1.Direct mapped caches

How many bytes of data can our cache hold? How many words?

	Index	Offset				Tag bits	Index bits	Offset bits
CPU	Number	3	2	1	0	_ Q	1	
Cache	0					$\mid \nu \rangle$	1	
	1					` _	-	-

Index bits=log2 (Number of index rows) Offset bits=log2 (Number of offsets columns)

Total 32

8 bytes, 2 words

2. Fill in the "Tag bits, Index bits, Offset bits" with the correct T:I:O breakdown according to the diagram.

3. Let's say we have a 8192KiB cache with an 128B block size, what is the tag, index, and offset of 0xFEEDF00D?

FE	ED	FO	0D	
		1111 0000		_
×192 =	7B KiB	= 2" B.	128 =	2/B
offset : 112	> > \ \		19: 1 1111 1 1110 0001	1101
MOULX ->	25-1=16	区门门门	الالام ما ال)

4. Fill in the table below. Assume we have a write-through cache, so the number of bits per row includes only the cache data, the tag, and the valid bit.

Address size (bits)	Cache size	Block size	Tag bits	Index bits	Offset bits	Bits per row	
16	4KiB Z	4B 2	4	h	2	३	6x8+4+
32	32KiB /	16B 4	ij	11	4.	146	16x8+17+1
32	64kiB	16B	16	12	4	145	16 26 + 16 4
64	2048KiB	12/8/3	43	14	j	1068	

5.Let's say you have a byte-addressed computer with a total memory of 1MiB. It features a 16KiB CPU cache with 1KiB blocks.

1) . How many bits make up a memory address on this computer?

2) . What is the T:I:O breakdown? tag bits: 6 index bits: 4 offset bits:

6. Given CPU base CPI = 1, clock rate = 4GHz Miss rate/instruction = 2% Main memory access time = 100ns, With just primary cache, what is Average memory access time (AMAT)?

Teress time (AMAT)?
$$7 = \frac{1}{4 \times 10^{9}} \times 10^{9} \text{ ns} = 0.35 \text{ ns}$$

$$AMAT = 0.35 + 2\% \times 100 = 2.35 \text{ ns}$$

7. CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles, I-cache miss rate = 5%, what is Average memory access time (AMAT)?

8. Given, I-cache miss rate = 2%, D-cache miss rate = 4%, Miss penalty = 100 cycles Base CPI (ideal cache) = 2, Load & stores are 36% of instructions, what is Actual CPI

Advant OPI =
$$2 + 0.02 \times 100 + 0.36 \times 0.09 \times 100$$

= 5.49