

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií

Projekt z MSP

Zpracoval: Jakub Zárybnický, xzaryb00

Čísla zadání: 21, 6

Cvičení - skupina: pátek, 9.00

Datum: 8. 12. 2019

1 Zadání projektu z předmětu MSP

Každý student obdrží na cvičení konkrétní data (čísla ze seznamu), pro které vypracuje projekt. K vypracování můžete použít libovolné statistické programy.

- Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data př. 1.
 - (a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.
 - (b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.
 - (c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.
 - (d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.
 - (e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.
 - (f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.
 - (g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

Návod: Oba soubory zpracujte neroztříděné. Testujte nejprve rovnost rozptylů odchylek před a po seřízení stroje. Podle výsledku pak zvolte vhodný postup pro testování rovnosti středních hodnot odchylek před a po seřízení stroje.

- 2. Měřením dvojice (Výška[cm], Váha[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data př. 2.
 - (a) Vypočtěte bodový odhad koeficientu korelace.
 - (b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.
 - (c) Regresní analýza data proložte přímkou: $Vaha = \beta_0 + \beta_1 \times Vyska$
 - i. Bodově odhadněte β_0 , β_1 a rozptyl s_2 .
 - ii. Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, H_A: \beta_0 \neq -100,$$

 $H: \beta_1 = 1, H_A: \beta_1 \neq 1,$

iii. Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

Termín pro odevzdání práce je 11. týden výuky zimního semestru ve cvičení.

```
%matplotlib inline
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.stats import chi2, f, norm, t
from tabulate import tabulate

def show(*args, headers='keys', **kwargs):
    print(tabulate(*args, tablefmt='orgtbl', headers=headers, **kwargs))
ex1 = pd.DataFrame(ex1_raw, columns=['odchylka'])
ex2 = pd.DataFrame(ex2_raw, columns=['vyska', 'vaha'])
```

2 Příklad 1

Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data př. 1.

2.1 Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.

Bin size: 0.4328918181818182

Třída	Okraje	Střed	Četnost	Kum. četnost	Rel. četnost	Rel. kum. četnost
1	(-1.315, -0.882]	-1.0985	2	2	0.04	0.04
2	(-0.882, -0.454]	-0.668	5	7	0.1	0.14
3	(-0.454, -0.0255]	-0.23975	2	9	0.04	0.18
4	(-0.0255, 0.403]	0.18875	8	17	0.16	0.34
5	(0.403, 0.831]	0.617	8	25	0.16	0.5
6	(0.831, 1.259]	1.045	7	32	0.14	0.64
7	(1.259, 1.687]	1.473	8	40	0.16	0.8
8	(1.687, 2.115]	1.901	4	44	0.08	0.88
9	(2.115, 2.544]	2.3295	3	47	0.06	0.94
10	(2.544, 2.972]	2.758	2	49	0.04	0.98
11	(2.972, 3.4]	3.186	1	50	0.02	1

	Odchylka [mm]		Odchylka [mm]		Odchylka [mm]		Odchylka [mm]
1	1.83	26	-0.98	(1)	-1.31	(26)	0.86
2	0.98	27	-0.75	(2)	-0.98	(27)	0.9
3	-0.09	28	2.67	(3)	-0.84	(28)	0.98
4	-0.23	29	1.79	(4)	-0.75	(29)	1.06
5	2.56	30	1.84	(5)	-0.68	(30)	1.2
6	0.31	31	0.49	(6)	-0.59	(31)	1.21
7	1.06	32	1.68	(7)	-0.58	(32)	1.24
8	0.01	33	0.39	(8)	-0.23	(33)	1.4
9	0.75	34	-0.84	(9)	-0.09	(34)	1.41
10	2.26	35	1.49	(10)	0.01	(35)	1.49
11	-0.59	36	1.5	(11)	0.02	(36)	1.5
12	0.9	37	1.7	(12)	0.27	(37)	1.59
13	1.66	38	3.4	(13)	0.27	(38)	1.61
14	0.36	39	1.4	(14)	0.31	(39)	1.66
15	2.19	40	0.27	(15)	0.31	(40)	1.68
16	1.24	41	0.48	(16)	0.36	(41)	1.7
17	-0.58	42	0.27	(17)	0.39	(42)	1.79
18	0.79	43	1.41	(18)	0.48	(43)	1.83
19	0.02	44	0.55	(19)	0.49	(44)	1.84
20	0.31	45	1.2	(20)	0.55	(45)	2.19
21	1.61	46	-0.68	(21)	0.63	(46)	2.26
22	0.75	47	1.59	(22)	0.75	(47)	2.46
23	2.46	48	0.8	(23)	0.75	(48)	2.56
24	0.86	49	1.21	(24)	0.79	(49)	2.67
25	0.63	50	-1.31	(25)	0.8	(50)	3.4

