GOV DOC BRA 1521 Nov. 1984 Vol. 2

FINAL BOSTON REDEVELOPMENT AUTHORITY ENVIRONMENTAL IMPACT REPORT

International Place at Fort Hill Square

VOLUME II

outh Station
HIII
IP-FEIR

Prepared for The Chiofaro Company

Prepared by HMM Associates, Vanasse/Hangen Associates, Colorado State University, Cosentini Associates and Haley & Aldrich, Inc.

Technical Appendix

Another version of This is also on This number.

APPENDIX TABLE OF CONTENTS

TRANSPORTATION

AIR QUALITY

PEDESTRIAN WIND

Transportation

TRAFFIC COUNT VOLUMES

TRANSPORTATION TECHNICAL APPENDIX

LIST OF CONTENTS

Traffic Count Volumes
Level of Service Analyses
Traffic Signal Permits
Air Quality Data
Rapid Transit Ridership
Commuter Rail Ridership
Rapid Transit Capacity
Excerpt From Previous Report

- "3.2 LAND USE" Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93 DEIR, Dated June, 1983.
- "2.0 TRAFFIC FORECASTING PROCEDURE" Third Harbor Tunnel Project,
 Interstate 90 Supplement to the DEIR, Dated December, 1982.
- "Downtown Crossing: Auto Restricted Zone in Boston" Final Report Dated July, 1982.
- "Parking in Central Boston: Meeting the Access Needs of a Growing Downtown" Dated December, 1983.
 - APPENDIX C
 - APPENDIX D

FFIC MOVEMENT SUMMARY TABLE

ON Congress Street & Franklin Street CITY OR TOWN Boston Proper

_7/25/79 __ DAY OF WEEK Wed. WEATHER Fair RECORDER E.B.

			-c	· · · · · · · · · · · · · · · · · · ·						=	
TIME	Congress	St.	Fran	nklin	St.	•					TOTAL
TARTS			Wes	stboun	d	 					HALF HOURLY
M	3	R	1,		رک						TALLY
00-7:30	182	27	26		13						248
30-8.00	214	33	22		26						295
00-8:30	233	43	30		52				T		358
30-9:00	222	60	1414		73						399
00-9:30	199	37	36		7/						343
30-10:00	1 / / / 1	62	37		38						33/
00-10:30	189	48	35		48						32,0
30-11.00	<i>च</i> बंह	52	41		51						372
00-11:30	21/1/	61	4.2		113						390
30-1200	23/	45	47		55						390 376
00-1230	2115	56	48		41/2						373
30-1:00	253	62	46		46						4/07
00-1:30	194	54	31		41						326
30-200	301	55	34		32						35.4
00-2:30	195	51	35		45						326
30-300	230	42	38		1:18			ļ			342
00-3.30	25.3	46	11/		51	 					361 391 416 440
50-4:00	231/	54	1//		56				ļ		_51/
00-4:30	21//	61	3/		63	 					-17.77
	241	69	5%		67			ļ	ļ		446
00-5:30	35.4 35.4	73	43		71	 			ļ		1/4/15
0-6 30	CZ6(2)	629	1/0		72.	 					505
0-7.00						 					
00-7'30											
80 · B 00								·			
00-8 30								Í			
80-9 00											
00-9:30						 					
0-10.00						 					
30-11:00				-		 					
						 	* 10000				
	11:11	1160	873	1.	11.5						GRAND
OTAL OF S. D. L.	(-0.0)		1	980							82.12

AFFIC MOVEMENT SUMMARY TABLE ION Congress Street & High Street CITY OR TOWN Boston Proper

E 8/1&2/79 DAY OF WEEK Wed-Thur WEATHER Fair RECORDER W.C.

Market and			- CHARLES						Y-20
TIME	High			ress Stree	<u> </u>	 			TOTAL
STARTS		uthbound	_	stbound	<u> </u>			-	HALF HOURLY
M	14	5	5,	. Ri					TALLY
7!00-7:30		83	147	26			1		301
7:30-8:00	106	119	176	40					441
8:00-8.30	1,70		207	76					643
8:30-9:00	126	204	229	78					637
9:00-9:30	91	218	228	93					630
9:30-10:00	67	187	209	77					540
10:00-10:30	57	152	181	83					473
10:30-11:00	54	126	183	74					431
11.00-11:30		126	2/3	6/					451
11:30-12.00	66	141	227	73					509
12:00-12:30	85	179	317	77					658
12.30- 1:00	1 , –	117	215	53					433
1:00-1:30	7.3	196	2111	53 53					4166
1:30-200	55	BR	230	37					411:11
2.00-2:30	55	1117	279	68					519
2:30-3:00	70	145	320	81					616
3:00-3:30	72	116	325	75					588
3:30-4:00	74	103	3:15	72					5911
4:00-4:30	25	97	400	71					643
4:30-5:00	814	111	11/11	92					731
5:00-5:30	75	95	5.15	67					782
5:30-6:00	11	100	5/5	67		<u> </u>			759
6:00-6.30						 ļ			
7:00-7:30						-			
7:30-8:00						 			
8.00-8:30									
8.30-9 00									
9:00-9:30						 			
9:30-10:00									
10 00 10 30		·							F
10:30-11 00									
TOTAL	1381	2939	(181)	1:94					GRAND TOTAL
TOTAL		1320		375		 ·			1000.
LS BI.			/	1/0				/	12,275

.AFFIC MOVEMENT SUMMARY TABLE ION Congress Street & High Street ____ CITY OR TOWN Boston Proper

E 8/1&2/79 DAY OF WEEK Wed-Thur WEATHER Fair RECORDER W.C.

	1		-		Ţ	- 11		 -
TIME	High			gress Stree	ţ		 	 TOTAL
START		uthbound		astbound	<u> </u>		 	 HALF HOURLY
M		5	5,	R,			 	 TALLY
7:00-7:30		83	147	26				301
7:30-8:00		119	176	40				441
8:00-8:30	175	185		76				643
8:30-9:00	1700	204	229	78				637
9:00-9:30	91	218	228	93				630
9:30-10:00	67	187	2.09	77				540
10:00-10:30		152	عصصصانات اد	83				473
10:30-11:00	54	126		74				431
11:00-11:30		120	2/3	6/				451
11:30-12:00	66	141	227	73				509
12:00-1230	1	179	317	77				650
12:30- 1:00	/ -	117	215	53 53				433.
1:00-1.30	73	96	2114	53				4166
1:30-200	55	123	030	37				519
2:00-2:30	55	117	279	68				519
2:30-3.00	70	145	.320	81				616
3:00-3:30	72	116	325	75				588
3:30-4:00	74	103		72			 	5911
4100-4130	25	97	400	71				643
4:30-5'00	814	111	11/11	92				643
5:00-5:30	75	95	5.15	67				782
5:30-6:00	11	100	5/5	67			 	 Z52
6:00-6:30							 	
6:30-7.00								
7:00-7:30								
7.30-8.00								
8.00-8 30								
8.30-9:00				·			 	
9:00-9 30								
9:30-10.00								
10:00-10 30		•						
10 30-11 00								
	15-31	2739		1194				TOTAL
TOTAL OF LS BI.	4	1620	1	1375				12,276

Vanasse / Hangen Engineering, Inc.
Consulting Engineers & Planners
184 High Street, Boston, Massachusetts 02110

JOB: Interpretional Place	JOB No
LOCATION	SHEETOF
CALCULATED BY	DATE
CHECKED BY:	DATE

617 / 482-1870		TITLE TUVNIN	· Move me	it Counts
AM	*			Jounce: Deway Sq. 7514 Study (Trastic by 5.G. Associates)
	High No. 19	≤+		
	Con ress			
PM			- -	
			Ä	
	High 8 2 1	51. 258 ≥19		
	Corress			<u></u>
	,			

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB: International Place	JOB No. <u>0923</u>
LOCATION	_SHEETOF
CALCULATED BY: BG	DATE
CHECKED BY:	_DATE:
TITLE TUVNING Hovement Cou	m+5

AM			Source: Third Harbor EIR
		N	
	7		
Purchase	1 2 66 1 62 1 62 1 629	5t.	
	J) 1 (2		
	4 2 1 100 1		
	0		
The second of th	\$		
	2		
7			, m,
			And the state of t
PM			
	4.	·- ¼ -	
	7		
		gramming the state of the state	
Purchas	e 538 -	51.	
en a green de la santina de la seu como de la secondada del	2 738 -538 -371 -371 -716		
	7 7 7 776		
	<i>y</i>		
			e a programmer a series a series a series a
	3 -		
	• .		

City BOSTON - PROPER : Intersection CONGRESS ST. & PURCHASE

INT. NO. 73 (BTPD# 3055) Date 6/10/83 Day of Week FRIDAY

INTERSECTION TURNING MOVEMENT COUNT

	Vehicles C	ounted
1	A11	х
	Pass. Cars	
CONGRESS ST.	Trucks	
ONE L2 WAY WAY WEATHER Weather RAMP CONGRESS TERMINAL	DURCHASE ST.	
CLOUDY/DRY	Length of Cou	int
Count Taken		Number of Hours
By		HRS
C.D. SCHUBERT		

Street	Entering Volume	Flow Percent	Comments
CONGRESS ST. (SB)	9172	47%	
PURCHASE ST. (WB)	10064	52%	
BUS TERMINAL	178	1%	
Total	19,414	100%	

STA. NO. <u>73</u>

TRAFFIC MOVEMENT SUMMARY TABLE 305 Location Congress St & Purchase St. City of Town Boston-Proper.

Date 6/10/83 Day of Week FRIDAY Weather CLOY Recorder CDS

Time Starts	Co	NGRESS (SB)	Sī.	Pupe	HASE (WB)		Bus	ERM					Total Half Hour
7:00 AM	5	R	RR	LLI	Li	S,	LL2	Lz					Tally
7:00-7:30	229	91	22	462	8	39	4	1					856
7:30-8:00	278	111	32	505	18	28	4	4					980
8:00-8:30	254	108	29	454	16	64	9	3					937
8: 30-9:00	181	102	24	354	23	74	5	- 1					764
9:00-9:30	163	105	43	327	9	52	4	2					705
9:30-10:00	135	126	26	285	23	51	5	7					658
10:00-10:30	167	108	35	263	24	63	6	6					672
10:30-11:00		112	28	274	13	69	٥	2					659
11:00-11:30	157	140	36	299	18	71	<i>5 5</i>	0					726
11:30-12:00	212	135	48	3/3	19	60	5	<i>5</i>					797
12:00-12:30	215	142	37	324	10	81	7						824
12:30-1:00	171	115	16	222	10	71	4	3					612
1:00-1:30	228	176	29	273	22	83	1	2					814
1:30-2:00	172	151	28	253	18	86	2	4					714
2:00-2:30	187	180	37	251	14	79	1	0					749
2:30-3:00	183	168	45	289	28	66	2	6					787
3:00-3:30	223	247	29	243	89	119	8	1					959
3: 30-7:00	195	258	40	337	186	150	3	3					1172
4:00-4:30	282	301	41	324	166	145	3	8					1270
L: 30-5:00	258	289	26	326	165	105	2	8					1179
5:00-5:30	313	322	36	338	237	122	6	9					1383
5:30-6:00	241	354	39	274	142	138	2	7					1197
6:00-6:30													
6:30-7:00			· .								1		
7:00-7:30													
7:30-8:00													
8:00-8:30													
8:30-9:00												-	
9100-9130										_		-	
9:30-10:00					-	-	-		-			-	
10:00-10:3				-	_		-		-	-	-	-	
				-		-			-	-		-	GRAND
TOTAL	4607	3841	726	6990	1258	1816	88	90					TOTAL
Total of LS&R		7172	•		0,04		1	78					19,414

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB International Place JOB No. 0923 LOCATION BG CALCULATED BY:__ CHECKED BY:

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

INTERSECTION TURNING MOVEMENT COUNT

STREET		ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
ATLANTIC AVENUE	N.B.	677 (26)	28%	4:30PM - 5:30PM
CONGRESS STREET	E.B.	1130 (28)	47%	4:50PM = 5:50PM
CONGRESS STREET	W.B.	591 (26)	25%	_
				PM Peak Hour
				VEHICLES COUNTED
				ALL VEHICLES XXX
				TRUCKS (XX)
TOTAL		2398 (80)	100%	PERCENT TRUCKS 3.3 %

(26)

Planning, Engineering, C Brighton, Ma. Tel. (617	onstruction & Main	tenance,			
INT. NO. 415			Boston		
11N 1. IN O. <u></u> 2	-	INTERSEC	CTION_Atlanti	c Avenue &	
		DATE 6/2	22 [81	DAY OF WEEK	Monday
INT	ERSECTION	TURNING	MOVEME	NT COUNT	305.
				VEHICLES CO	UNTED
1/8				ALL	×
*				PASS. CARS	
	Congr	ess Street		TRUCKS	(x)
	1	Way			
Cne Way	7	S RRZ		One Way	
Rainy			L	ENGTH OF COUN	Т
COUNT TAKEN	Congress	Street	TI	ME NUMBE	ER JRS
BY J.T. & G.W.			* 7ar	n-6pm 11 Hour	s
STREET	VOLUME PE	RCENT	COM	IMENTS	
Atlantic Avenue NB Congress Street EB	7911 11834	30.6 45.8			-
Congress Street WB	6099	23.6			-
TOTAL	25844	100%			- 1
TUTAL	6)(44	1003			

Planning, Engineering, Construction, & Maintenance Brighton, Ma. Tel. (617) 782-9757

TRAFFIC MOVEMENT SUMMARY TABLE

LOCATION _Atlantic Avenue & Congress Street ____ CITY OR TOWN Boston Proper____

DATE 6/22/81 ___ DAY OF WEEK Monday WEATHER Rainy RECORDER J.T. & G

	22/01		DATO										
TIME	Atlantic Avenue			Congress Street		Congress Street					ТОТ		
STARTS				Eastbo			Westb	oound					HALF I
M	L	s	R	LR1		S1	RR2	R2					TAL
7:00-7:30	143	149	30	29	.2/2	406	215	165					134
7:30-8:00	129	168	51	39	236	459	159	145					1381
8:00-8:30	135	157	49	37	234	450	165	1.51					1376
8:30-9:00		240	38	59	2/2	309	162						133'.
9:00-9:30	124	184	28	46	201	290	150	171					1199
9:30-10:00		165	40	57	150	246	118	100					99:
10-00-10-30	/ /	159	27	50	146	239	106	95					94
10:30-11:00	106	17/	43	55	136	233	104	87					430
11:00-11:30	132	184	40	58	130	2/0	138	136					1078
11:30-12:00		169	29	53	139	3.29	126	109					975
12.001230	132	122	34	22	112	252	129	97					1003
12:30-1:00	127	127	39	78	120	237	132	121					1031
1:00-1:30	132	162	33	So	109	278	1/3	87					994
1:30-2:00	168	17/	39	92	96	342	114	113					1135
2:00-2:30	142	149	26	75	89	336	14.7	145					1129
2:30-3:00	139	150	18	89	114	273	133	120					103E
3:00-3:30	124	201	33	29	93	28E	144	101					1061
3:30-4:00	105	317	20	53	87	355	1.38	196					1271
4:00-4:30	21	353	18	49	109	445	91	228					1364
4:30-5:00	110	319	23	91	153	470	141	237					154
5:00-5:30	2.3	3/1	22	79	138	475	124	225					144
5:30-6:00	19	335	20	69	150	402	75	129				-	124
6:00-6:30				·									
6:30-7:00					-								
7:00-7:30													
7:30-8:00 8:00-8:30													
830-9:00													
9:00-9:30													
9:30-10:00													
10-00-10:30													
10:30-11:00													
TOTAL		4568	700	1394	3168	7372	2944	3/55					GRAN TOTA
TOTAL LS OF BR		7911			1183			6099					2584

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 LOCATION: SHEET OF DATE:

CALCULATED BY: DATE:

CHECKED BY: DATE:

TITLE: Trucking Many Ment Care 45

		-	
		1	Source: Third Howbor EIR
	0 Page 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T Are	
*	Park	7	
9,24			
	Atlantic 3 198 631 38	Atlantic To San	Atlantic 198 198 198 198 198 198 198 19

STREET	VOLUME PERCENT		COMMENTS		
STREET					
Congress St. ER	5332	45.5			
Congress St. WB	2476	21.1			
Dorchester Ave. NB	3920	33.4			
	1	,			
TOTAL	11733	100.0%			

AFFIC MOVEMENT SUMMARY TABLE

ION Congress St. * Dorchester Ave. ____ CITY OR TOWN 'Boston Proper

Snow-pm

E__ * ___ DAY OF WEEK __ * WEATHER Fair-am RECORDER J.M

		Comm	20.55	C+	root		Doric	hastai	r Av.				
TIME	Congress Eastbound		Street Westbound		Dorchester Av.					TOTAL			
STARTS		stbour			estbou			rtnooi		-			HALF HOURL
M	5		R	41		5,	42		RZ	_		-	
7:00-7:30	121		///	/3		25	86		14			-	370
7:30-8:00	201		14/	/3		52	138		22		ļ		567
8:00-8:30	182		121	20		65	15/		46			-	591
8:30-9:00	170		98	26		51	158		40				549
9:00-9:30	88		62	35		50	///		23			1	369
9:30-10:00	90		65	27		40	111		30				353
10:00-10:30	83		7/	27		46	88		22				337
10:30-11:00	74		66	25		36	103		22				326
11:00-11:30	78		62	22		60	106		20				348
11:30-12:00	80		66	20		81	110		22				379
12:00-12:30	152		143	61		106	198		37				697
12:30- 1:00	126		102	37		73	175		36				549
1:00-1:30	110		114	52		75	204		30				583
1:30-2:00	128		136	39		78	185		26				598
2:00-2:30	148		118	69		123	422		18				698
2:30-3:00	1/2		113	47		101	171		20				564
3:00-3:30	117		133	62		87	209		24				635
3:30-4:00	132		193	64		100	230		24				743
4:00-4:30	131		2//	74		75	188		16				693
4:30-5:00	103		234	54		119	163		9				686
5:00-5:30	90		192	46		80	154		12				571
5:30-6:00	85		184	40		74	141		9				53
6:00-6.30													
6:30-7:00													
7:00-7:30													
7:30-8:00													
8:00-8:30													
9100-9130													
9:30-10:00													
10:00-10:30						-							
10:30-11:00													
	2.21		5401	000		14.0	211 2		-10				GRAND
TOTAL	2601		2136	812		1603	3408		512				GRAND TOTAL
TOTAL OF L.S & R	5	337	1	a	476		3	920					11,733

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 LOCATION ______ SHEET ___ OF ____

CALCULATED BY _____ DATE _____

CHECKED BY _____ DATE _____

01//402-10/0	TITLE _	14mine 17ove went Counts
AM	Dorchester Ave.	Source: Third Harbor EIR
PM	Dorchester Ave. 894 7 77 7 12 18 18 18 18 18 18 18 18 18 18 18 18 18	

INTERSECTION TURNING MOVEMENT COUNT

CITY Boston, MA DATE 11/24/81 DAY of WEEK Tuesday
INTERSECTION Atlantic Ave., Northern Ave. & Expressway Ramps JOB No. 0121-10

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
ATLANTIC AVENUE E.B.	807 (24)	28.3%	T
NORTHERN AVENUE N.B.	392 (56)	13.7%	7:30AM - 8:30AM
OFF RAMP FROM EXPRESSWAY	737 (15)	25.8%	
RAMP TO HIGH STREET	917 (12)	32.2%	AM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX
			TRUCKS (XX)
TOTAL	2853 (107)	100%	PERCENT TRUCKS 3.7%

INTERSECTION TURNING MOVEMENT COUNT

CITY BOSTON DATE 12-09-81 DAY of WEEK Wednesday
INTERSECTION Northern Ave. @ Atlantic Ave. JOB No. 0121-10

STREET		ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Northern Ave.	NB	1076 (16)	30.3%	
Atlantic Ave.	EB	891 (12)	25.1%	4:15 PM to 5:15 PM
Ramp from				
Expressway	EB	1588 (7)	44.6%	PM Peak Hour
				VEHICLES COUNTED
				ALL VEHICLES XXX
				TRUCKS (XX)
TOTAL		3555 (35)	100%	PERCENT TRUCKS 1.0 %

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB Interpretation I Place JOB No. 0923

LOCATION SHEET OF

CALCULATED BY BG DATE

CHECKED BY DATE

617 / 482-1870	TITLE TUVNING HOURMENT Counts
AM	Source: Third Harbor EIR N Northern Ave. 275 2136 N 40 N N 40 N N 40 N N 40 N N 40 N
PM	Northern Ave. 816 434 1 F777 1 STAN

Planning, Engineering, Construction, a Maintenunce Brighton, Ma. Tel. (617) 782-9757

TRAFFIC MOVEMENT SUMMARY TABLE

OCATION _Atlantic_Ave. High St. & L.F.E. Surface Rd. CITY OR TOWN _Boston Proper_

DATE 10/30 & 31/79 DAY OF WEEK_Tye. & Wed WEATHER_Eair_ RECORDER PN 10/30

											1 4	40
TIME	Atla	ntic Av	e.	tlantic Av	e.	Surf	ace Rd.		Ran	TD .		ТОТ
STARTS	Nort	hbound		Westbound		Sout	hbound			thbound		HALF
M	L	S,		S ₂	R ₂		Są	R3	Lų	S14		TAL
7:00-7:30	52	8.3		184	0		2/8	21	100	192		85
7:30-8:00	82	106		190	/		196	2.3	154	248		100
8:00-8:30	123	182		210	/		27/	16	218	296		131
8:30-9:00	123	159		145			233	22	2/1	339		128
9:00-9:30	144	166		1.39			18.3	20	215	272		114
9:30-10:00	130	102		109	0		124	-36	148	224		9
10:001030	142	142		100	2		184	44	144	244		100
10:30+1:00	128	101		91	2		192	.38	91	216		8.
1:00-11:30	127	93		91	1		185	25	90	149		7
1:30-12:00	115	9.3		102	0		2.50	28	121	181		8
2:00H2:30	116	81		118	/		263	.32	95	170		8
2:30-1:00	147	94		106	0		225	.3/	83	127		8
1:00-1:30	153	22		9/	/		239	26	22	153		8
130-2:00	167	80		117	0		235	.34	8.5	140		8.
2:00-2:30	180	114		122	0		300	22	86	168		9
2:30-3:00	111	130		126	/		285	16	74	2/2		10,
3:00-3:30	163	196		170	1		.308	15	46	.3/5		12,
3:30-4:00	152	237		215	0		401	9	99	395		150
4:00-4:30	165	206		142	/		.3/7	11	35	340		12
4:30-5:00	208	205		198	0		351	23	62	394		14.
5:00-5:30	255	191		203	0		345	2	39	393		14=
5:30-6:00	181	145		162	0		253	2	33	308		10.
6:00-6:30 6:30-7:00												
7:00-7:30												
7:30-8:00											•	
8:00-8:30												
830-9:00												
9:00-9:30												
9:30-10:00												
10:00-10:30												
10:30-11:00												
TOTAL	3226			3/3/	14		5608	501	235/	5476		GRA TOT
TOTAL	60	204		314	-5		610%	9	2	827		235

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB: Interprational Place JOB No. 0723

LOCATION: SHEET OF

CALCULATED BY: DATE

CHECKED BY: DATE

Traven in a Hove min of Court 45

	11112
AM	Source: Third Harbor GIK
	High St. 248 Atlantic Ave. 318 229
	Symptote
	High st. 20051 Atlantic Ave. 451 451 1528
	Surface

TOTAL

2760 (1331)

1009

INTERSECTION TURNING MOVEMENT COUNT

ALL

133 TRUCKS

XXX

(XX)

INTERSECTION TURNING MOVEMENT COUNT VH #80-101

CITY BOSTON, MA DATE 11/10/80 DAY of WILEK Monday
INTERSECTION High St. & Surface Rd. & Atlantic Ave. & Purchase St. & Remp

	ENTER	ING	PERCENT of	LENGTH of COUNT		
STREET	VOLUME		FLOW	Time	Number of Hours	
Ramp	(NB)	1079	(201	24.4		· PM
Atlantic	(NB)	-1862		42.0	4:45-5:45PM	PEAK HOUR
Atlantic	(SB)	511	(14)	11.5		
Surface Rd.	(SB)	931	(29)	22.1		
					2% Trucks	
					VEHICLES	COUNTED
			j		ALL	XXX
TOTAL		4433	(23	170 29	TRUCKS	(XX)

City Boston Froper

ATE TITION Franklin Street &

Pearl Street

DATE 8/10/79 DAY OF WEEK Friday

			Commercial Commercial	THE RESIDENCE			
, T. 13:	SECTION	TURHHIG	HOVENERT C	OUN	IT To	# 57 E	RA
		٠			VEHICL	ES COU	NTED
				*	ALL		x
					PASS. CA	RS	
			Fearl Direct	et	TRUCKS		(x)
				ı			
			Parking	g Lo	t		
Frank	·lin `) P	Stree	et			
- Train		7					
			5				
		I, 5,					
State Save	a b Dla)	River Notice	1	/		
State Sile	es sank		First Natio	naı			
				1/.			
				H/			
		Fearl Street					•
TO SECURITY AND THE PROPERTY AND THE PRO		3 or sec	-3000				
WEATHER			1				
Fair					LENGTH	OF CO	INT
			/	-			1
COUNT TAKEN BY					TIME	NUM OF H	
E.H.			*	78	am-6pm	ll ho	urs
				L			
	O de a composition of the compos						

STREET	I INTERING	FLOW	COMMENTS
I Franklin S	37.74	51	
	time me a distribution de la company		
The committee of the control of the	en e	Te evaluation for the action of the control of the	

PLANNING ENGINEERING & DEVELOPMENT

STA.NO.57

TRAFFIC MOVEMENT SUMMARY TABLE

DATE 8/10/79 DAY OF WEEK Friday WEATHER Fair RECORDER E.H.

TIME	Fran	nklin	St.	Pe	earl	St.				TOTAL
STARTS		estbou		No	orthbo	und				HALF HOURLY
M	5		R	41		5,				TALLY
7!00-7:30	31		36	21		28				116
7:30-8:00	58		61	43		71				233
8:00-8:30	120		48	76		119				413
8:30-9:00	106		58	63		114				341
9:00-9:30	48		86	45		88				317
9:30-10:00			48	34		82				275
10:00-10:30	103		53	38		7/				265
10:30-11:00	119		36	42		101				298
11:00-11:30.	117		32	56		83				288
11:30-12:00	114		45	44		91				294
12:00-1230	98		51	32		73				254
12:30- 1:00	108		213	64		61				276
1:00-1:30	95		49	64		61				269
1:30-2:00	83		101	73		55 62				272
2:00-2:30	81		69	69		62				281
2:30-3:00	66		39	72		69				246
3:00-3:30	73		42	39		98				252
3:30-4:00	59		44	48		87			 	243
4100-4130	73		.56	55		93				277
4:30-5:00	71		1	64		121				340
5:00-5:30	53		74	79		/32				338
5:30-6:00	39		58	53		94				244
6:30-7:00										
7:00-7:30										
7:30-8:00										
8:00-8:30										
8:30-9:00										
9100-9130										
9:30-10.00										
10:00-10:30										
10:30-11.00							-			
	1882		12.32	1169		1849				GRAND TOTAL 6/32
TOTAL OF L.S & R.	; j	3114	4	Ē	3018	5				6/32

Vanasse/Hangen Design, Inc. Boston, Massachusetts

INTERSECTION TURNING MOVEMENT COUNT

DATE 11/13/80 DAYOFWEEK Thur. CITY BOSTON, MA INTERSECTION Franklin St. & Oliver St.

CIDECT	ENTERING VOLUME		PERCENT of	LENGTH of COUNT			
STREET			FLOW	Time	Number of Hours		
Franklin St.	(WB)	241	(8)	53.1		AM	
Oliver St.	(NB)	213	(16)	46.9	8:00-9:00AM	PEAK HOUR	
	1				5% Trucks		
					VEHICLES	COUNTED	
					ALL	XXX	
TOTAL		454	(24)	100%	TRUCKS	(XX)	

Vanasse/Hangen Design, Inc.
Boston, Massachusetts

LITERSECTION TURNING MOVEMENT COUNT

CITY BOSTON, MA DATE 11/13/80 DAYOFWEEK Thur.

MITERSECTION Franklin St. & Oliver St.

		ENTERING VOLUME		PERCENT of	LENGTH	of COUNT
STREET				FLOW	Time	Number of Hours
Franklin St. (WB)	158	(1)	42.9		PM
Oliver St. (1	NB)	198	(5)	53.8	4:15-5:15PM	PEAK HOUR
Oliver St. * (S	SBX	12	(0)	* 3.3		
	I					
	- -	<u> </u>			2% Trucks	
	- +				VEHICLES	COUNTED
					ALL	XXX
TOTAL		368	(6)	100%	TAUCKS	(XX)

.. City BOSTON - PROPER Intersection FRANKLIN ST & OLIVER S

7AM-6PM

11 HRS

INT. NO. 100 (BTPD#553) Date 5/20/83 Day of Week FRIDAY

553

Vehicles Counted

	All	х
	Pass. Car	rs
	Trucks	
OLIVER ST FRANK	KLIN ST.	
/ 2200	CLIN O1.	
R V		
5 .		
R ₂ L ₁		
Mar Mar		
FRANKLIN ST.		
OLIVER	St.	
Weather		
CLOUDY/FOG	Length of	Count
	Time	Number
Count Taken		of Hours

Street	Entering Volume	Flow Percent	Comments
FRANKLIN ST. (WB)	2307	45 %	
OLIVER ST. (NB)	2247	43 %	
OLIVER ST. (SB)	628	12 %	
Total	5182	100%	

TRAFFIC MOVEMENT SUMMARY TABLE

Location FRANKLIN ST & OLIVER ST. City or Town BOSTON - PROPER

Vind Vanasse/Hangen Design, Inc. Boston, Massachusetts

STREET		DIRECTIONAL DISTRIBUTION		PERCENT of A.D.T.	TIME of COUNT
Ramp High St.	WB WB	1219 _618	(62) (27)	66.2	AM PEAK HOUR
Oliver St.	NB	4	(0)	. 2	8:00A-9:00A
					VEHICLES COUNTED
					ALL VEHICLES XXX
					TRUCKS (XX)
TOTAL		1341	(89)	100.0	PERCENT TRUCKS 4 8 %

VnO Vanasse/Hangen Design, Inc. Boston, Massachusetts

STREET		DIRECTIONAL DISTRIBUTION	PERCENT of A.D.T.	TIME of COUNT
Ramp High St.	WB WB	321 (19) 547 (16)	36.5	PM PEAK HOUR
Oliver St.	NB	. 12 (1)	1.3	4:30-5:30 PM
				VEHICLES COUNTED
				ALL VEHICLES XXX
				TRUCKS (XX)
TOTAL		1201 (36)	100.0	PERCENT TRUCKS 4.1 %

PLANNING ENGINEERING & DEVELOPMENT INT. NO.

Boston Proper CITY INTERSECTION High Street & Fearl Street DAY OF WEEK Friday

STREET	ENTERING	FLOW	COMMENTS		
STREET	VOLUME	PERCENT	30mm21110		
nigh St. SB	7083	95			
Pearl St. WB	405	5			
TOTAL	7488	100%			

PLANNING ENGINEERING & DEVELOPMENT

STA.NQ_58 BRA

TRAFFIC MOVEMENT SUMMARY TABLE

LOCATION High Street & Pearl Street CITY OR TOWN Boston Proper DATE 9/3/79 DAY OF WEEK Friday WEATHER Fair RECORDER E.B.

TIME	H	igh St	reet	Pe	earl S	Street						TOTAL
STARTS	Sou	thbou		We	stbou	ind						HALF HOURLY
M	4	5	R	41		51						TALLY
7:00-7:30	0	191	45	7		5						248
7:30-8.00		247	96	12		6						361
8:00-8:30		368	141	15		4						528
8:30-9:00		329	207	1/		13						560
9:00-9:30		303	130	4		7	1					444
9:30-10:00		202	83	9		8						302
10100-101301		207	79	8		8						303
10:30-11 00		246	89	9		9						353
11:00-11:30		254	127	14		9						404
11:30-12.00		301	164	19		12					1	496
12:00-12:30		266	188	21		14						489
12:30- 1:00		233	144	14		15						406
1:00-1:30		209	63	3		10						285
1:30-2:00	1	187	84	6		6						283
2:00-2:30		198	58	9		7				ļ		271
2:30-3:00		205	55	6		9		ļ			ļ	275
3:00-3:30	1	173	72	3		Я				1		256
3:30-4:00		163	65	10		14	 					256 244 317 254
4100-4130	_\	160	5/	6		7				ļ		234
4:30-5:00		216	82	10		9		-				31/
5:00-5:30		191	43			1/						177
5:30-6.00	0	140	28	4		5					-	
6:30-7:00												
7:00-7:30												
7:30-8.00												
8.00-8:30												
8:30-9 00												
9:00-9:30												
9:30-10.00												
10.00-10 30												
10:30-11 00		-				- 1						CDANG
TOTAL	0	4983	2094	209		196						GRAND
TOTAL	7	108	3	4	105							748.
LSAR							 					

LERNING LRUINTERING C	DEAFF	וּאָלַניוּלָט.	INTERSECTION	Mich Stre Pearl Str		
· · · · · · · · · · · · · · · · · · ·	.,		DATE 2/13/70	DAY OF WE		dav
INTERSECT	ION TU	RNING MC	VEMENT CO	UNT # 4	95	
. /	,				ES COUN	TED
				ALL		X
				PASS. CA	RS	
\mathcal{N}		•		TRUCKS		(x)
,	1			* PEDS		
	Pear	rl Street		* 7,30-9,3 11,30-1,3 4,00-5,0	30 PM	
N.E. Telephone		P1 ~/		High Street		
P		P5	P2	/		
High Street	P4	P3		<u>Traveler</u>	rs Buil	d <u>in</u> a
WEATHER See Summary Sheet	Pea	arl Street		LENGTH	05 00	INT
	•					BER
COUNT TAKEN .				TIME	OF H	OURS
<u> </u>					6 Hc	urs
					<u> </u>	
	ITERING DLUME	FLOW PERCENT		COMMENTS		
TOTAL			1			

M

I

. PEDESTRIAN

TRAFFIC MOVEMENT SUMMARY TABL

LOCATION High Street 5 Pearl Street CITY OR TOWN Roston CBD See

DATE 2/13/70 DAY OF WEEK Friday WEATHER Below RECORDER W.C.

TIME		Ser	e Sket	ch Pl	an							TOT#
STARTS										HALF HO		
M	F	P1	P2	P3	P4	P5						TALL
7'00-7:30												
7.30-800	34	92	48	26	3	7						210
8 00-8 30	67	411	173	88	9	12						760
8 30-9.00	76	310	139	119	12	21						677
9:00-9:30	35	90	70	42	5	7						249
9:30-10:00												
10 00-10/30												
10.30-1100							79					
11 00-11 30												
11:30-12:00	54	129	101	79	14	4						381
12:00 · 12:30	130	213	185	134	28	22						712
12.30- 1:00	122	244	198	121	38	19						742
1.00-1.30	157	356	268	198	18	18						1015
1:30-2:00												
2.00-2.30												
2:30-300												
3 00-3 30												
3:30-4:00												
4:00-4:30	35	85	63	25	5	7						220
4.30-500	100	190	225	78	14	22						629
5:00-5 30	103	315	180	67	24	18						712
5.30-6 00	45	53	42	33	Û	0						173
6 00-6 30												
6 30-7 00								-				
7 30-8 00		·										
00-830												
8 30 - 9 00												
9 00 9 30										-		
9 30-10 00												
10 00-10 30												
10 30-11 00												
TOTAL	963	2488	1692	1010	170	157						GRAND
TOTAL			648	30								TOTAL 6480
LSBR												0400

Vind Vanasse/Hangen Design, Inc. Boston, Massachusetts

STREET			BUTION	A.D.T.	TIME of COUNT
Ramp	WB	1219	(62)	66.2	
High St.	WB	618	(27)	33.6	AM PEAK HOUR
Oliver St.	NB	4	(0)	.2	2 222 2 222
					8:00A-9:00A
					VEHICLES COUNTED
					ALL VEHICLES XXX
					TRUCKS (XX)
TOTAL		1341	(39)	100.0	PERCENT TRUCKS 4.8 %

Vind Vanasse/Hangen Design, Inc. Boston, Massachusetts

STREET		DIRECTIONAL DISTRIBUTION	PERCENT of A.D.T.	TIME of COUNT
Ramp High St.	WB WB	321 (19) 547 (16)	36.5	PM PEAK HOUR
Oliver St.	NB	· 12 (1)	1.3	4:30-5:30 PM
				VEHICLES COUNTED
				ALL VEHICLES XXX
				TRUCKS (XX)
TOTAL		1201 (36)	100.0	PERCENT TRUCKS 4.1 %

Timific Commol Systems Planning, Engineering, Construction & Maintenance ' Brighton, Ma. Tel. (617) 782-9757 Poston Proper INT. NO. 376__ INTERSECTION High Street Off Rure, & DATE 3/19/81 DAY OF WEEK Thursd INTERSECTION TURNING MOVEMENT COUNT VEHICLES COUNTED ALL X N.E. Telephone Co. PASS. CARS Cliver St. TRUCKS (X) R1 F Parking Garage Cliver St. WEATHER Sunny LENGTH OF COUNT NUMBER OF HOURS TIME COUNT TAKEN BY 70-69-11 Hours P.5., & G.W. ENTERING FLOW COMMENTS STREET PERCENT VOLUME Artery (If Rome Men Street (13.5 37.5 5403 33 45 35 13046 100% IOTAL

INCINC COMMON OF STORES

TOTAL

84.08

Planning, Engineering, Construction, & Maintenance Brighton, Ma. Tel. (617) 782-9757

TRAFFIC MOVEMENT SUMMARY TABLE

LUCATION High Street, Off Ramo, & Oliver Street ___ CITY OR TOWN Boston Proper DAY OF WEEK Thursday WEATHER Sunny RECORDER D. B. & G. DATE 3/19/81 Artery Off Rano TIME High Street TOTA STARTS Southbound HALF H Southbound __ M R **S1** L1 R1 TALL 374 7:00-730 226 114 75 206 243 7:30-8:00 149 918 8:00-8:30 141 3.50 107 19 8:30-9:00 168 271 3 257 9:00-9:30 229 22 120 280 9:30-10:00 20.3 131 63 10.004030 95 1030-1:00 12 102 .53 11.00-1130 128 .30 116 59 11:30-12:00 118 64 13 12-00-12:30 2/ 58. 12.30-1:00 27 54 163 1:00-1:30 486 19 1:30-2:00 196 134 20 125 5/2 2:00-2:30 13.3 94 56 495 2:30-3:00 127 119 44 .50 139 3:00-3:30 130 47, 3.30-4:00 83 100 36 400-430 94 26 10 400 104 4:30-5:00 107 18 158 90 49. 111 5'00-5:30 12/2 21 9.5 491 5.30-5:00 102 6:00-6:30 6:30-7:00 7:00-7:30 7:30-8:00 8:00-830 830-9 00 9:00-9:30 9.30-10:00 10-00-10:30 10:30-11:00 TOTAL 1259 3748 GRAN 401 319 2646 1873

4838

TOTAL

1324

LANNING ENGINEERI	NG & DEVEL		CITY Bost	Oliver Str	treet
NT. NO.	* 9/22	<u>\$23/76</u>	DATE*	DAY OF WEE	Wed-THur
INTERS	SECTION TU	RNING MO	VEMENT CO	OUNT #2022	
				VEHICLE	S COUNTED
				* ALL	x
				PASS. CAR	IS
				TRUCKS	(x)
	Oliver St.	R.	5	* PEDS Purchase S	t.
WEATHER Fair	Purchase St	reet	/ /	J. F. F. E	Expressway
				LENGTH	OF COUNT
COUNT TAKEN				TIME	NUMBER OF HOURS
BY J.M.			*	7am-6pm	11 hours
	-				
STREET	ENTERING VOLUME	FLOW PERCENT		COMMENTS	
Purchase St. WB Oliver St. SE	453 <u>1</u> 3178	59 41			
,					
70744		300-/			

TRAFFIC MOVEMENT SUMMARY TABLE LOCATION Oliver St. & Purchase St. ____ CITY OR TOWN _Boston Proper____

DATE 9/22 23/76 DAY OF WEEK Wed-Thur WEATHER Fair RECORDER J.M.

					 100
TIME	Purchas	e St.	Oliver St.		TOTAL
STARTS			Southbound		HALF HOURLY
M	5	R	R,	Pi	TALLY
7!00-7:30	99	3	229	2	331
7:30-8:00	194	13	270	15	477
8:00-8:30	276	23	31/	26	60
8:30-9:00	294	23	260	35	511
9:00-9:30	165	27	152	27	344
9:30-10:00		16	140	15	3/2
10:00-10:30	148	13	133	13	294
10:30-11:00	126	23		7	285
11:00-11:30		20	136	9	295
11:30-12:00	132	22	144	16	3/6
12:00-12:30	150	9	133	20	318
12:30-1:00	-	12	147	2/	318 354
1:00-1:30	195	6	136	32	330
1:30 - 2.00	195		112	36	330
2:00-2:30	238	10	154	22	411
2:30-3:00	188	1/2		22	411 325 316
3:00-3:30	205	12	125	7	3/6
3:30-4:00	196	6	73	17	276 336 340 347
4:00-4:30	240	8	88	26	336
4:30-5:00	252	11	77	3.2	340
5:00-5:30	269	8	70	53	341
5:30-6 00	146	4	46	18	196
6:00-6.30					
6:30-7.00					
7:00-7:30					
7:30-8:00					
8.30-9'00					
9:00-9:30					
9:30-10.00					
10.00-10 30					
10:30-11 00					-
TOTAL	4228	303	3178	460	GRAND TOTAL
TOTAL	45		3178		7709
LSBR					

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB International Place	JOB No. <u>092</u> 3
LOCATION:	SHEETOF
CALCULATED BY BG	DATE
CHECKED BY:	DATE
TITLE Turning Hovement Com	

AM		Source:	Deway Sq. TSM Study
	N		
ÿ			
4			
Summer	119	<u>st.</u>	
	371		
235 878	710		
55 7	2000		
da.			
A			
		and the second control of the second control	
PM			
	1		
Summer	100	t	
	307		
378 <u>-</u> 324 -	17 1		
145 7	288		, ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ .
416m			
-			
- · · · · · · · · · · · · · · · · · · ·			
• •			

STREET		ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
ATLANTIC AVENUE	N.B.	741 (55)	37%	7:15AM - 8:15AM
SUMMER STREET	E.B.	756 (24)	38%	
SUMMER STREET	W.B.	502 (30)	25%	
				AM Peak Hour
				VEHICLES COUNTED
				ALL VEHICLES XXX
				TRUCKS (XX)
TOTAL		1999 (109)	100%	PERCENT TRUCKS 5.4%

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
SUMMER STREET W.B.	482 (38)	30%	4:45PM - 5:45PM
SUMMER STREET E.B.	635 (11)	39%	4:40FM ~ 0:40FM
ATLANTIC AVENUE N.B.	513 (72)	31%	
			PM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX
			TRUCKS (XX)
TOTAL	1630 (121)	100%	PERCENT TRUCKS 7.4 %

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB Interpretional Place	_JOB No
LOCATION:	SHEETOF
CALCULATED BY BG	DATE
CHECKED BY:	DATE
TITLE Travaine House ment Com	en de

011 1 402 1010		11102	JUNIAN MOU	EMENT CACALTS	
АМ.			· †	Source: Third Hark	POVEIR.
	5umner		st.		
		323			
	Atlantic	224 J 536 - NN 47 NN		-	
	14/4	1			
PM			1 N		
	Ave.				
	Summer	220	<i>5†</i> .		
		296 J 7 1 C 3337 — 85 55 7 1 55 7			
	Atlontic				

FIC MOVEMENT SUMMARY TABLE

ON Atlantic Avenue & Milk Street CITY OR TOWN Boston Proper

7/10/80 DAY OF WEE

DAY OF WEEK Thursday WEATHER Warm & RECORDER C.C., J.C

E_U			DATO				_ ''' _ '	AI NEN				&	J.C.
TIME	Atlan	itic Ave	nue	Atl	antic /	Avenue	Milk	Street	,	Mil	k Stree	et	TOTA
STARTS	North	bound		Sou	thbound	3	East	Bound		Wes	tbound		HALF H
M		S ₁	R1	L2	S2		13	53	R3	14		R4	TAL
7:00-7:30		175	20	6	158		13	23	1	2		3	406
7:30-8:00		206	33	8	219		14	37	4	5		6	53:
8:00-8:30		191	66	19	199		28	5%	0	16		12	58'
8:30-9:00		249	80	20	159		20	68	2	5		11	614
9:00-930		228	69	15	104		15	29	0	8		9	52
9:30-10:00		205	58	13	119		19	59	/	16		17	50
10:00+030		192	57	5	82		2/	34	/	7		8	40
103041:00		227	59	11	136		25	54	2	13		9	53
11:00-1130		237	68	13	122		40	48	/	15		12	57
11:30-12:00		276	7/	21	118		4/	65	3	19		27	64
12:00-12:30		224	82	24	130		55	55	4	20		38	63.
12:30-1:00		223	50	20	87		29	46	/	29		29	514
100-130		229	11	13	134		30	50	4	48		45	62
130-2:00		210	60	15	124		32	41	2	4/		22	54
2:00-2:30		161	33	11	99		26	21	6	35		26	4/4
2:30-3:00		232	58	14	142		34	37	3	40		16	57
3:00-3:30		308	69	9	193		47	26	4	46		30	7.30
3:30-4:00		461	35	3	185		104	20	3	52		48	91.
4:00-430		526	32	4	141		119	12	3	55		43	93.
4:30-5:00		524	4/	10	159		158	23	2	63		46	102
5:00-530		668	27	14	129		137	29	5	88		29	112
5:30-6:00		479	48	8	113		120	36	1	23		35	91.
6.00-630													
6:30-7:00		- 1/-		2.1	0		/. 0	1 - 11				0.0	
A019 47:30		440	146	39	358		48	124	2	21		23	120,
7:30-8:00 8:00-8:30													
8:00-8:50 Psk49:00		1172	68	24	28.		295	52	7	151		75	2/52
9:00-9:30		1110	90		20.		20	3 -	/	15/		15	æ/3 L
9:30-0:20													
10.00-10:30													
10:30-11:00													
TOTAL		6431	1187	276	3052		1127	955	53	698		521	GRA:
TOTAL		7618		-	332		1	211	7		12/1	9	1420

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Atlantic Ave. (NB)	1560 (40)	61.0%	
Atlantic Ave. (SB)	492(10)	19.0%	5:00 - 6:00 PM
Milk St. (EB)	285(2)	11.0%	
Aquarium Wharf (WB)	235(0)	9.0%	PM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX 2572
			TRUCKS (XX) 52
TOTAL	2572 (52)	100.0%	PERCENT TRUCKS 2.0%

City BOSTON - FRANTIC AVE & STATE ST.

7AM-6PM

INT. NO. 54 (BTPD # 2023) Date 3/24/83 Day of Week THURSDAY

			6023
		Vehicles (Counted
		A11	х
		Pass. Cars	
	STATE ST.	Trucks	
Atlantic Ave	R STATE ST.	ATLANTIC AV	
CLEAR-TEENS		Length of Co	unt
Count Taken		Time	Number of Hours

Street	Entering Volume	Flow Percent	Comments
ATLANTIC AVE (NB)	10,555	58%	
ATLANTIC AVE (SR)	5843	3.70%	
STATE ST. (WB)	1729	10%	
Total	18127	100%	

LS&R

TRAFFIC MOVEMENT SUMMARY TABLE

Location Atlant Ave & State St. City or Town Boston - Proper

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB INTERPRETIONAL PLACE JOB NO. 0923

LOCATION SHEET OF

CALCULATED BY: BG DATE

CHECKED BY: DATE

617 / 482-1870	TITLE TUNNING HOVEMENT Counts
AM	Source: Marketphice inter EIR dated Agril, 83.
Commercial Commercial	16 L 5t.
	2 11 5
Surface	
344	
PM	1
C 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3	1 to 250 57.
52 95 14 46	2710
Surfice	

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Surface Rd. (NB)	480	30.2%	8:00 - 9:00 AM
Surface Rd. (SB)	818	51.5%	
Commercial St. (EB)	66	4.1%	
Commercial St. (NB)	225	14.2%	AM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX 1589
			TRUCKS (XX)
TOTAL	1589	100.0%	PERCENT TRUCKS %

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Surface Rd. (NB)	886	44.6%	4:15 - 5:15 PM
Surface Rd. (SB)	646	32.5%	3.13 111
Commercial St. (EB)	248	12.5%	PM Peak Hour
Commercial St. (WB)	. 207	10.4%	
			VEHICLES COUNTED
			ALL VEHICLES XXX 1987
			TRUCKS (XX)
TOTAL	1987	100.0%	PERCENT TRUCKS %

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB: / M SYPER TIGAR | V/ACE JOB NO. 092 2

LOCATION: SHEET OF DATE

CHECKED BY DATE

DATE

TITLE TUrning Hovement Counts AM Source: Third Harbor EIR dated Dec. 82 State St. - 33 - 259 - 98 PM N state. 5%

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB Interpretional Disce	JOB No. 092 3
LOCATION	SHEETOF
CALCULATED BY: 84	DATE
CHECKED BY:	
TITLE Turning Houzment Com	

AM	· · · · · · · · · · · · · · · · · · ·	Source: Marketphe Conter EIR dated April, 83.
State	J	
	3	
	- Jan-C	
PM.	· · · · · · · · · · · · · · · · · · ·	-
	Ed.	
state	1 1 125 2 125 2 15 7 96	- 54°.
	Surface	
	io i	

City BOSTON - PROPER
Intersection JEF Surface Ro & STATE S

BTPD#2024) Date 6/27/83 Day of Week Monday INT. NO. <u>55</u> INTERSECTION TURNING MOVEMENT COUNT Vehicles Counted JFF SURFACE RD. All X Pass. Cars Trucks STATE JFF SURFACE RD. Weather CLEAR & DRY Length of Count Number Time Count Taken of Hours CD SCHUBERT 11 HRS 7AM-GPM

Street	Entering Volume	Flow Percent	Comments
JFF SURFACE PD(SB)	8704	46%	
JFF SURFACE RUNRY	7148	38%	
STATE ST. (WB)	3194	17%	
Total	19,046	100%	

TRAFFIC MOVEMENT SUMMARY TABLE

Location JFF SURFACE RD & STATE ST. City or Town BOSTON - PROPER

Date 6/27/83 Day of Week MONDAY Weather CLR Recorder CDS

Date <u>w</u>	1				Wee	X 1-10				er <u>ce</u>			
Time Starts	JFF SURFACE RD			(NB)		STATE ST.						Total Half Hour	
7:∞ AM	5	R	U	L,	S.	U,	Lz	WB Sz	R				Tally
7:00-7:30	279	81	0	110	91		20	ای	12				655
7:30-8:00	248	116	Ī	134	143	0	35	57	28				782
8:00-8:30	295	130	2	133	142	4	53	89	41				
8: 30-9:00	189	169	0	152	164	1"	37	82	35				889 829
9:00-9:30	204	155	0	140	136	0	32	92	23		-		
9:30-10:00	297	174	1	129	134	1	31	81	20				782 868
10:00-10:30	216	167			117	2	38	88	16				804
10:30-11:00		80	7	155 98	92	0	21	52	13				
11:00-11:30		134	1	96	161	2	30	82	16				527 753
11:30-12:00		133	0	120	163	3	37	103	23				865
12:00-12:30	224	82	3	128	182	0	36	67	35				757
12:30-1:00	204	85	4	127	176	0	32	94	27				749
1:00-1:30	198	87	1	136	194	0	28	100	22				766
1:30-2:00	262	90	0	114	149	0	52	82	11				760
2:00-2:30	203	113	3	109	153	2	30	91	15				719
2:30-3:00	281	95	2	102	167	0	44	90	24				805
3:00-3:30	319	89	0	103	297	2	48	75	19				952
3:30-1:00	383	69	0	76	348	1	44	96	21				1038
4:00-4:30	499	49	0	58	453	1	39	82	13				1194
4:30-5:00	718	43	0	91	404	0	43	94	43				1236
5:00-5:30 5:30-6:00	563	29	0	87	438	0	61	104	48				1330
6:00-6:30	400	24	0	77	349	0	34	72	30				986
6:30-7:00													
749047:30	484	299	2	285	306	5	90	171	76				1718
7:30-8:00													
8:00-8:30													
P 149:00	1081	72	0	178	842	0	104	198	91				2566
9:00-9:30													
9:30-10:00				-		-							
10:30-11:00	1			-									
		215	-/	0/	1		0.00	105/					GRAND
TOTAL	0486	2194	24	2475	4653	20	825	1834	735				TOTAL
Total of 2 S E R	8	7C1	4	7	148	8	3	194	4				19,046

30-800

Planning, Engineering, Constructi Brighton, Ma. Tel. (617) 782-9 Planning, Engineering, Construction, & Maintenance Brighton, Ma. Tel. (617) 782-9757

GRAND

XAFFIC MOVEMENT SUMMARY TABLE

TION J.F.F. Surface Road & Milk Street ___ CITY OR TOWN Boston Proper ___ Mon & E 11/24 & 25/80 DAY OF WEEK Tues. __ WEATHER Rain _ RECORDER E.C. Milk Street Surface Road TOTAL IME Surface Road Northbound Eastbound HALF HOUR TARTS Southbound __ M S2 S3 R2 R3 L3 TALLY L1 S1 00-730 سسى 33/

30-8:00 00-8:30 30-9:00 00-930 30-10:00 .004030 2/3 3041:00 4.26 2.3 00-11:30 30-12:00 ·00H230 ÷ 30-1:00 1,23 00-1:3D 30-2:00 :00-2:30 2/2 :30-3:00 .303 4/4 4-20 4.33

:00-3:30 30-4:00 23 00.430 2/ 30-5:00 // 00-5:30 38/

30-6:00 00-6:30 B9-7:00 ,307 00-7:30

001830 47 993 48 20.85 fo 30-9:00 00-9.30 30-10:00 0040:30 3041.00

3 356 639 618 167 TOTAL 547 TOTAL. OF .38

INTERSECTION TURNING MOVEMENT COUNT

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Surface Rd. (NB)	740	46.1%	8:00 - 9:00 AM
Surface Rd. (SB)	715	44.6%	8:00 - 9:00 AM
Milk St. (EB)	145	9.0%	AM Dook House
Milk St. (WB)	4	0.3%	AM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX1604
			TRUCKS (XX)
TOTAL	1604	100.0%	PERCENT TRUCKS %

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB International Place JOB NO. 0823

LOCATION SHEET OF

CALCULATED BY BY DATE

CHECKED BY DATE

TITLE .

North St. 114 X-Way Off Range St. X-Way Off Ra

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 JOB International Place JOB No. 0823

LOCATION SHEET OF

CALCULATED BY BG DATE

CHECKED BY DATE

North st.

Source: Martetplace Center EIR dated April, 83.

Morth St 100 1 1 100 1 1

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870	LOCATION LOCATE BY AND RES CE SAN CHECKED BY CONT	_ JOB POATE _ DATE	NO	- OF DOL 13/	3	
2007 9 MAD 440 PM	7AY (21)	7	1103		reo /	2613
84 (3) 556 (5) 122 433 (9) 160 (1)		TIME of COUNT	AM PEAK HOUR	8:00 to 9:00	VEHICLES COUNTED	ALL VEHICLES XXX TRUCKS (XX)
51 (6) 1 89 (8) 51 (43) (26)		PERCENT OF FLOW	309,3			
8. PAKSTONE 3T.		FNTERING	(SOS (46)	(4)3 (18)		/6.7
303 (4)	NORTH ST.	STREET	F. STOILE S	147 95 (30111 B) 31 BAMP		

/

	NAI FAUTOM 1801	JOB No796
VII	LOCATION: NOTI BECOME / ROS	
Vanasse / Hangen Engineering, Inc.	CALCULATED BY	DATE: FRIDAU
Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110	CHECKED BY:	
617 / 482-1870	TITLE: PM CRINT	
P 22 %	5 T	-/
2	(23)	
	111	150
Boung		
DOT SAMAS TO		T TED 23564
16(0)		
508(1)		of COUNT LES XXX (XX) RUCKS
88		TIME OF P.M. PEAK VISTALES VEHICLES LL VEHICLES RUCKS ERCENT TRU
8(0)		VEHICKS
		TIME OF COUN P.M. PEAK HOUN VITE + STA VEHICLES COUN ALL VEHICLES XXX TRUCKS TRUCKS TRUCKS TRUCKS
		الألاك كالثاق كالكامات موسا
149(5)		PERCENT OF FLOW 40 °/6 37 °/6 2.3 °/6 100 °/6
m 362(3)		9000 A
[0] 13d (f)		0 4
TO BLAKETONE ST.		137 (24)
		1037 1037 1730 1730 1730
	27.15 (6) - 31.15 (7) - 10 (7)	
: : : : <u> </u>	المرحية بمراقة ليف عبر علا اعبا بما ارد	FT Strait
	1037 (84)	STREET ST. CONTROL OF THE CONTROL OF
	2	
-		100kT

•

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB Interpretional Place	JOB No. 0923
LOCATION	SHEETOF
CALCULATED BY:	DATE
CHECKED BY:	_DATE
TITLE TUVNING Hovement Cou	m-#5

AM	7:		<u>‡</u>	Source: Dewey Sq. Tsol Study
				2 144 04
	- 2			
Summer_			<i></i>	t
	3 7 70	-2v 3		
	جا لم لي	g 276		
	0	35		
		4.		
,				
			-	
		•		
PM				
			· ·	
	3			
	repr			
Summer	62		<i>3</i> †.	
	a h ve			
	a) (-)	- 108		
	- 16]	م	-	
		NO		
	1			
	1			

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

AM

PM

JOB Interpretional	place	JOB No.	7923
LOCATION		SHEET	OF

CALCULATED BY BG DATE

CHECKED BY ______DATE _____

TITLE TUVNING HOVE ment Counts

	where of		1	Source:
Summer	13			57.
	28 + 281 + 281 5 470	- 163 - 202		
	57 -	7		
		310		

Summer 57

Summer 57

122 - 146

122 - 15

SIM. NU.

Planning, Engineering, Construction, & Maintenance Brighton, Ma. Tel. (617) 782-9757

357

MOVEMENT SUMMARY TABLE

LOCATION Atlantic Ave., East India Row, & India St. CITY OR TOWN Boston Froper

DATE 4/8/81 DAY OF WEEK Wednesday WEATHER Sunny RECORDER D.B. & E.

TIME		tic Ave	nue	Atlantic Avenue			India Street			East India Street			TOTA
STARTS	North	bound		Southb	ound			Eastbound Westbound				HALF HO	
M	L	S	R	L1	S1	R1	L2	S2	R2	13	S3	R3	TALL
7:00-7 30	2	221	سی	8	147	8	/	5	/	3	//	7	419
7:30-8:00	3	263	12	6	220	23	4	8	/_	8	14	14	571
8:00-8:30	10	343	12	10	192	16	9	14	0	8	26	16	65'
8:30-9:00	1/	426	10	11	159	27	2	4	3	10	17	. 7	68
9:00-9:30	13	370	13	7	171	19	//	10	3	10	15	12	65.
9:30-10:00	8	237	11	5	104	8	6	8	/	5	9	9	411
10.004030	9	320	12	6	123	//	12	5	2	2	14	7	52
10:30-1:00	//	235	- //	9	131	12	7	8	/	8	14	10	45
1:00-11:30	9	230	10	3	122	8	15	7	2	3	8	15	4.3:
11:30-12:00	19	256	8	.3	128	11	15	9	4	2	8	9	471
12.00-1230	9	270	K	. 9	127	12	13	8		3	6	6	468
12:30-1:00	16	246	3	19	105	13	10	2	4	5	12	11	45
1:00-1:30	20	209	8	3	115	12	15	9	/	2	9	7	42
130-2:00	12	196	5	4	102	12	11	8	2	2	8	4	36
2:00-2:30	17	256	9	5	133	16	15	11		Ь	9	10	48
2:30-3:00	15	243	//	7	129	19	12	7	2	3	11	13	47
3:00-3:30	13	254	9	6	136	12	9	8	3	5	12	9	47
3:30-4:00	7	329	6	4	173	3	/	2	14	0	3	8	55
4:00-4:30	18	436	14	11	268	//	34-	8	13	0	4	11	82
4:30-5:00	_//_	401	8	.5	2/2	2	29	6	7	-8	9	14	71
5:00-5:30	5	289	9	3	161	6	12	4	2	3	10	17	53
5:30-6:00	6	201	_//_	4	10%	8	16	.5	3	5	7	12	38
6:00-6:30 6:30-7:00													
7 20 1 7:30	21	769	22	21	35/	43	//	18	3	18	43	23	1344
7:30-8:00	١ عر	101	22	2,	751	-/-	//	/ 0			-75		1017
8:00-830													
20000	-1	837	22	16	480	18	63	14	20	8	13	25	1545
9:00-9:30													
930-1020													
10:00-10:30													
10:30-11:00													
TOTAL	204	6231	202	147	3265	284	259	161	70	101	236	228	GRAN
TOTAL		6677	7		3696			490	2		565		1142

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

INTERSECTION TURNING MOVEMENT COUNT

CITY Boston, MA DATE 3/2/84 DAY of WEEK Friday
INTERSECTION Atlantic Ave. & E. India Row JOB No. 0751

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Atlantic Ave. (NB)	815 (19)	56.4%	
Atlantic Ave. (SB)	513(12)	35.5%	8:00 - 9:00 AM
E.India Row (EB)	31(0)	2.1%	
E.India Row (WB)	87(1)	6.0%	AM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX 1446
			TRUCKS (XX) 32
TOTAL	1446 (32)	100.0%	PERCENT TRUCKS 2.2%

100

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

INTERSECTION TURNING MOVEMENT COUNT

STREET	ENTERING VOLUME	PERCENT OF FLOW	TIME of COUNT
Atlantic Ave. (NB)	1389 (22)	66.7%	
Atlantic Ave. (SB)	495(3)	23.8%	4:30 - 5:30 PM
E. India Row (EB)	156(0)	7.5%	
E. India Row (WB)	44(0)	2.0%	PM Peak Hour
			VEHICLES COUNTED
			ALL VEHICLES XXX 2084
			TRUCKS (XX) 25
TOTAL	2084 (25)	100.0%	PERCENT TRUCKS 1.2 %

150

Planning, Engineering, Construct L. A. Mainte lance Brighton, Ma. Tel. (617) 782-9757

TRAFFIC MOVEMENT SUMMARY TABLE

LOCATION India Street & J. F. F. Surface ed ____ CITY OR TOWN Buston Proper_

DATE 11/16 & 19/79 DAY OF WEEK Fri 2 Mon. WEATHER Clear & RECORDER TP & JT

									Cold			AK	53
TIME	Surfac	e Rđ.		Surface	∍ Rđ.		India	Street		India	Street		TOTA
STARTS		ound		Northbo	ound		Westbo	und		Eastho	ound		HALF H
M	L ₁	S ₁			S2	R	L ₃		R 3	L ₄	Š ₄	R ₄	TAL
7:00-7:30	1	182			.309	9	3/		19	1	6	28	59
7:30-8:00	13	176.			347	10	35		23	5	11	30	1.46
8:00-8:30	11	216			411	15	41		24	8.	12	3/	26%
8:30-9:00	14	189			753	12	3.8	\$ 7	12	6	9	cil-	1:45
9:00-9:30	10	163			37.84	4/	40		.71	5	6.	-74	-9-5
9:30-10:00	12	184			314	2	36		21	6	10	37	1.7.
10:001030	11	140			28/2	15	35		23	4	5	35	1163
10:30-11:00	//	144			2,62	12	42		21	9	11	75	6-42
11:00-11:30	10	200			314	12	27		22	(-	1.2	50	1010-
11:30-12:00	14	204			3/7	14	30		15	1.3	10	51	67
12:00-12:30	17	203			219	1.3	52		21	9	8	5%	10.9
12:30-1:00	10	244			3.7.2	11	40		14	//	2	49	21=
1:00#:30	7	216			308	8	30		12	É	5	4.5	6.3%
1:30-2:00	5	25.2		ļ	,253	8	41		15	9	5	63	65,
2:00-2:30	8	209		ļ	29%	9	29		18	12	11	.39	63-
2:30-3:00	6	364			292	7	274		12	3-	9	يرد	115
3:00-3:30	17	2//			30,2	ş	36		15	10	13	44	15-
3:30-4:00	10	253		-	465	12	37		27	2	7	33	981
4:00-4:30	20	436			697	25	32		13	7	5	63	139
4:30-5:00		440		•	692	14	3/6		1.3	<u></u>	4	21	130
5:00-5:30	6	4/25		-	678	15	40		//	5	6	100	130
5:30-6:00	10	359			340	//	31		15	7.	6	59	10.0
6:00-6:30 6:30-7:00													
#0 #4:30		11 = 5		-	798	27 :	79		37	14	2:	57	
7:30-8:00		4.65	-	-	1770	~ .	1/		01	/ !	6	3 /	
8:00-830		-											
8 2 0 4 :00		876			1389	39	78		20	8	9	. 84	
9:00-9:30		97.0			100		1		0				
9:30-10:00	1												
10:00-10:30													
10:30-11:00													
TOTAL	374	5412			ハイン	371	802		_ ;;		, 77.2	. • ->	GRA TOT
TOTAL		37	50		3346	-		j. 3			ب ال		171

PLANNING ENGINEERIN	G & DEVE	LOPMENT	CITY		ton From	
'INT. NO.	* 7/30&31,	/79	DATE_*		rchase S	
	ECTION TU	JRNING MO		COUN		BRA #602
/			, , _ , , , , , , , , , , , , , , , , ,	0001		ES COUNTED
	•			*	ALL	×
					PASS. CA	
#					TRUCKS	(x)
	1					
	Pear	1 Street				
,						
		R				
Purchase				St	reet	_
	R,			_		
	\mathcal{L}_{I}					
		5 -		_		
						_
	Express	way				
WEATHER						
Fair						OF COUNT
						OF COUNT
COUNT TAKEN				⊢	TIME	OF HOURS
<u> </u>				* 7	am-6pm	11 hours
				L		
STREET	ENTERING	FLOW		C	DMMENTS	
Purchase St. SB	VOLUME	PERCENT				
Pearl St. EB	8593 16	99.8				

TOTAL

9609

100.0%

TRAFFIC MOVEMENT SUMMARY TABLE

LOCATION Pearl Street & Purchase Street ___ CITY OR TOWN Boston Proper DATE 7/30&31/79 DAY OF WEEK Thur-Fri WEATHER Fair RECORDER W.C.

