

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ATTORNEY DOCKET NO.:
PAVT016US1

TITLE:

**A SYSTEM AND METHOD OF APPLYING CONTROL TO THE CONTROL OF
PARTICLE ACCELERATORS WITH VARYING DYNAMICS BEHAVIORAL
CHARACTERISTICS USING A NONLINEAR MODEL PREDICTIVE CONTROL
TECHNOLOGY**

INVENTOR(S):

**Bijan Sayyarrodsari, Eric Hartman, Celso Axelrud
and Kidir Liano**

SUBMITTED BY:

Hulsey, Grether, Fortkort & Webster, LLP
8911 N. Capital of Texas Hwy., Suite 3200
Austin, Texas 78759
(512) 795-0095 - Telephone
(512) 795-9905 - Facsimile

CERTIFICATE OF EXPRESS MAILING UNDER 37 CFR § 1.10

I hereby certify that this correspondence is being deposited with the United States Postal Service Express Mail Service under 37 C.F.R. §1.10 addressed to: Mail Stop Provisional Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22213-1450, on this the 9th day of December, 2003.

Express Mailing Number: EV 417743516 US

Mary Schnaiter
Mary Schnaiter

1 **A SYSTEM AND METHOD OF APPLYING ADAPTIVE CONTROL**
2 **TO THE CONTROL OF PARTICLE ACCELERATORS**
3 **WITH VARYING DYNAMICS BEHAVIORAL CHARACTERISTICS**
4 **USING A NONLINEAR MODEL PREDICTIVE CONTROL TECHNOLOGY**

5 TECHNICAL FIELD OF THE INVENTION

6 **[0001]** The present invention relates generally to the
7 application of adaptive control, and more particularly, a system
8 and method of applying adaptive control to a particle
9 accelerator with varying dynamics characteristics using a
10 nonlinear model predictive control.

11 BACKGROUND OF THE INVENTION

12 **[0002]** The study of fundamental particles and their
13 interactions seeks to answer two questions: (1) what are the
14 fundamental building blocks (smallest) from which all matter is
15 made; and (2) what are the interactions between these particles
16 that govern how the particles combine and decay? To answer
17 these questions, physicist use accelerators to provide high
18 energy to subatomic particles, which then collide with targets.
19 Out of these interactions come many other subatomic particles
20 that pass into detectors. FIGUREs 1A and 1B illustrate typical
21 collisions or interactions used in this study. From the
22 information gathered in the detectors, physicists can determine
23 properties of the particles and their interactions.

24 **[0003]** In these experiments, subatomic particles collide.
25 However, to achieve the desired experiments requires a large

1 degree of control over the particles trajectory and the
2 environment in which the collisions actually take place.

3 Process and control models are typically used to aid the
4 physicist in the setup and execution of these experiments.

5 [0004] Process Models used for prediction, control, and
6 optimization can be divided into two general categories, steady
7 state models and dynamic models. These models are mathematical
8 constructs that characterize the process, and process
9 measurements are often utilized to build these mathematical
10 constructs in a way that the model replicates the behavior of
11 the process. These models can then be used for prediction,
12 optimization, and control of the process.

13 [0005] Many modern process control systems use steady-state
14 or static models. These models often capture the information
15 contained in large amounts of data, wherein this data typically
16 contains steady-state information at many different operating
17 conditions. In general, the steady-state model is a non-linear
18 model wherein the process input variables are represented by the
19 vector U that is processed through the model to output the
20 dependent variable Y . The non-linear steady-state model is a
21 phenomenological or empirical model that is developed utilizing
22 several ordered pairs (U_i, Y_i) of data from different measured
23 steady states. If a model is represented as:

24
$$Y = P(U, Y) \quad (1)$$

where P is an appropriate static mapping, then the steady-state modeling procedure can be presented as:

$$M \rightarrow (\bar{U}, \bar{Y}) \rightarrow P \quad (2)$$

4 where U and Y are vectors containing the U_i , Y_i ordered pair
 5 elements. Given the model P , then the steady-state process
 6 gain can be calculated as:

$$K = \frac{\Delta P(u, y)}{\Delta u} \quad (3)$$

8 The steady-state model, therefore, represents the process.
9 measurements taken when the process is in a "static" mode. These
10 measurements do not account for process behavior under non-
11 steady-state condition (e.g. when the process is perturbed, or
12 when process transitions from one steady-state condition to
13 another steady-state condition). It should be noted that real
14 world processes (e.g. particle accelerators, chemical plants)
15 operate within an inherently dynamic environment. Hence steady-
16 state models alone are, in general, not sufficient for
17 prediction, optimization, and control of an inherently dynamic
18 process.

19 [0006] A dynamic model is typically a model obtained from
20 non-steady-state process measurements. These non-steady-state
21 process measurements are often obtained as the process
22 transitions from one steady-state condition to another. In this
23 procedure, process inputs (manipulated and/or disturbance

1 variables denoted by vector $u(t)$), applied to a process affect
2 process outputs (controlled variables denoted by vector $y(t)$),
3 that are being output and measured. Again, ordered pairs of
4 measured data $(u(t_i), y(t_i))$ represent a phenomenological or
5 empirical model, wherein in this instance data comes from non-
6 steady-state operation. The dynamic model is represented as:

7
$$y(t) = p(u(t), u(t-1), \dots, u(t-M), y(t), y(t-1), \dots, y(t-N)) \quad (4)$$

8 where p is an appropriate mapping. M and N specify the
9 input and output history that is required to build the
10 dynamic model.

11 The state-space description of a dynamic system is equivalent to
12 input/output description in Equation (4) for appropriately
13 chosen M and N values, and hence the description in Equation (4)
14 encompasses state-space description of the dynamic
15 systems/processes as well.

16 [0007] Nonlinear dynamic systems are in general difficult to
17 build. Prior art includes a variety of model structures in which
18 a nonlinear static model and a linear dynamic model are combined
19 in order to represent a nonlinear dynamic system. Examples
20 include Hammerstein models (where a static nonlinear model
21 precedes a linear dynamic model in a series connection), and
22 Wiener models (where a linear dynamic model precedes a static
23 nonlinear model in a series connection). Patent #5,933,345
24 constructs a nonlinear dynamic model in which the nonlinear

1 model respects the nonlinear static mapping captured by a neural
2 network.

3 [0008] This invention extends the state of the art by
4 developing a neural network that is trained to produce the
5 variation in parameters of a dynamic model that can best
6 approximate the dynamic mapping in Equation (4), and then
7 utilizing the overall input/output static mapping (also captured
8 with a neural network trained according to the description in
9 paragraph [0005]) to construct a parsimonious nonlinear dynamic
10 model appropriate for prediction, optimization, and control of
11 the process it models.

12 [0009] In most real-world applications, first-principles
13 (FPs) models (FPMs) describe (fully or partially) the laws
14 governing the behavior of the process. Often, certain
15 parameters in the model critically affect the way that model
16 behaves. Hence, the design of a successful control system
17 depends heavily on the accuracy of the identified parameters.
18 This invention develops a parametric structure for the nonlinear
19 dynamic model that represents the process (see Equation (6)). To
20 fulfill online modeling system goals, neural networks (NNs)
21 models (NNMs) have been developed to robustly identify the
22 variation in the parameters of this dynamic model, when the
23 operation region changes considerably (see Figure 7). The

1 training methodology developed can also be used to robustly
2 train parametric steady-state models.

