12011 Pigeonite Basalt 193 grams

Figure 1: Photo of 12011. NASA # S69-64122. Sample is 5 cm.

Introduction

12011 is a porphyritic pigeonite basalt. It had an encrustation of dirt (figure 1) and numerous micrometeorite pits (figure 2).

Petrography

The petrology of 12011 is discussed in Baldridge et al. (1979). Phenocrysts of olivine (1 mm) and pyroxene (up to 4 mm long) and microphenocrysts of chromite occur in a "fine-grained, variolitic-textured groundmass of pyroxene, plagioclase, ilmenite, ulvöspinel, metallic iron and mesostasis."

Mineralogy

Olivine: Baldridge et al. (1979) state that "olivine compositions in 12011 range from Fo₇₃₋₆₂ and some grains are zoned over almost this entire range."

Pyroxene: □The pyroxene composition of 12011 is given by Baldridge et al. (1979) (figure 3). Pigeonite cores are rimmed by augite. Some pigeonite phenocrysts are long and "hollow".

Mineralogical Mode of 12011

Baldridge	Neal et
et al. 1979	al. 1994
7.7	7.6
53	52.9
31	30.6
2.9	2.9
0.5	0.6
3.4	3.4
1.2	1.4
	et al. 1979 7.7 53 31 2.9 0.5 3.4

Plagioclase: The average composition of plagioclase in 12011 is An_{20} .

Ilmenite: Fine needles of ilmenite form a network in the mesostasis.

Chemistry

The chemical composition of 12011 has been determined by Rhodes et al. (1977) and Snyder et al.

Figure 2: Closeup of 12011,1 showing "zap pits". NASA #S76-26081. Piece is 2.2 cm across.

(1997). Nyquist et al. (1977) determined the trace elements by isotope dilution (figure 5).

Radiogenic age dating

Snyder et al. (1997) reported the isotopic composition of Sr and Nd, but the age has not been determined.

Other Studies

Bogard et al. (1971) reported the content and isotopic composition of rare gases in 12011.

Figure 3: Pyroxene composition in 12011 (adapted from Baldridge et al 1979).

Figure 4: Normalized rare-earth-element composition diagram for 12011 (data from Rhodes et al. 1977, and Nyquist et al. 1979 (highlighted).

Figure 5: Composition of lunar basalts with 12011 indicated.

List of Photo #s for 12011

S69-64096 - 64122 S70-53773 - 53778 TS

Table 1. Chemical composition of 12011.

reference weight	Rhode	s77	Baldridge	79	Nyquist79 59 mg)	Snyder	97
SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	46.63 3.29 9.77 19.53 0.29 8.26 10.63 0.25 0.06 0.07	(c) (c) (c) (c) (c) (c) (a) (c)	46.59 3.25 10.02 19.31 0.28 9.59 10.55 0.33 0.02 0.03	(d) (d) (d) (d) (d) (d) (d) (d) (d)	0.065	(b)	46.6 3.29 9.77 19.5 0.29 8.26 10.6 0.25 0.06 0.07	
Sc ppm	52.2	(a)						
V Cr Co Ni Cu Zn Ga Ge ppb As	4050 39	(a) (a)					2510 47.7 30.9 14.9 13.2 4.2	(e) (e) (e) (e) (e)
Se Rb Sr Y Zr Nb Mo Ru Rh	113 39 128 7.4	(c) (c) (c)			1.22 113	(b) (b)	1.327 117.9 38.4	(e) (e) (e)
Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb							191	(e)
Cs ppm Ba	71	(b)			70	(b)	0.072 79.1	(e) (e)
La Ce	19.9	(a)			18.5	(b)	7.77 18.5	(e) (e)
Pr Nd Sm Eu Gd Tb	5 0.95 1.06	(a) (a) (a)			14.1 4.78 1 6.47	(b) (b) (b)	2.79 14.2 4.8 1.11 5.22 0.94	(e) (e) (e) (e) (e)
Dy Ho	1.00	(ω)			7.72	(b)	5.87 1.32	(e) (e)
Er Tm					4.55	(b)	3.73 0.51	(e)
Yb Lu Hf Ta W ppb Re ppb	4.2 0.62 3.7	(a) (a) (a)			3.93 0.548	(b) (b)	3.86 0.47	(e) (e)
Os ppb Ir ppb Pt ppb Au ppb Th ppm U ppm technique	(a) INA	A, (b)	IDMS, (c)	XRF	- , (d) from	mode	0.415 0.291 e, (e) ICI	(e) (e) P- <i>MS</i>