example 3.0							
based on proposition	1 Hot	MSE (&	.)=1Bias(&	1)P+ Varlö	\$), if	& is unbiased	d, then MSE is Variance

= Var [V].

 $\triangleright N$ is total number of samples

 $\triangleright n$ is number of hits

then, we can get E(BN) +Var(x1)

= th(n-1) Varly) then we can get Bu is biased.

$$\mathbb{E}(\mathcal{G}_{N}) = \prod_{i=1}^{n} \mathbb{E}\left[\sum_{k=1}^{n} \sum_{k=1}^{n} -N \mathbb{E}(\mathcal{G}_{i}) -N \mathbb{$$

Algorithm 1 MC estimation of π

- 1: **procedure** MCPI(N)
 - $n \leftarrow 0$
- for i = 1...N do
- generate two numbers X, Y from U(-1,1)if $X^2 + Y^2 < 1$ then $n \leftarrow n + 1$
- return $\frac{4n}{N}$

must write both pseudocode and python code.

Repeat above estimation of MSE(π̂_N) for N = 2ⁱ : i = 5,...10 and plot log-log chart.

• Use β_{100} of Example 3 to estimate $MSE(\hat{\pi}_N)$ by repeating π_N of Example 1. One

Algorithm 4. N.C. Estimation of MSE (SiN).

1. procedure MCPI pi (n.N)

for 1=1.2 ... N. do

x= Mcpi (N) M. append (x)

m= m+x YE O.

for 1=1.2 ... N. do.

>= v+ (MCI -m)2 return $\frac{\gamma}{\lambda_1}$

Example 2).

3.2 Evaluation of integral

Back to our Example 1, we write

$$\alpha = \mathbb{E}[X] = \mathbb{E}[h(Y)],$$

where X = h(Y) and $Y \sim U(0,1)$. In other words, although X-sampling is not directly available in python, one can use U(0,1) random generator (see numpy.random.uniform) to produce Y_i , then compute $h(Y_i)$ for the sample X_i .

Algorithm 1 Integral by MC - Example 1

Example 2 • Implement Algo 1 for estimator $\hat{\alpha}_N$;

• Estimate $MSE(\hat{\alpha}_N)$ for $N=2^5\ldots,2^{10}$ and plot log-log chart.

Algorithm 1.

1. procedure. Mcintegral W)

2. S←0

3. for i= 1. 2.. N do.

4. generate one # T from U(0.1).
5. SE St Y.

letnu D.