

Радиационная безопасность

Ионизирующим называется излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков.

К нему относятся:

- 1) α , β и γ излучения, обусловленные естественной и искусственной радиоактивностью химических элементов;
- 2) рентгеновские излучения, создающиеся в рентгеновских аппаратах, а также образующиеся при радиоактивном распаде ядер некоторых элементов;
- 3) потоки нейтронов и у-квантов, возникающих при ядерных реакциях деления и синтеза;
- 4) излучения, генерируемые на ускорителях;
- 5) излучения, приходящие из космоса и т.д.

Радиоактивность — свойство неустойчивых атомных ядер одних химических элементов самопроизвольно превращаться в ядра атомов других химических элементов с испусканием одной или нескольких ионизирующих частиц.

Ионизирующие излучения

Корпускулярное излучение — поток элементарных частиц с массой покоя, отличной от нуля (α , β - частицы, нейтроны, протоны и др.).

Кинетическая энергия этих частиц достаточна для ионизации атомов при столкновении.

Фотонное излучение – электромагнитное излучение. К нему относятся:

ү - излучение, возникающее при изменении энергетического состояния ядер;

тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц;

характеристическое излучение, возникающее при изменении энергетического состояния электронов атома;

рентгеновское излучение, состоящее из тормозного и (или) характеристического излучения.

Фотонное излучение, а также нейтроны и другие незаряженные частицы непосредственно ионизацию не производят, но в процессе взаимодействия со средой они высвобождают заряженные частицы, способные ионизировать атомы и молекулы данной среды.

Основные характеристики радиоизотопов:

- активность
- тип (способ) распад
- период полураспада
- вид и энергия излучения.

Активность радионуклида A в источнике — это отношение числа спонтанных ядерных превращений dN, происходящих в источнике за интервал времени dt, к этому интервалу:

A=dN/dt.

Единица измерения активности: беккерель (Бк) 1 Бк = 1 распад в секунду

Ки (Кюри) — внесистемная единица измерения активности; $1 \text{ Ku}=3.7\text{x}10^{10} \text{ Бк}$

Строение атомного ядра Модель ядра

Протонно-нейтронная модель

Изото́пы — разновидности атомов какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа.

Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева.

Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N).

Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов.

Примеры изотопов:

изотопы природного урана — U-234, U-235, U-238 (234 U, 235 U, 238 U) изотопы водорода — 1 H (протий), 2 H (дейтерий), 3 H (тритий)

Типы (способы) распада

Альфа-распад — самопроизвольный распад атомного ядра на дочернее ядро и альфа-частицу (ядро гелия) (U-238, Pu-239, Rn-222)

Бета-минус-распад – радиоактивный распад, сопровождающийся испусканием из ядра электрона и электронного антинейтрино (Sr-90, Cs-137)

Позитронный распад (бета) – радиоактивный распад, сопровождающийся испусканием из ядра позитрона и электронного нейтрино (Be-7, Mg-23)

Типы (способы) распада

Гамма-распад — электромагнитное излучение, характеризующееся чрезвычайно малой длиной волны и представляющее собой поток фотонов высокой энергии (Ba-137, I-131).

Нейтронное излучение — поток нейтронов, нейтральных тяжелых частиц. Это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах (расщепление — U-235, Pu-239 или синтез ядер — D+T, D+He-3 и др.). Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение

S_N

Период полураспада

Уровень нестабильности радионуклидов различен. Одни распадаются очень быстро, другие – очень медленно.

Время, в течение которого распадается половина всех радионуклидов данного типа называется периодом полураспада (Т/2).

Закон радиоактивного распада:

$$A(t)=A_0\exp(-\lambda t),$$

где A(t), A0 — активность нуклида в источнике в текущий и начальный (t=0) моменты времени соответственно; $\lambda = \ln 2/T1/2$ — постоянная распада; T1/2 — период полураспада.

Например, период полураспада урана-238 равен 4,47 млрд. лет, а протоактиния-234 – чуть больше одной минуты.

Период полураспада — одна из основных характеристик радиоактивного вещества, которая не может быть изменена известными на данный момент человеку способами.

30

Воздействие ионизирующих излучений на человека

1. Детерминированные — биологические эффекты излучения, в отношении которых предполагается существование дозового порога, выше которого тяжесть эффекта зависит от дозы.

