

THE UNIVERSITY OF AVIET CA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

December 18, 2003

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/420,065

FILING DATE: October 21, 2002

RELATED PCT APPLICATION NUMBER: PCT/US03/33354

7By Authority of the COMMISSIONER OF PATENTS AND TRADEMARKS

RECEIVED

2 9 DEC 2003

WIPO

PCT

M. SIAS

Certifying Officer

M. Thas

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

10-22 60420065 1021

PROVISIONAL APPLICATION COVER SHEE for filing a PROVISIONAL APPLICATION under 37 CFR 1.53(c). This is a n EXPRESSIMATE EABELENO # Docket Number: Type a plus sign EE928557898US (+) inside this PRI-0002 / PRD0054 LE OFEDEROSHETOctober 2172 2002 box-928557898USi INVENTOR(S)/APPLICANT(S) **GIVEN NAME** RESIDENCE (CITY AND EITHER STATE OR FAMILY NAME OR (FIRST AND MIDDLE [IF ANY]) **SURNAME** FOREIGN COUNTRY) Ann Barbier La Jolla, California Sandy Wilson San Diego, California Curt Mazur San Diego, California Additional inventors are being named on the _ separately numbered sheets attached hereto TITLE OF THE INVENTION (280 characters max) ASSAY FOR DETERMINING THE ACTIVITY OF FATTY ACID AMIDE HYDROLASE CORRESPONDENCE ADDRESS Scott E. Scioli WOODCOCK WASHBURN LLP One Liberty Place - 46th Floor Philadelphia PA 19103 Telephone (215) 568-3100 Facsimile (215) 568-3439 ENCLOSED APPLICATION PARTS (check all that apply) ✓ Specification Number of Pages 40 ✓ Claims (optional) ✓ Drawing(s) Number of Sheets 4 Other (specify) Sequence Listing pgs 1-14 **METHOD OF PAYMENT (check one)** ✓A check or money order, is enclosed to cover the Provisional filing fee: \$80.00 Small Entity \$160.00 Large Entity _ The Commissioner is hereby authorized to charge filing fee and credit Deposit Account Number: 23-3050 X The Commissioner is hereby authorized to charge Deposit Account 23-3050 any fee deficiency or credit account for any overpayment. The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. XX No. Yes, the name of the U.S. Government agency and the Government contract number are:

Respectfully submitted,

SIGNATURE

TYPED or PRINTED NAME Scott E. Scioli

Date: October 21, 2002

REGISTRATION NO. 47,930

(if appropriate)

Assay for Determining the Activity of Fatty Acid Amide Hydrolase

Field of the Invention

[0001] The present invention relates to methods for determining the activity of and identifying modulators of fatty acid amide hydrolases. More specifically, the invention relates to an assay, adaptable for high throughput screening, for compounds that alter fatty acid amide hydrolase activity.

Background

[0002] The identification of anandamide (N-arachidonoylethanolamine, AEA) as an endogenous ligand for the cannabinoid 1 receptor (Devane et al. (1992) Science 258:1946-1949) evoked much scientific interest in the function of bioactive lipids. Other examples of endogenous ligands are oleamide (cis-9,10-octadecenoamide), best known for its sleep-inducing properties (Cravatt et al. (1995) Science 268:1506-1509), and 2-arachidonoylglycerol, reported to be neuroprotective after brain injury (Panikashvili et al. (2001) Nature 413:527-531).

[0003] The main mechanism for the termination of the biological activity of anandamide is hydrolysis (Giuffrida et al. (2001) J. Pharmacol. Expt. Ther. 298:7-14); the existence of an anandamide transporter has also been proposed (Compton and Martin (1997) J. Pharmacol. Expt. Ther. 263:1138-1143).

[0004] The enzyme responsible for the hydrolysis of anandamide, deamide and 2-arachidonoylglycerol was cloned in 1996 and named fatty acid amide hydrolase or FAAH (Cravatt et al. (1996) Nature 384:87-87). FAAH (EC 3.5.1.4) is a membrane-bound enzyme with broad substrate specificity which is expressed in a wide variety of

50420065 102102 PROVISIONAL

human tissues and cell lines (for review see Ueda et al, Chem. Phys. Lipids. 108: 107-121, (2000); Fowler et al., Biochem. Pharmacol. 62: 517-526, (2001). [0005] Inhibitors of FAAH have been predicted to potentiate the effects of the endogenous cannabinoids and thereby promote sleep, muscle relaxation and analgesia (Fowler et al. (2001) Biochem. Pharmacol. 62:517-526). Efforts to identify useful inhibitors have been hampered by the lack of simple, reproducible assays suitable for high-throughput screening. Published methods include reversed phase HPLC (9) and thin-layer chromatography (Deutsch and Chin (1993) Biochem. Pharmacol. 46:791-796). A fluorescence displacement method has also been described (Thumser et al. (1997) Biochem. Pharmacol. 53:433-437). An additional assay relies on extraction of the hydrolysis product with a chloroform: methanol mixture (Maurelli et al. (1995) FEBS Lett. 377:82-86), followed by counting of radioactivity. However, the toxicity of the chloroform and the cumbersome physical manipulations of this method preclude the adaptation of this assay to a high-throughput format. [0006] There is a need in the art, therefore, for improved FAAH assays, particularly those which can be adapted to high throughput screening, for determining the activity of FAAH and for identifying modulators of FAAH.

SUMMARY OF THE INVENTION

[0007] In one aspect, the instant invention provides methods for assaying the activity and amount of fatty acid amide hydrolase (FAAH) based on differences in the physicochemical and binding properties of a FAAH substrate, and the products of its hydrolysis. For example, anandamide is hydrolyzed by FAAH to arachidonic acid and ethanolamine (Fig. 1). In brief, a substrate, for example H-anandamide (ethanolamine 1 - 3H), is incubated with a putative source of FAAH activity in a

PRI-0002

reaction mixture. The FAAH activity, where present, catalyzes the hydrolysis of the substrate to form at least one radiolabeled hydrolysis product; the example substrate ³H-anandamide is converted to labeled ethanolamine and unlabeled arachidonic acid. This labeled product and the labeled substrate are separated from each other and the loss of labeled substrate, or preferably, the formation of labeled product, is measured. In certain preferred embodiments, the assays are performed in parallel or in sets wherein assays conducted in the presence of compounds to be tested for their ability to modulate the FAAH activity are compared with those conducted in the absence of the compounds to be tested. In other preferred embodiments samples from patients can be assayed to determine if the FAAH activity is altered relative to a predetermined activity value.

[0008] In one aspect, the invention provides improved methods of measuring fatty acid amide hydrolase activity comprising combining a sample suspected of containing fatty acid amide hydrolase, with a labeled substrate of fatty acid amide hydrolase to form a reaction mixture; incubating the reaction mixture under conditions which allow the fatty acid amide hydrolase to hydrolyze the labeled substrate, thereby forming at least one labeled hydrolysis product; contacting the incubated reaction mixture with a selective binding material wherein the selective binding material binds either the labeled substrate or the labeled product, but not both, thereby forming a bound labeled complex; separating the bound labeled complex from the unbound labeled compound, thereby effectuating a separation of the labeled substrate from labeled product; and determining the amount of labeled substrate hydrolyzed or the amount of labeled hydrolysis product formed; thereby indicating the fatty acid amide hydrolase activity of the sample. The assay methods provided are adaptable for use in

60420065.10210E PROVISIONAL

high throughput screening systems and are contemplated to be used in drug discovery efforts.

[0009] In another aspect of the invention, methods are provided for identifying compounds which can modulate the activity of a FAAH enzyme. The methods comprise the steps of comparing the activity of a FAAH as assayed by the above method in the presence and in the absence of a test compound added to the reaction mixture; wherein a change in the activity of the fatty acid amide hydrolase indicates that the test compound modulates the activity of the fatty acid amide hydrolase. In various embodiments, the methods can be used to identify useful inhibitors or enhancers of FAAH activity. High throughput screening using the assay methods of the present invention will allow libraries of test compounds (for example, libraries produced by techniques of combinatorial chemistry) to be used in rational screening programs to identify inhibitors and enhancers of FAAH activity which are useful as candidates for drugs

[0010] In another aspect, the invention provides methods of determining altered FAAH activity in a patient. The methods comprise the steps of obtaining a sample containing cells from the patient; lysing the cells to form a cell lysate; combining the cell lysate with a labeled substrate of the fatty acid amide hydrolase, to form a reaction mixture; incubating the reaction mixture under conditions sufficient to allow a fatty acid amide hydrolase present in the cell lysate to hydrolyze the labeled substrate, thereby forming at least one labeled hydrolysis product; contacting the incubated reaction mixture with a selective binding material; wherein the selective binding material binds either the labeled substrate or a labeled hydrolysis product, but not both, thereby forming a bound labeled complex; separating the bound labeled

PRI-0002

complex from the unbound labeled compound, thereby effectuating a separation of the labeled substrate from labeled product; determining an amount of labeled substrate hydrolyzed, or labeled hydrolysis product formed, thereby indicating the fatty acid amide hydrolase activity of the sample; and comparing the activity of the sample from the patient with a predetermined value for activity, to determine if the patient has altered fatty acid amide hydrolase activity relative to the predetermined value for activity.

[0011] These and other aspects of the present invention will be described in further detail in the Detailed Description set forth below.

[0012] BRIEF DESCRIPTION OF THE FIGURES

[0013] Figure 1: Schematic diagram of a FAAH assay. The FAAH activity in T84 membranes converts anandamide [1-3H-ethanolamine] into radiolabeled ethanolamine and unlabeled arachidonic acid. The labeled anandamide and unlabeled arachidonic acid are selectively bound to charcoal in filterplates, whereas the radiolabeled ethanolamine is collected in the flow-through and counted.

[0014] Figure 2 depicts an embodiment of a FAAH assay method. The reaction

takes place in a reaction plate at room temperature. After 60 minutes, 60 μ l of the reaction mixture is transferred to a charcoal-filled filter plate. The filter plate is fitted on top of a Dynex plate; the assembly is then centrifuged for 5 minutes at 2000 rpm.

[0015] Figure 3: Arachidonic acid and anandamide, but not ethanolamine, bind to activated charcoal. Four different radiolabeled tracers were used: anandamide [1-³H-ethanolamine], anandamide [arachidonyl-5,6,8,9,11,12,14,15-³H], arachidonic acid [5,6,8,9,11,12,14,15-³H (N)] and ethanolamine ([2-¹⁴C] ethan-1-ol-2-amine hydrochloride). The tracers were incubated with membranes prepared from mouse

60420065.102102

PRI-0002

liver, T84 cells, HeLa cells or with vehicle, for 60 minutes at room temperature. The percentage (average of triplicate determinations \pm s.e.m.) of total radioactivity recovered in the flow-through is shown.

[0016] Figures 4A-4B: Characterization of a preferred assay. A: Time-course of hydrolysis of ³H-anandamide by FAAH at room temperature and at 37°C. The average of triplicate determinations ± s.e.m. is shown. B: Determination of K_m for FAAH. T84 cell membranes (3.5 μg protein per well) were incubated with a range of concentrations of ³H-anandamide. The reactions were carried out at room temperature in the presence or absence of inhibitors (either oleyl trimethylfluoro ketone or MAFP). The experiment where oleyl trimethylfluoro ketone was used to determine nonspecific binding is shown; the results with MAFP were comparable. Each point reflects the average of triplicate determinations ± s.e.m.

[0017] DETAILED DESCRIPTION OF THE INVENTION

[0018] The reference works, patents, patent applications, and scientific literature, including accession numbers to GenBank database sequences, that are referred to herein are hereby incorporated by reference in their entireties.

[0019] Various definitions are made throughout this document. Most words have the meaning that would be attributed to those words by one skilled in the art. Words specifically defined either below or elsewhere in this document have the meaning provided in the context of the present invention as a whole and as are typically understood by those skilled in the art. Any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.

PRI-0002

[0020] Standard reference works setting forth the general principles of recombinant DNA technology known to those of skill in the art include Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York (2002); Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Plainview, New York (2001); Kaufman et al., Eds., Handbook of Molecular and Cellular Methods in Biology and Medicine, CRC Press, Boca Raton (1995).

[0021] As used herein, a "label" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioisotopes and fluorescent labels. Examples of radioisotopes that may be used in the method of the invention include ³H and ¹⁴C.

[0022] As used herein, "purified" refers to at least partial separation of a molecule from other molecules with which it is normally associated. For example, a purified protein is a protein that is at least partially separated from other cellular material with which it is normally associated.

[0023] As used herein, the term "murine" means originating in a member of the family *Muridae*. A murine FAAH preferably originates in a mouse, or rat.

[0024] In a first aspect the invention provides methods of assaying a fatty acid amide hydrolase (FAAH). In a presently preferred embodiment, the method of assay comprises the steps of combining a sample suspected of containing a FAAH with a labeled substrate of FAAH to form a reaction; incubating the reaction mixture under conditions sufficient to allow the fatty acid amide hydrolase to hydrolyze the labeled substrate, forming one or more labeled hydrolysis products; contacting the incubated reaction mixture with a selective binding material; wherein the selective binding material binds either the labeled substrate or a labeled hydrolysis product, but not

PRI-0002

both, to form a bound labeled complex; separating the bound labeled complex from the unbound labeled compound, thereby effectuating a separation of the labeled substrate from labeled product; and determining an amount of labeled substrate hydrolyzed, or labeled hydrolysis product formed, thereby indicating the fatty acid amide hydrolase activity of the sample.

