

Metode za rešavanje problema simboličke regresije

master rad

Jana Jovičić 1097/2019

mentor: dr Aleksandar Kartelj

Matematički fakultet Univerzitet u Beogradu

26. septembar 2022.

Sadržaj

- 1. Uvod
- 2. Algoritam grube sile
- 3. Metaheurističke metode
 - 3.1 Genetsko programiranje
 - 3.2 Metoda promenljivih okolina
- 4. Eksperimentalni rezultati

Simbolička regresija (SR)

- Pronalazak matematičkog izraza u simboličkoj formi, koji dobro modeluje vezu između ciljne promenljive i nezavisnih promenljivih.
- Istovremeno uči i o strukturi modela i njegove parametre.
- Problem kombinatorne optimizacije.
- Smatra se da je NP-težak problem.
- Ako je dat skup podataka (X_i, y_i) , i = 1, ..., m, gde $X_i \in \mathbb{R}^n$ predstavlja i-ti skup atributa, a $y_i \in \mathbb{R}$ i-tu ciljnu promenljivu, cilj SR je pronalazak funkcije $f : \mathbb{R}^n \to \mathbb{R}$ koja najbolje odgovara skupu podataka, odnosno za koju važi $y_i \approx f(X_i)$, i = 1, ..., m.
- Izraz se može predstaviti pomoću sintaksnog stabla.

Evaluacija modela simboličke regresije

- Ranije u terminima metaheuristike kojom je problem rešavan.
- Poslednjih godina pomoću metrika kao što je koeficijent determinacije \mathbb{R}^2 uz podelu skupa podataka na trening i test deo.

$$R^2 = 1 - \frac{MSE}{\text{Var}(y)}$$

• Smatra se da je ciljna funkcija f ispravno određena kandidatskom funkcijom f' ako algebarska simplifikacija izraza f'-f daje simbol "0".

Algoritam grube sile

- Sistematična pretraga prostora matematičkih izraza.
- Pretraga radi iterativno po visini sintaksnog stabla izraza.
- U prvoj iteraciji terminali su samo promenljive. U svakoj narednoj u skup terminala se dodaju i stabla kreirana u prethodnoj iteraciji.
- Postupak se ponavlja sve dok se ne pronađe tačno rešenje (izraz sa MSE manjom od 10⁻⁶) ili dok se ne dostigne definisano vremensko ograničenje.
- Ograničenja memorijskih resursa.

Generisanje početne populacije i funkcije prilagođenosti

Generisanje početne populacije:

- "Full"metoda Generisanje potpunog stabla.
- ② "Grow"metoda Generisanje stabala čiji oblici variraju.
- "Ramped half-and-half" metoda Generisanje stabala različitih visina i oblika.

Funkcije prilagođenosti:

1 "Raw" – zbir distanci između pravih i predviđenih vrednosti izraza.

$$r(i,t) = \sum_{i=1}^N |y_i - \hat{y_i}|$$

2 Standardizovana – redefiniše "raw" t.d. bolje jedinke imaju manju vrednost funkcije.

$$s(i, t) = r(i, t)$$

Jana Jovičić

Funkcije prilagođenosti (nastavak)

"Adjusted" – dodatno se ističe bolja od dve posmatrane dobre jedinke, veća je za bolje jedinke.

$$a(i,t) = \frac{1}{1 + s(i,t)} \in [0,1]$$

Najčešće se koristi. Definiše i kriterijum zaustavljanja – pronalazak jedinke sa "adjusted" funkcijom većom od 0.9.

Normalizovana – normalizacija "adjusted" funkcije jedinke u skladu sa "adjusted" funkcijama ostalih jedinki iz populacije.