3 [0010] Numerous ways of combining NNMs and FPMs exist. NNMs
4 and FPMs can be combined "in parallel". Here the NNMs the
5 errors of the FPMs, then add the outputs of the NNM and the FPM
6 together. This invention uses a combination of the empirical
7 model and parametric physical models in order to model a
8 nonlinear process with varying dynamics.

9 [0011] NNMs and FPMs represent two different methods of
10 mathematical modeling. NNMs are empirical methods for doing
11 nonlinear (or linear) regression (i.e., fitting a model to
12 data). FPMs are physical models based on known physical
13 relationships. The line between these two methods is not
14 absolute. For example, FPMs virtually always have "parameters"
15 which must be fit to data. In many FPMs, these parameters are
16 not in reality constants, but vary across the range of the
17 model's possible operation. If a single point of operation is
18 selected and the model's parameters are fitted at that point,
19 then the model's accuracy degrades as the model is used farther
20 and farther away from that point. Sometimes multiple FPMs are
21 fitted at a number of different points, and the model closest to
22 the current operating point is used as the current model.

23 [0012] NNMs and FPMs each have their own set of strengths and
24 weaknesses. NNMs typically are more accurate near a single

1 operating point while FPMs provide better extrapolation results
2 when used at an operating point distant from where the model's
3 parameters were fitted. This is because NNMs contain the
4 idiosyncrasies of the process being modeled. These sets of
5 strengths and weaknesses are highly complementary - where one
6 method is weak the other is strong - and hence, combining the
7 two methods can yield models that are superior in all aspects to
8 either method alone. This is applicable to the control of
9 processes where dynamic behavior of the process displays
10 significant variations over the operation range of the process.

11 [0013] The present invention provides an innovative approach
12 to building parametric nonlinear models that are computationally
13 efficient representations of both steady-state and dynamic
14 behavior of a process over its entire operation region. For
15 example, the present invention provides a system and method for
16 controlling nonlinear control problems within particle
17 accelerators. This method involves first utilizing software
18 tools to identify input variables and controlled variables
19 associated with the operating process to be controlled, wherein
20 at least one input variable is a manipulated variable. This
21 software tool is further operable to determine relationships
22 between the input variables and controlled variables. A control
23 system that provides inputs to and acts on inputs from the
24 software tools tunes one or more model parameters to ensure a

1 desired behavior for one or more controlled variables, which in
2 the case of a particle accelerator may be realized as a more
3 efficient collision.

4 [0014] The present invention may determine relationships
5 between input variables and controlled variables based on a
6 combination of physical models and empirical data. This
7 invention uses the information from physical models to robustly
8 construct the parameter varying model of Figure 7 in a variety
9 of ways that includes but is not limited to generating data from
10 the physical models, using physical models as constraints in
11 training of the neural networks, and analytically approximating
12 the physical model with a model of the type described in
13 Equation (6).

14 [0015] The parametric nonlinear model of Figure (7) can be
15 augmented with a parallel, neural networks that models the
16 residual error of the series model. The parallel neural network
17 can be trained in a variety of ways that includes concurrent
18 training with the series neural network model, independent
19 training from the series neural networks model, or iterative
20 training procedure.

21 [0016] The neural networks utilized in this case may be
22 trained according to any number of known methods. These methods
23 include both gradient-based methods, such as back propagation
24 and gradient-based nonlinear programming (NLP) solvers (for

1 example sequential quadratic programming, generalized reduced
2 gradient methods), and non-gradient methods. Gradient-based
3 methods typically require gradients of an error with respect to
4 a weight and bias obtained by either numerical derivatives or
5 analytical derivatives.

6 [0017] In the application of the present invention to a
7 particle accelerator, controlled variables such as but not
8 limited to varying magnetic field strength, shape, location
9 and/or orientation are controlled by adjusting corrector magnets
10 and/or quadrupole magnets to manipulate particle beam positions
11 within the accelerator so as to achieve more efficient
12 interactions between particles.

13 [0018] Another embodiment of the present invention takes the
14 form of a system for controlling nonlinear control problems
15 within particle accelerators. This system includes a
16 distributed control system used to operate the particle
17 accelerator. The distributed control system further includes
18 computing device(s) operable to execute a first software tool
19 that identifies input variables and controlled variables
20 associated with the given control problem in particle
21 accelerator, wherein at least one input variable is a
22 manipulated variable. The software tool is further operable to
23 determine relationships between the input variables and
24 controlled variables. Input/output controllers (IOCs) operate

1 to monitor input variables and tune the previously identified
2 control variable(s) to achieve a desired behavior in the
3 controlled variable(s).

4 [0019] The physical model in Figure 7 is shown as a function
5 of the input variables. It is implied that if variation of a
6 parameter in the dynamic model is a function of one or more
7 output variables of the process, then the said output variables
8 are treated as inputs to the neural-network model. The
9 relationship between the input variables and the parameters in
10 the parametric model may be expressed through the use of
11 empirical methods, such as but not limited to neural networks.

12 [0020] Specific embodiments of the present invention may
13 utilize IOCs associated with corrector magnets and/or quadrupole
14 magnets to control magnetic field strength, shape, location
15 and/or orientation and in order to achieve a desired particle
16 trajectory or interaction within the particle accelerator.

17 [0021] Yet another embodiment of the present invention
18 provides a dynamic controller for controlling the operation of a
19 particle accelerator by predicting a change in the dynamic input
20 values to effect a change in the output of the particle
21 accelerator from a current output value at a first time to a
22 different and desired output value at a second time in order to
23 achieve more efficient collisions between particles. This
24 dynamic controller includes a dynamic predictive model for

1 receiving the current input value, wherein the dynamic
2 predictive model changes dependent upon the input value, and the
3 desired output value. This allows the dynamic predictive model
4 to produce desired controlled input values at different time
5 positions between the first time and the second time so as to
6 define a dynamic operation path of the particle accelerator
7 between the current output value and the desired output value at
8 the second time. An optimizer optimizes the operation of the
9 dynamic controller over the different time positions from the
10 first time to the second time in accordance with a predetermined
11 optimization method that optimizes the objectives of the dynamic
12 controller to achieve a desired path from the first time to the
13 second time, such that the objectives of the dynamic predictive
14 model from the first time to the second time vary as a function
15 of time.

16 [0022] A dynamic forward model operates to receive input
17 values at each of time positions and maps the input values to
18 components of the dynamic predictive model associated with the
19 received input values in order to provide a predicted dynamic
20 output value. An error generator compares the predicted dynamic
21 output value to the desired output value and generates a primary
22 error value as the difference for each of the time positions.
23 An error minimization device determines a change in the input
24 value to minimize the primary error value output by the error

1 generator. A summation device for summing said determined input
2 change value with an original input value, which original input
3 value comprises the input value before the determined change
4 therein, for each time position to provide a future input value
5 as a summed input value. A controller operates the error
6 minimization device to operate under control of the optimizer to
7 minimize said primary error value in accordance with the
8 predetermined optimization method.

