The withdrawal of the rejection of claims 49-55 under 35 USC §112, second paragraph, is noted with gratitude.

New claims 97-99 have been added.

New claim 97 combines claim 1 with the last subparagraph of claim 2, and is accordingly supported thereby.

New claim 98 combines claim 1 with the limitation that the CETP inhibitor can exist within the solid amorphous dispersion as a pure phase, as a solid solution of CETP inhibitor homogeneously distributed throughout the polymer, or any combination of states that are intermediate. Support is in the specification at page 10, lines 3-8.

New claim 99 depends from claim 98 and states that the composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer. Support is in the specification at page 11, lines 33-37.

Any fees due for the addition of new claims should be charged to Applicants' Deposit Account No. 16-1445. Two copies of this paper are enclosed.

Claims 2-10, 17, 18, 35-51, 56-86 and 88 continue to be rejected under 35 U.S.C. 102(b) as being anticipated by Sikorski, WO 99/14204. It is noted that it has been Applicants' position that the claims distinguish over the reference, *inter alia*, because the claims require a solid amorphous dispersion, and Sikorski does not disclose a solid amorphous dispersion.

The Examiner made numerous comments, which Applicants address as follows:

1. The Examiner stated

Regarding applicants' argument that Sikorski does not disclose solid amorphous dispersions as required by applicants, it is noted that Sikorski discloses a composition comprising cholesteryl ester transfer protein (CETP) inhibitor (page 4, line 30 to page 12 line 19). Furthermore, on page 84, lines 27-29, Sikorski discloses that active compound may be dispersed in hydroxypropylmethyl cellulose. [Office Action, text bridging pages 2 and 3]

The above quotation from the Office Action reflects perhaps the most fundamental issue during the prosecution of this application - - whether Sikorski's single use of the term "dispersion" in his entire 85 page specification means a solid amorphous dispersion in the same sense as Applicants, as defined and described in the specification at page 10, lines 3-8.

The amorphous CETP inhibitor can exist within the solid amorphous dispersion as a pure phase, as a solid solution of CETP inhibitor homogeneously distributed throughout the polymer or any combination of these states or those states that lie intermediate between them. [Specification, page 10]

Applicants contend that one skilled in the art would immediately construe "dispersion" in Sikorski, read in context, to mean a drug compressed in a matrix, wherein hydroxypropylmethyl cellulose (HPMC) is the matrix material, and that the skilled art worker would not interpret Sikorski to mean a solid amorphous dispersion as required by Applicants. Applicants' argument is this - - (1) the term dispersion can be used in a generic sense to mean "mixed in with", which means something completely different from and totally at odds with the solid amorphous dispersion required by Applicants' claims and (2) one skilled in the art would not read Sikorski's single use of the term "dispersion" as referring to a solid amorphous dispersion like Applicants', for a number of reasons, all of which are reviewed following:

- 1. Sikorski is concerned with controlled release. Controlled release formulations in general function by slowing the release of the active pharmaceutical ingredient contained therein. Such formulations generally lower the maximum concentration of dissolved drug relative to pure drug itself, which is exactly the opposite of what Applicants' solid amorphous dispersion achieves and the opposite of what Applicants' claims require. One would not view Sikorski as referring to a solid amorphous dispersion when controlled release formulations are generally recognized in the art as accomplishing the opposite. Applicants supported their argument with the Curatolo Rule 132 Declaration, submitted with Applicants' previous response, which the Examiner appears to have simply dismissed.
- 2. Hydroxypropyl methyl cellulose (hereinafter "HPMC"), cited by Sikorski for use in making a controlled-release formulation, is one of the polymers most commonly known in the art as material for making matrix controlled release dosage forms.
- 3. There is no disclosure in Sikorski that relates to increasing the solubility of a poorly soluble drug. One having ordinary skill would not know or be motivated to improve the solubility and/or bioavailability of a CETP inhibitor, or believe Sikorski to be concerned with solid amorphous dispersions, because there is no recognition in Sikorski of the need to make any such improvement. Improving the aqueous concentration of a CETP inhibitor is a problem that Applicants' solved with their invention. But, there is no disclosure or even a bare mention in Sikorski relating to that problem.

4. It is known that the term "dispersion" does not necessarily imply a solid amorphous dispersion. In Remington: The Science and Practice of Pharmacy (20th ed., 2000), copy previously submitted in response to the Office Action of July 15, 2003, the word "dispersed" is used to describe controlled release formulations of drug in a matrix. p. 910. Remington states that the most common method for preparing such formulations is to mix the drug with the matrix and then compress the mixture into tablets. p. 911. Simply mixing the drug with a polymer and compressing will not form a solid amorphous dispersion of drug and polymer, however. Nor will it produce a concentration enhancement of at least about ten-fold as required by Applicants claims 2-4 (and claims dependent therefrom) and claims 97 and 98. Because "dispersion" can be used in a generic sense to mean something totally different than Applicants' solid amorphous dispersion (for example, the controlled release formulation disclosed in Remington), one would look to the context in which "dispersion" was used. The context in Sikorski clearly indicates that Sikorski was not referring to a solid amorphous dispersion; but rather that he simply employed the term generically, in the same sense as Remington, to refer to a mixture.

The Examiner implicitly seemed to be contending that if HPMC is present at all, it doesn't matter that it may be present as a matrix, as opposed to as a concentration enhancing polymer in a solid amorphous dispersion. It is believed the Examiner was contending that the presence of HPMC is the only pertinent issue in a composition-of-matter claim, regardless of how it is present.

Applicants' argument that Sikorski is a controlled release formulation, which does not generally increase the maximum concentration and/or bioavailability of a poorly soluble drug has been considered but that argument is not persuasive because the instant claims are directed to compositions that contain dispersions of low-solubility drugs in/with concentration enhancing polymers. The concentration enhancing polymers are as recited in claim 2 and hydroxypropylmethyl cellulose is one of the recited polymers. [Office Action, text bridging pages 2 and 3]

As for controlled release nature of Sikorski as analyzed by applicants, it is respectfully noted that the examined claims do not exclude controlled release formulations and controlled release is determined by the matrix excipients that make up the formulation. The claims are not directed to process of formulating the composition and the claims are not product by process claims so that the process of making the formulation would provide a product that is structurally different from the composition of Sikorski, PRODUCT-BY-PROCESS CLAIMS ARE NOT LIMITED TO THE MANIPULATIOS OF THE RECITED STEPS, ONLY

THE STRUCTURE IMPLIED BY THE STEPS. Sikorski uses the term dispersion. [Office Actionj, page 3]

Applicants disagree, and note that the Friesen Rule 132 Declaration previously submitted was designed to probe the very issues raised by the Examiner. The data in the Friesen Declaration is in fact dispositive. The data demonstrates that the concentration enhancement of a CETP inhibitor produced by a solid amorphous drug/HPMC dispersion is much, much better than that produced by crystalline drug alone, physical mixtures of crystalline or amorphous drug with HPMC, and matrix formulations of drug and HPMC, whether or not the drug is crystalline or amorphous. The Friesen Declaration therefore demonstrated, based on concentration enhancement, that drug/HPMC mixtures, including physical mixtures embodied as matrix tablets, are different and distinct from solid amorphous drug/HPMC dispersions. The Examiner's assessment of the Friesen Declaration is not understood and it is respectfully submitted that her comments directed to the scope of certain paragraphs, to the exhibits, and to Sikorski not disclosing crystalline drug beg the question. Physical mixtures and matrix tablets containing drug and HPMC demonstrate distinctly different (and greatly inferior) concentration enhancements, meaning that matrix tablets (Sikorski) are different compositions relative to solid amorphous dispersions (Applicants), even though they may both contain the same ingredients. The Friesen Declaration provided abundant evidence supporting that proposition.

As part of her analysis, the Examiner stated:

On page 7 of the remarks, first full paragraph, applicants state that Sikorski does not disclose controlled release systems containing a solid amorphous dispersion and on page 6 of the remarks, applicants state; "Sikorski refers specifically to controlled release formulations." These two conflicting statements within the same document are confusing. However, the 132 declarations will be addressed below. [Office Action, page 3]

To the contrary, Applicants statements are <u>not</u> contradictory. Applicants elaborate on the reasoning that went into the statements as follows.

- 1. Sikorski, in Applicants' view, does not disclose solid amorphous dispersions.
- Sikorski does refer specifically to controlled release formulations. See page 84, lines 27-28 of his specification.
- Since Sikorski does not disclose solid amorphous dispersions (point 1 above), he cannot disclose a controlled release formulation containing one.

4. But he can (and does) disclose controlled release (point 2 above).

The Examiner stated that:

Sikorsky discloses a low-solubility drug, CETP dispersed in hydroxypropylmethyl cellulose. Powder is amporphous and the Remington article provided does not state that powders are not amorphous. The article provided discusses the means of producing powders and in first paragraph, left column, powders are categorized as finely divided solid material. [Office Action, Page 3]

...Powder is an amorphous solid and applicants have provided no data showing the contrary that powder is not a solid or powder is not amorphous. [Office Action, page 5, in reference to the Friesen Declaration]

Applicants are unsure of the point being made by the Examiner. Given the context and wording of the Office Action, the Examiner appeared to be contending that "amorphous" is inherent in "powders". If that was in fact the Examiner's contention, Applicants' traverse it as being untrue. The Remington article (page 681) states that [spray dried] "particles produced are aggregates of primary particles consisting of crystals and/or amorphous solids, depending on the rate and conditions of solvent removal". That statement, by its reference to "crystals", demonstrates the art recognition that powders, specifically those that are spray dried, are not inherently or necessarily amorphous just because they are powders.

Thus, if the Examiner was trying to make an inherency rejection, it does not have a legal basis. A rejection based on inherency requires that the missing element(s), "amorphous" in this case, must be a necessary consequence of the prior art. <u>Glaxo Inc. v. Novopharm Ltd.</u>, 52 F.3d 1043, 34 U.S.P.Q.2d 1565, 1567 (Fed. Cir. 1995). But, Remington demonstrates that a composition is not "amorphous" just because it is powdered. In different words, it is just as possible for a crystalline drug to exist in a powdered state as it is for an amorphous drug or drug composition to exist in a powdered state.

In regard to the Examiner's statement that "powder is an amorphous solid and applicants have provided no data showing the contrary that powder is not a solid or powder is not amorphous", it is not possible to make any demonstration based on Sikorski's "powders" since Sikorski never disclosed any specific formulation that was a powder. However, and in further support of Applicants' position that there is no necessary connection between "amorphous" and "powders", Applicants herewith submit the Rule 132 Declaration of Scott B. McCray. In the Declaration, Dr. McCray testifies

that three samples of powders were prepared, including a powder of crystalline Drug 2; a powder of amorphous Drug 2; and a powder of a solid amorphous dispersion of Drug 2 and the polymer hydroxypropylmethyl cellulose acetate succinate (HPMCAS). The samples were examined using powder x-ray diffraction (PXRD), as shown in Figure 1 that accompanies the Declaration. The bottom trace shows the diffraction pattern for the sample of the powder of crystalline drug, the sharp peaks in the diffraction pattern indicating that the drug is in fact crystalline. In contrast, the powder of amorphous drug is shown in the middle trace. This diffraction does not exhibit any sharp peaks, but rather a broad bulge, which is referred to in the art as an "amorphous halo." This amorphous halo indicates the presence of amorphous drug. The top trace in Figure 1 is the diffraction pattern for the solid amorphous dispersion. This diffraction pattern also exhibits an amorphous halo, indicating the presence of amorphous drug. Thus, even though each of the three samples were powders, the samples exhibited different x-ray diffraction patterns depending on whether the material in the powder was amorphous or crystalline. Clearly, Dr. McCray's Declaration supports Applicants' contention that the state of being amorphous does not necessarily follow from the fact that a sample is powdered.

