第6章 MCU应用程序设计

汇编程序设计?还是算了

C程序设计?不用重复了吧

编程?

也许---是表达思想 把你的想法表达给机器, 让机器按你的意愿工作, 达到你希望达到的目的

> 不编程可以吗? 可以,动动手指头,点点屏幕, 按按键盘、鼠标。 机器也在为我们服务

从一个实例观察

没有软件,这一切都是没有意义的材料

1 一种开发工具

Features

- Intuitive STM32 microcontroller and microprocessor selection
- Rich easy-to-use graphical user interface allowing the configuration of:
 - Pinout with automatic conflict resolution
 - Peripherals and middleware functional modes with dynamic validation of parameter constraints for Arm[®] Cortex[®]-M core
 - Clock tree with dynamic validation of the configuration
 - Power sequence with estimated consumption results
- Generation of initialization C code project, compliant with IAR Embedded Workbench[®], MDK-ARM and STM32CubeIDE (GCC compilers) for Arm[®] Cortex[®]-M core
- Generation of a partial Linux[®] Device Tree for Arm[®] Cortex[®]-A core (STM32 microprocessors)
- Development of enhanced STM32Cube Expansion Packages thanks to STM32PackCreator
- Integration of STM32Cube Expansion packages into the project
- Availability as standalone software running on Windows[®], Linux[®] and macOS[®] (macOS[®] is a trademark of Apple Inc. registered in the U.S. and other countries.) operating systems and 64-bit Java Runtime environment

一些内容

时钟相关

一些设定

PZ_D00.ioc - Project Manager STM32F103ZETx Home Pinout & Configuration **Clock Configuration** Project Settings Project Name PZ D00 Project Location D:\STM Application Structure Basic □ Do not generate the main() Toolchain Folder Location D:\STM\PZ D00\ Code Generator Toolchain / IDE Min Version MDK-ARM V5 Generate Under Root Linker Settings Minimum Heap Size 0x200 Code Generation Minimum Stack Size 0x400 Advanced Settings The Code is successfully generated under D:/STM/PZ D00 Mcu and Firmware Package Mcu Reference STM32F103ZETx Firmware Package Name and Version STM32Cube FW F1 V1.8.3 ✓ Use latest available version ▼ Use Default Firmware Location C:/Users/lenovov/STM32Cube/Repository/STM32Cube FW F1 V1.8.3 Browse

3. Pins Configuration

设计 报告

示意

Pin Number LQFP144	Pin Name (function after reset)	Pin Type	Alternate Function(s)	Label
1	PE2 *	I/O	GPIO_Input	
2	PE3 *	I/O	GPIO_Input	
3	PE4 *	I/O	GPIO_Input	
6	VBAT	Power		
16	VSS	Power		
17	VDD	Power		
25	NRST	Reset		
26	PC0 *	I/O	GPIO_Output	
27	PC1 *	I/O	GPIO_Output	
28	PC2 *	I/O	GPIO_Output	
29	PC3 *	I/O	GPIO_Output	
30	VSSA	Power		
31	VREF-	Power		
32	VREF+	Power		
33	VDDA	Power		
34	PA0-WKUP *	1/0	GPIO_Input	
35	PA1	I/O	ADC1_IN1	
36	PA2	I/O	ADC1_IN2	
38	VSS	Power		
39	VDD	Power		
44	PC4 *	I/O	GPIO_Output	
45	PC5 *	I/O	GPIO_Output	
51	VSS	Power		
52	VDD	Power		
61	VSS	Power		
62	VDD	Power		
71	VSS	Power		
72	VDD	Power		
83	VSS	Power		
84	VDD	Power		
94	VSS	Power		
95	VDD	Power		

7. IPs and Middleware Configuration

7.1. ADC1

mode: IN1

mode: IN2

7.1.1. Parameter Settings:

ADCs_Common_Settings:

Mode Independent mode

ADC_Settings:

Data Alignment Right alignment

Scan Conversion Mode Enabled
Continuous Conversion Mode Disabled
Discontinuous Conversion Mode Disabled

ADC_Regular_ConversionMode:

Enable Regular Conversions Enable

Number Of Conversion 2 *

External Trigger Conversion Source Timer 3 Trigger Out event *

Rank 1

Channel 1

Sampling Time 13.5 Cycles *

Rank 2

Channel 2 *

Sampling Time 13.5 Cycles *

ADC_Injected_ConversionMode:

Enable Injected Conversions Disable

WatchDog:

