Capítulo 1

Teoria de Probabilidade

1.1 Teoria dos Conjuntos

Faremos uma breve revisão das noções básicas da teoria dos conjuntos e, ao mesmo tempo, fixamos as notações que serão usadas no decorrer do texto.

- 1. A, B, C, ..., Y, Z indicam conjuntos.
- 2. $a,\ b,\ c,...,y,z$ indicam elementos dos conjuntos.
- 3. Conjunto vazio (\$\phi\$): É um conjunto que n\tilde{a}0 possui elementos.
- 4. Conjunto universo (Ω): É um conjunto que contém todos os elementos do contexto no qual estamos trabalhando e também contém todos os conjuntos desse contexto.
- 5. O símbolo \sharp reprenta o número de elementos no conjunto A, isto é, a cardinalidade de A.
- 6. Os conjuntos A e B são mutuamente excludentes (disjuntos) se A∩B = ∅.
 Quando temos mais de dois conjuntos, dizemos que eles são disjuntos quando forem disjuntos dois a dois.
- 7. O simbolo A^c representa o complementar de um conjunto $A \subset \Omega$.
- 8. O complementar da união de dois conjuntos é a interseção dos complementares desses conjuntos. Ou seja, $(A \cup B)^c = A^c \cap B^c$.

9. O complementar da interseção de dois conjuntos é a união dos complementares desses conjuntos. Ou seja, $(A \cap B)^c = A^c \cup B^c$.

1.1.1 Métodos de Contagem

Aqui vamos apresentar, simplificadamente, alguns métodos de contágem utilizados no cálculo de Probabilidades.

I- Regra da Multiplicação

Se uma decisão d_1 pode ser tomada de n_1 maneiras e se, uma vez tomada a decisão d_1 , a decisão d_2 puder ser tomada de n_2 maneiras então o número de maneiras de se tomarem as decisões d_1 e d_2 é n_1n_2 .

Exemplo 2: Para fazer uma viagem de Rio-São Paulo-Rio, posso usar como transporte o carro, o ônibus ou o avião. De quantas maneiras posso escolher os transportes se não desejo usar na volta o mesmo meio de transporte da ida?

Solução: Há três modos de escolher o transporte de ida. Depois disso, há duas alternativas para a volta. A resposta é $3 \times 2 = 6$.

II- Permutação e Arranjos

Dados n objetos distintos $a_1, a_2, ..., a_n$, de quantas maneiras é possível ordenálos? Por exemplo, para os valores 1, 2 e 3 há 6 ordenações: 123, 132, 213, 231, 312, 321. O número de maneiras de ordenar n objetos distintos é

$$n(n-1)(n-2)...1 = n!.$$

Cada ordenação dos n objetos é chamada uma permutação do n objetos e é representado por P_n . Ou seja, $P_n = n!$. Como 0! = 1, define-se $P_0 = 1$.

Exemplo 3: Quantos são os anagramas de palavra PRÁTICO?

Solução: Anagramas de uma palavra nada mais é que uma ordenação das letras da palavra. Assim, o número de anagramas da palavra PRÁTICO é $P_7 = 7! = 5040$.

Consideremos novamente n objetos distintos. Agora desejamos escolher r obje-

tos, $0 \le r \le n$ e permutar os r objetos escolhidos. O número de maneira de se fazer isso é denominado por arranjos A_r^n e a ordem dos elementos é importante.

Assim,

$$A_r^n = \left(\begin{array}{c} n \\ r \end{array}\right) = \frac{n!}{(n-r)!}.$$

III - Combinação

Sejam n objetos distintos. Trataremos da contagem dos número de maneiras de escolher r objetos dentre esses n objetos sem considerarmos a ordem.

Por exemplo, temos os objetos a_1 , a_2 , a_3 e a_4 ; desejamos contar a_1a_2 , a_1a_3 , a_1a_4 , a_2a_3 , a_2a_4 , a_3a_4 ; por outras palavras, não contaremos os pares a_1a_2 , a_2a_1 porque os mesmos objetos estão incluídos e somente a ordem é diferente.

O número de combinações de r objetos em n é representado por ${\cal C}^r_n$ é dado por

$$C_n^r = \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!}, \quad 0 \le r \le n.$$

Exemplo 4: Dentre oito pessoas, quantas comissões de três membros podem ser escolhidas?

Solução: Temos $C_8^3 = \begin{pmatrix} 8 \\ 3 \end{pmatrix} = \frac{8!}{3!(5)!} = \frac{8 \times 7 \times 6}{6} = 56$ comissões possíveis.

Exemplo 5: Dentre oito pessoas, 5 são homens e 3 são mulheres. Quantas comissões de três pessoas podem ser formadas, incluindo exatamente dois homens?

