Contents			6	G Geometry	
1	Setting	1		6.1 Basic Operations	
_	1.1 vimrc	1		6.3 Convex Hull	
				6.4 Polygon Cut	
2	Math	1		6.5 Pick's theorem	
	2.1 Basic Arithmetic	1			
	2.2 Sieve Methods: Prime, Divisor, Euler phi	2	7	String	17
	2.3 Primality Test	2		7.1 KMP	17
	2.4 Chinese Remainder Theorem	2		7.2 Aho-Corasick	18
	2.5 Rational Number Class	2		7.3 Suffix Array with LCP	18
	2.6 Burnside's Lemma	3		7.4 Suffix Tree	
	2.7 Kirchoff's Theorem	3		7.5 Manacher's Algorithm	19
	2.8 Fast Fourier Transform	3			
	2.9 Matrix Operations	3	8		19
	2.10 Gaussian Elimination	4		8.1 Fast I/O	
	2.11 Simplex Algorithm	4		8.2 Magic Numbers	
_		_		8.3 Java Examples	19
3	Data Structure	5			
	3.1 Order statistic tree	5			
	3.2 Fenwick Tree	5	1	Setting	
	3.3 Segment Tree with Lazy Propagation	6		betting	
	3.4 Persistent Segment Tree	6			
	3.5 Splay Tree	7	1.	1 vimrc	
	3.6 Link/Cut Tree	8			
4	DP	8	se	t nocp ai si nu et bs=2 mouse=a	
	4.1 Convex Hull Optimization	8		t ts=2 sts=2 sw=2 hls showmatch	
	4.1.1 requirement	8		t ruler rulerformat=%17.(%1:%c%) t noswapfile autoread wildmenu wildmode=list:longest	
	4.1.2 Source Code	8		ntax on colorscheme evening	
	4.2 Divide & Conquer Optimization	9			
	4.3 Knuth Optimization	9		p <f5> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -o %:r && %:r < %: .in > %:r.out<cr></cr></cr></esc></f5>	:r
	•			p <f6> <esc>:w<cr>:!g++ -g -Wallstd=c++0x -02 %:r.cpp -0 %:r && %:r < %:</cr></esc></f6>	:r
5	Graph	9		.in <cr></cr>	
	5.1 SCC (Tarjan)	9	ma	p k gk	
	5.2 SCC (Kosaraju)	10		p j gj	
	5.3 2-SAT	10			
	5.4 BCC, Cut vertex, Bridge			p <c-h> <c-w>h p <c-j> <c-w>j</c-w></c-j></c-w></c-h>	
	5.5 Shortest Path Faster Algorithm			p <c-k> <c-w>k</c-w></c-k>	
	5.6 Lowest Common Ancestor		ma	p <c-1> <c-w>1</c-w></c-1>	
	5.7 Heavy-Light Decomposition			n xC +> ,+ahnayxXD>	
	5.8 Bipartite Matching (Hopcroft-Karp)		ma	p <c-t> :tabnew<cr></cr></c-t>	
	5.9 Maximum Flow (Dinic)		CO	mmand -nargs=1 PS :cd d:/ :vi <args>.cpp vs <args>.in sp <args>.out</args></args></args>	
	5.10 Min-cost Maximum Flow	14			

2 Math

2.1 Basic Arithmetic

```
typedef long long 11;
typedef unsigned long long ull;
// calculate lg2(a)
inline int lg2(11 a)
    return 63 - __builtin_clzll(a);
// calculate the number of 1-bits
inline int bitcount(11 a)
    return __builtin_popcountll(a);
// calculate ceil(a/b)
// |a|, |b| \le (2^63) - 1 \text{ (does not dover } -2^63)
ll ceildiv(ll a, ll b) {
    if (b < 0) return ceildiv(-a, -b);
    if (a < 0) return (-a) / b;
    return ((ull)a + (ull)b - 1ull) / b;
// calculate floor(a/b)
// |a|, |b| \le (2^63) - 1 \text{ (does not cover } -2^63)
11 floordiv(ll a, ll b) {
    if (b < 0) return floordiv(-a, -b);
    if (a \ge 0) return a / b;
    return -(11)(((ull)(-a) + b - 1) / b);
// calculate a*b % m
// x86-64 only
11 large_mod_mul(11 a, 11 b, 11 m)
    return ll((__int128)a*(__int128)b%m);
// calculate a*b % m
// |m| < 2^62, x86 available
// O(logb)
11 large_mod_mul(11 a, 11 b, 11 m)
    a \% = m; b \% = m; 11 r = 0, v = a;
    while (b) {
        if (b\&1) r = (r + v) % m;
        b >>= 1;
        v = (v << 1) % m;
    return r:
```

```
// calculate n^k % m
11 modpow(11 n, 11 k, 11 m) {
    ll ret = 1;
    n %= m;
    while (k) {
        if (k & 1) ret = large_mod_mul(ret, n, m);
        n = large_mod_mul(n, n, m);
       k /= 2;
    return ret;
// calculate gcd(a, b)
11 gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a % b);
// find a pair (c, d) s.t. ac + bd = gcd(a, b)
pair<11, 11> extended_gcd(11 a, 11 b) {
    if (b == 0) return { 1, 0 };
    auto t = extended_gcd(b, a % b);
    return { t.second, t.first - t.second * (a / b) };
// find x in [0,m) s.t. ax === gcd(a, m) \pmod{m}
11 modinverse(ll a, ll m) {
    return (extended_gcd(a, m).first % m + m) % m;
}
// calculate modular inverse for 1 ~ n
void calc_range_modinv(int n, int mod, int ret[]) {
    ret[1] = 1;
    for (int i = 2; i \le n; ++i)
        ret[i] = (11) (mod - mod/i) * ret[mod%i] % mod;
```

2.2 Sieve Methods: Prime, Divisor, Euler phi

```
// find prime numbers in 1 ~ n
// ret[x] = false -> x is prime
// O(n*loglogn)
void sieve(int n, bool ret[]) {
    for (int i = 2; i * i <= n; ++i)
        if (!ret[i])
        for (int j = i * i; j <= n; j += i)
            ret[i] = true;
}

// calculate number of divisors for 1 ~ n
// when you need to calculate sum, change += 1 to += i
// O(n*logn)
void num_of_divisors(int n, int ret[]) {
    for (int i = 1; i <= n; ++i)</pre>
```

2.3 Primality Test

```
bool test_witness(ull a, ull n, ull s) {
    if (a >= n) a %= n;
    if (a <= 1) return true;
    ull d = n \gg s:
    ull x = modpow(a, d, n);
    if (x == 1 \mid \mid x == n-1) return true;
    while (s-- > 1) {
       x = large mod mul(x, x, n);
        x = x * x % n;
       if (x == 1) return false;
       if (x == n-1) return true;
    return false;
// test whether n is prime
// based on miller-rabin test
// O(logn*logn)
bool is prime(ull n) {
    if (n == 2) return true;
    if (n < 2 \mid | n % 2 == 0) return false;
    ull d = n >> 1, s = 1;
    for(; (d&1) == 0; s++) d >>= 1;
#define T(a) test witness(a##ull, n, s)
    if (n < 4759123141ull) return T(2) \&\& T(7) \&\& T(61);
    return T(2) && T(325) && T(9375) && T(28178)
        && T(450775) && T(9780504) && T(1795265022);
#undef T
}
```

2.4 Chinese Remainder Theorem

```
// find x s.t. x === a[0] \pmod{n[0]}
// === a[1] \pmod{n[1]}
// ...
```

```
// assumption: gcd(n[i], n[j]) = 1
11 chinese_remainder(ll* a, ll* n, int size) {
    if (size == 1) return *a;
    ll tmp = modinverse(n[0], n[1]);
    ll tmp2 = (tmp * (a[1] - a[0]) % n[1] + n[1]) % n[1];
    ll ora = a[1];
    ll tgcd = gcd(n[0], n[1]);
    a[1] = a[0] + n[0] / tgcd * tmp2;
    n[1] *= n[0] / tgcd;
    ll ret = chinese_remainder(a + 1, n + 1, size - 1);
    n[1] /= n[0] / tgcd;
    a[1] = ora;
    return ret;
}
```

