

Case Study: Agriculture

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Engineering

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in

Website: http://www.cse.iitkgp.ac.in/~smisra/

Future of IoT application in agriculture

- ✓ Soil moisture and water level monitoring
- ✓ Automated irrigation system
- ✓ Automation in Recycling of Organic Waste and Vermicomposting
- Automated sowing and weeding system

Image template source: https://pixabay.com/p-747175/?no_redirect

Case study on Smart Water Management Using IoT

✓ Objectives

- More yields with less water
- Save limited water resource in a country
- Automatic irrigation
- <u>Dynamic irrigation treatments</u> in the different phases of a crop's life cycle
- Remote monitoring and <u>controlling</u>

- ✓ Proposed architecture
 - Sensing and actuating layer
 - Processing, storage, and service layer
 - Application layer

Fig 1: The proposed architecture of AgriSens

- ✓ Design
 - Integrated design for sensors
 - Integrated design for sensor node
 - Integrated design for remote server

✓ Integrated design for sensors

Fig 4: Designed water-level sensor

Fig 5: EC-05 soil moisture sensor

✓ Integrated design for sensor node

Fig 2: The block diagram of a sensor node

✓ Integrated design for sensor node

Fig 3: Designed sensor node

- ✓ Integrated design for remote server
 - Repository data server: Communicates with the deployed IoT gateway in the field by using GPRS technology
 - Web server: To access field data remotely
 - Multi users server: Sends field information to farmer's cell using SMS technology and also executes farmer's query and controlling messages

- ✓ Implementation
 - Field demo
 - Website demo
 - Project details from website

Fig. 6: Average soil moisture

Fig. 7: Average water level

✓ Results

Fig. 8: Average packet delivery ratio

Thank You!!

Case study: Healthcare

Dr. Sudip Misra

Associate Professor

Department of Computer Science and Technology

IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in

Website: http://www.cse.iitkgp.ac.in/~smisra/

Emergence of IoT Healthcare

- ✓ Advances in sensor and connectivity
 - Collect patient data over time
 - Enable preventive care
 - Understanding of effects of therapy on a patient
- ✓ Ability of devices to collect data on their own
 - Automatically obtain data when and where needed by doctors
 - Automation reduces risk of error
 - Lower error implies increased efficiency and reduced cost

Components of IoT Healthcare

- ✓ Components of IoT is organized in 4 layers
 - Sensing layer: Consists of all sensor, RFIDs and wireless sensor networks (WSN). E.g. Google glass, Fitbit tracker
 - Aggregated layer: Consists of different types of aggregators based on the sensors of sensing layer. E.g. Smartphones, Tablets
 - Processing layer: It consists of servers for processing information coming from aggregated layer.
 - Cloud platform: All processed data are uploaded in cloud platform, which can be accessed by large no. of users

Sensing & Measurement

Data Aggregation

Cloud storage & Analytics

IoT in Healthcare: Directions

IoT Healthcare: Remote Healthcare

- Many people without ready access to effective healthcare
- Wireless IoT driven solutions bring healthcare to patients rather than bring patients to healthcare
- Securely capture a variety of medical data through IoT based sensors, analyze data with smart algorithms
- Wirelessly share data with health professionals for appropriate health recommendations

Withings BP Monitor*

Shimmer Temperature Monitor^

*http://www.withings.com/

^http://www.shimmersensing.com/

IoT Healthcare: Real-time Monitoring

- IoT-driven non-invasive monitoring
- Sensors to collect comprehensive physiological information
- Gateways and cloud-based analytics and storage of data
- Wirelessly send data to caregivers
- Lowers cost of healthcare

IoT Healthcare: Preventive care

- Fall detection for seniors
- Emergency situation detection and alert to family members
- Machine learning for health trend tracking and early anomaly detection

AmbuSens: Use-case of Healthcare system using IoT

Problem Definition & its Scope

- **✓** Telemedicine and Remote Healthcare:
 - Problem Physical presence necessary
 - Solution Wireless sensors
- **✓** Emergency Response Time:
 - Problem Not equipped to deal with complications.
 - Solution
 - Instant remote monitoring
 - Feedback by the skilled medical professionals

Problem Definition & its Scope (cont.)

