Image Processing

Lecture 02: Intensity Transformation

(Ch3 Intensity Transformation and Spatial Filtering – I)

Zhiguo Zhang

zhiguozhang@hit.edu.cn

Review of Last Lecture

- In the last lecture we learnt:
 - What is digital image processing?
 - Human vision system
 - Image acquisition
 - Sampling and Quantization
 - Resolution
 - Basic Relationships between Pixels
 - Key Stages in Image Processing

Contents of This Lecture

- In this lecture we will learn:
 - Various kinds of basic intensity transformation functions (point processing)
 - >Thresholding
 - ➤ Logarithmic transformation
 - ➤ Power law transforms
 - ➤ Gray level slicing
 - ➤ Bit plane slicing
 - ➤ Image subtraction
 - >Image averaging
 - Histogram processing (equalization)

What Is Image Enhancement?

- Image enhancement is the process of making images more useful.
- The reasons for doing this include:
 - Highlighting interesting detail in images
 - Removing noise from images
 - Making images more visually appealing

Image Enhancement Examples

Image Enhancement Examples (cont...)

Image Enhancement Examples (cont...)

A Note About Gray Levels

- So far when we have spoken about image gray level values, we have said they are in the range [0, 255], where 0 is black and 255 is white.
- For many of the image processing operations in this lecture, gray levels are assumed to be given in the range [0, 1].

Spatial & Frequency Domains

- There are two broad categories of image enhancement techniques
 - Spatial domain techniques
 - ➤ Direct manipulation of image pixels
 - ✓ Point processing
 - ✓ Neighbourhood operations
 - Frequency domain techniques
 - ➤ Manipulation of Fourier transform or wavelet transform of an image
- For the moment we will concentrate on techniques that operate in the spatial domain

Basic Spatial Domain Image Enhancement

• Most spatial domain enhancement operations can be reduced to the form

$$g(x,y) = T[f(x,y)]$$

where f(x, y) is the input image, g(x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y).

Basic Spatial Domain Image Enhancement

- The simplest spatial domain operations occur when the neighbourhood is simply the pixel itself: Point Processing
- In this case T is referred to as a gray level transformation function or a point

processing operation.

• Point processing operations take the form:

$$s = T(r)$$

where s refers to the processed image pixel value and r refers to the original image pixel value.

Basic Spatial Domain Image Enhancement

- Point processing
 - The neighborhood is of size 1×1
 - Gray-level transformation
- Mask processing or spatial filtering
 - The neighborhood is defined as a mask, a filter, or a window.
 - Filtering

Point Processing

- In this lecture we will look at image enhancement point processing techniques:
 - Thresholding
 - Logarithmic transformation
 - Power law transforms
 - Gray level slicing
 - Bit plane slicing
 - Image subtraction
 - Image averaging

Thresholding

• Thresholding transformations are particularly useful for segmentation in which we want to isolate an object of interest from a background.

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r \le threshold \end{cases}$$

Thresholding

Thresholding

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r \leq threshold \end{cases}$$

Logarithmic Transformation

• The general form of the log transformation is

$$s = c \log(1 + r)$$

• Log functions are particularly useful when the input gray level values may have an extremely large range of values.

• In Fourier transform, we usually encounter spectrum values that range from 0 to 10⁶ or higher. But an image display system cannot reproduce such a wide range of intensity values.

Logarithmic Transformation (cont...)

• In the following example the Fourier transform of an image is put through a log transform to reveal more detail.

Power Law Transformations

• Power law transformations have the following form:

$$s = cr^{\gamma}$$
 $r \in [0.0, 1.0]$

- Map a narrow range of dark input values into a wider range of output values or vice versa.
- Varying γ gives a whole family of curves.

Power Law Example (cont...)

- The images to the right show a magnetic resonance image of a fractured human spine.
- Different curves highlight different detail.

Power Law Transformations (cont...)

• An aerial photo of a runway is shown.

• This time power law transforms are used to darken the image.