2.5 Rational Number Class

```
struct rational {
    long long p, q;
    void red() {
        if (q < 0) {
           p = -p;
            q = -q;
        11 t = gcd((p >= 0 ? p : -p), q);
        p /= t;
        q /= t;
    rational(): p(0), q(1) {}
    rational(long long p_{-}): p(p_{-}), q(1) {}
    rational(long long p_, long long q_): p(p_), q(q_) { red(); }
    bool operator == (const rational & rhs) const {
        return p == rhs.p && q == rhs.q;
    bool operator!=(const rational& rhs) const {
        return p != rhs.p || a != rhs.a;
    bool operator<(const rational& rhs) const {</pre>
        return p * rhs.q < rhs.p * q;
    rational operator+(const rational& rhs) const {
        11 q = qcd(q, rhs.q);
        return rational(p * (rhs.q / q) + rhs.p * (q / q), (q / q) * rhs.q);
    rational operator-(const rational& rhs) const {
        11 g = gcd(q, rhs.q);
        return rational(p * (rhs.q / g) - rhs.p * (q / g), (q / g) * rhs.q);
    rational operator*(const rational& rhs) const {
        return rational(p * rhs.p, q * rhs.q);
    rational operator/(const rational& rhs) const {
```

```
return rational(p * rhs.q, q * rhs.p);
};
```

2.6 Burnside's Lemma

경우의 수를 세는데, 특정 transform operation(회전, 반사, ..) 해서 같은 경우들은 하나로 친다. 전체 경우의 수는?

- 각 operation마다 이 operation을 했을 때 변하지 않는 경우의 수를 센다 (단, "아무것도 하지 않는다"라는 operation도 있어야 함!)
- 전체 경우의 수를 더한 후, operation의 수로 나눈다. (답이 맞다면 항상 나누어 떨어져야 한다)

2.7 Kirchoff's Theorem

그래프의 스패닝 트리의 개수를 구하는 정리.

무향 그래프의 Laplacian matrix L를 만든다. 이것은 (정점의 차수 대각 행렬) - (인접행렬) 이다. L에서 행과 열을 하나씩 제거한 것을 L'라 하자. 어느 행/열이든 관계 없다. 그래프의 스패닝 트리의 개수는 $\det(L')$ 이다.

2.8 Fast Fourier Transform

```
void fft(int sign, int n, double *real, double *imag) {
    double theta = sign * 2 * pi / n;
    for (int m = n; m >= 2; m >>= 1, theta *= 2) {
        double wr = 1, wi = 0, c = cos(theta), s = sin(theta);
        for (int i = 0, mh = m >> 1; i < mh; ++i) {
            for (int j = i; j < n; j += m) {
                int k = j + mh;
                double xr = real[j] - real[k], xi = imag[j] - imag[k];
                real[i] += real[k], imag[i] += imag[k];
                real[k] = wr * xr - wi * xi, imag[k] = wr * xi + wi * xr;
            double _wr = wr * c - wi * s, _wi = wr * s + wi * c;
            wr = wr, wi = wi;
    for (int i = 1, j = 0; i < n; ++i) {
        for (int k = n >> 1; k > (j \land = k); k >>= 1);
        if (j < i) swap(real[i], real[j]), swap(imag[i], imag[j]);</pre>
// Compute Poly(a) *Poly(b), write to r; Indexed from 0
// O(n*logn)
int mult(int *a, int n, int *b, int m, int *r) {
    const int maxn = 100;
    static double ra[maxn], rb[maxn], ia[maxn], ib[maxn];
```

```
int fn = 1;
while (fn < n + m) fn <<= 1; // n + m: interested length
for (int i = 0; i < n; ++i) ra[i] = a[i], ia[i] = 0;
for (int i = n; i < fn; ++i) ra[i] = ia[i] = 0;
for (int i = 0; i < m; ++i) rb[i] = b[i], ib[i] = 0;
for (int i = m; i < fn; ++i) rb[i] = ib[i] = 0;
fft(1, fn, ra, ia);
fft(1, fn, rb, ib);
for (int i = 0; i < fn; ++i) {
    double real = ra[i] * rb[i] - ia[i] * ib[i];
    double imag = ra[i] * ib[i] + rb[i] * ia[i];
    ra[i] = real, ia[i] = imag;
}
fft(-1, fn, ra, ia);
for (int i = 0; i < fn; ++i) r[i] = (int)floor(ra[i] / fn + 0.5);
return fn;</pre>
```

2.9 Matrix Operations

```
const int MATSZ = 100;
inline bool is_zero(double a) { return fabs(a) < 1e-9; }</pre>
// out = A^{(-1)}, returns det(A)
// A becomes invalid after call this
// O(n^3)
double inverse_and_det(int n, double A[][MATSZ], double out[][MATSZ]) {
    double det = 1;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) out[i][j] = 0;
        out[i][i] = 1;
    for (int i = 0; i < n; i++) {
        if (is zero(A[i][i])) {
            double maxv = 0;
            int maxid = -1;
            for (int j = i + 1; j < n; j++) {
                auto cur = fabs(A[i][i]);
                if (maxv < cur) {
                    maxv = cur;
                    maxid = j;
            if (maxid == -1 || is zero(A[maxid][i])) return 0;
            for (int k = 0; k < n; k++) {
                A[i][k] += A[maxid][k];
                out[i][k] += out[maxid][k];
            }
        det *= A[i][i];
        double coeff = 1.0 / A[i][i];
        for (int j = 0; j < n; j++) A[i][j] *= coeff;
        for (int j = 0; j < n; j++) out[i][j] *= coeff;
        for (int j = 0; j < n; j++) if (j != i) {
```

```
double mp = A[j][i];
    for (int k = 0; k < n; k++) A[j][k] -= A[i][k] * mp;
    for (int k = 0; k < n; k++) out[j][k] -= out[i][k] * mp;
}
}
return det;
}</pre>
```

2.10 Gaussian Elimination

```
const double EPS = 1e-10;
typedef vector<vector<double>> VVD;
// Gauss-Jordan elimination with full pivoting.
// solving systems of linear equations (AX=B)
// INPUT: a[][] = an n*n matrix
//
            b[][] = an n*m matrix
// OUTPUT: X = an n*m matrix (stored in b[][])
//
            A^{-1} = an n*n matrix (stored in a[][])
// O(n^3)
bool gauss_jordan(VVD& a, VVD& b) {
    const int n = a.size();
    const int m = b[0].size();
    vector<int> irow(n), icol(n), ipiv(n);
    for (int i = 0; i < n; i++) {
       int pj = -1, pk = -1;
       for (int j = 0; j < n; j++) if (!ipiv[j])
           for (int k = 0; k < n; k++) if (!ipiv[k])
               if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk
       if (fabs(a[pj][pk]) < EPS) return false; // matrix is singular
       ipiv[pk]++;
       swap(a[pj], a[pk]);
       swap(b[pj], b[pk]);
       irow[i] = pj;
       icol[i] = pk;
       double c = 1.0 / a[pk][pk];
       a[pk][pk] = 1.0;
       for (int p = 0; p < n; p++) a[pk][p] *= c;
       for (int p = 0; p < m; p++) b[pk][p] *= c;
       for (int p = 0; p < n; p++) if (p != pk) {
           c = a[p][pk];
           a[p][pk] = 0;
           for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
           for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
    for (int p = n - 1; p \ge 0; p--) if (irow[p] != icol[p]) {
       for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
    return true;
```