Sikorski Does Not Disclose Other Elements Of Applicants' Claims

Applicants note further that claims 2 and 3 require that their composition provide a maximum concentration enhancement that is at least 10-fold that provided by a control composition comprising an equivalent amount of the CETP inhibitor free from said polymer. Sikorski never disclosed any formulation of a CETP inhibitor, let alone one that improved the maximum concentration by a factor of at least about 10-fold. This emphatically constitutes an additional element of those claims (and claims dependent therefrom) that is completely missing from Sikorski.

An affirmative element in each of Applicants' claims is the requirement for a pharmaceutical composition comprising a solid amorphous dispersion. In addition to not disclosing a solid amorphous dispersion, Sikorski further fails to disclose a composition in which the drug is **amorphous** (i.e., the drug is in a non-crystalline state). Sikorski never used the word "amorphous" in his application. Sikorski never disclosed an actual pharmaceutical formulation of any type comprising one of his compounds. Since Sikorski never disclosed an actual formulation, it is indisputable that he failed to disclose a solid **amorphous** dispersion. Because the element of a solid **amorphous** dispersion,

is missing from Sikorski, that is yet another reason why Sikorski does not anticipate Applicants.

Applicants note in addition that the rejection encompassed many dependent claims having features that were not present in Sikorski. Claims 5-7 specify the extent to which the CETP inhibitor is amorphous. Claim 8 specifies that the dispersion is substantially amorphous. Claim 9 specifies that the dispersion has a single glass transition temperature (this indicates that that the solid amorphous dispersion is a solid solution). Claim 17 specifies compounds of formula IV and claim 18 specifies specific compounds. Claims 57-62 specify concentration enhancements ranging from 50 to 1000 (these are truly outstanding and unexpected results). Claims 86 and 87 specify process technologies for making compositions according to the invention. Sikorski discloses nothing about these additional features - - the degree to which a CETP inhibitor is amorphous, the degree of homogeneity, glass transition temperatures, particular classes of compounds and/or specific compounds per se, outstanding concentration enhancements, and processes for making solid amorphous dispersions. It is respectfully submitted that, because these claims contain features not disclosed in Sikorski, they were improperly rejected as anticipated, and withdrawal of the rejection for these specific claims is respectfully requested.

The Obviousness Rejection Over Sikorski

Claims 1, 52-22, 87 and 89-96 were rejected under 35 U.S.C. 103(a) as being upatentable over Sikorski (WP 99/14204). The Examiner stated, in pertinent part:

Sikorski has been disclosed. Sikorski's composition is administered to subject in need thereof to treat conditions treatable with CETP's. The conditions recited in claims 89-96 are all conditions that are treatable with CETP. Spray drying is a known method in the art for producing dispersions or tablets or granules or pellets. Sikorski does not disclose the polymers recited in claim 1. One polymer can be substituted for another. And it known in the art that hydroxypropylmethylcellulose, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate phthalate, cellulose acetate phthalate, cellulose acetate trimellitate, polyvinyl pyrrolidone, polyvinyl alcohol, and copolymers of polyvinyl pyrrolidone and polyvinyl alcohol are equivalent as dispersion polymers (Appel et al. US 6,706,283, claim 30 is a teaching reference).

Therefore, it would have been obvious to one of ordinary skill in the art at the time invention was made to disperse CETP in hydroxypropylmethyl cellulose according to Sikorski. One having ordinary skill in the art would have been motivated to substitute hydroxypropylmethyl cellulose with hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose acetate phthalate, cellulose acetate

phthalate, cellulose acetate trimellitate, plyvinyl pyrrolidone, polyvinyl alcohol, or copolymers of polyvinyl pyrrolidone and polyvinyl alcohol with the expectation of dispersing CETP.

Applicants' traverse the rejection based, *inter alia*, on the reasons stated above in responding to the anticipation rejection over Sikorski. Applicants' view is that Sikorski does not disclose a dispersion, or even remotely hint that one should be made with any of the CETP inhibitors he discloses, regardless of the polymer employed. Thus it cannot be obvious to substitute one polymer for another in a solid amorphous dispersion since Sikorski never disclosed or suggested a solid amorphous dispersion in the first place, as Applicants contend above.

It is well accepted in the art that for an obviousness rejection to lie, it is the prior art that must somehow suggest or motivate that which Applicant has done, and also provide an expectation of success. In re Dow Chemical Co., 5 USPQ2d 1529, 1531 (Fed. Cir. 1988); Amgen, Inc. v. Chugai Pharmaceutical Co. Ltd., 18 USPQ2d 1016, 1022-23 (Fed. Cir.), cert. denied, 502 U.S. 856 (1991). Only Applicants have made that suggestion, however, not Sikorski. Sikorski supplies neither the suggestion nor any expectation of success. One reading Sikorski would not view that he was disclosing anything about solid amorphous dispersions. That is what the Curatolo Declaration, a Declaration made by one who is skilled in the art, was designed to probe. If the Examiner could accept that Sikorski does not disclose solid amorphous dispersions, then the Friesen Declaration demonstrates that Applicants are different from the matrix controlled release tablets that Sikorski alluded to in passing. The declarations, the evidence from scientifically accepted treatises (such as the Remington pages demonstrating that "dispersion" can be employed to mean a mere mixture and the Remington pages demonstrating that "amorphous" and "powdered" are unrelated terms), and the law relating to obviousness and anticipation, all demonstrate that Applicants' invention, as claimed, is patentable.

Further, Applicants respectfully submit that the §103 rejection should be withdrawn because Appel was improperly invoked to support it. The Examiner is believed to have cited Appel as a "teaching reference" to show equivalency between the hydroxypropyl methyl cellulose disclosed in Sikorski and Appel, and the dispersion polymers cellulose acetate phthalate and cellulose acetate trimellittate disclosed in Appel and cited in the claims of the instant application. The Examiner named only Sikorski in the rejection, but it is clear that Appel should also have been formally cited in

combination with Sikorski, rather than alluded to as a "teaching reference". Without Appel, the rejection has no factual basis since Sikorski alone contains no disclosure that could be construed to show equivalency between the polymers. But, and as a preliminary and fundamental point, Applicants question how Appel could be used in any capacity by the Examiner in view of the fact that it was previously removed by Applicants' Rule 131 declaration.

Also, the Examiner stated that "One polymer can be substituted for another", as though taking notice of a fact based on common knowledge or well-known prior art. Office Action, page 5, second line from the bottom. When an Examiner takes such notice, however, it should be capable of instant and unquestionable demonstration.

MPEP 2144.03. Applicants' position is that such a general statement is not instantly and unquestionably supportable. If the Examiner was relying on the Appel patent for support as a "teaching reference", Applicants respectfully submit that reliance is legally untenable, for the reasons explained below.

The Examiner additionally asserted equivalence between hydroxypropyl methyl cellulose, cellulose acetate phthalate, and cellulose acetate trimellitate as dispersion polymers, based on Appel, claim 30, as a "teaching reference".

Applicants traverse the inclusion of Appel as a "teaching reference". Applicants submit that Appel was in fact employed as a true reference, regardless of what it was labeled, and regardless that it was not formally cited in combination with Sikorski.

First, Applicants, pursuant to conducting an online search of the MPEP, have been unable to find the phrase "teaching reference" anywhere in the MPEP. Thus, Applicants question whether there is any difference between using Appel as a "reference" (which is impermissible since Appel was removed) and using Appel as a "teaching reference".

Second, Appel claim 30 listed the three polymers as part of a Markush group. "In order to rely on equivalence as a rationale supporting an obviousness rejection, the equivalency must be recognized in the prior art, and cannot be based on ...the mere fact that the components at issue are functional or mechanical equivalents." MPEP 2144.06. The mere fact that the polymers were claimed as members of a Markush group cannot be relied upon to establish their equivalency. MPEP, citing In re Ruff, 118 USPQ 340 (CCPA 1958). Thus claim 30, contrary to the Examiner's reliance on the Markush group therein, did not establish equivalency of the polymers named therein as dispersion polymers.

Third, Appel has been removed, hence is no longer available against Applicants, whether for anticipation or for making an obviousness rejection. Simply labeling Appel as a "teaching reference", as opposed to a "reference", provides no basis for using it to make an obviousness rejection, regardless of the fact that it wasn't formally cited in combination with Sikorski. If the examiner maintains this rejection, it is requested she cite to the authority that supports using Appel for any reason, including as a "teaching reference" once it was removed by Applicants Rule 131 Declaration.

In respect of newly added claims 97, 98, and 99, claim 97 requires that the composition comprise a polymer taken from the same Markush group as that expressed by claim 1. Claim 97 additionally requires that the composition must provide a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor free from the polymer. Neither of these elements - - use of any polymer recited in the claim and an improvement in maximum concentration of at least about ten-fold - - is present in Sikorski. Sikorski never suggests that any of the recited polymers should be used or that such good results would be obtainable. Thus claim 97 defines subject matter that is both unanticipated by and patentable over Sikorski.

Claim 98 also defines patentable subject matter. It specifies the same group of concentration-enhancing polymers as claim 97 and additionally requires that the CETP inhibitor can exist within said solid amorphous dispersion as a pure phase, as a solid solution of CETP inhibitor homogeneously distributed throughout the polymer, or any combination of states that are intermediate. Sikorski never discloses or suggests any of these elements.

Claim 99 depends from claim 98 and specifies that the composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer. As discussed above, Sikorski never discusses concentration enhancement at all, let alone discloses a concentration enhancement as unexpectedly good as that required by claim 99.

It is accordingly respectfully requested that the §103 rejection over Sikorski be withdrawn.

It is additionally respectfully requested that the patentability of new claims 97 and 98 be acknowledged.

In view of the foregoing comments and amendments and the Declarations submitted herewith, it is respectfully submitted that this case is in condition for allowance. A Notice of Allowance is courteously solicited.

Respectfully submitted,

Date: JUNE 23,2005

Attorney for Applicant Reg. No. 30,561

Pfizer Inc Patent Department Eastern Point Road Groton, CT 06340 (860) 441-4903

CLAIMS

- A pharmaceutical composition comprising a solid 1. (previously amended) amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate. hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.
- 2. (previously amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein (CETP) inhibitor and a concentration-enhancing polymer, said cholesteryl ester transfer protein inhibitor having a solubility in aqueous solution, in the absence of said concentration-enhancing polymer, of less than 10 µg/ml at any pH of from 1 to 8, said concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypthyl methyl cellulose, hydroxyethyl cellulose acetate, hydroxypthyl ethyl cellulose, hydroxypthyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose

succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose. cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate:

wherein said composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.

3. (previously amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer, said composition providing a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold the maximum concentration provided by a control composition comprising an equivalent amount of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer, said concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl methyl

cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

4. (previously amended) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a polymer, said composition providing a relative bioavailability that is at least 4 relative to a control composition comprising an equivalent amount of said cholesteryl ester transfer protein inhibitor and free from said polymer, said polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, hydroxyethyl ethyl cellulose, hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate

phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

- 5. (original) The composition of any one of claims 1-4 wherein a major portion of said cholesteryl ester transfer protein inhibitor is amorphous.
- 6. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is substantially amorphous.
- 7. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is almost completely amorphous.
- 8. (original) The composition of any one of claims 1-4 wherein said dispersion is substantially homogeneous.
- 9. (original) The composition of claim 8 wherein said dispersion has a single glass transition temperature.
- 10. (original) The composition of any one of claims 1-4 wherein said solid amorphous dispersion is mixed with additional concentration-enhancing polymer.
- 11. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula I

Formula I

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{l-1} is hydrogen, Y_l , W_l-X_l , W_l-Y_l ; wherein W_l is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_l is $-O-Y_l$, $-S-Y_l$, $-N(H)-Y_l$ or $-N-(Y_l)_2$;

wherein Y_I for each occurrence is independently Z_I or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_I ;

wherein Z_l is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_1 substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxyl, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino,

nitro, cyano, oxo, carboxyl, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

 R_{l-3} is hydrogen or Q_l ;

wherein Q_l is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V_l ;

wherein V_1 is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_1 substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carbamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarbamoyl, carboxyl, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxyl, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{l-4} is Q_{l-1} or V_{l-1}

wherein Q_{l-1} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with

 V_{l-1} ;

wherein V_{i-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{1-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{I-3} must contain V_I or R_{I-4} must contain V_{I-1} ; and R_{I-5} , R_{I-6} , R_{I-7} and R_{I-8} are each independently hydrogen, hydroxy or oxy wherein said oxy is substituted with T_I or a partially saturated, fully saturated or fully unsaturated one to twelve membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, dior tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with T_I ;

wherein T_l is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_1 substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines.

12. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of

- [2R,4S] 4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-dinitro-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(2,6-dichloro-pyridin-4-ylmethyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-ethoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid 2,2,2-trifluoro-ethylester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethoxy-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] (3,5-bis-trifluoromethyl-benzyl)-(1-butyryl-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-carbamic acid methyl ester,
- [2R,4S] (3,5-bis-trifluoromethyl-benzyl)-(1-butyl-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-carbamic acid methyl ester, and
- [2R,4S] (3,5-bis-trifluoromethyl-benzyl)-[1-(2-ethyl-butyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl]-carbamic acid methyl ester, hydrochloride.
- 13. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula II

Formula II

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{II-1} is hydrogen, Y_{II} , W_{II} - X_{II} , W_{II} - Y_{II} ; wherein W_{II} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{II} is $-O-Y_{II}$, $-S-Y_{II}$, $-N(H)-Y_{II}$ or $-N-(Y_{II})_2$;

wherein Y_{II} for each occurrence is independently Z_{II} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{II} ;

 Z_{II} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{II} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino,

nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl is also optionally substituted with from one to nine fluorines;

 $R_{\parallel -3}$ is hydrogen or Q_{\parallel} ;

wherein Q_{II} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{II} ;

wherein V_{II} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{\parallel} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino or said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituents are optionally substituted with from one to nine fluorines;

 R_{II-4} is Q_{II-1} or V_{II-1}

wherein Q_{II-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{II-1} ;

wherein $V_{\text{II-1}}$ is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{II-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is optionally substituted with from one to nine fluorines;

wherein either R_{II-3} must contain V_{II} or R_{II-4} must contain V_{II-1} ; and R_{II-5} , R_{II-6} , R_{II-7} and R_{II-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{II} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon is optionally mono-substituted with T_{II} ;

wherein $T_{\rm II}$ is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{II} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; provided that at least one of substituents R_{II-5} , R_{II-6} , R_{II-7} and R_{II-8} is not hydrogen and is not linked to the quinoline moiety through oxy.

14. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of

- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-7-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-chloro-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2,6,7-trimethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-diethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-ethyl-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester, and
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester.
- 15. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula III

$$\begin{array}{c|c} & & & & \\ & & & & \\ R_{\text{III-5}} & & & & \\ R_{\text{III-7}} & & & & \\ R_{\text{III-8}} & & & & \\ R_{\text{III-8}} & & & & \\ \end{array}$$

Formula III

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein $R_{\text{III-1}}$ is hydrogen, $Y_{\text{III}},\,W_{\text{III}}\!-\!X_{\text{III}},\,W_{\text{III}}\!-\!Y_{\text{III}};$

wherein W_{III} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_{III} is -O-Y_{III}, -S-Y_{III}, -N(H)-Y_{III} or -N-(Y_{III})₂;

 $Y_{\rm III}$ for each occurrence is independently $Z_{\rm III}$ or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $Z_{\rm III}$;

wherein Z_{III} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said $Z_{\rm III}$ substituent is optionally mono-, di- or tri-substituted independently with halo, (C_2-C_6) alkenyl, (C_1-C_6) alkyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl optionally substituted with from one to nine fluorines; $R_{\rm III-3}$ is hydrogen or $Q_{\rm III}$;

wherein $Q_{\rm III}$ is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\rm III}$;

wherein V_{III} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken

independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{III} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- (C_1-C_6) alkylcarboxamoyl, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl or (C_2-C_6) alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino or said (C_1-C_6) alkyl or (C_2-C_6) alkenyl are optionally substituted with from one to nine fluorines:

 R_{III-4} is Q_{III-1} or V_{III-1} ;

wherein Q_{III-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{III-1} ;

wherein $V_{\text{III-1}}$ is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{III-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent optionally having from one to nine fluorines;

wherein either R_{III-3} must contain V_{III} or R_{III-4} must contain V_{III-1} ; and R_{III-5} and R_{III-6} , or R_{III-6} and R_{III-7} , and/or R_{III-7} and R_{III-8} are taken together and form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by R_{III-5} and R_{III-6} , or R_{III-6} and R_{III-7} , and/or R_{III-7} and R_{III-8} are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl,

 (C_1-C_4) alkylsulfonyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or trisubstituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent optionally having from one to nine fluorines;

provided that the R_{III-5} , R_{III-6} , R_{III-7} and/or R_{III-8} , as the case may be, that do not form at least one ring are each independently hydrogen, halo, (C_1-C_6) alkoxy or (C_1-C_6) alkyl, said (C_1-C_6) alkyl optionally having from one to nine fluorines.

- 16. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of [2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta[g]quinoline-1-carboxylic acid ethyl ester,
- [6R, 8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-aza-cyclopenta[b]naphthalene-5-carboxylic acid ethylester,
- [6R, 8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g]quinoline-5-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g]quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo[g]quinoline-1-carboxylic acid propyl ester,
- [7R,9S] 9-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cyclopenta[a]naphthalene-6-carboxylic acid ethyl ester, and
- [6S,8R] 6-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-aza-cyclopenta[a]naphthalene-9-carboxylic acid ethyl ester.
- 17. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula IV

$$R_{IV-3}$$
 R_{IV-5}
 N
 OR_{IV-4}
 R_{IV-6}
 R_{IV-7}
 R_{IV-8}
 R_{IV-1}

Formula IV

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{IV-1} is hydrogen, Y_{IV} , W_{IV} - X_{IV} or W_{IV} - Y_{IV} ; wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl; X_{IV} is -O- Y_{IV} , -S- Y_{IV} , -N(H)- Y_{IV} or -N- $(Y_{IV})_2$;

wherein Y_{IV} for each occurrence is independently Z_{IV} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{IV} ;

wherein Z_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_6)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino,

nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

 $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said $R_{\text{IV-2}}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said $R_{\text{IV-2}}$ ring is optionally attached through (C_1-C_4) alkyl;

wherein said $R_{\text{IV-2}}$ ring is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, oxo or $(C_1\text{-}C_6)$ alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

 R_{IV-3} is hydrogen or Q_{IV} ;

wherein Q_{IV} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with V_{IV} ;

wherein V_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{IV} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylcarboxamoyl, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl or $(C_2\text{-}C_6)$ alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl or $(C_2\text{-}C_6)$ alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{IV-4} is Q_{IV-1} or V_{IV-1} ;

wherein $Q_{\text{IV-1}}$ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\text{IV-1}}$;

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said $V_{\text{IV-1}}$ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein either R_{IV-3} must contain V_{IV} or R_{IV-4} must contain V_{IV-1} ; R_{IV-5} , R_{IV-6} , R_{IV-7} and R_{IV-8} are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-

substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV} ;

wherein T_{IV} is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines; and

wherein $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said ring or rings formed by $R_{\text{IV-5}}$ and $R_{\text{IV-6}}$, or $R_{\text{IV-6}}$ and $R_{\text{IV-7}}$, and/or $R_{\text{IV-7}}$ and $R_{\text{IV-8}}$ are optionally mono-, di- or tri-substituted independently with halo, $(C_1\text{-}C_6)$ alkyl, $(C_1\text{-}C_4)$ alkylsulfonyl, $(C_2\text{-}C_6)$ alkenyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino, said $(C_1\text{-}C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or $(C_1\text{-}C_4)$ alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen.

18. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of

[2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)methoxycarbonyl-amino]-2-isopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,

- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-cyclopropyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 2-cyclopropyl-4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester,
- [2R,4R] 4-[(3,5-bis-trifluoromethyl-benzyl)methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2Hquinaline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclobutyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methoxymethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid 2-hydroxy-ethyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester, and
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester.
- 19. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula V

$$R_{V-3}$$
 R_{V-4} R_{V-5} N R_{V-6} R_{V-7} R_{V-8} R_{V-1}

Formula V

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

wherein R_{V-1} is Y_V , W_V-X_V or W_V-Y_V ;

wherein W_V is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_V is -O-Y_V, -S-Y_V, -N(H)-Y_V or -N-(Y_V)₂;

wherein Y_V for each occurrence is independently Z_V or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_V ;

wherein Z_V is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_V substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$

C₆)alkylamino, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to nine fluorines;

 R_{V-2} is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said R_{V-2} is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said R_{V-2} ring is optionally attached through (C_1-C_4) alkyl;

wherein said R_{V-2} ring is optionally mono-, di- or tri-substituted independently with halo, $(C_2\text{-}C_6)$ alkenyl, $(C_1\text{-}C_6)$ alkyl, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1\text{-}C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1\text{-}C_6)$ alkylamino wherein said $(C_1\text{-}C_6)$ alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1\text{-}C_6)$ alkoxy, $(C_1\text{-}C_4)$ alkylthio, oxo or $(C_1\text{-}C_6)$ alkyloxycarbonyl;

 R_{V-3} is hydrogen or Q_V ;

wherein Q_V is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V_V ;

wherein V_V is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_V substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, $(C_1-C_$

 C_4)alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N,N-(C_1 - C_6) alkylcarboxamoyl, carboxy, (C_1 - C_6)alkyloxycarbonyl, mono-N- or di-N,N-(C_1 - C_6)alkylamino wherein said (C_1 - C_6)alkyl or (C_2 - C_6)alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1 - C_6)alkoxy, (C_1 - C_4)alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1 - C_6)alkyloxycarbonyl, mono-N- or di-N,N-(C_1 - C_6)alkylamino, said (C_1 - C_6)alkyl or (C_2 - C_6)alkenyl substituents are also optionally substituted with from one to nine fluorines;

 R_{V-4} is cyano, formyl, $W_{V-1}Q_{V-1}$, $W_{V-1}V_{V-1}$, (C_1-C_4) alkylene V_{V-1} or V_{V-2} ; wherein W_{V-1} is carbonyl, thiocarbonyl, SO or SO_2 ,

wherein Q_{V-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V_{V-1} ;

wherein V_{V-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, hydroxy, oxo, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-substituted with oxo, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein V_{V-2} is a partially saturated, fully saturated or fully unsaturated five to seven membered ring containing one to four heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{V-2} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_2) alkoxy, hydroxy, or oxo wherein said (C_1-C_2) alkyl optionally has from one to five fluorines; and

wherein R_{V-4} does not include oxycarbonyl linked directly to the C^4 nitrogen; wherein either R_{V-3} must contain V_V or R_{V-4} must contain V_{V-1} ;

 R_{V-5} , R_{V-6} , R_{V-7} and R_{V-8} are independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_V or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or disubstituted with oxo, said nitrogen is optionally mono- or disubstituted with oxo, and said carbon chain is optionally mono-substituted with T_V ;

wherein T_V is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_V substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_6) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent also optionally has from one to nine fluorines;

wherein R_{V-5} and R_{V-6} , or R_{V-6} and R_{V-7} , and/or R_{V-7} and R_{V-8} may also be taken together and can form at least one ring that is a partially saturated or fully unsaturated four to eight membered ring optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said rings formed by R_{V-5} and R_{V-6} , or R_{V-6} and R_{V-7} , and/or R_{V-7} and R_{V-8} are optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_4) alkylsulfonyl, (C_2-C_6) alkenyl, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino wherein said (C_1-C_6) alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent also optionally has from one to nine fluorines.