Solução: Aqui devemos fazer duas coisas:

- 1) escolher dois homens (dentre cinco),
- 2) escolher uma mulher (dentre três).

daí, obtemos
$$C_5^2 \times C_3^1 = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 10 \times 3 = 30 \text{ comissões.}$$

1.2 Probabilidade

1.2.1 Experimento Aleatório - Espaço Amotral - Eventos

O cálculo de probabilidades é um ferramental matemático que se presta ao estudo de fenômenos aleatórios ou probabilísticos. Nestes fenômenos, o resultado de um experimento não pode ser previsto com certeza, mas é em geral possível relacionar todos os resultados possíveis de ocorrer.

Temos dois tipos de experimentos:

• Aleatório.

DEF.1: Um experimento é ALEATÓRIO quando, repetidos em condições semelhante, produzem resultados geralmente diferentes.

Exemplo 1:

- Jogar um dado e observar os resultados.
- Lançar uma moeda e observar os resultados.

DEF.2: O conjunto dos possíveis resultados do experimento aleatório é chamado ESPAÇO AMOSTRAL (Ω) .

Exemplo 2: Resultados possíveis no lançamento de um dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\}; \quad \sharp \Omega = 6.$$

DEF. 3: Os subconjuntos do espaço amostral são chamados de EVENTOS.

Exemplo 3: Considerando o exemplo 1, podemos obter os seguintes eventos:

$$A = \{2, 4, 6\}$$
: obter valores pares;

$$B = \{1, 3, 5\}$$
: obter valores impares.

Exemplo 4: (Probabilidade Geométrica) Escolher, ao acaso, um ponto do círculo (disco) de raio 1 centrado na origem . Então,

$$\Omega = \{(x, y) \in \Re^2 : x^2 + y^2 \le 1\}$$

Figura 1

Figura 2

Consideremos os seguintes eventos:

 $A = \text{distância entre o ponto escolhido e a origem } \acute{\text{e}} \leq 1.$

 $B={\rm dist} {\rm \hat{a}ncia}$ entre o ponto escolhido e a origem é $\geq 15.$

 $C={\rm a}~1^{\rm a}$ coordenada do ponto escolhido é maior que a $2^{\rm a}$ coordenada.

Assim, os eventos podem ser expressados por:

$$A=\{(x,y)\in\Omega:\sqrt{x^2+y^2}\leq \tfrac{1}{2}\}\quad \text{(Figura 1)}.$$

$$B=\emptyset.$$

$$C=\{(x,y)\in\Omega:x>y\}\quad \text{(Figura 2)}.$$

Intuitivamente, a probabilidade de um evento é uma medida de nossa certeza a respeito de sua ocorrência. Representa, pois, nosso grau de crença no resultado.

DEF.4: Uma definição clássica imediata de probabilidade, é dada pelo quociente entre o número de resultados favoráveis ao evento e o número de todos os resultados possíveis.

$$P(A) = \frac{\sharp A}{\sharp \Omega} \tag{1.1}$$

Essa definição de probabilidade tem a limitação de se aplicar exclusivamente aos casos em que os EVENTOS EQUIPROVÁVEIS.

Exemplo 5: Três moedas são jogadas simultaneamente. Qual é a probabilidade de obter duas caras? Qual a probabilidade de obter pelo menos duas caras?

Solução: Considerando c = cara e k = coroa temos:

$$\Omega = \{(ccc), (cck), (ckc), (kcc), (kkc), (kck), (ckk), (kkk)\}, \quad \sharp \Omega = 8$$

A= obter 2 caras = $\{(cck), (ckc), (kcc)\}, \quad \sharp A = 3$

$$P(A) = \frac{\sharp A}{\sharp \Omega} = \frac{3}{8}.$$

B= obter 2 caras = $\{(cck), (ckc), (kcc), (ccc)\}, \quad \sharp B = 4.$

$$P(B) = \frac{\sharp B}{\sharp \Omega} = \frac{4}{8} = \frac{1}{2}.$$

1- ÁRVORE DE PROBABILIDADES

Outra maneira de atacar um problema é através da ÁRVORE DE PROBABILI-DADE. Considerando o problema anterior, podemos construir uma árvore de probabilidade e relacionar os resultados em uma tabela, conforme vemos a seguir.

Figura 1.1: Árvore de Probabilidade.

Casos Possíveis	Probabilidades
ccc	1/8
cck	1/8
ckc	1/8
ckk	1/8
kcc	1/8
kck	1/8
kkc	1/8
kkk	1/8
Total	1

Então:

a) A = obter duas caras

$$P(A) = P(cck \ ou \ ckc \ ou \ kcc) = P(cck) + P(ckc) + P(kcc) = \frac{3}{8}$$

b) B = obter pelo menos duas caras

$$P(B) = P(cck \ ou \ ckc \ ou \ kcc \ ou \ ccc) = P(cck) + P(ckc) + P(kcc) + P(ccc) = \frac{1}{2}.$$

2- USANDO MÉTODOS DE CONTAGEM

Exemplo 6: Uma caixa possui 30 lâmpadas, onde 10 estão queimadas e 20 são lâmpadas boas. Seis lâmpadas são retiradas ao acaso, sem reposição, e testadas. Qual a probabilidade de que exatamente a metade das lâmpadas escolhidas esteja queimada?

