NLP Assignment 1

Amisha Gupta - MT23225 Niteen Kumar - 2022336 Nitin Kumar - 2022337

TASK 1 (Niteen Kumar)

WordPiece Tokenizer Implementation

Introduction

This report outlines the implementation of a WordPiece tokenizer, designed to preprocess text data, construct a subword-based vocabulary, and tokenize sentences. The tokenizer handles unknown words by breaking them into subwords and supports processing data from JSON files.

Implementation Details

1. Class Structure

The WordPieceTokenizer class consists of the following key methods:

- preprocess_data(): Cleans and normalizes text.
- construct_vocabulary(): Builds a subword vocabulary from a corpus.
- tokenize(): Splits sentences into tokens using the vocabulary.
- tokenize_json(): Processes JSON input files and saves tokenized outputs.

2. Preprocessing

The preprocessing pipeline includes:

- Lowercasing: Converts all text to lowercase.
- Special Character Removal: Retains alphanumeric characters and spaces.
- Whitespace Normalization: Reduces multiple spaces to a single space

3. Vocabulary Construction

The vocabulary is built using a simplified WordPiece-like approach:

- 1. **Initial Subwords:** Extract individual characters from the corpus.
- **2. Subword Expansion:** For each word, generate prefixes (e.g., "t", "th" for "this") and suffixes with ## markers (e.g., ##his, ##is).
- **3. Frequency Sorting:** Subwords are sorted by frequency (if vocab_size is specified, the top entries are selected).
- **4. Special Tokens:** [UNK] (unknown tokens) and [PAD] (padding) are added by default.

```
[UNK]
[PAD]
feel
and
to
the
that
feeling
of
my
it
in
like
im
for
me
50
but
```

4. Tokenization Process

- Known Words: Directly mapped to vocabulary entries.
- **Unknown Words:** Split into subwords greedily, starting from the longest possible match. Subwords not at the start of a word are prefixed with ##.

```
remembranc
##enyeri
##eemingly
##rtion
```

5. Handling JSON Data

- Input: Reads a JSON file (e.g., test.json) with samples containing id and sentence fields.
- Output: Generates a JSON file (e.g., tokenized_01.json) with id and tokens fields for each sample.

```
"cant",
"help",
"but",
"als",
"##o",
"feel",
"incredibl",
"##y",
"luck",
"##y",
"over",
"how",
"it",
"all",
"wen",
"##t",
"down",
```

The tokenizer is initialized and used as follows:

Strengths

- **Subword Handling**: Effectively breaks down unseen words into meaningful subwords.
- **JSON Support**: Streamlines batch processing of text data.
- Custom Vocabulary Size: Allows control over memory and computational requirements.

Limitations

- Simplified Algorithm: Unlike the standard WordPiece (which merges frequent token pairs iteratively), this implementation generates subwords through prefix/suffix splitting, potentially leading to suboptimal tokenization.
- **Special Characters**: Aggressive removal of punctuation may degrade performance in tasks requiring syntactic analysis.
- **Efficiency**: Generating all possible subwords during vocabulary construction may be computationally expensive for large corpus.

Conclusion

This implementation provides a functional WordPiece-style tokenizer suitable for basic NLP tasks. Key improvements could include adopting a merge-based strategy for vocabulary construction and preserving punctuation for specific use cases. The code demonstrates core concepts of subword tokenization and offers a foundation for further optimization.

TASK 2 (Nitin Kumar)

Word2Vec Implementation with Negative Sampling and Subsampling

Introduction

This report details a Word2Vec implementation using Continuous Bag-of-Words (CBOW) architecture with key enhancements for improved performance and evaluation. The implementation features advanced techniques including subsampling of frequent words, negative sampling, and a novel triplet analysis method for embedding evaluation.

