# Indian Journal of Pure & Applied Mathematics

DEVOTED PRIMARILY TO ORIGINAL RESEARCH IN PURE AND APPLIED MATHEMATICS

Including
CONTENTS & INDEX

VOLUME 20/12 DECEMBER 1989



# INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Published monthly by the

# INDIAN NATIONAL SCIENCE ACADEMY

Editor of Publications

PROFESSOR D. V. S. JAIN

Department of Physical Chemistry, Panjab University Chandigarh 160 014

PROFESSOR J. K. GHOSH Indian Statistical Institute 203, Barrackpore Trunk Road Calcutta 700 035

PROFESSOR A. S. GUPTA
Department of Mathematics
Indian Institute of Technology
Kharagpur 721 302

PROFESSOR M. K. JAIN
Department of Mathematics
Indian Institute of Technology
Hauz Khas
New Delhi 110 016

Professor S. K. Joshi Director National Physical Laboratory New Delhi 110 012

Professor V. Kannan
Dean, School of Mathematics &
Copmuter/Information Sciences
University of Hyderabad
P.O. Central University
Hyderabad 500 134

Assistant Executive Secretary (Associate Editor/Publications)

DR. M. DHARA
Subscriptions:

For India, Pakistan, Sri Lanka, Nepal, Bangladesh and Burma, Contact:

Associate Editor, Indian National Science Academy, Bahadur Shah Zafar Marg, New Delhi 110002, Telephone: 3311865, Telex: 31-61835 INSA IN.

For other countries, Contact:

M/s J. C. Baltzer AG, Scientific Publishing Company, Wettsteinplatz 10, CH-4058 Basel, Switzerland, Telephone: 61-268925, Telex: 63475.

The Journal is indexed in the Science Citation Index; Current Contents (Physical, Chemical & Earth Sciences); Mathematical Reviews; INSPEC Science Abstracts (Part A); as well as all the major abstracting services of the World.

PROFESSOR N. MUKUNDA
Centre for Theoretical Studies
Indian Institute of Science
Bangalore 560 012

DR PREM NARAIN

Director

Indian Agricultural Statistics

Research Institute, Library Avenue

New Delhi 110 012

Professor I. B. S. Passi
Centre for advanced study in Mathematics
Panjab University
Chandigarh 160 014

PROFESSOR PHOOLAN PRASAD
Department of Applied Mathematics
Indian Institute of Science
Bangalore 560 012

PROFESSOR M. S. RAGHUNATHAN
Senior Professor of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 500 005

PROFESSOR T. N. SHOREY
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400 005

Assistant Editor SRI R. D. BHALLA

# PSEUDOLINEARITY AND EFFICIENCY VIA DINI DERIVATIVES

# SHASHI AGGARWAL

Department of Mathematics, Miranda House, University of Delhi, Delhi 110007

AND

# DAVINDER BHATIA

Department of Mathematics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007

(Received 17 May 1988; after revision 15 February 1989; accepted 27 July 1989)

In this paper, charaterization of pseudolinear functions in terms of Dini derivatives is given. Necessary and sufficient conditions for efficiency in terms of Dini derivatives are derived for multiobjective programming problems involving pseudolinear functions.

### INTRODUCTION

Nonlinear multiobjective programming problems involving pseudolinear functions have been studied by Chew and Choo<sup>1</sup>. They have characterized pseudolinear functions by means of proportional functions under the assumption of differentiability. Rockafellar<sup>5</sup> has pointed out that the functions involved may not be always differentiable and so characterization of pseudolinear functions without assuming differentiability is required.

Kaul et al.4 have defined semilocally pseudolinear functions in terms of right derivatives generalizing pseudolinear functions and have extended results of Chew and Choo¹ concerning efficiency for multiobjective programming problems involving functions that are semilocally pseudolinear. It was shown be Kaul et al.4 that a function f is semilocally pseudolinear on a set  $\Gamma \subseteq \mathbb{R}^n$  iff  $\exists$  a real valued function p called proportional function of f, defined on  $\Gamma \times \Gamma$  such that p(x, y) > 0 and  $f(y) = f(x) + p(x, y) df^+(x, y-x)$  for and x, y in  $\Gamma$ .

The purpose of this paper is to define pseudolinear functions in terms of Dini derivatives<sup>2</sup> which generalize the class of semilocally pseudolinear functions. In this paper, we consider the multiobjective pseudolinear programming problem of the form

(P) 
$$\max f(x) = (f_1(x),...,f_k(x))$$

subject to

$$x \in X = \{x \in S \mid g_j(x) \ge 0, j = 1,..., m\}$$

where it is assumed that  $f_i$ , i = 1,..., k and  $g_i$ , j = 1,..., m are real pseudolinear functions defined on a convex subset S of  $R^N$ .

Here an alternative characterization of pseudolinearity is provided which makes use of Dini Derivatives instead of right derivatives. The useful feature about Dini derivatives is that they always exists whereas right derivatives need not. Such a characterization seems necessary because of the existence of functions of the type given in the example presented in section 2, which motivated the authors to make a present study.

Theorems 2 and 3 develop necessary and sufficient conditions for the existence of an efficient solution for the above mentioned problem (P), whereas Kaul et al.<sup>4</sup> have derived only sufficient condition.

# 2. DINI DERIVATIVES AND PSEUDOLINEAR FUNCTIONS

Definition 1-Let f be a real valued function defined over S, a convex subset of  $R^N$ . Let  $x \in R^N$ ,  $v \in R^N$  with  $v^Tv = 1$ . Dini derivatives of f in the direction v at x are defined as follows:

$$D_{v}^{+u} f(x) = \lim_{n \to \infty} \sup_{\{t_{n}\}} \left\{ \frac{f(x + t_{n} v) - f(x)}{t_{n}} : 0 < t_{n} \le 1/n \right\}$$

$$D_{v}^{+l} f(x) = \lim_{n \to \infty} \inf_{\{t_{n}\}} \left\{ \frac{f(x + t_{n} v) - f(x)}{t_{n}} : 0 < t_{n} \le 1/n \right\}$$

$$D_{v}^{-u} f(x) = \lim_{n \to \infty} \sup_{\{t_{n}\}} \left\{ \frac{f(x - t_{n} v) - f(x)}{-t_{n}} : 0 < t_{n} \le 1/n \right\}$$

$$D_{v}^{-l} f(x) = \lim_{n \to \infty} \inf_{\{t_{n}\}} \left\{ \frac{f(x - t_{n} v) - f(x)}{-t_{n}} : 0 < t_{n} \le 1/n \right\}.$$

Here  $D_v^{+u} f(x)$  is the upper right derivative,  $D_v^{+l} f(x)$  is the lower right derivative,  $D_v^{-u} f(x)$  is the upper left derivative and  $D_v^{-l} f(x)$  is lower left derivative evaluated at x in the direction v. Limits can be infinite in the above definition. It may easily be proved, by using the definitions, that

(1) Dini derivatives always exist (finite or infinite) for any function f and satisfy

$$D_v^{+u} f(x) \ge D_v^{+l} f(x), \ D_v^{-u} f(x) \ge D_v^{-l} f(x)$$

$$D_v^{+u} (-f)(x) = - D_v^{+l} f(x), D_v^{+l} (-f)(x) = - D_v^{+u} f(x)$$

(II) If  $D_v^{+l} f(x) = D_v^{+u} f(x)$  (or if  $D_v^{-l} f(x) = D_v^{-u} f(x)$ ) then the common value, written  $D_v^+ f(x)$  (or  $D_v^- f(x)$ ) is just the right (or left) derivative of f at x in the

direction v. In general,  $D_v^- f(x) \leq D_v^+ f(x)$  and if  $D_v^- f(x) = D_v^+ f(x)$ , then f has the derivative at x in the direction v and the common value will be denoted by Dvf(x).

If f is a function of one variable, then usually, we take the directional vector v to be the scalar l and we write

$$D_1^{+u} f(x) \equiv D^{+u} f(x), \ D_1^{+l} f(x) \equiv D^{+l} f(x)$$

$$D_1^+ f(x) \equiv D^+ f(x), \ D_1^- f(x) \equiv D^- f(x).$$

Diewert<sup>2</sup> introduces pseudoconcave functions as:

Definition 2—A function f defined over a convex subset S of  $R^N$  is said to be pseudoconcave over S iff for every  $x^o \in S$ ,  $v \in R^N$  satisfying

$$v^T v = 1, t > 0, x^{\circ} + t v \in S, D_v^{+n} f(x^{\circ}) \leq 0$$

implies

$$f(x^{\circ} + t v) \leq f(x^{\circ}).$$

In the light of the above definition 2, we may now define pseudoconvex functions as follows:

Definition 3—A function f defined over a convex subset S of  $R^N$  is said to be pseudoconvex over S iff -f is pseudoconcave over S i. e. for every  $x^o \in S$ ,  $v \in R^N$  satisfying

$$v^Tv = 1$$
,  $t > 0$ ,  $x^\circ + t v \in S$ ,  $D_v^{+l} f(x^\circ) \ge 0$  implies  $f(x^\circ + t v) \ge f(x^\circ)$ .

Hence a pseudolinear function in terms of Dini derivatatives may be defined as follows

Definition 4—A function f defined over a convex subset S of  $R^N$  is said to be pseudolinear over S iff it is both pseudoconcave and pseudoconvex according to definitions 2 and 3 above.

Example—Let

$$f(x) = \begin{cases} 1, & -2 \le x \le -1 \\ 0, & -1 < x \le 0 \\ 1/2^{n+1}, & 1/2^{n+1} \le x < 1/2^n, & n = 0, 1, 2, \dots \end{cases}$$

be a function defined over [-2, 1[.

Some of the Dini derivatives computed at different points of the domain of the function are as follows:

$$D^{+u} f(-1) = -\infty, D^{+l} f(-1) = -\infty$$
  
 $D^{+u} f(0) = 1, D^{+l} f(0) = 1/2.$ 

It may be easily verified that

$$D^{+u}f(-1) < 0 \Rightarrow f(-1+t) < f(-1), t > 0, (-1+t) \in ]-1, 0]$$
  
 $D^{+l}f(0) > 0 \Rightarrow f(0+t) > f(0), t > 0, 0+t \in ]0, 1[.$ 

Thus f is pseudolinear according to definition 4 over [-2, 1]. It is obvious that f does not have the right derivative at x = 0 and hence f is not semilocally pseudolinear Kaul et al. 4 over [-2, 1].

Assumption—In the sequel, we assume all the functions and Dini derivatives to be finite.

Theorem 1—Let f be a function defined over a convex subset S of  $\mathbb{R}^N$ . Then the following statements are equivalent.

- (i) f is pseudolinear over S.
- (ii) There exist real functions p and q defined over  $S \times S$  such that  $p(x^{\circ}, x^{\circ} + tv) > 0$ ,  $q(x^{\circ}, x^{\circ} + tv) > 0$  and

$$f(x^{\circ} + t v) = f(x^{\circ}) + p(x^{\circ}, x^{\circ} + tv) D_{v}^{+u} f(x^{\circ})$$

$$+ q(x^{\circ}, x^{\circ} + tv) D_{v}^{+l} f(x^{\circ}) \qquad ...(1)$$

for any  $x^{\circ} \in S$ ,  $v \in \mathbb{R}^{N}$  satisfying  $v^{T}v = 1$ , t > 0,  $x^{\circ} + tv \in S$ .

PROOF: (i)  $\Rightarrow$  (ii). Let  $x^{\circ} \in S$ ,  $v \in R^{N}$  satisfying  $v^{T}v = 1$ , t > 0,  $x^{\circ} + tv \in S$  and f be pseudolinear over S. Therefore

if 
$$D_v^{+u} f(x^\circ) \leq 0$$
 then  $f(x^\circ + tv) \leq f(x^\circ)$   
and if  $D_v^{+l} f(x^\circ) \geq 0$  then  $f(x^\circ + tv) \geq f(x^\circ)$ 

As the right derivative of f may not exist at every point of S, we have two cases.

Case 1: When right derivative at  $x^{\circ}$  does not exist, i. e.

$$D_v^{+u} f(x^\circ) \neq D_v^{+u} f(x^\circ)$$

Case 2: When right derivative at  $x^{\circ}$  exists i. e.

$$D_v^+ f(x^\circ) = D_v^{+u} f(x^\circ) = D_v^{+l} f(x^\circ).$$

Hence in case (1), relation (2) leads to

(a) 
$$D_v^{+u} f(x^\circ) < 0 \Rightarrow D_v^{+l} f(x^\circ) < 0 \text{ and } f(x^\circ + tv) < f(x^\circ)$$

(b) 
$$D_v^{+u} f(x^\circ) = 0 \Rightarrow D_v^{+l} f(x^\circ) < 0 \text{ and } f(x^\circ + tv) < f(x^\circ)$$

(c) 
$$D_v^{+l} f(x^\circ) > 0 \Rightarrow D_v^{+u} f(x^\circ) > 0$$
 and  $f(x^\circ + tv) > f(x^\circ)$ 

(d) 
$$D_v^{+l} f(x^\circ) = 0 \Rightarrow D_v^{+u} f(x^\circ) > 0$$
 and  $f(x^\circ + tv) > f(x^\circ)$ 

since  $D_v^{+l}$   $f(x) \le D_v^{+u}$  f(x) for all  $x \in S$  and moreover for any  $x \in S$ ,  $v \in R^N$  satisfying  $v^T v = 1$ , t > 0,  $x + tv \in S$  if f(x + tv) = f(x) then  $D_v^{+u} f(x) = D_v^{+l} f(x) = 0$ .

Now we establish statement (ii) in each of the above four possibilities. In possibilities (a) and (c) above we may define

$$p(x^{\circ}, x^{\circ} + tv) = \frac{f(x^{\circ} + tv) - f(x^{\circ})}{D_v^{+u} f(x^{\circ})}$$

and

$$q(x^{\circ}, x^{\circ} + tv) = \frac{f(x^{\circ} + tv) - f(x^{\circ})}{D_{v}^{I} f(x^{\circ})}$$

and the results follows.

In case of possibility (b), we can define  $p(x^{\circ}, x^{\circ} + tv)$  to be any positive real number and

$$q(x^{\circ}, x^{\circ} + tv) = \frac{f(x^{\circ} + tv) - f(x^{\circ})}{D_{n}^{+l} f(x^{\circ})}.$$

Similarly, in case of possibility (d), we define

$$p(x^{\circ}, x^{\circ} + tv) = \frac{f(x^{\circ} + tv) - f(x^{\circ})}{D_{v}^{+u} f(x^{\circ})}$$

and  $q(x^{\circ}, x^{\circ} + tv)$  to be any positive real number. Thus in all the four possibilities, statement (ii) holds.

In case 2, relation (1) can be written as

$$f(x^{\circ} + tv) = f(x^{\circ}) + p'(x^{\circ}, x^{\circ} + tv) D_{v}^{+} f(x^{\circ})$$

where  $p'(x^{\circ}, x^{\circ} + tv) = p(x^{\circ}, x^{\circ} + tv) + q(x^{\circ}, x^{\circ} + tv)$  and can be defined as

$$p'(x^{\circ}, x^{\circ} + t v) = \begin{cases} \frac{f(x^{\circ} + tv) - f(x^{\circ})}{D_{v}^{+} f(x^{\circ})} & \text{if } D_{v}^{+} f(x^{\circ}) \neq 0 \\ K, \text{ a positive real number, if } D_{v}^{+} f(x^{\circ}) = 0. \end{cases}$$

The positiveness of the function p' can be proved exactly in the same manner as proved for the functions p and q in Case 1.

(ii)  $\Rightarrow$  (i): Suppose that there are functions p and q defined over  $S \times S$  such that  $p(x^{\circ}, x^{\circ} + tv) > 0$ ,  $q(x^{\circ}, x^{\circ} + tv) > 0$  and relation (1) holds.

Then  $D_v^{+u} f(x^\circ) \le 0$  and the fact that  $D_v^{+l} f(x^\circ) \le D_v^{+u} f(x^\circ)$  imply that  $f(x^\circ + tv) \le f(x^\circ)$  showing that f is pseudoconcave over S. Also  $D_v^{+l} f(x^\circ) \ge 0$  and again the fact that  $D_v^{+u} f(x^\circ) \ge D_v^{+l} f(x^\circ)$  imply that  $f(x^\circ + tv) \ge f(x^\circ)$  showing that f is pseudoconvex over S.

Hence f is pseudolinear over S.

O.E.D.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF EFFICIENT SOLUTION

Throughout this section  $f_i$ , i = 1, ..., k,  $g_j$ , j = 1, ..., m will be real pseudo-linear functions according to definition 4 over a convex subset S of  $R^N$  with positive functions  $p_i$ ,  $q_i$ , i = 1, ..., k and  $p_j$ ,  $q'_j$ , j = 1, ..., m respectively.

Consider the following multiobjective pseudolinear programming problem:

(P) 
$$\operatorname{Max} f(x) = (f_1(x), ..., f_k(x))$$

subject to

$$x \in X = \{x \in S \mid g_f(x) \ge 0, f = 1, 2, ..., m\}.$$

For a point x in X, we shall denote by I(x), the set of all j such that  $g_j(x) = 0$ 

Definition 5—A vector  $v \in \mathbb{R}^N$  satisfying  $v^Tv = 1$  is called a feasible direction for X at  $x^* \in X$  if there exists a  $\delta > 0$  such that  $x^* + tv \in X$  for all  $0 < t \le \delta$ .

The set of all feasible directions at  $x^* \in X$  is denoted by  $D(x^*)$  and

$$D(x^*) = \{ v \in \mathbb{R}^N : v^T v = 1, \exists \delta > 0 \text{ such that}$$
$$x^* + tv \in X \text{ for } 0 < t \leq \delta \}.$$

Definition 6—A point  $x^* \in X$  is said to be efficient solution of problem (P) if there exists no  $v \in R^N$  with  $v^T v = 1$  such that

$$f_i(x^* + tv) \ge f_i(x^*), i = 1, ..., k$$

and  $f_i(x^* + t v) > f_i(x^*)$  for at least one i,

where  $0 < t \le \delta$  for some  $\delta > 0$  such that  $x^* + ty \in X$ .

Note 1: For  $x^* \in X$ , denote

$$p_i^* = p_i(x^*, x^* + t^* v), q^*i = q_i(x^*, x^* + t^* v), i = 1, ..., k$$

$$p_{j}^{\prime *} = p_{j}^{\prime}(x^{*}, x^{*} + t^{*}v), q_{j}^{\prime *} = q_{j}^{\prime}(x^{*}, x^{*} + t^{*}v), j = 1, ..., m$$

where we can define2

$$v = \frac{(x - x^*),}{[(x - x^*)^T (x - x^*)]^{1/2}}, x = x^* + t^* v \in X \text{ for}$$

$$t^* = [(x - x^*)^T (x - x^*)]^{1/2} > 0.$$

Lemma—Let x\* be a feasible solution for problem (P), then

$$p_{j}^{'*} D_{v}^{*u} g_{j}(x^{*}) + q_{j}^{'*} D_{v}^{*l} g_{j}(x^{*}) > 0 \text{ for } j \in I(x^{*})$$

and

$$p_{j}^{\prime *} D_{v}^{+u} g_{j}(x^{*}) + q_{j}^{\prime *} D_{v}^{+l} g_{j}(x^{*}) > -\infty, j \notin I(x^{*}) \text{ implies } v \in D(x^{*}).$$

PROOF: Let  $j \in I(x^*)$  and  $p_j^{**}$   $D_v^{*u}$   $g_j(x^*) + q_j^{**}$   $D_v^{*l}$   $g_j(x^*) > 0$  for some direction v. Then  $g_j(x^*) = 0$  since  $j \in I(x^*)$ . Suppose that there exists  $\delta_j > 0$  such that  $0 < t_j \le \delta_j$  and  $g_j(x^* + t_j v) < 0$ . Then

$$p_{j}^{\prime *} D_{v}^{*u} g_{j}(x^{*}) + q_{j}^{\prime *} D_{v}^{*l} g_{j}(x^{*})$$

$$= p_{j}^{\prime *} \lim_{t \to 0} \sup \frac{g_{j}(x^{*} + t v) - 0}{t} + q_{j}^{\prime *} \lim_{t \to 0^{+}} \inf \frac{g_{j}(x^{*} + t v) - 0}{t} \leq 0$$

which contradicts  $p_{j}^{*}$   $D_{v}^{*u}$   $g_{j}(x^{*}) + q_{j}^{*}$   $D_{v}^{*l}$   $g_{j}(x^{*}) > 0$ .

Thus there exists some  $\delta_{j} > 0$  such that

$$g_{j}(x^{*}+tv) \geq 0 \text{ for } 0 < t \leq \delta_{j}, j \in I(x^{*}).$$
 (3)

Now let  $j \notin I(x^*)$  and  $p_j^{\prime *}$   $D_v^{\prime *}$   $g_j(x^*) + g_j^{\prime *}$   $D_j^{\prime *}$   $g_j(x^*) > -\infty$  for some direction v. Since  $j \notin I(x^*)$ , therefore  $g_j(x^*) > 0$ . Suppose that there exists  $\delta_j > 0$  such that  $0 < t_j \le \delta_j$  and  $g_j(x^* + t_j v) < 0$ . Then

$$p_{j}^{\prime *} D_{v}^{+u} g_{j}(x^{*}) + q_{j}^{\prime *} D_{v}^{+l} g_{j}(x^{*}) = p_{j}^{\prime *} \lim_{t \to 0^{+}} \sup_{t \to 0^{+}} (equation continued on p. 1180)$$

$$+ \frac{g_{j}(x^{*} + tv) - g_{j}(x^{*})}{t} + q_{j}^{*} \lim_{t \to 0^{+}} \inf_{0^{+}} \frac{g_{j}(x^{*} + tv) - g_{j}(x^{*})}{t}$$

which contradicts  $p_{j}^{\prime *} | D_{v}^{+u} g_{j}(x^{*}) + q_{j}^{\prime *} D_{v}^{+l} g_{j}(x^{*}) > -\infty$ .

Thus there exists some  $\delta_j > 0$  such that

$$g_j(x^* + tv) \geqslant 0, 0 < t \leqslant \delta_j, j \notin I(x^*)$$
 ...(4)

(3) and (4) imply that 
$$v \in D(x^*)$$
. Q.E.D.

Theorem 2—If  $x^*$  is an efficient solution of problem (P) and constraints are assumed to satisfy conditions of Lemma then there exists  $\lambda_i > 0$ , i = 1, ..., k and  $\mu_j > 0$ ,  $j \in I(x^*)$  such that

$$\sum_{i=1}^{k} \lambda_{i} \left[ p_{i}^{*} D_{v}^{+u} f_{i} \left( x^{*} \right) + q_{i}^{*} D_{v}^{+l} f_{i} \left( x^{*} \right) \right]$$

$$+ \sum_{j \in I(x^{*})} \mu_{j} \left[ p_{j}^{\prime *} D_{v}^{+u} g_{j} \left( x^{*} \right) + q_{j}^{\prime *} D_{v}^{+l} g_{j} \left( x^{*} \right) \right] = 0. ...(5)$$

PROOF: Let  $x^*$  be an efficient solution of problem (P) and constraints satisfy the conditions of Lemma. Then by Lemma,  $v \in D(x^*)$  and thus there is a  $\delta > 0$  such that  $x^* + tv \in X$  for  $0 < t \le \delta$ .

We now assert that for  $1 \leqslant r \leqslant k$  the system

$$\begin{cases}
[p_{j}^{**} D_{v}^{+u} g_{j}(x^{*}) v + q_{j}^{**} D_{v}^{+l} g_{j}(x^{*}) v]^{T} (x^{*} + tv - x^{*}) \geq 0, \\
j \in I(x^{*}) & \dots(6)
\end{cases}$$

$$[p_{i}^{*} D_{v}^{+u} f_{i}(x^{*}) v + q_{i}^{*} D_{v}^{+l} f_{i}(x^{*}) v]^{T} (x^{*} + tv - x^{*}) \geq 0, \\
i = 1, \dots, k, i \neq r & \dots(7)
\end{cases}$$

$$[p_{r}^{*} D_{v}^{+u} f_{r}(x^{*}) v + q_{r}^{*} D_{v}^{+l} f_{r}(\hat{x}^{*}) v]^{T} (x^{*} + tv - x^{*}) > 0 \\
\dots(8)$$

has no solution  $x^* + t v \in S$  for  $0 < t \le \delta$ .

Let, if possible,  $x^* + tv \in S$  for some  $t \in ]0, \delta]$  be a solution of the system A. Now as  $f_i$ 's are pseudolinear over S with positive functions  $p_i$ 's and  $q_i$ 's, therefore relation (1) yields

$$f_i(x^* + tv) - f_i(x^*) = p_i(x^*, x^* + tv) D_v^{+l} f_i(x^*)$$

$$+ q_i(x^*, x^* + tv) D_v^{+l} f_i(x^*) i = 1, ..., k$$
...(9)

and clearly  $x = x^* + t v \in X$ .

As in Note 1, we may now define

$$v = \frac{x - x^*}{[(x - x^*)^T (x - x^*)]^{1/2}},$$

$$x = x^* + t^* v \text{ for } t^* = [(x - x^*)^T (x - x^*)]^{1/2} > 0.$$

Hence (9) implies

$$f_{i}(x) - f_{i}(x^{*}) = p_{i}^{*} D_{v}^{+u} f_{i}(x^{*}) + q_{i}^{*} D_{v}^{+l} f_{i}(x^{*}), i = 1, ..., k$$

$$\geqslant 0, i = 1, ..., k, i \neq r \text{ (using (7))}. \qquad ...(10)$$

Similarly  $f_r(x) - f_r(x^*) > 0$  (using (8)). ...(11)

(10) and (11) contradict that  $x^*$  is efficient for problem (P). Hence system A has no solution  $x^* + tv \in S$  for  $0 < t \le \delta$ . Therefore, by Farkas' Lemma given by Mangasarian<sup>5</sup>, there exist  $\lambda_{r_i} \ge 0$ ,  $\mu_{r_j} \ge 0$ , r = 1, ..., k such that

$$\sum_{j \in I(x^*)} \mu_{rj} \left[ p_j^{\prime *} \ D_v^{+u} g_j(x^*) \ v + q_j^{\prime *} \ D_v^{+l} g_j(x^*) \ v \right]^T$$

$$+ \sum_{\substack{i=1 \\ i \neq r}}^k \lambda_{r_i} \left[ p_i^* \ D_v^{+u} f_i(x^*) \ v + q_i^* \ D_v^{+l} f_i(x^*) \ v \right]^T$$

$$- \left[ p_r^* \ D_v^{+u} f_r(x^*) \ v + q_r^* \ D_v^{+l} f_r(x^*) \ v \right]^T = 0. \dots (12)$$

Summing (12) over r = 1, 2, ..., k, we get

$$\sum_{i=1}^{k} \lambda_{i} \left[ p_{i}^{*} D_{v}^{+u} f_{i}(x^{*}) v + q_{i}^{**} D^{*l}_{v} f_{i}(x^{*}) v \right]^{T}$$

$$\sum_{j \in I(x^{*})} \mu_{j} \left[ p_{j}^{r*} D_{v}^{+u} g_{j}(x^{*}) v + q_{j}^{**} D_{v}^{+l} g_{j}(x^{*}) v \right]^{T} = 0 \qquad \dots (13)$$

where

$$\lambda_i = 1 + \sum_{r \neq i} \lambda_{ri} > 0, \ \mu_j = \sum_{r=1}^k \mu_{rj} \geqslant 0.$$
Relation (13) yields relation (5).

Theorem 3—Let  $x^*$  be a feasible solution of the problem (P) and let there exist  $\lambda_i > 0$ , i = 1, ..., k,  $\mu_j \geqslant 0$ ,  $j \in I(x^*)$  such that relation (5) holds. Then  $x^*$  is

efficient for problem (P)

PROOF: Let, if possible,  $x^*$  be not an efficient solution of problem (P). Then there exists some  $v \in \mathbb{R}^N$  with  $v^T v = 1$  such that

$$f_{i}(x^{*} + tv) \ge f_{i}(x^{*}), i = 1, ..., k, i \ne r$$

$$f_{r}(x^{*} + tv) > f_{r}(x^{*})$$

$$g_{j}(x^{*} + tv) \ge 0, j = 1, ..., m$$
...(14)

where  $0 < t \le \delta$  for some  $\delta > 0$  such that  $x^* + tv \in S$ .

Further on using relation (1) and defining  $p_i^*$ ,  $q_i^*$ ,  $p_j^{\prime *}$ ,  $q_j^{\prime *}$  as in Note 1, relation (14) gives

$$\sum_{i=1}^{k} \lambda_{i} \left( p_{i}^{*} D_{v}^{+u} f_{i} \left( x^{*} \right) + q_{i}^{*} D_{v}^{+l} f_{i} \left( x^{*} \right) \right) > 0$$

and

$$p_{j}^{\prime *} D_{v}^{*u} g_{j}(x^{*}) + q_{j}^{\prime *} D_{v}^{*l} g_{j}(x^{*}) \ge 0, j \in I(x^{*})$$

Hence

$$0 \leq \sum_{j \in I(x^*)} [p_j^{'*} \ D_v^{*u} g_j(x^*) + q_j^{'*} \ D_v^{*l} g_j(x^*)]$$

$$= - \sum_{i=1}^k \lambda_i [p_i^* \ D_v^{*u} f_i(x^*) + q_i^{'*} \ D_v^{*l} f_i(x^*)]$$

$$< 0$$

which is an obvious contradiction.

Hence  $x^*$  is efficient for problem (P).

Q.E.D.

Note 2: More general results where in problem (P) the objective functions are pseudoconcave and constraints are quasiconcave using Dini derivatives are developed in authors subsequent paper.

# ACKNOWLEDGEMENT

The authors wish to thank Professor R. N. Kaul, Department of Mathematics, University of Delhi, Delhi, India, for his constant encouragement in preparing this paper. Thanks are also due to the referees for their valuable suggestions.

# REFERENCES

- 1. K. L. Chew and E. U. Choo, Math. Prog. 28 (1984), 226-39.
- 2. S. Schaible and W. T. Ziembea, Generalized Concavity in Optimization and Economics. Academic Press, New York, 1981, pp. 51-93.
- 3. E. Hewitt and K. Stromberg, Real and Abstract Analysis. Springer-Verlag, New York, 1969, pp. 256-57.
- 4. R. N. Kaul, Vinod Lyali and Surject Kaur, European J. Ops. Res. 36 (1988), 402-409.
- 5. R. T. Rockafellar. Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
- 6. O. L. Mangasarian, Nonlinear Programming, Mcgraw-Hill Book Co, Inc., New York, 1969; 16-17.

# ON THE EXISTENCE OF UNITY IN LEHMER'S &-PRODUCT RING

# V. SITARAMAJAH

Department of Mathematics, Pondicherry Engineering College Pillaichavady, Pondichey 605104

(Received 19 April 1988; accepted 17 July 1989)

Let T be a non-empty subset of  $Z^+ \times Z^+$  where  $Z^+$  is the set of positive integers and  $\varphi: T \to Z^+$  be a mapping such that for each  $n \in Z^+$ ,  $\psi(x,y) = n$  has a finite number of solutions. If f and g are two arithmetic functions, then the binary operation  $\psi$  on the set of arithmetic function F is defined by

$$(f \psi g)(n) = \sum_{\Psi (\emptyset, \Psi) = n} f(x) g(y)$$

for any  $n \in Z^+$ . If  $(F, +, \psi)$  is a commutative ring, where + denotes the usual pointwise addition and  $\psi(x, y) \geqslant \max\{x, y\}$  for all  $(x, y) \in T$ , we prove that the ring  $(F, +, \psi)$  possesses the unity if and only if for each  $k \in Z^+$ ,  $\psi(x, k) = k$  has a solution. In such a case the unity can be explicitly determined.

## INTRODUCTION

An arithmetic function is a complex-valued function whose domain is the set of positive integers  $Z^+$ . Let F denote the set of all arithmetic functions. Let T be a non-empty subset of  $Z^+ \times Z^+$  and let  $\psi: T \to Z^+$  be a mapping satisfying the following postulates:

- (I) For each  $n \in \mathbb{Z}^+$ ,  $\psi(x, y) = n$  has a finite number of solutions.
- (II) If  $(x, y) \in T$ , then  $(y, x) \in T$  and  $\psi(x, y) = \psi(y, x)$ .
- (III)  $(y, z) \in T$  and  $(x, \psi(y, z)) \in T$  if and only if " $(x, y) \in T$  and  $(\psi(x, y), z) \in T$ "; whenever one of these conditions holds, we have  $\psi(x, \psi(y, z)) = \psi(\psi(x, y), z)$ .
- (IV)  $\psi(1, 1) = 1$  and for each  $k \in \mathbb{Z}^+$ ,  $\psi(x, k) = k$  has a solution.
- (V) For each  $k \in \mathbb{Z}^+$ ,  $k = \max\{x \in \mathbb{Z}^+ : \psi(x, y) = k \text{ for some } y \in \mathbb{Z}^+\}$  or equivalently  $\psi(x, y) \ge \max\{x, y\}$  for all  $(x, y) \in T$ .

If we define the binary operation  $\psi$  on F by

$$(f \psi g)(n) = \sum_{\psi(x,y)=n} f(x) g(y)$$

for each  $n \in \mathbb{Z}^+$ ,  $f, g \in F$ , then using the postulates (I), (II) and (III) it is easily seen that  $(F, +, \psi)$  is a commutative ring.

The following is proved in Sita Ramaiah1:

Lemma 1.1 (Sita Ramaiah<sup>1</sup>, Lemma 2.1)—An arithmetic function g is an identity with respect to  $\psi$  if and only if, for any fixed  $k, n \in \mathbb{Z}^+$ 

$$\sum_{\substack{Y \\ \psi(x,k)=n}} g(x) = \begin{cases} 1, & \text{if } n=k \\ 0 & \text{if } n \neq k. \end{cases} \dots (1.1)$$

Let

$$Sk = \{x : \psi(x, k) = k\}$$
 ...(12)

$$i_k = \min S_k \qquad \dots (1.3)$$

and

$$S = \{ik : k = 1, 2, ...\}.$$
 ...(1.4)

The number ik in (1.3) exists by postulate (IV).

If the equation  $\psi(x, k) = n$  has a unique solution in S if n = k and no solution in S if n = k, it was mentioned in Theorem 2 of (Sita Ramaiah<sup>1</sup>) that the characteristic function X of S would be the unity of the commutative ring  $(F, +, \psi)$ .

It was proved in Sita Ramaiah<sup>2</sup> (Theorem 3.1) that if g is the unity of  $(F, +, \psi)$ , then g is integer-valued and g(ik) = 1, where ik is as given in (1.3). In addition, if g is non-negative, then g must be the characteristic function of the set S given in (1.4) (See Sita Ramaiah<sup>2</sup>, Theorem 3.2). Also, an example of a ring  $(F, +, \psi)$  was given (Sita Ramaiah<sup>2</sup>, Example 3.1) in which the unity assumed negative-values also.

Suppose g is the unity of  $(F, +, \psi)$ . We shall now investigate the question of determining g from the relation (1.1). From (1.1), we have

$$\sum_{x \in S_k} g(x) = 1$$

so that for  $k \in S_k$ 

$$g(k) = 1 - \sum_{\substack{x < k \\ x \in S_k}} g(x) \qquad \dots (1.5)$$

where  $S_k$  is as given in (1.2). Let  $k \in S_k$ . Let  $x_r$  be the largest element in  $S_k$  so that  $x_r < k$ . From (1.1), we obtain

$$\sum_{\psi(x,x_*)=k} g(x) = 0. \tag{1.6}$$

Now,  $x_r \in S_k$  implies that  $\psi(k, x_r) = k$ . Hence from (1.6),

$$g(k) = -\sum_{\substack{\psi(x,x_r)=k\\x < k}} g(x). \qquad (1.7)$$

If g(1) = 1 and g(x) has been defined for  $1 \le x < k$ , then the relations (1.5) and (1.7) completely determine the value of g(k) for any  $k \in \mathbb{Z}^+$ . The task is to prove the otherway. We show that (See Lemma 2.2) the relation (1.7) implies that g(k) = 0 whenever  $k \notin Sk$ . Using this and (1.5) we ultimately show that (see Theorem 2.1) g is the unity of  $(F, +, \psi)$ , thus establishing the existence of the unity in the ring  $(F, +, \psi)$ , in the presence of the postulates (I) through (V).

# 2. MAIN RESULTS

First we prove the following:

Lemma 2.1-We have

- (i)  $a, b \in S_k \Rightarrow \psi(a, b) \in S_k$ .
- (ii) If  $a \in S_k$ , then  $S_a \subseteq S_k$ .
- (iii)  $\psi(a, b) = k$  implies that  $S_a \subseteq S_k$  and  $S_b \subseteq S_k$ .
- (iv)  $S_k = S_{x_r}$ , where  $x_r$  is the largest element in  $S_k$ .

PROOF: (i)  $k = \psi(a, k) = \psi(a, \psi(b, k)) = \psi(\psi(a, b), k)$ .