(a) Statistický soubor

(b) Uspořádaný statistický soubor

```
freq = categories.value_counts(sort=False).reset_index().odchylka
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1); _ = freq.plot.bar()
plt.subplot(1, 2, 2); _ = freq.cumsum().plot.bar()
plt.tight_layout(); plt.show()
```


2.2 Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.

mean	median	mode	var	std
0.8724	0.83	0.27, 0.31, 0.75	1.07134	1.03506

2.3 Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.

2.4 Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05

```
bins = [-1000, -0.6, 0.1, 0.4, 0.8, 1.2, 1.49, 1.68, 2.2, 1000]
test_categories = pd.cut(ex1.odchylka, bins=bins)
tb1, cumsum = [], 0
diffs = []
p_exp = norm(loc=ex1.odchylka.mean(), scale=ex1.odchylka.std())
for ix, (bin, cnt) in enumerate(test_categories.value_counts(sort=False).items()):
 cumsum += cnt
 middle = (bin.right - bin.left) / 2 + bin.left
 expect = abs(p_exp.cdf(bin.right) - p_exp.cdf(bin.left)) * len(categories)
  diff = (cnt - expect) ** 2 / expect
  diffs.append(diff)
  tbl.append([ix + 1, bin, str(middle), cumsum, cnt, expect, diff])
show(tbl, headers=["Třída", "Okraje", "Střed", "Kum. četnost", "Četnost",
                  "Teor.čet", "Rozd^2/teor.čet"])
print("\nCriterium =", sum(diffs))
pval = chi2.ppf(0.95, df=len(diffs) - 2 - 1)
print("\nChi-squared(0.95) =", pval)
print("\nCritical region complement = [0, %s]" % pval)
print("\nThe test criterium falls within this region, "
      "therefore we don't reject the hypothesis.")
```

Třída	Okraje	Střed	Kum. četnost	Četnost	Teor.čet	Rozd ² /teor.čet
1	(-1000.0, -0.6]	-500.3	5	5	3.8718	0.328746
2	(-0.6, 0.1]	-0.25	11	6	7.51627	0.305878
3	(0.1, 0.4]	0.25	17	6	4.81449	0.291919
4	(0.4, 0.8]	0.6	25	8	7.40333	0.0480892
5	(0.8, 1.2]	1	30	5	7.60363	0.891535
6	(1.2, 1.49]	1.345	35	5	5.02251	0.000100855
7	(1.49, 1.68]	1.585	40	5	2.88685	1.5468
8	(1.68, 2.2]	1.94	45	5	5.89064	0.13466
9	(2.2, 1000.0]	501.1	50	5	4.99049	1.81139 (-05)

Criterium = 3.5477480638401575

Chi-squared(0.95) = 12.591587243743977

Critical region complement = [0, 12.591587243743977]

The test criterium falls within this region, therefore we don't reject the hypothesis.

2.5 Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.

Bodové odhady parametrů:

```
show({'mean': [ex1.odchylka.mean()],
    'var': [ex1.odchylka.var()],
    'std': [ex1.odchylka.std()]})

    mean var std
```

Intervalový odhad střední hodnoty:

```
mean = ex1.odchylka.mean() std = ex1.odchylka.std() df = len(ex1) - 1 for alpha in (0.05, 0.01): s = t.ppf(1 - alpha / 2, df=df) diff = s * std / (len(ex1) ** 0.5) print('Pro $\\lambda = %s, k = %s, s = %s$:' % (alpha, df, s)) print('\[\mu \\in \\langle %s, %s \\rangle \]' % (mean - diff, mean + diff))  \text{Pro } \alpha = 0.05, k = 49, s = 2.009575234489209: \\ \mu \in \langle 0.5782403209668772, 1.1665596790331227 \rangle   \text{Pro } \alpha = 0.01, k = 49, s = 2.67995197363155: \\ \mu \in \langle 0.48011122232305053, 1.2646887776769493 \rangle
```

