Problem of filling and transporting a tank with fluids inside

Introduction

The purpose of the exercise is to present the problems that occur while filling a tank with 2 different liquids and transporting this tank to a specific location. A diagram of the process can be seen below (Img.1).

Img.1 Diagram of the process

Two valves control the flow of liquids. It can be noted that pipes that provide fluids have different diameters. There are two sensors that measure the level of liquids after mixing. Then robotic arm must transport the tank from point A to point B.

Valves

In this process different types of valves can be used, such as: electrical pneumatic or mechanical. Each of these types has advantages and disadvantages (Table 1).

Type	Pros	Cons Is it suitable for	
			process?
Solenoid valve	Fast switching, easy	May require a filter,	Yes, if a simple
	control	operates in ON/OFF	control system is
		mode	sufficient
Proportional	Allows precise flow	Requires a more	Yes, if precise liquid
	regulation	complex controller	flow is needed

Table 1 Comparison of valves

Electric ball	Durable, resistant to	Slower switching	Yes, if high	
	contamination	than solenoid	switching speed is	
			not required	
Pneumatic	Very fast operation,	Requires compressed	Yes, if a pneumation	
	good for large flows	air supply	system is available	

Also, in this process there is a need for control of flow of liquid in both pipes so mixing would be accurate. For this reason, flow sensors could be used. Depending on the type of fluid contact or contactless sensor can be applied. For example, if liquid in pipe is conductive, electromagnetic sensor is a perfect fit.

There are a lot of problems that can occur while fluid flows within valves. One of them is that liquids are not mixed evenly which is caused by different speeds of flow for both valves. There are some solutions for this problem such as: appropriate steering of the process using flow sensors and sequential opening and closing valves. Another thing is that pipes can have poor ventilation so the air will affect the process. Air vents or air babble sensors can be applied for this problem.

Fluid level sensors

For this task a variety of different sensors could be used including contact (Table 2) and non-contact (Table 3).

Table 2 Contact level sensors

Sensor	Working principle	Advantage	Disadvantage	Suitable for the system?
Float Sensor	A mechanical float changes position depending on	Simple, inexpensive, reliable	Sensitive to contamination and foam	Yes, if the liquid is not viscous and the tank is stable
	the liquid level			Static
Reed Switch (Magnetic)	A magnet in the float activates a reed switch	No electronic components in liquid, pressure- resistant	May jam with viscous liquids	Yes, if the tank is closed
Electrode (Conductive)	Works by detecting the electrical conductivity of the liquid	Cheap, effective for conductive liquids	Does not work for non- conductive liquids, requires calibration	Yes, if the liquids are conductive
Hydrostatic	Measures the pressure exerted by the liquid column	Works with foamy and viscous liquids	Requires immersion in liquid	Yes, if the sensor can be installed at the bottom

Table 3 Non-contact level sensors

Sensor	Working	Advantage	Disadvantage	Suitable for the
	principle			system?

Capacitive	Detects changes in electrical capacitance near the liquid surface	Non-contact, works with conductive and non-conductive liquids	May require calibration, affected by tank wall thickness	Yes, if the tank is plastic or non-conductive
Ultrasonic	Emits sound waves and measures the reflection time from the liquid surface	Non-contact, high precision	Can have issues with foamy or turbulent liquids	Yes, if the liquid surface is stable (low foam, minimal vibrations)
Radar (FMCW)	Emits microwaves and measures reflection time	Highly accurate, works in harsh conditions	Expensive solution	Yes, if high precision is required
Optical (Infrared/LiDAR)	Detects the liquid level based on light reflection	Precise, works with various liquids	Can be affected by contamination	Yes, if the liquid is transparent and does not create deposits

These sensors should have an impact on valves so liquid won't overflow or there would not be enough fluid in the tank.

Robotic arm