Flowchart: Loop

จงเขียนโปรแกรมที่ทำงานตามผังงานข้างล่างนี้

ข้อมูลนำเข้า

จำนวนจริงหนึ่งจำนวน

ข้อมูลส่งออก

ตามที่แสดงในผังงาน

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
0.0	1
0.7	30

Flowchart: Partition

-จงเขียนโปรแกรมที่ทำงานตามผังงานข้างล่างนี้

ข้อมูลนำเข้า

หนึ่งบรรทัดประกอบด้วยรายการของจำนวนเต็มคั่นด้วยช่องว่าง

ใช้คำสั่ง d = [int(e) for e in input().split()]

ข้อมูลส่งออก

ตามที่แสดงในผังงาน

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
1 2 3 4 5	[1, 2, 3, 4, 5]
5 4 3 2 1	[1, 4, 3, 2, 5]
9 2 7 1 6 8 4 5	[2, 1, 4, 5, 6, 8, 7, 9]

ค่าเฉลี่ย

จงเขียนโปรแกรมหาค่าเฉลี่ยของชุดข้อมูลที่รับจากแป้นพิมพ์

ข้อมูลนำเข้า

จำนวนจริงบรรทัดละจำนวน บรรทัดสุดท้ายเป็นตัวอักษร **q**

ข้อมูลส่งออก

ค่าเฉลี่ยของข้อมูลที่รับเข้ามา โดยแสดงเลขหลังจุดทศนิยม 2 ตำแหน่ง ถ้าไม่มีข้อมูลเลย ให้แสดง **No Data**

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
10	25.38
20	
30	
41.5	
q	
10	15.0
20	
q	
q	No Data

การประมาณค่าของ \log_{10} a ด้วย bisection (แบบที่ 1)

เราสามารถหาค่าประมาณของ \sqrt{a} ได้ด้วยวิธี bisection ดังนี้

- 1. ให้ L = 0, U = a
- 2. เริ่มให้คำตอบอยูในช่วง [L, U]
- x =จุดกึ่งกลางของช่วง
- 4. ทำข้างล่างนี้ซ้ำ ถ้า x^2 ยังมีค่าไม่ใกล้กับ a ("ใกล้กัน" เมื่อ $|a-x^2| \leq 10^{-10} \max{(a,x^2)}$)
 - ถ้า $x^2 > a$ ก็เปลี่ยนช่วงเป็น [L, x]
 - ถ้า $x^2 < a$ ก็เปลี่ยนช่วงเป็น [x, U]
 - $x = q q \tilde{n}$ value value
- 5. x คือค่าประมาณของ \sqrt{a}

จงนำแนวคิดของ bisection ข้างต้นมาใช้หาค่าประมาณของ $\log_{10} a$ โดยที่ $a \geq 1$

ข้อมูลนำเข้า

จำนวนจริง a (a ที่ใช้ในการทดสอบมีค่าระหว่าง 1 ถึง 600)

ข้อมูลส่งออก

ค่าประมาณของ $\log_{10} a$ โดยแสดงเลขหลังจุดทศนิยม 6 ตำแหน่ง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
1	0.0
100	2.0
250.0	2.39794
500.0	2.69897

ตรวจคำตอบปรนัย

-จงเขียนโปรแกรมรับสตริง 2 ตัว สตริงแรกเป็นเฉลยคำตอบปรนัย อีกสตริงเป็นคำตอบของนักเรียน แล้วแสดงว่าถูกกี่ข้อ เช่น

- สตริงเฉลยคือ AAABC แทนเฉลย A, A, A, B และ C ของข้อที่ 1 ถึง 5 ตามลำดับ
- สตริงคำตอบคือ AABCC แทนคำตอบ A, A, B, C และ C ของข้อที่ 1 ถึง 5 ของนักเรียนคนนี้
- สรุปว่า นักเรียนคนนี้ตอบถูก 3 ข้อ

ข้อมูลนำเข้า

ข้อมูลส่งออก

จำนวนคำตอบที่ถูกต้อง ถ้าจำนวนข้อของเฉลยไม่ตรงกับของคำตอบ ให้แสดง Incomplete answer

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
AAABC	3
AABCC	
ААААААААААААААААА	0
BBBXXBBBBB BBBBB BBBBBB	
ААААААААААААААААААА	Incomplete answer
АААААААААА	

วงเล็บเปิดปิด

จงเขียนโปรแกรมรับสตริง จากนั้นสร้างสตริงใหม่ที่

- แทน (ด้วย [
- แทน [ด้วย (
- แทน) ด้วย]
- แทน] ด้วย)

แล้วแสดงผลทางจอภาพ

ข้อมูลนำเข้า

สตริงหนึ่งบรรทัด

ข้อมูลส่งออก

สตริงที่มีการแทนวงเล็บเปิดปิดตามที่อธิบายไว้ข้างต้น

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
[[a + (b + [c / d] - e) + f] + 4]	((a + [b + (c / d) - e] + f) + 4)
no parentheses	no parentheses

