Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Física Prof. Dr. Alan Barros de Oliveira

Prova 2 - FIS110-73 - 17/06/2022

- 1. Uma partícula de massa 1,0 kg, lançada sobre um trilho retilíneo com velocidade de 3,6 m/s, está sujeita a uma força F(x) = -bx, onde b = 1,3 N/m e x é o deslocamento, em m, a partir da origem. Sabendo-se que a partícula para em dois pontos do trilho, a saber, $+x_0$ e $-x_0$, determine x_0 em metros. (a)5,9 (b)1,8 (c)7,6 (d)3,2 (e)10,2 (f)13,0
- 2. Considere um objeto que se move em uma dimensão de acordo com a equação horária $x=v_0te^{-t/t_0}$, onde t é o tempo, $v_0=14,0$ m/s e $t_0=1,5$ s. Qual é a distância, em metros, que o objeto se encontra da origem quando para momentaneamente?

(a)12,3 (b)11,0 (c)7,7 (d)9,0 (e)4,3 (f)5,6

- 3. Duas partículas, de massas m_1 e m_2 , são empurradas uma contra a outra, comprimindo uma mola colocada entre elas. Quando são liberadas, a mola as arremessa em sentidos opostos. A relação entre as massas das partículas é $m_2/m_1=10$ e a energia armazenada na mola é de 70 J. Suponha que a mola tenha massa desprezível e que toda a energia armazenada seja transferida para as partículas. Após terminada essa transferência, qual é a energia cinética **da partícula 1** em J? (a)21,8 (b)7,9 (c)42,5 (d)49,1 (e)32,5 (f)63,6
- 4. Considere uma colisão frontal elástica entre duas partículas de massas m e m'=5m. A partícula de massa m se move inicialmente com velocidade v, enquanto a outra encontra-se em repouso. Qual é a fração de energia cinética transferida de m para m' durante a colisão?

(a)0,44 (b)0,27 (c)0,86 (d)0,70 (e)0,11 (f)0,56

5. Um rifle, que atira balas a 477 m/s, é apontado para um alvo situado a 114 m de distância. Se o centro do alvo está na mesma altura do rifle, para que altura (**em centímetros**) acima do alvo o cano do rifle deve ser apontado para que a bala atinja o seu centro?

(a) 28,6 (b) 80,5 (c) 48,4 (d) 57,5 (e) 89,7 (f) 14,9

6. Uma pequena aranha de peso P_a está pendurada na ponta de um fio de teia, no teto de um elevador. Sabendo-se que o fio suporta uma tensão máxima de $6.0P_a$, qual seria a mínima aceleração (em m/s²) de subida do elevador para que o fio se partisse?

(a)39,2 (b)64,2 (c)50,0 (d)6,6 (e)78,0 (f)25,9

- 7. Considere um corpo de massa m, sob a ação de um campo de forças F conservativo, cuja energia mecânica é E=K+U, onde K e U são as energias cinética e potencial. Considerando que o movimento do corpo é restrito a uma dimensão, pode-se afirmar que
- (a) U > E é condição de flutuação mega dissonante.
- (b) se U > E, o sistema é dito ultrasônico.

- (c) Todas as outras alternativas são falsas.
- (d) se F = mg o sistema encontra-se em repouso ultra-móvel.
- (e) F = -dU/dx.
- (f) quando U=0, tem-se um ponto de equilíbrio instável.
- 8. Um metrô percorre uma curva plana de raio $19~\mathrm{m}$ a $27~\mathrm{km/h}$. Qual o ângulo, em graus, que as alças de mão penduradas no teto fazem com a vertical?

(a)75,4 (b)38,1 (c)67,1 (d)47,7 (e)59,0 (f)30,8

9. Na figura abaixo, um pequeno bloco de 60 g desliza para baixo em uma superfície curva sem atrito a partir de uma altura h=25 cm e depois adere a uma barra uniforme de massa 104 g e comprimento 86 cm. A barra gira em torno do ponto O antes de parar momentaneamente. Determine θ em graus.

(a) 34,6 (b) 25,7 (c) 1,5 (d) 40,3 (e) 16,3 (f) 13,1

10. A figura abaixo mostra um corpo rígido formado por um aro fino (de massa m, raio R=0.26 m e momento de inércia em relação ao diâmetro $mR^2/2$) e uma barra fina radial (de massa m, comprimento L=2.00R e momento de inércia em relação ao seu CM $mL^2/12$). O conjunto está na vertical, mas se recebe um pequeno empurrão começa a girar em torno de um eixo horizontal no plano do aro e da barra, que passa pela extremidade inferior da barra. Supondo que a energia fornecida ao sistema pelo pequeno empurrão é desprezível, qual é a velocidade angular em rad/s do conjunto quando ele passa pela posição invertida (de cabeça para baixo)?

(a)7,54 (b)5,57 (c)3,49 (d)6,68 (e)9,97 (f)8,73

Fórmulas e Constantes

$$I = \frac{P_s}{4\pi r^2}; \quad E = hf; \quad p = \frac{hf}{c} = \frac{h}{\lambda}$$

$$hf = K_{\text{max}} + \Phi; \quad \Delta \lambda = \frac{h}{mc} (1 - \cos \phi)$$

$$\frac{d^2 \psi}{dx^2} + \frac{8\pi^2 m}{h^2} [E - U(x)] \psi = 0$$

$$T \approx e^{-2bL}, \text{ onde } b = \sqrt{\frac{8\pi^2 m (U_b - E)}{h^2}}$$

$$E_n = \left(\frac{h^2}{8mL^2}\right) n^2, \text{ para } n = 1, 2, 3 \dots$$

$$\psi_n(x) = A \sin\left(\frac{n\pi}{L}x\right), \text{ para } n = 1, 2, 3 \dots$$

$$\Delta x \Delta p = h/2\pi$$

$$\epsilon_0 = 8,854 \times 10^{12} \text{ F/m}; \quad \mu_0 = 1,257 \times 10^{-6} \text{ H/m}$$

$$c = 3, 0 \times 10^8 \text{ m/s}; \quad h = 6,63 \times 10^{-34} \text{ J/s} = 4,14 \times 10^{-15} \text{ eV.s}$$

Por exemplo, se seu número de matrícula for 12.1.3579, temos que

hc = 1240 eV.nm

Eletron: $mc^2 = 511 \text{ keV}$

e a tabela deve ser preenchida assim:

	XX	0	1	2	3	4	5	6	7	8	9
ſ	1°										
ſ	2°										
	3°										
Γ	4°										
Γ	5°										
	6°										
	7°										

NAO MARCAR												
un	_		_	_	_	_	_	_	_	_		
de		_	_	_	_	_	_	_	_	_		
GABARITO												
_	1	2	3	4	5	6	7	8	9	10		
a												
b												
c												
d												
е												
f												
	MATRÍCULA											
_	0	1	2	3	4	5	6	7	8	9		
1°												
2°												
3°												
4°												
5°												
6°												
7°												

MATRÍCULA:

NOME:

TURMA: