G12: Contrôle continu nº 3.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées; on suppose X_1 de carré intégrable et on note $m = \mathbb{E}[X_1]$, $\sigma^2 = \mathbb{V}(X_1)$.

1. Montrer que la suite de terme général

$$\left(\sqrt{n}\left(\frac{S_n}{n}-m\right),\frac{S_n}{n}\right)$$

converge en loi vers (G, m) où G suit la loi $\mathcal{N}(0, \sigma^2)$.

2. En déduire que la suite de terme général

$$U_n = \sqrt{n} \left(\left(\frac{S_n}{n} \right)^2 - m^2 \right)$$

converge en loi vers U de loi $\mathcal{N}(0,4m^2\sigma^2)$. On pourra factoriser x^2-y^2 .

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées suivant la loi gaussienne $\mathcal{N}(0,1)$; on rappelle que X_1 est de carré intégrable, que $\mathbb{E}[X_1] = 0$, que $\mathbb{V}(X_1) = 1$ et que $\mathbb{E}\left[e^{X_1}\right] = e^{1/2}$. On note, pour tout $n \geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad M_n = \exp(S_n - n/2).$$

- 1. (a) Justifier la convergence presque sûre de $\left(\frac{S_n}{n}\right)_{n\geq 1}$ et préciser la limite.
 - (b) En déduire que $(M_n)_{n\geq 1}$ converge presque sûrement vers 0.
- 2. (a) Calculer, pour tout $n \in \mathbf{N}^*$, $\mathbb{E}[M_n]$.
 - (b) La convergence de $(M_n)_{n\geq 1}$ a-t-elle lieu dans L¹?
- 3. Soit $(a_n)_{n\geq 1}$ une suite de réels positifs.
- (a) Montrer que si $\sum_{n\geq 1} a_n^2 < +\infty$ alors la série $\sum_{n\geq 1} a_n X_n$ converge presque sûrement et dans L² vers une variable aléatoire réelle dont on précisera la variance.
- (b) Montrer que si la série $\sum_{n\geq 1}a_nX_n$ converge presque sûrement vers une variable aléatoire réelle alors $\sum_{n\geq 1}a_n^2<+\infty$. Pensez à la convergence en loi!