Universitatea "Al. I. Cuza" din Iași

Facultatea de Informatică

Numele studentului:

Grupa studentului:

Test 1 - Matematică

(25.11.2020 - 08:30-09:45)

Timp de lucru: 1h15'+15'

SUBIECTUL I (20 puncte)

Pe mulțimea $\mathbb Z$ se consideră relația

 $xRy \iff x + 3y$ este par, pentru orice $x, y \in \mathbb{Z}$.

- i. Arătați că R o relație reflexivă. (5 puncte)
- ii. Este R o relație de echivalență? Justificați răspunsul. (15 puncte)

SUBIECTUL II (30 puncte)

Se consideră următoarea serie

$$\sum_{n=2}^{\infty} \frac{\alpha^n(\sqrt{n}-1)}{n^2+1}, \alpha \in \mathbb{R}.$$

- i. Să se studieze natura seriei dacă $\alpha = 1$. (10 puncte)
- ii. Discutați în funcție de parametrul $\alpha \in \mathbb{R}$ convergența seriei. (20 puncte)

SUBIECTUL III (40 puncte)

Fie endomorfismul $T: \mathbb{R}^3 \to \mathbb{R}^3$, definit prin matricea sa în raport cu baza canonică B_C din \mathbb{R}^3 ,

$$A_{B_C} = \begin{bmatrix} 4 & m & 0 \\ 8 & 4 & 0 \\ 0 & 0 & 8 \end{bmatrix},$$

unde $m \in \mathbb{R}$ este un parametru real.

- a) Să se calculeze T(1, -2, 0). (5 puncte)
- b) Să se determine parametrul $m \in \mathbb{R}$ astfel încât dim(Ker(T)) = 1 și în acest caz să se determine Ker(T) și Im(T), indicând și o bază în aceste subspații. (10 puncte)
- c) Pentru m=2 să se determine valorile proprii și vectorii proprii corespunzători din fiecare subspațiu propriu. (15 puncte)
- d) Este T este diagonalizabil pentru m=2? În caz afirmativ, determinați baza B_D relativ la care T are matricea diagonală A_{B_D} , deci, implicit, determinați matricea diagonală A_{B_D} . (10 puncte)

Precizări:

- 1) Toate subiectele sunt obligatorii.
- 2) Punctaj din oficiu 10 puncte.
- 3) Nota finală reprezintă 1/10 din punctajul total obținut.