Pearl Street St. Purchase TOTAL TIME HALF HOL Southbound Eastbound STARTS TALLY __ M 9 7:00-7:30 385 445 20 7:30-8:00 28 2 8:00-8:30 502 402 23 8:30-9:00 0 14 9:00-9:30 402 0 7 9:30-10:00 315 35 22 10:00-10:30 329 0 28 10:30-11:00 276 12 0 30 22 0 11:00-11:30 278 33 12 11:30-12.00 318 0 387 18 12:00-12:30 0 18 12:30-1:00 340 0 38 1:00-1:30 366 23 0 34 24 1 1:30-2.00 1318 2:00-2:30 18 0 370 0 22 1.357 2:30-3:00 39 26 3 362 3:00-3:30 3 21 400 3:30-4:00 44 425 14 1 4:00-4:30 2 14 4:30-5:00 440 413 5:00-5:30 11 0 5:30-6:00 368 6:00-6:30 6:30-7:00 7:00-7:30 7:30-B:00 8:00-8:30 B:30-9.00 9100-9130 9:30-10:00 10:00-10:30 10:30-11:00 GRANI TOTAL 8/98 395 TOTA TOTAL 8593 860 L.S BR

MECHANICAL RECORDER COUNT RECORD

VH

Vanasse / Hangen Associates, Inc. Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

CALCULATED BY: PD/SS	DATE 19 December 8
CITY/TOWN: Boston	_STATEMA
LOCATION: Central Artery Off Ra	amp at Atlantic Ave/
DIR Northbound JOB No. 0121-1	Northern Ave.

617 / 482-0749			DIRIVOL		JOB No. <u>U</u>	121-10	SHEET	1 OF 1
TIME MONTH	Sun.	Mon.	Tue. 17	Wed.	Thu.	Fri. 20	Sat.	TOTAL
12 - 1 A.M.			53	46				99
1 - 2 A.M.			21	28				49
2 - 3 A.M.			28	38				66
3 - 4 A.M.			21	16				37
4 - 5 A.M.			35	24				59
5 - 6 A.M.			125	114				239
6 - 7 A.M.			336	328				664
7 - 8 A.M.			⁻ 5 7 5	632				1207
8 - 9 A.M.			1110	1004				2114
9 -10 A.M.			767	687				1454
10-11 A.M.			430	412				842
11 -12 NOON		386	445	497				1328
12 - 1 P.M.		401	419	435				1255
1 - 2 P.M.		315	318	336				969
2 - 3 P.M.		331	326	344				1001
3 - 4 P.M.		468	583	625				1676
4 - 5 P.M.		459	729	829				2017
5-6 P.M.		694	714	485				1893
6 - 7 P.M.		330	308	679				1317
7 – 8 P.M.		212	279	389				880
8 - 9 P.M.		126	162	106				394
9 -10 P. M.		100	142	80				322
10 -11 P.M.		111	103	61				275
11 - 12 MID.		62	96	39				197
TOTAL		3995	8125	8234				20354
								224

____Avg. Weekday___8,234 Avg. Sun.____ Avg. Sat.____

MECHANICAL RECORDER COUNT RECORD

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110

CALCULATED BY GT DATE 10 December 81 CITY/TOWN: Boston STATE MA LOCATION: Northern Avenue Bridge

184 High Street, Boston, Massac 617 / 482-0749	chusetts 02110	1	DIR. Total			121-10	SHEET	1_OF_1			
TIME MONTH	Sun. 15	Mon. 16	Tue. 17	Wed. 18/11	Thu.	Fri. 13	Sat.	TOTAL			
12 - 1 A.M.	399	98	90	107	76	137	243	1150			
1 - 2 A.M.	169	29	43	32	42	76	132	523			
2 - 3 A.M.	220	31	17	36	18	84	137	543			
3 - 4 A.M.	35	21	12	19	20	35	34	176			
4 - 5 A.M.	17	42	39	42	39	37	27	243			
5 - 6 A.M.	26	192	149	143	180	169	46	905			
6 - 7 A.M.	40	489	427	416	502	529	104	2507			
7 - 8 A.M.	76	989	1044	998	1125	1114	227	5573			
8 - 9 A.M.	92	1359	1416	1237	1470	1373	312	7268			
9-10 A.M.	129	1143	1025	1084	1249	1124	330	6084			
10-11 A.M.	194	799	811	738	726	926	504	4688			
11 -12 NOON	356	754	905	862 † 11/18	1076	1085	614	5652			
12 - 1 P.M.	662	916	1029	♦ 11/11 897	1147	1321	745	6607			
1 - 2 P.M.	676	831	1932	945	1163	1062	826	6535			
2 - 3 P.M.	784	888	991	972	1183	1368	889	7075			
3 - 4 P.M.	746	1179	1211	1055	1343	1448	985	7967			
4 - 5 P.M.	799	1481	1308	1076	1639	1744	972	9019			
5-6 P.M.	759	1563	1568	1107	1793	1591	907	9288			
6 - 7 P.M.	548	999	1022	826	1175	1218	1040	6828			
7 – 8 P.M.	523	668	703	757	772	1044	1069	5536			
8-9 P.M.	378	524	605	582	673	867	1032	4661			
9-10 P. M.	231	529	460	529	607	824	909	3985			
10 –11 P.M.	198	369	406	484	473	719	784	3433			
11 - 12 MID.	138	225	323	269	392	668	750	2765			
TOTAL	8075	16018	16636	15213	18892	20563	13614	109011			
Avg. Sat. 13,61	10.634										

_Avg. Sun._____8,075 _Avg. Weekday___20,563

TRANSPORTATION ENGINEERS & PLANNERS BOSTON, MA.
184 HIGH STREET, BOSTON MA 02110 DIRECTION: T LOCATION: SURFACE RD 20' S STATE ST DIRECTION: TOTAL 60 minutes COUNT INTERVAL: 60 START TIME: 4:00 P.M. 617-482-1870 CALCULATOR: WPA JOB NO: 0923 DATE: 7/25 YEAR: 1984 (WEDNESDAY) END TIME: 4:00 - A.M. WKDY HRLY WED FRI SAT TOTAL TUES THUR AVG SUN MON AM 479 12-01 0 0 0 0 473 485 0 958 371 0 164 235 0 90 75 0 28 0 0 79 0 0 418 0 0 848 0 0 733 0 0 804 0 0 1219 0 0 01-02 0 0 -0 0 313 371 0-684 342 --: 0 02-03 0 03-04 0 04-05 0 . 0 399 200 0 165 83 0 0 0 28 0 0 0 0 0 79 05-06 0 0 79 0 06-07 0 0 0 418 418 0 07-08 0 0 0 848 848 0 0 0 733 0 0 08-09 0 0 09-10 0 0 804 10-11 0 0 11-12N 0 0 0 0 1219 1219 0 1360 1360 FM 1148 0 0 1190 0 0 1190 0 0 0 1177 0 0 0 1579 0 0 0 1760 0 0 1300 0 0 1014 0 0 881 0 0 850 0 0 892 0 0 675 0 0 0 12-01 0 0 1148 1148 () 0 01-02 0 1190 1190 0 0 02-00 0 1177 1177 0 1579 1579 03-04 0 04-05 0 0 1788 3741 1871 2002 3762 05-06 0 0 06-07 0 0 1539 2839 1420 0 07-08 0 1172 2186 1093 08-09 0 0 957 1838 919 09-10 0 0 870 1720 10-11 0 0 0 757 1649 825 0 11-12M 0 0 583 TOTAL 0 0 0 9668 21165 1166 0 31999 AVERAGE WEEKDAY DAILY TRAFFIC: 21589 VEHICLES PER DAY (VPD)

AM % PEAK MIDDAY % PEAK PM %
PEAK OF HOUR PEAK OF PEAK PEAK OF HOUR ADT HOUR HOUR ADT (VPH) (%) ADT HOUR FACTOR FACTOR FACTOR (VPH) (%) (PHF) (VPH) (%) (PHF) (%) (PHF) 848 4 % 0 2170 10 % - 0 2002 9 % 0 AM PEAK HOUR: 7:00- 8:00 M'DAY PEAK HR: 15:00- 16:00PM PEAK HOUR: 17:00- 18:0 · VPD AVERAGE SATURDAY: 0 AVERAGE SUNDAY: VPD PEAK 7-PEAK PEAK OF OF HOUR PEAK HOUR ADT HOUR FACTOR HOUR ADT FACTOR (PHF) (VPH) (VPH) (%) (%) 0 0 % 0 0 0 % 0 SATURDAY PEAK HOUR: 11:00-12:00 SUNDAY PEAK HOUR: 11:00-12:00

MECHANICAL RECORDER COUNT RECORD

|--|

Avg. Sat.

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749 CALCULATED BY: PD/SS DATE 19 November 81

CITY/TOWN: Boston STATE MA

LOCATION Atlantic Ave. South Of Ramp/Northern Ave.

Northbound LOR No. 0121-10 SHEET 1 OF 1

TIME MONTH 11/81 Sun. Mon. Tue. 12 Wed. 13 Thu. Fri. 20 Sat. TOTAL 12 - 1 A.M. 112 133 245 1 - 2 A.M. 47 90 137 2 - 3 A.M. 62 65 127 3 - 4 A.M. 44 51 95 4 - 5 A.M. 76 83 159 5 - 6 A.M. 234 194 428 6 - 7 A.M. 505 616 1121 7 - 8 A.M. 1204 1245 2339 9 -10 A.M. 989 1111 2093 10 - 11 A.M. 823 920 1743 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 125 1	617 / 482-0749			DIR. Northbound JOB No. 0121-10 SHEET 1 OF						
1 - 2 A.M. 1 - 2 A.M. 2 - 3 A.M. 3 - 4 A.M. 44 51 95 4 - 5 A.M. 505 616 1121 7 - 8 A.M. 505 616 1121 7 - 8 A.M. 1114 1203 2317 8 - 9 A.M. 1124 1245 9 - 10 A.M. 10 - 11 A.M. 11 - 12 NOON 911 951 1020 12 - 1 P.M. 922 849 926 12 - 3 P.M. 946 851 907 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 19 - 10 P.M. 19 - 10 P.M. 183 201 260 11 - 12 MID. 137 189 180	TIME MONTH	Sun.	Mon. 16	Tue. 17	Wed.	Thu.	Fri.	Sat.	TOTAL	
2 - 3 A.M. 2 - 3 A.M. 3 - 4 A.M. 4	12 - 1 A.M.			112	133				245	
3 - 4 A.M. 3 - 4 A.M. 44 51 95 4 - 5 A.M. 5 - 6 A.M. 1114 1203 2317 8 - 9 A.M. 1204 1245 9 - 10 A.M. 989 1111 2093 10 - 11 A.M. 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3 973 5 - 6 P.M. 1215 1307 1451 3 973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3 167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 5 06	1 - 2 A.M.			47	90				137	
4 - 5 A.M. 76 83 159 5 - 6 A.M. 234 194 428 6 - 7 A.M. 505 616 1121 7 - 8 A.M. 1204 1245 2317 8 - 9 A.M. 1204 1245 2339 9 - 10 A.M. 989 1111 2093 10 - 11 A.M. 823 920 1743 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 798 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301	2 - 3 A.M.			62	65				127	
5 - 6 A.M. 234 194 428 6 - 7 A.M. 505 616 1121 7 - 8 A.M. 1114 1203 2317 8 - 9 A.M. 1204 1245 2339 9 -10 A.M. 989 1111 2093 10 - 11 A.M. 823 920 1743 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 <th>3 - 4 A.M.</th> <th></th> <th></th> <th>44</th> <th>51</th> <th></th> <th></th> <th></th> <th>95</th>	3 - 4 A.M.			44	51				95	
6 - 7 A.M. 505 616 1121 7 - 8 A.M. 1114 1203 2317 8 - 9 A.M. 1204 1245 2339 9 -10 A.M. 989 1111 2093 10 -11 A.M. 823 920 1743 11 -12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 -10 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	4 - 5 A.M.			76	83				159	
7 - 8 A.M. 1114 1203 2317 8 - 9 A.M. 1204 1245 2339 9 - 10 A.M. 989 1111 2093 10 - 11 A.M. 823 920 1743 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506 <	5 - 6 A.M.			234	194				428	
8 - 9 A.M. 1204 1245 2339 9 -10 A.M. 989 1111 2093 10 - 11 A.M. 823 920 1743 11 - 12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	6 - 7 A.M.			505	616				1121	
9 -10 A.M. 989 1111 2093 10 -11 A.M. 823 920 1743 11 -12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 -10 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	7 - 8 A.M.			1 114	1203				2317	
10-11 A.M. 823 920 1743 11-12 NOON 911 951 1020 2882 12-1 P.M. 922 849 926 2697 1-2 P.M. 820 888 933 2641 2-3 P.M. 946 851 907 2704 3-4 P.M. 1032 1044 1277 3353 4-5 P.M. 1215 1307 1451 3973 5-6 P.M. 1354 1244 1441 4039 6-7 P.M. 868 788 1511 3167 7-8 P.M. 499 539 692 1730 8-9 P.M. 300 446 401 1147 9-10 P.M. 249 301 327 877 10-11 P.M. 183 201 260 644 11-12 MID. 137 189 180 506	8 - 9 A.M.			1204	1245				2339	
11 -12 NOON 911 951 1020 2882 12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	9-10 A.M.			989	1111				2093	
12 - 1 P.M. 922 849 926 2697 1 - 2 P.M. 820 888 933 2641 2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	10-11 A.M.			823	920				1743	
1 - 2 P. M. 820 888 933 2641 2 - 3 P. M. 946 851 907 2704 3 - 4 P. M. 1032 1044 1277 3353 4 - 5 P. M. 1215 1307 1451 3973 5 - 6 P. M. 1354 1244 1441 4039 6 - 7 P. M. 868 788 1511 3167 7 - 8 P. M. 499 539 692 1730 8 - 9 P. M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	11 -12 NOON		911	951	1020				2882	
2 - 3 P.M. 946 851 907 2704 3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	12 - 1 P.M.		922	849	926				2697	
3 - 4 P.M. 1032 1044 1277 3353 4 - 5 P.M. 1215 1307 1451 3973 5 - 6 P.M. 1354 1244 1441 4039 6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	1 - 2 P.M.		820	888	933				2641	
4 - 5 P. M. 1215 1307 1451 3973 5 - 6 P. M. 1354 1244 1441 4039 6 - 7 P. M. 868 788 1511 3167 7 - 8 P. M. 499 539 692 1730 8 - 9 P. M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	2 - 3 P.M.		946	851	907				2704	
5 - 6 P. M. 1354 1244 1441 4039 6 - 7 P. M. 868 788 1511 3167 7 - 8 P. M. 499 539 692 1730 8 - 9 P. M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	3 - 4 P.M.		1032	1044	1277				3353	
6 - 7 P.M. 868 788 1511 3167 7 - 8 P.M. 499 539 692 1730 8 - 9 P.M. 300 446 401 1147 9 - 10 P.M. 249 301 327 877 10 - 11 P.M. 183 201 260 644 11 - 12 MID. 137 189 180 506	4 - 5 P.M.		1215	1307	1451				3973	
7 - 8 P. M. 499 539 692 1730 8 - 9 P. M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	5 - 6 P.M.		1354	1244	1441				4039	
8 - 9 P. M. 300 446 401 1147 9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	6 - 7 P.M.		868	788	1511				3167	
9 - 10 P. M. 249 301 327 877 10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	7 – 8 P.M.		499	539	692				1730	
10 - 11 P. M. 183 201 260 644 11 - 12 MID. 137 189 180 506	8-9 P.M.		300	446	401				1147	
11 - 12 MID. 137 189 180 506	9-10 P. M.		249	301	327				877	
	10 -11 P. M.		183	201	260				644	
TOTAL 9436 14801 17037 41274	11 - 12 MID.		137	189	180				506	
	TOTAL		9436	14801	17037				41274	

_____ Avg. Sun.___

____Avg. Weekday___17,037

0 0 % 0

SUNDAY PEAK HOUR: 11:00-12:00

0 0 %

SATURDAY PEAK HOUR: 11:00-12:00

LOCATION: SURFACE RD. 20' S STATE ST. VANASSE HANGEN ASSOCIATES, INC. TRANSPORTATION ENGINEERS & PLANNERS BOSTON MA. 184 HIGH STREET, BOSTON MA 02110 DIRECTION: SOUTHBOUND COUNT INTERVAL: 60 617-482-1870 CALCULATOR: WPA JOB NO: 0923 START TIME: 4:00 P.M. DATE: 7/25 YEAR: 1984 (WEDNESDAY) END TIME: 4:00 A.M. WKDY HRLY MON SUN TUES WED THUR FRI SAT TOTAL AM 12-01 0 302 309 611 304 255 0 150 0 0 0 239 494 247 01-02 0 0 0 0 0 109 259 02-03 0 130 45 0 0 68 0 0 113 57 03-04 0 0 0 0 0 28 0 28 04-05 0 28 79 79 0 Ō 0 0 0 79 05-06 0 06-07 0 0 0 418 0 418 418 0 07-08 0 0 0 0 848 Ο. 843 849 08-09 0 0 0 0 733 0 0 733 733 0 0 804 0 09-10 0 0 0 0 804 804 644 748 644 10-11 0 0 0 0 0 644 0 0 748 11-12N 0 PM 700 700 0 0 0 0 0 700 12-01 0 716 0 01-02 0 0 0 0 0 716 716 02-03 0 0 0 677 0 0 677 677 0 0 748 0 748 03-04 0 0 0 748 900 930 632 637 697 04-05 0 0 0 0 0 1597 a 798 0 . 0 05-06 0 0 727 0 1657 . 829 ', 0 0 0 06-07 0 780 0 1412 706 07-08 0 0 0 0 0 731 1370 08-09 0 509 586 0 0 0 0 1095 548 555 521 0 0 538 09-10 0 0 0 1076 0 0 584 0 10-11 0 487 0 1071 11-12M 0 4921 12995 759 0 18675 13097 AVERAGE WEEKDAY DAILY TRAFFIC: 13097 VEHICLES PER DAY (VPD)

AM % PEAK MIDDAY % PEAK PM %
PEAK OF HOUR PEAK OF PEAK PEAK HOUR HOUR HOUR HOUR ADT ADT FACTOR FACTOR ADT FACTOR (VPH) (%) (PHF) (VPH) (%) (PHF) (VPH) (%) 848 6 % 0 1117 9 % 0 748 6 % AM PEAK HOUR: 7:00- 8:00 M'DAY PEAK HR: 15:00- 16:00PM PEAK HOUR: 16:00- 17:00 AVERAGE SATURDAY: 0 VPD AVERAGE SUNDAY: 0 VPD PEAK 7. PEAK PEAK OF HOUR PEAK OF HOUR HOUR ADT FACTOR HOUR ADT FACTOR (VPH) (%) (PHF) (VPH) 0 % 0 % 0 Ŏ 0 SATURDAY PEAK HOUR: 11:00-12:00 SUNDAY PEAK HOUR: 11:00-12:00

VANASSE HANGEN ASSOCIATES, INC. TRANSPORTATION ENGINEERS & PLANNERS 184 HIGH STREET, BOSTON MA 02110

617-482-1870

CALCULATOR: PES JOB NO: 894

675 6 %. 0 SATURDAY PEAK HOUR: 10:00-11:00

LOCATION: BLACKSTONE 200' E. SUDBURY BOSTON, MASS.

DIRECTION: SOUTHBOUND ON SURFACE COUNT INTERVAL: 60 minutes START TIME: 12:00

628 6 % 0 SUNDAY PEAK HOUR: 5:00-6:00

CALCUL	MIUK. FI	005	140. 07	~		O 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0. 14	
DATE:	07/12	YEAR: 1	984 (T	HURSDAY)		END TIME:	1:00	A.M. P.M.	WKDY HRLY
TIME	SUN	MON	TUES	WED	THUR	FRI	SAT	TOTAL	AVG
AM									
12-01	349	134	0	0	0	259		1130	197
01-02	251	100	0	0	0	177	324	852	139
02-03	210	80	0	0	0	124	261	675	102
03-04	65	82	0	0	0	62	88	297	72
04-05	27	43	0	0	0	49	59	178	46
05-06	43	66	0	0	0	100	71	280	83
06-07	58	285	0	Q	0	334	141	818	310
	90	534	0	0	0	451	206	1281	493
	142	618	0	0	0	411	326	1497	515
09-10	220	521	0	0	0	468	367	1576	495
10-11		509	0	0	0	528	352	1672	519
11-12N PM	417	579 .*	0	0	0	657	377	2030	618
12-01	420	<i>,,</i> 637	0	0	619	554	397	2627	603
01-02	399	0	0	0	596	569	393	1957	583
02-03	329	0	0	0	653	639	363	1984	646
03-04	0	0	0	0	724	771	350	1845	748
04-05	418	0	0	0	709	756	292	2175	733
05-06	628	0	0	0	680	563	238	2109	622
06-07	586	0	0	0	722	593	272	2173	458
07-08	519	0	0	0	668	557	315	2059	613
08-09	516	0	0	0	578	615	300	2029	607
09-10	400	0	0	0	559	547	549	2055	553
10-11	273	0	0	0	496	535	695	1999	516
11-12M	0	0	0	0	377	515	480	1372	446
TOTAL	6643	4188	0	0	7401	10834	7604	36670	10917
AVERAGE	E WEEKDA	AY DAILY	TRAFFI	109	17 VEH	HICLES PER	DAY (VPD)	
AM	7.	PEAK	M:	IDDAY	%	PEAK	PM	7.	PEAK 1
PEAK	OF	HOUR	f	PEAK	OF	HOUR	PEAK	OF	HOUR
HOUR	ADT	FACTO	₹ 1	HOUR	ADT	FACTOR	HOUR	ADT	FACTOR
(VPH)	(%)	(PHF) ('	/PH)	(%)	(PHF)	(VPH)	(%)	(PHF)
618 AM PEAR	6 % < HOUR:	0 8:00- 9		771 DAY PEA	7 % K HR: 1	0 . 5:00- 16:0	,	7 % HOUR:	0
AVERAGE	E SATURI			VPD		AVERAGE S			VPD
DEAK		7.	PE				7.		PEAK
PEAK HOUR	,	OF	HOL			PEAK	0F		HOUR
(VPH)		ADT (%)	FACT (Pl			HOUR	AD.		FACTOR
						(VPH)	(%		(PHF)

VANASSE HANGEN ASSOCIATES, INC. LOCATION: BLACKSTONE 200' E. SUDBURY TRANSPORTATION ENGINEERS & PLANNERS
184 HIGH STREET, BOSTON MA 02110
617-482-1870
CALCULATOR: PES JOB NO: 876 BOSTON, MASS. DIRECTION: SOUTHBOUND ON RAMP COUNT INTERVAL: 60 minutes START TIME: 12:00 A.M. DATE: 07/12 YEAR: 1984 (THURSDAY) END TIME: 1:00 P.M. WKDY HRLY TIME SUN MON TUES WED THUR FRI SAT TOTAL . AVG AM

12-01 209 103 0 0 0

01-02 174 66 0 0 0

02-03 159 63 0 0 0

03-04 63 26 0 0 0

04-05 31 16 0 0 0

05-06 38 51 0 0 0

05-06 38 51 0 0 0

06-07 68 380 0 0 0

07-08 116 674 0 0 0

08-09 147 624 0 0 0

09-10 231 450 0 0

10-11 248 444 0 0

PM AM -293 743 226 562 138 96 89 162 473 76 89 162 39 92 28 58 98 71 478 144 552 176 304 229 406 315 398 339 434 242 220 133 258 1070 1518 613 1304 464 1402 1429 1524 414 415 262 493 400 268 456 381 282 671 433 228 459 428 223 269 307 234 418 347 235 439 394 190 312 409 211 450 376 301 409 446 456 301 440 331 1878 437 1456 447 1327 419 1332 1360 444 1060 1249 1305 1222 1378 288 383 361 413 1513 TOTAL 4405 . 3908 0 0 5091 7836 5568 24808 8205 AVERAGE WEEKDAY DAILY TRAFFIC: 8205 VEHICLES PER DAY (VPD) AM % PEAK MIDDAY % PEAK PM %
PEAK OF HOUR PEAK OF HOUR PEAK OF
HOUR ADT FACTOR HOUR ADT PEAK HOUR PEAK HOUR (VPH) HOUR ADT FACTOR (%) (VPH) (PHF) (%) (PHF) 671 8 % 459 6 % 0 674 8 % 0 0 AM PEAK HOUR: 7:00- 8:00 M°DAY PEAK HR: 15:00- 16:00PM PEAK HOUR: 16:00- 17:0 AVERAGE SUNDAY: 184

PEAK OF VPD AVERAGE SATURDAY: VPD % OF PEAK HOUR PEAK HOUR ADT (VPH) (%) ADT ADT FACTOR HOUR FACTUR (VPH) (PHF) 456 6 % 0 325 4 % 0 SATURDAY PEAK HOUR: 10:00-1:00 SUNDAY PEAK HOUR: 12:00-1:00

Town: BOSTON, MA

Location: High Street (30' East of Batterymarch St.)

Direction: Westbound

Direction: West								
Month		Mon.	Tues.	Wed.	Thu.	Frl.	Sat.	Total
Hour 1980	16	17			13	14	15	
12 - 1A.M.	45	17				29	50	
1 - 2A.1.	34	9_				20	29	
2 - 3A.M.	18	9				22	28	
3 - 4A.M.	4	8				14	16	
4 - 5A.M.	3	11				10	21	
5 - 6A.M.	9	49			,	43	15	
6 - 7A.M.	23	165				- 163	64	
7 - 3A.M.	38	39.7				380	162	
3 - 9A.M.	42	578				620	169	7
9 - 10A.M.	45	474	4 4	<u>.</u> !!	. 3.	. 473	174	
10 - 11A.M.	50		1	111] i	366	184	
11 - 12P.M.	99	1	198		Jun h.	389	192	
12 - 1P.M.	71					348	184	
1 - 2P.M.	89					339	173	
2 - 3P.M.	88				389	394	152	
3 - 4P.M.	108				306	311	163	
4 - 5P.M.	9.5				376	371	122	
5 - GP.M.	55				305	281	91	
6 - 7P.M.	52				228	191	6.3	
7 - SP.M.	42				120	147	76	
8 - 9P.M.	22				9.7	140	.77	
9 - 10P.M.	28				69	137	73	
10 - 11P.M.	32				95	102	68	
11 - 12MID.	39				63	81	7.1	
TOTAL	1131	2093			2048	5371	2417	

Avg. Sat. 2417 Avg. Sun. 1131 Avg. Weekday 5371

Town: BOSTON, MA

Location: Franklin St. (East of Oliver St.)

Direction: Westh	ouna							
Month	Sun.	Mon.	Tues.	Wed.	Thu.	Fri.	Sat.	Total
Hour 1980		10	11*	12	13			
12 - 1A.M.			37	19	25			
1 - 2A.M.			43	. 30	18			
2 - 3A.M.			8	7				
3 - 4A.M.			6	2				
4 - 5A.M.			9	17				
5 - 6A.M.			9	23	,			
6 - 7A.M.			35	70				·
7 - 8A.M.			116	237				
3 - 9A.M.			253	367				t .
9 - 10A.M.		:	217	354	- 1 ±			_27 1 2
10 - 11A.M.	20 d.0 -	-	146	259	73	43 1	i i	35
11 - 12P.M.	1225		174	223	27	147	T THE STATE OF THE	07
12 - 1P.M.			155	218	,		3	
1 - 2P.M.	·		201	210		•		
2 - 3P.M.			169	260				
3 - 4P.M.			142	246				
4 - 5P.M.		250	140	261				
5 - 6P.M.		124	81	187				
6 - 7P.M.		102	34	131				
7 - 3P.M.		92	54	95				
3 - 9P.M.		38	40	. 73				
9 - 10P.M.		47	31	62				
10 - 11P.M.		53	47	64				
11 - 12MID.		47	36	63				
TOTAL		753	2183	3478	43			

Avg. Sat. _____ Avg. Sun. ____ Avg. Weekday ____3478 ____

^{*} VETERAN'S DAY

BOSTON Town:___

Location: Oliver St. (South of Franklin St.)

Direction: North	bound_							
Month	Sun.	Mon.	Tues.	Wed.	Thu.	Fri.	Sat.	Total
Hour 1980 11		10	11*	12	13			
12 - 1A.M.			40	19	34			
1 - 2A.M.			14	11	15			
2 3A.M.			18	1				
3 - 4A.M.			12	10				
4 - 5A.M.			12	17				
5 - 6A.M.			17	74	<i>'</i>			
6 - 7A.M.			104	187				
7 - 8A.M.			235	275				,
3 - 9A.M.			368	575				-
9 - 10A.M.			199	411	,	1473	,	;
10 - 11A.M.			155	296	145]	259	_ <u>i</u> _	
11 - 12P.M.	427,7		175	279	174	223		
12 - 1P.M.			207	215				
1 - 2P.M.			197	239				
2 - 3P.M.			163	319				
3 - 4P.M.			139	301				
4 - 5P.M.		207	130	328				
5 - 6P.M.		201	102	204				
.6 - 7P.M.		137	79	170				
7 - 8P.M.		99	44	138				
8 - 9P.M.		76	31	76				
9 - 10P.M.		101	22	80				
10 - 11P.M.		67	44	64				
11 - 12MID.		45	50	53				
TOTAL		933	2557	4342	49			

Avg. Sat. _____ Avg. Sun. ____ Avg. Weekday 4342

^{*} VETERAN'S DAY

MECHANICAL RECORDER COUNT RECORD

|--|

Avg. Sat.

Vanasse / Hangen Associates, Inc.

Transportation Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-0749

CALCULATED BY: GHA DATE: 4/24/82 CITY/TOWN: Boston STATE MA

DIR. Total JOB No. 0266-10

LOCATION: Oliver St. North of the Parking Garage OF Entrance

2672

Avg. Weekday

MONTH TIME April 19	 Mon.	Tue. 20	Wed.	Thu. 22	Fri.	Sat.	TOTAL
12 - 1 A.M.			35	46	69		150
1 - 2 A.M.			12	15	52		79
2 - 3 A.M.			14	18	37		69
3 - 4 A.M.			6	9	11		25
4 - 5 A.M.			6	6	7		19
5 - 6 A.M.			28	39	39		106
6 - 7 A.M.			56	69	65		190
7 - 8 A.M.			89	75	94		258
8 - 9 A.M.			124	131	117		372
9 -10 A.M.			153	179	169		501
10-11 A.M.			147	173	135		455
11 -12 NOON			211	156	166		533
12 - 1 P.M.			153	168	201		522
1 - 2 P.M.			190	187			377
2 - 3 P.M.			219	171			390
3 - 4 P.M.		204	189	173			566
4 - 5 P.M.		256	219	232			707
5 - 6 P.M.		196	213	289			698
6 - 7 P.M.		154	144	156			454
7 – 8 P.M.		93	96	108			297
8 - 9 P.M.		8.2	75	93			250
9 – 10 P. M.		5.4	64	\$5			203
10 – 11 P. M.		4.8	67	129			244
11 - 12 MID.		43	46	82			171
TOTAL		1130	2556	2789	1162		7637

_Avg. Sun.__

MASSACHUSETTS DEPARTMENT OF PUBLIC WORKS BUREAU OF TRANSPORTATION PLANNING & DEVELOPMENT

VOLUME SUMMARY

CONDUCTED IN COOPERATION WITH FEDERAL HIGHWAY ADMINISTRATION

	Yeo	1979			Sta	tion No	8222 - 2 1	lay Trai	ffic	
	Mor	nth Decembe	er_			ite No				
Town		Boston		Street Northern Avenue Bridge Fort Point-Channel						
4	Mandau	7	144- 4 4-	7.		e : 1	1			

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Total
Date				12-5-79	12-5-79	12-7-70		
2 - 1 A.M.					204	12-7-79		
- 2					0.4	ಕ 6		
2 - 3					6 2	5 A		
3 - 4					5 2	6.5		
- 5					7.4	3.2		
5 - 6					239	226		
5 - 7					- 516	527		
7 - 8				7.		1,223		
3 - 9				7 ;	1.336	1,348		
9 - 10				9.36	1,004	1.016		
0-11					911	910		
1-12					034	967		
2 P.M.				7,1-23	1.144	1,169		
- 2				1,161	1.151	1,217		
2 - 3				1.237	1,189			
3 - 4				1.339	1,296			
l - 5				1,806	1.782			
5 - 6				1.446	1.5.15			
5 - 7				1.126	1.151			
7 - 8				967	1, (23			
3 - 9				8 2 1	7 8 2			
9 - 10				639	557			
0-11				5 3 6	510			
1-12				511	- 121		-	
otal				-5,6-4-2 :		9.1 .12 #		43,000 %
				10 477				
Average ek Day								38825

Day	Weather	Road Conditions	Temporature
Monday			
Tuesday			
Wodnesday			
Thursday			
Friday			
Saturday	•		
Sunday			

19413

DIVERSIFIED ENGINEERING SERVICES 19 WINTHROP ROAD . BROOKLINE, MASSACHUSETTS CITIES

AUTOMATIC TRAFFIC COUNTER SUMMARY

TOTALS

LOCATION: SUMMER STREET BRIDGE (FORT POINT CH.) OUTBOUND

LOCATION 18

BOSTON CORDON COUNT

• •	•	Y	EAR _ 19	82	MONT	H <u>SEPT.</u>		DAYS_
	<u> </u>	· · ·	1_	1	·		· 	1
Hour Month	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Total
Beginning		9/20	9/21	9/22				<u> </u>
12 - 1A.M.			· 89	122.				
1 - 2 A. M.			60	107				
2 - 3 A.M.	·		50 [°]	72				
3 - 4 A.M.			76	49				
4 - 5 A. M.			161	191				
5 - 6 A, M.			816	835				
6 - 7 A.M.		1002	1418	1423				
7 - 8 A.M.		1028		1286				
8 - 9 A.M.		880	995	990		:		
9 -10 A. M.	40 10	877	1393	910				
10 - n A, M,		823	1014	841				
11 - 12 Noon	·	728	894	852				
112 - 1 P.M.		793	976	875				
1 - 2 P.M.		836	1009	879				
2 - 3 P.M.		1014	1022	1297				
3 - 4 P.M.	:	1066	998	1131	2			
4 - 5 P.M.		1103	965	1288				
5 - 6 P.M.		716	743	750				
6'- 7 P.M.		428	482	422				
7 - R P. M.		358	403	349				
8 - '9 P.M.		336	389	361				
9 - 10 P. M.		360	344	388				
10 -11P.M.		194	251	287				
11 -12 1/24		184	174	200				
			(15,677)	15,922				

Aug Day = 16,008

DIVERSIFIED ENGINEERING SERVICES . 19 WINTHROP ROAD - BROOKLINE, MASSACHUSEITS ON ...

AUTOMATIC TRAFFIC COUNTER SUMMARY

LOCATION: SUMMER STREET BRIDGE (FORT POINT CH.) INBOUND

LOCATION 19

BOSTON CORDON COUNT

YEAR 1982 MONTH __SEPT____ DAYS __

Hour Month	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Total
Beginning		9/20	9/2i	9/22	-			
12 - 1A.M.			• 57	209				
1 - 2 A. M.			74	115	·			
2 - 3 A.M.			47°	124				
3 - 4 A.M.			·57	89				
4 - 5 A. M.			64	105				·
5 - 6 A, M.			ا ا	64				
'6 - 7 A.M.		616	۰ جات	552		-		
7 - 8 A.M.		927	999	1186				
8 - '9 A.M.		1153	986	1313		:		
9 - 10 A. M.		786	748	1293				
10 - 11 A, M,		768	761	914				
11 -12 Noon		771	1001	719			•	
112 - 1 P.M.		873	948	522				
1 - 2 P.M.		890	1025	735				
2 - 3 P.M.		769	933	879				
3 - 4 P.M.		983	1148	1015				
4 - 5 P.M.			1118	1192				
5 - 6 P.M.	·		830					
6'-7P.M.			733					
7 - 8 P.M.			511					
8 - '9 P.M.		375	419					
9 - 10 P.M.		342	31.8					
10 - 11 P.M.		323	323					
11 -12 364		312	352					
TOTALS			(14,000)	(14,500)				•

Hug. Tay = 14,132

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110

JOB International Place	_ JOB No
LOCATION	OF
CALCULATED BY BG	_DATE:
CHECKED BY:	_DATE:
TITLE: Mechanical lecorde	- Counts

517 / 482-1870	TITLE: Flechan Kal Ceco	rder Counts
Location	Year	ADT
Atlantic Ave.		
at Northern Are.	1981	17,040 2
at Northern Ave.	1982	14,650
South of Congress ST.	1982	10,600 4
NORTH OF NORTHERN AVE.		21,500
BLACKSTONIE ST.		
EAST OF SUBBURY ST		3750 ^{4/}
EAST OF NEW CHARDON ST.	1982	77.50 [±]
CLINTON ST.		
CONGRESS ST.		
EAST OF MILK ST.	1980	9460
EAST OF FRANKLIN ST.	1980	JZ,050 ^{±1}
EAST OF ATLANTIC AVE.		10,09021
EAST OF ATLANTIC AVE (EB)	1982	8800 ⁴
EAST DE ETLANTIC AVE. (WB)		· 8500 4J
		1
W		
Traffic study for a proposed Mutli- Office 2 Comm Pier Five EIR by VHA dated II! 3 Building 114 Removation EIR by VHA	Building by VHA dated Janual	·
31 R. 11 14 Par do FIRE 1 1111	7, 86.	
I Third Harber Tunnel EIR dated	Dic 22	
- Thirth Thank I haven and a second	un 1,5 = 1	

JOB International Place	JOB No. 0923
LOCATION:	SHEETOF
CALCULATED BY 89	DATE
CHECKED BY:	DATE
TITLE Mechanical Recorder	- Counts

		40-7
Location	Year	ADT
DORCHESTER AVE.		
		•
FRANK- N.S.		
East OF OLIVER ST.	. 1980	3430 ⁻¹
East OF FLEX. ST.	1980	43954
AT PEARL ST.	1950	36904
A. FORE S.	7450	30,0
	•	·
11.0 5		
HIGH ST.		
East OF PEAKL S.	1820	11,1204
East OF CONSKESS ST.	1980 1980	7,250
A .	1930 1930	7,250 53-04
East of ExTERYMARCH ST.	1950	5.7 🗸
Mi-k St.		
r.d Ba C-	10.20	3420 ⁴
East OF BRUXO ST.	1980	1750 4
Gast OF CONGRESS ST.	1980	1795
NORTH S-		
EAST OF UNION ST. (EB)	1932	9200 ¹⁴
EAST OF UNION ST. (WB)	. 1932	7300 1
Traffic stude for a proposed Mutli- Office Built	ding by VHA dated Jan, 81.	
- Committee Five EIR by VHA dated Ily, 80	2.	
21 Commilier Five EIR by VHA dated Inly, 80 31 Building 114 Remonstron EIR by VHA date	ed Dec., f2.	
4) Third Harbor Tunnel EIR Lated Dec	.,82.	

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB International Place	_ JOB No
LOCATION:	OF
CALCULATED BY: 89	DATE:
CHECKED BY:	DATE:
- Harle is I learned	

		
Location	_Year	ADT
NORTHERN AVE		
NORTHERN AVE		
NORTHERNI AVE. BRIDGE	1981	20,56012
EAST OF ATLANTIC AVE. (EB)	1982	8250 ¹⁴
EAST OF ATLANTIC AVE. (WB)	1982	9800 ¹⁴
The state of the s		
OLIVER ST.		
	was and the same of the same o	
SOUTH OF FRANKLIN ST.	1980	43404
reasonance in open in To M. I. (Appl A. Martiner, C. of M. II. Arm.). Which May a William in a part of the contract of the C. of the contract of the C. of t	The second secon	
and the second s		
Pearl St.		
SOUTH OF MIK ST.	1980	5660 ^L
2017 OF FRANKINS.	1980	4740 4
	a sa was an order or species or some	
PURCHASE ST	angeriere sin destri de la la la de	
	,	
	and the state of the state of the same particular definition where the same page.	
STATE ST.		
EAST OF NEW CONBRESS ST.	1982	16,00014
EAST OF CENTRAL ARTERY	1982	and the second s
D. D.C. CAN ST.		
<u> </u>		
Tractic study for a proposed Mutli-Office Building I Committee Fire EIR by VHA dated Inly, 82. 31 Building 114 Resonation EIR by VHA dated	by VHA dated Janual	/·
- Lommitier Five EIR by VHA dated Ily, 82.		
3 Building 114 Removation EIR by VHA Lated	Dec. F2.	
4 Third Harber Tunnel EIR duted Dec. ,82	,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners

JOB International Place	JOB No. 0523
LOCATION:	_\$HEETOF
CALCULATED BY	_DATE :
CHECKED BY:	

184 High Street, Boston, Massachusetts 02710 617 / 482-1870	TITLE: Mechanical lecor	der Counts
Location	Year	ADT
SUMMER ST.		
AT FORT POINT CHANNEL	1981	28,290 12
AT FORT POINT CHANNEL	1987	28,140 13
EAST OF ATLANTIC AVE. (EB)	1982	10,300 14
EAST OF ATLANTIC AVE (WB)	1982	10,000 14
	,	,
SURFACE ARTERY		
		,
NORTH OF STATEST, BB)		15.75D 14
SOUTH OF STATEST (NB)	1982	15.75D 14 14,550 LY
OFF-RAMP AT HIGH ST		
	1981	12,020 4
	1982	12,000
OFF-RAMP AT NORTHERNAVE		
AND ATLANTIC		
	1981	8,230 =
	1	1 .
		1 1
I Traffic study for a proposed Mutli-Office Bi	uldier by VHA dated Janual.	
Tractic study for a proposed Mutli-Office Bin 2 Commbier Five EIR by VHA dated In/y, and Building 114 Removation EIR by VHA dated In/y, and I I I I I I I I I I I I I I I I I I I	82.	Andrew Control
3 Building 114 Remove Him EIR by VHA &	ated Dec. FZ.	
4 Third Harber Tunnel EIR dated Di	ic.82.	
	1,5	

WE

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION CONGRESS ST. FRANKLIN ST.

ALT. GISTIN G YEAR PERIOD AM

CALCULATED BY & DATE 4-11-24 SHEET OF

CHECKED BY WIS DATE JOB NO. 0782

	PHASING 29	<u> </u>			
	A	B	C	D	E
		. 🕅			
	7				
	*				
		115 144			
		1 10137			
	316	,			
2	- 316 15 - 312				
	103				
	CT 11- 2//	CLV= 185	CT 11-		
	CLV= 3/6	CTA= 182	CLV=	CLV=	CTA=

	CRITER	IA (vph)	AUS	2 Ø	3 8	4 8	
Ad = 626	LOS	A	730	900	255	825	_
		8	54c	1050	1000	965	
	•	C	900	1200	1140	1100	
- 1		٥	1050	1350	1275	1225	
reds		Ε	1200	1500	1425	1375	
	Ad = 626	Ad : 626 LOS	. c	Ad = 626 LOS A 730 B S40 C 460 D 1050	Ad : 626 LOS A 730 900 B \$40 1050 C 460 1200 D 1050 1350	Ad = 626 LOS A 73C 900 255 B \$46 1050 1000 C \$760 1200 1140 D \$1050 1350 1275	Ad = 626 LOS A 73C 900 255 825 825 8 645 1050 1000 965 C 76C 1200 1140 1100 D 105C 135O 1275 1225

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	CONGRESS ST.	FRANKLIN ST.
ALT. EXISTING		PERIOD PM
CALCULATED B	Y BG DATE	4-11-84 SHEET OF
CHECKED BY	JOS DATE	JOB NO. 0788

PHASING 20

(A)	B	©	©	Œ :
563 421 142	124 123		-	
CLV= 563	CLV= 124	CLV=	CLV=	CLV= ,

Δ	djal						
	7	CRITERI	A (vpn)	AP')	2 🗷	3 8	4 2
E CLV <u>687</u>	859	LOS	A	.730	900	855	825
V/C 0.57			8	8410	1050	1000	965
			C	960	1200	1140	1100
LOS_A	,		ם	1020	1350	1275	1225
20% leduction for Pe	eds		E	1200	1500	1425	1375

INTERSECTION_	CONGRESS ST.	I FRANKLIN ST.	
ALT. No-Build	YEAR 19) o PERIOD	AM
CALCULATED BY	B4 DATE		EETOF
CHECKED BY 1	(K) DATE	713 JOB NO	. 0423

P	PHASING 26						
	♠→↑	(B)	©	(D)	E		
	427 -> 427 ->	240 240	·	-			
(IV= 427	CLV= 240	CTA=	CLV=	CTA=		

AOJ						
	CRITERIA (vph)	AST	2 3	3 Ø	4 8	
E CLV_667 (834)	LOS X	730	900	855	825	
V/C_0.56	. 8	340	1050	1000	945	
A	c	960	1200	1140	1100	
LOS_A	0	, 5 5	1380	1275	1225	
20 % Reduction for Pers	E	, 360	1500	1425	1375	

INTERSECTION	CONGRESS ST.	/ ARANKLIN ST.	
ALT. No Buil	YEAR 19	90 PERIOD PH	
CALCULATED B	Y B4 DATE	SHEET OF	
CHECKED BY	KB DATE	113 JOB NO. 0423	

PHASING 2				
(A) ⊥	B →	©	0	Œ
7	-1	٠. (,
→ 770 620 149	159 160	, ,		·
CTV= 770	CTA= 190	CTA=	CTV=	CLV=

	ADS	CRITERU	A (voh)	AUT	2 \$	3 Ø	4 3
E CLV 930	(11e3)	LOS	A	730	900	855	825
V/C_0.78		,	В	340	1050	1000	965
			С	960	1200	1140	1100
LOS_C			0	10800	1350	1275	1225
20% Reduction for Pa	eds		E	1200	1800	1425	1375

Vanasse / Hangen Engineering, Inc., Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION CONGRESS ST. / FRANKLIN ST.

ALT. BUILD YEAR 1970 PERIOD AM

CALCULATED BY DY/MD DATE SHEET OF

CHECKED BY R.G. DATE 8/13/14 JOB NO. 0423

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North 54 Congress a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume in vph e. Left turn 743 --capacity on green, in vpis f. Left carn 111 7 capacity in vph & Left turn volume us vpts h. is volume > capac-ity (g > 0?

PHASING 26				
A →	(B)	©	•	E
427	1 point			
CIV= 427	CTA= 540	CITA=	CILV=	CTA=

AOS	CRITERIA (vph)	11	2 8	3 8	4 8
E CLV 667 (833)	LOS A	730	900	855	825
V/C_0.56	8	3-10	1050	1000	965
LOS A	· c	5160	1200	1140	1100
	D	1020.	1350	1275	1225
20% Reduction for Rels	E	1300	1500	1425	1375

INTERSECTIO	N CONGRESS	ST. / FRANKLIN	1 37.
_	YEAR I	990 PERI	OD PM
CALCULATED	BY DSD DA	ATE 4.13984	SHEET OF
CHECKED BY_	RE DATE	E JOB	NO. 0788/923

PHASING Z	ø			
(A)	B	© .	0	E :
794-	160 159		-	
CLV= 794	CLV= (60 .	CLV=	CLV=	CTA=

Σ CLV_	954	(1193)
V/C_	0.79	
LOS	C	
20% Rei	ketin I	or Reds

CRITERI	A (vph)	ArT	2 🗷	3 8	4 Ø	_
LOS	A	٠٦٥٠	900	955	825	
	8	8 =1C	1050	1000	965	
	С	760	1200	1140	1100	
	D	1250	1350	1275	1225	
	Ε	1.360	1500	1425	1375	

INTERSECTIO	N CONS	KESS ST/1	41611 5	7	
ALT. EXISTING	(2 Y	EAR 1984	PERIO	DAM	
CALCULATED	BY BG	DATE 4-	10-24	SHEET	OF
AUDOVED DV	9.0	DAME OLI	DI TOR	NO 570	2

PHASING Z	P			
(A)	B	© .	0	E
- 212 - m - 5/154	389			
CLV= 222	CLV= 389	CLV=	CLV=	CLV=

		AO
Σ CLV	611	(719)
V/C.	0.48	
LOS	A	
15 %	Reduction	SerPeds

CRITERI	A (vph)	VC2	2 \$	3 Ø	4 Ø
LOS	A	765	900	855	825
	8	343	1050	1000	965
	С	1520	1200	1140	1100
	٥	11-13	1350	1275	1225
	E	1275	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	CONSPESS ST	1/H1614 ST	
ALT. GXISTING		9X4 PERIOD AM	
CALCULATED B	Y BG DATE	4-16-84 SHEET OF	
CHECKED BY	1.05 DATE	JOB NO. 0788	

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 North a. Number of Congress change intervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio III. PC d. Opposing volume in vph e. Left turn capacity on green, in vph f. Left turn 963-130capacity in vph (b + e) g. Left turn volume us vph h. Is volume > capac-ity (g > f)?

PHASING 2	2.0			
A	B	©	(D)	Ē
7		·		
364 345 344 364 364 130	251 219	OFTIONAL	conservation.	
CLV= 365	CLV= 258 .	CLV=	CLV=	CLV=

A05_						
	CRITER	IA (vph)	A-PJ	2 Ø	3 Ø	4 3
E CLV 623 (73)	LOS	A	.765	900	855	825
V/C 0.49		8	993	1050	1000	965
,		С	10,50	1200	1140	1100
LOS_A_		0	1145	1350	1275	1225
15% Reduction for Peds		ε	1275	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Congress	S+/1-	tig 1 5+	
ALT. No Build	FEAR	1990	PERIOD	AM
CALCULATED BY	DA	ŤE	SHE	et of
CHECKED BY	Z DATE	10 kg	JOB NO.	788

3 8

4 3

PHASING 20				
A	B	©	(D)	E
	A ~~			
	4.			
1				
72/	4 40			
321 -				
320 \$	85 83			
20				
CTA= 351	CTA= 85	CTA=	CTA=	CLV=

	ADJ.	CRITERI	A (von)	1805	2 8
E CLV 403	CHV.	LOS	A	765	900
V/C_0.32			в	793	1050
LOS A			C	1000	1200
			0	1148	1350
1/6 P. J 2 2	,		E	1275	1500

15 % Reduction for Pals

INTERSECTION	Congress	S+/ H	hah st	
ALT. No Build	FEAR	1990	PERIOD	PM
CALCULATED BY	D.A	TE	SHEE	T OF
CHECKED BY	RB DATE	10/29	JOB NO.	728

Phasing 20				
A	8	©	0	E
7	1. (7			
\$\$ → \$\$1 → \$>5 → \$27	158 157			
av= 526	æv= 158	CLV=	CTV=	CTA=

684	ADJ,
.54	
A	

CAV.	CHITEHIA (VDI)	ALC	2.0	3 0	4 13
E CLV 684	LOS A	765	900	855	825
V/C - 54	8	893	1050	1000	965
LOS A	C	1020	1200	1140	1100
109_/	0	1149	1350	1275	1225
15% Reduction for Profe	E	1275	1500	1425	1375

	ongress Sty	High S+	
ALT. Build	YEAR 1990	PERIOD /-/	
CALCULATED BY	DATE	SHEET OF	
CHECKED BY RR	DATE 10/29	JOB NO. 725	

A A	B A (7	©	•	E
321 → 321 → 321 → 21	98 97			
CTA= 35/	CLV= 98	CTA=	ŒV=	CLV=

Σ CLV <u>419</u> V/C .33 LOS <u>A</u>	ADJ.
15 % Reduction for Pr.	<i>ls</i> .

अगाहम	IA (von)	100	2.8	3 8	4 3
دمع	A	765	900	865	825
	8	193	1959	1000	965
	C	1020	1200	1140	1100
	0	1148	1350	1275	1225
	E	1275	1500	1425	1275

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION C	marrie 54/	- a h &+
ALT. 12/11	YEAR 1990	PERIOD PM
CALCULATED BY	DATE	SHEET OF
CHECKED BY &B	DATE 10/29	JOB NO. 728

FHASING ,	+ Ψ			
A	8	©	Ð	E
>	4. (7			
•				
541 	1 7	·	•	
541 - 542 - 542 - 542 -	159 157			
ند				
CLV= 542	CTA= 122	CTA=	CTA=	CTA=

Σ CLV_	700	ADT.
V/C_		
LOS	A	

CAITER	IA (von)	AOJ	2 Ø	3 8	4 3
LOS	A	765	900	855	825
	3	793	1050	1000	965
	C	1020	1200	1140	1100
	0	1148	1350	1275	1225
	E	1275	1500	1425	1375

15 % Reduction for Pols.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION CONGRESS ST. PURCHASE ST.

ALT. EXISTING YEAR PERIOD A CONGRESS ST.

CALCULATED BY EG DATE 4-0-84 SHEET OF CHECKED BY RG DATE 11 JOB NO. 0788

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North a. Number of 51. change intervals Congress per hour b. Left turn capacity on change interval. in vph Ratio d. Opposing volume in vph e. Left turn capacity on green, in vph f. Left turn capacity in vph (b + c) g. Left turn volume us vph h. Is volume > capacity (g > f)?

PHASING M	20 W/Adu	lance		
(A)	B + L	©	D	LT ADV = 16 Sect/90 Sec
4516 6 528		7		≈ 18% Cycle
213 260	92 34. 268	271 370		Assume 3 sec Startoup Dand 2 sec / veh = 13 sec of 6.5 vel/46 40 eycle/L-= 260 uph
CLV= 260	CTA= 362	CLV= 27)	CLV=	CLV=

use 20 cirtoria

AD	CRITERI	IA (vph)	ACT	2 \$	3 Ø	4 8
E CLV 791 113	Los	A	£'3C	900	855	825
V/C75		8	735		1000	965
LOS C		C	8410	1200	1140	1100
	,	D	945	1350	1275	1225
30% Reduction for Per	3<	E	1050	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	CONGRESS ST./	PURCHASE 37	·
ALT. GXISTING	YEAR	PERIOD _	PM
CALCULATED B		4-/0-84 SHE	
CHECKED BY	RO DATE Y	JOB NO.	0788

F	PHASING	2 d Adu	ence		
	A	(B)	C	(D)	E
	1	11			
	-		.0	,	
	260 UPL MAX		1 7		
	based on timing				
	الم الم	315 315 274			
	130 260	SA COO CO:	410-1-	1000	4
	CARRY OVER =		411-40		
	664 - 390 = 274		152 259		
	CLV= 260	CLV= 3/5	CLV= 411	CLV=	CLV=

MILEO FLOW IN LT LONE - comps only 1/2 of inside lane

PEO					
ADJ.	CRITERIA (vph) AD3	2 Ø	3 Ø	4 8
E CLV 1986 1409	LOS A	6'30	900	855	825
V/C_0,9.4	8	735	1050	1000	965
	C.	<i>'</i> 54∼	1200	1140	1100
LOS_E	ם	945	1350	1275	1225
30 % Reduction for Peds	E	1050	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION CONGRESS ST. / PURCHASE ST. ALT. No-Build YEAR 1990 PERIOD CALCULATED BY 69 DATE SHE ALT. No-Buill CALCULATED BY PERIOD AM SHEET DATE JOB NO. 0723 CHECKED BY RB

Phasing 4	20 W ADO			
ADV 260 MAX bosed on timing	B 14 786 + 189 + 692) = 3	© † ^ ^	(a)	(H)
213 260 1259-473 =786	225 221 222	314 519 314 - 170	-	·
TV= 760	CIV= 55%	CIV= 314	CIV=	CTA=

Use 2. & criteria

	PED -						
	. AD3	CRITERL	A (vpn)	76-	2 8	3 8	4 5
E CLV /130	(1413)	LOS	A	770	900	855	825
V/C 0.94			8	510	1050	1000	905
-			C	766	1200	1140	1100
LOS_E	`		ם	1040.	1350	1275	1225
20% Reduction for	reds		Ε	1200	1500	1425	1375

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	CONGRESS ST. / PUR	CHASE ST.
ALT. No Birld	YEAR 1990	PERIOD PM
CALCULATED B		SHEET OF
CHECKED BY	PR DATE 413	JOB NO. 0733

Left Turn Check INTERSECTION GEOMETRY Approach North North 2 3 a. Number of change intervals per hour b. Left turn capacity 1/2 4 Congress 51. on change interval. in vph c. G/C Ratio d. Opposing volume in vph e. Left turn green, us vph f. Left turn capacity in vph (b • e) & Left turn vo ia vpia la volume > capacity (g > 0?

PHASING # 28 w/Adv.							
A	B	· ©	(D)	E			
(-	↓ Co						
	1681/3=						
	/3-	<u> </u>					
	814 CIZ 425	7.					
130 260	+ \$ - 6	395-5					
842 - 390 =		5512					
452							
	416						
CIA= 340	CIV= 615	CLV=532	CITA=	CTA=			

Use 2 d criteria

	ADS	CRITER	IA (vph)	402	2 \$	3 Ø	4 8
E CLV_1407	1259	LOS	A	730	900	865	825
V/C_1.13			8	540	1050	1000	965
LOS E			C	900	1200	1140	1100
			ם	105C	1350	1275	1225
20% leduction for	reds		E	1200	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION CANGRESS ST. PURCHASE ST.

ALT. BOUD YEAR 1990 PERIOD AM

CALCULATED BY DED DATE 4/2484 SHEET OF

CHECKED BY AB DATE YMS JOB NO. 0788/925

PHASING 2# W/LEAD								
A	B	©	D	E				
	11							
<u>_</u>	794 +189 +692	.1						
·	= 1675/3	7						
	- 10/5/3	,						
	40 la la							
	F + 1	314						
213 260	3 61L	314						
		31/20						
775								
CTA= 8.00	CLV= 55%	CLV= 314	CLV=	CLV=				
1267-473 = 794 CLV= 860	A Property of the second secon	314	CLV=	CLV=				

USE 24 Criteria

	A05						
_		CRITERI	A (vph)	ADJ	2 Ø	3 Ø	4 3
E CLV 1132	1415	LOS	A	730	900	855	825
V/C94			В	3-10	1050	1000	965
			C	900	1200	1140	1100
LOS_E	- 1		0	1620	1350	1275	1225
20% Reduction for	less		E	1206	1500	1425	1375

INTERSECTION	CONGRESS S	T. PURCHASE	ST.
ILT. Build	YEAR	1990 PERI	
ALCULATED BY	DJO DA	TE	SHEET OF
THECKED BY	67 DATE	8/11/24 JOE	NO. 0723

PHASING 3 9				
A	B	• ©	(D)	E
	41-			
هي ا	1: ,			
		3		
42.26	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	413 -		
130 260		413 - 512 - 562 -		
CV= 260	CLV= 658	CLV= 5-62	CTA=	CLV=

AOT		· ·	
(1-7)	RITERIA (vph)	28 407 38	4 3
E CLV 1480 (1850)	A EC	900 ESH 858	825
V/C_/.23	В	1050 300 1000	965
LOS E	С	1200 113 1140	1100
	D	1350 /030 1275	1225
20% Reduction for Rds	E	1500 //40 1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION_	ATLANTIC AUG.	/CONGRESS ST.
ALT. EXISTIN	YEAR	PERIOD AM
CALCULATED BY	DJK DATE	SHEET OF
CHECKED BY	3 T DATE 8/	13/84 JOB NO. 0923

PHASING 3 p			FERRIT		_
(A)	- Conjuica = 923-676 = 247	© 	©	E	
332 332	A THE TO	246	•		
CLV= 33%	CLV= 307	CIV= 246	CLV=	CIV=	

* USE 50/50 split since ramp w1. > RT volume

	ADJ
Σ CLV 89/	1048
V/C 0.74	
LOS_C	
15% Reduction for Pe	Ċ.S

CRITERIA (voh)	2.5	A: 38	4 3
A EQ	900	107 855	825
8	1050	1500	965
c	1200	969 1140	1100
	1350	1-5-1 1275	1225
E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870 INTERSECTION ATLANTIC AUG. / CONGRESS ST.
ALT. EXITING YEAR PERIOD PM
CALCULATED BY DIK DATE SHEET OF
CHECKED BY 057 DATE \$13/84 JOB NO. 0573

A ++	# + * * * * * * * * * * * * * * * * * *	© ————————————————————————————————————	•	Œ.
4 1 C C C C C C C C C C C C C C C C C C	1) popi	324 — 324 = 324 =	-	
CTA= 'A1,2	CLV= 205	CLV= 378	CLV=	CLV=

	A05	СЯПЕН	A (vpn)	2 8	ACT	38	4 3
Σ CLV 948	1115	roa	A	900	737	855	825
V/C 028	·		В	1050	7 SC	1000	965
· LOS C			C	1200		1140	1100
		•	0	1350		1275	1225
15% Reduction for Pec	s		E	1500	الذر	1425	1375

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECT	MOI!	ATLANTIC	AUG. / CON	GRESS ST.	
ALT. No-			1990	PERIOD	AH
CALCULATE		307	DATE	SHE	et of
CHECKED B	X_A	Ys DA	TE 8/13	JOB NO.	0923

Left Turn Check INTERSECTION GEOMETRY Approach 2 4 North a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume is vpb e. Left norm green, is voice L Left turn capacity in vph g. Left turn is vpis h. Is volume > capacity (8 > 0? PHASING 3 &

A 114 - 10th - 814 - more	++ C	© 	•	Œ
1 to	ist to the	544		·
CLV= 407	CLV= 332_	CIV= 544 1	CTA=	CTV=

* 50/5: 41it OK as Ramp'vol > RT vol.

AOJ	CRITERIA (vph)	28 107 38	48
E CLV 1283 1509	LOS A	900 777. 865	825
V/C_/-06	8	1050 55 1000	965
· LOS E	C	1200 901 1140	1100
LU3E	0	1350 (034) 1275	1225
15% Reduction for Reds	E	1500 (21) 1425	1375

INTERSECTIO	N ATLANTI	C AUG. / CON	GRESS ST.	
ALT. No Bu			PERIOD PH	{
CALCULATED	BY BCT	DATE	SHEET	OF
CHECKED BY	7B D	ATE 7/13	JOB NO	1923

A	200 752	©		E
417510	Ų (→ 22.0 → 22.0 → 22.0		·
CLV= 510	CLV= 257	CLV= 550	CTA=	CTA=

	AOT.				er.	
	لالاص	CAITER	(vph)	25 A	107 38	48
E CLV 13/2	1544	LOS	A	900	7.17. 858	825
V/C_/:08			8	1000	550 1000	965
· LOS &			c		109 1140	1100
			. 0	1350	1275	1225
15% Reduction for Ped	Ls.		E	1500	시1 1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION ATLANTIC AUG. / CONGRESS ST.
ALT. BUILD YEAR 1990 PERIOD AM
CALCULATED BY DG DATE 8/11/14 SHEET OF
CHECKED BY LE DATE 8/11/14 JOB NO. 0523

A + +	# L L	© 	•	Œ
412412 6 4 412 412 ±	132 132 1225331	544_ 584_ 94_ 123		. •
CLV= 412	czv= 337	CLV= 544	CLV=	CLV=

50/50 split OK as Ramp vol > RT vol.

	NOT			•			
	1400	CRITER	IIA (vpn)	2 3	ATT	3 8	4 3
Σ CLV 1293	1521	LOS	A	900	737.	885	825
V/C_/.07			8	1050	350	1000	945
: 100 6			C			1140	1100
LOS_E_			. 0	1380	1054	1275	1225
15% Reduction for Ped.	s		E	1500	1211	1425	1375

INTERSECTION A	TLANTIC AUG. /CO	NGRESS ST.
ALT. Build	YEAR 1710	PERIOD PM
CALCULATED BY D	JO DATE	SHEET OF
CHECKED BY 36	T DATE 8/11/84	JOB NO. 0923

PHASING 3 p				
(A)	B ++ L	© ————————————————————————————————————	•	(H)
412 240	235 290	514		
CLV= 510	CLV= 290	CLV= 574	CTA=	CTA=

	ADT	दशाहत	1A (vpn)	28	11	3 8	48
Σ CLV /374	1918	LOS	A	200	127	\$55	825
V/C_1.13			8		350	1000	965
· LOS E			C			1140	1100
			ם		,057	1275	1225
15% Reduction Low Peds			E	1500	1711	1425	1375

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA CONGRESS ST./DORCHESTER AVE. EXIST AM - LT OUT FROM DORCHESTER AVE.

