Predição do Estado de uma Smart Grid

João Vinicius Farah Colombini 159501 Victor Jorge Carvalho Chaves 156740

11/07/2024

Sumário

1	Intr	odução e Motivação	2
2	Con 2.1 2.2	ceitos Fundamentais Smart Grid	2 2 2
3	Trabalhos Relacionados		3
	3.1	Harmonized and Open Energy Dataset for Modeling a Highly Renewable Brazilian Power System	3
	3.2	Machine Learning Approaches To Predict The Stability of Smart Grid	3
	3.3	A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy grids	3
4	Objetivo		3
5	Metodologia Experimental		4
	5.1	Tecnologias e Bibliotecas	4
	5.2	Etapas do Desenvolvimento	4
6	Entregáveis do Projeto		4
7	Referências Bibliográficas		5

1 Introdução e Motivação

Redes elétricas são responsáveis por realizar a geração, transmissão e distribuição de energia em um território e são fundamentais para o funcionamento da sociedade.

E conforme o passar dos anos, com o crescimento da sociedade, há o aumento no consumo de energia elétrica. Além disso, com as questões climáticas em jogo e a busca por mais fontes de energia limpa, há a entrada de novos elementos nas redes elétricas, como painéis solares, aerogeradores, etc. Que aumentam a complexidade das redes.

E por fim, ocorreu vários casos no mundo de blackouts, que foram causados por mal funcionamentos da rede, ataques cibernéticos, falta de manutenção, etc.

E com crescimento das redes elétricas para atender a situação do mundo, emergiu o conceito de Smart Grid (Rede Elétrica Inteligente), redes elétricas que implementam múltiplas tecnologias para lidar com os desafios citados acima.

E dentre umas das tecnologias aplicadas em Smart Grids, é a inteligencia artificial, que pode resolver desafios de forecasting, detecção de ataques, e problemas de otimização.

2 Conceitos Fundamentais

2.1 Smart Grid

Sistema de energia elétrica que se utiliza da tecnologia da informação para fazer com que o sistema seja mais eficiente (econômica e energeticamente), confiável e sustentável.

A definição de redes elétricas inteligentes ainda não está completamente consolidada, mas nesse sistema devem constar os seguintes atributos

- Sistemas de transmissão e distribuição transparentes e controláveis;
- Fontes de energia renovável, geração distribuída e armazenamento de energia nos dois lados do medidor;
- Capacidade para resposta à demanda e controle de demanda.

2.2 PyPSA: Python for Power System Analysis

PyPSA é uma biblioteca de código aberto para simular e otimizar sistemas modernos de energia e energia que incluem recursos como geradores convencionais com compromisso de unidade, geração eólica e solar variável, unidades de armazenamento, acoplamento a outros setores de energia e redes mistas de corrente alternada e contínua.

3 Trabalhos Relacionados

3.1 Harmonized and Open Energy Dataset for Modeling a Highly Renewable Brazilian Power System

Nesse trabalho é desenvolvido um conjunto de dados para análise de cenários com modelos como o PyPSA. Esse conjunto inclui dados de séries temporais, dados geoespaciais e dados tabulares sobre usinas e demandas de energia. Isso facilita estudos adicionais focados na descarbonização do sistema energético brasileiro, mas pode ser auxiliar para outros estudo também.

3.2 Machine Learning Approaches To Predict The Stability of Smart Grid

Este estudo propõe um modelo de aprendizado de máquina para identificar a estabilidade da rede inteligente de forma mais eficiente.

3.3 A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy grids

É um banco de dados gerado a partir de dados reais, e utiliza de séries temporais para isso. O processo pode ser descrito em três partes, a primeira é a coleta e geração de dados de carga e energia renovável, a segunda é Energia, voltagem e geração de dados e portanto a ultima é fundamentada em comparações de modelos de machine learning para atividades chave.

4 Objetivo

Este trabalho propões em treinar diversos modelos de inteligência artificial para conseguir chegar em um modelo ótimo que deverá ser capaz de categorizar e prever o estado de uma rede elétrica com o objetivo final de otimização energética.

5 Metodologia Experimental

5.1 Tecnologias e Bibliotecas

- Linguagem de Programação: Python
- Biblioteca de Aprendizado de Máquina de IA: Scikit-learn, PyTorch
- Simulador de uma Rede Elétrica: PyPSA

5.2 Etapas do Desenvolvimento

- 1. Definição e Criação de um Dataset usando PyPSA
- 2. Pré Processamento dos Dados e Geração de Dados
- 3. Treinamento e Teste de Modelos de IA de Regressão
 - (a) Random Forests para regressão;
 - (b) Regressão linear;
 - (c) Árvores de decisão para regressão.
- 4. Treinamento e Teste de Modelos de IA de Classificação
 - (a) Arvore de Decisão;
 - (b) K-nearest neighbors;
 - (c) Árvores de decisão para regressão.
- 5. Comparação e escolha do modelo a ser usado em cada caso.
- 6. Buscar a possibilidade de fine tuning dos modelos achados para aplicar em outros desafios de mesmo domínio.

6 Entregáveis do Projeto

O projeto visa desenvolver um modelo de inteligência artificial treinado com dados de redes elétricas, capaz de categorizar (classificação, dados discretos) e prever (regressão, dados continuos) o estado dessas redes com alta precisão.

Além disso, será feito a tentativa de adaptar o modelo para enfrentar outros desafios na área de Smart Grid, promovendo melhorias na eficiência, segurança e gestão dessas redes inteligentes.

7 Referências Bibliográficas

- Deng, Y., Cao, KK., Hu, W. et al. Harmonized and Open Energy Dataset for Modeling a Highly Renewable Brazilian Power System. Sci Data 10, 103 (2023). https://doi.org/10.1038/s41597-023-01992-9
- T. Brown, J. Hörsch, D. Schlachtberger, PyPSA: Python for Power System Analysis, 2018, Journal of Open Research Software, 6(1), arXiv:1707.09913, DOI:10.5334/jors.188
- SAP Insights. "The Smart Grid: How AI is Powering Today's Energy Technologies." Disponível em: SAP Insights. Acesso em: 11 jul. 2024.
- Satu, Md & Khan, Md. Imran. (2024). Machine Learning Approaches To Predict The Stability of Smart Grid. 10.21203/rs.3.rs-3866218/v1.
- Y. Deng, "PyPSA-Brazil: A Free and Open Model of the Brazilian Electrical System,"in Energy Proceedings, 2021.
- Zheng, X., Xu, N., Trinh, L. et al. A multi-scale time-series dataset with benchmark for machine learning in decarbonized energy grids. Sci Data 9, 359 (2022). https://doi.org/10.1038/s41597-022-01455-7