통계

데이터 수: 39,591

<문장 수 분포>

<단어 수 분포>

총 단어 수 : 5,583,613

평균 단어 수 : 141.032

최대 단어 수:1207

최소 단어 수 : 6

고유 단어 수 : 529,503

총 문장 수 : 443,579

평균 문장 수 : 11.204

최대 문장 수 : 98

최소 문장 수 : 0

<문단 수 분포>

데이터 구성

- ▶ 문단
- ▶ 점수
 - 문단별 점수
 - ◆ 문단별 평가자 점수
 - -> 세 명의 평가자가 있으므로, 세 개의 문단별 종합 점수가 존재
 - ◆ 문단 세부점수
 - -> '표현'항목에 대한 세부항목에 대한 점수가 있고, 각 평가자별로 존재
 - ◆ 문단별 평균 점수
 - -> 평가자별 점수의 평균
 - ◆ 문단번호
 - 에세이 종합 점수
 - -> 세 명의 평가자가 있으므로, 세 개의 종합 점수가 존재
 - 에세이 평균 점수
 - -> 평가자별 점수의 평균
 - 에세이 세부 점수
 - ◆ 구성
 - ◆ 내용
 - ◆ 표현
- ▶ 학생 정보
- ▶ 루브릭
 - 에세이 학년 수준
 - 에세이 유형
 - 에세이 주제
 - 구성 점수 가중치
 - 내용 점수 가중치
 - 표현 점수 가중치
- ▶ 교정 (일부만 존재)
- ▶ 데이터 정보
 - 에세이 ID
 - 에세이 프롬프트
 - 에세이 유형
 - 에세이 레벨
 - 에세이 길이
 - 에세이 주제

[데이터 예시]

데이터 예시 표

		평가자 1	평가자 2	평가자 3
종합 평균점수		27.466667		
종합 점수		27.311111	27.311111	27.777779
세부항목	구성	3, 0, 3, 2	3, 0, 3, 2	3, 0, 3, 3
	내용	3, 2, 3, 3	3, 2, 3, 3	2, 3, 2, 3
	표현	2, 3, 0	2, 3, 0	3, 3, 0

	세부	전체
구성	7, 0, 2, 1	3
내용	4, 2, 2, 1	4
표현	3, 3, 0	3

각 항목 점수 측정 방법

- 1. '구성', '내용', '표현' 점수를 세부 항목의 가중치를 고려하여 각각 3점 만점으로 계산합니다.
- 2. 3점 만점으로 구성된 항목에 가중치를 고려하여 30점 만점으로 계산합니다.

종합점수 == sum(sum([세부항목 점수] * [세부항목 가중치]) / [세부항목 가중치 합])

점수 계산 예시

아래의 계산 내용은 위의 데이터 예시표에 맞게 계산하는 예시입니다.

- \rightarrow 구성 점수 = 2.9 = (3*7 + 0*0 + 3*2 + 2*1) / (7 + 0 + 2 + 1)
- ▶ 내용 점수 = 2.7777... = (3*4 + 2*2 + 3*2 + 3*1) / (4 + 2+ 2 + 1)
- 표현점수 = 2.5 = (2*3 + 3*3 + 0*0) / (3 + 3+ 0)
- 종합점수 = 27.3111... = (2.9 * 3) + (2.7777 * 4) + (2.5 * 3)

개선 가능한 사항

데이터

- 일부 데이터에서는 교정 내용인 correction이 있는데 해당 부분의 데이터를 사용한다면 설명가 능한 AI(XAI) 개발에 사용할 가능성이 있습니다.
- correction이 적용된 데이터를 사용하여 더 많은 데이터 확보가 가능합니다.
- 데이터에서 문단별 점수를 적용하여 더 많은 데이터 확보가 가능합니다.

코드

- Hyperparameter를 별도의 파일에서 하나로 관리하면 실험을 더욱 편하게 할 수 있습니다.
- '구성', '내용', '표현' 채점을 별도의 모델로 학습했지만, 하나의 모델에서 3개의 output을 가지도록 구성하면 학습 및 추론에서 속도 향상을 기대할 수 있습니다.
- 현재 추론 및 평가 코드가 빈약합니다. 이를 개선시킬 수 있습니다.

실험 과정

- 적절한 GPU를 사용할 수 있었다면, 실험의 결과를 확인할 수 있습니다.
- `random_state`와 같은 seed를 설정하여 실험의 재현 가능성을 구현할 수 있습니다.
- MLflow나 WandB와 같은 툴을 사용하여 Hyperparameter Tuning까지 적용했다면 성능 향상을 기대할 수 있습니다.