БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и информатики

Внедрение адресации VLSM.

Статическая маршрутизация

СОДЕРЖАНИЕ

1.Технология	я маски переменной длины. Адресации VLSM	4
2. Статическа	ая маршрутизация	4
2.1. Источ	іники записей в таблице маршрутизации	4
2.1.1. П	О стека ТСР/ІР	4
2.1.2. A	дминистратор сети	4
2.1.3. Пр	ротоколы маршрутизации	5
2.2. Статич	ческая маршрутизация	5
3. Задание д	ля индивидуального выполнения	6
3.1. Ход вы	ыполнения задания	6
Вариант N		8
3.2. Замеч	ание	11
4. Варианты :	заданий	13
Вариант	1	13
Вариант	2	13
Вариант	3	13
Вариант	4	13
Вариант	5	13
Вариант	6	14
Вариант	7	14
Вариант	8	14
Вариант	9	14
Вариант	10	14
Вариант	11	15
Вариант	12	15
Вариант	13	15
Вариант	14	15
Вариант	15	15
Вариант	16	16
Вариант	17	16
Вариант	18	16
Вариант	19	16
Вариант	20	16
Вариант	21	17
Вариант	22	17
Вариант	23	17
Вариант	24	17
Вариант	25	17
Вариант	26	18
Вариант	27	18

Вариант	28	18
Вариант	29	18
Вариант	30	18
Вариант	31	19
Вариант	32	19
Вариант	33	19
Вариант	34	19
Вариант	35	19
Вариант	36	20
Вариант	37	20
Вариант	38	20
Вариант	39	20
Вариант	40	20
Вариант	41	21
Вариант	42	21
Вариант	43	21
Вариант	44	21
Вариант	45	21
Вариант	46	22
Вариант	47	22
Вариант	48	22
Вариант	49	22
Вариант	50	22
Вариант	51	23
Вариант	52	23
5. Список вог	просов для подготовки к мини-коллоквиуму	24

1. Технология маски переменной длины. Адресации VLSM

Задача гибкой IP-адресации была решена путем разработки технологии маски переменной длины. Общее правило использования масок подробно было рассмотрено в лабораторной работе №5. Методические материалы по этой теме представлены в презентации – **Технологии VLSM.**

2. Статическая маршрутизация

2.1. Источники записей в таблице маршрутизации

Практически для всех маршрутизаторов существует три основных источника появления записи в таблице маршрутизации.

2.1.1. ПО стека ТСР/ІР

Одним из источников записей в таблицу маршрутизации является программное обеспечение стека TCP/IP, которое при инициализации маршрутизатора автоматически заносит в таблицу несколько записей, в результате чего создается так называемая минимальная таблица маршрутизации. Программное обеспечение формирует записи о непосредственно подключенных сетях и маршрутах по умолчанию, информация о которых появляется в стеке при ручном конфигурировании интерфейсов компьютера или маршрутизатора.

2.1.2. Администратор сети

Администратор сети непосредственно формирует записи с помощью системных утилит. В аппаратных маршрутизаторах также всегда имеются команды для ручного задания записей таблицы маршрутизации. Заданные вручную записи всегда являются *статическими*, то есть они не имеют срока жизни.

Эти записи могут быть как постоянными, то есть сохраняющимися при перезагрузке маршрутизатора, так и временными, хранящимися в таблице только до выключения устройства. Часто администратор вручную заносит записи о *маршруте по умолчанию*. Таким же образом, в таблицу маршрутизации может быть внесена запись о *специфическом маршруте* для узла.

При изменении состояния сети администратору необходимо срочно отразить эти изменения в соответствующих таблицах маршрутизации, иначе может произойти их рассогласование, и сеть будет работать некорректно.

2.1.3. Протоколы маршрутизации

Третьим источником записей могут быть протоколы маршрутизации, например, такие как RIP или OSPF. В этом случае записи всегда являются *динамическими*, то есть имеют ограниченный срок жизни. При адаптивной (динамической) маршрутизации все измерения конфигурации сети автоматически отражаются в таблицах маршрутизации именно благодаря протоколам маршрутизации. Эти протоколы собирают информацию о топологии связей в сети, что позволяет им оперативно отрабатывать все текущие изменения.

