Academic Projects

Feedback Control System for a 75 W Buck Converter (Simulink)

- Designed a buck converter and its feedback control loop using a PID controller to obtain a phase margin of 30 degrees.
- Simulated the model on MATLAB to collect phase margin and observed time domain response at different input voltages.

Design and layout of fully differential telescopic cascode amplifier with CMFB (Cadence Virtuoso)

- Designed differential telescopic opamp for the Gain = 72 dB, differential output swing = 3V, power dissipation = 10mW, Gain-Bandwidth product: 122MHz, supply = 3V.
- Obtained device dimensions form required output swing, bias current, overdrive voltages and increased PMOS devices width for higher gain.
- Obtained bias voltages from input CM level, Performed DC analysis to check the operating point of all the transistors, AC, stb analysis to find loop gain, stability requirements.
- Located poles of the opamp and increased output capacitance for meeting the bandwidth and phase margin requirements.

Low Noise Amplifier (Cadence Virtuoso)

- Implemented a low noise amplifier using a cascade configuration.
- The power gain of the amplifier was 11.4dB at frequencies between 3.3Ghz and 3.4Ghz.
- The noise figure was 1.8dB and the voltage standing wave ratio at the input and output was 1.14 and 1.04 respectively.

Design of voltage-controlled oscillator and frequency divider at 2.4GHz (Cadence Virtuoso)

- Designed an LC VCO with operating frequency of 2.4GHz and a Phase noise of -122dBc/Hz.
- Technologies used: Cadence Spectre

Process corner analysis and Monte Carlo analysis (Cadence Virtuoso)

- Analyzed variation of β_{eff} and V_{th} variation of four diode connected MOSFET's under different process corners by setting the environment in ADEXL (Process-Mismatch statistical variation in Montecarlo).
- Understood process corners like strong, weak, typical and respective V_{th} and current variation by doing DC analysis on four transistors.

Designed Bandgap reference circuit (Cadence Virtuoso)

- Designed CTAT circuit with a diode (BJT), PTAT with the series of diodes (BJT) and simulated respective voltages in reference to temperature.
- Observed PTAT slope is lesser than CTAT, used ratio of resistors to scale the PTAT with CTAT.
- Obtained reference voltage as 1.2 V and simulated the bandgap circuit in various process corners.
- Achieved low temperature coefficients of 150ppm/C across temperature range of -20°C to 120°C by efficient slope cancellation of PTAT and CTAT currents.

Design of Flash ADC (Cadence Virtuoso)

- This project involves design of a 4-bit Flash ADC with power consumption less than 1.5mW and sampling frequency 20MHz.
- A fully differential dynamic comparator is used so that input offset is contributed by differential pair.
- Studied and analysed performance metrics like kickback noise, offset, regeneration time.