

proof that L^p spaces are complete

 ${\bf Canonical\ name} \quad {\bf ProofThatLpSpacesAreComplete}$

Date of creation 2013-03-22 14:40:09 Last modified on 2013-03-22 14:40:09 Owner Simone (5904)

Last modified by Simone (5904)

Numerical id 8

Author Simone (5904)

Entry type Proof Classification msc 46B25 Let's prove completeness for the classical Banach spaces, say $L^p[0,1]$ where $p \geq 1$.

Since the case $p=\infty$ is elementary, we may assume $1 \leq p < \infty$. Let $[f] \in (L^p)^{\mathbb{N}}$ be a Cauchy sequence. Define $[g_0] := [f_0]$ and for n>0 define $[g_n] := [f_n - f_{n-1}]$. Then $[\sum_{n=0}^N g_n] = [f_N]$ and we see that

$$\sum_{n=0}^{\infty} \|g_n\| = \sum_{n=0}^{\infty} \|f_n - f_{n-1}\| \le ???? < \infty.$$

Thus it suffices to prove that etc.

It suffices to prove that each absolutely summable series in L^p is summable in L^p to some element in L^p .

Let $\{f_n\}$ be a sequence in L^p with $\sum_{n=1}^{\infty} ||f_n|| = M < \infty$, and define functions g_n by setting $g_n(x) = \sum_{k=1}^n |f_k(x)|$. From the Minkowski inequality we have

$$||g_n|| \le \sum_{k=1}^n ||f_k|| \le M.$$

Hence

$$\int g_n^p \le M^p.$$

For each x, $\{g_n(x)\}$ is an increasing sequence of (extended) real numbers and so must converge to an extended real number g(x). The function g so defined is measurable, and, since $g_n \geq 0$, we have

$$\int g^p \le M^p$$

by Fatou's Lemma. Hence g^p is integrable, and g(x) is finite for almost all x. For each x such that g(x) is finite the series $\sum_{k=1}^{\infty} f_k(x)$ is an absolutely

For each x such that g(x) is finite the series $\sum_{k=1}^{\infty} f_k(x)$ is an absolutely summable series of real numbers and so must be summable to a real number s(x). If we set s(x) = 0 for those x where $g(x) = \infty$, we have defined a function s which is the limit almost everywhere of the partial sums $s_n = \sum_{k=1}^{n} f_k$. Hence s is measurable. Since $|s_n(x)| \leq g(x)$, we have $|s(x)| \leq g(x)$. Consequently, s is in L^p and we have

$$|s_n(x) - s(x)|^p \le 2^p [g(x)]^p$$
.

Since $2^p g^p$ is integrable and $|s_n(x) - s(x)|^p$ converges to 0 for almost all x, we have

$$\int |s_n - s|^p \to 0$$

by the Lebesgue Convergence Theorem. Thus $||s_n - s||^p \to 0$, whence $||s_n - s|| \to 0$. Consequently, the series $\{f_n\}$ has in L^p the sum s.

References

Royden, H. L. Real analysis. Third edition. Macmillan Publishing Company, New York, 1988.