1 BRIEF DESCRIPTION OF THE DRAWINGS

2 **[0023]** For a more complete understanding of the present
3 invention and the advantages thereof, reference is now made to
4 the following description taken in conjunction with the
5 accompanying drawings in which like reference numerals indicate
6 like features and wherein:
7 FIGUREs 1A and 1B illustrate typical collisions or interactions
8 studied with particle accelerators;
9 FIGURE 2 depicts the components of a particle accelerator
10 operated and controlled according to the system and method of
11 the present invention;
12 FIGURE 3 illustrates a polarized electron gun associated with a
13 particle accelerator operated and controlled according to the
14 system and method of the present invention;
15 FIGURE 4 depicts a multi-layer detector associated with a
16 particle accelerator operated and controlled according to the
17 system and method of the present invention;
18 FIGURE 5 depicts the three physical layers associated with a
19 particle accelerator operated and controlled according to the
20 system and method of the present invention;
21 FIGURE 6 depicts the five software layers associated with a
22 particle accelerator operated and controlled according to the
23 system and method of the present invention;

1 FIGURE 7 illustrates the interaction between a neural network
2 model and a parametric dynamic or static model;
3 FIGURE 8 provides a screenshot that evidences the clear
4 correlation between the MVs with the BPM;
5 FIGURE 9 provides yet another screenshot of the variation in
6 variables;
7 FIGURE 10 provides yet another screen shot showing a capture of
8 the input/output data;
9 FIGURE 11 displays one such input/output relationship for the
10 SPEAR Equipment at SLAC; and.
11 FIGURE 12 illustrates the relationship of the various models in
12 the controller and the controller and the process.

1 DETAILED DESCRIPTION OF THE INVENTION

2 **[0024]** Preferred embodiments of the present invention are
3 illustrated in the FIGURES, like numerals being used to refer to
4 like and corresponding parts of the various drawings.

5 **[0025]** The present invention provides methodologies for the
6 computationally efficient modeling of processes with varying
7 dynamics. More specifically, the present invention provides a
8 method for robust implementation of indirect adaptive control
9 techniques in problems with varying dynamics through transparent
10 adaptation of the parameters of the process model that is used
11 for prediction and online optimization. Such problems include
12 but are not limited to the control of: particle trajectories
13 within particle accelerators, temperature in a chemical
14 reactors, and grade transition in a polymer manufacturing
15 process.

16 **[0026]** This innovation enables improvement of existing
17 control software, such as Pavilion Technology's Process
18 Perfecter®, to exert effective control in problems with even
19 severely varying dynamics. This is especially well suited for
20 the control of particle trajectories within accelerators.

21 **[0027]** The parametric nonlinear model introduced in this
22 invention has been successfully used by inventors to model
23 severely nonlinear processes. One specific application directly

1 relates to the control of the linear accelerator at Stanford
2 Linear Accelerator Center (SLAC).

3 [0028] The present invention provides a powerful tool for the
4 analysis of the nonlinear relationship between the
5 manipulated/disturbance variables and the controlled variables
6 such as those at the Stanford Position Electron Asymmetric Ring
7 (SPEAR). Tuning of the control variables can benefit from this
8 analysis. SLAC performs and supports world-class research in
9 high-energy physics, particle astrophysics and disciplines using
10 synchrotron radiation. To achieve this it is necessary to
11 provide accelerators, detectors, instrumentation, and support
12 for national and international research programs in particle
13 physics and scientific disciplines that use synchrotron
14 radiation. The present invention plays a key role in advances
15 within the art of accelerators, and accelerator-related
16 technologies and devices specifically and generally to all
17 advanced modeling and control of operating processes -
18 particularly those that exhibit sever nonlinear behavior that
19 vary over time.

20 [0029] Accelerators such as those at SLAC provide high energy
21 to subatomic particles, which then collide with targets. Out of
22 these interactions come many other subatomic particles that pass
23 into detectors. From the information gathered in the detector,

1 physicists determine properties of the particles and their
2 interactions.

3 **[0030]** The higher the energy of the accelerated particles,
4 the more fully the structure of matter may be understood. For
5 that reason a major goal is to produce higher and higher
6 particle energies. Hence, improved control systems are required
7 to ensure the particles strike their targets as designed within
8 the experiment.

9 **[0031]** Particle accelerators come in two designs, linear and
10 circular (synchrotron). The accelerator at SLAC is a linear
11 accelerator. The longer a linear accelerator is, the higher the
12 energy of the particles it can produce. A synchrotron achieves
13 high energy by circulating particles many times before they hit
14 their targets.

15 **[0032]** The components of a particle accelerator 10 are
16 illustrated in FIGURE 2. At the leftmost end of FIGURE 2 is
17 electron gun 12, which produces the electrons 14 to be
18 accelerated. Any filament that is heated by an electrical
19 current flowing through the filament releases electrons.
20 Electric field 16 then accelerates electrons 14 towards the
21 beginning of accelerator 18.

22 **[0033]** Alternatively, a polarized electron gun 20, as shown
23 in FIGURE 3, may be used. Here polarized laser light from laser
24 sources 22 knocks electrons 24 off the surface of semiconductor

1 26. Electric field 30 then accelerates the electrons toward
2 accelerator pipe 32. Polarized electron gun 20 must be kept at
3 an extremely high vacuum, even higher than that of the
4 accelerator itself. Such a vacuum may be on the order of 10^{-12}
5 Tor.

6 [0034] Returning to FIGURE 2, after the first few feet of the
7 linear accelerator 18, the electrons 14 are traveling in bunches
8 with an energy of approximately 10 MeV^G. This means that
9 electrons 14 have reached 99.9% the speed of light. These
10 bunches of electrons 14 have a tendency to spread out in the
11 directions perpendicular to their travel.

12 [0035] Because a spread-out beam gives fewer collisions than
13 a narrowly focused one, the electron and positron bunches are
14 sent into damping rings 33 (electrons to north, positrons to
15 south). These are small storage rings located on either side of
16 the main accelerator. As the bunches circulate in damping rings
17 33, electrons 14 lose energy by synchrotron radiation and are
18 reaccelerated each time they pass through a cavity fed with
19 electric and magnetic fields. The synchrotron radiation
20 decreases the motion in any direction, while the cavity
21 reaccelerates only those in the desired direction. Thus, the
22 bunch of electrons or positrons becomes increasingly parallel in
23 motion as the radiation "damps out" motion in the unwanted
24 directions. The bunches are then returned to accelerator 18 to

1 gain more energy as travel within it. Further focusing is
2 achieved with a quadrupole magnet or connector magnet 16 in
3 beamlines. Focusing here is achieved in one plane while
4 defocusing occurs in the other.

5 [0036] Bunches of electrons 14 are accelerated within
6 accelerator 18 in much the same way a surfer is pushed along a
7 wave. The electromagnetic waves that push the electrons in
8 accelerator 18 are created by high-energy microwaves. These
9 microwaves emit from klystrons (not shown) and feed into the
10 particle accelerator structure via waveguides to create a
11 pattern of electric and magnetic fields.

12 [0037] Inside accelerator 18, the microwaves from the klystrons
13 set up currents that cause oscillating electric fields pointing
14 along accelerator 18 as well as oscillating magnetic fields in a
15 circle around the accelerator pipe. Electrons and positrons at
16 the end of the linear accelerator 10 enter the Beam Switch Yard
17 (BSY) 34. Here the electrons are diverted in different
18 directions by powerful dipole magnets 35 or connector magnets 35
19 and travel into storage rings 36, such as SPEAR, or into other
20 experimental facilities or beamlines 38. To efficiently operate
21 accelerator 10 operators constantly monitor all aspects of it.

