El problema de encontrar árboles óptimos...

| Taxa | Árboles resueltos     |
|------|-----------------------|
| 1    |                       |
| 2    | 1                     |
| 3    | 1                     |
| 4    | 3                     |
| 5    | 15                    |
| 6    | 105                   |
| 7    | 945                   |
| 8    | 10395                 |
| 9    | 135135                |
| 10   | 2027025               |
| 11   | 34459425              |
| 12   | 654729075             |
| 13   | 13749310575           |
| 14   | 316234143225          |
| 15   | 7905853580625         |
| 16   | 213458046676875       |
| 17   | 6190283353629370      |
| 18   | 191898783962510000    |
| 19   | 6332659870762850000   |
| 20   | 221643095476699000000 |
| 62   | 6,66409461 x 10 E 98  |
| 63   | > 10 E 100            |

## Métodos exactos:

I. Búsqueda exhaustiva



# Métodos exactos:

2. Branch & Bound



### Métodos heurísticos:

- Buscar árbol inicial:
- Adición paso a paso (Stepwise addition)
- Aleatorio
- Distancias



### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Nearest Neighbor Interchange (NNI)



0. Starting tree

### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Subtree Pruning & Regrafting (SPR)

1. Generate two subtrees by breaking an internal node

2. Try to insert the red subtree at each node of the blue subtree



### Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Tree Bisection & Reconnection (TBR)



Try to insert all possible rooted red subtrees at each node of the blue subtree



## Métodos heurísticos:

3. Visitar óptimos locales para tener óptimo global:

- Réplicas
- Stepwise-random-additi on





### Métodos heurísticos:

Para más de 100 terminales:

- Nueva Tecnología: Parsimonia RATCHET y Tree-Drifting
  - Sacrifican búsquedas intensivas en islas para poder visitar más islas en el espacio de árboles (escapar de óptimos locales).
  - 2 pasos:
    - Búsquedas en subset de datos con nuevos pesos (para explorar islas)
    - Volver a pesos originales y escoger mejores árboles

# CONFIANZA EN HIPÓTESIS FILOGENÉTICAS

# Índice de Decaimiento (Decay Index) o Soporte de Bremer

Long: 292 pasos

Ln(ML) = -998.7



## **Bootstrap No Paramétrico**

#### Original data set

|   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| A | Т  | Т  | Т  | C  | С  | Т  | Т  | Т  | С  | А  | G  | G  | Т  | A  | Т  | Т  | A  | Т  | G  | A  | G  | Α  | Т  | A  | C  | G  | Т  | А  | С  | Т  | G  | A  | A  | A  | A  | A  | G  | Т  | C  | C  |
| В | т  | Т  | т  | C  | С  | Т  | Т  | Т  | Т  | A  | G  | G  | Т  | т  | Т  | G  | A  | Т  | G  | A  | G  | A  | Т  | A  | C  | A  | Т  | Т  | A  | С  | G  | A  | A  | A  | G  | A  | G  | Т  | С  | A  |
| С | т  | т  | Т  | G  | С  | Т  | Т  | С  | Т  | С  | G  | G  | Т  | A  | C  | Т  | A  | С  | A  | A  | Т  | A  | Т  | A  | Т  | A  | Т  | A  | С  | С  | A  | G  | A  | A  | A  | A  | G  | Т  | С  | A  |
| D | Т  | т  | Т  | G  | С  | Т  | Т  | С  | С  | G  | A  | С  | Т  | A  | C  | A  | A  | A  | G  | G  | C  | А  | Т  | A  | C  | G  | Т  | A  | G  | С  | Т  | G  | A  | A  | A  | A  | G  | G  | С  | G  |
| E | С  | т  | Т  | G  | С  | С  | Т  | А  | С  | Т  | G  | Т  | Т  | G  | C  | A  | A  | Т  | Α  | A  | Т  | A  | Т  | A  | С  | G  | A  | A  | G  | С  | Т  | A  | A  | A  | A  | A  | G  | Т  | С  | G  |
| F | Т  | Т  | С  | G  | т  | С  | С  | С  | С  | G  | G  | C  | Т  | A  | C  | A  | A  | Т  | G  | G  | Т  | А  | Т  | A  | Т  | G  | Т  | A  | C  | Т  | C  | G  | A  | A  | A  | A  | G  | A  | Т  | G  |
| G | G  | Т  | Т  | G  | т  | Т  | Т  | C  | С  | G  | G  | C  | Т  | A  | C  | A  | G  | Т  | G  | A  | Т  | A  | Т  | A  | C  | G  | Т  | A  | C  | С  | C  | G  | A  | G  | A  | A  | C  | Т  | Т  | G  |
| Н | Т  | Т  | Т  | A  | т  | Т  | Т  | С  | С  | G  | G  | C  | Т  | A  | C  | Α  | G  | Т  | G  | A  | Т  | A  | Т  | A  | C  | G  | Т  | G  | C  | С  | C  | G  | A  | G  | A  | A  | G  | Т  | Т  | G  |

