STRUCTURE DE GROUPE

1) Soit Z l'ensemble des entiers rationnels, muni de la loi de composition interne notée *, définie par :

$$*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

 $(a,b) \mapsto a - b.$

- a) La loi * est-elle associative? commutative?
- b) Vérifier qu'il existe dans $(\mathbb{Z},*)$ un élément neutre à droit, c'est-à-dire un élément e tel que

$$\forall a \in \mathbb{Z}, \ a * e = a.$$

e est-il neutre dans $(\mathbb{Z}, *)$?

- c) Existe-t-il, pour tout $a \in \mathbb{Z}$, un symétrique à droite relativement à e,c'est-à-dire un élément a' tel que a*a'=e
- a) $\forall a,b,c \in \mathbb{Z}, (a*b)*c = a-b-c$, et a*(b*c) = a-b+c, la loi n'est pas associative. Et $2*1 = 1 \neq -1 = 1*2$ montre qu'elle n'est pas non plus commutative.
- b) On vérifie que 0 est un neutre à droite pour $*: \forall a \in \mathbb{Z}, \ a*0 = a-0 = a$. Il n'est cependant pas un neutre pour *, car $0*a = -a \neq a$.
- c) $\forall a \in \mathbb{Z}, \ a * a' = e \Rightarrow a = a'$. Pour tout élément $a \in \mathbb{Z}, \ a$ est son propre inverse à droite.
- 2) Soit $\mathbb Q$ l'ensemble des nombres rationnels muni de la loi de composition interne notée * définie par :

$$*: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$$

 $(a,b) \mapsto a+b+ab.$

 $(\mathbb{Q},*)$ est-il un groupe?

La loi * admet 0 comme élément neutre, en effet, a*0=0*a=a. Cependant, -1 n'est pas symétrisable par cette loi, car on a a*-1=a-1-a=-1, donc $(\mathbb{Q},*)$ n'est pas un groupe.