Root System

Associated Lie Algebras

Correspondence: Reduced root systems correspond to finite dimensional semisimple Lie algebras; Irreducible reduced root systems correspond to finite dimensional simple Lie algebras.

 A_n corresponds to \mathfrak{sl}_{n+1} .

 B_n corresponds to \mathfrak{so}_{2n+1} .

 C_n corresponds to \mathfrak{sp}_{2n} .

 D_n corresponds to \mathfrak{so}_{2n} .

 E_6, E_7, E_8, F_4, G_2 correspond to exceptional simple Lie algebras.

Remark:

 $\mathfrak{so}_n = \left\{ A \in \mathfrak{gl}_n | JA + A^TJ = 0
ight\}$ where J 的反对角线上都是 1 其余都是 0.

 \mathfrak{so}_n 的特征: 关于反对角线对称的两个entries之和为0. 反对角线上的每个entry都等于0.

 $\mathfrak{sp}_{2n}=\left\{A\in\mathfrak{gl}_{2n}|JA+A^TJ=0
ight\}$ where J 的反对角线的右上部分都是 -1,左下部分都是 1,其余都是 0.

 \mathfrak{sp}_{2n} 的特征: 对于 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ $\in \mathfrak{sp}_{2n}$,在 A 和 D 中,关于反对角线对称的两个entires之和为0;在 B 和 C 中,关于反对角线对称的两个entires相等。此外反对角线上的entries可任意取值。

Classification of Irreducible Reduced Root Systems

Irreducible reduced simply laced (ADE classification): A_n , D_n ($n \ge 4$), E_6 , E_7 , E_8 .

Irreducible reduced not simply laced: $B_2 \simeq C_2$, B_n $(n \ge 3)$, C_n $(n \ge 3)$, F_4 , G_2 .

Remark: Some isomorphisms in low dimension:

- $A_1 \simeq B_1 \simeq C_1$, $\mathfrak{sl}_2 \simeq \mathfrak{so}_3 \simeq \mathfrak{sp}_2$.
- $B_2 \simeq C_2$, $\mathfrak{so}_5 \simeq \mathfrak{sp}_4$.
- $D_2 \simeq A_1 imes A_1$, $\mathfrak{so}_4 \simeq \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$.
- $D_3 \simeq A_3$, $\mathfrak{so}_6 \simeq \mathfrak{sl}_4$.

Roots

$$R_{A_n} = \{e_i - e_j | i \neq j\}$$
 ($1 \leq i, j \leq n+1$).

$$R_{B_n} = \{\pm e_i\} \cup \{\pm e_i \pm e_j | i \neq j\} \ (1 \leq i, j \leq n).$$

$$R_{C_n} = \{\pm 2e_i\} \cup \{\pm e_i \pm e_j | i \neq j\} \ (1 \leq i, j \leq n).$$

$$R_{D_n} = \{ \pm e_i \pm e_j | i \neq j \} \ (1 \leq i, j \leq n).$$

$$R_{E_6} = \{e_i - e_j | 1 \leq i
eq j \leq 6\} \cup \{\pm (e_7 - e_8)\} \cup \Big\{ rac{1}{2} \sum_{i=1}^8 k_i e_i | k_i = \pm 1, \sum_{i=1}^8 k_i = 0, k_7 + k_8 = 0 \Big\}.$$

$$R_{E_7} = \{e_i - e_j | i \neq j\} \cup \{\frac{1}{2}(\pm e_1 \pm \cdots \pm e_8) | ext{four - signs} \} \ (1 \leq i, j \leq 8).$$

$$R_{E_8}=\{\pm e_i\pm e_j|i\neq j\}\cup \left\{\frac{1}{2}(\pm e_1\pm\cdots\pm e_8)|\text{even number of - signs}\right\}$$
 $(1\leq i,j\leq 8)$.

$$R_{F_4} = \{\pm e_i\} \cup \{\pm e_i \pm e_j | i \neq j\} \cup \{\frac{1}{2}(\pm e_1 \pm \cdots \pm e_4)\} \ (1 \leq i, j \leq 4).$$

$$R_{G_2} = \{e_i - e_j | i \neq j\} \cup \{\pm (2e_i - e_j - e_k) | i, j, k \text{ distinct} \} (1 \leq i, j, k \leq 3).$$

Remark: $R_{C_n}^{ee}=R_{B_n}$.

