Chaînes de Markov d'ordre 2

 \mathbb{Q} Entraînement à l'écriture d'une chaîne de Markov. Je parle plus spécifiquement des chaînes de Markov « d'ordre 2 » (c'est-à-dire lorsqu'à chaque itération de l'évènement, il n'y a que deux issues possibles) dans mes documents $M\acute{e}thodes$. Vous devrez notamment revoir comment on détermine une suite arithmético-géométrique.

Exercice 1. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{12}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{157}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 2. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{39}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 3. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{7}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 4. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{6}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 23

 \rightarrow page 23

 \rightarrow page 24

Exercice 5. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{3}{5}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 6. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{19}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 7. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{4}{17}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 8. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 9. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{6}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

 \rightarrow page 25

 \rightarrow page 25

 \rightarrow page 26

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 10. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{14}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 11. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{3}{7}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 12. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{13}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 13. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{183}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 14. Etienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 29

 \rightarrow page 30

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 15. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{15}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 16. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{45}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 17. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{9}{43}$. S'il ne marque pas, alors elle devient égale à $\frac{4}{15}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 18. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{6}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 31

 \rightarrow page 31

 \rightarrow page 33

Exercice 19. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 20. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{11}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{115}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 21. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 22. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{3}{29}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{27}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 23. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

 \rightarrow page 33

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 36

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 24. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 25. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{23}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 26. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{8}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 27. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{4}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{39}{55}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 28. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{4}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

 \rightarrow page 36

 \rightarrow page 37

 \rightarrow page 37

 \rightarrow page 39

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 29. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{8}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 30. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{1}{2}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{3}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 31. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 32. Eric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{41}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 39

 \rightarrow page 40

 \rightarrow page 41

Exercice 33. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{3}{10}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 34. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{5}{6}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 35. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{34}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 36. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{7}{32}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 37. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{1}{2}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{3}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 43

 \rightarrow page 44

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 38. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{112}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 39. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{3}{40}$. S'il ne marque pas, alors elle devient égale à $\frac{15}{76}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 40. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 41. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{20}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 42. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{3}{4}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{1}{2}$.

 \rightarrow page 45

 \rightarrow page 45

 \rightarrow page 46

 \rightarrow page 47

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 43. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

marque pas, alors elle devient égale à $\frac{1}{3}$. Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 44. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{7}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 45. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{1}{2}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{4}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 46. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 48

 \rightarrow page 48

 \rightarrow page 49

Exercice 47. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{70}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 48. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 49. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{9}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 50. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 51. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{4}{63}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

 \rightarrow page 50

 \rightarrow page 51

 \rightarrow page 51

 \rightarrow page 52

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 52. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{19}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{128}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 53. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{13}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 54. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{1}{2}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 55. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{2}{3}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 56. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{5}{234}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

 \rightarrow page 53

 \rightarrow page 54

 \rightarrow page 54

 \rightarrow page 55

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 57. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{19}{22}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 58. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{8}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 59. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{5}{288}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{11}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 60. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{2}{3}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{4}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 56

 \rightarrow page 57

 \rightarrow page 57

Exercice 61. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{42}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{15}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 62. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{15}{16}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 63. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 64. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 65. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

 \rightarrow page 58

 \rightarrow page 59

 \rightarrow page 60

 \rightarrow page 60

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 66. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{7}$.

marque pas, alors elle devient égale à $\frac{1}{7}$. Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 67. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{3}{4}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 68. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{3}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 69. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 70. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle

 \rightarrow page 61

 \rightarrow page 62

 \rightarrow page 63

 \rightarrow page 63

devient égale à $\frac{5}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 71. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{9}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{14}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 72. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{2}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 73. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{7}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 74. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{11}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 64

 \rightarrow page 65

 \rightarrow page 66

Exercice 75. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{7}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 76. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 77. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{7}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 78. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{108}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 79. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

 \rightarrow page 67

 \rightarrow page 67

 \rightarrow page 68

 \rightarrow page 69

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 80. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{1}{2}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 81. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{3}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{13}{16}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 82. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{28}{31}$. S'il ne marque pas, alors elle devient égale à $\frac{9}{13}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 83. Lionel Messire est un joueur de football fictif de l'En Avant Montvendre, proche de la ville de Barcelonne dans la Drôme. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{5}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{9}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Lionel Messire marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 84. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

 \rightarrow page 70

 \rightarrow page 70

 \rightarrow page 71

 \rightarrow page 72

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 85. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 86. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 87. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{9}{10}$. S'il ne marque pas, alors elle devient égale à $\frac{3}{4}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que: $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 88. Étienne Hasard est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Étienne Hasard marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 73

 \rightarrow page 74

 \rightarrow page 74

Exercice 89. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 90. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{13}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 91. Cillian Macchabée est un joueur de football fictif de Saint-Germain-en-Laye. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{3}{32}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{16}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Cillian Macchabée marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 92. Christian Renauld est un joueur de football fictif de l'AS Verderel à Juvignies. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{6}{7}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{2}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement : « Christian Renauld marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention : $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 93. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{22}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{5}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

 \rightarrow page 75

 \rightarrow page 76

 \rightarrow page 76

 \rightarrow page 77

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 94. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{7}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 95. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{4}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{11}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 96. Dimitri Graillette est un joueur de football fictif de l'Olympique Mallemortais, près de Marseille. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{2}$. S'il ne marque pas, alors elle devient égale à $\frac{1}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Dimitri Graillette marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 97. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{26}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 0$ (et donc A_0 est par convention l'évènement impossible).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 98. Serge Rameaux est un joueur de football fictif du Madriat Football Club (dans le Puy de Dôme). Ses performances à chaque match dépendent du match précédent : s'il se fait expulser lors d'un match, alors la probabilité qu'il se fasse expulser lors de son match suivant est égale à $\frac{5}{9}$. S'il ne se fait pas expulser, alors elle devient égale à $\frac{5}{8}$.

 \rightarrow page 78

 \rightarrow page 79

 \rightarrow page 79

 \rightarrow page 80

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Serge Rameaux se fait expulser lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 99. Éric Hollande est un joueur de football fictif vivant à Mancey et jouant à l'Association Sportive Tournusienne De Football. Ses performances à chaque match dépendent du match précédent: s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{3}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Éric Hollande marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

Exercice 100. Antoine Homgris est un joueur de football fictif de l'Association Athlétique de Madré. Ses performances à chaque match dépendent du match précédent : s'il marque lors d'un match, alors la probabilité qu'il marque lors du match suivant est égale à $\frac{1}{28}$. S'il ne marque pas, alors elle devient égale à $\frac{2}{3}$.

Pour tout $n \in \mathbb{N}$, on note A_n l'évènement: « Antoine Homgris marque lors de son n^e match », et on note p_n sa probabilité. On pose par convention: $p_0 = 1$ (et donc A_0 est par convention l'évènement certain).

- 1. Expliciter des réels α et β tels que : $\forall n \in \mathbb{N}, p_{n+1} = \alpha p_n + \beta$.
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur explicite de p_n , ainsi que sa limite quand $n \to +\infty$.

 \rightarrow page 81

Corrigé 1.

 \leftarrow page 1

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{12}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{157}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{145}{1884}p_n + \frac{1}{157},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{145}{1884}\lambda + \frac{1}{157}$. On trouve immédiatement pour solution: $\lambda = \frac{12}{1739}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{145}{1884} p_n - \frac{145}{273023} = \frac{145}{1884} \left(p_n - \frac{12}{1739} \right) = \frac{145}{1884} v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{145}{1884}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{145}{1884}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{145}{1884}\right)^n v_0 + \frac{12}{1739} = \left(\frac{145}{1884}\right)^n \left(p_0 - \frac{12}{1739}\right) + \frac{12}{1739} = \frac{1727}{1739} \left(\frac{145}{1884}\right)^n + \frac{12}{1739},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{12}{1739}.$$

Corrigé 2.

 \leftarrow page 1

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{39}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{37}{78}p_n + \frac{1}{39},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{37}{78}\lambda + \frac{1}{39}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{41}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{37}{78}p_n - \frac{37}{1599} = \frac{37}{78}\left(p_n - \frac{2}{41}\right) = \frac{37}{78}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{37}{78}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{37}{78}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{37}{78}\right)^n v_0 + \frac{2}{41} = \left(\frac{37}{78}\right)^n \left(p_0 - \frac{2}{41}\right) + \frac{2}{41} = -\frac{2}{41} \left(\frac{37}{78}\right)^n + \frac{2}{41},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{41}.$$

Corrigé 3.