Применяемые сегодня в IP-сетях протоколы маршрутизации относятся к адаптивным распределенным протоколам, которые, в свою очередь, делятся в зависимости от применяемых алгоритмов на группы: протоколы на дистанционновекторных алгоритмах (DVA) и протоколы на алгоритмах состояния связей (LSA).

2.2. Статическая маршрутизация

При небольшом количестве подсетей, как правило, используется статическая маршрутизация. Примеры конфигурирования сети с использованием статической маршрутизации уже были рассмотрены в лабораторной работе №7.

В данной работе задан адрес составной сети. Сеть состоит из нескольких подсетей. Для каждой из подсетей определено количество узлов.

Необходимо задать адресацию подсетей. Портам маршрутизаторов назначить сетевые адреса из диапазона адресного подпространства выше определенных подсетей. Компьютерам подсетей также необходимо задать соответствующие сетевые настройки. Этот процесс можно автоматизировать с применением протокола DHCP.

На практике обычно настраивается еще ряд параметров, например, протоколы DHCP и NAT.

Конфигурирование маршрутизаторов зависит от его модели. Например, для маршрутизатора Cisco набор команд конфигурирования был рассмотрен в лабораторной работе №7.

Напоминаем основные команды:

Router0 > enable -

Переход в привилегированный режим.

• Router0#configure terminal -

Вход в режим глобального конфигурирования.

• **Router0(conf)** # **interface** fast ethernet 0/1 -

Переход к конфигурированию конкретного интерфейса

- Router0(conf if) # ip address Назначение интерфейсу IP-адреса с маской.
- Router0(conf) # interface fast ethernet 0/0
 Router0(conf if) # ip route 0.0.0.0. 0.0.0.0. Прописать маршрут по умолчанию

3. Задание для индивидуального выполнения

Легенда

Руководство некой компании решило оборудовать компьютерами свои офисы в четырех городах и объединить их в компьютерную сеть. Количество компьютеров в каждом офисе задано в варианте задания. Вы, как будущий администратор сети, должны подготовить заявку провайдеру на выделение соответствующего пула адресов. Затем на основании выделенного адреса сети разбить сеть на подсети и выполнить распределение IP-адресов

3.1. Ход выполнения задания

IIIar 1.

- 1. Реализовать схему сети аналогичную приведенной на рисунке 1.
- 2. Присвоить имена маршрутизаторам и хостам по правилам как лабораторной работе №7 (Например, маршрутизатор R_FIO_1, компьютер PC_FIO_4)...

Шаг 2.

- 3. Создать схему IP-адресации для указанных требований (см. свой вариант задания) по количеству хостов для каждого из офисов.

 В вариантах заданий (в заявке руководства компании) указано требуемое в перспективе количество компьютеров для офиса в каждом городе. На схеме в файле **pkt** достаточно остановиться только на двух-трех хостах в сетях каждого города.
- 4. Заполнить таблицу вида 1 (смотри ниже, там задан фрагмент таблицы) согласно вашему варианту задания. В таблице 1 допускается опускать двоичное представление адресов.
- 5. Дать оценку корректности выделенного вам провайдером IP-адреса с префиксом.
 - Дать обоснование, в случае необходимости, изменения маски как в сторону уменьшения так и увеличения.
 - Указать оптимальный префикс сети для вашей заявки.

Рис. 1. Схема составной сети

Вариант N.

ІР-адрес 115.150.18.0/23

Требуемое число узлов	/ префикс	Число узлов	Адрес подсети	Диапазон адресов	Широковещательная рассылка
Гродно 1000					
Гомель 3500					
Минск 4000					
Могилев 1000					

- 6. Подписать на схеме сети:
 - ІР-адреса подсетей (красным цветом) и
 - IP-адреса интерфейсов (зеленым цветом) маршрутизаторов и нескольких хостов в каждой подсети.
- 7. Реально в жизни у вас не три компьютера в подсети, а сотни.

Как Вы решили бы проблему их конфигурирования.

Дать ответ. Можете дать реализацию проблемы

Шаг 3.