Enable Analog WatchDog Mode false

生成的工程与代码 ^{示意}


```
static void MX GPIO Init(void)
                                                                                          * @brief USART1 Initialization Function
                                                     生成的工程与代码
                                                                                   317
                                                                                          * @param None
370 ⊟ {
                                                                                   318
                                                                                          * @retval None
371
       GPIO InitTypeDef GPIO InitStruct = {0};
                                                           示意
                                                                                   319 4/
372
                                                                                        static void MX USART1 UART Init(void)
373
       /* GPIO Ports Clock Enable */
                                                                                   321 ⊟ {
374
         HAL RCC GPIOE CLK ENABLE();
                                                                                   322
375
         HAL RCC GPIOC CLK ENABLE();
                                                                                   323
                                                                                          /* USER CODE BEGIN USART1 Init 0 */
376
         HAL RCC GPIOA CLK ENABLE();
                                                                                   324
377
        HAL RCC GPIOB CLK ENABLE();
                                                                                   325
                                                                                          /* USER CODE END USART1 Init 0 */
378
                                                                                   326
379
                                                                                   327
       /*Configure GPIO pin Output Level */
                                                                                          /* USER CODE BEGIN USART1 Init 1 */
                                                                                   328
380
       HAL GPIO WritePin(GPIOC, GPIO PIN 0|GPIO PIN 1|GPIO PIN 2|GPIO PIN
                                                                                   329
                                                                                          /* USER CODE END USART1 Init 1 */
381
                                |GPIO PIN 4|GPIO PIN 5|GPIO PIN 6, GPIO PIN
                                                                                   330
                                                                                          huart1.Instance = USART1;
382
                                                                                   331
                                                                                          huart1.Init.BaudRate = 9600;
383
       /*Configure GPIO pin Output Level */
                                                                                   332
                                                                                          huart1.Init.WordLength = UART WORDLENGTH 8B;
       HAL GPIO WritePin(GPIOB, GPIO PIN 5, GPIO PIN SET);
384
                                                                                   333
                                                                                          huart1.Init.StopBits = UART STOPBITS 1;
385
                                                                                   334
                                                                                          huart1.Init.Parity = UART PARITY NONE;
386
       /*Configure GPIO pins : PE2 PE3 PE4 */
                                                                                   335
                                                                                          huart1.Init.Mode = UART MODE TX RX;
387
       GPIO InitStruct.Pin = GPIO PIN 2|GPIO PIN_3|GPIO_PIN_4;
                                                                                   336
                                                                                          huart1.Init.HwFlowCtl = UART HWCONTROL NONE;
388
       GPIO InitStruct.Mode = GPIO MODE INPUT;
                                                                                   337
                                                                                          huart1.Init.OverSampling = UART OVERSAMPLING 16;
389
       GPIO InitStruct.Pull = GPIO PULLUP;
                                                                                   338
                                                                                          if (HAL UART Init(&huart1) != HAL OK)
390
                                                                                   339 🖨
       HAL GPIO Init(GPIOE, &GPIO InitStruct);
                                                                                   340
                                                                                            Error Handler();
391
                                                                                   341
392 ⊟
       /*Configure GPIO pins : PC0 PC1 PC2 PC3
                                                                                   342
                                                                                          /* USER CODE BEGIN USART1 Init 2 */
393
                                 PC4 PC5 PC6 */
                                                                                   343
394
       GPIO InitStruct.Pin = GPIO PIN 0|GPIO PIN_1|GPIO_PIN_2|GPIO_PIN_3
                                                                                   344
                                                                                          /* USER CODE END USART1 Init 2 */
395
                                 |GPIO PIN 4|GPIO PIN 5|GPIO PIN 6;
                                                                                   345
396
       GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
                                                                                   346
397
       GPIO InitStruct.Pull = GPIO NOPULL;
                                                                                   347
398
       GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
                                                                                   348 ⊟/**
399
       HAL GPIO Init(GPIOC, &GPIO InitStruct);
                                                                                   349
                                                                                          * Enable DMA controller clock
                                                                                   350 \ */
400
                                                                                   351 static void MX DMA Init(void)
401
       /*Configure GPIO pin : PAO */
                                                                                   352 □ {
402
       GPIO InitStruct.Pin = GPIO PIN 0;
                                                                                   353
       GPIO InitStruct.Mode = GPIO MODE INPUT;
403
                                                                                   354
                                                                                          /* DMA controller clock enable */
404
       GPIO InitStruct.Pull = GPIO PULLDOWN;
                                                                                   355
                                                                                          HAL RCC DMA1 CLK ENABLE();
405
       HAL GPIO Init(GPIOA, &GPIO InitStruct);
```