2.11 Simplex Algorithm

```
// Two-phase simplex algorithm for solving linear programs of the form
       maximize
                    c^T x
//
       subject to Ax <= b
//
                     x >= 0
// INPUT: A -- an m x n matrix
       b -- an m-dimensional vector
//
         c -- an n-dimensional vector
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
          above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI:
const double EPS = 1e-9;
struct LPSolver {
    int m, n;
    VI B, N;
    VVD D;
    LPSolver(const VVD& A, const VD& b, const VD& c) :
        m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
        for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i]
        for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1]
         = b[i]; }
        for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
        N[n] = -1; D[m + 1][n] = 1;
    void pivot(int r, int s) {
        double inv = 1.0 / D[r][s];
        for (int i = 0; i < m + 2; i++) if (i != r)
            for (int j = 0; j < n + 2; j++) if (j != s)
                D[i][i] -= D[r][i] * D[i][s] * inv;
        for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
        for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;
        D[r][s] = inv;
        swap(B[r], N[s]);
    bool simplex(int phase) {
        int x = phase == 1 ? m + 1 : m;
        while (true) {
           int s = -1:
            for (int j = 0; j \le n; j++) {
                if (phase == 2 && N[j] == -1) continue;
                if (s == -1 \mid \mid D[x][j] < D[x][s] \mid \mid D[x][j] == D[x][s] && N[j]
                   < N[s]) s = j;
            if (D[x][s] > -EPS) return true;
```

```
int r = -1:
        for (int i = 0; i < m; i++) {
            if (D[i][s] < EPS) continue;
            if (r == -1 \mid \mid D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s]
             (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i]
                   < B[r]) r = i;
       if (r == -1) return false;
       pivot(r, s);
double solve(VD& x) {
   int r = 0:
   for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
   if (D[r][n + 1] < -EPS) {
       pivot(r, n);
       if (!simplex(1) || D[m + 1][n + 1] < -EPS)
            return -numeric_limits<double>::infinity();
       for (int i = 0; i < m; i++) if (B[i] == -1) {
            int s = -1:
            for (int j = 0; j \le n; j++)
                if (s == -1 \mid \mid D[i][j] < D[i][s] \mid \mid D[i][j] == D[i][s] &&
                 N[j] < N[s]) s = j;
            pivot(i, s);
   if (!simplex(2))
       return numeric_limits<double>::infinity();
   for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];
   return D[m][n + 1];
```

3 Data Structure

};

3.1 Order statistic tree

```
ordered_set X;
for (int i = 1; i < 10; i += 2) X.insert(i); // 1 3 5 7 9
cout << boolalpha;
cout << *X.find_by_order(2) << endl; // 5
cout << *X.find_by_order(4) << endl; // 9
cout << (X.end() == X.find_by_order(5)) << endl; // true

cout << X.order_of_key(-1) << endl; // 0
cout << X.order_of_key(1) << endl; // 0
cout << X.order_of_key(4) << endl; // 2
X.erase(3);
cout << X.order_of_key(4) << endl; // 1
for (int t : X) printf("%d ", t); // 1 5 7 9</pre>
```

3.2 Fenwick Tree

```
const int TSIZE = 100000;
int tree[TSIZE + 1];

// Returns the sum from index 1 to p, inclusive
int query(int p) {
   int ret = 0;
   for (; p > 0; p -= p & -p) ret += tree[p];
   return ret;
}

// Adds val to element with index pos
void add(int p, int val) {
   for (; p <= TSIZE; p += p & -p) tree[p] += val;
}</pre>
```

3.3 Segment Tree with Lazy Propagation

```
// example implementation of sum tree
const int TSIZE = 131072; // always 2^k form && n <= TSIZE
int segtree[TSIZE * 2], prop[TSIZE * 2];
void seg_init(int nod, int 1, int r) {
    if (1 == r) segtree[nod] = dat[1];
    else {
        int m = (1 + r) >> 1;
        seg_init(nod << 1, 1, m);
        seg init(nod << 1 | 1, m + 1, r);
        segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
void seg_relax(int nod, int 1, int r) {
    if (prop[nod] == 0) return;
    if (1 < r) {
        int m = (1 + r) >> 1;
        segtree[nod << 1] += (m - 1 + 1) * prop[nod];
        prop[nod << 1] += prop[nod];</pre>
        segtree[nod << 1 | 1] += (r - m) * prop[nod];
```

```
prop[nod << 1 | 1] += prop[nod];</pre>
                                                                                                 npoll[i].l = &npoll[i*2+1];
                                                                                                 npoll[i].r = &npoll[i*2+2];
    prop[nod] = 0;
int seg_query(int nod, int 1, int r, int s, int e) {
                                                                                             head[0] = &npoll[0];
    if (r < s || e < 1) return 0;
                                                                                             last_q = 0;
    if (s <= 1 && r <= e) return segtree[nod];
                                                                                             pptr = 2 * TSIZE - 1;
    seg relax(nod, 1, r);
                                                                                             q[0] = 0;
    int m = (1 + r) >> 1;
                                                                                             lqidx = 0;
    return seg_query(nod << 1, 1, m, s, e) + seg_query(nod << 1 | 1, m + 1, r,
       s, e);
                                                                                         // update val to pos at time t
                                                                                         // 0 <= t <= MAX OUERY, 0 <= pos < TSIZE
void seg_update(int nod, int 1, int r, int s, int e, int val) {
    if (r < s \mid l \in < 1) return;
                                                                                         void update(int pos, int val, int t, int prev) {
    if (s <= 1 && r <= e) {
                                                                                             head[++last g] = &npoll[pptr++];
        segtree[nod] += (r - l + 1) * val;
                                                                                             node *old = head[q[prev]], *now = head[last_q];
        prop[nod] += val;
                                                                                             while (lqidx < t) q[lqidx++] = q[prev];
        return:
                                                                                             q[t] = last q;
    seg_relax(nod, 1, r);
                                                                                             int flag = 1 << DEPTH;
    int m = (1 + r) >> 1;
                                                                                             for (;;) {
    seg_update(nod << 1, 1, m, s, e, val);</pre>
                                                                                                now->v = old->v + val;
    seg_update(nod << 1 | 1, m + 1, r, s, e, val);</pre>
                                                                                                flag >>= 1;
    segtree[nod] = segtree[nod << 1] + segtree[nod << 1 | 1];</pre>
                                                                                                 if (flag==0) {
                                                                                                     now->1 = now->r = nullptr; break;
// usage:
// seg_update(1, 0, n - 1, qs, qe, val);
                                                                                                 if (flag & pos) {
                                                                                                     now->1 = old->1;
// seg_query(1, 0, n - 1, qs, qe);
                                                                                                     now->r = &npoll[pptr++];
                                                                                                     now = now->r, old = old->r;
3.4 Persistent Segment Tree
                                                                                                } else {
                                                                                                     now->r = old->r;
// persistent segment tree impl: sum tree
                                                                                                     now->1 = &npoll[pptr++];
namespace pstree {
                                                                                                     now = now->1, old = old->1;
    typedef int val_t;
    const int DEPTH = 18;
                                                                                            }
    const int TSIZE = 1 << 18;
    const int MAX_QUERY = 262144;
                                                                                         val_t query(int s, int e, int l, int r, node *n) {
    struct node {
                                                                                             if (s == 1 \&\& e == r) return n -> v;
        val t v;
                                                                                             int m = (1 + r) / 2;
        node *1, *r;
                                                                                             if (m \ge e) return query(s, e, 1, m, n->1);
    } npoll[TSIZE * 2 + MAX_QUERY * (DEPTH + 1)];
                                                                                             else if (m < s) return query(s, e, m + 1, r, n->r);
                                                                                             else return query(s, m, l, m, n-1) + query(m + 1, e, m + 1, r, n-r);
    int pptr, last_q;
    node *head[MAX_QUERY + 1];
                                                                                         // guery summation of [s, e] at time t
    int q[MAX_QUERY + 1];
                                                                                         val t guery(int s, int e, int t) {
    int lgidx;
                                                                                             s = max(0, s); e = min(TSIZE - 1, e);
                                                                                             if (s > e) return 0;
    void init() {
                                                                                             return query(s, e, 0, TSIZE - 1, head[q[t]]);
        // zero-initialize, can be changed freely
        memset(&npoll[TSIZE - 1], 0, sizeof(node) * TSIZE);
        for (int i = TSIZE - 2; i >= 0; i--) {
```

npoll[i].v = 0;