8. Обменяться пакетами внутри любой подсети и между хостами двух разных подсетей.

Прокомментировать полученные результаты данного эксперимента.

9. Просмотреть таблицы маршрутизации всех маршрутизаторов и вставить их в отчет.

Можно воспользоваться командой (какой?) или другим средством пакета (каким?)

Что мы видим в таблицах маршрутизации.

Сохранить файл (Модель №1).

Шаг 4.

10. Далее продолжаем работать с копией предыдущего файла модели.

(Модель №2)

Настроить статические маршруты между узлами, используя **CLI.** (По аналогии как в лабораторной работе №7.)

Существует ли еще иная маршрутизации кроме статической? ответить на вопрос.

11. Просмотреть таблицы маршрутизации всех маршрутизаторов и вывести их в отчет.

Что изменилось в таблицах маршрутизации.

Можно ли таблицу маршрутизации в вашем случае оптимизировать.

Если можно, то как.

Можно ли обойтись без таблиц маршрутизации?

Шаг 5.

- 12. Используя команду (какую?) проверить взаимодостижимость всех оконечных узлов пользователей. Достаточно по одной для узлов из каждой подсети и по одной внутри подсети.
- 13. Снова просмотреть таблицы маршрутизации всех маршрутизаторов и вставить их в отчет.

Шаг 6.

Таблицы маршрутизации были получены вами три раза (пункты 9, 11,13).
 Прокомментируйте полученные результаты.
 Сохранить файл модели №2.

Шаг 7.

- Далее работаем с копией файла модели из пункта 14. (Модель №3)
 Выключить питание у маршрутизатора №2
 (Маршрутизатор вывели из строя.).
- 16. Проверить взаимодостижимость всех оконечных узлов пользователей (как в пункте 11).
- 17. Выдать снова все таблицы маршрутизации. Прокомментировать таблицы, полученные в пунктах 17 и 13. Сделать выводы.
- 18. Сохранить файл модели №3.

Шаг 8.

- 19. Далее работаем с копией файла модели из пункта 14. (Модель №4) Восстановить работоспособность маршрутизатора №2. Выключить питание у маршрутизатора №1 (Маршрутизатор вывели из строя). Проверить взаимодостижимость всех оконечных узлов пользователей (как в пункте 11).
- **20.** Проанализировать ситуацию и дать вариант повышения отказоустойчивости всей сети.
 - Сохранить файл модели.
- **21.** Выдать снова все таблицы маршрутизации. Прокомментировать таблицы, полученные в пунктах 21 (модель №4) и 11 (модель №2). Сделать выводы.

Шаг 9.

22. Подготовить отчет.

Отчет строить, отвечая на каждый пункт задания 3 и вставляя в отчет сам пункт задания, выделяя его курсивом.

В начале отчета необходимо привести таблицу с данными вашего варианта задания, представить реализованную схему распределения адресов для офисов (заполненную таблицу вида 1), скриншоты настроек статических маршрутов в СЦ, скриншоты таблиц маршрутизации, скриншоты работы используемых вами утилит на конечных узлах. Скриншоты должны быть обязательно прокомментированы.

Шаг 10.

23. Создать на сервере папку №группа_Lab9_ФИО. Разработанные четыре модели сетей сохранить в файлах №группа_Lab9_ФИО_№модели.pkt., а отчет в файле №группа_Lab9_ФИО.doc.

3.2. Замечание

Подготовив отчет, внимательно пролистайте его. Уберите редакционные недоработки. Перечисляю (как показала практика) типовые недочеты:

- на титульном листе не та тема лабораторной работы;
- опущены наименования разделов, подразделов отчета;
- отсутствует текстовка при внедрении рисунков
 (вы должны убедить меня в том, что вы имеете представление о том, что
 изображено на рисунке);
- нарушены стандарты размеров шрифтов (шрифт Times New Roman 12, межстрочный интервал полуторный);
- не вставлены данные вашего варианта задания;
- не скопированы из лабы пункты задания для выполнения и не вставлены после скопированного пункта задания результат его выполнения;
- не читабельны рисунки;
- не выровнены строки;
- нет нумерации страниц отчета.

