Module 6: Reinforcement Learning

國立中山大學 資訊工程系 張雲南

Application

- Autonomous helicopter
 - ◆ http://heli.stanford.edu/
 - https://www.youtube.com/watch?v=VCdxqn0fcnE
- **♦**Robotics
 - ◆ Towards Learning Robot Table Tennis
 - ◆ https://www.youtube.com/watch?v=SH3bADiB7uQ
 - ◆ Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization
 - ◆ https://www.youtube.com/watch?v=hXxaepw0zAw
- **♦**Save power
 - ◆ Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning
- **♦**Game
 - ◆ AlphaGo

Application

- **♦**NLP
 - **◆IBM Watson**
- Stock trading
 - https://github.com/IISourcell/Reinforcement_Learning_for_Stock_Prediction

OpenAl gym

♦ A toolkit for developing and comparing reinforcement learning algorithms.

Reinforcement Learning

- ♦Train an Agent/Actor to take actions that can receive best total reward.
 - ➤ It involves a whole sequence of actions.

Next Block

If you choose to go straight down, one line can be cleared.

If you go straight down, you can get a reward of 1 line for your "straight-down" action .

Next Block

But if you rotate it, you don't get reward in this action.

Next Block

If you rotate it, you don't get reward for this action.

But you can get a higher reward (3 lines) in the next action.

Reinforcement Learning

In Gomoku, one who can form an unbroken chain of five is the winner

State s_t

Board

Environment

Opponent

Action a_t

Where to place the stone

Reward r_t

Win: get 1 point

Not-Win: get 0

Loss: get -1 point 14

Reward Agent Action a_t Action a_{t+1} Reward r_t Reward r_{t+1} State s_t State s_{t+1} O 0 0 **Environment** 15

Autonomous helicopter

State

Action

Reward

Wind

Gravity

Motor control

Environment

Agent

-10/0/10/100

Reward Grading System

Autonomous helicopter

State

Action

Reward

♦Our goal is to fly a circle (blue line).

(blue line).

Mountain Car Problem

- Mountain Car is a problem in which an under-powered car must drive up a steep hill.
- Since gravity is stronger than the car's engine, even at full throttle, the car cannot simply accelerate to climb up the steep slope.

Mountain Car Problem

State

Action

Reward

Mountain Car in OpenAl gym

Text generator

State

Action

Reward

Why did he talk that?

How old are you?

Environment:
person

Text generator

Learning Process

Take Action

Learning Process

$$Data = \{(s_1, a_1), (s_2, a_2), (s_3, a_3), ..., (s_n, a_n)\}$$

$$Reward = \{r_1, r_2, r_3, ..., r_n\}$$

Supervised vs Reinforcement

- For supervised Learning, we should have the dataset of (state, action) pairs ready from previous experience.
 - ◆ Neglect about reward.

Supervised vs Reinforcement

- For reinforcement Learning, sometime the dataset is not ready.
- •We need to explore during the learning process.
- •We have to consider the total reward.

Value-based v.s. Policy-based

♦ Value-based: Learn a model to evaluate the "total reward" from the

state.

◆Q-Learning

◆DQN

- ♦ Policy-based: Learn a model to decide "action" from the state.
 - ◆ Policy gradient

Value-based v.s. Policy-based

Value-based

Q-learning

♦Keep update a so-called "Q-table".

♦Q-table represents the expected future total reward for each (state,

action) pair.

Q-table is built and updated through exploration.

Q-table

State	a_1	a_2	•••	a_L
S_1				
S_2				
•••				
S_N				

Algorithm

Initialize Q(s, a) arbitrarily Repeat (for each episode):

Initialize s

Repeat(for each step of episode):

Choose a from s using policy derived from Q (e.g., E-greedy)

Take action a, observe r, s'

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[\underline{r_t} + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

 $s \leftarrow s'$;

until s is terminal

Estimate of optimal future reward

igoplus After taking action a at state s and receiving the reward r_t , the expected reward of O(s,a) will be updated.