3.5 Splay Tree

```
// example : https://www.acmicpc.net/problem/13159
struct node {
    node* 1, * r, * p;
    int cnt, min, max, val;
    long long sum;
    bool inv;
    node(int _val) :
         cnt(1), sum(_val), min(_val), max(_val), val(_val), inv(false),
         1(nullptr), r(nullptr), p(nullptr) {
};
node* root;
void update(node* x) {
    x - cnt = 1:
    x -> sum = x -> min = x -> max = x -> val;
    if (x->1) {
         x - cnt + = x - 1 - cnt;
         x \rightarrow sum += x \rightarrow 1 \rightarrow sum;
         x-\min = \min(x-\min, x->1-\min);
         x \rightarrow max = max(x \rightarrow max, x \rightarrow 1 \rightarrow max);
    if (x->r) {
         x - cnt += x - r - cnt;
         x \rightarrow sum += x \rightarrow r \rightarrow sum;
         x - \min = \min(x - \min, x - r - \min);
         x -> max = max(x -> max, x -> r -> max);
}
void rotate(node* x) {
    node* p = x - p;
    node* b = nullptr;
    if (x == p->1) {
         p->1 = b = x->r;
         x->r = p;
    else {
         p->r = b = x->1;
         x - > 1 = p;
    x->p = p->p;
    p - p = x;
    if (b) b - p = p;
    x - p? (p == x - p - 1? x - p - 1: x - p - r) = x: (root = x);
    update(p);
    update(x);
// make x into root
void splay(node* x) {
    while (x->p) {
         node* p = x - p;
```

```
node* q = p - p;
        if (g) rotate((x == p->1) == (p == g->1) ? p : x);
        rotate(x);
    }
}
void relax_lazy(node* x) {
    if (!x->inv) return;
    swap(x->1, x->r);
    x - \sin v = \text{false};
    if (x->1) x->1->inv = !x->1->inv;
    if (x->r) x->r->inv = !x->r->inv;
// find kth node in splay tree
void find_kth(int k) {
    node* x = root;
    relax lazv(x);
    while (true) {
        while (x->1 && x->1->cnt > k) {
            x = x - > 1;
            relax_lazy(x);
        if (x->1) k -= x->1->cnt;
        if (!k--) break;
        x = x->r;
        relax_lazy(x);
    splay(x);
// collect [1, r] nodes into one subtree and return its root
node* interval(int 1, int r) {
    find_kth(l - 1);
    node* x = root;
    root = x->r;
    root->p = nullptr;
    find_kth(r - 1 + 1);
    x - > r = root;
    root -> p = x;
    root = x;
    return root->r->l;
void traverse(node* x) {
    relax_lazy(x);
    if (x->1) {
        traverse(x->1);
    // do something
    if (x->r) {
        traverse(x->r);
```

```
void uptree(node* x) {
    if (x->p) {
        uptree(x->p);
    }
    relax_lazy(x);
}
```

3.6 Link/Cut Tree

4 DP

4.1 Convex Hull Optimization

4.1.1 requirement

```
O(n^2) \to O(n \log n)
조건 1) DP 점화식 꼴 D[i] = \min_{j < i} (D[j] + b[j] * a[i]) 조건 2) b[j] \le b[j+1]
```

특수조건) $a[i] \le a[i+1]$ 도 만족하는 경우, 마지막 쿼리의 위치를 저장해두면 이분검색이 필요없어지기 때문에 amortized O(n) 에 해결할 수 있음

4.1.2 Source Code

```
//O(n^3) -> O(n^2)
#define sz 100001
long long s[sz];
long long dp[2][sz];
//deque {index, x pos }
int dqi[sz];
long long dqm[sz];
//pointer to deque
int ql,qr;
//dp[i][j] = max(dp[i][k] + s[j]*s[k] - s[k]^2)
//let y = dp[i][j], x = s[j] -> y = max(s[k]*x + dp[i][k] - s[k]^2);
//push new value to deque
//i = index, x = current x pos
void setg(int i, int x)
    //a1,b1 = prv line, a2,b2 = new line
    int a1, a2 = s[i]:
    long long b1, b2 = dp[0][i] - s[i] * s[i], r;
    //renew deque
    while (qr>=ql)
```

```
//last line enqueued
        a1 = s[dqi[qr]];
        b1 = dp[0][dqi[qr]] - s[dqi[qr]] * s[dqi[qr]];
        //tie breaking to newer one
        if (a1 == a2)
            dqi[qr] = i;
            return;
        // x intersection between last line and new line
        r = (b1 - b2) / (a2 - a1);
        if ((b1 - b2) % (a2 - a1)) r++;
        //last line is not needed
        if (r \le dqm[qr])
            gr--;
        else break;
    if (r < 0) r = 0;
    //push back new line
    if (dqm[qr] < s[n - 1] && r <= s[n - 1])
        dqi[++qr] = i;
        dqm[qr] = r;
    //discard old lines
    while (qr-ql \&\& dqm[ql+1] \le x)
        ql++;
int main()
    for (int j = 0; j < k; j++)
        q1 = 0;
        qr = 1;
        dqi[0] = dqm[0] = 0;
        for (int i = 1; i < n; i++)
            //get line used by current x pos
            setq(i, s[i]);
            //line index to use
            int g = dgi[gl];
            //set dp value
            dp[1][i] = dp[0][g] + s[g] * (s[i] - s[g]);
        for (int i = 0; i < n; i++)
            dp[0][i] = dp[1][i];
            dp[1][i] = 0;
```

```
}
```

4.2 Divide & Conquer Optimization

```
O(kn^2) 	o O(kn\log n) 조건 1) DP 점화식 꼴 D[t][i] = \min_{j < i} (D[t-1][j] + C[j][i]) 조건 2) A[t][i] \vdash D[t][i]의 답이 되는 최소의 j 라 할 때, 아래의 부등식을 만족해야 함 A[t][i] \le A[t][i+1] 조건 2-1) 비용C가 다음의 사각부등식을 만족하는 경우도 조건 2)를 만족하게 됨 C[a][c] + C[b][d] \le C[a][d] + C[b][c] \; (a \le b \le c \le d)
```

4.3 Knuth Optimization

```
O(n^3) \to O(n^2) 조건 1) DP 점화식 꼴 D[i][j] = \min_{i < k < j} (D[i][k] + D[k][j]) + C[i][j] 조건 2) 사각 부등식 C[a][c] + C[b][d] \le C[a][d] + C[b][c] \ (a \le b \le c \le d) 조건 3) 단조성 C[b][c] \le C[a][d] \ (a \le b \le c \le d) 결론) 조건 2, 3을 만족한다면 A[i][j]를 D[i][j]의 답이 되는 최소의 k라 할 때, 아래의 부등식을 만족하게 됨 A[i][j-1] \le A[i][j] \le A[i+1][j]
```

3중 루프를 돌릴 때 위 조건을 이용하면 최종적으로 시간복잡도가 $O(n^2)$ 이 됨

5 Graph

5.1 SCC (Tarjan)

```
const int MAXN = 100;
vector<int> graph[MAXN];
int up[MAXN], visit[MAXN], vtime;
vector<int> stk;
int scc_idx[MAXN], scc_cnt;
```

```
void dfs(int nod) {
    up[nod] = visit[nod] = ++vtime;
    stk.push_back(nod);
    for (int next : graph[nod]) {
        if (visit[next] == 0) {
            dfs(next);
            up[nod] = min(up[nod], up[next]);
        else if (scc_idx[next] == 0)
            up[nod] = min(up[nod], visit[next]);
    if (up[nod] == visit[nod]) {
        ++scc_cnt;
        int t:
        do {
            t = stk.back();
            stk.pop_back();
            scc idx[t] = scc cnt;
        } while (!stk.empty() && t != nod);
// find SCCs in given directed graph
// O(V+E)
void get_scc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    scc cnt = 0;
    memset(scc_idx, 0, sizeof(scc_idx));
    for (int i = 0; i < n; ++i)
        if (visit[i] == 0) dfs(i);
}
5.2 SCC (Kosaraju)
const int MAXN = 100;
vector<int> graph[MAXN], grev[MAXN];
int visit[MAXN], vcnt;
int scc_idx[MAXN], scc_cnt;
vector<int> emit;
void dfs(int nod, vector<int> graph[]) {
    visit[nod] = vcnt;
    for (int next : graph[nod]) {
        if (visit[next] == vcnt) continue;
        dfs(next, graph);
    emit.push_back(nod);
// find SCCs in given graph
// O(V+E)
void get_scc() {
```