22 [0038] The challenge to efficiently operate accelerator 10
23 includes controlling temperature changes that cause the metal
24 accelerator structure to expand or contract. This expansion

1 changes the frequency of the microwave resonance of the
2 structure. Hence, the particle accelerator structure is
3 preferably maintained at a steady temperature, throughout. The
4 cooling system/process should be monitored to ensure all parts
5 are working. Vacuum should also be maintained throughout the
6 entire klystron waveguide, and accelerating structure. Any tiny
7 vacuum leak interferes with accelerator function. The entire
8 system is pumped out to 1/100,000,000,000 of atmospheric
9 pressure. Further, the timing of the phase of each klystron
10 must be correct, so that the entire structure, fed by numerous
11 klystrons carries a traveling wave with no phase mismatches.
12 Operators also monitor and focus the beam at many points along
13 the accelerator. They use a variety of devices to monitor the
14 beam such as strip beam position monitors (BPMs) and beam spot
15 displays. Magnetic fields are typically used to focus the
16 beams.

17 [0039] After subatomic particles have been produced by
18 colliding electrons and positrons, the subatomic particles must
19 be tracked and identified. A particle can be fully identified
20 when its *charge* and its *mass* are known.

21 [0040] In principle the mass of a particle can be calculated
22 from its momentum and either its speed or its energy. However,
23 for a particle moving close to the speed of light any small
24 uncertainty in momentum or energy makes it difficult to

1 determine its mass from these two, so it is necessary to measure
2 speed as well.

3 [0041] A multi-layer detector as shown in FIGURE 4 is used to
4 identify particles. Each layer gives different information
5 about the collision or interaction. Computer calculations based
6 on the information from all the layers reconstruct the positions
7 of particle tracks and identify the momentum, energy, and speed
8 of as many as possible of the particles produced in the event.

9 [0042] FIGURE 4 provides a cutaway schematic that shows all
10 detector 50 elements installed inside a steel barrel and end
11 caps. Complete detector may weigh as much as 4,000 tons and
12 stands six stories tall. Innermost layer 52, the vertex
13 detector, provides the most accurate information on the position
14 of the tracks following collisions. The next layer, drift
15 chamber 54, detects the positions of charged particles at
16 several points along the track. The curvature of the track in
17 the magnetic field reveals the particle's momentum. The middle
18 layer, Cerenkov detector 56, measures particle velocity. The
19 next layer, liquid argon calorimeter 58, stops most of the
20 particles and measures their energy. This is the first layer
21 that records neutral particles.

22 [0043] A large magnetic coil 60 separates the calorimeter and
23 the outermost layer 62. The outermost layer comprises magnet
24 iron and warm iron calorimeter used to detect muons.

1 **[0044]** The carefully controlled collisions within SLAC allow
2 physicist to determine the fundamental (smallest) building
3 blocks from which all matter is made and the interactions
4 between the fundamental building blocks that govern how they
5 combine and decay.

6 **[0045]** The deployment of control solutions at SLAC further
7 requires the development of device drivers that enable the
8 adaptive control strategy with a nonlinear model predictive
9 control technology to communicate to the distributed controls
10 system (DCS) at SLAC and the installation of the adaptive
11 control strategy with a nonlinear model predictive control
12 technology at SLAC. The distributed control system at SLAC is
13 also known as EPICS (Experimental Physics Industrial Control
14 System).

15 **[0046]** EPICS includes a set of software tools and
16 applications which provide a software infrastructure with which
17 to operate devices within the particle accelerators such as
18 connector or quadrapole magnets or other like devices used to
19 influence particle trajectories. EPICS represents in this
20 embodiment a distributed control system comprising numerous
21 computers, networked together to allow communication between
22 them and to provide control and feedback of the various parts of
23 the device from a central room, or remotely over a network such
24 as the internet.

1 [0047] Client/Server and Publish/Subscribe techniques allow
2 communications between the various computers. These computers
3 (Input/Output Controllers or IOCs) perform real-world I/O and
4 local control tasks, and publish information to clients using
5 network protocols that allow high bandwidth, soft real-time
6 networking applications.

7 [0048] Such a distributed control system may be used
8 extensively within the accelerator itself as well as by many of
9 the experimental beamlines of SLAC. Numerous IOCs directly or
10 indirectly control almost every aspect of the machine operation,
11 such as particle trajectories and environments, while
12 workstations or servers in the control room provide higher-level
13 control and operator interfaces to the systems/processes,
14 perform data logging, archiving and analysis. Many IOCs can
15 cause the accelerator to dump the beam when errors occur. In
16 some cases a wrong output could damage equipment costing many
17 thousands of dollars and days or even weeks to repair.

18 [0049] Architecturally, EPICS embodies the 'standard model'
19 of distributed control system design. The most basic feature
20 being that EPICS is fully distributed. Thus, EPICS requires no
21 central device or software entity at any layer. This achieves
22 the goals of easy scalability, or robustness (no single point of
23 failure).

1 [0050] EPICS comprises three physical layers as shown in
2 FIGURE 5, and five software layers, as shown in FIGURE 6. The
3 physical front-end layer is as the 'Input/Output Controller'
4 (IOC) 70. Physical back-end layer 72 is implemented on popular
5 workstations running Unix, or on PC hardware running Windows NT
6 or Linux. Layers 70 and 72 are connected by network layer 74,
7 which is any combination of media (such as Ethernet, FDDI, ATM)
8 and repeaters and bridges supporting the TCP/IP Internet
9 protocol and some form of broadcast or multicast.

10 [0051] The software layers utilize the 'client-server'
11 paradigm. Client layer 76 usually runs in backend or
12 workstation physical layer 72 and represents the top software
13 layer. Typical generic clients are operator control screens,
14 alarm panels, and data archive/retrieval tools. These are all
15 configured with simple text files or point-and-click drawing
16 editors.

17 [0052] The second software layer that connects all clients 76
18 with all servers 78 is called 'channel access' (CA) 80. Channel
19 access 80 forms the 'backbone' of EPICS and hides the details of
20 the TCP/IP network from both clients 76 and servers 78. CA 80
21 also creates a very solid 'firewall' of independence between all
22 clients and server code, so they can run on different
23 processors. CA mediates different data representations.

1 [0053] The third software layer is the server layer 78. The
2 fundamental server is the channel access server that runs on the
3 target CPU embedded in every IOC. It insulates all clients from
4 database layer 82. Server layer 78 cooperates with all channel
5 access clients 76 to implement callback and synchronization
6 mechanisms. Note that although clients 76 are typically
7 independent host programs that call channel access 80 routines
8 through a shared library, the channel access server is a unique
9 distributed control task of the network nodes.

10 [0054] Database layer 82, is at the heart of the distributed
11 control system. Using a host tool, the database is described in
12 terms of function-block objects called 'records'. Record types
13 exist for performing such chores as analog input and output;
14 binary input and output; building histograms; storing waveforms;
15 moving motors; performing calculations; implementing PID loops,
16 emulating PALs, driving timing hardware; and other tasks..
17 Records that deal with physical sensors provide a wide variety
18 of scaling laws; allowing smoothing; provide for simulation; and
19 accept independent hysteresis parameters for display, alarm, and
20 archive needs.

