1 Билет 6. Первые интегралы автономных систем. Линейные однородные уравнения в частных производных первого порядка

1.1 Общее решение линейного однородного уравнения в частных производных первого порядка

Определение 1.1. Рассмотрим уравнение

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}, u) \frac{\partial u}{\partial x^{i}} = F(\overrightarrow{x}, u)$$
 (1)

Функция $u(\overrightarrow{x})$ называется решением уравнения (1), если $u(\overrightarrow{x}) \in C^1(\mathbb{R}^n)$ и после подстановки в (1) получается тождество, причём $f^i(\overrightarrow{x},u) \in C^1(\mathbb{R}^n \times \mathbb{R})$ – некоторые заданные функции. Уравнение (1) называется квазилинейным уравнением в частных производных первого порядка.

Определение 1.2. Рассмотрим систему ДУ:

$$\begin{cases} \dot{x}^1 = f^1(\overrightarrow{x}, u) \\ \dots \\ \dot{x}^n = f^n(\overrightarrow{x}, u) \end{cases}$$
 (2)

Система (2) называется характеристической системой уравнения (1), $a\overrightarrow{x}(t)$ – фазовые кривые (2) – называются характеристиками (1).

Основное свойство характеристик состоит в том, что уравнение для $u\left(\overrightarrow{x}\right)$ в силу (2) имеет вид

$$\frac{du}{dt} = F\left(\overrightarrow{x}\left(t\right), u\right) -$$

обыкновенное ДУ. Действительно, пусть u – решение (1), тогда

$$\frac{du}{dt} = \sum_{i=1}^{n} \frac{\partial u}{\partial x^{i}} \frac{\partial x^{i}}{\partial t} = \sum_{i=1}^{n} \frac{\partial u}{\partial x^{i}} f^{i} = F(\overrightarrow{x}(t), u)$$

Будем рассматривать уравнения вида

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}, u) \frac{\partial u}{\partial x^{i}} = F(\overrightarrow{x}, u)$$
(3)

Определение 1.3. Уравнения вида (3) называются линейными однородными уравнениями первого порядка в частных производных. Характеристической системой для (3) будем называть систему вида

$$\begin{cases} \dot{x}^1 = f^1(\overrightarrow{x}) \\ \dots \\ \dot{x}^n = f^n(\overrightarrow{x}) \end{cases} \tag{4}$$

Теорема 1.1. Пусть $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_k(\overrightarrow{x}) = C_k$ являются независимыми первыми интегралами системы (4). Тогда функция $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ является решением уравнения (3).

Доказательство. Запишем уравнение (3) следующим способом:

$$\sum_{i=1}^{n} f^{i}(\overrightarrow{x}) \frac{\partial u}{\partial x^{i}} = \sum_{i=1}^{n} f^{i}(\overrightarrow{x}) \sum_{l=1}^{k} \frac{\partial u}{\partial \nu_{l}} \frac{\partial \nu_{l}}{\partial x^{i}} = \sum_{l=1}^{n} \frac{\partial u}{\partial \nu_{l}} \sum_{i=1}^{k} f^{i}(\overrightarrow{x}) \frac{\partial \nu_{l}}{\partial x^{i}} = 0$$

Получили тождество, значит $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ действительно решение уравнения (3).

Теорема 1.2. Пусть функция $u(\overrightarrow{x}) = F(\nu_1(\overrightarrow{x}), \dots, \nu_k(\overrightarrow{x}))$ является решением уравнения (3). Тогда $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_k(\overrightarrow{x}) = C_k$ являются независимыми первыми интегралами системы (4).

Доказательство. Так как $u(\overrightarrow{x})$ – решение, то

$$\sum_{i=1}^{n} f^{i} \frac{\partial u}{\partial x^{i}} = 0$$

Значит $u(\overrightarrow{x})$ – первый интеграл системы (4) по критерию первого интеграла. Этот первый интеграл может зависеть только от независимых переменных $\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})$, причём $u(\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})) = C_0$, где $\nu_1(\overrightarrow{x}), \ldots, \nu_k(\overrightarrow{x})$ – первые интегралы системы (4).