 \leftarrow page 1

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{7}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{14}p_n + \frac{2}{7},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{14}\lambda + \frac{2}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{14}p_n - \frac{6}{77} = \frac{3}{14}\left(p_n - \frac{4}{11}\right) = \frac{3}{14}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{14}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{3}{14}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{14}\right)^n v_0 + \frac{4}{11} = \left(\frac{3}{14}\right)^n \left(p_0 - \frac{4}{11}\right) + \frac{4}{11} = \frac{7}{11} \left(\frac{3}{14}\right)^n + \frac{4}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{11}.$$

Corrigé 4.

 \leftarrow page 1

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{6}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{21} = -\frac{1}{6}\left(p_n - \frac{2}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{2}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{2}{7}\right) + \frac{2}{7} = \frac{5}{7} \left(-\frac{1}{6}\right)^n + \frac{2}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{7}.$$

Corrigé 5.

 \leftarrow page 2

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{15}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{15}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{8}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{15}p_n + \frac{1}{24} = -\frac{1}{15}\left(p_n - \frac{5}{8}\right) = -\frac{1}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{15}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{15}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{15}\right)^n v_0 + \frac{5}{8} = \left(-\frac{1}{15}\right)^n \left(p_0 - \frac{5}{8}\right) + \frac{5}{8} = \frac{3}{8} \left(-\frac{1}{15}\right)^n + \frac{5}{8},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{8}.$$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{19}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{17}{38}p_n + \frac{1}{19},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{17}{38}\lambda + \frac{1}{19}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{21}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{17}{38}p_n - \frac{17}{399} = \frac{17}{38}\left(p_n - \frac{2}{21}\right) = \frac{17}{38}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{17}{38}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{17}{38}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{17}{38}\right)^n v_0 + \frac{2}{21} = \left(\frac{17}{38}\right)^n \left(p_0 - \frac{2}{21}\right) + \frac{2}{21} = -\frac{2}{21} \left(\frac{17}{38}\right)^n + \frac{2}{21},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{21}.$$

Corrigé 7.

 \leftarrow page 2

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{4}{17}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{9}{34}p_n + \frac{4}{17},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{9}{34}\lambda + \frac{4}{17}$. On trouve immédiatement pour solution : $\lambda = \frac{8}{25}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{9}{34}p_n - \frac{36}{425} = \frac{9}{34}\left(p_n - \frac{8}{25}\right) = \frac{9}{34}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{9}{34}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{9}{34}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{9}{34}\right)^n v_0 + \frac{8}{25} = \left(\frac{9}{34}\right)^n \left(p_0 - \frac{8}{25}\right) + \frac{8}{25} = -\frac{8}{25} \left(\frac{9}{34}\right)^n + \frac{8}{25},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{8}{25}.$

Corrigé 8.

 $\leftarrow \text{page 2}$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{3}{10}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{10}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{10}p_n + \frac{3}{26} = -\frac{3}{10}\left(p_n - \frac{5}{13}\right) = -\frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{10}\right)^n v_0 + \frac{5}{13} = \left(-\frac{3}{10}\right)^n \left(p_0 - \frac{5}{13}\right) + \frac{5}{13} = \frac{8}{13} \left(-\frac{3}{10}\right)^n + \frac{5}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{13}.$$

Corrigé 9.

 \leftarrow page 2

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{6}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{3}p_n + \frac{1}{6},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{3}\lambda + \frac{1}{6}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{3}p_n - \frac{1}{12} = \frac{1}{3}\left(p_n - \frac{1}{4}\right) = \frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{3}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{3}\right)^n v_0 + \frac{1}{4} = \left(\frac{1}{3}\right)^n \left(p_0 - \frac{1}{4}\right) + \frac{1}{4} = -\frac{1}{4} \left(\frac{1}{3}\right)^n + \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $p_0=0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{4}.$$

Corrigé 10.

 \leftarrow page 3

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{14}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{7}p_n + \frac{1}{14},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{7}\lambda + \frac{1}{14}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{8}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{7}p_n - \frac{3}{56} = \frac{3}{7}\left(p_n - \frac{1}{8}\right) = \frac{3}{7}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{7}$. On en déduit : $\forall n \in \mathbb{N}, v_n = \left(\frac{3}{7}\right)^n v_0$. Or $p_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{7}\right)^n v_0 + \frac{1}{8} = \left(\frac{3}{7}\right)^n \left(p_0 - \frac{1}{8}\right) + \frac{1}{8} = \frac{7}{8} \left(\frac{3}{7}\right)^n + \frac{1}{8},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{8}.$$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{7}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{14}p_n + \frac{3}{7},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{14}\lambda + \frac{3}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{6}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{14}p_n - \frac{3}{91} = \frac{1}{14}\left(p_n - \frac{6}{13}\right) = \frac{1}{14}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{14}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{1}{14}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{14}\right)^n v_0 + \frac{6}{13} = \left(\frac{1}{14}\right)^n \left(p_0 - \frac{6}{13}\right) + \frac{6}{13} = -\frac{6}{13} \left(\frac{1}{14}\right)^n + \frac{6}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{6}{13}.$$

Corrigé 12.

 \leftarrow page 3

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{3}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{13}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{23}{39}p_n + \frac{1}{13},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{23}{39}\lambda + \frac{1}{13}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{16}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{23}{39}p_n - \frac{23}{208} = \frac{23}{39}\left(p_n - \frac{3}{16}\right) = \frac{23}{39}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{23}{39}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{23}{39}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{23}{39}\right)^n v_0 + \frac{3}{16} = \left(\frac{23}{39}\right)^n \left(p_0 - \frac{3}{16}\right) + \frac{3}{16} = \frac{13}{16} \left(\frac{23}{39}\right)^n + \frac{3}{16},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{16}.$$

Corrigé 13.

 \leftarrow page 3

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{183}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{20}{61}p_n + \frac{1}{183},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{20}{61}\lambda + \frac{1}{183}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{123}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{20}{61}p_n - \frac{20}{7503} = \frac{20}{61}\left(p_n - \frac{1}{123}\right) = \frac{20}{61}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{20}{61}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{20}{61}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{20}{61}\right)^n v_0 + \frac{1}{123} = \left(\frac{20}{61}\right)^n \left(p_0 - \frac{1}{123}\right) + \frac{1}{123} = \frac{122}{123} \left(\frac{20}{61}\right)^n + \frac{1}{123},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{123}.$$

Corrigé 14.

 \leftarrow page 3

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{10}p_n + \frac{1}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{10}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{10}p_n - \frac{3}{35} = \frac{3}{10}\left(p_n - \frac{2}{7}\right) = \frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{10}\right)^n v_0 + \frac{2}{7} = \left(\frac{3}{10}\right)^n \left(p_0 - \frac{2}{7}\right) + \frac{2}{7} = -\frac{2}{7} \left(\frac{3}{10}\right)^n + \frac{2}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{7}.$$

Corrigé 15.

 \leftarrow page 4

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{15}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{9}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{7}{45}p_n + \frac{2}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{7}{45}\lambda + \frac{2}{9}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{26}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{7}{45}p_n + \frac{7}{234} = -\frac{7}{45}\left(p_n - \frac{5}{26}\right) = -\frac{7}{45}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{7}{45}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{7}{45}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{7}{45}\right)^n v_0 + \frac{5}{26} = \left(-\frac{7}{45}\right)^n \left(p_0 - \frac{5}{26}\right) + \frac{5}{26} = \frac{21}{26} \left(-\frac{7}{45}\right)^n + \frac{5}{26},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{26}.$$

Corrigé 16.

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{45}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{14}{45}p_n + \frac{1}{45},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{14}{45}\lambda + \frac{1}{45}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{31}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{14}{45}p_n - \frac{14}{1395} = \frac{14}{45}\left(p_n - \frac{1}{31}\right) = \frac{14}{45}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{14}{45}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{14}{45}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{14}{45}\right)^n v_0 + \frac{1}{31} = \left(\frac{14}{45}\right)^n \left(p_0 - \frac{1}{31}\right) + \frac{1}{31} = -\frac{1}{31} \left(\frac{14}{45}\right)^n + \frac{1}{31},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{31}.$$

Corrigé 17.

 \leftarrow page 4

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{9}{43}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{4}{15}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{37}{645}p_n + \frac{4}{15},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{37}{645}\lambda + \frac{4}{15}$. On trouve immédiatement pour solution: $\lambda = \frac{86}{341}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{37}{645}p_n + \frac{74}{5115} = -\frac{37}{645}\left(p_n - \frac{86}{341}\right) = -\frac{37}{645}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{37}{645}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{37}{645}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{37}{645}\right)^n v_0 + \frac{86}{341} = \left(-\frac{37}{645}\right)^n \left(p_0 - \frac{86}{341}\right) + \frac{86}{341} = -\frac{86}{341} \left(-\frac{37}{645}\right)^n + \frac{86}{341},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{86}{341}.$$

Corrigé 18.

