A review of Python packages for Gaussian process regression

Subhasish Basak

supervisor Emmanuel Vazquez

Laboratoire des Signaux et Systémes (L2S) Université Paris Saclay

> May-July 2019 Gif-sur-Yvette, France

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

- Introduction
 - Motivation & Goal
- Question Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

slide no

Motivation & Goal

In recent years, Gaussian processes have gained popularity as a regression tool in the machine learning and simulation community. Some popular **python toolboxes implementing GP regression :**

• Scikit-Learn, GPy, GPyTorch, GPflow etc.

Need for a comparative study:

- Difference in implementation among the libraries
- Unawareness of available parameter settings & functionalities

Similar studies in the literarure:

• C.B. Erickson et al. (2017)

- Introduction
 - Motivation & Goal
- Question Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Derformance tests
 - Measures
 - Two D test
 - Simulation test

slide no

A quick recall of GP regression

A **Gaussian Process** is a Stochastic process, completely specified by its mean function m(x) and covariance function K(x,x') and for which any finite collection of r.v's have a Gaussian distribution.

$$\xi(x) \sim \mathcal{GP}(m(x), K(x, x'))$$
 (1)

We now consider the regression model, with a **zero mean** Gaussian Process $\xi(x)$ and Gaussian noise ϵ with variance σ_n^2 ,

$$y_i = \xi(x_i) + \epsilon_i \tag{2}$$

Now, given training data points $\{X, y\}$, using Bayes Rule the **predictive distribution** for test points X_* becomes,

$$\xi_*|X_*, X, y \sim N(K(X_*, X)[K(X, X) + \sigma_n^2 \mathbf{I}]^{-1} y$$

$$, K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 \mathbf{I}]^{-1} K(X, X_*)) \quad (3)$$

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Derformance tests
 - Measures
 - Two D test
 - Simulation test

slide no

Mean function

The mean function can be any of the following.

- zero/known mean : Simple Kriging (eq 3)
- unknown mean : $m(x) = \phi^{\top}(x)\beta$ with known basis function $\phi(x)$ & unknown β

 β can be estimated using the following methods,

- **Kriging approach**: Using the generalized least square estimate of β yielding the GP predictor as the *Best Linear Unbiased* Predictor(BLUP). For $\phi(x)=1$ its called *Ordinary kriging* and for more generalized basis functions its called *Universal kriging*.
- **Maximum likelihood**: Estimating β jointly with the hyperparameters of the covariance function.
- Bayesian approach : Assuming priors on β and the obatain the posterior using eq 5.

Covariance function

The kernel K(.,.) plays a crucial role in the predictive mean and variance, they define the closeness and similarity between data points.

• **Some commonly used kernels :** Squared Exponential kernel(RBF), Matern kernel, polynomial kernel etc.

Fully Bayesian approaches like **Monte Carlo** methods can be used to fit GP without estimating the kernel parameters but due to their high computational cost some popular hyperparameter estimation techniques are,

- Maximum marginal likelihood
- Maximum a posteriori probability (MAP) estimate
- Restricted Maximum Likelihod (ReML) estimate
- Cross validation

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

Python libraries

We begin with the the description of the set of python libraries we are using. Following table shows the python libraries with their versions, dependencies, compatible python version and input data types.

Library	Version	Python version	Data type
Scikit-learn	0.20.0	2.7,3.4 and higher	numpy array
Shogun	6.1.3	3 and higher	Shogun Labels
GPy	1.9.6	2.7, 3.4 and higher	n-d numpy array
GPflow	1.3.0	3.5 and higher	n-d numpy array
GPytorch	0.3.2	3.6 and higher	tensors
Openturns	1.13	2.7,3.3 and higher	Openturns labels

Table: Python libraries

Among the libraries above **GPflow** has backend dependency on tensorflow and **GPytorch** has dependencies on torch, Pytorch.

