ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring

School of Industrial and Management Engineering, Korea University

Jong Kook Heo

Contents

- * Research Purpose
- * ReMixMatch
 - Distribution Alignment
 - Augmentation Anchoring
- Results
- Conclusion

Research Purpose

- ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
 - Google Research 에서 연구되었으며, 2022년 8월 27일 기준 494회 인용됨

REMIXMATCH: SEMI-SUPERVISED LEARNING WITH DISTRIBUTION ALIGNMENT AND AUGMENTATION ANCHORING

David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, Colin Raffel Google Research {dberth, ncarlini, cubuk, kurakin, zhanghan, craffel}@google.com

Kihyuk Sohn Google Cloud AI kihyuks@google.com

ABSTRACT

We improve the recently-proposed "MixMatch" semi-supervised learning algorithm by introducing two new techniques: distribution alignment and augmentation anchoring. Distribution alignment encourages the marginal distribution of predictions on unlabeled data to be close to the marginal distribution of ground-truth labels. Augmentation anchoring feeds multiple strongly augmented versions of an input into the model and encourages each output to be close to the prediction for a weakly-augmented version of the same input. To produce strong augmentations, we propose a variant of AutoAugment which learns the augmentation policy while the model is being trained. Our new algorithm, dubbed ReMixMatch, is significantly more data-efficient than prior work, requiring between 5× and 16× less data to reach the same accuracy. For example, on CIFAR-10 with 250 labeled examples we reach 93.73% accuracy (compared to MixMatch's accuracy of 93.58% with 4,000 examples) and a median accuracy of 84.92% with just four labels per class. We make our code and data open-source at https://github.com/google-research/remixmatch.

Research Purpose

Summary

- MixMatch 에 **Distribution Alignment** 와 **Augmentation Anchoring** 요소를 추가로 적용
- CIFAR 10 Dataset 에서 MixMatch 보다 16배 높은 Data Efficiency 를 보여줌
 - ✓ 250 Labeled data 성능이 4000 Labeled data 로 학습한 MixMatch 와 동일
- AutoAugment 보다 시간/비용적으로 효율적인 CTAugment 를 제안
 - ✓ CTAugment 는 Supervision 없이 동적으로 Augmentation 의 분포를 dynamic 하게 조정

- * Background Mixmatch
 - Semi-SL 의 대표적인 아이디어인 Consistency Regularization, Entropy Minimization, Regularization 을 전부 하나의 알고리즘으로 병합
 - Consistency Regularization : perturbation 에도 예측 값이 바뀌지 않도록(Averaging)
 - Entropy Minimization : 모델의 예측값의 분포가 high-confident 하도록(Sharpening)
 - Regularization : 모델이 over-parameterize 되지 않도록
 - ✓ L2 weight decay vs **Mix-up**

vix-up works by blending 2 images with alpha % from image_i and (i-alpha) % from image

Mix-up with labeled data

https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-augmentation-with-codes-33288db92de5

- Distribution Alignment
 - Semi SL의 목적은 unlabeled data 를 통해 모델의 성능을 향상 시키는 것
 - 가장 일반적인 방법은 unlabeled data 의 input 과 output 의 mutual information 을 증가 시키는 것
 - Fariness + Entropy Minimization

$$\mathcal{I}(y;x) = \iint p(y,x) \log \frac{p(y,x)}{p(y)p(x)} dy dx$$
$$= \mathcal{H}(\mathbb{E}_x[p_{\text{model}}(y|x;\theta)]) - \mathbb{E}_x[\mathcal{H}(p_{\text{model}}(y|x;\theta))]$$

예측 분포의 전체 평균의 Entropy

개별 예측 분포의 Entropy 의 기댓값

Distribution Alignment

- Semi SL의 목적은 unlabeled data 를 통해 모델의 성능을 향상 시키는 것
- 가장 일반적인 방법은 unlabeled data 의 input 과 output 의 mutual information 을 증가 시키는 것

- 7 -

- Fariness + Entropy Minimization
 - ✓ Mixmatch 에서 Temperature Sharpening 으로 이미 해결하였음

Unlabeled data 의 개별 예측 값은 high-confident 해야한다

개별 예측 분포의 Entropy 의 기댓값

- Distribution Alignment
 - Semi SL의 목적은 unlabeled data 를 통해 모델의 성능을 향상 시키는 것
 - 가장 일반적인 방법은 unlabeled data 의 input 과 output 의 mutual information 을 증가 시키는 것
 - Fariness + Entropy Minimization
 - ✓ 이거도 반영해보자!