[0025] The sample, in preferred embodiments, is a biological sample, or a sample comprising biological material, in particular biological membranes. In other preferred embodiments, the sample is from a purification step in the purification of FAAH from a biological source. The sample comprises biological membranes or portions thereof, or comprises lipid bilayers, or artificial membrane systems, monolayers, vesicles or micelles. A sample in some embodiments comprises a purified or recombinant FAAH reconstituted into a phospholipid-containing reaction mixture.

[0026] The substrate may be any substrate, putative substrate, or substrate analog of FAAH. The assay is also adapted for use to determine the utility of a compound as a substrate of FAAH. Substrates preferred for use in various embodiments of the present invention include, but are not limited to endocannabinoids or analogs thereof, fatty acid ethanolamides or analogs thereof, fatty acid primary amides or analogs thereof, and analogs of any of the foregoing labeled with a detectable label. Presently preferred substrates of particular interest include, for example, anandamide, oleamide, and 2-arachidonoylglycerol.

[0027] The substrate may be radioisotopically labeled in any manner known in the art for labeling compounds for detection. Presently preferred isotopes, such as ³H or ¹⁴C, are readily detected via liquid scintillation counting and can facilitate adaptation of the assays for high throughput drug screening. Synthetic substrates so labeled are readily available commercially or can be synthesized.

PRI-0002

[0028] Other labels such as fluorescent labels capable of detection, for example fluorimetric detection, are also readily adapted to high throughput screening. Preferred fluorescent labels are detectable in biological systems with both proteins and nucleic acids present, therefore preferred labels when assaying cruder cell lysates and homogenates possess both excitation and emission optima which are not masked by these other biological components. In one embodiment the unhydrolyzed labeled substrate has identical fluorescent properties with the hydrolysis product. It is also possible to design substrates wherein hydrolysis results in a change in fluorescence, for example, where a dye-dye interaction in the unhydrolyzed molecule is required to maintain a ground state. Such substrates are useful in conjunction with the present invention. Colorimetric labels are also contemplated for use herein. Generally, appropriate labels are those which do not alter the substrate's susceptibility to hydrolysis by the enzyme and for which detection systems have been developed. Preferably the substrate is present at concentrations at vast excess relative [0029] to the concentration of the enzyme. Under such conditions classical enzyme kinetics can be used to determine a rate constant (K_{m)} and a velocity (Vmax) of the reaction. Kinetic studies are useful for mechanistic studies; they are also powerful tools for evaluating inhibitors (see below). Standard texts directed at those skilled in the art of enzyme kinetics such as Segel, I.H., Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (1993, Wiley-Interscience, ISBN 0471303097) provide complete guidance to establishing these parameters and

[0030] High throughput screening systems are known in the art. Such systems often involve the use of multiwell plates to increase the number of assays conducted

demonstrate the use, for example, of Lineweaver-Burke plots as graphical tools to

simplify the determination of the kinetic parameters.

PRI-0002

simultaneously from a few to a hundred, a few hundred or even a few thousand. Presently preferred high throughput screening adaptions of the methods of the present invention provide capability of screening about one hundred to about one or more thousand assays in a short time. Presently preferred high throughput screening systems include robotic components for example for sample handling, dispensing, reagent addition, and other functions to improve accuracy and eliminate the labor intensive aspects of large numbers of assays. Detection systems for high throughput screening programs are known to those of ordinary skill in the art. Preferred detection systems include, but are not limited to, scintillation counting (including, for example, solid and liquid scintillation for counting gamma or beta particles, or luminescent samples, filter counting, Cerenkov counting, and scintillating microplate counting), fluorescence detection (including, for example, intensity, fluorescence polarization, time-resolved fluorescence, fluorescence resonance energy transfer (FRET)), luminescence, and absorbance.

[0031] In a presently preferred embodiment, to achieve high-throughput screening, samples are placed on a multicontainer carrier or platform. A multicontainer carrier facilitates measuring reactions of a plurality of candidate compounds simultaneously. For illustration purposes, but not by way of limitation, a multi-well microplate, such as a 96 or a 384 well microplate, that can accommodate 96 or 384 different test reactions, is used as the carrier. Such multi-well microplates, and methods for their use in numerous assays, are both known in the art and commercially available through sources such as Sigma Chemical Co., BIOCHEMICAL ORGANIC COMPOUND AND DIAGNOSTIC REAGENTS, 2002, pages 2495-2511.

[0032] The methods of the present invention are adaptable to miniaturization techniques. Assays for purposes of high throughput screening are often conducted in

60420065 JOZIOE

PRI-0002

small volumes. Procedures are currently known to those of skill in the art of reducing volumes of assays in a variety of ways. Microfluidics and microcapillary methodologies now enable assays to be performed down to nanoliter quantities. It is to be understood that the basic principles of the methods and assays apply nothwithstanding the volume of the assay, or the manner in which the materials are measured or transported.

Preferred incubation conditions relate, for example, to enzyme stability. Temperature optimums are routine to determine given the specification of the assay and should be determined for a given enzyme and substrate combination for optimum results. Times and other conditions for incubation involve likewise routine determinations.

Preference is given to those conditions which result in linearity of the assay.

Presently preferred temperatures and times include room temperature for 1 hour, or 37 °C for 30 min, using FAAH from a variety of sources and using anadamide as a substrate. Standard texts directed at those skilled in the art of enzyme assays such as Segel, *supra*, provide complete guidance to optimizing assays, including the incubation conditions. Further characterization of the preferred embodiments is provided in the working examples.

[0034] The methods also comprise a step wherein the incubated reaction mixture is contacted with a selective binding material. It is important to note that the selective binding material preferred for this assay may vary with the substrate selected. The selective binding materials comprise materials which can readily be separated from the bulk reaction mixture by separation techniques which are known in the art. Effective separations can be based on differences in particle size, density, composition and magnetic susceptibility. Material is separated from a reaction

mixture by, for example, gravity settling, filtration (including, for example, membrane separations), centrifugation, A presently preferred method of contacting the incubated reaction mixture with a selective binding material comprises activated charcoal.

[0035] Where the substrate is anandamide, for example, activated charcoal binds, through adsorption, the substrate and one of the hydrolysis products, arachidonic acid. The other hydrolysis product, ethanolamine, does not adsorb to the activated charcoal. For preferred embodiments, the anandamide substrate is labeled on the ethanolamine moiety. The FAAH hydrolyzes the labeled anandamide into labeled ethanolamine and unlabeled arachidonic acid. After adsorption of the labeled substrate and the unlabeled arachidonic acid to the charcoal, the labeled ethanolamine in solution can be separated from the bound labeled substrate through a simple filtration step. This facilitates the measurement of product without interference from substrate. By removing some compounds through the binding process, the sample is less likely to interfere, for example by quenching, with the measurement of the labeled product. Existing technology has already been adapted for filtering large numbers of samples simultaneously, for example in multiwell filters. This attribute also is adaptable therefore to high throughput screening programs.

[0036] Although it is often preferred to measure the formation of product in the methods of this invention, assay conditions and selective binding material may be selected wherein the disappearance of substrate is measured. This indirect method is adaptable particularly where a partially purified or substantially purified enzyme is used, or where it is known that there is only one route by which substrate disappears from the reaction mixture. It is also preferred to measure substrate disappearance wherein a selective binding material which binds the substrate is not readily available. This can be useful in particular in embodiments where the substrate cannot

PRI-0002

practicably be bound to effect its separation from free hydrolysis product but where the hydrolysis product can be more readily bound to effectively separate it from the free labeled substrate. This gives a practitioner the flexibility to choose from a broader range of selective binding materials.

labeled hydrolysis product formed is preferably a direct method of quantitating the amount of label present. As discussed above, a variety of detection techniques are suitable for the present invention, and an appropriate detection method relates to the properties of the label present on the substrate or the product. Presently preferred for use with the methods of the invention are radioisotopically labeled substrates and fluorescently labeled substrates, quantified respectively by scintillation counting and fluorescence detection, respectively. In one preferred embodiment, the substrate is ³H- anandamide, the detection is of the product, ³H-ethanolamine, formed, and the detection is with a liquid scintillation counting plate reader from the filtrate of an assay conducted in a multiwell plate.

[0038] In another aspect of the invention, methods are provided for identifying modulators of fatty acid amide hydrolase. The methods comprise comparing the activity of fatty acid amide hydrolase as assayed by the method as described herein above, in the presence and in the absence of a test compound added to the reaction mixture; a change in the activity of the fatty acid amide hydrolase indicates that the test compound modulates the activity of the fatty acid amide hydrolase.

[0039] In preferred embodiments, the modulator to be identified is part of compound library, for example, a library of compounds formed by combinatorial chemistry, or a library of related compounds identified of synthesized as part of a research program. The putative modulators (i.e the compounds to be tested, test

.60420065.102102 PROVISIONAL

compounds) are preferably a small molecule with properties that would allow it to have utility for pharmaceutical compositions. Preferred modulators have low nonspecific toxicity, and high specificity for modulating FAAH.

[0040] Modulators include inhibitors of FAAH activity and activators of FAAH.

Assay parameters such as concentration of substrate, incubation conditions, and concentration of compounds to be tested may be varied to more fully appreciate the modulation effects of a test compound.

[0041] Preferred modulators that are inhibitors can be identified by their ability to decrease the activity of FAAH relative to that of a control reaction mixture lacking the test compound. Preferably, reaction volumes are maintained constant by adjusting the volume to compensate for the addition of a test compound where the addition of a test compound alters the reaction volume. Most preferably any difference in volume is compensated for by a corresponding addition of a volume, equal to the difference, of the vehicle in which the test compounds are dissolved.

[0042] In one aspect of the invention, the modulator identified is an inhibitor of the FAAH activity. Enzyme inhibitors include reversible and irreversible inhibitors. Preferred inhibitors in some embodiments are reversible inhibitors. Reversible inhibitors of FAAH include competitive inhibitors, which raise the apparent K_m of the reaction, noncompetitive inhibitors, which reduce the V_{max} of the enzyme, and inhibitors which affect both K_m and V_{max} , namely, mixed inhibitors and uncompetitive inhibitors. The type of inhibitor identified in screens can be determined through the use of kinetic assay studies according to the methods of the present invention. For the purposes of the present invention, however, any compound which decreases the apparent activity of the enzyme is considered a modulator of the inhibitor type. In

PRI-0002

other preferred embodiments inhibiting modulators include irreversible inhibitors as well as noncompetitive inhibitors, whose action may be irreversible.

[0043] In preferred embodiments the test compound inhibits the FAAH reproducibly, as determined by a statistically significant difference by an appropriate statistical test. Such tests are known to those of skill in the art of statistical determinations in scientific measurements, such as those of biological or biochemical systems. In some embodiments, the test compound inhibits fatty acid amide hydrolase activity about 1%, or at least about 2%, 3%, 4%,5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%, or about 95% or more, or up to 100%. In other preferred embodiments, the inhibitor statistically significantly increases the apparent K_m or decreases the V_{max} of the reaction.

In another aspect of the invention, the test compound increases fatty acid amide hydrolase activity. Various types of enzyme activators are known to those of skill in the art. Some activators are known to activate enzyme reactions by increasing the velocity of the reaction, others are known to alter the equilibrium attained.

Activators that combine reversibly with enzyme reaction components (for example, the enzyme, the substrate, or enzyme-substrate or enzyme-product intermediates) to increase the velocity of the reaction are presently preferred. Nonspecific activators may also increase the reaction rate. For purposes of the present invention, any compound that increases the apparent activity of the enzyme is considered a modulator of the activator type. For example many enzymes are known to have increased activity in the presence of certain anions. Other enzymes, in particular those acting on water-insoluble and charge-neutral molecules, are activated by negatively charged lipophilic molecules. Some membrane bound enzymes are known to be activated, for example, by specific phospholipids.

60420065.10210E

PRI-0002

herein.

[0045] In preferred embodiments the test compound activates the FAAH reproducibly, as determined by a statistically significant difference by an appropriate statistical test. Such tests are known to those of skill in the art of statistical determinations in scientific measurements, such as those of biological or biochemical systems. In some embodiments, fatty acid amide hydrolase activity is increased about 1%, or at least about 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%, or about 95% or more, or up to 100%. In other embodiments, activation is 10 30%, 30-50%, 50-70%, 70-90%, 90-110%. In some embodiments, the activator increases FAAH activity 100-300%, 300-500%, 500-700%, or 700-900% or more. [0046]In certain preferred embodiments of the methods of the invention, the fatty acid amide hydrolase is a crude cell lysate or a cell homogenate. In some embodiments the FAAH is isolated partially or substantially from cells. In other embodiments, the fatty acid amide hydrolase is recombinantly produced. The fatty acid amide hydrolase may be from any biological source including mammalian fatty acid amide hydrolases from such animals as pigs, rodents (including rats and mice), and humans, or it may be recombinant FAAH produced in any organism known to be useful for the production of recombinant proteins. Synthetic FAAH based on a particular known amino acid sequence, or on a consensus or combination of any number of sequences that result in an active FAAH is also contemplated for use

[0047] Examples of known amino acid sequences of fatty acid amide hydrolases from various biological sources include, for example, SEQ ID NOS: 2, 4, 6, and 8. Examples of known nucleic acid sequences encoding fatty acid amide hydrolases include SEQ ID NOS:1, 3, 5 and 7. Persons of ordinary skill in the art will recognize that such sequences and the modifications thereof which retain activity, can be used in

60420065.102102

accordance with the techniques found in references such as those provided above to generate, for example, biological FAAH, recombinant FAAH, overproduced FAAH, or genetically modified FAAH. It is contemplated herein that any form of FAAH is adapted for assay with the methods of the present invention.