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- 4 Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

Covariance functions

For our purpose we confined to a subset of **kernels** (covariance functions). The following table shows their possibility of implementation in different libraries,

Library	RBF	Matern	White	Constant	Rat. Qd.	Poly.
Scikit-learn	✓	✓	√	✓	✓	√
Shogun	\checkmark	-	-	\checkmark	-	-
GPy	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
GPflow	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
GPytorch	\checkmark	\checkmark	\checkmark	-	-	\checkmark
Openturns	\checkmark	\checkmark	-	-	-	-

Table: available Kernel modules

Other kernel modules : Cosine Kernel, Cylindrical Kernel, Periodic Kernel, Linear Kernel, Spectral Mixture Kernel, Exponential Sine Squared kernel etc.

Mean modules

- All the libraries set a default zero mean (simple kriging)
- Except Scikit-learn all the other libraries have an option for a Constant mean with user defined constant
- Openturns & GPflow supports universal kriging

Library	Linear mean	Zero mean	Constant mean
Scikit-learn	-	✓	-
Shogun	-	\checkmark	\checkmark
GPy	-	\checkmark	\checkmark
GPflow	\checkmark	\checkmark	\checkmark
GPytorch	-	\checkmark	\checkmark
Openturns	\checkmark	\checkmark	-

Table: available Mean modules

Nugget effect

The nugget has the effect of smoothing the objective function and allowing for noise. Another reason for using a nugget is to provide computational stability. The following shows the nugget settings for different libraries.

Library	Can set	Nugget	Default	Can Optimize
	nugget	type	nugget	nugget
Scikit-learn	✓	2	1e-10	-
Shogun	-	-	1	\checkmark
GPy	\checkmark	2	1	\checkmark
GPflow	\checkmark	1	1	\checkmark
GPytorch	\checkmark	1	.693	\checkmark
Openturns	✓	2	-	-

Table: Nugget types :: 1: Homoscedastic; 2: Heteroscedastic

Scaling & Compounding kernels

- Scaling refers to multiplying a scale factor to the covariance function
- **Compounding** refers to combining 2 or more kernels into one by addition or multiplication

The following table describes about compound & scale kernels settings for different libraries.

Library	Default Scale	Can set	Can optimize	Supports
		scale	scale	compounding
Scilit-learn	=	Const Kernel	✓	√
Shogun	1	-	\checkmark	-
GPy	1	\checkmark	\checkmark	\checkmark
GPflow	1	\checkmark	\checkmark	\checkmark
GPytorch	0.693	\checkmark	\checkmark	\checkmark
Openturns	1	\checkmark	\checkmark	-

Table: Scaling & Compounding

Parameter Estimation

For our selected set of libraries all of them supports **Maximum likelihood** method which involves the optimization of the likelihood function. Different libraries use different algorithms to optimize the likelihood. The following table shows the parameter estimation settings of different libraries and the available algorithms they use for optimization.

Library	Parameter	Default	Other	
	Estimation	Optimizer	Optimizers	
Scikit-learn	MLE	L-BFGS-B	-	
Shogun	MLE	Grad. Desc.	=	
GPy	MLE,MCMC	L-BFGS-B	TNS,BFGS	
GPflow	MLE,MCMC	L-BFGS-B	=	
GPytorch	MLE	Adam optimizer	=	
Openturns	MLE	Cobyla	TNC,SQP,NLopt	

Table: Parameter Estimation

Likelihoods & partial estimation

Likelihood : Our main focus has been on regression with Gaussian noise, however, Gaussian processes can be used as priors with other likelihood functions.

- Default Gaussian likelihood :
 Scikit-learn, GPy, GPflow and Openturns
- No default likelihood : Shogun and GPytorch

GPy, **Shogun** and **GPytorch** provide the option to choose other likelihoods viz. **Poisson**, **Softmax**, **Bernoulli**, **Student's t** etc.

Partial estimation:

- Scikit-learn and Openturns does not support optimization of the nugget parameter
- GPy has an option to fix nugget parameter value and optimize the rest

No other library provide direct option for partial estimation of hyperparameters.

- Introduction
 - Motivation & Goal
- Question Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

Subpackages & modules

The **pythongp** package has three subpackages, viz. Each of the subpackages have different functionalities and are built accordingly.

core

Contains furthur 2 subpackages viz.