Q-table

State	a_1	a_2	 a_L
S_1			
S_2			
•••			
S_N			

 α : learning rate

 γ : discount factor

$$(1 - \alpha)Q(s, a) + \alpha \left[r_t + \gamma \max_{a'} Q(s', a')\right]$$

Choose the best action

Discount Factor in Q learning

 \diamond The discount factor γ determines the importance of future rewards.

$$Q(s_1, a) = (1 - \alpha)Q(s_1, a) + \alpha [r_t + \gamma \max_{a'} Q(s_1', a')]$$

$$\alpha = 1 \quad Q(s_1, a) = r_1 + \gamma Q(s_2, a) = r_1 + \gamma [r_2 + \gamma Q(s_3, a)]$$

$$Q(s_1, a) = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots$$

$$\gamma = 1$$
 $Q(s_1, a) = r_1 + r_2 + r_3 + r_4 + ...$

$$\gamma = 0 \qquad Q(s_1, a) = r_1$$

Q-learning example

♦ We want to get the diamond.

Action	Reward	
Nothing	-1	
Trap	-100	
Diamond	10	Game over

Initial Q-table

- We want to get a diamond.
- **⋄**X represents the direction we can't take.

ActionRewardNothing-1Trap-100Diamond10

Q-table

	Up	Down	Left	Right
1	X	0	X	0
2	X	0	0	0
3	X	0	0	X
4	0	0	X	0
5	0	0	0	0
6	0	0	0	X
7	0	X	X	0
8	0	X	0	0
9	0	X	0	X 35

Q-learning

Episode 1

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

♦ We will find out the action that can achieve the expected maximum

reward according to the Q-table.

	2	3
4	5	6
7	8	9

	Up	Down	Left	Right
1	X	0	X	0
2	X	0	0	0
3	X	0	0	X
4	0	0	X	0
5	0	0	0	0
6	0	0	0	X
7	0	X	X	0
8	0	X	0	0
9	0	X	0	X

Episode 1

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

♦Update Q(1, Right)

$$(1-\alpha)Q(1,Right) + \alpha \left[-1 + \gamma \max_{a'} Q(2,a')\right] = -1$$

Reward = -1

	Up	Down	Left	Right
1	X	0	X	-1
2	X	0	0	0
3	X	0	0	X
4	0	0	X	0
5	0	0	0	0
6	0	0	0	X
7	0	X	X	0
8	0	X	0	0
9	0	X	0	X

37

Update

Episode 1

♦ Update	Q(2,	Down)
-----------------	------	-------

$$(1 - \alpha)Q(2, Down) + \alpha [-100 + \gamma max_{a'} Q(5, a')] = -100$$

1	2	3	
4	5	6	Reward = -100
7	8	9	Game over

	Action	itewaru
	Nothing	-1
	Trap	-100
	Diamond	10
·′)]= - 100		

Right

Left

0

Action Reward

	•							
1	X	0	X	-1				
2	X	-100	0	0				
3	X	0	0	X				
4	0	0	X	0				
5	0	0	0	0				
6	0	0	0	X				
7	0	X	X	0				
8	0	X	0	0				

Down

Up

0

9

Update

Episode 2

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

♦ We choose the action that we expect to get the most reward in the future.

	Up	Down	Left	Right
1	X	0	X	-1
2	X	-100	0	0
3	X	0	0	X
4	0	0	X	0
5	0	0	0	0
6	0	0	0	X
7	0	X	X	0
8	0	X	0	0
9	0	X	0	X

Episode 2

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

- ♦Update Q(1, Down)
- $(1 \alpha)Q(1, Down) + \alpha \left[-1 + \gamma \max_{a'} Q(4, a')\right] = -1$

Reward = -1

	Up	Down	Left	Right	
1	X	-1	X	-1	Update
2	X	-100	0	0	
3	X	0	0	X	
4	0	0	X	0	
5	0	0	0	0	
6	0	0	0	X	
7	0	X	X	0	
8	0	X	0	0	
9	0	X	0	X	40

♦Update Q(4, Down)

		м																				

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

$$(1 - \alpha)Q(4, Down) + \alpha \left[-1 + \gamma \max_{a'} Q(7, a')\right] = -1$$

Reward = -1

	Up	Down	Left	Right	
1	X	-1	Х	-1	Update
2	X	-100	0	0	
3	X	0	0	X	
4	0	-1	X	0	
5	0	0	0	0	
6	0	0	0	X	
7	0	X	X	0	
8	0	X	0	0	
9	0	X	0	X	41

