Práctica 3

Eugenio Lorente Ramos y Carlos Javier Hellín Asensio

T4.1. Un agente de seguros dedicado a la venta de seguros de vida, realiza visitas a posibles clientes con el fin de contratar un seguro de vida. Se sabe de su trayectoria como agente que en el 60% de las visitas tiene éxito y contrata un seguro. Definir la variable aleatoria a este experimento aleatorio y obtener la media y la varianza.

```
Bernoulli:
-p = 0.6
-q = 1-p = 0.4
-E[x]:
> p = 0.6
-S[x]:
> p * (1 - p)
[1] 0.24
```

- **T4.3.** Un representante realiza 5 visitas cada día a ¡os comercios de su ramo, y por su experiencia anterior sabe que la probabilidad de que le hagan un pedido en cada visita es del 0.4. Obtener:
 - a) La distribución del número de pedidos por día.

```
B(5;0.4)
> pbinom(0:5, 5, 0.4)
[1] 0.07776 0.33696 0.68256 0.91296 0.98976 1.00000
```

b) Las probabilidades para los diferentes números de pedidos.

```
> dbinom(0:5, 5, 0.4)
[1] 0.07776 0.25920 0.34560 0.23040 0.07680 0.01024
```

c) La representación gráfica de la función de probabilidad.

Función de Probabilidad B(5,0.4)

d) El número medio de pedidos por día,

f) La probabilidad de que el número de pedios que realiza durante un día esté comprendido entre 1 y 3.

```
> pbinom(3, 5, 0.4) - dbinom(0, 5, 0.4) [1] 0.8352
```

g) La probabilidad de que por lo menos realice dos pedidos > 1 - pbinom(1, 5, 0.4)
[1] 0.66304

T4.5. En una cierta empresa constructora el número de accidentes es por término medio de 3 por mes. Calcular:

```
lambda = 3
```

P(3)

a) La probabilidad de que no ocurra ningún accidente en un mes dado.

```
> dpois(0,3)
[1] 0.04978707
```

b) La probabilidad de que ocurran menos de 5 accidentes en un mes dado.

```
> ppois(5,3)
[1] 0.9160821
```

- c) La probabilidad de que ocurran más de 3 accidentes en un mes dado
- > 1-ppois(3,3) [1] 0.3527681
- d) La probabilidad de que ocurran exactamente 3 accidentes en un mes dado

```
> dpois(3,3)
[1] 0.2240418
```

- **T4.14.** Sea una variable aleatoria X distribuida según una normal con media \square = 50 y desviación típica \square = 8. Obtener:
 - a) La probabilidad de que la variable aleatoria X tome valores entre 38 y 58.

```
> pnorm(58, 50, 8) - pnorm(38, 50, 8) [1] 0.7745375
```

b) La probabilidad de que la variable aleatoria X tome un valor mayor que 66.

```
> 1 - pnorm(66, 50, 8)
```

[1] 0.02275013