PARALLEL SPECIATION OF TWO WESTERN NORTH AMERICAN SKINKS (PLESTIODON)

Presentation by Andrew Frank

PREVIOUS WORK

- Parallel cave invasions by amphipod Gammarus minus
 - Stable isotope analysis
 - Microsatellite loci

- Cryptic species delimitation of two nemertean worms
 - DNA Barcoding
 - Haplotype network analysis

CURRENT WORK

CURRENT WORK

Speciation & Population Genetics Core **Interests** Deep-Level Phylogenetics Systematics & Taxonomy

Parallel Evolution

Parallel Speciation

Parallel Speciation

B and C are more reproductively compatible than either is with A, resulting in the new lineage D

- Small bodied adults
- Mesic
- Coastal
- High elevations

- Small bodied adults
- Mesic
- Coastal
- High elevations

- Large bodied adults
- Xeric
- Inland
- Low elevations

Adult

Plestiodon skiltonianus

Plestiodon gilberti

Juvenile

Adult

Plestiodon gilberti

Juvenile

Adult

Plestiodon gilberti

MITOCHONDRIALTREE

ISOLATION BY SIZE

ISOLATION BY SIZE

ISOLATION BY SIZE

PARALLEL SPECIATION CRITERIA

Clades have...

- reproductive incompatibility with a divergent sister clade
- reproductive compatibility with one or more convergent sister clades
- ☐ independent origins

PARALLEL SPECIATION CRITERIA

Clades have...

- reproductive incompatibility with a divergent sister clade
- reproductive compatibility with one or more convergent sister clades
- independent origins

Bifurcating Speciation

Bifurcating Speciation

Parallel Speciation

Parallel Speciation

Parallel Speciation

Parallel Speciation

Parallel Speciation

HOW DO I GET COALESCENCE TIME DISTRIBUTIONS?

"Identifying a bimodal distribution in gene tree coalescent times with empirical data, which is suggestive of genetic exchange, will require more loci than are typically available, but this constraint is vanishing as more studies shift towards new sequencing technologies." (Leaché et al. 2013)

HOW DO I GET COALESCENCE TIME DISTRIBUTIONS?

"Identifying a bimodal distribution in gene tree coalescent times with empirical data, which is suggestive of genetic exchange, will require more loci than are typically available, but this constraint is vanishing as more studies shift towards new sequencing technologies." (Leaché et al. 2013)

Leverage anchored phylogenomics to capture ~500 loci

NEXT STEPS

- Sample from allopatric portions of *P. skiltonianus* and *P. gilberti* ranges, including from well-separated portions of the different *P. gilberti* mitochondrial lineages
- Use anchored phylogenomics to capture sequence data from ~500 loci for each sample
- Generate a distribution of coalescence times across all loci, and gene tree topologies for each loci using BEAST

THANKYOU!

Thanks to...