21 [0055] Record activity is initiated in several ways: from
22 I/O hardware interrupts; from software 'events' generated by
23 clients 76 such as the Sequencer; when fields are changed from a
24 'put'; or using a variety of periodic scan rates. Records

1 support a great variety of data linkage and flow control, such
2 as sequential, parallel, and conditional. Data can flow from
3 the hardware level up, or from the software level down. Records
4 validate data passed through from hardware and other records as
5 well as on internal criteria, and can initiate alarms for un-
6 initialized, invalid, or out-of-tolerance conditions. Although
7 all record parameters are generated with a configuration tool on
8 a workstation, most may be dynamically updated by channel access
9 clients, but with full data independence. The fifth, bottom of
10 layer of software is the device driver layer 84 for individual
11 devices.

12 [0056] This distributed control system provides implements
13 the 'standard model' paradigm. This control systems allows
14 modularity, scalability, robustness, and high speed in hardware
15 and software, yet remain largely vendor and hardware-
16 independent.

17 [0057] The present invention provides a system and method of
18 controlling particle collisions. To achieve this, specific
19 algorithms have been developed that model and control the
20 numerous variable associated with the linear accelerator at
21 SLAC. Although the magnetic fields and their control have been
22 specifically discussed here, it should be noted that these
23 algorithms may be applied to any variable associated with these

1 structures. Further, it should be noted that this methodology
2 has application beyond the control of particle accelerators.

3 [0058] The development of parametric nonlinear models with
4 potentially varying parameters contributes to the design of
5 successful control strategies for highly nonlinear dynamic
6 control problems. The activities associated with the present
7 invention are divided into two categories. The first category
8 includes all the activities involved in developing the
9 algorithms enabling the use of parameter varying nonlinear
10 models within nonlinear model predictive control technology
11 embodied in one implementation as Process Perfecter®. The
12 second category includes all the activities involved in
13 facilitating the deployment of the said controller.

14 [0059] The present invention treats all the variables upon
15 which the current values of the varying parameters depend as
16 inputs to the neural network model. This is illustrated in
17 FIGURE 7. A separate NN maps input variables 93 to the
18 varying parameters 95. At runtime, the values of the current
19 input variables feed into NN 91 and the correct current varying
20 parameter values are produced as the NN model outputs. The
21 parameters in parametric model 97 are then updated to take on
22 these values. Thus, the NN and the parametric models are
23 connected in series. The combined model will then have correct

1 parameter values regardless of the operation region in which the
2 system/process is operating.

3 [0060] The NN (its weights and biases) is trained as follows.
4 The neural network is trained in the context of Figure 7. The
5 inputs to the combined model are the process variable inputs 93,
6 the outputs of the combined model are the process variable
7 outputs 99. Any method used to train a NN as known to those
8 skilled in the art may be used to train the NN in this combined
9 structure. Any gradient method (including back propagation or
10 any gradient-based nonlinear programming (NLP) method, such as a
11 Sequential Quadratic Programming (SQP), a Generalized Reduced
12 Gradient (GRG) or other like method known to those skilled in
13 the art) requires that the parametric model 97 be
14 differentiable, while non-gradient methods do not impose this
15 restriction.

16 [0061] Any gradient-based method requires the gradients of
17 the error with respect to the weights and biases. These
18 gradients can be readily obtained (assuming the models are
19 differentiable) in either numerical or analytical derivatives.
20 Numerical approximations to the derivatives are computed by
21 making small changes to a weight/bias, observing the resulting
22 process variable output, and then making one or more additional
23 different and small change to the weight/bias, and again

1 observing the FP output. An appropriate formula for first
2 derivative approximation is then used.

3 [0062] The gradient of the error with respect to any of the
4 NN weights and biases can be computed via the chain rule for
5 derivatives. Hence, gradient-based methods require the
6 Parametric model 97 to be differentiable.

7 [0063] The NN is trained without explicit targets for its own
8 outputs. The NN outputs are in the same position in the
9 combined model as are the hidden units in a NN - the errors for
10 the NN outputs originate from the targets at the process
11 variable output 99 level.

12 [0064] Any non-gradient method ordinarily requires that the
13 process outputs 99 be computed as the first step, of and the
14 chosen method's own evaluation of the goodness of the current
15 state of the combined model is determined readily from any of
16 the needed values within the combined model. Typically, non-
17 gradient methods use error as the measure of goodness.

18 [0065] The present invention may utilize any parametric model
19 structure whatsoever for the FP model block 97: steady state
20 models, including those represented by open and by closed
21 equations, and including whether or not the FP outputs are all
22 separable to the left hand side of the equations or not, and
23 whether or not all of the FP outputs are measured, as well as

1 dynamic models, including IIR, FIR, difference equation, and
2 differential equation models.

3 [0066] The methodology by which variation in process dynamics
4 over different operation regimes is incorporated in the
5 nonlinear model predictive control solution is described below.

6 This invention's handling of systems with variable dynamics
7 provides a commercially viable solution to a long-standing
8 demand for robust adaptive control strategies in industry.

9 [0067] Significant applications exist in which dynamic
10 behavior at the process varies considerably over the expected
11 operation region. Examples range from polystyrene process and
12 reactors with significant variation in the residence time, to
13 acoustic systems/processes with temperature dependent acoustic
14 properties, and supersonic airplanes operating over a wide range
15 of mach numbers. As previously described, one embodiment of the
16 present invention focuses on the application to the control of a
17 linear accelerator. However, the present invention need not be
18 so limited.

19 [0068] Relevant information regarding accurate description of
20 the system/process dynamics under these circumstances can be
21 found from a variety of resources. They include first-
22 principles equations capturing functional dependency of dynamic
23 parameters on input/output variables, operator knowledge, and

1 empirical data rich enough to adequately represent changes in
2 system/process dynamics.

3 [0069] The absence of a systematic way for handling varying
4 process dynamics forces application engineers to devote
5 significant energy and time so that the variations in process
6 dynamics does not result in serious degradation of the
7 controller performance. The present invention extends the
8 existing formulations such that variations in process dynamics
9 can be properly considered. This may result in improved
10 input/output controller (IOC) performance as well as expanded
11 operating conditions. The derivation of the proposed algorithm
12 is based on the following general representation for the
13 dynamics of the process as a nonlinear, possibly time-varying
14 difference equation:

15
$$Y_k = F(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) \quad (7)$$

16 where u_k is the vector of input variables affecting the
17 process (i.e., both manipulated and disturbance variable
18 inputs), y_k is the vector of measured outputs, and F is a
19 potentially time-varying nonlinear vector function.

