# LEARNING LABEL ENCODINGS FOR DEEP REGRESSION

Deval Shah & Tor M. Aamodt

Department of Electrical and Computer Engineering University of British Columbia, Vancouver, BC, Canada

#### Deep Regression



- Many real-world tasks involve continuous and even infinite target values
- In regression task, treating target value as distinct class is unlikely to yield best results.

#### Deep Regression









- In regression, it takes advantage of the similarity between people with nearby ages.
- Similar issues happen in medical application including heart rate, blood pressure, and oxygen saturation

#### Deep Regression with Binary Classification

- Deep Regression has a problem that..
  - A typical generic approach performs poorly compared to task-specialized approaches.
  - Directly minimizing the MSE or MAE between targets and predictions
- Recently, generic approaches based on regression by binary classification have shown significant improvement.
- Regression by binary classification
  - 1. A real-valued label is quantized
  - 2. Converted to an M-bit binary code
  - 3. These binary-encoded labels are used to train M binary classifiers

#### Deep Regression with Binary Classification



#### Example

- The age of 52 would be 110100 using binary conversion as the encoder. (Training phase)
- 110100 would be converted to real-value prediction using a decoding function (decimal convert) (Inference phase)
- This approach introduce ensemble diversity and error correcting capability.

#### Deep Regression with Binary Classification





#### Factors of a good label encoding



- Shah et al. (2022)\* analyzed and proposed properties of suitable encodings for regression.
  - 1. Distance between learned encoded labels to be proportional to the difference between corresponding label values
  - 2. Reduce the complexity of a binary classifier's decision boundary by reducing the number of bit transitions

<sup>\*</sup> Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In International Conference on Learning Representations



- An end-to-end approach to train the network and label encoding together
  - Relax the assumption of using discrete search space for label encodings.
    - Regularized search through a continuous space of real-valued label encodings
  - Enabling the use of continuous optimization approach.



- $x_i$  and  $y_i$  represent the input ant the real-valued target label for sample i.
  - For simplicity,  $y_i \in [1, N]$  (scaled and shifted)
- $Q_i \in \{1, 2, ..., N\}$  represents the quantized target label.



- $x_i$  is passed through a feature extractor and fully connected (FC) layers to generate the predicted encoding  $\hat{Z}_i \in \mathbb{R}^M$
- An FC layer of size  $\theta$  ( $\theta$  < M) is added between the feature vector and output code.
  - This layer reduces the number of parameters in FC layers and improves accuracy (shown by previous work)
    (Shah et al., 2022)

<sup>\*</sup> Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In International Conference on Learning Representations



• Conventional methods are trained by comparing the encoded  $Q_i$  to the output code.

<sup>\*</sup> Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In International Conference on Learning Representations



- Each neuron of the output code is a binary classifier, and the magnitude  $\hat{Z}_i$  gives a measure of the confidence of the classifier-k
- The output code and a decoding matrix  $D \in \mathbb{R}^{M \times N}$  are multiplied

<sup>\*</sup> Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In International Conference on Learning Representations



- The output is passed through a softmax function to give a correlation vector  $\hat{C}_i \in \mathbb{R}^N$
- $\hat{C}_i^k$  represents the probability that the predicted label  $y_i$  = k.

<sup>\*</sup> Deval Shah, Zi Yu Xue, and Tor M. Aamodt. Label encoding for regression networks. In International Conference on Learning Representations

| Target<br>Label | Binary-encoded Label |                       |            |            |                |                  |                |                  |
|-----------------|----------------------|-----------------------|------------|------------|----------------|------------------|----------------|------------------|
|                 | $\mathbf{B}^8$       | <b>B</b> <sup>7</sup> | <b>B</b> 6 | <b>B</b> 5 | B <sup>4</sup> | $\mathbf{B}^{3}$ | $\mathbf{B}^2$ | $\mathbf{B}^{1}$ |
| 1               | 1                    | 1                     | 1          | 1          | 1              | 1                | 1              | 1                |
| 2               | 1                    | 0                     | 1          | 0          | 1              | Θ                | 1              | Θ                |
| 3               | 1                    | 1                     | 0          | 0          | 1              | 1                | 0              | 0                |
| 4               | 1                    | 0                     | 0          | 1          | 1              | 0                | 0              | 1                |
| 5               | 1                    | 1                     | 1          | 1          | 0              | 0                | 0              | 0                |
| 6               | 1                    | 0                     | 1          | 0          | 0              | 1                | 0              | 1                |
| 7               | 1                    | 1                     | 0          | 0          | 0              | 0                | 1              | 1                |
| 8               | 1                    | 0                     | 0          | 1          | Θ              | 1                | 1              | 0                |

