Ensemble Learning

Initial Imports

```
In [1]: import warnings
    warnings.filterwarnings('ignore')

In [2]: import numpy as np
    import pandas as pd
    from pathlib import Path
    from collections import Counter

In [3]: from sklearn.metrics import balanced_accuracy_score
    from sklearn.metrics import confusion_matrix
    from imblearn.metrics import classification_report_imbalanced
```

Read the CSV and Perform Basic Data Cleaning

```
In [25]: # Load the data
pd.set_option('max_columns', None)
file_path = Path('Resources/LoanStats_2019Q1.csv')
df = pd.read_csv(file_path)
```

Out [25]:

	loan_amnt	int_rate	installment	home_ownership	annual_inc	verification_status	issue_
23702	20000.0	0.0819	628.49	RENT	98000.0	Not Verified	Fel 201
46065	6600.0	0.1180	218.59	RENT	35000.0	Source Verified	Jar 201
65412	13000.0	0.1298	295.66	MORTGAGE	132000.0	Verified	Jar 201
41498	20000.0	0.0702	617.73	MORTGAGE	135000.0	Verified	Jar 201
57017	6500.0	0.1691	231.46	MORTGAGE	34776.0	Not Verified	Jar 201
46779	18500.0	0.0819	581.35	RENT	45000.0	Not Verified	Jar 201
4590	8000.0	0.2250	307.60	MORTGAGE	105000.0	Source Verified	Ma 201
67612	18000.0	0.1447	423.23	MORTGAGE	75000.0	Not Verified	Jar 201
54328	9000.0	0.1180	298.07	MORTGAGE	159000.0	Not Verified	Jar 201
50305	6500.0	0.1614	228.98	MORTGAGE	100000.0	Source Verified	Jar 201

In [32]: # Preview the data
df.sample(10)

Out[32]:

	loan_amnt	int_rate	installment	home_ownership	annual_inc	verification_status	issue_
39646	4200.0	0.1131	138.13	MORTGAGE	33258.0	Not Verified	Feł 201
22733	7500.0	0.0819	235.69	MORTGAGE	61000.0	Source Verified	Feł 201
10846	16000.0	0.1557	385.45	MORTGAGE	125000.0	Source Verified	Ma 201
22623	6250.0	0.1797	225.86	RENT	80000.0	Not Verified	Feł 201
64723	17625.0	0.2235	490.30	MORTGAGE 77000.0 Not Veri		Not Verified	Jar 201
49105	28000.0	0.0819	570.29	OWN 80000.0 Not V		Not Verified	Jar 201
44994	3300.0	0.1691	117.51	MORTGAGE 52000.0 Sou		Source Verified	Jar 201
61912	12000.0	0.0702	370.64	MORTGAGE	10000.0	Verified	Jar 201
48638	15000.0	0.1691	534.12	RENT	35000.0	Source Verified	Jar 201
68522	22000.0	0.0819	691.33	RENT	55000.0	Not Verified	Jar 201

```
In [30]: | columns = [
                   "loan_amnt", "int_rate", "installment", "home_ownership", "annual_inc", "verification_status", "issue_d", "loan_status",
                   "pymnt_plan", "dti", "delinq_2yrs", "inq_last_6mths",
"open_acc", "pub_rec", "revol_bal", "total_acc",
"initial_list_status", "out_prncp", "out_prncp_inv", "total_pymnt"
                   "total_pymnt_inv", "total_rec_prncp", "total_rec_int", "total_rec_
                   "recoveries", "collection_recovery_fee", "last_pymnt_amnt", "next_
                   "collections_12_mths_ex_med", "policy_code", "application_type", "
"tot_coll_amt", "tot_cur_bal", "open_acc_6m", "open_act_il",
"open_il_12m", "open_il_24m", "mths_since_rcnt_il", "total_bal_il"
                   "il_util", "open_rv_12m", "open_rv_24m", "max_bal_bc", "all_util", "total_rev_hi_lim", "inq_fi", "total_cu_tl",
                   "inq_last_12m", "acc_open_past_24mths", "avg_cur_bal", "bc_open_to
"bc_util", "chargeoff_within_12_mths", "delinq_amnt", "mo_sin_old_
                   "mo_sin_old_rev_tl_op", "mo_sin_rcnt_rev_tl_op", "mo_sin_rcnt_tl",
                   "mths_since_recent_bc", "mths_since_recent_inq", "num_accts_ever_1
                   "num_actv_rev_tl", "num_bc_sats", "num_bc_tl", "num_il_tl", "num_op_rev_tl", "num_rev_accts", "num_rev_tl_bal_gt_0", "num_sats", "num_tl_120dpd_2m", "num_tl_30dpd", "num_tl_90g_dpd_24
                   "num_tl_op_past_12m", "pct_tl_nvr_dlq", "percent_bc_gt_75", "pub_r
                   "tax_liens", "tot_hi_cred_lim", "total_bal_ex_mort", "total_bc_lim"
                   "total_il_high_credit_limit", "hardship_flag", "debt_settlement_fl
              target = ["loan_status"]
 In [6]: | df.shape
 Out[6]: (68817, 86)
 In [7]:
               df = df.dropna(axis='columns', how='all')
 In [8]: df.shape
 Out[8]: (68817, 86)
 In [9]: df = df.dropna()
In [10]: | df.shape
Out[10]: (68817, 86)
```