Solução: O número de maneiras de escolher 6 lâmpadas em 30 é dado por $C_{30}^6 = \left(\begin{array}{c} 30 \\ 6 \end{array}\right).$

O número de maneiras de obter 3 lâmpadas queimadas e 3 lâmpadas boas é dado por $C_{10}^3 \times C_{20}^3 = \begin{pmatrix} 10 \\ 3 \end{pmatrix} \times \begin{pmatrix} 20 \\ 3 \end{pmatrix}$

Daí, a probabilidade desejada será

$$P(3 \ queimadas) = \frac{\begin{pmatrix} 10 \\ 3 \end{pmatrix} \times \begin{pmatrix} 20 \\ 3 \end{pmatrix}}{\begin{pmatrix} 30 \\ 6 \end{pmatrix}} = \frac{casos \ favor\'{a}veis}{casos \ poss\'{i}veis}.$$

Exemplo 7: Uma urna contém 12 bolas, onde 7 são vermelhas e 5 são pretas. Três bolas são retiradas, sem reposição, ao acaso. Determinar a probabilidade de:

- a) sair três bolas vermelhas.
- b) sair duas bolas pretas.
- c) sair pelo menos duas bolas vermelhas.

Solução: O número de elementos no espaço amostral será

$$\#\Omega = \begin{pmatrix} 12\\3 \end{pmatrix} = \frac{12!}{3!9!} = 220.$$

a)
$$\#A = \begin{pmatrix} 7 \\ 3 \end{pmatrix} \times \begin{pmatrix} 5 \\ 0 \end{pmatrix} = 35$$
. $Logo, P(A) = \frac{35}{220}$.
b) $\#B = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \times \begin{pmatrix} 7 \\ 1 \end{pmatrix} = 70$. $Logo, P(B) = \frac{7}{22}$.
c) $\#C = \begin{pmatrix} 7 \\ 3 \end{pmatrix} \times \begin{pmatrix} 5 \\ 0 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix} \times \begin{pmatrix} 5 \\ 1 \end{pmatrix} = 35 + 105 = 140$.
 $Logo, P(C) = \frac{140}{220} = \frac{7}{11}$.

De uma maneira mais formal, podemos definir **Probabilidade Axiomática** como segue:

DEF.5: Seja Ω um espaço amostral. Uma função P, definida para todos os subconjuntos de Ω , é chamada de probabilidade se atende aos seguintes axiomas:

1.
$$0 \le P(A) \le 1$$
, \forall evento $A \subset \Omega$.

2.
$$P(\emptyset) = 0 \text{ e } P(\Omega) = 1.$$

3.
$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$
, quando os $A_{i's}$ disjuntos (Mutuamente Excludentes).

Decorrente da definição de probabilidade, temos as seguintes propriedade:

9

Prop.1:
$$P(A^c) = 1 - P(A)$$
.

Demonstração:

Ω

Sabemos que

$$1 = P(\Omega) = P(A \cup A^{c}) =$$

$$= P(A) + P(A^{c}) ==>$$

$$==> P(A^{c}) = 1 - P(A)$$

Prop.2: (Regra da Adição) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Demonstração:

Pela teoria dos conjutos, $A = (A - B) \cup (A \cap B)$ e $B = (B - A) \cup (A \cap B)$.

Então,
$$P(A) = P(A - B) + P(A \cap B)$$
 e $P(B) = P(B - A) + P(A \cap B)$.

Somando P(A) com P(B), teremos

$$P(A) + P(B) = \underbrace{P(A - B) + P(B - A) + P(A \cap B)}_{P(A \cup B)} + P(A \cap B) \Rightarrow$$

$$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Prop.3: (generalização da prop.2)

Sejam $A_1, A_2, A_3, ..., A_n, n$ eventos de Ω , então

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n) - P(A_1 \cap A_2) - ...$$
$$-P(A_{n-1} \cap A_n) + P(A_1 \cap A_2 \cap A_3) + ...$$
$$+(-1)^{n-1} P(A_1 \cap A_2 \cap ... \cap A_n).$$

Exemplo 6: Sejam $A \in B$ eventos tais que $P(A) = \frac{1}{2}, \ P(B) = \frac{1}{4} \in P(A \cap B) = \frac{1}{5}.$

Calcular: a) $P(A \cup B)$ $\mathrm{b})P(A^c)$ $c)P(B^c)$

Solução:

a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{4} - \frac{1}{5} = \frac{11}{20}$$

b)
$$P(A^c) = 1 - P(A) = 1 - \frac{1}{2} = \frac{1}{2}$$

c)
$$P(B^c) = 1 - P(B) = 1 - \frac{1}{4} = \frac{3}{4}$$

Exemplo 7: Dois dados são jogados simultaneamente. Calcular a probabilidade de que a soma dos números mostrado na face de cima seja 8.

