

SECRETARÍA ACADÉMICA

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica.

UNIDAD DE APRENDIZAJE:

Control de Sistemas Robóticos

NIVEL: IV

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE:

Implementa esquemas de control de robots manipuladores y móviles con base en las propiedades del modelo dinámico y estrategias de control lineal y no lineal.

CONTENIDOS:

- I. Dinámica de robots manipuladores y móviles.
- II. Planificación de travectorias.
- III. Control de robots.

ORIENTACIÓN DIDÁCTICA:

Esta unidad de aprendizaje se abordará mediante la estrategia de aprendizaje orientada a proyectos (POL, por sus siglas en inglés). El facilitador aplicará los métodos de enseñanza: analítico e inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: desarrollo del proyecto, organizadores gráficos, simulaciones por computadora, indagación bibliográfica, sesiones de asesoría, realización de prácticas de laboratorio y reporte de práctica.

EVALUACIÓN Y ACREDITACIÓN:

La presente Unidad de Aprendizaje se evaluará a partir del esquema de portafolio de evidencias, el cual se conforma de: evaluación diagnóstica, evaluación formativa, sumativa y rubricas de autoevaluación, coevaluación y heteroevaluación.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos, con base en los lineamientos establecidos por la Academia.
- Acreditación en otra Unidad Académica del IPN u otra institución educativa externa al Instituto Nacional ó internacional previo convenio establecido.

BIBLIOGRAFÍA:

- Barrientos, A. (2007). Fundamentos de robótica (2ª Edición). Interamericana de España: Mcgraw-Hill. ISBN: 9788448156367.
- Craig, J. J. (2006). Robótica (3ª Edición). México: Pearson educación. ISBN: 970-26-0772-8.
- Kelly, R. V., Santibáñez, A. L. (2005). Control of robot manipulators in joint space (1ª Edition). London: Springer. ISBN-10: 1-85233-994-2.
- Reyes, C. F. (2011). Robótica control de robots manipuladores (1ª Edición). México D.F: Alfaomega. ISBN: 978-607-707-190-7.
- Spong, M. W., Seth, H., Vidyasagar, M. (2004). Robot dynamics and control (2ª Editión). India: Wiley. ISBN: 9780471612438.

SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y

TECNOLOGÍAS AVANZADAS.

PROGRAMA ACADÉMICO: Ingeniería Mecatrónica

SALIDA LATERAL: N/A

ÁREA DE FORMACIÓN: Profesional

MODALIDAD: Escolarizada

UNIDAD DE APRENDIZAJE: Control de sistemas robóticos

TIPO DE UNIDAD DE APRENDIZAJE: Teórico – práctica /

Optativa

VIGENCIA: Enero 2014

NIVEL: IV

CRÉDITOS: 6.0 Tepic - 4.4 SATCA

INTENCIÓN EDUCATIVA

Esta unidad de aprendizaje contribuye al perfil de egreso del ingeniero mecatrónico porque proporciona los fundamentos teóricos y experimentales del funcionamiento de los esquemas de control de robots manipuladores y móviles. Asimismo se, fomentan las siguientes competencias: resolución de problemas, toma de decisiones, trabajo en equipo, habilidades de argumentación y presentación de la información. Además, desarrolla la comunicación asertiva, la creatividad y el pensamiento analítico para la solución de problemas afines al área de ingeniería.

Las unidades de aprendizaje precedentes son: Control clásico, Modelado y simulación de sistemas mecatronicos, Control de máquinas eléctricas, Autómatas industriales, Control de sistemas mecatrónicos y las consecuentes son: Trabajo Terminal.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Implementa esquemas de control de robots manipuladores y móviles con base en las propiedades del modelo dinámico y estrategias de control lineal y no lineal.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 1.5

HORAS PRÁCTICA/SEMANA: 3

HORAS TEORÍA/SEMESTRE: 27

HORAS PRÁCTICA/SEMESTRE:

54

HORAS TOTALES/SEMESTRE: 81

AUTORIZADO POR:

Comisión de Programas Académicos del Consejo General Consultivo del I

> DE EDUCACIÓN PUBLICA SELECTION POLITÉCISION NACIONAL DIRECCION DIRECCION

Dr. Emmanuel Alejandro
Merchán Cruz
Secretario Técnico de la
Comisión de Programas
Académicos.

12 de junio de 2014

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Control de Sistemas Robóticos

HOJA: 3

DE

N° UNIDAD TEMÁTICA: I

NOMBRE: Dinámica de robots manipuladores y móviles.

UNIDAD DE COMPETENCIA

Analiza las propiedades del modelo dinámico de robots manipuladores y móviles con base en la formulación de Euler-LaGrange y Newton-Euler.