0.8724 1.07134

1.03506

Intervalový odhad rozptylu a směrodatné odchylky:

```
mean = ex1.odchylka.mean()
std = ex1.odchylka.std()
df = len(ex1) - 1
for alpha in (0.05, 0.01):
  chi_left = chi2.ppf(1 - alpha / 2, df=df)
  chi_right = chi2.ppf(alpha / 2, df=df)
  left = df * std ** 2 / chi_left
  right = df * std ** 2 / chi_right
  print('Pro $\\lambda = \%s, k = \%s, \chi^2_{1 - \alpha/2} = \%s, '
          '\chi^2_{\Lambda^2} = \%s: '% (alpha, df, chi_left, chi_right))
  print('\[\\sigma^2 \\in \\langle %s, %s \\rangle\]' % (left, right))
  print('\[\\sigma \\in \\langle %s, %s \\rangle\]' % (left ** 0.5, right ** 0.5))
   Pro \alpha=0.05, k=49, \chi^2_{1-\alpha/2}=70.22241356643451, \chi^2_{\alpha/2}=31.554916462667126:
                         \sigma^2 \in \langle 0.7475634819976101, 1.6636302004509533 \rangle
                          \sigma \in \langle 0.8646175350972303, 1.2898178942978553 \rangle
Pro \alpha=0.01, k=49, \chi^2_{1-\alpha/2}=78.23070808668994, \chi^2_{\alpha/2}=27.24934906956969:
                         \sigma^2 \in \langle 0.6710371577082982, 1.9264941656394947 \rangle
                          \sigma \in \langle 0.8191685771001584, 1.3879820480249356 \rangle
```

2.6 Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.

Studentův jednovýběrový test pro $\mu_0=0$

```
mean = ex1.odchylka.mean() std = ex1.odchylka.std() df = len(ex1) - 1 edge = t.ppf(1 - alpha / 2, df=df) criterium = (mean - 0) * (len(ex1) ** 0.5) / std print('Pro $\alpha = %s, k = %s, t_{1 - \alpha/2} = %s$:' % (alpha, df, edge)) print('\[\overline{W}_\alpha = \langle %s, %s \rangle\]' % (-edge, edge)) print('\[t = %s\]' % criterium) print('\$t \\not\\in \\overline{W}_\alpha\$, zamítáme tedy hypotézu, že $\mu_0 = 0$.')  \overline{W}_\alpha = \langle -2.67995197363155, 2.67995197363155 \rangle   t = 5.959869960189133   t \not\in \overline{W}_\alpha, \text{zamítáme tedy hypotézu, že } \mu_0 = 0.
```

2.7 Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

```
ex1_x = ex1[:20]
ex1_y = ex1[20:].reset_index(drop=True)
joined = ex1_x.join(ex1_y, lsuffix='_x', rsuffix='_y', how='outer')
show(joined[:15], headers='keys')
```

	$odchylka_x$	odchylka _y		$odchylka_x$	odchylka _y
0	1.83	1.61	15	1.24	1.5
1	0.98	0.75	16	-0.58	1.7
2	-0.09	2.46	17	0.79	3.4
3	-0.23	0.86	18	0.02	1.4
4	2.56	0.63	19	0.31	0.27
5	0.31	-0.98	20	nan	0.48
6	1.06	-0.75	21	nan	0.27
7	0.01	2.67	22	nan	1.41
8	0.75	1.79	23	nan	0.55
9	2.26	1.84	24	nan	1.2
10	-0.59	0.49	25	nan	-0.68
11	0.9	1.68	26	nan	1.59
12	1.66	0.39	27	nan	0.8
13	0.36	-0.84	28	nan	1.21
14	2.19	1.49	29	nan	-1.31

```
show(ex1_x.join(ex1_y, lsuffix='_x', rsuffix='_y', how='outer').describe(),
    headers='keys')
```