DATA

FIRST VEHICLE CRITICAL GAP, T1, ADDITIONAL TIME NEEDED FOR SECOND VEHICLE, B1, MOVE UP TIME, B2,	3 SECONDS
OPPOSING TRAFFIC	
VOLUME	1089 VPH
ARRIVAL RATE	.303 VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	295 VPH
ARRIVAL RATE	.082 VPS

RESULTS

CAPACITY= 402 VPH

a gradultural and the second of the second o

RESERVE CAPACITY= 107 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES	
QUEUE LENGTH AVERAGE 95TH PERCENTILE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA CONGRESS ST./DORCHESTER AVE. EXISTING PM - LT OUT FROM DORCHESTER AVE.

DATA

FIRST VEHICLE CRITICAL GAP, T1, ADDITIONAL TIME NEEDED FOR SECOND VEHICLE, B1, MOVE UP TIME, B2,	3 SECONDS
OPPOSING TRAFFIC	
VOLUME	958 VPH
ARRIVAL RATE	.266 VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	459 VPH
ARRIVAL RATE	.128 VPS

RESULTS

CAPACITY= 460 VPH

RESERVE CAPACITY= 1 VPH

ACCEPTABLE GAPS	
PERCENT OF ALL GAPS	26.4 PERCENT
AVERAGE LENGTH	8.8 SECONDS
·	
AVERAGE DELAY TO A VEHICLE AT STOP BAR	
TO ALL VEHICLES	.5 SECONDS
TO DELAYED VEHICLES ONLY.	
TO DEEMIED VEHICLES SHELLING	0.0 0200,120
AVERAGE WAIT IN A QUEUE	
	0400 7 05001100
TO ALL VEHICLES	
TO QUEUED VEHICLES ONLY	2430.5 SECONDS
AVERAGE DELAY PLUS AVERAGE WAIT	
TO ALL VEHICLES	2423.2 SECONDS
TO DELAYED AND QUEUED VEHICLES ONLY	2434.3 SECONDS
QUEUE LENGTH	
AVERAGE	309 9 VEHICLES
95TH PERCENTILE.	
7JIN FERUENLILE	-001.0 AFUICES

Vanasse / Hangen Engineering, Inc.
Consulting Engineers & Planners
184 High Street, Boston, Massachusetts 02110

INTERSECTION CONCRESS STOORCHESTER AVE.

ALT. No BUILD YEAR 1990 PERIOD AM

CALCULATED BY DEED DATE 4/25/34 SHEET OF

CHECKED BY FG DATE 4/25/4 JOB NO. 0973

617 / 482-1070						
INTERSECTION	N GEOMETRY		*	Left 1	Turn Che	eck
CON C	4-633	STREET	Indicate North		Appr	roach_
	4		- 140.1.11	a. Number of change intervals per hour		
	9			 b. Left turn capacity on change interval, in vph 		
= = = = = = = = = = = = = = = = = = = =				c. G/C Ratio d. Opposing volume		
	11 13-21			in vph e. Left turn capacity on		
Ten	NIV /		414	green, in vph f. Left turn capacity in vph (b + e)		
20 WHSTER	AVENUE	482-	·	g. Left turn volume un vph h. Is volume > capac-		
8	=	744	180	ity (g > f)?		
PHASING 3	Ø	*	,			,
A	B	©	(D)	E		
* *	-	1				
	Z					
	V4					
300	409-2 -414			,		
20100	409 -					
200 1EU	409	191				
CLV= 230 220	CIV=409	CTA= 6	CLV=	CLV=		

ADS 820	CRITERIA (vph)	28 4(38	4 8
Σ CLV 1025	LOS A	900 634 855	125
V/C_12	В	1050 500 1000	965
LOS C 8	С	1200 1140	1100
	0	1359 1275	1225
20% Reduction for Pers	E	1500 1116 1425	1375

Vanasse / Hangen Engineering, Inc.
Consulting Engineers & Planners
184 High Street, Boston, Massachusetts 02110
617 / 482-1870

INTERSECTIO	on concress s		
ALT. NO	BUILD YEAR	1990 PERI	DD PM
CALCULATED	BY D.J.D. DA	TE 4130/84	SHEETOF
CHECKED BY_	RAL DATE	The Top JOB	NO. 0788/92

INTERSECTION	I CEOMETRY		RV F	Left 7	urn Check
	CESS	STREET	不		Approach
bounester July	369 f.	Appro a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume in vph e. Left turn capacity on green, in vph f. Left turn capacity in vph (b + e) g. Left turn volume in vph h. Is volume > capacity (g > 0?			
	200	522 16			
A	B	©	(D)	E	
77	4746	7			
255 P 7 7 267 287	315 - 31c	201			
CLV= 257 287	CLV=316	CLV= 209	CLV=	CLV=	

	(vph)	28 ACT	3 8	4 3
Σ CLV 1015 LOS	A	900 654	855	825
V/C_849 . 71	В	1050 300	1000	965
LOS B C	C	1200 712	1140	1100
LUS C	0	1350 1070	1275	1225
20% Reartin For Peas	E	1500 1140	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION CONGRESS STOCKHESTER AVE.

ALT. BUILD YEAR 1990 PERIOD AM

CALCULATED BY DJD DATE 4/2-(84 SHEET OF CHECKED BY RB DATE 8/13/84 JOB NO. 0923

Σ CLV 820	1032 800
V/C	72 0201
LOS	CB
20% Raw	tion for Peps

CRITER	IA (vph)	2 Ø	Ar	3 Ø	4 2
LOS	A	900	654	855	825
	8	1050	32	1000	965
	C	1200	712	1140	1100
	ם	1250	12.32	1275	1225
	E	1500	1140	1425	1375

Vi

Vanasse / Hangen Engineering, Inc.

INTERSECTIO	N CONGI	455 ST/DORCH	LESTER AVE.	
ALT.	BUILD Y	EAR /1990	PERIOD PM	
CALCULATED	BY D.5.7	DATE 4/30	SHEET_	OF
CHECKED BY_	RB	DATE	JOB NO. O	788/923

Bo2.	CRITERIA (V	ph) 2 g	ADT	3 Ø	4 3
E CLV 812 1015	LOS A	900	654	855	825
V/C1	ε		Sic	1000	965
		1		1140	1100
LOS_C	c	1350	1636	1275	1225
20% Reduction For Peds	8	1500	11 10	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

Die. Northon INTERSECTION

Gristing YEAR DATE CALCULATED BY BG SHEET

CHECKED BY JOB NO. 0923 RB DATE 8/13/54

INTERSECTION GEOMETRY

Indicate North

2351 C147

Left Turn Check

2 3

Approach

change intervals

- per hour b. Left turn capacity on change interval.
- in von
- d. Opposing volume in von
- green, in vpis
- L Left num capacity in vph (b = e)
- & Left turn volume
- in vpti h. Is volume > capac-ity (g > 0?

PHASING 20

(A)	B .4. ←	©	•	Œ
\$50 \ \$50 \ \$60 \ \$10 \	€ 274 € 224			·
व्यय= ध्रा	CLV= 274	CTA=	CLV=	CLV=

* OK -. RT is for Flow

E CLV_750 V/C 0.50 LOS A

CRITER	IA (von)	2 Ø	3 8	4 3
LOS	A	900	855	825
	8	1050	1000	965
	c	1200	11140	1100
	D	1350	1275	1225
	Ε	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION	Atlantic	Aue. /clar+	2010 A.10.	
ALT. GNISTING	YEAR		PERIOD	PM
CALCULATED BY	BG	DATE	SHE	et of
CHECKED BY	ers da	TE VIOIN	JOB NO.	0923

INTERSECTION GEOMETRY

Indicate North

€ 696

Left Turn Check

Approach 2 change intervals per hour b. Left turn capacity on change interval,
in vph
c. G/C
Ranso d Opposing vol e Left mra capacity on green, in vpix L Left name capacity is vpit g. Left nam v

is vpit h. is volume > cap icy (# > 0?

PHASING 20

(A)	B	• ©	0	E
10	-			
1 # 265	€591 €511 €216*	·	•	. •
CLV= 614	CLV=59/	CT∆=	CLV=	Œ1∆=

[#] During. Yzhour of the peak hour, the third Lane is utilitied based on field observations

Σ CLV	1265
V/C	0:84
LOS	

CAITER	IA (von)	28	3 8	4 3
103	A	900	855	825
	8	1050	1000	965
	c	1200	:1140	1100
	0	1359	1275	1225
	E	1500	1425	1375

VH

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

	ATLANTIC AUG/NO	RTHERN AVE
ALT. No-Quild	YEAR 1990	PERIOD AM
CALCULATED BY	G T DATE	SHEET OF
CHECKED BY	PR DATE 713	JOB NO. 0423

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North a. Number of change intervals per hour b. Left turn capacity Atlantic Ave. on change interval. in von d. Opposing volume a Left men capacity on green, in vph L Left turn 135 Ave. capacity in vph (b + e) g. Left turn voius in vpit h. Is volume > capac ity (g > 0?

PHASING 39	*		•	
A	(B)	©	0	Œ
7	7	7 (
311 A 136 312	584 543 m			
7	- 4	The state of the s		
CLV= 312	CLV= 5-84	CLV= 445	CTA=	CTA=

* FLAT DIST OK du to hish many volume

ADT	CRITERIA	(אפה)	28	÷(-	3 #	4 3
E CLV 1341 1577	LOS	A .	900	727	855	825
V/G 1.11		8	1959		1000	945
LOS E		C	1200	3	1140	1100
		•	1380	is-1	1275	1225
15% Reduction for Reds		E	1500	.311	1425	1375

VH

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

NTER	SECT	_MOI	ATL	DNTIC	4110/	DORTI	HZEN	ALE	
ALT.	NO_	Build	1	YEAR	1990	P	ERIOD	PM	
73.T.CTT	LATE	D BY	84	מ	ATE		sī	HOLDER .	0

JOB NO. 0423 CHECKED BY RY DATE

Left Turn Check

2

- a. Number of change marvais per hour b. Left turn capacity on change marvai, in vph c. G/C Ramo
- d. Opposing volume ist vota e. Left rare
- capacity on green, in von f. Left turn
- capacity in vpb (b = e).
- & Left turn v
- is vois b. Is voisme > caps ity (g > ()?

PHASING 39	8	_		
(A)	B	©	0	E
	•			
7	7	3 (•	
492 492 492 492 492 492 492 492 492 492	322 521 213	• .		
492	7	Lore, E.		
CLV= 492	CLV= 322	CTV= 609	CTA=	CLV=

1328

	NOT	СЯПЕЯ	IA (von)	28 AN	7 3 8	4 3
E CLV 1423	1674	LOS	A	900 75	7 155	825
V/C_/:/8			8		SU. 1000	165
			C	1200 76	1140	1100
LOS_E_			0	1380	1275	1225
5% Reduction for Reda	\$		Ε	1500 121	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 INTERSECTION ATIZNTIC Avenue at Northern Avenue

ALT. BUILD YEAR 1990 PERIOD AM

CALCULATED BY DOD DATE 4/27/24 SHEET OF

CHECKED BY KO DATE 1/2 JOB NO. 0786/92

PHASING	34			
♠⇒	B (B)	©	(D)	E
	7	7 17		
325 120	219	160		
325	4	पान पाट कड		
CLV= 325	CTA= (1)	CIV= 445	CLV= .	CLV=

AUS	СЯПЕЯ	IA (vph)	2 8	TJi	3 8	4 3
E CLV 1381 1624	LOS	A	900	727	855	825
V/C_1.14		9	1030	5.X	1000	945
		C				1100
LOS_E_		D	1380		1275	1225
11 6 . 4		Ε	1500	211	1425	1375
Adj. For 15% ped		'				

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	1 At	situs	Avence	ath	bothern	Ave
ALT. Bu	CO!	EAR (790	PERIC	DPM	
CALCULATED E	SX DZ	DAT	E 4 30	84_	SHEET_	OF_
CHECKED BY_	RR	_ DATE_	रानि कर	JOB	NO. <u>07</u>	88.47

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North a. Number of change intervals per hour b. Left turn capacity on change interval. in vph c. G/C Ratio d. Opposing volume e. Left turn AVENUE 165 capacity on green, in von f. Left turn LOCALCEL capacity in vph & Left turn volume us vois h. Is volume > capacity (g > f)? PHASING 3/

A A	8	©	(D)	E
115*	7	一个		
5/8	322 321			
518	165	608 609 608		
CLV=519-	CLV= 322	CLV= 609	CLV=	CLV=

	_	1706
E CLV_	1450	1706
	1.20	•
LOS		
. ()		

CRITERIA	(vph)	2 Ø	A55	3 Ø	4 3
LOS	A	900	727	855	825
	8	1050	856	1000	965
	C	1200	969	1140	1100
	0	1350	108-1	1275	1225
	E	1500	1311	1425	1375

Ady 15% FOR AOS

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	ATLANTIC A	11/6/HIGH 57	/SURFACE	AKTERY
ALT. Existing	YEAU	1984	PERIOD	AM
CALCULATED (B)	2 BG	DATE		EET OF
CHECKED BY	RB DI	TE VIIS	JOB NO	0923

INTERSECTION GEOMETRY

Left Turn Check				
		Accr	oach .	
	1	2	3	4
a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume in vph e. Left turn capacity on green, in vph f. Left turn capacity in vph f. b. s volume in vph h. Is volume > capacity (g.>)?				

PHASING USE 3 Ø W/ADV				
A	B	• ©	(D)	E
	+	K		2
7.1		-	nt	
	9	ol.		
1 1: 11)] [200		
grante gule	244244	use two land	A P	
791	7 1 312	two /	150 150 0	
50,500	114327		. Þ.	
	114 + 244			
CLV= 320	CLV= 358	CTA= 500	CIV= 150	CTA=

9490 split OK as /butside turn value > inside valure.

E CLV_1034 V/C 0.73 LOS_C

CRITERIA	(von)	2 8	3 8	4 3
LOS	·A	900	855	825
	В	1050	1000	965
	C	1200	1140	1100
	0	1350	1275	1225
	Ε	1500	1425	1375

VH

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870 INTERSECTION ATLANTIC AND MICH ST. / SURFACE ARTERY

ALT. FXIST: YEAR 1984 PERIOD PM

CALCULATED BY 1994 DATE SHEET OF

CHECKED BY 18 DATE 3/10 JOB NO. 0925

Left Turn Check INTERSECTION GEOMETRY Accresco Indicate 2 North change inter High st. Left more caps on change interval. ia vos d. Opposing volu Left mes Commercial out L Leit men capacity is vot & Left turn voium in vpn h. Is voiume > cap ity (# > 02

1	PHASING US	e 3¢			
	A	B	. ©	©	€
		+	X		3624 = 144
			-		
	71	711	,	· 47.5	
					·
	tree to gle	457	501	F.	
	200 12 A 72	7° 4 4 .	3/301	- R · O	
	4	344 1 399	two	388 317	
	12	371	1000	300	
	72	CEV= 487 /	CLV= 30/	906	
	CLV= 72	CTA= 10 %	GTAT 101	CTA= 388.	CTA=

30 830 344

E CLV_	
V/C_	0.88
LOS	_

СЯПЕЯ	IA (ven)	2 3	38	4 3
103	- A	900	855	825
	8	1050	1000	965
	c	1200	:1140	1100
	0	1350	1275	1225
	E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 517 / 482-1870

INTERSECTION ATLANTIC AIR / HIGH ST. / SURFACE AIRTERY

ALT. No - DUILD YEAR 1790 PERIOD AM

CALCULATED BY OG DATE SHEET OF

CHECKED BY YB DATE 7/11 JOB NO. D923

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North a. Number of change intervals per hour b. Left turn capacity High st. on change interval ia von c G/C d Oppos 237 e. Left ners green, in vph L Left men capacity in vph (b + e) & Left tuen v in vym h, is volume > cap ity (# > 0?

PHASING 3	<u> </u>			
. (2)	(B)	(a)	0	E
71-5	- Ant	17	· nt	
180 180	363 X6363 452 X12 452 752	239	194 159 115	
CTA= 180	CLV= 452+363	CLV= 247	CIV= 194	CTA=

Carry over = 17 P - 0 vse opp vol = (363 x 1.5) = 544 LT Factor = 2.0

Σ CLV_	1436
V/C_	1.0,1
	E

		•		
CRITER	IA (von)	2 \$	28 38	
103	: A	999	448	825
	8	1050	1000	946
	c	1200	:1140	1100
	0	1350	1275	1225
	E	1500	1425	1373

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION A	TLANTIC AVE /4144 3	T./ SURFACE AIRTERY
ALT. No Duild	YEAR 1990	PERIOD PM
CALCULATED BY	DATE	SHEET OF
CHECKED BY	DATE	JOB NO. 7973

phasing 3 g	<i>b</i>			
A	₿	© /	(1)	Œ
715	911	17	· mt	•
207 20.7	345 341 345 1 1 1 104 1 517 104 5 599	204	188 399 °	 ,
CIV= 207	CLV= 599	CIV= 444	CTV= 488	व्य.⊽=

Since mixed reliable on advance

OPP vol = 346 x 1.5 = 519 LT FAC: 2,0

Assume: if 207; 1/2 one LT Henre: Componer = 104 990

E CLV_	1738
V/C_	1.22
LOS	E

CRITE	IA (von)	2.8	3 8	4 5
LOS	: A	900	\$55	825
	8	1050	1000	965
	c	1200	:1140	1100
	0	1350	1275	1225
	g	1500	1425	1373

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 517 / 482-1870 INTERSECTION ATLANTIC AVE | HIGH ST. | SURFACE ARTER
ALT. BUILD YEAR 1990 PERIOD AM
CALCULATED BY D.S.D. DATE 4/26/84 SHEET OF
CHECKED BY DATE YOUR JOB NO. 0788

PHASING

A	(B)	©	D	E
71 1	nt t	3	^	
25% MESHANED 26% MESHANE 180 180 180	343 35 363 212 539 762	247 247	115 194 159	
CLV= 180	CIV= 539+363	CLV= 285	CLV= 194	CTA=

Comporer

539 762

LT@ 2.0

Σ CLV_	1561
V/C_	1.10
LOS	E

CRITER	IA (vph)	2 ਈ	3 8	4 2
LOS	A	900	855	825
	8	1050	1000	965
	C.	1200	1140	1100
	ם	1350	1275	1225
	E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	ATLANTIC A.	VE / HIGH 57	1/SURFAL	CE ARTER
ALT. Build	YEAR	1990 PI	ERIOD <i>P!</i>	4
CALCULATED BY		TE 4-13-8		
CHECKED BY	AB DATE	7-13	JOB NO. O	727

PHASING	30			
A	(B)	©	©	E
, t	4	4 6		
1 1	7 4 12		4	
ا الم	. *//	-	~//	
*	368 368 368	अपने पपने	R	
106	4 4 4 A	255 64		
106 27 4 76	A 4 329		K) 1299	
312 712	100		485	
	पुर्वा डक्क	,	t	
CLV= 212	CLV= 599	CLV= 4444 /	CLV= 488	CTA=

* Assume only 1/2 LTS as mixed trathe

CARRY WER

106 982

Σ CLV 1741 V/C 1.22 LOS E

CRITER	IA (vph)	2 \$	3 Ø	4 2
LOS	Α.	900	855	825
	В .	1050	1000	968
	C.	1200-	1140	. 1100
	D	1350	1275	1225
	ε	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION FLANKLIN ST. /PEAKL ALT. Existing YEAR DATE CHECKED BY Q 13 DATE 8/13/84 JOB NO. 0923

PHASING 20	-			
A	B	©	(D)	E
-				
1	T			
30 1	321 \$-496 496			
CLV= 50	CLV= 496	CTA=	CTA=	CTA=

		100)	CAITERL	A (von)	AIT
E CLV_	546	682	LOS	A	つん
V/C_	0.46			8	344
LOS	1			C	18 40
	A			0	
20% Reduc	hon for led	>		E	1250

CRITERIA	(von)	AIT	28	3 8	48
LOS	A	Trac	900	855	825
	8	344	1050	1000	965
	C	·*¢C	1200	:1140	1100
	0	10 50	1389	1275	1225
	E	1200	1500	1425	1375

VH

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

NTERSECTION_	FRANKLIN ST.	/PEAKL ST	
III. Existing	YEAR	PERIOD PM	
TICULTIED AN	34 DATE	SHEETOF	
HECKED BY	RC DATE_	11314 JOB NO. 0923	

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 North a. Number of 54. change intervals per hour b. Left turn capacity Franklin on change interval, in vph c. G/C Ratio d. Opposing volum in vpts e. Left turn £ 167 capacity on groce, in vps. L. Left turn 13) capacity is vph (b = e) g. Left men v is vpa h. la volume > cap icy (g > 0? 4028

PHASING 29	B	• ©	©	E
-				,
1	T		·	
	L167			
184 184	<u>- 167</u>		٠.	
184				
CTA= 18A	CTA= 16]	CTV=	CTA=	CTA=

		MOS
E CLV_	351	439
V/C_	0.29	_
	A	
20% Redu		eds

СЯПЕЯ	IA (von)	-72	2 8	3 8	4 3
٤٥٦	A	フィシン	900	855	825
	8	340	1050	1000	948
	С	906	1200	:1140	1100
	0	.30	1350	1275	1225
	E	1-60	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION GEOMETRY

	FRANKLIN ST. /PO	EAKL ST
ALT. No-Build	YEAR 1976	PERIOD AM
CALCULATED BY	B4 DATE	SHEET OF
CHECKED BY	KB DATE &	13 JOB NO. 0923

Left Turn Check

Approach

Indicate 2 3 North Franklin 54. change intervals per hour b. Left turn capacity on change interval, in vph d. Opposing volum in vps e. Left mrs capacity on green, in vph L Left turn capacity is vph g. Left turn voius in vpm h. Is volume > capac-icy (g > 0? PHASING 20 B 0 A E 171 198 .334

CLV=

Σ CLV	532	GUS
V/C_	DILY	
	A	
20% Redu	ction for Ped	>

CLV= 49.8

334

CLV=

CRITERIA (VOII)	10-	2 8	3 8	4 3
LOS A	フンし	900	253	825
8	340	1050	1000	965
c	. 960	1200	1140	1100
i o	1656	1380	1275	1225
E	1210	1500	1425	1375

CLV=

CLV=

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	FRANKLIN ST.	PEARL ST	
ALT. No-Birld	YEAR	990 PERIOD	rA
CALCULATED BY	36 DATE	SH	EET OF
CHECKED BY	RB DATE	Y 30 JOB NO	. 0923

Left Turn Check INTERSECTION GEOMETRY Indicate 7. 1 2 3 4 a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C. Ratio d. Opposing volume is vph s. Left turn capacity on North 51. Franklin £ 179 capacity on green, in vph f. Left turn -101 capacity is vois & Left men w in vpin h. Is volume > caps icy (g > 0?

PHASING 29	₿	· ©	D	E
-				
1	T			
2187 1	101 2	·	•	. •
211				
,		, .		
CLV= 252	CEV= 179	CTA=	CT∆=	CT∆=

	AOT		1				
		CAITER	A (ven)	174	2 3	3 8	48
E CLV 431	539	LOS	A	720	900	855	825
V/C 0.36			8	840	1050	1000	965
			c	960	1200	:1140	1100
LOS_A	*		· D	1080	1350	1279	1225
20% Reduction for Reds	•		E	1200	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION FRANKLIN ST. YEAR ALT. Build CALCULATED BY DATE JOB NO. 0923 CHECKED BY RB 8/13/24

Left Turn Check INTERSECTION GEOMETRY Indicate 3 2 North a. Number of Franklin 5t. change more per hour b. Left turn capacity on change learned, in voti c. G/C Rane d Opposing voise ia voa e. Left mes 171 capacity on green, in vpin f. Left turn -22H capacity is vpis & Left turn voius in vpn iry (8 > 0? PHASING

A	(B)	• ©	0	E
1	T			
22	198° 2-197	·		
358 358				
CLV= 351	CLV= 198	CTA=	CTA=	CTA=

•		ADI
E CLV_	55.7	-696
V/C_	0.46	
LOS	A	
70% Redw		15

СЯПЕЯ	(ngy) Al	-0-	2 8	3 #	48
LOS	A	720	900	855	825
	8	340	1050	1000	945
	C	. 700	1200	:1140	1100
		1250	1350	1275	1225
	E	1300	1500	1425	1375

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION	FRANKLIN ST	PEAKL ST	
ALT. Build	YEAR 19	90 PERIOR	PM
CALCULATED BY	DJO DAT		HEET OF
CHECKED BY	DG DATE	JOB N	10.0923

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 1 a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C. Ratio d. Opposing volume in vps a. Left turn capacity on North 54. Franklin -179 capacity on green, in vph L Left care capacity in von & Left mm volume in vpm h. Is volume > caps icy (g > 0?

PHASING 29				
A	B	• ©	o	E
-				
4	T			
1				
218	-R179 A-101		•.	·
Y.T				
152251	4 101			
CLV= 152	CTV= 179	CLV=	CLV=	CTV=

		AOT				•			
			CAITER	(ngv) Al	41	21	3 8	4 3	
Σ	CLV_431	537	LCS	A	730	900	855	825	
	V/C 0.36			8	840	1050	1000	945	
	100 A			C	160	1200	1140	1100	
	LOS A			0	1070	1350	1275	1225	
2	20% Reduction for Peds	>		E	1256	1500	1425	1975	

TRAFFIC STREAM GAP ANALYSIS FACKAGE VER 3.5.3 MARCH84

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1984 AM EXISTING - TOTAL OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,	3 SECONDS
OPPOSING TRAFFIC VOLUME. ARRIVAL RATE.	
ANALYSIS MOVEMENT TRAFFIC VOLUME	

RESULTS

CAPACITY= 916 VPH

RESERVE CAPACITY= 598 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES TO DELAYED VEHICLES ONLY	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES TO QUEUED VEHICLES ONLY	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES	
QUEUE LENGTH AVERAGE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCHEN

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1984 PM EXISTING - TOTAL OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1, ADDITIONAL TIME NEEDED FOR SECOND VEHICLE, B1, MOVE UP TIME, B2,	3 SECONDS
OPPOSING TRAFFIC	
VOLUME	236 VPH
ARRIVAL RATE	.066 VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	207 VPH
ARRIVAL RATE	.058 VPS

RESULTS

CAPACITY= 952 VPH

RESERVE CAPACITY= 745 VPH

ACCEPTABLE GAPS	
PERCENT OF ALL GAPS	72.1 PERCENT
AVERAGE LENGTH	20.3 SECONDS
AVERAGE DELAY TO A VEHICLE AT STOP BAR	
TO ALL VEHICLES.	.1 SECONDS
TO DELAYED VEHICLES ONLY	
O DELITED VEHICLES SITE IN THE PROPERTY OF THE	01: 0220:130
AVERAGE WAIT IN A QUEUE	
···-··	+ CECCNIDE
TO ALL VEHICLES	
TO QUEUED VEHICLES ONLY	4.8 SECUNDS
AVERAGE DELAY PLUS AVERAGE WAIT	
TO ALL VEHICLES	1.1 SECONDS
TO DELAYED AND QUEUED VEHICLES ONLY	8.2 SECONDS
QUEUE LENGTH	
AVERAGE	.J VEHICLES
95TH PERCENTILE.	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCHET

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1990 NO BUILD AM - TOTAL OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,	3 SECONDS
OPFOSING TRAFFIC	
VOLUME	. 297 VPH
ARRIVAL RATE	08J VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	. 200 VPH
ARRIVAL RATE	056 VFS

RESULTS

CAPACITY= 897 VPH

RESERVE CAPACITY= 697 VPH

ACCEPTABLE GAPS	•
PERCENT OF ALL GAPS	66.2 PERCENT
AVERAGE LENGTH	17.1 SECONDS
AVERAGE DELAY TO A VEHICLE AT STOP BAR	
TO ALL VEHICLES	.1 SECONDS
TO DELAYED VEHICLES ONLY	3.4 SECONDS
AVERAGE WAIT IN A QUEUE	
TO ALL VEHICLES	1.2 SECONDS
TO QUEUED VEHICLES ONLY.	
AVERAGE DELAY PLUS AVERAGE WAIT	
TO ALL VEHICLES	1.3 SECONDS
TO DELAYED AND QUEUED VEHICLES ONLY	8.6 SECONDS
QUEUE LENGTH	
AVERAGE	.J VEHICLES
95TH PERCENTILE	
/ W 7 7 7 1 W 1 1 W 1 W 1 1 1 1 1 W 1 2 1 1 1 1 1	****

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.5 MARCHEN

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1990 NO BUILD PM - TOTAL OUT FROM DLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,
OPPOSING TRAFFIC
VOLUME
ARRIVAL RATE
ANALYSIS MOVEMENT TRAFFIC
VOLUME
ARRIVAL RATE

RESULTS

CAPACITY= 930 VPH

RESERVE CAPACITY= 910 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLESTO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE LENGTH AVERAGE 95TH PERCENTILE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER J.5.2 15AU683

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1990 BUILD AM - OLIVER ST. EB

DATA

FIRST VEHICLE CRITICAL GAP, T1,	5 SECONDS
ADDITIONAL TIME NEEDED FOR SECOND VEHICLE, B1,	3 SECONDS
MOVE UP TIME, B2,	2.5 SECONDS
MAIN STREET HOURLY TRAFFIC VOLUME:	338 VPH
MAIN STREET ARRIVAL RATE:	.0938889 VPS
SIDE STREET HOURLY TRAFFIC VOLUME:	200 VPH
SIDE STREET ARRIVAL RATE:	.0555556 VPS

RESULTS

CAPACITY= 861 VPH

RESERVE CAPACITY= 661 VPH

PERCENT	ACCEPTABLE GAPS:	62.535 F	PERCENT
AVERAGE	ACCEPTABLE GAP LENGTH:	15.6509	SECONDS
AVERAGE	DELAY:	.147355	SECONDS
AVERAGE	DELAY TO A DELAYED VEHICLE:	3.44512	SECONDS
AVERAGE	WAIT IN QUEUE:	1.26491	SECONDS
AVERAGE	WAIT WHEN QUEUED:	5.44581	SECONDS
AVERAGE	DELAY :	1.41227	SECONDS
AVERAGE	TOTAL DELAY AND WAIT:	8.89094	SECONDS
AVERAGE	QUEUE LENGTH:	.302545	VEHICLES
NINETY-F	FIFTH PERCENTILE QUEUE	1.87103	VEHICLES

LEVEL OF SERVICE --- A ---

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCHEA

BOSTON, MA.
FRANKLIN ST./OLIVER ST.
1990 BUILD PM - TOTAL OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,
OPFOSING TRAFFIC
VOLUME 260 VPH
ARRIVAL RATE
ANALYSIS MOVEMENT TRAFFIC
VOLUME
ARRIVAL RATE

RESULTS

CAPACITY= 930 VPH

RESERVE CAPACITY= 910 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES TO DELAYED VEHICLES ONLY	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES TO QUEUED VEHICLES ONLY	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES	
QUEUE LENGTH AVERAGE	

VH INTERSECTION HIGH ST / PEARL Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870 ALT. Gustine PERIOD D AM SHEET 134 CHECKED BY DATE 1/10 JOB NO. 0923 RR Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 North st. Penr change intervals per hour b. Left turn capacity on change interval. is vph c.G/C Rasso 4. Opposing voi e. Left num capacity on green, in vph L Left turn (b = e) & Left num in voit h, is voiume > cap iry (# > 0?

CLV= 496	CLV= 50	CTA=,	CLV= .	CTA=
	\$ 50			
326-1	* ***********************************			. •
÷			•	
(A)	B	• ©	©	E
PHASING 26				

2	E CLV	546
		0.40
•	LOS	A
2%	Reduction.	infortalis

द्धारहत	(nov) Al	ハレー	2 8	3 8	48 .
LOS	A	-720	900	855	825
	8	340	1050	1000	965
	c	. 460	1290	:1140	1100
		1090	1350	1275	1225
	E	1200	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

PHASING 76

INTERSECTION	HIGH ST /PEARL	57.
ALT. Gristing	YEAR 1984	PERIOD PM
CALCULATED BY	86 DATE	SHEET OF
CHECKED BY	RB DATE 8/10	JOB NO. 0923

Left Turn Check INTERSECTION GEOMETRY Approach Indicate North a. Number of change intervals st. per hour b. Left turn capacity on change interval, in vph c. G/C Ratio d. Opposing volume in vph e. Left turn capacity on gram, in vph Left turn capacity in vph & Left turn volume ist vpin h. Is volume > capseicy (g > ()?

CLV= /67	CLV= 74	CLV=		
and f	98			
(A) ↓ ∠	■	· ©	©	E

	AUS
Σ CLV 351	439
V/C 6.29	
· LOS A	
21% Reduction for Pales	

		•	•		•
CAITERIA	(von)	ルシェ	2 5	3 8	48 .
LOS	A	770	900	/ 855	825
	8	540	1050	1000	945
	c	100	1200	1140	1100
•	0	1080	1350	1275	1225
	E	Bic	1500	1425	1375
	0	1080	1350	1275	1225

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 462-1870

INTERSECTIO	N HIGH	ST /PEARL	5T.	
ALT. No - Bui		YEAR 1995	PERIOD	AH
CALCULATED	BA Ge	7_ DATE	SHE	et of
CHECKED BY	KB	DATE ST	JOB NO.	1973

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 North a. Number of change intervals per hour b. Left tim capacity on change interval, in vph c. G/C. Ratio st. d. Opposing volume is von e. Left turn -321 -171 capacity on green, in vpis f. Left turn capacity in vpis (b + e) & Left turn volume is volume > caps icy (g > f)? PHASING 76

	CTA= 18	CLV= 49]	CTA=	CLV= .	CTA=
	22	321 491 497		·	•
	†	. 4			
ŕ	A A A	B	• ©	(D)	E

	. 40 J						
	715	CRITERI	A (YON)	オヘモ	2 3	3 8	4 3
Σ CLV_575_	,//(LOS	A	730	900	855	825
V/C_0.48	,		8	3410	1050	1000	945
			C	760	1200	1140	1100
LOS_A			0	1080	1350	1275	1225
20% Reduction for Pales			E	1060	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	H1645T	/PGARL ST.		
ALT. No-Bui		1990	PERIOD PH	
CYTCATYLED B.	Y 89	DATE	SHEET	OF
CHECKED BY	RB DA	TE 7/13	JOB NO. 0923	

INTERSECTION GEOMETRY

Peny 1

st.

Indicate North

Left Turn Check

Approach

Number of change intervals per hour
 Left turn capacity

on change inte in von c. G/C Ratio

d. Opposing
is vpts
e. Left turn capacity on green, in vpit L Left turn

capacity in vph (b = e)

a Left turn volume in vpm h. is volume > cap icy (# > ()?

PHASING

A	(B)	· ©	D	E
26 × 1 m	18 17 1		•	. •
CLV= 1/2]	CLV= 198	CTA=	CILV=	CIV=

E CLV 325 V/C_0.27 LOS_A 20% Reduction for Pales

СЯПЕЯ	IA (von)	ACT	2.5	3 8	48 -
LOS	A	720	900	155	825
	8	840	1050	1000	965
	C	. 960	1200	11140	1100
	. 0	1040	1350	1275	1225
	E	1200	1500	1425	1375

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION_	H164 ST	/PEARL 57	<u></u>	
ALT. Build	YEAR	190	PERIOD	4 ~ 1
CALCULATED BY	DJD	DATE	SHEE	T OF
CHECKED BY	BUP DA	TE 8/11/84	JOB NO.	0923

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 2 3 4 North a. Number of st. change intervals per hour b. Left turn capacity Penr on change manyal, in von d. Opposing volume in vph e. Left turn 2670 capacity on green, in von L'Est cura capacity in vpit (b = e) & Left num volume is vpn h. Is volume > capacity (8 > ()? PHASING 26

(A)	B	©	©	Œ
t				
57	367 529 - 529	•		
CLV= 94	CLV= 529	CLV=	CT_V= .	CTA=

Σ CLV 623	17
V/C 0:52	
· LOS_A_	
21% Reduction for Pales	

द्याप्टन	IA (von)	H: T	2 8	3 8	4 3
LOS	A	726	900	£ 855	825
	8	340	1050	1000	945
	С	. 100	1200	1140	1100
		1630	1350	1275	1225
	2	1):0	1500	1425	1375

Vanasse / Hangen Engineering, Inc.
Consulting Engineers & Planners
184 High Street, Boston, Massachusetts 02110
617 / 482-1870

INTERSECTION_	HIGH ST / PEARL	5T.
ALT. Build	YEAR 1190	PERIOD PM
CALCULATED BY	WIS DATE	SHEET OF
CHECKED BY	G DATE 8/11/	EN JOB NO. 0923

INTERSECTION GEOMETRY	*	Left 1	urn	Che		
Penri h	Indicate North L 26 378	a. Number of change intervals per hour b. Left turn capacity on change interval, in vph c. G/C. Rame d. Opposing volume in vph e. Left turn capacity on green, in vph (b + e) g. Left turn volume in vph h. Is volume > capacity (g > 0?	7	2	3	4

CLV= /37	CLV= 202	CTA=	CLV=	CLV=
187 157	-n2			
	26 202			. •
# †				
(A)	(B)	(· · · ©	0	E
Phasing 26				

	W))			•			
	unu	CAITERIA (V	ron) "-	28	38	4 5	
Σ CLV 331	424	LOS A			855	825	
V/C 0.27		Ę	54	1024	1000	945	
			3 ?EL	1200	:1140	1100	
LOS_A			1 10 FC	1350	1275	1225	
21/ Reduction for Pales			E WEC	1500	1425	1375	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA.

X-WAY OFF RAMP/HIGH ST.

EXISTING AM PEAK - HIGH ST. THRU

DATA

FIRST VEHICLE CRITICAL GAP, T1,	3 SECONDS
OPPOSING TRAFFIC VOLUME	
VOLUME	

RESULTS

CAPACITY= 638 VPH

RESERVE CAPACITY= 284 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES TO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE LENGTH AVERAGE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA.

X-WAY OFF RAMP/HIGH ST.

EXISTING FM PEAK - HIGH ST. THRU

DATA

FIRST VEHICLE CRITICAL GAP, T1,	3 SECONDS
OPPOSING TRAFFIC	
VOLUME	. 181 VPH
ARRIVAL RATE	05 VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	. 361 VPH
ARRIVAL RATE	1 VPS

RESULTS

CAPACITY= 1005 VPH

RESERVE CAPACITY= 644 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES TO QUEUED VEHICLES ONLY	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES TO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE LENGTH AVERAGE 95TH PERCENTILE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.5 MARCH84

BOSTON, MA.
PURCHASE ST./OLIVER ST.
EXISTING AM BASE - RT OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1, ADDITIONAL TIME NEEDED FOR SECOND VEHICLE, B1, MOVE UP TIME, B2,	3 SECONDS
OPPOSING TRAFFIC VOLUME	
VOLUMEARRIVAL RATE	
RESULTS	
CAPACITY= 896 VPH	
RESERVE CAPACITY= 436 VPH	
ACCEFTABLE GAPS PERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES TO DELAYED VEHICLES ONLY	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES TO QUEUED VEHICLES ONLY	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLESTO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE LENGTH AVERAGE95TH PERCENTILE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA
PURCHASE ST./OLIVER ST.
EXISTING PM - RT OUT FROM OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,	SECONDS
OPPOSING TRAFFIC	
VOLUME 59	70 VPH
ARRIVAL RATE	164 VPS
ANALYSIS MOVEMENT TRAFFIC	
VOLUME	30 VPH
ARRIVAL RATE	036 VPS

RESULTS

CAPACITY= 669 VPH

RESERVE CAPACITY= 539 VPH

AUDERTABLE GARS	
FERCENT OF ALL GAPS	44.1 PERCENT
AVERAGE LENGTH	11.1 SECONDS
AVERAGE DELAY TO A VEHICLE AT STOP BAR	
TO ALL VEHICLES	.3 SECONDS
TO DELAYED VEHICLES ONLY	3.6 SECONDS
AVERAGE WAIT IN A QUEUE	
TO ALL VEHICLES	1.3 SECONDS
TO QUEUED VEHICLES ONLY	
AVERAGE DELAY PLUS AVERAGE WAIT	
TO ALL VEHICLES	1.6 SECONDS
TO DELAYED AND QUEUED VEHICLES ONLY	10.2 SECONDS
QUEUE LENGTH	
AVERAGE	0 0000000
95TH PERCENTILE	1 / VEHIELES

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.7 MARCH84

BOSTON, MA.
PURCHASE ST./OLIVER ST.
1990 NO BUILD AM - RT OUT OF GLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,
OPPOSING TRAFFIC
VOLUME
ARRIVAL RATE
ANALYSIS MOVEMENT TRAFFIC
VOLUME. 20 VPH
ARRIVAL RATE

RESULTS

CAPACITY= 229 VPH

RESERVE CAPACITY= 209 VPH

ACCEPTABLE GAPS FERCENT OF ALL GAPS	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES TO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE LENGTH AVERAGE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER J.S.J MARCHISA

BOSTON, MA.
PURCHASE ST./OLIVER ST.
1990 NO BUILD PM - RT OUT OF OLIVER ST.

DATA

FIRST VEHICLE CRITICAL GAP, T1,
OFFOSING TRAFFIC
VOLUME
ANALYSIS MOVEMENT TRAFFIC
VOLUME 20 VPH
ARRIVAL RATE

RESULTS

CAPACITY= 346 VPH

RESERVE CAPACITY= 326 VPH

ACCEPTABLE GAPS PERCENT OF ALL GAPS AVERAGE LENGTH	
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES	
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES	
QUEUE LENGTH AVERAGE95TH PERCENTILE	

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCHON

year and the contract of the c

BOSTON, MA.
PURCHASE ST./OLIVER ST.
1990 BUILD AM - RT OUT OF OLIVER ST.

The second section of the section

DATA

FIRST VEHICLE CRITICAL GAP, T1,
OPPOSING TRAFFIC VOLUME
RESULTS
CAPACITY= 220 VPH
RESERVE CAPACITY= 200 VPH
ACCEPTABLE GAPS PERCENT OF ALL GAPS
AVERAGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES
AVERAGE WAIT IN A QUEUE TO ALL VEHICLES
AVERAGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES

QUEUE LENGTH

TRAFFIC STREAM GAP ANALYSIS PACKAGE VER 3.5.3 MARCH84

BOSTON, MA.
PURCHASE ST./OLIVER ST.
1990 BUILD PM - RT OUT OF OLIVER ST.

DATA

ADDIT	T VEHICLE CRITICAL GAP, T1,	3 SECONDS
	SING TRAFFIC VOLUME. ARRIVAL RATE. YSIS MOVEMENT TRAFFIC VOLUME. ARRIVAL RATE.	.365 VPS 50 VPH
	RESULTS	
CAI	PACITY= 318 VPH	
RES	SERVE CAPACITY= 268 VPH	
ACCE	PTABLE GAPS PERCENT OF ALL GAPS	
AVER	AGE DELAY TO A VEHICLE AT STOP BAR TO ALL VEHICLES	
	TO DELAYED VEHICLES ONLY	4.1 SECONDS
AVER	AGE WAIT IN A QUEUE TO ALL VEHICLESTO QUEUED VEHICLES ONLY	
AVER	AGE DELAY PLUS AVERAGE WAIT TO ALL VEHICLES TO DELAYED AND QUEUED VEHICLES ONLY	
QUEUE	E LENGTH AVERAGE	.2 VEHICLES

Vanasse / Hangen Engineering, Inc. INTERSEC

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Athatic Ave.	/ Summer st.
ALT. Gustine	YEAR	PERIOD AM
CALCULATED BY	3G DATE	SHEET OF
CHECKED BY	ZIS DATE	E/13/84 JOB NO. 0423

PHASING 2	with Lead			
A	B /	• ©	(D)	E
1				
13 2 4 861 13 2 4 4 861		235 - 235 - 235 -	1119 · 186	
czv= 4(3	/CIV=	CT.V= 235	CLV= 232	CIV=

Un 36 critario

compact :

Σ CLV_	880	1257
	0:84	
LOS	D	
30 % Redu	ction for	Beds

СЯПЕЯ	(nov) Al	20 100	2 # 1	ANT.	3 8	4 3
LOS	A	630	900	5/1	855	825
	8	1.35	1050	70	1000	965
	c	640	1200	1/4	:1140	1100
	0	115	1350	4 13	1275	1225
	E	- 54	1500	F	1425	1373

INTERSECTION Attactic Ave. / Summer St.

ALT. Gastin YEAR 1984 PERIOD PM

CALCULATED BY BY DATE SHEET OF

CHECKED BY & DATE 8/13/84 JOB NO. 0428

PHASING - with Lead B **(D) ©** E 2188 37.8 154 - 153 234 -235-5 287 CLV= 378 CLV= CTV= CIV= 188 CLV=

Use 36 critaria

Σ CLV_	<i>853</i>	1319
	0.81	•
LOS	D	
30 % Red.	c-lion for	Red.

CAITER	IA (von)	RO) 28	B 2 3 8	4 3
LOS	A	630 900	5 01 855	825
	8	735 1080	1000 PG	945
	C	840 1200	□1 /€	1100
	0	945 1380	1275	1225
	E	1050 1500	1 3 1425	1373

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

CALCULATED BY 59 DATE SHEET OF		Atlantic Ave. / Sum	mer st.
			PERIOD AM
	CHECKED BY &	bg DATE	JOB NO. 0923

P	hasing 20	with text			
	A	(B)	• ©	©	E
		. /	-		
		\ • /			
	1	* /			
				·	
		V			
	4 40 8	الماريات	. 6392	•	
1	29 40/2	To cycle	- 221 - 321 - 321	*	
	इंडा इडाइडा	To what	387		
		/			
-		/	-12		
0	IV= 53	\CTA=	CLV= 312	CT∆=	CT∆=

Analysed as 26

		ADJ
E CLV	923	1318
V/C.	0:89 .	
LOS	D	
30 % 8.1.	udian for	Reds

СЯПЕН	(ngv) A	407	28	3 8	4 3	
LOS	A	630	900	855	825	
	8	735	1050	1000	165	
	C	. 840	1200		1100	
	0	445	1350	/ 1275	1225	
	E	1056	1500	1425	1375	

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION Athric Ave.

ALT. N. Build YEAR / CALCULATED BY G DATE
CHECKED BY RB DATE Y / Summer St. 1970

DATE SHEET

JOB NO. 0423 DATE X 15

icy (8 > 02

P	HASING ZØ	with Lead			
Γ	A	B	• ©	0	E
			=		
		•			
	1	7			
	•	_			
			6		
			1 212 + 211		. •
	PPF	22-	128	٠.	
	335	72 ->	127-0		
	884				
-			702		
	CLV= 537	CLV= 72	CIV= 292	CTA=	CTA=

4 3	
825	
945	
1100	
1225	
1375	
	825 968 1100 1225

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Atlantic Ave. / Su	mmer st.
ALT. Build	YEAR 1970	PERIOD AM
CALCULATED BY	B(T DATE	SHEET OF
CHECKED BY	AR DATE SIL	JOB NO. 0923

1	PHASING ZØ	with Leed			
	A	B	. (2)	0	E
1	.		©		
١		\ . /	-		
	4	→ /	-		•
		-	~ .	•	
			2-392		
			2392 - 221 - 222		. *
I		/ \		•.	
	* * * * * * * * * * * * * * * * * * * *	-4	389 -P		
	* * /		389 -P		
	22.2				
	CLV= 542		CLV= 392	CLV=	CTV=
1	316	CTA= /		CT-0-	C24-

use 2 \$ due to short lead green time

		1334
E CLV_	734	ا ازا
V/C_	0:89	
LOS	D	
30 % Redu	ction for	Peds.

CAITER	(non)	カトラ	2 8	38	4 8
LOS	A	636	900	855	825
	8	735	1956	1000	965
	c	. 840	1200	1149	1100
	0	4745	1350	1275	1225
	E	1050	1500	1425	1375

.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INWERSECHION_	Atlantic Ave. / Sum	mer st.
ALT. Build	YEAR /970	PERIOD PP
CALCULATED BY	BG DATE	SHEET OF
CHECKED BY	DATE AIR	JOB NO. 0423

PHASING 29	with Lead			
A	8	110	0	Œ
1	-			
† † † 551. 555 555	アー・カー・	1216 4-211 4-211 127		. •
CIV= 555	CLV= 72	CLV= 292	CTA=	CTA=

	MOD ,							
	* *	СЯПЕЯ	A (von)	11 1	2 8	3 8	4 3	
E CLV 9/9	1313	LOS	A	£30	900	855	825	
VIC_037			8	135	1050	1000	965	
			C	- 840	1200	:1140	1100	
LOS_D_			0	4745	1380	1275	1225	
30 % Reduction for B	eds		E	10 50	1500	1425	1373	

INTERSECTION Atlantic Ave. MIK 31.

ALT. Existing YEAR 1984 PERIOD AM

CALCULATED BY EG DATE SHEET OF

CHECKED BY KB DATE JOB NO. 0923

PHASING 29	B	©	(D)	E
1	. }-			
1 1	4			•
22.203				
223 223	63 A 430		•	. •
242 342	83 7			
CLV= 342+39	CIV= 83+21	CTA=	CTA=	CTA=

Σ CLV	485	5m
V/C.	0.39	
LOS	A	
17% Roduc	tion for led	

СЯПЕЯ	IA (von)	774	2 8	3 8	48
LOS	A	747	900	855	825
	8	872	1050	1000	965
	c	995	1200	1140	1100
	0	1131	1350	1275	1225
	E	1245	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Atlantic Rye. /M.	12 3th
ALT. Existing	YEAR 1984	PERIOD PM
CALCULATED BY	BG DATE	SHEET OF
CHECKED BY (B DATE	JOB NO. 0923

PHASING 20	<i>(</i>			
(A) ↑	B → →	©	(a)	(H)
14 224 14 224 1 4 9 129 780 780	ni 5130	·		
CIV= 730+36	CLV= 22/	CTA=	CTA=	CIV=

	805					
_		CRITERI	A (voh)	45-	2.5	3 Ø
Σ CLV /037	1206	LOS	A	774	900	855
V/C_0.8			8	963	1050	1000
			C	946	1200	1140
LOS_C			ם	1104	1350	1275
14% Reduction for	Peds		E	1340	1500	1425

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Atlantic Ave. /H.IK St.
ALT. No Built	YEAR 1990 PERIOD AM
CALCULATED BY	
CHECKED BY	PR DATE YIJ JOB NO. 0923

PHASING 29	· · · · · · · · · · · · · · · · · · ·			
(A)	₿	©	D	E
1	4			
Ť		·		
165 216	15 625 19 00 20 19 00 20		-	. •
265				
\$ \$1.74 \$08 \$08	2			
CIV= 408+47	CLV= 99+25	CIV=	CTA=	CTA=

	ADJ	CRITERIA (VD	124 (U	2 8	3 8	4 5
Σ CLV_577	.698	LOS A	747	900	855	825
V/C_0.47		. 8	872	1050	1000	965
LOS A		c	1131.	1200	1140	1100
LUS_//		D	1131	1350	1275	1225
17% Reduction for	Reds.	E	1245	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION_	Atlantic Ave. /MIK	5/h
ALT. No Build	YEAR 1990	PERIOD PH
CALCULATED BY	BG DATE	SHEET OF
CHECKED BY	CO DATE YIS	JOB NO. <u>0923</u>

A A	B → →	©	(D)	Œ.
308 308 48 4 Prisy 931 730	260 5 155 -39 38 7		-	-
CLV= 93/+48	CIV= 264	CTV=	CLV=	CTA=

A01 1445	CRITERU	A (vph)	An-	2 8	3 8	48
E CLV /243	LOS	A	774	900	858	825
V/C_0.96		8	763	1050	1000	965
		C	.140	1200	1140	1100
LOS_E_		ם	1161 .	1350	1275	1225
14% Reduction for leds		E	1340	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION Build ALT. AM SHEET CALCULATED BY DATE OF CHECKED BY JOB NO. 0933

PHASING 29				
A	(B)	©	D	E
1	. ⊁			
	4			•
1				•
1 1-61	75 136	·		. •
266 265	-0117			
1 40.26	10/04			
100 100	2			
434 434				
CLV= 434+6/	CLV= 107+25	CLV=	CLV=	CTA=

A03	CRITERIA (von)	₹₽, 2 \$	3 Ø	4 3
E CLV 627 7.55	LOS A	7-77 747 900	855	825
V/C_0.50	8	الم المين ا	1000	965
LOS A	C	1161 . 1131 1200	1140	1100
	0	1350	1275	1225
17% Reduction for Reds	E	1710 151 1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Atlantic Bye. /H.IK	5%
ALT. Build	YEAR 1998	PERIOD PM
CALCULATED BY	34 DATE	SHEET OF
CHECKED BY K	R DATE 3 13	JOB NO. 0973

PHASING 29	S			
A	B	· ©	(D)	E
1	† _			
	<i>1</i> . *			
†	~		·	
308 308	2.54			
+ + 48	264 - 207 - 207 - 239 - 38 - 4		·	-
11-54	-039 24 -5			
28	10			
CLV= 93/148	CLV= 264	CTV=	CLV=	CLV=

..5/

	80 J						
	THUS	CRITER	IA (vph)	7211	2 Ø	3 8	4 3
Σ CLV_/243_	170	LOS	A	774	900	855	825
V/C 0.96			В	903	1050	1000	905
			C	7610	1200	1140	1100
LOS_E_	,		0	1161.	1350	1275	1225
14% Reductionar	. Ross		E	1290	1500	1425	1375

INTERSECTION A	Hantie Au/s	tate St.
ALT. /984	YEAR /914	PERIOD AM
CALCULATED BY	RP DATE 10	3 SHEET OF
CHECKED BY	DATE	JOB NO. 0923

INTERSECTION	GEOMETRY		*	Left ?	Turn Check
4.10/	Ped volu		7 164 7 109 80 7 31 7 101 - AOS.	a. Number of change intervals per hour h. Left turn capacity on change interval, in vyh c. G/C Ranio d. Opposing volume in vyh e. Left turn capacity on green, in vyh f. Left turn capacity in vyh (b + e) g. Left turn volume in vyh h. Is volume > capacity (g > f?	Approach 1 2 3
PHASING 3		0 Pel			
A	0o	0	•		
265+87	275	. 135			
CTA=	CLV=	CLV=	CIV=	CTV=	

Σ CLV_	762
V/C_	.53
	A

द्या ग्डन	IA (vph)	2 8	3 8	4 3
LOS	A	900	255	825.
	8	1050	1000	966
	C	1200	1140	1100
	ם	1350	1275	1225
	E	1500	1425	1375

INTERSECTION GEOMETRY

E CLV /233

V/C_,87

LOS_D

INTERSECTION_			
ALT. Existin	YEAR	1984 PERI	OD P/4
CALCULATED BY	RI DATE	10/23/84	SHEET OF
CHECKED BY	DATE		NO. 0923

North

Left Turn Check

Number of change intervals per hour

b. Left turn capacity on change interval.

e G/C

Approach 2 3

4 3

825

965

1100

1225

1375

PHASING 3		-cs - Heavy - 1.	grown for the factor of the fa	ura ura volume ura volume
A	00	0	0	E
796 +39	204	. 194	-	
CI_V=	CTA=	CTA=	CTA=	CTA=

CRITERIA (voh)

1

C

0

E

L03

2 8

900

1950

1200

1350

1500

3 8

855

1000

1140

1275

1425

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 817 / 482-1870

INTERSECTION GEOMETRY

INTERSECTION Atl		
ALT. Ava Brill	YEAR /990	PERIOD An
CALCULATED BY	DATE	SHEET OF
CHECKED BY	DATE	JOB NO. 0923

North

Left Turn Check

Approach 2 3

E CLV_	908
V/C_	.64
LOS	_

CRITERIA (vph)		2 8	3 8	4 5	
LOS	A	900	858	825	
	В	1050	1000	965	
	c	1200	1140	1100	
	ם	1359	1275	1225	
	E	1800	1425	1375	

INTERSECTION	Atlantic Au/s	take St.	
ALT. NO BUIL	9 YEAR 1990	PERIOD PM	
CALCULATED BY	RA DATE 10/0	17/84 SHEET OF	
CHECKED BY	DATE	JOB NO. 0927	

617 / 482-1870	Œ	ECKED BY	DATE		JOB NO	0923	,
INTERSECTION	GEOMETRY		*		Left 1	Turn Che	ck
200 A C C C C C C C C C C C C C C C C C C	249	3, 30, 74.	Indicate North	b. Left to on chain your capacities. G/C Ratto d. Oppose in your capacities. f. Left to capacities (b + e) g. Left to capacities.	r intervals ur ura capacity unge interval, unge interval,	Appr 1 2	3
PHASING 3		-cs - Heavy - 1.					
A (()))))))))))))))))	00	0	•				
75+949	244 .	.23/					
CTA=	CLV=	CLV=	CTA=		CTV=		

E CLV_	1499
V/C_	1.05
LOS	E

CRITER	A (vph)	2 8	3 8	4 3
LOS	A	900	866	825
	В	1050	1000	165
	C	1200	1140	1100
	0	1350	1275	1225
	Œ	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION GEOMETRY

E CLV 908

V/C_-64

LOS_

	Atlantic Au/State St.	
ALT. Build	YEAR 1990 PERIOD AM	
CALCULATED BY	RB DATE/0/23/84 SHEET OF	
CHECKED BY	DATE JOB NO. 0923	

Indicate

North

ام المح الم

Left Turn Check

on change intervals per hour b. Left turn expecity Approach

2

4 3

825

965

1100

1225

1375

CRITERIA (vph)

8

C

٥

LOS

28

900

1050

1200

1350

1500

3 8

855

1000

1140

1275

1425

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	N Atlantic 1	Au/State =	st
ALT. Built	4-441	770 PERIO	OD 1M
CALCULATED	BY RY DAT	E 10/23/24	SHEET OF
CHECKED BY	DATE	JOB	NO. 0922

Σ CLV_	1525
V/C_	1.00
LOS	E

CRITERIA	(voh)	2 8	3 8	4 3
LOS	A	900	855	825
	8	1050	1000	965
	C	1200	1140	1100
	0	1350	1275	1225
	E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION Surface Artery / Elinton St. / Commercial St. YEAR 01984 Existing CALCULATED BY DATE SHEET DATE 8 6/70 JOB NO. 7923 CHECKED BY

PHASING 2	D W/AOV			
(A)	(B)	©	0	Œ
tit	71	74		
240 174	444 aus 1 1 240 pt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 112 112 112 112 112 112 112 112 112 1	6 31	. •
CLV= 240	CLV= 443+240	CIV= 113+161	CLV=	CTA=

AOL					
~ ~	CRITERIA (VDI	1) 40.7	2 Ø	3 8	4 2
ECLV 1042 1303	LOS A	7730	900	865	825
V/C_0.81	8	540	1050	1025 1000	965
LOS D	C	100	1200	1140	1100
	0	1030°	1350	1275	1225
20% Reduction for Peds	E	1700	(1500)	463 -1425	1275
				1	

617 / 482-1870

Vanasse / Hangen Engineering, Inc. Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 INTERSECTION Surface Artery (Clinton St. / Commercial St.

ALT. Existing YEAR 1984 PERIOD PM

CALCULATED BY 89 DATE SHEET OF

CHECKED BY 78 DATE 47/1/JOB NO. 1923

CTA= 370	CLV= 315 (CTV= 147+34	CI_V=	CTA=
320 330 1820 1	1 tos9 315 199 0 4 t 201212	13° 34 F, 30	,-	·
71	71	75	1. sn	
A	(B)	©	©	E
PHASING /	Q			

Assume only 1/2 LTS in 3 carry over Adv since mixed track; 3 = 423

E CLV_	826	1007
V/C_	0.67	•
LOS	B	
8% Reductio		5

CRITERIA	(vph)	Ar"	2 8	3 8	4 3
LOS	A'	738	900	855	825
	8	Set	1050	1025 1000	965
	C	78-1	1200	1140	1100
	0	1107	1350	1275	1225
	E	1230	1500	1763 1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION Surface Artery / Clinton	st. / Commercial st.
ALT. No-Build YEAR 0 1990	PERIOD AH
CALCULATED BY DATE DATE	SHEET_OF
CHECKED BY RB DATE \$ 10 170	JOB NO

PHASING	21
---------	----

THACING -				
A	(B)	©	0	E
71	71	74		
Assured 6 cars par cycle	582 582 1 hagg	29 154 154 107 Tus		. •
240 240	332	41 31	,	
CLV= 240	CLV= 582132	CLV= 134 +7	CTA=	CT∆=

Zo'b Reduction for Peds

	332	405
E CLV	1295	16.18
V/C.	1.08	
LOS	E	

CRITER	IA (vph)	HOT	2 Ø	3 5	4 8
LOS	A	.7.20	900	855	825
	8	340	1050	1000	965
	С	900	1200	1140	1100
	D	1080	1350	1275	1225
	E	1200	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTI	ON Su	mface A	lotery,	Clinton	st. /	smoer	ical :	54.
ALT. No B		YE			PERIC		Ч	
CALCULATED	BY	BG	DATE			SHEET	OF	
CHECKED BY		KR I	DATE	(1)	JOB	NO	8923	

PHASING

A	₽	©	©	E
††	71	2/2		
300 304	393 343 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	155 41 68 175 176 170 35 15	-	
□™ = 300	CLV= 393 +51	CIV= 176+4/	CTV=	CTA=

USE ADV of 300

Assume 1/2 LT 51 599 CARLANTAR

000 - 370 + 370 + .75 = 530 LT FAC = 2,0

E CLV 961 V/C 078 LOS_C_

18 % Reduction for Reds

CRITER	(ngv) Al	7.04	2 8	3 Ø	4 8
LOS	A	. 738	900	855	825
	8	361	1050	1000	905
	C	934	1200	1140	. 1100
	0	1107.	1350	1275	1225
	E	1230	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Sunface Artera/Clinton	n st. / Commercial st.
ALT. Build	YEAR 4 1790	PERIOD AM
CALCULATED B	Y 34 DATE	SHEET OF
CHECKED BY	MR DATE 7 13	JOB NO. 8923

PHASING

FIIAGING				
A	₿	©	0	E
71	71	75		
240	597 596	29 134 154		. •
240 1 708	330 0	48 31 5-7		
CLV= 240	CLV= 597+352	CLV= 134+7	CIV=	CLV=

ADT					
- /2 / 12V	CRITERIA (vph)	7 Qr	2 Ø	3 Ø	4 5
Σ CLV /3/0 1638	LOS A	7,00	900	155	825
V/C_1.69	В	54C	1050	1000	965
106	C	90 D	1200	1140	1100
LOS_E	0	1050	1350	1275	1225
20% leduction for leds	E	19c0	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Sunface Artera/Clinton	a st. / Commercial st.
ALT. Build	YEAR - 1990	PERIOD PM
CALCULATED BY	867 DATE	SHEET OF
CHECKED BY	KIS DATE	JOB NO. 1923

PHASING

TIAGING				
A	(B)	©	0	E
71	71	2/2		
150 150 100 300	373 373 1 12% 9744 127 319411	18 175 176 176 170 70	-	
CTA= 300	CIV= 416+80	CLV= /76+41	CTV=	CTA=

LT ADV - 1/2 TH ; CARRY OVER = 6374

OPT VIL = 393 x 1.5 = 590 6600

97 7

USE 2.6 LT FACTOR

Σ CLV_/013	1332 VOZ
V/C_0.83	
LOS_D	
18 Reduction for Reds	

CRITERL	A (voh)	AC T	2 8	3 Ø	4 3
LOS	A	738	900	855	825
	8	Sel	1050	1000	965
	C	984	1200	1140	1100
	0	1107.	1350	1275	1225
	E	1250 3c	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Surfac.	e Artei	14	1state	. St.			
ALT. GASTING		YEAR	7	984	PERIOD_	AM		
CALCULATED B	¥ B4	DA:	Œ_		SI	EET_	_of_	_
CHECKED BY	AR	DATE			JOB NO	097	23	

Left Turn Check INTERSECTION GEOMETRY Approach Indicate 3 2 North a. Number of change unervals per hour b. Left turn capacity on change interval, in vph c. G/C Ratio st. -82 -184 d. Opposing volume in vpb e. Left turn capacity on green, in vph f. Left turn capacity in vph (b + e) & Left nurs volu is volume > capacity (g > 0?

