

2021 DCS Lab05

Finite State Machine

隋建德、郭書宏、許仲緯

Mealy and Moore Machine

- Mealy machine
 - The outputs depend on the current state and inputs.
- Moore machine

Mealy machine

- The outputs depend on the current state only.

Next State and Output Combinational Logic State Register

output = f(In, CS)

Next State Combinational Logic Output Combinational Logic Output Combinational Logic Output Combinational Combi

FSM coding style (example)

• 參考上課講義 Lec.4 p.15


```
//next state and output logic
always comb begin
   next = 'bx;
    rd = 1'b0;
    ds = 1'b0;
    case (curr state)
    IDLE: begin
          if (go) next state = READ;
          else     next state = IDLE;
    end
    READ: begin
          rd = 1'b1;
          next state = DLY;
    end
    DLY : begin
          rd = 1'b1;
          if (!ws) next state = DONE;
          else     next state = READ;
    end
    DONE: begin
          ds = 1'b1;
          next state = IDLE;
    end
    endcase
end
endmodule
```

GCD (最大公因數)

- 本次Lab要實作找出兩個整數的最大公因數。
- For example:

```
- num_0 = 40 · num_1 = 15 \rightarrow GCD = 5

- num_0 = 12 · num_1 = 16 \rightarrow GCD = 4
```

- 但是你們不能使用除法(/)與餘數(%)在設計中。
- 請使用FSM設計。

Euclidean algorithm (輾轉相除法)

Operation	num_0	num_1
Initial	40	15
minus	25	15
minus	10	15
swap	15	10
minus	5	10
swap	10	5
minus	5	5
minus	0	5

Operation	num_0	num_1
Initial	12	16
swap	16	12
minus	4	12
swap	12	4
minus	8	4
minus	4	4
minus	0	4

參考FSM diagram

• 在各個state可以做"什麼運算"使電路達到要求功能。

GCD.sv

Input Signal	Bit width	Definition
clk	1	clock
rst_n	1	Asynchronous active-low reset
in_valid	1	當此訊號拉起時,代表in_num0、in_num1給值。
in_num0	7	在negative edge clock且in_valid= 1時,
in_num1	7	in_num0 與 in_num1 各給予一個 1 ~ 127 的值。

Output Signal	Bit width	Definition
out_valid	1	當此訊號拉起時,testbench開始檢查。 out_valid必須在in_valid降下之後的 300 cycles 之內拉起,只能維持 High 1 cycle。
out_gcd	7	in_num0 與 in_num1 的最大公因數。

Spec

- 禁止使用/與%,助教們會檢查。
- 請使用FSM完成此次Lab,可參考範例。
- 所有output必須非同步負準位reset。
- 01_RTL須PASS。
- 02_SYN不能有任何error跟latches。
- 02_SYN timing slack必須為MET。

Waveform

Command

- tar -xvf ~dcsta01/Lab05.tar
 - cd Lab05/01_RTL/
 - ./01_run (電路模擬)
 - cd ../02_SYN/
 - ./01_run_dc (合成電路)
 - cd ../09_UPLOAD/
 - ./01_upload (上傳code)
- Demo1: 4/8, 16:25:00 · Demo2: 4/9, 23:59:59