20 In one embodiment, the present invention proposes the following
21 perturbation model to locally approximate Equation (5):

22
$$\delta y_k = \sum_{i=1}^N \alpha(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) \delta y_{k-i} + \sum_{i=1}^M \beta(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) \delta y_{k-i} \quad (6)$$

23 where the coefficients $\alpha(\cdot)$ and $\beta(\cdot)$ can be defined as:

$$\alpha(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) = \frac{\partial F}{\partial y_{k-i}} \quad (7)$$

and

$$\beta_k(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) = \frac{\partial F}{\partial u_{k-1}} \quad (8)$$

4
5 are functions of present and past inputs/outputs of the system.
6 The methodology presented in this invention is applicable for
7 higher order local approximations of the nonlinear function F..
8 Also, as mentioned earlier, for a given state-space
9 representation of a nonlinear parameter-varying system, an
10 equivalent input/output model with the representation of
11 Equation (5) can be constructed in a variety of ways known to
12 experts in the field. Hence, the methodology presented here
13 encompasses systems described in state-space as well. The
14 approximation strategy captured by Figure 7 is directly
15 applicable to any functional mapping from an input space to
16 output space, and hence the approach in this invention is
17 directly applicable to state space description of the linear
18 processes with varying dynamics.

19 [0070] This algorithm encompasses case where non-linearity in
20 the parameters of the dynamic model (in addition to the gain) is
21 explicitly represented.

1 [0071] The information regarding variation in dynamic
2 parameters of the process can be directly incorporated in the
3 controller design regardless of the source of the information
4 about varying parameters.

5 [0072] The present invention may be applied whether complete
6 or partial knowledge of the dynamic parameters is available.
7 When full information regarding process dynamic parameters is

8 available, $\alpha(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) = \frac{\partial F}{\partial y_{k-i}}$ and $\beta(u_k, u_{k-1}, \dots, u_{k-M}, y_{k-1}, \dots, y_{k-N}) = \frac{\partial F}{\partial u_{k-i}}$

9 's in Equations. (6-8) are explicitly defined by the user.
10 However, in the case of partial information, only some of the
11 parameters are explicitly defined and the rest are found via an
12 identification algorithm from empirical data.

13 [0073] Where second order models are used to describe the
14 process, users most often provide information in terms of gains,
15 time constants, damping factors, natural frequencies, and delays
16 in the continuous time domain. The translation of these
17 quantities to coefficients in a difference equation of the type
18 shown in Equation (6) is straightforward and is given here for
19 clarity:

20 For a system/process described as $\frac{k}{(T\delta+1)}$, the difference
21 equation based on ZOH discretization is:

1

$$\delta y_k = \left(e^{-\frac{T}{\tau}} \right) \delta y_{k-1} + k \left(l - e^{-\frac{T}{\tau}} \right) \delta u_{k-1} \quad (9)$$

2 For an over-damped system/process described as $\frac{k(\tau_{lead}\zeta+1)}{(\tau_1\zeta+1)(\tau_2\zeta+1)}$ the
 3 difference equation is:

4

$$\delta y_k = \left(e^{-\frac{T}{\tau_1}} + e^{-\frac{T}{\tau_2}} \right) \delta y_{k-1} - \left(e^{-\left(\frac{T}{\tau_1} + \frac{T}{\tau_2}\right)} \right) \delta y_{k-2}$$

5

$$+ \left(A \left(1 - e^{-\frac{T}{\tau_1}} \right) + B \left(1 - e^{-\frac{T}{\tau_2}} \right) \right) \delta u_{k-1}$$

6

$$- \left(A e^{-\frac{T}{\tau_2}} \left(1 - e^{-\frac{T}{\tau_1}} \right) + B e^{-\frac{T}{\tau_1}} \left(1 - e^{-\frac{T}{\tau_2}} \right) \right) \delta u_{k-2} \quad (10)$$

7 where

8

$$A = k \frac{\tau_1 - \tau_3}{\tau_1 - \tau_2}$$

9 and

10

$$B = k \frac{\tau_3 - \tau_2}{\tau_1 - \tau_2}.$$

11 For a system/process described as $\frac{k(\tau_{lead}\zeta+1)}{(\tau\zeta+1)^2}$, the difference
 12 equation is:

13

$$= \left(2e^{-\frac{T}{\tau}} \right) \delta y_{k-1} - \left(e^{-2\frac{T}{\tau}} \right) \delta y_{k-2}$$

$$\begin{aligned}
 1 & + \left(k - ke^{-\frac{T}{\tau}} \left(1 + \frac{T}{\tau} - \frac{\tau_{lead} T}{\tau^2} \right) \right) \delta u_{k-1} \\
 2 & + \left(ke^{-2\frac{T}{\tau}} - ke^{-\frac{T}{\tau}} \left(1 - \frac{T}{\tau} - \frac{\tau_{lead} T}{\tau^2} \right) \right) \delta u_{k-2}
 \end{aligned} \tag{11}$$

3 For an under-damped system/process described as $\frac{k(\tau_{lead}\delta+1)}{\delta^2 + 2\frac{\zeta}{\tau}\delta + -\frac{1}{\tau^2}}$ the

4 difference equation is:

$$\begin{aligned}
 5 & \delta y_k = \left(2e^{-\frac{\zeta T}{\tau}} \cos \left(\frac{\sqrt{1-\zeta^2}}{\tau} T \right) \right) \delta y_{k-1} - \left(e^{-2\frac{\zeta T}{\tau}} \right) \delta y_{k-2} \\
 6 & + \left(\frac{G}{B} e^{-\frac{\zeta T}{\tau}} \sin \left(\frac{\sqrt{1-\zeta^2}}{\tau} T \right) + kA_1 \right) \delta u_{k-1} \\
 7 & + \left(-\frac{G}{B} e^{-\frac{\zeta T}{\tau}} \sin \left(\frac{\sqrt{1-\zeta^2}}{\tau} T \right) + kA_2 \right) \delta u_{k-2}
 \end{aligned} \tag{12}$$

8 where

$$9 G = \frac{k\tau_{lead}}{\tau^2}$$

$$10 B = \frac{\sqrt{1-\zeta^2}}{\tau}$$

$$11 A_1 = 1 - e^{-\frac{\zeta T}{\tau}} \cos \left(\frac{\sqrt{1-\zeta^2}}{\tau} T \right) - \frac{\zeta}{\sqrt{1-\zeta^2}} e^{-\frac{\zeta T}{\tau}} \sin \left(\frac{\sqrt{1-\zeta^2}}{\tau} T \right),$$

12 and

1
$$A_2 = e^{-\frac{2\zeta}{\tau}T} - e^{-\frac{\zeta}{\tau}T} \cos\left(\frac{\sqrt{1-\zeta^2}}{\tau}T\right) + \frac{\zeta}{\sqrt{1-\zeta^2}} e^{-\frac{\zeta}{\tau}T} \sin\left(\frac{\sqrt{1-\zeta^2}}{\tau}T\right).$$

2 **[0074]** The present invention accommodates user information
3 whether there is an explicit functional description for the
4 parameters of the dynamic model, or an empirical model is built
5 to describe the variation, or just a tabular description of the
6 variations of the parameters versus input/output values.

7 **[0075]** During optimization, the solver may access the
8 available description for the variation of each parameter in
9 order to generate relevant values of the parameter given the
10 current and past values of the input(s)/output(s). Numerical
11 efficiency of the computations may require approximations to the
12 expressed functional variation of the parameters.

13 **[0076]** The present invention preserves the consistency of the
14 steady-state neural network models and the dynamic model with
15 varying dynamic parameters.

16 **[0077]** Using an approximation to the full dynamic model can
17 simplify the implementation and speed up the execution frequency
18 of the controller. The following details one such an
19 approximation strategy. This invention, however, applies
20 regardless of the approximation strategy that is adopted. Any
21 approximation strategy known to those skilled in the art is
22 therefore incorporate by reference in this disclosure.