นับจำนวนคำที่สนใจ

จงเขียนโปรแกรมที่รับคำที่สนใจ แล้วก็รับข้อความหนึ่งบรรทัด จากนั้นนับว่าในข้อความที่รับ มีจำนวนคำที่สนใจกี่คำ หมายเหตุ: กำหนดให้คำที่สนใจมีแต่ตัวอักษรภาษาอังกฤษ และ ข้อความที่รับเข้ามาประกอบด้วยตัวอักษรภาษาอังกฤษ ตัวเลข หรือเครื่องหมาย วรรคตอน " () , . หรือ '

ข้อมูลนำเข้า

สตริง 2 บรรทัด บรรทัดแรกคือคำที่สนใจ บรรทัดที่สองคือข้อความ

ข้อมูลส่งออก

จำนวนคำที่สนใจในข้อความที่รับเข้ามา (ให้ถือว่าตัวอังกฤษใหญ่ไม่เหมือนตัวเล็ก)

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
the	2
The word "the" is one of the most common words in English.	
Sadet	2
"Phra Sadet" tham "Phra Sadet" wa ja sadet rue mai sadet.	

วาดสามเหลี่ยมสูง h

จงเขียนโปรแกรมรับจำนวนเต็มที่แทนความสูง h แล้ววาดสามเหลี่ยมหน้าจั่วความสูง h ฐานกว้าง 2h-1

ข้อมูลนำเข้า

จำนวนเต็มหนึ่งจำนวนแทนความสูงสามเหลี่ยมหน้าจั่ว (ความสูง ≥ 2)

ข้อมูลส่งออก

สตริงจำนวนบรรทัดเท่ากับความสูงที่ได้รับ แทนรูปสามเหลี่ยมหน้าจั่ว ดังตัวอย่างข้างล่างนี้

input (จากแป้นพิมพ์)	output (ทางจอภาพ)	
2	*	

3	*	
	* *	

8	*	
	* *	
	* *	
	* *	
	* *	
	* *	
	* *	

การประมาณค่าของ \log_{10} a ด้วย bisection (แบบที่ 2)

เราสามารถหาค่าประมาณของ $\log_{10} a$ ได้ด้วย วิธี bisection (อ่านรายละเอียดและตัวอย่างการทำ bisection ในเอกสารประกอบการเรียน) ซึ่ง ต้องเริ่มกำหนดช่วง [L, U] ที่มั่นใจว่า $\log_{10} a$ อยู่ในช่วงนี้แน่ สำหรับการหา $\log_{10} a$ การให้เริ่มที่ [0, a] จะกว้างเกินไป และอาจเกิดปัญหาใน การคำนวณระหว่าง bisection (ลองทำได้ดูได้ และให้ a=10000.5)

ในที่นี้ ขอเสนอวิธีประมาณค่า U ด้วย $1+\lfloor \log_{10} a \rfloor$ ซึ่งมีค่าเท่ากับจำนวนครั้งที่นำ 10 หาร a (แบบปัดเศษทิ้ง) ไปเรื่อย ๆ จนเป็น 0 เช่น $a=120,\ 120//10$ ได้ $12,\ 12//10$ ได้ $1,\ 1//10$ ได้ 0 ซึ่งต้องหาร 3 ครั้ง ก็ให้ U เป็น 3 ก่อนไปทำ bisection

สรุปขั้นตอนการทำงานเป็นดังนี้

- 1. รับค่า a จากแป้นพิมพ์
- 2. ให้ L = 0
- 3. ให้ U มีค่าเท่ากับจำนวนครั้งในการนำ 10 หาร a จนมีค่าเป็น 0 (ข้อแนะนำ: ตรงนี้อาจต้องใช้วงวน while)
- 4. ใช้ bisection หาค่าประมาณของ $\log_{10} a$ โดยเริ่มที่ช่วง [L, U] จากข้อ 2 กับ 3
- 5. ให้ทดสอบว่าสองจำนวน a กับ b ใกล้กันเมื่อ $|a-b| \leq 10^{-10} \mathrm{max} \ (a,b)$)

ข้อมูลนำเข้า

จำนวนจริง a (a นี้มีค่ามากกว่าหรือเท่ากับ 1 แน่ ๆ)

ข้อมูลส่งออก

ค่าประมาณของ $\log_{10} a$ โดยแสดงเลขหลังจุดทศนิยม 6 ตำแหน่ง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
1	0.0
100	2.0
100000000	8.0
123456	5.091512

