Vishwakarma Institute of Technology Issue 01: Rev No. 00: Dt. 01/08/22

Title: Question Paper

FF No. 868

Reg No	!		
10g.110.		i	
	1 1		

Bansilal Ramnath Agarwal Charitable Trust's VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE - 411037. (An Autonomous Institute Affiliated to Savitribai Phule Pune University)

Examination: ESE

Year: SY

Branch: IT

Subject: Automata Theory

Subject Code: IT2004

Max. Marks: 100

Total Pages of Question Paper: 02

Day & Date: Friday 24/11/23

Time: 2.30 to 5.30 pm

Instructions to Candidate

- 1. All questions are compulsory.
- 2. Neat diagrams must be drawn wherever necessary.
- 3. Figures to the right indicate full marks.

Q.N.	CO No	BT * No		Max marks	
Q. 1.				- 3	
A	2	3	Design a Deterministic Finite Automata (DFA) for the following language: $L = \{a^n \ b^m \ c^x, \ n, \ m \ge 0, \ x > 0\}$	6	
В	1	3	Design NFA-ε for given Regular Expression (RE): (ab+b)*		
C	1	1	Give formal definition of NFA. Compare DFA and Non-Deterministic Finite Automata (NFA)	6	
			OR		
С	1	1	Give real world applications of DFA.	6	
Q. 2.					
A	2	2	Write RE for the following languages: 1. Having words containing an 'a' at the beginning and at the end, and having odd number of b's and any number of a's in between.	6	
			2. Having either 'ab' or 'ba' as a substring		
B 2	2	2	 Write RE for the following languages: 1. having no consecutive a's and whenever b appears it is always in the form of exactly 2 consecutive b's 2. Write RE for the language represented by following NFA 	6	
			start q_0 c q_1 a q_2 b q_3		
C	1	4	Show that $(a+b)^* = (a+b)^* + (a+b)^*$ using set theory.	6	
			What is kleene closure in RE?		
Q. 3.					
A	5	4	Write whether given languages are regular / context free language (CFL) or both? 1. $L = \{a^n b^n, n \ge 0\}$ 2. $L = \{a^m b^n, m, n \ge 0\}$	7	

	VIS	hwal	Karma Institute of Technology Issue 01 : Rev No. 00 : Dt. 01/08/22	
			3. L= {w c w ^R , w ε {0,1}* } 4. L = {a ⁿ b ⁿ c ⁿ , n \geq 0}	
В	3	3	Write CFG for language having words with equal number of 0's and 1's.	
Q. 4.				
A	5	4	Write precise algorithm and identify language recognized by given Pushdown Automata (PDA) $ \begin{array}{cccccccccccccccccccccccccccccccccc$	6
В	4	4	Design an PDA over $\Sigma = \{1, +, =\}$ to accept the following language: $L = \{1^n + 1^m = 1^{n+m} : n \ge 1, m \ge 1\}$ (Unary addition)	6
			Examples of L: 1+1=11, 1+11=111	
C	3	3	Write CFG and design PDA for language: $L = \{b^n a^n, n \ge 0\}$	6
Q. 5.	141			
A	4	3	Design a Turing Machine (TM) for copying a word. Retain the original word. Input: B1011B Output: B1011#1011B	
В	4	4	Design a TM for the Palindrome language over 0, 1.	6
С	4	1	What is Universal Turing Machine?	6
			OR	
C	4	1	What are various TM variants?	6
Q. 6.				
A	6	4	What is post correspondence problem? What is solution of following problem:	7
			$\begin{pmatrix} abab \\ ababaaa \end{pmatrix}$, $\begin{pmatrix} aaabbb \\ bb \end{pmatrix}$, $\begin{pmatrix} aab \\ baab \end{pmatrix}$, $\begin{pmatrix} ba \\ baa \end{pmatrix}$, $\begin{pmatrix} ab \\ ba \end{pmatrix}$, $\begin{pmatrix} aa \\ a \end{pmatrix}$.	
В	6	1	What are Complexity classes?	7
	1		OR	
В	6	2	What is meant by following statement? Halting problem is undecidable.	7

CO Statements:

CO1: Students should be able to design Automata / Regular expression for given computational problems

CO2: Students should be able to correlate given computational model with its Formal Language

CO3: Students should be able to understand Chomsky hierarchy and write grammar for languages

CO4: Students should be able to design PDA / TM for given computational problem

CO5: Students should be able to analyse power of different computational models

CO6: Students should be able to understand complexity classes and un / decidability of problems

*Blooms Taxonomy (BT) Level No:

1. Remembering; 2. Understanding; 3. Applying; 4. Analyzing; 5. Evaluating; 6. Creating