2021 Practice THSC for Advanced Maths Solutions

Functions

- 1. B
- 2. A
- 3. D
- 4. C
- 5. x > -0.5
- 6. x = 1/3

Calculus

- 1. A
- 2. C
- 3. B
- 4. D
- 5. B
- 6. x = 0
- 7. x > 3
- 8. 12

Trigonometry

- 1. D
- 2. D
- 3. 4

Financial Mathematics

- 1. A
- 2. B
- 3. 113

Statistics

- 1. D
- 2. C
- 3. B
- 4. A
- 5. 60

Solutions to Extended Response Questions

Question 1 – Financial Mathematics – 9 Marks

Part A (6 marks)

(a)	{4, 7, 10,} Arithmetic series with first term 4 and common difference 3.	2 Marks: Correct answer.
	$T_n = a + (n-1)d$ = 4 + 3(n - 1) = 3n + 1	1 Mark: Uses the formula for the nth term of an AP with one correct value.
(b)	To find the sum of the first 10 terms of {4, 7, 10,} $S_n = \frac{n}{2} [2a + (n-1)d]$ $= \frac{10}{2} [2 \times 4 + (10 - 1) \times 3]$ $= 175$	1 Mark: Correct answer.
(c)	The number sticks is less than 1750. $S_k < 1750$ $\frac{k}{2}[2 \times 4 + 3(k-1)] < 1750$ $k(8+3k-3) < 3500$ $3k^2 + 5k - 3500 < 0$ $(3k-100)(k+35) < 0$	2 Marks: Correct answer. 1 Mark: Shows some understanding.

1 Mark: Correct answer.

Part B (3 marks)

	n = 25 x 12 = 3	00 r	= 3 - 12 :	0.25%	
		r	+1 = 1.	0025	
Monthly.	A = P(1:00:	z) - 300	00		178
Balance	A = A, (- Annual Contraction			Line House
	= P(1)	0025)2	- 3000 (0025) -	8000
	= P(1:	0025)2	-3000(1	0025 +1)	
	:			(ea	********
A	300 = P(1.0025)	-300	0 (1-0025	t +1:	0015+1) = 0
	P(1.0025)300	= 3000	0 (1.002	300 - 1)	
			1-0025 -		
	P = 3000	(1.002	2300-1)		
	0.00	2 (1.00	225)		
	= \$63.8	629.3	6		

Question 2 – Calculus – 9 Marks

Part A (5 marks)

	1	1
(a)	$\dot{x} = 8 - 16\sin t$	1 Mark: Correct
	$\ddot{x} = -16\cos t$	answer.
	Initially $t = 0$	
	$\ddot{x} = -16\cos(0)$	
	= -16	
	∴Initially the acceleration is 16 ms² towards the left.	
(b)	Particle at rest when velocity is zero ($\dot{x} = 0$)	1 Mark: Correct
	$\dot{x} = 8 - 16\sin t = 0$	answer.
	$16\sin t = 8$	
	1	
	$\sin t = \frac{1}{2}$	
	π 5π	
	$t = \frac{\pi}{6}, \frac{5\pi}{6}, \dots$	
	\therefore First at rest after $\frac{\pi}{6}$ seconds.	
	6 seconds.	
(c)	$\dot{x} = 8 - 16\sin t$	1 Mark: Correct
	$x = 8t + 16\cos t + C$	answer.
	When $t = 0$ $x = 0$ (Initially at the origin)	
	$0 = 8 \times 0 + 16\cos(0) + C$	
	C = -16	
	$\therefore x = 8t + 16\cos t - 16$	
(d)	Distance between $\frac{\pi}{6}$ and $\frac{5\pi}{6}$	2 Marks: Correct
	Distance between $\frac{1}{6}$ and $\frac{1}{6}$	answer.
	$t = \frac{\pi}{6}$	
	6	1 Mark: Makes
	$x = 8 \times \frac{\pi}{6} + 16\cos\frac{\pi}{6} - 16 = \frac{4\pi}{3} + 8\sqrt{3} - 16$	some progress.
	5π	
	$t = \frac{1}{6}$	
	$x = 8 \times \frac{5\pi}{6} + 16\cos\frac{5\pi}{6} - 16 = \frac{20\pi}{3} - 8\sqrt{3} - 16$	
	Distance travelled = $\left(\frac{20\pi}{3} - 8\sqrt{3} - 16\right) - \left(\frac{4\pi}{3} + 8\sqrt{3} - 16\right)$	
	$=\frac{16\pi}{3}-16\sqrt{3}$	
	_ 3	

Part B (4 marks)

For the point *A*:

$$4-3x^{2} = -x$$

$$0 = 3x^{2} - x - 4$$

$$0 = (3x - 4)(x + 1)$$

$$x = \frac{4}{3} \text{ or } -1$$

Therefore, x = -1 according to the diagram.

