

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester Examination 2022-23

Date of Examination _ Session: (FN/AN) Duration: 2 hrs Full Marks: 20 Subject No.: CS60050

Subject Name: Machine Learning Department/ Center/ School: Computer Science and Engineering

Special Instructions (if any): Write answers to all questions of a Section together.

Section A (5×1)

QUESTION 1:

What is teacher noise?

Type: MCO

- a) Noise due to hyper-parameter selection of the model
- b) Error in labeling
- c) Noise due to transmission
- d) None of the above

QUESTION 2:

What is the cardinality of inductive bias set for a rote learner?

- a) 2
- b) Dataset dependent
- c) 0
- d) Infinite

QUESTION 3:

Type: MCQ

Type: MCQ

Assume that the source population has 1 crore samples and follows Binomial distribution. 2 lakh samples are taken randomly from the population. According to the Central Limit Theorem, what is the distribution of the samples mean?

- a) Binomial
- b) Cannot be determined
- c) Skewed
- d) Normal

QUESTION 4:

John speaks truth 3 out of 5 times. An unbiased dice is tossed. John reports that there is a six.

QUESTION 5:

A training example has the 6 attributes, out of which 2 attributes can take 3 values each, and the rest can take 2 values each. What is the size of the input space and the number of distinct

Maria Course

QUESTION 6:

It is estimated that 30% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a non-spam email?

QUESTION 7:

The following table has 5 attributes. Each attribute can take 3 values a; b; c. i) Use Find-S algorithm to find the final hypothesis. ii) Use Candidate elimination algorithm to find the final hypothesis at which specific and general hypothesis converge. Show the Version space.

Attribute 1	Attribute 2	Attribute 3	Attribute 4	Attribute 5	Label
a	С	b	a	b	1
a	a	a	a	a	0
a	С	b	a	a	0
a	a	b	b	С	1
a	b	a	С	a	0
b	b	a	a	a	0

QUESTION 8:

Consider the following Table. Find the root node along with the corresponding Information Gain using Entropy.

Outlook	Temperature	Play	
sunny	hot	0	
rainy	cool	0	
cloudy	hot	1	
humid	hot	0	
sunny	cool	1	
cloudy	cool	1	

OUESTION 9:

Solve the question on Bayesian network:

- i) There are 4 features present, A, B, C and D. Feature B and C are influenced by Feature A. However, no other features can influence A. Both Feature B and C influence Feature D. Form the Bayesian network for this relation.
- ii) Using the Bayesian Network formed in i), compute P(A,~B, C, D) using the following information. P(A) = 0.2, P(A|B) = 0.4, P(A|C) = 0.3, P(A|D) = 0.6, P(A|C,B) = 0.3, P(A|C,B) = 0.4 $0.1, P(A|\sim B, C) = 0.2, P(A|B, C) = 0.4 \ P(B) = 0.4, P(B|A) = 0.2, P(B|C) = 0.8, P(B|D) = 0.1, P($ $P(B|C,D) = 0.5, P(B|\sim C,A) = 0.3, P(B|\sim D,C) = 0.6 P(C) = 0.6, P(C|A) = 0.5, P(C|B) = 0.7,$ P(C|D) = 0.3, P(C|A,B) = 0.3, P(C|A,B) = 0.1, P(C|A,D) = 0.2, P(C|B,D) = 0.4 P(D) = 0.2, P(C|B,D) = 0.4 P(D) = 0.2, P(C|B,D) = 0.4 P(D) = 0.4, P(D|A,B) = 0.4 P(D|A,B) =P(D|A) = 0.4, P(D|B) = 0.6, P(D|C) = 0.8 P(D|A,B) = 0.4, $P(D|\sim A,B) = 0.9$, $P(D|\sim B,C) = 0.6$, P(D|B,C) = 0.7

Draw the decision tree with its height not more than 3, to represent the boolean function: $[A \wedge D] \vee [B \wedge C]$