 $\mathcal{H}(\mathbb{E}_x[p_{\text{model}}(y|x;\theta)])$

예측 분포의 전체 평균의 Entropy

Unlabeled data 의 Prediction의 전체 평균은 Uniform 해야한다

- Distribution Alignment
 - Semi SL의 목적은 unlabeled data 를 통해 모델의 성능을 향상 시키는 것
 - 가장 일반적인 방법은 unlabeled data 의 input 과 output 의 mutual information 을 증가 시키는 것
 - Fariness + Entropy Minimization

$$\mathcal{I}(y;x) = \iint p(y,x) \log \frac{p(y,x)}{p(y)p(x)} \, dy \, dx$$
$$= \mathcal{H}(\mathbb{E}_x[p_{\text{model}}(y|x;\theta)]) - \mathbb{E}_x[\mathcal{H}(p_{\text{model}}(y|x;\theta))]$$

원래 클래스 분포는 균일한데, 개별 예측 값의 분포는 불균일 하도록

- Distribution Alignment
 - Semi SL의 목적은 unlabeled data 를 통해 모델의 성능을 향상 시키는 것
 - 가장 일반적인 방법은 unlabeled data 의 input 과 output 의 mutual information 을 증가 시키는 것
 - Fariness + Entropy Minimization

$$\mathcal{I}(y;x) = \iint p(y,x) \log \frac{p(y,x)}{p(y)\eta(x)} \, \mathrm{d}y \, \mathrm{d}x \\ = \underbrace{\mathcal{H}_{(\mathbb{E}_x[p_{\mathrm{model}}(y|x;\theta)]}^{\mathcal{H}_{(\mathbb{E}_x[p_{\mathrm{model}}(y|x;\theta)])}^{\mathcal{H}_{(\mathbb{E}_x[p_{\mathrm{model}}(y|x;\theta)])}^{\mathcal{H}_{(\mathbb{E}_x[p_{\mathrm{model}}(y|x;\theta))]}^{\mathcal{H}_{(\mathbb{E}_x[p_{\mathrm{model}}(y|x;\theta)))}^{\mathcal{H$$

원래 클래스 분포는 균일한데, 개별 예측 값의 분포는 불균일 하도록

Unlabeled Prediction 이 Uniform 이 아니라 Labeled Data 의 클래 스 비율을 따라가도록 하자

Distribution Alignment

- Labeled Data 의 Class Ratio 를 따라가도록 Loss Function 설계 가능
- 하지만 추가적인 Loss 나 hyper-parameter 없이 간단하게 병합할 수 없을까?
- 아래 식을 통해 Unlabeled data 의 예측 값을 보정
 - ✓ 개인적인 생각으로는 Importance Sampling 과 유사한 듯

$$\tilde{q} = Normalize(q)$$

$$= q \times \frac{p(y)}{\tilde{p}(y)}$$

 $q = p_{model}(y|u;\theta)$

p(y): Labeled data의 label 분포의 average

 $ilde{p}(y)$: Unlabeled data의 예측분포(q)의 moving average

- Augmentation Anchoring
 - Mixmatch 에서는 Fip 과 Crop 등의 Weak Augmentation 만 적용
 - 관련 연구(Xie et al, 2019) 왈,
 - ✓ "Stronger forms of Augmentation can significantly improve the performance of consistency regularization!!"
 - Weak Augmentation 대신 AutoAugment 를 적용해서 Consistency Regularization 향상을 해보자!!