When x = -1:

$$y = 4 - 3(-1)^2$$

= 1

Therefore, A(-1, 1).

Due to the symmetry of $y = 4 - 3x^2$, C(1, 1).

$$A_{ABC} = \int_{-1}^{1} 4 - 3x^{2} dx - A_{\text{rectangle}}$$

$$= \left[4x - x^{3} \right]_{-1}^{1} - 2$$

$$= (4 - 1) - (-4 + 1) - 2$$

$$= 4$$

$$A_{\text{logo}} = 4 \times A_{ABC} + 2 \times A_{\text{rectangle}}$$

$$= 20 \text{ units}^{2}$$

MA-C4 Integral Calculus	
MA12-7	Bands 5–6

- Gives the correct solution 4

- Develops an equation to show either point A(-1, 1)
 OR point C(1, 1) 1

Question 3 – Trigonometric Functions – 10 Marks

Part A (3 marks)

$$\int_0^a 5\sin 3x dx = \frac{10}{3}$$

$$\left[-\frac{5}{3}\cos 3x \right]_0^a = \frac{10}{3}$$

$$-\frac{5}{3}(\cos 3a - \cos 0) = \frac{10}{3}$$

$$(\cos 3a - \cos 0) = -2$$

$$\cos 3a = -1$$

$$3a = \pi, 3\pi, ...$$

$$a = \frac{\pi}{3} \quad (0 \le a < \pi)$$

$$3 \text{ Marks: Correct answer.}$$

$$2 \text{ Marks: Makes significant progress towards the solution.}$$

$$1 \text{ Mark: Integrates correctly.}$$

Part B (4 marks)

(a) Construct the line segment OC and let $\angle AOC = \theta$.

MA-T1 Trigonometry and Measure of Angles

MA11–3 Bands 3–4
• Gives the correct solution 2

 Shows progress towards the correct solution 1

(b)
$$A_{\text{sector }AOB} = \frac{1}{2}r^2\theta$$
$$= \frac{1}{2} \times 5^2 \times 2.4$$
$$= 30$$
$$A_{AOBC} = 2 \times \left(\frac{1}{2} \times 5 \times 12\right)$$
$$= 60$$
$$A_{\text{shaded region}} = 60 - 30$$
$$= 30 \text{ cm}^2$$

MA-T1 Trigonometry and Measure of Angles MA11-3 Band 4

• Gives the correct solution 2

Part C (3marks)

LHS =
$$\sin x + 1 + \cos x \cot x - \csc x$$

= $\sin x + 1 + \cos x \times \frac{\cos x}{\sin x} - \frac{1}{\sin x}$
= $\frac{\sin^2 x + \sin x + \cos^2 x - 1}{\sin x}$
= $\frac{\sin^2 x + \cos^2 x + \sin x - 1}{\sin x}$
= $\frac{1 + \sin x - 1}{\sin x} = \frac{\sin x}{\sin x}$
= 1
= RHS

3 Marks: Correct answer.

2 Marks: Makes significant progress towards the solution.

1 Mark: Correctly uses one trig identity.

Question 4 – Statistics – 8 Marks

Part A (3 Marks)

0.24 + 0.2 + m + 0.4 = 1	3 Marks
m = 0.16	Correct solution
E(V) 20 10 24 1 24 10 2 1 22 11 0 16 1 22 11 0 4	
$E(X) = 20 \times 0.24 + 21 \times 0.2 + 22 \times 0.16 + 23 \times 0.4$	2 Marks
E(X) = 21.72	Makes significant
	progress
$Var(X) = E(X^2) - [E(X)]^2$	
$Var(X) = 20^2 \times 0.24 + 21^2 \times 0.2 + 22^2 \times 0.16 + 23^2 \times 0.4$	1 Mark
- 21.72 ²	Finds the correct value
Var(X) = 1.4816	of m
	OI III