Широко используйте Word-овские стили; которые позволяют Вам сверстать отчет и автоматически создать многоуровневое оглавление (как в файле с данной лабой).

Таблица 1

Фрагмент таблицы схемы адресации подсетей

4. Варианты заданий

Вариант 1

IP - адрес

207.201.0.0 / 16

Требуемое число узлов

2500	Гродно
10000	Гомель
500	Минск
100	Могилев

Вариант 2

IP - адрес

10.0.0.0/12

Требуемое число узлов

100	Гродно
55	Гомель
30	Минск
12	Могилев

Вариант 3

IP - адрес

173.213.192.0 / 18

Требуемое число узлов

100	Гродно
300	Гомель
250	Минск
600	Могилев

Вариант 4

IP - адрес

55.66.0.0 / 16

Требуемое число узлов

1150	Гродно
1000	Гомель
500	Минск
100	Могилев

Вариант 5

IP - адрес

191.167.0.0 / 16

500	Гродно
1500	Гомель
200	Минск
10	Могилев

IP - aòpec 15.160.16.0 / 18

Требуемое число узлов

1000	Гродно
3500	Гомель
4000	Минск
1000	Могилев

Вариант 7

IP - adpec 2.2.64.0 / 22

Требуемое число узлов

100	Гродно
250	Гомель
200	Минск
500	Могилев

Вариант 8

IP - aòpec 45.55.0.0 / 16

Требуемое число узлов

2000	Гродно
250	Гомель
250	Минск
2000	Могилев

Вариант 9

IP - aòpec 192.160.100.0 / 14

Требуемое число узлов

2005	Гродно
2100	Гомель
3800	Минск
250	Могилев

Вариант 10

IP - aòpec 215.105.0.0 / 16

200	Гродно
150	Гомель
50	Минск
60	Могилев

IP - adpec 203.105.64.0 / 20

Требуемое число узлов

1800	Гродно
1600	Гомель
1400	Минск
550	Могилев

Вариант 12

IP - adpec 201.138.64.0 / 18

Требуемое число узлов

115	Гродно
25	Гомель
27	Минск
12	Могилев

Вариант 13

IP - adpec 137.15.0.0 / 16

Требуемое число узлов

15000	Гродно
5000	Гомель
10000	Минск
500	Могилев

Вариант 14

IP - aòpec 192.116.128.0 / 20

Требуемое число узлов

250	Гродно
250	Гомель
120	Минск
50	Могилев

Вариант 15

IP - adpec 10.105.0.0 / 16

130	Гродно
100	Гомель
50	Минск
12	Могилев

IP - adpec 141.134.0.0 / 16

Требуемое число узлов

15000	Гродно
2500	Гомель
2700	Минск
120	Могилев

Вариант 17

IP - adpec 10.10.128.0 / 18

Требуемое число узлов

5000	Гродно
7000	Гомель
10000	Минск
1200	Могилев

Вариант 18

IP - adpec 192.168.0.0 / 18

Требуемое число узлов

1950	Гродно
2000	Гомель
5000	Минск
800	Могилев

Вариант 19

IP - adpec 10.103.20.0 / 14

Требуемое число узлов

25000	Гродно
30000	Гомель
27000	Минск
5000	Могилев

Вариант 20

IP - adpec 172.16.0.0 / 16

7000	Гродно
15000	Гомель
5100	Минск
1200	Могилев

IP - adpec 1

189.125.192.0/22

Требуемое число узлов

55	Гродно
111	Гомель
200	Минск
40	Могилев

Вариант 22

IP - адрес

11.100.0.0/14

Требуемое число узлов

23000	Гродно
25000	Гомель
30000	Минск
200	Могилев

Вариант 23

IP - адрес

214.128.167.0 / 24

Требуемое число узлов

10	Гродно
50	Гомель
110	Минск
20	Могилев

Вариант 24

IP - адрес

19.16.0.0 / 16

Требуемое число узлов

1000	Гродно
4000	Гомель
13000	Минск
500	Могилев

Вариант 25

IP - адрес

144.117.128.0 / 23

50	Гродно
70	Гомель
50	Минск