Episode 2

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

Update

- ♦Update Q(8, Right)
- $(1 \alpha)Q(8, Right) + \alpha [10 + \gamma max_{a'} Q(9, a')] = 10$

		Up	Down	Left	Right
	1	X	0	X	-1
	2	X	-100	0	0
	3	X	0	0	X
	4	0	-1	X	0
5		0	0	0	0
6		0	0	0	X
	7	0	X	X	-1
	8	0	X	0	10
	9	0	X	0	X

Episode 400

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

♦After many episodes, we will have an optimized Q-table.

α =	= 1
γ =	= 1
ε =	= 1
$\alpha =$	0.9
$\gamma =$	0.95
ε =	0.9

Up	Down	Left	Right
X	5.72	4.44	5.72
Χ	-100	4.44	7.07
X	8.5	5.72	X
4.44	7.07	X	-100
0	0	0	0
0	10	-100	Χ
5.72	X	X	8.5
0	X	7.07	10
0	0	0	0
	X X X 4.44 0 0 5.72	X 5.72 X -100 X 8.5 4.44 7.07 0 0 0 10 5.72 X 0 X	X 5.72 4.44 X -100 4.44 X 8.5 5.72 4.44 7.07 X 0 0 0 0 10 -100 5.72 X X 0 X 7.07

Episode 400

Action	Reward
Nothing	-1
Trap	-100
Diamond	10

We can find the best path according to Q-table.

	Up	Down	Left	Right
1	X	7	X	7
2	X	-100	6	8
3	X	9	7	Χ
4	6	2) 8	X	-100
5	0	0	0	0
6	0	10	-100	X
7	7	Χ	х	9
8	0	X	8	10
9	0	0	0	0

Exploration and Exploitation

Sometime we need to explore new paths for learning better.

♦Exploration

♦ Try different actions even if you don't get the best reward.

⋄Exploitation

Choose the best action that gets the highest reward.

Exploration and Exploitation

Exploitation

The path we chose to explore

Exploration and Exploitation

Exploration

Sometimes we can get better results(Shorter path).

In Q-learning, this means that we sometimes choose actions that currently will not receive the most expected value.

	Up	Down	Left	Right	
1	X	-20	X	10	Maximum
2	Χ	-45	-53	-30	expected reward
3	Х	-40	20	X	
n					

Epsilon Greedy

- Assume we just use 'Greedy' policy.
- ♦First time we choose 'Right' in 'A'

> We will never choose action 'Down' at state A.

Epoch = 0

state	Right	Down
Α	1	0
В	0	0
С	0	0
D	0	0
E	0	0

Epsilon Greedy

Sometime we choose action randomly in order to explore all possibilities

Q-table explosion

♦If the number of *states/actions* is infinite or very large, Q-table becomes infeasible.

Infinite

Velocity

Large

◆ How many possible states in GO?

Deep Q Network(DQN)

♦Generate Q-value for each (state, action) pair.

Build Q-table Model

When # of states or actions is too big to record, we can use Neural Network to replace it.

-			(AN)
	Right	Down	AN AN
31	1	9	AN
S2	0	0	(S_t, a_i) AN AN AN
S3	0	0	Q-value
SA	0	0	
S5	0	0	(AN) (AN)
•••		•••	
			52

Fixed Q-targets

- ♦ Use two Network, Q Network and Target Q Network.
- Every N step, we will copy the Q Network to the Target Q Network.
- ♦ Target Q Network is the old Q Network

Experience Replay

Double Deep Q Network

- Q-learning and Deep Q Learning tends to overestimate q-values.
- Because we take the max over all actions.

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[r_t + \gamma \left[max_{a'} \ Q(s',a') \right] - Q(s,a) \right]$$

- ♦If all values were equally overestimated this would be no problem.
- But if the overestimations are not uniform, this might slow downlearning.