Gamma Correction

- Many of you might be familiar with gamma correction of computer monitors.
- Problem is that display devices and print devices do not respond linearly to different intensities, and they respond according to a power law:

$$s = r^{\gamma}$$

- For cathode ray tube (CRT) display, $\gamma = 1.8 \sim 2.5$.
- This can be corrected using a *n*-th root transform:

$$s = r^{1/\gamma}$$

Gamma Correction

(a) Intensity ramp image.

Monitor

(b) Image as viewed on a simulated monitor with a

gamma of 2.5.

Image as viewed on monitor

Image as viewed on monitor

(c) Gamma-corrected image.

(d) Corrected image as viewed on the same monitor.

Compare (d) and (a).

Gamma Correction

- Prior knowledge about gamma correction
 - Varying the value of gamma correction changes not only the brightness, but also the ratio of red to green to blue.
- Applications
 - Internet
 - Millions of people and millions of monitors
 - Gamma represents an "average "of the types of monitors and computer systems
 - Scanners and printers have different values of gamma

- To highlight a specific range of gray levels
 - Similar to thresholding
 - Other levels can be suppressed or maintained
 - Useful for highlighting features in an image

$$s = \begin{cases} s1 & r < A, r > B \\ s2 & A \le r \le B \end{cases}$$

$$S = \begin{cases} r & r < A, r > B \\ c & A \le r \le B \end{cases}$$

Bit Plane Slicing

- We can often highlight interesting aspects of that image by isolating particular bits of the pixel values in an image:
 - Higher-order bits usually contain most of the significant visual information.
 - Lower-order bits contain subtle details.

Bit Plane Slicing (cont...)

• Suppose f and h are two images, their difference can be calculated as:

$$g(x,y) = f(x,y) - h(x,y)$$

- Note: most images are displayed using 8 bits. Thus we expect image values not to be outside the range from 0 to 255.
- In subtraction, the results should be in the range –255 to 255. So some sort of scaling is required to display the results.
 - a) add 255 to g(x, y) and then divide by 2
 - b) y = x min(x); z = y.255/max(y).

Mask mode radiography: enhancement by image subtraction.

Mask image

An image (taken after injection of a contrast medium into the blood stream) with mask subtracted out

- Change detection is another major application by using image subtraction, such as:
 - Tracking moving vehicles
 - Tracking walking persons
 - Change detections

Examples: Change Detection

Image Averaging

• A noisy image:

$$g(x,y) = f(x,y) + n(x,y)$$

where n(x, y) is the noise with zero average.

• Then averaging M different noisy images can reduce the noise:

$$\overline{g}(x,y) = \frac{1}{M} \sum_{i=1}^{M} g_i(x,y) \qquad \qquad \delta^{2}_{g(x,y)} = \frac{1}{M} \sigma^{2}_{n(x,y)}$$

$$E\{\overline{g}(x,y)\} = f(x,y) \qquad \qquad \delta_{\overline{g}(x,y)} = \frac{1}{\sqrt{M}} \sigma_{n(x,y)}$$

- As the number of noisy images used in the averaging process, M, increases,
 - the variability of the pixel values at each location decreases;
 - the averaged image $\overline{g}(x, y)$ approaches f(x, y).

when
$$M \to \infty$$
,

$$\delta_{\overline{g}(x,y)} = \frac{1}{\sqrt{M}} \sigma_{n(x,y)} \to 0$$

$$\overline{g}(x,y) \to f(x,y)$$

(a) Image of Galaxy Pair NGC 3314

(c) Results of averaging K = 8 noisy images

(e) Results of averaging K = 64 noisy images

(b)
Image corrupted by additive
Gaussian noise with zero
mean and a standard
deviation of 64 gray levels

(d) Results of averaging K = 16 noisy images

(f) Results of averaging K = 128 noisy images

Difference images between (a) and the four images in (c) through (f) in the last slide.

Corresponding histograms

7

• Example: face averaging

• The histogram of a digital image with gray levels from 0 to L-1 is a

discrete function: $p_r(r_k) = n_k$ $0 \le r_k \le 1$ $k = 0,1,2,\dots,L-1$

where r_k is the k-th gray level

 n_k is the number of pixels with the gray level r_k

• Normalized histogram: $p(r_k) = n_k/MN$, where MN is the total number of pixels in the image, and the sum of all components is 1.

