# Matematika pro informatiku

### Ústní zkouška

#### leden 2014

### Obsah

| Ι  | Algebra, teorie čísel, teorie grafů                                                                  | 3 |
|----|------------------------------------------------------------------------------------------------------|---|
| 1  | Grupoidy, pologrupy, monoid a grupy, základní vlastnosti a definice                                  | 3 |
| 2  | Podgrupy, generátory a podgrupy generované množinami                                                 | 3 |
| 3  | Cyklické grupy, generátory                                                                           | 3 |
| 4  | Homomorfizmus, izomorfizmus – vlastnosti a příklady izomorfních grupy                                | 3 |
| 5  | Problém diskrétního logaritmu v různých grupách, Diffie-Hellman Key Exchange                         | 4 |
| 6  | Tělesa, okruhy, obory integrity                                                                      | 7 |
| 7  | Konečná tělesa obecně, konečná tělesa s prvočíselným řádem                                           | 7 |
| 8  | Konečná tělesa neprvočíselného řádu, ireducibilní polynom, okruh polynomů                            | 7 |
| 9  | Základní vlastnosti kongruence, Eulerova a Fermatova věta, čínská věta o zbytcích, efektivní mosnění | 7 |
| 10 | Prvočísla a testování prvočíselnosti                                                                 | 7 |
| 11 | Bipartitní grafy, párování v bipartitním grafu                                                       | 7 |
| 12 | Stabilní párování                                                                                    | 7 |
| 13 | Bioinformatika: problémy spojené se sekvencováním DNA                                                | 7 |

OBSAH

| II         | Numerika, optimalizace, fuzzy matematika                                             | 7   |
|------------|--------------------------------------------------------------------------------------|-----|
| 14         | Limity a derivace funkcí více proměnných, gradient, Jacobiho matice, Hessián         | 7   |
| <b>15</b>  | Lokální a globální extrémy funkcí více proměnných                                    | 7   |
| 16         | Konstrukce Riemannova integrálu funkce jedné a více proměnných                       | 7   |
| <b>17</b>  | Výpočet Riemannova integrálu funkce jedné a více proměnných                          | 7   |
| 18         | Výpočet Riemannova integrálu funkce více proměnných                                  | 7   |
| 19         | Strojová čísla a reprezentace s pohyblivou řádovou čárkou                            | 7   |
| 20         | Chyby vznikající při výpočtech s pohyblivou řádovou čárkou                           | 7   |
| <b>2</b> 1 | Numerické metody řešení soustav lineárních rovnic                                    | 7   |
| 22         | Vlastní čísla a mocninná metoda                                                      | 7   |
| 23         | Typy optimalizačních úloh a optimalizačních metod                                    | 7   |
| 24         | Optimalizační metody pro spojité funkce                                              | 7   |
| <b>25</b>  | Optimalizace s omezeními                                                             | 7   |
| <b>26</b>  | Vzdálenost a další míry podobnosti                                                   | 7   |
| 27         | Fuzzy množiny a operace s nimi                                                       | 7   |
| <b>2</b> 8 | Přístupy k neurčitosti založené na pravděpodobnostních rozděleních: kopule, entropie | . 7 |
| <b>2</b> 9 | Kombinování neurčitosti pomocí fuzzy pravidlových systémů a fuzzy integrálů          | 7   |

#### Část I

# Algebra, teorie čísel, teorie grafů

# 1 Grupoidy, pologrupy, monoid a grupy, základní vlastnosti a definice

- Všechny mají společnou strukturu neprázdnou množinu objektu a binární operaci
- Značíme  $G = (M, \circ)$
- Důvod, proč se tímto zabýváme: pokud dokážeme nějaké tvrzení pro obecnou strukturu, bude toto tvrzení platit i pro všechny konkrétní struktury, které od ní "dědí"
  - Jedná se tedy o triviální důkaz asociativity

#### Hierarchie struktur:

- Grupoid uzavřenost nad operací
- Pologrupa asociativita  $((x \circ y) \circ z = x \circ (y \circ z))$
- Monoid neutrální prvek

$$- (\exists e \in M)(\forall a \in M)(a \circ e = a \circ e = a)$$

• Grupa – inverzní prvek

$$- (\forall a \in M)(\exists a^{-1} \in M)(a \circ a^{-1} = e)$$

• Abelovská grupa – komutativita  $(x \circ y = y \circ x)$ 

Tyto struktury od sebe skutečně "dědí", tj. každá pologrupa je grupoid, každý monoid je pologrupa atp.