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019

- - Mixmatch 에서는 Fip 과 Crop 등의 Weak Augmentation 만 적용 과려 여구(Xie et al. 2019) 완

학습 시 수렴하지 않음

너무 오래 걸림

Stronger Augmentation 으로 인한 개별 예 측 값이 서로 너무 다름

강화학습을 통해 Sub-policy를 학습 해야 함

→①평균 값이 유의미한 타겟이 아님

→②Sub-policy의 학습 시간이 오래걸림

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019

- Augmentation Anchoring
 - ① Stronger Augmentation 이 유의미한 Target 을 따라가야함
 - Weak Augmentation 의 Guessed Label 을 Target 으로 사용하자

- Augmentation Anchoring
 - ② 추가적인 학습이 필요 없는 Augmentation Policy 가 필요함
 - CT Augment 를 제안 \rightarrow 학습 과정에서 각 Augmentation 의 강도에 따른 확률을 동적으로 변형
 - Step 1. 각 Augmentation 별로 magnitude 에 대한 bin 을 설정(초기 값 1)

bins of magnitude

AutoContrast Blur

•••

Translate y

1	1	•••	1			
1	1	•••	1			
•••	•••	•••	1			
1	1	•••	1			

Transformation	Description	Parameter	Range
Autocontrast	Maximizes the image contrast by setting the darkest (lightest) pixel to black (white), and then blends with the original image with blending ratio λ .	λ	[0, 1]
Blur			
Brightness	Adjusts the brightness of the image. $B=0$ returns a black image, $B=1$ returns the original image.	B	[0, 1]
Color	Adjusts the color balance of the image like in a TV. $C=0$ returns a black & white image, $C=1$ returns the original image.	C	[0, 1]
Contrast	Controls the contrast of the image. A $C=0$ returns a gray image, $C=1$ returns the original image.	C	[0, 1]
Cutout	Sets a random square patch of side-length $(L \times \text{image width})$ pixels to gray.	L	[0, 0.5]
Equalize	Equalizes the image histogram, and then blends with the original image with blending ratio λ .	λ	[0, 1]
Invert	Inverts the pixels of the image, and then blends with the original image with blending ratio λ .	λ	[0, 1]
Identity	Returns the original image.		
Posterize	Reduces each pixel to B bits.	B	[1, 8]
Rescale	Takes a center crop that is of side-length $(L \times \text{image width})$, and rescales to the original image size using method M .	L	[0.5, 1.0]
		M	see caption
Rotate	Rotates the image by θ degrees.	θ	[-45, 45]
Sharpness	Adjusts the sharpness of the image, where $S=0$ returns a blurred image, and $S=1$ returns the original image.	S	[0, 1]
Shear_x	Shears the image along the horizontal axis with rate R .	R	[-0.3, 0.3]
Shear_y	Shears the image along the vertical axis with rate ${\cal R}.$	R	[-0.3, 0.3]
Smooth	Adjusts the smoothness of the image, where $S=0$ returns a maximally smooth image, and $S=1$ returns the original image.	S	[0, 1]
Solarize	Inverts all pixels above a threshold value of T.	T	[0, 1]
Translate_x	Translates the image horizontally by ($\lambda \times$ image width) pixels.	λ	[-0.3, 0.3]
Translate_y	Translates the image vertically by $(\lambda \times \text{image width})$ pixels.	λ	[-0.3, 0.3]

- Augmentation Anchoring
 - ② 추가적인 학습이 필요 없는 Augmentation Policy 가 필요함
 - CT Augment 를 제안 → 학습 과정에서 각 Augmentation 의 강도에 따른 확률을 동적으로 변형
 - Step 2. 임의의 Augmentation 두 개를 선별하고, Augmentation 별로 bin 의 가중치를 따라 magnitude 를 추출

bins of magnitude

		_	_	
AutoContrast	1	1	•••	1
Blur	1	1	•••	1
•••	•••	•••	•••	1
Translate y	1	1		1

Blur: 0.05

Translate y: -0.25

Sample two augmentations and magnitudes

- Augmentation Anchoring
 - ② 추가적인 학습이 필요 없는 Augmentation Policy 가 필요함
 - CT Augment 를 제안 → 학습 과정에서 각 Augmentation 의 강도에 따른 확률을 동적으로 변형
 - Step 3. Labeled Data 에 대해 해당 Augmentation 에 대한 예측 확률 값 계산, Label 과 비교

