LSST, the Spatial Cross-Match Challenge

> Maria Nieto-Santisteban Alexander Szalay Ani Thakar The Johns Hopkins University

> > Jim Gray
> >
> > Microsoft Research

What is Cross-Matching?

- Identify point(s) in A with point(s) in B
 - o Cones: Find points nearby one point
 - Distance from few arcseconds to few degrees
 - Neighborhood: points nearby points
 - Distance from few arcseconds to very few arcminutes
- Decide whether those points share more than just their position

Zones

- Bin the data
 - ZoneID = floor ((dec + 90.0) /zoneHeight)
- Place the data close on disk
 - o Cluster Index on ZoneID, Ra
- Trick required to handle the (360,0)
- Efficient
 - Cones
 - Neighbors (especially)
- Useful
 - Partition the data
 - Distribute workload

Maria A. Nieto-Santisteban / ADASS 2006

Zone Table

ObjID	ZoneID*	RA	Dec	CX	CY	CZ	
1	0	0.0	-90.0				
2	20250	180.0	0.0				
3	20250	181.0	0.0				
4	40500	360.0	+90.0				

^{*} Using a zone height of 8 arcsec in this example

SQL CrossNeighbors

```
SELECT *
FROM prObj1 z1

JOIN zoneZone ZZ

ON ZZ.zoneID1 = z1.zoneID

JOIN prObj2 z2

ON ZZ.ZoneID2 = z2.zoneID

WHERE

z2.ra BETWEEN z1.ra-ZZ.alpha AND z2.ra+ZZ.alpha

AND

z2.dec BETWEEN z1.dec-@r AND z1.dec+@r

AND

(z1.cx*z2.cx+z1.cy*z2.cy+z1.cz*z2.cz) > cos(radians(@r))
```

Maria A. Nieto-Santisteban / ADASS 2006

Number of Rows in LSST Catalogs

	Single Exposure	Single Night	End of Survey
Objects	N/A	N/A	5×10 ¹⁰
Variable Objects	10 ⁵	108	3×10 ⁸
Source Detections	3×10 ⁶	3×10 ⁹	8×10 ¹²
DIA Source Detections	(10 ⁵)	(108)	3×10 ¹¹

LSST Cross-Match's challenges

- Issue alerts within 60 seconds
 - Challenge: Heavily time constrained
- Nightly pipeline @ archive
 - Challenge: Database consistency
- Deep Processing
 - Challenge: Volume of data to process
 Association complexity
- User queries:
 - Challenge: Many users, many types of users, many types of queries, a lot of data to look through

Maria A. Nieto-Santisteban / ADASS 2006

Alert Processing

- 1. Start alert clock when 2nd exposure ends
 - o 3 second readout while slewing to next field
- 2. Calibrate images (dark subtract, flat field)
 - 201 CCDs = 3.2 Gpixel
- 3. Difference image analysis
 - Identify and extract variable sources
- 4. Cross-match with object catalog
 - o Distinguish known variables and new objects

Summary

- Cone search != Neighbors
- Zones efficiently index and "join" spatial data
 e.g., SDSS DR5 vs. 2MASS in 80 minutes
- Zones are a convenient for partitioning data
- Simulated a LSST FOV in Galactic Center
- Cross-match catalogs smallest to largest
- Finds possible alerts in 40 sec on desktop