Key Features & Improvements

1. Enhanced Dataset Handling

- Context window of ±2 words
- Subsampling of frequent words using (f(w)/Σf)^0.75 formula
- Add-one smoothing for frequency estimation
- Dynamic negative sampling based on word frequencies

2. Model Architecture

- Dual embedding system (word + context embeddings)
- Dropout regularization (p=0.1)
- Xavier-style initialization
- Negative sampling loss implementation

3. Training Optimization

- Early stopping with patience=3
- ReduceLROnPlateau learning rate scheduler
- Adam optimizer (Ir=0.001)
- Batch training (size=32)

4. Novel Evaluation

- Cosine similarity matrix computation
- Triplet analysis (similar pair + dissimilar word)
- Similarity threshold filtering (0.5)

Methodology

1. Data Preprocessing

- **Tokenization**: Uses WordPiece tokenizer from previous task
- Subsampling: Implements word-frequency based probability

```
# Apply subsampling formula (t^0.75)
frequencies = np.power(frequencies, 0.75)
```

• **Negative Sampling**: 5 samples per context using smoothed distribution

2. Model Structure

```
class Word2VecModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim):
        super(Word2VecModel, self).__init__()
        self.embeddings = nn.Embedding(vocab_size, embedding_dim)
        self.context_embeddings = nn.Embedding(vocab_size, embedding_dim)
        self.dropout = nn.Dropout(0.1)

# Initialize embeddings
    initrange = 0.5 / embedding_dim
        self.embeddings.weight.data.uniform_(-initrange, initrange)
        self.context_embeddings.weight.data.uniform_(-0, 0)
```

3. Loss Calculation

Combined positive and negative loss:

```
positive_loss = F.logsigmoid(positive_score)
negative_loss = F.logsigmoid(-negative_scores).sum(1)
return -(positive_loss + negative_loss).mean()
```

4. Triplet Analysis Algorithm

- 1. Compute pairwise cosine similarities
- 2. Identify similar pairs (similarity ≥ 0.5)
- 3. Find least similar word using averaged similarity scores

Results & Evaluation

Training Performance

- Loss curves tracked for 100 epochs maximum
- Early stopping typically occurs around epoch 15-20
- Example output:

```
Epoch 1, Train Loss: 3.0703, Val Loss: 2.2974
Epoch 2, Train Loss: 2.0911, Val Loss: 2.0871
Epoch 3, Train Loss: 1.8814, Val Loss: 1.9696
Epoch 4, Train Loss: 1.6992, Val Loss: 1.8616
Epoch 5, Train Loss: 1.5164, Val Loss: 1.7678
Epoch 6, Train Loss: 1.3470, Val Loss: 1.7094
Epoch 7, Train Loss: 1.2031, Val Loss: 1.6745
Epoch 8, Train Loss: 1.0829, Val Loss: 1.6655
Epoch 9, Train Loss: 0.9828, Val Loss: 1.6628
Epoch 10, Train Loss: 0.9002, Val Loss: 1.6741
Epoch 11, Train Loss: 0.8273, Val Loss: 1.6871
Epoch 12, Train Loss: 0.7631, Val Loss: 1.7099
Early stopping at epoch 12
```

Triplet Analysis Examples

Top 5 results from similarity analysis:

```
Top 5 Similar Word Pairs with their Dissimilar Words:
Pair 1:
Similar words: fetis - psycho (similarity: 1.000)
Dissimilar word: cynica (similarities: -0.466, -0.466)
Pair 2:
Similar words: continuousl - empath (similarity: 0.962)
Dissimilar word: uncertaintie (similarities: -0.732, -0.725)
Pair 3:
Similar words: empath - panick (similarity: 0.950)
Dissimilar word: uncertaintie (similarities: -0.725, -0.652)
Pair 4:
Similar words: empath - unnecessar (similarity: 0.938)
Dissimilar word: uncertaintie (similarities: -0.725, -0.669)
Pair 5:
Similar words: imbibe - tow (similarity: 0.935)
Dissimilar word: jack (similarities: -0.560, -0.575)
```

Visualization

Training and validation loss showing stable convergence pattern

Conclusion & Recommendations

This implementation demonstrates effective word embedding learning through:

- Proper handling of word frequencies via subsampling
- Robust negative sampling strategy
- Effective regularization with dropout
- Meaningful similarity relationships in results

TASK 3 (Amisha Gupta)

Introduction

This report details the training of Neural Language Model- An MLP based model using PyTorch.

