Problemi sulle trasformazioni dei gas (2)

1. Un cilindro orizzontale rigido a pareti rigide adiabatiche è diviso in due parti da un setto

isolante che può scorrere senza attrito. Inizialmente un gas ideale monoatomico riempie entrambi i volumi nelle stesse condizioni, che sono $V_0=0.054~\mathrm{m^3}$, pressione $p_0=10^5~\mathrm{Pa}$ e temperatura $T_0=273~\mathrm{K}$. Una resistenza posta nel volume 1 scalda molto lentamente il gas (nel volume 1) e dopo il

riscaldamento si trova che la pressione del gas nel volume 2 è pari a $p_2=7.69\cdot 10^5$ Pa. Determinare:

- a) la temperatura T_2 del gas nel volume 2;
- b) il lavoro W_2 del gas nel volume 2;
- c) la temperatura T_1 del gas nel volume 1;
- d) il calore Q_1 scambiato dal gas nel volume 1.
- 2. Una gas perfetto monoatomico si espande dal volume iniziale V_1 al volume finale $V_2 = 2.7V_1$. Determinare:

- a) il rapporto W_{adiab}/W_{isot} tra il lavoro fatto dal gas nel caso in cui la trasformazione sia adiabatica reversibile e il lavoro fatto dal gas nel caso in cui la trasformazione sia isoterma reversibile, partendo dallo stesso stato iniziale del gas;
- b)in quale delle due trasformazioni la variazione di energia interna è maggiore.
- 3. Due moli di fas perfetto monoatomico occupano inizialmente un volume V_0 alla temperatura $T_0=300$ K. Il gas si espande fino a raddoppiare il suo volume seguendo una trasformazione reversibile in cui $p(V)=p^*e^{-V/V_0}$, con p^* costante. Determinare:
 - a) la temperatura T_1 del gas al termine dell'espansione;
 - b) il calore Q scambiato dal gas durante la trasformazione.