

- 1. 实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3. 在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按 0 分计。
- 4. 实验报告文件以 PDF 格式提交。

院	数	数据科学与计算机 班 16级记		十科教务2班	组长	钟哲灏	
系	学	院	级				
学	16	16337331		327	16337341		
号							
学	钟	钟哲灏		雪	朱志儒		
生							
	实验分工						
钟哲灏 进行实验,数据分析			朱志儒	辅助实验,数据分析,撰写			
					实验报告中 RI	P ipv4 部分	
郑映	雪 辅助实验、过程记录分析、撰						
	写实验报告中 RIPng ipv6 部						
	分,负责实验报告的排版						

实验题目

RIP 路由协议实验 RIPng 路由协议实验

实验目的

- 1. 掌握在路由器上配置 RIPv2。
- 2. 掌握基于 IPV6 的动态路由协议 OSPFv3 骨干区域配制方法。
- 3. 学习对 debug 信息进行分析。

实验内容

- 1. 在实验设备上完成实验手册中的实验 7-2 RIP 路由协议实验(P243)。 完成实验手册中的实验 11-3 IPV6 RIPng 实验(P362)。
- 2. 学会使用 Debug ip packet 和 Debug ip rip 命令,并对 debug 信息做分析。
- 3. 观察试验拓扑中链路状态发生改变时路由表的前后信息对比及 debug 信息的变化。

实验要求

重要信息信息需给出截图, 注意实验步骤的前后对比。

实验记录

【实验 7-2】

拓扑图:

实验步骤:

步骤 1:

(1) 测试 PC1 和 PC2 的连通性 PC2 无法 ping 通 PC1,如图所示。


```
C: Wsers Administrator > ping 192.168.5.11

正在 Ping 192.168.5.11 具有 32 字节的数据:
来自 192.168.3.22 的回复: 无法访问目标主机。
来自 192.168.3.22 的回复: 无法访问目标主机。
来自 192.168.3.22 的回复: 无法访问目标主机。
来自 192.168.3.22 的回复: 无法访问目标主机。
和 192.168.3.22 的回复: 无法访问目标主机。

数据包: 已发送 = 4,已接收 = 4,丢失 = 0 < 0% 丢失 > ,
```

(2) 在路由器 R2 上执行 show ip route 命令,记录路由表信息,如图所示。

```
17-S5750-2(config) #show ip route
```

```
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
```

步骤 7:

(1) 交换机 S5750 的路由表,如图所示。

分析:表中有两个 R 条目,第一个 R 条目是来自路由器 R1 的,第二个 R 条目是路由器 R1 收到路由器 R2 的路由表更新自身的路由信息后发送给交换机的。

(2) 路由器 R1 的路由表,如图所示。

分析:表中有两个 R 条目,第一个 R 条目是来自路由器 R2 的,第二个 R 条目是来自交换机 S5750。

Router1(config) #show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
C 192.168.1.0/24 is directly connected, GigabitEthernet 0/1
C 192.168.2.0/24 is directly connected. Serial 2/0

192.168.1.0/24 is directly connected, GigabitEthernet 0/1
C 192.168.1.1/32 is local host.
C 192.168.2.0/24 is directly connected, Serial 2/0
C 192.168.2.1/32 is local host.
R 192.168.3.0/24 [120/1] via 192.168.2.2, 00:01:24, Serial 2/0
R 192.168.5.0/24 [120/1] via 192.168.1.2, 00:01:51, GigabitEthernet 0/1

(3) 路由器 R2 的路由表,如图所示。

分析: 表中有两个 R 条目,第一个 R 条目是来自路由器 R1 的,第二个 R 条目是路由器 R1 收到交换机的路由表更新自身的路由信息后发送给路由器 R2 的。

Router2(config) #show ip route

步骤 8:

(1) 与步骤 1 的路由表比较的结论:新增 6 个表项,如图所示。其中 4 个 C 表项, 2 个 R 表项。

```
R 192.168.1.0/24 [120/1] via 192.168.2.1, 00:02:00, Serial 2/0 192.168.2.0/24 is directly connected, Serial 2/0 192.168.2.2/32 is local host.
C 192.168.3.0/24 is directly connected, GigabitEthernet 0/1 192.168.3.1/32 is local host.
R 192.168.5.0/24 [120/2] via 192.168.2.1, 00:02:00, Serial 2/0
```

(2) traceroute PCI 的结果,如图所示。

分析: 第一跳 IP 地址为 192, 168, 3, 1, 即路由器 R2 的 gi 0/1 接口的 IP 地址;

第二跳 IP 地址为 192. 168. 2. 1,即路由器 R1 的 S2/0 接口的 IP 地址;

第三跳 IP 地址为 192. 168. 1. 2, 即交换机 gi0/1 接口的 IP 地址;

