4주^차

2016. 9. 21.

목차

- 심전도 증폭기의 구성
- 지난주 회로: 전원부, ECG Front (C)
- 연산증폭기
- Filter
- 이번주 회로
 - : ECG Front (B), Filter

심전도 증폭기 구성(ECG Amplifier)

지난주실험회로 1 - 전원부

■ 지난주 실험 회로 2 – ECG Front(C)

<Input Dimension>

RA : Right Arm LA : Left Arm RL : Right Leg

Operational Amplifier(@\documents

■ 정의

- 입력 신호들 사이의 덧셈, 적분 등의 수학연산을 수행할 수 있다.
- 아날로그 시스템에서 가장 기본적인 능동(active) 소자
- 외부 저항 등 다른 소자와 결합하여 변환기, 발진기, 능동 필터 등의 회로를 구성할 수 있다.

기본 전기적 특성(electrical characteristics)

- Gain → Finite
- Input impedance → Finite
- Output Impedance → Very Low
- Input Current → Very Low
- Input offset Voltage → Very Low
- CMRR → Very High
- Drift → Very Low
- PSRR → Very High

회로기호

Filter

- 정의
 - 임의의 신호에서 원하지 않는 성분이나 특징을 제거(remove)하는 역할

■ 필터의 종류

- LPF(Low Pass Filter)
- HPF(High Pass Filter)
- BSF(Band Stop Filter)
- BPF(Band Pass Filter)
- APF(All Pass Filter)

■ 필터의 형태

- Butterworth
- Chebyshev
- Elliptic
- Bessel 등

정수기 필터

TABLE 2.1 Frequency Ranges of Various Biopotential Signals

Application ⁶	Frequency Range	
Action potentials detected with transmembrane	dc-2 kHz	
pipette electrodes		
Electroneurogram (ENG): nerve bundle potentials	10 Hz-1 kHz	
detected with needle electrode		
Electroretinogram (ERG): potentials generated	0.2–200 Hz	
by retina in response to a flash of light; detected		
with implanted electrodes		
Electrooculogram (EOG): eye potentials used	dc-100 Hz	
to measure eye position; detected with surface electrode		
pairs: left/right and above/below eyes	2022 2022	
Electrogastrogram (EGG): stomach potentials detected	0.01-0.55 Hz	
with surface electrodes placed on abdomen	750 16 No. 200 200 200	2016 2015
Electroencephalogram (EEG): rhythmic brain potentials detected with surface electrodes placed on head	Delta waves	0.5–4 Hz
	Theta waves	4–7.5 Hz
	Alpha waves Low beta waves	7.5–13 Hz 13–15 Hz
	Beta waves	15-15 Hz 15-20 Hz
	High beta waves	20–38 Hz
	Gamma waves	38–42 Hz
Brain evoked potentials: brain potentials evoked by stimuli;	Visual evoked potential (VEP)	1–300 Hz
detected with surface electrodes placed on head	Auditory evoked potential (AEP)	100 Hz-3 kHz
	Somatosensory evoked	TOOTED DIE
	potential (SSEP)	2 Hz-3 kHz
Electrocardiogram (ECG): heart potentials detected with	Heart rates (R-R intervals)	0.5-3.5 Hz
surface electrodes placed on chest, back, and/or limbs	R-R variability due to	
	thermoregulation	0.01-0.04 Hz
	R-R variability due to baroreflex	
	dynamics	0.04-0.15 Hz
	R-R variability due to respiration	0.15-0.4 Hz
	P,QRS,T complex	0.05-100 Hz
	Ventricular late potentials	40-200 Hz
	Bandwith requirement for	
	clinical ECG/rate monitors	0.67-40 Hz
Clinical cardiac electrophysiology: analysis of cardiac	Intracardiac electrograms	10 Hz-1 kHz
potentials detected with catheter electrodes placed in	Monophasic action	
contact with the myocardium	potentials (MAPs)	dc-2kHz
Electromyogram (EMG): muscle potentials detected	Surface EMG	2–500 Hz
with surface electrodes or indwelling needle electrodes	Motor unit action potentials Single fiber electromyogram	5Hz-10kHz
Galvanic skin response (GSR): battery potentials	Single fiber electromyogram dc-5 Hz	500 Hz-10 kHz
produced by sweat on skin electrodes	uc–3 Hz	

LPF (Low Pass Filter)

- 차단 주파수 이하의 신호는 통과 하고 이상의 신호는 제거(remove)하는 필터

→ Let's see filter example !!!

HPF (High Pass Filter)

- 차단 주파수 이하의 신호는 제거 하고 이상의 신호는 통과시키는 필터

BPF (Band Pass Filter)

- 두 주파수 사이의 신호는 통과시키고 그 이외의 신호는 차단하는 필터

$$Band\ Width = f_2 - f_1$$

$$Quality\ Factor = \frac{f_0}{f_2 - f_1}$$

BSF (Band Stop Filter)

- 두 주파수 사이의 신호는 감쇄시키고 그 이외의 신호는 통과하는 필터 : Notch Filter

심전도 증폭기 구성(ECG Amplifier)

■ 오늘의 실험 회로 1 – ECG Front(B)

■ 오늘의 실험 회로 2 - Filter (LPF, HPF)

■ 오늘의 실험

- 1. 만능기판 납땜
 - 1-1. ECG Front AMP B를 납땜하고, 차동 전압 이득 A와 동상전압 이득 A_{CM} 을 구하고 CMRR을 계산한다.
 - 1-2. Filter 부 납땜 후
 - : ECG Front AMP B와 C 각각에 차동 입력을 하고 filter부의 출력을 확인할 것.
 - : 이때 함수발생기의 주파수를 10 Hz ~ 50 kHz 로 가변 하면서 실험할 것.

Report

- 1. 오늘의 실험 완성
 - 1-1. ECG Front B 완성!
 - 1-2. Filter 부 완성!
 - 1-3. 2가지 회로에 대한 A와 A_{CM} 으로 CMRR을 계산하시오.
- 2. Pspice simulation
 - 2-1. Notch filter 와 Gain 회로에 대한 parametric 해석
- 3. 회로에서 Offset 에 대한 조사 3-1. 발생원인, 제거 또는 보정 방법
- 4. Hand-out
 - 4-1. Chapter 3의 레포트 1번 해올 것
 - 4-2. Chapter 4의 레포트 1,2,3,4,5번 해올 것