- 20. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of
- 2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester,
- [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester,
- [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[1-(3,5-bis-trifluoromethyl-benzyl)-ureido]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methoxymethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester,
- [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester,

- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester, and
- [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester.
- 21. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula VI

$$\begin{array}{c|c} A_{VI} & \\ \hline D_{VI} & \\ \hline R_{VI-1} & \\ \hline R_{VI-2} & \\ \end{array}$$

Formula VI

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

in which

A_{VI} denotes an aryl containing 6 to 10 carbon atoms, which is optionally substituted with up to five identical or different substituents in the form of a halogen, nitro, hydroxyl, trifluoromethyl, trifluoromethoxy or a straight-chain or branched alkyl, acyl, hydroxyalkyl or alkoxy containing up to 7 carbon atoms each, or in the form of a group according to the formula —NR_{VI-3}R_{VI-4}, wherein

 $R_{\text{VI-3}}$ and $R_{\text{VI-4}}$ are identical or different and denote a hydrogen, phenyl or a straight-chain or branched alkyl containing up to 6 carbon atoms,

 D_{VI} denotes an aryl containing 6 to 10 carbon atoms, which is optionally substituted with a phenyl, nitro, halogen, trifluoromethyl or trifluoromethoxy, or a radical according to the formula R_{VI-5} - L_{VI} -,

$$R_{VI-7}$$
 R_{VI-8}

or R_{VI-9} - T_{VI} - V_{VI} - X_{VI} , wherein

R_{VI-5}, R_{VI-6} and R_{VI-9} denote, independently from one another, a cycloalkyl containing 3 to 6 carbon atoms, or an aryl containing 6 to 10 carbon atom or a 5- to 7-membered, optionally benzo-condensed, saturated or unsaturated, mono-, bi- or tricyclic heterocycle containing up to 4 heteroatoms from the series of S, N and/or O, wherein the rings are optionally substituted, in the case of the nitrogen-containing rings also via the N function, with up to five identical or different substituents in the form of a halogen, trifluoromethyl, nitro, hydroxyl, cyano, carboxyl, trifluoromethoxy, a straight-chain or branched acyl, alkyl, alkylthio, alkylalkoxy, alkoxy or alkoxycarbonyl containing up to 6 carbon atoms each, an aryl or trifluoromethyl-substituted aryl containing 6 to 10 carbon atoms each, or an optionally benzo-condensed, aromatic 5- to 7-membered heterocycle containing up to 3 heteoatoms from the series of S, N and/or O, and/or in the form of a group according to the formula –OR_{VI-10}, -SR_{VI-11}, -SO₂R_{VI-12} or –NR_{VI-13}R_{VI-14}, wherein

 R_{VI-10} , R_{VI-11} and R_{VI-12} denote, independently from one another, an aryl containing 6 to 10 carbon atoms, which is in turn substituted with up to two identical or different substituents in the form of a phenyl, halogen or a straight-chain or branched alkyl containing up to 6 carbon atoms,

 R_{VI-13} and R_{VI-14} are identical or different and have the meaning of R_{VI-3} and R_{VI-4} given above, or

R_{VI-5} and/or R_{VI-6} denote a radical according to the formula

$$F$$
 or F_3C

R_{VI-7} denotes a hydrogen or halogen, and

R_{VI-8} denotes a hydrogen, halogen, azido, trifluoromethyl, hydroxyl, trifluoromethoxy, a straight-chain or branched alkoxy or alkyl containing up to 6 carbon atoms each, or a radical according to the formula

wherein

 R_{VI-15} and R_{VI-16} are identical or different and have the meaning of R_{VI-3} and R_{VI-4} given above, or

 $R_{\text{VI-7}}$ and $R_{\text{VI-8}}$ together form a radical according to the formula =0 or =NR $_{\text{VI-17}}$, wherein

R_{VI-17} denotes a hydrogen or a straight-chain or branched alkyl, alkoxy or acyl containing up to 6 carbon atoms each,

 L_{VI} denotes a straight-chain or branched alkylene or alkenylene chain containing up to 8 carbon atoms each, which are optionally substituted with up to two hydroxyl groups,

 T_{VI} and X_{VI} are identical or different and denote a straight-chain or branched alkylene chain containing up to 8 carbon atoms, or

 T_{VI} or X_{VI} denotes a bond,

 V_{VI} denotes an oxygen or sulfur atom or an $-NR_{\text{VI-18}}$ group, wherein

R_{VI-18} denotes a hydrogen or a straight-chain or branched alkyl containing up to 6 carbon atoms or a phenyl,

 E_{VI} denotes a cycloalkyl containing 3 to 8 carbon atoms, or a straight-chain or branched alkyl containing up to 8 carbon atoms, which is optionally substituted with a cycloalkyl containing 3 to 8 carbon atoms or a hydroxyl, or a phenyl, which is optionally substituted with a halogen or trifluoromethyl,

 $R_{\text{VI-1}}$ and $R_{\text{VI-2}}$ together form a straight-chain or branched alkylene chain containing up to 7 carbon atoms, which must be substituted with a carbonyl group and/or a radical according to the formula

wherein

a and b are identical or different and denote a number equaling 1, 2 or 3,

R_{VI-19} denotes a hydrogen atom, a cycloalkyl containing 3 to 7 carbon atoms, a straight-chain or branched silylalkyl containing up to 8 carbon atoms, or a straight-chain or branched alkyl containing up to 8 carbon atoms, which is optionally substituted with a hydroxyl, a straight-chain or a branched alkoxy containing up to 6 carbon atoms or a phenyl, which may in turn be substituted with a halogen, nitro, trifluoromethyl, trifluoromethoxy or phenyl or tetrazole-substituted phenyl, and an alkyl that is optionally substituted with a group according to the formula –OR_{VI-22}, wherein

 $R_{\text{VI-}22}$ denotes a straight-chain or branched acyl containing up to 4 carbon atoms or benzyl, or

R_{VI-19} denotes a straight-chain or branched acyl containing up to 20 carbon atoms or benzoyl, which is optionally substituted with a halogen, trifluoromethyl, nitro or trifluoromethoxy, or a straight-chain or branched fluoroacyl containing up to 8 carbon atoms,

 $R_{\text{VI-20}}$ and $R_{\text{VI-21}}$ are identical or different and denote a hydrogen, phenyl or a straight-chain or branched alkyl containing up to 6 carbon atoms, or

R_{VI-20} and R_{VI-21} together form a 3- to 6-membered carbocyclic ring, and a the carbocyclic rings formed are optionally substituted, optionally also geminally, with up to six identical or different substituents in the form of trifluoromethyl, hydroxyl, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkyl or cycloalkyloxy containing 3 to 7 carbon atoms each, a straight-chain or branched alkoxycarbonyl, alkoxy or alkylthio containing up to 6 carbon atoms each, or a straight-chain or branched alkyl containing up to 6 carbon atoms, which is in turn substituted with up to two identical or different substituents in the form of a hydroxyl, benzyloxy, trifluoromethyl, benzoyl, a straight-chain or branched alkoxy, oxyacyl or carboxyl containing up to 4 carbon atoms each and/or a phenyl, which may in turn be substituted with a halogen, trifluoromethyl or trifluoromethoxy, and/or the carbocyclic rings formed are optionally substituted, also geminally, with up to five identical or different substituents in the form of a phenyl, benzoyl, thiophenyl or sulfonylbenzyl, which in turn are optionally substituted with a halogen, trifluoromethyl, trifluoromethoxy or nitro, and/or optionally in the form of a radical according to the formula

1,2
$$(CH_2)_c$$
 ,
-SO₂-C₆H₅, -(CO)_dNR_{VI-23}R_{VI-24} or =O,

wherein

c is a number equaling 1, 2, 3 or 4,

d is a number equaling 0 or 1,

 $R_{\text{VI-}23}$ and $R_{\text{VI-}24}$ are identical or different and denote a hydrogen, cycloalkyl containing 3 to 6 carbon atoms, a straight-chain or branched alkyl containing up to 6 carbon atoms, benzyl or phenyl, which is optionally substituted with up to two identical or different substituents in the form of halogen, trifluoromethyl, cyano, phenyl or nitro, and/or the carbocyclic rings formed are optionally substituted with a spiro-linked radical according to the formula

wherein

W_{VI} denotes either an oxygen atom or a sulfur atom,

 Y_{VI} and Y'_{VI} together form a 2- to 6-membered straight-chain or branched alkylene chain,

e is a number equaling 1, 2, 3, 4, 5, 6 or 7,

f is a number equaling 1 or 2,

 R_{VI-25} , R_{VI-26} , R_{VI-27} , R_{VI-28} , R_{VI-29} , R_{VI-30} and R_{VI-31} are identical or different and denote a hydrogen, trifluoromethyl, phenyl, halogen or a straight-chain or branched alkyl or alkoxy containing up to 6 carbon atoms each, or

 $R_{\text{VI-}25}$ and $R_{\text{VI-}26}$ or $R_{\text{VI-}27}$ and $R_{\text{VI-}28}$ each together denote a straight-chain or branched alkyl chain containing up to 6 carbon atoms or

 $R_{\text{VI-}25}$ and $R_{\text{VI-}26}$ or $R_{\text{VI-}27}$ and $R_{\text{VI-}28}$ each together form a radical according to the formula

wherein

W_{VI} has the meaning given above,

g is a number equaling 1, 2, 3, 4, 5, 6 or 7,

 R_{VI-32} and R_{VI-33} together form a 3- to 7-membered heterocycle, which contains an oxygen or sulfur atom or a group according to the formula SO, SO₂ or $-NR_{VI-34}$, wherein

R_{VI-34} denotes a hydrogen atom, a phenyl, benzyl, or a straight-chain or branched alkyl containing up to 4 carbon atoms, and salts and N oxides thereof, with the exception of 5(6H)-quinolones, 3-benzoyl-7,8-dihydro-2,7,7-trimethyl-4-phenyl.

22. (withdrawn) The composition of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of 2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-3-(4-trifluoromethylbenzoyl)-4,6,7,8-tetrahydro-1H-quinolin-5-one,

2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-3-(4-trifluoromethylbenzoyl)-7,8-dihydro-6H-quinolin-5-one,

- [2-cyclopentyl-4-(4-fluorophenyl)-5-hydroxy-7,7-dimethyl-5,6,7,8-tetrahydroquinolin-3-yl]- (4-trifluoromethylphenyl)-methanone,
- [5-(t-butyldimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-5,6,7,8-tetrahydroquinolin-3-yl]-(4-trifluoromethylphenyl)-methanone,
- [5-(t-butyldimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-5,6,7,8-tetrahydroquinolin-3-yl]-(4-trifluoromethylphenyl)-methanol,
- 5-(t-butyldimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-3-[fluoro-(4-trifluoromethylphenyl)-methyl]-7,7-dimethyl-5,6,7,8-tetrahydroquinoline, and
- 2-cyclopentyl-4-(4-fluorophenyl)- 3-[fluoro-(4-trifluoromethylphenyl)-methyl]-7,7-dimethyl-5,6,7,8-tetrahydroquinolin-5-ol.
- 23. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula VII

Formula VII

or a pharmaceutically acceptable salt, enantiomers, or stereoisomers or tautomer thereof,

wherein

-CHO,

 R_{VII-2} and R_{VII-6} are independently selected from the group consisting of hydrogen, hydroxy, alkyl, fluorinated alkyl, fluorinated aralkyl, chlorofluorinated alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, alkoxyalkyl, and alkoxycarbonyl; provided that at least one of R_{VII-2} and R_{VII-6} is fluorinated alkyl, chlorofluorinated alkyl or alkoxyalkyl;

 $R_{\text{\tiny VII-3}}$ is selected from the group consisting of hydroxy, amido, arylcarbonyl, heteroarylcarbonyl, hydroxymethyl

- CO_2R_{VII-7} , wherein R_{VII-7} is selected from the group consisting of hydrogen, alkyl and cyanoalkyl; and

wherein R_{VII-15a} is selected from the group consisting of hydroxy, hydrogen, halogen, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio, heterocyclylthio, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy and heterocyclyloxy, and

 $R_{\text{VII-16a}}$ is selected from the group consisting of alkyl, haloalkyl, alkenyl, haloalkynyl, aryl, heteroaryl, and heterocyclyl, arylalkoxy, trialkylsilyloxy;

R_{VII-4} is selected from the group consisting of hydrogen, hydroxy, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkylalkyl, cycloalkenylalkyl, aralkyl, heteroarylalkyl, heterocyclylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, aralkenyl, heteroarylalkenyl, heterocyclylalkenyl, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkanoyloxy, alkenoyloxy, alkynoyloxy, aryloyloxy, heteroaryloxy, heterocyclyloyloxy, alkoxycarbonyl, alkenoxycarbonyl, alkynoxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, heterocyclyloxycarbonyl, thio, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio, heterocyclylthio, cycloalkylthio, cycloalkenylthio, alkylthioalkyl, alkynylthioalkyl, arylthioalkyl, heteroarylthioalkyl, heterocyclylthioalkyl, alkylthioalkenyl, alkynylthioalkenyl, arylthioalkenyl, arylthioalkenyl, arylthioalkenyl, arylthioalkenyl, heteroarylthioalkenyl, heterocyclythioalkenyl, alkylamino, alkynylamino, arylamino, heteroarylamino, heterocyclylamino, aryldialkylamino, diarylamino, diheteroarylamino, alkylarylamino, alkylheteroarylamino, arylheteroarylamino, trialkylsilyl, trialkenylsilyl, triarylsilyl,

-CO(O)N($R_{VII-8a}R_{VII-8b}$), wherein R_{VII-8a} and R_{VII-8b} are independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl,

-SO₂R_{VII-9}, wherein R_{VII-9} is selected from the group consisting of hydroxy, alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, -OP(O)(OR_{VII-10a}) (OR_{VII-10b}), wherein R_{VII-10a} and R_{VII-10b} are independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, and -OP(S) (OR_{VII-11a}) (OR_{VII-11b}), wherein R_{VII-11a} and R_{VII-11b} are independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

R_{VII-5} is selected from the group consisting of hydrogen, hydroxy, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, aryl, heteroaryl, heterocyclyl, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkylcarbonyloxyalkyl, alkenylcarbonyloxyalkyl, alkynylcarbonyloxyalkyl, arylcarbonyloxyalkyl, heterocyclylcarbonyloxyalkyl, cycloalkylalkyl, cycloalkenylalkyl, aralkyl, heteroarylalkyl, heterocyclylalkyl, cycloalkylalkenyl, aralkenyl, heteroarylalkenyl, heterocyclylalkenyl, alkylthioalkyl, cycloalkylthioalkyl, alkenylthioalkyl, alkynylthioalkyl, arylthioalkyl, heteroarylthioalkyl, arylthioalkyl, heteroarylthioalkyl, alkylthioalkenyl, alkenylthioalkenyl, alkynylthioalkenyl, arylthioalkenyl, alkynylthioalkenyl, alkoxyalkyl, heterocyclylthioalkenyl, alkoxyalkyl, alkoxyalkyl, alkynoxyalkyl, heteroaryloxyalkyl, heterocyclyloxyalkyl, alkoxyalkenyl, alkoxyalkenyl, alkynoxyalkenyl, alkynoxyalkenyl, aryloxyalkenyl, heteroaryloxyalkenyl, alkoxyalkenyl, cyano, hydroxymethyl, -CO₂R_{VII-14}, wherein R_{VII-14} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

wherein $R_{\text{VII-15b}}$ is selected from the group consisting of hydroxy, hydrogen, halogen, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio, heterocyclylthio, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, aroyloxy, and alkylsulfonyloxy, and

R_{VII-16b} is selected form the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, arylalkoxy, and trialkylsilyloxy;

wherein R_{VII-17} and R_{VII-18} are independently selected from the group consisting of alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

wherein R_{VII-19} is selected from the group consisting of alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, -SR_{VII-20}, -OR_{VII-21}, and -R_{VII-22}CO₂R_{VII-23}, wherein

R_{VII-20} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, aminoalkyl, aminoalkenyl, aminoalkynyl, aminoaryl, aminoheteroaryl, aminoheterocyclyl, alkylheteroarylamino, arylheteroarylamino,

 $R_{\text{VII-21}}$ is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl,

 $R_{\text{VII-22}}$ is selected from the group consisting of alkylene or arylene, and $R_{\text{VII-23}}$ is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein $R_{\text{VII-}24}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, aralkyl, aralkenyl, and aralkynyl;

$$C = N$$
 $|$
 $-C = R_{VII-25}$

wherein R_{VII-25} is heterocyclylidenyl;

wherein $R_{\text{VII-26}}$ and $R_{\text{VII-27}}$ are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

$$\begin{array}{c} S \\ \parallel \\ - C - NH_{2} \\ \\ O S \\ \parallel \\ - C - C - NH_{2} \\ \\ - CH_{2} S - C - N \\ \\ \\ R_{VII-28} \\ \\ \end{array}$$

wherein R_{VII-28} and R_{VII-29} are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein $R_{\text{VII-30}}$ and $R_{\text{VII-31}}$ are independently alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, and heterocyclyloxy; and

wherein R_{VII-32} and R_{VII-33} are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

H
$$\mid$$
 $-C = N - OH$;
 $C = C - SI(R_{VII-36})_3$

wherein $R_{\text{VII-36}}$ is selected from the group consisting of alkyl, alkenyl, aryl, heteroaryl and heterocyclyl;

$$-N$$
 R_{VII-37}
 RI_{VII-38}

wherein R_{VII-37} and R_{VII-38} are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

$$-N = C R_{VII-39}$$

$$R_{VII-40}$$

wherein $R_{\text{VII-39}}$ is selected from the group consisting of hydrogen, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio and heterocyclylthio, and

 R_{VII-40} is selected from the group consisting of haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloheteroaryl, haloheterocyclyl, cycloalkyl, cycloalkenyl, heterocyclylalkoxy, heterocyclylalkenoxy, heterocyclylalkynoxy, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio and heterocyclylthio;

wherein R_{VII-41} is heterocyclylidenyl;

wherein R_{VII-42} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl, and

R_{VII-43} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloheteroaryl, and haloheterocyclyl;

wherein $R_{\text{VII-44}}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

wherein R_{VII-45} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloheteroaryl, haloheterocyclyl, heterocyclyl, cycloalkylalkyl, cycloalkenylalkyl, aralkyl, heteroarylalkyl, heterocyclylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, aralkenyl, heteroarylalkenyl, heterocyclylalkenyl, alkylthioalkyl, alkenylthioalkyl, alkynylthioalkyl, arylthioalkyl, heteroarylthioalkyl, heterocyclylthioalkyl, alkylthioalkenyl, alkenylthioalkenyl, alkynylthioalkenyl, arylthioalkenyl, heteroarylthioalkenyl, heterocyclylthioalkenyl, heterocyclylthioalkenyl, aminocarbonylalkyl, aminocarbonylalkynyl, aminocarbonylaryl, aminocarbonylheteroaryl, and aminocarbonylheterocyclyl,

-SR
$$_{VII-46}$$
, and -CH $_2$ R $_{VII-47}$,

wherein $R_{\text{VII-46}}$ is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, and

 R_{VII-47} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl; and

wherein $R_{\text{VII-48}}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, and

R_{VII-49} is selected from the group consisting of alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloheteroaryl and haloheterocyclyl;

wherein $R_{\text{VII-50}}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy and heterocyclyloxy;

wherein $R_{\text{VII-51}}$ is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloaleteroaryl and haloheterocyclyl; and

wherein $R_{\text{VII-53}}$ is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

provided that when $R_{\text{VII-5}}$ is selected from the group consisting of heterocyclylalkyl and heterocyclylalkenyl, the heterocyclyl radical of the corresponding heterocyclylalkyl or heterocyclylalkenyl is other than ?—lactone; and

provided that when R_{VII-4} is aryl, heteroaryl or heterocyclyl, and one of R_{VII-2} and R_{VII-6} is trifluoromethyl, then the other of R_{VII-2} and R_{VII-6} is difluoromethyl.

- 24. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is dimethyl 5,5'-dithiobis[2-difluoromethyl-4-(2-methylpropyl)-6-(trifluoromethyl)-3-pyridine-carboxylate].
- 25. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula VIII

Formula VIII

or a pharmaceutically acceptable salt, enantiomers, or stereoisomers thereof, in which

 A_{VIII} stands for aryl with 6 to 10 carbon atoms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, or by straight-chain or branched alkyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

 $R_{\text{VIII-1}}$ and $R_{\text{VIII-2}}$ are identical or different and denote hydrogen, phenyl, or straight-chain or branched alkyl with up to 6 carbon atoms,

 D_{VIII} stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is substituted by hydroxy,

 E_{VIII} and L_{VIII} are either identical or different and stand for straight-chain or branched alkyl with up to 8 carbon atoms, which is optionally substituted by cycloalkyl with 3 to 8 carbon atoms, or stands for cycloalkyl with 3 to 8 carbon atoms, or

E_{VIII} has the above-mentioned meaning and

L_{VIII} in this case stands for aryl with 6 to 10 carbon atoms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, or by straight-chain or branched alkyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

 R_{VIII-3} and R_{VIII-4} are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2} , or

 E_{VIII} stands for straight-chain or branched alkyl with up to 8 carbon atoms, or stands for aryl with 6 to 10 carbon atoms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, or by straight-chain or branched alkyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

 R_{VIII-5} and R_{VIII-6} are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2} , and

 L_{VIII} in this case stands for straight-chain or branched alkoxy with up to 8 carbon atoms or for cycloalkyloxy with 3 to 8 carbon atoms,

T_{VIII} stands for a radical of the formula

$$R_{VIII-7} - X_{VIII} - \text{ or } R_{VIII-8}$$

 R_{VIII-7} and R_{VIII-8} are identical or different and denote cycloalkyl with 3 to 8 carbon atoms, or aryl with 6 to 10 carbon atoms, or denote a 5- to 7-member aromatic, optionally benzo-condensed, heterocyclic compound with up to 3 heteroatoms from the

series S, N and/or O, which are optionally substituted up to 3 times in an identical manner or differently by trifluoromethyl, trifluoromethoxy, halogen, hydroxy, carboxyl, by straight-chain or branched alkyl, acyl, alkoxy, or alkoxycarbonyl with up to 6 carbon atoms each, or by phenyl, phenoxy, or thiophenyl, which can in turn be substituted by halogen, trifluoromethyl, or trifluoromethoxy, and/or the rings are substituted by a group of the formula

 $R_{VIII-11}$ and $R_{VIII-12}$ are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2} ,

 X_{VIII} denotes a straight or branched alkyl chain or alkenyl chain with 2 to 10 carbon atoms each, which are optionally substituted up to 2 times by hydroxy,

R_{VIII-9} denotes hydrogen, and

R_{VIII-10} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, mercapto, trifluoromethoxy, straight-chain or branched alkoxy with up to 5 carbon atoms, or a radical of the formula

 $R_{VIII-13}$ and $R_{VIII-14}$ are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2} , or

R_{VIII-9} and R_{VIII-10} form a carbonyl group together with the carbon atom.

26. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula IX

Formula IX

or a pharmaceutically acceptable salt or tautomer thereof;

wherein R_{IX-1} is selected from higher alkyl, higher alkenyl, higher alkynyl, aryl, aralkyl, aryloxyalkyl, alkoxyalkyl, alkylthioalkyl, arylthioalkyl, and cycloalkylalkyl;

wherein $R_{\text{IX-2}}$ is selected from aryl, heteroaryl, cycloalkyl, and cycloalkenyl, wherein

R_{IX-2} is optionally substituted at a substitutable position with one or more radicals independently selected from alkyl, haloalkyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkoxy,

halo, aryloxy, aralkyloxy, aryl, aralkyl, aminosulfonyl, amino, monoalkylamino and dialkylamino; and

wherein R_{IX-3} is selected from hydrido, -SH and halo; provided R_{IX-2} cannot be phenyl or 4-methylphenyl when R_{IX-1} is higher alkyl and when R_{IX-3} is -SH.

- 27. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of
- 2,4-dihydro-4-(3-methoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2-fluorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2-methylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(3-chlorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2-methoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(3-methylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 4-cyclohexyl-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(3-pyridyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2-ethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2,6-dimethylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(4-phenoxyphenyl)-5-tridecyl-3H-1,2,4-triazole- 3-thione,
- 4-(1,3-benzodioxol-5-yl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 4-(2-chlorophenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(4-methoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-5-tridecyl-4-(3-trifluoromethylphenyl)-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-5-tridecyl-4-(3-fluorophenyl)-3H-1,2,4-triazole-3-thione,
- 4-(3-chloro-4-methylphenyl)-2.4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 2,4-dihydro-4-(2-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,
- 4-(4-benzyloxyphenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(2-naphthyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-5-tridecyl-4-(4-trifluoromethylphenyl)-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(1-naphthyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(3-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(4-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(3,4-dimethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(2,5-dimethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(2-methoxy-5-chlorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione,

4-(4-aminosulfonylphenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-5-dodecyl-4-(3-methoxyphenyl)-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(3-methoxyphenyl)-5-tetradecyl-3H-1,2,4-triazole-3-thione,

2,4-dihydro-4-(3-methoxyphenyl)-5-undecyl-3H-1,2,4-triazole-3-thione, and

2,4-dihydro-(4-methoxyphenyl)-5-pentadecyl-3H-1,2,4-triazole-3-thione.

28. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula X

$$D_{X}$$
 R_{X-1}
 R_{X-2}

Formula X

and pharmaceutically acceptable salts, enantiomers, or stereoisomers or N-oxides of said compounds;

in which

A_X represents cycloalkyl with 3 to 8 carbon atoms or a 5 to 7-membered, saturated, partially saturated or unsaturated, optionally benzo-condensed heterocyclic ring containing up to 3 heteroatoms from the series comprising S, N and/or O, that in

case of a saturated heterocyclic ring is bonded to a nitrogen function, optionally bridged over it, and in which the aromatic systems mentioned above are optionally substituted up to 5-times in an identical or different substituents in the form of halogen, nitro, hydroxy, trifluoromethyl, trifluoromethoxy or by a straight-chain or branched alkyl, acyl, hydroxyalkyl or alkoxy each having up to 7 carbon atoms or by a group of the formula – $NR_{X-3}R_{X-4}$,

in which

 R_{X-3} and R_{X-4} are identical or different and denote hydrogen, phenyl or straight-chain or branched alkyl having up to 6 carbon atoms, or

Ax represents a radical of the formula

 D_X represents an aryl having 6 to 10 carbon atoms, that is optionally substituted by phenyl, nitro, halogen, trifluormethyl or trifluormethoxy, or it represents a radical of the formula

$$R_{x-5}$$
 L_x R_{x-6} R_{x-9} T_x N_x N_x

in which

 R_{X-5} , R_{X-6} and R_{X-9} independently of one another denote cycloalkyl having 3 to 6 carbon atoms, or an aryl having 6 to 10 carbon atoms or a 5- to 7-membered aromatic, optionally benzo-condensed saturated or unsaturated, mono-, bi-, or tricyclic heterocyclic ring from the series consisting of S, N and/or O, in which the rings are substituted, optionally, in case of the nitrogen containing aromatic rings via the N function, with up to 5 identical or different substituents in the form of halogen, trifluoromethyl, nitro, hydroxy,

cyano, carbonyl, trifluoromethoxy, straight straight-chain or branched acyl, alkyl, alkylthio, alkylalkoxy, alkoxy, or alkoxycarbonyl each having up to 6 carbon atoms, by aryl or trifluoromethyl-substituted aryl each having 6 to 10 carbon atoms or by an, optionally benzo-condensed, aromatic 5- to 7-membered heterocyclic ring having up to 3 heteroatoms from the series consisting of S, N, and/or O, and/or substituted by a group of the formula $-OR_{X-10}$, $-SR_{X-11}$, SO_2R_{X-12} or $-NR_{X-13}R_{X-14}$, in which

 R_{X-10} , R_{X-11} and R_{X-12} independently from each other denote aryl having 6 to 10 carbon atoms, which is in turn substituted with up to 2 identical or different substituents in the form of phenyl, halogen or a straight-chain or branched alkyl having up to 6 carbon atoms,

 R_{X-13} and R_{X-14} are identical or different and have the meaning of R_{X-3} and R_{X-4} indicated above,

or

 R_{X-5} and/or R_{X-6} denote a radical of the formula

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & \text{or} & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

R_{X-7} denotes hydrogen or halogen, and

 R_{X-8} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straight-chain or branched alkoxy or alkyl having up to 6 carbon atoms or a radical of the formula

 $-NR_{x-15}R_{x-16}$

in which

 R_{X-15} and R_{X-16} are identical or different and have the meaning of R_{X-3} and R_{X-4} indicated above,

or

 R_{X-7} and R_{X-8} together form a radical of the formula =O or =NR_{X-17}, in which

 R_{X-17} denotes hydrogen or straight chain or branched alkyl, alkoxy or acyl having up to 6 carbon atoms,

L_X denotes a straight chain or branched alkylene or alkenylene chain having up to 8 carbon atoms, that are optionally substituted with up to 2 hydroxy groups,

 T_X and X_X are identical or different and denote a straight chain or branched alkylene chain with up to 8 carbon atoms or

 T_X or X_X denotes a bond,

V_X represents an oxygen or sulfur atom or an –NR_{X-18}-group, in which

 $R_{\text{X-18}}$ denotes hydrogen or straight chain or branched alkyl with up to 6 carbon atoms or phenyl,

 E_X represents cycloalkyl with 3 to 8 carbon atoms, or straight chain or branched alkyl with up to 8 carbon atoms, that is optionally substituted by cycloalkyl with 3 to 8 carbon atoms or hydroxy, or represents a phenyl, that is optionally substituted by halogen or trifluoromethyl,

 R_{X-1} and R_{X-2} together form a straight-chain or branched alkylene chain with up to 7 carbon atoms, that must be substituted by carbonyl group and/or by a radical with the formula

$$(CH_2)_a - CH_2$$
 1,3 $O-CH_2$ $O-CH_2$

in which a and b are identical or different and denote a number equaling 1,2, or 3,

 R_{X-19} denotes hydrogen, cycloalkyl with 3 up to 7 carbon atoms, straight chain or branched silylalkyl with up to 8 carbon atoms or straight chain or branched alkyl with up to 8 carbon atoms, that are optionally substituted by hydroxyl, straight chain or branched alkoxy with up to 6 carbon atoms or by phenyl, which in turn might be substituted by halogen, nitro, trifluormethyl, trifluoromethoxy or by phenyl or by tetrazole-substituted phenyl, and alkyl, optionally be substituted by a group with the formula $-OR_{X-22}$, in which

 $R_{\text{X-}22}$ denotes a straight chain or branched acyl with up to 4 carbon atoms or benzyl,

or

 R_{X-19} denotes straight chain or branched acyl with up to 20 carbon atoms or benzoyl , that is optionally substituted by halogen , trifluoromethyl, nitro or trifluoromethoxy, or it denotes straight chain or branched fluoroacyl with up to 8 carbon atoms and 9 fluorine atoms.

 R_{X-20} and R_{X-21} are identical or different and denote hydrogen, phenyl or straight chain or branched alkyl with up to 6 carbon atoms, or

 R_{x-20} and R_{x-21} together form a 3- to 6- membered carbocyclic ring, and the carbocyclic rings formed are optionally substituted, optionally also geminally, with up to six identical or different substituents in the form of triflouromethyl, hydroxy, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkyl or cycloalkyloxy with 3 to 7 carbon atoms each, by straight chain or branched alkoxycarbonyl, alkoxy or alkylthio with up to 6 carbon atoms each or by straight chain or branched alkyl with up to 6 carbon atoms, which in turn is substituted with up to 2 identically or differently by hydroxyl, benzyloxy, trifluoromethyl, benzoyl, straight chain or branched alkoxy, oxyacyl or carbonyl with up to 4 carbon atoms each and/or phenyl, which may in turn be substituted with a halogen, trifluoromethyl or trifluoromethoxy, and/or the formed carbocyclic rings are optionally substituted, also geminally, with up to 5 identical or different substituents in the form of phenyl, benzoyl, thiophenyl or sulfonylbenzyl, which in turn are optionally substituted by halogen, trifluoromethyl, trifluoromethoxy or nitro, and/or optionally are substituted by a radical with the formula

$$1,2 \qquad {\rm (CH_2)_c} \ ,$$

$$-{\rm SO_2\text{-}C_6H_5, -(CO)_dNR_{X\text{-}23}R_{X\text{-}24} \ or \ =O,}$$

in which

c denotes a number equaling 1, 2, 3, or 4,

d denotes a number equaling 0 or 1,

 R_{X-23} and R_{X-24} are identical or different and denote hydrogen, cycloalkyl with 3 to 6 carbon atoms, straight chain or branched alkyl with up to 6 carbon atoms, benzyl or phenyl, that is optionally substituted with up to 2 identically or differently by halogen, trifluoromethyl, cyano, phenyl or nitro, and/or the formed carbocyclic rings are substituted optionally by a spiro-linked radical with the formula

in which

W_x denotes either an oxygen or a sulfur atom

 Y_X and $Y?_X$ together form a 2 to 6 membered straight chain or branched alkylene chain.

e denotes a number equaling 1, 2, 3, 4, 5, 6, or 7,

f denotes a number equaling 1 or 2,

 R_{X-25} , R_{X-26} , R_{X-27} , R_{X-28} , R_{X-29} , R_{X-30} and R_{X-31} are identical or different and denote hydrogen, trifluoromethyl, phenyl, halogen or straight chain or branched alkyl or alkoxy with up to 6 carbon atoms each,

or

 R_{X-25} and R_{X-26} or R_{X-27} and R_{X-28} respectively form together a straight chain or branched alkyl chain with up to 6 carbon atoms,

or

 R_{X-25} and R_{X-26} or R_{X-27} and R_{X-28} each together form a radical with the formula

$$W_X \longrightarrow CH_2$$

$$|$$

$$W_X \longrightarrow (CH_2)_g$$

in which

 $W_{\rm X}$ has the meaning given above, g denotes a number equaling 1, 2, 3, 4, 5, 6, or 7,

 R_{X-32} and R_{X-33} form together a 3- to 7- membered heterocycle, which contains an oxygen or sulfur atom or a group with the formula SO, SO₂ or- NR_{X-34} , in which

 $R_{\text{X-}34}$ denotes hydrogen, phenyl, benzyl or straight or branched alkyl with up to 4 carbon atoms.

29. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of 2-cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluoromethylbenxoyl)-5,6,7,8-tetrahydroquinolin,

2-cyclopentyl-3-[fluoro-(4-trifluoromethylphenyl)methyl]-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-5,6,7,8-tetrahydroquinoline, and

2-cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(trifluoromethylbenxyl)-5,6,7,8-tetrahydroquinoline.

30. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula XI-

$$\begin{array}{c|c} & A_{XI} & \\ D_{XI} & & R_{XI-1} \\ \hline \\ E_{XI} & & N \end{array}$$

Formula XI

and stereoisomers, stereoisomer mixtures, and salts thereof, in which

A_{XI} stands for cycloalkyl with 3 to 8 carbon atoms, or stands for aryl with 6 to 10 carbon atoms, or stands for a 5- to 7-membered, saturated, partially unsaturated or unsaturated, possibly benzocondensated, heterocycle with up to 4 heteroatoms from the series S, N and/or O, where aryl and the heterocyclic ring systems mentioned above are substituted up to 5-fold, identical or different, by cyano, halogen, nitro, carboxyl, hydroxy, trifluoromethyl, trifluoro- methoxy, or by straight-chain or branched alkyl, acyl, hydroxyalkyl, alkylthio, alkoxycarbonyl, oxyalkoxycarbonyl or alkoxy each with up to 7 carbon atoms, or by a group of the formula

 $-NR_{XI-3}R_{XI-4}$

in which

 R_{XI-3} and R_{XI-4} are identical or different and denote hydrogen, phenyl, or straight-chain or branched alkyl with up to 6 carbon atoms

D_{XI} stands for a radical of the formula

$$R_{XI-5} - L_{XI} - R_{XI-8}$$
, R_{XI-8} , or $R_{XI-9} - T_{XI} - V_{XI} - X_{XI}$

in which

 R_{XI-5} , R_{XI-6} and R_{XI-9} , independent of each other, denote cycloalkyl with 3 to 6 carbon atoms, or denote aryl with 6 to 10 carbon atoms, or denote a 5- to 7-membered, possibly benzocondensated, saturated or unsaturated, mono-, bi- or tricyclic heterocycle with up to 4 heteroatoms of the series S, N and/or O, where the cycles are possibly substituted—in the case of the nitrogen-containing rings also via the N-function—up to 5-fold, identical or different, by halogen, trifluoromethyl. nitro, hydroxy, cyano, carboxyl, trifluoromethoxy, straight-chain or branched acyl, alkyl, alkylthio, alkylalkoxy, alkoxy or alkoxycarbonyl with up to 6 carbon atoms each. by aryl or trifluoromethyl substituted aryl with 6 to 10 carbon atoms each, or by a possibly benzocondensated aromatic 5- to 7-membered heterocycle with up to 3 heteroatoms of the series S, N and/or O, and/or are substituted by a group of the formula

-OR_{XI-10}, -SR_{XI-11} , -SO₂R_{XI-12} or -NR_{XI-13}R_{XI-14}, in which

 R_{XI-10} , R_{XI-11} and R_{XI-12} , independent of each other, denote aryl with 6 to 10 carbon atoms, which itself is substituted up to 2-fold, identical or different, by phenyl, halogen. or by straight-chain or branched alkyl with up to 6 carbon atoms,

 R_{XI-13} and R_{XI-14} are identical or different and have the meaning given above for R_{XI-3} and R_{XI-4} ,

or

 R_{XI-5} and/or R_{XI-6} denote a radical of the formula

 $R_{\text{XI-7}}$ denotes hydrogen, halogen or methyl,

and

 R_{XI-8} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straight-chain or branched alkoxy or alkyl with up to 6 carbon atoms each, or a radical of the formula -NR $_{XI-15}$ R $_{XI-16}$, in which

 R_{XI-15} and R_{XI-16} are identical or different and have the meaning given above for R_{XI-3} and R_{XI-4} ,

or

 R_{XI-7} and R_{XI-8} together form a radical of the formula =0 or =NR_{XI-17}, in which

 $R_{\text{XI-17}}$ denotes hydrogen or straight-chain or branched alkyl, alkoxy or acyl with up to 6 carbon atoms each,

 L_{XI} denotes a straight-chain or branched alkylene- or alkenylene chain with up to 8 carbon atoms each, which is possibly substituted up to 2-fold by hydroxy,

 T_{XI} and X_{XI} are identical or different and denote a straight-chain or branched alkylene chain with up to 8 carbon atoms, or

 T_{XI} and X_{XI} denotes a bond,

 V_{XI} stands for an oxygen- or sulfur atom or for an -NR_{XI-18} group, in which

R_{XI-18} denotes hydrogen or straight-chain or branched alkyl with up to 6 carbon atoms, or phenyl,

 E_{XI} stands for cycloalkyl with 3 to 8 carbon atoms, or stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by cycloalkyl with 3 to 8 carbon atoms or hydroxy, or stands for phenyl, which is possibly substituted by halogen or trifluoromethyl,

 R_{XI-1} and R_{XI-2} together form a straight-chain or branched alkylene chain with up to 7 carbon atoms, which must be substituted by a carbonyl group and/or by a radical of the formula

in which

a and b are identical or different and denote a number 1, 2 or 3

 $R_{\text{XI-19}}$ denotes hydrogen, cycloalkyl with 3 to 7 carbon atoms, straight-chain or branched silylalkyl with up to 8 carbon atoms, or straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by hydroxy, straight-chain or branched alkoxy with up to 6 carbon atoms, or by phenyl, which itself can be substituted by halogen, nitro, trifluoromethyl, trifluoromethoxy or by phenyl substituted by phenyl or tetrazol, and alkyl is possibly substituted by a group of the formula -OR_{XI-22}, in which

 $R_{\text{XI-}22}$ denotes straight-chain or branched acyl with up to 4 carbon atoms, or benzyl,

or

R_{XI-19} denotes straight-chain or branched acyl with up to 20 carbon atoms or benzoyl, which is possibly substituted by halogen, trifluoromethyl, nitro or trifluoromethoxy, or denotes straight-chain or branched fluoroacyl with up to 8 carbon atoms and 9 fluorine atoms,

 $R_{\text{XI-20}}$ and $R_{\text{XI-21}}$ are identical or different, denoting hydrogen, phenyl or straight-chain or branched alkyl with up to 6 carbon atoms, or

 R_{XI-20} and R_{XI-21} together form a 3- to 6-membered carbocycle, and, possibly also geminally, the alkylene chain formed by R_{XI-1} and R_{XI-2} , is possibly substituted up to 6-fold, identical or different, by trifluoromethyl, hydroxy, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkyl or cycloalkyloxy with 3 to 7 carbon atoms each, by straight-chain or branched alkoxycarbonyl, alkoxy or alkoxythio with up to 6 carbon atoms each, or by straight- chain or branched alkyl with up to 6 carbon atoms, which itself is substituted up to 2-fold,

identical or different. by hydroxyl, benzyloxy, trifluoromethyl, benzoyl, straight-chain or branched alkoxy, oxyacyl or carboxyl with up to 4 carbon atoms each, and/or phenyl-which itself can be substituted by halogen, trifluoromethyl or trifluoromethoxy , and/or the alkylene chain formed by $R_{\text{XI-1}}$ and $R_{\text{XI-2}}$ is substituted, also geminally, possibly up to 5-fold, identical or different, by phenyl, benzoyl, thiophenyl or sulfobenzyl - which themselves are possibly substituted by halogen, trifluoromethyl, trifluoromethoxy or nitro, and/or the alkylene chain formed by $R_{\text{XI-1}}$ and $R_{\text{XI-2}}$ is possibly substituted by a radical of the formula

1,2
$$(CH_2)_c$$
 ,
-SO₂-C₆H₅, -(CO)_dNR_{XI-23}R_{XI-24} or =O,

in which

c denotes a number 1, 2, 3 or 4,

d denotes a number 0 or 1,

 R_{XI-23} and R_{XI-24} are identical or different and denote hydrogen, cycloalkyl with 3 to 6 carbon atoms, straight-chain or branched alkyl with up to 6 carbon atoms, benzyl or phenyl, which is possibly substituted up to 2-fold. identical or different, by halogen, trifluoromethyl, cyano, phenyl or nitro,

and/or the alkylene chain formed by R_{XI-1} and R_{XI-2} is possibly substituted by a spiro-jointed radical of the formula

in which

W_{XI} denotes either an oxygen or a sulfur atom,

 Y_{XI} and Y'_{XI} together form a 2- to 6-membered straight-chain or branched alkylene chain,

e is a number 1, 2, 3, 4, 5, 6 or 7,

f denotes a number I or 2,

 R_{XI-25} , R_{XI-26} , R_{XI-27} , R_{XI-28} , R_{XI-29} , R_{XI-30} and R_{XI-31} are identical or different and denote hydrogen, trifluoromethyl, phenyl, halogen, or straight-chain or branched alkyl or alkoxy with up to 6 carbon atoms each,

or

or

 $R_{\text{XI-25}}$ and $R_{\text{XI-26}}$ or $R_{\text{XI-27}}$ and $R_{\text{XI-28}}$ together form a straight-chain or branched alkyl chain with up to 6 carbon atoms,

 R_{XI-25} and R_{XI-26} or R_{XI-27} and R_{XI-28} together form a radical of the formula

$$\begin{array}{c} \mathbf{W_{XI}} & - \mathbf{CH_2} \\ & | \\ \mathbf{W_{XI}} & - \mathbf{(CH_2)_g} \end{array}$$

in which

W_{XI} has the meaning given above,

g is a number 1, 2, 3, 4, 5, 6 or 7,

 $R_{\text{XI-32}}$ and $R_{\text{XI-33}}$ together form a 3- to 7-membered heterocycle that contains an oxygen- or sulfur atom or a group of the formula SO, SO₂ or -NR_{XI-34}, in which

R_{XI-34} denotes hydrogen, phenyl, benzyl, or straight-chain or branched alkyl with up to 4 carbon atoms.

31. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula XII

$$\mathsf{T}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} \\ \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}\mathsf{I}} = \mathsf{D}_{\mathsf{X}\mathsf{I}\mathsf{I}} = \mathsf{D}$$

Formula XII

or pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds, in which

 A_{XII} and E_{XII} are identical or different and stand for aryl with 6 to 10 carbon atoms which is possibly substituted, up to 5-fold identical or different, by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, nitro or by straight-chain or branched alkyl, acyl, hydroxy alkyl or alkoxy with up to 7 carbon atoms each, or by a group of the formula - $NR_{XII-1}R_{XII-2}$,

where

 R_{XII-1} and R_{XII-2} are identical or different and are meant to be hydrogen, phenyl or straight-chain or branched alkyl with up to 6 carbon atoms,

 D_{XII} stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is substituted by hydroxy,

 L_{XII} stands for cycloalkyl with 3 to 8 carbon atoms or for straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by cycloalkyl with 3 to 8 carbon atoms, or by hydroxy,

 T_{XII} stands for a radical of the formula R_{XII-3} - X_{XII} - or

$$R_{XII-5} R_{XII-6}$$

$$R_{XII-4}$$

where

 R_{XII-3} and R_{XII-4} are identical or different and are meant to be cycloalkyl with 3 to 8 carbon atoms, or aryl with 6 to 10 carbon atoms, or a 5- to 7-membered aromatic, possibly benzocondensated heterocycle with up to 3 heteroatoms from the series S, N and/or O, which are possibly substituted. up to 3-fold identical or different, by trifluoromethyl, trifluoromethoxy, halogen, hydroxy, carboxyl, nitro, by straight-chain or branched alkyl, acyl, alkoxy or alkoxycarbonyl with up to 6 carbon atoms each. or by phenyl, phenoxy or phenylthio which in turn can be substituted by halogen. trifluoromethyl or trifluoromethoxy, and/or where the cycles are possibly substituted by a group of the formula -NR_{XII-7}R_{XII-8},

where

 R_{XII-7} and R_{XII-8} are identical or different and have the meaning of R_{XII-1} and R_{XII-2} given above,

 X_{XII} is a straight-chain or branched alkyl or alkenyl with 2 to 10 carbon atoms each, possibly substituted up to 2-fold by hydroxy or halogen,

R_{XII-5} stands for hydrogen,

and

 R_{XII-6} means to be hydrogen, halogen, mercapto, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straight-chain or branched alkoxy with up to 5 carbon atoms, or a radical of the formula $-NR_{XII-9}R_{XII-10}$,

where

 R_{XII-9} and R_{XII-10} are identical or different and have the meaning of R_{XII-1} and R_{XII-2} given above,

or

R_{XII-5} and R_{XII-6}, together with the carbon atom, form a carbonyl group.