第四跳 IP 地址为 192. 168. 5. 11,即目的主机 PC1 的 IP 地址。


```
C:\Users\Administrator>tracert 192.168.5.11
通过最多 30 个跃点跟踪
到 STU50 [192.168.5.11] 的路由:
               <1 毫秒
                         <1 毫秒 192.168.3.1
                       43 ms
 2
      40 ms
               43 ms
                              192.168.2.1
 3
      50 ms
                              192.168.1.2
               51 ms
                       51 ms
      45 ms
               47 ms
                       47 ms
                              STU50 [192.168.5.11]
跟踪完成。
```

(3) 使用 Wireshark 捕获的数据包如图所示。

分析: 网线未拔时,通过第 2、5、13、24 号包可发现时间差逐渐增大后趋于稳定, 网线拔掉后,通过第 28、45、56、66 号包可发现时间差骤然下降接着逐渐增大后又趋于 稳定。

No.	Time	Source	Destination	Protocol	Length Info
Г	2 5.329525	192.168.3.1	224.0.0.9	RIPv2	86 Response
	5 8.709693	192.168.3.1	224.0.0.9	RIPv2	106 Response
	13 38.709260	192.168.3.1	224.0.0.9	RIPv2	106 Response
	24 68.708884	192.168.3.1	224.0.0.9	RIPv2	106 Response
	28 83.598462	192.168.3.1	224.0.0.9	RIPv2	86 Response
	45 98.708315	192.168.3.1	224.0.0.9	RIPv2	106 Response
	56 128.707960	192.168.3.1	224.0.0.9	RIPv2	106 Response
L	66 158.707672	192.168.3.1	224.0.0.9	RIPv2	106 Response

网线未拔时第24号包数据如图,网线拔掉后第28号包数据如图。

分析: 从中可以看出路由出现了毒性反转现象。

No.	Time	Source	Destination	Protocol	Length	Info
24	68.708884	192.168.3.1	224.0.0.9	RIPv2	106	Response
28	83.598462	192.168.3.1	224.0.0.9	RIPv2	86	Response
15	00 700215	102 169 2 1	224 0 0 0	DTDv/2	106	Pachanca

- > Frame 24: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface 0
- > Ethernet II, Src: RuijieNe_27:c0:52 (58:69:6c:27:c0:52), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
- > Internet Protocol Version 4, Src: 192.168.3.1, Dst: 224.0.0.9
- > User Datagram Protocol, Src Port: 520, Dst Port: 520
- → Routing Information Protocol

Command: Response (2) Version: RIPv2 (2)

> IP Address: 192.168.1.0, Metric: 2
> IP Address: 192.168.2.0, Metric: 1
> IP Address: 192.168.5.0, Metric: 3

N∘.		Time	Source	Destination	Protocol	Length	Info
	24	68.708884	192.168.3.1	224.0.0.9	RIPv2	106	Response
	28	83.598462	192.168.3.1	224.0.0.9	RIPv2	86	Response
	15	00 700015	100 160 0 1	22/ 0 0 0	PTDv2	106	Pasnansa

- > Frame 28: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface 0
- > Ethernet II, Src: RuijieNe_27:c0:52 (58:69:6c:27:c0:52), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
- > Internet Protocol Version 4, Src: 192.168.3.1, Dst: 224.0.0.9
- > User Datagram Protocol, Src Port: 520, Dst Port: 520
- ✓ Routing Information Protocol

Command: Response (2) Version: RIPv2 (2)

> IP Address: 192.168.1.0, Metric: 16
> IP Address: 192.168.5.0, Metric: 16

(4) 捕获数据包, RIP 封装结构如图所示。

分析: 源 IP 为 192. 168. 3. 1,目的 IP 为 224. 0. 0. 9,源端口为 520,目的端口为 520,长度为 52,校验和为 0xd064,命令为 Response,版本为 RIPv2,RIP 报文内容包含路由相关信息。

RIP 包在 PC1 和 PC2 上均能捕获,实现方法就是打开 Wireshark 直接捕获,设置过滤条件为 RIP 即可。

> Internet Protocol Version 4, Src: 192.168.3.1, Dst: 224.0.0.9

▼ User Datagram Protocol, Src Port: 520, Dst Port: 520

Source Port: 520

Destination Port: 520

Length: 52

Checksum: 0xd064 [unverified]
[Checksum Status: Unverified]

[Stream index: 1]

▼ Routing Information Protocol

Command: Response (2) Version: RIPv2 (2)

▼ IP Address: 192.168.1.0, Metric: 2

Address Family: IP (2)

Route Tag: 0

IP Address: 192.168.1.0 Netmask: 255.255.255.0

Next Hop: 0.0.0.0

Metric: 2

IP Address: 192.168.5.0, Metric: 3

Address Family: IP (2)

Route Tag: 0

IP Address: 192.168.5.0 Netmask: 255.255.255.0

Next Hop: 0.0.0.0

Metric: 3

实验思考:

