

Ceremade Conic Activation Functions

Changqing Fu and Laurent D. Cohen, CEREMADE, Paris Dauphine University PSL, PRAIRE Institute

Replace Pointwise Activations with Improved Performance and Training

Observations

- 1. Component-Wise activations is only permutation equivariant
- 2. ReLU is a conic projection onto the positive orthant $\lambda = \max\{\cdot, 0\}$ = idempotent+component-wise+positive-scalable

Solution

Allow orthogonal equivariance in neural networks by replacing the positive orthant with the Lorentz cone

Intuition: Learn a Rotation

ReLU: loses the rotary symmetry near the equator CoLU: keeps the rotary symmetry everywhere

Computation

The complexity of CoLU is O(C) and the introduced overhead is negligible in practice.

Conic Activation Functions

$$\lambda(x)_{i} = \begin{cases} x_{1}, & i = 1\\ \min\{\max\{x_{1}/(|x_{-1}| + \varepsilon), 0\}, 1\}x_{i}, & i = 2, \dots, C \end{cases}$$

$$\lim_{\varepsilon \to 0} \lambda(x) = \pi_{\widetilde{V} \cap H(x)}(x) = \pi_{\max\{x_{1}, 0\}D + \min\{x_{1}, 0\}\mathbf{e}_{1}}(x)$$

Group-Wise Activation

Labels are G Values. The hyper-parameter S (dim_cone) or G (num_cones) balances between pure-permutation and orthogonal symmetries

Soft Projection

The soft mask replaces $x \in \mathbb{R} \mapsto \min\{\max\{x, 0\}, 1\}$

Axis Sharing

Gluing cone axes $\pi_i^G = \pi_1 \times \text{other } S - 1 \text{ dimensions}$ Saves params. Further improves 4D spacetime

Research supported by Google's TPU Research Cloud (TRC) PRAIRIE (ANR-19-P3IA-0001) and HPC from GENCI-IDRIS (Jean-Zay) Code: https://github.com/EvergreenTree/di-f-fu-sion

Experiments (S=4)

2-Layer MLP (MNIST)

	ReLU	CoLU
Train Loss	$(6.85 \pm 0.0)e-5$	$(0.0 \pm 0.0)e-5$
Test Accuracy	$(93.99 \pm 0.19)\%$	(94.89 ± 0.25)%

ResNet56 (CIFAR10)

	ReLU	CoLU
Train Loss	0.0051 ± 0.0014	0.0032 ± 0.0001
Test Accuracy	(90.65 ± 1.00)%	(91.01 ± 0.39)%

2-Layer VAE (MNIST)

(Shared&Soft)	ReLU	CoLU
Train Loss	84.29 ± 0.34	83.88 ± 2.68
Test Loss	98.14 ± 0.07	97.64 ± 1.39

GPT2 MLP (Shakespeare Corpus)

	ReLU	CoLU
Train Loss	1.256	1.263
Test Loss	1.482	1.481

Diffusion UNet (CIFAR10)

	ReLU	CoLU
Train Loss	0.1653	0.1458
Early Samples	4	

Latent Diffusion (Fine-Tune)

