

COMP 9517 Computer Vision

Feature-based Alignment and Image Stitching

Introduction

- Feature-based alignment and image stitching are based on feature detection and matching, which are an essential component of many computer vision applications
 - Align images to form a panorama

Introduction -cnt

- Feature detection and matching are an essential component of many computer vision applications
 - Establish dense correspondences to construct a 3D model

Introduction - cnt

- Feature detection and matching are an essential component of many computer vision applications
 - Recognise objects in a cluttered scene

Image Alignment and Stitching

- How to do this?
 - Detect feature points in images

Image Alignment and Stitching - cnt

- How to do this?
 - Find correspondences

Image Alignment and Stitching - cnt

- How to do this?
 - Find a parametric transformation

Feature Detector

 We need a repeatable detector that detect the same point independently in different images

Feature Descriptor

 We need a reliable and distinctive descriptor in order to be able to match the feature points

Correspondences

- We need a reliable and efficient way to find correspondences
 - Many matches, which one to choose?

Transformation

 We need the estimation of a transformation between images in a way that is robust to erroneous correspondences

References and Acknowledgements

- Szeliski, Chapter 4
- Some content are extracted from the above resource and James Hays slides