Blur: 0.05

Translate y : -0.25

Class1	Class2	Class3
0.6	0.3	0.1
0.2	0.7	0.1
		•••
0.1	0.3	0.6

Label
1
2
••
3

$$w = 1 - \frac{1}{2L} \Sigma |p_{model}(y|x;\theta) - p|$$

- Augmentation Anchoring
 - ② 추가적인 학습이 필요 없는 Augmentation Policy 가 필요함
 - CT Augment 를 제안 → 학습 과정에서 각 Augmentation 의 강도에 따른 확률을 동적으로 변형
 - Step 4. 샘플된 Augmentation 의 magnitude bin 에 대한 m_i 에 w 를 반영 & 정규화

bins of magnitude

AutoContrast

Blur

•••

Translate y

	,	(
1	1	•••	1
1	1		1
	•••	•••	1
1	1	•••	1

Normalize(1	1	•••	1)
Normalize(0.8	1	•••	1)
Normalize(•••	•••	•••	1	
Normalize(1	8.0	•••	1	

- Augmentation Anchoring
 - ② 추가적인 학습이 필요 없는 Augmentation Policy 가 필요함
 - CT Augment 를 제안 → 학습 과정에서 각 Augmentation 의 강도에 따른 확률을 동적으로 변형
 - m_i 가 0.8 이하인 경우 0으로 가중치를 설정하여 예측 값의 Confidence 가 낮은 Augmentation은 사용하지 않음
 - ✓ Strong Augmentation 으로 인한 개별 예측 값의 불안정성을 해결

Putting it all together

- X': Strong Augmented Labeled Data + Mix-up with Unlabeled Data(Strong + Weak)
- U': Unlabeled Data(Strong + Weak) + Mix-up with Strong Augmented Labeled Data
- U'_1 : First Strong Augmented Unlabeled Data with No Mix-up

Algorithm 1 ReMixMatch algorithm for producing a collection of processed labeled examples and processed unlabeled examples with label guesses (cf. Berthelot et al. (2019) Algorithm 1.)

```
1: Input: Batch of labeled examples and their one-hot labels \mathcal{X} = \{(x_b, p_b) : b \in (1, \dots, B)\}, batch of
     unlabeled examples \mathcal{U} = \{u_b : b \in (1, \dots, B)\}, sharpening temperature T, number of augmentations
     K, Beta distribution parameter \alpha for MixUp.
 2: for b = 1 to B do
         \hat{x}_b = \text{StrongAugment}(x_b) // Apply strong data augmentation to x_b
         \hat{u}_{b,k} = \text{StrongAugment}(u_b); k \in \{1, \dots, K\} // Apply strong data augmentation K times to u_b
         \tilde{u}_b = \text{WeakAugment}(u_b) // Apply weak data augmentation to u_b
         q_b = p_{\text{model}}(y \mid \tilde{u}_b; \theta) // Compute prediction for weak augmentation of u_b
         q_b = \text{Normalize}(q_b \times p(y)/\tilde{p}(y)) // Apply distribution alignment
         q_b = \text{Normalize}(q_b^{1/T}) // Apply temperature sharpening to label guess
 9: end for
10: \hat{\mathcal{X}} = ((\hat{x}_b, p_b); b \in (1, \dots, B)) // Augmented labeled examples and their labels
11: \hat{\mathcal{U}}_1 = ((\hat{u}_{b,1}, q_b); b \in (1, \dots, B)) // First strongly augmented unlabeled example and guessed label
12: \hat{\mathcal{U}} = ((\hat{u}_{b,k}, q_b); b \in (1, \dots, B), k \in (1, \dots, K)) // All strongly augmented unlabeled examples
13: \hat{\mathcal{U}} = \hat{\mathcal{U}} \cup ((\tilde{u}_b, q_b); b \in (1, \dots, B)) // Add weakly augmented unlabeled examples
14: W = \text{Shuffle}(\text{Concat}(\hat{\mathcal{X}}, \hat{\mathcal{U}})) // Combine and shuffle labeled and unlabeled data
15: \mathcal{X}' = (\operatorname{MixUp}(\hat{\mathcal{X}}_i, \mathcal{W}_i); i \in (1, \dots, |\hat{\mathcal{X}}|)) // Apply MixUp to labeled data and entries from \mathcal{W}
16: \mathcal{U}' = (\operatorname{MixUp}(\hat{\mathcal{U}}_i, \mathcal{W}_{i+|\hat{\mathcal{X}}|}); i \in (1, \dots, |\hat{\mathcal{U}}|)) // Apply MixUp to unlabeled data and the rest of \mathcal{W}
```