- (ii) If  $x \in S_a$ , then  $\phi(x, a) = a$ . Hence  $\psi(x, k) = \psi(x, \psi(a, k)) = \psi(\psi(x, a), k) = \psi(a, k) = k,$  so that  $x \in S_k$ .
- (iii) Let  $\psi(a, b) = k$ . Let  $x \in S_a$ . Then  $\psi(x, a) = a$ . Hence  $\psi(x, k) = \psi(x, \psi(a, b)) = \psi(\psi(x, a), b) = \psi(a, b) = k$ . Hence  $x \in S_k$  so that  $S_a \subseteq S_k$ . Similarly  $S_b \subseteq S_k$ .
- (iv) If  $k \in S_k$ , then  $x_r = k$ . So we may assume that  $k \notin S_k$ . Hence  $x_r < k$ . Since  $x_r \in S_k$ , by (ii),  $Sx_r \subseteq S_k$ . Let  $x \in S_k$ . Then  $\psi(x, x_r) \in S_k$  by (i). Also,  $\psi(x, x_r) \ge x_r$ . Since  $x_r$  is the largest element in  $S_k$ ,  $\psi(x, x_r) = x_r$ . Hence  $x \in Sx_r$ , implying that  $S_k \subseteq Sx_r$ .

Lemma 2.2—If g is the unity of  $(F, +, \psi)$ , then g(k) = 0 whenever  $k \in S_k$ .

PROOF: If  $k \in S_k$  for every k, then there is nothing to prove. We assume that  $k \notin S_k$  for some k. Let t be the least positive integer such that  $t \notin S_t$  clearly  $t \ge 2$  since  $1 \in S_1$ . For  $1 \le j < t$ ,  $j \in S_1$ . We have from (1.7),

$$g(t) = -\sum_{\substack{\psi(x,x_r)=t\\x < t}} g(x)$$

where  $x_r$  is the largest in  $S_t$ . Now x < t implies that  $x \in S_x$ . Also, by (iii) of Lemma 2.1,  $\psi(x, x_r) = t$  implies that  $S_x \subseteq S_t$ . Hence  $x \in S_t$ . Since  $x_r \in S_t$ ,

(i) of Lemma 2.1 implies that  $t = \psi(x, x_t) \in S_t$  and this is false. Hence the sum on the right-hand side defining g(t) is an empty sum. Hence g(t) = 0. We assume that g(x) = 0 whenever  $x \notin S_x$  and  $t \leqslant x < k$ .

Let  $k \in S_k$ . By (1.7), we have

$$g(k) = -\sum_{\substack{\psi(x,x_r) = k \\ x < k}} g(x)$$

where  $x_r$  is the largest element in Sk. If  $1 \le x < t$  and  $\psi(x, x_r) = k$ , then  $x \in S_x \subseteq Sk$ , implying that  $k = \psi(x, x_r) \in Sk$ . We may assume that  $x \ge t$ . For  $t \le x < k$ , if  $x \notin S_x$ , g(x) = 0, by our induction hypothesis. Arguing as before we obtain

$$g(k) = -\sum_{\substack{\psi(x, x_r) = k \\ t \le x < k \\ x \in S_x}} g(x) = \text{empty sum} = 0$$

since  $k \in S_k$ . We now prove

Theorem 2.1—Let g be defined by

$$g(k) = \begin{cases} 1 - \sum_{\substack{x < k \\ x \in S_k}} g(x), & \text{if } k \in S_k \\ 0, & \text{if } k \notin S_k. \end{cases} \dots (2.1)$$

Then g is the unity of  $(F, +, \psi)$ .

PROOF: We shall prove that g satisfies (1.1).

Let  $x_r$  be the largest element in  $S_k$ . By (iv) of Lemma 2.1,  $S_k = S_{x_r}$ . Since  $x_r \in S_{x_r}$ , from (2.1), it is clear that

$$1 = \sum_{x \in Sx_r} g(x) = \sum_{x \in S_k} g(x). \qquad \dots (2.2)$$

It remains to prove that if n and k are positive integers with n < k, then

$$\sum_{\Psi(\psi^*n)=k} g(y) = 0. \qquad ... (2.3)$$

We distinguish the following cases (in what follows we tacitly assume the results of Lemma 2.1):

Case 1—Let  $n \in S_n$ . Since g(y) = 0 if  $y \notin S_y$ , we may assume that  $y \in S_y$  in the sum on the left-hand side of (2.3). Now,  $\psi(y, n) = k$  implies that  $S_y \subseteq S_k$  and  $S_n \subseteq S_k$ . Since  $y \in S_y$  and  $n \in S_n$ ,  $y, n \in S_k$ . Hence  $k = \psi(y, n) \in S_k$ . Thus we have  $n \in S_n \subseteq S_k$  and  $k \in S_k$ . Let  $S_k = \{x_1, x_2, \dots, x_r\}$  with  $x_1 < x_2 < \dots < x_r = k$ . Since  $n \in S_n \subseteq S_k$ , we assume that  $n = x_i$  where  $x_i \in S_{x_i}$ .

First we show that  $\Sigma$  g(y) = 0. Since g(y) = 0, if  $y \notin S_y$ , in this sum, we may assume that  $y \in S_y$ . Now  $\psi(y, x_i) = x_{i+1}$  implies that  $y \in S_y \subseteq S_{x_{i+1}}$  and  $S_{x_i} \subseteq S_{x_{i+1}}$ . Since  $x_i \in S_{x_i}$ , we have  $x_i \in S_{x_{i+1}}$ ; this together with  $y \in S_{x_{i+1}}$  implies that  $x_{i+1} = \psi(y, x_i) \in S_{x_{i+1}}$ .

Let  $y \in Sx_{i+1}$  and  $y \notin Sx_i$ . Since  $x_i \in Sx_{i+1}$ ,  $\psi(y, x_i) \in Sx_{i+1}$ . Also,  $\psi(y, x_i) \geqslant x_i$ . Hence  $\psi(y, x_i) = x_i$  or  $x_{i+1}$ , since  $x_{i+1}$  is the largest element in  $Sx_{i+1}$  and no element of  $Sx_{i+1}$  can exist in the interval  $(x_i, x_{i+1})$  as  $Sx_{i+1} \subseteq Sk$ . Hence  $\psi(y, x_i) = x_{i+1}$  since  $\psi(y, x_i) = x_i$  implies that  $y \in Sx_i$ . Therefore by (2.2), since  $Sx_i \subseteq Sx_{i+1}$ , we have

$$0 = \sum_{y \in S_{x_{i+1}}} g(y) = \sum_{\psi(y,x_i) = x_{i+1}} g(y).$$

$$y \notin S_{x_i}$$

Let us assume that

$$\sum_{\varphi(y,x_i)=x_{i+s}} g(y) = 0$$

for all s with  $1 \le s < t \le r - i - 1$ . We shall prove that

$$\sum_{\psi(y,x_i)=x_{i+t}} g(y) = 0, \text{ if } x_{i+t} \in S_{x_{i+t}}.$$

Since  $\psi(y, x_i) = x_{i+t}$  implies that  $S_{x_i} \subseteq S_{x_{i+t}}$ 

and  $x_i \in S_{x_i}$ , we have  $x_i \in S_{x_{i+1}}$ .

If  $y \notin S_{x_i}$ ,  $y \in S_{x_{i+t}}$  then  $\psi(y, x_i) \in S_{x_{i+t}}$  and  $\psi(y, x_i) > x_i$ .

Hence  $\psi(y, x_i) = x_{i+1}$  or. Therefore

$$0 = \sum_{y \in S_{x_{i+t}}} g(y) = \sum_{y \in S_{x_{i+t}}} g(y) + \dots + \sum_{y \in S_{x_{i+t}}} g(y).$$

$$y \notin S_{x_i} \qquad \qquad \psi(y,x) = x_{i+1} \qquad \qquad \psi(y,x_i) = x_{i+t}$$

...(2.4)

If  $x_{i+1} \notin S_{x_{i+t}}$ , then  $\psi(y, x_i) = x_{i+1}$  does not occur. Hence the first sum on the right-hand side of (2.4) vanishes. Similar remark applies to the other sums on the right-hand side of (2.4). Hence we may assume that  $x_{i+s} \in S_{x_{i+t}}$ , for s = 1, 2, ..., t. So,  $S_{x_{i+s}} \subseteq S_{x_{i+t}}$ , for s = 1, 2, ..., t. The variable y in each of the sums on the right-hand side of (2.4) can be assumed to be in  $S_y$  since g(y) = 0 if  $y \notin S_y$ . This, implies that  $y \in S_{x_{i+t}}$  need not be mentioned in each of the sums on the right-hand side of (2.4). Hence (2.4) can be written as

By our induction hypothesis, the first t-1 sums on the right side of (2.5) vanish and then we obtain  $0 = \sum_{\psi(y,x_{i})=x_{i+t}} g(y)$ . The induction is complete Therefore,

we have  $\sum_{\psi(y,x_t)=k} g(y) = 0$ , since  $k = x_r$ .

Case  $2-n \notin S_n$ . Suppose the equation  $\psi(y, n) = k$  has a solution y with  $y \in S_y$ . Then  $y \in S_y \subseteq S_k$  and  $S_n \subseteq S_k$ . Let t be the largest element in  $S_n$  so that t < n. If  $\psi(y, n) = k$ , then we also have

$$k = \psi(y, n) = \psi(y, \psi(t, n)) = \psi(\psi(y, t), n)$$

so that  $\psi(y, t)$  is also a solution of the equation  $\psi(x, n) = k$ . Let  $Y_1, Y_2, ..., Y_r$  be all the elements of  $S_k$  which satisfy  $\psi(y_i, n) = k$ , and  $y_i \ge t$  for i = 1, 2, ..., r and  $y_1 < y_2 < ... < y_r$ . (We may note here that  $y_r = x_r$  the largest element in  $S_k$ ). Also, no  $y_i = t$ . For if  $y_i = t$ , then  $k = \psi(y_i, n) = \psi(t, n) = n$ . But n < k. So,  $y_i > t$  for i = 1, 2, ..., r. We have

$$\sum_{\substack{\psi(v,n)=k\\ \psi(v,t)=v_1}} g(y) = \sum_{\substack{\psi(y,n)=k\\ \psi(v,t)=v_2}} g(y) + \sum_{\substack{\psi(y,n)=k\\ \psi(v,t)=v_2}} g(y) + \dots + \sum_{\substack{\psi(v,n)=k\\ \psi(v,t)=v_2}} g(y).$$

Now,  $\psi(y, t) = yt$  and  $\psi(yt, n) = k$  imply that

$$k = \psi(y_i, n) = \psi(\psi(y, t), n) = \psi(y, \psi(t, n)) = \psi(y, n)$$

since  $l \in S_n$ . Hence we have

$$\sum_{\psi(y'n)=k} g(y) = \sum_{\psi(y't)=y_1} g(y) + \dots + \sum_{\psi(y,t)=y_r} g(y) \qquad \dots (2.6)$$

since  $t < y_i$ , i = 1, 2, ..., r and  $t \in S_t$ , each sum on the right-hand side of (2.6) is a sum considered in Case 1 and hence vanishes. Thus

$$\sum_{\Psi(y,n)=k} g(y) = 0.$$

The proof of Theorem 2.1 is complete.

We state without proof the following:

Theorem 2.2—Suppose  $\psi$  satisfies the postulates (1), (11) and (111) of §1 so that  $(F, +, \psi)$  is a commutative ring. If  $\psi(x, y) \ge \max\{x, y\}$  for all  $(x, y) \in T$ , then

the unity of  $(F, +, \psi)$  exists if and only if for each  $k \in \mathbb{Z}^+$ , equation  $\psi(x, k) = k$  has a solution. In such a case, the unity is given by (2.1).

Remark 2.1: If  $\psi(x, y) < \max\{x, y\}$  for some  $(x, y) \in T$ , then the conclusion of Theorem 2.2 need not hold. For example, let  $T = \{(1, 2), (2, 1)\} \cup \{(k, k) : k \ge 2\}$  and  $\psi$  on T be defined by  $\psi(1, 2) = \psi(2, 1) = 1$  and  $\psi(k, k) = k$  for  $k \ge 2$ . Then  $\psi$  satisfies the postulates I, II and III of  $\S$ 1 and clearly for each  $k \in Z^+$ ,  $\psi(x, k) = k$  has a solution. Note that  $\psi(2, 1) = 1 < 2 = \max\{2, 1\}$ . It can be easily shown that (for example using (1.1)) that  $(F, +, \psi)$  does not possess the unity.

Remark 2.2: Let  $T = \{(2k, 2k), (2k - 1, 2k), (2k, 2k - 1); k \in Z^+\}$ . We define  $\psi: T \to Z^+$  by  $\psi(x, y) = \min\{x, y\}$  for all  $(x, y) \in T$ . It can be shown that  $\psi$  satisfies the postulates I, II and III of §1 so that  $(F, +, \psi)$  is a commutative ring. Also using (1.1) it is not difficult to show that the function of defined by g(2k) = 1 and g(2k - 1) = 0 for k = 1, 2, 3, ..., is the unity of  $(F, +, \psi)$ . Clearly the condition  $\psi(x, y) \ge \max\{x, y\}$  for all  $(x, y) \in T$  is violated.

# ACKNOWLEDGEMENT

The problems of this paper have been proposed to me by Professor N. V. Subrahmanyam more than ten years ago. I express my gratitude to him. Also, I wish to thank Dr S. Rame Gowda, Principal, Pondicherry Engineering College, Pondicherry for his constant encouragement.

# REFERENCES

- 1. V. Sita Ramaiah. Indian J. pure appl. Math. 16 (1985), 994-1009.
- 2. V. Sita Ramaiah, Indian J. pure appl. Math. 19 (1988), 1-10.

# ITERATIVE METHODS OF SOLUTIONS FOR LINEAR AND QUASI LINEAR COMPLEMENTARITY PROBLEMS

R. N. MUKHERJEE AND H. L. VERMA

Department of Applied Mathematics, Institute of Techology, Banaras Hindu University, Varanasi 221005

(Received 12 August 1988; after revision 3 July 1989; accepted 27 July 1989)

The present work has been conceived out of a need to extend the method of Ahn to give an iterative procedure for approximating solution of a 'quasi-linear complementarity problem' (QLCP). We also give the bound for spectral radius of them odified matrix in the context of QLCP. Further we give more results on the modification of the algorithm of Pang for finding the solution of QLCP for a pair (M, q), where M is symmetric and positive definite. The fixed parameter approach of Pang also has been modified to incorporate the variable parameter method in successive iteration process.

# 1. INTRODUCTION

The numerical method for LCP carries with it two methods, e. g, direct and indirect methods. Because of the complexity, the use of direct method is restricted for large size problems. Therefore iterative methods are well suited for such problems. The present work attempts to develop the procedure for finding approximate solutions of Quasi-Linear-Complementarity problems by iterative technique. Essentially this extends the earlier algorithm of Ahn¹ used for solution method for Linear Complementarity problems. Secondly, we also give an extension of a method of Pang⁵ to incorporate QLCP for the same purpose. Our attempt next would be to briefly indicate the essential procedure of Pang⁵ because we would refer that latter in our extensions.

Consider the symmetric LCP (q, M):

$$q + Mx \geqslant 0$$
,  $x \geqslant 0$ , and  $x^{T} (q + Mx) = 0$ 

where  $q \in R^n$  and  $M \in R^{n \times n}$  are given and  $x \in R^n$ . Let (B, C) be a Q-splitting of the matrix M, i. e. M = B + C is a Q-matrix [the LCP (q, B) has a solution for all vectors q]. Let  $E^k$  be a non-negative diagonal matrix with  $E^k_{ii} < 1$ . Define the point to set algorithmic map  $A^k$  as follows: for all vectors x,

$$A^k(x^k)$$
 = solution set of the LCP  $(q + Cx, B, E^k x^k)$ . ...(1.1)

The latter LCP (r, B, s) is to find y so that

$$r + By \geqslant 0$$
,  $y \geqslant s$  and  $(y - s)^T (r + By) = 0$ .

The LCP (r, B, s) can be converted into the LCP (r + Bs, B) if we translate the variable x = y - s since B is a Q-matrix, the set  $A^k$   $(x^k)$  is non-empty for all vectors x. Moreover a vector  $x^*$  solves the LCP (q, M) if and only if it is fixed point of the map  $A^k$  i. e.  $x^* \in A^k$   $(x^*)$ .

We define an iterative technique for solving the LCP (q, M) given the diagonal matrix  $E^k$  and the Q-splitting (B, C) of the matrix M. Let  $x^0 \ge 0$  be an arbitrary nonnegative vector. In general  $x^k \ge 0$ ,  $k \ge 0$  let  $x^{k+1}$  be any vector in the set  $A^k(x^k)$ .

The motivation for using the map  $A^k(x^k)$  lies in the fact that the matrix  $E^k$  may satisfy the bound  $E^k_{ii} < 1$  after the iteration proceeds onwards after a fixed index  $k_0$ . This idea is compatible with the usual approach in the contraction mapping case where a fixed power of a mapping may be a contraction although the original map may not be a contraction.

If B is a P-matrix (A real matrix  $A \in \mathbb{R}^{n \times n}$  is said to be a P-matrix if it has positive principal minors) then the set  $A^k(x^k)$  is singleton for all x. In this case, each  $x^{k+1}$  will be uniquely defined.

Pang<sup>4</sup> has given necessary and sufficient conditions on the matrix M on the convergence property, i. e. for all vector q and all starting vector  $x^{\circ} \ge 0$ , each sequence  $\{x^k\}$  generated by the iterative technique will converge to some solution of the LCP (q, M).

A Quasi-linear Complementarity (QLCP) can be stated as follows

Find  $z \in \mathbb{R}^n$  such that

$$z - Qz > 0$$
,  $Mz + q > 0 (z - Qz)^T (Mz + q) = 0$ . (1.2)

With splitting as indicated previously the point to-set algorithmic map takes the shape.

$$A^k(x^k)$$
 = Solution set of LCP  $(q + BQ x^k + C x^k,$   
 $B, E^k(1 - Q)x^k)$  ...(1.3)

Variantly  $x^*$  solves the QLCP (1.2) if and only if  $(1 - Q) x^*$  is a point in range of the set valued map A, i. e. a point in  $A(x^*)$ . The result connected with the convergence of various dual iterative techniques for the solution of strictly convex quadratic program

$$\min_{\substack{(1-Q)x \geqslant 0}} f(x) = q^T x + \frac{1}{2} x^T Mx \qquad ...(1.4)$$

can be derived by the methods of Pang<sup>5</sup>.

We explain some matrix notations as follows: If A is an  $n \times m$  matrix,  $\alpha$  and  $\beta$  are subsets of  $\{1, ..., n\}$  and  $\{1, ..., m\}$ , respectively, by  $A_{\alpha\beta}$  we denote the sub-matrix of A whose rows and columns are indexed by  $\alpha$  and  $\beta$  respectively. If  $\alpha = \{1, ..., n\}$ ,

we denote by  $A_{\beta}$  the submatrix whose columns of A are indexed by  $\beta$ ; similar definition applies to  $A_{\alpha}$ .

# 2. PRELIMINARIES

We restate again the QLCP as:

find  $z \in \mathbb{R}^n$ , such that

$$z - Qz \ge 0$$
,  $Mz + q \ge 0$ ,  $(z - Qz)^T (Mz + q) = 0$  ...(2.1)

where M is an  $n \times n$  real and non-symmetric matrix, q is  $n \times 1$  vector. If we take Q = 0 in QLCP we get the same LCP as in Ahn<sup>1</sup>.

First of all we describe the notations which occur in the QLCP. All matrices and vectors are real. A matrix A with m-rows, n-columns is denoted by  $R^{m imes n}$ . Row i of matrix A is denoted by Ai and column j by Aj and the element in row i and column j by Aij. The transpose of a matrix is denoted by super script T, such as the transpose of the matrix A is given by  $A^T$ , |A| denotes the matrix obtained from the real matrix  $A \in R^{m imes n}$  by replacing each element Aij by its absolute value.

If  $x \in \mathbb{R}^n$ ,  $x_+$  denotes the vector with elements

$$(x_+)_j = \max\{0, x_j\}; j = 1, 2, ..., n.$$

For any x and y in  $R^n$ , it can be easily shown that

(i) 
$$(x + y)_+ \le x_+ + y_+$$

(ii) 
$$x \leqslant y \Rightarrow x_+ \leqslant y_+$$
.

A real matrix  $A \in \mathbb{R}^{n \times n}$  is said to be a z-matrix (a P-matrix) if it has non-positive off diagonal entries (positive primal minors).

A square matrix with non-positive off diagonal elements and with a non-negative inverse in called an M-matrix. It can be easily shown that a matrix which is both a Z-matrix and a P-matrix is an M-matrix (or Minkowski matrix).

Given any real matrix  $A \in \mathbb{R}^{n \times n}$ , we define its comparison matrix

$$Ac = (Cij)$$

by

and

$$C_{ij} = - |A_{ij}|, i \neq j, i, j = 1, 2, ..., n$$

This definition is due to Verga<sup>6</sup>

# 3. ITERATIVE ALGORITHM

For solving QLCP (2.1) we describe the general fundamental algorithm.

Lemma 3.1—Let  $M \in \mathbb{R}^{n \times n}$  and E be any positive diagonal matrix, then,

$$z - Qz \ge 0$$
,  $Mz + q > 0$ ,  $(z - Qz)^T (Mz + q) = 0$   
 $\Rightarrow z = \{(1 - Q)z - \omega E(Mz + q)\}_+$ , for all or some  $\omega > 0$ .

Its proof is same as in Mangasarian<sup>2</sup>. This result can be transformed to a fixed point problem for solving the equation z = f(z)

where

$$f(z) = \{(1 - Q)z - \omega E(Mz + q)\}_{+}$$

This result readily leads to the following general algorithm suggested by Mangasarian<sup>2</sup>. We modify this algorithm at certain steps.

Algorithm 3.1—Let  $z^0 > 0$ , compute

$$z^{k+1} = \lambda \left[ (1 - Q) z^k - \omega E^k \left( M z^k + q + K^k \left( 1 - Q \right) \left( z^{k+1} - z^k \right) \right) \right]_+ + (1 - \lambda) \left( 1 - Q \right) z^k \qquad \dots (3.1)$$

where

$$k = 0, 1, ... 0 < \lambda \le 1, \omega > 0$$

and  $\{E^k\}$  and  $\{K^k\}$  are bounded sequences of matrices in  $K^{n \times n}$ , with each  $E^k$  being a positive diagonal matrix satisfying  $E^k \geqslant \alpha I$ , for some  $\alpha > 0$ 

where I is the identity matrix.

For the symmetric case Mangasarian has established convergence criteria of this general algorithm. We simplify this algorithm by setting

$$\lambda = 1$$
,  $E^k = E$ ,  $K^k = K$ , for each  $k$ .

Remark: As has been indicated in the conclusion, we can relax the above criteria for fixing the matrix powers  $E^k$  and  $K^k$  as constant matrices to derive certain variable parameter algorithm as well.

Algorithm 3.2—Let  $z^0 > 0$ , compute,

$$z^{k+1} = [(1 - Q) z^k - \omega E (Mz^k + q + K (1 - Q) (z^{k+1} - z^k))]_+$$

$$k = 0, 1, ...$$
(3.2)

where  $\omega > 0$ , E is a positive diagonal matrix and K is either strictly upper triangular or lower triangular matrix. Convergence properties for non-symmetric situations can not be established relying on the descent function of the form

$$\frac{1}{2} x^T M x + q^T x$$

so the recurssive relation between two successive iterations will be utilized here.

# 4. CONVERGENCE PROPERTIES

First of all we develop the fundamental recursive inequality for Algorithm 3.2 which will be the basis of convergence. This inequality is derived from the inequality properties of  $x_+$  and  $y_+$ .

Lemma 4.1—The kth and (k + 1) th solutions  $z^k$  and  $z^{k+1}$  satisfy the partial ordering recurssive inequality:

$$|z^{k+1} - z^k| \le (I - \omega E |K||1 - Q|)^{-1} |(1 - Q)(I + \omega EK)$$
  
-  $\omega EM||z^k - z^{k-1}|$ ...(4.1)

From this Lemma we can produce a condition for the sequence  $\{z^k\}$  of Algorithm 3.2 to be bounded and have an accumulation point which solves the QLCP (2.1).

If we put Q = 0 in (4.1) we have

$$|z^{k+1}-z^k| \leq (I-\omega E|K|)^{-1}|I-\omega E(M-K)||z^k-z^{k-1}|$$

which is the standard form given by Ahn1.

Theorem 4.1—Suppose that the given iteration parameter  $\omega$ , E, K and the underlying matrix M satisfy

$$\mu \left( (I - \omega E \mid K \parallel 1 - Q \mid)^{-1} \mid (1 - Q) \left( I + \omega E K \right) - \omega E M \mid \right) < 1$$
 ...(4.2)

where  $\mu$  (.) denotes the spectral radius; then the sequence  $\{z^k\}$  of Algorithm 3.2 converges to a solution  $z^*$  of QLCP.

The proof is similar to Ahn1.

Here also we can find the same spectral radius which is established by  $Ahn^1$ , simply by taking Q=0, in (4.2), viz.,

$$\mu ((I - \omega E \mid K \mid)^{-1} \mid I - \omega E (M - K) \mid) < 1.$$

We shall start the next section in which we modify the same result on the convergence of iterative methods for the symmetric QLCP. Pang had developed necessary and sufficient condition (for a fixed parameter) for the convergence of iterative method and for solving each individual LCP. We shall extend the method of Pang to incorporate it for the treatment of QLCP.

# 5. NON-DEGENERATE CASE

We classify our analysis into two cases which depends on the nature of the matrix, i. e. either the matrix is non-degenerate or positive semi-definite. Since we know that the matrix M is non-degenerate if all its principal minors are non-zero and the same case for the non-degeneracy in linear complementarity theory<sup>3</sup> the matrix M is non-degenerate if and only if the LCP (q, M) has a finite number of solutions for all vectors q.

The following theorem is the main result of this section.

Theorem 5.1—Let M be symmetric and non-degenerate matrix. Let (B, C) be regular Q-splitting of the matrix M. Let  $E^k$  be a non-negative diagonal matrix, with  $E_{ii}^k < 1$ , for all i. Then the following statements are equivalent:

- (A) for some vector q and any initial vector  $x^0 \ge 0$ , any sequence  $\{x^k\}$  satisfying (1-Q)  $x^{k+1} \in A^k$   $(x^k)$  is bounded and thus has at least one accumulation point, moreover, any such point solves the QLCP (q, M).
- (B) for some vector q, the quadratic function  $f(x) = q^T x + \frac{1}{2} x^T Mx$  is bounded below for  $(1 Q) x \ge 0$ .
- (C) for some vector q and any initial vector  $x^0 > 0$ , any sequence  $\{x^k\}$  satisfying  $(1-Q) x^{k-1} \in A^k(x^k)$  converges to solution of the QLCP (q, M).

Proof can be given in a line of the arguments given in Pang<sup>5</sup>.

# 6. CONCLUDING REMARKS

As one of the concluding remarks we would like to point out that in the case of quasi-linear complementarity problems the algorithm which was developed in section 3, for the iterative solution technique can as well be generalized for variable parameters such as the case when the assumptions  $E = E^k$  and  $K = K^k$  are relaxed and we take uniformly bounded (by matrix norm) matrices  $E^k$  and  $K^k$  in the iterative process of the algorithm itself. The variable parameter algorithms are still possible to find the fixed point for the set-valued maps  $A(x^k)$ .

# ACKNOWLEDGEMENT

The authors are grateful to the referee for his valuable comments which enabled the authors to improve over the earlier version of the manuscript.

# REFERENCES

- 1. B. H. Ahn, Optimization Theory Applie. 33 (1981), 175-85.
- 2. O. L. Mangasarian, Optimization Theory Applie 22 (1977), 465-85.
- 3. K. G. Murthy, Linear Algebra Applic. 5 (1972), 65-108.
- 4. J. S. Pang, J. Optimization Theory Applic. 42 (1984), 1-18.
- 5. J. S. Pang, J. Optimization Theory Applic. 49 (1986), 108-34.
- 6. R. S. Verga, Linear Algebra Applic. 13 (1974), 1-9.

# ON SOME NEW DISCRETE INEQUALITIES IN TWO INDEPENDENT VARIABLES

# B. G. PACHPATTE

Department of Mathematics and Statistics, Marathwada University Aurangabad 431004, (Maharashtra)

(Received 16 December 1988; accepted 23 May 1989)

The aim of this paper is to establish some new discrete inequalities in two independent variables which can be used as handy tools in the qualitative analysis of a new class of finite difference equations involving two independent variables.

# 1. INTRODUCTION

The fundamental role played by the discrete inequalities in the development of the theory of finite difference equations and numerical analysis is well known. A large number of papers dealing with discrete inequalities and their applications have appeared during the last few years, see<sup>1-10</sup> and some of the references given therein. Although stimulating research works have been undertaken in this direction, there are still a number of interesting classes of multidimensional finite difference equations which needs new types of discrete inequalities in their analysis. Our objective here is to present some new discrete inequalities in two independent variables which can be used as handy tools in the qualitative analysis of a new class of finite difference equations in two independent variables. In order to convey the importance of our results to the literature, we present applications of some of our inequalities to the study of boundedness, uniqueness and continuous dependence of the solutions of a new class of fourth order finite difference equations in two independent variables.

### 2. STATEMENT OF RESULTS

We first summarise some basic notations and definitions which will be used throughout this paper. Let  $N_0 = \{0, 1, 2, ...\}$ . The expression  $u(0) + \sum_{s=0}^{n-1} b(s)$  represents a solution of the linear difference equation  $\Delta u(n) = b(n)$  for  $n \in N_0$ , where  $\Delta$  is the operator defined by  $\Delta u(n) = u(n+1) - u(n)$ . The expression  $u(0) \stackrel{n-1}{=} b(s)$  represents a solution of the linear difference equation u(n+1) = b(n) u(n) for  $n \in N_0$ . We use the usual convention of writing  $\sum_{s \in \Phi} b(s) = 0$ 

and  $\prod_{s \in \Phi} b(s) = 1$ , if  $\Phi$  is the empty set. We also use the following notations of the operators

$$\Delta_1 u(m, n) = u(m + 1, n) - u(m, n),$$
  
 $\Delta_2 u(m, n) = u(m, n + 1) - u(m, n)$ 

for  $m, n \in N_0$ . We often use the letters m and n to denote the two independent variables which are members of  $N_0$ .

For convenience we list the following hypotheses:

- (H<sub>1</sub>) u(m, n) and h(m, n) are real-valued nonnegative functions defined for  $m, n \in N_0$ .
- (H<sub>2</sub>)  $p_1(m, n)$ ,  $p_2(m, n)$ ,  $p_3(m, n)$  are real-valued positive functions defined for  $m, n \in N_0$ .
- (H<sub>3</sub>) a(m, n) is real-valued, positive and nondecreasing function in both the variables m and n in  $N_0$ .
- (H<sub>4</sub>)  $u(m, n) \ge u_0 \ge 0$ ,  $u_0$  is a constant, h(m, n) > 0 are real-valued functions defined for  $m, n \in N_0$ .
- (H<sub>5</sub>) g(u) is continuous, nondecreasing real-valued function defined on an interval  $I = [u_0, \infty), u_0 \ge 0$  is a constant, and g(u) > 0 on  $(u_0, \infty), g(u_0) = 0$ .
- (H<sub>6</sub>)  $q_1(m, n)$ ,  $q_2(m, n)$ ,  $q_3(m, n)$  are real-valued positive functions defined for  $m, n \in N_0$ .
- (H7) W(u) is continuous, nondecreasing and submultiplicative real-valued function defined on an interval I, and W(u) > 0 on  $(u_0, \infty)$ ,  $W(u_0) = 0$ .

A useful two independent variable discrete inequality is embodied in the following theorem.

Theorem 1-Suppose (H<sub>1</sub>) and (H<sub>2</sub>) are true. If

$$u(m, n) \leqslant c + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) u(s, t) \qquad \dots (1)$$

for  $m, n \in N_0$ , where c is a nonnegative constant, then

$$u(m,n) \leq c \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{p_1(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s,n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s,v)} \right]$$

$$\times \sum_{t=0}^{y-1} h(s, t) \bigg] \qquad \dots (2)$$

for  $m, n \in N_0$ .

A slightly different version of Theorem 1 is given in the following theorem.

Theorem 2-Suppose (H<sub>1</sub>), (H<sub>2</sub>) and (H<sub>3</sub>) are true. If

$$u(m, n) \leq a(m, n) + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s, v)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) u(s, t) \qquad \dots (3)$$

for  $m, n \in N_0$ , then

$$u(m, n) \leq a(m, n) \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)} \times \sum_{t=0}^{y-1} h(s, t) \right] \qquad (4)$$

for  $m, n \in N_0$ .

Another interesting and useful discrete inequality is established in the following theorem

Theorem 3—Suppose (H<sub>2</sub>), (H<sub>4</sub>) and (H<sub>5</sub>) are true. If

$$u(m, n) \leq c + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) g(u(s, t)) \qquad ...(5)$$

for  $m, n \in N_0$ , where c is a nonnegative constant, then for  $0 \le m \le m_1$ ,  $0 \le n \le n_1$ ,  $m, m_1, n, n_1 \in N_0$ ,

$$u(m, n) \leq G^{-1} \left[ G(c) + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)} \right] \times \sum_{t=0}^{y-1} h(s, t)$$
...(6)

where

$$G(r) = \int_{r_0}^{r} \frac{dy}{g(y)}, r \ge u_0 \text{ with } r_0 > u_0$$
 ...(7)

 $G^{-1}$  is the inverse of G and  $m_1, n_1 \in N_0$  are chosen so that

$$G(c) + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)} \sum_{t=0}^{y-1} \frac{1}{p_3(s, y$$

for  $m, n \in N_0$  and  $0 \le m \le m_1, 0 \le n \le n_1$ .

We next establish the following more general inequality which may be convenient in some applications.

Theorem 4-Suppose (H<sub>1</sub>), (H<sub>2</sub>), (H<sub>6</sub>) and (H<sub>7</sub>) are true. If

$$u(m, n) \leq c + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) u(s, t)$$

$$+ \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{q_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} k(s, t) W(u(s, t)) \qquad \dots (8)$$

for  $m, n \in N_0$ , where c is a nonnegative constant and k(m, n) is a real-valued nonnegative function defined for  $m, n \in N_0$ , then for  $0 \le m \le m_2$ ,  $0 \le m \le n_2$ ,  $m, m_2$ ,  $n, n_2 \in N_0$ 

$$u(m, n) \leq Q(m, n) \Omega^{-1} \left[ \Omega(c) + \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \times \sum_{y=0}^{n-1} \frac{1}{q_3(s, y)} \sum_{t=0}^{y-1} k(s, t) W(Q(s, t)) \right] ...(9)$$

where

$$Q(m, n) = \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{p}{p_2(s, n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s, v)} \right] \times \sum_{t=0}^{y-1} h(s, t)$$
 ...(10)

and

$$\Omega(r) = \int_{r_0}^{r} \frac{dy}{W(y)}, \quad r \geq u_0 \text{ with } r_0 > u_0 \qquad \dots (11)$$

 $\Omega^{-1}$  is the inverse of  $\Omega$  and  $m_2, n_2 \in N_0$  are chosen so that

$$\Omega(c) + \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{q_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} k(t, s) W(Q(t, s)) \in \text{Dom}(\Omega^{-1})$$

for  $m, n \in N_0$  and  $0 \le m \le m_2$ ,  $0 \le n \le n_2$ .

