Log

December 31, 2020

1 10/18

1.1 Differential Geometry

https://en.wikipedia.org/wiki/Riemannian_connection_on_a_surface

2 12/21

2.1 Automated Theorem Proving

2.1.1 Open Logic

http://builds.openlogicproject.org/

Covers set theory, modal logic, model theory, computation, intuitionist models

2.1.2 Lean

https://github.com/leanprover-community/mathematics_in_lean

Tutorial:

https://github.com/leanprover-community/mathematics_in_lean

 $Background\ 1.$ Formal language setting: Dependent type theory

Question 1. What does \leftarrow do

Answer 1. Applies reverse rule(elimation rule). Like \leftarrow mul_assoc looks for a + (c + d) to turn into a + c +d instead of other way

Remark 1. Arguments to tactics are curried

Theme 1. Making mathematics more empirical/feedback oriented! Especially brilliant because it mirrors coding process so effectively.

Remark 2. Can rewrite any statement, assumption or goal

Prop 1. apply tactic matches conclusion of theorem to goal and makes hypotheses new goal

Prop 2. exact tactic finishes proof with full apply(if given proof matches goal exactly)

Remark 3. For working backwards

Question 2. Not really sure of difference between apply and exact

3 12/29

3.1 Deep RL

https://cmudeeprl.github.io/Spring202010403website/lectures/

Idea 1. Using reinforcement learning in automated proof theory.

Prop 3. In RL often cannot use gradient optimization, in contrast to supervised learning. So instead we use non-gradient optimization methods and gradient estimators

Prop 4.

```
"it is comparatively easy to make computers
exhibit adult level performance on intelligence tests or
playing checkers, and difficult or impossible to give them the skills
of a one-year-old when it comes to perception and mobility"
```

Hans Moravec

4 12/31

4.1 Northwestern Reserach

Transport Model for Feature Extraction

https://arxiv.org/pdf/1910.14543.pdf

Remark 4. Well known techniques for feature extraction:

- Kernel PCA
- \bullet isomap
- locally linear embeddings
- laplacian eigenmaps