No.	No. CONTENIDOS		HORAS AD Actividades de Docencia		S TAA lades de ndizaje nomo	CLAVE BIBLIOGRÁFICA
	,	Т	Р	Т	Р	
1.1	Modelado dinámico mediante la formulación de Euler-LaGrange	1.0	3.0	2.0	4.0	1B, 4B, 2C, 3C, 5C
1.2	Propiedades del modelo dinámico del robot	1.0		1.0		
1.3	Formulación de Newton-Euler	1.0	2.0	1.0	2.0	
1.4	Modelado dinámico de robots móviles con ruedas y patas	1.0	3.0	2.0	4.0	-
			5			
				χ.		
	Subtotales:	4.0	8.0	6.0	10.0	

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos de enseñanza: analítico e inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: desarrollo del proyecto, organizadores gráficos, simulaciones por computadora, indagación bibliográfica, sesiones de asesoría, realización de prácticas de laboratorio y reporte de práctica.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica Portafolio de evidencias:

Propuesta del proyecto 10%
Resultados de las simulaciones computacionales 30%
Reportes de prácticas 30%
Evaluación escrita 30%

Rúbricas de autoevaluación y coevaluación

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Control de Sistemas Robóticos

HOJA:

N° UNIDAD TEMÁTICA: II

NOMBRE: Planificación de trayectorias.

UNIDAD DE COMPETENCIA

Diseña trayectorias en el espacio de articulación y cartesiano con base en polinomios de cuarto, quinto grado y de Bézier.

No.	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
		T	Р	T	Р	
2.1 2.2 2.2.1	Introducción Trayectorias en el espacio de articulación Trayectorias polinomiales 3 grado	0.5 1.5	3.0	1.0 2.0	4.0	1B, 4B, 6B, 2C, 5C
2.2.2 2.2.3 2.2.4	Trayectorias polinomiales 5 grado Perfil trapezoidal Polinomios de Bézier					
2.3	Trayectorias en el espacio cartesiano	1.0	3.0	1.0	4.0	
	Subtotales:	3.0	6.0	4.0	8.0	

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos de enseñanza: analítico e inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: desarrollo del proyecto, organizadores gráficos, simulaciones por computadora, indagación bibliográfica, sesiones de asesoría, realización de prácticas de laboratorio y reporte de práctica.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

Avance del proyecto (1) 30% 20% Resultados de las simulaciones computacionales Reportes de prácticas 20% Evaluación escrita 30%

Rúbricas de autoevaluación y coevaluación

SECRETARÍA ACADÉMICA

NOMBRE: Control de robots.

UNIDAD DE APRENDIZAJE: Control de Sistemas Robóticos

HOJA: 5

N° UNIDAD TEMÁTICA: III

UNIDAD DE COMPETENCIA

Diseña controladores con base en esquemas del tipo lineal y no lineal.

	CONTENIDOS	HORAS AD Actividades de Docencia		HORAS TAA Actividades de Aprendizaje Autónomo		CLAVE BIBLIOGRÁFICA
		Т	Р	Т	Р	
3.1 3.1.1 3.1.2 3.1.3	Control por juntas independientes Control proporcional con retroalimentación de velocidad Control Proporcional derivativo (PD) Control Proporcional Integral Derivativo (PID)	1.5	2.0	2.0	6.0	4B, 6B, 2C, 5C
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Control multivariable PD+ Compensación de gravedad PD+ Controlador Par Calculado Estabilidad en el sentido de Lyapunov para el control PD con compensación de gravedad (PD+G)	1.5	2.0	2.0	6.0	
3.3	Otros esquemas de control	1.0	2.0	2.0	4.0	
	Subtotales:	4.0	6.0	6.0	16.0	

ESTRATEGIAS DE APRENDIZAJE

Esta unidad temática se abordará a partir de la estrategia de aprendizaje orientada a proyectos (POL). El facilitador aplicará los métodos de enseñanza: analítico e inductivo. Las técnicas y actividades que auxiliarán a la estrategia seleccionada serán las siguientes: Desarrollo del proyecto, organizadores gráficos, simulaciones por computadora, indagación bibliográfica, sesiones de asesoría, realización de prácticas de laboratorio y Reporte de práctica.

EVALUACIÓN DE LOS APRENDIZAJES

Portafolio de evidencias:

40% Avance del proyecto (2) Resultados de las simulaciones computacionales 20% 20% Reportes de prácticas 20% Evaluación escrita Rúbricas de autoevaluación y coevaluación

DIRECCIÓN

DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONAL

DE EDUCACIÓN SUPERIOR

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE: Control de Sistemas Robóticos

HOJA: 6

DE

RELACIÓN DE PRÁCTICAS

RELACION DE L'INTONC							
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	DURACIÓN	LUGAR DE REALIZACIÓN			
1	Simulación del modelo dinámico de un robot manipulador para su validación, Euler-Lagrange.	I	4.0				
2	Simulación del modelo dinámico de un robot manipulador para su validación, Newton-Euler.	ı	4.0				
3	Obtención del modelo dinámico de un robot móvil "ruedas o patas (podos).	t	6.0				
4	Simulación del modelo dinámico de un robot móvil para su validación.	I	4.0				
5	Diseño y programación de trayectorias polinomiales de tercer grado.	II	4.0	Laboratorio de Computo V			
6	Diseño y programación de trayectorias polinomiales de quinto grado.	II	4.0	Laboratorio de manufactura			
7	Diseño y programación de trayectorias con funciones de Bézier.	II	6.0				
8	Simulación del controlador proporcional con retroalimentación de velocidad.	III	1.5				
9	Simulación del control PD y PID	Ш	2.0				
10	Simulación del control PD+G.	Ш	2.0				
11	Simulación del PD+ Esquema de control.	Ш	2.0				
12	Simulación de otros esquemas de control.	III	4.0				
13	Implementación de un controlador en un robot manipulador o móvil.	. III	10.5				
		TOTAL DE HORAS	54.0				