生成的时钟相关代码 示意


```
void SystemClock Config(void)
176 白.{.
177
       RCC OscInitTypeDef RCC OscInitStruct = {0};
178
       RCC ClkInitTypeDef RCC ClkInitStruct = {0};
179
       RCC PeriphCLKInitTypeDef PeriphClkInit = {0};
180
181 📥
       /** Initializes the CPU, AHB and APB busses clocks
182
183
       RCC OscInitStruct.OscillatorType = RCC OSCILLATORTYPE HSI|RCC OSCILLATORTYPE LSI;
184
       RCC OscInitStruct.HSIState = RCC HSI ON;
185
       RCC OscInitStruct.HSICalibrationValue = RCC HSICALIBRATION_DEFAULT;
186
       RCC OscInitStruct.LSIState = RCC LSI ON;
187
       RCC OscInitStruct.PLL.PLLState = RCC PLL ON;
188
       RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSI DIV2;
189
       RCC OscInitStruct.PLL.PLLMUL = RCC PLL MUL16;
190
       if (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
191 ់
192
         Error Handler();
193
194
       /** Initializes the CPU, AHB and APB busses clocks
195
196
       RCC ClkInitStruct.ClockType = RCC CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
197
                                    |RCC CLOCKTYPE PCLK1|RCC CLOCKTYPE PCLK2;
198
       RCC ClkInitStruct.SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;
       RCC ClkInitStruct.AHBCLKDivider = RCC SYSCLK_DIV1;
199
200
       RCC ClkInitStruct.APB1CLKDivider = RCC HCLK DIV2;
201
       RCC ClkInitStruct.APB2CLKDivider = RCC HCLK DIV1;
202
203
       if (HAL RCC ClockConfig(&RCC ClkInitStruct, FLASH LATENCY 2) != HAL OK)
204 ់
205
         Error Handler();
206
207
       PeriphClkInit.PeriphClockSelection = RCC PERIPHCLK RTC|RCC PERIPHCLK ADC;
208
       PeriphClkInit.RTCClockSelection = RCC RTCCLKSOURCE LSI;
209
       PeriphClkInit.AdcClockSelection = RCC ADCPCLK2 DIV8;
210
       if (HAL RCCEx PeriphCLKConfig(&PeriphClkInit) != HAL OK)
211 🖨
212
         Error Handler();
213
```

整理、小结

CubeMX 是可视化交互,可生成STM32 MCU工程文件及底层硬件相关代码的一种工具软件,为进行MCU应用的软、硬件开发、设计提供了良好支持。

其HAL思想值得关注

MCU 因包括较多硬件资源,对其使用往往需要参考技术资料,或利用库文件、或例程等办法。

在不同应用问题中,目的、要求各异、变化多样。对开发使用者有一定 负担、困难,且容易出错。

```
#include "TIME base.h"
void TIME NVIC Configuration(void)//如果系统会产生多种中断,那么就存在中断响应的优先级
   NVIC_InitTypeDef NVIC_InitStructure;
   NVIC PriorityGroupConfig(NVIC PriorityGroup 2);
                                                       //设置优先级分组
   NVIC_InitStructure.NVIC_IRQChannel = TIM6_IRQn;
                                                       //指定IRQ通道
   NVIC InitStructure.NVIC IRQChannelPreemptionPriority = 0; //指定先占优先级
   NVIC InitStructure.NVIC IRQChannelSubPriority = 3;
                                                      //从优先级
   NVIC InitStructure.NVIC IRQChannelCmd = ENABLE;
                                                      //定义的IRQ是被使能还是失能
   NVIC Init(&NVIC InitStructure);
void TIME_Configuration(void)//配置TIM6
   TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
   RCC APB1PeriphClockCmd(RCC APB1Periph TIM6, ENABLE);
   TIM TimeBaseStructure.TIM Period = 5000; //设置了在下一个更新事件装入活动的自动重装载寄存器周期的
   TIM TimeBaseStructure.TIM Prescaler =(7200-1); //设置了用来作为 TIMx 时钟频率除数的预分频值
   TIM TimeBaseInit(TIM6, &TIM TimeBaseStructure);
   TIM_ITConfig(TIM6,TIM_IT_Update|TIM_IT_Trigger,ENABLE);//使能或者失能 TIM 的中断,详见附录图1
   TIM Cmd(TIM6, ENABLE);
```