 \leftarrow page 4

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{6}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{6}p_n + \frac{1}{6},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{6}\lambda + \frac{1}{6}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{6}p_n - \frac{1}{30} = \frac{1}{6}\left(p_n - \frac{1}{5}\right) = \frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{6}\right)^n v_0 + \frac{1}{5} = \left(\frac{1}{6}\right)^n \left(p_0 - \frac{1}{5}\right) + \frac{1}{5} = \frac{4}{5} \left(\frac{1}{6}\right)^n + \frac{1}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{5}.$$

Corrigé 19.

 $\leftarrow \text{page 5}$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{10}p_n + \frac{1}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{10}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{10}p_n - \frac{3}{35} = \frac{3}{10}\left(p_n - \frac{2}{7}\right) = \frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{10}\right)^n v_0 + \frac{2}{7} = \left(\frac{3}{10}\right)^n \left(p_0 - \frac{2}{7}\right) + \frac{2}{7} = -\frac{2}{7} \left(\frac{3}{10}\right)^n + \frac{2}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{7}.$$

Corrigé 20.

 \leftarrow page 5

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{11}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{115}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{219}{1265}p_n + \frac{1}{115},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{219}{1265}\lambda + \frac{1}{115}$. On trouve immédiatement pour solution: $\lambda = \frac{11}{1046}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{219}{1265}p_n - \frac{219}{120290} = \frac{219}{1265}\left(p_n - \frac{11}{1046}\right) = \frac{219}{1265}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{219}{1265}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{219}{1265}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{219}{1265}\right)^n v_0 + \frac{11}{1046} = \left(\frac{219}{1265}\right)^n \left(p_0 - \frac{11}{1046}\right) + \frac{11}{1046} = -\frac{11}{1046} \left(\frac{219}{1265}\right)^n + \frac{11}{1046},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{11}{1046}.$$

Corrigé 21.

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{10}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{10}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{10}p_n + \frac{1}{22} = -\frac{1}{10}\left(p_n - \frac{5}{11}\right) = -\frac{1}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{10}\right)^n v_0 + \frac{5}{11} = \left(-\frac{1}{10}\right)^n \left(p_0 - \frac{5}{11}\right) + \frac{5}{11} = \frac{6}{11} \left(-\frac{1}{10}\right)^n + \frac{5}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{11}.$$

Corrigé 22.

 \leftarrow page 5

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{29}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{27}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{52}{783}p_n + \frac{1}{27},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{52}{783}\lambda + \frac{1}{27}$. On trouve immédiatement pour solution: $\lambda = \frac{29}{731}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{52}{783}p_n - \frac{52}{19737} = \frac{52}{783}\left(p_n - \frac{29}{731}\right) = \frac{52}{783}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{52}{783}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{52}{783}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{52}{783}\right)^n v_0 + \frac{29}{731} = \left(\frac{52}{783}\right)^n \left(p_0 - \frac{29}{731}\right) + \frac{29}{731} = -\frac{29}{731} \left(\frac{52}{783}\right)^n + \frac{29}{731},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{29}{731}.$$

Corrigé 23.

 \leftarrow page 5

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{9}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{5}{9}p_n + \frac{1}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{5}{9}\lambda + \frac{1}{9}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{5}{9}p_n - \frac{5}{36} = \frac{5}{9}\left(p_n - \frac{1}{4}\right) = \frac{5}{9}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{5}{9}$. On en déduit : $\forall n \in \mathbb{N}, v_n = \left(\frac{5}{9}\right)^n v_0$. Or $p_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{5}{9}\right)^n v_0 + \frac{1}{4} = \left(\frac{5}{9}\right)^n \left(p_0 - \frac{1}{4}\right) + \frac{1}{4} = \frac{3}{4} \left(\frac{5}{9}\right)^n + \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{4}.$$

Corrigé 24.

 \leftarrow page 6

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{14} = -\frac{1}{6}\left(p_n - \frac{3}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{3}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{3}{7}\right) + \frac{3}{7} = -\frac{3}{7} \left(-\frac{1}{6}\right)^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{7}.$$

Corrigé 25.

 \leftarrow page 6

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{23}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{20}{69}p_n + \frac{1}{23},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{20}{69}\lambda + \frac{1}{23}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{49}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{20}{69}p_n - \frac{20}{1127} = \frac{20}{69}\left(p_n - \frac{3}{49}\right) = \frac{20}{69}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{20}{69}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{20}{69}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{20}{69}\right)^n v_0 + \frac{3}{49} = \left(\frac{20}{69}\right)^n \left(p_0 - \frac{3}{49}\right) + \frac{3}{49} = \frac{46}{49} \left(\frac{20}{69}\right)^n + \frac{3}{49},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{49}.$$

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{8}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{3}{8}p_n + \frac{1}{8},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{8}\lambda + \frac{1}{8}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{8}p_n - \frac{3}{40} = \frac{3}{8}\left(p_n - \frac{1}{5}\right) = \frac{3}{8}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{8}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{3}{8}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{8}\right)^n v_0 + \frac{1}{5} = \left(\frac{3}{8}\right)^n \left(p_0 - \frac{1}{5}\right) + \frac{1}{5} = \frac{4}{5} \left(\frac{3}{8}\right)^n + \frac{1}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0=1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{5}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 27.

 \leftarrow page 6

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{4}{5}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{39}{55}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{11}p_n + \frac{39}{55},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{11}\lambda + \frac{39}{55}$. On trouve immédiatement pour solution : $\lambda = \frac{39}{50}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{11}p_n - \frac{39}{550} = \frac{1}{11}\left(p_n - \frac{39}{50}\right) = \frac{1}{11}v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{11}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{1}{11}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{11}\right)^n v_0 + \frac{39}{50} = \left(\frac{1}{11}\right)^n \left(p_0 - \frac{39}{50}\right) + \frac{39}{50} = \frac{11}{50} \left(\frac{1}{11}\right)^n + \frac{39}{50},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{39}{50}.$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 28.

 \leftarrow page 6

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{4}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{2}{15}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{2}{15}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{10}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{2}{15}p_n - \frac{4}{39} = \frac{2}{15}\left(p_n - \frac{10}{13}\right) = \frac{2}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{15}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{2}{15}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{2}{15}\right)^n v_0 + \frac{10}{13} = \left(\frac{2}{15}\right)^n \left(p_0 - \frac{10}{13}\right) + \frac{10}{13} = \frac{3}{13} \left(\frac{2}{15}\right)^n + \frac{10}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{10}{13}.$$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 29.

 \leftarrow page 7

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{8}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{3}{8}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{8}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{8}p_n + \frac{3}{22} = -\frac{3}{8}\left(p_n - \frac{4}{11}\right) = -\frac{3}{8}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{8}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{8}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{8}\right)^n v_0 + \frac{4}{11} = \left(-\frac{3}{8}\right)^n \left(p_0 - \frac{4}{11}\right) + \frac{4}{11} = -\frac{4}{11} \left(-\frac{3}{8}\right)^n + \frac{4}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{11}.$$

Corrigé 30.

 \leftarrow page 7

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{10}p_n + \frac{3}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{10}\lambda + \frac{3}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{6}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{10}p_n + \frac{3}{55} = -\frac{1}{10}\left(p_n - \frac{6}{11}\right) = -\frac{1}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{10}\right)^n v_0 + \frac{6}{11} = \left(-\frac{1}{10}\right)^n \left(p_0 - \frac{6}{11}\right) + \frac{6}{11} = \frac{5}{11} \left(-\frac{1}{10}\right)^n + \frac{6}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{6}{11}.$$

Corrigé 31.

 \leftarrow page 7

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{4}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{12}p_n + \frac{1}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{12}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{12}p_n - \frac{1}{44} = \frac{1}{12}\left(p_n - \frac{3}{11}\right) = \frac{1}{12}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{12}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{1}{12}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{12}\right)^n v_0 + \frac{3}{11} = \left(\frac{1}{12}\right)^n \left(p_0 - \frac{3}{11}\right) + \frac{3}{11} = -\frac{3}{11} \left(\frac{1}{12}\right)^n + \frac{3}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{11}.$$

Corrigé 32.

 \leftarrow page 7

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{41}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{4}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{37}{164}p_n + \frac{1}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{37}{164}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{41}{201}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{37}{164}p_n + \frac{37}{804} = -\frac{37}{164}\left(p_n - \frac{41}{201}\right) = -\frac{37}{164}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{37}{164}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{37}{164}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{37}{164}\right)^n v_0 + \frac{41}{201} = \left(-\frac{37}{164}\right)^n \left(p_0 - \frac{41}{201}\right) + \frac{41}{201} = \frac{160}{201} \left(-\frac{37}{164}\right)^n + \frac{41}{201},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{41}{201}.$$

Corrigé 33.