Solução: O espaço amostral Ω consiste de todos os pares (i, j), onde i e j são inteiros positivos compreendidos entre 1 e δ . O espaço amostral pode ser representado como no quadro abaixo:

Temos que $\#\Omega=36,\ A=soma\ 8\ e\ \#A=10.$

$$Ent\tilde{a}o, P(A) = \frac{\#A}{\#\Omega} = \frac{10}{36}.$$

1.3 Probabilidade Condicional

O Estabelecimento de uma probabilidade está, em geral, diretamente relacionado com o estado de informação disponível. Em muitas situações práticas, o fenômeno aleatório com o qual trabalhamos pode ser separado em etapas. A informação do que ocorreu em uma etapa pode influenciar nas probabilidades de ocorrências das etapas seguintes.

Consideremos o experimento que consiste em jogar um dado honesto.

Sejam
$$\Omega = \{1, 2, 3, 4, 5, 6\}; A = \{2, 4, 6\}; B\{1, 2, 3\}.$$

A probabilidade de ocorrência de B é dado por

$$P(B) = \frac{\#B}{\#\Omega} = \frac{3}{6} = \frac{1}{2}.$$

Suponha que, uma vez realizado o experimento, alguém informe que o resultado do mesmo é um número par, isto é, A ocorreu. Essa informação modifica a ocorrência de B, uma vez que, só poderá ter ocorrido B se o resultado do experimento tiver sido 2. Assim, a probabilidade de ocorrer B dado que ocorreu A é dada por

$$\frac{\#(A\cap B)}{\#A} = \frac{1}{3}.$$

Essa probabilidade recebe o nome de *probabilidade condicional*, cuja definição apresentamos a seguir.

DEF.7: Dados dois eventos A e B, aprobabilidade condicional de A dado B é representada por P(A|B) e dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0.$$

Caso P(B) = 0, P(A|B) pode ser definido arbitrariamente, ou seja, P(A|B) = P(A).

Da definição de probabilidade condicional, deduzimos a **regra do produto de probabilidades** como segue

$$P(A \cap B) = P(A)P(B|A)$$
, com $P(A) > 0$.

Exemplo 12: Consideremos duas caixas I e II. A caixa I contém 3 bolas AZUIS e 2 bolas PRETAS. A caixa II possui 2 bolas AZUIS e 1 bola PRETA. Escolhe-se uma caixa, ao acaso, e retira-se uma bola também ao acaso. Qual a probabilidade da bola ser AZUL e ter saído da caixa I?

Solução: Consideremos a árvore de probabilidade dada pela Figura 2.

Figura 1.2: Árvore de Probabilidade - Exemplo 12.

Queremos encontrar a $P(A \cap I)$. Sabemos que $P(A|I) = \frac{3}{5}$ e $P(I) = \frac{1}{2}$. Logo,

$$P(A \cap I) = P(I).P(A|I) = \frac{1}{2} \frac{3}{5} = \frac{3}{10}$$

Exemplo 13: No ex.12, suponha que **uma** bola Azul da caixa I e II esteja furada. Qual a probabilidade de ao retirarmos uma bola, ao acaso, ela seja AZUL, FURADA e da caixa I?

Solução: Estamos interessados em $P(A \cap F \cap I)$.

Sabemos que $P(A|I) = \frac{3}{5}$, $P(I) = \frac{1}{2}$ e $P(F|A \cap I) = \frac{1}{3}$. Logo,

$$P(A \cap F \cap I) = P(I).P(A|I).P(F|A \cap I) = \frac{1}{10}.$$

Nos exemplos 12 e 13, fizemos uso do seguinte Teorema:

Teorema do Produto: Se $P(A_1 \cap A_2 \cap ... \cap A_n) \neq 0$, então

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1).P(A_2|A_1).P(A_3|A_1 \cap A_2)...P(A_n|A_1 \cap ... \cap A_{n-1}).$$

Exemplo 14: Considerando o ex.12, pergunta-se qual a probabilidade de sair uma bola AZUL, ao retirarmos a bola ao acaso?

Solução: Desejamos obter o valor de P(A).