К детерминированным эффектам относятся:

• острая лучевая болезнь

В случае однократного равномерного внешнего фотонного облучения ОЛБ (костномозговая форма) возникает при поглощенной дозе $D \ge 1$ Гр и подразделяется на четыре степени:

- I -легкая $(D = 1 \div 2 \Gamma p)$ смертельный исход отсутствует.
- II средняя (D = $2\div 4$ Гр) через $2\div 6$ недель после облучения смертельный исход возможен в 20% случаев.
- III тяжелая (D = $4\div6$ Гр) средняя летальная доза в течение 30 дней возможен летальный исход в 50% случаев.
- IV крайней тяжести (D > 6 Γ p) абсолютно смертельная доза в 100% случаев наступает смерть от кровоизлияний или от инфекционных заболеваний вследствие потери иммунитета (при отсутствии лечения). При лечении смертельный исход может быть исключен даже при дозах около 10 Γ p.

Воздействие ионизирующих излучений на человека

- хроническая лучевая болезнь формируется постепенно при длительном облучении дозами, значения которых ниже доз, вызывающих ОЛБ, но выше предельно допустимых
- локальные лучевые повреждения характеризуются длительным течением заболевания и могут приводить к лучевому ожогу и раку (некрозу) кожи, помутнению хрусталика глаза (лучевая катаракта).
- **2. Стохастические (вероятностные) эффекты** это биологические эффекты излучения, не имеющие дозового порога. Принимается, что вероятность этих эффектов пропорциональна дозе, а тяжесть их проявлений от дозы не зависит.

Последствия:

- канцерогенные злокачественные опухоли, лейкозы злокачественные изменения кровообразующих клеток;
- генетические наследственные болезни, обусловленные генными мутациями.

Поглощенная доза ионизирующего излучения D — отношение средней энергии dW, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме:

$$D=dW/dm$$
 [Гр=1 Дж/кг]

Эквивалентная доза ионизирующего излучения — произведение «тканевой дозы» (дозы в органе или ткани) D_T на взвешивающий коэффициент w_R для излучения R:

$$H_T = w_R D_T$$
 [3B]

Внесистемной единицей эквивалентной дозы является бэр: 1 бэр=0,01 Зв.

Вид излучения	Коэффициент, Зв/Гр
Рентгеновское и γ-излучение	1
Электроны, позитроны, β-излучение	1
Нейтроны с энергией меньше 20 кэВ	3
Нейтроны с энергией 0,1 – 10 МэВ	10
Протоны с энергией меньше 10 МэВ	10
α-излучение с энергией меньше 10 МэВ	20
Тяжелые ядра отдачи	20

Эффективная доза ионизирующего излучения E — сумма произведений эквивалентной дозы в органе или ткани за время на соответствующий взвешивающий коэффициент w_T для данного органа или ткани:

$$E = \sum_{T} w_{T} H_{T}$$
 [3B]

Ткани и органы	Взвешивающий коэффициент w_T
Гонады	0,2
Красный костный мозг	0,12
Толстый кишечник	0,12
Легкие	0,12
Желудок	0,12
Мочевой пузырь	0,05
Грудная железа	0,05
Печень	0,05
Щитовидная железа	0,05
Кожа	0,01

Коллективная эффективная доза S определяет полное воздействие от всех источников излучения на группу людей:

$$S=\sum_i E_i N_i$$
 [Зв·чел],

где E_i — средняя эффективная доза для і-ой подгруппы большой группы людей, N_i — число людей в подгруппе

Экспозиционная доза X фотонного излучения — это отношение суммарного заряда dQ всех ионов одного знака, созданных в сухом атмосферном воздухе при полном торможении электронов и позитронов, которые были образованы фотонами в элементарном объеме воздуха с массой dm, к массе воздуха в указанном объеме:

X=dQ/dm [Кл/кг]

Внесистемная единица экспозиционной дозы – рентген (Р)

Для характеристики интенсивности воздействия ионизирующих излучений используют величину **мощности дозы излучения** (Р). Мощность дозы понимают как дозу (экспозиционную, поглощенную или эквивалентную), регистрируемую за единицу времени. [Зв/ч, мЗв/ч, мЗв/ч]