50	Могилев

IP - адрес

100.100.10.0 / 24

Требуемое число узлов

100	Гродно
29	Гомель
27	Минск
13	Могилев

Вариант 27

IP - адрес

100.100.10.0 / 24

Требуемое число узлов

100	Гродно
135	Гомель
30	Минск
35	Могилев

Вариант 28

IP - адрес

192.168.15.0 / 26

Требуемое число узлов

10	Гродно
10	Гомель
28	Минск
58	Могилев

Вариант 29

IP - адрес

110.10.0.0 / 18

Требуемое число узлов

10000	Гродно
2600	Гомель
800	Минск
100	Могилев

Вариант 30

IP - адрес

110.10.0.0/18

100	Гродно
2700	Гомель
800	Минск
10000	Могилев

IP - адрес

214.128.167.0 / 16

Требуемое число узлов

10	Гродно
50	Гомель
110	Минск
20	Могилев

Вариант 32

IP - адрес

15.160.16.0 / 18

Требуемое число узлов

1020	Гродно
3500	Гомель
4000	Минск
1030	Могилев

Вариант 33

IP - адрес

2.2.64.0 / 22

Требуемое число узлов

64	Гродно
258	Гомель
200	Минск
520	Могилев

Вариант 34

IP - adpec

45.55.0.0 / 16

Требуемое число узлов

2000	Гродно
254	Гомель
258	Минск
2000	Могилев

Вариант 35

IP - адрес

192.160.100.0 / 14

2005	Гродно
2100	Гомель
3800	Минск
258	Могилев

IP - adpec 215.105.0.0 / 16

Требуемое число узлов

200	Гродно
258	Гомель
50	Минск
68	Могилев

Вариант 37

IP - adpec 203.105.64.0 / 20

Требуемое число узлов

1800	Гродно
2500	Гомель
1400	Минск
550	Могилев

Вариант 38

IP - adpec 201.138.64.0 / 18

Требуемое число узлов

115	Гродно
25	Гомель
27	Минск
33	Могилев

Вариант 39

IP - adpec 137.15.0.0 / 16

Требуемое число узлов

1500	Гродно
500	Гомель
1000	Минск
50	Могилев

Вариант 40

IP - adpec 192.116.128.0 / 20

250	Гродно
260	Гомель
160	Минск
50	Могилев

IP - адрес

10.105.0.0 / 16

Требуемое число узлов

130	Гродно
100	Гомель
50	Минск
18	Могилев

Вариант 42

IP - адрес

141.134.0.0 / 16

Требуемое число узлов

15000	Гродно
2500	Гомель
3000	Минск
120	Могилев

Вариант 43

IP - адрес

10.10.128.0 / 18

Требуемое число узлов

4000	Гродно
7000	Гомель
10000	Минск
1200	Могилев

Вариант 44

IP - адрес

192.168.0.0 / 18

Требуемое число узлов

1950	Гродно
2200	Гомель
5000	Минск
780	Могилев

Вариант 45

IP - adpec

10.103.20.0 / 14

25000	Гродно
30000	Гомель
27000	Минск
5500	Могилев

 $IP - a \partial pec$ 172.

172.16.0.0 / 16

Требуемое число узлов

5600	Гродно
15000	Гомель
5100	Минск
1200	Могилев

Вариант 47

IP - адрес

189.125.192.0 / 22

Требуемое число узлов

55	Гродно
131	Гомель
200	Минск
24	Могилев

Вариант 48

IP - адрес

11.100.0.0/14

Требуемое число узлов

23000	Гродно
25000	Гомель
30000	Минск
255	Могилев

Вариант 49

IP - адрес

214.128.167.0 / 24

Требуемое число узлов

10	Гродно
50	Гомель
110	Минск
18	Могилев

Вариант 50

IP - адрес

19.16.0.0 / 16

1050	Гродно
4000	Гомель
13000	Минск
500	Могилев

IP - aòpec 144.117.128.0 / 23

Требуемое число узлов

50	Гродно
70	Гомель
30	Минск
150	Могилев

Вариант 52

IP - adpec 100 . 100 . 10 . 0 / 24

100	Гродно
59	Гомель
27	Минск
13	Могилев