Autoencoders in a nutshell

Julien Velcin
M2 MALIA - Université Lumière Lyon 2

Architecture of AE (1) W_1^T 1000 neurons W_2^T 500 neurons W_3^T 250 neurons W_4^T 250 neurons W_4 250 neurons W_3 000 neurons 000 neurons

Autoencoder

- What's the objective of AE?
 - extract low-dimensional representation
- How ?
 - reconstruct (decode) data from the internal (latent) code
- Some features
 - PCA can be seen as a linear AE
 - possibility to stack encoding layers
 - improve the latent space (c.f., VAE)

Architecture of AE (2)

Comparison taken from CSC2535: 2013 (G. Hinton)

Variational AE

source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Denoising AE

source: https://medium.com/@harishr2301/denoising-autoencoders-996e866e5cd0

VAE (con't)

- Solution to get better latent spaces therefore better generation
- Two parts of the architecture:
 - encoder: p(z|x)
 - decoder: p(x|z)
- Optimization based on Variational Inference (VI)
- VI approximates complex distributions
- Implemented with the « reparametrization trick »
- The internal code (z) should follow a « simple » law (e.g., Gaussian)

VAE (con't)

source: https://blog.keras.io/building-autoencoders-in-keras.html