Wzajemne wykluczenie						
L.p.	Nazwa algorytmu:	Twórca algorytmu:	Ogólna idea:			
			Opis:	Przykład:		
1.	Lamporta	Leslie Lamport	 w celu uzyskania dostępu do sekcji krytycznej proces musi mieć pewność, że jego żądanie jest najstarsze w systemie i że wiedzą o tym wszystkie inne procesy konfliktów równoczesnych, czas jest wyznaczany na podstawie zegara skalarnego Lamporta pełniącego rolę priorytetu w rozstrzyganiu konfliktów, 	$P1 \text{ wchodzi do sekcji krytycznej}$ $P1 = \{(2,1)\} \{(1,2),(2,1)\} \{(2,1)\}$ $P2 = \{(1,2)\} \{(1,2),(2,1)\} \{(2,1)\}$ $P3 = \{(1,2)\} \{(1,2),(2,1)\} \{(2,1)\}$ $P2 \text{ wchodzi do sekcji krytycznej}$ $P2 \text{ wychodzi z sekcji krytycznej}$		
2.	Ricarta i Agrawali	Ashok Agrawala, Glenn Ricart	 nie potrzeba utrzymywać kolejki, rozstrzyganie o pierwszeństwie może następować dynamicznie – przez wstrzymywanie odpowiedzi dla "przegrywającego", uzyskuje się dzięki temu "wirtualną kolejkę", procesy "przegrywające" rywalizację są wstrzymywane, aż do zakończenia sekcji krytycznej przez proces wygrywający, 	P1 wchodzi do sekcji krytycznej P1 $\{(2,1)\}$ $\{(1,2)(2,1)\}$ $\{(2,1)\}$ $\{(1,2)\}$ $\{(1$		
3.	Maekawy	Maekawy	 przecięcia zbiorów są niepuste (wymagane dla zapewnienia wzajemnego wykluczania), każdy węzeł należy do własnego zbioru (w celu zmniejszenia liczby wiadomości), zbiory mają taki sam rozmiar (każdy węzeł wykonuje równą ilość pracy), dowolny węzeł należy do takiej samej liczby różnych zbiorów arbitrażu (równa "odpowiedzialność" w udzielaniu zgody - 	P1 P2 P3 P4 P5		

			każdy potrzebuje zgody od takiej samej liczby węzłów),	
4.	Raymonda	Raymond	- używa struktury drzewa,	
			 korzeniem drzewa jest proces, który posiada żeton pozwalający na wejście do sekcji krytycznej, każdy proces dysponuje zmienną posiadacz, która wskazuje 	P1 (0)
			na kolejny proces na ścieżce prowadzącej do korzenia drzewa,	P2 P3
			- struktura zmienia się dynamicznie w zależności od posiadacza żetonu,	P4 P5 P6 P7
			- każdy proces w drzewie przechowuje kolejkę żądań sąsiednich procesów, które nie posiadały jeszcze żetonu,	
5.	Dijkstry	Edsger Wybe	- wyszukuje najkrótsze ścieżki z jednego źródła do wszystkich	
		Dijkstra	pozostałych węzłów grafu,	
			- przebieg algorytmu:	10 1
			 dopóki zbiór Q nie jest pusty wykonuj: pobierz ze zbioru Q wierzchołek v o najmniejszej - wartości D[v] i usuń go ze zbioru. dla każdego następnika i wierzchołka v dokonaj relaksacji ścieżki, tzn. sprwdź, czy D[i]>D[v]+A[v,i], tzn. czy aktualne oszacowanie odległości do wierzchołka i jest większe od oszacowania odległości do wierzchołka v plus waga krawędzi (v,i). Jeżeli tak jest, to zaktualizuj oszacowanie D[i] przypisując mu prawą stronę nierówności (czyli mniejszą wartość). 	a b c d e a 0 10 \infty \infty 5 b \infty 0 1 a c \infty 2 c \infty \infty 0 0 1 a c d \infty 2 c \infty 0 0 0 1 a c d d 7 \infty 6 0 0 \infty 0 a c d 0 \infty 0 a d 3 9 2 0
6.	Petersona i	Gary L. Peterson,	- umożliwia dwóm procesom lub wątkom bezkonfliktowy	while numer ≠ j do
	Lamporta	Leslie Lamport	dostęp do współdzielonego zasobu (sekcji krytycznej),	nic; sekcja krytycznaj; numer := i; resztaj;
7.	Suzuki-Kasami	Suzuki-Kasami	- wykorzystywany jest żeton, o który ubiegają się procesy chcąc	