$$n(i,t) = \frac{a(i,t)}{\sum_{k=1}^{M} a(k,t)},$$

Operatori ukrštanja - Standardni operator ukrštanja

Operatori ukrštanja - Operator zasnovan na semantičkoj sličnosti

- Semantika uzorkovanja (SS) nekog podstabla se aproksimira pomoću vrednosti dobijenih evaluacijom tog podstabla na predefinisanom skupu tačaka iz domena problema.
- Neka je F funkcija koja je izražena pomoću (pod)stabla T na domenu D i neka je P skup tačaka iz domena D, $P = \{p_1, p_2, ..., p_N\}$. Tada je semantika uzorkovanja stabla T na skupu P u domenu D, skup $S = \{s_1, s_2, ..., s_N\}$ takav da je $s_i = F(p_i), i = 1, 2, ..., N$.
- Rastojanje semantike uzorkovanja (SSD) između dva podstabla: Neka je $P = \{p_1, p_2, ..., p_N\}$ semantika uzorkovanja podstabla St_1 , a $Q = \{q_1, q_2, ..., q_N\}$ semantika uzorkovanja podstabla St_2 . Onda se SSD između St_1 i St_2 definiše kao

$$SSD(St_1, St_2) = \frac{1}{N}(|p_1 - q_1| + |p_2 - q_2| + ... + |p_N - q_N|).$$

4 D > 4 B > 4 B > 4 B > 9 Q P

Operatori ukrštanja - Operator zasnovan na semantičkoj sličnosti

• Dva podstabla su *semantički slična* (SS_i) na domenu ako njihova SSD vrednost leži na nekom pozitivnom intervalu.

$$SS_i(St_1, St_2) = \begin{cases} true, & \text{ako je } \alpha < SSD(St_1, St_2) < \beta \\ false, & \text{inače} \end{cases}$$

- Operator ukrštanja zasnovan na semantičkoj sličnosti (SSC) ukrštanje samo semantički sličnih podstabala.
- Koristi se veći broj pokušaja za pronalazak semantički sličnog para.
- Ako se pređe dozvoljeni broj pokušaja, podstabla se biraju na slučajan način.

Operatori mutacije

/X2\

/x1\

Metoda promenljivih okolina

- Inicijalizacija: Izbor skupa okolina N_k , $k = 1, ..., k_{max}$; Konstruisanje početnog rešenja x;
- Ponavljanje narednih koraka sve dok se ne ispuni kriterijum zaustavljanja:
 - Postaviti k = 1;
 - ② Ponavljati naredne korake sve dok je $k \le k_{max}$
 - Razmrdavanje Generisanje slučajnog rešenja x_1 iz okoline $N_k(x)$;
 - ② Lokalna pretraga Primeniti neku metodu lokalne pretrage sa početnim rešenjem x_1 . Rezultat pretrage označiti sa x_2 ;
 - Prihvatanje rešenja i promena okoline Ako je dobijeno rešenje x₂ bolje od x, postaviti x = x₂ i k = 1; Inače, postaviti k = k + 1;

Kriterijum zaustavljanja može biti pronalazak tačnog rešenja (određen pomoću R^2), maksimalan dozvoljeni broj iteracija ili maksimalno vreme izvršavanja.

Tipovi okolina i razmrdavanje

Tipovi okolina:

- ullet N(T) struktura susedstva koje se koristi tokom lokalne pretrage. Članovi ove vrste susedstva se formiraju elementarnim transformacijama stabla.
- ② $N_1(T)$ struktura susedstva čiji se članovi dobijaju mutacijom pojedinačnog čvora.
- 0 $N_2(T)$ struktura susedstva čiji se članovi dobijaju mutacijom celog podstabla.

Okoline $N_1(T)$ i $N_2(T)$ se koriste u proceduri razmrdavanja.

Razmrdavanje:

- ① Dobija se k-ti sused stabla T, primenom istog poteza k puta.
- ② Prvo se nasumičnobira okolina $N_1(T)$ ili $N_2(T)$, a zatim se taj operator primenjuje k puta nad datim stablom.

Elementarne transformacije stabla (ETT) i lokalna pretraga

- Elementarne transformacije stabla (ETT): Neka je G(V,E) neusmereni graf i neka je T(V,A) neko razapinjuće stablo grafa G. ETT transformiše stablo T u stablo T' (u oznaci T' = ETT(T)) sledećim koracima:
 - U stablo T dodati granu a, takvu da $a \in E \setminus A$.
 - Detektovati formirani ciklus i ukloniti bilo koju granu (osim one koja je dodata u prethodnom koraku) iz njega kako bi se dobio podgraf T', koji takođe predstavlja razapinjuće stablo grafa G.
- Strategija prvog poboljšanja
- Poređenje kvalieta stabala koeficijent determinacije R^2 .