[0048] In a preferred embodiment the assay is used to measure the activity and identify modulators of FAAH with altered amino acid sequences. Such altered FAAH can result from mutations in the genes which encode FAAH enzymes. In one embodiment, the assay is used to study the activity of, and identify modulators of, altered FAAH in connection with cannabis abuse. For example, a recent paper by Sipe et al. (PNAS 99:8394-8398, 2002) describes a strong association between the substitution of Thr for Pro at position 129, and substance abuse in humans. The use of the assay of the present invention may help identify FAAH from humans with higher specific activities or higher levels of net activity, thereby resulting in reduced concentrations of endocannabinoids in the brain, thereby leading to a tendency to seek external cannabinoids to compensate.

FAAH activity in a patient. The methods comprise the steps of obtaining a sample containing cells from the patient; lysing the cells to form a cell lysate; combining the cell lysate with a labeled substrate of the fatty acid amide hydrolase, to form a reaction mixture; incubating the reaction mixture under conditions sufficient to allow a fatty acid amide hydrolase present in the cell lysate to hydrolyze the labeled substrate, thereby forming at least one labeled hydrolysis product; contacting the incubated reaction mixture with a selective binding material; wherein the selective binding material binds either the labeled substrate or a labeled hydrolysis product, but not both, thereby forming a bound labeled complex; separating the bound labeled

60420065.102102

complex from the unbound labeled compound, thereby effectuating a separation of the labeled substrate from labeled product; determining an amount of labeled substrate hydrolyzed, or labeled hydrolysis product formed, thereby indicating the fatty acid amide hydrolase activity of the sample; and comparing the activity of the sample from the patient with a predetermined value for activity, to determine if the patient has altered fatty acid amide hydrolase activity relative to the predetermined value for activity.

Preferably, the fatty acid amide hydrolase activity from a sample of fluid [0050] or tissue originating from the patient is measured. Presently preferred are blood, lymph or tissue samples. In particularly preferred embodiments, the sample is from lymphocytes from the patient. In preferred embodiments, where the sample is from a woman, the results enable a physician to screen pregnant women for risk of miscarriage (spontaneous abortion) or to screen women seeking fertility treatment for risk of failure of in vitro fertilization procedures. In preferred embodiments, results from the patient's sample are compared to results from samples of normal individuals, particularly those comparably positioned in terms of demographic criteria. Results of the assays of the present method may be used to determine either or both of altered specific activity (FAAH activity per unit of FAAH mass) or altered total FAAH activity (net amount of product formed per time). For example, increases in activity can be due to increases in specific activity of the FAAH, for example by alteration of the active site via amino acid alteration, gene mutation and the like, or through alteration of the total amount of FAAH protein present, without a change in the specific activity.

[0051] In the methods of the invention, the fatty acid amide hydrolase may be substantially purified from the lymphocyte cell lysate. FAAH may be derived from

60420065.102102 PROVISIONAL

any source, such that the FAAH retains the potential for FAAH activity. For example, FAAH may be purified from cells expressing FAAH, FAAH may be produced in a recombinant system, including, but not limited to bacterial cells, yeast cells, insect cells, and mammalian cells. FAAH may be derived from any organism that produces FAAH. For example, FAAH may be derived from mammalian cells such as human cells, rodent cells (e.g., mouse and rat cells), or from any other organism that produces FAAH that has FAAH activity. Recombinant FAAH may be produced using techniques known in the art with any nucleic acid sequence encoding FAAH. Examples of cloned FAAHs include various mammalian FAAH such as, pig FAAH, rodent FAAH (e.g., mouse FAAH and rat FAAH), and human FAAH. DNÃ sequences encoding FAAH and polypeptide sequences of various FAAHs are included in the appended Sequence Listing.

[0052] FAAH may be purified by standard methods in the art. The FAAH preparation may be in association with cell membranes or artificial membranes, or may be substantially free of cellular material.

[0053] Throughout the specification, reference is made to certain publications and patents. The entireties of each of these references is incorporated herein and forms a part of this disclosure.

[0054] EXAMPLES

[0055] Example 1

[0056] Radiolabeled anandamide [1-3H-ethanolamine] was obtained from American Radiolabeled Chemicals (10-20 Ci/mmol, catalog number ARC-626; St. .

PRI-0002

originally done at 37°C for 30 min; but subsequent experiments indicated that the enzyme displayed good activity at room temperature, and experiments were performed at room temperature for 60 minutes unless otherwise indicated.

[0059] During the one hour incubation, 96-well Multiscreen filter plates (catalog number MAFCNOB50; Millipore, Bedford, Massachusetts, USA) were loaded with 25 μl activated charcoal (Multiscreen column loader, catalog number MACL09625, Millipore) and washed once with 100 μl methanol. Also during the incubation, 96-well DYNEX MicroLite plates (catalog number NL510410) were loaded with 100 μl MicroScint40 (catalog number 6013641, Packard Bioscience, Meriden, Connecticut, USA). After the one hour incubation, 60 μl of the reaction mix was transferred to the charcoal plates, which were then assembled on top of the DYNEX plates using Centrifuge Alignment Frames (catalog number MACF09604, Millipore). The unbound labeled ethanolamine was centrifuged through to the bottom plate (5 min at 2,000 rpm), which was preloaded with the scintillant, as described above. The plates were sealed and left at room temperature for 1 hour before counting on a Hewlett Packard TopCount. For determination of K_m values, 1 μM ³H-AEA was combined with 30 μM unlabeled AEA and serial 2-fold dilutions were made.

[0060] Uncleaved ³H-anandamide, as well as the unlabeled arachidonic acid, is absorbed by the charcoal. In contrast, the labeled ³H- ethanolamine flows through the charcoal mini-columns into 96 well counting plates when a vacuum or centrifugation is applied. The 96 well plates can then be read on a Hewlett Packard TopCount (Fig.2.)

[0061] Charcoal selectively binds anandamide and arachidonic acid, but not ethanolamine:

PRI-0002 PROVISIONAL

originally done at 37°C for 30 min; but subsequent experiments indicated that the enzyme displayed good activity at room temperature, and experiments were performed at room temperature for 60 minutes unless otherwise indicated.

During the one hour incubation, 96-well Multiscreen filter plates (catalog number MAFCNOB50; Millipore, Bedford, Massachusetts, USA) were loaded with 25 μl activated charcoal (Multiscreen column loader, catalog number MACL09625, Millipore) and washed once with 100 μl methanol. Also during the incubation, 96-well DYNEX MicroLite plates (catalog number NL510410) were loaded with 100 μl MicroScint40 (catalog number 6013641, Packard Bioscience, Meriden, Connecticut, USA). After the one hour incubation, 60 μl of the reaction mix was transferred to the charcoal plates, which were then assembled on top of the DYNEX plates using Centrifuge Alignment Frames (catalog number MACF09604, Millipore). The unbound labeled ethanolamine was centrifuged through to the bottom plate (5 min at 2,000 rpm), which was preloaded with the scintillant, as described above. The plates were sealed and left at room temperature for 1 hour before counting on a Hewlett Packard TopCount. For determination of K_m values, 1 μM ³H-AEA was combined with 30 μM unlabeled AEA and serial 2-fold dilutions were made.

[0060] Uncleaved ³H-anandamide, as well as the unlabeled arachidonic acid, is absorbed by the charcoal. In contrast, the labeled ³H- ethanolamine flows through the charcoal mini-columns into 96 well counting plates when a vacuum or centrifugation is applied. The 96 well plates can then be read on a Hewlett Packard TopCount (Fig.2.)

[0061] Charcoal selectively binds anandamide and arachidonic acid, but not ethanolamine:

PRI-0002

[0062] Four different radioactive tracers were used to explore the binding characteristics of the charcoal used in the assay: two tritiated forms of anandamide (labeled either on the ethanolamine moiety; anandamide [1-3H-ethanolamine], or on the arachidonic acid moiety; arachidonic acid [5,6,8,9,11,12,14,15-3H (N)]), as well as tritiated arachidonic acid, and ¹⁴C-labeled ethanolamine. Specific amounts of these tracers were incubated with membrane preparations, added to the pre-washed charcoal and recovered by centrifugation, as described in the methods. The recovered radioactivity was counted and expressed as percentage of the amount added. As shown in Fig. 3, when no membranes were present, *i.e.*, there was no FAAH-mediated conversion of anandamide to arachidonic acid plus ethanolamine, neither of the two labeled forms of anandamide could be detected in the flow-through, indicating that the tracers were bound to the charcoal. Tritiated arachidonic acid was also absorbed onto the charcoal and could not be detected in the flowthrough. Of the four tracers used, only the ¹⁴C-ethanolamine could be recovered.

[0063] It is known that HeLa cells, a human carcinoma cell line, do not express FAAH (Ueda et al. (2000) Chem.Phys.Lipids. 108:107-121). Therefore, this cell line was used as a negative control, and to investigate the possible contribution of non-FAAH enzymes to the hydrolysis of anandamide. There was essentially no recovery of radioactivity after incubation of ³H-anandamide with HeLa cell membranes, confirming the absence of FAAH (Fig. 3).

[0064] When the tracers were incubated with membranes prepared from mouse liver or T84 cells, good recovery of radioactivity was found for the anandamide labeled on the N-terminus of the amide (³H-ethanolamine), but not for the anandamide carrying the tritium label on the hydrocarbon chain of the fatty acid (³H-AA). All experiments consistently showed that anandamide and arachidonic acid, in

60420065,102102 PROVISIONAL

contrast to ethanolamine, were absorbed onto the charcoal column. Therefore, when radiolabeled anandamide is incubated with a cell lysate containing FAAH the radioactivity recovered in the flow-through must be attributed to the radiolabeled ethanolamine. This experiment indicates that it is possible to separate anandamide and ethanolamine using charcoal. Other products, such as SAX and C18 resin were also tested, but were less effective (not shown).

[0065] Characterization of the FAAH assay:

[0066] FAAH activity is found in a large variety of cells. In rodents, the liver, followed by the brain, seems to have the highest expression of FAAH, whereas in humans, the expression is highest in the pancreas and brain, but lower in the liver (Ueda et al. (2000) Chem. Phys. Lipids. 108:107-121). The expression of human FAAH mRNA in T84 cells was found by expression profiling using DNA microarrays (not shown) and confirmed by subsequent experiments.

[0067] The signal output of the assay was determined to be linear in the range of 0.42-3.5 μg/well T84 membrane. Since an embodiment of the invention is a HTS-compatible assay, it was verified that the reaction was linear over more than 1 hour at the amount of protein used. As shown in Figure 4 A, the rate of the reaction at room temperature was linear over a period of 90 minutes when 3.5 μg/well protein was used. This experiment was performed both at room temperature and at 37°C, with the enzyme being slightly more active at the higher temperature, as expected. For the performance of HTS assays, an incubation period of 1 hour at room temperature and a protein amount of 3.5 μg/ well was chosen based on these results.

[0068] Kinetic analysis of FAAH activity:

[0069] Kinetic analyses of the hydrolysis of anandamide by FAAH in T84 human colorectal carcinoma cells demonstrated a K_m of $1.1\pm0.17~\mu M$. (Fig. 4 B). This is close to the value that has been reported for human brain (2 μM , see Maccarrone *et al.* (Maccarrone *et al.* (1999) *Anal. Biochem.* 267:314-318)). Overall, the reported K_m values in the literature for FAAH reactions range widely, from 0.8 to 80 μM , depending on the tissue, species and method used (Fowler *et al.* (2001) *Biochem. Pharmacol.* 62:517-526). For instance, Desamaud *et al.* (Desamaud *et al.* (1995) *J. Biol. Chem.* 270, 6030-6035) found a K_m of 12.7 μM using rat brain microsomes. In the N18 mouse neuroblastoma cell line, the K_m was determined to be 9.0 μM (Maurelli *et al.* (1995) *FEBS Lett.* 377:82-86). Apart from species differences, the variability in these values has been ascribed to the observation that both the substrate and product of this enzyme can form micelles, which may affect the enzyme activity (Fowler *et al.* (2001) *Biochem. Pharmacol.* 62:517-526).

[0070] Validation of the FAAH assay using reference compounds:

[0071] Several of the FAAH inhibitors that have been described in the literature were tested in the assay to validate its ability to identify inhibitors. Of the inhibitors that are commercially available, methyl arachidonyl fluorophosphate (MAFP), which is also an inhibitor of cytosolic phospholipase A₂, is the most potent, with reported IC₅₀ values, of 1-3 nM (Ueda et al. (2000) Chem. Phys.Lipids 108, 107-121; Deutsch et al. (1997) Biochem. Pharmacol. 53, 255-260). Its potency as an inhibitor of FAAH was confirmed with the determination of an IC₅₀ value of 0.8 nM.

[0072] Oleyl trifluoromethyl ketone, a transition-state inhibitor, has also been reported to be a potent inhibitor of FAAH, with an IC₅₀ of 73.3 nM in the studies here

PRI-0002

presented, it was in the same range as the IC₅₀ values of 28 - 41 nM found by Tiger et al. (2000; Biochem. Pharmacol. 59, 647-653).