Pokud máme zadanou dvojici "množina a operace" zjistíme, o co se jedná, jen postupným testováním.

<u>Klíčová slova:</u> Binární operace, neutrální prvek, inverzní prvek, Abelovská grupa, Cayleho tabulka, jednoznačné dělení, podgrupa.

## 2 Podgrupy, generátory a podgrupy generované množinami

### 3 Cyklické grupy, generátory

# 4 Homomorfizmus, izomorfizmus – vlastnosti a příklady izomorfních grupy

 Homomorfismus – zobrazení z jedné struktury do jiné stejného typu, které zachovává veškerou důležitou strukturu. • Izomorfismus – bijektivní (prostý a na) homomorfismus.

Kleinova grupa – nejmenší necyklická grupa. Jedná se o direktní součin dvou kopií cyklické grupy řádu 2.

$$V = (\mathbb{Z}_2 \times \mathbb{Z}_2, \ \circ)$$

Klíčová slova: Izomorfní grupa, bijekce, Kleinova grupa, symetrická grupa, grupa permutací

### 5 Problém diskrétního logaritmu v různých grupách, Diffie-Hellman Key Exchange

- **Diskrétní** celá čísla a konečné objekty. Diskrétní objekty jsou prezentovány pomocí konečných grafů a množin. "Diskrétní" je opak "spojitého".
- Logaritmus matematická funkce, která je inverzní k exponenciální funkci.

Neexistuje žádný rychlý algoritmus řešící problém diskrétního logaritmu, používá se proto v asymetrické kryptografii.

Def: Máme grupu  $\mathbb{Z}_p^{\times}$  řádu p-1,  $\alpha$  je nějaký její generátor a  $\beta$  je její prvek. Řešit problém diskrétního logaritmu znamená najít celé číslo  $1 \leq x \leq p-1$  takové, že

$$\alpha^x \equiv \beta \pmod{p}$$



Obrázek 1: Diffie-Hellman Key Exchange Schema

# 5 PROBLÉM DISKRÉTNÍHO LOGARITMU V RŮZNÝCH GRUPÁCH, DIFFIE-HELLMAN KEY EXCHANGE

• Díky této vlastnosti máme jednosměrnou (one-way) funkci pro asymetrickou kryptografii. Protože najít

$$\beta \equiv \alpha^x \pmod{p}$$

je jednoduché, pokud známe x,  $\alpha$  a p. Najít však x pokud známe  $\beta$  a  $\alpha$  je velmi obtížné. (Jinak řečeno: násobení a mocnění prvočísel je velmi rychlé a snadné).

- Inverzní operace k mocnění je diskrétní logaritmus.
- Na tomto principu je založena **RSA** (Rivest, Shamir, Adleman).

- 6 Tělesa, okruhy, obory integrity
- 7 Konečná tělesa obecně, konečná tělesa s prvočíselným řádem
- 8 Konečná tělesa neprvočíselného řádu, ireducibilní polynom, okruh polynomů
- 9 Základní vlastnosti kongruence, Eulerova a Fermatova věta, čínská věta o zbytcích, efektivní mosnění
- 10 Prvočísla a testování prvočíselnosti
- 11 Bipartitní grafy, párování v bipartitním grafu
- 12 Stabilní párování
- 13 Bioinformatika: problémy spojené se sekvencováním DNA

#### Část II

# Numerika, optimalizace, fuzzy matematika

- 14 Limity a derivace funkcí více proměnných, gradient, Jacobiho matice, Hessián
- 15 Lokální a globální extrémy funkcí více proměnných
- 16 Konstrukce Riemannova integrálu funkce jedné a více proměnných
- 17 Výpočet Riemannova integrálu funkce jedné a více proměnných
- 18 Výpočet Riemannova integrálu funkce více proměnných
- 19 Strojová čísla a reprezentace s pohyblivou řádovou čárkou
- 20 Chyby vznikající při výpočtech s pohyblivou řádovou čárkou
- 21 Numerické metody řešení soustav lineárních rovnic
- 22 Vlastní čísla a mocninná metoda
- 23 Typy optimalizačních úloh a optimalizačních metod
- 24 Optimalizační metody pro spojité funkce