 $scc_cnt = 0;$

```
vcnt = 1;
emit.clear();
memset(visit, 0, sizeof(visit));

for (int i = 0; i < n; i++) {
    if (visit[i] == vcnt) continue;
    dfs(i, graph);
}

++vcnt;
for (auto st : vector<int>(emit.rbegin(), emit.rend())) {
    if (visit[st] == vcnt) continue;
    emit.clear();
    dfs(st, grev);
    ++scc_cnt;
    for (auto node : emit)
        scc_idx[node] = scc_cnt;
}
```

5.3 2-SAT

 $(b_x \lor b_y) \land (\neg b_x \lor b_z) \land (b_z \lor \neg b_x) \land \cdots$ 같은 form을 2-CNF라고 함. 주어진 2-CNF 식을 참으로 하는 $\{b_1,b_2,\cdots\}$ 가 존재하는지, 존재한다면 그 값은 무엇인지 구하는 문제를 2-SAT이라 함.

boolean variable b_i 마다 b_i 를 나타내는 정점, $\neg b_i$ 를 나타내는 정점 2개를 만듦. 각 clause $b_i \lor b_j$ 마다 $\neg b_i \to b_j$, $\neg b_j \to b_i$ 이렇게 edge를 이어줌. 그렇게 만든 그래프에서 SCC를 다 구함. 어떤 SCC 안에 b_i 와 $\neg b_i$ 가 같이 포함되어있다면 해가 존재하지 않음. 아니라면 해가 존재함.

해가 존재할 때 구체적인 해를 구하는 방법. 위에서 SCC를 구하면서 SCC DAG를 만들어 준다. 거기서 위상정렬을 한 후, 앞에서부터 SCC를 하나씩 봐준다. 현재 보고있는 SCC 에 b_i 가 속해있는데 얘가 $\neg b_i$ 보다 먼저 등장했다면 b_i = false, 반대의 경우라면 b_i = true, 이미 값이 assign되었다면 pass.

5.4 BCC, Cut vertex, Bridge

```
for (const auto& e : graph[nod]) {
        int next = e.first, edge id = e.second;
        if (edge_id == par_edge) continue;
        if (visit[next] == 0) {
            stk.push back(next);
            ++child;
            dfs(next, edge_id);
            if (up[next] == visit[next]) bridge.push_back(edge_id);
            if (up[next] >= visit[nod]) {
                ++bcc cnt;
                do {
                    bcc_idx[stk.back()].push_back(bcc_cnt);
                    stk.pop back();
                } while (!stk.empty() && stk.back() != nod);
                bcc idx[nod] = bcc cnt;
            up[nod] = min(up[nod], up[next]);
        else
            up[nod] = min(up[nod], visit[next]);
    if ((par edge != -1 && child >= 1 && up[nod] == visit[nod])
        || (par_edge == -1 && child >= 2))
        cut vertex.push back(nod);
// find BCCs & cut vertexs & bridges in undirected graph
// O(V+E)
void get_bcc() {
    vtime = 0;
    memset(visit, 0, sizeof(visit));
    cut vertex.clear();
    bridge.clear();
    for (int i = 0; i < n; ++i) bcc_idx[i].clear();</pre>
    bcc cnt = 0;
    for (int i = 0; i < n; ++i) {
        if (visit[i] == 0)
            dfs(i, -1);
    }
```

5.5 Shortest Path Faster Algorithm

```
// shortest path faster algorithm
// average for random graph : O(E) , worst : O(VE)

const int MAXN = 20001;
const int INF = 100000000;
int n, m;
vector<pair<int, int>> graph[MAXN];
bool inqueue[MAXN];
int dist[MAXN];

void spfa(int st) {
   for (int i = 0; i < n; ++i) {</pre>
```

5.6 Lowest Common Ancestor

```
const int MAXN = 100;
const int MAXLN = 9;
vector<int> tree[MAXN];
int depth[MAXN];
int par [MAXLN] [MAXN];
void dfs(int nod, int parent) {
    for (int next : tree[nod]) {
        if (next == parent) continue;
        depth[next] = depth[nod] + 1;
        par[0] [next] = nod;
        dfs(next, nod);
void prepare_lca() {
    const int root = 0;
    dfs(root, -1);
    par[0][root] = root;
    for (int i = 1; i < MAXLN; ++i)
        for (int j = 0; j < n; ++j)
            par[i][j] = par[i - 1][par[i - 1][j]];
// find lowest common ancestor in tree between u & v
// assumption : must call 'prepare_lca' once before call this
// O(logV)
int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);
    if (depth[u] > depth[v]) {
```

```
for (int i = MAXLN - 1; i >= 0; --i)
    if (depth[u] - (1 << i) >= depth[v])
        u = par[i][u];
}
if (u == v) return u;
for (int i = MAXLN - 1; i >= 0; --i) {
    if (par[i][u] != par[i][v]) {
        u = par[i][u];
        v = par[i][v];
    }
}
return par[0][u];
```

5.7 Heavy-Light Decomposition

```
// heavy-light decomposition
//
// hld h;
// insert edges to tree[0~n-1];
// h.init(n);
// h.decompose(root);
// h.hldquery(u, v); // edges from u to v
struct hld {
    static const int MAXLN = 18;
    static const int MAXN = 1 << (MAXLN - 1);
    vector<int> tree[MAXN];
    int subsize [MAXN], depth [MAXN], pa [MAXLN] [MAXN];
    int chead [MAXN], cidx [MAXN];
    int lchain;
    int flatpos[MAXN + 1], fptr;
    void dfs(int u, int par) {
        pa[0][u] = par;
        subsize[u] = 1;
        for (int v : tree[u]) {
            if (v == pa[0][u]) continue;
            depth[v] = depth[u] + 1;
            dfs(v, u);
            subsize[u] += subsize[v];
    void init(int size)
        lchain = fptr = 0;
        dfs(0, -1);
        memset(chead, -1, sizeof(chead));
        for (int i = 1; i < MAXLN; i++) {
            for (int j = 0; j < size; j++) {
                if (pa[i - 1][j] != -1) {
                    pa[i][j] = pa[i - 1][pa[i - 1][j]];
```

```
void decompose(int u) {
    if (chead[lchain] == -1) chead[lchain] = u;
    cidx[u] = lchain;
    flatpos[u] = ++fptr;
    int maxchd = -1;
    for (int v : tree[u]) {
        if (v == pa[0][u]) continue;
        if (maxchd == -1 || subsize[maxchd] < subsize[v]) maxchd = v;</pre>
    if (maxchd != -1) decompose (maxchd);
    for (int v : tree[u]) {
        if (v == pa[0][u] || v == maxchd) continue;
        ++1chain; decompose(v);
int lca(int u, int v) {
    if (depth[u] < depth[v]) swap(u, v);</pre>
    int logu;
    for (logu = 1; 1 << logu <= depth[u]; logu++);
    int diff = depth[u] - depth[v];
    for (int i = logu; i >= 0; --i) {
        if ((diff >> i) \& 1) u = pa[i][u];
    if (u == v) return u;
    for (int i = logu; i >= 0; --i) {
        if (pa[i][u] != pa[i][v]) {
            u = pa[i][u];
            v = pa[i][v];
    return pa[0][u];
// TODO: implement query functions
inline int query(int s, int e) {
    return 0;
int subguery(int u, int v, int t) {
   int uchain, vchain = cidx[v];
   int ret = 0;
    for (;;) {
        uchain = cidx[u];
        if (uchain == vchain) {
```

```
ret += query(flatpos[v], flatpos[u]);
    break;
}

ret += query(flatpos[chead[uchain]], flatpos[u]);
    u = pa[0][chead[uchain]];
}
    return ret;
}

inline int hldquery(int u, int v) {
    int p = lca(u, v);
    return subquery(u, p) + subquery(v, p) - query(flatpos[p], flatpos[p])
    ;
};
```