1 [0078] The models may be updated when (a) changes in control
2 problem setup occur (for example setpoint changes occur), or (b)
3 when users specifically ask for a model update, or (c) when a
4 certain number of control steps, defined by the users, are
5 executed, or (d) an event triggers the update of the models.

6 [0079] Assuming that $(u_{\text{init}}, y_{\text{init}})$ is the current operating
7 point of the system/process, and y_{final} , is the desired value of
8 the output at the end of the control horizon, the present
9 invention utilizes the steady state optimizer to obtain u_{final}
10 that corresponds to the desired output at the end of the control
11 horizon.

12 [0080] The dynamic difference equation is formed at the
13 initial and final points, by constructing the parameters of the
14 dynamic model given the initial and final operation points,
15 $(u_{\text{init}}, y_{\text{init}})$ and $(u_{\text{final}}, y_{\text{final}})$ respectively. Note that the
16 functional dependency of the parameters of the dynamic model on
17 the input/output values is well-defined (for example, user-
18 defined, tabular, or an empirical model such as a NN.).

19 [0081] To approximate the difference equation during
20 process's transition from initial operation point to its final
21 operation point, one possibility is to vary the parameters
22 affinely between their two terminal values. This choice is for
23 ease of computation, and the application of any other
24 approximation for the parameter values in between (including but

1 not limited to higher order polynomials, sigmoid-type function,
2 and tangent hyperbolic function) as is known to those skilled in
3 the art may also be employed. To highlight the generality of
4 the approach in this invention, the present invention may follow
5 affine approximation of the functional dependency of parameters
6 on input/output values is described here. Assume that p is a
7 dynamic parameter of the system/process such as time constant,
8 gain, damping, etc. Parameter p is a component of the FPM
9 parameters 95 in Figure 7. Also assume that $p = f(u_k, u_{k-1}, \dots, u_{k-M},$
10 $y_{k-1}, \dots, y_{k-N})$, where f is an appropriate mapping. Note that with
11 the assumption of steady state behavior at the two ends of the
12 transition $u_k = u_{k-1} = \dots = u_{k-M}$ and $y_{k-1} = y_{k-2} = \dots = y_{k-N}$. An affine
13 approximation for this parameter can be defined as follows:

$$14 \quad p(u_k, u_{k-1}, y_{k-1}, y_{k-2}) = p(u_{init}, y_{init}) + p_u \left(\frac{\partial p}{\partial u} \right)_{init} (u_k - u_{init}) + p_y \left(\frac{\partial p}{\partial u} \right)_{init} (y_k - y_{init}) \quad (13)$$

15 where for simplicity $M=N=2$ is assumed.

16 When state space description of the process is available p may
17 be a function of state as well. The methodology is applicable
18 regardless of the functional dependency of p .

19 [0082] Note that the coefficients p_u and p_y are approximation
20 factors and must be defined such that $p(u_{final}, y_{final}) = f(u_{final},$
21 $y_{final})$, where the following substitutions are done for brevity:
22 $u_k = u_{k-1} = \dots = u_{k-M} = u_{final}$ and $y_{k-1} = \dots = y_{k-N} = y_{final}$. The constraint on the
23 final gain is not enough to uniquely define both p_u and p_y . This

- 1 present invention covers all possible selections for p_u and p_y .
 2 One possible option with appropriate scaling, and
 3 proportionality concerns is the following:

4

$$p_u = \left(\frac{p_{final} - p_{init}}{u_{final} - u_{init}} \right) \frac{1}{\frac{\partial p}{\partial u} + \varepsilon \frac{\partial p}{\partial y}} \quad (14)$$

5

$$p_y = \left(\frac{p_{final} - p_{init}}{y_{final} - y_{init}} \right) \frac{\varepsilon}{\frac{\partial p}{\partial u} + \varepsilon \frac{\partial p}{\partial y}} \quad (15)$$

6 where $0 \leq \varepsilon \leq 1$ is a parameter provided by the user to
 7 determine how the contributions from variations in u_k and y_k
 8 must be weighted. By default ε is 1.

9 [0083] The quantities $\frac{\partial p}{\partial u}$ and $\frac{\partial p}{\partial y}$ can be provided in
 10 analytical forms by the user. In the absence of the analytical
 11 expressions for these quantities, they can be approximated. One
 12 possible approximation is $\left(\frac{p_{final} - p_{init}}{u_{final} - u_{init}} \right)$ and $\left(\frac{p_{final} - p_{init}}{y_{final} - y_{init}} \right)$
 13 respectively.

14 [0084] To maintain the coherency of the user-provided
 15 information regarding dynamic behavior of the process, and the
 16 information captured by a steady-state neural network based on
 17 empirical data, an additional level of gain scheduling is
 18 considered in this invention. The methodology describing this
 19 gain scheduling is described in detail.

1 [0085] One possible approach for maintaining the consistency
2 of the static nonlinear gain information with the dynamic model
3 is described below. This invention however need not be limited
4 to the approach described here.

5 1. The difference equation of the type described by
6 Equation (6) is constructed. For example, the variable
7 dynamics information on τ , ζ , lead time, etc. at the initial
8 and final points will be translated into difference model
9 in Equation (6) using Equations (9)-(12).

10 2. The overall gain at the initial and final point is
11 designed to match that of the steady state neural network,
12 or that of the externally-provided variable dynamics gain
13 information:

14 (a) From the static neural network the gains at each
15 operation point, i.e. $(g_i^{ss} = \frac{dy}{du})_{(u_{init}, y_{init})}$, and $(g_f^{ss} = \frac{dy}{du})_{(u_{final}, y_{final})}$,
16 are extracted. User can also define the gain to be a
17 varying parameter.

18 (b) For simplicity of the presentation, a second order
19 difference equation is considered here:

$$\begin{aligned}\delta y_k &= -a_1(\cdot) \delta y_{k-1} - a_2(\cdot) \delta y_{k-2} \\ &\quad + \nu_1 \delta u_{k-1-\Delta} + \nu_2 \delta u_{k-2-\Delta} \\ &\quad + \omega_1 (u_{k-1} - u_{init}) \delta u_{k-1-\Delta} + \omega_2 (u_{k-2} - u_{init}) \delta u_{k-2-\Delta}\end{aligned}\quad (12)$$

21 where $a1(\cdot)$ and $a2(\cdot)$ can be constructed as follows:

$$1 \quad a_1(.) = \left(a_1^i + (a_1^f - a_1^i) \frac{\bar{u}_{k-1} - u_{init}}{u_{final} - u_{init}} \right)$$

$$2 \quad a_2(.) = \left(a_2^i + (a_2^f - a_2^i) \frac{\bar{u}_{k-2} - u_{init}}{u_{final} - u_{init}} \right)$$

3 where $a_1^i, a_1^f, a_2^i, a_2^f, b_1^i, b_1^f, b_2^i, b_2^f$ are determined using Equations
4 (9) - (12).