1.2 Задача Коши для уравнения в частных производных первого порядка

Пусть $S: g(\overrightarrow{x}) = 0$ – гладкая поверхность в \mathbb{R}^n и

$$\nabla g = \left| \left| \frac{\partial g}{\partial x^1}, \dots, \frac{\partial g}{\partial x^n} \right| \right| \neq \overrightarrow{0}$$

Определение 1.4. Точка $\overrightarrow{a} \in S$ называется некритической точкой поверхности, если в системе (4) $\overrightarrow{f}(\overrightarrow{a}) \neq \overrightarrow{0}$ и $\left(\nabla g(\overrightarrow{a}), \overrightarrow{f}(\overrightarrow{a}) \right) \neq 0$ (фазовые траектории не лежат на S).

Пусть на S задана функция $U_0\left(\overrightarrow{x}\right)$ и $U_0\left(\overrightarrow{x}\right) \in C^1\left(\mathbb{R}^n\right)$. Задача Коши: найти такое решение $u\left(\overrightarrow{x}\right)$ уравнения (3), что $u\left(\overrightarrow{x}\right) = U_0\left(\overrightarrow{x}\right) \ \forall \overrightarrow{x} \in S$.

Теорема 1.3. Пусть на гладкой поверхности S задана непрерывно дифференцируемая функция $U_0(\overrightarrow{x})$. Тогда если точка $\overrightarrow{a_0} \in S$ является некритической, то существует окрестность этой точки, в которой решение задачи Коши $u(\overrightarrow{x}) = U_0(\overrightarrow{x})$ для уравнения (3) существует и единственно.

Доказательство. Запишем параметризацию поверхности S в \mathbb{R}^n : $x^i = \varphi^i (u_1, \dots, u_{n-1})$, $i = \overline{1,n}$. Поверхность S может быть параметризована, поскольку требование $\nabla g \neq \overline{0}$ означает, что

$$rank \left| \left| \frac{\partial g}{\partial x^1}, \dots, \frac{\partial g}{\partial x^n} \right| \right| = 1 \neq 0.$$

Значит по теореме о неявной функции параметризация поверхности S задаётся следующим образом:

$$\begin{cases} x^1 = \varphi(x^2, \dots, x^n) \\ x^2 = x^2 \\ \dots \\ x^n = x^n \end{cases}$$

Значит $u\left(\overrightarrow{x}\right)=u\left(x^{1},\ldots,x^{n}\right)=u\left(\varphi\left(x^{2},\ldots,x^{n}\right),\ldots,x^{n}\right)=U_{0}\left(x^{2},\ldots,x^{n}\right).$ Так как $\overrightarrow{a_{0}}\in S$ является некритической по условию, то существует такая окрестность этой точки $\mathcal{U}(\overrightarrow{a_0})$, где существуют n-1 независимых первых интегралов системы (4): $\nu_1(\overrightarrow{x}) = C_1, \dots, \nu_{n-1}(\overrightarrow{x}) = C_{n-1}$, а общее решение уравнения (3) $u = u(\nu_1(\overrightarrow{x}), \dots, \nu_{n-1}(\overrightarrow{x}))$. Рассмотрим систему уравнений относительно x^1, \ldots, x^n :

$$\begin{cases}
\nu_1(\overrightarrow{x}) = C_1 \\
\dots \\
\nu_{n-1}(\overrightarrow{x}) = C_{n-1} \\
g(\overrightarrow{x}) = 0
\end{cases}$$
(5)

Допустим, что систему удалось разрешить и была получена параметризация поверхности $S g(\overrightarrow{x}) = 0$:

$$\begin{cases} x_S^1 = x_S^1 (C_1, \dots, C^{n-1}) \\ \dots \\ x_S^n = x_S^n (C_1, \dots, C^{n-1}) \end{cases}$$

