

SEQUENCE LISTING

<110> Andrew D. Ellington, Michael P. Robertson, Kristen A. Marsh

<120> Allosterically Regulated Ribozymes

<130> 23239-301A

<140> 09/661,658

<141> 2000-09-14

<150> 60/212,097

<151> 2000-06-15

<160> 12

<170> PatentIn version 3.1

<210> 1

<211> 129

<212> DNA

<213> Artificial Sequence

<220>

<223> Engineered Aptazyme

<220>

<221> misc_feature

<223> Engineered Aptazyme

<400> 1

taatcttacc ccgaaattat atccagctgc atgtcaccat gcagagcaga ctatatctcc
60

aacttgtaa agcaagttgt ctatcgtttc gagtcacttg accctactcc ccaaaggat
120

agtgcgttag

129

<210> 2

<211> 131

<212> DNA

<213> Artificial Sequence

<220>

<223> Engineered Aptazyme

<220>

<221> misc_feature

<223> Engineered Aptazyme

<400> 2

gcctgagtt aaggtgactt atacttgtaa tctatctaaa cggggAACCT ctctagtaga
60

caatcccgta ctaaattata ccagcatcgt cttgatgcc ttggcagata aatgcctaac
120

gactatccct t
131

<210> 3
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Engineered Aptazyme

<220>
<221> misc_feature
<223> Engineered Aptazyme

<400> 3
gataatacga ctcactatacg gatatcaacgc tcagtagatg ttttcttggg ttaattgagg
60

cctgagtata aggtg
75

<210> 4
<211> 89
<212> DNA
<213> Artificial Sequence

<220>
<223> Engineered Aptazyme

<220>
<221> misc_feature
<223> Engineered Aptazyme

<400> 4
cttagctaca atatgaacta acgttagcata tgacgcaata tttaaacggta gcattatgtt
60

cagataaggt cgttaatctt accccggaa
89

<210> 5
<211> 131
<212> DNA
<213> Artificial Sequence

<220>
<223> Engineered Aptazyme

<220>
<221> misc_feature
<222> (77)..(77)
<223> N= A, C, T or G

<220>
<221> misc_feature
<222> (108)..(108)
<223> N= A, C, T or G

<400> 5
gcctgagttt aaggtgactt atactatgtaa tctatctaaa cggggAACCT ctcttagtaga
60

caatcccggtt ctaaatnata ccagcatcgt ttgtatgccc ttggcagnta aatgcctaac
120

gactatccct t
131

<210> 6
<211> 101
<212> DNA
<213> Artificial Sequence

<220>
<223> Engineered Aptazyme

<220>
<221> misc_feature
<223> Engineered Aptazyme

<400> 6
cttagctaca atatgaacta acgttagcata tgacgcaata ttAAACGGTA gtattatgtt
60

cagataaggt cgtaatctt accccggaat tctatccAGC t
101

<210> 7
<211> 270
<212> RNA
<213> Bacteriophage T4 (wild type)

<220>
<223> Group 1 theophylline-dependent (td) intron

<400> 7
uuggguuaau ugaggccuga guauaaggug acuuauacuu guaucuauc uaaacgggaa
60

accucucuag uagacaaucc cgugcuuau uguaggacug gddcbacaua aaugccuaac
120

gacauauccu uuggggagua gggucaagug acucgaaacg auagacaacu ugcuuuaaga
180

aguuggagau auagucugcu cugcauggug acaugcagcu ggauauaauu ccgggguaag
240

auuaacgacc uuaucuraac auaaugcuac
270

<210> 8

<211> 82

<212> RNA

<213> Artificial Sequence

<220>

<223> GpITh1P6.131 aptamer construct

<400> 8

uaaacgggga accucucuag uagacaaucc cgugcuuau uauaccagca ucgucuugau
60

gcccuuggca gauaaaugcc ua
82

<210> 9

<211> 84

<212> RNA

<213> Artificial Sequence

<220>

<223> GpITh1P6.133 aptamer construct

<400> 9

uaaacgggga accucucuag uagacaaucc cgugcuuau ugauaccagc aucgucuuga
60

ugccuuggc agcauaaaug ccua
84

<210> 10

<211> 40

<212> RNA

<213> Artificial Sequence

<220>

<223> portion of P6 region of the Group I ribozyme (Part I)

<400> 10

uaaacgggga accucucuag uagacaaucc cgugcuuau
40

<210> 11

<211> 30

<212> RNA
<213> Artificial Sequence

<220>
<223> Anti-theophylline aptamer

<400> 11
auaccagcau cgucuucaug cccuuggcag
30

<210> 12
<211> 10
<212> RNA
<213> Artificial Sequence

<220>
<223> portion of P6 region of the Group I ribozyme (Part II)

<400> 12
uaaaugccua
10