Implementation Details -

Classes -

- NeuralLMDataset responsible for handling the data preparation for training the language model. It ensures that the data is preprocessed and formatted particularly for the next-word prediction task.
- 2. NeuralLM1 It is the simplest architecture of the three variations. It consists of an embedding layer, a hidden linear layer, and an output layer.
- 3. NeuralLM2 NeuralLM2 builds upon NeuralLM1 by adding a second hidden layer and using a Leaky ReLU activation for better gradient flow.
- 4. NeuralLM3 integrates convolutional layers

Functions -

- 1. compute_accuracy computes the accuracy of the model by comparing the predicted tokens with the actual target tokens.
- 2. compute_perplexity computes the perplexity from the given loss value.
- 3. train This function contains all the training logic that is required to train all the three models.
- 4. predict makes predictions for the next three tokens

Results-

Model	Architecture	Accuracy	Perplexity	Rationale
NeuralLM1	Basic neural network with one hidden layer, ReLU activation, and fully connected layers.	0.70	3.16	Simple architecture, fails to capture complex dependencies
NeuralLM2	Deeper architecture with two hidden layers and Leaky ReLU activation.	0.56	5.81	Added complexity may led to overfitting, therefore resulted in performance drop.
NeuralLM3	Convolutional layers with ReLU activation, followed by fully connected layer for output	0.90	1.4	Conv layers generalizes well for next token prediction task as it was able to learn local

patients

Performance-

Models were trained for 20 epochs.

1- NeuralLM1

Training NeuralLM1...

```
Epoch 1: Train Loss: 6.0275, Train Acc: 0.0968, Train PPL: 414.6814 Val Loss: 5.2574, Val Acc: 0.1237, Val PPL: 191.9892
Epoch 2: Train Loss: 5.1142, Train Acc: 0.1399, Train PPL: 166.3700
Val Loss: 4.7053, Val Acc: 0.1481, Val PPL: 110.5304
Epoch 3: Train Loss: 4.6525, Train Acc: 0.1485, Train PPL: 104.8466
Val Loss: 4.2018, Val Acc: 0.1713, Avc 10.1485, Train PPL: 104.8466
Val Loss: 4.2018, Val Acc: 0.1703, Val PPL: 66.8045
Epoch 4: Train Loss: 4.1463, Train Acc: 0.1702, Train PPL: 63.2001
Val Loss: 3.5732, Val Acc: 0.2566, Val PPL: 35.6313
Epoch 5: Train Loss: 3.5377, Train Acc: 0.2299, Train PPL: 34.9428
Val Loss: 2.9429, Val Acc: 0.3328, Val PPL: 18.9707
Epoch 6: Train Loss: 3.0370, Train Acc: 0.3112, Train PPL: 20.8435
Val Loss: 2.9429, Val Acc: 0.4071, Val PPL: 12.7786
Epoch 7: Train Loss: 2.6958, Train Acc: 0.3112, Train PPL: 14.8170
Val Loss: 2.2977, Val Acc: 0.4540, Val PPL: 9.9514
Epoch 8: Train Loss: 2.6958, Train Acc: 0.4132, Train PPL: 11.8488
Val Loss: 2.1236, Val Acc: 0.4540, Val PPL: 8.3612
Epoch 9: Train Loss: 2.3085, Train Acc: 0.4446, Train PPL: 10.0591
Val Loss: 1.9971, Val Acc: 0.5625, Val PPL: 7.2946
Epoch 10: Train Loss: 2.1765, Train Acc: 0.4496, Train PPL: 8.8155
Val Loss: 1.8760, Val Acc: 0.5623, Val PPL: 5.9011
Epoch 12: Train Loss: 1.9616, Train Acc: 0.4932, Train PPL: 7.1065
Val Loss: 1.7751, Val Acc: 0.5623, Val PPL: 5.3494
Epoch 13: Train Loss: 1.6916, Train Acc: 0.5141, Train PPL: 7.1106
Val Loss: 1.5193, Val Acc: 0.6523, Val PPL: 5.3494
Epoch 14: Train Loss: 1.8682, Train Acc: 0.5141, Train PPL: 5.4897
Val Loss: 1.5193, Val Acc: 0.6066, Val PPL: 4.5690
Epoch 15: Train Loss: 1.7832, Train Acc: 0.5608, Train PPL: 5.4897
Val Loss: 1.5193, Val Acc: 0.6067, Val PPL: 3.5901
Epoch 15: Train Loss: 1.7802, Train Acc: 0.5098, Train PPL: 5.4897
Val Loss: 1.5193, Val Acc: 0.6066, Val PPL: 3.5903
Epoch 17: Train Loss: 1.6066, Val PPL: 3.7505
Epoch 18: Train Loss: 1.7802, Train Acc: 0.6068, Train PPL: 5.4897
Val Loss: 1.3179, Val Acc: 0.6066, Val PPL: 3.5901
Epoch 12: Train Loss: 1.6903, Tra
```


Training and validation loss showing stable convergence pattern

2- NeuralLM2

Training NeuralLM2...