Split the Data into Training and Testing

```
In [33]: # Create our features
# X_scaler wasn't working because home_ownership had 3 values - couldn
# X = df.drop(columns='loan_status')
X = pd.get_dummies(df.drop(columns='loan_status'))
# Create our target
targ = df['loan_status'].copy()
y = targ
```

In [34]: X.describe()

Out [34]:

		loan_amnt	int_rate	installment	annual_inc	dti	delinq_2yrs	iı
co	unt	68817.000000	68817.000000	68817.000000	6.881700e+04	68817.000000	68817.000000	
m	ean	16677.594562	0.127718	480.652863	8.821371e+04	21.778153	0.217766	
	std	10277.348590	0.048130	288.062432	1.155800e+05	20.199244	0.718367	
ı	min	1000.000000	0.060000	30.890000	4.000000e+01	0.000000	0.000000	
2	25%	9000.000000	0.088100	265.730000	5.000000e+04	13.890000	0.000000	
5	0%	15000.000000	0.118000	404.560000	7.300000e+04	19.760000	0.000000	
7	5%	24000.000000	0.155700	648.100000	1.040000e+05	26.660000	0.000000	
r	nax	40000.000000	0.308400	1676.230000	8.797500e+06	999.000000	18.000000	

```
In [35]: # Check the balance of our target values
y.value_counts()
```

Out[35]: low_risk 68470 high risk 347

Name: loan_status, dtype: int64

In [36]: # Split the X and y into X_train, X_test, y_train, y_test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state

Data Pre-Processing

Scale the training and testing data using the StandardScaler from sklearn. Remember that when scaling the data, you only scale the features data (X_t and X_t).

```
In [37]: # Create the StandardScaler instance
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
```

```
In [38]: # Fit the Standard Scaler with the training data
# When fitting scaling functions, only train on the training dataset
X_scaler = scaler.fit(X_train)
```

```
In [39]: # Scale the training and testing data
X_train_scaled = X_scaler.transform(X_train)
X_test_scaled = X_scaler.transform(X_test)
```

Ensemble Learners

In this section, you will compare two ensemble algorithms to determine which algorithm results in the best performance. You will train a Balanced Random Forest Classifier and an Easy Ensemble classifier. For each algorithm, be sure to complete the following steps:

- 1. Train the model using the training data.
- 2. Calculate the balanced accuracy score from sklearn.metrics.
- 3. Display the confusion matrix from sklearn.metrics.
- 4. Generate a classication report using the imbalanced_classification_report from imbalanced-learn.
- 5. For the Balanced Random Forest Classifier only, print the feature importance sorted in descending order (most important feature to least important) along with the feature score