5 \bar{u}_{k-1} and \bar{u}_{k-2} can be defined (but need not be limited to)
6 the following:

$$7 \quad \bar{u}_k = u_i + \frac{1}{2} (u_f - u_i) \left(1 + \frac{e^{\kappa \frac{u_k - u_m}{u_r}} - e^{-\kappa \frac{u_k - u_m}{u_r}}}{e^{\kappa \frac{u_k - u_m}{u_r}} + e^{-\kappa \frac{u_k - u_m}{u_r}}} \right)$$

8 where $u_m = \frac{u_f + u_i}{2}$, $u_r = \|u_f - u_i\|$ and κ is a parameter that
9 controls how the transition from u_i to u_f will occur. If no
10 varying parameter exists, then the initial and final values
11 for these parameters will be the same.

12 (c) Parameters $\nu_1, \nu_2, \omega_1, \omega_2$ must then be defined such that
13 the steady state gain of the dynamic system matches those
14 extracted from the neural network at both sides of the
15 transition region (or with the externally-provided gain
16 information that is a part of variable dynamics
17 description). One possible selection for the parameters
18 is (but need not be limited to) the following:

$$19 \quad \nu_1 = b_1^i \left(\frac{1 + a_1^i + a_2^i}{b_1^i + b_2^i} \right) g_{ss}^i$$

1

$$\nu_2 = b_2^i \left(\frac{1 + a_1^i + a_2^i}{b_1^i + b_2^i} \right) g_{ss}^i$$

2 (d) A possible selection for ω_1 and ω_2 parameters is (but
3 need not be limited to) the following:

4

$$\omega_1 = \left(\frac{b_1^f}{b_1^f + b_2^f} \right) \left(\frac{1 + a_1^f + a_2^f}{u_{final} - u_{init}} \right) g_{ss}^f - \frac{\nu_1}{u_{final} - u_{init}}$$

5

$$\omega_2 = \left(\frac{b_2^f}{b_1^f + b_2^f} \right) \left(\frac{1 + a_1^f + a_2^f}{u_{final} - u_{init}} \right) g_{ss}^f - \frac{\nu_2}{u_{final} - u_{init}}$$

6 [0086] The present invention in one embodiment may be applied
7 towards modeling and control at the linear accelerator at SLAC.
8 The present invention further includes the development device
9 drivers that enable communication between the Data Interface of
10 the present invention (DI) and SLAC's EPICS that talks to the
11 lower level Distributed Control System at SLAC.

12 [0087] Any communication between the hardware and a control
13 system such as the one at SLAC is done through SLAC's EPICS
14 system, and therefore, the present invention includes a reliable
15 interface between the hardware and the control system.

16 [0088] The results from the modeling effort on the collected
17 data on SPEAR II are summarized in FIGURES 8, 9, and 10. A
18 quick look at the relevant data captured in the course of one
19 experiment where three manipulated variables were intentionally
20 moved in the course of the experiments: two corrector magnets
21 and one quadrupole magnet. The reading of Beam Position

1 Monitors is recorded as the controlled variables or output of
2 this experiment.

3 [0089] Screen capture 100 of the input/output variables from
4 the test data is provided in FIGURE 8. Note that the x and y
5 reading of one of the BPMs are chosen as the MVs are the ones
6 mentioned earlier, the tag name for which is clearly indicated
7 in the screen capture. FIGURE 8 evidences the clear correlation
8 between the MVs with the BPM. Another screen analytic is
9 provided in FIGURE 9 gives a better screenshot 110 of the
10 variation in variables.

11 [0090] FIGURE 10 provides yet another screen shot 120 where
12 the dots 122 are actual data points. A model of the nonlinear
13 input/output relationship was constructed using Pavilion's
14 Perfecter®. Due to simultaneous variation in manipulated
15 variables, the identification is rather difficult. Data is
16 manipulated (by cutting certain regions of data) to make sure
17 that the maximum accuracy in the identification of the
18 input/output behavior is captured.

19 [0091] FIGURE 10 displays one such input/output relationship
20 for the SPEAR Equipment at SLAC. This figure clearly shows the
21 nonlinear input/output relationship in the above-mentioned
22 model.

23 [0092] The present invention's capability in the design of
24 new adaptive control algorithms, identification of processes

1 with varying dynamics is clearly demonstrated. Further
2 development efforts will improve the developed algorithms to a
3 commercial quality code base.

4 [0093] In summary, the present invention provides a method
5 for controlling nonlinear control problems in operating
6 processes like a particle accelerator. The invention utilizes
7 modeling tools to identify variable input and controlled
8 variables associated with the process, wherein at least one
9 variable input is a manipulated variable input. The modeling
10 tools are further operable to determine relationships between
11 the variable inputs and controlled variables. A control system
12 that provides inputs to and acts on inputs from the modeling
13 tools tunes one or more manipulated variables to achieve a
14 desired controlled variable, which in the case of a particle
15 accelerator may be realized as a more efficient collision.

16 [0094] FIGURE 12 provides another illustration of the
17 relationship of the process 200 and the controller 202 and more
18 importantly the relationship of the models 204, 206 and 208
19 within the controller 202 to the control of the process 200. A
20 typical process has a variety of variable inputs $u(t)$ some of
21 these variables may be manipulated variable inputs 210 and some
22 may be measured disturbance variables 212 and some may be
23 unmeasured disturbance variables 214. A process 200 also
24 typically has a plurality of variable outputs. Some are

1 measurable and some are not. Some may be measurable in real-
2 time 220 and some may not 222. Typically, a control systems
3 objective is to control one of these variable outputs this
4 variable is can be called the control variable or controlled
5 variable. Additionally, to the controller the variable outputs
6 may be considered one of the variable inputs to the controller
7 or controller variable inputs 223. Typically but not
8 necessarily, a control system uses a distributed control system
9 (DCS) 230 to manage the interactions between the controller 202
10 and the process 200 - as illustrated in the embodiment in FIGURE
11 12. In the embodiment shown the controller includes a steady
12 state model 204 which can be a parameterized physical model of
13 the process. This model can receive external input 205
14 comprised of the desired controlled variable value. This may or
15 may not come from the operator or user (not shown) of the
16 process/control system 202. Additionally the embodiment
17 illustrates a steady state parameter model 206 that maps the
18 variable inputs u to the variable output(s) y in the steady
19 state model. Further, the embodiment illustrates a variable
20 dynamics model which maps the variable inputs u to the
21 parameters p of the parameterized physical model (steady state
22 model) of the process. In one embodiment of the invention
23 empirical modeling tools in this case NNs are used for the
24 Steady State parameter model and the variable dynamics parameter

1 models. Based on input received from the process these models
2 provide information to the dynamic controller 232 which can be
3 optimized by the optimizer 234. The Optimizer is capable of
4 receiving optimizer constraints 236 which may possibly receive
5 partial or possibly total modification from an external source
6 238 which may or may not be the operator or user (not shown) of
7 the process 200 or control system 202. Inputs 205 and 208 may
8 come from sources other than the operator or user of the control
9 system 202. The dynamic controller 232 provides the information
10 to the DCS 230 which sends provides setpoints for the
11 manipulated variable inputs 240 which is the output of the
12 controller 240.

13 [0095] Although the particle accelerator example is described
14 in great detail, the inventive modeling and control system
15 described herein can be equally applied to other operating
16 processes with comparable behavioral characteristics.

17 [0096] Although the present invention is described in detail,
18 it should be understood that various changes, substitutions and
19 alterations can be made hereto without departing from the spirit
20 and scope of the invention as described by the appended claims.