2 一个汇编程序的观察

```
startup_stm32f103xe.s
33 Stack Size
                     EQU
                              0x400
34
                     AREA
                             STACK, NOINIT, READWRITE, ALIGN=3
36
37
38
   Stack Mem
                     SPACE
                             Stack Size
    initial sp
   ; <h> Heap Configuration
   ; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
41 ; </h>
                    EQU
                            0x200
   Heap Size
                     AREA
                             HEAP, NOINIT, READWRITE, ALIGN=3
    heap base
    Heap Mem
                     SPACE
                             Heap Size
48
49
50
51
52
53
    heap limit
                     PRESERVE8
                     THUMB
    ; Vector Table Mapped to Address 0 at Reset
55
56
57
58
59
                     AREA
                             RESET, DATA, READONLY
                     EXPORT
                             Vectors
                     EXPORT
                             Vectors End
                             Vectors Size
                     EXPORT
60
61
62
63
64
65
66
      Vectors
                     DCD
                              initial sp
                                                          ; Top of Stack
                             Reset Handler
                                                          ; Reset Handler
                     DCD
                             NMI Handler
                                                          ; NMI Handler
                     DCD
                              HardFault Handler
                     DCD
                                                          ; Hard Fault Handler
                             MemManage Handler
                                                          ; MPU Fault Handler
                     DCD
                             BusFault Handler
                                                          ; Bus Fault Handler
                     DCD
                             UsageFault Handler
                                                          ; Usage Fault Handler
                     DCD
```

```
ENDP
               ALIGN
; User Stack and Heap initialization
                IF
                        :DEF: MICROLIB
                EXPORT
                        initial sp
                        heap base
                EXPORT
                        heap limit
                EXPORT
                ELSE
                        use two region memory
                IMPORT
                EXPORT user_initial_stackheap
 user initial stackheap
                        R0, = Heap Mem
                LDR
                        R1, = (Stack Mem + Stack Size)
                        R2, = (Heap Mem + Heap_Size)
                LDR
                        R3, = Stack Mem
                BX
                        LR
                ALIGN
                ENDIF
                END
```

伪指令

- 在ARM汇编语言程序中,有一些特殊指令助记符,这些助记符与指令系统助记符不同,没有相对应的操作码。这些特殊指令助记符称为伪操作标识符,它们所完成的操作称为伪操作。伪操作是为了完成汇编程序做各种准备工作的,仅在汇编过程中起作用,一旦汇编结束,伪操作的使命就完成。
 - 伪操作主要有符号定义伪操作、数据定义伪操作、汇编控制伪操作及其杂项伪操作等。

数据定义伪操作

用于为特定的数据分配存储单元,同时可完成已分配存储单元的初始化。常用的如下:

- DCB分配连续的字节存储单元并用指定的数据初始化
- DCW (DCWU) 分配连续的半字存储单元并用指定数据初始化
- DCD (DCDU) 分配连续的字存储单元并用指定数据初始化
- DCFD (DCFDU) 为双精度浮点数分配连续字存储单元并用指定数据初始化
- DCFS (DCFSU) 为单精度浮点数分配连续字存储单元并用指定数据初始化
- DCQ (DCQU) 分配以8字节为单位的连续存储单元并用指定数据初始化
- SPACE分配连续的存储单元
- MAP定义一个结构化的内存表首地址
- FIELD定义一个结构化的内存表的数据域

60	Vectors	DCD	initial_sp	; Top of Stack
61		DCD	Reset_Handler	; Reset Handler
62		DCD	NMI Handler	; NMI Handler
63		DCD	HardFault Handler	; Hard Fault Handler
64		DCD	MemManage Handler	; MPU Fault Handler
65		DCD	BusFault Handler	; Bus Fault Handler
66		DCD	UsageFault Handler	; Usage Fault Handler

杂项伪操作

- AREA用于定义一个代码段或数据段。
- ALIGN用于使程序当前位置满足一定的对齐方式。
- ENTRY用于指定程序入口点。
- END用于指示源程序结束。
- EQU用于定义字符名称。
- EXPORT (或GLOBAL) 用于声明符号可以被其他文件引用。
- IMPORT用于通知编译器当前符号不在本文件中。
- (10) GET (或INCLUDE) 用于将一个文件包含到当前源文件。
- (11) INCBIN用于将一个文件包含到当前源文件。

```
0x400
Stack Size
                EOU
                AREA
                        STACK, NOINIT, READWRITE, ALIGN=3
                        Stack Size
Stack Mem
                SPACE
 initial sp
; <h> Heap Configuration
   <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap Size
                       0x200
               EQU
                AREA
                        HEAP, NOINIT, READWRITE, ALIGN=3
 heap base
Heap Mem
                SPACE
                        Heap Size
 heap limit
                PRESERVE8
                THUMB
; Vector Table Mapped to Address 0 at Reset
                AREA
                        RESET, DATA, READONLY
                EXPORT
                          Vectors
                          Vectors End
                EXPORT
                         Vectors Size
                EXPORT
```

