习题(19)

19.1 设随机变量U和V相互独立,且服从同一分布:

$$P\{U=i\} = P\{V=i\} = 1/3, i = 1,2,3.$$

 $\Leftrightarrow X = \max(U, V)$, $Y = \min(U, V)$.

- 1) 求二维随机变量(X,Y)的联合分布律;
- 2) 求(X,Y)关于X和关于Y的边缘分布律;
- 3) 问 X 和 Y 是否相互独立?
- **19.2** 设随机向量(X,Y)的分布律为

Y	0	1	2 3	4	5	
X						
0	0.00	0.01	0.03	0.05	0.07	0.09
1	0.01	0.02	0.04	0.05	0.06	0.08
2	0.01	0.03	0.05	0.05	0.05	0.06
3	0.01	0.02	0.04	0.06	0.06	0.05

- 3) 求 $U = \min\{X, Y\}$ 的分布律;
- 4) 求W = X + Y的分布律.
- **19.3** 已知二维随机变量(X,Y)的联合分布律为

X	0 1 2 3
$\underline{\hspace{1cm}} Y$	
1	0 0.05 0.08 0.12
2	0 0.05 0.08 0.12 0.01 0.09 0.12 0.15 0.02 0.11 0.13 0.12
3	0.02 0.11 0.13 0.12

试求:随机变量 $V = \frac{X}{Y}$ 的分布律.

19.4 设某种电子装置的输出是随机变量,它的密度函数为 $f(x) = \begin{cases} \frac{x}{4} \cdot e^{-\frac{x^2}{8}} &, \quad x > 0 \\ 0 &, \quad x \leq 0 \end{cases}$. 对它的输

1

出进行了 5 次独立测量,得到结果为 X_1, X_2, \dots, X_5 .

1) 求 $Z = \max\{X_1, X_2, \dots, X_5\}$ 的分布函数;

2) 求 $P{Z > 4}$.

习题(19)参考解答

19.1 解: 1) 由 $X = \max(U, V)$, $Y = \min(U, V)$ 知, X 的可能取值:1, 2, 3; Y 的可能取值:1, 2, 3.

且

$$\begin{split} P\{X=1,Y=2\} &= P\{X=1,Y=3\} = P\{X=2,Y=3\} = 0\;,\\ P\{X=1,Y=1\} &= P\{U=1,V=1\} = P\{U=1\} \cdot P\{V=1\} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}\;,\\ P\{X=2,Y=1\} &= P\{U=2,V=1\} + P\{U=1,V=2\}\\ &= P\{U=2\} \cdot P\{V=1\} + P\{U=1\} \cdot P\{V=2\}\\ &= \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{2}{9}\;, \end{split}$$

依次类推,可得

$$P{X = 3, Y = 1} = \frac{2}{9}, P{X = 2, Y = 2} = \frac{1}{9},$$

 $P{X = 3, Y = 2} = \frac{2}{9}, P{X = 3, Y = 3} = \frac{1}{9}.$

则得(X,Y)的联合分布律表:

X	1	2	3	n
Y				$p_{\cdot j}$
1	1/9	2/9	2/9	5/9
2	0	1/9	2/9	3/9
3	0	0	1/9	1/9
$p_{i\cdot}$	1/9	3/9	5/9	1

2) 由
$$P\{X=i\} = \sum_{j} P\{X=i, Y=j\}$$
 与 $P\{Y=j\} = \sum_{i} P\{X=i, Y=j\}$,可分别得关于 X 和关于

Y的边缘分布律 $\{p_i\}$ 和 $\{p_{ij}\}$ 也列于上表中.

3)由

$$P{X = 1, Y = 1} = \frac{1}{9}, P{X = 1} = \frac{1}{9}, P{Y = 1} = \frac{5}{9}$$

$$P{X = 1, Y = 1} \neq P{X = 1} \cdot P{Y = 1}.$$

所以, X与Y不相互独立.

19.2 解: 1) 由(X,Y) 的联合分布律 $\{p_{ij}\}$ 及 $p_{i.} = \sum_{j} p_{ij}$ 与 $p_{..j} = \sum_{i} p_{ij}$,得边缘分布律分别为

X	0 1 2 3	Y	0 1 2 3 4 5
p_{k}	0.25 0.26 0.25 0.24	q_{j}	0.03 0.08 0.16 0.21 0.24 0.28

则

$$P\{X = 2 \mid Y = 2\} = \frac{P\{X = 2, Y = 2\}}{P\{Y = 2\}} = \frac{0.05}{0.16} = \frac{5}{16};$$

$$P{Y = 3 \mid X = 0} = \frac{P{X = 0, Y = 3}}{P{X = 0}} = \frac{0.05}{0.25} = 0.2$$
.

2) $V = \max\{X, Y\}$ 的分布律:

V	1	2	3	4	5	
$p_{\scriptscriptstyle k}$	0.04	0.1	6 0	.28	0.24	0.28

3) $U = \min\{X, Y\}$ 的分布律:

U	0 1 2 3
$p_{\scriptscriptstyle k}$	0.28 0.30 0.25 0.17

4) *W* = *X* + *Y* 的分布律:

\overline{W}					5 7			
p_k	0.02	0.06	0.13	0.19	0.24	0.19	0.12	0.05

19.3 解: 由 $V = \frac{X}{Y}$,得V的可能取值见下表:

X	0 1 2 3
Y	
1	0 1 2 3
2	0 1/2 1 3/2
3	0 1/3 2/3 1

由此知随机变量V的可能取值: $0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{3}{2}, 2, 3$.又由

$$P\{V = v_k\} = P\{\frac{X}{Y} = v_k\} = \sum_{\substack{i,j:\\i/j = v_k}} P\{X = i, Y = j\},$$

得随机变量 $V = \frac{X}{Y}$ 的分布律:

V	0	<u>1</u> 3	$\frac{1}{2}$	$\frac{2}{3}$	1	2	<u>3</u>	2	3
r_k	0.03	0.11	0.09	0.13	0.29	0.15	0.08	0.12	

如:
$$P\{V=1\} = P\{\frac{X}{Y}=1\} = P\{X=1, Y=1\} + P\{X=2, Y=2\} + P\{X=3, Y=3\}$$

= $0.05 + 0.12 + 0.12 = 0.29$.

19.4 解: 1)由

$$\begin{split} F_Z(z) &= P\{ \ Z \leq z \ \} = P\{ \ \max\{X_1, X_2, \cdots, X_5\} \leq z \ \} \\ &= P\{X_1 \leq z, X_2 \leq z, \cdots, X_5 \leq z \ \} \\ &= \prod_{i=1}^5 P\{ \ X_i \leq z \} = [P\{X_1 \leq z \}]^5 = [F(z)]^5 \ , \end{split}$$

而 $F(z) = \int_{-\infty}^{z} f(x)dx$,则当 $z \le 0$ 时, F(z) = 0;而当 z > 0 时,

$$F(z) = \int_{0}^{z} \frac{x}{4} \cdot e^{-\frac{x^{2}}{8}} dx = 1 - e^{-\frac{z^{2}}{8}} \implies F(z) = \begin{cases} 1 - e^{-\frac{z^{2}}{8}} &, & z > 0 \\ 0 &, & z \le 0 \end{cases}.$$

所以,随机变量Z的分布函数为

$$F_Z(z) = \begin{cases} (1 - e^{-\frac{z^2}{8}})^5, & z > 0\\ 0, & z \le 0 \end{cases}.$$

2)
$$P\{Z > 4\} = 1 - P\{Z \le 4\} = 1 - F_Z(4) = 1 - (1 - e^{-2})^5 = 0.5167$$
.