5.8 Bipartite Matching (Hopcroft-Karp)

```
// in: n, m, graph
// out: match, matched
// vertex cover: (reached[0][left_node] == 0) || (reached[1][right_node] == 1)
// O(E*sqrt(V))
struct BipartiteMatching {
    int n, m;
    vector<vector<int>> graph;
    vector<int> matched, match, edgeview, level;
    vector<int> reached[2];
    BipartiteMatching(int n, int m): n(n), m(m), graph(n), matched(m, -1),
      match(n, -1) {}
    bool assignLevel() {
        bool reachable = false;
        level.assign(n, -1);
        reached[0].assign(n, 0);
        reached[1].assign(m, 0);
        queue<int> q;
        for (int i = 0; i < n; i++) {
            if (match[i] == -1) {
                level[i] = 0;
                reached[0][i] = 1;
                q.push(i);
        while (!q.empty()) {
            auto cur = q.front(); q.pop();
            for (auto adj : graph[cur]) {
                reached[1][adi] = 1;
                auto next = matched[adj];
                if (next == -1) {
                    reachable = true;
                else if (level[next] == -1) {
                    level[next] = level[cur] + 1;
                    reached[0][next] = 1;
```

```
q.push(next);
           }
        return reachable;
    int findpath(int nod) {
        for (int &i = edgeview[nod]; i < graph[nod].size(); i++) {</pre>
            int adj = graph[nod][i];
            int next = matched[adi];
            if (next >= 0 && level[next] != level[nod] + 1) continue;
            if (next == -1 || findpath(next)) {
                match[nod] = adj;
                matched[adi] = nod:
                return 1;
            }
        return 0;
    int solve() {
       int ans = 0;
        while (assignLevel()) {
            edgeview.assign(n, 0);
            for (int i = 0; i < n; i++)
                if (match[i] == -1)
                    ans += findpath(i);
       return ans;
};
```

5.9 Maximum Flow (Dinic)

```
// usage:
// MaxFlowDinic::init(n);
// MaxFlowDinic::add_edge(0, 1, 100, 100); // for bidirectional edge
// MaxFlowDinic::add edge(1, 2, 100); // directional edge
// result = MaxFlowDinic::solve(0, 2); // source -> sink
// graph[i] [edgeIndex].res -> residual
//
// in order to find out the minimum cut, use `l'.
// if l[i] == 0, i is unrechable.
//
// O(V*V*E)
// with unit capacities, O(\min(V^{(2/3)}, E^{(1/2)}) * E)
struct MaxFlowDinic {
    typedef int flow_t;
    struct Edge {
        int next;
        int inv: /* inverse edge index */
        flow_t res; /* residual */
    };
    int n:
```

```
vector<vector<Edge>> graph;
vector<int> q, 1, start;
void init(int _n) {
    n = n;
    graph.resize(n);
    for (int i = 0; i < n; i++) graph[i].clear();</pre>
void add_edge(int s, int e, flow_t cap, flow_t caprev = 0) {
    Edge forward{ e, graph[e].size(), cap };
    Edge reverse{ s, graph[s].size(), caprev };
    graph[s].push_back(forward);
    graph[e].push_back(reverse);
bool assign level(int source, int sink) {
    int t = 0;
    memset(&1[0], 0, sizeof(1[0]) * 1.size());
    l[source] = 1;
    q[t++] = source;
    for (int h = 0; h < t && !l[sink]; h++) {
        int cur = q[h];
        for (const auto& e : graph[cur]) {
            if (l[e.next] || e.res == 0) continue;
            l[e.next] = l[cur] + 1;
            q[t++] = e.next;
    return 1[sink] != 0;
flow_t block_flow(int cur, int sink, flow_t current) {
    if (cur == sink) return current;
    for (int& i = start[cur]; i < graph[cur].size(); i++) {</pre>
        auto& e = graph[cur][i];
        if (e.res == 0 || 1[e.next] != 1[cur] + 1) continue;
        if (flow_t res = block_flow(e.next, sink, min(e.res, current))) {
            e.res -= res;
            graph[e.next][e.inv].res += res;
            return res:
       }
    return 0;
flow t solve(int source, int sink) {
    a.resize(n);
    l.resize(n);
    start.resize(n):
    flow_t ans = 0;
    while (assign_level(source, sink)) {
        memset(&start[0], 0, sizeof(start[0]) * n);
        while (flow t flow = block flow(source, sink, numeric limits<
         flow t>::max()))
            ans += flow;
    return ans;
```

};

5.10 Min-cost Maximum Flow

```
// precondition: there is no negative cycle.
// usage:
// MinCostFlow mcf(n);
// for(each edges) mcf.addEdge(from, to, cost, capacity);
// mcf.solve(source, sink); // min cost max flow
// mcf.solve(source, sink, 0); // min cost flow
// mcf.solve(source, sink, goal_flow); // min cost flow with total_flow >=
 goal_flow if possible
struct MinCostFlow
    typedef int cap_t;
    typedef int cost_t;
   bool iszerocap(cap_t cap) { return cap == 0; }
    struct edge {
       int target;
        cost t cost;
       cap_t residual_capacity;
       cap_t orig_capacity;
       size_t revid;
   };
    int n:
    vector<vector<edge>> graph;
    vector<cost_t> pi;
   bool needNormalize, ranbefore;
    int lastStart;
   MinCostFlow(int n): graph(n), n(n), pi(n, 0), needNormalize(false),
     ranbefore(false) {}
    void addEdge(int s, int e, cost_t cost, cap_t cap)
       if (s == e) return;
       edge forward={e, cost, cap, cap, graph[e].size()};
        edge backward={s, -cost, 0, 0, graph[s].size()};
       if (cost < 0 | | ranbefore) needNormalize = true;
        graph[s].emplace_back(forward);
       graph[e].emplace back(backward);
   bool normalize(int s) {
       auto infinite_cost = numeric_limits<cost_t>::max();
       vector<cost_t> dist(n, infinite_cost);
       dist[s] = 0;
       queue<int> q;
       vector<int> v(n), relax_count(n);
       v[s] = 1; q.push(s);
       while(!q.empty()) {
           int cur = q.front();
           v[cur] = 0; q.pop();
           if (++relax_count[cur] >= n) return false;
```

```
for (const auto &e : graph[cur]) {
            if (iszerocap(e.residual capacity)) continue;
            auto next = e.target;
            auto ncost = dist[cur] + e.cost;
            if (dist[next] > ncost) {
                dist[next] = ncost;
                if (v[next]) continue;
                v[next] = 1; q.push(next);
    for (int i = 0; i < n; i++) pi[i] = dist[i];
    return true;
pair<cost_t, cap_t> AugmentShortest(int s, int e, cap_t flow_limit) {
    auto infinite_cost = numeric_limits<cost_t>::max();
    auto infinite_flow = numeric_limits<cap_t>::max();
    typedef pair<cost t, int> pg t;
    priority_queue<pq_t, vector<pq_t>, greater<pq_t>> pq;
    vector<pair<cost_t, cap_t>> dist(n, make_pair(infinite_cost, 0));
    vector < int > from(n, -1), v(n);
    if (needNormalize | | (ranbefore && lastStart != s))
       normalize(s):
    ranbefore = true;
    lastStart = s;
    dist[s] = pair<cost_t, cap_t>(0, infinite_flow);
    pg.emplace(dist[s].first, s);
    while(!pq.empty()) {
        auto cur = pg.top().second; pg.pop();
       if (v[cur]) continue:
       v[cur] = 1;
       if (cur == e) continue;
        for (const auto &e : graph[cur]) {
            auto next = e.target;
            if (v[next]) continue;
            if (iszerocap(e.residual_capacity)) continue;
            auto ncost = dist[cur].first + e.cost - pi[next] + pi[cur];
            auto nflow = min(dist[cur].second, e.residual_capacity);
            if (dist[next].first <= ncost) continue;
            dist[next] = make pair(ncost, nflow);
            from[next] = e.revid;
            pq.emplace(dist[next].first, next);
    /** augment the shortest path **/
    auto p = e;
    auto pathcost = dist[p].first + pi[p] - pi[s];
    auto flow = dist[p].second;
    if (iszerocap(flow) | | (flow_limit <= 0 && pathcost >= 0)) return pair<
     cost_t, cap_t>(0, 0);
    if (flow_limit > 0) flow = min(flow, flow_limit);
    /* update potential */
```

```
for (int i = 0; i < n; i++) {
           if (iszerocap(dist[i].second)) continue;
           pi[i] += dist[i].first;
       while (from[p] != -1) {
           auto nedge = from[p];
           auto np = graph[p][nedge].target;
           auto fedge = graph[p][nedge].revid;
           graph[p] [nedge] .residual_capacity += flow;
           graph[np][fedge].residual_capacity -= flow;
           p = np;
       return make_pair(pathcost * flow, flow);
    pair<cost_t,cap_t> solve(int s, int e, cap_t flow_minimum = numeric_limits
      <cap_t>::max()) {
       cost_t total_cost = 0;
       cap t total flow = 0;
       for(;;) {
           auto res = AugmentShortest(s, e, flow_minimum - total_flow);
           if (res.second <= 0) break:
           total_cost += res.first;
           total flow += res.second;
       return make_pair(total_cost, total_flow);
};
```