 \leftarrow page 8

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{10}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{5}p_n + \frac{3}{10},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{5}\lambda + \frac{3}{10}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{8}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{5}p_n - \frac{3}{40} = \frac{1}{5}\left(p_n - \frac{3}{8}\right) = \frac{1}{5}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{5}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{5}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{5}\right)^n v_0 + \frac{3}{8} = \left(\frac{1}{5}\right)^n \left(p_0 - \frac{3}{8}\right) + \frac{3}{8} = -\frac{3}{8} \left(\frac{1}{5}\right)^n + \frac{3}{8},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{8}.$$

Corrigé 34.

 $\leftarrow \text{page } 8$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{5}{6}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{3}p_n + \frac{1}{2},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{3}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{3}p_n - \frac{1}{4} = \frac{1}{3}\left(p_n - \frac{3}{4}\right) = \frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{3}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{3}\right)^n v_0 + \frac{3}{4} = \left(\frac{1}{3}\right)^n \left(p_0 - \frac{3}{4}\right) + \frac{3}{4} = \frac{1}{4} \left(\frac{1}{3}\right)^n + \frac{3}{4},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{4}.$$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 35.

 \leftarrow page 8

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{34}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{29}{170}p_n + \frac{1}{34},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{29}{170}\lambda + \frac{1}{34}$. On trouve immédiatement pour solution : $\lambda = \frac{5}{141}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{29}{170}p_n - \frac{29}{4794} = \frac{29}{170}\left(p_n - \frac{5}{141}\right) = \frac{29}{170}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{29}{170}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{29}{170}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{29}{170}\right)^n v_0 + \frac{5}{141} = \left(\frac{29}{170}\right)^n \left(p_0 - \frac{5}{141}\right) + \frac{5}{141} = \frac{136}{141} \left(\frac{29}{170}\right)^n + \frac{5}{141},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{141}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 36.

 \leftarrow page 8

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{7}{32}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{9}{32}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{9}{32}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{16}{41}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{9}{32}p_n + \frac{9}{82} = -\frac{9}{32}\left(p_n - \frac{16}{41}\right) = -\frac{9}{32}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{9}{32}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{9}{32}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{9}{32}\right)^n v_0 + \frac{16}{41} = \left(-\frac{9}{32}\right)^n \left(p_0 - \frac{16}{41}\right) + \frac{16}{41} = -\frac{16}{41} \left(-\frac{9}{32}\right)^n + \frac{16}{41},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{16}{41}.$$

Corrigé 37.

 \leftarrow page 8

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{4}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{4}p_n + \frac{3}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{4}\lambda + \frac{3}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{4}p_n + \frac{3}{20} = -\frac{1}{4}\left(p_n - \frac{3}{5}\right) = -\frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{4}\right)^n v_0 + \frac{3}{5} = \left(-\frac{1}{4}\right)^n \left(p_0 - \frac{3}{5}\right) + \frac{3}{5} = \frac{2}{5} \left(-\frac{1}{4}\right)^n + \frac{3}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{5}.$$

Corrigé 38.

 \leftarrow page 9

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{112}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{55}{112}p_n + \frac{1}{112},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{55}{112}\lambda + \frac{1}{112}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{57}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{55}{112}p_n - \frac{55}{6384} = \frac{55}{112}\left(p_n - \frac{1}{57}\right) = \frac{55}{112}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{55}{112}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{55}{112}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{55}{112}\right)^n v_0 + \frac{1}{57} = \left(\frac{55}{112}\right)^n \left(p_0 - \frac{1}{57}\right) + \frac{1}{57} = -\frac{1}{57} \left(\frac{55}{112}\right)^n + \frac{1}{57},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{57}.$$

Corrigé 39.

 \leftarrow page 9

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{40}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{15}{76}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{93}{760}p_n + \frac{15}{76},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{93}{760}\lambda + \frac{15}{76}$. On trouve immédiatement pour solution: $\lambda = \frac{150}{853}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{93}{760}p_n + \frac{1395}{64828} = -\frac{93}{760}\left(p_n - \frac{150}{853}\right) = -\frac{93}{760}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{93}{760}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{93}{760}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{93}{760}\right)^n v_0 + \frac{150}{853} = \left(-\frac{93}{760}\right)^n \left(p_0 - \frac{150}{853}\right) + \frac{150}{853} = \frac{703}{853} \left(-\frac{93}{760}\right)^n + \frac{150}{853},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{150}{853}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 40.

 \leftarrow page 9

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{4}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{4}p_n + \frac{1}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{4}p_n - \frac{1}{12} = \frac{1}{4}\left(p_n - \frac{1}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{4}\right)^n v_0 + \frac{1}{3} = \left(\frac{1}{4}\right)^n \left(p_0 - \frac{1}{3}\right) + \frac{1}{3} = -\frac{1}{3} \left(\frac{1}{4}\right)^n + \frac{1}{3},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{3}.$$

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{4}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{20}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{5}p_n + \frac{1}{20},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{5}\lambda + \frac{1}{20}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{16}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{5}p_n - \frac{1}{80} = \frac{1}{5}\left(p_n - \frac{1}{16}\right) = \frac{1}{5}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{5}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{5}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{5}\right)^n v_0 + \frac{1}{16} = \left(\frac{1}{5}\right)^n \left(p_0 - \frac{1}{16}\right) + \frac{1}{16} = \frac{15}{16} \left(\frac{1}{5}\right)^n + \frac{1}{16},$$

puisque par hypothèse de l'énoncé on a : $p_0=1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{16}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 42.

 $\leftarrow \text{page } 9$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{4}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{4}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{4}p_n - \frac{1}{6} = \frac{1}{4}\left(p_n - \frac{2}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{4}\right)^n v_0 + \frac{2}{3} = \left(\frac{1}{4}\right)^n \left(p_0 - \frac{2}{3}\right) + \frac{2}{3} = \frac{1}{3} \left(\frac{1}{4}\right)^n + \frac{2}{3},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{2}{3}.$

Corrigé 43.

 \leftarrow page 10

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{2}{15}p_n + \frac{1}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{2}{15}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{17}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{2}{15}p_n + \frac{2}{51} = -\frac{2}{15}\left(p_n - \frac{5}{17}\right) = -\frac{2}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{2}{15}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{2}{15}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{2}{15}\right)^n v_0 + \frac{5}{17} = \left(-\frac{2}{15}\right)^n \left(p_0 - \frac{5}{17}\right) + \frac{5}{17} = -\frac{5}{17} \left(-\frac{2}{15}\right)^n + \frac{5}{17},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{5}{17}.$

Corrigé 44.

 $\leftarrow \text{page } 10$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{7}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{4}{21}p_n + \frac{1}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{4}{21}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{7}{25}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{4}{21}p_n + \frac{4}{75} = -\frac{4}{21}\left(p_n - \frac{7}{25}\right) = -\frac{4}{21}v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{4}{21}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{4}{21}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{4}{21}\right)^n v_0 + \frac{7}{25} = \left(-\frac{4}{21}\right)^n \left(p_0 - \frac{7}{25}\right) + \frac{7}{25} = \frac{18}{25} \left(-\frac{4}{21}\right)^n + \frac{7}{25},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{7}{25}.$$

Corrigé 45.

 \leftarrow page 10

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{4}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{3}{10}p_n + \frac{4}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{10}\lambda + \frac{4}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{8}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{10}p_n + \frac{12}{65} = -\frac{3}{10}\left(p_n - \frac{8}{13}\right) = -\frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{10}\right)^n v_0 + \frac{8}{13} = \left(-\frac{3}{10}\right)^n \left(p_0 - \frac{8}{13}\right) + \frac{8}{13} = \frac{5}{13} \left(-\frac{3}{10}\right)^n + \frac{8}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{8}{13}.$$

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{14} = -\frac{1}{6}\left(p_n - \frac{3}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{3}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{3}{7}\right) + \frac{3}{7} = \frac{4}{7} \left(-\frac{1}{6}\right)^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{7}.$$

Corrigé 47.

 \leftarrow page 11

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{70}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{137}{210}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{137}{210}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{140}{347}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{137}{210}p_n + \frac{274}{1041} = -\frac{137}{210}\left(p_n - \frac{140}{347}\right) = -\frac{137}{210}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{137}{210}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{137}{210}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{137}{210}\right)^n v_0 + \frac{140}{347} = \left(-\frac{137}{210}\right)^n \left(p_0 - \frac{140}{347}\right) + \frac{140}{347} = -\frac{140}{347} \left(-\frac{137}{210}\right)^n + \frac{140}{347},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{140}{347}.$$

Corrigé 48.