Sabemos que $P(A) = P(A \cap I) + P(A \cap II)$ e pelo teorema do produto teremos:

$$P(A) = P(I).P(A|I) + P(II).P(A|II) = \frac{1}{2} \times \frac{3}{5} + \frac{1}{2} \times \frac{2}{3} = \frac{19}{30}.$$

No exemplo 14, além de usarmos o Teorema do Produto , utilizamos o seguinte teorema:

Teorema da Probabilidade Total: Se B é um evento contido numa união de eventos disjuntos $A_1, A_2, ..., A_n$ e $P(A_1) \ge 0, P(A_2) \ge 0, ..., P(A_n) \ge 0$, então:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n).$$

Demonstração: Consideremos a seguinte figura:

Então,
$$B = \underbrace{(A_1 \cap B) \cup (A_2 \cap B) \cup ... \cup (A_n \cap B)}_{\text{são disjuntos}}.$$

Logo,

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B)$$
, pelo Teorema do Produto
$$= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)$$

Exemplo 15: Consideremos, ainda o ex.12, ao retirar uma bola verifica-se que é azul. Qual a probabilidade de ter saído da caixa I ?

$$P(I|A) \stackrel{DEF.}{=} \frac{P(A \cap I)}{P(A)} \stackrel{Teor.}{=} \frac{P(I)P(A|I)}{P(I)P(A|I) + P(II)P(A|II)}$$
$$= \frac{1/2 \times 3/5}{1/2 \times 3/5 + 1/2 \times 2/3} = \frac{3/10}{19/10} = \frac{9}{19}$$

Para resolver o exemplo 15, utilizamos o TEOREMA DE BAYES, que segue abaixo:

TEOREMA DE BAYES: Nas condições do Teorema da Probabilidade Total, se P(B) > 0, então $\forall i, i = 1, 2, ..., n$

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)}.$$

Demonstração: Temos que

$$P(A_i|B) = \frac{P(B \cap A_i)}{P(B)} \stackrel{T.P.}{=} \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(A_i)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)}.$$

1.4 Independência de Eventos

Estudamos que a probabilidade condicional é calculada levando-se em consideração as ocorrências dos eventos anteriores. Consideremos o caso de eventos cuja

ocorrência não afeta o valor da probabilidade de ocorrência do evento de interesse. Ou seja, se P(A|B) = P(A), o evento A é dito estatisticamente independente do evento B. Isso implica que B também será estatisticamente independente do evento A, então P(B|A) = P(B). Logo, podemos dizer que os eventos A e B são independentes.

DEF.8: Dois eventos A e B são independentes se a ocorrência de um deles não afeta a probabilidade de ocorrência do outro. Se A e B não são independentes, dizem-se dependentes.

Exemplo 16: A jogada de uma moeda e a jogada de um dado são INDEPEN-DENTES, porque o resultado da moeda não afeta a probabilidade de ocorrênciado resultado do dado.

Podemos resumir o conceito de independência pela seguinte **regra do produto**:

- 1. $P(A \cap B) = P(A)P(B) \Leftrightarrow A \in B \text{ são independentes.}$
- 2. $P(A \cap B) = P(A)P(B|A) \Leftrightarrow A \in B$ são dependentes.

Exemplo 17: Joga-se uma moeda duas vezes. Considere os eventos: A = cara na primeira jogada; B = cara na segunda jogada; C = exatamente uma coroa nas duas jogadas. Será que A, B e C são independentes ?

Solução: O espaço amostral é : $\Omega = \{(c,c),(c,k),(k,c),(k,k)\}$ $c = \text{coroa } e \ k = \text{cara. Podemos calcular que:}$

$$P(A) = P(B) = P(C) = \frac{1}{2}$$
 e $P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{1}{4}$.

Podemos concluir que A e B são independentes, A e C são independentes e B e C são independentes. Porém, isso não implica que A, B e C sejam independentes, pois

$$P(A \cap B \cap C) = 0 \neq \frac{1}{8} = P(A)P(B)P(C).$$

EXERCÍCIOS 15

1.5 Exercícios

- #1- Dê o espaço amostral para cada um dos experimentos:
- a) Lança-se um dado duas vezes.
- b) Lança-se uma moeda duas vezes.
- c) De uma urna com três bolas brancas e duas bolas verdes, retira-se três bolas, separadamente, e observa-se a cor.
- #2- Determinar a probabilidade para cada evento:
- a) Um número par aparece no lançamento de um dado.
- b) Uma figura aparece ao extrair-se uma carta de um baralho de 52 cartas.
- c) Uma só coroa aparece no lançamento de três moedas.
- #3- Um número inteiro é escolhido aleatoriamente dentre os números 1, 2, 3, ...,30. Qual a probabilidade de:
- a) o número ser dividido por 5?
- b) o número terminar em 3?
- c) o número ser divisível por 6 ou por 8?
- d) o número ser divisível por 4 e por 6?
- #4- Uma moeda é lançada duas vezes. Calcular a probabilidade de que:
- a) não ocorra cara nenhuma vez.
- b) obtenha-se cara só na primeira ou só na segunda jogada.
- #5- Em um lote de 12 peças, 4 são defeituosas. Sendo retiradas aleatoriamente 2 peças sem reposição, calcule:
- a) A probabilidade de ambas serem defeituosas.
- b) A probabilidade de ambas serem perfeitas.
- c) A probabilidade de ao menos uma ser defeituosa.
- #6- Um casal planeja ter três filhos; qual é a probabilidade de nascerem:
- a) Três homens?
- b) Dois homens e uma mulher?