[0073] Phenylmethanesulfonyl fluoride, an inhibitor of serine proteases, was shown to be an inhibitor of FAAH, although with a low potency. Its pIC50 for the inhibition of rat brain FAAH in another group was between 5.92 and 4.16, depending on the pH (Holt et al. (2001) Br. J. Pharmacol. 133, 513-520). At a concentration of 100 μM, it abolished anandamide hydrolysis in N18 mouse neuroblastoma cells (Maurelli et al. (1995) FEBS Lett. 377, 82-86). It was used at a concentration of 1.5 mM by Deutsch et al. (1993; Biochem. Pharmacol. 46, 791-796) to block FAAH activity in neuroblastoma and glial cells. At 25 μM, it inhibited the hydrolysis of rat brain microsomal anandamide by 48 % (Desarnaud et al. (1995) J. Biol. Chem., 270, 6030-6035). The IC50 value (16 μM) obtained in this work thus corresponds well to the numbers reported in the literature.

[0074] Finally, product inhibition was tested by using the FAAH products oleic acid and arachidonic acid. Maurelli et al. (1995; FEBS Lett. 377, 82-86) found that 100 µM anandamide abolished the activity of FAAH. In this work, these compounds inhibited FAAH activity with IC₅₀ values in the low micromolar range (Table 1).

[0075] These results confirm that the assay provides a robust method for the evaluation of FAAH activity. The assay was successfully validated using reference inhibitors. As the assay may be performed simultaneously in multiple reactions, such as in a 96 well plate, for example, the assay is adaptable for high-throughput screening of compound collections as well as natural product or combinatorial libraries.

Table 1. Activity of known FAAH inhibitors in T84 membranes

COMPOUND	IC ₅₀ (nM)	Literature (ref)
Methyl arachidonyl fluorophosphate	0.8 ± 0.7	2.5 (1) 1-3 (2)
Oleyl trifluoromethyl ketone	73.3 ± 19.8	39 ⁽³⁾ 24-41 ⁽⁴⁾
Phenylmethylsulfonyl fluoride	15978 ± 8863	1200-69000
Arachidonic acid	931.4 ± 255.4	_
Oleic acid	1936 ± 401	-

The average ± S.E. of values obtained in 2-5 experiments, each done in triplicate, is given. The numbers in the column on the right refer to literature data. References: (1): Deutsch et al. Biochem. Pharmacol. 1997, 53: 255-260. (2): Ueda et al. Chem. Phys.Lipids 2000, 108: 107-121. (3) Fowler et al. Br. J. Pharmacol. 2000, 131: 498-504. (4) Tiger et al. Biochem. Pharmacol. 2000, 59:647-653. (5) Holt et al. Br. J. Pharmacol. 2001, 133: 513-520.

The foregoing description, examples and accompanying figures generally describe the invention. The description is for purposes of providing illustrations; the present invention is not to be limited by the specific embodiments described herein. One of skill in the art will appreciate that various modifications of the invention may be made in addition to those described herein. Such modifications are intended to fall within the scope of the appended claims.

60420065.102102 PROVISIONAL

What is claimed is:

1. A method of assaying the activity of a fatty acid amide hydrolase comprising the steps of:

combining a sample suspected of containing a fatty acid amide hydrolase, with a labeled substrate of the fatty acid amide hydrolase, to form a reaction mixture;

incubating the reaction mixture under conditions sufficient to allow the fatty acid amide hydrolase to hydrolyze the labeled substrate, thereby forming at least one labeled hydrolysis product;

contacting the incubated reaction mixture with a selective binding material; wherein the selective binding material binds either the labeled substrate or a labeled hydrolysis product, but not both, thereby forming a bound labeled complex;

separating the bound labeled complex from the incubated reaction mixture; and

determining an amount of labeled substrate hydrolyzed, or labeled hydrolysis product formed, thereby indicating the fatty acid amide hydrolase activity of the sample.

- 2. The method of claim 1 wherein the sample comprises biological membranes, lipid bilayers, or micelles.
- 3. The method of claim 1 wherein the substrate is an endocannabinoid, a fatty acid ethanolamide or a fatty acid primary amide, or an analog of the foregoing.
- 4. The method of claim 1 wherein the substrate is anandamide.

60420065.102102 PROVISIONAL

5.	The method of claim 1	wherein the substrate is oleamide	
----	-----------------------	-----------------------------------	--

- 6. The method of claim 1 wherein the substrate is 2-arachidonoylglycerol.
- 7. The method of claim 1 wherein the substrate is labeled with a radioisotope.
- 8. The method of claim 7 wherein the radioisotope is ³H or ¹⁴C.
- 9. The method of claim 1 wherein the substrate is labeled with a fluorescent label.
- 10. The method of claim 1 wherein the selective binding material comprises carbon.
- 11. The method of claim 8 wherein the selective binding material is activated charcoal.
- 12. The method of claim 9 wherein the activated charcoal comprises a filter.
- 13. The method of claim 1 wherein the selective binding material binds the labeled substrate but not the labeled product.
- 14. The method of claim 1 wherein the separating step comprises filtration, gravity settling or centrifugation.

- 15. The method of claim 1 wherein the determining step is performed via liquid scintillation counting or by measurement of fluorescence energy.
- 16. The method of claim 1 conducted in a multiwell plate.
- 17. The method of claim 1 comprising at least a portion of a high throughput screening program.
- 18. The method of claim 1 wherein the method is conducted in conjugation with a drug discovery effort.
- 19. A method of identifying a compound that modulates the activity of a fatty acid amide hydrolase comprising the steps of:

comparing the activity of a fatty acid amide hydrolase as assayed by the method of claim 1, in the presence and in the absence of a test compound added to the reaction mixture;

wherein a change in the activity of the fatty acid amide hydrolase indicates that the test compound modulates the activity of the fatty acid amide hydrolase.

- 20. The method of claim 19 wherein the test compound is selected from a library of compounds.
- 21. The method of claim 19 wherein the test compound inhibits the activity of the fatty acid amide hydrolase activity.

- 22. The method of claim 21 wherein said fatty acid amide hydrolase activity is inhibited at least about 5%.
- 23. The method of claim 21 wherein said fatty acid amide hydrolase activity is inhibited at least about 20%.
- 24. The method of claim 21 wherein said fatty acid amide hydrolase activity is inhibited at least about 50%.
- 25. The method of claim 21 wherein said fatty acid amide hydrolase activity is inhibited at least about 80%.
- 26. The method of claim 21 wherein said fatty acid amide hydrolase activity is inhibited at least about 95% or more.
- 27. The method of claim 21 wherein said test compound increases said fatty acid amide hydrolase activity.
- 28. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased at least about 5%.
- 29. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased at least about 30%.
- 30. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased at least about 50%.

- 31. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased at least about 70%.
- 32. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased at least about 100%.
- 33. The method of claim 27 wherein said fatty acid amide hydrolase activity is increased between about two-fold to ten-fold.
- 34. The method of claim 19, which comprises the use of a multi-well plate.
- 35. The method of claim 19 conducted in a multiwell plate.
- 36. The method of claim 19 comprising at least a portion of a high throughput screening.
- 37. The method of claim 19 wherein the method is conducted in conjugation with a drug discovery effort.
- 38. The method of claim 1 wherein said fatty acid amide hydrolase is a mammalian fatty acid amide hydrolase.
- 39. The method of claim 1 wherein said fatty acid amide hydrolase is a porcine fatty acid amide hydrolase.

60420065.102102 PROVISIONAL

- 40. The method of claim 1 wherein said fatty acid amide hydrolase is a rodent fatty acid amide hydrolase.
- 41. The method of claim 1 wherein said fatty acid amide hydrolase is a murine fatty acid amide hydrolase.
- 42. The method of claim 1 wherein said fatty acid amide hydrolase is a rat fatty acid amide hydrolase.
- 43. The method of claim 1 wherein said fatty acid amide hydrolase is a mouse fatty acid amide hydrolase.
- 44. The method of claim 1 wherein said fatty acid amide hydrolase is a human fatty acid amide hydrolase.
- 45. A method for determining altered fatty acid amide hydrolase activity in a patient comprising:

obtaining a sample containing cells from the patient;

lysing the cells to form a cell lysate;

combining the cell lysate with a labeled substrate of the fatty acid amide hydrolase, to form a reaction mixture;

incubating the reaction mixture under conditions sufficient to allow a fatty acid amide hydrolase present in the cell lysate to hydrolyze the labeled substrate, thereby forming at least one labeled hydrolysis product;

60420065.102102

contacting the incubated reaction mixture with a selective binding material; wherein the selective binding material binds either the labeled substrate or a labeled hydrolysis product, but not both, thereby forming a bound labeled complex;

separating the bound labeled complex from the incubated reaction mixture;

determining an amount of labeled substrate hydrolyzed, or labeled hydrolysis

product formed, thereby indicating the fatty acid amide hydrolase activity of the

sample; and

comparing the activity of the sample from the patient with the activity of a to a predetermined value for activity, to determine if the patient has altered fatty acid amide hydrolase activity relative to the predetermined value for activity.

- 46. The method of claim 45 wherein said patient is female.
- 47. The method of claim 46 wherein the female is pregnant or is seeking fertility treatment.
- 48. The method of claim 45 wherein the sample comprises blood, tissue or body fluid.
- 49. The method of claim 46 wherein the sample comprises lymphocytes.
- 50. The method of claim 45 wherein the cells are homogenized.
- 51. The method of claim 45 wherein the fatty acid amide hydrolase activity present in the cell lysate is partially or substantially purified from the sample.

60420065 . 102102 PROVISIONAL

52. The method of claim 45 wherein the predetermined determined value is from a control assay, a prior or subsequent sample from the patient, a sample from a normal individual, a sample from another patient, a standard FAAH, or a predetermined value.

Pig FAAH Nucleic Acid Sequence (SEQ ID NO:1)

cggtcctcgg tgggagatca tggtgcagga agaactgtgg gctgcgttct eeggeeete eggggttgee etggeetget gettggtgge ageggeettg qccctqcqtt ggtccagtcq ccqqatqqcq cqqqcqcqq cqqccqqqc gcgacagagg cagcaagcgg ccctggagac catggacaag gcggcgcaqc getteegget ceagaacece gatetggaet eggagatget getggeeetg ccactgcctc agctggtaca gaaggtacga agtggggagc tgtctccaga ggctgtgctc ttttcctacc tgcaaaaggc ctgggaagtg aacagaggga ceaactgcgt gaccacctac ctggcagact gtgaggctca gctgtgccag gcgcccgggc agggcctgct ctacggtgtc cccgtcagcc tcaaggagtg cttcagctgc aagggccatg actccacgct gggcttgagc cggaaccagg ggacaccagc agaatgtgac tgcgtggtgg tgcaggtgct gaaactgcag ggtgctgtgc ctttcgtgca caccaacgtc ccccagtcca tgttcagcta tgactgcagt aacccctct ttggccagac cacgaaccca tggatgtcgt ccaagagccc gggcggctcc tcgggaggtg agggggccct cattgctqct ggaggetece cactgggett aggeacegae ategggggea geateegett tccctccgcc ttctgtggca tctgcggcat caaacccacg gggaaccgca tcagcaagag tggtctgaag ggctctgtct atggacaggt agcagtgcag ctctcagtgg gccccatggc gcgggacgtg gagagcctgg ccctgtgcct gcgtgcgctg ctgtgcgaag acatgttccg cctggacccc acggtgcctc ccctgccctt caacgaggag gtctacgcaa gctctcggcc cctgcgtgtc gggtattatg agaccgacaa ctacaccatg cccacgccgg ccatgaggcg ggccctgctg gagaccaagc ggagccttga ggctgcgggc cacacgctga ttcccttcct gccggccaac ataccccacg ctctggaggc cctgtcaacg ggcgggctct tcagtgatgg tgggaagagg ttgctacaga acttcgaagg cgattacgtg gactcctgct taggggacct gatctcaatt ctgaggctgc ccaaatggct taaaggactg ctggctttca tgctgaggcc tctgctccca aggttggcag gctttctcag cagcctgagg cctcggtcgg ctggaaagct ctgggaactg cagcacgaga ttgagatgta ccgtcactcc gtgattgccc agtggcgagc gctggacctg gatgtggtgc taacccccat gctgagccct gccctagact tgaatgcccc aggcaaggcc acaggggccg tcagctacac gctgctctac aactgcctgg acttccccgc gggggtggtg cctgtcacca cggtgactgc cgaggacgag gcccagatgg agcattacaa gggctacttt ggggacattt gggacaaggt ggtgcagaag gccatgaaga ggagcgtggg gctgcctqtq qccqtqcaqt qtqtqqctct qccctqqcaq qaqqaqctqt gtttgcggtt catgcgggag gtggagcgac tgatggctcc tgggcggcag ccctcctgac cgctgcccgc ccggcccccc aggacctgag acccactgga tccgcgccca gcggagtcag gacacaactg ccaccgtgca agaaaatgtt caacctcagg cagaggette eeggtetete eecetegeee etgecagaag cccagaacca ctgagtctgg accttgctct tcccgtggtc cctgctctgc cctgaccccg ccaatgtggc agctagtggg tatgacatgg caaaggcccc ccaaccgtca aaaaccggtt cctggtctcc atactttctg gcagtcgttg ttagggcagt gggggttgga gacctgacct tctggaaccc gactccagcc atgtccgtct cgtgctgcag aagcttctct ggtcctcgtc actcacgggc agacacegge tteteegagt gggeettgea geeeaggaet teaceeegee gccccagcc taagccctac tttgcgaggc attgtcttct ctcctgccct ctgctgaggg tgccctttct gctcctctac cattaaatcc tttgaggccc