• The histogram of an image shows us the distribution of gray levels in the image. It is useful in image processing, especially in enhancement and segmentation.

1	2	3	4	5	6
6	4	3	2	2	1
1	6	6	4	6	6
3	4	5	6	6	6
1	4	6	6	2	3
1	3	6	4	6	6

6 gray level
 14 histogram
 14/36 normalized histogram

an image

histogram

Properties of Image Histograms

- The histogram only shows the distribution of gray levels in the image, and it doesn't include the location information of pixels.
- One image has its corresponding histogram, but different images may have the same histograms.

It is a baby in the cradle!

Histogram information reveals that image is *under-exposed*.

An over-exposed image

Histogram Examples

- A selection of images and their histograms.
- Notice the relationships between the images and their histograms.
- Note that the high contrast image has the most evenly spaced histogram.

Four image types and their corresponding histograms. The horizontal axis of the histograms are values of r_k and the vertical axis are values of $p(r_k)$.

47

- Histogram equalization
 - Basic idea: find a map T(r) such that the histogram of the modified (equalized) image is flat (uniform).
- Assuming initially continuous intensity values, and let r represent the gray levels, which have been normalized to the interval [0,1], with r=0 representing black and r=1 representing white. For any r, define a transformation:

$$s = T(r)$$

- The transformation, s = T(r), produces a level s for every pixel value r in the input image. We assume that the transformation function T(r) satisfies the following conditions:
 - condition (1): T(r) is single-value and monotonically increasing in the interval
 - condition (2): $0 \le r \le 1$; $0 \le T(r) \le 1$ for $0 \le r \le 1$.

- The condition (1) preserves the increasing order from black to white in the output image.
- The condition (2) guarantees that the output gray levels will be in the same range as the input levels.

• Let $p_r(r)$ and $p_s(s)$ denote the probability density function (PDF) of random variables r and s, respectively. A basic result from probability theory is that, if $p_r(r)$ and T(r) are known and $T^{-1}(s)$ satisfies condition (1). Then $p_s(s)$ can be obtained using a rather simple formula:

$$s = T(r),$$
 $p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$

- Thus the PDF of s is determined by the gray level PDF of input image and by the chosen transformation function.
- So for a given input image, we can change its histogram by some transformation, it is the idea of histogram equalization.
- Take the following equation as the transform function:

$$s = T(r) = (L-1) \int_0^r p_r(\omega) d\omega$$

cumulative distribution function (CDF)

- The integral of a PDF is called the cumulative distribution function (CDF) and is the area under the PDF.
- PDFs are always positive, so CDF should be single values and monotonically increasing.
- Similarly, CDF for variables in the range [0,1] is also in the range [0,1].

• By taking the derivative of s with respect to r, one gets

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \left[\int_0^r p_r(\omega) d\omega \right]$$

• By Leibniz's rule, we know that the derivative of a definite integral with respect to its upper limit is simply the integrand evaluated at the limit. ds ds ds ds

$$\frac{ds}{dr} = (L-1)\frac{d}{dr}\left[\int_0^r p_r(\omega)d\omega\right] = (L-1)p_r(r)$$

So we have

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right| = \frac{1}{L-1}, \quad 0 \le s \le L-1.$$

• It is important to note that T(r) depends on $p_r(r)$, but $p_s(s)$ is always uniform, independent of the form of $p_r(r)$.

• For discrete values (which is the case of a digital image), we use probability mass functions (PMFs) instead of PDFs. Define $p_r(r_k)$ as the probability of occurrence of gray level r_k .

$$p_r(r_k) = \frac{n_k}{MN}$$
 $0 \le r_k \le 1$ $k = 0, 1, \dots, l-1$

where MN is the total number of pixels, n_k is the number of pixels that have a gray level r_k , l is the total number of possible gray levels.

