Cours Merise

Analyse et conception des systèmes d'information

Filière: Informatique et Gestion d'entreprise Faculté Polydisciplinaire de Ouarzazate Semestre 4 (2009/2010) M. NEMICHE

Introduction

Introduction

- Pourquoi une méthode de conception des S.I. ?
 - → Difficulté de la conception d'un S.I. : nécessité d'une méthode de *modélisation*
 - Modèle des systèmes d'information réalisé à partir de la méthode de conception, de développement et de réalisation des projets informatiques Merise

Introduction

• Le système d'information au sein de l'entreprise

Les ressources de l'entreprise :

- les ressources productives
- les ressources commerciales
- → les ressources financières
- → les ressources humaines

...mais l'information est une ressource vitale pour l'organisation au même titre que le capital ou les ressources humaines!

Coût de l'information :

- acquisition
- traitement
- transport
- → stockage

Introduction

· Problèmes de la constitution d'un S.I. sans méthode

Absence de conception globale d'un projet d'informatisation

Vision parcellaire des besoins :

- redondance des données
- → synonymes (plusieurs termes qui ont le même sens)
- → polysèmes (un terme qui a plusieurs sens différents)

Difficulté d'une maintenance efficace :

- moyens techniques limités
- → manque de dossier d'analyse

Utilisateur non intégré dans la conception du S.I.

Difficulté de planification et de suivi du travail

Apparition des méthodes de conduite des projets

Historique

En 1977/1978, demande du Ministère de l'Industrie : choix de sociétés de conseil en informatique pour la constitution d'une méthode de conception des systèmes d'information

- → Équipe de J.-L. Lemoigne (Univ. d'Aix / Marseille)
- → CTI (Centre Technique d'Informatique)
- CETE (Centre d'Études Techniques de l'Équipement)
 méthode MERISE (1979) :
 - conception du S.I. par étapes validées
 - → séparation des données et des traitements
 - vérifier la concordance entre données et traitements
 - vérifier que toutes les données nécessaires aux traitements sont présentes
 - vérifier qu'il n'y a pas de données superflues
 méthode MERISE 2^{ème} génération en 1992

Notion de système

- Un Système est un ensemble d'éléments matériels ou immatériels (hommes, machines, méthodes, règles, etc.) en interaction transformant par un processus des éléments (les entrées) en d'autres éléments (les sorties)
 - Exemple: une chaudière transforme par combustion du charbon en chaleur.
- Un système peut être contrôlé par un autre système dit système de pilotage.

Notion de système

• On obtiendra plus ou moins de chaleur selon les réglages qu'on effectuera sur la chaudière. L'opérateur qui effectue les réglages et contrôle le flux de charbon en entrée constitue un système de pilotage qui par ses commandes au système physique (à la chaudière) cherche à satisfaire un objectif (un tel niveau de chaleur).

Le système d'informations

- Nous n'envisageons ici que des systèmes constitués par des organisations (entreprise, administration, collectivité, tout groupe social organisé exerçant une activité) et fonctionnant en vue de la réalisation de certains objectifs.
- Un système physique ou (opérant) transforme un flux physique d'entrées (matières premières, flux financiers ...) en un flux physique de sorties (produit finis, flux financiers ...).
- Un système de gestion ou (pilotage) procède au pilotage (à la régulation et au contrôle) du système opérant en décidant du comportement de celui-ci en fonction des objectifs fixés.

Les systèmes

• Système d'information est défini comme le cœur de l'entreprise, il se trouve interface entre le système opérant et le système de pilotage et fournit les réponses aux deux systèmes.

Les systèmes

- Système opérant :
 - Chargé de la production
 - répond à la finalité de l'entreprise
- Système de pilotage :
 - dirige l'entreprise
 - cible les objectifs a une fonction d'arbitrage, d'allocations de ressources, de suivi de leurs utilisations, d'adaptation du fonctionnement de l'entreprise à son environnement

11

Les systèmes

- Système d'information :
 - lien entre les deux systèmes
 - informe le S.P. des performances du S.O.
 - transmet au S.O. les instructions du S.P.

12

RÔLE DU SYSTEME D'INFORMATION

- Collecter des informations provenant :
 - d'autres éléments du système
 - de l'environnement
- Mémoriser des données :
 - base de données
 - Fichiers
 - Historique, Archivage
- Traiter les données stockées :
 - traitements automatisables
 - aide à la prise de décision
- Communiquer

14

La notion de système d'information

un projet informatique a pour objectif de construire une application informatique (logiciel et base de données), support d'un système d'information informatisé, inclus dans un système d'information organisationnel.

La notion de Modèle

Un modèle est une représentation simplifiée d'une réalité sur laquelle on veut être renseigné (ex: un plan, une carte, un schéma électronique, ...).

Un modèle s'exprime avec un ensemble de concepts, dotés de règles d'utilisation et de représentations (souvent graphiques).

les modèles servent à :

- <u>communiquer</u>: vérifier que l'analyste a bien compris les utilisateurs (phase d'analyse),
- **préparer la réalisation** : grâce à un modèle de la solution (phase de conception).

