Die Regel von de l'Hospital

Satz 5.14 (Regel von de l'Hospital, Unbestimmtheit $\frac{0}{0}$)

Seien $f, g: (a, b) \to \mathbb{R}$ mit $a, b \in \overline{\mathbb{R}}$. Seien folgende Voraussetzungen erfüllt:

- 1) f und g sind differenzierbar auf (a, b)
- 2) $g'(x) \neq 0$ für alle $x \in (a, b)$
- 3) $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$
- 4) $\lim_{x\to a+} \frac{f'(x)}{g'(x)}$ existiert (bzw. ist gleich $+\infty$ oder $-\infty$)

Dann existiert auch $\lim_{x\to a+} \frac{f(x)}{g(x)}$ (bzw. ist gleich $+\infty$ oder $-\infty$) und es gilt

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Eine entsprechende Aussage gilt auch im Fall $x \to b-$.

Satz 5.15 (Regel von de l'Hospital, Unbestimmtheit $\frac{\infty}{\infty}$)

Seien $f, g: (a, b) \to \mathbb{R}$ mit $a, b \in \overline{\mathbb{R}}$. Seien folgende Voraussetzungen erfüllt:

- 1) f und g sind differenzierbar auf (a, b)
- 2) $g'(x) \neq 0$ für alle $x \in (a, b)$
- 3) $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = \pm \infty$
- 4) $\lim_{x\to a+} \frac{f'(x)}{g'(x)}$ existiert (bzw. ist gleich $+\infty$ oder $-\infty$)

Dann existiert auch $\lim_{x\to a+} \frac{f(x)}{g(x)}$ (bzw. ist gleich $+\infty$ oder $-\infty$) und es gilt

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}.$$

Eine entsprechende Aussage gilt auch im Fall $x \to b-$.