Виды нормативных документов, регламентирующих требования радиационной безопасности

- Конституция РФ
- Международные конвенции и документы
- Федеральные законы
- Указы Президента, Постановления Правительства
- Федеральные нормы и правила
- Нормативные правовые акты министерств и ведомств
- Руководящие документы (РД), приказы и инструкции предприятий

Основополагающие:

- Федеральный закон «Об использовании атомной энергии» от 21 ноября 1995г., №170-ФЗ
- Федеральный закон «О радиационной безопасности населения» от 09 января 1996г., №3-ФЗ
- Федеральный закон «О санитарно-эпидемиологическом благополучии населения» от 30 марта 1999г., № 52-ФЗ
- «Нормы радиационной безопасности» (НРБ-99/2009) СанПиН 2.6.1.2523-09
- «Основные санитарные правила по обеспечению радиационной безопасности (ОСПОРБ-99/2010) СП 2.6.1.2612-10.

«Нормы радиационной безопасности» (НРБ-99/2009) СанПиН 2.6.1.2523-09

Нормы (НРБ 99/2009) распространяются на следующие источники ионизирующего излучения:

- техногенные источники за счёт нормальной эксплуатации техногенных источников излучения;
 - техногенные источники в результате радиационной аварии;
 - природные источники;
 - медицинские источники.

Нормы радиационной безопасности НРБ-99/2009 применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения.

Нормирование радиации СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности»

Категории облучаемых лиц:

- **персонал** лица, работающие с техногенными источниками ИИ (группа A) или находящиеся по условиям работы в сфере их воздействия (группа Б);
- все население, включая лиц из персонала, вне сферы и условий их производственной деятельности

Нормируемая величина	Группа А	Население
Эффективная доза	20 мЗв в год в среднем (за 5 лет) в среднем, но не более 50 мЗв в год	1 мЗв в год в среднем за любые 5 лет, но не более 5 мЗв в год
Эквивалентная доза - хрусталик - руки, ноги, кожа	150 мЗв 500 мЗв	15 м3в 50 м3в

Защита от ионизирующих излучений

- Экранирование
- Защита расстоянием (автоматизация и дистанционное управление)
- Защита временем (ограничение времени нахождения в зоне воздействия источника ионизирующего излучения)
- Использование СИЗ
- Радиопротекторы

Защита от ионизирующих излучений

Вид излучения	Экранирующие материалы	
α-излучения	воздушный промежуток толщиной 10 см лист бумаги	
β-излучения	материалы с малой атомной массой (алюминий, плексиглас)	
γ-излучение и рентгеновское излучение	материалы с большой атомной массой и плотностью (свинец, вольфрам и пр.) бетон толщиной несколько метров	
поток нейтронов	водородсодержащие элементы (полиэтилен, вода, парафин)	

Правила поведения населения при радиационной аварии (при нахождении человека дома)

- Закрыть окна, сделать влажную уборку
- Провести санобработку тела (помыться, умыться, прополоскать рот, носоглотку)
- Принять слабительное и отхаркивающее средства
- Принять препараты стабильного йода (раствор или таблетки)
- Использовать СИЗ
- Выполнять инструкции и указания, переданные через средства информирования населения

Основные мероприятия по защите населения от радиационного воздействия во время аварии

- Оповещение о радиационной аварии по факту
- Организация радиационного контроля в районе аварии
- Установление и поддержание режима радиационной безопасности
- Проведение на ранней стадии аварии йодной профилактики населения, персонала аварийного объекта, участников ликвидации последствий аварии
- Обеспечение населения, персонала аварийного объекта, участников ликвидации последствий аварий средствами индивидуальной защиты и использование этих средств
- Укрытие населения в убежищах и укрытиях, обеспечивающих снижения уровня внешнего облучения и защиту органов дыхания
- Санитарная обработка населения, персонала аварийного объекта, участников ликвидации последствий аварии
- Дезактивация аварийного объекта, объектов производственного, социального, жилого назначения, территории сельскохозяйственных угодий, транспорта, других технических средств защиты, одежды, имущества, продовольствия и воды
- Эвакуация или отселение граждан из зон, в которых уровень загрязнения превышает допустимый для проживания населения