Exemple de Modèle

Analyse et conception

• Au sens informatique, l'analyse consiste d'une part à comprendre et modéliser le fonctionnement d'un domaine de gestion d'une organisation, et d'autre part à concevoir la solution informatique adéquate.

Analyse et conception

 on s'intéresse en général à un domaine d'activité de l'entreprise :

- pro

- production,
- -logistique,
- finances.
- -RH, ...
- on prend en compte les besoins des utilisateurs,
- on définit le problème à résoudre (fonctionnalités et qualités attendues).

concep t.

on définit une solution informatique :

- structuration des données.
- organisation des traitements,
- définition des postes de travail,
- choix techniques: matériels, langages de programmation, logiciels de gestion de données (SGBD), ...

Démarche globale d'informatisation :

analyse du problème ightarrow conception de la solution ightarrow réalisation du système

Principes de base de la méthode Merise (Introduction)

Séparation des données et des traitements

- Traitements:
 - Étude des évènements
 - Indépendances entre les domaines
- Données
 - Étude du vocabulaire de l'organisation
 - Intégration des domaines: Vue globale

Approche par niveaux et approche par étapes (Introduction)

- Démarche par niveaux : formalise le système futur
 - → en contribuant à la stratégie de l'entreprise
 - en mettant en œuvre les règles de gestion
 - en tenant compte des aspects organisationnels et techniques
- Démarche par étapes

hiérarchise les décisions au cours de la vie du projet

- conception
- développement
- mise en œuvre
- généralisation de l'emploi du S.I. futur
- évolution du S.I. futur
- Intérêts de cette double approche :
 - maîtrise des risques (coûts, délais, personnel...)
 - → favorise l'introduction de nouvelles technologies
 - facilite l'évolution des S.I.

Trois niveaux de modélisation (Introduction)

- Invariance décroissante
- plus le niveau est élevé (ou conceptuel), plus il est stable
- Possibilité de détecter plus rapidement les problèmes
- 1. Niveau conceptuel
- réponse à la question QUOI ? (ce que fait l'entreprise)
- → que faire ? avec quelles données ?
- → modèle conceptuel des données (MCD)
- modèle conceptuel des traitements (MCT)

Trois niveaux de modélisation

- 2. Niveau organisationnel
- réponse aux questions QUI, QUAND, OÙ ? (les différents postes de ce qui le font)
- → modèle logique des données (MLD)
- → modèle organisationnel des traitements (MOT)
- 3. Niveau technique
- réponse à la question **COMMENT** ? (quels sont les moyens de le faire)
- intégration des moyens techniques, matériels et logiciels
- → modèle physique des données (MPD)
- modèle opérationnel des traitements (MOpT)

Tableau des modèles

Niveau	Données	Traitements
conceptuel	Modèle conceptuel des données (MCD)	Modèle conceptuel des traitements (MCT)
organisationnel	Modèle logique des données (MLD)	Modèle organisationnel des traitements (MOT)
technique	Modèle physique des données (MPD)	Modèle opérationnel des traitements (MOpT)

Merise

M éthode d'
E tude et de
R éalisation
I nformatique pour les
S ystèmes d'
E ntreprise

Merise

Les points forts:

- La méthode s'appuie sur une approche systémique : C'est donc une approche globale.
- Les concepts sont peu nombreux et simples.
- Elle est assez indépendante vis à vis de la technologie.
- Elle est la plus utilisée en France dans les domaines de gestion.
- Elle sert de référence aux enseignements sur les méthodes.

Merise

Les critiques:

- Elle ne s'occupe pas de l'interface utilisateur.
- Elle ne permet pas réellement une validation rapide de la part des utilisateurs.
- Il est très difficile de valider les traitements par rapport aux données et cela au niveau conceptuel ou organisationnel.
 - La validation en cours de l'étude par des personnes concernées permet d'assurer que le système en train de construction conforme aux objectifs. Si on ne respecte pas les étapes de validation on risque de produire des applications loin de la demande initiale ce qu'on nomme
 - « l'effet tunnel ». Sans oublier que les applications développées sont destinées aux utilisateurs et non au plaisir des informaticiens.

Introduction

De l'abstraction à la réalisation d'un Système d'information, on va devoir observer sous plusieurs angles de vues l'organisation que l'on étudie.

Ces angles de vues sont appelés cycles.

MERISE présente dans sa démarche d'analyse trois cycles fondamentaux :

- le cycle d'abstraction,
- le cycle de vie (de developpement),
- le cycle de décision.

Démarche ou cycle de vie à 3 dimensions

abstraction

Démarche à 3 niveaux de dimension :

- → la démarche : le niveau du cycle de vie
- → le raisonnement : le niveau d'abstraction
- → la maîtrise : le niveau de décision

Le Cycle d'Abstraction

Niveau Conceptuel

- · Ce qu'il faut faire
- Quoi ?

Niveau Organisationnel

- · La manière de faire
- Pour les traitements
- QUI, QUAND OU?

Niveau Logique

- Choix des moyens et ressources
- Pour les données

Niveau Physique

- Les moyens de le faire
- · Comment?

Le cycle de vie

Manière de conduire le projet : succession de phases contrôlables par l'organisation (planning, échéances, moyens humains, ...)

