Devoir surveillé n°10 Version 2

Durée: 3 heures, calculatrices et documents interdits

Ce probème étudie la géométrie d'une partie convexe de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$: une sorte de polyèdre dans cet espace de dimension n^2 . Au fil des questions, on déterminera, entre autres, quels sont les sommets de ce polyèdre et quelle est la dimension du plus petit espace vectoriel le contenant.

On note S_n le groupe des permutations de [1, n], et I_n la matrice identité d'ordre n.

- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients positifs $(a_{i,j})_{1 \leq i,j \leq n}$ est dite bistochastique si pour tous $i, j \in [1, n]$ on a $\sum_{k=1}^n a_{i,k} = \sum_{k=1}^n a_{k,j} = 1$. En d'autres termes, une matrice est bistochastique si la somme des coefficients sur une ligne ou une colonne est égale à 1.
- Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients positifs $(a_{i,j})_{1 \leqslant i,j \leqslant n}$ est dite de permutation s'il existe une permutation $\sigma \in S_n$ (c'est-à-dire une bijection de $\llbracket 1,n \rrbracket$ dans $\llbracket 1,n \rrbracket$) telle que $A = \sum_{i=1}^n E_{\sigma(i),i}$ ou de manière équivalente telle que $a_{i,j} = \delta_{i,\sigma(j)}$ pour tous $i,j \in \llbracket 1,n \rrbracket$, où δ désigne le symbole de Kronecker. On notera M_{σ} la matrice de permutation associée à la permutation σ .
- \square Si $A_1, \ldots, A_q \in \mathcal{M}_n(\mathbb{R})$, on appelle barycentre à coefficients positifs de ces matrices toute matrice B s'écrivant

$$B = p_1 A_1 + \dots + p_a A_a,$$

où p_1, \ldots, p_q sont des réels positifs vérifiant $p_1 + \cdots + p_q = 1$.

Partie A – Sommets du polytope de Birkhoff

- 1) Montrer que I_n est bistochastique et de permutation ; préciser la permutation associée.
 - Exhiber une matrice bistochastique non inversible.
- 2) Vérifier que l'ensemble des matrices de permutation est un sous-groupe de $GL_n(\mathbb{R})$.
- **a)** Montrer que toute matrice de permutation est bistochastique. Étudier la réciproque.

- b) Supposons qu'une matrice de permutation M_{σ} s'écrive $\lambda A + (1 \lambda)B$ où A et B sont des matrices bistochastiques et $\lambda \in [0, 1]$. Montrer que A et B sont de permutation.
- 4) L'ensemble des matrices bistochastiques est-il stable par produit? Et par combinaison linéaire?

Partie B – Espace engendré par le polytope

Notons F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par les matrices bistochastiques et G le sous-espace vectoriel des matrices dont la somme des coefficients sur chaque ligne et sur chaque colonne vaut 0.

- 5) Montrer qu'une matrice appartient à F si et seulement si il existe $c \in \mathbb{R}$ tel que la somme des coefficients sur chaque ligne et sur chaque colonne vaut c.
- **6)** Montrer que $F = \text{Vect}(J_n) \oplus G$ où J_n est la matrice dont tous les coefficients sont égaux à 1.
- 7) Montrer qu'une matrice $M=(m_{i,j})_{1\leqslant i,j\leqslant n}$ de G est uniquement déterminée par ses coefficients $(m_{i,j})_{1\leqslant i,j\leqslant n-1}$. En déduire que

$$\dim G \leqslant (n-1)^2.$$

- 8) a) Montrer que l'intersection de p hyperplans d'un espace de dimension $N \ge p$ est au moins de dimension N p.
 - b) Pour tout $i, j \in [1, n]$, notons L_i^* (respectivement C_j^*) la forme linéaire qui associe à une matrice la somme des coefficients de la ligne i (respectivement de la colonne j). Montrer que

$$G = \bigcap_{i=1}^{n} \operatorname{Ker} L_{i}^{*} \cap \bigcap_{j=1}^{n-1} \operatorname{Ker} C_{j}^{*} ;$$

en déduire que

$$\dim G \geqslant (n-1)^2.$$

- 9) En déduire la dimension de F.
- 10) Notons U le vecteur-colonne dont tous les coefficients sont égaux à 1 et H le sous-espace de $\mathcal{M}_{n,1}(\mathbb{R})$ des vecteurs dont la somme des coefficients est nulle.
 - a) Montrer que $M \in F$ si et seulement si M laisse stable Vect(U) et H.
 - b) Retrouver la dimension de F. Indication: on pourra montrer que les sous-espaces Vect(U) et H sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Partie C - Théorème de Birkhoff

L'objectif est de démontrer le théorème suivant :

Théorème de Birkhoff: Toute matrice bistochastique est un barycentre à coefficients positifs d'un nombre fini de matrices de permutation.

- 11) Décomposer la matrice $\frac{1}{4}\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ comme un barycentre à coefficients positifs de matrices de permutation.
- **12)** Soit $A \in \mathcal{M}_n(\mathbb{R})$ de coefficients $(a_{i,j})_{1 \leq i,j \leq n}$ tels que $\prod_{j=1}^n a_{\sigma(j),j} = 0$ pour toute permutation $\sigma \in S_n$.

Montrer qu'il existe I, J deux parties de [1, n] telles que la matrice extraite $(a_{i,j})_{i \in I, j \in J}$ soit nulle et Card I + Card J = n + 1.

Indication: on pourra raisonner par récurrence forte sur n.

13) En déduire que si la matrice $A = (a_{i,j})_{1 \leq i,j \leq n}$ est bistochastique, alors il existe une permutation $\sigma \in S_n$ telle que $\prod_{j=1}^n a_{\sigma(j),j} \neq 0$.

Indication: on pourra raisonner par l'absurde et calculer la somme de tous les coefficients d'une matrice bistochastique.

14) Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice bistochastique et σ une permutation associée à A telle que $\prod_{j=1}^n a_{\sigma(j),j}\neq 0$. Considérons

$$\alpha = \min \left\{ a_{\sigma(j),j}, \ j \in \llbracket 1, n \rrbracket \right\} > 0.$$

- a) Déterminer A dans le cas où $\alpha = 1$.
- b) Si $\alpha < 1$, montrer que $A \alpha M_{\sigma} = (1 \alpha)B$ où B est une matrice bistochastique qui admet strictement plus de coefficients nuls que A.
- 15) Montrer le théorème de Birkhoff.

— FIN —