- params :
 - contains 2 modules kernel and mean
- wrappers:
 contains six modules corresponding to the 6 chosen libraries
- test_functions

The subpackage **test_functions** contains a library of test fuctions used for experiments.

tests

The subpackage **tests** contains a library of different performance tests.

- Introduction
 - Motivation & Goal
- Question Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

Tasks

All the wrappers corresponding to the libraries has the same structure and they can implement the following methods. These methods are built considering all the necessary tasks that are needed to be performed in order to implement GP regression.

- Initialization
- Data loading & reshaping
- Specifying the mean function
- Constructing the kernel
- Building regression model
- Making predictions & plots

Initialization & Data loading, reshaping

To initialize the library there is a wrapper module named **pgp_init.py**.

example code for library initialization

```
from pythongp.core.wrappers import pgp_init
from pythongp.tests.tests import test01
pgp = pgp_init.set_library("GPy")
test01(pgp)
```

For data loading each wrapper has 2 methods implemented, which loads the training & test data and re-configures it according to the library requirements.

- load_data: Feeds the wrapper with train & test data.
- load_mult_data: Feeds the wrapper with multivariate train & test data.
- dftoxz: Reshapes the data according to library configuration.

Specifying the mean function

The mean function is treated as a **class** object named **Mean**, inside the module named **mean.py** located in the **params** subpackage. The user needs to create a class **Mean** which supports the following methods,

- **construct**: Constructs the **Mean** class by either taking user inputs.
- **get_mean_type**: Returns the mean type specified.

Now once the **Mean** class is constructed the user can feed it in the wrapper using the method called **set_mean**.

```
example code for mean function
```

```
1 from pythongp.core.params import mean
2 m = mean.Mean()
3 m.construct('Zero')
4 pgp.set_mean (m)
```


Constructing the kernel

The covariance function is also treated as a class object ust like the mean function. The user can create a **Kernel** class which is defined inside **params** subpackage. This class supprots the following the following methods,

- **construct**: Constructs the kernel by taking user inputs about the kernel type and its parameter values.
- set_bounds: Specifies the lengthscale bounds of some of the kernels.
- **set_name** : Returns the kernel name.
- **show** : Returns the parameter values given as input.

For compounding there is a class named **CompoundKernel** which is an implementation of a **binary tree** structure which combines different kernels. The **add** and **mult** methods enables the user to combine elementary kernels using "+" or "*".

Constructing mean and covariance function

example code for covariance function

```
1 from pythongp.core.params import kernel
2 kernel_dict_input_1 = {}
3 kernel_dict_input_1['Matern'] = {'lengthscale': 1, 'order':
      1.5, 'lengthscale_bounds': '(1e-5, 1e5)'}
5 kernel_dict_input_2 = {}
6 kernel_dict_input_2['RBF'] = {'lengthscale': 1, '
      lengthscale_bounds': '(1e-5, 1e5)'}
7
8 k_1 = kernel.Kernel()
9 k_1.construct(kernel_dict_input_1)
10
11 k_2 = kernel.Kernel()
12 k_2.construct(kernel_dict_input_2)
13
14 pgp.set_kernel (k_1+k_2)
```

Building regression model & making predictons

Building regression model

- init_model: This method constructs the regression model by call. It takes the following argument,
 - noise: specifies the nugget parameter.
- optimize: This method optimizes the parameters of the model. The arguments are,
 - param_opt: sets whether to optimize the parameters or not.
 - itr: sets the number of iteration.

Making predictions

- **predict**: Makes prediction for the test data.
- **predict_mult**: Makes prediction in the multivariate case.

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

slide no

Defining measures

Before beginning the tests we briefly introduce the measure which we have used. The material is drawn from Santner et al., 2003, p. 108.

EMRMSE =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (\xi(\mathbf{x}_{i}^{*}) - \xi(\hat{\mathbf{x}}_{i}^{*}))^{2}}$$
 PMRMSE = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} \hat{\sigma}_{i}^{2}}$ (4)

Where x_i^* 's are test points and $\xi(x_i^*)$, $\xi(\hat{x}_i^*)$ are observed and predicted values at those points respectively. σ_i^2 's are the models predicted posterior variance for the test points.