• The transformation is

$$S_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j), \quad k = 0, 1, \dots, l-1$$

56

Steps:

- 1) Find probability of the input image.
- 2) Calculate the CDF based on the PMF.
- 3) Multiply the CDF values by the maximum gray-level value L-1 and round the results to obtain s_k .
- 4) Map the original gray-level value to the result obtained in Step 3.

$$p_r(r_k) = \frac{n_k}{MN} \quad 0 \le r_k \le 1 \quad k = 0, 1, \dots, l - 1$$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j), \quad k = 0, 1, \dots, l - 1$$

• An example, where the image is 64×64 pixels in size, with 8 gray levels. The distribution is as following table.

n_k	$p_r(r_k) = n_k/MN$
790	0.19
1023	0.25
850	0.21
656	0.16
329	0.08
245	0.06
122	0.03
81	0.02
	790 1023 850 656 329 245 122

• Processing steps:

$$s_0 = T(r_0) = 7\sum_{j=0}^{0} P_r(r_j) = 7P_r(r_0) = 1.33$$

$$s_1 = T(r_1) = 7\sum_{j=0}^{1} P_r(r_j) = 7[P_r(r_0) + P_r(r_1)] = 3.08$$

$$s_2 = T(r_2) = 7\sum_{j=0}^{2} P_r(r_j) = 7[P_r(r_0) + P_r(r_1) + P_r(r_2)] = 4.55$$

. . .

Finally we have

$$s_0 = 1.33, s_1 = 3.08, s_2 = 4.55, s_3 = 5.67,$$

$$s_4 = 6.23$$
, $s_5 = 6.65$, $s_6 = 6.86$, $s_7 = 7.00$.

• The transform function is shown in the right figure.

• Since the gray level is 8, we should adjust the output values to the nearest integer numbers:

$$s_0 = 1.33 \approx 1;$$
 $s_1 = 3.08 \approx 3;$ $s_2 = 4.55 \approx 5;$ $s_3 = 5.67 \approx 6;$ $s_4 = 6.23 \approx 6;$ $s_5 = 6.65 \approx 7;$ $s_6 = 6.86 \approx 7;$ $s_7 = 7.$

• We can see that there are only 5 effective gray levels in the output image:

$$s_0 \approx 1$$
, $s_1 \approx 3$, $s_2 \approx 5$, $s_3 \approx 6$, $s_4 \approx 6$, $s_5 \approx 7$, $s_6 \approx 7$, $s_7 \approx 7$

r_k	n_k	$p_r(r_k)$	S_k	n'_k	$p_s(s_k)$
$r_0 = 0$	790	0.19	$s_0 = 1$	790	0.19
$r_1 = 1$	1023	0.25	$s_1 = 3$	1023	0.25
$r_2 = 2$	850	0.21	$s_2 = 5$	850	0.21
$r_3 = 3$	656	0.16	$s_3 = 6$	985	0.24
$r_4 = 4$	329	0.08	$s_4 = 6$		
$r_5 = 5$	245	0.06	$s_5 = 7$		
$r_6 = 6$	122	0.03	$s_6 = 7$	448	0.11
$r_7 = 7$	81	0.02	$s_7 = 7$		

Column 1:

histograms of four image types

Column 2:

four image types

Column 3:

corresponding histogramequalized images

Column 4:

histograms of equalized images

Equalization Transformation Function

Equalization Transformation Functions

- Transformation functions for histogram equalization.
- Transformations (1) through (4) were obtained using the histograms of the images on Column 2 of the figure in Slide 64.
- Mapping of one intensity value r_k in image 1 to its corresponding value s_k is shown on the right.

Before After

Summary

- In this lecture we have learnt:
 - Various kinds of basic intensity transformation functions (point processing)
 - > Thresholding
 - ➤ Logarithmic transformation
 - ➤ Power law transforms
 - ➤ Gray level slicing
 - ➤ Bit plane slicing
 - >Image subtraction
 - >Image averaging
 - Histogram processing (equalization)

Optional Homework

Check the Textbook!

• Chapter 3: Problems 3.2, 3.4, 3.5(a), 3.6

• Homework answers will be provided at the end of each week.