CS285 HW5 Report

Part 1 "Unsupervised" RND and exploration performance

Performance Compare

Eval Average

Eval Average

State Density Comparison

Subpart Custom Exploration: Boltzman

hw5_expl_q1_alg_hard_PointmassHard-v0_06-11-2022_03-09-47
hw5_expl_q1_alg_med_PointmassMedium-v0_06-11-2022_03-09-31

Part 2 Offline learning on exploration data

Subpart 1: Q value comparison

Subpart 2 Numsteps comparison:

Subpart 3: Alpha comparison:

Alpha 0.2 performs the best while dqn performs the worst.

Part 3 "Supervised" exploration with mixed reward bonuses.

Compare to Q2(purely offline)

Clearly, mixed reward is the winner.

Compare to Q1(rnd with default exploration=10000steps)

Even though the final result is close, but clearly CQL with mixed reward converges a lot faster than standard RND.

Part 4 Offline Learning with AWAC

hw5_expl_q3_medium_cql_PointmassMedium-v0_17-11-2022_13-27-3

Best lambda: Easy-sup(10), Easy-unsup(10), Med-sup(2), Med_unsup(0.1)

Part 5 Offline Learning with IQL

Supervised Unsupervised

Best tau: Easy-sup(0.99), Easy-unsup(0.8), Med-sup(0.9), Med_unsup(0.9)

Final compare CQL, AWAC, IQL

From the plot, we can see that cql seems to performs the best in the end. AWAC is also really close and converges fast. IQL seems to perform the worst among all.