- 1. Analyse / Conception
 Le schéma directeur
 L'étude préalable
 L'étude détaillée
- 2. La réalisation
 L'étude Technique
 Production Logicielle
 Mise en service
- 3.La Maintenance

CYCLE DE VIE

- Le processus de développement est découpé en étapes :
 - Schéma directeur
 - l'étude préalable : elle aboutit à une prise de décision d'informatisation, en cas de décision positive, elle est suivie par
 - l'étude détaillée : elle aboutit à un cahier de réalisation avec affectation des tâches
 - Réalisation : écriture des programmes et implantation des bases
 - Mise en œuvre et maintenance.

Définition des orientations générales du développement à moyen terme des systèmes d'information. PROJET Proposition et évaluation de solutions d'organisation et de solutions techniques pour le SI d'un domaine. Spécifications complètes du futur SIO. Point de vue de l'utilisateur (externe). Spécifications complètes du futur SII. Point de vue du réalisateur (interne). Ecriture des programmes, génération des fichiers ou des bases de données, tests. Installation de l'application informatique, mise en place de la nouvelle organisation.

Rectification des anomalies, améliorations, évolutions.

Schéma Directeur

- Etude globale du SI: Découpage en domaines
- Buts:
 - Définir les grandes orientations politiques et stratégiques de l'entreprise
 - Définir les besoins en SI en fonction de la stratégie de l'entreprise
 - Fixer les cadres budgétaires, la stratégie des besoins en personnel et les contraintes diverses liées à l'environnement
 - Fixer les lignes directrices des développements informatiques
 - Définir les projets nécessaires à l'élaboration ou l'évolution du SI
- Documents produits:
 - Le schéma directeur
 - Le plan de développement informatique

Étude préalable

Comporte

- une analyse critique du système existant (physique, organisationnel, conceptuel),
- les objectifs du nouveau système (conceptuel, organisationnel),
- · les différents scénarios de solutions informatiques,
- · une évaluation des coûts et moyens nécessaires,
- · un planning de réalisation.

Se traduit

par un dossier d'étude préalable ou dossier de choix.

Aboutit

au choix d'une solution par la direction.

La part hachurée représente ce que couvre chaque étape. L'étude préalable couvre presque tout le niveau conceptuel, mais aussi un peu de niveau logique et physique.

L'Étude détaillée

Menée par projet.

Permet

- de préciser l'organisation détaillée de la solution retenue,
- de définir logiquement les données et les traitements informatiques de la solution,
- de définir les interfaces: écrans, états de sortie,
- de construire le planning de réalisation.

Se traduit par

- un cahier des charges de l'application (contrat vis à vis des utilisateurs),
- un dossier d'étude détaillée pour les analystesprogrammeurs,
- un cahier des charges matériel/logiciel pour appel d'offres.

La réalisation

- 2. la **réalisation** qui consiste à produire le logiciel et à le mettre en place; comporte trois étapes.
 - Étude technique
 spécifications techniques complètes.
 - Production logicielle
 écriture des programmes et tests.
 - Mise en service installation de l'application informatique.

L'Étude Technique

Menée par application.

Effectue

- la spécification technique (niveau physique) :
 - structure physique des données,
 - décomposition de l'application en programmes,
 - dessins d'écrans et des états de sortie.
- · la production des programmes.

Fournit

- une documentation technique (maintenance des programmes),
- une documentation utilisateur (manuel d'utilisation de l'application),
- manuel d'exploitation (pour le service exploitation sur gros sites informatiques).

La production logicielle

Elle décrit un projet dans une forme interprétable par la machine. Elle comprend :

- -La génération des fichiers ou bases de données
- -L'écriture des programmes
- -Les tests de mise au point.

La mise en service

Elle comprend:

- -La mise au point d'un planning d'installation
- -La création et le chargement des bases informations de base
- -La formation des utilisateurs
- -La migration.

La maintenance

3. la maintenance du SI qui consiste à l'adapter aux évolutions de l'environnement : correction des anomalies, améliorations, évolutions.

C'est la prise en compte des évolutions apparaissant après le lancement opérationnel.

Elle comprend:

- -L'étude de l'impact des modifications
- -La spécification des modifications
- -La réalisation
- -La mise en service

Elle peut parfois aboutir à une remise en cause de la solution précédemment mise en place.

Le cycle de décisions

Durant le cycle de vie, des **décisions** sont à prendre aux différentes étapes (possibilités de conflits) :

Etapes	Décisions
Schéma directeur	approbation et mise en application du plan de développement (3 à 5 ans)
Etude préalable	choix d'une solution
Etude détaillée	accord des utilisateurs sur
	spécifications fonctionnelles
Etude technique	accord du chef de projet sur
	spécifications techniques
Production	recette provisoire, conformité solution
Mise en service	recette définitive, système en service
Maintenance	recette maintenance

Les flux d'information dans l'organisation

Découpage en domaines

 Pour réduire la complexité de modélisation de l'entreprise en un seul tenant, on découpe l'entreprise en domaines d'activité (Vente, Stock, Achat, Comptabilité, Gestion du personnel)

Un domaine d'activité de l'organisation est un sous-ensemble relativement indépendant composé d'informations, règles et de procédures de gestion

Découpage en domaines

- Chaque domaine peut être considéré comme un système autonome (ayant un SP, Si et un SO)
- Les domaines de l'entreprise échangent des flux entre eux, certaines informations peuvent figurer dans plusieurs systèmes d'information.
- Le SI de l'entreprise peut être considéré comme la réunion non disjointe des SI de chaque domaine.

