

دانشکدهی علوم ریاضی

احتمال و کاربرد ۲۰ اردیبهشت۱۳۹۸

تمرین: سری ۴

مدرّس: دکتر شهرام خزائی

- پاسخهای خود را در قالب StudentNumber.pdf روی سامانهی درس افزار آپلود کنید.
- تنها فرمت PDF قابل قبول است. از ارسال فایلهای تصویری و فشرده شده جدا خودداری کنید.
 - تمرینهای مشابه نمره دهی نخواهند شد.
 - ارسال پاسخها از طریق ایمیل قابل قبول نیست.
- حداكثر حجم فايل پاسخها يك مگابايت است. بنابرين توصيه مي شود پاسخهايتان را تايپ كنيد.
 - تایپ کردن و مرتب نوشتن تمرینات ۱۰ امتیاز اضافی دارد.
- مهلت تحویل پاسخها همواره تا ساعت ۲۳:۵۵ تاریخ ذکر شده در صورت تمرینهاست و تمدید نخواهد شد.
 - ارسالهای پس از موعد، درصدی از نمرهی کامل را دریافت خواهند کرد.
 - سوالات خود پیرامون تمرینها را با و ali_nasseh86@yahoo.com مطرح نمایید.

مسأله ١

الف) (۵نمره) ثابت كنيد

$$Cov(X, Y) = Cov(X, E(Y|X))$$

ب)(۵نمره) نشان دهید که اگر دو متغیر تصادفی X و Y از توزیع یکسانی آمده باشند و لزوما مستقل نباشند، آنگاه:

$$Cov(X+Y, X-Y) = 0$$

مسأله ٢

الف)(۲ نمره) فرض کنید X یک متغیر تصادفی نامنفی و $G(s)=E(s^X)$ تابع مولد احتمال X باشد. نشان دهید

$$E(\frac{1}{1+X}) = \int_0^1 G(s)ds$$

 $\log(X)$ با نمره) متغیر تصادفی مثبت $\log - normal$ ، \log با پارامترهای μ و σ^2 نامیده می شود، اگر $\log(X)$ یک متغیر تصادفی نرمال با میانگین μ و واریانس σ^2 باشد. با استفاده از تابع مولد گشتاور نرمال، میانگین و واریانس متغیر تصادفی $\log - normal$ را به دست آورید.

مسألهي ٣

نشان دهید . $\mu_n=E(Z^n)$ داریم Z داریم استاندارد نشان دهید

$$\mu_n = \begin{cases} 0 & \text{ تا است } n \\ \frac{(2j)!}{2^j j!} & n = 2j \end{cases}$$
 (۱)

مسألهي ٢

(٨نمره) با چندبار انداختن يک سکه مي توان با اطمينان حداقل 90 درصد مقدار احتمال روآمدن سکه را با اختلاف حداکثر 0.1 از مقدار واقعي تخمين زد؟

مسأله ۵

د حقیقی X_1, X_2, \dots الف) (X_1, X_2, \dots کنید X_1, X_2, \dots د نباله ای از متغیر های تصادفی باشند که با احتمال X_1, X_2, \dots همگرا هستند. نشان دهید که دنباله ی فوق در احتمال نیز به X_1, X_2, \dots

(*) (*نمره) 100 عدد حقیقی را به نزدیک ترین عدد صحیح آن گرد می کنیم و با هم جمع می کنیم. فرض کنید خطای گرد کردن یک عدد حقیقی دارای توزیع یکنواخت در بازه ی (-0.5,0.5] باشد. احتمال اینکه اختلاف حاصل جمع این 100 عدد گرد شده از مقدار واقعی جمع آن ها بیشتر از ۵ باشد را به طور تقریبی محاسبه کنید.

مسأله ع

و $\sigma_Y^2 = Var(Y)$ ، $\sigma_X^2 = Var(X)$ کنید (۲) فرض کنید و متغیر تصادفی دلخواه X و کنید تصادفی دلخواه X . نشان دهید:

$$\frac{\sigma_{X+Y}}{\sigma_{Y} + \sigma_{Y}} \le 1$$

ب)(۸نمره) فرض کنید X و X دو متغیر تصادفی نمایی مستقل با پارامتر مشترک X باشند. حال مقادیر E[max(2X,Y)] و E[min(X,Y)]

مسأله ٧

(۵نمره) الف) فرض کنید x و y متغیرهای تصادفی یکنواخت در بازه $(0,\alpha)$ و مستقل از هم هستند. تابع چگالی احتمال متغیر تصادفی z=|x-y| را بیابید.