Positive Roots

Definition: $\alpha \in R$ is positive if $f(\alpha) > 0$ by choosing a linear $f: V \to \mathbb{R}$ with $0 \notin f(R)$.

$$R_{A_n}^+ = \{e_i - e_j | i < j\} \ (1 \leq i, j \leq n+1) \ ext{by choosing} \ f(e_1) = n+1, \ f(e_2) = n, \cdots, \ f(e_{n+1}) = 1.$$

$$R_{B_n}^+=\{e_i\}\cup\{e_i\pm e_j|i< j\}$$
 ($1\leq i,j\leq n$) by choosing $f(e_1)=n,\cdots$, $f(e_n)=1$.

$$R_{C_n}^+ = \{2e_i\} \cup \{e_i \pm e_j | i < j\}$$
 $(1 \leq i,j \leq n)$ by choosing $f(e_1) = n, \cdots, f(e_n) = 1$.

$$R_{D_n}^+ = \{e_i \pm e_j | i < j\}$$
 ($1 \leq i,j \leq n$) by choosing $f(e_1) = n, \cdots, f(e_n) = 1.$

$$R_{E_6}^+ = \{e_i - e_j | 1 \leq i < j \leq 6\} \cup \{e_7 - e_8\} \cup \left\{ \frac{1}{2} \sum_{i=1}^8 k_i e_i | k_1 = 1, k_i = \pm 1, \sum_{i=1}^8 k_i = 0, k_7 + k_8 = 0 \right\}$$
 by choosing $f(e_1) = 28$, $f(e_i) = 9 - i$ for $2 \leq i \leq 8$.

$$R_{E_7}^+ = \{e_i - e_j | i < j\} \cup \left\{ \frac{1}{2}(e_1 \pm \dots \pm e_8) | ext{four - signs} \right\}$$
 $(1 \leq i, j \leq 8)$ by choosing $f(e_1) = 28$, $f(e_i) = 9 - i$ for $2 \leq i \leq 8$.

$$R_{E_8}^+ = \{e_i \pm e_j | i < j\} \cup \left\{\tfrac{1}{2}(e_1 \pm \dots \pm e_8) | \text{even number of - signs}\right\} \\ (1 \leq i, j \leq 8) \text{ by choosing } f(e_1) = 28, f(e_i) = 9 - i \text{ for } 2 \leq i \leq 8$$

$$R_{F4}^+ = \{e_i\} \cup \{e_i \pm e_j | i < j\} \cup \left\{\tfrac{1}{2}(e_1 \pm e_2 \pm e_3 \pm e_4)\right\} (1 \leq i, j \leq 4) \text{ by choosing } f(e_1) = 7, f(e_i) = 5 - i \text{ for } 2 \leq i \leq 4.$$

$$R_{G_2}^+ = \{e_i - e_j | i < j\} \cup \{2e_1 - e_2 - e_3, e_1 - 2e_2 + e_3, e_1 + e_2 - 2e_3\} \ (1 \le i, j \le 3) \ \text{by choosing} \ f(e_1) = 8, f(e_2) = 3, f(e_3) = 1.$$

Simple Roots

Definition: $\alpha \in R^+$ is simple if it is not the sum of two positive roots.

For the followings, we write $\Pi = \{\alpha_1, \cdots, \alpha_n\}$ to label the order.

$$\Pi_{A_n} = \{e_1 - e_2, \cdots, e_{n-1} - e_n, e_n - e_{n+1}\}.$$

$$\Pi_{B_n} = \{e_1 - e_2, \cdots, e_{n-1} - e_n, e_n\}.$$

$$\Pi_{C_n} = \{e_1 - e_2, \cdots, e_{n-1} - e_n, 2e_n\}.$$

$$\Pi_{D_n} = \{e_1 - e_2, \cdots, e_{n-1} - e_n, e_{n-1} + e_n\}.$$

$$\Pi_{E_6} = \left\{ e_2 - e_3, e_3 - e_4, e_4 - e_5, \frac{1}{2}(e_1 + e_5 + e_6 + e_8 - e_2 - e_3 - e_4 - e_7), e_7 - e_8, e_5 - e_6 \right\}.$$