#7- Se $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$, e A e B são mutuamente exclusivos, calcular:

- $a)\ P(A^C) \quad \ b)\ P(B^C) \quad \ c)\ P(A\cap B) \quad \ d)\ P(A\cup B) \quad \ e)\ P(A^C\cap B^C)$
- #8- Lance um dado e uma moeda.
- a) Construa o espaço amostral.
- b) Enumere os seguintes eventos:

A= coroa marcada por um número par

B= cara marcada por um número primo

C= múltiplo de 3

- c) Expresse os eventos: I) B^C II) A ou B ocorrem III) B e C ocorrem IV) $(B \cup A)^C$
- d) Quais dos eventos A, B e C são mutuamente exclusivos?
- #9- Uma urna contem três bolas brancas, duas vermelhas e cinco azuis. Duas bolas são retiradas, sem reposição. Qual a probabilidade de sair:
- a) duas bolas brancas?
- b) pelo menos uma bola azul?
- c) no máximo duas azuis?
- d) no mínimo uma bola vermelha?
- #10- Um grupo é constituído de seis homens e quatro mulheres. Três pessoas são selecionadas ao acaso, sem reposição. Qual a probabilidade de que ao menos duas sejam homens?
- #11- A caixa I tem duas bolas brancas e duas bolas pretas; a caixa II tem duas bolas brancas e uma bola preta; a caixa III tem uma bola branca e três bolas pretas.
- a) Retira-se uma bola de cada caixa. Determinar a probabilidade de serem todas brancas.
- b) Escolhe-se uma caixa ao acaso e retira-se uma bola. Qual a probabilidade de ser branca?
- c) Sabendo-se que a bola retirada é branca, qual a probabilidade de ter saído da caixa I ?

#12- Num exame de estatística há cinco respostas para cada pergunta e apenas uma delas é certa. Portanto, para cada pergunta, um aluno tem probabilidade 1/5 de escolher a resposta certa se ele está adivinhando e 1 se sabe a resposta. Um estudante sabe 30% das respostas do exame. Se ele deu a resposta correta para uma das perguntas qual é a probabilidade de que a adivinhou?

#13- Duas máquinas A e B produzem 3.000 peças em um dia. A máquina A produz 1.800 peças, das quais 4% são defeituosas. A máquina B produz as restantes 1.200 peças, das quais 1,5% são defeituosas. Da produção total de um dia uma peça é escolhida ao acaso e, examinando-a, constata-se que é defeituosa. Qual a probabilidade de que a peça tenha sido produzida pala máquina A?

#14- Joga-se um dado duas vezes. Considere os eventos:

A = o resultado do 1º lançamento é par

B=oresultado do $2^{\rm o}$ lançamento é par.

C = a soma dos dois resultados é par.

A e B são independentes ? A e C são independentes ? B e C são independentes ? A, B e C são independentes ?

- #15- Dois dados são lançados simultaneamente. Qual a probabilidade de:
- a) A soma ser menor que 6?
- b) A soma ser 8?
- c) O primeiro resultado ser menor que o segundo?
- d) A soma ser igual ou menor que 7?

#16- Três cartas são retiradas ao acaso de um baralho de 52 cartas. Qual é a probabilidade de se obterem:

- a) Dois reis?
- b) Uma dama e um dois?
- c) Três cartas de copas?
- #17- Uma moeda é lançada três vezes. Encontre a probabilidade de se obterem :
- a) Três coroas.

- b) Duas coroas e uma cara.
- c) Nenhuma coroa.
- d) No mínimo uma coroa.
- e) No máximo uma coroa.
- #18- Um depósito possui 12 fogões da mesma marca, dos quais 3 apresentam defeitos.
- a) Qual a probabilidade de um freguês levar um fogão defeituoso?
- b) Qual a probabilidade de um freguês, ao comprar dois fogões, levar os dois defeituosos?
- c) Qual a probabilidade de um freguês, ao comprar dois fogões, levar pelo menos um defeituoso?
- #19- Um par de dados é lançado. Se aparecem dois números diferentes, encontre a probabilidade de que:
- a) A soma seja 5?
- b) A soma seja menor que 3?
- c) A soma seja 10 ou maior que 10?
- #20- Um lote é formado por 8 peças boas, 5 com defeitos e 2 com defeitos graves. uma peça é escolhida ao acaso. Calcule a probabilidade :
- a) Da peça não ter defeito grave.
- b) Da peça não ter defeito.
- c) Da peça ser boa ou tenha defeitos graves.
- #21- Com os dígitos 1, 2, 3, 4 e 5 são formados números de 4 dígitos. Um deles é escolhido ao acaso. Qual a probabilidade dele ser:
- a) par?
- b) ímpar?
- #22- Numa cidade, 25% dos homens são casados, 38% são solteiros, 22% são desquitados e 15% são viúvos; Um homem é escolhido ao acaso.
- a) Qual a probabilidade dele ser solteiro?

