Bioinformatics

Course Outline

- Introduction to Molecular Biology
- Sequence alignment algorithms
- Genome and Proteome analysis
- Phylogenetic tree analysis
- Bioinformatics Algorithms
- Familiarity with current areas of active bioinformatics research

What is Bioinformatics?

- The use of computers to collect, analyze, and interpret biological information at the molecular level.
- "The mathematical, statistical and computing methods for biological problems using DNA and amino acid sequences and related information."
- A set of software tools for molecular sequence analysis

What is Bioinformatics?

- Bio Molecular Biology
- Informatics Computer Science
- Bioinformatics
 - The study of the application of molecular biology, computer science, artificial intelligence, statistics and mathematics
 - To model, organise, understand and discover interesting information associated with the large scale molecular biology databases

- "Application of Computer Sciences and allied technologies to answer the questions of biologists, about the mysteries of life"
- Mainly concerned with the various kinds of data emerging from the cells of living organisms
- "Application of computers in solving problems of Molecular Biology"

Bioinformatics - origins

- Driven by experimental molecular biology
 - lab folks generate the data, then need a way to organize and analyze it
- Grabs methods from many different fields
 - biostatistics, machine learning, data mining, linguistics etc.
- Use computer (algorithms) to gain novel biological knowledge.
- Use biological knowledge to construct algorithms.

Bioinformatics Applications

- Comparing sequences
- Detecting patterns in sequences
- Constructing phylogenetic trees
- Determining protein function and metabolic pathways
- Computer Aided Drug Design

Bioinformatics Algorithms

- One biological problem can be solved by various algorithms
- One type of algorithm may be applicable to several different biological problems
- Hard to know if existing algorithms are "best possible" solution
- Research is most active in areas where existing algorithms/software do not give adequate solutions (not correct, or not time efficient)

Classes of Algorithms

- Exhaustive search (i.e. brute force)
- Greedy Algorithms
- Combinatorial Pattern Matching
- Branch-and-bound
- Dynamic Programming
- Graph Algorithms
- Machine Learning
- Clustering

A Genome Revolution in Biology and Medicine

- We are in the midst of a "Golden Era" of biology
 - The Human Genome Project has produced a huge storehouse of data that will be used to change every aspect of biological research and medicine
 - The revolution is about treating biology as an information science, not about specific biochemical technologies.

Genome Projects

The Human Genome sequence is complete

approximately 3.2 billion base

The religious CExciton

Hair-cell ((()) trigger

The channel for sound

Insights into mammalian evolution

nature

Arabidopsis thaliana genome sequence

\$100

Plasmodium genomics

Genomics and proteomics pave the way for controlling malaria

presentation A customizin

Bioinformatics ChallengesThe huge dataset

- Lots of new sequences being added
- GenBank has over 100 Billion bases and is doubling every year!!
 - problem of exponential growth
 - how can computers keep up?
 - hard drives are cheaper, but
 processor speeds are not keeping up

Genomics

- The application of high-throughput automated technologies to molecular biology.
- The experimental study of complete genomes.

Genomics Technologies

- Automated DNA sequencing
- Automated annotation of sequences
- DNA microarrays
- Protein-protein interactions

Impact on Bioinformatics

- Genomics produces high-throughput, high-quality data, and bioinformatics provides the analysis and interpretation of these massive data sets.
- It is impossible to separate genomics laboratory technologies from the computational tools required for data analysis.

Aim of research in Bioinformatics

Understand the functioning of living things - to "improve the quality of life".

- drug design
- identification of genetic risk factors
- gene therapy
- genetic modification of food crops and animals, etc.
- application to biotechnology

- The course will focus on computing techniques used to analyse biological data
- You do not need to have a biological background to do the course- Specific knowledge required will be discussed in the class.

Why Bioinformatics?

"The number of radically new results in pure Computer Science is likely to decrease, while scientists will continue working on biological challenges for the next 500 years"

Donald Knuth

Dan Doenberg, Computer Literacy Interview with Donald Knuth, Computer Literacy Book, Dec. 1993, Available online at

http://www.literateprogramming.com/clb93.pdf

Evaluation Pattern

Grading: Absolute

(But 'S' and 'A' reserved for truly 'outstanding' and 'excellent' performances!)

- Weightage
 - Test 1: 20%
 - Test 2: 20%
 - Assignments/group project: 20%
 - End-Sem Exam: 40%

Support material

Course texts and required reading:

- An introduction to Bioinformatics Algorithms 4th Ed: Neil James and Pavel A Pevzner, OUPress (2014)
- Bioinformatics: Principles and Applications: Zhumur Ghosh,
 Bibekanand Mallick: OUPress(2015)
- Building Bioinformatics Solutions: Concord Bessant, Darren
 Oakley, Ian Shadforth: OU press(2014)
- Computational Molecular Biology-An introduction (1st Ed):
 Peter Clote and Rolf Backofen, Wiley Series (2000)

Support material

Other texts of interest:

- Bioinformatics: An Introduction for Computer Scientists, J. Cohen, ACM Computing Surveys, 36(2), 122-158, 2004.
- Bioinformatics- A Beginner's Guide, Jean-Michel Claverie, Cedric Notredame, Publisher: Wiley-Dreamtech India Pvt. Ltd., Year 2003
- Fundamental Concepts of Bioinformatics Krane & Raymer. Publisher:
 Pearson Education
- Introduction to bioinformatics Arthur Lesk. Publisher: Oxford University Press. Year 2002
- An Introduction to Bioinformatics- Attwood & Parry-Smith, Publisher: Pearson Education
- Bioinformatics: Sequence and Genome Analysis David. W. Mount, Publisher: CBS
- An Introduction to Bioinformatics Algorithms Jones and Pevsner, MIT, Publisher (in India): Ane books

Useful Websites

- http://www.ncbi.nlm.nih.gov/
 National Council for Biotechnology Information
- http://bioinformatics.oxfordjournals.org/
 Oxford Journal on Bioinformatics (Public access available for selected articles)
- http://www.cs.brandeis.edu/~jc/bio informatics.html
 Introductory paper by Jacques Cohen
 - IEEE/ACM Transactions on Computational Biology and Bioinformatics
 - SIGKDD and BIOKDD Proceedings

Reading for the week

- [1] Jacques Cohen, Computer Science and Bioinformatics, Communications of the ACM, March 2005/Vol. 48 No.3, Pages 73-78
- [3] Jacques Cohen, *Bioinformatics- An Introduction to Computer Scientists*, ACM Computing Surveys, Vol. 96, No.2, June 2004, Pages 122-158

Thank You