- 32. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of 4,6-bis-(p-fluorophenyl)-2-isopropyl-3-[(p-trifluoromethylphenyl)-(fluoro)-methyl]-5-(1-hydroxyethyl)pyridine,
- 2,4-bis-(4-fluorophenyl)-6-isopropyl-5-[4-(trifluoromethylphenyl)-fluoromethyl]-3-hydroxymethyl)pyridine, and
- 2,4-bis-(4-fluorophenyl)-6-isopropyl-5-[2-(3-trifluoromethylphenyl)vinyl]-3-hydroxymethyl)pyridine.

33. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has the structure of Formula XIII,

$$\begin{array}{c|c} & & & & \\ R_{XIII} & & NH & \\ X_{XIII-2} & & & & \\ X_{XIII-3} & & & & \\ X_{XIII-3} & & & & \\ \end{array}$$

or pharmaceutically acceptable salts, enantiomers, stereoisomers, hydrates, or solvates of said compounds, in which

 R_{XIII} is a straight chain or branched C_{1-10} alkyl; straight chain or branched C_{2-10} alkenyl; halogenated C_{1-4} lower alkyl; C_{3-10} cycloalkyl that may be substituted; C_{5-8} cycloalkenyl that may be substituted; C_{3-10} cycloalkyl C_{1-10} alkyl that may be substituted; aryl that may be substituted; aralkyl that may be substituted; or a 5- or 6-membered heterocyclic group having 1 to 3 nitrogen atoms, oxygen atoms or sulfur atoms that may be substituted.

 X_{XIII-1} , X_{XIII-2} , X_{XIII-3} , X_{XIII-4} may be the same or different and are a hydrogen atom; halogen atom; C_{1-4} lower alkyl; halogenated C_{1-4} lower alkyl; C_{1-4} lower alkoxy; cyano group; nitro group; acyl; or aryl, respectively;

Y_{XIII} is -CO-; or -SO₂-; and

Z_{XIII} is a hydrogen atom; or mercapto protective group.

34. (withdrawn) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor is selected from the group consisting of

N,N'-(dithiodi-2,1-phenylene)bis[2,2-dimethyl-propanamide],

N,N'-(dithiodi-2,1-phenylene)bis[1-methyl-cyclohexanecarboxamide],

N,N'-(dithiodi-2,1-phenylene)bis[1-(3-methylbutyl)-cyclopentanecarboxamide],

N,N'-(dithiodi-2,1-phenylene)bis[1-(3-methylbutyl)-cyclohexanecarboxamide],

N,N'-(dithiodi-2,1-phenylene)bis[1-(2-ethylbutyl)-cyclohexanecarboxamide],

N,N'-(dithiodi-2,1-phenylene)bis-tricyclo[3.3.1.1^{3,7}]decane-1-carboxamide,

propanethioic acid, 2-methyl-,S-[2[[[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino]phenyl] ester,

propanethioic acid, 2,2-dimethyl-, S-[2-[[[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino]phenyl] ester, and

ethanethioic acid, S-[2-[[[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino]phenyl] ester.

- 35. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a solubility in aqueous solution in the absence of said concentration-enhancing polymer of less than 10 μg/ml at any pH of from 1 to 8.
- 36. (original) The composition of claim 35 wherein said cholesteryl ester transfer protein inhibitor has an aqueous solubility of less than 2 μg/ml.
- 37. (original) The composition of claim 2 wherein said cholesteryl ester transfer protein inhibitor has an aqueous solubility of less than 2 μg/ml.
- 38. (original) The composition of claim 36 wherein said solubility is less than 0.5 $\mu g/mL$.
- 39. (original) The composition of claim 37 wherein said solubility is less than 0.5 ug/mL.
- 40. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a dose-to-aqueous-solubility ratio of at least 1,000 ml.
- 41. (original) The composition of claim 40 wherein said dose-to-aqueous solubility ratio is at least 5,000 ml.

- 42. (original) The composition of claim 41 wherein said dose-to-aqueous solubility ratio is at least 10,000 ml.
- 43. (original) The composition of any one of claims 1-4 wherein said cholesteryl ester transfer protein inhibitor has a Clog P of greater than 4.
- 44. (original) The composition of claim 43 wherein said Clog P of said cholesteryl ester transfer protein inhibitor is greater than 5.
- 45. (original) The composition of claim 44 wherein said Clog P of said cholesteryl ester transfer protein inhibitor is greater than 5.5.
- 46. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer comprises a blend of polymers.
- 47. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer has at least one hydrophobic portion and at least one hydrophilic portion.
- 48. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer is an ionizable polymer.
- 49. (original) The composition of any one of claims 1-4 wherein said concentration-enhancing polymer is selected from the group consisting of ionizable cellulosic polymers, nonionizable cellulosic polymers, and vinyl polymers and copolymers having substituents selected from the group consisting of hydroxyl, alkylacyloxy, and cyclicamido.
- 50. (previously amended) The composition of any one of claims 2-4 wherein said concentration-enhancing polymer is a cellulosic polymer.
- 51. (original) The composition of claim 50 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, and hydroxyethyl ethyl cellulose.

52. (original) The composition of claim 50 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate. hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate. hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

53. (original) The composition of claim 50 wherein said concentration-enhancing polymer is selected from the group consisting of cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose acetate trimellitate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethyl phthalic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid

71

cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

- 54. (original) The composition of claim 50 wherein said concentration-enhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, cellulose acetate phthalate, hydroxypropyl methyl cellulose phthalate, methyl cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropyl cellulose acetate phthalate, cellulose acetate terephthalate and cellulose acetate isophthalate.
- 55. (original) The composition of claim 54 wherein said concentrationenhancing polymer is selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, cellulose acetate phthalate, and cellulose acetate trimellitate.
- 56. (previously amended) The composition of any one of claims 1 and 4 wherein said concentration-enhancing polymer is present in an amount sufficient to permit said composition to provide a maximum concentration of said cholesteryl ester transfer protein inhibitor in a use environment that is at least 10-fold that of a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.
- 57. (original) The composition of claim 56 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 50-fold that of said control composition.
- 58. (original) The composition of claim 57 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 200-fold that of said control composition.
- 59. (original) The composition of claim 58 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 1,000-fold that of said control composition.

- 60. (original) The composition of claim 3 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 50-fold that of said control composition.
- 61. (original) The composition of claim 60 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 200-fold that of said control composition.
- 62. (original) The composition of claim 61 wherein said maximum concentration of said cholesteryl ester transfer protein inhibitor in said use environment is at least 1,000-fold that of said control composition.
- 63. (original) The composition of any one of claims 1-4 wherein said composition provides in a use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least about 5-fold that of a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.
- 64. (original) The composition of claim 63 wherein said composition provides in a use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 25-fold that of said control composition.
- 65. (original) The composition of claim 64 wherein said composition provides in said use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 100-fold that of said control composition.
- 66. (original) The composition of claim 65 wherein said composition provides in said use environment an area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use

environment and about 270 minutes following introduction to the use environment that is at least about 250-fold that of said control composition.

- 67. (original) The composition of any one of claims 1-3 wherein said composition provides a relative bioavailability that is at least 4 relative to a control composition comprising an equivalent quantity of said cholesteryl ester transfer protein inhibitor and free from said concentration-enhancing polymer.
- 68. (original) The composition of claim 67 wherein said relative bioavailability is at least 6 relative to said control composition.
- 69. (original) The composition of claim 68 wherein said relative bioavailability is at least 10 relative to said control composition.
- 70. (original) The composition of claim 69 wherein said relative bioavailability is at least 20 relative to said control composition.
- 71. (original) The composition of claim 4 wherein said relative bioavailability is at least 6 relative to said control composition.
- 72. (original) The composition of claim 4 wherein said relative bioavailability is at least 10 relative to said control composition.
- 73. (original) The composition of claim 4 wherein said relative bioavailability is at least 20 relative to said control composition.
- 74. (original) The composition of claim 3 wherein said use environment is *in vitro*.
- 75. (original) The composition of claim 3 wherein said use environment is *in vivo*.
- 76. (original) The composition of claim 75 wherein said use environment is the gastrointestinal tract of an animal.

- 77. (original) The composition of claim 76 wherein said animal is a human.
- 78. (original) The composition of claim 56 wherein said use environment is *in vitro*.
- 79. (original) The composition of claim 56 wherein said use environment is *in vivo*.
- 80. (original) The composition of claim 79 wherein said use environment is the gastrointestinal tract of an animal.
- 81. (original) The composition of claim 80 wherein said animal is a human.
- 82. (original) The composition of claim 63 wherein said use environment is *in vitro*.
- 83. (original) The composition of claim 63 wherein said use environment is *in vivo*.
- 84. (original) The composition of claim 83 wherein said use environment is the gastrointentinal tract of an animal.
- 85. (original) The composition of claim 84 wherein said animal is a human.
- 86. (original) The composition of any one of claims 1-4 wherein said composition is formed by solvent processing.
- 87. (original) The composition of claim 86 wherein said solvent processing is spray-drying.
- 88. (original) A method for treating atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia,

cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia in a mammal (including a human being either male or female) by administering to a mammal in need of such treatment an atherosclerosis, peripheral vascular disease, dyslipidemia, hyperbetalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, familial-hypercholesterolemia, cardiovascular disorders, angina, ischemia, cardiac ischemia, stroke, myocardial infarction, reperfusion injury, angioplastic restenosis, hypertension, vascular complications of diabetes, obesity or endotoxemia treating amount of a composition of any one of claims 1-4.

- 89. (previously amended) A method as recited in claim 88 wherein atherosclerosis is treated.
- 90. (previously amended) A method as recited in claim 88 wherein peripheral vascular disease is treated.
- 91. (previously amended) A method as recited in claim 88 wherein dyslipidemia is treated.
- 92. (previously amended) A method as recited in claim 88 wherein hyperbetalipoproteinemia is treated.
- 93. (previously amended) A method as recited in claim 88 wherein hypoalphalipoproteinemia is treated.
- 94. (previously amended). A method as recited in claim 88 wherein hypercholesterolemia is treated.
- 95. (previously amended) A method as recited in claim 88 wherein hypertriglyceridemia is treated.
- 96. (previously amended) A method as recited in claim 88 wherein cardiovascular disorders are treated.

A pharmaceutical composition comprising a solid 97. (new) amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate:

wherein said composition provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.

98. (new) A pharmaceutical composition comprising a solid amorphous dispersion of a cholesteryl ester transfer protein inhibitor and a concentration-enhancing polymer selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl

cellulose, carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate; and

wherein said CETP inhibitor can exist within said solid amorphous dispersion as a pure phase, as a solid solution of CETP inhibitor homogeneously distributed throughout the polymer, or any combination of states that are intermediate.

99. (new) A composition as defined in claim 98, which provides a maximum concentration of the CETP inhibitor in a use environment that is at least about ten-fold the maximum concentration provided by a control composition comprising an equivalent amount of the CETP inhibitor and free from said polymer.