- (1) 查看交换机端口 0/1 所属 VLAN 应使用的指令为: show vlan
- (2) 查看 RIP 的版本号和发布到的网段的方法:

使用指令 show ip protocols 即可查看 RIP 的版本号和发布到的网段。

(3) RIPv1 的广播地址是 255. 255. 255. 255, RIPv2 的组播地址为 224. 0. 0. 9。

使用 Debug 命令实验部分:

(1) 配置好所有设备后使用 debug ip rip 指令,记录信息如图。

分析:图中显示 May 25 21:35:25 时收到源 IP 为 192.168.2.2 的长度为 24 的 RIP 报文,在 Serial 2/0 接口收到版本 2 的响应报文,IP 为 192.168.2.2 的主机移除计时器和时间调度器,修改路由信息,旧的路径: nhop=192.168.2.2 routesrc=192.168.2.2 intf=2,新路径: nhop=192.168.2.2 routesrc=192.168.2.2 intf=2。通过接口 Serial 2/0[192.168.2.1/24]更新计时器和时间调度器,接着准备发送 MULTICAST 响应,构建更新条目: 192.168.1.0/24 via 0.0.0.0 metric 1 tag 0 和 192.168.5.0/24 via 0.0.0.0 metric 2 tag 0,通过接口 Serial 2/0 组播分组。

【实验 11-3】

拓扑图:

步骤 1:

(1) 在两台 PC 机上配置 IPv6 地址,子网前缀长度,默认网关。

注: windows xp 操作系统需要先安装 IPv6 协议,再进行配置 IPv6 地址; windows 7 及以上版本可直接配置 IPv6 地址

(2) 记录路由器 1 和路由器 2 的路由信息。

路由器1和2的路由信息如图所示。

路由器1:

路由器 2:


```
17-RSR20-2(config) #show ipv6 route

IPv6 routing table name is - Default - 1 entries

Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP

I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summar

y

O - OSPF intra area, OI - OSPF inter area, OE1 - OSPF external t

ype 1, O

E2 - OSPF external type 2

ON1 - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2

L ::1/128 via Loopback, local host
```

步骤 2: 在 R1 上配置 RIPng

RSR-1(config)#ipv6 unicast-routing ! 在路由器上启用 IPv6

RSR-1(config)#ipv6 router rip ! 在路由器上启用 RIPng

RSR-1(config-router)#exit

RSR-1(config)#interface GigabitEthernet 0/0

RSR-1(config-if-GigabitEthernet 0/0)#ipv6 address 2001:1::1/64

RSR-1(config-if-GigabitEthernet 0/0)#ipv6 rip enable RSR-1(config-if-

GigabitEthernet 0/0)#exit

RSR-1(config)#interface GigabitEthernet 0/1

RSR-1(config-if-GigabitEthernet 0/1)#ipv6 address 2001:2::1/64

RSR-1(config-if-GigabitEthernet 0/1)#ipv6 rip enable

RSR-1(config-if-GigabitEthernet 0/1)#exit

步骤 3: 在 R2 上配置 RIPng

RSR-2(config)#ipv6 unicast-routing ! 在路由器上启用 IPv6

RSR-2(config)#ipv6 router rip ! 在路由器上启用 RIPng

RSR-2(config-router)#exit

RSR-2(config)#interface GigabitEthernet 0/0

RSR-2(config-if-GigabitEthernet 0/0)#ipv6 address 2001:3::1/64

RSR-2(config-if-GigabitEthernet 0/0)#ipv6 rip enable

RSR-2(config-if-GigabitEthernet 0/0)#exit

RSR-2(config)#interface GigabitEthernet 0/1

RSR-2(config-if-GigabitEthernet 0/1)#ipv6 address 2001:2::2/64

RSR-2(config-if-GigabitEthernet 0/1)#ipv6 rip enable

RSR-2(config-if-GigabitEthernet 0/1)#exit

步骤 4: 在路由器上查看支持的 IPv6 的路由协议

RSR-1#showipv6rip

RSR-2#showipv6rip

步骤 5: 实验验证及分析

1、 在 PC 上测试两台主机的连通性。

如图所示,两台主机可以连通。

```
C: Wsers Administrator>ping 1::1

正在 Ping 1::1 具有 32 字节的数据:
来自 1::1 的回复: 时间=53ms
来自 1::1 的回复: 时间=51ms
来自 1::1 的回复: 时间=49ms
来自 1::1 的回复: 时间=48ms

1::1 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 48ms,最长 = 53ms,平均 = 50ms
```

2、 在 PC 上通过 tracert 命令查看路由情况。

此时的路由情况如图所示:

路由1的路由情况:

路由2的路由情况:

中山大學 计算机网络实验报告

学号	学生	自评分
16337331	钟哲灏	99
16337327	郑映雪	99
16337341	朱志儒	99