# 3. Proofs of Theorems 1-4

In order to establish the inequality (2) in Theorem 1, we first assume that c > 0 and define a function z(m, n) by

$$z(m, n) = c + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) w(s, t). \qquad ...(12)$$

From (12) it is easy to observe that

$$z(0, n) = z(m, 0) = c$$
 ...(13)

and

$$p_{1}(m, n) \Delta_{1} z(m, n) = \sum_{s=0}^{m-1} \frac{1}{p_{2}(s, y)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s, n)} \sum_{t=0}^{y-1} h(s, t) n(s, t) \dots (14)$$

$$p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1} z(m, n) = \sum_{y=0}^{n-1} \frac{1}{p_{3}(m, y)} \sum_{t=0}^{y-1} h(m, t) u(m, t)$$
(15)

 $p_{3}(m, n) \Delta_{2}[p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1} z(m, n)]] = \sum_{t=0}^{n-1} h(m, t) u(m, t)$  ...(16)

 $\Delta_2 [p_3 (m, n) \Delta_2 [p_2 (m, n) \Delta_1 [p_1 (m, n) \Delta_1 z (m, n)]]] = h (m, n) u (m, n).$ ...(17)

Using the fact that  $(u, m, n) \leq z(m, n)$  in (17) we have

$$\Delta_2 (p_3 (m, n) \Delta_2 [p_2 (m, n) \Delta_1 [p_1 (m, n) \Delta_1 z (m, n)]]] \leqslant h (m, n) z (m, n).$$
...(18)

From the definition of u(m, n) we observe that  $z(m, n) \le z(m, n + 1)$  for  $m, n \in N_0$ . Using this fact in (18) we see that

$$\frac{p_{3}(m, n + 1) \Delta_{2}[p_{2}(m, n + 1) \Delta_{1}[p_{1}(m, n + 1) \Delta_{1}z(m, n + 1)]]}{z(m, n + 1)}$$

$$- \frac{p_{3}(m, n) \Delta_{2}[p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1}z(m, n)]]}{z(m, n + 1)} \leq h(m, n).$$
...(19)

From (19) and the fact that  $p_3(m, n)$   $\Delta_2[p_2(m, n)]$   $\Delta_1[p_1(m, n)] \geq 0$  from (16), we observe that

$$\frac{p_{3}(m, n + 1) \Delta_{2}[p_{2}(m, n + 1) \Delta_{1}[p_{1}(m, n + 1) \Delta_{1}z(m, n + 1)]]}{z(m, n + 1)} \\
= \frac{p_{3}(m, n) \Delta_{2}[p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1}z(m, n)]]}{z(m, n)} \leq h(m, n).$$
...(20)

Now keeping m fixed in (20), set n=t and sum over t=0,1,2,...,n-1 and use the fact that  $p_3(m,0)$   $\Delta_2[p_2(m,0)]$   $\Delta_1[p_1(m,0)]$   $\Delta_1[p_1(m,0)]$  = 0, from (16), to obtain the estimate

$$\frac{p_{3}(m, n) \Delta_{2}[p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1} z(m, n)]]}{z(m, n)} \leq \sum_{t=0}^{n-1} h(m, t).$$
...(21)

From (21) and in view of the facts that  $z(m, n) \le z(m, n + 1)$  and  $p_2(m, n)$   $\Delta_1[p_1(m, n) \Delta_1 z(m, n)] \ge 0$ , we observe that

$$\frac{p_2(m, n+1) \Delta_1 [p_1(m, n+1) \Delta_1 z(m, n+1)]}{z(m, n+1)}$$

$$p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1} z(m, n)]$$

$$z(m, n)$$

$$\leq \frac{1}{p_3(m,n)} \sum_{t=0}^{n-1} h(m,t).$$
 ...(22)

Keeping m fixed in (22) set n = y and sum over y = 0, 1, 2, ..., n-1 and use the fact that  $p_2(m, 0) \Delta_1[p_1(m, 0) \Delta_1 z(m, 0)] = 0$  from (15), to obtain the estimate

$$\frac{p_2(m, n) \Delta_1[p_1(m, n) \Delta_1 z(m, n)}{z(m, n)} \leq \sum_{v=0}^{n-1} \frac{1}{p_3(m, v)} \sum_{t=0}^{v-1} h(m, t).$$
...(23)

From (23) and in view of the facts that  $z(m, n) \le z(m + 1, n)$  and  $p_1(m, n)$   $\Delta_1 z(m, n) \ge 0$  from (14), we observe that

$$\frac{p_1 (m + 1, n) \Delta_1 z (m + 1, n)}{z (m + 1, n)} = \frac{p_1 (m, n) \Delta_1 z (m, n)}{z (m, n)}$$

$$\leq \frac{1}{p_2 (m, n)} \sum_{n=0}^{n-1} \frac{1}{p_3 (m, y)} \sum_{t=0}^{y-1} h (m, t). \qquad ...(24)$$

Now keeping n fixed in (24), set m = s and sum over s = 0, 1, 2, ..., m - 1 and use the fact that  $p_1(0, n) \Delta_1 z(0, n) = 0$  from (14), to obtain the estimate

$$\frac{\Delta_1 z (m, n)}{z (m, n)} \leqslant \frac{1}{p_1 (m, n)} \sum_{s=0}^{m-1} \frac{1}{p_2 (s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3 (s, y)} \sum_{t=0}^{y-1} h (s, t).$$
...(25)

From (25) we see that

$$z(m+1,n) \leqslant z(m,n) \left[1 + \frac{1}{p_1(m,n)} \sum_{s=0}^{m-1} \frac{1}{f_2(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s,y)} \times \sum_{t=0}^{y-1} h(s,t)\right].$$

$$(26)$$

Now keeping n fixed in (26), set n = x and substitute x = 0, 1, 2, ..., m - 1 successively and use the fact that z(0, n) = c from (13), to obtain the estimate

$$z (m, n) \le c \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)} \right]$$

$$\times \sum_{t=0}^{y-1} h(s, t) \right].$$

Substituting this bound on z (m, n) on the right side of (1) we obtain the inequality in (2).

Now suppose c = 0. Then from (1) we see that the inequality

$$u(m, n) \leq \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)} \times \sum_{t=0}^{y-1} h(s, t) u(s, t)$$

holds for every arbitrary positive number  $\epsilon$  and  $m, n \in N_0$ , which by the above argument yields the estimate

$$u(m,n) \leq \epsilon \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{p_1(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s,y)} \right] \times \sum_{t=0}^{y=1} h(s,t) ...(27)$$

Since  $u(m, n) \ge 0$  and  $\epsilon > 0$  is arbitrary number independent of m, n then from (27) it follows that u(m, n) = 0. This completes the proof of Theorem 1.

Since a(m, n) is positive and nondecreasing, we observe from (3) that

$$\frac{u(m,n)}{a(m,n)} \le 1 + \sum_{x=0}^{m-1} \frac{1}{p_1(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s,n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s,v)}$$

$$\sum_{t=0}^{u-1} h(s,t) \frac{u(s,t)}{a(s,t)}.$$

Now an application of Theorem 1 yields the required bound in (4) and the proof of Theorem 2 is complete.

In order to establish the inequality (6) in Theorem 3, let  $\epsilon > 0$  and  $u_{\epsilon}(m, n) = u(m, n) + \epsilon \ge u_0$  for all  $m, n \in N_0$ . Then from (5) we see that

$$u_{\epsilon}(m,n) \leq c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_{2}(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s,y)}$$

$$\times \sum_{t=0}^{y-1} h(s,t) g(u_{\epsilon}(s,t) - \epsilon)$$

$$\leq c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_{2}(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s,y)}$$

$$\times \sum_{t=0}^{y-1} h(s,t) g(u_{\epsilon}(s,t)). \qquad (28)$$

Define a function z(m, n) by

$$z(m, n) = c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_2(s, n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s, v)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) g(u_{\epsilon}(s, t)). \qquad ...(29)$$

From (29) it is easy to observe that

$$z(m, 0) = z(0, n) = c + \epsilon$$
 ...(30)

and

$$p_{1}(m, n) \Delta_{1} z(m, n) = \sum_{s=0}^{m-1} \frac{1}{p_{2}(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s, y)} \sum_{t=0}^{y-1} h(s, t) g(u_{s}(s, t)).$$
...(31)

$$p_{2}(m, n) \Delta_{1}[p_{1}(m, n) \Delta_{1} z(m, n)] = \sum_{y=0}^{n-1} \frac{1}{p_{3}(m, y)} \sum_{t=0}^{y-1} h(m, t) g(u_{\epsilon}(m, t))$$
...(32)

$$p_{3}(m,n) \Delta_{2}[p_{2}(m,n) \Delta_{1}[p_{1}(m,n) \Delta_{1} z(m,n)]] = \sum_{t=0}^{n-1} h(m,t) g(u_{\epsilon}(m,t))$$
...(33)

$$\Delta_2[p_3(m,n) \Delta_2[p_2(m,n) \Delta_1[p_1(m,n) \Delta_1 z(m,n)]]] = h(m,n) g(u,(m,n))...(34)$$

Using the fact that  $u_*(m, n) \leq z(m, n)$  in (34) we have

$$\Delta_2 [p_3(m,n) \Delta_2 [p_2(m,n) \Delta_1 [p_1(m,n) \Delta_1 z(m,n)]]] \le h(m,n) g(z(m,n)).$$
 ...(35)

From the definition of z(m, n) in (29) we observe that  $z(m, n) \le z(m, n + 1)$  for  $m, n \in N_0$ . Using this and the fact that

$$p_3(m, n) \Delta_2[p_2(m, n) \Delta_1[p_1(m, n) \Delta_1 z(m, n)]] \geqslant 0$$

from (33), we observe from (35) that

$$p_3(m, n + 1) \Delta_2[p_2(m, n + 1) \Delta_1[p_1(m, n + 1) \Delta_1 z(m, n + 1)]]$$
  
 $g(z(m, n + 1))$ 

$$\frac{p_3(m, n) \Delta_2[p_2(m, n) \Delta_1[p_1(m, n) \Delta_1 z(m, n)]]}{g(z(m, n))} \leq h(m, n).$$

$$\ldots(36)$$

Now by following exactly the same steps as in the proof of Theorem 1 below the inequality (20) up to the inequality (25) with suitable changes, we obtain

$$\frac{\Delta_1 z (m, n)}{g (z (m, n))} \leq \frac{1}{p_1 (m, n)} \sum_{s=0}^{m-1} \frac{1}{p_2 (s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3 (s, y)} \sum_{t=0}^{y-1} h (s, t).$$
...(37)

From (7) and (37) we have

$$G(z(m+1,n)) - G(z(m,n)) = \int_{z(m,n)}^{z(m+1,n)} \frac{dy}{g(y)} \leq \frac{\Delta_1 z(m,n)}{g(z(m,n))}$$

$$\leq \frac{1}{p_1(m,n)} \sum_{s=0}^{m-1} \frac{1}{p_2(s,n)} \sum_{v=0}^{n-1} \frac{1}{p_3(s,v)}$$

$$\times \sum_{t=0}^{y-1} h(s,t). \qquad ...(38)$$

Now keeping n fixed in (38), set m = x and sum over x = 0, 1, 2, ..., m - 1 to obtain the estimate

$$G(z(m, n)) \leq G(c + \epsilon) + \sum_{x=0}^{m-1} \frac{1}{p_1(x, n)} \sum_{s=0}^{n-1} \frac{1}{p_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t). \qquad ...(39)$$

The bound in (6) now follows by substituting the bound for z (m, n) from (39) in (28) and letting  $\epsilon \to 0$ . The subintervals of  $N_0$  for m, n are obvious and the proof of Theorem 3 is complete.

In order to prove the inequality (9) in Theorem 4, let  $\epsilon > 0$  and  $u_{\epsilon}(m, n) = u(m, n) + \epsilon \ge u_0$  for  $m, n \in N_0$ . Then from (8) we see that

$$u_{\epsilon}(m,n) \leq c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_{2}(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s,y)}$$

$$\times \sum_{t=0}^{y-1} h(s,t) (u_{\epsilon}(s,t) - \epsilon) + \sum_{x=0}^{m-1} \frac{1}{q_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{q_{2}(s,n)}$$

$$\times \sum_{y=0}^{n-1} \frac{1}{q_{3}(s,n)} \sum_{t=0}^{y-1} k(s,t) W(u_{\epsilon}(s,t) - \epsilon)$$

$$\leq c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{p_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{p_{2}(s,n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s,y)}$$

$$\times \sum_{t=0}^{y-1} h(s,t) u_{\epsilon}(s,t) + \sum_{x=0}^{m-1} \frac{1}{q_{1}(x,n)} \sum_{s=0}^{x-1} \frac{1}{q_{2}(s,n)}$$

$$\times \sum_{y=0}^{n-1} \frac{1}{p_{3}(s,y)} \sum_{t=0}^{y-1} k(s,t) W(u_{\epsilon}(s,t)). \qquad ...(40)$$

Define

$$a(m, n) = c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \sum_{v=0}^{n-1} \frac{1}{q_3(s, v)}$$

$$\times \sum_{t=0}^{y-1} k(s, t) W(u_s(s, t)) \qquad ...(41)$$

then (40) can be restated as

$$u_{\epsilon}(m, n) \leqslant a(m, n) + \sum_{x=0}^{m-1} \frac{1}{p_{1}(x, n)} \sum_{s=0}^{x-1} \frac{1}{p_{2}(s, n)} \sum_{y=0}^{n-1} \frac{1}{p_{3}(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) u_{\epsilon}(s, t).$$

Since a(m, n) is positive and nondecreasing function in both the variables m and n, we have from Theorem 2

$$u_{\varepsilon}(m,n) \leqslant a(m,n) Q(m,n)$$
 ...(42)

where Q(m, n) is as defined in (10). Since W is submultiplicative, we have

$$W\left(u_{\varepsilon}\left(m,\,n\right)\right)\leqslant W\left(a\left(m,\,n\right)\right)\,W\left(Q\left(m,\,n\right)\right).\tag{43}$$

From (41) and (43) we have

$$a (m, n) \leq c + \epsilon + \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{q_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} k(s, t) W(Q(s, t)) W(a(s, t)).$$

Now by following the proof of Theorem 3 with suitable modifications we obtain

$$a(m, n) \leq \Omega^{-1} \left[\Omega(c + \epsilon) + \sum_{x=0}^{m-1} \frac{1}{q_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{q_2(s, n)} \times \sum_{y=0}^{n-1} \frac{1}{q_3(s, y)} \sum_{t=0}^{y-1} k(s, t) W(Q(s, t))\right]. \tag{44}$$

The desired bound in (9) new follows by substituting (44) in (42) and letting  $\epsilon \to 0$ . The subintervals of  $N_0$  for m and n are obvious. This completes the proof of Theorem 4.

#### 4. SOME APPLICATIONS

In this section, we present some applications of our results to the study of boundedness, uniqueness and continuous dependence of the solutions of a new class of nonlinear finite difference equations in two independent variables. Each of these applications could be stated formally as a theorem. This has not been done so as not to obscure the essential ideas with technical details.

Example 1—As a first application, we obtain a bound on the solution of a nonlinear fourth order finite difference equation

$$\Delta_2 [a_3 (m, n) \Delta_2 [a_2 (m, n) \Delta_1 [a_1 (m, n) \Delta_1 u (m, n)]]] = f (m, n, u) (m, n)$$

Then boundary conditions at  $u = 0$ ....(45)

with the given boundary conditions at 
$$m = 0$$
,  $n = 0$   
 $u(0, n) = \phi_1(n)$ 

$$a_1(0, n) \Delta_1 u(0, n) = \phi_2(n)$$

$$a_2(m, 0) \Delta_1[a_1(m, 0) \Delta_1 u(m, 0)] = \psi_1(m)$$
  
 $a_3(m, 0) \Delta_2[a_2(m, 0) \Delta_1[a_1(m, 0) \Delta_1 u(m, 0)]] = \psi_2(m).$  ...(46)

Here  $a_1$ ,  $a_2$ ,  $a_3$  are real valued positive functions defined on  $N_0^2$ ,  $f:N_0^2 \times R \to R$ , where R denotes the set of real numbers;  $\phi_1(n)$ ,  $\phi_2(n)$ ,  $\psi_1(m)$ ,  $\psi_2(m)$  are real-valued nonnegative functions defined for  $m, n \in N_0$ . We assume that

$$|f(m, n, u)| \le h(m, n) |u|$$
 ...(47)

where h(m, n) is a real-valued nonnegative function defined for  $m, n \in N_0$ . It is easy to observe that the problem (45) - (46) is equivalent to the equation

$$u(m, n) = b(m, n) + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{a_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} f(s, t, u(s, t)) \qquad ...(48)$$

where

$$b(m, n) = \phi_1(n) + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \phi_2(n) + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)}$$

$$\sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} - \psi_1(s) + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(x, n)}$$

$$\times \psi_2(s) \sum_{y=0}^{n-1} \frac{1}{a_3(s, y)} ...(49)$$

Suppose that

$$|b(m,n)| \leq k \tag{50}$$

where k is a nonnegative constant. Using (47), (50) in (48) we have

$$|u(m, n)| \le k + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{a_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} h(s, t) |u(s, t)|.$$

Now an application of Theorem 1 yields the bound on the solution u(m, n) of (45)-(46) in terms of the known functions.

Example 2—As a second application, we shall discuss the uniqueness of the solution of the problem (45) – (46). We assume that the function f in (45) satisfies

$$|f(m, n, u) - f(m, n, \bar{u})| \le h(m, n) |u - \bar{u}|$$
 ...(51)

where h(m, n) is as in Example 1. The problem (45)—(46) is equivalent to the equation (48). Then for any two solutions u and  $\bar{u}$  of (45)—(46) we have

$$|u(m, n) - \bar{u}(m, n)| \le \epsilon + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)}$$

$$\times \sum_{y=0}^{n-1} \frac{1}{a_3(s, y)} \sum_{t=0}^{y-1} h(s, t) |u(s, t) - \bar{u}(s, t)| \dots (52)$$

where  $\epsilon > 0$  is arbitrary constant. The assumption (51) is used to get the inequality in (52). Now an application of Theorem 1 yields

$$|u(m,n) - \bar{u}(m,n)| \le \epsilon \left\{ \prod_{x=0}^{n-1} \left[ 1 + \frac{1}{a_1(x,n)} \sum_{s=u}^{x-1} \frac{1}{a_2(s,n)} \sum_{y=0}^{n-1} \frac{1}{a_3(s,y)} \sum_{t=0}^{y-1} h(s,t) \right] \right\}.$$

Since  $\epsilon > 0$  is arbitrary we have  $u = \bar{u}$  i. e. there is at most one solution of the problem (45) - (46).

Example 3—Our third application is an example of continuous dependence of the solution on the equation and boundary data. Consider the problem (45)—(46) in Example 1 and the problem

$$\Delta_2 [a_3 (m, n) \Delta_2 [a_2 (m, n) \Delta_1 [a_1 (m, n) \Delta_1 z (m, n)]]] = F (m, n, z (m, n))$$
  
with the given boundary conditions at  $m = 0$ ,  $n = 0$ 

$$z(0, n) = \overline{\phi}_{2}(n)$$

$$a_{1}(0, n) \Delta_{1} z(0, n) = \overline{\psi}_{2}(n)$$

$$a_{2}(m, 0) \Delta_{1} [a_{1}(m, 0) \Delta_{1} z(m, 0)]] = \overline{\psi}_{1}(m)$$

$$a_{3}(m, 0) \Delta_{2} [a_{2}(m, 0) \Delta_{1} [a_{1}(m, 0) \Delta_{1} z(m, 0)]] = \overline{\psi}_{2}(m). ...(54)$$

Here  $a_1$ ,  $a_2$ ,  $a_3$  are as in Example 1,  $F: N_0^2 \times R \to R$ ,  $\overline{\phi}_1(n)$ ,  $\overline{\phi}_2(n)$ ,  $\overline{\psi}_1(m)$ ,  $\overline{\psi}_2(m)$  are real-valued nonnegative functions defined for  $m, n \in N_0$ . The equations equivalent to (45) - (46) and (53) - (54) are (48) and

$$z(m, n) = \overline{b}(m, n) + \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{y=0}^{n-1} \frac{1}{a_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} F(s, t, z(s, t)) \qquad ...(55)$$

where  $\bar{b}$  (m, n) is obtained from the definition of b (m, n) by replacing  $\phi_1$  (n),  $\phi_2$  (n),  $\psi_1$  (m),  $\psi_2$  (m) in the right side in (49) by  $\bar{\phi}_1$  (n),  $\bar{\phi}_2$  (n),  $\bar{\psi}_1$  (m),  $\bar{\psi}_2$  (m) respectively. From (48) and (55) we have

$$u(m, n) - z(m, n)$$

$$= b(m, n) - \overline{b}(m, n)$$

$$+ \sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{v=0}^{y-1} \frac{1}{a_3(s, y)}$$

$$\times \sum_{t=0}^{y-1} \{f(s, t, u(s, t)) - F(s, t, z(s, t))\}. \qquad ...(56)$$

Suppose that the function f in (45) satisfies the condition (51) and further we assume that

$$|b(m, n) - \overline{b}(m, n)| \leq \epsilon \qquad ...(57)$$

$$\sum_{x=0}^{m-1} \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{y=0}^{x-1} \frac{1}{a_3(s, y)} \sum_{t=0}^{y-1} |f(s, t, z(s, t))|$$

$$- F(s, t, z)(s, t))| \leq \epsilon \qquad ...(58)$$

where  $\epsilon > 0$  is arbitrary constant. By substracting and adding f(s, t, z(s, t)) in the braces on the right side of equation (56) and using (51), (57), (58), we obtain

$$|u(m,n)-z(m,n)| \leq 2\epsilon + \sum_{x=0}^{m-1} \frac{1}{a_1(x,n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s,n)}$$

$$\sum_{y=0}^{m-1} \frac{1}{a_3(s,y)} \sum_{t=0}^{y-1} h(s,t) |u(s,t)-z(s,t)|. \qquad ...(59)$$

Now an application of Theorem 1 yields

$$|u(m, n) - z(m, n)|$$

$$\leq 2 \epsilon \left\{ \prod_{x=0}^{m-1} \left[ 1 + \frac{1}{a_1(x, n)} \sum_{s=0}^{x-1} \frac{1}{a_2(s, n)} \sum_{v=0}^{n-1} \frac{1}{a_3(s, v)} \right] \right\}.$$

$$\sum_{x=0}^{v-1} h(s, t) \right\}.$$
...(60)

If h (m, n) is bounded on some compact set  $0 \le m \le m_0$ ,  $0 \le n \le n_0$ , m,  $m_0$ , n,  $n_0 \in N_0$ , then the quantity in braces on the right in (60) is bounded by some constant M on the set  $0 \le m \le m_0$ ,  $0 \le n \le n_0$ . Therefore  $|u(m, n) - z(m, n)| \le 2M \in M$  on the set  $0 \le m \le m_0$ ,  $0 \le n \le n_0$ ; so the solution u(m, n) of (45) - (46) depends continuously on f and the boundary data. If  $\epsilon \to 0$ , then |u(m, n) - z(m, n)| - 0 on this set.

#### REFERENCES

- 1. Y. V. Bykov and V. G. Linenko, Differentsial 'nye Uravenija 9 (1973), 349-54.
  - 2. V. B. Demidovich. Differentsial 'nye Uravenija 5 (1969), 1247-55.
- 3. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962.
- 4. L. V. Masolockaja, Differensial 'nye Uravenija 34 (1967), 1976-83
- 5. B. G. Pachpatte, Mich. Math. J. 18 (1971), 385-91.
- 6. B. G. Pachpatte. Univ. Beograd Publ. Elek. Fak. Ser. Mat. Fiz. No. 577-No. 598 (1977), 65-73.
- 7. B. G. Pachpatte, Bull. Inst. Math. Acad. Sinica 5 (1977), 121-28.
- 8. B. G. Pachpatte, Tamkang J. Math. 12 (1981), 21-33.
- 9. S. Sugiyama, Bull. Sci. Enger Research Lab. Waseda Univ. 45 (1969), 140-44.
- 10. D. Wiltent and J. S. W. Wong, Monatsh. Math. 69 (1964), 362-67.

# PERIODIC BOUNDARY VALUE PROBLEMS FOR AN INFINITE SYSTEM OF NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

#### K. NARSIMHA REDDY

Department of Mathematics, P. G. College, Osmania University, Secunderabad 500003

(Received 3 August 1989; after revision 7 April 1989; accepted 8 May 1989)

Results on existence of solutions to Periodic Boundary Value Problems for an infinite System of nonlinear second order differential equationshave been discussed and a uniqueness result is presented.

#### 1. INTRODUCTION

There is a large literature on the existence of solutions for periodic boundary value problems (PBVP's for short) of nonlinear scalar differential equations<sup>7-10</sup>,12,14. Results on the existence of solutions for first and second order PBVP's have been obtained earlier 7'8'10'14 by combining two basic techniques, namely the method of upper and lower solutions and the alternative method. In deed, a number of existence theorems for periodic solutions have been obtained by the technique of upper and lower solutions, and others have been and are being obtained by the alternative method. Kannan and Lakshmikantham<sup>6</sup> showed that the use of a result proved by Cesari and Kannan<sup>3</sup> by the alternative method could remarkably improve the arguments by upper and lower solutions. New existence theorems could be obtained and previous ones could be obtained by a more uniform approach. Further work in this direction was done by Rao and Vatsala<sup>15</sup>. For an exposition on the alternative method, though preceeding the work in Cesari and Kannan<sup>3</sup>, we refer to Cesari<sup>2</sup>. Also we refer the readers to Bernfeld and Lakshnikantham1 for a general treatment of boundary value problems. Extremal solutions for nonlinear boundary value problems have been obtained by many workers4'5'8'9'11'16'17 by employing monotone iterative scheme and this method is found to be constructive. PBVP's for infinite systems of first and second order equations have been studied earlier8'11'14'15'17 and these results extend the results obtained for scalar equations.

In this paper we consider, as it was done earlier 4'5-7'16, an infinite system of second order ordinary differential equations with periodic boundary conditions and discuss the questions of existence and uniqueness of solutions again by combining the method of upper and lower solutions with the result in Cesari and Kannan<sup>3</sup> from the alternative method. The organization of the present paper is as follows: Our notations and terminology are fairly consistent and can be understood by referring to earlier workers 5'11'15'16. However for the sake of completeness we describe them briefly in section 2. Section 3 deals with existence results employing the alternative method. In

section 4, we develop a monotone iterative technique to obtain coupled extremal quasi-solutions for these systems. The uniqueness results are discussed in section 5.

#### 2. NOTATIONS AND TERMINOLOGY

Let I be the interval  $[0, 2\pi]$  and  $E = R^{\infty} = R \times R \times ...$  in which  $R = (-\infty, \infty)$ . Also let  $Z^+$  denote the set of all positive integers.

We consider the PBVP

$$-u_i'' = f_i(t, u, u_i'), t \in I, i \in Z^+$$

$$u(0) = u(2\pi), u'(0) = u'(2\pi)$$
...(2.1)

where  $f: I \times E \times R \rightarrow E$  is continuous.

For each  $i \in Z^+$ , we define two sets Pi and Qi such that  $Z^+ - \{i\}$   $Pi \cup Qi$ . Hereafter P(q) denotes the generic element of Pi(Qi) respectively whenever the set is nonempty. Moreover the vector  $u \in E$  may be written as u = (ui, [u]p, [u]q), for  $p \in Pi$ ,  $q \in Qi$ . Then the PBVP (2.1) becomes

$$-u_i'' = fi (t, ui, [u]p, [u]q, u_i')$$

$$u(0) = u(2\pi), u'(0) = u'(2\pi).$$

$$\dots (2.2)$$

Without further mention we assume that  $i \in Z^+$  and all the inequalities between vectors hold component wise.

We state the following assumptions which will be used in our subsequent discussion:

$$(A_0) \alpha, \beta \in C^2[I, E], \alpha(t) \leq \beta(t), t \in I$$

(A<sub>1</sub>) (i) 
$$\alpha$$
 (0) =  $\alpha$  (2 $\pi$ ),  $\alpha'$  (0)  $\geq \alpha'$  (2 $\pi$ ) and  $-\alpha''_{i} \leq f_{i}$  ( $t$ ,  $\sigma$ ,  $\alpha'$ )

for all  $\sigma$  such that  $\alpha(t) \leqslant \sigma \leqslant \beta(t)$  and  $\sigma_i = \alpha_i(t), t \in (0, 2\pi]$ 

(ii) 
$$\beta(0) = \beta(2\pi), \beta'(0) \leq \beta'(2\pi) \text{ and } -\beta_i'' \geq f_i(t, \sigma, \beta_i')$$

for all  $\sigma$  such that  $\alpha(t) \leqslant \sigma \leqslant \beta(t)$  and  $\sigma_i = \beta_i(t)$ ,  $t \in (0, 2\pi]$ 

(A2) For  $t \in I$ ,  $\alpha(t) \leq u(t) \leq \beta(t)$  and  $w \in R$  we have

$$|fi(t, u, vi)| \le \begin{cases} hi(|vi|) & \text{if } |vi| \le di \\ hi(di) & \text{if } |vi| > di \end{cases}$$

for some  $di > ei = 1/2\pi \max \{ \alpha i (0) - \beta i (2\pi) \mid , \mid \alpha i (2\pi) - \beta i (0) \mid \}, hi : [0, \infty) \rightarrow (0, \infty)$  is continuous for each i.

Also there exists N > 0 depending only on  $\alpha$ ,  $\beta$  and h such that

$$\int_{e_{\ell}}^{l_{\ell}} \frac{s d s}{h_{\ell}(s)} > \max_{l} \beta_{\ell}(t) - \min_{l} \alpha_{\ell}(t).$$

where

$$li = \min \{di, Ni\}$$

(A<sub>3</sub>) f is completely continuous on  $I \times E \times R$ .

(A<sub>4</sub>) For 
$$t \in I$$
,  $\alpha(t) \leqslant v \leqslant u \leqslant \beta(t)$  and  $|z_i| \leqslant \overline{d}i$   
 $f_i(t, u_i, [u]_p, [u]_q, z_i) - f_i(t, v_i, [u]_p, [u]_q, z_i) \geqslant -M_i(u_i - v_i)$ 

for some 
$$Mi > 0$$
. Where  $di = \max \left\{ N_i, \max_{I} |\alpha_i'(t)|, \max_{I} |\beta_i'(t)| \right\}$ 

(A<sub>5</sub>) f possess a mixed quasi-monotone property  $(mq \ mp)$  that is  $f_i(t, u_i, [u]_p, [u]_q, z_i)$  is monotone nondecreasing in  $[u]_p$  and monotone nonincreasing in  $[u]_q$ .

The functions  $\alpha$ ,  $\beta \in C^2$  [I, E] with  $\alpha$  (t)  $\leq \beta$  (t) on I are said to be coupled lower and upper quasi-solutions of (2.1) respectively if

$$-\alpha_i'' \leq f_i\left(t, \alpha_i, [\alpha]_p, [\beta]_q, \alpha_i'\right), \ \alpha(0) = \alpha(2\pi), \alpha'(0) \geq \alpha'(2\pi)$$
$$-\beta_i'' \geq f_i\left(t, \beta_i, [\beta]_p, [\alpha]_q, \beta_i'\right), \ \beta(0) = \beta(2\pi), \beta'(0) \leq \beta'(2\pi).$$

The functions  $x, y \in C^2[I, E]$  are said to be coupled quasi-solutions of (2.1) if

$$-x_{i}^{*} = f_{i}\left(t, x_{i}, [x]_{p}, [y]_{q}, x_{i}^{\prime}\right), x(0) = x(2\pi), x^{\prime}(0) = x^{\prime}(2\pi)$$

$$-y_{i}^{*} = f_{i}\left(t, y_{i}, [y]_{p}, [x]_{q}, y_{i}^{\prime}\right), y(0) = y(2\pi), y^{\prime}(0) = y^{\prime}(2\pi).$$

In the special case where all Qi's are empty, quasi-solutions are just solutions and in the case Pi's are empty, the quasi-solutions that result are most useful since they may be obtained most easily. We can also define coupled minimal and maximal quasi-solutions analogously.

We state the lemma which is a modified version of a known result.

Lemma 2.1—Let the assumptions  $(A_0)$  and  $(A_2)$  hold, then for any solution  $u \in C^2$  [I, E] of (2.1) with  $x(t) \le u(t) \le \beta(t)$  on I, we have

$$|u'(t)| \leq N \text{ on } I.$$

The proof of this lemma follows from Lemma 1.1 of Das and Devasahayam.

#### 3. EXISTENCE RESULTS

In this section we discuss the existence of solutions of PBVP's by the device, already used many times in the method of upper and lower solutions, of defining the function F as follows:

$$F_{i}(t, u, v_{i}) = f_{i}(t, p(t, u), v_{i}) + r_{i}(t, u)$$

where

$$Pi(t, u) = \max \{\alpha i(t), \min (ui, \beta i(t))\}$$

and

$$ri(t, u) = \begin{cases} \frac{\beta i(t) - ui}{1 + u_i^2}, & \text{if } ui > \beta i(t) \\ 0, & \text{if } \alpha i(t) \leq ui \leq \beta i(t) \\ \frac{\alpha i(t) - ui}{1 + u_i^2}, & \text{if } ui < \alpha i(t). \end{cases}$$

Consider the following PBVP

$$-u_i'' = Fi\left(t, u, u_i'\right), u(0) = u(2\pi), u'(0) = u'(2\pi). \qquad ...(3.1)$$

Lemma 3.1 – Let  $(A_0)$  and  $(A_1)$  hold and let u be a solution of (3.1). Then

$$\alpha(t) \leqslant u(t) \leqslant \beta(t) \text{ on } l.$$

PROOF: First we claim that  $\alpha$  (t)  $\leq u$  (t) on I. Suppose not, then we can find a  $t_0 \propto I$  and an  $\epsilon > 0$  such that for some  $k \in \mathbb{Z}^+$ 

$$\alpha k(t_0) = uk(t_0) + \epsilon, \ \alpha i(t) \leqslant ui(t) + \epsilon \ t \in I. \tag{3.2}$$

If  $t_0 \in (0, 2\pi)$ , we have  $\alpha'_k(t_0) = u'_k(t_0)$  and  $\alpha''_k(t_0) \leqslant u''_k(t_0)$ . From (3.2)  $\alpha k(t_0) > uk(t_0)$  and hence  $pk(t_0, u(t_0)) = \alpha k(t_0)$ . In view of  $(A_1)$  (i) and using the definition of F we have

$$f_{k}(t_{0} \sigma, \alpha'_{k}(t_{0})) \geq -\alpha''_{k}(t_{0})$$

$$\geq -u''_{k}(t_{0}) = F_{k}(t_{0}, u(t_{0}), u'_{k}(t_{0}))$$

$$\geq f_{k}(t_{0}, p(t_{0} u(t_{0})), \alpha'_{k}(t_{0})).$$

Since  $\alpha(t) \leq p(t, u(t)) \leq \beta(t)$  and  $pk(t_0, u(t_0)) = \alpha k(t_0)$ , we get a contradiction by choosing  $\alpha = p(t_0, u(t_0))$ .

If  $t_0 = 0$ , from (3.2) we obtain

$$\alpha_k(0) = u_k(0) + \epsilon = \alpha_k(2\pi) \text{ and } \alpha'_k(0) \leqslant u'_k(0) \text{ and } \alpha'_k(2\pi) \geqslant u'_k(2\pi),$$
  
since  $\alpha_k(0) = \alpha_k(2\pi)$ ,  $u_k(0) = u_k(2\pi)$ .

And in view of  $(A_1)$  (i) it follows that  $\alpha'_k(2\pi) = u'_k(2\pi)$  and as before

$$f_k(2\pi, \sigma, \alpha'_k(2\pi)) = -\alpha''_k(2\pi) = -u''_k(2\pi) = F_k(2\pi, u(2\pi), u'_k(2\pi))$$

$$> f_k(2\pi, p(2\pi, u(2\pi)), \alpha'_k(2\pi)).$$

Since  $\alpha(2\pi) = p(2\pi, u(2\pi)) \le \beta(2\pi)$  and  $p_k(2\pi, u(2\pi)) = \alpha_k(2\pi)$ , we again get a contradiction by choosing  $\sigma = p(2\pi, u(2\pi))$ . On similar lines we can prove that  $u(t) \le \beta(t)$  on I and this completes the proof.

Lemma 3.2—Let the assumptions  $(A_0) - (A_2)$  hold. Then there exist  $\alpha_0$ ,  $\beta_0$  such that the following are true:

$$\begin{pmatrix} A_0^* & \end{pmatrix} \alpha_0, \, \beta_0 \in C^2 \left[ I, \, E \right], \, \alpha_0 \left( t \right) < \beta_0 \left( t \right), \, t \in I$$

$$\begin{pmatrix} A_1^* & \end{pmatrix} \left( i \right) \, \alpha_0 \left( 0 \right) = \alpha_0 \left( 2\pi \right), \, \alpha_0' \left( 0 \right) \geqslant \alpha_0' \left( 2\pi \right) \text{ and }$$

$$- \alpha_0'' & < F_i \left( t, \, \overline{\sigma} \, \alpha_{0,i}' \, \right) \text{ for } \overline{\sigma} \text{ such that }$$

$$\alpha_0 \left( t \right) \leqslant \overline{\sigma} \leqslant \beta_0 \left( t \right) \text{ and } \overline{\sigma_i} = \alpha_{0,i} \left( t \right), \, t \in (0, \, 2\pi].$$

$$(ii) \quad \beta_0 \left( 0 \right) = \beta_0 \left( 2\pi \right), \, \beta_0' \left( 0 \right) \leqslant \beta_0' \left( 2\pi \right) \text{ and }$$

$$- \beta_{0 < i}'' > F_i \left( t, \, \overline{\sigma}, \, \beta_{0 < i}' \right) \text{ for all } \overline{\sigma} \text{ such that }$$

$$\alpha_0 \left( t \right) \leqslant \overline{\sigma} \leqslant \beta_0 \left( t \right) \text{ and } \overline{\sigma_i} = \beta_0, i \left( t \right), \, t \in (0, \, 2\pi].$$

 $\begin{pmatrix} A_2^* \end{pmatrix}$  The condition  $(A_2)$  holds with F replacing f and with respect to the pair  $(\alpha_0, \beta_0)$ .

PROOF: Let ai > 0, bi > 0 for all  $i \in Z^+$  be numbers and define  $\alpha_0, i$   $(t) = \alpha i$  (t) - ai and  $\beta_0, i$   $(t) = \beta i$  (t) + bi. Then it is easy to see following the proof of Lemma 2.2 Rao and Vatsala<sup>15</sup> that  $\left(A_0^* \text{ and } \left(A_1^*\right) \text{ hold.} \right)$  However for the sake of completeness we establish  $\left(A_2^*\right)$ .

For  $t \in I$ ,  $\alpha(t) \leq u(t) \leq \beta(t)$  and  $u'_i \in R$ , we have

$$|F_{i}(t, u, u'_{i})| = |f_{i}(t, u, u'_{i})|$$

$$= \begin{cases} h_{i}(|u'_{i}|), & \text{if } |u'_{i}| \leq d_{i} \\ h_{i}(d_{i}), & \text{if } |u'_{i}| > d_{i}. \end{cases}$$

Since hi (s) is a positive constant for s > di, there exists an  $N_i^* > di$  such that

$$N_{i}^{*} \qquad N_{i}^{*}$$

$$\int_{h_{i}(s)} \frac{s d s}{h_{i}(s)} \int_{e_{i}^{*}} \frac{s d s}{h_{i}(s)} > \max_{I} \beta_{0,i}(t) - \min_{I} \alpha_{0,i}(t)$$

$$e_{i}^{*} \qquad e_{i}^{*}$$

where

$$e_i^* = \min \{e_i, \bar{e}_i\} \text{ and } \bar{e}_i = \frac{1}{2\pi} \max [|\alpha_{0,i}(0) - \beta_{0,i}(2\pi)|, |\alpha_{0,i}(2\pi) - \beta_{0,i}(0)|].$$

This proves that  $(A_2)$  holds with  $F_i$  replacing  $f_i$ ,  $i \in Z^+$ .