$$\Pi_{E_7} = \{e_2 - e_3, \cdots, e_7 - e_8, \frac{1}{2}(e_1 + e_6 + e_7 + e_8 - e_2 - \cdots - e_5)\}.$$

$$\Pi_{E_8} = \{e_2 - e_3, \cdots, e_7 - e_8, \frac{1}{2}(e_1 + e_8 - e_2 - \cdots - e_7), e_7 + e_8\}.$$

$$\Pi_{F_4} = \{e_2 - e_3, e_3 - e_4, e_4, \frac{1}{2}(e_1 - e_2 - e_3 - e_4)\}.$$

$$\Pi_{G_2} = \{e_2 - e_3, e_1 - 2e_2 + e_3\}.$$

Rank, Cardinality And Dimension

Formulae: Let R be a reduced root system, and $\mathfrak g$ be the corresponding finite dimensional semisimple Lie algebra. We have $\mathfrak g=\mathfrak t\oplus\bigoplus_{\alpha\in R}\mathfrak g_\alpha$ and

- dim $\mathfrak{t} = \operatorname{rank}(R) = \#\Pi$.
- $\dim \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha} = \#R$.
- Thus, $\dim \mathfrak{g} = \operatorname{rank}(R) + \#R$.

The following lists the triple $(\operatorname{rank}(R), \#R, \dim \mathfrak{g})$ for each reduced root system R.

$$A_n:(n,n^2+n,n^2+2n)$$

$$B_n:(n,2n^2,2n^2+n)$$

$$C_n:(n,2n^2,2n^2+n)$$

$$D_n: (n, 2n^2 - 2n, 2n^2 - n)$$
 $E_6: (6, 72, 78)$
 $E_7: (7, 126, 133)$
 $E_8: (8, 240, 248)$
 $F_4: (4, 48, 52)$

Cartan Matrix

 $G_2:(2,12,14)$

Correspondence: Cartan matrices correspond to finite dimensional semisimple Lie algebras (existence and uniqueness theorem).

Definition: For $\Pi=\{\alpha_1,\cdots,\alpha_n\}$, $A=(a_{ij})_{1\leq i,j\leq n}$ where $a_{ij}=(\alpha_i^\vee,\alpha_j)$.

$$E_{7}:\left(\begin{array}{cccccc}2&-1&&&&&\\-1&2&-1&&&&&\\&-1&2&-1&&&&\\&&-1&2&-1&&&-1\\&&&&-1&2&-1&&\\&&&&-1&2&&\\&&&&-1&&&2\end{array}\right)$$

$$F_4$$
: $egin{pmatrix} 2 & -1 & & & & \ -1 & 2 & -1 & & & \ & -2 & 2 & -1 & & \ & & -1 & 2 \end{pmatrix}$ G_2 : $egin{pmatrix} 2 & -3 & & & \ -1 & 2 & & & \ \end{pmatrix}$

Dynkin Diagram

Correspondence: Reduced root systems correspond to Dynkin diagrams; Irreducible reduced root systems correspond to connected Dynkin diagrams.

Definition: Let $A=(a_{ij})$ be Cartan matrix. Vertices correspond to simple roots. Between vertices α_i and α_j , there are $a_{ij}a_{ji}$ lines. If there are more than 1 lines, we put an arrow towards the short root.

$$e_{n-1} - e_n$$
 C_n 2 e_n 2 e_n

$$G_2$$
 \bigcirc

$$F_4$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Weight Lattice / Root Lattice P/Q

 $\begin{array}{l} \text{ Definition: } Q = \mathbb{Z}R = \bigoplus_{\alpha_i \in \Pi} \mathbb{Z}\alpha_i. \\ P = \{\gamma \in \mathbb{Q}R | (\gamma, \alpha^\vee) \in \mathbb{Z}, \forall \alpha \in R\}. \end{array}$

How to Compute: The Smith normal form of the Cartan matrix A gives the f.g. abelian group structure of P/Q. In particular, $\#(P/Q) = \det A$.

 $A_n: P/Q \simeq \mathbb{Z}/(n+1)\mathbb{Z}$.

 $B_n: P/Q \simeq \mathbb{Z}/2\mathbb{Z}$.

 $C_n: P/Q \simeq \mathbb{Z}/2\mathbb{Z}$.