Pig FAAH Amino Acid Sequence (SEQ ID NO:2)

MVQEELWAAF SGPSGVALAC CLVAAALALR WSSRMARGA AARARQRQQA ALETMDKAAQ RFRLQNPDLD SEMLLALPLP QLVQKVRSGE LSPEAVLFSY LQKAWEVNRG TNCVTTYLAD CEAQLCQAPG QGLLYGVPVS LKECFSCKGH DSTLGLSRNQ GTPAECDCVV VQVLKLQGAV PFVHTNVPQS MFSYDCSNPL FGQTTNPWMS SKSPGGSSGG EGALIAAGGS PLGLGTDIGG SIRFPSAFCG ICGIKPTGNR ISKSGLKGSV YGQVAVQLSV GPMARDVESL ALCLRALLCE DMFRLDPTVP PLPFNEEVYA SSRPLRVGYY ETDNYTMPTP AMRRALLETK RSLEAAGHTL IPFLPANIPH ALEALSTGGL FSDGGKRLLQ NFEGDYVDSC LGDLISILRL PKWLKGLLAF MLRPLLPRLA GFLSSLRPRS AGKLWELQHE IEMYRHSVIA QWRALDLDVV LTPMLSPALD LNAPGKATGA VSYTLLYNCL DFPAGVVPVT TVTAEDEAQM EHYKGYFGDI WDKVVQKAMK RSVGLPVAVQ CVALPWQEEL CLRFMREVER LMAPGRQPS

Mouse FAAH Nucleic Acid Sequence (SEQ ID NO:3)

atggtgctga gcgaagtgtg gaccgcgctg tctggactct ccggggtttg cctagcctgc agcttgctgt cggcggcggt ggtcctgcga tggaccagga gccagaccgc ccggggcgcg gtgaccaggg cgcggcagaa gcagcgagcc ggcctggaga ccatggacaa ggcggtgcag cgcttccggc tgcagaatcc tgacctggat tcagaggcct tgctggctct gccctgctc caactggtac agaagttaca gagtggggaa ctgtccccag aagctgtgct ctttacctac ctgggaaagg cctgggaagt gaacaaaggg accaactgtg tgacctccta totgactgac tgtgagactc agctgtccca ggccccacgg cagggcctgc tctatggcgt ccccgtgagc ctcaaggaat gcttcagcta caagggccat qcttccacac tqqqcttaaq tttqaacqaq qqtqtqacat cqqaqaqtqa ctgtgtggtg gtgcaggtac tgaagctgca gggagctgtg ccctttgtgc acaccaacgt ccccagtic atgetaagct atgactgcag taaccccctc tttggccaga ccatgaaccc gtggaagccc tccaagagtc caggaggttc ctcagggggt gaggggctc tcattggatc tggaggctcc cctctgggtt taggcactga categgegge ageateeggt teeettetge ettetgtgge atctgtggcc tcaagcctac tgggaaccgc ctcagcaaga gtggcctgaa gagctgtgtt tatggacaga cagcagtgca gctttctgtt ggccccatgg cacgggatgt ggatagcctg gcattgtgca tgaaagccct actttgtgag qatttqttcc qcttqqactc caccatcccc cccttqccct tcagggagga gatetacaga agttetegae ceettegtgt gggatactat gaaactgaca actacaccat gcccactcca gccatgagga gggctgtgat ggagaccaag cagagteteg aggetgetgg ceaeaegetg gteeeettet taceaaacaa cataccttat gccctggagg tcctgtcggc aggtgggctg ttcagtgatg gtggctgctc ttttctccaa aacttcaaag gcgactttgt ggatccctgc ttgggggacc tggtcttagt gctgaagctg cccaggtggt ttaaaaaaact gctgagcttc ctgctgaagc ctctgtttcc tcggctggca gcctttctca acagtatgtg tcctcggtca gccgaaaagc tgtgggaact gcagcatgag attgagatgt atcgccagtc cgtcattgcc cagtggaagg caatgaactt ggacgtggtg ctaaccccca tgctgggtcc tgctctggat ttgaacacac cgggcagagc cacaggggct atcagctaca ctgttctcta taactgcctg gacttccctg cggggtggt gcctgtcacc actgtgaccg ctgaggacga tgcccagatg gaacactaca aaggctactt tggggatatg tgggacaaca ttetgaagaa gggcatgaaa aagggtatag geetgeetgt ggetgtgeag tgcgtggctc tgccctggca ggaagagctg tgtctgcggt tcatgcggga

ggtggaacqg ctgatgaccc ctgaaaaqcg gccatcttga

Mouse FAAH Amino Acid Sequence (SEQ ID NO:4)

MVLSEVWTAL SGLSGVCLAC SLLSAAVVLR WTRSQTARGA VTRARQKQRA GLETMDKAVQ RFRLQNPDLD SEALLALPLL QLVQKLQSGE LSPEAVLFTY LGKAWEVNKG TNCVTSYLTD CETQLSQAPR QGLLYGVPVS LKECFSYKGH ASTLGLSLNE GVTSESDCVV VQVLKLQGAV PFVHTNVPQS MLSYDCSNPL FGQTMNPWKP SKSPGGSSGG EGALIGSGGS PLGLGTDIGG SIRFPSAFCG ICGLKPTGNR LSKSGLKSCV YGQTAVQLSV GPMARDVDSL ALCMKALLCE DLFRLDSTIP PLPFREEIYR SSRPLRVGYY ETDNYTMPTP AMRRAVMETK QSLEAAGHTL VPFLPNNIPY ALEVLSAGGL FSDGGCSFLQ NFKGDFVDPC LGDLVLVLKL PRWFKKLLSF LLKPLFPRLA AFLNSMCPRS AEKLWELQHE IEMYRQSVIA QWKAMNLDVV LTPMLGPALD LNTPGRATGA ISYTVLYNCL DFPAGVVPVT TVTAEDDAQM EHYKGYFGDM WDNILKKGMK KGIGLPVAVQ CVALPWOEEL CLRFMREVER LMTPEKRPS

Rat FAAH Nucleic Acid Sequence (SEQ ID NO:5)

ggtttgtgcg agccgagttc tctcgggtgg cggtcggctg caggagatca tggtgctgag cgaagtgtgg accacgctgt ctggggtctc cggggtttgc ctagcctgca gcttgttgtc ggcggcggtg gtcctgcgat ggaccgggcg ccagaaggcc cggggcgcgg cgaccagggc gcggcagaag cagcgagcca gcctggagac catggacaag gcggtgcagc gcttccggct gcagaatcct gacctggact cggaggcctt gctgaccctg ccctactcc aactggtaca gaagttacag agtggagagc tgtccccaga ggctgtgttc tttacttacc tgggaaaggc ctgggaagtg aacaaaggga ccaactgcgt gacctcctat ctgaccgact gtgagactca gctgtcccag gccccacggc agggcctgct ctatggtgtc cctgtgagcc tcaaggaatg cttcagctac aagggccacg actocacact gggcttgagc ctgaatgagg gcatgccatc ggaatctgac tgtgtggtgg tgcaagtgtt gaagctgcag ggagctgtgc cctttgtgca taccaatgtc ccccagtcca tgttaagctt tgactgcagt aaccctctct ttggccagac catgaaccca tggaagtcct ccaagagccc aggaggttcc tcagggggtg agggggctct cattggatct ggaggttccc ctctgggttt aggcactgac attggcggca gcatccggtt cccttctgcc ttctgcggca tctgtggcct caagcctact ggcaaccgcc tcagcaagag tggcctgaag ggctgtgtct atggacagac ggcagtgcag ctttctcttg gccccatggc ccgggatgtg gagagcctgg cgctatgcct gaaagctcta ctgtgtgagc acttgttcac cttggaccct accgtgcctc ccttgccctt cagagaggag gtctatagaa gttctagacc cctgcgtgtg gggtactatg agactgacaa ctataccatg cccagcccag ctatgaggag ggctctgata gagaccaagc agagaettga ggetgetgge cacaegetga tteeettett acceaacaae ataccetacg ccetggaggt cctgtetgcg ggcggcctgt tcaqtqacqq tggccgcagt tttctccaaa acttcaaagg tgactttgtg gatccctgct tgggagacct gatcttaatt ctgaggctgc ccagctggtt taaaagactg ctgagcctcc tgctgaagcc tctgtttcct cggctggcag cctttctcaa cagtatgcgt cctcggtcag ctgaaaagct gtggaaactg cagcatgaga ttgagatgta tcgccagtct gtgattgccc agtggaaagc gatgaacttq gatgtgctgc tgacccccat gttgggccct gctctggatt tgaacacacc gggcagagcc acaggggcta tcagctacac cgttctctac aactgcctgg acttccctgc gggggtggtg cctgtcacca ctgtgaccgc cgaggacgat

gcccagatgg aactctacaa aggctacttt ggggatatct gggacatcat cctgaagaag gccatgaaaa atagtgtcgg tctgcctgtg gctgtgcagt qcqtqqctct gccctqgcag gaagagctgt gtctgaggtt catgcgggag gtggaacagc tgatgacccc tcaaaagcag ccatcgtgag ggtcgttcat ccqccaqctc tggaggacct aaggcccatg cgctgtgcac tgtagcccca tgtattcagg agccaccacc cacgagggaa cgcccagcac agggaagagg tgtctacctg ccctccctg gactcctgca gccacaacca agtctggacc ttectecceg ttatggteta etttecatee tgattecetg etttttatgg cagccagcag gaatgacgtg ggccaaggat caccaacatt caaaaacaat qcqtttatct attttctggg tatctccatt agggccctgg gaaccagagt gctgggaagg ctgtccagac cctccagagc tggctgtaac cacatcactc tectgeteca aageeteeet agttetgtea eecacaagat agacacaggg acatgtcctt ggcacttgac tcctgtcctt cctttcttat tcagattgac cccagcettg atggaccetg cccetgcact teetteetca gtecacetet ctgccgacac gcccttttta tggctcctct atttgttgtg gagacaaggt ttctctcagt agccctggct gtccaggacc tcactctgta gatgaggctg gctttcaact cacaaggctg cctgcctggg tgctgggatt aaaggcgtat qccaccacaa agaaaaaaaa aa

Rat FAAH Amino Acid Sequence (SEQ ID NO:6)

MVLSEVWTTL SGVSGVCLAC SLLSAAVVLR WTGRQKARGA ATRARQKQRA SLETMDKAVQ RFRLQNPDLD SEALLTLPLL QLVQKLQSGE LSPEAVFFTY LGKAWEVNKG TNCVTSYLTD CETQLSQAPR QGLLYGVPVS LKECFSYKGH DSTLGLSLNE GMPSESDCVV VQVLKLQGAV PFVHTNVPQS MLSFDCSNPL FGQTMNPWKS SKSPGGSSGG EGALIGSGGS PLGLGTDIGG SIRFPSAFCG ICGLKPTGNR LSKSGLKGCV YGQTAVQLSL GPMARDVESL ALCLKALLCE HLFTLDPTVP PLPFREEVYR SSRPLRVGYY ETDNYTMPSP AMRRALIETK QRLEAAGHTL IPFLPNNIPY ALEVLSAGGL FSDGGRSFLQ NFKGDFVDPC LGDLILILRL PSWFKRLLSL LLKPLFPRLA AFLNSMRPRS AEKLWKLQHE IEMYRQSVIA QWKAMNLDVL LTPMLGPALD LNTPGRATGA ISYTVLYNCL DFPAGVVPVT TVTAEDDAQM ELYKGYFGDI WDIILKKAMK NSVGLPVAVQ CVALPWQEEL CLRFMREVEQ LMTPQKQPS

Human FAAH Nucleic Acid Sequence (SEQ ID NO:7)

gaggcagcat ccgcttcccc tcctccttct gcggcatctg cggcctcaag cccacaggga accgcctcag caagagtqqc ctgaagggct gtqtctatqq acaggaggca gtgcgtctct ccgtgggccc catggcccgg gacgtggaga gcctggcact gtgcctgcga gccctgctgt gcgaggacat gttccgcttg gaccccactg tgcctcctt gcccttcaga gaagaggtct acaccagctc tcagccctg cgtgtggggt actatgagac tgacaactat accatgccct ccccggccat gaggcgggcc gtgctggaga ccaaacagag ccttgaggct gcggggcaca cgctggttcc cttcttqcca aqcaacatac cccatqctct ggagacectg teaacaggtg ggetetteag tgatggtgge cacacettee tacagaactt caaaggtgat ttcgtggacc cctgcctggg ggacctggtc tcaattctga agcttcccca atggcttaaa ggactgctgg ccttcctggt gaagectetg etgecaagge tgteagettt ceteageaac atgaagtete gttcggctgg aaaactctgg gaactgcagc acgagatcga ggtgtaccgc aaaaccgtga ttgcccagtg gagggcgctg gacctggatg tggtgctgac ccccatgctg gcccctgctc tggacttgaa tgccccaggc agggccacag gggccgtcag ctacactatg ctgtacaact gcctggactt ccctgcaggg gtggtgcctg tcaccacggt gactgctgag gacgaggccc agatggaaca ttacaggggc tactttgggg atatctggga caagatgctg cagaagggca tgaagaagag tgtggggctg ccggtggccg tgcagtgtgt ggctctgccc tggcaagaag agttgtgtct gcggttcatg cgggaggtgg agcgactgat gacccctgaa aagcagtcat cctgatggct ctggctccag aggacctgag actcacactc tetgcagecc agectagtca gggcacaget geeetgetge cacagcaagg aaatgtcctg catggggcag aggcttccgt gtcctctccc ccaacccct gcaagaagcg ccgactccct gagtctggac ctccatccct gctctggtcc cctctctcg tcctgatccc tccaccccca tgtggcagcc catgggtatg acataggcca aggcccaact aacagtcaag aaacaaaaaa aaaaaaaaa aaa