Overestimated

- *♦X1, X2 is sequence*
- $E(\max(X1, X2)) \ge \max(E(X1), E(X2))$

Double Q-learning

- ♦Use two Q network, one of them evaluate, another choose an action.
- Randomly exchange behavior of two Q networks.

```
Initialize Q_1(s,a) and Q_2(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily Initialize Q_1(terminal\text{-}state,\cdot) = Q_2(terminal\text{-}state,\cdot) = 0 Repeat (for each episode): Initialize S Repeat (for each step of episode): Choose A from S using policy derived from Q_1 and Q_2 (e.g., \varepsilon-greedy in Q_1 + Q_2) Take action A, observe R, S' With 0.5 probability: Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \Big(R + \gamma Q_2 \big(S', \operatorname{argmax}_a Q_1(S',a) \big) - Q_1(S,A) \Big) else: Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{argmax}_a Q_2(S',a) \big) - Q_2(S,A) \Big) S \leftarrow S' until S is terminal
```

Double Q-learning

- ♦Use two Q network, one of them evaluate, another choose an action.
- Randomly exchange behavior of two Q networks.

Episode 1

Choose an action

Q Network(A)

Evaluate value (taget network)

Q Network(B)

Double Q-learning

- ♦Use two Q network, one of them evaluate, another choose an action.
- Randomly exchange behavior of two Q networks.

Episode 2

Evaluate value (taget network)

Change Behavier

Q Network(A)

Choose an action

Q Network(B)

Double Deep Q Network

$$Y_t^Q = r_t + \gamma \max_{a'} Q(s', a'; \theta^-)$$

Policy Gradient

♦Similar to multi-class classification problem.

Policy gradient

♦If we want to learn how to walk.......

Fail -100

Episode 1

Punish these actions, and try to avoid these actions

Policy gradient

♦If we want to learn how to walk

Good 100

Episode 3

Reward these actions, and choose these actions more often.

Policy Gradient Training

Supervised Learning

Policy Gradient Training

Episode 1:
$$[(s_1^1 \to a_1^1), (s_2^1 \to a_2^1), \cdots, (s_{100}^1 \to a_{100}^1)]$$
 Total reward: $R^1 = r_1^1 + r_2^1 \cdots + r_{100}^1$ Episode 2: $[(s_1^2 \to a_1^2), (s_2^2 \to a_2^2), \cdots, (s_{70}^2 \to a_{70}^1)]$ Total reward: $R^2 = r_1^2 + r_2^2 \cdots + r_{70}^2$

Monte Carlo & Temporal-Difference

- Monte Carlo Policy Gradient
 - ◆ Update every episode.
- **♦**Temporal-Difference
 - ◆ Update every step.

Monte Carlo

- Monte Carlo Policy Gradient
 - ◆ Update every episode.

Episode 1

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 1 time

- **♦**Temporal-Difference
 - ◆ Update every step.

Episode

2

2

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 5 times

- **♦**Temporal-Difference
 - ◆ Update every step.

Episode

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 2 times

- **♦**Temporal-Difference
 - ◆ Update every step.

Episode

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 3 times

- **♦**Temporal-Difference
 - ◆ Update every step.

Episode

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 4 times

Temporal-Difference

- **♦**Temporal-Difference
 - ◆ Update every step.

Episode

$$episode(1) = \{(s_1, a_1, r_1), (s_2, a_2, r_2), (s_3, a_3, r_3), ..., (s_n, a_n, r_n)\}$$

Update 5 times

Actor, Environment, Reward

Trajectory
$$\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$$

$$p_{\theta}(\tau) = p(s_1) p_{\theta}(a_1|s_1) p(s_2|s_1, a_1) p_{\theta}(a_2|s_2) p(s_3|s_2, a_2) \cdots$$

$$= p(s_1) \prod_{t=1}^{T} p_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Actor, Environment, Reward

Policy Gradient
$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) p_{\theta}(\tau) \quad \nabla \bar{R}_{\theta} = ?$$

$$\nabla \bar{R}_{\theta} = \sum_{\tau} R(\tau) \nabla p_{\theta}(\tau) = \sum_{\tau} R(\tau) p_{\theta}(\tau) \frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)} \qquad \nabla f(x) = f(x) \nabla \log f(x)$$

$$\nabla f(x) = f(x)\nabla log f(x)$$

 $R(\tau)$ do not have to be differentiable It can even be a black box.