1.5. EXERCÍCIOS 19

- b) Qual a probabilidade dele não ser casado?
- c) Qual a probabilidade dele ser solteiro ou desquitado?

#23- Se A e B são eventos independentes tais que P(A) = 1/2 e P(B) = 1/3. Calcule: $a)P(A \cup B) \quad b)P(A^C \cup B^C) \quad c)P(A \cap B^C)$

#24- Dois dados (um preto e um vermelho) são lançados. Definem-se os eventos:

A = sair valor par no dado vermelho

B = sair valor superior a 4 no dado vermelho

C = sair soma igual a 10

Calcular:

- a) P(A), P(B) e P(C)
- b) $P(A \cap B)$, $P(A \cap C)$, $P(B \cap C)$
- c) P(A|B), P(B|C), P(C|D)
- d) A, B e C são independentes?
- e) Quais dos eventos A, B e C são mutuamente exclusivos?

#25- Sejam A e B dois eventos independentes tais que P(B) = 1/4 e $P(A \cup B) = 1/3$, calcule P(A).

#26- As probabilidades de 3 jogadores acertarem a mosca num jogo de dardos são respectivamente 3/4, 4/7 e 7/11. Se cada jogador atirar o dardo uma única vez, qual a probabilidade de:

- a) todos acertarem;
- b) apenas um acertar;
- c) todos errarem.
- #27- Uma urna contém 5 bolas azuis, três amarelas e duas pretas. Foram extraídas 3 bolas sem reposição. Qual a probabilidade de:
- a) saírem duas bolas amarelas;
- b) saírem duas bolas azuis e uma preta;
- c) não sair bola azul.

#28- São dada duas caixas I e II. A caixa I contém uma bola azul e uma bola rosa. A caixa II contém duas bolas azuis e três rosas. Uma bola é escolhida ao acaso na caixa I e colocada na caixa II. Uma bola então é extraída ao acaso, da caixa II. Pergunta-se:

- a) Qual a probabilidade de que ambas as bolas sejam da mesma cor?
- b) Qual a probabilidade de que a primeira bola seja rosa, sabendo-se que a segunda foi azul?

29- Em uma certa população, 25% de seus habitantes sofrem de algum tipo de alergia e são classificados como alérgicos para fins da saúde pública. Sendo alérgico, a probabilidade de ter reação a um certo tipo de medicamento é de 0,5. Para os não alérgicos a probabilidade é de apenas 0,05. Uma pessoa dessa população teve reação alérgica ao ingerir certo medicamento, qual a probabilidade de:

- a) ser do grupo não alérgico;
- b) ser do grupo alérgico.

#30- Se Ae Bsão eventos independentes, prove que A^c e Bsão independentes. Isto é, provar que se

$$P(A \cap B) = P(A)P(B) \Rightarrow P(A^c \cap B) = P(A^c)P(B).$$

Solução: Temos que $B = (A \cap B) \cup (A^c \cap B)$ e $(A \cap B) \cap (A^c \cap B) = \emptyset$.

Daí,
$$P(B) = P(A \cap B) + P(A^c \cap B) \Rightarrow P(B) = P(A)P(B) + P(A^c \cap B) \Rightarrow P(A^c \cap B) = P(B)(1 - P(A)) = P(A^c)P(B).$$

#31- Provar que, se A e B são mutuamente excludentes e P(A)>0 e P(B)>0,então A e B não são independentes.

Solução: Temos que $A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$.

Como
$$P(A) > 0$$
 e $P(B) > 0 \Rightarrow P(A)P(B) \neq 0$.

Assim, $P(A \cap B) \neq P(A)P(B) \Rightarrow A \in B$ não são independentes.

32- Das pacientes de uma clínica de ginecologia com idade acima de 40 anos, 60% são ou foram casadas e 40 % são solteiras. Sendo solteira, a probabilidade de ter tido um distúrbio hormonal no último ano é de 10%, enquanto que para as demais

1.5. EXERCÍCIOS 21

essa probabilidade aumenta para 30%. Pergunta-se:

a) Qual a probabilidade de uma paciente escolhida ao acaso ter tido um distúrbio hormonal?

b) Se a paciente sorteada tiver distúrbio hormonal, qual a probabilidade de ser solteira?