6 Geometry

6.1 Basic Operations

```
const double eps = 1e-9;
inline int diff(double lhs, double rhs) {
   if (lhs - eps < rhs && rhs < lhs + eps) return 0;
   return (lhs < rhs) ? -1 : 1;
}
inline bool is_between(double check, double a, double b) {
   if (a < b)
      return (a - eps < check && check < b + eps);
   else
      return (b - eps < check && check < a + eps);
}
struct Point {
   double x, y;
   bool operator==(const Point& rhs) const {
      return diff(x, rhs.x) == 0 && diff(y, rhs.y) == 0;
   }
   Point operator+(const Point& rhs) const {</pre>
```

```
Point operator-(const Point& rhs) const {
        return Point{ x - rhs.x, y - rhs.y };
    Point operator*(double t) const {
        return Point{ x * t, y * t };
};
struct Circle {
    Point center;
    double r;
};
struct Line {
    Point pos, dir;
};
inline double inner(const Point& a, const Point& b) {
    return a.x * b.x + a.y * b.y;
inline double outer(const Point& a, const Point& b) {
    return a.x * b.y - a.y * b.x;
inline int ccw_line(const Line& line, const Point& point) {
    return diff(outer(line.dir, point - line.pos), 0);
inline int ccw(const Point& a, const Point& b, const Point& c) {
    return diff(outer(b - a, c - a), 0);
inline double dist(const Point& a, const Point& b) {
    return sgrt(inner(a - b, a - b));
}
inline double dist2(const Point &a, const Point &b) {
    return inner(a - b, a - b);
inline double dist(const Line& line, const Point& point, bool segment = false)
    double c1 = inner(point - line.pos, line.dir);
    if (segment && diff(c1, 0) <= 0) return dist(line.pos, point);
    double c2 = inner(line.dir, line.dir);
    if (segment && diff(c2, c1) <= 0) return dist(line.pos + line.dir, point);
    return dist(line.pos + line.dir * (c1 / c2), point);
bool get_cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
    if (diff(mdet, 0) == 0) return false;
```

return Point{ x + rhs.x, y + rhs.y };

```
double t2 = outer(a.dir, b.pos - a.pos) / mdet;
    ret = b.pos + b.dir * t2;
   return true;
bool get_segment_cross(const Line& a, const Line& b, Point& ret) {
    double mdet = outer(b.dir, a.dir);
   if (diff(mdet, 0) == 0) return false;
   double t1 = -outer(b.pos - a.pos, b.dir) / mdet;
    double t2 = outer(a.dir, b.pos - a.pos) / mdet;
   if (!is between(t1, 0, 1) |  !is between(t2, 0, 1)) return false;
   ret = b.pos + b.dir * t2;
   return true;
Point inner_center(const Point &a, const Point &b, const Point &c) {
    double wa = dist(b, c), wb = dist(c, a), wc = dist(a, b);
    double w = wa + wb + wc;
   return Point { (wa * a.x + wb * b.x + wc * c.x) / w, (wa * a.y + wb * b.y +
      wc * c.y) / w };
}
Point outer_center(const Point &a, const Point &b, const Point &c) {
   Point d1 = b - a, d2 = c - a;
   double area = outer(d1, d2);
   double dx = d1.x * d1.x * d2.y - d2.x * d2.x * d1.y
       + d1.y * d2.y * (d1.y - d2.y);
    double dy = d1.y * d1.y * d2.x - d2.y * d2.y * d1.x
       + d1.x * d2.x * (d1.x - d2.y);
   return Point { a.x + dx / area / 2.0, a.y - dy / area / 2.0 };
}
vector<Point> circle_line(const Circle& circle, const Line& line) {
   vector<Point> result;
   double a = 2 * inner(line.dir, line.dir);
    double b = 2 * (line.dir.x * (line.pos.x - circle.center.x)
       + line.dir.y * (line.pos.y - circle.center.y));
   double c = inner(line.pos - circle.center, line.pos - circle.center)
       - circle.r * circle.r;
    double det = b * b - 2 * a * c;
    int pred = diff(det, 0);
   if (pred == 0)
        result.push back(line.pos + line.dir * (-b / a));
   else if (pred > 0) {
       det = sqrt(det);
       result.push_back(line.pos + line.dir * ((-b + det) / a));
       result.push_back(line.pos + line.dir * ((-b - det) / a));
    return result:
vector<Point> circle_circle(const Circle& a, const Circle& b) {
   vector<Point> result:
    int pred = diff(dist(a.center, b.center), a.r + b.r);
    if (pred > 0) return result;
```

```
if (pred == 0) {
        result.push back((a.center * b.r + b.center * a.r) * (1 / (a.r + b.r))
        return result:
    double aa = a.center.x * a.center.x + a.center.y * a.center.y - a.r * a.r;
    double bb = b.center.x * b.center.x + b.center.y * b.center.y - b.r * b.r;
    double tmp = (bb - aa) / 2.0;
    Point cdiff = b.center - a.center:
    if (diff(cdiff.x, 0) == 0) {
        if (diff(cdiff.v, 0) == 0)
            return result; // if (diff(a.r, b.r) == 0): same circle
        return circle_line(a, Line{ Point{ 0, tmp / cdiff.y }, Point{ 1, 0 }
         });
    return circle_line(a,
        Line{ Point{ tmp / cdiff.x, 0 }, Point{ -cdiff.y, cdiff.x } });
Circle circle_from_3pts(const Point& a, const Point& b, const Point& c) {
    Point ba = b - a, cb = c - b;
    Line p{ (a + b) * 0.5, Point{ ba.y, -ba.x } };
    Line q\{(b + c) * 0.5, Point\{cb.y, -cb.x\}\};
    Circle circle;
    if (!get_cross(p, q, circle.center))
        circle.r = -1;
        circle.r = dist(circle.center, a);
    return circle;
Circle circle from 2pts rad(const Point& a, const Point& b, double r) {
    double det = r * r / dist2(a, b) - 0.25;
    Circle circle;
    if (det < 0)
        circle.r = -1;
    else {
        double h = sqrt(det);
        // center is to the left of a->b
        circle.center = (a + b) * 0.5 + Point{a.y - b.y, b.x - a.x} * h;
        circle.r = r;
    return circle;
```

6.2 Compare angles

6.3 Convex Hull

```
// find convex hull
// O(n*logn)
vector<Point> convex_hull(vector<Point>& dat) {
   if (dat.size() <= 3) return dat;
   vector<Point> upper, lower;
```

```
sort(dat.begin(), dat.end(), [](const Point& a, const Point& b) {
    return (a.x == b.x) ? a.y < b.y : a.x < b.x;
});
for (const auto& p : dat) {
    while (upper.size() >= 2 && ccw(*++upper.rbegin(), *upper.rbegin(), p)
        >= 0) upper.pop_back();
    while (lower.size() >= 2 && ccw(*++lower.rbegin(), *lower.rbegin(), p)
        <= 0) lower.pop_back();
    upper.emplace_back(p);
    lower.emplace_back(p);
}
upper.insert(upper.end(), ++lower.rbegin(), --lower.rend());
return upper;</pre>
```