Note: Use a random state of 1 for each algorithm to ensure consistency between tests

Balanced Random Forest Classifier

```
In [45]: # Resample the training data with the BalancedRandomForestClassifier
from imblearn.ensemble import BalancedRandomForestClassifier, EasyEnse
model = BalancedRandomForestClassifier(n_estimators=100, random_state=

#fit model
model.fit(X_train_scaled, y_train)

#predict
y_predict = model.predict(X_test_scaled)
```

```
In [46]: # Calculated the balanced accuracy score
          print(f'BAS: {balanced_accuracy_score(y_test,y_predict)}')
          BAS: 0.7887512850910909
In [47]: # Display the confusion matrix
          confusion_matrix(y_test, y_predict)
Out[47]: array([[
                               30],
                      71,
                  [ 2146, 14958]])
In [48]: # Print the imbalanced classification report
          print(classification report imbalanced(y test, y predict))
                                                                   f1
                                pre
                                           rec
                                                       spe
                                                                              geo
          iba
                     sup
            high_risk
                               0.03
                                          0.70
                                                      0.87
                                                                 0.06
                                                                            0.78
          .60
                     101
              low_risk
                               1.00
                                          0.87
                                                      0.70
                                                                 0.93
                                                                            0.78
          .63
                   17104
                               0.99
                                                     0.70
          avg / total
                                          0.87
                                                                 0.93
                                                                            0.78
          .63
                   17205
In [50]: # List the features sorted in descending order by feature importance
          # sorted(zip(rf_model.feature_importances_, X.columns), reverse=True)
          sorted(zip(model.feature_importances_, X.columns), reverse=True)[:10]
Out[50]: [(0.07876809003486353, 'total_rec_prncp'),
           (0.05883806887524815, 'total_pymnt'),
           (0.05625613759225244, 'total_pymnt_inv'), (0.05355513093134745, 'total_rec_int'),
           (0.0500331813446525, 'last_pymnt_amnt'),
           (0.02966959508700077, 'int_rate'),
(0.021129125328012987, 'issue_d_Jan-2019'),
(0.01980242888931366, 'installment'),
            (0.01747062730041245, 'dti'),
           (0.016858293184471483, 'out_prncp_inv')]
```

Easy Ensemble Classifier

```
In [56]: # Train the Classifier
         easy model = EasyEnsembleClassifier(n estimators=100, random state=1)
         # Fit the model
         easy_model.fit(X_train_scaled, y_train)
         # Make the predictions
         eas y pred = easy model.predict(X test scaled)
In [57]: # Calculated the balanced accuracy score
         print(f'Easy E BAS: {balanced_accuracy_score(y_test, eas_y_pred)}')
         Easy E BAS: 0.931601605553446
In [58]: # Display the confusion matrix
         confusion_matrix(y_test, eas_y_pred)
Out[58]: array([[
                    93.
                   985, 16119]])
In [59]: # Print the imbalanced classification report
         print(classification_report_imbalanced(y_test, eas_y_pred))
                                                             f1
                                                 spe
                             pre
                                       rec
                                                                      geo
         iba
                   sup
           high_risk
                            0.09
                                      0.92
                                                0.94
                                                           0.16
                                                                     0.93
         .87
                   101
            low_risk
                            1.00
                                      0.94
                                                0.92
                                                           0.97
                                                                     0.93
                 17104
         .87
                                      0.94
                                                0.92
                                                           0.97
                                                                     0.93
         avg / total
                            0.99
         . 87
                 17205
```

```
In []:
```

Final Questions

1. Which model had the best balanced accuracy score?

Easy Ensemble had the best balanced accuracy score.

2. Which model had the best recall score?

The Easy Ensemble model had a high risk recall of .92 and low risk recall score of .94, which is much better than the Random Forrest.

3. Which model had the best geometric mean score?

Easy Enemble again was much better than the Random Forrest GM score.

4. What are the top three features?

Total received principle, total payment, and total payment inv, which probably means total payments invoiced.

In []:	
---------	--