	$odchylka_x$	odchylka _y
count	20	30
mean	0.787	0.929333
std	0.942014	1.10473
min	-0.59	-1.31
25%	0.0175	0.4125
50%	0.77	1.03
75%	1.345	1.605
max	2.56	3.4

```
F-test rovnosti rozptylů pro H_0: \sigma_x^2 = \sigma_y^2
```

```
df_x, df_y = len(ex1_x) - 1, len(ex1_y) - 1
alpha = 0.05
left = f.ppf(alpha / 2, dfn=df_x, dfd=df_y)
right = f.ppf(1 - alpha / 2, dfn=df_x, dfd=df_y)
criterium = ex1_x.odchylka.std() / ex1_y.odchylka.std()
print('Pro $\\alpha = %s, k_1 = %s, k_2 = %s, '
       F_{\kappa_2}(k_1, k_2) = s, F_{1 - \kappa_2}(k_1, k_2) = s
      % (alpha, df_x, df_y, left, right))
print('\[\\overline{W}_\\alpha = \\langle %s, %s \\rangle\]' % (left, right))
print('\[t = %s\]' % criterium)
print('$t \\in \\overline{W}_\\alpha$, hypotézu tedy nezamítáme.')
   \text{Pro}\,\alpha = 0.05, k_1 = 19, k_2 = 29, F_{\alpha/2}(k_1, k_2) = 0.4163296675877341, F_{1-\alpha/2}(k_1, k_2) = 2.2312738331007584:
                      \overline{W}_{\alpha} = \langle 0.4163296675877341, 2.2312738331007584 \rangle
                                 t = 0.8527126287664908
t \in \overline{W}_{\alpha}, hypotézu tedy nezamítáme.
   Studentův dvouvýběrový test pro H_0: \mu_x - \mu_y = 0, pokud \sigma_x^2 = \sigma_u^2
n, m = len(ex1_x), len(ex1_y)
mean_x, mean_y = ex1_x.odchylka.mean(), ex1_y.odchylka.mean()
std_x, std_y = ex1_x.odchylka.std(), ex1_y.odchylka.std()
df = n + m - 2
alpha = 0.05
edge = t.ppf(1 - alpha / 2, df=df)
criterium = mean_x - mean_y - 0
print('\[t = %s\]' % criterium)
print('$t \\in \\overline{W}_\\alpha$, hypotézu tedy nezamítáme.')
   Pro \alpha = 0.05, k = 48, t_{1-\alpha/2} = 2.0106347546964454:
                     \overline{W}_{\alpha} = \langle -2.0106347546964454, 2.0106347546964454 \rangle
                                 t = -0.4834080709924622
```

 $t \in \overline{W}_{\alpha}$, hypotézu tedy nezamítáme.

3 Příklad 2

Měřením dvojice (Výška[cm]. Váha[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data př. 2.

```
show(ex2, headers='keys')
print()
show(ex2.describe(), headers='keys')
```

	vyska	vaha
0	150	50
1	177	73
2	154	53
3	152	44
4	169	69
5	200	94
6	196	99
7	181	74
8	152	50
9	172	74
10	152	58
11	150	46
12	178	78
13	154	57
14	190	90
15	195	98
16	182	80
17	184	88
18	156	42
19	154	66

	vyska	vaha
count	20	20
mean	169.9	69.15
std	17.6453	18.5962
min	150	42
25%	153.5	52.25
50%	170.5	71
75%	182.5	82
max	200	99

3.1 Vypočtěte bodový odhad koeficientu korelace.

```
show(ex2.corr())

print('\n\[r = %s\]' % ex2.corr()['vaha']['vyska'])

vyska vaha

vyska 1 0.953119

vaha 0.953119 1

r = 0.9531186548356109
```

3.2 Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.

```
alpha = 0.05  
df = len(ex2) - 2  
corr = ex2.corr()['vaha']['vyska']  
criterium = abs(corr) * df ** 0.5 / (1 - corr ** 2) ** 0.5  
edge = t.ppf(1 - alpha / 2, df=df)  
print('Pro $\alpha = %s, k = %s, t_{1 - \alpha/2} = %s$:' % (alpha, df, edge))  
print('\[\overline{W}_\alpha = \langle 0, %s \rangle\]' % edge)  
print('\[t = %s\]' % criterium)  
print('\$t \\not\\in \\overline{W}_\alpha\$, hypotézu tedy zamítáme.')  
Pro \alpha = 0.05, k = 18, t_{1-\alpha/2} = 2.10092204024096:  
\overline{W}_{\alpha} = \langle 0, 2.10092204024096 \rangle  
t = 13.36345871002059
```

 $t \notin \overline{W}_{\alpha}$, hypotézu tedy zamítáme.