Run-Length Encoding

ถ้ามีสตริงที่มีตัวอักษรซ้ำกันมาก ๆ วางเรียงติด ๆ กัน เช่น "AAAAAAAAABBBB" ก็อาจแทนด้วย "A 10 B 4" หมายความว่า มี A ติดกัน 10 ตัว ตามด้วย B ติดกัน 4 ตัว เราเรียกการเข้ารหัสทำนองนี้ว่า run-length encoding

จงเขียนโปรแกรมรับสตริงหนึ่งบรรทัด เพื่อเปลี่ยนเป็นสตริงในรูปแบบ run-length encoding แล้วแสดงทางจอภาพ

ข้อมูลนำเข้า

สตริงหนึ่งบรรทัด ประกอบด้วยตัวอักษรภาษาอังกฤษตัวใหญ่เท่านั้น (สตริงที่จะนำมาทดสอบจะเป็นแบบนี้แน่ ๆ)

ข้อมูลส่งออก

สตริงในรูปแบบ run-length encoding ของสตริงที่รับเข้ามา

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
zzzZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	z 3 Z 26
ABBA	A 1 B 2 A 1

Zig-Zag / Zag-Zig (แบบที่ 1)

-จงเขียนโปรแกรมรับรายการของคู่ข้อมูล X กับ Y และบรรทัดสุดท้ายรับคำสั่งที่อาจเป็น Zig-Zag หรือ Zag-Zig

6	6
X1 Y1	X1 Y1
x2 ¥2	X2 Y2
х3 үз	х3 үз
X4 Y4	x4 y 4
x5 y 5	x5 y 5
x6 Y 6	x6 Y 6
Zig-Zag	Zag-Zig
หา min จากข้อมูลเ <mark>ส้นแดง</mark>	หา min จากข้อมูลเ <mark>ส้นแดง</mark>
หา max จากข้อมูลเส้นน้ำเงิน	หา max จากข้อมูลเส้นน้ำเงิน

- ถ้าเป็น Zig-Zag
 - o ให้หาค่าน้อยสุดของข้อมูล X1, Y2, X3, Y4, X5, Y6, ... และหาค่ามากสุดของข้อมูล Y1, X2, Y3, X4, Y5, X6, ...
- ถ้าเป็น Zag-Zig
 - o ให้หาค่าน้อยสุดของข้อมูล Y1, X2, Y3, X4, Y5, X6, ... และหาค่ามากสุดของข้อมูล X1, Y2, X3, Y4, X5, Y6, ...
- แสดงค่าน้อยสุด และค่ามากสุดที่หาได้

ข้อมูลนำเข้า

บรรทัดแรกเป็นจำนวนเต็ม **ท** บอกว่าจะมีข้อมูลกี่บรรทัด

N บรรทัดต่อมา แต่ละบรรทัดมีจำนวนเต็มสองจำนวนคั่นด้วยช่องว่าง

บรรทัดสุดท้ายเป็นคำว่า Zig-Zag หรือ Zag-Zig (ไม่มีคำอื่นแน่ ๆ)

ข้อมูลส่งออก

้ ค่าน้อยสุด และค่ามากสุด (คั่นด้วยช่องว่าง) ตามที่นำเสนอข้างต้น

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
3	-30 30
-10 10	
20 -20	
-30 30	
Zig-Zag	
3	10 -10
-10 10	
20 -20	
-30 30	
Zag-Zig	

Zig-Zag / Zag-Zig (แบบที่ 2)

จงเขียนโปรแกรมรับรายการของคู่ข้อมูล X กับ Y และบรรทัดสุดท้ายรับคำสั่งที่อาจเป็น Zig-Zag หรือ Zag-Zig

- ถ้าเป็น Zig-Zag
 - o ให้หาค่าน้อยสุดของข้อมูล X1, Y2, X3, Y4, X5, Y6, ... และหาค่ามากสุดของข้อมูล Y1, X2, Y3, X4, Y5, X6, ...
- ถ้าเป็น Zag-Zig
 - o ให้หาค่าน้อยสุดของข้อมูล Y1, X2, Y3, X4, Y5, X6, ... และหาค่ามากสุดของข้อมูล X1, Y2, X3, Y4, X5, Y6, ...
- แสดงค่าน้อยสุด และค่ามากสุดที่หาได้

ข้อมูลนำเข้า

หลายบรรทัด แต่ละบรรทัดมีจำนวนเต็มสองจำนวนคั่นด้วยช่องว่าง บรรทัดสุดท้ายเป็นคำว่า Zig-Zag หรือ Zag-Zig (ไม่มีคำอื่นแน่ ๆ)

ข้อมูลส่งออก

ค่าน้อยสุด และค่ามากสุด (คั่นด้วยช่องว่าง) ตามที่นำเสนอข้างต้น

input (จากแป้นพิมพ์)	output (ทางจอภาพ)
-10 10	-30 30
20 -20	
-30 30	
Zig-Zag	
-10 10	10 -10
20 -20	
-30 30	
Zag-Zig	