### Bootstrap data set

|   | 02 | 39 | 35 | 22 | 36 | 31 | 40 | 05 | 16 | 23 | 15 | 35 | 35 | 40 | 03 | 06 | 24 | 33 | 06 | 07 | 14 | 20 | 35 | 01 | 36 | 09 | 13 | 22 | 11 | 25 | 26 | 33 | 03 | 09 | 16 | 20 | 08 | 18 | 17 | 32 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| A | Т  | C  | A  | A  | A  | G  | С  | C  | Т  | Т  | Т  | A  | A  | C  | Т  | т  | A  | A  | Т  | Т  | A  | A  | A  | Т  | A  | С  | Т  | A  | G  | C  | G  | A  | Т  | С  | Т  | A  | Т  | Т  | A  | A  |
| В | Т  | С  | G  | A  | A  | G  | A  | С  | G  | Т  | Т  | G  | G  | A  | т  | т  | A  | A  | Т  | Т  | Т  | A  | G  | Т  | A  | Т  | Т  | A  | G  | С  | A  | A  | Т  | Т  | G  | A  | Т  | Т  | A  | A  |
| C | Т  | C  | A  | A  | A  | A  | А  | С  | Т  | Т  | С  | A  | A  | A  | т  | т  | A  | A  | Т  | Т  | A  | A  | A  | Т  | A  | Т  | Т  | Α  | G  | Т  | A  | A  | Т  | Т  | Т  | А  | C  | C  | A  | G  |
| D | Т  | C  | A  | Α  | A  | Т  | G  | С  | A  | Т  | С  | A  | A  | G  | т  | Т  | A  | A  | Т  | Т  | A  | G  | Α  | Т  | A  | C  | Т  | A  | A  | С  | G  | A  | Т  | C  | A  | G  | C  | A  | A  | G  |
| E | Т  | C  | A  | А  | A  | Т  | G  | С  | A  | Т  | С  | A  | А  | G  | Т  | C  | A  | A  | С  | Т  | G  | А  | A  | С  | A  | С  | Т  | A  | G  | С  | G  | A  | Т  | C  | A  | А  | A  | Т  | A  | A  |
| F | Т  | Т  | A  | A  | A  | С  | G  | Т  | A  | Т  | C  | A  | A  | G  | С  | C  | A  | A  | С  | С  | А  | G  | A  | Т  | A  | С  | Т  | A  | G  | Т  | G  | А  | С  | С  | A  | G  | C  | т  | A  | G  |
| G | Т  | Т  | A  | A  | A  | С  | G  | Т  | A  | Т  | С  | A  | A  | G  | т  | т  | А  | A  | Т  | Т  | A  | А  | A  | G  | A  | C  | Т  | A  | G  | C  | G  | A  | Т  | C  | Α  | A  | C  | Т  | G  | G  |
| Н | Т  | Т  | А  | А  | А  | С  | G  | Т  | A  | Т  | C  | А  | A  | G  | т  | т  | A  | A  | Т  | т  | А  | А  | A  | Т  | A  | C  | Т  | A  | G  | С  | G  | A  | Т  | С  | A  | A  | С  | Т  | G  | G  |