For  $\sigma$ ,  $\overline{\sigma}$  such that  $\sigma_0(t) \leq \sigma$ ,  $\overline{\sigma} \leq \beta_0(t)$ ,  $\sigma_t = \alpha_0$ , t and  $\overline{\sigma_t} = \beta_0$ , t, define

$$G_{i}(t, u) = \begin{cases} F_{i}(t, \overline{\sigma}, \beta'_{0'i}) + \frac{\beta_{0,i} - ui}{1 + u_{i}^{2}} & \text{if } ui > \beta_{0,i} \\ \frac{ui - \alpha_{0,i}}{\beta_{0,i} - \alpha_{0,i}} \left[ F_{i}\left(t, \overline{\sigma}, \beta'_{0'i}\right) - F_{i}\left(t, \sigma \alpha'_{0'i}\right) \right] \\ + F_{i}\left(t, \sigma, \alpha'_{0'i}\right) + \frac{F_{i}\left(t, \sigma, \alpha'_{0'i}\right)}{1 + u_{1}^{2}} & \text{if } ui < \alpha_{0,i}. \end{cases}$$

Since  $\alpha_{0,i} < \beta_{0,i}$  for all  $t \in I$ ,  $G_i(t, u)$  is well defined. We now consider the modified PBVP

$$-u_i'' = G_i(t, u), u(0) = v(2\pi), u'(0) = u'(2\pi). \qquad ...(3.3)$$

Lemma 3.3—Assume that  $(A_0)$ ,  $(A_1)$  and  $(A_3)$  hold. Then the problem (3.3) has a unique solution u satisfying

$$\alpha_{0}, \epsilon(t) \leqslant u\epsilon(t) \leqslant \beta_{0}, \epsilon(t), t \in I.$$

PROOF: It is clear from the definition that  $G_i(t, u)$  is completely continuous and bounded on  $I \times E$ . Hence we can find a positive number J that depends on  $\alpha_0$  and  $\beta_0$  such that  $||G(t, u)|| \le J$ . Let  $X = L_2[0, 2\pi]$  define  $Lui = -u_i^*$  and then  $D(L) = \{\varphi \in X: \varphi, \varphi' \text{ are real valued absolutely continuous on } [0, 2\pi], \varphi'' \in X, \varphi(0) = \varphi(2\pi) \text{ and } \varphi'(0) = \varphi'(2\pi)\}$ . Let  $\mathfrak{R}$  be the nonlinear operator defined by

$$\mathfrak{R} u = G(t, u).$$

Then the BVP (3.3) may be translated into the operator equation

$$Lu = 97u$$

Notice that  $X_0$ , the Kernel of L consists of all constant functions and hence  $X_i$  where  $X = X_0 \oplus X_i$  is the class of all vector functions whose average on  $[0, 2\pi)$  is zero. Also we can define the operators P and H satisfying the conditions of Theorem 2.1 of Kannan and Lakshmikantham? Since G is bounded we can find constants A and B that depend only on  $\sigma_0$ ,  $\beta_0$  such that any solution of (2.2) in Theorem 2.1 of Kannan and Lakshmikantham? satisfies  $||u_1|| \leq A$  and  $||u_i'|| \leq B$  for all  $t \in I$ .

Hence by Theorem 2.1 of Kannan and Lakshmikantham<sup>7</sup> it is enough to find an  $R_{0,i}$  > 0 such that

$$< \Re(u_0, i + u_1, i), u_0, i > > 0 \text{ or } \leq 0$$
 ...(2.4)

for all  $|u_{0,i}| = R_{0,i}$  and  $|u_{1,i}| \le A$ ,  $|u'_{1,i}| \le B$  on  $I, i \in \mathbb{Z}^+$ . Since  $X_0$  consists of all constants functions and  $u_0 \in X_0$ , (3.4) can be written as

$$\int_{0}^{2\pi} G_{s}(s, R_{0} + u_{1}(s)) ds \leq 0$$

and

$$\int_{0}^{2\pi} G_{i}(s, -R_{0} + u_{1}(s)) ds \geqslant 0$$

choose  $R_{0,i} > 0$  large enough so that  $R_{0,i} + u_{1,i} > \max_{t} \beta_{0,i}(t)$  and  $R_{0,i} + u_{1,i}$ 

 $<\min_{t} \alpha_{1,i}(t)$ , Using the definition of  $G_{i}$  and  $A_{1}^{*}$  we see that

$$\int_{0}^{2\pi} G_{t}(s, R_{0} + u_{1}(s)) ds < \int_{0}^{2\pi} F_{t}(s, \overline{\sigma}, \beta'_{0,t}(s)) ds < 0$$

and

$$\int_{0}^{2\pi} G_{i}(s, -R_{0} + u_{1}(s)) ds > \int_{0}^{2\pi} F_{i}(s, \sigma, \alpha'_{0}, (s)) ds > 0$$

for any arbitrary but fixed o, o satisfying

$$\alpha_0(t) \leqslant \sigma$$
,  $\sigma \leqslant \beta_0(t)$ ,  $\sigma_i \alpha_0$ ,  $(t)$  and  $\sigma_i = \beta_0$ ,  $i(t)$ 

Hence by Theorem 2,1 of Kannan and Lakshmikantham<sup>7</sup>, there exists a solution u to the problem (3.3). Proceeding on the similar lines of that of Lemma 3.1, it is easy to see that u(t) satisfies the inequality

 $\alpha_{0}$ ,  $i(t) \leq u_{i}(t) \leq \beta_{0}$ , i(t),  $t \in I$ . From this it follows that for each  $i \in \mathbb{Z}^{+}$ ,  $u_{i}$  is a solution of

$$-u_{i}^{"} = \frac{u_{i} - \alpha_{0,i}}{\beta_{0,i} - \alpha_{0,i}} \left[ F_{i} \left( t, \overline{\sigma}, \beta_{0,i}^{'} \right) - F_{i} \left( t, \overline{\sigma}, \alpha_{0,i}^{'} \right) \right] + F_{i} \left( t, \overline{\sigma}, \alpha_{0,i}^{'} \right) \dots (3.5)$$

$$u(0) = u(2\pi), u'(0) = u'(2\pi)$$

where  $\alpha_0(t) \le \sigma$ ,  $\sigma \le \beta_0(t)$ ,  $\sigma_i = \alpha_{0,i}(t)$  and  $\sigma_i = \beta_{0,i}(t)$ . Following the proof of Lemma 2.3 of Rao and Vatsala<sup>15</sup> it can be shown that the solution u(t) of (3.5) is unique.

We now prove our main result of this section.

Theorem 3.1—Let the assumptions  $(A_0)-(A_3)$  be satisfied. Then the PBVP (2.1) has a solution u such that  $\alpha(t) \leq u(t) \leq \beta(t)$  and  $|u(t)| \leq N$  on I, where N depends only on  $\alpha$ ,  $\beta$  and the Nagume function.

PROOF: Consider the boundary value problem

$$-u_{i}'' = Hi \left(t, u, u_{i}'\right), u(0) = u(2\pi), u'(0) = u'(2\pi) \qquad ...(3.6)$$

where

$$Hi\left(t,u,u_{i}^{\prime}\right)=\lambda \ Fi\left(t,u,u_{i}^{\prime}\right)+\left(1-\lambda\right)Gi\left(t,u\right),\lambda\in\left[0,1\right].$$

In view of Lemma 3.2, one can verify that  $\alpha_0$  and  $\beta_0$  satisfy  $\begin{pmatrix} A_0^* \end{pmatrix}$ ,  $\begin{pmatrix} A_1^* \end{pmatrix}$  and  $\begin{pmatrix} A_2^* \end{pmatrix}$  with respect to  $H_t$ . Using the arguments similar to that of Lemma 3.1, it is easy to show that, if  $u_{\lambda,i}$  for  $\lambda \in (0, 1)$  is a solution of (3.6) then  $\alpha_{0,i}(t) \leq u_{\lambda,i}(t)$ ,  $\leqslant \beta_{0,i}(t)$ ,  $t \in I$ ,  $i \in Z^+$ . Since  $H_t$  satisfies a Nagumo condition, we have  $|u_{\lambda,i}'(t)| = C$ ,  $t \in I$  where the constant C is independent of  $\lambda$ . In view of Lemma 3.3, it follows that for  $\lambda \in [0,1)$  all possible solutions of (3.6) satisfy  $\alpha_0(t) \leq u_{\lambda}(t) \leq \beta_0(t)$  and  $|u_{\lambda,i}'(t)| \leqslant C$  for all  $t \in I$ . Also for  $\lambda = 0$ , the problem (3.6) has a unique

solution. Thus one can choose a bounded, closed convex set B in the (u, u') space  $H^1$   $[0, 2\pi) = L_2$   $[0, 2\pi]$  such that (3.6) has no solution on the boundary of B for  $\lambda \in (0, 1)$  and it has a unique solution in the interior of B for  $\lambda = 0$ . Hence by Leray-Schauder theory, the problem (3.6) has a solution u for  $\lambda = 1$ . By Lemma 3.1 we have  $\alpha(t) \leq u(t) \leq \beta(t)$ ,  $t \in I$  and this u is a solution of (2.1) satisfying  $\alpha(t) \leq u(t) \leq \beta(t)$ ,  $t \in I$ . Thus  $(A_2)$  implies that  $|u'(t)| \leq N$ ,  $t \in I$  where N is the Nagume constant vector. This completes the proof.

As a special case of Theorem 3.1 we have the following result.

Corollary 3.1—Let the assumptions  $(A_0)$ ,  $(A_2)$ ,  $(A_3)$  and  $(A_5)$  hold. Further assume that there exist coupled lower and upper quasi-solutions  $\alpha$  and  $\beta$ . Then the conclusion of Theorem 3.1 is true.

Remark 3.1: Note that if x,  $\beta$  are coupled lower and upper quasi-solutions, then  $(A_1)$  holds if f has mq mp and also that  $(A_1)$  implies  $\alpha$ ,  $\beta$  are coupled lower and upper quasi-solutions of (2.1).

Our results can also be extended to the following infinite system of second order equations with homogeneous Neumann boundary conditions (NBVP for short). That is

$$-u_i^u = f_i\left(t, u, u_i'\right), \ u'(0) = u'(2\pi) = 0 \qquad ...(3.7)$$

where

$$f \in C[I \times E \times R, E]$$
 and  $i \in Z^+$ .

Theorem 3.2—Let  $(A_0)$ ,  $(A_2)$  and  $(A_3)$  hold. Further let the following condition hold:

(B) (i) 
$$\alpha'(0) \geqslant 0, \alpha'(2\pi) \leqslant 0$$
 and 
$$-\alpha_i''(0) \leqslant f_i\left(t, \sigma, \alpha_i'\right), t \in (0, 2\pi] \text{ for all } \sigma \text{ such that}$$
$$\alpha(t) \leqslant \sigma \leqslant \beta(t) \text{ and } \sigma_i = \alpha_i(t), t \in I, i \in Z^+$$

(ii) 
$$\beta'(0) \leqslant 0, \beta'(2\pi) \geqslant 0$$
 and 
$$-\beta_i'' \geqslant f_i\left(t, \sigma, \beta_i'\right), t \in (0, 2\pi] \text{ for all } \sigma$$

such that  $\alpha(t) \leqslant \sigma \leqslant \beta(t)$  and  $\sigma_i = \beta_i(t)$ ,  $t \in I$ ,  $i \in Z^+$ .

Then the problem (3.7) has a solution w such that

$$\alpha(t) \leq u(t) \leq \beta(t)$$
 and  $|u'(t)| \leq N$  on  $I$ .

Where N depends only on  $\alpha$ ,  $\beta$  and the Nagume function.

The proof is similar to the proof of Theorem (3.1) with appropriate modifications.

#### 4. MONOTONE ITERATIVE METHOD

For any  $\eta$ ,  $\mu \in C[I, E]$ ,  $\alpha(t) \leqslant \eta(t)$ ,  $\mu(t) \leqslant \beta(t)$ ,  $t \in I$ , we consider the quasilinear PBVP

$$-u_i'' = Gi(t, u_i, [u]_p, [u]_q, u_i'), u(0) = u(2\pi), u'(0) = u'(2\pi) \dots (4.1)$$

where

Gi 
$$(t, ui, [u]_p, [u]_q, u'_i) = fi(t, \eta i, [\eta]_p, [u]_q, g(u'_i)) - Mi(ui - \eta i))$$

and

$$g\left(u_{i}'\right) = \max\left[-\overline{d}_{i}, \min\left(u_{i}', \overline{d}_{i}\right)\right]$$

Notice that G is defined on  $I \times [\alpha, \beta] \times R$  and  $(A_4)$  is equivalent to

$$\begin{pmatrix} A_{4!}^* \end{pmatrix} f_i \begin{pmatrix} t, u_i, [u]_p, [u]_q, g \end{pmatrix} \begin{pmatrix} u_i' \end{pmatrix} - f_i \begin{pmatrix} t, v_i [v]_p, [u]_q, g \end{pmatrix}$$
$$g \begin{pmatrix} u_i' \end{pmatrix} \geqslant -M_i (u_i - v_i)$$

for  $M_i > 0$ ,  $t \in I$ ,  $\alpha(t) \leq \nu \leq u \leq \beta(t)$  and  $u'_i \in R$ .

Relative to the PBVP (4.1) we prove the following lemmas.

Lemma 4.1—Let the assumptions  $(A_0) - (A_2)$ ,  $(A_4)$  and  $(A_5)$  be satisfied. Then the assumptions  $(A_1)$  and  $(A_2)$  are true with respect to the PVBP (4.1). That is  $\alpha$ ,  $\beta$  are also coupled lower and upper quasi-solutions of the PBVP (4.1) and  $G_i$  satisfies the modified Nagumo condition relative to  $\alpha$ ,  $\beta$ .

PROOF: Using the arguments of Lemma 3.1 of Lakshmikantham et al.<sup>11</sup> it is easy to show that  $\alpha$ ,  $\beta$  are also coupled lower and upper quasi solutions of the PBVP (4.1). However when (A<sub>2</sub>) holds we have

$$|f_{i}(t, u_{i}, [u]_{p}, [u]_{q}, u'_{i})| \leq \begin{cases} h_{i}(|u'_{i}|) & \text{if } |u'_{i}| \leq d_{i} \\ h_{i}(d_{i}) & \text{if } |u'_{i}| > d_{i} \end{cases} ...(4.2)$$

for  $t \in I$  and some  $di > ei = \frac{1}{2\pi} \max\{ | \alpha i(0) - \beta i(2\pi) |, | \alpha i(2\pi) - \beta i(0) | \}$  $\alpha(t) \leq u(t) \leq \beta(t), u'_i \in R \text{ and } hi \in C[[0, \infty), (0, \infty)], \text{ also}$ 

$$\int_{e_{i}}^{t} \frac{s d s}{h_{i}(s)} > \max_{i} \beta_{i}(t) - \min_{i} \alpha_{i}(t)$$

where

$$h = \min \{d_i, N_i\}.$$

From this it follows that any solution  $u \in C^2[I, E]$  of (2.1) satisfies  $|u_i'| \leq N_i$ ,  $i \in I$ .

For  $t \in I$ ,  $\alpha(t) \leqslant u(t) \leqslant \beta(t) \alpha$ ,  $(t) \leqslant \eta$ ,  $\mu \leqslant \beta(t)$  and  $u'_i \in R$  we have

where

$$\gamma i = \max_{I} \beta i(t) - \min_{I} \alpha i(t)$$

Further

$$|G_{i}(t, u_{i}[u]_{p}, [u]_{q}, u'_{i})| = H_{i}(|u'_{i}|).$$

where

$$H_{i}(s) = \begin{cases} h_{i}(s) + M_{i} & \text{if } s \leq \overline{d_{i}} \\ h_{i}(\overline{d_{i}}) + M_{i} & \text{if } s > \overline{d_{i}} \end{cases}$$

Evidently since  $H_i(s)$  is a positive constant for  $s \ge di$ , there exists an  $N_i^* > \bar{d}_i$  such that

$$\int_{e_{i}}^{N_{i}^{*}} \frac{s \, ds}{H_{i}(s)} \geq \int_{d_{i}}^{N_{i}^{*}} \frac{s \, ds}{H_{i}(s)} > \gamma i$$

and this proves that  $G_i$  also satisfies  $(A_2)$ . Hence the proof is complete.

We now prove a result on existence and uniqueness of solutions of the PBVP (4.1).

Lemma 4.2—Let the assumptions  $(A_0) - (A_5)$  hold. Then there exists a solution u of (4.1) such that  $\alpha(t) \leq u(t) \leq \beta(t)$  and  $|u_i'(t)| \leq \hat{N}_i$  on I. Further more the solution u(t) is unique.

PROOF: By Lemma (4.1) we have all the assumptions  $(A_0) - (A_2)$  satisfied with respect to the PBVP (4.1). Hence by Theorem (3.1), there exists a solution u(t) of (4.1) with  $\alpha(t) \leq u(t) \leq \beta(t)$  and  $|u_i'(t)| \leq \hat{N}_i$  on I. Using the arguments similar to that of Lemma 3.2 of Lakshmikantham *et al.*<sup>11</sup> we can show that the solution u(t) is unique.

Since for every  $\eta$ ,  $\mu \in [\alpha, \beta]$ , the PBVP (4.1) has a unique solution u, we define the mapping A by

$$A(\eta, \mu) = u \qquad ...(4.3)$$

and study the properties of this mapping in the next lemma.

Lemma 4.3—Under the assumptions of Lemma 4.2, the mapping A defined by (4.3) satisfies the following properties.

(i) 
$$\alpha \leq A(\alpha, \beta)$$
 and  $\beta \geq A(\beta, \alpha)$ 

(ii) For 
$$\alpha \subseteq \eta \leqslant \mu \leqslant \beta$$
.  $A(\eta, \mu) \leqslant A(\mu, \eta)$ .

PROOF: We shall only prove that  $\beta \ge A(\beta, \alpha)$  since similar arguments prove that  $\alpha \le A(\alpha, \beta)$ .

Let  $A(\beta, \alpha) = u$ , where u is the unique solution of the PBVP (4.1) with  $\eta = \beta$  and  $\mu = \alpha$ . Let  $\varphi(t) = u(t) - \beta(t)$ . Suppose that the inequality  $\varphi(t) \leq 0$ ,  $t \in I$  is false. Then there exists a  $t_0 \in I$  and an  $\epsilon > 0$  such that for some index  $k \in Z^+$ , we have

$$\varphi_k(t_0) = \epsilon \text{ and } \varphi_k(t) \leq \epsilon \text{ for all } t \in I \text{ and } i \in Z^+.$$
 (4.4)

If  $t_0 \in (0, 2\pi)$ , we have  $\varphi'_k(t_0) = 0$  and  $\varphi''_k(t_0) \leqslant 0$ .

Also

$$g(u'_k(t_0)) = g(\beta'_k(t_0)) = \beta'_k(t_0).$$

At  $t = t_0$  using  $(A_1)$  and (4.1), we have

$$0 \geq \varphi_{k}^{"}(t_{0}) = u_{k}^{"}(t_{0}) - \beta_{k}^{"}(t_{0})$$

$$\geq -G_{k}(t_{0}, u_{k}(t_{0}), [u(t_{0})]_{p}, [u(t_{0})]_{q}, u_{k}^{*}(t_{0}))$$

$$+ f_{k}(t_{0}, \beta_{k}(t_{0}), [\beta(t_{0})]_{p}, [\alpha(t_{0})]_{q}, \beta_{k}^{'}(t_{0}))$$

$$\geq M_{k} \epsilon > 0, \text{ a contradiction.}$$

If  $t_0 = 0$ , then using the boundary conditions,  $(A_1)$  (ii) and (4.4) we obtain

$$\varphi_k(0) = u_k(0) - \beta_k(0) = u_k(2\pi) - \beta_k(2\pi) = \varphi_k(2\pi) = \epsilon$$

$$\varphi'_k(0) \leq 0 \text{ and } \varphi'_k(2\pi) \geq 0.$$

Also

$$\varphi'_{k}(0) = u'_{k}(0) - \beta'_{k}(0) \geqslant u'_{k}(2\pi) - \beta'_{k}(2\pi) = \varphi'_{k}(2\pi).$$

Hence  $\varphi'_k(2\pi) = 0$  and using  $(A_1)$  and (4.1) we get

$$\varphi_k''(2\pi) = u_k''(2\pi) - \beta_k''(2\pi) \ge M_k \epsilon > 0$$
 which is again a contradiction.

To prove (ii) let  $\eta$ ,  $\eta \in [\alpha, \beta]$  such that  $\eta \leq \mu$ . Let  $A(\eta, \mu) = x$ ,  $A(\mu, \eta) = y$  and  $\psi(t) = x(t) - y(t)$ . If the inequality  $\psi(t) \leq 0$  for  $t \in I$  is false, then there exist  $t_0 \in I$  and an  $\epsilon > 0$  such that for some  $k \in Z^+$ , we have

$$\psi_k(t_0) = \epsilon \text{ and } \psi_k(t) \leqslant \epsilon \text{ for } t \in I \text{ and } i \in Z^+.$$
 ...(4.5)

If  $t_0 \in (0, 2\pi)$ , we have

$$\psi'_{k}(t_{0}) = 0 \text{ and } \psi''_{k}(t_{0}) \leq 0.$$

From (4.5),  $\begin{pmatrix} A_4^* \end{pmatrix}$  and  $\begin{pmatrix} A_5 \end{pmatrix}$  and inview of the definition of G,

$$0 > \psi_{k}''(t_{0}) = x_{k}''(t_{0}) - y_{k}''(t_{0})$$

$$= -f_{k}(t_{0}, \eta_{k}, [\eta]_{p}, [\mu]_{q}, g(x_{k}'(t_{0})) + M_{k}(x_{k}(t_{0}) - \eta_{k}(t_{0}))$$

$$+ f_{k}(t_{0}, \mu_{k}, [\mu]_{p}, [\eta]_{q}, g(y_{k}'(t_{0})) - M_{k}(y_{k}(t_{0} - \mu_{k}(t_{0}))$$

$$\geq M_{k}(x_{k}(t_{0}) - y_{k}(t_{0}) > 0, \text{ a contradiction.}$$

If  $t_0 = 0$ , then from (4.5) and the boundary conditions we obtain  $\psi_k$  ( $2\pi$ ) =  $\epsilon$  and  $\psi'_k$  ( $2\pi$ ) = 0 and as before we get a contradiction at  $t = 2\pi$ . This completes the proof The following is the main theorem of this section.

Theorem 4.1—Let the assumptions  $(A_0) - (A_5)$  be satisfied. Then there exist monotone sequences  $\{\alpha_n(t)\}$ ,  $\{\beta_n(t)\}$  with  $\alpha_0 = \alpha$ ,  $\beta_0 = \beta$  such that  $\alpha_n(t)$  and  $\beta_n(t)$  converge uniformly and monotonically to  $\beta_n(t)$  and  $\beta_n(t)$  respectively on  $\beta_n(t)$  are coupled minimal and maximal quasi-solutions of the PBVP (2.1). More precisely, if (x, y) are any coupled quasi-solutions of (2.1) satisfying  $\alpha \leq x$ ,  $y \leq \beta$ , then

$$\alpha = \alpha_0 \leqslant \alpha_1 \leqslant \alpha_2 \leqslant \ldots \leqslant \alpha_n \leqslant \ldots \leqslant \rho \leqslant x, y \leqslant r \leqslant \ldots \leqslant \beta_n$$

$$\leqslant \ldots \leqslant \beta_1 \leqslant \beta_0 = \beta \text{ on } I.$$

$$(4.6)$$

Further more any other solution u of (2.1) satisfying  $\alpha(t) \le u \le \beta(t)$  on I also satisfies (4.6) on I.

PROOF: We know from Lemma 4.2 that for any  $\eta$ ,  $\mu \in [\alpha, \beta]$ , the PBVP (4.1) has a unique solution u(t) such that  $\alpha(t) \le u \le \beta(t)$  and  $|u'_i(t)| \le N_i$  on I, where  $N_i$  is the Nagumo constant relative to G. In view of Lemma 4.3 we may define

the sequences  $\alpha_n = A$  ( $\alpha_{n-1}$ ,  $\beta_{n-1}$ ) and  $\beta_n = A$  ( $\beta_{n-1}$ ,  $\alpha_{n-1}$ ), n = 1, 2, 3, ... such that  $\alpha_0 = \alpha$  and  $\beta_0 = \beta$  and  $\alpha_n \leq \beta_n$  for each n. Since  $\alpha_0 \leq \alpha_1 \leq \beta_1 \leq \beta_0$ , by induction and the arguments similar to those used in Lemma 4.3, we can establish that  $\{\alpha_n\}$ ,  $\{\beta_n\}$  are monotone sequences such that

$$\alpha_0 \leqslant \alpha_1 \leqslant \ldots \leqslant \alpha_n \leqslant \beta_n \leqslant \ldots \beta_2 \leqslant \beta_1 \leqslant \beta_0 \text{ on } I.$$

Where  $\alpha_n(t)$  and  $\beta_n(t)$  satisfy

$$-\alpha_{n'i}'' = fi(t, \alpha_{n-1}, i, [\alpha_{n-1}]p, [\beta_{n-1})q, g(\alpha_{n'i}'))$$

$$-Mi(\alpha_{n}, i - \alpha_{n-1}, i), \alpha_{n}(0) = \alpha_{n}(2\pi), \alpha_{n}'(0) = \alpha_{n}'(2\pi)$$

$$...(4.7)$$

$$-\beta_{n'i}'' = fi(t, \beta_{n-1}, i, [\beta_{n-1}]p, [\alpha_{n-1}]q, g(\beta_{n'i}'))$$

$$-\beta_{n'i}'' = fi (t, \beta_{n-1}, i, [\beta_{n-1}]p, [\sigma_{n-1}]q, g(\beta_{n'i}'))$$

$$-Mi (\beta_{n}, i - \beta_{n-1}, i), \beta_{n} (0) = \beta_{n} (2\pi), \beta_{n}' (0) = \beta_{n}' (2\pi) \dots (4.8)$$

and

$$|\alpha'_n(t)|, |\beta'_n(t)| \leq N.$$

From (4.7),

$$- \gamma_{n,i}(t) = \int_{0}^{t} \int_{0}^{0} f_{i}(s, \alpha_{n-1}, i(s), [\alpha_{n-1}]_{p}, [\beta_{n-1}]_{q}, g(\alpha'_{n,i}(s))) ds d\sigma$$

$$\int_{0}^{t} \int_{0}^{\sigma} M_{i}(\alpha_{n,i}(s) - \alpha_{n-1,i}(s)) ds d\sigma + C_{n,i} t + \lambda_{n,i}.$$

Since for each i,  $f_i$  is completely continuous, the sequence  $\{\alpha_n\}$  is uniformly bounded and equi-continuous. Thus  $\{\alpha_n\}$  contains a subsequence which is uniformly convergent by the Arzela-Ascoli theorem. In view of the fact that  $\{\alpha_n\}$  is monotone the full sequence converges uniformly on I. Further more the uniform boundedness of the sequence  $\{\alpha_n''\}$  implies that the sequence  $\{\alpha_n''\}$  is equi-continuous and uniformly boundedness.

$$-\rho_{i}^{*} f_{i}(t, \rho_{i}, [\rho]_{p}, [r]_{q}, g(\rho_{j}^{\prime})), \rho(0) = \rho(2\pi), \rho^{\prime}(0) = \rho^{\prime}(2\pi)$$

$$-r_{i}^{*} = f_{i}(t, r_{i}, [r]_{p}, [\rho]_{q}, g(r_{i}^{\prime})), r(0) = r(2\pi), r(0) = r^{\prime}(2\pi)$$
...(4.9)

Following a continuation argument similar to that of [Bernfeld and Lakshmtkantham<sup>1</sup> p. 32], one can prove that  $\rho$  and r are actually coupled quasi-solutions of th PBVP (2.1). If (u, v) are any coupled solutions of (2.1) such  $u, v \in [\alpha, \beta] t \in I$  and  $|u'|, |v'| \leq N \leq \overline{d}$  on I, employing induction principle and the arguments similar to those used earlier, it can be shown that  $\alpha n \leq u, v \leq \beta_n$  on I. Hence we have  $\rho \leq u, v \leq r$  on I, proving that  $\rho$ , r are coupled minimal and maximal quasi-solutions of the PBVP (2.1).

Since any solution u of (2.1) satisfying  $\alpha \leq u \leq \beta$  on I may be regarded as (u, u) coupled quasi-solution of (2.1), we also have  $\rho \leq u \leq r$  on I. This completes the proof of the theorem.

#### 5. UNIQUENESS RESULT

We now present a result on the uniqueness of solutions of the PBVP (2.1).

Theorem 5.1—Assume  $(A_0)$ — $(A_3)$ . In addition for each  $i \in \mathbb{Z}^+$ , there exists a constant  $L_i > 0$  such that

$$(ui - vi) [fi (t, u, u'_i) - fi (t, v, v'_i)] \le - Li (ui - vi)^2$$
 ...(5.1)

whenever  $\alpha(t) \leqslant u$ ,  $v \leqslant \beta(t)$   $t \in I$  and  $u'_{i} - v'_{i} = 0$ . Then the PBVP (2.1) has a unique solution u(t) satisfying  $\alpha(t) \leqslant u(t) \leqslant \beta(t)$  on I.

PROOF: By Theorem 3.1 we know that the PBVP (2.1) has a solution. If possible, let u and v be two solutions for the PBVP (2.1) satisfying  $\alpha(t) \leq u(t)$ ,  $v(t) \leq \beta(t)$  for  $t \in I$ .

We define

$$\mu t(t) = (ut(t) - vt(t))^2$$

and observe that  $\mu_i(0) = \mu_i(2\pi)$ ,  $\mu_i'(0) = \mu_i'(2\pi)$  for each  $i \in \mathbb{Z}^+$  and

$$\mu_i^u(t) = -2 (u_i(t) - v_i(t)) [f_i(t, u, u_i') - f_i(t, v, v_i')]$$

$$+ 2 (u_i'(t) - v_i'(t))^2 \qquad ...(5.2)$$

We claim that  $\mu_i(t) \equiv 0$  for all  $i \in Z^+$  on I if not there exists a  $t_0 \in I$  and an  $\epsilon > 0$  such that for some  $k \in Z^+$ 

$$\mu k(t_0) = \epsilon \text{ and } \mu k(t) \leqslant \epsilon \text{ for all } t \in I, i \in Z^+.$$
 (5.3)

If  $t_0 \in (0, 2\pi)$ , we have

$$\mu'_{k}$$
  $(t_{0}) = 0$  and  $u''_{k} \le 0$ .

Thus from (5.2) and (5.1) we have

$$0 \ge \mu_k(t_0) = -2 (u_k(t_0) - v_k(t_0)) [f_k(t_0, u, u'_k(t_0)) - f_k(t_0, v, v'_k(t_0))] + 2 (u'_k(t_0) - v'_k(t_0))^2$$

$$\ge 2 L_k \mu_k(t_0) > 0, \text{ a contradiction.}$$

If 
$$t_0 = 0$$
, we obtain  $\mu_k(0) = \epsilon = \mu_k(2\pi)$  and  $\mu'_k(0) \le 0$  and  $\mu'_k(2\pi) \ge 0$ . However  $\mu'_k(0) = \mu'_k(2\pi)$  and hence  $\mu'_k(0) = \mu'_k(2\pi) = 0$  and consequently  $\mu''_k(\lambda) \le 0$  for  $\lambda = 0, 2\pi$ .

Also

$$0 \geqslant \mu_k''(\lambda) = 2Lk \ \mu k(\lambda) > 0$$
, for  $\lambda = 0$ ,  $2\pi$ 

which is again a contradiction. Hence the proof is complete.

Corollary 5.1—Assuming the conditions of Theorem 4.1 and the hypothesis (5.1) one may conclude the existence of a unique solution for the PBVP (2.1). In this case, if suffices to show that the coupled minimal and maximal quasi-solutions  $\rho$  (t) and r (t) are identical. This can be accomplished by defining the function

$$\mu i(t) = (\rho i(t) - ri(t))^2$$
 for each  $i \in Z^+$  and  $t \in I$ 

and proceeding along the lines of the proof of Theorem 5.1.

#### ACKNOWLEDGEMENT

The author is very much thankful to Prof. V. Sree Hari Rao, Department of Mathematics, JNTU, Kukatpalli, Hyderabad, India for his helpful suggestions and encouragement.

#### REFERENCES

- 1. S. R. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974.
- L. Cesari, Functional analysis, nonlinear differential equations, and the alternative method, Proc. Conf. on Nonlinear Functional Analysis and Differential Equations. Marcel Dekker Inc. New York, 1979, pp. 1-197.
- 3. L. Cesari and R. Kannan, Proc. Am. Math. Soc. 63 (1977), 221-25.
- 4. J. Chandra, V. Lakshmikantham and S. Leela, Arch. Rat. Mech. Anal. 69 (1978), 179-90.
- 5. K. M. Das and M. Paul Devasahayam, Nonlinear Analysis, Theory, Methods, Applic. 1 (1983), pp. 1051-60.
- 6. R. Kannan and V. Lakshmikantham, Nonlinear Analysis 6 (1982), 1-10.
- 7. R. Kannan and V. Lakshmikantham, Applicable Analysis 17 (1984), 103-13.

- 8. V. Lakshmikantham and A. S. Vatsala, J. Math. Anal. Applic. 79 (1981), 38-47.
- 9. V. Lakshmikantham and S. Leela, J. Math. Anal. Applic. 91 (1983), 1-7.
- 10. V. Lakshmikantham and S. Leela, Nonlinear Analysis, Theory, Methods Applic. 8 (1984), 281-87.
- 11. V. Lakshmikantham V. Sree Hari Rao and A. S. Vatsala, Ap. Math. Comput. 15 (1984), 71-83.
- 12 S. Leela, Nonlinear Analysis, Theory. Methods. Applic. 7 (1983), 349-55.
- 13. J. J. Nieto and V. Sree Hari Rao, Acta Math. Hung. 48 (1986), 59-66.
- 14. K. Schmidt, J. Diff. Eqns. 11 (1972) 180-92.
- 15. V. Sree Hari Rao and A. S. Vatsala, Applicable Analysis 17 (1983), 23-36.
- 16. R. C. Thompson, Annales Polonici Mathematici XLI (1983).
- 17. A. S. Vatsala, Nonlinear Analysis, Theory, Methods Applic. 7 (1983), 1283-89.

# ON THE SETS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS AND THE REGGE, BARGMANN-SHELEPIN ARRAYS FOR THE 3-J AND 6-J COEFFICIENTS

K. SRINIVASA RAO AND V. RAJESWARI
The Institute of Mathematical Sciences, Madras 600113

(Received 7 March 1989; accepted 4 May 1989)

The connection between the 3-j and the 6-j coefficients to a set of six F(1) s and a set of three (or, equivalently a set of four) F(1) s, respectively, is used to obtain sets of Regge  $3 \times 3$  and Bargmann—Shelepin  $4 \times 3$  symbols, Closed form expressions are obtained for the polynomial zeros of degree n of these coefficients.

#### INTRODUCTION

In literature, classical symmetries of the 3-j and the 6-j coefficients are 12 and 24 in number. By relating the 3-j coefficient to a  $3\times 3$  magic square symbol, Regge<sup>1</sup> showed that it has 72 symmetries. Bargmann<sup>2</sup> and Shelepin<sup>3</sup> related the 6-j coefficient to a  $4\times 3$  symbol, which exhibits all the 144 symmetries (including the classical symmetries) discovered by Regge<sup>4</sup>. We have shown that sets of p+1Fp (1) s are necessary and sufficient to account for all the known symmetries of the 3-j and the 6-j coefficients—explicitly, while a set of six  $_3F_2$  (1) s represent the 3-j coefficient<sup>5</sup>, either a set 1 of three or an equivalent set 11 of four  $_4F_3$  (1) s represent the 6-j coefficient<sup>6</sup>. Here we establish a connection between these sets of generalized hypergeometric functions and sets of Regge, Bargmann-Shelepin symbols for the 3-j and the 6-j coefficients, respectively. Using these, closed form expressions have been obtained for the polynomial zeros of degree n of the 3-j and 6-j coefficients, which have been the subject of detailed study-especially when n=1 or 2- by several authors in recent years.