汇编语言中的符号

符号可代替地址(addresses)、变量(variables)和常量(constants)等,以增加程序的灵活性和可读性。

- •符号区分大小写, 同名的大、小写符号会被编译器认为是两个不同的符号。
- •符号在其作用范围内必须惟一。
- •自定义的符号名不能与系统的保留字相同。
- •符号名不应与指令或伪指令同名。
- •符号通常不能以数字开头。

汇编语言的程序格式(参考前图)

- ► 在ARM汇编语言程序中以程序段为单位组织代码。段是相对独立的指令或数据序列,具有特定的名称。
- > 可执行映像文件通常由以下几部分构成。
 - 一个或多个代码段,代码段的属性为只读。
 - 零个或多个数据段,数据段的属性为可读写。数据段可是被初始化的数据段或没有被初始化的数据段。
- ▶ 链接器根据系统默认或用户设定的规则,将各个段安排在存储器中的相应位置。

汇编程序示例

```
C语言程序,该程序实现了著名的
Euclid最大公约数算法。
int gcd(int a, int b)
   while (a != b)
     if (a > b)
         a = a - b;
     else
         b = b - a:
   return a;
```

```
用ARM汇编语言重写这个例子,
如下所示【程序1】
gcd CMP
         r0, r1
    BEQ
         end
   BLT
         less
   SUB
         r0, r0, r1
          gcd
less
   SUB
         r1, r1, r0
    В
        gcd
End
```

```
充分地利用条件执行修改左面的例子,得到【程序2】。

gcd

CMP rO, r1
SUBGT rO, rO, r1
SUBLT r1, r1, rO
BNE gcd
```

【程序1】仅使用了分支指令,【程序2】充分利用了ARM指令条件执行的特点,仅使用了4条指令就完成了全部算法。这对提供程序的代码密度和执行速度十分有帮助。分支指令十分影响处理器的速度。每次执行分支指令,处理器都会排空流水线,重新装载指令。

C程序编译 实际代码观察

3个分支语句

```
0x080021CC E003 B 0x080021D6
   77:
         \{ if (a > b) a = a - b; \}
0x080021CE DD01 BLE 0x080021D4
0x080021D0 1A40 SUBS r0,r0,r1
0x080021D2 E000 B 0x080021D6
   78:
                 else b = b - a;
   79: }
   80: return a;
0x080021D4 1A09
               SUBS r1,r1,r0
   76: while (a != b)
   77: { if (a > b)
   78: else
   79: }
   80: return a;
0x080021D6 4288
               CMP r0,r1
0x080021D8 D1F9 BNE 0x080021CE
   81: }
   82:
   83: /* USER CODE END 0 */
   84:
   85: /**
  startup_stm32f103xe.s main.c core_cm3.h
   73 /* USER CODE BEGIN 0 */
   74 int gcd(int a, int b)
   75 □ {
    76
         while (a != b)
    77 白
         \{ if (a > b) a = a - b; \}
    78
            else b = b - a;
    79
    80
         return a;
```

3 MCU 软件开发工具

Keil

(更多使用内容 需自行学习了解)