$$= \sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla log p_{\theta}(\tau)$$

$$= E_{\tau \sim p_{\theta}(\tau)}[R(\tau)\nabla log p_{\theta}(\tau)] \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^{n})\nabla log p_{\theta}(\tau^{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

$$\nabla \bar{R}_{\theta} = E_{\tau \sim p_{\theta}(\tau)}[R(\tau)\nabla log p_{\theta}(\tau)]$$

Policy Gradient

Given policy π_{θ}

$$\tau^{1} \colon \left(s_{1}^{1}, a_{1}^{1}\right) \quad R(\tau^{1})$$

$$\left(s_{2}^{1}, a_{2}^{1}\right) \quad R(\tau^{1})$$

$$\vdots \qquad \vdots$$

$$\tau^{2} \colon \left(s_{1}^{2}, a_{1}^{2}\right) \quad R(\tau^{2})$$

$$\left(s_{2}^{2}, a_{2}^{2}\right) \quad R(\tau^{2})$$

Update Model

$$\theta \leftarrow \theta + \eta \nabla \overline{R}_{\theta}$$

$$\nabla \overline{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla log p_{\theta}(a_t^n | s_t^n)$$

only used once

Data Collection

Actor : Policy base

♦ Critic : Value base

Actor selects the action, Critic evaluates the quality of the selected action

Actor

left

right

straight

Critic

None

Actor

left

right

straight

Agent

Critic

-10

Actor

left

right

straight

Agent

Critic

-20

Actor

left

right

straight

Agent

Critic

10

Actor

left

right

straight

Agent

Critic

10

Policy Gradient

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - b \right) \nabla log p_{\theta}(a_t^n | s_t^n)$$

 G_t^n : obtained via interaction

- Policy Gradient
- Use critic to calculate possible future rewards

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r_{t'}^n - b \right) \nabla log p_{\theta}(a_t^n | s_t^n)$$

 G_t^n : obtained via interaction

$$E[G_t^n] = Q^{\pi_\theta}(s_t^n, a_t^n)$$

$$abla_{ heta}J(heta) = \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)G_{t}
ight] \qquad \qquad \text{REINFORCE}$$
 $= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)Q^{w}(s,a)
ight] \qquad \qquad \text{Q Actor-Critic}$
 $= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)A^{w}(s,a)
ight] \qquad \qquad \text{Advantage Actor-Critic}$
 $= \mathbb{E}_{\pi_{ heta}}\left[
abla_{ heta}\log\pi_{ heta}(s,a)\delta
ight] \qquad \qquad \text{TD Actor-Critic}$

 $\nabla_{\theta} J(\theta) = E_{\pi_{\theta}} [\nabla_{\theta} log \pi_{\theta}(s, a) Q_{\pi_{\theta}}(s, a)]$

Deep Deterministic Policy Gradient

Actor : Policy Gradient

♦ Critic: DGN

DDPG can only be used for environments with continuous action spaces.

- ♦Train with a lot of Actor-Critic and use a central control for all Actor-Critic.
- Each Actor-Critic can upload their learned experience to the Global Network, and can also update their parameters using Global Network.

- ♦1. Copy global parameters
- ♦2. Sampling some data
- ♦3. Compute gradients
- ♦4. Update global models

- ♦1. Copy global parameters
- ♦2. Sampling some data
- ♦3. Compute gradients
- ♦4. Update global models

Interact with the environment to obtain information

 Actor-Critic

 θ^1

 $heta^1$

Global Network

Environment

Actor-Crit

Environm

♦1. Copy global parameters

♦2. Sampling some data

♦3. Compute gradients

♦4. Update global models

 $\Delta\theta$

- ♦1. Copy global parameters
- ♦2. Sampling some data
- ♦3. Compute gradients
- ♦4. Update global models

Others may update the Global network, so θ may not be the same

Δθ
Actor-Critic
Actor-Critic
Environment
Environment

Global Network

Actor-Crit

95

Imitation Learning

• We can learn by imitating the actions of experts.

Inverse RL

- We have some expert episodes available.
- Try to find a reward function, which can give expert episode large reward, while our episode generated by our agent low reward.

Inverse RL & GAN

Inverse RL

Guided Cost Learning

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel UC Berkeley

Thanks for your listening!