Epoch 1: Train Loss: 6.8192, Train Acc: 0.8896, Train PPL: 411.2292 Val Loss: 5.4197, Val Acc: 0.1160, Val PPL: 225.8002 Epoch 2: Train Loss: 5.3325, Train Acc: 0.1253, Train PPL: 206.9513 Val Loss: 5.0083, Val Acc: 0.1437, Val PPL: 149.6438 Epoch 3: Train Loss: 4.9842, Train Acc: 0.1451, Train PPL: 146.0894 Val Loss: 4.6503, Val Acc: 0.1626, Val PPL: 104.6151 Epoch 4: Train Loss: 4.6608, Train Acc: 0.1797, Train PPL: 195.0937 Val Loss: 4.2887, Val Acc: 0.1626, Val PPL: 104.6151 Epoch 4: Train Loss: 4.3086, Train Acc: 0.1717, Train PPL: 195.0937 Val Loss: 3.8561, Val Acc: 0.2060, Val PPL: 72.8690 Epoch 5: Train Loss: 4.3086, Train Acc: 0.1717, Train PPL: 74.3380 Val Loss: 3.8561, Val Acc: 0.2060, Val PPL: 47.2810 Epoch 6: Train Loss: 3.9135, Train Acc: 0.2025, Train PPL: 50.8733 Val Loss: 3.4247, Val Acc: 0.3289, Val PPL: 30.7146 Epoch 7: Train Loss: 3.5442, Train Acc: 0.2554, Train PPL: 34.6132 Val Loss: 3.0930, Val Acc: 0.3299, Val PPL: 22.1544 Epoch 8: Train Loss: 3.2719, Train Acc: 0.2554, Train PPL: 26.3610 Val Loss: 2.851, Val Acc: 0.3531, Val PPL: 17.9946 Epoch 9: Train Loss: 3.0713, Train Acc: 0.3297, Train PPL: 21.5601 Val Loss: 2.7224, Val Acc: 0.3834, Val PPL: 15.2175 Epoch 10: Train Loss: 3.0713, Train Acc: 0.3272, Train PPL: 18.4412 Val Loss: 2.5769, Val Acc: 0.4026, Val PPL: 13.1568 Epoch 11: Train Loss: 2.7808, Train Acc: 0.3808, Train PPL: 16.1323 Val Loss: 2.4712, Val Acc: 0.4467, Val PPL: 11.8367 Epoch 12: Train Loss: 2.6639, Train Acc: 0.3887, Train PPL: 14.3527 Val Loss: 2.4712, Val Acc: 0.4467, Val PPL: 19.5633 Epoch 13: Train Loss: 2.5959, Train Acc: 0.4843, Train PPL: 10.571 Val Loss: 2.2487, Val Acc: 0.4040, Val PPL: 18.872 Epoch 13: Train Loss: 2.5959, Train Acc: 0.4838, Train PPL: 10.7571 Val Loss: 2.1671, Val Acc: 0.5409, Val PPL: 18.6946 Epoch 15: Train Loss: 2.2559, Train Acc: 0.4389, Train PPL: 10.7572 Epoch 15: Train Loss: 2.2559, Train Acc: 0.4898, Train PPL: 10.7572 Epoch 15: Train Loss: 2.2559, Train Acc: 0.4899, Val PPL: 8.0946 Epoch 16: Train Loss: 2.2559, Train Acc: 0.4899,

Training and validation loss showing stable convergence pattern

3- NeuralLM3

Training NeuralLM3...