- ✓ Real Time Patient Status Monitoring:
 - Problem Lack of collaboration.
 - Solution Real-time monitoring.
- ✓ Digitized Medical History:
 - Problem
 - Inconsistent
 - Physical records vulnerable to wear and tear and loss.
 - Solution Consistent cloud-based digital record-keeping system

HashID	SensorValue_GSR_kOhms	SensorValue_HeartRate	Cur_Date	Cur_Time
9662\$SHR\$23y	97.78	73	Mon 14/11/2016	12:39:06:914 IST
e8c1\$SHR\$23y	97.97	73	Mon 14/11/2016	12:39:06:975 IST
7354\$SHR\$23y	98.19	75	Mon 14/11/2016	12:39:07:072 IST
7228\$SHR\$23y	97.83	75	Mon 14/11/2016	12:39:07:169 IST
ee32\$SHR\$23y	98.31	75	Mon 14/11/2016	12:39:07:243 IST
39c2\$SHR\$23y	98.48	73	Mon 14/11/2016	12:39:07:300 IST
358c\$SHR\$23y	98.99	73	Mon 14/11/2016	12:39:07:328 IST
fd02\$SHR\$23y	100.36	75	Mon 14/11/2016	12:39:07:400 IST
d228\$SHR\$23y	101.01	75	Mon 14/11/2016	12:39:07:491 IST
bed0\$SHR\$23y	101.59	77	Mon 14/11/2016	12:39:07:537 IST
a58b\$SHR\$23y	100.7	77	Mon 14/11/2016	12:39:07:590 IST
4869\$SHR\$23y	100.65	77	Mon 14/11/2016	12:39:07:650 IST

AmbuSens: Physiological Parameters

Electrocardiogram (ECG)

Galvanic Skin Response (GSR)

AmbuSens: Development of WBAN

- ✓ Single hop wireless body area network (WBAN)
- ✓ Communication protocol used is *Bluetooth* i.e. IEEE 802.15.1
- ✓ Power management and data-rate tuning
- ✓ Calibration of data
- ✓ Filtering and noise removal

AmbuSens: Development of Cloud Framework

- ✓ **Health-cloud** framework
- ✓ The developed system is strictly *privacy-aware*
- ✓ Patient-identity masking involves hashing and reverse hashing of patient ID
- ✓ Scalable architecture

AmbuSens: Web Interface

- ✓ URL: <u>ambusens.iitkgp.ac.in</u>
- ✓ Paramedic and Doctor portals for ease of use.
- ✓ Provision for recording medical history and sending feedback.
- ✓ Allows sensor *initialization* and *data streaming*.
- ✓ Includes data *visualization* tools for better understanding.

AmbuSens: Implementation

- ✓ AmbuSens Implementation demo
 - Field demo animation
 - Part 1
 - AmbuSens in the *Hospital*
 - Brief description of the sensors
 - Part 2
 - Ambulatory Healthcare

AmbuSens: System Trials

Figure 1: Hospital system trials

Figure 2: Ambulatory system trials

AmbuSens: Results (Comparison of ECG tracing)

ECG tracing from manual system Real-time ECG tracing from AmbuSens

Activity Monitoring - Part 1

Dr. Sudip Misra

Associate Professor Department of Computer Science and Engineering IIT KHARAGPUR

Email: smisra@sit.iitkgp.ernet.in Website: http://cse.iitkgp.ac.in/~smisra/

Introduction

- ✓ Wearable sensors have become very popular for different purposes such as:
 - Medical
 - Child-care
 - Elderly-care
 - Entertainment
 - Security
- ✓ These sensors help in monitoring the physical activities of humans

Introduction (Contd.)

- ✓ Particularly in IoT scenarios, activity monitoring plays an important role for providing better quality of life and safe guarding humans.
- ✓ Provides information accurately in a reliable manner
- ✓ Provides continuous monitoring support.

Advantages

- ✓ Continuous monitoring of activity results in daily observation of human behavior and repetitive patterns in their activities.
- ✓ Easy integration and fast equipping
- ✓ Long term monitoring
- ✓ Utilization of sensors of handheld devices
 - Accelerometer
 - Gyroscope
 - GPS
 - Others

Important Human Activities

Actions

- Running
- Jumping

Gesture

- Folding legs
- Moving hand

Types of Sensors

Camera

Smart Phone

Activity Tracker Band

Data Analysis Tools

- ✓ Statistical
 - Sensor data
- ✓ Machine Learning Based
 - Sensor data
- ✓ Deep Learning Based
 - Sensor data
 - **Images**
 - Videos

Approaches

- ✓ In-place
 - On the device
 - Power intensive
 - No network connection required
- ✓ Network Based
 - Larger and processing intensive methods can be applied
 - Group based analytics possible
 - Low power consumption
 - Average to good network connection

Thank You!!