Comment découper une organisation en domaines ?

- la technique employée se base sur les ensembles d'informations échangés, dits aussi flux d'information. Ces flux peuvent être classés comme suit :
 - 1. Flux en provenance de l'environnement extérieur
 - 2. Flux à destination de l'environnement extérieur
 - 3. Flux interne échangé (entre les domaines)

Analyse des flux

• L'analyse des flux permet de représenter le fonctionnement global de l'entreprise

Acteurs et flux

- Un acteur représente une entité active intervenant dans le fonctionnement de l'entreprise :
 - Client, Fournisseurs, (acteur externe)
 - Un domaine de l'entreprise (Gestion Personnel, Comptabilité)
 -
- Un flux de données est la représentation d'un échange d'informations entre deux acteurs

Graphe des flux

 Le graphe des flux est une représentation graphique des acteurs et des flux.

graphe des flux

Exemple : Gestion des sinistres dans une société d'assurance

A l'arrivée d'une déclaration de sinistre, on l'examine. Si la déclaration est recevable, on demande l'avis d'un expert, sinon on notifie le refus à l'assuré. Au retour de l'expertise et après réception de la facture du garage, on calcule le montant du remboursement et on envoie le chèque au client.

graphe des flux

Liste des acteurs

SOCIETE D'ASSURANCE (int), CLIENT (ext), EXPERT (ext),

GARAGE (ext)

Liste des flux

CHEQUE

DECLARATION, DEMANDE AVIS, FACTURE, REFUS, AVIS EXPERT,

59

Graphe des Flux

Lorsque le graphe comporte plusieurs acteurs internes on regroupes parfois tous ces acteurs en une même entité (correspondant au SI à étudier) et on ne garde que les flux en entrée et en sortie. C'est le 'graphe des flux contextuel'.

Exercice (gestion des cartes bleues)

Le demandeur désirant obtenir une carte bleue doit en faire la demande auprès de son agence.

La carte bleue n'est pas accordée si le demandeur n'est pas un client de l'agence.

Chaque jour, l'agence transmet au centre de gestion des cartes bleues les demandes de ses clients.

Dès que l'agence a reçu la carte bleue en provenance du centre (en général 4 jours après la demande), elle adresse au client un avis de mise à disposition et un avis de prélèvement de la cotisation annuelle. Le client vient alors retirer sa carte.

Si au bout de 2 mois la carte n'a pas été retirée, elle est détruite.

62

1. Etablir le graphe des flux

Le Modèle Conceptuel des Traitements

- L'objectif du MCT est de répondre à la question QUOI faire par rapport à un événement.
 - C'est la chronologie qui importe.
 - le MCT est une représentation de la succession des règles de gestion dont l'entreprise veut se doter pour répondre aux événements auxquels elle doit faire face, du fait de son activité et de son environnement.

Le Modèle Conceptuel des Traitements

il décrit le fonctionnement du SI d'une organisation au niveau conceptuel : on ne décrit que les <u>règles fondamentales de gestion</u> (les invariants, 'le métier' de l'organisation). Description la plus stable.

Exemple introductif

Les demandes des crédits bancaire doivent suivre les règles de gestion suivantes :

Règle 1 : Toute demande d'un crédit bancaire doit faire l'objet d'un examen préalable.

Règle 2 : L'accord définitif du crédit bancaire ne peut être donné qu'après avis de la Banque du Maroc.

Le Modèle Conceptuel des Traitements

Le fonctionnement du SI est décrit par :

 l'enchaînement d'opérations, déclenchées selon certaines conditions de synchronisation (et, ou, ...), par des événements contributifs (internes ou externes), et produisant d'autres événements résultats (internes ou externes).

Le Modèle conceptuel des Traitements (Evénements)

Les Types d'événement

- Evénements <u>externes</u>: proviennent de l'univers extérieur, sont traités par une opération conceptuelle (ex: arrivée d'un flux d'entrée, date de déclenchement),
 - C'est un stimulus pour le SI qui provoque une réaction. Il doit être **détectable** par le SI.
 - C'est un message c'est à dire un ensemble de données qui sont associés au fait nouveau.
- Evénements internes : générés par une opération conceptuelle, contribuent au déclenchement d'une autre opération (état intermédiaire du SI ou état d'attente),
- 3. Evénements <u>résultats</u> : générés par une opération conceptuelle et destinés à l'univers extérieur (résultats externes) ou à d'autres opérations (résultats internes).

Le Modèle Conceptuel des Traitements (Opérations)

Opération

- Séquence continue d'actions non interruptible.
- Déclenchée par un ou plusieurs événements internes ou externes.
- Produit des événements résultats internes ou externes, conditionnés par des règles d'émission.

Les actions sont constituées :

- des traitements appliqués aux données en entrée selon certaines règles,
 - des tâches de consultation et de mise à jour d'une base d'informations (base de données) implicitement accessible.