Part B (5 marks)

(a)
$$|CHE \cup PHY| = |CHE| + |PHY| - |CHE \cap PHY|$$

 $16 = 8 + 12 - |CHE \cap PHY|$
 $|CHE \cap PHY| = 20 - 16$
 $= 4$

MA-S1 Probability and Discrete Probability Distributions MA11-8 Band 3

• Draws the correct diagram.....1

(b)
$$P(PHY) = \frac{12}{24}$$

$$= \frac{1}{2}$$

$$P(CHE) = \frac{8}{24}$$

$$= \frac{1}{3}$$

$$P(CHE \cap PHY) = \frac{4}{24}$$

$$= \frac{1}{6}$$

$$P(PHY) \times P(CHE) = \frac{1}{2} \times \frac{1}{3}$$
1

As $P(CHE) \times P(PHY) = P(CHE \cap PHY)$, the two events are independent.

 $= P(CHE \cap PHY)$

(c)
$$P(CHE) = \frac{1}{3}$$
, $P(PHY) = \frac{2}{5}$ and $P(PHY|CHE) = \frac{3}{7}$.
 $P(CHE \cup PHY) = P(CHE) + P(PHY)$
 $-P(CHE \cap PHY)$
 $= \frac{1}{3} + \frac{2}{5} - \left(P(CHE) \times P(CHE|PHY)\right)$
 $= \frac{1}{3} + \frac{2}{5} - \left(\frac{1}{3} \times \frac{3}{7}\right)$
 $= \frac{62}{105}$

MA–S1 Probability and Discrete Probability Distributions MA11–8 Bands 4–5 • Gives the correct solution 2

	MA–S1 Probability and Discre Probability Distributions	ete
	MA11-8	Bands 5-6
	Gives the correct solution	2
ı	l	

Question 5 – Exponential & Logarithms – 6 Marks

(a) As the initial amount of substance *A* is 200 grams, the time taken to decrease to half its original value is calculated as follows.

Let
$$M_A = 100$$
.
 $100 = 200e^{-0.05t}$
 $\frac{1}{2} = e^{-0.05t}$
 $\ln\left(\frac{1}{2}\right) = -0.05t$
 $\ln 1 - \ln 2 = -0.05t$
 $\ln 2 = 0.05t$
 $t = \frac{\ln 2}{0.05}$
 $= 13.86...$
 $\approx 14 \text{ minutes}$

Therefore, it will decrease to half its original value in 14 minutes.

MA-E1 Exponential and Logarithmic Functions

MA11–8 Bands 4–5

- Gives the correct solution 2

(b) The rate of change of both substances:

$$\frac{dM_A}{dt} = -0.05 \times 200e^{-0.05t}$$
$$= -10e^{-0.05t}$$

$$\frac{dM_B}{dt} = 400 \times \ln 3 \times -0.12 \times 3^{-0.12t}$$
$$= -48 \ln 3 \times 3^{-0.12t}$$

Equate the two rates:

$$-10e^{-0.05t} = -48 \ln 3 \times 3^{-0.12t}$$

$$\frac{-10}{-48 \ln 3} = \frac{3^{-0.12t}}{e^{-0.05t}}$$

$$= \frac{e^{\ln(3^{-0.12t})}}{e^{-0.05t}}$$

$$= \frac{e^{(-0.12 \ln 3)t}}{e^{-0.05t}}$$

$$= e^{(-0.12 \ln 3 + 0.05)t}$$

$$0.1895... = e^{-0.0818t}$$

$$\ln(0.1895)... = -0.0818t$$

$$t = \frac{\ln 0.1895...}{-0.0818...}$$

$$= 20.317... \text{ minutes}$$

$$\approx 20 \text{ minutes } 19 \text{ seconds}$$

Therefore, both substances decay at the same rate at 20 minutes and 19 seconds.

MA-E1 Exponential and Logarithmic Functions

MA11-8 Bands 5-6

- Gives the correct solution 4
- Correctly finds the rates of decay for both substances AND attempts to solve the equation $-10e^{-0.05t} = -48 \ln 3 \times 3^{-0.12t} \dots 2$
- Find the rate of change for substance A OR substance B 1