			- proces, który posiada żeton może wchodzić do sekcji krytycznej do czasu, gdy nie poprosi o niego inny proces,		
			- pojawiają się problemy, co zrobić ze: starymi (przedawnionymi) żądaniami, zaległymi żądaniami,		
8.	Dekkera	Theodorus Jozef	- tylko jeden z procesów może w danej chwili wykonywać ich wspólną sekcję krytyczną,		
		Dekker	- pozwala dwóm wątkom na bezkonfliktową pracę na danych pochodzących z jednego źródła przy użyciu do komunikacji między nimi jedynie pamięci dzielonej,		
9.	Morrisa	Morris	- rozwiązuje problem wzajemnego wykluczania skończonej liczby procesów (nie dopuszczając do zagłodzenia) przy użyciu semaforów binarnych,		
			- wady operacji semarofowych: brak wpływu jednego procesu na zakończenie działania innego procesu, brak możliwości zawieszenia procesu na określony przedział czasu,		
10.	Holta	Charles C. Holt	- służy do detekcji zakleszczenia procesów korzystających z zasobów systemu,		
			- w algorytmie Holt'a przekształcamy macierz rang do trójwymiarowej macierzy E, w której znajdują się posortowane (wierszami) żądania z macierzy rang H wraz z numerami procesów,		
11.	Szymański	Bolesław	- wzorowany na poczekalni z drzwiami wejściowymi oraz wyjściowymi,		
		Szymański	- początkowo drzwi wejściowe są otwarte natomiast wyjściowe są zamknięte		
			- wszystkie procesy żądające dostępu do sekcji krytycznej mniej więcej w tym samym czasie wchodzą do poczekalni, ostatni z nich zamyka drzwi wejściowe i otwiera drzwi wyjściowe, procesy wchodzą de sekcji krytycznej jeden po drugim (lub w większych grupach, jeśli krytyczny punkt na to zezwala), ostatni proces opuszczający sekcję krytyczną zamyka drzwi wyjściowe i ponownie otwiera drzwi wejściowe, tak aby umożliwić wejście kolejnej partii procesów,		
12.	Haberman'a	Haberman	- służy do detekcji zakleszczenia procesów korzystających z zasobów systemu.		
	- detekcja zakleszczenia:		- detekcja zakleszczenia:		
		1. Zainicjuj zbiór D:={1,2,,n} oraz wektor zasobów wolnych f.			
2. Szukaj zadania o indeksie j należącym do zbioru D takiego, że: H(P _j)≤			2. Szukaj zadania o indeksie j należącym do zbioru D takiego, że: H(P _j)≤f		
	3. Jeżeli zadanie takie nie istnieje, to zbiór zadań odpowiadający zbiorowi D jest zbioro		3. Jeżeli zadanie takie nie istnieje, to zbiór zadań odpowiadający zbiorowi D jest zbiorem zadań zakleszczonych.		
			4. W przeciwnym razie podstaw: D:=D-{j}; f:=f+A(P _j).		
			5. Jeżeli zbiór D jest pusty zakończ wykonywanie algorytmu. W przeciwnym razie przejdź do kroku 2.		

Tabela 1. Tabelaryczne zestawienie algorytmów praktycznie rozwiązujących wzajemne wykluczenie wraz z ich twórcami.

Tabelaryczne zestawienie technologii rozproszonych obecnych na rynku:

L.p.	Technologia:	Skrót:	Warstwa:	Przykłady implementacji:
1.	Remote Method Invocation	RMI	middleware	Java, C#
2.	Gniazda	(sockets)	middleware	С
3.	Remote Procedure Call	RPC	middleware	C, Java
4.	Common Object Request Broker Architecture	CORBA	middleware	ORBit, OMNIErb
5.	Distributed Component Object Model	DCOM	middleware	C++
6.	Distributed Computing Environment	DCE	middleware	Java
7.	RMI-IIOP	RMI-IIOP	-	Java
8.	Simple Object Access Protocol	SOAP	-	Apache SOAP, .NET, gSOAP, Windows Communication Foundation
9.	Desktop Communication Protocol	DCOP	-	IPC/RPC sockets

Tabela 2. Zestawienie technologii rozproszonych obecnych na rynku.

Źródła:

- 1) Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego, platforma e-learningowa, http://wazniak.mimuw.edu.pl/index.php?title=Sr-7-wyk-2.0-Slajd13 (dostęp: 06.06.2016)
- 2) "Słownika Encyklopedycznego Informatyka" Wydawnictwa Europa. Autor Zdzisław Płoski. ISBN 83-87977-16-0. Rok wydania 1999. http://portalwiedzy.onet.pl/88097,,,,algorytm_tyrana,haslo.html (dostęp: 06.06.2016)
- 3) Wikipedia: wolna encyklopedia [online]. https://pl.wikipedia.org/wiki/Leslie_Lamport (dostęp: 06.06.2016)
- 4) Wikipedia: wolna encyklopedia [online]. https://pl.wikipedia.org/wiki/Algorytm Petersona (dostęp: 06.06.2016)
- 5) Wikipedia: wolna encyklopedia [online]. https://pl.wikipedia.org/wiki/Algorytm_Dekkera (dostęp: 06.06.2016)
- 6) Wikipedia: wolna encyklopedia [online]. https://en.wikipedia.org/wiki/Ricart%E2%80%93Agrawala_algorithm (dostęp: 06.06.2016)
- 7) Wikipedia: wolna encyklopedia [online].https://en.wikipedia.org/wiki/Glenn Ricart (dostęp: 06.06.2016)
- 8) Wikipedia: wolna encyklopedia [online]. https://en.wikipedia.org/wiki/Ashok Agrawala (dostęp: 06.06.2016)
- 9) Wikipedia: wolna encyklopedia [online]. https://en.wikipedia.org/wiki/Charles C. Holt (dostęp: 06.06.2016)
- 10) Wikipedia: wolna encyklopedia [online].https://pl.wikipedia.org/wiki/Edsger_Dijkstra (dostęp: 06.06.2016)
- 11) Instytut Informatyki, http://sirius.cs.put.poznan.pl/~inf66317/slajdy.pdf (dostęp: 7.06.2016)
- 12) http://www.cs.put.poznan.pl/akobusinska/downloads/rso/Slides/Maekawa.pdf (dostęp: 7.06.2016)
- 13) http://wazniak.mimuw.edu.pl/images/7/78/Sr-7-wyk-2.0.pdf (dostęp: 7.06.2016)
- 14) http://www.algorytm.org/wzajemne-wykluczanie/algorytm-holta.html (dostęp: 7.06.2016)

i wszystkie źródła podane w arkuszu google