

Evaluation problem

Figure 1 illustrates a schematic representation of the left-wing main landing gear an instant before touchdown, when the aircraft velocity is V = 285 km/h. The structure is made of a material with a Young Modulus E = 150 GPa.

Figure 1. Schematic representation of the left-wing main landing gear and its cross-section areas. Consider the distance between point 1 and the runway is small enough to assume the loads are applied directly in point 1.

Questions:

- 1. Assuming a thin-walled sections B and C ($t \ll a, b, c$) for 2-4 and 6-5 beams, respectively, compute the cross-section areas and inertias in the z-direction. Compute the normal and friction forces, N and F, assuming a wheel's mass moment of inertia of $I_0 = 330 \ kg \ m^2$ and that it takes $t = 0.95 \ s$ for it to reach its maximum spin velocity. Consider the friction coefficient between the tyre and the runway as $\mu = 0.4$.
- 2. Implement a MATLAB® code to numerically compute the displacement, rotation, shear force and bending moment distributions on the structure for the conditions in Figure 1.
- 3. In sections B and C, compute and sketch the shear stress (τ) and the normal stress (σ) distributions in nodes 2, 4, 6, 5.
- 4. Obtain the position of the maximum normal and shear stresses in sections B and C.

14/04/2020

The assignment can be done in groups of **maximum 2 people**. Only one of the members must submit a compressed (.zip) file to Atenea containing the following:

- All MATLAB® script files used in the assignment. There must be an executable script file, which must be named 'MAIN'.
- A report including:
 - o A brief description of the procedure used to solve the problem.
 - The answers to the questions
 - Requested results.
 - o Figures:
 - Plot of the deformed structure. Use the provided 'plotBeam2D' function.
 - Plots of the displacements, rotations, shear force and bending moments for the numerical solution. Use the provided 'plotBeamIntForces' function.
 - Values of the axial force, shear force and bending moments at each node for the elements 2-6, 6-4 and 6-5.
 - Shear stress (τ) and the normal stress (σ) distributions in nodes 2, 4, 6, 5

Note 1: The report can be written in Catalan, Spanish or English and both technical and presentation aspects will be considered in the grading.

Note 2: This work is half of the midterm exam.

14/04/2020