Podaci

Sve metode su testirane pomoću tri vrste skupova podataka:

Skup podataka generisan na osnovu funkcija koje se često razmatraju u literaturi. Za svaku funkciju je generisano 100 instanci na osnovu slučajno odabranih vrednosti nezavisnih promenljiih.

$$F_{1} = x^{3} + x^{2} + x, \quad x \in [-1, 1]$$

$$F_{2} = x^{4} + x^{3} + x^{2} + x, \quad x \in [-1, 1]$$

$$F_{3} = x^{5} + x^{4} + x^{3} + x^{2} + x, \quad x \in [-1, 1]$$

$$F_{4} = x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x, \quad x \in [-1, 1]$$

$$F_{5} = sin(x^{2})cos(x) - 1, \quad x \in [-1, 1]$$

$$F_{6} = sin(x) + sin(x + x^{2}), \quad x \in [-1, 1]$$

$$F_{7} = log(x + 1) + log(x^{2} + 1), \quad x \in [0, 2]$$

$$F_{8} = sin(x_{0}) + sin(x_{1}^{2}), \quad x_{0}, x_{1} \in [-1, 1]$$

$$F_{9} = 2sin(x_{0})cos(x_{1}), \quad x_{0}, x_{1} \in [-1, 1]$$

Podaci

Skup podataka generisan na osnovu jednostavnijih funkcija radi upoređivanja metaheurističkih metoda sa metodom grube sile.

$$F_{01} = x_0 x_1 + x_1$$

$$F_{02} = x_1 + x_1^2 + x_0$$

$$F_{03} = x_0 x_1 + \cos(x_0)$$

$$F_{04} = x_0 - x_1 x_1$$

$$F_{05} = x_0 - x_1 x_1 + x_1$$

Jedan od javno dostupnih skupova podataka za regresiju -"Yacht Hydrodynamics" skup. Skup sadrži 308 instanci koje su određene pomoću 6 nezavisnih i jedne ciljne promenljive. Sve vrednosti su realnog tipa.

Rezultati

Poređenje sa algoritmom grube sile:

- Algoritam grube sile optimalno rešenje za $F_{01},...,F_{05}$ i F_{1} i F_{2} . U ostalim primerima je dolazilo do nedostatka memorijskih resursa.
- Svi metaheuristički pristupi optimalno rešenje za primere $F_{01},...,F_{05}$.

Poređenje metaheurističkih metoda:

- Svaki skup podataka je podeljen na trening (70%) i test (30%) deo.
- Svaka metoda je evaluirana tako što je pokrenuta po 30 puta nad svim skupovima podataka – u svakom pokretanju je dobijen najbolji izraz.
- Za taj izraz je izračunat R^2 na trening i test skupu i provereno je da li i simbolički odgovara ciljnom izrazu.
- Pri svakom pokretanju mereno je i vreme koje je bilo potrebno za pronalazak najboljeg rešenja.

Tabela: Prosečne vrednosti određenih karakteristika u 30 nezavisnih pokretanja

		sečna \mathbb{R}^2 vred na trening skup		Prosečna R ² vrednost na test skupu		
	GP	GP sa SSC	VNP	GP	GP sa SSC	VNP
F ₀₁	0.879	0.831	0.949	0.898	0.861	0.945
F ₀₂	0.765	0.802	0.848	0.791	0.818	0.897
F ₀₃	0.745	0.733	0.863	0.810	0.820	0.926
F ₀₄	0.733	0.740	0.914	0.820	0.775	0.922
F ₀₅	0.795 0.771		0.846	0.797	0.765	0.813

Tabela: Prosečne vrednosti određenih karakteristika u 30 nezavisnih pokretanja

		pokretanja u l pronađeno reš nbolički ekviva ciljnom rešer	enje Ilentno	Prosečno vreme izvršavanja (s)			
	GP	GP sa SSC	VNP	GP	GP sa SSC	VNP	
F ₀₁	7	3	13	12	19	4	
F ₀₂	1	3	11	7	13	6	
F ₀₃	5	5	14	6	12	5	
F ₀₄	2	1	9	12	18	5	
F ₀₅	3	1	9	7	18	7	