$$E_{n,:} = \frac{1}{|\mathbb{S}_n|} \sum_{i \in \mathbb{S}_n} \hat{Z}_i$$

- $\mathbb{S}_n$  represent the set of training samples with quantized target  $Q_i$  = n
- Encoder  $E \in \mathbb{R}^{N \times M}$
- $E_n$  is s the encoding for target  $Q_i$  = n
- However, training the network solely with the loss between  $\hat{y}_i$  and  $y_i$  does not constrain the search space of label encodings

#### RLEL – Regularizations

- R1: Distance between encodings
  - L1 distance between encodings for two labels should increase with the difference between two labels

$$||E_{i,:} - E_{j,:}||_1 \propto |i - j|$$

- R2: Regularizing bit transitions
  - The number of bit transitions in a bit-position of label encoding gives a measure of the binary classifier's decision boundary's complexity

$$\sum_{i=1}^{M} \sum_{j=1}^{N-1} |E_{j,i} - E_{j+1,i}|$$

#### RLEL – Regularizations : minibatch

- Encoder E is measured from the output codes  $\hat{Z}_i$  over the complete training dataset
  - However, deep neural networks are trained using mini-batches with K samples.
- R1: Distance between encodings

$$\mathcal{L}_1 = \sum_{i=1}^K \sum_{j=1}^K \max(0, 2 \times |y_i - y_j| - ||\hat{Z}_i - \hat{Z}_j||_1)$$

R2: Regularizing bit transitions

$$\mathcal{L}_2 = \sum_{i=1}^{M} \sum_{j=1}^{N-1} |D_{i,j} - D_{i,j+1}|$$

#### RLEL – Loss function



$$\mathcal{L} = \sum_{i=1}^{K} \text{CE}(\hat{C}_i, \phi(y_i)) + \alpha \sum_{i=1}^{M} \sum_{j=1}^{N-1} |D_{i,j} - D_{i,j+1}| + \beta \sum_{i=1}^{K} \sum_{j=1}^{K} \max(0, 2 \times |y_i - y_j| - ||\hat{Z}_i - \hat{Z}_j||_1),$$

where 
$$\phi^{j}(y_{i}) = \frac{e^{-|j-y_{i}|}}{\sum_{n=1}^{N} e^{-|n-y_{i}|}}$$
 (5)

#### **Experiments - Setup**

| Task                                                             | Feature<br>Extractor                    | Dataset                                                    | Benchmark                               | Label range/<br>Quantization levels | θ  |
|------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|-----------------------------------------|-------------------------------------|----|
| Landmark-free ResNet50 2D head pose (He et al., estimation 2016) |                                         | 300LP (Zhu et al.,<br>2016)/AFLW2000 (Zhu et al.,<br>2016) | LFH1                                    | 0-200/200                           | 10 |
|                                                                  |                                         | BIWI (Fanelli et al., 2013) LFH2                           |                                         | 0-150/150                           | 10 |
| Facial HRNe<br>Landmark W18 (V<br>Detection et al., 2            | HRNetV2-                                | COFW (Burgos-Artizzu et al., 2013)                         | FLD1/FLD1_s (100%/10% training dataset) | 0-256/256                           | 10 |
|                                                                  |                                         | 300W (Sagonas et al., 2013)                                | FLD2/FLD2_s (100%/10% training dataset) | 0-256/256                           | 10 |
|                                                                  | et al., 2020)                           | WFLW (Wu et al., 2018)                                     | FLD3/FLD3_s (100%/10% training dataset) | 0-256/256                           | 10 |
| Age estimation                                                   | ResNet50/<br>ResNet34                   | MORPH-II (Ricanek &<br>Tesafaye, 2006)                     | AE1                                     | 0-64/64                             | 10 |
|                                                                  | Resnet34 -                              | AFAD (Niu et al., 2016)                                    | AE2                                     | 0-32/32                             | 10 |
| End-to-end<br>autonomous<br>driving                              | Pilot-<br>Net(Bojarski<br>et al., 2017) | PilotNet                                                   | PN                                      | 0-670/670                           | 10 |