Le Modèle Conceptuel des Traitements

(Synchronisation)

Synchronisation

- Condition exprimée sur les événements, qui détermine le déclenchement d'une opération.
- S'exprime sous la forme d'une proposition logique utilisant des <u>et</u> et des <u>ou</u> (on évitera au maximum le <u>non</u>, les non-événements n'étant pas toujours détectables par le SI)

Exemple: a ou (b et c)

Le Modèle Conceptuel des Traitements (Règles d'émission)

Règles d'émission

Elles caractérisent les *résultats possibles* de l'opération. Ex:

- les conditions d'émission des résultats d'une opération ne sont pas nécessairement exclusives (un résultat peut être émis par deux règles d'émission distinctes)
- les conditions d'émission portent souvent sur des cas d'anomalies (ex : une rupture de stock).

Le Modèle Conceptuel des Traitements

Pas de sortie prévue si A est négatif => Impasse!

Construction du MCT

Démarche

Étape 1 A partir du graphe des flux, on construit la liste de tous les événements en entrée et en sortie du SI.

Étape 2 Passage au MCT

- tout événement en entrée se retrouve en entrée d'une opération,
- il existe d'autres événements en entrée (ex: des dates conceptuelles),
- · tout événement en sortie est produit par une opération,
- une opération peut avoir plusieurs événements contributifs vérifiant une règle de synchronisation,
- une opération peut avoir plusieurs événements résultats émis selon certaines règles d'émission,
- une opération peut ne construire aucun événement résultat mais uniquement des événements internes,
- tout événement résultat est destiné soit à un acteur externe, soit à une autre opération,
- le découpage en opérations est guidé par les <u>règles de gestion</u>.

Construction du MCT

Règles de validation

Une opération ne peut pas être interrompue par l'attente d'un événement externe. Si tel est le cas, il faut décrire une seconde opération déclenchée par cet événement en attente.

79

Exercice1 (gestion des cartes bleues)

Le demandeur désirant obtenir une carte bleue doit en faire la demande auprès de son agence.

La carte bleue n'est pas accordée si le demandeur n'est pas un client de l'agence.

Chaque jour, l'agence transmet au centre de gestion des cartes bleues les demandes de ses clients.

Dès que l'agence a reçu la carte bleue en provenance du centre (en général 4 jours après la demande), elle adresse au client un avis de mise à disposition et un avis de prélèvement de la cotisation annuelle. Le client vient alors retirer sa carte.

Si au bout de 2 mois la carte n'a pas été retirée, elle est détruite.

- 1. Etablir le graphe des flux
- 2. Etablir le MCT

Le modèle conceptuel de données (MCD)

Objectif du MCD

- Le modèle conceptuel des données est une représentation statique du système d'information de l'entreprise qui met en évidence sa sémantique.
 - Il a pour but d'écrire de façon formelle les données qui seront utilisées par le système d'information.
 - Il s'agit donc d'une représentation des données, facilement compréhensible. Le formalisme adopté par la méthode Merise pour réaliser cette description est basé sur les concepts « entitéassociation ».

MCD

- 1. Le dictionnaire des données
- Inventaire exhaustif des données du domaine étudié.
- On utilise habituellement :
 - une fiche "descriptif de document" (une par document),

 Unicité sémantique: à une donnée correspond une mnémonique, il faut parvenir à ce que chacun de ces mnémoniques ait une signification unique au sein de l'organisation. Il faut pour cela éviter:

- Les redondances : existence d'une donnée en double
- ➤ Les synonymes : existence de deux mnémoniques décrivant le même objet (difficile à détecter)
 - ➤ Libelle Article
 - Nom Produit
 - > Il faut trancher en choisissant un des mnémonique
- ➤ Les polysèmes : mnémonique unique pouvant décrire plusieurs objets différents
 - Date (sous entendu de facture)
 - > Date (sous entendu de commande)
 - > Pour lever l'ambiguïté il suffit de parler de Date Facture et Date Commande
- *Contraintes d'Intégrité* : (CI) une contrainte d'intégrité est une règle à observer pour que chacune des valeurs que revêt une donnée soit correcte.

DESCRIPTIF DES DONNEES

Domaine : Rédacteur : Date : Processus :

Rubriques Libellé Ty	ype Mode	D1	D2	D3	D4
identificateur libellé entii réel date chai	tier mémorisée el calculée		x x	x	x x

87

2. Le modèle conceptuel des données : le modèle entité/association

- a) les concepts de base du modèle E/A,
- b) vérification et normalisation du modèle E/A,
- c) les contraintes d'intégrité dans le modèle E/A.

a) Les concepts de base

ENTITE:

Une entité est un objet abstrait ou concret de l'univers du discours. Une entité peut être :

- <u>Une personne</u> (CLIENT)
- <u>Un lieu</u> (DEPOT, BUREAU, ATELIER, ...)
- <u>Un objet documentaire</u> (LIVRE, OUVRAGE, DOSSIER,...)

Après avoir réaliser le dictionnaire de données, il faut regrouper ces données par paquet homogène.

Ces paquets représentent les entités.

