Let me set some notational conventions for the discussion to follow.

- (1) Let $\operatorname{Spc}(k)$ denote the category of simplicial sheaves on Sm/k with respect to the Nisnevich topology. We may equip $\operatorname{Spc}(k)$ with the injective model structure as Morel does. Let $\operatorname{Spc}_{\bullet}(k)$ denote the category of pointed spaces.
- (2) Let $W_{\mathbb{A}^1}$ denote the class of maps $\{U \times \mathbb{A}^1 \to U \mid U \in \operatorname{Sm}/k\}$. Denote the left Bousfield localization of $\operatorname{Spc}(k)$ with respect to $W_{\mathbb{A}^1}$ by $L_{\mathbb{A}^1}\operatorname{Spc}(k)$. There is a left Quillen functor $L_{\mathbb{A}^1}:\operatorname{Spc}(k) \to L_{\mathbb{A}^1}\operatorname{Spc}(k)$ given by the identity functor. The analogous constructions exist for pointed spaces.
- (3) Denote the full subcategory of $\operatorname{Spc}_{\bullet}(k)$ consisting of \mathbb{A}^1 -local objects by $\operatorname{Spc}_{\bullet}^{\mathbb{A}^1}(k)$. Morel proves that there is a left Quillen functor $L^{\infty}: \operatorname{Spc}_{\bullet}(k) \to \operatorname{Spc}_{\bullet}^{\mathbb{A}^1}(k)$ which induces a Quillen equivalence between $L_{\mathbb{A}^1}\operatorname{Spc}_{\bullet}(k)$ and $\operatorname{Spc}_{\bullet}^{\mathbb{A}^1}(k)$.
- (4) Let $\operatorname{Spt}^{S^1}(k)$ denote the category of S^1 -spectra of spaces equipped with the stable (simplicial) model category structure. Let $W_{\mathbb{A}^1} = \{\Sigma^{\infty}U_+ \wedge \mathbb{A}^1_+ \to \Sigma^{\infty}U_+ | U \in \operatorname{Sm}/k\}$. Denote the left Bousfield localization of $\operatorname{Spt}^{S^1}(k)$ with respect to $W_{\mathbb{A}^1}$ by $L_{\mathbb{A}^1}\operatorname{Spt}^{S^1}(k)$.
- (5) Let $\operatorname{Spt}^{S^1,\mathbb{A}^1}(k)$ denote the full subcategory of $\operatorname{Spt}^{S^1}(k)$ consisting of the \mathbb{A}^1 -local objects. Morel constructs a left Quillen functor $L^{\infty}: \operatorname{Spt}^{S^1}(k) \to \operatorname{Spt}^{S^1,\mathbb{A}^1}(k)$ which induces a Quillen equivalence between $\operatorname{Spt}^{S^1,\mathbb{A}^1}(k)$ and $L_{\mathbb{A}^1}\operatorname{Spt}^{S^1}(k)$.

From our discussion, the issue with Morel's argument in the case of a perfect field is Lemma 3.3.9 of [Mor03]. Here is the reproduced statement.

Lemma 3.3.9 Let $f: \mathcal{X} \to \mathcal{Y}$ be a morphism of simplicial preseheaves. Then the \mathbb{A}^1 -localization of the cone of f is canonically isomorphic to the \mathbb{A}^1 -localization of the cone of $L_{\mathbb{A}^1}f: L_{\mathbb{A}^1}\mathcal{X} \to L_{\mathbb{A}^1}\mathcal{Y}$.

There are some issues here. Presumably he means "simplicial sheaves" instead of "simplicial presheaves." It is unclear whether by " $L_{\mathbb{A}^1}$ " Morel wants the functor coming from Bousfield localization or the functor L^{∞} he constructs.

coming from Bousfield localization or the functor L^{∞} he constructs. If we consider the functor $L_{\mathbb{A}^1}: \operatorname{Spt}^{S^1}(k) \to L_{\mathbb{A}^1} \operatorname{Spt}^{S^1}(k)$ obtained by Bousfield localization, the lemma follows by Morel's explicit description of cones, and since $L_{\mathbb{A}^1}$ is the identity functor. For $f: E \to F$ a map of S^1 spectra, Morel defines C(f) to be the spectrum with $C(f)_n$ the cone of $f_n: E_n \to F_n$ as pointed spaces. Here, the cone of a map of pointed spaces is just the push-out of the following diagram.

$$E_n \longrightarrow F_n \wedge \Delta^1$$

$$\downarrow$$

$$pt$$

In particular, the cone is just a colimit, which depends only on the category, and not on the model structure. The point is that $E_n \to F_n \wedge \Delta^1$ is a cofibration in both model category structures on $\operatorname{Spc}_{\bullet}(k)$, so that the homotopy pushout is weak equivalent to the categorical push-out by Bousfield-Kan. So Lemma 3.3.9 is correct in this case.

1

Now let's consider what happens when we apply L^{∞} to the cone of $f: E \to F$. Let's suppose that f is a cofibration in the stable simplicial model structure on S^1 spectra. Recall that L^{∞} is a left Quillen functor. It thus preserves cofibrations and preserves colimits. Now, the cone of $f: E \to F$ in $\operatorname{Spt}^{S^1}(k)$ is the homotopy push-out of the following diagram

But as we are assuming $f: E \to F$ is a cofibration, Bousfield-Kan says that the categorical colimit of this diagram is weak equivalent to the homotopy push-out. Now let us apply L^{∞} to the diagram. $L^{\infty}f$ is still a cofibration, and the colimit of

$$L^{\infty}E \longrightarrow L^{\infty}F$$

$$\downarrow$$

$$L^{\infty}nt$$

is canonically isomorphic to $L^{\infty}\operatorname{colim}(pt\leftarrow E\to F)\cong L^{\infty}C(f)$. Now, since $L^{\infty}pt\cong pt$, we conclude that the cone of $L^{\infty}E\to L^{\infty}F$ is weak equivalent to $L^{\infty}C(f)$.

Does the above suffice to establish lemma 3.3.9 in general for the functor L^{∞} ? Even without this lemma, I noticed that one can show that suspension spectra of (simplicially) 0 connected pointed spaces are (\mathbb{A}^1) 0 connected because $\Sigma^{\infty}L^{\infty}\mathcal{X}$ is weak equivalent to $L^{\infty}\Sigma^{\infty}\mathcal{X}$. The result follows by Corollary 3.2.5 of [Mor03].

References

[Mor03] Morel, Fabien, An introduction to \mathbb{A}^1 homotopy theory.