main.	c startup_stm32f103xe.s stm32f1xx.h	000.map			
1210	microlib exit	- Undefine	d Weak Referenc	:e	
1211	Vectors Size	0x00000130	Number	0	startup_stm32f103xe.o ABSOLUTE
1212	Vectors	0x0800000	Data	4	startup_stm32f103xe.o(RESET)
1213		0x08000130	Data	0	startup stm32f103xe.o(RESET)
1214	IIIQIII	0x08000131	Thumb Code	0	entry.o(.ARM.Collect\$\$\$\$00000000)
1215		0x08000131	Thumb Code	0	entry2.o(.ARM.Collect\$\$\$\$00000001)
1216	main gas++onload	0x08000135	Thumb Code	0	entry5.o(.ARM.Collect\$\$\$\$00000004)
1217	main after scatterload (map)	0x08000139	Thumb Code	0	entry5.o(.ARM.Collect\$\$\$\$00000004)
1218	main clock	0x08000139	Thumb Code	0	entry7b.o(.ARM.Collect\$\$\$\$00000008)
1219	main cpp init	0x08000139	Thumb Code	0	entry8b.o(.ARM.Collect\$\$\$\$0000000A)
1220	main_init	0x08000139	Thumb Code	0	entry9a.o(.ARM.Collect\$\$\$\$0000000B)
1221	rt final cpp	0x08000141	Thumb Code	0	entry10a.o(.ARM.Collect\$\$\$\$0000000D)
1222	rt final exit	0x08000141	Thumb Code	0	entry11a.o(.ARM.Collect\$\$\$\$0000000F)
1223	Reset_Handler	0x08000145	Thumb Code	8	startup_stm32f103xe.o(.text)
1224	ADC1_2_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1225	ADC3_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1226	CAN1_RX1_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1227	CAN1_SCE_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1228	DMA1_Channel2_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1229	DMA1_Channel3_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1230	DMA1_Channel4_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1231	DMA1_Channel5_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1232	<pre>DMA1_Channel6_IRQHandler</pre>	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1233	DMA1_Channel7_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1234	DMA2_Channel1_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1235	DMA2_Channel2_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1236	DMA2_Channel3_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1237	DMA2_Channel4_5_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1238	EXTIO_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1239	EXTI15_10_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1240	EXTI1_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1241	EXTI2_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1242	EXTI3_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1243	EXTI4_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
1244	EXTI9_5_IRQHandler	0x0800015f	Thumb Code	0	startup_stm32f103xe.o(.text)
12/15	FTACH TDOHandler		Thumh Code		etartun etm27f102va a/ tavt1

3 编译的结果文件 (map)

stm32f1	.xx_it.c main.c startup_stm32f103xe.s	PZ_D00.map			
1364	TIM3 IRQHandler	0x080022e9	Thumb Code	6	stm32f1xx it.o(i.TIM3 IRQHandler)
1365	TIM Base SetConfig	0x080022f5	Thumb Code	120	stm32f1xx hal tim.o(i.TIM Base SetConfig)
1366	TIM ETR SetConfig	0x08002381	Thumb Code	20	stm32f1xx hal tim.o(i.TIM ETR SetConfig)
1367	TIM OC2 SetConfig	0x08002405	Thumb Code	98	stm32f1xx hal tim.o(i.TIM OC2 SetConfig)
1368	USART1_IRQHandler	0x08002745	Thumb Code	6	stm32f1xx_it.o(i.USART1_IRQHandler)
1369	UsageFault_Handler	0x08002751	Thumb Code	2	stm32f1xx_it.o(i.UsageFault_Handler)
1370	_scatterload_copy	0x08002773	Thumb Code	14	handlers.o(iscatterload_copy)
1371	scatterload_null	0x08002781	Thumb Code	2	handlers.o(iscatterload_null)
1372	scatterload_zeroinit	0x08002783	Thumb Code	14	handlers.o(iscatterload_zeroinit)
1373	main	0x08002791	Thumb Code	282	main.o(i.main)
1374	LEDcd	0x080028d0	Data	10	<pre>main.o(.constdata)</pre>
1375	AHBPrescTable	0x080028da	Data	16	<pre>system_stm32f1xx.o(.constdata)</pre>
1376	APBPrescTable	0x080028ea	Data	8	<pre>system_stm32f1xx.o(.constdata)</pre>
1377	Region\$\$Table\$\$Base	0x080028f4	Number	0	anon\$\$obj.o(Region\$\$Table)
1378	Region\$\$Table\$\$Limit	0x08002914	Number	0	anon\$\$obj.o(Region\$\$Table)
1379	i	0x20000000	Data	2	main.o(.data)
1380	Х	0x20000002	Data	2	main.o(.data)
1381	epmd	0x2000004	Data	4	main.o(.data)
1382	uwTickFreq	0x20000008	Data	1	stm32f1xx_hal.o(.data)
1383	uwTickPrio	0x200000c	Data	4	stm32f1xx_hal.o(.data)
1384	uwTick	0x20000010	Data	4	stm32f1xx_hal.o(.data)
1385	SystemCoreClock	0x20000014	Data	4	system_stm32f1xx.o(.data)
1386	hadc1	0x20000018	Data	48	main.o(.bss)
1387	hrtc	0x20000048	Data	20	main.o(.bss)
1388	htim3	0x2000005c	Data	72	main.o(.bss)
1389	huart1	0x200000a4	Data	64	main.o(.bss)
1390	md	0x200000e4	Data	104	main.o(.bss)
1391	hdma_adc1	0x2000014c	Data	68	main.o(.bss)
1392	initial_sp	0x20000590	Data	0	startup_stm32f103xe.o(STACK)
1393			I		_

