

Machine Learning

Cours 4

Jean-Claude Houbart

Modèles d'ensemble

Jean-Claude Houbart

Vocabulaire

- Pour parler d'un apprentissage particulier, on peut parler d'un modèle ou d'un estimateur (ou estimator).
- Un estimateur pour la classification peut être appelé Classifier.
- Un estimateur pour la Régression peut être appelé Regressor.
- Dans SkLearn, les modèles ont souvent une version
 « Classifier » et une version « Regressor ».

69

Principe des méthodes d'ensembles

- Les meilleurs résultats sont obtenus en combinant plusieurs estimateurs indépendants. On parle de « Sagesse des foules ».
- Le résultat surpasse généralement le meilleur modèle.
- Ainsi une combinaison de nombreux estimateurs faibles (c'està-dire à peine meilleurs que le hasard) permet d'obtenir un estimateur fort.
- Par exemple, imaginons des estimateurs qui donnent 51 fois sur 100 la bonne réponse :
 - Si on combine 1000 estimateurs <u>indépendants</u> de ce type, nous avons 75% de probabilité d'avoir la bonne réponse.
 - Si on combine 10000 estimateurs <u>indépendants</u> de ce type, nous avons 97% de probabilité d'avoir la bonne réponse.
- C'est une conséquence de la loi des grands nombres :
 - Pour une approche intuitive des mathématiques impliquées : https://www.youtube.com/watch?v=2Wq6H8GMVm0

Systèmes de vote « hard »

Le diagnostic majoritaire parmi les différents modèles est retenu.

Même données. Indépendance relative... Privilégier des modèles distants

Systèmes de vote « soft »

· Le diagnostic dont la probabilité moyenne est maximale est retenu.

A 90%

Modèle 1

B 60%

Modèle 2

B 55%

Modèle 3

A 80%

Modèle 4

B 80%

Modèle 5

Même données. Indépendance relative... Privilégier des modèles distants 6

Stacking

Au lieu d'utiliser un système de vote, empiler un autre estimateur. Pas de méthode prédéfinie dans sklearn.

La formule magique pour gagner sur Kaggle.

A 90%

Modèle 1

B 60%

Modèle 2

B 55%

Modèle 3

A 80%

Modèle 4

Modèle 5

Moon DataSet

- scikit-learn comprend divers générateurs d'échantillons aléatoires.
- Ils peuvent être utilisés pour construire des ensembles de données artificielles
- La taille et la complexité des données est contrôlée.

 make_moons génère un Dataset aléatoire à 2 dimension avec un label de classification :

Exemple de « Voting Classifier »

```
# Librairies
from sklearn.datasets import make moons
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import GaussianNB
#Génération et Organisation Dataset
X, y = make_moons(n_samples=500, noise=0.3, random state=42)
X train, X test, y train, y test = train test split(X, y, random state=42)
#Classifiers
log_clf = LogisticRegression(random state=42)
rnd clf = RandomForestClassifier(random state=42)
bayes clf = GaussianNB()
voting_clf = VotingClassifier(estimators=[('lr', log_clf),
                         ('rf', rnd_clf),
  ('by', bayes_clf)],
voting='hard')
#Training et Prédiction
for clf in (log_clf, rnd_clf, bayes_clf, voting_clf):
         clf.fit(X train, y train)
         v pred = clf.predict(X test)
```

Voir cours4_ex4_VotingClassifiers.ipynb

Bagging

- Un seul modèle (ou estimateur) est utilisé. Par contre, il est entraîné de multiples fois avec des sous-ensembles de données différents.
- Ensuite on va prendre le résultat majoritaire des résultats en classification ou la moyenne en régression.
- Dans Sklearn, le paramètre max_features permet limiter le nombre de features pour chaque modèle.
- Le paramètre **bootstrap_features** perme d'utiliser tirer aléatoirement plusieurs fois la même features pour le même modèle.

Bagging et Pasting

 Un même exemple peut être utilisé pour plusieurs apprentissages.

 Seul le bagging permet qu'un exemple soit utilisé plusieurs fois dans un même apprentissage (bootstrap ou « Tirage avec remise »).

• un modèle Random Forest est un Bagging d'arbres de décision, dont chaque échantillon a la taille du jeu de données initial (mais n'est pas identique !).

Bagging et Pasting

· Le diagnostic majoritaire parmi les différents modèle est retenu.