Рассмотрим

$$J(\overrightarrow{a_0}) = \begin{vmatrix} \frac{\partial \nu_1}{\partial x^1} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \vdots & \vdots & \vdots \\ \frac{\partial \nu_{n-1}}{\partial x^1} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \\ \frac{\partial g}{\partial x^1} & \cdots & \frac{\partial g}{\partial x^n} \end{vmatrix} (\overrightarrow{a_0})$$

Так как $\overrightarrow{f}(\overrightarrow{a_0}) \neq 0$, то умножим i-ый столбец определителя $J(\overrightarrow{a_0})$ на $r^i = f^i(\overrightarrow{a_0})$ и прибавим к первому столбцу все те столбцы, которые умножились $r^i = f^i(\overrightarrow{a_0}) \neq 0$. Учтём, что $\forall i = \overline{1, n-1}$:

$$\sum_{i=1}^{n} \frac{\partial \nu_i}{\partial x^j} \left(\overrightarrow{a_0} \right) f^j \left(\overrightarrow{a_0} \right) = 0$$

так как ν_i – первый интеграл. Преобразованный определитель будет выглядеть следующим образом:

$$J'\left(\overrightarrow{a_0}\right) = \begin{vmatrix} 0 & \frac{\partial \nu_1}{\partial x^2} r^2 & \dots & \frac{\partial \nu_1}{\partial x^n} r^n \\ \dots & & & \\ 0 & \frac{\partial \nu_{n-1}}{\partial x^2} r^2 & \dots & \frac{\partial \nu_{n-1}}{\partial x^n} r^n \\ \left(\nabla g, \overrightarrow{f}\right) & \frac{\partial g}{\partial x^2} r^2 & \dots & \frac{\partial g}{\partial x^n} r^n \end{vmatrix} \left(\overrightarrow{a_0}\right) = (-1)^{n+1} \left(\nabla g, \overrightarrow{f}\right) \begin{vmatrix} \frac{\partial \nu_1}{\partial x^2} r^2 & \dots & \frac{\partial \nu_1}{\partial x^n} r^n \\ \dots & & \\ \frac{\partial \nu_{n-1}}{\partial x^2} r^2 & \dots & \frac{\partial \nu_{n-1}}{\partial x^n} r^n \end{vmatrix} \neq 0$$

Утверждение справедливо, так как $\left(\triangledown g, \overrightarrow{f} \right) \neq 0$ в нехарактеристической точке $\overrightarrow{a_0}$ и

$$rank \begin{vmatrix} \frac{\partial \nu_1}{\partial x^2} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \cdots & & \\ \frac{\partial \nu_{n-1}}{\partial x^2} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \end{vmatrix} = n - 1$$

так как первые интегралы функционально независимы.

Таким образом в силу непрерывности рассматриваемых функций существует окрестность $\mathcal{U}\left(a_{0}\right)$ в которой исходный определитель

$$J(\overrightarrow{a_0}) = \begin{vmatrix} \frac{\partial \nu_1}{\partial x^1} & \cdots & \frac{\partial \nu_1}{\partial x^n} \\ \vdots & & & \\ \frac{\partial \nu_{n-1}}{\partial x^1} & \cdots & \frac{\partial \nu_{n-1}}{\partial x^n} \\ \frac{\partial g}{\partial x^1} & \cdots & \frac{\partial g}{\partial x^n} \end{vmatrix} \neq 0,$$

то есть определитель матрицы Якоби исходной системы (5) не равен нулю. Тогда по теореме о системе неявных функций система однозначно разрешима и существуют единственным образом определённые функции $x_S^1 = x_S^1\left(C_1,\ldots,C^{n-1}\right),\ldots,x_S^2 = x_S^2\left(C_1,\ldots,C^{n-1}\right),$ а значит $u = u\left(x_S^1\left(C_1,\ldots,C^{n-1}\right),\ldots,x_S^n\left(C_1,\ldots,C^{n-1}\right)\right)$ является решением уравнения (3) и $u\left(\overrightarrow{x_S}\right) = U_0\left(\overrightarrow{x}\right) \ \forall \overrightarrow{x} \in S$.