

WHAT IS CLAIMED IS:

1 1. An integrated circuit comprising:
2 a substrate having a top surface;
3 a first dielectric layer formed above the substrate having a trench formed therein,
4 the first dielectric layer having a first dielectric constant;
5 a first metal layer formed within the trench of the first dielectric layer;
6 a second dielectric layer formed above the first metal layer and having a trench
7 formed therein, the second dielectric layer having a second dielectric constant;
8 a second metal layer formed within the trench of the second dielectric layer;
9 a third dielectric layer formed above the second metal layer and having a trench
10 formed therein, the third dielectric layer having a third dielectric constant; and
11 a third metal layer formed within the trench of the third dielectric layer.

1 2. The integrated circuit of claim 1 wherein said first dielectric layer has a dielectric
2 constant of less than 2.8, said second dielectric layer has a dielectric constant of between
3 2.8 and 3.3, and said third dielectric layer has a dielectric constant of above 3.0.

1 3. The integrated circuit of claim 1 wherein said first dielectric layer comprises a
2 material selected from the group consisting of an oxide and methylsilsesquioxane
3 (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an Oxide / Hydrogen
4 silsesquioxane (“HSQ”) hybrid, an HSQ derivative, and a porogen / HSQ hybrid.

1 4. The integrated circuit of claim 1 wherein said second dielectric layer comprises a
2 material selected from the group consisting of an oxide and methylsilsesquioxane

3 ("MSQ") hybrid, an MSQ derivative, porogen/MSQa hybrid, an Oxide / Hydrogen
4 silsesquioxane ("HSQ") hybrid, an HSQ derivative, and a porogen / HSQ hybrid .

1 5. The integrated circuit of claim 1 wherein said third dielectric layer comprises a
2 material selected from the group consisting of silicon glass, undoped silicon glass,
3 fluorine doped silicon glass, and high-density chemical vapor deposition (HPVCD)
4 silicon oxide.

1 6. The integrated circuit of claim 1 further comprising a first transistor and a second
2 transistor formed within the substrate and wherein the first and second transistors are
3 electrically coupled through the metal layers.

1 7. A method of forming an integrated circuit comprising:
2 forming a transistor within a substrate;
3 depositing a first dielectric material over the transistor;
4 forming an opening to the transistor in the first dielectric material;
5 depositing a first metal pattern within the first dielectric material;
6 depositing a second dielectric material, having a higher dielectric constant than
7 the first dielectric material, over the first metal pattern;
8 forming an opening to the first metal pattern in the second dielectric material;
9 depositing a second metal pattern within the second dielectric material;
10 depositing a third dielectric material, having a higher dielectric constant than the
11 first and second dielectric materials, over the second metal pattern;
12 forming an opening to the second metal pattern in the third dielectric material;
13 and
14 depositing a third metal pattern in the third dielectric material.

1 8. The method of claim 7 wherein depositing a first dielectric material comprises
2 spin-on depositing a material having a dielectric constant of below 2.8, depositing a
3 second dielectric material comprises spin-on depositing a material having a dielectric
4 constant of between 2.5 and 3.3, and depositing a third dielectric material comprises spin-
5 on depositing a material having a dielectric constant of above 3.0.

1 9. The method of claim 7 further comprising depositing a fourth dielectric material,
2 having a higher dielectric constant that is different than the first, second, and third
3 dielectric materials, over the third metal pattern.

1 10. The method of claim 7 wherein depositing a first dielectric material comprises
2 depositing a material selected from the group consisting of an oxide and
3 methylsilsesquioxane (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an
4 Oxide / Hydrogen silsesquioxane (“HSQ”) hybrid, an HSQ derivative, and a porogen /
5 HSQ hybrid.

1 11. The method of claim 10 wherein depositing a second dielectric material
2 comprises depositing a material selected from the group consisting of an oxide and
3 methylsilsesquioxane (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an
4 Oxide / Hydrogen silsesquioxane (“HSQ”) hybrid, an HSQ derivative, and a porogen /
5 HSQ hybrid.

1 12. An electrical device comprising:
2 a plurality of metal layers formed one atop the other;
3 a plurality of inter-level dielectric layers, each such inter-level dielectric layer
4 serving to electrically insulate at least one metal layer from at least one other metal layer;
5 wherein the plurality of inter-level dielectric layers includes:
6 at a lower region, inter-level dielectric layers having a first dielectric
7 constant,
8 at a middle region, inter-level dielectric layers having a second dielectric
9 constant; and
10 at an upper region, inter-level dielectric layers having a third dielectric
11 constant.

1 13. The electrical device of claim 12 wherein:
2 the first dielectric constant is below 2.8;
3 the second dielectric constant is between 2.5 and 3.3; and
4 the third dielectric constant is above 3.0.

1 14. The electrical device of claim 12 wherein the lower region inter-level dielectric
2 layer comprises a material selected from the group consisting of an oxide and
3 methylsilsesquioxane (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an
4 Oxide / Hydrogen silsesquioxane (“HSQ”) hybrid, an HSQ derivative, and a porogen /
5 HSQ hybrid .

1 15. The electrical device of claim 12 wherein the middle region inter-level dielectric
2 layer comprises a material selected from the group consisting of an oxide and

3 methylsilsesquioxane (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an
4 Oxide / Hydrogen silsesquioxane (“HSQ”) hybrid, an HSQ derivative, and a porogen /
5 HSQ hybrid.

1 16. The electrical device of claim 12 wherein the upper region inter-level dielectric
2 layer comprises a material selected from the group consisting of undoped silicon glass,
3 doped silicon glass, and silicon oxide.

1 17. The electrical device of claim 12 wherein the first dielectric constant is lower than
2 the second and third dielectric constants.

1 18. The electrical device of claim 12 wherein the second dielectric constant is lower
2 than the first and third dielectric constants.

1 19. An integrated circuit comprising:
2 a substrate;
3 a plurality of transistors formed on the substrate;
4 a plurality of isolation regions electrically isolating at least one of the plurality of
5 transistors from at least one other of the transistors;
6 a first dielectric layer, having a first dielectric constant, formed above the
7 substrate having formed therein a via to a transistor, and an interconnect structure;
8 a second dielectric layer, having a second dielectric constant, formed above the
9 first dielectric layer and having formed therein a second interconnect structure; and
10 a third dielectric layer, having a third dielectric constant, formed above the second
11 dielectric layer and having formed therein a third interconnect structure.

1 20. The integrated circuit of claim 19 wherein the transistors have gate lengths of 130
2 microns or less.

1 21. The integrated circuit of claim 19 wherein the substrate is a silicon-on-insulator
2 substrate.

1 22. The integrated circuit of claim 19 wherein the first and second dielectric layers
2 comprise a material selected from the group consisting of an oxide and
3 methylsilsesquioxane (“MSQ”) hybrid, an MSQ derivative, porogen/MSQa hybrid, an
4 Oxide / Hydrogen silsesquioxane (“HSQ”) hybrid, an HSQ derivative, a porogen / HSQ
5 hybrid, nanoporous silica, xerogel, and Poly tetra fluoro ethylene (“PTFE”).

1 23. The integrated circuit of claim 19 further comprising a first insulator layer
2 between the substrate and the first dielectric layer.

1 24. The integrated circuit of claim 19 wherein the via connects to a doped region of a
2 transistor.

1 25. The integrated circuit of claim 19 wherein the second dielectric constant is lower
2 than the third dielectric constant and the first dielectric constant is lower than both the
3 second and third dielectric constants.