OR

Q.11 a)	What are draw backs of RS FF? Explain JK FF.	4
b)	Draw and explain decade counter.	5
c)	What is T FF? Explain.	2

First Year B.C.A. (Semester - I) Examination Paper - 15BCA103 Digital Techniques

Time: Three hours]					[Full Marks - 60		
N.B.		i) ii)	Due credit v dimensions.	o n	eatness & adequate		
		iii)		able data who		_	
]	IV)		Equations si	10U	ld be given wherever	
		v)	necessary. Use Blue/E answer boo		lon	ly for writing the	
O. 1	Se	lect 1	the correct alt	ernative & re	wni	tethesentence 5	
			dix of binary				
		i)	_	=	4		
		iii)	8	iv	16	6	
	b)		is the universal gate				
			NAND	ii)	E	x-OR	
		iii)	NOT	iv)	O	PR	
	c)	4-v	⁄ariableK-ma	p hass	qua	res for output.	
		i)	2	ii)	8		
		,	16		32		
	d)	8:	1 Mux has	select/co	ntr	ol lines.	
		i)	1	ii)			
		iii)) 4		
	e)	Mo	odules of a de				
		i)		,	5		
		iii)	10	iv) 16	5	

Q.2	a)	Find the value of x. i) $(100.75)_{10} = x_2$	5	Q.6 a	Explain pairs, quads and octet with respect to K-map.
		ii) $(1067.25)_8 = x_2$		h) Draw 2, 3 and 4 variable K-map.
		iii) $(AAA.A)_{16} = x_2$			Convert following equations in to standard SOP
		iv) $(11101.101)_2 = x_{10}$		·	form.
		v) $(101111011.111)_2 = x_8$			i) $Y = AB + \overline{B}C + A\overline{C} + A$
	b)	Perform following subtraction by using 1's complem	ent		ii) $Y = ABC + A\overline{B}D + \overline{B}CD + \overline{A}CD$
		method	4		,
		i) $(1101)_2 - (1001)_2$			OR
		ii) $(11101)_2 - (10111)_2$			
	c)	What are various types of number systems?		Q.7 a	Explain the concept of SOP and POS with suitable
		Explain	2		example 5
				b) Minimize the following functions using K-map and
		OR			realise using universal gates.
					i) $f(A,B,C,D) = \sum_{i} m(0, 2, 3, 6, 7, 10, 11, 14, 15)$
Q. 3	a)	Explain subtraction by 2's complement method with			ii) $f(A,B,C,D) = \sum m(1, 3, 5, 7, 10, 14, 15)$
		example	4	0.0	
	b)	Explain conversion of decimal number to binary		Q.8 a) What is Full Adder? Explain the construction and
		number. Give suitable example	4	1	working of full adder with neat diagram.
	c)	What is BCD code? List its advantages.	3	t) What is encoder? Draw and explain Decimal to
					BCD encoder
Q.4	a)	NOR and NAND gates are called as universal gate	S.	С) What is Multiplexer? Explain 4: 1 multiplexer.
		Explain	4		OD
		Explain various boolean laws.	4		OR
	c)	Prove following identity.	3	0.0 -	D. D 61-: 4 DIT11-1 A 11/14
		i) $\underline{A + \overline{A}B} = A + \underline{B}$		•	Draw & explain 4 BIT parallel Adder/ subtractor What is a graviting as an 2 Explain 1 1 4 deposition as an 4
		ii) $\overline{A \oplus B} = AB + \overline{A} \overline{B}$			What is demultiplexer? Explain 1:4 demultiplexer.
		OR		C) What is Half Adder? Explain.
Q.5	a)	State and prove DeMorgan's theorem. State gate		Q. 10 a) Draw and Explain clocked RSFF using NOR gates. 4
• -	,	equivalence of DeMorgans theorems.	5	b	With neat block diagram explain 4 - BIT ripple
	b)	Writeshort note on Ex-OR gate	3		counter. Also draw timing diagrams.
	c)	What are different basic gates? Explain with truth tal	ole	c) What is Counter? What is modulus of a counter?
		logic equation, logic symbol and logical statement.	3		Explain with example 2