3.3 Regresní analýza - data proložte přímkou: $Vaha = \beta_0 + \beta_1 \times Vyska$

3.3.1 Bodově odhadněte β_0 , β_1 a rozptyl s_2

 $s^2 = 33.42396069283455$

3.3.2 Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, H_A: \beta_0 \neq -100$$

```
h_11 = (x ** 2).sum() / det_h
beta_0 = -100
df = n - 2
edge = t.ppf(1 - alpha / 2, df=df)
criterium = (b_1 - beta_0) / (std * h_11) ** 0.5
print('Pro $\\alpha = %s, k = %s, t_{1 - \\alpha/2} = %s$:' % (alpha, df, edge))
print('\[\\overline{W}_\\alpha = \\langle %s, %s \\rangle\]' % (-edge, edge))
print('\[t = %s\]' % criterium)
print('$t \\in \\overline{W}_\\alpha$, hypotézu $H$ tedy nezamítáme.')
```

Pro $\alpha = 0.05, k = 18, t_{1-\alpha/2} = 2.10092204024096$:

$$\overline{W}_{\alpha} = \langle -2.10092204024096, 2.10092204024096 \rangle$$

t = -0.11772150156352393

 $t \in \overline{W}_{\alpha}$, hypotézu H tedy nezamítáme.

$$H: \beta_1 = 1, H_A: \beta_1 \neq 1$$

```
h_22 = n / det_h
beta_1 = 1
df = n - 2
edge = t.ppf(1 - alpha / 2, df=df)
criterium = (b_2 - beta_1) / (std * h_22) ** 0.5
print('Pro $\alpha = %s, k = %s, t_{1 - \alpha/2} = %s$:' % (alpha, df, edge))
print('\[\overline{W}_\\alpha = \\langle %s, %s \\rangle\]' % (-edge, edge))
print('\[t = %s\]' % criterium)
print('$t \\in \\overline{W}_\\alpha$, hypotézu $H$ tedy nezamítáme.')
```

Pro $\alpha=0.05, k=18, t_{1-\alpha/2}=2.10092204024096$:

$$\overline{W}_{\alpha} = \langle -2.10092204024096, 2.10092204024096 \rangle$$

t = 0.05959504835089954

 $t \in \overline{W}_{\alpha}$, hypotézu H tedy nezamítáme.

3.3.3 Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky

```
gs = gridspec.GridSpec(2, 4)
fig = plt.figure(figsize=(8, 6))
ax1 = fig.add_subplot(gs[0, 1:3])
ax2 = fig.add_subplot(gs[1, 0:2])
ax3 = fig.add\_subplot(gs[1, 2:4])
ax1.title.set_text('Regresní přímka')
ax2.title.set_text('Pás spolehlivosti pro střední hodnotu')
ax3.title.set_text('Pás spolehlivosti pro individuální hodnotu')
# Points, regression line
x = np.linspace(145, 205, 10)
y = b_1 + x * b_2
for ax in (ax1, ax2, ax3):
    ex2.plot.scatter(ax=ax, x='vyska', y='vaha')
    ax.plot(x, y, color='black')
# Confidence interval
conf = t.ppf(1 - 0.05 / 2, df=n - 2)
v_{star} = 1 / n + n * (x - x.mean()) ** 2 / det_h
ax2.plot(x, y - conf * (s_2 * v_star) ** 0.5, color='red')
ax2.plot(x, y + conf * (s_2 * v_star) ** 0.5, color='red')
ax3.plot(x, y - conf * (s_2 * (v_star + 1)) ** 0.5, color='red')
ax3.plot(x, y + conf * (s_2 * (v_star + 1)) ** 0.5, color='red')
fig.tight_layout()
```