3 编译的结果文件 (map)

1568							
1569	Code (i	inc. data)	RO Data	RW Data	ZI Data	Debug	Object Name
1570							
1571	1042	88	10	8	376	517820	main.o
1572	36	8	304	0	1024	764	<u></u>
1573	128	24	0	12	0	5633	stm32f1xx hal.o
1574	1114	60	0	0	0	8190	stm32f1xx_hal_adc.o
1575	200	6	0	0	0	1366	stm32f1xx_hal_adc_ex.o
1576	198	14	0	0	0	28671	stm32f1xx_hal_cortex.o
1577	1166	52	0	0	0	4222	stm32f1xx hal dma.o
1578	506	42	0	0	0	2744	stm32f1xx hal gpio.o
1579	540	80	0	0	0	3870	stm32f1xx hal msp.o
1580	12	4	0	0	0	475	stm32f1xx hal pwr.o
1581	1276	100	0	0	0	5112	stm32f1xx hal rcc.o
1582	444	44	0	0	0	2533	stm32f1xx hal rcc ex.o
1583	322	6	0	0	0	3540	stm32f1xx hal rtc.o
1584	1704	76	0	0	0	14962	stm32f1xx hal tim.o
1585	128	20	0	0	0	2301	stm32f1xx hal tim ex.o
1586	1174	10	0	0	0	8543	stm32f1xx hal uart.o
1587	220	38	0	2	0	4775	stm32f1xx it.o
1588	2	0	24	4	0	979	system stm32f1xx.o
1589							_
1590							
1591	10238	672	372	28	1404	616500	Object Totals
1592	0	0	32	0	0	0	(incl. Generated)
1593	26	0	2	2	4	0	(incl. Padding)
1594							
1595							
1596							
1597	Code (i	inc. data)	RO Data	RW Data	ZI Data	Debug	Library Member Name
1598							
1599	0	0	0	0	0	0	entry.o
1600	0	0	0	0	0	0	entry10a.o
1601	0	0	0	0	0	0	entrylla.o
1602	8	4	0	0	0	0	entry2.o
1603	4	0	0	0	0	0	entry5.o
1604	0	0	0	0	0	0	entry7b.o
1605	0	0	0	0	0	0	_
1606	Ω	/	0	0	0	Λ	entrua o

3 编译的结果文件 (Hex)

4 MCU 软件开发工具调试(Keil) 观察存贮器 (Memory)------数据是重要的观察内容

5 微处理器程序设计参考代码

```
startup_stm32f103xe.s
                 main.c
143
144
     /* Infinite loop */
     /* USER CODE BEGIN WHILE */
145
146
      while (1)
147 白
       /* USER CODE END WHILE 该部分内容可自由修改*/
148
149
          if(!(GPIOA->IDR&1)) i++; else
                                                             //T1 5: 有UP键按下(PA0 is 1)
150
         \{ i+=9;
                                                             //T1 1: LED显示(PC7-0)
151
         GPIOC->BSRR|=LEDcd[i%=10]&0xff;
       Delay(500+i*23); GPIOC->BRR|=0xff;
                                                             //T1 2: 延迟, 0.5s+学号个位数*0.1s
152
153
                                                             //T1 3: 填充学号各位至sBUF[0--x]
154
          md.sBUF[i]=i*3+x;
155
          if(i==0) { md.sBUF[14]=md.sBUF[15]; md.sBUF[15]=0;}
                                                             //T1 4: 累加sBUF[x], 最终累加和存至sBUF[:
156
          md.sBUF[15]+=md.sBUF[i];
157
    //自行扩展Begin
158
159
160
161
    //自行扩展END
162
```