PHASING 2	ø			
(A)	B	©	•	E
219 217 229 370 FT 4 370 S72	-82 -141 			•
CLV= 288 +370	CLV= /4/	CTA=	CLV=	CTA=

799
0.53
A

СЯПЕН	A (vpn)	2 ਈ	3 8	4 3
LOS	A	900	858	825
	В	1050	1000	965
	c	1200	1140	1100
	D	1350	1275	1225
	E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Surface D	vtev, 157	tate st.	
ALT. Existing	YE	LR (1984	PERIOD	PM
CALCULATED B	Y BG	DATE	SH	EET OF
CHECKED BY_	re I	DATE	JOB NO	- 0923

Left Turn Check INTERSECTION GEOMETRY Indicate North Approach 3 1 2 a. Number of st. state change intervals per hour b. Left turn capacity on change interval. c G/C Rauo d. Opposing volume e. Left num capacity on green, in vph f, Left turn capacity in vph & Left turn volume in vpts b. Is volume > capaciry (g > f)?

PHASING 2	φ			
(A)	B	©	D	E
1				
	•			
1				
			, in the second	
115	2125			
247 248	2125 			
	159			
2034	16			
W.J. C.				-
CLV= 682	CIV= 154	CTA=	CTA=	CTA=
	O			

E CLV_	836
V/C_	0.55
LOS	A

CRITERIA (vet) 21	3 8	48
LOS A	900	855	825
8	1050	1000	965
C	1200	1140	1100
a	1350	1275	1225
ε	1500	1425	1275

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Surface Arters	Istate St.	
ALT. No-Build		1990 PERIO	
CALCULATED BY	BO DATE		SHEET OF
CHECKED BY	RG DATE	9/13 JOB	NO. 0923

P	HASING 2	ø			
	A	(B)	· ©	D	E
	1				
	,	٠ 🚐		×	
	t			•	·,
۱	424 358	198			
	359	-215 -214		•	
	441	214			
	71	210			
L	~ 672				
	CLV= 441+357	CIV= 25	CTA=	CTV=	CIV=

E CLV_	1014
	0.68
	В

CAITERL	A (vph)	2 8	3 5	4 2
LOS	A	500	855	825
	8	1050	1000	965
	C .	1200	1140	1100
	0	1350	1275	1225
	E	1500	1425	1375

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

INTERSECTION	Surfact	e Artern	1state	st.	_	
ALT. No Buil			1990	PERIO	PM	
CALCULATED E		DATE		5	FEET	OF
CHECKED BY	KE	DATE	XII	JOB 1	NO. 69	13

PHASING 2	PHASING 2∮						
A	B	· ©	(D)	E			
1							
	٠ 🛶						
1							
, i							
153	4						
	179 235 7 235 213						
312 381	234						
242 327	213						
571 813	:						
CIV= 813	CIV= 235	CTA=	CT∆=	CTA=			

OPP VOL = 382 × 1.5 = 573 LT FAC = 2.0

E CLV_	1048
	0.70
LOS	.C

अगा स्त	IA (vph)	2 8	3 8	4 3
LOS	A	900	855	825
	8	1050	1000	965
	c	1200	1140	1100
	Б	1350	1275	1225
	E	1500	1425	1375

INTERSECTION	8 Surfac	e Arten	1state	5t.	
ALT. Build		YEAR C	1990	PERIOD	AM
CALCULATED I	3Y 04	DATE		SE	EET OF
CHECKED BY	RB	DATE	8/12	JOB NO	0. 0923
			-	•	

Left Turn Check INTERSECTION GEOMETRY Approach Indicate North 2 3 Number of change intervals per hour Left rurn capacity st. state on change interval, on change interval in vph c. G/C Ratio d. Opposing volume - 98 - 219 is von e. Left turn capacity on green, in von L. Left turn - 210 capacity in vph (b + e) & Left turn volume in vpn h. Is volume > capacity (# > 1)?

PHASING 26						
B	• ©	D	E			
•						
1 98						
4-115		•	. '			
214						
2/8						
CIV= 215	CTV=	CT.V=	CLV=			
	B	98 C	B © D			

E CLV_	1021
V/C_	0.68
LOS	B

CAITER	IA (vph)	2 🗷	3 8	4 3
LOS	A	900	865	825
	В	1050	1000	965
	C	1200	1140	1100
	D	1350	1275	1225
	E	1500	1425	1375

INTERSECTION Surface Arter, State St.

ALT. Build YEAR 1990 PERIOD PM

CALCULATED BY BG DATE SHEET OF

CHECKED BY Y B DATE JOB NO. 0723

Left Turn Check INTERSECTION GEOMETRY Approach Indicate Son North a. Number of 31. change intervals b. Left turn capacity on change interval. e G/C Ratio d. Opposing volume 43 e Left turn capacity on green, in vph f. Left turn capacity in vph (b + e) & Left turn volum in vph h. is voiume > capacity (# > 0?

PHASING 2∮						
A	B	©	D	E		
1			,			
	٠					
4				,		
,						
381 382						
153	208 - 255 - 234 213					
13.5	234					
242	213					
598 841						
	. ,					
CTV= 841	CLV= 235	CTA=	CTA=	CTA=		

. OPP VOL = 382 X1.5 = 573 LT FAC = 2:0

E CLV_	1076
V/C_	472
	C

CRITERIA (vph)		2 8	3 8	48
LOS	A	900	855	825
	В	1050	1000	965
	c	1200	1140	1100
	0	1350	1275	1225
	E	1500	1425	1375

INTERSECTION_	Surface Artera/Mi	ik st.
ALT. Gristing	YEAR 01984	PERIOD AM
CALCULATED BY	BG DATE	SHEET OF
CHECKED BY	RB DATE	JOB NO. 0923

PHASING Z Ø								
	A	B	©	Ð	E			
+1		4						
04	10				·			
ु . इन्	103 h	145 -107	·		·			
	463:463		; ;					
CLV= 4	634112	CIV= 145	CIV=	CTA=	CTV=			

000 VOL = 463 × 1.5 = 695 LT FAC -4.0

Σ CLV_	720	A05 8.67
V/C_	058	
LOS_	A	
17 % Reduc	ti Gouse	ele

अगास्त	IA (vph)	HOT	2 ダ	3 Ø	4 3
LOS	A	747	900	855	825
	8	372	1050	1000	965
	C	796	1200	1140	1100
	0	1127	1350	1275	1225
	E	1245	1500	1425	1375

BOSTON TRAFFIC AND PARKING DEPARTMENT -AUTOMATIC TRAFFIC SIGNALS OPERATION SCHEDULE

DATE FIRST IN SERVICE_ LOCATION ATLANTIC AVE. AND MILK STREET 2006 INTERSECTION Nº

DATE 7/20/77

Cycle Flash 001 10 06 5/22/74 MO 4 4 4 4 œ ĸ 2 ĸ FDW MO G CC. × K 出 DW 3 U 15 13 14 15 FDW œ 3 ĸ œ 24 × 4 4 4 4 TIMING FOR AUTOMATIC OPERATION FDW K 3 œ ď 3 13 K 3 3 ĸ 召 0 9 3 4 α ĸ α ĸ 3 0 0 00 ď × 2 K 3 3 0 0 0 2 K 3 × MO \Rightarrow 4 4 4 4 4 32 18 49 54 G G N.B SB S.B W.B Е.В 9:30 AM With Ped. 3:30 PM Without Ped. Without Ped. 7:00 AM Without Ped Without Ped. Without Ped. Without Ped. Atlantic Ave. With Ped. With Ped. With Ped. 6:30 PM With Ped. With Ped. 6A-7B Atlantic Ave Halk Street Milk Street C. W. 2F-7F NORMAL to

3 Q

MQ

MO

MO

MO

MO

FDW

3

MO

DW DW

C-W. 2E-3E;5E-6F

All others

C . ₹

										• .		
Post	Ped. P.B.	Face	Top Lens	2nd Lens	3rd Lens	4th Lens	5th Lens	Automatic Oper		:00 AM to 2:00	AM = 20	
<u>~</u> 1			CON	TROL	вох			Pedestrian Signal Operation fromto=				
2		A	R	Y	RA	LA		hours per day. Remote P.B. Actuation fromto=				
		E	DŴ	W				hours per	day.			
		F	DW	W				Flasher Operat		2 AM to 6:00 A	M= 4	
3	х	В	R.	Y	G					5 Flasher-Type G	rouse-Hin	
		E	DW	W				Coordinated	Interconne	• •	Interconnected	
		F	DW	W	:			豆	₽			
4	Х	A	R	Y	G	(MAS	ST)	Master of	Inton St.	J.F.F. Expr	ace Road	
		В	R	Y	G			OFFS	ETS	MASSACI PER	HUSETTS	
		E	DW	W					%	Number	Date	
		F	DW	W				Dl				
5	Х	A	R	Y	G			D2				
		E	DW	W				р3				
		F	DW	W								
6	х	A	R	У	G							
		Е	DW	W								
		F	DW	W								
	х_	A	R	У	VA							
		В	R-	Y	G							
		С.	R	Y	RA	LA	-					
		E	WŒ	W			-		951	44540		
	-	F	DW	W.					REN	MARKS		
			-									
			-		-							
				-								
	-		-				-					
			-									
			-	Т	otal for	Intersect	tion					
	1 5	21	5.3	1		-						

BOSTON TRAFFIC AND PARKING DEPARTMENT -AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

- 1
- 1
- 1
- 1
- 1
-1
St
S
m
الد
10
+1
വ
- 1
ਰ
C.
an
2
K
a)
O.
or l
71
Н
긔
3
-
[II.
(Tr)
13
٦
.1
a)
>
Z.
D
=
듸
Ø
\neg
11
A.
-1
1
-
-
0
150
Q
C)
200
0C
10C

DATE 8/15/77

	Cycle Flash	7.1		7.3		100]						7 7	>	×	4	K	X	4		1	1	1	
																									-
ان																				ļ					
State																									
ed by		4		4		4								RL	*8	œ	ĸ	×	R	FDW	DW	×	* * FDW	FDW	
Installed		2		2		2								RL	* 8	24	K	G	R	FDW	DW	3	* * FDW	FDW	
		4		4		4								XL	* R	22	ĸ	Ŋ	В	FDW	ΜQ	W	FDW	FDW	
SERVICE		15		16		25								GL.	₩	R	×	Ö	R	M	DW	3	. '3	M	
Z	NOI	4		4		4								RL	R	œ	×	Ö	×.	DW	FDW	DW	×.	3	
FIRST	OPERATION	. C		5		5								RL	R	R	Ç	Ŋ	æ	ΜQ	FDW	M	₹	3	
DATE	IC OF	7		7		7								RL	K	ΩZ	ی	Ö	22	MC	M	DW	3	M	
	AUTOMATIC	4		4		4				01	cycle	cvcle		RL	>4	>	R	24	>	MQ	DW	FDW	DW	MQ	
	R AU	7		7		7				cvcl				RL	O	D	R	R	U	MC	DW	FDW	MC	M'C	_ `
	IG FOR	18		37		48				-acthated	on-actuated	on-actuated		RL	O	Ö	×	ĸ	O	MC	MQ	3	DW	MQ	1
	TIMING											on-a													
4						/83				n nor	ı nı	jn				В									
, 2024						4/8				he G'i	be'DW	be FDW				3C-6B-7A-7B	-7c				-				
2023										*To b		o To b		3A=64	4A-4B	3C-6B	3B-4C-7C								
N ₀₀																		ce Rd	d.						,
INTERSECTION		Without Pad.	Ped.	Without Ped	Ped.	ut Ped.	Ped.	Without Ped.	Ped.	Without Pad.	Ped.	Without Ped.	Ped.	ve.	ve.	ve.		Surfa	ace R			1			
TERSE			With Ped.	Witho	AM With Ped.	P.M. Without Ped.	PM With Ped.	Witho	With Ped.	Witho	With Ped.	Witho	With Ped.	Pound	tic A	tic A	St	St. 0	Surf	БЕ-7E	39-35	4E-5E	3F-4F	2E-3E	1 /
2		FLODAAA		Med.		3 to P	U:30 P							orthbound ave	Atlantic Ave.	Atlantic Ave	state	tate St. @Surface	J.F.F.Surface Rd	M	ĭ . ₩.)	C.W.	Ж.	C.W. 2E-3E	1:

		1	1 -	0-4	7	- CAL	545	
Post	Ped. P.B.	Face	Top	2nd Lens	3rd Lens	4th Lens	5th Lens	Automatic Operation from to = 24
								hours per day.
	CB-	Atlar	itic A	Ave.	and S	tate	St.	Pedestrian Signal Operation from to = hours per day.
2		E	DW	W				Remote P.B. Actuation fromto=
_ 3	Х	A	RĹ	YL	GL			hours per day.
		D.	_	.,				Flasher Operation fromto= 0
_		В	R	Y	G			hours per day.
		C	R.	Y	G			Timer-Type Crouse-Hinds Flasher-Type Crouse-Hi
		E/F	DW/DW	W/W				Coordinated Interconnected Non-Interconnect
_ 4	Х	A	R	Y	G			
		B	R	Y	G			Moster of Clinton St. and J F F Expressway Surface Rd
								OFFSETS MASSACHUSETTS
		C	R	Y	G			PERMIT
		E/F	DW/DW	W/W				% Number Date
5_	Х	E	DW	W				D1
		F	DW	W				D2
6		A	RL	YL	GL			D3
		В	R	Y	G			
		E	DW	W				
		F	DŴ	W				
7		_A	R	Y	G			
		В	R	Y	G			
		С	R	Y	G			
		E	DW	W				
1	CB-	(junc	tion)	JFF.	Surfa	ce ar	d Sta	te
2		A	R	Y	G			REMARKS
		*B	R´	Y	G			*Optically programmed
3		*A	R	Y	G			All vehicle lenses 12" at Atl. & State
4	~.	A	R	Y	G			
- 5		А	R	Y	G			
						added		
6		B	E R	Y	G	1/4	7.0	
		*B	R	Y	G		-	
13	3	29	_7.7		tal for l	intersecti	on	
	3							

BOSTON TRAFFIC DEPARTMENT -- AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

		Flash						1	×	≯ ,	≯ .	2	E -1	1									4		1	;	
	-	Cycle	70	7.0	06	0 6	100	100			,	Î	,	,	1						'		Charage	>		-	
7	5 VAC		4	4	4	4	4	4	æ	24	2	×	FDW	DW		-	2.3	per day	inds	O pa	1		A. C.				
8-5-77	, 11		ۍ. 	5	S	-J	5	5	М.	쪼:	×	U	FDW	MO		,	7	hours per day	Crouse-Hinds	Non-interconnected		}	سابسغا	-			
	T SUPPLY		10	10	12	12	15	1.5	24	œį	æ	0	3	DW				20191/2		Non-inte	n u	vo.	+3.	ť			
DATE	CURRENT	FION	0	11	0	11	0	11	æ	R	24	æ	3	FDW		. m .		n i	er—Typ		Location	REMARKS	15/27				
_		OPERA	0	7	0	7	0	7	æ	24	~	- A	3	3		to 78		2a m	Flash	区	This Lo		334-11/15/2	17			
		AUTOMATIC OPERATION	4	4	4	4	4	4	×	×	7	æ	DW	DW		.m.q		6a m.to_		Interconnected		1		122-			
			30	187	127	21,35	200	300	O	0	0	æ	DW	DW		off 1		6a 2a	Crouse-Hinds	Interc	Master at_		See wo	ch. 11/21			
e Rd.	-76	TIMING FOR	4,	4	4	4	4	4	GLG	G	K	æ	DW	MO		*		in from.	ouse-		W		5.6 %	C h	-		
Surface	5-25-	NI 31 AL	\psi	4	05	8	126	128	- B (9	2	2	E DW	MO				Operatio		3		1					
F. F.	SERVICE	13	Without Ped.	With Ped.	Without Ped.	Mwith Ped.	ithout Ped.	With Ped.	dN.B(81	16) B. Nb	d S.B.	al ST	.7F-8F;2F-10E	OTHERS*				Automatic Operation from	Timer—Type—	Coordinated	Offset	MASSACHUSETTS PERMIT					
and J	FIRST IN S		NORMAL		7 a.m. w	9:30a.mw	3:30p. "Without Ped.	6:30pm *	SurfaceRdN.B(8B	SurfaceRdN.B(9A	SurfaceRd S.B	Commercial	C.W.7F-8	C.W.ALL								MASSACHU					
al St.	DATE	Sth Lens		ns T		• 7	5 S		01	03	1	1		0,		1	_ !					, 1	i	1		12"	
Commercia		4th Lens	1							1	1	1		:			GL	· 1								lenses	tersection
Com		3rd Lens		O			G			G			9			G	9	U			U						Total for Intersection
n St.		2nd Lens	Вох	X	Z	M	×	×	Z	×	×	3	×	3	3	×	×	K	3	W	×	3	M	X	M	vehicle	-
Clinton	64	Top	Control	R	DW	MQ	æ	DW	DW	×	MQ	DW	æ	DW	M O	ద	×	R	DW	DW	. 02	DW	DW	DW	DW	ALI	53
	No.	Face	Co	A	ы	Et.	A	[1]	ы	A	EL	ធ	A	ы	Ĺų	A	В	O	[1]	Ĺ	A	ल	ſτι	FI	F		22
LOCATION	N.F.	Ped. P.B.		×			×		×	×		×	×			×					×			×			6
		Post	7			!	m		73	5	-	9	7			1		1 1			5			10			707

BOSTON TRAFFIC AND PARKING DEPARTMENT -AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

LOCATION Atlantic Ave., J.F.F. Surface Rd. and State St.

DATE 8/15/77

								•
ost	Ped.	Face	Тор	2nd	3rd	4th	5th	Automatic Operation from to = 24
30.	₽.В.		Lens	Lens	Lens	Lens	Lens	hours per day.
1	CB-	Atlar	tic 2	ve.	and S	tate	St.	Pedestrian Signal Operation from to =
2		E	_DW	W				hours per day. Remote PB. Actuation from to =
3	Х	A	RĹ	YL	GL			hours per day.
		В	R	Y	G			Flasher Operation fromto= 0 hours per day.
		С	R.	Y	G			Timer-Type Crouse-Hinds Flasher-Type Crouse-Hind
1			DW/DW	w/w		i		Coordinated Interconnected Non-Interconnected
4	х	A	R	Y	G			
		В	R	Y	G			Moster of Clinton St and J F F Expressway Surface Rd.
		С	R	Y	G			OFFSETS MASSACHUSETTS PERMIT
								% Number Date
_			DW/DW					
5	Х	E	DW					D2
		F	DW	W				
-6		A	RL	YL	GL			D3
		В	R	Y	G			
·		E	DW	W				
		F	ĎŴ	W				
.7	-	A	R [†]	Y	G			
		В	R°	Y	G			
		C	R	Y	G			
		E	DM	W				
1	CB-	(junc	tion)	JFF.	Surfa	ce ar	d St	
2		A	R	Y	-6-			REMARKS
		*B	R-	У	G			*Optically programmed
.3		*A	R	Y	G			All vehicle lenses 12" at Atl. & State
4	_	A	R	Y	G			
5		A	R	Y	G_			
		В	R	Y	G	adde 7/2	4 76	
-6	-	A	R	Y	G			
		*B	R	Y	G			
13	3	29	7.7	To	otal for	Intersect	tion	

SKETCH SHOWING LOCATION OF TRAFFIC CONTROL SIGNAL INSTRLLATION CITY BOS TON LOCATION: Central St., John F. Fitzgerald Expressway (Surface Road) & Milk St. COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF PUBLIC WORKS 100 NASHUA STREET, BOST ON PEHRIMIET A Control Box CeVISIONS:

·西沙山西。-

BOSTON TRAFFIC DEPARTMENT - AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

DATE__7/7/77 LOCATION J.F.F. Expressway Surface Rd. and Milk St.

L	- Flax	!	, _ <u>1</u>						>-	CK.	1	1		1							1				ļ ,	
- 1	Cycle	70	70	9.0	06	100	100	-		1	 i	1	1		- [
CURRENT SUPPLY_115 V.A.L	OPERATION	0 17 4 4	B 17 4 4	0 18 4 4	8 18 4 4	0 22 4 4	8 22 4 4		R R R	R G G X	W W FDW FDW	FDW DW DW				MASTER = hours per day	=hours per day	Flasher-Type Crouse Hinds	Non-interconnected Non-in		REMARKS	7 to 7/20/77				
		o	7	0	7	0	7		æ	æ	3	3				M	_to_		Interconnected &	77117		1/1/17				
8 9	AUTOMATIC	4	4	4	4	4	4		>	æ	DW	DW				S E		-spu	Intercor	Master at Cttucon		flash				
to 1958	NG FOR	41	26	09	45	99	51		U	æ	DW	DW				n from_	n from	Se Hi	:	Ma		no				
Prior	TIMING											3				Operation	Flasher Operation from	e Cron	×		_					
SERVICE P		Without Ped.	With Ped.	Without Ped.	With Ped.	Without Ped.	With Ped.		e Rd.	St.	3F-4F	2E-3E;4E-				Automatic Operation from	Flasher	Timer-Type-Crouse-Hinds	Coordinated	Offset	MASSACHUSETTS PERMIT					
DATE FIRST IN		NORMAL			D2	(D3		Surface	Milk S	C.W. 3	C.W. 2	-								MASSACH No.					
DATE	5th Lens									1																
	4th Lens									 		1	t t	(mast)												Total for Intersection
	3rd Lens	×	G				ŋ	O			O		IJ	Ŋ							OH	5	24	2		Total for 1
	2nd Lens	col Box	×	3	×	3	×	7	Z	Z	Y	×	×	>4							0000	-	2 2	3 6		
52	Top	Control	R	DW	D.W.	M C	24	ĸ	DW	DW	K	DW	æ	æ												30
40. 1052	Face		A	ы	[E	 [±	A	В	ы	[in	A	ET .	A	М	1		-									12
INT. No.	Ped.		×		×		×			1	×															4
	Post	-	2		m	1	4	:		1	5															5

BOSTON TRAFFIC AND PARKING DEPARTMENT -AUTOMATIC TRAFFIC SIGNALS

Has been for life year oil abolt

OPERATION SCHEDULE

8/28/78

LOCATION Blackstone St., J.F. Fitzgerald Expressway Ramp RF and North St. DATE

Cycle Flasi M K × K ı .5/25/16 1.5 DW MO MO ĸ 2 3.5 MO MO MO × K DATE FIRST IN SERVICE. W/FDW DM 9/8 MO G 30 ĸ 7 α MQ DW DW p; TIMING FOR AUTOMATIC OPERATION ĸ 出 召 DW DW W/FDW DW K 2 24 >12/6 DW MO K G ĸ MO DW DW K K ĸ Н MO MO MO 4 K α 10/6 V/FDW 09 MO MO G ĸ 24 1115 J.F.F. Expressway Ramp R S. Rdwy. Rdwy. C.W. 10F-11F; | 11E-12E Maximum #2 3pm → 6pm INTERSECTION Nº C.W. 7F-9G; 9E-10E C.W. 8E-9F; 6E+7E Blackstone St. Blackstone St. Without Ped. Without Ped. Without Ped. Without Ped Without Ped. Without Ped. North Street With Ped. With Ped. With Ped. With Ped. With Ped. With Ped. Maximum #1 Other Int. Extension Initial NORMAL

			-					
ost	Ped. P.B.	Face	Top Lens	2nd Lens	3rd Lens	4th Lens	5th Lens	Automatic Operation from to = 24
1				ntrol				hours per day. Pedestrian Signal Operation fromto=
2		A	R	Y	G			hours per day. Remote P.B. Actuation from to =
3		A	R	Y	G			hours per day.
4		*A	R	Y	G			Flasher Operation fromto=
		*B	R	Y	G			hours per day.
5		A	R	Y	G			Timer-Type Flasher-Type
		В	R ~	Y	G			Coordinated Interconnected Non-Interconnecte
6	х	*A	R	Y	G			Master at
		E	DW	W				OFFSETS MASSACHUSETTS PERMIT
7	Х	*A	R -	Y	RA			% Number Date
		*B	R -	Y	G			AB-035
		E	DW	W				-1914 5-2-84
;		F	DW	W				
В	Х	E	DM.	W				
Э	Х	E	DW	W				
		F	ŝ DW	W				
		G	DW	W				
0	X	*A	R	Y	G			
		*B	R	Y	G			
		Ē	DW	W				
		F	DW	W				
1	Х	A	R -	Y	G			REMARKS
		E	DW	W				Blackstone local Rdwy. loop amp set
		F	DW	W				for "pulse" operation
2	Х	E	DW	W				
		*Opt:	cally	prod	gramme	₽d		
			vehic					
			-					
12	7	24	60° :	To	otal for	Intersect	ion	

:

BOSTON TRAFFIC DEPARTMENT - AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

INDIA ST. and JOHN F. FITZGERALD EXPRESSWAY (Surface Road)

1.0CATION

June 10, 1958

DATE

			-			,		7	X	2	ı					1							1.1				
	c) cle	95	1	1					CZ		1				;	;				st.			3/2				
DATE FIRST IN SERVICE INSTALLED by State CURRENT SUPPLY 115VA.C.	TIMING FOR AUTOMATIC OPERATION	MAL Without Ped. 41 5 40 4	With Ped.	Without Ped.	With Ped.	Without Ped.	With Ped.	Surface Road *G Y R R	India St. EB R G Y	India ST. W.B R R LA-RA Y							Automatic Operation from 6 8.m. to 2 8.m. = 20 hours per day	2 a.m. to 6 a.m. 4	1	ated & Interconnected & Non-interconnected Carlo and Sapparate Central St., Expression & Milk	- Master at	1 1	#1837 6-10-58 Signals reverted to State control from 5/1/60 to 2/11/11				
FIRS		NORMAL						1		44				}							W	_	#18	1	;		
DATE	5th Lens						8/25/22	21/1/															1				
	4th Lens					5/1/13	RAZ	PAT!						-				-	1	I	1	:	1	,	-		rsection
	3rd Lens	-	Ö	C	Ü	5	Z D		ŋ												_	_		!			Fotal for Intersection
						+	>	>						1					-		;			-			lota
	2nd Lens		X	X	X	7	×	7	Y	}			1							1	(F		-	_
1053	Top		R	표	H	de	æ	CH.	a			1				1	And the second s				1			1		29	E E
	Face	Вох	A	4	4	4	B A	. A. B.	A																		2 2
INT. No.	Ped. P.B.	1																				1	,	The same of the sa			
	36.03	Control		2.			W.	اب	7	1			1	:			-	:	1	(-			-

5-8-7

SIGNALS

BOSTON TRAFFIC AND PARKING DEPARTMENT -AUTOMATIC TRAFFIC SIGNALS

OPERATION SCHEDULE

Cycle Flosh

70

06

100

11/9/76 5/16/74 DATE DATE FIRST IN SERVICE FDW MQ X 3 ×. TIMING FOR AUTOMATIC OPERATION Atlantic Avenue, East India Row & West India Street 7 4 4 4 FDW MQ MQ GL 13 2 3 MQ MQ 13 14 14 GL 3 3 α × FDW MO MO MQ H \succ 4 α 4 7 4 V 7 FDW MQ DW MO Ö G MO MO MQ 6 6 7 굺 3 α FDW FDW FDW × 3 × 0 7 0 a 0 RI / 0 d 3 3 3 3 MO MQ * FDW MO K \simeq \succ 4 7 4 2007 GV-GRGW-GR *FDW MQ MO MO RL ~ MQ MO MQ INTERSECTION Nº 29 9 7 5 3 \simeq STREE LI Without Ped Without Ped Without Ped. Without Ped. Without Ped. Without Ped With Ped. With Pad. LOCATION _ With Ped. JU 3F-4E,6E-7E With Ped. With Ped. AST INDIA ROW JW 5E-6F, 2E-3E CU 2F-8F,4F-5F With Pud tlantic Ave. TLANTIC AVE. WEST INDIA W 7F-8E :30 pm am NORMAL :30 рп :30 am :00 to

17.

-- 1

	Ped.	_	Тор	2nd	3rd	4th	5th	Automatic Operation	£ 6:1	00 am to 2:00 am=	20
Post	P.B.	Face	Lens	Lens	Lens	Lens	Lens	hours per day.	Trom	70 am 10 2:00 am =	20
1		COL	TROL	BOX				Pedestrian Signal Ope	eration fro	m to	
2	X	E	DW	W				hours per day. Remote P.B. Actuation	n from	to =	
		F	DW-	W				hours per day.			
3	X	A	RL	YL	GL	*		Flasher Operation fr hours per day.	om <u>2:00</u>	am to 6:00 am = 4	
		В	RL_	YL	GL	*		Timer-Type Crouse	-Hinds	Flasher-TypeCrouse	-Hi
		E	DW	W					terconnec		
		F	DW	W				Z CLINTON	.	☐ J.F.F. EXPRESSW	
4	X	A	R	Y	GΨ	GR		Master at CLINCOL	V 31. U	SURFACE	
	•	В	R	Y	GV	GR	(MAST	OFFSETS		MASSACHUSETTS PERMIT	S
		С	R	-Y	G		(ARM)	9	%	Number D	ate
		E	DW	W				D1		B-1287 5/1	5/1
		F	DW	W				D2			
_5	Х	A	R	Y	G			D3			
		Е	DW	W							
		F	DW	W							
6	X	_A	RL.	YL	GL	*					
		В	RL	YL	GL	*					
		E	DW	W							
		F	DW	W							
7	Х	A	R	Y	GV	GR					
		B	R	Y	GV	GR	(MAST)			
		С	R	Y	G		(ARM)		REM	ARKS	
		E	D₩	W							
		F	DW	W							
8	Х	E	DW	W							
		F	DW	N							
	*	12"	vehi	cle l	enses						
_8	7	2 5	6.5	То	otal for	intersect	tion				

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB INTERNATION AL	PLACE JOB NO. 07 H
LOCATION:	SHEETOF
CALCULATED BY	DATE 4/9/84
CHECKED BY	DATE:

TITLE AIR QUALITY DATA REQUIREMENTS

Location	Date of Count	Pen K Hour Speed	Off-Pake Speed	8 hv/14r
OLIVER ST. EB PURCHASE ST. S.B.	9/22-23/76 Pak f-hour = 7:00/14-3:10/11 9/22-25/76 Pak 8-hour = 9:31/14-5:30/11	28	30 35	0.59

Vanasse / Hangen Engineering, Inc.

Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870

JOB: /WIERNAT	TONAL PLACE	JOB No	0788
LOCATION		SHEET	1 OF 2
CALCULATED BY	BG	DATE:	4/9/84
CHECKED BY:		DATE:	

TITLE AIR QUALITY PATA REQUIREMENTS

Location	Date of Count	Peak Hour Speed	Off-Teak Speed	8 hr/ihr factor
* ATINITIC ANT				
ATLANTIC AVE. (AT SURFACE ARTERY) (AND HIGH STREET)				
N.B. TO .W.B.	1981	26.	32	0.79
S.B. TO W.B.	1981	22	26	. 0.79
SULFACE ALTERY				
N.B. (FROM X-WAY) 5,13.	198 (1 98 (28	35 29	0.70
5,0.	1761	21		0.70
HIGH ST. / OLIVER ST.				
HIGH . 37.	11/14/80			
	Feak 8-hour 7:00AM-3:00PH	25	. 30	0.67
CONGRESS ST.	8/1-2/79			
E,B,	leak 8-hour = . 10:00 PM-6:00 PM	23	30	0.64
HIGH 5T.	8/1-2/19			
5, 8,	Perk f-hour = 1 7:30 AM - 3:00 PM	25	30	0.65
LONG RESS 37.	6/10/83			
EB.	Peak 1-hour=	20	25	0.68
PUR CHASE ST.	16:00 AM-6:00 PM			
5 B	PerK 8-hour=	20	,9 0	0.70
	10:00 A+1-6:00 PM			
* Values used on lower What	7.0			

^{*} Values used on Rowes Wharf EIR.

JOB International Place	JOB No0923
LOCATION:	SHEETOF
CALCULATED BY BG	DATE
CHECKED BY:	DATE:
All Aller Ad Carried	. 1

Vanasse / Hangen Consulting Engineers & Planners 184 High Street, Boston, Massachusetts 02110 617 / 482-1870	JOB: Ateurational Place JOB NO. 0923 LOCATION: SHEET OF CALCULATED BY: BG DATE: CHECKED BY: DATE: TITLE: AIK QUALITY CACULATION
latersection: Congress:	51. I larchase
Congress St.	Parchase 5+ 3B
feck hour = 1232 Peak Shours = 6720 factor = 0.68	Peak Shows = 1293. lak Shows = 7272 factor = 0.70
Intersection: Oliver st.	Purchase St.
Oliver st.	Purchase 5t,
Perk hour = 460 Rak 8 hours = 2173 Factor = 0.59	Park hours: 2.0 fo factor = 0.75

Vanasse / Hangen Consulting Engineers & Planners

JOB Juternational flace	JOB No. 0923
LOCATION:	SHEETOF
CALCULATED BY BG	DATE:
CHECKED BY:	DATE:
4.00 0	

184 High Street, Boston, Massachusetts 02110 617 / 482-1870	TITLE AIR QUALITY CALCULATION
Intersection: Congress	St. / High St.
Cogress 5 t.	Hyhst.
O EB	38
Pak hour = 1093	Rukhour = 690
feak 8 hours = 5,600	lank Shours = 3,588
factor = 1.64	factor = 0.65
Intersection: High ST. 16	Miver st.
It is set	Olivar5t
High 5t	
Reck Hours = 3,309	•
factor = 0.67	
need to be a seen of the contract of the contr	The second secon
	· · · · · · · · · · · · · · · · · · ·

OPS-234

Total

170-13466-79

PLANS AND SCHEDULES DEPARTMENT SUMMARY OF TRAFFIC COUNTS

LOCATION: Andrew Station YEAR: 84 OUTBOUND DATE: Manily 2 DATE: DATE: OUTBOUND DATE: Fair WEATHER: WEATHER: WEATHER: WEATHER: A.M. Tot. Tot. Tot. Tot. Std. V Pass. Aver. Cap. 0/U V Pass. Aver. Cap. b/u Pass. Aver. Cap. 0/0 Pass. Aver. Cap. o/ U TIME: 5:00 -6:00 6:01 -6:30 6:31 - 7:00 Subtotal 7:01 - 7:30 7:31 - 8:00 8:01 -8:30 8:31 -9:00 Subtotal 9:01 - 9:30 9:31 - 10:00 10:01 - 10:30 10:31 - 11:00 11:01 - 11:30 11:31 - 12:00 12:01 - 12:30 12:31 - 1:00 1:30 1:01 -4 170 43 1:31 -2:00 12 540 45 2:01 -2:30 12 620 52 2:31 -3:00 3:01 -3:30 4 360 90 3:31 - 4:00 12 855 71 44-2545-58 Subtotal 16 1620 101 4:01 - 4:30 4:31 -4:45 4 225 56 4:46 -5:00 8 1240 155 5:01 -5:15 4 800 208 5:15 -5:30 8 1425 184 5:45 8 1150 144 5:31 -8 506 63 5:46 -6:00 56 7016 125 Subtotal 6:01 -6:30 8 620 78 7:00 6:31 -20 1000 50 7:01 -7:30 8 578 71 12 525 44 7:31 -8:00 81300 38 8:01 -8:30 8:31 -9:00 4 380 95 9:01 -9:30 6 400 67 9:31 - 10:00-4 110 28 10:01 - 10:30 10:31 - 11:00 11:01 - 11:30 11:31 - 12:00 12:01 - 1:00 Subtotal 70 3925 56

LOCATION: Condrew Station

YEAR: 82

LOCATION: ALE		للاسر	tal	con	ب										CAR	004		
ROUTE: For	0	1		211		20	1.			Pean	4	10	04		•			
Gar	are great	152	iat	tic	2-6	Tra.	KLDES		62	name	<u>kse</u>	2	<u>era</u>	ce	m.			
ОИТВОИИО	DATE: G	199	y		34	read	Feb	4		DATE:	30.	1		چ	ine	2.		
00180000	DATE.	<u>اسوایی .</u>		_	U A			12		UATE.	w	ye	اـ لچکا	UAI	E: M	01	<u>3</u> ,	0
A.M.	WEATHER	Œu	Lee-	Rome	YE.	ATHE	R:CU	ou.	Lus	WEATHE	Rich	Rus	lus	WEA	THER:	F		
	Tot.		3(℃			Tot.		Sta.	1	Tot.	1	Sta.	1		Tot. I	200	Std.	_
TIME:	y Pass.	Aver.	Cap.	o/u	٧	Pass.	Aver.	Cap.	0/0	V Pass.	Aver.	Cap.	070	٧	Pass.	Aver.	Cap.	0/ U
5:00 - 6:00	8 79	18			-					448	12				-			
6:01 - 6:30	8 59	7								457								
6:31 - 7:00	14 418	12																
										16 208		-						-
Subtotal	20 186	9								24313	13							
7:01 - 7:30	8175	22								121370	31							
7:31 - 8:00	8 163	20								1/1/192	16	1						
8:01 - 8:30	20 440									20 380		1						
8:31 - 9:00	23 278									20 167	8	1		21	367	18		
										10 161								-
Subtotal	56 1056	19	1							67110	7-19			20	367	18		
9:01 - 9:30	12 192	16								24 216	9	T		24	247	10		
9:3! - 10:00	24 312	13								24/208				20	326			
10:01 - 10:30	1/ 140	17									15			7/	218	13		1
10:31 - 11:00	37 150	13										1		19	190	13		-
11:01 - 11:30	8 97									8175				15	195	1-2		-
		12			_				_	12396				104	1//	10		-
11:31 - 12:00	12 172	14								12 251	21	!		12	221	18		
12:01 - 12:30	8 238									12:30"				ω	27/	23		
12:3! - 1:00	12 25	21								12427	36	1			3.37			
1:01 - 1:30	121330	28								12381	32			12	422	35		
1:31 - 2:00	8 380	48								8317	40	1						
2:01 - 2:30	1.2 445	137		i i						12 498								
2:31 - 3:00	S LIAL	23								8 356								
3:01 - 3:30	9 120	~~			12	CnA	14					 		1				
3:31 - 4:00					4	200	67			8 933	150	1		-				
	4.44.00						173			121915				101		4.4	12	-
Subtotal	1443270	1-23			28	354	7-130)		176-55	37-3	ユ		136	240	<u>4-1</u>	8	
					1.		4 1 4					i		1				
4:01 - 4:30			-		_		212			16 1628		-	i	-				
4:31 - 4:45							213			4335	75							-
4:46 - 5:00				19	8	2;60	300			122500	1208	3						
5:01 - 5:15							261			8 1525								
5:16 - 5:30				- 1			300			12282		2						
5:31 - 5:45					14	3500	194			6 605								
5:46 - 6:00							272			4295	0711							
					100	3/45		, -		7 60	7.7			-				
Subtotal					201	125	15-24	0		62.971	3-15	7						
6:01 - 6:30					19	1040	155			12293				1				
6:31 - 7:00							36			22 685								
7:01 - 7:30							23			16 495		1						
7:31 - 8:00							28			10 876	3/	 		1				
8:01 - 8:30		-			12	200	33					+	-	-				
		-					32			6 235	37		-					_
8:31 - 9:00		ļ					25			4 190	78	-		-				-
9:01 - 9:30					_6_	150	16			6300	50							
9:31 - 10:00					8	270	34			4:120	130							
10:01 - 10:30					8	200	25			6 255	143							
10:31 - 11:00					8	210	25 33			4/80	:45							
11:01 - 11:30				i	9	170	21			4 80								
11:31 - 12:00					8	130	21			465	16	1						
12:01 - 1:00					15	266	17			6 31	3							
Subtotal							50-	30	,			1/2						
	220 110	2 /5	5							10:-6			ļ	-				=
Total	220-45	1	<u> </u>	1	3	-25	215	-10	7_	435-2	3170	5-54	7	156	-27	71-	18_	

LOCATION: C	/	0	0:					1 KA			.00.	113				,	YEAR:	84	?	
ROUTE:	iar	ees.	- 201 L	Br	4	si T			as.	+.			24			1	St	1/10	, 	
	um L.C	mo	no		ai	July S	The	es.	sia.	uo	na	noi	Zin	1	asi	1		<u>au</u>		
OUTBOUND A.M.		THER:		7		WE	ATHE	R: Cle	17.	2	WE	THE	Rich	y.	0.	DAT	THER:			
M o PF e		Tot.		Std.			Tot.	Aver.	Std.	0,11	v	Tot.	Aver.	Std.	o A	v	Tot. Pass.	A.v.o.=	Std.	o/ U
TIME: 5:00 - 6:00	٧	Pass.	AVET.	Cap.	070	4	P 8 5 5		Cap.	0,0		400	Aver.	сар.	9,0	<u> </u>	1 4331	AVEI.	сар.	
6:01 - 6:30																				
6:31 - 7:00 Subtotal				1>	-0		10	<u>.</u>	0											
7:01 - 7:30			1	0		12	100	I K												
7:31 - 8:00																				
8:01 - 8:30 8:31 - 9:00							/												-	-
Subtotal				1	oci	11														-
9:01 - 9:30			1																	
9:31 - 10:00				2	ak	10-	-									-				_
10:01 - 10:30						-			-						-	-			-	1
11:01 - 11:30																				
11:31 - 12:00						-								1		1	-		-	
12:31 - 1:00			-			#			-	-				 		-	 		+	
1:01 - 1:30]																		
1:31 - 2:00	H -			1		#						1780 1290	111	-		#			1	
2:31 - 3:00			† T			-					28		108							
3:01 - 3:30											20	1454	73							
3:31 - 4:00		1	-		-	1					24	179					-	-		
Subtotal ·	1		<u> </u>			1			-		1		46-		-	11		+		-
4:01 - 4:30 4:31 - 4:45	11				-	-			-		14	1230 250		-	-			1		-
4:46 - 5:00	1				-		1	-	1	``	8		35							
5:01 - 5:15											16	208	130							
5:15 - 5:30 5:31 - 5:45	-	-	-		-	1		-	+	-	120	<u> 1700</u> 215	142		-	-	-	-	+-	-
5:46 - 6:00											8	580	73							
Subtotal	1							1					40-							
6:01 - 6:30			-	-	-	1	-		-		20	1270	64	-		#	-	-	-	-
7:01 - 7:30	1	-	+-	1	+	+-		-	-		26	100	43		-				-	
7:31 - 8:00											116	679	142							
8:01 - 8:30 8:31 - 9:00			-	-	+-	-	-	-	-	-	16	389	52	-	-	-	-	-	+	+
9:01 - 9:30	1		+	-	-	1		+	+-	-			3 45		+	1	1	-	-	+
9:31 - 10:00-											18	403	50							
10:01 - 10:30		-				1				-				+	-	-	-		-	+
11:01 - 11:30						-														
11:31 - 12:00								-			-		-			-		+	-	-
Subtotal		1	+-			-				-	111	.51	19-4	19		-			+	-
Total	1.			1				7		+			2250		10	ii		+	-	+
														-						

LOCATION: Arlington St. Station

YEAR:84

ROUTE: O a a	anger of the	10 0	1 1. 0	
830	North Station	- Cleveland	licle	
OUTBOUND	DATE: Onn. 20	DATE: Fib. 17	Jues. DATE: May 29 WEATHER: Rain	DATE:
		WEATHER: clay/lain	WEATHER:	WEATHER:
A.M.	WEATHER: Fring Std.	illot.i 45td∘i i		LTot. I Std. I
TIME:	y Pass. Aver. Cap. D/U	V Pass. Aver. Cap. 0/U		V Pass. Aver. Cap. 0/U
5:00 - 6:00	1 142 142		3 86 28	
6:01 - 6:30	2 61 31	3 184 61	32073	
6:31 - 7:00	4 482 121	3 285 95	2 222 111	
Subtotal	7 685 98	9 597 66	851865	
7:01 - 7:30	2 212 106	3 434 145	4 595 149	
7:31 - 8:00	5 842 167	5769 154	5 810 162	
8:01 - 8:30	4 685 171	7 /039 148	8 1230 154	
8:31 - 9:00	1 180 180	6 1035 173	5563 112	
Subtotal	12 1919 150	21-3277-156	223198145	
9:01 - 9:30	2 185 93	1081181	8 908 114	
9:31 - 10:00	4518105	5 36 1 72	7 554 79	
10:01 - 10:30	7 693 99	735/50	7 228 32	
10:31 - 11:00	4 239 58 :	4217,54	211457	
11:01 - 11:30	7 388 55	6350 58	9 402 44	
11:31 - 12:00	6 360 60	6 274 49	7 315 45	
	4 399 100 8 498 62	6 344 41	5 390 78	
12:31 - 1:00	8 498 62 5 347 70	5 318 64	6 S29 88 7 S85 84	
1:31 - 2:00	6 453 76	5 451 90	7 445 64	
2:01 - 2:30	3 251 84	6 612 102	6 457 76	
2:31 - 3:00	5 285 57	6 336 56	5 435 87	
3:01 - 3:30	7 364 52	6 644 107	5 694/39	
3:31 - 4:00	5 728 146	4599149	8 846 106	
Subtotal	73-5708-78	82-5743-73	89690278	
	4 220 124			
4:01 - 4:30	7 892 127	861377	6650/08	
4:31 - 4:45 4:46 - 5:00	2 360 180	4 705 146	4538/35	
5:01 - 5:15		5 713 146	3 508/69	
5:15 - 5:30	2 360 /80	4 720 180	4 675 169	
5:31 - 5:45	3 540 180	2360180	5 820 164	
5:46 - 6:00	5 875 175	3 540 180	4 637 159	
Subtotal	25 3860 155	29.429-141	263828 147	
	8 999 125		8 875 109	
6:31 - 7:00	3 406 /35	7 560 80	3 425/65	
7:01 - 7:30	5 327 65	4 342 91	4 450113	
7:31 - 8:00	4 344 86	421855	3 325/08	
8:01 - 8:30	2/25/63	322775	5 280 56	
8:31 - 9:00	5 273 55	420050	425865	
9:01 - 9:30	4 244 61	15 198 40	421554	
9:31 - 10:00	2 66 33	2 128 64	420551	
10:01 - 10:30	4 204 51	3 22.4 7.5	2 125 63	
10:31 - 11:00	5 26/ 52	5 142 28	3 138 43	
11:01 - 11:30	2 98 49	3 172 57	1 40 40	
12:01 - 1:00	3 /26 42	3 222 74		
12:01 - 1:00 Subtotal	2, 38 58	cr-30 53 -7/	111 211 92	
Total	3 /26 42 3 /28 43 4 35 5 39 63 /5 3 3 0 4	33-7/	44 3405-83	
	63-108-31-54 -	136-19800-91	186-17852-96	

LOCATION: An	lington Stree	+ Station		YEAR: 84
ROUTE: 811	angles sold	A Center-	Beston C.00	200
0/1	Lovernmen	Fri	Ques.	0
ОИТВОИИО	DATE: Fin 120	DATE: Feb. 17	mayar	DATE:
A.M.	WEATHER: Fair	WEATHER: Cloby, Rain	WEATHER: Roin	WEATHER:
******	y Pass. Aver. Cap. D/U	V Pass. Aver. Cap. 0/U	V Pass. Aver. Cap. 0/U	V Pass. Aver. Cap. 0/U
TIME: 5:00 - 6:00	1 133 133	1 135 135	2154 77	
6:01 - 6:30	4 279 70	4 243 61	3 98 33	
6:31 - 7:00		3 395 132	4485/21	
Subtotal	5 412 82	8 773 97	9 734 82	
7:01 - 7:30	1010104	5 607 121	4 408 102	
7:31 - 8:00 8:01 - 8:30	3 540 180	5 780 156	8912114	
8:31 - 9:00	1 180 180	9/220136	7 1004 143	
Subtotal	17-2498-147	25-3647-149	23 3004-131	
9:01 - 9:30	2 347 174	9 347 38	8 378 47	
9:31 - 10:00	8 1085 109	6 235 39	5 389 78	
10:01 - 10:30	11 1436 133	9 378 42	62035	
10:31 - 11:00	5 226 45	5 4/3 83	2 130 65	
11:31 - 12:00	7 430 61	6 341 57	6 284 48	
12:01 - 12:30	4 283 71	6 512 85	3 44 85	
12:31 - 1:00	6 474 79	4 33 8 85	652788	
1:01 - 1:30	5 310 62	7 423 30	63559	
1:31 - 2:00	6 393 66	5 251 50	3 247 82	
2:31 - 3:00	6 319 52	4 444 111	8525 66	
3:01 - 3:30	6 284 49	5 1423 87	531/2 63	
3:31 - 4:00	4 437 109	3 47 139	7 453 65	
Subtotal	80 7276 91	80-5/98-65	83-5511-66	
4:01 - 4:30	7 793 113	6 471 79	7 764 109	
4:31 - 4:45	2 368 180	2 345 173	4 258 64	
4:46 - 5:00	2 360 188	4/25/164	2328 164	
5:01 - 5:15 5:15 - 5:30	2 360 180	5 425 85	3 455 152	
5:15 - 5:30 5:31 - 5:45	2 360 180	5 730 146	3 387 129	
5:46 - 6:00	4 608 152	4 616 154	6716/19	
Subtotal	20302/15/	26-3242-125	303768-126	
6:01 - 6:30	5 730 146	14 416 154	71907129	
6:31 - 7:00	5579 116	7 746 106	5 686 137	
7:01 - 7:30	4 349 87	4 445 111	4485/21	
7:31 - 8:00 8:01 - 8:30	2 220 1/0	3 16154	2 180 90	
8:31 - 9:00	3316105	5365173	3 178 59	
9:01 - 9:30	5 474 95	437494	42554	
9:31 - 10:00	3 263 88 '	2 178 89	4 175 44	
10:01 - 10:30	3 250 83	15 429 86	3 210 70	
11:01 - 11:30	4 390 99	4 333 83	1 30 30	
11:31 - 12:00	12260130	3 239 80		
12:01 - 1:00 Subtotal / 33	3 254 86	1434687		
		192-17352-94	41-3445-84	
Total	169-18061-107	192-17352-93	186-16465-89	
The space assure that it was up-	The second of th	and the second of the second o		

ROUTE: # 850 Lechmene Ste. ___ Briers YEAR: 83 Biversile Sta. DATE: april 26 DATE: DATE: Jan. 11 DATE: OUTBOUND WEATHER: WEATHER: WEATHER: Clouder WEATHER: Church A.H. Tot. | Std. | Tot. | Pass. Aver. Cap. 0/U | V lot. Sta-Tot. Std. Pass. Aver. Cap. Pass Aver. Cap. 0/U V TIME: 1121471291 11681681 5:00 - 5:00 6:01 - 6:30 1 142 142 12/52/76/ 6:31 -7:00 11/3[1/3] 2 200 1/00 1 # C1389 1781 14351 881 Subtotal 7:30 2 234 117 - 4 417 104 1 7:01 -8:00 12 360180 7:31 -2 350 175 18 4168 144 200 8:01 -8:30 4 5801451 111 8:31-9:00 9 537 60 9 V324/47 - 1 17 170/100 23/3269-142 Subtotal 9:01 - 9:30 1 9 1399 441 7 591 84 н 15 357 71 15 176 35 9:31 - 10:00 10:01 - 10:30 18/18423 1844658 10:31 - 11:00 735771 6/179/36 11:01 - 11:30 1420451 5 179 36 ii 11:31 - 12:00 15 189 38 161320153 7 509 73 159 40 12:01 - 12:30 5.40180 1:00 6 3/2/52 ÷. II 12:31 -1:01 -1:30 16 349 581 15/328/66 15445 89 1:31 -2:00 15 1460 92 17 25036 2:30 5381176 2:01 -1 1/80/180 15 423 85 2:31 -3:00 3:30 3:01 -6 46176 6 14581 76 3:31 -4:00 18/1,05/76 19865 96 118140841501 846/05 73 Subtotal 6 671 112 7 624 89 4:01 -4:30 8 19441118 13 1/93/64 4:31 -4:45 5:00 3 3/0/2021 5 536 107 4:45 -5 550 110 250 14601 1501 5:01 -5:15 350251 5:15 -5:30 14 1700/175 5:31 -5:45 1 4/53/1751 4 355 89 5:00 6 501 83 5:46 -303449-115 137141601113 Subtotal 1 8 1659 83 6573 97 6:30 6:01 -7:00 5 294 59 6:31 -18 1424 53 18 498 62 7:30 15 508 102 7:01 -739156 7:31 -8:00 46/66 8:30 13851281 8:01 -735350 9:00 3 1194 65 3 146 149 8:31 -4 285 76 9:30 9:01 -13 13 104 9:31 - 10:00 256 51 13 167 56 10:01 - 10:30 12194137 1158153 141206 52 10:31 - 11:00 3 145 48 3 1/49 150 316254 11:01 - 11:30 3 126 42 3 108 36 11:31 - 12:00 12:01 - 1:00 6 213 136 2 37 19 Subtotal 11.112298 4211.1 2040/9/70 Total 200-16695-83

2000

6:31 - 7:00

7:01 - 7:30

8:01 - 8:30 8:31 - 9:00

9:01 - 9:30

9:31 - 10:00

10:01 - 10:30 10:31 - 11:00 11:01 - 11:30 11:31 - 12:00 12:01 - 1:00

Subtotal

Total

7:31 -

8:00

98 1363

PLANS AND SCHEDULES DEPARTMENT

SUMMARY OF TRAFFIC COUNTS

YEAR: 8] LOCATION: ROUTE: 850 Fri. mon. DATE: Sept 30 INBOUND DATE: Oct. 3 DATE: DATE WEATHER: Fair WEATHER: Bt. Clay. WEATHER: WEATHER: A. M. Std. Cap. 0/U V Pass. Aver. Cap. 0/U Tot. Tot. Tot. Std. Std. Pass. Aver. V Pass. Aver. Cap. lo/ull v 0/1 TIME: Pass. Aver. 6:00 5:00 -32 5 6:01 - 6:30 75 13 5711 6:31 -6:45 6:46 -7:00 206/0 Subtotal 7:01 - 7:15 122 11 7:16 - 7:30 971.32 7:31 -7:45 73118 8:00 7:46 -3216 8:01 - 8:15 14 16 8:30 35 14 8:16 -39 10 8:31 -8:45 8:46 -9:00 51 26 24 415 17 Subtotal 9:01 - 9:30 48 9:31 - 10:00 10 601 10:01 - 10:30 35 10:31 - 11:00 29 11:01 - 11:30 32 53 11:31 - 12:00 12:01 - 12:30 190115 69 17 12:31 - 1:00 3 222 74 1:01 - 1:30 6 197 33 1:31 - 2:00 2 104 52 518334 2:01 -2:30 2:31 - 3:00 7 227 32 5 201 40 3:01 - 3:30 5 379 76 3:31 - 4:00 Subtotal 53 742 14 28 1187 42 4:01 - 4:30 6360 60 5440 88 8624 78 4:31 - 5:00 5:01 - 5:30 5:31 - 6:00 4 325 81 Subtotal 6:01 -6:30 9 412 46

415138

7 120 17

5 96 19

5 64 13

5 80 16

2 80 40

5 81 16

42-1084-26

93-4020-43

LOCATION:	orth Station R	2. T. L.		YEAR: 84
	nest Hills I	fiting O-	k Grove &	Latin ,
00		02/11/11	Fri:	11100
OUTBOUND	DATE: Fan. 10	0.2012	DATE: May 18	DATE: June 19
Α.Μ.	WEATHER: Cloudy	WEATHER:	WEATHER: Cloudy	WEATHER Cloudy
	Tot. Std. 0 Pass. Aver. Cap. p/U	V Pass. Aver. Cap. 0/U	V Pass Aver. Cap. 0/U	V Pass. Aver. Cap. 0/U
TIME: 5:00 - 6:00	V Pass. Ave. 1 out 570	1 433.	6 195 33	
6:01 - 6:30	10 256 26		10302 30	
6:31 - 7:00	16 705 44		12 462 39	
Subtotal	26 961 37		28 959 34	
7:01 - 7:30	20 613 31		2061931	
7:31 - 8:00	28 1113 40		32 780 24	
8:01 - 8:30	32 705 22		24286 12	
8:31 - 9:00	32 675 21		24 528 22	
Subtotal	112 3116 28		100 22/3 22	
9:01 - 9:30	222157		32 409 13	
9:31 - 10:00	16 119 7		32 204 6	
10:31 - 11:00	20 189 9		24326 14	
11:01 - 11:30	16 233 15		84658	
11:31 - 12:00	16 190 12		328/6 25	
12:01 - 12:30	16 246 15		12469 56	
12:31 - 1:00	16 245 22	4.	16459129	
1:01 - 1:30	16 7755 28		16.57.2135	
2:01 - 2:30	20 478 24		20.503 25	12 4539
2:31 - 3:00	16 446 28		16 845 53	16 715 45
3:01 - 3:30	16 672 42	8 437 55	16 1455 91	14 1025 68
3:31 - 4:00		20184192	V6 2070 129	20 22001/10
Subtotal	2445425 23		276+9810-36	1.44475-70
U . O . U . 20			36 3418 95	36 2805 78
4:01 - 4:30 4:31 - 4:45	20 1822 91	322512 79	20 2020 10 1	20 27/0 /37
4:46 - 5:00	12 2410 201	122025/75	12 1840 153	12 210 175
5:01 - 5:15	16 3906 244	213080179	20 3390 / 70	1/22882180
5:15 - 5:30	16 2572 161	16 2038 127	16 1300 81	11. 2545157
5:31 - 5:45	16 1678 105 1	201753 88	20 1306 65	16 1880 118
5:46 - 6:00		20/298 65	20 1084 54	20 /880 94
		136-14992-110 1	44-14343-100	125-16840-124
6:01 - 6:30	20 585 29.		20/02451	24/025 43
6:31 - 7:00	16 49/31		24.742131	
7:01 - 7:30 7:31 - 8:00	16 448 29		12 308 26	
8:01 - 8:30	8 313 39		6 591 99 4 232 58	
8:31 - 9:00	12 298 25		6 296 49	
9:01 - 9:30	8 123 15		4 173 43	
9:31 - 10:00-	12 108 9		4 145 36	
10:01 - 10:30	8 48 6			
10:31 - 11:00				
11:31 - 12:00				
12:01 - 1:00	* ` .			
Subtotal	116-1400-22		80-3511-44	211/02543
Total		164-17270-105	1/28-30891-49	
		1-1-17077		A THE REAL PROPERTY AND ADDRESS OF THE PARTY A

	24.4	0++'		YEAR: 84
ROUTE:	osef Street.	Station	- 17/101	04-11
KOOTE.	Jak Grove.	Station - OB	great Hells	station
OUTBOUND	DATE: 12	DATE: 4-19-84		DATE:
A. M.	WEATHER: Claudes	WEATHER: PAIN	WEATHER: St. C/di	WEATHER:
	Tot. Std. V Pass. Aver. Cap. D/U	V Pass. Aver. Cap. 0/U	V Pass Aver. Cap. 0/U	V Pass. Aver. Cap. 0/U
TIME: 5:00 - 6:00	y Pass. Aver. Cap. D/U	V Pass. Cap. 070	8 54 7	assilaver. Cap.
6:01 - 6:30	12 79 7		12 177 15	
6:31 - 7:00	2439717		24 357 15	
Subtotal	36 476 13		14/588 13	
7:01 - 7:30	28 478 14		28 345 12	
7:31 - 8:00	32 735 23		32689 22	
8:01 - 8:30 8:31 - 9:00	32 599 16		32753 24	
Subtotal	116 2317 20		124 2481 20	
9:01 - 9:30	24 309 13		2012 18	
9:31 - 10:00	8 442 55		16 315 20	
10:01 - 10:30	2048824		16 295 18	
10:31 - 11:00	24 434 18		12 305 25	
11:01 - 11:30	2054627		12 330 28	
11:31 - 12:00	1251243		1/6 355 22	
12:31 - 1:00	4 134 34		16 320 20	
1:01 - 1:30	12578 48		16 451 2/	
1:31 - 2:00	4880 220		16 585 37	
2:01 - 2:30	8 1215 152	12 698 59	16 815 51	
2:31 - 3:00	16 782 49	16120075	12 620 52	
3:01 - 3:30	76 /209 76	16 1125 7/	16 1145 72	
	191 091 110	241515 64	28 2160 77 228-8423-37	
Subtotal	192 8720-45			
4:01 - 4:30	12 /372/14	36 2190 61	28 2970 10 G	
4:31 - 4:45		16105566	12 855 7/	
4:46 - 5:00 5:01 - 5:15		20147574	16 1420 89	
5:15 - 5:30	8 1760 220	120/6/5/81	24 2918 124	
5:31 - 5:45	12 2640 220	16138087	12 1170 99	
5:46 - 6:00	16 1993 125	1685054	16 1175 73	
Subtotal	48 7765 162	134 9795 73	120-11998-100	
6:01 - 6:30	20/049/52	24/44561	24/230 51	
6:31 - 7:00	1/6 533 33		1838048	
7:01 - 7:30 7:31 - 8:00	12 497 41		8 765 96	
8:01 - 8:30	12 322 27		1645028	
8:31 - 9:00	8 235 29		6 263 44	
9:01 - 9:30	8 182 23		6225 46	
9:31 - 10:00	1224621		2 72 36	
10:01 - 10:30	8 117 15			
10:31 - 11:00				
11:31 - 12:00				
12:01 - 1:00				
Subtotal	108 3601 33	24 144561	76-3737-49	
Total	500-22879-46	228-15778-70	592-27227-46	

ROUTE: Bowdoin Station R. J. L. YEAR: 84

ROUTE: Bowdoin Station - Wonderland Station

	Dowdow Station Worker										DATE: May 19										
OUTBOUND	DATE: Jan. 11					DATE: Janua!					DATE: may 19					DATE:					
A.M.	WEATHER: Fair					WEATHER: Jau Tot. Std. Cap. 0/U					WEATHER: Cloudy					WEATHER:					
		Tot. Pass.		Std.	0/11	V	Tot.	Aver.	Cap.	o/u	٧	Tot. Pass.	Aver.	Std.	0/10	٧	Pass.		Std.	o/ u	
TIME: 5:00 - 6:00	V	rass.	710		770	-	433.	-		7				1			-		-	-	
6:01 - 6:30			-	-	-	12	64	.<													
6:31 - 7:00		_				28	241	9						 	 	1 -			-	-	
Subtotal	-						305		-							1	1				
7:01 - 7:30				``	-	-		17	-		-			-	-	-	-		-	-	
7:31 - 8:00		-	-	,	-		416	11	-		-		-	-	-				-	-	
8:01 - 8:30					-	20	594	30	-						-	#	 		-		
8:31 - 9:00			,		-			12							1				1		
Subtotal					1	111	- 18	8-16						1		1				-	
9:01 - 9:30		-		1			290		-	-			Ī	-		1			-		
9:31 - 10:00		-			-									-	-	-	-	-			
10:01 - 10:30			-		1	1	154	14		-	-	-	-	-	-	+-	-		-	-	
10:31 - 11:00	-			i .	-		174	15	ļ				-		-	-	-		-	-	
11:01 - 11:30	-			-	-			20		-	-			-	-	-	+	-	-		
11:31 - 12:00				-				22		-		-	-	† 		-	1				
12:01 - 12:30		-	-	-			316			-	#		-	-				-	-	-	
12:31 - 1:00						117	17/2	24	-	-	-	-		-	-	#	+		+		
1:01 - 1:30	-	1	 			17	286	24	-	† :				† -		 	1 -		¦		
1:31 - 2:00		-	-	-	+	1/2	377	24	 	 	17	27/	50	1		-	 	 	+	-	
2:01 - 2:30	12	331	18		-	1/3		AT	 		1/2	41111	47	 		╫	+	 -	-		
2:31 - 3:00		423			 	1		 					114		-	1			1	-	
3:01 - 3:30	11	250	119		+	1	-	 	-	 			89	 	+-	#		-	1	-	
3:31 - 4:00	1/6	628	139		+	#-			-	-	20	1441	74		+	#-	-	-	+		
Subtotal	7	213	1-38		-	11	178	92-1	9		QЦ	12/4	75	-	1	1		1			
300(0(a)	1		•	 	-	10	120	12-1	0	1	il		1	+	-	-	-	-	-	-	
4:01 - 4:30	32	1659	52		_	1	1			_		204		-	-	1	-		ļ	1.	
4:31 - 4:45	1/6	1231	77		<u> </u>	1	1	1	<u> </u>		24	2429	101			1			-	1	
4:46 - 5:00	16	1083			1. 1	*	-	1	<u> </u>	<u> </u>	16	1644	1/03	-	-	1	-	-	-		
5:01 - 5:15	12	174	145			1	_	1					96	ļ		Ш_			1		
	20			-		#_	-	-	ļ	-			90	↓	-	-		-	-	-	
5:31 - 5:45	20			<u> </u>	-		 		-	-			58	+-	ļ	1		-	-	-	
5:46 - 6:00	16		34	-	1	1_	↓		↓	ļ			140	ļ	-	1	-	-	1_	-	
Subtotal	132	19061	169							1	111	413	48-7	8							
6:01 - 6:30	16	1803	150								20	975	149								
6:31 - 7:00		460									Vo	1380	168							T	
7:01 - 7:30	20	625	131			V					18	545	164								
7:31 - 8:00	112	1224	1128							1.	18	389	148							I	
8:01 - 8:30	12	338	28								8	325	144							I	
8:31 - 9:00	8	235	129								6	230	38								
9:01 - 9:30	18	338 239 224 277	128	1							6	265	44								
9:31 - 10:00	18	177	135		1.				T		2	60	30								
10:01 - 10:30	8	216	27	T.				~												I	
10:31 - 11:00								**													
11:01 - 11:30		-	-																	1	
11:31 - 12:00		-	-	-	-	1		-								-	-	-	-	+1	
Subtotal	1100	7 0 /	000	-	+-		+-		-	-	+				-	-	-	-	-	+1	
	108	35%	133	1	\	1_					168	134	35-	SV_	1_						
Total	129	6-14	708-	.29		3	20-5	015	-16		29	1-2	1047	171		-				I	

COMMUTER RAIL RIDERSHIP

P. M. PRAICE

NORTH SE	RVICE				No	AVERAGE RICHASSIP	
LINE	TRAIN	DESTIN.	LV. BOSTON	SCHLD. ARR.	CANS	5	CAUSE/REMARKS
Eastern	231 533 235 537 239 541	IPS RKPT IFS RKPT IPS RKPT	1630 1700 1710 1725 1735 1800	1725 1812 1806 1838 1830 1916	4105mm	330	
Reading	819 121 823 125 827	RDG HVRHL RGD HVRHL RDG	1600 1630 1655 1715 1725	1627 1736 1722 1820 1752	7 3 4 7 7	150 250 275 500 265	
New Hamp.	323 925 327 929 331 933	IWL WIN IWL WIN IWL WIN	1605 1625 1700 1715 1730 1745	1644 1640 1739 1730 1810 1800	ALAMMAN SIMANO PICKMIN WINNER PINN	150 -75 420 120 255	
Card./ Fitch.	609 457 611 413	S.ACT. FITCH S.ACT. GARD	1600 1650 171 1730	1652 1818 1801 1916	4 mm	130 350	
SOUTH SER	VICE						
Fram.	5361 5363 5369 5373	FRAM. FRAM. FRAM. FRAM.	1630 1655 1720 1745	1710 1744 1810 1834	4 6 3	575	
Franklin '	7159 7363 7165 7169	FKIN. NOR.CTL. FKIN. FRKIN.	1602 1649 1707 1725	1652 1719 1751 1821	4 4 6 3 5 5 5 6 8	400	
Shore	8359 8161 8167 8369 8173	CANT.JCT. ATTL. ATTL. CANT.JCT.	1641 1711	1639 1729 1755 1742 1825	47700 4 66	320 630 745 440	
Stoughton	8963 8967 8973	STGN. STGN. STGN.	1645 1715 1745	1716 1748 1820	4 6	37c 47s	

Final Environmental and Socioeconomic Impact Report The M.B.T.A. Fare Increase

Appendices

RED LINE "HYBRID" CAR

A) # SEATS/CAR <u>58</u>

B) STANDEE SPACE 324 sq. ft.