(۱۰ نمره) ب) فرض کنید x و y متغیرهای تصادفی یکنواخت در بازه (0,1) و مستقل از هم هستند. متغیرهای تصادفی w و z را به این صورت تعریف می کنیم:

$$w = max(x, y)$$

$$z = min(x, y)$$

تابع چگالی احتمال را برای موارد زیر به دست آورید:

r = w - z ()

s = w + z (Y

مسأله ٨

(۵نمره امتیازی) فرض کنید $X_1, X_2, ..., X_n$ متغیرهای تصادفی مستقل و یکنواخت روی بازه ی (-1,1) باشند. تابع چگالی احتمال $\frac{X_1, X_2, ..., X_n}{\sqrt{n}}$ را برای (-1,1) به صورت دستی محاسبه و رسم نمایید. با استفاده از یک نرم افزار مناسب مانند (-1,1) نیز این کار را برای (-1,1) انجام دهید و با تابع چگالی احتمال متغیر گوسی که به آن میل می کند، مقایسه کنید.

مسأله ٩

(۸نمره) فرض کنید X_1, X_2, \dots طول پرش ورزشکاران مختلف باشد که همه آن ها i.i.d می باشند. می گوییم فرد i.i.d نرد زده است، اگر مقدار i.i.d از تمامی مقادیر i.i.d بزرگ تر باشد. میانگین و واریانس تعداد رکوردهای اعضای شماره i.i.d تا i.i.d را بیابید.

مسأله ١٠

الف)(Υ نمره) نشان دهید که اگر متغیر تصادفی θ دارای توزیع یکنواخت در بازه ی $[0,2\pi]$ باشد، در این صورت دو متغیر تصادفی $X=Sin(\theta)$ و $X=Sin(\theta)$ ناهمبسته هستند.

ب)(4نمره) اگر داشته باشیم که Cov(X,Y)=0 ، نشان دهید:

$$\rho(X+Y,X-Y) = \frac{Var(X) - Var(Y)}{Var(X) + Var(Y)}$$

مسأله ١١

دو متغیر تصادفی X و Y را می گوییم دارای توزیع نرمال دومتغیره هستند، اگر تابع چگالی احتمال توام آن ها به صورت

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}exp\{-\frac{1}{2(1-\rho^2)}\times[(\frac{x-\mu_x}{\sigma_x})^2 - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + (\frac{y-\mu_y}{\sigma_y})^2]\}$$

ىاشد

Y و متغیر تصادفی X و اردیانس σ_x^2 و متغیر تصادفی X دارای توزیع نرمال با میانگین μ_x و واریانس σ_y^2 است.

ب)(۲نمره) نشان دهید که چگالی احتمال شرطی متغیر X به شرط Y=y دارای توزیع نرمال با میانگین $\sigma_x^2(1-\rho^2)$ است. $\mu_x+(\frac{\rho\sigma_x}{\sigma_y})(y-\mu_y)$

ج)(*نمره) \dot{G} ریب همبستگی X و Y را محاسبه کنید.

د) X و بنان دهید که دو ترکیب خطی نابدیهی از متغیرهای X و Y وجود دارد که مستقل از هم اند.

مسأله ١٢

(۱۰ نمره امتیازی) فرض کنید نقطه ای تصادفی در بازه ی [0,1] انتخاب می کنیم و آن را M می نامیم. سپس دو نقطه ی تصادفی یکی در سمت راست نقطه ی M یا بازه ی [M,1] و دیگری را در سمت چپ نقطه ی M یا بازه ی [M,1] انتخاب می کنیم و به ترتیب [M,1] و [M,1] می نامیم. حال فرض کنید طول نقطه ی [M,1] برابر با [M,1] باشد. کوواریاس دو متغیر [M,1] و [M,1] را بیابید.