CprE 381 – Computer Organization and Assembly-Level Programming

Lab-02 Report

Student Name Nicholas Krabbenhoft

Section / Lab Time S7

Submit a typeset pdf version of this on Canvas by the due date (i.e., the start of your next lab section). Refer to the highlighted language in the Lab-02 instructions for the context of the following questions.

- a. [Prelab] At the end of Chapter 3, answer questions 4b), 5a), and 6.
 - 4. Write VHDL entity declarations that describe the following black-box diagrams:

5. Provide black-box diagrams that are defined by the following VHDL entity declarations:

entity ckt_c is
port (
 bun_a, bun_b, bun_c : in std_logic_vector(7 downto 0);
 lda, ldb, ldc : in std_logic;
 reg_a, reg_b, reg_c : out std_logic_vector(7 downto 0));
end ckt_c;

6. The following two entity declarations contain two of the most common syntax errors made in VHDL. What are they?

a)
entity ckt_a is
port (
 J,K : in std_logic;
 CLK : in std_logic
 Q : out std_logic;)
end ckt_a;

```
entity ckt_b is
port (
mr_fluffy : in std_logic_vector(15 downto 0);
mux_ctrl : in std_logic_vector(3 downto 0);
byte_out : out std_logic_vector(3 downto 0);
end ckt_b;
```

A is missing a semicolon on line 4. B is missing the end). There should be a ");" before the end ckt_b;

b. [Part 1 (c)] Waveform.

c. [Part 2 (a)] Draw the truth table, Boolean equation, and Boolean circuit equivalent (using only two-input gates) that implements a 2:1 mux.

d. [Part 2 (e)] Waveform.

e. [Part 3 (a)] Draw the truth table, Boolean equation, and Boolean circuit equivalent (using only two-input gates) that implements a full adder.

page 3 & 4 & 5 of drawings

f. [Part 3 (e)] Waveform.

+ 💠 /adder_testbed/i_a	33'd604197	604197
→ /adder_testbed/i_b	33'd75331	75331
/adder_testbed/i_carry	1	
<u>→</u> ⟨adder_testbed/o_sum_struct	33'd679529	679529
/adder_testbed/o_carry_struct	0	
<u>→</u> ⟨adder_testbed/o_sum_flow	33'd679528	679528

g. [Part 4 (a)] Draw a schematic (don't use a schematic capture tool) showing how an N-bitadder/subtractor with control can be implemented using only the three main components designed in problems 1), 2), and 3) (the N-bit inverter, N-bit 2:1 mux, and N-bit adder). How is the 'nAdd Sub' bit used?

Page 6 of drawings

h. [Part 4 (c)] Provide multiple waveform screenshots in your write-up to confirm that this component is working correctly. What test-cases did you include and why?

i.

j. [Feedback] You must complete this section for your lab to be graded. Write down the first response you think of; I expect it to take roughly 5 minutes (do not take more than 10 minutes).

i. How many hours did you spend on this lab?

Task	During lab time	Outside of lab time
Reading lab	15 min	10 min
Pencil/paper	10 min	35 min
design		
VHDL design	45 min	2 hours
Assembly coding	0	0
Simulation	10	30 min
Debugging	60 min	4-5 hours
Report writing	5 min	15 min
Other:		
Total	2 and a half hours	8 hours roughly

- ii. If you could change one thing about the lab experience, what would it be? Why?Less lab, split it into two.
- iii. What was the most interesting part of the lab?

The slowly building up was nice to see.