 \leftarrow page 11

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{4}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{1}{20}p_n + \frac{1}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{20}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{21}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{20}p_n + \frac{1}{84} = -\frac{1}{20}\left(p_n - \frac{5}{21}\right) = -\frac{1}{20}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{20}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{20}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{20}\right)^n v_0 + \frac{5}{21} = \left(-\frac{1}{20}\right)^n \left(p_0 - \frac{5}{21}\right) + \frac{5}{21} = -\frac{5}{21} \left(-\frac{1}{20}\right)^n + \frac{5}{21},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{21}.$$

Corrigé 49.

 \leftarrow page 11

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{9}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{2}{9}p_n + \frac{1}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{2}{9}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{2}{9}p_n + \frac{2}{33} = -\frac{2}{9}\left(p_n - \frac{3}{11}\right) = -\frac{2}{9}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{2}{9}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{2}{9}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{2}{9}\right)^n v_0 + \frac{3}{11} = \left(-\frac{2}{9}\right)^n \left(p_0 - \frac{3}{11}\right) + \frac{3}{11} = \frac{8}{11} \left(-\frac{2}{9}\right)^n + \frac{3}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{11}.$$

Corrigé 50.

 \leftarrow page 11

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{3}{10}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{10}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{10}p_n + \frac{3}{26} = -\frac{3}{10}\left(p_n - \frac{5}{13}\right) = -\frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{10}\right)^n v_0 + \frac{5}{13} = \left(-\frac{3}{10}\right)^n \left(p_0 - \frac{5}{13}\right) + \frac{5}{13} = \frac{8}{13} \left(-\frac{3}{10}\right)^n + \frac{5}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{13}.$$

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{4}{63}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{17}{63}p_n + \frac{4}{63},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{17}{63}\lambda + \frac{4}{63}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{23}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{17}{63}p_n - \frac{34}{1449} = \frac{17}{63}\left(p_n - \frac{2}{23}\right) = \frac{17}{63}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{17}{63}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{17}{63}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{17}{63}\right)^n v_0 + \frac{2}{23} = \left(\frac{17}{63}\right)^n \left(p_0 - \frac{2}{23}\right) + \frac{2}{23} = \frac{21}{23} \left(\frac{17}{63}\right)^n + \frac{2}{23},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{23}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 52.

 $\leftarrow \text{page } 12$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{19}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{128}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{109}{2432}p_n + \frac{1}{128},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{109}{2432}\lambda + \frac{1}{128}$. On trouve immédiatement pour solution : $\lambda = \frac{19}{2323}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{109}{2432}p_n - \frac{109}{297344} = \frac{109}{2432}\left(p_n - \frac{19}{2323}\right) = \frac{109}{2432}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{109}{2432}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{109}{2432}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{109}{2432}\right)^n v_0 + \frac{19}{2323} = \left(\frac{109}{2432}\right)^n \left(p_0 - \frac{19}{2323}\right) + \frac{19}{2323} = \frac{2304}{2323} \left(\frac{109}{2432}\right)^n + \frac{19}{2323},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{19}{2323}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 53.

 \leftarrow page 12

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{13}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{9}{26}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{9}{26}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{13}{35}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{9}{26}p_n + \frac{9}{70} = -\frac{9}{26}\left(p_n - \frac{13}{35}\right) = -\frac{9}{26}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{9}{26}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{9}{26}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{9}{26}\right)^n v_0 + \frac{13}{35} = \left(-\frac{9}{26}\right)^n \left(p_0 - \frac{13}{35}\right) + \frac{13}{35} = \frac{22}{35} \left(-\frac{9}{26}\right)^n + \frac{13}{35},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{13}{35}.$$

Corrigé 54.

 \leftarrow page 12

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{2}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{2}{21} = -\frac{1}{6}\left(p_n - \frac{4}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{4}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{4}{7}\right) + \frac{4}{7} = \frac{3}{7} \left(-\frac{1}{6}\right)^n + \frac{4}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{7}.$$

Corrigé 55.

 \leftarrow page 12

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{6}p_n - \frac{1}{10} = \frac{1}{6}\left(p_n - \frac{3}{5}\right) = \frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{6}$. On en déduit : $\forall n \in \mathbb{N}, v_n = \left(\frac{1}{6}\right)^n v_0$. Or $p_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{6}\right)^n v_0 + \frac{3}{5} = \left(\frac{1}{6}\right)^n \left(p_0 - \frac{3}{5}\right) + \frac{3}{5} = \frac{2}{5} \left(\frac{1}{6}\right)^n + \frac{3}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{5}.$$

Corrigé 56.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{5}{234}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{73}{234}p_n + \frac{1}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{73}{234}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{78}{307}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{73}{234}p_n + \frac{73}{921} = -\frac{73}{234}\left(p_n - \frac{78}{307}\right) = -\frac{73}{234}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{73}{234}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{73}{234}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{73}{234}\right)^n v_0 + \frac{78}{307} = \left(-\frac{73}{234}\right)^n \left(p_0 - \frac{78}{307}\right) + \frac{78}{307} = \frac{229}{307} \left(-\frac{73}{234}\right)^n + \frac{78}{307},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{78}{307}.$$

Corrigé 57.

 \leftarrow page 13

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{19}{22}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{4}{11}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{4}{11}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{11}{14}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{4}{11}p_n - \frac{2}{7} = \frac{4}{11}\left(p_n - \frac{11}{14}\right) = \frac{4}{11}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{4}{11}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{4}{11}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{4}{11}\right)^n v_0 + \frac{11}{14} = \left(\frac{4}{11}\right)^n \left(p_0 - \frac{11}{14}\right) + \frac{11}{14} = \frac{3}{14} \left(\frac{4}{11}\right)^n + \frac{11}{14},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{11}{14}.$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 58.

 \leftarrow page 13

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{8}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{3}{8}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{8}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{11}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{8}p_n + \frac{3}{22} = -\frac{3}{8}\left(p_n - \frac{4}{11}\right) = -\frac{3}{8}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{8}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{8}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{8}\right)^n v_0 + \frac{4}{11} = \left(-\frac{3}{8}\right)^n \left(p_0 - \frac{4}{11}\right) + \frac{4}{11} = -\frac{4}{11} \left(-\frac{3}{8}\right)^n + \frac{4}{11},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{11}.$$

Corrigé 59.

 \leftarrow page 13

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{5}{288}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{11}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{521}{3168}p_n + \frac{2}{11},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{521}{3168}\lambda + \frac{2}{11}$. On trouve immédiatement pour solution: $\lambda = \frac{576}{3689}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{521}{3168}p_n + \frac{1042}{40579} = -\frac{521}{3168}\left(p_n - \frac{576}{3689}\right) = -\frac{521}{3168}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{521}{3168}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{521}{3168}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{521}{3168}\right)^n v_0 + \frac{576}{3689} = \left(-\frac{521}{3168}\right)^n \left(p_0 - \frac{576}{3689}\right) + \frac{576}{3689} = -\frac{576}{3689} \left(-\frac{521}{3168}\right)^n + \frac{576}{3689},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{576}{3689}.$$

Corrigé 60.

 \leftarrow page 13

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{3}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{4}{5}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{2}{15}p_n + \frac{4}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{2}{15}\lambda + \frac{4}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{12}{17}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{2}{15}p_n + \frac{8}{85} = -\frac{2}{15}\left(p_n - \frac{12}{17}\right) = -\frac{2}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{2}{15}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{2}{15}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{2}{15}\right)^n v_0 + \frac{12}{17} = \left(-\frac{2}{15}\right)^n \left(p_0 - \frac{12}{17}\right) + \frac{12}{17} = \frac{5}{17} \left(-\frac{2}{15}\right)^n + \frac{12}{17},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{12}{17}.$$

Corrigé 61.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{42}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{15}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{3}{70}p_n + \frac{1}{15},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{3}{70}\lambda + \frac{1}{15}$. On trouve immédiatement pour solution: $\lambda = \frac{14}{219}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{3}{70}p_n + \frac{1}{365} = -\frac{3}{70}\left(p_n - \frac{14}{219}\right) = -\frac{3}{70}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{3}{70}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{3}{70}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{3}{70}\right)^n v_0 + \frac{14}{219} = \left(-\frac{3}{70}\right)^n \left(p_0 - \frac{14}{219}\right) + \frac{14}{219} = \frac{205}{219} \left(-\frac{3}{70}\right)^n + \frac{14}{219},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{14}{219}.$$

Corrigé 62.

 \leftarrow page 14

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{15}{16}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{7}{16}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{7}{16}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{8}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{7}{16}p_n - \frac{7}{18} = \frac{7}{16}\left(p_n - \frac{8}{9}\right) = \frac{7}{16}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{7}{16}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{7}{16}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{7}{16}\right)^n v_0 + \frac{8}{9} = \left(\frac{7}{16}\right)^n \left(p_0 - \frac{8}{9}\right) + \frac{8}{9} = -\frac{8}{9} \left(\frac{7}{16}\right)^n + \frac{8}{9},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{8}{9}.$

Corrigé 63.