12

Exemple de Bagging

```
#Génération et Organisation Dataset
X, y = make_moons(n_samples=500, noise=0.3, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42)
#Classifiers
bag clf = BaggingClassifier(
  DecisionTreeClassifier(), # Classifier de base (ici un arbre)
  n estimators=500, # Nombre d'estimateurs utilisés
  max samples=100, # Taille échantillon pour chaque apprentissage
  bootstrap=True, # Tirage avec remise (Bagging)
  n jobs=-1, # Parralélisation (-1 pour utilisé tout les coeurs dispos)
  oob score=True, # Calcul Score sur chaque estimateur à partir des données non
  sélectionnées
  random state=7 # Pour obtenir toujours le même tirage aléatoire
bag_clf.fit(X_train, y_train)
print("out of the bag score :", bag_clf.oob_score_)
y pred = bag clf.predict(X test)
print("score :", accuracy score(y test, y pred))
```

Effet du Bagging

- Biais équivalent (même nombre d'erreurs) .
- Variance diminuée (moins de sur-apprentissage).
- Dans le cas du bagging, il reste des données out of the bag => Ont peut faire une évaluation de chaque apprentissage avec la propriété oob_scores_

Boosting

Jean-Claude Houbart

Types de Boosting

- Le Boosting est une méthode d'ensemble d'estimateurs faibles traités séquentiellement.
- Chaque estimateur essaie de corriger son prédécesseur.
- L'Adaptative Boosting (Adaboost) va insister sur les exemples les plus erronés.
- Le Gradient Boosting va chercher à prévoir les erreurs de son prédécesseur.
- Le gradient boosting (librairie XGBoost) est en tête des compétitions Kaggle pour les données tabulaires.
- On peut utiliser un paramètre de Learning rate qui réduit l'importance de chaque itération.
- Il existe d'autres méthodes, moins répandues.
- Le problème de ces méthodes est qu'elles ne sont pas parallélisables.

Adaptative Boosting

- A chaque itération, l'algorithme surpondère les points les plus erronés.
- Ensuite, on applique une moyenne pondérée par la précision aux modèles de chaque itération.

Exemple Adaboost

```
# Importation des librairies
from sklearn.model_selection import train_test_split
from sklearn.datasets import make moons
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
# Création des données
X, y = make moons(n samples=500, noise=0.3, random state=7)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                        random state=43)
#Création du modèle et apprentissage
ada_clf = AdaBoostClassifier(
       DecisionTreeClassifier(max depth=1), n estimators=100,
       algorithm="SAMME.R", learning_rate=0.3, random_state=42)
ada clf.fit(X train, y train)
y pred ada = ada clf.predict(X test)
print('score Adaboost :' , accuracy_score(y_test,y_pred_ada))
```

Gradient Boosting

- A chaque itération, l'algorithme cherche à modéliser le résidu (l'erreur) du modèle précédent.
- A la fin, on somme les modèles.

```
tree reg1 = DecisionTreeRegressor(max depth=2,
                             random state=42)
                                                        Estimateur
tree reg1.fit(X, y)
y2 = y - tree reg1.predict(X)
tree reg2 = DecisionTreeRegressor(max depth=2,
                             random state=42)
tree reg2.fit(X, y2)
y3 = y2 - tree_reg2.predict(X)
tree reg3 = DecisionTreeRegressor(max depth=2,
                                                          Calculer
                             random state=42)
                                                          Erreur
tree reg3.fit(X, y3)
y_pred = sum(tree.predict(X_new) for tree in
         (tree reg1, tree reg2, tree reg3))
                                           Ajouter à
                                                                       Apprendre
                                          l'ensemble
```

Erreurs

Processus de boosting

Exemple Gradient Boosting

```
#On passe à 80000 pour mieux voir, sinon on aura trop peu d'itérations
X, y = make moons(n samples=80000, noise=0.3, random state=42)
X train, X dev, y train, y_dev = train_test_split(X, y, random_state=43)
n estimators=500
# Si pas d'amélioration > 0.0001 sur les 5 derniers estimateurs => Arrêt
gbes = GradientBoostingClassifier(
         n estimators=n estimators,
         n iter no change=5,
         tol=0.0001,
         random state=0)
gbes.fit(X_train, y_train)
score gbes= gbes.score(X dev, y dev)
```

Voir cours4_ex6_Boosting.ipynb