### CLOSED FORM EXPRESSIONS

The 3-j coefficient has been defined by Wigner<sup>8</sup> as:

$$\binom{j_1 \ j_2 \ j_3}{m_1 \ m^2 \ m_3} = \delta (m_1 + m_2 + m_3, 0) (-1)^{j_1 - j_2 - m_3} \Delta (j_1 \ j_2 \ j_3) \prod_{i=1}^{3} \{(j_i + m_i)! (j_i - m_i)!\}^{1/2} \times \sum_{z} (-1)^{z} \{z! \prod_{k=1}^{2} \{z - \alpha_k\}! \prod_{l=1}^{3} (\beta_l - z)!\}^{-1}$$
 ... (1)

where

$$\max (\alpha_1, \alpha_2) \leq z \leq \min (\beta_1, \beta_2, \beta_3)$$

$$\alpha_1 = j_1 - j_3 + m_2, \ \alpha_2 = j_2 - j_3 - m_1$$

$$\beta_1 = j_1 - m_1, \ \beta_2 = j_2 + m_2, \ \beta_3 = j_1 + j_2 - j_3. \qquad \dots (2)$$

and

$$\Delta (x y z) = [(-x + y + z)! (x - y + z)! (x + y - z)!]$$

$$(x + y + z + 1)!]^{1/2} \qquad ...(3)$$

and  $\delta(x, y)$  is the Kronecker delta function. Regge<sup>1</sup> discovered new symmetries by associating the 3 - j coefficient with a magic  $3 \times 3$  square symbol:

$$\begin{pmatrix}
j_1 & j_2 & j_3 \\
m_1 & m_2 & m_3
\end{pmatrix} = \begin{vmatrix}
-j_1 + j_2 + j_3 & j_1 - j_2 + j_3 & j_1 + j_2 - j_3 \\
j_1 - m_1 & j_2 - m_2 & j_3 - j_3 \\
j_1 + m_1 & j_2 + m_2 & j_3 + m_3
\end{pmatrix}$$

$$= ||Rik||$$
...(4)

and asserted that the  $3 \times 3$  square symbol represents the invariance of the 3-j coefficient to 3! column and 3! row permutations and to a reflection about its diagonal. Thus, Regge<sup>1</sup> established the existence of a 72-element symmetry group, comprising the well-known classical symmetries (which arise due to column permutations and to the space reflection:  $mi \rightarrow -mi$  arising due to the interchange of the second and third rows of (4)) and six new symmetries known as Regge symmetries of the 3-j coefficient.

It has been shown by one of us (Srinivasa Rao<sup>5</sup>) that the 3-j coefficient can be represented by a set of six  $_3F_2$  (1) s:

$${\binom{j_1 \quad j_2 \quad j_3}{m_1 \quad m_2 \quad m_3}} = \delta \left( m_1 + m_2 + m_3, 0 \right) \left( -1 \right)^{\sigma(pqr)} \prod_{i,k=1}^{3} \left\{ Rik! / (J+1)! \right\}^{1/2} \times \left[ \Gamma \left( 1 - A, 1 - B, 1 - C, D, E \right) \right]^{-1} {}_{3}F_{2} \left( A, B, C; D, E; 1 \right) \dots (5)$$

where

$$A = -R_{2p}, B = -R_{3q}, C = -R_{1r}, D = R_{3r} - R_{2p} + 1,$$

$$E = R_{2r} - R_{3q} + 1, \Gamma(x, y, ...) = \Gamma(x) \Gamma(y) ...,$$

$$J = j_1 + j_2 + j_3 ...(6)$$

and

$$\sigma (pqr) = \begin{cases} R_{3p} - R_{2q} & \text{for even permutations} \\ R_{3p} - R_{2q} + J \text{ for odd permutations} \end{cases}$$

for all permutations of  $(p \ q \ r) = (123)$ . Since each one of the six  $_3F_2$  (1) s represents only 12 symmetries arising from its invariance to 3! numerator and 2! denominator parameter permutations, the set of six  $_3F_2$  (1) s is necessary and sufficient to account for all the 72 symmetries of the 3-j coefficient.

Using the properties of the elements of the  $3 \times 3$  square symbol:

$$Rl_p + Rm_p = Rnq + Rn_r \qquad ...(7)$$

for (lmn) and (pqr) being (123) cyclically, and the defining relations (6) for the numerator and denominator parameters, one can easily show that:

$$||Rik|| = \begin{vmatrix} -B+D+1 & -A+E-1 & -C \\ -A & -C+D-1-B+E-1 \\ -C+E-1 & -B & -A+D-1 \end{vmatrix}. \dots (8)$$

From (8) it is straightforward to obtain the closed form expression:

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} (-A - C + E - 1)/2 & (-B - C + D - 1)/2 \\ (A - C + E - 1)/2 & (-B + C - D + 1)/2 \end{pmatrix} \times \begin{pmatrix} (-A - B + D + E - 2)/2 \\ (-A + B + D - E)/2 \end{pmatrix} \dots (9)$$

The parameters A and B are negative integers by definition. So, if we let P = -A and Q = -B and set C = -1, we get, for the polynomial zeros of degree one the expression:

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} (P+E)/2 & (Q+D)/2 \\ (-P+E)/2 & (Q-D)/2 \end{pmatrix} \times \frac{(P+Q+D+E-2)/2}{(P-Q+D-E)/2} \qquad ...(10)$$

with the constraint equation:

which is a homogeneous multiplicative Diophantine equation (see, Bell<sup>9</sup>) of degree 2 whose complete solutions can be expressed in terms of four parameters. Identifying the four parameter solution to be:

$$P = ab$$
,  $Q = cd$ ,  $D = bd$  and  $E = ac$  ...(12)

and substituting it in (10), we obtain the result given by Brudno<sup>10</sup>. The polynomial zeros of degree n arise due to the truncation of the  $_3F_2$  (1) series (5). By setting anyone of the numerator parameters, (say C) to -n and equating the sum of the (n+1) terms to zero, one obtains the constraint equation which must be satisfied by the

numerator and denominator parameters of the  $_3F_2$  (1) for realizing the polynomial zeros of degree n.

The 6-j coefficient has been expressed by Regge<sup>4</sup> to be:

$$\left\{\begin{array}{c} a \ b \ e \\ d \ c \ f \end{array}\right\} = N \sum_{p} (-1)^{p} (p+1)! \left\{\prod_{i=1}^{4} (p-\alpha_{i})! \prod_{j=1}^{3} (\beta_{j}-p)!\right\}^{-1} \dots (13)$$

with

$$N = \Delta (a b e) \Delta (c d e) \Delta (a c f) \Delta (b d f)$$

$$\alpha_1 = a + b + e, \ \alpha_2 = c + d + e, \ \alpha_3 = a + c + f, \ \alpha_4 = b + d + f$$

$$\beta_1 = a + b + c + d, \ \beta_2 = a + d + e + f, \ \beta_3 = b + c + e + f$$

and max  $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \le p \le \min(\beta_1, \beta_2, \beta_3)$ . The 144 symmetries of the 6-j coefficient arise due to the invariance of (13) to the 4! permutations of the  $\alpha$ 's and the 3! permutations of the  $\beta$ 's. This is explicit in the notation of Bargmann<sup>2</sup> and Shelepin<sup>3</sup> wherein:

$$\left\{ \begin{array}{l}
 a \ b \ e \\
 d \ c \ f
 \end{array} \right\} = \left\| \begin{array}{l}
 \beta_1 - \alpha_1 & \beta_2 - \alpha_1 & \beta_3 - \alpha_1 \\
 \beta_1 - \alpha_2 & \beta_2 - \alpha_2 & \beta_3 - \alpha_2 \\
 \beta_1 - \alpha_3 & \beta_2 - \alpha_3 & \beta_3 - \alpha_3 \\
 \beta_1 - \alpha_4 & \beta_2 - \alpha_4 & \alpha_3 - \alpha_4
 \end{array} \right\| = \|Rik\| \qquad \dots (14)$$

which is invariant to 4! row permutations and 3! column permutations. The elements of ||Rix|| satisfy the 18 relations:

$$Rkk + Rmn = Rkn + Rmk$$

and

$$R_{4k} + Rmn = R_{4n} + Rmk \qquad ...(15)$$

for  $k \neq m$  and  $k \neq n$  and k, m or n being 1, 2 or 3. Equivalently, every  $2 \times 2$  cofactor in (14), say  $\begin{vmatrix} \alpha & \beta \\ \gamma & \delta \end{vmatrix}$  satisfies the condition :  $\alpha + \delta = \beta + \gamma$ .

We have shown that the 6-j coefficient can be represented by a set l of three  $_4F_3$  (1) s as:

$$\left\{ \begin{array}{l} a \, b \, e \\ d \, c \, f \end{array} \right\} = (-1)^{E+1} \, N \, \Gamma \, (1 - E) \, \left\{ \Gamma \, (1 - A, \, 1 - B, \, 1 - C, \, 1 - D, \, F, \, G) \right\} \, ^{1} \, \times \, _{4}F_{3} \, (A, \, B, \, C, \, D; \, E, \, F, \, G; \, 1)$$
 ...(16)

where

$$A = -R_{1p}, B = -R_{2p}, C = -R_{3p}, D = -R_{4p},$$

$$E = -R_{1p} - R_{2p} - R_{3q} - R_{4r} - 1, F = R_{3q} - R_{3p} + 1, G$$

$$= R_{4r} - R_{4p} + 1 \qquad ...(17)$$

for  $(p \ q \ r) = (123)$  cyclic; and use has been made of (15) in arriving at (17). It is now possible to express the standard Bargmann-Shelepin  $4 \times 3$  symbol in terms of the numerator and denominator parameters of the set I of  $_4F_3$  (1) s, using (15) again, as:

$$\left\{ \begin{array}{l} a \ b \ e \\ d \ c \ f \end{array} \right\} = \left\| \begin{array}{l} -A \quad F - A - 1 \quad G - A - 1 \\ -B \quad F - B - 1 \quad G - B - 1 \\ -C \quad F - C - 1 \quad G - D - 1 \\ -D \quad F - D - 1 \quad G - D - 1 \end{array} \right\| = \|Rik\| \qquad ...(18)$$

where the negative denominator parameter E does not appear in (18) and the  $4 \times 3$  symbol in (18) exhibits only 48 symmetries which arise due to the invariance of the 6-j coefficient to 4! row permutations and 2! column permutations in ||Rix||. The set I of three different  $4 \times 3$  symbols which exist due to the substitution  $(p \ q \ r) = (123)$  cyclically in (17) account for the 144 symmetries exhibited by (14). It is now straightforward to obtain the closed form expression for the 6-j coefficient:

$$\left\{ \begin{array}{l} a \ b \ e \\ d \ c \ f \end{array} \right\} = \left\{ \begin{array}{l} (G - B - D - 1)/2 & (F - B - C - 1)/2 \\ (G - A - C - 1)/2 & (F - A - D - 1)/2 \end{array} \right.$$

$$\left. \begin{array}{l} (F + G - C - D - 2)/2 \\ (F + G - A - B - 2)/2 \end{array} \right\} \qquad ...(19)$$

Setting one of the numerator parameters of the  $_4F_3$  (1) to -1 (say, D=-1) and replacing the negative parameters A, B and C by -v, -w, and -u, respectively and letting F=y and G=x, we get for the r. h. s. of (19):

$$\begin{cases} (x+w)/2 & (y+u+w-1)/2 & (x+y+u-1)/2 \\ (x+u+v-1)/2 & (y+v)/2 & (x+y+v+w-2)/2 \end{cases}$$
 ...(20)

which is a symmetry of the parametric solution of Brudno and Louck<sup>11</sup>, in the notation of Srinivasa Rao et al. 12 for the polynomial zeros of degree 1.

It was shown<sup>7</sup> that the 6-j coefficient can also be represented by a set II of four  $4F_3$  (1) s as:

$$\begin{cases} a & b & e \\ d & c & f \end{cases} = (-1)^{4'-2} N \Gamma(A') [\Gamma(1-B', 1-C', 1-D', E', F', G)]^{-1} \times {}_{4}F_{3}(A', B', C', D'; E', F', G'; 1). \qquad ...(21)$$

where, using (15), the numerator and denominator parameters can be shown to be:

$$A' = Rq_2 + R_{r1} + Rs_3 + 2$$
,  $B' = -Rp_1$ ,  $C' = -Rp_2$ ,  $D' = -Rp_3$   
 $E' = Rq_1 - Rp_1 + 1$ ,  $F' = Rr_1 - Rp_1 + 1$ ,  $G' = Rs_1 - Rp_1 + 1$   
...(22)

for (pqrs) = (1234) cyclically. The  $4 \times 3$  symbol for this set II of  $_1F_3$  (1) s can be written as:

$$\left\{ \begin{array}{lll}
a \ b \ e \\
d \ c \ f
\end{array} \right\}
\left| \begin{array}{lll}
B' & -C' & -D' \\
E' - B' - 1 & E' - C' - 1 & E' - D' - 1 \\
F' - B' - 1 & F' - C' - 1 & F' - D' - 1 \\
G' - B' - 1 & G' - C' - 1 & G' - D' - 1
\end{array} \right\}
= \left| \begin{array}{lll}
R'_{ik} \parallel \\
\dots(23)$$

where the positive numerator parameter A' does not appear in (23) and this  $4 \times 3$  symbol exhibits only 36 of the 144 symmetries of the 6-j coefficient which arise due to its invariance to 3! column (or all permutations of B', C', D') and 3! row permutations (or all permutations of E', F', G') of  $||R'_{ik}|||$ . The set II of four  $||R'_{ik}|||s$  which arise due to the substitution ( $p \neq r s$ ) = (1234) cyclically in (22) accounts for the 144 symmetries of the 6-j coefficient. As in the case of the set I of  $4F_3$  (1) s, in the case of this set II of  $4F_3$  (1) s also we obtain a closed from expression:

$$\left\{ \begin{array}{l} a \, b \, e \\ d \, c \, f \end{array} \right\} = \left\{ \begin{array}{l} (E' + G' - B' - C' - 2)/2 \\ (F' - B' - C' - 1)/2 \end{array} \right.$$

$$\left. \begin{array}{l} (E' + F' - B' - D' - 2)/2 & (F' + G' - C' - D' - 2)/2 \\ (G' - B' - D' - 1)/2 & (E' - C' - D' - 1)/2 \end{array} \right\}$$

$$\dots (24)$$

Setting one of the numerator parameters of the  $_4F_3$  (1) to -1 (say, D'=-1) and replacing the negative parameters B' and C' by -x and -y, respectively, and letting E', F', and G' be v, u and w, we get for the r.h.s of (24):

$$\left\{ \begin{array}{ll} (x+y+v+w-2)/2 & (x+u+v-1)/2 & (y+u+w-1)/2 \\ (x+y+u-1)/2 & (x+w)/2 & (x+v)/2 \end{array} \right\}$$
 ...(25)

which is a symmetry of (20). We have shown elsewhere  $^{12}$  that the polynomial zeros of degree one of the 6-j coefficient are obtained when the parameters in (25) are subject to the condition:

$$x v z = u v w \tag{26}$$

or equivalently, ABC = EFG, D = -1 in the case of (19) and A'B'C' = E'F'G', D' = -1 in the case of (24) which is a multiplicative Diophantine equation of degree 3 subject to the constraint:

$$z = x + y + u + v + w. (27)$$

Obviously, polynomial zeros of degree n arise when the sum of the first n + 1 terms of the  ${}_{4}F_{3}$  (1) occurring in (19) or (24) adds to zero. We could use either (19) or (24) to generate the complete set of zeros of degree n.

The polynomial zeros of degree 2 of the 3-j and the 6-j coefficients in terms of these closed form expressions have been studied by Louck<sup>13</sup> et. al. using their connection to Pell's equation. However their study does not lead to all the polynomial zeros of degree 2 of the 6-j coefficient. Simple algorithms based on the principle of factorization of integers have been proposed by Srinivasa Rao and Chiu<sup>14</sup> to obtain all the polynomial zeros of degree 2 of the 3-j and the 6-j coefficients.

In conclusion, we have shown in this article the connection between sets of p+1Fp (1) s and sets of Regge or Bargmann-Shelepin symbols for the 3-j and the 6-j coefficients. This led us to closed form expressions for the polynomial zeros of degree n of these coefficients. As n increases, the complexity of the constraint equation which has to be satisfied by the parameters in the closed from expressions-or, the numerator and dedominator parameters of the p+1Fp (1) s—increases. At present detailed studies have been made only of the polynomial zeros of degree 1 and 2 of the 3-j and 6-j coefficients.

#### ACKNOWLEDGEMENTS

One of us (K.S.R.) acknowledges with thanks the interesting discussions he had with Professor Charles B. Chiu on this topic and another (V.R) is thankful to the Council of Scientific and Industrial Research, Government of India for the award of a Senior Research Fellowship.

#### REFERENCES

- 1. T. Regge, Nuovo Cim. 10 (1958), 544.
- 2. V. Bargmann, Rev. Mod. Phys. 34 (1962), 829.
- 3. L. A. Shelepin, Sov. Phys. JETP 19 (1964), 70?.
- 4. T. Regge. Nuovo Cim. 11 (1959), 116.
- 5. K. Srinivasa Rao, J. Phys. A. Math. Gen. 11 (1978), L69
- 6. K. Srinivasa Rao, T. S. Santhanam and K. Venkatesh, J. Math. Phys. 16 (1975), 1528.
- 7. K. Srinivasa Rao and K. Venkatesh, *Group. Theor. Methods in Phys.* Proc. of V Int. Coll. Univ. of Montreal, Ed. by R. T. Sharp and B. Kolman, Academic Press, New York (1977), 649.
- 8. E. P. Wigner, reprinted in Quantum Theory of Angular Momentum (ed.: L. C. Biedenharn and H. Van Dam) Academic Press, New York 1965.
- 9. E. T. Bell. Am. J. Math. 55 (1933), 50; see also, K. Srinivasa Rao, Proc. Ramanujan centennial Int. Conf., RMS Publication 1 (1988), 141.
- 10. S. Brudno, J. Math. Phys. 26 (1985), 434.
- 11. S. Brudno and J. D. Louck, J. Math. Phys. 26 (1985), 2092.
- 12. K. Srinivasa Rao, V. Rajeswari and R. C. King, J. Phys. A: Math. Gen. 21 (1988), 1959.
- 13. J. D. Louck and P. R. Stein, J. Math. Phys. 28 (1987), 2812.
- 14. K. Srinivasa Rao and C. B. Chiu, J. Phys. A: Math. Gen.

# EIGENVALUE APPROACH TO LINEAR MICROPOLAR ELASTICITY

R. K. MAHALANABIS AND J. MANNA

Department of Mathematics, Jadavpur University, Calcutta 700032

(Received 12 December 1988; accepted 17 July 1989)

In this paper the basic equations of linear micropolar elasticity in polar coordinates are arranged in the form of vector matrix differential equation in the Hankel transform domain. The problem is then converted to an algebraic eigenvalue yroblem and solved in the same domain. It is seen that the results obtained by eigenvalue approach are in full agreement with those of other researchers. Further it seems that this approach is more elegant and it is believed that this technique has not been applied earlier by any researcher to solve the fundamental equations of linear micropolar elasticity.

#### INTRODUCTION

In recent years a detailed exposition of the linear theory of micropolar elasticity has been given by Kuvchinski and Aero<sup>10</sup>, Eringen and Suhabi<sup>9</sup>, Eringen<sup>8</sup>, Nowacki<sup>12</sup> etc. Nowacki<sup>11</sup> has shown that the equations of motion of linear micropolar theory in polar coordinates can be decomposed into two mutually independent sets of three equations each in case of axisymmetric problems. Dhaliwal and Chowdhury<sup>5</sup> have solved the set (2.6) for the axisymmetric Reissner—Sagoci problem and the solution is obtained by the classical method. Dhaliwal<sup>7</sup> has solved the set (2.7) for the axisymmetric Baussinisq problem. Das et al.<sup>2,3</sup> have applied recently the eigenvalue approach in solving the basic equations of thermoelasticity and extended the approach to magneto-thermoelasticity. They have solved the basic equations by representing them to single vector matrix differential equation and converting finally to an algebraic eigenvalue problem.

In this paper we apply the technique of eigenvalue to solve the axisymmetric equations of linear micropolar elasticity. It is believed that none of the previous investigators have applied this approach in solving the problems of linear micropolar theory. Here the basic axisymmetric eqns. (2.6) and (2.7) are presented in terms of single vector-matrix differential equations in sections 3 and 4 respectively. These lead to eigenvalue problems (3.8) and (4.4) respectively for the sets (2.6) and (2.7) and these are solved for displacements in the Hankel transform domain. The characteristic equation of (2.6) gives repeated roots while the set (2.7) gives real distinct roots i. e. real distinct eigenvalues. The general solution for distinct roots is obtained by usual

procedure (see appendix A), while for repeated roots the solution is obtained following the procedure of Das et al.<sup>2</sup> (see Appendix A). Further, solution for the half-space is also obtained. It is also observed that the solution obtained by Dhaliwal<sup>6</sup> for sets (2.6) and (2.7) are in full agreement with those obtained by eigenvalue approach.

#### 2. THE BASIC EQUATIONS

The equations of motion and other basic equations for a homogeneous isotropic centrosymmetric linear elastic body occupying a region R (vide Dhaliwal?), are given by

$$\begin{array}{lll}
\sigma_{ji,j} + \rho_{Xi} &= \rho_{iii} \\
\rho_{ji,j} + \epsilon_{ijk} \sigma_{jk} + J_{ji} &= J \omega_{i}
\end{array} \right\} \dots (2.1)$$

and the kinematic relations are

$$\beta ij = \omega_{j,i} 
\gamma ij = u_{j,i} + \epsilon_{kji} \omega_{k}$$
...(2.2)

the linear constitutive law being

$$\sigma_{ij} = \lambda \gamma_{kk} \delta_{ij} + 2\mu \gamma_{(ij)} + 2\alpha \gamma_{[ij]}$$

$$\mu_{ij} = \beta \beta_{kk} \delta_{ij} + 2\gamma \beta_{(ij)} + 2\epsilon \beta_{[ij]}$$

$$\dots(2.3)$$

where  $\alpha ij$  are the stress tensor components; ij the couple stress tensor components; ii the displacement field components;  $\alpha i$  the rotational field components; Xi the body force components; Yi the body couple components;  $\gamma ij$  the strain tensor components;  $\beta i_j$  the curvature twist tensor components;  $\epsilon ijk$  the unit antisymmetric tensor; [] and () indicate respectively the skew symmetric and symmetric part of a tensor;  $\lambda$ ,  $\mu$ ,  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\epsilon$ , are the elastic constants of the micropolar material;  $\rho$  is the density; J the rotational inertia; and the dot (.) denotes the derivatives with respect to time.

Substituting (2.2) and (2.3) in (2.1) a set of six differential equations are obtained and these equations are presented in the vector form as:

(i) 
$$(\lambda + 2\mu) \nabla \nabla \cdot \mathbf{u} - (\mu + \alpha) \nabla \times \nabla \times \mathbf{u} + 2 \alpha \nabla \times \omega + \rho_X = \rho_{\mathbf{u}}$$
  
(ii)  $(\beta + 2\gamma) \nabla \nabla \cdot \omega - (\gamma + \epsilon) \nabla \times \Delta \times \omega + 2\alpha \nabla \times \mathbf{u} - 4\alpha\omega + JY = J\omega$   
...(2.4)

Here we observe that the material constant  $\alpha$  is responsible for a coupling of a displacement and micro rotation fields. Though these equations are coupled, they are independent in the case, when  $\alpha = 0$ . In this case eqn. (2.4); (i) reduces to displacement equations of motion of classical elasticity and eqn. (2.4) (ii) describes a hypothetical elastic body in which only rotation occurs. When  $\alpha \to \infty$ , the couple-stress theory

$$\omega = \frac{1}{2} \nabla \times \mathbf{n}$$

is obtained.

Now to solve the static problem with no body forces, we take  $X = Y = \mathbf{u} = \boldsymbol{\omega}$  = 0 and the cylindrical polar coordinates  $(r, \varphi, z)$  is introduced. Equations (2.4) now assumes the forms

$$(\mu + \alpha) \left( \nabla^{2} u_{r} - \frac{u_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial u_{\varphi}}{\partial \varphi} \right) + (\lambda + \mu - \alpha) \frac{\partial e}{\partial r}$$

$$+ 2 \alpha \left[ \frac{1}{r} \frac{\partial \omega_{z}}{\partial \varphi} - \frac{\partial \omega_{z}}{\partial z} \right] = 0$$

$$(\mu + \alpha) \left( \nabla^{2} u_{\varphi} - \frac{u_{\varphi}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \varphi} \right) + (\lambda + \mu - \alpha) \frac{1}{r} \frac{\partial e}{\partial \varphi}$$

$$+ 2 \alpha \left[ \frac{\partial \omega_{r}}{\partial z} - \frac{\partial \omega_{z}}{\partial r} \right] = 0$$

$$(\mu + \alpha) \nabla^{2} u_{z} + (\lambda + \mu - \alpha) \frac{\partial e}{\partial z} + 2 \alpha \frac{1}{r} \left[ \frac{\partial}{\partial r} (r \omega_{\varphi}) - \frac{\partial \omega_{r}}{\partial \varphi} \right]$$

$$= 0$$

$$(\gamma + \epsilon) \left( \nabla^{2} \omega_{r} - \frac{\omega_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial \omega_{\varphi}}{\partial \varphi} \right) - 4 \alpha \omega_{r} + (\beta + \gamma - \epsilon)$$

$$\times \frac{\partial \psi}{\partial r} + 2 \alpha \left( \frac{1}{r} \frac{\partial u_{z}}{\partial \varphi} - \frac{\partial u_{\varphi}}{\partial z} \right) = 0$$

$$(\gamma + \epsilon) \left( \nabla^{2} \omega_{\varphi} - \frac{\omega_{\varphi}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial \omega_{r}}{\partial \varphi} \right) - 4 \alpha \omega_{\varphi} + (\beta + \gamma - \epsilon) \frac{\partial \chi}{\partial \varphi}$$

$$+ 2 \alpha \left( \frac{\partial u_{r}}{\partial z} - \frac{\partial u_{z}}{\partial r} \right) = 0$$

$$(\gamma + \epsilon) \nabla^{2} \omega_{z} - 4 \alpha \omega_{z} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial z} + 2 \alpha \frac{1}{r} \left[ \frac{\partial}{\partial r} (r u_{\varphi}) - \frac{\partial u_{z}}{\partial r} \right] = 0$$

$$(\gamma + \epsilon) \nabla^{2} \omega_{z} - 4 \alpha \omega_{z} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial z} + 2 \alpha \frac{1}{r} \left[ \frac{\partial}{\partial r} (r u_{\varphi}) - \frac{\partial u_{z}}{\partial r} \right] = 0$$

$$(\gamma + \epsilon) \nabla^{2} \omega_{z} - 4 \alpha \omega_{z} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial z} + 2 \alpha \frac{1}{r} \left[ \frac{\partial}{\partial r} (r u_{\varphi}) - \frac{\partial u_{z}}{\partial r} \right] = 0$$

$$(\gamma + \epsilon) \nabla^{2} \omega_{z} - 4 \alpha \omega_{z} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial z} + 2 \alpha \frac{1}{r} \left[ \frac{\partial}{\partial r} (r u_{\varphi}) - \frac{\partial u_{z}}{\partial r} \right] = 0$$

where

$$e = \frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{1}{r} \frac{\partial u_{\varphi}}{\partial \varphi} + \frac{\partial u_z}{\partial z}$$

$$\chi = \frac{1}{r} \frac{\partial}{\partial r} (r \omega_r) + \frac{1}{r} \frac{\partial \omega_{\varphi}}{\partial \varphi} + \frac{\partial \omega_z}{\partial z} \qquad ...(2.6)$$

The case in which the vectors of displacement u and rotation  $\omega$  depend only on the coordinates r, z and as such the equations (2.5) are decomposed into two mutually independent set of equations, viz.

(a)  $(\mu + \alpha) \left( \nabla^2 u_r - \frac{u_r}{r^2} \right) + (\lambda + \mu - \alpha) \frac{\partial e}{\partial r} - 2\alpha \frac{\partial \omega_{\varphi}}{\partial r} = 0$ 

(b) 
$$(\mu + \alpha) \nabla^{2} u_{z} + (\lambda + \mu - \alpha) \frac{\partial e}{\partial z} + 2\alpha \frac{1}{r} \frac{\partial}{\partial r} (r\omega_{\varphi}) = 0$$
  
(c)  $(\gamma + \epsilon) \left(\nabla^{2} \omega_{\varphi} - \frac{\omega_{\varphi}}{r^{2}}\right) - 4\alpha \omega_{\varphi} + 2\alpha \left(\frac{\partial u_{r}}{\partial z} - \frac{\partial u_{z}}{\partial r}\right) = 0$   
... (2.6)  

$$(\mu + \alpha) \left(\nabla^{2} u_{\varphi} - \frac{u_{\varphi}}{r^{2}}\right) + 2\alpha \left(\frac{\partial \omega_{r}}{\partial z} - \frac{\partial \omega_{z}}{\partial r}\right) = 0$$

$$(\gamma + \epsilon) \left(\nabla^{2} \omega_{r} - \frac{\omega_{r}}{r^{2}}\right) - 4\alpha \omega_{r} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial r}$$

$$- 2\alpha \frac{\partial u_{\varphi}}{\partial z} = 0 (\gamma + \epsilon) \nabla^{2} \omega_{2} - 4\alpha \omega_{2} + (\beta + \gamma - \epsilon) \frac{\partial \psi}{\partial r}$$

$$+ 2\alpha \frac{1}{r} (r u_{\varphi}) = 0$$

where

$$e = \frac{1}{r} \frac{\partial}{\partial r} (r u_r) + \frac{\partial u_z}{\partial z}$$

$$\chi = \frac{1}{r} \frac{\partial}{\partial r} (r \omega_r) + \frac{\partial \omega_z}{\partial z}$$

$$\nabla^2 \equiv \frac{\partial^2}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}$$

## 3. SOLUTION OF EQUATIONS (2.6)

Here only the set (2.6) are considered. The following state of force-stress  $\sigma$  and couple stress  $\mu$  are being ascribed to the displacement vector  $\mathbf{u} = (u_r, 0, u_2)$  and rotation vector  $\boldsymbol{\omega} = (0, \alpha_{\varphi}, 0)$ :

$$\sigma = \begin{vmatrix} \sigma_{rr} & 0 & \sigma_{rz} \\ 0 & \sigma_{\varphi\varphi} & 0 \\ \sigma_{zr} & 0 & \sigma_{zz} \end{vmatrix}, \mu = \begin{vmatrix} 0 & \mu_{r\varphi} & 0 \\ \mu_{\varphi r} & 0 & -\mu_{\varphi z} \\ 3 & \mu_{z\varphi} & 0 \end{vmatrix} ...(3.1)$$

where the particular components of stress-tensor have the following forms after using the relation (2.3)

$$\sigma_{rr} = 2\mu \frac{\partial u_r}{\partial r} + \lambda e,$$

$$\sigma_{rr} = 2\mu \frac{u_r}{r} + \lambda e,$$

$$\sigma_{zz} = 2\mu \frac{\partial u_z}{\partial z} + \lambda e$$

$$\sigma_{rz} = \mu \left( \frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) - \alpha \left( \frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r} \right) + 2\alpha \omega \varphi$$

$$\sigma_{zr} = \mu \left( \frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) + \alpha \left( \frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r} \right) - 2\alpha \omega \varphi$$

$$\mu_{r\varphi} = \gamma \left( \frac{\partial \omega_{\varphi}}{\partial r} - \frac{\omega_{\varphi}}{r} \right) + \epsilon \left( \frac{\partial \omega_{\varphi}}{\partial r} + \frac{\omega_{\varphi}}{r} \right)$$

$$\mu_{\varphi r} = \gamma \left( \frac{\partial \omega_{\varphi}}{\partial r} - \frac{\omega_{\varphi}}{r} \right) - \epsilon \left( \frac{\partial \omega_{\varphi}}{\partial r} + \frac{\omega_{\varphi}}{r} \right)$$

$$\mu_{\varphi z} = (\gamma - \epsilon) \frac{\partial \omega_{\varphi}}{\partial z}, \quad \mu_{z\varphi} = (\gamma + \epsilon) \frac{\partial \omega_{\varphi}}{\partial z} \qquad \dots(3.2)$$

In the system of eqns. (2.6), three mutually independent functions  $u_r$ ,  $u_z$  and  $\omega_{\varphi}$  are involved. Multiplying (2.6) by  $J_0$  ( $\xi$  r) and (2.6a,c) by  $J_1$  ( $\xi$  r) and integrating between the limits 0 to  $\infty$ , we find that the system of partial differential equations (2.6) reduces to the following system of ordinary differential equations:

$$[(\mu + \alpha) D^{2} - (\lambda + 2 \mu) \xi^{2}] \bar{u}_{r} - (\lambda + \mu - \alpha) \xi D \bar{u}_{z} - 2\alpha D \bar{\omega}_{\varphi} = 0$$

$$(\lambda + \mu - \alpha) \xi D \bar{u}_{r} + [(\lambda + 2\mu) D^{2} - (\mu + \alpha) \xi^{2}] \bar{u}_{z} + 2\alpha \xi^{2} \bar{\omega}_{\varphi} = 0$$

$$2\alpha D \bar{u}_{r} + 2\alpha \xi \bar{u}_{z} + [(\gamma + \epsilon) (D^{2} - \xi^{2}) - 4\alpha] \bar{\omega}_{\varphi} = 0$$
...(3.3)

where  $\bar{u}_{\tau}$ ,  $\bar{u}_{z}$  and  $\omega_{\phi}$  are the Hankel transforms of the functions  $u_{\tau}$ ,  $u_{z}$  and  $\omega_{\phi}$  respectively and are given by

$$(\bar{u}_r, \ \bar{\omega}_\varphi) = \int_0^\alpha (u_r, \, \omega_\varphi) \, \xi \, J_1 \, (\xi r) \, dr$$

$$\bar{u}_z = \int_0^\alpha u_z \, \xi \, J_0 \, (\xi r) \, dr$$

and

$$D \equiv \frac{d}{dz}, D^2 \equiv \frac{d^2}{dz^2}.$$

In the matrix rotations eqns. (3.3) may be represented as

$$\begin{bmatrix} \mu + \alpha & 0 & 0 \\ 0 & \lambda + 2\mu & 0 \\ 0 & 0 & \gamma + \epsilon \end{bmatrix} D^{2} \begin{bmatrix} \bar{u}_{r} \\ \bar{u}_{z} \\ -(\lambda + \mu - \alpha)\xi & 0 & 0 \\ -2\alpha & 0 & 0 \end{bmatrix}$$

$$D\begin{bmatrix} \bar{u}_r \\ \bar{u}_z \\ -\omega_{\varphi} \end{bmatrix} - \begin{bmatrix} (\lambda + 2\mu) \xi^2 & 0 & 0 \\ 0 & (\mu + \alpha) \xi^2 & -2\alpha \xi \\ 0 & -2\alpha \xi & (\gamma + \epsilon)\xi^2 + 2\alpha \end{bmatrix} \begin{bmatrix} \bar{u}_r \\ \bar{u}_z \\ -\omega_{\varphi} \end{bmatrix} = 0$$
...(3.4)

we write

$$M = \begin{bmatrix} \mu + \alpha & 0 & 0 \\ 0 & \lambda + 2\mu & 0 \\ 0 & 0 & \gamma + \epsilon \end{bmatrix}, N = \begin{bmatrix} 0 & (\lambda + \mu - \alpha)\xi & 2\alpha \\ -(\lambda + \mu - \alpha)\xi & 0 & 0 \\ -2\alpha & 0 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} \bar{u}_r \\ \bar{u}_z \\ -\bar{u}_{\varphi} \end{bmatrix}, X' = D \begin{bmatrix} \bar{u}_r \\ \bar{u}_z \\ -\bar{u}_{\varphi} \end{bmatrix}$$

$$P = \begin{bmatrix} (\lambda + 2\mu)\xi^2 & 0 & 0 \\ 0 & (\mu + \alpha)\xi^2 & -2\alpha\xi \\ 0 & -2\alpha\xi & (\gamma + \epsilon)\xi^2 + 4\alpha \end{bmatrix}, X' = D^2 \begin{bmatrix} \bar{u}_r \\ \bar{u}_z \\ -\bar{u}_{\varphi} \end{bmatrix}$$

$$B_1 = M^{-1}N$$
and
$$B_2 = M^{-1}P.$$
...(3.5)

Equation (3.4) with the aid of (3.5) reduces to the form

$$X'' = B_1 X' + B_2 X. ...(3.6)$$

Using block matrices eqn. (3.6) assumes the form

$$\frac{d}{dz} \begin{bmatrix} X' \\ X \end{bmatrix} = \begin{bmatrix} B_1 & B_2 \\ I & 0 \end{bmatrix} \begin{bmatrix} X' \\ X \end{bmatrix} \qquad (3.7)$$

where I is a  $3 \times 3$  unit matrix.

Writing

$$A = \begin{bmatrix} B_1 & B_2 \\ I & 0 \end{bmatrix} \text{ and } V = \begin{bmatrix} X' \\ X \end{bmatrix} \qquad \dots (3.8)$$

eqn. (3.7) assumes the form

$$\frac{d\mathbf{V}}{dz} = A\mathbf{V}.$$
 (3.9)

Assume  $V = Y \exp(t z)$  to be a solution of eqn. (3.9). Then we must have

$$AY = tY. \tag{3.10}$$

This gives that t is an eigenvalue of the matrix A and Y the corresponding eigenvector.