Epoch 1: Train Loss: 5.9176, Train Acc: 0.0907, Train PPL: 371.5123 Val Loss: 5.3614, Val Acc: 0.1217, Val PPL: 213.0332 Epoch 2: Train Loss: 5.1558, Train Acc: 0.1334, Train PPL: 173.4287 Val Loss: 4.7440, Val Acc: 0.1503, Val PPL: 114.8895 Epoch 3: Train Loss: 4.6214, Train Acc: 0.1523, Train PPL: 101.6338 Val Loss: 4.1376, Val Acc: 0.1736, Val PPL: 62.6550 Epoch 4: Train Loss: 4.6214, Train Acc: 0.1715, Train PPL: 101.6338 Val Loss: 3.4501, Val Acc: 0.1736, Val PPL: 62.6550 Epoch 4: Train Loss: 3.3866, Train Acc: 0.1715, Train PPL: 57.0741 Val Loss: 3.4501, Val Acc: 0.2224, Val PPL: 31.6939 Epoch 5: Train Loss: 3.3866, Train Acc: 0.2263, Train PPL: 29.5644 Val Loss: 2.7231, Val Acc: 0.3501, Val PPL: 15.2281 Epoch 6: Train Loss: 2.7757, Train Acc: 0.3251, Train PPL: 10.6500 Val Loss: 2.1885, Val Acc: 0.4557, Val PPL: 8.9219 Epoch 7: Train Loss: 2.3131, Train Acc: 0.4312, Train PPL: 10.1659 Val Loss: 1.6332, Val Acc: 0.5298, Val PPL: 4.7363 Epoch 9: Train Loss: 1.9760, Train Acc: 0.4810, Train PPL: 7.2142 Val Loss: 1.5553, Val Acc: 0.5924, Val PPL: 3.8091 Epoch 9: Train Loss: 1.7127, Train Acc: 0.5403, Train PPL: 5.5438 Val Loss: 1.1568, Val Acc: 0.6576, Val PPL: 3.8091 Epoch 10: Train Loss: 1.4981, Train Acc: 0.5403, Train PPL: 4.4733 Val Loss: 1.1568, Val Acc: 0.6736, Val PPL: 3.1798 Epoch 11: Train Loss: 1.1619, Train Acc: 0.6338, Train PPL: 3.7257 Val Loss: 1.6023, Val Acc: 0.7269, Val PPL: 2.7247 Epoch 12: Train Loss: 1.1619, Train Acc: 0.6338, Train PPL: 3.7257 Val Loss: 0.8849, Val Acc: 0.7579, Val PPL: 2.4228 Epoch 13: Train Loss: 1.0299, Train Acc: 0.6736, Train PPL: 2.8088 Val Loss: 0.5757, Val Acc: 0.8117, Val PPL: 2.4228 Epoch 13: Train Loss: 0.8117, Train Acc: 0.7586, Train PPL: 2.8088 Val Loss: 0.5981, Val Acc: 0.89138, Train Acc: 0.7868, Train PPL: 2.9038 Val Loss: 0.5981, Val Acc: 0.8917, Val PPL: 1.1867 Epoch 15: Train Loss: 0.8017, Train Acc: 0.7869, Train PPL: 2.2038 Val Loss: 0.5981, Val Acc: 0.8917, Val PPL: 1.1867 Epoch 15: Train Loss: 0.8017, Train Acc: 0.7886, Train PPL: 2.9038 Val Loss

Predictions-

1- NeuralLM1-

Input: i felt like earlier this year i was starting to feel emotional that it Predicted next words: was ##s over

Input: i do need constant reminders when i go through lulls in feeling submiss
Predicted next words: ##l i want

Input: i was really feeling crappy even after my awesome Predicted next words: week ##s workout

Input: i finally realise the feeling of being hated and its after effects are Predicted next words: so big i

Input: i am feeling unhappy and weird
Predicted next words: im confiden ##d

2- NeuralLM2

Input: i felt like earlier this year i was starting to feel emotional that it Predicted next words: s be strange

Input: i do need constant reminders when i go through lulls in feeling submiss
Predicted next words: ##r polic trie

Input: i was really feeling crappy even after my awesome
Predicted next words: week ##s workout

Input: i finally realise the feeling of being hated and its after effects are Predicted next words: so big i

Input: i am feeling unhappy and weird
Predicted next words: an confiden ##d

3- Neurall M3

Input: i felt like earlier this year i was starting to feel emotional that it Predicted next words: was all over

Input: i do need constant reminders when i go through lulls in feeling submiss
Predicted next words: ##l and is

Input: i was really feeling crappy even after my awesome Predicted next words: week of workout

Input: i finally realise the feeling of being hated and its after effects are Predicted next words: so big i

Input: i am feeling unhappy and weird
Predicted next words: im confiden ##t

References-

UMass CS685 (Advanced NLP) F20: Implementing a neural language model in PyTorch - UMass CS685 (Advanced NLP) F20: Implementing a neural language model in PyTorch