 \leftarrow page 14

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{9}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{9}p_n + \frac{2}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{1}{9}\lambda + \frac{2}{9}$. On trouve immédiatement pour solution : $\lambda = \frac{1}{4}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{9}p_n - \frac{1}{36} = \frac{1}{9}\left(p_n - \frac{1}{4}\right) = \frac{1}{9}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{9}$. On en déduit : $\forall n \in \mathbb{N}, v_n = \left(\frac{1}{9}\right)^n v_0$. Or $p_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{9}\right)^n v_0 + \frac{1}{4} = \left(\frac{1}{9}\right)^n \left(p_0 - \frac{1}{4}\right) + \frac{1}{4} = \frac{3}{4} \left(\frac{1}{9}\right)^n + \frac{1}{4},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{1}{4}.$

Corrigé 64.

 $\leftarrow \text{page } 14$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{10}p_n + \frac{2}{5},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{10}\lambda + \frac{2}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{10}p_n - \frac{2}{45} = \frac{1}{10}\left(p_n - \frac{4}{9}\right) = \frac{1}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{10}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{1}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{10}\right)^n v_0 + \frac{4}{9} = \left(\frac{1}{10}\right)^n \left(p_0 - \frac{4}{9}\right) + \frac{4}{9} = \frac{5}{9} \left(\frac{1}{10}\right)^n + \frac{4}{9},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{9}.$$

Corrigé 65.

 \leftarrow page 14

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{4}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{9}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{5}{36}p_n + \frac{1}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{5}{36}\lambda + \frac{1}{9}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{31}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{5}{36}p_n - \frac{5}{279} = \frac{5}{36}\left(p_n - \frac{4}{31}\right) = \frac{5}{36}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{5}{36}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{5}{36}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{5}{36}\right)^n v_0 + \frac{4}{31} = \left(\frac{5}{36}\right)^n \left(p_0 - \frac{4}{31}\right) + \frac{4}{31} = \frac{27}{31} \left(\frac{5}{36}\right)^n + \frac{4}{31},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{31}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 66.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{4}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{7}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{28}p_n + \frac{1}{7},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{28}\lambda + \frac{1}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{25}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{28}p_n - \frac{3}{175} = \frac{3}{28}\left(p_n - \frac{4}{25}\right) = \frac{3}{28}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{28}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{3}{28}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{28}\right)^n v_0 + \frac{4}{25} = \left(\frac{3}{28}\right)^n \left(p_0 - \frac{4}{25}\right) + \frac{4}{25} = \frac{21}{25} \left(\frac{3}{28}\right)^n + \frac{4}{25},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{25}.$$

Corrigé 67.

 \leftarrow page 15

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{4}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{4}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{4}p_n - \frac{1}{6} = \frac{1}{4}\left(p_n - \frac{2}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{4}\right)^n v_0 + \frac{2}{3} = \left(\frac{1}{4}\right)^n \left(p_0 - \frac{2}{3}\right) + \frac{2}{3} = \frac{1}{3} \left(\frac{1}{4}\right)^n + \frac{2}{3},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{2}{3}.$

Corrigé 68.

 $\leftarrow \text{page } 15$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{4}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{4}p_n + \frac{3}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{4}\lambda + \frac{3}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{4}p_n + \frac{3}{20} = -\frac{1}{4}\left(p_n - \frac{3}{5}\right) = -\frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{4}\right)^n v_0 + \frac{3}{5} = \left(-\frac{1}{4}\right)^n \left(p_0 - \frac{3}{5}\right) + \frac{3}{5} = -\frac{3}{5} \left(-\frac{1}{4}\right)^n + \frac{3}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{3}{5}.$

Corrigé 69.

 \leftarrow page 15

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{4}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{4}p_n + \frac{1}{4},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{4}\lambda + \frac{1}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{3}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{4}p_n - \frac{1}{12} = \frac{1}{4}\left(p_n - \frac{1}{3}\right) = \frac{1}{4}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{4}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{4}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{4}\right)^n v_0 + \frac{1}{3} = \left(\frac{1}{4}\right)^n \left(p_0 - \frac{1}{3}\right) + \frac{1}{3} = \frac{2}{3} \left(\frac{1}{4}\right)^n + \frac{1}{3},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{3}.$$

Corrigé 70.

 \leftarrow page 15

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{5}{9}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{1}{18}p_n + \frac{5}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{18}\lambda + \frac{5}{9}$. On trouve immédiatement pour solution: $\lambda = \frac{10}{19}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{18}p_n + \frac{5}{171} = -\frac{1}{18}\left(p_n - \frac{10}{19}\right) = -\frac{1}{18}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{18}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{18}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{18}\right)^n v_0 + \frac{10}{19} = \left(-\frac{1}{18}\right)^n \left(p_0 - \frac{10}{19}\right) + \frac{10}{19} = \frac{9}{19} \left(-\frac{1}{18}\right)^n + \frac{10}{19},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{10}{19}.$$

Corrigé 71.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{9}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{14}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{5}{126}p_n + \frac{1}{14},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{5}{126}\lambda + \frac{1}{14}$. On trouve immédiatement pour solution: $\lambda = \frac{9}{121}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{5}{126}p_n - \frac{5}{1694} = \frac{5}{126}\left(p_n - \frac{9}{121}\right) = \frac{5}{126}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{5}{126}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{5}{126}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{5}{126}\right)^n v_0 + \frac{9}{121} = \left(\frac{5}{126}\right)^n \left(p_0 - \frac{9}{121}\right) + \frac{9}{121} = \frac{112}{121} \left(\frac{5}{126}\right)^n + \frac{9}{121},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{9}{121}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 72.

 \leftarrow page 16

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{2}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}, v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{6}p_n - \frac{1}{10} = \frac{1}{6}\left(p_n - \frac{3}{5}\right) = \frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{6}\right)^n v_0 + \frac{3}{5} = \left(\frac{1}{6}\right)^n \left(p_0 - \frac{3}{5}\right) + \frac{3}{5} = \frac{2}{5} \left(\frac{1}{6}\right)^n + \frac{3}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{3}{5}.$

Corrigé 73.

 $\leftarrow \text{page } 16$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{7}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{4}{21}p_n + \frac{1}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{4}{21}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{7}{25}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{4}{21}p_n + \frac{4}{75} = -\frac{4}{21}\left(p_n - \frac{7}{25}\right) = -\frac{4}{21}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{4}{21}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{4}{21}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{4}{21}\right)^n v_0 + \frac{7}{25} = \left(-\frac{4}{21}\right)^n \left(p_0 - \frac{7}{25}\right) + \frac{7}{25} = \frac{18}{25} \left(-\frac{4}{21}\right)^n + \frac{7}{25},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{7}{25}.$$

Corrigé 74.

 \leftarrow page 16

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{11}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{19}{33}p_n + \frac{2}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{19}{33}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{11}{26}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{19}{33}p_n + \frac{19}{78} = -\frac{19}{33}\left(p_n - \frac{11}{26}\right) = -\frac{19}{33}v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{19}{33}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{19}{33}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{19}{33}\right)^n v_0 + \frac{11}{26} = \left(-\frac{19}{33}\right)^n \left(p_0 - \frac{11}{26}\right) + \frac{11}{26} = \frac{15}{26} \left(-\frac{19}{33}\right)^n + \frac{11}{26},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{11}{26}.$$

Corrigé 75.

 \leftarrow page 17

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{7}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{9}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{2}{63}p_n + \frac{1}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{2}{63}\lambda + \frac{1}{9}$. On trouve immédiatement pour solution : $\lambda = \frac{7}{61}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{2}{63}p_n - \frac{2}{549} = \frac{2}{63}\left(p_n - \frac{7}{61}\right) = \frac{2}{63}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{63}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{2}{63}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{2}{63}\right)^n v_0 + \frac{7}{61} = \left(\frac{2}{63}\right)^n \left(p_0 - \frac{7}{61}\right) + \frac{7}{61} = \frac{54}{61} \left(\frac{2}{63}\right)^n + \frac{7}{61},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{7}{61}.$$

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{14} = -\frac{1}{6}\left(p_n - \frac{3}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{3}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{3}{7}\right) + \frac{3}{7} = -\frac{3}{7} \left(-\frac{1}{6}\right)^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{7}.$$

Corrigé 77.

