Algorithm Analysis

Objectives

- How to estimate the time required for an algorithm
- How to use techniques that drastically reduce the running time of an algorithm
- How to use a mathematical framework that more rigorously describe the running time of an algorithm

What is Algorithm Analysis

 The step to determine the amount of resources, such as time and space, that the algorithm will require to solve a problem.

Algorithm Efficiency and Big-Oh

- Getting a precise measure of the performance of an algorithm is difficult
- Big-Oh notation expresses the performance of an algorithm as a function of the number of items to be processed
- This permits algorithms to be compared for efficiency
- It does so independently of the underlying compiler

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a function, like the builtin clock() function, to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Common Running Time Functions

Function	Name
С	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
N	Linear
$N \log N$	N log N
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Functions in order of increasing growth rate

Linear Growth Rate

Processing time increases in proportion to the number of inputs n

```
public static int search(int[] x, int target) {
  for(int i=0; i<x.length; i++) {
    if (x[i]==target)
      return i;
  }
  return -1; // target not found
}</pre>
```

- Let n be x.length
- Target not present: for loop will execute n times
- Target present: for loop will execute (on average) (n + 1)/2 times
- Therefore, the total execution time is directly proportional to n
- This is described as a growth rate of order n or O(n)

n * m Growth Rate

Processing time can be dependent on two different inputs n and m

```
public static boolean areDifferent(int[] x, int[] y) {
  for(int i=0; i<x.length; i++) {
    if (search(y, x[i]) != -1)
      return false;
}
return true;
}</pre>
```

- The for loop will execute x.length times
- But it will call search, which will execute y.length times
- The total execution time is proportional to (x.length * y.length)
- The growth rate has an order of n m or O(n m)

Quadratic Growth Rate

Processing time proportional to square of number of inputs n

```
public static boolean areUnique(int[] x) {
  for(int i=0; i<x.length; i++) {
    for(int j=0; j<x.length; j++) {
      if (i != j && x[i] == x[j])
        return false;
    }
  return true;
}</pre>
```

- The for loop with i as index will execute x.length times
- The for loop with j as index will execute x.length times
- The total number of times the inner loop will execute is (x.length)^2
- I The growth rate has an order of n^2 or O(n^2)

Running Time Example

```
Nested loop executes Simple
Statement n^2 times
Loop executes 5 Simple
Statements n times
25 Simple Statements are
executed
Conclusion: the relationship
between processing time and n
(number of data items
processed) is:
\mathcal{T}(n) = n^2 + 5n + 25
```

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
             Simple Statement
   for (int i = 0; i < n; i++) {
     Simple Statement 1
     Simple Statement 2
8
     Simple Statement 3
     Simple Statement 4
10
     Simple Statement 5
11
12
  Simple Statement 6
   Simple Statement 7
15
   Simple Statement 30
16
```

Why Not Compare Algorithms Using T?

- Comparing algorithms based on running time T (n) is not convenient
- The formulas describing T can be complicated
- It is better to bound T by another function
- That way algorithms can be compared by comparing their bounds
- The growth rate of f (n) will be determined by the fastest growing term, which is the one with the largest exponent
 - In the example, T(n) = n2 + 5n + 25 has growth order $O(n^2)$
- In general, it is safe to ignore all constants and to drop the lowerorder terms when determining the order of magnitude
- The Big-oh notation O(f (n)) for T means "roughly" that f (n) is a bound for T, for large enough values of n

Big-Oh Notation

- We adopt special notation to define upper bounds and lower bounds on functions
- The O() in the previous examples can be thought of as an abbreviation of "order of magnitude"
- A simple way to determine the big-O notation of an algorithm is to look at the loops and to
 - see whether the loops are nested
 - consider the number of times a loop is executed
- Assuming a loop body consists only of simple statements and executes at most n times,
 - a single loop is O (n)
 - a pair of nested loops is O (n²)
 - a nested pair of loops inside another is O (n³)
 - and so on . . .

Big-Oh Notation

You must also examine the number of times a loop is executed

```
for(int i=1; i < x.length; i *= 2) {
    // Do something with x[i]
}</pre>
```

- The loop body will execute k times, with i having the following values: 1; 2; 4; 8; 16; ...; 2^{k_r} until 2^k is greater or equal to x.length
- Lets deduce the value of k
 - $k = log_2(x.length)$
 - Thus we say the loop is O(log₂ n)
- Logarithmic functions grow slowly as the number of data items n increases

Big-Oh Example

Formal Definition

- Big-oh: For N greater than some constant N₀, There exists some constant c such that c*f(N) bounds T(N), i.e. T(N)<=c*f(N), when N>=N₀
- Alternately, O(f(N)) can be thought of as meaning

$$T(N) = O(f(N)) \leftarrow \lim_{N \to \infty} f(N) \ge \lim_{N \to \infty} T(N)$$

 Big-Oh notation is also referred to as asymptotic analysis, for this reason

Relatives of Big-Oh

big-Omega

- f(n) is $\Omega(g(n))$ if there is a constant c > 0
- and an integer constant $n_0 \ge 1$ such that
- $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \bullet g(n) \le f(n) \le c'' \bullet g(n)$ for $n \ge n_0$

little-oh

• f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

little-omega

• f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

Big-Oh

• f(n) is O(g(n)) if f(n) is asymptotically **less than or equal** to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater than or equal** to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is asymptotically **equal** to g(n)

little-oh

• f(n) is o(g(n)) if f(n) is asymptotically **strictly less** than g(n)

little-omega

• f(n) is $\omega(g(n))$ if is asymptotically **strictly greater** than g(n)

Example Uses of the Relatives of Big-Oh

• $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let
$$c = 5$$
 and $n_0 = 1$

• $5n^2$ is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

let
$$c = 1$$
 and $n_0 = 1$

• $5n^2$ is $\omega(n)$

f(n) is $\omega(g(n))$ if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

need $5n_0^2 \ge c \cdot n_0 \rightarrow \text{given } c$, the n_0 that satisfies this is $n_0 \ge c/5 \ge 0$

BACKUP SLIDES

Math Background: Exponents

- $X^AX^B = X^{A+B}$
- $X^A/X^B = X^{A-B}$
- $(X^A)^B = X^{AB}$
- $X^{N} + X^{N} = 2X^{N} != X^{2N}$
- $2^N + 2^N = 2^{N+1}$

Math Background: Logarithms

- $X^A = B \text{ iff } log_X B = A$
- $log_AB = log_CB/log_CA; A,B,C > 0,A != 1$
- logAB = logA + logB; A,B > 0

Math Background: Series

$$\sum_{i=0}^{N} 2^{i} = 2^{N+1} - 1$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} \approx \frac{N^{2}}{2}$$

$$\sum_{i=1}^{N} i^{2} = \frac{N(N+1)(2N+1)}{6} \approx \frac{N^{3}}{3}$$

Math Background: Proofs

- Proof by Induction:
 - Prove base case
 - Inductive hypothesis. Prove claim for current state assuming truth in previous state
- Proof by Contradiction: assume claim is false.
 - Show that assumption leads to contradiction