- EMRMSE \approx PMRMSE : accurate prediction error.
- EMRMSE > PMRMSE : model is overconfident in its fit, since its estimated prediction errors will be smaller than the empirical errors.
- EMRMSE < PMRMSE : models estimated prediction errors are conservative.

- Introduction
 - Motivation & Goal
- Question Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

slide no

Results with optimized parameters

• Test function : Branin function

$$f(x) = \left(x_1 - \frac{5.1x_0^2}{4\pi^2} + \frac{5x_0}{\pi} - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x_0) + 10 \quad (5)$$

The results with optimized parameters are as follows,

Library	Run	EMRMSE	PMRMSE	Coeff. of	Corr.
	time			determination	coeff.
Sklearn	0.7138	0.3349	0.1438	0.9999	0.9999
Shogun	1.0735	51.4738	48.5896	-0.0305	0.0035
GPy	3.6295	0.0221	nan	0.9999	0.9999
GPflow	1.2403	0.0236	0.0241	0.9999	0.9999
GPytorch	0.6011	12.7833	nan	0.9364	0.9681
Openturns	0.2297	2.0887	1.4570	0.9983	0.9992

Table: Test results with optimized parameters

- Introduction
 - Motivation & Goal
- 2 Gaussian Process regression
 - Background concepts
 - Mean & covariance function
- Identifying Features
 - Intrinsic Features
 - Performance Features
- Building Wrapper
 - Structure
 - Functionalities
- Performance tests
 - Measures
 - Two D test
 - Simulation test

slide no

Test beds

Test bed 1

$$y(x_1, x_2) = \frac{x_1^3}{3} - (R_1 + S_1)\frac{x_1^2}{2} + (R_1S_1)x_1 + \frac{x_2^3}{3} - (R_2 + S_2)\frac{x_2^2}{2} + (R_2S_2)x_2 + A\sin\frac{2\pi x_1 x_2}{Z}$$
 (6)

Test bed 2

$$y(x) = C \prod_{i=1}^{d} \left\{ \sin \left(A_i (z_i - B_i)^4 \right) \times \cos(2z_i - B_i) + ((z_i - B_i)/2) \right\}$$
 (7)

Kernel: RBF(lengthscale = [1,1], scale = 1)

mean: Zero mean, nugget: 0.0001

 $(n_{train}, n_{test}) : 100,1000$

Random simulated surfaces

Figure: Test bed 1

Figure: Test bed 2

Figure: Test bed 1

Figure: Test bed 2

slide no.

Boxplots of accuracy measures for Test bed 1

Figure: EMRMSE

Figure: PMRMSE

Boxplots of accuracy measures for test bed 2

Sklearn Shogun Gry Grytorch Griow Openturns

Figure: EMRMSE

Figure: PMRMSE

Boxplots of running time

Figure: all libraries

Figure: without GPflow

Figure: Test bed 1

Boxplots of running time

Figure: all libraries

Figure: without GPflow

Figure: Test bed 2

slide no.

Observations

Looking at the boxplots suggests the following,

- GPy is much better than its other close competitors like Scikit-learn and GPflow.
- GPflow is taking much longer time than others in executing a single prediction on a particular surface, followed by GPytorch which is a bit faster than it but the median time of execution is still more than 3 seconds.
- On the other hand **Openturns** is the fastest followed by **GPy**.

References

- Collin B. Erickson, Bruce E. Ankenman, Susan M. Sanchez.
 Comparison of Gaussian process modeling software. European Journal of Operational Research, (2017).
- C. E. Rasmussen & C. K. I. Williams. Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology.[www.GaussianProcess.org/gpml].
- Michael L. Stein. Interpolation of Spatial Data, Some Theory for Kriging. Springer Series in Statistics, (1999).
- Thomas J. Santner, Brian J. Williams and William I. Notz The Design and Analysis of Computer Experiments, Springer Series in Statistics, (2003).

merci de votre attention