C) STANDEE CAPACITY

D) TOTAL PASSENGERS/CAR

Normal load 187 Crush load 244

E) TRAIN CAPACITY

 Normal load
 748
 Normal load
 1,122

 Crush load
 976
 Crush load
 1,464

ACTIVE FLEET 164 PEAK REQ'T 114 (26F + 2 Five)

ALLOWED TRIP TIME 78 minutes

CONSTRAINT (15% of Active Fleet) 140 (35F)

				CONSTRAINT (wit	h current fleet)
TRAIN FREQUENCY	ACTUAL	POTENTIAL	DESIGN	4 cars/train	6 cars/train
headway (minutes)	3.0	2.0	1.5	2.2	3.4
# trains/hour	20	30	40	27	18
effective capacity	.85	.78	.71	.80	.87

	NORMAL	LOAD	CRUSH LOAD		
	@ 4 Cars	@ 6 Cars	@ 4 Cars	@ 6 Cars	
ACTUAL	12,716	19,074	16,592	24,888	
POTENTIAL	17,503	26,255	22,838	34,258	
DESIGN	21,243	31,865	27,718	41,578	
CONSTRAINT	16,157	19,571	21,082	22,926	

ABSOLUTE THEORETICAL CAPACITY

NORMAL	LOAD	CRUSH	LOAD
@ 4 Cars	@ 6 Cars	@ 4 Cars	@ 6 Cars
29,920	44,880	39,040	58,560

CURRENT ESTIMATED PEAK HOUR VOLUME 15,000 (3/82)

ORANGE LINE

#2 MAIN

A) # SEATS/CAR 58

B) STANDEE SPACE 243 sq. ft.

C) STANDEE CAPACITY

Normal load 97 Crush load 139 @ 2.5 sq. ft. 91.75 sq. ft.

D) TOTAL PASSENGERS/CAR

Normal load 155 Crush load 197

E) TRAIN CAPACITY

d existing 4 cars d potential 6 cars

 Normal load
 620
 Normal load
 930

 Crush load
 788
 Crush load
 1,192

ACTIVE FLEET 120 PEAK REQ'T 68 (17F)

ALLOWED TRIP TIME 77 minutes

CONSTRAINT (15% of Active Fleet) 102(25F)

TRAIN FREQUENCY	ACTUAL	POTENTIAL	DESIGN	CONSTRAINT (with 4 cars/train	
headway (minutes)	4.5	2.0	1.5	3.1	4.5
# trains/hour	13	30	40	19	13
effective capacity	.89	.78	.71	.85	.89 .

	NORMAI	LOAD	CRUSH LOAD
	@ 4 Cars	@ 6 Cars	3 4 Cars 3 6 Cars
ACTUAL	7,173	10,760	9,117 13,676
POTENTIAL	14,508	21,762	18,439 27,659
DESIGN	17,608	26,412	22,379 33,569
CONSTRAINT	10,013	12,726	10,760 13,676

ABSOLUTE THEORETICAL CAPACITY

NORMAL	LCAD	CRUSH	LOAD
@ 4 Cars	3 6 Cars	@ 4 Cars	3 6 Cars
24,800	37,200	31,520	47,280

CURRENT ESTIMATED PEAK HOUR VOLUME 7,000 (3/82)

BLUE LINE #4 EAST BOSTON

A) # SEATS/CAR 42

B) STANDEE SPACE 170 sq. ft.

C) STANDEE CAPACITY

Normal load 68 Crush load 97 @ 2.5 sq. ft. ft.

D) TOTAL PASSENGERS/CAR

Normal load 110 Crush load 139

E) TRAIN CAPACITY 4 CARS

Normal load 440 Crush load 556

ACTIVE FLEET 70 PEAK REQ'T 40 (10F)

ALLOWED TRIP TIME 45 minutes

CONSTRAINT (15% of Active Fleet) 60 (15F)

TRAIN FREQUENCY	ACTUAL	POTENTIAL	SIGNAL DESIGN	CONSTRAINT (with current f	fleet)
headway (minutes)	4.5	2.0	1.5	3.5	
# trains/hour	13	30	40	20	
effective capacity	.80	.78	.71	.85	

	NORMAL LOAD	CRUSH LOAD
ACTUAL	5,091	6,432
POTENTIAL	10,296	13,010
DESIGN	12,496	15,790
CONSTRAINT	7,480	9,452

ABSOLUTE THEORETICAL CAPACITY (@ 4 Cars)

NORMAL LOAD CRUSH LOAD 17,600 22,239

CURRENT ESTIMATED PEAK HOUR VOLUME 6,000 . (3/82)

GREEN LINE "HYBRID" CAR

A) # SEATS/CAR 42 PCC/52 LRV

B) STANDEE SPACE 148 sq. ft. PCC/284 sq. ft. LRV

C) STANDEE CAPACITY

Normal load 59 PCC/ll3 LRV Crush load 84 PCC/l62 LRV @ 1.75 sq. ft.

D) TOTAL PASSENGERS CAR

Normal load 101 PCC/165 LRV Crush load 126 PCC/214 LRV

E) TRAIN CAPACITY

3 existing (Hybrid of 1 LRV/2 PCC)
3 potential (Hybrid of 2 LRV/3 PCC)

 Normal load
 174
 Normal load
 363

 Crush load
 223
 Crush load
 449

ACTIVE FLEET 196 PEAK REQ'T 120

ALLOWED TRIP TIME 88

eet)

CONSTRAINT (15% of Active Fleet) 167(34T + 99S)

TRAIN FREQUENCY	ACTUAL	POTENTIAL	CONSTRAINT	POTENTIAL HYBRID	3 car PCC 2 car LRV
headway (seconds)	55	30	40	73	
<pre>‡ trains/hour</pre>	65	120	90	49	
effective capacity	.55	.25	.42	.65	

	NORMAL LOAD		CRUSH LOAD	
	Existing	Potential	Existing	Potential
ACTUAL	6,221	12,977	7,972	16,052
POTENTIAL	5,220	10,890	6,690	13,470
CONSTRAINT	6,577	11,562	8,429	14,300

ABSOLUTE THEORETICAL CAPACITY

	MAL LOAD	CRUSH	LOAD
Existing	Potential	Existing	Potential
20,880	43,560	26,760	53,880

CURRENT ESTIMATED PEAK HOUR VOLUME 7,000

Potential for currently used cars calculated by creating a "hybrid vehicle" and weighting an average for a 2 car PCC and 1 car LRV.

Potential hybrid car train for future use has a capacity based on weighted average of 3 PCCs and 2 LRVs.

EXCERPTS FROM PREVIOUS REPORTS

3.2 LAND USE

"THIRD HARBOR TUNNEL, INTERSTATE 90/CENTRAL ARTERY, INTERSTATE 93" SUPPLEMENT TO THE DRAFT ENVIRONMENTAL IMPACT STATEMENT/REPORT DATED JUNE, 1983

The MBTA also operates a major surface bus terminal at Haymarket Station. Several bus routes serving the North Shore and utilizing the Summer and Callahan Tunnels were described in the DEIS/DEIR. Numerous other routes also serve Haymarket Station. Bus Routes 92, 93, and 111 use local streets through Charlestown and City Square to arrive at the Haymarket terminal or downtown Boston destinations. Bus Routes 325, 326, 353, 354, and 426 enter Boston via Interstate Route 93 on the Mystic-Tobin Bridge and use the Haymarket exit from the Central Artery to enter the Haymarket terminal or continue to other downtown destinations. Bus Route 350 enters Boston via the Longfellow Bridge.

Private carrier bus routes operated through the study area include longer-distance routes serving communities in northeast Massachusetts, New Hampshire, Maine, and Vermont. These services are provided by Greyhound, Trailways, and Trombly Motor Coach, among others.

The MBTA also operates an extensive commuter rail system to the north and west of Boston from North Station. Five routes are currently operated, with their respective termini being located in Rockport, Ipswich, Haverill, Lowell, and Gardner. All routes operate seven days per week with reduced service on Saturdays and Sundays. Amtrak trains depart from South Station throughout the day for points along the Northeast Corridor as far as Washington, DC, and to Chicago, Illinois.

3.2 LAND USE

This section briefly describes land use in the following districts: South Boston/Fort Point Channel; the Financial District; the Waterfront; Government Center; the North End; North Station; the West End; and Charlestown. These districts are shown on Figure 79. More detailed information on these areas is contained in the supplemental report on Land Use, Community Facilities and

Economic Activities prepared as part of this Supplemental DEIS/DEIR. These areas comprise the areas of potential additional effect of Alternatives 3A, 5A, 5A Modified, and 6 as compared to the No-Build Alternative and Alternatives 3 and 5 in the DEIS/DEIR. Major land uses in each area are listed in Table 59, are presented on Figures 80 and 81, and are described in the following subsections.

The DEIS/DEIR (Section 3.2) contains descriptions of land use in the remaining districts of the project area, including the South End, the residential portion of South Boston, the Industrial Triangle, the Leather District, Chinatown/South Cove, East Boston, Logan Airport, and Route 1A North. For more detailed information on these areas, refer to Section 3.2 and the supplemental report, Land Use, Community Facilities, and Economic Activity Inventory, of the DEIS/DEIR.

3.2.1 Overview

The project area contains a diversity of land uses. The Financial District, Government Center and North Station areas house public and private offices, commercial and retail activities, transportation uses and entertainment facilities; these areas have very small residential populations.

Predominant activities in the South Boston/Fort Point Channel area are manufacturing, warehousing and food distribution activities. Vacant and underused parcels in this area will generate substantial mixed use development activity over the next decade.

The Waterfront has recently undergone a transformation from industry and warehousing, to high-priced residences and office space. Faneuil Hall Market Place and the New England Aquarium are significant tourist attractions.

The North End is a cohesive residential neighborhood, with a

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93" supplement to the Draft Environmental Impact Statement/Report dated June, 1983.

MAJOR	LAND 1	USES	(FUTU	RE)	USED	IN
THIRD	HARBOI	R TUN	NEL/C	ENTR	AL AR	TERY
ENVIRO	NMENT	AL IN	PACT	STAT	EMENT	

Mental bear formers for fine to the fine of the fine of the first first formers for first	MAJOR LAND USES (FUTURE) USED IN THIRD HARBOR TUNNEL/CENTRAL ARTERY ENVIRONMENTAL IMPACT STATEMENT
Forecast Recent Reserved for the forecast of t	10. Design Microbian Phase Management Ma
	1). Priced (letter use unbaces) Dave Carteles/Perriese Effect priced (letter use unbaces) Letsing Dec Figure 60) Eisting Dece Figure 60) Eisting Dece Figure 60) Eisting Dece Figure 60 (Consenting Carteles Environment) Conclouds lives of Consenting (Consenting Carteles Carteles Carteles Carteles Carteles Carteles Carteles Cappendent) Particle (Consenting Manner and Consenting Cappendent) Particle (Consenting Manner and Consenting Cappendent) Coppendent Carteles and December (Coppendent) Eisting December Carteles Cart
34. Old Touth Meating Bouse 35. Coaton Nouse Toute (affices) Sure West 36. Fart Will development ofte 37. Carl Will development 37. Carl Coaton development 48. Carl Coaton Garles 39. Carl Coaton Garles 48.	Lathor Towers (condominion) - Marcharl Wart Expenses - Chistopher Colombus Plans - (data) Nonesta - (data) Nonesta - (data) Nonesta - (data) - (data)
13. 244-259 A Breast (astional structure) 34. Commonwealth Flor, Boscom (commonwealth Flor, Boscom (days) 35. Commonwealth Flore (light Activities), effices) 36. Commonwealth Flore (light Activities) 36. Commonwealth Flore 37. Commonwealth Flore 38. Commonwealth Flore 18. Commonwealth F	1. Constitute force (residential) 1. Constitute force fo
Main the main is the fronger and part and parts and part	The state of the s

Non-residential uses are primarily ground floor retail establishments and restaurants which serve local and regional markets.

The West End houses Charles giver Park, a large private apartment complex built in the 1960s and 1970s. The other major uses in this area are large health care facilities including the Massachusetts General Hospital.

The Central Artery is a significant land use component of downtown Boston. The structure of this highway in many instances defines the edges of neighborhoods, and land uses on either side of the Central Artery are quite different. In some cases the physical presence of the Artery has slowed changes which were encouraged by the city, for example, the development of the waterfront south of the Harbor Towers. In other areas, the Central Artery is perceived and commonly cited as protecting the character of an area where change is viewed ambiguously, for example, in the North End.

3.2.2 South Boston/Fort Point Channel

The inventory of land use prepared for the DEIS/DEIR treated South Boston and Fort Point Channel as two distinct areas. This Supplemental DEIS/DEIR includes a South Boston tunnel alignment (Alternative 5A) which runs across the southern part of the Fort Point Channel area and through the northern, industrial section of South Boston. For assessing the land use impacts of Alternative 5A, all of the area east of Fort Point Channel and north of First Street has been treated as one district (see Figure 81).

For those portions of South Boston and Fort Point Channel outside this new zone, the discussion of land use has been included in the DEIS/DEIR.

The South Boston/Fort Point Channel area is one of the most important districts for future residential, office, hotel and industrial development in Boston. Both renovation of existing structures and development of vacant sites is occurring. Although some development is taking place despite access problems, improvement of access within and to the area is a key ingredient to continued development interest.

As described in the DEIS/DEIR, the area immediately to the east of the Fort Point Channel contains a mix of land uses and is slowly changing from an industrial to a commercial and residential area. There are approximately 100 existing residences near Fort Point Channel; these include both developer-financed condominiums and artists' lofts. In addition there are many small businesses, including light industrial, commercial and office establishments in this area. The Gillette Company, a research and manufacturing firm with 3,200 employees, occupies a 21-acre site near the Fort Point Channel.

The Boston Wharf Company has substantial land holdings in this area and plans residential and office development. Stone & Webster Engineering Corporation is currently converting a warehouse structure into office space for 900 employees. Cabot, Cabot & Forbes plans to develop former Penn Central properties into a major office site. Piers 1-4, owned by Anthony Athanas, are the proposed site for 1.7 million square feet of offices, two hotels, residential development and a major marina.

Massport is a major land owner in South Boston. Plans for Massport property include a Computer Trade Center on Commonwealth Pier (BOSCOM) and nearby parcels; long-range plans for light industrial and office use on Commonwealth Flats; expansion of fish processing on the Fish Pier; and a container port at the Massport Marine Terminal, under lease from the Economic Development and Industrial Corporation of Boston (EDIC). The Boston Marine Industrial Park, a 101 acre area to the east of the Fish Pier (formerly the South Boston Naval Annex), is also under EDIC

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93"
Supplement to the Draft Environmental Impact Statement/Report dated
June, 1983.

jurisdiction, and contains industrial and marine-related uses. Across the Reserve Channel and to the east of Commonwealth Flats is the Castle Island industrial area, including the White Fuel storage and fuel transfer facility, a major generator of hazardous cargo truck traffic.

3.2.3 Financial District

The Financial District lies between Boston's downtown retail district to the west and the Central Artery to the east. It is the banking and financial center for the Boston metropolitan area and, to a large extent, for New England. The Financial District covers approximately 40 square blocks and consists of multi-story office buildings, with first floor retail activities.

The Financial District comprises two fairly distinct zones separated by the High Street exit ramp from the Central Artery.

One area, centered on Federal and Franklin Streets, is composed of new high-rise buildings occupied primarily by banking, insurance and related firms. Continued development of new office towers and renovation of existing buildings is occurring in this area. The largest site currently under consideration for development is the Fort Hill Garage site, where one to two million square feet of office space have been proposed. This zone also includes the new Meridien Hotel and Devonshire Towers, the first residential development to occur in the Financial District.

The second area, centered around Broad Street, is characterized by five- to six-story buildings and an irregular street pattern. The Broad Street area was originally laid out by the architect Charles Bulfinch and contains many attractive commercial buildings from succeeding periods. The Custom House National Register Historic District is located within this area and includes State Street, the original main street of commercial Boston. Significant recent

rehabilitation has taken place in this area, and many of the older buildings now house prime office space.

Downtown Crossing, Boston's retail core, is adjacent to the Financial District. Lafayette Place, a major retail and hotel development now under construction (225,000 square feet of retail space), will open in 1984.

3.2.4 Waterfront

The Waterfront is a recently redeveloped commercial, office and residential area. Faneuil Hall Market Place and the New England Aquarium draw substantial tourist traffic to the area. Renovation activities began in 1964, when the Waterfront was designated as an urban renewal area. Waterfront property is now extremely valuable, and most recent development has focused on luxury commercial and residential markets.

West of the Central Artery the district is occupied by Faneuil Hall Market Place and the Blackstone Block. Buildings are primarily historic three- to five-story brick or granite structures. Faneuil Hall Market Place attracts 12 million visitors per year and is a major retail center. Adjacent to the Market is Boston Redevelopment Authority (BRA) Parcel D-10, a surface parking lot soon to be developed for office and retail uses. Recent developments in the area include the 153-room Bostonian Hotel and a 680-car garage. The Haymarket area along Blackstone Street houses fresh food specialty shops, and is the site of an open air market on Fridays and Saturdays. A pedestrian tunnel crossing under the Central Artery links Haymarket with the North End.

The area lying between North Street, the Central Artery and Atlantic Avenue is composed of fourto six-story brick and granite buildings which are primarily residential. Two large housing developments for the elderly and a nursing home serving North End

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93"
Supplement to the Draft Environmental Impact Statement/Report dated
June, 1983.

residents are also located in this area.

East of Atlantic Avenue are a series of wharves occupied by commercial, office and residential uses. Cruise, ferry and private boats dock at a variety of wharf locations. Christopher Columbus Park is a large park heavily used by Boston residents and tourists. The buildings on the wharves south of Long Wharf (State street) are relatively new, and include the Harbor Towers condominium buildings and the New England Aguarium. South of Harbor Towers is the BRA's vacant Rowes/Fosters Wharf. Development proposals for this site include office, retail and residential uses.

North of Long Wharf, and continuing to Union Wharf, the wharf buildings are mostly three- to four-story 19th century granite warehouses which have been converted to commercial, office and luxury residential space. North of this area non-residential uses, including the Bay State Lobster Company, currently predominate. Two residential development sites are under preliminary discussion; Sargent's Wharf, owned by the BRA, and an MBTA Powerhouse under discussion for rehabilitation as low cost housing by the Boston Archidiocese.

3.2.5 Government Center

Government Center contains the majority of the City of Boston's Public offices, the major Federal office buildings in Boston, and a number of state and county offices. The functional area of Government Center extends across Cambridge Street to include the Suffolk County Courthouse and several state office buildings. In addition to government Offices, there are several large Private office buildings, parking facilities, and small shops and, restaurants which serve the areas Workers. There are no residential structures in the district.

The physical layout of the area

is quite different from most of Boston, with wide, heavily travelled streets bordering large "superblocks." The most significant landmark in the area is City Hall Plaza, which is both the major pedestrian circulation space in the district and the site of public demonstrations, performances, and city events.

Boston City Hall, the State Service Center and the JFK Federal Office Building draw a great number of visitors to the area each day, many of whom are unfamiliar with their surroundings. Limited parking facilities cause many people to use public transportation; the Government Center MBTA Station serves area employees, people making business trips, and a significant number of tourists visiting the historic downtown and Waterfront areas.

There are two publicly-owned vacant development parcels in this area; BRA Parcel 7, designated for hotel development, and the parcel at the intersection of Merrimac and New Chardon Streets (no designation for its use has been made).

3.2.6 North End

Directly north of the Waterfront and bounded by the Central Artery, North Washington Street and Boston Harbor lies the North End, one of Boston's oldest neighborhoods. Although separated from downtown Boston by the Central Artery, the North End is within walking distance of Faneuil Hall, Government Center, and the Financial District. Much of the North End is only a short walk from major public transportation services at Haymarket, Government Center and North Station (Green Line, Orange Line, Blue Line, Commuter Rail, bus).

The North End is architecturally homogeneous, with three- to five-story brick buildings lining narrow streets. It is largely residential, but also houses a significant commercial district

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93" supplement to the Draft Environmental Impact Statement/Report dated June 1983.

consisting of small shops and restaurants on the ground floors of residential buildings. The district is a major regional center for ethnic shopping, serving the large Italian-American population of metropolitan Boston.

Housing is the primary land use in the North End. At one time, the housing stock consisted primarily of rental units, but there are an increasing number of condominiums. The major commercial section of the North End is located around Hanover and Salem Streets.

Thousands of tourists visit the North End each year to follow the Freedom Trail past Paul Revere's house, the Old North Church and other historic sites.

Located on the periphery of the North End are larger businesses and institutions that are city-wide or regional in character. Expensive professional space has recently been developed on the eastern edge of the North End, essentially as an extension of the Waterfront district.

3.2.7 North Station

The North Station area lies between the Charles River, the Central Artery and Government Center. It contains retail, commercial, government, office, institutional and manufacturing uses. Major facilities are the MBTA's North Station commuter rail terminal and transit facilities, the Boston Garden sports arena, the Anelex Building, the Massachusetts Registry of Motor Vehicles and Department of Public Works, and theMassachusetts Rehabilitation Hospital. Commercial, retail, manufacturing and office uses are concentrated along Causeway Street.

The Bulfinch Triangle lies south of Causeway Street between North Washington Street and Merrimac Street. Its three- to nine-story brick buildings contain primarily manufacturing, commercial and warehousing uses. Private

rehabilitation of buildings in this 19th century industrial district is engoing.

The North Station area presently contains a great deal of land used for surface parking; approximately 2,300 parking spaces exist. Roughly 60 percent of these are designated employee parking for the Massachusetts Department of Public Works, Massachusetts General Hospital, and the Massachusetts Rehabilitation Hospital.

At this time, the Boston Redevelopment Authority (BRA) is undertaking a federally-assisted urban renewal project in the North Station area. Recent planning studies have divided the area into three sections: Railyard and River Edge; North Station/Boston Garden Area; and Bulfinch Triangle. Redevelopment is currently in progress for the North Station/Boston Garden section (BRA Sub-area I), including site preparation for construction of a major General Services Administration (GSA) Federal Office Building. Other potential improvements in this area include relocation of the MBTA Green Line transit facilities; construction of a new Boston Sports Arena or other facility above extended MBTA commuter rail tracks; construction of a parking garage adjacent to Lomasney Way and the elevated Storrow Drive/Central Artery Connector Ramps; and discontinuance of a portion of Nashua Street (part of the GSA project). Construction of these improvements is expected to continue over the next decade. Planning is underway for the Railyard/River Edge section (BRA Sub-area II), with construction of any improvements not anticipated until 1990 or later.

3.2.8 West End

The West End lies between
Beacon Hill, the Charles River, and
Government Center. Until the late
1950's, the West End was composed
primarily of early 20th century
five-story apartment buildings. These
low-rent buildings were razed in the

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93" supplement to the Draft Environmental Impact Statement/Report dated June, 1983.

early 1960s during one of Boston's earliest and largest urban renewal projects. The 45-acre site is now occupied by Charles River Park, a development consisting of eight high rise apartment towers, a subsidized apartment tower for the elderly, an office building, a small commercial building, a synagogue and three parking garages. Landscaped paths wind through the development, and no through streets cross the area.

South of Charles River Park, the area has primarily institutional uses, including Massachusetts General Hospital, Massachusetts Eye and Ear Infirmary, the Suffolk County Jail and two churches. Charles River Plaza, a shopping center along Cambridge Street, contains stores, movie theaters, restaurants, a major hotel and a large privately-owned parking area. There remain a few five-story residential buildings with commercial uses on the ground floor in this area.

There is one undeveloped parcel at Charles River Park at the intersection at Lomasney Way and Staniford Streets; no proposals are under consideration at this time. The remainder of the West End is fully developed.

3.2.9 Charlestown

Existing conditions in Charlestown are described in the Final Environmental Impact Statement for the North Area project (Federal Highway Administration and Massachusetts Department of Public Works, 1979). Charlestown is a stable residential community. The housing stock is predominantly older, two- and three-story structures, with many multi-family and row houses. Charlestown is also a major employment center, with industrial and Warehousing activities located to the west of Interstate Route 93, along Rutherford Avenue, and along the Waterfront. Bunker Hill Community College is also located in Charlestown, north of the John F. Gilmore Bridge and east of Interstate Route 93. There are local commercial

establishments along Bunker Hill Street and Main Street. Several historic sites, including the USS Constitution and the Bunker Hill Monument, attract visitors to the area.

3.3 NEIGHBORHOOD CHARACTERISTICS AND COMMUNITY FACILITIES

This section describes the major characteristics and significant community facilities of the Waterfront, Government Center, North End, North Station and West End neighborhoods. The City of Boston is used as a baseline for discussion of demographic characteristics. As for land use, these areas comprise the areas of potential additional effects of Alternatives 3A, 5A, 5A Modified, and 6 as compared to the No-Build Alternative and Alternatives 3 and 5 in the DEIS/DEIR. Major community facilities are listed in Table 60 and are shown on Figure 82. Neighborhood characteristics and major facilities are described below.

The neighborhood facilities and characteristics section of the DEIS/DEIR (Section 3.3) should be referred to for comparable discussions of South Boston, Chinatown/South Cove, and East Boston.

Primary sources of information on population and housing are U.S. Census of Population and Housing (1980), the 1979 Boston Redevelopment Authority (BRA) Household Survey and BRA Neighborhood Profiles.

3.3.1 Waterfront

General Characteristics

The Waterfront has been a residential community since urban renewal projects began in the late 1960s. The Waterfront housing stock consists of newly constructed apartments and condominiums and older warehouse buildings that have been rehabilitated for residential use.

The population of the Waterfront area increased dramatically during the period of redevelopment;

Source: "Third Harbor Tunnel, Interstate 90/Central Artery, Interstate 93" supplement of the Draft Environmental Impact Statement/Report dated June, 1983.

2.0 TRAFFIC FORECASTING PROCEDURE

"THIRD HARBOR TUNNEL PROJECT, INTERSTATE
90" DRAFT ENVIRONMENTAL IMPACT STATEMENT/
REPORT DATED DECEMBER, 1982

2.0 TRAFFIC FORECASTING PROCEDURE

2.1 General

In contemporary practice, traffic forecasting for large highway projects is generally done through use of a computerized traffic analysis procedure known as traffic assignment. This procedure has been developed by the Federal Highway Administration (FHWA) and the Urban Mass Transportation Administration (UMTA) over the past 25 years, and is used throughout the world. In this procedure, a computerized representation of the highway network is constructed. This network, consisting of highway links (streets) and nodes (intersections), covers the area of analytical interest and usually includes most highway facilities other than minor local streets. Associated with this network is a system of zones covering the same geographical area. A trip table, or matrix of trips, that identifies zone-to-zone vehicular flows is prepared as part of this process. the traffic assignment procedure, vehicular trips from the trip table are assigned to links in the highway network. This is done by using one of several mathematical computer programs or algorithms that assign vehicles from origin zones to destination zones via minimum time paths.

There are usually several stages of analysis in the transportation planning process. In the first stage, a travel survey is taken. This identifies the zone-to-zone flows of trips. Associated with this travel survey are traffic counts made at various points throughout the highway network. These two types of data together constitute what are known as the base case trip table and base case traffic volumes.

The second stage of analysis is traffic assignment model calibration. In this stage, traffic assignments are performed, assigning the trips from the trip table to the computerized highway network. These traffic assignments use the computer programs

developed by the FHWA and UMTA. In these assignments, trip table volumes and highway network characteristics are adjusted until assigned volumes on the computerized network are close to the volumes of traffic actually counted. Following this procedure the base case model is said to be calibrated.

In the third stage of analysis, future networks and trips are developed. The highway network is altered to incorporate changes anticipated by the horizon year of analysis, and separate versions of the network are prepared that include the various project alternatives to be tested. Parallel to this work, projections of future trip volumes are made. These projections are based on such factors as growth of future population and employment. From the projections come trip tables for future years.

When the future networks and trip tables are complete, the future trips are assigned to the future networks. These assignments yield the traffic volumes associated with the various plan alternatives. From these assignments, various statistics are available. These include traffic volumes and speeds by link or in total for the network, vehicle hours, vehicle miles, and a variety of other statistics. These various statistics are used in evaluating the proposed alternatives.

Once the basic traffic assignments have been undertaken, a number of subsidiary analyses may be performed. These may include analyses of such issues as vehicle turning movements at intersections, truck traffic, traffic in small areas or on particular streets, and construction staging. These all contribute to the overall evaluation of traffic associated with project alternatives.

In the Third Harbor Tunnel EIS/EIR traffic analysis, the traffic assignment procedure described above has been followed. Base case and future networks and trips were

developed (or used from earlier studies); traffic assignments were performed; and, a number of subsidiary and follow-up analyses were undertaken. In the remainder of this section, the specific parts of the analysis are discussed in order as follows:

- 1. Travel and Traffic Data
- 2. Base Case Networks and Zones
- 3. Base Case Trip Tables
- 4. Base Case Traffic Assignment Model and Model Calibration
- Future Trips
- 6. Logan Airport Trips
- 7. Future Networks
- Future Assignments
- 9. Manual Assignments: East Boston and South Boston
- 10. Truck Volumes
- 11. Construction Staging
- 12. Induced Traffic

The following general discussion is intended to provide an overview of the analysis. For specific details of the analysis, technical memoranda are available from CTPS. They are referenced at the end of this Appendix.

2.2 Travel and Traffic Data

The basic source of travel and traffic data used for the Third Harbor Tunnel EIS/EIR is the Boston Central Artery 1977 Origin-Destination Study prepared for the Massachusetts Department of Public Works (MDPW) [1]. In this study, travelers crossing a cordon line around downtown Boston were surveyed with regard to the origins and destinations of their trips. This survey provided travel information for trips to and through the downtown Boston area. Data from this survey had earlier been combined with regional travel data from the 1963 Boston origin-destination survey [2], updated to 1975 [3], to create the regional trip tables that were used for 1977 average weekday traffic (AWDT) assignments in the Corridor Planning Study for Rt. I-93 and I-90: The Central Artery and Third Harbor Tunnel [4]. These same data are the basis for the trip tables that have

been used for AM peak, PM peak, and average weekday daily traffic (AWDT) assignments for the Third Harbor Tunnel traffic analysis.

Traffic counts for the 1977 base case assignment model calibration came from a number of sources [5]. These include cordon counts and arterial street counts from the Central Artery Origin-Destination (O-D) Survey, supplemental counts performed for the O-D Survey by the MDPW, counts from the 1974 Boston Cordon Count [6], counts from the Seaport Access Study [7], counts from permanent MDPW counting stations, MDPW coverage counts, and special MDPW counts conducted as part of this study. For model calibration, a total of 159 count locations were used for an "inner" area in and around downtown Boston, and 114 in an "outer" area extending about 4 to 5 miles from the Boston core. Another 62 counts were used for an outer fringe area which extends to just beyond Route 128.

In addition to counts, balanced expressway volumes created by CTPS were used for model calibration.

2.3 Base Case Networks and Zones

The highway network initially used for 1977 AWDT traffic assignments and used in the Central Artery Corridor Planning Study is a large network containing 11,400 links, and stretching to just beyond Route 128. Within the area of coverage, it includes all expressways, all major arterial routes, and most minor arterial routes. For the downtown Boston area, there is more detail, and most local streets are included.

During the course of Third
Harbor Tunnel analysis, a number of
changes were made in the initial AWDT
network. Speeds and capacities were
corrected on a number of expressway
links, and network geometry was
changed in several locations to better
reflect the actual highway network.

Major network changes were made in East Boston and South Boston. In

these areas, detailed evaluative work was required for Third Harbor Tunnel analysis, for the original network did not include all the required streets. Thus, the network was made more detailed in both of these areas [8]. The final AWDT network links and nodes for East Boston and South Boston are shown in Figure 2 and Figure 3.

The zone system for the AWDT network covers roughly the same geographical area as the network, extending to just beyond Route 128; boundaries are shown in Figure 4. Initially, the zone system included 217 zones, of which about 60 were within downtown Boston. Because of the detailed evaluation requirements of Third Harbor Tunnel analysis, the initial large zones of East Boston and South Boston were disaggregated into smaller zones [8]. Initially, East Boston had only four zones and South Boston had six. In the final system, East Boston had 17 zones and South Boston had 13. Correspondingly, the final AWDT system had 239 zones. The zones ultimately used in Third Harbor Tunnel traffic analysis for East Boston and South Boston are shown, respectively, in Figures 5 and 6.

For AM and PM peak period assignments, smaller networks and zone systems were used. These networks, containing about 6,900 links, stretch to just north of Revere and Medford, to Arlington, Watertown, and Newton to the west, and to just south of the Neponset River (see Figure 7). Within their geographical area of coverage, the AM and PM networks include the same highway facilities as the AWDT network. As initially developed, these networks had 168 zones. These smaller systems were developed for AM and PM peak period assignments because they are easier to use and are much cheaper in computer time than the much larger AWDT network and zone system. For purposes of Third Harbor Tunnel analysis, they yield results equivalent in quality to those of the larger system.

As with the AWDT network, a substantial number of changes were

made in the AM and PM base case networks. Many of these were related to making link capacities and speeds more accurate, and to improving network geometry. Others were made to accomplish the same network detailing in East Boston and South Boston that was done for the AWDT network.

Zone systems for the AM and PM networks were also disaggregated in East Boston and South Boston to the same zones as for the AWDT network. The final AM and PM zone systems include 188 zones each.

2.4 Base Case Trip Tables

As indicated above, 1977 base case AWDT trip tables had previously been prepared and used for AWDT traffic assignments for the Central Artery Corridor Planning Study. Third Harbor Tunnel analysis, these trip tables were used substantially as they had been developed earlier, except that they were disaggregated in East and South Boston to reflect the smaller zones created in those areas. The disaggregation process involved determining, at a census tract level, the fractions of trips for each original zone that were residentially and non-residentially related, and then aggregating the census tract fractions up to the new zone systems in accordance with the original zonal residential and non-residential trip totals [9, 10, 11, 12, 13, 14, 15, 16]. Trips from the new zones were assumed to be distributed to other zones in the same proportions as had been the case in the original zones.

Prior to the Third Harbor
Tunnel analysis, a 1977 base case AM
peak trip table had been prepared for
7:00 AM to 10:00 AM using the same
data sources as had been used in
creating the AWDT trip table. This
trip table was used for Third Harbor
Tunnel AM peak base case assignments,
with its values somewhat modified
through the traffic assignment model
calibration process. As with the AWDT
trip table, a disaggregation process
was required for the new smaller zones
in East Boston and South Boston [17,

Source: "Third Harbor Tunnel Project, Interstate 90" Draft Environmental Impact Statement/Report dated December, 1982.

18, 19]. This process was analogous to the one undertaken for the AWDT trip table.

Prior to the Third Harbor Tunnel Study, no PM peak period trip table had been created. Such a table for this study was initially developed for 1977 for the PM peak period (3:00 PM to 6:00 PM), by reversing the AM peak base case trip table [20, 21, 22, 23]. This reversal was based on the assumption that trips from Zone A to Zone B during the AM peak go from Zone B to Zone A during the PM peak. The initial base case PM trip table was substantially altered during the model calibration process, in order to account for actual differences between PM peak travel and the reverse of AM peak travel.

For the PM peak base case trip table, a disaggregation process was made for East Boston and South Boston following the same procedure as that used for the AM peak base case trip table.

2.5 Base Case Traffic Assignment Model and Model Calibration

All traffic assignments for Third Harbor Tunnel analysis utilized the Urban Transportation Planning System battery of traffic assignment programs of UMTA. For AWDT, "equal-or-nothing" assignments were run. For AM and PM, "all-or-nothing" assignments were performed. For AWDT assignments, seven iterations were used for calibrating the base case 1977 model. For AM and PM peak period assignments, five iterations were used.

Because the AWDT assignment model was already quite well calibrated from the earlier Central Artery Corridor Planning Study, only a relatively small amount of calibration work was necessary. A total of ten calibration runs were conducted [24]. These runs had three purposes. The first was to compensate for the speed, capacity, and geometric changes that had been incorporated during network editing. The second was to redistribute Logan Airport trips more

in accordance with the results of the 1978 Logan Airport Survey [25]. The third was to incorporate the disaggregated zones for East Boston and South Boston.

An extensive process of calibration was undertaken for both the AM and the PM traffic assignment models. For the AM peak, a total of twenty-eight traffic assignment trials was undertaken in model calibration [26]. These trials had a variety of purposes ranging from bringing corridor traffic volumes into conformance with counts, to adjusting Logan Airport trip totals and distributions to agree with survey results. For the PM peak, a total of twenty model calibration runs were undertaken [27]. They had purposes roughly parallel to those of the AM peak. For both the AM peak and PM peak, disaggregation was done for zones in East Boston and South Boston. A portion of the graphical computer output from a typical model assignment is illustrated in Figure 7.

2.6 Future Trips

It was originally anticipated that future trips for AM, PM, and AWDT would be based on CTPS Interim Projections of 1977 extended to the Third Harbor Crossing horizon year of 2010 [28, 29]. An early analysis of the difference between CTPS Interim Projections and new projections based on the 1980 Census [30], however, indicated that new projections based on the 1980 census were much lower than the earlier ones. Because the difference was considerable, it was decided to use new projections based on the 1980 Census. For this purpose, Metropolitan Area Planning Council (MAPC) projections of population and employment growth [31, 32] were converted from the town level projections of MAPC to the zone system of CTPS [28, 29, 33, 34]. These projections were then applied to the base case trip tables of 1977 in order to create trip tables for 1990 and 2010.

Because of the desire for more

Source: "Third Habor Tunnel Project, Interstate 90" Draft Environmental Impact Statement/Report dated December, 1982.

accuracy of traffic assignments in East Boston and South Boston, special attention was paid to future population and employment factors in those areas. Census tracts in East and South Boston were examined individually, and forecasts were made and then aggregated to the zone level. Planned developments such as those on the Massport and Athenas properties in South Boston were specifically considered [35, 36]. The growth factors from these projections were incorporated into the 1990 and 2010 trip tables.

2.7 Logan Airport Trips

Because of the considerable importance of Logan Airport trips in future harbor crossing volumes, special care was devoted to Logan Airport trips both for the base case and for future trips. As indicated above, under base case model calibration, Logan trips were redistributed to agree with existing travel patterns [37]. For projections of future Logan trips, the following procedure was undertaken. First, base case traffic was broken down by activity: air passengers, employees, and air cargo, for the airport survey year of 1979 [38]. Then the proportions of traffic for each activity were applied to the 1977 base year traffic [39]. Following this, a new forecast of Logan air traffic prepared by Massport [40] was combined with a specific forecast for Bird Island Flats activity [41], to create projections of ground traffic to Logan Airport for the year 2010 [42]. For the 2010 projections, three scenarios were envisioned. In one, it was assumed that travel mode choices to and from the airport would remain much as they are today. In the second, it was assumed that the present trend toward non-private auto modes would continue. In the third, it was assumed that there would be maximum use of public transit. It was decided to use the first scenario for trip tables for Third Harbor Tunnel build alternatives, and the second for the No-Build Alternative, reflecting the potential effect of the project on

mode choice. Ultimately, 1990 trip projections were made using these same assumptions [43].

2.8 Future Networks

Future networks were constructed for the No-Build alternative and the four Third Harbor Tunnel build alternatives. All future networks were based on the so-called "L-2" network for the Central Artery North Area Project, and included future committed projects, such as widening of the Southeast Expressway, construction of the Seaport Access Road in South Boston, and construction of the Southwest Arterial. The Revere Beach Connector and the Salem-Peabody Connector were not included in the future networks. The 1990 future networks were the same as those for 2010.

2.9 Future Assignments

For future AWDT, multiple sets of assignments were run. Following the first set of assignments [44], certain anomalies were noted in some of the volumes. After an extensive network check and certain network corrections, a second set was run [45]. This second set of assignments was much better, and was used for Third Harbor Tunnel AWDT traffic volumes.

For AM and PM traffic, multiple sets of assignments were also run. Four test sets of AM assignments were performed [46], and then production sets of AM and PM assignments were run [47, 48, 49, 50]. In analyzing the results of these production assignments, it was found that the results were distorted in certain areas where main routes compete with alternative routes [51]. This occurred because of inadequate numerical convergence of the assignments. Thus, the production assignments were rerun using nine rather than five iterations [52, 53] of the assignment algorithim. results of this second set of production assignments were much better than those of the first set,

Source: "Third Harbor Tunnel Project, Interstate 90" Draft Environmental Impact Statement/Report dated December, 1982.

and they were used for Third Harbor Tunnel AM and PM traffic volumes.

For all production assignments--AM, PM, and AWDT--the following were produced for 1990 and 2010 for all five Third Harbor Tunnel alternatives:

- 1. Traffic Volumes
- Congested Speeds
- Turning Movements at forty intersections
- 4. Total Vehicle Hours
- 5. Total Vehicle Miles

2.10 Manual Assignments: East Boston and South Boston

Despite model disaggregation in East Boston and South Boston, it was not possible for the computer model to produce accurate traffic assignments for local streets in these areas. This was partly because the traffic zones were still too large to allow accurate volumes on the smallest streets, and partly because detailed model calibration could not be carried out for East Boston and South Boston. It was also because the traffic assignment model cannot replicate queuing behavior, which is a significant factor on local streets.

For these reasons, manual assignments for South Boston and East Boston streets were performed [54, 55, 56, 57, 58, 59]. In performing these manual assignments, base case volumes were taken largely from the 1982 counts collected as part of the Third Harbor Tunnel EIS/EIR. These were adjusted for future years and alternatives by incorporating the differences between the base case computer assignments and the computer assignments for future years and alternatives. Effort was expended to have the manual assignments agree with the machine assignments at the entry points to East Boston and South Boston.

For purposes of these manual assignments, only three alternatives were assigned in East Boston (Alternatives 1, 4, and 5) and three in South Boston (Alternatives 1, 2,

and 4). It was assumed that local differences in alternative networks in South Boston would not affect volumes in East Boston and vice versa; e.g., Alternatives 4 and 5 would have the same traffic arrangements in South Boston despite their differences in East Boston.

For all manual assignments, turning movement analyses were performed for 13 intersections in South Boston and fourteen in East Boston. The turning movement analyses were based on the changes in the assignments from the 1982 base to the various years and alternatives. A total of 312 turning movement analyses were thus undertaken.

2.11 Truck Volumes

No explicit truck traffic assignments were performed for the Third Harbor Tunnel EIS/EIR analysis. It was assumed that truck percentages in the future would generally mirror those of today [60]. For entries to and exits from Logan Airport, specific truck projections were made [61]. For East Boston and South Boston, future truck volumes were based on the manual assignment volumes for all vehicles [54, 55, 56, 57, 58, 59].

2.12 Construction Staging

Traffic was assigned for seven construction stages/alternatives. Three of these were for the AM peak and four for the PM peak. For these stages/alternatives, various links in the future highway network were altered or deleted in accord with the roadway changes associated with the given stage and alternative. In the construction staging assignments, no manual adjustments were made.

2.13 Induced Traffic

Consideration of induced traffic was limited to analysis of the build alternatives as a group versus No-Build for Logan Airport traffic. As indicated above, it was assumed in the No-Build case that increasing traffic congestion would force Logan

Source: "Third Harbor Tunnel Project, Interstate 90" Draft Environmental Impact Statement/Report dated December, 1982.

passengers into non-private automobile modes, as has been happening over the past decade. For all build alternatives, it was assumed that this shift would not continue to take place. The difference between the traffic volumes associated with the two assumptions could be considered to be "induced" traffic, and amounted to approximately 12,800 trips daily. More accurately, added traffic associated with the build alternatives is traffic growth that would be constrained and could not take place in the No-Build Alternative.

"DOWNTOWN CROSSING: AUTO RESTRICTED ZONE IN BOSTON" FINAL REPORT DATED JULY, 1982

SOURCE: Pedestrian Interview Surveys, 1978 and 1980

Table taken from "Downtown Crossing: Auto Restricted Zone in Boston" Final Report Dated July, 1982.

FIGURE 8-9. MODE OF TRAVEL TO DOWNTOWN BOSTON

TABLE 8-2. MODE OF TRAVEL TO WORK

	<u> </u>	hare
	1978	1980
Walk Only	5.4	5.7
Auto Only	23.7	16.7
Subway Only	25.5	28.0
MBTA Bus	9.5	10.9
Other Bus	5.4	5.1
Commuter Rail	10.2	10.0
Taxi	0.4	0.2
Bus to Subway	12.7	14.0
Rail to Subway	0.5	0.6
Auto to Subway	4.7	6.5
Rail to Bus	0.4	0.2
Auto to Bus	0.9	0.8
Bicycle and Miscellaneous	0.6	1.2
	100.0	100.0

Source: Employee Surveys, 1978 and 1980 (29 buildings surveyed in both years).
Table taken from "Downtown Crossing: Auto Restricted Zone in Boston"
Final Report Dated July, 1982.

"PARKING IN CENTRAL BOSTON: MEETING THE ACCESS NEEDS OF A GROWING DOWNTOWN"
DATED DECEMBER, 1983

APPENDIX C

Appendix C

Methodology for Projecting Future Parking Demand

Appendix C: Methodology for Projecting Future Parking Demand

Overview

Projections of future parking demand generated by new office, retail, and hotel development were made using a three step process:

• trip generation: application of standard trip rates to planned square footage of development to obtain estimated

numbers of daily person-trips generated, by trip

purpose (work and non-work).

modal split: splitting the projected number of trips generated

among different travel modes: automobile, transit,

and other (walk, bike, etc.)

• turnover: applying turnover rates for work (long-term) and

non-work (short-term) trips made by automobile to

yield peak parking demand.

Parking demand for new <u>residential</u> developments was estimated based on auto ownership information from the 1970 census. This appendix presents the trip generation, modal split, turnover, and other assumptions employed for the calculations of future parking demand in Chapter 3.

Trip Generation

Table C.1 presents trip generation rates for office, retail and hotel uses. These rates were primarily derived from the Institute of Traffic Engineers' Trip Generation Report, which is based on data collected in a range of US urban areas. The rates shown are for <u>round trips</u>. Each rate is broken down in the table into a work trip generation rate and a non-work trip generation rate according to observed trips per employee ratios (see footnotes to table). This was done to allow the methodology to distinguish between long-term and short-term parking demand.

Modal Split/Auto Occupancy

Once the number of trips "generated" by new development is known, the total number of parkers can be established by determining the proportion of

TABLE C.1

Trip Generation Rates (Round Person-Trips Attracted Daily)

Office 6/1000 sq ftA

- 3.9 work trips^B (employees)
- 2.1 non-work trips (visitors)

Retail 20/1000 sq ftC

• 2.8 work trips^D (employees)

• 17.2 non-work trips (shoppers and visitors)

Hotels 5/roomD

• 1 work trip (employees)

 4 non-work trips (includes multiple guest trips and restaurant visitors)

- A This is the average trip rate for general offices reported in the National Cooperative Highway Research Program (NCHRP) Report 187, "Quick Response Urban Travel Estimation Techniques and Transferable Parameters" (1977). The original source of this figure is the Institute of Traffic Engineers (ITE) Trip Generation Report.
- Given the attraction rate per office square footage and assuming an average rate of 4.6 workers 11,000 square feet for Class A office space (Boston Redevelopment Authority: The Office Industry Survey, Part II, 1979), the member of work trips generated per 1,000 sq. ft. of office is estimated to be 3.9, or 65 percent of all trips generated.
- C This is the average retail attraction rate for high density central business districts reported in NCHRP Report 187 (based on the ITE Trip Generation Report)
- Nowing the total trip attraction rate, the number of work trips per 1,000 sq. ft. can be determined by assuming a rate of 3.2 employees per 1,000 sq. ft, and the standard rule of thumb of 1.7 (one-way) trips/employee/day.
- E Source: NCHRP Report 187 and ITE Trip Generation Report. The estimate of 1 work trip for every five trips was based on professional judgement.

trips made by automobile and the average number of occupants per automobile. In Boston, the following information on modal split and auto occupancy is available:

a. 1982 Cordon Count (adjusted for through trips--see Chapter Two)

	Percent of daily person-trips (6 am - midnite)
automobile public transportation bicycle/walk	59% 33% 8%
<pre>auto occupancy: (not adjusted for through trips)</pre>	1.33 (6-9 am) 1.42 (6 am - midnite)

b. Building Surveys--(see Appendix B)

				Work	Trips	
Zone	<u>Building</u>	Auto	Transit	Other	Auto Occupancy	N
7a lb la la lb	500 Boyston St. 470 Atlantic Ave. 125 High Street Shawmut Bank Fed. Reserve Bank	35% 44% 43% 27% 38%	51% 53% 54% 67% 57%	14% 3% 3% 6% 5%	1.90 2.02 1.72 1.67 2.04	141 500 516 1,171 931
	All Buildings	36%	59%	5%	1.84	2,259
Zone	Building	Auto	Transit	Non-Wor	rk Trips Auto Occupancy	N
7a lb la la lb	500 Boyston St. 470 Atlantic Ave. 125 High Street Shawmut Bank Fed. Reserve Bank	60% 87% 77% 51% NA	24% 9% 13% 33% NA	16% 4% 10% 16% NA	1.72 1.52 1.29 1.35 NA	25 23 40 129 0
	All Buildings	61%	26%	13%	1.40	217

c. Central Transportation Planning Staff (CTPS) 1975 Trip Tables

	Percent of Trips by Transit			
Zone	home-based work	home-based other	non-home-based	
1	45%	2 <i>6</i> %	13%	
2	49	30	17	
3	35	17	11	
4	38	18	10	
5	50	35	17	
6	33	16	10	
7	38	20	12	
8	21	10	6	
9	32	17	9	
10	25	15	6	
11	32	16	9	
12	29	16	10	
All Zones	41%	17%	12%	

d. Fanueil Hall Shopper Survey (Rouse, 1977)

trip origin	(weekday)	mode (weekd	mode (weekday)	
home	4 <i>6</i> %	auto	43%	
work	21%	transit	16%	
tourist	15%	walk/other	35%	

e. BRA Office Tenant Survey (March, 1979)

Location	Percent of Work Trips by Auto
Financial District	32%
Government Center	30%
MidTown	33%
Back Bay	40%
All Areas	34%

f. Downtown Crossing Evaluation Building Surveys (Cambridge Systematics, 1980)

Building	% by Auto
79 Milk	44.4%
100 Federal	40.7
1 Federal	35.5
80 Boylston	32.9
1 Court	31.0
18 Tremont	30.8
100 Summer	28.2
10, 24 Federal	25.9
89 Broad	24.7
1 Washington Mall	24.2
Prudential	23.8
89 State	23.5
City Hall	23.0
230 Congress	21.7
141 Milk	21.4
600 Washington	21.3
60 State 140 Federal	20.7
185 Tremont 53 State	20.0
27 School	19.4
10 High	19.0
45 School	18.4
294 Washington 1 Boston Place	18.0
75 Federal	16.7
99 High	16.7
125 High	16.7
262 Washington	14.3
1 Beacon	14.3
All Buildings	23.7%

Needless to say, there is considerable variation in both modal split and auto occupancy among sources. However, it is clear that modal split varies from area to area of the downtown, according to the level of transit access and parking availability. Based on the available information, together with judgement about relative levels of transit and auto access to the different analysis zones, assumptions about modal split were made for the zones in which new development is projected to occur. These are shown in Table C-2. Auto occupancy was assumed not to vary in a systematic manner by zone, but

in general appeared to be higher for work trips than for non-work trips. Average auto occupancies of 1.51 for work trips and 1.31 for non-work trips were assumed, and are consistent with the all-day average of 1.42 observed in the recent cordon count.

These modal split and auto occupancy assumptions were applied to projected numbers of work and non-work person trips to obtain estimates of the number of total daily parkers. The one exception to this, however was non-work trips generated by new hotels. Instead, peak (non-work) parking demand of .25 spaces per room was assumed, based on judgement.

Turnover

Turnover rates of 1 for work-related parkers and 2.67 for non-work related parkers were assumed, based on national experience.

Residential Parking Demand

Peak parking demand per dwelling unit was calculated based on an auto ownership assumptions derived from the 1970 census of .74 autos per dwelling unit, and an assumption that 75 percent of autos owned by residents would be left at home during the day.

TABLE C.2

Modal Split Assumptions: Percent of Trips by Auto

Zone	Work Trips	Non-Work Trips
la lb	35% 40	27.5% 39
2a	35	38.5
3	30	35
4	30	35
5a 5b	30 40	3 5 42
7a 7b	40 45	48 52
9a	45	52
116	40	48
12	60	56

Example Calculation of Peak Parking Demand: Zone 9a (1985)

Development: 845,000 sq. ft. office

300,000 sq. ft. retail 1,900 hotel rooms 400 dwelling units

Work-Trips Generated: 845 (3.9) + 300 (2.8) + 1900 (1) = 6036

Non-Work Trips Generated: 845 (2.1) + 300 (17.2) + 1900 (4) = 14,535

Work Trips by Auto: 6036 (.45)/1.51 = 1798

Non-Work Trips by Auto: 14,535 (.52)/1.31 = 5769

Work-Related Parking Demand: 1798/1 = 1798

Non-Work-Related Parking Demand:

(14,535 - 4(1900)) (.52)/(1.31)(2.67) + .25(1900) = 1506

"PARKING IN CENTRAL BOSTON: MEETING THE ACCESS NEEDS OF A GROWING DOWNTOWN"

DATED DECEMBER, 1983

APPENDIX D

Appendix D

Adapting Boston's Parking Freeze in Response to a Changing Downtown Environment

Contents

		Page
1.	Background	D-1
2.	Impacts of the Freeze to Date	D-2
3.	Changes in the Downtown Environment Since 1973	D-3
4.	Recommended Freeze and Zoning Code Modifications	D-4
5.	Impacts of the Recommended Modifications Package	D-16

1. Background

Instituted in 1976, the present freeze on commercial parking spaces in downtown Boston limits the number of commercial spaces to the 1973 level of 35,503. New construction of commercial spaces can be done only after the Boston Air Pollution Control Commission (BAPCC) issues a freeze permit. Freeze permits are issued contingent on the proposed facility meeting the BAPCC's criteria, which are:

- sufficient spaces are available in the freeze bank. (Spaces are added to the bank when on- or off-street parking spaces are removed in the freeze area);
- the facility will not add parking to an area already adequately served by existing parking facilities or with adequate transit access;
- it will not contribute significantly to peak period traffic;
- it is located and designed so that the surrounding sidewalks and streets are sufficient to accommodate pedestrians and vehicular movements:
- it has satisfactory access to the major highway serving the area;
- it directly serves development in the surrounding area, and
- its design, including height, bulk, ground floor use, and landscaping, is in accordance with and consistent with architectural and land use patterns in the surrounding area and is itself aesthetically pleasing.

All non-commercial spaces, including residential, and reserved employee and visitor spaces are exempt from the freeze. However, the APCC must grant a special exemption before non-commercial facilities may be constructed.

The boundaries of the freeze area coincide with the area termed "Boston Proper". Boston's zoning code, which was revised in 1973 to eliminate minimum parking requirements for all but residential uses, established a Restricted Parking District (RPD), in which non-residential parking would be considered a Conditional Use, subject to Zoning Board of Appeal approval. The boundaries of the RPD include the freeze area, and extend to the medical area in the Fenway, and parts of South Boston and Dorchester down to

Columbia Point. Zoning Board of Appeal conditions on approval of facilities within the RPD include:

- the facility will serve a traffic demand not adequately provided for by public transportation, or
- it will replace existing off-street parking spaces in one or more nearby parking facilities, or it will replace legal on-street parking spaces that have been physically eliminated through permanent modification or elimination, or
- it is accessory and ancillary to a use which by its nature does not contribute significantly to traffic flows during peak traffic periods, or
- the facility constitutes a temporary parking lot use of land and that serious intent to reuse the land for an allowed use within a specified period of time has been demonstrated to the satisfaction of the Board of Appeal.

Thus, Boston has two overlapping mechanisms for controlling new parking construction. While criteria for approval are similar, the freeze provides a much stricter control tool.

2. Impacts of the Freeze to Date

The APCC began administering the freeze in 1976. In 1981, the City of Boston conducted a study $^{\rm l}$ to assess its impacts to date. Major findings of this study were:

- The parking freeze has been successful at limiting the number of commercial spaces to the ceiling level of 35,503.
- Employee and other non-commercial spaces increased by 18% between 1973 and 1980 to a total of 20,260 spaces. However, this increase in non-commercial spaces is less than that which occured in the five years between 1968 and 1973 (a 35% increase).
- Downtown development has proceeded at a healthy pace, unimpeded by the freeze. Between 1973 and 1980, over 8 million square feet of office space were completed, and 5 million additional square feet were under construction.

lEllen Collins, Boston Redevelopment Authority, Transportation Planning Department, "Downtown Boston Parking Programs", prepared for the Traffic and Parking Department, City of Boston, sponsored by the Metropolitan Area Planning Council, July, 1981.

- The parking freeze has been a contributing factor in restraining automobile usage, further encouraging the use of mass transit, and thus keeping air pollution in check. Between 1964 and 1974, automobile travel to Boston proper increased 20% and transit ridership declined by 11%. Between 1973 and 1980, the split between transit and automobile trips to the downtown did not change significantly.
- The parking freeze has been a valuable tool for preventing the proliferation of open lots downtown, and preserving older buildings which may otherwise have been demolished for parking.

3. Changes in the Downtown Environment Since 1973

While the freeze has been very successful at achieving its objectives, a number of changes have occured since 1973 which provide reason for giving serious consideration to modifying the freeze:

- Unprecedented downtown development has occurred, increasing office square footage by 35 percent between 1973 and 1982.
- An additional 6 million square feet of office and retail space are planned to come on line between 1982 and 1985.
- Peak occupancies of downtown parking facilities have increased from 82 percent in 1972 to 93% in 1982. This occupancy level is sufficiently high to trigger concern about meeting the needs of new development, and in particular, the midday parker.
- Presently, more than 5000 cars are parking in surface lots in the Fort Point Channel, which presently serves as a "pressure valve" for financial district parking needs. As development replaces surface lots in this area, the parking needs of both the Fort Point Channel and the financial district will have to be addressed.
- Increasing development of the Fort Point Channel area, which is not now included in the freeze area, could potentially result in provision of parking for more cars than the street system can efficiently handle. Further, there is a danger that the existing residential areas of South Boston on the fringe of the development area would be threatened by an influx of parking lots and traffic.
- The proliferation of surface lots in East Boston (which is also not included in the freeze area) many of which cater to airport users, is and may continue to infringe on residential neighborhoods in the area.
- The economics of parking construction have changed dramatically, due to rising interest rates and construction costs. This change has made many developers reluctant to build more parking than they feel is absolutely necessary for the economic viability of their buildings.

- Recent downtown parking initiatives in Boston have emphasized meeting the needs of residents and short-term parkers through reserving on-street space in neighborhoods for residential use, expanding the overall on-street parking supply and strictly enforcing these spaces to maintain a high turnover.
- Many surface lots are parking far more cars than their official licensed capacities. The City of Boston will be relicensing these at higher capacities, which could remove as many as 690 spaces from the bank.
- New, innovative strategies are being successfully pursued in many cities throughout the country, which make approval of new development contingent on developer and/or employer commitments to transit and ridesharing incentive programs. These programs have proved to be very effective in increasing the use of transit, carpools and vanpools to the site, which alleviates traffic and parking pressures.

4. Recommended Freeze Modifications

With occupancies of downtown public parking facilities presently at 93 percent, a projected parking space deficit of 8114 spaces by 1985, and 22,632 spaces by 1990, meeting the access needs of future development is a serious concern. Simply relaxing the freeze to allow construction of more parking to satisfy the projected deficit is not a desirable option, on traffic congestion, air quality and economic feasibility grounds. Instead, options should be considered which make the freeze into a more flexible tool for managing future downtown access by (a) increasing parking supply in specific locations on the fringes of downtown where growth in automobile trips can be efficiently handled by the street system and encouraging better use of existing parking facilities, (b) ensuring that adequate space is reserved for midday parkers, (c) encouraging increased use of transit, carpools, and vanpools for access to the downtown, and (d) protecting the residential neighborhoods in East Boston, and across the Fort Point Channel in South Boston.

¹This number was derived by subtracting the licensed capacities of lots in the study area from the number of vehicles observed during recent occupancy checks.

Recommended mechanisms for achieving these objectives are described in the following pages and summarized in Table 1.

MODIFICATION A-1: INCREASE SOUTH STATION SUPPLY

DESCRIPTION:

Expand the freeze bank to include an additional 500 spaces at South Station, and an additional 2,500, conditional on a facility designed with a direct link to the highway system. These additional spaces would only be available for allocation to the South Station development site, and not to the rest of the freeze area.

RATIONALE:

This modification is aimed at increasing the downtown parking supply to accommodate the access needs of new development, in a manner that will minimize impacts on traffic. South Station is one of the few locations where sufficient roadway capacity exists to handle additional peak period automobile trips. Its fringe location and proximity to the highway system also mean that adding parking will not significantly increase traffic through neighborhoods or on the downtown street network.

Mechanisms for increasing the South Station parking supply by up to 3,000 spaces are presently being studied. These involve incorporating a direct link between the parking facility and the highway system. If and when such a design is committed to, an increase of 3,000 spaces for South Station should be instituted.

IMPACTS:

The downtown public parking supply would be increased by between 500 and 3,000 spaces. While the primary use of these spaces would be for commuter (long-term) parking, additional peak traffic could be accommodated without significant deterioration in traffic flow conditions.

Increased parking supply would serve new development in the South Station area, and would accommodate some of the financial district employees now parking in the Fort Point Channel when surface lots there are replaced by new development.

MODIFICATION A-2: INCREASE NORTH STATION SUPPLY

DESCRIPTION: Expand the freeze bank to include an additional 1,500 spaces

at North Station. These additional spaces would only be available for allocation to the North Station development

site, and not to the rest of the freeze area.

RATIONALE: Aside from South Station, North Station is the only other

logical downtown location for significantly expanding the

parking supply without adversely impacting traffic

conditions. Assuming that minor improvements are made to the Central Artery, an additional 1,500 parking spaces could be added to the North Station area (Zone 3), assuming that the majority of new vehicles would use the Leverett Circle bridge

for access to the site.

IMPACTS: Increased public parking availability in the North Station

area over and above what would be possible without modifying

the freeze.

MODIFICATION B: CONVERSION OF EMPLOYEE SPACES TO PUBLIC SPACES

Description:

Allow existing freeze-exempt employee spaces (which have been granted exemptions by December 31, 1983) to be opened up to the public for a fee and expand the freeze bank accordingly.

Rationale:

This modification would serve two purposes. First, it would allow spaces in existing reserved employee facilities which are not now used to be made available for public parking. Second, opening employee facilities to the public for a charge would have the added benefit of adequately pricing scarce downtown parking facilities.