 $D_n: P/Q \simeq egin{cases} \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z} & n ext{ even} \ \mathbb{Z}/4\mathbb{Z} & n ext{ odd} \end{cases}.$

 $E_6: P/Q \simeq \mathbb{Z}/3\mathbb{Z}$.

 $E_7: P/Q \simeq \mathbb{Z}/2\mathbb{Z}$.

 $E_8: P/Q$ is trivial.

 $F_4: P/Q$ is trivial.

 $G_2: P/Q$ is trivial.

Fundamental Weights

Definition: dual basis to simple roots, $(\omega_i, \alpha_i^{\lor}) = \delta_{ij}$.

How to compute: Let A be the Cartan matrix and S_e be the matrix of simple roots w.r.t. the standard basis $\{e_i\}$ (coefficients in column). Then the matrix of fundamental weights w.r.t. standard basis $\{e_i\}$ is $W_e = S_eW_s = S_eA^{-1}$.

Now we state the result.

•
$$A_n$$
.

 $\omega_1 = \frac{n}{n+1}e_1 - \frac{1}{n+1}(e_2 + \dots + e_{n+1}),$
 $\omega_2 = \frac{n-1}{n+1}(e_1 + e_2) - \frac{2}{n+1}(e_3 + \dots + e_{n+1}),$
 $\dots,$
 $\omega_n = \frac{1}{n+1}(e_1 + \dots + e_n) - \frac{n}{n+1}e_{n+1}.$

• B_n :

 $\omega_1 = e_1,$
 $\omega_2 = e_1 + e_2,$

```
. . . .
       \omega_{n-1}=e_1+\cdots+e_{n-1},
       \omega_n = \frac{1}{2}(e_1 + \cdots + e_n).
   • C_n:
       \omega_1 = e_1,
       \omega_2 = e_1 + e_2,
       \omega_n = e_1 + \cdots + e_n.
   • D_n:
       \omega_1 = e_1,
       \omega_2 = e_1 + e_2,
       \omega_{n-2}=e_1+\cdots+e_{n-2},
       \omega_{n-1} = \frac{1}{2}(e_1 + \dots + e_{n-1}) - \frac{1}{2}e_n,
       \omega_n = \frac{1}{2}(e_1 + \cdots + e_{n-1} + e_n).
      \omega_1 = \frac{2}{3}(e_1 + e_2) - \frac{1}{3}(e_3 + \dots + e_6),
      \omega_2 = \frac{3}{4}e_1 + \frac{1}{3}(e_2 + e_3) - \frac{2}{3}(e_4 + e_5 + e_6),
      \omega_3 = 2e_1 - e_5 - e_6,
      \omega_4 = \frac{5}{3}e_1 - \frac{1}{3}(e_2 + \dots + e_6),

\omega_5 = \frac{5}{6}e_1 - \frac{1}{6}(e_2 + \dots + e_6) + \frac{1}{2}(e_7 - e_8),
       \omega_6 = e_1 - e_6.
   • E_7:
       \omega_1 = \frac{3}{4}(e_1 + e_2) - \frac{1}{4}(e_3 + \dots + e_8),
       \omega_2 = \frac{3}{2}e_1 + \frac{1}{2}(e_2 + e_3) - \frac{1}{2}(e_4 + \dots + e_8),
      \omega_3 = \frac{9}{4}e_1 + \frac{1}{4}(e_2 + e_3 + e_4) - \frac{3}{4}(e_5 + \dots + e_8),
       \omega_4 = 3e_1 - e_6 - e_7 - e_8,
       \omega_5 = 2e_1 - e_7 - e_8,
       \omega_6 = e_1 - e_8,
       \omega_7 = \frac{7}{4}e_1 - \frac{1}{4}(e_2 + \cdots + e_8).
   • E<sub>8</sub>:
       \omega_1 = e_1 + e_2,
       \omega_2 = 2e_1 + e_2 + e_3,
       \omega_3 = 3e_1 + e_2 + e_3 + e_4,
       \omega_4 = 4e_1 + e_2 + e_3 + e_4 + e_5,
       \omega_5 = 5e_1 + e_2 + e_3 + e_4 + e_5 + e_6,
       \omega_6 = \frac{7}{2}e_1 + \frac{1}{2}(e_2 + \dots + e_7) - \frac{1}{2}e_8,
       \omega_7=2e_7,
       \omega_8 = \frac{5}{2}e_1 + \frac{1}{2}(e_2 + \cdots + e_7 + e_8).
   • F<sub>4</sub>:
       \omega_1 = e_1 + e_2,
       \omega_2 = 2e_1 + e_2 + e_3,
       \omega_3 = \frac{3}{2}e_1 + \frac{1}{2}(e_2 + e_3 + e_4),
       \omega_4 = e_1.
   • G<sub>2</sub>:
       \omega_1 = 2\alpha_1 + \alpha_2
       \omega_2 = 3\alpha_1 + 2\alpha_2.
Remark: For A_n, if we regard e_i \in \mathfrak{t}^* \subseteq (\mathfrak{sl}_{n+1})^*, then we have a relation \sum_{i=1}^{n+1} e_i = 0. Under this relation,
\omega_1=e_1,
\omega_2 = e_1 + e_2,
```

