A Short Proof on the Existence of Anomalies

Samuel Epstein*

July 14, 2022

Abstract

The Independence Postulate (IP) is a finitary Church-Turing Thesis, postulating that mathematical sequences are independent from physical ones. IP implies that anomalies are found in the physical world.

Anomalies

 $\mathbf{K}(x|y)$ is the conditional prefix Kolmogorov complexity. For probability p over \mathbb{N} , the deficiency of randomness is $\mathbf{d}(a|p) = \lfloor -\log p(a) \rfloor - \mathbf{K}(a)$. $\mathbf{I}(a;\mathcal{H}) = \mathbf{K}(a) - \mathbf{K}(a|\mathcal{H})$, where \mathcal{H} is the halting sequence. An elementary probability measure over \mathbb{N} has finite support and a range in \mathbb{Q} . $<^+f$ is < f + O(1) and $<^{\log}f$ is $< f + O(\log(f+1))$. Stochasticity is

$$\Lambda(a|b) = \min\{\mathbf{K}(Q|b) + 3\log\max\{\mathbf{d}(a|Q,b), 1\}$$

: Q is an elementary probability measure\.

$$\Lambda(a|b) < \Lambda(a) + O(\log \mathbf{K}(b)).$$

The following definition is from [Lev74].

Definition 1 (Information)
$$I(\alpha:\beta) = \log \sum_{x,y} 2^{K(x)+K(y)-K(x,y)-K(x|\alpha)-K(y|\beta)}$$
.

The Independence Postulate [Lev84, Lev13] statement is:

IP: Let α be a sequence defined with an n-bit mathematical statement, and a sequence β can be located in the physical world with a k-bit instruction set. Then $\mathbf{I}(\alpha:\beta) < k+n+c$ for some small absolute constant c.

There are many proofs in the literature that stochastic numbers have high mutual information with the halting sequence. One detailed proof is in [Eps21].

Lemma 1 $\Lambda(x) < \log \mathbf{I}(x; \mathcal{H})$.

Lemma 2 For computable probability p over \mathbb{N} and for $D \subset \mathbb{N}$, $|D| = 2^s$, $s < \max_{a \in D} \mathbf{d}(a|p) + \Lambda(D) + \mathbf{K}(s) + \mathbf{K}(p) + O(\log \mathbf{K}(s)\mathbf{K}(p))$.

Proof. We relativize the universal Turing machine to p and s. Let Q be an elementary probability measure that realizes $\Lambda(D)$. Let $d = \max\{\mathbf{d}(D|Q), 1\}$. Let $F \subseteq \mathbb{N}$ be a random set where each element $a \in \mathbb{N}$ is selected independently with probability $cd2^{-s}$, where $c \in \mathbb{N}$ is chosen later. $\mathbf{E}[p(F)] \leq cd2^{-s}$. Furthermore

$$\mathbf{E}[Q(\{G : |G| = 2^s, G \cap F = \emptyset\})] \le \sum_{G} Q(G)(1 - cd2^{-s})^{2^s} < e^{-cd}.$$

Thus finite $W \subset \mathbb{N}$ can be chosen such that $p(W) \leq 2cd2^{-s}$ and $Q(\{G: |G| = 2^s, G \cap W = \emptyset\}) \leq e^{1-cd}$. $D \cap W \neq \emptyset$, otherwise, using the Q-test, $t(G) = e^{cd-1}$ if $(|G| = 2^s, G \cap W = \emptyset)$ and t(G) = 0 otherwise, we have

$$\begin{split} \mathbf{K}(D|Q,d,c) <^+ &- \log Q(D) - (\log e)cd \\ &(\log e)cd <^+ - \log Q(D) - \mathbf{K}(D|Q) + \mathbf{K}(d,c) \\ &(\log e)cd <^+ d + \mathbf{K}(d,c), \end{split}$$

which is a contradiction for large c. Thus there is an $a \in D \cap W$, where

$$\mathbf{K}(a) <^{+} -\log p(a) + \log d - s + \mathbf{K}(d) + \mathbf{K}(Q)$$
$$s <^{+} \mathbf{d}(a|p) + \Lambda(D).$$

Making the relativization of p and s explicit,

$$s < -\log p(a) - \mathbf{K}(a|p,s) + \Lambda(D|p,s)$$

$$s < \max_{a \in D} \mathbf{d}(a|p) + \Lambda(D) + \mathbf{K}(s) + \mathbf{K}(p)$$

$$+ O(\log \mathbf{K}(s)\mathbf{K}(p)).$$

^{*}JP Theory Group. samepst@jptheorygroup.org

For $\tau \in \mathbb{N}^{\mathbb{N}}$, $\langle \tau \rangle = \langle \tau[1] \rangle \langle \tau[2] \rangle \langle \tau[3] \rangle \dots$ Let $\tau(n)$ be the first 2^n unique numbers found in τ . The sequence τ is assumed to have an infinite amount of unique numbers, and represents a series of observations.

Theorem 1 For probability p over \mathbb{N} and $\tau \in \mathbb{N}^{\mathbb{N}}$, let $s_{\tau,p}$ be the smallest number such that $\max_{a \in \tau(n)} \mathbf{d}(a|p) > n - 4\mathbf{K}(n) - s_{\tau,p}$. Then $s_{\tau,p} <^{\log} \mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p)$.

Proof. By Lemmas 1 and 2, and the fact that $I(x; \mathcal{H}) <^+ I(\alpha : \mathcal{H}) + K(x|\alpha)$,

$$\begin{split} n &< \max_{a \in \tau(n)} \mathbf{d}(a|p) + \mathbf{I}(\tau(n);\mathcal{H}) + \mathbf{K}(p) + 2\mathbf{K}(n) \\ &+ O(\log(\mathbf{I}(\tau(n);\mathcal{H}) + \mathbf{K}(p))), \\ n &< \max_{a \in \tau(n)} \mathbf{d}(a|p) + 4\mathbf{K}(n) + \mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p) \\ &+ O(\log(\mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p))), \\ n &- 4\mathbf{K}(n) - (\mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p) \\ &+ O(\log(\mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p)))) < \max_{a \in \tau(n)} \mathbf{d}(a|p). \end{split}$$

Let k be the physical address of an infinite sequence of numbers $\tau \in \mathbb{N}^{\mathbb{N}}$. The halting sequence can be described by a small mathematical statement. By Theorem 1 and IP,

$$s_{\tau,p} <^{\log} \mathbf{I}(\langle \tau \rangle : \mathcal{H}) + \mathbf{K}(p) <^{\log} k + c + \mathbf{K}(p).$$

Thus sequences τ with large $s_{\tau,p}$ will have large physical addresses. So, assuming IP, it's hard to find observations which do not have large anomalies, and impossible to find observations with no anomalies.

References

- [Eps21] Samuel Epstein. All sampling methods produce outliers. *IEEE Transactions on Information Theory*, 67(11):7568–7578, 2021.
- [Lev74] L. A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Foundations of Probability Theory. *Problemy Peredachi Informatsii*, 10(3):206–210, 1974.

- [Lev84] L. A. Levin. Randomness conservation inequalities; information and independence in mathematical theories. *Information and Control*, 61(1):15–37, 1984.
- [Lev13] L. A. Levin. Forbidden information. J. ACM, 60(2), 2013.