

## associativity of stochastic integration

Canonical name AssociativityOfStochasticIntegration

Date of creation 2013-03-22 18:41:06 Last modified on 2013-03-22 18:41:06

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282)
Entry type Theorem
Classification msc 60H05
Classification msc 60G07
Classification msc 60H10

The chain rule for expressing the derivative of a variable z with respect to x in terms of a third variable y is

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}.$$

Equivalently, if  $dy = \alpha dx$  and  $dz = \beta dy$  then  $dz = \beta \alpha dx$ . The following theorem shows that the stochastic integral satisfies a generalization of this.

**Theorem.** Let X be a semimartingale and  $\alpha$  be an X-integrable process. Setting  $Y = \int \alpha dX$  then Y is a semimartingale. Furthermore, a predictable process  $\beta$  is Y-integrable if and only if  $\beta\alpha$  is X-integrable, in which case

$$\int \beta \, dY = \int \beta \alpha \, dX. \tag{1}$$

Note that expressed in alternative notation, (??) becomes

$$\beta \cdot (\alpha \cdot X) = (\beta \alpha) \cdot X$$

or, in differential notional,

$$\beta(\alpha dX) = (\beta \alpha) dX.$$

That is, stochastic integration is associative.