Field de Tackello 6

1.
$$\int_{0}^{2} \int_{0}^{4} (x^{2} + xy) dy dx = \int_{0}^{2} [x^{2}y + \frac{1}{2}xy]^{\frac{1}{2}} dx$$

1.
$$\int_{0}^{2} \int_{0}^{4} (x^{2} + xy) dy dx = \int_{0}^{2} [x^{2}y + \frac{1}{2}xy]^{\frac{1}{2}} dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2} \left[(4x^{2} + 8x) - (x^{2} + \frac{1}{2}x) \right] dx$$

$$= \int_{0}^{2}$$

(b) volume (s) =
$$\iint_{0}^{3} p(x,y) dA$$

= $\int_{0}^{3} \left[2y\right] \frac{y \cdot x + 1}{y \cdot x} dx$

= $\int_{0}^{3} \left[2(x+1) - 2\right] dx = \int_{0}^{3} 2x dx$

= $\int_{0}^{3} \left[2(x+1) - 2\right] dx = \int_{0}^{3} 2x dx dx$

3. $\int_{0}^{3} \left[2(x+1) - 2\right] dx dy dx = \int_{0}^{3} xyz dx dy dz$

= $\int_{0}^{3} \left[1x^{2}y \cdot z\right]_{0}^{3} dx = \int_{0}^{3} 2x dx = \left[\frac{3}{2}z^{2}\right]_{0}^{3} = \frac{3}{2}$

= $\int_{0}^{3} \left[1x^{2}y \cdot z\right]_{0}^{3} dx = \int_{0}^{3} 3z dx = \left[\frac{3}{2}z^{2}\right]_{0}^{3} = \frac{3}{2}$

A91640 Beating Oliveina