Augmentation Anchoring & Distribution Alignment

17: **return** $\mathcal{X}', \mathcal{U}', \hat{\mathcal{U}}_1$

Putting it all together

- X': Strong Augmented Labeled Data + Mix-up with Unlabeled Data(Strong + Weak)
- U': Unlabeled Data(Strong + Weak) + Mix-up with Strong Augmented Labeled Data
- U_1' : First Strong Augmented Unlabeled Data with No Mix-up
- 최종 Loss Function은 아래와 같음
 - ✓ 3번과 4번 항을 추가하였을 때 성능이 더욱 증가
 - ✓ 4번은 Self SL의 Pretext-task 인 Rotation 을 결합

$$\sum_{x,p \in \mathcal{X}'} \mathrm{H}(p, p_{\mathrm{model}}(y|x; \theta)) + \lambda_{\mathcal{U}} \sum_{u,q \in \mathcal{U}'} \mathrm{H}(q, p_{\mathrm{model}}(y|u; \theta))$$

$$+ \lambda_{\hat{\mathcal{U}}_{1}} \sum_{u,q \in \hat{\mathcal{U}}_{1}} \mathrm{H}(q, p_{\mathrm{model}}(y|u; \theta)) + \lambda_{r} \sum_{u \in \hat{\mathcal{U}}_{1}} \mathrm{H}(r, p_{\mathrm{model}}(r|\operatorname{Rotate}(u, r); \theta))$$

Results

❖ CIFAR 10 & SVHN

• CIFAR 10: 250 개 label 을 사용하였을 때 4000개 Label 을 쓴 MixMatch와 동일한 성능을 나타냄

	CIFAR-10		SVHN			
Method	250 labels	1000 labels	4000 labels	250 labels	1000 labels	4000 labels
VAT	36.03±2.82	18.64±0.40	11.05±0.31	8.41±1.01	5.98±0.21	4.20±0.15
Mean Teacher	47.32 ± 4.71	17.32 ± 4.00	10.36 ± 0.25	6.45 ± 2.43	3.75 ± 0.10	3.39 ± 0.11
MixMatch	11.08 ± 0.87	7.75 ± 0.32	6.24 ± 0.06	3.78 ± 0.26	3.27 ± 0.31	2.89 ± 0.06
ReMixMatch	6.27 ± 0.34	5.73 ± 0.16	5.14 ± 0.04	3.10 ± 0.50	2.83 ± 0.30	2.42 ± 0.09
UDA, reported*	8.76±0.90	5.87 ± 0.13	5.29±0.25	2.76±0.17	2.55±0.09	2.47±0.15

- Rotation Loss 의 hyper-parameter(λ_r) 를 0.5에서 2로 증가시킬 경우 CIFAR10은 클래스 당 4 개(총 40개), SVHN 도 40개의 Label 만 가지고 학습해도 준수한 성능을 보임
 - ✓ Few-shot Learning 이 가능하다고 주장

Results

Ablation Study

• K: Strong Augmentation 개수(Default=8)

• 결론:제안한 요소들 다 넣어야 좋다

Ablation	Error Rate	Ablation	Error Rate
ReMixMatch	5.94	No rotation loss	6.08
With K=1	7.32	No pre-mixup loss	6.66
With K=2	6.74	No dist. alignment	7.28
With K=4	6.21	L2 unlabeled loss	17.28
With K=16	5.93	No strong aug.	12.51
MixMatch	11.08	No weak aug.	29.36

Results

- * KL Divergence between Labeled Data and Unlabeled Data
 - 추가적인 목적 함수 없이, Distribution Alignment 로 보정만 해줘도 Labeled Data 의 분포를 따라 감

Conclusion

- ❖ Data Efficiency 가 높다??
 - Labeled Data 개수가 적어도 된다는 측면에서는 동의
 - 하지만 실제로 데이터 당 8번의 Strong Augmentation 을 추가해야하기 때문에 Cost Efficiency 가 높다고 생각하지 않음

CTAugment

• 추가적인 학습 없이 Augmentation Magnitude 의 샘플 확률을 조정한 것이 참신했음

❖ Too much

- 너무 복잡한 느낌이 들기도 함
- 이후 나온 Fixmatch 가 더 간단하고 성능도 잘나와서 Fixmatch 를 더 많이 쓰는 듯

Thank you