

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Kalorimetria

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

MÉRÉS DÁTUMA: 2018. 05. 03.

Tartalomjegyzék

1.	A mérés célja		2
2.	A mérés elve		6
3.	Eredmények		
	3.1. In olvasztása		
	3.2. Sn-Pb-ötvözet vizsgálata		4
	3.3. Fémüveg átkristályosodása		,
	3.4. Ni ferromágneses-paramágneses fázisátalakulása		(

1. A mérés célja

A mérés célja megismerkedés a digitális kaloriméterek működésével. A mérés során ún. Differential Scanning Calorimeter (DSC) típusú kaloriméterrel vizsgáljuk In és Sn-Pb-ötvözet olvadását, fémüveg kristályosodását, valamit Ni paramágneses/ferromágneses fázisátalakulását.

2. A mérés elve

A DSC típusú kaloriméter esetén két közel azonos, külön fűthető mintatartók egyikében a vizsgálandó minta, a másikban pedig egy referenciaminta található. A két tartót egy előre megadott program szerint fűtjük úgy, hogy a kettejük hőmérsékletének átlaga a program szerint változzon, a hőmérséklet-különbséget power-compensated DSC esetén (amilyen a laborban használt is) egy visszacsatoló-rendszerrel a fűtési teljesítmény változtatásával kompenzáljuk. Megfelelő elhanyagolásokkal a mért teljesítmény (w) az 1. egyenlet szerint áll elő, ahol c_m és c_r rendre a minta és a referenciaanyag fajhője, v a fűtés sebessége, dh/dt az entalpiaváltozás sebessége, $w_{\rm bas}$ pedig a hőmérsékletfüggő alapvonal.

$$w(T) = (c_m - c_r)v + \frac{dh}{dt} + w_{\text{bas}}(T)$$
(1)

Olvadás esetén az olvadáshőt a görbe és az alapvonal közti területből kapjuk, az olvadáspontot pedig a felfutó szárra illesztett egyenes és az alapvonal metszéspontjaként. A módszer legjelentősebb hibaforrása, hogy $w_{\rm bas}$ ismeretlen függvény, amelyről csupán azt tudjuk, hogy sima. Általánosan elfogadott módszer a "laza csuklóval" való behúzása. Ez a görbe alatti területben (pl. olvadáshő esetén) pár százalékos hibát eredményez.

Többkomponensű rendszereknél, mint például a vizsgált Sn-Pb ötvözet esetén is, a tiszta anyagokkal ellentétben nem egy olvadáspontot kapunk, hanem egy véges hőmérséklettartományon belül egyensúlyban van a szilárd és a folyadék fázis. Ennek a hőmérséklettartománynak a határait a komponensek arányának függvényében leíró görbéket szolidusz és likvidusz görbéknek hívjuk.

Harmadik mérésként fémüveg átkristályosodását vizsgáljuk. A fémüveg amorf fém, melynek lassú átkristályosodása termikusan aktivált folyamat. Ennek aktiválási energiája meghatározható, ha a mintát különböző sebességgel fűtjük fel. Ekkor ugyanis a maximális entalpiaváltozáshoz tartozó hőmérséklet $(T_{\rm max})$ reciproka és a fűtés sebességének logaritmusa közt lineáris kapcsolat áll fenn a 2. egyenlet szerint (ahol R az univerzális gázállandó). Az egyenes meredekségéből megkapható az aktiválási energia (Q).

$$\ln v = konst. - 1.052 \frac{Q}{RT_{\text{max}}} \tag{2}$$

Végül Ni ferromágneses-paramágneses fázisátalakulását vizsgáljuk. Másodrendű fázisátalakulás révén a T_c Curie-pontnál a fajhő divergál, melyet mi itt véges csúcsként látunk. Megjegyzendő, hogy a mérés során a referencia és a Ni-minta fajhőkülönbségét mérjük, tehát nem közvetlen a Ni fajhőjét.