Une entité est caractérisée par :

- Un identifiant
- Une suite d'information liée à cet identifiant.

Représentation graphique d'une entité:

 Instituteur
 Nom entité

 Num instit
 Identifiant souligné

 Nom_instit
 Attribut 1

 Pré_instit
 Attribut 2

 Classe
 Attribut3

REMARQUE:

 Dans la plupart des études de cas, l'entité « DATE » est présente : c'est une entité formée d'un seul attribut DATE

(calendrier) - date : JJ/MM/AA

2. De même, on peut créer une entité « HEURE »

IDENTIFIANT:

- C'est une propriété particulière de l'entité; représentation de l'une des occurrences de l'entité ou de l'association.
- Le meilleur moyen pour ne pas risquer d'avoir des synonymes consiste à prendre des numéro de références comme identifiant.
- Un identifiant peut être simple c.à.d. constitué d'une seule propriété élémentaire (<u>d'ordre 1</u>) : NUM_ELEV.
- Un identifiant peut être constitué de plusieurs propriétés élémentaires: <u>d'ordre 2, 3 ou 4</u>

LES OCCURRENCES D'UNE ENTITE:

- Une occurrence ou tuple est une réalisation particulière de l'entité ou un exemplaire de l'entité.
- L'ensemble des occurrences forme l'entité désignée.

Remarque:

Le but d'une analyse est de pouvoir à partir d'un dictionnaire de donnée aboutir à une collection d'entité sans redondance, et ayant des *liens logiques* entre elles tel que quelque soit la donnée celleci sera accessible à volonté.

LES ASSOCIATIONS:

- Une association est un lien sémantique entre plusieurs entités indépendamment de tous traitements.
- Une association est souvent nommé par un verbe qui exprime le sens du lien entre les entités.
- Les liens logiques existant entre deux entités sont appelés **Associations**.

Par exemple, on peut considérer qu'il existe une association Enseigne entre l'entité instituteur et élève dans le cas d'une école

Remarques

 On peut avoir plusieurs associations sur les mêmes entités.

Ex: PROPRIETAIRE(PERSONNE, VOITURE) et CONDUIRE(PERSONNE, VOITURE)

 On peut avoir une association sur une seule entités (on parle d'association 'réflexive'). On ajoute souvent dans ce cas des noms de rôles pour distinguer les deux occurrences.

Ex: CONJOINT(PERSONNE, PERSONNE)

 On peut avoir une association définie sur n entités (association n-aire ou d'arité n ou de dimension n ou à « n pattes »).

Ex: COURS(MATIERE, CLASSE, PROF)

Attention : les arités élevées sont rares. Elle dénotent souvent des faiblesses dans l'analyse.

arité 3 : <20% arité > 3 : ε

Associations

• **Association** : liaison existant entre des entités. ex. les clients *commandent* des produits

- Chaque entité joue un rôle dans l'association
 - Les rôles devront être précisés si l'association relie une entité à elle-même.

Attributs d'associations

• Une association peut être caractérisée par des attributs.

ex. date de la commande et quantité de produits commandés.

Cardinalités d'associations

• Cardinalité d'une assoc. : nombres minimum et maximum de participations de chaque occurrence d'entité à l'association.

ex. un client doit commander au moins un produit ; un produit peut être commandé par zéro ou un nombre quelconque de clients.

En fonction des cardinalités maximales, une association binaire (degré = 2) peut être de type 1-1, 1-N ou N-M

Cardinalités d'associations Typologie des associations binaires

Association de type 1-1 (one-to-one)

$$\begin{array}{|c|c|c|c|c|c|}\hline A & x,1 & R & y,N & B \\ \hline \end{array}$$

Association de type 1-N (one-to-many)

$$\begin{array}{|c|c|c|c|c|}\hline A & x,N & R & y,M & B \\ \hline \end{array}$$

Association de type N-M (many-to-many)

Cardinalités d'associations Typologie des associations binaires

Quelques 'critères' de choix :

- Une entité a une existence propre et un identifiant.
- Une association n'existe que si ses extrémités existent et n'a pas d'identifiant explicite.
- Une entité peut être associée à d'autres entités, une association non.

Difficultés : choix des cardinalités

Un client peut il avoir 0 location ? Est-ce encore un client ?

Un local peut il être loué plusieurs fois ? Non si la base représente une situation instantanée et si le local n'est pas partageable. Oui si on gère un historique ou si le local est partageable.

Les cardinalités sont élément essentiel pour définir la sémantique des données, pas une « décoration » accessoire. Derrière cette notion on trouvera des contrôles (par le SGBD ou les programmes).

2. Règles sur les entités

2.a Règle de l'identifiant

Toutes les entités ont un identifiant.

2.b Règle de vérification des entités

Pour une occurrence d'une entité, chaque propriété ne prend <u>qu'une seule valeur</u> (cf. la 1FN du modèle relationnel); MONO-VALUEE

On décompose l'entité Employé en deux entités : Employé,

109

et Enfant

2.c Règles de normalisation des entités

a) Les dépendances fonctionnelles (DF) entre les propriétés d'une entité doivent vérifier la règle suivante : **toutes** les propriétés de l'entité dépendent fonctionnellement de l'identifiant **et uniquement** de l'identifiant.

