}{ds} = -k_s(\lambda)\,I_{\lambda}(\xi) - k_a(\lambda)\,I_{\lambda}(\xi) + k_a(\lambda)\,B_{\lambda}(T) + S_{MS}\left(\lambda\right)$$
 loss by scattering absorption gain by emission multiple scattering

Note:

For purely absorbing case this lead to Lambert Beer law For thermal IR (no scattering) to the Schwartzschild equation The radiation field at a certain point in a given direction may depend on the radiation field in any other point/direction

This is the source

What do you need to know?

• Scattering, absorption cross sections

 Relation between scattering/absorption coefficients and corresponding cross sections

Phase function

Characteristics of Rayleigh and Mie Scattering

Radiative transfer equation