Impacts:

There are approximately 13,000 reserved employee parking spaces downtown in 134 garages and lots: 42 percent are owned by federal, state and local government organizations, 22 percent by institutional employers (museums, hospitals, churches, charitable organizations, and schools), and 36 percent by other private employers. Average peak occupancy of private facilities is currently 90 percent. If one half of existing reserved employee spaces were opened to the public, an additional 650 spaces (= 10 percent of 6500) would be made available. While many employers feel that reserved employee parking is an important fringe benefit, it is also an expensive one. This freeze modification would provide an incentive for employers to open their facilities to the public, by offering them the opportunity to realize revenues from parking.

A number of studies have shown that employer-provided free parking is an extremely important incentive for commuters to drive alone to work, rather than using transit or ridesharing. One of these studies estimates that approximately 20 percent of those who now drive alone and receive free parking would form carpools or begin using transit to work if required to pay for parking. Applying this figure to the Boston situation (assuming 50 percent of those parking in reserved employee facilities do so for free), overall demand for parking would be reduced by between 440 and 1300 spaces.2

¹Shoup, Donald, and Pickrell, D., "Free Parking as a Transportation Problem," DOT-RSPA-DPB-50/80/16, October, 1980

²The low estimate assumes all 20 percent would snift to carpools; the high estimate assumes all would shift to transit.

MODIFICATION C: MIDDAY PARKING BANK

DESCRIPTION:

Expand the freeze bank to include a "midday parking bank" starting January 1, 1984. Spaces would be added to this bank as existing private employee facilities are physically eliminated. Spaces from this bank would be allocated for new facilities on the condition that they would not open before 10 a.m. on weekday mornings.

RATIONALE:

Meeting the parking needs of shoppers and visitors to the downtown is an important goal of the City. Observed average occupancies of parking facilities at 10 a.m. are nearing the 90 percent mark, which means that many facilities are full by the time shoppers and other visitors arrive downtown. Future commuter parking demand projections indicate that even if the downtown parking supply were expanded considerably, commuters would continue to occupy most of the spaces and there would still be an availability problem for other kinds of parkers. Therefore, efforts should be made to begin reserving a portion of the downtown parking supply for non-commuter use.

IMPACTS:

The maximum number of parking spaces which could potentially be "deposited" into the short-term parking bank is 13,400, the total number of reserved employee spaces. However, those in lots (8545) are more likely to be eliminated. The actual number of these employee spaces which will be eliminated over the next 5-10 years is difficult to predict. Assuming that past trends will continue, between 150 and 200 employee spaces per year would be eliminated, which means that 300-400 would be eliminated by the end of 1985, and 1050-1400 would be eliminated by the end of 1990. Therefore, this modification could result in up to 1400 reserved short-term parking spaces downtown by 1990.

MODIFICATION D: ADDITIONAL FREEZE CRITERION - MIDDAY PARKING NEEDS

DESCRIPTION: Add to the existing freeze criteria: "The facility will serve non-commuter parking needs in the area."

Serve non-commuter parking needs in the area.

RATIONALE: Because of the projected shortage of visitor/shopper parking in Boston, it is important to ensure that newly constructed facilities will accommodate non-commuter parking needs, in addition to serving all-day parkers. Each new parking facility proposal should be evaluated with respect to existing and projected short-term parking needs in the area, and steps should be taken to ensure that a portion of the facility's capacity will be available for parkers arriving in the middle of the day. Such steps might include: opening a portion of the facility after 10 a.m. or establishing a

pricing structure in which the all-day rate is more than 4-5

times the 1-hour rate.

IMPACTS:

This modification will only impact new facilities which require freeze permits. At present, only 610 spaces are available in the freeze bank. An additional 3000 spaces may be added to the bank from the four city garages which will be sold (Government Center, Kilby St., St. James Ave., and Fort Hill Sq.), as well as potentially 900 spaces which are now in open lots in the North Station development area. All together, 5310 spaces might be available for freeze permits in the next five to ten years (in the existing freeze area). If other recommended modifications are approved, at least 2000 spaces at North and South Stations and 3500 in the Fort Point Channel area would be added as well, for a total of 10,810 spaces. The portion of these new spaces to be reserved for short-term parking would depend on identified needs at particular locations. While demand projections indicate an additional 3700 spaces needed for short-term parkers by 1985, and an additional 7500 needed (over the present) by 1990, it is unlikely that this many spaces would be reserved. Twenty-five percent of the total spaces, or 2700 spaces is a reasonable estimate of the number which might ultimately be reserved as a result of this modification. (This number is net of the number to be reserved as a result of modification C.)

MODIFICIATION E-1: ACCESS PLANS FOR ACCESSORY PARKING APPROVAL

DESCRIPTION:

Make freeze permits for new public parking facilities and granting of exemptions for employee spaces which are ancillary to developments over 100,000 gross square feet contingent on BAPCC review and BRA approval of an access plan for the site, which includes an analysis of expected peak and off-peak travel to the site, and commits to traffic mitigation measures.

RATIONALE:

In order to accommodate planned and proposed future development, it will be important to encourage increased use of vanpools, carpools and transit by commuters to downtown. One of the most effective ways of doing this is through marketing these alternatives and offering incentives and assistance at the work-site. A number of cities, including San Francisco and Seattle, are incorporating "access planning" into their development review and approval processes, which requires developers to analyze and mitigate the traffic impacts of their new developments. This approach makes sense for Boston, given the amount of development the city would like to attract and the limited capacity of the street system to handle additional traffic.

IMPACTS:

This modification, along with E-2, will result in the establishment of transit and ridesharing marketing and incentive programs in new major developments. This in turn, will encourage greater use of transit and provide employees with increased carpooling and vanpooling opportunities. The impacts on traffic and parking demand are difficult to predict, though if 100 additional vanpools were established (there are presently about 100 in use by downtown commuters; as a comparison, Aetna in Hartford has 100 alone), this would reduce future commuter parking demand by 900 spaces.

However, a reasonable yet ambitious parking reduction goal for this strategy, in combination with other ridesharing and transit incentives and driving disincentives discussed in the body of this report is 13,250 spaces. This assumes that 150 commuters who would otherwise drive alone (given present commute conditions) would form vanpools, 150 would form three-person carpools, and 11,000 would ride either the MBTA or newly-formed subscription bus services.

MODIFICATION E-2: ACCESS PLANS FOR MAJOR DEVELOPMENT APPROVAL

DESCRIPTION: Amend Section 6-3A of Boston's Zoning Code to require BAPCC

review and BRA approval of access plans for new developments with over 100,000 gross square feet within the Restricted

Parking District.

RATIONALE: Same as for E-1.

IMPACTS: This would make approval of all large developments (with or

without accessory parking) contingent on an acceptable access

plan. Impacts are discussed under E-1.

MODIFICATION F: ADDITIONAL FREEZE CRITERION - FACILITY DESIGNS FOR VANPOOLS VEHICLES

DESCRIPTION: Add the following criterion for freeze approval: "The

facility is designed to accommodate vanpool vehicles."

RATIONALE: Vanpooling is a commuting option which has considerable

potential for providing future access to the downtown in an efficient manner. Parking facilities should be designed so that clearances and striping of spaces will accommodate

vanpool vehicles.

IMPACTS: The modification will prevent construction of new parking

facilities which do not allow for vanpool access, thus assuring that vanpoolers will have the same parking opportunities as people commuting in smaller vehicles.

MODIFICATION G-1: FORT POINT CHANNEL/SOUTH BOSTON PARKING MANAGEMENT DISTRICT

DESCRIPTION:

Establish a new "parking management district" encompassing the Fort Point Channel area (Zone 12) and South Boston. Freeze the number of total public parking spaces in this area at the existing 3500 spaces (to be increased if roadway capacity improvements presently under consideration are made). Make approval of new facilities in this area subject to existing BAPCC freeze criteria with the following additional one: "The facility will not increase traffic through residential neighborhoods or displace existing residential land uses."

RATIONALE:

Over 1.4 million square feet of development is planned or proposed for the Fort Point Channel area. This development will displace open parking lots which presently park over 5000 cars, and will create the demand for an additional 4500 parking spaces. With the present number of parking spaces, the Northern Avenue bridge is already operating at capacity during peak hours. Thus, unless capacity improvements are made, allowing much more than 5000 parking spaces in this area may worsen an already severe congestion problem.

There is also the concern that the high demand for parking in this area could result in developers acquiring now-residential land for parking facility construction, which would adversely affect the South Boston neighborhood.

IMPACTS:

This modification would limit parking supply in the Fort Point Channel area to a level which is in line with existing traffic capacity constraints. It would also protect residential neighborhoods from traffic and parking pressures.

MODIFICATION G-2: EAST BOSTON PARKING MANAGEMENT DISTRICT

DESCRIPTION: Establish a new "parking management district" encompassing

East Boston. Make approval of new facilities in this area subject to existing BAPCC freeze criteria and the additional one: "The facility will not increase traffic through

residential neighborhoods or displace existing residential

uses."

RATIONALE: The proliferation of surface lots in East Boston has raised

concerns about resultant impacts on the neighborhoods, namely, displacement of residential uses and increased traffic through neighborhoods as a result of new parking

facilities.

IMPACTS: Making approval of new parking facilities subject to the

"neighborhood protection" freeze criterion above, and the others, including the one stating that no commercial off-street parking should be added to an area which is already adequately served by existing parking facilities should discourage further proliferation of lots in the area.

5. Impacts of the Recommended Modification Package

The recommended package of modifications to the parking freeze and city zoning code provides for a controlled expansion of the downtown commercial parking supply, while emphasizing management of the parking supply in order to improve overall utilization and reservation of spaces for midday (non-commuter) parkers. It also incorporates measures to manage future access to the downtown by involving developers and employers in programs which mitigate potential traffic and parking impacts of developments. Finally, it establishes mechanisms to protect neighborhoods now outside of the freeze area from traffic and parking pressures.

The following table summarizes the quantitative impact assessments of the individual measures:

Modification	Increase in Public Parking Supply	Potential No. of Spaces Reserved For Midday Parkers	Potential Reduction in Commuter Park- ing Demand
A-l Increase South Station Supply	500-3000		
A-2 Increase North Station Supply	1500		
B Conversion of Employee Spaces to Public Spaces	650 <u>l</u>		[440-1300]2
C Midday Parking Bank	1050-14001	1050-1400	
D Midday Parking Needs Criteria		2700	
E-l & Access Plans E-2			13,250
TOTALS	3700-6550	2750-4100	13,250

lwould be matched by equivalent decreases in private spaces, and thus would not reduce overall parking deficit.

The numbers shown above are meant to indicate "order of magnitude" impacts of the modifications package, and must be interpreted in close

² Included in estimated demand reduction for E-1 and E-2.

association with the assumptions on which they are based. However, they indicate that a substantial proportion of the <u>overall</u> public supply increase would be offset by spaces reserved for midday parkers. Thus, the modifications would enable the city to accommodate many more midday parkers than it could otherwise, while increasing the public parking supply available for commuters only slightly.

The air quality implications of the proposed modifications—particularly of an increase in the public parking supply must be assessed by comparing two future scenarios, with and without modifications.

The number of peak automobile trips bound for downtown Boston in 1990 will depend on the amount of development which occurs between now and then, the total (public and private) parking supply, and "exogenous" factors, such as street capacity and the level of transit service available. It is unlikely that the proposed modifications will significantly affect the amount of development which occurs; this will be determined by economic conditions and larger-scale transportation access changes, such as transit service and street capacity improvements.

The impact of the modifications on the <u>total</u> parking supply is difficult to predict, as the number of private spaces would still not be limited by the freeze. Assuming that the same ratio of private spaces per 1000 sq. ft. would be built as between 1968 and 1982, with or without the modifications, total supply would be at most eight percent higher than it would be <u>without</u> them. This is conservative, as it is likely that <u>more</u> private spaces would be built without the modification rather than less.

Despite the potential increases in parking supply which may occur with the modifications, the number of <u>commuters</u> parking downtown is likely to be the same as it would be without the modifications. This is due to the fact that without the modifications, commuters would occupy most (if not all) of the downtown parking supply. The modifications ensure that a portion of spaces are reserved for midday parkers.

Thus, peak period automobile travel is not likely to be significantly higher if the modifications are instituted (as compared to a "no action" scenario). All-day vehicle miles of travel <u>are</u> likely to be higher, as more downtown parking spaces would be used by short-term parkers.

In sum, the proposed freeze modifications will not have a <u>major</u> impact on future travel patterns. Rather, they will provide the City with policy tools for accommodating future development in a manner which minimizes negative impacts such as reduction in space available for short-term parkers, spillover parking in neighborhoods and illegal on-street parking, and encourages developers and employers to become more involved in providing opportunities and incentives for more efficient ways of commuting.

Air Quality

AQ APPENDIX B

INTERSECTION ANALYSIS WORKSHEETS

Intersection Atlantic Ave and Surface Artery Case 1 Year 1984

_						
1.	Road segment or intersection approach identification	SN	AN	As	55	
2.	Observed 1-hr volume (vph)	1010	1176	602		
	Observed 8-hr volume (vph)	707	929	476	687	
	Projected 1-hr peak demand (vph)				901	
	Projected 8-hr peak demand (vph)					
3.	Percentage cold starts	50/	20.6			
4.	Percentage trucks and buses	5.	8			
5.	Metropolitan population				_	
6.	Slope					
7.	Free-flow parameters				_	
	Number of lanes	2	2	3	3	
	Average lane width (ft)	12	12	//	12	
	Design speed (mph) 2	8/35	26/32	22/26 2	4/29	
	Highway type (see Figures 2-5)	Ur	Dan A	rterie	5	
8.	Intersection parameters					
	Intersection designation					
	Approach width (ft)				_	SS sight turns
	Percentage right turns	0	40	0	0	ss right turns have no conflicts
	Percentage left turns	11	45	81	0	have no controls
	Type control and description of				_	
	signal controller					
9.	Area source parameters					
	Parking lot gate designation					
	Projected 1-hr peak entrance demand (vph)					
	Projected 1-hr peak exit demand (vph)					
	Projected 8-hr peak entrance demand (vph)					
	Projected 8-hr peak exit demand (vph)					
	Parking lot area (m ²)	_			_	
	Parking lot capacity (veh)	_				
	Running time required to access auxiliary parking (s)					
	Facility emptying time					
	Average cars per stall					
	Average area per stall (m ²)	_				

SN = Surface Artery N.B. (Xweny offramp)

AN = Atlantic Are N.B. to WB

AS = Atlantic Are SB to WB

SS = Surface Artery SB

Intersection Atlantic Avenue and Surface Artery
Case # 2 Year 1990

1.	Road segment or intersection approach identification	SN	AN	As	<u>55</u>	HE
2.	Observed 1-hr volume (vph)					
	Observed 8-hr volume (vph)					- 4
	Projected 1-hr peak demand (vph)	1507	1480	888	1036	204
	Projected 8-hr peak demand (vph)	1055	1169	702	725	137
3.	Percentage cold starts	50	120.6			
4.	Percentage trucks and buses		5.8			
5.	Metropolitan population					
6.	Slope					
7.	Free-flow parameters	_		_		
	Number of lanes	Z	_2.		_3_	2
	Average lane width (ft)	12	12.	<u> </u>	<u> 17</u>	12
	Design speed (mph) 2	8/35	26/32	22/26	24/29	24/30
	Highway type (see Figures 2-5)		<u>Urba</u>	<u> </u>	erials	
8.	Intersection parameters					
	Intersection designation	_				
	Approach width (ft)	0	_0.		0	100
	Percentage right turns	14	60.	100		0
	Percentage left turns	_				
	Type control and description of					
	signal controller					
9.	Area source parameters					
	Parking lot gate designation					
]	Projected 1-hr peak entrance demand (vph)					
	Projected 1-hr peak exit demand (vph)					
	Projected 8-hr peak entrance demand (vph)	_				
	Projected 8-hr peak exit demand (vph)	_				
	Parking lot area (m ²)	_				
	Parking lot capacity (veh)					
	Running time required to access auxiliary parking (s)					
	Facility emptying time	_				
	Average cars per stall	_				
	Average area per stall (m ²)	_				

WORKSHEET 1 - TRAFFIC INFORMATION

Intersection Atlantic Ave And Surface Artery Case 1 3 Year 1990

1.	Road segment or intersection approach identification	SN	AN_	1-	60	1 12
2.	Observed 1-hr volume (vph)		_ 44	_ 45 -	_ 22	HE
	Observed 8-hr volume (vph)					
	Projected 1-hr peak demand (vph)	1512	1528	888	1104	212
	Projected 8-hr peak demand (vph)	1058	1207	702	773	142
3.	Percentage cold starts	50	120.6		_ (F2	17-
4.	Percentage trucks and buses	7	5.8			
5.	Metropolitan population		2.0			
6.	Slope					
7.	Free-flow parameters					
	Number of lanes	2	2	2	,	_
	Average lane width (ft)	17	- = _	- = -	- >	2
	Design speed (mph)	28/35 2	40 /32	222,-	241	241-
	Highway type (see Figures 2-5)	1)-	ban A	126	129	-1/30
8.	Intersection parameters		Day T	TET	<u>al</u>	
	Intersection designation				ł	
	Approach width (ft)				- —	
	Percentage right turns	0				
	Percentage left turns	14	$\frac{58}{58}$	100	- 은	100
	Type control and description of			100_	- 0	0
	signal controller					
9.	Area source parameters				-	
	Parking lot gate designation					
	Projected 1-hr peak entrance demand (vph)				-	
	Projected 1-hr peak exit demand (vph)				-	
	Projected 8-hr peak entrance demand (vph)					
	Projected 8-hr peak exit demand (vph)				-	
	Parking lot area (m ²)				-	
	Parking lot capacity (veh)	_				
	Running time required to access auxiliary parking (s)	_				
	Facility emptying time					
	Average cars per stall	_				
	Average area per stall (m ²)	_				

Intersection Atlantic Ave And Surface Artery

Case # 1 Year 1990

						
Step	Symbol	Imput/Units				
1	i	Road segment (or approach) designation	SN	AN	AS	SS
2		Free flow capacity computation:				
2.1	Mt	Number of lames				
2.2	1	Adjustment for lane width (Table B-1)				
2.3	1	Adjustment for trucks (Table 8-2)				
2.4		Free flow capacity				
3	1	Signalized intersection capacity:				
3.1	j	Green signal phase identification		ED		FB
3.2	Wai	Approach width with parking (ft)	32 32	20 32		32 44
3.3	1	Percent right turners	00	100 0		<u>100 0</u>
3.4		Percent left turners	011	00	81_	00
3.5		Metropolitan area size				
3.6	Cs _{i,j}	Capacity service volume (vph or green)	3500 320	1750 3500	5800	3200 4800
4		Signalized intersection green phase and cycle length:				
4.1	V _{i,j}	Demand Volume for approach and phase				
	V _{1.1} /Cs _{1.1})	Volume to green capacity ratio				
	approx G/Cy	Approximate G/Cy				
4.4	Emax(V _{i,j} Cs _{i,j})	Sum of the maximum V/C ratios for each signal phase				
4.5	Су	Signal cycle time (sec)		-		
4.6	Gj	Green phase length				
4.7	Gj/Cy	Green phase to cycle time ratio				
4.8	C _{i,j}	Capacity for approach i phase j		. — —		
5	-13	Two-way stop, two-way yield or uncontrolled intersection:				
5.1	V _m +V _D	Major street two-way volume		-		
5.2		Cross street capacity				
б	•	Four-way stop intersections:				
6.1	V	Approach volume				
	Spi	Demand split on cross streets		-		
6.3	Cf	Capacity of approach				
7	c,	Approach capacity [Ci, i				
	•	5.2 for a four-way stop or				
		6.3 for a two-way stop				
1						

ΦA S.N. All Movements and A.N Right

ΦB S.N. Left and Straight, SS and

A.N. Right

Traffic is assumed to move on amber. $\Phi = \Phi A + \Phi B = 58s$ $\Phi F = 100 s.$

oc A.S

185.

46s.

125,

OD A.N. All Movements

245.

WORKSHEET B - CAPACITY ANALYSIS Intersection Atlantic Ave and Surface Artery Case / 2,3 Year 1990

Step	Symbol	Input/Units					
1	1	Road segment (or approach) designation	SN	MA	AS	55	HE
2		Free flow capacity computation:					
2.1	M ₁	Number of lanes					
2.2	We	Adjustment for lane width (Table B-1)					
2.3	Ti	Adjustment for trucks (Table B-2)					
2.4	ci	Free flow capacity					
3		Signalized intersection capacity:		_			
3.1	j	Green signal phase identification	AB	ED	<u>_</u>	<u>B</u> _	
3.2	Wai	Approach width with parking (ft)	32 32	20 32	41_	44	
3.3	-	Percent right turners	00	100 0	0_	0	
3.4		Percent left turners	0 14	00	100	0	
3.5		Metropolitan area size					Cross
3.6	Cs _{1,j}	Capacity service volume (vph or green)	<u>3500 3200</u>	1790 3500	3800	4800_	Sheet
4		Signalized intersection green phase and cycle length:					consulty
4.1	V _{i,j}	Demand Volume for approach and phase					
4.2	V _{i.1} /Cs _{i.1})	Volume to green capacity ratio					
	approx G/Cy	Approximate G/Cy					
4.4	<pre>Emax(V_{i,j}Cs_{i,j})</pre>	Sum of the maximum V/C ratios for each signal phase					
4.5	Су	Signal cycle time (sec)					
4.6	Gj	Green phase length					
	Gj/Cy	Green phase to cycle time ratio					A
4.8	C _{i,j}	Capacity for approach i phase j					
5	-73	Two-way stop, two-way yield or uncontrolled intersection:					Case 2
5.1	V _m +V _D	Major street two-way volume				_	3221-2/2255-2
5.2		Cross street capacity					248/364
6		Four-way stop intersections:					
6.1	v _i	Approach volume					case 3
6.2	Spi	Demand split on cross streets				_	
6.3	Ci	Capacity of approach					3303-42312-
7	c _i	Approach capacity $\sum_{i=1}^{n} C_{i,i}$					200
		5.2 for a four-way stop or					240 /357
		6.3 for a two-way stop					240 /357

HE capacity is based on a 4.5 sec critical gap Signal Timing: фA 11 ØB 38 QE = QA+QB= 49 QC 24 OD 27 Total

100

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	DEL - WOR	KSHEET #	2	
INTERSECTI CASE # 1	ON: ATLANTIC AVE AND SURFACE ARTERY YEAR: 1984 AVERAGING TIME: 1-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	22
LINE 2	DEMAND VOLUME (VPH)	1010.	1176.	602	981
LINE 4	CRUISE SPEED (NPH)	28	26	22	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	9.0409	9.9443	0.0519	9.9498
LINE 6.1	NUMBER OF LANES	2	2	3	3
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	35 99 . 32 99	175 0 350 0	3800 6	329 0 489 9
LINE 6 4	DEMAND VOLUME (VPH)	209. 881.	471 795	6 02 . Θ	103 878
LINE 6.5	SIGNAL CYCLE LENGTH (S)	100.			
LINE 6.6	GREEN PHASE LENGTH (\$) GREEN PHASE LENGTH (\$)	12. 46.	58 . 24 .	18. Θ.	100. 46.
LINE 6.7	CAPACITY (VPH)	1892.	1855.	684.	5408
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	9. 936 9.7 2 9	0.575 0.952	9. 974 9.8	0.0 0. 661
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	5.433 16.927	7.519 18.637	16.293 0.0	⊕.⊕ 16.118
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	1.15	1.73	7.34	0.22
LINE 8.0	LENGTH OF QUEUE (M/LANE)	49.17	69.66	34.27	23.69
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	26.12	29.87	78.59	16.12
LINE 10.	EMISSIONS FROM ACCELERATION (B/VEH-M)	0.103	9.109	0 . 120	0.113
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	9.934	0.0 36	0.041	0.039
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (B/M-S)	0.029	9.038	9.926	0.024
LINE 13.	LENGTH OF ACC. AND DEC. (M)	70.1	60.4	43.3	51.5
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	149.2	129.9	86.5	183.0
LINE 15.	IDLING EMISSION RATE (G/S)	1.463	2.047	3.151	0.783
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0251	0.0359	0.0495	0.0199
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0332	0.0484	8.0743	9.9266
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0115	0.0145	9.9987	0.0111

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	DEL - WOR	KSHEET #	2	
INTERSECTI CASE # 1	ON ATLANTIC AVE AND SURFACE ARTERY YEAR 1984 AVERAGING TIME 8-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	SS
LINE 2	DEMAND VOLUME (VPH)	707	929	476	687
LINE 4	CRUISE SPEED (MPH)	35	32	26	29
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0215	0.0238	0 0300	0 0266
LINE 6 1	NUMBER OF LANES	2	2	3	3
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	3500 3200	1750 3500	9 3800	3200 4800
LINE 6 4	DEMAND VOLUME (VPH)	146 561	372 557	476	72 615
LINE 6 5	SIGNAL CYCLE LENGTH (S)	100			
LINE 6 6	GREEN PHASE LENGTH (S) GREEN PHASE LENGTH (S)	12 46	58 24	18 ⊙	100 46
LINE 6 7	CAPACITY (VPH)	1892	1855	684	5408
TINE 6 8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0 918 0 655	0 533 0 904	0 937 0.0	0 0 0 619
LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	3 724 10.204	5 512 13 984	12 395 0 0	0 . 0 10 581
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0 60	1 00	2.29	0 15
LINE 8 0	LENGTH OF QUEUE (M/LANE)	31.59	44 59	21 29	15 55
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	23.51	27.02	50.48	15.07
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 095	0 098	0 109	0 101
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 028	0 030	0 036	0 032
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.017	0 025	0 018	0 014
LINE 13	LENGTH OF ACC. AND DEC. (M)	109 5	91 5	60 4	75 2
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	219 0	183 1	120 9	150 4
LINE 15	IDLING EMISSION RATE (G/S)	0 823	1 352	1 521	0 449
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0.0123	0 0199	0 0216	0 0100
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0109	0 0178	0 0207	0.0085
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0042	0 0061	0.0040	0 0051

BO JOH BETTALTINES

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MO	DOEL - WOR	KSHEET #	2	
INTERSECTION	ON ATLANTIC AVE AND SURFACE ARTERY YEAR 1990 AVERAGING TIME 1-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	SS
LINE 2	DEMAND VOLUME (VPH)	1507	1480	888	1036
LINE 4	CRUISE SPEED (MPH)	28	26	22	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0198	0.0214	0 0251	0.0232
LINE 6 1	NUMBER OF LANES	2	2	3	3
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	3500 3200 .	1750 3500	380 0 0.	480 0 0.
LINE 6 4 LINE 6 4	DEMAND VOLUME (VPH)	350 1157	593 887	888 ©	10 36
LINE 6.5	SIGNAL CYCLE LENGTH (S)	100			
LINE 6 6 LINE 6.6	GREEN PHASE LENGTH (S)	11 38	49 27	24 0	38 ©
LINE 6.7	CAPACITY (VPH)	1601.	1803.	912	1824.
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP	989 971	0.771 0.978	0 992 0.0	0. 791 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	9.614 31.211	12 707 24 092	24 463 9 9	22 753 0 0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	16 03	4.59	37 00	1.31
LINE 8.0	LENGTH OF QUEUE (M/LANE)	123 66	90 02	89 12	34 90
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	69.38	38 44	183 74	27.10
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 . 103	0 109	0 120	0 113
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 034	0 036	0 041	0.039
LINE 12	EMISSION RATE FOR ACC AND DEC (G/M-S)	0 056	0 053	0 039	0 035
LINE 13.	LENGTH OF ACC. AND DEC. (M)	70 . 1	60 4	43.3	51 5
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	140.2	120.9	89 1	103.0
LINE 15.	IDLING EMISSION RATE (G/S)	6 782	3 471	11 236	1 630
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0763	0.0554	0 1452	0.0331
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0484	0 0331	0 1013	0 0192
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0 0083	0 0088	0 0062	0 0067

EDA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MO	DEI - UOD	VOUEET 4		
	ION ATLANTIC AVE AND SURFACE ARTERY	DEL - WUR	KOHEE! #	2	
	YEAR 1990 AVERAGING TIME 8-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	SS
LINE 2	DEMAND VOLUME (VPH)	1055	1169	702	725
LINE M	CRUISE SPEED (MPH)	35	32	26	29
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0111	0 0122	0 0155	0.0137
LINE 6 1	NUMBER OF LANES	2	2	3	3
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	3500 3200	1750 3500	3 8 00	480 0 0
LINE 6 4 LINE 6 4	DEMAND VOLUME (VPH)	245 810	468 701	702 0.	725 0
LINE 6 5	SIGNAL CYCLE LENGTH (S)	100			
LINE 6 6	GREEN PHASE LENGTH (S)	11 38	27	24	38
LINE 6 7	CAPACITY (VPH)	1601	1803	912	1824
LINE 6 8	PROPORTION OF VEHICLES THAT STOP	957 839	0 696 0 913	0 932 0 0	9 73 0 9 0
LINE 6 9 LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	6.513 18 678	9 050 17 775	18 178 © 0	14 708 0 0
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	1 93	1 85	3 34	⊕ 66
LINE 8 0	LENGTH OF QUEUE (M/LANE)	58 99	62 36	31 21	22 28
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	33 99	30 77	48 62	23 94
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 095	0 098	0 109	C 101
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 028	0 030	0.036	0 032
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 031	0 034	0 026	9 92 9
LINE 13	LENGTH OF ACC AND DEC. (M)	109 5	91.5	60 4	75 2
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	219 0	183 1	120 9	150 4
LINE 15.	IDLING EMISSION RATE (G/S)	2 009	2.010	2 151	0 928
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0247	⊕ 0281	0 0310	0 0160
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0103	0 0116	0 0136	0 0064
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0.0033	0 0040	0 0030	0 0028

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2
INTERSECTION: ATLANTIC AVE AND SURFACE ARTERY
CASE # 2 YEAR 1990 AVERAGING TIME: 1-HOUR

LINE 1	ROAD SEGMENT ID	HE
LINE 2	DEMAND VOLUME (VPH)	204
LINE #	CRUISE SPEED (MPH)	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0232
LINE 6.1	NUMBER OF LANES	2
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0
LINE 6 4	DEMAND VOLUME (VPH)	0
LINE 6 5	SIGNAL CYCLE LENGTH (S)	9
LINE 6 6	GREEN PHASE LENGTH (S)	0
LINE 6.7	CAPACITY (VPH)	248
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	0.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	4.64
LINE 8 0	LENGTH OF QUEUE (M/LANE)	10 08
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	67 . 3 0
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.113
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 039
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.009
LINE 13	LENGTH OF ACC. AND DEC. (M)	51.5
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	103.0
LINE 15	IDLING EMISSION RATE (G/S)	0 9 00
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0130
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0083
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0.0013

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION ATLANTIC AVE AND SURFACE ARTERY CASE # 2 YEAR 1990 AVERAGING TIME 8-HOUR ROAD SEGMENT ID LINE 1 HE DEMAND VOLUME (VPH) LINE 2 137 CRUISE SPEED (MPH) LINE 4 30 LINE 5 FREE-FLOW EMISSIONS (G-VEH/M) 0 0132 LINE 6 1 NUMBER OF LANES 2 LINE 6 3 CAPACITY SERVICE VOLUME (VPH OF GREEN) 0 LINE 6 4 DEMAND VOLUME (VPH) LINE 6 5 SIGNAL CYCLE LENGTH (S) 0 LINE 6 6 GREEN PHASE LENGTH (S) 0 LINE 6 7 CAPACITY (VPH) 364 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 0 0 LINE 6 9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0.0 LINE 7 0 AVERAGE NUMBER OF VEHICLES IN QUEUE 0 60 LINE 8.0 LENGTH OF QUEUE (M/LANE) 1.31 LINE 9 0 AVERAGE EXCESS RUNNING TIME (S/VEH) 5 97 LINE 10 EMISSIONS FROM ACCELERATION (G/VEH-M) 0 100 LINE 11 EMISSIONS FROM DECELERATION (G/VEH-M) 0 031 LINE 12 EMISSION RATE FOR ACC AND DEC (G/M-S) 0 005 LINE 13 LENGTH OF ACC AND DEC (M) 80 5 LINE 14 LENGTH FOR EXCESS EMISSIONS (M) 160 9 LINE 15 IDLING EMISSION RATE (G/S) -0 000 AVERAGE EMISSION RATE (G/S-M) LINE 16 0 0025 LINE 17 ADJUSTED EXCESS EMISSION RATE (G/S-M) 0 0008 LINE 18 FREE-FLOW EMISSION RATE (G/S-M) 0.0005

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	DEL - WOR	KSHEET #	2	
INTERSECTI CASE # 3	ON: ATLANTIC AVE AND SURFACE ARTERY YEAR: 1990 AVERAGING TIME: 1-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	SS
LINE 2	DEMAND VOLUME (VPH)	1512	1528	888	1104
LINE 4	CRUISE SPEED (MPH)	28	26	22	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0198	0.0214	0 0251	0 0232
LINE 6 1	NUMBER OF LANES	2	2	3	3
LINE 6.3 LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	35 00 . 32 00	1750 3500	3800	4800 0
LINE 6 4 LINE 6 4	DEMAND VOLUME (VPH)	350 1162.	641 887	888 0.	1104 0.
LINE 6.5	SIGNAL CYCLE LENGTH (S)	100			
LINE 6 6 LINE 6.6	GREEN PHASE LENGTH (S) GREEN PHASE LENGTH (S)	11 38.	49 27	24 ⊙	3 €
LINE 6 7	CAPACITY (VPH)	1601.	1803	912.	1824
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	0.989 0.974	0.805 0.978	0. 992 0.0	0 . 805 0 0
LINE 6 9 LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	9.614 31 423	14 330 24 092	24 . 463 0 . 0	24 693 0 0
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	16 99	5.57	37 99	1 53
LINE 8.0	LENGTH OF QUEUE (M/LANE)	126 . 21	95 67	89 12	38.03
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	71.58	40 44	183.74	27 99
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 . 103	0 109	0.120	0.113
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 034	0 036	0 041	0.039
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 . 0 56	0 056	0.039	0.038
LINE 13	LENGTH OF ACC. AND DEC. (M)	70 1	60 4	43.3	51.5
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	140 2	120.9	89 1	103.0
LINE 15	IDLING EMISSION RATE (G/S)	7 039	3 800	11.236	1 806
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0783	0 0593	0 1452	0 0363
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0498	0 0357	0 1013	0 0211
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0083	0.0091	0 0062	0 0071

EPA VOLUME 9 (R	REVISED) INDIRECT SOURCE GUIDELINE MO	DEL - WORK	KSHEET #2	
INTERSECTION P	PURCHASE STREET & CONGRESS STREET : 1990 AVERAGING TIME: 8-HOUR			
LINE 1 ROAD	SEGMENT ID	PS	CE	
LINE 2 DEMA	AND VOLUME (VPH)	1543	1045.	
LINE 4 CRUI	ISE SPEED (MPH)	30	25	
LINE 5 FREE	E-FLOW EMISSIONS (G-VEH/M)	0.0132	0.0161	
LINE 6.1 NUMB	BER OF LANES	4	18	
LINE 6.3 CAPA	ACITY SERVICE VOLUME (VPH OF GREEN)	5100 7100	579 ⊖ ⊙	
	AND VOLUME (VPH)	329 1214	1 045 .	
LINE 6.5 SIGN	NAL CYCLE LENGTH (S)	90.		
LINE 6.6 GREE	EN PHASE LENGTH (S) EN PHASE LENGTH (S)	16. 39	35 0.	
LINE 6.7 CAPA	ACITY (VPH)	3983	2217	
LINE 6.8 PROP	PORTION OF VEHICLES THAT STOP	0.879 0.684	0.748 0.0	
LINE 6.9 NUMB	BER OF VEHICLES THAT STOP PER CYCLE	7.229 20.745	19.549 0.0	
LINE 7.0 AVER	RAGE NUMBER OF VEHICLES IN QUEUE	0.63	0.89	
LINE 8.0 LENG	OTH OF QUEUE (M/LANE)	31.11	22.23	
LINE 9.0 AVER	RAGE EXCESS RUNNING TIME (S/VEH)	21.22	22.03	
LINE 10 EMIS	SSIONS FROM ACCELERATION (G/VEH-M)	0.100	0.111	
LINE 11 EMIS	SSIONS FROM DECELERATION (G/VEH-M)	0.031	0.038	
LINE 12. EMIS	SSION RATE FOR ACC. AND DEC. (G/M-S)	0.041	0.032	
LINE 13 LENG	BTH OF ACC. AND DEC (M)	80.5	55.9	
LINE 14. LENG	3TH FOR EXCESS EMISSIONS (M)	160 9	111 7	
LINE 16 IDLI	ING EMISSION RATE (G/S)	1.667	1.255	
	RAGE EMISSION RATE (G/S-M)	0 0307	0.0274	
	JSTED EXCESS EMISSION RATE (G/S-M)	0 0121	0.0110	
LINE 18 FREE	E-FLOW EMISSION RATE (G/S-M)	9 9057	0 0047	

Intersection Purchase And Congress Streets

Case 1 Year 1984 Averaging Time 1 Hour

Line No. Symbol Input/Units PS CE 1 SC Stability Class 2 U Wind Speed (m s ⁻¹) 3 0 Wind-Road Angle (deg) 4 x Lateral Distance (m) 5 Yu Maximum Longitudinal Distance (m) 6 Yd Minimum Longitudinal Distance (m) 7 0 Initial Dispersion (m) Traffic Stream CE 1 1 0 1 0 1 0 1 4 7 7 0 Initial Dispersion (m)	
2 U Wind Speed (m s ⁻¹) 3 Θ Wind-Road Angle (deg) 4 x Lateral Distance (m) 5 Yu Maximum Longitudinal Distance (m) 6 Yd Minimum Longitudinal Distance (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
3 0 Wind-Road Angle (deg) 16 -74- 4 x Lateral Distance (m) 11 13 5 Yu Maximum Longitudinal Distance (m) 92 NA* 6 Yd Minimum Longitudinal Distance (m) 20 NA*	
4 x Lateral Distance (m) 11 13 5 Yu Maximum Longitudinal Distance (m) 92 NA * 6 Yd Minimum Longitudinal Distance (m) 20 NA *	
5 Yu Maximum Longitudinal Distance (m) Q2 NA* 6 Yd Minimum Longitudinal Distance (m) Zo NA*	
6 Yd Minimum Longitudinal Distance (m) 20 NA F	
7 d Initial Dispersion (m) 5.0	
70	
8 Qe Excess Emissions Rate (gm ⁻¹ s ⁻¹) .0675 .0568	
9 Qf Free Flow Emissions Rate (gm ⁻¹ s ⁻¹) .0202 .0193	
9a Street Canyon? Yes or No NO	
DISPERSION ANALYSIS	
10 XUQ ⁻¹ Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow A40 NA	
2.01	
11 XU Normalized Concentration (mg m ⁻² s ⁻¹)	
U Enter Line 2 + 1.0 + + +	
12 × CO Concentration (mg m ⁻³) Through 8.9 0.0	
13 XUQ ⁻¹ Normalized Concentration (For Yu) 375 NA	
De Enter Line 8 .0675 .0568	
14 XU Normalized Concentration (mg m ⁻² s ⁻¹)	
U Enter Line 2	
15 X CO Concentration—"Maximum Queue" 25.3 0.0	
16 ×UQ ⁻¹ Normalized Concentration (For Yd) NA	
0/20	
-2 -1	
18 X CO Concentration—"Imaginery Queue" + O.O + +	
19 X CO (mg m ⁻³) Total 34.2 0.0	
20 X CO Concentration (ppm)— Total 29.8 C C	
OPTIONAL z-CORRECTION (Heights Other than 1.8m Above the Ground)	
21 z Height of Receptor (m)	
22 z-Correction Factor	
23 X CO Concentration at Height z (mg m ⁻³)	
24 X CO Concentration at Height z (ppm)	

29.8 PPM

EDA 1/01/1945 0 /05/4	TARRY TIMERRAL COURSE COURSE	UE HODEL HODECHEET HO
	ISED) INDIRECT SOURCE GUIDELI	NE MODEL - WORKSHEET #2
CASE # 3 YEAR 1	ANTIC AVE AND SURFACE ARTERY	
LINE 1 ROAD S	EGMENT ID	HE
LINE 2 DEMAND	VOLUME (VPH)	142
LINE 4 CRUISE	EEGMENT ID VOLUME (VPH) SPEED (MPH)	30
LINE 5 FREE-F	LOW EMISSIONS (G-VEH/M)	0 0132
LINE 6 1 NUMBER	OF LANES	2
LINE 6.3 CAPACI	TY SERVICE VOLUME (VPH OF GRE	EN) 0.
LINE 6.4 DEMAND	OVOLUME (VPH) CYCLE LENGTH (S) PHASE LENGTH (S) TY (VPH)	€.
LINE 6.5 SIGNAL	CYCLE LENGTH (S)	Θ.
LINE 6.6 GREEN	PHASE LENGTH (\$)	Θ.
LINE 6.7 CAPACI	TY (VPH)	357
LINE 6.8 PROPOR	TION OF VEHICLES THAT STOP	0.0
LINE 6.9 NUMBER	OF VEHICLES THAT STOP PER CY	CLE 0.0
LINE 7.0 AVERAG	E NUMBER OF VEHICLES IN QUEUE	0 66
LINE 8.0 LENGTH	OF QUEUE (M/LANE)	1.44
LINE 9.0 AVERAG	E EXCESS RUNNING TIME (S/VEH)	6 66
LINE 10. EMISSI	ONS FROM ACCELERATION (G/VEH-	M) 🗎 . 100
LINE 11. EMISSI	ONS FROM DECELERATION (G/VEH-	M) 0.031
LINE 12. EMISSI	ON RATE FOR ACC. AND DEC. (G/	M-S) 0.005
	OF ACC. AND DEC (M)	80 5
LINE 14. LENGTH	FOR EXCESS EMISSIONS (M)	160 . 9
	EMISSION RATE (G/S)	© 9 07
LINE 16. AVERAG	E EMISSION RATE (G/S-M)	0.0026
	ED EXCESS EMISSION RATE (G/S-	, , , , , , , , , , , , , , , , , , , ,
LINE 18. FREE-F	LOW EMISSION RATE (G/S-M)	0.0005

Intersection Atlantic Ave and Surface Arkey

Case # 1 Year 1984 Averaging Time 1 Hour

Line No. Sy	ymbol	Input/Units	5N	Traffic St	ream AS	SS
1	SC	Stability Class	D			
2	U	Wind Speed (m s ⁻¹)	1.0			
	Θ	Wind-Road Angle (deg)	40	30	85	40
3	_		40	16	51	43
4	×	Lateral Distance (m)	57	63	20	171
5	Yu	Maximum Longitudinal Distance (m)	0	0	0	68
6	Yd	Minimum Longitudinal Distance (m)	5.0			
	σ zo	Initial Dispersion (m)		049%	0.743	. 0266
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0332			
9	Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0115	.0145	.0087	.0111
9a		Street Canyon? Yes or No	<u> </u>			
		DISPERSION ANALYSIS				
10 >	xuq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	170	260	115	165
	Qf	Enter Line 9	x.0115	x . 0145	(10087)	.0111
11	XU	Normalized Concentration (mg m ⁻² s ⁻¹)				
	U	Enter Line 2	: 1.0	÷	÷	÷
12	x	CO Concentration (mg m ⁻³) Through			4 12	10
		Emissions	2.0	3.8	1.0	1.8
13 >	xuq-1	Normalized Concentration (For Yu)	40	230	50	160
	Qe	Enter Line 8	.0332	.0484	. 0743	.0266
14	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)				
	U	Enter Line 2	10			
15	χ	CO Concentration-"Maximum Queue"	1.3		3.7	4.3
16	×uq-1	Normalized Concentration (For Yd)	_0	0		80
	Qe	Enter Line 8	x.0332	x.0484	x . 0743	x <u>, 0260</u>
17	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)				
	U	Enter Line 2	1.0			
18	χ	CO Concentration—"Imaginery Queue"	+	<u>+ 0</u>	+0	2.1
19	χ	CO (mg m ⁻³) Total	3.3	14.9	4.7	4.0
20	x	CO Concentration (ppm) Total	2.9		4.1	3.5
		OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the G	round)	
21	z	Height of Receptor (m)				
22		z-Correction Factor				
23	χ*	CO Concentration at Height z (mg m ⁻³)				
24	χ	CO Concentration at Height z (ppm)				

23.5 pm

Intersection Atlantic Ave and Surface Artery

Case 1 Year 1984 Averaging Time 8 Hour

Line No. Sy	mbol	Input/Units	SN	Traffic S	itream AS	<u> </u>
1	SC	Stability Class	D			
2 1	U	Wind Speed (m s ⁻¹)	1.6			
3	0	Wind-Road Angle (deg)	40	30	85	40
4	x	Lateral Distance (m)	40	16	51	43
5	Yu	Maximum Longitudinal Distance (m)	57	63	20	218
6	Yd	Minimum Longitudinal Distance (m)	0	_ 0	0	68
7 (σ zo	Initial Dispersion (m)	5.0			
	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0109	. 0178	.0207	.0085
9 (Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0042	.0061	.0040	.0051
9a		Street Canyon? Yes or No	No			
		DISPERSION ANALYSIS				
10 XI	uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	170	260	_115	165
(Qf	Enter Line 9	×.0042	x .0061	x. 0040:	x .0051
11	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)				
t,	U	Enter Line 2	: 1.6	÷	+	÷
12	x	CO Concentration (mg m^{-3}) Through Emissions	0.4	1.0	0.3	0.5
13 XL	uq-1	Normalized Concentration (For Yu)	40	230	50	160
0	Qe	Enter Line 8	.0109	.0178	.0207	.0035
14	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)				
Ų	U	Enter Line 2	1.6			
15	x	CO Concentration—"Maximum Queue"	0.3	2.6	0.6	0.9
16 XL	uq ⁻¹	Normalized Concentration (For Yd)	0	0	0	20
	Qe :	Enter Line 8			× ·0207	·M85
	XU	Normalized Concentration (mg m ⁻² s ⁻¹)	× 1010 1	<u> </u>	<u> </u>	
	,	Enter Line 2	1.6			
18	x	CO Concentration—"Imaginery Queue"	, 0	, 0	+ 0	0.4
19 ×	x	CO (mg m ⁻³) Total	0.7	3.6	0.9	1.0
20 ×	x	CO Concentration (ppm) Total	0.6	3.1	0.8	0.9
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the G	round)	
21 1	z	Height of Receptor (m)				
22		z-Correction Factor				
23 X	(*	∞ Concentration at Height z (mg m $^{-3}$)				
24 X	(*	CO Concentration at Height z (ppm)				

5.4 ppm

Intersection Atlantic Ave and Surface Artery

Case # 2 Year 1990 Averaging Time 1 Hour

Line							
	Symbol	Input/Units	SN	Traffic S AN	tream AS	> S	HE
1	SC	Stability Class	D				
2	IJ	Wind Speed (m s ⁻¹)	1.0				
3	Θ	Wind-Road Angle (deg)	40	30	85	40	50
4	×	Lateral Distance (m)	40	16	51	43	33
5	Yu	Maximum Longitudinal Distance (m)	57	63	20	171	190
6	Yd	Minimum Longitudinal Distance (m)	0	0	0	68	87
7	σ ZO	Initial Dispersion (m)	5.0				
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	,0484	.0331	.1013	.0192	. 0083
9	Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	. 0083	.0088	.0062	.0067	. 001
9a		Street Canyon? Yes or No	NO				
		DISPERSION ANALYSIS					
10	×uq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	170	260	115	165	150
	Qf	Enter Line 9	×	x	K	×	
11	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
	U	Enter Line 2	÷ 1.0	÷	÷	÷	
12	χ.	CO Concentration (mg m ⁻³) Through Emissions	1.4	2.2	0.7	1.1	0.2
	xuq-1	Normalized Concentration (For Yu)	40	230	50	160	170
	Qe	Enter Line 8					
14	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)					
	บ	Enter Line 2	1.0				
15	χ	CO Concentration-"Maximum Queue"	1.9	7.6	5.1	3./	1.4
16	×uq ^{−1}	Normalized Concentration (For Yd)	_0		0	80	170
	Qe	Enter Line 8	×	x	·	×	
17	XU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
	U	Enter Line 2	1.0				
18	х	CO Concentration-"Imaginery Queue"	÷	<u>. 0</u>	0_	. 1,5	1.4
19	Х	CO (mg m ⁻³) Total	3.3	9.8	5.8	27	0.2
20	x	CO Concentration (ppm) Total	2.9	8.5	5.0	2.3	0.2
		OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the G	round)		118.9
21	z	Height of Receptor (m)					I
22		z-Correction Factor					
23	X T	CO Concentration at Height z (mg m ⁻³)					
24	χ	CO Concentration at Height z (ppm)					

Intersection Atlantic Ave and Surface Arkry

Case # 2 Year 1990 Averaging Time 8 Hour

ine No. Symbol	Input/Units	517	Traffic S	tream AS	55	HE
1 SC	Stability Class	D	Mid	7.5		177
2 U	Wind Speed (m s ⁻¹)	1.6				
3 0	Wind-Road Angle (deg)	40	30	85	40	50
4 ×	Lateral Distance (m)	40	16	51	43	33
5 Yu	Maximum Longitudinal Distance (m)	57	63	20	218	247
6 Yd	Minimum Longitudinal Distance (m)	0	0	0	68	87
7 °zo	Initial Dispersion (m)	5.0				
zo B Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0103	.0116	.0136	. 0064	. 0008
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.00 33	-0040	.0030	.0028	. 2005
9a	Street Canyon? Yes or No	No			-0020	. 200
, d	Street Carryon. Tes of 10	140				
	DISPERSION ANALYSIS					
o xuq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	170	260	115	165	150
Qf	Enter Line 9	x	x	x	х	
1 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
U	Enter Line 2	: 1.6	+	÷	÷	
2 X	CO Concentration (mg m ⁻³) Through Emissions	0.4	0.7	0. 2	0.3	0.0
3 XUQ ⁻¹	Normalized Concentration (For Yu)	40	230	50	160	170
Qe	Enter Line 8					
4 XU	Normalized Concentration (mg m ⁻² s ⁻¹)					
U	Enter Line 2	1.6	. ~-			
.5 X	CO Concentration—"Maximum Queue"	_0,3	1//	0.4	0.6	0.1
6 XUQ ⁻¹	Normalized Concentration (For Yd)	0	0	0	80	170
Qe	Enter Line 8	×		×	x	
7 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	· ·	· ———			
, vo	Enter Line 2	1.6				
8 X	CO Concentration—"Imaginery Queue"	. 0	. 0	. 0	: 0,3	0.1
	Solding and Things I was to	'		1	10/	
9 X	CO (mg m ⁻³) Total	0.7	2.4	0.6	0.6	0.0
) X	CO Concentration (ppm) Total	0.6	2.1	0.5	0,5	0.0
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the G	round)		3 11
1 z	Height of Receptor (m)					3.7
2	z-Correction Factor					
3 X	CO Concentration at Height z (mg m ⁻³)					
4 X	CO Concentration at Height z (ppm)					

Intersection Atlantic Ave and Surface Artery

Case # 3 Year 1990 Averaging Time 1 Hour

]
ine lo. Symbol	Input/Units	SN	Traffic St	tream AS	55	HE
1 SC	Stability Class	D				
2 U	Wind Speed (m s ⁻¹)	1.0			4.0	
3 ⊖	Wind-Road Angle (deg)	40	36	85	40	50
4 ×	Lateral Distance (m)	-49	16	51	43	190
5 Yu	Maximum Longitudinal Distance (m)	57	63	20	171	87
6 Yd	Minimum Longitudinal Distance (m)	=0			90	0'
7 σ ₂₀	Initial Dispersion (m)	5.0			02.1	.0136
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0498	.0357	1013	. 0211	. 0014
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0083	.0091	.0062	1700.	. 0014
9a	Street Canyon? Yes or No	NO				
	DISPERSION ANALYSIS					
10 XUQ ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹)	170	260	115	165	150
Qf	Enter Line 9	×	x		x	
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)					
U .0	Enter Line 2	: 1.0	÷	+	÷	
12 X	CO Concentration (mg m ⁻³) Through			`		
12	Emissions	1.4	2.4	0.7	1.2	0,2
13 ×uq ⁻¹	Normalized Concentration (For Yu)	40	230	50	160	170
Qe	Enter Line 8					
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)					
U	Enter Line 2	1.0				
15 X	CO Concentration-"Maximum Queue"	2.0	8,2	5.1	3.3	2.3
16 ×UQ ⁻¹	Normalized Concentration (For Yd)	_0_	0	_ 0_	08	170
Qe	Enter Line 8	×	x	x	XX	
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)					
Ŭ	Enter Line 2	1.0				
18 X	CO Concentration-"Imaginery Queue"	+0	<u>; 0</u>	, 0	. 1.7	2.3
19 X	CO (mg m ⁻³) Total	3.4	10.6	5.8	2.8	0.2
20 X	CO Concentration (ppm) Total	3.0	9.2	5.0	2.4	0.2
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the G	round)		119.8
21 z	Height of Receptor (m)					1. 1.0
22	z-Correction Factor					
23 X ~	CO Concentration at Height z (mg m ⁻³)					
24 X	CO Concentration at Height z (ppm)					

Intersection Atlantic Ave and Surface Artery

Case # 3 Year 1990 Averaging Time 8 Hour

ine Wo. Symbol	Input/Units	52	Traffic S	tream AS	55	HE
1 SC	Stability Class	D	- 72	תא		1
2 U	Wind Speed (m s ⁻¹)	1.6				
3 0	Wind-Road Angle (deg)	40	30	85	40	50
4 x	Lateral Distance (m)	40	16	51	43	33
5 Yu	Maximum Longitudinal Distance (m)	57	63	20	218	247
6 Yd	Minimum Longitudinal Distance (m)	6	0	0	65	87
7 °z0	Initial Dispersion (m)	5.0				
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)		.0121	.0136	.0070	.0009
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0033	. 0041	.0030	.0029	.0005
9a	Street Canyon? Yes or No	NO				
	DISPERSION ANALYSIS					
.o xuq ⁻¹	Normalized Concentration (10^{-3}m^{-1}) Free Flow	170	260	115	165	150
Qf	Enter Line 9	×	x	<u></u>	x	
.1 XU	Normalized Concentration (mg m ⁻² s ⁻¹)					
U	Enter Line 2	: 1.6	÷	÷	÷	
.2 X	CO Concentration (mg m ⁻³) Through	0.4	0.0	m 2	0 2	
	Emissions	_0.4	_0.7_	0.2	0.3	0.0
3 XUQ ⁻¹	Normalized Concentration (For Yu)	40	230	50	160	170
Qe	Enter Line 8					
4 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
U	Enter Line 2	1.6				
5 X	CO Concentration-"Maximum Queue"	0.3	1.7	0.4	0.7	0.1
6 XUQ ⁻¹	Normalized Concentration (For Yd)	_0_	0	_0	80	170
Qe	Enter Line 8	x	x	·	х	
7 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
U	Enter Line 2	1.6				
8 X	CO Concentration—"Imaginery Queue"	+0	÷		0.3	0.1
9 X	CO (mg m ⁻³) Total	0.7	2.4	0.6	0.7	0.0
x o	○ Concentration (ppm)—— Total	0.6	2.1	0.5	0.6	0.0
	OPTIONAL z-CORRECTION (Heights Oth	er than 1.8m	Above the Gi	round)		3.8ppm
21 z	Height of Receptor (m)					
2	z-Correction Factor					
3 X	CO Concentration at Height z (mg m ⁻³)					
4 X	CO Concentration at Height z (ppm)					

Intersection Purchase And Congress Streets
Case # 1 Year 1984

1.	Road segment or intersection approach identification	PS LE
2.	Observed 1-hr volume (vph)	1293 1232
	Observed 8-hr volume (vph)	905 _ 838
	Projected 1-hr peak demand (vph)	
	Projected 8-hr peak demand (vph)	
3.	Percentage cold starts (IH-/8Hr)	50.0/20.6
4.	Percentage trucks and buses	3.0
5.	Metropolitan population	
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	44
	Average lane width (ft)	1513
	Design speed (mph) (IHr/8Hr)	20/30 20/25
	Highway type (see Figures 2-5)	_ Urban Artery _
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	6052
	Percentage right turns	0 12
	Percentage left turns	51
	Type control and description of	Signalized
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m ²)	_
	Parking lot capacity (veh)	
	Running time required to access auxiliary parking (s)	_
	Facility emptying time	
	Average cars per stall	
	Average area per stall (m2)	

PS = Purchase Street S.B CE = Congress Street E.B.

Intersection Purchase And Congress Streets Case # 2 Year 1990

Road segment or intersection approach identification	PS CE
Observed 1-hr volume (vph)	
Observed 8-hr volume (vph)	
Projected 1-hr peak demand (vph)	2071 14-59
Projected 8-hr peak demand (vph)	1450 992
Percentage cold starts (IHr/8 Hr)	50.0/20.6
Percentage trucks and buses	3.0
Metropolitan population	
Slope	
Free-flow parameters	
Number of lanes	4 4
Average lane width (ft)	15
Design speed (mph)(1Hr/8Hr)	20/30 20/25
Highway type (see Figures 2-5)	Us box Astron
Intersection parameters	
Intersection designation	
Approach width (ft)	40 52
Percentage right turns	0 22
Percentage left turns	41
Type control and description of	Sugnalized
signal controller	- U
Area source parameters	
Parking lot gate designation	
Projected 1-hr peak entrance demand (vph)	
Projected 1-hr peak exit demand (vph)	
Projected 8-hr peak entrance demand (vph)	
Projected 8-hr peak exit demand (vph)	
Parking lot area (m ²)	
Parking lot capacity (veh)	_
Running time required to access auxiliary parking (s)	_
Facility emptying time	
Average cars per stall	
Average area per stall (m ²)	
	Observed 1-hr volume (vph) Observed 8-hr volume (vph) Projected 1-hr peak demand (vph) Projected 8-hr peak demand (vph) Percentage cold starts (IH/8Hr) Percentage trucks and buses Metropolitan population Slope Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph)(IH/8Hr) Highway type (see Figures 2-5) Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage right turns Type control and description of signal controller Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall

Intersection Purchase And Congress Streets Case # 3 Year 1990

1. Road segment or intersection approach identification 2. Observed 1-hr volume (vph) Observed 8-hr volume (vph) Projected 1-hr peak demand (vph) Projected 8-hr peak demand (vph) Projected 1-hr peak demand (vph) Projected 1-hr peak demand (vph) Projected 8-hr peak exit demand (vph)			
Observed 8-hr volume (vph) Projected 1-hr peak demand (vph) Projected 8-hr peak demand (vph) Projected 8-hr peak demand (vph) 3. Percentage cold starts (111-101-10) 4. Percentage trucks and buses 5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	1.		B_CE
Projected 1-hr peak demand (vph) Projected 8-hr peak demand (vph) 3. Percentage cold starts (1h-/2hr) 4. Percentage trucks and buses 5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	2.	Observed 1-hr volume (vph)	
Projected 8-hr peak demand (vph) 3. Percentage cold starts (1h-(8hr)) 4. Percentage trucks and buses 5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Observed 8-hr volume (vph)	
3. Percentage cold starts (IN-/OHr) 4. Percentage trucks and buses 5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		110Jected 1-11 pour domain (1511)	
4. Percentage trucks and buses 5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		1 tollegged a 11 bear assume 1 bear	5431045
5. Metropolitan population 6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	3.	Percentage cold starts (1Hr/8Hr)	50.0/20.6
6. Slope 7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage right turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	4.	Percentage trucks and buses	3.0
7. Free-flow parameters Number of lanes Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	5.	Metropolitan population	
Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	6.	Slope	
Average lane width (ft) Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	7.	Free-flow parameters	
Design speed (mph) Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Number of lanes	44
Highway type (see Figures 2-5) 8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Average lane width (ft)	1513
8. Intersection parameters Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Design speed (mph)	20/30 20/25
Intersection designation Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Highway type (see Figures 2-5)	_Urban Artery_
Approach width (ft) Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	8.	Intersection parameters	•
Percentage right turns Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Intersection designation	
Percentage left turns Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Approach width (ft)	6052
Type control and description of signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Percentage right turns	0 21
signal controller 9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Percentage left turns	400
9. Area source parameters Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Type control and description of	
Parking lot gate designation Projected 1-hr peak entrance demand (vph) Projected 1-hr peak exit demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		signal controller	
Projected 1-hr peak entrance demand (vph) Projected 1-hr peak exit demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall	9.	Area source parameters	
Projected 1-hr peak exit demand (vph) Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Parking lot gate designation	
Projected 8-hr peak entrance demand (vph) Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Projected 1-hr peak entrance demand (vph)	
Projected 8-hr peak exit demand (vph) Parking lot area (m²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Projected 1-hr peak exit demand (vph)	
Parking lot area (m ²) Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Projected 8-hr peak entrance demand (vph)	
Parking lot capacity (veh) Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall			
Running time required to access auxiliary parking (s) Facility emptying time Average cars per stall		Parking lot area (m²)	_
auxiliary parking (s) Facility emptying time Average cars per stall		Parking lot capacity (veh)	_
Average cars per stall			
		Facility emptying time	
Average area per stall (m ²)		Average cars per stall	_
		Average area per stall (m ²)	

Intersection Purchase And Congress Streets

Step	Symbol	Input/Units		
1	1	Road segment (or approach) designation	PS	CE
2		Free flow capacity computation:		
2.1	H	Number of lanes		
2.2	-	Adjustment for lane width (Table 8-1)		
2.3	T _f	Adjustment for trucks (Table B-2)		
2.4	C ₁	Free flow capacity		
3		Signalized intersection capacity:		
3.1	j	Green signal phase identification	ΦA/ΦB	<u> φc </u>
3.2	Wai	Approach width with parking (ft)	45/68	52
3.3		Percent right turners	0	12
3.4		Percent left turners	٥	
3.5		Metropolitan area size	2 5 M	
3.6	Cs _{i,j}	Capacity service volume (vph or green)	5100/7800	<u> </u>
4		Signalized intersection green phase and cycle length:	,	
4.1	V _{i,j}	Demand Volume for approach and phase		
4.2	V _{i,j} /Cs _{i,j})	Volume to green capacity ratio		
4.3		Approximate G/Cy		
4.4	<pre>Emax(Vi, jCsi, j)</pre>	Sum of the maximum V/C ratios for each signal phase		
4.5	Су	Signal cycle time (sec)		
4.6	Gj	Green phase length		
4.7	Gj/Cy	Green phase to cycle time ratio		
4.8	c _{i,j}	Capacity for approach i phase j		
5	-,5	Two-way stop, two-way yield or uncontrolled intersection:		
5.1	V _m +V _O	Major street two-way volume		
5.2		Cross street capacity		
6	_	Four-way stop intersections:		
6.1	V _i	Approach volume		
6.2	-	Demand split on cross streets		
6.3	Ci	Capacity of approach		
7	c _i	Approach capacity $\sum_{i}^{\Sigma} C_{i,j}$		
	_	5.2 for a four-way stop or		
		6.3 for a two-way stop		

^{* 8}hr capacity assumes parking 50% of the time along one side of Aurchase Street (observed - not legal). Capacity lewers to 7800.