Rappel : \exists une DF X \rightarrow Y si à une valeur de X correspond une et une seule valeur de Y (réciproque pas vraie).

110

La DF: N°insee → Nom, Adresse contredit la règle.

b) Une partie de l'identifiant ne peut pas déterminer certaines propriétés.

La DF n° -comm \rightarrow date-comm, n° -client contredit la règle. On décompose l'entité Commande en deux entités.

Ces règles correspondent aux 2FN et 3FN du modèle Relationnel (dépendance pleine et directe des clés).

3. Règles sur les associations

- 3.a Règle de vérification des associations

 Pour une occurrence d'association, chaque propriété
 ne prend <u>gu'une seule valeur</u>.
- 3.b Règle de normalisation sur les propriétés des associations

Toutes les propriétés de l'association doivent dépendre fonctionnellement de tous les identifiants des entités portant l'association, et uniquement d'eux.

 N° -insee \Rightarrow Date-permis pose problème (donc déplacer Date-permis vers Personne)

3.c La décomposition des associations n-aires

Il faut garder un minimum d'associations d'arité > 2.

Si on observe une DF entre un sous-ensemble des entités d'une association, on peut la décomposer en deux associations (on parle aussi de 'contrainte d'intégrité fonctionnelle' ou CIF).

Une éventuelle DF $N^{\circ}prof \rightarrow N^{\circ}mat$ donne la décomposition :

Prof Matière 1,1 1,n assure **N**°mat **N°prof** Nom cours 0,nsalle, heure Classe **N°classe** 0,n C'est le cas, quand une patte a une cardinalité 1,1. Par exemple à 1 contrat est associé un client et un local : Local Client Client Local 0,n0,n location (porte-sur) (concerne) Contrat Contrat

3.d La suppression des associations transitives

Toute association pouvant être obtenue par transitivité de n autres associations peut être supprimée.

On supprime l'association associée_a, car elle peut être obtenue par transitivité sur les associations concerne et obtenue_par

115

Règle 1

• Deux entités qui doivent être reliées entre elles le seront par le biais d'une relation

• Deux relations ne peuvent jamais être directement reliées entre elles

Règle 3

• Le nom de la relation doit représenter d'une manière concrète et significative l'information que l'on veut obtenir

Règle 4 • Un attribut est unique à une entité ou à une relation PROFESSEUR **COURS** Peut donner *NoProfesseur *NoCours À ne pas NomProfesseur Description faire PrénomProfesseur NomProfesseur Adresse PROFESSEUR **COURS** Peut donner *NoProfesseur *NoCours OK NomProfesseur Description PrénomProfesseu

Règle 5

Adresse

 Les entités et les relations ne doivent contenir que des données élémentaires, donc ne pas contenir des résultat de calcul/traitement

• Pour une occurrence donnée, une seule valeur doit être attribuée à chaque attribut de l'entité ou de la relation

Règle 7

• Pour conserver l'historique d'une donnée d'une entité, on forme une nouvelle entité avec cette donnée et on ajoute une période d'application

• Chaque fois qu'un attribut est un code ou un type, on forme une nouvelle entité avec ce code/type et sa description

Règle 9

• Lorsqu'une relation peut être déduite des autres relations, elle n'est pas représentée à moins qu'on veuille extraire une information spécifique à cette relation

- Seule une association de type plusieurs à plusieurs (N:M) peut avoir des attributs
- Si vous avez des attributs sur une relation 1:N, il y a un problème!
 - L'attribut doit être placée sur une entité
 - L'attribut doit être éliminé (ex. valeur calculée)
- Note : Une relation N:M n'a pas obligatoirement des attributs

Une démarche de construction ?

Certains auteurs suggèrent la démarche suivante :

- 1 Analyser l'existant et constituer le dictionnaire des données
- 2 Épurer les données (éliminer synonymes et polysèmes)
- 3 Dégager les 'entités naturelles' grâce aux identifiants existants déjà dans l'organisation
- 4 Rattacher les propriétés aux entités
- 5 Recenser les associations entre entités et leur rattacher leurs éventuelles propriétés
- 6 Déterminer les cardinalités
- 7 Décomposer si possible les associations n-aires (cf. règles)
- 8 S'assurer de la conformité du modèle aux règles de construction (cf. règles)
- 9 Normaliser le modèle : s'assurer qu'il est en 3FN

129

Malheureusement, dans le monde réel, il n'y a pas d'énoncé! L'existant n'est pas complètement connu au départ, ni toutes les données. Imaginer avoir un dictionnaire exhaustif au départ n'est pas réaliste dans les cas complexes.

Il n'y a donc pas une suite linéaire d'étapes mais plutôt un ensemble d'itérations :

- ébaucher un modèle avec les entités et associations qui semblent essentielles,
- évaluer si ce qui est modélisé est correct et correspond à ce que les utilisateurs comprennent,
- itérer en complétant progressivement jusqu'à ce que le modèle semble raisonnablement complet.

Le modèle logique des données

Définition

<u>formalisme des tables logiques</u> est <u>toujours basé sur un MCD donné</u>

Un MLD est essentiellement composé de tables logiques reliées entre elles par des flèches.