3. Eredmények

3.1. In olvasztása

Indium minta olvasztása során készült regisztrátumot mutat az 1. ábra. Az ábrán az felfutó szakaszra illesztett egyenes, a behúzott alapvonal is látható. A minta tömegét előzetesen táramérleggel határoztuk meg, melynek segítségével számolt olvadáshő: $L=27.4\ J/g$, az irodalmi érték 28.6 J/g^1 . Az olvadáspont: $T=429.5\ K$, ami jó közelítéssel megfelel az irodalmi értéknek (429.7 K).

1. ábra. Indium olvasztása

¹https://en.wikipedia.org/wiki/Indium

3.2. Sn-Pb-ötvözet vizsgálata

Sn-Pb-ötvözet eutektikus ötvözet, azaz létezik olyan elegye, mely egy meghatározott olvadásponttal rendelkezik. Ettől a koncentrációtól némileg eltérő arányú ötvözetet vizsgáltunk. Ennek regisztrátuma látható a 2. ábrán. Erre két különböző alapvonalat kellett behúzni, mely a különböző fázisok eltérő fajhője miatt törvényszerűen nem egyenes. Az alapvonal(ak) kiegyenesítése után kaptuk a 3. ábrát. A kapott hőmérsékletek: $T_{\rm sol}=455.6~K, T_{\rm likv}=538.1~K.$ A kapott olvadáshő: L=25.5~J/g. Az általam elérhető fázisdiagramról² leolvasva ez kb. 74m/m% Pb-t tartalmazó ötvözetnek felel meg.

2. ábra. Sn-Pb-ötvözet olvasztása

3. ábra. Sn-Pb-ötvözet olvasztása, kiegyenesített alapvonallal

²https://upload.wikimedia.org/wikipedia/commons/d/d6/Diagramme binaire Pb Sn.svg

3.3. Fémüveg átkristályosodása

Fémüveg átkristályosodásához szükséges aktiválási energia meghatározása érdekében három külünböző fűtési sebességgel (10 K/min, 20 K/min és 40 K/min)végeztünk méréseket. Mivel az átkristályosodás irreverzibilis folyamat, ezért a mintákat kétszer fűtöttük fel, a második felfűtéskor mért görbét tekintve alapvonalnak. A termogrammokat az 5. ábra mutatja. Az fűtési sebességet ábrázolva $1/T_{\rm max}$ függvényében az egyenes meredekségéből megkapható az aktiválási energia (4. ábra), amely Q=3.02~eV-nak adódott.

fűtési sebesség $[K/min]$	$T_{\max}[K]$
10	663.03
20	672.2
40	680.86

1. táblázat. $T_{\rm max}$ féműveg átkristályosodása során különböző sebességgel növelt hőmérséklet esetén

4. ábra. $\ln v(1/T_{\rm max})$ összefüggés és az illesztett egyenes.

5. ábra. rendre 10 K/min, 20 K/min és 40 K/min fűtési sebességnél mért teljesítménykülönbségek (bal) és a kiegyenesített alapvonal fölött mért entalpiaváltozások és $T_{\rm max}$ hőmérsékletek (jobb)

3.4. Ni ferromágneses-paramágneses fázisátalakulása

A modulált kalorimetria lényege, hogy a lineáris hőmérséklet-idő függést moduláljuk egy szinuszos jellel, ezáltal elkülöníthetővé válnak a reverzibilis és irreverzibilis folyamatok. A kapott jel átlaga jó közelítéssel az irreverzibilis folyamatokt, míg a modulációra

kapott amplitúdó a reverzibilis folyamatokat tükrözi. Ni mintáról ezzel a módszerrel mért adatsor látható a 6. ábrán. Az amplitúdó, amely a fajhővel arányos látható a 7. ábrán. Ebben a fázisátalakulás csúcsként jelenik meg, melyből meghatározható, hogy $T_c=625.2\ K$, az irodalmi adat 631 K^3 .

6. ábra. Ni mintán végzett modulált mérés

7. ábra. Fajhő változása és a hőmérséklet az idő függvényében Ni minta esetén

 $^{^3}$ https://hypertextbook.com/facts/2005/StephanieMa.shtml