However, this version does not preserve the inner product. For example, in A_1 , we should have $(\omega_1,\omega_1)=(\frac{1}{2}(e_1-e_2),\frac{1}{2}(e_1-e_2))=\frac{1}{2}$. But if

Rho ρ

 $\omega_n = e_1 + \cdots + e_n$.

Definition: $\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$, the half of the sum of all positive roots.

we write $\omega_1=e_1$, we find $(\omega_1,\omega_1)=(e_1,e_1)\neq 1$.

How to Compute: $ho = \sum \omega_i$, the sum of all fundamental weights.

$$\begin{split} \rho_{A_n} &= \sum_{j=1}^{n+1} (\frac{n}{2} - j + 1) e_j. \\ \rho_{B_n} &= \sum_{j=1}^{n} (n - j + \frac{1}{2}) e_j. \\ \rho_{C_n} &= \sum_{j=1}^{n} (n - j + 1) e_j. \\ \rho_{D_n} &= \sum_{j=1}^{n} (n - j) e_j. \\ \rho_{E_6} &= \frac{15}{2} e_1 + \left(\sum_{j=2}^{6} (\frac{5}{2} - j) e_j \right) + \frac{1}{2} (e_7 - e_8). \\ \rho_{E_7} &= \frac{49}{4} e_1 + \sum_{j=2}^{8} (\frac{13}{4} - j) e_j. \end{split}$$

$$\rho_{E_8} = 23e_1 + \sum_{j=2}^8 (8-j)e_j.$$

$$\rho_{F_4} = \frac{11}{2}e_1 + \frac{5}{2}e_2 + \frac{3}{2}e_3 + \frac{1}{2}e_4.$$

$$ho_{G_2}=5lpha_1+3lpha_2$$

Highest Roots

Definition: The highest root $\theta \in R^+$ is the unique positive root such that $\forall \alpha_i \in \Pi, \theta + \alpha_i \notin R^+$.

$$\begin{split} &\theta_{A_n} = e_1 - e_{n+1} = \alpha_1 + \dots + \alpha_n = \omega_1 + \omega_n. \\ &\theta_{B_n} = e_1 + e_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_n = \omega_2. \\ &\theta_{C_n} = 2e_1 = 2\alpha_1 + \dots + 2\alpha_{n-1} + \alpha_n = 2\omega_1. \\ &\theta_{D_n} = e_1 + e_2 = \alpha_1 + 2\alpha_2 + \dots + 2\alpha_{n-2} + \alpha_{n-1} + \alpha_n = \omega_2. \\ &\theta_{E_6} = e_1 - e_6 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 + 2\alpha_6 = \omega_6. \\ &\theta_{E_7} = e_1 - e_8 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + 2\alpha_7 = \omega_6. \\ &\theta_{E_8} = e_1 + e_2 = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 5\alpha_4 + 6\alpha_5 + 4\alpha_6 + 2\alpha_7 + 3\alpha_8 = \omega_1. \\ &\theta_{E_4} = e_1 + e_2 = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4 = \omega_1. \end{split}$$

Extended Cartan matrix

 $\theta_{G_2} = 2e_1 - e_2 - e_3 = 3\alpha_1 + 2\alpha_2 = \omega_2.$

Definition: Extend the Cartan matrix by setting $lpha_0=- heta$. Then $ilde{A}=(a_{ij})_{0\leq i,j\leq n}$ where $a_{ij}=(lpha_i^ee,lpha_j)$.