微处理器程序设计参考代码

```
startup_stm32f103xe.s | main.c
74 const char LEDcd[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
   short i=0, x=3, *epmd;
76 void Delay(unsigned tDly)
77 ⊟{ short tDi;
78
      while(tDly--)
79 \(\delta\) \(\text{tDi=4000}\);
80
         while (tDi--)
    { if(!(md.mDMA[6]&0x10)) continue;
                 md.mDMA[6] \&= \sim 0 \times 10; md.mDMA[5] ++;
83
                                                        //can do some works, but no stay here more time
84
   //自行扩展Begin.....u can do something
86
         md.mRTC=RTC->CNTL;
87
88
   //自行扩展END .....u can do something
90
     };
91
   //-----?????------
   void HAL UART RxCpltCallback(UART HandleTypeDef *huart)
94 = \{ \text{md.mDMA}[2] ++; \text{md.mDMA}[2] &= 0x7; \}
95
      md.UART rBUF[md.mDMA[2]]=md.mDMA[3];
      HAL UART Receive IT(&huart1, (unsigned char *)&md.mDMA[3],1); // USART1->DR=md.mDMA[3]+1;
96
97
      md.mDMA[4]=md.mDMA[3]+1;
98
      while(HAL UART Transmit(&huart1, (unsigned char *) &md.mDMA[4],1,5000)!=HAL OK);
99 L}
```

微处理器程序设计参考代码-----定时器TIM3中断服务(ISR)程序

```
startup stm32f103xe.s main.c stm32f1xx it.c
217
      * @brief This function handles TIM3 global interrupt.
218 L
      * /
    extern short *epmd;
220 void TIM3 IRQHandler (void)
221 ⊟ {
222
      /* USER CODE BEGIN TIM3 IRQn 0 该部分内容可自由修改 */
    static unsigned short LEDpwm;
223
224
       LEDpwm++; LEDpwm%=9800;
225
       if(LEDpwm<4900) TIM3->CCR2= LEDpwm/2+88;
226
       else
                  TIM3 - CCR2 = 4900 - LEDpwm/2 + 88;
227
       if (LEDpwm%10==1) { epmd[47]++; epmd[46]|=0x000f;}
228
       if (LEDpwm%100==0)
                                          epmd[46] = 0x00f0;
                                                                       //Set a Click Flag
229
230
       if(!(GPIOE->IDR&0x08))
                                                                       //PE2(down Key) push
231
       { if (LEDpwm%8>3) GPIOB->BSRR|=1<<5; else GPIOB->BRR|=1<<5; } //Beep
    //ISR 自行扩展Begin
232
233
234
235
    //ISR 自行扩展END
236
237
       /* USER CODE END TIM3 IRQn 0 */
      HAL TIM IRQHandler(&htim3);
238
239
      /* USER CODE BEGIN TIM3 IRQn 1 */
240
241
      /* USER CODE END TIM3 IRQn 1 */
242
```

微处理器程序设计参考代码-----定时器TIM3中断服务(ISR)程序

代码变动比较

```
217 · · * · @brief · This · function · handles · TIM3 · global · interrupt . ↩
     218 - - * / ←
 +219 extern short *epmd;
     220 void ·TIM3 IRQHandler (void) ←
     221 {←
 +222 ··/*·USER·CODE·BEGIN·TIM3 IRQn·0··该部分内容可自由修改·*/↓
 +223 static unsigned short LEDpwm; ←
+224 —→LEDpwm++; —→LEDpwm%=9800;
+225 ——→if (LEDpwm<4900)→TIM3->CCR2=→——→LEDpwm/2+88;
+226 →else → → → → TIM3->CCR2=4900- → LEDpwm/2+88;
 +227 \longrightarrow if(LEDpwm%10==1) \longrightarrow {\longrightarrow epmd[47]++;} \longrightarrow epmd[46] |=0x000f;} 
 +228 \longrightarrow if(LEDpwm%100==0) \longrightarrow \longrightarrow \longrightarrow epmd[46]|=0x00f0;
     229 ←
 +230 \longrightarrow if(!(GPIOE->IDR&0x08)) \longrightarrow \longrightarrow \longrightarrow \longrightarrow
 +231 \longrightarrow \{ \longrightarrow \text{if (LEDpwm}\$8>3) \longrightarrow \text{GPIOB} \rightarrow \text{BSRR} | =1 <<5; \longrightarrow \text{GPIOB} \rightarrow \text{BRR} | =1 <<5; \longrightarrow \} \longrightarrow //\text{Beeper of the substitution of the substitut
♣232 <mark>//ISR-自行扩展Begin</mark>
     233 -----
     234 ----
    235 -----
◆236 //ISR·自行扩展END√
+237 → /* ·USER · CODE · END · TIM3 IRQn · 0 · * / ←
    238 - HAL TIM IRQHandler(&htim3);
    239 · · /* · USER · CODE · BEGIN · TIM3 IRQn · 1 · * / \
```