

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

Computer Networks and the Internet

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

Performance: Delay, Loss & Throughput

PES UNIVERSITY ONLINE

How do packet loss and delay occurs?

packets queue in router buffers

- packets queue, wait for turn
- arrival rate to link (temporarily) exceeds output link capacity: packet loss

Performance: Packet Delay – 4 Sources

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec</p>

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Performance: Packet Delay – 4 Sources

* Check out the online interactive exercises: http://gaia.cs.umass.edu/kurose_ross

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$d_{trans} = L/R$$

 d_{trans} and d_{prop} very different

d_{prop} : propagation delay:

- *d*: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

Transmission Delay vs Propagation Delay

Transmission Delay	Propagation Delay
Time required for the router to push out the packet.	Time it takes a bit to propagate from one router to the next.
A function of the packet's length and the transmission rate of the link.	A function of the distance between the two routers.
$d_{trans} = L/R$	$d_{\text{prop}} = d/s$
Nothing to do with the distance between the two routers.	Nothing to do with the packet's length or the transmission rate of the link.

Performance: Delay – Caravan Analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car ~ bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr) = 1 hr
- *A:* 62 minutes

Performance: Delay – Caravan Analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at first booth?

A: Yes! after 7 min, first car arrives at second booth; three cars still at first booth

Queries

THANK YOU

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

sivaramane@pes.edu

+91 80 6666 3333 Extn 834