 \leftarrow page 17

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{7}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{2}{35}p_n + \frac{1}{7},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{2}{35}\lambda + \frac{1}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{33}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{2}{35}p_n - \frac{2}{231} = \frac{2}{35}\left(p_n - \frac{5}{33}\right) = \frac{2}{35}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{35}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{2}{35}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{2}{35}\right)^n v_0 + \frac{5}{33} = \left(\frac{2}{35}\right)^n \left(p_0 - \frac{5}{33}\right) + \frac{5}{33} = \frac{28}{33} \left(\frac{2}{35}\right)^n + \frac{5}{33},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{33}.$$

Corrigé 78.

 \leftarrow page 17

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{108}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{53}{108}p_n + \frac{1}{108},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{53}{108}\lambda + \frac{1}{108}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{55}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{53}{108}p_n - \frac{53}{5940} = \frac{53}{108}\left(p_n - \frac{1}{55}\right) = \frac{53}{108}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{53}{108}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{53}{108}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{53}{108}\right)^n v_0 + \frac{1}{55} = \left(\frac{53}{108}\right)^n \left(p_0 - \frac{1}{55}\right) + \frac{1}{55} = -\frac{1}{55} \left(\frac{53}{108}\right)^n + \frac{1}{55},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{55}.$$

Corrigé 79.

 \leftarrow page 17

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{3}{10}p_n + \frac{1}{5},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{10}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{10}p_n - \frac{3}{35} = \frac{3}{10}\left(p_n - \frac{2}{7}\right) = \frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{3}{10}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{10}\right)^n v_0 + \frac{2}{7} = \left(\frac{3}{10}\right)^n \left(p_0 - \frac{2}{7}\right) + \frac{2}{7} = -\frac{2}{7} \left(\frac{3}{10}\right)^n + \frac{2}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{7}.$$

Corrigé 80.

 \leftarrow page 18

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{1}{6}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{2}{21} = -\frac{1}{6}\left(p_n - \frac{4}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{4}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{4}{7}\right) + \frac{4}{7} = \frac{3}{7} \left(-\frac{1}{6}\right)^n + \frac{4}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{7}.$$

Corrigé 81.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{4}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{13}{16}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{16}p_n + \frac{13}{16},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{16}\lambda + \frac{13}{16}$. On trouve immédiatement pour solution: $\lambda = \frac{13}{17}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{16}p_n + \frac{13}{272} = -\frac{1}{16}\left(p_n - \frac{13}{17}\right) = -\frac{1}{16}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{16}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{16}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{16}\right)^n v_0 + \frac{13}{17} = \left(-\frac{1}{16}\right)^n \left(p_0 - \frac{13}{17}\right) + \frac{13}{17} = -\frac{13}{17} \left(-\frac{1}{16}\right)^n + \frac{13}{17},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{13}{17}.$$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 82.

 \leftarrow page 18

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{28}{31}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{9}{13}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{85}{403}p_n + \frac{9}{13},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{85}{403}\lambda + \frac{9}{13}$. On trouve immédiatement pour solution: $\lambda = \frac{93}{106}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{85}{403}p_n - \frac{255}{1378} = \frac{85}{403}\left(p_n - \frac{93}{106}\right) = \frac{85}{403}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{85}{403}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(\frac{85}{403}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{85}{403}\right)^n v_0 + \frac{93}{106} = \left(\frac{85}{403}\right)^n \left(p_0 - \frac{93}{106}\right) + \frac{93}{106} = \frac{13}{106} \left(\frac{85}{403}\right)^n + \frac{93}{106},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{93}{106}.$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 83.

 \leftarrow page 18

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{5}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{9}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{45}p_n + \frac{2}{9},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{45}\lambda + \frac{2}{9}$. On trouve immédiatement pour solution: $\lambda = \frac{5}{23}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{45}p_n + \frac{1}{207} = -\frac{1}{45}\left(p_n - \frac{5}{23}\right) = -\frac{1}{45}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{45}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{45}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{45}\right)^n v_0 + \frac{5}{23} = \left(-\frac{1}{45}\right)^n \left(p_0 - \frac{5}{23}\right) + \frac{5}{23} = \frac{18}{23} \left(-\frac{1}{45}\right)^n + \frac{5}{23},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{5}{23}.$$

Sans surprise, la probabilité asymptotique que Lionel Messire marque est très faible.

Corrigé 84.

 \leftarrow page 18

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{14} = -\frac{1}{6}\left(p_n - \frac{3}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{3}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{3}{7}\right) + \frac{3}{7} = \frac{4}{7} \left(-\frac{1}{6}\right)^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{7}.$$

Corrigé 85.

 \leftarrow page 19

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{6}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{6}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{6}p_n + \frac{1}{14} = -\frac{1}{6}\left(p_n - \frac{3}{7}\right) = -\frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{6}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{6}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{6}\right)^n v_0 + \frac{3}{7} = \left(-\frac{1}{6}\right)^n \left(p_0 - \frac{3}{7}\right) + \frac{3}{7} = \frac{4}{7} \left(-\frac{1}{6}\right)^n + \frac{3}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{7}.$$

Corrigé 86. \leftarrow page 19

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{2}{15}p_n + \frac{1}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{2}{15}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{3}{13}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{2}{15}p_n - \frac{2}{65} = \frac{2}{15}\left(p_n - \frac{3}{13}\right) = \frac{2}{15}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{2}{15}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{2}{15}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{2}{15}\right)^n v_0 + \frac{3}{13} = \left(\frac{2}{15}\right)^n \left(p_0 - \frac{3}{13}\right) + \frac{3}{13} = \frac{10}{13} \left(\frac{2}{15}\right)^n + \frac{3}{13},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{3}{13}.$$

Corrigé 87.

 \leftarrow page 19

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{9}{10}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{3}{4}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{3}{20}p_n + \frac{3}{4},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{20}\lambda + \frac{3}{4}$. On trouve immédiatement pour solution: $\lambda = \frac{15}{17}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{20}p_n - \frac{9}{68} = \frac{3}{20}\left(p_n - \frac{15}{17}\right) = \frac{3}{20}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{20}$. On en déduit : $\forall n\in\mathbb{N},\,v_n=\left(\frac{3}{20}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{20}\right)^n v_0 + \frac{15}{17} = \left(\frac{3}{20}\right)^n \left(p_0 - \frac{15}{17}\right) + \frac{15}{17} = -\frac{15}{17} \left(\frac{3}{20}\right)^n + \frac{15}{17},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{15}{17}.$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 88.

 \leftarrow page 19

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{3}{10}p_n + \frac{1}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{3}{10}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{7}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{3}{10}p_n - \frac{3}{35} = \frac{3}{10}\left(p_n - \frac{2}{7}\right) = \frac{3}{10}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{3}{10}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{3}{10}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{3}{10}\right)^n v_0 + \frac{2}{7} = \left(\frac{3}{10}\right)^n \left(p_0 - \frac{2}{7}\right) + \frac{2}{7} = \frac{5}{7} \left(\frac{3}{10}\right)^n + \frac{2}{7},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{7}.$$

Corrigé 89.

 \leftarrow page 20

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{4}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{5}{12}p_n + \frac{2}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{5}{12}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{8}{17}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{5}{12}p_n + \frac{10}{51} = -\frac{5}{12}\left(p_n - \frac{8}{17}\right) = -\frac{5}{12}v_n$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{5}{12}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{5}{12}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{5}{12}\right)^n v_0 + \frac{8}{17} = \left(-\frac{5}{12}\right)^n \left(p_0 - \frac{8}{17}\right) + \frac{8}{17} = -\frac{8}{17} \left(-\frac{5}{12}\right)^n + \frac{8}{17},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{8}{17}.$$

Corrigé 90.

 \leftarrow page 20

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{13}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{11}{26}p_n + \frac{1}{13},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que : $\lambda = \frac{11}{26}\lambda + \frac{1}{13}$. On trouve immédiatement pour solution : $\lambda = \frac{2}{15}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par : $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{11}{26}p_n - \frac{11}{195} = \frac{11}{26}\left(p_n - \frac{2}{15}\right) = \frac{11}{26}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{11}{26}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{11}{26}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{11}{26}\right)^n v_0 + \frac{2}{15} = \left(\frac{11}{26}\right)^n \left(p_0 - \frac{2}{15}\right) + \frac{2}{15} = -\frac{2}{15} \left(\frac{11}{26}\right)^n + \frac{2}{15},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{15}.$$

Corrigé 91.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{3}{32}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{16}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{1}{32}p_n + \frac{1}{16},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{32}\lambda + \frac{1}{16}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{31}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{32}p_n - \frac{1}{496} = \frac{1}{32}\left(p_n - \frac{2}{31}\right) = \frac{1}{32}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{32}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{1}{32}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{32}\right)^n v_0 + \frac{2}{31} = \left(\frac{1}{32}\right)^n \left(p_0 - \frac{2}{31}\right) + \frac{2}{31} = -\frac{2}{31} \left(\frac{1}{32}\right)^n + \frac{2}{31},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{31}.$$

Corrigé 92.