## **Bootstrap No Paramétrico**



## **Bootstrap No Paramétrico**



# **Bootstrap No Paramétrico**



## **Jackknife**



|   | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| A | Т  | Т  | Т  | C  | C  | Т  | Т  | Т  | C  | A  | G  | G  | T  | A  | Т  | Т  | A  | Т  | G  | A  |
| В | Т  | Т  | Т  | C  | C  | Т  | Т  | Т  | Т  | A  | G  | G  | Т  | Т  | Т  | G  | A  | Т  | G  | A  |
| С | Т  | Т  | Т  | G  | С  | Т  | т  | С  | Т  | C  | G  | G  | Т  | A  | C  | Т  | A  | С  | A  | A  |
| D | Т  | Т  | Т  | G  | C  | Т  | Т  | C  | C  | G  | A  | C  | Т  | A  | C  | A  | A  | A  | G  | G  |
| E | C  | Т  | Т  | G  | С  | C  | Т  | A  | C  | Т  | G  | Т  | Т  | G  | C  | A  | A  | Т  | A  | A  |
| F | Т  | Т  | C  | G  | Т  | C  | C  | C  | C  | G  | G  | C  | T  | A  | C  | A  | A  | Т  | G  | G  |
| G | G  | Т  | Т  | G  | Т  | Т  | Т  | C  | C  | G  | G  | C  | Т  | A  | C  | A  | G  | Т  | G  | A  |
| н | Т  | Т  | Т  | A  | т  | Т  | т  | C  | C  | G  | G  | C  | T  | A  | C  | A  | G  | т  | G  | A  |

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| G  | G  | Т  | A  | Т  | Т  | A  | Т  | G  | A  | G  | A  | Т  | A  | C  | G  | Т  | A  | C  | Т  |
| G  | G  | Т  | Т  | Т  | G  | A  | Т  | G  | A  | G  | A  | Т  | A  | C  | A  | Т  | Т  | A  | C  |
| G  | G  | Т  | A  | C  | Т  | A  | C  | A  | A  | Т  | A  | Т  | A  | Т  | A  | Т  | A  | C  | C  |
| A  | C  | Т  | A  | C  | A  | A  | A  | G  | G  | C  | A  | Т  | A  | C  | G  | Т  | A  | G  | C  |
| G  | Т  | Т  | G  | C  | A  | A  | Т  | A  | A  | Т  | A  | Т  | A  | C  | G  | A  | A  | G  | C  |
| G  | C  | Т  | A  | C  | A  | A  | Т  | G  | G  | Т  | A  | Т  | A  | Т  | G  | Т  | A  | C  | 7  |
| G  | C  | Т  | A  | C  | A  | G  | Т  | G  | A  | Т  | A  | Т  | A  | C  | G  | Т  | A  | C  | C  |
| G  | C  | Т  | A  | C  | A  | G  | Т  | G  | A  | Т  | A  | Т  | A  | C  | G  | т  | G  | C  | 0  |

| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| A  | G  | A  | Т  | A  | C  | G  | Т  | A  | С  | Т  | G  | A  | A  | A  | A  | A  | G  | Т  | C  | C  |
| A  | G  | A  | Т  | A  | C  | A  | Т  | Т  | А  | C  | G  | A  | A  | A  | G  | A  | G  | Т  | C  | A  |
| A  | Т  | A  | Т  | A  | Т  | A  | Т  | A  | C  | C  | A  | G  | A  | A  | A  | A  | G  | Т  | C  | A  |
| G  | C  | A  | Т  | A  | C  | G  | Т  | A  | G  | C  | Т  | G  | A  | A  | A  | A  | G  | G  | C  | G  |
| A  | Т  | A  | Т  | A  | C  | G  | A  | A  | G  | C  | Т  | A  | A  | A  | A  | A  | G  | Т  | C  | G  |
| G  | Т  | A  | Т  | A  | Т  | G  | Т  | A  | С  | Т  | C  | G  | A  | A  | A  | A  | G  | A  | Т  | G  |
| A  | Т  | A  | Т  | A  | C  | G  | Т  | A  | C  | C  | C  | G  | A  | G  | A  | A  | C  | Т  | Т  | G  |
| A  | Т  | A  | Т  | A  | C  | G  | Т  | G  | C  | C  | C  | G  | A  | G  | A  | A  | G  | Т  | т  | G  |