

Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp

Technical Data

IAM-81008

Features

- RF-IF Conversion Gain From 0.05-5 GHz
- IF Conversion Gain From DC to 1 GHz
- Low Power Dissipation: 65 mW at $V_{CC} = 5 \text{ V Typical}$
- Single Polarity Bias Supply: $V_{CC} = 4 \text{ to } 8 \text{ V}$
- Load-insensitive Performance
- Conversion Gain Flat Over Temperature
- Low LO Power Requirements: -5 dBm Typical
- Low Cost Plastic Surface Mount Package

Typical applications include frequency down conversion, modulation, demodulation and phase detection. Markets include fiber-optics, GPS satelite navigation, mobile radio, and battery powered communications receivers.

The IAM series of Gilbert multiplier-based frequency converters is fabricated using HP's 10 GHz, ft, 25 GHz f MAX ISOSAT™-I silicon bipolar process. This process uses nitride self alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide intermetal dielectric and scratch protection to achieve excellent performance, uniformity and reliability.

Plastic SO-8 Package

Pin Configuration

GROUND THERMAL CONTACT V _{CC1}	. 🗆 🗆 📗	0	8 GROUND AND THERMAL TONTACT
GROUND	3		6 RF _{OUT} AND V _{CC2}
RFIN	4		5 POWER CONTROL

Description

The IAM-81008 is a complete low power consumption, double balanced active mixer housed in a miniature low cost plastic surface mount package. It is designed for narrow or wide bandwidth commercial and industrial applications having RF inputs up to 5 GHz. Operation at RF and LO frequencies less than 50 MHz can be achieved using optional external capacitors to ground. The IAM-81008 is particularly well suited for applications that require load-insensitive conversion and good spurious signal suppression with minimum LO and bias power consumption.

Typical Biasing Configuration and Functional Block Diagram

7-119 5965-9107E

IAM-81008 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Voltage	10 V		
Power Dissipation ^{2,3}	300 mW		
RF Input Power	+14dBm		
LO Input Power	+14dBm		
Junction Temperature	150℃		
Storage Temperature	−65 to 150°C		

Thermal Resistance:	
$\theta_{\rm jc} = 80^{\circ} \text{C/W}$	

Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 4.4 mW/°C for $T_{\rm C} > 82$ °C.

IAM-81008 Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size	
IAM-81008-TR1	1000	7"	

For more information, see "Tape and Reel Packaging for Semmiconductor Devices".

IAM-81008 Electrical Specifications^[1], $T_A = 25$ °C

Symbol	Parameters and Test Conditions: V_{cc} = 5 V, Z_0 = 50 Ω , LO =-5 dBm, RF = -20 dBm			Min.	Тур.	Max.
GC	Conversion Gain	RF = 2 GHz, LO = 1.75 GHz	dB	6.0	8.5	10
F _{3 dB} RF	RF Bandwidth (G _C 3 dB Down)	IF = 250 MHz	GHz		3.5	
F _{3 dB} IF	IF Bandwidth (G _C 3 dB Down)	LO = 2 GHz	GHz		0.6	
P _{1 dB}	IF Output Power at 1 dB Gain Compression	$\mathrm{RF} = 2\mathrm{GHz}, \mathrm{LO} = 1.75\mathrm{GHz}$	dBm		-6	
IP ₃	IF Output Third Order Intercept Point	RF = 2 GHz, LO = 1.75 GHz	dBm		3	
NF	SSB Noise Figure	RF = 2 GHz, LO = 1.75 GHz	dB		17	
VSWR	RF Port VSWR	f = 0.05 to 3.5 GHz			1.5:1	
	LO Port VSWR	f = 0.05 to 3.5 GHz			2.0:1	
	IF Port VSWR	f < 1 GHz			1.5:1	
RFif	RF Feedthrough at IF Port	RF = 2 GHz, LO = 1.75 GHz	dBc		-25	
LO _{if}	LO Leakage at IF Port	LO = 1.75 GHz	dBm		-25	
LO _{rf}	LO Leakage at RF Port	LO = 1.75 GHz	dBm		-30	
Icc	Supply Current		mA	10	13	16

Note:

^{1.} The recommended operating voltage range for this device is 4 to 8 V. Typical performance as a function of voltage is on the following page.

IAM-81008 Typical Performance, $T_{_A}$ = 25°C, $V_{_{\rm CC}}$ = 5 V RF: –20 dBm at 2 GHz, LO: –5 dBm at 1.75 GHz

(unless otherwise noted)

Figure 1. Conversion Gain, IF $P_{1\ dB}$ and I_{CC} Current vs. V_{CC} Bias Voltage.

Figure 2. Conversion Gain, IF $P_{1\,dB}$ and I_{CC} Current vs. Case Temperature.

Figure 3. Typical RF to IF Conversion Gain vs. RF Frequency, T_A = 25°C (Low Side LO).

Figure 4. RF, LO and IF Port VSWR vs. Frequency.

Figure 5. RF to IF Conversion Gain vs. LO Power.

Figure 6. RF to IF Conversion Gain vs. IF Frequency.

Figure 7. RF Feedthrough Relative to IF Carrier, dBm LO to RF and IF Leakage vs. Frequency.

Figure 8. Harmonic Intermodulation Suppression (dB Below Desired Output) RF at 1 GHz, LO at 0.752 GHz, IF at 0.248 GHz.

Package Dimensions SO-8 Plastic Package

Note:
1. Dimensions are shown in millimeters (inches).