Human FAAH Amino Acid Sequence (SEQ ID NO:8)

MVQYELWAAL PGASGVALAC CFVAAAVALR WSGRRTARGA VVRARQKQRA GLENMDRAAQ RFRLQNPDLD SEALLALPLP QLVQKLHSRE LAPEAVLFTY VGKAWEVNKG TNCVTSYLAD CETQLSQAPR QGLLYGVPVS LKECFTYKGQ DSTLGLSLNE GVPAECDSVV VHVLKLQGAV PFVHTNVPQS MFSYDCSNPL FGQTVNPWKS SKSPGGSSGG EGALIGSGGS PLGLGTDIGG SIRFPSSFCG ICGLKPTGNR LSKSGLKGCV YGQEAVRLSV GPMARDVESL ALCLRALLCE DMFRLDPTVP PLPFREEVYT SSQPLRVGYY ETDNYTMPSP AMRRAVLETK QSLEAAGHTL VPFLPSNIPH ALETLSTGGL FSDGGHTFLQ NFKGDFVDPC LGDLVSILKL PQWLKGLLAF LVKPLLPRLS AFLSNMKSRS AGKLWELQHE IEVYRKTVIA QWRALDLDVV LTPMLAPALD LNAPGRATGA VSYTMLYNCL DFPAGVVPVT TVTAEDEAQM EHYRGYFGDI WDKMLQKGMK KSVGLPVAVQ CVALPWQEEL CLRFMREVER LMTPEKQSS

ABSTRACT

The invention provides methods of assaying fatty acid amide hydrolase (FAAH) activity adaptable for high throughput screening. The methods provide for separating a labeled substrate from at least one labeled hydrolysis product, the separation facilitating the quantification. The invention also provides methods of identifying a compound to be tested as an inhibitor or an activator of FAAH activity through the addition of the compound to be tested to a reaction mixture and comparison of the enzyme activity in the presence and absence of the compounds to be tested. The methods are adaptable for use in detecting altered FAAH activity in patients, for example, those at risk for *in vitro* fertilization failure, or at risk for, or suffering, addictions.

Figure 1

Figure 2.

Title: Assay for Determining the Activity of F
Inventors: Ann Barbier, Sandy Wilson, Curt Ma.
Agent Name: Scott E. Scioli Ph. No.: 215-557-5986
Sheet 3 of 4 60420065

Figure 3

Figure 4A

Figure 4B

SEQUENCE LISTING

<110> Barbier, Ann Johanna Wilson, Sandy J. Mazur, Curt

<120> Assay for Determining the Activity of Fatty Acid Amide Hydrolase

<130> PRI0002

<160> 8

<170> PatentIn version 3.1

<210>

<210> 1 <211> 2300

<212> DNA

<213> Sus scrofa

60	ccggcccctc	gctgcgttct	agaactgtgg	tggtgcagga	tgggagatca	<400> 1 cggtcctcgg
120	ggtccagtcg	gccctgcgtt	agcggccttg	gcttggtggc	ctggcctgct	cggggttgcc
180	ccctggagac	cagcaagcgg	gcgacagagg	cggcccgggc	cggggcgcgg	ccggatggcg
240	cggagatgct	gatctggact	ccagaacccc	gcttccggct	gcggcgcagc	catggacaag
300	tgtctccaga	agtggggagc	gaaggtacga	agctggtaca	ccactgcctc	gctggccctg
360	ccaactgcgt	aacagaggga	ctgggaagtg	tgcaaaaggc	ttttcctacc	ggctgtgctc
420	agggcctgct	gcgcccgggc	gctgtgccag	gtgaggctca	ctggcagact	gaccacctac
480	actccacgct	aagggccatg	cttcagctgc	tcaaggagtg	cccgtcagcc	ctacggtgtc
540	tgcaggtgct	tgcgtggtgg	agaatgtgac	ggacaccagc	cggaaccagg	gggcttgagc
600	tgttcagcta	ccccagtcca	caccaacgtc	ctttcgtgca	ggtgctgtgc	gaaactgcag
660	ccaagagccc	tggatgtcgt	cacgaaccca	ttggccagac	aacccctct	tgactgcagt
720	cactgggctt	ggaggctccc	cattgctgct	agggggccct	tcgggaggtg	gggcggctcc
780	tctgcggcat	ttctgtggca	tccctccgcc	gcatccgctt	atcgggggca	aggcaccgac
840	atggacaggt	ggctctgtct	tggtctgaag	tcagcaagag	gggaaccgca	caṇacccacg
900	ccctgtgcct	gagagcctgg	gcgggacgtg	gccccatggc	ctctcagtgg	agcagtgcag
960	ccctgccctt	acggtgcctc	cctggacccc	acatgttccg	ctgtgcgaag	gcgtgcgctg
1020	agaccgacaa	gggtattatg	cctgcgtgtc	gctctcggcc	gtctacgcaa	caacgaggag
1080	ggagccttga	gagaccaagc	ggccctgctg	ccatgaggcg	cccacgccgg	ctacaccatg
1140	ctctggaggc	ataccccacg	gccggccaac	ttcccttcct	cacacgctga	ggctgcgggc
1200	acttcgaagg	ttgctacaga	tgggaagagg	tcagtgatgg	ggcgggctct	cctgtcaacg
1260	ccaaatggct	ctgaggctgc	gatctcaatt	taggggacct	gactcctgct	cgattacgtg
1320	gctttctcag	aggttggcag	tctgctccca	tgctgaggcc	ctggctttca	taaaggactg
1380	ttgagatgta	cagcacgaga	ctgggaactg	ctggaaagct	cctcggtcgg	cagcctgagg
1440	taacccccat	gatgtggtgc	gctggacctg	agtggcgagc	gtgattgccc	ccgtcactcc
1500	tcagctacac	acaggggccg	aggcaaggco	tgaatgcccc	gccctagact	gctgagccct
1560	cggtgactgc	cctgtcacca	gggggtggtg	acttccccgc	: aactgcctgg	gctgctctac

•							
	cgaggacgag	gcccagatgg	agcattacaa	gggctacttt	ggggacattt	gggacaaggt	1620
	ggtgcagaag	gccatgaaga	ggagcgtggg	gctgcctgtg	gccgtgcagt	gtgtggctct	1680
	gccctggcag	gaggagctgt	gtttgcggtt	catgcgggag	gtggagcgac	tgatggctcc	1740
	tgggcggcag	ccctcctgac	cgctgcccgc	ccggcccccc	aggacctgag	acccactgga	1800
	tccgcgccca	gcggagtcag	gacacaactg	ccaccgtgca	agaaaatgtt	caacctcagg	1860
	cagaggcttc	ccggtctctc	cccctcgccc	ctgccagaag	cccagaacca	ctgagtctgg	1920
	accttgctct	tcccgtggtc	cctgctctgc	cctgaccccg	ccaatgtggc	agctagtggg	1980
	tatgacatgg	caaaggcccc	ccaaccgtca	aaaaccggtt	cctggtctcc	atactttctg	2040
	gcagtcgttg	ttagggcagt	gggggttgga	gacctgacct	tctggaaccc	gactccagcc	2100
	atgtccgtct	cgtgctgcag	aagcttctct	ggtcctcgtc	actcacgggc	agacaccggc	2160
	ttctccgagt	gggccttgca	gcccaggact	tcaccccgcc	gccccagcc	taagccctac	2220
	tttgcgaggc	attgtcttct	ctcctgccct	ctgctgaggg	tgccctttct	gctcctctac	2280
	cattaaatcc	tttgaggccc					2300

<210> 2

<211> 579

<212> PRT .

<213> Sus scrofa

<400> 2

Met Val Glu Glu Leu Trp Ala Ala Phe Ser Gly Pro Ser Gly Val 1 5 10 15

Ala Leu Ala Cys Cys Leu Val Ala Ala Ala Leu Ala Leu Arg Trp Ser 20 . 25 30

Ser Arg Arg Met Ala Arg Gly Ala Ala Ala Arg Ala Arg Gln Arg Gln 35 40 45

Gln Ala Ala Leu Glu Thr Met Asp Lys Ala Ala Gln Arg Phe Arg Leu 50 55 60

Gln Asn Pro Asp Leu Asp Ser Glu Met Leu Leu Ala Leu Pro Leu Pro 65 70 75 80

Gln Leu Val Gln Lys Val Arg Ser Gly Glu Leu Ser Pro Glu Ala Val 85 90 95

Leu Phe Ser Tyr Leu Gln Lys Ala Trp Glu Val Asn Arg Gly Thr Asn 100 105 110

Cys Val Thr Thr Tyr Leu Ala Asp Cys Glu Ala Gln Leu Cys Gln Ala 115 120 125

Pro Gly Gln Gly Leu Leu Tyr Gly Val Pro Val Ser Leu Lys Glu Cys 130 135 140

60420065 102102

Ser Cys Lys Gly His Asp Ser Thr Leu Gly Leu Ser Arg Asn Gln Gly Thr Pro Ala Glu Cys Asp Cys Val Val Val Gln Val Leu Lys Leu Gln Gly Ala Val Pro Phe Val His Thr Asn Val Pro Gln Ser Met Phe 185 Ser Tyr Asp Cys Ser Asn Pro Leu Phe Gly Gln Thr Thr Asn Pro Trp Met Ser Ser Lys Ser Pro Gly Gly Ser Ser Gly Gly Glu Gly Ala Leu Ile Ala Ala Gly Gly Ser Pro Leu Gly Leu Gly Thr Asp Ile Gly Gly 225 230 235 240 Ser Ile Arg Phe Pro Ser Ala Phe Cys Gly Ile Cys Gly Ile Lys Pro 245 250 · 255 Thr Gly Asn Arg Ile Ser Lys Ser Gly Leu Lys Gly Ser Val Tyr Gly Gln Val Ala Val Gln Leu Ser Val Gly Pro Met Ala Arg Asp Val Glu 280 Ser Leu Ala Leu Cys Leu Arg Ala Leu Leu Cys Glu Asp Met Phe Arg Leu Asp Pro Thr Val Pro Pro Leu Pro Phe Asn Glu Glu Val Tyr Ala Ser Ser Arg Pro Leu Arg Val Gly Tyr Tyr Glu Thr Asp Asn Tyr Thr Met Pro Thr Pro Ala Met Arg Arg Ala Leu Leu Glu Thr Lys Arg Ser Leu Glu Ala Ala Gly His Thr Leu Ile Pro Phe Leu Pro Ala Asn Ile Pro His Ala Leu Glu Ala Leu Ser Thr Gly Gly Leu Phe Ser Asp Gly Gly Lys Arg Leu Leu Gln Asn Phe Glu Gly Asp Tyr Val Asp Ser Cys Leu Gly Asp Leu Ile Ser Ile Leu Arg Leu Pro Lys Trp Leu Lys Gly Leu Leu Ala Phe Met Leu Arg Pro Leu Leu Pro Arg Leu Ala Gly Phe

S01501.2005+00

Leu Ser Ser Leu Arg Pro Arg Ser Ala Gly Lys Leu Trp Glu Leu Gln
435 440 445

His Glu Ile Glu Met Tyr Arg His Ser Val Ile Ala Gln Trp Arg Ala 450 455 460

Leu Asp Leu Asp Val Val Leu Thr Pro Met Leu Ser Pro Ala Leu Asp 465 470 475 480

Leu Asn Ala Pro Gly Lys Ala Thr Gly Ala Val Ser Tyr Thr Leu Leu 485 490 495

Tyr Asn Cys Leu Asp Phe Pro Ala Gly Val Val Pro Val Thr Thr Val 500 505 510

Thr Ala Glu Asp Glu Ala Gln Met Glu His Tyr Lys Gly Tyr Phe Gly 515 520 525

Asp Ile Trp Asp Lys Val Val Gln Lys Ala Met Lys Arg Ser Val Gly 530 540

Leu Pro Val Ala Val Gln Cys Val Ala Leu Pro Trp Gln Glu Glu Leu 545 550 555 560

Cys Leu Arg Phe Met Arg Glu Val Glu Arg Leu Met Ala Pro Gly Arg 565 570 575

Gln Pro Ser

<210> 3 <211> 1740 <212> DNA <213> Mouse

<400> 3

atggtgctga gcgaagtgtg gaccgcgctg tctggactct ccggggtttg cctagcctgc 60 agettgetgt eggeggeggt ggteetgega tggaccagga gecagacege eeggggegeg 120 gtgaccaggg cgcggcagaa gcagcgagcc ggcctggaga ccatggacaa ggcggtgcag 180 cgcttccggc tgcagaatcc tgacctggat tcagaggcct tgctggctct gcccctgctc 240 caactggtac agaagttaca gagtggggaa ctgtccccag aagctgtgct ctttacctac 300 ctgggaaagg cctgggaagt gaacaaaggg accaactgtg tgacctccta tctgactgac 360 tgtgagactc agctgtccca ggccccacgg cagggcctgc tetatggcgt ccccgtgagc 420 ctcaaggaat getteageta caagggeeat getteeacae tgggettaag tttgaacgag 480 ggtgtgacat cggagagtga ctgtgtggtg gtgcaggtac tgaagctgca gggagctgtg 540 ccetttgtgc acaccaacgt cccccagtcc atgctaagct atgactgcag taacccctc 600 tttggccaga ccatgaaccc gtggaagccc tccaagagtc caggaggttc ctcagggggt 660 gagggggctc tcattggatc tggaggctcc cctctgggtt taggcactga catcggcggc 720