WORKSHEET B - CAPACITY ANALYSIS

Intersection Purchase And Congress Streets

Case # 2 Year 1990

	2	Input/Units	
Step	Symbol	Tipdo ditts	
1	i	Road segment (or approach) designation	PS CE
2		Free flow capacity computation:	
2.1	Mg	Number of lames	
2.2	We	Adjustment for lane width (Table B-1)	
2.3	т,	Adjustment for trucks (Table B-2)	
2.4	-	Free flow capacity	
3	1	Signalized intersection capacity:	4.17
3.1	j	Green signal phase identification	\$A \$B &C
3.2	Wai	Approach width with parking (ft)	45/68 52
3.3	*	Percent right turners	022
3.4		Percent left turners	00
3.5		Metropolitan area size	2.5M
3.6	Cs _{i,j}	Capacity service volume (vph or green)	5100/780 5700
4	2,0	Signalized intersection green phase and cycle length:	
4.1	v _{i,j}	Demand Volume for approach and phase	
4.2	V _{i.j} /Cs _{i.j})	Volume to green capacity ratio	
	approx G/Cy	Approximate G/Cy	
4.4	Emax(V ₁ , jCs ₁ , j)	Sum of the maximum V/C ratios for each signal phase	
4.5	Су	Signal cycle time (sec)	
4.6	Gj	Green phase length	
4.7	Gj/Cy	Green phase to cycle time ratio	
4.8	C _{i,j}	Capacity for approach i phase j	
5	÷,,,	Two-way stop, two-way yield or uncontrolled intersection:	
5.1	V _m +V _∩	Major street two-way volume	
5.2		Cross street capacity	
6	*	Four-way stop intersections:	
6.1	V,	Approach volume	
	Spi	Demand split on cross streets	
6.3	c _i	Capacity of approach	
7	ci	Approach capacity $\sum_{j}^{c} C_{i,j}$ 5.2 for a four-way stop or	
		6.3 for a two-way stop	

Intersection Purchase And Congress Streets

Case # 3 Year 1990

Step	Symbol	Input/Units		
1	i	Road segment (or approach) designation	Ps	CE
2		Free flow capacity computation:		
2.1	Mq	Number of lanes		
2.2	-	Adjustment for lane width (Table 8-1)		
2.3	T ₄	Adjustment for trucks (Table B-2)		
2.4	C,	Free flow capacity		
3	-	Signalized intersection capacity:	/ 1.	
3.1	j	Green signal phase identification	ØA/ØB	φc
3.2	Wai	Approach width with parking (ft)	45/68	52
3.3		Percent right turners	<u> </u>	21
3.4		Percent left turners		
3.5		Metropolitan area size	2.5M	
3.6	Cs _{1,j}	Capacity service volume (vph or green)	5100/7500°	5700
4	-,0	Signalized intersection green phase and cycle length:	·	
4.1	v _{i,j}	Demand Volume for approach and phase		
4.2	V _{1.1} /Cs _{1.1})	Volume to green capacity ratio		
4.3	approx G/Cy	Approximate G/Cy		
4.4	<pre>Emax(V₁, jCs₁, j)</pre>	Sum of the maximum V/C ratios for each signal phase		
4.5	Су	Signal cycle time (sec)		
4.6	Gj	Green phase length		
4.7	Gj/Cy	Green phase to cycle time ratio		
4.8	$c_{i,j}$	Capacity for approach i phase j		
5	, ,	Two-way stop, two-way yield or uncontrolled intersection:		
5.1	V _m +V _n	Major street two-way volume		
5.2		Cross street capacity		
6		Four-way stop intersections:		
6.1	v _i	Approach volume		
6.2	Spi	Demand split on cross streets		
6.3	ci	Capacity of approach		
7	ci	Approach capacity $\sum_{i}^{\Sigma} C_{i,j}$		
		5.2 for a four-way stop or		
		6.3 for a two-way stop		

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	DEL - WOR	KSHEET #2
INTERSECTI CASE # 1	ON: PURCHASE STREET & CONGRESS STREET YEAR: 1984 AVERAGING TIME: 1-HOUR		
LINE 1	ROAD SEGMENT ID	PS	CE
LINE 2	DEMAND VOLUME (VPH)	1293.	1232.
LINE 4	CRUISE SPEED (MPH)	20	20
LINE E	FREE-FLOW EMISSIONS (G-VEH/M)	0.0563	0.0563
LINE 6.1	NUMBER OF LANES	4	4
LINE 6.3 LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	5100 7800	570 0 . 0 .
LINE 6.4 LINE 6.4	DEMAND VOLUME (VPH)	470 . 823 .	1232 9
LINE 6.5	SIGNAL CYCLE LENGTH (S)	90.	
LINE 6.6	GREEN PHASE LENGTH (S)	16. 36.	38. Θ.
LINE 6.7	CAPACITY (VPH)	4927.	2407.
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 996 0. 671	0.737 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	10. 642 13.891	22.702 9.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.47	1.05
LINE 8.0	LENGTH OF QUEUE (M/LANE)	27.10	26 . 83
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	24 . 13	20.73
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	9.1 3 9	6 .130
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0.046	0.946
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.048	0.044
LINE 13.	LENGTH OF ACC. AND DEC. (M)	35 . 8	35 8
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	71.5	71.5
LINE 15	IDLING EMISSION RATE (G/S)	1 837	1.455
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0496	0.0425
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0675	0.0568
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0 0202	0.0193

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	EL - WOR	KSHEET #2
INTERSECTI CASE # 1	ON: PURCHASE STREET & CONGRESS STREET YEAR: 1984 AVERAGING TIME: 8-HOUR		
LINE 1	ROAD SEGMENT ID	PS	CE
LINE 2	DEMAND VOLUME (VPH)	905	838.
LINE #	CRUISE SPEED (MPH)	30	25
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0 256	0.0312
LINE 6.1	NUMBER OF LANES	4	4
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	5100 7100	570 0
LINE 6.4 LINE 6 4	DEMAND VOLUME (VPH) DEMAND VOLUME (VPH)	329. 576	838
LINE 6.5	SIGNAL CYCLE LENGTH (S)	90.	
LINE 6.6	GREEN PHASE LENGTH (S)	16 36	38 ⊖.
LINE 6.7	CAPACITY (VPH)	3747.	2407.
LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 879 0. 653	9. 677 9.9
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	7.229 9.403	14.191 0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.32	9.53
LINE 8.8	LENGTH OF QUEUE (M/LANE)	18.43	16 01
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	23.35	18.41
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 100	Θ.111
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 031	9.038
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 024	0.023
LINE 13	LENGTH OF ACC AND DEC (M)	80.5	55 9
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	160.9	111.7
LINE 15.	IDLING EMISSION RATE (G/S)	1 . 108	0.793
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0190	0.0188
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0167	0.0164
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0064	0.0073

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE NO	DEL - WOR	KSHEET #2
INTERSECTI CASE # 2	ON: PURCHASE STREET & CONGRESS STREET YEAR: 1990 AVERAGING TIME: 1-HOUR		
LINE 1	ROAD SEGMENT ID	PS	CE
LINE 2	DEMAND VOLUME (VPH)	2071.	1459.
LINE 4	CRUISE SPEED (MPH)	20	20
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0271	0.0271
LINE 6.1	NUMBER OF LANES	4	A
LINE 6.3 LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	5100 7800	570 0 . 0 .
LINE 6.4 LINE 6.4	DEMAND VOLUME (VPH)	47 0 1 6 01.	1 459 . 0.
LINE 6.5	SIGNAL CYCLE LENGTH (S)	90.	
LINE 6.6 LINE 6.6	GREEN PHASE LENGTH (S) GREEN PHASE LENGTH (S)	16 39	35. 0.
LINE 6.7	CAPACITY (VPH)	4287	2217.
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 996 0.713	0.821 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	10.642 28 539	29.959 0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.93	1.93
LINE 8.0	LENGTH OF QUEUE (M/LANE)	43.63	34.67
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	22.45	25.71
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 130	0 . 1 3 0
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0.046	0.946
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (B/M-S)	0.0 77	0.059
LINE 13.	LENGTH OF ACC AND DEC (M)	35 . 8	35.8
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	71.5	71.5
LINE 15.	IDLING EMISSION RATE (G/S)	2.695	2.235
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0760	0 0605
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0444	0.0358
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0.0156	0.0110

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	EL - WOR	KSHEET #2
INTERSECTI CASE # 2	ON PURCHASE STREET & CONGRESS STREET YEAR 1990 AVERAGING TIME 8-HOUR		
LINE 1	ROAD SEGMENT ID	PS	CE
LINE 2	DEMAND VOLUME (VPH)	1450	992.
LINE 4	CRUISE SPEED (MPH)	30	25
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0132	0.0161
LINE 6 1	NUMBER OF LANES	a	4
LINE 6.3 LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	5100 7100	570 0
LINE 6.4 LINE 6.4	DEMAND VOLUME (VPH)	329 1121	992 .
LINE 6.5	SIGNAL CYCLE LENGTH (S)	90	
LINE 6.6 LINE 6.6	GREEN PHASE LENGTH (S) GREEN PHASE LENGTH (S)	16. 39	3 5 Θ
LINE 6.7	CAPACITY (VPH)	3983.	2217
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 879 0. 673	0.740 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE	7.229 18.858	18.349 0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	⊕ 57	0.81
LINE 8.0	LENGTH OF QUEUE (M/LANE)	28.99	20.84
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	21.16	21.66
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.100	0.111
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0.031	0.038
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.0 38	0 030
LINE 13	LENGTH OF ACC. AND DEC. (M)	80 5	55 9
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	160 9	111.7
LINE 15.	IDLING EMISSION RATE (G/S)	1.551	1 166
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0286	0.0 256
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0113	0.0103
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0053	0.0044

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MO	DEL - WOR	KSHEET #2
INTERSECTI CASE # 3	ON: PURCHASE STREET & CONGRESS STREET YEAR: 1990 AVERAGING TIME: 1-HOUR		
LINE 1	ROAD SEGMENT ID	PS	DE
LINE 2	DEMAND VOLUME (VPH)	2294 .	1537.
LINE 4	CRUISE SPEED (MPH)	20	20
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.9271	0.0271
LINE 6.1	NUMBER OF LANES	4	A
LINE 6.3 LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	5 100 . 7800	57 00 0.
LINE 6.4 LINE 6.4	DEMAND VOLUME (VPH)	470 1734	1 537 .
LINE 6.5	SIGNAL CYCLE LENGTH (S)	9 0 .	
LINE 6.6 LINE 6.6	GREEN PHASE LENGTH (S)	16 39	35 . 0 .
LINE 6.7	CAPACITY (VPH)	4287.	2217.
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 906 0. 729	0. 837 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	10.642 31.587	32 152 0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	1.06	2.26
LINE 8.0	LENGTH OF QUEUE (M/LANE)	47.07	37.42
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	22.65	26.68
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	Θ. 13 0	0.130
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0.046	0.946
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.083	0.063
LINE 13.	LENGTH OF ACC. AND DEC (M)	, 35.8	35 . 8
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	71 5	71.5
LINE 15	IDLING EMISSION RATE (G/S)	2.901	2.460
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0818	0.0658
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0479	0.0390
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0.0 166	0.0116

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MO	DEL - WOR	KSHEET #	2	
INTERSECTI CASE # 3	ON ATLANTIC AVE AND SURFACE ARTERY YEAR 1990 AVERAGING TIME 8-HOUR				
LINE 1	ROAD SEGMENT ID	SN	AN	AS	SS
LINE 2	DEMAND VOLUME (VPH)	1058	1207.	702	773
LINE 4	CRUISE SPEED (MPH)	35	32	26	29
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0111	0.0122	0 0155	0 0137
LINE 6.1	NUMBER OF LANES	2	2	3	3
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	3500 3200.	1750 3500	3800	480 0 0
LINE 6 4	DEMAND VOLUME (VPH)	245 813	506 701	702 0	773 0
LINE 6.5	SIGNAL CYCLE LENGTH (S)	100			
LINE 6 6 LINE 6.6	GREEN PHASE LENGTH (S)	11 38.	49 27	24 ⊙	38
LINE 6.7	CAPACITY (VPH)	1601.	1803	912	1824
LINE 6.8 LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0 957 0.831	0 717 0.913	9 32 ⊙ ⊖	0 739 0.0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	6 513 18 771	10 084 17 775	18 178 ⊙ ⊙	15 . 868 0 0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	1 95	2 03	3 34	⊕ 74
LINE 8.0	LENGTH OF QUEUE (M/LANE)	59 23	65 00	31 21	24 08
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	34.04	31.07	48 62	24.36
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 095	0 098	0 109	0 101
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0.028	0 030	0.036	0 032
LINE 12.	EMISSION RATE FOR ACC AND DEC (G/M-S)	0 031	0 036	0 026	0 021
LINE 13.	LENGTH OF ACC AND DEC. (M)	109.5	91.5	60.4	75 2
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	219.0	183 1	120 9	150 4
LINE 15.	IDLING EMISSION RATE (G/S)	2 019	2 101	2 151	1 012
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0 0248	0 0293	0 0310	0.0173
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0103	0 0121	0.0136	0 0070
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0 0033	0 0041	0 0030	0 0029

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION: ATLANTIC AVE AND SURFACE ARTERY CASE # 3 YEAR: 1990 AVERAGING TIME: 1-HOUR

LINE 1	ROAD SEGMENT ID	HE
LINE 2	DEMAND VOLUME (VPH)	212
LINE 4	CRUISE SPEED (MPH)	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0232
LINE 6 1	NUMBER OF LANES	2
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0
LINE 6 4	DEMAND VOLUME (VPH)	0
LINE 6.5	SIGNAL CYCLE LENGTH (\$)	Θ
LINE 6.6	GREEN PHASE LENGTH (\$)	Θ
LINE 6.7	CAPACITY (VPH)	240 .
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	0.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	€.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	7.57
LINE 8.0	LENGTH OF QUEUE (M/LANE)	16 47
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	113.57
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.113
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0.039
LINE 12.	EMISSION RATE FOR ACC AND DEC. (G/M-S)	0.00 9
LINE 13.	LENGTH OF ACC. AND DEC. (M)	51.5
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	103 0
LINE 15.	IDLING EMISSION RATE (G/S)	1.627
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0203
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0136
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0.0014

Intersection Purchase And Congress Streets

Case 1 Year 1984 Averaging Time 8 Hour

Line No.	e Symbol	Input/Units	Traffic Stream PS CE	
1	SC	Stability Class	D	
2	U	Wind Speed (m s ⁻¹)	1.6	
3	Θ	Wind-Road Angle (deg)	10 -80	
4	×	Lateral Distance (m)		
5	Yu	Maximum Longitudinal Distance (m)	181 NA	
6	Yd	Minimum Longitudinal Distance (m)	20 NA	
7	o zo	Initial Dispersion (m)	5.0	
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0167 .0164	
9	Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0064 .0073	
9a		Street Canyon? Yes or No	No	
				_
		DISPERSION ANALYSIS		-
10	×uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	625 NA	_
	Qf	Enter Line 9	×.0064 × .0073 × ×	
11	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
1	U	Enter Line 2	; 1.6 ; ; ;	_
12	χ	CO Concentration (mg m ⁻³) Through		
		Emissions	2.5 0.0	_
B	×uq-1	Normalized Concentration (For Yu)	500 NA	
	Qe	Enter Line 8	.0167 .0164	
14	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	U	Enter Line 2	1.6	
15	χ	CO Concentration-"Maximum Queue"	5.2 0.0	
16	XUQ ^{−1}	Normalized Concentration (For Yd)	O NA	
	Qe	Enter Line 8	x.0167 x .0164x x	
17	XU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	U	Enter Line 2	1.6	
18	χ	CO Concentration-"Imaginery Queue"	+ 0.0 + 0.0 +	
19	χ	CO (mg m ⁻³) Total	7.7 0.0	
20	χ	CO Concentration (ppm) Total	6.7 0.0	
		OPTIONAL z-CORRECTION (Heights Othe	er than 1.8m Above the Ground)	
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	X "	CO Concentration at Height z (mg m ⁻³)		
24	x *	CO Concentration at Height z (ppm)		•

Intersection Purchase And Congress Streets

Case # Z Year 1990 Averaging Time 1 Hour

Line No. Symbol	Input/Units	PS CE Traffic Stream
1 SC	Stability Class	D
2 U	Wind Speed (m s ⁻¹)	1.0
3 θ	Wind-Road Angle (deg)	16 -74
4 ×	Lateral Distance (m)	11 13
5 Yu	Maximum Longitudinal Distance (m)	92 NA
6 Yd	Minimum Longitudinal Distance (m)	20 NA
	Initial Dispersion (m)	5.0
7 σ 20 8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0444 .0358
9 Of	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0156 .0110.
9 WIF	Street Canyon? Yes or No	No
7 a	Street Canyons Tes of No	
	DISPERSION ANALYSIS	
10 ×uq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹)	440 NA
	Free Flow	
Q۴	Enter Line 9	x.0156 x .0110 x x
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
υ	Enter Line 2	÷ 1.0 ÷ ÷ ÷
12 X	CO Concentration (mg m ⁻³) Through Emissions	6.9 0.0
13 XUQ ⁻¹	Normalized Concentration (For Yu)	_375 NA
Qe	Enter Line 8	.0444 . 0358
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.0
15 X	CO Concentration—"Maximum Queue"	16.7 0.0
16 XUQ ⁻¹	Normalized Concentration (For Yd)	0 NA
Qe	Enter Line 8	×.0444 × · 0358 × ×
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
17 XU	Enter Line 2	1.0
18 X	CO Concentration—"Imaginery Queue"	. 0.0 . 0.0 .
10 ,	CO CONCENTRACION - Imaginety words	,
19 X	CO (mg m ⁻³) Total	23.6 0.0
20 X	CO Concentration (ppm) Total	20.5 0.0
	OPTIONAL z-CORRECTION (Heights Oth	er than 1.8m Above the Ground)
21 z	Height of Receptor (m)	
22	z-Correction Factor	
23 X ″	CO Concentration at Height z (mg m ⁻³)	
24 X	CO Concentration at Height z (ppm)	

20.5 PP

Intersection Purchase And Congress Streets

Case # 2 Year 1990 Averaging Time 8 Hour

Line	-4 - 3			* 001 =
No. Syl	WOOT	Input/Units	Ps	Traffic Stream CE
1	SC	Stability Class	D	
2 .	U	Wind Speed (m s ⁻¹)	1.6	
3	0	Wind-Road Angle (deg)	10	-80
4	×	Lateral Distance (m)	11	13
5	Yu	Maximum Longitudinal Distance (m)	181	NA
6	Yd	Minimum Longitudinal Distance (m)	20	NA
7	zo zo	Initial Dispersion (m)	5.0	
	Qe Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.01/3	.0103
9 (QP	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0053	. 0044
9a		Street Canyon? Yes or No	No	
		DISPERSION ANALYSIS		
10 XI	uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	625	NA
0	្ត	Enter Line 9		× .0044 × ×
	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
L	J	Enter Line 2	: 1.6	÷ ÷ ÷
12	X	CO Concentration (mg m ⁻³) Through		
		Emissions	2.1	_0.0
13 XL	JQ ^{−1}	Normalized Concentration (For Yu)	500	NA
Q)e	Enter Line 8	.0/13	.0103
14	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	J	Enter Line 2	1.6	
15	X	CO Concentration—"Maximum Queue"	3.5	0.0
	1			210
	רב" מר	Normalized Concentration (For Yd)	0	NA COLO 2
	Qe	Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹)	x . 0//3	× . 0103 × ×
	XU XU	Normalized Concentration (mg m 's ') Enter Line 2	1.6	
	X	CO Concentration—"Imaginery Queue"		. 0.0 + +
10 /	`	Concentration-"Imaginery queue"	٠ <u>٠,٠</u>	÷_0.0_++
19 ×	,	CO (mg m ⁻³) Total	5.6	0.0
20 X		CO Concentration (ppm) Total	4.9	0.0
		OPTIONAL z-CORRECTION (Heights Other	r then 1.8m	Above the Ground)
21 2	Z	Height of Receptor (m)		
22		z-Correction Factor		
23 X	(*	CO Concentration at Height z (mg m ⁻³)		
24 X	-	CO Concentration at Height z (ppm)		

4.9ppm

Intersection Purchase And Congress Streets

Case # 3 Year 1990 Averaging Time | Hour

				٦
Line No. Symbol	Input/Units	Ps	Traffic Stream	-
1 SC	Stability Class	D		.
2 U	Wind Speed (m s ⁻¹)	1.0		-
3 ⊖	Wind-Road Angle (deg)	16	74	-
4 ×	Lateral Distance (m)	_11	13	
5 Yu	Maximum Longitudinal Distance (m)	92	NA	_]
6 Yd	Minimum Longitudinal Distance (m)	20	_ NA	
7 °z0	Initial Dispersion (m)	5.0		
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0479	.0390	
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0166	. 0116	
9a	Street Canyon? Yes or No	NO		
				-
	DISPERSION ANALYSIS			
10 ×UQ ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹)	440	NA	
	Free Flow	01/2	. 0116 x x	-]
Qf	Enter Line 9 Normalized Concentration (mg m ⁻² s ⁻¹)	x . 0100		-
11 XU		÷ 1.0		-
12 X	Enter Line 2 CO Concentration (mg m ⁻³) Through		·	-
12 X	Emissions (mg m) Infoogn	7.3	0.0	_
			- **	
עע × און xuq ⁻¹	Normalized Concentration (For Yu)	375	NA	-
Qe	Enter Line 8	,64.17	.0390	-
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)			-
U	Enter Line 2	18.0	0.0	-
15 X	CO Concentration-"Maximum Queue"	18.0	0,0	-
16 × UQ-1	Normalized Concentration (For Yd)	0	NA	
Qe Qe	Enter Line 8	×.0479	× .0390× ×	
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)			
U	Enter Line 2	1.0		
18 X	CO Concentration—"Imaginery Queue"	,0.0	. 0.0 .	
	-3	7-2	0.0	
19 X	CO (mg m ⁻³) Total	25.5	0.0	-
20 X	CO Concentration (ppm) Total	44.0	0.0	-
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the Ground)	
21 z	Height of Receptor (m)			
22	z-Correction Factor			
23 X ~	CO Concentration at Height $z \pmod{m^{-3}}$			
24 X	CO Concentration at Height z (ppm)			

22.0 ppm

Intersection Turchase And Congress Streets

Case # 3 Year 1990 Averaging Time 8 Hour

Line No. Symbol	Input/Units	PS	Traffic Stream
1 50	Stability Class	P	
2 U	Wind Speed (m s ⁻¹)	7.6	
3 0	Wind-Road Angle (deg)	10	-80
4 ×	Lateral Distance (m)	11	13
5 Yu	Maximum Longitudinal Distance (m)	181	NA
5 Yd	Minimum Longitudinal Distance (m)	20	NA
	Initial Dispersion (m)	5,0	
7 ° zo 8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)		.0110
1 40	Free Flow Emissions Rate (gm s)		
1			.0047
9a	Street Canyon? Yes or No	No	
	DISPERSION ANALYSIS		
10 ×uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	625	NA
Qf	Enter Line 9		× ·0047× ×
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	^ <u>*@U5 /</u>	<u> </u>
ll vo	Enter Line 2		
	CO Concentration (mg m ⁻³) Through	+ 1.6	+++
12 X	Emissions (mg m) Inrough	2.2	0.0
13 XUQ ⁻¹	Normalized Concentration (For Yu)	500_	NA
Qe	Enter Line 8	10/21	,0110
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)		
U	Enter Line 2	1.6	
15 X	CO Concentration-"Maximum Queue"	3.B	0.0
1			
16 × UQ-1	Normalized Concentration (For Yd)	_0_	NA
Qe	Enter Line 8	x + 0121	(10/10 x x
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)		
U	Enter Line 2	1.6	
18 X	CO Concentration-"Imaginery Queue"	0.0	.0.0
	,		
19 X	∞ (mg m ⁻³) Total	6,0	0.0
20 X	CO Concentration (ppm) Total	5.2	0.0
	, , , , , , , , , , , , , , , , , , ,		
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m A	Above the Ground)
21 z	Height of Receptor (m)		
22	z-Correction Factor		
23 X *	CO Concentration at Height z (mg m ⁻³)		
24 X	CO Concentration at Height z (ppm)		

5.2 ppm

Intersection Purchase St and Case # 1 Year 84	I.P. Access Drive
1. Road segment or intersection approach	PS
identification 2. Observed 1-hr volume (vph)	
2. Observed 1-hr volume (vph) Observed 8-hr volume (vph)	
Projected 1-hr peak demand (vph)	1908
Projected 8-hr peak demand (vph)	1427
3. Percentage cold starts	50/20.6
4. Percentage trucks and buses	5.8 %
5. Metropolitan population	25 × 106
6. Slope	
7. Free-flow parameters	
Number of lanes	3
Average lane width (ft)	12
Design speed (mph)	28/35
Highway type (see Figures 2-5)	Urban Arterial
8. Intersection parameters	
Intersection designation	
Approach width (ft)	
Percentage right turns	0
Percentage left turns	0
Type control and description of	
sional controller	
9. Area source parameters	
Parking lot gate designation	
Projected 1-hr peak entrance demand (vph)	
Projected 1-hr peak exit demand (vph)	
Projected 8-hr peak entrance demand (vph)	
Projected 8-hr peak exit demand (vph)	
Parking lot area (m ²)	
Parking lot capacity (veh)	_
Running time required to access auxiliary parking (s)	
Facility emptying time	_
Average cars per stall	
Average area per stall (m ²)	_

PS = Purchase Street Southbound

WORKSHEET 1 - TRAFFIC INFORMATION

Intersection	Purchase	St and	I.P.	Access	brive	
Case # 1	Vear 90					

1.	Road segment or intersection approach identification	PS
2.	Observed 1-hr volume (vph)	
	Observed 8-hr volume (vph)	
	Projected 1-hr peak demand (vph)	5346
	Projected 8-hr peak demand (vph)	<u> 2510</u>
3.	Percentage cold starts	50/20.6
4.	Percentage trucks and buses	5.37
5.	Metropolitan population	2.5 × 106
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	3
	Average lane width (ft)	12
	Design speed (mph)	28/35
	Highway type (see Figures 2-5)	Urban Arterial
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	
	Percentage right turns	0
	Percentage left turns	٥
	Type control and description of	
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m²)	_
	Parking lot capacity (veh)	_
	Running time required to access auxiliary parking (s)	
	Facility emptying time	
	Average cars per stall	_
	Average area per stall (m ²)	

* Peak 1-hr volume is constrained to 97% of copacity.

Intersection Purchase St. and J.P. Acces Drive
Case # 3 Year 90

1.	Idelicii Idadion	PS AE
2.	Observed 1-hr volume (vph)	
	Observed 8-hr volume (vph)	250 *
	Projected 1-411 bear demand (1510)	3346 <u>359 </u>
	Projected 8-hr beak deliging (4bit)	
3.	referred core	50/20.6
4.	Percentage trucks and buses	5.82
5.	Metropolitan population	2.5×106
6.	Slope	
7.	Free-flow parameters	0 1
	Number of lanes	2 12
	Average lane width (ft)	$\frac{12}{20/2} - \frac{72}{5/5}$
	Design speed (mph)	28/35 5/5
	Highway type (see Figures 2-5)	Urban Arterial
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	
	Percentage right turns	919
	Percentage left turns	0
	Type control and description of	
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m ²)	_
	Parking lot capacity (veh)	_
	Running time required to access auxiliary parking (s)	_
	Facility emptying time	_
	Average cars per stall	_
	Average area per stall (m ²)	_

AE = Internalimal Place Access Drive Eastbound.

* Peak 1-hr volume is constrained to 97% of capacity.

Intersection Purchase St and I.P. Access brive

Case # 3 Year 90

Step Symbol Input/Units 1 1 Road segment (or approach) designation Case 3 case 3 Case 4 case 4 Free flow capacity computation: 2 8-hr 1-hr 8-hr 2.1 M, Number of lanes 2.2 Wp Adjustment for lane width (Table 8-1) 2.3 T₄ Adjustment for trucks (Table B-2) 2.4 Ci Free flow capacity 3 Signalized intersection capacity: 3.1 Green signal phase identification 3.2 Wa, Approach width with parking (ft) 3.3 Percent right turners 3.4 Percent left turners 3.5 Metropolitan area size 3.6 Cs_{i,j} Capacity service volume (vph or green) Signalized intersection green phase and cycle length: 4.1 V_{i,j} Demand Volume for approach and phase 4.2 V_{i.1}/Cs_{i.1}) Volume to green capacity ratio 4.3 approx G/Cy Approximate G/Cy Σmax(V_{i.}Cs_{i.1}) Sum of the maximum V/C ratios for each signal phase 4.5 Cy Signal cycle time (sec) 4.6 Gj Green phase length 4.7 G1/Cv Green phase to cycle time ratio 4.8 C1.j Capacity for approach i phase j Two-way stop, two-way yield or uncontrolled intersection: 3346:3 2510:3 313:3 2485:3 5.1 V_+V_ Major street two-way volume 5.2 Ci 368 453 371 456 Cross street capacity (lexit lane) Four-way stop intersections: 6.1 V, Approach volume 6.2 Spi Demand split on cross streets 6.3 C Capacity of approach Approach capacity $\sum_{i} C_{i,i}$ 5.2 for a four-way stop or 6.3 for a two-way stop

AE capacity is based on 4.5 sec critical gap.

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	IEL - WORKSHEET #2
INTERSECTI CASE # 1	ON PURCHASE STREET AND INTERNATIONAL PLAC YEAR: 1984 AVERAGING TIME 1-HOUR	CE ACCESS DRIVE
LINE 1	ROAD SEGMENT ID	PS
LINE 2	DEMAND VOLUME (VPH)	1902
LINE 4	CRUISE SPEED (MPH)	28
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0385.0409
LINE 6.1	NUMBER OF LANES	3
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0
LINE 6 4	DEMAND VOLUME (VPH)	0
LINE 6 5	SIGNAL CYCLE LENGTH (S)	0
LINE 6 6	GREEN PHASE LENGTH (S)	0
LINE 6 7	CAPACITY (VPH)	0
LINE 6 8	PROPORTION OF VEHICLES THAT STOP	୭ ଡ
LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0 0
LINE 8.0	LENGTH OF QUEUE (M/LANE)	0.0
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0.0
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 0
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 9
LINE 13.	LENGTH OF ACC. AND DEC (M)	0 0
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	0.0
LINE 15	IDLING EMISSION RATE (G/S)	0.0
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0 0
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0
LINÉ 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0203 . 02 3

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MO	DEL - HORKSHEET #2
INTERSECTI CASE # 1	ON: PURCHASE STREET AND INTERNATIONAL PLAT YEAR: 1984 AVERAGING TIME: 8-HOUR	CE ACCESS DRIVE
LINE 1	ROAD SEGMENT ID	PS
LINE 2	DEMAND VOLUME (VPH)	1427.
LINE 4	CRUISE SPEED (MPH)	35
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0203 . 02/5
LINE 6.1	NUMBER OF LANES	3
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	ø.
LINE 6.4	DEMAND VOLUME (VPH)	ø.
LINE 6.5	SIGNAL CYCLE LENGTH (S)	ø.
LINE 6.6	GREEN PHASE LENGTH (S)	ø.
LINE 6.7	CAPACITY (VPH)	Ø.
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	0.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0
LIME 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	9.0
LINE 8.0	LENGTH OF QUEUE (M/LANE)	9.9
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	9.9
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.0
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0.0
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.0
LINE 13.	LENGTH OF ACC. AND DEC. (M)	0.0
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	0.0
LINE 15.	IDLING EMISSION RATE (G/S)	0.0
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0.0
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0.0080 .0085

LINE 1	ROAD SEGMENT ID	PS	
LINE 2	ROAD SEGMENT ID DEMAND VOLUME (VPH)	2322 3	246
LINE 4	CRUISE SPEED (MPH)	28	
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	<u>0</u> 018 0 ,	0198
LINE 6 1	NUMBER OF LANES	3	
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	Θ	
LINE 6 4	DEMAND VOLUME (VPH)	Θ	
LINE 6.5	SIGNAL CYCLE LENGTH (S)	0	
LINE 6 6	GREEN PHASE LENGTH (S)	0	
LINE 6 7	CAPACITY (VPH)	0	
LINE 6 8	PROPORTION OF VEHICLES THAT STOP	0 0	
LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	⊙.⊙	
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0 0	
LINE 8 0	LENGTH OF QUEUE (M/LANE)	0 0	
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0 0	
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 0	
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.0	
LINE 13	LENGTH OF ACC. AND DEC. (M)	0 0	
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	0 0	
LINE 15	IDLING EMISSION RATE (G/S)	0 0	
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0	
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0116	0174

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MODE	EL - HORKSHEET #2
INTERSECTION CASE # 2	DN: PURCHASE STREET AND INTERNATIONAL PLACE FEAR: 1990 AVERAGING TIME: 8-HOUR ROAD SEGMENT ID DEMAND VOLUME (VPH) CRUISE SPEED (MPH) FREE-FLOW EMISSIONS (G-VEH/M) NUMBER OF LANES CAPACITY SERVICE VOLUME (VPH OF GREEN)	E ACCESS DRIVE
LINE 1	ROAD SEGMENT ID	PS
LINE 2	DEMAND VOLUME (VPH)	1742. 5 5
LINE 4	CRUISE SPEED (MPH)	35
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0160 .)
LINE 6.1	NUMBER OF LANES	3
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	Ø.
LINE 6.4	DEMAND VOLUME (VPH)	ø.
LINE 6.5	SIGNAL CYCLE LENGTH (S)	ø.
LINE 6.6	GREEN PHASE LENGTH (S)	ø.
LINE 6.7	DEMAND VOLUME (VPH) SIGNAL CYCLE LENGTH (S) GREEN PHASE LENGTH (S) CAPACITY (VPH)	Ø.
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.0
LINE 8.0	LENGTH OF QUEUE (M/LANE)	0.0
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0.0
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-H)	0.0
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-H)	0.0
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.6
LINE 13.	LENGTH OF ACC. AND DEC. (M)	0.0
LINE 14.	LENGTH OF ACC. AND DEC. (M) LENGTH FOR EXCESS EMISSIONS (M) IDLING EMISSION RATE (G/S)	0.0
LINE 15.	IDLING EMISSION RATE (G/S)	0.0
LINE 16.		0.0
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0.0
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	2 0048 . 0077

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2
INTERSECTION: PURCHASE STREET AND INTERNATIONAL PLACE DRIVE
CASE # 3 YEAR: 1990 AVERAGING TIME: 1-HOUR

CASE # 3	TEAR . 1990 AVERAGING TIME: 1-HOUR		
LINE 1	ROAD SEGMENT ID	PS	AE
LINE 2	DEMAND VOLUME (VPH)	3346	357
LINE 4	CRUISE SPEED (MPH)	28	5
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0198	0 0842
LINE 6.1	NUMBER OF LANES	3	1
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0	Θ.
LINE 6.4	DEMAND VOLUME (VPH)	0.	Θ
LINE 6.5	SIGNAL CYCLE LENGTH (S)	Θ	
LINE 6.6	GREEN PHASE LENGTH (S)	Θ	0
LINE 6.7	CAPACITY (VPH)	Θ	368
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	⊙.⊙	0.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0 0	0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.0	32.45
LINE 8.0	LENGTH OF QUEUE (M/LANE)	0 0	141 18
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0.0	317 49
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 0	0 26 0
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	0 195
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 0	0 045
LINE 13.	LENGTH OF ACC. AND DEC. (M)	0 0	2 2
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	0 0	141 2
LINE 15	IDLING EMISSION RATE (G/S)	0 0	7 972
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0	0 0572
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	0 0340
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0 0184	0 0083

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION: PURCHASE STREET AND INTERNATIONAL PLACE ACCESS DRIVE CASE # 3 YEAR: 1990 AVERAGING TIME: 8-HOUR LINE 1 ROAD SEGMENT ID PS AE 2510 DEMAND VOLUME (VPH) LINE 2 110 35 5 LINE 4 CRUISE SPEED (MPH) LINE 5 FREE-FLOW EMISSIONS (G-VEH/M) 0 0111 0 0605 LINE 6.1 NUMBER OF LANES 3 1 LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) 0 0 LINE 6.4 DEMAND VOLUME (VPH) LINE 6.5 SIGNAL CYCLE LENGTH (S) 0 LINE 6.6 GREEN PHASE LENGTH (S) 0 0 LINE 6.7 CAPACITY (VPH) 453 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 0 0 0 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0 0 0 0 LINE 7.0 AVERAGE NUMBER OF VEHICLES IN QUEUE 0 0 0.32 LINE 8.6 LENGTH OF QUEUE (M/LANE) 0 0 1 40 LINE 9.0 AVERAGE EXCESS RUNNING TIME (S/VEH) 0.0 2 55 LINE 10. EMISSIONS FROM ACCELERATION (G/VEH-M) 0.0 0 260 EMISSIONS FROM DECELERATION (G/VEH-M) LINE 11. 0.0 0 195 LINE 12. EMISSION RATE FOR ACC AND DEC. (G/M-S) 0 0 0 014 LINE 13. LENGTH OF ACC AND DEC. (M) 0 0 2.2 LINE 14. LENGTH FOR EXCESS EMISSIONS (M) 0 0 40 0 LINE 16 AVERAGE EMISSION RATE (G/S-M) 0.0 0 012 6 0 0 0011
 ADJUSTED EXCESS EMISSION RATE (G/S-M)
 0 0 -0 0013

 FREE-FLOW EMISSION RATE (G/S-M)
 0 0077 0 0018
 LINE 17.

LINE 18. FREE-FLOW EMISSION RATE (G/S-M)

Intersection Purchase St. and J.P. Access Drive

Case # / Year 1984 Averaging Time / Hour

Line No.	Symbol	Input/Units	PS	Traffic Stream
1	SC	Stability Class	20	
2	u u	Wind Speed (m s ⁻¹)	1.0	
3	Θ	Wind-Road Angle (deg)	4	
4	×	Lateral Distance (m)	ia	
5	Yu	Maximum Longitudinal Distance (m)	NIA	
6	Yd	Minimum Longitudinal Distance (m)	NIA	
7	o zo	Initial Dispersion (m)	5	
8	zo Ge	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0	
9	Qf Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0216	
9a		Street Canyon? Yes or No	No	
		DISPERSION ANALYSIS		
10	XUQ ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	800	
	Qf	Enter Line 9	x	xxx
11	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	+	+ + +
12	χ	CO Concentration (mg m ⁻³) Through	17.3	
		Emissions	11.5	
13	xuq-1	Normalized Concentration (For Yu)	N/A	
ט	νου. Ωe	Enter Line 8		
14	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
14	U	Enter Line 2		
15	X	CO Concentration—"Maximum Queue"		
10				
16	xuq ⁻¹	Normalized Concentration (For Yd)	N/A	
	Qe	Enter Line 8	, ,	x x x
17	χU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2		
18	x	CO Concentration-"Imaginery Queue"	±	++
19	X	CO (mg m ⁻³) Total	17.3	
20	x	CO Concentration (ppm) Total	15.1	
		OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the Ground)
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	χ´	CO Concentration at Height z (mg m ⁻³)		
24	χ°	CO Concentration at Height z (ppm)		

15.1 ppn

Intersection Purchase St. and J.P. Acass Drive

Case # 1 Year 1984 Averaging Time 8 Hour

No.:	Symbol	Input/Units	PS	Traffic Stream
1	SC	Stability Class	D	
2	U	Wind Speed (m s ⁻¹)	1.6	
3	Э	Wind-Road Angle (deg)	_4	
4	×	Lateral Distance (m)	12	
5	Yu	Maximum Longitudinal Distance (m)	NA	
6	Υd	Minimum Longitudinal Distance (m)	NA	
7	o zo	Initial Dispersion (m)	_5	
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	_0	
9	Qf	Free Flow Emissions Rate $(gm^{-1}s^{-1})$.0085	
9a		Street Canyon? Yes or No	_No_	
		DISPERSION ANALYSIS		
10	xuq ⁻¹	Normalized Concentration (10^{-3}m^{-1}) Free Flow	800	
	Qf	Enter Line 9	x	xxx
11	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	U	Enter Line 2	+ 1.6	·
12	X	CO Concentration (mg m ⁻³) Through Emissions	4.3	
13	xug ⁻¹	Normalized Concentration (For Yu)	N/A	
	Qe	Enter Line 8		
14	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	υ	Enter Line 2		
15	X	CO Concentration—"Maximum Queue"		
16	xuq-1	Normalized Concentration (For Yd)	N/A	
	Qe	Enter Line 8	x	x x x
17	XU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2		
18	х	CO Concentration—"Imaginery Queue"	+	
19	χ	CO (mg m ⁻³) Total	43	
20	x	CO Concentration (ppm) Total	3.7	
		CO CONTROLLED (PPIII) TOTAL		
		OPTIONAL z-CORRECTION (Heights Other	r then 1.8m /	Above the Ground)
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	χŤ	∞ Concentration at Height z (mg m $^{-3}$)		
	χ´	CO Concentration at Height z (ppm)		

3.7ppm

Intersection Purchase St. and I. P. Access Drive

Case # 2 Year 1990 Averaging Time / Hour

		,		
Line No. S	Symbol	Input/Units	PS	Traffic Stream
1	SC SC	Stability Class	D	
2	U	Wind Speed (m s ⁻¹)	1.0	
3	Θ	Wind-Road Angle (deg)	4	
4	x	Lateral Distance (m)	12	
5	Yu	Maximum Longitudinal Distance (m)	NA	
6	Yd	Minimum Longitudinal Distance (m)	NA	
7	σ zo	Initial Dispersion (m)	5	
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0_	
9	Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0184	
9a		Street Canyon? Yes or No	NO	
		DISPERSION ANALYSIS		
10	XUQ ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	800	
	Qf	Enter Line 9	×>	××
11	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	U	Enter Line 2	+	·
12	χ	CO Concentration (mg m ⁻³) Through Emissions	14.7	
13	xuq ⁻¹	Normalized Concentration (For Yu)	NA	
	Qe	Enter Line 8		
14	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2		
15	Х	CO Concentration-"Maximum Queue"		
16	XUQ ⁻¹	Normalized Concentration (For Yd)	NA	
	Qe	Enter Line 8	×>	xx
17	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)		
	U	Enter Line 2		
18	χ	CO Concentration-"Imaginery Queue"	÷	
19	χ	◯ (mg m ⁻³) Total	14.7	
20	х	CO Concentration (ppm) Total	12.8	
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m A	above the Ground)
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	x *	CO Concentration at Height z (mg m ⁻³)		
24	x *	CO Concentration at Height z (ppm)		

12.8 ppm

Intersection		Purch	nase	St.	and	I,	P	Acc	ess	Drive	
Case #	2	Year	1990		Averaç	ing	Time	8	Hour		

Line No. Symbol	Input/Units	PS Traffic Stream
1 SC	Stability Class	_ <u>D</u>
2 U	Wind Speed (m s ⁻¹)	1.6
3 ⊖	Wind-Road Angle (deg)	4
4 x	Lateral Distance (m)	12
5 Yu	Maximum Longitudinal Distance (m)	NA
6 Yd	Minimum Longitudinal Distance (m)	N/A
7 °z0	Initial Dispersion (m)	5
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0077
9a	Street Canyon? Yes or No	No
	DISPERSION ANALYSIS	
10 ×uq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	800
Qf	Enter Line 9	x x x x
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
υ	Enter Line 2	: 1.6 : :
12 X	CO Concentration (mg m ⁻³) Through Emissions	3,9
13 XUQ ⁻¹	Normalized Concentration (For Yu)	NA
Qe	Enter Line 8	
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
บ	Enter Line 2	
15 X	CO Concentration—™Maximum Queue™	
16 ×uq-1	Normalized Concentration (For Yd)	N/A
Qe	Enter Line 8	× × ×
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
ı, vo	Enter Line 2	
18 X	CO Concentration-"Imaginery Queue"	
	and a second and a second	
19 X	CO (mg m ⁻³) Total	3.9
20 X	CO Concentration (ppm) Total	3,4
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m Above the Ground)
21 z	Height of Receptor (m)	
22	z-Correction Factor	
23 X ~	CO Concentration at Height z (mg m ⁻³)	
24 X	CO Concentration at Height z (ppm)	

3.4ppm

Intersection Purchase St. and I.P. Access Drive

Case # 3 Year 1990 Averaging Time 1 Hour

Line No. Symbol Input/Units PS Traffic Stream AE 1 SC 2 U Wind Speed (m s^-1) 3 % Wind-Road Angle (deg) 4 x Lateral Distance (m) 6 Yd McAimum Longitudinal Distance (m) 7 % Initial Dispersion (m) 8 Qe 9 Excess Emissions Rate (gm^-1s^-1) 9 Qf Free Flow Emissions Rate (gm^-1s^-1) 9 Street Canyon? Yes or No DISPERSION ANALYSIS 10 XUQ^-1 Normalized Concentration (10^-3m^-1) Free Flow Gf Enter Line 9 11 XU Normalized Concentration (mg m^-2s^-1) U Enter Line 2 12 X CO Concentration (mg m^-3) Through Emissions 13 XUQ^-1 Normalized Concentration (mg m^-2s^-1) U Enter Line 8 14 XU Normalized Concentration (mg m^-2s^-1) U Enter Line 2 15 X CO Concentration (mg m^-2s^-1) U Enter Line 2 16 XUQ^-1 Normalized Concentration (mg m^-2s^-1) U Enter Line 8 17 XU Normalized Concentration (mg m^-2s^-1) U Enter Line 8 17 XU Normalized Concentration (mg m^-2s^-1) U Enter Line 8 17 XU Normalized Concentration (mg m^-2s^-1) U Enter Line 8 18 X CO Concentration—"Maximum Queue" 19 X CO (mg m^-3) Total 2	No. Symbol Input/Units SC Stability Class D D	
2	1. O	fic_Stream
3	S	
1		
1	Solution State S	
Street Canyon? Yes or No Street Canyon. Yes	Minimum Longitudinal Distance (m) M/A 0 0 0 0 0 0 0 0 0	
Initial Dispersion (m) 8 Qe	7	61
20	Recomples to the second	<u> </u>
S	8 Qe Excess Emissions Rate (gm ⁻¹ s ⁻¹)	
9 QF Street Canyon? Yes or No No No No No No No N	9 Qf Street Canyon? Yes or No	340
DISPERSION ANALYSIS 10	DISPERSION ANALYSIS 10 XUQ ⁻¹ Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow Enter Line 9 11 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 12 X CO Concentration (mg m ⁻³) Through Emissions 13 XUQ ⁻¹ Normalized Concentration (For Yu) Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration-"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Enter Line 8 17 XU Normalized Concentration (For Yd) Enter Line 8 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above) 21 Z Height of Receptor (m) 22 Z-Correction Factor	83
DISPERSION ANALYSIS 10	DISPERSION ANALYSIS 10 XUQ ⁻¹ Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow Qf Enter Line 9 11 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 12 X CO Concentration (mg m ⁻³) Through Emissions 13 XUQ ⁻¹ Normalized Concentration (For Yu) Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z—Correction Factor	
10	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow Gf Enter Line 9 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 12 X CO Concentration (mg m ⁻³) Through Emissions 13 XUQ ⁻¹ Normalized Concentration (For Yu) Ge Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration-"Maximum Queue" Normalized Concentration (For Yd) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 16 XUQ ⁻¹ Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total 20 X CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above) OPTIONAL z-CORRECTION (Heights Other than 1.8m Above)	
Free Flow Enter Line 9 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions 2.9 5.4 Normalized Concentration (For Yu) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration-"Maximum Queue" 15 × CO Concentration-"Maximum Queue" Normalized Concentration (For Yd) Qe Enter Line 8 Normalized Concentration (For Yd) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 CO Concentration-"Imaginery Queue" 19 × CO (mg m ⁻³) Total	Free Flow Enter Line 9 X X X	
Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions 13	Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions Normalized Concentration (For Yu) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration—"Maximum Queue" Normalized Concentration (For Yd) Enter Line 8 Normalized Concentration (For Yd) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 CO Concentration—"Maximum Queue" Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO (mg m ⁻³) Total CO Concentration—"Imaginery Queue" PTIONAL z—CORRECTION (Heights Other than 1.8m Above PTIONAL z—CORRECTION (Heights Other than 1.8m Above	50
U Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions 2.9 5.4 Normalized Concentration (For Yu) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22.1	U Enter Line 2 12 X CO Concentration (mg m ⁻³) Through Emissions 13 XUQ ⁻¹ Normalized Concentration (For Yu) Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration-"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above) 21 Z Height of Receptor (m) z-Correction Factor	xx
CO Concentration (mg m ⁻³) Through Emissions 2.9 5.4 Normalized Concentration (For Yu) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration-"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total	CO Concentration (mg m ⁻³) Through Emissions 2.9 5. 13	
Emissions 2.9 5.4 Normalized Concentration (For Yu) Qe	Emissions 2.9	÷ +
Normalized Concentration (For Yu) N/A 490	Normalized Concentration (For Yu) Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 20 X CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) Price Advanced Concentration (mg m ⁻² s ⁻¹) OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) Price Advanced Concentration (mg m ⁻² s ⁻¹) OPTIONAL z—CORRECTION (Heights Other than 1.8m Above)	4
Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CD Concentration-"Maximum Queue" 16	Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22 2.10 OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) OPTIONAL z—Correction Factor	<u>T</u>
Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CD Concentration-"Maximum Queue" 16	Qe Enter Line 8 14 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22 2.10 X CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) 21 z Height of Receptor (m) z—Correction Factor	9D
Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CD Concentration—"Maximum Queue" 16	Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration—"Maximum Queue" Normalized Concentration (For Yd) Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 20 X CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) Height of Receptor (m) z—Correction Factor	
U Enter Line 2 15 X CD Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CD Concentration—"Imaginery Queue" 19 X CD (mg m ⁻³) Total 2.9 22.1	U Enter Line 2 15 X CD Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CD Concentration—"Imaginery Queue" 19 X CD (mg m ⁻³) Total 20 X CD Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) 21 z Height of Receptor (m) 22 z—Correction Factor	
15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22.1	15 X CO Concentration—"Maximum Queue" 16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 20 X CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above) 21 z Height of Receptor (m) 22 z—Correction Factor	
16 XUQ ⁻¹ Normalized Concentration (For Yd) Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22.1	Normalized Concentration (For Yd) Normalized Concentration (For Yd) Normalized Concentration (mg m ⁻² s ⁻¹)	. 7
Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration-"Imaginery Queue" 2.9 22.1	Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22 20 X CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above) 21 z Height of Receptor (m) 22 z-Correction Factor	
Qe Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration-"Imaginery Queue" 2.9 22.1	Qe Enter Line 8 17 XU Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22 20 X CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above) 21 z Height of Receptor (m) 22 z-Correction Factor	0
Normalized Concentration (mg m $^{-2}s^{-1}$) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m $^{-3}$) Total 2.9 22.1	Normalized Concentration (mg m ⁻² s ⁻¹) U Enter Line 2 18 X CO Concentration-"Imaginery Queue" 19 X CO (mg m ⁻³) Total 2.9 22 2.5 19 OPTIONAL z-CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z-Correction Factor	x x _
U Enter Line 2 18	U Enter Line 2 18 X CO Concentration—"Imaginery Queue" 19 X CO (mg m ⁻³) Total 20 X CO Concentration (ppm)— Total OPTIONAL z—CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z—Correction Factor	
18 X CO Concentration—"Imaginery Queue" + + + + + + + + + + + + + + + + + + +	18 X CO Concentration—"Imaginery Queue" ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
19 X CO (mg m ⁻³) Total 2.9 22.1	19	D + +
15 10 2	20 X CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z-Correction Factor	
7 6 14 7	20 X CO Concentration (ppm) Total OPTIONAL z-CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z-Correction Factor	2.1
	OPTIONAL z-CORRECTION (Heights Other than 1.8m Above 21 z Height of Receptor (m) 22 z-Correction Factor	. 2
	21 z Height of Receptor (m) 22 z-Correction Factor	
OPTIONAL z-CORRECTION (Heights Other than 1.8m Above the Ground)	22 z-Correction Factor	the Ground)
21 z Height of Receptor (m)	22 z-Correction Factor	
23 X´ CO Concentration at Height z (mg m ⁻³)	23 X CO Concentration at Height z (mg m ⁻³)	
	24 X CO Concentration at Height z (ppm)	

21.7ppm

WORKSHEET 1 - TRAFFIC INFORMATION

Intersection	Oliver	And	Purchase	Streets
Case #	Year 1984			

1.	Road segment or intersection approach identification	Ps os
2.	Observed 1-hr volume (vph)	1179 130
	Observed 8-hr volume (vph)	884 77
	Projected 1-hr peak demand (vph)	
	Projected 8-hr peak demand (vph)	
3.	Percentage cold starts	50/20.6
4.	Percentage trucks and buses	5.8
5.	Metropolitan population	
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	3
	Average lane width (ft)	12 20
	Design speed (mph) (1Hr/8Hr)	28/35 28/30
	Highway type (see Figures 2-5)	Urban Artery
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	36 20
	Percentage right turns	2100
	Percentage left turns	<u> </u>
	Type control and description of	STOP SIGN
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m ²)	
	Parking lot capacity (veh)	
	Running time required to access auxiliary parking (s)	_
	Facility emptying time	
	Average cars per stall	_
	Average area per stall (m ²)	_

Intersection Purchase St. and I.P. Access Drive

Case # 3 Year 1990 Averaging Time 8 Hour

			T	
Line No.	Symbol	Input/Units	PS Traffic Stream	_
1	2C	Stability Class	_D	
2	U	Wind Speed (m s ⁻¹)	1.6	_
3	Θ	Wind-Road Angle (deg)	4 86	
4	×	Lateral Distance (m)	12 10	
5	Yu	Maximum Longitudinal Distance (m)	N/A 60	
6	Yd	Minimum Longitudinal Distance (m)	<u>MA 20</u>	
7	σ zo	Initial Dispersion (m)	5	
8	Qe Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	00013	
9	Of	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0077 .0018	
9a	-	Street Canyon? Yes or No	No	
/ 4				
		DISPERSION ANALYSIS		
10	XUQ ^{−1}	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	800 160	
	Qf	Enter Line 9	xxxx	
11	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	+ 1.6 + + +	
12	Х	CO Concentration (mg m ⁻³) Through Emissions	3.9 0.2	
<u></u>	×uq ⁻¹	Normalized Concentration (For Yu)	N/A 150	
	Qe	Enter Line 8		
14	XU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	1.6	
15	x	CO Concentration—"Maximum Queue"		
16	XUQ-1	Normalized Concentration (For Yd)	<u>N/A 60</u>	
	Qe	Enter Line 8	x x x x	_
17	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	1.6	
18	X	CO Concentration—"Imaginery Queue"	, 6.05,	
			28 01	
19	χ	∞ (mg m ⁻³) Total	3.7 0.1	
20	Χ	CO Concentration (ppm) Total	3,4 0.1	
		OPTIONAL z-CORRECTION (Heights Other	mer than 1.8m Above the Ground)	
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	x ^	CO Concentration at Height z (mg m ⁻³)		
24	x *	CO Concentration at Height z (ppm)		

3.5 pm

WORKSHEET 1 - TRAFFIC INFORMATION

Intersection	Oliver 1	And Purchase	Streets
Case # 2	Year 1990		

1.	Road segment or intersection approach identification	PS os
2.	Observed 1-hr volume (vph)	
	Observed 8-hr volume (vph)	
	Projected 1-hr peak demand (vph)	2468 20
	Projected 8-hr peak demand (vph)	1851 12
3.	Percentage cold starts	50/20.6
4.	Percentage trucks and buses	5 8
5.	Metropolitan population	
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	3 2
	Average lane width (ft)	12 - 19
	Design speed (mph)	28/35 28/30
	Highway type (see Figures 2-5)	Urban Artery
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	36 38
	Percentage right turns	0 /00
	Percentage left turns	0
	Type control and description of	
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m ²)	
	Parking lot capacity (veh)	
	Running time required to access auxiliary parking (s)	
	Facility emptying time	
	Average cars per stall	
	Average area per stall (m2)	

Intersection Oliver And Purchase Streets

Case # 3 Year 1990

1.	Road segment or intersection approach identification	Psos
2.	Observed 1-hr volume (vph)	
	Observed 8-hr volume (vph)	
	Projected 1-hr peak demand (vph)	2628 50
1	Projected 8-hr peak demand (vph)	197/30
3.	Percentage cold starts	50/20.6
4.	Percentage trucks and buses	5.8
5.	Metropolitan population	
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	32
	Average lane width (ft)	12 19
	Design speed (mph) (IHr/8Hr)	28/35 28/30
	Highway type (see Figures 2-5)	Urban Artery
8.	Intersection parameters	
	Intersection designation	
	Approach width (ft)	36 38
	Percentage right turns	0 100
	Percentage left turns	00
	Type control and description of	
	signal controller	
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m ²)	_
	Parking lot capacity (veh)	
	Running time required to access auxiliary parking (s)	_
	Facility emptying time	
	Average cars per stall	_
	Average area per stall (m ²)	_
		_

Intersection Oliver And Purchase Streets

Case # 1 Year 1984

Step	Symbol	Imput/Units	
1	1	Road segment (or approach) designation	PS OS
2		Free flow capacity computation:	
2.1	M _q	Number of lanes	3
2.2	*	Adjustment for lane width (Table B-1)	
2.3	T ₄	Adjustment for trucks (Table 8-2)	
2.4		Free flow capacity	
3	1	Signalized intersection capacity:	
3.1	j	Green signal phase identification	
3.2	Wai	Approach width with parking (ft)	
3.3	•	Percent right turners	
3.4		Percent left turners	
3.5		Metropolitan area size	
3.6	Cs _{i,j}	Capacity service volume (vph or green)	
4	-90	Signalized intersection green phase and cycle length:	
4.1	V _{1,j}	Demand Volume for approach and phase	
4.2	V _{i,1} /Cs _{i,1})	Volume to green capacity ratio	
4.3	-73 -73	Approximate G/Cy	
4.4	<pre>Emax(V_{i,j}Cs_{i,j})</pre>	Sum of the maximum V/C ratios for each signal phase	
4.5	Су	Signal cycle time (sec)	
4.6	GJ	Green phase length	
	GJ/Cy	Green phase to cycle time ratio	
4.8	C _{i,j}	Capacity for approach i phase j	
5	-73	Two-way stop, two-way yield or uncontrolled intersection:	
5.1	Vm+Vn	Major street two-way volume (IHr/8Hr)	1179/884
5.2		Cross street capacity	541/599
6		Four-way stop intersections:	
6.1	v _i	Approach volume	
6.2	Spi	Demand split on cross streets	
6.3	1	Capacity of approach	
7	C _i	Approach capacity Ci.i	
		5.2 for a four-way stop or	
		6.3 for a two-way stop	

Intersection Oliver And Purchase Streets

Case # 2 Year 1990

Step	Symbol	Input/Units		
1	i	Road segment (or approach) designation	PS_	OS
2		Free flow capacity computation:	_	
2.1	M _f	Number of lanes	3	
2.2	-	Adjustment for lane width (Table B-1)		
2.3	•	Adjustment for trucks (Table B-2)		
	-	Free flow capacity		
3	1	Signalized intersection capacity:		
3.1	j	Green signal phase identification		
3.2	Wai	Approach width with parking (ft)		
3.3	1	Percent right turners		
3.4		Percent left turners		
3.5		Metropolitan area size		
3.6	Cs _{i,j}	Capacity service volume (vph or green)		
4	±+J	Signalized intersection green phase and cycle length:		
4.1	V _{i,j}	Demand Volume for approach and phase		
4.2	v _{i,j} /Cs _{i,j})	Volume to green capacity ratio		
4.3		Approximate G/Cy		
4.4	<pre>Emax(V_{i,j}Cs_{i,j})</pre>	Sum of the maximum V/C ratios for each signal phase		
4.5	Су	Signal cycle time (sec)		
4.6	Gj	Green phase length		
4.7	Gj/Cy	Green phase to cycle time ratio		
4.8	C _{i,j}	Capacity for approach i phase j		
5	-13	Two-way stop, two-way yield or uncontrolled intersection:		
5.1	V _m +V _n	Major street two-way volume	2468/1851	336/425
5.2		Cross street capacity		550/425
6	-	Four-way stop intersections:		
6.1	v _i	Approach volume		
6.2	Spi	Demand split on cross streets		
6.3	Ci	Capacity of approach		
7	ci	Approach capacity $\sum_{j}^{\Sigma} C_{i,j}$		
		5.2 for a four-way stop or		
		6.3 for a two-way stop		

Intersection Oliver And Purchase Streets

Case # 3 Year 1990

Step	Symbol	Input/Units	
1	i	Road segment (or approach) designation	PS 05
2		Free flow capacity computation:	
2.1	M _z	Number of lanes	3 2
2.2	•	Adjustment for lane width (Table 8-1)	
2.3		Adjustment for trucks (Table B-2)	
2.4		Free flow capacity	
3	1	Signalized intersection capacity:	
3.1	j.	Green signal phase identification	
3.2	Wa:	Approach width with parking (ft)	
3.3	1	Percent right turners	
3.4		Percent left turners	
3.5		Metropolitan area size	
3.6	Cs _{i,j}	Capacity service volume (vph or green)	
4	1, j	Signalized intersection green phase and cycle length:	
4.1	V _{i,j}	Demand Volume for approach and phase	
4.2	V _{i.1} /Cs _{i.1})	Volume to green capacity ratio	
4.3	-,0 -,0	Approximate G/Cy	
4.4	Emax(V _{i,j} Cs _{i,j})	Sum of the maximum V/C ratios for each signal phase	
4.5	Су	Signal cycle time (sec)	
4.6	Gj	Green phase length	
4.7	GJ/Cy	Green phase to cycle time ratio	
4.8	C _{i,j}	Capacity for approach i phase j	
5	1, J	Two-way stop, two-way yield or uncontrolled intersection:	
5.1	V _m +V _D	Major street two-way volume (IHr (8Hr)	2628/1971
5.2		Cross street capacity	315/406
6	1	Four-way stop intersections:	
6.1	V.	Approach volume	
6.2	•	Demand split on cross streets	
6.3	C.	Capacity of approach	
7	C,	Approach capacity Ci, i	
	1	5.2 for a four-way stop or	
		6.3 for a two-way stop	

EPA VOLUME	9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	EL - WOR	KSHEET #2
	DN: OLIVER STREET & PURCHASE STREET YEAR: 1984 AVERAGING TIME: 1-HOUR		
LINE 1	ROAD SEGMENT ID	P\$	os
LINE 2	DEMAND VOLUME (VPH)	1179	130
LINE 4	CRUISE SPEED (MPH)	28	28
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0409	0 0409
LINE 6 1	NUMBER OF LANES	3	1
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0	Θ
LINE 6 4	DEMAND VOLUME (VPH)	0	Θ.
LINE 6 5	SIGNAL CYCLE LENGTH (S)	0	
LINE 6 6	GREEN PHASE LENGTH (S)	0	0
LINE 6.7	CAPACITY (VPH)	⊙.	541.
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	Θ.Θ	0.0
LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0	0 0
LINE 7 0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0.0	0.32
LINE 8.0	LENGTH OF QUEUE (M/LANE)	Θ.Θ	1 38
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0.0	2 10
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.0	0.103
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	0.034
LINE 12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0.0	0.005
LINE 13.	LENGTH OF ACC. AND DEC. (M)	⊕ ⊕	70 1
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	0 0	140.2
LINE 15	IDLING EMISSION RATE (G/S)	0.0	-0.0 32
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0	0 0022
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	0 0023
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0134	0 0015

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION: OLIVER STREET & PURCHASE STREET LINE 1 ROAD SEGMENT ID 08 I INE 2 DEMAND VOLUME (VPH) 884 35 30 LINE 4 CRUISE SPEED (MPH) FREE-FLOW EMISSIONS (G-VEH/M) 0 0215 0 0256 LINE 5 LINE 6.1 NUMBER OF LANES 3 LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) А 0 LINE 6 4 DEMAND VOLUME (VPH) 0 LINE 6.5 SIGNAL CYCLE LENGTH (S) ⊕. LINE 6.6 GREEN PHASE LENGTH (S) 0 LINE 6 7 CAPACITY (VPH) 9 599 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 0.0 0 0 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0.0 0.0 0 15 LINE 7.0 AVERAGE NUMBER OF VEHICLES IN QUEUE 9 9 LINE 8.0 LENGTH OF QUEUE (M/LANE) 0 0 0.64 LINE 9.0 AVERAGE EXCESS RUNNING TIME (S/VEH) 0 0 0 89 LINE 10. EMISSIONS FROM ACCELERATION (G/VEH-M) 0.0 0.100 EMISSIONS FROM DECELERATION (G/VEH-M) LINE 11. 0 0 0 031 EMISSION RATE FOR ACC. AND DEC. (G/M-S) 0.0 0.003 LINE 12. LINE 13. LENGTH OF ACC. AND DEC. (M) 0 0 80 5 0 0 160 9 LINE 14. LENGTH FOR EXCESS EMISSIONS (M) LINE 15. IDLING EMISSION RATE (G/S) 0.0 -0 028 LINE 16. AVERAGE EMISSION RATE (G/S-M) 0.0 0.0012 LINE 17 ADJUSTED EXCESS EMISSION RATE (G/S-M) 0 0 0 0008

LINE 18. FREE-FLOW EMISSION RATE (G/S-M) 0 0053 0 0005

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2

INTERSECTION: OLIVER STREET & PURCHASE STREET
CASE # 2 YEAR: 1990 AVERAGING TIME: 1-HOUR

UMSE # 2	TEAR . 1990 AVERAGING TIME 1-HOOK		
LINE 1	ROAD SEGMENT ID	PS	OS
LINE 2	DEMAND VOLUME (VPH)	2468	20.
LINE 4	CRUISE SPEED (MPH)	28	28
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0198	0.0198
LINE 6.1	NUMBER OF LANES	3	2
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	Θ.	0
LINE 6.4	DEMAND VOLUME (VPH)	Θ.	⊕.
LINE 6.5	SIGNAL CYCLE LENGTH (S)	Θ	
LINE 6.6	GREEN PHASE LENGTH (S)	⊕ .	Θ.
LINE 6.7	CAPACITY (VPH)	0	336
LINE 6.8	PROPORTION OF VEHICLES THAT STOP	Θ Θ	0.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	Θ.Θ	Θ.Θ
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	0 0	0 06
LINE 8.0	LENGTH OF QUEUE (M/LANE)	0 0	0 14
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0 0	0 68
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.0	0 103
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	0 034
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 0	0 001
LINE 13.	LENGTH OF ACC AND DEC. (M)	0.0	7 0 1
LINE 14.	LENGTH FOR EXCESS EMISSIONS (M)	0 0	140 2
LINE 15.	IDLING EMISSION RATE (G/S)	0.0	-0 007
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0 0	0 0003
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	⊙ ⊙	0 0001
LINE 18.	FREE-FLOW EMISSION RATE (G/S-M)	0.0136	0 0001

