Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

Chapter 18 Real-time Clock (RTC)

Dr. Yifeng Zhu
Electrical and Computer Engineering, U of Maine
Edits by Prof Mark Lawford
Computing and Software, McMaster University

Fall 2017

Real-Time Clock (RTC)

- RTC is a digital clock that provides calendar time and date.
- Typical requirements:
 - Low power consumption
 - Separately powered by a battery
 - Accurate
 - Run independently from the processor core

UNIX Epoch Time

- Definition: number of seconds that have elapsed since 00:00:00 UTC, Thursday, 1 January 1970
- Example:
 - ▶ Converting 2:07:39am, April 21, 2014 (UTC) to Unix Epoch number

UNIX Epoch Number

=
$$16181 \text{ days} \times \frac{\text{seconds}}{\text{day}} + 2 \text{ hours} \times \frac{\text{seconds}}{\text{hour}} + 7 \text{ minutes} \times \frac{\text{seconds}}{\text{minutes}} + 39$$

- $= 16181 \times 86400 + 2 \times 3600 + 7 \times 60 + 39$
- = 1398046059
- = 0x53547D6B

Note a day has 86400 seconds $(24 \times 60 \times 60 = 86400)$

UNIX Epoch Time

- Use a signed 32-bit integer to hold the UNIX Epoch Time
 - Covers a time span of 136 years.
 - ▶ Minimum representable time is 1901-12-13
 - Maximum representable time is 2038-01-19
- Year 2038 Problem (also called Unix Millennium Bug)
 - The second after 03:14:07 UTC 2038-01-19 is an overflow (which became 1901-12-13).
 - Use a signed 64-bit integer to fix the problem
 - A challenge in embedded systems

Crystal Inaccuracy: PPM

- ▶ Parts Per Million (PPM) = 10⁻⁶
- Crystal Inaccuracy
 - ▶ 1 PPM $\rightarrow \pm 1.1$ seconds per year
 - A typical watch crystal has 20 PPM
 - ▶ Error per day: 86400 seconds × $20 \times 10^{-6} = 1.728$ seconds/day
 - From per month: $30 \text{ days} \times 1.728 \text{ seconds/day} = 51 \text{ seconds/month}$
- ▶ STM32 RTC
 - At 25°C, HSI and MSI have an accuracy of 100 ppm (not accurate enough for RTC)
 - Need to use a Low Speed External (LSE) crystal, typically 32.768 kHz (2¹⁵ Hz)

Frequency Setting

$$f_{1Hz} = \frac{f_{RTC}}{(Asynch_Prescaler + 1) \times (Synch_Prescaler + 1)}$$

Frequency Setting

If f_{RTC} is 32.768 kHz, i.e. 2^{15} Hz, then $Asynch_Prescaler$ is 2^{7} -1, i.e. 127, and $Synch_Prescaler$ is set as 2^{8} -1, i.e. 255, in many applications, as shown below.

$$f = \frac{f_{RTC}}{(Asynch_Prescaler + 1) \times (Synch_Prescaler + 1)}$$

$$= \frac{2^{15}}{(127 + 1) \times (255 + 1)}$$

$$= \frac{2^{15}}{2^7 \times 2^8}$$

$$= 1Hz$$