SOLSOK. 2000S402

1							
•	atccggt	tcccttctgc	cttctgtggc	atctgtggcc	tcaagcctac	tgggaaccgc	780
	ctcagcaaga	gtggcctgaa	gagctgtgtt	tatggacaga	cagcagtgca	gctttctgtt	840
	ggccccatgg	cacgggatgt	ggatagcctg	gcattgtgca	tgaaagccct	actttgtgag	900
	gatttgttcc	gcttggactc	caccatcccc	cccttgccct	tcagggagga	gatctacaga	960
	agttctcgac	cccttcgtgt	gggatactat	gaaactgaca	actacaccat	gcccactcca	1020
	gccatgagga	gģgctgtgat	ggagaccaag	cagagtctcg	aggctgctgg	ccacacgctg	1080
			cataccttat				1140
			ttttctccaa				1200
			gctgaagctg				1260
	ctgctgaagc	ctctgtttcc	tcggctggca	gcctttctca	acagtatgtg	tcctcggtca	1320
	gccgaaaagc	tgtgggaact	gcagcatgag	attgagatgt	atcgccagtc	cgtcattgcc	1380
	cagtggaagg	caatgaactt	ggacgtggtg	ctaaccccca	tgctgggtcc	tgctctggat	1440
	ttgaacacac	cgggcagagc	cacaggggct	atcagctaca	ctgttctcta	taactgcctg '	1500
	gacttccctg	cgggggtggt	gcctgtcacc	actgtgaccg	ctgaggacga	tgcccagatg	1560
	gaacactaca	aaggctactt	tggggatatg	tgggacaaca	ttctgaagaa	gggcatgaaa	1620
	aagggtatag	gcctgcctgt	ggctgtgcag	tgcgtggctc	tgccctggca	ggaagagctg	1680
	tgtctgcggt	tcatgcggga	ggtggaacgg	ctgatgaccc	ctgaaaagcg	gccatcttga	1740

<210> 4 <211> 579 <212> PRT

<213> Mouse

<400> 4

Met Val Leu Ser Glu Val Trp Thr Ala Leu Ser Gly Leu Ser Gly Val 1 5 15

Cys Leu Ala Cys Ser Leu Leu Ser Ala Ala Val Val Leu Arg Trp Thr 20 25 30

Arg Ser Gln Thr Ala Arg Gly Ala Val Thr Arg Ala Arg Gln Lys Gln 35 · 40 45

Arg Ala Gly Leu Glu Thr Met Asp Lys Ala Val Gln Arg Phe Arg Leu 50 55 60

Gln Asn Pro Asp Leu Asp Ser Glu Ala Leu Leu Ala Leu Pro Leu Leu 65 70 75 80

Gln Leu Val Gln Lys Leu Gln Ser Gly Glu Leu Ser Pro Glu Ala Val 85 90 95

Leu Phe Thr Tyr Leu Gly Lys Ala Trp Glu Val Asn Lys Gly Thr Asn 100 105 110

Cys Val Thr Ser Tyr Leu Thr Asp Cys Glu Thr Gln Leu Ser Gln Ala Page 5

11

120

125

Pro Arg Gln Gly Leu Leu Tyr Gly Val Pro Val Ser Leu Lys Glu Cys 130 135 Phe Ser Tyr Lys Gly His Ala Ser Thr Leu Gly Leu Ser Leu Asn Glu Gly Val Thr Ser Glu Ser Asp Cys Val Val Val Gln Val Leu Lys Leu Gln Gly Ala Val Pro Phe Val His Thr Asn Val Pro Gln Ser Met Leu 185 Ser Tyr Asp Cys Ser Asn Pro Leu Phe Gly Gln Thr Met Asn Pro Trp Lys Pro Ser Lys Ser Pro Gly Gly Ser Ser Gly Gly Glu Gly Ala Leu 210 220 Ile Gly Ser Gly Gly Ser Pro Leu Gly Leu Gly Thr Asp Ile Gly Gly 225 230 235 240 Ser Ile Arg Phe Pro Ser Ala Phe Cys Gly Ile Cys Gly Leu Lys Pro Thr Gly Asn Arg Leu Ser Lys Ser Gly Leu Lys Ser Cys Val Tyr Gly 260 265 270 Gln Thr Ala Val Gln Leu Ser Val Gly Pro Met Ala Arg Asp Val Asp Ser Leu Ala Leu Cys Met Lys Ala Leu Leu Cys Glu Asp Leu Phe Arg Leu Asp Ser Thr Ile Pro Pro Leu Pro Phe Arg Glu Glu Ile Tyr Arg 305 310 315 320 Ser Ser Arg Pro Leu Arg Val Gly Tyr Tyr Glu Thr Asp Asn Tyr Thr 325 330 335 Met Pro Thr Pro Ala Met Arg Arg Ala Val Met Glu Thr Lys Gln Ser Leu Glu Ala Ala Gly His Thr Leu Val Pro Phe Leu Pro Asn Asn Ile Pro Tyr Ala Leu Glu Val Leu Ser Ala Gly Gly Leu Phe Ser Asp Gly Gly Cys Ser Phe Leu Gln Asn Phe Lys Gly Asp Phe Val Asp Pro Cys 385 390 395 400

Gly Asp Leu Val Leu Val Leu Lys Leu Pro Arg Trp Phe Lys Lys

Leu Leu Ser Phe Leu Leu Lys Pro Leu Phe Pro Arg Leu Ala Ala Phe 420 425 430

Leu Asn Ser Met Cys Pro Arg Ser Ala Glu Lys Leu Trp Glu Leu Gln
435 440 445

His Glu Ile Glu Met Tyr Arg Gln Ser Val Ile Ala Gln Trp Lys Ala 450 455 460

Met Asn Leu Asp Val Val Leu Thr Pro Met Leu Gly Pro Ala Leu Asp 465 470 475 480

Leu Asn Thr Pro Gly Arg Ala Thr Gly Ala Ile Ser Tyr Thr Val Leu 485 490 495

Tyr Asn Cys Leu Asp Phe Pro Ala Gly Val Val Pro Val Thr Thr Val 500 505 510

Thr Ala Glu Asp Asp Ala Gln Met Glu His Tyr Lys Gly Tyr Phe Gly 515 520 525

Asp Met Trp Asp Asn Ile Leu Lys Lys Gly Met Lys Lys Gly Ile Gly 530 540

Leu Pro Val Ala Val Gln Cys Val Ala Leu Pro Trp Gln Glu Glu Leu 545 550 555 560

Cys Leu Arg Phe Met Arg Glu Val Glu Arg Leu Met Thr Pro Glu Lys 565 570 575

Arg Pro Ser

<210> 5 <211> 2472

<212> DNA

<213> rattus rattus

<400> 5

ggtttgtgcg agccgagttc tctcgggtgg cggtcggctg caggagatca tggtgctgag 60 cgaagtgtgg accacgctgt ctggggtctc cggggtttgc ctagcctgca gcttgttgtc 120 ggcggcggtg gtcctgcgat ggaccgggcg ccagaaggcc cggggcgcgg cgaccagggc 180 gcggcagaag cagcgagcca gcctggagac catggacaag gcggtgcagc gcttccggct 240 gcagaatcet gacetggact eggaggeett getgaceetg eccetaetee aactggtaca 300 gaagttacag agtggagagc tgtccccaga ggctgtgttc tttacttacc tgggaaaggc 360 ctgggaagtg aacaaaggga ccaactgcgt gacctcctat ctgaccgact gtgagactca 420 gctgtcccag gccccacggc agggcctgct ctatggtgtc cctgtgagcc tcaaggaatg 480 cttcagctac aagggccacg actccacact gggcttgagc ctgaatgagg gcatgccatc 540

ggaatctgac tgtgtggtgg t	gcaagtgtt	gaagctgcag	ggagctgtgc	cctttgtgca	600
taccaatgtc ccccagtcca t	gttaagctt	tgactgcagt	aaccctctct	ttggccagac	660
catgaaccca tggaagtcct c	caaýagccc	aggaggttcc	tcagggggtg	agggggctct	720
cattggatct ggaggttccc c	tctgggttt	aggcactgac	attggcggca	gcatccggtt	780
cccttctgcc ttctgcggca t	ctgtggcct	caagcctact	ggcaaccgcc	tcagcaagag	840
tggcctgaag ggctgtgtct a	atggacagac	ggcagtgcag	ctttctcttg	gccccatggc	900
ccgggatgtg gagagcctgg c	gctatgcct	gaaagctcta	ctgtgtgagc	acttgttcac	960
cttggaccct accgtgcctc c	cttgccctt	cagagaggag	gtctatagaa	gttctagacc	1020
cctgcgtgtg gggtactatg a	gactgacaa	ctataccatg	cccagcccag	ctatgaggag	1080
ggctctgata gagaccaagc a	agagacttga	ggctgctggc	cacacgctga	ttcccttctt	1140
acccaacaac ataccctacg c	cctggaggt	cctgtctgcg	ggcggcctgt	tcagtgacgg	1200
tggccgcagt tttctccaaa a	acttcaaagg	tgactttgtg	gatccctgct	tgggagacct	1260
gatcttaatt ctgaggctgc c	cagctggtt	taaaagactg	ctgagcctcc	tgctgaagcc	1320
tctgtttcct cggctggcag c	ctttctcaa	cagtatgcgt	cctcggtcag	ctgaaaagct	1380
gtggaaactg cagcatgaga t	tgagatgta	tcgccagtct	gtgattgccc	agtggaaagc	1440
gatgaacttg gatgtgctgc t	gacccccat	gttgggccct	gctctggatt	tgaacacacc	1500
gggcagagcc acaggggcta t	cagctacac	cgttctctac	aactgcctgg	acttccctgc	1560
gggggtggtg cctgtcacca c	ctgtgaccgc	cgaggacgat	gcccagatgg	aactctacaa	1620
aggctacttt ggggatatct g	ggacatcat	cctgaagaag	gccatgaaaa	atagtgtcgg	1680
tctgcctgtg gctgtgcagt g	gegtggetet	gccctggcag	gaagagctgt	gtctgaggtt	1740
catgcgggag gtggaacagc t	gatgacccc	tcaaaagcag	ccatcgtgag	ggtcgttcat	1800
ccgccagctc tggaggacct a	aggcccatg	cgctgtgcac	tgtagcccca	tgtattcagg	1860
agccaccacc cacgagggaa c	cgcccagcac	agggaagagg	tgtctacctg	ccctcccctg	1920
gactcctgca gccacaacca a	gtctggacc	ttcctccccg	ttatggtcta	ctttccatcc	1980
tgattccctg ctttttatgg c	cagccagcag	gaatgacgtg	ggccaaggat	caccaacatt	2040
caaaaacaat gcgtttatct a	attttctggg	tatctccatt	agggccctgg	gaaccagagt	2100
gctgggaagg ctgtccagac c	ctccagagc	tggctgtaac	cacatcactc	tcctgctcca	2160
aagcctccct agttctgtca c	ccacaagat	agacacaggg	acatgtcctt	ggcacttgac	2220
tectgteett cetttettat t	cagattgac	cccagccttg	atggaccctg	cccctgcact	2280
teetteetea gteeacetet e	ctgccgacac	gccctttta	tggctcctct	atttgttgtg	2340
gagacaaggt ttctctcagt a	agccctggct	gtccaggacc	tcactctgta	gatgaggctg	2400
gctttcaact cacaaggctg c	ctgcctggg	tgctgggatt	aaaggcgtat	gccaccacaa	2460
адааааааа аа					2472

