Optimisation : Préliminaires

Joon Kwon

Master 2 — MathSV

jeudi 22 septembre 2022

Notations

Dans tout le cours :

- $d \geqslant 1$ un entier
- X un sous-ensemble de \mathbb{R}^d
- $f: X \to \mathbb{R}$ une fonction
- || ⋅ || la norme euclidienne

Soit M une matrice.

- On note M^{\top} la transposée.
- Dans un contexte de calcul matriciel, un vecteur $x \in \mathbb{R}^d$ est identifié à un vecteur-colonne

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}.$$

• Le produit scalaire entre deux vecteurs $x, y \in \mathbb{R}^d$ se note :

 $\langle x, y \rangle$ ou encore $x^{\top}y$.

Minimums et minimiseurs

Definition

Soit $f: X \to \mathbb{R}$ et $x^* \in X$.

• $x^* \in X$ est un minimiseur (global) de f si :

$$f(x^*) = \min_{x \in X} f(x).$$

 $f(x^*)$ est alors un minimum global de f.

• x^* est un minimiseur local de f s'il existe un voisinage V de x tel que :

$$f(\mathbf{x}^*) = \min_{\mathbf{x} \in X \cap V} f(\mathbf{x}).$$

 $f(x^*)$ est alors un minimum local de f.

Gradient et hessienne

Definition

 Si toutes les dérivées partielles de f en x existent, on note ∇f(x), et on appelle gradient de f en x, le vecteur :

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_d}(x) \end{pmatrix} \in \mathbb{R}^d.$$

• Si toutes les dérivées partielles d'ordre 2 de f en x existent, on note $\nabla^2 f(x)$, et on appelle matrice hessienne de f en x, la matrice :

$$\nabla^2 f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right) \in \mathbb{R}^{d \times d}.$$

Definition (Point critique)

Un point $x \in X$ est dit critique (ou stationnaire) si $\nabla f(x) = 0$.

Remarque

Si f est différentiable (resp. deux fois différentiable) en x, alors les développements de Tayor de f en x aux ordre 1 et 2 s'écrivent respectivement :

$$f(x') = f(x) + \nabla f(x)^{\top}(x' - x) + o(x' - x)$$

$$f(x') = f(x) + \nabla f(x)^{\top}(x' - x) + \frac{1}{2}(x' - x)^{\top}\nabla f^{2}(x)(x' - x) + o((x' - x)^{2}).$$

Théorème (de Schwarz)

Si f est deux fois dérivable en x, $\nabla^2 f(x)$ est une matrice symétrique.

Formes quadratiques et matrices symétriques

Definition

Soit A une matrice symétrique. La fonction $x \mapsto x^{\top}Ax$ est appelée forme quadratique associée.

Definition (Matrice (semi-)définie positive)

Soit A une matrice réelle symétrique de taille $d \times d$.

- A est semi-définie positive si : ∀x ∈ ℝ^d, x^TAx ≥ 0.
 On note alors A ≥ 0.
- A est définie positive si ∀x ∈ ℝ^d \ {0}, x^TAx > 0.
 On note alors A > 0.

Proposition

Soit A une matrice symétrique. A est semi-définie positive (resp. définie positive) si, et seulement ses valeurs propres sont positives (resp. strictement positives).

Convexité

Definition (Ensemble convexe)

Un ensemble $X \subset \mathbb{R}^d$ est convexe si pour tout $x, y \in X$, $[x, y] \subset X$.

Definition (Fonction convexe)

Soit $X \subset \mathbb{R}^d$ un ensemble convexe et $f: X \to \mathbb{R}$.

• f est convexe si pour tous $x, y \in X$ et $\lambda \in]0,1[$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

• f est strictement convexe si pour tous $x, y \in X$ tels que $x \neq y$ et $\lambda \in]0,1[$,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

Caractérisations de la convexité

Proposition (Caractérisations d'ordre 1 de la convexité)

Soit $X \subset \mathbb{R}^d$ un ensemble ouvert convexe et $f: X \to \mathbb{R}$ différentiable.

• f est convexe si, et seulement si :

$$\forall x, y \in X, \quad f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x).$$

• f est strictement convexe si, et seulement si :

$$\forall x, y \in X, \quad x \neq y \implies f(y) > f(x) + \nabla f(x)^{\top} (y - x).$$

Proposition (Caractérisations d'ordre 2 de la forte convexité)

Soit $X \subset \mathbb{R}^d$ un ensemble ouvert convexe et $f: X \to \mathbb{R}$ deux fois différentiable.

- f est convexe si, et seulement si, $\nabla^2 f(x)$ est semi-définie positive pour tout $x \in X$.
- f est strictement convexe si, et seulement si, $\nabla^2 f(x)$ est définie positive pour tout $x \in X$.

Forte convexité

Definition (Forte convexité)

Soit K > 0, $X \subset \mathbb{R}^d$ un ensemble convexe. $f: X \to \mathbb{R}$ est K-fortement convexe si pour tous $x, y \in X$ et $\lambda \in]0,1[$:

$$f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda)f(y) - \frac{K\lambda(1-\lambda)}{2} \|y-x\|^2$$
.

Proposition (Caractérisations d'ordre 1 de la forte convexité)

Soit K > 0, $X \subset \mathbb{R}^d$ un ensemble ouvert convexe et $f: X \to \mathbb{R}$ différentiable. f est K-fortement convexe si, et seulement si:

$$\forall x, y \in X, \quad f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x) + \frac{K}{2} \|y - x\|^{2}.$$

Proposition (Caractérisations d'ordre 2 de la convexité)

Soit K > 0, $X \subset \mathbb{R}^d$ un ensemble ouvert convexe et $f: X \to \mathbb{R}$ deux fois différentiable. f est K-fortement convexe si, et seulement si:

$$\forall x \in X, \ \forall u \in \mathbb{R}^d, \quad u^\top \nabla^2 f(x) u \geqslant \underset{\square}{K} \|u\|_{\mathbb{R}^d}^2.$$

Régularité (smoothness)

Definition (Régularité)

Soit L > 0, $\mathcal{X} \subset \mathbb{R}^d$ un ensemble ouvert et $f: X \to \mathbb{R}$ différentiable. f est L-régulière (smooth) si ∇f est L-lipschitzienne. Autrement dit :

$$\forall x, y \in X, \quad \|\nabla f(y) - \nabla f(x)\| \leqslant L \|y - x\|.$$

Proposition (Caractérisation d'ordre 1 de la régularité)

Soit L > 0, $\mathcal{X} \subset \mathbb{R}^d$ un ensemble ouvert et $f: X \to \mathbb{R}$ une différentiable. f est L-régulière (smooth) si, et seulement si :

$$\forall x, y \in X, \quad \left| \mathbf{f}(y) - \mathbf{f}(x) - \nabla \mathbf{f}(x)^{\mathsf{T}}(y - x) \right| \leqslant \frac{L}{2} \left\| y - x \right\|^2.$$