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION OLIVER STREET & PURCHASE STREET CASE # 2 YEAR: 1990 AVERAGING TIME: 8-HOUR PS LINE 1 ROAD SEGMENT ID 05 LINE 2 DEMAND VOLUME (VPH) 1851 12 CRUISE SPEED (MPH) LINE 4 35 30 FREE-FLOW EMISSIONS (G-VEH/M) I THE 5 0 0111 0.0132 3 2 LINE 6.1 NUMBER OF LANES LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) 0 LINE 6.4 DEMAND VOLUME (VPH) 0 0 LINE 6 5 SIGNAL CYCLE LENGTH (S) 0 LINE 6.6 GREEN PHASE LENGTH (S) 0 CAPACITY (VPH) LINE 6.7 0 425 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 0 0 0 0 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0 0 0 LINE 7.0 AVERAGE NUMBER OF VEHICLES IN QUEUE 0 0 03 LINE 8.0 LENGTH OF QUEUE (M/LANE) 0 0 0 06 LINE 9.0 AVERAGE EXCESS RUNNING TIME (S/VEH) 0 0 0 25 LINE 10. EMISSIONS FROM ACCELERATION (G/VEH-M) 0 0 LINE 11. EMISSIONS FROM DECELERATION (G/VEH-M) 0.0 0 031 LINE 12 EMISSION RATE FOR ACC AND DEC. (G/M-S) 0.0 0 000 LINE 13. LENGTH OF ACC AND DEC. (M) 0 0 80 5 LINE 14. LENGTH FOR EXCESS EMISSIONS (M) G G 160 9 LINE 15. IDLING EMISSION RATE (G/S) 0 0 -0 005 AVERAGE EMISSION RATE (G/S-M) 0 0 0002 LINE 16. ADJUSTED EXCESS EMISSION RATE (G/S-M) 0 0001 LINE 17 0 0

0 0057 0 0000

LINE 18 FREE-FLOW EMISSION RATE (G/S-M)

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION: OLIVER STREET & PURCHASE STREET CASE # 3 YEAR: 1990 AVERAGING TIME: 1-HOUR LINE 1 ROAD SEGMENT ID OS DEMAND VOLUME (VPH) 50 LINE 2 2628 LINE 4 CRUISE SPEED (MPH) 28 28 LINE 5 FREE-FLOW EMISSIONS (G-VEH/M) 0 0198 0 0198 LINE 6.1 NUMBER OF LANES 3 LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) Θ Θ LINE 6 4 DEMAND VOLUME (VPH) LINE 6.5 SIGNAL CYCLE LENGTH (S) 0 LINE 6.6 GREEN PHASE LENGTH (S) 0. Θ LINE 6.7 CAPACITY (VPH) 0 315 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 0 0 0.0 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0.0 9.0 LINE 7.0 AVERAGE NUMBER OF VEHICLES IN QUEUE 0 0 0 19 LINE 8.0 LENGTH OF QUEUE (M/LANE) 0.0 0 41 LINE 9.0 AVERAGE EXCESS RUNNING TIME (S/VEH) 0.0 2 16 LINE 10. EMISSIONS FROM ACCELERATION (G/VEH-M) 0.0 0 . 103 LINE 11 EMISSIONS FROM DECELERATION (G/VEH-M) 0.0 0.034 LINE 12. EMISSION RATE FOR ACC. AND DEC. (G/M-S) 0 0 0.002 LINE 13. LENGTH OF ACC. AND DEC. (M) 0.0 70 1 LENGTH FOR EXCESS EMISSIONS (M) 0 0 140 2 LINE 14. IDLING EMISSION RATE (G/S) 0 0 -0.012 LINE 15. LINE 16 AVERAGE EMISSION RATE (G/S-M) 0 0 0 0009

LINE 17 ADJUSTED EXCESS EMISSION RATE (G/S-M) 0.0 0 0004

LINE 18. FREE-FLOW EMISSION RATE (G/S-M) 0.0145 0 0003

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MOD	DEL - WOR	KSHEET #2
INTERSECTION OLIVER STREET & PURCHASE STREET CASE # 3 YEAR 1990 AVERAGING TIME 8-HOUR		
LINE 1 ROAD SEGMENT ID	PS	05
LINE 2 DEMAND VOLUME (VPH)	1917	30
LINE 4 CRUISE SPEED (MPH)	35	30
LINE 5 FREE-FLOW EMISSIONS (G-VEH/M)	0 0111	0 0132
LINE 6.1 NUMBER OF LANES	3	2
LINE 6 3 CAPACITY SERVICE VOLUME (VPH OF GREEN)	Θ	0.
LINE 6 4 DEMAND VOLUME (VPH)	Θ	Θ
LINE 6.5 SIGNAL CYCLE LENGTH (S)	50	
LINE 6.6 GREEN PHASE LENGTH (S)	0	Θ
LINE 6 7 CAPACITY (VPH)	0	406
LINE 6.8 PROPORTION OF VEHICLES THAT STOP	0 0	Θ Θ
LINE 6 9 NUMBER OF VEHICLES THAT STOP PER CYCLE	⊕ ⊕	Θ.Θ
LINE 7 0 AVERAGE NUMBER OF VEHICLES IN QUEUE	0.0	⊕ ⊕8
LINE 8 0 LENGTH OF QUEUE (M/LANE)	Θ Θ	0.17
LINE 9 0 AVERAGE EXCESS RUNNING TIME (S/VEH)	Θ Θ	0.71
LINE 10 EMISSIONS FROM ACCELERATION (G/VEH-M)	0 0	0 100
LINE 11. EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	0 031
LINE 12 EMISSION RATE FOR ACC AND DEC. (G/M-S)	0 0	0 001
LINE 13 LENGTH OF ACC AND DEC. (M)	0 0	80.5
LINE 14 LENGTH FOR EXCESS EMISSIONS (M)	9 0	160 9
LINE 15 IDLING EMISSION RATE (G/S)	0 0	-0.011
LINE 16 AVERAGE EMISSION RATE (G/S-M)	⊙	9 9995
LINE 17 ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	0 0001
LINE 18 FREE-FLOW EMISSION RATE (G/S-M)	0 0059	0 0001

Intersection Oliver And Purchase Street

Case # 1 Year 1984 Averaging Time | Hour

Line No. Sy	/mbol	Input/Units	E	Traffic Stream
2 3 4 5 6	SC U O X Yu Yd	Stability Class Wind Speed (m s ⁻¹) Wind-Road Angle (deg) Lateral Distance (m) Maximum Longitudinal Distance (m) Minimum Longitudinal Distance (m) Initial Dispersion (m)	1.0 4 15 NA NA 5.0	86 10 29 0
	Qe Qf	Excess Emissions Rate (gm ⁻¹ s ⁻¹) Free Flow Emissions Rate (gm ⁻¹ s ⁻¹) Street Canyon? Yes or No DISPERSION ANALYSIS	.000 .0134 No	.0015
	uq ⁻¹ qf	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow Enter Line 9	690 x.0134	145 x . 0015 x x
	xυ υ x	Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions	9.2	· · · · · · · · · · · · · · · · · · ·
14	Qe XU U	Normalized Concentration (For Yu) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration—"Maximum Queue"	NA .0000	90
16 X	uq ⁻¹ Qe xu	Normalized Concentration (For Yd) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹)	NA	0 × • 0023 × ×
	υ x	Enter Line 2 CO Concentration—"Imaginery Queue"	, 0.0	. 0.0
	x x	CO (mg m ⁻⁵) Total CO Concentration (ppm) Total	9.2	0.4
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the Ground)
22 23	z x * x *	Height of Receptor (m) z-Correction Factor CO Concentration at Height z (mg m ⁻³) CO Concentration at Height z (ppm)		

8.3 ppm

WORKSHEET 5 - INTERSECTION CO DISPERSION ANALYSIS

Intersection	Oliver	And Purchas	e Street	
Case #	Year	1984	Averaging Time 8	Hour

Line No. Symbol	Input/Units	PS Traffic Stream
1 SC	Stability Class	D
2 U	Wind Speed (m s ⁻¹)	1.6
3 ⊖	Wind-Road Angle (deg)	4 86
4 x	Lateral Distance (m)	15 10
5 Yu	Maximum Longitudinal Distance (m)	NA 29
6 Yd	Minimum Longitudinal Distance (m)	NA 0
7 ° zo	Initial Dispersion (m)	5.0
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	8000.000
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0053 .0005
9a	Street Canyon? Yes or No	No
	DISPERSION ANALYSIS	
10 ×uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	690 145
Qf	Enter Line 9	×,0053 × · 0005 × ×
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	+ 1.6 + + +
12 X	CO Concentration (mg m ⁻³) Through	
	Emissions	2.3 0.05
13 ×uq ⁻¹	Normalized Concentration (For Yu)	NA 90
Qe	Enter Line 8	.000 .008
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.6
15 X	CO Concentration-"Maximum Queue"	0.0 0.04
16 XUQ ⁻¹	Normalized Concentration (For Yd)	NA O
Qe	Enter Line 8	x.0000 x.0008 x x
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.6
18 X	CO Concentration—"Imaginery Queue"	+ 0, 0 + 0, 0 + +
19 X	CD (mg m ⁻³) Total	2.3 0.09
20 X	CO Concentration (ppm) Total	2.0 0.08
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m Above the Ground)
21 z	Height of Receptor (m)	
22	z-Correction Factor	
23 X *	CO Concentration at Height z (mg m ⁻³)	
24 X	CD Concentration at Height z (ppm)	
	, , , , , , , , , , , , , , , , , , , ,	

2.1 Ppm

Intersection Oliver And Purchase Street

Case # 2 Year 1990 Averaging Time 1 Hour

Line No. Symbol	Input/Units	PS OS
1 SC	Stability Class	D
2 U	Wind Speed (m s ⁻¹)	1.0
3 ⊖	Wind-Road Angle (deg)	4 86
4 x	Lateral Distance (m)	15 7
5 Yu	Maximum Longitudinal Distance (m)	NA 29
6 Yd	Minimum Longitudinal Distance (m)	NA 0
7 °z0	Initial Dispersion (m)	5.0
5 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.000 .0001
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0136 . 0001
9a	Street Canyon? Yes or No	NO
	DISPERSION ANALYSIS	
10 ×UQ ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	690 150
Qf	Enter Line 9	x.0136 x.001 x x
11 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)	
U	Enter Line 2	+ 1.0 + + +
12 X	CO Concentration (mg m ⁻³) Through	9.4 0.02
	Emissions	4.4 0.02
13 ×uq ⁻¹	Normalized Concentration (For Yu)	NA 100
Qe	Enter Line 8	.0000 .0001
14 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)	
U	Enter Line 2	1.0
15 X	CO Concentration-"Maximum Queue"	0 0.01
16 XUQ ⁻¹	Normalized Concentration (For Yd)	NA O
. Qe	Enter Line 8	x x x x
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.0
18 X	CO Concentration-"Imaginery Queue"	+ <u> </u>
19 X	CO (mg m ⁻³) Total	9.4 0.03
20 X	CO Concentration (ppm) Total	8.2 0.03
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m Above the Ground)
21 z	Height of Receptor (m)	
22	z-Correction Factor	
23 X "	CO Concentration at Height z (mg m ⁻³)	
24 X ~	CO Concentration at Height z (ppm)	

8.Zppm

WORKSHEET 5 - INTERSECTION CO DISPERSION ANALYSIS

Intersection_	Oliver		chase Street
Case # 2	Year	1990	Averaging Time 8 Hour

			Claying The	_
Line No.	Symbol	Input/Units	Ps Traffic Stream	
1	SC	Stability Class	D	
2	U	Wind Speed (m s ⁻¹)	1.6	
3	Θ	Wind-Road Angle (deg)	4 86	
4	×	Lateral Distance (m)	15 7	
5	Yu	Maximum Longitudinal Distance (m)	NA 29	
6	Yd	Minimum Longitudinal Distance (m)	NA O	
7		Initial Dispersion (m)	5.0	
8	zo Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0.000 .0001	
9	QF QF	Free Flow Emissions Rate (gm s)	.0057 .0000	
	ŲI	-	No	
9a		Street Canyon? Yes or No		
		DISPERSION ANALYSIS		
10	×∪Q ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹)	100	
	25	Free Flow	690 150	
	Qf	Enter Line 9	x.0057 x .000 x x	
11	ΧU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	÷ 1.6 ÷ ÷ ÷	
12	X	CO Concentration (mg m ⁻³) Through Emissions	2.5 0.0	
13	xuq ⁻¹	Normalized Concentration (For Yu)	NA 100	
	Qe	Enter Line 8	1000 . 0000	
14	XU	Normalized Concentration (mg m ⁻² s ⁻¹)	-000 -000	
14	IJ	Enter Line 2	1.6	
15	х		0 .01	
15	Α	CO Concentration-"Maximum Queue"		
16	xuq ⁻¹	Normalized Concentration (For Yd)	NA O	
	Qe	Enter Line 8	x x x	
17	ХU	Normalized Concentration (mg m ⁻² s ⁻¹)		
	U	Enter Line 2	1.6	
18	χ	CO Concentration-"Imaginery Queue"	+ 0 + 0 + +	
10	v	m /3\	2.5 0.01	
19	X	CO (mg m ⁻³) Total		2 -
20	Х	CO Concentration (ppm) Total	2.2 0.01	2.2pp
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m Above the Ground)	
21	z	Height of Receptor (m)		
22		z-Correction Factor		
23	X *	CO Concentration at Height z (mg m ⁻³)		
24	x -	CO Concentration at Height z (ppm)		

Intersection Oliver And Purchase Street

Case # 3 Year 1990 Averaging Time | Hour

Line No. Symbol	Input/Units	Traffic Stream PS OS
1 SC 2 U 3 Θ 4 x 5 Yu 6 Yd 7 σ 20 8 Qe 9 Qf 9a	Stability Class Wind Speed (m s ⁻¹) Wind-Road Angle (deg) Lateral Distance (m) Maximum Longitudinal Distance (m) Minimum Longitudinal Distance (m) Initial Dispersion (m) Excess Emissions Rate (gm ⁻¹ s ⁻¹) Free Flow Emissions Rate (gm ⁻¹ s ⁻¹) Street Canyon? Yes or No	D 1.0 4 86 15 7 NA 29 NA 0 5.0 .0000 .0004 .0145 .0003 NO
	DISPERSION ANALYSIS	
10 ×UQ ⁻¹ Qf 11 ×U U 12 ×	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow Enter Line 9 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2 CO Concentration (mg m ⁻³) Through Emissions	690 150 ×.0145 ×.0003 × × ÷ 1.0 ÷ ÷ ÷ 10.0 0.05
13 XUQ ⁻¹ Qe 14 XU	Normalized Concentration (For Yu) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹)	NA 100 ,000 ,0004
U 15 X	Enter Line 2 CO Concentration—"Maximum Queue"	0.0 0.04
16 XUQ ⁻¹ Qe 17 XU U	Normalized Concentration (For Yd) Enter Line 8 Normalized Concentration (mg m ⁻² s ⁻¹) Enter Line 2	NA O ×.0000 ×.0004 × ×
19 X 20 X	CO Concentration-"Imaginery Queue" CO (mg m ⁻³) Total CO Concentration (ppm) Total	10.0 0.09 8.7 0.08
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m Above the Ground)
21 z 22 23 x 2 24 x 2	Height of Receptor (m) z-Correction Factor CO Concentration at Height z (mg m ⁻³) CO Concentration at Height z (ppm)	

8.8ppm

Intersection Oliver And Purchase Streets

Case # 3 Year 1990 Averaging Time 8 Hour

Line No. Symbol Input/Units Traffic Stream OS	
1 SC Stability Class D	
2 U Wind Speed (m s ⁻¹)	
3 0 Wind-Road Angle (deg) 4 86	
4 x Lateral Distance (m) 15 7	
5 Yu Maximum Longitudinal Distance (m) NA 29	
6 Yd Minimum Longitudinal Distance (m) NA O	
7 ° zo Initial Dispersion (m) 5.0	
8 Qe Excess Emissions Rate (gm ⁻¹ s ⁻¹) .0000 .000	
9 Qf Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	
9a Street Canyon? Yes or No NO	
DISPERSION ANALYSIS	
10 ×UQ ⁻¹ Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow 690 150	
Qf Enter Line 9 $\times \cdot \infty 59 \times \cdot \infty$	x
11 XU Normalized Concentration (mg m ⁻² s ⁻¹)	
U Enter Line 2 ÷ 1.6 ÷ +	<u>+</u>
12 X CO Concentration (mg m ⁻³) Through	
Emissions 2.5 0.02	
13 XUQ ⁻¹ Normalized Concentration (For Yu) NA 100	
Qe	
14 XU Normalized Concentration (mg m ⁻² s ⁻¹)	
U Enter Line 2 1.6	
15 X COncentration—"Maximum Queue" C.O O.O!	
	·
16 XUQ ⁻¹ Normalized Concentration (For Yd) NA O	
Qe	x
17 XU Normalized Concentration (mg m ⁻² s ⁻¹)	
U Enter Line 2	
18 X CO Concentration-"Imaginery Queue" ; O.O , O.O ,	ŧ
19 x $(mg m^{-3})$ Total $2.5 0.03$	
20 x CO Concentration (ppm) Total 2.2 0.03	
OPTIONAL z-CORRECTION (Heights Other than 1.8m Above the Ground)	
21 z Height of Receptor (m)	
22 z-Correction Factor	
23 X CO Concentration at Height z (mg m ⁻³)	
24 X CO Concentration at Height z (ppm)	

12.2ppm

Intersection	Northern	Ave	And At	lantic	Ave
Case #	Year 1984				

1.	Road segment or intersection approach identification	AN NW
2.	Observed 1-hr volume (vph)	2022 1478
	Observed 8-hr volume (vph)	1597 1079
	Projected 1-hr peak demand (vph)	
	Projected 8-hr peak demand (vph)	
3.	Percentage cold starts	50/20.6
4.	Percentage trucks and buses	3.8
5.	Metropolitan population	
6.	Slope	
7.	Free-flow parameters	
	Number of lanes	34
	Average lane width (ft)	18
	Design speed (mph) (14-/84r)	24/29 21/33
	Highway type (see Figures 2-5)	Urban Artery
8.	Intersection parameters	1
	Intersection designation	
	Approach width (ft)	
	Percentage right turns	15 100
	Percentage left turns	0
	Type control and description of	
	signal controller	STOP SIGN
9.	Area source parameters	
	Parking lot gate designation	
	Projected 1-hr peak entrance demand (vph)	
	Projected 1-hr peak exit demand (vph)	
	Projected 8-hr peak entrance demand (vph)	
	Projected 8-hr peak exit demand (vph)	
	Parking lot area (m²)	_
	Parking lot capacity (veh)	_
	Running time required to access auxiliary parking (s)	_
	Facility emptying time	_
	Average cars per stall	_
	Average area per stall (m ²)	_

Note: The AN
volumes contain
the expression
off-ramp traffic
which merges
into Atlantic Are.
before the intersection

Intersection Northern Ave And Atlantic Ave Case 1 2 Year 1990

1.	Road segment or intersection approach identification	AN	NN	RE
2.	Observed 1-hr volume (vph)			
	Observed 8-hr volume (vph)			
	Projected 1-hr peak demand (vph)	1784_	1825	643
	Projected 8-hr peak demand (vph)	1409_	1332	508
3.	Percentage cold starts	50/	20.6	
4.	Percentage trucks and buses		<u> </u>	
5.	Metropolitan population			
6.	Slope			
7.	Free-flow parameters			
	Number of lanes	4_	3	_2
	Average lane width (ft)	12_	15	20
	Design speed (mph) 2	4/29	21/33	24/29
	Highway type (see Figures 2-5)		ton Arte	rial_
8.	Intersection parameters			
	Intersection designation			
	Approach width (ft)			
	Percentage right turns	47_	100	0
	Percentage left turns	<u>o</u> _	o	_ 0
	Type control and description of			
	signal controller		Signal	
9.	Area source parameters		9	
	Parking lot gate designation			
	Projected 1-hr peak entrance demand (vph)			
	Projected 1-hr peak exit demand (vph)			
	Projected 8-hr peak entrance demand (vph)			
	Projected 8-hr peak exit demand (vph)			
	Parking lot area (m ²)	_		
	Parking lot capacity (veh)	_		
	Running time required to access auxiliary parking (s)	_		
	Facility emptying time	_		
	Average cars per stall			
	Average area per stall (m ²)	_		

Rampleff turn has no conflicte

Intersection Northern Ave And Atlantic Ave
Case # 3 Year 1990

1.	Road segment or intersection approach identification	AN_	NN	RE_
2.	Observed 1-hr volume (vph)			
	Observed 8-hr volume (vph)			
	Projected 1-hr peak demand (vph)	1863	1825	643
	Projected 8-hr peak demand (vph)	472	1332	508
3.	Percentage cold starts	20/	20.6	
4.	Percentage trucks and buses	3.	8	
5.	Metropolitan population			
6.	Slope		. — — –	
7.	Free-flow parameters			
	Number of lanes	4_	3	
	Average lane width (ft)	12_	15	_ 20
	Design speed (mph)	24/29	21/33	24/29
	Highway type (see Figures 2-5)	_U_	ban A	rtenal
8.	Intersection parameters			
	Intersection designation			
	Approach width (ft)			
	Percentage right turns	17_	. चळ −	
	Percentage left turns	0_		
	Type control and description of			
	signal controller			
9.	Area source parameters			
	Parking lot gate designation			
	Projected 1-hr peak entrance demand (vph)			
}	Projected 1-hr peak exit demand (vph)			
	Projected 8-hr peak entrance demand (vph)		. — — -	
	Projected 8-hr peak_exit demand (vph)			
	Parking lot area (m²)			
	Parking lot capacity (veh)			
	Running time required to access auxiliary parking (s)	_		
	Facility emptying time			
	Average cars per stall			
	Average area per stall (m ²)	_		
<u> </u>				

Intersection Northern Ave And Atlantic Ave

Case # 1 Year 1984

Step	Symbol	Input/Units		
1	1	Road segment (or approach) designation	AN	NN
2		Free flow capacity computation:		
2.1	Mg	Number of lanes		
2.2	We	Adjustment for lane width (Table B-1)		
2.3	Tf	Adjustment for trucks (Table B-2)		
2.4	C _i	Free flow capacity		
3	_	Signalized intersection capacity:		
3.1	j	Green signal phase identification		
3.2	Wai	Approach width with parking (ft)		
3.3	_	Percent right turners		
3.4		Percent left turners		
3.5		Metropolitan area size		
3.6	Cs _{i,j}	Capacity service volume (vph or green)		
4	-73	Signalized intersection green phase and cycle length:		
4.1	v _{i,j}	Demand Volume for approach and phase		
4.2	V _{i.j} /Cs _{i.j})	Volume to green capacity ratio		
4.3	, , , ,	Approximate G/Cy		
4.4	<pre>pmax(vi, fcsi,j)</pre>	Sum of the maximum V/C ratios for each signal phase		
4.5	Су	Signal cycle time (sec)		
4.6	Gj	Green phase length		
	Gj/Cy	Green phase to cycle time ratio		
4.8	c _{i,j}	Capacity for approach i phase j		
5	-73	Two-way stop, two-way yield or uncontrolled intersection:		
5.1	V _m +V _n	Major street two-way volume	1710/135	
5.2	Ci	Cross street capacity (14-184-)		1857/2194
6		Four-way stop intersections:		
6.1	Vi	Approach volume		
6.2	Spi	Demand split on cross streets		
6.3	ci	Capacity of approach		
7	ci	Approach capacity [C _{i,j}		
		5.2 for a four-way stop or		
		6.3 for a two-way stop		

Northern Ave	1- H		8-4	bur
Lane No.	Vm+Va	C;	VM+Vn	Ci
,	1120	568	885	622
2	1378	489	1089	578
3	1710	400	1351	497
4	1710	400	1351	497

Intersection Northern Ave And Atlantic Ave

Case # 2, 3 Year 1990

Step	Symbol	Input/Units	
1 1	1	Road segment (or approach) designation	AN NN RE
2		Free flow capacity computation:	
2.1	м,	Number of lanes	
	We	Adjustment for lane width (Table B-1)	
2.3		Adjustment for trucks (Table B-2)	
2.4 (*	Free flow capacity	
3	1	Signalized intersection capacity:	
3.1	j	Green signal phase identification	AD_C_B
	Wa,	Approach width with parking (ft)	4 12 _ 53 _ 48
3.3	1	Percent right turners	0 100 100 0
3.4		Percent left turners	00000
3.5		Metropolitan area size	
3.6	Cs.	Capacity service volume (vph or green)	4800 1000 5800 5400
4	1, J	Signalized intersection green phase and cycle length:	
4.1	V _{i,j}	Demand Volume for approach and phase	
4.2	v _{i.1} /Cs _{i.1})	Volume to green capacity ratio	
	approx G/Cy	Approximate G/Cy	
4.4	<pre>Imax(V_{i,j}Cs_{i,j})</pre>	Sum of the maximum V/C ratios for each signal phase	
4.5	Су	Signal cycle time (sec)	
4.6	Gj	Green phase length	
4.7	Gj/Cy	Green phase to cycle time ratio	
4.8	c _{i,j}	Capacity for approach i phase j	
5	لو≟	Two-way stop, two-way yield or uncontrolled intersection:	
5.1	V _m +V _∩	Major street two-way volume	
5.2		Cross street capacity	
6	•	Four-way stop intersections:	
6.1	V	Approach volume	
6.2	· • .	Demand split on cross streets	
6.3	Ci	Capacity of approach	
7	c _i	Approach capacity Ci.;	
	•	5.2 for a four-way stop or	
		6.3 for a two-way stop	

OA Atlantic Ave 30 s.

OB Offransp 25 s.

and Atlantic
Right Turn

Oc Northern Ave. 35 s

and Atlantic
Right Turn

Total

90 s.

Signal times assume traffic mores on amber $\Phi D = \Phi A + \Phi B + \Phi c = 905$. Parking on east side of Atlantic Are. Reduces Approach Capacity For Right Turns. EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2

INTERSECTION: NORTHERN AVE AND ATLANTIC AVE
CASE # 1 YEAR 1984 AVERAGING TIME: 1-HOUR

CHOL #	TERR 1304 AVERAGING TIME 1-MOUR		
LINE 1	ROAD SEGMENT ID	AN	NW
LINE 2	DEMAND VOLUME (VPH)	2022.	1478
LINE 4	CRUISE SPEED (MPH)	24	21
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0480	0 0541
LINE 6 1	NUMBER OF LANES	3	4
LINE 6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	0	0
LINE 6 4	DEMAND VOLUME (VPH)	0	0
LINE 6.5	SIGNAL CYCLE LENGTH (S)	0	
LINE 6 6	GREEN PHASE LENGTH (S)	0	Θ.
LINE 6 7	CAPACITY (VPH)	0	1857
LINE 6 8	PROPORTION OF VEHICLES THAT STOP	0 0	0.0
LINE 6 9	NUMBER OF VEHICLES THAT STOP PER CYCLE	Θ.Θ	0 0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	Θ.Θ	3.90
LINE 8.0	LENGTH OF QUEUE (M/LANE)	⊙ ⊝	4 24
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	0 0	7 56
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 0	0 125
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0.0	0 044
LINE 12	EMISSION RATE FOR ACC AND DEC. (G/M-S)	0 0	0 069
LINE 13	LENGTH OF ACC AND DEC. (M)	0 0	39 4
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	0 0	78 9
LINE 15	IDLING EMISSION RATE (G/S)	0 0	0 350
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0	0 0391
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	0 0431
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0270	0 0222

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2
INTERSECTION: NORTHERN AVE AND ATLANTIC AVE
CASE # 1 YEAR: 1984 AVERAGING TIME: 8-HOUR

LINE	1	ROAD SEGMENT ID	AN	NW
LIN	2	DEMAND VOLUME (VPH)	1597	1079
LINE	4	CRUISE SPEED (MPH)	29	33
LINE	5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0 26 6	0 0229
LINE	6 1	NUMBER OF LANES	3	4
LINE	6.3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	Θ.	0
LINE	6 4	DEMAND VOLUME (VPH)	0	Θ.
LINE	6.5	SIGNAL CYCLE LENGTH (S)	0	
LIN	6 6	GREEN PHASE LENGTH (\$)	0	0.
LINE	6 7	CAPACITY (VPH)	Θ.	2194
LINE	6.8	PROPORTION OF VEHICLES THAT STOP	Θ Θ	0 0
LINE	6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	0.0	0.0
LINE	7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	⊕ ⊕	0.97
LINE	8 0	LENGTH OF QUEUE (M/LANE)	0 0	1.05
LINE	9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	Θ.Θ	1.59
LINE	10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0.0	0.096
LIN	11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 0	0 029
LIN	12	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 0	0 037
LIN	13	LENGTH OF ACC AND DEC (M)	0 0	97.4
LIN	14	LENGTH FOR EXCESS EMISSIONS (M)	0 0	194 7
LIN	15	IDLING EMISSION RATE (G/S)	0.0	-0 382
LIN	16	AVERAGE EMISSION RATE (G/S-M)	0 0	0 0168
LIN	17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0	0 0121
LIN	18	FREE-FLOW EMISSION RATE (G/S-M)	0 0118	0 0069

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION NORTHERN AVE AND ATLANTIC AVE CASE # 2 YEAR 1990 AVERAGING TIME 1-HOUR LINE 1 ROAD SEGMENT ID AN NW DEMAND VOLUME (VPH) 1825 643 LINE 2 1784 LINE 4 CRUISE SPEED (MPH) 24 21 24 FREE-FLOW EMISSIONS (G-VEH/M) LINE 5 0 0232 0 0261 0 0232 LINE 6.1 NUMBER OF LANES 3 5800 5400 0 LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) 1825 643 LINE 6.4 DEMAND VOLUME (VPH) LINE 6.5 SIGNAL CYCLE LENGTH (S) 90 LINE 6 6 GREEN PHASE LENGTH (S) 25 LINE 6.7 CAPACITY (VPH) 2600 2256 1500 LINE 6.8 PROPORTION OF VEHICLES THAT STOP 9 963 0 892 0 820 9 9 9 9 0 9 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 35.523 40 683 13 179 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE 0.0 0.0 0.0 LINE 7 0 AVERAGE NUMBER OF VEHICLES IN QUEUE 4 24 2.19 0 75 41.01 65 14 30 30 LINE 8.0 LENGTH OF QUEUE (M/LANE) LINE 9 0 AVERAGE EXCESS RUNNING TIME (S/VEH) 26 92 31 29 28 45 LINE 10 EMISSIONS FROM ACCELERATION (G/VEH-M) 0 113 0 125 0 113 EMISSIONS FROM DECELERATION (G/VEH-M) 0 039 0 044 0 039 LINE 11 EMISSION RATE FOR ACC AND DEC (G/M-S) 0 060 LINE 12 0 076 LENGTH OF ACC AND DEC (MI LINE 13 51.5 39 4 LINE 14 LENGTH FOR EXCESS EMISSIONS (M) 103 0 78 9 103 0 LINE 15 IDLING EMISSION RATE (G/S) 2 784 3 488 1 973 LINE 16 AVERAGE EMISSION RATE (G/S-M) 0 0570 0 0824 0 0215 LINE 17 ADJUSTED EXCESS EMISSION RATE (G/S-M) 0 0330 6 0492 0 0125

0 0115 0 0132 0 0041

LINE 18 FREE-FLOW EMISSION RATE (G/S-M)

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2

INTERSECTION: NORTHERN AVE AND ATLANTIC AVE
CASE # 2 YEAR: 1990 AVERAGING TIME: 8-HOUR

CASE # 2	TEAR: 1990 AVERAGING TIME 0-HUDE			
LINE 1	ROAD SEGMENT ID	AN	NW	RE
LINE 2	DEMAND VOLUME (VPH)	1409	1332.	508.
LINE 4	CRUISE SPEED (MPH)	29	33	29
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0.0137	0.0118	0 0137
LINE 6 1	NUMBER OF LANES	4	3	2
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	48 00 . 10 00	5800 0	5400 0
LINE 6 4 LINE 6 4	DEMAND VOLUME (VPH)	1166 243	1332 . 0 .	508 .
LINE 6.5	SIGNAL CYCLE LENGTH (S)	90		
FINE 6 6	GREEN PHASE LENGTH (S)	30 90	35 . B	25 0 .
LINE 6 7	CAPACITY (VPH)	26 00	2256	1500
FINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	0. 881 0.0	0 793 0 0	9. 797 9.0
LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	25 669 ⊕ . ⊕	26 417 0 0	10 125 0.0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	1 18	1 44	0.51
LINE 8.0	LENGTH OF QUEUE (M/LANE)	29.20	40 40	23 . 13
LINE 9 0	AVERAGE EXCESS RUNNING TIME (S/VEH)	23 50	24 . 12	27 14
LINE 10	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 101	0 096	0 101
LINE 11	EMISSIONS FROM DECELERATION (G/VEH-M)	0 032	0 029	0.032
LINE 12	EMISSION RATE FOR ACC AND DEC (G/M-S)	0.038	0 037	0.015
LINE 13	LENGTH OF ACC AND DEC (M)	75 2	97 4	75.2
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	150 4	194 7	150 4
LINE 15	IDLING EMISSION RATE (G/S)	1 760	1 646	o 76 5
LINE 16	AVERAGE EMISSION RATE (G/S-M)	0 0307	0 0268	0 0126
LINE 17	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0123	0 0107	0 0051
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0054	0 0044	0.0019

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2
INTERSECTION: NORTHERN AVE AND ATHANTIC AVE

CASE # 3	YEAR 1990 AVERAGING TIME 1-HOUR			
LINE 1	ROAD SEGMENT ID	AN	NW	RE
LINE 2	DEMAND VOLUME (VPH)	1863	1825	643
LINE 4	CRUISE SPEED (MPH)	24	21	24
LINE 5	FREE-FLOW EMISSIONS (G-VEH/M)	0 0232	0 0261	0 0232
LINE 6 1	NUMBER OF LANES	4	3	2
LINE 6 3	CAPACITY SERVICE VOLUME (VPH OF GREEN)	4800 1000	58 00	540 0 0
LINE 6.4 LINE 6.4	DEMAND VOLUME (VPH) DEMAND VOLUME (VPH)	1555 308	1825 0	643 0
LINE 6.5	SIGNAL CYCLE LENGTH (S)	9⊙		
LINE 6.6 LINE 6.6	GREEN PHASE LENGTH (S)	30 90	35 0	25
LINE 6.7	CAPACITY (VPH)	26 00	2256	1500
LINE 6.8	PROPORTION OF VEHICLES THAT STOP PROPORTION OF VEHICLES THAT STOP	9 86 9 9	0 892 0 0	0 82 0 0 0
LINE 6.9 LINE 6.9	NUMBER OF VEHICLES THAT STOP PER CYCLE	38 336 0 0	40 683 0.0	13 179 0 0
LINE 7.0	AVERAGE NUMBER OF VEHICLES IN QUEUE	2.53	4 24	0 75
LINE 8.0	LENGTH OF QUEUE (M/LANE)	44 44	65 14	30 30
LINE 9.0	AVERAGE EXCESS RUNNING TIME (S/VEH)	28 19	31 29	28 45
LINE 10.	EMISSIONS FROM ACCELERATION (G/VEH-M)	0 113	0 125	0.113
LINE 11.	EMISSIONS FROM DECELERATION (G/VEH-M)	0 039	0 044	0 039
LINE 12.	EMISSION RATE FOR ACC. AND DEC. (G/M-S)	0 065	0 076	0 022
LINE 13	LENGTH OF ACC AND DEC (M)	51 5	39 4	51 5
LINE 14	LENGTH FOR EXCESS EMISSIONS (M)	103 0	78 9	103 0
LINE 15.	IDLING EMISSION RATE (G/S)	3 075	3 488	1 073
LINE 16.	AVERAGE EMISSION RATE (G/S-M)	0 0622	0 0824	0 0215
LINE 17.	ADJUSTED EXCESS EMISSION RATE (G/S-M)	0 0362	0 0492	C 0125
LINE 18	FREE-FLOW EMISSION RATE (G/S-M)	0 0120	0 0132	0 0041

EPA VOLUME 9 (REVISED) INDIRECT SOURCE GUIDELINE MODEL - WORKSHEET #2 INTERSECTION NORTHERN AVE AND ATLANTIC AVE CASE # 3 YEAR 1990 AVERAGING TIME 8-HOUR ROAD SEGMENT ID LINE 1 RE ΔN NW LINE 2 DEMAND VOLUME (VPH) 1472 1332 508 LINE 4 CRUISE SPEED (MPH) 29 33 FREE-FLOW EMISSIONS (G-VEH/M) LINE 5 0.0137 0.0118 0.0137 LINE 6.1 NUMBER OF LANES 3 LINE 6.3 CAPACITY SERVICE VOLUME (VPH OF GREEN) 5800 5400 LINE 6 4 DEMAND VOLUME (VPH) 1332 LINE 6.5 SIGNAL CYCLE LENGTH (S) 90 30 90 35 25 LINE 6.6 GREEN PHASE LENGTH (S) LINE 6.7 CAPACITY (VPH) 2600 2256 1500 PROPORTION OF VEHICLES THAT STOP 0 **896** 0.0 0.793 LINE 6.8 27.533 26 417 LINE 6.9 NUMBER OF VEHICLES THAT STOP PER CYCLE NUMBER OF VEHICLES THAT STOP PER CYCLE LINE 7.0 AVERAGE NUMBER OF VEHICLES IN QUEUE 1.30 1 44 LINE 8.0 LENGTH OF QUEUE (M/LANE) 31.36 40 40 23.13 LINE 9.0 AVERAGE EXCESS RUNNING TIME (S/VEH) 24 25 24 12 LINE 10. EMISSIONS FROM ACCELERATION (G/VEH-M) 0.101 0 096 LINE 11. EMISSIONS FROM DECELERATION (G/VEH-M) 0 032

0 041

75 2

150 4

0 037

97 4

194 7

1 916 1 646 0 765

0 0331 0 0268 0 0126

0 0056 0 0044 0 0019

0 015

75 2

150 4

EMISSION RATE FOR ACC AND DEC. (G/M-S)

LINE 17. ADJUSTED EXCESS EMISSION RATE (G/S-M) 0.0133 0 0107 0 0051

LINE 13. LENGTH OF ACE AND DEC (M)

LINE 14 LENGTH FOR EXCESS EMISSIONS (M)

LINE 16. AVERAGE EMISSION RATE (G/S-M)

IDLING EMISSION RATE (G/S)

FREE-FLOW EMISSION RATE (G/S-M)

LINE 12.

LINE 15.

LINE 18

Intersection Northern Ave And Atlantic Ave

Case 1 Year 1984 Averaging Time 1 Hour

No.:	Symbol	Input/Units	AN	Traffic Stream	
1	SC	Stability Class	D		
2	U	Wind Speed (m s ⁻¹)	1.0		
3	Θ	Wind-Road Angle (deg)			
4	x	Lateral Distance (m)	38	32	
5	Yu	Maximum Longitudinal Distance (m)	NA	50	
6	Yd	Minimum Longitudinal Distance (m)	NA	0	
7	o zo	Initial Dispersion (m)	5		
8	zo Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0.0	.043/	
9	Qf .	Free Flow Emissions Rate (qm ⁻¹ s ⁻¹)	. 0270	.0222	
9a	Q,	Street Canyon? Yes or No	No		
74		Street carryon: Tes of No	740		
		DISPERSION ANALYSIS			
10	×∪Q ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	195	140	
	Qf	Enter Line 9		× · 0222 ×	x
11	XU	Normalized Concentration (mg $m^{-2}s^{-1}$)			
	U	Enter Line 2	: 1.0	<u>.</u> .	
12	χ	CO Concentration (mg m ⁻³) Through		·	
		Emissions	5,3	3.1	
13	xuq-1	Normalized Concentration (For Yu)	0	124	
	Qe	Enter Line 8	0	.0431	
14	XU	Normalized Concentration (mg m ⁻² s ⁻¹)			
	U	Enter Line 2	1.0		
15	χ	CO Concentration-"Maximum Queue"	0	5.3	
16	xuq ⁻¹	Normalized Concentration (For Yd)	0	0	
	Qe	Enter Line 8	× 0	x, 0431 x	×
17	XU	Normalized Concentration (mg m ⁻² s ⁻¹)			
	U	Enter Line 2	1.0		
18	χ	CD Concentration—"Imaginery Queue"	. 0	. 0	
				·——·	
19	χ	∞ (mg m ⁻³) Total	5.3	8.4	
20	х	CD Concentration (ppm) Total	4.6	7.3	
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the Ground)	
21	z	Height of Receptor (m)			
22		z-Correction Factor			
23	χ "	CO Concentration at Height z (mg m ⁻³)			
24	x *	CO Concentration at Height z (ppm)			

11.9pm

Intersection Northern Are And Atlantic Ave

Case # 1 Year 1984 Averaging Time 8 Hour

Line No. Symbol	Input/Units	AN Traffic Stream
1 SC	Stability Class	<u>D</u>
2 U	Wind Speed (m s ⁻¹)	1.6
3 B	Wind-Road Angle (deg)	30 60
4 x	Lateral Distance (m)	38 32
5 Yu	Maximum Longitudinal Distance (m)	NA 50
6 Yd	Minimum Longitudinal Distance (m)	NA D
7 °z0	Initial Dispersion (m)	5.0
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	0.0 .0121
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0118 .0069
9a	Street Canyon? Yes or No	No
	DISPERSION ANALYSIS	
10 ×uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	195 140
Of	Enter Line 9	x.01/8 x.0069 x x
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	÷ 1.6 ÷ ÷ ÷
12 X	CO Concentration (mg m ⁻³) Through	
	Emissions	1.4 0.6
13 XUQ ⁻¹	Normalized Concentration (For Yu)	0 124
Qe	Enter Line 8	.0 .0121
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.6
15 X	CO Concentration-"Maximum Queue"	0 0.9
16 XUQ ⁻¹	Normalized Concentration (For Yd)	0 0
Qe .	Enter Line 8	x.0 x.0121 x x
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)	
U	Enter Line 2	1.6
18 X	CO Concentration—"Imaginery Queue"	+_0+_+
		14 16
19 X	CO (mg m ⁻³) Total	1.4 1.5
20 X	CO Concentration (ppm) Total	1,2 1.3
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m Above the Ground)
21 z	Height of Receptor (m)	
22	z-Correction Factor	
23 X	CO Concentration at Height z (mg m ⁻³)	
24 X	CO Concentration at Height z (ppm)	

2.5ppm

Intersection	Northern A	we An	d Atlantic	Ave
Case # 2	Year 1990	Ave	raging Time Hour	

Line			7-001-0		
No. Symbol	Input/Units	AN	Traffic S	RE RE	
1 SC	Stability Class	D			
2 U	Wind Speed (m s ⁻¹)	1.0			
3 ⊖	Wind-Road Angle (deg)	30	60	5	
4 x	Lateral Distance (m)	50	30	34	
5 Yu	Maximum Longitudinal Distance (m)	165	50	178	
6 Yd	Minimum Longitudinal Distance (m)	62	0	75	
7 g	Initial Dispersion (m)	5.0			
8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	. 0330	.0492	. 0125	
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0115	. 0132		
9a	Street Canyon? Yes or No	NO			
	DISPERSION ANALYSIS				
10 ×uq ⁻¹	Normalized Concentration (10 ⁻³ m ⁻¹)	180	150	410	
Qf	Enter Line 9			. 004/ x	
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)				
IJ	Enter Line 2	: 1.0	÷	÷ ÷	
12 X	CO Concentration (mg m ⁻³) Through			_	
	Emissions	2.1	2.0	1.7	
13 ×uq-1	Normalized Concentration (For Yu)	190	110	40	
Qe	Enter Line 8	.0330	.0492	.0125	
14 XU	Normalized Concentration (mg $m^{-2}s^{-1}$)				
U	Enter Line 2	1.0			
15 X	CO Concentration-"Maximum Queue"	6.3	5,4	0.5	
16 × UQ ⁻¹	Normalized Concentration (For Yd)	0			
Qe	Enter Line 8	x	x	<×_	
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)				
U	Enter Line 2	1.0			
18 X	CO Concentration—"Imaginery Queue"	÷0	0	<u>, </u>	
19 X	CO (mg m ⁻³) Total	8.4	7.4	2.2	
20 X	CO Concentration (ppm) Total	7.3	6.4	1.9	
20 X	Co Concentration (ppm) Total	7.5			
	OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the Gi	cound)	
21 z	Height of Receptor (m)				
22	z-Correction Factor				
23 X ″	CO Concentration at Height z (mg m ⁻³)				
24 X	CO Concentration at Height z (ppm)				

15.6 ppm

Intersection Northern Ave And Atlantic Ave

Case # 2 Year 1990 Averaging Time 8 Hour

Line No. Symb	ol Input/Units	AN	Traffic S		
1 50	Stability Class	D	1414	N.L	
2 U	Wind Speed (m s ⁻¹)	1.6			
2 0 3 Θ	Wind-Road Angle (deg)	30	60	-5	
	Lateral Distance (m)	50	30	34	
4 x 5 YL	Maximum Longitudinal Distance (m)	212	50	225	
6 Yo	Minimum Longitudinal Distance (m)	62	0	75 -	
	Initial Dispersion (m)	5.0			
7 o z	Excess Emissions Rate (gm ⁻¹ s ⁻¹)		.0107	0051	
9 Of	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0054		.0019	
9a		NO	10047	10011	
	Street Canyon? Yes or No				
	DISPERSION ANALYSIS				
10 ×u0	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	180	150	410	
Qf	Enter Line 9			× .0019 ×	
11 XL	Normalized Concentration (mg m ⁻² s ⁻¹)				
U	Enter Line 2	: 1.6	÷	+ +	
12 X	CO Concentration (mg m ⁻³) Through			- /	
	Emissions	0.6	0.4	_0.5	
13 XUQ	Normalized Concentration (For Yu)	190	_110_	_60	
Qe	Enter Line 8	.0/23	.0107	.0051_	
14 XL	Normalized Concentration (mg m ⁻² s ⁻¹)				
U	Enter Line 2	1.6			
15 X	CO Concentration-"Maximum Queue"	_1.5_	0.7	0.2	
16 XUG	Normalized Concentration (For Yd)	_0		0	
Qe	Enter Line 8	x	×	xx_	
17 XL	Normalized Concentration (mg $m^{-2}s^{-1}$)				
U	Enter Line 2	1.6			
18 X	CO Concentration—"Imaginery Queue"	÷O	0_	<u> </u>	
19 X	CO (mg m ⁻³) Total	2.1	1.1	0.7	
20 X	CO Concentration (ppm) Total	1.8	1.0	0.6	
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m /	Above the G	round)	
21 z	Height of Receptor (m)				
22	z-Correction Factor				
23 X ¹	CO Concentration at Height z (mg m ⁻³)				
24 X 1	CO Concentration at Height z (ppm)				

3.4 ppm

Intersection Northern Ave And Atlantic Ave.

Case 1 3 Year 1990 Averaging Time 1 Hour

		,					_
Line No.	Symbol	Input/Units	AN	Traffic S	tream RE		
1	SC	Stability Class	D				
2	U	Wind Speed (m s ⁻¹)	1.0				
3	θ	Wind-Road Angle (deg)	30	60	_5		
4	×	Lateral Distance (m)	50	30	34		
5	Yu	Maximum Longitudinal Distance (m)	165	50	178		
6	Yd	Minimum Longitudinal Distance (m)	62	0	75		
7	o zo	Initial Dispersion (m)	5.0				
8	Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0362		.0125		
9	Qf	Free Flow Emissions Rate $(gm^{-1}s^{-1})$.0120	.0132	.0041		.
9a		Street Canyon? Yes or No	No			·	-
		DISPERSION ANALYSIS					
10	xuq−1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	180	150	410		
	Qf	Enter Line 9	x.0120	x . 0132	x.004/	x	
11	ΧU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
	U	Enter Line 2	: 1.0	+	+	÷	
12	х	CO Concentration (mg m ⁻³) Through Emissions	2.2	2.0	1.7		
13	xuq-1	Normalized Concentration (For Yu)	190	110	40		
15	Qe .	Enter Line 8	.0362	. 0492	.0125		•
14	XU	Normalized Concentration (mg m ⁻² s ⁻¹)	.0302	. 0472	.0163		
144	U	Enter Line 2	1.0				
15	x	CO Concentration—"Maximum Queue"	6.9	5.4	0.5		
	.,	CO CONCENCIALIUM PRAXIMUM QUEUE	4.1				.
16	×uq ⁻¹	Normalized Concentration (For Yd)	0		_0_		.
	Qe	Enter Line 8	x	х	х	x	
17	XU	Normalized Concentration (mg $m^{-2}s^{-1}$)					
	U	Enter Line 2	1.0				
18	Х	CO Concentration-"Imaginery Queue"	,_0	<u>+ 0 </u>	+ 0	ŧ	
19	χ	CO (mg m ⁻³) Total	9.1	7.4	2.2		
20	X	CD Concentration (ppm) Total	7.9	6.4	1.9		
		Committee of the control of the cont					
		OPTIONAL z-CORRECTION (Heights Other	r than 1.8m	Above the G	round)		
21	z	Height of Receptor (m)					
22		z-Correction Factor					
23	x ~	CO Concentration at Height z (mg m $^{-3}$)					
24	X T	CO Concentration at Height z (ppm)					

16.2ppm

Intersection Northern Ave And Atlantic Ave
Case # 3 Year 1990 Averaging Time 8 Hour

Line No. Symbol	Input/Units	AN	Traffic S	tream RE	
1 SC	Stability Class	D			
2 U	wind Speed (m s ⁻¹)	1.60			
3 θ	Wind-Road Angle (deg)	30	60	5	
4 x	Lateral Distance (m)	50	30	34	
5 Yu	Maximum Longitudinal Distance (m)	212	50	225	
6 Yd	Minimum Longitudinal Distance (m)	62	0	75	
7 °zo	Initial Dispersion (m)	5			
zo 8 Qe	Excess Emissions Rate (gm ⁻¹ s ⁻¹)	.0133	.0107	.0051	
9 Qf	Free Flow Emissions Rate (gm ⁻¹ s ⁻¹)	.0056		.0019	
9a	Street Canyon? Yes or No	No			
74	302300 021,7010				
	DISPERSION ANALYSIS				
10 ×uq-1	Normalized Concentration (10 ⁻³ m ⁻¹) Free Flow	180	150	410	
Qf	Enter Line 9	× .0054	× .0044	× .0019 ×	
11 XU	Normalized Concentration (mg m ⁻² s ⁻¹)			<u> </u>	
U	Enter Line 2	: 1.6	ŧ	++	
12 X	CO Concentration (mg m ⁻³) Through	0.1	0.4	~	
	Emissions	0.6	0.4	0.5	
13 ×uq ⁻¹	Normalized Concentration (For Yu)	190	110	60	
Qe	Enter Line 8	.0133	.0107	10051	
14 XU	Normalized Concentration (mg m ⁻² s ⁻¹)				
U	Enter Line 2	1.6			
15 X	CO Concentration-"Maximum Queue"	1.6	0.7	0.2	
16 XUQ ⁻¹	Normalized Concentration (For Yd)	0	_0_		
Qe	Enter Line 8	x	x	x x	
17 XU	Normalized Concentration (mg m ⁻² s ⁻¹)				
U	Enter Line 2	1.6			
18 X	CO Concentration-"Imaginery Queue"	, 0	. 0	÷ 0 +	
19 X	CO (mg m ⁻³) Total	2.2	1.1	0.7	
20 X	CO Concentration (ppm) Total	1.9	1.0	0.6	
	OPTIONAL z-CORRECTION (Heights Other	er than 1.8m	Above the G	iround)	
21 z	Height of Receptor (m)				
22	z-Correction Factor				
23 X ~	CO Concentration at Height z (mg m ⁻³)				
24 X	CO Concentration at Height z (ppm)				

3.5 pm

AQ APPENDIX C

PARKING FACILITY WORKSHEETS

WORKSHEET 3 - AREA SOURCE EMISSIONS COMPUTATION

Area Source Existing Parking Lot

Case - 1 Year 1984 Averaging Time 1 Hour

Step	Symbol	Input/Units	Traffic Stream
1	Brt	Base running time	In Out
1.1		Base approach time(s)	0.7
1.2		Base entrance time(s)	
1.3		Base movement-in time(s)	18.8
1.4		Base stop, base start time(s)	
1.5		Base movement-out time(s)	18,8
1.6		Base exit time(s)	
1.7		Base departure time(s)	0.7
1.8		Total base running time(s)	64
2	а	Area of parking lot (m ²)	2865
3	i	Entrance approach identification	In
4	Ve ₁	Entrance demand volume. (vph)	. 20
5	Ce;	Entrance approach capacities (vph)	360*
6	i	Exit approach identification	Out
7	Vx _i	Exit demand volume (vph)	100
8	Cxi	Exit approach capacities (vph)	417**
9	*	Number of parking spaces occupied	
10	F	Emissions (9/s-wh)	. 212 . 750
11	Pc	Capacity of parking lot (veh)	167
12	Rmi	Excess movement-in time(s)	0
13	Fet	Facility emptying time(s)	1442
14		Excess running time	
14.1	Ve _i /Ce _i	Entering volume-to-capacity ratio	.05
	Vx ₁ /Cx ₁		. 24
14.3	Rei	Excess running time entering parking lot	0.6
14.4	Rxi	Excess running time exiting parking lot	2.7
15	Tei	Total entering running time (s/veh)	32.6
16	Rmo	Excess running time moving out of parking stalls (s/veh)	120
17	Txi	Total exiting running time (s/veh)	155
18	Qa	Total emission rate from a parking lot $(g/m^2 - s)$	1.14 (10-3)
19	Qa *	Area source emission rate without the emissions from internal road segment. i	

^{*} Assumes a capacity consistent with an extrance time of 10 seconds per vehicle.

^{**} Cross Street capacity assuming a 4.55 critical gag.

Area Source Existing Parking Lot

Case # 1 Year 1984 Averaging Time 8 Hour

Step	Symbol	Input/Units	Traffic Stream
	Brt	Base running time	In Out
.1		Base approach time(s)	0.7
. 2		Base entrance time(s)	
.3		Base movement-in time(s)	18.8
. 4		Base stop, base start time(s)	10
.5		Base movement-out time(s)	18.8
.6		Base exit time(s)	
. 7		Base departure time(s)	0.7
8.1		Total base running time(s)	64
?	Α	Area of parking lot (m ²)	2865
5	i	Entrance approach identification	In
1	Ve _i	Entrance demand volume. (vph)	. 20
5	Cei	Entrance approach capacities (vph)	360
5	i	Exit approach identification	Out
7	Vx _i	Exit demand volume (vph)	
š	Cxi	Exit approach capacities (vph)	496
•		Number of parking spaces occupied	
0	F	Emissions	.212 . 750
1	Pc	Capacity of parking lot (veh)	167
.2	Rmi	Excess movement-in time(s)	0
.3	Fet	Facility emptying time(s)	1442
.4		Excess running time	
	Ve _i /Ce _i		0.06
4.2	Vx _i /Cx _i	Exiting volume-to-capacity ratio	0.04
4.3	Rei	Excess running time entering parking lot	0.6
4.4	R×i	Excess running time exiting parking lot	0.3
15	Te,	Total entering running time (s/veh)	32.6
16	Rmo	Excess running time moving out of parking stalls (s/veh)	120
17	Tx	Total exiting running time (s/veh)	152
8	Qa	Total emission rate from a parking lot (g/m² - s)	2.35(10-4)
19	Qa'	Area source emission rate without the emissions from internal road segment. i	

Area Source Existing Parking Lot

Case 2 Year 1990 Averaging Time | Hour

Step	Symbol	Input/Units	Traffic Stream
1	Brt	Base running time	In Out
1.1		Base approach time(s)	0.7
1.2		Base entrance time(s)	_5_
1.3		Base movement-in time(s)	18.8
1.4		Base stop, base start time(s)	_10_
1.5		Base movement-out time(s)	18.8
1.6		Base exit time(s)	
1.7		Base departure time(s)	0.7
1.8		Total base running time(s)	64
2	А	Area of parking lot (m ²)	2865
3	1	Entrance approach identification	<u>In</u>
4	Vei	Entrance demand volume. (vph)	. 20
5	Cei	Entrance approach capacities (vph)	360
5	i	Exit approach identification	Out
7	V× _i	Exit demand volume (vph)	100
3	Cxi	Exit approach capacities (vph)	236
9	-	Number of parking spaces occupied	
10	F	Emissions	.109 .312
11	Pc	Capacity of parking lot (veh)	167
12	Rmi	Excess movement-in time(s)	O
13	Fet	Facility emptying time(s)	<u>2547</u>
14		Excess running time	
14.1	Ve _i /Ce _i	Entering volume-to-capacity ratio	.05
14.2	Vx _i /Cx _i	Exiting volume-to-capacity ratio	42
14.3	Rei	Excess running time entering parking lot	0.6
4.4	R×i	Excess running time exiting parking lot	11.2
.5	Tei	Total entering running time (s/veh)	32.6
16	Rmo	Excess running time moving out of parking stalls (s/veh)	211
7	Txi	Total exiting running time (s/veh)	254
18	Qa	Total emission rate from a parking lot $(g/m^2 - s)$	7.75(104)
19	Qa'	Area source emission rate without the emissions from internal road segment. i	

Area Source Existing Parking Lot

Case # 2 Year 1990 Averaging Time 8 Hour

tep	Symbol	Input/Units	Traffic Stream
	Brt	Base running time	In Ord
.1		Base approach time(s)	0.7
. 2		Base entrance time(s)	5
.3		Base movement-in time(s)	18.8
.4		Base stop, base start time(s)	10
. 5		Base movement-out time(s)	18.8
.6		Base exit time(s)	10
.7		Base departure time(s)	0.7
.8		Total base running time(s)	64
	A	Area of parking lot (m ²)	2865
	i	Entrance approach identification	In
	Ve _i	Entrance demand volume. (vph)	. 20
	Cei	Entrance approach capacities (vph)	360
	i -	Exit approach identification	Out
	Vxi	Exit demand volume (vph)	
	Cxi	Exit approach capacities (vph)	330
	7	Number of parking spaces occupied	2.0
0	F	Emissions	. 109 . 312
1	Pc	Capacity of parking lot (veh)	16.1
2	Rmi	Excess movement-in time(s)	0
3	Fet	Facility emptying time(s)	<u>2547</u>
4		Excess running time	
	Ve _i /Ce _i		.05
4.2	Vx _i /Cx _i	Exiting volume-to-capacity ratio	-06
4.3	Rei	Excess running time entering parking lot	0.6
4.4	Rxi	Excess running time exiting parking lot	0.7
5	Te _i	Total entering running time (s/veh)	32.6
6	Rmo	Excess running time moving out of parking stalls (s/veh)	211
7	Txi	Total exiting running time (s/veh)	244
8	Qa	Total emission rate from a parking lot $(g/m^2 - s)$	1.54 (10-4)
9	Qa'	Area source emission rate without the emissions from internal road segment. i	

Area Source IP Parting Garage

Case # 3 Year 1990 Averaging Time | Hour

Step	Symbol	Input/Units	Traffic Stream
l	Brt	Base running time	IN OUT
1.1		Base approach time(s)	0.7
.2		Base entrance time(s)	_5_
1.3		Base movement-in time(s)	109
.4		Base stop, base start time(s)	_10_
. 5		Base movement-out time(s)	93
6		Base exit time(s)	10
. 7		Base departure time(s)	0.7
.8		Total base running time(s)	228
	А	Area of parking lot (m ²)	
3	i	Entrance approach identification	In
	Vei	Entrance demand volume. (vph)	. 85
	Cei	Entrance approach capacities (vph)	720*
	i	Exit approach identification	Out
,	Vx _i	Exit demand volume (vph)	357
	Cx;	Exit approach capacities (vph)	368**
	•	Number of parking spaces occupied	
.0	F	Emissions	.109 .312
1	Pc	Capacity of parking lot (veh)	800
2	Rmi	Excess movement-in time(s)	0.
3	Fet	Facility emptying time(s)	8000
4		Excess running time	
4.1	Ve ₁ /Ce ₁	Entering volume-to-capacity ratio	.12
	Vx ₁ /Cx ₁		.97
4.3	Rei	Excess running time entering parking lot	.67
4.4	R×i	Excess running time exiting parking lot	196
5	Tei	Total entering running time (s/veh)	115
6	Rmo	Excess running time moving out of parking stalls (s/veh)	
7	Txi	Total exiting running time (s/veh)	310
8	Qa	Total emission rate from a parking lot (g/m = s) gonge went	9.89 g/s
9	Qa'	Area source emission rate without the emissions from internal road segment. i	

^{*} Assumes an entrance capacity consisted with a gate rate of 5 seconds per vehicle

** Cross Street capacity assuming a 4.55 critical gap.

WORKSHEET 3 - AREA SOURCE EMISSIONS COMPUTATION

Area Source ______ TP Parking Glavage

Case # 3 _____ Year _ 1996 Averaging Time 8 Hour

tep	Symbol	Input/Units	Traffic Stream
	Brt	Base running time	In Out
.1		Base approach time(s)	0.7
. 2		Base entrance time(s)	
.3		Base movement-in time(s)	109
. 4		Base stop, base start time(s)	10
.5		Base movement-out time(s)	93
. 6		Base exit time(s)	
.7		Base departure time(s)	0.7
. 8		Total base running time(s)	228
	A	Area of parking lot (m ²)	
	i	Entrance approach identification	<u></u>
	Vei	Entrance demand volume. (vph)	. 110
	Cei	Entrance approach capacities (vph)	720
	i	Exit approach identification	Out
	Vx _i	Exit demand volume (vph)	110
	Cxi	Exit approach capacities (vph)	453
	•	Number of parking spaces occupied	
۵	F	Emissions	.109 .312
1	Pc	Capacity of parking lot (veh)	800
2	Rmi	Excess movement-in time(s)	
3	Fet	Facility emptying time(s)	<u>රිකත</u>
4		Excess running time	
4.1	Ve _i /Ce _i	Entering volume-to-capacity ratio	.15
4.2	Vx1/Cx1	Exiting volume-to-capacity ratio	
4.3	Rei	Excess running time entering parking lot	0.90
4.4	Rxi	Excess running time exiting parking lot	2.55
5	Tei	Total entering running time (s/veh)	
6	Rmo	Excess running time moving out of parking stalls (s/veh)	
7	Txi	Total exiting running time (s/veh)	
8	Qa	Total emission rate from a parking lot (g/m² -s) gongge went	1.50g/s
9	Qa'	Area source emission rate without the emissions from internal road segment. i	

WORKSHEET 6 - CO AREA SOURCE DISPERSION ANALYSIS

Area	Area Source Existing Parking Lot					
Case	Year 1984 Averaging Time Hour					
Step	Symbol	Input/Units				
		Basic Inputs	Caxl Caxl Cax2 Cax2			
1		Source ID	1-4-	8-Hr	1-4-	8-H-
2	SC	Stability class	D	D	D	D
3	U	wind speed (m s ⁻¹)	1.0	1.6	1,0	1.6
4	° z o	Initial dispersion (m)	5.0	5.0	5.0	5.0
5	-o × _o	Virtual dispersion distance (m)	19.9	19.9	19.9	19.9
6	×u	Actual upwind distance (m)	41.1	41.1	41.1	41.1
7	ru=xu+xo	Effective upwind distance (m)	61.0	61.0	61.0	61.0
8	×d	Actual downwind distance (m)	1.0	1.0	1.0	1.0
9	r _{d=xd+x} o	Effective downwind distance (m)	20.9	20.9	20.9	20.9
10	Qa	Emission rate $(g m^{-2} s^{-1})$.00114	.000235	.000775	.000 154
		Dispersion Computation				
11	(XU/Qa)	Upwind normalized concentration	17,000	17, 200	17,000	17,00
12	(XU/Qa)d	Downwind normalized concentration	- 1350U	- 13, con	-13,500.	<u>13,നാ</u>
13	χU/Qa	Normalized CO concentration	3,500	3,500	3,500	<u> </u>
14	Qa	Emission rate (g m^{-2} s^{-1})	× 00114	×.000235	x. 000775	K. M. E4
15	χu		4.0	0.8	2.7	0.5
		Enter Line 3	+ 1.0	1.6	+ 1.0	1.6
16	х	CO concentration (mg m^{-3})	4.0	0.5	2.7	0.3
17	χ	CO concentration (ppm)	3.5	0.4	2.3	0.3

Pedestrian Wind Analysis

APPENDIX B

EXPERIMENTAL MEASUREMENTS

Approach and Site Velocity Profiles for Approach B Figure B2

Approach and Site Velocity Profiles for Approach C Figure B3

APPENDIX C

POLAR PLOTS OF PEDESTRIAN WINDS

POLAR PLOTS OF PEDESTRIAN WINDS

The graphs included in this appendix show the directional variation of measured wind speeds normalized by the wind speed at an elevation of 900 feet.

Configuration PH 2 Location 15 Umean Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div Ε Urms Uinf .05/Div s Location 16 Umean Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div Ε Urms Uinf . 25

.05/Div

Configuration PH 2 Location 27 Umean Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div Ε Urms Uinf .05/Div Umean Location 28 Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div Ε Urms Uinf

\$

.05/Div

Configuration PH 2 Location 31 Umean Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div Urms Uinf .25 .05/Div Location 32 Umean Uinf 1.25 Umean+ 1.5*Urms Uinf .25/Div

S

Urms Uinf

.05/Div

. 25

APPENDIX D

PERCENT TIME EXCEEDED PLOTS

PERCENT TIME EXCEEDED PLOTS

The graphs included in this appendix show the percent of time for which a given mean or gust velocity is exceeded for each pedestrian location for each configuration.