<210> 6 <211> 579 <212> PRT

<400> 6

Met Val Leu Ser Glu Val Trp Thr Thr Leu Ser Gly Val Ser Gly Val 1 5 15

Cys Leu Ala Cys Ser Leu Leu Ser Ala Ala Val Val Leu Arg Trp Thr 20 25 30

Gly Arg Gln Lys Ala Arg Gly Ala Ala Thr Arg Ala Arg Gln Lys Gln 35 40 45

Arg Ala Ser Leu Glu Thr Met Asp Lys Ala Val Gln Arg Phe Arg Leu 50 60

Gln Asn Pro Asp Leu Asp Ser Glu Ala Leu Leu Thr Leu Pro Leu 65 70 . 75

Gln Leu Val Gln Lys Leu Gln Ser Gly Glu Leu Ser Pro Glu Ala Val 85 90 95

Phe Phe Thr Tyr Leu Gly Lys Ala Trp Glu Val Asn Lys Gly Thr Asn 100 105 110

Cys Val Thr Ser Tyr Leu Thr Asp Cys Glu Thr Gln Leu Ser Gln Ala 115 120 125

Pro Arg Gln Gly Leu Leu Tyr Gly Val Pro Val Ser Leu Lys Glu Cys 130 135 140

Phe Ser Tyr Lys Gly His Asp Ser Thr Leu Gly Leu Ser Leu Asn Glu 145 150 155 160

Gly Met Pro Ser Glu Ser Asp Cys Val Val Val Gln Val Leu Lys Leu 165 170 175

Gln Gly Ala Val Pro Phe Val His Thr Asn Val Pro Gln Ser Met Leu 180 185 190

Ser Phe Asp Cys Ser Asn Pro Leu Phe Gly Gln Thr Met Asn Pro Trp 195 200 205

Lys Ser Ser Lys Ser Pro Gly Gly Ser Ser Gly Gly Glu Gly Ala Leu 210 215 220

Ile Gly Ser Gly Gly Ser Pro Leu Gly Leu Gly Thr Asp Ile Gly Gly 225 230 235 240

Ser Ile Arg Phe Pro Ser Ala Phe Cys Gly Ile Cys Gly Leu Lys Pro 245 250 255

Thr Gly Asn Arg Leu Ser Lys Ser Gly Leu Lys Gly Cys Val Tyr Gly 260 265 270

Gln Thr Ala Val Gln Leu Ser Leu Gly Pro Met Ala Arg Asp Val Glu 275 280 285

Ser Leu Ala Leu Cys Leu Lys Ala Leu Leu Cys Glu His Leu Phe Thr 290 295 300

Leu Asp Pro Thr Val Pro Pro Leu Pro Phe Arg Glu Glu Val Tyr Arg 305 310 315 320

Ser Ser Arg Pro Leu Arg Val Gly Tyr Tyr Glu Thr Asp Asn Tyr Thr 325 330 335

Met Pro Ser Pro Ala Met Arg Arg Ala Leu Ile Glu Thr Lys Gln Arg 340 345 350

Leu Glu Ala Ala Gly His Thr Leu Ile Pro Phe Leu Pro Asn Asn Ile 355 360 365

Pro Tyr Ala Leu Glu Val Leu Ser Ala Gly Gly Leu Phe Ser Asp Gly 370 375 380

Gly Arg Ser Phe Leu Gln Asn Phe Lys Gly Asp Phe Val Asp Pro Cys 385 390 395

Leu Gly Asp Leu Ile Leu Ile Leu Arg Leu Pro Ser Trp Phe Lys Arg 405 410 415

Leu Leu Ser Leu Leu Lys Pro Leu Phe Pro Arg Leu Ala Ala Phe
420 425 430

Leu Asn Ser Met Arg Pro Arg Ser Ala Glu Lys Leu Trp Lys Leu Gln
435 440 445

His Glu Ile Glu Met Tyr Arg Gln Ser Val Ile Ala Gln Trp Lys Ala 450 455 460

Met Asn Leu Asp Val Leu Leu Thr Pro Met Leu Gly Pro Ala Leu Asp 465 470 475 480

Leu Asn Thr Pro Gly Arg Ala Thr Gly Ala Ile Ser Tyr Thr Val Leu 485 490 495

Tyr Asn Cys Leu Asp Phe Pro Ala Gly Val Val Pro Val Thr Thr Val 500 505 510

Thr Ala Glu Asp Asp Ala Gln Met Glu Leu Tyr Lys Gly Tyr Phe Gly 515 525

Asp Ile Trp Asp Ile Ile Leu Lys Lys Ala Met Lys Asn Ser Val Gly 530 540

Leu Pro Val Ala Val Gln Cys Val Ala Leu Pro Trp Gln Glu Glu Leu 545 550 555 560

Cys Leu Arg Phe Met Arg Glu Val Glu Gln Leu Met Thr Pro Gln Lys 565 570 575

Gln Pro Ser

<210> 7 <211> 2063 <212> DNA <213> homo sapiens	
<400> 7 tgccgggcgg taggcagcag caggctgaag ggatcatggt gcagtacgag ctgtgggccg	60
cgctgcctgg cgcctccggg gtcgccctgg cctgctgctt cgtggcggcg gccgtggccc	120
tgcgctggtc cgggcgccgg acggcgcggg gcgcggtggt ccgggcgcga cagaagcagc	180
gagcgggcct ggagaacatg gacagggcgg cgcagcgctt ccggctccag aacccagacc	240
tggactcaga ggcgctgcta gccctgcccc tgcctcagct ggtgcagaag ttacacagta	300
gagagetgge ecetgaggee gtgetettea ectatgtggg aaaggeetgg gaagtgaaca	360
aagggaccaa ctgtgtgacc tectatetgg etgactgtga gactcagetg teteaggeec	420
caaggcaggg cctgctctat ggcgtccctg tgagcctcaa ggagtgcttc acctacaagg	480
gccaggactc cacgctgggc ttgagcctga atgaaggggt gccggcggag tgcgacagcg	540
tagtggtgca tgtgctgaag ctgcagggtg ccgtgccctt cgtgcacacc aatgttccac	600
agtccatgtt cagctatgac tgcagtaacc ccctctttgg ccagaccgtg aacccatgga	660
agtectecaa aageecaggg ggeteeteag ggggtgaagg ggeeeteate gggtetggag	720
getececet gggettagge actgatateg gaggeageat ceqetteece teeteettet	780
geggeatetg eggeeteaag eecacaggga acegeeteag caagagtgge etgaaggget	* 840
gtgtctatgg acaggaggca gtgcgtctct ccgtgggccc catggcccgg gacgtggaga	900
gcctggcact gtgcctgcga gccctgctgt gcgaggacat gttccgcttg gaccccactg	960
tgcctccctt gcccttcaga gaagaggtct acaccagctc tcagcccctg cgtgtggggt	1020
actatgagac tgacaactat accatgccct ccccggccat gaggcgggcc gtgctggaga	1080
ccaaacagag cettgagget geggggcaca egetggttee ettettgeea ageaacatae	1140
cccatgetet ggagaceetg teaacaggtg ggetetteag tgatggtgge cacacettee	1200
tacagaactt caaaggtgat ttcgtggacc cctgcctggg ggacctggtc tcaattctga	1260
agottoccca atggettaaa ggactgetgg cetteetggt gaageetetg etgecaagge	1320
tgtcagcttt cctcagcaac atgaagtctc gttcggctgg aaaactctgg gaactgcagc	1380
acgagatcga ggtgtaccgc aaaaccgtga ttgcccagtg gagggcgctg gacctggatg	1440
tggtgctgac ccccatgctg gcccctgctc tggacttgaa tgccccaggc agggccacag	1500
gggccgtcag ctacactatg ctgtacaact gcctggactt ccctgcaggg gtggtgcctg	1560
tcaccacggt gactgctgag gacgaggccc agatggaaca ttacaggggc tactttgggg	1620
atatctggga caagatgctg cagaagggca tgaagaagag tgtggggctg ccggtggccg	1680

1680

tgcagtgtgt	ggctctgccc	tggcaagaag	agttgtgtct	gcggttcatg	cgggaggtgg	1740
agcgactgat	gacccctgaa	aagcagtcat	cctgatggct	ctggctccag	aggacctgag	1800
actcacactc	tctgcagccc	agcctagtca	gggcacagct	gccctgctgc	cacagcaagg	1860
aaatgtcctg	catggggcag	aggcttccgt	gtcctctccc	ccaaccccct	gcaagaagcg	1920
ccgactccct	gagtctggac	ctccatccct	gctctggtcc	cctctcttcg	tcctgatccc	1980
tccaccccca	tgtggcagcc	catgggtatg	acataggcca	aggcccaact	aacagtcaag	2040
aaacaaaaa	aaaaaaaaa	aaa	•		•	2063
			•			

<210> 8

<211> 579

<212> PRT

<213> homo sapiens

<400> 8

Met Val Gln Tyr Glu Leu Trp Ala Ala Leu Pro Gly Ala Ser Gly Val 1 5 10 15

Ala Leu Ala Cys Cys Phe Val Ala Ala Ala Val Ala Leu Arg Trp Ser 20 25 30

Gly Arg Arg Thr Ala Arg Gly Ala Val Val Arg Ala Arg Gln Lys Gln
35 40 45

Arg Ala Gly Leu Glu Asn Met Asp Arg Ala Ala Gln Arg Phe Arg Leu 50 55 60

Gln Asn Pro Asp Leu Asp Ser Glu Ala Leu Leu Ala Leu Pro Leu Pro 65 70 75 80

Gln Leu Val Gln Lys Leu His Ser Arg Glu Leu Ala Pro Glu Ala Val 85 90

Leu Phe Thr Tyr Val Gly Lys Ala Trp Glu Val Asn Lys Gly Thr Asn 100 105 110

Cys Val Thr Ser Tyr Leu Ala Asp Cys Glu Thr Gln Leu Ser Gln Ala 115 120 125

Pro Arg Gln Gly Leu Leu Tyr Gly Val Pro Val Ser Leu Lys Glu Cys 130 140

Phe Thr Tyr Lys Gly Gln Asp Ser Thr Leu Gly Leu Ser Leu Asn Glu 145 150 155 160

Gly Val Pro Ala Glu Cys Asp Ser Val Val Val His Val Leu Lys Leu 165 170 175

Gln Gly Ala Val Pro Phe Val His Thr Asn Val Pro Gln Ser Met Phe 180 185 190

SO1501. 2005403

ser	Tyr	Asp 195	Суз	Ser	Asn	Pro	Leu 200	Phe	Gly	Gln	Thr	Val 205	Asn	Pro	Trp
Lys	Ser 210	Ser	Lys	Ser	Pro	Gly 215	Gly	Ser	Ser	Gly	Gly 220	Glu	Gly	Ala	Leu
Ile 225	Gly	Ser	Gly	Gly	Ser 230	Pro	Leu	Gly	Leu	Gly 235	Thr	Asp	Ile	Gly	G1y 240
Ser	Ile	Arg	Phe	Pro 245	Ser	Ser	Phe	Cys	Gly 250	Ile	Cys	Gly	Leu	Lys 255	Pro
Thr	Gly	Asn	Arg 260	Leu	Ser	ГÀЗ	Ser	Gly 265	Leu	Lys	Gly	Cys	Val 270	Tyr	Gly
Gln	Glu	Ala 275	Val	Arg	Leu	Ser	Val 280	Gly	Pro	Met	Ala	Arg 285	Asp	Val	Glu
Ser	Leu 290	Ala	Leu	Суз	Leu	Arg 295	Ala	Leu	Leu	Суз	Glu 300	Asp	Met	Phe	Arg
Leu 305	Asp	Pro	Thr	Val	Pro 310	Pro	Leu	Pro	Phe	Arg 315	Glu	Glu	Val	Tyr	Thr 320
Ser	Ser	Gln	Pro	Leu 325	Arg	Val	Gly	Tyr	Tyr 330	Glu	Thr	Asp	Asn	Tyr 335	Thr
Met	Pro	Ser	Pro 340	Ala	Met	Arg	Arg	Ala 345	Val	Leu	Glu	Thr	Lys 350	Gln	Ser
Leu	Glu	Ala 355	Ala	Gly	His	Thr	Leu 360	Val	Pro	Phe	Leu	Pro 365	Ser	Asn	Ile
Pro	His 370	Ala	Leu	Glu	Thr	Leu 375	Ser	Thr	Gly	Gly	Leu 380	Phe	Ser	Asp	Gly
Gly 385	His	Thr	Phe	Leu	Gln 390	Asn	Phe	Lys	Gly	Asp 395	Phe	Val	Азр	Pro	Cys 400
Leu	Gly	Asp	Leu	Val 405	Ser	Ile	Leu	Lys	Leu 410	Pro	Gln	Trp	Leu	Lys 415	Gly
Leu	Leu	Ala	Phe 420	Leu	Val	Ъуз	Pro	Leu 425	Leu	Pro	Arg	Leu	Ser 430	Ala	Phe
Leu	Ser	Asn 435	Met		Ser '	Arg	Ser 440	Ala	Gly	Lys	Leu	Trp 445	Glu	Leu	Gln
His	Glu 450	Ile	Glu	Val	Tyr	Arg 455	Lys	Thr	Val	Ile	Ala 460	Gln	Trp	Arg	Ala
Leu 465	Asp	Leu	Asp	Val	Val	Leu	Thr	Pro	Met	Leu 475	Ala	Pro	Ala	Leu	Asp

Leu Asn Ala Pro Gly Arg Ala Thr Gly Ala Val Ser Tyr Thr Met Leu 485 490 495

Tyr Asn Cys Leu Asp Phe Pro Ala Gly Val Val Pro Val Thr Thr Val 500 505 500

Thr Ala Glu Asp Glu Ala Gln Met Glu His Tyr Arg Gly Tyr Phe Gly 515 520 525

Asp Ile Trp Asp Lys Met Leu Gln Lys Gly Met Lys Lys Ser Val Gly 530 535

Leu Pro Val Ala Val Gln Cys Val Ala Leu Pro Trp Gln Glu Glu Leu 545 550 555 560

Cys Leu Arg Phe Met Arg Glu Val Glu Arg Leu Met Thr Pro Glu Lys 565 570 575

Gln Ser Ser