Head Pose Estimation



Facial Landmark
Detection



Age Estimation



End-to-end Autonomous driving

#### **Experiments - Results**

|                        | Error (MAE or NME) |                   |                   |                   |                   |                   |  |
|------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|
| Approach               | LFH1               | LFH2              | FLD1              | FLD1_s            | FLD2              | FLD2_s            |  |
| Simulated annealing    | 4.32±0.12          | $5.03 \pm 0.08$   | 3.55±0.01         | $6.52 \pm 0.05$   | $3.59\pm0.00$     | 5.35±0.01         |  |
| Autoencoder            | <b>3.38</b> ±0.01  | $4.84 \pm 0.02$   | $3.39\pm0.01$     | $4.85 \pm 0.03$   | $3.39 \pm 0.00$   | $4.20 \pm 0.05$   |  |
| LEL(w/o regularizers)  | $4.03\pm0.15$      | $4.96 \pm 0.08$   | $3.36 \pm 0.01$   | $4.98 \pm 0.07$   | $3.39 \pm 0.01$   | $4.28\pm0.05$     |  |
| BEL(Manually designed) | $3.56\pm0.11$      | <b>4.77</b> ±0.05 | <b>3.34</b> ±0.01 | <b>4.63</b> ±0.03 | $3.40\pm0.02$     | <b>4.15</b> ±0.01 |  |
| RLEL                   | $3.55 \pm 0.10$    | <b>4.77</b> ±0.05 | $3.36 \pm 0.01$   | $4.71 \pm 0.04$   | $3.37 \pm 0.02$   | <b>4.15</b> ±0.05 |  |
| Approach               | FLD3               | FLD3_s            | AE1               | AE2               | PN                |                   |  |
| Simulated annealing    | $4.52 \pm 0.02$    | $6.38 \pm 0.01$   | $2.33 \pm 0.01$   | $3.17 \pm 0.01$   | $4.25{\pm}0.01$   |                   |  |
| Autoencoder            | $4.36\pm0.01$      | $5.62 \pm 0.01$   | $2.29\pm0.00$     | $3.19\pm0.01$     | $4.49\pm0.04$     |                   |  |
| LEL(w/o regularizers)  | <b>4.35</b> ±0.02  | $5.68 \pm 0.04$   | $2.30\pm0.01$     | $3.17\pm0.01$     | $3.22 \pm 0.02$   |                   |  |
| BEL(Manually designed) | $4.36\pm0.02$      | $5.62 \pm 0.00$   | <b>2.27</b> ±0.01 | <b>3.11</b> ±0.00 | $3.11 \pm 0.01$   |                   |  |
| RLEL                   | <b>4.35</b> ±0.01  | <b>5.58</b> ±0.01 | $2.28 \pm 0.01$   | $3.14 \pm 0.01$   | <b>3.01</b> ±0.03 |                   |  |

- SA/AE do not optimize the encodings end-to-end with the regression problem.
- Error of LEL increases for smaller datasets, which suggests that RLEL generalize better
- Main objective of RLEL is to automatically learn label encoding
  - BEL need human intervention to design codes and multiple training runs.

#### Conclusion

- Analyze properties of suitable encodings in the continuous search space
- Propose regularization functions for end-to-end learning of network parameters and label encoding.
- Evaluate the proposed approach on 11 benchmarks and show significant improvement over different encoding design methods and generic regression approaches.