Tabela: Prosečne vrednosti određenih karakteristika u 30 nezavisnih pokretanja

	Prosečna R ² vrednost na trening skupu			Prosečna R ² vrednost na test skupu		
	GP GP sa SSC VNP			GP	GP sa SSC	VNP
F_1	0.914	0.861	0.907	0.907	0.827	0.872
F ₂	0.827	0.799	0.771	0.824	0.798	0.770
F ₃	0.851	0.851	0.797	0.695	-1.428	0.752
F ₄	0.746	0.691	0.809	0.796	0.743	0.778
F_5	0.643	0.606	0.894	0.607	0.589	0.887
F ₆	0.928	0.917	0.945	0.883	0.881	0.930
F ₇	0.960	0.968	0.994	0.950	0.959	0.993
F ₈	0.857	0.837	0.968	0.716	0.657	0.936
F ₉	0.950	0.940	0.963	0.955	0.938	0.971
Yacht	0.238	0.213	0.477	0.264	0.233	0.457

Tabela: Prosečne vrednosti određenih karakteristika u 30 nezavisnih pokretanja

	Broj pokretanja u kojima je pronađeno rešenje simbolički ekvivalentno ciljnom rešenju			Prosečno vreme izvršavanja (s)		
	GP	GP sa SSC	VNP	GP	GP sa SSC	VNP
F_1	0 0		13	15	24	7
F ₂	0 0		9	13	26	9
F ₃	0	0	2	20	23	10
F_4	0	0	2	14	27	12
F_5	0 0 0		0	14	24	14
F ₆	0 0		1	13	27	12
F ₇	0 0		0	18	51	13
F ₈	0	0	3	13	35	7
F9	1	1	2	12	28	8
Yacht	/ / /			183	247	_ 30 _

Tabela: Informacije o izrazu koji daje maksimalnu R^2 vrednost na test skupu od svih izraza dobijenih pri 30 nezavisnih pokretanja

	Maksimalna R ² vrednost na test skupu			Izraz koji ima maksimalnu R ² vrednost na test skupu				
	GP GP sa SSC VNP			GP	GP sa SSC	VNP		
F ₀₁	1.0	1.0	1.0	$x_1(x_0 + 1)$	$x_1(x_0 + 1)$	$x_1(x_0 + 1)$		
F ₀₂	1.0	1.0	1.0	$x_0 + x_1^2 + x_1$	$x_0 + x_1^2 + x_1$	$x_0 + x_1^2 + x_1$		
F ₀₃	1.0	1.0	1.0	$x_0x_1 + cos(x_0)$	$x_0x_1 + cos(x_0)$	$x_0x_1 + cos(x_0)$		
F ₀₄	1.0	1.0	1.0	$x_0 - x_1^2$	$x_0 - x_1^2$	$x_0 - x_1^2$		
F ₀₅	1.0	1.0	1.0	$x_0 - x_1^2 + x_1$	$x_0 - x_1^2 + x_1$	$x_0 - x_1^2 + x_1$		

- Sve metode su pronašle izraze koji su ekvivalentni sa ciljnim izrazom.
- Za istu instancu, sve metode su vratile isti izraz.

Tabela: Informacije o izrazu koji daje maksimalnu \mathbb{R}^2 vrednost na test skupu od svih izraza dobijenih pri 30 nezavisnih pokretanja

		Maksimalna R ² vrednost Ia test skup	:	Simbolička ekvivalencija sa ciljnim izrazom		
	GP GP VNP			GP	GP sa SSC	VNP
F_1	0.992	0.985	1.0	Ne	Ne	Da
F ₂	0.994 0.981		1.0	Ne	Ne	Da
F ₃	0.981 0.995		1.0	Ne	Ne	Da
F ₄	0.986 0.960		1.0	Ne	Ne	Da
F ₅	0.943	0.964	0.999	Ne	Ne	Ne
F ₆	0.971	0.987	1.0	Ne	Ne	Da
F ₇	0.997	0.998	0.999	Ne	Ne	Ne
F ₈	0.999 0.994		1.0	Ne	Ne	Da
F ₉	1.0 1.0 1.0			Da	Da	Da
Yacht	0.929 0.792 0.956			/	/	/

