MATTHEW (YI-CHEN) LEE

Taipei, Taiwan | (347) 468-2567 | GoogleScholar | mattlee0366@gmail.com

RESEARCH INTEREST

My research interests lie in three directions:

- Advancing the theoretical foundations of machine learning by investigating the statistical and computational properties of modern, frontier methodologies and architectures such as generative models and transformers
- Bridging theory and practice in interpretable and reliable AI, with a focus on understanding model behavior and ensuring robustness in high-stakes domains such as science and healthcare.
- Developing machine learning-based methods for medical applications, including imaging and treatment planning

EDUCATION

National Taiwan University, Taipei, Taiwan

September 2022 - June 2025

Bachelor of Science in Physics

Relevant Courses: High Dimensional Probability, Mathematical Statistics, Stochastic Process, Statistical Mechanics,
Complex Analysis, Differential Equations, Linear Algebra, Introduction to Probability Theory, Introduction to Statistics

EXPERIENCE

Research Assistant, University of Chicago, Chicago, IL, Professor James J. Sohn

January 2025 - Present

- Developed a hybrid deep learning framework for **automated**, **MRI-only pre-planning in high-dose-rate (HDR) gynecological interstitial brachytherapy**, bypassing the need for a separate CT scan for treatment planning.
- Architected a two-stage hierarchical model: a rule-based algorithm for initial needle filtering, followed by a Dueling Deep Q-Network (DQN) to generate geometric constraints for an Integer Linear Programming (ILP) solver.
- Validated the framework against expert clinical plans, achieving a high level of agreement (89% sensitivity) in needle selection and demonstrating exceptional accuracy with very few incorrect selections (0.60 false positives per case).

Research Assistant, Northwestern University, Evanston, IL, Professor Han Liu

April 2023 - Present

- Co-first author on a paper published on the **Thirteenth International Conference on Learning Representations (ICLR)** investigating the approximation, estimation, and minimax optimality rates of conditional diffusion transformers.
- Developed a unified theoretical framework for high-order flow matching that incorporates trajectory derivatives up to an arbitrary order, and established sharp statistical rates for this method implemented with transformer networks.
- Introduced an interpretable modeling paradigm that casts statistical models into binary regression and interprets via easily accessible linear effects with universal Ising model.

PUBLICATION (*) DENOTES EQUAL CONTRIBUTION

[1] Jerry Y. H.*, Weimin W.*, Yi-Chen L.*, Yu-Chao H.*, Minshuo C., Han L. "On Statistical Rates of Conditional Diffusion Transformers: Approximation, Estimation and Minimax Optimality". *International Conference on Learning Representations (ICLR 2025)* [pdf]

UNDER REVIEW (*) DENOTES EQUAL CONTRIBUTION

- [2] Maojiang S.*, Jerry Y. H.*, Yi-Chen L.*, Ning Z., Jui-Hui C., Shang W., Zhao S., Minshuo C., Han L. "High-Order Flow Matching: Unified Framework and Sharp Statistical Rates". Under Review at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025).
- [3] Jerry Y. H.*, Yi-Chen L.*, Hude L., En-Jui K., Han L. "Binary Regression: Universal Ising Model, Binary Expansion and Beyond". Under Review at the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025).
- [4] Yi-Chen L., Sang K. Y., Ethan S., Yingzi L., Zhen T., Tianming W., Yasmin H., James J. S., "MRI-only Pre-planning for HDR GynInterstitial Brachytherapy using Deep Learning". Under Review at *Physics in Medicine and Biology*

SKILLS

- Computer Skills: Python, R, LaTeX, SQL, experienced in theoretical foundations for LLMs and Deep Generative Models
- Language Skills: Mandarin (native), English (fluent)
- Certification: Google Data Analytics