33- Pedro quer enviar uma carta de amor à Maria. Sabemos que a probabilidade de Pedro escrever a carta é 8/10, a probabilidade do correio não perder a carta é 9/10 e a probabilidade do carteiro entregar a carta é 9/10. Dado que Maria não recebeu a carta, qual a probabilidade de que Pedro não a tenha escrito?

Solução: Consideremos a seguinte notação:

 ${\rm NE}={\rm n\tilde{a}o}$ escreveu; ${\rm E}={\rm escreveu};$ ${\rm P}={\rm correio}$ perdeu; ${\rm NR}={\rm n\tilde{a}o}$ recebeu a carta;

NP = correio não perdeu; C = carteiro entregou; NC = carteiro não entregou.

$$\begin{split} P(NR|NE) &= \frac{P(NE)}{P(NR)} = \frac{P(NE)}{P(NE) + P(E \cap P) + P(E \cap NP \cap NC)} \\ &= \frac{P(NE)}{P(NE) + P(E)P(P|E) + P(E)P(NP|E)P(NC|E \cap NP)} \\ &= \frac{2/10}{2/10 + 8/10 \times 1/10 + 8/10 \times 9/10 \times 1/10} \\ &= \frac{25}{44}. \end{split}$$

GABARITO: PROBABILIDADE

1) a)
$$\Omega = \{(1,1), (1,2), ..., (1,6), (2,1), (2,2), ..., (2,6), (3,1), (3,2), ..., (3,6)\}$$

$$(4,1), (4,2), ..., (4,6), (5,1), (5,2), ..., (5,6), (6,1), (6,2), ..., (6,6)$$

b)
$$\Omega = \{(k,c),(k,k),(c,c),(c,k)\}, c = coroa e k = cara$$

c)
$$\Omega = \{(BBB), (BBV), (BVB), (VBB), (BVV), (VBV), (VVV)\}$$

2) a)
$$\frac{1}{2}$$
, b) $\frac{4}{13}$, c) $\frac{3}{8}$

3) a)
$$\frac{1}{5}$$
, b) $\frac{1}{10}$, c) $\frac{7}{30}$ d) $\frac{1}{15}$

4) a)
$$\frac{1}{4}$$
, b) $\frac{1}{2}$

5) a)
$$\frac{1}{11}$$
, b) $\frac{14}{33}$, c) $\frac{19}{33}$

6) a)
$$\frac{1}{8}$$
, b) $\frac{3}{8}$

7) a)
$$\frac{1}{2}$$
, b) $\frac{3}{4}$, c) 0 d) $\frac{3}{4}$ e) $\frac{1}{4}$

9) a)
$$\frac{1}{15}$$
, b) $\frac{7}{9}$, c) 1 d) $\frac{17}{45}$

$$10) \frac{2}{3}$$

11) a)
$$\frac{1}{12}$$
, b) $\frac{17}{36}$, c) $\frac{6}{17}$

15) a)
$$\frac{5}{18}$$
, b) $\frac{5}{36}$, c) $\frac{15}{36}$ d) $\frac{21}{36}$

16) a)
$$0,013$$
, b) $0,032$, c) $0,013$

17) a)
$$\frac{1}{8}$$
, b) $\frac{3}{8}$, c) $\frac{1}{8}$ d) $\frac{7}{8}$ e) $\frac{1}{2}$

18) a)
$$\frac{1}{4}$$
, b) $\frac{1}{22}$, c) $\frac{5}{11}$

19) a)
$$\frac{1}{9}$$
, b) $\frac{1}{36}$, c) $\frac{1}{6}$

20) a)
$$\frac{13}{15}$$
, b) $\frac{8}{15}$, c) $\frac{10}{15}$

21) a)
$$\frac{48}{120}$$
, b) $\frac{72}{120}$

23) a)
$$\frac{2}{3}$$
, b) $\frac{5}{6}$, c) $\frac{1}{3}$

- 24) a) $(\frac{1}{2}, \frac{1}{3}, \frac{1}{12})$, b) $(\frac{1}{6}, \frac{1}{18}, \frac{1}{18})$, c) $(\frac{1}{2}, \frac{2}{3}, \frac{1}{6})$ d) Não e) Nenhum.
- $25) \frac{1}{9}$
- 26) a) $\frac{3}{11}$, b) $\frac{73}{308}$, c) $\frac{3}{77}$
- 27) a) $\frac{7}{40}$, b) $\frac{1}{6}$, c) $\frac{7}{120}$
- 28) a) $\frac{7}{12}$, b) $\frac{2}{5}$
- 29) a) 0,23, b) 0,77
- 32) a) 0, 22 b) 0, 182