EVALUACIÓN Y ACREDITACIÓN:

Las prácticas se consideran requisito indispensable para acreditar esta unidad de aprendizaje. Las prácticas aportan el 30% de la calificación de la unidad de aprendizaje en la unidad temática I y 20% en las unidades temáticas II y III, el cual está considerado dentro de la evaluación continua.

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Control de Sistemas Robóticos

HOJA:

7

DE

PERÍODO	UNIDAD	PROCEDIMIENTO DE EVALUACIÓN		
1	1	Evaluación continua	70%	
		Evaluación escrita	30%	
2	JI .	Evaluación continua	70%	
		Evaluación escrita	30%	
3	111	Evaluación continua	80%	
		Evaluación escrita	20%	T.

Los porcentajes con los que cada unidad temática contribuyen a la evaluación final son:

La unidad I aporta el 30% de la calificación final.

La unidad II aporta el 30% de la calificación final.

La unidad III aporta el 40% de la calificación final.

Esta unidad de aprendizaje también se puede acreditar mediante:

- Evaluación de saberes previamente adquiridos con base en los lineamientos que establezca la Academia.
- Acreditación en otra Unidad Académica del IPN u otra institución educativa externa al Instituto Nacional ó internacional previo convenio establecido.

CLAVE	В	С	BIBLIOGRAFÍA
1	Х		Barrientos, Antonio (2007). Fundamentos de robótica (2ª Edición). Interamericana de España: Mcgraw-Hill. ISBN: 9788448156367.
2		Х	Canudas, D. C., Siciliano, B., Bastin G. (2012). Theory of robot control (Communications and control engineering) (reprint of 1 st ed.). USA: Springer. ISBN: 978-1447115038.
3	,	X	Craig, John J (2006). Robótica (3ª Edición). México: Pearson educación. ISBN: 970-26-0772-8.
4	X		Kelly R, V Santibáñez, A Loría (2005). Control of robot manipulators in joint space (1ª Edición). London: Springer. ISBN-10: 1-85233-994-2.
5		Х	Reyes Cortes, Fernando (2011). Robótica control de robots manipuladores (1ª Edición). México D.F: Alfaomega. ISBN: 978-607-707-190-7.
6	Х		Spong Mark W, Seth Hutchinson, M Vidyasagar (2004) Robot dynamics and control (2ª Edición). India: Wiley. ISBN: 9780471612438.

SECRETARÍA ACADÉMICA

PERFIL DOCENTE POR UNIDAD DE APRENDIZAJE

4	DATO	CE	NICO	AI	FC
1	DATOS	7 (75	NEK	\mathbf{AL}	

UNIDAD ACADÉMICA:

UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERIA Y TECNOLOGÍAS

AVANZADAS.

PROGRAMA ACADÉMICO:

Ingeniería Mecatrónica

NIVEL IV

ÁREA DE FORMACIÓN:

Institucional

Científica Básica

Profesional

Terminal y de Integración

ACADEMIA: Mecatrónica

UNIDAD DE APRENDIZAJE: Control de Sistemas

Robóticos

ESPECIALIDAD Y NIVEL ACADÉMICO REQUERIDO:

Licenciatura o Maestría con especialidad en robótica y/o

Mecatrónica.

2. PROPÓSITO DE LA UNIDAD DE APRENDIZAJE: Implementa esquemas de control de robots manipuladores y móviles con base en las propiedades del modelo dinámico y estrategias de control lineal y no lineal.

3. PERFIL DOCENTE:

CONOCIMIENTOS	EXPERIENCIA PROFESIONAL	HABILIDADES	ACTITUDES
Robótica. Teoría de control Modelo Educativo Institucional (MEI)	Mínimo dos años de experiencia docente en el nivel superior. SECRETARÍA DE EDUCACIÓN PÚBLICA INSTITUTO POLITÉCNICO NACIONA DIRECCIÓN DE EDUCACIÓN SUPERIOR	Manejo de grupo. Capacidad de análisis y síntesis. Comunicación asertiva. Habilidad didáctica y pedagógica. Uso de laboratorio Aplicar el MEI Manejo de las Tecnologías de la Información y la comunicación (TIC)	Vocación por la docencia Honestidad Critica fundamentada Respeto (relación maestro- alumno) Ética profesional y personal Responsabilidad Científica Trabajo en equipo Superación docente y profesional Compromiso social y ambiental Compromiso Institucional Puntualidad

ELABORÓ

M. en C. Jorge Fonseca Campos Subdirector Academicos AVANZADAS SUBDIRECCION ACADEMICA

M. en C. Arddi Ra Director

M. en C. Héctor Jonatán Hernández Marín Presidenta de Academia