The eigenvalues of the matrix A are the roots of

Using simplified notations, eqn. (3.11) may be written explicitly as

lified notations, eqn. (3.11) may be written explicitly as
$$\begin{vmatrix}
-t & a_{12} & a_{13} & a_{14} & 0 & 0 \\
a_{21} & -t & 0 & 0 & a_{25} & a_{26} \\
a_{31} & 0 & -t & 0 & a_{35} & a_{36} \\
1 & 0 & 0 & -t & 0 & 0 \\
0 & 1 & 0 & 0 & -t & 0 \\
0 & 0 & 1 & 0 & 0 & t
\end{vmatrix} = 0$$
...(3.12)

where

$$a_{12} = \frac{\lambda + \mu - \alpha}{\mu + \alpha} \xi, \ a_{13} = \frac{2 \alpha}{\mu + \alpha}, \ a_{14} = \frac{\lambda + 2\mu}{\mu + \alpha} \xi^{2}$$

$$a_{21} = \frac{-\lambda + \mu - \alpha}{\lambda + 2\mu} \xi, \ a_{25} = \frac{\mu + \alpha}{\lambda + 2\mu} \xi^{2}, \ a_{26} = \frac{-2\alpha \xi}{\lambda + 2\mu}$$

$$a_{31} = \frac{-2\alpha}{\gamma + \epsilon} \qquad a_{35} = \frac{-2\alpha \xi}{\gamma + \epsilon}, \ a_{36} = \frac{(\gamma + \epsilon)\xi^{2} + 4\alpha}{\gamma + \epsilon}.$$

$$\dots(3.13)$$

Simplifying (3.12) and using (3.13) therein we get the characteristic equation as

$$t^{6} - (2\xi^{2} + \zeta^{2}) t^{4} + (\xi^{4} + 2\xi^{2} \zeta^{2}) t^{2} - \xi^{4} \zeta^{2} = 0 \qquad ...(3.14)$$

where

$$\zeta^2 = \xi^2 + m^2$$

and

$$m^2 = \frac{4 \alpha \mu}{(\mu + \alpha) (\gamma + \epsilon)}$$

The roots of (3.14) are

$$\xi, \xi, -\xi, -\xi, \zeta, -\zeta.$$

The eigenvalues of the matrix A are the root of the equation (3.14). Write  $t_1 = \xi$ ,  $t_2 = -\xi$ ,  $t_3 = \zeta$ , and  $t_4 = -\zeta$ . The four eigenvectors corresponding to four distinct eigenvalues  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$  of the matrix A are obtained by solving the following homogeneous equations

$$\begin{bmatrix}
-t & a_{12} & a_{13} & a_{14} & 0 & 0 \\
a_{21} & -t & 0 & 0 & a_{25} & a_{26} \\
a_{31} & 0 & -t & 0 & a_{35} & a_{36} \\
1 & 0 & 0 & -t & 0 & 0 \\
0 & 1 & 0 & 0 & -t & 0 \\
0 & 0 & 1 & 0 & 0 & -t
\end{bmatrix}
\begin{bmatrix}
y_1(t) \\
y_2(t) \\
y_3(t) \\
y_4(t) \\
y_5(t) \\
y_6(t)
\end{bmatrix} = 0$$
...(3.15)

for  $t = t_1, t_2, t_3 t_4$ .

Denote by  $A_1(t)$ ,  $A_2(t)$ , ...,  $A_6(t)$  the co-factors of the elements of the first row of the coefficient matrix in eqn. (3.15), then

$$Y(t) = \begin{bmatrix} A_1 & (t) \\ A_2 & (t) \\ A_3 & (t) \\ A_4 & (t) \\ A_5 & (t) \\ A_6 & (t) \end{bmatrix}$$
...(3.16)

are the solutions of eqn. (3.15) and hence they are eigenvectors corresponding to the eigenvalues  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$  of the matrix A. By actual calculations we obtain

$$A_{1}(t) = -t^{5} + t^{4} \left( \frac{\lambda + 3\mu + \alpha}{\lambda + 2\mu} \xi^{2} + \frac{4\alpha}{\gamma + \epsilon} \right)$$

$$-t \left( \frac{\mu + \alpha}{\lambda + 2\mu} \xi^{4} + \frac{4\alpha \mu \xi^{2}}{(\lambda + 2\mu)(\gamma + \epsilon)} \right)$$

$$A_{2}(t) = t^{2} \xi \left[ \frac{\lambda + \mu - \alpha}{\lambda + 2\mu} \left( t^{2} - \xi^{2} \right) - \frac{4\alpha (\lambda + \mu)}{(\lambda + 2\mu)(\gamma + \epsilon)} \right]$$

$$A_{3}(t) = \frac{2\alpha t^{2} \left( t^{2} - \xi^{2} \right)}{(\gamma + \epsilon)}$$

$$A_{4}(t) = -t^{4} + t^{2} \left[ \frac{\lambda + 3\mu + \alpha}{\lambda + 2\mu} \xi^{2} + \frac{4\alpha}{(\gamma + \epsilon)} \right] - \xi^{2} \zeta^{2} \frac{\mu + \alpha}{\lambda + 2\mu}$$

$$A_{5}(t) = \left\{ \frac{\lambda + \mu - \alpha}{\lambda + 2\mu} \left( t^{2} - \xi^{2} \right) - \frac{4\alpha (\lambda + \mu)}{(\lambda + 2\mu)(\gamma + \epsilon)} \right\} t\xi$$

$$A_{6}(t) = \frac{2\alpha}{\gamma + \epsilon} t \left( t^{2} - \xi^{2} \right). \dots (3.17)$$

Since  $t_1$  and  $t_2$  are double root of the characteristic equation (3.14) of the matrix A, the solution of the differential equation (3.9) is given by (vide Das et al.2).

$$V = C_1 Y(t_1) \exp(t_1 z) + C_2 d/dz [Y(t) \exp(t z)]_{t=t_1}$$

$$+ C_3 Y(t_2) \exp(t_2 z) + C_3 d/dz [Y(t) \exp(t z)]_{t=t_2}$$

$$+ C_5 Y(t_3) \exp(t_3 z) + C_6 Y(t_4) \exp(t_4 z) \qquad ...(3.18)$$

where  $C_1, C_2, ..., C_6$  are arbitrary constants to be determined from boundary conditions.

Equation (3.18) can be rewritten as

$$V = (C_1 + C_2 z) Y(t_1) \exp(t_1 z) + C_2 \dot{Y}(t_1) \exp(t_1 z)$$

$$+ (C_3 + C_4 z) Y(t_2) \exp(t_2 z) + C_4 \dot{Y}(t_2) \exp(t_2 z)$$

$$+ C_5 Y(t_3) \exp(t_3 z) + C_6 Y(t_4) \exp(t_4 z) \qquad ...(3.19)$$

where dot (.) represents the differentiation with respect to t.

For the half space z > 0, equation (3.19) reduces the form

$$V = (C_3 + C_4 z) Y (t_2 z) \exp(t_2 z) + C_4 \dot{Y} (t_2) \exp(t_2 z) + C_6 Y (t_4) \exp(t_4 z) \qquad ...(3.20)$$

where the constants  $C_3$ ,  $C_4$  and  $C_6$  are to be determined from the boundary conditions.

Equations (3.20) can be written explicitly as

$$\tilde{u}_{r}'(z) = \{(C_{3} + C_{4} z) A_{1}(t_{2}) + C_{4} \dot{A}_{1}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{1}(t_{4}) \exp(t_{4}z) \\
\tilde{u}_{z}'(z) = \{(C_{3} + C_{4} z) A_{2}(t_{2}) + C_{4} \dot{A}_{2}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{2}(t_{4}) \exp(t_{4}z) \\
\tilde{\omega}_{\varphi}'(z) = \{(C_{3} + C_{4}z) A_{3}(t_{2}) + C_{4} \dot{A}_{3}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{3}(t_{4}) \exp(t_{4}z) \\
\tilde{u}_{r}(z) = \{(C_{3} + C_{4}z) A_{4}(t_{2}) + C_{4} \dot{A}_{4}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{4}(t_{4}) \exp(t_{4}z) \\
\tilde{u}_{z}(z) = \{(C_{3} + C_{4}z) A_{5}(t_{2}) + C_{4} \dot{A}_{5}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{5}(t_{4}) \exp(t_{4}z) \\
\tilde{\omega}_{\varphi}(z) = \{(C_{3} + C_{4}z) A_{6}(t_{2}) + C_{4} \dot{A}_{6}(t_{2})\} \exp(t_{2}z) \\
+ C_{6} A_{6}(t_{4}) \exp(t_{4}z) \\
...(3.21)$$

where  $C_3$ ,  $C_4$  and  $C_6$  are arbitrary constants to be determined from the boundary conditions. Thus the displacements have been obtained in the transformed domain and as such the stresses can also be obtained from (3.2) using (3.21) in the transformed domain.

### 4. SOLUTION OF EQUATIONS (2.7)

Here we are concerned with the set of equations (2.7) in which the displacement vector  $\mathbf{u} = (0, u\varphi, 0)$  and the rotation vector  $\boldsymbol{\omega} = (\omega_r, 0, \omega_z)$ . The field of displacements  $(0, u\varphi, 0)$  and rotations  $(\omega_r, 0, \omega_z)$  described by the set of equations (2.7) induces the following state of force-stress and couple-stress (vide, Dhaliwal)

$$\sigma = \begin{vmatrix} 0 & \sigma_{r\varphi} & 0 & \text{and } \mu = \begin{vmatrix} \mu_{rr} & 0 & \mu_{rz} \\ \sigma_{\varphi r} & 0 & \sigma_{\varphi z} & 0 & \tau_{\varphi \varphi} & 0 \\ 0 & \sigma_{z\varphi} & 0 & \mu_{zr} & 0 & \mu_{zz} \end{vmatrix} \dots (4.1)$$

where

$$\sigma_{r\varphi} = (\mu + \alpha) \frac{\partial u_{\varphi}}{\partial \gamma} - (\mu - \alpha) \frac{u_{\varphi}}{r} - 2 \pi \omega_{z}$$

$$\sigma_{\varphi r} = (\mu - \alpha) \frac{\partial u_{\varphi}}{\partial r} - (\mu + \alpha) \frac{u_{\varphi}}{r} + 2\alpha \omega_{z}$$

$$\sigma_{\varphi z} = (\mu - \alpha) \frac{\partial u_{\varphi}}{\partial z} - 2\alpha \omega_{r}$$

$$\sigma_{z\varphi} = (\mu + \alpha) \frac{\partial u_{\varphi}}{\partial z} + 2\alpha \omega_{r}$$

$$\mu_{rr} = \beta \chi + 2\gamma \frac{\partial \omega_{r}}{\partial r}, \mu_{zz} = \beta \chi + 2r \frac{\partial \omega_{z}}{\partial z}, \mu_{\varphi\varphi} = \beta \chi + 2\gamma \omega_{r}$$

$$\mu_{rz} = (\gamma - \epsilon) \frac{\partial \omega_{r}}{\partial z} + (\gamma + \epsilon) \frac{\partial \omega_{z}}{\partial r}, \mu_{zr} = (\gamma + \epsilon) \frac{\partial \omega_{z}}{\partial z}$$

$$+ (\gamma - \epsilon) \frac{\partial \omega_{z}}{\partial r}. \qquad ...(4.2)$$

Now Hankel transform of the set of equations (2.7) give

$$[(\gamma + \epsilon) D^{2} - (\beta + 2\gamma) \xi^{2} - 4\alpha] \overline{\omega}_{r} - (\beta + \gamma - \epsilon) \xi D \overline{\omega}_{z}$$

$$- 2\alpha D \overline{u}_{\varphi} = 0$$

$$(\beta + \gamma - \epsilon) \xi D \overline{\omega}_{r} + [(\beta + 2\gamma) D^{2} - (\gamma + \epsilon) \xi^{2} - 4\alpha] \overline{\omega}_{z}$$

$$+ 2\alpha \xi \overline{u}_{\varphi} = 0$$

$$2 \alpha D \overline{\omega}_{r} + 2 \alpha \xi \overline{\omega}_{z} + (\mu + \alpha) (D^{2} - \xi^{2}) \overline{u}_{\varphi} = 0.$$

$$(4.3)$$

Now as in section 3 equations (4.3) can be written as vector-matrix differential equation form as

$$\frac{d}{dz} (V) = B V \qquad \dots (4.4)$$

where

and

$$b_{12} = \frac{\beta + \gamma - \epsilon}{\gamma + \epsilon} \xi, \quad b_{13} = \frac{2 \alpha}{\gamma + \epsilon}, \quad b_{14} = \frac{(\beta + 2\gamma) \xi^2 - 4\alpha}{\gamma + \epsilon}$$

$$b_{21} = -\frac{\beta + \gamma - \epsilon}{\beta + 2\gamma} \xi, \quad b_{25} = \frac{(\gamma - \epsilon) \xi^2 + 4\alpha}{\beta + 2\gamma}, \quad b_{26} = \frac{-2\alpha \xi}{\beta + 2\gamma}$$

$$b_{31} = \frac{-2\alpha}{\mu + \alpha}, \quad b_{35} = \frac{-2 \alpha \xi}{\mu + \alpha}, \quad b_{36} = \xi^2 \qquad ...(4.6)$$

Assume  $V = X \exp(t z)$  be the solution of the equation (4.4). Then we must have

This gives that t is an eigenvalue of the matrix B and X the corresponding eigenvectors. The eigenvalues for the matrix B are the roots of

$$\det (B - t I) = 0 ...(4.8)$$

That is,

$$\begin{vmatrix} -t & b_{12} & b_{13} & b_{14} & 0 & 0 \\ b_{21} & -t & 0 & 0 & b_{25} & b_{26} \\ b_{31} & 0 & -t & 0 & b_{35} & b_{36} \\ 1 & 0 & 0 & -t & 0 & 0 \\ 0 & 1 & 0 & 0 & -t & 0 \\ 0 & 0 & 1 & 0 & 0 & -t \end{vmatrix} = 0 \qquad ...(4.9)$$

where  $b_{12}$ ,  $b_{13}$ , etc. are given by (4.6).

Now simplifying (4.9) and using (4.6) therein we obtain the characteristic equation as

$$t^{6} - t^{4} \left( \xi^{2} + \lambda_{1}^{2} + \lambda_{2}^{2} \right) + t^{2} \left( \xi^{2} \lambda_{1}^{2} + \xi^{2} \lambda_{2}^{2} + \lambda_{1}^{2} \lambda_{2}^{2} \right)$$

$$- \xi^{2} \lambda_{1}^{2} \lambda_{2}^{2} = 0 \qquad ...(4.10)$$

where

$$\lambda_1^2 = \xi^2 + K_1^2$$
,  $\lambda_2^2 = \xi^2 + K_2^2$ 

$$K_1^2 = \frac{4\alpha}{\beta + 2\gamma}$$
,  $K_2^2 = \frac{4\alpha\mu}{(\mu + \alpha)(\gamma + \epsilon)}$ 

whose roots are  $\xi$ ,  $-\xi$ ,  $\lambda_1$ ,  $-\lambda_1$ ,  $\lambda_2$ ,  $-\lambda_2$ , which are the distinct eigenvalues of the matrix B. The corresponding eigenvectors are obtained by solving the following homogeneous equation.

$$\begin{bmatrix}
-t & b_{12} & b_{13} & b_{14} & 0 & 0 \\
b_{21} & -t & 0 & 0 & b_{25} & b_{26} \\
b_{31} & 0 & -t & 0 & b_{35} & b_{36} \\
1 & 0 & 0 & -t & 0 & 0 \\
0 & 1 & 0 & 0 & -t & 0 \\
0 & 0 & 1 & 0 & 0 & -t
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t) \\
x_3(t) \\
x_4(t) \\
x_5(t) \\
x_6(t)
\end{bmatrix} = 0 ...(4.11)$$

for  $t = t_1$ , i = 1, 2, ..., 6 where  $t_1 = \xi$ ,  $t_2 = -\xi$ ,  $t_3 = \lambda_1$ ,  $t_4 = -\lambda_1$ ,  $t_5 = \lambda_2$ ,  $t_6 = -\lambda_2$ .

Denote by Bi(t), i = 1, 2, ...; 6, the co-factors of the elements of the first row of the coefficient matrix in eqn. (4.11).

Then

$$X(t) = \left[\begin{array}{c} B_1(t) \\ B_2(t) \\ B_3(t) \\ B_4(t) \\ B_5(t) \\ B_6(t) \end{array}\right]$$

are the solutions of the eqn. (4.11) and hence they are eigenvectors corresponding to the eigenvalues n, i = 1, 2, ..., 6, of the matrix B. By actual calculation we obtain

$$B_1(t) = -t^5 + t^2 \left\{ \frac{\xi^2(\beta + 3\gamma + \epsilon) + 4\alpha}{\beta + 2\gamma} \right\}$$
(equation continued on p. 1249)

$$-t \xi^{2} \left\{ \frac{(\mu + \alpha) (\nu + \epsilon) \xi^{2} + 4\alpha \mu}{(\beta + 2\gamma) (\mu + \alpha)} \right\}$$

$$B_{2}(t) = -\frac{(\beta + \gamma - \epsilon)}{(\beta + 2\gamma)} t^{4} \xi - t^{2} \xi \left\{ \frac{4\alpha^{2} - (\mu + \alpha) (\beta + \gamma - \alpha \xi^{2})}{(\beta + 2\gamma) (\mu + \alpha)} \right\}$$

$$B_{3}(t) = -t^{4} \frac{2\alpha}{\mu + \alpha} - t^{2} \frac{2\alpha \xi^{2} (\beta + \nu - \epsilon)}{(\mu + \alpha) (\beta + 2\gamma)}$$

$$B_{4}(t) = t^{4} - t^{2} \left\{ \frac{(\beta + \gamma - \epsilon) \xi^{2} - 4\alpha}{\beta + 2\gamma} \right\}$$

$$+ \xi^{2} \frac{(\gamma + \epsilon) (\mu + \alpha) \xi^{2} + 4\alpha \mu}{(\mu + \alpha) (\beta + 2\gamma)}$$

$$B_{5}(t) = t^{3} \xi \frac{\beta + \nu - \epsilon}{\beta + 2\gamma} - t \left\{ \frac{\beta + \gamma - \epsilon}{\beta + 2\gamma} \xi^{3} + \frac{4\alpha^{2} \xi}{(\beta + 2\gamma) (\mu + \alpha)} \right\}$$

$$B_{6}(t) = -t^{3} \frac{2\alpha}{\mu + \alpha} - t \left\{ \frac{2\alpha \xi (\beta + \gamma - \epsilon) - 2\alpha (\gamma + \epsilon) \xi^{2} + 8\alpha^{2}}{(\beta + 2\gamma) (\mu + \alpha)} \right\}$$

Since  $t_1, t_2, ..., t_6$  are all distinct roots of the characteristic equation (4.10) of the matrix B, the general solution of the differential equation (4.4) is given by (vide appendix A)

$$V = E_1 X(t_1) \exp(t_1 z) + E_2 X(t_2) \exp(t_2 z) + E_3 X(t_3) \exp(t_3 z)$$

$$+ E_4 X(t_4) \exp(t_4 z) + E_5 X(t_5) \exp(t_5 z)$$

$$+ E_6 X(t_6) \exp(t_6 z)$$

where

$$E_i, i = 1, 2, ..., 6.$$

are arbitrary constants

i. e.

$$V = \sum_{i=1}^{6} E_i X(ti) \exp(ti z)$$

### REFERENCES

- 1. L. Y. Bahar and R. B. Hetnariski, J. Therm. Stresses, 2 (1979), 283.
- 2. N. C. Das, S. N. Das and B. Das, J. Therm. Stresses, (6), (1983), 35.
- 3. N. C. Das, A. K. Mitra and R. K. Mahalanabis, J. Therm. Stresses 6 (1983), 73-85.
- 4. N. C. Das, P. C. Bhakta and S.K. Bhattacharyya, Eigenvalue Approach to Plane Problem to Elasticity, Presented in the 24th Polish Solid Mechanics Conference, Warsaw, Poland, August 1983.

- 5. R. S. Dhaliwal and K. L. Chowdhury, Bull. de L' Academic Pol. des. Sc. 19 (1971), 363
- 6. R. S. Dhaliwal, Arch. Mech. Stos. Warsaw 23 (1971), 705-14.
- 7. R. S. Dhaliwal, Arch. Mech. Stos. Warsaw 24 (1972), 645-53.
- 8. A. C. Eringen, Theory of Micropolar Elasticity, Treatise on Fracture (ed. H. Leibowitz), Vol. II: Academic Press, New York and London, 1968, pp. 621-729.
- 9. A. C. Eringen and E. S. Suhabi, Ind. J. Engg. Sci. 2 (1964), 189; 2 (1964), 389.
- 10. E. V. Kuvchinski and E. L. Aero, Fiz. Trivierd Tiela, 5, 1963.
- 11. W. Nowaki, Proc. Vibr. Probl. Warsaw, 10 (1969), 97
- 12. W. Nowacki, CISM Courses and Lectures No. 25, Springer Verlag, New York, 1970.
- 13. M. A. Palmov, Prikl. Math., Mekl. 28 (1964), 40.
- 14. P. Puri, ZAMP 22 (1971), 320.

### APPENDIX A

Consider the differential equation

$$\frac{dv}{dt} = Av \qquad ...(A1)$$

where  $\nu$  is an n vector and A is an  $n \times n$  real constant matrix.

If  $\lambda_1 \lambda_2, ..., \lambda_n$  are distinct eigenvalues of the matrix A and  $x_1, x_2 ... x_n$  be the corresponding eigenvectors of A, then the general solution of (A1) is given by

$$v(t) = C_1 X_1 e^{\lambda_1 t} + \dots + C_n X_n e^{\lambda_n t}$$

where  $C_1, \ldots C_n$ , are arbitrary constants.

If  $\lambda_1$  is an eigenvalue of A of multiplicity 2 and all other eigenvalues  $\lambda_3$ ; ...  $\lambda_n$  are of multiplicity one and  $X_1, X_3, ... X_n$  the corresponding eigenvector of A, then the general solution of (A1) is given by

$$v(t) = C_1 X_1 e^{\lambda_1 t} + C_2 \frac{d}{dt} (X_1 e^{\lambda_1 t}) + C_3 X_3 e^{\lambda_3 t} + \dots + C_n X_n e^{\lambda_n t}$$

where  $C_1$ ,  $C_2$ ,...,  $C_n$  are all arbitrary constants.

For details, vide Das et al.2.

# MELLIN TRANSFORM OF THE GRAVITY EFFECT OF A 2-D HORIZONTAL CIRCULAR CYLINDER WITH VARIABLE DENSITY

L. Anand Babu<sup>1</sup>, N. L. Mohan<sup>2</sup>, N. Sundararajan<sup>2</sup>

AND

### S. V. SESHAGIRI RAO2

<sup>1</sup>Department of Mathematics, Osmania University, Hyderabad 500007 <sup>2</sup>Centre of Exploration Geophysics, Osmania University, Hyderabad 500007

(Received 30 October 1988; after revision 17 May 1989; accepted 1 July 1989)

The Mellin transform of the gravity effect of a buried 2— D horizontal circular cylinder with density contrast varying linearly with depth is derived and analysed to extract the body parameters. The characteristic features of the Mellin transform of the gravity effect resemble gamma function. The validity of the method is tested on simulated models. The stability of the Mellin transform is studied by incorporating random noise in the gravity effect at different levels and subsequently the error estimation of the interpreted values is discussed.

### INTRODUCTION

In general, the interpretation of the geophysical anomalies are carried out by a ssuming certain geometrical shapes with uniform physical properties. Very frequently, we come across some practical cases wherein for example the density contrast increases with the increase of depth which is evident from seismic studies.

Therefore, it would be meaningful to interpret such geophysical anomalies with non uniform density<sup>4</sup>. Herein the analysis of gravity anomalies due to a horizontal circular cylinder with the density contrast varying linearly with depth is presented using the Mellin transform. Such transformation of gravity (or magnetic) anomalies paves the way for simplified analysis of the complex potential field<sup>1</sup>. The procedure is illustrated with three sets of theoretical models. The stability of the Mellin transform is studied by incorporating random noise in the gravity effect at different levels and subsequently the error estimation of the interpreted values is discussed.

MELLIN TRANSFORM OF THE GRAVITY EFFECT OF THE HORIZONTAL CIRCULAR CYLINDER

A buried horizontal circular cylinder extending infinitely along the Y-direction, with its normal section parallel to the X-Z plane is considered. The origin of the

coordinate system is taken on the ground surface such that the Z-axis coincides with the diameter (Fig. 1a). Let the density contrast at the apex of the cylinder as P and the rate of change of density contrast varying linearly with depth be a. In this case, the gravity effect of the cylinder is given by Radhakrishan Murthy<sup>5</sup>.

$$g(x) = A \frac{Z}{X^2 + Z^2} - B \frac{Z^2 - X^2}{(X^2 + Z^2)^2}$$
 ...(1)

where

$$A = 2\pi GR^2 (\rho + aR) \qquad \dots (1a)$$

$$B = \frac{\pi \ GaR^4}{2} . \tag{1b}$$

Z is the depth to the centre of the cylinder, R the radius of the cylinder and G the universal gravitational constant.

The Mellin transform of the gravity effect given by eqn. (1) is written as Sneddon6

$$M(s) = \int_{0}^{\infty} x^{s-1} g(x) dx \qquad ...(2)$$



Fig. 1 (a) Cross section of the buried herizontal circular cylinder.

(b) Computed gravitational effect of norizontal circular cylinder

where s is a real positive integer or fractional number.

Substituting for g(x) and integrating eqn. (2) with respect to x, we get the Mellin transform of g(x) as:

$$M(s) = [A Z^{s-1} \Gamma(s/2) \Gamma ((2-s)/2) - BZ^{s-2}$$

$$\times \{\Gamma (s/2) \Gamma((4-s)/2) - \Gamma((s+2)/2) \Gamma((2-s)/2)\}] ... (3)$$

$$(0 < s < 2)$$

### ANALYSIS

For a set of arbitrary values of s, i, e., for s = 1/4; s = 1/2; s = 3/4; s = 1 and s = 5/4 equation (3) is written as:

$$M(1/4) = A Z^{-3/4} \Gamma(1/8) \Gamma(7/8) - B Z^{-7/4} [\Gamma(1/8) \Gamma(15/8) \\ - \Gamma(9/8) \Gamma(7/8)] \qquad ...(4a)$$

$$M(1/2) = A Z^{-1/2} \Gamma(1/4) \Gamma(3/4) - B Z^{-3/2} [\Gamma(1/4) \Gamma(7/4) \\ - \Gamma(5/4) \Gamma(3/4)] \qquad ...(4b)$$

$$M(3/4) = A Z^{-1/4} \Gamma(3/8) \Gamma(5/8) - B Z^{5/4} [\Gamma(3/8) \Gamma(13/8) \\ - \Gamma(11/8) \Gamma(5/8)] \qquad ...(4c)$$

$$A = M(1)/\pi \qquad ...(4d)$$

$$M(5/4) = A Z^{1/4} \Gamma(5/8) \Gamma(3/8) - B Z^{-3/4} [\Gamma(5/8) \Gamma(11/8) - \Gamma(13/8) \Gamma(3/8)].$$
 ...(4e)

From eqns. (4c) and (4e), the value of Z is evaluated as:

$$M(3|4) Z^{1/4} = U - (B|Z) V$$
 ...(5)

and

$$M(5|4) Z^{1/4} = U + (B|Z) V$$
 ...(6)

i.e.

where

$$P = M (3/4)/2,$$

$$Q = M (5/4)/2$$

$$U = M (1) \Gamma(3/4) \Gamma(5/8)/\pi,$$

$$V = \Gamma(3/8) \Gamma(13/8) - \Gamma(11/8) \Gamma(5/8).$$

Hence

$$Z = \left\{ \frac{U \pm (U^2 - 4PQ)^{1/2}}{2P} \right\}^4. \tag{8}$$

Since A and Z are known, B can be evaluated as:

$$B = Z \left[ \frac{M(5/4) Z^{-1/4} - M(3/4) Z^{1/4}}{2V} \right]. \tag{9}$$

By eliminating 'a' from equations (la) and (lb) a cubic equation in 'R' is obtained as:

$$R^{3} - (A/2 \rho \pi G) R + (4B/2 \rho \pi G) = 0.$$
 (10)

Applying the well known Cardon's method, R is evaluated, and subsequently a is calculated as:

$$a = 2B/R^4$$
. ...(11)

### DISCRETE MELLIN TRANSFORM

Since the gravity data is collected at discrete intervals in the real field situation, the numerical computation of the Mellin transform is carried out by formulating the discrete Mellin transform as<sup>3</sup>



Fig. 2. Continuous Mellin transform of the gravity effect of horizontal circular cylinder with density variation.

$$M(1. \Delta s) = \sum_{l=1}^{N-1} g(n. \Delta x) (n. \Delta x)^{1.\Delta s-1} \Delta x \qquad ...(12)$$

$$(0 < 1. \Delta s < 2)$$

where  $\Delta s = 1/4$ , N is the total number of points and  $\Delta x$  is the sample interval.

### SYNTHETIC EXAMPLES

The procedure detailed in the text is illustrated with three theoretical models (Table I). The theoretical Mellin transform of the gravity effect of three models are computed using eqn (3) and shown in Fig 2.

The gravity effect due to horizontal circular cylinder with variable density for three models are computed using eqn. (1). Since the gravity effect due to horizontal circular cylinder is symmetric, only the positive side of the anomaly is shown in Fig. 1b. The discrete Mellin transform of the gravity effect of the cylindrical models are computed using eqn. (12) and shown in Fig. 3. It may be observed that the discrete Mellin



Fig. 3. Discrete Mellin transform of the gravity effect of horizontal circular cylinder with density variation.

TABLE I Theoretical Examples

|           |                  | R*   | $h^*$ | a*   |
|-----------|------------------|------|-------|------|
| Model I   | Assumed values   | 0.50 | 0.75  | 1.00 |
| Model 1   | Evaluated values | 0.56 | 0.70  | 0.92 |
| Model II  | Assumed values   | 1.00 | 2.00  | 1.50 |
|           | Evaluated values | 0.95 | 1.88  | 1.39 |
| Model III | Assumed values   | 1.50 | 3.50  | 1.75 |
| Model III | Evaluated valves | 1.45 | 2.95  | 1.80 |

(\* in arbitrary units)



Fig. 4. Correlation coefficient versus number of discrete gravity samples.



Fig. 5. Standard deviation versus number of discrete gravity samples.

transform of the gravity effect of the models (Fig. 3) are similar to the theoretical Mellin transform (Fig. 2) and they resemble gamma function curves. The parameters are evaluated from the computed discrete Mellin transform of the gravity models using eqns. (4d), (8) (10) and (11) and Fig. (3) and presented in Table 1. It may be noticed that the evaluated parameters reasonably agree with the assumed values.



Fig. 6. Normalized error variation versus number of discrete gravity samples.

## STABILITY ANALYSIS

Here for all the three gravity models the number of discrete samples of the gravity effect are considered at six different levels ranging from 100 to 600 at an interval of 100. In each case the random noise with different percentages i.e., 10% 20%, 30% and 40% are added to the discrete gravity effect of the horizontal circular cylinder with variable density. The discrete Mellin transfom of the noise contaminated gravity effect is computed. Using computed theoretical Mellin transform of the gravity effect and the discrete Mellin transform of the noise contaminated gravity effect for all the

models for different levels of number of samples and with different levels of random noise, the correlation coefficient, standard deviation and the error variation (normalized) are computed and shown in Figs. 4, 5 and 6.

It is observed from the Fig. (4) (i.e.) correlation coefficient versus number of samples with different levels of noise for the gravity models, the correlation coefficient is tending to 1 for discrete gravity samples > 400. Also the standard deviation and error variation (normalized) are saturating for discrete gravity samples > 400.

The error percentage in evaluated parameters of the cylinder is relatively high (>30%) for the discrete gravity samples <400 for different levels of random noise.

### ACKNOWLEDGEMENT

The authors wish to thank the University Grants Commission for financial aid given under UGC Minor research Project. The authors wish to record their thanks to the reviewers for excellent suggestions.

### REFERENCES

- 1. L. Anand Babu, Ph. D. Thesis submitted to Osmania University. Hyderabad 1985.
- 2. N. L. Mohan, Ph. D. Thesis submitted to Osmania University, Hyderabad, 1978.
- 3. N. L. Mohan, L. Anand Babu and S. V. Seshagiri Rao, Geophysics 51 (1986), 114-22.
- 4. N. L. Mohan, S. V. Seshagiri Rao and V. L. S. Bhimasankaram, Current Sci 46 (1977), 404-5.
- 3. I. V. Radhakrishna Murthy, Rivista Italiana Di Geofiscia, 22 (1973), 407-10.
- 6. I. N. Sneddon, The Use of Integral Transform, Tata Mc-Graw-Hill Publication Company Ltd, New Delhi, 1979.



# Indian Journal of Pure & Applied Mathematics

CONTENTS & INDEX Volume 20 (1989)



INDIAN NATIONAL SCIENCE ACADEMY
BAHADUR SHAH ZAFAR MARG, NEW DELHI-110 002

### INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Published monthly by the

### INDIAN NATIONAL SCIENCE ACADEMY

**Editor of Publications** 

PROFESSOR D. V. S. JAIN

Department of Physical Chemistry, Panjab University Chandigarh 160 014

PROFESSOR J. K. GHOSH Indian Statistical Institute 203, Barrackpore Trunk Road Calcutta 700 035

Professor A. S. Gupta
Department of Mathematics
Indian Institute of Technology
Kharagpur 721 302

Professor M. K. Jain
Department of Mathematics
Indian Institute of Technology
Hauz Khas
New Delhi 110 016

Professor S. K. Joshi Director National Physical Laboratory New Delhi 110 012

Professor V. Kannan
Dean, School of Mathematics &
Copmuter/Information Sciences
University of Hyderabad
P O Central University
Hyderabad 500 134

Assistant Executive Secretary (Associate Editor/Publications)

DR. M. DHARA Subscriptions:

For India, Pakistan, Sri Lanka, Nepal, Bangladesh and Burma, Contact:

Associate Editor, Indian National Science Academy, Bahadur Shah Zafar Marg, New Delhi 110002. Telephone: 3311865, Telex: 31-61835 INSA IN.

For other countries, Contact:

M/s J. C. Baltzer AG, Scientific Publishing Company, Wettsteinplatz 10, CH-4058 Basel, Switzerland, Telephone: 61-268925, Telex: 63475.

The Journal is indexed in the Science Citation Index; Current Contents (Physical, Chemical & Earth Sciences); Mathematical Reviews; INSPEC Science Abstracts (Part A); as well as all the major abstracting services of the World.