$$A_n$$
: $egin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \ -1 & 2 & -1 & & & & \ 0 & -1 & 2 & -1 & & & \ dots & \ddots & \ddots & \ddots & \ 0 & & & -1 & 2 & -1 \ -1 & & & & -1 & 2 \end{pmatrix} \in \mathbb{Z}^{(n+1) imes (n+1)}$
 B_n : $egin{pmatrix} 2 & 0 & -1 & 0 & \cdots & 0 \ 0 & 2 & -1 & & & \ 0 & 2 & -1 & & & \ -1 & -1 & 2 & -1 \ 0 & & \ddots & \ddots & \ddots & \ dots & & & -1 & 2 & -1 \ 0 & & & & -2 & 2 \end{pmatrix} \in \mathbb{Z}^{(n+1) imes (n+1)}$

$$C_n \colon \begin{pmatrix} 2 & -1 & 0 & \cdots & \cdots & \cdots & 0 \\ -2 & 2 & -1 & & & & & \\ 0 & -1 & 2 & -1 & & & & \\ \vdots & & \ddots & \ddots & \ddots & & & \\ \vdots & & & -1 & 2 & -1 \\ \vdots & & & & -1 & 2 & -1 \\ \vdots & & & & -1 & 2 & -2 \\ 0 & & & & & -1 & 2 \end{pmatrix} \in \mathbb{Z}^{(n+1)\times(n+1)}$$

$$D_n \colon \begin{pmatrix} 2 & 0 & -1 & 0 & \cdots & \cdots & 0 \\ 0 & 2 & -1 & & & & \\ -1 & -1 & 2 & -1 & & & \\ 0 & 2 & -1 & & & & \\ -1 & -1 & 2 & -1 & & & \\ \vdots & & & & -1 & 2 & -1 & -1 \\ \vdots & & & & & & -1 & 2 \\ 0 & & & & & & -1 & 2 \end{pmatrix} \in \mathbb{Z}^{(n+1)\times(n+1)}$$

$$E_6 \colon \begin{pmatrix} 2 & & & & & & & \\ 2 & -1 & & & & & \\ & -1 & 2 & -1 & & & \\ & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 \\ -1 & & & & & & -1 & 2 \end{pmatrix}$$

$$E_7 \colon \begin{pmatrix} 2 & & & & & & \\ 2 & -1 & & & & \\ & & & & & & -1 & 2 \\ & & & & & & & -1 \\ & & & & & & & -1 & 2 \\ & & & & & & & -1 \\ & & & & & & & -1 & 2 \\ & & & & & & & -1 \\ & & & & & & & -1 & 2 \\ & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & & -1 \\ & & & & & & & & & & -1 \\$$

$$F_4$$
: $\left(egin{array}{ccccc} 2 & -1 & & & & & & & & & & & \\ -1 & 2 & -1 & & & & & & & & & \\ & -1 & 2 & -1 & & & & & & & & \\ & & -2 & 2 & -1 & & & & & & & \\ & & & & -1 & 2 & & & & & \end{array}
ight)$

$$G_2$$
: $\begin{pmatrix} \mathbf{2} & -\mathbf{1} \\ & 2 & -3 \\ -\mathbf{1} & -1 & 2 \end{pmatrix}$

Extended Dynkin Diagram

Weyl Group

Definition: the subgroup of $GL(\mathbb{R}R)$ generated by $\{s_{lpha}|lpha\in R\}$ where $s_{lpha}(v)=v-(v,lpha^{ee})lpha.$

 $W_{B_n} \simeq (\mathbb{Z}/2\mathbb{Z})^n
times S_n.$

 $W_{C_n} \simeq (\mathbb{Z}/2\mathbb{Z})^n
times S_n.$

 $W_{D_n} \simeq (\mathbb{Z}/2\mathbb{Z})^{n-1}
times S_n.$

 W_{E_6} is a group of order $2^7 \cdot 3^4 \cdot 5$.

 W_{E_7} is a group of order $2^{10} \cdot 3^4 \cdot 5 \cdot 7$.

 W_{E_8} is a group of order $2^{14} \cdot 3^5 \cdot 5^2 \cdot 7$.

 W_{F_4} is a group of order $2^7 \cdot 3^2$.

 $W_{G_2} \simeq D_6$ of order 12.