 \leftarrow page 20

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{6}{7}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{2}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{5}{14}p_n + \frac{1}{2},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{5}{14}\lambda + \frac{1}{2}$. On trouve immédiatement pour solution: $\lambda = \frac{7}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{5}{14}p_n - \frac{5}{18} = \frac{5}{14}\left(p_n - \frac{7}{9}\right) = \frac{5}{14}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{5}{14}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{5}{14}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{5}{14}\right)^n v_0 + \frac{7}{9} = \left(\frac{5}{14}\right)^n \left(p_0 - \frac{7}{9}\right) + \frac{7}{9} = -\frac{7}{9} \left(\frac{5}{14}\right)^n + \frac{7}{9},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

 $\lim_{n \to +\infty} p_n = \frac{7}{9}.$

Sans surprise, la probabilité asymptotique que Christian Renauld marque est relativement élevée.

Corrigé 93.

 \leftarrow page 20

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{22}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{5}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{17}{110}p_n + \frac{1}{5},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{17}{110}\lambda + \frac{1}{5}$. On trouve immédiatement pour solution: $\lambda = \frac{22}{127}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{17}{110}p_n + \frac{17}{635} = -\frac{17}{110}\left(p_n - \frac{22}{127}\right) = -\frac{17}{110}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{17}{110}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{17}{110}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{17}{110}\right)^n v_0 + \frac{22}{127} = \left(-\frac{17}{110}\right)^n \left(p_0 - \frac{22}{127}\right) + \frac{22}{127} = -\frac{22}{127} \left(-\frac{17}{110}\right)^n + \frac{22}{127},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{22}{127}.$$

Corrigé 94.

 \leftarrow page 21

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{7}$. Donc, après regroupement des termes :

$$p_{n+1} = \frac{5}{14}p_n + \frac{1}{7},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{5}{14}\lambda + \frac{1}{7}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{9}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{5}{14}p_n - \frac{5}{63} = \frac{5}{14}\left(p_n - \frac{2}{9}\right) = \frac{5}{14}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{5}{14}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{5}{14}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{5}{14}\right)^n v_0 + \frac{2}{9} = \left(\frac{5}{14}\right)^n \left(p_0 - \frac{2}{9}\right) + \frac{2}{9} = -\frac{2}{9} \left(\frac{5}{14}\right)^n + \frac{2}{9},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{9}.$$

Corrigé 95.

 \leftarrow page 21

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici :

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{4}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{11}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{7}{44}p_n + \frac{1}{11},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{7}{44}\lambda + \frac{1}{11}$. On trouve immédiatement pour solution: $\lambda = \frac{4}{37}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{7}{44}p_n - \frac{7}{407} = \frac{7}{44}\left(p_n - \frac{4}{37}\right) = \frac{7}{44}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{7}{44}$. On en déduit : $\forall n\in\mathbb{N}, v_n=\left(\frac{7}{44}\right)^n v_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{7}{44}\right)^n v_0 + \frac{4}{37} = \left(\frac{7}{44}\right)^n \left(p_0 - \frac{4}{37}\right) + \frac{4}{37} = \frac{33}{37} \left(\frac{7}{44}\right)^n + \frac{4}{37},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{4}{37}.$$

Corrigé 96.

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{2}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = \frac{1}{6}p_n + \frac{1}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = \frac{1}{6}\lambda + \frac{1}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{2}{5}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = \frac{1}{6}p_n - \frac{1}{15} = \frac{1}{6}\left(p_n - \frac{2}{5}\right) = \frac{1}{6}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $\frac{1}{6}$. On en déduit : $\forall n \in \mathbb{N}, v_n = \left(\frac{1}{6}\right)^n v_0$. Or $p_n = v_n + \lambda$ pour tout $n \in \mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(\frac{1}{6}\right)^n v_0 + \frac{2}{5} = \left(\frac{1}{6}\right)^n \left(p_0 - \frac{2}{5}\right) + \frac{2}{5} = \frac{3}{5} \left(\frac{1}{6}\right)^n + \frac{2}{5},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{2}{5}.$$

Corrigé 97.

 \leftarrow page 21

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{26}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{49}{78}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{49}{78}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{52}{127}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{49}{78}p_n + \frac{98}{381} = -\frac{49}{78}\left(p_n - \frac{52}{127}\right) = -\frac{49}{78}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{49}{78}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{49}{78}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{49}{78}\right)^n v_0 + \frac{52}{127} = \left(-\frac{49}{78}\right)^n \left(p_0 - \frac{52}{127}\right) + \frac{52}{127} = -\frac{52}{127} \left(-\frac{49}{78}\right)^n + \frac{52}{127},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 0$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{52}{127}.$$

Corrigé 98.

 \leftarrow page 21

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{5}{9}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{5}{8}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{5}{72}p_n + \frac{5}{8},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{5}{72}\lambda + \frac{5}{8}$. On trouve immédiatement pour solution: $\lambda = \frac{45}{77}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{5}{72}p_n + \frac{25}{616} = -\frac{5}{72}\left(p_n - \frac{45}{77}\right) = -\frac{5}{72}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{5}{72}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{5}{72}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{5}{72}\right)^n v_0 + \frac{45}{77} = \left(-\frac{5}{72}\right)^n \left(p_0 - \frac{45}{77}\right) + \frac{45}{77} = \frac{32}{77} \left(-\frac{5}{72}\right)^n + \frac{45}{77},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{45}{77}.$$

Corrigé 99.

 $\leftarrow \text{page } 22$

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a: $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{3}$ et: $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes:

$$p_{n+1} = -\frac{1}{3}p_n + \frac{2}{3},$$

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{1}{3}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{1}{2}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{1}{3}p_n + \frac{1}{6} = -\frac{1}{3}\left(p_n - \frac{1}{2}\right) = -\frac{1}{3}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{1}{3}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{1}{3}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{1}{3}\right)^n v_0 + \frac{1}{2} = \left(-\frac{1}{3}\right)^n \left(p_0 - \frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2} \left(-\frac{1}{3}\right)^n + \frac{1}{2},$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{1}{2}.$$

Corrigé 100.

 \leftarrow page 22

1. Soit $n \in \mathbb{N}$. La formule des probabilités totales, utilisée avec le système complet d'évènements $(A_n, \overline{A_n})$, donne ici:

$$P(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + P(\overline{A_n})P_{\overline{A_n}}(A_{n+1}) = P(A_n)P_{A_n}(A_{n+1}) + (1 - P(A_n))P_{\overline{A_n}}(A_{n+1}).$$

Or, d'après les données de l'énoncé, on a : $P(A_n) = p_n$, $P(A_{n+1}) = p_{n+1}$, $P_{A_n}(A_{n+1}) = \frac{1}{28}$ et : $P_{\overline{A_n}}(A_{n+1}) = \frac{2}{3}$. Donc, après regroupement des termes :

$$p_{n+1} = -\frac{53}{84}p_n + \frac{2}{3},$$

d'où le résultat.

2. On reprend la méthode qui permet de déterminer une suite arithmético-géométrique. D'abord, nous devons chercher un point fixe de la relation de récurrence, c'est-à-dire un réel λ tel que: $\lambda = -\frac{53}{84}\lambda + \frac{2}{3}$. On trouve immédiatement pour solution: $\lambda = \frac{56}{137}$. Ensuite, on introduit la suite $(v_n)_{n\geqslant 0}$ dont le terme général est défini par: $\forall n\in\mathbb{N}$, $v_n=p_n-\lambda$. On a alors:

$$\forall n \in \mathbb{N}, \quad v_{n+1} = p_{n+1} - \lambda = -\frac{53}{84}p_n + \frac{106}{411} = -\frac{53}{84}\left(p_n - \frac{56}{137}\right) = -\frac{53}{84}v_n,$$

donc $(v_n)_{n\geqslant 0}$ est une suite géométrique de raison $-\frac{53}{84}$. On en déduit : $\forall n\in\mathbb{N},\ v_n=\left(-\frac{53}{84}\right)^nv_0$. Or $p_n=v_n+\lambda$ pour tout $n\in\mathbb{N}$, donc on trouve finalement :

$$\forall n \in \mathbb{N}, \quad p_n = \left(-\frac{53}{84}\right)^n v_0 + \frac{56}{137} = \left(-\frac{53}{84}\right)^n \left(p_0 - \frac{56}{137}\right) + \frac{56}{137} = \frac{81}{137} \left(-\frac{53}{84}\right)^n + \frac{56}{137}$$

puisque par hypothèse de l'énoncé on a : $p_0 = 1$. D'où l'expression explicite demandée, et on en déduit immédiatement :

$$\lim_{n \to +\infty} p_n = \frac{56}{137}.$$