PROFESSOR N. MUKUNDA
Centre for Theoretical Studies
Indian Institute of Science
Bangalore 560 012

DR PREM NARAIN

Director

Indian Agricultural Statistics Research Institute, Library Avenue New Delhi 110 012

PROFESSOR I. B. S. PASSI

Centre for advanced study in Mathematics Panjab University

Chandigarh 160 014

PROFESSOR PHOOLAN PRASAD
Department of Applied Mathematics
Indian Institute of Science

Bangalore 560 012

PROFESSOR M. S. RAGHUNATHAN
Senior Professor of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 500 005

Professor T. N. Shorey
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400 005

Assistant Editor Sri R. D. Bhalla

# INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Volume 20, January - December 1989

# CONTENTS

|                                                                                                                                                  | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| On the average number of crossings of an algebraic polynomial by K.  FARAHMAND                                                                   | 1    |
| Generalized convexity in multi-objective programming by M. N. VARTAK and INDRANI GUPTA                                                           | 10   |
| On automorphisms of free groups by A. G. A. E. ABDEL-GAWAD                                                                                       | 40   |
| Artinian (Noetherian) part of a Goldie ring by K. C. CHOWDHURY                                                                                   | 49   |
| A generalization of strongly regular near-rings by P. Dheena                                                                                     | 58   |
| Lacunary distribution of sequences by G. Das and B. K. PATEL                                                                                     | 64   |
| Note on the small vibration of beams with varying Young's modulus carrying a concentrated mass distribution by P. K. CHAUDHURI and SUBRATA DATTA | 75   |
|                                                                                                                                                  | 13   |
| Free torsional vibration of a nonhomogeneous semiinfinite solid circular cylinder by N. C. Mondat                                                | 89   |
| Erratum "An analogue of Hoffman-Wermer theorem for a real function algebra" by S. H. KULKARNI AND N. SRINIVASAN                                  | 98   |
| Cyclotomic numbers and a conjecture of Snapper by S. A. KATRE                                                                                    | 99   |
| Stability in mammilary compartmental systems by H. EL-OWAIDY, A. A.  AMMAR and O. A. ELLEITHY                                                    | 104  |
| An optimal programme for augmentation of capacities of depots and shipment of buses from depots to starting points of routes by                  |      |
| A. K. AGRAWAL and S. L. DHINGRA                                                                                                                  | 111  |
| On a class of nonlinear higher order differential equations by B. G.  PACHPATTE                                                                  | 121  |
| Fixed points iterations for non-linear Hammerstein equation involving non-                                                                       |      |
| expansive and accretive mappings by C. E. CHIDUME                                                                                                | 129  |
| On Wagner spaces of W <sub>p</sub> -scalar curvature by S. K. Singh                                                                              | 136  |

|                                                                                                                                    | Puge |
|------------------------------------------------------------------------------------------------------------------------------------|------|
| Goldie theorem analogue for Goldie near-rings by K. C. Chowdhury                                                                   | 141  |
| Matrix transformations of orthonormal series by B. E. RHOADES                                                                      | 150  |
| Stresses in pre-stressed dry sandy soil due to normal moving load leading to instability and fracture by S. Dey and M. Chakraborty | 165  |
| Thermo-elastic waves from suddenly punched hole in stretched elastic plate by A. B. Kumar                                          | 181  |
| Note on minmax principle for heat convection equation by M. A. GOPALAN                                                             | 189  |
| Flow behind weak and strong shock waves in water by V. P. SINGH and A. M. N. Yogi                                                  | 194  |
| Mathematical model of population interactions with dispersal: Stability                                                            |      |
| of two habitats with a predator by H. EL-OWAIDY and A. A. AMMAR                                                                    | 205  |
| On controllability of nonlinear systems with distributed delays in the control by Jerry U. Onwuatu                                 | 213  |
| A Finslerian extensions of the Gravitational field-II by SATOSHI IKEDA                                                             | 229  |
| Periodic solutions of a certain fourth order differential equation by AYDIN TIRYAKI                                                | 235  |
| Cubic transformations of Finsler spaces and n fundamental forms of their hypersurfaces by B. N. Prasad and J. N. Singh             | 242  |
| Copure-injective modules by V. A. HIREMATH                                                                                         | 250  |
| Inclusion theorems on matrix transformations of some sequence spaces over non-Archimedian fields IV by D. Somasundaram             | 260  |
| Commencement of Couette flow in Oldroyd liquid with heat sources by G. C. DASH and S. BISWAL                                       |      |
| On Rayleigh waves in Green-Lindsay's model of generalized thermoelastic media by N. C. DAWN and S. K. CHAKRABORTY                  |      |
| Roche harmonics for stellar models distorted by differential rotation by                                                           | 276  |
| Incoming water waves against a vertical cliff in a two fluid                                                                       | 284  |
| P. K. Kundu An oscillation criterion for second                                                                                    | 292  |
| An oscillation criterion for second order nonlinear differential equation by  S. R. GRACE                                          | 200  |
| ***                                                                                                                                | 297  |

### CONTENTS

|                                                                                                                                                                                     | Page |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| On the uniform stability of a system of differential equations with complex coefficients by Z. ZAHREDDINE                                                                           | 307  |
| On the Graphoidal covering number of a graph by C. PAKKIAM and S. ARUMUGAM                                                                                                          | 330  |
| On α-hausdorff subsets, almost closed mappings and almost upper semi-                                                                                                               | 330  |
| continuous decomposition by ILIJA KOVACEVIC                                                                                                                                         | 334  |
| Convex univalent polynomials by M. S. Kası                                                                                                                                          | 341  |
| Modified means by G. Das                                                                                                                                                            | 347  |
| Scattering of a compressional wave at the corner of a quarter space by  NARINDER MOHAN and P. S. DESHWAL                                                                            | 386  |
| On temperature-rate dependent thermoelastic longitudinal vibrations of an infinite circular cylinder by D. Yadaiah and Ram Kumar Shukla                                             | 395  |
| Linear stability and the resonance for the triangular libration points for the doubly photogravitational elliptic restricted problem of three bodies by V. Kumar and R. K. Choudhry | 403  |
| Comments on steady plane MHD flows with constant speed along each streamline by O. P. Chandna                                                                                       | 423  |
| Selection of optimal site for new depot of specified capacity with two objectives by SATYA PRAKASH and VIVEK SAINI                                                                  | 425  |
| A note on Normed near-algebras by T. Srinivas and K. Yugandhar                                                                                                                      | 433  |
| Radical Goldie near-rings by K. C. CHOWDHURY                                                                                                                                        | 439  |
| Some results on stability of differential systems with impulsive perturbations by R. N. Mukherjee and Raghwendra                                                                    | 446  |
| A transformation of the Finsler metric by an h-vector by B. N. PRASAD and LALJI SRIVASTAVA                                                                                          | 455  |
| Remarks on submanifolds of codimension 2 of an even-dimensional eucli-                                                                                                              | 166  |
| dean space by Byung Hak Kim                                                                                                                                                         | 466  |
| Almost irresolute functions by F. Cammaroto and T. Noiri                                                                                                                            | 472  |
| On some dual integral equations involving Bessel function of order one by  A. CHAKRABARTI                                                                                           | 483  |
| Banach space valued distributional Mellin transform and form invariant linear filtering by A. K. Tiwari                                                                             | 493  |

|                                                                                                                                      | Page |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| A cylindrical wave-maker in liquid of finite depth with an inertial surface by B. N. Mandal and Krishna Kundu                        | 505  |
| Numerical solution of unsteady flow and heat transfer in a micropolar fluid past a porous flat plate by R. S. AGARWAL and C. DHANPAL | 513  |
| Torsional vibration of a random elastic cylinder by F. D. ZAMAN, S. ASGHAR and G. GHOUS                                              | 521  |
| Flow of a conducting fluid between two coaxial rotating porous cylinders bounded by a permeable bed by K. JAGADEESWARA PILLAI,       | 606  |
| S. V. K. VARMA and M. SYAM BABU                                                                                                      | 526  |
| On an error term involving the Totient function by Werner Georg Nowak                                                                | 537  |
| A fixed point theorem for generalized contraction map by A CARBGNE,  B. E. RHOADES and S. P. SINGH                                   | 543  |
| Sequences of mappings converging to a contraction mapping by Theodor                                                                 |      |
| Vidalis                                                                                                                              | 549  |
| Noetherian regular rings by C. JAYARAM and V. L. MANNEPALLI                                                                          | 554  |
| Differential subordination and conformal mappings I by V. KARUNAKARAN and S. PONNUSAMY                                               | 560  |
| On a quaternion submanifolds of co-dimension-2 by I. C. Gupta and                                                                    |      |
| A. K. Agarwal                                                                                                                        | 566  |
| On almost continuous functions by Takashi Noiri                                                                                      | 571  |
| On the multivalent functions by Mamoru Nunokawa                                                                                      | 577  |
| The Hankel-Clifford transformation on certain spaces of ultradistributions                                                           |      |
| by J. J. Betancor                                                                                                                    | 583  |
| A finite integral involving a general class of polynomials and the multivari-                                                        |      |
| able H-function by K. C. GUPTA and S. M. AGRAWAL                                                                                     | 604  |
| On strongly rare-continuity by Nurettin Ergun                                                                                        | 609  |
| Quasi-static response of a layered half-space to surface loads by NAT RAM                                                            |      |
| GARG and SARVA JIT SINGH                                                                                                             | 621  |
| A note on the squeeze film lubrication with non-Newtonian fluid by N. M. BUJURKE, S. G. BHAVI and P. S. HIREMATH                     | 632  |
| Circular orbits of charged test particles in Riessner-Nordstrom field by                                                             |      |
| ABDUSSATTAR and REHANA QURAISHI                                                                                                      | 641  |

vii

|                                                                                                                        |       | Page         |
|------------------------------------------------------------------------------------------------------------------------|-------|--------------|
| Random Rayleigh waves in non-homogeneous elastic media by K. L. Durand S. K. CHAKRABORTY                               | TTA   | 646          |
| On the real roots of a random algebraic nature with but D                                                              |       | 655          |
| Gronwall, Bihari and Langenhop type inequalities for discrete Pfaff                                                    | fian  |              |
| equation by E. Thandapani                                                                                              |       | 665          |
| A note on primary decomposition in Noetherian near rings                                                               |       | V 29 4       |
| K. YUGANDHAR, K. RAJA GOPAL RAO and T. SRINIVAS                                                                        |       | 671          |
| Some results on almost semi-invariant submanifold of an Sp-Sasak manifold by KALPANA                                   |       | 681          |
| Maximal elements in Banach spaces by Ghanshyam Mehta                                                                   |       | 690          |
| On the Endl-type generalization of certain summability methods  M. R. PARAMESWARAN                                     |       | 6 <b>9</b> 8 |
| Matrix transformations in some sequence spaces by Sudarsan Nanda                                                       |       | 707          |
| Transient forced and free convection flow past an infinite vertical plate                                              | bv    |              |
| M. D. JAHAGIRDAR and R. M. LAHURIKAR                                                                                   |       | 711          |
| Effect of thermal diffusion on thermohaline interleaving in a por medium due to horizontal gradients by C. P. PARVATHY | and   | 79.6         |
| PRABHAMANI R. PATIL                                                                                                    |       | 716          |
| Hodograph transformation in constantly inclined two-phase MFD flows CHANDRESHWAR THAKUR and RAM BABU MISHRA            |       | 728          |
| Thermal stability of a fluid layer in a variable gravitational field                                                   |       |              |
| G. K. PRADHAN, P. C. SAMAL and U K. TRIPATHY                                                                           | • • • | 736          |
| Coset diagrams for an action of the extended modular group on the piective line over a finite field by QAISER MUSHTAQ  | oro-  | 747          |
| The extended modular group acting on the projective line over a Galois f                                               | ield  |              |
| by Q. Mushtaq                                                                                                          |       | 755          |
| On the existence for a class of optimal control problems by GACHAKRABORTY                                              |       | 761          |
| Bounds for the zeros of polynomial by M. BIDKHAM and K. K. DEWAN                                                       |       | 768          |
| Selection procedures for hazard rates based on two-sample statistics                                                   |       |              |
| AMAR NATH GILL and GOBIND P. MEHTA                                                                                     |       | 773          |
| On digraph reconstruction by S. RAMACHANDRAN                                                                           |       | 782          |

|                                                                                                               |        | Page |
|---------------------------------------------------------------------------------------------------------------|--------|------|
| Variants of Hopficity in modules by B. M. PANDEYA, S. A. PARA and S. P. Koirala                               | MHANS  | 786  |
| On hy-recurrent Finsler connection by B. N. PRASAD and SRIVASTAVA                                             | LALJI  | 790  |
| Hypersurfaces with $(f, g, u, v, \lambda)$ -structure of an affinely cosympletic fold by Dhruwa Narain        | mani-  | 799  |
| O-distributive posets by Y. S. PAWAR and V. B. DHAMKE                                                         | •••    | 804  |
| Functional limits by G. Das and S. Nanda                                                                      |        | 812  |
| Extreme points of some families of analytic functions related univalent functions by A. K. Mishra and P. Sahu | ed to  | 820  |
| A generalized Carleman boundary value problem for multiply confidence domains by M. G. El Sheikh              | nected | 829  |
| Nonstationary law of heat conduction in classical thermoelastic by Amiyadeb Mukherjee                         | solid  | 834  |
| Ellipsoidal inclusions in an elastic medium by A. D. ALAWNEH N. T. SHAWAGFEH                                  |        | 840  |
| On a monotonicity property of measures of directed-divergence by KAPUR and G. P. TRIPATHI                     |        | 851  |
| Bayes approach to prediction in samples from gamma population outliers are present by G. S. LINGAPPAIAH       | when   | 858  |
| On the forms of n for which $\varphi(n)/n-1$ by V. SIVA RAMA PRASAD M. RANGAMMA                               | and    |      |
| The injective hull of a module with FGD by S. BHAVANARI                                                       | • • •  | 871  |
| On complete integral closure of G-domain by Surjit Singh and PA                                               |        | 874  |
| On almost unified contact Finsler structures and connections by B. B. Si                                      | INHA   | 884  |
| On F-absolutely translative summability methods by C. Orhan and M. Sarigor.                                   |        | 887  |
| Growth of composite integral functions by Indrajit Lahiri                                                     | * • •  | 893  |
| on L1-convergence of certain trigonometric sums by Rapy Day                                                   | and    | 899  |
| SURESH KUMARI                                                                                                 |        | 908  |

|                                                                                                                                 |           | Page   |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| On α-quasi convex functions by T. N. Shanmugam                                                                                  |           | 915    |
| Edge crack in orthotropic elastic half-plane by J. DB and B. PATR                                                               | A         | 923    |
| Flow of a second order fluid due to the rotation of an infin disk near a stationary parallel porous disk by B. B. S. ANIL KUMAR | ite porc  | nd     |
| ***                                                                                                                             |           |        |
| Propagation of alfven waves in a real magneto-hdyrodynamic fluid NASIR and M. ILYAS                                             |           | Y 944  |
| Operator duals of some sequence spaces by N. RATH                                                                               |           | 953    |
| On strongly NBD-finite families by P. THANGAVELU                                                                                |           | 964    |
| Bounded and Fréchet differentials for mappings on linear to spaces using pseudonorm topology by S. Dayal and Marwaha            |           | NA     |
|                                                                                                                                 | • •       | 969    |
| Lie theory of q-Appell function by LAKSHMI VARADARAJAN                                                                          |           | 977    |
| On distributional Laplace-Hardy $\mathcal{L}Fv$ transformation by B. R. A. S. V. More                                           | IIRRAO a  | nd 989 |
| Distributional boundary values in $(W_M^n)$ -spaces of functions ho                                                             | lomorph   | ic     |
| in tube domains by R. S. PATHAK and A. C. PAUL                                                                                  |           | 1004   |
| The axisymmetric Cauchy-Poisson problem in a stratified LOKENATH DEBNATH and UMA B. Guha                                        | liquid    | 1022   |
| On transient development of waves at an interface between                                                                       | two fluid | de.    |
| by M. S. FALTAS                                                                                                                 |           | 1032   |
| On the relation of lattice repleteness and C-real compactness b                                                                 | y Georg   | GE .   |
| BACHMAN AND PANAGIOTIS D. STRATIGOS                                                                                             |           | 1043   |
| A note on Swan modules by Anupam Srivastav                                                                                      |           | . 1067 |
| Fixed point theorems for multivalued mappings by T. L. HICKS                                                                    |           | 1077   |
| An abstract fixed point theorem for multi-valued mapp                                                                           | pings l   | 1000   |
| On linear independence of sequences in conjugate Banach                                                                         | spaces b  | by     |
| P. K. Jain, S. K. Kaushik and D. P. Sinha                                                                                       |           | 1083   |
| Asymptotic behaviour of solutions of functional differential equ                                                                |           | 1096   |

X

|                                                                                                                                                                                        | Pag  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| On Bishop, Silov and antialgebraic decompositions by H. S. MEHTA and                                                                                                                   |      |
| R. D. Мента                                                                                                                                                                            | 110  |
| On topological projective planes-III by S. ARUMUGAM                                                                                                                                    | 1113 |
| Invariant submanifolds in a conformal K-contact Riemannian manifold                                                                                                                    |      |
| by B. RAVI and C. S. BAGEWADI                                                                                                                                                          | 1119 |
| Associated Weber integral transforms of arbitrary orders by C. Nasım                                                                                                                   | 1126 |
| On the generating functions and partial sums of the Fourier series by                                                                                                                  |      |
| Prem Chandra                                                                                                                                                                           | 1139 |
| Unsteady motion of a semi-infinite conducting liquid by a suddenly applied velocity on its surface by D. C. Sanyal and                                                                 |      |
| S. K. SAMANTA                                                                                                                                                                          | 1146 |
| On hydromagnetic turbulent shear flow by D. C. SANYAL and                                                                                                                              |      |
| S. K. SAMANTA                                                                                                                                                                          | 1151 |
| On the stability of compressible swirling flows by V. Thulasi and                                                                                                                      |      |
| M. Subbiah                                                                                                                                                                             | 1159 |
| Pseudolinearity and efficiency via Dini derivative by Shashi Aggarwal and Davinder Bhatia                                                                                              |      |
|                                                                                                                                                                                        | 1173 |
| On the existence of unity in Lehmer's ψ-product ring by V. Sitaramaiah                                                                                                                 | 1184 |
| Iterative methods of solutions for linear and quasi linear complementarity problems by R. N. MUKHERJEE and H. L. VERMA                                                                 |      |
|                                                                                                                                                                                        | 1191 |
| On some new discrete inequalities in two independent variables by B. G. PACHPATTE                                                                                                      |      |
| Periodic boundary value problems for an inc.                                                                                                                                           | 1197 |
| Periodic boundary value problems for an infinite system of nonlinear second order differential equations by K. Narsimha Reddy                                                          | 1212 |
| On the sets of generalized hypergeometric functions and the Regge,                                                                                                                     | 1213 |
| Barghann-Shelepin arrays for the 3- J and the G- I coefficients by                                                                                                                     |      |
| R. BRINIVASA RAO ana V. RAJESWARI                                                                                                                                                      | 1230 |
| Eigen value approach to linear micropolar elasticity by R. K. MAHALANABIS                                                                                                              |      |
| ana J. IVIANNA                                                                                                                                                                         | 1237 |
| Mellin transform of the gravity effect of A2-D horizontal circular cylinder with variable density by L. Anand Babu, N. L. Mohan, N. Sundararaian and S. V. Sasan D. Rabu, N. L. Mohan, |      |
| WASAN and S. V. SESOAGIRI RAO                                                                                                                                                          | 1251 |
| Contents and Index                                                                                                                                                                     |      |

# INDEX

|                                     | Pag | 7e                                   | Page |
|-------------------------------------|-----|--------------------------------------|------|
| A.A. Ammar : see H. El Owaidy       |     | Alfvén waves in a real magneto-      |      |
| A.A. Ammar: see H. El-Owaidy        |     | hydrodynamic fluid                   |      |
| Abdussattar: Circular orbits of     |     | Algebraic polynomial: On the         |      |
| charged test particles in Riessner- |     | average number of Crossings of       |      |
| Nordstrom field                     | 641 | an algebraic polynomial              | 1    |
| A.B. Kumar: Thermoelastic waves     |     | Algebras: A note on normed near-     |      |
| from suddenly punched hole in       |     | algebras                             | 433  |
| stretched elastic plate             | 181 | Almost continuous functions: On      |      |
| A. Carbone: A Fixed point theorem   |     | almost continuous functions          |      |
| for generalized contraction map     | 543 | α-Hausdorff subsets: On α-Hausdorff  |      |
| Accretive mappings: Fixed point     |     | subsets, almost closed mappings      |      |
| iterations for nonlinear Hammer-    |     | and almost upper semicontinuous      |      |
| stein equation involving non-       |     | decomposition                        | 334  |
| expansive and accretive mappings    | 129 | Amar Nath Gill: Selection proce-     |      |
| A. Chakrabarti: On some dual        |     | dures for hazard rates based on      |      |
| integral equations involving        |     | two samples statistics               | 773  |
| Bessel function of order one        | 483 | Amiyadeb Mukherjee : Nonsta-         |      |
| A.C. Paul: see R. S Pathak          |     | tionary law of heat conduction       |      |
| A.D Alawneh: Ellipsoidal inclusions |     | in classical thermoelastic solid     | 834  |
| in an eleastic medium               | 840 | A.M.N. Yogi: see V. P. Singh         |      |
| A.G.A.E. Abdel-Gawad: On auto-      | 0.0 | Analytic functions: Extreme points   |      |
| morphisms of free groups            | 40  | of some families of analytic         |      |
| A.K. Agarwal : see I. C. Gupta      | *** | functions related to univalent       |      |
| A.K. Agarwal: An optimal pro-       |     | functions                            | 820  |
| gramme for augmentation of          |     | Anil Kumar: see B. B. Singh          |      |
| capacities of depots and shipment   |     | Antialgebraic decompositions: On     |      |
| of buses from depots to starting    |     | Bishop, Silov and antialgebraic      |      |
| points of routes                    | 111 | decompositions                       | 1107 |
| A.K. Mishra: Extreme points of      |     | Anupam Srivastav: A note on Swan     |      |
| some families of analytic func-     |     |                                      | 1067 |
| tions related to univalent func-    |     | Appell functions: Lie theory of      |      |
|                                     | 820 | q-Appell functions                   | 977  |
| A.K. Tiwari: Banach space valued    | 020 | Arbitrary ring: Copure-injective     |      |
| distributional Mellin transform     |     | modules                              | 250  |
| and form invariant linear           |     | Archana Marwaha: see S. Dayal        |      |
| filtering                           | 493 | Artinian ring: Artinian (Noetherian) |      |
|                                     |     | part of a Goldie ring                | 49   |
| Alfvén waves: Propagation of        |     | Part                                 |      |

|                                                                                                                                                                    | Page       |                                                                                                                                                | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Asymptotic behaviour: Asymptotic behaviour of solutions of functional differential equations                                                                       | 1096       | tions of orthonormal series  B E. Rhoades: see A. Carbone  B.K. Patel: see G. Das                                                              | 150  |
| Average Number: Average number of crossings of an algebraic polynomial                                                                                             | 1          | B.M. Pandeya: Variants of Hopficity in modules  B.N. Mandal: A cylindrical wave-                                                               | 786  |
| Axisymmetric Cauchy-Poisson pro-<br>blem: The Axisymmetric Cauchy-<br>Poisson problem in a stratified                                                              |            | maker in liquid of finite depth with an inertial surface  B.N. Prasad: A transforamation of                                                    |      |
| liquid  Aydin Tiryaki: Periodic solutions of a certain fourth order differential equation                                                                          | 226        | the Finsler metric by an h-vector B.N. Prasad: Cubic transformations of Finsler spaces and n fundamental forms of their hyper-                 |      |
| Babu Ram: On L1-convergence of                                                                                                                                     |            | B.N. Prasad: On hy-recurrent                                                                                                                   | 242  |
| certain trignometric sums Banach limits : Functional limits Banach space : Banach space valued                                                                     | 908<br>812 | Finsler connection  B.N. Prasad: see J. N. Singh                                                                                               | 790  |
| distributional Mellin transform<br>and form invariant linear filtering<br>Maximal elements in Banach<br>spaces                                                     | 493<br>690 | Boolan algebra: O-distributive posets  Boundary value problems: Periodic boundary value problems for an                                        | 804  |
| Functional limits On linear independence of sequences in conjugate Banach spaces Bayes approach: Bayes approach to prediction in samples from                      | 812        | infinite system of nonlinear second order differential equations  Boundary values: Distributional boundary values in $\left(W_{M}^{a}\right)'$ | 1213 |
| Gamma population when outliers are present  B.B. Sinha: On almost unified contact Finsler structures and                                                           | 858        | spaces of functions Holomorphic in tube domains Bounded sequences: On Fabsolutely                                                              |      |
| connections  B.B. Singh: Flow of a second order fluid due to the rotation of an                                                                                    | 887        | translative summability methods B.R. Ahirrao: On distributional Laplace-Hardy Lfv transforma-                                                  | 893  |
| infinite porous disk near a stationary parallel porous disk                                                                                                        | 931        | B. Ravi: Invariant submanifolds in a conformal *-contact Rieman-                                                                               | 989  |
| <ul> <li>B.G. Pachpatte: On a class of non-linear higher order differential equations</li> <li>B.G. Pachpatte: On some new discrete inequalities in two</li> </ul> | 121        | nian manifold  B. Patra: see J. De  Byung Hak Kim: Remarks on submanifolds of codimensional                                                    | 1119 |
| indamandama ! 11                                                                                                                                                   | 1191       | euclidean space  Canonical subgroup: A note on                                                                                                 | 466  |

|                                                                                                        | Page |                                                                                                                 | Page |
|--------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|------|
| Carleman boundary value problem: A generalized Carleman boundary value problem for multiply            |      | uniform stability of a system of differential equation with Complex coefficients  Composite integral functions: | 307  |
| connected domains  C. Dhanpal: see R. S. Agarwal  C E. Chidume: Fixed points itera-                    |      | Growth of composite integral functions Compressible swirling flows: On the                                      | 899  |
| tions for non-linear Hammers-<br>tein equation involving non-<br>expansive and accretive               |      | stability of compressible swirling                                                                              | 1159 |
| mappings Chandreshwar Thakur: Hodograph                                                                | 129  | a Compresional wave at the corner of a quarter space                                                            | 386  |
| transformation in constantly inclined two-phase MFD Flows Charged test particles: Circular             |      | Conducting fluid: Flow of a conducting fluid between two coaxial rotating porous cylinders                      |      |
| orbits of charged test particles<br>in Riessner-Nordstrom field<br>Circular orbits: Circular orbits of |      | bounded by a permeable bed<br>Conformal mappings: Differential<br>subordination and conformal                   | 526  |
| a charged test particles in Riessner-Nordstrom field                                                   | 641  | mappings Conjecture of Snapper: Cyclotomic                                                                      | 560  |
| C. Jayaram: Noetherian Regular Rings Classical thermoelastic solid: Non-                               | 554  | number and conjecture of Snapper Conjugate Banach spaces : On                                                   | 99   |
| stationary law of heat conduction in classical thermoelastic solid                                     | 854  | linear independence of sequence in conjugate Banach spaces                                                      | 1083 |
| Class of polynomials: A finite integral involving a general                                            |      | Continuous functions: On almost continuous functions                                                            | 571  |
| class of polynomials and the multivariable H-function                                                  | 604  | Contraction map: A fixed point theorem for generalized contraction map                                          | 543  |
| Closed mappings: On α-Hausdorff<br>subsets, almost closed mappings<br>and almost upper semicontinuous  |      | Contraction mapping: Sequences of mappings converging to a                                                      | 5.13 |
| decomposition C. Nasim: Associated Weber inte-                                                         | 334  | contraction mapping Control function: On Controllabi-                                                           | 549  |
| gral transforms of arbitrary orders                                                                    | 1126 | lity of nonlinear systems with<br>distributed delays in the control<br>On the existence for a class of          | 213  |
| Commodity spaces: Maximal ele-<br>ments in Banach spaces<br>Commutative ring: On complete              | 690  | optimal control problems  Controllability: On Controllability                                                   | 761  |
| integral closure of G-Domain Complete integral closure: On                                             | 884  | of nonlinear systems with distri-<br>buted delays in the control                                                | 213  |
| complete integral closure of G- domain  Complex coefficients : On the                                  | 884  | Convex functions : On α-Quasi Convex functions Convex univalent polynomials                                     | 915  |

|                                                                                                              | Page        |                                                                                                        | Page |
|--------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------|------|
| Convex univalent polynomials Convexity structure: An abstract fixed point theorem for multi-                 |             | semi-infinite conducting liquid<br>by a suddenly applied velocity<br>on its surface                    |      |
|                                                                                                              | 1080        | D.C. Sanyal: On hydromagnetic turbulent shear flow                                                     |      |
| tive summability methods Injective modules of use: Co-                                                       | 893         | Development of waves: On tran-<br>sient development of waves at                                        |      |
| pure injective modules  Coset diagrams: Coset diagrams for an action of the extended                         | 250         | an interface between two fluids Differential equations: On a class of nonlinear higher order diffe-    | 1032 |
| modular group on the projective line over a finite field                                                     |             | rential equations                                                                                      | 121  |
| Cosympletic manifold: Hyper-<br>surfaces with $(f, g, u, v, x)$ -struc-                                      | 14/         | Mathematical model of popula-<br>tion interactions with dispersal:<br>stability of two habitats with a |      |
| ture of an affinely cosympletic manifold                                                                     | 799         | predator  Periodic solutions of a certain                                                              | 205  |
| Couette flow: Commencement of Couette flow in Oldroyd liquid                                                 |             | fourth order differential equation<br>On the uniform stability of a                                    | 235  |
| with heat sources C. Pakkiam: On the Graphoidal                                                              | 267         | system of differential equations with complex coefficients                                             | 307  |
| covering number of a graph C.P. Parvathy: Effect of thermal diffusion on thermohaline inter-                 | <b>3</b> 30 | Asymptotic behaviour of solu-<br>tions of functional differential<br>equations                         | 1096 |
| leaving in a porous medium due to horizontal gradients  C-real Compactness: On the relation of leaves        | 716         | Periodic boundary value pro-<br>blems for an infinite system of<br>nonlinear second order differen-    |      |
| tion of lattice repleteness and C-real compactness C.S. Bagewadi: see B. Ravi                                | 1043        | tial equation  Differentiable functions: The Hankel-Clifford transformation                            | 1213 |
| Cubic transformations: Cubic transformations of Finsler spaces and n fundamental forms of                    |             | on certain space of ultradistribu-                                                                     | 583  |
| their hypersurfaces  Cyclotomic numbers: Cyclotomic                                                          | 242         | Differential rotation: Roche har-<br>monics for Stellar models distor-<br>ted by differential rotation | 204  |
| numbers and a conjecture of<br>snapper<br>Cylindrical wave : A cylindrical<br>wave-maker in liquid of finite | 99          | on stability of differential sys-<br>tems with impulsive permuta-                                      | 284  |
| depth with an inertial surface                                                                               | 505         | tions Digraph reconstruction : On                                                                      | 446  |
| Davinder Bhatia: see Shashi Aggarwal                                                                         |             | digraph reconstruction  Dini derivatives: Pseudolinearity and efficiency via Dini deriva-              | 782  |
| D.C. Sanyal: Unsteady motion of a                                                                            |             | fives                                                                                                  | 1173 |

|                                                                                                | Page |                                                                                            | Page |
|------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------|------|
| Directed-divergence: On a mono-<br>tonicity property of measures of                            | 0.5  | Ellipsoidal inclusions: Ellipsoidal inclusions in an elastic medium                        | 840  |
| directed-divergence  Discrete inequalities: On some new discrete inequalities in two           | 851  | Endl-type: On the Endl-type generalization of certain summability methods                  | 698  |
| independent variables  Discrete Pfaffian equations: Gron-                                      | 1197 | E. Thandapani: Gronwall, Bihari and Largenhop type inequalities                            | 070  |
| wall, Bihari and Langenhop type inequalities for discrete Pfaffian                             | 665  | for discrete Pfaffian equation  E. Thandapani: Asymptotic behaviour of solutions of func-  | 665  |
| equation  Distributional boundary values :  distributional boundary values                     | 665  | tional differential equation Euclidean space: Remarks on sub-                              | 1096 |
| in $\left( W_{M}^{a} \right)$ - spaces of functions                                            |      | manifolds of codimension 2 of an even-dimensional Euclidean                                |      |
| holomorphic in tube domains  Distributive posets: O-distributive                               | 1004 | space Euler totient function: On the                                                       | 466  |
| posets Dhruwa Narain: Hypersurfaces                                                            | 804  | forms of $n$ for which $\varphi(n) + n - 1$<br>Existence of unity: On the existence        | 871  |
| with $(f, g, u, v, \lambda)$ —structure of an affinely cosympletic manifold                    | 799  | 3                                                                                          | 1184 |
| D.P. Sinha: see P.K. Jain D. Somasundaram: Inclusion                                           |      | Extreme points: Extreme points of some families of analytic functions related to univalent |      |
| theorems on matrix transforma-                                                                 | 260  |                                                                                            | 820  |
| over non-Archimedian fields IV  D. Yadaiah: On temperature-rate dependent thermoelastic longi- | 260  | Factor spaces : On Bishop, Silov                                                           |      |
| tudinal vibrations of an infinite circular cylinders                                           | 395  | and antialgebraic decomposi-<br>tions<br>F. Cammaroto: Almost irresolute                   | 1107 |
| Edge crack: Edge crack in ortho-                                                               |      |                                                                                            | 472  |
| tropic elastic half-plane Eigen value approach: Eigen value                                    | 923  | of a random elastic cylinder Finite field: Coset diagrams for an                           | 521  |
| approach to linear micropolar elasticity !  Elastic cyclinder: Torsional vibra-                | 1237 | action of the extented modular group on the projective line over a finite field            | 747  |
| tion of a random elastic                                                                       | 521  | Finite integral: A finite integral involving a general class of                            |      |
| Elastic media: Random Rayleigh waves in a non-homogeneous                                      | (1)  | polynomials and the multivari-<br>able H-function  Finslerian extension: A Finslesian      | 604  |
| elastic media  Elastic medium: Ellipsoidal inclu- sions in an elastic medium                   | 840  | Extension of the gravitational field-II                                                    | 229  |

|                                                                                                                                                  | Page |                                                                                                           | Page       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------|------------|
| Finsler connection: On hv-recurrent Finsler connection  Fineles matrix Transformation of                                                         | 790  | Functional limits : Functional limits                                                                     | 010        |
| Finsler metric: Transformation of<br>the Finsler metric by an h-<br>vector<br>Finsler spaces: Cubic transforma-<br>tions of Finsler spaces and n | 455  | Galois field: The extended modular group acting on the projective line over a Galois field                | 755        |
| fundamental forms of their hypersurfaces Finsler structures: On almost uni-                                                                      | 242  | Gamma population: Bayes approach to prediction in samples from Gamma population when outliers are present | 858        |
| fied contact Finsler structures<br>and connections<br>Fixed point iterations: Fixed point                                                        | 887  | Gargi Chakraborty: On the existence for a class of optimal control problems                               |            |
| iterations for nonlinear Hammers-<br>tein equation involing nonexpan-<br>sive and accretive mappings                                             | 129  | G.C. Dash: Commencement of Couette flow in Oldroyd liquid with heat sources                               | 247        |
| Fixed point theorem: A fixed point                                                                                                               | . 27 | G. Das: Modified means                                                                                    | 267<br>347 |
| theorem for generalised contrac-<br>tion map                                                                                                     | 543  | G. Das: Lacunary distribution of                                                                          |            |
| valued mappings  An abstract fixed point theorem                                                                                                 | 1077 | sequences G. Das: Functional limits Generalized functions: On distributional Laplace-Hardy Lfv            |            |
| for multivalued mappings Flow behind weak: Flow behind weak and strong shock waves in water                                                      |      | transformation Generating functions: On the generating functions and partial sums                         |            |
| water Fracture: Stresses in prestressed dry sandy soil due to normal moving load leading to instability                                          | 194  | of the Fourier series  Generalized convexity: Generalized convexity in multi-objective                    |            |
| and fracture  Fréchet differentials: Bounded and Fréchet differentials for map-                                                                  | 165  | programming George Bachman: On the relation of lattice repleteness and C-real                             |            |
| pings on linear topological spaces using pseudonorm                                                                                              | 969  | G. Ghous: see F.D. Zaman<br>Ghanshyam Mehta: Maximal ele-                                                 | 1043       |
| Free groups: On automorphisms of Free groups Fourier series: On the generating                                                                   | 40   | ments in Banach spaces G.K. Pradhan: Thermal stability of a fluid layer in a variable                     | 690        |
| functions and partial sums of<br>the Fourier series 1<br>Functional differential equations:                                                      | 139  | Gobind P. Mehta: see Amar Nath Gill                                                                       | 736        |
| Asymptotic behaviour of solu-<br>tions of functional differential                                                                                |      | Goldie near-rings: Goldie theorem analogue for Goldie near-rings Goldie near-rings: Radical Goldie        | 141        |
| equations 1                                                                                                                                      | 096  | near-rings                                                                                                | 439        |

|                                                                                              | Page            |                                                                                              | Page   |
|----------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|--------|
| Goldie ring: Artinian (Neotherian) part of a Goldie ring                                     | 49              | and antialgebraic decomposition<br>Hazard rates: Selection procedures                        | 1107   |
| Goldie theorem: Goldie theorem                                                               |                 | for hazard rates based on two-                                                               |        |
| analogue for Goldie near-rings G.P. Tripathi: see J.N. Kapur Graph: On automorphisms of free | 141             | Heat conduction: Nonstationary law of heat conduction in classi-                             | 773    |
| Graph: On automorphisms of free groups                                                       | 40              | cal thermoelastic solid                                                                      | 834    |
| On the Graphoidal covering number of a graph                                                 | <b>33</b> 0 782 | Heat convection equation: Note on minmax principle for heat con-                             | 189    |
| On digraphs reconstruction Graphoidal cover : On the graphoidal covering number of a         | 102             | vection equation  Heat sources: Commencement of couette flow in Oldroyd liquid               | 109    |
| Graph Gravitational field: A Finslerian                                                      | 330             | with heat sources  Heat transfer: Numerical solution                                         | 267    |
| extension of the gravitational field-II                                                      | 229             | of unsteady flow and heat trans-<br>fer in a micropolar fluid past a                         |        |
| Thermal stability of a fluid layer                                                           |                 | porous flat plate                                                                            | 513    |
| in a variable gravitational field<br>Gravity effect: Mellin transform of                     | 736             | H. El-Owaidy: Stability in Mam-<br>milary compartmental Systems                              |        |
| the gravity effect of 2-D horizontal circular cylinder with                                  |                 | H. El-Owaidy: Mathematical model of population interactions with                             |        |
| variable density Green's function: On some dlual                                             | 1251            | dispersal: Stability of two habitats with a predator                                         | 205    |
| integral equations involving Bessel function of order one                                    | 483             | H.L. Verma: see R.N. Mukherjee<br>Hodograph transformation: Hodo-                            |        |
| Green-Lindsay's: On Rayleigh waves in Green-Lindsay's model                                  |                 | graph transformation in cons-<br>tantly inclined two phase MFD                               |        |
| of generalized thermolastic media                                                            | 276             | flows Hopfian modules: Variants of                                                           | 707    |
| G S. Lingappaiah: Bayes approach to prediction in samples from                               |                 | Hopficity in modules  Horizonal gradients: Effect of thermal diffusion on thermo-            |        |
| gamma population when outliers are present                                                   | 0.00            | haline interleaving in a porous<br>medium due to horizontal gra-                             | 3      |
| Habitats: Mathematical model of population interactions with                                 |                 | dients                                                                                       | 716    |
| dispersal: Stability of two habitats with a predator                                         | 205             | H.S. Mehta: On Bishop, Silov and antialgebraic decompositions  Hydromagnetic turbulent shear | . 1107 |
| Hankel-Clifford transformation: The Hankel-Clifford transform-                               |                 | flow: On hydromagnetic turbu-<br>lent shear flow                                             | . 1151 |
| ation on certain spaces of ultra-<br>distributions                                           | 583             | Hypergeometric functions: On the sets of generalized hypergeo                                | -      |
| Hausdorff space : On Bishop, Silov                                                           | ,               | metric functions and the Regge                                                               | ,      |

