1 Линейная алгебра для самых трудолюбивых.

- 1. Пусть $A,B\in Mat_{2k+1,2k+1}(F),\ AB=0$. Докажите, что либо $A+A^T$, либо $B+B^T$ вырождена.
- 2. Могут ли для поля F и абелевой группы V существовать две неизоморфные структуры F-векторного пространства на V.
- 3. Пусть GL(n) группа обратимых матриц $n \times n$, U(n) группа унитреугольных матриц $n \times n$, то есть верхнетреугольных матриц на главной диагонали которых все элементы равны 1. Пусть W = W(n) множество матриц перестановок, а D = D(n) множество диагональных матриц. Покажите, что имеет место разложение

$$GL(n) = \bigsqcup_{d \in D} \bigsqcup_{w \in W} U(n)wdU(n).$$

4. Пусть F— поле, $n=2^k$ для $k \in \mathbb{N}, c_1, \ldots, c_n \in F$. Покажите, что существует матрица $C \in Mat_n(F)$, чья первая строка является строчкой (c_1, \ldots, c_n) и верно

$$CC^{T} = C^{T}C = (c_1^2 + \dots + c_n^2)E_n,$$

где E_n — единичная матрица. Докажите с помощью этого утверждения, что суммы $n=2^k$ квадратов в поле образуют моноид отностительно умножения.

- 5. Пусть V векторное пространство размерности n над полем F. Объясните, почему множество пар подпространств $U_1, U_2 \leq V$ с точностью до действия GL_n находится во взимно-однозначном соответствии с множеством троек (a,b,c) неотрицательных целых чисел, таких, что $a+b+c \leq n$. Разработайте классификацию троек подпространств $U_1, U_2, U_3 \leq V$ с точностью до действия GL_n .
- 6. Разработайте классификацию четверок подпространств $U_1, U_2, U_3, U_4 \leq V$ с точностью до действия GL_n .

2 Ещё теория групп.

- 1. Пусть p простое число и $|G| = p^n$. Докажите, что $Z(G) \neq \{1\}$. Используя этот результат, докажите, что все грцппы порядка p^2 абелевы и классифицируйте их.
- 2. Вспомните, что такое группа $U_3(\mathbb{Z}/p\mathbb{Z})$. Абелева ли эта группа? Каков её порядок?
- 3. Докажите, что $(ab)^n = (ba)^n$ для любых $a, b \in G$ тогда и только тогда, когда $x^n \in Z(G)$ для любого $x \in G$.
- 4. Докажите, что, если $(ab)^2 = (ba)^2$ для любых $a, b \in G$, то любой элемент G коммутирует со всеми элементами из своего класса сопряжённости.
- 5. Пусть K, H группы и $\phi: K \to Aut(H)$ гомоморфизм групп. Будем через ϕ_k образ $k \in K$ под дейстием ϕ (он же $\phi(k)$). Обозначим через $H \rtimes_{\phi} K$ множество $H \times K$ с операцией $(h_1, k_1)(h_2, k_2) = (h_1\phi_{k_1}(h_2), k_1k_2)$. Докажите, что $H \rtimes_{\phi} K$ группа с

- подгруппами H и K, пересекающимися по единице, такими, что H нормальна и $(H \rtimes_{\phi} K)/H \cong K$. Эта группа называется полупрямым произведением групп H и K (обратите внимание, что полупрямое произведение H и K не единственно).
- 6. Пусть группа G имеет нормальную подгруппу H и подгруппу K такие, что $H \cap K = \{1\}$ и HK = G. Докажите, что $G \cong H \rtimes_{\phi} K$ для некоторого гомоморфизма $\phi : K \to Aut(H)$.
- 7. Пусть V аддитивная группа счетномерного векторного пространства над $\mathbb{Z}/2\mathbb{Z}$ с базисом e_i ($i \in \mathbb{Z}$), пронумерованным целыми числами. Определим $\phi : \mathbb{Z} \to Aut(V)$ равенством $\phi_n(e_i) = e_{i+n}$. Докажите, что группа $V \rtimes_{\phi} \mathbb{Z}$ конечно порождена.
- 8. Пусть $f: H \to G$ эпиморфизм групп, то есть f гомоморфизм и для двух гомоморфизмов $f_1, f_2: G \to X$ из равенства $f_1f = f_2f$ следует $f_1 = f_2$. Докажите, что отоюражение f сюръективно.
 - Указания: Пусть 2^G множество подмножеств G с опрерацией симметрической разности Δ . Определим $\phi: G \to Aut(2^G)$ равенством $\phi_g(U) = gU$. Рассмотрим $X = 2^G \rtimes_{\phi} G$. Далее $U \in 2^G$ определим $f_U: G \mapsto X$ формулой $f_U(g) = (g, \phi_g(U)\Delta U)$. Покажите, что f_U является гомоморфизмом для любого $U \in 2^G$. Покажите, что $f_U = f_V$ тогда и только тогда, когда либо U = V, либо $U = G \setminus V$. Покажите, что $f_U f = f_V f$ тогда и только тогда, когда $U\Delta V$ является объединением какого-то набора левых смежных классов G по f(H). Выведите отсюда утверждение задачи.
- 9. Вычислите коммутант группы D_n .
- 10. Пусть H нормальная подгруппа группы G такая, что $H \cap [G,G] = \{1\}$. Докажите, что $H \subset Z(G)$.
- 11. Докажите, что коммутатор любых двух элементов группы представляется в виде произведения трёх квадратов.
- 12. Докажите, что $(ab)^2 = (ba)^2$ для любых $a, b \in G$ тогда и только тогда, когда [G, G] изоморфно аддитивной группе некоторого пространства над $\mathbb{Z}/2\mathbb{Z}$.
- 13. Покажите, что, если G конечная группа нечётного порядка, то произведение всех элементов G в любом порядке принадлежит [G,G].
- 14. Докажите, что коммутант $H \rtimes_{\phi} K$ порождается [H, H], [K, K] и элементами вида $\phi_k(h)h^{-1}$ для всех $k \in K$ и $h \in H$. В частности, $[H \times K, H \times K] = [H, H] \times [K, K]$.