6.4 Polygon Cut

```
// left side of a->b
vector<Point> cut_polygon(const vector<Point>& polygon, Line line) {
    if (!polygon.size()) return polygon;
    typedef vector<Point>::const iterator piter;
   piter la, lan, fi, fip, i, j;
   la = lan = fi = fip = polygon.end();
   i = polygon.end() - 1;
   bool lastin = diff(ccw_line(line, polygon[polygon.size() - 1]), 0) > 0;
    for (j = polygon.begin(); j != polygon.end(); j++) {
       bool thisin = diff(ccw_line(line, *j), 0) > 0;
       if (lastin && !thisin) {
           la = i;
           lan = j;
       if (!lastin && thisin) {
           fi = i:
           fip = i;
       i = j;
       lastin = thisin;
   if (fi == polygon.end()) {
       if (!lastin) return vector<Point>();
       return polygon;
    vector<Point> result;
    for (i = fi ; i != lan ; i++) {
       if (i == polygon.end()) {
           i = polygon.begin();
           if (i == lan) break;
       result.push_back(*i);
    Point lc, fc;
    get_cross(Line{ *la, *lan - *la }, line, lc);
    get_cross(Line{ *fip, *fi - *fip }, line, fc);
   result.push_back(lc);
    if (diff(dist2(lc, fc), 0) != 0) result.push_back(fc);
```

```
return result;
}
```

6.5 Pick's theorem

격자점으로 구성된 simple polygon이 주어짐. i는 polygon 내부의 격자점 수, b는 polygon 선분 위 격자점 수, A는 polygon의 넓이라고 할 때, 다음과 같은 식이 성립한다.

```
A = i + \frac{b}{2} - 1
```

7 String

7.1 KMP

```
typedef vector<int> seq_t;
void calculate_pi(vector<int>& pi, const seq_t& str) {
    pi[0] = -1;
    for (int i = 1, j = -1; i < str.size(); i++) {
        while (j \ge 0 \&\& str[i] != str[j + 1]) j = pi[j];
        if (str[i] == str[i + 1])
            pi[i] = ++j;
        else
            pi[i] = -1;
}
// returns all positions matched
// O(|text|+|pattern|)
vector<int> kmp(const seq_t& text, const seq_t& pattern) {
    vector<int> pi(pattern.size()), ans;
    if (pattern.size() == 0) return ans;
    calculate_pi(pi, pattern);
    for (int i = 0, j = -1; i < text.size(); i++) {
        while (i \ge 0 \& text[i] != pattern[i + 1]) i = pi[i];
        if (text[i] == pattern[j + 1]) {
            j++;
            if (j + 1 == pattern.size()) {
                ans.push_back(i - j);
                j = pi[j];
            }
    return ans;
```

7.2 Aho-Corasick

#include <algorithm>
#include <vector>

```
#include <queue>
using namespace std;
struct AhoCorasick
    const int alphabet;
    struct node {
       node() {}
       explicit node(int alphabet) : next(alphabet) {}
       vector<int> next, report;
       int back = 0, output link = 0;
   };
    int maxid = 0;
    vector<node> dfa:
    explicit AhoCorasick(int alphabet) : alphabet(alphabet), dfa(1, node(
     alphabet)) { }
    template<typename InIt, typename Fn> void add(int id, InIt first, InIt
     last, Fn func) {
       int cur = 0;
       for ( ; first != last; ++first) {
           auto s = func(*first);
           if (auto next = dfa[cur].next[s]) cur = next;
                cur = dfa[cur].next[s] = (int)dfa.size();
                dfa.emplace_back(alphabet);
           }
       dfa[cur].report.push_back(id);
       maxid = max(maxid, id);
    void build() {
        queue<int> q;
       vector<char> visit(dfa.size());
       visit[0] = 1;
       q.push(0);
       while(!q.empty()) {
           auto cur = q.front(); q.pop();
           dfa[cur].output_link = dfa[cur].back;
           if (dfa[dfa[cur].back].report.empty())
                dfa[cur].output_link = dfa[dfa[cur].back].output_link;
            for (int s = 0; s < alphabet; <math>s++) {
                auto &next = dfa[cur].next[s];
                if (next == 0) next = dfa[dfa[cur].back].next[s];
                if (visit[next]) continue;
                if (cur) dfa[next].back = dfa[dfa[cur].back].next[s];
                visit[next] = 1;
                q.push(next);
    template<typename InIt, typename Fn> vector<int> countMatch(InIt first,
     InIt last, Fn func) {
       int cur = 0;
       vector<int> ret(maxid+1);
       for (; first != last; ++first) {
```

7.3 Suffix Array with LCP

```
typedef char T;
// calculates suffix array.
// O(n*logn)
vector<int> suffix_array(const vector<T>& in) {
    int n = (int)in.size(), c = 0;
    vector<int> temp(n), pos2bckt(n), bckt(n), bpos(n), out(n);
    for (int i = 0; i < n; i++) out [i] = i;
    sort(out.begin(), out.end(), [&](int a, int b) { return in[a] < in[b]; });</pre>
    for (int i = 0; i < n; i++) {
        bckt[i] = c;
        if (i + 1 == n || in[out[i]] != in[out[i + 1]]) c++;
    for (int h = 1; h < n && c < n; h <<= 1) {
        for (int i = 0; i < n; i++) pos2bckt[out[i]] = bckt[i];
        for (int i = n - 1; i \ge 0; i - 1) bpos[bckt[i]] = i;
        for (int i = 0; i < n; i++)
            if (out[i] \ge n - h) temp[bpos[bckt[i]]++] = out[i];
        for (int i = 0; i < n; i++)
            if (out[i] >= h) temp[bpos[pos2bckt[out[i] - h]]++] = out[i] - h;
        for (int i = 0; i + 1 < n; i++) {
            int a = (bckt[i] != bckt[i + 1]) || (temp[i] >= n - h)
                    || (pos2bckt[temp[i + 1] + h] != pos2bckt[temp[i] + h]);
            bckt[i] = c;
            c += a;
        bckt[n - 1] = c++;
        temp.swap(out);
    return out;
// calculates lcp array. it needs suffix array & original sequence.
// O(n)
vector<int> lcp(const vector<T>& in, const vector<int>& sa) {
    int n = (int)in.size();
    if (n == 0) return vector<int>();
    vector<int> rank(n), height(n - 1);
    for (int i = 0; i < n; i++) rank[sa[i]] = i;
    for (int i = 0, h = 0; i < n; i++) {
        if (rank[i] == 0) continue;
        int j = sa[rank[i] - 1];
        while (i + h < n \&\& j + h < n \&\& in[i + h] == in[j + h]) h++;
        height[rank[i] - 1] = h;
```

```
if (h > 0) h--;
}
return height;
```

7.4 Suffix Tree

7.5 Manacher's Algorithm

```
// find longest palindromic span for each element in str
// O(|str|)
void manacher(const string& str, int plen[]) {
   int r = -1, p = -1;
   for (int i = 0; i < str.length(); ++i) {
      if (i <= r)
            plen[i] = min((2 * p - i >= 0) ? plen[2 * p - i] : 0, r - i);
      else
            plen[i] = 0;
   while (i - plen[i] - 1 >= 0 && i + plen[i] + 1 < str.length()
            && str[i - plen[i] - 1] == str[i + plen[i] + 1]) {
            plen[i] += 1;
        }
      if (i + plen[i] > r) {
            r = i + plen[i];
            p = i;
      }
    }
}
```

8 Miscellaneous

8.1 Fast I/O

```
namespace fio {
   const int BSIZE = 524288;
   char buffer[BSIZE];
   int p = BSIZE;
   inline char readChar() {
      if(p == BSIZE) {
          fread(buffer, 1, BSIZE, stdin);
          p = 0;
      }
      return buffer[p++];
}
int readInt() {
   char c = readChar();
   while ((c < '0' || c > '9') && c != '-') {
        c = readChar();
   }
   int ret = 0; bool neg = c == '-';
   if (neg) c = readChar();
```

```
while (c >= '0' && c <= '9') {
    ret = ret * 10 + c - '0';
    c = readChar();
}
return neg ? -ret : ret;
}</pre>
```

8.2 Magic Numbers

소수: 10007, 10009, 10111, 31567, 70001, 1000003, 1000033, 4000037, 1000000007, 1000000009

8.3 Java Examples