|                                                                                                                                      | Page |                                                                                                                            | Page |
|--------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|------|
| Bargmann-Sheletin arrays for the 3-J and the G-5 coefficients  Hypersurfaces: Cubic transformations of Finsler spaces and n          | 1220 | Injective hull: The injective hull of a module with FGD Instability: Stresses in pre-stressed dry sandy soil due to normal | 874  |
| fundamental forms of their hypersurfaces  Hypersurfaces with $(f,g,u,v,\lambda)$ —                                                   |      | moving load leading to instabi-<br>lity and fracture<br>Integral closure: On complete in-                                  |      |
| structure of an affinely cosymple-<br>tic manifold                                                                                   | 799  | tegral closure of G-Domain Integral equations: On a class of nonlinear higher order differen-                              |      |
| I.C. Gupta: On a quaternion sub-<br>manifolds of Co-dimension-2                                                                      |      | tial equations On some dual integral equations involving Bessel function of                                                |      |
| Ilija Kovacevic: On a-hausdorff<br>subsets, almost closed mappings<br>and almost upper semicontinuous                                |      | order one Integral functions: Growth of com-                                                                               | 483  |
| decomposition Impulsive perturbations: Some results on stability of differential                                                     | 334  | posite integral functions Integral transforms: Associated Weber integral transforms of                                     |      |
| systems with impulsive perturbations Independence of sequences: On                                                                   | 446  | arbitrary orders Invariant linear filtering: Banach space valued distributional Mellin transform and firm in-              | 1126 |
| linear independence of sequences<br>in conjugate Banach spaces<br>Independent variables: On some<br>new discrete inequalities in two | 1083 | variant linear filtering Invariant submanifolds: Invariant submanifolds in a conformal K-                                  |      |
| independent variables Indrajit Lahiri: Growth of com-                                                                                |      | contact Riemannian manifold  Irresolute functions: Almost irresolute functions                                             |      |
| posite integral functions Indrani Gupta: see M.N. Vartak                                                                             | 899  | J. De: Edge crack in othotropic                                                                                            |      |
| Inequalities: Gronwall, Bihari and Largenhop type inequalities for discrete Pfaffiian equation  Inertial surface: A cylindrical      | 665  | elastic half-plane  Jerry U. Onwuatu: On Control- lability of nonlinear systems                                            | 923  |
| wave-maker in liquid of finite depth with an inertial surface                                                                        | 505  | with distributed delays in the control  J.J. Betancor: The Hankel-Clifford                                                 | 213  |
| Infinite Circular cylinder: On tem-<br>perature rate dependent thermo-<br>elastic longitudinal vibrations of                         |      | transformation on certain spaces of ultradistributions                                                                     | 583  |
| an infinite circular cylinder Infinite porous: Flow of a second order fluid due to the rotation                                      | 395  | J. Manna: see R.K. Mahalanabis J.N. Kapur: On a montonicity property of measures of directed- divergence                   | 851  |
| of an infinite porous dist near a stationary parallel porous disk                                                                    | 931  | Kalpna: Some results on almost                                                                                             |      |

|                                                                                                                           | Page |                                                                                                                                                | Page |
|---------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| semiin-variant submanifold of an Sp-Sasakian manifold K. Balachandran: see E. Thandapani K.C. Chowdhury: Artinian (Noeth- | 681  | of the gravity effect of A 2-D horizontal circular cylinder with variable density Lacunary distributions : Lacunary distributions of sequences |      |
| erian) Part of a Goldie Ring K.C. Chowdhury: Goldie theorem                                                               | 49   | Lakshmi Varadarajan: Lie theory of q-Appel function                                                                                            |      |
| analogue for Goldie near-rings K.C. Chowdhury: Radical Goldie                                                             | 141  | Lalji Srivastava : see B.N. Prasad<br>Lalji Srivastava : see B.N. Prasad                                                                       | 711  |
| near-rings K.C. Gupta: A finite integral in-                                                                              | 439  | Laplace-Hardy transformation: On distributional Laplace - Hardy                                                                                |      |
| volving a general class of poly-<br>nomials and the multivariable                                                         | 604  | $\mathcal{L}F_{\nu}$ transformations Laplace transform : A cylindrical wave-maker in liquid of finite                                          | 989  |
| K. Farahmand: On the average number of an algebraic poly-                                                                 | 004  | depth with an inertial surface  Lattice repleteness: On the relation                                                                           | 505  |
| nomial  K. Jagadeeswara Pillai : Flow of                                                                                  | 1    | of Lattice repleteness and C-real compactness                                                                                                  | 1043 |
| a conducting fluid between two coaxial rotating porous cylinders                                                          |      | Layered half space : Quasi-static response of a layered half-space                                                                             | 2010 |
| bounded by a permeable bed K.K. Dewan: see M. Bidkham K.L. Dutta: Random Rayleigh                                         | 526  | to surface loads  Libration points: Linear stability and the resonance for the trian-                                                          | 621  |
| waves in non-homogeneous elastic media K. Narasimha Reddy : Periodic                                                      | 646  | gular libration points for the<br>doubly photogravitational elliptic<br>restricted problem of three                                            |      |
| boundary value problems for an infinite system of nonlinear                                                               |      | bodies Lie theory of q-Appell                                                                                                                  | 403  |
| second order differential equa-<br>tions l                                                                                |      | functions Linear complimentarity problems: Iterative methods of solutions for                                                                  | 977  |
| K. Raja Gopal Rao : see K. Yugandhar.                                                                                     |      | linear and quasilinear comple-                                                                                                                 | 1101 |
| Krishna Kundu: see: B.N. Mandal<br>K. Srinivasa Rao: On the sets of                                                       |      | mentarity problems Linear micropolar elasticity: Eigen                                                                                         | 1191 |
| generalized hypergeometric functions and the Regge, Bargmann-Shelepin arrys for the $3-J$ and $G-J$ coefficients          | 220  | value approach to linear micro-<br>polar elasticity<br>Linear stability: Linear stability and<br>the resonance for the triangular              | 1223 |
| K. Yugandhar: A note on primary decomposition in Noetherian                                                               |      | libration points for the doubly photogravitational elliptic restric-                                                                           |      |
| near-rings K. Yugandhar: see T. Srinivas                                                                                  | 671  | ted problem of three bodies Linear topological spaces: Bounded and Fréchet differentials for                                                   | 403  |
| L. Anand Babu: Mellin transform                                                                                           |      | mappings on linear topological                                                                                                                 |      |

|                                                                                  | Page  |                                                                                             | Pag |
|----------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------|-----|
| spaces using pseudonorm topology                                                 | 969   | valued distributional Mellin<br>transform and form invariant                                |     |
| Loading functions: Edge crack in                                                 |       | linear filtering                                                                            |     |
| orthotropic elastic half-plane                                                   | 923   | Mellin transform of the gravity                                                             |     |
| Lokenath Debnath: The axisymmetric Cauchy-Poisson problem in a stratified liquid | 1022  | effect of A 2-D horizontal circu-<br>lar cylinder with variable<br>density                  | 12: |
| Magnetohydrodynamic fluid: Pro-                                                  |       | Metric space: Sequences of map-<br>ping converting to a contraction                         |     |
| pagation of Alfven waves in a real magnetohydrodynamic fluid                     | 044   | mapping                                                                                     | 549 |
| M.A. Gopalan: Note on Minmax principle for heat convection                       | 944   | MFD flows: Hodograph transfor-<br>mation in constantly inclined                             |     |
| equation                                                                         | 189   | two phase MFD flows                                                                         | 728 |
| Mammilary compartmental systems: Stability in mammilary                          | 107   | M. GEL-Sheikh: A generalized<br>Carleman boundary value pro-<br>blem for multiply connected |     |
| compartmental systems                                                            | 104   | damaina                                                                                     | 829 |
| Mamoru Nunokawa: On the mul-                                                     |       | MHD flows: Comments on steady                                                               | 027 |
| tivalent functions                                                               | 577   | place MHD flows with constant                                                               |     |
| Mass distribution: Note on the                                                   |       | speed along each streamline                                                                 | 423 |
| small vibration of beams with                                                    |       | Micropolar fluid: Numerical solu-                                                           |     |
| varying Young's modulus carry-<br>ing a concentrated mass distri-                |       | tion of unsteady flow and heat                                                              |     |
| bution                                                                           | 75    | transfer in a micropolar fluid                                                              |     |
| Matrix transformations : Matrix                                                  | 13    | past a porous flat plate                                                                    | 513 |
| transformations: of orthonor-                                                    |       | M. Ilyas: see M.Y. Nasir                                                                    |     |
| mal series                                                                       | 150   | Minmax principle: Note on min-                                                              |     |
| Matrix transformations in some                                                   |       | max principle for heat convec-                                                              |     |
| sequence spaces                                                                  | 707   | tion equation M.N. Vartak: Generalized conve-                                               | 189 |
| Maximal elements: Maximal ele-                                                   |       | xity in multi-objective Program-                                                            |     |
| ments in Banach spaces                                                           | 690   | ming                                                                                        | 10  |
| M.A. Sarigol: see C. Orhan                                                       |       | Modified means: Modified means                                                              | 347 |
| M. Bidkham: Bounds for the zeros of polynomial                                   | -11   | Module with FGD: The injective                                                              |     |
| M. Chakraborty: see S. Dey                                                       | 768   | Hull of a module with FGD                                                                   | 874 |
| M.D. Jahagirdar: Transient forced                                                |       | Modular group: Coset diagrams                                                               |     |
| and free convection flow past an                                                 |       | for an action of the extended                                                               |     |
| infinite vertical plate                                                          | 171   | modular group on the projective                                                             |     |
| Mean-square: On a error term                                                     | * * * | line over a finite field                                                                    | 747 |
| involving the Totient function                                                   | 537   | The Extended modular group                                                                  |     |
| deasures: On a monotonicity pro-                                                 |       | acting on the projective line over  Galois field                                            | 755 |
| perty of measures of directed-                                                   |       | Modules: Variants of Hopficity in                                                           | 755 |
| divergence                                                                       | 851   | modulos                                                                                     | 786 |
| Mellin transform: Banach space                                                   |       | Monotonicity property: On a                                                                 | 100 |

|                                                                                                          | Page |                                                                                                       | Pag |
|----------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------|-----|
| monotonicity property of mea-<br>sures of directed divergence<br>M. Rangamma: see V. Siva Rama<br>Prasad | 851  | NBD finite families: On strongly NBD-finite families N.C. Dawn: On Rayleigh waves in                  | 96  |
| M.R. Parameswaran: On the Endl-<br>type generalization of Certain                                        |      | in Green-Lindsay's model of<br>generalized thermoelastic media<br>N.C. Mondal: Free torsional vib-    | 27  |
| summability methods  M.S. Faltas: On the transient development of waves at an in-                        |      | ration of a nonhomogeneous semi-<br>infinite solid circular cylinder<br>Near-rings: A note on primary |     |
| interface between two fluids  M.S. Kasi: Convex univalent poly-                                          | 1032 | decomposition in Noetherian                                                                           | 67  |
| nomials                                                                                                  |      | Newtonian fluids: Flow of a second                                                                    | 67  |
| M. Subbiah: see V. Thulasi<br>M. Syam Babu: see K. Jagadees-                                             |      | order fluid due to the rotation of an infinite porous disk near a                                     |     |
| wara                                                                                                     |      | stationary parallel porous disk                                                                       | 931 |
| Multiply connected domains: A                                                                            |      | N.L. Mohan: see L. Anand Babu                                                                         |     |
| Generalized Carleman boundary value problem for multiply con-                                            |      | N.M. Bujurke: A note on the squeeze film lubrication with                                             |     |
| nected domains                                                                                           | 829  | non-Newtonian fluid                                                                                   | 632 |
| Multi-objective: Generalized con-                                                                        | 027  | Noetherian near-rings: A note on                                                                      | 032 |
| vexity in multi-objective pro-                                                                           |      | primary decomposition in                                                                              |     |
| gramming                                                                                                 | 10   | noetherian near-rings                                                                                 | 671 |
| Multivalent functions: On the                                                                            |      | Noetherian regular rings                                                                              | 554 |
| multivalent functions                                                                                    | 577  | Noetherian ring: Artinian (Noethe-                                                                    |     |
| Multivalued mappings: Fixed point                                                                        |      | rian) part of a Goldie ring                                                                           | 49  |
| theorems for multivalued map-                                                                            |      | Non-Archimedian fields: Inclusion                                                                     |     |
|                                                                                                          | 1077 | theorems on matrix transfor-                                                                          |     |
| An abstract fixed point theorem                                                                          | .000 | mations of some sequence spaces over non-Archimedian fields IV                                        | 260 |
| for multi-valued mappings                                                                                | 1080 | Non-homogeneous : Random                                                                              | 200 |
| Multivariable H function: A finite integral involving a general class                                    |      | Rayleigh waves in non-homoge-                                                                         |     |
| of polynomials and the multi-                                                                            |      |                                                                                                       | 646 |
| variable H-function                                                                                      | 604  | Nonlinear control system: On con-                                                                     |     |
| M.Y. Nasir: Propagation of Alfvén                                                                        |      | trollabilites of nonlinear systems                                                                    |     |
| waves in a real magnetohydro-                                                                            |      | with distributed delays in the                                                                        |     |
| dynamic fluid                                                                                            | 944  | control                                                                                               | 213 |
|                                                                                                          |      | Nonlinear differential equation: An                                                                   |     |
| Narinder Mohan: Scattering of a                                                                          |      | oscillation criterion for second                                                                      | ۵   |
| compressional wave at the cor-                                                                           |      | order nonlinear differential                                                                          | 207 |
| ner of a quarter space                                                                                   | 386  |                                                                                                       | 297 |
| Nat Ram Garg: Quasi-static res-                                                                          |      | Nonlinear Hammerstein equation:                                                                       |     |
| ponse of a layered half-space to                                                                         |      | Fixed point iterations for non-                                                                       |     |
| surface loads                                                                                            | 621  | linear Hammerstein equation                                                                           |     |

|                                                                                             | Page       |                                                                                                        | Page |
|---------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------|------|
| involving nonexpansive and accretive mappings  Non-Newtonian fluid: A note on the           | 129        | Orthotropic elastic half-plane: Edge crack in orthotropic elastic half-plane                           |      |
| squeeze film lubrication with non-Newtonian fluid Non Stationry: Non-stationary law         | 632        | Orthonormal series: Matrix transformations of orthonormal series Oscillation criterion: An oscillation | 150  |
| of heat conduction in classical thermoelastic solid Nörlund matrices: Modified means        | 834<br>347 | criterion for second order non-<br>linear differential equation                                        | 297  |
| Normed near-algebras: A note on normed near-algebras                                        | 433        | Pammy Manchanda : see Surjit<br>Singh                                                                  |      |
| Normal moving load: Stresses in pre-stressed dry sandy soil due to                          | 133        | Panagiotis D. Strati Gos: see<br>George Bachman                                                        |      |
| normal moving load leading to instability and fracture N. Rath: Operator duals of some      | 165        | P.C. Samal: see G K. Pradhan P. Dheena: A Generalization of                                            |      |
| sequence spaces N. Sundararajan: see L. Anand                                               | 953        | strongly regular near-rings  Periodic solutions: Periodic solutions of a certain fourth order          | 58   |
| Babu N.T. Shawagfeh: see A.D. Alawneh Nurettin Ergun: On strongly rare-                     |            | P.K. Chaudhuri: Note on the small vibration of beams with varying                                      |      |
| O.A. Elleithy: see H-El-Owaidy                                                              | 609        | Young's modulus carrying a concentrated mass distribution                                              | 75   |
| Oldroyd liquid: Commencement of<br>Couette flow in Oldroyd liquid                           |            | P.K. Jain: On linear independence<br>of sequences in conjugate                                         | 1003 |
| with heat sources O.P. Chandna: Comments on                                                 | 267        | Banach spaces  P.K. Kundu: Incoming water waves against a vertical cliff in a two-                     | 1083 |
| Steady plane MHD flows with constant speed along each                                       | 400        | fluid medium Prabhamani R. Patil: see C.P.                                                             | 292  |
| streamline Operator duals: Operator duals of some sequence spaces                           | 423        | Parvathy Prandtl number: Transient forced                                                              |      |
| Optimal Control: On the existence for a class of optimal control                            | 953        | and free convection flow past<br>an infinite vertical plate<br>Predator: Mathematical model of         | 711  |
| Optimal programme: An optimal programme for augmentation of                                 | 761        | population interactions with dispersal: Stability of two habitats with a predator                      | 20.5 |
| capacities of depots and ship-<br>ment of buses from depots to<br>starting points of routes | 111        | functions and partial sums of                                                                          | 205  |
| Optimal: Selection of optimal site for new depot of specified capa-                         | 111        | Primary decomposition: A note on                                                                       | 1139 |
| city with two objectives                                                                    | 425        | Noetherian near-rings                                                                                  | 671  |

| P                                                                                                   | age | F                                                                                                                                | Page |
|-----------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------|------|
| Product ring: On the existence of unity in Lehmer's ψ-product ring 1  Programming: Generalized con- | 184 | Quasi convex functions: On α-<br>quasi convex functions  Quasi-static response: Quasi static<br>response of a layered half-space | 915  |
| vexity in multi-objective pro-                                                                      | 10  | to surfece loads Quaternion submanifolds: On a                                                                                   | 621  |
| Polynomials: Convex Univalent polynomials                                                           | 341 | quaternion submanifolds of co-<br>dimension-2                                                                                    | 566  |
| Porous cylinders: Flow fof a con-<br>ducting fluid between two<br>coaxial rotating porous cylin-    | 768 | Radical Goldie near-rings: Radical Goldie near-rings Raghwendra: see R.N. Mukherjee Ram Babu Mishra: see Chandreshwar Thakur     | 439  |
| ders bounded by a permeable bed  P. Sahu: see A.K. Mishra  P.S. Deshwal: see Narinder Mohan         | 526 | Ram Kumar Shukla: see D. Yadiah Random algebraic polynomial: On the real roots of random                                         |      |
| Pseudo linearity: Pseudolinearity<br>and efficiency via Dini deriva-                                | 172 | algebraic polynomial  Random Rayleigh waves: Random  Rayleigh waves in non-homoge-                                               | 655  |
| rives l  Pseudonorm topology : Bounded  and Fréchet differentials for                               | 1/3 | neous elastic media Rare-continuity: On strongly rare-                                                                           | 646  |
| mappings on linear topological spaces using pseudonorm topology  P.S. Hiremath: see N.M. Bujurke    | 969 | continuity  Rayleigh waves : On Rayleigh waves in Green-Lindsay's model of generalized thermoelastic                             | 609  |
| P. Thangavelu: On strongly NBD- finite families                                                     | 964 | media R.D. Mehta: see H.S. Mehta Real roots: On the real roots of a                                                              | 276  |
| p-valently convexity: On the multivalent functions p-valently starlikeness: On the                  | 577 | random algebraic polynomial  Recurrent Finsler connection: On                                                                    |      |
| multivalent functions                                                                               | 577 | hv-recurrent Finsler connection  Regular near-rings: A Generaliza-                                                               | 790  |
| Qaiser Mustaq: Cosetdiagrams for<br>an action of the extended<br>modular group on the projective    |     | tion of strongly regular near-<br>rings<br>Regular rings: Noetherian regular                                                     | 58   |
| line over a finite field  Quarter space: Scattering of a                                            | 747 | rings<br>Rehana Quraishi: see Abdussatar                                                                                         | 554  |
| compresional wave at the corner of a quarter space                                                  | 386 | Riemannian hypersurfaces: Transformation of the Finsler metric                                                                   |      |
| Q. Mushtaq: The extended modular group acting on the                                                |     | by an h-vector  Riemannian manifold: Invariant submanifolds in a conformal k-                                                    |      |
| projective line over a Galois field                                                                 | 715 | contact Riemannian manifold                                                                                                      | 1119 |

|                                                                                                                                                                      | Page |                                                                                                                                | Pag  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------|------|
| Riessner-Nordstrom field: Circular orbits of charged test particles in Riessner-Nordstrom field Rivlin-Ericksen tensors: A note on the squeeze film lubrication with | 641  | Satoshi Ikeda: A Finslerian extensions of the gravitational field-II Satya Prakash: Selection of optimal site for new depot of | 22   |
| non-Newtonian fluid  R.K. Mahalanbis: Eigen value                                                                                                                    | 632  | specified capacity with two objectives  S. Bagh: On the real roots of a                                                        | 42.  |
| approach to linear micropolar elasticity                                                                                                                             | 1237 | random algebraic polynomial<br>S. Bhavanari: The injective hull of                                                             | 65:  |
| R.K. Yadav: see B.B. Sinha R.M. Lahurikar: see M.D. Jahagirdar                                                                                                       |      | a module with FGD  S. Biswal: see G.C. Dash  Scalar curvature: On Wagner                                                       | 874  |
| R.N. Mukherjee: Some results on stability of differential systems with impulsive perturbations R.N. Mukherjee: Iterative methods                                     | 446  | spaces of W <sub>p</sub> -scalar curvature  S. Dayal: Bounded and Fréchet differentials for mappings on                        | 136  |
| of solutions for linear and quasilinear complementarity problems                                                                                                     | 119  | linear topological spaces using pseudonorm topology  S. Dey: Stresses in prestressed dry sandy soil due to normal mov-         | 969  |
| Roche harmonics: Roche harmonics for Stellar models distorted by differential rotation                                                                               | 284  | ing load leading to instability<br>and fracture<br>Sequence spaces: Operator duals of                                          | 165  |
| R.S. Agarwal: Numerical solution of unsteady flow and heat transfer in a micropolar fluid past a                                                                     |      | some sequence spaces Seismology: Scattering of a compressional wave at the corner of                                           | 953  |
| marana A-4 1                                                                                                                                                         | 513  | a quarter space Semicontinuous docomposition: On α-Hausdorff subsets, almost                                                   | 386  |
| of a functions holomorphic $l_n$ tube domains                                                                                                                        | 1004 | upper semicontinuous decom-<br>position                                                                                        | 334  |
| S.A. Paramhans : see B.M. Pandeya S.A. Katre : Cyclotomic numbers                                                                                                    |      | Semi-infinite conducting liquid:  Unsteady motion of a semi- infinite conducting liquid by a suddenly applied velocity on its  | 334  |
| and a conjecture of Snapper  S. Arumugam: On topological projective plans-III  S. Arumugam: see C. Pakkiam  Sarvajit Singh: see Nat Ram Garg                         | 99   | CHITTOOA                                                                                                                       | 1146 |
| Sasakian manifold: Some results on almost semi-invariant submani-                                                                                                    |      | manifold Semi-open sets: Almost irresolute                                                                                     | 681  |
| fold of an SP-sacation manic 11                                                                                                                                      |      | Sequence spaces: Matrix transfor-                                                                                              | 472  |
|                                                                                                                                                                      |      | mations in some sequence spaces                                                                                                | 707  |

| Pa                                   | ge Pag                               |
|--------------------------------------|--------------------------------------|
| Inclusion theorems on matrix         | Solid circular cylinder: Free tor-   |
| transformations of some sequ-        | sional vibration of a nonhomo-       |
| ence spaces over non-Archime-        | geneous semi-infinite solid circu-   |
| dian fields IV 260                   | lar cylinder 8                       |
| Sequences: Lacunay distribution of   | Solutions: Iterative methods of      |
| sequences 6-                         |                                      |
| Sequences of mappin geonversing      | linear complimentarity pro-          |
| to a contraction mapping 549         |                                      |
| Sets: On the sets of generalized     | S.P. Koirala: see B.M. Pandeya       |
| hypergeometric functions and         | Specified capacity: Selection of     |
| the Regge, Bargmann-Shelepin         | optimal site for new depot of        |
| arrays for the 3—J and the 6—J       | specified capacity with two          |
| Coefficients 1220                    |                                      |
| S.G. Bhavi: see N.M. Bujurke         | S. Ponnusamy: see V. Karunkaran      |
| Shashi Aggarwal: Pseudolinearity     | S.P. Singh: see A. Carbone           |
| and efficiency via Dini deriva-      | Squeeze film lubrication; A note on  |
| tives 1173                           |                                      |
| Shear flow: On hydromagnetic         | non-Newtonian fluid 63               |
| turbulent shear flow 1151            | S. Rama Chandran: On digraph         |
| Shipment of buses: An optimal        | reconstruction 78                    |
| programme for augmentation of        | S.R. Grace: An oscillation criterion |
| capacities of depots and ship-       | for second order nonlinear diffe-    |
| ment of buses from depots to         | rential equation 29                  |
| starting points of routes 111        | Starting points of routes: An opti-  |
| Shock waves: Flow behind weak        | mal programme for augmenta-          |
| and strong shock waves in water 194  | tion of capacities of depots and     |
| S.K. Chakraborty: see K.L. Dutta     | shipment of buses from depots        |
| Skin-friction: Transient forced and  | to starting points of routes 11      |
| free convection flow past an         | Stratified liquid: The axisymmetric  |
| infinite vertical plate 711          | Cauchy-Poisson problem in a          |
| S.K. Kaushik: see P.K. Jain          | stratified liquid 1022               |
| S.K. Samanta: see D.C. Sanyal        | Stretched elastic plate: Thermo-     |
| S.K. Samanta: An abstract fixed      | elastic waves from suddenly          |
| point theorem for multivalued        | punched hole in stretched elastic    |
| mappings 1080                        |                                      |
| S.K. Samanta: see D.C. Sanyal        | Stresses : Stresses in pre-stressed  |
| S.K. Singh: On Wagner spaces of      | dry sandy soil due to normal         |
| W <sub>p</sub> -scalar curvature 136 |                                      |
| S.L. Dhingra: see A.K. Agrawal       | lity and fracture 165                |
| S.M. Aggarwal: see K.C. Gupta        | Strongly NBD-finite families: On     |
| Small vibration: Note on the small   | strongly NBD-finite families 964     |
| vibration of beams with varying      | Strongly rare-continuity : On        |
| Young's Modulus carrying a           | strongly rare-continuity 609         |
| concentrated mass distribution 75    | Stability: Stability in mammilary    |
|                                      |                                      |

|                                                                                                                        | Page |                                                                                                                            | Pag  |
|------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|------|
| compartmental systems  Mathematical model of population interactions with dispersal:  Stability of two habitats with a |      | Takashi Noiri: On almost continuous functions  Takashi Noiri: see F.  Cammaroto                                            |      |
| predator  Some results on stability of differential systems with impulsive                                             | 205  | Thermal diffusion: Effect of thermal diffusion on thermohaline interleaving in a porous                                    |      |
| perturbations On the stability of compressible                                                                         | 446  | medium due to horizontal gradients                                                                                         | 7.   |
| swirling flows Stellar models: Roche harmonics                                                                         |      | Thermal stability: Thermal stabi-<br>lity of a fluid layer in a variable                                                   |      |
| for stellar models distorted by differentiable rotation                                                                | 284  | gravitational field Thermoelastic media: On Rayleigh                                                                       | 73   |
| Streamline: Comments on steady plane MHD flows with constant                                                           |      | waves in Green Lindsay's model<br>of Generalized thermoelastic                                                             |      |
| speed along each streamline Submanifolds of codimension-2: On a quaternion submanifolds                                | 423  | media Thermoelasticity: On temperature- rate dependent thermoelastic                                                       | 270  |
| of Co-dimension-2  Remarks on submanifolds of Codimension 2 of an                                                      | 566  | longitudinal vibrations of an infinite circular cylinder  Thermo-elastic: Thermo-elastic                                   | 39:  |
| even dimensional euclidean                                                                                             | 166  | waves from suddenly punched hole in stretched elastic plate                                                                | 181  |
| Subrata Data: see P.K. Chandhuri<br>Sudarshan Nanda: Matrix trans-<br>formations in some sequence<br>spaces            | 466  | Thermohaline interleaving: Effect of thermal diffusion on thermo- haline interleaving in a porous medium due to horizontal | 10   |
| Summability: On the Endl-type generalization of certain sum-                                                           | 707  | gradients Three bodies: Linear stability and                                                                               | 716  |
| mability methods Suresh Kumari: see Babu Ram Surface loads: Quasi-static response                                      | 698  | the resonance for the triangular libration points for the doubly photogravitational elliptic res-                          |      |
| of a layered half-space to sur-<br>face loads                                                                          | 621  | tricted problem of three bodies Topological projective planes: On                                                          | 403  |
| Surjit Singh: On complete integral                                                                                     |      | lopological measure: On the rela-                                                                                          | 1115 |
| S.V.K. Varma: see K Jagadeeswara S.V. More: see B.R. Ahirrao                                                           | 884  | T.L. Hicks: Fixed point theorems                                                                                           | 1077 |
| S. Nanda: see G. Das<br>S.V. Seshagiri Rao: see L. Anand<br>Babu                                                       |      | Torsional oscillation : Free tor-                                                                                          | 1077 |
| Swan modules: A note on swan                                                                                           | 1067 | geneous semi-infinite solid cir-                                                                                           |      |
| •••                                                                                                                    | 1007 | cular cylinder                                                                                                             | 80   |

Page

| - 27 | 2   |  |
|------|-----|--|
| - 8  | 100 |  |
| ж.   | MYC |  |

| Torsional: Free torsional vibration |       | Debnath                               |      |
|-------------------------------------|-------|---------------------------------------|------|
| of a nonhomogeneous semi-           |       | Unified structure: On almost unified  |      |
| infinite solid circular cylinder    | 89    | contact Finsler structures and        |      |
| Torsional vibration: Torsional      |       | 0000001:-                             | 887  |
| vibration of a random elastic       |       | Uniform stability: On the uniform     | 001  |
| cylinder                            | 521   | stability of a system of differen-    |      |
| Totient function: On an error term  |       | tial equations with complex           |      |
| involving the totient function      | 537   | anoff single                          | 307  |
| T.N. Shanmugam: On z-quasi          |       | Unsteady flow: Numerical solution     | 307  |
| convex functions                    | 915   | of unsteady flow and heat             |      |
| Transient development: On transient |       | transfer in a micropolar fluid        |      |
| development of waves at an          |       | past a porous flat plate              | 513  |
| interface between two fluids        | 1032  | Unsteady motion: Unsteady motion      | 313  |
| Transient: Transient forced and     | 1032  | of a semi infinite conducting         |      |
| free convection flow past an        |       | liquid by a suddenly applied          |      |
| infinite vertical plate             | 711   |                                       | 1146 |
| Transformations : Inclusion         | / 1 1 | velocity on its surface               | 1140 |
| theorems on matrix transforma-      |       | VA II:                                |      |
|                                     |       | V.A. Hiremath : Copure-injective      | 0.00 |
| tions of some sequence spaces       |       | modules                               | 250  |
| over a non-Archimedian fields       | 260   | Vandana Gupta: see V.P. Singh         |      |
| IV                                  | 260   | Variable gravitational field: Thermal |      |
| Transformation of the Finsler       |       | stability of fluid layer in a         |      |
| metric by an h-vector               | 455   | variable gravitational field          | 736  |
| Translative summability: On F-      |       | Variants of Hopficity: Variants of    |      |
| absolutely translative summabi-     |       | Hopficity in modules                  | 786  |
| lity methods                        | 893   | V.B. Dhamke: see Y.S. Pawar           |      |
| Trigonomettric sums: On 21-cover-   |       | Vertical cliff: Incoming water waves  |      |
| gence of certain trigonometric      | 1000  | against a vertical cliff in a two-    |      |
| sums                                | 908   | fluid medium                          | 272  |
| T. Srinivas: A Note on normed       |       | Vibrations: On temperature rate       |      |
| near-algebras                       | 433   | dependent thermoelastic longi-        |      |
| T. Srinivas: see K. Yugandhar       |       | tudinal vibrations of an infinite     |      |
| Thodoy Vidalis: Sequences of map-   |       | oncarar of made.                      | 395  |
| pings converging to a contrac-      |       | Vivek Saini: see Satya Prakash        |      |
| tion mapping                        | 549   | V. Kumar: Linear stability and the    |      |
| Two-sample statistics: Selection    |       | resonance for the triangular          |      |
| procedures for hazard rates         |       | libration points for the doubly       |      |
| based on two sample statistics      | 773   | photogravitational elliptic restric-  |      |
| Two-fluid medium: Incoming water    |       | ted problem of three bodies           | 403  |
| waves against a vertical cliff in a |       | V. Karunakaran : Differential         |      |
| two fluid medium                    | 292   | subordination and conformal           |      |
|                                     |       | mappings                              | 560  |
| Uma B. Guha : see Lokenath          |       | V.L. Mannapalli: see C. Jayaram       |      |

|                                                                                                                                                                                | Page |                                                                                                                                                           | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| V.K. Tripathy: see G.K. Pradhan V.P. Singh: Flow behind weak and strong shock waves in water V.P. Singh: Roche harmonics for steller models distoretd by differential rotation | 194  | Weber integral transforms: Associated Weber integral transforms of arbitrary orders  Werner George Nowak: On an error term involving the Totient function |      |
| V. Rajeswari: see K. Srinivasa                                                                                                                                                 |      | function                                                                                                                                                  | 331  |
| <ul> <li>V. Sitaramaiah: On the existence of unity in lehmer's ψ-product ring</li> <li>V. Siva Rama Prasad: On the forms</li> </ul>                                            | 1184 | Young's Modulus: Note on the small vibration of beams with varying Young's modules carrying a concentrated mass distribution                              | 75   |
| of n for which $Q(n)/n - 1$                                                                                                                                                    | 871  | Y.S. Pawar: O-distributive posets                                                                                                                         | 804  |
| V. Thulasi: On the stability of compressible swirling flows                                                                                                                    | 1159 | Zeros: Bounds for the zeros of polynomials                                                                                                                | 768  |
| Wagner spaces: On Wagner spaces Wp-scalar curvature                                                                                                                            | 136  | Zerosymmetric: A generalization of strongly regular near rings Z. Zahreddine: On the uniform                                                              |      |
| Water waves: Incoming water waves against a vertical cliff in a two                                                                                                            |      | stability of a system of differential equations with complex                                                                                              |      |
| fluid medium                                                                                                                                                                   | 292  | coefficients                                                                                                                                              | 307  |
|                                                                                                                                                                                |      |                                                                                                                                                           |      |

# Eratta

"Edge crack in Orthotropic Elastic Half Plane" by J. De and B. Patra—printed in Vol 20, No. 9 (1989), pp. 923-930.



Fig.  $\phi(t)/P_0$  versus t for various loading function.



## SUGGESTIONS TO CONTRIBUTORS

The Indian Journal of Pure and Applied Mathematics is devoted primarily to original research in pure and applied mathematics.

Manuscripts should be typewritten, double-spaced with sufficient margins (including abstracts, references etc.) on one side of durable white paper. The initial page should contain the titel followed by author's name and full mailing address. The text should include only as much as is needed to provide a background for the particular material covered. Manuscripts should be submitted in triplicate.

The author should provide a short abstract, in triplicate, not exceeding 250 words, summarizing the highlights of the principal findings covered in the paper and the scope of research.

References should be cited in the text by the arabic numbers in superior. List of references should be arranged in the arabic numbers, author's name, abbreviation of Journal, Volume number (Year) page number, as in the sample citation given below:

### For Periodicals

1. R. H. Fox, Fund. Math. 34 (1947) 278.

#### For Books

2. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, (1973) p. 283.

Abbreviations for the titles of the periodicals should, in general, conform to the World List of Scientific Periodicals.

All mathematical expressions should be written clearly including the distinction between capital and small letters. Clear distinction between upper and lower cases of c.p,k,z,s, should be made while writing the expression in hand. Also distinguish between the letters such as 'Oh' and 'zero'; I(el) and 1 (one); v, V and v (Greek nu); r and  $\gamma$  (Greek gamma); x, X and  $\chi$  (Greek chi); k, K and  $\kappa$  (Greek kappa); Greek letter lambda ( $\Lambda$ ) and symbol for vector product ( $\Lambda$ ); Greek letter epsilon ( $\epsilon$ ) and symbol for 'is an element of' ( $\epsilon$ ). The equation numbers are to be placed at the right-hand side of the page. The name of the Greek letter or symbol should be written in the margin the first time it is used. Superscripts and subscripts should be simple and should be placed accurately.

Line drawings should be made with India ink on white drawing paper or tracing paper. Letterings should be clear and large. Photographic prints should be glossy with strong contrast. All illustrations must be numbered consecutively in the order in which they are mentioned in the text and should be referred to as Fig. or Figs. Legends to figures should be typed on a separate sheet and attached at the end of the manuscript.

Tables should be typed separately from the text and placed at the end of the manuscript. Table headings should be short but clearly descriptive.

Proofs should be corrected immediately on receipt and returned to the Editor. If a large number of corrections are made in the proof, the author should pay towards composition charges. In case, the author desires to withdraw his paper, he should pay towards the composition charges, if the same is already done.

For each paper, the authors will receive 50 reprints free of cost. Order for extra reprints should be sent with corrected page proofs.

Manuscripts, in triplicate, should be submitted to the Editor of Publications, Indian Journal of Pure and Applied Mathematics, Indian National Science Academy, Bahadur Shah Zafar Marg, New Delhi 110002 (India).

# INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS

No. 12

December 1989

Volume 20

# CONTENTS

|                                                                                                                                          | Pag  |
|------------------------------------------------------------------------------------------------------------------------------------------|------|
| Pseudolinearity and efficiency via Dini derivatives by Shashi Aggarwal and Davinder Bhatia                                               | 117: |
| On the existence of unity in Lehmer's $\psi$ -product ring by V. Sitaramaiah                                                             | 1184 |
| Iterative methods of solutions for linear and quasi linear complementarity problems by R. N. MUKHBRJEB and H. L. VERMA                   | 1191 |
| On some new discrete inequalities in two independent variables by B. G. PACHPATTE                                                        | 1197 |
| Periodic boundary value problems for an infinite system of nonlinear second order differential equations by K. NARSIMHA REDDY            | 1213 |
| On the sets of generalized hypergeometric functions and the Regge,  Bargmann-Shelepin arrays for the $3-J$ and the $6-J$ coefficients by |      |
| K. SRINIVASA RAO and V. RAJESWARI                                                                                                        | 1230 |
| Eigen value approach to linear micropolar elasticity by R. K. MAHALANABIS                                                                |      |
| and J. Manna                                                                                                                             | 1237 |
| Mellin transform of the gravity effect of A2-D horizontal circular cylinder with variable density by L. Anand Babu, N. L. Mohan,         |      |
| N. SUNDARARAJAN and S. V. SESHAGIRI RAO                                                                                                  | 1251 |
| Contents and Index                                                                                                                       | 7    |
| Eratta                                                                                                                                   |      |
|                                                                                                                                          |      |