132

Transformation des relations binaires du type (x,n) - (x,1)

Afin de représenter la relation, on duplique la clé primaire de la table basée sur l'entité à cardinalité (x,n) dans la table basée sur l'entité à cardinalité (x,1).

Cet attribut est appelé clé étrangère.

Les deux tables sont liées par une flèche nommée selon la relation, qui pointe de la table à clé étrangère vers la table qui contient la clé primaire correspondante.

x peut prendre les valeurs 0 ou 1

135

Règles de transformation du MCD au MLD

Transformation des relations binaires du type (x,n) - (x,1)

Ex:

L'attribut *No_Auteur* qui est clé primaire de la table *Auteur*, devient clé étrangère dans la table *Livre*.

136

Transformation des relations binaires du type (x,1) – (x,1)

Nous devons distinguer plusieurs cas. Sachant qu'une relation binaire du type (1,1)-(1,1) ne doit pas exister il nous reste les 2 cas suivants:

Relation binaire (0,1)-(1,1)

Relation binaire (0,1)-(0,1)

137

Règles de transformation du MCD au MLD

Relation binaire (0,1)-(1,1)

On duplique la clé de la table basée sur l'entité à cardinalité (0,1) dans la table basée sur l'entité à cardinalité (1,1).

Ex:

Le No_{Client} , qui est clé primaire de la table Client, devient clé étrangère dans la table $Carte_{Membre}$

Relation binaire (0,1)-(0,1)

On duplique la clé d'une des tables dans l'autre. Lorsque la relation contient elle-même des propriétés, celles-ci deviennent également attributs de la table dans laquelle a été ajoutée la clé étrangère.

Transformation des relations binaires du type (x,n) - (x,n)

On crée une table supplémentaire ayant comme clé primaire une clé composée des clés primaires des 2 tables. Lorsque la relation contient elle-même des propriétés, celles-ci deviennent attributs de la table supplémentaire. Une propriété de la relation qui est soulignée devra appartenir à la clé primaire composée de la table supplémentaire.

Règles de transformation du MCD au MLD

Transformation des relations binaires du type (x,n) - (x,n)

Ex:

On crée une table *Porter*, qui contient comme clé primaire une clé composée *de No-Commande* et *Code_Article*. Elle contient également la propriété *Quantité* issue de la relation *Porter*

Transformation des relations ternaires

On crée une table supplémentaire ayant comme clé primaire une clé composée des clés primaires de toutes les tables reliées. Cette règle s'applique de façon indépendante des différentes cardinalités. Lorsque la relation contient elle-même des propriétés, celles-ci deviennent attributs de la table supplémentaire. Une propriété de la relation qui est soulignée devra appartenir à la clé primaire composée de la table supplémentaire.

Règles de transformation du MCD au MLD

Transformation des relations ternaires

Ex:

La table *Enseigner* contient une clé composée de *No_Enseignant*, *Code_Matière* et *Nom_Classe*.

Transformation de plusieurs relations entre 2 entités

Les règles générales s'appliquent

Ex:

Règles de transformation du MCD au MLD

Transformation des relations réflexives

Ex 1:

Nous appliquons les règles générales avec la seule différence que la relation est 2 fois reliée à la même entité

Transformation des relations réflexives

Ex 1:

Nous appliquons les règles générales avec la seule différence que la relation est 2 fois reliée à la même entité

Règles de transformation du MCD au MLD

Transformation de l'identifiant relatif

Sachant que l'entité dépendante est toujours liée à la relation par les cardinalités (1,1), nous pouvons appliquer les règles générales. Dans chaque cas, la table issue de l'entité dépendante contient donc comme clé étrangère, la clé primaire de l'autre table.

L'identification relative est représentée par le fait que la table issue de l'entité dépendante contient une <u>clé primaire composée</u>, constituée de la clé primaire transformée de l'identifiant de cette entité et de la clé étrangère.

Ex:

Le modèle physique des données

Définition

Le modèle physique des données (MPD) est la traduction du modèle logique des données (MLD) dans une structure de données spécifique au système de gestion de bases de données (SGBD) utilisé.

Passage du MLD au MPD

Le passage MLD à MPD se fait par les étapes suivantes:

Implémentation physique de chaque table du MLD dans le SGBD utilisé.

Pour chaque table, indiquer au SGBD quel(s) champ(s) constitue(nt) la clé primaire.

Pour chaque table, indiquer au SGBD la (les) clé(s) étrangère(s), et la (les) clé(s) primaire(s) correspondante(s).

Passage du MLD au MPD

 $E \times 1$: Implémentation du modèle logique suivant

Passage du MLD au MPD

Utilisation d'une ou de plusieurs interfaces graphiques, qui nous aident dans la création des tables physiques, dans la définition des clés primaires et dans la définition des relations.

<u>Ex:</u> Définition de la table des employés avec le champ *idEmployé* étant défini comme clé primaire.

Passage du MLD au MPD

Définition de la relation entre les deux tables.

Remarquez que les noms des différents champs ont été modifiés lors de l'implémentation du modèle logique. Cette mesure dépend uniquement de la convention des noms utilisée et n'affecte pas du tout le fonctionnement correcte de la BD